

Claims

1. A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

(I)

5 wherein:

R^A is an optionally substituted bicyclic carbocyclic or heterocyclic ring system of structure:

- 10 containing 0-3 heteroatoms in each ring in which:
 at least one of rings (x) and (y) is aromatic;
 one of Z^4 and Z^5 is C or N and the other is C;
 Z^3 is N, NR^{13} , O, S(O)_X , CO, CR¹ or CR¹R^{1a};
 Z^1 and Z^2 are independently selected from N, NR¹³, O, S(O)_X, CO, CR¹ and CR¹R^{1a};
 15 independently selected from N, NR¹³, O, S(O)_X, CO, CR¹ and CR¹R^{1a};
 such that each ring is independently substituted with 0-3 groups R¹ and/or R^{1a};
 one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are CH, or one of Z^1 ,
 Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;
 20 R¹ and R^{1a} are independently hydrogen; hydroxy; (C₁₋₆)alkoxy optionally substituted by (C₁₋₆)alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, CONH₂, hydroxy, (C₁₋₆)alkylthio, heterocyclithio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C₁₋₆)alkylsulphonyloxy; (C₁₋₆)alkoxy-substituted(C₁₋₆)alkyl; hydroxy (C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C₁₋₆)alkylthio; trifluoromethyl; trifluoromethoxy; cyano; carboxy; nitro; azido; acyl; acyloxy; acylthio; (C₁₋₆)alkylsulphonyl; (C₁₋₆)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, or when Z³ and the adjacent atom are CR¹ and CR^{1a}, R¹ and R^{1a} may together represent (C₁₋₂)alkylenedioxy;

provided that R¹ and R^{1a}, on the same carbon atom are not both optionally substituted hydroxy or amino;

provided that

5 (i) when R^A is optionally substituted quinolin-4-yl:

it is unsubstituted in the 6-position; or

it is substituted by at least one hydroxy (C₁₋₆)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position; or

it is substituted by at least one trifluoromethoxy group; or

10 R¹ and R^{1a} together represent (C₁₋₂)alkylenedioxy;

(ii) when R^A is optionally substituted quinazolin-4-yl, cinnolin-4-yl, 1,5-naphthyridin-4-yl, 1,7-naphthyridin-4-yl or 1,8-naphthyridin-4-yl:

it is substituted by at least one hydroxy (C₁₋₆)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position as available; or

15 it is substituted by at least one trifluoromethoxy group; or

R¹ and R^{1a} together represent (C₁₋₂)alkylenedioxy;

R² is hydrogen, or (C₁₋₄)alkyl or (C₂₋₄)alkenyl optionally substituted with 1 to 3 groups selected from:

20 amino optionally substituted by one or two (C₁₋₄)alkyl groups; carboxy; (C₁₋₄)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by

hydroxy, (C₁₋₄)alkyl, hydroxy(C₁₋₄)alkyl, aminocarbonyl(C₁₋₄)alkyl, (C₂₋₄)alkenyl,

(C₁₋₄)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₄)alkenylsulphonyl, (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)alkenyloxycarbonyl or (C₂₋₄)alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R¹⁰; 3-

hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-

ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 5-oxo-1,2,4-oxadiazol-

3-yl; halogen; (C₁₋₄)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C₁₋₄)alkyl, (C₂₋₄)alkenyl, (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)alkenyloxycarbonyl, (C₂₋₄)alkenylcarbonyl; oxo; (C₁₋₄)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; or (C₁₋₄)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl;

25

30

35 R³ is hydrogen; or

R³ is in the 2-, 3- or 4-position and is:

