US Patent & Trademark Office Patent Public Search | Text View

United States Patent Kind Code Date of Patent Inventor(s) 12384337 B1 August 12, 2025 Verhoff; Don et al.

Military vehicle

Abstract

A military vehicle assembly includes a rear module. The rear module includes a rear frame assembly, a bed supported by the rear frame assembly, a rear tractive assembly, a transaxle supported by the rear frame assembly and coupled to the rear tractive assembly, and a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably couple to a rear end of a passenger capsule of a military vehicle. The one or more lower interfaces are configured to detachably coupled to a bottom of the passenger capsule. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle.

Inventors: Verhoff; Don (Oshkosh, WI), Schmiedel; Gary (Oshkosh, WI), Yakes; Chris (Oshkosh,

WI), Messina; Rob (Oshkosh, WI), Wilkins; Brian (Oshkosh, WI), Schulte; Kent (Oshkosh, WI), Seffernick; Daniel R. (Oshkosh, WI), Holda; Joseph (Oshkosh, WI), Peotter; Michael (Oshkosh, WI), McGraw; David (Oshkosh, WI), Seefeldt; Anthony (Oshkosh, WI), Pelko; Dave (Oshkosh, WI), Gander; Jesse (Oshkosh, WI), Reineking;

Jerry (Oshkosh, WI), Steinke; Jesse (Oshkosh, WI)

Applicant: Oshkosh Defense, LLC (Oshkosh, WI)

Family ID: 53190544

Assignee: Oshkosh Defense, LLC (Oshkosh, WI)

Appl. No.: 18/732064

Filed: June 03, 2024

Related U.S. Application Data

continuation parent-doc US 17718535 20220412 US 12036966 child-doc US 18732064 continuation parent-doc US 17398581 20210810 US 11332104 child-doc US 17718535 continuation parent-doc US 16529508 20190801 US 11541851 child-doc US 17398581 continuation parent-doc US 15599174 20170518 US 10434995 child-doc US 16529508 continuation parent-doc US 14724279 20150528 US 9656640 child-doc US 15599174 continuation parent-doc US 13841686 20130315 US 9045014 child-doc US 14724279 us-provisional-application US 61615812 20120326

Publication Classification

Int. Cl.: F41H5/16 (20060101); B60G17/04 (20060101); B60K17/10 (20060101); B60T7/20 (20060101); B60T13/14 (20060101); B60T13/16 (20060101); B60T13/24 (20060101); B60T13/58 (20060101); B62D21/15 (20060101); B62D21/18 (20060101); B62D24/00 (20060101); B62D33/06 (20060101); B62D63/02 (20060101); F41H7/04 (20060101); B60T13/66 (20060101)

U.S. Cl.:

CPC **B60T7/20** (20130101); **B60G17/04** (20130101); **B60T13/14** (20130101); **B60T13/16** (20130101); **B60T13/249** (20130101); **B60T13/581** (20130101); **B60T13/583** (20130101); **B62D21/152** (20130101); **B62D21/18** (20130101); **B62D24/00** (20130101); **B62D33/0617** (20130101); **B62D63/025** (20130101); **F41H5/16** (20130101); **F41H7/044** (20130101); B60G2300/07 (20130101); B60K17/105 (20130101); B60T13/66 (20130101); F41H7/048 (20130101)

Field of Classification Search

CPC: B60T (7/20); B60T (13/14); B60T (13/16); B60T (13/249); B60T (13/581); B60T (13/583); B60T (13/66); B60G (17/04); B60G (2300/07); B62D (21/152); B62D (21/18); B62D (24/00); B62D (33/0617); B62D (63/025); F41H (5/16); F41H (7/044); F41H (7/048); B60K (17/105)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
815574	12/1905	Russell	N/A	N/A
1001863	12/1905	Kirkwood	N/A N/A	N/A N/A
1278460	12/1910		N/A N/A	N/A
		Hanger		
1376467	12/1920	Simmon	N/A	N/A
1463569	12/1922	Bathrick	N/A	N/A
1835132	12/1930	Anania	N/A	N/A
1941582	12/1933	Schroeder	N/A	N/A
2261693	12/1940	Mathauer	N/A	N/A
2628127	12/1952	Palsgrove	N/A	N/A
2632577	12/1952	Sacco	N/A	N/A
2907575	12/1958	Locker	N/A	N/A
2915334	12/1958	Barenyi	N/A	N/A
2916997	12/1958	Terrie	N/A	N/A
2997242	12/1960	Grosholz	N/A	N/A
3010533	12/1960	Ross	N/A	N/A
3021166	12/1961	Kempel et al.	N/A	N/A
3039788	12/1961	Farago	N/A	N/A
3046045	12/1961	Campbell	N/A	N/A
3083790	12/1962	McAfee et al.	N/A	N/A
3131963	12/1963	Schilberg	N/A	N/A
3146839	12/1963	Carlson	N/A	N/A
3188966	12/1964	Tetlow	N/A	N/A
3306390	12/1966	Jamme	N/A	N/A
3395672	12/1967	Ruf	N/A	N/A
3500961	12/1969	Eberhardt et al.	N/A	N/A
3590948	12/1970	Milner, Jr.	N/A	N/A
3726308	12/1972	Eberhardt	N/A	N/A
3778115	12/1972	Ryburn	N/A	N/A
3881767	12/1974	Klees	N/A	N/A

4037664	12/1976	Gibson	N/A	N/A
4059170	12/1976	Young	N/A	N/A
4072362	12/1977	Van Anrooy	N/A	N/A
4084522	12/1977	Younger	N/A	N/A
4103757	12/1977	McVaugh	N/A	N/A
4153262	12/1978	Diamond et al.	N/A	N/A
4157733	12/1978	Ewers et al.	N/A	N/A
4160492	12/1978	Johnston	N/A	N/A
4185924	12/1979	Graham	N/A	N/A
4241803	12/1979	Lauber	N/A	N/A
4270771	12/1980	Fujii	N/A	N/A
4280393	12/1980	Giraud et al.	N/A	N/A
4326445	12/1981	Bemiss	N/A	N/A
4329109	12/1981	Den Bleyker	N/A	N/A
4337830	12/1981	Eberhardt	N/A	N/A
4369010	12/1982	Ichinose et al.	N/A	N/A
4373600	12/1982	Buschbom et al.	N/A	N/A
4395191	12/1982	Kaiser	N/A	N/A
4422685	12/1982	Bonfilio et al.	N/A	N/A
4456093	12/1983	Finley et al.	N/A	N/A
4492282	12/1984	Appelblatt et al.	N/A	N/A
4558758	12/1984	Littman et al.	N/A	N/A
4563124	12/1985	Eskew	N/A	N/A
4586743	12/1985	Edwards et al.	N/A	N/A
4587862	12/1985	Hoffman	N/A	N/A
4655307	12/1986	Lamoureux	N/A	N/A
4659104	12/1986	Tanaka et al.	N/A	N/A
4669744	12/1986	Sano et al.	N/A	N/A
4696489	12/1986	Fujishiro et al.	N/A	N/A
4709358	12/1986	Appling et al.	N/A	N/A
4733876	12/1987	Heider et al.	N/A	N/A
4811804	12/1988	Ewers et al.	N/A	N/A
4826141	12/1988	Buma et al.	N/A	N/A
4834418	12/1988	Buma et al.	N/A	N/A
4848835	12/1988	Derees	N/A	N/A
4889395	12/1988	Fujita et al.	N/A	N/A
4926954	12/1989	Ataka et al.	N/A	N/A
4945780	12/1989	Bosma	N/A	N/A
5004156	12/1990	Montanier	N/A	N/A
5010971	12/1990	Hamada et al.	N/A	N/A
5021917	12/1990	Pike et al.	N/A	N/A
5028088	12/1990	Del Monico et al.	N/A	N/A
5040823	12/1990	Lund	N/A	N/A
5054806	12/1990	Chester	N/A	N/A
5076597	12/1990	Korekane et al.	N/A	N/A
5080392	12/1991	Bazergui	N/A	N/A
5111901	12/1991	Bachhuber et al.	N/A	N/A
5113946	12/1991	Cooper	N/A	N/A
5137101	12/1991	Schaeff	N/A	N/A
5137292	12/1991	Eisen	N/A	N/A
5139104	12/1991	Moscicki	N/A	N/A
5143326	12/1991	Parks	N/A	N/A
5158614	12/1991	Takeuchi	N/A	N/A
5169197	12/1991	Underbakke et al.	N/A	N/A
5209003	12/1992	Maxfield et al.	N/A	N/A

