Protección

Niveles de privilegio y verificación de permisos

Programación de Sistemas Operativos

David Alejandro González Márquez

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

- El objetivo de los mecanismos de protección en el procesador es:
 - Restringir instrucciones.

- El objetivo de los mecanismos de protección en el procesador es:
 - Restringir instrucciones.
 - Limitar el acceso a la memoria.

- El objetivo de los mecanismos de protección en el procesador es:
 - Restringir instrucciones.
 - Limitar el acceso a la memoria.
 - Limitar acciones sobre recursos.

- El objetivo de los mecanismos de protección en el procesador es:
 - Restringir instrucciones.
 - Limitar el acceso a la memoria.
 - Limitar acciones sobre recursos.

- En todos los sistemas operativos modernos se requiere minimamente de dos niveles de protección: **Usuario** y **Supervisor**

- El objetivo de los mecanismos de protección en el procesador es:
 - Restringir instrucciones.
 - Limitar el acceso a la memoria.
 - Limitar acciones sobre recursos.

- En todos los sistemas operativos modernos se requiere minimamente de dos niveles de protección: **Usuario** y **Supervisor**

Vamos a ver protección a nivel de Segmentación, Paginación, Tareas e Interrupciones.

¿Donde configurar privilegios?

¿Donde configurar privilegios?

- DPL Descriptor Privilege Level:
 - Parte de todas las entradas en tablas que describen memoria o estructuras del procesador.
- RPL Requested Privilege Level:
 Parte de todos los selectores, permiten identificar descriptores.
- U/S User/Supervisor: Indican el nivel de privilegio en paginación.

¿Donde configurar privilegios?

- DPL - Descriptor Privilege Level:

Parte de todas las entradas en tablas que describen memoria o estructuras del procesador.

- RPL Requested Privilege Level:
 Parte de todos los selectores, permiten identificar descriptores.
- U/S User/Supervisor: Indican el nivel de privilegio en paginación.

Acceso a memoria

- Las unidades de segmentación y paginación transforman direcciones de memoria.

Acceso a memoria

- Las unidades de segmentación y paginación transforman direcciones de memoria.
- Realizan las verificaciones de protección, determinando si el acceso puede o no realizarse.

Acceso a memoria

- Las unidades de segmentación y paginación transforman direcciones de memoria.
- Realizan las verificaciones de protección, determinando si el acceso puede o no realizarse.

$$L\'{o}gica \xrightarrow[Segmentaci\'{o}n]{} Lineal \xrightarrow[Paginaci\'{o}n]{} F\'{i}sica$$

- Lógica: selector: offset (16:32 bits)
- Lineal: offset (32 bits)
- Física: offset (32 bits)

Nota: Suponiendo paginación no PAE, con paginas de 4k.

Estructuras necesarias para administrar segmentación.

Selector de segmento

Descriptor GDT

- 64-bit code segment (IA-32e mode only)

AVL — Available for use by system software

BASE — Segment base address

D/B — Default operation size (0 = 16-bit segment: 1 = 32-bit segment)

DPL — Descriptor privilege level

- Granularity

LIMIT — Segment Limit

Segment present

— Descriptor type (0 = system: 1 = code or data)

TYPE — Seament type

Definiciones:

- DPL (Descriptor Privilege Level):
 Nivel de privilegio del segmento para ser accedido (se ubica en su descriptor).
- RPL (Requested Privilege Level):
 Nivel de privilegio indicado en el selector de segmento como solicitud de acceso.
- CPL (Current Privilege Level):
 El DPL del segmento de código que se está ejecutando. Es nuestro nivel de privilegio.
- EPL (Effective Privilege Level):
 Máximo numérico entre el CPL y el RPL, es decir, EPL=max (CPL, RPL)

Verificación direcciones → selector: offset

Lógica ——— Lineal ——— Física Segmentación Paginación

Verificación direcciones → selector: offset

1. Verificar que el segmento este presente (P=1).

 $L\'{o}gica \xrightarrow{\hspace*{1cm} Segmentaci\'{o}n} Lineal \xrightarrow{\hspace*{1cm} Paginaci\'{o}n} F\'{i}sica$

