Отчёт по работе 3.2.5

Вынужденные колебания

Карташов Констанин Б04-005

I Анотация

Цель работы: Исследование вынужденных колебаний и процессов их установления.

Оборудование:

- ⊳ Генератор звуковой частоты,
- ⊳ Осциллограф,
- ⊳ Вольтметр,
- ⊳ Частотомер,
- ⊳ Ёмкость,
- ⊳ Индуктивность,
- ⊳ Магазин сопротивлений,
- ⊳ Универсальный мост.

II Теоретическая часть

і Некоторые сведения

Резонансом называется случай, в котором на колебательных контур подаётся переменный ток с собственной частотой Ω , совпадающий с собственной частотой (частотой свободных колебаний) контура ω_0 . Уравнение вынужденных колебаний:

$$L\ddot{q} + R\dot{q} + \frac{1}{C}q = \mathcal{E}_0 \cos \Omega t$$

что для тока:

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = -\mathcal{E}_0 \frac{\Omega}{L} \sin \Omega t.$$

Для резонанса характерен резкий скачок в силе тока и напряжении на элементах контура. Это можно увидеть, получив из уравнения для тока следующее уравнение:

$$\frac{I_0}{I_{0,\mathrm{pe3}}} = \frac{U_0(\Omega)}{I_{0,\mathrm{pe3}}} = \frac{1}{\sqrt{1 + Q^2 \left(\frac{\nu_m}{\nu} - \frac{\nu}{\nu_m}\right)^2}},$$

где I_0 и U_0 – амплитуды тока и напряжения соответственно, Q – добротность контура.

Рис. 1: Схема установки для исследования вынужденных колебаний

іі Устройство экспериментальной установки

На рис. 1 представлена схема экспериментальной установки. Колебательный контур состоит из конденсатора с ёмкостью C=0.1 мк Φ , катушки с индуктивностью L=100 м Γ н и магазина сопротивлений R.

Синусоидальный сигнал от генератора звуковых сигналов проходит через частотомер, позволяющий измерять рабочую частоту с высокой точностью. В корпус частотомера вмонтирован генератор цугов.

После частотомера сигналы поступают по коаксиальному кабелю через одинаковые небольшие конденсаторы на клеммы «непр.» и «цуги» смонтированные на панели. На этой же панели смонтированы клеммы синхронизация «снхр.» и земля « \perp ».

Для визуального наблюдения за процессом колебаний напряжение с ёмкости колебательного контура C подаётся на на вход электронного осциллографа ЭО. Чтобы картинка на экране ЭО была устойчивой, его частота синхронизируется с частотой колебаний за счёт синхронизированных с частотой повторения цугов импульсов, подаваемых на клемму панели «синхр.».

III Экспериментальная часть

і Снятие и исследование АЧХ вынужденных колебаний

Найдём резонансную частоту $\nu_m \approx 1.585$ к Γ ц. Теперь при R=0 измерим $U_m=31.8$ В и снимем зависимость $U(\nu)$ для $0.3U_m \leq U \leq U_m$ при понижении и повышении частоты. То же самое повторим для R=100 Ом. Данные занесём в таблицы 1 и 2.

Полученные данные отметим на графике. Пользуясь методом наименьших квадратов найдём наилучшую аппроксимацию для уравнения резонансной кривой:

/ 110	0.346										
ν/ν_m	0.954	0.960	0.965	0.970	0.973	0.976	0.979	0.980	0.982	0.984	0.986
,	0.818										
ν/ν_m	0.988	0.991	0.993	0.996	1.000	1.003	1.008	1.010	1.013	1.016	1.017
,	0.723										
ν/ν_m	1.019	1.021	1.023	1.025	1.028	1.032	1.036	1.041	1.047	1.056	_

Таблица 1: Результаты измерения АЧХ для цепи с R=0

U/U_m	0.335	0.368	0.410	0.445	0.486	0.520	0.585	0.639	0.705	0.763	0.841
ν/ν_m	0.854	0.864	0.876	0.885	0.896	0.904	0.919	0.928	0.940	0.948	0.961
,	0.903										
,	0.971										1.077
,	0.647										_
ν/ν_m	1.085	1.100	1.108	1.119	1.131	1.141	1.151	1.163	1.170	_	_

Таблица 2: Результаты измерения АЧХ для цепи с $R=100~{
m Om}$

$$\frac{U(\nu)}{U_m} = \frac{1}{\sqrt{1 + Q^2 \left(\frac{\nu_m}{\nu} - \frac{\nu}{\nu_m}\right)^2}},$$

где Q – добротность. Результаты покажем на графике 2.

Полученные значения для добротности $Q_1=26.9\pm0.4$ и $Q_2=7.6\pm0.2$.

Изучение скорости нарастания и затухания вынужденных колебаний на резонансе

Подадим на колебательный контур сигнал в виде цугов. Измерим амплитуды возрастающих и убывающих вынужденных колебаний. Результаты покажем на графике 3.

Найдём логарифмический декремент затухания и нарастания колебаний по формуле:

$$\Theta = \frac{1}{n} \left(\ln (U_0 - U_k) - \ln (U_0 - U_{k+n}) \right),$$

где U_0 – максимальная амплитуда (в нашем случае $U_0=8$), U_k и U_{k+n} – амплитуды k-го и k+n-го колебания. Считая что погрешность $\Delta U_k=\Delta U_{k+n}=\Delta U$, найдём погрешность $\Delta\Theta$:

$$\Delta\Theta = \frac{\Delta U}{n} \left(\frac{1}{U_0 - U_k} + \frac{1}{U_0 - U_{k+n}} \right).$$

Для добротности получаем:

$$Q = \frac{\pi}{\Theta}, \quad \Delta Q = \frac{\Delta \Theta}{\Theta} Q.$$

Рис. 2: Зависимости амплитуды от частоты и аппроксимация кривых

Рис. 3: Амплитуды нарастающих и затухающих вынужденных колебаний

Получаем для нарастающих колебаний: $Q_1=26.0\pm1.4,~Q_2=7.7\pm0.7$; для убывающих колебаний: $Q_1=26.7\pm1.3,~Q_2=7.5\pm0.7.$

ііі Нахождение теоретической добротности

Измерим индуктивность, сопротивление и добротность цепи с помощью LCR-7819. При частоте колебаний $\nu=1.5$ кГц. Получаем L=99.63 мГн, R=29.97 Ом, Q=31.33. Считая, что C=0.1 мк Φ , рассчитаем добротность по формуле:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}.$$

Взяв $R_1=30~{\rm Om}$ и $R_2=130~{\rm Om},$ получим: $Q_1=33.3,$ $Q_2=7.7.$

IV Выводы

Вычисленные несколькими способами добротности:

R	R_{Σ}	Q								
		АЧХ	$\Theta \uparrow$	$\Theta \downarrow$	f(CRL)					
0	30	26.9 ± 0.4	26.0 ± 1.4	26.7 ± 1.3	33.3					
100	130	7.6 ± 0.2	7.7 ± 0.7	7.5 ± 0.7	7.7					

Видим, что значения получились похожими, чем показали, что затухание и нарастание, как и АЧХ контура связанны с одной общей добротностью.