

Europäisches Patentamt European Patent Office Office européen des brevets

EP 1 498 491 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 19.01.2005 Bulletin 2005/03

(21) Application number: 03723098.4

(22) Date of filing: 09.04.2003

- (51) Int CI.7: **C12P 21/08**, C12N 15/09, C12N 5/10, C07K 16/18, G01N 33/50, C07K 16/46 // (A61K39/395, A61P9:00, 29:00, 31:04, 31:12, 31:14, 35:00, 37:02, 37:04, 37:08, 43:00, G01N33:15, C12P21:08), C12R1:91, C12N5:10, C12R1:91
- (86) International application number: PCT/JP2003/004504

(11)

- (87) International publication number: WO 2003/085119 (16.10.2003 Gazette 2003/42)
- (84) Designated Contracting States:

 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HU IE IT LI LU MC NL PT RO SE SI SK TR

Designated Extension States: **AL LT LV MK**

- (30) Priority: **09.04.2002 JP 2002106950**
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Tokyo 100-8185 (JP)

- (72) Inventors:
 - NAKAMURA, Kazuyasu,
 Kyowa Hakko Kogyo Co., Ltd.
 3-chome, Machida-shi, Tokyo 194-8533 (US)
 - SHITARA, Kenya, Kyowa Hakko Kogyo Co., Ltd.
 3-chome, Machida-shi, Tokyo 194-8533 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4
 81675 München (DE)

(54) METHOD OF ENHANCING ACTIVITY OF ANTIBODY COMPOSITION OF BINDING TO FC GAMMA RECEPTOR IIIa

(57) A method for enhancing a binding activity of an antibody composition to Fcγ receptor IIIa, which comprises modifying a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule; a method for enhancing an antibody-dependent cell-mediated cytotoxic activity of an antibody composition; a process for producing an antibody composition having an enhanced binding activity to Fcγ receptor IIIa; a method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the

reducing end in the sugar chain among total complex N-glycoside-linked sugar chains bound to the Fc region in an antibody composition; an Fc fusion protein composition produced by using a cell resistant to a lectin which recognizes a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain; and a process for producing the same.

Description

10

15

30

35

40

50

TECHNICAL FIELD

[0001] The present invention relates to a method for enhancing a binding activity of an antibody composition to Fc γ receptor Illa, which comprises modifying a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule; a method for enhancing an antibody-dependent cell-mediated cytotoxic activity of an antibody composition; a process for producing an antibody composition having an enhanced binding activity to Fc γ receptor Illa; a method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain among total complex *N*-glycoside-linked sugar chains bound to the Fc region in an antibody composition; an Fc fusion protein composition produced by using a cell resistant to a lectin which recognizes a sugar chain in which 1-position of fucose is bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond in a complex *N*-glycoside-linked sugar chain; and a process for producing the same.

BACKGROUND ART

[0002] Since antibodies have high binding activity, binding specificity and high stability in blood, their applications to diagnosis, prevention and treatment of various human diseases have been attempted [Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc., Chapter 2.1 (1995)]. Also, production of a humanized antibody such as a human chimeric antibody or a human complementarity determining region (hereinafter referred to as "CDR")-grafted antibody from a non-human animal antibody have been attempted by using genetic recombination techniques. The human chimeric antibody is an antibody in which its antibody variable region (hereinafter referred to as "V region") is derived from a non-human animal antibody and its constant region (hereinafter referred to as "C region") is derived from a human antibody. The human CDR-grafted antibody is an antibody in which the CDR of a human antibody is replaced by CDR derived from a non-human animal antibody.

[0003] It has been revealed that five classes, namely IgM, IgD, IgG, IgA and IgE, are present in mammal antibodies. Antibodies of human IgG class are mainly used for the diagnosis, prevention and treatment of various human diseases because they have functional characteristics such as long half-life in blood and various effector functions [Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc., Chapter 1 (1995)]. The human IgG class antibody is further classified into the following 4 subclasses: IgG1, IgG2, IgG3 and IgG4. A large number of studies have so far been conducted for antibody-dependent cell-mediated cytotoxic activity (hereinafter referred to as "ADCC activity") and complement-dependent cytotoxic activity (hereinafter referred to as "CDC activity") as effector functions of the IgG class antibody, and it has been reported that among antibodies of the human IgG class, the IgGI subclass has the highest ADCC activity and CDC activity [Chemical Immunology, 65, 88 (1997)]. In view of the above, most of the anti-tumor humanized antibodies, including commercially available Rituxan and Herceptin, which require high effector functions for the expression of their effects, are antibodies of the human IgG1 subclass.

[0004] Expression of ADCC activity and CDC activity of the human lgG1 subclass antibodies requires binding of the Fc region of the antibody to a receptor for an antibody (hereinafter referred to as "FcγR") existing on the surface of effector cells such as killer cells, natural killer cells or activated macrophages and various complement components are bound. Regarding the binding, it has been suggested that several amino acid residues in the hinge region and the second domain of C region (hereinafter referred to as "Cγ2 domain") of the antibody are important [*Eur. J. Immunol.*, 23, 1098 (1993), *Immunology*, 86, 319 (1995), *Chemical Immunology*, 65, 88 (1997)] and that a sugar chain in the Cγ2 domain [*Chemical Immunology*, 65, 88 (1997)] is also important.

[0005] Regarding the sugar chain, Boyd *et al.* have examined effects of a sugar chain on the ADCC activity and CDC activity by treating a human CDR-grafted antibody CAMPATH-1H (human IgG1 subclass) produced by a Chinese hamster ovary cell (hereinafter referred to as "CHO cell") or a mouse myeloma NSO cell (hereinafter referred to as "NSO cell") with various glycosidases, and reported that elimination of sialic acid in the non-reducing end did not have influence upon both activities, but the CDC activity alone was affected by further removal of galactose residue and about 50% of the activity was decreased, and that complete removal of the sugar chain caused disappearance of both activities [*Molecular Immunol.*, 32, 1311 (1995)]. Also, Lifely *et al.* have analyzed the sugar chain bound to a human CDR-grafted antibody CAMPATH-1H (human IgG1 subclass) which was produced by CHO cell, NSO cell or rat myeloma Y0 cell (hereinafter referred to as "Y0 cell"), measured its ADCC activity, and reported that the CAMPATH-1H derived from Y0 cell showed the highest ADCC activity, suggesting that *N*-acetylglucosamine (hereinafter sometimes referred to as "GlcNAc") at the bisecting position is important for the activity [*Glycobiology*, 5, 813 (1995); WO99/54342]. These reports indicate that the structure of the sugar chain plays an important role in the effector functions of human antibodies of IgG1 subclass and that it is possible to prepare an antibody having much higher effector function by modifying the structure of the sugar chain. However, structures of sugar chains are various and complex actually, and it cannot be said that an important structure for the effector function was completely identified.

[0006] Thus, the sugar chain bound to the CH2 domain of an IgG class antibody has great influence on the induction of effector functions of an antibody. As described above, some of effector functions of an antibody are exerted via interaction with FcγR present on the effector cell surface [*Annu. Rev. Immunol.*, 18, 709 (2000), *Annu. Rev. Immunol.*, 19, 275 (2001)].

[0007] It has been found that 3 different types are present in Fc γ R, and they are respectively called Fc γ RI (CD64), Fc γ RII (CD32) and Fc γ RIII (CD16). In human, Fc γ RII and Fc γ RIII are further classified into Fc γ RIIa and Fc γ RIIb, and Fc γ RIIIa, respectively. Fc γ R is a membrane protein belonging to the immunoglobulin super family, Fc γ RII and Fc γ RIII have an α chain having an extracellular region containing two immunoglobulin-like domains, Fc γ RI has an α chain having an extracellular region containing three immunoglobulin-like domains, as a constituting component, and the α chain is involved in the IgG binding activity. In addition, Fc γ RI and Fc γ RIII have a γ chain or ζ chain as a constituting component which has a signal transduction function in association with the α chain [Annu. Rev. Immunol., 18, 709 (2000), Annu. Rev. Immunol., 19, 275 (2001)].

[0008] Fc γ RI is a high affinity receptor having a binding constant (hereinafter referred to as "K_A") value of 10⁸ to 10⁹ M⁻¹ and also has high binding activity for monomeric IgG [Ann. Hematol., 76, 231 (1998)]. On the other hand, Fc γ RIII are low affinity receptors which have a low K_A value of 10⁵ to 10⁷ M⁻¹ for monomeric IgG and efficiently bind to an IgG immune complex polymerized by binding to an antigen or the like [Ann. Hematol., 76, 231 (1998)]. Based on its functions, Fc γ R is classified into an activating receptor and an inhibitory receptor [Annu. Rev. Immunol., 19, 275 (2001)].

[0009] In the activating receptor, there is a sequence consisting of 19 amino acid residues, called immunoreceptor tyrosine-based activation motif (hereinafter referred to as "ITAM") in the intracellular region of the α chain or the associating γ chain or ζ chain. According to the binding of an IgG immune complex, a tyrosine kinase such as Src or Syk which interacts with ITAM is activated to induce various activation reactions.

[0010] In the inhibitory receptor, there is a sequence consisting of 13 amino acid residues, called immunoreceptor tyrosine-based inhibitory motif (hereinafter referred to as "ITIM") in the intracellular region of the α chain. When ITIM is phosphorylated via its association with the activating receptor, various reactions including activation of a phosphatase called SHIP are induced to suppress activation signal from the activation receptor.

[0011] In human, the high affinity Fc γ RI and the low affinity Fc γ RIIa and Fc γ RIIIa function as activating receptors. In Fc γ RI, an ITAM sequence is present in the intracellular region of the associated γ chain. Fc γ RI is expressed on macrophages, monocytes, dendritic cells, neutrophils, eosinophils and the like. Fc γ RIIa comprises a single α chain, and an ITAM-like sequence is present in the intracellular region. Fc γ RIIa is expressed on macrophages, mast cells, monocytes, dendritic cells, Langerhans cells, neutrophils, eosinophils, platelets and a part ofB cells. Fc γ RIIIa has an ITAM sequence present in the intracellular region of the associated γ chain or ζ chain and is expressed on NK cells, macrophages, monocytes, mast cells, dendritic cells, Langerhans cells, eosinophils and the like, but is not expressed on neutrophils, B cells and T cells.

[0012] On the other hand, the low affinity receptor Fc γ RIIb comprises a single α chain, and the amino acid sequence in the extracellular region has homology of about 90% with Fc γ RIIa. However, since an ITMI sequence is present in the intracellular region, it functions as a suppressing receptor. Fc γ RIIb is expressed on B cells, macrophages, mast cells, monocytes, dendritic cells, Langerhans cells, basophils, neutrophils and eosinophils, but is not expressed on NK cells and T cells. Fc γ RIIIb comprises a single α chain, and the amino acid sequence in the extracellular region has a homology of about 95% with Fc γ RIIIa. However, it is specifically expressed on neutrophils as a glycosylphosphatidylinositol (hereinafter referred to as "GPI")-anchored membrane protein. Fc γ RIIIb binds to an IgG immune complex but cannot activate cells by itself, and it is considered to function via its association with a receptor having an ITAM sequence such as Fc γ RIIa. Thus, *in vivo* effector functions of IgG class antibodies are obtained as the result of complex interaction with activating and suppressing Fc γ Rs expressed on various effector cells.

[0013] It is considered that ADCC activity as one of the effector functions of IgG class antibodies is generated as a result of activation of effector cells such as NK cells, neutrophils, monocytes and macrophages, and among these, NK cells play an important role [*Blood*, 76, 2421 (1990), *Trends in Immunol.*, 22, 633 (2001), *Int. Rev. Immunol.*, 20, 503 (2001)].

[0014] FcyR expressed on NK cells is FcyRIIIa. Accordingly, it is considered that the ADCC activity can be enhanced by enhancing the activation signal from FcyRIIIa expressed on the NK cells.

[0015] As Fc fusion protein, Etanercept (trade name: Enbrel, manufactured by Immunex) (USP 5,605,690) and Alefacept (trade name: Amevive, manufactured by Biogen) (USP 5,914,111) and the like are known. Also, it is known that it has no ADCC activity when CH2 domain of an antibody is absent.

DISCLOSURE OF THE INVENTION

10

30

35

40

50

55

[0016] The present invention relates to the following (I) to (48).

- (1) A method for enhancing a binding activity of an antibody composition to Fc γ receptor IIIa, which comprises modifying a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule.
- (2) The method according to (I), wherein the modification of a complex N-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule is to bind a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the complex N-glycoside-linked sugar chain to the Fc region in the antibody molecule.
- (3) The method according to (1) or (2), wherein the sugar chain is synthesized by a cell in which the activity of a protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is decreased or deleted.
- (4) The method according to (3), wherein the protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is selected from the group consisting of the following (a), (b) and (c):
 - (a) a protein relating to synthesis of an intracellular sugar nucleotide, GDP-fucose;
 - (b) a protein relating to modification of a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain;
 - (c) a protein relating to transport of an intracellular sugar nucleotide, GDP-fucose to the Golgi body.
- (5) The method according to (3) or (4), wherein the cell is resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain.
- (6) The method according to any one of (3) to (5), wherein the cell is resistant to at least one lectin selected from the group consisting of the following (a) to (d):
 - (a) a Lens culinaris lectin;
 - (b) a Pisum sativum lectin;
 - (c) a Vicia faba lectin;

10

15

20

25

35

40

50

55

- (d) an Aleuria aurantia lectin.
- (7) The method according to any one of (3) to (6), wherein the cell is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
 - (8) The method according to any one of (3) to (7), wherein the cell is selected from the group consisting of the following (a) to (i):
 - (a) a CHO cell derived from a Chinese hamster ovary tissue;
 - (b) a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 cell;
 - (c) a BHK cell derived from a Syrian hamster kidney tissue;
 - (d) a mouse myeloma cell line NS0 cell;
 - (e) a mouse myeloma cell line SP2/0-Ag14 cell;
 - (f) a hybridoma cell;
 - (g) a human leukemic cell line Namalwa cell;
 - (h) an embryonic stem cell;
 - (i) a fertilized egg cell.
- 45 (9) The method according to any one of (1) to (8), wherein the antibody molecule is selected from the group consisting of the following (a) to (d):
 - (a) a human antibody;
 - (b) a humanized antibody;
 - (c) an antibody fragment comprising the Fc region of (a) or (b);
 - (d) a fusion protein comprising the Fc region of (a) or (b).
 - (10) The method according to any one of (1) to (9), wherein the antibody molecule belongs to an IgG class.
 - (11) The method according to any one of (1) to (10), wherein, in the complex N-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule, the ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond is 20% or more of total complex N-glycoside-linked sugar chains.
 - (12) A method for enhancing an antibody-dependent cell-mediated cytotoxic activity of an antibody composition,

which comprises using the method according to any one of (1) to (11).

- (13) A process for producing an antibody composition having an enhanced binding activity to Fcγ receptor IIIa, which comprises modifying a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule.
- (14) The process according to (13), wherein the modification of a complex N-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule is to bin a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the complex N-glycoside-linked sugar chain to the Fc region in the antibody molecule.
- (15) The process according to (13) or (14), wherein the sugar chain is synthesized by a cell in which the activity of a protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is decreased or deleted.
- (16) The process according to (15), wherein the protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is selected from the group consisting of the following (a), (b) and (c):

(a) a protein relating to synthesis of an intracellular sugar nucleotide, GDP-fucose;

- (b) a protein relating to modification of a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain;
- (c) a protein relating to transport of an intracellular sugar nucleotide, GDP-fucose to the Golgi body.
- (17) The process according to (15) or (16), wherein the cell is resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain.
- (18) The process according to any one of (15) to (17), wherein the cell is resistant to at least one lectin selected from the group consisting of the following (a) to (d):
 - (a) a Lens culinaris lectin;
 - (b) a Pisum sativum lectin;
 - (c) a Vicia faba lectin;

10

15

20

25

30

35

40

45

50

55

- (d) an Aleuria aurantia lectin.
- (19) The process according to any one of (15) to (18), wherein the cell is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
- (20) The process according to any one of (15) to (19), wherein the cell is selected from the group consisting of the following (a) to (i):
 - (a) a CHO cell derived from a Chinese hamster ovary tissue;
 - (b) a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 cell;
 - (c) a BHK cell derived from a Syrian hamster kidney tissue;
 - (d) a mouse myeloma cell line NSO cell;
 - (e) a mouse myeloma cell line SP2/0-Ag14 cell;
 - (f) a hybridoma cell;
 - (g) a human leukemic cell line Namalwa cell;
 - (h) an embryonic stem cell;
 - (i) a fertilized egg cell.
- (21) The process according to any one of (13) to (20), wherein the antibody molecule is selected from the group consisting of the following (a) to (d):
 - (a) a human antibody;
 - (b) a humanized antibody;
 - (c) an antibody fragment comprising the Fc region of (a) or (b);
 - (d) a fusion protein comprising the Fc region of (a) or (b).
- (22) The process according to any one of (13) to (21), wherein the antibody molecule belongs to an IgG class.
- (23) The method according to any one of (13) to (22), wherein, in the complex N-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule, the ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond is 20% or more of total

complex N-glycoside-linked sugar chains.

5

10

15

20

25

30

35

40

50

55

- (24) A process for producing an antibody composition having an increased antibody-dependent cell-mediated cytotoxic activity, which comprises using the process according to (12).
- (25) An antibody composition produced by the process according to any one of (13) to (24).
- (26) A method for detecting the ratio of a sugar chain in which fucose is not bound to N-acetylglucosamine in the reducing end in the sugar chain among total complex N-glycoside-linked sugar chains bound to the Fc region in an antibody composition, which comprises: reacting an antigen with a tested antibody composition to form a complex of the antigen and the antibody composition; contacting the complex with an Fc γ receptor IIIa to measure the binding activity to the Fc γ receptor IIIa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fc γ receptor IIIa.
- (27) A method for detecting the antibody-dependent cell-mediated cytotoxic activity in an antibody composition, which comprises: reacting an antigen with a tested antibody composition to form a complex of the antigen and the antibody composition; contacting the complex with an Fc γ receptor IIIa to measure the binding activity to the Fc γ receptor IIIa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fc γ receptor IIIa.
- (28) A method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain among total complex *N*-glycoside-linked sugar chains bound to the Fc region in an antibody composition, which comprises: contacting a tested antibody composition with a Fcγ receptor Illa to measure the binding activity of the antibody composition to the Fcγ receptor Illa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fcγ receptor Illa. (29) A method for detecting the antibody-dependent cell-mediated cytotoxic activity in an antibody composition, which comprises: contacting a tested antibody composition with a Fcγ receptor Illa to measure the binding activity of the antibody composition to the Fcγ receptor Illa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fcγ receptor Illa.
- (30) An Fc fusion protein composition produced by using a cell resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain.
- (31) The Fc fusion protein composition according to (30), wherein the cell is selected from the group consisting of the following (a), (b) and (c):
 - (a) an enzyme protein relating to synthesis of an intracellular sugar nucleotide, GDP-fucose;
 - (b) an enzyme protein relating to modification of a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain;
 - (c) a protein relating to transport of an intracellular sugar nucleotide, GDP-fucose to the Golgi body,

wherein the activity of the protein is decreased or deleted.

- (32) The Fc fusion protein composition according to (30) or (31), wherein the cell is resistant to at least one lectin selected from the group consisting of the following (a) to (d):
 - (a) a Lens culinaris lectin;
 - (b) a Pisum sativum lectin;
 - (c) a Vicia faba lectin;
 - (d) an Aleuria aurantia lectin.
- 45 (33) The Fc fusion protein composition according to any one of (30) to (32), wherein the cell is a cell into which a gene encoding an Fc fusion protein is introduced.
 - (34) The Fc fusion protein composition according to (33), wherein the Fc is derived from an IgG class of an antibody molecule.
 - (35) The Fc fusion protein composition according to any one of (30) to (34), wherein the cell is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
 - (36) The Fc fusion protein composition according to any one of (30) to (35), wherein the cell is a mouse myeloma cell.
 - (37) The Fc fusion protein composition according to (36), wherein the mouse myeloma cell is NS0 cell or SP2/0-Ag14 cell.
 - (38) The Fc fusion protein composition according to any one of (30) to (37), wherein the cell is selected from the group consisting of the following (a) to (g):
 - (a) a CHO cell derived from a Chinese hamster ovary tissue;

- (b) a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 line;
- (c) a BHK cell derived from a Syrian hamster kidney tissue;
- (d) an antibody-producing hybridoma cell;
- (e) a human leukemic cell line Namalwa cell;
- (f) an embryonic stem cell;
- (g) a fertilized egg cell.

5

10

15

20

25

30

35

40

50

55

- (39) An Fc fusion protein composition comprising an Fc fusion protein having an complex *N*-glycoside-linked sugar chain at the Fc region of an antibody molecule, wherein the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain is 20% or more of total complex *N*-glycoside-linked sugar chains which are bound to the Fc region in the composition.
- (40) The Fc fusion protein composition according to (39), wherein the sugar chain in which fucose is not bound is a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end in the complex N-glycoside-linked sugar chain through α -bond.
- (41) The Fc fusion protein composition according to (39) or (40), wherein the antibody molecule belongs to an IgG class.
- (42) The Fc fusion protein composition according to any one of (30) to (41), wherein the Fc fusion protein composition is Fc-fused fibroblast growth factor-8.
- (43) A cell which produces the Fc fusion protein composition according to any one of (30) to (42).
- (44) The cell according to (43), which is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
- (45) The cell according to (43) or (44), which is a mouse myeloma cell.
- (46) The cell according to (45), wherein the mouse myeloma cell is NSO cell or SP2/0-Ag14 cell.
- (47) The cell according to any one of (43) to (46), which is selected from the group consisting of the following (a) to (g):
 - (a) a CHO cell derived from a Chinese hamster ovary tissue;
 - (b) a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 line;
 - (c) a BHK cell derived from a Syrian hamster kidney tissue;
 - (d) an antibody-producing hybridoma cell;
 - (e) a human leukemic cell line Namalwa cell;
 - (f) an embryonic stem cell;
 - (q) a fertilized egg cell.
- (48) A process for producing an Fc fusion protein composition, which comprises culturing the cell according to any one of (43) to (47) in a medium to form and accumulate an Fc fusion protein composition in the culture, and recovering the Fc fusion protein composition from the culture.

DETAILED DESCRIPTION OF THE INVENTION

[0017] The present invention relates to a method for enhancing a binding activity of an antibody composition to Fc γ receptor IIIa, which comprises modifying a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule.

[0018] In the present invention, the antibody molecule may be any antibody molecule, so long as it is a molecule comprising the Fc region of an antibody. Examples include an antibody, an antibody fragment, a fusion protein comprising an Fc region, and the like.

[0019] An antibody is a protein, which is *produced in vivo* by immunization as the result of extra-antigen stimulation. The antibody has a specific binding activity to an antigen. The antibody includes an antibody secreted by a hybridoma cell prepared from a spleen cell of an animal immunized with an antigen; an antibody prepared by genetic engineering technique, i.e., an antibody obtained by introducing an antibody gene-inserted antibody expression vector into a host cell; and the like. Examples include an antibody produced by a hybridoma, a humanized antibody, a human antibody and the like.

[0020] A hybridoma is a cell which is obtained by cell fusion between a B cell obtained by immunizing a non-human mammal with an antigen and a myeloma cell derived from mouse or the like and can produce a monoclonal antibody having the desired antigen specificity.

[0021] The humanized antibody includes a human chimeric antibody, a human CDR-grafted antibody and the like.

[0022] A human chimeric antibody is an antibody which comprises an antibody heavy chain V region (hereinafter referred to heavy chain as "H chain", and referred to as "HV" or "VH") and an antibody light chain V region (hereinafter

referred to light chain as "L chain", and referred to as "LV" or "VL"), both of a non-human animal, a human antibody H chain C region (hereinafter also referred to as "CH") and a human antibody L chain C region (hereinafter also referred to as "CL"). The non-human animal may be any animal such as mouse, rat, hamster or rabbit, so long as a hybridoma can be prepared therefrom.

[0023] The human chimeric antibody can be produced by obtaining cDNAs encoding VH and VL from a monoclonal antibody-producing hybridoma, inserting them into an expression vector for host cell having genes encoding human antibody CH and human antibody CL to thereby construct a vector for expression of human chimeric antibody, and then introducing the vector into a host cell to express the antibody.

[0024] The CH of human chimeric antibody may be any CH, so long as it belongs to human immunoglobulin (hereinafter referred to as "hlg") can be used. Those belonging to the hlgG class are preferred and any one of the subclasses belonging to the hlgG class such as hlgG1, hlgG2, hlgG3 and hlgG4 can be used. Also, as the CL of human chimeric antibody, any CL can be used, so long as it belongs to the hlg class, and those belonging to the κ class or λ class can also be used.

10

30

35

40

45

50

55

[0025] A human CDR-grafted antibody is an antibody in which amino acid sequences of CDRs of VH and VL of a non-human animal antibody are grafted into appropriate positions of VH and VL of a human antibody.

[0026] The human CDR-grafted antibody can be produced by constructing cDNAs encoding V regions in which CDR sequences of VH and VL of a non-human animal antibody are grafted into CDR sequences of VH and VL of a desired human antibody, inserting them into an expression vector for host cell having genes encoding human antibody CH and human antibody CL to thereby construct a vector for expression of human CDR-grafted antibody, and then introducing the expression vector into a host cell to express the human CDR-grafted antibody.

[0027] The CH of human CDR-grafted antibody may be any CH, so long as it belongs to the hlg. Those of the hlgG class are preferred and any one of the subclasses belonging to the hlgG class, such as hlgG1, hlgG2, hlgG3 and hlgG4, can be used. Also, as the CL of human CDR-grafted antibody, any CL can be used, so long as it belongs to the hlg class, and those belonging to the κ class or λ class can also be used.

[0028] A human antibody is originally an antibody naturally existing in the human body, but it also includes antibodies obtained from a human antibody phage library, a human antibody-producing transgenic non-human animal and a human antibody-producing transgenic plant, which are prepared based on the recent advance in genetic engineering, cell engineering and developmental engineering techniques.

[0029] Regarding the antibody existing in the human body, a lymphocyte capable of producing the antibody can be cultured by isolating a human peripheral blood lymphocyte, immortalizing it by its infection with EB virus or the like and then cloning it, and the antibody can be purified from the culture.

[0030] The human antibody phage library is a library in which antibody fragments such as Fab and single chain antibody are expressed on the phage surface by inserting a gene encoding an antibody prepared from a human B cell into a phage gene: A phage expressing an antibody fragment having the desired antigen binding activity can be recovered from the library based on the activity to bind to an antigen-immobilized substrate. The antibody fragment can be converted further into a human antibody molecule comprising two full H chains and two full L chains by genetic engineering techniques.

[0031] A human antibody-producing transgenic non-human animal is an animal in which a human antibody gene is introduced into cells. Specifically, a human antibody-producing transgenic mouse can be prepared by introducing a human antibody gene into ES cell of a mouse, transplanting the ES cell into an early stage embryo of other mouse and then developing it. By introducing a human antibody-gene into a fertilized egg of an animal and developing it, the transgenic non-human animal can be also prepared. Regarding the preparation method of a human antibody from the human antibody-producing transgenic non-human animal, the human antibody can be produced and accumulated in a culture by obtaining a human antibody-producing hybridoma by a hybridoma preparation method usually carried out in non-human mammals and then culturing it.

[0032] The transgenic non-human animal includes cattle, sheep, goat, pig, horse, mouse, rat, fowl, monkey, rabbit and the like.

[0033] Moreover, in the present invention, the antibody is preferably an antibody which recognizes a tumor-related antigen, an antibody which recognizes an allergy- or inflammation-related antigen, an antibody which recognizes cardiovascular disease-related antigen, an antibody which recognizes autoimmune disease-related antigen or an antibody which recognizes a viral or bacterial infection-related antigen. Also, the class of the antibody is preferably IgG.

[0034] An antibody fragment is a fragment which comprises at least part of the Fc region of the above antibody. The Fc region is a region at the C-terminal side of H chain of an antibody, such as CH2 region and CH3 region, and includes a natural type and a mutant type. The at least part of the Fc region is preferably a fragment comprising CH2 region, and more preferably a region comprising aspartic acid at position 1 existing in CH2 region. The Fc region of the IgG class is from Cys at position 226 to the C-terminal or from Pro at position 230 to the C-terminal according to the numbering of EU Index of Kabat *et al.* [Sequences of Proteins of Immunological Interest, 5th Ed., Public Health Service, National Institutes of Health, Bethesda, MD. (1991)]. The antibody fragment includes an H chain monomer, an H chain

dimer and the like.

30

35

40

45

50

55

[0035] A fusion protein comprising a part of Fc region is a substance in which an antibody comprising the part of Fc region of an antibody or the antibody fragment is fused with a protein such as an enzyme or a cytokine (hereinafter referred to as "Fc fusion protein").

[0036] In the present invention, *N*-glycoside-linked sugar chain bound to the Fc region of the antibody molecule includes a complex type in which the non-reducing end side of the core structure has one or more parallel branches of galactose-*N*-acetylglucosamine (hereinafter referred to as "Gal-GlcNAc") and further the non-reducing end side of Gal-GlcNAc has a structure of sialic acid, bisecting *N*-acetylglucosamine or the like.

[0037] Since the Fc region in the antibody molecule has positions to which *N*-glycoside-linked sugar chains are separately bound, two sugar chains are bound per one antibody molecule. Since many sugar chains having different structures are present for the two *N*-glycoside-linked sugar chains bound to the antibody, homology of antibody molecules can be judged in view of the sugar chain structure bound to the Fc region.

[0038] The antibody composition is a composition which comprises an antibody molecule having complex *N*-glycoside-linked sugar chains in the Fc region, and may comprise an antibody molecule having the same sugar chain structure or an antibody molecule having different sugar chain structures.

[0039] Modification of the *N*-glycoside-linked sugar chain bound to the Fc region of an antibody molecule is preferably carried out by binding a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain to the Fc region of an antibody molecule.

[0040] In the present invention, the sugar chain in which fucose is not bound to N-acetylglucosamine in the reducing end in the complex N-glycoside-linked sugar chain is a complex N-glycoside-linked sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the complex N-glycoside-linked sugar chain.

[0041] The sugar chain can be synthesized by a cell in which the activity of an enzyme protein relating to the modification of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is decreased or deleted.

[0042] In the present invention, the enzyme protein relating to the modification of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain includes:

- (a) an enzyme protein relating to synthesis of an intracellular sugar nucleotide, GDP-fucose (hereinafter referred to as "GDP-fucose synthase");
- (b) an enzyme protein relating to modification of a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain (hereinafter referred to as " α 1,6-fucose modifying enzyme"); and
- (c) a protein relating to transport of an intracellular sugar nucleotide, GDP-fucose, to the Golgi body (hereinafter referred to as "GDP-fucose transport protein").

[0043] In the present invention, the GDP-fucose synthase may be any enzyme, so long as it is an enzyme relating to the synthesis of the intracellular sugar nucleotide, GDP-fucose, as a supply source of fucose to a sugar chain, and includes an enzyme which has influence on the synthesis of the intracellular sugar nucleotide, GDP-fucose.

[0044] The intracellular sugar nucleotide, GDP-fucose, is supplied by a *de novo* synthesis pathway or a salvage synthesis pathway. Thus, all enzymes relating to the synthesis pathways are included in the GDP-fucose synthase.

[0045] The GDP-fucose synthase relating to the *de novo* synthesis pathway includes GDP-mannose 4-dehydratase (hereinafter referred to as "GMD"), GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase (hereinafter referred to as "Fx") and the like.

[0046] The GDP-fucose synthase relating to the salvage synthesis pathway includes GDP-beta-L-fucose pyrophosphorylase (hereinafter referred to as "GFPP"), fucokinase and the like.

[0047] As the enzyme which has influence on the synthesis of an intracellular sugar nucleotide, GDP-fucose, an enzyme which has influence on the activity of the enzyme relating to the synthesis pathway of the intracellular sugar nucleotide, GDP-fucose, and an enzyme which has influence on the structure of substances as the substrate of the enzyme are also included.

[0048] In the present invention, the GMD includes a protein encoded by a DNA selected from the group consisting of (a) and (b), a protein selected from the group consisting of (c), (d) and (e), and the like:

- (a) a DNA comprising the nucleotide sequence represented by SEQ ID NO:65;
- (b) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:65 under stringent conditions and encodes a protein having GMD activity,
- (c) a protein comprising the amino acid sequence represented by SEQ ID NO:71,

- (d) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:71 and has GMD activity, and
- (e) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:71 and has GMD activity.

[0049] Fx includes a protein encoded by a DNA selected from the group consisting of (a) and (b), a protein selected from the group consisting of (c), (d) and (e), and the like:

(a) a DNA comprising the nucleotide sequence represented by SEQ ID NO:48;

5

10

15

20

25

45

50

55

- (b) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:48 under stringent conditions and encodes a protein having Fx activity,
- (c) a protein comprising the amino acid sequence represented by SEQ ID NO:19,
- (d) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:19 and has Fx activity, and
- (e) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:19 and has Fx activity.

[0050] GFPP includes a protein encoded by a DNA selected from the group consisting of (a) and (b), a protein selected from the group consisting of (c), (d) and (e), and the like:

- (a) a DNA comprising the nucleotide sequence represented by SEQ ID NO:51;
- (b) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:51 under stringent conditions and encodes a protein having GFPP activity,
- (c) a protein comprising the amino acid sequence represented by SEQ ID NO:20,
- (d) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:20 and has GFPP activity, and
- (e) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:20 and has GFPP activity.
- [0051] In the present invention, the α1,6-fucose modifying enzyme includes any enzyme, so long as it is an enzyme relating to the reaction of binding of 1-position of fucose to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in the complex *N*-glycoside-linked sugar chain. The enzyme relating to the reaction of binding of 1-position of fucose to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in the complex *N*-glycoside-linked sugar chain includes an enzyme which has influence on the reaction of binding of 1-position of fucose to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in the complex *N*-glycoside-linked sugar chain.
 - [0052] The α 1,6-fucose modifying enzyme includes α 1,6-fucosyltransferase, α -L-fucosidase and the like.
 - **[0053]** Also, an enzyme which has influence on the activity of the above enzyme relating to the reaction of binding of 1-position of fucose to 6-position of *N*-acetylglucosamine in the reducing end through α -bond in the complex *N*-glycoside-linked sugar chain and an enzyme which has influence on the structure of substances as the substrate of the enzyme are included.

[0054] The α 1,6-fucosyltransferase includes a protein encoded by a DNA selected from the group consisting of the following (a), (b), (c) and (d), a protein selected from the group consisting of the following (e), (f), (g), (h), (i) and (j), and the like:

- (a) a DNA comprising the nucleotide sequence represented by SEQ ID NO:1;
- (b) a DNA comprising the nucleotide sequence represented by SEQ ID NO:2;
- (c) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:1 under stringent conditions and encodes a protein having α 1,6-fucosyltransferase activity;
- (d) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:2 under stringent conditions and encodes a protein having α 1,6-fucosyltransferase activity;
- (e) a protein comprising the amino acid sequence represented by SEQ ID NO:23,
- (f) a protein comprising the amino acid sequence represented by SEQ ID NO:24,
- (g) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:23 and has α 1,6-fucosyltransferase activity
- (h) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:24 and has a1,6-fucosyltransferase activity,

- (i) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:23 and has α 1,6-fucosyltransferase activity, and
- (j) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:24 and has α 1,6-fucosyltransferase activity.

[0055] The GDP-fucose transport protein may be any protein, so long as it is a protein relating to the transportation of the intracellular sugar nucleotide, GDP-fucose to the Golgi body or a protein which has an influence on the reaction to transport the intracellular sugar nucleotide, GDP-fucose to the Golgi body.

[0056] The GDP-fucose transport protein includes a GDP-fucose transporter and the like.

5

15

20

25

30

35

40

45

50

[0057] Furthermore, the protein which has an influence on the reaction to transport the intracellular sugar nucleotide, GDP-fucose to the Golgi body includes a protein which has an influence on the above GDP-fucose transport protein or has an influence on the expression thereof.

[0058] In the present invention, the GDP-fucose transporter includes a protein encoded by a DNA selected from the group consisting of the following (a) to (h), and the like:

- (a) a DNA comprising the nucleotide sequence represented by SEQ ID NO:91;
- (b) a DNA comprising the nucleotide sequence represented by SEQ ID NO:93;
- (c) a DNA comprising the nucleotide sequence represented by SEQ ID NO:95;
- (d) a DNA comprising the nucleotide sequence represented by SEQ ID NO:97;
- (e) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:91 under stringent conditions and encodes a protein having GDP-fucose transporter activity;
- (f) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:93 under stringent conditions and encodes a protein having GDP-fucose transporter activity;
- (g) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:95 under stringent conditions and encodes a protein having GDP-fucose transporter activity; and
- (h) a DNA which hybridizes with the DNA comprising the nucleotide sequence represented by SEQ ID NO:97 under stringent conditions and encodes a protein having GDP-fucose transporter activity.

Furthermore, the GDP-fucose transporter of the present invention includes a protein selected from the group consisting of the following (i) to (t), and the like:

- (i) a protein comprising the amino acid sequence represented by SEQ ID NO:92,
- (j) a protein comprising the amino acid sequence represented by SEQ ID NO:94,
- (k) a protein comprising the amino acid sequence represented by SEQ ID NO:96,
- (I) a protein comprising the amino acid sequence represented by SEQ ID NO:98,
- (m) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:92 and has GDP-fucose transporter activity.
- (n) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:94 and has GDP-fucose transporter activity,
- (o) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:96 and has GDP-fucose transporter activity,
- (p) a protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:98 and has GDP-fucose transporter activity,
- (q) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:92 and has GDP-fucose transporter activity,
- (r) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:94 and has GDP-fucose transporter activity,
- (s) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:96 and has GDP-fucose transporter activity, and
- (t) a protein which comprises an amino acid sequence having a homology of 80% or more with the amino acid sequence represented by SEQ ID NO:98 and has GDP-fucose transporter activity.
- [0059] A DNA which hybridizes under stringent conditions is a DNA obtained, e.g., by a method such as colony hybridization, plaque hybridization or Southern blot hybridization using a DNA such as the DNA having the nucleotide sequence represented by SEQ ID NO:1, 2, 48, 51, 65, 91, 93, 95 or 97 or a partial fragment thereof as the probe, and specifically includes a DNA which can be identified by carrying out hybridization at 65°C in the presence of 0.7 to 1.0

mol/I sodium chloride using a filter to which colony- or plaque-derived DNAs are immobilized, and then washing the filter at 65°C using 0.1 to 2 × SSC solution (composition of the 1 × SSC solution comprising 150 mmol/I sodium chloride and 15 mmol/I sodium citrate). The hybridization can be carried out in accordance with the methods described, e.g., in *Molecular Cloning, A Laboratory Manual,* 2nd Ed., Cold Spring Harbor Laboratory Press (1989) (hereinafter referred to as "*Molecular Cloning, A Laboratory Manual,* 2nd Ed., Cold Spring Harbor Laboratory Press (1989) (hereinafter referred to as "*Molecular Cloning, Second Edition*"), *Current Protocols in Molecular Biology,* John Wiley & Sons, 1987-1997 (hereinafter referred to as "*Current Protocols in Molecular Biology"*); *DNA Cloning 1: Core Techniques, A Practical Approach,* Second Edition, Oxford University (1995); and the like. The hybridizable DNA includes a DNA having at least 60% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, far more preferably 95% or more, and most preferably 98% or more, of homology with the nucleotide sequence represented by SEQ ID NO:1, 2, 48, 51, 65, 91, 93, 95 or 97.

[0060] The protein which comprises an amino acid sequence in which at least one amino acid is deleted, substituted, inserted and/or added in the amino acid sequence represented by SEQ ID NO:19, 20, 23, 24, 71, 92, 94, 96 or 98 and has α1,6-fucosyltransferase activity, GMD activity, Fx activity, GFPP activity or GFP-fucose tranpsporter activity can be obtained, e.g., by introducing a site-directed mutation into a DNA encoding a protein having the amino acid sequence represented by SEQ ID NO:1, 2, 48, 51 or 65, respectively, using the site-directed mutagenesis described, e.g., in Molecular Cloning, Second Edition; Current Protocols in Molecular Biology; Nucleic Acids Research, 10, 6487 (1982); Proc. Natl. Acad. Sci. USA, 79, 6409 (1982); Gene, 34, 315 (1985); Nucleic Acids Research, 13, 4431 (1985); Proc. Natl. Acad. Sci. USA, 82, 488 (1985); and the like. The number of amino acids to be deleted, substituted, inserted and/ or added is one or more, and the number is not particularly limited, but is a number which can be deleted, substituted or added by a known technique such as the site-directed mutagenesis, e.g., it is 1 to several tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5.

[0061] Also, in order to maintain the α 1,6-fucosyltransferase activity, GMD activity, Fx activity, GFPP activity or GDP-fucose transporter activity of the protein to be used in the present invention, it has at least 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, far more preferably 97% or more, and most preferably 99% or more, of homology with the amino acid sequence represented by SEQ ID NO:19, 20, 23, 24, 71, 92, 94, 96 or 98, when calculated using an analyzing soft such as BLAST [*J. Mol. Biol.*, 215, 403 (1990)] or FASTA [*Methods in Enzymology,* 183, 63 (1990)].

[0062] As the method for obtaining the above cells, any technique can be used, so long as it can decrease or delete the enzyme activity of interest. The technique for decreasing or deleting the enzyme activity includes:

(a) a gene disruption technique which comprises targeting a gene encoding the enzyme,

- (b) a technique for introducing a dominant negative mutant of a gene encoding the enzyme,
- (c) a technique for introducing mutation into the enzyme, and

10

30

35

40

50

(d) a technique for surprising transcription and/or translation of a gene encoding the enzyme, and the like.

[0063] Also, the method includes a method for selecting a cell having resistance to lectin which recognizes the structure of a sugar chain in which 1-position of fucose is bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond in a complex *N*-glycoside-linked sugar chain.

[0064] The growth of lectin-resistant cell is not inhibited in the presence of a lectin at an effective concentration during cell culturing.

[0065] In the present invention, the effective concentration of a lectin which does not inhibit the growth can be decided depending on the cell line, and is generally 10 μ g/ml to 10.0 mg/ml, preferably 0.5 to 2.0 mg/ml. The effective concentration of lectin in the case where mutation is introduced into a parent cell is a concentration in which the parent cell cannot normally grow or higher than the concentration, and is a concentration which is preferably similar to, more preferably 2 to 5 times, still more preferably 10 times, and most preferably 20 times or more, higher than the concentration in which the parent cell cannot normally grow.

[0066] The lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine through α -bond includes any lectin, so long as it is a lectin which is capable of recognizing the sugar chain structure. Examples include lentil agglutinin derived from Lens culinaris (Lens culinaris lectin LCA), pea lectin derived from Pisum Sativuma (pea lectin PSA), (agglutinin derived from Vicia Pisum Sativuma (Pisum Pisum Pi

[0067] The parent cell is a cell before a certain treatment is applied, namely a cell before the step for selecting the lectin-resistant cell used in the present invention is carried out or a cell before genetic engineering techniques for decreasing or deleting the above enzyme activity is carried out.

[0068] Although the parent cell is not particularly limited, the following cells are exemplified.

[0069] The parent cell of NSO cell includes NSO cells described in literatures such as *BIO/TECHNOLOGY*, <u>10</u>, 169 (1992) and *Biotechnol. Bioeng.*, <u>73</u>, 261 (2001). Furthermore, it includes NSO cell line (RCB 0213) registered at RIKEN Cell Bank, The Institute of Physical and Chemical Research, sub-cell lines obtained by acclimating these cell lines to

media in which they can grow, and the like.

30

35

40

50

[0070] The parent cell of SP2/0-Ag14 cell includes SP2/0-Ag14 cells described in literatures such as *J. Immunol.*, 126, 317 (1981), *Nature*, 276, 269 (1978) and *Human Antibodies and Hybridomas*, 3, 129 (1992). Furthermore, it includes SP2/0-Ag14 cell (ATCC CRL-1581) registered at ATCC, sub-cell lines obtained by naturalizing these cell lines to media in which they can grow (ATCC CRL-1581.1), and the like.

[0071] The parent cell of CHO cell derived from Chinese hamster ovary tissue includes CHO cells described in literatures such as *Journal of Experimental Medicine*, 108, 945 (1958), *Proc. Natl. Acad Sci. USA*, 60, 1275 (1968), *Genetics*, 55, 513 (1968), *Chromosoma*, 41, 129 (1973), *Methods in Cell Science*, 18, 115 (1996), *Radiation Research*, 148, 260 (1997), *Proc. Natl. Acad Sci. USA*, 77, 4216 (1980), *Proc. Natl. Acad. Sci. USA*, 60 1275 (1968), *Cell*, 6, 121 (1975) and *Molecular Cell Genetics*, Appendix I, II (p. 883-900). Furthermore, it includes cell line CHO-K1 (ATCC CCL-61), cell line DUXB11 (ATCC CRL-9060) and cell line Pro-5 (ATCC CRL-1781) registered at ATCC, commercially available cell line CHO-S (Cat # 11619 of Life Technologies), sub-cell lines obtained by acclimating these cell lines to media in which they can grow, and the like.

[0072] The parent cell of a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 cell includes cell lines established from Y3/Ag1.2.3 cell (ATCC CRL-1631) such as YB2/3HL.P2.G11.16Ag.20 cell described in literatures such as *J. Cell. Biol.*, 93, 576 (1982) and *Methods Enzymol.*, 73B, 1 (1981). Furthermore, it include YB2/3HL.P2.G11.16Ag.20 cell (ATCC CRL-1662) registered at ATCC, sub-lines obtained by acclimating these cell lines to media in which they can grow, and the like.

[0073] In the present invention, FcyR means an Fc receptor (hereinafter also referred to as "FcR") against an IgG class antibody. FcR means a receptor which binds to the Fc region of an antibody [Annu. Rev. Immunol., 9, 457 (1991)]. Furthermore, FcyR includes FcyRII, FcyRII and FcyRIII subclasses and their allele mutants and isoforms formed by alternative splicing. In addition, FcyRII includes FcyRIIa and FcyRIIb, and FcyRIII includes FcyRIIIa and FcyRIIIb [Annu. Rev. Immunol., 9, 457 (1991)].

[0074] The binding activity to Fc γ RIIIa can be increased by binding sugar chains to the Fc region of an antibody molecule so as to adjust the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain among the total complex *N*-glycoside-linked sugar chains bound to the Fc region to preferably 20% or more, more preferably 30% or more, still more preferably 40% or more, particularly preferably 50% or more, and most preferably 100%.

[0075] The ratio of a sugar chain in which fucose is not bound to N-acetylglucosamine in the reducing end in the sugar chain among the total complex N-glycoside-linked sugar chains bound to the Fc region contained in the antibody composition is a ratio of the number of a sugar chain in which fucose is not bound to N-acetylglucosamine in the reducing end in the sugar chain to the total number of the complex N-glycoside-linked sugar chains bound to the Fc region contained in the composition. Also, the ratio of a sugar chain is preferably a ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the sugar chain.

[0076] The sugar chain in which fucose is not bound to N-acetylglucosamine in the reducing end in the complex N-glycoside-linked sugar chain is a sugar chain in which fucose is not bound to N-acetylglucosamine in the reducing end through α -bond in the complex N-glycoside-linked sugar chain. Preferably, it is a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the complex N-glycoside-linked sugar chain through α -bond.

[0077] The ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain contained in the composition which comprises an antibody molecule having complex *N*-glycoside-linked sugar chains in the Fc region can be determined by releasing the sugar chain from the antibody molecule using a known method such as hydrazinolysis, enzyme digestion or the like [*Biochemical Experimentation Methods 23 - Method for Studying Glycoprotein Sugar Chain* (Japan Scientific Societies Press), edited by Reiko Takahashi (1989)], carrying out fluorescence labeling or radioisotope labeling of the released sugar chain, and then separating the labeled sugar chain by chromatography. Also, the released sugar chain can be determined by analyzing it with the HPAED-PAD method [*J. Liq. Chromalogr.*, 6, 1577 (1983)]. The antibody composition in which binding activity to FcγRIIIa has been enhanced by the method of the present invention has high ADCC activity.

[0078] In the present invention, the ADCC activity is a cytotoxic activity in which an antibody bound to a cell surface antigen on a cell such as a tumor cell in the living body activates an effector cell mediated the antibody Fc region and an Fc receptor existing on effector cell surface and thereby injures the tumor cell and the like [Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc., Chapter 2.1 (1995)]. The effector cell includes killer cells, natural killer cells, monocytes, macrophages, and the like.

[0079] A process for producing a host cell in which the activity of a protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is decreased or deleted used in the method of the present invention is explained below in detail.

1. Preparation of host cell used in the method of the invention

[0080] The host cell used in the method of the present invention can be prepared by the following techniques.

(1) Gene disruption technique which comprises targeting a gene encoding an enzyme

[0081] The host cell used in the method of the present invention can be prepared by targeting a gene encoding a GDP-fucose synthase, α 1,6-fucose modifying enzyme or a GDP-fucose transport protein by using a gene disruption technique. The GDP-fucose synthase includes GMD, Fx, GFPP, fucokinase and the like. The α 1,6-fucose modifying enzyme includes α -1,6-fucosyltransferase, α -L-fucosidase and the like. The GDP-fucose transport protein includes GDP-fucose transporter.

[0082] The gene as used herein includes DNA and RNA.

30

35

40

50

[0083] The gene disruption method may be any method, so long as it can disrupt the gene encoding the target enzyme. Examples include an antisense method, a ribozyme method, a homologous recombination method, an RNA-DNA oligonucleotide (RDO) method, an RNA interference (RNAi) method, a method using retrovirus, a method using transposon and the like. The methods are specifically described below.

(a) Preparation of host cell used in the present invention by the antisense method or the ribozyme method

[0084] The host cell used in the method of the present invention can be prepared by targeting the GDP-fucose synthase, α1,6-fucose modifying enzyme or the GDP-fucose transport protein according to the antisense or ribozyme method described in *Cell Technology*, 12, 239 (1993); *BIO/TECHNOLOGY*, 1.7 1097 (1999); *Hum. Mol. Genet.*, 5, 1083 (1995); *Cell Technology*, 13, 255 (1994); *Proc. Natl. Acad. Sci. USA*, 96, 1886 (1999); or the like, e.g., in the following manner.

[0085] A cDNA or a genomic DNA encoding GDP-fucose synthase, α1,6-fucose modifying enzyme or the GDP-fucose transport protein is prepared.

[0086] The nucleotide sequence of the prepared cDNA or genomic DNA is determined.

[0087] Based on the determined DNA sequence, an antisense gene or ribozyme construct of an appropriate length comprising a DNA moiety which encodes the GDP-fucose synthase, α1,6-fucose modifying enzyme or the GDP-fucose transport protein, a part of its untranslated region or an intron is designed.

[0088] In order to express the antisense gene or ribozyme in a cell, a recombinant vector is prepared by inserting a fragment or total length of the prepared DNA into downstream of the promoter of an appropriate expression vector.

[0089] A transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.

[0090] The host cell used in the method of the present invention can be obtained by selecting a transformant based on the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein. The host cell of the present invention can also be obtained by selecting a transformant based on the sugar chain structure of a glycoprotein on the cell membrane or the sugar chain structure of the produced antibody molecule.

[0091] As the host cell used for preparing the host cell used in the method of the present invention, any cell such as yeast, an animal cell, an insect cell or a plant cell can be used, so long as it has a gene encoding the target GDP-fucose synthase, α1,6-fucose modifying enzyme or GDP-fucose transport protein. Examples include host cells described in the following item 3.

[0092] As the expression vector, a vector which is autonomously replicable in the host cell or can be integrated into the chromosome and comprises a promoter at such a position that the designed antisense gene or ribozyme can be transferred is used. Examples include expression vectors described in the following item 3.

[0093] As the method for introducing a gene into various host cells, the methods for introducing recombinant vectors suitable for various host cells described in the following item 3, can be used.

[0094] The method for selecting a transformant based on the activity of the GDP-fucose synthase, the α1,6-fucose modifying enzyme or the GDP-fucose transport protein includes biochemical methods or genetic engineering techniques described in *New Biochemical Experimentation Series* (*Shin-Jikken Kagaku Koza*) 3 - *Saccharides* (*Toshitsu*) *I*, Glycoprotein (Totanpakushitu) (Tokyo Kagaku Dojin), edited by Japanese Biochemical Society (1988); *Cell Engineering* (*Saibo Kogaku*), Supplement, Experimental Protocol Series, Glycobiology Experimental Protocol, Glycoprotein, Glycolipid and Proteoglycan (Shujun-sha), edited by Naoyuki Taniguchi, Akemi Suzuki, Kiyoshi Furukawa and Kazuyuki Sugawara (1996); *Molecular Cloning*, Second Edition; *Current Protocols in Molecular Biology*; and the like. The biochemical method includes a method in which the enzyme activity is evaluated using an enzyme-specific substrate and the like. The genetic engineering technique include the Northern analysis, RT-PCR and the like which measures the amount of mRNA of a gene encoding the enzyme.

[0095] The method for selecting a transformant based on the sugar chain structure of a glycoprotein on the cell

membrane includes the methods described in the following item 1(5). The method for selecting a transformant based on the sugar chain structure of a produced antibody molecule includes the methods described in the following items 6 and 7.

[0096] As the method for preparing cDNA encoding the GDP-fucose synthase, α 1,6-fucose modifying enzyme or the GDP-fucose transport protein, the following method is exemplified.

Preparation of DNA:

10

35

40

50

[0097] A total RNA or mRNA is prepared from a human or non-human animal tissue or cell.

[0098] The mRNA of a human or non-human tissue or cell may be a commercially available product (e.g., manufactured by Clontech) or may be prepared from a human or non-human animal tissue or cell as follows. The method for preparing a total RNA from a human or non-human animal tissue or cell includes the guanidine thiocyanate-cesium trifluoroacetate method [Methods in Enzymology, 154, 3 (1987)], the acidic guanidine thiocyanate phenol chloroform (AGPC) method [Analytical Biochemistry, 162, 156 (1987); Experimental Medicine, 9, 1937 (1991)] and the like.

[0099] Also, the mRNA can be prepared as poly(A)+ RNA from a total RNA by the oligo(dT)-immobilized cellulose column method (*Molecular Cloning*, Second Edition) and the like.

[0100] In addition, mRNA can be prepared using a kit such as Fast Track mRNA Isolation Kit (manufactured by Invitrogen) or Quick Prep mRNA Purification Kit (manufactured by Pharmacia).

[0101] A cDNA library is prepared from the prepared mRNA of a human or non-human animal tissue or cell. The method for preparing cDNA library includes the methods described in *Molecular Cloning*, Second Edition; *Current Protocols in Molecular Biology*; and the like, or methods using a commercially available kit such as Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (manufactured by Life Technologies) or ZAP-cDNA Synthesis Kit (manufactured by STRATAGENE).

[0102] As the cloning vector for the preparation of the cDNA library, any vector such as a phage vector or a plasmid vector can be used, so long as it is autonomously replicable in *Escherichia coli* K12. Examples include ZAP Express [manufactured by STRATAGENE, *Strategies*, 5, 58 (1992)], pBluescript II SK(+) [*Nucleic Acids Research*, 17, 9494 (1989)], Lambda ZAP II (manufactured by STRATAGENE), \(\lambda\text{gt10}\) and \(\lambda\text{gt11}\) [DNA Cloning, A Practical Approach, 1, 49 (1985)], \(\lambda\text{TriplEx}\) (manufactured by Clontech), \(\lambda\text{ExCell}\) (manufactured by Pharmacia), pcD2 [*Mol. Cell. Biol.*, 3, 280 (1983)], pUC18 [*Gene*, 33, 103 (1985)] and the like.

[0103] Any microorganism can be used as the host microorganism for the preparation of the cDNA library, and Escherichia coli is preferably used. Examples include Escherichia coli XL1-Blue MRF' [manufactured by STRATAGENE, Strategies, 5, 81 (1992)], Escherichia coli C600 [Genetics, 39 440 (1954)], Escherichia coli Y1088 [Science, 222, 778 (1983)], Escherichia coli Y1090 [Science, 222, 778 (1983)], Escherichia coli NM522 [J. Mol. Biol., 166, 1 (1983)], Escherichia coli K802 [J. Mol. Biol., 16, 118 (1966)], Escherichia coli JM105 [Gene, 38, 275 (1985)] and the like.

[0104] The cDNA library can be used as such in the following analysis, and in order to obtain a full length cDNA as efficient as possible by decreasing the ratio of an infull length cDNA, a cDNA library prepared by using the oligo cap method developed by Sugano et al. [Gene, 138, 171 (1994); Gene, 200, 149 (1997); Protein, Nucleic Acid and Protein, 41, 603 (1996); Experimental Medicine, 11, 2491 (1993); cDNA Cloning (Yodo-sha) (1996); Methods for Preparing Gene Libraries (Yodo-sha) (1994)] can be used in the following analysis.

[0105] Based on the amino acid sequence of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein, degenerative primers specific for the 5'-terminal and 3'-terminal nucleotide sequences of a nucleotide sequence presumed to encode the amino acid sequence are prepared, and DNA is amplified by PCR [PCR Protocols, Academic Press (1990)] using the prepared cDNA library as the template to obtain a gene fragment encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein.

[0106] It can be confirmed that the obtained gene fragment is a DNA encoding the GDP-fucose synthase, the α1,6-fucose modifying enzyme or the GDP-fucose transport protein by a method generally used for analyzing a nucleotide such as the dideoxy method of Sanger *et al.* [*Proc. Natl. Acad. Sci. USA,* 74, 5463 (1977)] or by using a nucleotide sequence analyzer such as ABIPRISM 377 DNA Sequencer (manufactured by PE Biosystems).

[0107] A DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein can be obtained by carrying out colony hybridization or plaque hybridization (*Molecular Cloning*, Second Edition) for the cDNA or cDNA library synthesized from the mRNA contained in the human or non-human animal tissue or cell, using the gene fragment as a DNA probe.

[0108] Also, using the primers used for obtaining the gene fragment encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein, a DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein can also be obtained by carrying out screening by PCR using the cDNA or cDNA library synthesized from the mRNA contained in a human or non-human animal tissue or cell as the template.

[0109] The nucleotide sequence of the obtained DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying

enzyme or the GDP-fucose transport protein is analyzed from its terminus and determined by a method generally used for analyzing a nucleotide such as the dideoxy method of Sanger *et al.* [*Proc. Natl. Acad. Sci. USA*, <u>74</u>, 5463 (1977)] or by using a nucleotide sequence analyzer such as ABIPRISM 377 DNA Sequencer (manufactured by PE Biosystems). [0110] A gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein can also be determined from genes in data bases by searching nucleotide sequence data bases such as GenBank, EMBL and DDBJ using a homology retrieving program such as BLAST based on the determined cDNA nucleotide sequence.

[0111] The nucleotide sequence of the gene encoding the GDP-fucose synthase obtained by the above method includes the nucleotide sequence represented by SEQ ID NO:48, 51 or 65. The nucleotide sequence of the gene encoding the α 1,6-fucose modifying enzyme includes the nucleotide sequence represented by SEQ ID NO: or 2. The nucleotide sequence of the gene encoding the GDP-fucose transport protein includes the nucleotide sequence represented by SEQ ID NO:91, 93, 95 or 97.

10

30

35

40

50

[0112] The cDNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein can also be obtained by chemically synthesizing it with a DNA synthesizer such as DNA Synthesizer model 392 manufactured by Perkin Elmer using the phosphoamidite method, based on the determined DNA nucleotide sequence.

[0113] The method for preparing a genomic DNA encoding the GDP-fucose synthase, the α1,6-fucose modifying enzyme or the GDP-fucose transport protein includes known methods described in *Molecular Cloning*, Second Edition; *Current Protocols in Molecular Biology*; and the like. Furthermore, the genomic DNA can be prepared by using a kit such as Genome DNA Library Screening System (manufactured by Genome Systems) or Universal GenomeWalkerTM Kits (manufactured by CLONTECH).

[0114] The nucleotide sequence of the genomic DNA encoding the GDP-fucose synthase obtained by the method includes the nucleotide sequence represented by SEQ ID NO:67 or 70. The nucleotide sequence of the genomic DNA encoding the α 1,6-fucose modifying enzyme includes the nucleotide sequence represented by SEQ ID NO:3. The nucleotide sequence of the genomic DNA encoding the GDP-fucose transport protein includes the nucleotide sequence represented by SEQ ID NO:99 or 100.

[0115] In addition, the host cell can also be obtained without using an expression vector, by directly introducing an antisense oligonucleotide or ribozyme into a host cell, which is designed based on the nucleotide sequence encoding the GDP-fucose synthase, the al,6-fucose modifying enzyme or the GDP-fucose transport protein.

[0116] The antisense oligonucleotide or ribozyme can be prepared in the usual method or by using a DNA synthesizer. Specifically, it can be prepared based on the sequence information of an oligonucleotide having a corresponding sequence of continued 5 to 150 bases, preferably 5 to 60 bases, and more preferably 5 to 40 bases, among nucleotide sequences of a cDNA and a genomic DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein by synthesizing an oligonucleotide which corresponds to a sequence complementary to the oligonucleotide (antisense oligonucleotide) or a ribozyme comprising the oligonucleotide sequence.

[0117] The oligonucleotide includes oligo RNA and derivatives of the oligonucleotide (hereinafter referred to as "oligonucleotide derivatives").

[0118] The oligonucleotide derivatives includes oligonucleotide derivatives in which a phosphodiester bond in the oligonucleotide is converted into a phosphorothioate bond, an oligonucleotide derivative in which a phosphodiester bond in the oligonucleotide is converted into an N3'-P5' phosphoamidate bond, an oligonucleotide derivative in which ribose and a phosphodiester bond in the oligonucleotide are converted into a peptide-nucleic acid bond, an oligonucleotide derivative in which uracil in the oligonucleotide is substituted with C-5 propynyluracil, an oligonucleotide derivative in which cytosine in the oligonucleotide is substituted with C-5 thiazoleuracil, an oligonucleotide derivative in which cytosine in the oligonucleotide is substituted with C-5 propynylcytosine, an oligonucleotide derivative in which ribose in the oligonucleotide is substituted with 2'-O-propylribose and an oligonucleotide derivative in which ribose in the oligonucleotide is substituted with 2'-methoxyethoxyribose [Cell Technology (Saibo Kogaku), 16, 1463 (1997)].

(b) Preparation of host cell used in the method of the present invention by homologous recombination

[0119] The host cell used in the method of the present invention can be prepared by targeting a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein and modifying the target gene on chromosome through a homologous recombination technique.

[0120] The target gene on the chromosome can be modified by using a method described in *Manipulating the Mouse Embryo, A Laboratory Manual,* Second Edition, Cold Spring Harbor Laboratory Press (1994) (hereinafter referred to as "Manipulating the Mouse Embryo, A Laboratory Manual"); Gene Targeting, A Practical Approach, IRL Press at Oxford University Press (1993); Biomanual Series 8, Gene Targeting, Preparation of Mutant Mice using ES, Yodo-sha (1995) (hereinafter referred to as "Preparation of Mutant Mice using ES Cells"); or the like, for example, as follows:

[0121] A genomic DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is prepared.

[0122] Based on the nucleotide sequence of the genomic DNA, a target vector is prepared for homologous recombination of a target gene to be modified (e.g., structural gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein or a promoter gene).

[0123] The host cell used in the method of the present invention can be produced by introducing the prepared target vector into a host cell and selecting a cell in which homologous recombination occurred between the target gene and target vector.

[0124] As the host cell, any cell such as yeast, an animal cell, an insect cell or a plant cell can be used, so long as it has a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein. Examples include the host cells described in the following item 3.

[0125] The method for preparing a genomic DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods described in "Preparation method of genomic DNA" in the item 1(1)(a) and the like.

[0126] The nucleotide sequence of the genomic DNA encoding the GDP-fucose synthase obtained by the above method includes the nucleotide sequence represented by SEQ ID NO:67 or 70. The nucleotide sequence of the genomic DNA of the α 1,6-fucose modifying enzyme includes the nucleotide sequence represented by SEQ ID NO:3. The nucleotide sequence of the genomic DNA of the GDP-fucose transport protein includes the nucleotide sequence represented by SEQ ID NO:99 or 100.

[0127] The target vector for the homologous recombination of the target gene can be prepared in accordance with a method described in *Gene Targeting, A Practical Approach*, IRL Press at Oxford University Press (1993); *Preparation of Mutant Mice using ES Cells*; or the like. The target vector can be used as either a replacement type or an insertion type.

[0128] For introducing the target vector into various host cells, the methods for introducing recombinant vectors suitable for various host cells described in the following item 3 can be used.

[0129] The method for efficiently selecting a homologous recombinant includes a method such as the positive selection, promoter selection, negative selection or polyA selection described in *Gene Targeting, A Practical Approach,* IRL Press at Oxford University Press (1993); *Preparation of Mutant Mice using ES Cells;* or the like. The method for selecting the homologous recombinant of interest from the selected cell lines includes the Southern hybridization method for genomic DNA (*Molecular Cloning,* Second Edition), PCR [*PCR Protocols,* Academic Press (1990)], and the like.

(c) Preparation of cell of the present invention by RDO method

30

35

40

50

55

[0130] The host cell used in the method of the present invention can be prepared by targeting a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein according to an RDO method, for example, as follows.

[0131] A cDNA or a genomic DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is prepared.

[0132] The nucleotide sequence of the prepared cDNA or genomic DNA is determined.

[0133] Based on the determined DNA sequence, an RDO construct of an appropriate length comprising a DNA encoding the GDP-fucose synthase, the α1,6-fucose modifying enzyme or the GDP-fucose transport protein, a DNA encoding a untranslated region or a DNA encoding an intron, is designed and synthesized.

[0134] The host cell used in the method of the present invention can be obtained by introducing the synthesized RDO into a host cell and then selecting a transformant in which a mutation occurred in the target enzyme, i.e., the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein.

[0135] As the host cell, any cell such as yeast, an animal cell, an insect cell or a plant cell can be used, so long as it has a gene encoding the target GDP-fucose synthase, α 1,6-fucose modifying enzyme or GDP-fucose transport protein. Examples include the host cells described in the following item 3.

[0136] The method for introducing RDO into various host cells includes the methods for introducing recombinant vectors suitable for various host cells described in the following item 3.

[0137] The method for preparing cDNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods described in "Preparation of DNA" in the item 1(1)(a) and the like.

[0138] The method for preparing a genomic DNA encoding the GDP-fucose synthase, α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods described in "Preparation method of genomic DNA" in the item 1(1)(a) and the like.

[0139] The nucleotide sequence of the DNA can be determined by digesting it with appropriate restriction enzymes, cloning the fragments into a plasmid such as pBluescript SK(-) (manufactured by Stratagene), subjecting the clones

to the reaction generally used as a method for analyzing a nucleotide sequence such as the dideoxy method of Sanger et al. [Proc. Natl. Acad Sci. USA, 74, 5463 (1977)] or the like, and then analyzing the clones using an automatic nucleotide sequence analyzer such as ABI PSISM 377DNA Sequencer (manufactured by PE Biosystems) or the like. [0140] The RDO can be prepared in the usual method or by using a DNA synthesizer.

[0141] The method for selecting a cell in which a mutation occurred, by introducing the RDO into the host cell, in the gene encoding the targeting enzyme, the GDP-fucose synthase, the α1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods for directly detecting mutations in chromosomal genes described in *Molecular Cloning*, Second Edition, *Current Protocols in Molecular Biology* and the like.

[0142] Furthermore, the method described in the item 1(1)(a) for selecting a transformant based on the activity of the introduced GDP-fucose synthase, α 1,6-fucose modifying enzyme or GDP-fucose transport protein and the method for selecting a transformant based on the sugar chain structure of a glycoprotein on the cell membrane described later in the item 1(5), and the method for selecting a transformant based on the sugar structure of a produced antibody molecule described later in the item 6 or 7 can also be used.

[0143] The construct of the RDO can be designed in accordance with the methods described in *Science*, 273, 1386 (1996); *Nature Medicine*, 4, 285 (1998); *Hepatology*, 25, 1462 (1997); Gene *Therapy*, 5, 1960 (1999); *J. Mol. Med.*, 75, 829 (1997); *Proc. Natl. Acad Sci. USA*, 96, 8774 (1999); *Proc. Natl. Acad Sci. USA*, 96, 8768 (1999); *Nuc. Acids. Res.*, 27, 1323 (1999); *Invest. Dematol.*, 111, 1172 (1998); *Nature Biotech.*, 16, 1343 (1998); *Nature Biotech.*, 18, 555 (2000); and the like.

(d) Preparation of host cell used in the method of the present invention by RNAi method

[0144] The host cell used in the method of the present invention can be prepared by targeting a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein according to the RNAi method, for example, as follows.

[0145] A cDNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is prepared.

[0146] The nucleotide sequence of the prepared cDNA is determined.

20

30

35

40

50

[0147] Based on the determined DNA sequence, an RNAi gene construct of an appropriate length comprising a DNA encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein or a DNA encoding a untranslated region, is designed.

[0148] In order to express the RNAi gene in a cell, a recombinant vector is prepared by inserting a fragment or full length of the prepared DNA into downstream of the promoter of an appropriate expression vector.

[0149] A transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.

[0150] The host cell used in the method of the present invention can be obtained by selecting a transformant based on the activity of the introduced GDP-fucose synthase, $\alpha 1,6$ -fucose modifying enzyme or GDP-fucose transport protein, or the sugar chain structure of the produced antibody molecule or of a glycoprotein on the cell membrane.

[0151] As the host cell, any cell such as yeast, an animal cell, an insect cell or a plant cell can be used, so long as it has a gene encoding the target GDP-fucose synthase, α 1,6-fucose modifying enzyme or GDP-fucose transport protein. Examples include the host cells described in the following item 3.

[0152] As the expression vector, a vector which is autonomously replicable in the above host cell or can be integrated into the chromosome and comprises a promoter at such a position that the designed RNAi gene can be transferred is used. Examples include the expression vectors described in the following item 3.

[0153] As the method for introducing a gene into various host cells, the methods for introducing recombinant vectors suitable for various host cells described in the following item 3 can be used.

[0154] The method for selecting a transformant based on the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods described in the item 1(1)(a).

[0155] The method for selecting a transformant based on the sugar chain structure of a glycoprotein on the cell membrane includes the methods described in the following item 1(5). The method for selecting a transformant based on the sugar chain structure of a produced antibody molecule includes the methods described in the following item 6 or 7

[0156] The method for preparing cDNA of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods described in "Preparation of DNA" in the item 1(1)(a) and the like.