trifluoromethyl; carboxy; (C₁-₆)alkoxycarbonyl; (C₂-₆)alkenyloxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁-₆)alkyl, hydroxy(C₁-₆)alkyl, aminocarbonyl(C₁-₆)alkyl, (C₂-₆)alkenyl, (C₁-₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂-₆)alkenylsulphonyl, (C₁-₆)alkoxycarbonyl, (C₁-₆)alkylcarbonyl, (C₂-₆)alkenyloxycarbonyl or (C₂-₆)alkenylcarbonyl and optionally further substituted by (C₁-₆)alkyl, hydroxy(C₁-₆)alkyl, aminocarbonyl(C₁-₆)alkyl or (C₂-₆)alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl 5
optionally substituted by R¹⁰; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally 10
substituted by R¹⁰; or 5-oxo-1,2,4-oxadiazol-3-yl; or
(C₁-₄)alkyl or ethenyl optionally substituted with any of the substituents listed above for R³ and/or 0 to 2 groups R¹² independently selected from:
halogen; (C₁-₆)alkylthio; trifluoromethyl; (C₁-₆)alkoxycarbonyl; (C₁-₆)alkylcarbonyl; (C₂-₆)alkenyloxycarbonyl; (C₂-₆)alkenylcarbonyl; hydroxy optionally 15
substituted by (C₁-₆)alkyl, (C₂-₆)alkenyl, (C₁-₆)alkoxycarbonyl, (C₁-₆)alkylcarbonyl, (C₂-₆)alkenyloxycarbonyl, (C₂-₆)alkenylcarbonyl or aminocarbonyl wherein the amino 20
group is optionally substituted by (C₁-₆)alkyl, (C₂-₆)alkenyl, (C₁-₆)alkylcarbonyl or (C₂-₆)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁-₆)alkoxycarbonyl, (C₁-₆)alkylcarbonyl, (C₂-₆)alkenyloxycarbonyl, (C₂-₆)alkenylcarbonyl, (C₁-₆)alkyl, 25
(C₂-₆)alkenyl, (C₁-₆)alkylsulphonyl, (C₂-₆)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁-₆)alkyl or (C₂-₆)alkenyl; aminocarbonyl 30
wherein the amino group is optionally substituted by (C₁-₆)alkyl, hydroxy(C₁-₆)alkyl, aminocarbonyl(C₁-₆)alkyl, (C₂-₆)alkenylcarbonyl, (C₂-₆)alkenyloxycarbonyl or (C₂-₆)alkenylcarbonyl and optionally further substituted by (C₁-₆)alkyl, hydroxy(C₁-₆)alkyl, aminocarbonyl(C₁-₆)alkyl or (C₂-₆)alkenyl; oxo; (C₁-₆)alkylsulphonyl; (C₂-₆)alkenylsulphonyl; or (C₁-₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁-₆)alkyl or (C₂-₆)alkenyl; or

R³ is in the 2-position and is oxo; or

30 R³ is in the 3-position and is fluorine, amino optionally substituted by a group selected from hydroxy, (C₁-₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂-₆)alkenylsulphonyl, (C₁-₆)alkylcarbonyl, (C₂-₆)alkenylcarbonyl, (C₁-₆)alkoxycarbonyl, (C₂-₆)alkenyloxycarbonyl, (C₁-₆)alkyl and (C₂-₆)alkenyl, wherein a (C₁-₆)alkyl or (C₂-₆)alkenyl moiety may be optionally substituted with up to 2 groups R¹², or hydroxy 35
optionally substituted as described above for R¹² hydroxy;

in addition when R³ is disubstituted with a hydroxy or amino containing substituent and carboxy containing substituent these may together form a cyclic ester or amide linkage, respectively;

R⁴ is a group -U-R⁵ where

5 U is selected from CO, SO₂ and CH₂ and

R⁵ is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):

containing up to four heteroatoms in each ring in which

at least one of rings (a) and (b) is aromatic;

10 X¹ is C or N when part of an aromatic ring, or CR¹⁴ when part of a non-aromatic ring;

X² is N, NR¹³, O, S(O)_X, CO or CR¹⁴ when part of an aromatic or non-aromatic ring or may in addition be CR¹⁴R¹⁵ when part of a non aromatic ring;

X³ and X⁵ are independently N or C;

15 Y¹ is a 0 to 4 atom linker group each atom of which is independently selected from N, NR¹³, O, S(O)_X, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring;