5217083 1271992 Bachhuber et al. N/A N/A 5301756 1271993 Relyea et al. N/A N/A 5314230 1271993 Relyea et al. N/A N/A 5314230 1271993 Hutchison et al. N/A N/A 5314230 1271993 Hutchison et al. N/A N/A 5327889 1271993 Furdashi et al. N/A N/A 5346334 1271993 Einaru et al. N/A N/A 5368317 1271994 Orr N/A N/A 5467827 1271994 McLoughlin N/A N/A 5467827 1271994 McLoughlin N/A N/A 54487323 1271995 Madden, Jr. N/A N/A 5501288 1271995 Ducote N/A N/A 5533781 1271995 Rabitsch et al. N/A N/A 55349230 1271995 Schmitz et al. N/A N/A 553673 1271995	5211245	12/1992	Relyea et al.	N/A	N/A
5301756 12/1993 Relyea et al. N/A N/A 5314230 12/1993 Hutchison et al. N/A N/A 5319436 12/1993 Yopp N/A N/A 5327989 12/1993 Yopp N/A N/A 5346334 12/1993 Furuhashi et al. N/A N/A 5390945 12/1994 McCombs et al. N/A N/A 5483908 12/1994 Madden, Jr. N/A N/A 547622 12/1994 McLoughlin N/A N/A 5487823 12/1995 Madden, Jr. N/A N/A 5531288 12/1995 Madden, Jr. N/A N/A 5533874 12/1995 Williams N/A N/A 5538274 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Palmen N/A N/A 5670734 12/1996 Young N/A N/A 5670734 12/1996 Young N			•		
5314230 12/1993 Hutchison et al. N/A N/A 5319436 12/1993 Manns et al. N/A N/A 5322321 12/1993 Furuhashi et al. N/A N/A 5346334 12/1993 Einanu et al. N/A N/A 5368317 12/1994 Orr N/A N/A 5390945 12/1994 Orr N/A N/A 5438908 12/1994 McLoughlin N/A N/A 5467827 12/1994 McLoughlin N/A N/A 5476020 12/1994 Lipp N/A N/A 5487323 12/1995 Ducote N/A N/A 5533781 12/1995 Williams N/A N/A 5538274 12/1995 Rabitsch et al. N/A N/A 5536673 12/1995 Almen N/A N/A 5617696 12/1996 Young N/A N/A 5670734 12/1996 Middione et al. N/A					
5319436 12/1993 Manns et al. N/A N/A 5322321 12/1993 Yopp N/A N/A 5327989 12/1993 Einaru et al. N/A N/A 5346334 12/1993 Einaru et al. N/A N/A 5380945 12/1994 McCombs et al. N/A N/A 54838908 12/1994 Madden, Jr. N/A N/A 5467827 12/1994 Lipp N/A N/A 5487823 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Madden, Jr. N/A N/A 5538781 12/1995 Williams N/A N/A 5538274 12/1995 Rabitsch et al. N/A N/A 553673 12/1995 Palmen N/A N/A 5617696 12/1996 Young N/A N/A 56676320 12/1996 Hackman N/A N/A 5746396 12/1996 Kopti et al. N/					
5322321 12/1993 Yopp N/A N/A 5327989 12/1993 Furuhashi et al. N/A N/A 5346334 12/1993 Einaru et al. N/A N/A 5369344 12/1994 McCombs et al. N/A N/A 5389045 12/1994 Madden, Jr. N/A N/A 5478208 12/1994 McLoughlin N/A N/A 5478202 12/1994 McLoughlin N/A N/A 5487323 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Ducote N/A N/A 5533781 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Rabitsch et al. N/A N/A 5538230 12/1995 Hackman N/A N/A 5617696 12/1995 Hackman N/A N/A 5670734 12/1996 Middione et al. N/A N/A 57746396 12/1996 Kopi et al.<					
5327989 12/1993 Furuhashi et al. N/A N/A 5346334 12/1993 Elinaru et al. N/A N/A 5368317 12/1994 Orr N/A N/A 5309045 12/1994 Orr N/A N/A 5488908 12/1994 Madden, Jr. N/A N/A 5467827 12/1994 Lipp N/A N/A 5476202 12/1994 Lipp N/A N/A 5487323 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Ducote N/A N/A 5533781 12/1995 Williams N/A N/A 5538274 12/1995 Rabitsch et al. N/A N/A 553673 12/1995 Palmen N/A N/A 5617696 12/1996 Young N/A N/A 5670734 12/1996 Kome N/A N/A 5687669 12/1996 Kome N/A N/A </td <td></td> <td></td> <td></td> <td></td> <td></td>					
5346334 12/1993 Einaru et al. N/A N/A 5368317 12/1993 McCombs et al. N/A N/A 5390945 12/1994 Orr N/A N/A 5438908 12/1994 McLoughlin N/A N/A 5476202 12/1994 Lipp N/A N/A 5487323 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Mulden, Jr. N/A N/A 5533781 12/1995 Williams N/A N/A 5538274 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Palmen N/A N/A 5663520 12/1996 Young N/A N/A 567696 12/1996 Hackman N/A N/A 5677034 12/1996 Middione et al. N/A N/A 567469 12/1996 Middione et al. N/A N/A 5746336 12/1997 Thorton-Trump N					
5368317					
5390945 12/1994 Orr N/A N/A 5438908 12/1994 McLoughlin N/A N/A 5467827 12/1994 McLoughlin N/A N/A 5476202 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Mcloue N/A N/A 5533781 12/1995 Williams N/A N/A 5538185 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Palmen N/A N/A 5549230 12/1995 Palmen N/A N/A 5663520 12/1996 Young N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5716066 12/1996 Korpi et al. N/A N/A 5732862 12/1996 Engler N/A N/A 5785372 12/1997 Thorton-Trump N/A N/A 5784966 12/1997 Mohler et al. N/A					
5438908 12/1994 Madden, Jr. N/A N/A 5467827 12/1994 McLoughlin N/A N/A 5476202 12/1995 Madden, Jr. N/A N/A 5487323 12/1995 Ducote N/A N/A 5501288 12/1995 Ducote N/A N/A 5533781 12/1995 Rabitsch et al. N/A N/A 5538185 12/1995 Schmitz et al. N/A N/A 5549230 12/1995 Schmitz et al. N/A N/A 5549230 12/1996 Young N/A N/A 5663520 12/1996 Young N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5678699 12/1996 Korpi et al. N/A N/A 5716066 12/1997 Chou et al. N/A N/A 572862 12/1997 Mohler et al. N/A N/A 5784636 12/1997 Glatzmeier et al. <td></td> <td></td> <td></td> <td></td> <td></td>					
5467827 12/1994 McLoughlin N/A N/A 5476202 12/1994 Lipp N/A N/A 5487323 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Ducote N/A N/A 5533781 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Schmitz et al. N/A N/A 5553673 12/1995 Hackman N/A N/A 5617696 12/1996 Young N/A N/A 5670734 12/1996 Young N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5760918 12/1996 Korpi et al. N/A N/A 5716066 12/1996 Korpi et al. N/A N/A 5716066 12/1997 Thorton-Trump N/A N/A 5785372 12/1997 Mohler et al. N/A N/A 57846396 12/1997 Relyea					
5476202 12/1994 Lipp N/A N/A 5487323 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Ducote N/A N/A 5533781 12/1995 Williams N/A N/A 5538185 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Schmitz et al. N/A N/A 5549230 12/1995 Palmen N/A N/A 5617696 12/1996 Young N/A N/A 5617696 12/1996 Ladika et al. N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5679918 12/1996 Korpi et al. N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 578362 12/1997 Thorton-Trump N/A N/A 57846396 12/1997 Macleod					
5487323 12/1995 Madden, Jr. N/A N/A 5501288 12/1995 Williams N/A N/A 5533781 12/1995 Williams N/A N/A 5538185 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Schmitz et al. N/A N/A 5549230 12/1995 Palmen N/A N/A 5549230 12/1996 Palmen N/A N/A 553673 12/1996 Young N/A N/A 5617696 12/1996 Young N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5716066 12/1996 Korpi et al. N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5785372 12/1997 Glatzmeier et al. N/A N/A 5794966 12/1997 Macleod <					
5501288 12/1995 Ducote N/A N/A 5533781 12/1995 Rabitsch et al. N/A N/A 5538185 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Schmitz et al. N/A N/A 5549230 12/1995 Palmen N/A N/A 5553673 12/1996 Young N/A N/A 561696 12/1996 Young N/A N/A 5663520 12/1996 Middione et al. N/A N/A 5679318 12/1996 Korpi et al. N/A N/A 5687669 12/1996 Engler N/A N/A 5746396 12/1997 Chou et al. N/A N/A 5748396 12/1997 Mohler et al. N/A N/A 5788158 12/1997 Mohler et al. N/A N/A 5784966 12/1997 Macleod N/A N/A 5820150 12/1997 Archer et al.					
5533781 12/1995 Williams N/A N/A 5538185 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Schmitz et al. N/A N/A 5549230 12/1995 Palmen N/A N/A 5549230 12/1995 Hackman N/A N/A 5676734 12/1996 Young N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5687669 12/1996 Korpi et al. N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5785372 12/1997 Mohler et al. N/A N/A 5789188 12/1997 Relyea N/A N/A 57894966 12/1997 Macleod N/A N/A 5807056 12/1997 Macleod N/A N/A 580150 12/1997 Archer et al. <					
5538185 12/1995 Rabitsch et al. N/A N/A 5538274 12/1995 Schmitz et al. N/A N/A 5549230 12/1995 Palmen N/A N/A 5553673 12/1996 Young N/A N/A 5617696 12/1996 Young N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5679918 12/1996 Korpi et al. N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5785372 12/1997 Mohler et al. N/A N/A 578465 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Archer et al. N/A N/A 5836657 12/1997 Archer et al.					
5538274 12/1995 Schmitz et al. N/A N/A 5549230 12/1995 Palmen N/A N/A 5553673 12/1996 Young N/A N/A 5617696 12/1996 Young N/A N/A 56767034 12/1996 Middione et al. N/A N/A 5679918 12/1996 Korpi et al. N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5752862 12/1997 Mohler et al. N/A N/A 578372 12/1997 Glatzmeier et al. N/A N/A 5784966 12/1997 Mcleod N/A N/A 5807056 12/1997 Macleod N/A N/A 5836657 12/1997 Archer et al. N/A N/A 5836657 12/1997 Relyea					
5549230 12/1995 Palmen N/A N/A 5553673 12/1996 Young N/A N/A 5617696 12/1996 Young N/A N/A 5663520 12/1996 Ladika et al. N/A N/A 5670734 12/1996 Middione et al. N/A N/A 56876918 12/1996 Engler N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5785372 12/1997 Glatzmeier et al. N/A N/A 57894966 12/1997 Relyea N/A N/A 5807056 12/1997 Macleod N/A N/A 5820150 12/1997 Archer et al. N/A N/A 5820150 12/1997 Te Quement et al. N/A N/A 5839664 12/1997 Relyea N					
5553673 12/1995 Hackman N/A N/A 5617696 12/1996 Young N/A N/A 5663520 12/1996 Ladika et al. N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5679918 12/1996 Korpi et al. N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5785372 12/1997 Mohler et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5836657 12/1997 Archer et al. N/A N/A 583964 12/1997 Tilley et al. N/A N/A 5897123 12/1998 Eberhardt					
5617696 12/1996 Young N/A N/A 5663520 12/1996 Ladika et al. N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5670734 12/1996 Koppi et al. N/A N/A 56769918 12/1996 Engler N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Mohler et al. N/A N/A 5752862 12/1997 Mohler et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Archer et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A 5836657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea					
5663520 12/1996 Ladika et al. N/A N/A 5670734 12/1996 Middione et al. N/A N/A 5679918 12/1996 Korpi et al. N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Mohler et al. N/A N/A 5785372 12/1997 Mohler et al. N/A N/A 5785372 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Archer et al. N/A N/A 5807056 12/1997 Archer et al. N/A N/A 5836657 12/1997 Archer et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 5897123 12/1998 Eberhardt N/A N/A 5899276 12/1998 De Andrade					
5670734 12/1996 Middione et al. N/A N/A 5679918 12/1996 Korpi et al. N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5785372 12/1997 Glatzmeier et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5807056 12/1997 Macleod N/A N/A 5820150 12/1997 Archer et al. N/A N/A 5836657 12/1997 Archer et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 8897123 12/1998 Eberhardt N/A N/A 5899276 12/1998 Cherney et al. N/A N/A 5905225 12/1998 Dickson et al. N/A N/A 5997728 12/1998 Dlackmer <td></td> <td></td> <td></td> <td></td> <td></td>					
5679918 12/1996 Korpi et al. N/A N/A 5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5752862 12/1997 Mohler et al. N/A N/A 5788158 12/1997 Glatzmeier et al. N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5807056 12/1997 Archer et al. N/A N/A 5807056 12/1997 Archer et al. N/A N/A 5830657 12/1997 Le Quement et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 5899276 12/1998 Eberhardt N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5907225 12/1998 Joy					
5687669 12/1996 Engler N/A N/A 5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5752862 12/1997 Mohler et al. N/A N/A 5785372 12/1997 Glatzmeier et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A 5830657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 78897123 12/1998 Eberhardt N/A N/A 5899726 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 599780 12/1998 De Andrade <td></td> <td></td> <td></td> <td></td> <td></td>					
5716066 12/1997 Chou et al. N/A N/A 5746396 12/1997 Thorton-Trump N/A N/A 5752862 12/1997 Mohler et al. N/A N/A 5785372 12/1997 Glatzmeier et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A 5836657 12/1997 Le Quement et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 8839664 12/1997 Relyea N/A N/A 5897123 12/1998 Eberhardt N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5905225 12/1998 Dickson et al. N/A N/A 5909780 12/1998 De Andrad					
5746396 12/1997 Thorton-Trump N/A N/A 5752862 12/1997 Mohler et al. N/A N/A 5785372 12/1997 Glatzmeier et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A D400835 12/1997 Le Quement et al. N/A N/A 5836657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 5897123 12/1998 Eberhardt N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5905225 12/1998 Dickson et al. N/A N/A 5915728 12/1998 De Andrade N/A N/A 5915775 12/1998 Mac					
5752862 12/1997 Mohler et al. N/A N/A 5785372 12/1997 Glatzmeier et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A 5836657 12/1997 Le Quement et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 5839123 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5890199 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et a					
5785372 12/1997 Glatzmeier et al. N/A N/A 5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A D400835 12/1997 Le Quement et al. N/A N/A 5836657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea N/A N/A 7887123 12/1998 Eberhardt N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5905199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915755 12/1998 Martin et al. N/A N/A 59919240 12/1998 Nechus			•		
5788158 12/1997 Relyea N/A N/A 5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A D400835 12/1997 Le Quement et al. N/A N/A 5836657 12/1997 Relyea N/A N/A 5839664 12/1997 Relyea N/A N/A RE36196 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5905225 12/1998 Dickson et al. N/A N/A 5905225 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 594364 12/1998 Nechushtan					
5794966 12/1997 Macleod N/A N/A 5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A D400835 12/1997 Le Quement et al. N/A N/A 5836657 12/1997 Relyea N/A N/A 5839664 12/1998 Eberhardt N/A N/A 889123 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5905199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5915728 12/1998 De Andrade N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5954364 12/1998 Ney et al. N/A N/A 6009953 12/1999 Laskaris et al.					
5807056 12/1997 Osborn et al. N/A N/A 5820150 12/1997 Archer et al. N/A N/A D400835 12/1997 Le Quement et al. N/A N/A 5836657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea N/A N/A RE36196 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 590780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Nechushtan N/A N/A 600953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes e			5		
5820150 12/1997 Archer et al. N/A N/A D400835 12/1997 Le Quement et al. N/A N/A 5836657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea N/A N/A RE36196 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Nechushtan N/A N/A 6009953 12/1998 Nechushtan N/A N/A 6015155 12/1999 Brookes et			Osborn et al.		
D400835 12/1997 Le Quement et al. N/A N/A 5836657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea N/A N/A RE36196 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5994364 12/1998 Nec yet al. N/A N/A 6009953 12/1998 Nechushtan N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Christoph				N/A	
5836657 12/1997 Tilley et al. N/A N/A 5839664 12/1997 Relyea N/A N/A RE36196 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Christopherson et al. N/A N/A 610794 12/1999 Sc			Le Quement et al.	N/A	
5839664 12/1997 Relyea N/A N/A RE36196 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6109684 12/1999 Reitnou	5836657	12/1997	-	N/A	N/A
RE36196 12/1998 Eberhardt N/A N/A 5897123 12/1998 Cherney et al. N/A N/A 5899276 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Christopherson et al. N/A N/A 610794 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 <	5839664	12/1997	5	N/A	N/A
5899276 12/1998 Relyea et al. N/A N/A 5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 <t< td=""><td>RE36196</td><td>12/1998</td><td>5</td><td>N/A</td><td>N/A</td></t<>	RE36196	12/1998	5	N/A	N/A
5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 610794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5897123	12/1998	Cherney et al.	N/A	N/A
5900199 12/1998 Dickson et al. N/A N/A 5905225 12/1998 Joynt N/A N/A 5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 610794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5899276	12/1998	Relyea et al.	N/A	N/A
5909780 12/1998 De Andrade N/A N/A 5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 610584 12/1999 Schmitz et al. N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5900199	12/1998		N/A	N/A
5915728 12/1998 Blackburn N/A N/A 5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5905225	12/1998	Joynt	N/A	N/A
5915775 12/1998 Martin et al. N/A N/A 5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5909780	12/1998	De Andrade	N/A	N/A
5919240 12/1998 Ney et al. N/A N/A 5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5915728	12/1998	Blackburn	N/A	N/A
5954364 12/1998 Nechushtan N/A N/A 6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5915775	12/1998	Martin et al.	N/A	N/A
6009953 12/1999 Laskaris et al. N/A N/A 6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5919240	12/1998	Ney et al.	N/A	N/A
6015155 12/1999 Brookes et al. N/A N/A 6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	5954364	12/1998	Nechushtan	N/A	N/A
6036201 12/1999 Pond et al. N/A N/A 6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	6009953	12/1999	Laskaris et al.	N/A	N/A
6101794 12/1999 Christopherson et al. N/A N/A 6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	6015155	12/1999	Brookes et al.	N/A	N/A
6105984 12/1999 Schmitz et al. N/A N/A 6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	6036201	12/1999	Pond et al.	N/A	N/A
6109684 12/1999 Reitnouer N/A N/A 6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	6101794	12/1999	Christopherson et al.	N/A	N/A
6131685 12/1999 Sakamoto et al. N/A N/A 6149226 12/1999 Hoelzel et al. N/A N/A	6105984	12/1999	Schmitz et al.	N/A	N/A
6149226 12/1999 Hoelzel et al. N/A N/A	6109684	12/1999	Reitnouer	N/A	N/A
	6131685	12/1999	Sakamoto et al.	N/A	N/A
6155351 12/1999 Breedlove et al. N/A N/A	6149226	12/1999	Hoelzel et al.	N/A	N/A
	6155351	12/1999	Breedlove et al.	N/A	N/A