 $L\'{o}gica \xrightarrow{\hspace*{1cm} \text{Segmentaci\'on}} L\'{i}neal \xrightarrow{\hspace*{1cm} \text{Paginaci\'on}} F\'{i}sica$

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0:offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000</pre>

 $L\'{o}gica \xrightarrow{\hspace*{1cm} Segmentaci\'{o}n} L\'{i}neal \xrightarrow{\hspace*{1cm} Paginaci\'{o}n} F\'{i}sica$

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0: offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000</pre>
- 3. Verificar el nivel para acceder al segmento. (Las comparaciones =, \geq , \leq son por valor numérico)
 - Si el segmento es de datos → EPL \leq DPL

 $L\'{o}gica \xrightarrow{\hspace*{1cm} Segmentaci\'{o}n} Lineal \xrightarrow{\hspace*{1cm} Paginaci\'{o}n} F\'{i}sica$

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0: offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000</pre>
- 3. Verificar el nivel para acceder al segmento. (Las comparaciones =, \geq , \leq son por valor numérico)
 - Si el segmento es de datos → EPL \leq DPL
 - Si es un segmento de código:
 - Non-conforming \rightarrow CPL = DPL
 - Conforming \rightarrow CPL \geqslant DPL

Lógica ——— Lineal ——— Física Segmentación

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0: offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000
- 3. Verificar el nivel para acceder al segmento. (Las comparaciones =, \geq , \leq son por valor numérico)
 - Si el segmento es de datos → EPL \leq DPL
 - Si es un segmento de código:
 - Non-conforming \rightarrow CPL = DPL
 - Conforming \rightarrow CPL \geqslant DPL
- 4. Verificar acción a realizar

 $L\'{o}gica \xrightarrow{\hspace*{1cm} Segmentaci\'{o}n} Lineal \xrightarrow{\hspace*{1cm} Paginaci\'{o}n} F\'{i}sica$

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0: offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000
- 3. Verificar el nivel para acceder al segmento. (Las comparaciones =, \geq , \leq son por valor numérico)
 - Si el segmento es de datos → EPL \leq DPL
 - Si es un segmento de código:
 - Non-conforming \rightarrow CPL = DPL
 - Conforming \rightarrow CPL \geqslant DPL
- 4. Verificar acción a realizar
 - Leer: Cualquier segmento de datos, restringido en segmentos de código.

Lógica ———— Lineal ———— Física Segmentación Paginación

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0: offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000
- 3. Verificar el nivel para acceder al segmento. (Las comparaciones =, \geq , \leq son por valor numérico)
 - Si el segmento es de datos → EPL \leq DPL
 - Si es un segmento de código:
 - Non-conforming \rightarrow CPL = DPL
 - Conforming → CPL \geqslant DPL
- 4. Verificar acción a realizar
 - Leer: Cualquier segmento de datos, restringido en segmentos de código.
 - Escribir: Restringido en segmentos de datos, prohibido en segmentos de código.

Lógica Lineal Paginación Física

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0: offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000</pre>
- 3. Verificar el nivel para acceder al segmento. (Las comparaciones =, \geq , \leq son por valor numérico)
 - Si el segmento es de datos → EPL \leq DPL
 - Si es un segmento de código:
 - Non-conforming \rightarrow CPL = DPL
 - Conforming → CPL \geqslant DPL
- 4. Verificar acción a realizar
 - Leer: Cualquier segmento de datos, restringido en segmentos de código.
 - Escribir: Restringido en segmentos de datos, prohibido en segmentos de código.
 - Ejecutar: Permitido solo en segmentos de código.