[0157] In addition, the host cell used in the method of the present invention can also be obtained without using an expression vector, by directly introducing an RNAi gene designed based on the nucleotide sequence of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein.

[0158] The RNAi gene can be prepared in the usual method or by using a DNA synthesizer.

[0159] The RNAi gene construct can be designed in accordance with the methods described in Nature, 391, 806

(1998); *Proc. Natl. Acad. Sci. USA*, <u>95</u>, 15502 (1998); *Nature*, <u>395</u>, 854 (1998); *Proc. Natl. Acad. Sci. USA*, <u>96</u>, 5049 (1999); *Cell*, <u>95</u>, 1017 (1998); *Proc. Natl. Acad. Sci. USA*, <u>96</u>, 1451 (1999); *Proc. Natl. Acad. Sci. USA*, <u>95</u>, 13959 (1998); *Nature Cell Biol.*, 2, 70 (2000); and the like.

(e) Preparation of host cell used in the method of the present invention by method using transposon

[0160] The host cell used in the method of the present invention can be prepared by selecting a mutant based on the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein or the sugar chain structure of a produced antibody molecule or of a glycoprotein on the cell membrane by using a transposon system described in *Nature Genet.*, <u>25</u>, 35 (2000) or the like.

[0161] The transposon system is a system in which a mutation is induced by randomly inserting an exogenous gene into chromosome, wherein an exogenous gene interposed between transposons is generally used as a vector for inducing a mutation, and a transposase expression vector for randomly inserting the gene into chromosome is introduced into the cell at the same time.

[0162] Any transposase can be used, so long as it is suitable for the sequence of the transposon to be used.

[0163] As the exogenous gene, any gene can be used, so long as it can induce a mutation in the DNA of a host cell.

[0164] As the host cell, any cell such as yeast, an animal cell, an insect cell or a plant cell can be used, so long as it has a gene encoding the targeting GDP-fucose synthase, α 1,6-fucose modifying enzyme or GDP-fucose transport protein. Examples include the host cells described in the following item 3. For introducing the gene into various host cells, the method for introducing recombinant vectors suitable for various host cells described in the following item 3, can be used.

[0165] The method for selecting a mutant based on the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods which will be described above in the item 1 (1)(a).

[0166] The method for selecting a mutant based on the sugar chain structure of a glycoprotein on the cell membrane includes the methods described in the following item 1(5). The method for selecting a transformant based on the sugar chain structure of a produced antibody molecule includes the methods described in the following item 6 or 7.

(2) Method for introducing dominant negative mutant of enzyme

30

35

40

50

[0167] The host cell used in the method of the present invention can be prepared by targeting a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein according to a technique for introducing a dominant negative mutant of the enzyme. The GDP-fucose synthase includes GMD, Fx, GFPP, fucokinase and the like. The α 1,6-fucose modifying enzyme includes α 1,6-fucosyltransferase, α -L-focosidase and the like. The GDP-fucose transport protein includes GDP-fucose transporter and the like.

[0168] The enzymes catalyze specific reactions having substrate specificity, and dominant negative mutants of the enzymes can be prepared by disrupting the active center of the enzymes which have the catalytic activity having substrate specificity. The method for preparing a dominant negative mutant is specifically described as follows with reference to GMD among the target enzymes.

[0169] As a result of the analysis of the three-dimensional structure of *E. coli*-derived GMD, it has been found that 4 amino acids (threonine at position 133, glutamic acid at position 135, tyrosine at position 157 and lysine at position 161) have an important function on the enzyme activity [*Structure*, 8, 2 (2000)]. That is, when mutants were prepared by substituting the 4 amino acids with other different amino acids based on the three-dimensional structure information, the enzyme activity of all of the mutants was significantly decreased. On the other hand, changes in the ability of GMD to bind to GMD coenzyme NADP and its substrate GDP-mannose were hardly observed in the mutants. Accordingly, a dominant negative mutant can be prepared by substituting the 4 amino acids which control the enzyme activity of GMD. A dominant negative mutant can be prepared by comparing the homology and predicting the three-dimensional structure using the amino acid sequence information based on the results of the E. coli-derived GMD. For example, in GMD (SEQ ID NO:65) derived from CHO cell, a dominant negative mutant can be prepared by substituting threonine at position 155, glutamic acid at position 157, tyrosine at position 179 and lysine at position 183. Such a gene into which amino acid substitution is introduced can be prepared by the site-directed mutagenesis described in *Molecular Cloning*, Second Edition, *Current Protocols in Molecular Biology* or the like.

[0170] The host cell can be prepared by using the above prepared dominant negative mutant gene of the target enzyme according to the method described in *Molecular Cloning*, Second Edition, *Current Protocols in Molecular Biology, Manipulating the Mouse Embryo*, Second Edition or the like, for example, as follows.

[0171] A gene encoding the dominant negative mutant of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein (hereinafter referred to as "dominant negative mutant gene") is prepared. [0172] Based on the full length DNA of the prepared dominant negative mutant gene, a DNA fragment of an appro-

priate length containing a DNA encoding the antibody molecule is prepared, if necessary.

[0173] A recombinant vector is prepared by inserting the DNA fragment or full length DNA into downstream of the promoter of an appropriate expression vector.

[0174] A transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.

[0175] The host cell used in the method of the present invention can be prepared by selecting a transformant based on the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein, or the sugar chain structure of a produced antibody molecule or of a glycoprotein on the cell membrane.

[0176] As the host cell, any cell such as yeast, an animal cell, an insect cell or a plant cell can be used, so long as it has a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein. Examples include the host cells described in the following item 3.

[0177] As the expression vector, a vector which is autonomously replicable in the host cell or can be integrated into the chromosome and comprises a promoter at a position where transcription of the DNA encoding the dominant negative mutant of interest can be effected is used. Examples include the expression vectors described in the following item 3.

[0178] For introducing the gene into various host cells, the method for introducing recombinant vectors suitable for various host cells described in the following item 3, can be used.

[0179] The method for selecting a mutant based on the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods which will be described in the above item 1 (1)(a).

[0180] The method for selecting a mutant based on the sugar chain structure of a glycoprotein on the cell membrane includes the methods described in the following item 1(5). The method for selecting a transformant based on the sugar chain structure of a produced antibody molecule includes the methods described in the following item 6 or 7.

(3) Method for introducing mutation into enzyme

20

25

30

35

40

50

55

[0181] The host cell used in the method of the present invention can be prepared by introducing a mutation into a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein, and then selecting a cell line of interest in which the mutation occurred in the enzyme.

[0182] The GDP-fucose synthase includes GMD, Fx, GFPP, fucokinase and the like. The α 1,6-fucose modifying enzyme includes α 1,6-fucosyltransferase, α -L-focosidase and the like. The GDP-fucose transport protein includes GDP-fucose transporter and the like.

[0183] The method for introducing mutation into an enzyme includes 1) a method in which a desired clone is selected from mutants obtained by a mutation-inducing treatment of a parent cell line with a mutagen or spontaneously generated mutants, based on the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein, 2) a method in which a desired clone is selected from mutants obtained by a mutation-inducing treatment of a parent cell line with a mutagen or spontaneously generated mutants, based on the sugar chain structure of a produced antibody molecule, 3) a method in which a desired clone is selected from mutants obtained by a mutation-inducing treatment of a parent cell line with a mutagen or spontaneously generated mutants, based on the sugar chain structure of a glycoprotein on the cell membrane, and the like.

[0184] As the mutation-inducing treatment, any treatment can be used, so long as it can induce a point mutation or a deletion or frame shift mutation in the DNA of cells of the parent cell line.

[0185] Examples include treatment with ethyl nitrosourea, nitrosoguanidine, benzopyrene or an acridine pigment and treatment with radiation. Also, various alkylating agents and carcinogens can be used as mutagens. The method for allowing a mutagen to act upon cells includes the methods described in *Tissue Culture Techniques*, 3rd edition (Asakura Shoten), edited by Japanese Tissue Culture Association (1996), Nature *Genet.*, 24, 314 (2000) and the like. [0186] The spontaneously generated mutant includes mutants which are spontaneously formed by continuing subculture under general cell culture conditions without applying special mutation-inducing treatment.

[0187] The method for measuring the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein includes the methods described above in the item 1(1)(a). The method for distinguishing the sugar chain structure of a produced antibody molecule includes the methods described in the following item 6 or 7. The method for distinguishing the sugar chain structure of a glycoprotein on the cell membrane includes the methods described in the following item 1(5).

(4) Method for suppressing transcription and/or translation of enzyme

[0188] The host cell used in the method of the present invention can be prepared by targeting a gene encoding the GDP-fucose synthase or the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein and suppressing

transcription and/or translation of the target gene according to the antisense RNA/DNA technique [Bioscience and Industry, 50, 322 (1992); Chemistry, 46, 681 (1991); Biotechnology, 9, 358 (1992); Trends in Biotechnology, 10, 152 (1992); Cell Engineering, 16, 1463 (1997)], the triple helix technique [Trends in Biotechnology, 10, 132 (1992)] or the like.

[0189] The GDP-fucose synthase includes GMD, Fx, GFPP, fucokinase and the like. The α 1,6-fucose modifying enzyme includes α 1,6-fucosyltransferase, α -L-focosidase and the like. The GDP-fucose transport protein includes GDP-fucose transporter and the like.

(5) Method for selecting clone resistant to lectin which recognizes sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the N-glycoside-linked sugar chain

[0190] The host cell used in the method of the present invention can be prepared by using a method for selecting a clone resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond in the *N*-glycoside-linked sugar chain.

[0191] The method for selecting a clone resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the N-glycoside-linked sugar chain includes the methods using lectin described in Somatic Cell Mol. Genet., 12, 51 (1986) and the like. [0192] As the lectin, any lectin can be used, so long as it is a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the N-glycoside-linked sugar chain. Examples include a Lens culinaris lectin LCA (lentil agglutinin derived from Lens culinaris), a pea lectin PSA (pea lectin derived from Pisum sativum), a broad bean lectin VFA (agglutinin derived from Vicia faba), an Aleuria aurantia lectin AAL (lectin derived from Aleuria aurantia) and the like.

[0193] Specifically, the clone of the present invention resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in the N-glycoside-linked sugar chain can be selected by culturing cells by using a medium comprising the lectin at a concentration of 1 μ g/ml to 1 mg/ml for 1 day to 2 weeks, preferably 1 day to 1 week, subculturing surviving cells or picking up a colony and transferring it into a culture vessel, and subsequently continuing the culturing using the lectin-containing medium.

[0194] The method for confirming that the cell is a lectin-resistant cell includes a method for confirming expression of the GDP-fucose synthase, α 1,6-fucose modifying enzyme or the GDP-fucose transport protein, a method for culturing the cell in a medium to which lectin is directly added. Specifically, when the expression amount of the mRNA of α 1,6-fucosyltransferase which is one of α 1,6-fucose modifying enzymes in the cell is measured, a lectin-resistant cell decreases in an amount of the mRNA expressed.

2. Preparation of transgenic non-human animal or plant or the progenies

10

30

35

40

50

[0195] The cell used in the method of the present invention can be prepared by using a transgenic non-human animal or plant or the progenies thereof in which a genomic gene is modified in such a manner that the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is decreased or deleted. The transgenic non-human animal or plant or the progenies thereof can be prepared by targeting a gene encoding the above protein according to the method similar to that in the item 1.

[0196] In a transgenic non-human animal, the embryonic stem cell used in the process of the present invention in which the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is decreased or deleted can be prepared applying the method similar to that in the item 1 to an embryonic stem cell of the intended non-human animal such as cattle, sheep, goat, pig, horse, mouse, rat, fowl, monkey or rabbit.

[0197] Specifically, a mutant clone is prepared in which a gene encoding the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is inactivated or substituted with any nucleotide sequence, by a known homologous recombination technique [e.g., *Nature*, 326, 6110, 295 (1987); *Cell*, 51, 3, 503 (1987); *etc.*]. Using the prepared mutant clone, a chimeric individual comprising an embryonic stem cell clone and a normal cell can be prepared by an injection chimera method into blastocyst of fertilized egg of an animal or by an aggregation chimera method. The chimeric individual is crossed with a normal individual, so that a transgenic non-human animal in which the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is decreased or deleted in the whole body cells can be obtained.

[0198] The target vector for the homologous recombination of the target gene can be prepared in accordance with a method described in *Gene Targeting, A Practical Approach*, IRL Press at Oxford University Press (1993); *Preparation of Mutant Mice using ES Cells*, or the like. The target vector can be used as any of a replacement type, an insertion type and a gene trap type. As the method for introducing the target vector into the embryonic stem cell, any method can be used, so long as it can introduce DNA into an animal cell. Examples include electroporation [*Cytotechnology*,

3, 133 (1990)], the calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), the lipofection method [*Proc. Natl. Acad Sci. USA*, 84, 7413 (1987)], the injection method [*Manipulating the Mouse Embryo*, Second Edition], a method using particle gun (gene gun) (Japanese Patent No. 2606856, Japanese Patent No. 2517813), the DEAE-dextran method [*Biomanual Series 4-Gene Transfer and Expression Analysis* (Yodo-sha), edited by Takashi Yokota and Kenichi Arai (1994)], the virus vector method [*Manipulating Mouse Embryo*, Second Edition] and the like.

[0199] The method for efficiently selecting a homologous recombinant includes a method such as the positive selection, promoter selection, negative selection or poly A selection described in Gene Targeting, A Practical Approach, IRL Press at Oxford University Press (1993), Preparation of Mutant Mice using ES Cells, or the like. Specifically, in the case of the target vector containing hprt gene, it is introduced into the hprt gene-defected embryonic stem cell, the embryonic stem cell is cultured in a medium containing aminopterin, hypoxanthine and thymidine, and positive selection which selects the homologous recombinant of the hprt gene can be carried out by selecting an a homogenous recombinant containing an aminopterin-resistant clone. In the case of the target vector containing a neomycin-resistant gene, the vector-introduced embryonic stem cell is cultured in a medium containing G418, and positive selection which selects a homogenous recombinant containing a neomycin-resistant gene can be carried out by selecting a G418-resistant clone. In the case of the target vector containing DT gene, the vector-introduced embryonic stem cell is cultured, and negative selection selecting a DT gene-free homogenous recombinant can be carried out by selecting the grown clone (in the recombinants introduced into a chromosome at random rather than the homogenous recombination, since the DT gene is expressed while integrated in the chromosome, the recombinants cannot grow because of the toxicity of DT). The method for selecting the homogenous recombinant of interest among the selected clones include the Southern hybridization for genomic DNA (Molecular Cloning, Second Edition), PCR [PCR Protocols, Academic Press (1990)] and the like.

[0200] When the embryonic stem cell is introduced into a fertilized egg by using an aggregation chimera method, in general, a fertilized egg at the development stage before 8-cell stage is preferably used. When the embryonic stem cell is introduced into a fertilized egg by using an injection chimera method, in general, it is preferred that a fertilized egg at the development stage from 8-cell stage to blastocyst stage is preferably used.

[0201] When the fertilized egg is transplanted into a female mouse, it is preferred that a fertilized egg obtained from a pseudopregnant female mouse in which fertility is induced by mating with a male non-human mammal which is subjected to vasoligation is artificially transplanted or implanted. Although the pseudopregnant female mouse can be obtained by natural mating, the pseudopregnant female mouse in which fertility is induced can be obtained by mating with a male mouse after administration of a luteinizing hormone-releasing hormone (hereinafter referred to as "LHRH") or its analogue thereof. The analogue of LHRH includes [3,5-Dil-Tyr5]-LHRH, [Gln8]-LHRH, [D-Ala6]-LHRH, des-Gly10-[D-His(Bzl)6]-LHRH ethylamide and the like.

[0202] Also, a fertilized egg cell of the present invention in which the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is decreased or deleted can be prepared by applying the method similar to that in the item 1 to fertilized egg of a non-human animal of interest such as cattle, sheep, goat, pig, horse, mouse, rat, fowl, monkey, rabbit or the like.

[0203] A transgenic non-human animal in which the activity of the GDP-fucose synthase, the α 1,6-fucose modifying enzyme or the GDP-fucose transport protein is decreased or deleted can be prepared by transplanting the prepared fertilized egg cell into the oviduct or uterus of a pseudopregnant female using the embryo transplantation method described in *Manipulating Mouse Embryo*, Second Edition or the like, followed by childbirth by the animal.

[0204] In a transgenic plant, the callus of the present invention in which the activity of the GDP-fucose synthase or the activity of an enzyme relating to modification of a sugar chain in which 1-position of fucose is bound to 6- or 3-position of N-acetylglucosamine in the reducing end in the *N*-glycoside-linked complex sugar chain is decreased or deleted can be prepared by applying the method similar to that in the item 1 to a callus or cell of the plant of interest.

[0205] A transgenic plant in which the activity of the GDP-fucose synthase, the α1,6-fucose modifying enzyme or the GDP-fucose transport protein is decreased or deleted can be prepared by culturing the prepared callus in a medium comprising auxin and cytokinin to redifferentiate it in accordance with conventional methods [*Tissue Culture (Soshiki Baiyo)*, 20 (1994); *Tissue Cultur (Soshiki Baiyo)e*, 21 (1995); *Trends in Biotechnology*, 15, 45 (1997)].

3. Method for producing antibody composition

10

30

35

40

50

55

[0206] The antibody composition can be obtained by expressing it in a host cell by using the methods described in Molecular Cloning, Second Edition; Current Protocols in Molecular Biology; Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, 1988 (hereinafter sometimes referred to as "Antibodies"); Monoclonal Antibodies: Principles and Practice, Third Edition, Acad. Press, 1996 (hereinafter sometimes referred to as "Monoclonal Antibodies"); and Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press, 1996 (hereinafter sometimes referred to as "Antibody Engineering"), for example, as follows.

- [0207] A full length cDNA of an antibody molecule is prepared, and a DNA fragment of an appropriate length comprising a DNA encoding the antibody molecule is prepared.
- [0208] A recombinant vector is prepared by inserting the DNA fragment or the full length cDNA into downstream of the promoter of an appropriate expression vector.
- [0209] A transformant which produces the antibody molecule can be obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
 - [0210] As the host cell, the host cell of any cell such as yeast, an animal cell, an insect cell, a plant cell or the like can be used, so long as it can express the gene of interest.
 - **[0211]** A cell such as yeast, an animal cell, an insect cell, a plant cell or the like into which an enzyme relating to the modification of an *N*-glycoside-linked sugar chain which binds to the Fc region of the antibody molecule is introduced by a genetic engineering technique can also be used as the host cell.
 - [0212] As the expression vector, a vector which is autonomously replicable in the host cell or can be integrated into the chromosome and comprises a promoter at such a position that the DNA encoding the antibody molecule of interest can be transferred is used.
- [0213] The cDNA can be prepared from a human or non-human tissue or cell by using a probe primer specific for the antibody molecule of interest and the like according to the methods described in "Preparation of DNA" in the item 1(1)(a).
 - [0214] When yeast is used as the host cell, the expression vector includes YEP 13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419) and the like.
 - [0215] As the promoter, any promoter can be used so long as it can function in yeast. Examples include a promoter of a gene relating to the glycolytic pathway such as a hexose kinase, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock protein promoter, MFα1 promoter, CUP 1 promoter and the like.
 - [0216] The host cell includes yeast belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces and the like, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans and Schwanniomyces alluvius.
 - [0217] As the method for introducing the recombinant vector, any method can be used, so long as it can introduce DNA into yeast. Examples include electroporation [*Methods in Enzymology*, 194, 182 (1990)], spheroplast method [*Proc. Natl. Acad. Sci. USA*, 84, 1929 (1978)], lithium acetate method [*J. Bacteriol.*, 153, 163 (1983)], a method described *in Proc. Natl. Acad Sci. USA*, 75, 1929 (1978) and the like.
 - [0218] When an animal cell is used as the host cell, the expression vector includes pcDNAI, pcDM8 (available from Funakoshi), pAGE107 [Japanese Published Unexamined Patent Application No. 22979/91; *Cytotechnology*, 3, 133 (1990)], pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pCDM8 [*Nature*, 329, 840 (1987)], pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [*J. Biochemistry*, 101, 1307 (1987)], pAGE210 and the like.

35

- **[0219]** As the promoter, any promoter can be used, so long as it can function in an animal cell. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a promoter of metallothionein, a heat shock promoter, an SRα promoter and the like. Also, an enhancer of the IE gene of human CMV may be used together with the promoter.
- [0220] The host cell includes a human cell such as Namalwa cell, a monkey cell such as COS cell, a Chinese hamster cell such as CHO cell or HBT5637 (Japanese Published Unexamined Patent Application No. 299/88), a rat myeloma cell, a mouse myeloma cell, a cell derived from syrian hamster kidney, an embryonic stem cell, a fertilized egg cell and the like.
- [0221] As the method for introducing the recombinant vector, any method can be used, so long as it can introduce DNA into an animal cell. Examples include electroporation [Cytotechnology, 3, 133 (1990)], the calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), the lipofection method [Proc. Natl. Acad Sci. USA, 84, 7413 (1987)], the injection method [Manipulating the Mouse Embryo, A Laboratory Manual], a method using particle gun (gene gun) (Japanese Patent No. 2606856, Japanese Patent No. 2517813), the DEAE-dextran method [Biomanual Series 4-Gene Transfer and Expression Analysis (Yodo-sha), edited by Takashi Yokota and Kenichi Arai (1994)], the virus vector method [Manipulating Mouse Embryo, Second Edition] and the like.
 - [0222] When an insect cell is used as the host cell, the protein can be expressed by the method described in *Current Protocols in Molecular Biology, Baculovirus Expression Vectors, A Laboratory Manual,* W.H. Freeman and Company, New York (1992), *Biol Technology,* 6, 47 (1988) or the like.
- [0223] That is, the protein can be expressed by co-introducing a recombinant gene-introducing vector and a baculovirus into an insect cell to obtain a recombinant virus in an insect cell culture supernatant and then infecting the insect cell with the recombinant virus.
 - [0224] The gene introducing vector used in the method includes pVL1392, pVL1393, pBlueBacIII (all manufactured

by Invitrogen) and the like.

10

30

35

40

45

50

[0225] The baculovirus includes *Autographa californica* nuclear polyhedrosis virus which is infected by an insect of the family *Barathra*.

[0226] The insect cell includes Spodoptera frugiperda oocytes Sf9 and Sf21 [Current Protocols in Molecular Biology, Baculovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)], a Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.

[0227] The method for co-introducing the above recombinant gene-introducing vector and the baculovirus to the insect cells for preparing the above recombinant virus includes the calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), the lipofection method [*Proc. Natl. Acad Sci. USA*, <u>84</u>, 7413 (1987)] and the like.

[0228] When a plant cell is used as the host cell, the expression vector includes Ti plasmid, tobacco mosaic virus and the like.

[0229] As the promoter, any promoter can be used, so long as it can function in a plant cell. Examples include cauliflower mosaic virus (CaMV) 35S promoter, rice actin 1 promoter and the like.

[0230] The host cell includes plant cells of tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley and the like.

[0231] As the method for introducing the recombinant vector, any method can be used, so long as it can introduce DNA into a plant cell. Examples include a method using *Agrobacterium* (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO94/00977), electroporation (Japanese Published Unexamined Patent Application No. 251887/85), a method using a particle gun (gene gun) (Japanese Patent No. 2606856, Japanese Patent No. 2517813) and the like.

[0232] As the method for expressing an antibody gene, secretion production, expression of a fusion protein of the Fc region with other protein and the like can be carried out in accordance with the method described in *Molecular Cloning*, Second Edition or the like, in addition to the direct expression.

[0233] When a gene is expressed by a microorganism, yeast, an animal celt, an insect cell or a plant cell into which a gene relating to the synthesis of a sugar chain is introduced, an antibody molecule to which a sugar or a sugar chain is added by the introduced gene can be obtained.

[0234] An antibody composition can be produced by culturing the obtained transformant in a medium to produce and accumulate the antibody molecule in the culture and then recovering it from the resulting culture. The method for culturing the transformant in a medium can be carried out in accordance with a general method which is used for the culturing of host cells.

[0235] As the medium for culturing a transformant obtained using yeast as the host cell, the medium may be either a natural medium or a synthetic medium, so long as it comprises materials such as a carbon source, a nitrogen source and an inorganic salt which can be assimilated by the organism and culturing of the transformant can be efficiently carried out.

[0236] As the carbon source, those which can be assimilated by the organism can be used. Examples include carbohydrates such as glucose, fructose, sucrose, molasses thereof, starch and starch hydrolysate; organic acids such as acetic acid and propionic acid; alcohols such as ethanol and propanol; and the like.

[0237] The nitrogen source includes ammonia; ammonium salts of inorganic acid or organic acid such as ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate; other nitrogen-containing compounds; peptone; meat extract; yeast extract; corn steep liquor; casein hydrolysate; soybean meal; soybean meal hydrolysate; various fermented cells and hydrolysates thereof; and the like.

[0238] The inorganic salt includes potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0239] The culturing is carried out generally under aerobic conditions such as a shaking culture or submerged-aeration stirring culture. The culturing temperature is preferably at 15 to 40°C, and the culturing time is generally 16 hours to 7 days. During the culturing, the pH is maintained at 3.0 to 9.0. The pH is adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia or the like.

[0240] Furthermore, if necessary, an antibiotic such as ampicillin or tetracycline can be added to the medium during the culturing.

[0241] When yeast transformed with a recombinant vector obtained by using an inducible promoter as the promoter is cultured, an inducer can be added to the medium, if necessary. For example, when yeast transformed with a recombinant vector obtained by using lac promoter is cultured, isopropyl- β -D-thiogalactopyranoside and the like can be added to the medium, and when yeast transformed with a recombinant vector obtained by using trp promoter is cultured, indoleacrylic acid and the like can be added to the medium.

[0242] When a transformant obtained by using an animal cell as the host is cultured, the medium includes generally used RPMI 1640 medium [*The Journal of the American Medical Association*, 199, 519 (1967)], Eagle's MEM medium

[Science, 122, 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 (1959)], 199 medium [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] and Whitten's medium [Developmental Engineering Experimentation Manual-Preparation of Transgenic Mice (Kodan-sha), edited by M. Katsuki (1987)], the media to which fetal calf serum, etc. are added, and the like.

[0243] The culturing is carried out generally at conditions under pH of 6 to 8 and 30 to 40°C for 1 to 7 days in the presence of 5% CO₂ and the like, for 1 to 7 days.

[0244] Furthermore, if necessary, an antibiotic such as kanamycin or penicillin can be added to the medium during the culturing.

[0245] The medium for culturing a transformant obtained by using an insect cell as the host includes generally used TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM medium (manufactured by Life Technologies), ExCell 400 and ExCell 405 (both manufactured by JRH Biosciences), Grace's Insect Medium [Nature, 195, 788 (1962)] and the like.

[0246] The culturing is carried out generally at conditions under pH of 6 to 7 and 25 to 30°C and the like, for 1 to 5 days.

[0247] Furthermore, if necessary, an antibiotic such as gentamicin can be added to the medium during the culturing.

[0248] A transformant obtained by using a plant cell as the host can be cultured as a cell or by differentiating it into a plant cell or organ. The medium for culturing the transformant includes generally used Murashige and Skoog (MS) medium and White medium, the media to which a plant hormone such as auxin or cytokinin is added, and the like.

[0249] The culturing is carried out generally at conditions under pH of 5 to 9 and 20 to 40°C for 3 to 60 days.

[0250] Furthermore, if necessary, an antibiotic such as kanamycin or hygromycin can be added to the medium during the culturing.

[0251] As described above, an antibody composition can be produced by culturing a transformant derived from yeast, an animal cell, an insect cell or a plant cell, which comprises a recombinant vector into which a DNA encoding an antibody molecule is inserted, in accordance with a general culturing method, to thereby produce and accumulate the antibody composition, and then recovering the antibody composition from the culture.

[0252] As the method for expressing the gene encoding an antibody, secretion production, expression of a fusion protein and the like can be carried out in accordance with the method described in *Molecular Cloning*, Second Edition in addition to the direct expression.

[0253] The method for producing an antibody composition includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, and a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell used or the structure of the antibody composition produced.

30

35

50

[0254] The method for producing an antibody composition includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, and a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell used or the structure of the antibody composition produced.

[0255] When the antibody composition is produced in a host cell or on a host cell membrane outer envelope, it can be positively secreted extracellularly in accordance with the method of Paulson *et al.* [*J. Biol. Chem.,* 264, 17619 (1989)], the method of Lowe *et al.* [*Proc. Natl. Acad. Sci. USA*, 86, 8227 (1989), *Genes Develop.,* 4, 1288 (1990)], the methods described in Japanese Published Unexamined Patent Application No. 336963/93 and Japanese Published Unexamined Patent Application No. 823021/94 and the like.

[0256] That is, an antibody molecule of interest can be positively secreted extracellularly from a host cell by inserting a DNA encoding the antibody molecule and a DNA encoding a signal peptide suitable for the expression of the antibody molecule into an expression vector according to a gene recombination technique and then expressing the antibody molecule.

[0257] Also, its production amount can be increased in accordance with the method described in Japanese Published Unexamined Patent Application No. 227075/90 according to a gene amplification system using a dihydrofolate reductase gene.

[0258] In addition, the antibody composition can also be produced by using a gene-introduced animal individual (transgenic non-human animal) or a plant individual (transgenic plant) which is constructed by the redifferentiation of an animal or plant cell into which the gene is introduced.

[0259] When the transformant is an animal individual or a plant individual, an antibody composition can be produced in accordance with a general method by rearing or cultivating it to thereby produce and accumulate the antibody composition and then recovering the antibody composition from the animal or plant individual.

[0260] The method for producing an antibody composition using an animal individual includes a method in which the antibody composition of interest is produced in an animal constructed by introducing a gene in accordance with a known method [American Journal of Clinical Nutrition, 63, 639S (1996); American Journal of Clinical Nutrition, 63, 627S (1996); Bio/Technology, 9, 830 (1991)].

[0261] In the case of an animal individual, an antibody composition can be produced, for example, by rearing a

transgenic non-human animal into which a DNA encoding an antibody molecule is introduced to thereby produce and accumulate the antibody composition in the animal, and then recovering the antibody composition from the animal. The place of the animal where the composition is produced and accumulated includes milk (Japanese Published Unexamined Patent Application No. 309192/88) and eggs of the animal. As the promoter used in this case, any promoter can be used, so long as it can function in an animal. Preferred examples include mammary gland cell-specific promoters such as α casein promoter, β casein promoter, β lactoglobulin promoter, whey acidic protein promoter and the like.

[0262] The method for producing an antibody composition using a plant individual includes a method in which an antibody composition is produced by cultivating a transgenic plant into which a DNA encoding an antibody molecule is introduced by a known method [Tissue Culture (Soshiki Baiyo), 20 (1994); Tissue Culture (Soshiki Baiyo), 21 (1995); Trends in Biotechnology, 15, 45 (1997)] to produce and accumulate the antibody composition in the plant, and then recovering the antibody composition from the plant.

[0263] Regarding purification of an antibody composition produced by a transformant into which a gene encoding an antibody molecule is introduced, for example, when the antibody composition is intracellularly expressed in a dissolved state, the cells after culturing are recovered by centrifugation, suspended in an aqueous buffer and then disrupted by using ultrasonic oscillator, French press, Manton Gaulin homogenizer, dynomill or the like to obtain a cell-free extract. A purified product of the antibody composition can be obtained from a supernatant obtained by centrifuging the cell-free extract according to a general enzyme isolation purification techniques such as solvent extraction; salting out or desalting with ammonium sulfate; precipitation with an organic solvent; anion exchange chromatography using a resin such as S-Sepharose or DIAION HPA-75 (manufactured by Mitsubishi Chemical); cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharmacia),; hydrophobic chromatography using a resin such as butyl-Sepharose or phenyl-Sepharose, gel filtration using a molecular sieve; affinity chromatography; chromatofocusing; electrophoresis such as isoelectric focusing; and the like which may be used alone or in combination.

[0264] Also, when the antibody composition is expressed intracellularly by forming an insoluble body, the cells are recovered, disrupted and centrifuged in the same manner, and the insoluble body of the antibody composition is recovered as a precipitation fraction. The recovered insoluble body of the antibody composition is solubilized by using a protein denaturing agent. The antibody composition is made into a normal three-dimensional structure by diluting or dialyzing the solubilized solution, and then a purified product of the antibody composition is obtained by the same isolation purification method.

30 [0265] When the antibody composition is secreted extracellularly, the antibody composition or derivatives thereof can be recovered from the culture supernatant. That is, the culture is treated according to a technique such as centrifugation as described above to obtain a soluble fraction, and a purified preparation of the antibody composition can be obtained from the soluble fraction by the same isolation purification method as described above.

[0266] The thus obtained antibody composition includes an antibody, the fragment of the antibody, a fusion protein comprising the Fc region of the antibody, and the like.

[0267] As an example for obtaining the antibody composition, a method for producing a composition of a humanized antibody and Fc fusion protein is described below in detail, but other antibody compositions can also be obtained in a manner similar to the method.

40 A. Preparation of humanized antibody composition

10

35

50

(1) Construction of vector for expression of humanized antibody

[0268] A vector for expression of humanized antibody is an expression vector for animal cell into which genes encoding CH and CL of a human antibody are inserted, which can be constructed by cloning each of genes encoding CH and CL of a human antibody into an expression vector for animal cell.

[0269] The C regions of a human antibody may be CH and CL of any human antibody. Examples include the C region belonging to lgG1 subclass in the H chain of a human antibody (hereinafter referred to as "hC γ 1"), the C region belonging to κ class in the L chain of a human antibody (hereinafter referred to as "hC κ "), and the like.

[0270] As the genes encoding CH and CL of a human antibody, a chromosomal DNA comprising an exon and an intron can be used, and a cDNA can also be used.

[0271] As the expression vector for animal cell, any vector can be used, so long as a gene encoding the C region of a human antibody can be inserted thereinto and expressed therein. Examples include pAGE107 [*Cylotechnology*, 3, 133 (1990)], pAGE103 [*J. Biochem.*, 101, 1307 (1987)], pHSG274 [*Gene*, 27, 223 (1984)], pKCR [*Proc. Natl. Acad. Sci. USA*, 78, 1527 (1981), pSG1 β d2-4 [*Cytotechnology*, 4, 173 (1990)] and the like. The promoter and enhancer in the expression vector for animal cell includes SV40 early promoter and enhancer [*J. Biochem.*, 101, 1307 (1987)], Moloney mouse leukemia virus LTR promoter [*Biochem. Biophys. Res. Commun.*, 149, 960 (1987)], immunoglobulin H chain promoter [*Cell*, 41, 479 (1985)] and enhancer [*Cell*, 33, 717 (1983)], and the like.

[0272] The vector for expression of humanized antibody may be either of a type in which genes encoding the H chain and L chain of an antibody exist on separate vectors or of a type in which both genes exist on the same vector (hereinafter referred to "tandem type"). In respect of easiness of construction of a vector for expression of humanized antibody, easiness of introduction into animal cells, and balance between the expression amounts of the H and L chains consisting of an antibody in animal cells, a tandem type of the vector for humanized antibody expression is more preferred [J. Immunol. Methods, 167, 271 (1994)].

[0273] The constructed vector for expression of humanized antibody can be used for expression of a human chimeric antibody and a human CDR-grafted antibody in animal cells.

(2) Preparation method of cDNA encoding V region of non-human animal antibody

10

30

35

40

50

[0274] cDNAs encoding VH and VL of a non-human animal antibody such as mouse antibody can be obtained in the following manner.

[0275] A cDNA is synthesized from mRNA extracted from a hybridoma cell which produces the mouse antibody of interest. The synthesized cDNA is cloned into a vector such as a phage or a plasmid to obtain a cDNA library. Each of a recombinant phage or recombinant plasmid comprising a cDNA encoding VH and a recombinant phage or recombinant plasmid comprising a cDNA encoding VL is isolated from the library by using a C region part or a V region part of an existing mouse antibody as the probe. Full nucleotide sequences of VH and VL of the mouse antibody of interest on the recombinant phage or recombinant plasmid are determined, and full length amino acid sequences of VH and VL are deduced from the nucleotide sequences.

[0276] As the non-human animal, any animal such as mouse, rat, hamster or rabbit can be used, so long as a hybridoma cell can be produced therefrom.

[0277] The method for preparing a total RNA from a hybridoma cell includes the guanidine thiocyanate-cesium trif-luoroacetate method [Methods in Enzymology, 154, 3 (1987)] and the like, and the method for preparing mRNA from total RNA includes an oligo(dT)-immobilized cellulose column method (Molecular Cloning, Second Edition) and the like. In addition, a kit for preparing mRNA from a hybridoma cell includes Fast Track mRNA Isolation Kit (manufactured by Invitrogen), Quick Prep mRNA Purification Kit (manufactured by Pharmacia) and the like.

[0278] The method for synthesizing a cDNA and preparing a cDNA library includes the usual methods (*Molecular Cloning*, Second Edition, *Current Protocols in Molecular Biology*, Supplement 1-34), methods using a commercially available kit such as SuperScriptTM, Plasmid System for cDNA Synthesis and Plasmid Cloning (manufactured by GIB-CO BRL) or ZAP-cDNA Synthesis Kit (manufactured by Stratagene), and the like.

[0279] In preparing the cDNA library, the vector into which a cDNA synthesized by using mRNA extracted from a hybridoma cell as the template is inserted may be any vector, so long as the cDNA can be inserted. Examples include ZAP Express [Strategies, 5, 58 (1992)], pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)], \(\lambda\) zaplI (manufactured by Stratagene), \(\lambda\)gt10 and \(\lambda\)gt11 [DNA Cloning, A Practical Approach, \(\frac{1}{2}\), 49 (1985)], \(\Lambda\) Lambda BlueMid (manufactured by Clontech), \(\lambda\)EXCell, pT7T3 18U (manufactured by Pharmacia), pcD2 [Mol. Cell. Biol., \(\frac{3}{2}\), 280 (1983)], pUC18 [Gene, \(\frac{33}{2}\) 103 (1985)] and the like.

[0280] As Escherichia coli into which the cDNA library constructed from a phage or plasmid vector is introduced, any Escherichia coli can be used, so long as the cDNA library can be introduced, expressed and maintained. Examples include XL1-Blue MRF' [Strategies, 5, 81 (1992)], C600 [Genetics, 39, 440 (1954)], Y1088 and Y1090 [Science, 222, 778 (1983)], NM522 [J. Mol. Biol., 166, 1 (1983)], K802 [J. Mol. Biol., 16, 118 (1966)], JM105 [Gene, 38, 275 (1985)] and the like.

[0281] As the method for selecting a cDNA clone encoding VH and VL of a non-human animal antibody from the cDNA library, a colony hybridization or a plaque hybridization using an isotope- or fluorescence-labeled probe can be used (*Molecular Cloning*, Second Edition). The cDNA encoding VH and VL can also be prepared by preparing primers and carrying out polymerase chain reaction (hereinafter referred to as "PCR"; *Molecular Cloning*, Second Edition; *Current Protocols in Molecular Biology*, Supplement 1-34) using a cDNA synthesized from mRNA or a cDNA library as the template.

[0282] The nucleotide sequences of the cDNAs can be determined by digesting the selected cDNAs with appropriate restriction enzymes, cloning the fragments into a plasmid such as pBluescript SK(-) (manufactured by Stratagene), carrying out the reaction of a generally used nucleotide sequence analyzing method such as the dideoxy method of Sanger et al. [Proc. Natl. Acad. Sci., USA, 74, 5463 (1977)], and then analyzing the clones using an automatic nucleotide sequence analyzer such as A.L.F. DNA Sequencer (manufactured by Pharmacia).

[0283] Whether or not the obtained cDNAs encode the full length amino acid sequences of VH and VL of the antibody comprising a secretory signal sequence can be confirmed by deducing the full length amino acid sequences of VH and VL from the determined nucleotide sequence and comparing them with the full length amino acid sequences of VH and VL of known antibodies [Sequences of Proteins of Immunological Interest, US Dep. Health and Human Services (1991), hereinafter referred to as "Sequences of Proteins of Immunological Interest"].

(3) Analysis of amino acid sequence of V region of non-human animal antibody

[0284] Regarding the full length amino acid sequences of VH and VL of the antibody comprising a secretory signal sequence, the length of the secretory signal sequence and the N-terminal amino acid sequences can be deduced and subgroups to which they belong can also be found, by comparing them with the full length amino acid sequences of VH and VL of known antibodies (Sequences of Proteins of Immunological Interest). In addition, the amino acid sequences of each CDR of VH and VL can also be found by comparing them with the amino acid sequences of VH and VL of known antibodies (Sequences of Proteins of Immunological Interest).

(4) Construction of human chimeric antibody expression vector

20

30

35

40

50

[0285] A human chimeric antibody expression vector can be constructed by cloning cDNAs encoding VH and VL of a non-human animal antibody into upstream of genes encoding CH and CL of a human antibody in the vector for expression of humanized antibody constructed described in the item 3(1). For example, a human chimeric antibody expression vector can be constructed by linking each of cDNAs encoding VH and VL of a non-human animal antibody to a synthetic DNA comprising nucleotide sequences at the 3'-terminals of VH and VL of a non-human animal antibody and nucleotide sequences at the 5'-terminals of CH and CL of a human antibody and also having a recognition sequence of an appropriate restriction enzyme at both terminals, and by cloning them into upstream of genes encoding CH and CL of a human antibody contained in the vector for expression of humanized antibody constructed described in the item 3(1) in such a manner that they can be expressed in a suitable form.

(5) Construction of cDNA encoding V region of human CDR-grafted antibody

[0286] cDNAs encoding VH and VL of a human CDR-grafted antibody can be obtained as follows. First, amino acid sequences of the frameworks (hereinafter referred to as "FR") of VH and VL of a human antibody for grafting CDR of VH and VL of a non-human animal antibody is selected. As the amino acid sequences of FRs of VH and VL of a human antibody, any amino acid sequences can be used so long as they are derived from a human antibody. Examples include amino acid sequences of FRs of VH and VL of human antibodies registered at databases such as Protein Data Bank, amino acid sequences common in each subgroup of FRs of VH and VL of human antibodies (*Sequences of Proteins of Immunological Interest*) and the like. In order to produce a human CDR-grafted antibody having enough activities, it is preferred to select an amino acid sequence having homology as high as possible (at least 60% or more) with amino acid sequences of VH and VL of a non-human animal antibody of interest.

[0287] Next, the amino acid sequences of CDRs of VH and VL of the non-human animal antibody of interest are grafted to the selected amino acid sequences of FRs of VH and VL of a human antibody to design amino acid sequences of VH and VL of the human CDR-grafted antibody. The designed amino acid sequences are converted into DNA sequences by considering the frequency of codon usage found in nucleotide sequences of antibody genes (*Sequences of Proteins of Immunological Interest*), and the DNA sequences encoding the amino acid sequences of VH and VL of the human CDR-grafted antibody are designed. Based on the designed DNA sequences, several synthetic DNAs having a length of about 100 bases are synthesized, and PCR is carried out by using them. In this case, it is preferred in each of the H chain and the L chain that 6 synthetic DNAs are designed in view of the reaction efficiency of PCR and the lengths of DNAs which can be synthesized.

[0288] Also, they can be easily cloned into the vector for expression of humanized antibody described in the item 3 (1) by introducing recognition sequences of an appropriate restriction enzyme into the 5'-terminals of the synthetic DNA on both terminals. After the PCR, the amplified product is cloned into a plasmid such as pBluescript SK(-) (manufactured by Stratagene) and the nucleotide sequences are determined by the method in the item 3(2) to thereby obtain a plasmid having DNA sequences encoding the amino acid sequences of VH and VL of the desired human CDR-grafted antibody.

(6) Construction of human CDR-grafted antibody expression vector

[0289] A human CDR-grafted antibody expression vector can be constructed by cloning the cDNAs encoding VH and VL of the human CDR-grafted antibody constructed in the item 3(5) into upstream of the gene encoding CH and CL of a human antibody in the vector for expression of humanized antibody described in the item 3(1). For example, recognizing sequences of an appropriate restriction enzyme are introduced into the 5'-terminals of both terminals of a synthetic DNA fragment, among the synthetic DNA fragments which are used in the item 3(5) for constructing the VH and VL of the human CDR-grafted antibody, so that they are cloned into upstream of the genes encoding CH and CL of a human antibody in the vector for expression of humanized antibody described in the item 3(1) in such a manner that they can be expressed in a suitable form, to thereby construct the human CDR-grafted antibody expression vector.

(7) Stable production of humanized antibody

10

30

35

50

[0290] A transformant capable of stably producing a human chimeric antibody and a human CDR-grafted antibody (both hereinafter referred to as "humanized antibody") can be obtained by introducing the vectors for humanized antibody expression described in the items 3(4) and (6) into an appropriate animal cell.

[0291] The method for introducing a humanized antibody expression vector into an animal cell includes electroporation [Japanese Published Unexamined Patent Application No. 257891/90, *Cytotechnology*, 3, 133 (1990)] and the like. [0292] As the animal cell into which a humanized antibody expression vector is introduced, any cell can be used so long as it is an animal cell which can produce the humanized antibody.

[0293] Examples include mouse myeloma cells such as NSO cell and SP2/0 cell, Chinese hamster ovary cells such as CHO/dhfr cell and CHO/DG44 cell, rat myeloma such as YB2/0 cell and IR983F cell, BHK cell derived from a syrian hamster kidney, a human myeloma cell such as Namalwa cell, and the like, and a Chinese hamster ovary cell CHO/ DG44 cell, a rat myeloma YB2/0 cell and the host cells of the present invention described in the item 5 are preferred. [0294] After introduction of the humanized antibody expression vector, a transformant capable of stably producing the humanized antibody can be selected by using a medium for animal cell culture comprising an agent such as G418 sulfate (hereinafter referred to as "G418"; manufactured by SIGMA) and the like in accordance with the method described in Japanese Published Unexamined Patent Application No. 257891/90. The medium to culture animal cells includes RPMI 1640 medium (manufactured by Nissui Pharmaceutical), GIT medium (manufactured by Nihon Pharmaceutical), EX-CELL 302 medium (manufactured by JRH), IMDM medium (manufactured by GIBCO BRL), Hybridoma-SFM medium (manufactured by GIBCO BRL), media obtained by adding various additives such as fetal bovine serum (hereinafter referred to as "FBS") to these media, and the like. The humanized antibody can be produced and accumulated in the culture supernatant by culturing the obtained transformant in a medium. The amount pf production and antigen binding activity of the humanized antibody in the culture supernatant can be measured by a method such as enzyme-linked immunosorbent assay (hereinafter referred to as "ELISA"; Antibodies, Monoclonal Antibodies) or the like. Also, the amount of the humanized antibody produced by the transformant can be increased by using a DHFR gene amplification system in accordance with the method described in Japanese Published Unexamined Patent Application No. 257891/90.

[0295] The humanized antibody can be purified from a culture supernatant culturing the transformant by using a protein A column (*Antibodies*, Chapter 8; *Monoclonal Antibodies*). In addition, purification methods generally used for the purification of proteins can also be used. For example, the purification can be carried out through the combination of gel filtration, ion exchange chromatography and ultrafiltration. The molecular weight of the H chain, L chain or antibody molecule as a whole of the purified humanized antibody can be measured, e.g., by polyacrylamide gel electrophoresis [hereinafter referred to as "SDS-PAGE"; *Nature*, 227, 680 (1970)], Western blotting (*Antibodies*, *Monoclonal Antibodie*) or the like.

B. Preparation of Fc fusion protein

(1) Construction of Fc fusion protein expression vector

[0296] An Fc fusion protein expression vector is an expression vector for animal cells into which genes encoding the Fc region of a human antibody and a protein to be fused are inserted, which can be constructed by cloning each of genes encoding the Fc region of a human antibody and the protein to be fused into an expression vector for animal cell. [0297] The Fc region of a human antibody includes those containing a part of a hinge region and/or CH1 in addition to regions containing CH2 and CH3 regions. Also, it can be any Fc region, so long as at least one amino acid of CH2 or CH3 may be deleted, substituted, added or inserted, and substantially has the binding activity to the Fcγ receptor. [0298] As the genes encoding the Fc region of a human antibody and the protein to be fused, a chromosomal DNA comprising an exon and an intron can be used, and a cDNA can also be used. The method for linking the genes and the Fc region includes PCR using each of the gene sequences as the template (Molecular Cloning, Second Edition; Current Protocols in Molecular Biology, Supplement 1-34).

[0299] As the expression vector for animal cell, any vector can be used, so long as a gene encoding the C region of a human antibody can be inserted thereinto and expressed therein. Examples include pAGE107 [Cytotechnology, 3, 133 (1990)], pAGE103 [J. Biochem., 101, 1307 (1987)], pHSG274 [Gene, 27, 223 (1984)], pKCR [Proc. Natl. Acad. Sci. USA, 78, 1527 (1981), pSGI β d2-4 [Cytotechnology, 4, 173 (1990)] and the like. The promoter and enhancer in the expression vector for animal cell include SV40 early promoter and enhancer [J. Biochem., 101, 1307 (1987)], Moloney mouse leukemia virus LTR [Biochem. Biophys. Res. Commun., 149, 960 (1987)], immunoglobulin H chain promoter [Cell, 41, 479 (1985)] and enhancer [Cell, 33, 717 (1983)], and the like.

(2) Preparation of DNA encoding Fc region of human antibody and protein to be fused

[0300] A DNA encoding the Fc region of a human antibody and the protein to be fused can be obtained in the following manner

[0301] A cDNA is synthesized from mRNA extracted from a cell or tissue which expresses the protein of interest to be fused with Fc. The synthesized cDNA is cloned into a vector such as a phage or a plasmid to obtain a cDNA library. A recombinant phage or recombinant plasmid comprising cDNA encoding the protein of interest is isolated from the library using the gene sequence part of the protein of interest as the probe. A full nucleotide sequence of the antibody of interest on the recombinant phage or recombinant plasmid is determined, and a full length amino acid sequence is deduced from the nucleotide sequence.

[0302] As the non-human animal, any animal such as mouse, rat, hamster or rabbit can be used, so long as a cell or tissue can be removed therefrom.

[0303] The method for preparing a total RNA from a cell or tissue includes the guanidine thiocyanate-cesium trifluor-oacetate method [*Methods in Enzymology*, 154, 3 (1987)] and the like, and the method for preparing mRNA from total RNA includes an oligo (dT)-immobilized cellulose column method (*Molecular Cloning*, Second Edition) and the like. In addition, a kit for preparing mRNA from a cell or tissue includes Fast Track mRNA Isolation Kit (manufactured by Invitrogen), Quick Prep mRNA Purification Kit (manufactured by Pharmacia) and the like.

[0304] The method for synthesizing a cDNA and preparing a cDNA library includes the usual methods (*Molecular Cloning*, Second Edition; *Current Protocols in Molecular Biology*, Supplement 1-34); methods using a commercially available kit such as SuperScript™, Plasmid System for cDNA Synthesis and Plasmid Cloning (manufactured by GIB-CO BRL) or ZAP-cDNA Synthesis Kit (manufactured by Stratagene); and the like.

[0305] In preparing the cDNA library, the vector into which a cDNA synthesized by using mRNA extracted from a cell or tissue as the template is inserted may be any vector so long as the cDNA can be inserted. Examples include ZAP Express [Strategies, 5, 58 (1992)], pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)], λzapII (manufactured by Stratagene), λgt10 and λgt11 [DNA Cloning, A Practical Approach, 1, 49 (1985)], Lambda BlueMid (manufactured by Clontech), λExCeII, pT7T3 18U (manufactured by Pharmacia), pcD2 [Mol. Cell. Biol., 3, 280 (1983)], pUC18 [Gene, 33, 103 (1985)] and the like.

[0306] As Escherichia coli into which the cDNA library constructed from a phage or plasmid vector is introduced, any Escherichia coli can be used, so long as the cDNA library can be introduced, expressed and maintained. Examples include XL1-Blue MRF' [Strategies, 5, 81 (1992)], C600 [Genetics, 39, 440 (1954)], Y1088 and Y1090 [Science, 222, 778 (1983)], NM522 (J. Mol. Biol., 166, 1 (1983)], K802 [J. Mol. Biol., 16, 118 (1966)], JM105 [Gene, 38, 275 (1985)] and the like.

[0307] As the method for selecting a cDNA clone encoding the protein of interest from the cDNA library, a colony hybridization or a plaque hybridization using an isotope- or fluorescence-labeled probe can be used (*Molecular Cloning*, Second Edition). The cDNA encoding the protein of interest can also be prepared by preparing primers and using a cDNA synthesized from mRNA or a cDNA library as the template according to PCR.

[0308] The method for fusing the protein of interest with the Fc region of a human antibody includes PCR. For example, synthesized oligo DNAs (primers) are designed at the 5'-terminal and 3'-terminal of the gene sequence encoding the protein of interest, and PCR is carried out to prepare a PCR product. In the same manner, primers are designed for the gene sequence encoding the Fc region of a human antibody to be fused to prepare a PCR product. At this time, the primers are designed in such a manner that the same restriction enzyme site or the same gene sequence is present between the 3'-terminal of the PCR product of the protein to be fused and the 5'-terminal of the PCR product of the Fc region. When it is necessary to modify the amino acids around the linked site, mutation is introduced by using the primer into which the mutation is introduced. PCR is further carried out by using the two kinds of the obtained PCR fragments to link the genes. Also, they can be linked by carrying out ligation after treatment with the same restriction enzyme.

[0309] The nucleotide sequence of the DNA can be determined by digesting the gene sequence linked by the above method with appropriate restriction enzymes, cloning the fragments into a plasmid such as pBluescript SK(-) (manufactured by Stratagene), carrying out analysis by using a generally used nucleotide sequence analyzing method such as the dideoxy method of Sanger *et al.* [*Proc. Natl. Acad Sci. USA*, 74, 5463 (1977)] or an automatic nucleotide sequence analyzer such as ABI PRISM 377 DNA Sequencer (manufactured by Pharmacia).

[0310] Whether or not the obtained cDNA encodes the full length amino acid sequences of the Fc fusion protein containing a secretory signal sequence can be confirmed by deducing the full length amino acid sequence of the Fc fusion protein from the determined nucleotide sequence and comparing it with the amino acid sequence of interest.

(3) Stable production ofFc fusion protein

10

30

35

40

50

55

[0311] A transformant capable of stably producing an Fc fusion protein can be obtained by introducing the Fc fusion

protein expression vector described in the item (1) into an appropriate animal cell.

[0312] The method for introducing the Fc fusion protein expression vector into an animal cell include electroporation [Japanese Published Unexamined Patent Application No. 257891/90, *Cytotechnology*, 3, 133 (1990)] and the like.

[0313] As the animal cell into which the Fc fusion protein expression vector is introduced, any cell can be used, so long as it is an animal cell which can produce the Fc fusion protein.

[0314] Examples include mouse myeloma cells such as NS0 cell and SP2/0 cell, Chinese hamster ovary cells such as CHO/dhfr cell and CHO/DG44 cell, rat myeloma such as YB2/0 cell and IR983F cell, BHK cell derived from a syrian hamster kidney, a human myeloma cell such as Namalwa cell, and the like, and preferred are a Chinese hamster ovary cell CHO/DG44 cell, a rat myeloma YB2/0 cell and the host cells used in the method of the present invention described in the item 1.

[0315] After introduction of the Fc fusion protein expression vector, a transformant capable of stably producing the Fc fusion protein expression vector can be selected by using a medium for animal cell culture comprising an agent such as G418 and the like in accordance with the method described in Japanese Published Unexamined Patent Application No. 257891/90. The medium to culture animal cells includes RPMI 1640 medium (manufactured by Nissui Pharmaceutical), GIT medium (manufactured by Nihon Pharmaceutical), EX-CELL 302 medium (manufactured by JRH), IMDM medium (manufactured by GIBCO BRL), Hybridoma-SFM medium (manufactured by GIBCO BRL), media obtained by adding various additives such as fetal bovine serum to these media, and the like. The Fc fusion protein can be produced and accumulated in the culture medium by culturing the obtained transformant in a medium. The production amount and antigen binding activity of the Fc fusion protein in the culture medium can be measured by a method such as ELISA. Also, the amount of the Fc fusion protein produced by the transformant can be increased by using a *dhfr* gene amplification system in accordance with the method described in Japanese Published Unexamined Patent Application No. 257891/90.

[0316] The Fc fusion protein can be purified from a culture supernatant culturing the transformant using a protein A column (Antibodies, Chapter 8; Monoclonal Antibodies). In addition, purification methods generally used for purifying proteins can also be used. For example, the purification can be carried out through the combination of a gel filtration, an ion exchange chromatography and an ultrafiltration. The molecular weight as a whole of the purified Fc fusion protein molecule can be measured by SDS-PAGE [Nature, 227, 680 (1970)], Western blotting (Antibodies, Chapter 12; Monoclonal Antibodies) or the like.

[0317] Thus, methods for producing an antibody composition using an animal cell as the host cell have been described, but, as described above, it can also be produced by yeast, an insect cell, a plant cell, an animal individual or a plant individual by the same methods on the animal cell.

[0318] When the host cell is capable of preparing the antibody molecule, the antibody composition of the present invention can be prepared by culturing the cell capable of expressing an antibody molecule according to the method described in the above item 1, culturing the cell, and recovering the antibody composition of interest.

4. Measurement of binding activity to human FcyRIIIa

[0319] Binding activity of the antibody composition to FcyRIIIa can be measured by the following technique.

(1) Preparation of human FcyRIIIa

10

30

35

40

50

[0320] FcyRIIIa which can be used includes FcyIIIa present on the cell surface of peripheral blood lymphocyte of a human or non-human animal, FcyIIIa obtained by preparing a gene encoding FcyRIIIa and introducing the gene into a host cell and expressing the FcyR on the cell surface, FcyRIIIa secreted from the cell, and the like.

[0321] A method for preparing a gene encoding FcγRIIIa, introducing the gene into a host cell and expressing the FcγRIIIa on the cell surface, and a method obtaining FcγRIIIa by secreting it from the cell are described below.

[0322] A total RNA or mRNA is prepared from human or non-human animal tissues or cells.

[0323] A commercially available product (e.g., manufactured by Clontech) can be used as the mRNA of human or non-human animal tissues or cells, or it may be prepared from human or non-human animal tissues or cells as follows.

The method for preparing a total RNA from human or non-human animal tissues or cells includes the guanidine thiocyanate-cesium trifluoroacetate method [*Methods in Enzymology*, 154, 3 (1987),], the acidic guanidine thiocyanate phenol chloroform (AGPC) method [*Analytical Biochemistry*, 162, 156 (1987); *Experimental Medicine (Jikken Igaku)*, 9, 193 7 (1991)] and the like.

[0324] Also, the method for preparing mRNA as poly(A)+ RNA from a total RNA includes an oligo(dT)-immobilized cellulose column method (Molecular Cloning, Second Edition) and the like.

[0325] In addition, mRNA can be prepared by using a kit such as Fast Track mRNA Isolation Kit (manufactured by Invitrogen) or Quick Prep mRNA Purification Kit (manufactured by Pharmacia).

[0326] A cDNA library is prepared from a full RNA or mRNA of the prepared human or non-human animal tissue or cell.

- **[0327]** The method for preparing a cDNA library include methods described in *Molecular Cloning*, Second Edition; *Current Protocols in Molecular Biology;* and the like, methods using a commercially available kit such as Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (manufactured by Life Technologies) or ZAP-cDNA Synthesis Kit (manufactured by STRATAGENE), and the like.
- [0328] As the cloning vector for the preparation of the cDNA library, any vector such as a phage vector or a plasmid vector can be used, so long as it is autonomously replicable in *Escherichia coli* K12. Examples include ZAP Express [manufactured by STRATAGENE, *Strategies*, 5, 58 (1992)], pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)], Lambda ZAP II (manufactured by STRATAGENE), λgt10 and λgt11 [DNA Cloning, A Practical Approach, 1, 49 (1985)], λTriplEx (manufactured by Clontech), λExCell (manufactured by Pharmacia), pcD2 [*Mol. Cell. Biol.*, 3, 280 (1983)], pUC18 [*Gene*, 33, 103 (1985)] and the like.
 - [0329] Any microorganism can be used as the host microorganism, and *Escherichia coli* is preferably used. Examples include *Escherichia coli* XL1-Blue MRF' [manufactured by STRATAGENE, *Strategies*, <u>5</u>, 81 (1992)], *Escherichia coli* C600 [*Genetics*, <u>39</u>, 440 (1954)], *Escherichia coli* Y1088 [*Science*, <u>222</u>, 778 (1983)], *Escherichia coli* Y1090 [*Science*, <u>222</u>, 778 (1983)], *Escherichia coli* NM522 [*J. Mol. Biol.*, 166, 1 (1983)], *Escherichia coli* K802 [*J. Mol. Biol.*, <u>16</u>, 118 (1966)], *Escherichia coli* JM105 [*Gene*, 38, 275 (1985)] and the like.
 - [0330] The cDNA library may be used as such in the succeeding analysis, and in order to obtain a full length cDNA as efficient as possible by decreasing the ratio of an infull length cDNA, a cDNA library prepared using the oligo cap method developed by Sugano et al. [Gene, 138, 171 (1994); Gene, 200, 149 (1997); Protein, Nucleic Acid and Enzyme, 41, 603 (1996); Experimental Medicine, 11, 2491 (1993); cDNA Cloning (Yodo-sha) (1996); Methods for Preparing Gene Libraries (Yodo-sha) (1994)] may be used in the following analysis.
 - **[0331]** A gene encoding FcγR can be obtained by preparing primers specific for 5'-terminal and 3'-terminal nucleotide sequences based on the nucleotide sequences of various FcγRIIIa, and amplifying DNA by PCR *[PCR Protocols,* Academic Press (1990)] using a prepared cDNA library as the template.
- [0332] Whether the thus obtained gene is a DNA encoding FcγRIIIa can be confirmed by analyzing it according to the generally used nucleotide sequence analyzing method such as the dideoxy method of Sanger *et al.* [Proc. Natl. Acad. Sci. US.A., 74, 5463 (1977)] or by using a nucleotide sequence analyzer such as ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems).
 - [0333] The nucleotide sequence of a gene encoding FcγRIIIa obtained by the above method includes the nucleotide sequence of FcγRIIIa represented by SEQ ID NO:27.
- 30 [0334] The gene encoding FcγRIIIa can also be obtained based on the determined DNA nucleotide sequence by carrying out chemical synthesis by a DNA synthesizer such as DNA Synthesizer Model 392 manufactured by Perkin Elmer using a phosphoamidite method.
 - [0335] A recombinant vector is prepared by inserting the thus obtained cDNA encoding FcγRIIIa into downstream of the promoter of an appropriate expression vector.
- 35 [0336] A transformant which produces an antibody molecule can be obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
 - [0337] As the host cell, any of yeast, an animal cell, an insect cell, a plant cell or the like can be used, so long as it can express the gene of interest.
 - [0338] As the expression vector, a vector which is autonomously replicable in the above host cell or can be integrated into the chromosome and comprises a promoter at such a position that the DNA encoding the FcyRIIIa of interest can be transferred is used.

40

50

- [0339] When a yeast is used as the host cell, the expression vector includes YEP 13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419) and the like.
- [0340] Any promoter can be used, so long as it can function in yeast. Examples include a promoter of a gene of the glycolytic pathway such as a hexose kinase gene, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, heat shock protein promoter, MF α 1 promoter, CUP 1 promoter and the like.
- [0341] The host cell includes microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces and the like, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans and Schwanniomyces alluvius.
- [0342] As the method for introducing the recombinant vector, any method can be used, so long as it can introduce DNA into yeast. Examples include electroporation [Methods in Enzymology, 194, 182 (1990)], spheroplast method [Proc. Natl. Acad. Sci. USA, 84, 1929 (1978)], lithium acetate method [J. Bacteriol., 153, 163 (1983)], a method described in Proc. Natl. Acad Sci. USA, 75, 1929 (1978) and the like.
- [0343] When an animal cell is used as the host, the expression vector includes pcDNAI, pcDM8 (available from Funakoshi), pAGE107 [Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, <u>3</u>, 133 (1990)], pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pCDM8 [Nature, <u>329</u>, 840 (1987)], pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [J. Biochemistry,

101, 1307 (1987)], pAGE210 and the like.

40

50

[0344] Any promoter can be used, so long as it can function in an animal cell. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a promoter of metallothionein, a heat shock promoter, an SR α promoter and the like. Also, an enhancer of the IE gene of human CMV may be used together with the promoter.

[0345] The host cell includes a human cell such as Namalwa cell, a monkey cell such as COS cell, a Chinese hamster cell such as CHO cell or HBT5637 (Japanese Published Unexamined Patent Application No. 299/88), a rat myeloma cell, a mouse myeloma cell, a cell derived from syrian hamster kidney, an embryonic stem cell, a fertilized egg cell and the like.

[0346] As the method for introducing the recombinant vector, any method can be used, so long as it can introduce DNA into an animal cell. Examples include electroporation [Cytotechnology, 3, 133 (1990)], the calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), the lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)], the injection method (Manipulating the Mouse Embryo, A Laboratory Manual), a method using particle gun (gene gun) (Japanese Patent No. 2606856, Japanese Patent No. 2517813), the DEAE-dextran method [Biomanual Series 4-Gene Transfer and Expression Analysis (Yodo-sha), edited by Takashi Yokota and Kenichi Arai (1994)], the virus vector method (Manipulating Mouse Embryo, Second Edition) and the like.

[0347] When an insect cell is used as the host, the protein can be expressed by the method described in *Current Protocols in Molecular Biology, Baculovirus Expression Vectors, A Laboratory Manual,* W.H. Freeman and Company, New York (1992), *Biol Technology*, 6, 47 (1988) or the like.

[0348] That is, the protein can be expressed by co-introducing a recombinant gene-introducing vector and a baculovirus into an insect cell to obtain a recombinant virus in an insect cell culture supernatant and then infecting the insect cell with the recombinant virus.

[0349] The gene introducing vector used in the method includes pVL1392, pVL1393, pBlueBacIII (all manufactured by Invitrogen) and the like.

[0350] The baculovirus includes *Arctographa californica* nuclear polyhedrosis virus which is infected by an insect of the family *Barathra*.

[0351] The insect cell includes *Spodoptera frugiperda* oocytes Sf9 and Sf21 [Current Protocols in Molecular Biology, Baculovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)], a *Trichoplusia ni* oocyte High 5 (manufactured by Invitrogen) and the like.

30 [0352] The method for co-introducing the recombinant gene-introducing vector and the baculovirus for preparing the recombinant virus includes the calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), the lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] and the like.

[0353] When a plant cell is used as the host, the expression vector includes Ti plasmid, tobacco mosaic virus and the like.

35 [0354] As the promoter, any promoter can be used, so long as it can function in a plant cell. Examples include cauliflower mosaic virus (CaMV) 35S promoter, rice actin 1 promoter and the like.

[0355] The host cell includes plant cells of tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley and the like.

[0356] As the method for introducing the recombinant vector, any method can be used, so long as it can introduce DNA into a plant cell. Examples include a method using *Agrobacterium* (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO94/00977), electroporation (Japanese Published Unexamined Patent Application No. 251887/85), a method using a particle gun (gene gun) (Japanese Patent No. 2606856, Japanese Patent No. 2517813) and the like.

[0357] As the method for expressing a gene, secretion production, expression of a fusion protein with other protein and the like can be carried out in accordance with the method described in *Molecular Cloning*, Second Edition or the like, in addition to the direct expression.

[0358] FcyRIlla can be produced by culturing the thus obtained transformant in a medium to produce and accumulate FcyRIlla in the culture and then recovering it from the resulting culture. The method for culturing the transformant using a medium can be carried out in accordance with a general method which is used for culturing host cells.

[0359] As the medium for culturing a transformant obtained by using yeast as the host, the medium may be either a natural medium or a synthetic medium, so long as it comprises materials such as a carbon source, a nitrogen source and an inorganic salt which can be assimilated by the yeast and culturing of the transformant can be efficiently carried out.

[0360] As the carbon source, those which can be assimilated by the yeast can be used. Examples include carbohydrates such as glucose, fructose, sucrose, molasses containing them, starch and starch hydrolysate; organic acids such as acetic acid and propionic acid; alcohols such as ethanol and propanol; and the like.

[0361] The nitrogen source includes ammonia; ammonium salts of inorganic acid or organic acid such as ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate; other nitrogen-containing compounds;

peptone; meat extract; yeast extract; corn steep liquor; casein hydrolysate; soybean meal; soybean meal hydrolysate; various fermented cells and hydrolysates thereof; and the like.

[0362] The inorganic salt includes potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0363] The culturing is carried out generally under aerobic conditions such as shaking culture or submerged-aeration stirring culture. The culturing temperature is preferably 15 to 40°C, and the culturing time is generally 16 hours to 7 days. During the culturing, the pH is maintained at 3.0 to 9.0. The pH is adjusted with an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia or the like.

[0364] If necessary, an antibiotic such as ampicillin or tetracycline can be added to the medium during the culturing. [0365] When yeast transformed with a recombinant vector obtained by using an inducible promoter as the promoter is cultured, an inducer can be added to the medium, if necessary. For example, when yeast transformed with a recombinant vector obtained using *lac* promoter is cultured, isopropyl-β-D-thiogalactopyranoside can be added to the medium, and when yeast transformed with a recombinant vector obtained using *trp* promoter is cultured, indoleacrylic acid and the like can be added to the medium.

[0366] When a transformant obtained by using an animal cell as the host cell is cultured, the medium includes generally used RPMI 1640 medium [The Journal of the American Medical Association, 199, 519 (1967)], Eagle's MEM medium [Science, 122, 501 (1952)], Dulbecco's modified MEM medium [Virology, 8, 396 (1959)], 199 medium [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] and Whitten's medium [Developmental Engineering Experimentation Manual (Hassei Kogaku Jikken Manual)-Preparation of Transgenic Mice (Kodan-sha), edited by M. Katsuki (1987)], the media to which fetal calf serum, etc, is added, and the like.

[0367] The culturing is carried out generally at a pH of 6.0 to 8.0 and 30 to 40°C for 1 to 7 days in the presence of 5% CO₂. If necessary, an antibiotic such as kanamycin or penicillin can be added to the medium during the culturing. [0368] The medium for the culturing of a transformant obtained by using an insect cell as the host includes generally used TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM medium (manufactured by Life Technologies), ExCell 400 and ExCell 405 (both manufactured by JRH Biosciences), Grace's Insect Medium [Nature, 195, 788 (1962)] and the like.

[0369] The culturing is carried out generally at a medium pH of 6.0 to 7.0 and 25 to 30°C for 1 to 5 days.

30

35

40

50

55

[0370] In addition, antibiotics such as gentamicin can be added to the medium during the culturing, if necessary.

