ORF526 - Problem Set 7

Bachir EL KHADIR

November 19, 2015

Question 1

1. It is easy to check that C is symmetric and that:

$$C(s,t) = \begin{cases} \min(|s|,|t|) & \text{if } ts \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Let $(t_i)_1^n \in \mathbb{R}$, and $f_i = 1_{(0,t_i)}$ where (0,t) = (t,0) if t < 0, then: $C(t_i,t_j) = \int_R f_i f_j$ which is a scalar product in L_2 . C is definite positive semi-definite as a conclusion.

- 2. $C(t,s) = \min(t,s)$ when $t,s \ge 0$.
- 3. $Var(B_0) = 0$ so $B_0 = 0$ as.
 - $B_t B_s$ is normal because B_t is a guaussian process. $E[B_t B_s] = 0$, and $Var(B_t B_s) = Var(B_t) + Var(B_s) + 2Cov(B_t, B_s) = |t| + |s| + 2C(t, s) = |t s|$
 - $Cov(B_t B_s, B_u B_v) = C(t, u) + C(s, v) C(s, u) C(t, v) = \frac{1}{2}(|t| + |u| |t u| + |s| + |v| |s v| |s| |u| + |s u| |t| |v| + |t v| = \frac{1}{2}(u t + v s + u s + v t) = 0$, and since the 2d process $B_t B_s$, $B_u B_v$ is guassian, its compenonets are independent.

Question 2

Let's call C_1 the function C definited on quesiton 1.

1. $C(u,v) = C_1(u_1,v_1)C_1(u_2,v_2) = \int_{R^2} 1_{(0,u_1)}(x)1_{(0,v_1)}(x)1_{(0,u_2)}(y)1_{(0,v_2)}(y)dxdy = \int_{R^2} 1_{(0,u_1)\times(0,u_2)}1_{(0,v_1)\times(0,v_2)} = \langle 1_{(0,u_1)\times(0,u_2)}, 1_{(0,v_1)\times(0,v_2)} \rangle$

So C is positive semi-definite.

- 2. $C(u, v) = \min(u_1, v_1) \min(u_2, v_2)$ when $u, v \ge 0$
- 3. if one component of u is 0, then $Var(X_u) = C(u_2, u_2)C(u_1, u_1) = 0$, ie $X_u = 0$ as.
- 4. $B_t = X_{(t,1)}$ is a guaussian process. $E[B_t] = 0$ and $Cov(B_t, B_s) = Cov(X_{(t,1)}, X_{(s,1)}) = C_1(t,s)$, so B_t is a two sided brownian motion
- 5. $Var(X_{(t,t)}) = C_1(t,t)^2 = |t|^2$

Question 3

Let's first show the following lemma: For every $X \in L_1$, there exist a sequence of simple function Z_n bounded by |X| and converging to X. To show that, we write $X = X^+ - X^-$, and let Z_n^+ (resp. Z_n^-) a sequence of positive simple functions converging to X^+ (resp. X^-) from below (resp. above). And set $Z_n = Z_n^+ - Z_n^-$, which verifies the lemma.

- 1. X is \mathcal{G} mesurable, and trivially verifies the definition of conditional probability, so $E[X|\mathcal{G}] = X$
- 2. $aE[X|\mathcal{G}] + bE[Y|\mathcal{G}]$ is \mathcal{G} -measurable as sum of two functions that are \mathcal{G} -measurable, and if $A \in \mathcal{G}$:

$$\begin{split} E[(aE[X|\mathcal{G}] + bE[Y|\mathcal{G}])1_A] &= aE[E[X|\mathcal{G}]1_A] + bE[E[Y|\mathcal{G}]1_A] \\ &= aE[X1_A] + bE[Y1_A] \quad \text{because A is \mathcal{G}-measurable} \\ &= E[(aX + bY)1_A] \end{split}$$

so $E[aX + bY|\mathcal{G}] = aE[X|\mathcal{G}] + bE[Y|\mathcal{G}].$

3. $E[X|\mathcal{G}] - E[Y|\mathcal{G}] = E[X - Y|\mathcal{G}]$ Let $H := E[X - Y|\mathcal{G}]$, and $A := \{H \le 0\}$. A is \mathcal{G} -measurable and by positivity of the expectation: $0 \ge E[H1_A] = E[(X - Y)1_A] \ge 0$.

Since $-H1_A \leq 0$ a.s and its expectation is 0, $H1_A = H^- = 0$ as, and therefore $H \geq 0$ as.

