

32031 Feedback Quiz, 2022/23, Week 08: Hamming codes

Open-book. 10–15 minutes. Not for credit. To be marked in class.

You are given a check matrix for a Hamming code over the field \mathbb{F}_7 . Some entries are replaced by letters:

$$H = \begin{bmatrix} 1 & 1 & 2 & 3 & 4 & 3 & A & 4 \\ 2 & 5 & 6 & B & 4 & 0 & 3 & 2 \end{bmatrix}$$

Question 1	What is the	code for	which H	is a check	c matrix?
------------	-------------	----------	---------	------------	-----------

Он	$\operatorname{Iam}(7,2) \bigcirc \mathbf{F}$	$\operatorname{Iam}(8,7)$) Ham(8,2)	O Ham	(7,5) ($\bigcap \text{Ham}(7,7)$
	\bigcirc Ham(2,7)	O Ham(2	2,8) Ha	am(7,8) () Ham	(5,7)

Question 2 Entry A is

$$\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6$$

Question 3 Entry B is

$$\bigcirc 0 \quad \bigcirc 1 \quad \bigcirc 2 \quad \bigcirc 3 \quad \bigcirc 4 \quad \bigcirc 5 \quad \bigcirc 6$$

Question 4 Eve wrote down the syndrome, $S(\underline{y}) = \underline{y}H^T$, of every vector $\underline{y} \in \mathbb{F}_7^8$. How many *distinct* syndromes did Eve obtain?

$$\bigcirc 56 \quad \bigcirc 7 \quad \bigcirc 48 \quad \bigcirc 2^7 \quad \bigcirc 7^5 \quad \bigcirc 49 \quad \bigcirc 8 \quad \bigcirc 7^8 \quad \bigcirc 42$$

CORRECTED

32031 Feedback Quiz, 2022/23, Week 08: Hamming codes

Open-book. 10–15 minutes. Not for credit. To be marked in class.

You are given a check matrix for a Hamming code over the field \mathbb{F}_7 . Some entries are replaced by letters:

$$H = \begin{bmatrix} 1 & 1 & 2 & 3 & 4 & 3 & A & 4 \\ 2 & 5 & 6 & B & 4 & 0 & 3 & 2 \end{bmatrix}$$

Question 1 What is the code for which H is a check matrix?
Explanation: A Ham (r,q) code is a linear code over the field \mathbb{F}_q which has a check matrix with r rows, satisfying certain further constraints. We are given that $q = 7$, and the matrix H has 2 rows, hence the code is Ham $(2,7)$.
Question 2 Entry A is $\bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 5 \bigcirc 6$
Explanation: A check matrix for Ham(2,7) has the following property: its columns are representatives of all lines (one-dimensional subspaces) in \mathbb{F}_7^2 . There is a line in \mathbb{F}_7^2 which consists of
column vectors with first (topmost) entry equal to zero: namely, the line which consists of $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$,, $\begin{bmatrix} 0 \\ 6 \end{bmatrix}$. One representative of this line must be a column in H . Therefore, there must be a zero in the top row of H . The only place where zero can be is entry A . Hence $A = 0$

Question 3 Entry *B* is

CORRECTED

Explanation: We need to find the value of B such that the column $\begin{bmatrix} 3 \\ B \end{bmatrix}$ does not represent the same line as any other column of B. Observe that two columns, $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} c \\ d \end{bmatrix}$, represent the same line, if and only if $a^{-1}b = c^{-1}d$ or a = c = 0. Let us write the value of $a^{-1}b$ under each column $\begin{bmatrix} a \\ b \end{bmatrix}$ of B:

where we write * under the column where a = 0. All the values in the bottom row must be distinct, since no two columns belong to the same line. We conclude that $3^{-1}Y = 6 = -1$ so Y = -3 = 4.

Question 4 Eve wrote down the syndrome, $S(\underline{y}) = \underline{y}H^T$, of every vector $\underline{y} \in \mathbb{F}_7^8$. How many *distinct* syndromes did Eve obtain?

$$\bigcirc 56 \quad \bigcirc 7 \quad \bigcirc 48 \quad \bigcirc 2^7 \quad \bigcirc 7^5 \quad \bigotimes 49 \quad \bigcirc 8 \quad \bigcirc 7^8 \quad \bigcirc 42$$

Explanation: The number of possible syndromes is equal to the number of cosets of the code, which is q^{n-k} . Incidentally, this shows (because syndromes are vectors of size n-k) that all vectors of size n-k are syndromes. In this case, n-k=r=2 so there are $7^2=49$ possible syndromes.