20 Y² is a 2 to 6 atom linker group, each atom of Y² being independently selected from N, NR¹³, O, S(O)_X, CO, CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring;

each of R¹⁴ and R¹⁵ is independently selected from: H; (C₁₋₄)alkylthio; halo; carboxy(C₁₋₄)alkyl; halo(C₁₋₄)alkoxy; halo(C₁₋₄)alkyl; (C₁₋₄)alkyl; (C₂₋₄)alkenyl; (C₁₋₄)alkoxycarbonyl; formyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenylcarbonyl; (C₁₋₄)alkylcarbonyloxy; (C₁₋₄)alkoxycarbonyl(C₁₋₄)alkyl; hydroxy; hydroxy(C₁₋₄)alkyl; mercapto(C₁₋₄)alkyl; (C₁₋₄)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₄)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally mono- or di-substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl; aryl; aryl(C₁₋₄)alkyl; aryl(C₁₋₄)alkoxy or

30 R¹⁴ and R¹⁵ may together represent oxo;

each R¹³ is independently H; trifluoromethyl; (C₁₋₄)alkyl optionally substituted by hydroxy, (C₁₋₆)alkoxy, (C₁₋₆)alkylthio, halo or trifluoromethyl; (C₂₋₄)alkenyl; aryl; aryl (C₁₋₄)alkyl; arylcarbonyl; heteroarylcarbonyl; (C₁₋₄)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; formyl; (C₁₋₆)alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)

4) alkenyloxycarbonyl, (C₂-4)alkenylcarbonyl, (C₁-4)alkyl or (C₂-4)alkenyl and optionally further substituted by (C₁-4)alkyl or (C₂-4)alkenyl;

each x is independently 0, 1 or 2

5 n is 0 and AB is NR¹¹CO, CO-CR⁸R⁹, CR⁶R⁷-CO, NHR¹¹SO₂, CR⁶R⁷-SO₂ or CR⁶R⁷-CR⁸R⁹, provided that R⁸ and R⁹ are not optionally substituted hydroxy or amino and R⁶ and R⁸ do not represent a bond:
or n is 1 and AB is NR¹¹CO, CO-CR⁸R⁹, CR⁶R⁷-CO, NR¹¹SO₂, CONR¹¹, CR⁶R⁷-CR⁸R⁹, O-CR⁸R⁹ or NR¹¹-CR⁸R⁹;

provided that R⁶ and R⁷, and R⁸ and R⁹ are not both optionally substituted hydroxy or amino;

and wherein:

15 each of R⁶, R⁷, R⁸ and R⁹ is independently selected from: H; (C₁-6)alkoxy; (C₁-6)alkylthio; halo; trifluoromethyl; azido; (C₁-6)alkyl; (C₂-6)alkenyl; (C₁-6)alkoxycarbonyl; (C₁-6)alkylcarbonyl; (C₂-6)alkenyloxycarbonyl; (C₂-6)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁-6)alkylsulphonyl; (C₂-6)alkenylsulphonyl; or (C₁-6)aminosulphonyl wherein the amino group is optionally substituted by (C₁-6)alkyl or (C₂-6)alkenyl;
20 or R⁶ and R⁸ together represent a bond and R⁷ and R⁹ are as above defined;

25 R¹⁰ is selected from (C₁-4)alkyl; (C₂-4)alkenyl and aryl any of which may be optionally substituted by a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁-6)alkyl, (C₂-6)alkenyl, (C₁-6)alkylsulphonyl, trifluoromethylsulphonyl, (C₂-6)alkenylsulphonyl, (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl or (C₂-6)alkenylcarbonyl and optionally further substituted by (C₁-6)alkyl or (C₂-6)alkenyl; and

30 R¹¹ is hydrogen; trifluoromethyl, (C₁-6)alkyl; (C₂-6)alkenyl; (C₁-6)alkoxycarbonyl; (C₁-6)alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl, (C₂-6)alkenylcarbonyl, (C₁-6)alkyl or (C₂-6)alkenyl and optionally further substituted by (C₁-6)alkyl or (C₂-6)alkenyl;

or where one of R³ and R⁶, R⁷, R⁸ or R⁹ contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage.