[0371] A transformant obtained by using a plant cell as the host cell can be cultured as a cell or by differentiating it into a plant cell or organ. The medium for culturing the transformant includes generally used Murashige and Skoog (MS) medium and White medium, the media to which a plant hormone such as auxin or cytokinin is added, and the like.

[0372] The culturing is carried out generally at a pH of 5.0 to 9.0 and 20 to 40°C for 3 to 60 days.

[0373] If necessary, an antibiotic such as kanamycin or hygromycin can be added to the medium during the culturing.

[0374] As discussed above, FcyRIIIa can be produced by culturing a transformant derived from a microorganism, an animal cell, an insect cell or a plant cell which comprises a recombinant vector into which a DNA encoding FcyRIIIa is inserted, in accordance with the general culturing method to thereby produce and accumulate FcyRIIIa, and then recovering FcyRIIIa from the culture.

[0375] As the method for expressing Fc γ RIIIa, secretion production, expression of a fusion protein and the like can be carried out in accordance with the method described in *Molecular Cloning*, Second Edition in addition to the direct expression.

[0376] The method for producing Fc γ RIIIa includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, and a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell used or the structure of Fc γ RIIIa produced.

[0377] When FcγRIIIa is produced in a host cell or on a host cell membrane outer envelope, it can be positively secreted extracellularly in accordance with the method of *Paulson et al.* [*J. Biol. Chem.*, 264, 17619 (1989)], the method of Lowe *et al.* [*Proc. Natl. Acad. Sci. USA*, 86, 8227 (1989), *Genes Develop.*, 4, 1288 (1990)], the methods described in Japanese Published Unexamined Patent Application No. 336963/93 and Japanese Published Unexamined Patent Application No. 823021/94 and the like.

[0378] That is, FcyRIIIa of interest can be positively secreted extracellularly from a host cell by inserting a DNA encoding FcyRIIIa and a signal peptide suitable for the expression of FcyRIIIa into an expression vector by using a gene recombination technique, and then expressing the vector.

[0379] Also, its production amount can be increased in accordance with the method described in Japanese Published Unexamined Patent Application No. 227075/90 based on a gene amplification system using a dihydrofolate reductase gene.

[0380] In addition, FcγR can also be produced by using a gene-introduced animal individual (transgenic non-human animal) or a plant individual (transgenic plant) which is constructed by the redifferentiation of an animal or plant cell into which the gene is introduced.

[0381] When the transformant is an animal individual or a plant individual, FcyRIIIa can be produced in accordance with a general method by rearing or cultivating it to thereby produce and accumulate FcyR and then recovering FcyRIIIa from the animal or plant individual.

[0382] The method for producing FcyRIIIa by using an animal individual includes a method in which FcyRIIIa of interest is produced in an animal constructed by introducing a gene in accordance with a known method [American Journal of Clinical Nutrition, 63, 627S (1996); Biol Technology, 9, 830 (1991)].

[0383] In the case of an animal individual, Fc γ RIIIa can be produced by rearing a transgenic non-human animal into which a DNA encoding Fc γ RIIIa is introduced to thereby produce and accumulate Fc γ RIIIa in the animal, and then recovering Fc γ RIIIa from the animal. The place of the animal where Fc γ RIIIa is produced and accumulated includes milk (Japanese Published Unexamined Patent Application No. 309192/88) and eggs of the animal. As the promoter used in this case, any promoter can be used, so long as it can function in an animal. Preferred examples include mammary gland cell-specific promoters such as α casein promoter, β casein promoter, β lactoglobulin promoter and whey acidic protein promoter.

[0384] The method for producing FcγRIIIa by using a plant individual includes a method in which FcγRIIIa is produced by cultivating a transgenic plant into which a DNA encoding FcγR is introduced by a known method [*Tissue Culture (Soshiki Baiyo)*, 20 (1994); *Tissue Culture (Soshiki Baiyo)*, 21 (1995); *Trends in Biotechnology*, 15, 45 (1997)] to produce and accumulate FcγR in the plant, and then recovering FcγRIIIa from the plant.

[0385] Regarding purification of FcγRIIIa produced by a transformant into which a gene encoding FcγRIIIa is introduced, for example, when FcγRIIIa is intracellularly expressed in a dissolved state, the cells after culturing are recovered by centrifugation, suspended in an aqueous buffer and then disrupted using ultrasonic oscillator, French press, Manton Gaulin homogenizer, dynomill or the like to obtain a cell-free extract. A purified product of FcγRIIIa can be obtained from a supernatant obtained by centrifuging the cell-free extract, by using an ordinary enzyme isolation purification technique such as solvent extraction; salting out and desalting with ammonium sulfate, *etc.*; precipitation with an organic solvent; anion exchange chromatography using a resin such as diethylaminoethyl (DEAE)-Sepharose or DIAION HPA-75 (manufactured by Mitsubishi Chemical); cation exchange chromatography using a resin such as S-Sepharose FF (manufactured by Pharmacia); hydrophobic chromatography using a resin such as butyl-Sepharose or phenyl-Sepharose; gel filtration using a molecular sieve; affinity chromatography; chromatofocusing; electrophoresis such as isoelectric focusing; and the like which may be used alone or in combination.

30 [0386] Also, when FcγRIIIa is expressed intracellularly by forming an insoluble body, the cells are recovered, disrupted and centrifuged in the same manner, and the insoluble body of FcγRIIIa is recovered as a precipitation fraction. The recovered insoluble body of FcγRIIIa is solubilized by using a protein denaturing agent. FcγRIIIa is made into a normal three-dimensional structure by diluting or dialyzing the solubilized solution, and then a purified product of FcγRIIIa is obtained by the same isolation purification method.

[0387] When FcyRIIIa is secreted extracellularly, FcyRIIIa or derivatives thereof can be recovered from the culture supernatant. That is, the culture is treated by a similar technique such as centrifugation to obtain a soluble fraction, and a purified preparation of FcyRIIIa can be obtained from the soluble fraction by the same isolation purification method.

40 (2) Measurement of binding activity to FcyRIIIa

10

50

55

[0388] Binding activity of the antibody composition to FcγRIIIa expressed on the cell membrane can be measured by the immunofluorescent method [Cancer Immunol. Immunother., <u>36</u>, 373 (1993)] or the like. Also, binding activity to the purified FcγRIIIa prepared by the method described in the item 4(1) can be measured according to the immunological determination method such as Western staining described in literatures [Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc., (1995); Enzyme Immunoassay (Koso Men-eki Sokutei Ho), 3rd edition, Igaku Shoin (1987), reversed edition; Enzyme Antibody Method (Koso Kotai Ho), Gakusai Kikaku (1985)], RIA (radioimmunoassay), VIA (viroimmunoassay), EIA (enzyme immunoassay), FIA (fluoroimmunoassay) or MIA (metalloimmunoassay), for example, as follows.

[0389] FcγRIIIa is immobilized on a plastic plate for EIA and is allowed to react with a sample containing an antibody composition. Next, an amount of the bound antibody composition is measured by using an appropriate secondary antibody.

[0390] In addition, binding activity to the purified FcγRIIIa can also be measured by a measuring method using biosensor [e.g., BIAcore (manufactured by BIACORE)] [*J. Immunol. Methods*, 200, 121 (1997)], isothermal titration calorimetry [*Proc. Natl. Acad. Sci. US.A.*, 97, 9026 (2000)] or the like.

5. Activity evaluation of antibody composition

[0391] As the method for measuring the amount of the purified antibody composition, its binding activity to an antigen, its binding activity to FcyRIIIa and its effector function, the known method described in *Monoclonal Antibodies, Antibody Engineering* and the like can be used.

[0392] For example, when the antibody composition is a humanized antibody, the binding activity to an antigen, binding activity to an antigen-positive cultured clone and binding activity to FcγRIIIa can be measured by methods such as ELISA and the immunofluorescent method [Cancer Immunol. Immunother., 36, 373 (1993)], measurement using biosensor [for example, using BIAcore (manufactured by BIACORE)] [J. Immnnol. Methods, 200, 121 (1997)], isothermal titration calorimetry method [Proc. Natl. Acad. Sci. USA., 97, 9026 (2000)] and the like. Among the effector functions, the cytotoxic activity against an antigen-positive cultured clone can be evaluated by measuring CDC activity, ADCC activity [Cancer Immunol. Immunother., 36, 373 (1993)] and the like.

6. Analysis of sugar chains of antibody molecule expressed in various cells

[0393] The sugar chain structure binding to an antibody molecule expressed in various cells can be analyzed in accordance with the general analysis of the sugar chain structure of a glycoprotein. For example, the sugar chain which is bound to IgG molecule comprises a neutral sugar such as galactose, mannose, fucose, an amino sugar such as *N*-acetylglucosamine and an acidic sugar such as sialic acid, and can be analyzed by a method such as a sugar chain structure analysis using sugar composition analysis, two dimensional sugar chain mapping or the like.

(1) Analysis of neutral sugar and amino sugar compositions

[0394] The composition analysis of the sugar chain of an antibody molecule can be carried out by acid hydrolysis of sugar chains with trifluoroacetic acid or the like to release a neutral sugar or an amino sugar and measuring the composition ratio.

[0395] Examples include a method using a sugar composition analyzer (BioLC) manufactured by Dionex. The BioLC is an apparatus which analyzes a sugar composition by HPAEC-PAD (high performance anion-exchange chromatography-pulsed amperometric detection) [*J. Liq. Chromatogr.*, 6, 1577 (1983)].

[0396] The composition ratio can also be analyzed by a fluorescence labeling method using 2-aminopyridine. Specifically, the composition ratio can be calculated in accordance with a known method [Agric. Biol. Chem., 55(1), 283 (1991)] by labeling an acid-hydrolyzed sample with a fluorescence by 2-aminopyridylation and then analyzing the composition by HPLC.

(2) Analysis of sugar chain structure

15

30

35

40

50

55

[0397] The sugar chain structure binding to an antibody molecule can be analyzed by the two dimensional sugar chain mapping method [Anal. Biochem., 171, 73 (1988), Biochemical Experimentation Methods 23 - Methods for Studying Glycoprotein Sugar Chains (Japan Scientific Societies Press) edited by Reiko Takahashi (1989)]. The two dimensional sugar chain mapping method is a method for deducing a sugar chain structure by, e.g., plotting the retention time or elution position of a sugar chain by reverse phase chromatography as the X axis and the retention time or elution position of the sugar chain by normal phase chromatography as the Y axis, respectively, and comparing them with those of known sugar chains.

[0398] Specifically, sugar chains are released from an antibody by subjecting the antibody to hydrazinolysis, and the released sugar chains are subjected to fluorescence labeling with 2-aminopyridine (hereinafter referred to as "PA") [J. Biochem., 95, 197 (1984)], and then the sugar chains are separated from an excess PA-treating reagent by gel filtration, and subjected to reverse phase chromatography. Thereafter, each peak of the separated sugar chains are subjected to normal phase chromatography. From these results, the sugar chain structure can be deduced by plotting the results on a two dimensional sugar chain map and comparing them with the spots of a sugar chain standard (manufactured by Takara Shuzo) or a literature [Anal. Biochem., 171, 73 (1988)].

[0399] The structure deduced by the two dimensional sugar chain mapping method can be confirmed by further carrying out mass spectrometry such as MALDI-TOF-MS of each sugar chain.

7. Immunological determination method for identifying sugar chain structure of antibody molecule

[0400] An antibody composition comprises an antibody molecule in which sugar chains binding to the Fc region of the antibody are different in structure. The antibody composition comprising a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain among the total complex *N*-glycoside-linked sugar chains

binding to the Fc region in the antibody composition reducing end can be identified by using the method for analyzing the sugar chain structure binding to an antibody molecule described in the item 6. Also, it can also be identified by an immunological determination method using a lectin.

[0401] The sugar chain structure binding to an antibody molecule can be identified by the immunological determination method using a lectin in accordance with the known immunological determination method such as Western staining, IRA (radioimmunoassay), VIA (viroimmunoassay), EIA (enzymoimmunoassay), FIA (fluoroimmunoassay) or MIA (metalloimmunoassay) described in literatures [Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc. (1995); Immunoassay (Koso Meneki Sokuteiho), 3rd Ed., Igakushoin (1987); Revised Edition, Enzyme Antibody Method (Koso Kotaiho), Gakusai Kikaku (1985)] and the like. A lectin which recognizes the sugar chain structure binding to an antibody molecule comprised in an antibody composition is labeled, and the labeled lectin is allowed to react with a sample antibody composition. Then, the amount of the complex of the labeled lectin with the antibody molecule is measured.

[0402] The lectin used for identifying the sugar chain structure binding to an antibody molecule includes WGA (wheat-germ agglutinin derived from *T. vulgaris*), ConA (cocanavalin A derived from *C. ensiformis*), RIC (toxin derived from *R. communis*), L-PHA (leucoagglutinin derived from *P. vulgaris*), LCA (lentil agglutinin derived from *L. culinaris*), PSA (pea lectin derived from *P. sativum*), AAL (Aleuria aurantia lectin), ACL (Amaranthus caudatus lectin), BPL (Bauhinia purpurea lectin), DSL (Datura stramonium lectin), DBA (Dolichos biflorus agglutinin), EBL (elderberry balk lectin), ECL (Erythrina cristagalli lectin), EEL (Euonymus eoropaeus lectin), GNL (Galanthus nivalis lectin), GSL (Griffonia simplicifolia lectin), HPA (Helix pomatia agglutinin), HHL (Hippeastrum hybrid lectin), Jacalin, LTL (Lotus tetragonolobus lectin), LEL (Lycopersicon esculentum lectin), MAL (Maackia amurensis lectin), MPL (Maclura pomifera lectin), NPL (Narcissus pseudonarcissus lectin), PNA (peanut agglutinin), E-PHA (Phaseolus vulgaris erythroagglutinin), PTL (Psophocarpus tetragonolobus lectin), RCA (Ricinus communis agglutinin), STL (Solanum tuberosum lectin), SJA (Sophora japonica agglutinin), SBA (soybean agglutinin), UEA (Ulex europaeus agglutinin), VVL (Vicia villosa lectin) and WFA (Wisteria floribunda agglutinin).

[0403] It is preferable to use a lectin which specifically recognizes a sugar chain structure wherein fucose binds to the *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain. Examples include *Lens culinaris* lectin LCA (lentil agglutinin derived from *Lens culinaris*), pea lectin PSA (pea lectin derived from *Pisum sativum*), broad bean lectin VFA (agglutinin derived from *Vicia faba*) and *Aleuria aurantia* lectin AAL (lectin derived from *Aleuria aurantia*).

8. Method for measuring binding activity of antibody composition to FcyRIIIa

30

35

40

50

55

[0404] The present invention relates to a method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in an antibody composition by using a measuring method which comprises reacting an antigen with a tested antibody composition to form a complex of the antigen and the antibody composition; contacting the complex with an Fcγ receptor IIIa. Furthermore, the present invention relates to a method for detecting the antibody-dependent cell-mediated cytotoxic activity.

[0405] The measuring method used in the present invention is described below in detail.

[0406] First, an antigen is fixed on a plate, and a sample of antibody composition is allowed to react with it. The resulting complex after the antigen-antibody reaction is allowed to react with human Fcyllla.

[0407] The human FcyRIIIa to be allowed to react is labeled with a label such as an enzyme, a radioisotope or an fluorescent, and the binding activity of the antibody bound to the antigen can be measured by an immunological measuring method.

[0408] The immunological measuring method includes any method which uses an antigen-antibody reaction such as an immunoassay, an immunoblotting, a coagulation reaction, a complement binding reaction, a hemolysis reaction, a precipitation reaction, a colloidal gold method, a chromatography or an immune staining method. Among these, the immunoassay is preferred.

[0409] Also, human Fc γ RIIIa having a tag can be obtained by ligating a nucleotide sequence encoding a short peptide to a gene encoding the human Fc γ RIIIa, and expressing the product by genetic engineering techniques. The tag includes histidine and the like.

[0410] Accordingly, when the above reaction is carried out by using the human FcγRIIIa having a tag, an immunoassay having high sensitivity can be carried out by applying an antibody against the tag after the reaction and labeling the antibody against the tag as described above, or using a labeled antibody which binds to the antibody against the tag.

[0411] Also, human FcγRIIIa having a tag can be obtained by ligating a nucleotide sequence encoding a short peptide to a gene encoding the human FcγRIIIa, and expressing the product by genetic engineering techniques. The tag includes histidine and the like.

[0412] Accordingly, when the above reaction is carried out by using the human FcγRIIIa having a tag, an immunoassay having high sensitivity can be carried out by applying an antibody against the tag after the reaction and labeling

the antibody against the tag as described above, or using a labeled antibody which binds to the antibody against the tag. **[0413]** The detection method of the present invention can also be carried out by directly contacting a sample of antibody composition with FcyRIIIa, without reacting an antigen with the sample of antibody component. For example, a labeled antibody which recognizes the human Fc region can be detected by solid-phasing an antibody against the tag and reacting the antibody with tag-containing FcyRIIIa, followed by reaction with a tested antibody composition.

[0414] The method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end of an antibody composition can be carried out according to the following method.

[0415] First, antibody compositions (standards) necessary for the preparation of a standard curve having a different ratio of a sugar chain in which fucose is not bound to N-acetylglucaomine in the sugar chain reducing end are prepared and the sugar chain analysis of an antibody composition is carried out,. In this case, the concentrations of the antibody compositions are adjusted to the same. Each of the binding activities of the prepared antibody composition samples to Fc γ RIIIa is measured, and a standard curve between the ratio of sugar chain and the binding activity to Fc γ RIIIa is prepared.

[0416] Based on the above standard curve, the binding activity of the antibody composition sample to be measured to FcγRIIIa is measured while keeping the definite concentration of the antibody composition according to a measuring method similar to the above,

[0417] Based on the above standard curve, the binding activity of the antibody composition to Fc γ RIIIa is measured with the same concentration of the sample to be measured according to the measuring method similar to the above, so that the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the sugar chain reducing end in the antibody composition sample can be obtained.

[0418] Furthermore, detection of ADCC activity can be carried out by the following method.

10

30

35

40

45

50

55

[0419] ADCC activities of the standards used for the preparation of the standard curve in the method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the sugar chain reducing end of the above antibody composition are measured. The measuring method includes the method for measuring ADCC described below. Each of binding activities of the prepared antibody composition samples is measured by the above measuring method, and a standard curve between the ADCC activity and the binding activity to FcγRIIIa is prepared.

[0420] Based on the above standard curve, the binding activity of the antibody composition sample to be measured to FcγRIIIa is measured while keeping the definite concentration of the antibody composition according to the measuring method used above, so that the ADCC activity can be obtained. 8 Screening method for antibody composition

[0421] The present invention relates to a method for screening an antibody composition having a higher binding activity to FcRIIIa, which comprises reacting an antigen with a tested antibody, followed by treatment with FcγRIIIa.

[0422] The screening method of the present invention is described below in detail.

[0423] An antigen is fixed on a plate and allowed to react with an antibody to be tested. Human FcγRIIIa is allowed to react with the complex of the antigen-antibody reaction.

[0424] The human FcγRIIIa to be allowed to react is labeled with a label such as an enzyme, a radioisotope or an fluorescent, and the binding activity of the antibody bound to the antigen can be measured by an immunological measuring method.

[0425] The immunological measuring method includes any method which uses an antigen-antibody reaction such as an immunoassay, an immunoblotting, a coagulation reaction, a complement binding reaction, a hemolysis reaction, a precipitation reaction, a colloidal gold method, a chromatography or an immune staining method. Among these, the immunoassay is preferred.

[0426] Also, human FcγRIIIa having a tag can be obtained by ligating a nucleotide sequence encoding a short peptide to a gene encoding the human FcγRIIIa, and expressing the product by genetic engineering techniques. The tag includes histidine and the like.

[0427] Accordingly, when the above reaction is carried out by using the human FcγRIIIa having a tag, an immunoassay having high sensitivity can be carried out by applying an antibody against the tag after the above reaction and labeling the antibody against the tag as described above, or using a labeled antibody which binds to the antibody against the tag.

10. Application of antibody composition of the present invention

[0428] The antibody composition obtained by the screening method of the present invention has high ADCC activity. [0429] An antibody having high ADCC activity is useful for preventing and treating various diseases including cancers, inflammatory diseases, immune diseases such as autoimmune diseases and allergies, cardiovascular diseases and viral or bacterial infections.

[0430] In the case of cancers, namely malignant tumors, cancer cells grow. General anti-tumor agents are characterized by inhibiting the growth of cancer cells. In contrast, an antibody having high ADCC activity can treat cancers by injuring cancer cells through its cell killing effect, and therefore, it is more effective as a therapeutic agent than the

general anti-tumor agents. At present, in regard to therapeutic agents for cancers, an anti-tumor effect of an antibody medicament alone is insufficient, so that it has been taken to chemotherapy [Science, 280, 1197 (1998)]. If higher anti-tumor effect is found by the antibody composition of the present invention alone, the dependency on chemotherapy will be decreased and side effects will be reduced.

[0431] In immune diseases such as inflammatory diseases, autoimmune diseases and allergies, *in vivo* reactions of the diseases are induced by the release of a mediator molecule by immunocytes, so that the allergy reaction can be inhibited by eliminating immunocytes using an antibody having high ADCC activity.

[0432] The cardiovascular diseases include arteriosclerosis and the like. The arteriosclerosis is treated by using balloon catheter at present, but cardiovascular diseases can be prevented and treated by using an antibody having high ADCC activity because growth of arterial cells in restricture after above treatment can be inhibited by using the antibody.

[0433] Various diseases including viral and bacterial infections can be prevented and treated by inhibiting proliferation of cells infected with a virus or bacterium using an antibody having high ADCC activity.

[0434] Specific examples of an antibody which recognizes a tumor-related antigen, an antibody which recognizes an allergy- or inflammation-related antigen, an antibody which recognizes cardiovascular disease-related antigen and an antibody which recognizes a viral or bacterial infection-related antigen are described below.

[0435] The antibody which recognizes a tumor-related antigen includes anti-GD2 antibody [Anticancer Res., 13, 331 (1993)], anti-GD3 antibody [Cancer Immunol. Immunother., 36, 260 (1993)], anti-GM2 antibody [Cancer Res., 54 1511 (1994)], anti-HER2 antibody [Proc. Natl. Acad Sci. USA, 89, 4285 (1992)], anti-GD52 antibody [Proc. Natl. Acad Sci. USA, 89, 4285 (1992)], anti-HM1.24 antibody [Molecular Immunol., 36, 387 (1999)], anti-parathyroid hormone-related protein (PTHrP) antibody [Cancer, 88, 2909 (2000)], anti-basic fibroblast growth factor antibody and anti-FGF8 antibody [Proc. Natl. Acad. Sci. USA, 86, 9911 (1989)], anti-basic fibroblast growth factor receptor antibody and anti-FGF8 receptor antibody [J. Biol. Chem., 265, 16455 (1990)], anti-insulin-like growth factor antibody [J. Neurosci. Res., 40, 647 (1995)], anti-insulin-like growth factor receptor antibody [J. Urology, 160, 2396 (1998)], anti-vascular endothelial cell growth factor antibody [Cancer Res., 57, 4593 (1997)], anti-vascular endothelial cell growth factor receptor antibody [Oncogene, 19, 2138 (2000)] and the like.

[0436] The antibody which recognizes an allergy- or inflammation-related antigen includes anti-interleukin 6 antibody [Immunol. Rev., 127, 5 (1992)], anti-interleukin 6 receptor antibody [Molecular Immunol., 31, 371 (1994)], anti-interleukin 5 antibody [Immunol. Rev., 127, 5 (1992)), anti-interleukin 5 receptor antibody and anti-interleukin 4 antibody [Cytokine, 3, 562 (1991)], anti-interleukin 4 receptor antibody [J. Immunol. Methods, 217, 41 (1998)], anti-tumor necrosis factor antibody [Hybridoma, 13, 183 (1994)], anti-tumor necrosis factor receptor antibody [Molecular Pharmacol., 58, 237 (2000)], anti-CCR4 antibody [Nature, 400, 776 (1999)], anti-chemokine antibody [J. Immuno. Meth., 174, 249 (1994)], anti-chemokine receptor antibody [J. Exp. Med, 186, 1373 (1997)] and the like. The antibody which recognizes a cardiovascular disease-related antigen includes anti-Gpllb/Illa antibody [J. Immunol., 152, 2968 (1994)], anti-platelet-derived growth factor antibody [Science, 253, 1129 (1991)], anti-platelet-derived growth factor receptor antibody [J. Biol. Chem., 272, 17400 (1997)] and anti-blood coagulation factor antibody [Circulation, 101, 1158 (2000)] and the like. [0437] The antibody which recognizes a viral or bacterial infection-related antigen includes anti-gp120 antibody [Structure, 8, 385 (2000)], anti-CD4 antibody [J. Rheumatology, 25, 2065 (1998)], anti-CCR5 antibody and anti-Vero toxin antibody [J. Clin. Microbiol., 37, 396 (1999)] and the like.

30

35

40

50

[0438] These antibodies can be obtained from public organizations such as ATCC (The American Type Culture Collection), RIKEN Gene Bank at The Institute of Physical and Chemical Research and National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, or private reagent sales companies such as Dainippon Pharmaceutical, R & D SYSTEMS, PharMingen, Cosmo Bio and Funakoshi Co., Ltd.

[0439] The antibody composition obtained by the process of the present invention can be administered as various therapeutic agents alone, but generally, it is preferable to provide it as a pharmaceutical formulation produced by an appropriate method well known in the technical field of pharmaceutical, by mixing it with one or more pharmaceutically acceptable carriers.

[0440] It is preferable to select a route of administration which is most effective in treatment. Examples include oral administration and parenteral administration, such as buccal, tracheal, rectal, subcutaneous, intramuscular and intravenous. In the case of an antibody preparation, intravenous administration is preferred.

[0441] The dosage form includes sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.

[0442] The pharmaceutical preparation suitable for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.

[0443] Liquid preparations such as emulsions and syrups can be produced by using, as additives, water; sugars such as sucrose, sorbitol and fructose; glycols such as polyethylene glycol and propylene glycol; oils such as sesame oil, olive oil and soybean oil; antiseptics such as p-hydroxybenzoic acid esters; flavors such as strawberry flavor and

peppermint; and the like.

[0444] Capsules, tablets, powders, granules and the like can be prepared by using, as additives, excipients such as lactose, glucose, sucrose and mannitol; disintegrating agents such as starch and sodium alginate; lubricants such as magnesium stearate and talc; binders such as polyvinyl alcohol, hydroxypropylcellulose and gelatin; surfactants such as fatty acid ester; plasticizers such as glycerine; and the like.

[0445] The pharmaceutical preparation suitable for parenteral administration includes injections, suppositories, sprays and the like.

[0446] Injections may be prepared by using a carrier such as a salt solution, a glucose solution or a mixture thereof. Also, powdered injections can be prepared by freeze-drying the antibody composition in the usual way and adding sodium chloride thereto.

[0447] Suppositories may be prepared by using a carrier such as cacao butter, hydrogenated fat or carboxylic acid. [0448] Also, sprays may be prepared by using the antibody composition as such or using a carrier, *etc.* which do not stimulate the buccal or airway mucous membrane of the patient and can facilitate absorption of the antibody composition by dispersing it as fine particles.

[0449] The carrier includes lactose, glycerine and the like. Depending on the properties of the antibody composition and the carrier, it is possible to produce pharmaceutical preparations such as aerosols and dry powders. In addition, the components exemplified as additives for oral preparations can also be added to the parenteral preparations.

[0450] Although the clinical dose or the frequency of administration varies depending on the objective therapeutic effect, administration method, treating period, age, body weight and the like, it is usually 10 μ g/kg to 20 mg/kg per day and per adult.

[0451] Also, as the method for examining antitumor effect of the antibody composition against various tumor cells, *in vitro* tests include CDC activity measuring method, ADCC activity measuring method and the like, and *in vivo* tests include antitumor experiments using a tumor system in an experimental animal such as a mouse, and the like.

[0452] CDC activity and ADCC activity measurements and antitumor experiments can be carried out in accordance with the methods described in *Cancer Immunology Immunotherapy*, 36, 373 (1993); *Cancer Research*, 54, 1511 (1994) and the like.

[0453] The present invention will be described below in detail based on Examples; however, Examples are only simple illustrations, and the scope of the present invention is not limited thereto.

30 BRIEF DESCRIPTION OF THE DRAWINGS

[0454]

35

55

- Fig. 1 shows photographs of electrophoresis patterns of SDS-PAGE of five kinds of purified anti-GD3 chimeric antibodies (using gradient gel from 4 to 15%). Fig. 1A and Fig. 1B show results of the electrophoresis under non-reducing conditions and under reducing conditions, respectively. Lanes 1 to 7 show electrophoresis patterns of high molecular weight markers, YB2/0-GD3 chimeric antibody, CHO/DG44-GD3 chimeric antibody, SP2/0-GD3 chimeric antibody, NS0-GD3 chimeric antibody (GIT) and low molecular weight markers, respectively.
- Fig. 2 shows binding activities of five kinds of purified anti-GD3 chimeric antibodies to GD3, measured by changing the antibody concentration. The ordinate and the abscissa show the binding activity to GD3 and the antibody concentration, respectively. "o", "•", "□", "■" and "Δ" show the activities of YB2/0-GD3 chimeric antibody, CHO/DG44-GD3 chimeric antibody, SP2/0-GD3 chimeric antibody, NSO-GD3 chimeric antibody (GIT), respectively.
- Fig. 3 shows ADCC activities of five kinds of purified anti-GD3 chimeric antibodies to a human melanoma cell line G-361. The ordinate and the abscissa show the cytotoxic activity and the antibody concentration, respectively. "o", "•", "□", "■" and "Δ" show the activities of YB2/0-GD3 chimeric antibody, CHO/DG44-GD3 chimeric antibody, SP2/0-GD3 chimeric antibody, NSO-GD3 chimeric antibody (302) and NS0-GD3 chimeric antibody (GIT), respectively.
- Fig. 4 shows elution patterns of PA-treated sugar chains prepared from the anti-GD3 chimeric antibody of lot 2, obtained by analyzing them with reverse phase HPLC. The ordinate and the abscissa show the relative fluorescence intensity and the elution time, respectively.
 - Fig. 5 shows binding activities of six kinds of anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosaminethe in the reducing end through α-bond to GD3, measured by changing the antibody concentration. The ordinate and the abscissa show the binding activity to GD3 and the antibody concentration, respectively. "•", "□", "■", "Δ", "▲" and "×" show the activities of anti-GD3 chimeric antibody (50%), anti-GD3 chimeric antibody (45%), anti-GD3 chimeric antibody (29%), anti-GD3 chimeric antibody (7%), respectively.

Fig. 6 shows results of ADCC activities using an effector cell of each doner. Fig. 6A and Fig. 6B show ADCC activities of six kinds of anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosaminethe in the reducing end through α -bond against a human melanoma cell line G-361, using effector cells of the donor A and the doner B, respectively. The ordinate and the abscissa show the cytotoxic activity and the antibody concentration, respectively. "•", " \square ", " \square ", " \square ", " \square ", " \square " and " \times " show the activities of anti-GD3 chimeric antibody (50%), anti-GD3 chimeric antibody (45%), anti-GD3 chimeric antibody (29%), anti-GD3 chimeric antibody (7%), respectively.

Fig. 7 shows the relationship between sugar chain contents in which 1-fucose is not bound to *N*-acetylglucosamine at the reduced end in the doner A and the doner B and the ADCC activities.

Fig. 8 shows elution patterns of PA-treated sugar chains prepared from six kinds of anti-GD3 chimeric antibodies, obtained by analyzing them with reverse phase HPLC. The ordinate and the abscissa show the relative fluorescence intensity and the elution time, respectively.

Fig. 9 shows binding activities of six kinds of anti-CCR4 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosaminethe in the reducing end through α -bond measured by changing the antibody concentration to CCR4. The ordinate and the abscissa show the binding activity to CCR4 and the antibody concentration, respectively. " \blacksquare ", " Δ ", " Δ ", " Δ ", " Δ " and "o" show the activities of anti-CCR4 chimeric antibody (46%), anti-CCR4 chimeric antibody (39%), anti-CCR4 chimeric antibody (27%), anti-CCR4 chimeric antibody (18%), anti-CCR4 chimeric antibody (9%) and anti-CCR4 chimeric antibody (8%), respectively.

Fig. 10 shows ADCC activities of anti-CCR4 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosaminethe in the reducing end through α -bond against CCR4/EL-4 cell, using an effector cell of the donor A. As effector cells, the effector cells derived from donor A were used. The ordinate and the abscissa show the cytotoxic activity and the antibody concentration, respectively. " \blacksquare ", " \triangle ", " \triangle ", " \bullet " and " \bigcirc " show the activities of anti-CCR4 chimeric antibody (46%), anti-CCR4 chimeric antibody (39%), anti-CCR4 chimeric antibody (27%), anti-CCR4 chimeric antibody (18%), anti-CCR4 chimeric antibody (9%) and anti-CCR4 chimeric antibody (8%), respectively.

Fig. 11 shows ADCC activities of anti-CCR4 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosaminethe in the reducing end through α-bond against CCR4/EL-4 cell, using an effector cell of the donor B. As effector cells, the effector cells derived from donor B were used. The ordinate and the abscissa show the cytotoxic activity and the antibody concentration, respectively. "■", "△", "△", "→" and "o" show the activities of anti-CCR4 chimeric antibody (46%), anti-CCR4 chimeric antibody (39%), anti-CCR4 chimeric antibody (27%), anti-CCR4 chimeric antibody (18%), anti-CCR4 chimeric antibody (9%) and anti-CCR4 chimeric antibody (8%), respectively.

Fig. 12 shows construction of plasmids CHFT8-pCR2.1 and YBFT8-pCR2.1.

Fig. 13 shows construction of plasmids CHAc-pBS and YBAc-pBS.

5

10

15

20

25

30

35

40

45

50

55

Fig. 14 shows construction of plasmids CHFTBd-pCR2.1 and YBFT8d-pCR2.1.

Fig. 15 shows construction of plasmids CHAcd-pBS and YBAcd-pBS.

Fig. 16 shows results of determination of an α1,6-fucosyltransferase (FUT8) transcription product in each host cell line using competitive RT-PCR. Amounts of the FUT8 transcription product in each host cell line when rat FUT8 sequence was used as the standard and internal control are shown. "■" and "□" show results when CHO cell line and YB2/0 cell line, respectively, were used as the host cell.

Fig. 17 shows results of evaluation of ADCC activities of anti-CCR4 human chimeric antibodies produced by lectin-resistant cell lines. The ordinate and the abscissa show the cytotoxic activity and the antibody concentration, respectively. "□", "■", "●" and "▲" show the activities of antibodies produced by the clone 5-03, the clone CHO/CCR4-LCA, the clone CHO/CCR4-AAL and the clone CHO/CCR4-PHA, respectively.

Fig. 18 shows results of evaluation of ADCC activities of anti-CCR4 human chimeric antibodies produced by lectin-resistant clones. The ordinate and the abscissa show the cytotoxic activity and the antibody concentration, respectively. "□", "Δ" and "•" show activities of antibodies produced by the clone YB2/0 (KM2760#58-35-16), the clone 5-03 and the clone CHO/CCR4-LCA, respectively.

Fig. 19 shows elution patterns of PA-treated sugar chains prepared from purified anti-CCR4 human chimeric antibodies, obtained by analyzing them with reverse phase HPLC. The ordinate and the abscissa show the relative fluorescence intensity and the elution time, respectively. Fig. 27A, Fig. 27B, Fig. 27C and Fig. 27D show results of analyses of antibodies produced by the clone 5-03, the clone CHO/CCR4-LCA, the clone CHO/CCR4-AAL and the clone CHOLCCR4-PHA, respectively.

Fig. 20 shows the 1st step of construction of an expression vector of CHO cell-derived GMD (6 steps in total).

Fig. 21 shows the 2nd step of construction of the expression vector of CHO cell-derived GMD (6 steps in total).

Fig. 22 shows the 3rd step of construction of the expression vector of CHO cell-derived GMD (6 steps in total).

- Fig. 23 shows the 4th step of construction of the expression vector of CHO cell-derived GMD (6 steps in total).
- Fig. 24 shows the 5th step of construction of the expression vector of CHO cell-derived GMD (6 steps in total).
- Fig. 25 shows the 6th step of construction of the expression vector of CHO cell-derived GMD (6 steps in total).
- Fig. 26 shows resistance of GMD-expressed clone CHO/CCR4-LCA for LCA lectin. The measurement was carried out twice by defining the survival rate of a group of cells cultured without adding LCA lectin as 100%. In the drawing, "249" shows the survival rate of the clone CHO/CCR4-LCA introduced with an expression vector to LCA lectin. GMD shows resistance of the clone CHO/CCR4-LCA introduced with a GMD expression vector pAGE249GMD to LCA lectin.
- Fig. 27 shows ADCC activities of an anti-CCR4 chimeric antibody produced by cells of GMD-expressed clone CHO/CCR4-LCA. The ordinate and the abscissa show the cytotoxic activity and the antibody concentration, respectively.
 - Fig. 28 shows elution patterns of PA-treated sugar chains prepared from an anti-CCR4 human chimeric antibody purified from GMD gene-expressed clone CHO/CCR4-LCA, obtained by analyzing them with reverse phase HPLC. The ordinate and the abscissa show the relative fluorescence intensity and the elution time, respectively.
- Fig. 29 shows a photograph of SDS-PAGE (using 4 to 15% gradient gel) electrophoresis pattern of purified shFc-γRIIIa under reduced conditions. Lane 1 and lane M show electrophoresis patterns of shFcγRIIIa and molecular weight markers, respectively.
 - Fig. 30 shows binding activities of various anti-GD3 chimeric antibodies to shFcγRIIIa. The ordinate and abscissa show the cytotoxic activity and the antibody concentration, respectively. "o" and "•" show the activities of anti-GD3 chimeric antibody (45%) and anti-GD3 chimeric antibody (7%), respectively.
 - Fig. 31 shows binding activities of various anti-fibroblast growth factor-8 (FGF-8) chimeric antibodies to shFcγRIIIa. The ordinate and abscissa show the cytotoxic activity and the antibody concentration, respectively. "o" and "•" show the activities of anti-FGF-8 chimeric antibody (58%) and anti-FGF-8 chimeric antibody (13%), respectively.
- Fig. 32 shows binding activities of various anti-CCR4 chimeric antibodies to shFcγRIIIa. In Fig. 32A, the ordinate and abscissa show the cytotoxic activity and the antibody concentration, respectively. "o", "•", "□", "■", "Δ", "Δ" and "×" show the activities of anti-CCR4 chimeric antibody (87%), anti-CCR4 chimeric antibody (46%), anti-CCR4 chimeric antibody (39%), anti-CCR4 chimeric antibody (27%), anti-CCR4 chimeric antibody (18%), anti-CCR4 chimeric antibody (9%) and anti-CCR4 chimeric antibody (8%), respectively. In Fig. 32B, the ordinate and abscissa show the cytotoxic activity and the ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond, respectively. "•" and "o" show the activities at 40 μg/mL and 4 μg/mL, respectively.
 - Fig. 33 shows binding activities of various anti-CCR4 chimeric antibodies to shFcγRIIIa. The ordinate and abscissa show the cytotoxic activity and the antibody concentration, respectively. "o", "Δ" and "•" show the activities of anti-CCR4 chimeric antibody (87%), anti-CCR4 chimeric antibody (48%) and anti-CCR4 chimeric antibody (8%), respectively
 - Fig. 34 shows ADCC activities of various anti-GD3 chimeric antibodies to human myeloma cell line G-361. The ordinate and abscissa show the cytotoxic activity and the antibody concentration, respectively. "▲" and "•" show the activities of anti-GD3 chimeric antibody (42%) and anti-GD3 chimeric antibody (7%), respectively.
- Fig. 35 shows results of measurement of binding activities of FGF-8/Fc fusion proteins to KM1334. The ordinate and abscissa show the binding activity and the antibody concentration, respectively. "■" and "o" show the activities of FGF-8/Fc fusion proteins produced by the cell line YB2/0 and the cell line CHO/DG44, respectively, as the host cell.
 - Fig. 36 shows results of measurement of binding activities of various FGF-8/Fc fusion proteins to shFcγRIIIa(V). The ordinate and abscissa show the binding activity and the antibody concentration, respectively. "■" and "o" show the activities of FGF8/Fc fusion proteins produced by the cell line YB2/0 and the cell line CHO/DG44, respectively, as the host cell.
 - Fig. 37 show a construction step of a plasmid CHO-GMD in which the 5'-terminal of a clone 34-2 is introduced into the 5'-terminal of a CHO cell-derived GMD cDNA clone 22-8.
- Fig. 38 shows construction steps of plasmid pKANTEX1334H and pKANTEX 1334.

55

45

5

10

20

35

Best Mode for Carrying Out the Invention

Example 1

10

30

35

40

50

55

- 5 Preparation of anti-ganglioside GD3 human chimeric antibody:
 - 1. Construction of tandem expression vector pChi641LHGM4 for anti-ganglioside GD3 human chimeric antibody

[0455] A plasmid pChi641LGM40 was constructed by ligating a fragment of about 4.03 kb containing an L chain cDNA, obtained by digesting an L chain expression vector pChi641LGM4 [*J. Immunol. Methods*, 167, 271 (1994)] for anti-ganglioside GD3 human chimeric antibody (hereinafter referred to as "anti-GD3 chimeric antibody") with restriction enzymes *Mlu*I (manufactured by Takara Shuzo) and *Sal*I (manufactured by Takara Shuzo) with a fragment of about 3.40 kb containing a G418-resistant gene and a splicing signal, obtained by digesting an expression vector pAGE107 [*Cytotechnology*, 3, 133 (1990)] for animal cell with restriction enzymes *Mlu*I (manufactured by Takara Shuzo) and *Sal*I (manufactured by Takara Shuzo) using DNA Ligation Kit (manufactured by Takara Shuzo), and then transforming *E. coli* HB101 (*Molecular Cloning*, Second Edition) with the ligated product.

[0456] Next, a fragment of about 5.68 kb containing an L chain cDNA, obtained by digesting the constructed plasmid pChi641LGM40 with a restriction enzyme *Cla*l (manufactured by Takara Shuzo), changing it to blunt-end using DNA Blunting Kit (manufactured by Takara Shuzo) and further digesting it with *Mlu*l (manufactured by Takara Shuzo), was ligated with a fragment of about 8.40 kb containing an H chain cDNA, obtained by digesting an anti-GD3 chimeric antibody H chain expression vector pChi641HGM4 [J. *Immunol*. Methods, 167, 271 (1994)] with a restriction enzyme *Xho*l (manufactured by Takara Shuzo), changing it to blunt-end using DNA Blunting Kit (manufactured by Takara Shuzo) and further digesting it with *Mlu*l (manufactured by Takara Shuzo) using DNA Ligation Kit (manufactured by Takara Shuzo), and then *E. coli* HB101 (*Molecular Cloning*, Second Edition) was transformed with the ligated product to thereby construct a tandem expression vector pChi641LHGM4 for anti-GD3 chimeric antibody.

2. Preparation of cell stably producing anti-GD3 chimeric antibody

[0457] Cells capable of stably producing an anti-GD3 chimeric antibody were prepared by introducing the tandem expression vector pChi641LHGM4 for anti-GD3 chimeric antibody constructed in the item 1 of Example 1 and selecting suitable clones, as described below.

(1) Preparation of producing cell using rat myeloma YB2/0 cell

[0458] After introducing 5 μ g of the anti-GD3 chimeric antibody expression vector pChi641LHGM4 into 4×10^6 cells of rat myeloma YB2/0 [ATCC CRL-1662, *J. Cell. Biol.*, 93, 576 (1982)] by electroporation [*Cytotechnology*, 3, 133 (1990)], the cells were suspended in 40 ml of RPMI1640-FBS(10) (RPMI1640 medium comprising 10% (fetal bovine serum (hereinafter referred to as "FBS") (manufactured by GIBCO BRL)) and dispensed at 200 μ l/well into a 96 well culture plate (manufactured by Sumitomo Bakelite). After culturing at 37°C for 24 hours in a 5% CO₂ incubator, G418 was added to give a concentration of 0.5 mg/ml, followed by culturing for 1 to 2 weeks. The culture supernatant was recovered from wells in which colonies of transformants showing G418 resistance were formed and growth of colonies was observed, and the antigen binding activity of the anti-GD3 chimeric antibody in the supernatant was measured by the ELISA shown in the item 3 of Example 1.

[0459] Regarding the transformants in wells in which production of the anti-GD3 chimeric antibody was observed in culture supernatants, in order to increase the amount of the antibody production using a DHFR gene amplification system, each of them was suspended in the RPMI1640-FBS(10) medium comprising 0.5 mg/ml G418 and 50 nmol/L DHFR inhibitor, methotrexate (hereinafter referred to as "MTX"; manufactured by SIGMA) to give a density of 1 to 2×10⁵ cells/ml, and the suspension was dispensed at 2 ml into each well of a 24 well plate (manufactured by Greiner). Transformants showing 50 nmol/L MTX resistance were induced by culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator. The antigen binding activity of the anti-GD3 chimeric antibody in culture supernatants in wells in which growth of transformants was observed was measured by the ELISA shown in the item 3 of Example 1. Regarding the transformants in wells in which production of the anti-GD3 chimeric antibody was observed in culture supernatants, the MTX concentration was increased to 100 nmol/L and then to 200 nmol/L, and transformants capable of growing in the RPMI1640-FBS(10) medium comprising 0.5 mg/ml G418 and 200 nmol/L MTX and capable of producing the anti-GD3 chimeric antibody in a large amount were finally obtained by the same method as described above. Among the obtained transformants, suitable clones were selected and were made into a single cell (cloning) by limiting dilution twice.

[0460] The obtained anti-GD3 chimeric antibody-producing transformed cell clone 7-9-51 has been deposited on April 5, 1999, as FERM BP-6691 in National Institute of Bioscience and Human Technology, Agency of Industrial Sci-

ence and Technology (Higashi 1-1-3, Tsukuba, Ibaraki, Japan) (present name: International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1, Higashi 1-Chome Tsukuba-shi, Ibaraki-ken, Japan))

5 (2) Preparation of producing cell using CHO/DG44 cell

10

30

40

50

55

[0461] After introducing 4 μ g of the anti-GD3 chimeric antibody expression vector pChi641LHGM4 into 1.6 \times 10⁶ cells of CHO/DG44 cell [*Proc. Natl. Acad Sci. USA, 77,* 4216 (1980)] by electroporation [*Cytotechnology,* 3, 133 (1990)], the cells were suspended in 10 ml of IMDM-FBS(10)-HT(1) [IMDM medium comprising 10% FBS and I x concentration of HT supplement (manufactured by GIBCO BRL)] and dispensed at 200 μ I/well into a 96 well culture plate (manufactured by Iwaki Glass). After culturing at 37°C for 24 hours in a 5% CO₂ incubator, G418 was added to give a concentration of 0.5 mg/ml, followed by culturing for 1 to 2 weeks. The culture supernatant was recovered from wells in which colonies of transformants showing G418 resistance were formed and growth of colonies was observed, and the antigen binding activity of the anti-GD3 chimeric antibody in the supernatant was measured by the ELISA shown in the item 3 of Example 1.

[0462] Regarding the transformants in wells in which production of the anti-GD3 chimeric antibody was observed in culture supernatants, in order to increase the amount of the antibody production using a DHFR gene amplification system, each of them was suspended in an IMDM-dFBS(10) medium [IMDM medium comprising 10% dialyzed fetal bovine serum (hereinafter referred to as "dFBS"; manufactured by GIBCO BRL)] comprising 0.5 mg/ml G418 and 10 nmol/L MTX to give a density of 1 to 2×10^5 cells/ml, and the suspension was dispensed at 0.5 ml into each well of a 24 well plate (manufactured by lwaki Glass). Transformants showing 10 nmol/L MTX resistance were induced by culturing at 37°C for 1 to 2 weeks in a 5% $\rm CO_2$ incubator. Regarding the transformants in wells in which their growth was observed, the MTX concentration was increased to 100 nmol/L, and transformants capable of growing in the IMDM-dFBS(10) medium comprising 0.5 mg/ml G418 and 100 nmol/L MTX and of producing the anti-GD3 chimeric antibody in a large amount were finally obtained by the same method as described above. Among the obtained transformants, suitable clones were selected and were made into a single cell (cloning) by limiting dilution twice.

(3) Preparation of producing cell using mouse myeloma NS0 cell

[0463] After introducing 5 μ g of the anti-GD3 chimeric antibody expression vector pChi641LHGM4 into 4×10^6 cells of mouse myeloma NS0 by electroporation [Cytotechnology, 3, 133 (1990)], the cells were suspended in 40 ml of EX-CELL302-FBS(10) [EX-CELL302 medium comprising 10% FBS and 2 mmol/L L-glutamine (hereinafter referred to as "L-Gln"; manufactured by GIBCO BRL)] and dispensed at 200 μ l/well into a 96 well culture plate (manufactured by Sumitomo Bakelite). After culturing at 37°C for 24 hours in a 5% CO₂ incubator, G418 was added to give a concentration of 0.5 mg/ml, followed by culturing for 1 to 2 weeks. The culture supernatant was recovered from wells in which colonies of transformants showing G418 resistance were formed and growth of colonies was observed, and the antigen binding activity of the anti-GD3 chimeric antibody in the supernatant was measured by the ELISA shown in the item 3 of Example 1.

[0464] Regarding the transformants in wells in which production of the anti-GD3 chimeric antibody was observed in culture supernatants, in order to increase the amount of the antibody production using a DHFR gene amplification system, each of them was suspended in an EX-CELL302-dFBS(10) medium (EX-CELL302 medium comprising 10% dFBS and 2 mmol/L L-Gln) comprising 0.5 mg/ml G418 and 50 nmol/L MTX to give a density of 1 to 2×10⁵ cells/ml, and the suspension was dispensed at 2 ml into each well of a 24 well plate (manufactured by Greiner). Transformants showing 50 nmol/L MTX resistance were induced by culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator. The antigen binding activity of the anti-GD3 chimeric antibody in culture supernatants in wells in which growth of transformants was observed was measured by the ELISA shown in the item 3 of Example 1. Regarding the transformants in wells in which production of the anti-GD3 chimeric antibody was observed in culture supernatants, the MTX concentration was increased to 100 nmol/L and then to 200 nmol/L, and transformants capable of growing in the EX-CELL302-dFBS(10) medium comprising 0.5 mg/ml G418 and 200 nmol/L MTX and of producing the anti-GD3 chimeric antibody in a large amount was finally obtained by the same method as described above. Among the obtained transformants, suitable clones were selected and were made into a single cell (cloning) by limiting dilution twice. Also, using the method for determining the transcription product of an α1,6-fucosyltransferase gene shown in Example 9, a clone producing a relatively small amount of the transcription product was selected and used as a suitable clone.

3. Measurement of binding activity of antibody to GD3 (ELISA)

[0465] The binding activity of the antibody to GD3 was measured as described below.

[0466] In 2 ml of an ethanol solution containing 10 µg of dipalmitoylphosphatidylcholine (manufactured by SIGMA)

and 5 μ g of cholesterol (manufactured by SIGMA), 4 nmol of GD3 (manufactured by Snow Brand Milk Products) was dissolved. Into each well of a 96 well plate for ELISA (manufactured by Greiner), 20 μ l of the solution (40 pmol/well in final concentration) was dispensed, followed by air-drying, 1% bovine serum albumin (hereinafter referred to as "BSA"; manufactured by SIGMA)-containing PBS (hereinafter referred to as "1% BSA-PBS") was dispensed at 100 μ l/well, and then the reaction was carried out at room temperature for 1 hour to block remaining active groups. After discarding 1% BSA-PBS, a culture supernatant of a transformant or a diluted solution of a human chimeric antibody was dispensed at 50 μ l/well to carry out the reaction at room temperature for 1 hour. After the reaction, each well was washed with 0.05% Tween 20 (manufactured by Wako Pure Chemical Industries)-containing PBS (hereinafter referred to as "Tween-PBS"), a peroxidase-labeled goat anti-human IgG (H & L) antibody solution (manufactured by American Qualex) diluted 3,000 times with 1% BSA-PBS was dispensed at 50 μ l/well as a secondary antibody solution, and then the reaction was carried out at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, ABTS substrate solution [solution prepared by dissolving 0.55 g of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) ammonium salt in 1 liter of 0.1 mol/L citrate buffer (pH 4.2) and adding 1 μ l/ml of hydrogen peroxide to the solution just before use (hereinafter the same solution was used)] was dispensed at 50 μ l/well for color development, and then absorbance at 415 nm (hereinafter referred to as "OD415") was measured.

4. Purification of anti-GD3 chimeric antibody

10

30

35

40

50

55

(1) Culturing of producing cell derived from YB2/0 cell and purification of antibody

[0467] The anti-GD3 chimeric antibody-producing transformed cell clone obtained in the item 2(1) of Example 1 was suspended in the Hybridoma-SFM medium comprising 0.2% BSA, 200 nmol/L MTX and 100 nmol/L triiodothyronine (hereinafter referred to as "T3"; manufactured by SIGMA) to give a density of 3×10^5 cells/ml and cultured in a 2.0 liter bottle (manufactured by lwaki Glass) under stirring at a rate of 50 rpm. After culturing at 37°C for 10 days in a temperature-controlling room, the culture supernatant was recovered. The anti-GD3 chimeric antibody was purified from the culture supernatant using a Prosep-A (manufactured by Bioprocessing) column in accordance with the manufacture's instructions. The purified anti-GD3 chimeric antibody was named YB2/0-GD3 chimeric antibody.

(2) Culturing of producing cell derived from CHO/DG44 cell and purification of antibody

[0468] The anti-GD3 chimeric antibody-producing transformed cell clone obtained in the item 2(2) of Example 1 was suspended in the EX-CELL302 medium comprising 3 mmol/L L-Gln, 0.5% fatty acid concentrated solution (hereinafter referred to as "CDLC"; manufactured by GIBCO BRL) and 0.3% Pluronic F68 (hereinafter referred to as "PF68"; manufactured by GIBCO BRL) to give a density of 1×10^6 cells/ml, and the suspension was dispensed at 50 ml into 175 mm² flasks (manufactured by Greiner). After culturing at 37°C for 4 days in a 5% CO $_2$ incubator, the culture supernatant was recovered. The anti-GD3 chimeric antibody was purified from the culture supernatant using a Prosep-A (manufactured by Bioprocessing) column in accordance with the manufacture's instructions. The purified anti-GD3 chimeric antibody was named CHO/DG44-GD3 chimeric antibody.

(3) Culturing of producing cell derived from NS0 cell and purification of antibody

[0469] The anti-GD3 chimeric antibody-producing transformed cell clone obtained in the item 2(3) of Example I was suspended in the EX-CELL302 medium comprising 2 mmol/L L-Gln, 0.5 mg/ml G418, 200 nmol/L MTX and 1% FBS, to give a density of 1×10^6 cells/ml, and the suspension was dispensed at 200 ml into 175 mm² flasks (manufactured by Greiner). After culturing at 37°C for 4 days in a 5% CO₂ incubator, the culture supernatant was recovered. The anti-GD3 chimeric antibody was purified from the culture supernatant using a Prosep-A (manufactured by Bioprocessing) column in accordance with the manufacture's instructions. The purified anti-GD3 chimeric antibody was named NS0-GD3 chimeric antibody (302).

[0470] Also, the transformed cell clone was suspended in the GIT medium comprising 0.5 mg/ml G418 and 200 nmol/L MTX to give a density of 3×10⁵ cells/ml, and the suspension was dispensed at 200 ml into 175 mm² flasks (manufactured by Greiner). After culturing at 37°C for 10 days in a 5% CO₂ incubator, the culture supernatant was recovered. The anti-GD3 chimeric antibody was purified from the culture supernatant using a Prosep-A (manufactured by Bioprocessing) column in accordance with the manufacture's instructions. The purified anti-GD3 chimeric antibody was named NSO-GD3 chimeric antibody (GIT).

(4) Culturing of producing cell derived from SP2/0 cell and purification of antibody

[0471] The anti-GD3 chimeric antibody-producing transformed cell clone (KM-871 (FERM BP-3512)) described in

Japanese Published Unexamined Patent Application No. 304989/93 (EP 533199) was suspended in the GIT medium comprising 0.5 mg/ml G418 and 200 nmol/L MTX to give a density of 3×10^5 cells/ml, and the suspension was dispensed at 200 ml into 175 mm² flasks (manufactured by Greiner). After culturing at 37°C for 8 days in a 5% CO $_2$ incubator, the culture supernatant was recovered. The anti-GD3 chimeric antibody was purified from the culture supernatant using a Prosep-A (manufactured by Bioprocessing) column in accordance with the manufacture's instructions. The purified anti-GD3 chimeric antibody was named SP2/0-GD3 chimeric antibody.

5. Analysis of purified anti-GD3 chimeric antibody

[0472] In accordance with a known method [Nature, 227, 680 (1970)], 4 µg of each of the five kinds of the anti-GD3 chimeric antibodies produced by and purified from respective animal cells, obtained in the item 4 of Example 1, was subjected to SDS-PAGE to analyze the molecular weight and purity. The results are shown in Fig. 1. As shown in Fig. 1, a single band of about 150 kilodaltons (hereinafter referred to as "Kd") in molecular weight was found under non-reducing conditions, and two bands of about 50 Kd and about 25 Kd under reducing conditions, in each of the purified anti-GD3 chimeric antibodies. The molecular weights almost coincided with the molecular weights deduced from the cDNA nucleotide sequences of H chain and L chain of the antibody (H chain: about 49 Kd, L chain: about 23 Kd, whole molecule: about 144 Kd), and also coincided with the reports stating that the IgG antibody has a molecular weight of about 150 Kd under non-reducing conditions and is degraded into H chains having a molecular weight of about 50 Kd and L chains having a molecular weight of about 25 Kd under reducing conditions due to cutting of the disulfide bond (hereinafter referred to as "S-S bond") in the molecule (Antibodies, Chapter 14; Monoclonal Antibodies), so that it was confirmed that each anti-GD3 chimeric antibody was expressed and purified as an antibody molecule having the true structure.

Example 2

10

25

40

45

50

Activity evaluation of anti-GD3 chimeric antibody:

1. Binding activity of anti-GD3 chimeric antibody to GD3 (ELISA)

[0473] Binding activities of the five kinds of the purified anti-GD3 chimeric antibodies obtained in the item 4 of Example 1 to GD3 were measured by the ELISA shown in the item 3 of Example 1. Fig. 2 shows results of the examination of the binding activity measured by changing the concentration of the anti-GD3 chimeric antibody to be added. As shown in Fig. 2, the five kinds of the anti-GD3 chimeric antibodies showed almost the same binding activity to GD3. The result shows that antigen binding activities of these antibodies are constant independently of the antibody-producing animal cells and their culturing methods. Also, it was suggested from the comparison of the NSO-GD3 chimeric antibody (302) with the NSO-GD3 chimeric antibody (GIT) that the antigen binding activities are constant independently of the media used in the culturing.

2. ADCC activity of anti-GD3 chimeric antibody

[0474] ADCC activities of the five kinds of the purified anti-GD3 chimeric antibodies obtained in the item 4 of Example 1 were measured in accordance with the following method.

(1) Preparation of target cell solution

[0475] A human melanoma cell line G-361 (ATCC CRL 1424) was cultured in the RPMI1640-FBS(10) medium to prepare 1×10^6 cells, and the cells were radioisotope-labeled by reacting them with 3.7 MBq equivalents of a radioactive substance Na₂⁵¹CrO₄ at 37°C for 1 hour. After the reaction, the cells were washed three times through their suspension in the RPMI1640-FBS(10) medium and centrifugation, resuspended in the medium and then allowed to react at 4°C for 30 minutes on ice for spontaneous dissolution of the radioactive substance. After centrifugation, the precipitate was adjusted to 2×10^5 cells/ml by adding 5 ml of the RPMI1640-FBS(10) medium and used as the target cell solution.

(2) Preparation of effector cell solution

[0476] From a healthy doner, 50 ml of venous blood was collected, and gently mixed with 0.5 ml of heparin sodium (manufactured by Takeda Pharmaceutical). The mixture was centrifuged to isolate a mononuclear cell layer using Lymphoprep (manufactured by Nycomed Pharma AS) in accordance with the manufacture's instructions. After washing with the RPMC1640-FBS(10) medium by centrifugation three times, the resulting precipitate was re-suspended to give

a density of 2×10⁶ cells/ml by using the medium and used as the effector cell solution.

(3) Measurement of ADCC activity

[0477] Into each well of a 96 well U-shaped bottom plate (manufactured by Falcon), $50 \,\mu$ I of the target cell solution prepared in the above (1) (1×10^4 cells/well) was dispensed. Next, $100 \,\mu$ I of the effector cell solution prepared in the above (2) was added thereto (2×10^5 cells/well, the ratio of effector cells to target cells becomes 20:1). Subsequently, each of the anti-GD3 chimeric antibodies was added at various concentrations, followed by reaction at 37° C for 4 hours. After the reaction, the plate was centrifuged, and the amount of 51 Cr in the supernatant was measured with a γ -counter. The amount of spontaneously released 51 Cr was calculated by the same operation using only the medium instead of the effector cell solution and the antibody solution, and measuring the amount of 51 Cr in the supernatant. The amount of total released 51 Cr was calculated by the same operation as above using only the medium instead of the antibody solution and adding I N hydrochloric acid instead of the effector cell solution, and measuring the amount of 51 Cr in the supernatant. The ADCC activity was calculated from the following equation (I):

ADCC activity (%) = $\frac{^{51}\text{Cr in sample supernatant - spontaneously released}}{\text{total released}} \frac{^{51}\text{Cr}}{\text{cr - spontaneously released}} \times 100$ (1)

[0478] The results are shown in Fig. 3. As shown in Fig. 3, among the five kinds of the anti-GD3 chimeric antibodies, the YB2/0-GD3 chimeric antibody showed the highest ADCC activity, followed by the SP2/0-GD3 chimeric antibody, NSO-GD3 chimeric antibody and CHO-GD3 chimeric antibody in that order. No difference in the ADCC activity was found between the NSO-GD3 chimeric antibody (302) and NSO-GD3 chimeric antibody (GIT) prepared by using different media in the culturing. The above results show that the ADCC activity of antibodies greatly varies depending on the kind of the animal cells to be used in their production. As its mechanism, since their antigen binding activities were equal, it was considered that ADCC activity depends on a difference in the structure of the Fc region of the antibody.

Example 3

10

15

20

35

40

45

50

55

30 [0479] Activity evaluation of anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end:

1. Preparation of anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond

[0480] In accordance with the method described in the item 2(1) of Example 1, some transformed clones derived from YB2/0 cell capable of producing an anti-GD3 chimeric antibody was obtained. Antibodies were prepared from the transformed clones derived from YB2/0 cell and named lot 1, lot 2 and lot 3. Sugar chain analysis of the anti-GD3 chimeric antibodies of lot 1, lot 2 and lot 3 was carried out by the following method.

[0481] The solution of each purified antibody was exchanged to 10 mmol/L KH₂PO₄ using Ultra Free 0.5-10K (manufactured by Millipore). The exchange was carried out in such a manner that the exchanging ratio became 80-fold or more.

[0482] Into Hydraclub S-204 test tube, 100 µg of each antibody was put and dried with a centrifugal evaporator. The dried sample was subjected to hydrazinolysis using Hydraclub manufactured by Hohnen. The sample was allowed to react with hydrazine at 110°C for 1 hour using a hydrazinolysis reagent manufactured by Hohnen [Method of Enzymology, 83, 263 (1982)]. After the reaction, hydrazine was evaporated under a reduced pressure, and the reaction tube was returned to room temperature by allowing it to stand for 30 minutes. Next, 250 μl of an acetylation reagent manufactured by Hohnen and 25 µl of acetic anhydride were added thereto, followed by thoroughly stirred for reaction at room temperature for 30 minutes. Then, 250 µl of the acetylation reagent and 25 µl of acetic anhydride were further added thereto, followed by thoroughly stirring for reaction at room temperature for 1 hour. The sample was frozen at -80°C in a freezer and freeze-dried for about 17 hours. Sugar chains were recovered from the freeze-dried sample by using Cellulose Cartridge Glycan Preparation Kit manufactured by Takara Shuzo. The sample sugar chain solution was dried with a centrifugal evaporator and then subjected to fluorescence labeling with 2-aminopyridine [J. Biochem., 95, 197 (1984)]. The 2-aminopyridine solution was prepared by adding 760 μ l of HCl per 1 g of 2-aminopyridine (1 imesPA solution) and diluting the solution 10-fold with reverse osmosis purified water (10-fold diluted PA solution). The sodium cyanoborohydride solution was prepared by adding 20 μl of 1 × PA solution and 430 μl of reverse osmosis purified water per 10 mg of sodium cyanoborohydride. To the sample, 67 μl of a 10 fold-diluted PA solution was added, followed by reaction at 100°C for 15 minutes and spontaneously cooled, and 2 μl of sodium cyanoborohydride was

further added thereto, followed by reaction at 90°C for 12 hours for fluorescence labeling of the sample sugar chains. The fluorescence-labeled sugar chain group (PA-treated sugar chain group) was separated from excess reagent by using Superdex Peptide HR 10/30 column (manufactured by Pharmacia). This step was carried out by using 10 mmol/L ammonium bicarbonate as the eluent at a flow rate of 0.5 ml/min and at a column temperature of room temperature, and using a fluorescence detector of 320 nm excitation wavelength and 400 nm fluorescence wavelength. The eluate was recovered 20 to 30 minutes after addition of the sample and dried with a centrifugal evaporator to be used as purified PA-treated sugar chains.

[0483] Next, reverse phase HPLC analysis of the purified PA-treated sugar chains was carried out by using CLC-ODS column (manufactured by Shimadzu, ϕ 6.0 nm \times 159 nm). The step was carried out at a column temperature of 55°C and at a flow rate of 1 ml/min and using a fluorescence detector of 320 nm excitation wavelength and 400 nm fluorescence wavelength. The column was equilibrated with a 10 mmol/L sodium phosphate buffer (pH 3.8) and elution was carried out for 80 minutes by a 0.5% 1-butanol linear density gradient. Fig. 4 shows elution patterns of the purified PA-treated sugar chains of the anti-GD3 antibody of lot 2. Each of the PA-treated sugar chain was identified by post source decay analysis of each peak of the separated PA-treated sugar chains using matrix-assisted laser ionization type of flight mass spectrometry (MALDI-TOF-MS analysis), comparison of elution positions with standards of PA-treated sugar chain manufactured by Takara Shuzo, and reverse phase HPLC analysis after digestion of each PA-treated sugar chain using various enzymes.

10

25

35

[0484] The sugar chain content was calculated from each of the peak area of PA-treated sugar chain by reverse HPLC analysis. A PA-treated sugar chain whose reducing end is not *N*-acetylglucosamine was excluded from the peak area calculation, because it is an impurity or a by-product during preparation of PA-treated sugar chain. Peaks (i) to (ix) in the figure show the following structures (1) to (9), respectively.

GlcNAc β 1 — 2Man α 1

6

Man β 1 — 4GlcNAc β 1 — 4GlcNAc — PA

GlcNAc β 1 — 2Man α 1

Gal β 1—4GlcNAc β 1—2Man α 1

Man β 1—4GlcNAc β 1—4GlcNAc—PA

GlcNAc β 1—2Man α 1

GlcNAc β 1—2Man α 1

GlcNAc β 1 — 2Man α 1

GlcNAc β 1 — 2Man α 1

Man β 1 — 4GlcNAc β 1 — 4GlcNAc — PA

Gal β 1 — 4GlcNAc β 1 — 2Man α 1

Gal
$$\beta$$
 I -4 GlcNAc β I -2 Man α I 6 Man β I -4 GlcNAc β I -4 GlcNAc $-P$ A

Gal β I -4 GlcNAc β I -2 Man α I 3

GlcNAc β 1 —2Man α 1 Fuc α 1 6 Man β 1 —4GlcNAc β 1 —4GlcNAc —PA GlcNAc β 1 —2Man α 1 β

15

25

50

55

Gal β 1 –4GlcNAc β 1 –2Man α 1

Gal β 1 –4GlcNAc β 1 –2Man α 1

GlcNAc β 1 –2Man α 1

GlcNAc β 1 –2Man α 1

GlcNAc β 1—2Man α 1

Fuc α 1

6

Man β 1—4GlcNAc β 1—4GlcNAc—PA

Gal β 1—4GlcNAc β 1—2Man α 1

49

Gal
$$\beta$$
 1 — 4GlcNAc β 1 — 2Man α 1

Fuc α 1

6

Man β 1 — 4GlcNAc β 1 — 4GlcNAc — PA

Gal β 1 — 4GlcNAc β 1 — 2Man α 1

GlcNAc
$$\beta$$
 1 – 2Man α 1 Fuc α 1

GlcNAc β 1 – 2Man α 1

GlcNAc β 1 – 4GlcNAc β 1 – 4GlcNAc β 1 – 4GlcNAc β 1 – 4GlcNAc β 1 – 2Man α 1

[0485] GlcNAc, Gal, Man, Fuc and PA indicate *N*-acetylglucosamine, galactose, mannose, fucose and a pyridylamino group, respectively. In Fig. 4, the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosaminethe in the reducing end through α -bond was calculated from the area occupied by the peaks (i) to (iv) among (i) to (ix), and the ratio of a sugar chain in which 1-position of fucose was bound to 6-position of *N*-acetylglucosaminethe in the reducing end through α -bond was calculated from the area occupied by the peaks (v) to (ix) among (i) to (ix). Each ratio of a sugar chain was shown as an average value of the result of two sugar chain analyses.

[0486] As a result, the ratios of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond were 50%, 45% and 29% in lot 1, lot 2 and lot 3, respectively. Herein, these samples were named anti-GD3 chimeric antibody (50%), anti-GD3 chimeric antibody (45%) and anti-GD3 chimeric antibody (29%).

[0487] Also, sugar chains of the anti-GD3 chimeric antibody derived from the CHO/DG44 cell prepared in the item 2(2) of Example 1 were analyzed in accordance with the above-described method, and it was found that the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond was 7%. Herein, the sample was named anti-GD3 chimeric antibody (7%).

[0488] Further, the anti-GD3 chimeric antibody (45%) and anti-GD3 chimeric antibody (7%) were mixed at a ratio of anti-GD3 chimeric antibody (45%): anti-GD3 chimeric antibody (7%) = 5:3 and 1:7, respectively. Sugar chains of the samples were analyzed in accordance with the above-described method, and the ratios of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond were 24% and 13%. Herein, they were named anti-GD3 chimeric antibody (24%) and anti-GD3 chimeric antibody (13%).