6178746	12/2000	Thoma et al.	N/A	N/A
6220532	12/2000	Manon et al.	N/A	N/A
6231466	12/2000	Thoma et al.	N/A	N/A
6270098	12/2000	Heyring et al.	N/A	N/A
6270153	12/2000	Toyao et al.	N/A	N/A
6289995	12/2000	Fuller	N/A	N/A
6311795	12/2000	Skotnikov et al.	N/A	N/A
6318742	12/2000	Franzini	N/A	N/A
6357769	12/2001	Omundson et al.	N/A	N/A
6364597	12/2001	Klinkenberg	N/A	N/A
6394007	12/2001	Lewis et al.	N/A	N/A
6394534	12/2001	Dean	N/A	N/A
6398236	12/2001	Richardson	N/A	N/A
6398478	12/2001	Smith et al.	N/A	N/A
6421593	12/2001	Kempen et al.	N/A	N/A
6435071	12/2001	Campbell	N/A	N/A
6435298	12/2001	Mizuno et al.	N/A	N/A
6443687	12/2001	Kaiser	N/A	N/A
6460907	12/2001	Usui	N/A	N/A
6503035	12/2002	Perrott	N/A	N/A
6516914	12/2002	Andersen et al.	N/A	N/A
6520494	12/2002	Andersen et al.	N/A	N/A
6527494	12/2002	Hurlburt	N/A	N/A
D473829	12/2002	Hoyle, Jr.	N/A	N/A
6553290	12/2002	Pillar	N/A	N/A
D474430	12/2002	Hill et al.	N/A	N/A
6561718	12/2002	Archer et al.	N/A	N/A
6619673	12/2002	Eckelberry et al.	N/A	N/A
6623020	12/2002	Satou	N/A	N/A
6658984	12/2002	Zonak	N/A	N/A
6692366	12/2003	Savant	N/A	N/A
6695328	12/2003	Cope	N/A	N/A
6695566	12/2003	Rodriguez Navio	N/A	N/A
6702058	12/2003	Ishii et al.	N/A	N/A
6736232	12/2003	Bergstrom et al.	N/A	N/A
6757597	12/2003	Yakes et al.	N/A	N/A
6764085	12/2003	Anderson	N/A	N/A
6769733	12/2003	Seksaria et al.	N/A	N/A
6779806 D497849	12/2003 12/2003	Breitbach et al. Yanase	N/A N/A	N/A N/A
6820908	12/2003	Tousi et al.	N/A N/A	N/A N/A
6848693	12/2003	Schneider	N/A N/A	N/A N/A
6860332	12/2004	Archer et al.	N/A N/A	N/A
6878481	12/2004	Bushong et al.	N/A	N/A
6882917	12/2004	Pillar et al.	N/A	N/A
6883815	12/2004	Archer	N/A	N/A
6885920	12/2004	Yakes et al.	N/A	N/A
6899191	12/2004	Lykken	N/A	N/A
6909944	12/2004	Pillar et al.	N/A	N/A
6922615	12/2004	Pillar et al.	N/A	N/A
6923453	12/2004	Pivac	N/A	N/A
6925735	12/2004	Hamm et al.	N/A	N/A
6959466	12/2004	Alowonle et al.	N/A	N/A
6976688	12/2004	Archer et al.	N/A	N/A
6993421	12/2005	Pillar et al.	N/A	N/A
	, _ 0 0		= :: * *	= ±

7006902	12/2005	Archer et al.	N/A	N/A
7024296	12/2005	Squires et al.	N/A	N/A
D523381	12/2005	Taguchi et al.	N/A	N/A
7072745	12/2005	Pillar et al.	N/A	N/A
7073620	12/2005	Braun et al.	N/A	N/A
D528482	12/2005	Hamburger	N/A	N/A
7107129	12/2005	Rowe et al.	N/A	N/A
7114764	12/2005	Barsoum et al.	N/A	N/A
7127331	12/2005	Pillar et al.	N/A	N/A
D533485	12/2005	Schiavone et al.	N/A	N/A
7144039	12/2005	Kawasaki et al.	N/A	N/A
D535589	12/2006	Lau et al.	N/A	N/A
7162332	12/2006	Pillar et al.	N/A	N/A
7164977	12/2006	Yakes et al.	N/A	N/A
7184662	12/2006	Arbel et al.	N/A	N/A
7184862	12/2006	Pillar et al.	N/A	N/A
7184866	12/2006	Squires et al.	N/A	N/A
7188893	12/2006	Akasaka	N/A	N/A
7195306	12/2006	Egawa et al.	N/A	N/A
7198130	12/2006	Schimke	N/A	N/A
7198278	12/2006	Donaldson	N/A	N/A
7207582	12/2006	Siebers et al.	N/A	N/A
7213872	12/2006	Ronacher et al.	N/A	N/A
7234534	12/2006	Froland et al.	N/A	N/A
7240906	12/2006	Klees	N/A	N/A
7246835	12/2006	Colburn et al.	N/A	N/A
7254468	12/2006	Pillar et al.	N/A	N/A
7258194	12/2006	Braun et al.	N/A	N/A
7267394	12/2006	Mouch et al.	N/A	N/A
7270346	12/2006	Rowe et al.	N/A	N/A
7274976	12/2006	Rowe et al.	N/A	N/A
D552522	12/2006	Sandy et al.	N/A	N/A
7277782	12/2006	Yakes et al.	N/A	N/A
7281600	12/2006	Chernoff et al.	N/A	N/A
7288920	12/2006	Bushong et al.	N/A	N/A
7302320	12/2006	Nasr et al.	N/A	N/A
7306069	12/2006	Takeshima et al.	N/A	N/A
D561665	12/2007	Thomas et al.	N/A	N/A
7329161	12/2007	Roering	N/A	N/A
D563289	12/2007	Pfeiffer	N/A	N/A
7357203	12/2007	Morrow et al.	N/A	N/A
D568217	12/2007	Tomatsu et al.	N/A	N/A
7377549	12/2007	Hasegawa et al.	N/A	N/A
7379797	12/2007	Nasr et al.	N/A	N/A
7380800	12/2007	Klees	N/A	N/A
7392122	12/2007	Pillar et al.	N/A	N/A
7393016	12/2007	Mitsui et al.	N/A	N/A
7406909	12/2007	Shah et al.	N/A	N/A
7412307	12/2007	Pillar et al.	N/A	N/A
7419021	12/2007	Morrow et al.	N/A	N/A
7425891	12/2007	Colburn et al.	N/A	N/A
7439711	12/2007	Bolton	N/A	N/A
7441615	12/2007	Borroni-Bird et al.	N/A	N/A
7441809	12/2007	Coombs et al.	N/A	N/A
7448460	12/2007	Morrow et al.	N/A	N/A

7451028	12/2007	Pillar et al.	N/A	N/A
7472914	12/2008	Anderson et al.	N/A	N/A
7472919	12/2008	Pratt et al.	N/A	N/A
7510235	12/2008	Kobayashi et al.	N/A	N/A
7520354	12/2008	Morrow et al.	N/A	N/A
7522979	12/2008	Pillar	N/A	N/A
7555369	12/2008	Pillar et al.	N/A	N/A
D597002	12/2008	Jamieson et al.	N/A	N/A
7594561	12/2008	Hass et al.	N/A	N/A
7611153	12/2008	Kim et al.	N/A	N/A
7611154	12/2008	Delaney	N/A	N/A
7618063	12/2008	Takeshima et al.	N/A	N/A
7624835	12/2008	Bowers	N/A	N/A
7624995	12/2008	Barbison	N/A	N/A
7641268	12/2009	Goffart et al.	N/A	N/A
7681892	12/2009	Crews et al.	N/A	N/A
7689332	12/2009	Yakes et al.	N/A	N/A
7695053	12/2009	Boczek et al.	N/A	N/A
7699385	12/2009	Kurata	N/A	N/A
7711460	12/2009	Yakes et al.	N/A	N/A
7715962	12/2009	Rowe et al.	N/A	N/A
7725225	12/2009	Pillar et al.	N/A	N/A
D617255	12/2009	Tezak et al.	N/A	N/A
7726429	12/2009	Suzuki	N/A	N/A
7729831	12/2009	Pillar et al.	N/A	N/A
D619062	12/2009	Improta	N/A	N/A
7756621	12/2009	Pillar et al.	N/A	N/A
7757805	12/2009	Wakuta et al.	N/A	N/A
7770506	12/2009	Johnson et al.	N/A	N/A
D623100	12/2009	Bimbi	N/A	N/A
D623565	12/2009	Cogswell	N/A	N/A
7789010	12/2009	Allor et al.	N/A	N/A
7792618	12/2009	Quigley et al.	N/A	N/A
7802816	12/2009	McGuire	N/A	N/A
D627686	12/2009	Thompson et al.	N/A	N/A
7824293	12/2009	Schimke	N/A	N/A
7835838	12/2009	Pillar et al.	N/A	N/A
7848857	12/2009	Nasr et al.	N/A	N/A
7905534	12/2010	Boczek et al.	N/A	N/A
7905540	12/2010	Kiley et al.	N/A	N/A
7908959	12/2010	Pavon	N/A	N/A
D636305	12/2010	Alvarez et al.	N/A	N/A
7931103	12/2010	Morrow et al.	N/A	N/A
7934766	12/2010	Boczek et al.	N/A	N/A
7938478	12/2010	Kamimae	N/A	N/A
D642099	12/2010	Nagao et al.	N/A	N/A
7997182	12/2010	Cox	N/A	N/A
8000850	12/2010	Nasr et al.	N/A	N/A
D646203	12/2010	Thompson et al.	N/A	N/A
D646607	12/2010	Verhee et al.	N/A	N/A
8029021	12/2010	Leonard et al.	N/A	N/A
8033208	12/2010	Joynt et al.	N/A	N/A
D649908	12/2010	Mullen	N/A	N/A
D649909	12/2010	Mullen	N/A	N/A
8095247	12/2011	Pillar et al.	N/A	N/A

8096225	12/2011	Johnson et al.	N/A	N/A
8123645	12/2011	Schimke	N/A	N/A
D655226	12/2011	Hanson et al.	N/A	N/A
8139109	12/2011	Schmiedel et al.	N/A	N/A
8146477	12/2011	Joynt	N/A	N/A
8146478	12/2011	Joynt et al.	N/A	N/A
D661231	12/2011	Galante et al.	N/A	N/A
8205703	12/2011	Halliday	N/A	N/A
D662865	12/2011	Van Braeckel	N/A	N/A
8333390	12/2011	Linsmeier et al.	N/A	N/A
8347775	12/2012	Altenhof et al.	N/A	N/A
8376077	12/2012	Venton-Walters	N/A	N/A
8402878	12/2012	Schreiner et al.	N/A	N/A
8413567	12/2012	Luther et al.	N/A	N/A
8413568	12/2012	Kosheleff	N/A	N/A
8424443	12/2012	Gonzalez	N/A	N/A
8430196	12/2012	Halliday	N/A	N/A
D683675	12/2012	Munson et al.	N/A	N/A
8459619	12/2012	Trinh et al.	N/A	N/A
8465025	12/2012	Venton-Walters et al.	N/A	N/A
D686121	12/2012	McCabe et al.	N/A	N/A
8561735	12/2012	Morrow et al.	N/A	N/A
8578834	12/2012	Tunis et al.	N/A	N/A
8596183	12/2012	Coltrane	N/A	N/A
8596648	12/2012	Venton-Walters et al.	N/A	N/A
8601931	12/2012	Naroditsky et al.	N/A	N/A
8616617	12/2012	Sherbeck et al.	N/A	N/A
D698281	12/2013	Badstuebner et al.	N/A	N/A
8635776	12/2013	Newberry et al.	N/A	N/A
8667880	12/2013	Berman	N/A	N/A
D702615	12/2013	Conway et al.	N/A	N/A
D703119	12/2013	Platto et al.	N/A	N/A
8714592	12/2013	Thoreson et al.	N/A	N/A
8746741	12/2013	Gonzalez	N/A	N/A
8764029	12/2013	Venton-Walters et al.	N/A	N/A
8770086	12/2013	Enck	N/A	N/A
8801017	12/2013	Ellifson et al.	N/A	N/A
D714476	12/2013	Lai	N/A	N/A
8863884	12/2013	Jacob-Lloyd	N/A	N/A
8876133	12/2013	Ellifson	N/A	N/A
D718683	12/2013	Thole et al.	N/A	N/A
8905164	12/2013	Capouellez et al.	N/A	N/A
8921130	12/2013	Kundaliya et al.	N/A	N/A
8943946	12/2014	Richmond et al.	N/A	N/A
8944497	12/2014	Dryselius et al.	N/A	N/A
8947531	12/2014	Fischer et al.	N/A	N/A
8955859	12/2014	Richmond et al.	N/A	N/A
8960068	12/2014	Jacquemont et al.	N/A	N/A
D725555	12/2014	Wolff et al.	N/A	N/A
8967699	12/2014	Richmond et al.	N/A	N/A
8991834	12/2014	Venton-Walters et al.	N/A	N/A
8991840	12/2014	Zuleger et al.	N/A	N/A
9016703	12/2014	Rowe et al.	N/A	N/A
D728435	12/2014	Hanson et al.	N/A	N/A
9045014	12/2014	Verhoff et al.	N/A	N/A

D735625	12/2014	Mays et al.	N/A	N/A
D739317	12/2014	McMahan et al.	N/A	N/A
D740187	12/2014	Jamieson	N/A	N/A
9156507	12/2014	Reed	N/A	N/A
D742287	12/2014	Hanson et al.	N/A	N/A
D743308	12/2014	Hanson et al.	N/A	N/A
D743856	12/2014	Ma	N/A	N/A
9174686	12/2014	Oshkosh	N/A	N/A
D745986	12/2014	Gorsten Schuenemann et al.	N/A	N/A
9221496	12/2014	Barr et al.	N/A	N/A
D749464	12/2015	Giolito	N/A	N/A
9291230	12/2015	Ellifson et al.	N/A	N/A
D754039	12/2015	Behmer et al.	N/A	N/A
9303715	12/2015	Oshkosh	N/A	N/A
9327576	12/2015	Ellifson	N/A	N/A
9328986	12/2015	Pennau et al.	N/A	N/A
9329000	12/2015	Richmond et al.	N/A	N/A
9358879	12/2015	Bennett	N/A	N/A
9366507	12/2015	Richmond et al.	N/A	N/A
D762148	12/2015	Platto et al.	N/A	N/A
9409471	12/2015	Hoppe et al.	N/A	N/A
9420203	12/2015	Broggi et al.	N/A	N/A
D765566	12/2015	Vena et al.	N/A	N/A
D768320	12/2015	Lai	N/A	N/A
D769160	12/2015	Platto et al.	N/A	N/A
D772768	12/2015	Chiang	N/A	N/A
9492695	12/2015	Betz et al.	N/A	N/A
D774994	12/2015	Alemany et al.	N/A	N/A
D775021	12/2015	Harriton et al.	N/A	N/A
D776003	12/2016	Lee et al.	N/A	N/A
D777220	12/2016	Powell	N/A	N/A
D777615	12/2016	Hanson et al.	N/A	N/A
D778217	12/2016	Ito et al.	N/A	N/A
D782711	12/2016	Dunshee et al.	N/A	N/A
D784219	12/2016	Jung	N/A	N/A
D787993	12/2016	McCabe et al.	N/A	N/A
9650005	12/2016	Patelczyk et al.	N/A	N/A
9656640	12/2016	Verhoff et al.	N/A	N/A
D789840	12/2016	Curic et al.	N/A	N/A
D790409	12/2016	Baste	N/A	N/A
9688112	12/2016	Venton-Walters et al.	N/A	N/A
D791987	12/2016	Lin Massina et al	N/A	N/A
9707869 D794853	12/2016 12/2016	Messina et al.	N/A	N/A
		Lai Kruogor et al	N/A N/A	N/A N/A
9738186 D796715	12/2016 12/2016	Krueger et al. Lin	N/A N/A	N/A N/A
D790713 D797332	12/2016	Lin	N/A N/A	N/A N/A
D797603	12/2016	Noone et al.	N/A	N/A
D802491	12/2016	Mainville	N/A	N/A
D804065	12/2016	Lai	N/A	N/A
9809080	12/2016	Ellifson et al.	N/A	N/A
9829282	12/2016	Richmond et al.	N/A	N/A
D804372	12/2016	Kozub	N/A	N/A
D805965	12/2016	Davis	N/A	N/A
D805968	12/2016	Piscitelli et al.	N/A	N/A
2000000	12/2010	i ischem et ui.	1 1/ 1 1	1 1/ 1 1

