তড়িৎ প্রবাহের চৌম্বক ক্রিয়া ও চুম্বকত্ব 0

$$\Box \quad dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$$

- $oldsymbol{\Box}$ বৃত্তাকার কুশুলীর কেন্দ্রে, $\mathbf{B}=rac{\mu_0 \mathbf{N} \mathbf{I}}{2 \mathbf{r}}$

এখানে.

 $\mu_o = 4\pi \times 10^{-7} \; Wb/A \text{--}m$

r = দূরত্ব

 $a\!=\!$ যে বিন্দুতে চৌম্বক ক্ষেত্র নির্ণয় করতে হবে। সে

বিন্দু থেকে পরিবাহীর লম্ব দূরতু।

B = চৌম্বক ক্ষেত্রের মান।

I = তড়িৎ প্রবাহ

সুত্রঃ ক্ষুদ্র দৈঘ্যের কোন পরিবাহীর মধ্যদিয়ে তড়িৎ প্রবাহিত হলে এর চারপাশে যে চৌম্বক ক্ষেত্রে সৃষ্টি হয় এর যেকোন বিন্দুতে চৌম্বক ক্ষেত্রের মান, ${
m dB}=rac{\mu_0}{4\pi}rac{idlsin heta}{r^2}$

ভেক্টর পদ্ধতিতে, $\overrightarrow{dB}=\frac{\mu oi}{4\pi r^3}(\overrightarrow{dl}\times\overrightarrow{r})$ অথবা , $\overrightarrow{dB}=\frac{\mu_0 i}{4\pi r^2}(\overrightarrow{dl}\times\hat{\eta})$ সমগ্র পরিবাহী তারের জন্য চৌম্বক ক্ষেত্র

$$\vec{B}=\int \overrightarrow{dB}=rac{\mu_0 i}{4\pi}\int rac{\overrightarrow{dl} imes \overrightarrow{r}}{r^3}$$
 , যখন $heta=0$, $B=0$ $ightarrow$ সবনিমু , যখন $heta=90^0$, $B=B_{max}$ $ightarrow$ সর্বোচ্চ

- * বিদ্যুৎবাহী বৃত্তাকার কুন্ডলীর কেন্দ্রে চৌম্বক ক্ষেত্র ខ $B=rac{\mu_0 i}{2R}$, কুন্ডলীর পাক সংখ্যা N হলে, $B=rac{\mu_0 N i}{4\pi}$ ।
- * লম্বা ঋজু পরিবাহী তারে বিদ্যুৎ প্রবাহের দরুন যে কোন বিন্দুর চৌম্বক ক্ষেত্র ঃ $dB=rac{\mu_0}{4\pi}rac{idx.sin heta}{r^2}$ ক্ষুদ্র অংশ dx হতে r দুরত্বে চৌম্বক ক্ষেত্রে \overrightarrow{r} ও i অভিমুখি এর মধ্যবর্তী কোন heta

সমগ্র তারের জন্য চৌম্বক আবেশ, $B=rac{\mu_0 i}{2\pi r}$

- * অ্যাম্পিয়ারের সুত্রঃএকটি লম্বা দীর্ঘ তারের যে কোন বিন্দু হতে R দুরত্বে চৌম্বক ক্ষেত্র, $B=rac{\mu_0 i}{2R}$
- st চৌম্বক ক্ষেত্রের প্রবাহী লুপের উপর ক্রিয়াশীল টর্ক ঃau=(NIA)Bsin heta ,

N \to পাক সংখ্যা $A=ab \to$ লুপের ক্ষেত্রফল , চৌম্বক ভ্রামক বা মোমেন্ট , $\vec{\mu}=NIA$ ভেক্টর পদ্ধতিতে, $\vec{\tau}=\vec{\mu} imes \vec{B}$

EXAMPLE – 01: একটি সোজা তারের ভেতর দিয়ে 10A তড়িৎ প্রবাহ চলছে। তার থেকে 0.25m দূরে কোন বিন্দুতে চৌম্বক আবেশ নির্ণয় কর।