4. For $A \in H \subseteq \mathcal{G}$, $E[E[X|\mathcal{G}]|H]$ is H-measurable and :

$$E[1_A E[E[X|\mathcal{G}]|H]] = E[1_A E[X|\mathcal{G}]]$$
$$= E[1_A X]$$

5. Let $A \in \mathcal{G}$, and prove that $E[1_AYE[X|\mathcal{G}]] = E[1_AXY]$ If we denote $Z := 1_AY$, this is equivalent to $E[ZE[X|\mathcal{G}]] = E[ZX]$.

Z is \mathcal{G} -measurable and $|ZX| \leq |YX| \in L_1$

• If Z is a simple function $\sum_{i=0..n} \alpha_i 1_{A_i}$, where $A_i \in \mathcal{G}$ for i=0..n, then by linearity of the expectation:

$$E[ZE[X|\mathcal{G}]] = \sum_{i} \alpha_i E[1_{A_i} E[X|\mathcal{G}]] = \sum_{i} \alpha_i E[1_{A_i} X] = E[ZX]$$

• If X and Y are non-negative, Let Z_n be a sequence of non-negative simple \mathcal{G} -measurable functions s.t. $Z_n \uparrow Z$ and therefore $|Z_n X| \leq |Z X| \in L_1$. By monotnous convergence theorem:

$$E[ZE[X|\mathcal{G}]] = \lim E[Z_n E[X|\mathcal{G}]] = \lim E[Z_n X] = E[ZX]$$

• X now can be in L_1 .

We use h), to show that $|E[X|\mathcal{G}]| < E[|X||\mathcal{G}]$. (take $\phi : x \to |x|$)

Let Z_n a sequence of simple functions converging to Z and bounded by |Z|. Then $|Z_nX| \leq |ZX| \in L_1$ and $|Z_nE[X|\mathcal{G}]| = |E[Z_nX|\mathcal{G}]| \leq E[|XZ||\mathcal{G}] \in L_1$ because $EE[|XZ||\mathcal{G}] = E[|XZ|] < \infty$.

By dominated convergence theorem:

$$E[ZE[X|\mathcal{G}]] = \lim E[Z_n E[X|\mathcal{G}]] = \lim E[Z_n X] = E[ZX]$$

- If $Y \in L_1$, $Z = Z^+ Z^-$, and by linearity $E[ZE[X|\mathcal{G}]] = E[Z^+E[X|\mathcal{G}]] E[Z^-E[X|\mathcal{G}]] = E[XZ^+|\mathcal{G}] E[Z^-X|\mathcal{G}] = E[XZ^+] E[XZ^-] = E[XZ]$
- 6. Let's first prove that if $A \in \mathcal{G}$, $E[X1_A] = E[X]E[1_A]$.
 - (a) If X is an indicator function, then it follows from the definition of independence
 - (b) If X is a simple function it follows from the linearity of the expectation.

(c) If Z_n a sequence of simple functions converging to X and uniformly bounded by an |X|, then by CVD:

$$E[X1_A] = \lim E[Z_n1_A] = \lim E[Z_n]E[1_A] = \lim E[X]E[1_A]$$

So now we have:

$$E[1_A X] = E[1_A]E[X] = E[1_A E[X]]$$

E[X] is a constant, so \mathcal{G} -measurable.

7.

$$E[X1_{\emptyset}] = 0 = E[X]E[1_{\emptyset}]$$
$$E[X1_{\Omega}] = E[X] = E[X]E[1_{\Omega}]$$

so X is independent of \mathcal{G} , and therefore $E[X|\mathcal{G}] = E[X]$.

8. If φ is affine = ax + b, then by linearity $E[\varphi(X)|\mathcal{G}] = \varphi(E[X|\mathcal{G}])$

If φ is convex not linear, we can write $\varphi = \sup_n a_n x + b_n$ where $a_n, b_n \in R$, then $\forall n \ E[\varphi(X)|\mathcal{G}] \ge E[\varphi_n(X)|\mathcal{G}] \ge \varphi_n(E[X|\mathcal{G}])$ as. Let Ω_n the set where this equality holds, so on $\Omega' := \cap_n \Omega_n$ we have that:

$$E[\varphi(X)|\mathcal{G}] \ge \sup_{n} \phi_n(E[X|\mathcal{G}]) = \varphi(E[X|\mathcal{G}]) \text{ on } \Omega'$$

and
$$P(\Omega') = 1 - P(\bigcup_n \Omega_n^c) \ge 1 - \sum_n P(\Omega_n^c) \ge 1$$