D813757	12/2017	Kozub	N/A	N/A
D813758	12/2017	Gonzales	N/A	N/A
D815574	12/2017	Mainville	N/A	N/A
D818885	12/2017	Seo	N/A	N/A
D820179	12/2017	Kladde	N/A	N/A
D823182	12/2017	Yates	N/A	N/A
D823183	12/2017	Yates	N/A	N/A
D824294	12/2017	Ge et al.	N/A	N/A
10023243	12/2017	Hines et al.	N/A	N/A
10030737	12/2017	Dillman et al.	N/A	N/A
D824806	12/2017	Knox	N/A	N/A
D824811	12/2017	Mainville	N/A	N/A
D824814	12/2017	Heyde	N/A	N/A
D827410	12/2017	Earley	N/A	N/A
D828258	12/2017	Zipfel	N/A	N/A
D830242	12/2017	Zipfel	N/A	N/A
D837106	12/2018	Yang	N/A	N/A
D837702	12/2018	Gander et al.	N/A	N/A
D839164	12/2018	Zipfel	N/A	N/A
10184553	12/2018	Kwiatkowski et al.	N/A	N/A
D842183	12/2018	Jackson et al.	N/A	N/A
D843281	12/2018	Gander et al.	N/A	N/A
D849283	12/2018	Lin	N/A	N/A
D850676	12/2018	Lin	N/A	N/A
D853285	12/2018	Yang	N/A	N/A
D853293	12/2018	Heroux et al.	N/A	N/A
D856860	12/2018	Gander	N/A	N/A
10369860	12/2018	Ellifson et al.	N/A	N/A
10392056	12/2018	Perron et al.	N/A	N/A
D859226	12/2018	Grooms	N/A	N/A
D860887	12/2018	Gander et al.	N/A	N/A
10421332	12/2018	Venton-Walters et al.	N/A	N/A
D862752	12/2018	Lai	N/A	N/A
D863144	12/2018	Gander	N/A	N/A
D864031	12/2018	Gander et al.	N/A	N/A
D864802	12/2018	Davis et al.	N/A	N/A
10434995	12/2018	Verhoff et al.	N/A	N/A
10435026	12/2018	Shively et al.	N/A	N/A
D865601	12/2018	Goodrich et al.	N/A	N/A
D867951	12/2018	Izard	N/A	N/A
D869332	12/2018	Gander et al.	N/A	N/A
D871283	12/2018	Gander et al.	N/A	N/A
10495419	12/2018	Krueger et al.	N/A	N/A
10609874	12/2019	Shumaker	N/A	N/A
10611203	12/2019	Rositch et al.	N/A	N/A
10611204	12/2019	Zhang et al.	N/A	N/A
10619696	12/2019	Dillman et al.	N/A	N/A
10632805	12/2019	Rositch et al.	N/A	N/A
D883876	12/2019	Beasley et al.	N/A	N/A
D885281	12/2019	Duncan et al.	N/A	N/A
D887050	12/2019	Lin	N/A	N/A
D888629	12/2019	Gander et al.	N/A	N/A
D891331	12/2019	Dickman et al.	N/A	N/A
D892002	12/2019	Gander	N/A	N/A
D893066	12/2019	Lin	N/A	N/A

D894063	12/2019	Dionisopoulos et al.	N/A	N/A
D894442	12/2019	Lin	N/A	N/A
10752075	12/2019	Shukla et al.	N/A	N/A
D897010	12/2019	Momokawa	N/A	N/A
10759251	12/2019	Zuleger	N/A	N/A
D898244	12/2019	Badstuebner et al.	N/A	N/A
D898632	12/2019	Gander	N/A	N/A
D899979	12/2019	Hamilton et al.	N/A	N/A
D900690	12/2019	Lovati	N/A	N/A
D902096	12/2019	Gander et al.	N/A	N/A
D902807	12/2019	Ruiz	N/A	N/A
D902809	12/2019	Hunwick	N/A	N/A
D904227	12/2019	Bracy	N/A	N/A
D904240	12/2019	Heilaneh et al.	N/A	N/A
D906902	12/2020	Duncan et al.	N/A	N/A
D908935	12/2020	Lin	N/A	N/A
D909639	12/2020	Chen	N/A	N/A
D909641	12/2020	Chen	N/A	N/A
D909644	12/2020	Chen	N/A	N/A
D909934	12/2020	Gander et al.	N/A	N/A
D910502	12/2020	Duncan et al.	N/A	N/A
10906396	12/2020	Schimke et al.	N/A	N/A
D911883	12/2020	Bae	N/A	N/A
D914562	12/2020	Kirkman et al.	N/A	N/A
D915252	12/2020	Duncan et al.	N/A	N/A
10978039	12/2020	Seffernick et al.	N/A	N/A
10981538	12/2020	Archer et al.	N/A	N/A
10987829	12/2020	Datema et al.	N/A	N/A
D919527	12/2020	Bender et al.	N/A	N/A
D922916	12/2020	Koo	N/A	N/A
D924740	12/2020	Zhao et al.	N/A	N/A
D925416	12/2020	Duncan et al.	N/A	N/A
D925421	12/2020	Mallicote et al.	N/A	N/A
D926093	12/2020	McMath	N/A	N/A
D926642	12/2020	Duncan et al.	N/A	N/A
D928672	12/2020	Gander et al.	N/A	N/A
D929913	12/2020	Gander	N/A	N/A
D930862	12/2020	Gander et al.	N/A	N/A
D932397	12/2020	Kaneko et al.	N/A	N/A
D933545	12/2020	Piaskowski et al.	N/A	N/A
D933547	12/2020	Hamilton et al.	N/A	N/A
D934306 D934745	12/2020	Boone et al.	N/A	N/A
D934745 D934766	12/2020 12/2020	Kentley-Klay et al. Duncan et al.	N/A N/A	N/A N/A
D935962	12/2020	Grand	N/A N/A	N/A N/A
D935965	12/2020	Yang	N/A N/A	N/A N/A
D935966	12/2020	Bibb	N/A N/A	N/A
D936529	12/2020	Tang et al.	N/A	N/A
11173959	12/2020	Chalifour	N/A	N/A
11181345	12/2020	Krueger et al.	N/A	N/A
D939393	12/2020	Jevremovic	N/A N/A	N/A N/A
D940605	12/2020	Sheffield et al.	N/A N/A	N/A
D940607	12/2021	Park et al.	N/A	N/A
D941195	12/2021	Koo et al.	N/A	N/A
D942340	12/2021	Hallgren	N/A	N/A
レッコといづひ	14/4041	Hungien	1 1/ / 1	11/11

D944136	12/2021	De Leon	N/A	N/A
D945335	12/2021	Duncan et al.	N/A	N/A
11260835	12/2021	Verhoff et al.	N/A	N/A
11273804	12/2021	Verhoff et al.	N/A	N/A
11273805	12/2021	Verhoff et al.	N/A	N/A
D952536	12/2021	Finney et al.	N/A	N/A
11332104	12/2021	Verhoff et al.	N/A	N/A
D955946	12/2021	Kirkman et al.	N/A	N/A
11364882	12/2021	Verhoff et al.	N/A	N/A
D960059	12/2021	Mallicote et al.	N/A	N/A
D961478	12/2021	Hoste et al.	N/A	N/A
D966161	12/2021	Ruiz et al.	N/A	N/A
D980145	12/2022	Schwartz et al.	N/A	N/A
D1000652	12/2022	Wu	N/A	N/A
D1004510	12/2022	Bryant et al.	N/A	N/A
D1010520	12/2023	Bjerke	N/A	N/A
D1016683	12/2023	Heilaneh et al.	N/A	N/A
D1020557	12/2023	Lin	N/A	N/A
D1020560	12/2023	Lin	N/A	N/A
D1022063	12/2023	Ye	N/A	N/A
D1025848	12/2023	Piaskowski et al.	N/A	N/A
D1027731	12/2023	Lee	N/A	N/A
D1029703	12/2023	Powell et al.	N/A	N/A
D1029705	12/2023	Gound	N/A	N/A
D1030557	12/2023	Willing et al.	N/A	N/A
D1031105	12/2023	Wu	N/A	N/A
D1032414	12/2023	Ecuyer et al.	N/A	N/A
D1033282	12/2023	Kim et al.	N/A	N/A
D1034320	12/2023	Tsuchida et al.	N/A	N/A
D1034325	12/2023	Kaban et al.	N/A	N/A
D1034347	12/2023	Moffett	N/A	N/A
D1034839	12/2023	Ye	N/A	N/A
D1036321	12/2023	Duncan et al.	N/A	N/A
D1037088	12/2023	Demkiw et al.	N/A	N/A
D1037960	12/2023	Sicot	N/A	N/A
D1039432	12/2023	Badstuebner et al.	N/A	N/A
D1039433	12/2023	Badstuebner et al.	N/A	N/A
D1040056	12/2023	George	N/A	N/A
D1040057	12/2023	George	N/A	N/A
D1040691	12/2023	Armigliato et al.	N/A	N/A
D1040870	12/2023	Armigliato et al.	N/A	N/A
D1042226	12/2023	Lee	N/A	N/A
D1042229	12/2023	Kuhlmann	N/A	N/A
D1042249	12/2023	Wu	N/A	N/A
D1042251	12/2023	Willing et al.	N/A	N/A
D1043472	12/2023	Wu	N/A	N/A
D1044612	12/2023	Wu	N/A	N/A
D1049949	12/2023	Montoya Bueloni et al.	N/A	N/A
D1049958	12/2023	Oh	N/A	N/A
D1055788	12/2023	Young et al.	N/A	N/A
D1059229	12/2024	Kobayashi	N/A	N/A
D1061966	12/2024	Wu	N/A	N/A
D1063727	12/2024	Wu	N/A	N/A
D1063728	12/2024	Wu	N/A	N/A
D1063733	12/2024	Willing et al.	N/A	N/A

2001/0015559	12/2000	Storer	N/A	N/A
2002/0103580	12/2001	Yakes et al.	N/A	N/A
2002/0119364	12/2001	Bushong et al.	N/A	N/A
2002/0129696	12/2001	Pek et al.	N/A	N/A
2002/0130771	12/2001	Osborne et al.	N/A	N/A
2002/0153183	12/2001	Puterbaugh et al.	N/A	N/A
2002/0190516	12/2001	Henksmeier et al.	N/A	N/A
2003/0001346	12/2002	Hamilton et al.	N/A	N/A
2003/0155164	12/2002	Mantini et al.	N/A	N/A
2003/0158638	12/2002	Yakes et al.	N/A	N/A
2003/0205422	12/2002	Morrow et al.	N/A	N/A
2003/0230863	12/2002	Archer	N/A	N/A
2004/0069553	12/2003	Ohashi et al.	N/A	N/A
2004/0074686	12/2003	Abend et al.	N/A	N/A
2004/0113377	12/2003	Klees	N/A	N/A
2004/0130168	12/2003	O'Connell	N/A	N/A
2004/0133332	12/2003	Yakes et al.	N/A	N/A
2004/0145344	12/2003	Bushong et al.	N/A	N/A
2004/0149500	12/2003	Chernoff et al.	N/A	N/A
2004/0245039	12/2003	Braun et al.	N/A	N/A
2004/0256024	12/2003	Schlachter	N/A	N/A
2005/0001400	12/2004	Archer et al.	N/A	N/A
2005/0034911	12/2004	Darby	N/A	N/A
2005/0062239	12/2004	Shore	N/A	N/A
2005/0093265	12/2004	Niaura et al.	N/A	N/A
2005/0099885	12/2004	Tamminga	N/A	N/A
2005/0109553	12/2004	Ishii et al.	N/A	N/A
2005/0110229	12/2004	Kimura et al.	N/A	N/A
2005/0113988	12/2004	Nasr et al.	N/A	N/A
2005/0119806	12/2004	Nasr et al.	N/A	N/A
2005/0132873	12/2004	Diaz Supisiche et al.	N/A	N/A
2005/0161891	12/2004	Trudeau et al.	N/A	N/A
2005/0191542	12/2004	Bushong et al.	N/A	N/A
2005/0196269	12/2004	Racer et al.	N/A	N/A
2005/0209747	12/2004	Yakes et al.	N/A	N/A
2005/0284682	12/2004	Hass et al.	N/A	N/A
2006/0021541	12/2005	Siebers et al.	N/A	N/A
2006/0021764	12/2005	Archer et al.	N/A	N/A
2006/0048986	12/2005	Bracciano	N/A	N/A
2006/0065451	12/2005	Morrow et al.	N/A	N/A
2006/0065453	12/2005	Morrow et al.	N/A	N/A
2006/0070776	12/2005	Morrow et al.	N/A	N/A
2006/0070788	12/2005	Schimke	N/A	N/A
2006/0071466	12/2005	Rowe et al.	N/A	N/A
2006/0082079	12/2005	Eichhorn et al.	N/A	N/A
2006/0116032	12/2005	Roering	N/A	N/A
2006/0192354	12/2005	Van Cayzeele	N/A	N/A
2006/0192361	12/2005	Anderson et al.	N/A	N/A
2006/0201727	12/2005	Chan	N/A	N/A
2006/0244225	12/2005	Power et al.	N/A	N/A
2006/0249325	12/2005	Braun et al.	N/A	N/A
2006/0273566	12/2005	Hepner et al.	N/A	N/A
2007/0088469	12/2006	Schmiedel et al.	N/A	N/A
2007/0102963	12/2006	Frederick et al.	N/A	N/A
2007/0120334	12/2006	Holbrook	N/A	N/A

