# Machine Translation

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Yulia Tsvetkov & Dr. Diyi Yang

## Learning Objectives

Compare the Noisy Channel Model to Direct Modeling

Consider what to do about uneven parallel corpora

Discover issues with word alignment

5/6/2025

#### Machine Translation





Tower of Babel

5/6/2025 MACHINE TRANSLATION



#### Dictionaries

English: leg, foot, paw

French: jambe, pied, patte, etape



5/6/2025 MACHINE TRANSLATION

## Challenges

- Ambiguities
  - Words
  - Morphology
  - Syntax
  - Semantics
  - Pragmatics
- Gaps in data
  - Availability of corpus
  - Commonsense knowledge
- Understanding of context, connotation, social norms, etc



#### Research Problems

- How can we formalize the process of learning to translate from examples?
- How can we formalize the process of finding translations for new inputs?
- If our model produces many outputs, how do we find the best one?
- If we have a gold standard translation, how can we tell if our output is good or bad?

## Two Views Of MT

## MT as Code Breaking

One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'



Warren Weaver to Norbert Wiener, March, 1947





Claude Shannon. "A Mathematical Theory of Communication" 1948.





We want to predict a sentence given acoustics:  $w^* = \underset{w}{\operatorname{arg max}} P(w|a)$ 



```
w^* = \arg \max_{w} P(w|a)
= \arg \max_{w} P(a|w)P(w) / P(a)
= \arg \max_{w} P(a|w)P(w)
Channel model

Source model
```



```
w^* = \arg\max_{w} P(w|a)
= \arg\max_{w} P(a|w)P(w) / P(a)
= \arg\max_{w} P(a|w)P(w)
Likelihood

Acoustic model (HMMs)

Translation model

Prior

Language model: Distributions over sequence of words
```

5/6/2025 MACHINE TRANSLATION 14



Language model

Translation model

## MT as Direct Modeling



- One model does everything
- Trained to reproduce a corpus of translations

#### Two Views of MT

- Code breaking (aka the noisy channel, Bayes rule)
  - I know the target language
  - I have example translations texts (example enciphered data)
- Direct modeling (aka pattern matching)
  - I have really good learning algorithms and a bunch of example inputs (source language sentences) and outputs (target language translations)

5/6/2025 MACHINE TRANSLATION

#### Which is Better?

- Noisy channel  $p_{\phi}(e) \times p_{\theta}(f|e)$ 
  - Easy to use monolingual target language data
  - Search happens under a product of two models (individual models can be simple, product can be powerful)
- Direct Model  $-p_{\lambda}(e|f)$ 
  - Directly model the process you care about
  - Model must be very powerful

#### Where are we in 2025?

- Direct modeling is where most of the action is
  - Neural networks (e.g., transformers) are very good at generalizing and conceptually very simple
  - Inference in "product of two models" is hard
- Noisy channel ideas are incredibly important and still play a big role in how we think about translation

20

#### Two Views of MT

Noisy channel 
$$\hat{e} = \arg \max_{e} p_{\phi}(e) \times p_{\theta}(f|e)$$

Direct 
$$\hat{e} = \arg \max_{e} p_{\lambda}(e|f)$$

## Noisy Channel: Phrase-Based MT



# Neural MT: Conditional Language Modeling



http://opennmt.net/

#### A Common Problem

Noisy channel 
$$\hat{e} = \arg \max_{e} p_{\phi}(e) \times p_{\theta}(f|e)$$

Direct  $\hat{e} = \arg \max_{e} p_{\lambda}(e|f)$ 

Both models must assign probabilities to how a sentence in one language translates into a sentence in another language

# Learning From Data

# Parallel Corpora



https://en.wikipedia.org/wiki/Rosetta\_Ston



https://www.maarifculture.com



https://www.simonandschuster.co.in/books/Around-the-World-in-Eight Days/Jules-Verne/Enriched-Classics/9781416534723