2. Evaluation of binding activity to GD3 (ELISA)

25

30

35

40

45

50

55

[0489] The binding activities of the six kinds of the anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond prepared in the item 1 of Example 3 to GD3 were measured by the ELISA shown in the item 3 of Example 1. As a result, all of the six kinds of the anti-GD3 chimeric antibodies showed almost the same GD3-binding activity as shown in Fig. 5, and it was found that the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond does not have influence on the antigen binding activity of the antibody.

3. Evaluation of ADCC activity on human melanoma cell line

[0490] ADCC activities of six kinds of the anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond prepared in the item 1 of Example 3 to human melanoma cell line G-361 (ATCC CRL1424) were measured according to the method described in the item 2 of Example 2.

[0491] Figs. 6 and 7 show results of the measurement of ADCC activity of the six kinds of the anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond at various concentrations (0.0005 to 5 μ g/ml) using effector cells of two healthy donors (A and B). As shown in Figs. 6 and 7, the ADCC activity of the anti-GD3 chimeric antibodies showed a tendency to increase in proportion to the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond at each antibody concentration. The ADCC activity decreases when the antibody concentration is low.

[0492] At an antibody concentration of 0.05 μ g/ml, the antibody in which the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond was 24%, 29%, 45% or 50% showed almost the same high ADCC activity, but the antibody (13%) or (7%) in which the ratio of a sugar chain in which 1-position of fucose was bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond is less than 20%, 13% or 7% showed the low ADCC activity. These results did not change even if the effector cell having doner was different.

Example 4

10

30

35

40

50

55

[0493] Activity evaluation of anti-CCR4 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond:

1. Preparation of cells stably producing anti-CCR4 chimeric antibody

[0494] Cells which are capable of stably producing an anti-CCR4 chimeric antibody were prepared as follows by using a tandem type expression vector pKANTEX2160 for an anti-CCR4 chimeric antibody described in WO01/64754.

(1) Preparation of producing cell using rat myeloma YB2/0 cell

[0495] After introducing 10 μ g of the anti-CCR4 chimeric antibody expression vector pKANTEX2160 into 4×10^6 cells of rat myeloma YB2/0 cell (ATCC CRL 1662) by electroporation [*Cytotechnology*, $\underline{3}$, 133 (1990)], the cells were suspended in 40 ml of Hybridoma-SFM-FBS(5) [Hybridoma-SFM medium (manufactured by Invitrogen) comprising 5% FBS (manufactured by PAA Laboratories)] and dispensed at 200 μ l/well into a 96 well culture plate (manufactured by Sumitomo Bakelite). After culturing at 37°C for 24 hours in a 5% CO $_2$ incubator, G418 was added to give a concentration of 1 mg/ml, followed by culturing for 1 to 2 weeks. Culture supernatant was recovered from wells in which growth of transformants showing G418 resistance was observed by the formation of colonies, and antigen binding activity of the anti-CCR4 chimeric antibody in the supernatant was measured by the ELISA described in the item 2 of Example 4.

[0496] Regarding the transformants in wells in which production of the anti-CCR4 chimeric antibody was observed in culture supernatants, in order to increase an amount of the antibody production using a DHFR gene amplification system, each of them was suspended in the Hybridoma-SFM-FBS(5) medium comprising 1 mg/ml G418 and 50 nmol/L DHFR inhibitor MTX (manufactured by SIGMA) to give a density of 1 to 2×10^5 cells/ml, and the suspension was dispensed at 1 ml into each well of a 24 well plate (manufactured by Greiner). After culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator, transformants showing 50 nmol/L MTX resistance were induced. Antigen binding activity of the anti-CCR4 chimeric antibody in culture supernatants in wells in which growth of transformants was observed was measured by the ELISA described in the item 2 of Example 4.

[0497] Regarding the transformants in wells in which production of the anti-CCR4 chimeric antibody was observed in culture supernatants, the MTX concentration was increased by the same method, and a transformant capable of growing in the Hybridoma-SFM-FBS(5) medium comprising 200 nmol/L MTX and of producing the anti-CCR4 chimeric antibody in a large amount was finally obtained. The obtained transformant was made into a single cell (cloning) by limiting dilution twice, and the obtained clone was named KM2760#58-35-16.

(2) Preparation of producing cell using CHO/DG44 cell

[0498] After introducing 4 μ g of the anti-CCR4 chimeric antibody expression vector pKANTEX2160 into 1.6 \times 10⁶ cells of CHO/DG44 cell by electroporation [*Cytotechnology*, 3, 133 (1990)], the cells were suspended in 10 ml of IMDM-

dFBS(10)-HT(1) (IMDM medium (manufactured by Invitrogen) comprising 10% dFBS (manufactured by Invitrogen) and 1× concentration ofHT supplement (manufactured by Invitrogen)] and dispensed at 100 μl/well into a 96 well culture plate (manufactured by Iwaki Glass). After culturing at 37°C for 24 hours in a 5% CO₂ incubator, the medium was changed to IMDM-dFBS(10) (IMDM medium comprising 10% of dialyzed FBS), followed by culturing for 1 to 2 weeks. Culture supernatant was recovered from wells in which the growth was observed due to formation of a transformant showing HT-independent growth, and an expression amount of the anti-CCR4 chimeric antibody in the supernatant was measured by the ELISA described in the item 2 of Example 4.

[0499] Regarding the transformants in wells in which production of the anti-CCR4 chimeric antibody was observed in culture supernatants, in order to increase an amount of the antibody production using a DHFR gene amplification system, each of them was suspended in the IMDM-dFBS(10) medium comprising 50 nmol/L MTX to give a density of 1 to 2×10⁵ cells/ml, and the suspension was dispensed at 0.5 ml into each well of a 24 well plate (manufactured by lwaki Glass). After culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator, transformants showing 50 nmol/L MTX resistance were induced. Regarding the transformants in wells in which the growth was observed, the MTX concentration was increased to 200 nmol/L by the similar method as above, and a transformant capable of growing in the IMDM-dFBS(10) medium comprising 200 nmol/L MTX and of producing the anti-CCR4 chimeric antibody in a large amount was finally obtained. The obtained transformant was named clone 5-03.

2. Binding activity of antibody to CCR4 partial peptide (ELISA)

10

20

30

35

40

45

50

55

[0500] Compound 1 (SEQ ID NO:25) was selected as a human CCR4 extracellular region peptide capable of reacting with the anti-CCR4 chimeric antibody. In order to use it in the activity measurement by ELISA, a conjugate with BSA (manufactured by Nacalai Tesque) was prepared by the following method and used as the antigen. That is, 100 ml of a DMSO solution comprising 25 mg/ml SMCC [4-(N-maleimidomethyl)-cyclohexane-1-carboxylic acid *N*-hydroxysuccinimide ester] (manufactured by Sigma) was added dropwise to 900 ml of a 10 mg BSA-containing PBS solution under stirring with a vortex, followed by gently stirring for 30 minutes. To a gel filtration column such as NAP-10 column equilibrated with 25 ml of PBS, 1 ml of the reaction solution was applied and then eluted with 1.5 ml of PBS and the resulting eluate was used as a BSA-SMCC solution (BSA concentration was calculated based on A₂₈₀ measurement). Next, 250 ml of PBS was added to 0.5 mg of Compound 1 and then completely dissolved by adding 250 ml of DMF, and the BSA-SMCC solution was added thereto under vortex, followed by gently stirring for 3 hours. The reaction solution was dialyzed against PBS at 4°C overnight, sodium azide was added thereto to give a final concentration of 0.05%, and the mixture was filtered through a 0.22 mm filter to be used as a BSA-compound 1 solution.

[0501] The prepared conjugate was dispensed at 0.05 μ g/ml and 50 μ l/well into a 96 well EIA plate (manufactured by Greiner) and incubated for adhesion at 4°C overnight. After washing each well with PBS, 1% BSA-PBS was added thereto in 100 μ l/well and allowed to react at room temperature to block the remaining active groups. After washing each well with Tween-PBS, a culture supernatant of a transformant was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction, each well was washed with Tween-PBS, and then a peroxidase-labeled goat anti-human $lgG(\gamma)$ antibody solution (manufactured by American Qualex) diluted 6000 times with 1% BSA-PBS as the secondary antibody solution was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, the ABTS substrate solution was added at 50 μ l/well for color development, and 20 minutes thereafter, the reaction was stopped by adding a 5% SDS solution at 50 μ l/well. Thereafter, the absorbance at OD₄₁₅ was measured. The anti-CCR4 chimeric antibody obtained in the item 1 of Example 4 showed the binding activity to CCR4.

- 3. Purification of anti-CCR4 chimeric antibody
- (1) Culturing of producing cell derived from YB2/0 cell and purification of antibody

[0502] The anti-CCR4 chimeric antibody-expressing transformant cell clone KM2760#58-35-16 obtained in the item 1(1) of Example 4 was suspended in Hybridoma-SFM (manufactured by Invitrogen) medium comprising 200 nmol/L MTX and 5% of Daigo's GF21 (manufactured by Wako Pure Chemical Industries) to give a density of 2×10⁵ cells/ml and subjected to fed-batch shaking culturing with a spinner bottle (manufactured by Iwaki Glass) in a constant temperature chamber of 37°C. After culturing for 8 to 10 days and recovering the culture supernatant, the anti-CCR4 chimeric antibody was purified using Prosep-A (manufactured by Millipore) column and gel filtration. The purified anti-CCR4 chimeric antibody was named KM2760-1.

(2) Culturing of producing cell derived from CHO-DG44 cell and purification of antibody

[0503] The anti-CCR4 chimeric antibody-producing transformant clone 5-03 obtained in the item 1(2) of Example 4

was cultured at 37° C in a 5% CO₂ incubator using IMDM-dFBS(10) medium in a $182~\text{cm}^2$ flask (manufactured by Greiner). When the cell density reached confluent after several days, the culture supernatant was discarded, and the cells were washed with 25~ml of PBS buffer and then mixed with 35~ml of EXCELL 301~medium (manufactured by JRH). After culturing at 37° C for 7 days in a 5% CO₂ incubator, the culture supernatant was recovered. The anti-CCR4 chimeric antibody was purified from the culture supernatant using Prosep-A (manufactured by Millipore) column in accordance with the manufacture's instructions. The purified anti-CCR4 chimeric antibody was named KM3060.

[0504] When the binding activity to CCR4 of KM2760-1 and KM3060 was measured by the ELISA described in the item 2 of Example 4, they showed equivalent binding activity.

4. Analysis of purified anti-CCR4 chimeric antibodies

10

30

40

50

55

[0505] Each 4 μg of the two kinds of the anti-CCR4 chimeric antibodies produced by and purified from various animal cells, obtained in the item 3 of Example 4 was subjected to SDS-PAGE in accordance with a known method [Nature, 227, 680 (1970)], and the molecular weight and purity were analyzed. In each of the purified anti-CCR4 chimeric antibodies, a single band corresponding to the molecular weight of about 150 Kd was found under non-reducing conditions, and two bands of about 50 Kd and about 25 Kd were found under reducing conditions. The molecular weights almost coincided with the molecular weights deduced from the cDNA nucleotide sequences of antibody H chain and L chain (H chain: about 49 Kd, L chain: about 23 Kd, whole molecule: about 144 Kd) and further coincided with reports stating that an IgG type antibody has a molecular weight of about 150 Kd under non-reducing conditions and is degraded into H chain having a molecular weight of about 50 Kd and L chain having a molecular weight of about 25 Kd under reducing conditions caused by cutting an S-S bond in the molecule (Antibodies, Chapter 14 (1988), Monoclonal Antibodies), thus confirming that the anti-CCR4 chimeric antibody was expressed and purified as an antibody molecule having a correct structure.

5. Preparation of anti-CCR4 chimeric antibody having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond

[0506] Sugar chains of the anti-CCR4 chimeric antibody KM2760-1 derived from YB2/0 cell and the anti-CCR4 chimeric antibody KM3060 derived from CHO/DG44 cell prepared in the item 3 of Example 4 were analyzed in accordance with the method in the item 1 of Example 3. The ratios of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond were 87% and 8% in KM2760-1 and KM3060, respectively. Herein, the samples were named anti-CCR4 chimeric antibody (87%) and anti-CCR4 chimeric antibody (8%).

[0507] Furthermore, the anti-CCR4 chimeric antibody (87%) and anti-CCR4 chimeric antibody (8%) were mixed at a ratio of anti-CCR4 chimeric antibody (87%): anti-CCR4 chimeric antibody (8%) = 1:39, 16:67, 22:57, 32:47 and 42:37, respectively. Sugar chains of these samples were analyzed in accordance with the method of the item 1 of Example 3. The ratios of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond were 9%, 18%, 27%, 39% and 46%, respectively. Herein, these samples were named anti-CCR4 chimeric antibody (9%), anti-CCR4 chimeric antibody (18%), anti-CCR4 chimeric antibody (27%), anti-CCR4 chimeric antibody (39%) and anti-CCR4 chimeric antibody (46%).

[0508] Results of the sugar chain analysis of each of the samples are shown in Fig. 8. The ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond was shown as an average value of the result of two sugar chain analyses.

6. Evaluation of binding activity of antibody to CCR4 partial peptide (ELISA)

[0509] Binding activities of the six kinds of the anti-CCR4 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond prepared in the item 5 of Example 4 to a CCR4 partial peptide were measured in accordance with the method described in the item 2 of Example 4.

[0510] As a result, as shown in Fig. 9, the six kinds of the anti-CCR4 chimeric antibodies showed almost the same CCR4-binding activity, and it was found that the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond does not have influence on the antigen-binding activity of the antibody.

7. Evaluation of ADCC activity on human CCR4-high expressing clone

[0511] The ADCC activity of the anti-CCR4 chimeric antibodies against a human CCR4-high highly expressing cell

was measured as follows.

10

30

35

40

45

50

- (1) Preparation of target cell suspension
- [0512] Cells (1.5×10⁶) of a human CCR4-highly expressing cell, CCR4/EL-4 cell, described in WO01/64754 were prepared and a 5.55 MBq equivalent of a radioactive substance Na₂⁵¹CrO₄ was added thereto, followed by reaction at 37°C for 1.5 hours to thereby label the cells with a radioisotope. After the reaction, the cells were washed three times by suspension in a medium and subsequent centrifugation, resuspended in the medium and then incubated at 4°C for 30 minutes on ice for spontaneous dissociation of the radioactive substance. After centrifugation, the cells were adjusted to give a density of 2×10⁵ cells/ml by adding 7.5 ml of the medium and used as a target cell suspension.
 - (2) Preparation of human effector cell suspension
- [0513] From a healthy doner, 60 ml of peripheral blood was collected, 0.6 ml of heparin sodium (manufactured by Shimizu Pharmaceutical) was added thereto, followed by gently mixing. The mixture was centrifuged (800 g, 20 minutes) to isolate a mononuclear cell layer using Lymphoprep (manufactured by AXIS SHIELD) in accordance with the manufacture's instructions. The cells were washed by centrifuging (1,400 rpm, 5 minutes) three times in a medium and then re-suspended in the medium to give a density of 5×10⁶ cells/ml and used as a human effector cell suspension.
- 20 (3) Measurement of ADCC activity
 - [0514] The target cell suspension prepared in the above item (1) was dispensed at 50 μ l (1 \times 10⁴ cells/well) into each well of a 96 well U-bottom plate (manufactured by Falcon). Next, 100 μ l of the effector cell suspension prepared in the above item (2) was added thereto (5 \times 10⁵ cells/well, ratio of the human effector cells to the target cells was 50 : 1). Furthermore, each of the anti-CCR4 chimeric antibodies was added thereto to give a final concentration of 0.0001 to 10 μ g/ml, followed by reaction at 37°C for 4 hours. After the reaction, the plate was centrifuged and the amount of ⁵¹Cr in the supernatant was measured with a γ -counter. An amount of the spontaneously dissociated ⁵¹Cr was calculated by carrying out the same procedure as above using the medium alone instead of the human effector cell suspension and antibody solution, and measuring the amount of ⁵¹Cr in the supernatant. An amount of the total dissociated ⁵¹Cr was calculated by carrying out the same procedure as above using a 1 mol/L hydrochloric acid solution instead of the antibody solution and human effector cell suspension, and measuring the amount of ⁵¹Cr in the supernatant. The ADCC activity (%) was calculated based on the above-mentioned equation (I).
 - [0515] Figs. 10 and 11 show results of the measurement of ADCC activity of the anti-CCR4 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond at various concentrations (0.001 to 10 μg/ml) using effector cells of two healthy donors (A and B), respectively. As shown in Figs. 10 and 11, the ADCC activity of the anti-CCR4 chimeric antibodies showed a tendency to increase in proportion to the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond at each antibody concentration. The ADCC activity decreases when the antibody concentration is low. At an antibody concentration of 0.01 μg/ml, the antibody in which the ratios of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond was 27%, 39% and 46%, respectively, showed almost the same high ADCC activity but the ADCC activity was low in the antibody in which the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond is less than 20%. These results did not change even if the effector cell having doner was different.

Example 5

[0516] Determination of transcription product of α1,6-fucosyltransferase (FUT8) gene in host clone:

- 1. Preparation of single-stranded cDNA from various clones
 - [0517] Single-stranded cDNAs were prepared from *dhfr*-deleted CHO/DG44 cells and rat myeloma YB2/0 cells by the following procedure.
- [0518] The CHO/DG44 cells were suspended in IMDM medium (manufactured by Life Technologies) supplemented with 10% FBS (manufactured by Life Technologies) and 1 \times concentration HT supplement (manufactured by Life Technologies), and 15 ml of the suspension was inoculated into T75 flask for adhesion cell culture use (manufactured by Greiner) at a density of 2×10^5 cells/ml. Also, the YB2/0 cells were suspended in RPMI 1640 medium (manufactured by Life Technologies) supplemented with 10% FBS (manufactured by Life Technologies) and 4 mmol/I L-GLN (manufactured by Life Technologies)

factured by Life Technologies), and 15 ml of the suspension was inoculated into T75 flask for suspension cell culture (manufactured by Greiner) at a density of 2×10^5 cells/ml. They were cultured at 37°C in a 5% CO₂ incubator, and 1×10^7 of respective host cells were recovered on the 1st, 2nd, 3rd, 4th and 5th days of the culturing to extract total RNA using RNAeasy (manufactured by QIAGEN) in accordance with the manufacture's instructions.

[0519] The total RNA was dissolved in 45 μ l of sterile water, 1 μ l of RQ 1 RNase-Free DNase (manufactured by Promega), 5 μ l of the attached 10 \times DNase buffer and 0.5 μ l of RNasin Ribonuclease Inhibitor (manufactured by Promega) were added thereto, followed by reaction at 37°C for 30 minutes to degrade genomic DNA contaminated in the sample. After the reaction, the total RNA was purified again using RNAeasy (manufactured by QIAGEN) and dissolved in 50 μ l of sterile water.

10 [0520] In a 20 µl of the reaction mixture using oligo(dT) as a primer, single-stranded cDNA was synthesized from 3 µg of each of the obtained total RNA samples by reverse transcription reaction using SUPERSCRIPT™ Preamplification System for First Strand cDNA Synthesis (manufactured by Life Technologies) in accordance with the manufacture's instructions. For the cloning of FUT8 and β-actin derived from respective host cells, 1× concentration solution of the reaction solution was used, and for the determination of each gene transcription amount by competitive PCR, 50 fold-diluted aqueous solution of the reaction solution were used. The solutions were stored at -80°C until use.

2. Preparation method of cDNA partial fragments of Chinese hamster FUT8 and rat FUT8

20

40

45

50

[0521] Each cDNA partial fragment of Chinese hamster FUT8 and rat FUT8 was prepared by the following procedure (Fig. 12).

[0522] First, primers (represented by SEQ ID NOs:4 and 5) specific for nucleotide sequences common to human FUT8 cDNA [J. Biochem., 121, 626 (1997)] and swine FUT8 cDNA [J. Biol. Chem., 271, 27810 (1995)] were designed. [0523] Next, 25 μ I of a reaction solution [ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/I dNTPs and 0.5 μ mol/I of the above gene-specific primers (SEQ ID NOs:4 and 5)] containing 1 μ I of each of the cDNA prepared from CHO cell and cDNA prepared from YB2/0 cell, both obtained in the item 1 of Example 5 on the second day after culturing, and polymerase chain reaction (hereinafter referred to as "PCR") was carried out by using a DNA polymerase ExTaq (manufactured by Takara Shuzo). The PCR was carried out by heating at 94°C for 1 minute, subsequent 30 cycles of heating at 94°C for 30 seconds, 55°C for 30 seconds and 72°C for 2 minutes as one cycle, and further heating at 72°C for 10 minutes.

[0524] After the PCR, the reaction solution was subjected to 0.8% agarose gel electrophoresis, and a specific amplified fragment of 979 bp was purified using GENECLEAN Spin Kit (manufactured by BIO 101) and eluted with 10 μI of sterile water (hereinafter, the method was used for the purification of DNA fragments from agarose gel). Into a plasmid pCR2.1, 4 μI of the amplified fragment was employed to insert in accordance with the manufacture's instructions of TOPO TA Cloning Kit (manufactured by Invitrogen), and E. coli XL1-Blue was transformed with the reaction solution by the method of Cohen et al. [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)] (hereinafter, the method was used for the transformation of E. coli). Plasmid DNA samples were isolated in accordance with a known method [Nucleic Acids Research, 7, 1513 (1979)] (hereinafter, the method was used for the isolation of plasmid) from cDNA-inserted six clones among the obtained kanamycin-resistant colonies.

[0525] The nucleotide sequences of cDNAs inserted into the plasmids were determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction kit (manufactured by Parkin Elmer) in accordance with the method of the manufacture's instructions. It was confirmed that all of the inserted cDNAs of which sequences were determined by the method encode the open reading frame (ORF) partial sequences of Chinese hamster FUT8 and rat FUT8 (represented by SEQ ID NOs:6 and 7). Among these, plasmid DNA samples containing absolutely no reading error by the PCR in the sequences were selected. Herein, these plasmids were named CHFT8-pCR2.1 and YBFT8-pCR2.1.

3. Preparation of Chinese hamster β -actin and rat β -actin cDNA

[0526] Chinese hamster β -actin and rat β -actin were prepared by the following procedure (Fig. 13).

[0527] First, a forward primer specific for a common sequence containing translation initiation codon (represented by SEQ ID NO:8) and reverse primers specific for respective sequences containing translation termination codon (represented by SEQ ID NOs:9 and 10) were designed from Chinese hamster β -actin genomic sequence (GenBank, U20114) and rat β -actin genomic sequence [*Nucleic Acids Research*, 11, 1759 (1983).

[0528] Next, 25 μ I of a reaction solution [1 \times concentration KOD buffer #1 (manufactured by Toyobo), 0.2 mmol/I dNTPs, 1 mmol/I MgCl₂, 0.4 μ mol/I of the above gene-specific primers (SEQ ID NOs:8 and 9, or SEQ ID NOs:8 and 10) and 5% DMSO] containing 1 μ I of each of the cDNA prepared from CHO cell and cDNA prepared from YB2/0 cell, both obtained in the item 1 of Example 5 on the second day after culturing was prepared, and PCR was carried out by using a DNA polymerase KOD (manufactured by Toyobo). The PCR was carried out by heating at 94°C for 4 minutes

and subsequent 25 cycles of heating at 98°C for 15 seconds, 65°C for 2 seconds and 74°C for 30 seconds as one cycle. **[0529]** After the PCR, the reaction solution was subjected to 0.8% agarose gel electrophoresis, and a specific amplified fragment of 1128 bp was purified. The DNA fragment was subjected to 5'-terminal phosphorylation using MEG-ALABEL (manufactured by Takara Shuzo) in accordance with the manufacture's instructions. The DNA fragment was recovered from the reaction solution using an ethanol precipitation method and dissolved in 10 µl of sterile water.

[0530] Separately, 3 μ g of a plasmid pBluescript II KS(+) (manufactured by Stratagene) was dissolved in 35 μ l of NEBuffer 2 (manufactured by New England Biolabs), and 16 units of a restriction enzyme EcoRV (manufactured by Takara Shuzo) were added thereto for digestion reaction at 37°C for 3 hours. To the reaction solution, 35 μ l of 1 mol/ I Tris-HCl buffer (pH 8.0) and 3.5 μ l of E. Ecolorical C15-derived alkaline phosphatase (manufactured by Takara Shuzo) were added thereto, followed by reaction at 65°C for 30 minutes to thereby dephophorylate the DNA terminus. The reaction solution was extracted with phenol/chloroform, followed by ethanol precipitation, and the recovered DNA fragment was dissolved in 100 μ l of sterile water.

[0531] Each 4 μ I of the amplified fragment prepared from Chinese hamster cDNA and the amplified fragment (1192 bp) prepared from rat cDNA was mixed with 1 μ I of the *Eco*RV-*Eco*RV fragment (about 3.0 Kb) prepared from plasmid pBluescript II KS(+) and 5 μ I of Ligation High (manufactured by Toyobo) for ligation reaction at 16°C for 30 minutes. Using the reaction solution, *E. coli* XL1-Blue was transformed, and plasmid DNA samples were isolated respectively from the obtained ampicillin-resistant clones in accordance with a known method.

[0532] The nucleotide sequence of each cDNA inserted into the plasmid was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction kit (manufactured by Parkin Elmer) in accordance with the method of the manufacture's instructions. It was confirmed that all of the inserted cDNAs of which sequences were determined by the method encode the ORF full sequences of Chinese hamster β -actin or rat β -actin. Among these, plasmid DNA samples containing absolutely no reading error of bases by the PCR in the sequences were selected. Herein, the plasmids are called CHAc-pBS and YBAc-pBS.

4. Preparation of FUT8 standard and internal control

10

25

30

35

40

50

55

[0533] In order to measure a transcription amount of mRNA derived from FUT8 gene in each cell, CHFT8-pCR2.1 or YBFT8-pCR2.1, as plasmids in which cDNA partial fragments prepared in the item 2 of Example 5 from Chinese hamster FUT8 or rat FUT8 were inserted into pCR2.1, respectively, were digested with a restriction enzyme *EcoRI*, and the obtained linear DNAs were used as the standards for the preparation of a calibration curve. CHFT8d-pCR2.1 and YBFT8d-pCR2.1, which were obtained from the CHFTB-pCR2.1 and YBFT8-pCR2.1, by deleting 203 bp between *ScaI* and *HindIII*, an inner nucleotide sequence of Chinese hamster FUT8 and rat FUT8, respectively, were digested with a restriction enzyme *EcoRI*, and the obtained linear DNAs were used as the internal standards for FUT8 amount determination. Details thereof are described below.

[0534] Chinese hamster FUT8 and rat FUT8 standards were prepared as follows. In 40 μ l of NEBuffer 2 (manufactured by New England Biolabs), 2 μ g of the plasmid CHFT8-pCR2.1 was dissolved, 24 units of a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. Separately, 2 μ g of the plasmid YBFT8-pCR2.1 was dissolved in 40 μ l of NEBuffer 2 (manufactured by New England Biolabs), and 24 units of a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. By subjecting a part of each of the reaction solutions to 0.8% agarose gel electrophoresis, it was confirmed that an *Eco*RI-*Eco*RI fragment (about 1 Kb) containing each of cDNA partial fragments of Chinese hamster FUT8 and rat FUT8 was separated from the plasmids CHFT8-pCR2.1 and YBFT8-pCR2.1 by the above restriction enzyme digestion reactions. Each of the reaction solutions was diluted with 1 μ g/ml of baker's yeast t-RNA (manufactured by SIGMA) to give a concentration of 0.02 fg/ μ l, 0.2 fg/ μ l, 1 fg/ μ l, 2 fg/ μ l, 10 fg/ μ l, 20 fg/ μ l and 100 fg/ μ l and used as the Chinese hamster FUT8 and rat FUT8 standards.

[0535] Controls of Chinese hamster FUT8 and rat FUT8 were prepared as follows (Fig. 14). By using a DNA polymerase KOD (manufactured by Toyobo), 25 μ l of a reaction solution [1 \times concentration KOD buffer #1 (manufactured by Toyobo), 0.2 mmol/l dNTPs, 1 mmol/l MgCl₂, 0.4 μ mol/l gene-specific primers (SEQ ID NOs:11 and 12) and 5% DMSO] containing 5 ng of CHFT8-pCR2.1 or YBFT8-pCR2.1 was prepared, and PCR was carried out. The PCR was carried out by heating at 94°C for 4 minutes and subsequent 25 cycles of heating at 98°C for 15 seconds, 65°C for 2 seconds and 74°C for 30 seconds as one cycle. After the PCR, the reaction solution was subjected to 0.8% agarose gel electrophoresis, and a specific amplified fragment of about 4.7 Kb was purified. The DNA fragment was subjected to 5'-terminal phosphorylation using MEGALABEL (manufactured by Takara Shuzo) in accordance with the manufacture's instructions, and then the DNA fragment was recovered from the reaction solution by ethanol precipitation and dissolved in 50 μ l of sterile water. The above obtained DNA fragment (5 μ l, about 4.7 kb) and 5 μ l of Ligation High (manufactured by Toyobo) were mixed, followed by self-cyclization reaction at 16°C for 30 minutes.

[0536] Using the reaction solution, $E.\ coli$ DH5lpha was transformed, and plasmid DNA samples were isolated in accordance with a known method from the obtained ampicillin-resistant clones. The nucleotide sequence of each plasmid

DNA was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction kit (manufactured by Parkin Elmer), and it was confirmed that a 203 bp inner nucleotide sequence between *Scal* and *HindIII* of Chinese hamster FUT8 or rat FUT8 was deleted. The obtained plasmids were named CHFT8d-pCR2.1 or YBFT8d-pCR2.1, respectively.

[0537] Next, 2 μ g of the plasmid CHFT8d-pCR2.1 was dissolved in 40 μ l of NEBuffer 2 (manufactured by New England Biolabs), and 24 units of a restriction enzyme EcoRI (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. Separately, 2 μ g of the plasmid YBFT8d-pCR2.1 was dissolved in 40 μ l of NEBuffer 2 (manufactured by New England Biolabs), and 24 units of a restriction enzyme EcoRI (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. A part of each of the reaction solutions was subjected to 0.8% agarose gel electrophoresis, and it was confirmed that an EcoRI-EcoRI fragment (about 800 bp) containing a fragment from which 203 bp of the inner nucleotide sequences of Chinese hamster FUT8 or rat FUT8 partial fragments was deleted was separated from the plasmids CHFT8d-pCR2.1 or YBFT8d-pCR2.1 by the above restriction enzyme digestion reactions. Dilutions of 2 fg/ μ l were prepared from the reaction solutions using 1 μ g/ml baker's yeast t-RNA (manufactured by SIGMA) and used as the Chinese hamster FUT8 or rat FUT8 internal controls.

5. Preparation of β -actin standard and internal control

10

15

30

35

40

45

50

[0538] In order to measure a transcription amount of mRNA derived from β -actin gene in various host cells, CHAcpBS and YBAc-pBS, as plasmids in which the ORF full length of each cDNA of Chinese hamster β -actin and rat β -actin prepared in the item 3 of Example 5 was inserted into pBluescript II KS(+), respectively, were digested with restriction enzymes *Hin*dIII and *Fst*I and restriction enzymes *Hin*dIII and *KpnI*, respectively, and the digested linear DNAs were used as the standards for the preparation of a calibration curve. CHAcd-pBS and YBAcd-pBS which were obtained from the CHAc-pBS and YBAc-pBS by deleting 180 bp between *Dra*III and *Dra*III of an inner nucleotide sequence of Chinese hamster β -actin and rat β -actin were digested with restriction enzymes *Hin*dIII and *KpnI*, respectively, and the digested linear DNAs were used as the internal controls for β -actin amount determination. Details thereof are described below.

[0539] Chinese hamster β -actin and rat β -actin standards were prepared as follows. In 40 μl of NEBuffer 2 (manufactured by New England Biolabs), 2 μg of the plasmid CHAc-pBS was dissolved, and 25 units of a restriction enzyme *Hin*dIII (manufactured by Takara Shuzo) and 20 units of *Pst*I (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. Separately, 2 μg of the plasmid YBAc-pBS was dissolved in 40 μl of NEBuffer 2 (manufactured by New England Biolabs), and 25 units of a restriction enzyme HindIII (manufactured by Takara Shuzo) and 24 units of *Kpn*I (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. A part of each of the reaction solutions was subjected to 0.8% agarose gel electrophoresis, and it was confirmed that a *Hin*dIII-*Pst*I fragment and a *Hin*dIII-*Kpn*I fragment (about 1.2 Kb) containing the full length ORF of each cDNA of Chinese hamster β-actin and rat β-actin were separated from the plasmids CHAc-pBS and YBAc-pBS by the above restriction enzyme digestion reactions. Each of the reaction solutions was diluted with 1 μg/ml baker's yeast t-RNA (manufactured by SIGMA) to give a concentration 2 pg/μl, 1 pg/μl, 200 fg/μl, 100 fg/μl and 20 fg/μl and used as the Chinese hamster β-actin or rat β-actin standards.

[0540] Chinese hamster β -actin and rat β -actin internal controls were prepared as follows (Fig. 15). In 100 μ l of NEBuffer 3 (manufactured by New England Biolabs) containing 100 ng/ μ l of BSA (manufactured by New England Biolabs), 2 μ g of CHAc-pBS was dissolved, and 10 units of a restriction enzyme *Dral*III (manufactured by New England Biolabs) were added thereto, followed by digestion reaction at 37°C for 3 hours. DNA fragments were recovered from the reaction solution by ethanol precipitation and the DNA termini were changed to blunt-ends using DNA Blunting Kit (manufactured by Takara Shuzo) in accordance with the manufacture's instructions, and then the reaction solution was divided into two equal parts. First, to one part of the reaction solution, 35 μ l of 1 mol/I Tris-HCl buffer (pH 8.0) and 3.5 μ l of *E. coli* C15-derived alkaline phosphatase (manufactured by Takara Shuzo) were added thereto, followed by reaction at 65°C for 30 minutes for dephosphorylating the DNA termini. The DNA fragment was recovered by carrying out dephosphorylation treatment, phenol/chloroform extraction treatment and ethanol precipitation treatment and then dissolved in 10 μ l of sterile water. The remaining part of the reaction solution was subjected to 0.8% agarose gel electrophoresis to purify a DNA fragment of about 1.1 Kb containing the ORF partial fragment of Chinese hamster β -actin.

[0541] The dephosphorylated DraIII-DraIII fragment (0.5 μ I), 4.5 μ I of the DraIII-DraIII fragment of about 1.1 Kb and 5 μ I of Ligation High (manufactured by Toyobo) were mixed, followed by ligation reaction at 16°C for 30 minutes. Using the reaction solution, $E.\ coli\ DH5\alpha$ was transformed, and plasmid DNAs were isolated in accordance with a known method from the obtained ampicillin-resistant colonies. The nucleotide sequence of each plasmid DNA was determined using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction kit (manufactured by Parkin Elmer), and it was confirmed that a Chinese hamster β -actin DraIII-DraIII 180 bp

inserted into the plasmid was deleted. The plasmid was named CHAcd-pBS.

[0542] Also, a plasmid in which rat β-actin *DrallI-DrallI* 180 bp was deleted was prepared via same steps of CHAcd-pBS. The plasmid was named YBAcd-pBS.

[0543] Next, 2 μg of the plasmid CHAcd-pBS was dissolved in 40 μl ofNEBuffer 2 (manufactured by New England Biolabs), and 25 units of a restriction enzyme HindIII (manufactured by Takara Shuzo) and 20 units of PstI (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. Separately, 2 μg of the plasmid YBAcd-pBS was dissolved in 40 μl ofNEBuffer 2 (manufactured by New England Biolabs), and 25 units of a restriction enzyme HindIII (manufactured by Takara Shuzo) and 24 units of KpnI (manufactured by Takara Shuzo) were added thereto, followed by digestion reaction at 37°C for 3 hours. A part of each of the reaction solutions was subjected to 0.8% agarose gel electrophoresis, and it was confirmed that an HindIII-PstI fragment and HindIII-KpnI fragment (about 1.0 Kb) containing a fragment in which 180 bp of the inner nucleotide sequence of the ORF full length of each cDNA of Chinese hamster β-actin and rat β-actin was deleted were separated from the plasmids CHAcd-pBS and YBAcd-pBS by the restriction enzyme digestion reactions. Dilutions of 200 fg/μl were prepared from the reaction solutions using 1 μg/ml baker's yeast t-RNA (manufactured by SIGMA) and used as the Chinese hamster β-actin and rat β-actin internal controls.

6. Determination of transcription amount by competitive PCR

[0544] Competitive PCR was carried out by using the FUT8 internal control DNA prepared in the item 4 of Example 5 and the host cell-derived cDNA obtained in the item 1 of Example5 as the templates, and the determined value of the FUT8 transcription product in the host clone was calculated from the relative value of the amount of the amplified product derived from each template. On the other hand, since it is considered that the β -actin gene is transcribed constantly in each cell and its transcription amount is approximately the same between cells, transcription amount of the β -actin gene was determined as an indication of the efficiency of synthesis reaction of cDNA derived from each host clone. That is, the PCR was carried out by using the β -actin internal control DNA prepared in the item 5 of Example 5 and the host cell-derived cDNA obtained in the item 1 of Example 5 as the templates, the determined value of the β -actin transcription product in the host clone was calculated from the relative value of the amount of the amplified product derived from each template. Details thereof are described below.

[0545] The FUT8 transcription product was determined by the following procedure. First, a set of sequence-specific primers (represented by SEQ ID NOs:13 and 14) common to the inner sequences of the ORF partial sequences of Chinese hamster FUT8 and rat FUT8 obtained in the item 2 of Example 5 were designed.

[0546] Next, PCR was carried out by using a DNA polymerase ExTaq (manufactured by Takara Shuzo) in 20 μ l in total volume of a reaction solution [1× concentration ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/l dNTPs, 0.5 μ mol/l of the above gene-specific primers (SEQ ID NOs:13 and 14) and 5% DMSO] containing 5 μ l of 50 fold-diluted cDNA solution prepared from each of respective host clone in the item 1 of Example 5 and 5 μ l (10 fg) of the plasmid for internal control. The PCR was carried out by heating at 94°C for 3 minutes and subsequent 32 cycles of heating at 94°C for 1 minute, 60°C for 1 minute and 72°C for 1 minute as one cycle.

[0547] Also, PCR was carried out in a series of reaction in which $5 \mu l$ (0.1 fg, 1 fg, 5 fg, 10 fg, 50 fg, 100 fg, 500 fg or 1 pg) of the FUT8 standard plasmid obtained in the item 4 of Example 5 was added instead of the each host clone-derived cDNA, and used in the preparation of a calibration curve for the FUT8 transcription amount.

[0548] The β -actin transcription product was determined by the following procedure. First, two sets of respective gene-specific primers common to the inner sequences of the ORF full lengths of Chinese hamster β -actin and rat β -actin obtained in the item 3 of Example 5 were designed (the former are represented by SEQ ID NOs:15 and 16, and the latter are represented by SEQ ID NOs:17 and 18).

[0549] Next, PCR was carried out by using a DNA polymerase ExTaq (manufactured by Takara Shuzo) in 20 μ l in total volume of a reaction solution [1 \times concentration ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/l dNTPs, 0.5 μ mol/l of the above gene-specific primers (SEQ ID NOs:15 and 16, or SEQ ID NOs:17 and 18) and 5% DMSO] containing 5 μ l of 50 fold-diluted cDNA solution prepared from respective host clone in the item 1 of Example 5 and 5 μ l (1 pg) of the plasmid for internal control. The PCR was carried out by heating at 94°C for 3 minutes and subsequent 17 cycles of heating at 94°C for 30 seconds, 65°C for 1 minute and 72°C for 2 minutes as one cycle.

[0550] Also, PCR was carried out in a series of reaction in which 5 μ I (10 pg, 5 pg, 1 pg, 500 fg or 100 fg) of the β -actin standard plasmid obtained in the item 5 of Example 5 was added instead of the each host clone-derived cDNA, and used in the preparation of a calibration curve for the β -actin transcription amount.

50

10

30

35

40

Table 1

Target	Primer set *	Size of PCR amplification product (bp)		
gene		Target	Competitor	
FUT8	F: 5'-GTCCATGGTGATCCTGCAGTGTGG-3'	638	431	
	R: 5'-CACCAATGATATCTCCAGGTTCC-3'			
β-Actin	F: 5'-GATATCGCTGCGCTCGTTGTCGAC-3'	789	609	
	R: 5'-CAGGAAGGAAGGCTGGAAAAGAGC-3'			
(Chinese	hamster)			
β-Actin	F: 5'-GATATCGCTGCGCTCGTCGAC-3'	789	609	
	R: 5'-CAGGAAGGAAGGCTGGAAGAGAGC-3'			
(Rat)				

* F: forward primer, R: reverse primer

[0551] By carrying out PCR using the primer set shown in Table 1, a DNA fragment having a size shown in the target column of Table 1 can be amplified from each gene transcription product and each standard, and a DNA fragment having a size shown in the competitor column of Table I can be amplified from each internal control.

[0552] After 7 μ I of each of the solutions after PCR was subjected to 1.75% agarose gel electrophoresis, the gel was stained by soaking it for 30 minutes in I x concentration SYBR Green I Nucleic Acid Gel Stain (manufactured by Molecular Probes). The amount of the amplified DNA fragment was measured by calculating luminescence intensity of each amplified DNA using a fluoro-imager (FluorImager SI; manufactured by Molecular Dynamics).

[0553] The amount of an amplified product formed by PCR using a standard plasmid as the template was measured by the above-mentioned method, and a calibration curve was prepared by plotting the measured values against the amounts of the standard plasmid. Using the calibration curve, the amount of cDNA of a gene of interest in each clone was calculated from the amount of the amplified product when each expression clone-derived total cDNA was used as the template, and the amount was defined as the mRNA transcription amount in each clone.

[0554] The amount of the FUT8 transcription product in each host clone when a rat FUT8 sequence was used as the standard and internal control is shown in Fig. 16. Throughout the culturing period, the CHO clone showed a transcription amount 10-fold or higher than that of the YB2/0 clone. The tendency was also found when a Chinese hamster FUT8 sequence was used as the standard and internal control.

[0555] Also, the FUT8 transcription amounts are shown in Table 2 as relative values to the amount of the β -actin transcription product. Throughout the culturing period, the FUT8 transcription amount in the YB2/0 clone was around 0.1% of β -actin while it was 0.5% to 2% in the CHO/DG44 clone.

[0556] The results shows that the amount of the FUT8 transcription product in YB2/0 clone was significantly smaller than that in the CHO/DG44 clone.

Table 2

Clone	Culture days				
	1st	2nd	3rd	4th	5th
CHO	1.95	0.90	0.57	0.52	0.54
YB2/0	0.12	0.11	0.14	0.08	0.07

Example 6

5

10

15

30

35

40

45

50

[0557] Determination of transcription product of FUT8 gene in anti-GD3 chimeric antibody-producing clone:

1. Preparation of single-stranded cDNA derived from various antibody-producing clones

[0558] Single-stranded cDNA was prepared from anti-GD3 chimeric antibody-producing cell clones DCHI01-20 and 61-33 as follows. The clone DCHI01-20 is a transformant clone derived from the CHO/DG44 cell described in item 2 (2) of Example 1. Also, the clone 61-33 is a clone obtained by carrying out serum-free adaptation of YB2/0-derived transformant cell clone 7-9-51 (FERM BP-6691, International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology) and then carrying out single cell isolation by two limiting dilution.

[0559] The clone DCHI01-20 were suspended in EXCELL 302 medium (manufactured by JRH BIOSCIENCES) sup-

plemented with 3 mmol/l L-GLN (manufactured by Life Technologies), 0.3% PLURONIC F-68 (manufactured by Life Technologies) and 0.5% fatty acid concentrate (manufactured by Life Technologies), and 15 ml of the suspension was inoculated into T75 flask for suspension cell culture (manufactured by Greiner) at a density of 2×10^5 cells/ml. Also, cells of the clone 61-33 were suspended in Hybridoma-SFM medium (manufactured by Life Technologies) supplemented with 0.2% BSA, and 15 ml of the suspension was inoculated into T75 flask for suspension cell culture (manufactured by Greiner) at a density of 2×10^5 cells/ml. They were cultured at 37°C in a 5% CO $_2$ incubator, and 1, 2, 3, 4 and 5 days after culturing, 1×10^7 of respective host cells were recovered to extract total RNA using RNAeasy (manufactured by QIAGEN) in accordance with the manufacture's instructions.

[0560] The total RNA was dissolved in 45 μ l of sterile water, and 1 μ l of RQ1 RNase-Free DNase (manufactured by Promega), 5 μ l of the attached 10 \times DNase buffer and 0.5 μ l of RNasin Ribonuclease Inhibitor (manufactured by Promega) were added thereto, followed by reaction at 37°C for 30 minutes to degrade genomic DNA contaminated in the sample. After the reaction, the total RNA was purified again using RNAeasy (manufactured by QIAGEN) and dissolved in 50 μ l of sterile water.

[0561] In a 20 μl reaction mixture using oligo(dT) as a primer, single-stranded cDNA was synthesized from 3 μg of each of the obtained total RNA samples by reverse transcription reaction using SUPERSCRIPTTM Preamplification System for First Strand cDNA Synthesis (manufactured by Life Technologies) in accordance with the manufacture's instructions. The reaction solution was diluted 50-fold with water and stored at -80°C until use.

2. Determination of transcription amounts of each gene by competitive PCR

10

20

30

35

40

50

[0562] The transcription amount of each of the genes of the cDNA derived from the antibody-producing clone obtained in the item 1 of Example 6 was determined by competitive PCR in accordance with the item 6 of Example 5.

[0563] The FUT8 gene-derived mRNA transcription amount in each antibody-producing clone was determined by the following procedure.

[0564] CHFT8-pCR2.1 and YBFT8-pCR2.1, as plasmids in which cDNA partial fragments prepared in item 2 of Example 5 from Chinese hamster FUT8 and rat FUT8, respectively, were inserted into pCR2.1, were digested with a restriction enzyme *Eco*RI, and the obtained linear DNAs were used as the standards in the preparation of a calibration curve for determining the FUT8 transcription amount.

[0565] CHFT8d-pCR2.1 and YBFT8d-pCR2.1, which were obtained by deleting 203 bp between *Sca*l and *Hin*dIII of an inner nucleotide sequence of Chinese hamster FUT8 and rat FUT8, respectively, in the item 4 of Example 9 were digested with a restriction enzyme *Eco*RI, and the obtained linear DNAs were used as the internal controls for FUT8 amount determination.

[0566] PCR was carried out by using a DNA polymerase ExTaq (manufactured by Takara Shuzo) in 20 μ I in total volume of a reaction solution [1 \times concentration ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/I dNTPs, 0.5 μ mol/I FUT8 gene-specific primers (SEQ ID NOs:13 and 14) and 5% DMSO] containing 5 μ I of 50 fold-diluted cDNA solution derived from each of the antibody-producing clone in the item 1 of Example 6 and 5 μ I (10 fg) of the plasmid for internal control. The PCR was carried out by heating at 94°C for 3 minutes and subsequent 32 cycles of heating at 94°C for 1 minute, 60°C for 1 minute and 72°C for 1 minute as one cycle.

[0567] Also, PCR was carried out in a series of reaction in which $5\,\mu$ l (0.1 fg, 1 fg, 5 fg, 10 fg, 50 fg, 100 fg, 500 fg or 1 pg) of the FUT8 standard plasmid was added instead of the each antibody-producing clone-derived cDNA, and used in the preparation of a calibration curve for the FUT8 transcription amount. In this case, 1 μ g/ml of a baker's yeast t-RNA (manufactured by SIGMA) was used for the dilution of the standard plasmid.

[0568] On the other hand, since it is considered that the β -actin gene is transcribed constantly in each cell and its transcription amount is approximately the same between cells, the transcription amount of the β -actin gene was determined as an index of the efficiency of synthesis reaction of cDNA in each antibody-producing clone.

[0569] CHAc-pBS and YBAc-pBS as plasmids in which the ORF full length of each cDNA of Chinese hamster β -actin and rat β -actin prepared in the item 3 of Example 5 were inserted into pBluescript II KS(+), respectively, were digested with restriction enzymes *Hind*III and *KpnI*, and the obtained linear DNAs were used as the standards in the preparation of a calibration curve for determining the β -actin gene transcription amount.

[0570] CHAcd-pBS and YBAcd-pBS which were obtained by deleting 180 bp between DraIII and DraIII of an inner nucleotide sequence of Chinese hamster β -actin and rat β -actin, respectively in the item 5 of Example 5, were digested with restriction enzymes HindIII and KpnIII, and the obtained linear DNAs were used as the internal controls for β -actin determination

[0571] PCR was carried out by using a DNA polymerase ExTaq (manufactured by Takara Shuzo) in 20 μ I in total volume of a reaction solution [1× concentration ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/I dNTPs, 0.5 μ mol/I β -actin-specific primers (SEQ ID NOs:17 and 18) and 5% DMSO] containing 5 μ I of 50 fold-diluted cDNA solution derived from each of the antibody-producing clones and 5 μ I (1 pg) of the plasmid for internal control. The PCR was carried out by heating at 94°C for 3 minutes and subsequent 17 cycles of heating at 94°C for 30 seconds, 65°C for 1

minute and 72°C for 2 minutes as one cycle. Also, PCR was carried out in a series of reaction in which 10 pg, 5 pg, 1 pg, 500 fg or 100 fg of the β -actin standard plasmid was added instead of the each antibody-producing clone-derived cDNA, and used in the preparation of a calibration curve for the β -actin transcription amount. In this case, 1 μ g/ml of a baker's yeast t-RNA (manufactured by SIGMA) was used for the dilution of standard plasmid.

[0572] By PCR using the primer set described in Table 1, a DNA fragment having a size shown in the target column of Table 1 can be amplified from each gene transcription product and each standard, and a DNA fragment having a size shown in the competitor column of Table 1 can be amplified from each internal control.

[0573] After 7 μ l of the solutions after PCR was subjected to 1.75% agarose gel electrophoresis, the gel was stained by soaking it for 30 minutes in 1 \times concentration SYBR Green I Nucleic Acid Gel Stain (manufactured by Molecular Probes). The amount of the amplified DNA fragment was measured by calculating luminescence intensity of each amplified DNA using a fluoro-imager (FluorImager SI; manufactured by Molecular Dynamics).

[0574] The amount of the amplified product formed by PCR which used a standard plasmid as the template was measured by the above method, and a calibration curve was prepared by plotting the measured values against the amounts of the standard plasmid. Using the calibration curve, the amount of cDNA of a gene of interest in each clone was calculated from the amount of the amplified product when each antibody-producing clone-derived total cDNA was used as the template, and the value was defined as the mRNA transcription amount in each clone.

[0575] The FUT8 transcription amounts are shown in Table 3 as relative values to the amount of the β -actin transcription product. Throughout the culturing period, the FUT8 transcription amount in the YB2/0 cell-derived antibody-producing clone 61-33 was 0.3% or less of β -actin while the FUT8 transcription amount in the CHO-derived antibody producing clone DCHI01-20 was 0.7% to 1.5% in the CHO cell-derived antibody-producing cell. The results shows that the amount of the FUT8 transcription product in the YB2/0 cell-derived antibody-producing clone was significantly less than that in the CHO cell-derived antibody-producing clone.

Table 3

Clone	Culture days				
	1st	2nd	3rd	4th	5th
DCHI01-20	0.75	0.73	0.99	1.31	1.36
61-33	0.16	0.19	0.24	0.30	<0.10

Example 7

25

30

35

40

Preparation of lectin-resistant CHO/DG44 cell and production of antibody using the cell:

1. Preparation of lectin-resistant CHO/DG44

[0576] CHO/DG44 cells were cultured in a 75 cm² flask for adhesion culture (manufactured by Greiner) in IMDM-FBS (10)-HT(1) medium [IMDM medium comprising 10% of FBS and 1× concentration of HT supplement (manufactured by GIBCO BRL)] to grow until they reached a stage of just before confluent. After washing the cells with 5 ml of PBS (manufactured by Invitrogen), 1.5 ml of 0.05% trypsin (manufactured by Invitrogen) diluted with Dulbecco PBS was added thereto and cultured at 37°C for 5 minutes to remove the cells from the flask bottom. The removed cells were recovered by a centrifugation operation generally used in cell culture and suspended in IMDM-FBS(10) medium to give a density of 1 \times 10⁵ cells/ml, and then 0.1 μ g/ml of an alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (hereinafter referred to as "MNNG", manufactured by Sigma) was added or not added thereto. After culturing at 37°C for 3 days in a CO2 incubator (manufactured by TABAI), the culture supernatant was discarded, and the cells were again washed, removed and recovered by the same operations as described above, suspended in IMDM-FBS(10)-HT (1) medium and then inoculated into an adhesion culture 96 well plate (manufactured by IWAKI Glass) to give a density of 1×10³ cells/well. To each well, as the final concentration in medium, 1 mg/ml Lens culinaris agglutinin (hereinafter referred to as "LCA", manufactured by Vector), 1 mg/ml Aleuria aurantia agglutinin (Aleuria aurantia lectin; hereinafter referred to as "AAL", manufactured by Vector) or 1 mg/ml kidney bean agglutinin (*Phaseolus vulgaris* leucoagglutinin; hereinafter referred to as "L-PHA", manufactured by Vector) was added. After culturing at 37°C for 2 weeks in a CO₂ incubator, the appeared colonies were obtained as lectin-resistant clone CHO/DG44. Regarding the obtained lectinresistant clone CHO/DG44, an LCA-resistant clone was named clone CHO-LCA, an AAL-resistant clone was named clone CHO-AAL and an L-PHA-resistant clone was named clone CHO-PHA. When the resistance of these clones to various kinds of lectin was examined, it was found that the clone CHO-LCA was also resistant to AAL and the clone CHO-AAL was also resistant LCA. In addition, the clone CHO-LCA and the clone CHO-AAL also showed a resistance to a lectin which recognizes a sugar chain structure identical to the sugar chain structure recognized by LCA and AAL,

namely a lectin which recognizes a sugar chain structure in which 6-position of fucose is bound to 1-position of N-acetylglucosamine residue in the reducing end through α -bond in the N-glycoside-linked sugar chain. Specifically, it was found that the clone CHO-LCA and the clone CHO-AAL can show resistance and survive even in a medium supplemented with 1 mg/ml at a final concentration of a pea agglutinin ($Pisum\ sativum\ agglutinin$; hereinafter referred to as "PSA", manufactured by Vector). In addition, even when the alkylating agent MNNG was not added, it was able to obtain lectin-resistant clones by increasing the number of cells to be treated. Hereinafter, these clones were used in analyses.

2. Preparation of anti-CCR4 chimeric antibody-producing cell

10

30

35

40

45

50

55

[0577] An anti-CCR4 chimeric antibody expression plasmid pKANTEX2160 was introduced into the three kinds of the lectin-resistant clones obtained in the item 1 of Example 7 by the method described in Example 4, and gene amplification by a drug MTX was carried out to prepare an anti-CCR4 human chimeric antibody-producing clone. By measuring an amount of antibody expression by the ELISA described in the item 2 of Example 4, antibody-expressing transformants were obtained from each of the clone CHO-LCA, the clone CHO-AAL and the clone CHO-PHA. Regarding each of the obtained transformants, a transformant derived from the clone CHO-LCA was named clone CHO/CCR4-LCA, a transformant derived from the clone CHO-PHA was named clone CHO/CCR4-PHA. Further, the done CHO/CCR4-LCA, as a name of Nega-13, has been deposited on September 26, 2001, as FERM BP-7756 in International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1, Higashi 1-Chome Tsukuba-shi, Ibarakiken, Japan).

3. Production of high ADCC activity antibody by lectin-resistant CHO cell

[0578] Using the three kinds of the transformants obtained in the item 2 of Example 7, purified antibodies were obtained by the method described in the item 3 of Example 4. The antigen binding activity of the purified anti-CCR4 chimeric antibodies was evaluated by the ELISA described in the item 2 of Example 4. The antibodies produced by all transformants showed an antigen binding activity similar to that of the antibody produced by a recombinant clone (clone 5-03) prepared in Example 4 using normal CHO/DG44 cell as the host. Using these purified antibodies, ADCC activity of each of the anti-CCR4 chimeric antibodies was evaluated in accordance with the method described in the item 7 of Example 4. The results are shown in Fig. 17. In comparison with the antibody produced by the clone 5-03, about 100 fold-increased ADCC activity was observed in the antibodies produced by the clone CHO/CCR4-LCA and the clone CHO/CCR4-AAL. On the other hand, no significant increase in the ADCC activity was observed in the antibody produced by the clone CHO/CCR4-PHA. Also, when ADCC activities of the antibodies produced by the clone CHO/CCR4-LCA and the YB2/0 cell-derived clone were compared in accordance with the method described in the item 7 of Example 4, it was found that the antibody produced by the clone CHO/CCR4-LCA shows higher ADCC activity, similar to the case of the antibody KM2760-1 produced by the YB2/0 cell-derived clone prepared in the item 1 of Example 4 (Fig. 18).

4. Sugar chain analysis of antibody produced by lectin-resistant CHO cell

[0579] Sugar chains of the anti-CCR4 chimeric antibodies purified in the item 3 of Example 7 were analyzed according to the method described in the item 1 of Example 3. Fig. 19 shows elution patterns of the purified PA-treated sugar chains of the various anti-CCR4 chimeric antibodies.

[0580] Table 4 shows the result of ratios (%) of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end obtained by the result of the sugar chain analysis of the anti-CCR4 chimeric antibodies produced by various lectin-resistant clones.

Table 4

Antibody producing cell	Ratio of α1,6-Fucose-free sugar chain (%)		
Clone 5-03	9		
Clone CHO/CCR4-LCA	48		
Clone CHO/CCR4-AAL	27		
Clone CHO/CCR4-PHA	8		

[0581] In comparison with the antibody produced by the clone 5-03, the ratio of a sugar chain in which 1-position of

fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond was increased from 9% to 48% in the antibody produced by the clone CHO/CCR4-LCA. The ratio of α 1,6-fucose-free sugar chains was increased from 9% to 27% in the antibody produced by the clone CHO/CCR4-AAL. On the other hand, changes in the sugar chain pattern and the ratio of α 1,6-fucose-free sugar chains were hardly found in the clone CHO/CCR4-PHA when compared with the clone 5-03.

Example 8

10

40

45

50

55

Analysis of lectin-resistant CHO clone:

1. Analysis of expression amount of GMD enzyme in anti-CCR4 chimeric antibody-producing clone CHO/CCR4-LCA

[0582] The expression amount of each of the genes of GMD, GFPP and FX, known as fucose biosynthesis enzymes and FUT8 as a fucosyltransferase, in the anti-CCR4 human chimeric antibody-producing clone CHO/CCR4-LCA obtained in Example 7, was analyzed using RT-PCR method.

(1) Preparation of RNA from various clones

[0583] Each of CHO/DG44 cell, the anti-CCR4 human chimeric antibody-producing clone 5-03 obtained in the item 1(2) of Example 4 and the anti-CCR4 chimeric antibody-producing clone CHO/CCR4-LCA obtained in the item 2 of Example 7 was subcultured at 37° C in a 5% CO_2 incubator and then cultured for 4 days. After culturing, RNA was prepared from 1×10^7 cells of each clone using RNeasy Protect Mini Kit (manufactured by QIAGEN) in accordance with the manufacture's instructions. Subsequently, single-stranded cDNA was synthesized from 5 μ g of each RNA in a 20 μ l of a reaction solution using SUPER SCRIPT First-Strand Synthesis System for RT-PCR (manufactured by GIBCO BRL) in accordance with the manufacture's instructions.

(2) Analysis of expression amount of GMD gene using RT-PCR

[0584] In order to amplify GMD cDNA by PCR, a 24 mer synthetic DNA primer having the nucleotide sequence shown by SEQ ID NO:32 and a 26 mer synthetic DNA primer having the nucleotide sequence shown by SEQ ID NO:33 were prepared based on the CHO cell-derived GMD cDNA sequence shown in the item 1 of Reference Example 2. [0585] Next, 20 μl of a reaction solution [1× concentration Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μL of the synthetic DNA primers of SEQ ID NOs:32 and 33] containing 0.5 μl of the single-stranded cDNA derived from each clone in the item 1(1) of Example 8 as the template was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 30 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle. After subjecting 10 μl of the PCR reaction solution to agarose electrophoresis, DNA fragments were stained with Cyber Green (manufactured by BMA) and then the amount of the DNA fragment of about 350 bp was measured by using Fluor Imager SI (manufactured by Molecular Dynamics).

(3) Analysis of expression amount of GFPP gene using RT-PCR

[0586] In order to amplify GFPP cDNA by PCR, a 27 mer synthetic DNA primer having the nucleotide sequence shown by SEQ ID NO:35 were prepared based on the CHO cell-derived GFPP cDNA sequence obtained in the item 2 of Reference Example 1. [0587] Next, 20 μ I of a reaction solution [1×Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μ I of the synthetic DNA primers of SEQ ID NOs:34 and 35] containing 0.5 μ I of the single-stranded cDNA prepared from each clone in the item 1(1) of Example 8 as the template was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 24 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle. After subjecting 10 μ I of the PCR reaction solution to agarose electrophoresis, DNA fragments were stained with Cyber Green (manufactured by BMA) and then the amount of the DNA fragment of about 600 bp was measured by using Fluor Imager SI (manufactured by Molecular Dynamics).

(4) Analysis of expression amount of FX gene using RT-PCR

[0588] In order to amplify FX cDNA by PCR, a 28 mer synthetic DNA primer having the nucleotide sequence shown by SEQ ID NO:36 and a 28 mer synthetic DNA primer having the nucleotide sequence shown by SEQ ID NO:3 were

prepared based on the CHO cell-derived FX cDNA sequence shown in the item 1 of Reference Example 1.

[0589] Next, $20\,\mu$ l of a reaction solution [1× concentration Ex Taq buffer (manufactured by Takara Shuzo), $0.2\,\mu$ mol/L dNTPs, $0.5\,\mu$ l of Ex Taq polymerase (manufactured by Takara Shuzo) and $0.5\,\mu$ mol/L of the synthetic DNA primers of SEQ ID NO:36 and SEQ ID NO:37] containing $0.5\,\mu$ l of the single-stranded cDNA derived from each clone in the item 1(1) of Example 8 as the template was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 22 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle. After subjecting $10\,\mu$ l of the PCR reaction solution to agarose electrophoresis, DNA fragments were stained with Cyber Green (manufactured by BMA) and then the amount of the DNA fragment of about 300 bp was measured by using Fluor Imager SI (manufactured by Molecular Dynamics).

(5) Analysis of expression amount of FUT8 gene using RT-PCR

10

20

30

35

40

45

50

55

[0590] In order to amplify FUT8 cDNA by PCR, 20 μl of a reaction solution [1×Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μmol/L of the synthetic DNA primers of SEQ ID NOs:13 and 14] containing 0.5 μl of the single-stranded cDNA derived from each clone in the item 1(1) of Example 8 as the template was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 20 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle. After subjecting 10 μl of the PCR reaction solution to agarose electrophoresis, DNA fragments were stained with Cyber Green (manufactured by BMA) and then amount of the DNA fragment of about 600 bp was measured using Fluor Imager SI (manufactured by Molecular Dynamics).

(6) Analysis of expression amount of β -actin gene using RT-PCR

[0591] In order to amplify β-actin cDNA by PCR, 20 μ I of a reaction solution [1 x Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μ I of the synthetic DNA primers of SEQ ID NOs:15 and 16] containing 0.5 μ I of the single-stranded cDNA derived from each clone in the item 1(1) of Example 8 as the template was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 14 cycles of heating at 94°C for I minute and 68°C for 2 minutes as one cycle. After subjecting 10 μ I of the PCR reaction solution to agarose electrophoresis, DNA fragments were stained with Cyber Green (manufactured by BMA) and then the amount of the DNA fragment of about 800 bp was measured using Fluor Imager SI (manufactured by Molecular Dynamics).

(7) Expression amount of GMD, GFPP, FX and FUT8 genes in each clone

[0592] The amount of the PCR-amplified fragment of each gene in the clone 5-03 and the clone CHO/CCR4-LCA was calculated by dividing values of the amounts of PCR-amplified fragments derived from GMD, GFPP, FX and FUT cDNA in each clone measured in the items 1(2) to 1(6) of Example 8 by the value of the amount of PCR-amplified fragment derived from β -actin cDNA in each clone, and defining the amount of the PCR-amplified fragments in CHO/DG44 cell as 1. The results are shown in Table 5.

Table 5

	GMD	GEPP	FX	FUT8
Clone CHO/DG44	1	1	1	1
Clone CHO/DG44 Anti-CCR4 antibody-producing cell Clone 5-03	1.107	0.793	1.093	0.901
Derived from clone 5-03 LCA-resistant cell CHO/CCR4-LCA	0.160	0.886	0.920	0.875

[0593] As shown in Table 5, the expression amount of GMD gene in the clone CHO/CCR4-LCA was decreased to about 1/10 in comparison with other clones. In this case, the test was independently carried out twice, and the average value was used.

- 2. Analysis using anti-CCR4 chimeric antibody-producing clone CHO/CCR4-LCA in which GMD gene was forced to express
- (1) Construction of CHO cell-derived GMD gene expression vector pAGE249GMD

10

30

35

40

45

50

[0594] Based on the CHO cell-derived GMD cDNA sequence obtained in the item 1 of Reference Example 2, a 28 mer primer having the nucleotide sequence shown by SEQ ID NO:38 and a 29 mer primer having the nucleotide sequence shown by SEQ ID NO:39 were prepared. Next, 20 μ I of a reaction solution [1× concentration Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μ mol/L of the synthetic DNA primers of SEQ ID NOs:38 and 39] containing 0.5 μ I of the CHO cell-derived single-stranded cDNA prepared in the item 1(1) of Example 8 as the template was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequently 8 cycles of heating at 94°C for 1 minute, 58°C for 1 minute and 72°C for 1 minute as one cycle, and then 22 cycles of heating at 94°C for 1 minute and 68°C as one cycle. After completion of the reaction, the PCR reaction solution was fractionated by agarose electrophoresis, and then a DNA fragment of about 600 bp was recovered. The recovered DNA fragment was connected to pT7Blue(R) vector (manufactured by Novagen) by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5α (manufactured by Toyobo) was transformed using the obtained recombinant plasmid DNA to obtain a plasmid mt-C (Fig. 20).

[0595] Next, based on the CHO cell-derived GMD cDNA sequence obtained in the item 1 of Reference Example 2, a 45 mer primer having the nucleotide sequence shown by SEQ ID NO:40 and a 31 mer primer having the nucleotide sequence shown by SEQ ID NO:41 were prepared. Next, 20 μ l of a reaction solution [1 \times Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μ mol/L of the synthetic DNA primers of SEQ ID NOs:40 and 41] containing 0.5 μ l of the CHO cell-derived single-stranded cDNA prepared in the item 1(1) of Example 8 as the template was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequently 8 cycles of heating at 94°C for 1 minute, 57°C for 1 minute and 72°C for 1 minute as one cycle, and then 22 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle. After completion of the reaction, the PCR reaction solution was fractionated by agarose electrophoresis, and then a DNA fragment of about 150 bp was recovered. The recovered DNA fragment was connected to pT7Blue(R) vector (manufactured by Novagen) by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5 α (manufactured by Toyobo) was transformed using the obtained recombinant plasmid DNA to obtain a plasmid ATG (Fig. 21).

[0596] Next, 3 μg of the plasmid CHO-GMD prepared in the item 1 of Reference Example 2 was allowed to react with a restriction enzyme *Sac*l (manufactured by Takara Shuzo) at 37°C for 16 hours, a DNA was recovered by carrying out phenol/chloroform extraction and ethanol precipitation and allowed to react with a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) at 37°C for 16 hours. A digest DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 900 bp was recovered. The plasmid mt-C (1.4 μg) was allowed to react with a restriction enzyme *Sac*l (manufactured by Takara Shuzo) at 37°C for 16 hours, DNA was recovered by carrying out phenol/chloroform extraction and ethanol precipitation and allowed to react with a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) at 37°C for 16 hours. A digested DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 3.1 kbp was recovered. The recovered DNA fragments were ligated by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5α was transformed using the obtained recombinant plasmid DNA to obtain a plasmid WT-N(-) (Fig. 22).

[0597] Next, 2 μg of the plasmid WT-N(-) was allowed to react with a restriction enzyme *Bam*HI (manufactured by Takara Shuzo) at 37°C for 16 hours, DNA was recovered by carrying out phenol/chloroform extraction and ethanol precipitation and allowed to react with a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) at 37°C for 16 hours. A digested DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 1 kbp was recovered by using Gene Clean II Kit (manufactured by BIO 101) in accordance with the manufacture's instructions. The plasmid pBluescript SK(-) (3 μg; manufactured by Stratagene) was allowed to react with a restriction enzyme *Bam*HI (manufactured by Takara Shuzo) at 37°C for 16 hours, DNA was recovered by carrying out phenol/chloroform extraction and ethanol precipitation and allowed to react with a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) at 37°C for 16 hours. A digested DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 3 kbp was recovered. The respective recovered DNA fragments were ligated by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5α was transformed using the obtained recombinant plasmid DNA to obtain a plasmid WT-N(-) in pBS (cf. Fig. 23).

[0598] Next, 2 μg of the plasmid WT-N(-) in pBS was allowed to react with a restriction enzyme *Hin*dIII (manufactured by Takara Shuzo) at 37°C for 16 hours, DNA was recovered by carrying out phenol/chloroform extraction and ethanol precipitation and allowed to react with a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) at 37°C for 16 hours. A digested DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 4 kbp was

recovered. After 2 μ g of the plasmid ATG was allowed to react with a restriction enzyme *Hin*dIII (manufactured by Takara Shuzo) at 37°C for 16 hours, DNA was recovered by carrying out phenol/chloroform extraction and ethanol precipitation and allowed to react with a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) at 37°C for 16 hours. A digested DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 150 bp was recovered. The respective recovered DNA fragments were ligated by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5 α was transformed using the obtained recombinant plasmid DNA to obtain a plasmid WT in pBS (Fig. 24).

[0599] Next, 2 μ g of the plasmid pAGE249 was allowed to react with restriction enzymes *Hind*III and *Bam*HI (both manufactured by Takara Shuzo) at 37°C for 16 hours. A digested DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 6.5 kbp was recovered. The plasmid WT (2 μ g) in pBS was allowed to react with restriction enzymes *Hind*III and *Bam*HI (both manufactured by Takara Shuzo) at 37°C for 16 hours. A digested DNA was fractionated by agarose electrophoresis and then a DNA fragment of about 1.2 kbp was recovered. The respective recovered DNA fragments were ligated by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5 α was transformed using the obtained recombinant plasmid DNA to obtain a plasmid pAGE249GMD (Fig. 25).

