浙江理工大学 2014 —2015 学年第二 学期

《概率论与数理统计》期末试卷(A)卷标准答案和评分标准

一、填空题(满分24分)

1. 0.25 2. 4.5 3. 49 4.
$$\frac{1}{4}$$
 5. $N(\mu, \frac{\sigma^2}{n})$ 6. $\frac{1}{6}$ 7. $\frac{1}{it}(e^{it}-1)$

二、选择题(满分21分)

1. B 2. A 3. D 4. D 5. C 6. B 7. C

三、 \mathbf{M} : 设 \mathbf{A} ='任取一产品,经检验认为是合格品'

B = ' 任取一产品确是合格品'

则 (1)
$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B})$$

= $0.9 \times 0.95 + 0.1 \times 0.02 = 0.857$.

(2)
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{0.9 \times 0.95}{0.857} = 0.9977 \dots (8 \%)$$

四、解: (1) 当 0 < x < 1 时 $f_x(x) = \int_x^1 6x dy = 6x(1-x)$ 故

$$f_X(x) = \begin{cases} 6x(1-x) & 0 < x < 1 \\ 0 & \text{ 其他} \end{cases}$$

当
$$0 < y < 1$$
时, $f_Y(y) = \int_0^y 6x dx = 3y^2$ 故 $f_Y(y) = \begin{cases} 3y^2 & 0 < y < 1 \\ 0 & 其他 \end{cases}$ (4分)

(2)
$$P(X+Y \le 1) = \int_0^{1/2} 6x dx \int_x^{1-x} dy = \int_0^{1/2} 6x (1-2x) dx = \frac{1}{4}$$
....(7 $\%$)

(3) E (X) =1/2, E (Y) =3/4, E (XY) =2/5, 所以 cov(X, Y)=1/40...... (11 分) 五、解 (1) a = 0.3......(2 分)

(2)

X	0	1	2
p	0.4	0.3	0.3

Y	1	2
		_
p	0.4	0.6

.....(6分)

(3) *X*与*Y* 不独立.....(9分)

(4)

X+Y	1	2	3	4
p	0.1	0.5	0.2	0.2

.....(12 分)

六、由题意可知 $X \sim N(\mu, \sigma^2), Y \sim N(\mu, \sigma^2),$ 且 corr(X,Y) = 0,即 X = Y 不相关,从而

X与**Y**独立.....(4分)

故
$$E(XY^2) = E(X)E(Y^2) = \mu(\mu^2 + \sigma^2)$$
.....(7分)

七、X 的密度函数为:
$$f(x, \beta) = \begin{cases} \frac{\beta}{x^{\beta+1}}, & x > 1, \\ 0, & x \le 1 \end{cases}$$
 (2 分)

曲于 E (X) =
$$\int_{-\infty}^{+\infty} xf(x,\beta)dx = \frac{\beta}{\beta - 1}$$

令 E(X) =
$$\frac{\beta}{\beta - 1}$$
,得 β 的矩估计量为 $\hat{\beta} = \frac{\bar{x}}{\bar{x} - 1}$ (6 分)

似然函数为 L(
$$\beta$$
) =
$$\begin{cases} \frac{\beta^n}{x_1x_2...x_n}, x_i > 1\\ 0, 其他 \end{cases}$$
 (7 分)

取对数求导后求解得
$$\hat{\beta} = \frac{n}{\sum_{i=1}^{n} \ln x_i}$$
。(10 分)

八、(1) μ 的置信度为 $1-\alpha$ 下的置信区间为

$$(\bar{X} - t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}, \quad \bar{X} + t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}})$$
....(3 $\dot{\pi}$)

$$\overline{X} = 10$$
, $s = 0.4$, $n = 16$, $\alpha = 0.05$, $t_{0.025}(15) = 2.132$

所以 μ 的置信度为 0.95 的置信区间为 (9.7868, 10.2132)(5 分)

(2)
$$H_0: \sigma^2 \le 0.1$$
的拒绝域为 $\chi^2 \ge \chi^2_{\alpha}(n-1)$ (8分)

$$\chi^2 = \frac{15S^2}{0.1} = 15 \times 1.6 = 24$$
, $\chi^2_{0.05}(15) = 24.996$

因为
$$\chi^2 = 24 < 24.996 = \chi^2_{0.05}(15)$$
, 所以接受 H_0 (10分)