2007/0145816	12/2006	Gile	N/A	N/A
2007/0158920	12/2006	Delaney	N/A	N/A
2007/0186762	12/2006	Dehart et al.	N/A	N/A
2007/0234896	12/2006	Joynt	N/A	N/A
2007/0246902	12/2006	Trudeau et al.	N/A	N/A
2007/0288131	12/2006	Yakes et al.	N/A	N/A
2007/0291130	12/2006	Broggi et al.	N/A	N/A
2008/0017426	12/2007	Walters et al.	N/A	N/A
2008/0017434	12/2007	Harper et al.	N/A	N/A
2008/0034953	12/2007	Barbe et al.	N/A	N/A
2008/0041048	12/2007	Kanenobu et al.	N/A	N/A
2008/0053739	12/2007	Chernoff et al.	N/A	N/A
2008/0059014	12/2007	Nasr et al.	N/A	N/A
2008/0065285	12/2007	Yakes et al.	N/A	N/A
2008/0066613	12/2007	Mills et al.	N/A	N/A
2008/0071438	12/2007	Nasr et al.	N/A	N/A
2008/0099213	12/2007	Morrow et al.	N/A	N/A
2008/0150350	12/2007	Morrow et al.	N/A	N/A
2008/0252025	12/2007	Plath	N/A	N/A
2008/0284118	12/2007	Venton-Walters et al.	N/A	N/A
2008/0315629	12/2007	Abe et al.	N/A	N/A
2009/0001761	12/2008	Yasuhara et al.	N/A	N/A
2009/0033044	12/2008	Linsmeier	N/A	N/A
2009/0061702	12/2008	March	N/A	N/A
2009/0079839	12/2008	Fischer et al.	N/A	N/A
2009/0088283	12/2008	Schimke	N/A	N/A
2009/0127010	12/2008	Morrow et al.	N/A	N/A
2009/0174158	12/2008	Anderson et al.	N/A	N/A
2009/0194347	12/2008	Morrow et al.	N/A	N/A
2009/0227410	12/2008	Zhao et al.	N/A	N/A
2009/0322123	12/2008	Tanaka et al.	N/A	N/A
2010/0019538	12/2009	Kiley et al.	N/A	N/A
2010/0026046	12/2009	Mendoza et al.	N/A	N/A
2010/0032932	12/2009	Hastings	N/A	N/A
2010/0116569	12/2009	Morrow et al.	N/A	N/A
2010/0123324	12/2009	Shoup et al.	N/A	N/A
2010/0163330	12/2009	Halliday	N/A	N/A
2010/0187864	12/2009	Tsuchida	N/A	N/A
2010/0218667	12/2009	Naroditsky et al.	N/A	N/A
2010/0264636	12/2009	Fausch et al. Yakes et al.	N/A	N/A
2010/0301668	12/2009		N/A	N/A
2010/0307328 2010/0307329	12/2009 12/2009	Hoadley et al. Kaswen et al.	N/A N/A	N/A
2010/030/329	12/2009	Pavon	N/A N/A	N/A N/A
2011/0045930	12/2009	Schimke	N/A N/A	N/A
2011/0043930	12/2010	Klimek et al.	N/A	N/A
2011/0000000	12/2010	Jacquemont et al.	N/A	N/A
2011/00/9134	12/2010	Schreiner et al.	N/A	N/A
2011/00/33/0	12/2010	Venton-Walters	N/A	N/A
2011/0114409	12/2010	Greenwood et al.	N/A	N/A
2011/0169240	12/2010	Schreiner et al.	N/A	N/A
2011/0105240	12/2010	Leopold	N/A	N/A
2011/0200030	12/2010	Ische	N/A	N/A
2011/0314999	12/2010	Luther et al.	N/A	N/A
2011/0314333	12/2010	Rositch et al.	N/A	N/A
2012/00HJT/0	16/6V11	rositen et ui.	1 1/ 1 1	1 1/ 1 1

2012/0049570	12/2011	Aizik	N/A	N/A
2012/0083380	12/2011	Reed et al.	N/A	N/A
2012/0097019	12/2011	Sherbeck et al.	N/A	N/A
2012/0098172	12/2011	Trinh et al.	N/A	N/A
2012/0098215	12/2011	Rositch et al.	N/A	N/A
2012/0111180	12/2011	Johnson et al.	N/A	N/A
2012/0143430	12/2011	Broggi et al.	N/A	N/A
2012/0174767	12/2011	Naroditsky et al.	N/A	N/A
2012/0181100	12/2011	Halliday	N/A	N/A
2012/0186428	12/2011	Peer et al.	N/A	N/A
2012/0192706	12/2011	Gonzalez	N/A	N/A
2012/0193940	12/2011	Tunis et al.	N/A	N/A
2013/0009423	12/2012	Yamamoto et al.	N/A	N/A
2013/0014635	12/2012	Kosheleff	N/A	N/A
2013/0093154	12/2012	Cordier et al.	N/A	N/A
2013/0153314	12/2012	Niedzwiecki	N/A	N/A
2013/0205984	12/2012	Henker et al.	N/A	N/A
2013/0241237	12/2012	Dziuba et al.	N/A	N/A
2013/0249175	12/2012	Ellifson	N/A	N/A
2013/0249183	12/2012	Ellifson et al.	N/A	N/A
2013/0263729	12/2012	Johnson et al.	N/A	N/A
2013/0264784	12/2012	Venton-Walters et al.	N/A	N/A
2013/0312595	12/2012	Lee	N/A	N/A
2014/0035325	12/2013	Naito et al.	N/A	N/A
2014/0060304	12/2013	Harmon et al.	N/A	N/A
2014/0131969	12/2013	Rowe et al.	N/A	N/A
2014/0151142	12/2013	Hoppe et al.	N/A	N/A
2014/0232082	12/2013	Oshita et al.	N/A	N/A
2014/0251742	12/2013	Dillman et al.	N/A	N/A
2014/0255136	12/2013	Malcolm et al.	N/A	N/A
2014/0262591	12/2013	Turner et al.	N/A	N/A
2014/0265203	12/2013	Zuleger et al.	N/A	N/A
2014/0291945	12/2013	Venton-Walters et al.	N/A	N/A
2014/0326555	12/2013	Ellifson et al.	N/A	N/A
2015/0028529	12/2014	Ellifson	N/A	N/A
2015/0191069	12/2014	Zuleger et al.	N/A	N/A
2015/0197129	12/2014	Venton-Walters et al.	N/A	N/A
2015/0224847	12/2014	Rowe et al.	N/A	N/A
2015/0283889	12/2014	Agnew	N/A	N/A
2015/0306954	12/2014	Matsuura et al.	N/A	N/A
2016/0009231	12/2015	Perron et al.	N/A	N/A
2016/0047631	12/2015	Berman	N/A	N/A
2016/0144211	12/2015	Betz et al.	N/A	N/A
2016/0167475	12/2015	Ellifson et al.	N/A	N/A
2016/0208883	12/2015	Dillman et al.	N/A	N/A
2016/0257360	12/2015	Mackenzie et al.	N/A	N/A
2016/0304051	12/2015	Archer et al.	N/A	N/A
2016/0347137	12/2015	Despres-Nadeau et al.	N/A	N/A
2016/0368432	12/2015	Perron et al.	N/A	N/A
2016/0375805	12/2015	Krueger et al.	N/A	N/A
2017/0028844	12/2016	Melone et al.	N/A	N/A
2017/0137076	12/2016	Perron et al.	N/A	N/A
2017/0253221	12/2016	Verhoff et al.	N/A	N/A
2017/0259666	12/2016	Weber et al.	N/A	N/A
2017/0267052	12/2016	Zuleger et al.	N/A	N/A

2017/0282670	12/2016	Venton-Walters et al.	N/A	N/A
2017/0291802	12/2016	Hao et al.	N/A	N/A
2017/0291805	12/2016	Hao et al.	N/A	N/A
2017/0297425	12/2016	Wildgrube et al.	N/A	N/A
2017/0328054	12/2016	Bakken	N/A	N/A
2017/0355400	12/2016	Weston	N/A	N/A
2017/0361491	12/2016	Datema et al.	N/A	N/A
2017/0361492	12/2016	Datema et al.	N/A	N/A
2018/0001839	12/2017	Perron et al.	N/A	N/A
2018/0056746	12/2017	Ellifson et al.	N/A	N/A
2018/0162704	12/2017	Hao et al.	N/A	N/A
2018/0222481	12/2017	Okada et al.	N/A	N/A
2018/0222484	12/2017	Shively et al.	N/A	N/A
2018/0326843	12/2017	Danielson et al.	N/A	N/A
2018/0335104	12/2017	Dillman et al.	N/A	N/A
2019/0039407	12/2018	Smith	N/A	N/A
2019/0106083	12/2018	Archer et al.	N/A	N/A
2019/0118875	12/2018	Perron et al.	N/A	N/A
2019/0145465	12/2018	Olason	N/A	N/A
2019/0185077	12/2018	Smith et al.	N/A	N/A
2019/0185301	12/2018	Hao et al.	N/A	N/A
2019/0276102	12/2018	Zuleger et al.	N/A	N/A
2019/0316650	12/2018	Dillman et al.	N/A	N/A
2019/0322321	12/2018	Schwartz et al.	N/A	N/A
2019/0337348	12/2018	Oshkosh	N/A	N/A
2019/0337350	12/2018	Ellifson et al.	N/A	N/A
2019/0344475	12/2018	Datema et al.	N/A	N/A
2019/0344838	12/2018	Perron et al.	N/A	N/A
2019/0351883	12/2018	Verhoff et al.	N/A	N/A
2019/0352157	12/2018	Hao et al.	N/A	N/A
2019/0355339	12/2018	Seffernick et al.	N/A	N/A
2020/0062071	12/2019	Zuleger et al.	N/A	N/A
2020/0094671	12/2019	Wildgrube et al.	N/A	N/A
2020/0223276	12/2019	Rositch et al.	N/A	N/A
2020/0223277	12/2019	Zhang et al.	N/A	N/A
2020/0232533	12/2019	Dillman et al.	N/A	N/A
2020/0254840	12/2019	Rositch et al.	N/A	N/A
2020/0290237	12/2019	Steffens et al.	N/A	N/A
2020/0291846	12/2019	Steffens et al.	N/A	N/A
2020/0316816	12/2019	Messina et al.	N/A	N/A
2020/0317083	12/2019	Messina et al.	N/A	N/A
2020/0346547	12/2019	Rocholl et al.	N/A	N/A
2020/0346855	12/2019	Rocholl et al.	N/A	N/A
2020/0346857	12/2019	Rocholl et al.	N/A	N/A
2020/0346861	12/2019	Rocholl et al.	N/A	N/A
2020/0346862	12/2019	Rocholl et al.	N/A	N/A
2020/0347659	12/2019	Rocholl et al.	N/A	N/A
2020/0391569	12/2019	Zuleger	N/A	N/A
2020/0399107	12/2019	Buege et al.	N/A	N/A
2021/0031611	12/2020	Yakes et al.	N/A	N/A
2021/0031612	12/2020	Yakes et al.	N/A	N/A
2021/0031649	12/2020	Messina et al.	N/A	N/A
2021/0107361	12/2020	Linsmeier et al.	N/A	N/A
2021/0213642	12/2020	Datema et al.	N/A	N/A
2021/0221190	12/2020	Rowe	N/A	N/A

2021/0221216	12/2020	Yakes et al.	N/A	N/A
2021/0225349	12/2020	Seffernick et al.	N/A	N/A
2021/0229755	12/2020	Schwartz et al.	N/A	N/A
2021/0380085	12/2020	Verhoff et al.	N/A	N/A
2022/0176921	12/2021	Verhoff et al.	N/A	N/A
2022/0194333	12/2021	Verhoff et al.	N/A	N/A
2022/0194334	12/2021	Verhoff et al.	N/A	N/A

FOREIGN PATENT DOCUMENTS

I OILLION I III LIV	I DOCUMENTO		
Patent No.	Application Date	Country	CPC
2478228	12/2005	CA	N/A
2581525	12/2005	CA	N/A
2724324	12/2008	CA	N/A
2809527	12/2012	CA	N/A
2852786	12/2012	CA	N/A
201371806	12/2008	CN	N/A
201463718	12/2009	CN	N/A
11 86 334	12/1964	DE	N/A
36 20 603	12/1986	DE	N/A
10 2008 062 340	12/2009	DE	N/A
10 2008 052 072	12/2010	DE	N/A
0 685 382	12/1994	EP	N/A
1 229 636	12/2001	EP	N/A
1 633 619	12/2003	EP	N/A
1 371 391	12/2008	EP	N/A
2 413 089	12/2011	EP	N/A
1471914	12/1966	FR	N/A
2380176	12/1977	FR	N/A
2 168 015	12/1985	GB	N/A
2 365 829	12/2003	GB	N/A
2 400 588	12/2004	GB	N/A
2 400 589	12/2004	GB	N/A
2 400 590	12/2004	GB	N/A
2 545 187	12/2016	GB	N/A
1088583	12/2006	HK	N/A
4230421	12/1991	JP	N/A
06-037090	12/1993	JP	N/A
2906249	12/1998	JP	N/A
2005-007995	12/2004	JP	N/A
2005-212698	12/2004	JP	N/A
2006-056463	12/2005	JP	N/A
2012-096557	12/2011	JP	N/A
WO-91/08939	12/1990	WO	N/A
WO-01/76912	12/2000	WO	N/A
WO-03/049987	12/2002	WO	N/A
WO-2007/140179	12/2006	WO	N/A
WO-2015/061840	12/2014	WO	N/A

OTHER PUBLICATIONS

How the U.S. military plans to replace the iconic Humvee. Aug. 13, 2021. CNBC.

https://www.cnbc.com/2021/08/13/ how-the-US-military-plans-to-replace-the-iconic-humvee.html. cited by applicant

Oshkosh Defense Highlights Advanced Technology Capabilities At Modern Day Marine 2022. May 10, 2022. Oshkosh Defense. https://oshkoshdefense.com/oshkosh-defense-highlights-advanced-technology-capabilities-atmodern-day-marine-2022/. cited by applicant

```
US Army Contradictions Muddy Humvee-Replacement Plan. Mar. 21, 2019. Defense One.
https://www.defenseone.com/business/2019/03/US-armys-contradictory-statements-leave-jltv-plan-
unclear/155707/. cited by applicant
U.S. Appl. No. 10/171,075, filed Jun. 13, 2002, Archer et al. cited by applicant
```

