ECN 102, Spring 2020

Midterm 2 Review Regression

Variables sales is how many sales (in units) a firm makes; variable newspaper is thousands of dollars a firm spends for newspaper advertising.

. regress sales newspaper

Source	ss	df	MS		Number of obs F(1, 198) Prob > F R-squared Adi R-squared		200
Model Residual	282344204 5.1348e+09	1 198	282344204 25933356.3	1 Prob > 3 R-squa			10.89 0.0011 0.0521 0.0473
Total	5.4171e+09	199	2722185			=	5092.5
sales	Coef.	Std. Err.	t	P> t	[95% Con	ıf.	Interval]
newspaper	54.6931	16.57572	3.30	0.001	22.00548		87.38071

19.88

0.000

11125.96

13576.86

621.4202

t_198,.005 = 2.6008873 t_198,.01 = 2.3453283 t_198,.025 = 1.9720175 t_198,.05 = 1.6525858

_cons

 $t_{198..10} = 1.6525858$ $t_{198..10} = 1.2858418$

12351.41

How do sales change when newspaper advertising expenditure increases by one thousand dollars?

. regress sales newspaper

Source	ss	df	MS		Number of obs F(1, 198) Prob > F R-squared Adj R-squared Root MSE		200 10.89
Model Residual	282344204 5.1348e+09	1 198	282344204 25933356.3	Prob > R-squa			0.0011 0.0521 0.0473
Total	5.4171e+09	199	27221853				5092.5
sales	Coef.	Std. Err.	t	P> t	[95% Cor	ıf.	Interval]
newspaper _cons	54.6931 12351.41	16.57572 621.4202	3.30 19.88	0.001 0.000	22.00548 11125.96		87.38071 13576.86

The slope coefficient is $b_2 = 54.6931$. An increase in variable newspaper by 1 unit (which is one thousand dollars) is associated with 54.6931 more units sold.

The claim is made that sales are not associated with newspaper advertising. Test this claim at significance level 0.05. State clearly the null and alternative hypothesis and your conclusion.

. regress sales newspaper

	Source	SS		df	MS	Number of ob)s =	200
_						- F(1, 198)	=	10.89
	Model	282344204		1	282344204	1 Prob > F	=	0.0011
	Residual	5.1348e+09		198	25933356.3	R-squared	=	0.0521
_						- Adi R-square	ed =	0.0473
	Total	5.4171e+09		199	27221853	Root MSE	=	5092.5
_								
	sales	Coef	Std	Frr	+	P> + [95%	Conf	Intervall

sales	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
newspaper	54.6931	16.57572	3.30	0.001	22.00548	87.38071
_cons	12351.41	621.4202	19.88	0.000	11125.96	13576.86

"Not associated with" is code for zero slope. The null hypothesis is $H_0: \beta_2 = 0$ against $H_a: \beta_2 \neq 0$. Stata tests this automatically. Notice the *p*-value for newspaper is 0.001 < 0.05, so we reject the null and conclude that the association between newspaper and sales is statistically significant at level 0.05.

The claim is made that saless change by more than 30 units when advertising expenditure increases by one thousand dollars. Test at level 0.05. State clearly the null and alternative hypotheses and your conclusion.

. regress sales newspaper

Source	SS	df	MS	Number of obs	=	200 10.89
Model	282344204	1	282344204	Prob > F	=	0.0011
Residual	5.1348e+09		25933356.3	R-squared Adj R-squared	=	0.0521
Total	5.4171e+09	199	27221853	Root MSE	=	5092.5

sales	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
newspaper	54.6931	16.57572	3.30	0.001	22.00548	87.38071
_cons	12351.41	621.4202	19.88	0.000	11125.96	13576.86

```
t_198,.005 = 2.6008873
t_198,.01 = 2.3453283
t_198,.025 = 1.9720175
t_198,.05 = 1.6525858
t_198..10 = 1.2858418
```

The claim is H_a : $\beta_2 > 30$ and the null is H_0 : $\beta_2 \leq 30$. The *t*-statistic is

$$t = \frac{54.9631 - 30}{16.57572} = 1.506,$$

and the critical value is $t_{200-2,0.05} = 1.6525858$, so fail to reject the null.

Suppose \$100,000 is spent on newspaper advertising. What level of sales do we expect?

df

621.4202

. regress sales newspaper

SS

12351.41

Source

_cons

_					- F(l. 1	.98)	=	10.89
	Model Residual	282344204 5.1348e+09	1 198	282344204 25933356.3	Prob > R-squa	Prob > F R-squared Adj R-squared Root MSE		0.0011 0.0521
	Total	5.4171e+09	199	27221853				0.0473 5092.5
	sales	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
	newspaper	54.6931	16.57572	3.30	0.001	22.005	48	87.38071

19.88

0.000

MS

Number of obs =

11125.96

13576.86

The estimated regression line is $\hat{y}=12351.41+54.6931x$. Each unit of x is \$1000, so \$100,000 is equivalent to x=100. Plug this into the estimated regression line to get a predicted value of

$$\hat{y} = 12351.41 + 54.6931(100) = 17820.72$$
 units sold.