

AMENDMENTS TO THE CLAIMS:

Please change the heading at page 39, line 1, from "Claims" to --WHAT IS CLAIMED IS--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-12 (canceled)

-- Claim 13 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I)

in which

Q represents a group

or

(Q-1)

(Q-2)

R¹ represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹,

R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, C₆-C₁₂-bicycloalkyl, or C₆-C₁₂-bicycloalkenyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of

halogen, cyano, hydroxyl, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₆-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C₁-C₆-haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R³ represents fluorine, chlorine, bromine, or methyl,

m represents 0, 1, 2, 3, or 4,

A represents O or CR¹²,

R⁴, R⁵, R⁶, and R¹² independently of one another represent hydrogen, methyl, or ethyl,

R⁷ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³,

R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³, and

R¹³ represents hydrogen or C₁-C₆-alkyl.

Claim 14 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to

Claim 13 in which

Q represents a group

(Q-1)

or

(Q-2)

R^1 represents hydrogen; C_1 - C_6 -alkyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylsulfanyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents $-COR^7$, $-CONR^8R^9$, or $-CH_2NR^{10}R^{11}$,

R^2 represents C_3 - C_{12} -cycloalkyl, C_3 - C_{12} -cycloalkyl, C_3 - C_{12} -cycloalkenyl, C_6 - C_{12} -bicycloalkyl, or C_6 - C_{12} -bicycloalkenyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C_1 - C_4 -haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R^3 represents fluorine, bromine or methyl,

m represents 0, 1, 2, or 3,

A represents O or CR^{12} ,

R^4 , R^5 , R^6 , and R^{12} independently of one another represent hydrogen, methyl, or ethyl,

R^7 represents hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R^8 and R^9 independently of one another represent hydrogen, C_1 - C_6 -alkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; or represents C_1 - C_4 -haloalkyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^8 and R^9 together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR^{13} ,

R^{10} and R^{11} independently of one another represent hydrogen, C_1 - C_6 -alkyl, or C_3 - C_6 -cycloalkyl; or represent C_1 - C_4 -haloalkyl or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^{10} and R^{11} together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl and which has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR^{12} , and

R^{13} represents hydrogen or C_1 - C_4 -alkyl.

Claim 15 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to Claim 13 in which

Q represents a group

or

R^1 represents hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, pentyl, or hexyl, methylsulfinyl, ethylsulfinyl, n- or isopropylsulfinyl, n-, iso-, sec-, or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or isopropylsulfonyl, n-, iso-, sec-, or tert-butylsulfonyl, methoxymethyl, methoxyethyl, ethoxy-

methyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, trichloromethyl, trifluoroethyl, difluoromethylsulfanyl, difluorochloromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethylsulfinyl, trifluoromethylsulfonyl, or trifluoromethoxymethyl; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹,

R² represents C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkenyl, C₆-C₁₀-bicycloalkyl, or C₆-C₁₀-bicycloalkenyl, each of which is optionally mono- to trisubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxy, ethoxy, n- or isopropoxy, n-, iso-, sec-, or tert-butoxy, trifluoromethyl, difluoromethyl, trichloromethyl, difluorochloromethyl, trifluoromethoxy, difluoromethoxy, trichloromethoxy, or difluorochloromethoxy,

R³ represents fluorine, bromine, or methyl,

m represents 0, 1, 2, or 3,

A represents O or CR¹²,

R⁴ represents methyl or ethyl,

R⁵ and R⁶ each represent methyl,

R⁷ represents hydrogen, methyl, ethyl, n- or isopropyl, tert-butyl, methoxy, ethoxy, tert-butoxy, cyclopropyl; trifluoromethyl, trifluoromethoxy, or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R⁸ and R⁹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, or trifluoromethoxymethyl, or

R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle selected from the group consisting of morpholine, thiomorpholine, and piperazine, each of which is optionally mono- to tetra-substituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, and methyl, where the piperazine is optionally substituted on the second nitrogen atom by R¹³,

R¹⁰ and R¹¹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxymethyl, methoxyethyl, ethoxy-

methyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, or trifluoromethoxymethyl, or R^{10} and R^{11} together with the nitrogen atom to which they are attached form a saturated heterocycle selected from the group consisting of morpholine, thiomorpholine, and piperazine, each of which is optionally mono- to tetra-substituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, and methyl, where the piperazine is optionally substituted on the second nitrogen atom by R^{13} , R^{12} represent hydrogen or methyl, and R^{13} represents hydrogen, methyl, ethyl, n- or isopropyl, or n-, iso-, sec-, or tert-butyl.