(2) Stable expression of GMD gene in clone CHO/CCR4-LCA

10

15

30

40

50

55

[0600] The CHO cell-derived GMD gene expression vector pAGE249GMD (5 μ g) which was made into linear form by digesting it with a restriction enzyme *Fsp*I (manufactured by NEW ENGLAND BIOLABS), was introduced into 1.6×10⁶ cells of the clone CHO/CCR4-LCA by electroporation [*Cytotechnology*, 3, 133 (1990)]. Then, the cells were suspended in 30 ml of IMDM-dFBS(10) medium [IMDM medium (manufactured by GIBCO BRL) supplemented with 10% of dFBS] comprising 200 nmol/L MTX (manufactured by SIGMA), and cultured in a 182 cm² flask (manufactured by Greiner) at 37°C for 24 hours in a 5% CO₂ incubator. After culturing, the medium was changed to IMDM-dFBS(10) medium containing 0.5 mg/ml hygromycin and 200 nmol/L MTX (manufactured by SIGMA), followed by culturing for 19 days to obtain colonies of hygromycin-resistant transformants.

[0601] In the same manner, the pAGE249 vector was introduced into the clone CHO/CCR4-LCA by the same method as above to obtain colonies of hygromycin-resistant transformants.

(3) Culturing of GMD gene-expressed clone CHO/CCR4-LCA and purification of antibody

[0602] Using IMDM-dFBS(10) medium comprising 200 nmol/L MTX (manufactured by SIGMA) and 0.5 mg/ml hygromycin, the GMD-expressing transformant cells obtained in the item 2(2) of Example 8 were cultured in a 182 cm² flask (manufactured by Greiner) at 37°C in a 5% $\rm CO_2$ incubator. Several days thereafter, when the cell density reached confluent, the culture supernatant was discarded and the cells were washed with 25 ml of PBS buffer (manufactured by GIBCO BRL) and mixed with 35 ml of EXCELL301 medium (manufactured by JRH). After culturing at 37°C in a 5% $\rm CO_2$ incubator for 7 days, the culture supernatant was recovered. An anti-CCR4 chimeric antibody was purified from the culture supernatant by using Prosep-A column (manufactured by Millipore) in accordance with the manufacture's instructions.

[0603] In the same manner, the pAGE249 vector-introduced transformant cells were cultured by the same method as above and then anti-CCR4 chimeric antibody was recovered and purified from the culture supernatant.

(4) Measurement of lectin resistance in transformed cells

[0604] The GMD gene-expressing transformant cells obtained in the item 2(2) of Example 8 were suspended in IMDM-dFBS(10) medium comprising 200 nmol/L MTX (manufactured by SIGMA) and 0.5 mg/ml hygromycin to give a density of 6×10^4 cells/ml, and the suspension was dispensed at 50 μ l/well into a 96 well culture plate (manufactured by lwaki Glass). Next, a medium prepared by suspending LCA (*Lens culinaris* agglutinin: manufactured by Vector Laboratories) at concentrations of 0 mg/ml, 0.4 mg/ml, 1.6 mg/ml or 4 mg/ml in IMDM-dFBS(10) medium containing 200 nmol/L MTX (manufactured by SIGMA) and 0.5 mg/ml hygromycin was added to the plate at 50 μ l/well, followed by culturing at 37°C for 96 hours in a 5% CO₂ incubator. After culturing, WST-1 (manufactured by Boehringer) was added at 10 μ l/well and incubated at 37°C for 30 minutes in a 5% CO₂ incubator for color development, and then the absorbance at 450 nm and 595 nm (hereinafter referred to as "OD450" and "OD595", respectively) was measured by using Microplate Reader (manufactured by BIO-RAD). In the same manner, the pAGE249 vector-introduced transformant cells were measured by the same method as above. The above-mentioned test was carried out twice independently.

[0605] Fig. 26 shows the number of survived cells in each well by percentage when a value calculated by subtracting OD595 from OD450 measured in the above is used as the survived number of each cell group and the number of survived cells in each of the LCA-free wells is defined as 100%. As shown in Fig. 26, decrease in the LCA-resistance

was observed in the GMD-expressed clone CHO/CCR4-LCA, and the survival ratio was about 40% in the presence of 0.2 mg/ml LCA and the survival ratio was about 20% in the presence of 0.8 mg/ml LCA. On the other hand, in the pAGE249 vector-introduced stain CHO/CCR4-LCA, the survival ratio was 100% in the presence of 0.2 mg/ml LCA and the survival ratio was about 80% even in the presence of 0.8 mg/ml LCA. Based on the above results, it was suggested that expression amount of GMD gene in the clone CHO/CCR4-LCA was decreased and, as a result, the resistance against LCA was obtained.

- (5) ADCC activity of anti-CCR4 chimeric antibody obtained from GMD-expressed clone CHO/CCR4-LCA
- 10 [0606] ADCC activity of the purified anti-CCR4 chimeric antibody obtained in the item 2(3) of Example 8 was measured in accordance with the following method.
 - i) Preparation of target cell suspension
- [0607] CCR4/EL4 cell described in W001/64754 was prepared at 1×10⁶ cells and 3.7 MBq equivalent of a radioactive substance Na₂⁵¹CrO₄ was added to thereto, followed by reaction at 37°C for 90 minutes to thereby label the cells with a radioisotope. After the reaction, the cells were washed three times by suspension in the RPMI1640-FBS(10) medium and subsequent centrifugation, resuspended in the medium and then incubated at 4°C for 30 minutes on ice for spontaneous dissociation of the radioactive substance. After centrifugation, the cells were adjusted to 2.0×10⁵ cells/ml by adding 5 ml of the RPMI1640-FBS(10) medium and used as a target cell suspension.
 - ii) Preparation of effector cell suspension
 - [0608] From a healthy doner, 50 ml of venous blood was collected and gently mixed with 0.5 ml of heparin sodium (manufactured by Takeda Pharmaceutical). Using Lymphoprep (manufactured by Nycomed Pharma AS), the mixture was centrifuged in accordance with the manufacture's instructions to separate a mononuclear cell layer. The cells were washed three times by centrifuging with the RPMI1640-FBS(10) medium and then resuspended in the medium to give a density of 2.5×10⁶ cells/ml and used as a effector cell suspension.
- 30 iii) Measurement of ADCC activity

40

50

- [0609] The target cell suspension prepared in the above i) was dispensed at 50 μ l (1×10⁴ cells/well) into each well of a 96 well U-bottom plate (manufactured by Falcon). Next, 100 μ l of the effector cell suspension prepared in the above ii) was added thereto (2×10⁵ cells/well, ratio of the effector cells to the target cells was 25 : 1). Each of various anti-CCR4 chimeric antibodies was further added thereto to give a final concentration of 0.0025 to 2.5 μ g/ml, followed by reaction at 37°C for 4 hours. After the reaction, the plate was centrifuged and the amount of ⁵¹Cr in the supernatant was measured with a γ -counter. The amount of the spontaneously dissociated ⁵¹Cr was calculated by carrying out the same procedure using the medium alone instead of the effector cell suspension and antibody solution, and measuring the amount of ⁵¹Cr in the supernatant. The amount of the total dissociated ⁵¹Cr was calculated by carrying out the same procedure using the medium alone instead of the antibody solution and adding 1 mol/L hydrochloric acid instead of the effector cell suspension and measuring the amount of ⁵¹Cr in the supernatant. The ADCC activity was calculated based on the above equation (1).
- [0610] Results of the measurement of ADCC activity are shown in Fig. 27. As shown in Fig. 27, ADCC activity of the purified anti-CCR4 chimeric antibody obtained from the GMD-expressed clone CHO/CCR4-LCA was decreased to a similar degree to that of the KM3060 produced by the normal CHO cell-derived antibody-producing clone obtained in Example 4. On the other hand, ADCC activity of the purified anti-CCR4 chimeric antibody obtained from the pAGE249 vector-introduced clone CHO/CCR4-LCA showed a similar degree of ADCC activity to that of the purified anti-CCR4 chimeric antibody obtained from the clone CHO/CCR4-LCA. Based on the above results, it was suggested that expression amount of GMD gene in the clone CHO/CCR4-LCA is decreased and, as a result, an antibody having high ADCC activity can be produced.
- (6) Sugar chain analysis of anti-CCR4 chimeric antibody derived from GMD-expressed clone CHO/CCR4-LCA
- [0611] Sugar chains binding to the purified anti-CCR4 chimeric antibody obtained in the item 2(3) of Example 8 were analyzed in accordance with the method shown in the item 1 or Example 3, and the analyzed results are shown in Fig. 28. In comparison with the purified anti-CCR4 chimeric antibody prepared from the clone CHO/CCR4-LCA in Example 7, the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in the purified anti-CCR4 chimeric antibody derived from the GMD gene-expressed clone

CHO/CCR4-LCA was decreased to 9% when calculated from the peak area. Thus, it was shown that the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond in the antibody produced by the cell is decreased to similar level of the antibody produced by the clone 5-03.

Example 9

15

25

30

35

40

45

50

55

Preparation of anti-fibroblast growth factor-8 human chimeric antibody

10 1. Preparation of cells stably producing anti-fibroblast growth factor-8 human chimeric antibody

[0612] Using a tandem type expression vector pKANTEX134 of an anti-fibroblast growth factor-8 (hereinafter referred to as "FGF-8") human chimeric antibody described in Reference Example 3, cells stably producing the anti-FGF-8 human chimeric antibody (hereinafter referred to as "anti-FGF-8 chimeric antibody") was prepared as follows.

(1) Preparation of producing cell using rat myeloma YB2/0 cell

[0613] After introducing 10 μ g of the anti-FGF-8 chimeric antibody expression vector pKANTEX1334 into 4×10^6 cells of rat myeloma YB2/0 cell (ATCC CRL 1662) by electroporation [*Cytotechnology*, 3, 133 (1990)], the cells were suspended in 40 ml of Hybridoma-SFM-FBS(5) [Hybridoma-SFM medium (manufactured by Invitrogen) containing 5% FBS (manufactured by PAA Laboratories)] and dispensed at 200 μ l/well into a 96 well culture plate (manufactured by Sumitomo Bakelite). After culturing at 37°C for 24 hours in a 5% CO₂ incubator, G418 was added to give a concentration of 0.5 mg/ml, followed by culturing for 1 to 2 weeks. Culture supernatants were recovered from wells in which colonies of transformants showing G418 resistance were formed and their growth was confirmed, and antigen-binding activity of the anti-FGF-8 chimeric antibody in the supernatants was measured by the ELISA described in the item 2 of Example

[0614] Regarding the transformants in wells in which production of the anti-FGF-8 chimeric antibody was found in the culture supernatants, in order to increase the antibody production amount by using a *dhfr* gene amplification system, each of them was suspended to give a density of 1 to 2×10^5 cells/ml in the Hybridoma-SFM-FBS(5) medium containing 0.5 mg/ml G418 and 50 nmol/1 DHFR inhibitor MTX (manufactured by SIGMA) and dispensed at 1 ml into each well of a 24 well plate (manufactured by Greiner). After culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator, transformants showing 50 nmol/l MTX resistance were induced. Antigen-binding activity of the anti-FGF-8 chimeric antibody in culture supernatants in wells where growth of transformants was observed was measured by the ELISA described in the item 2 of Example 9.

[0615] Regarding the transformants in wells in which production of the anti-FGF-8 chimeric antibody was found in culture supernatants, the MTX concentration was increased by a method similar to the above to thereby finally obtain a transformant 5-D capable of growing in the Hybridoma-SFM-FBS(5) medium containing 0.5 mg/ml G418 and 200 nmol/I MTX and also highly producing the anti-FGF-8 chimeric antibody. The resulting transformant was subjected to cloning by limiting dilution, and the resulting transformant cell clone was named 5-D-10.

(2) Preparation of producing cell using CHO/DG44 cell

[0616] In accordance with the method described in Example 4, the anti-FGF-8 chimeric antibody expression plasmid pKANTEX1334 was introduced into C H O/DG44 cell and gene amplification was carried out by using the drug MTX to obtain a transformant highly producing the anti-FGF-8 chimeric antibody. The antibody expression amount was measured using the ELISA described in the item 2 of Example 9. The resulting transformant was cloned twice by limiting dilution, and the resulting transformant cell clone was named 7-D-1-5.

2. Binding activity of antibody to FGF-8 partial peptide (ELISA)

[0617] Compound 2 (SEQ ID NO:21) was selected as a human FGF-8 peptide with which the anti-FGF-8 chimeric antibody can react. For the activity measurement by the ELISA, a conjugate with BSA (manufactured by Nacalai Tesque) was prepared by the following method and used as the antigen. That is, 100 ml of a 25 mg/ml SMCC [4-(*N*-maleimidomethyl)cyclohexane-1-carboxylic acid *N*-hydroxysuccinimide ester] (manufactured by SIGMA)-DMSO solution was added dropwise to 900 ml of a PBS solution containing 10 mg of BSA under stirring, followed by slowly stirred for 30 minutes. To a gel filtration column such was NAP-10 column or the like which had been equilibrated with 25 ml of PBS, 1 ml of the reaction solution was applied, and the eluate eluted with 1.5 ml of PBS was used as a BSA-SMCC solution (BSA concentration was calculated from A₂₈₀ measurement). Next, 250 ml of PBS was added to 0.5 mg of Compound

2, 250 ml of DMF was added thereto and completely dissolved, and then the above BSA-SMCC solution (1.25 mg as BSA) was added thereto under stirring, followed by slow stirring for 3 hours. The reaction solution was dialyzed against PBS at 4°C overnight, sodium azide was added thereto to give a final concentration of 0.05% and then filtered through a 0.22 μm filter and used as a BSA-compound 2 solution.

[0618] The conjugate prepared in the above was dispensed at 1 μ g/ml and 50 μ l/well into a 96 well plate for ELISA (manufactured by Greiner) and adhered thereto by allowing it to stand at 4°C overnight. After washing with PBS, 1% BSA-PBS was added at 100 μ l/well and allowed to react at room temperature for 1 hour to block the remaining active groups. After washing each well with Tween-PBS, culture supernatant of a transformant or a purified antibody was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing of each well with Tween-PBS, a peroxidase-labeled goat anti-human IgG (γ) antibody solution (manufactured by American Qualex) diluted 3,000-fold with 1% BSA-PBS was added as a secondary antibody solution at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, the ABTS substrate solution was added at 50 μ l/well to develop color, and the reaction was stopped 10 minutes thereafter by adding 5% SDS solution at 50 μ l/well. Thereafter, OD415 was measured.

3. Purification of anti-FGF-8 chimeric antibody

10

15

30

35

50

- (1) Culturing of YB2/0 cell-derived producing cell and purification of antibody
- 20 [0619] The anti-FGF-8 chimeric antibody-expressing transformant 5-D obtained in the item 1(1) of Example 9 was cultured in Hybridoma-SFM (manufactured by Invitrogen) medium containing 200 nmol/1 of MTX and 5% Daigo's GF21 (manufactured by Wako Pure Chemical Industries) in a 182 cm² flask (manufactured by Greiner) at 37°C in a 5% CO2 incubator. After culturing for 8 to 10 days, the anti-FGF-8 chimeric antibody was purified from the culture supernatant recovered by using Prosep-A (manufactured by Millipore) column and in accordance with the attached manufacture's instructions. The purified anti-FGF-8 chimeric antibody was named YB2/0-FGF8 chimeric antibody.
 - (2) Culturing of CHO-DG44 cell-derived antibody-producing cells and purification of antibody
 - [0620] The anti-FGF-8 chimeric antibody-producing transformant cell clone 7-D-1-5 obtained in the item 1(2) of Example 9 was cultured in the IMDM-dFBS(10) medium in a 182 cm² flask (manufactured by Greiner) at 37°C in a 5% CO₂ incubator. At the stage where the cell density reached confluent several days thereafter, the culture supernatant was discarded, the cells were washed with 25 ml of PBS buffer and then 35 ml of EXCELL301 medium (manufactured by JRH) was added thereto. After the culturing for 7 days at 37°C in a 5% CO₂ incubator, the culture supernatant was recovered. The anti-FGF-8 chimeric antibody was purified from the culture supernatant by using Prosep-A (manufactured by Millipore) column and in accordance with the manufacture's instructions. The purified anti-FGF-8 chimeric antibody was named CHO-FGF8 chimeric antibody.

[0621] When the binding activity of the YB2/0-FGF8 chimeric antibody and CHO-FGF8 chimeric antibody to FGF-8 was measured by the ELISA described in the item 2 of Example 9, they showed similar binding activity.

- 40 4. Analysis of purified anti-FGF-8 chimeric antibody
 - [0622] Each 4 μg of the two anti-FGF-8 chimeric antibodies produced by respective animal cells and purified in the item 3 of Example 9 was subjected to SDS-PAGE according to a known method [Nature, 227, 680 (1970)] and the molecular weight and purity were analyzed. In each of the purified anti-FGF-8 chimeric antibodies, a single band of about 150 Kd in molecular weight was found under non-reducing conditions and two bands of about 50 Kd and about 25 Kd were found under reducing conditions. These molecular weights almost coincided with the molecular weights deduced from the cDNA nucleotide sequences of the antibody H chain and L chain (H chain: about 49 Kd, L chain: about 23 Kd, whole molecule: about 144 Kd), and also coincided with the reports showing that the IgG type antibody shows a molecular weight of about 150 Kd under non-reducing conditions and is degraded into H chain having a molecular weight of about 50 Kd and L chain having a molecular weight of about 50 Kd and L chain having a molecular weight of about 25 Kd under reducing conditions due to cleavage of the intramolecular S-S bond (Antibodies, Chapter 14 (1988); Monoclonal Antibodies). Thus it was confirmed that the anti-FGF-8 chimeric antibodies were expressed and purified as antibody molecules having correct structures.
- 55 5. Sugar chain analysis of purified anti-FGF-8 chimeric antibodies

[0623] Sugar chain analysis of the YB2/0-FGF8 chimeric antibody which is YB2/0 cell-derived anti-FGF-8 chimeric antibody and anti-FGF-8 chimeric antibody CHO-FGF8 chimeric antibody which is CHO/DG44 cell-derived prepared

in the item 4 of Example 9 was carried out in accordance with the method described in the item 1 of Example 3. As a result, the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond were 58% in the YB2/0-FGF8 chimeric antibody and 13% in the CHO-FGF8 chimeric antibody. Hereinafter, these samples are called anti-FGF-8 chimeric antibody (58%) and anti-FGF-8 chimeric antibody (13%).

Example 10

10

30

35

40

50

Preparation of soluble human FcyRIIIa protein

- 1. Construction of a soluble human FcγRIIIa protein expression vector
- (1) Preparation of human peripheral blood monocyte cDNA

[0624] From a healthy doner, 30 ml of vein blood was collected, gently mixed with 0.5 ml of heparin sodium (manufactured by Shimizu Pharmaceutical) and then mixed with 30 ml of physiological saline (manufactured by Otsuka Pharmaceutical). After the mixing, 10 ml of each mixture was gently overlaid on 4 ml of Lymphoprep (manufactured by NYCOMED PHARMA AS) and centrifuged at 2,000 rpm for 30 minutes at room temperature. The separated monocyte fractions in respective centrifugation tubes were combined and suspended in 30 ml of RPMI1640-FBS(10). After centrifugation at room temperature and at 1,200 rpm for 15 minutes, the supernatant was discarded and the cell were suspended in 20 ml ofRPMI1640-FBS(10). This washing operation was repeated twice and then 2×10⁶ cells/ml of peripheral blood monocyte suspension was prepared using RPMI1640-FBS(10).

[0625] After 5 ml of the resulting peripheral blood monocyte suspension was centrifuged at room temperature and at 800 rpm for 5 minutes in 5 ml of PBS, the supernatant was discarded and the residue was suspended in 5 mL of PBS. After centrifugation at room temperature and at 800 rpm for 5 minutes, the supernatant was discarded and total RNA was extracted by QIAamp RNA Blood Mini Kit (manufactured by QIAGEN) and in accordance with the manufacture's instructions.

[0626] A single-stranded cDNA was synthesized by reverse transcription reaction to 2 μg of the resulting total RNA, in a series of 40 μl containing oligo(dT) as primers using SUPERSCRITPTM Preamplification System for First Strand cDNA Synthesis (manufactured by Life Technologies) according to the manufacture's instructions.

(2) Preparation method of cDNA encoding human FcγRIIIa protein

[0627] A cDNA encoding a human FcγRIIIa protein (hereinafter referred to as "hFcγRIIIa") was prepared as follows. [0628] First, a specific forward primer containing a translation initiation codon (represented by SEQ ID NO:22) and a specific reverse primer containing a translation termination codon (represented by SEQ ID NO:26) were designed from the nucleotide sequence of hFcγRIIIa cDNA [*J. Exp. Med.*, 170, 481 (1989)].

[0629] Next, using a DNA polymerase ExTaq (manufactured by Takara Shuzo), 50 μ l of a reaction solution [1 \times concentration ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/l dNTPs, 1 μ mol/l of the above gene-specific primers (SEQ ID NOs:22 and 26)] containing 5 μ l of 20-fold diluted solution of the human peripheral blood monocytederived cDNA solution prepared in the item 1(1) of Example 10 was prepared, and PCR was carried out. The PCR was carried out by 35 cycles of a reaction at 94°C for 30 seconds, at 56°C for 30 seconds and at 72°C for 60 seconds as one cycle.

[0630] After the PCR, the reaction solution was purified by using QIAquick PCR Purification Kit (manufactured by QIAGEN) and dissolved in 20 µl of sterile water. The products were digested with restriction enzymes *Eco*Rl (manufactured by Takara Shuzo) and *Bam*Hl (manufactured by Takara Shuzo) and subjected to 0.8% agarose gel electrophoresis to recover about 800 bp of a specific amplification fragment.

[0631] On the other hand, 2.5 μg of a plasmid pBluescript II SK(-) (manufactured by Stratagene) was digested with restriction enzymes *Eco*RI (manufactured by Takara Shuzo) and *Bam*HI (manufactured by Takara Shuzo), and digested products were subjected to 0.8% agarose gel electrophoresis to recover a fragment of about 2.9 kbp.

[0632] The human peripheral blood monocyte cDNA- derived amplification fragment and plasmid pBluescript II SK (-)-derived fragment obtained in the above were ligated by using DNA Ligation Kit Ver. 2.0 (manufactured by Takara Shuzo). The strain *Escherichia coli* DH5α (manufactured by TOYOBO) was transformed by using the reaction solution, and a plasmid DNA was isolated from each of the resulting ampicillin-resistant colonies according to a known method. [0633] A nucleotide sequence of the cDNA inserted into each plasmid was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (manufactured by Parkin Elmer) according to the manufacture's instructions. It was confirmed that all of the inserted cDNAs whose sequences were determined by this method encodes a complete ORF sequence of the cDNA encoding hFcγRIIIa. A

plasmid DNA containing absolutely no reading error of bases in the sequence accompanied by PCR was selected from them. Hereinafter, the plasmid is called pBSFcyRIIIa5-3.

[0634] The thus determined full length cDNA sequence for hFcγRIIIa is represented by SEQ ID NO:27, and its corresponding amino acid sequence is shown in by SEQ ID NO:28.

(3) Preparation of a cDNA encoding soluble hFcyRIIIa

[0635] A cDNA encoding soluble hFcγRIIIa (hereinafter referred to as "shFcγRIIIa") having the extracellular region of hFcγRIIIa (positions 1 to 193 in SEQ ID NO:28) and a His-tag sequence at the C-terminal was constructed as follows.

[0636] First, a primer FcgR3-1 (represented by SEQ ID NO:29) specific for the extracellular region was designed from the nucleotide sequence of hFcγRIIIa cDNA (represented by SEQ ID NO:27).

[0637] Next, using a DNA polymerase ExTaq (manufactured by Takara Shuzo), 50 μ l of a reaction solution [1 \times concentration ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/l dNTPs, 1 μ mol/l of the primer FcgR3-1, 1 μ mol/l of the primer M13M4 (manufactured by Takara Shuzo)] containing 5 ng of the plasmid pBSFc γ RIIIa5-3 prepared in the item 1(2) of Example 10 was prepared, and PCR was carried out. The PCR was carried out by 35 cycles of a reaction at 94°C for 30 seconds, at 56°C for 30 seconds and at 72°C for 60 seconds as one cycle.

[0638] After the PCR, the reaction solution was purified by using QIAquick PCR Purification Kit (manufactured by QIAGEN) and dissolved in 20 μ I of sterile water. The products were digested with restriction enzymes *Pst*I (manufactured by Takara Shuzo) and *Bam*HI (manufactured by Takara Shuzo) and subjected to 0.8% agarose gel electrophoresis to recover about 110 bp of a specific amplification fragment.

[0639] On the other hand, 2.5 μ g of the plasmid pBSFc γ RIIIa5-3 was digested with restriction enzymes Pstl (manufactured by Takara Shuzo) and BamHI (manufactured by Takara Shuzo), and the digested products were subjected to 0.8% agarose gel electrophoresis to recover a fragment of about 3.5 kbp.

[0640] The hFc γ RIIIa cDNA-derived amplification fragment and plasmid pBSFc γ RIIIa5-3-derived fragment obtained in the above were ligated by using DNA Ligation Kit Ver. 2.0 (manufactured by Takara Shuzo). The strain *Escherichia coli* DH5 α (manufactured by TOYOBO) was transformed by using the reaction solution, and a plasmid DNA was isolated from each of the resulting ampicillin-resistant colonies according to a known method.

[0641] A nucleotide sequence of the cDNA inserted into each plasmid was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (manufactured by Parkin Elmer) according to the manufacture's instructions. It was confirmed that all of the inserted cDNAs whose sequences were determined by this method encodes a complete ORF sequence of the cDNA encoding shFcyRIIIa of interest. A plasmid DNA containing absolutely no reading error of bases in the sequence accompanied by PCR was selected from them. Hereinafter, this plasmid is named pBSFcyRIIIa+His3. The thus determined full length cDNA sequence for shFcyRIIIa is represented by SEQ ID NO:30, and its corresponding amino acid sequence is represented by SEQ ID NO:31.

(4) Construction of shFcγRIIIa expression vector

30

35

40

50

55

[0642] The shFc γ RIIIa expression vector was constructed as follows.

[0643] After 3.0 μg of the plasmid pBSFcγRIIIa+His3 obtained in the item 1(3) of Example 10 was digested with restriction enzymes *Eco*RI (manufactured by Takara Shuzo) and *Bam*HI (manufactured by Takara Shuzo), the digested products were subjected to 0.8% agarose gel electrophoresis to recover a fragment of about 620 bp.

[0644] Separately, 2.0 µg of the plasmid pKANTEX93 described in WO97/10354 was digested with restriction enzymes *Eco*RI (manufactured by Takara Shuzo) and *Bam*HI (manufactured by Takara Shuzo), and the digested products were subjected to 0.8% agarose gel electrophoresis to recover a fragment of about 10.7 kbp.

[0645] The DNA fragment containing shFc γ RIIIa cDNA and the plasmid pKANTEX93-derived fragment obtained in the above were ligated by using DNA Ligation Kit Ver. 2.0 (manufactured by Takara Shuzo). The strain *Escherichia coli* DH5 α (manufactured by TOYOBO) was transformed by using the reaction solution, and a plasmid DNA was isolated from each of the resulting ampicillin-resistant colonies according to a known method.

[0646] A nucleotide sequence of the cDNA inserted into each plasmid was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction Kit (manufactured by Parkin Elmer) in accordance with the manual attached thereto. It was confirmed that all of the plasmids whose sequences were determined by this method encodes the cDNA of interest encoding shFcγRIIIa. Hereinafter, the obtained expression vector was named pKANTEXFcγRIIIa-His.

2. Preparation of cell stably producing shFcγRIIIa

[0647] Cells stably producing shFcyRIIIa were prepared by introducing the shFcyRIIIa expression vector pKAN-

71

TEXFcγRIIIa-His constructed in the item 1 of Example 10 into rat myeloma YB2/0 cell [ATCC CRL-1662, *J. Cell. Biol.*, 93, 576 (1982)],

[0648] pKANTEXFcγRIIIa-His was digested with a restriction enzyme AatII to obtain a linear fragment, 10 μg thereof was introduced into 4×10^6 cells by electroporation [Cytotechnology, $\underline{3}$, 133 (1990)], and the resulting cells were suspended in 40 ml of Hybridoma-SFM-FBS(10) [Hybridoma-SFM medium (manufactured by Life Technologie) containing 10% FBS] and dispensed at 200 μl/well into a 96 well culture plate (manufactured by Sumitomo Bakelite). After culturing at 37°C for 24 hours in a 5% CO_2 incubator, G418 was added to give a concentration of 1.0 mg/mI, followed by culturing for 1 to 2 weeks. Culture supernatants were recovered from wells in which colonies of transformants showing G418 resistance were formed and their growth was confirmed, and expression amount of shFcγRIIIa in the supernatants was measured by the ELISA described in the item 3 of Example 10.

[0649] Regarding the transformants in wells in which expression of the shFc γ RIIIa was confirmed in the culture supernatants, in order to increase the antibody production by using a *dhfr* gene amplification system, each of them was suspended to give a density of 1 to 2×10^5 cells/ml in the Hybridoma-SFM-FBS(10) medium containing 1.0 mg/ml G418 and 50 nmol/l DHFR inhibitor MTX (manufactured by SIGMA) and dispensed at 2 ml into each well of a 24 well plate (manufactured by Greiner). After culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator, transformants showing 50 nmol/l MTX resistance were induced. Expression level of shFc γ RIIIa in culture supernatants in wells where growth of transformants was observed was measured by the ELISA described in The item 3 of Example 10. Regarding the transformants in wells in which expression of the shFc γ RIIIa was found in culture supernatants, the MTX concentration was increased to 100 nmol/l and then to 200 nmol/l sequentially by a method similar to the above to thereby finally obtain a transformant capable of growing in the Hybridoma-SFM-FBS(10) medium containing 1.0 mg/ml G418 and 200 nmol/l MTX and also of highly producing shFc γ RIIIa. The resulting transformant was cloned twice by limiting dilution. The obtained transformant was named clone KC1107.

3. Detection of shFcyRIIIa (ELISA)

10

25

30

35

40

50

[0650] shFcyRIIIa in culture supernatant or purified shFcyRIIIa was detected or determined by the ELISA shown below.

[0651] A solution of a mouse antibody against His-tag, Tetra·His Antibody (manufactured by QIAGEN), adjusted to 5 μ g/ml with PBS was dispensed at 50 μ l/well into each well of a 96 well plate for ELISA (manufactured by Greiner) and allowed to react at 4°C for 12 hours or more. After the reaction, 1% BSA-PBS was added at 100 μ l/well and allowed to react at room temperature for 1 hour to block the remaining active groups. After 1% BSA-PBS was discarded, culture supernatant of the transformant or each of various dilution solutions of purified shFc γ RIIIa was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing of each well with Tween-PBS, a biotin-labeled mouse anti-human CD16 antibody solution (manufactured by PharMingen) diluted 50-fold with 1% BSA-PBS was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, a peroxidase-labeled Avidin D solution (manufactured by Vector) diluted 4,000-fold with 1% BSA-PBS was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, the ABTS substrate solution was added at 50 μ l/well to develop color, and OD415 was measured.

4. Purification of shFcγRIIIa

[0652] The shFcγRIIIa-producing transformant cell clone KC1107 obtained in the item 2 of Example 10 was suspended in Hybridoma-SFM-GF(5) [Hybridoma-SFM medium (manufactured by Life Technologie) containing 5% Daigo's GF21 (manufactured by Wako Pure Chemical Industries)] to give a density of 3×10^5 cells/ml and dispensed at 50 ml into 182 cm² flasks (manufactured by Greiner). After culturing at 37°C for 4 days in a 5% CO₂ incubator, the culture supernatants were recovered. shFcγRIIIa was purified from the culture supernatants by using Ni-NTA agarose (manufactured by QIAGEN) column according to the manufacture's instructions.

5. Analysis of purified shFcγRIIIa

[0653] A concentration of purified shFcγRIIIa obtained in the item 4 of Example 10 was calculated by amino acid composition analysis as follows. A part of purified shFcγRIIIa was suspended in 6 mol/l hydrochloric acid-1% phenol solution, and hydrolysed in a gas phase at 110°C for 20 hours. Work Station manufactured by Waters was used for the hydrolysis. Amino acids after the hydrolysis were converted into PTC-amino acid derivatives in accordance with the method of Bidlingmeyer *et al.* [*J. Chromatogr.*, 336, 93 (1984)] and analyzed by using PicoTag Amino Acid Analyzer (manufactured by Waters).

[0654] Next, about 0.5 μg of purified shFcγRIIIa was subjected to SDS-PAGE under reducing conditions according

to a known method [Nature, 227, 680 (1970)] to analyze its molecular weight and purity. The results are shown in Fig. 6. As shown in Fig. 29, a broad band of 36 to 38 Kd in molecular weight was detected in purified shFcyRIIIa. Since it is known that five sites to which N-glycoside-linked sugar chains can be bound are present in the extracellular region of hFcyRIIIa [J. Exp. Med., 170, 481 (1989)], it was considered that the broad molecular weight distribution of purified shFcyRIIIa is based on the irregularity of sugar chain addition. On the other hand, when the N-terminal amino acid sequence of purified shFcyRIIIa was analyzed by automatic Edman degradation using a protein sequencer PPSQ-10 (manufactured by Shimadzu), a sequence expected from the cDNA of shFcyRIIIa was obtained, so that it was confirmed that shFcyRIIIa of interest was purified.

10 Example 11

15

30

35

40

45

50

55

Evaluation of binding activity of various chimeric antibodies to shFcyRIIIa

1. Evaluation of shFcγRIIIa-binding activity of anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond

[0655] The shFcγRIIIa-binding activity of the anti-GD3 chimeric antibody (45%) and anti-GD3 chimeric antibody (7%) described in the item 1 of Example 3 which are two anti-GD3 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond was measured by ELISA as follows.

[0656] According to the method described in the item 3 of Example 1, GD3 was immobilized at 100 pmol/well on a 96 well plate for ELISA (manufactured by Greiner). The 1% BSA-PBS was added at 100 μl/well and allowed to react at room temperature for 1 hour to block the remaining active groups. After washing each well with Tween-PBS, a solution of each anti-GD3 chimeric antibody diluted with 1% BSA-PBS was added at 50 μl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing of each well with Tween-PBS, an shFcqRIIIa solution prepared by diluting it to 2.3 μg/ml with 1% BSA-PBS was added at 50 μl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, a solution of a mouse antibody against His-tag, Tetra-His Antibody (manufactured by QIAGEN), adjusted to 1 μg/ml with 1% BSA-PBS was added at 50 μl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, a peroxidase-labeled goat anti-mouse IgG1 antibody solution (manufactured by ZYMED) diluted 200-fold with 1% BSA-PBS was added at 50 µl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, the ABTS substrate solution was added at 50 µl/well to develop color, and OD415 was measured. In addition, it was confirmed that there is no difference in the amount of the anti-GD3 chimeric antibodies bound to the plate by adding each of the anti-GD3 chimeric antibodies to another plate and carrying out the ELISA described in item 3 of Example 1. The results of the measurement of the binding activity of the various anti-GD3 chimeric antibodies for shFcyRIIIa are shown in Fig. 30. As shown in Fig. 30, regarding the binding activity of the anti-GD3 chimeric antibodies to shFcyRIIIa, the anti-GD3 chimeric antibody (45%) having a high ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylqlucosamine in the reducing end through α -bond had 10 times or more higher activity.

2. Evaluation of shFc γ RIIIa-binding activity of anti-FGF-8 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond

[0657] The shFc γ RIIIa-binding activity of the anti-FGF-8 chimeric antibody (58%) and anti-FGF-8 chimeric antibody (13%) described in the item 5 of Example 9 which were as two anti-FGF-8 chimeric antibodies having different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond was measured by ELISA as follows.

[0658] The human FGF-8 peptide conjugate prepared in the item 2 of Example 9 at a concentration of 1.0 μ g/ml was dispensed at 50 μ l/well into a 96-well plate for ELISA (manufactured by Greiner) and adhered thereto by allowing it to stand at 4°C overnight. After washing with PBS, 1% BSA-PBS was added at 100 μ l/well and allowed to react at room temperature for 1 hour to block the remaining active groups. After washing each well with Tween-PBS, a solution of each anti-FGF-8 chimeric antibody diluted with 1% BSA-PBS was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing of each well with Tween-PBS, an shFc γ RIIIa solution prepared by diluting it to 3.0 μ g/ml with 1% BSA-PBS was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, a solution of a mouse antibody against Histag, Tetra-His Antibody (manufactured by QIAGEN), adjusted to 1 μ g/ml with 1% BSA-PBS, was added at 50 μ l/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, a peroxidase-labeled goat anti-mouse IgG1 antibody solution (manufactured by ZYMED) diluted 200-fold with 1%

BSA-PBS was added at 50 μ I/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, the ABTS substrate solution was added at 50 μ I/well to develop color, and OD415 was measured. In addition, by adding each of the anti-FGF-8 chimeric antibodies to another plate and carrying out the ELISA described in the item 2 of Example 9, it was confirmed that there is no difference in the amount of the various anti-FGF-8 chimeric antibodies bound to the plate. The results of the measurement of the binding activity of the various anti-FGF-8 chimeric antibodies for shFc γ RIIIa are shown in Fig. 31. As shown in Fig. 31, regarding the binding activity of the anti-FGF8 chimeric antibodies to shFc γ RIIIa, the anti-FGF-8 chimeric antibody (58%) having a high ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond had 100 times or more higher activity.

3. Evaluation of shFc γ RIIIa-binding activity of anti-CCR4 chimeric antibodies having a different ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond

[0659] The shFc γ RIIIa-binding activity of the seven anti-CCR4 chimeric antibodies described in the item 5 of Example 4, having a different ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond, was measured by ELISA as follows.

[0660] The human CCR4 extracellular peptide conjugate prepared in the item 2 of Example 4 at a concentration of 1.0 μg/ml was dispensed at 50 μl/well into a 96 well plate for ELISA (manufactured by Greiner) and adhered thereto by allowing it to stand at 4°C overnight. After washing with PBS, 1% BSA-PBS was added at 100 μl/well and allowed to react at room temperature for 1 hour to block the remaining active groups. After washing each well with Tween-PBS, a solution of each anti-CCR4 chimeric antibody diluted with 1% BSA-PBS was added at 50 μl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing of each well with Tween-PBS, an shFcγRIIIa solution prepared by diluting it to 3.0 μg/ml with 1% BSA-PBS was added at 50 μl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, a solution of a mouse antibody against His-tag, Tetra-His Antibody (manufactured by QIAGEN), adjusted to 1 μg/ml with 1% BSA-PBS, was added at 50 μl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, a peroxidase-labeled goat anti-mouse IgG1 antibody solution (manufactured by ZYMED) diluted 200-fold with 1% BSA-PBS was added at 50 μl/well and allowed to react at room temperature for 1 hour. After the reaction and subsequent washing with Tween-PBS, the ABTS substrate solution was added at 50 µl/well to develop color, and OD415 was measured. In addition, it was confirmed that there is no difference in the amount of the anti-CCR4 chimeric antibodies bound to the plate by adding each of the anti-CCR4 chimeric antibodies to another plate and carrying out the ELISA described in the item 2 of Example 4. The results of the measurement of the binding activity of the various anti-CCR4 chimeric antibodies to shFcyRIIIa are shown in Fig. 32A. As shown in Fig. 32A, the binding activity of the anti-CCR4 chimeric antibodies to shFcyRIIIa increased in proportion to the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond. Fig. 32B shows a plotted graph on a relationship between the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond, at antibody concentrations of 4 μ g/ml and 40 μg/ml (the abscissa) and the shFcγRIIIa-binding activity (the ordinate). As shown in Fig. 32B, the shFcγRIIIa-binding activity was hardly detected in the anti-CCR4 chimeric antibody (8%), anti-CCR4 chimeric antibody (9%) and anti-CCR4 chimeric antibody (18%), as antibodies having 20% or less of the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond.

[0661] The above results clearly show that antibodies having a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond have higher shFc γ RIIIa-binding activity than antibodies having a α 1,6-fucose sugar chain. In addition, since antibodies having a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond has higher ADCC activity than antibodies having a α 1,6-fucose sugar chain as shown in Examples 3 and 4, it was strongly suggested that the high ADCC activity of antibodies a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond is based on the high shFc γ RIIIa-binding activity. As shown in Fig. 32B, the proportion between Fc γ RIIIa binding activity and the ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond is found. Therefore, Fc γ RIIIa-binding activity can be measured and the ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond can be determined by constructing such a calbiation curve in advance. By using the above method, the cyototoxic activity can be prospected easily without determining the cytotoxic activity of the antibody composition.

55

50

10

30

35

40

Example 12

Evaluation of antibody produced by lectin-resistant CHO/DG44 cells to shFcyRIIIa

[0662] Binding activities of the anti-CCR4 chimeric antibody produced by the lectin-resistant clone CHO/CCR4-LCA purified in the item 3 of Example 7 [hereinafter referred to as "anti-CCR4 chimeric antibody (48%)"], the anti-CCR4 chimeric antibody KM2760-1 produced by a YB2/0 cell-derived antibody-producing clone purified in the item 3 of Example 4 [anti-CCR4 chimeric antibody (87%)] and the anti-CCR4 chimeric antibody KM3060 produced by a CHO/DG44 cell-derived antibody-producing clone 5-03 [anti-CCR4 chimeric antibody (8%)] to shFcyRIIIa were measured according to the method described in the item 3 of Example 11. As a result, as shown in Fig. 33, the anti-CCR4 chimeric antibody (48%) produced by the lectin-resistant clone CHO/CCR4-LCA showed 100 times or more higher binding activity to shFcyRIIIa than the anti-CCR4 chimeric antibody (8%) produced by the clone 5-03. Also, this activity was about 1/3 of the anti-CCR4 chimeric antibody (87%) produced by the YB2/0 cell-derived antibody-producing clone.

[0663] The above results clearly show that an antibody having 100 times or more higher binding activity to shFcqRIIIa can be prepared by using lectin-resistant CHO/DG44 cell than by using CHO/DG44 cell which is its parent cell.

Example 13

10

30

35

40

Method for screening antibody composition having high ADCC activity based on binding activity to shFcyRIIIa

[0664] An anti-GD3 chimeric antibody expression plasmid pCHi641LHGM4 was introduced into the LCA-resistant clone CHO-LCA obtained in the item 1 of Example 7 according to the method described in the item 2(2) of Example 1, and gene amplification was carried out by using MTX to produce a transformant producing an anti-GD3 chimeric antibody. Cloning was carried out by limiting dilution method using the obtained transformant to obtain several clones. After each clone was cultured, the culture medium was recovered when it became confluent. A concentration of the anti-GD3 chimeric antibody in the culture supernatant way diluted to 1 μ g/ml, and the shFc γ RIIIa-binding activity was measured using the diluted antibody solution by the ELISA described in the item 1 of Example 11. At the same time, solutions of the anti-GD3 chimeric antibody produced by a YB2/0 cell-derived antibody-producing clone and the anti-GD3 chimeric antibody produced by a CHO/DG44 cell-derived antibody-producing clone, purified in the item 4 of Example 1, were prepared by diluting them to 1 μ /ml, and their shFc γ RIIIa-binding activities were also measured.

[0665] Based on the measured results, a transformant cell clone capable of producing an antibody showing the activity equal to or higher than the binding activity of the anti-GD3 chimeric antibody produced by the CHO/DG44 cell-derived antibody-producing clone and also equal to or lower than the binding activity of the anti-GD3 chimeric antibody produced by the YB2/0 cell-derived antibody-producing clone was selected.

[0666] A purified antibody was obtained from the culture supernatant by culturing the selected transformant cell clone according to the method described in the item 4(2) of Example 1. When monosaccharide composition analysis of the purified antibody was carried out according to the method described in the item 1 of Example 3, the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α-bond was 42%. Hereinafter, this sample is called anti-GD3 chimeric antibody (42%). When antigen-binding activity of the purified anti-GD3 chimeric antibody (42%) was evaluated by the ELISA described in the item 3 of Example 1, it was equivalent to those of the anti-GD3 chimeric antibody produced by a YB2/0 cell-derived antibody-producing clone and the anti-GD3 chimeric antibody produced by a CHO/DG44 cell-derived antibody-producing clone purified in the item 4 of Example 1. In addition, the ADCC activity of each anti-GD3 chimeric antibody was evaluated according to the method described in the item 2 of Example 2. For comparison, the ADCC activity of a sample of the anti-GD3 chimeric antibody produced by a CHO/DG44 cell-derived antibody-producing clone, wherein the ratio of a sugar chain in which 1-position of fucose was not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond was 12% as a result of its monosaccharide composition analysis [hereinafter named "anti-GD3 chimeric antibody (12%)"] was measured. The results are shown in Fig. 34. In comparison with the anti-GD3 chimeric antibody (12%) produced by a CHO/DG44 cell-derived antibody-producing clone, about 30 times increase in the ADCC activity was observed in the anti-GD3 chimeric antibody (42%) produced by an antibody-producing clone selected based on the high binding activity to shFcyRIIIa.

[0667] Based on the above results, it was found that an antibody composition having high ADCC activity can be screened by screening an antibody composition having high binding activity to shFcyRIIIa.

50

Example 14

10

30

35

40

50

55

Preparation of FGF-8b/Fc fusion protein:

1. Construction of the expression vector of FGF-8b/Fc fusion protein

[0668] A humanized antibody expression vector pKANTEX93 [Mol. Immunol., $\underline{37}$, 1035 (2000)] was digested with restriction enzymes Apal and BamHI and a fragment containing about 1.0 kbp of human IgGI subclass CH (hC γ 1) was obtained by using QIAquick Gel Extraction Kit (manufactured by QIAGEN). A plasmid pBluescript II SK(-) (manufactured by STRATAGENE) was also digested with similar restriction enzymes to obtain a fragment of about 2.9 kbp. The fragments were ligated using Solution I of TAKARA DNA Ligation Kit Ver. 2 (manufactured by Takara Shuzo) and E. coli DH5 α (manufactured by TOYOBO) was transformed to construct a plasmid phC γ 1/SK (-).

[0669] In order to ligate hC γ 1 with cDNA of FGF8, a synthetic DNA having the nucleotide sequence represented by SEQ ID NO:86 was designed. The synthetic DNA contains plural restriction enzyme recognition sequences at its 5'-terminal for cloning to pBluescript II SK(-), and the synthesis of the DNA was consigned to Proligo. To 50 μ I of a solution containing EX Taq Buffer (Mg²⁺ plus) in TaKaRa Ex Taq (manufactured by Takara Shuzo) at 1× concentration, 1 ng of plasmid phC γ 1/SK (-), 0.25 mmol/L dNTPs, 0.5 μ mol/l of the synthetic DNA having the nucleotide sequence represented by SEQ ID NO:86, 0.5 μ mol/L M13 primer RV and 1.25 unit of TaKaRa Ex Taq were added, and the resulting solution was subjected to 30 cycles of heating at 94°C for 30 minutes, 56°C for 30 minutes and 72°C for 1 minute as one cycle by using DNA thermal cycler GeneAmp PCR System 9700 (manufactured by PERKIN ELMER). A PCR amplified fragment was purified from the total reaction solution by using QIAquick PCR purification Kit (manufactured by QIAGEN). Then, the purified fragment was digested with restriction enzymes KpnI and BamHI to obtain a fragment of about 0.75 kbp. In addition, the pBluescript II SK (-) (manufactured by STRATAGENE) was digested with similar restriction enzymes to obtain a fragment of about 2.9 kbp. These fragments were ligated by using Ligation high (manufactured by TOYOBO) and E. coli DH5 α (manufactured by TOYOBO) was transformed to construct a plasmid p Δ hC γ l/ SK(-).

[0670] Using the FGF-8b gene cloned plasmid pSC17 [Proc. Natl, Acad. Sci., 89, 8928 (1992)] as the template, PCR was carried out as follows to obtain a structure gene region fragment of FGF-8b. To 50 μ l of a solution containing EX Taq Buffer (Mg²⁺ plus) in TaKaRa Ex Taq (manufactured by Takara Shuzo) at 1x concentration, 1 ng of plasmid pSC17, 0.25 mmol/L dNTPs, 10 μ mol/l of synthetic DNAs having the nucleotide sequence represented by SEQ ID NOs:87 and 88 and 2.5 unit of TaKaRa Ex Taq were added, and the resulting solution was subjected to 35 cycles of heating at 94°C for 1 minute, 55°C for 1 minute and 72°C for 2 minutes as one cycle, followed by heating at 72°C for 10 minutes, by using DNA thermal cycler GeneAmp PCR System 9700 (manufactured by PERKIN ELMER). A PCR amplified fragment was purified from the total reaction solution, and the purified fragment was digested with restriction enzymes *Eco*RI and *Bam*HI to obtain a fragment of about 0.66 kbp. Also, plasmid pBluescript II SK(-) (manufactured by STRATAGENE), was digested with similar restriction enzymes to obtain a fragment of about 2.9 kbp. Then, the fragments were ligated by using T4 DNA Ligase (manufactured by Takara Shuzo) and *E. coli* DH5α(manufactured by TOYOBO) was transformed to construct a plasmid pFGF-8b/SK(-).

[0671] Next, the plasmid pAhCγ 1/SK(-) was digested with restriction enzymes *Apa*l and *Eco*RI to obtain a fragment of about 3.7 kbp. In addition, the plasmid pFGF-8b/SK(-) was digested with similar restriction enzymes to obtain a fragment of about 0.6 kbp. Then, the fragments were ligated by using Ligation high (manufactured by TOYOBO) and *E. coli* DH5α (manufactured by TOYOBO) was transformed to construct a plasmid pFGF8b+hlgG/SK(-).

[0672] Next, the thus constructed plasmid pFGF8b+hlgG/SK (-) was digested with restriction enzymes *Eco*RI and *Bam*HI, a fragment of about 1.34 kbp was obtained. Also, pKANTEX93 was digested with similar restriction enzymes to obtain a fragment of about 8.8 kbp. Then, the fragments were ligated by using Ligation high (manufactured by TOYOBO) and *E. coli* DH5α (manufactured by TOYOBO) was transformed to construct an expression vector pKANTEX/FGF8Fc for animal cell containing cDNA ofFGF8b-Fc fusion protein represented by SEQ ID NO:89.

2. Stable expression using animal cell of FGF-8b/Fc fusion protein

[0673] A stable expression clone of FGF-8Fc fusion protein was prepared by introducing the FGF-8 fusion protein expression vector pKANTEX/FGF8Fc for animal cell which was constructed in the item 1 of Example 14 into various cells, and selecting a suitable clone.

(1) Preparation of producing cell using rat myeloma YB2/0 cells

[0674] After 10 μ g of the FGF8b-Fc fusion protein expression vector pKANTEX/FGF8Fc was introduced into 4×10^6 cells of rat myeloma YB2/0 cell by electroporation, the resulting cells were suspended in 20 to 40 ml of RPMI1640-FBS

(10) and the solution was dispensed at 200 μ l/well into a 96-well culture plate (manufactured by Sumitomo Bakelite). After culturing at 37°C for 24 hours in a 5% CO₂ incubator, G418 was added thereto to give a concentration of 0.5 ml/ml, followed by culturing for 1 to 2 weeks. The culture supernatant was recovered from wells in which colonies of G418 resistance transformants showing were formed and growth of colonies was observed, and the binding activity of the FGF8-Fc fusion protein in the supernatant to an anti-FGF-8 antibody was measured by the ELISA described in the item 4 of Example 14. As the anti-FGF-8 antibody, KM1334 (USP 5952472) was used.

[0675] Regarding the transformants in wells in which production of the FGF-8/Fc protein was observed in culture supernatants, in order to increase the production amount of the fusion protein by using a *dhfr* gene amplification system, each of them was suspended in the Hybridoma-SFM-FBS(5) medium comprising 0.5 mg/ml G418 and 50 nmol/L DHFR inhibitor, MTX (manufactured by SIGMA), and dispensed into each well of a 24 well plate for expansion culturing. After culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator to induce a transformant showing 50 nmol/l MTX resistance. Binding activity of FGF8b-Fc fusion protein in the supernatant in wells where growth of the transformant was observed, to KM1334 was measured by the ELISA described in the item 4 of Example 14.

[0676] Regarding the transformant in wells where production of FGF-8/Fc fusion protein was observed in the culture supernatant, according to the method similar to the above, a transformant KC1178 was obtained, which could grow in Hybridoma-SFM-FBS(5) medium comprising 0.5 mg/ml G418 and 200 nmol/l MTX as final concentrations by increase of the MTX concentration and highly produce FGF8-Fc fusion protein. It was found that KC 1178 was a lectin-resistant clone having a relatively low transcript amount obtained by the measuring method of FUT8 gene transcript described in Example 8 of WO00/61739. Also, KC1178 has been deposited on April 1, 2003, as FERM BP-8350 in International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (AIST Tsukuba Central 6, 1-1, Higashi 1-Chome Tsukuba-shi, Ibaraki-ken, Japan).

(2) Preparation of producing cell using CHO/DG44 cells

10

30

35

40

45

50

55

[0677] After 10 μg of the FGF8b-Fc fusion protein expression vector pKANTEX/FGF8Fc was introduced into 1.6×10⁶ cells of CHO/DG44 cell by electroporation, the resulting cells were suspended in 30 ml of IMDM-dFBS(10)-HT(1) and the solution was dispensed at 100 μl/well into a 96-well culture plate (manufactured by Sumitomo Bakelite). After culturing at 37°C for 24 hours in a 5% CO₂ incubator, the medium was changed to M7M-dFBE(10), followed by culturing for 1 to 2 weeks. The culture supernatant was recovered from wells in which colonies of transformants showing H7-independent growth were formed and growth of colonies was observed, and the binding activity of the FGF8-Fc fusion protein in the supernatant to KM1334 was measured by the ELISA shown in the item 4 of Example 14.

[0678] Regarding the transformants in wells in which production of the FGF-8/Fc protein was observed in culture supernatants, in order to increase the production amount of the fusion protein by using a *dhfr* gene amplification system, each of them was suspended in the IMDM-dFBS(10) medium comprising 50 nmol/L of MTX (manufactured by SIGMA), and dispensed into each well of a 24 well plate for expansion culturing. After culturing at 37°C for 1 to 2 weeks in a 5% CO₂ incubator to induce a transformant showing 50 nmol/l MTX resistance. Binding activity of FGF8b-Fc fusion protein in the supernatant in wells where growth was observed, to KM1334 was measured by the ELISA described in the item 4 of Example 14.

[0679] Regarding the transformant in wells where production of FGF-8/Fc fusion protein was observed in the culture supernatant, according to the method similar to the above, a transformant KC1179 was obtained, which could grow in IMDM-dFBS(10) medium comprising 500 nmol/l MTX by increase of the MTX concentration and highly produce FGF8-Fc fusion protein. Also, KC1179 has been deposited on April 1, 2003, as FERM BP-8351 in International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (Tsukuba Central 6, 1, Higashi 1-Chome Tsukuba-shi, Ibaraki-ken, Japan).

3. Purification of FGF8-Fc fusion protein

[0680] The producing cell of FGF8-Fc fusion protein prepared in the item 2 of Example 14 was cultured in an appropriate culture medium (e.g., H-SFM comprising 5% GF21 (manufactured by Wako Pure Chemical Industries), 0.5 mg/ml of G418 and 200 nmol/l of MTX for YB2/0 cell-derived cells; EXCELL301 (manufactured by JRH) comprising 500 nmol/l MTX for CHO/DG44 cell-derived cells) at a scale of 100 to 200 ml. FGF8-Fc fusion protein was purified from the culture supernatant by using Prosep G (manufactured by Millipore) column according to the manufacture's instruction. The deduced amino acid sequence of the purified protein is shown by SEQ ID NO:90.

4. Binding activity to anti-FGF-8 antibody

[0681] Binding activities of the FGF-8/Fc fusion protein produced by YB2/0 and the FGF-8/Fc fusion protein produced by CHO described in the item 2 of Example 14, to KM1334 were measured by the ELISA as follows. KM1334 of 1 µg/

ml was dispensed at 50 μ l/well into a 96-well plate for ELISA (manufactured by Greiner) and allowed to stand at 4°C overnight for adsorption. After washing with PBS, 1% BSA-PBS was added at 100 μ l/well and allowed to react at room temperature for 1 hour to block the remaining active group. After washing each well with Tween-PBS, the culture supernatant of the transformant or a purified protein was added at 50 μ l/well, followed reaction at room temperature. After the reaction, each well was washed with Tween-PBS, and peroxidase labeled goat-anti-human $lgG(\gamma)$ antibody solution (manufactured by American Qualex), which was diluted 3000-fold with 1% BSA-PBS, was added at 50 μ l/well as the secondary antibody solution, followed by reaction at room temperature for 1 hour. After the reaction, each well was washed with Tween-PBS, and ABTS substrate solution was added at 50 μ l/well, followed by reaction. After the color developed sufficiently, 5% SDS solution was added at 50 μ l/well to stop the reaction. Then, the absorbance was measured at a wavelength of 415 nm and a reference wavelength of 490. As shown in Fig. 35, the FGF-8/Fc fusion protein obtained in the item 2 of Example 14 showed binding activity to KM1334.

5. Binding activity to FcγRIIIa

10

30

35

40

45

50

55

[0682] Binding activities of FGF-8/Fc fusion protein produced by YB2/0 and FGF-8/Fc fusion protein derived from CHO described in the item 2 of Example 14, to FcyRIIIa was measured by ELISA as follows. Tetra-His Antibody, mouse antibody against His-tag (manufactured by QIAGEN), of 5 µg/ml was dispensed at 50 µl/well into a 96-well plate for ELISA (manufactured by GREINER) and allowed to stand at 4°C overnight for adsorption. After washing with PBS, 1% BSA-PBS was added at 100 μl/well, followed by reaction at room temperature for 1 hour to block the remaining active group. After washing each well with Tween-PBS, shFcγRIIIa (V) solution diluted to 5 μg/ml with 1% BSA-PBS was added at 50 μl/well, followed by reaction at room temperature for 2 hours. After the reaction, each well was washed with Tween-PBS, and a solution prepared by diluting purified FGF-8/Fc fusion protein to different concentrations with 1% BSA-PBS was added at 50 μl/well, followed by reaction at room temperature for 2 hours. After the reaction, each well was washed with Tween-PBS, and biotinized KM1334 diluted to 1 μg/ml with 1% BSA-PBS was added at 50 μl/ well, followed by reaction at room temperature for 1 hour. After the reaction, each well was washed with Tween-PBS, and a solution of peroxidase labeled Avidin-D (manufactured by VECTOR) diluted 4000-fold with 1% BSA-PBS was added at 50 µl/well, followed by reaction at room temperature for 1 hour. After the reaction, each well was washed with Tween-PBS, and ABTS substrate solution was added at 50 μl/well for color development, and after 15 minutes, 5% SDS solution was added at 50 µl/well to stop the reaction. The absorbance of the resulting solution was measured at a wavelength of 415 nm and a reference wavelength of 490 nm.

[0683] Fig. 36 shows the measurement results of the binding activity of various FGF-8/Fc fusion proteins to shFcγRIIIa (V). As apparent in Fig. 36, the FGF-8/Fc fusion protein produced by YB2/0 showed higher binding activity to shFcγRIIIa (V) than the FGF-8/Fc fusion protein produced by CHO/DG44 cell.

Reference Example 1

[0684] Preparation of genes encoding various enzymes relating to sugar chain synthesis derived from CHO cell:

- 1. Determination of FX cDNA sequence in CHO cell
- (1) Extraction of total RNA derived from CHO/DG44 cell

[0685] CHO/DG44 cells were suspended in IMDM medium containing 10% fetal bovine serum (manufactured by Life Technologies) and $1\times$ concentration HT supplement (manufactured by Life Technologies), and 15 ml of the suspension was inoculated into a T75 flask for adhesion cell culture use (manufactured by Greiner) to give a density of 2×10^5 cells/ml. On the second day after culturing at 37°C in a 5% CO₂ incubator, 1×10^7 of the cells were recovered and a total RNA was extracted therefrom by using RNAeasy (manufactured by QIAGEN) in accordance with the manufacture's instructions.

(2) Preparation of total single-stranded cDNA from CHO/DG44 cell

[0686] The total RNA prepared in the item 1(1) of Reference Example 1 was dissolved in 45 μ l of sterile water, and 1 μ l of RQ1 RNase-Free DNase (manufactured by Promega), 5 μ l of the attached 10 \times DNase buffer and 0.5 μ l of RNasin Ribonuclease Inhibitor (manufactured by Promega) were added thereto, followed by reaction at 37°C for 30 minutes to degrade genomic DNA contaminated in the sample. After the reaction, the total RNA was purified again using RNAeasy (manufactured by QIAGEN) and dissolved in 50 μ l of sterile water.

[0687] In a 20 μ l of reaction mixture using oligo(dT) as a primer, single-stranded cDNA was synthesized from 3 μ g of the obtained total RNA samples by carrying out reverse transcription reaction using SUPERSCRIPTTM Preamplifi-

cation System for First Strand cDNA Synthesis (manufactured by Life Technologies) in accordance with the manufacture's instructions. A 50 fold-diluted aqueous solution of the reaction solution was used in the cloning of GFPP and FX. This was stored at -80°C until use.

(3) Preparation method of cDNA partial fragment of Chinese hamster-derived FX

[0688] An FX cDNA partial fragment derived from Chinese hamster was prepared by the following procedure.

[0689] First, primers (represented by SEQ ID NOs:42 and 43) specific for common nucleotide sequences registered at a public data base, namely a human FX cDNA (Genebank Accession No. U58766) and a mouse cDNA (Genebank Accession No. M30127), were designed.

[0690] Next, $25\,\mu$ l of a reaction solution [1× concentration ExTaq buffer (manufactured by Takara Shuzo), $0.2\,\mu$ mol/l dNTPs and $0.5\,\mu$ mol/l of the above gene-specific primers (SEQ ID NOs:42 and 43)] containing 1 μ l of the CHO/DG44-derived single-stranded cDNA prepared in the item 1(2) of Reference Example 1 was prepared by using a DNA polymerase ExTaq (manufactured by Takara Shuzo), and PCR was carried out. The PCR was carried out by heating at 94°C for 5 minutes, subsequent 30 cycles of heating at 94°C for 1 minute, 58°C for 2 minutes and 72°C for 3 minutes as one cycle, and further heating at 72°C for 10 minutes.

[0691] After the PCR, the reaction solution was subjected to 2% agarose gel electrophoresis, and a specific amplified fragment of 301 bp was purified using QuiaexII Gel Extraction Kit (manufactured by QIAGEN) and eluted with 20 μ I of sterile water (hereinafter, the method was used for the purification of DNA fragments from agarose gel). Into a plasmid pCR2.1, 4 μ I of the above amplified fragment was employed to insert in accordance with the instructions attached to TOPO TA Cloning Kit (manufactured by Invitrogen), and *E. coli* DH5 α was transformed with the reaction solution. Each plasmid DNA was isolated in accordance with a known method from the obtained several kanamycin-resistant colonies to obtain 2 clones into which FX cDNA partial fragments were respectively inserted. They were named pCRFX clone 8 and pCRFX clone 12.

[0692] The nucleotide sequence of the cDNA inserted into each of the FX clone 8 and FX clone 12 was determined using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction kit (manufactured by Parkin Elmer) in accordance with the method of the manufacture's instructions. It was confirmed that each of the inserted cDNA whose sequence was determined encodes an ORF partial sequence of the Chinese hamster FX.

(4) Synthesis of single-stranded cDNA for RACE

[0693] Single-stranded cDNA samples for 5' and 3' RACE were prepared from the CHO/DG44 total RNA extracted in the item 1(1) of Reference Example 1 using SMART™ RACE cDNA Amplification Kit (manufactured by CLONTECH) in accordance with the manufacture's instructions. In the case, PowerScript™ Reverse Transcriptase (manufactured by CLONTECH) was used as the reverse transcriptase. Each single-stranded cDNA after the preparation was diluted 10-fold with the Tricin-EDTA buffer attached to the kit and used as the template of PCR.

(5) Determination of Chinese hamster-derived FX full length cDNA by RACE method

[0694] Based on the FX partial sequence derived from Chinese hamster determined in the item 1(3) of Reference Example 1, primers FXGSP1-1 (SEQ ID NO:44) and FXGSP1-2 (SEQ ID NO:45) for the Chinese hamster FX-specific 5' RACE and primers FXGSP2-1 (SEQ ID NO:46) and FXGSP2-2 (SEQ ID NO:47) for the Chinese hamster FX-specific 3' RACE were designed.

[0695] Next, $50 \,\mu$ l of a reaction solution [1 \times concentration Advantage2 PCR buffer (manufactured by CLONTECH), 0.2 mmol/L dNTPs, 0.2 μ mol/l Chinese hamster FX-specific primers for RACE and 1 x concentration of common primers (manufactured by CLONTECH)] containing 1 μ l of the CHO/DG44-derived single-stranded cDNA for RACE prepared in the item 1(4) of Reference Example 1 was prepared by using Advantage2 PCR Kit (manufactured by CLONTECH) and PCR was carried out. The PCR was carried out by 20 cycles of heating at 94°C for 5 seconds, 68°C for 10 seconds and 72°C for 2 minutes as one cycle.

[0696] After completion of the reaction, 1 μ l of the reaction solution was diluted 50-fold with the Tricin-EDTA buffer, and 1 μ l of the diluted solution was used as a template. The reaction solution was again prepared and the PCR was carried out under the same conditions. The templates, the combination of primers used in the first and second PCRs and the length of amplified DNA fragments by the PCRs are shown in Table 6.

55

50

10

30

35

40

Table 6

Combination of primers used in Chinese hamster FX cDNA RACE PCR and the size of PCR products						
5' RACE	FX-specific primers	Common primers	PCR-amplified product size			
First Second	FXGSP1-1 FXGSP1-2	UPM (Universal primer mix) NUP (Nested Universal primer)	300 bp			
3' RACE	FX-specific primers	Common primers	PCR-amplified product size			
First Second	FXGSP2-1 FXGSP2-2	UPM (Universal primer mix) NUP (Nested Universal primer)	1,100 bp			

[0697] After the PCR, the reaction solution was subjected to 1% agarose gel electrophoresis, and the specific amplified fragment of interest was recovered and eluted with 20 μl of sterile water. Into a plasmid pCR2.1, 4 μl of the amplified fragment was inserted, and *E. coli* DH5α was transformed by using the reaction solution in accordance with the instructions attached to TOPO TA Cloning Kit (manufactured by Invitrogen). Plasmid DNAs were isolated from the obtained kanamycin-resistant colonies to obtain 5 cDNA clones containing Chinese hamster FX 5' region. They were named FX5' clone 25, FX5' clone 26, FX5' clone 27, FX5' clone 28, FX5' clone 31 and FX5' clone 32.

[0698] In the same manner, 5 cDNA clones containing Chinese hamster FX 3' region were obtained. These FX3' clones were named FX3' clone 1, FX3' clone 3, FX3' clone 6, FX3' clone 8 and FX3' clone 9.

[0699] The nucleotide sequence of the cDNA moiety of each of the clones obtained by the 5' and 3' RACE was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) in accordance with the method described in the manufacture's instructions. By comparing the cDNA nucleotide sequences determined by the method, reading errors of nucleotide bases due to PCR were excluded and the full length nucleotide sequence of Chinese hamster FX cDNA was determined. The determined sequence is represented by SEQ ID NO:48.

2. Determination of CHO cell-derived GFPP cDNA sequence

5

10

15

30

35

40

50

55

(1) Preparation of GFPP cDNA partial fragment derived from Chinese hamster

[0700] GFPP cDNA partial fragment derived from Chinese hamster was prepared by the following procedure.

[0701] First, nucleotide sequences of a human GFPP cDNA (Genebank Accession No. AF017445), mouse EST sequences having high homology with the sequence (Genebank Accession Nos. Al467195, AA422658, BE304325 and Al466474) and rat EST sequences (Genebank Accession Nos. BF546372, Al058400 and AW144783), registered at public data bases, were compared, and primers GFPP FW9 and GFPP RV9 (SEQ ID NOs:49 and 50) specific for rat GFPP were designed on a highly preserved region among these three species.

[0702] Next, $25\,\mu$ l of a reaction solution [1× concentration ExTaq buffer (manufactured by Takara Shuzo), $0.2\,\mu$ mol/L dNTPs and $0.5\,\mu$ mol/l of the above GFPP-specific primers GFPP FW9 and GFPP RV9 (SEQ ID NOs:49 and 50)] containing 1 μ l of the CHO/DG44-derived single-stranded cDNA prepared in the item 1(2) of Reference Example 1 was prepared by using a DNA polymerase ExTaq (manufactured by Takara Shuzo), and PCR was carried out. The PCR was carried out by heating at 94°C for 5 minutes, subsequent 30 cycles of heating at 94°C for 1 minute, 58°C for 2 minutes and 72°C for 3 minutes as one cycle, and further heating at 72°C for 10 minutes.

[0703] After the PCR, the reaction solution was subjected to 2% agarose gel electrophoresis, and a specific amplified fragment of 1.4 Kbp was recovered and eluted with 20 μl of sterile water. Into a plasmid pCR2.1, 4 μl of the above amplified fragment was inserted in accordance with the instructions attached to TOPO TA Cloning Kit (manufactured by Invitrogen), and *E. coli* DH5α was transformed by using the reaction solution. Plasmid DNAs were isolated from the obtained kanamycin-resistant clones to obtain 3 clones into which GFPP cDNA partial fragments were respectively integrated. They were named GFPP clone 8, GFPP clone 11 and GFPP clone 12.

[0704] The nucleotide sequence of the cDNA inserted into each of the GFPP clone 8, GFPP clone 11 and GFPP clone 12 was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) and BigDye Terminator Cycle Sequencing FS Ready Reaction kit (manufactured by Parkin Elmer) in accordance with the method described in the manufacture's instructions. It was confirmed that the inserted cDNA whose sequence was determined according to the present invention encodes an ORF partial sequence of the Chinese hamster GFPP.

(2) Determination of Chinese hamster GFPP full length cDNA by RACE method

[0705] Based on the Chinese hamster FX partial sequence determined in the item 2(1) of Reference Example 1, primers GFPP GSP1-1 (SEQ ID NO:52) and GFPP GSP1-2 (SEQ ID NO:53) for the Chinese hamster FX-specific 5' RACE and primers GFPP GSP2-1 (SEQ ID NO:54) and GFPP GSP2-2 (SEQ ID NO:55) for the Chinese hamster GFPP-specific 3' RACE were designed.

