

FIT2099 Object-Oriented Design and Implementation

Overview of FIT2099

Acknowledgement of Country

I would like to acknowledge the Traditional Owners of the land on which I am today, the Yalukit Willam clan of the Boon Wurrung People.

I would like us to pay our respects to their Elders past, present and emerging.

We acknowledge and respect their continuing relationship to the lands upon which we meet.

FIT2099

LEARNING OBJECTIVES

- 1- Iteratively construct object-oriented designs for small to medium-size software systems, and describe these designs using standard software engineering notations including UML class diagrams (in conceptual and concrete forms), UML interaction diagrams and, if applicable, UML state diagrams;
- 2- Evaluate the quality of object-oriented software designs, both in terms of meeting user requirements and in terms of good design principles, using appropriate domain vocabulary to do so;
- 3- Implement object-oriented designs in an object-oriented programming language (i.e., Java), using object-oriented programming constructs such as classes, inheritance, abstract classes, and generics as appropriate;
- 4- Use available language tools, such as debuggers and profilers, and good programming practice to debug the implementations systematically and efficiently;
- 5- Use software engineering tools including UML drawing tools, integrated development environments, and revision control to create, edit, and manage artifacts created during the development process.

HOW

FIT2099 works

Class (lecture) and labs

Class 1 hour/week (Weeks 1-12)

Labs 3 hours/week (Weeks 1-12)

Labs start Week 1, assessed labs in weeks 2-5

Independent study

- Set pre-class and post class activities on EdLessons (these are required)
- Assignment project in teams

THE ASSESSMENT

Bootcamp held in labs and EdLessons – 10%

3 Assignments done in teams (same for each assignment)

- Assignment 1 20%. Due Friday Week 6
- Assignment 2 20%. Due Friday Week 8
- Assignment 3 20%. Due Friday Week 11

Assignments involve designing and implementing extensions to an existing objectoriented system

Final eExam – 30%

INDIVIDUAL

THE BOOTCAMP

PART A (in the labs weeks 2-5) - 8%

- Weekly Java programming activities which include Object-Oriented principles.
- The cover the first five weeks of the semester during the labs.
- Activities in weeks 2-5 are assessed in the labs.

PART B (EdLessons, weeks 1-12) - 2%

- These are intended to help you boost your Java and OO implementation skills in preparation for the Assignments, in addition to the labs.
- They are to be completed online, at your own pace by the end of Week 12.
- You will spend around 3 hours per week depending on your previous experience with Java

INDIVIDUAL

THE BOOTCAMP (in labs, weeks 1-5)

GO TO EdLessons – Week 1-5

•

Bootcamp in the lab

- 1 Attempt the bootcamp BEFORE the lab
- Get feedback / ask questions to TAs during the lab
- You can keep working and updating your repository

- Commit everything before your next lab (a week after)
- Go to your handover interview with your TA in your next lab (marking and final feedback on completion and quality of the work)

THE BOOTCAMP (in labs, weeks 1-5)

Marking

- Based on a rubric for each week
- The rubric considers:
 - quality of design and implementation work,
 - alignment between design and implementation and
 - the handover interview
- The rubric will be available via Moodle
- Marks per Bootcamp:

Week 1	Week 2	Week 3	Week 4	Week 5
0 marks	1 mark	2 marks	2 marks	3 marks

INDIVIDUAL

THE BOOTCAMP (in EdLessons)

Week 0 is optional (recommended if you are new to Java programming)

Week 0 (highly encouraged if you are new to Java programming)

GO TO EdLessons

Java for Beginners - Part 1 (~60 minutes)

Week 1

Assessed completion only

Pre-class Activities: Java for Beginners - Part 2 (~45 minutes)

Pre-class Activities: Video lessons (~50 minutes)

Class activities (~50 minutes)

Bootcamp in the lab

Post-class Activities (~30 minutes)

not assessed

[Optional][Assignment Support] A Game Development Concepts

THE BOOTCAMP (in EdLessons, weeks 0-5)

Marking

Completion % by Week 12 x 2 marks = Mark for Bootcamp Part B

For example:

75% x 2 marks = 1.5 marks

THE PROJECT (Assignments 1, 2 and 3)

Project (in labs, Weeks 5-12)

- Done in teams to give you practice at communicating with your peers about design
- It is one project split into three submission points
- The idea is to keep the workload steady rather than have a mad rush at the end
- The Design is at least as important as Implementation
 - even if you get it 100% working, you can still fail
 - for a good mark your code must be maintainable, extensible, and exhibit other signs of good
 OO design practice
- Several feedback opportunities
- All the team members are responsible for the whole project, rather than individual parts

THE PROJECT (Assignments 1, 2 and 3)

Please, read the assignment rules document for more details

THE PROJECT (Assignments 1, 2 and 3)

Marking

- Based on a rubric for each assignment
- The rubric considers both completeness and quality of work in terms of Design AND/OR Implementation
- The handover interview is part of the assignment (the week after the deadline)
- The rubrics will be available via Moodle

INDIVIDUAL

THE FINAL EXAM

- Closed book (you will not need to memorise much)
- Practical (design and implementation exercises)
- Example exams will be made available via Moodle
- Two classes in Weeks 11 and 12 focused on the Exam
- Thirty marks in total

WHAT SOFTWARE WILL BE NEEDED?

You need a working Java development environment to work on labs and assignments at home

we suggest JDK15; links are available on EdLessons

You will use a git repository to manage all project data for the assignments

- An individual repository and a team repository will be assigned to each of you and your team for the labs and assignments, respectively.
- You will need a git client
- Most modern IDEs have one integrated (including IntelliJ which we will be using and supporting in this unit)
- if you learned GitKraken in other units and want to use it, we won't stop you (but we probably won't be able to support you if it breaks)

GETTING

FEEDBACK

- In the labs, ask your TA
 - Oral feedback and written feedback (along with the summative assessment)
 - If you're at Clayton, there are two per class, you're encouraged to ask either one at any time
 - You will get direct feedback during each handover interview
- Feedback in ED Discussion Forum
 - If you ask something you may get feedback from other students and teaching staff
 - Questions sent by email that are not of a personal nature, but about the unit content in general, will be redirected to Ed Discussion
- Come to a consultation session
 - these will be organized when availabilities are known and when demand becomes clear, from Week 2.
 - You can attend ANY consultation session! Bring your questions or assignment drafts.
- Come to the class!
 - You can ask questions to the lecturer in turn about the pre/post class lessons you have previously watched or followed by coding along

Thanks