U.S. Appl. No. 14/532,679, filed Nov. 4, 2014, Oshkosh Corporation. cited by applicant U.S. Appl. No. 29/680,745, filed Feb. 19, 2019, Oshkosh Corporation. cited by applicant U.S. Appl. No. 29/683,330, filed Mar. 12, 2019, Oshkosh Corporation. cited by applicant

U.S. Appl. No. 29/683,333, filed Mar. 12, 2019, Oshkosh Corporation, cited by applicant U.S. Appl. No. 29/700,665, filed Aug. 5, 2019, Oshkosh Corporation. cited by applicant

U.S. Appl. No. 29/706,533, filed Sep. 20, 2019, Oshkosh Corporation. cited by applicant

U.S. Appl. No. 29/706,547, filed Sep. 20, 2019, Oshkosh Corporation. cited by applicant "Military Troop Transport Truck." Sep. 14, 2012. Deviant Art.

https://www.deviantart.com/shitalloverhumanity/art/Military-Troop-Transport-Truck-327166456. cited by applicant "New Oshkosh JL TV Next to an Old Humvee." May 2, 2017. Reddil.

https://www.reddil.com/r/MilitaryPorn/comments/8jflee/new oshkoshjltv next to an old humvee hmmwv may/ cited by applicant

"Troop Transport Truck Tutorial." Jun. 13, 2009. Dave Taylor Miniatures.

http://davetaylorminiatures.blogspot.com/2009/06/troop-transport-truck-tutorial-part-one.html. cited by applicant 1953-56 Ford F100 Pickup 3 Inch Wider Right Rear Fenders. 1956. eBay. https://www.ebay.com/p/710218145. cited by applicant

2019 Nissan NV1500 Cargo Consumer Reviews, Kelley Blue Book, Apr. 14, 2021, 12 pages, https://ww.kbb.com/nissan/nv1500-cargo/2019/consumer-reviews/. cited by applicant Feeburg, Elisabet. "Mine-Resistant, Ambush-Protected All-Terrain Vehicle", 2009. Britannica,

https://www.britannica.com/technology/armoured-vehicle/Wheeled-armoured-vehicles. cited by applicant

Grille Designs, Questel, orbit.com, Retrieved Apr. 14, 2021, 26 pages. cited by applicant

https://www.army-technology.com/news/newslenco-bear-troop-transport-armoured-vehicle/"Lenco Completes Blast Test for BEAR Troop Transport Armoured Vehicle." Aug. 16, 2013. Army Technology. cited by applicant Huddleston, Scott. "Fortified Tactical Vehicle Offered to Replace Military Humvee." Jan. 4, 2014. My San Antonio https://www.mysanantonio.com/news/local/military/article/Fortified-tactical-vehicle-offered-to-replace-5109387 .php#photo-5673528. cited by applicant

Iriarte, Mariana. "Power Distribution from the Ground Up." Nov. 9, 2016. Military Embedded Systems. https://militaryembedded.com/ comms/communications/power-distribution-the-ground-up. cited by applicant MD Juan CFA005 Front Fender for 52-75 Jeep. 1975. Quadratec. https://quadratec.com/p/md-juan/front-fender-cj5cj6-m38a1. cited by applicant

Miller, Stephen W., "The MRAP Story: Learning from History", Asian Military Review, Oct. 30, 2018, 9 pages. cited by applicant

Rear Fender Fiberglass Pick Up Truck 1947-1963. 1963. Walck's 4 Wheel Drive. https://walcks4wd,com/Rear-Fender-Fiberglass-Pick-Up-Truck-1947-1963_p_1780.html. cited by applicant

Vehicle fenders. (Design—Questel) orbit.com. [Online PDF complication of references selected by examiner] 34 pgs. Print Dates Range Apr. 14, 2022—Nov. 8, 2019 [Retrieved Nov. 18, 2022]. cited by applicant

Vehicle Headlights. (Design—?Questel) orbit.com. [online PDF] 38 pgs. Print Dates Range Mar. 19, 2021—May 23, 2019 [Retrieved Apr. 23, 2021]. cited by applicant

Vehicle Hood (Design -Questel) orbit.com. [Online PDF compilation of references selected by examiner] 42 pgs. Print Dates Range Mar. 24, 2021—Jul. 22, 2020 [Retrieved Dec. 13, 2021]. cited by applicant

Jen Judson, "Oshkosh unveils hybrid electric Joint Light Tactical Vehicle". Jan. 25, 2022. Defense News.

https://www.defensenews.com/land/2022/01/25/oshkosh-unveils-hybrid-electric-joint-light-tactical-vehicle/. cited by applicant

Staff Sgt. Tawny Kruse, "A vehicle of the future lowa training center receives new tactical vehicles". May 7, 2023. DVIDS. https://www.dvidshub.neUnews/ 448328/vehicle-future-iowa-training-center-receives-new-tacticalvehicles. cited by applicant

Todd South, "The newly fielded Joint Light Tactical Vehicle was briefly deemed 'not operationally suitable'". Feb. 22, 2019. Army Times. https://www.armytimes.com/news/your -army/2019/02/22/the-newly-fielded-joint-lighttactical-vehicle-is-not-operationally-suitable/. cited by applicant

Primary Examiner: Beck; Karen

Attorney, Agent or Firm: Foley & Lardner LLP

Background/Summary

CROSS-REFERENCE TO RELATED PATENT APPLICATIONS (1) This application is a continuation of U.S. patent application Ser. No. 17/718,535, filed Apr. 12, 2022, which is a continuation of U.S. patent application Ser. No. 17/398,581, filed Aug. 10, 2021, which is a continuation of U.S. patent application Ser. No. 16/529,508, filed Aug. 1, 2019, which is a continuation of U.S. patent application Ser. No. 15/599,174, filed May 18, 2017, which is a continuation of U.S. patent application Ser. No. 14/724,279, filed May 28, 2015, which is a continuation of U.S. patent application Ser. No. 13/841,686, filed Mar. 15, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/615,812, filed Mar. 26, 2012, all of which are incorporated herein by reference in their entireties.

BACKGROUND

- (1) The present application relates to vehicles. In particular, the present application relates to the structural frame assembly of a military vehicle.
- (2) A military vehicle may be used in a variety of applications and conditions. These vehicles generally include a number of vehicle systems or components (e.g., a cab or body, a drive train, etc.). The military vehicle may also include various features and systems as needed for the specific application of the vehicle (e.g., a hatch, a gun ring, an antenna, etc.). Proper functioning and arrangement of the vehicle systems or components is important for the proper functioning of the vehicle.
- (3) Traditional military vehicles include a cab assembly coupled to a pair of frame rails that extend along the length of the vehicle. The drive train, engine, and other components of the vehicle are coupled to the frame rails. Such vehicles may be transported by securing lifting slings to the frame rails and applying a lifting force (e.g., with a crane, with a helicopter, etc.). As the frame rails are the primary structure of the vehicle, a lifting force applied to a rear portion and a front portion elevate the vehicle from a ground surface. In such a configuration, the components of the vehicle must be coupled to the structural frame rails thereby requiring sequential assembly.

SUMMARY

- (4) One embodiment relates to a military vehicle assembly. The military vehicle assembly includes a rear module. The rear module includes a rear frame assembly, a bed supported by the rear frame assembly, a rear tractive assembly, a transaxle supported by the rear frame assembly and coupled to the rear tractive assembly, and a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably couple to a rear end of a passenger capsule of a military vehicle. The one or more lower interfaces are configured to detachably coupled to a bottom of the passenger capsule. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle.
- (5) Another embodiment relates to a military vehicle assembly. The military vehicle assembly includes a rear module. The rear module includes a rear frame assembly, a rear tractive assembly, a transaxle supported by the rear frame assembly and coupled to the rear tractive assembly, and a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably couple to a rear end of a passenger capsule of a military vehicle. The one or more lower interfaces are configured to detachably coupled to a bottom of the passenger capsule. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle.
- (6) Still another embodiment relates to a military vehicle assembly. The military vehicle assembly includes a rear module and a suspension control system. The rear module includes a rear frame assembly, a rear tractive assembly, a transaxle supported by the rear frame assembly, and a rear suspension system. The rear frame assembly has one or more upper interfaces and one or more lower interfaces. The one or more upper interfaces are configured to detachably couple to a rear end of a passenger capsule of a military vehicle. The one or more lower interfaces are configured to detachably coupled to a bottom of the passenger capsule. The

transaxle is coupled to the rear tractive assembly. The transaxle is configured to couple to a prime mover and a front differential of the military vehicle. The rear suspension system includes a pair of gas springs and a pair of hydraulic dampers. The pair of hydraulic dampers are cross-plumbed to provide a hydraulic body roll control function. The suspension control system is configured to monitor a ride height of the military vehicle and control the pair of gas springs to adjust the ride height as load is added to or removed from the military vehicle.

(7) The invention is capable of other embodiments and of being carried out in various ways. Alternative exemplary embodiments relate to other features and combinations of features as may be recited in the claims.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
- (2) FIGS. **1-2** are a perspective views of a vehicle, according to an exemplary embodiment.
- (3) FIG. **3** is a schematic side view of the vehicle of FIG. **1**, according to an exemplary embodiment.
- (4) FIGS. **4-6** are perspective views of a vehicle having a passenger capsule, a front module, and a rear module, according to an exemplary embodiment.
- (5) FIGS. **7-9** are perspective views of a vehicle having a passenger capsule, a front module, and a rear module, according to an alternative embodiment.
- (6) FIG. **10**A is a schematic sectional view of a vehicle having at least a portion of a suspension system coupled to a transaxle, according to an exemplary embodiment, and FIG. **10**B is schematic sectional view of a vehicle having a passenger capsule, according to an exemplary embodiment.
- (7) FIG. **11** is schematic view of a braking system for a vehicle, according to an exemplary embodiment.
- (8) FIG. **12** is schematic view of a vehicle control system, according to an exemplary embodiment. DETAILED DESCRIPTION
- (9) Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
- (10) Referring to FIGS. **1-3**, a military vehicle **1000** includes a hull and frame assembly **100**, an armor assembly **200**, an engine **300**, a transmission **400**, a transaxle **450**, wheel and tire assemblies **600**, a braking system **700**, a fuel system **800**, and a suspension system **460** coupling the hull and frame assembly **100** to the wheel and tire assemblies **600**. According to an exemplary embodiment, the military vehicle **1000** includes a power generation system **900**. As shown in FIG. **1**, the military vehicle **1000** also includes a trailer **1100**. (11) Hull and Frame Assembly
- (12) Referring to FIG. **2**, the hull and frame assembly **100** includes a passenger capsule, shown as passenger capsule **110**, a front module, shown as front module **120**, and a rear module, shown as rear module **130**. According to an exemplary embodiment, the front module **120** and the rear module **130** are coupled to the passenger capsule **110** with a plurality of interfaces. As shown in FIG. **2**, the front module **120** includes a front axle having wheel and tire assemblies **600**.
- (13) According to an exemplary embodiment, the rear module **130** includes a body assembly, shown as bed **132**. As shown in FIG. **2**, front module **120** also includes a body panel, shown as hood **122**. In some embodiments, the hood **122** partially surrounds the engine of military vehicle **1000**. The hood **122** is constructed of a composite material (e.g., carbon fiber, fiberglass, a combination of fiberglass and carbon fiber, etc.) and sculpted to maximize vision and clear under-hood components. According to an alternative embodiment, the hood **122** is manufactured from another material (e.g., steel, aluminum, etc.). The front portion of hood **122** mounts to a lower cooling package frame, and the upper mount rests on the windshield wiper cowl. This mounting configuration reduces the number and weight of components needed to mount the hood **122**. The Oshkosh Corporation® logo is mounted to a frame structure, which is itself mounted directly to the cooling package. The hood **122** includes bumperettes **123** that provide mounting locations for antennas (e.g., a forward-facing IED jammer, a communications whip antenna, etc.). In one embodiment, the bumperettes **123** and front of the hood **122** may be reinforced (e.g., with structural fibers, structural frame members, etc.) to become structural members intended to prevent damage to the tire assemblies **600**. In an

alternative embodiment, the bumperettes **123** may be crushable members or "break away" members that disengage upon impact to prevent interference between the bumperettes **123** and tire assemblies **600** in the event of a front impact.

- (14) Referring next to the exemplary embodiment shown in FIGS. 4-9, the military vehicle 1000 includes passenger capsule 110, front module 120, and rear module 130. As shown in FIGS. 4 and 7, passenger capsule 110 includes a structural shell 112 that forms a monocoque hull structure. Monocoque refers to a form of vehicle construction in which the vehicle body and chassis form a single unit. The structural shell 112 is configured to provide a structural load path between front module 120 and rear module 130 of military vehicle 1000 (e.g., during driving, a lifting operation, during a blast event, etc.). According to an exemplary embodiment, the structural shell 112 includes a plurality of integrated armor mounting points configured to engage a supplemental armor kit (e.g., a "B-Kit," etc.). The structural shell 112 is rigidly connected to the rest of the powertrain, drivetrain, suspension, and major systems such that they all absorb blast energy during a blast event, according to an exemplary embodiment. According to an exemplary embodiment, the structural shell 112 is large enough to contain four-passengers in a standard two-by-two seating arrangement and four doors 104 are rotatably mounted to the structural shell 112. According to the alternative embodiment shown in FIGS. 7-9, two doors 104 are coupled to structural shell 112. Front module 120 and rear module 130 are configured to engage a passenger capsule having either two doors or four doors, according to an exemplary embodiment. As shown in FIGS. 6 and 9, the structural shell 112 includes a first end 114 and a second end 116.
- (15) According to an exemplary embodiment, front module **120** includes a subframe having a first longitudinal frame member **124** and a second longitudinal frame member **126**. As shown in FIGS. **4-9**, an underbody support structure **128** is coupled to the first longitudinal frame member **124** and the second longitudinal frame member 126. According to an exemplary embodiment, the first longitudinal frame member **124** and the second longitudinal frame member **126** extend within a common plane (e.g., a plane parallel to a ground surface). The underbody support structure **128** is coupled to the first end **114** of structural shell **112** and includes a plurality of apertures **129** that form tie down points. In some embodiments, an engine for the military vehicle **1000** is coupled to the first longitudinal frame member **124** and the second longitudinal frame member **126**. In other embodiments, the front module **120** includes a front axle assembly coupled to the first longitudinal frame member 124 and the second longitudinal frame member 126. (16) As shown in FIGS. **4** and **6**, rear module **130** includes a subframe having a first longitudinal frame member **134** and a second longitudinal frame member **136**. As shown in FIGS. **4-9**, an underbody support structure **138** is coupled to the first longitudinal frame member **134** and the second longitudinal frame member **136**. According to an exemplary embodiment, the first longitudinal frame member **134** and the second longitudinal frame member 136 extend within a common plane (e.g., a plane parallel to a ground surface). The underbody support structure **138** is coupled to the second end **116** of structural shell **112**, the first longitudinal frame member **134**, and the second longitudinal frame member **136**. According to an exemplary embodiment, the first longitudinal frame member **134** and the second longitudinal frame member **136** include a plurality of apertures **139** that form tie down points. In some embodiments, a transaxle **450** or a differential for the military vehicle **1000** is coupled to at least one of the first longitudinal frame member **134** and the second longitudinal frame member **136**. In other embodiments, the rear module **130** includes a rear axle assembly coupled to the first longitudinal frame member 134 and the second longitudinal frame member 136.
- (17) The subframes of the front module **120** and the rear module **130** may be manufactured from High Strength Steels (HSS), high strength aluminum, or another suitable material. According to an exemplary embodiment, the subframes feature a tabbed, laser cut, bent and welded design. In other embodiments, the subframes may be manufactured from tubular members to form a space frame. The subframe may also include forged, rather than fabricated or cast frame sections to mitigate the stress, strains, and impact loading imparted during operation of military vehicle **1000**. Aluminum castings may be used for various cross member components where the loading is compatible with material properties. Low cost aluminum extrusions may be used to tie and box structures together.
- (18) The structural shell **112** and the subframes of the front module **120** and the rear module **130** are integrated into the hull and frame assembly **100** to efficiently carry chassis loading imparted during operation of the military vehicle **1000**, during a lift event, during a blast event, or under still other conditions. During a blast event, conventional frame rails can capture the blast force transferring it into the vehicle. Military vehicle **1000** replaces conventional frame rails and instead includes passenger capsule **110**, front module