SOLVE: B =
$$\frac{\mu_0 I}{2\pi a}$$
 = $\frac{10 \times 4\pi \times 10^7}{2\pi \times 0.25}$ = 8×10^{-6} T (Ans.

$$\label{eq:mu_o} \left| \begin{array}{l} \mu_o = 4\pi \times 10^{-7} \ Wb/A - m \\ I = 10 \ A \\ a = 0.25 \ m \end{array} \right|$$

EXAMPLE - 02: একটি বৃত্তকার তরের দৈর্ঘ্য $3.14 \times 10^{-2} \, \mathrm{m}$ এবং অংশটি বৃত্তের কেন্দ্রে 30° কোণ উৎপন্ন করে। ঐ তার দিয়ে $7.2 \, \mathrm{A}$ তড়িৎ প্রবাহিত হলে তার কেন্দ্রে চৌম্বক আবেশের মান নির্ণয় কর।

SOLVE:
$$B = \frac{\mu_0 NI}{2\pi} = \frac{4\pi \times 10^7 \times \frac{1}{12} \times 7.2}{2 \times 6 \times 10^{-2}}$$

$$= 6.28 \times 10^{-6} \text{ T (Ans.)}$$

$$SOLVE: B = \frac{\mu_0 NI}{2\pi} = \frac{4\pi \times 10^7 \times \frac{1}{12} \times 7.2}{2 \times 6 \times 10^{-2}}$$

$$SOCVE: B = \frac{\mu_0 NI}{2\pi} = \frac{4\pi \times 10^7 \times \frac{1}{12} \times 7.2}{2 \times 6 \times 10^{-2}}$$

$$SOCVE: B = \frac{\mu_0 NI}{2\pi} = \frac{4\pi \times 10^7 \times \frac{1}{12} \times 7.2}{2 \times 6 \times 10^{-2}}$$

$$SOCVE: B = \frac{\mu_0 NI}{2\pi} = \frac{4\pi \times 10^7 \times \frac{1}{12} \times 7.2}{2 \times 6 \times 10^{-2}}$$

$$SOCVE: B = \frac{\mu_0 NI}{2\pi} = \frac{4\pi \times 10^7 \times \frac{1}{12} \times 7.2}{2 \times 6 \times 10^{-2}}$$

$$SOCVE: B = \frac{\mu_0 NI}{2\pi} = \frac{4\pi \times 10^7 \times \frac{1}{12} \times 7.2}{2 \times 6 \times 10^{-2}}$$

$$SOCVE: B = \frac{\mu_0 NI}{2\pi} = \frac{30}{360} \text{ with }$$

$$SOCVE: B = \frac{\mu_0 NI}{2\pi} = \frac{30}{360} \text{ with }$$

$$SOCVE: B = \frac{1}{12} \text{ with }$$

$$SO$$

EXAMPLE - 03: কোন পথ দিয়ে প্রতি $\sec \ 4.8 \times 10^{28} \$ টি $e^- \ 10^7 \ ms^{-1}$ বেগে $5.3 \times 10^{-11} \ m$ ব্যাসার্ধের বৃত্তাকার পথে ঘুরলে কেন্দ্রে উৎপন্ন চৌম্বক ফ্লাক্স $4.8 \times 10^{11} \ m$ কর ।

SOLVE:
$$B = \frac{\mu_0 NI}{2\pi} = 1.28 \times 10^4 \text{ T}$$

$$I = \frac{ne}{t}$$

$$= \frac{6.8 \times 0^{28} \times 1.6 \times 10^{-19}}{1} = 1.088 \text{ A}$$

EXAMPLE - 04: একটি বৃত্তকার কুন্ডলীর ব্যাস $31.4 \times 10^{-2} m$ এবং পাক সংখ্যা 250। কুন্ডলীর মধ্যদিয়ে কত তড়িৎ প্রবাহ চললে কেন্দ্রে এর চৌম্বক ক্ষেত্র $4 \times 10^{-8} wbm^{-2}$ সৃষ্টি হয়।

$$B = \frac{\mu_0 N i}{2R} \Longrightarrow i = \frac{2BR}{\mu_0 N} = \frac{2 \times 4 \times 10^{-8} \times \frac{31.4 \times 10^{-2}}{2}}{4\pi \times 10^{-7} \times 250} = = 4 \times 10^{-5} A$$