[0706] Next, 50 μ l of a reaction solution [1 \times concentration Advantage2 PCR buffer (manufactured by CLONTECH), 0.2 mmol/L dNTPs, 0.2 μ mol/l Chinese hamster GFPP-specific primers for RACE and 1 \times concentration of common primers (manufactured by CLONTECH)] containing 1 μ l of the CHO/DG44 cell-derived single-stranded cDNA for RACE prepared in the item 1(4) of Reference Example 1 was prepared by using Advantage2 PCR Kit (manufactured by CLONTECH), and PCR was carried out. The PCR was carried out by 20 cycles of heating at 94°C for 5 seconds, 68°C for 10 seconds and 72°C for 2 minutes as one cycle.

[0707] After completion of the reaction, 1 μ l of the reaction solution was diluted 50-fold with the Tricin-EDTA buffer, and 1 μ l of the diluted solution was used as a template. The reaction solution was again prepared and the PCR was carried out under the same conditions. The templates, the combination of primers used in the first and second PCRs and the size of amplified DNA fragments by the PCRs are shown in Table 7.

Table 7

Combination of primers used in Chinese hamster GFPP cDNA RACE PCR and the size of PCR products						
5' RACE	GFPP-specific primers	PCR-amplified product size				
First Second	GFPPGSP1-1 GFPPGSP1-2	UPM (Universal primer mix) NUP (Nested Universal primer)	1,100 bp			
3' RACE	GFPP-specific primers	Common primers	PCR-amplified product size			
First Second	GFPPGSP2-1 GFPPGSP2-2	UPM (Universal primer mix) NUP (Nested Universal primer)	1,400 bp			

30

35

40

45

50

10

20

25

[0708] After the PCR, the reaction solution was subjected to 1% agarose gel electrophoresis, and the specific amplified fragment of interest was recovered and eluted with 20 μ l of sterile water. Into a plasmid pCR2.1, 4 μ l of the above amplified fragment was inserted and *E. coli* DH5 α was transformed with the reaction solution in accordance with the instructions attached to TOPO TA Cloning Kit (manufactured by Invitrogen). Plasmid DNAs were isolated from the obtained several kanamycin-resistant clones to obtain 4 cDNA clones containing Chinese hamster GFPP 5' region. They were named GFPP5' clone 1, GFPP5' clone 2, GFPP5' clone 3 and GFPP5' clone 4.

[0709] In the same manner, 5 cDNA clones containing Chinese hamster GFPP 3' region were obtained. They were named GFPP3' clone 10, GFPP3' clone 16 and GFPP3' clone 20.

[0710] The nucleotide sequence of the cDNA protein of each of the clones obtained in the above 5' and 3' RACE was determined by using DNA Sequencer 377 (manufactured by Parkin Elmer) in accordance with the method described in the manufacture's instructions. By comparing the cDNA nucleotide sequences after the nucleotide sequence determination, reading errors of bases due to PCR were excluded and the full length nucleotide sequence of Chinese hamster GFPP cDNA was determined. The determined sequence is represented by SEQ ID NO:51.

Reference Example 2

Preparation of CHO cell-derived GMD gene:

- 1. Determination of CHO cell-derived GMD cDNA sequence
- (1) Preparation of CHO cell-derived GMD gene cDNA (preparation of partial cDNA excluding 5'- and 3'-terminal sequences)

[0711] Rodents-derived GMD cDNA was searched in a public data base (BLAST) using a human-derived GMD cDNA sequence (GenBank Accession No. AF042377) registered at GenBank as a query, and three kinds of mouse EST sequences were obtained (GenBank Accession Nos. BE986856, BF158988 and BE284785). By ligating these EST sequences, a deduced mouse GMD cDNA sequence was determined.

[0712] On the basis of the mouse-derived GMD cDNA sequence, a 28 mer primer having the nucleotide sequence

represented by SEQ ID NO:56, a 27 mer primer having the nucleotide sequence represented by SEQ ID NO:57, a 25 mer primer having the nucleotide sequence represented by SEQ ID NO:58, a 24 mer primer having the nucleotide sequence represented by SEQ ID NO:59 and a 25 mer primer having the sequence represented by SEQ ID NO:60 were prepared.

[0713] Next, in order to amplify the CHO cell-derived GMD cDNA, PCR was carried out by the following method. A reaction solution at 20 μ I [1 \times concentration Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μ mol/L of two synthetic DNA primers] containing 0.5 μ l of the CHO cell-derived single-stranded cDNA prepared in the item 1(1) of Example 8 as the template was prepared. In this case, combinations of SEQ ID NO:56 with SEQ ID NO:57, SEQ ID NO:58 with SEQ ID NO:58 with SEQ ID NO:59 and SEQ ID NO:56 with SEQ ID NO:60 were used as the synthetic DNA primers. The reaction was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 30 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle.

[0714] The PCR reaction solution was fractionated by agarose electrophoresis to find that a DNA fragment of about 1.2 kbp was amplified in the PCR product when synthetic DNA primers of SEQ ID NOs:56 and 57 were used, a fragment of about 1.1 kbp was amplified in the PCR product when synthetic DNA primers of SEQ ID NOs:57 and 59 were used, a fragment of about 350 bp was amplified in the PCR product when synthetic DNA primers of SEQ ID NOs:56 and 59 were used and a fragment of about 1 kbp was amplified in the PCR product when synthetic DNA primers of SEQ ID NOs:56 and 60 were used. The DNA fragments were recovered. The recovered DNA fragments were ligated to a pT7Blue(R) vector (manufactured by Novagen) by using DNA Ligation Kit (manufactured by Takara Shuzo), and E. coli DH5 strain (manufactured by Toyobo) was transformed by using the obtained recombinant plasmid DNA samples to thereby obtain plasmids 22-8 (having a DNA fragment of about 1.2 kbp amplified from synthetic DNA primers of SEQ ID NO:56 and SEQ ID NO:57), 23-3 (having a DNA fragment of about 1.1 kbp amplified from synthetic DNA primers of SEQ ID NO:58 and SEQ ID NO:57), 31-5 (a DNA fragment of about 350 bp amplified from synthetic DNA primers of SEQID NO:56 and SEQID NO:59) and 34-2 (having a DNA fragment of about 1 kbp amplified from synthetic DNA primers of SEQ ID NO:56 and SEQ ID NO:60). The CHO cell-derived GMD cDNA sequence contained in these plasmids was determined in the usual way by using a DNA sequencer ABI PRISM 377 (manufactured by Parkin Elmer) (since a sequence of 28 bases in downstream of the initiation codon methionine in the 5'-terminal side and a sequence of 27 bases in upstream of the termination codon in the 3'-terminal side are originated from synthetic oligo DNA sequences, they are mouse GMD cDNA sequences).

[0715] In addition, the following steps were carried out in order to prepare a plasmid in which the CHO cell-derived GMD cDNAs contained in the plasmids 22-8 and 34-2 are combined. The plasmid 22-8 (1 μg) was allowed to react with a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) at 37°C for 16 hours, the digest was subjected to agarose electrophoresis and then a DNA fragment of about 4 kbp was recovered. The plasmid 34-2 (2 μg) was allowed to react with a restriction enzyme *Eco*RI at 37°C for 16 hours, the digest was subjected to agarose electrophoresis and then a DNA fragment of about 150 bp was recovered. The recovered DNA fragments were respectively subjected to terminal dephosphorylation using Calf Intestine Alkaline Phosphatase (manufactured by Takara Shuzo) and then ligated by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5α strain (manufactured by Toyobo) was transformed by using the obtained recombinant plasmid DNA to obtain a plasmid CHO-GMD (cf. Fig. 37).

(2) Determination of 5'-terminal sequence of CHO cell-derived GMD cDNA

10

30

35

40

50

[0716] A 24 mer primer having the nucleotide sequence represented by SEQID NO:61 was prepared from 5'-terminal side non-coding region nucleotide sequences of CHO cell-derived human and mouse GMD cDNA, and a 32 mer primer having the nucleotide sequence represented by SEQ ID NO:62 from CHO cell-derived GMD cDNA sequence were prepared, and PCR was carried out by the following method to amplify cDNA. Then, 20 μl of a reaction solution [1× concentration Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of Ex Taq polymerase (manufactured by Takara Shuzo) and 0.5 μmol/L of the synthetic DNA primers of SEQ ID NO:61 and SEQ ID NO:62] containing 0.5 μI of the CHO cell-derived single-stranded cDNA obtained in the item 1(1) of Example 8 was prepared as the template, and the reaction was carried out therein by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes, subsequent 20 cycles of heating at 94°C for 1 minute, 55°C for 1 minute and 72°C for 2 minutes as one cycle and further 18 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle. After fractionation of the PCR reaction solution by agarose electrophoresis, a DNA fragment of about 300 bp was recovered. The recovered DNA fragment was ligated to a pT7Blue(R) vector (manufactured by Novagen) by using DNA Ligation Kit (manufactured by Takara Shuzo), and E. coli DH5α strain (manufactured by Toyobo) was transformed by using the obtained recombinant plasmid DNA samples to thereby obtain a plasmid 5'GMD. Using DNA Sequencer 377 (manufactured by Parkin Elmer), the nucleotide sequence of 28 bases in downstream of the initiation methionine of CHO -derived GMD cDNA contained in the plasmid was determined.

(3) Determination of 3'-terminal sequence of CHO cell-derived GMD cDNA

[0717] In order to obtain 3'-terminal cDNA sequence of CHO cell-derived GMD, RACE method was carried out by the following method. A single-stranded cDNA for 3' RACE was prepared from the CHO cell-derived RNA obtained in the item 1(1) of Example 8 by using SMARTTM RACE cDNA Amplification Kit (manufactured by CLONTECH) in accordance with the manufacture's instructions. In the case, PowerScriptTM Reverse Transcriptase (manufactured by CLONTECH) was used as the reverse transcriptase. The single-stranded cDNA after the preparation was diluted 10-fold with the Tricin-EDTA buffer attached to the kit and used as the template of PCR.

[0718] Next, $20\,\mu$ l of a reaction solution [1× concentration ExTaq buffer (manufactured by Takara Shuzo), $0.2\,\mu$ mol/L dNTPs, $0.5\,\mu$ mol of EX Taq polymerase (manufactured by Takara Shuzo), $0.5\,\mu$ mol/L of the 24 mer synthetic DNA primer represented by SEQ ID NO:63 [prepared on the basis of the CHO cell-derived GMD cDNA sequence determined in the item 1(1) of Reference Example 2] and 1x concentration of Universal Primer Mix (attached to SMARTTM RACE cDNA Amplification Kit; manufactured by CLONTECH] containing 1 μ l of the above single-stranded cDNA for 3' RACE as the template was prepared, and the reaction was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 30 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle.

[0719] After completion of the reaction, 1 μ l of the PCR reaction solution was diluted 20-fold with Tricin-EDTA buffer (manufactured by CLONTECH). Then, 20 μ l of a reaction solution [1× concentration ExTaq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of EX Taq polymerase (manufactured by Takara Shuzo), 0.5 μ mol/L of the 25 mer synthetic DNA primer represented by SEQ ID NO:64 [prepared on the basis of the CHO cell-derived GMD cDNA sequence determined in the item 1(1) of Reference Example 2] and 0.5 μ mol/L of Nested Universal Primer (attached to SMARTTM RACE cDNA Amplification Kit; manufactured by CLONTECH)] containing 1 μ l of the 20 fold-diluted aqueous solution as the template was prepared, and the reaction was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 30 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle.

[0720] After completion of the reaction, the PCR reaction solution was fractionated by agarose electrophoresis and then a DNA fragment of about 700 bp was recovered. The recovered DNA fragment was ligated to a pT7Blue(R) vector (manufactured by Novagen) by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5α strain (manufactured by Toyobo) was transformed by using the obtained recombinant plasmid DNA, thereby obtaining a plasmid 3'GMD. Using DNA Sequencer 377 (manufactured by Parkin Elmer), the nucleotide sequence of 27 bases in upstream of the termination codon of CHO-derived GMD cDNA and 415 bp of 3'-terminal side non-coding region contained in the plasmid was determined.

[0721] The full length cDNA sequence of the CHO-derived GMD gene determined by the items 1(1), 1(2) and 1(3) of Reference Example 2 is represented by SEQ ID NO:65, and the corresponding amino acid sequence is represented by SEQ ID NO:71.

2. Determination of genomic sequence containing CHO/DG44-derived cell GMD gene

30

35

40

50

55

[0722] A 25 mer primer having the nucleotide sequence represented by SEQ ID NO:66 was prepared from the mouse GMD cDNA sequence determined in the item 1 of Reference Example 2. Next, a CHO cell-derived genomic DNA was obtained by the following method. A CHO/DG44 cell-derived KC861 cell was suspended in IMDM-dFBS(10)-HT(1) medium [IMDM-dFBS(10) medium comprising 1 x concentration of HT supplement (manufactured by Invitrogen)] to give a density of 3×10^5 cells/ml, and the suspension was dispensed at 2 ml/well into a 6 well flat bottom plate for adhesion cell use (manufactured by Greiner). After culturing at 37°C in a 5% CO₂ incubator until the cells became confluent on the plate, genomic DNA was prepared from the cells on the plate by a known method [Nucleic Acids Research, 3, 2303 (1976)] and dissolved overnight in 150 μ l of TE-RNase buffer (pH 8.0) (10 mmol/l Tris-HCl, 1 mmol/l EDTA, 200 μ g/ml RNase A).

[0723] A reaction solution (20 μ l) [1 \times concentration Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of EX Taq polymerase (manufactured by Takara Shuzo) and 0.5 μ mol/L of synthetic DNA primers of SEQ ID NO:59 and SEQ ID NO:66] containing 100 ng of the obtained CHO/DG44 cell-derived genomic DNA was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 30 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle. After completion of the reaction, the PCR reaction solution was fractionated by agarose electrophoresis and then a DNA fragment of about 100 bp was recovered. The recovered DNA fragment was ligated to a pT7Blue(R) vector (manufactured by Novagen) by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5 α strain (manufactured by Toyobo) was transformed by using the obtained recombinant plasmid DNA, thereby obtaining a plasmid ex3. Using DNA Sequencer 377 (manufactured by Parkin Elmer), the nucleotide sequence of CHO cell-derived genomic DNA contained in the plasmid was determined. The nucleotide sequence was represented by SEQ ID NO:67.

[0724] Next, a 25 mer primer having the nucleotide sequence represented by SEQ ID NO:68 and a 25 mer primer having the nucleotide sequence represented by SEQ ID NO:69 were prepared on the basis of the CHO cell-derived GMD cDNA sequence determined in the item 1 of Reference Example 2. Next, 20 μ I of a reaction solution [1× concentration Ex Taq buffer (manufactured by Takara Shuzo), 0.2 mmol/L dNTPs, 0.5 unit of EX Taq polymerase (manufactured by Takara Shuzo) and 0.5 μ mol/L of the synthetic DNA primers of SEQ ID NO:68 and SEQ ID NO:69] containing 100 ng of the CHO/DG44-derived genomic DNA was prepared, and PCR was carried out by using DNA Thermal Cycler 480 (manufactured by Perkin Elmer) by heating at 94°C for 5 minutes and subsequent 30 cycles of heating at 94°C for 1 minute and 68°C for 2 minutes as one cycle.

[0725] After completion of the reaction, the PCR reaction solution was fractionated by agarose electrophoresis and then a DNA fragment of about 200 bp was recovered. The recovered DNA fragment was ligated to a pT7Blue(R) vector (manufactured by Novagen) by using DNA Ligation Kit (manufactured by Takara Shuzo), and *E. coli* DH5α strain (manufactured by Toyobo) was transformed by using the obtained recombinant plasmid DNA, thereby obtaining a plasmid ex4. Using DNA Sequencer 377 (manufactured by Parkin Elmer), the nucleotide sequence of CHO cell-derived genomic DNA contained in the plasmid was determined. The result nucleotide sequence was represented by SEQ ID NO:70.

Reference Example 3

10

15

30

35

40

45

50

55

Preparation of anti-FGF-8 chimeric antibody

- 1. Isolation and analysis of a cDNA encoding the V region of a mouse antibody against FGF-8
- (1) Preparation of mRNA from hybridoma cells which produces a mouse antibody against FGF-8
- [0726] About 8 μg of mRNA was prepared from 1×10⁷ cells of a hybridoma KM1334 (FERM BP-5451) which produces a mouse antibody against FGF-8 (anti-FGF-8 mouse antibody), using a mRNA preparation kit Fast Track mRNA Isolation Kit (manufactured by Invitrogen) according to the attached manufacture's instructions.
 - (2) Production of cDNA libraries of anti-FGF-8 mouse antibody H chain and L chain

[0727] A cDNA having EcoRI-Not adapters on both termini was synthesized from 5 μ g of the KM1334 mRNA obtained in the item 1(1) of Reference Example 3 by using Time Saver cDNA Synthesis Kit (manufactured by Amersham Pharmacia Biotech) according to the attached manufacture's instructions. A full amount of the prepared cDNA was dissolved in 20 μ I of sterile water and then fractionated by agarose gel electrophoresis, and about 1.5 kb of a cDNA fragment corresponding to the H chain of an IgG class antibody and about 1.0 kb of a cDNA fragment corresponding to the L chain of a κ class were recovered each at about 0.1 μ g. Next, 0.1 μ g of the cDNA fragment of about 1.5 kb and 0.1 μ g of the cDNA fragment of about 1.0 kb were respectively digested with restriction enzyme EcoRI and then ligated with 1 μ g of λ ZAPII vector whose termini had been dephosphorylated with calf intestine alkaline phosphatase, using λ ZAPII Cloning Kit (manufactured by Stratagene) according to the attached manufacture's instructions.

[0728] Using Gigapack II Packaging Extracts Gold (manufactured by Stratagene), $4 \,\mu$ I of each reaction solution after ligation was packaged in λ phage according to the manufacture's instructions, and *Escherichia coli* XL1-Blue [*Biotechniques*, $\underline{5}$, 376 (1987)] was infected with an adequate amount of the package to obtain about 8.1×10^4 and 5.5×10^4 phage clones as H chain cDNA library and L chain cDNA library, respectively, of KM1334. Next, respective phages were immobilized on a nylon membrane according to a known method (*Molecular Cloning*, Second Edition).

(3) Cloning of cDNAs of anti-FGF-8 mouse antibody H chain and L chain

[0729] Nylon membranes of the H chain cDNA library and L chain cDNA library of KM1334 prepared in the item 1 (2) in Reference Example 3 were detected using a cDNA of the C region of a mouse antibody [H chain is a DNA fragment containing mouse $C\gamma$ 1 cDNA (J. Immunol., 146, 2010 (1991)], L chain is a DNA fragment containing mouse $C\kappa$ cDNA [Cell, 22, 197 (1980)] as a probe, using ECL Direct Nucleic Acid Labeling and Detection Systems (manufactured by Amersham Pharmacia Biotech) according to the attached manufacture's instructions, and phage clones strongly linked to the probe, 10 clones for each of H chain and L chain, were obtained. Next, each phage clone was converted into a plasmid by the *in vivo* excision method according to the manufacture's instructions attached to λ ZAPII Cloning Kit (manufactured by Stratagene). A nucleotide sequence of a cDNA contained in each of the obtained plasmids was determined by the dideoxy method (Molecular Cloning, Second Edition) by using Big Dye Terminator Kit ver. 2 (manufactured by Applied Biosystems). As a result, a plasmid pKM1334H7-1 containing a full length and functional H chain cDNA and a plasmid pKM1334L7-1 containing L chain cDNA, having an ATG sequence considered to be the initiation

codon in the 5'-terminal of the cDNA were obtained.

(4) Analysis of amino acid sequence of V region of anti-FGF-8 mouse antibody

[0730] A full length nucleotide sequence of VH contained in the plasmid pKM1334H7-1 and a deduced complete length amino acid sequence are represented by SEQ ID NO:72 and SEQ ID NO:73, respectively, and a full length nucleotide sequence of VL contained in the plasmid pKM1334L7-1 and a deduced complete length amino acid sequence are represented by SEQ ID NO:74 and SEQ ID NO:75, respectively. As a result of comparing these sequences to both known sequence data of mouse antibodies (*Sequences of Proteins of Immunological Interest*, U.S. Dept. Health and Human Services, 1991) and the comparison with the results of analysis ofN-terminal amino acid sequences ofH chain and L chain of the purified anti-FGF-8 mouse antibody KM1334, carried out by their automatic Edman degradation using a protein sequencer PPSQ-10 (manufactured by Shimadzu), it was found that each of the isolated cDNA is a full length cDNA encoding the anti-FGF-8 mouse antibody KM1334 containing a secretory signal sequence, and positions 1 to 19 in the amino acid sequence represented by SEQ ID NO:73 and positions 1 to 19 in the amino acid sequence described in SEQ ID NO:75 are secretory signal sequences of H chain and L chain, respectively.

[0731] Next, novelty of the amino acid sequences (sequences excluding secretory signal sequence) of VH and VL of the anti-FGF-8 mouse antibody KM1334 was examined. Using GCG Package (version 9.1, manufactured by Genetics Computer Group) as a sequence analyzing system, an amino acid sequence data base of known proteins (PIR-Protein (Release 56.0)) was searched by the BLAST method [J. Mol. Biol., 215, 403 (1990)]. As a result, completely coincided sequences were not found for both of the H chain and L chain, so that it was confirmed that the VH and VL of the anti-FGF-8 mouse antibody KM1334 are novel amino acid sequences.

[0732] Also, the CDR of VH and VL of the anti-FGF-8 mouse antibody KM1334 was identified by comparing with amino acid sequences of known antibodies. Amino acid sequences of CDR 1, 2 and 3 of VH of the anti-FGF-8 mouse antibody KM1334 are represented by SEQ ID NOs:76, 77 and 78, respectively, and amino acid sequences of CDR 1, 2 and 3 of VL in SEQ ID NOs:79, 80 and 81, respectively.

2. Stable expression of anti-FGF-8 chimeric antibody using animal cell

30

35

40

50

(1) Construction of anti-FGF-8 chimeric antibody expression vector pKANTEX1334

[0733] An anti-FGF-8 chimeric antibody expression vector pKANTEX1334 was constructed as follows using the vector pKANTEX93 for humanized antibody expression described in W097/10354 and the plasmids pKM1334H7-1 and pKM1334L7-1 obtained in the item 1(3) of Reference Example 3.

[0734] Using 50 ng of the plasmid pKM1334H7-1 obtained in the item 1(3) of Reference Example 3 as the template and by adding synthetic DNAs having the nucleotide sequences described in SEQ ID NOs:24 and 25 (manufactured by GENSET) as primers to give a final concentration of 0.3 μ M, PCR were carried out in a system of 50 μ l by first heating at 94°C for 2 minutes and subsequent 30 cycles of heating at 94°C for 15 seconds, at 55°C for 30 seconds and at 68°C for 1 minute according to the manufacture's instructions attached to KOD plus polymerase (manufactured by TOYOBO). The reaction solution was precipitated with ethanol, dissolved in sterile water and then allowed to react at 37°C for 1 hour by using 10 units of a restriction enzyme *Apal* (manufactured by Takara Shuzo) and 10 units of a restriction enzyme *Not*I (manufactured by New England Biolabs). About 0.3 μ g of an *Apal-Not*I fragment of about 0.47 kb was recovered By fractionating the reaction solution by agarose gel electrophoresis.

[0735] Next, 3 μg of the vector pKANTEX93 for humanized antibody expression was allowed to react at 37°C for 1 hour by using 10 units of restriction enzyme *Apa*l (manufactured by Takara Shuzo) and 10 units of restriction enzyme *Not*l (manufactured by New England Biolabs). About 2 μg of an *Apal-Not*l fragment of about 12.75 kb was recovered, by fractionating the reaction solution by an agarose gel electrophoresis.

[0736] Next, 0.1 μ g of the *Notl-Apa*l fragment derived from the PCR product and 0.1 μ g of the *Notl-Apa*l fragment derived from the plasmid pKANTEX93, obtained in the above, were added to 10 μ l of sterile water in total amount and ligated by using Ligation High (manufactured by TOYOBO). The plasmid pKANTEX1334H shown in Fig. 38 was obtained by transforming *Escherichia coli* JM109 by using the recombinant plasmid DNA solution obtained in this manner. [0737] Next, using 50 ng of the plasmid pKM1334L7-1 obtained in the item 1(3) of Reference Example 1 as the template and by adding synthetic DNAs having the nucleotide sequences described in SEQ ID NOs:82 and 83 (manufactured by GENSET) as primers to give a final concentration of 0.3 μ M, PCR was carried out in a system of 50 μ l by first heating at 94°C for 2 minutes and subsequent 30 cycles of heating at 94°C for 15 seconds, at 55°C for 30 seconds and 68°C for 1 minute according to the manufacture's instructions attached to KOD plus polymerase (manufactured by TOYOBO). The reaction solution was precipitated with ethanol, dissolved in sterile water and then allowed to react at 37°C for 1 hour by using 10 units of a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) and 10 units of a restriction enzyme *BsW*I (manufactured by New England Biolabs). About 0.3 μ g of an *Eco*RI-*BsW*I fragment of about

0.44 kb was recovered by fractionating the reaction solution by agarose gel electrophoresis.

[0738] Next, 3 µg of the plasmid pKANTEX1134H obtained in the above was allowed to react at 37°C for 1 hour by using 10 units of a restriction enzyme *Eco*RI (manufactured by Takara Shuzo) and a restriction enzyme *Bsi*WI (manufactured by New England Biolabs). About 2 µg of an *Eco*RI-*Bsi*WI fragment of about 13.20 kb was recovered by fractionating said reaction solution by an agarose gel electrophoresis.

[0739] Next, 0.1 μg of the *Eco*RI-*Bsi*WI fragment derived from the PCR product and 0.1 μg of the *Eco*RI-*Bsi*WI fragment derived from the plasmid pKANTEX1334H, obtained in the above, were added to 10 μI of sterile water in total amount and ligated by using Ligation High (manufactured by TOYOBO). The plasmid pKANTEX1334 shown in Fig. 38 was obtained by transforming *Escherichia coli* JM109 using the recombinant plasmid DNA solution obtained in this manner.

[0740] As a result of carrying out analysis of a nucleotide sequence using 400 ng of the obtained plasmid by the dideoxy method (*Molecular Cloning*, Second Edition) using Big Dye Terminator Kit ver. 2 (manufactured by Applied Biosystems), it was confirmed that a plasmid comprising a cloned DNA of interest was obtained.

INDUSTRIAL APPLICABILITY

[0741] The present invention relates to a method for enhancing a binding activity of an antibody composition to Fc γ receptor Illa, which comprises modifying a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule; a method for enhancing an antibody-dependent cell-mediated cytotoxic activity of an antibody composition; a process for producing an antibody composition having an enhanced binding activity to Fc γ receptor Illa; a method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain among total complex *N*-glycoside-linked sugar chains bound to the Fc region in an antibody composition; an Fc fusion protein composition produced by using a cell resistant to a lectin which recognizes a sugar chain in which 1-position of fucose is bound to 6-position of *N*-acetylglucosamine in the reducing end through α -bond in a complex *N*-glycoside-linked sugar chain; and a process for producing the same.

Free Text in Sequence Listing

[0742]

10

15

30

SEQ ID NO:4 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:5 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:8 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:9 - Explanation of synthetic sequence: synthetic DNA 35 SEQ ID NO:10 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO: 11 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:12 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:13 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:14 - Explanation of synthetic sequence: synthetic DNA 40 SEQ ID NO:15 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:16 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:17 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:18 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:22 - Explanation of synthetic sequence: synthetic DNA 45 SEQ ID NO:26 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:29 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:32 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:33 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:34 - Explanation of synthetic sequence: synthetic DNA 50 SEQ ID NO:35 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:36 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:37 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:38 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:39 - Explanation of synthetic sequence: synthetic DNA 55 SEQ ID NO:40 Explanation of synthetic sequence: synthetic DNA SEQ ID NO:41 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:42 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:43 - Explanation of synthetic sequence: synthetic DNA

	SEQ ID NO:44 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:45 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:46 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:47 Explanation of synthetic sequence: synthetic DNA
5	SEQ ID NO:49 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:50 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:52 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:53 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:54 - Explanation of synthetic sequence: synthetic DNA
10	SEQ ID NO:55 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:56 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:57 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:58 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:59 - Explanation of synthetic sequence: synthetic DNA
15	SEQ ID NO:60 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:61 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:62 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:63 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:64 - Explanation of synthetic sequence: synthetic DNA
20	SEQ ID NO:66 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:68 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:69 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:82 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:83 - Explanation of synthetic sequence: synthetic DNA
25	SEQ ID NO:84 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:85 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:86 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:87 - Explanation of synthetic sequence: synthetic DNA SEQ ID NO:88 - Explanation of synthetic sequence: synthetic DNA
30	SEQ ID NO:89 - Explanation of synthetic sequence: synthetic DNA
35	
40	
45	
50	

SEQUENCE LISTING

5	<110> KYOWA HAKKO KOGYO CO., LTD.
10	$\ensuremath{\text{<}120\text{>}}$ Method of enhancing of binding activity of antibody composition to Fc γ receptor IIIa
	<130> P044077
15	<150> P2002-106950 <151> 2002-04-09
20	<160> 100
	<170> PatentIn Ver. 2.1
25	<210> 1
	<211> 2008
	<212> DNA
30	<213> Cricetulus griseus
	4400
	<pre><400> 1 aacagaaact tattttcctg tgtggctaac tagaaccaga gtacaatgtt tecaattett 60</pre>
35	tgageteega gaagacagaa gggagttgaa actetgaaaa tgegggeatg gactggttee 120
	tggggttgga ttatgctcat tctttttgcc tgggggacct tattgtttta tataggtggt 180
	cattiggtic gagataatga ccaccigac cattitagca gagaactic caagaticit 240
40	gcaaagctgg agcgcttaaa acaacaaaat gaagacttga ggagaatggc tgagtctctc 300
	cgaataccag aaggccctat tgatcagggg acagctacag gaagagtccg tgttttagaa 360
	gaacagettg ttaaggeeaa agaacagatt gaaaattaca agaaacaage taggaatgat 420
45	ctgggaaagg atcatgaaat cttaaggagg aggattgaaa atggagctaa agagctctgg 480
	ttttttctac aaagtgaatt gaagaaatta aagaaattag aaggaaacga actccaaaga 540
	catgcagatg aaattotttt ggatttagga catcatgaaa ggtotatoat gacagatota 600
	tactacctca gtcaaacaga tggagcaggt gagtggcggg aaaaagaagc caaagatctg 660
50	acagagetgg tecageggag aataacatat etgeagaate eeaaggactg eageaaagee 720
	agaaagctgg tatgtaatat caacaaaggc tgtggctatg gatgtcaact ccatcatgtg 780
	gtttactgct tcatgattgc ttatggcacc cagcgaacac tcatcttgga atctcagaat 840
55	tggcgctatg ctactggagg atgggagact gtgtttagac ctgtaagtga gacatgcaca 900 gacaggtctg gcctctccac tggacactgg tcaggtgaag tgaaggacaa aaatgttcaa 960
	Racarricir reciticeae irracatirr tearriraar traarracaa aaatriteaa 900

	gtggtcgagc	tccccattgt	agacagcctc	catectegte	ctccttactt	acccttggct	1020	
5	gtaccagaag	accttgcaga	tcgactcctg	agagtccatg	gtgatcctgc	agtgtggtgg	1080	
	gtatcccagt	ttgtcaaata	cttgatccgt	ccacaacctt	ggctggaaag	ggaaatagaa	1140	
	gaaaccacca	agaagcttgg	cttcaaacat	ccagttattg	gagtccatgt	cagacgcact	1200	
	gacaaagtgg	gaacagaagc	agccttccat	cccattgagg	aatacatggt	acacgttgaa	1260	
10	gaacattttc	agcttctcga	acgcagaatg	aaagtggata	aaaaaagagt	gtatctggcc	1320	
	actgatgacc	cttctttgtt	aaaggaggca	aagacaaagt	actccaatta	tgaatttatt	1380	
	agtgataact	ctatttcttg	gtcagctgga	ctacacaacc	gatacacaga	aaattcactt	1440	
15	cggggcgtga	tcctggatat	acactttctc	tcccaggctg	acttccttgt	gtgtactttt	1500	
	tcatcccagg	tctgtagggt	tgcttatgaa	atcatgcaaa	cactgcatcc	tgatgcctct	1560	
	gcaaacttcc	attctttaga	tgacatctac	tattttggag	gccaaaatgc	ccacaaccag	1620	
	attgcagttt	atcctcacca	acctcgaact	aaagaggaaa	tccccatgga	acctggagat	1680	
20	atcattggtg	tggctggaaa	ccattggaat	ggttactcta	aaggtgtcaa	cagaaaacta	1740	
	ggaaaaaacag	gcctgtaccc	ttcctacaaa	gtccgagaga	agatagaaac	agtcaaatac	1800	
	cctacatatc	ctgaagctga	aaaatagaga	tggagtgtaa	gagattaaca	acagaattta	1860	
25	gttcagacca	tctcagccaa	gcagaagacc	cagactaaca	tatggttcat	tgacagacat	1920	
	gctccgcacc	aagagcaagt	gggaaccctc	agatgctgca	ctggtggaac	gcctctttgt	1980	
	gaagggctgc	tgtgccctca	agcccatg				2008	
30								
30	(010) O							
	<210> 2 <211> 1728							
	<21.1> 1728 <212> DNA							
35	<213> Mus musculus							
	12107 MGS J	14504145						
	<400> 2							
40	atgcgggcat	ggactggttc	ctggcgttgg	attatgctca	ttctttttgc	ctgggggacc	60	
	ttgttatttt	atataggtgg	tcatttggtt	cgagataatg	accaccctga	tcactccagc	120	
	agagaactct	ccaagattct	tgcaaagctt	gaacgcttaa	aacagcaaaa	tgaagacttg	180	
45	aggcgaatgg	ctgagtctct	ccgaatacca	gaaggcccca	ttgaccaggg	gacagctaca	240	
	ggaagagtcc	gtgttttaga	agaacagett	gttaaggcca	aagaacagat	tgaaaattac	300	
	aagaaacaag	ctagaaatgg	tctggggaag	gatcatgaaa	tcttaagaag	gaggattgaa	360	
	aatggagcta	aagagctctg	gttttttcta	caaagcgaac	tgaagaaatt	aaagcattta	420	
50	gaaggaaatg	aactccaaag	acatgcagat	gaaattcttt	tggatttagg	acaccatgaa	480	
	aggtctatca	tgacagatct	atactacctc	agtcaaacag	atggagcagg	ggattggcgt	540	
	gaaaaagagg	ccaaagatct	gacagagctg	gtccagcgga	gaataacata	tctccagaat	600	
<i>55</i>	cctaaggact	gcagcaaagc	caggaagctg	gtgtgtaaca	tcaataaagg	ctgtggctat	660	
	ggttgtcaac	tccatcacgt	ggtctactgt	ttcatgattg	cttatggcac	ccagcgaaca	720	

	ctcatcttgg	aatctcagaa	ttggcgctat	gctactggtg	gatgggagac	tgtgtttaga	780
5	cctgtaagtg	agacatgtac	agacagatct	ggcctctcca	ctggacactg	gtcaggtgaa	840
3	gtaaatgaca	aaaacattca	agtggtcgag	ctcccattg	tagacagcct	ccatcctcgg	900
	cctccttact	taccactggc	tgttccagaa	gaccttgcag	accgactcct	aagagtccat	960
	ggtgaccctg	cagtgtggtg	ggtgtcccag	tttgtcaaat	acttgattcg	tccacaacct	1020
10	tggctggaaa	aggaaataga	agaagccacc	aagaagcttg	gcttcaaaca	tccagttatt	1080
	ggagtccatg	tcagacgcac	agacaaagtg	ggaacagaag	cagccttcca	ccccatcgag	1140
	gagtacatgg	tacacgttga	agaacatttt	cagcttctcg	cacgcagaat	gcaagtggat	1200
15	aaaaaaagag	tatatctggc	tactgatgat	cctactttgt	taaaggaggc	aaagacaaag	1260
	tactccaatt	atgaatttat	tagtgataac	tctatttctt	ggtcagctgg	actacacaat	1320
	cggtacacag	aaaattcact	tcggggtgtg	atcctggata	tacactttct	ctcacaggct	1380
	gactttctag	tgtgtacttt	ttcatcccag	gtctgtcggg	ttgcttatga	aatcatgcaa	1440
20	accctgcatc	ctgatgcctc	tgcgaacttc	cattctttgg	atgacatcta	ctattttgga	1500
	ggccaaaatg	cccacaatca	gattgctgtt	tatcctcaca	aacctcgaac	tgaagaggaa	1560
	attccaatgg	aacctggaga	tatcattggt	gtggctggaa	accattggga	tggttattct	1620
25	aaaggtatca	acagaaaaact	tggaaaaaaca	ggcttatatc	cctcctacaa	agtccgagag	1680
	aagatagaaa	cagtcaagta	tcccacatat	cctgaagctg	aaaaatag		1728
	Z010\ 0						
30	<210> 3 <211> 9196						
	<211> 9190 <212> DNA						
	<213> Crice	etulus grise	aus				
35	(820) 0210	8-1-					
	<400> 3						
	tctagaccag	gctggtctcg	aactcacaga	gaaccacctg	cctctgccac	ctgagtgctg	60
40	ggattaaagg	tgtgcaccac	caccgcccgg	cgtaaaatca	tatttttgaa	tattgtgata	120
	atttacatta	taattgtaag	taaaaatttt	cagcctattt	tgttatacat	ttttgcgtaa	180
	attattcttt	tttgaaagtt	ttgttgtcca	taatagtcta	gggaaacata	aagttataat	240
	ttttgtctat	gtatttgcat	atatatctat	ttaatctcct	aatgtccagg	aaataaatag	300
45	ggtatgtaat	agcttcaaca	tgtggtatga	tagaatttt	cagtgctata	taagttgtta	360
	cagcaaagtg	ttattaattc	atatgtccat	atttcaattt	tttatgaatt	attaaattga	420
	atccttaagc	tgccagaact	agaattttat	tttaatcagg	aagccccaaa	tctgttcatt	480
50	ctttctatat	atgtggaaag	gtaggcctca	ctaactgatt	cttcacctgt	tttagaacat	540
	ggtccaagaa	tggagttatg	taaggggaat	tacaagtgtg	agaaaactcc	tagaaaacaa	600
	gatgagtctt	gtgaccttag	tttctttaaa	aacacaaaat	tcttggaatg	tgttttcatg	660
55	ttcctcccag	gtggatagga	gtgagtttat	ttcagattat	ttattacaac	tggctgttgt	720

	atgattttat	acttgtgtga	ctcttaactc	tcagagtata	aattgtctga	tgctatgaat	840
5	aaagttggct	attgtatgag	acttcagccc	acttcaatta	ttggcttcat	tctctcagat	900
	cccaccacct	ccagagtggt	aaacaacttg	aaccattaaa	cagactttag	tctttatttg	960
	aatgatagat	ggggatatca	gatttatagg	cacagggttt	tgagaaaggg	agaaggtaaa	1020
	cagtagagtt	taacaacaac	aaaaagtata	ctttgtaaac	gtaaaactat	ttattaaagt	1080
10	agtagacaag	acattaaata	ttccttggga	ttagtgcttt	ttgaattttg	ctttcaaata	1140
	atagtcagtg	agtatacccc	tccccattc	tatattttag	cagaaatcag	aataaatggt	1200
	gtttctggta	cattctttg	tagagaattt	attttctttg	ggtttttgtg	catttaaagt	1260
15	caataaaaat	taaggttcag	taatagaaaa	aaaactctga	tttttggaat	ccccttctt	1320
	cagcttttct	atttaatctc	ttaatgataa	tttaatttgt	ggccatgtgg	tcaaagtata	1380
	tagccttgta	tatgtaaatg	ttttaaccaa	cctgccttta	cagtaactat	ataattttat	1440
	tctataatat	atgacttttc	ttccatagct	ttagagttgc	ccagtcactt	taagttacat	1500
20	tttcatatat	gttctttgtg	ggaggagata	attttatttc	taagagaatc	ctaagcatac	1560
	tgattgagaa	atggcaaaca	aaacacataa	ttaaagctga	taaagaacga	acatttggag	1620
	tttaaaatac	atagccaccc	taagggttta	actgttgtta	gccttctttt	ggaatttta	1680
25	ttagttcata	tagaaaaatg	gattttatcg	tgacatttcc	atatatgtat	ataatatatt	1740
	tacatcatat	ccacctgtaa	ttattagtgt	ttttaaatat	atttgaaaaa	ataatggtct	1800
		atttgaacct					
		cttctctaag	_				
30		aagtagtgag					
		ctgagaactt					
		gattaattat	_				
35		caagaaagat				•	
		ctaacgtgtg					
		ctttcagcct aacaactcag			-	• -	
		agaaagctgc					
40		agagagacta					
	_	gtggctaact			•		
		ggagttgaaa					
45		ctttttgcct					
		caccotgaco					
		caacaaaatg					
50		ggatttgatg					
50		atataatttc				0 0	
		tcagtgatac			_		
		gaatcagtat				_	
55	attatgttta				_	_	
	2000000000	020020000		G	-0.0000000		5550

```
attctatgga ctacaacaga gacataaatt ttgaaaggct tagttactct taaattctta 3120
              tgatgaaaag caaaaattca ttgttaaata gaacagtgca tccggaatgt gggtaattat 3180
5
              tgccatattt ctagtctact aaaaattgtg gcataactgt tcaaagtcat cagttgtttg 3240
              gaaagccaaa gtctgattta aatggaaaac ataaacaatg atatctattt ctagatacct 3300
              ttaacttgca gttactgagt ttacaagttg tctgacaact ttggattctc ttacttcata 3360
10
              tctaagaatg atcatgtgta cagtgcttac tgtcacttta aaaaactgca gggctagaca 3420
              tgcagatatg aagactitga cattagatgt ggtaattggc actaccagca agtggtatta 3480
              agatacagct gaatatatta ctttttgagg aacataattc atgaatggaa agtggagcat 3540
              tagagaggat gccttctggc tctcccacac cactgtttgc atccattgca tttcacactg 3600
15
              cttttagaac tcagatgttt catatggtat attgtgtaac tcaccatcag ttttatcttt 3660
              aaatgtotat ggatgataat gttgtatgtt aacactttta caasaacaaa tgaagccata 3720
              tecteggtgt gagttgtgat ggtggtaatt gteacaatag gattatteag eaaggaacta 3780
20
              agtcagggac aagaagtggg cgatactttg ttggattaaa tcattttact ggaagttcat 3840
              cagggagggt tatgaaagtt gtggtctttg aactgaaatt atatgtgatt cattattctt 3900
              gatttaggcc ttgctaatag taactatcat ttattgggaa tttgtcatat gtgccaattt 3960
             gtcatgggcc agacagcgtg ttttactgaa tttctagata tctttatgag attctagtac 4020
25
              tgttttcagc cattttacag atgaagaatc ttaaaaaaatg ttaaataatt tagtttgccc 4080
             aagattatac gttaacaaat ggtagaacct tctttgaatt ctggcagtat ggctacacag 4140
             tccgaactct tatcttccta agctgaaaac agaaaaagca atgacccaga aaattttatt 4200
30
             taaaagtete aggagagaet teccateetg agaagatete titteeetit tataatitag 4260
             gctcctgaat aatcactgaa ttttctccat gttccatcta tagtactgtt atttctgttt 4320
             tccttttttc ttaccacaaa gtatcttgtt tttgctgtat gaaagaaaat gtgttattgt 4380
             aatgtgaaat tetetgteec tgeagggtee cacateegee teaateecaa ataaacacae 4440
35
             agaggetgta ttaattatga aactgttggt cagttggcta gggettetta ttggetaget 4500
             ctgtcttaat tattaaacca taactactat tgtaagtatt tccatgtggt cttatcttac 4560
             caaggaaagg gtccagggac ctcttactcc tctggcgtgt tggcagtgaa gaggagaga 4620
40
             cgatttccta tttgtctctg cttattttct gattctgctc agctatgtca cttcctgcct 4680
             ggccaatcag ccaatcagtg ttttattcat tagccaataa aagaaacatt tacacagaag 4740
             gacttccccc atcatgttat ttgtatgagt tcttcagaaa atcatagtat cttttaatac 4800
             taatttttat aaaaaattaa tigtatigaa aattaigigi ataigigict gigtigicgat 4860
45
             ttgtgctcat aagtagcatg gagtgcagaa gagggaatca gatctttttt taagggacaa 4920
             agagtttatt cagattacat tttaaggtga taatgtatga ttgcaaggtt atcaacatgg 4980
             cagaaatgtg aagaagctgg tcacattaca tccagagtca agagtagaga gcaatgaatt 5040
             gatgcatgca ttcctgtgct cagctcactt ttcctggagc tgagctgatt gtaagccatc 5100
50
             tgatgtcttt gctgggaact aactcaaagg caagttcaaa acctgttctt aagtataagc 5160
             catctctcca gtccctcata tggtctctta agacactttc tttatattct tgtacataga 5220
             aattgaatto otaacaactg cattcaaatt acaaaatagt ttttaaaago tgatataata 5280
55
             aatgtaaata caatctagaa catttttata aataagcata ttaactcagt aaaaataaat 5340
```

	gcatggttat	tttccttcat	tagggaagta	tgtctcccca	ggctgttctc	tagattctac	5400
E	tagtaatgct	gtttgtacac	catccacagg	ggttttattt	taaagctaag	acatgaatga	5460
5	tggacatgct	tgttagcatt	tagacttttt	tccttactat	aattgagcta	gtatttttgt	5520
	gctcagtttg	atatctgtta	attcagataa	atgtaatagt	aggtaatttc	tttgtgataa	5580
	aggcatataa	attgaagttg	gaaaacaaaa	gcctgaaatg	acagttttta	agattcagaa	5640
10	caataatttt	caaaagcagt	tacccaactt	tccaaataca	atctgcagtt	ttcttgatat	5700
	gtgataaatt	tagacaaaga	aatagcacat	tttaaaaatag	ctatttactc	ttgattttt	5760
	tttcaaattt	aggctagttc	actagttgtg	tgtaaggtta	tggctgcaaa	catctttgac	5820
15	tcttggttag	ggaatccagg	atgatttacg	tgtttggcca	aaatcttgtt	ccattctggg	5880
	tttcttctct	atctaggtag	ctagcacaag	ttaaaggtgt	ggtagtattg	gaaggctctc	5940
	aggtatatat	ttctatattc	tgtattttt	tcctctgtca	tatatttgct	ttctgtttta	6000
	ttgatttcta	ctgttagttt	gatacttact	ttcttacact	ttctttggga	tttattttgc	6060
20	tgttctaaga	tttcttagca	agttcatatc	actgatttta	acagttgctt	cttttgtaat	6120
	atagactgaa	tgccccttat	ttgaaatgct	tgggatcaga	aactcagatt	tgaacttttc	6180
	ttttttaata	tttccatcaa	gtttaccagc	tgaatgtcct	gatccaagaa	tatgaaatct	6240
25	gaaatgcttt	gaaatctgaa	acttttagag	tgataaagct	tccctttaaa	ttaatttgtg	6300
	ttctatattt	tttgacaatg	tcaacctttc	attgttatcc	aatgagtgaa	catattttca	6360
	attttttgt	ttgatctgtt	atattttgat	ctgaccatat	ttataaaatt	ttatttaatt	6420
		gctgttactt					
30	attatattct	gtattattt	agtttgaatt	ttactttgtg	gcttagtaac	tgccttttgt	6540
	tggtgaatgc	ttaagaaaaa	cgtgtggtct	actgatattg	gttctaatct	tatatagcat	6600
	gttgtttgtt	aggtagttga	ttatgctggt	cagattgtct	tgagtttatg	caaatgtaaa	6660
35	atatttagat	gcttgttttg	ttgtctaaga	acaaagtatg	cttgctgtct	cctatcggtt	6720
	ctggtttttc	cattcatctc	ttcaagctgt	tttgtgtgtt	gaatactaac	tccgtactat	6780
	cttgttttct	gtgaattaac	cccttttcaa	aggtttcttt	tcttttttt	tttaagggac	6840
	aacaagttta	ttcagattac	attttaagct	gataatgtat	gattgcaagg	ttatcaacat	6900
40	ggcagaaatg	tgaagaagct	aggcacatta	catccacatg	gagtcaagag	cagagagcag	6960
	tgaattaatg	catgcattcc	tgtggtcagc	tcacttttcc	tattcttaga	tagtctagga	7020
	tcataaacct	ggggaatagt	gctaccacaa	tgggcatatc	cacttacttc	agttcatgca	7080
45	atcaaccaag	gcacatccac	aggaaaaact	gatttagaca	acctctcatt	gagactcttc	7140
45	ccagatgatt	agactgtgtc	aagttgacaa	ttaaaactat	cacacctgaa	gccatcacta	7200
	gtaaatataa	tgaaaatgtt	gattatcacc	ataattcatc	tgtatccctt	tgttattgta	7260
	gattttgtga	agttcctatt	caagtccctg	ttccttcctt	aaaaacctgt	tttttagtta	7320
50	aataggtttt	ttagtgttcc	tgtctgtaaa	tacttttta	aagttagata	ttattttcaa	7380
	gtatgttctc	ccagtctttg	gcttgtattt	tcatcccttc	aatacatata	tttttgtaat	7440
	ttatttttt	tatttaaatt	agaaacaaag	ctgcttttac	atgtcagtct	cagttccctc	750Ô
	tccctcccct	cctcccctgc	tccccaccta	agccccaatt	ccaactcctt	tettetecce	7560
55	aggaagggtg	aggccctcca	tgggggaaat	cttcaatgtc	tgtcatatca	tttggagcag	7620

	ggcctagacc	ctccccagtg	tgtctaggct	gagagagtat	ccctctatgt	ggagaggggcr	1000
5	cccaaagttc	atttgtgtac	taggggtaaa	tactgatcca	ctatcagtgg	ccccatagat	7740
	tgtccggacc	tccaaactga	cttcctcctt	cagggagtct	ggaacagttc	tatgctggtt	7800
	tcccagatat	cagtctgggg	tccatgagca	accccttgtt	caggtcagtt	gtttctgtag	7860
	gtttccccag	cccggtcttg	acccctttgc	tcatcacttc	tccctctctg	caactggatt	7920
10	ccagagttca	gctcagtgtt	tagctgtggg	tgtctgcatc	tgcttccatc	agctactgga	798 0
	tgagggctct	aggatggcat	ataaggtagt	catcagtctc	attatcagag	aagggctttt	8040
	aaggtagcct	cttgattatt	gcttagattg	ttagttgggg	tcaaccttgt	aggtctctgg	8100
15	acagtgacag	aattctcttt	aaacctataa	tggctccctc	tgtggtggta	tcccttttct	8160
	tgctctcatc	cgttcctccc	ctgactagat	cttcctgctc	cctcatgtcc	tcctctcccc	8220
	tccccttctc	cccttctctt	tcttctaact	.ccctctcccc	tccacccacg	atccccatta	8280
	gcttatgaga	tcttgtcctt	attttagcaa	aacctttttg	gctataaaat	taattaattt	8340
20	aatatgctta	tatcaggttt	attttggcta	gtatttgtat	gtgtttggtt	agtgtttta	8400
	accttaattg	acatgtatcc	ttatatttag	acacagattt	aaatatttga	agttttttt	8460
	tttttttt	ttaaagattt	atttatttt	tatgtcttct	gcctgcatgc	cagaagaggg	8520
25	caccagatct	cattcaaggt	ggttgtgagc	caccatgtgg	ttgctgggaa	ttgaactcag	8580
	gacctctgga	agaacagtca	gtgctcttaa	ccgctgagcc	atctctccag	cccctgaagt	8640
	gtttcttta	aagaggatag	cagtgcatca	tttttccctt	tgaccaatga	ctcctacctt	8700
	actgaattgt	tttagccatt	tatatgtaat	gctgttacca	ggtttacatt	ttcttttatc	8760
30	ttgctaaatt	tcttccctgt	ttgtctcatc	tcttattttt	gtctgttgga	ttatataggc	8820
	ttttatttt	ctgtttttac	agtaagttat	atcaaattaa	aattattta	tggaatgggt	8880
						agaagaaggt	
35	•	_				gctaggaatc	
	_					tctcttcaag	
						tctagcaccc	
	atgaaaattt	atgcattgct	atatgggctt	gtcacttcag	cattgtgtga	cagagacagg	
40	aggatcccaa	gagctc		••			9196
	40.0						
45	⟨210⟩ 4						
	⟨211⟩ 25		**				
	<212> DNA						
50	<213> Arti	ficial Sequ	ence				
50	(000)						
	⟨220⟩					•	
	<223> Desc	ription of	Artificial	Sequence: S	ynthetic DN	i	
55							
	<400> 4						

	actcatcttg gaatctcaga attgg			
5				
	<210> 5			
	<211> 24 .			
10	<212> DNA			
	<213> Artificial Sequence			
15	<220>			
	<223> Description of Artificial Sequence: Synthetic DNA			
	⟨400⟩ 5			
20	cttgaccgtt tctatcttct ctcg	24		
25	<210≻ 6			
	<211> 979			
	<212> DNA			
20	<213> Cricetulus griseus			
30	44003 - 6			
	<400> 6	60		
	acteatettg gaateteaga attggegeta tgetaetgga ggatgggaga etgtgtttag			
35	acctgtaagt gagacatgca cagacaggtc tggcctctcc actggacact ggtcaggtga			
	agtgaaggac aaaaatgtte aagtggtega geteeceatt gtagacagee tecateeteg teeteettae ttaceettgg etgtaceaga agacettgea gategaetee tgagagteea			
	tggtgatcct gcagtgtggt gggtatccca gtttgtcaaa tacttgatcc gtccacaacc			
40	ttggctggaa agggaaatag aagaaaccac caagaagctt ggcttcaaac atccagttat			
40	tggagtccat gtcagacgca ctgacaaagt gggaacagaa gcagccttcc atcccattga			
	ggaatacatg gtacacgttg aagaacattt tcagcttctc gaacgcagaa tgaaagtgga			
	taaaaaaaga gtgtatctgg ccactgatga cccttctttg ttaaaggagg caaagacaaa			
45	gtactccaat tatgaattta ttagtgataa ctctatttct tggtcagctg gactacacaa			
	ccgatacaca gaaaattcac ttcggggcgt gatcctggat atacactttc tctcccaggc			
	tgactteett gtgtgtaett ttteatecea ggtetgtagg gttgettatg aaateatgea	720		
50	aacactgcat cctgatgcct ctgcaaactt ccattettta gatgacatct actattttgg			
	aggecaaaat geccacaace agattgeagt ttateeteae caacetegaa etaaagagga			
	aatccccatg gaacctggag atatcattgg tgtggctgga aaccattgga atggttactc			
	taaaggtgtc aacagaaaac taggaaaaac aggcctgtac ccttcctaca aagtccgaga			
55	gaagatagaa acggtcaag	979		

5		
J	<210≻ 7	
	<211> 979	
	<212> DNA	
10	<213> Rattus norvegicus	
	<400> 7	
15	actcatcttg gaatctcaga attggcgcta tgctactggt ggatgggaga ctgtgtttag	60
	acctgtaagt gagacatgca cagacagatc tggcctctcc actggacact ggtcaggtga	120
	agtgaatgac aaaaatattc aagtggtgga gctccccatt gtagacagcc ttcatcctcg	180
	geotecttae ttaccactgg etgttecaga agacettgea gategacteg taagagteea	240
20	tggtgatect geagtgtggt gggtgtecca gttcgteaaa tatttgatte gteeacaace	300
	ttggctagaa aaggaaatag aagaagccac caagaagctt ggcttcaaac atccagtcat	360
	tggagtccat gtcagacgca cagacaaagt gggaacagag gcagccttcc atcccatcga	420
25	agagtacatg gtacatgttg aagaacattt tcagcttctc gcacgcagaa tgcaagtgga	480
	taaaaaaaga gtatatctgg ctaccgatga ccctgctttg ttaaaggagg caaagacaaa	540
	gtactccaat tatgaattta ttagtgataa etetatttet tggtcagetg gactacaaa	600
	toggtacaca gaaaattoac ttoggggcgt gatootggat atacacttto tototoaggo	660
30	tgacttecta gtgtgtactt tttcatccca ggtctgtcgg gttgcttatg aaatcatgca	720
	aaccctgcat cctgatgcct ctgcaaactt ccactctta gatgacatct actattttgg	780
	aggccaaaat gcccacaacc agattgccgt ttatcctcac aaacctcgaa ctgatgagga	840
<i>35</i>	aattccaatg gaacctggag atatcattgg tgtggctgga aaccattggg atggttattc	900
	taaaggtgtc aacagaaaac ttggaaaaac aggcttatat ccctcctaca aagtccgaga	960
	gaagatagaa acggtcaag	979
40		
	<210> 8	
	<211> 40	
45	<212> DNA	
	<213> Artificial Sequence	
	⟨220⟩	
50	<223> Description of Artificial Sequence: Synthetic DNA	
50	(220) Description of Artificial Dequence. Synthetic May	
	<400≻ 8	
	aagtataagc ttacatggat gacgatatcg ctgcgctcgt	40
<i>55</i>		

	<210> 9	
5	<211> 40	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
15		
,,,	<400> 9	
	atttaactgc aggaagcatt tgcggtggac gatggagggg	40
20		
	⟨210⟩ 10	
	<211> 40	
25	<212> DNA	
23	<213> Artificial Sequence	
	<220>	
30	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 10	
<i>35</i>	atttaaggta ccgaagcatt tgcggtgcac gatggagggg	40
55		
	<210> 11	
40	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
45	<220>	
	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
50	<400> 11	
50	ctccaattat gaatttatta gtg	23
		20
<i>55</i>	(0.10) 10	
	<210> 12	

	<211> 25	
_	<212> DNA	
5	<213> Artificial Sequence	
	<220>	
10	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 12	•
15	ggatgtttga agccaagctt cttgg	25
	<210> 13	
20	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
30	<400> 13	
	gtecatggtg atcctgcagt gtgg	24
35	<210> 14	
	<211≻ 23	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
45	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 14	
	caccaatgat atctccaggt tcc	23
50		
	<210> 15	
55	<211> 24	
	<212> DNA	

	<213> Artificial Sequence	
5	⟨220⟩	
	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
	(DD) 2002-F-201 C2 (M-2002-2014-2014-2014-2014-2014-2014-2014	
10	<400> 15	
	gatategetg egetegttgt egae	24
15		
	<210> 16	
	<211> 24	
20	<212> DNA	
20	<213> Artificial Sequence	
	⟨220⟩	
	<223> Description of Artificial Sequence: Synthetic DNA	
25		
	<400> 16	
	caggaaggaa ggctggaaaa gagc	24
30		
	,	
	<210> 17	
<i>35</i>	<211> 24	
55	<212> DNA	
	<213> Artificial Sequence	
	⟨220⟩	
40	<223> Description of Artificial Sequence: Synthetic DNA	
	;	
	<400> 17	
45		24
50	<210> 18	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
EE		

	<22	0>															
5	<22	3> D	escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: S	ynth	etic	DNA			
	<40	0> 1	8														
	cag	gaag	gaa	ggct	ggaa	ga g	agc										24
10																	
	<210	0> 1	9														
	<21	1> 3:	21														
15		2> Pl		_													
	<213	3> C:	rice	tulu	s gr	iseu.	S										
	<400)> 1	9														
20	Met	Gly	Glu	Pro	Gln	Gly	Ser	Arg	Arg	Ile	Leu	Val	Thr	Gly	Gly	Ser	
	1				5					10					15		
	G1y	Leu	Val		Arg	Ala	Ile	Gln		Val	Val	Ala	Asp		Ala	Gly	
25	,	D.	01	20	01	т	17. 1	n.	25	C	6	,		30		,	
	Leu	Pro	35	GIU	GIU	1 r p	vaı	40	vai	Ser	Ser	Lys	Asp 45	Ala	Asp	Leu	
	Thr	Asp		Ala	Gln	Thr	Gln		Leu	Phe	Gln	Lvs		Gln	Pro	Thr	
30		50					55					60					
	His	Val	Ile	His	Leu	Ala	Ala	Met	Val	Gly	Gly	Leu	Phe	Arg	Asn	Ile	
	65					70					75					80	
35	Lys	Tyr	Asn	Leu	Asp	Phe	Trp	Arg	Lys	Asn	Val	His	Ile	Asn	Asp	Asn	
					85					90					95		
	Val	Leu	His		Ala	Phe	Glu	Val		Thr	Arg	Lys	Val		Ser	Cys	
	1	C	Th	100	T1.	Dl. a	D	۸	105	Th	TL	Τ	D	110	A	C1	
40	Leu	ser	1nr 115	Cys	11 e	rne	Pro	120	Lys	inr	ınr	lyr	Pro 125	116	Asp	GIU	
	Thr	Met		His	Asn	Glv	Pro		His	Ser	Ser	Asn		G1v	Tyr	Ser	
	* * * * * * * * * * * * * * * * * * * *	130	110	.,,,		01)	135				501	140		01)	.,.	501	
45	Tyr		Lys	Arg	Met	Ile		Val	Gln	Asn	Arg		Tyr	Phe	Gln	Gln	
	145					150			•		155					160	
		Gly	Cys	Thr	Phe	Thr	Ala	Val	Ile	Pro	Thr	Asn	Val	Phe	Gly	Pro	
50					165					170					175		
	His	Asp	Asn	Phe	Asn	Ile	Glu	Asp	Gly	His	Val	Leu	Pro	Gly	Leu	Ile	
				180					185					190			
55	His	Lys	Val	His	Leu	Ala	Lys	Ser	Asn	Gly	Ser	Ala	Leu	Thr	Val	Trp	
-			195					200					205				

	Gly	Thr	Gly	Lys	Pro	Arg		Gln	Phe	Ile	Tyr	Ser 220	Leu	Asp	Leu	Ala
5		210	т.	~ 1	~		215		01	m			., .	0.1		
	Arg 225	Leu	Phe	11e	lrp	Val 230	Leu	Arg	GIU	ıyr	Asn 235	Glu	Val	GIU	Pro	11e 240
		Leu	Ser	Val	Glv		G1u	Asp	G1u	Val		Ile	Lvs	G1 u	Ala	
10			551		245	01-				250			2,2	010	255	
	Glu	Ala	Val	Val		Ala	Met	Asn	Phe		Glv	Glu	Val	Thr		Asn
	014		, 01	260	010	,,,,,	1,700		265	0,0	01,	010	, 42	270	1 110	wob
15	Ser	Thr	Lys	Ser	Asp	Gly	Gln	Tyr	Lys	Lys	Thr	Ala	Ser	Asn	Gly	Lys
			275					280					285			
	Leu	Arg	Ala	Tyr	Leu	Pro	Asp	Phe	Arg	Phe	Thr	Pro	Phe	Lys	Gln	Ala
		290					295					300				
20	Val	Lys	Glu	Thr	Cys	Ala	Trp	Phe	Thr	Asp	Asn	Tyr	Glu	Gln	Ala	Arg
	305					310					315					320
	Lys															
25																
	<210	0> 20)													
	<21	1> 59	90													
30	<212	2> PI	RT													
	<21:	3> C	ricet	tulus	s gr	i seus	5									
	Z401	0> 20	1													
35		Ala		l au	Ara	Glu	Δ1a	Sar	ارم ا	Δνα	Lve	T All	Ara	Ara	Pho	Sor
	ме t	піа	561	Leu	5	GIU	пта	261	Leu	10	Lys	Leu	VI.B	UI B	15	ner
		Met	Arø	Glv		Pro	Val	Ala	Thr		Lvs	Phe	Trn	Asn		Val
	010	1120		20	2,0	710	,		25	01,	20,0	1 110		30	,	, 41
40	Val	Ile	Thr		Ala	Asp	Glu	Lvs		Glu	Leu	Ala	Tyr		Gln	Gln
	,		35					40					45	_,-		
	Leu	Ser		Lys	Leu	Lys	Arg		Glu	Leu	Pro	Leu		Val	Asn	Tvr
45		50		-		-	55	·				60	•			•
	His	Val	Phe	Thr	Asp	Pro		Gly	Thr	Lys	Ile		Asn	G1v	Gly	Ser
	65				•	70		,			75	•		,	•	80
		Leu	Cvs	Ser	Leu		Cvs	Leu	Glu	Ser	Leu	Tvr	Gly	Asp	Lvs	
50			.,-		85					90		- 3 -			95	
	Asp	Ser	Phe	Thr		Len	Leu	Ile	His		G] v	G] v	Tvr	Ser		Arg
				100	-				105		,	,	- J -	110		6
55	Leu	Pro	Asn		Ser	Ala	Leu	G1v		Ile	Phe	Thr	Ala		Pro	Leu
								,	~ , ~							

			115					120					125			
5	Gly	Glu	Pro	Ile	Tyr	Gln	Met	Leu	Asp	Leu	Lys	Leu	Ala	Met	Tyr	Met
3		130					135					140				
	Asp	Phe	Pro	Ser	Arg	Met	Lys	Pro	Gly	Val	Leu	Val	Thr	Cys	Ala	Asp
	145					150					155					160
10	Asp	Ile	Glu	Leu	Tyr	Ser	Ile	Gly	Asp	Ser	Glu	Ser	Ile	Ala	Phe	Glu
					165					170					175	
	Gln	Pro	Gly	Phe	Thr	Ala	Leu	Ala	His	Pro	Ser	Ser	Leu	Ala	Val	Gly
15				180					185					190		
	Thr	Thr	His	Gly	Val	Phe	Val	Leu	Asp	Ser	Ala	Gly	Ser	Leu	Gln	His
			195					200					205			
	Gly	Asp	Leu	Glu	Tyr	Arg	Gln	Cys	His	Arg	Phe	Leu	His	Lys	Pro	Ser
20		210					215					220				
		Glu	Asn	Met	His	His	Phe	Asn	Ala	Val	His	Arg	Leu	Gly	Ser	Phe
	225					230					235					240
25	Gly	Gln	Gln	Asp		Ser	Gly	Gly	Asp		Thr	Cys	His	Pro		His
		0.1	œ.		245	æ1		•		250 Di	σ.			,,,	255	
	Ser	G1u	Tyr		Tyr	Thr	Asp	Ser		Phe	Tyr	Met	Asp		Lys	Ser
30	۸1.	Luc	Luo	260	Lou	Aon	Dha	Tur	265	202	Vo.1	C1 _w	Dno	270	Aon	Cua
	ита	Lys	275	Leu	Leu	nsp	rne	280	Giu	361	Val	GIY	285	Leu	MSII	Cys
	Glu	Ile		Ala	Tvr	Glv	Asp		Leu	Gln	Ala	Leu		Pro	Glv	Ala
		290			-,-		295					300	,		,	
35	Thr	Ala	Glu	Tyr	Thr	Lys		Thr	Ser	His	Val	Thr	Lys	G1u	Glu	Ser
	305					310					315					320
	His	Leu	Leu	Asp	Met	Arg	Gln	Lys	Ile	Phe	His	Leu	Leu	Lys	Gly	Thr
40					325					330					335	
	Pro	Leu	Asn	Val	Val	Val	Leu	Asn	Asn	Ser	Arg	Phe	Tyr	His	Ile	Gly
				340					345					350		
45	Thr	Thr		Glu	Tyr	Leu	Leu	His	Phe	Thr	Ser	Asn	Gly	Ser	Leu	G1n
			355					360					365			
	Ala		Leu	Gly	Leu	Gln		Ile	Ala	Phe	Ser		Phe	Pro	Asn	Val .
	_	370		_			375		_			380	_			
50		Glu	Asp	Ser	His		Lys	Pro	Cys	Val		His	Ser	Ile	Leu	
	385	0.1	•			390		0.7	•	v 1	395	0.3	_			400
	Ser	Gly	Cys	Cys		Ala	Pro	Gly	Ser		Val	Glu	lyr	Ser		Leu
55	0.7	D	0.1	,, ,	405	T 1	C	0.3		410	77	* 1	0	61	415	
	Gly	Pro	Glu	Val	Ser	He	Ser	Glu	Asn	Cys	11e	TTe	Ser	υГу	Ser	Val

				420					425					430		
	Ile	Glu	Lys	Ala	Val	Leu	Pro	Pro	Cys	Ser	Phe	Val	Cys	Ser	Leu	Ser
5			435					440					445			
	Val	Glu	Ile	Asn	Gly	His	Leu	Glu	Tyr	Ser	Thr	Met	Val	Phe	Gly	Met
		450					455					460				
10	Glu	Asp	Asn	Leu	Lys	Asn	Ser	Val	Lys	Thr	Ile	Ser	Asp	Ile	Lys	Met
	465					470					475					480
	Leu	Gln	Phe	Phe	Gly	Val	Cys	Phe	Leu	Thr	Cys	Leu	Asp	Ile	Trp	Asn
15					485					490					495	
	Leu	Lys	Ala	Met	Glu	Glu	Leu	Phe	Ser	Gly	Ser	Lys	Thr	Gln	Leu	Ser
				500					505					510		
	Leu	Trp		Ala	Arg	Ile	Phe		Val	Cys	Ser	Ser	Leu		Glu	Ser
20		4.3	515			01	10.	520		4.7	7 1		525		•	
	Val		Ala	Ser	Leu	Gly		Leu	Asn	Ala	He		Asn	His	Ser	Pro
	Dho	530 Sor	Lou	Sor	Acn	Dho	535	Lou	Lou	Sor	110	540	Glu	Mo+	Lou	Lou
25	545	261	rea	SeI	USII	550	Lys	Leu	Leu	261	555	9111	GIU	Met	Leu	560
		Lvs	Asp	Val	Glv		Met	Leu	Ala	Tyr		Glu	Gln	Leu	Phe	
			•		565	•				570					575	
30	Glu	Ile	Ser	Ser	Lys	Arg	Lys	Gln	Ser	Asp	Ser	Glu	Lys	Ser		
				580					585					590		
0.5																
35	<210	> 21														
	<211															
	<212															
40	<213	> Ho	mo s	apıe	ens											
	<400	S 21														
				Val	Gln	Ser	Ser	Pro	Asn	Phe	Thr	Gln	His	Va1	Arg	Gla
45	1	, 41	****	V 4 1	5	501	501		,,,,,,,,	10	****	0211			15	Olu
	Gln	Ser	Leu	Val		Asp	Gln	Leu	Cys							
				20		•			25							
50																
50																
	<210	> 22														
	<211	> 32														
55	<212	> DN	Ά													