- 120, and rear module 130. The passenger capsule 110, front module 120, and rear module 130 provides a vent for the blast gases (e.g., traveling upward after the tire triggers an IED) thereby reducing the blast force on the structural shell 112 and the occupants within passenger capsule 110. Traditional frame rails may also directly impact (i.e. contact, engage, hit, etc.) the floor of traditional military vehicles. Military vehicle 1000 that includes passenger capsule 110, front module 120, and rear module 130 does not include traditional frame rails extending along the vehicle's length thereby eliminating the ability for such frame rails to impact the floor of the passenger compartment. Military vehicle 1000 that includes a passenger capsule 110, front module 120, and rear module 130 also has an improved strength-to-weight performance, abuse tolerance, and life-cycle durability.
- (19) According to an exemplary embodiment, the doors **104** incorporate a combat lock mechanism. In some embodiments, the combat lock mechanism is controlled through the same handle that operates the automotive door latch system, allowing a passenger to release the combat locks and automotive latches in a single motion for quick egress. The doors **104** also interface with an interlocking door frame **109** defined within structural shell **112** adjacent to the latch, which helps to keep the doors **104** closed and in place during a blast even. Such an arrangement also distributes blast forces between a front and a rear door mounting and latching mechanism thereby improving door functionality after a blast event.
- (20) Lift Structure
- (21) According to an exemplary embodiment, the military vehicle **1000** may be transported from one location to another in an elevated position with respect to a ground surface (e.g., during a helicopter lift operation, for loading onto or off a ship, etc.). As shown in FIGS. **4-9**, military vehicle **1000** includes a lift structure **140** coupled to the front module **120**. According to an exemplary embodiment, the lift structure includes a first protrusion **144** extending from the first longitudinal frame member **124**, a second protrusion **146** coupled to the second longitudinal frame member **126**, and a lateral frame member **148** extending between the first protrusion **144** and the second protrusion **146**. As shown in FIGS. **4-9**, the first protrusion **144** and the second protrusion **146** extend along an axis that is generally orthogonal (e.g., within 20 degrees of an orthogonal line) to a common plane within which the first longitudinal frame member **134** and the second longitudinal frame member **126** extend. As shown in FIGS. **5-6** and **8-9**, the first protrusion **144** defines a first aperture **145**, and the second protrusion **146** defines a second aperture **147**. The first aperture **145** and the second aperture **147** define a pair of front lift points. An operator may engage the front lift points with a sling, cable, or other device to elevate military vehicle **1000** from a ground surface (e.g., for transport).
- (22) According to an exemplary embodiment, the hood **122** defines an outer surface (e.g., the surface exposed to a surrounding environment) and an inner surface (e.g., the surface facing the first longitudinal frame member **124** and the second longitudinal frame member **126**). It should be understood that the outer surface is separated from the inner surface by a thickness of the hood **122**. As shown schematically in FIGS. **4**, **6-7**, and **9**, first protrusion **144** and second protrusion **146** extend through a first opening and a second opening defined within the hood **122**. According to an exemplary embodiment, the pair of front lift points is positioned along the outer surface of the hood **122** (e.g., to provide preferred sling angles, to facilitate operator access, etc.).
- (23) According to an exemplary embodiment, the first longitudinal frame member **124** and the second longitudinal frame member **126** are coupled to the first end **114** of the structural shell **112** with a plurality of interfaces. Such interfaces may include, by way of example, a plurality of fasteners (e.g., bolts, rivets, etc.) extending through corresponding pads coupled to the front module **120** and the structural shell **112**. According to an exemplary embodiment, a lifting force applied to the pair of front lift points is transmitted into the structural shell of the passenger capsule to lift the vehicle.
- (24) In some embodiments, the military vehicle **1000** includes breakaway sections designed to absorb blast energy and separate from the remaining components of military vehicle **1000**. The blast energy is partially converted into kinetic energy as the breakaway sections travel from the remainder of military vehicle **1000** thereby reducing the total energy transferred to the passengers of military vehicle **1000**. According to an exemplary embodiment, at least one of the front module **120** and the rear module **130** are breakaway sections. Such a military vehicle **1000** includes a plurality of interfaces coupling the front module **120** and the rear module **130** to passenger capsule **110** that are designed to strategically fail during a blast event. By way of example, at least one of the plurality of interfaces may include a bolted connection having a specified number of bolts that are sized and positioned (e.g., five 0.5 inch bolts arranged in a pentagon, etc.) to fail as an impulse force is imparted on front module **120** or rear module **130** during a blast event. In other

embodiments, other components of the military vehicle **1000** (e.g., wheel, tire, engine, etc.) are breakaway sections.

- (25) Referring again to the exemplary embodiment shown in FIGS. **4-6**, the military vehicle **1000** may be lifted by a pair of apertures defined within a pair of protrusions **115**. The apertures define a pair of rear lift points for military vehicle **1000**. As shown in FIG. **5**, the pair of protrusions **115** extend from opposing lateral sides of the structural shell **112**. It should be understood that a lifting force applied directly to the pair of protrusions **115** may, along with the lifting force applied to lift structure **140**, elevate the military vehicle **1000** from a ground surface. The structural shell **112** carries the loading imparted by the lifting forces applied to the lift structure **140** (e.g., through the plurality of interfaces) and the pair of protrusions **115** to elevate the military vehicle **1000** from the ground surface without damaging the passenger capsule **110**, the front module **120**, or the rear module **130**.
- (26) Armor Assembly
- (27) Referring next to the exemplary embodiment shown in FIG. **10**B, the armor assembly **200** includes fabricated subassemblies (roof, floor, sidewalls, etc.) that are bolted together. The armor assembly **200** may be manufactured from steel or another material. The armor assembly **200** provides a robust and consistent level of protection by using overlaps to provide further protection at the door interfaces, component integration seams, and panel joints.
- (28) In another embodiment, the armor assembly **200** further includes a 360-degree modular protection system that uses high hard steel, commercially available aluminum alloys, ceramic-based SMART armor, and two levels of underbody mine/improved explosive device ("IED") protection. The modular protection system provides protection against kinetic energy projectiles and fragmentation produced by IEDs and overhead artillery fire. The modular protection system includes two levels of underbody protection. The two levels of underbody protection may be made of an aluminum alloy configured to provide an optimum combination of yield strength and material elongation. Each protection level uses an optimized thickness of this aluminum alloy to defeat underbody mine and IED threats.
- (29) Referring now to FIG. 10B, the armor assembly 200 also includes a passenger capsule assembly 202. The passenger capsule assembly 202 includes a V-shaped belly deflector 203, a wheel deflector, a floating floor, footpads 206 and energy absorbing seats 207. The V-shaped belly deflector 203 is integrated into the sidewall. The V-shaped belly deflector 203 is configured to mitigate and spread blast forces along a belly. In addition, the wheel deflector mitigates and spreads blast forces. The "floating" floor utilizes isolators and standoffs to decouple forces experienced in a blast event from traveling on a direct load path to the passenger's lower limbs. The floating floor mounts to passenger capsule assembly 202 isolating the passenger's feet from direct contact with the blast forces on the belly. Moreover, footpads protect the passenger's feet. The energy absorbing seats 207 reduce shock forces to the occupants' hips and spine through a shock/spring attenuating system. The modular approach of the passenger capsule assembly 202 provides increased protection with the application of perimeter, roof and underbody add on panels. The components of the passenger capsule assembly 202 mitigate and attenuate blast effects, allow for upgrades, and facilitate maintenance and replacements.
- (30) The passenger capsule assembly **202** further includes a structural tunnel **210**. For load purposes, the structural tunnel **210** replaces a frame or rail. The structural tunnel **210** has an arcuately shaped cross section and is positioned between the energy absorbing seats **207**. The configuration of the structural tunnel **210** increases the distance between the ground and the passenger compartment of passenger capsule assembly **202**. Therefore, the structural tunnel **210** provides greater blast protection from IEDs located on the ground because the IED has to travel a greater distance in order to penetrate the structural tunnel **210**.
- (31) Engine
- (32) The engine **300** is a commercially available internal combustion engine modified for use on military vehicle **1000**. The engine **300** includes a Variable Geometry Turbocharger (VGT) configured to reduce turbo lag and improve efficiency throughout the engine **300**'s operating range by varying compressor housing geometry to match airflow. The VGT also acts as an integrated exhaust brake system to increase engine braking capability. The VGT improves fuel efficiency at low and high speeds and reduces turbo lag for a quicker powertrain response.
- (33) The engine **300** includes a glow plug module configured to improve the engine **300** cold start performance. In some embodiments, no ether starting aid or arctic heater is required. The glow plug module creates a significant system cost and weight reduction.
- (34) In addition, engine **300** includes a custom oil sump pickup and windage tray, which ensures constant oil

supply to engine components. The integration of a front engine mount into a front differential gear box eliminates extra brackets, reduces weight, and improves packaging. Engine **300** may drive an alternator/generator, a hydraulic pump, a fan, an air compressor and/or an air conditioning pump. Engine **300** includes a top-mounted alternator/generator mount in an upper section of the engine compartment that allows for easy access to maintain the alternator/generator and forward compatibility to upgrade to a higher-power export power system. A cooling package assembly is provided to counteract extreme environmental conditions and load cases.

- (35) According to an exemplary embodiment, the military vehicle **1000** also includes a front engine accessory drive (FEAD) that mounts engine accessories and transfers power from a front crankshaft dampener/pulley to the accessory components through a multiple belt drive system. According to an exemplary embodiment, the FEAD drives a fan, an alternator, an air conditioning pump, an air compressor, and a hydraulic pump. There are three individual belt groups driving these accessories to balance the operational loads on the belt as well as driving them at the required speeds. A top-mounted alternator provides increased access for service and upgradeability when switching to the export power kit (e.g., an alternator, a generator, etc.). The alternator is mounted to the front sub frame via tuned isolators, and driven through a constant velocity (CV) shaft coupled to a primary plate of the FEAD. This is driven on a primary belt loop, which is the most inboard belt to the crank dampener. No other components are driven on this loop. A secondary belt loop drives the hydraulic pump and drive through pulley. This loop has one dynamic tensioner and is the furthest outboard belt on the crankshaft dampener pulley. This belt loop drives power to a tertiary belt loop through the drive through pulley. The tertiary belt loop, which is the furthest outboard loop of the system.
- (36) Transmission, Transfer Case, Differentials
- (37) Military vehicle **1000** includes a commercially available transmission **400**. Transmission **400** also includes a torque converter configured to improve efficiency and decrease heat loads. Lower transmission gear ratios combined with a low range of an integrated rear differential/transfer case provide optimal speed for slower speeds, while higher transmission gear ratios deliver convoy-speed fuel economy and speed on grade. In addition, a partial throttle shift performance may be refined and optimized in order to match the power outputs of the engine **300** and to ensure the availability of full power with minimal delay from operator input. This feature makes the military vehicle **1000** respond more like a high performance pickup truck than a heavy-duty armored military vehicle.
- (38) The transmission 400 includes a driver selectable range selection. The transaxle 450 contains a differential lock that is air actuated and controlled by switches on driver's control panel. Indicator switches provide shift position feedback and add to the diagnostic capabilities of the vehicle. Internal mechanical disconnects within the transaxle 450 allow the vehicle to be either flat towed or front/rear lift and towed without removing the drive shafts. Mechanical air solenoid over-rides are easily accessible at the rear of the vehicle. Once actuated, no further vehicle preparation is needed. After the recovery operation is complete, the drive train is re-engaged by returning the air solenoid mechanical over-rides to the original positions. (39) The transaxle **450** is designed to reduce the weight of the military vehicle **1000**. The weight of the transaxle **450** was minimized by integrating the transfercase and rear differential into a single unit, selecting an optimized gear configuration, and utilizing high strength structural aluminum housings. By integrating the transfercase and rear differential into transaxle **450** thereby forming a singular unit, the connecting drive shaft and end yokes traditionally utilized between to connect them has been eliminated. Further, since the transfercase and rear carrier have a common oil sump and lubrication system, the oil volume is minimized and a single service point is used. The gear configuration selected minimizes overall dimensions and mass providing a power dense design. The housings are cast from high strength structural aluminum alloys and are designed to support both the internal drive train loads as well as structural loads from the suspension system **460** and frame, eliminating the traditional cross member for added weight savings. According to the exemplary embodiment shown in FIG. **10**A, at least a portion of the suspension system **460** (e.g., the upper control arm **462**, the lower control arm **464**, both the upper and lower control arms **462**, **464**, a portion of the spring **466**, damper **468**, etc.) is coupled to the transaxle **450**. Such coupling facilitates assembly of military vehicle **1000** (e.g., allowing for independent assembly of the rear axle) and reduces the weight of military vehicle **1000**. The front axle gearbox also utilizes weight optimized gearing, aluminum housings, and acts as a structural component supporting internal drive train, structural, and engine loads as well. The integrated transfercase allows for a modular axle design, which provides axles that may be assembled and then mounted

to the military vehicle **1000** as a single unit. An integral neutral and front axle disconnect allows the military vehicle **1000** to be flat towed or front/rear lift and towed with minimal preparation. Further, the integrated design of the transaxle **450** reduces the overall weight of the military vehicle **1000**. The transaxle **450** further includes a disconnect capability that allows the front tire assemblies **600** to turn without rotating the entire transaxle **450**. Housings of the front and rear gearbox assembly are integrated structural components machined, for example, from high strength aluminum castings. Both front and rear gearbox housings provide stiffness and support for rear module **130** and the components of the suspension system **460**. (40) Suspension

- (41) The military vehicle **1000** includes a suspension system **460**. The suspension system **460** includes high-pressure nitrogen gas springs **466** calibrated to operate in tandem with standard low-risk hydraulic shock absorbers **468**, according to an exemplary embodiment. In one embodiment, the gas springs **466** include a rugged steel housing with aluminum end mounts and a steel rod. The gas springs **466** incorporate internal sensors to monitor a ride height of the military vehicle **1000** and provide feedback for a High Pressure Gas (HPG) suspension control system. The gas springs **466** and HPG suspension control system are completely sealed and require no nitrogen replenishment for general operation.
- (42) The HPG suspension control system adjusts the suspension ride height when load is added to or removed from the military vehicle **1000**. The control system includes a high pressure, hydraulically-actuated gas diaphragm pump, a series of solenoid operated nitrogen gas distribution valves, a central nitrogen reservoir, a check valve arrangement and a multiplexed, integrated control and diagnostics system.