EXAMPLE-05: একটি দীর্ঘ তারের মধ্য দিয়ে $5\times 10^{-3} A$ কারেন্ট প্রবাহিত হচ্ছে। তারের মধ্যদিয়ে প্রাবহের ফলে সৃষ্ট চৌম্বক ক্ষেত্রের ব্যাসার্ধ কত? ধর চৌম্বক ক্ষেত্রের মান $5\times 10^{-10}~{
m wbm}^{-2}$.

ফ্লাক্স,
$$\mathbf{B} = \frac{\mu_0 i}{2\pi R} \implies R = \frac{4\pi \times 10^{-7} \times 5 \times 10^{-3}}{2\pi \times 5 \times 10^{-10}} = 2 \mathrm{m}$$

EXAMPLE-06: মনে করি,একটি পরিবাহী মধ্যদিয়ে $3\times 10^{-2}A$ তড়িত প্রবাহতি হচ্ছে। তারটি $y=x^3$ সমীকরণ অনুযায়ী লম্বা। তারটিতে বিদ্যুৎ প্রবাহের জন্য সৃষ্ট চৌম্বক ক্ষেত্র $5\times 10^{-3} wbm^{-2}$ যা তারের সাথে 333cm দুরে 60^0 কোণে আছে। তারটি সমগ্র অংশের দৈর্ঘ্য কত?

$$B = \frac{\mu_0 i l}{4\pi r^2} \sin 60^0 \implies 1 = \frac{4\pi r^2 B}{\mu_0 i \times \sin 60^0} = \frac{4\pi \times (333 \times 10^{-2})^2 \times 5 \times 10^{-3}}{4\pi \times 10^{-7} \times 3 \times 10^{-2} \times \sin 60^0} = 2.134 \times 10^{-7} \ m$$

EXAMPLE – 07: 5m লম্বা ঋজু তারের প্রবাহমাত্রা $5 \times 10^{-3} A$ তারটি হতে $5 \times 10^{-2} \, \mathrm{m}$ দুরে কোন বিন্দুতে 135^0 কোণে চৌম্বক ক্ষেত্র B নির্ণয় কর।

$$B = \frac{\mu_0 i \sin \theta l}{4\pi r^2} = \frac{4\pi \times 10^{-7} \times 5 \times 10^{-3} \times \sin 135^{0} \times 5}{4\pi \times (5 \times 10^{-2})^2} = 7.071 \times 10^{-7} \text{ wbm}^{-2}$$

EXAMPLE – 08: 200 পাক বিশিষ্ট একটি আয়তাকার তার কুঙলীর দৈর্ঘ্য 12cm এবং প্রস্থ 5cm । এর মধ্য দিয়ে 0.10A তড়িৎ প্রবাহিত হচ্ছে। 0.50T সুষম চৌম্বক ক্ষেত্রের সাথে এর তলকে 37^0 কোণে ঘুরির স্থাপন করা হল কুঙলীটির তল বরাবর কেন্দ্রগামী অক্ষের সাপেক্ষে টর্ক হিসেব কর।

 $\tau = NIAB \sin\theta$

 $= 200 \times 0.1 \times 12 \times 5 \times 10^{-4} \times 0.5 \sin 37^{0} = 0.03611 \text{ N-m}$

TRY YOURSELF

EXERCISE – 01: $0.5~{\rm cm}$ দৈর্ঘ্য বিশিষ্ট একটি ক্ষুদ্র পরিবাহী তারের ভেতর দিয়ে $1{
m A}$ তড়িৎ প্রবাহিত হলে, তার থেকে অভিলম্বভাবে $0.2~{\rm m}$ দূরে কোন বিন্দুতে চৌম্বক ফ্লাক্স ঘনত্বের মান কত ? $[{
m Ans.}~1.25 imes 10^{-8}{
m T}]$