2. A compound according to claim 1 wherein R^A is optionally substituted isoquinolin-5-yl, quinolin-8-yl, thieno[3,2-b]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl, quinoxalin-5-yl, isoquinolin-8-yl, [1,6]-naphthyridin-4-yl, 1,2,3,4-tetrahydroquinoxalin-5-yl or 1,2-dihydroisoquinoline-8-yl..
3. A compound according to any preceding claim wherein R¹ is H, methoxy, methyl, cyano or halogen and R^{1a} is H.
4. A compound according to any preceding claim wherein R³ is hydrogen; optionally substituted hydroxy; optionally substituted amino; halogen; (C₁₋₄)alkoxycarbonyl; CONH₂; 1-hydroxyalkyl; CH₂CO₂H; CH₂CONH₂; -CONHCH₂CONH₂; 1,2-dihydroxyalkyl; CH₂CN; 2-oxo-oxazolidin-5-yl; or 2-oxo-oxazolidin-5-yl(C₁₋₄alkyl).
5. A compound according to any preceding claim wherein n is 0 and A and B are both CH₂, A is CHOH and B is CH₂ or A is NH and B is CO.
6. A compound according to any preceding claim wherein -U- is -CH₂-.
7. A compound according to any preceding claim wherein the heterocyclic ring (A) having 8-11 ring atoms including 2-4 heteroatoms of which at least one is N or NR¹³ in which Y² contains 2-3 heteroatoms, one of which is S and 1-2 are N, with one N bonded to X³ or the heterocyclic ring (A) has ring (a) aromatic selected from optionally substituted benzo and pyrido and ring (b) non aromatic and Y² has 3-5 atoms, including a heteroatom bonded to X⁵ selected from O, S or NR¹³, where R¹³ is other than hydrogen, and NHCO bonded via N to X³, or O bonded to X³.
8. A compound according to any one of claims 1 to 6 wherein R⁵ is selected from:
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
- 2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl.
9. A compound according to claim 1 selected from:

- 4-(2-{4-[(3-Oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-piperidin-1-yl}-ethyl)-quinoline-6-carbonitrile 6-({(3R,4S)-3-Fluoro-1-[*(R*)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
- 5 6-({(3S,4R)-3-Fluoro-1-[*(R*)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
- 6-({(3R,4R)-3-Hydroxy-1-[*(R*)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
- 10 6-({(3S,4S)-3-Hydroxy-1-[*(R*)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
- 6-({(3R,4S)-1-[2-(2,3-Dihydro-[1,4]dioxino[2,3-f]quinolin-10-yl)-ethyl]-3-fluoro-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
- 6-{{(1-{(2R/S)-2-hydroxy-2-[3-(methyloxy)-5-quinoxaliny]ethyl}-4-piperidinyl)amino}methyl}-2H-pyrido[3,2-b][1,4]thiazin-3(4*H*)-one
- 15 (1*R/S*)-2-{4-[(2,3-dihydro[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)amino]-1-piperidinyl}-1-[3-(methyloxy)-5-quinoxaliny]ethanol
- {1-[2-(9-Chloro-2,3-dihydro-[1,4]dioxino[2,3-f]quinolin-10-yl)-ethyl]-piperidin-4-yl}-
(2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)-amine 6-{{(1-{2-hydroxy-2-[2-(methyloxy)-8-quinolinyl]ethyl}-4-piperidinyl)amino}methyl}-2H-pyrido[3,2-b][1,4]oxazin-3(4*H*)-one
- 20 6-[(1-[2-(4-quinolinyl)ethyl]-4-piperidinyl)amino)methyl]-2H-pyrido[3,2-b][1,4]thiazin-3(4*H*)-one
- 4-[2-(3-hydroxy-4-{{(3-oxo-3,4-dihydro-2*H*-pyrido[3,2-b][1,4]oxazin-6-yl)methyl}amino}-1-piperidinyl)ethyl]-6-quinolinecarbonitrile (isomer E2)
- 25 4-[2-(3-hydroxy-4-{{(3-oxo-3,4-dihydro-2*H*-pyrido[3,2-b][1,4]thiazin-6-yl)methyl}amino}-1-piperidinyl)ethyl]-6-quinolinecarbonitrile (isomer E2)
- 4-[2-(3-hydroxy-4-{{(3-oxo-3,4-dihydro-2*H*-pyrido[3,2-b][1,4]oxazin-6-yl)methyl}amino}-1-piperidinyl)ethyl]-6-quinolinecarbonitrile (E1 isomer)
- 30 4-[2-(3-hydroxy-4-{{(3-oxo-3,4-dihydro-2*H*-pyrido[3,2-b][1,4]thiazin-6-yl)methyl}amino}-1-piperidinyl)ethyl]-6-quinolinecarbonitrile (E1 isomer)
or a pharmaceutically acceptable derivative thereof.