 (43) The HPG suspension control system shuttles nitrogen between each individual gas spring and the central reservoir when the operator alters ride height. The HPG suspension control system targets both the proper suspension height, as well as the proper gas spring pressure to prevent "cross-jacking" of the suspension and ensure a nearly equal distribution of the load from side to side. The gas diaphragm pump compresses nitrogen gas. The gas diaphragm pump uses a lightweight aluminum housing and standard hydraulic spool valve, unlike more common larger iron cast industrial stationary systems not suitable for mobile applications. (44) The suspension system **460** includes shock absorbers **468**. In addition to their typical damping function, the shock absorbers **468** have a unique cross-plumbed feature configured to provide auxiliary body roll control without the weight impact of a traditional anti-sway bar arrangement. The shock absorbers **468** may include an equal area damper, a position dependent damper, and/or a load dependent damper. (45) Brakes
- (46) The braking system **700** includes a brake rotor and a brake caliper. There is a rotor and caliper on each wheel end of the military vehicle **1000**, according to an exemplary embodiment. According to an exemplary embodiment, the brake system includes an air over hydraulic arrangement. As the operator presses the brake pedal, and thereby operates a treadle valve, the air system portion of the brakes is activated and applies air pressure to the hydraulic intensifiers. According to an exemplary embodiment, military vehicle **1000** includes four hydraulic intensifiers, one on each brake caliper. The intensifier is actuated by the air system of military vehicle **1000** and converts air pressure from onboard military vehicle **1000** into hydraulic pressure for the caliper of each wheel. The brake calipers are fully-integrated units configured to provide both service brake

functionality and parking brake functionality.

- (47) To reduce overall system cost and weight while increasing stopping capability and parking abilities, the brake calipers may incorporate a Spring Applied, Hydraulic Released (SAHR) parking function. The parking brake functionality of the caliper is created using the same frictional surface as the service brake, however the mechanism that creates the force is different. The calipers include springs that apply clamping force to the brake rotor to hold the military vehicle **1000** stationary (e.g. parking). In order to release the parking brakes, the braking system **700** applies a hydraulic force to compress the springs, which releases the clamping force. The hydraulic force to release the parking brakes comes through a secondary hydraulic circuit from the service brake hydraulic supply, and a switch on the dash actuates that force, similar to airbrake systems.
- (48) Referring specifically to the exemplary embodiment shown in FIG. **11**, braking system **700** is shown schematically to include a motor **710** having a motor inlet **712**. The motor **710** is an air motor configured to be driven by an air system of military vehicle **1000**, according to an exemplary embodiment. The motor **710** may be coupled to the air system of military vehicle **1000** with a line **714**. As shown in FIG. **11**, braking system **700** includes a pump **720** that includes a pump inlet **722**, a pump outlet **724**, and a pump input shaft **726**. The pump input shaft **726** is rotatably coupled to the motor **710** (e.g., an output shaft of the motor **710**). (49) As shown in FIG. **11**, braking system **700** includes a plurality of actuators **730** coupled to the pump

outlet **724**. According to an exemplary embodiment, the actuators **730** includes a housing **732** that defines an inner volume and a piston **734** slidably coupled to the housing **732** and separating the inner volume into a first chamber and a second chamber. The plurality of actuators **730** each include a resilient member (e.g., spring, air chamber, etc.), shown as resilient member **736** coupled to the housing and configured to generate a biasing force (e.g., due to compression of the resilient member **736**, etc.). According to an exemplary embodiment, the plurality of actuators **730** each also include a rod **738** extending through an end of the housing **732**. The rod **738** is coupled at a first end to piston **734** and coupled at a second end to a brake that engages a braking member (e.g., disk, drum, etc.), shown as braking member **740**. As shown in FIG. **11**, the rod is configured to apply the biasing force to the braking member **740** that is coupled to wheel and tire assemblies **600** thereby inhibiting movement of the military vehicle **1000**.

- (50) According to an exemplary embodiment, a control is actuated by the operator, which opens a valve to provide air along the line **714**. Pressurized air (e.g., from the air system of military vehicle **1000**, etc.) drives motor 710, which engages pump 720 to flow a working fluid (e.g., hydraulic fluid) a through line 750 that couples the pump outlet **724** to the plurality of actuators **730**. According to an exemplary embodiment, the pump **720** is a hydraulic pump and the actuator **730** is a hydraulic cylinder. Engagement of the pump **720** provides fluid flow through line **750** and into at least one of the first chamber and the second chamber of the plurality of actuators **730** to overcome the biasing force of resilient member **736** with a release force. The release force is related to the pressure of the fluid provided by pump **720** and the area of the piston **734**. Overcoming the biasing force releases the brake thereby allowing movement of military vehicle **1000**. (51) As shown in FIG. **11**, braking system **700** includes a valve, shown as directional control valve **760**, positioned along the line **750**. According to an exemplary embodiment, directional control valve **760** includes a valve body 770. The valve body 770 defines a first port 772, a second port 774, and a reservoir port 776, according to an exemplary embodiment. When valve gate 762 is in the first position (e.g., pressurized air is not applied to air pilot **766**) valve gate **762** places first port **772** in fluid communication with reservoir port **776**. A reservoir **780** is coupled to the reservoir port **776** with a line **752**. The reservoir **780** is also coupled to the pump inlet **722** with a line **754**. It should be understood that the fluid may be forced into reservoir **780** from any number of a plurality of actuators **730** by resilient member **736** (e.g., when pump **720** is no longer engaged).
- (52) According to an exemplary embodiment, the directional control valve **760** selectively couples the plurality of actuators **730** to the pump outlet **724** or reservoir **780**. The directional control valve **760** includes a valve gate **762** that is moveable between a first position and a second position. According to an exemplary embodiment, the valve gate **762** is at least one of a spool and a poppet. The valve gate **762** is biased into a first position by a valve resilient member **764**. According to an exemplary embodiment, the directional control valve **760** also includes an air pilot **766** positioned at a pilot end of the valve gate **762**. The air pilot **766** is coupled to line **714** with a pilot line **756**. Pressurized air is applied to line **714** drives motor **710** and is transmitted to air pilot **766** to overcome the biasing force of valve resilient member **764** and slide valve gate **762** into a second position. In the second position, valve gate **762** places first port **772** in fluid communication with **774** thereby allowing pressurized fluid from pump **720** to flow into actuators **730** to overcome the biasing force of resilient member **736** and allow uninhibited movement of military vehicle **1000**.
- (53) Control System
- (54) Referring to FIG. **12**, the systems of the military vehicle **1000** are controlled and monitored by a control system **1200**. The control system **1200** integrates and consolidates information from various vehicle subsystems and displays this information through a user interface **1201** so the operator/crew can monitor component effectiveness and control the overall system. For example, the subsystems of the military vehicle **1000** that can be controlled or monitored by the control system **1200** are the engine **300**, the transmission **400**, the transaxle **450**, the suspension system **460**, the wheels and tire assemblies **600**, the braking system **700**, the fuel system **800**, the power generation system **900**, and a trailer **1100**. However, the control system **1200** is not limited to controlling or monitoring the subsystems mentioned above. A distributed control architecture of the military vehicle **1000** enables the control system **1200** process.
- (55) In one embodiment, the control system **1200** provides control for terrain and load settings. For example, the control system **1200** can automatically set driveline locks based on the terrain setting, and can adjust tire pressures to optimal pressures based on speed and load. The control system **1200** can also provide the status for the subsystems of the military vehicle **1000** through the user interface **1201**. In another example, the control system **1200** can also control the suspension system **460** to allow the operator to select appropriate

ride height.

- (56) The control system **1200** may also provide in-depth monitoring and status. For example, the control system **1200** may indicate on-board power, output power details, energy status, generator status, battery health, and circuit protection. This allows the crew to conduct automated checks on the subsystems without manually taking levels or leaving the safety of the military vehicle **1000**.
- (57) The control system **1200** may also diagnose problems with the subsystems and provide a first level of troubleshooting. Thus, troubleshooting can be initiated without the crew having to connect external tools or leave the safety of the military vehicle **1000**.
- (58) The construction and arrangements of the vehicle, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.

Claims

- 1. A military vehicle assembly comprising: a rear module including: a rear frame assembly having one or more upper interfaces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a rear end of a passenger capsule of a military vehicle, the one or more lower interfaces configured to detachably coupled to a bottom of the passenger capsule; a bed supported by the rear frame assembly; a rear tractive assembly; a transaxle supported by the rear frame assembly, the transaxle coupled to the rear tractive assembly, the transaxle configured to couple to a prime mover and a front differential of the military vehicle; and a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly.
- 2. The military vehicle assembly of claim 1, wherein the rear suspension system includes a first spring, a second spring, a first damper, and a second damper, and wherein the at least one component includes at least one of (a) the first spring and the second spring or (b) the first damper and the second damper.
- 3. The military vehicle assembly of claim 2, wherein the at least one component includes the first spring and the second spring.
- 4. The military vehicle assembly of claim 2, wherein the at least one component includes the first damper and the second damper.
- 5. The military vehicle assembly of claim 2, wherein the at least one component includes the first spring, the second spring, the first damper, and the second damper.
- 6. The military vehicle assembly of claim 2, wherein the first spring and the second spring are high-pressure nitrogen springs, and wherein the first damper and the second damper are hydraulic dampers.
- 7. The military vehicle assembly of claim 1, wherein the rear suspension system includes a pair of gas springs, further comprising a suspension control system configured to: monitor a ride height of the military vehicle; and control the pair of gas springs to adjust the ride height as load is added to or removed from the military vehicle.
- 8. The military vehicle assembly of claim 7, wherein the pair of gas springs are high-pressure nitrogen springs.
- 9. The military vehicle assembly of claim 1, wherein the rear suspension system includes a pair of hydraulic dampers, wherein the pair of hydraulic dampers are cross-plumbed to provide a hydraulic body roll control function.
- 10. The military vehicle assembly of claim 1, wherein the transaxle includes an internal mechanical disconnect that facilitates decoupling the transaxle from the front differential.
- 11. The military vehicle assembly of claim 10, further comprising an actuator configured to facilitate manually engaging the internal mechanical disconnect.

- 12. The military vehicle assembly of claim 1, wherein the transaxle includes a transfercase component and a rear differential component at least partially contained within the housing.
- 13. The military vehicle assembly of claim 1, further comprising a front module including: a front frame assembly having one or more upper interfaces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a front end of the passenger capsule, the one or more lower interfaces configured to detachably coupled to the bottom of the passenger capsule; a front tractive assembly; the prime mover; and the front differential coupled to the front tractive assembly.
- 14. The military vehicle assembly of claim 13, wherein the front module and the rear module are couplable to different variants of the passenger capsule to provide different variants of the military vehicle.
- 15. The military vehicle assembly of claim 14, wherein the different variants of the passenger capsule include a first variant defining four door openings and a second variant defining two door openings.
- 16. The military vehicle assembly of claim 13, wherein the prime mover includes an engine.
- 17. A military vehicle assembly comprising: a rear module including: a rear frame assembly having one or more upper interfaces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a rear end of a passenger capsule of a military vehicle, the one or more lower interfaces configured to detachably coupled to a bottom of the passenger capsule; a rear tractive assembly; a transaxle supported by the rear frame assembly, the transaxle coupled to the rear tractive assembly, the transaxle configured to couple to a prime mover and a front differential of the military vehicle; and a rear suspension system including at least one component extending between a housing of the transaxle and the rear tractive assembly.
- 18. The military vehicle assembly of claim 17, wherein the rear suspension system includes a pair of gas springs and a pair of hydraulic dampers.
- 19. A military vehicle assembly comprising: a rear module including: a rear frame assembly having one or more upper interfaces and one or more lower interfaces, the one or more upper interfaces configured to detachably couple to a rear end of a passenger capsule of a military vehicle, the one or more lower interfaces configured to detachably coupled to a bottom of the passenger capsule; a rear tractive assembly; a transaxle supported by the rear frame assembly, the transaxle coupled to the rear tractive assembly, the transaxle configured to couple to a prime mover and a front differential of the military vehicle; and a rear suspension system including a pair of gas springs and a pair of hydraulic dampers, wherein the pair of hydraulic dampers are cross-plumbed to provide a hydraulic body roll control function; and a suspension control system configured to: monitor a ride height of the military vehicle; and control the pair of gas springs to adjust the ride height as load is added to or removed from the military vehicle.
- 20. The military vehicle assembly of claim 19, wherein at least one of (a) the pair of gas springs or (b) the pair of hydraulic dampers extend between a housing of the transaxle and the rear tractive assembly.