CS 207: Discrete Structures

Graph theory

Perfect matchings in bipartite graphs: Hall's theorem

Lecture 30 Oct 05 2015

Basic definitions and concepts

- ▶ Basics: graphs, paths, cycles, walks, trails, ...
- Cliques and independent sets.
- ▶ Graph representations, isomorphisms and automorphisms.
- ▶ Matchings: perfect, maximal and maximum.

).

Basic definitions and concepts

- ▶ Basics: graphs, paths, cycles, walks, trails, . . .
- Cliques and independent sets.
- ▶ Graph representations, isomorphisms and automorphisms.
- ▶ Matchings: perfect, maximal and maximum.

Characterizations

- 1. Eulerian graphs: Using degrees of vertices.
- 2. Bipartite graphs: Using odd length cycles.
- 3. Connected components: Using cycles.

Basic definitions and concepts

- ▶ Basics: graphs, paths, cycles, walks, trails, . . .
- Cliques and independent sets.
- ▶ Graph representations, isomorphisms and automorphisms.
- ▶ Matchings: perfect, maximal and maximum.

Characterizations

- 1. Eulerian graphs: Using degrees of vertices.
- 2. Bipartite graphs: Using odd length cycles.
- 3. Connected components: Using cycles.
- 4. Maximum matchings: Using augmenting paths.

Basic definitions and concepts

- ▶ Basics: graphs, paths, cycles, walks, trails, ...
- Cliques and independent sets.
- ▶ Graph representations, isomorphisms and automorphisms.
- ▶ Matchings: perfect, maximal and maximum.

Characterizations

- 1. Eulerian graphs: Using degrees of vertices.
- 2. Bipartite graphs: Using odd length cycles.
- 3. Connected components: Using cycles.
- 4. Maximum matchings: Using augmenting paths.
- 5. Perfect matchings and Hall's condition.

Recap: Matchings

Definitions

- ▶ A matching in a graph *G* is a set of (non-loop) edges with no shared end-points. The vertices incident to edges in a matching are called matched or saturated. Others are unsaturated.
- ▶ A perfect matching in a graph is a matching that saturates every vertex.
- ▶ A maximal matching in a graph is a matching that cannot be enlarged by adding an edge.
- ▶ A maximum matching is a matching of maximum size (# edges) among all matchings in a graph.

Recap: Matchings

Definitions

- ▶ A matching in a graph *G* is a set of (non-loop) edges with no shared end-points. The vertices incident to edges in a matching are called matched or saturated. Others are unsaturated.
- ▶ A perfect matching in a graph is a matching that saturates every vertex.
- ▶ A maximal matching in a graph is a matching that cannot be enlarged by adding an edge.
- ▶ A maximum matching is a matching of maximum size (# edges) among all matchings in a graph.

Perfect matching \implies maximum matching \implies maximal matching

Recap: Alternating and Augmenting paths

Definition

- ▶ Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M.
- ▶ An *M*-alternating path whose endpoints are unmatched by *M* is an *M*-augmenting path.

Theorem

A matching M in G is a maximum matching iff G has no M-augmenting path.

A definition and a lemma

- ▶ For matchings M, M' of graph G, the symmetric difference $M \triangle M' = (M \setminus M') \cup (M' \setminus M)$.
- ▶ Every component of the symmetric difference of two matchings is either a path or an even cycle.

A definition and a lemma

- ▶ For matchings M, M' of graph G, the symmetric difference $M \triangle M' = (M \setminus M') \cup (M' \setminus M)$.
- ► Every component of the symmetric difference of two matchings is either a path or an even cycle.

Proof of Lemma:

- ▶ Let $F = M \triangle M'$. F has at most 2 edges at each vertex, hence every component is a path or a cycle.
- ▶ Further every path/cycle alternates between edges of $M \setminus M'$ and $M' \setminus M$.
- ▶ Thus, each cycle has even length with equal edges from M and M'.

A definition and a lemma

- ▶ For matchings M, M' of graph G, the symmetric difference $M \triangle M' = (M \setminus M') \cup (M' \setminus M)$.
- ► Every component of the symmetric difference of two matchings is either a path or an even cycle.

Theorem (Berge'57)

M is a maximum matching in G iff G has no M-augmenting path

A definition and a lemma

- ▶ For matchings M, M' of graph G, the symmetric difference $M \triangle M' = (M \setminus M') \cup (M' \setminus M)$.
- ► Every component of the symmetric difference of two matchings is either a path or an even cycle.

