```
In [109]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import statsmodels.graphics.tsaplots as tsa plot
          from statsmodels.tsa.seasonal import seasonal decompose
          import statsmodels.formula.api as smf
          from statsmodels.tsa.holtwinters import SimpleExpSmoothing
          from statsmodels.tsa.holtwinters import Holt
          from statsmodels.tsa.holtwinters import ExponentialSmoothing
          from statsmodels.tsa.arima model import ARMA
          from sklearn.metrics import mean_absolute_error
          from datetime import datetime as dlt
          import warnings
          warnings.filterwarnings('ignore')
In [77]: | sales = pd.read_excel('CocaCola_Sales_Rawdata.xlsx')
          sales.head(10)
Out[77]:
              Quarter
                           Sales
               Q1 86 1734.827000
           1
               Q2_86 2244.960999
               Q3 86 2533.804993
           3
              Q4_86 2154.962997
               Q1 87 1547.818996
               Q2_87 2104.411995
           6
               Q3 87 2014.362999
               Q4 87 1991.746998
           8
               Q1 88 1869.049999
               Q2 88 2313.631996
          sales.shape
In [78]:
Out[78]: (42, 2)
          sales.dtypes
In [79]:
Out[79]: Quarter
                       object
          Sales
                      float64
```

dtype: object

In [80]: sales.isna().sum()

```
Out[80]: Quarter
                       0
          Sales
                      0
          dtype: int64
In [81]:
          sales['Sales'].plot()
          plt.show()
           5000
           4500
           4000
           3500
           3000
           2500
           2000
           1500
                            10
                                       20
                                                  30
                                                             40
In [82]:
          sales['Sales'].plot(kind = 'kde')
          plt.show()
             0.00040
             0.00035
             0.00030
             0.00025
             0.00020
             0.00015
             0.00010
             0.00005
             0.00000
                        Ò
                             1000
                                   2000
                                         3000
                                              4000
                                                     5000
                                                           6000
                                                                 7000
In [83]:
          sales['Quarters'] = 0
          sales['Year'] = 0
          for i in range(sales.shape[0]):
               p = sales['Quarter'][i]
               sales['Quarters'][i] = p[0:2]
               sales['Year'][i] = p[3:5]
```

In [84]: sales.head()

Out[84]:

	Quarter	Sales	Quarters	Year
0	Q1_86	1734.827000	Q1	86
1	Q2_86	2244.960999	Q2	86
2	Q3_86	2533.804993	Q3	86
3	Q4_86	2154.962997	Q4	86
4	Q1_87	1547.818996	Q1	87

In [87]: tsa_plot.plot_acf(sales.Sales,lags=4)
 tsa_plot.plot_pacf(sales.Sales,lags=4)

Out[87]:


```
In [88]: decompose_ts_add = seasonal_decompose(sales['Sales'],period=4)
    decompose_ts_add.plot()
    plt.show()
```



```
In [89]: sales['t'] = pd.RangeIndex(start=0,stop=42,step=1)
    sales['sq_t'] = np.square(sales['t'])
    sales['log_sale'] = np.log(sales['Sales'])
    sales = pd.get_dummies(data=sales,columns=['Quarters'])
    sales
```

Out[89]:

	Quarter	Sales	Year	t	sq_t	log_sale	Quarters_Q1	Quarters_Q2	Quarters_Q3	Quai
0	Q1_86	1734.827000	86	0	0	7.458663	1	0	0	
1	Q2_86	2244.960999	86	1	1	7.716443	0	1	0	
2	Q3_86	2533.804993	86	2	4	7.837477	0	0	1	
3	Q4_86	2154.962997	86	3	9	7.675529	0	0	0	
4	Q1_87	1547.818996	87	4	16	7.344602	1	0	0	
5	Q2_87	2104.411995	87	5	25	7.651791	0	1	0	
6	Q3_87	2014.362999	87	6	36	7.608058	0	0	1	
7	Q4_87	1991.746998	87	7	49	7.596767	0	0	0	
8	Q1_88	1869.049999	88	8	64	7.533186	1	0	0	
9	Q2_88	2313.631996	88	9	81	7.746574	0	1	0	
10	Q3_88	2128.320000	88	10	100	7.663088	0	0	1	
11	Q4_88	2026.828999	88	11	121	7.614228	0	0	0	
12	Q1_89	1910.603996	89	12	144	7.555175	1	0	0	
13	Q2_89	2331.164993	89	13	169	7.754123	0	1	0	
14	Q3_89	2206.549995	89	14	196	7.699185	0	0	1	
15	Q4_89	2173.967995	89	15	225	7.684309	0	0	0	
16	Q1_90	2148.278000	90	16	256	7.672422	1	0	0	
17	Q2_90	2739.307999	90	17	289	7.915461	0	1	0	
18	Q3_90	2792.753998	90	18	324	7.934783	0	0	1	
19	Q4_90	2556.009995	90	19	361	7.846203	0	0	0	
20	Q1_91	2480.973999	91	20	400	7.816407	1	0	0	
21	Q2_91	3039.522995	91	21	441	8.019456	0	1	0	
22	Q3_91	3172.115997	91	22	484	8.062154	0	0	1	
23	Q4_91	2879.000999	91	23	529	7.965199	0	0	0	
24	Q1_92	2772.000000	92	24	576	7.927324	1	0	0	
25	Q2_92	3550.000000	92	25	625	8.174703	0	1	0	
26	Q3_92	3508.000000	92	26	676	8.162801	0	0	1	
27	Q4_92	3243.859993	92	27	729	8.084519	0	0	0	
28	Q1_93	3056.000000	93	28	784	8.024862	1	0	0	
29	Q2_93	3899.000000	93	29	841	8.268475	0	1	0	
30	Q3_93	3629.000000	93	30	900	8.196712	0	0	1	

		Quarter	Sales	Year	t	sq_t	log_sale	Quarters_Q1	Quarters_Q2	Quarters_Q3	Quar
	31	Q4_93	3373.000000	93	31	961	8.123558	0	0	0	
	32	Q1_94	3352.000000	94	32	1024	8.117312	1	0	0	
	33	Q2_94	4342.000000	94	33	1089	8.376090	0	1	0	
	34	Q3_94	4461.000000	94	34	1156	8.403128	0	0	1	
	35	Q4_94	4017.000000	94	35	1225	8.298291	0	0	0	
	36	Q1_95	3854.000000	95	36	1296	8.256867	1	0	0	
	37	Q2_95	4936.000000	95	37	1369	8.504311	0	1	0	
	38	Q3_95	4895.000000	95	38	1444	8.495970	0	0	1	
	39	Q4_95	4333.000000	95	39	1521	8.374015	0	0	0	
	40	Q1_96	4194.000000	96	40	1600	8.341410	1	0	0	
	41	Q2_96	5253.000000	96	41	1681	8.566555	0	1	0	
	4										•
In [90]:	0]: train = sales.head(30) test = sales.head(12)										
In [91]:	<pre>linear_model = smf.ols('Sales~t',data=train).fit() linear_pred=linear_model.predict(train['t']) linear_rms=mean_absolute_error(train['Sales'],linear_pred) linear_rms</pre>										
Out[91]:	Out[91]: 257.4609816851609										
In [92]:	<pre>Exp = smf.ols('log_sale~t',data=train).fit() pred_Exp = pd.Series(Exp.predict(pd.DataFrame(train['t']))) rmse_Exp = mean_absolute_error(train['Sales'],pred_Exp) rmse_Exp</pre>										
Out[92]:]: 2496.3274984983696										
In [93]:	<pre>quad = smf.ols('Sales~t+sq_t',data=train).fit() pred_quad = pd.Series(quad.predict(train[["t","sq_t"]])) rmse_quad = mean_absolute_error(train['Sales'],pred_quad) rmse_quad</pre>										
Out[93]: 213.16749202305735											
<pre>In [94]:</pre>											
	←									>	
Out[94]:	458.	8212516	375951								

```
add_sea_quad = smf.ols('Sales~t+sq_t+Quarters_Q1+Quarters_Q2+Quarters_Q3+Quarters
  In [96]:
                           pred_add_sea_quad = pd.Series(add_sea_quad.predict(train[['Quarters_Q1','Quarters
                           rmse_add_sea_quad = mean_absolute_error(train['Sales'],pred_add_sea_quad)
                           rmse add sea quad
  Out[96]: 99.69068092542595
                           Mul sea = smf.ols('log sale~Quarters Q1+Quarters Q2+Quarters Q3+Quarters Q4',data
  In [97]:
                           pred_Mult_sea = pd.Series(Mul_sea.predict(train[['Quarters_Q1','Quarters_Q2','Quarters_Q2','Quarters_Q2','Quarters_Q2','Quarters_Q2','Quarters_Q1','Quarters_Q1','Quarters_Q2','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q2','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters_Q1','Quarters
                           rmse_Mult_sea = mean_absolute_error(train['Sales'],pred_Mult_sea)
                           rmse Mult sea
  Out[97]: 2496.3274984983705
  In [98]:
                          Mul_Add_sea = smf.ols('log_sale~t+Quarters_Q1+Quarters_Q2+Quarters_Q3+Quarters_Q4
                           pred Mult add sea = pd.Series(Mul Add sea.predict(train[['t','Quarters Q1','Quart
                           rmse_Mult_add_sea = mean_absolute_error(train['Sales'],pred_Mult_add_sea)
                           rmse_Mult_add_sea
  Out[98]: 2496.32749849837
In [100]:
                           sales['Sales'].plot(label="org")
                           for i in range(2,43,6):
                                     sales['Sales'].rolling(i).mean().plot(label=str(i))
                           plt.legend(loc='best')
Out[100]: <matplotlib.legend.Legend at 0x15b328f0490>
                                                      ora
                              5000
                              4500
                                                      20
                              4000
                                                      26
                                                     32
                              3500
                              3000
                              2500
                              2000
                              1500
                                                                     10
                                                                                              20
                                                                                                                        30
                                                                                                                                                 40
In [103]:
                           ses_model = SimpleExpSmoothing(train["Sales"]).fit(smoothing_level=0.2)
                           pred_ses = ses_model.predict(start = train.index[0],end = train.index[-1])
```

