Introduction to Game Theory

Sequential Games

Dante Yasui

2024

Outline

- Game trees
- Backwards Induction
- Efficiency

Extensive Form

Game Trees/Extensive Form as

- Before we learn how to solve a game, it will help visualize them
- Because of the ordered nature of sequential gar makes sense

A Decision Tree

Extensive Form Definition

A **Tree Graph** consists of:

- Multiple nodes with an ordered hierarchy starting
 node
- Branches coming from each node which connec
- The tree ends in any of the multiple terminal no

Warning

Each (non-initial) terminal node may have multiple branches leading f branch that *leads to it*.

Anatomy of a tree

EC327 | Lecture 2 | Sequential Games

Anatomy of a tree

Anatomy of a tree

Kidnapping Game ¹

A kidnapper named **Guy** has contacted the victim's demand a ransom.

To predict what will happen to the victim, **Orlando** game theoretic model of the situation.

Let's use the language of the tree graph to visualiz

Kidnapping Game

- Who are th
- Where are
- What are they repre
- What do tl represent?
- Is this a constant of a game?

Kidnapping Game payoffs

Outcome

No kidnapping

Kidnapping, ransom paid, Orlando killed

Kidnapping, ransom paid, Orlando relea

Kidnapping, no ransom paid, Orlando ki

Kidnapping, no ransom paid, Orlando re

Kidnapping Game payoffs

Outcome	Guy
No kidnapping	3
Kidnapping, ransom paid, Orlando killed	4
Kidnapping, ransom paid, Orlando released	5
Kidnapping, no ransom paid, Orlando killed	2
Kidnapping, no ransom paid, Orlando released	1

Kidnapping game tree with pay

Predictions?

Based on the extensive form game tree with payof

• Do you have any predictions for what strategies choose?

a Definition of an Extensive For

- A collection of decision-makers, called players
- A set of decision nodes, each represents the infe the player of that node
- Strategies for each player which list the branche represent the actions a player would take if face
- A tree diagram which maps the intersections of profiles to the outcomes represented at each ter

Strategies in Extensive Form Ga

Definition

A **strategy** is a **complete plan of action** which assigns an action at *eve* decision

Warning

Be careful to distinguish between a **strategy** and a single action/choic

What's the difference?

- How many decision
 - **3**
- How many decision

- Write out a compl
 - Only two strate
 - Pay the rans
 - o or *Don't* pay

- Write out at comp
 - Let's give some Guy's actions:
 - $\circ A \equiv Kidnap$
 - \circ $I \equiv$ Don't ki
 - $\circ K \equiv Kill Orl$
 - \circ $L \equiv$ Let Orla

Guy has 8 total complete strategies:

If Guy A bducts	If Guy Ignore
(A, K, K)	(I, K, K)
(A, L, K)	(I, L, L)
(A, K, L)	(I, K, L)
(A, L, L)	(I, L, L)

Backwards Induction

Solving Sequential Games

Now that we have defined all the parts of what a s can start to *solve* them.

A solution in our case will be a prediction of who would do in a sequential game

The smoking decision

FIGURE 3.2 The Smoking Decision

figures/fig3.2.png

The smoking game

FIGURE 3.3 The Smoking Game

figures/fig3.3.png

'Pruning' branches

(a) Pruning at second node:

(b) Full pruning:

FIGURE 3.4 Pruning the Tree of the Smoking Game

FIGURE 3.5 Showing Branch Selection on the Tree of the Smo

figures/fig3.5.png

Backwards Induction defined

The method of looking at decisions in the future to now is called **Backwards Induction** or **Rollback**

Definition 1

When all players do *rollback analysis* to choose their optimal strategies the *rollback equilibrium*² of the game; the outcome that arises from plack equilibrium outcome

Group Exercise:

Consider the Flag game but instead of starting with starts with 5 flags, and instead of being able to pic can only pick 1 or 2 flags.

- 1. Draw the extensive form game tree complete wit teams.
- 2. How many total strategies are there for team 1?
- 3. Use pruning to eliminate actions to get to a roll will win? What is the winning strategy?

Add	ing	more	p	layers
-----	-----	------	---	--------

We can start to add more complexity with more the

3-player planting game

- **Emily**, **Nina**, and **Talia** are roommates who want communal garden.
- They like to enjoy the benefits of fresh produce is costly for them to put the work in.
- 2 or 3 people working is enough to keep the garden will die.

Planting Game payoffs

outcome:

I don't contribute, but garden lives

I contribute, and get garden.

I don't contribute, and garden dies

I contribute, but garden dies

Planding Game Tree

FIGURE 3.6 The Street–Garden Game

Equilibrium Path of Play

Note that there is one continuous path we traced fa final equilibrium outcome.

However, we couldn't have gotten their without the **even though they are never reached** in equilibrium Recall that a **strategy** is a collection of choices at

Equilibrium Strategies

Even though the players available actions are all c (Contribute or Don't), this tree provides labels of e we can say something like:

"Nina's **strategy** in the rollback equilibrium is { **Contribute** at **c** }".

To make it even shorter, let's call this strategy Delta

How many strategies does Talia

- CCCC, CCCD, CCDC, CCDD, CDCC, CDCD, CDDC
 DCDD, DDCC, DDCD, DDDC
 DDDD
- 16 total strategies

Rollback Equilibrium Strategies

The equilibrium is:

• $\{ D^1, DC^2, DCCD^3 \}$

- 1. Emily
- 2. Nina
- 3 Talia

Adding More Moves

Even a simple game get complicat

FIGURE 3.7 The Complex Tree for Simple Two-by-Two Tic-Tac-Toe

Tic-Tac-Toe

- Even though it looks complicated, the main branched copies of each other
- Most people probably figure out the rollback equitient
 it enough
- Insert relevant xkcd here: https://xkcd.com/832/

Chess

- What about more complicated games like chess?
 - \blacksquare technically rollback solvable, but with $10^{120}~\mbox{\sc p}$ hasn't been solved by either human or machi
- Players of complicated sequential games often i intermediate valuation function to assign payof nodes.

Welfare and Efficien

What are the **good** outcomes in the planting game Can we rank outcomes by collective welfare?

FIGURE 3.6 The Street-Garden Game

Pareto Dominance

Pareto optimality (or efficiency) is econonomists' but with a ranking of which outcomes are objectively 'I

- For any two outcomes (※ ※), ※is Pareto domi
 - 1. No one strictly prefers \ref{to} to $\ref{to} U_{\bullet}(\ref{to}) \geq U_{\bullet}$ $\forall \mathbf{1} \in \{\ \mathbf{2},\ \mathbf{0},\ \mathbf{0$
 - 2. At least one person strictly prefers to strictly prefers to

Pareto Improvement

The move from a policy y to an alternative policy x **improvement** if x Pareto dominates y.

- Such a policy change should reasonably be seer good
- Another perspective is that no-one would veto a

Pareto Efficiency

An outcome is **Pareto Efficient** (Optimal) if no other dominates it.

An outcome is **Pareto Infficient** if at least one other dominates it.

Ranking the Planting Payoffs

Compare (4,3,3) to (1,2,2)

• Which one is Pareto dominating?

Ranking the Planting Payoffs

Now compare (4,3,3) to (3,4,3) or (3,3,4)

• Which one is Pareto dominating?

Is the rollback equilibrium outcome a Pareto efficie

Discussion: Efficiency vs other s comparisons

- How useful is Pareto Efficiency in the real world?
- How else could we group outcomes?
- We might address this later in the class with who Cooperative Game Theory