EXERCISE – 02: হাইড্রোজেন পরমাণুর ইলেক্ট্রন নিউক্লিয়াসের চারদিকে $5.3 \times 10^{-11} \ \mathrm{m}$ ব্যাসার্ধের বৃত্তকার পথে $2.2 \times 0^6 \ \mathrm{ms^{-1}}$ বেগে ঘুরে কেন্দ্রে $12-53 \ \mathrm{Wbm^{-2}}$ ফ্লাক্স ঘনত্ব উৎপন্ন করে। ইলেক্ট্রনের চার্জ নির্ণয় কর। $[\mathrm{Ans.} \ 1.6 \times 10^{-19} \ \mathrm{C}]$

EXERCISE – 03: বৃত্তাকার কুন্ডলীর ব্যাসার্ধ $20~{\rm cm}$ এর মধ্য দিয়ে $2{\rm A}$ তড়িৎ প্রবাহ চললে কুন্ডলীর কেন্দ্রে $2\text{-}518\times10^{-3}~{\rm T}$ এর চৌম্বক ক্ষেত্র সৃষ্টি হয়। কুন্ডলীর পাক সংখ্যা কত? $[{\rm Ans.}~400.95]$

EXERCISE — 04: দুইটি সমান্তরাল তার পরস্পর হতে dm দূরে অবস্থিত। তার দুইটিতে পরস্পর বিপরীতদিকে IA বিদ্যুৎ প্রবাহিত হচ্ছে। দেখাও যে, তার দুইটির মাঝে কোন একটি তার হতে xm দূরে চৌম্বক আবেশ $\frac{\mu_o I}{2\pi} \bigg(\frac{1}{x} + \frac{1}{d-x} \bigg)$

EXERCISE – 05: একটি অসীম পরিবাহীর মধ্য দিয়ে একই পরিমাণ বিদ্যুৎ প্রবাহ চালনা করলে তার থেকে কত দূরে চৌম্বক প্রবাল্যের মান সমা হবে? [$Ans. 5.1 imes 10^{-5} m$]

EXERCISE – 06: $0.314~{\rm m}$ ব্যাসার্ধের একটি বৃত্তাকার এক পাকের পরিবাহীতে $0.04{\rm C}$ চার্জ প্রতি সেকেন্ডে $25~{\rm dia}$ পরিশ্রমণ করে। পরিবাহীর কেন্দ্রে চৌম্বক ফ্লাক্স ঘনত্ব নির্ণয় কর। $[{\rm Ans.}~2\times10^{-6}~{\rm wbm^{-2}}]$

EXERCISE – 07: পূর্ব-পশ্চিমে বিস্তৃত একটি অনুভূমিক সরবরাহ লাইন 60A তড়িৎ বহন করে। লাইনটি থেকে খাড়া 3m নিচে কোন বিন্দুতে চৌম্বক ক্ষেত্রের মান কত? $[Ans.\ 40 imes 10^{-7}\ T]$

EXERCISE — 08: দুটি সমান্তরাল তার পরস্পর হতে $0.25 \mathrm{m}$ দূরে অবস্থিত। দুটি তারের ভিতর দিয়ে একই দিকে যথাক্রমে $10\mathrm{A}$ ও $15\mathrm{A}$ বিদ্যুৎ প্রবাহ চালনা করলে- (i) প্রথম তার হতে $0.08 \mathrm{m}$ দূরত্বে কোন বিন্দুতে চৌম্বক আবেশ নির্ণয় কর।(ii) সংযোগ রেখার কোন বিন্দুতে চৌম্বক আবেশ শূন্য হবে ?

Ans. (i) যখন তারদ্বয়ের মাঝে, $0.74 \times 10^{-5}~\mathrm{T}$, যখন তারদ্বয়ের বাইরে, $3.4 \times 10^{-5}~\mathrm{T}$ (ii) ১ম তার হতে $0.1 \mathrm{m}$ দূরে

