LABORATORIO DI INGEGNERIA DEI SISTEMI SOFTWARE

Introduction

Goal Sprint 0: definire un modello logico del sistema

Requirements

Requisiti dati dal committente

Ipotesi Sprint 0

Per definire un iniziale modello del sistema, ci concentriamo sul core business dell'applicazione e consideriamo le seguenti assunzioni:

- l'applicazione non è distribuita
- il sonar e il led connessi al Raspberry saranno trattati nello Sprint successivo
- l'interfaccia utente sarà realizzata nello Sprint successivo

Requirement analysis

Service area	modellata con una mappa, suddivisa in celle quadrate di lato RD
INDOOR port	area di servizio dove viene scaricato il carico da depositare nella Cold Room
Cold Room	container con capacità massima di MAXW kg
Transport trolley	interfaccia per l'utilizzo di un DDR robot, modellato come un quadrato con lato RD. Posizionato inizialmente in HOME
Service Access GUI	interfaccia utente che consente di visualizzare il peso dei materiali attualmente nella Cold Room e mandare la richiesta di depositare ulteriori FW kg. Se la richiesta viene accettata, l'utente ottiene un ticket valido per un tempo TICKETTIME
Service Status GUI	interfaccia utente che consente ad un service manager di visualizzare lo stato del servizio
Sonar	dispositivo connesso ad un Raspberry Pi. Misura la distanza: quando è minore del limite dato DLIMIT, il transport trolley si ferma; riparte quando la distanza è maggiore di DLIMIT
Led	dispositivo connesso ad un Raspberry Pi. Il Led è spento quando il trolley è in HOME, lampeggia quando il trolley si sta muovendo ed è acceso quando il trolley è fermo.
Truck driver	l'utente che usa il servizio

- HOME
- Possiamo suddividere l'area di servizio in celle di lato RD (dimensione del robot) e modellare INDOOR port e Cold Room come posizioni sulla mappa (coordinate x, y).
 Rappresentazione della stanza esplorata:

- r: posizione corrente del robot
- X: cella occupata da un ostacolo
- 1: cella libera

Use cases and scenarios

User story data dal committente

service access GUI

ID	handleRequest
descrizione	il truck driver richiede la possibilità di scaricare il carico di FW kg.
azione	l'interfaccia invia al servizio la richiesta ticket
postcondizione	se la richiesta è accettata, il truck driver raggiunge l'INDOOR port e inserisce il numero del ticket per poter scaricare il carico

ID	requestAccepted
descrizione	accettata la richiesta iniziale di scarico, il truck driver raggiunge la INDOOR port entro il tempo indicato sul ticket
precondizione	l'utente ha ricevuto un ticket con un codice univoco e un intervallo di tempo
azione	se il tempo trascorso è inferiore al TICKETTIME indicato dal ticket, la richiesta viene confermata e il carico viene scaricato
postcondizione	ricevuto il messaggio charge taken, il truck driver può lasciare l'INDOOR port

coldstorageservice

ID	handleRequest
descrizione	il servizio riceve la richiesta di scarico dall'interfaccia
azione	è inviata la richiesta store alla coldroom per verificare ci sia lo spazio necessario
postcondizione	se c'è abbastanza spazio nella coldroom la richiesta è accettata e il servizio risponde con un ticket: ogni ticket ha un codice e un intervallo di tempo di validità

ID	validate
descrizione	l'utente inserisce il codice del biglietto
precondizione	l'utente ha richiesto con successo il ticket
azione	se il tempo non è finito, il biglietto è valido e viene accettato il carico
postcondizione	il servizio manda la richiesta al trolley di raggiungere l'indoor port e, concluso lo scarico, risponde con il messaggio charge taken all'interfaccia

coldroom

ID

descrizione	verifica se c'è abbastanza spazio disponibile
azione	la cold room riceve dal servizio la richiesta di depositare FW kg e verifica se è possibile
postcondizione	se la richiesta è accettata, viene aggiornato lo spazio disponibile per le prossime richieste

transport trolley

ID	moveToIndoor
descrizione	il robot raggiunge la INDOOR port per scaricare il carico
precondizione	l'utente ha inviato la richiesta nell'intervallo di tempo dato
azione	il robot raggiunge la INDOOR port
postcondizione	al termine dello scarico viene inviato il messaggio <i>charge taken</i>

ID	moveToColdRoom
descrizione	il robot raggiunge la cold room per depositare il carico
precondizione	è avvenuto lo scarico alla INDOOR port con successo
azione	il robot raggiunge la cold room
postcondizione	se al termine arriva una nuova richiesta, il robot torna in INDOOR port altrimenti in HOME

Problem analysis

 $Per \ realizzare \ un \ primo \ prototipo \ eseguibile, scegliamo \ di \ utilizzare \ il \ linguaggio \ di \ modellazione \ \underline{Qak}, dato \ dalla \ software \ house. \ Il \ metamodello$

- consente di catturare gli aspetti essenziali del sistema
 offre l'astrazione QActor per rappresentare le entità come componenti autonomi ed indipendenti.

La Software Factory definita per il linguaggio crea automaticamente un modello eseguibile in Kotlin.

Qak service access GUI model

Qak cold room model

Qak transport trolley model

Codice completo per i QAK actors: coldstorageservice.qak

Test plans

Piano di lavoro • prototipo *coldstorageservice* • testing SPRINT1 • introduzione alarm requirements • testing SPRINT2 introduzione GUI di sistema testing SPRINT3

Testing

Deployment

Maintenance

- letizia.mancini3@studio.unibo.it po: https://github.com/llevtizia/issLab23-ManciniLetizia bla: 0000926656

