Arithmetics Subtraction base 10 calculator-algebra.org

Todor Miley

2019

One-digit subtraction 2/20

Example (One digit subtraction, result > 0)

Subtract the one-digit numbers.

$$5-3 = 2$$
 | because $3+2=5$
 $4-0 = 4$ | because $0+4=4$
 $7-4 = 3$ | because $4+3=7$
 $8-2 = 6$ | because $2+6=8$
 $9-7 = 2$ | because $7+2=9$

Example (One digit subtraction, result > 0)

Subtract the one-digit numbers.

$$6-1 = 5$$
 | because $1+5=6$
 $9-5 = 4$ | because $5+4=9$
 $8-2 = 6$ | because $2+6=8$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

• To do one-digit subtraction: guess from addition table.

Example (One digit subtraction, result > 0)

Subtract the one-digit numbers.

$$\begin{array}{rcl}
9-2 & = & 7 \\
8-4 & = & 4 \\
7-7 & = & 0
\end{array}$$

$$-\frac{9}{2} & -\frac{8}{4} & -\frac{7}{7}$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

• Subtraction can also be written in columns.

Example (One digit subtraction, result > 0)

Subtract the one-digit numbers.

$$\begin{array}{rcl}
11 - 3 & = & 8 \\
10 - 5 & = & 5 \\
18 - 9 & = & 9
\end{array}$$

$$-\frac{11}{3} \qquad -\frac{10}{5} \qquad -\frac{18}{9}$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

 Addition table: can be used for subtraction from small two-digit numbers.

Negative integers

• The negative integers are the numbers:

$$\dots, -6, -5, -4, -3, -2, -1$$

- Written as the minus sign followed by a (positive) number.
- Negatives are to the left of 0 on the number line.

- \bullet -1 is as far away from 0 as 1 is.
- \bullet -2 is as far away from 0 as 2 is.
- ... and so on.

Negative sign as a function

• The negative sign can be regarded as a function/operator:

Rule

$$-(a) = -a$$
 if $a > 0$

$$-(5) = -5$$

- On the left, is regarded as a function that takes as input a
 positive number and produces an output that is a negative
 number.
- On the right, is regarded as a part of the notation for negative numbers.

Absolute value (magnitude) of a number

Definition (Magnitude of a number)

The magnitude or absolute value |x| of a number x is defined as:

• The number itself, if the number is non-negative.

$$|a| = a$$
, if a is non-negative.

• The number with negative sign removed, if the number is negative.

$$|-a|=a$$
, if a is negative.

$$|4| = 4$$

 $|-5| = 5$
 $|0| = 0$

Negative of a negative

Rule

The negative of a negative of a number is the number itself.

$$-(-a)=a$$

Parenthesis are necessary when using multiple negative signs.
 Incorrect Correct

$$\rightarrow a$$
 $-(-a)$

- The rule is independent of whether *a* is positive or negative.
- Can be applied consecutively for more than 2 negative signs.

$$-(-5) = 5$$

 $-(-(-7)) = -(7) = -7$
 $-(-(-(-1))) = -(-1) = 1$

Sum with a negative

Rule

Subtracting a number is the same as adding its negative.

$$a+(-b) = a-b$$

 $-a+b = b-a$

$$5+(-3) = 5-3 = 2$$

 $10+(-5) = 10-5 = 5$
 $-1+8 = 8-1 = 7$
 $-8+14 = 14-8 = 6$

Negative of a sum

Rule

The sum of negatives is the negative of the sum.

$$-a-b=-(a+b)$$

The difference of two numbers is minus the opposite difference.

$$a-b=-(b-a)$$

$$\begin{array}{rclrcl}
-5-7 & = & -(5+7) & = & -12 \\
-7+(-8) & = & -7-8 & = & -(7+8) & = & -15 \\
5-9 & = & -(9-5) & = & -4 \\
6-11 & = & -(11-6) & = & -5 \\
-9+3 & = & 3-9 & = & -(9-3) & = & -6
\end{array}$$

Summary of algebra rules involving subtraction

Rule

$$-(-a) = a$$

 $a + (-b) = a - b$
 $-a + b = b - a$
 $-a - b = -(a + b)$
 $a - b = -(b - a)$

Find the number x so that: 5 + x = 9. Solution:

$$5+x=9$$
 transfer 5 to the right hand side
 $x=9-5$ When transferred, 5 acquires negative sign
 $x=4$

Observation

At the price of a negative sign, one is allowed to transfer summands from one side of an equation to the other.

$$a+b=c$$
 $b=c-a$ transfer a to the right hand side

Example

Solve the equation.

$$8 + x = 9$$
 Answer: $x = 1$
 $3 + t = 11$ Answer: $t = 8$

$$5 + a = 10$$
 Answer: $a = 5$

$$8 + s = 16$$
 Answer: $s = 8$

Solve the equation.

$$7 + x = 2$$

Solution.

$$7 + x = 2$$
 Transfer 7 to the other side $x = 2 - 7 = -5$

Solve the equation.

```
3 + x = 7 Answer: x = 4

1 + a = 10 Answer: a = 9

3 + x = 1 Answer: x = -2

5 + x = 0 Answer: x = -5

9 + a = 15 Answer: a = 6

4 + z = 13 Answer: a = 6

9 + x = 8 Answer: a = -1

9 + x = 1 Answer: a = -1
```

Find w, x, y, z so as to satisfy each equality below.

$$-4 = -10 + w$$

Solution

$$-4 = (-10+10)-4 = -10+(10-4) = -10+6 \Rightarrow w = 6$$

$$-2 = -10 + x$$

Solution

$$-2 = (-10+10)-2 = -10+(10-2) = -10+8 \Rightarrow x = 8$$

$$-1 = -10 + y$$

Solution

$$-1 = (-10+10)-1 = -10+(10-1) = -10+9 \Rightarrow y = 9$$

 $-9 = -10+z$

Solution

$$-9 = (-10+10)-9=-10+(10-9)=-10+1 \Rightarrow z=1$$

Subtract 5 from 71.

$$-\frac{7}{5} \\ -\frac{7}{6} \\ \frac{1}{6}$$

• Ensure summand > subtracand.

$$\begin{array}{c} 1-5=-4{=}{-}10{+}6 \\ -1+7-0=6 \end{array}$$

Subtract 108 from 111.

- Ensure summand > subtracand.
- Remove leading zeroes.

$$\begin{array}{c} 1-8=-7{=}{-}10{+}3 \\ -1+1-0=0 \\ 1-1=0 \end{array}$$

When the subtracand is larger than the summand, we first use the rule a - b = -(b - a).

Compute
$$447 - 509 = -(509 - 447)$$
.

- Ensure summand > subtracand.
- Remove leading zeroes.

$$9-7=2$$

 $0-4=-4=-10+6$
 $-1+5-4=0$

Subtract 1234567 from 20182019.

Ensure summandsubtracand.

$$9-7=2$$
 $1-6=-5=-10+5$
 $-1+0-5=-6=-10+4$
 $-1+2-4=-3=-10+7$
 $-1+8-3=4$
 $1-2=-1=-10+9$
 $-1+0-1=-2=-10+8$
 $-1+2-0=1$