❖ গতিশীল চার্জের উপর চৌম্বক বল

$$oldsymbol{\Box}$$
 $F=qv\;Bsin heta$ $heta=V\;$ ও B এর মধ্যবর্তী কোণ

লরেন্জ বল $\vec{F}=\overrightarrow{qE}+\overrightarrow{qV} imes \overrightarrow{B}$ এখানে তড়িৎ বল \overrightarrow{qE} এবং চৌম্বক বল $\overrightarrow{qV} imes \overrightarrow{B}$ বল দুটি পরস্পর লম্ব । E ও B পরস্পর লম্বভাবে অবস্থান করে ।

চৌম্বক ক্ষেত্রে \vec{B} এর দিক হলো সেই দিকে যে দিকে গতিশীল আধানের উপর চৌম্বক বল শূন্য অর্থাৎ কৃতকাজ শূন্য। আধান একক বেগে ক্ষেত্রের দিকের সাথে সমকোনে থাকলে চৌম্বক বল সর্বোচ্চ হয়।

$$\mathbf{B} = \frac{Fmax}{|q|V}$$

যেকোন কোণের জন্য লেখা যায়,

F=qVBsin heta্র মান, দিক লম্ব দিক VB প্লানের উলম্ব তলে।

EXAMPLE-01: একটি তারের মধ্য দিয়ে 5A বিদ্যুৎ প্রবাহিত হচ্ছে। তার হতে 2cm দূরে 1টি $e^- 10^7$ ms^{-1} বেগে লম্বভাবে প্রবাহিত হচ্ছে। ইলেক্ট্রনের উপর পরিবাহী তার কর্তৃক প্রযুক্ত বল নির্ণয় কর।

SOLVE:
$$F = qvBsin\theta = 1.6 \times 10^{-19} \times 10^{-7} \times \frac{\mu_0 \times 5}{2\pi \times 0.02} \times sin \ 90^\circ = 8 \times 10^{-31} \ N$$

EXAMPLE-02: $1.57 imes 10^{-13} \ J$ গতিশক্তির একটি প্রোটন $0.954 \ \mathrm{wbm^{-2}}$ মানের একটি সুষম চৌম্বক ক্ষেত্রের বলরেখার সাথে 90° কোণে প্রবেশ করে। প্রোটনের বৃত্তীয় গতিপথের ব্যাসার্ধ নির্ণয় কর।

[প্রোটনের ভর = $1.66 \times 10^{-27} \; kg$ ও চার্জ = $1.6 \times 10^{-19} \; C$]

$$SOLVE$$
: এখানে, $qvBsin\theta = \frac{m_p v^2}{r} \Rightarrow v = \frac{qBr}{m_p} = \frac{1.6 \times 10^{-19} \times 0.95 r}{1.66 \times 10.27} = 9.19 \times 10^7 r$

আবার,
$$E_{\rm k}=\frac{1}{2}~m_{_p}{
m v}^2 \Longrightarrow 1.57 \times 10^{-13} = \frac{1}{2} \times 1.66 \times 10^{-27} \times (9.19 \times 107~{\rm r})^2$$

 \Rightarrow r = 0.149 m [Ans.]

 $EXAMPLE-03: 1.5~wbm^{-2}$ মানের সুষম চৌম্বক ক্ষেত্রে দক্ষিণ দিক থেকে অনুভূমিক বরাবর উপর দিকে ক্রিয়াশীল আছে। যদি 10 MeV সম্পন্ন একটি প্রোটনকে উলম্বভাবে এই ক্ষেত্রের মধ্যদিয়ে নিম্ন দিকে ধাবিত করা হয়তবে কি পরিমাণ বল এর উপর কাজ করবে ?[প্রোটিন ভর $1.67 \times 10^{-27}]$

$$KE = \frac{1}{2}mv^2 = 5 \times 10^6 \times 1.6 \times 10^{-19} J \implies v = 3.1 \times 10^7 ms^{-1}$$

$$F = q^2 V B \sin\theta = 1.6 \times 10^{-19} \times 3.1 \times 10^7 \times 1.5 = 7.4 \times 11^{-12} N$$

TRY YOURSELF

EXERCISE – 01: কোনো স্থানে দক্ষিণমুখী চৌম্বক ক্ষেত্রের মান $10~{\rm T}$ একটি ইলেক্ট্রন ঐ স্থানে $10^6~{\rm ms}^{-1}$ বেগে পূর্বদিকে গতিশীল হতে এর উপর ক্রিয়াশীল বলের মান নির্ণয় কর। $[{\rm Ans.}~1.6 \times 10^{-13}~{\rm N}]$