Verificación direcciones → selector: offset

- 1. Verificar que el segmento este presente (P=1).
- 2. Verificar límite del segmento.
 - SiG=0: offset < (segment.limit+1)</pre>
 - SiG=1:offset < (segment.limit+1) * 0x1000</pre>
- 3. Verificar el nivel para acceder al segmento. (Las comparaciones =, ≥, ≤ son por valor numérico)
 - Si el segmento es de datos \rightarrow EPL \leq DPL
 - Si es un segmento de código:
 - Non-conforming → CPL = DPL
 - Conforming → CPL \geqslant DPL
- 4. Verificar acción a realizar
 - Leer: Cualquier segmento de datos, restringido en segmentos de código.
 - Escribir: Restringido en segmentos de datos, prohibido en segmentos de código.
 - Ejecutar: Permitido solo en segmentos de código.

Si alguna de las verificaciones falla: → General Protection Fault (#GP)

Tipos de segmentos de código o datos

Type Field					Descriptor	Description
Decimal	11	10 E	9 W	8 A	Туре	
0	0	0	0	0	Data	Read-Only
1	0	0	0	1	Data	Read-Only, accessed
2	0	0	1	0	Data	Read/Write
3	0	0	1	1	Data	Read/Write, accessed
4	0	1	0	0	Data	Read-Only, expand-down
5	0	1	0	1	Data	Read-Only, expand-down, accessed
6	0	1	1	0	Data	Read/Write, expand-down
7	0	1	1	1	Data	Read/Write, expand-down, accessed
		С	R	Α		
8	1	0	0	0	Code	Execute-Only
9	1	0	0	1	Code	Execute-Only, accessed
10	1	0	1	0	Code	Execute/Read
11	1	0	1	1	Code	Execute/Read, accessed
12	1	1	0	0	Code	Execute-Only, conforming
13	1	1	0	1	Code	Execute-Only, conforming, accessed
14	1	1	1	0	Code	Execute/Read, conforming
15	1	1	1	1	Code	Execute/Read, conforming, accessed

Las direcciones en paginación son resueltas por medio de directorios y tablas de paginas. El nivel de acceso está dado por atributos en las entradas de estas tablas (PDE y PTE).

Lógica — Lineal — Física Segmentación Paginación

Verificación direcciones → lineal → PDindex: PTindex: offset

1. Verificar que la pagina este presente (PDE . P=1 y PTE . P=1).

Lógica
$$\xrightarrow{\text{Segmentación}}$$
 Lineal $\xrightarrow{\text{Paginación}}$ Física

- 1. Verificar que la pagina este presente (PDE . P=1 y PTE . P=1).
- 2. Verificar el nivel para acceder a la página.

Lógica
$$\xrightarrow{\text{Segmentación}}$$
 Lineal $\xrightarrow{\text{Paginación}}$ Física

- 1. Verificar que la pagina este presente (PDE.P=1 y PTE.P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE. US=0 or PTE. US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).

- 1. Verificar que la pagina este presente (PDE . P=1 y PTE . P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE . US=0 or PTE . US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).
 - Si PDE . US=1 and PTE . US=1 la página tiene permisos de usuario (CPL=3).

Lógica
$$\longrightarrow$$
 Lineal \longrightarrow Física $\xrightarrow{\text{Paginación}}$

- 1. Verificar que la pagina este presente (PDE . P=1 y PTE . P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE. US=0 or PTE. US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).
 - Si PDE . US=1 and PTE . US=1 la página tiene permisos de usuario (CPL=3).
- 3. Verificar acción a realizar

- 1. Verificar que la pagina este presente (PDE. P=1 y PTE. P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE. US=0 or PTE. US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).
 - Si PDE . US=1 and PTE . US=1 la página tiene permisos de usuario (CPL=3).
- 3. Verificar acción a realizar
 - Leer: Cualquier pagina puede ser leída.

Lógica
$$\longrightarrow$$
 Lineal \longrightarrow Física $\xrightarrow{\text{Paginación}}$

- 1. Verificar que la pagina este presente (PDE. P=1 y PTE. P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE. US=0 or PTE. US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).
 - Si PDE . US=1 and PTE . US=1 la página tiene permisos de usuario (CPL=3).
- 3. Verificar acción a realizar
 - Leer: Cualquier pagina puede ser leída.
 - Ejecutar: Cualquier pagina puede ser ejecutada.

