

Version : 1.00

Date : 24/04/07

Page : 1/5

CONFIDENTIEL - Ce document ne peut être copié ou reproduit sans autorisation

OPERATIONAL DESCRIPTION OF TRITON™ POOL ALARM RF PART ONLY

Affaire : PROJET TPA

Version : 1.00

Date : 24/04/07

Page : 2/5

CONFIDENTIEL - Ce document ne peut être copié ou reproduit sans autorisation

Reference	TPA_Intended_uses_V100	Date : 24/04/07	
Rédigé par :	Damien PLUTINO Philippe Crahay		
Approuvé par :			

Historical						
Version	Status/Date (draft/invalide/valide) (dd-mmm-yyyy)	Author	Control	Description		
1.00	24/04/07 Valid	Damien PLUTINO Philippe CRAHAY		Extraction from definition file.v1.02		

Version : 1.00

Date : 24/04/07

Page : 3/5

CONFIDENTIEL - Ce document ne peut être copié ou reproduit sans autorisation

SYNOPSIS

1.	RADIO FREQUENCIES DETAILS	4
1.1	PARAMETERS DEFINITION:	4
1.2	TRANSMISSION DEFINITION	4
1.3	WORST CASE OF EMISSION PERCENTAGE IN A 100MS WINDOW	5

Version : 1.00

Date : 24/04/07

Page : 4/5

CONFIDENTIEL - Ce document ne peut être copié ou reproduit sans autorisation

1. Radio Frequencies Details

1.1 Parameters definition:

-Radio frequency: 433.92 MHz

- -Bit_Time = 380 μ s +/- 10%, Signal bit length
- -Interframe_Time = 15 ms +/- 10%, Time between frame
- -NB_Frame = 5, number of frame by message
- -CODE_STOPLEARN = 00001100, Code acquisition and siren stop
- -CODE_ALERT = 00110000, Siren Trigger
- -WARN_PERIOD = 3s, Time between message for warning signal (See diagrams below)

1.2 Transmission definition

The device transmits messages by Radio Frequency data. These messages include NB_Frames (5) RF frames. Between the frames, there's a time without signal emission of Interframe_time (15ms).

5 Frames message

Each frame is coded on 3 bytes plus 1 bit.

The frame definition is:

RF_STOP_LEARN = ID1 / ID2 / CODE_STOPLEARN / 0

RF_ALERT = ID1 / ID2 / CODE_ALERT / 0

In case of warning signals, the 5 frames serie is sent every 3s during the whole triggering time.

ID1 = 1 identifying byte which value is 1100000

ID2 = 1 identifying byte which value is a random number with one "1" at random place, and "0" elsewhere.

Version : 1.00

Date : 24/04/07

Page : 5/5

CONFIDENTIEL - Ce document ne peut être copié ou reproduit sans autorisation

The position of the "1" is set by a random number between 0 and 7, obtained by reading the 3 lower bits of a timer value without taking care about when this timer started.

The logical values of the above bits are coded in the signal with this formalism:

Once Bit Time of signal followed by 3 times Bit time without signal = 0.

Three times Bit_Time of signal followed by 1 time Bit_Time without signal =1.

1.3 Worst case of emission percentage in a 100ms window

We can consider that the worst duration case for the emission in a window of 100ms is when this window contains 2 complete frames, 1 complete inter frame and one partial inter frame.

In a frame, the biggest number of one in the data is 10 on 25 bits of data. So the worst frame has an emission time of 5 * 3 Bit_Time + 20 * 1 Bit_Time = 35 Bit_Time = 13.3ms

For 2 frames, we have an emission time of 2 * 13.3 = 26.6 ms. So, the emission percentage in a window of 100ms, in the worst case, is theoretically 26.6%. To pay attention about variations of characteristics of the product, we'll use a percentage of 28%.