EXERCISE – 02: $2.5~{\rm T}$ মানের সুষম চৌম্বক ক্ষেত্রে একটি ${\rm e}^{-}2\times 10^{6}~{\rm ms}^{-1}$ বেগে বৃত্তাকারে গতিশীল হলে এর উপর কত চৌম্বক বল কোন দিকে ক্রিয়াশীল হবে? [${\rm Ans.~8}{ imes}10^{-13}~{\rm N}$, বৃত্তের দিকে]।

EXERCISE – 03: একটি ${
m He^{2+}}$ আয়ন $0.80~{
m T}$ প্রাবল্যের কোন চৌম্বক ক্ষেত্রের সাথে অভিলম্বভাবে অগ্রসর হচ্ছে। আয়নটির বেগ $10^5~{
m ms^{-1}}$ হলে, এর উপর ক্রিয়াশীল চৌম্বক বল নির্ণয় করো। ${
m [Ans.~2.56 \times 10^{-14}\,N]}$

EXERCISE – 04: একটি ইলেক্ট্রন $5~\mathrm{T}$ মানের চৌম্বক ক্ষেত্রে কত বেগে 30° কোণে গতিশীল হলে এর উপর ক্রিয়াশীল চৌম্বক বলের মান $4\times 10^{-12}~\mathrm{N}$ হবে? $[\mathrm{Ans.}~10^7~\mathrm{ms}^{-1}]$

EXERCISE – 05: $9.1 \times 10^{-4} \, \mathrm{T}$ মানের একটি সুষম চৌম্বক ক্ষেত্র দ্বারা একটি ইলেক্ট্রন $2.5 \, \mathrm{cm}$ ব্যাসার্ধের বুত্তাকার পথে কত বেগে চলতে বাধ্য হবে? $[\mathrm{Ans.} \ 4 \times 10^6 \, \mathrm{ms}^{-1}]$

EXERCISE – 06: 4.175 Kv বিভব পার্থক্যের একটি β কণা স্থিরাবস্থা থেকে তুরিত হওয়ার পর 0.4 Τ মানের সুষম চৌম্বক ক্ষেত্রের সমকোণে প্রবাহিত হলে কণাটির গতিপথের ব্যাসার্ধ কত হবে ? [Ans. 0.033m]

EXERCISE – 07: $1.82\times 10^{-3}~{\rm Wbm^{-2}}$ মানের একটি চৌম্বক ক্ষেত্রে একটি ইলেক্ট্রন $0.2{\rm m}$ ব্যাসার্ধের বৃত্তাকার পথে ঘুরে ৷ এর দ্রুতি, আবর্তনকাল, গতিশক্তি নির্ণয় কর ৷ $[{\rm Ans.}~6.4\times 10^7~{\rm ms^{-1}},~1.96\times 10^{-8}~{\rm s},~1.86\times 10^{-15}~{\rm J}]$

EXERCISE – 08: চৌম্বক ক্ষেত্রে X অক্ষ বরাবর $2\mu C$ আধানের একটি বস্তু $2\times 10^6~ms^{-1}$ বেগে চলছে। চৌম্বক ক্ষেত্রে $\overline{B}=(0.20\hat{j}+0.4\hat{k}~)~T$ হলে আধানটির উপর ক্রিয়াশীল চৌম্বক বল কত ? $[Ans.~(0.8\hat{k}-1.6\hat{j})~N]$

💠 চৌম্বক ক্ষেত্রে স্থাপিত প্রবাহবাহী তারের উপর চৌম্বক বল

 $oldsymbol{\Box}$ F = IIB sin heta heta = cচৌম্বক ক্ষেত্র ও পরিবাহীের মধ্যবর্তী কোণ $= I \vec{1} imes \vec{B}$

