Results of the spatial BYM model with stochastic restriction (1)

1 Implementation of the BYM model with stochastic restriction (1)

```
data {
  int<lower=0> N;
  int<lower=0> N edges;
  int<lower=1, upper=N> node1[N_edges]; // node1[i] adjacent to node2[i]
  int<lower=1, upper=N> node2[N_edges]; // and node1[i] < node2[i]</pre>
  int<lower=0> y[N];
                                 // count outcomes
// vector[N] x;
                                   // predictor
 int<lower=0, upper=0> cero;
  vector<lower=0>[N] E;
                                 // exposure
transformed data {
  vector[N] log_E = log(E);
parameters {
 real beta0;
                            // intercept
// real beta1;
                              // slope
 real<lower=0> sigma_theta; // sd of heterogeneous effects
 real<lower=0> sigma_phi;  // sd of spatial effects
 vector[N] theta_std; // standardized heterogeneous effects
  vector[N] phi_std; // raw, standardized spatial effects
transformed parameters {
  vector[N] theta = theta_std * sigma_theta;
                                                    // non-centered parameterization
  vector[N] phi = phi_std * sigma_phi;
 real mean_phi_std = mean(phi_std);
// y ~ poisson_log(log_E + beta0 + beta1 * x + theta + phi);
 y ~ poisson_log(log_E + beta0 + theta + phi);
 target += -0.5 * dot_self(phi_std[node1] - phi_std[node2]);
 theta std ~ normal(0, 1);
  cero ~ normal(mean_phi_std, 0.0001);
}
generated quantities {
// vector[N] mu = exp(log_E + beta0 + beta1 * x + phi + theta);
 vector[N] mu = exp(log_E + beta0 + phi + theta);
  vector[N] SMR = exp(beta0 + phi + theta);
```

2 Fitting the model to Spain's mortality data

```
library(rstan)
library(spdep)
# options(mc.cores = parallel::detectCores())
options(mc.cores = 3)
source("mungeCARdata4stan.R")
load("../../Mortalidad nacional/DatosSinTemporal.Rdata")
Veci<-nb2WB(CartoMuniSinIslas.nb)</pre>
nbs = mungeCARdata4stan(Veci$adj, Veci$num);
N = nbs$N;
node1 = nbs$node1;
node2 = nbs$node2;
N_edges = nbs$N_edges;
tcomp02 <- system.time(mod.BYM <- stan_model("BYM_StanFast.stan"))</pre>
# Compilation in 66 seconds
save(mod.BYM, file = "mod.Stan.BYM.Fast.Rdata")
# load("mod.Stan.BYM.NoPriors3.Rdata")
Ejecuta.BYM.Stan<-function(Sexo, Causa){</pre>
  y <- MorTabu[Sexo,Causa, ]</pre>
 E <- Esperados[Sexo,Causa, ]</pre>
  datos <- list(N ,N_edges, node1, node2, y, E, cero=0)
  param <- c("SMR", "mu", "sigma_phi", "sigma_theta", "beta0")</pre>
  Res.t <- system.time(Res <- sampling(object = mod.BYM, data = datos, chains = 3, iter = 4400,
                                         warmup = 400, thin = \max(1, floor(3 * (4400 - 400) / 1000)),
                                         cores = 3, pars = param))
  Res.BYM[[Sexo]][[Causa]] <<- list()</pre>
  Res.BYM[[Sexo]][[Causa]]$tiempo <<- Res.t</pre>
  Res.BYM[[Sexo]][[Causa]]$summary <<- Res</pre>
  Res.BYM[[Sexo]][[Causa]]$RR <-- summary(Res)$summary[1:7907, 1]
  Res.BYM[[Sexo]][[Causa]]$P.RR <-- apply(extract(Res, pars = "SMR")$SMR, 2, function(x){mean(x > 1)})
}
Res.BYM <- list(Hombres = list(), Mujeres = list())</pre>
for(i in c(9:18, 22, 28, 30, 31, 33, 35:37, 41)){
  Ejecuta.BYM.Stan(1, i)
  save(Res.BYM, file = "Res.BYM-StanFast.Rdata")
}
```

3 Descriptive principals

Cause	Time	sigma_phi	sigma_theta	max.Rhat	min.n_eff
(9) Mouth and pharynx	2611.2	0.335 [0.298, 0.3779]	0.0879 [0.0328,0.1271]	1.02	279.06
(10) Esophagus	2629.5	0.2958 [0.2622, 0.3302]	0.0446 [0.0023,0.0913]	1.02	233.56

Cause	Time	sigma_phi	sigma_theta	max.Rhat	min.n_eff
(11) Stomach	2689.5	0.3253 [0.2998,0.3528]	0.0264 [0.0011,0.0641]	1.01	421.04
(12) Colon	2793.2	$0.2394 \ [0.2135, 0.2674]$	0.1018 [0.0839,0.1187]	1.01	485.65
(13) Rectum	2775.6	0.2032 [0.1681,0.2419]	0.1206 [0.0941, 0.1462]	1.06	69.83
(14) Liver	2759.0	0.3106 [0.2763, 0.348]	0.1469 [0.1218, 0.1699]	1.01	298.03
(15) Pancreas	2674.3	0.2135 [0.183, 0.2487]	$0.0613 \ [0.017, 0.0923]$	1.02	245.94
(16) Other digestives	2592.2	$0.2023 \ [0.1556, 0.2488]$	$0.0467 \ [0.0023, 0.1007]$	1.02	254.41
(17) Larynx	2595.2	0.3481 [0.3076, 0.3909]	$0.0825 \ [0.015, 0.1268]$	1.01	304.56
(18) Lung	2854.9	0.3598 [0.3363, 0.3827]	$0.0841 \ [0.0629, 0.103]$	1.02	439.96
(22) Other skin	2579.8	0.2377 [0.1838, 0.2906]	$0.047 \ [0.0016, 0.1145]$	1.03	251.35
(28) Prostate	2710.3	0.2006 [0.1729, 0.2296]	0.0572 [0.0135, 0.0836]	1.01	305.22
(30) Kidney	2621.6	0.2912 [0.2462, 0.3399]	0.0451 [0.0026, 0.0944]	1.02	265.03
(31) Bladder	2621.3	0.3064 [0.273,0.3406]	0.0776 [0.0355, 0.1072]	1.02	433.16
(33) Brain	2674.3	0.1512 [0.1167, 0.1931]	0.086 [0.0509,0.1161]	1.04	149.32
(35) Poorly defined	2653.3	0.2252 [0.1966, 0.2554]	0.0979 [0.0757, 0.1182]	1.01	488.26
(36) Other lymphatics	2660.4	$0.176 \ [0.1415, 0.2093]$	0.0752 [0.0485, 0.0982]	1.02	356.67
(37) Leukemias	2614.5	0.1482 [0.1112, 0.1868]	0.0667 [0.0158, 0.0994]	1.02	273.92
(41) Other tumors	2655.4	0.3014 [0.2611,0.3424]	0.0458 [0.002, 0.0951]	1.02	350.70
Median	2655.4	0.24	0.08	1.02	298.03