- 1. Verificar que la pagina este presente (PDE. P=1 y PTE. P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE. US=0 or PTE. US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).
 - Si PDE . US=1 and PTE . US=1 la página tiene permisos de usuario (CPL=3).
- 3. Verificar acción a realizar
 - Leer: Cualquier pagina puede ser leída.
 - Ejecutar: Cualquier pagina puede ser ejecutada.
 - Escribir:
 - Si PDE . RW=0 or PTE . RW=0 la página no puede ser escrita.

- 1. Verificar que la pagina este presente (PDE. P=1 y PTE. P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE. US=0 or PTE. US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).
 - Si PDE . US=1 and PTE . US=1 la página tiene permisos de usuario (CPL=3).
- 3. Verificar acción a realizar
 - Leer: Cualquier pagina puede ser leída.
 - Ejecutar: Cualquier pagina puede ser ejecutada.
 - Escribir:
 - Si PDE . RW=0 or PTE . RW=0 la página no puede ser escrita.
 - Si PDE . RW=1 and PTE . RW=1 la página puede ser escrita.

Verificación direcciones → lineal → PDindex: PTindex: offset

- 1. Verificar que la pagina este presente (PDE. P=1 y PTE. P=1).
- 2. Verificar el nivel para acceder a la página.
 - Si PDE. US=0 or PTE. US=0 la página tiene permisos de supervisor (CPL=0 o 1 o 2).
 - Si PDE . US=1 and PTE . US=1 la página tiene permisos de usuario (CPL=3).
- 3. Verificar acción a realizar
 - Leer: Cualquier pagina puede ser leída.
 - Ejecutar: Cualquier pagina puede ser ejecutada.
 - Escribir:
 - Si PDE. RW=0 or PTE. RW=0 la página no puede ser escrita.
 - Si PDE. RW=1 and PTE. RW=1 la página puede ser escrita.

Si alguna de las verificaciones falla: → Page Fault (#PF)

Paginación

Table 5-3. Combined Page-Directory and Page-Table Protection

Page-Directory Entry		Page-Table Entry		Combined Effect	
Privilege	Access Type	Privilege	Access Type	Privilege	Access Type
User	Read-Only	User	Read-Only	User	Read-Only
User	Read-Only	User	Read-Write	User	Read-Only
User	Read-Write	User	Read-Only	User	Read-Only
User	Read-Write	User	Read-Write	User	Read/Write
User	Read-Only	Supervisor	Read-Only	Supervisor	Read/Write*
User	Read-Only	Supervisor	Read-Write	Supervisor	Read/Write*
User	Read-Write	Supervisor	Read-Only	Supervisor	Read/Write*
User	Read-Write	Supervisor	Read-Write	Supervisor	Read/Write
Supervisor	Read-Only	User	Read-Only	Supervisor	Read/Write*
Supervisor	Read-Only	User	Read-Write	Supervisor	Read/Write*
Supervisor	Read-Write	User	Read-Only	Supervisor	Read/Write*
Supervisor	Read-Write	User	Read-Write	Supervisor	Read/Write
Supervisor	Read-Only	Supervisor	Read-Only	Supervisor	Read/Write*
Supervisor	Read-Only	Supervisor	Read-Write	Supervisor	Read/Write*
Supervisor	Read-Write	Supervisor	Read-Only	Supervisor	Read/Write*
Supervisor	Read-Write	Supervisor	Read-Write	Supervisor	Read/Write

NOTE:

^{*} If CRO.WP = 1, access type is determined by the R/W flags of the page-directory and page-table entries. IF CRO.WP = 0, supervisor

 El DPL de los descriptores de TSS indica el nivel de privilegio necesario para ejecutar la tarea.

AVL Available for use by system software

B Busy flag

BASE Segment Base Address
DPL Descriptor Privilege Level

- El DPL de los descriptores de TSS indica el nivel de privilegio necesario para ejecutar la tarea.
- Verificar si es posible saltar a una tarea:

AVL Available for use by system software

B Busy flag

BASE Segment Base Address DPL Descriptor Privilege Level

- El DPL de los descriptores de TSS indica el nivel de privilegio necesario para ejecutar la tarea.
- Verificar si es posible saltar a una tarea:
 - 1. Verificar TSS presente: P=1.