# Parallel Corpora

|   |          |     |     |       | CLASSIC SOUPS Sm                     | ı. Lg. |
|---|----------|-----|-----|-------|--------------------------------------|--------|
| ታ | 燩        | 雞   | 8   | 57.   | House Chicken Soup (Chicken, Celery, |        |
|   |          |     |     |       | Potato, Onion, Carrot)               | 0 2.75 |
| 雞 | Ŕ        | 反   | 2   | 58.   | Chicken Rice Soup                    |        |
| 雞 | 3        | 4   | *   | 59.   | Chicken Noodle Soup                  |        |
| 廣 | 東        | 李   | 吞   | 60.   | Cantonese Wonton Soup                |        |
| ¥ | 茄        | 季   | - 8 | 61.   | Tomato Clear Egg Drop Soup           |        |
| 雲 | 2        | 5   | *   | 62.   | Regular Wonton Soup                  |        |
| 酸 | 身        | 束   | *   | 63. ₹ | Hot & Sour Soup                      |        |
| 委 | Ŧ        | Ė   | *   | 64.   | Egg Drop Soup1.10                    | 0 2.10 |
| 李 | 7        | 5   | *   | 65.   | Egg Drop Wonton Mix1.10              | 0 2.10 |
| 豆 | 腐        | 茱   | *   | 66.   | Tofu Vegetable SoupN/                |        |
| 雞 | <b>王</b> | 米   | *   | 67.   | Chicken Corn Cream SoupNA            | A 3.50 |
| 磐 | 肉 3      | E 米 | 湯   | 68.   | Crab Meat Corn Cream Soup NA         | A 3.50 |
| 海 | 1        | ¥   | *   | 69.   | Seafood SoupNA                       |        |

## Parallel Corpora (mining parallel data from microblogs Ling et al., 2013)

|   | ENGLISH                                                                          | MANDARIN                            |
|---|----------------------------------------------------------------------------------|-------------------------------------|
| 1 | i wanna live in a wes anderson world                                             | 我想要生活在Wes Anderson的世界里              |
| 2 | Chicken soup, corn never truly digests. TMI.                                     | 鸡汤吧, 玉米神马的从来没有真正消化过.恶心              |
| 3 | To DanielVeuleman yea iknw imma work on that                                     | 对DanielVeuleman说,是的我知道,我正在向那方面努力    |
| 4 | msg 4 Warren G his cday is today 1 yr older.                                     | 发信息给Warren G, 今天是他的生日, 又老了一岁了。      |
| 5 | Where the hell have you been all these years?                                    | 这些年你TMD到哪去了                         |
| Π | ENGLISH                                                                          | ARABIC                              |
| 6 | It's gonna be a warm week!                                                       | الاسبوع الياي حر                    |
| 7 | onni this gift only 4 u                                                          | أوني هذة الهدية فقط لك              |
| 8 | sunset in aqaba :)                                                               | غروب الشمس في العقبة:)              |
| 9 | RT @MARYAMALKHAWAJA: there is a call<br>for widespread protests in #bahrain tmrw | هناك نداء لمظاهرات في عدة مناطق غدا |

Table 2: Examples of English-Mandarin and English-Arabic sentence pairs. The English-Mandarin sentences were extracted from Sina Weibo and the English-Arabic sentences were extracted from Twitter. Some messages have been shorted to fit into the table. Some interesting aspects of these sentence pairs are marked in bold.

#### Discussion

- There is a lot more monolingual data in the world than translated data
- Easy to get about 1 trillion words of English by crawling the web
- With some work, you can get 1 billion translated words of English-French
  - What about Japanese-Turkish?

How can you get around uneven amounts of data?