Theorem (Berge'57)

M is a maximum matching in G iff G has no M-augmenting path

ightharpoonup (\Longrightarrow) Forward direction is trivial.

A definition and a lemma

- ▶ For matchings M, M' of graph G, the symmetric difference $M \triangle M' = (M \setminus M') \cup (M' \setminus M)$.
- ► Every component of the symmetric difference of two matchings is either a path or an even cycle.

Theorem (Berge'57)

M is a maximum matching in G iff G has no M-augmenting path

▶ (\iff) We will show if \exists matching M' larger than M, we will construct an M-augmenting path.

A definition and a lemma

- ▶ For matchings M, M' of graph G, the symmetric difference $M \triangle M' = (M \setminus M') \cup (M' \setminus M)$.
- ► Every component of the symmetric difference of two matchings is either a path or an even cycle.

Theorem (Berge'57)

M is a maximum matching in G iff G has no M-augmenting path

- ▶ (\iff) We will show if \exists matching M' larger than M, we will construct an M-augmenting path.
- ▶ Let $F = M \triangle M'$. By Lemma, F has only paths and even cycles with equal no. of edges from M and M'.

A definition and a lemma

- ▶ For matchings M, M' of graph G, the symmetric difference $M \triangle M' = (M \setminus M') \cup (M' \setminus M)$.
- ► Every component of the symmetric difference of two matchings is either a path or an even cycle.

Theorem (Berge'57)

M is a maximum matching in G iff G has no M-augmenting path

- ▶ (\iff) We will show if \exists matching M' larger than M, we will construct an M-augmenting path.
- ▶ Let $F = M \triangle M'$. By Lemma, F has only paths and even cycles with equal no. of edges from M and M'.
- ▶ But then as |M'| > |M|, F must have a component with more edges in M' than M, which is a path that starts and ends with an edge of M'; i.e., an M-augmenting path.

▶ If there are n women and n men, and each woman is compatible with exactly k men and each man compatible with exactly k women, can they be perfectly matched?

- ▶ If there are n women and n men, and each woman is compatible with exactly k men and each man compatible with exactly k women, can they be perfectly matched?
- ▶ If there are m jobs and n applicants, when can we find a perfect matching where all m jobs are saturated?

- \triangleright Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| edges that have neighbours in S.

- \triangleright Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| edges that have neighbours in S.
- ▶ That is, $\forall S \subseteq X, |N(S)| \ge |S|$ (Hall's Condition).

- \triangleright Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| edges that have neighbours in S.
- ▶ That is, $\forall S \subseteq X, |N(S)| \ge |S|$ (Hall's Condition). This is a necessary condition, is it sufficient?

- \triangleright Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| edges that have neighbours in S.
- ▶ That is, $\forall S \subseteq X, |N(S)| \ge |S|$ (Hall's Condition). This is a necessary condition, is it sufficient?

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Longrightarrow) is straightforward:

- \blacktriangleright Let M be a matching.
- ▶ Then for any $S \subseteq X$, each vertex of S is matched to a distinct vertex in N(S)
- ▶ So $|N(S)| \ge |S|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) We will show the contrapositive:

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\iff) We will show the contrapositive: if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\iff) We will show the contrapositive: if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$. Note: Maximality principle here!

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

▶ Let $u \in X$ be any unsaturated vertex of M.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|.

 \blacktriangleright Every vertex of $S \setminus \{u\}$ has an edge in M to a vertex in T.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|.

- ightharpoonup Every vertex of $S \setminus \{u\}$ has an edge in M to a vertex in T.
- \blacktriangleright Every vertex of T extends via M to a unique vertex of S.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|.

- ightharpoonup Every vertex of $S \setminus \{u\}$ has an edge in M to a vertex in T.
- ightharpoonup Every vertex of T extends via M to a unique vertex of S.
- ▶ Thus, there is a bijection between T and $S \setminus \{u\}$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|.

▶ $T \subseteq N(S)$ (from T any M-alternating path will reach S).

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|.

- ▶ $T \subseteq N(S)$ (from T any M-alternating path will reach S).
- ▶ Conversely, if $v \in S$ has edge to $y \in Y \setminus T$, then path from u to v via M to y is an M-alternating path, implies $y \in T$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) if M is any maximum matching in G which does not saturate X, then $\exists S \subseteq X, |N(S)| < |S|$.

- ▶ Let $u \in X$ be any unsaturated vertex of M.
- ▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|. Thus, |N(S)| = |T| = |S| - 1 < |S|