Question 4

• $E[X_n|Y]$ is non-decreasing, let's call $L := \lim E[X_n|Y]$, and prove that $L = E[X|\mathcal{G}]$. Since $Y \leq X_n \uparrow X$, $Y \land n \leq X \land n \uparrow X$ and $E[Y|\mathcal{G}] \leq E[X_n|\mathcal{G}] \uparrow L$, by monotonous convergence theorem, for all $A \in \mathcal{G}$:

$$E[1_A L] = \lim_n E[1_A E[X_n | \mathcal{G}]]$$

$$= \lim_n E[1_A X_n]$$

$$= E[1_A X]$$

$$= \lim_n E[1_A (X \wedge k)]$$

$$= \lim_n E[1_A E[X \wedge k]]$$

$$= E[1_A E[X | \mathcal{G}]]$$

Let $B \in B(R)$, and for a > 0, $A = B \cap \{|L| < a, |E[X|\mathcal{G}]| < a\}$. And now we have:

$$0 = E[1_A(L - E[X|\mathcal{G}])] = E[1_B(L - E[X|\mathcal{G}])1_{|L| < a, |E[X|\mathcal{G}]| < a}]$$

By taking B to be the set where $L - E[X|\mathcal{G}] > 0$ and then $L - E[X|\mathcal{G}] < 0$, we have that $(L - E[X|\mathcal{G}])1_{|L| < a, |E[X|\mathcal{G}]| < a} = 0$, and by taking a to ∞ , we have that $L = E[X|\mathcal{G}]$.

• Let's define $L_k := \inf_{n \geq k} X_n \leq X_k$, so that

$$E[L_k|\mathcal{G}] \le E[X_k|\mathcal{G}] \tag{1}$$

But $Y \leq L_k \uparrow \liminf_n X_n$, by a) $E[L_k|\mathcal{G}] \uparrow_k E[\liminf_n X_n|\mathcal{G}]$, and by taking the lim inf in the inequality 1 we have the result.

• X_n and $-X_n$ verify the conditions of the last quesiton, so:

$$\liminf E[-X_n|\mathcal{G}] \ge E[\liminf -X_n|\mathcal{G}] \Rightarrow \limsup E[X_n|\mathcal{G}] \le E[\limsup X_n|\mathcal{G}]$$

$$\liminf E[X_n|\mathcal{G}] > E[\liminf X_n|\mathcal{G}]$$

as a result

$$E[\limsup X_n|\mathcal{G}] \ge \limsup E[X_n|\mathcal{G}] \ge \liminf E[X_n|\mathcal{G}] \ge E[\liminf X_n|\mathcal{G}]$$

Since $\limsup X_n = \liminf X_n = X$, we have the result.

Question 5

- $y \to p(y, A)$ is measurable because:
 - 1. $(x,y) \to f(x,y)$ is measurable since it is a density
 - 2. N(y) is measurable by Fubini
 - 3. $y \to \int \frac{f(x,y)}{N(y)} 1_{0 < N(y) < \infty} + (1 1_{0 < N(y) < \infty}) \varphi(x)$ is also measurable by Fubini

p(Y, A) is then $\sigma(Y)$ -measurable.

• We have that:

$$N(y)f_y(x) = \begin{cases} N(y)\phi(x) = 0 & \text{if } N(y) = 0\\ N(y)\phi(x) & \text{if } N(y) = \infty\\ f(x,y) & \text{otherwise} \end{cases}$$

But since $N \in L_1$ (By fubini), the set $\{N = \infty\}$ is of measure 0, so $N(y)f_y(x) = 1_{N(y)\neq 0}f(x,y)$ a.s. Let $B \in B(R)$, all function integrated below are non negative, so:

$$\begin{split} E[p(Y,A)1_{Y\in B}] &= \int_{R^2} p(y,A)1_{y\in B} f(x,y) dx dy \\ &= \int p(y,A)1_{y\in B} N(y) dy \qquad \text{By Tonnelli} \\ &= \int_{y} 1_{y\in B} \int_{x} 1_{x\in A} N(y) f_y(x) dx dy \\ &= \int 1_{y\in B} 1_{x\in A} 1_{N(y)\neq 0} f(x,y) dx dy \\ &= \int 1_{y\in B} 1_{x\in A} f(x,y) dx dy \qquad \text{because if } N(y) = 0 \text{ then } \int_{A} f(x,y) = 0 \\ &= E[1_{Y\in B} 1_{X\in A}] \\ &= E[1_{Y\in B} P(X\in A|Y)] \end{split}$$

Which prove the result.