#### Phrase-Based MT



#### Construction of t-table



# Word Alignment Models

#### Lexical Translation

■ How do we translate a word? Look it up in the dictionary

Haus – house, building, home, household, shell

- Multiple translations
  - Some more frequent than others
  - Different word senses, different registers, different functions
  - *House, home* are common
- *Shell* is specialized (the Haus of a snail is a shell)

33

#### How Common is Each?

Look at a parallel corpus (German text along with English translation)

| Translation of Haus | Count |
|---------------------|-------|
| house               | 8000  |
| building            | 1600  |
| home                | 200   |
| household           | 150   |
| shell               | 50    |

#### Estimate Translation Probabilities

#### Maximum likelihood estimation

$$\hat{p}_{\mathrm{MLE}}(e \mid \mathtt{Haus}) = \begin{cases} 0.8 & \text{if } e = \mathtt{house}, \\ 0.16 & \text{if } e = \mathtt{building}, \\ 0.02 & \text{if } e = \mathtt{home}, \\ 0.015 & \text{if } e = \mathtt{household}, \\ 0.005 & \text{if } e = \mathtt{shell}. \end{cases}$$

## Word Alignment:

Given a sentence pair, which words correspond to each other?



## Word Alignment

Alignment can be visualized by drawing links between two sentences, and they are represented as vectors of positions



$$\mathbf{a} = (1, 2, 3, 4)^{\top}$$

## Reordering

Words may be reordered during translation



$$\mathbf{a} = (3, 4, 2, 1)^{\top}$$

# Word Dropping

A source word may not be translated at all



$$\mathbf{a} = (2, 3, 4)^{\top}$$

## Word Insertion

- Words may be inserted during translation
  - English just does not have an equivalent

■ But it must be explained – we typically assume every source sentence contains a

**NULL** token



# One-to-many Translation

A source word may translate into more than one target word



41

$$\mathbf{a} = (1, 2, 3, 4, 4)^{\mathsf{T}}$$

## Many-to-one Translation

More than one source word may not translate as a unit in lexical translation



$$\mathbf{a} = ???$$
  $\mathbf{a} = (1, 2, (3, 4)^{\top})^{\top}$  ?

# Computing Word Alignments

- Word alignments are the basis for most translation algorithms
- Given two sentences F and E, find a good alignment
- But a word-alignment algorithm can also be part of a mini-translation model itself
- One the most basic alignment models is also a simplistic translation model

### IBM Model 1

- Generative model: break up translation process into smaller steps
- Simplest possible lexical translation model
- Additional assumptions
  - All alignment decisions are independent
  - $\blacksquare$  The alignment distribution for each  $a_i$  is uniform over all source words and NULL

### Lexical Translation

- Goal: a model p(e|f,m)
  - Where **e** and **f** are complete English and Foreign sentences

$$\blacksquare e = \langle e_1, e_2, ..., e_m \rangle$$

$$\blacksquare f = \langle f_1, f_2, ..., f_n \rangle$$

## Lexical Translation

- Goal: a model p(e|f,m)
  - Where **e** and **f** are complete English and Foreign sentences
- Lexical translation makes the following assumptions
  - $\blacksquare$  Each word  $e_i$  in  $\boldsymbol{e}$  is generated from exactly one word in  $\boldsymbol{f}$
  - Thus, we have an alignment  $a_i$  that indicates which word  $e_i$  "came from", specifically it came from  $f_{a_i}$
  - Given the alignments  $\mathbf{a}$ , translation decisions are conditionally independent of each other and depend only on the aligned source word  $f_{a_i}$

#### Lexical Translation

Putting our assumptions together, we have:

$$p(\boldsymbol{e}|\boldsymbol{f},m) = \sum_{\boldsymbol{a} \in [0,n]^m} p(\boldsymbol{a}|\boldsymbol{f},m) \times \prod_{i=1}^m p(e_i|f_{a_i})$$