	<213> Artificial Sequence	
5	<220> <223> Description of Artificial Sequence: Synthetic DNA	
10	<400> 22	32
	taaatagaat teggeateat gtggeagetg et	32
15	<210> 23 <211> 575	
	<212> PRT	
20	<213> Cricetulus griseus	
	<400≻ 23	
25	Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe 1 5 10 15	
	Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp 20 25 30	
30	Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala 35 40 45	
	Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala 50 55 60	
35	Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr 65 70 75 80	
40	Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln 85 90 95	
	Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Asp Leu Gly Lys Asp His 100 105 110	
45	Glu Ile Leu Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe 115 120 125	
	Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys Lys Leu Glu Gly Asn Glu 130 135 140	
50	Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu 145 150 155 160	
	Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala 165 170 175	
55	Gly Glu Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln	

				180					185					190		
_	Arg	Arg	Ile	Thr	Tyr	Leu	Gln	Asn	Pro	Lys	Asp	Cys	Ser	Lys	Ala	Arg
5			195					200					205			
	Lys	Leu	Val	Cys	Asn	Ile	Asn	Lys	Gly	Cys	Gly	Tyr	Gly	Cys	Gln	Leu
		210					215			•		220				
10	His	His	Val	Val	Tyr	Cys	Phe	Met	Ile	Ala	Tyr	Gly	Thr	Gln	Arg	Thr ·
	225					230					235					240
	Leu	Ile	Leu	Glu	Ser	Gln	Asn	Trp	Arg	Tyr	Ala	Thr	Gly	Gly	Trp	Glu
15					245					250					255	
	Thr	Val	Phe	Arg	Pro	Val	Ser	Glu	Thr	Cys	Thr	Asp	Arg	Ser	Gly	Leu
				260					265					270		
	Ser	Thr		His	Trp	Ser	Gly		Val	Lys	Asp	Lys		Val	Gln	Val
20			275	_	~ -			280					285	_		
	Val	Glu	Leu	Pro	He	Val		Ser	Leu	Hıs	Pro		Pro	Pro	Tyr	Leu
	D	290	۸٦.	V-1	D	C1	295	1	110	Aan	A	300	Lou	1	Vol	u; -
25	305	Leu	мта	vai	Pro	310	нѕр	Leu	мга	ysh	315	ren	Leu	MIR	Val	320
		Asp	Pro	Ala	Val		Trn	Val	Ser	Gln		Val	Ive	Tvr	l en	
	019	nsp	110	Mu	325	пр	111	,	501	330		, , ,	2,0	.,.	335	110
30	Arg	Pro	G1n	Pro		Leu	Glu	Λrg	Glu		Glu	Glu	Thr	Thr	_	Lys
				340	•				345					350		
	Leu	Gly	Phe	Lys	His	Pro	Val	Ile	Gly	Val	His	Val	Arg	Arg	Thr	Asp
			355					360					365			
35	Lys	Val	Gly	Thr	Glu	Ala	Ala	Phe	His	Pro	Ile	Glu	Glu	Tyr	Met	Val
		370					375					380				
	His	Val	Glu	Glu	His	Phe	Gln	Leu	Leu	Glu	Arg	Arg	Met	Lys	Val	Asp
40	385					390					395					400
	Lys	Lys	Arg	Val		Leu	Ala	Thr	Asp			Ser	Leu	Leu		Glu
					405	_		_		410	_	_			415	
45	Ala	Lys	Thr		Tyr	Ser	Asn	Tyr		Phe	lle	Ser	Asp		Ser	Ile
45	•		0	420	01				425	m	mı	01		430		
	Ser	Trp		Ala	GIA	Leu	Hls		Arg	Tyr	Thr	Glu		Ser	Leu	Arg
	C1	W - 1	435	1	۸	71.	114 -	440	Υ	C	C1	۸1.	445	DL -	1	V - 1
50	GIY	Val	11e	Leu	Asp	116		rne	Leu	Ser	GIN		ASP	rne	Leu	val
	C	450	DL-	C	C	C1.5	455	Cun	1	Vo 1	17-	460	C1	77.	1/_≠	C1
		Thr	LU6	ser	ser		val	cys	w1.B	4 A T	475	ıyr	G1 fi	116	met	
55	465	1	u; -	Dro	A	470	S ===	۰ ۲ ۸	Acn	Dha		San	Lou	100	۸ ۵	480
	ınr	Leu	uls	rro	лѕр	мта	ser	wis	ASII	rne	nis	ser	Leu	nsp	мsр	тте

					485					490					495	
5	Tyr	Tyr	Phe	Gly	Gly	Gln	Asn	Ala	His	Asn	G1n	Ile	Ala	Val	Tyr	Pro
5				500					505					510		
	His	Gln	Pro	Arg	Thr	Lys	Glu	Glu	Ile	Pro	Met	Glu	Pro	Gly	Asp	Ile
			515					520					525			
10	Ile	Gly	Val	Ala	Gly	Asn	His	Trp	Asn	Gly	Tyr	Ser	Lys	Gly	Val	Asn
		530					535					540				
	Arg	Lys	Leu	Gly	Lys	Thr	Gly	Leu	Tyr	Pro	Ser	Tyr	Lys	Val	Arg	Glu
15	545					550					555					560
	Lys	Ile	G1 u	Thr	Val	Lys	Tyr	Pro	Thr	Tyr	Pro	Glu	Ala	Glu	Lys	
					565					570					575	
20			•													
	<210)> 2-	4													
		1> 5′														
25		2> P]		_												
	<213	3> Mi	us m	iscu]	lus											
	/10/	33. a.	4													
30)> 24 Arg		Twn	ፕ _ኮ ኤ	Gl ₃ ,	Sar	Trn	122	Twn	T1a	Mot	Lou	110	1	Dha
	1	VIR	VIG	ענו	5	OTA	Det	пр	ni g	10	116	me c	Den	116	15	1116
		Trp	Glv	Thr		Leu	Phe	Tyr	Ile		G1v	His	Leu	Val		Asp
				20					25	•	·			30		
35	Asn	Asp	His	Pro	Asp	His	Ser	Ser	Arg	Glu	Leu	Ser	Lys	Ile	Leu	Ala
			35					40					45			
	Lys	Leu	Glu	Arg	Leu	Lys	Gln	Gln	Asn	Glu	Asp	Leu	Arg	Arg	Met	Ala
40		50					55					60				
	Glu	Ser	Leu	Arg	Ile	Pro	Glu	Gly	Pro	Ile	Asp	Gln	Gly	Thr	Ala	Thr
	65					70					75					80
45	Gly	Arg	Val	Arg	Val	Leu	G1u	Glu	Gln	Leu	Val	Lys	Ala	Lys	Glu	Gln
43					85					90					95	
	Ile	Glu	Asn		Lys	Lys	Gln	Ala		Asn	Gly	Leu	Gly	Lys	Asp	His
				100					105					110		
50	Glu	Ile	Leu	Arg	Arg	Arg	Ile	Glu	Asn	Gly	Ala	Lys	Glu	Leu	Trp	Phe
			115					120	_				125			
	Phe	Leu	Gln	Ser	Glu	Leu		Lys	Leu	Lys	His		Glu	Gly	Asn	Glu
55		130					135					140				
	Leu	Gln	Arg	His	Ala	Asp	Glu	Ile	Leu	Leu	Asp	Leu	Gly	His	His	Glu

	145					150					155					160
-	Arg	Ser	Ile	Met	Thr	Asp	Leu	Tyr	Tyr	Leu	Ser	Gln	Thr	Asp	Gly	Ala
5					165					170					175	
	Gly	Asp	Trp	Arg	Glu	Lys	Glu	Ala	Lys	Asp	Leu	Thr	Glu	Leu	Val	Gln
				180					185					190		
10	Arg	Arg	Ile	Thr	Tyr	Leu	Gln	Asn	Pro	Lys	Asp	Cys	Ser	Lys	Ala	Arg
			195					200					205			
	Lys	Leu	Val	Cys	Asn	Ile	Asn	Lys	G1y	Cys	Gly	Tyr	Gly	Cys	Gln	Leu
15		210					215					220				
	His	His	Val	Val	Tyr	Cys	Phe	Met	Ile	Ala	Tyr	G1y	Thr	Gln	Arg	Thr
	225					230					235					240
	Leu	Ile	Leu	Glu	Ser	G1n	Asn	Trp	Arg	Tyr	Ala	Thr	Gly	Gly	Trp	Glu
20					245					250					255	
	Thr	Val	Phe	Arg	Pro	Val	Ser	Glu	Thr	Cys	Thr	Asp	Arg	Ser	Gly	Leu
				260					265					270		
25	Ser	Thr		His	Trp	Ser	Gly		Val	Asn	Asp	Lys	Asn	Ile	Gln	Val
			275					280	_		_		285		_	
	Val	Glu	Leu	Pro	Ile	Val		Ser	Leu	His	Pro		Pro	Pro	Tyr	Leu
	_	290	. 1	W. 7	n	61	295	1	47 -	A	4	300	7		W 3	
30		Leu	Ala	Val	Pro		Asp	Leu	Ala	Asp		Leu	Leu	Arg	Val	
	305	Asp	Dro	412	Val	310 Trp	Trn	Val	Sar	Gln	315	Val	Lve	Tun	Lau	320
	Oly	nsp	110	лта	325	iib	Пр	101	001	330	1110	741	Dys	1,1	335	116
35	Are	Pro	Gln	Pro		Leu	Glu	Lvs	Glu		Glu	Glu	Ala	Thr		Lvs
	8			340				_,	345					350	_,_	_,~
	Leu	Gly	Phe	Lys	His	Pro	Val	Ile	Gly	Val	His	Val	Arg	Arg	Thr	Asp
40			355					360					365			
	Lys	Val	Gly	Thr	Glu	Ala	Ala	Phe	His	Pro	Ile	Glu	Glu	Tyr	Met	Val
		370					375					380				
	His	Val	Glu	Glu	His	Phe	Gln	Leu	Leu	Ala	Arg	Arg	Met	Gln	Val	Asp
45	385					390					395					400
	Lys	Lys	Arg	Val	Tyr	Leu	Ala	Thr	Asp	Asp	Pro	Thr	Leu	Leu	Lys	Glu
					405					410					415	
50	Ala	Lys	Thr	Lys	Tyr	Ser	Asn	Tyr	G1u	Phe	Ile	Ser	Asp	Asn	Ser	Ile
				420					425					430		
	Ser	Trp	Ser	Ala	Gly	Leu	His	Asn	Arg	Tyr	Thr	Glu	Asn	Ser	Leu	Arg
55			435					440					445			
<i>55</i>	Gly	Val	Ile	Leu	Asp	Ile	His	Phe	Leu	Ser	Gln	Ala	Asp	Phe	Leu	Val

	450 455 460	
	Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln	
5	465 470 475 480	
	Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile	
	485 490 495	
10	Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro	
	500 505 510	
	His Lys Pro Arg Thr Glu Glu Glu Ile Pro Met Glu Pro Gly Asp Ile	
15	515 520 525	
	Ile Gly Val Ala Gly Asn His Trp Asp Gly Tyr Ser Lys Gly Ile Asn	
	530 535 540	
20	Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu	
20	545 550 555 560 Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys	
	565 570 575	
	3,0	
25		
	<210> 25	
	<211> 18	
30	<212> PRT	
	<213> Homo sapiens	
35	<400> 25 A class of the Transform Tr	
	Asp Glu Ser Ile Tyr Ser Asn Tyr Tyr Leu Tyr Glu Ser Ile Pro Lys 1 5 10 15	
	1 5 10 15 Pro Cys	
	.10 0,5	
40		
	<210> 26	
	<211> 34	
45	<212> DNA	
	<213> Artificial Sequence	
50	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
55	<400> 26	
	aataaaggat cctggggtca tttgtcttga gggt	34

5	<210> : <211> : <212> I	788														
10	<213> F		sapi	ens												
	<220>															-
15	<221> (<222> ((77	4)												
	<400> 2	27														
20	gaa tto	ggc	atc													48
					Trp	Gln	Leu	_	Leu	Pro	Thr	Ala	Leu	Leu	Leu	
				1				5					10			
25	cta gtt															96
	Leu Val	15	Ala	GIÀ	мет	Arg	20	Glu	Asp	Leu	Pro	25	Ala	Val	Val	
	ttc ctg	gag	cct	caa	tgg	tac	agg	gtg	ctc	gag	aag	gac	agt	gtg	act	144
30	Phe Leu	Glu	Pro	Gln	Trp	Tyr	Arg	Val	Leu	Glu	Lys	Asp	Ser	Val	Thr	
	30					35					40					
	ctg aag				_			_						_		192
35	Leu Lys	Cys	Gln	Gly		Tyr	Ser	Pro	Glu		Asn	Ser	Thr	Gln		
	45		~~~		50		+			55			4		60	0.40
	ttt cac Phe His															240
	1116 1112	V2II	Jiu	65	Leu	116	Ser	261	70	VIG	Sel	Sel	ıyr	75	116	
40	gac gct	gcc :	aca		gac	gac	agt	gga		tac	арр	tec	cag		990	288
	Asp Ala															200
			80					85		- , -	8	0,5	90	****	71011	
45	ctc tcc	acc	ctc	agt	gac	ccg	gtg	cag	cta	gaa	gtc	cat		ggc	tgg	336
	Leu Ser															
		95					100					105			_	
50	ctg ttg	ctc	cag	gcc	cct	cgg	tgg	gtg	ttc	aag	gag	gaa	gac	cct	att	384
50	Leu Leu	Leu (G1n	Ala	Pro	Arg	Trp	Val	Phe	Lys	Glu	Glu	Asp	Pro	Ile	
	110					115					120					
	cac ctg	agg 1	tgt	cac	agc	tgg	aag	aac	act	gct	ctg	cat	aag	gtc	aca	432
55	His Leu	Arg (Cys	His	Ser	Trp	Lys	Asn	Thr	Ala	Leu	His	Lys	Val	Thr	

	125					130					135					140	
	tat	tta	cag	aat	ggc	aaa	ggc	agg	aag	tat	ttt	cat	cat	aat	tct	gac	480
5		Leu															
	•				145					150					155		
	ttc	tac	att	сса	aaa	gcc	aca	ctc	aaa	gac	agc	ggc	tcc	tac	ttc	tgc	528
10		Tyr															
		•		160				•	165					170			
	agg	ggg	ctt		ggg	agt	aaa	aat	gtg	tct	tca	gag	act	gtg	aac	atc	576
15		G1y															
15	J		175					180					185				
	асс	atc	act	caa	ggt	ttg	gca	gtg	tca	acc	atc	tca	tca	ttc	ttt	cca	624
	Thr	Ile	Thr	Gln	G1y	Leu	Ala	Val	Ser	Thr	Ile	Ser	Ser	Phe	Phe	Pro	
20		190					195					200					
	cct	ggg	tac	caa	gtc	tct	ttc	tgc	ttg	gtg	atg	gta	ctc	ctt	ttt	gca	672
	Pro	Gly	Tyr	Gln	Val	Ser	Phe	Cys	Leu	Val	Met	Val	Leu	Leu	Phe	Ala	
25	205					210					215					220	
	gtg	gac	aca	gga	cta	tat	ttc	tct	gtg	aag	aca	aac	att	cga	agc	tca	720
	Val	Asp	Thr	Gly	Leu	Tyr	Phe	Ser	Val	Lys	Thr	Asn	Ile	Arg	Ser	Ser	
					225					230					235		
30	aca	aga	gac	tgg	aag	gac	cat	aaa	ttt	aaa	tgg	aga	aag	gac	cct	caa	768
	Thr	Arg	Asp	Trp	Lys	Asp	His	Lys	Phe	Lys	Trp	Arg	Lys	Asp	Pro	Gln	
				240					245					250			
<i>35</i>	gac	aaa	tga	ccc	cag	gat	cc										788
	Asp	Lys															
	/01 /) O	n														
40		0> 28															
		1> 2															
		2> PI		aani.													
45	\21,	3> H	י סוונכ	sab1	5112												
	Z40!)> 28	o o														
		Trp		Lau	Len	الم أ	Pro	Thr	Ala	Len	ارم آ	I eu	I en	Val	Ser	Ala	
50	Met 1	пр	0111	ՆԵԱ	5	Leu	110	1111	MIG	10	Lou	Dea	Dog	,01	15	,,,u	
50		Met	Ara	Thr		Acn	I all	Pro	Ive		Val	Val	Phe	Len		Pro	
	GIA	MEL	VI R	20	Olu	usp	200		25		7 41	141		30	O I U		
	C1	Trp	T		Vol	100	G1	lvo		Sor	Val	Than	Lev		Cva	Gla	
55	GIN	ırp		vig	191	Leu	GIU		ռջի	061	val	1111	45	Lys	Oy S	0.111	
			35					40					40				

	Gly	Ala	Tyr	Ser	Pro	Glu		Asn	Ser	Thr	Gln		Phe	His	Asn	Glu	
5		50					55					60					
	Ser	Leu	Ile	Ser	Ser		Ala	Ser	Ser	Tyr		Ile	Asp	Ala	Ala	Thr	
	65					70					75					80	
	Val	Asp	Asp	Ser	Gly	Glu	Tyr	Arg	Cys	Gln	Thr	Asn	Leu	Ser	Thr	Leu	
10					85					90					95		
	Ser	Asp	Pro	Val	Gln	Leu	Glu	Val	His	Ile	Gly	Trp	Leu	Leu	Leu	G1n	
				100					105					110			
15	Ala	Pro	Arg	Trp	Val	Phe	Lys	Glu	Glu	Asp	Pro	Ile	His	Leu	Arg	Cys	
,,,			115				-	120					125				
	His	Ser	Trp	Lys	Asn	Thr	Ala	Leu	His	Lys	Val	Thr	Tyr	Leu	Gln	Asn	
		130					135					140					
20	Gly	Lys	Gly	Arg	Lys	Tyr	Phe	His	His	Asn	Ser	Asp	Phe	Tyr	Ile	Pro	
	145		•			150					155					160	
	Lys	Ala	Thr	Leu	Lys	Asp	Ser	Gly	Ser	Tyr	Phe	Cys	Arg	Gly	Leu	Phe	
25					165					170					175		
25	Gly	Ser	Lys	Asn	Val	Ser	Ser	Glu	Thr	Val	Asn	Ile	Thr	Ile	Thr	Gln	
				180					185					190			
	Gly	Leu	Ala	Val	Ser	Thr	Ile	Ser	Ser	Phe	Phe	Pro	Pro	Gly	Tyr	Gln	,
30			195					200					205				
	Val	Ser	Phe	Cys	Leu	Val	Met	Val	Leu	Leu	Phe	Ala	Val	Asp	Thr	Gly	
		210					215					220					
	Leu	Tyr	Phe	Ser	Val	Lys	Thr	Asn	Ile	Arg	Ser	Ser	Thr	Arg	Asp	Trp	
35	225					230					235					240	
	Lys	Asp	His	Lys	Phe	Lys	Trp	Arg	Lys	Asp	Pro	Gln	Asp	Lys			
					245					250							
40																	
)> 29															
45		> 51															
45		?> D!															
	<213	3> A1	tifi	cial	Sec	ueno	e										
50	<220																
	<223	8> De	scri	ptic	on of	Art	cific	cial	Segu	ience	e: Sy	nthe	tic	DNA			
<i>55</i>)> 29															
	tgtt	ggat	cc t	gtca	aatga	it ga	itgat	gate	g atg	gacct	tga	gtga	tggt	ga t			51

```
5
             <210> 30
             <211> 620
             <212> DNA
10
             <213> Homo sapiens
             <220>
             <221> CDS
15
             <222> (13).. (609)
             <400> 30
20
             gaa ttc ggc atc atg tgg cag ctg ctc ctc cca act gct ctg cta ctt 48
                              Met Trp Gln Leu Leu Leu Pro Thr Ala Leu Leu Leu
                                1
             cta gtt tca gct ggc atg cgg act gaa gat ctc cca aag gct gtg gtg 96
25
             Leu Val Ser Ala Gly Met Arg Thr Glu Asp Leu Pro Lys Ala Val Val
                       15
                                           20
                                                               25
             ttc ctg gag cct caa tgg tac agg gtg ctc gag aag gac agt gtg act 144
             Phe Leu Glu Pro Gln Trp Tyr Arg Val Leu Glu Lys Asp Ser Val Thr
30
                  30
                                       35
             ctg aag tgc cag gga gcc tac tcc cct gag gac aat tcc aca cag tgg 192
             Leu Lys Cys Gln Gly Ala Tyr Ser Pro Glu Asp Asn Ser Thr Gln Trp
35
              45
             ttt cac aat gag agc ctc atc tca agc cag gcc tcg agc tac ttc att 240
             Phe His Asn Glu Ser Leu Ile Ser Ser Gln Ala Ser Ser Tyr Phe Ile
                                                  70
                               65
40
             gac gct gcc aca gtc gac gac agt gga gag tac agg tgc cag aca aac 288
             Asp Ala Ala Thr Val Asp Asp Ser Gly Glu Tyr Arg Cys Gln Thr Asn
                           80
                                               85
45
             ctc tcc acc ctc agt gac ccg gtg cag cta gaa gtc cat atc ggc tgg 336
             Leu Ser Thr Leu Ser Asp Pro Val Gln Leu Glu Val His Ile Gly Trp
                       95
                                                              105
                                          100
             ctg ttg ctc cag gcc cct cgg tgg gtg ttc aag gag gaa gac cct att 384
50
             Leu Leu Gln Ala Pro Arg Trp Val Phe Lys Glu Glu Asp Pro Ile
                                      115
                 110
                                                          120
             cac ctg agg tgt cac agc tgg aag aac act gct ctg cat aag gtc aca 432
55
             His Leu Arg Cys His Ser Trp Lys Asn Thr Ala Leu His Lys Val Thr
```

	125					130					135					140	
	tat	tta	cag	aat	ggc	aaa	ggc	agg	aag	tat	ttt	cat	cat	aat	tct	gac	480
5	Tyr	Leu	Gln	Asn	Gly	Lys	Gly	Arg	Lys	Tyr	Phe	His	His	Asn	Ser	Asp	
					145					150					155		
	ttc	tac	att	cca	aaa	gcc	aca	ctc	aaa	gac	agc	ggc	tcc	tac	ttc	tgc	528
10	Phe	Tyr	Ile	Pro	Lys	Ala	Thr	Leu	Lys	Asp	Ser	Gly	Ser	Tyr	Phe	Cys	
				160					165					170			
																atc	576
15	Arg	Gly		Phe	Gly	Ser	Lys		Val	Ser	Ser	Glu		Val	Asn	Ile	
			175					180					185				
		atc										tga	cag	gat	cc		620
20	Inr	Ile 190	ınr	GID	GIY	nıs	195	nıs	nis	nis	пıs						
		150															
25	<210)> 3:	l														
20	<21	1> 19	99														
	<212	2> PI	RT.														
	<213	3> Ho	omo s	sapie	ens												
30	/ 40/)\ 0.															
30)> 31 Trn		l en	I eu	Len	Pro	Thr	Ala	Len	Len	Len	l e l	Va1	Ser	Δ 12	
30	Met)> 31 Trp		Leu	Leu 5	Leu	Pro	Thr	Ala	Leu 10	Leu	Leu	Leu	Val		Ala	
<i>30 35</i>	Met 1		Gln		5					10					15		
	Met 1	Trp	Gln		5					10					15		
	Met 1 Gly	Trp	Gln Arg	Thr 20	5 Glu	Asp	Leu	Pro	Lys 25	10 Ala	Val	Val	Phe	Leu 30	15 Glu	Pro	
	Met 1 Gly Gln	Trp Met Trp	Gln Arg Tyr 35	Thr 20 Arg	5 Glu Val	Asp Leu	Leu Glu	Pro Lys 40	Lys 25 Asp	10 Ala Ser	Val Val	Val Thr	Phe Leu 45	Leu 30 Lys	15 Glu Cys	Pro Gln	
35	Met 1 Gly Gln	Trp Met Trp	Gln Arg Tyr 35	Thr 20 Arg	5 Glu Val	Asp Leu	Leu Glu Asp	Pro Lys 40	Lys 25 Asp	10 Ala Ser	Val Val	Val Thr	Phe Leu 45	Leu 30 Lys	15 Glu Cys	Pro Gln	
35	Met 1 Gly Gln Gly	Trp Met Trp Ala 50	Gln Arg Tyr 35 Tyr	Thr 20 Arg Ser	5 Glu Val Pro	Asp Leu Glu	Leu Glu Asp 55	Pro Lys 40 Asn	Lys 25 Asp Ser	10 Ala Ser Thr	Val Val Gln	Val Thr Trp 60	Phe Leu 45 Phe	Leu 30 Lys His	15 Glu Cys Asn	Pro Gln Glu	
35	Met 1 Gly Gln Gly Ser	Trp Met Trp	Gln Arg Tyr 35 Tyr	Thr 20 Arg Ser	5 Glu Val Pro	Asp Leu Glu	Leu Glu Asp 55	Pro Lys 40 Asn	Lys 25 Asp Ser	10 Ala Ser Thr	Val Val Gln Phe	Val Thr Trp 60	Phe Leu 45 Phe	Leu 30 Lys His	15 Glu Cys Asn	Pro Gln Glu Thr	
<i>35 40</i>	Met 1 Gly Gln Gly Ser 65	Trp Met Trp Ala 50 Leu	Gln Arg Tyr 35 Tyr	Thr 20 Arg Ser	5 Glu Val Pro Ser	Asp Leu Glu Gln 70	Leu Glu Asp 55 Ala	Pro Lys 40 Asn Ser	Lys 25 Asp Ser	10 Ala Ser Thr	Val Val Gln Phe 75	Val Thr Trp 60 Ile	Phe Leu 45 Phe Asp	Leu 30 Lys His	15 Glu Cys Asn	Pro Gln Glu Thr 80	
<i>35 40</i>	Met 1 Gly Gln Gly Ser 65	Trp Met Trp Ala 50	Gln Arg Tyr 35 Tyr	Thr 20 Arg Ser	5 Glu Val Pro Ser	Asp Leu Glu Gln 70	Leu Glu Asp 55 Ala	Pro Lys 40 Asn Ser	Lys 25 Asp Ser	10 Ala Ser Thr Tyr	Val Val Gln Phe 75	Val Thr Trp 60 Ile	Phe Leu 45 Phe Asp	Leu 30 Lys His	15 Glu Cys Asn Ala Thr	Pro Gln Glu Thr 80	
<i>35 40 45</i>	Met 1 Gly Gln Gly Ser 65 Val	Trp Met Trp Ala 50 Leu Asp	Gln Arg Tyr 35 Tyr Ile Asp	Thr 20 Arg Ser Ser	5 Glu Val Pro Ser Gly 85	Asp Leu. Glu Gln 70 Glu	Leu Glu Asp 55 Ala Tyr	Pro Lys 40 Asn Ser	Lys 25 Asp Ser Ser	10 Ala Ser Thr Tyr Gln 90	Val Val Gln Phe 75 Thr	Val Thr Trp 60 Ile Asn	Phe Leu 45 Phe Asp	Leu 30 Lys His Ala	15 Glu Cys Asn Ala Thr 95	Pro Gln Glu Thr 80 Leu	
<i>35 40</i>	Met 1 Gly Gln Gly Ser 65 Val	Trp Met Trp Ala 50 Leu	Gln Arg Tyr 35 Tyr Ile Asp	Thr 20 Arg Ser Ser	5 Glu Val Pro Ser Gly 85	Asp Leu. Glu Gln 70 Glu	Leu Glu Asp 55 Ala Tyr	Pro Lys 40 Asn Ser	Lys 25 Asp Ser Ser	10 Ala Ser Thr Tyr Gln 90	Val Val Gln Phe 75 Thr	Val Thr Trp 60 Ile Asn	Phe Leu 45 Phe Asp	Leu 30 Lys His Ala	15 Glu Cys Asn Ala Thr 95	Pro Gln Glu Thr 80 Leu	
<i>35 40 45</i>	Met 1 Gly Gln Gly Ser 65 Val Ser	Trp Met Trp Ala 50 Leu Asp	Gln Arg Tyr 35 Tyr Ile Asp Pro	Thr 20 Arg Ser Ser Val 100	5 Glu Val Pro Ser Gly 85 Gln	Asp Leu. Glu Gln 70 Glu Leu	Glu Asp 55 Ala Tyr	Pro Lys 40 Asn Ser Arg	Lys 25 Asp Ser Cys His 105	10 Ala Ser Thr Tyr Gln 90 Ile	Val Gln Phe 75 Thr	Val Thr Trp 60 Ile Asn	Phe Leu 45 Phe Asp Leu Leu	Leu 30 Lys His Ala Ser Leu 110	15 Glu Cys Asn Ala Thr 95 Leu	Pro Gln Glu Thr 80 Leu Gln	
35 40 45	Met 1 Gly Gln Gly Ser 65 Val Ser	Trp Met Trp Ala 50 Leu Asp	Gln Arg Tyr 35 Tyr Ile Asp Pro	Thr 20 Arg Ser Ser Val 100	5 Glu Val Pro Ser Gly 85 Gln	Asp Leu. Glu Gln 70 Glu Leu	Glu Asp 55 Ala Tyr	Pro Lys 40 Asn Ser Arg	Lys 25 Asp Ser Cys His 105	10 Ala Ser Thr Tyr Gln 90 Ile	Val Gln Phe 75 Thr	Val Thr Trp 60 Ile Asn	Phe Leu 45 Phe Asp Leu Leu	Leu 30 Lys His Ala Ser Leu 110	15 Glu Cys Asn Ala Thr 95 Leu	Pro Gln Glu Thr 80 Leu Gln	
<i>35 40 45</i>	Met 1 Gly Gln Gly Ser 65 Val Ser	Trp Met Trp Ala 50 Leu Asp Asp	Gln Arg Tyr 35 Tyr Ile Asp Pro Arg 115	Thr 20 Arg Ser Ser Val 100 Trp	5 Glu Val Pro Ser Gly 85 Gln Val	Asp Leu. Glu Gln 70 Glu Leu	Leu Glu Asp 55 Ala Tyr Glu Lys	Pro Lys 40 Asn Ser Arg Val Glu 120	Lys 25 Asp Ser Cys His 105 Glu	10 Ala Ser Thr Tyr Gln 90 Ile Asp	Val Gln Phe 75 Thr Gly	Val Thr Trp 60 Ile Asn Trp	Phe Leu 45 Phe Asp Leu His 125	Leu 30 Lys His Ala Ser Leu 110	15 Glu Cys Asn Ala Thr 95 Leu	Pro Gln Glu Thr 80 Leu Gln Cys	

	130	135	1	40	
5	Gly Lys Gly Arg Ly	s Tyr Phe His	His Asn Ser A	sp Phe Tyr Ile Pr	-о
J	145	150	155	16	50
	Lys Ala Thr Leu Ly	s Asp Ser Gly	Ser Tyr Phe C	Cys Arg Gly Leu Ph	ie.
	16	5	170	175	
10	Gly Ser Lys Asn Va	l Ser Ser Glu	Thr Val Asn I	le Thr Ile Thr Gl	n
	180		185	190	
	Gly His His His Hi	s His His			
15	195				
	<210> 32				
20	<210> 32 <211> 24		•		
	<212> DNA				
	<213> Artificial S	equence			
25					
20	<220>				
	<223> Description	of Artificial	Sequence: Syn	thetic DNA	
30	<400> 32				0.4
	aggaaggtgg cgctcat	cac gggc			24
35	<210> 33				
	<211> 26				
	<212> DNA				
40	<213> Artificial S	equence			
	<220>				
45	<223> Description (of Artificial	Sequence: Syn	thetic DNA	
	<400> 33				
	taaggccaca agtctta	att grater			26
50	talegooded agreeted	att Boaroo			20
50					
	<210> 34				
	<211> 27				
EE					

	<212> DNA	
_	<213> Artificial Sequence	
5		
	⟨220⟩	
	<223> Description of Artificial Sequence: Synthetic DNA	
10		
	<400> 34	
	caggggtgtt cccttgagga ggtggaa	27
15		
	<210> 35	
	<211> 23	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 35	
30	ecceteacge atgaagcetg gag	23
	<210> 36	
35	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
40	<220>	
	<pre><220> <223> Description of Artificial Sequence: Synthetic DNA</pre>	
	NAZO DESCRIPTION OF ALTERICIAL Sequence. Synthetic DIM	
45	<400> 36	
	ggcaggagac caccttgcga gtgcccac	28
50		
50	<210> 37	
	<211> 28	
	<212> DNA	
55	<213> Artificial Sequence	

5	⟨220⟩	
5	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 37	
10	ggcgctggct tacccggaga ggaatggg	28
15	⟨210⟩ 38	
	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
20		
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
25		
	<400> 38	
	aaaaggcctc agttagtgaa ctgtatgg	28
30	(010) 70	
	<210> 39 <211> 30	
	<211> 29 <212> DNA	
35	<pre><213> Artificial Sequence</pre>	
	(210) Al Cilicial Dequence	
	<220>	
40	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
	• • • • • • • • • • • • • • • • • • • •	
	⟨400⟩ 39	
	cgcggatcct caagcgttgg ggttggtcc	29
45	•	
	<210> 40	
50	<211> 45	
	<212> DNA	
	<213> Artificial Sequence	
<i></i>		
55	⟨220⟩	

	<223> Description of Artificial Sequence: Synthetic DNA	
5	(100) 10	
	<400> 40	
	cccaagettg ccaccatggc tcacgetece gctagetgcc egage	45
10		
	⟨210⟩ 41	
	<211> 31	
15	<212> DNA	
,,,	<213> Artificial Sequence	
	(000)	
20	<220>	
20	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 41	
25	ccggaattct gccaagtatg agccatcctg g	31
23		
	<210> 42	
30		
30	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 42	
40	gccatccaga aggtggt	17
	500000000000000000000000000000000000000	1,
45		
43	<210> 43	
	<211> 17	
	<212> DNA	
50	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
55	1990's poportion of unfilling pedagues. Simulation DIAN	

gtcttgtcag ggaagat	
5 gittigitag ggaagai	17
<210> 44	
¹⁰ <211> 28	
<212> DNA	
<213> Artificial Sequence	
15	
<220>	•
<223> Description of Artificial Sequence: Synthetic	c DNA
20 <400> 44	
ggcaggagac caccttgcga gtgcccac	28
<i>25</i>	
<210≻ 45	
<211> 28	
<212> DNA	
30 <213> Artificial Sequence	
⟨220⟩	
<pre><223> Description of Artificial Sequence: Synthetic 35</pre>	DNA
<400> 45	
gggtgggctg taccttctgg aacagggc	28
40	
<210> 46	
<211> 28	
45 <212> DNA	
<213> Artificial Sequence	
₅₀ <220>	
<223> Description of Artificial Sequence: Synthetic	DNA
<400> 46	
ggcgctggct tacccggaga ggaatggg	28

5		
	<210> 47	
	<211> 28	
	<212> DNA	
10	<213> Artificial Sequence	
	⟨220⟩	
15	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
	<400> 47	
20	ggaatgggtg tttgtctcctc caaagatgc 2	28
	<210> 48	
25	<211> 1316	
	<212> DNA	
	<213> Cricetulus griseus	
30	⟨400⟩ 48	
	gccccgcccc ctccacctgg accgagagta gctggagaat tgtgcaccgg aagtagctct 6	60
	tggactggtg gaaccctgcg caggtgcagc aacaatgggt gagccccagg gatccaggag 1	
35	gatectagtg acaggggget etggactggt gggcagaget atccagaagg tggtegeaga 1	
	tggcgctggc ttacccggag aggaatgggt gtttgtctcc tccaaagatg cagatctgac 2	
	ggatgcagca caaacccaag coctgttcca gaaggtacag cocacccatg toatccatct 3	
	tgctgcaatg gtaggaggcc ttttccggaa tatcaaatac aacttggatt tctggaggaa 3	
40	gaatgtgcac atcaatgaca acgtcctgca ctcagctttc gaggtgggca ctcgcaaggt 4	
	ggtctcctgc ctgtccacct gtatcttccc tgacaagacc acctatccta ttgatgaaac 4	
	aatgatccac aatggtccac cccacagcag caattttggg tactcgtatg ccaagaggat 5 gattgacgtg cagaacaggg cctacttcca gcagcatggc tgcaccttca ctgctgtcat 6	
45	contactant growth gas contact gas and state an	
	tggcctcatc cataaggtgc atctggccaa gagtaatggt tcagccttga ctgtttgggg 7	
	tacagggaaa ccacggaggc agttcatcta ctcactggac ctagcccggc tcttcatctg 7	
	ggtcctgcgg gagtacaatg aagttgagcc catcatcctc tcagtgggcg aggaagatga 8	
50	agtotocatt aaggaggcag ctgaggctgt agtggaggcc atggacttct gtggggaagt 9	
	cacttttgat tcaacaaagt cagatgggca gtataagaag acagccagca atggcaagct 9	
	tegggeetae ttgcetgatt teegttteae accetteaag eaggetgtga aggagacetg l	
55	tgcctggttc accgacaact atgagcaggc ccggaagtga agcatgggac aagcgggtgc 1	

	traderible affectable affablish afterior triberible aagaacigas	1140
5	gacagtatcc agcaacctga gccacatgct ggtctctctg ccagggggct tcatgcagcc	1200
	atccagtagg gcccatgttt gtccatcctc gggggaaggc cagaccaaca ccttgtttgt	1260
	ctgcttctgc cccaacctca gtgcatccat gctggtcctg ctgtcccttg tctaga	1316
10		
	<210> 49	
	⟨211⟩ 23	
15	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 49	
25	gatcctgctg ggaccaaaat tgg	23
	<210> 50	
30	<211> 22	
	<212> DNA (212) A (212	
	<213> Artificial Sequence	
35	⟨220⟩	
	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
40	<400> 50	
	cttaacatcc caagggatgc tg	22
45		
45	<210> 51	
	<211> 1965	
	<212> DNA	
50	<213> Cricetulus griseus	
	<400> 51	
55	${\tt acggggggct\ cccggaagcg\ gggaccatgg\ cgtctctgcg\ cgaagcgagc\ ctgcggaagc}$	60
	${\tt tgcggcgctt\ ttccgagatg\ agaggcaaac\ ctgtggcaac\ tgggaaattc\ tgggatgtag}$	120

```
ttgtaataac agcagctgac gaaaagcagg agcttgctta caagcaacag ttgtcggaga 180
               agetgaagag aaaggaattg ceeettggag ttaactacea tgtttteact gateeteetg 240
5
               gaaccaaaat tggaaatgga ggatcaacac tttgttctct tcagtgcctg gaaagcctct 300
               atggagacaa gtggaattcc ttcacagtcc tgttaattca ctctggtggc tacagtcaac 360
               gacttcccaa tgcaagcgct ttaggaaaaa tettcacgge tttaccaett ggtgagceca 420
10
               tttatcagat gttggactta aaactagcca tgtacatgga tttcccctca cgcatgaagc 480
               ctggagtttt ggtcacctgt gcagatgata ttgaactata cagcattggg gactctgagt 540
               ccattgcatt tgagcagcct ggctttactg ccctagccca tccatctagt ctggctgtag 600
               gcaccacaca tggagtattt gtattggact ctgccggttc tttgcaacat ggtgacctag 660
15
               agtacaggca atgccaccgt ttcctccata agcccagcat tgaaaacatg caccacttta 720
               atgccgtgca tagactagga agctttggtc aacaggactt gagtgggggt gacaccacct 780
               gtcatccatt gcactctgag tatgtctaca cagatagcct attttacatg gatcataaat 840
20
               cagocaaaaa gotacttgat ttotatgaaa gtgtaggooc actgaactgt gaaatagatg 900
               cctatggtga ctttctgcag gcactgggac ctggagcaac tgcagagtac accaagaaca 960
              cctcacacgt cactaaagag gaatcacact tgttggacat gaggcagaaa atattccacc 1020
              tecteaaggg aacaeeetg aatgttgttg teettaataa eteeaggttt tateacattg 1080
25
              gaacaacgga ggagtatctg ctacatttca cttccaatgg ttcgttacag gcagagctgg 1140
              gettgeaate catagettte agtgtettte caaatgtgee tgaagactee catgagaaac 1200
              cctgtgtcat tcacagcatc ctgaattcag gatgctgtgt ggcccctggc tcagtggtag 1260
30
              aatattccag attaggacet gaggtgtcca teteggaaaa etgeattate ageggttetg 1320
              tcatagaaaa agctgttctg ccccatgtt ctttcgtgtg ctctttaagt gtggagataa 1380
              atggacactt agaatattca actatggtgt ttggcatgga agacaacttg aagaacagtg 1440
              ttaaaaccat atcagatata aagatgcttc agttctttgg agtctgtttc ctgacttgtt 1500
35
              tagatatttg gaaccttaaa gctatggaag aactattttc aggaagtaag acgcagctga 1560
              geotgtggae tgetegaatt tteeetgtet gttettetet gagtgagteg gttgeageat 1620
              cccttgggat gttaaatgcc attcgaaacc attcgccatt cagcctgagc aacttcaagc 1680
              tgctgtccat ccaggaaatg cttctctgca aagatgtagg agacatgctt gcttacaggg 1740
40
              agcaactett tetagaaate agtteaaaga gaaaacagte tgatteggag aaatettaaa 1800
              tacaatggat titgcctgga aacaggattg caaatgcagg catattctat agatctctgg 1860
              gttettettt ettteteece teteteettt cettteeett tgatgtaatg acaaaggtaa 1920
45
                                                                               1965
              <210> 52
50
              <211> 27
              <212> DNA
```

<213> Artificial Sequence

55

	⟨220⟩	
5	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 52	
	caggggtgtt cccttgagga ggtggaa	27
10		
	<210> 53	
	<211> 27	
15	<211> 21 <212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 53	
25	cactgagcca ggggccacac agcatcc	27
30	<210> 54	
	<211> 23	
	<212> DNA	
<i>35</i>	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
40	•	
	<400> 54	
	cccctcacgc atgaagcctg gag	23
45		
	<210> 55	
	<211> 27	
50	<212> DNA	
	<213> Artificial Sequence	
55	⟨220⟩	
55	<223> Description of Artificial Sequence: Synthetic DNA	

5	<400> 55	
3	tgccaccgtt tcctccataa gcccagc	27
10	⟨210⟩ 56	
	⟨211⟩ 28	
	<212> DNA	
15	<213> Artificial Sequence	
	⟨220⟩	
	<223> Description of Artificial Sequence: Synthetic DNA	
20		
	<400> 56	
	atggctcaag ctcccgctaa gtgcccga	28
25		
	<210> 57	
30	<211> 27	
30	<212> DNA (213) Artificial Sequence	
	<213> Artificial Sequence	
	<220>	
35	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
	<400> 57	
40	tcaagcgttt gggttggtcc tcatgag	27
	⟨210⟩ 58	
45	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
50		
	⟨220⟩	
	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
55	⟨400⟩ 58	

	tccggggatg gcgagatggg caagc	25
5		
	<210> 59	
	<211> 24	
10	<212> DNA	
	<213> Artificial Sequence	
15	⟨220⟩	
	(223) Description of Artificial Sequence: Synthetic DNA	
	<400> 59	
20	cttgacatgg ctctgggctc caag	24
	(0.0) 22	
25	<210> 60	
	<211> 25 <212> DNA	
	<213> Artificial Sequence	
30	(alo) hitiliolal boquonoo	
	<220>	
	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
35	<400> 60	
	ccacttcagt cggtcggtag tattt	25
40		
	<210> 61	
	<211> 24	
45	<212> DNA <213> Artificial Sequence	
	(213) Artificial Sequence	
	<220>	
50	<pre><223> Description of Artificial Sequence: Synthetic DNA</pre>	
	<400> 61	
55	cgctcacccg cctgaggcga catg	24

5	<210> 62	
5	<211> 32	
	<212> DNA	
	<213> Artificial Sequence	
10		
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
15		
	<400≻ 62	
	ggcaggtgct gtcggtgagg tcaccatagt gc	32
20	·	
	<210> 63	
	<211> 24	
25	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	(220) (223) Description of Artificial Sequence: Synthetic DNA	
30	(220) Description of Artificial Sequence. Synthetic DAA	
	<400> 63	
	ggggccatgc caaggactat gtcg	24
35		
	<210> 64	
40	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
46		
45	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
50	<400> 64	
	atgtggctga tgttacaaaa tgatg	25
<i>55</i>	(010) 65	
	<210> 65	

	<21	1> 1	504														
E	<21	2> D	NA														
5	<21	3> C	rice	tulu	s gr	iseu	s										
	<22	0>															
10	<22	1> C	DS														
	<22	2> (1)	(111	9)												
	< 4 0	0> 6	5														
15		gct		gct	ccc	gct	agc	tgc	ccg	agc	tcc	agg	aac	tct	ggg	gac	48
		Ala															
	1				5					10					15	•	
20	ggc	gat	aag	ggc	aag	ccc	agg	aag	gtg	gcg	ctc	atc	acg	ggc	atc	acc	96
	Gly	Asp	Lys	Gly	Lys	Pro	Arg	Lys	Val	Ala	Leu	I1e	Thr	Gly	Ile	Thr	
				20					25					30			
25	ggc	cag	gat	ggc	tca	tac	ttg	gca	gaa	ttc	ctg	ctg	gag	aaa	gga	tac	144
	Gly	Gln	Asp	Gly	Ser	Tyr	Leu	Ala	Glu	Phe	Leu	Leu	Glu	Lys	Gly	Tyr	
			35					40					45				
	gag	gtt	cat	gga	att	gta	cgg	cga	tcc	agt	tca	ttt	aat	aca	ggt	cga	192
30	Glu	Val	His	Gly	Ile	Val	Arg	Arg	Ser	Ser	Ser	Phe	Asn	Thr	Gly	Arg	
		50					55					60					
		gaa				-							-			_	240
<i>35</i>		Glu	His	Leu	Tyr		Asn	Pro	GIn	Ala		lle	Glu	Gly	Asn		
	65					70					75					80	000
		ttg															288
	85 85	Leu	UIS	1 9 1	Gly	90	Leu	1111	nsp	Ser	95	Cys	Leu	Val	Lys	11e	
40		aat	raa	atc	222		202	gag	atc	tac		ctt	aat	acc	C2.T		336
		Asn														_	550
			010		105					110			01,		115	501	
45	cat	gtc	aag	att		ttt	gac	tta	gca	gag	tac	act	gca	gat		gat	384
		Val														_	
			-	120					125					130		-	
50	gga	gtt	ggc	acc	ttg	cgg	ctt	ctg	gat	gca	att	aag	act	tgt	ggc	ctt	432
	Gly	Val	Gly	Thr	Leu	Arg	Leu	Leu	Asp	Ala	Ile	Lys	Thr	Cys	Gly	Leu	
			135					140					145				
	ata	aat	tct	gtg	aag	ttc	tac	cag	gcc	tca	act	agt	gaa	ctg	tat	gga	480
55		Asn														_	
																-	

		150					155					160					
-	aaa	gtg	caa	gaa	ata	ссс	cag	aaa	gag	acc	acc	cct	ttc	tat	cca	agg	528
5	Lys	Val	Gln	Glu	Ile	Pro	Gln	Lys	Glu	Thr	Thr	Pro	Phe	Tyr	Pro	Arg	
	165					170					175					180	
	tcg	ссс	tat	gga	gca	gcc	aaa	ctt	tat	gcc	tat	tgg	att	gta	gtg	aac	576
10	Ser	Pro	Tyr	Gly	Ala	Ala	Lys	Leu	Tyr	Ala	Tyr	Trp	Ile	Val	Val	Asn	
					185					190					195		
	ttt	cga	gag	gct	tat	aat	ctc	ttt	gcg	gtg	aac	ggc	att	ctc	ttc	aat	624
15	Phe	Arg	Glu	Ala	Tyr	Asn	Leu	Phe	Ala	Val	Asn	Gly	Ile	Leu	Phe	Asn	
				200					205					210			
	cat	gag	agt	cct	aga	aga	gga	gct	aat	ttt	gtt	act	cga	aaa	att	agc	672
	His	Glu	Ser	Pro	Arg	Arg	Gly	Ala	Asn	Phe	Val	Thr	Arg	Lys	Ile	Ser	
20			215			•		220					225				
		tca															720
	Arg	Ser	Val	Ala	Lys	Ile		Leu	Gly	G1n	Leu		Cys	Phe	Ser	Leu	
25		230					235					240					7.00
		aat	_	_	_		-	_				_	_	_		_	768
		Asn	Leu	Asp	ATA	250	Arg	ASP	irp	GIY	255	міа	Lys	кsр	ıyr	260	
30	245	gct	ata	taa	cta		tta	raa	aat	ost		cca	cac	gac	+++		816
		Ala	_		_	_										_	010
	014	,,,,	,,,O D	11.10	265		200	J		270	020		010	р	275	, 41	
	ata	gct	act	ggg		gtt	cat	agt	gtc	cgt	gaa	ttt	gtt	gag		tca	864
35	Ile	Ala	Thr	Gly	G1u	Val	His	Ser	Val	Arg	Glu	Phe	Val	Glu	Lys	Ser	
				280					285					290			
	ttc	atg	cac	att	gga	aag	acc	att	gtg	tgg	gaa	gga	aag	aat	gaa	aat	912
40	Phe	Met	His	Ile	Gly	Lys	Thr	Ile	Val	Trp	Glu	Gly	Lys	Asn	Glu	Asn	
			295					300					305				
	gaa	gtg	ggc	aga	tgt	aaa	gag	acc	ggc	asa	att	cat	gtg	act	gtg	gat	960
45	Glu	Val	Gly	Arg	Cys	Lys	Glu	Thr	Gly	Lys	Ile	His	Val	Thr	Val	Asp	
43		310					315					320					
	ctg																1008
	Leu	Lys	Tyr	Tyr	Arg		Thr	Glu	Val	Asp		Leu	Gln	Gly	Asp	Cys	
50	325					330					335					340	
		aag															1056
	Ser	Lys	Ala	Gln		Lys	Leu	Asn	Trp		Pro	Arg	Val	Ala		Asp	
<i>55</i>					345					350					355		
	gag	ctg	gtg	agg	gag	atg	gtg	caa	gcc	gat	gtg	gag	ctc	atg	aga	acc	1104

	Glu Leu Val Arg Glu Met Val Gln Ala Asp Val Glu Leu Met Arg Thr 360 365 370	
5	aac ccc aac gcc tga gcacctctac aaaaaaaattc gcgagacatg gactatggtg	1150
	Asn Pro Asn Ala	1159
	375	
10	cagagccagc caaccagagt ccagccactc ctgagaccat cgaccataaa ccctcgactg	1219
	cctgtgtcgt ccccacagct aagagctggg ccacaggttt gtgggcacca ggacggggac	1279
	actocagage taaggecact tegettttgt caaaggetee teteaatgat tttgggaaat	1339
15	caagaagttt aaaatcacat actcatttta cttgaaatta tgtcactaga caacttaaat	1399
	ttttgagtct tgagattgtt tttctctttt cttattaaat gatctttcta tgacccagca	1459
	aaaaaaaaaa aaaaaaggga tatacaaaaaa aaaaaaaaa aacaa	1504
20		
	<210> 66	
	<211> 25	
25	<212> DNA	
	<213> Artificial Sequence	
	⟨220⟩	
30	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 66	
		25
35		
	<210> 67	,
40	<211> 59	
	<212> DNA	
	<213> Cricetulus griseus	
45	<400> 67	
		59
50		
	<210> 68	
	<211> 25	
	<212> DNA	
55	<213> Artificial Sequence	

-	<220>	
5	<223> Description of Artificial Sequence: Synthetic DNA	
	<400> 68	
10	gacttagcag agtacactgc agatg	25
15	<210> 69	
	⟨211⟩ 25	
	<212> DNA	
	<213> Artificial Sequence	
20		
	<220>	
	<223> Description of Artificial Sequence: Synthetic DNA	
25	<400> 69	
		25
30		
	<210> 70	
	<211> 125	
35	<212> DNA (212) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	<213> Cricetulus griseus	
	<400> 70	
40	ttgatggagt tggcaccttg cggcttctgg atgcaattaa gacttgtggc cttataaatt (30
	ctgtgaagtt ctaccaggcc tcaactagtg aactgtatgg aaaagtgcaa gaaatacccc	120
	agaaa	125
45		
	⟨210⟩ 71	
	<211> 376	
50	<212> PRT	
	<213> Cricetulus griseus	
	<400> 71	
55	Met Ala His Ala Pro Ala Ser Cys Pro Ser Ser Arg Asn Ser Gly Asp	

	1				5					10					15	
-	Gly	Asp	Lys	Gly	Lys	Pro	Arg	Lys	Val	Ala	Leu	Ile	Thr	Gly	Ile	Thr
5				20					25					30		
	Gly	Gln	Asp	Gly	Ser	Tyr	Leu	Ala	Glu	Phe	Leu	Leu	Glu	Lys	G1 y	Tyr
			35					40					45			
10	Glu	Val	His	Gly	Ile	Val	Arg	Arg	Ser	Ser	Ser	Phe	Asn	Thr	Gly	Arg
		50					55					60				
	Ile	Glu	His	Leu	Tyr	Lys	Asn	Pro	Gln	Ala	His	Ile	Glu	Gly	Asn	Met
15	65					70					75					80
	Lys	Leu	His	Tyr	Gly	Asp	Leu	Thr	Asp	Ser	Thr	Cys	Leu	Val	Lys	Ile
	85					90				_	95					100
20	Ile	Asn	Glu	Val		Pro	Thr	Glu	He		Asn	Leu	Gly	Ala		Ser
	112 -	W - 1	T	T1_	105	Dl	, A	1	A 1 -	110	Т	The	41-	۸	115	۸
	nıs	vai	Lys	11e 120	ser	rne	ASP	Leu	125	GIU	lyr	шг	MIA	130	vai	ASP
0.5	Glv	Val	Gly		Len	Arø	Leu	Leu		Ala	Ile	Lvs	Thr		G1v	Leu
25	01,	, ,	135		200	, S	20-	140				_, _	145	٠, ٥	01,	
	Ile	Asn	Ser	Val	Lys	Phe	Tyr		Ala	Ser	Thr	Ser		Leu	Tyr	Gly
		150					155					160				
30	Lys	Val	Gln	Glu	Ile	Pro	Gln	Lys	Glu	Thr	Thr	Pro	Phe	Tyr	Pro	Arg
	165					170					175					180
	Ser	Pro	Tyr	Gly		Ala	Lys	Leu	Tyr	Ala	Tyr	Trp	Ile	Val	Val	Asn
35	D.				185					190		0.3			195	
	Phe	Arg	Glu		Tyr	Asn	Leu	Phe	A1a 205	Val	Asn	Gly	He		Phe	Asn
	His	Glu	Ser	200 Pro	Aro	Ara	Glv	Ala		Phe	Val	Thr	Arø	210 Lvs	afī	Ser
40		oru	215	•••	8	6	01,	220		7,,0	, 41	****	225	,0		501
	Arg	Ser	Val	Ala	Lys	Ile	Tyr		Gly	Gln	Leu	Glu		Phe	Ser	Leu
		230					235					240				
45	Gly	Asn	Leu	Asp	Ala	Lys	Arg	Asp	Trp	Gly	His	Ala	Lys	Asp	Tyr	Val
45	245					250					255					260
	Glu	Ala	Met	Trp	Leu	Met	Leu	Gln	Asn	Asp	Glu	Pro	Glu	Asp	Phe	Val
					265					270					275	
50	Ile	Ala	Thr	Gly	Glu	Val	His	Ser	Val	Arg	Glu	Phe	Val	Glu	Lys	Ser
				280					285					290		
	Phe	Met	His	He	Gly	Lys	Thr		Val	Trp	G1u	Gly		Asn	Glu	Asn
55	0.3	,, ,	295		^	,	0.7	300	0.7		71		305	æ1		
	Glu	Val	Gly	Arg	Cys	Lys	Glu	Ihr	Gly	Lys	lle	His	Val	Thr	Val	Asp

		310					315					320					
	Leu	Lys	Tyr	Tyr	Arg	Pro	Thr	Glu	Val	Asp	Phe	Leu	Gln	Gly	Asp	Cys	
5	325					330					335					340	
	Ser	Lys	Ala	Gln	Gln	Lys	Leu	Asn	Trp	Lys	Pro	Arg	Val	Ala	Phe	Asp	
					345					350					355		
10	Glu	Leu	Val	Arg	Glu	Met	Val	Gln	Ala	Asp	Val	Glu	Leu	Met	Arg	Thr	
				360					365					370			
	Asn	Pro	Asn	Ala													
15			375														
, 0																	
	<210)> 7	2														
20		L> 4:															
		2> DI															
	<213	3> M	us m	นธดน.	lus												
25	/ 00/																
	<220	,, .> CI	ne														
				(420)													
00	\222	. (.	.,	(320)	•												
30	<400)> 72	2														
	atg	gaa	tgg	atc	tgg	atc	ttt	ctc	ttc	ttc	ctc	tca	gga	act	aca	ggt	48
	Met	Glu	Trp	Ile	Trp	Ile	Phe	Leu	Phe	Phe	Leu	Ser	Gly	Thr	Thr	Gly	
35	1				5					10					15		
	gtc	tac	tcc	cag	gtt	cag	ctg	cag	cag	tct	gga	gct	gag	gtg	gcg	agg	96
	Val	Tyr	Ser	Gln	Val	Gln	Leu	Gln		Ser	Gly	Ala	Glu		Ala	Arg	
40				20					25					30			
				tca													144
	Pro	Gly		Ser	val	Lys	Leu		Cys	Lys	Ala	Ser		lyr	Thr	Phe	
45	+		35	4.4			4	40				+ - +	45			-44	100
45				tat													192
	1111	50	Tyr	Tyr	Leu	ASII	55	vai	Lys	0111	VI B	60	GTA	GIII	GIY	Leu	
	asa		2++	aas	asa	2++		cct	222	ant	nat		ata	tat	ta+	aa+	240
50				gga Gly													240
	65		116	JIY	JIU	70	лар	110	JIY	961	75	261	116	1 7 1	: Y I	80	
		aac	t.t o	gag	gar		gr.c	aca	ctø	act		pac	ลลล	ton	tro		288
55				Glu												_	200
	O L U	11011	w C U	OIU	013	WT R	UTG	1117	L-C u	1117	1.) T.C	wah	11 J	061	ne _T	nei	

				85				90					95		
_	aca gc	c tac	atg c	ag ctc	aac	agc	ctg	aca	tct	gag	gac	tct			336
5	Thr Al														
			100				105					110			
	tat tt	c tgt	gca a	ıga tat	ggg	tat	tct	aga	tac	gac	gta	agg	ttt	gtc	384
10	Tyr Ph	e Cys	Ala A	rg Tyr	Gly	Tyr	Ser	Arg	Tyr	Asp	Val	Arg	Phe	Va1	
		115				120					125				
	tac tg	g ggc	caa g	gg act	ctg	gtc	act	gtc	tct	aca					420
15	Tyr Tr	Gly	Gln G	ly Thr	Leu	Val	Thr	Val	Ser	Thr					
	130)			135					140					
20	(0.0)														
	〈210〉														
	<211> :														
	<213> N		iceulu	c											
25	(210)	145 1110	,50u.ru	J											
	<400> 7	'3													
	Met Glu	Trp	Ile T	rp Ile	Phe	Leu	Phe	Phe	Leu	Ser	Gly	Thr	Thr	Gly	
30	1			5				10					15		
	Val Tyr	Ser	Gln V	al Gln	Leu	Gln	Gln	Ser	Gly	Ala	Glu	Val	Ala	Arg	
			20				25					30			
35	Pro Gly		Ser V	al Lys	Leu		Cys	Lys	Ala	Ser		Tyr	Thr	Phe	
	The Acr	35	Taras I	a A =	Тъ	40	1	C1-	۸	C	45	01	01		
	Thr Asp		INT L	eu Asn	55	Val	LyS	GIII	Arg	Ser 60	СТУ	GID	ыу	Leu	
40	Glu Trp		Glv G	lu Ile		Pro	G] v	Ser	Asp		He	Tyr	Tvr	Asn	
40	65		U_, U.	70			,		75		110	• , .	1 7 1	80	
	Glu Asn	Leu	Glu G		Ala	Thr	Leu	Thr		Asp	Lys	Ser	Ser		
				85				90					95		
45	Thr Ala	Tyr	Met G	ln Leu	Asn	Ser	Leu	Thr	Ser	G1u	Asp	Ser	Ala	Val	
			100				105					110			
	Tyr Phe	Cys .	Ala Ai	rg Tyr	Gly	Tyr	Ser	Arg	Tyr	Asp	Val	Arg	Phe	Val	
50		115				120					125				
	Tyr Trp	Gly	Gln G	ly Thr	Leu	Val	Thr	Val	Ser	Thr					

	<21	0> 7	4														
5	<21	1> 3	93														
5	<21	2> DI	NA														
	<21	3> M	us m	uscu	lus												
10	(22)	0>															
	<22	1> Cl	os														
	<22	2> (1)	(393))												
15																	
	<40	0> 7	4														
	atg	aag	ttg	cct	gtt	agg	ctg	ttg	gtg	ctg	atg	ttc	tgg	att	cct	gct	48
20	Met	Lys	Leu	Pro	Val	Arg	Leu	Leu	Val	Leu	Met	Phe	Trp	Ile	Pro	Ala	
20	1				5					10					15		
		agg	_	_	-	_								_		_	96
	Ser	Arg	Ser		Val	Leu	Met	Thr		lhr	Pro	Leu	Ser		Pro	Val	•
25		_44		20			+	a+a	25	+~~	000	+ - +	0.00+	30	+	~++	1 4 4
	_	ctt Leu		•		_				_	_		_	_	•		144
	261	Leu	35	nsp	OIII	nia	DCI	40	001	0,0	111 E	001	45	0111	501	Deu	
30	gta	cat		aat	gga	aga	acc		tta	gaa	tgg	tac		cag	aaa	cct	192
		His															
		50					55					60					
05	ggc	cag	tca	cca	aag	gtc	ctg	atc	tac	aaa	gtt	tcc	aac	cga	att	tct	240
35	Gly	Gln	Ser	Pro	Lys	Val	Leu	Ile	Tyr	Lys	Val	Ser	Asn	Arg	Ile	Ser	
	65					70					75					80	
	ggg	gtc	cca	gac	agg	ttc	agt	ggc	agt	gga	tca	ggg	aca	gat	ttc	aca	288
40	Gly	Val	Pro	Asp		Phe	Ser	Gly	Ser		Ser	Gly	Thr	Asp		Thr	
					85					90					95		
		aaa															336
45	Leu	Lys	He		Arg	Val	Glu	Ala		Asp	Leu	Gly	Val		Phe	Cys	
				100		_4.4		+	105	44.				110			004
		cag															384
	rne	Gln		Ser	піѕ	Val	110		1111	rne	GIY	Gly		1111	Lys	Leu	
50	~^ -	0+0	115					120					125				202
		ata														•	393
	מדט	Ile	LyS														
<i>55</i>		130															

5	<21	0> 78	5													
	<21	1> 10	31													
	<21	2> PI	RT													
	<213	3> Mi	ıs m	uscu.	lus											
10																
	<400)> 75	5													
	Met	Lys	Leu	Pro	Val	Arg	Leu	Leu	Val	Leu	Met	Phe	Trp	Ile	Pro	Ala
15	1				5					10					15	
	Ser	Arg	Ser	Asp	Val	Leu	Met	Thr	Gln	Thr	Pro	Leu	Ser	Leu	Pro	Val
				20					25					30		
	Ser	Leu	Gly	Asp	Gln	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu
20			35					40					45			
	Val	His	Ser	Asn	Gly	Arg	Thr	Tyr	Leu	Glu	Trp	Tyr	Leu	G1n	Lys	Pro
		50					55					60				
25	Gly	Gln	Ser	Pro	Lys	Val	Leu	Ile	Tyr	Lys	Val	Ser	Asn	Arg	Ile	Ser
	65					70					75					80
	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr
					85					90					95	
30	Leu	Lys	Ile	Ser	Arg	Val	Glu	Ala	G1u	Asp	Leu	G1y	Val	Tyr	Phe	Cys
				100					105					110		
	Phe	Gln	Gly	Ser	His	Val	Pro	Tyr	Thr	Phe	Gly	Gly	Gly	Thr	Lys	Leu
<i>35</i>			115					120					125			
	Glu	Ile	Lys													
		130														
40																
	<210)> 76	}													
	<211	.> 5														
45	<212	?> PF	T													
40	<213	3> Mu	is mu	iscu]	lus											
	<400)> 76	5													
50	Asp	Tyr	Tyr	Leu	Asn											
	1	,			5											
55																
55	<210	> 77														

	<211> 17
5	<212> PRT
5	<213> Mus musculus
10	<400> 77
10	Glu Ile Asp Pro Gly Ser Asp Ser Ile Tyr Tyr Asn Glu Asn Leu Glu
	1 5 10 15
	Gly
15	
	<210> 78
	<211> 12
20	<211> 12 <212> PRT
	<213> Mus musculus
	1
25	<400> 78
	Tyr Gly Tyr Ser Arg Tyr Asp Val Arg Phe Val Tyr
	1 5 10
30	
	<210> 79
	<211> 16
35	<212> PRT
	<213> Mus musculus
	<400> 79
40	Arg Ser Ser Gln Ser Leu Val His Ser Asn Gly Arg Thr Tyr Leu Glu
	1 5 10 15
45	⟨210⟩ 80
	<211> 7
	<212> PRT
50	<213> Mus musculus
	<400> 80
	Lys Val Ser Asn Arg Ile Ser
55	1 5

5	⟨210⟩ 81	
	<211> 9	
	<212> PRT	
10	<213> Mus musculus	
	<400> 81	
15	Phe Gln Gly Ser His Val Pro Tyr Thr	
	1 5	
	<210> 82	
20	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
25	⟨220⟩	
	<223> Description of Artificial Sequence:synthetic DNA	
30	<400> 82	
	ctgaattcgc ggccgctagt cc	22
0.5		
35	<210≻ 83	
	<211> 39	
	<212> DNA	
40	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence:synthetic DNA	
45		
	<400> 83	
	atgggccctt ggtggaggct gtagagacag tgaccagag	39
50		
	<210> 84	
55	<211> 22	
55	<212> DNA	

	<213> Artificial Sequence	
5	<220>	
	<pre><223> Description of Artificial Sequence:synthetic DNA</pre>	
10	<400> 84	
	ctgaattege ggeegetget gt	22
15	<210> 85	
	<211> 28	
	<212> DNA	
22	<213> Artificial Sequence	
20	<220>	
	<pre><223> Description of Artificial Sequence: synthetic DNA</pre>	
	Nazov Description of Artificial bequence. Synthetic DNA	
25	<400> 85	
	atcgtacgtt ttatttccag cttggtcc	28
30	(010) 96	
	<210> 86 <211> 57	
	<212> DNA	
35	<213> Artificial Sequence	
	<220>	
40	<pre><223> Description of Artificial Sequence:synthetic DNA</pre>	
	<400> 86	
	tigitggtac cgaaticiti cagggccccg gagccccgag agcccaaatc tigigac	57
45		
	<210> 87	
50	<211> 31	
	<212> DNA	
	<213> Artificial Sequence	
55	⟨220⟩	

	<223> Description of Artificial Sequence:synthetic DNA	
5	<400> 87	
	gegaatteea ceatgggeag ecceegetee g 3	1
10		
	<210> 88	
	<211> 32	
15	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
20	<pre><223> Description of Artificial Sequence:synthetic DNA</pre>	
	<400> 88	
25	cgggatccct atcggggctc cggggcccaa gt 33	2
25		
	<210> 89	
30	(211) 1341	
	<212> DNA	

		50					55					60					
	gtg	cag	gtc	ctg	gcc	aac	aag	cgc	atc	aac	gcc	atg	gca	gaa	gac	gga	240
5	Val	Gln	Val	Leu	Ala	Asn	Lys	Arg	Ile	Asn	Ala	Met	Ala	Glu	Asp	Gly	
	65					70					75					80	
	gac	ccc	ttc	gcg	aag	ctc	att	gtg	gag	acc	gat	act	ttt	gga	agc	aga	288
10	Asp	Pro	Phe	Ala	Lys	Leu	Ile	Val	Glu	Thr	Asp	Thr	Phe	Gly	Ser	Arg	
					85					90					95		
	gtc	cga	gtt	cgc	ggc	gca	gag	aca	ggt	ctc	tac	atc	tgc	atg	aac	aag	336
15	Val	Arg	Val	Arg	Gly	Ala	Glu	Thr	Gly	Leu	Tyr	Ile	Cys	Met	Asn	Lys	
7.5				100					105					110			
	aag	ggg	aag	cta	att	gcc	aag	agc	aac	ggc	aaa	ggc	aag	gac	tgc	gta	384
	Lys	G1y	Lys	Leu	Ile	Ala	Lys	Ser	Asn	Gly	Lys	Gly	Lys	Asp	Cys	Val	
20			115					120					125				
	ttc	aca	gag	atc	gtg	ctg	gag	aac	aac	tac	acg	gcg	ctg	cag	aac	gcc	432
	Phe	Thr	Glu	lle	Val	Leu	Glu	Asn	Asn	Tyr	Thr	Ala	Leu	Gln	Asn	Ala	
<i>25</i>		130					135					140					
	_	tac															480
	Lys	Tyr	Glu	Gly	Trp	Tyr	Met	Ala	Phe	Thr	Arg	Lys	G1y	Arg	Pro	Arg	
	145					150					155					160	
30	_	ggc															528
	Lys	Gly	Ser	Lys		Arg	Gln	His	Gln		Glu	Val	His	Phe		Lys	
					165					170					175		55.0
35		ctg															576
	Arg	Leu	Pro	180	ста	HIS	HIS	ınr	185	GIU	GIN	Ser	Leu	190	rne	GIU	
	++^	ctc	220		000	000	++0	aca		agr	rta	cac	aac		car	200	624
		Leu								_	_			_			024
40	1 110	ren	195	131	110	110		200		501	204	,	205	501	0111	,, <u>,</u> 8	
	act	tgg		CCE	gag	ccc	сва		ccc	aaa	tct	tgt		aaa	act	cac	672
		Trp															
45	****	210					215			-		220	•	•			
	aca	tgc	cca	ccg	tgc	cca	gca	cct	gaa	ctc	ctg	ggg	gga	ccg	tca	gtc	720
		Cys															
50	225					230					235					240	
30	ttc	ctc	ttc	ccc	cca	aaa	ccc	aag	gac	acc	ctc	atg	atc	tcc	cgg	acc	768
	Phe																
					245					250					255		
<i>55</i>	cct	gag	gtc	aca	tgc	gtg	gtg	gtg	gac	gtg	agc	cac	gaa	gac	cct	gag	816