EXAMPLE – 01: 0.5 m লম্বা একটি সোজা তার 2 weber/m² চৌম্বক ক্ষেত্রে স্থাপন করা হলো। তারটির মধ্য দিয়ে 5A তড়িৎ প্রবাহিত হচ্ছে। তারটির উপর প্রযুক্ত বল নির্ণয় কর। যখন-

- ক) তারটি চৌম্বক ক্ষেত্রের লম্ব বরাবর ;
- খ) তড়িৎ প্রবাহ এবং চৌম্বক ক্ষেত্রের মধ্য কোণ $=45^\circ$
- গ) তড়িৎ প্রবাহ এবং চৌম্বক ক্ষেত্রের দিক একই
- ঘ) তড়িৎ প্রবাহ এবং চৌম্বক ক্ষেত্রের দিক পরস্পর বিপরীতমুখী

SOLVE: $F = Il B sin \theta$

ক) তারটি যখন লম্ব বরাবর (
$$\theta=90^\circ$$
) $F=5\times0.5\times2 imes\sin90^\circ=5N$

খ) তড়িৎ প্রবাহ এক চৌম্বক ক্ষেত্রের মধ্যে কোণ
$$=45^\circ$$
 $F=5\times0.5\times2 imes\sin45^\circ=3.535N$

গ) তড়িৎ প্রবাহ এবং চৌম্বক ক্ষেত্রের দিক একই (
$$heta=0^\circ$$
) $F=5 imes0.5 imes2 imes\sin0^\circ=0$

ঘ) তড়িৎ প্রবাহ এবং চৌম্বক ক্ষেত্রের দিক পরস্পর বিপরীতমুখী $(\theta=180^\circ)$

$$F = 5 \times 0.5 \times 2 \times \sin 180^{\circ} = 0 \text{ [Ans.]}$$

TRY YOURSELF

EXERCISE – 01: কোন স্থানে 10^{-2} T চৌম্বক ক্ষেত্রের সাথে 60° কোণ করে একটি তার স্থাপন করে এর ভিতর দিয়ে 2A তড়িৎ প্রবাহ চালনা করা হলো। তারটির দৈর্ঘ্য $50 {
m cm}$ হলে এটি কত বল অনুভব করবে ? $[Ans. \ 8.66 {
m \times} 10^{-3} \ N]$

EXERCISE – 02: 0.80 m দীর্ঘ একটি তার কোন চৌম্বক ক্ষেত্রের সাথে লম্বভাবে অবস্থিত। তারটিতে 10 A বিদ্যুৎ চালনা করলে এর উপর 0.2 N অনুভূত হয়। চৌম্বক ক্ষেত্রের চৌম্বক ফ্লাক্স ঘনত্ব কত ? [Ans. 0.025 T]

TYPE - 04

তড়িৎবাহী দুটি সমান্তরাল পরিবাহী

$$\Box \qquad F = \frac{\mu_o I_1 I_1 I}{2\pi r}$$

EXAMPLE – 01: দুইটি সমান্তরাল তারের মধ্যবর্তী দূরত্ব 3 cm এবং প্রতিটি তারে 120 amp প্রবাহমাত্রা চলছে। যে কোন একটি তারের 1 m দৈর্ঘ্যের ওপর ক্রিয়াগত বল নির্ণয় কর।

TRY YOURSELF

EXERCISE – 01: 2 cm ব্যবধানে 5 m ও 6 m দৈর্ঘ্যের দুটি বৈদ্যুতিক তার সমান্তরালভাবে বসানো আছে। তার দুটির মধ্য দিয়ে যথাক্রমে 3 A ও 4 A বিদ্যুৎ প্রবাহ চালালে প্রতি একক দৈর্ঘ্যে এদের মধ্যকার ক্রিয়াশীল বল কত হবে? $[\text{Ans. } 1.2 \times 10^{-4} \text{ N/m}]$

EXERCISE — **02:** দুটি দীর্ঘ সমান্তরাল তারের মধ্য দিয়ে যথাক্রমে $4 A \le 6 A$ বিদ্যুৎ প্রবাহ চলছে। তারদ্বয়ের মধ্যবর্তী দূরত্ব 3 cm হলে দ্বিতীয় তারের জন্য প্রথম তারের একক দৈর্ঘ্যের উপর ক্রিয়াশীল বলের মান নির্ণয় কর। $[Ans. \ 1.6 \times 10^{-4} \ Nm^{-1}]$