Alignment × Translation | Alignment

5/6/2025 MACHINE TRANSLATION 47

## IBM Model 1: P(E|F)

- Translation probability
  - $\blacksquare$  For a foreign sentence  $\mathbf{f} = (f_1, ..., f_{l_f})$  of length  $I_f$
  - lacktriangledown To an English sentence  $oldsymbol{e}=(e_1$  ,... , $e_{l_e})$  of length  $\mathbf{l_e}$
  - With an alignment of each English word  $e_j$  to a foreign word  $f_i$  according to the alignment function  $a: j \rightarrow l$

$$p(e, a|f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

Parameter  $\epsilon$  is a normalization constant

# Computing P(E|F) in IBM Model 1

$$p(e, a|f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

- lacksquare A normalization factor, since there are  $(l_f+1)^{l_e}$  possible alignments
- $\blacksquare$  Parameter  $\epsilon$  is a normalization constant
- The probability of an alignment given the foreign sentence

46

## Computing P(E|F) in IBM Model 1

$$p(a|f) p(e|f,a)$$

$$p(e,a|f) = \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$p(e|f) = \sum_{a} p(e, a|f) = \sum_{a} p(a|f) \times \prod_{j=1}^{l_e} p(e_j|f_{a_j})$$

## Example

#### das

| e     | t(e f) |
|-------|--------|
| the   | 0.7    |
| that  | 0.15   |
| which | 0.075  |
| who   | 0.05   |
| this  | 0.025  |

#### Haus

| e         | t(e f) |  |  |  |  |
|-----------|--------|--|--|--|--|
| house     | 0.8    |  |  |  |  |
| building  | 0.16   |  |  |  |  |
| home      | 0.02   |  |  |  |  |
| household | 0.015  |  |  |  |  |
| shell     | 0.005  |  |  |  |  |

#### ist

| e      | t(e f) |
|--------|--------|
| is     | 0.8    |
| 's     | 0.16   |
| exists | 0.02   |
| has    | 0.015  |
| are    | 0.005  |

#### klein

| t(e f) |  |  |  |  |
|--------|--|--|--|--|
| 0.4    |  |  |  |  |
| 0.4    |  |  |  |  |
| 0.1    |  |  |  |  |
| 0.06   |  |  |  |  |
| 0.04   |  |  |  |  |
|        |  |  |  |  |

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028 \epsilon \end{split}$$

## Estimate Translation Probabilities

#### Maximum likelihood estimation

$$\hat{p}_{\mathrm{MLE}}(e \mid \mathtt{Haus}) = \begin{cases} 0.8 & \text{if } e = \mathtt{house}, \\ 0.16 & \text{if } e = \mathtt{building}, \\ 0.02 & \text{if } e = \mathtt{home}, \\ 0.015 & \text{if } e = \mathtt{household}, \\ 0.005 & \text{if } e = \mathtt{shell}. \end{cases}$$

## Estimate Alignments Given t-table

■ If we have translation probabilities...

| das   |        |  |  |
|-------|--------|--|--|
| e     | t(e f) |  |  |
| the   | 0.7    |  |  |
| that  | 0.15   |  |  |
| which | 0.075  |  |  |
| who   | 0.05   |  |  |
| this  | 0.025  |  |  |

| Haus      |        |  |  |  |  |
|-----------|--------|--|--|--|--|
| e         | t(e f) |  |  |  |  |
| house     | 0.8    |  |  |  |  |
| building  | 0.16   |  |  |  |  |
| home      | 0.02   |  |  |  |  |
| household | 0.015  |  |  |  |  |
| shell     | 0.005  |  |  |  |  |

| 151    |        |  |  |
|--------|--------|--|--|
| e      | t(e f) |  |  |
| is     | 0.8    |  |  |
| 's     | 0.16   |  |  |
| exists | 0.02   |  |  |
| has    | 0.015  |  |  |
| are    | 0.005  |  |  |

| Klein  |        |  |  |
|--------|--------|--|--|
| e      | t(e f) |  |  |
| small  | 0.4    |  |  |
| little | 0.4    |  |  |
| short  | 0.1    |  |  |
| minor  | 0.06   |  |  |
| petty  | 0.04   |  |  |
|        |        |  |  |

