Software Platforms for Automotive Systems

Lecture 1: Introduction

Alejandro Masrur 15th October 2015, TU Chemnitz

What do you know about cars?

- How many processors are there in a modern car?
- What is an ECU and an OEM?
- How many kilometers of cable are there?
- How long is the product life cycle of a car?

How many lines of codes?

Source: Audi AG

Automotive Companies

- OEM: Original Equipment Manufacturer
 - Companies which develop cars
 - BMW, Audi, Toyota, Ford, etc.
- Tier 1 providers (develop automotive systems)
 - Bosch, Continental, Delphi, etc.
- Tier 2 providers (develop processors chips, etc.)
 - Freescale, Infineon, etc.
- Tool providers (develop automotive software tools)
 - dSpace, Vektor, Mentor Graphics, etc.

Trend in Automotive Systems

The Automotive E/E Architecture

- All electrical/electronic (E/E) components in a car
 - Currently it has a high complexity and a high cost
 - Around 100 electronic control units (ECUs)
 - Around 10 buses and over 4 Km cable
 - Domain-specific technologies, e.g., LIN, FlexRay, etc.
 - Over 100 million lines of code
- Carrier of most innovation in today's cars
- Software has a crucial role
 - Trend to even more functionality and complexity
 - Need for portability and reusability of software

Requirements on Car's E/E Systems

- Harsh environmental conditions
 - Wide temperature range, high humidity and vibration
 - Electromagnetic interference (EMI)
- Reliability and availability
 - Providing required functions in specified time interval
- Functional Safety
 - Avoiding potential hazards for passengers and others
- Relatively long product life cycles
 - Around 20 to 25 years

Automotive Software Engineering

An attempt of definition:

"Systematic use of techniques and tools that support the design and development process with the aim of mastering complexity and achieving <u>efficient</u> and reliable software for the automotive domain."

- Efficient in the sense of resources and reusability
 - ECUs need to be cost-effective and have limited resources
 - A high reusability of software saves costs
- Reliable because of safety-critical applications
 - Brakes, airbags, electronic stability program (ESP), etc.
 - Real-time behavior is required most of the time

The Driver-Car-Environment System

What's an ECU?

- Input/output adaption
 - Translate voltage and current levels

Automotive Functional Domains

- Functions are divided into 6 main domains
 - Manage complexity of the overall system
 - Different requirements and different technologies
- Power Train
- Chassis
- Safety (passive)
- Body/Comfort
- Multimedia/Telematics
- Man Machine Interface

Vehicle centric (more critical)

Passenger centric (less critical)

Power Train

- Concerns the following
 - Engine, gearbox, driveshaft, crankshaft, etc.

Sensors

Throttle position, battery voltage, etc.

Actuators

- Throttle, ignition plugs, fuel injectors, etc.
- On-board communication
 - HS-CAN (High Speed-Controller Area Network)
- Engine management, gearbox control, etc.

Chassis

- Concerns the following
 - Front and back axles, brakes, wheels, etc.

Chassis

Sensors

- Wheels' rotational speed, yaw and steer angle, etc.
- Actuators
 - Individual brakes at wheels, etc.
- On-board communication
 - HS-CAN (High Speed-Controller Area Network)
- Anti-blocking system, electronic stability program, etc.

Safety (Passive)

- Concerns the following
 - Airbags, seatbelt, etc.
- Sensors
 - Collision detectors, seat occupancy, etc.
- Actuators
 - Airbag inflation, etc.
- On-board communication
 - LS-CAN (Low Speed-Controller Area Network)
- Airbag control, seatbelt tightener, etc.

Body/Comfort

- Concerns the following
 - Side mirrors, seats, steering wheel, etc.

Sensors

Rain sensor, temperature sensor, etc.

Actuators

- DC motor actuator for windows and mirrors, heating, etc.
- On-board communication
 - LS-CAN (Low Speed-Controller Area Network)
- Parking assistant, electric windows, etc.

Remaining Domains

- Multimedia/Telematics
 - Entertainment: Radio, Video, etc.
 - Internet access
 - Navigation
- Man Machine Interface
 - Instrument panel
 - Control panel (i.e., buttons, turn-switches, etc.)
 - Voice command
- On-board communication
 - Mainly MOST (Media Oriented Systems Transport)

Man Machine Interface

Cross-Domain Function

Adaptive cruise control (ACC):

Cross-Domain Function

Instrument Panel Control

Product Life Cycle of a Car

Design

Development

Availability

- Puts emphasis on the design
- Technology should be available
- Puts focus on software upgrades

Functions and their Implementation

Main Development Process

Requirement analysis

and **specification** of logical system architecture

Analysis of logical system architecture

and **specification** of technical architecture

Logical system architecture

Technical system architecture

Acceptance test

System test

Calibration

System integration **test**

System components integration

System development

Software development

Analysis of software requirement

specification of software technical architecture

Software integration test

Software components integration

Specification of software components

Design and implementation of software components

Software components test

Support Development Process

Simultaneous Engineering

Model-Based Design & Development

Traditional Software Architecture

- Application software written for a given platform
 - Given operating system (OS), e.g., OSEK-OS
 - Given architecture, e.g., PowerPC, ARM, etc.
 - It is not portable to other ECUs

Application software

Basic Software (OS, drivers ,etc.)

ECU Hardware

The AUTOSAR Standard

- AUTomotive Open System Architecture
 - Manage increasing E/E complexity
 - Improve flexibility and scalability
 - Improve quality and reliability of E/E systems
- Software Component (SWC)
- Virtual Functional Bus (VFB)

AUTOSAR Software Architecture

AUTOSAR Software Architecture

AUTOSAR Software Architecture

Summary

- E/E architectures are highly complex
 - Trend towards more functionality on fewer ECUs
 - Automotive Software need to be efficient and reliable
- Functional Domains
 - Vehicle centric: Power Train, Chassis and Safety
 - Passenger centric: Multimedia, Body/Comfort and MMI
- Long product life cycles of around 25 years
- Design and development techniques
- The AUTOSAR standard

Challenges in Automotive Systems

- Migration to multi-core architectures
 - Traditionally single core → big issue for software
- Migration from distributed to centralized systems
 - Need to reduce complexity → big issue for software
- Variant-oriented applications
 - Sport, comfort variants, etc. → big issue for software
- Car-to-X communication → big issue for software
- Electric vehicles, alternative power-train solutions
- Autonomous cars → very big issue for software

What did you learn about cars?

- How many processors are there in a modern car?
 - Around 100 different processors
- What is an ECU and an OEM?
 - ECU= Electronic Control Unit
 - OEM= Original Equipment Manufacturer
- How many kilometers of cable are there? → 4 Km
- How long is the product life cycle of a car?
 - Around 20 to 25 years
- How many lines of codes?

 Around 100 Million

Organizational Issues

- Lecture: every Thursday starting today
 - From 15:30 hs until 17:00 hs
 - This room: 1/201
- Different timings for tutorials (see OPAL)
- Slides and reading materials available over OPAL
- Accompanying book (available in the library):
 - Title: "Automotive Software Engineering"
 - By J. Schäuffele and T. Zurawka, 4th Edition