AVL Available for use by system software B Busy flag

BASE Segment Base Address
DPL Descriptor Privilege Level

- El DPL de los descriptores de TSS indica el nivel de privilegio necesario para ejecutar la tarea
- Verificar si es posible saltar a una tarea:
 - 1. Verificar TSS presente: P=1.
 - 2. Verificar privilegios: CPL ≤ DPL

AVL Available for use by system software
B Busy flag
BASE Segment Base Address
DPL Descriptor Privilege Level
G Granularity
LIMIT Segment Limit
P Segment Present
TYPE Segment Type

- El DPL de los descriptores de TSS indica el nivel de privilegio necesario para ejecutar la tarea
- Verificar si es posible saltar a una tarea:
 - 1. Verificar TSS presente: P=1.
 - 2. Verificar privilegios: CPL ≤ DPL
 - 3. Verificar bit Busy en cero.

AVL Available for use by system software B Busy flag

BASE Segment Base Address
DPL Descriptor Privilege Level

- El DPL de los descriptores de TSS indica el nivel de privilegio necesario para ejecutar la tarea.
- Verificar si es posible saltar a una tarea:
 - 1. Verificar TSS presente: P=1.
 - 2. Verificar privilegios: CPL ≤ DPL
 - 3. Verificar bit Busy en cero.

Si alguna de las verificaciones falla:

→ General Protection Fault (#GP)

AVL Available for use by system software

B Busy flag

BASE Segment Base Address
DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

TYPE Segment Type

Descriptores de IDT

- Cada entrada de interrupciones tiene su propio DPL.
- Indica el nivel de privilegio necesario para poder acceder a la interrupción.

Verificación de privilegios para generar una interrupción.

1. Verificar que la interrupción esté presente \rightarrow P=1.

- 1. Verificar que la interrupción esté presente \rightarrow P=1.
- 2. Verificar el nivel para acceder a la interrupción

- 1. Verificar que la interrupción esté presente \rightarrow P=1.
- 2. Verificar el nivel para acceder a la interrupción
 - Si la interrupción es generada por código: → DPL ≥ CPL

- 1. Verificar que la interrupción esté presente \rightarrow P=1.
- 2. Verificar el nivel para acceder a la interrupción
 - Si la interrupción es generada por código: → DPL ≥ CPL
 - Si la interrupción es generada externamente: No se verifica.

- 1. Verificar que la interrupción esté presente \rightarrow P=1.
- 2. Verificar el nivel para acceder a la interrupción
 - Si la interrupción es generada por código: → DPL ≥ CPL
 - Si la interrupción es generada externamente: No se verifica.
 - Si la interrupción es una excepción del procesador: No se verifica.

Verificación de privilegios para generar una interrupción.

- 1. Verificar que la interrupción esté presente \rightarrow P=1.
- 2. Verificar el nivel para acceder a la interrupción
 - Si la interrupción es generada por código: → DPL ≥ CPL
 - Si la interrupción es generada externamente: No se verifica.
 - Si la interrupción es una excepción del procesador: No se verifica.

Si alguna de las verificaciones falla: → General Protection Fault (#GP)

Bibliografía: Fuentes y material adicional

- Convenciones de llamados a función en x86:https://en.wikipedia.org/wiki/X86_calling_conventions
- Notas sobre System V ABI: https://wiki.osdev.org/System_V_ABI
- Documentación de NASM: https://nasm.us/doc/
 - Artículo sobre el flag -pie: https://eklitzke.org/position-independent-executables
- Documentación de System V ABI: https://uclibc.org/docs/psABI-x86_64.pdf
- Manuales de Intel: https://software.intel.com/en-us/articles/intel-sdm

¡Gracias!

Recuerden leer los comentarios al final de este video por aclaraciones o fe de erratas.