Claim 16 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I-a)

in which

Q represents a group

(Q-1)

or

(Q-2)

R^2 represents C_3-C_{12} -cycloalkyl, C_3-C_{12} -cycloalkenyl, C_6-C_{12} -bicycloalkyl, or C_6-C_{12} -bicycloalkenyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, hydroxyl, C_1-C_8 -alkyl, C_1-C_8 -alkoxy, C_1-C_6 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C_1-C_6 -haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R^3 represents fluorine, chlorine, bromine, or methyl,

m represents 0, 1, 2, 3, or 4,

A represents O or CR¹², and

R⁴, R⁵, R⁶, and R¹² independently of one another represent hydrogen, methyl, or ethyl.

Claim 17 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I-b)

(I-b)

in which

Q represents a group

(Q-1)

(Q-2)

R¹⁻¹ represents C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkyl-sulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹,

R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, C₆-C₁₂-bicycloalkyl, or C₆-C₁₂-bicycloalkenyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, hydroxyl, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₆-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C₁-C₆-haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R³ represents fluorine, chlorine, bromine, or methyl,

m represents 0, 1, 2, 3, or 4,

A represents O or CR¹²,

R^4 , R^5 , R^6 , and R^{12} independently of one another represent hydrogen, methyl, or ethyl,

R^7 represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R^8 and R^9 independently of one another represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^8 and R^9 together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR^{13} ,

R^{10} and R^{11} independently of one another represent hydrogen, C_1 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -haloalkyl or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^{10} and R^{11} together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR^{13} , and

R^{13} represents hydrogen or C_1 - C_6 -alkyl.

Claim 18 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I-c)

in which

R^1 represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylsulfanyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or represents $-COR^7$, $-CONR^8R^9$, or $-CH_2NR^{10}R^{11}$,

R^2 represents C_3 - C_{12} -cycloalkyl, C_3 - C_{12} -cycloalkenyl, C_6 - C_{12} -bicycloalkyl, or C_6 - C_{12} -bicycloalkenyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, hydroxyl, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_6 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C_1 - C_6 -haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R^3 represents fluorine, chlorine, bromine, or methyl,

m represents 0, 1, 2, 3, or 4,

R^7 represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R^8 and R^9 independently of one another represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^8 and R^9 together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical

or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³,

R^{10} and R^{11} independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^{10} and R^{11} together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR^{13} , and

R^{13} represents hydrogen or C_1 - C_6 -alkyl.

Claim 19 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I-d)

in which

R^1 represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹,

A represents O or CR¹²,

R^4 , R^5 , R^6 , and R^{12} independently of one another represent hydrogen, methyl, or ethyl.

R^7 represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

R^8 and R^9 independently of one another represent hydrogen, C_1 - C_8 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or represents C_1 - C_8 -haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^8 and R^9 together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR^{13} ,

R^{10} and R^{11} independently of one another represent hydrogen, C_1 - C_8 -alkyl, or C_3 - C_8 -cycloalkyl; or represent C_1 - C_8 -haloalkyl or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or

R^{10} and R^{11} together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_4 -alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR^{13} , and

R^{13} represents hydrogen or C_1 - C_6 -alkyl.

Claim 20 (new): A process for preparing a thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 13 comprising

- (1) reacting a carboxylic acid derivative of formula (II)

in which G represents halogen, hydroxyl, or C₁-C₆-alkoxy,
with an aniline derivative of formula (III)

in which Q is as defined for formula (I) in Claim 13,
in the presence of an acid binder and in the presence of a diluent
to form a compound of formula (I-a)

in which Q is as defined for formula (I) in Claim 13, and
(2) optionally reacting a compound of formula (I-a) with a halide of the
formula (III)

in which

R^{1-1} represents C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl,
C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-
haloalkyl, C₁-C₄-haloalkylsulfanyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-
haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halo-
cycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or
bromine atoms; or represents -COR⁷, -CONR⁸R⁹, or
-CH₂NR¹⁰R¹¹,

R⁷, R⁸, R⁹, R¹⁰, and R¹¹ are as defined for formula (I) in Claim 13, and
X represents chlorine, bromine, or iodine,

in the presence of a base and in the presence of a diluent.

Claim 21 (new): A composition for controlling unwanted microorganisms comprising one or more thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 13 and one or more extenders and/or surfactants.

Claim 22 (new): A method for controlling unwanted microorganisms comprising applying an effective amount of one or more thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 13 to the microorganisms and/or their habitat.

Claim 23 (new): A process for preparing a composition for controlling unwanted microorganisms comprising mixing one or more thiazole(bi)cycloalkylcarboxanilides of the formula (I) according to Claim 13 with one or more extenders and/or surfactants. --