	Pro	Glu	Val		Cys	Val	Val	Val	Asp 265	Val	Ser	His	Glu	Asp 270	Pro	Glu	
5	-4-		++ -	260	+ ~ ~	+00	ata	400		at a	~o.~	ata	20+		700	200	864
	-	aag															004
	vai	Lys		ASII	irp	I y I	Va1		Gly	val	GIU	vai		ASII	WIS	Lys	
10			275					280				4	285				010
		aag															912
	Thr	Lys	Pro	Arg	GIU	GIU		lyr	Asn	Ser	inr		Arg	val	vai	Ser	
		290					295					300					0.00
10	_	ctc.											_				960
		Leu	Ihr	Val	Leu		Gin	Asp	lrp	Leu		Gly	Lys	Glu	lyr		
	305					310					315					320	1.000
22	_	aag	_														1008
	Cys	Lys	Val	Ser		Lys	Ala	Leu	Pro			116	GIU	Lys		116	
					325					330			4		335		1056
		aaa															1056
25	Ser	Lys	Ala		GIA	GIN	Pro	Arg		Pro	GIN	val	ıyr		Leu	Pro	
				340		_+_			345					350	+		1104
		tcc															1104
30	Pro	Ser		ASP	GIU	Leu	1111		ASII	6111	val	Ser	365	ınr	Cys	Leu	
			355		***			360	a+a	~~^	~+~	~~~				+	1152
	_	aaa Lys					_			_	_				_		1102
	val	370	Gly	rne	1 1 1	110	375	nsp	116	VIG	101	380	ith	Giu	Set	VPII	
35	aaa	cag	CCT	asa	220	33C		220	acc	ara	cct		σtσ	ctø	gar	tee	1200
		Gln															1200
	385	0111	110	014	11011	390	.,.	۵, ۵		1,,,,	395			LÇu	110p	400	
		ggc	tcc	ttc	ttc		tac	agc	aag	ctc		gtg	gac	aag	agc		1248
	_	Gly													_		
	,,,,p	,			405		-,-		_,_	410				-,-	415	6	
	t.gg	cag	cag	999		gtc	ttc	tca	tgc		gtg	atg	cat	28g		ctg	1296
15		Gln	_			_									_	_	
	1. P		·	420					425					430		200	
	cac	aac	cac		aco	cag	ลล๑	agc		tee	ctø	tet	COF		222		1341
		Asn			_					_		_	_				1011
50			435	-,-			_,~	440					445	,	٠,٠		

⟨210⟩ 90

55

	<21	1> 44	1 7													
5	<21	2> pi	rote:	in												
5	<21	3> ho	omo :	sapi	ens											
	<400	0e <c< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></c<>														
10	Met	Gly	Ser	Pro	Arg	Ser	Ala	Leu	Ser	Cys	Leu	Leu	Leu	His	Leu	Leu
	1				5					10					15	
	Val	Leu	Cys	Leu	Gln	Ala	Gln	Val	Thr	Val	Gln	Ser	Ser	Pro	Asn	Phe
15				20					25					30		
	Thr	Gln	His	Val	Arg	Glu	Gln	Ser	Leu	Val	Thr	Asp	Gln	Leu	Ser	Arg
			35					40					45			
00	Arg	Leu	Ile	Arg	Thr	Tyr		Leu	Tyr	Ser	Arg		Ser	Gly	Lys	His
20		50					55		71		4.7	60		6 1		
		Gln	Val	Leu	Ala		Lys	Arg	lie	Asn		Met	Ala	Glu	Asp	
	65	Pro	Dho	112	lve	70	Πla	Val	Glu	Thr	75	Thr	Pho	Clv	Sor	80
25	wsh	FIO	rne	ита	85 85	Leu	116	121	Giu	90	nsp	1111	rne	СТУ	95	AIR
	Val	Arg	Val	Arg		Ala	Glu	Thr	Gly		Tyr	Ile	Cys	Met		Lys
				100	•				105		•		•	110		•
30	Lys	Gly	Lys	Leu	Ile	Ala	Lys	Ser	Asn	Gly	Lys	Gly	Lys	Asp	Cys	Val
			115					120					125			
	Phe	Thr	Glu	Ile	Val	Leu	Glu	Asn	Asn	Tyr	Thr	Ala	Leu	Gln	Asn	Ala
25		130					135					140				
35	Lys	Tyr	Glu	Gly	Trp		Met	Ala	Phe	Thr		Lys	Gly	Arg	Pro	Arg
	145			_		150					155					160
	Lys	Gly	Ser	Lys		Arg	Gln	His	Gin		Glu	Val	His	Phe		Lys
40	A		η	A	165	u: -	n: -	Tha	Th	170	C1.	C	T	۸	175	01
	Arg	Leu	Pro	180	Gly	UIS	uis	1111	185	GIU	6111	ser	Leu		rne	GIU
	Pho	Leu	Aen		Pro	Pro	Phe	Thr		Ser	Len	Ara	Glv	190 Ser	Gln	Ara
45	1110	Deu	195	1 7 1	,,,		1 110	200		501	Dog	,,, E	205	Der	OIII	VI E
	Thr	Trp		Pro	Glu	Pro	Arg		Pro	Lvs	Ser	Cvs		Lvs	Thr	His
		210					215			-,-		220	,	2,0	****	
50	Thr	Cys	Pro	Pro	Cys	Pro		Pro	Glu	Leu	Leu		Gly	Pro	Ser	Val
50	225	•				230					235					240
		Leu	Phe	Pro	Pro		Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	
					245				•	250					255	
55	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	G1u	Asp	Pro	Glu

				260					265					270			
5	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	
3			275					280					285				
	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	
		290					295					300					
10	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	
	305					310					315					320	
	Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	·Ile	
15					325					330					335		
	Ser	Lys	Ala		Gly	Gln	Pro	Arg		Pro	Gln	Val	Tyr	Thr	Leu	Pro	
	_	_		340		_		_	345	~-		_	_	350			
20	Pro	Ser		Asp	Glu	Leu	Thr		Asn	Gin	Val	Ser		Thr	Cys	Leu	
	V-1	1	355	Dha	T	Dava	£	360	Tlo	47.	1/- 7	C1	365	C3	C	A	
	Val	370	Gly	rne	1 9 1	110	375	nsp	116	MIS	Val	380	11.b	GIU	Ser	Asn	
	Glv		Pro	G1u	Asn	Asn		Lvs	Thr	Thr	Pro		Val	l en	Asp	Sor	
25	385					390	-,-	_, _			395		,	200	пор	400	
		Gly	Ser	Phe	Phe		Tyr	Ser	Lys	Leu		Val	Asp	Lys	Ser		
					405					410					415		
30	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	
				420					425					430			
	His	Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	G1y	Lys		
35			435					440					445				
	/210	N 01															
)> 91 .> 12															
40		> DN															
		> Cr		ulus	gri	seus	;										
					•												
45	<400	> 91															
	gaac	ttca	cc c	aagc	catg	t ga	caat	tgaa	ggc	tgta	ccc	ccag	acco	ta a	catc	ttgga	60
	gccc	tgta	ga c	cagg	gagt	g ct	tctg	gccg	tgg	ggtg	acc	tagc	tctt	ct a	ccac	catga	120
50	acag	ggcc	cc t	ctga	agcg	g to	cagg	atco	tgc	gcat	ggc	gctg	actg	ga g	gctc	cactg	180
	cctc	tgag	ga g	gcag	atga	a ga	cago	agga	aca	agcc	gtt	tctg	ctgc	gg g	cgct	gcaga	240
	tcgc	gctg	gt c	gtct	ctct	c ta	ctgg	gtca	cct	ccat	ctc	catg	gtat	tc c	tcaa	caagt	300
	acct	gctg	ga c	agcc	cctc	c ct	gcag	ctgg	ata	cccc	tat	cttc	gtca	ct t	tcta	ccaat	360
<i>55</i>	gcct	ggtg	ас с	tctc	tgct	g tg	caag	ggcc	tca	gcac	tct	ggcc	acct	gc t	gccc	tggca	420

	cogttgactt occeacetg aacetggace ttaaggtgge ocgeagegtg etgecactgt 48	0
5	cggtagtctt cattggcatg ataagtttca ataacctctg cctcaagtac gtaggggtgg 54	0
Ū	ccttctacaa cgtggggcgc tcgctcacca ccgtgttcaa tgtgcttctg tcctacctgc 60	0
	tgctcaaaca gaccacttcc ttctatgccc tgctcacatg tggcatcatc attggtggtt 66	0
	tctggctggg tatagaccaa gagggagctg agggcaccct gtccctcata ggcaccatct 72	0
10	toggggtgct ggccagcete tgcgtetece teaatgceat etataceaag aaggtgetee 78	0
	cagcagtgga caacagcate tggcgcctaa cettetataa caatgtcaat geetgtgtge 84	0
	tettettgee eetgatggtt etgetgggtg ageteegtge eeteettgae tttgeteate 90	0
15	tgtacagtgc ccacttetgg etcatgatga egetgggtgg cetettegge tttgccattg 96	0
	gctatgtgac aggactgcag atcaaattca ccagtcccct gacccacaat gtatcaggca 102	0
	cagccaagge etgtgegeag acagtgetgg eegtgeteta etatgaagag actaagaget 108	0
	tectgtggtg gacaagcaac etgatggtge tgggtggete eteageetat acetgggtea 114	0
20	ggggctggga gatgcagaag acccaagagg accccagctc caaagagggt gagaagagtg 120	0
	ctattggggt gtgagcttct tcagggacct gggactgaac ccaag 124	5
25		
	<210> 92	
	<211> 365	
00	<212> PRT	
30	<213> Cricetulus griseus	
	<400> 92	
	Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu Arg Met Ala Leu	
35	1 5 10 15	
	Thr Gly Gly Ser Thr Ala Ser Glu Glu Ala Asp Glu Asp Ser Arg Asn	
	20 25 30	
40	Lys Pro Phe Leu Leu Arg Ala Leu Gln Ile Ala Leu Val Val Ser Leu	
,,	35 40 45	
	Tyr Trp Val Thr Ser Ile Ser Met Val Phe Leu Asn Lys Tyr Leu Leu	
	50 55 60	
45	Asp Ser Pro Ser Leu Glm-Leu Asp Thr Pro Ile Phe Val Thr Phe Tyr	
	65 70 75 80	
	Gln Cys Leu Val Thr Ser Leu Leu Cys Lys Gly Leu Ser Thr Leu Ala	
50	85 90 95	
	Thr Cys Cys Pro Gly Thr Val Asp Phe Pro Thr Leu Asn Leu Asp Leu	
	100 105 110	
	Lys Val Ala Arg Ser Val Leu Pro Leu Ser Val Val Phe Ile Gly Met	
55	115 120 125	

-	Ile	Ser 130	Phe	Asn	Asn	Leu	Cys	Leu	Lys	Tyr	Val	Gly 140	Val	Ala	Phe	Tyr
5	Asn 145	Val	Gly	Arg	Ser	Leu 150	Thr	Thr	Val	Phe	Asn 155	Val	Leu	Leu	Ser	Tyr 160
10	Leu	Leu	Leu	Lys	Gln 165	Thr	Thr	Ser	Phe	Tyr 170	Ala	Leu	Leu	Thr	Cys 175	Gly
	Ile	Ile	Ile	Gly 180	Gly	Phe	Trp	Leu	Gly 185	Ile	Asp	Gln	Glu	Gly 190	Ala	Glu
15	Gly	Thr	Leu 195	Ser	Leu	Ile	G1y	Thr 200	Ile	Phe	Gly	Val	Leu 205	Ala	Ser	Leu
20		210	Ser				215					220				
20	Asp 225	Asn	Ser	Ile	Trp	Arg 230	Leu	Thr	Phe	Tyr	Asn 235	Asn	Val	Asn	Ala	Cys 240
<i>25</i>	Val	Leu	Phe	Leu	Pro 245	Leu	Met	Val	Leu	Leu 250	Gly	Glu	Leu	Arg	Ala 255	Leu
	Leu	Asp	Phe	Ala 260	His	Leu	Tyr	Ser	Ala 265	His	Phe	Trp	Leu	Met 270	Met	Thr
30	Leu	Gly ·	Gly 275	Leu	Phe	Gly	Phe	Ala 280	Ile	Gly	Tyr	Val	Thr 285	Gly	Leu	G1n
	Ile	Lys 290	Phe	Thr	Ser	Pro	Leu 295	Thr	His	Asn	Val	Ser 300	Gly	Thr	Ala	Lys
35	305		Ala			310					315					320
	Ser	Phe	Leu	Trp	7rp 325	Thr	Ser	Asn	Leu	Met 330	Val	Leu	Gly	G1y	Ser 335	Ser
40				340					345					G1n 350	Glu	Asp
45	Pro	Ser	Ser 355	Lys	Glu	Gly	Glu	360 360	Ser	Ala	Ile	Gly	Val 365			
50	<210 <211															
	<212 <213		IA Ino s	apie	ns											
55	<400	> 93														

	atgaataggg cccctctgaa gcggtccagg atcctgcaca tggcgctgac cggggcctca	60
E	gacccctctg cagaggcaga ggccaacggg gagaagccct ttctgctgcg ggcattgcag	120
5	atcgcgctgg tggtctccct ctactgggtc acctccatct ccatggtgtt ccttaataag	180
	tacctgctgg acagececte cetgcggctg gacaccecca tettcgtcae ettetaccag	240
	tgcctggtga ccacgctgct gtgcaaaggc ctcagcgctc tggccgcctg ctgccctggt	300
10	gccgtggact tccccagctt gcgcctggac ctcagggtgg cccgcagcgt cctgccctg	360
	teggtggtet teateggeat gateacette aataacetet geetcaagta egteggtgtg	420
	gccttctaca atgtgggccg ctcactcacc accgtcttca acgtgctgct ctcctacctg	480
15	ctgctcaagc agaccacctc cttctatgcc ctgctcacct gcggtatcat catcgggggc	540
	ttctggcttg gtgtggacca ggagggggca gaaggcaccc tgtcgtggct gggcaccgtc	600
	ttcggcgtgc tggctagcct ctgtgtctcg ctcaacgcca tctacaccac gaaggtgctc	660
	ccggcggtgg acggcagcat ctggcgcctg actttctaca acaacgtcaa cgcctgcatc	720
20	ctcttcctgc ccctgctcct gctgctcggg gagcttcagg ccctgcgtga ctttgcccag	780
	ctgggcagtg cccacttctg ggggatgatg acgctgggcg gcctgtttgg ctttgccatc	840
	ggctacgtga caggactgca gatcaagttc accagtccgc tgacccacaa tgtgtcgggc	900
25		960
		020
		080
	gccatggggg tgtga	095
30		
	<210 \ 94	
	<210> 94 <211> 364	
<i>35</i>	<211> 364	
<i>35</i>	<211> 364 <212> PRT	
35	<211> 364	
	<211> 364 <212> PRT	
<i>35</i>	<211> 364 <212> PRT <213> Homo sapiens	
	<211> 364 <212> PRT <213> Homo sapiens <400> 94	
	<211> 364 <212> PRT <213> Homo sapiens <400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu	
	<pre><211> 364 <212> PRT <213> Homo sapiens <400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu 1 5 10 15</pre>	
40	<pre><211> 364 <212> PRT <213> Homo sapiens <400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu</pre>	
40	<pre><211> 364 <212> PRT <213> Homo sapiens <400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu</pre>	
40	<pre><211> 364 <212> PRT <213> Homo sapiens <400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu</pre>	
40 45	<pre><211> 364 <212> PRT <213> Homo sapiens <400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu</pre>	
40 45	<pre><211> 364 <212> PRT <213> Homo sapiens </pre> <pre><400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu</pre>	
40 45	<211> 364 <212> PRT <213> Homo sapiens <400> 94 Met Asn Arg Ala Pro Leu Lys Arg Ser Arg Ile Leu His Met Ala Leu 1 5 10 15 Thr Gly Ala Ser Asp Pro Ser Ala Glu Ala Glu Ala Asn Gly Glu Lys 20 25 30 Pro Phe Leu Leu Arg Ala Leu Gln Ile Ala Leu Val Val Ser Leu Tyr 35 40 45 Trp Val Thr Ser Ile Ser Met Val Phe Leu Asn Lys Tyr Leu Leu Asp 50 55 60	

					85					90					95	
5	Cys	Cýs	Pro	Gly	Ala	Val	Asp	Phe	Pro	Ser	Leu	Arg	Leu	Asp	Leu	Arg
3				100					105					110		
	Val	Ala	Arg	Ser	Val	Leu	Pro	Leu	Ser	Val	Val	Phe	Ile	Gly	Met	Ile
			115					120					125			
10	Thr	Phe	Asn	Asn	Leu	Cys	Leu	Lys	Tyr	Val	Gly	Val	Ala	Phe	Tyr	Asn
		130					135					140				
	Val	Gly	Arg	Ser	Leu	Thr	Thr	Val	Phe	Asn	Val	Leu	Leu	Ser	Tyr	Leu
15	145					150					155					160
	Leu	Leu	Lys	Gln		Thr	Ser	Phe	Tyr		Leu	Leu	Thr	Cys	Gly	Ile
					165	_				170					175	
20	He	Ile	Gly		Phe	Trp	Leu	Gly		Asp	Gln	Glu	Gly		Glu	Gly
20	æ1	,	0	180	T	01	m -	11 . 7	185	01	Vr. 3	1	41.	190	*	0
	ınr	Leu		irp	Leu	GIY	inr	200	rne	GIÀ	val	Leu		ser	Leu	Cys
	Va1	Ser	195	Aen	ΔΙα	מוז	Tur		Thr	Lvc	Val	Lou	205 Pro	412	Val	Acn
25	101	210	Leu	non	nia	110	215	1111	1111	2,5	741	220	110	nia	101	лор
	Glv	Ser	Ile	Trp	Arg	Leu		Phe	Tvr	Asn	Asn		Asn	Ala	Cvs	Ile
	225			•	Ū	230			•		235				•	240
30		Phe	Leu	Pro	Leu	Leu	Leu	Leu	Leu	Gly	Glų	Leu	Gln	Λla	Leu	Arg
					245					250					255	
	Asp	Phe	Ala	Gln	Leu	Gly	Ser	Ala	His	Phe	Trp	Gly	Met	Met	Thr	Leu
25				260					265					270		
35	Gly	Gly		Phe	Gly	Phe	Ala	Ile	Gly	Tyr	Val	Thr	Gly	Leu	Gln	Ile
			275		_			280					285			
	Lys	Phe	Thr	Ser	Pro	Leu		His	Asn	Val	Ser		Thr	Ala	Lys	Ala
40	C	290	C1-	T1	17 - 1	T	295	W_ 1	1	Т	Τ	300	C1	ть	T .	c
	305	Ala	GIN	ınr	vaı		Ala	vaı	Leu	lyr		GIU	GIU	ınr	Lys	
		Leu	Trn	Trn	Thr	310 Ser	Aen	Mat	Mat	Val	315	C1 _v	Gly	Sor	502	320
45	THE	Leu	пр	עני	325	261	VOII	Mec	MCL	330	Leu	Oly	Oly	261	335	VIG
	Tvr	Thr	Trn	Val		Glv	Trn	Glu	Met		Lvs	Thr	Pro	Glu		Pro
	1,14	••••		340		01)		0,0	345	27.0	2,5	••••		350	014	
50	Ser	Pro	Lys		Ser	Glu	Lys	Ser		Met	Glv	Val				
50			355	•			-	360			•	364				

<210> 95

<211> 2609 <212> DNA 5 <213> Mus musculus <400> 95 10 gagccgaggg tggtgctgca ggtgcacccg agggcaccgc cgagggtgag caccaggtcc 60 ctgcatcagc caggacacca gagcccagtc gggtggacgg acgggcgcct ctgaagcggt 120 ccaggatect gegeatggeg etgaetggag tetetgetgt etcegaggag teagagageg 180 ggaacaagcc atttctgctc cgggctctgc agatcgcgct ggtggtctct ctctactggg 240 15 300 tcacctccat ttccatggta ttcctcaaca agtacctgct ggacagcccc tccctgcagc 360 tggatacccc catttttgtc accttctacc aatgcctggt gacctcactg ctgtgcaagg 420 gcctcagcac tctggccacc tgctgccccg gcatggtaga cttccccacc ctaaacctgg 20 acctcaaggt ggcccgaagt gtgctgccgc tgtcagtggt ctttatcggc atgataacct 480 tcaataacct ctgcctcaag tacgtagggg tgcccttcta caacgtggga cgctcgctca 540 ccaccgtgtt caacgttett etetectace tgetgeteaa acagaccact teettetatg 600 ccctgctcac ctgcggcgtc atcattggtg gtttctggct gggtatagac caagaaggag 660 25 ctgagggaac cttgtccctg acgggcacca tcttcggggt gctggccagc ctctgcgtct 720 ccctcaatgc catctatacc aagaaggtgc tccctgcagt agaccacagt atctggcgcc 780 840 taacetteta taacaatgte aatgeetgeg tgetettett geeeetgatg atagtgetgg gcgagctccg tgccctcctg gccttcactc atctgagcag tgcccacttc tggctcatga 900 30 tgacgctggg tggcctgttt ggctttgcca tcggctatgt gacaggactg cagatcaaat 960 tcaccagtcc cctgacccat aacgtgtcag gcacggccaa ggcctgtgca cagacagtgc 1020 1080 tggccgtgct ctactacgaa gagattaaga gcttcctgtg gtggacaagc aacctgatgg 35 tgctgggtgg ctcctccgcc tacacctggg tcaggggctg ggagatgcag aagacccagg 1140 1200 aggaccccag ctccaaagat ggtgagaaga gtgctatcag ggtgtgagct ccttcaggga gccagggctg agctcgggtg gggcctgccc agcacggaag gcttcccata gagcctactg 1260 ggtatggccc tgagcaataa tgtttacatc cttctcagaa gaccatctaa gaagagccag 1320 40 gttctttcct gataatgtca gaaagctgcc aaatctcctg cctgccccat cttctagtct 1380 tgggaaagcc ctaccaggag tggcaccctt cctgcctcct cctggggcct gtctacctcc 1440 atatggtctc tggggttggg gccagctgca ctctttgggc actggactga tgaagtgatg 1500 45 tettaettte tacacaaggg agatgggttg tgaccetaet atagetagtt gaagggaget 1560 gtgtaacccc acatctctgg ggccctgggc aggtagcata atagctaggt gctattaaca 1620 tcaataacac ttcagactac ctttggaggc agttgggagc tgagccgaga gagagagatg 1680 gccattctgc cctcttctgt gtggatgggt atgacagacc aactgtccat ggggtgactg 1740 50 acacctccac acttcatatt ttcaacttta gaaaaggggg agccacacgt tttacagatt aagtggagtg atgaatgcct ctacagcccc taaccccact ttccctgcct ggcttctctt 1860 ggcccagaag ggccaccatc ctgttctcca acacctgacc cagctatctg gctatactct 1920 55 ctttctgtac tcccttccc ttccccccc cattagcctc ctccccaaca cctccatctt 1980

	caggcaggaa gtggggtcca ctcagcctct gttcccatct gcttggaccc ctgagcctct 2040	ì
5	catgaaggta ggcttatgtt ctctgaggct ggggccggag gagcgcactg attctcggag 2100	l
J	ttatcccatc aggetectgt cacaasatag cctaggeegt gtgtctaaga acagtggagg 2160	ŀ
	ttggcttata actgttctgg gggcagcgaa gcccacatca aggtactcat agacccagta 2220	l
	tttctgagga aacccctgtc cacatcctca cttggtaaag gcacagataa tctccctcag 2280	I
10	gcctcttgta taggagcact agccctggga gggctccgcc ccatgacctg atcaccccaa 2340	ı
	agcetteaac agaaggatte caacatgaat ttggggacag aagcacteag accaegatge 2400	l
	ccagcaccac accetectat ceteagggta getgteactg teetagteec ttetgtttgg 2460	ı
15	ccttttgtac cctcatttcc ttggcgtcat gtttgatgtc tttgtctctt tcgtgagaag 2520	ı
	atggggaaac catgtcagcc tctgcttccg acttcccatg ggttctaatg aagttggtgg 2580	ı
	ggcctgatgc cctgagttgt atgtgattt 2609	ı
20		
	<210> 96	
	<211> 360	
25	<212> PRT	
	<213> Mus musculus	
	<400> 96	
30	Met Ala Leu Thr Gly Val Ser Ala Val Ser Glu Glu Ser Glu Ser Gly	
	1 5 10 15	
	Asn Lys Pro Phe Leu Leu Arg Ala Leu Gln Ile Ala Leu Val Val Ser	
	20 25 30	
35	Leu Tyr Trp Val Thr Ser Ile Ser Met Val Phe Leu Asn Lys Tyr Leu	
	35 40 45	
	Leu Asp Ser Pro Ser Leu Gln Leu Asp Thr Pro Ile Phe Val Thr Phe	
40	50 55 60	
	Tyr Gln Cys Leu Val Thr Ser Leu Leu Cys Lys Gly Leu Ser Thr Leu	
	65 70 75 80	
45	Ala Thr Cys Cys Pro Gly Met Val Asp Phe Pro Thr Leu Asn Leu Asp	
45	85 90 95	
	Leu Lys Val Ala Arg Ser Val Leu Pro Leu Ser Val Val Phe Ile Gly	
	100 105 110	
50	Met Ile Thr Phe Asn Asn Leu Cys Leu Lys Tyr Val Gly Val Pro Phe	
	115 120 125	
	Tyr Asin Val Gly Arg Ser Leu Thr Thr Val Phe Asin Val Leu Leu Ser	
<i>55</i>	130 135 140	
	Tyr Leu Leu Lys Gln Thr Thr Ser Phe Tyr Ala Leu Leu Thr Cys	

	145					150					155					160	
	Gly	Val	Ile	Ile	Gly	Gly	Phe	Trp	Leu	Gly	Ile	Asp	Gln	Glu	Gly	Ala	
5					165					170					175		
	Glu (Gly	Thr	Leu	Ser	Leu	Thr	Gly	Thr	Ile	Phe	Gly	Val	Leu	Ala	Ser	
				180					185					190			
10	Leu (Cys	Val	Ser	Leu	Asn	Ala	lle	Tyr	Thr	Lys	Lys	Val	Leu	Pro	Ala	
			195					200					205				
	Val /	Asp	His	Ser	Ile	Trp	Arg	Leu	Thr	Phe	Tyr	Asn	Asn	Val	Asn	Ala	
15	2	210					215					220					
	Cys \	Val	Leu	Phe	Leu	Pro	Leu	Met	Ile	Val	Leu	Gly	Glu	Leu	Arg	Ala	
	225					230					235					240	
	Leu I	Leu	Ala	Phe	Thr	His	Leu	Ser	Ser	Ala	His	Phe	Trp	Leu	Met	Met	
20					245					250					255		
	Thr I	Leu	Gly		Leu	Phe	G1y	Phe		Ile	Gly	Tyr	Val		Gly	Leu	
	61			260	m1	•			265	17.		11 2		270	æı.	. 1	
25	Gln l		-	Pne	Ihr	Ser	Pro		ınr	HIS	Asn	val.		GIÀ	Inr	Ala	
	Lys A		275 Cvs	Δ1a	Gln	Thr	Val	280	Ala	Va1	Ī en	Tur	285 Tvr	Glu	G111	716	
	_	290	0,3	7110	0111	1111	295	Lou	****	,	Dea	300	***	olu	Olu	110	
30	Lys S		Phe	Leu	Trp	Trp		Ser	Asn	Leu	Met		Leu	Gly	G1y	Ser	
	305				-	310					315				-	320	
	Ser A	Ala	Tyr	Thr	Trp	Val	Arg	Gly	Trp	Glu	Met	Gln	Lys	Thr	Gln	Glu	
					325					330					335		
35	Asp F	ro	Ser	Ser	Lys	Asp	Gly	Glu	Lys	Ser	Ala	Ile	Arg	Val			
				340	•				345					350,			
																•	
40		0.7															
	<210>																
	(211)																
45	(213)			י מחד	vegi	ncus	;										
	(210)				1081												
	<400>	97															
50				tgga	gcct	c te	ctgt	tctct	gag	gagg	cag	acag	cgag	gaa c	aago	cattt	60
50																tctcc	120
	atggt	att	c c t	caac	aagt	a cc	tgct	tggad	: ago	ccct	ccc	tgca	gctg	ga t	ассс	ccatc	180
	ttcgt	cac	ct t	ctac	caat	gcc	tggt	tgaco	tca	ctgo	tgt	gcaa	gggc	ct c	agca	ctctg	240
55	gccac	ctg	ct g	ccct	ggca	t gg	gtaga	actto	ccc	acco	taa	acct	ggac	ct c	aagg	tggcc	300

	cgaagtgtgc tgccgctgtc cgtggtcttt atcggcatga taaccttcaa taacctctgc 360)
_	ctcaagtacg tgggggtggc cttctacaac gtgggacgct cgctcactac cgtgttcaat 420	Ì
5	gtgcttctct cctacctgct gcttaaacag accacttcct tttatgccct gctcacctgt 480)
	gccatcatca ttggtggttt ctggctggga atagatcaag agggagctga gggcaccctg 540	į
	tecetgaegg geaceatett eggggtgetg geeageetet gtgteteaet caatgeeate 600	١
10	tacaccaaga aggtgctccc tgccgtagac cacagtatet ggcgcctaac ettetataac 660	
	aacgtcaacg cctgtgtgct cttcttgccc ctgatggtag tgctgggcga gctccatgct 720	1
	ctcctggcct tcgctcatct gaacagcgcc cacttctggg tcatgatgac gctgggtgga 780	
15	ctcttcggct ttgccattgg ctatgtgaca ggactgcaga tcaaattcac cagtccctg 840	
	acceataatg tgtcgggcac agccaaggcc tgtgcacaga cagtgctggc tgtgctctac 900	
	tatgaagaga ttaagagett eetgtggtgg acaageaact tgatggtget gggtggetee 960	
	totgoctaca cotgggtcag gggctgggag atgcagaaga cocaggagga coccagotoc 1020	
20	aaagagggtg agaagagtgc tatcggggtg tga 1053	
25	<210> 98	
	<211> 350	
	<212> PRT	
	<213> Rattus norvegiucus	
30	<400> 98	
	Met Ala Leu Thr Gly Ala Ser Ala Val Ser Glu Glu Ala Asp Ser Glu	
	1 5 10 15	
35	Asn Lys Pro Phe Leu Leu Arg Ala Leu Gln Ile Ala Leu Val Val Ser	
	20 25 30	
	Leu Tyr Trp Val Thr Ser Ile Ser Met Val Phe Leu Asn Lys Tyr Leu	
40	35 . 40 . 45	
	Leu Asp Ser Pro Ser Leu Gln Leu Asp Thr Pro Ile Phe Val Thr Phe	
	50 55 60	
	Tyr Gln Cys Leu Val Thr Ser Leu Leu Cys Lys Gly Leu Ser Thr Leu	
45	65 70 75 80	
	Ala Thr Cys Cys Pro Gly Met Val Asp Phe Pro Thr Leu Asn Leu Asp	
	85 90 95	
50	Leu Lys Val Ala Arg Ser Val Leu Pro Leu Ser Val Val Phe Ile Gly	
	100 105 110	
	Met Ile Thr Phe Asn Asn Leu Cys Leu Lys Tyr Val Gly Val Ala Phe	
	115 120 125	
55	Tyr Asn Val Gly Arg Ser Leu Thr Thr Val Phe Asn Val Leu Leu Ser	

		130	+				135					140					
	Tyr	Leu	Leu	Leu	Lys	Gln	Thr	Thr	Ser	Phe	Tyr	Ala	Leu	Leu	Thr	Cys	
5	145	į				150					155					160	
	Ala	He	Ile	Ile	G1 y	Gly	Phe	Trp	Leu	G1 y	Ile	Asp	Gln	Glu	Gly	Ala	
					165					170					175		
10	Glu	Gly	Thr	Leu	Ser	Leu	Thr	Gly	Thr	Ile	Phe	Gly	Va1	Leu	Ala	Ser	
				180					185					190			
	Leu	Cys	Val	Ser	Leu	Asn	Ala	Ile	Tyr	Thr	Lys	Lys	Val	Leu	Pro	Ala	
15			195					200					205				
	Val	Asp	His	Ser	Ile	Trp	Arg	Leu	Thr	Phe	Tyr	Asn	Asn	Val	Asn	Ala	
		210					215					220					
	Cys	Val	Leu	Phe	Leu	Pro	Leu	Met	Val	Val	Leu	Gly	Glu	Leu	His	Ala	
20	225					230					235					240	
	Leu	Leu	Ala	Phe		His	Leu	Asn	Ser		His	Phe	Trp	Val		Met	
	æ1	,	01	01	245	DI.	0.1	Di	. 1	250	01				255		
25	lhr	Leu	Gly		Leu	Phe	Gly	Phe		He	Gly	Tyr	Val		Gly	Leu	
	Gln	מוז	Lys	260 Pho	Thr	Sor	Pro	l an	265	Hic	Acn	Val	S02	270	Thm	۸1.	
	GIII	116	275	rne	1111	Set	110	280	1111	1112	VSII	Vai	285	Gly	inr	AIA	
30	Lys	Ala	Cys	Ala	Gln	Thr	Val		Ala	Val	Leu	Tvr		G1u	Glu	Ile	
		290	•				295					300	-,-				
	Lys	Ser	Phe	Leu	Trp	Trp	Thr	Ser	Asn	Leu	Met	Val	Leu	Gly	Gly	Ser	
	305					310					315					320	
35	Ser	Ala	Tyr	Thr	Trp	Val	Arg	G1y	Trp	Glu	Met	Gln	Lys	Thr	Gln	Glu	
					325					330					335		
	Asp	Pro	Ser	Ser	Lys	Glu	Gly	Glu	Lys	Ser	Ala	Ile	Gly	Val			
40				340					345					350			
	/01/	N 00															
45)> 99 .> 77															
,,,		:> DN															
			is mu	ecul	110												
	(210	/ MU	is illu	SCUI	us												
50	<400	> 99	ŀ														
				ttca	8000	a oo	etes	tect	goa	ggta	cac	ccea	gggr	ac c	acca	agggt	60
																ggtac	120
55																ctttg	

	gtctgggcat	ccagaatgga	ctttatctgg	aggaggtgac	atggcttctc	gcctctggaa	240
5	gtgctgcttg	gatctccggg	acttcatgtc	ctgactaggt	ctggaagcgg	tgaaaatagg	300
	ggtaggaaaa	aaggagagga	ctgcaacaag	gtcttcccga	gtggcctgag	ctcgagggac	360
	gagggaggtg	caacggtggg	gagccgggcg	caagggctgg	gcggagggag	ggggggggtc	420
	tccctaagca	gaaaggtggt	attccatttt	ctgggtagat	ggtgaagatg	cacctgaccg	480
10	agtctggtcg	atctgaagat	atcaggggaa	aagatagtgc	gggtggaggg	gagaatgaca	540
	gaaccttcca	gaaaatggga	gaggctatag	cacttgcaaa	cccttccctg	atctccgggg	600
	actcccggaa	gaagagggca	ggtctgtggg	cataggtgca	gacttgccgg	ggagctcttg	660
15	acggccgcgg	gaagtggcaa	cggcctgcga	gctggccctt	taaggcggct	cgtaggcgtg	720
	tcaggaaatg	cgcgcagggc	ccgccctgct	cggtaagtgg	cccgggaccc	gcgtcgctga	780
	gccggaactt	gaattcggct	cgtggcaacc	gcagggcctt	gctccggtca	ggcccctgtc	840
	cgtgtccctc	gagacgcctt	cctgagcctc	ggtgatctcc	ctgcagcacg	ccctcctttc	900
20	ggctctgcgg	gtgcttccgg	gggttcccgc	agcccatgct	tcccacgcgg	tccgcgtcca	960
	gttatttcct	cctccgctcc	gtccttcctt	cgctctctcg	cttcctttct	ccctgcgact	1020
	cacgtgtccc	ctgtcctcaa	actggccatg	gctgtcaaag	cccacatcct	tagttaggcc	1080
25	ccttctccct	tccctgggtc	ttgtttcgtg	acaccacctc	cctcccccgc	cccgggagcg	1140
	agcaagatga	ggagcggtgc	acctcggcaa	atccggaagc	agaacttcat	ccaagaagga	1200
	ggggaccgat	aggtcatccc	atgtgacagt	tgaaggctgc	agccacagac	cctagctgct	1260
	tgaagccctg	tagtccaggg	actgcttctg	gccgtaaggt	gacccagctc	ttctgccacc	1320
30	atgaacaggg	cgcctctgaa	gcggtccagg	atcctgcgca	tggcgctgac	tggagtctct	1380
	gctgtctccg			_			1440
	gcgctggtgg						1500
35	ctgctggaca	•	-		_	-	1560
	ctggtgacct					• • • •	1620
	gtagacttcc						1680
	gtggtcttta						1740
40	ttctacaacg		_	•			1800
	ctcaaacaga						1860
	gactgggggc					_	1920
	ccaggtcttt	•	•				1980
	ctgtgactca						2040
	acagcaaagc						2100
	gatccccatt						2160
50	aagctaagta					-	2220
	agttacctcc						2280
	gaactcaggt						2340
FF	agtcaatatg	_					2400
55	ttaattaccg	ataggagcgt	tgtgctgatc	attacacttg	tagcatcctc	tttattgtac	2460

	ccataagctc tctgagtggc ggcatctctg tgaaactgca gctcggagag gctgcgctcc	2520
5	ttgccacago cocacaacta agaagcagat agtotgggao gcagtococa gttggtcata	2580
3	ctccctggcc tgtgtttcaa gccagtctgc tttgctcctg acccttggga gttagcgcaa	2640
	tgaaaaccaa cactatcact acagtctaaa tgtgctttta aatgaaagcc caggaacttt	2700
	gaagcatccg gccccttaac ggcagccact atgtcctgat tccgccaaca tcttttcagt	2760
10	gcccggcagt cacatggagc aagggcctct tggcttggac agcatgtgtt agggaacatg	2820
	tttgccactt tgaatgaatt tagtggctgc tgggttacag agaccagggc atctttcccc	2880
	tcagagtcct gaatgaacga aaagcaacct tcatttgtac ctgctctgga ttttagttcg	2940
15	tcttgtttgg cctatttaga tgtccctggt gtctctgagg cccaggctgg gtgctctaga	3000
	tgtagggacc aggccaacct gtactgtctt ccctagaaac attgccctgg ttgggcagct	3060
	cctggatcca gggttaaggg gtctgggcgg agagaggtca gatagtggca ggatgcctcc	3120
	cactgocccc acatacatac cotaagagat ctggtactcc toottocago ctacaagcta	3180
20	ccgtggggtc ccacttcagt ccaccagccc tgccaacgtt agaggggatg ggcctcctag	3240
	taggagaact tacatgcagg aaggtacagt ctctggagaa cctgagcccg ggtccccaaa	3300
	gggacaagta gctgatagtg aggcagctga gccccatggc ggcctgccca agtggcacgg	3360
25	gaaagtggag ctctctgctg cccccactac tggccccatc tcttggctct cccctccctt	3420
	cctcctgtgg agaaggccca tctctggaaa ggcctcctag acatgcggca ctttgcaaag	3480
	cctgtcgggc tcacagcccc tctagggtct aggaccttga gaatgaagaa tggagtcact	3540
	tctagactct agtggtaacc accaggaggt acagggtgct ctgactgtgc agggaaaccc	3600
30	accetagect ctectagec aagtectet gagectegag agtctegtec ccttettcte	3660
	agatagcatc ttgctatgtt gccctcaagt cccaggcaac tggggctgca ggagcaccac	3720
	cttgcctctc tccagcttct tgaagacttg tacctttctc ctagcagtct ctatctgctc	3780
<i>35</i>	tcactccatc cattgagcag ctattagctt gtggccaagt attitccagg ccctgtactg	3840
55	agttttaggg tacaagtttg agaaaggaag ggtggggtcc ttgctcctgg tccgtgaatg	3900
	atgttgatgg cagaaacgat agttacacta gatgctaagg gctgtgggta tctagaggga	3960
	gcagggagca tgtgggataa cctgagcagg cctagctgaa aagtcattgc tggcatgaga	4020
40	ctgctccagt agtacaggct gggaacacac atttgaatgt ttcctgaaga cagttgggag	4080
	ccacaggaaa tatccactgt agaaagatta tttagttgta agacagagta gtagattggt	4140
	taacatagta gcaaaaacgt ggccccagtt tttacagatg aagggaattg gaactcagag	4200
45	aggttaagta acttctccca agcagctcag ctacaaaaat cacagaacag gcaggggcct	4260
43	gatggctctg atgcctgtgc tggtcccact attccatgtt gctaattcct gcagcagcag	4320
	taaacctctg ccttgtggaa atgaggagtc taaataaaga gaccatagca ttgccacaag	4380
	caggittcia ccaacigggg giggcaagga aigcigitt agcagcagga agcigggaag	4440
50	aggctgagta ctggggggat gaggaaggga tccccaggag aggctgactt tggccttgaa	4500
	gaatggtgga gtccctggaa agatgcagat acacagagct ctgtggatat acagagaagt	4560
	ggggagctaa gtaggtggct tggggccatc atgtgacaga ggaagtcggg ctagatgcag	4620
EE	gaagcccggt gctgtggcct agggagccat gtaggttctt tgagcagggg gcgggggggg	4680
55	gggggggtga cccaggagtg actgtaaaca acatcaggcc atgagcagct ctgacctaat	4740

	gttctcacca	agggagccag	aaccaaggct	tagagccctg	tcccttttta	gtgtccaagg	4800
-	tcactttact	ggccctcttc	ctttacagct	gttggccccc	acaggccatc	aggcacctat	4860
5	gctattttat	tttatagcct	tcattacaat	gactacaatt	gtaattagag	agttgacagg	4920
	gtcacatctg	tccttatata	ttccccctct	gctaagttct	gcctgggaga	atgtggaggg	4980
	tattggtgaa	atttggggaa	gttataaccc	cccacccct	gccccaccc	cctgctttgc	5040
10	tccctttatc	tgcagggcat	ttctgtgccc	actttagccc	atatagctcc	caaataaatg	5100
	acacagaaac	ctggtatttt	cattaacaaa	ctgctggcac	tctgctgggc	aggttctgag	5160
	ctgttctaac	cctctaagct	gctaatgccc	agatagatgc	cccaatgctt	gccatccgag	5220
15	tctttctctg	gcttgctctg	ctccatgtgt	gacctcatgg	tgaatcctcc	tgatttcccc	5280
	acatggcctc	tccacacttt	tccttctccc	ctctctctac	cagggaccct	ctcactggga	5340
	cccgatgtcc	catctgtact	gtcctctccc	acccagtcat	aggctgattg	agtctttatt	5400
	aaccaatcag	agatgatgga	aaaacagttt	ttacatagca	ctgaggatgg	agatgcttga	5460
20	cccttgagat	gcttgcccgt	aacctgtact	gtatccagat	gtctgggccc	ccaaatcagc	5520
	aggtgaatac	acagtacaca	ggactgaccc	ccaacagagg	gggaacacag	gttctcactc	5580
	tgggctccac	gccctcggcc	ctttcttagt	gcaggggtta	gactttgtat	gtgttgatga	5640
25	tgaggtaagg	gccatggaac	agtcagaacg	gtggtgtcag	aatcctgtcc	ctctccctcc	5700
20	tgtcctcatc	cctccttacc	gtgtcactct	tctgtctgtt	gcaggtggtt	tctggctggg	5760
	tatagaccaa	gaaggagctg	agggaacctt	gtccctgacg	ggcaccatct	tcggggtgct	5820
	ggccagcctc	tgcgtctccc	tcaatgccat	ctataccaag	aaggtgctcc	ctgcagtaga	5880
30	ccacagtatc	tggcgcctaa	ccttctataa	caatgtcaat	gcctgcgtgc	tcttcttgcc	5940
	cctgatgata	gtgctgggcg	agctccgtgc	cctcctggcc	ttcactcatc	tgagcagtgc	6000
	ccacttctgg	ctcatgatga	cgctgggtgg	cctgtttggc	tttgccatcg	gctatgtgac	6060
05	aggactgcag	atcaaattca	ccagtcccct	gacccataac	gtgtcaggca	cggccaaggc	6120
35	ctgtgcacag	acagtgctgg	ccgtgctcta	ctacgaagag	attaagagct	tcctgtggtg	6180
	gacaagcaac	ctgatggtgc	tgggtggctc	ctccgcctac	acctgggtca	ggggctggga	6240
	gatgcagaag	acccaggagg	accccagctc	caaagatggt	gagaagagtg	ctatcagggt	6300
40	gtgagctcct	tcagggagcc	agggctgagc	tcgggtgggg	cctgcccagc	acggaaggct	6360
		cctactgggt					6420
	catctaagaa	gagccaggtt	ctttcctgat	aatgtcagaa	agctgccaaa	tctcctgcct	6480
	gccccatctt	ctagtcttgg	gaaagcccta	ccaggagtgg	caccetteet	gcctcctcct	6540
45	ggggcctgtc	tacctccata	tggtctctgg	ggttggggcc	agctgcactc	tttgggcact	6600
	ggactgatga	agtgatgtct	tactttctac	acaagggaga	tgggttgtga	ccctactata	6660
	gctagttgaa	gggagctgtg	taaccccaca	tctctggggc	cctgggcagg	tagcataata	6720
50	gctaggtgct	attaacatca	ataacacttc	agactacctt	tggaggcagt	tgggagctga	6780
	gccgagagag	agagatggcc	attctgccct	cttctgtgtg	gatgggtatg	acagaccaac	6840
	tgtccatggg	gtgactgaca	cctccacact	tcatattttc	aactttagaa	aagggggagc	6900
	cacacgtttt	acagattaag	tggagtgatg	aatgcctcta	cagcccctaa	ccccactttc	6960
55	cctgcctggc	ttctcttggc	ccagaagggc	caccatcctg	ttctccaaca	cctgacccag	7020

	ctatctggct atactetett tetgtactee etteccette eccecceat tageeteete	70 80
	cccaacacct ccatcttcag gcaggaagtg gggtccactc agcctctgtt cccatctgct	7140
5	tggacccctg agcctctcat gaaggtaggc ttatgttctc tgaggctggg gccggaggag	7200
	cgcactgatt ctcggagtta tcccatcagg ctcctgtcac aaaatagcct aggccgtgtg	7260
	tctaagaaca gtggaggttg gcttataact gttctggggg cagcgaagcc cacatcaagg	7320
10	tactcataga cocagtattt ctgaggaaac coctgtocac atcotcactt ggtaaaggca	7380
	cagataatet cocteaggee tettgtatag gageactage cetgggaggg eteegeecea	7440
	tgacctgatc accccaaagc cttcaacaga aggattccaa catgaatttg gggacagaag	7500
15	cactcagacc acgatgecea geaceacace etectateet cagggtaget gteactgtee	7560
15	tagtcccttc tgtttggcct tttgtaccct catttccttg gcgtcatgtt tgatgtcttt	7620
	gtctctttcg tgagaagatg gggaaaccat gtcagcctct gcttccgact tcccatgggt	7680
	tctaatgaag ttggtggggc ctgatgccct gagttgtatg tgatttaata aaaaaaaaat	7740
20	ttttttaaaa ac	7752
25	<210> 100	
	<211> 4039	
	<212> DNA	
	<213> Cricetulus griseus	
30	<400> 100	
	gaacttcacc caagccatgt gacaattgaa ggctgtaccc ccagacccta acatcttgga	60
	gccctgtaga ccagggagtg cttctggccg tggggtgacc tagctcttct accaccatga	120
35	acagggcccc tctgaagcgg tccaggatcc tgcgcatggc gctgactgga ggctccactg	180
	cctctgagga ggcagatgaa gacagcagga acaagccgtt tctgctgcgg gcgctgcaga	240
	togogotggt ogtotototo tactgggtca cotocatoto catggtatto otcaacaagt	300
40	acctgctgga cagcccctcc ctgcagctgg atacccctat cttcgtcact ttctaccaat	360
	gootggtgac ctctctgctg tgcaagggcc tcagcactct ggccacctgc tgccctggca	420
	cogttgactt occoaccetg aacctggace ttaaggtgge cogcagegtg etgecactgt	480
	cggtagtctt cattggcatg ataagtttca ataacctctg cctcaagtac gtaggggtgg	540
45	ccttctacaa cgtggggcgc tcgctcacca ccgtgttcaa tgtgcttctg tcctacctgc	600
	tgctcaaaca gaccacttcc ttctatgccc tgctcacatg tggcatcatc attggtgagt	660
	ggggcccggg ggctgtggga gcaggatggg catcgaactg aagccctaaa ggtcaacact	720
50	gtaggtacct ttacttactg tcccaggtcc cttgcatcag cagttacagg aagagccctg	780
	tagaaaacaa ataacttcct tatggtcatt caacaagtta gggacccagc cagggtgaaa	840
	ataatgttag cagcaactac agcaaagatg gctctcgcca cttgcatgat taaaatgtgc	900
	caggiactca gaicyaagca tiggatccac attaactcaa ciaatcccia tiacaaggia	960
55	aaatatatcc gaattttaca gagggaaaac caaggcacag agaggctaag tagcttgacc	1020

	aggatcacac	agctaataat	cactgacata	gctgggattt	aaacataagc	agttacctcc	1080
-	atagatcaca	ctatgaccac	catgccactg	ttccttctca	agagticcag	gatcctgtct	1140
5	gtccagttct	ctttaaagag	gacaacacat	ctgacattgc	taccttgagg	taacatttga	1200
	aatagtgggt	agacatatgt	tttaagtttt	attcttrctt	tttatgygtg	tgtgtttggg	1260
	gggccaccac	agtgtatggg	tggagataag	gggacaactt	aagaattggt	cctttctccc	1320
10	accacatggg	tgctgaggtc	tgaactcagg	tcatcaggat	tggcacaaat	ccctttaccc	1380
	actgagccat	ttcactggtc	caatatatgt	gtgcttttaa	gaggctttaa	ctattttccc	1440
	agatgtgaat	gtcctgctga	tcattatccc	cttttacccg	gaagccctct	gggaggtgcc	1500
15	atccctgtgg	tcgtctgcat	acaaatgggg	aaactgcaac	tcagagaaac	aaggctactt	1560
, -	gccagggccc	cacaagtaag	ataggctggg	atgccatccc	agactggcca	cactccctgg	1620
	cctgtgcttc	aagccagttt	actttgttcc	tgcccattgg	aagttagcat	gttgcagtca	1680
	aacacaataa	ctacaggcca	aaagtgcttt	taaattaaag	tcagatgaac	ttttaaacat	1740
20	ccagagctcc	tcaactgcag	gagttacaac	ctgattctgc	aaccatcttt	gcagtgcccg	1800
	gtagtcatat	gtagctagag	gctcttggct	aggacagcat	gtgttaggaa	acatctggcc	1860
	ctgagatcat	tgaattgagt	gactgctggg	tgacaaagac	caaggcatcc	gttccctgag	1920
25	agtcctgggc	aagcagcaat	gtgaccttca	tttgtaccta	ctcaggttct	ttatctgtcc	1980
	tgtttgacct	acttagtctc	ctctggtgtc	tcagaggccc	aggctgggta	ctctggatgt	2040
	caggatcagg	ccaatgcgca	catctgccct	agaaatgtcc	ccctggttga	gcagctcctg	2100
	aatccatcgg	taaagggtct	ggaccaggga	ggagtcagat	aaaaagctga	cagcactggg	2160
30	ggactccatg	gggaactccc	acctgccccc	acacatccat	cctaagagaa	ctggtattcc	2220
	ttgtttcctc	tttgtcctac	aaggcaccct	gggatcccac	ttcagtctcc	cagccttgcc	2280
	agggttagag	ggcatgagcc	tccttgtggg	gaatttagat	gcaagaaggt	acagtcacta	2340
35			_		tagtgaggca		2400
	gcagcagcct	gcctgagtgg	ctgaactctg	cggcctccgg	aactggcccc	aactgttggg	2460
					ataagtgctg		2520
			_		gagaagtcct	5 00 0	2580
40					tgagtaaggt		2640
		-			gacaaagagt		2700
					ggaaattgga		2760
45					agaacagtca		2820
43					gatccctgtg		2880
	gcctctacct	tgtgggaatg	caggatctaa	atgaagagag	raagtgctgg	ccccatgctg	2940
	tggtctggaa	agctatgcag	gctctttgag	cagagagtga	cccacaagtg	aatagagtcc	3000
50					ccaaatgctc		3060
	agccaaagcc	aagttagagt	cctgtgcttg	cccaaggtca	ctttgcctgg	ccctcctcct	3120
	atagcacccg	tgttatctta	tagccctcat	tacagtgatt	acaattataa	ttagagaggt	3180
55	aacagggcca	cactgtcctt	acacattccc	ctgctagatt	gtagctggga	gagggggaga	3240
55	tgtaggtggc	tgggggagtg	ggagggaaga	tgcagatttt	cattctgggc	tctactccct	3300

	cagccatttt	ttggtgtggg	agttagactt	tggatatgtt	gatgatgagg	taagggccac	3360
	agaacagtct	gaactgtggt	atcagaatcc	tgtccctctc	cctctctcct	catccctctt	3420
5	caccttgtca	ctcctctgtc	tgctacaggt	ggtttctggc	tgggtataga	ccaagaggga	3480
	gctgagggca	ccctgtccct	cataggcacc	atcttcgggg	tgctggccag	cctctgcgtc	3540
	tccctcaatg	ccatctatac	caagaaggtg	ctcccagcag	tggacaacag	catctggcgc	3600
10	ctaaccttct	ataacaatgt	caatgcctgt	gtgctcttct	tgcccctgat	ggttctgctg	3660
	ggtgagctcc	$\verb"gtgccctcct"$	tgactttgct	catctgtaca	gtgcccactt	ctggctcatg	3720
	atgacgctgg	gtggcctctt	cggctttgcc	attggctatg	tgacaggact	gcagatcaaa	3780
15	ttcaccagtc	ccctgaccca	caatgtatca	ggcacagcca	aggcctgtgc	gcagacagtg	3840
15	ctggccgtgc	tctactatga	agagactaag	${\tt agcttcctgt}$	ggtggacaag	caacctgatg	3900
	gtgctgggtg	gctcctcagc	ctatacctgg	gtcaggggct	gggagatgca	gaagacccaa	3960
	gaggacccca	gctccaaaga	gggtgagaag	agtgctattg	gggtgtgagc	ttcttcaggg	4020
20	acctgggact	gaacccaag					4039

Claims

5

10

20

30

35

45

50

- 1. A method for enhancing a binding activity of an antibody composition to Fcγ receptor Illa, which comprises modifying a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule.
- 2. The method according to claim 1, wherein the modification of a complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule is to bind a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in the complex *N*-glycoside-linked sugar chain to the Fc region in the antibody molecule.
- **3.** The method according to claim 1 or 2, wherein the sugar chain is synthesized by a cell in which the activity of a protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is decreased or deleted.
- The method according to claim 3, wherein the protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is selected from the group consisting of the following (a), (b) and (c):
 - (a) a protein relating to synthesis of an intracellular sugar nucleotide, GDP-fucose;
 - (b) a protein relating to modification of a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain;
 - (c) a protein relating to transport of an intracellular sugar nucleotide, GDP-fucose to the Golgi body.
- 5. The method according to claim 3 or 4, wherein the cell is resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in a complex *N*-glycoside-linked sugar chain.
 - 6. The method according to any one of claims 3 to 5, wherein the cell is resistant to at least one lectin selected from the group consisting of the following (a) to (d):
 - (a) a Lens culinaris lectin;
 - (b) a Pisum sativum lectin;
 - (c) a Vicia faba lectin;
 - (d) an Aleuria aurantia lectin.
 - 7. The method according to any one of claims 3 to 6, wherein the cell is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
- 8. The method according to any one of claims 3 to 7, wherein the cell is selected from the group consisting of the following (a) to (i):
 - (a) a CHO cell derived from a Chinese hamster ovary tissue;
 - (b) a rat myeloma cell line YB2/3HL.P2.G11.16Aq.20 cell;
 - (c) a BHK cell derived from a Syrian hamster kidney tissue;
 - (d) a mouse myeloma cell line NS0 cell;
 - (e) a mouse myeloma cell line SP2/0-Ag14 cell;
 - (f) a hybridoma cell;
 - (g) a human leukemic cell line Namalwa cell;
 - (h) an embryonic stem cell;
 - (i) a fertilized egg cell.
 - 9. The method according to any one of claims 1 to 8, wherein the antibody molecule is selected from the group consisting of the following (a) to (d):
 - (a) a human antibody;
 - (b) a humanized antibody;
 - (c) an antibody fragment comprising the Fc region of (a) or (b);
 - (d) a fusion protein comprising the Fc region of (a) or (b).

- 10. The method according to any one of claims 1 to 9, wherein the antibody molecule belongs to an IgG class.
- 11. The method according to any one of claims 1 to 10, wherein, in the complex *N*-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule, the ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond is 20% or more of total complex *N*-glycoside-linked sugar chains.
- 12. A method for enhancing an antibody-dependent cell-mediated cytotoxic activity of an antibody composition, which comprises using the method according to any one of claims 1 to 11.
- 13. A process for producing an antibody composition having an enhanced binding activity to Fcγ receptor IIIa, which comprises modifying a complex N-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule.
- 14. The process according to claim 13, wherein the modification of a complex N-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule is to bin a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α-bond in the complex N-glycoside-linked sugar chain to the Fc region in the antibody molecule.
- 20 15. The process according to claim 13 or 14, wherein the sugar chain is synthesized by a cell in which the activity of a protein relating to modification of a sugar chain in which fucose is bound to N-acetylglucosamine in the reducing end in the complex N-glycoside-linked sugar chain is decreased or deleted.
 - **16.** The process according to claim 15, wherein the protein relating to modification of a sugar chain in which fucose is bound to *N*-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain is selected from the group consisting of the following (a), (b) and (c):
 - (a) a protein relating to synthesis of an intracellular sugar nucleotide, GDP-fucose;
 - (b) a protein relating to modification of a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain;
 - (c) a protein relating to transport of an intracellular sugar nucleotide, GDP-fucose to the Golgi body.
 - 17. The process according to claim 15 or 16, wherein the cell is resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in a complex *N*-glycoside-linked sugar chain.
 - **18.** The process according to any one of claims 15 to 17, wherein the cell is resistant to at least one lectin selected from the group consisting of the following (a) to (d):
 - (a) a Lens culinaris lectin;
 - (b) a Pisum sativum lectin;
 - (c) a Vicia faba lectin;

5

10

25

30

35

40

50

55

- (d) an Aleuria aurantia lectin.
- 45 **19.** The process according to any one of claims 15 to 18, wherein the cell is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
 - 20. The process according to any one of claims 15 to 19, wherein the cell is selected from the group consisting of the following (a) to (i):
 - (a) a CHO cell derived from a Chinese hamster ovary tissue;
 - (b) a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 cell;
 - (c) a BHK cell derived from a Syrian hamster kidney tissue;
 - (d) a mouse myeloma cell line NS0 cell;
 - (e) a mouse myeloma cell line SP2/0-Ag14 cell;
 - (f) a hybridoma cell;
 - (g) a human leukemic cell line Namalwa cell;
 - (h) an embryonic stem cell;

- (i) a fertilized egg cell.
- 21. The process according to any one of claims 13 to 20, wherein the antibody molecule is selected from the group consisting of the following (a) to (d):
 - (a) a human antibody;

5

10

15

20

25

35

40

45

50

- (b) a humanized antibody;
- (c) an antibody fragment comprising the Fc region of (a) or (b);
- (d) a fusion protein comprising the Fc region of (a) or (b).
- 22. The process according to any one of claims 13 to 21, wherein the antibody molecule belongs to an IgG class.
- 23. The method according to any one of claims 13 to 22, wherein, in the complex N-glycoside-linked sugar chain which is bound to the Fc region of an antibody molecule, the ratio of a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end through α -bond is 20% or more of total complex N-glycoside-linked sugar chains.
- **24.** A process for producing an antibody composition having an increased antibody-dependent cell-mediated cytotoxic activity, which comprises using the process according to claim 12.
- 25. An antibody composition produced by the process according to any one of claims 13 to 24.
- 26. A method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain among total complex *N*-glycoside-linked sugar chains bound to the Fc region in an antibody composition, which comprises: reacting an antigen with a tested antibody composition to form a complex of the antigen and the antibody composition; contacting the complex with an Fcγ receptor IIIa to measure the binding activity to the Fcγ receptor IIIa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fcγ receptor IIIa.
- 27. A method for detecting the antibody-dependent cell-mediated cytotoxic activity in an antibody composition, which comprises: reacting an antigen with a tested antibody composition to form a complex of the antigen and the antibody composition; contacting the complex with an Fcγ receptor Illa to measure the binding activity to the Fcγ receptor Illa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fcγ receptor Illa.
 - 28. A method for detecting the ratio of a sugar chain in which fucose is not bound to *N*-acetylglucosamine in the reducing end in the sugar chain among total complex *N*-glycoside-linked sugar chains bound to the Fc region in an antibody composition, which comprises: contacting a tested antibody composition with a Fcγ receptor IIIa to measure the binding activity of the antibody composition to the Fcγ receptor IIIa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fcγ receptor IIIa.
 - 29. A method for detecting the antibody-dependent cell-mediated cytotoxic activity in an antibody composition, which comprises: contacting a tested antibody composition with a Fcγ receptor Illa to measure the binding activity of the antibody composition to the Fcγ receptor Illa; and detecting the ratio of a sugar chain in a standard antibody composition with a standard curve showing the binding activity to the Fcγ receptor Illa.
 - **30.** An Fc fusion protein composition produced by using a cell resistant to a lectin which recognizes a sugar chain structure in which 1-position of fucose is bound to 6-position of *N*-acetylglucosamine in the reducing end through α-bond in a complex *N*-glycoside-linked sugar chain.
 - 31. The Fc fusion protein composition according to claim 30, wherein the cell is selected from the group consisting of the following (a), (b) and (c):
 - (a) an enzyme protein relating to synthesis of an intracellular sugar nucleotide, GDP-fucose;
 - (b) an enzyme protein relating to modification of a sugar chain in which 1-position of fucose is bound to 6-position of N-acetylglucosamine in the reducing end through α -bond in a complex N-glycoside-linked sugar chain;
 - (c) a protein relating to transport of an intracellular sugar nucleotide, GDP-fucose to the Golgi body,

wherein the activity of the protein is decreased or deleted.

- 32. The Fc fusion protein composition according to claim 30 or 31, wherein the cell is resistant to at least one lectin selected from the group consisting of the following (a) to (d):
 - (a) a Lens culinaris lectin;
 - (b) a Pisum sativum lectin;
 - (c) a Vicia faba lectin;
 - (d) an Aleuria aurantia lectin.

33. The Fc fusion protein composition according to any one of claims 30 to 32, wherein the cell is a cell into which a gene encoding an Fc fusion protein is introduced.

- 34. The Fc fusion protein composition according to claim 33, wherein the Fc is derived from an IgG class of an antibody molecule.
- 35. The Fc fusion protein composition according to any one of claims 30 to 34, wherein the cell is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
- 36. The Fc fusion protein composition according to any one of claims 30 to 35, wherein the cell is a mouse myeloma cell.
 - 37. The Fc fusion protein composition according to claim 36, wherein the mouse myeloma cell is NSO cell or SP2/0-Ag14 cell.
- 38. The Fc fusion protein composition according to any one of claims 30 to 37, wherein the cell is selected from the group consisting of the following (a) to (g):
 - (a) a CHO cell derived from a Chinese hamster ovary tissue;
 - (b) a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 line;
 - (c) a BHK cell derived from a Syrian hamster kidney tissue;
 - (d) an antibody-producing hybridoma cell;
 - (e) a human leukemic cell line Namalwa cell;
 - (f) an embryonic stem cell;
 - (g) a fertilized egg cell.
 - 39. An Fc fusion protein composition comprising an Fc fusion protein having an complex N-glycoside-linked sugar chain at the Fc region of an antibody molecule, wherein the ratio of a sugar chain in which fucose is not bound to N-acetylglucosamine in the reducing end in the sugar chain is 20% or more of total complex N-glycoside-linked sugar chains which are bound to the Fc region in the composition.
 - 40. The Fc fusion protein composition according to claim 39, wherein the sugar chain in which fucose is not bound is a sugar chain in which 1-position of fucose is not bound to 6-position of N-acetylglucosamine in the reducing end in the complex *N*-glycoside-linked sugar chain through α -bond.
- 45 41. The Fc fusion protein composition according to claim 39 or 40, wherein the antibody molecule belongs to an IgG class.
 - 42. The Fc fusion protein composition according to any one of claims 30 to 41, wherein the Fc fusion protein composition is Fc-fused fibroblast growth factor-8.
 - 43. A cell which produces the Fc fusion protein composition according to any one of claims 30 to 42.
 - 44. The cell according to claim 43, which is selected from the group consisting of a yeast, an animal cell, an insect cell and a plant cell.
 - 45. The cell according to claim 43 or 44, which is a mouse myeloma cell.
 - 46. The cell according to claim 45, wherein the mouse myeloma cell is NS0 cell or SP2/0-Ag14 cell.

161

5

10

15

20

25

30

35

40

50

	47.	The cell according to any one of claims 43 to 46, which is selected from the group consisting of the following (a) to (g):
5		 (a) a CHO cell derived from a Chinese hamster ovary tissue; (b) a rat myeloma cell line YB2/3HL.P2.G11.16Ag.20 line; (c) a BHK cell derived from a Syrian hamster kidney tissue; (d) an antibody-producing hybridoma cell; (e) a human leukemic cell line Namalwa cell; (f) an embryonic stem cell;
10		(g) a fertilized egg cell.
15	48.	A process for producing an Fc fusion protein composition, which comprises culturing the cell according to any one of claims 43 to 47 in a medium to form and accumulate an Fc fusion protein composition in the culture, and recovering the Fc fusion protein composition from the culture.
20		
25		
30		
35		
40		
45		
50		
55		

FIG. 1A

FIG. 1B

FIG. 2

FIG. 3

ANTI-GD3 CHIMERIC ANTIBODY (50%)
ANTI-GD3 CHIMERIC ANTIBODY (45%)
ANTI-GD3 CHIMERIC ANTIBODY (29%)
ANTI-GD3 CHIMERIC ANTIBODY (24%)
ANTI-GD3 CHIMERIC ANTIBODY (13%)
ANTI-GD3 CHIMERIC ANTIBODY (7%)

FIG. 6A

FIG. 6B

→ ANTI-GD3 CHIMERIC ANTIBODY (50%)
→ ANTI-GD3 CHIMERIC ANTIBODY (45%)
→ ANTI-GD3 CHIMERIC ANTIBODY (29%)
→ ANTI-GD3 CHIMERIC ANTIBODY (24%)
→ ANTI-GD3 CHIMERIC ANTIBODY (13%)
→ ANTI-GD3 CHIMERIC ANTIBODY (7%)

FIG. 17

FIG. 29

FIG. 30

FIG. 32B

FIG. 33

FIG. 34

FIG. 35

FIG. 36

EP 1 498 491 A1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04504

Int.	SIFICATION OF SUBJECT MATTER C1 ⁷ C12P21/08, C12N15/09, C12N C07K16/46//A61K39/395, A61A61P31/12, A61P31/14, A61P o International Patent Classification (IPC) or to both ne	LP9/00, A61P29/00, A61P P35/00, A61P37/02, A61P	31/04,			
	S SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C12P21/08, C12N15/09, C12N5/10, C07K16/18, G01N33/50, C07K16/46						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) BIOSIS/MEDLINE/WPIDS (STN)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
X/Y/A	19 October, 2000 (19.10.00),	Kogyo Co., Ltd.), 3672800 A	1-4,9-16, 21-25,27,29, 31,33,34,36, 39-43,45,48/ 5-8,17-20, 30,32,35,37, 38,44,46,47/ 26,28			
Y	Ripka J. et al., Two Chinese glycosylation mutants affects of GDP-mannose to GDP-fucose, Biophys., 1986, 249(2), pages	ed in the conversion Arch.Biochem.	5-8,17-20, 30,32,35,38, 44,47			
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.				
"A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report 22 July, 2003 (22.07.03)				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1998)

EP 1 498 491 A1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04504

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Х	Shitara K. et al., A new vector for the hilevel expression of chimeric antibodies in cells, J.Immunol.Methods, 1994, 167(1-2), pages 271 to 278	gh n myeloma	1-25,30-45, 47,48
x	Davies J. et al., Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII, Biotechnol.Bioeng., 2001, 74(4), pages 288 to 294		1,27,29
Y	Hackett J. Jr. et al., Recombinant mouse-he chimeric antibodies as calibrators in immuthat measure antibodies to Toxoplasma gond Clin.Microbiol., 1998, 36(5), pages 1277 to	noassays Hii, J.	37,46
Y	Elbashir SM. et al., Duplexes of 21-nucleo RNAs mediate RNA interference in cultured mammalian cells, Nature, 2001, 411(6836), pages 494 to 498	tide	5-8,17-20, 30,32,35,38, 44,47
A	WO 97/27303 A (Toyobo Co., Ltd.), 31 July, 1997 (31.07.97), & US 6054304 A & EP 816503 A1 & JP 9-201191 A		1-48
A	Shields RL. et al., High resolution mappin the binding site on human IgG1 for Fc gamma Fc gamma RII, Fc gamma RIII, and FcRn and of IgG1 variants with improved binding to gamma R, J.Biol.Chem., 2001, 276(9), pages to 6604	a RI, design the Fc	1-48
P,X	Shields RL. et al., Lack of fucose on huma N-linked oligosaccharide improves binding human Fc gamma RIII and antibody-dependent cellular toxicity, J.Biol.Chem., 2002 Jul. 277(30), pages 26733 to 26740	to	1-48
P,X	SHINKAWA, T. et al., The absence of fucose not the presence of galactose or bisecting acetylglucosamine of human IgG1 complex-ty oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity, J.Biol.Chem., 2003, 278(5), pages 3466 to 3473	N- pe	1-48
P,X	WO 02/31140 A1 (Kyowa Hakko Kogyo Co., Ltd 18 April, 2002 (18.04.02), & AU 9419801 A	1.),	1-48

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

EP 1 498 491 A1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/04504

Continuation of A. CLASSIFICATION OF SUBJECT MATTER				
(International Patent Classification (IPC))				
Int.Cl ⁷ A61P37/08, A61P43/00, G01N33/15, (C12P21/08, C12R1:91),				
(C12N5/10, C12R1:91)				
(According to International Patent Classification (IPC) or to both national				
classification and IPC)				
<u> </u>				
Continuation of B. FIELDS SEARCHED				
Minimum Documentation Searched(International Patent Classification (IPC))				
Int.Cl'				
Minimum documentation searched (classification system followed by				
classification symbols)				
CIRCUIT CARDET,				
· ·				
·				
,				

Form PCT/ISA/210 (extra sheet) (July 1998)