DOCUMENTATION.md 2025-01-06

Documentation

Dataset Overview

• Source: COVID19 Pediatric Dataset

Format: Excel (.xlsx)

• Size: 5644 rows × 111 columns

Content: Patient demographics, medical test results, COVID-19 outcomes

Data Processing Pipeline

1. Data Cleaning

- Removed columns with all missing values
- Imputed partial missing values with column means
- Applied zero imputation for columns with NaN means

2. Feature Engineering

- Selected numeric features only
- Applied standardization (zero mean, unit variance)
- Handled negatively skewed distributions through normalization

3. Model Implementations

A. Logistic Regression

- Objective: Predict SARS-CoV-2 test results
- Features: 18 key medical parameters including:
 - Patient age
 - Hospital admission status
 - o Blood test results (Hematocrit, Hemoglobin, etc.)
 - Blood cell counts

Preprocessing:

- Removed features with high missing values
- Standardized numeric features
- o Encoded categorical variables

B. Random Forest Classification

- Objective: Predict COVID-19 test outcomes
- Implementation:
 - Used RandomForestClassifier from sklearn
 - Train-test split for model validation
 - Feature importance analysis

Key Features:

Blood markers and cell counts

DOCUMENTATION.md 2025-01-06

- Patient demographics
- Hospital admission data

• Performance Metrics:

- Confusion matrix analysis
- Classification report with precision, recall
- Feature importance ranking

C. K-Means Clustering

- **Method**: k=3 clusters (based on elbow method)
- Features: Standardized numeric variables
- Cluster Characteristics:
 - 1. Young patients with elevated blood markers
 - High: Blood gas levels, platelets
 - Low: Age, hemoglobin levels
 - 2. Patients with distinct blood gas profiles
 - High: MCH, lactic acid, calcium
 - Low: pH levels, oxygen saturation
 - 3. Older patients with elevated blood counts
 - High: Blood cell counts, age
 - Low: Platelets, blood gas levels

D. Principal Component Analysis (PCA)

- Purpose: Dimensionality reduction and feature analysis
- Implementation:
 - Applied to standardized features
 - Analyzed variance explained by components
 - o Visualized feature relationships
- Results:
 - o Identified key contributing features
 - Revealed patterns in blood marker correlations
 - Reduced feature space while preserving information

4 Visualization

- Generated plots for:
 - Cluster relationships and distributions
 - Feature correlations (heatmaps)
 - Model performance metrics
 - PCA component analysis
 - Feature importance in Random Forest

5. Model Performance

- Successfully identified distinct patient groups
- Achieved balanced prediction accuracy
- Revealed important feature relationships

DOCUMENTATION.md 2025-01-06

• Provided interpretable medical parameter groupings

6. Future Improvements

- Implement ensemble methods combining multiple models
- Explore feature selection techniques
- Add cross-validation for robust evaluation
- Consider deep learning approaches
- Investigate temporal patterns in patient data