1.1 -:--

■ The goal is to find the most probable alignment given a parameterized model

$$p(e, a|f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

## Estimating the Alignment

$$a^* = \arg \max_{a} p(e, a | f)$$

$$= \arg \max_{a} x \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

$$= \arg \max_{a} x \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

Since translation choice for each position is independent, the product is maximized by maximizing each term:

$$a_i^* = \arg\max_{a_i=0}^n t(e_i | f_{a_i})$$





- We'd like to estimate the lexical translation probabilities t ( $e \mid f$ ) from a parallel corpus but we do not have the alignments
- Chick and egg problem
  - If we had the alignments, we could estimate the parameters of our generative model (MLE)
- If we had the parameters, we could estimate the alignments

klein

| e      | t(e f) |
|--------|--------|
| small  | 0.4    |
| little | 0.4    |
| short  | 0.1    |
| minor  | 0.06   |
| petty  | 0.04   |

5/6/2025 MACHINE TRANSLATION

- Incomplete data
  - If we had complete data, we could estimate the model
  - If we had the model, we could fill in the gaps in the data
- **Expectation Maximization (EM)** in a nutshell
  - 1. Initialize model parameters (e.g., uniform, random)
  - 2. Assign probabilities to the missing data (expectation)
  - 3. Estimate model parameters from completed data (maximization)
  - 4. Iterate steps 2-3 until convergence

Kevin Knight's example



- Initial step: all word alignments equally likely
- Model learns that: e.g., *la* is often aligned with *the*



- After one iteration
- Alignments, e.g., between *la* and *the* are more likely

```
... la maison ... la maison bleu ... la fleur ...

the house ... the blue house ... the flower ...
```

After another iteration

It becomes apparent that alignments, e.g., between fleur and flower are more likely



- Convergence
- Inherent hidden structure revealed by EM!



Parameter estimation from the aligned corpus

## Problems with Lexical Translation

### **Evaluation Metrics**

- Manual evaluation is most accurate, but expensive
- Automated evaluation metrics:
  - Compare system hypothesis with reference translations
  - BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002):
    - Modified n-gram precision

 $p_n = \frac{\text{number of } n\text{-grams appearing in both reference and hypothesis translations}}{\text{number of } n\text{-grams appearing in the hypothesis translation}}$ 

#### **BLEU**

BLEU = 
$$\exp \frac{1}{N} \sum_{n=1}^{N} \log p_n$$

- Two modifications:
  - To avoid log 0, all precisions are smoothed
  - Each n-gram in reference can be used at most once
    - Ex. Hypothesis: to to to to to vs Reference: to be or not to be should not get a unigram precision of 1
- Precision-based metrics favor short translations
  - Solution: Multiply score with a brevity penalty (BP) for translations shorter than reference,  $e^{1-r/h}$

#### **BLEU Scores**

|           | Translation                            | $p_1$         | $p_2$         | $p_3$         | $p_4$         | BP  | BLEU |
|-----------|----------------------------------------|---------------|---------------|---------------|---------------|-----|------|
| Reference | Vinay likes programming in Python      |               |               |               |               |     |      |
| Sys1      | To Vinay it like to program Python     | $\frac{2}{7}$ | 0             | 0             | 0             | 1   | .21  |
| Sys2      | Vinay likes Python                     | $\frac{3}{3}$ | $\frac{1}{2}$ | 0             | 0             | .51 | .33  |
| Sys3      | Vinay likes programming in his pajamas | $\frac{4}{6}$ | $\frac{3}{5}$ | $\frac{2}{4}$ | $\frac{1}{3}$ | 1   | .76  |

Sample BLEU scores for various system outputs

#### ■ Alternatives have been proposed:

Other Issues?

- METEOR: weighted F-measure
- Translation Error Rate (TER): Edit distance between hypothesis and reference

## **BLEU**

#### Correlates somewhat well with human judgments