Out[103]: 284.2907677932735

ses rms

ses_rms=mean_absolute_error(pred_ses,train['Sales'])

```
hw model = Holt(train["Sales"]).fit(smoothing level=0.8, smoothing slope=0.2) #
In [104]:
          pred hw = hw model.predict(start = train.index[0],end = train.index[-1])
          hw_rms=mean_absolute_error(pred_hw,train['Sales'])
          hw rms
Out[104]: 299.17346422213893
In [106]:
          hwe_model_mul_add = ExponentialSmoothing(train["Sales"],seasonal="mul",trend="add
          pred hwe mul add = hwe model mul add.predict(start = train.index[0],end = train.i
          hw_ma_rms=mean_absolute_error(pred_hwe_mul_add,train['Sales'])
          hw_ma_rms
Out[106]: 135.94949307336117
          hwe_model_mul_add = ExponentialSmoothing(train["Sales"],seasonal="add",trend="mul
In [107]:
          pred_hwe_mul_add = hwe_model_mul_add.predict(start = train.index[0],end = train.i
          hw ma rms=mean absolute error(pred hwe mul add,train['Sales'])
          hw_ma_rms
Out[107]: 133.8422739605856
          hwe model add add = ExponentialSmoothing(train["Sales"], seasonal="add", trend="add"
In [108]:
          pred_hwe_add_add = hwe_model_add_add.predict(start = train.index[0],end = train.i
          hw_aa_rms=mean_absolute_error(pred_hwe_add_add,train['Sales'])
          hw aa rms
Out[108]: 129.7301462404645
In [110]:
          ARMAmodel = ARMA(train['Sales'], order=(3, 0)) #model with AR=1 and MA=0
          ARMAmodel fit = ARMAmodel.fit()
          ARMA_pred = ARMAmodel_fit.predict()
          ARMA pred
          arma_rms=mean_absolute_error(ARMA_pred,train['Sales'])
          arma_rms
Out[110]: 277.18726942124533
```

```
In [111]: rolLmean = sales['Sales'].rolling(12).mean() # 12 entries
rolLstd = sales['Sales'].rolling(12).std()
plt.figure(figsize=(16,7))
fig = plt.figure(1)

orig = plt.plot(sales['Sales'], color='blue',label='Original')
mean = plt.plot(rolLmean, color='red', label='Rolling Mean')
std = plt.plot(rolLstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)
```


Out[112]: 119.56046711071104