10. A method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment an effective amount of a compound according to claim 1.

11. The use of a compound according to claim 1, in the manufacture of a medicament for use in the treatment of bacterial infections in mammals.

12. A pharmaceutical composition comprising a compound according to claim 1 and
5 a pharmaceutically acceptable carrier for use in the treatment of bacterial infections in mammals.

13. A pharmaceutical composition comprising a compound according to claim 1, and
a pharmaceutically acceptable carrier.

10

14. A compound according to claim 1 for use as a medicament.

15. A compound according to claim 1 for use in the treatment of bacterial infections in mammals.

15

16. A process for preparing a compound of formula (I) according to claim 1, or a pharmaceutically acceptable derivative thereof, which process comprises reacting a compound of formula (IV) with a compound of formula (V):

(IV)

(V)

20

wherein n is as defined in formula (I); Z^{1'}, Z^{2'}, Z^{3'}, R^{1'}, and R^{3'} are Z¹, Z², Z³, R¹, and R³ as defined in formula (I) or groups convertible thereto; Z⁴ and Z⁵ are as defined in formula (I);

Q¹ is NR^{2'}R^{4'} or a group convertible thereto wherein R^{2'} and R^{4'} are R² and R⁴ as defined in formula (I) or groups convertible thereto and Q² is H or R^{3'} or Q¹ and Q² together form an optionally protected oxo group;

- (i) X is A'-COW, Y is H and n is 0;
- (ii) X is CR⁶=CR⁸R⁹, Y is H and n is 0;
- (iii) X is oxirane, Y is H and n is 0;
- 30 (iv) X is N=C=O and Y is H and n is 0;
- (v) one of X and Y is CO₂RY and the other is CH₂CO₂R^X;
- (vi) X is CHR⁶R⁷ and Y is C(=O)R⁹;
- (vii) X is CR⁷=PR^Z₃ and Y is C(=O)R⁹ and n=1;
- (viii) X is C(=O)R⁷ and Y is CR⁹=PR^Z₃ and n=1;

(ix) Y is COW and X is NHR^{11'}, NCO or NR^{11'}COW and n=0 or 1 or when n=1 X is COW and Y is NHR^{11'}, NCO or NR^{11'}COW;

(x) X is NHR^{11'} and Y is C(=O)R⁸ and n=1;

(xi) X is NHR^{11'} and Y is CR⁸R⁹W and n=1;

5 (xii) X is NR^{11'}COCH₂W or NR^{11'}SO₂CH₂W and Y is H and n=0;

(xiii) X is CR⁶R⁷SO₂W and Y is H and n=0;

(xiv) X is W or OH and Y is CH₂OH and n is 1;

(xv) X is NHR^{11'} and Y is SO₂W or X is NR^{11'}SO₂W and Y is H, and n is 0;

(xvi) X is W and Y is CONHR^{11'};

10 (xvii) X is -CH=CH₂ and Y is H and n=0;

in which W is a leaving group, e.g. halo, methanesulphonyloxy,

trifluoromethanesulphonyloxy or imidazolyl; R^X and R^Y are (C₁₋₆)alkyl; R^Z is aryl or

(C₁₋₆)alkyl; A' and NR^{11'} are A and NR¹¹ as defined in formula (I), or groups

convertible thereto; and oxirane is:

15

wherein R⁶, R⁸ and R⁹ are as defined in formula (I);

and thereafter optionally or as necessary converting Q¹ and Q² to NR²R⁴; converting A', Z¹', Z²', Z³', R¹', R²', R³', R⁴' and NR^{11'}; to A, Z¹, Z², Z³, R¹, R², R³, R⁴ and NR¹¹;

20 converting A-B to other A-B, interconverting R¹, R², R³ and/or R⁴, and/or forming a pharmaceutically acceptable derivative thereof.