CPSC 530 PRESENTATION

STRENGTH AND PREDICTABILITY OF GRAPHICAL PASSWORDS

Alex Tanasescu - Computer Science - 30041538 Matthew Newton - Computer Science - 30094756 Delara Shamanian Esfahani - Computer Science - 30089408 Ramez Halasah - Computer Science - 30094242

GROUP 4

Overview + Content

- Three Questions
- Types of Graphical Passwords
 - Android 3x3 Password
 - Colour Based 3x3 Password
 - Picture Based Password
- Analysis
 - Heatmaps
 - Entropy Estimation
 - Trends

Three Questions

- 1. For the picture password, where a user would choose a point from 4 pictures in order, would the theoretical entropy match the experimental entropy?
- 2. Name a test that is appropriate for measuring/estimating entropy of a password
- 3. Given the 3x3 coloured graphical password, was there a colour that reduced the strength of the password? Explain your reasoning.

Types of Graphical Passwords

01

Android 3x3 Password
Standard Android pattern
password style

02

Colour Based 3x3 Password

Users will choose their password based on the colours given in a 3x3 grid.

03

Picture Based Password

Users choose their password based on clicking on points in a picture

Analysis

Entropy Estimation

Trends

Heatmaps

- Overlayed each password dataset to generate heatmaps
- Heatmaps show the frequency that each cell is chosen
- Darker colour indicates higher frequency of clicks

Entropy

- Calculate max entropy
 assuming uniform distribution
- Compare result with our generated distribution

Trends

- Compared passwords by looking for patterns
- Examples: length, common element in a password

Android Password

- Most passwords tended to heavily use the corners
- Cell 2 and Cell 8 were chosen the least
- Not a lot of variation between those clicked frequently and those clicked not that frequently
- Even though our sample size is small. Our findings reflect common findings others have found in a larger sample size[2]

Colored Password

- Cells represent the colours that have been clicked
- Way more variation than android password due to less restrictions
- If a colour was frequently clicked (such as red), this reduces the entropy of system and therefore decreases the strength of the passwords

Picture Password

Picture Password Cont.

Entropy

- Entropy can be used as a way to determine the theoretical strength of a password assuming the password type has a uniform distribution.
- Based on number of possible combinations for each system
- Can be measured by entropy estimation using Shannon's entropy

DIFFICULTY TO REMEMBER:
YOU'VE ALREADY
MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Android Entropy

- Determine the number of possible combinations
- Using a combination generator we found with a minimum of 3 dots and max 9 the total possible combinations is 389436 [1]
- Uniform distribution for max entropy

 $log_2(N) = log_2(389 436)$ = 18.571 bits

Color Entropy

- The possible number of combinations:
 - Password length can be 1 9
 - ∘ 3x3 grid
 - no restrictions
- Uniform distribution for max entropy

$$9 + 9^{2} + 9^{3} + 9^{4} + 9^{5} + 9^{6} + 9^{7} + 9^{8} + 9^{9}$$

= 435 848 049
 $log_{2}(N) = log_{2}(435 848 049)$
= 24. 108 bits

Picture Entropy

- Number of combinations:
 - Password consists of 3 pictures
 - Each picture split into 3x3 grid

$$9 \times 9 \times 9 = 729$$

 $\log_2(N) = \log_2(729) = 9.510 \text{ bits}$

ENTROPY

Best Entropy: Image 1

Worst Entropy: Image 2

Experimental vs Theoretical Entropy

Image 1 Experimental: 3.103 bits

Image 2 Experimental: 2.527 bits

Image 3 Experimental: 2.838 bits

Image 4 Experimental: 2.867 bits

Image 5 Experimental: 3.024 bits

Image 6 Experimental: 2.805 bits

ENTROPY

Theoretical Entropy vs Experimental Entropy for Picture Password System

Picture Password Entropy:

Add entropy of 3 pictures to get total password entropy

Theoretical Uniform distribution (Max Entropy):

Max Entropy = 9.510 bits

Best Experimental Entropy (uses Image 1, 4, 5):
Best Experimental Entropy: 8.994 bits

Worst Experimental Entropy (uses Image 2, 3, 6): Worst Experimental Entropy: 8.170 bits

Why is our experimental entropy less?

Lengths

- Medium length passwords tend to be made for android graphical passwords
- Passwords with extreme lengths
 (either very short or very long) are
 more likely to be coloured
 passwords

Cell Frequency

- Counts the number of passwords that contain a certain cell
- All of the cells seem to be used by most of the passwords on average, other than Cell 2 and Cell 8 which are considerably lower

Color Frequency

- Counts the number of passwords that contain a color
- Reflects variety found in heat map as well

QUESTIONS?

REFERENCES

[1] Delight-Im. (2014). List of all combinations for the android pattern lock. AndroidPatternLock. Retrieved April 1, 2023, from https://github.com/delight-im/AndroidPatternLock [2] Dan Goodin - Aug 20, 2015 10:15 am U.T.C. (2015) New data uncovers the surprising predictability of Android Lock Patterns, Ars Technica. Available at: https://arstechnica.com/information-technology/2015/08/new-data-uncovers-the-surprising-predictability-of-android-lock-patterns/ (Accessed: April 2, 2023).

THANK YOU