হল প্রভাব ও হল বিভব

হল প্রভাবঃ হল তড়িৎ ক্ষেত্রে: $\mathrm{E_H} = rac{v_{xy}}{d}$

 V_{xy} পাতের দুই পাশের হল বিভব বা হল ভোল্টেজ। $\overrightarrow{E_H} = -\overrightarrow{V_d} imes \overrightarrow{B}$ যখন চৌম্বক ক্ষেত্রে ও বিপরীতমুখী হল তড়িৎ ক্ষেত্রের কারণে সৃষ্ট তড়িৎ বল q E_H পরস্পর সমান হয় ফলে সুস্থিতি অবস্থার উপনীত হওয়া যায়।

$$\overrightarrow{qE_H} + \overrightarrow{qV_d} \times \overrightarrow{B} = 0$$
; $E_H = -\overrightarrow{v_d} \times \overrightarrow{B}$; $E_H = VdB$ [মান]; $V_d = \frac{J}{ne}$; $E_H = \frac{JB}{ne} = \frac{v_{xy}}{d}$ $\therefore \frac{v_{xy}}{d} = \frac{jB}{Ane} = \frac{JB}{dtne}$, $t =$ পাতের পুরুত্ব , $d =$ পাতের প্রস্তু , $d =$ A= dt

* পরিবাহী তার ও চৌম্বক ক্ষেত্রের বল:

 $F_B = iLB \sin \phi$; $F_B = I\vec{L} \times \vec{B}$

* পরস্পর সমান্তরাল দুটি তডিৎবাহীর মধ্যে ক্রিয়াশীল বল।

$$\frac{F}{l} = \frac{\mu_0 i_a i_b}{2\pi d}$$

st ক্ষুদ্রলুপ বা কুন্ডলীর উপর চৌম্বক ক্ষেত্রের টর্ক ঃ au=NiaB~sinlpha

 ${
m a}$ লুপের ক্ষেত্রফল ${
m = lb}$, ${
m NI} ec{a}$ চৌম্বক ড্রামক, $ec{ au} = ec{m} imes ec{B}$

* হল ক্রিয়া ও হল বিভব ঃ $\mathrm{E} = rac{V_H}{d} \Longrightarrow \mathrm{V_H} = \mathrm{Ed}.$

$$F=qVB=qE$$
 , $v=rac{J}{nq}$, $E=rac{JB}{nq}$, $I=nAvq$, $v=rac{1}{nAq}=rac{1}{nbdq}$ এখানে $A=bd$

$${
m V_H}=rac{{\it BId}}{n{\it bd}a}=rac{{\it BI}}{n{\it ba}a}\,,\,{
m V_H} o$$
 হল ভোল্টেজ

EXAMPLE-01: অর্ধপরিবাহী পদার্থের একটি ফলকের পুরুত্ব $0.03 \mathrm{m}$ এবং প্রস্থ $1 \times 10^{-3} \mathrm{m}$ ফলকটি $1.2 \mathrm{T}$ চৌম্বক ক্ষেত্রে এমনভাবে স্থাপন করা হলো যেন ফলকটির তল এবং চৌম্বক ক্ষেত্রের অভিমুখ পরস্পর লম্ব হয়। ফলকটির ভিতর $100~\mathrm{A}$ বিদ্যুৎ প্রবাহিত হলে,

- (i) হল বৈদ্যুতিক ক্ষেত্র।
- (ii) হল বিভব পার্থক্য।
- (iii) প্রতি একক আয়তনে মুক্ত e^- সংখ্যা নির্ণয় কর। (মুক্ত ইলেক্ট্রনের তাড়নবেগ $4 imes 10^{-4} \mathrm{ms}^{-1})$

$$\begin{aligned} & \text{SOLVE:} (i) \ E_H = \frac{V_H}{d} = \frac{Bvd}{d} = Bv \\ & = 4 \times 10^{-4} \times 1.2 = 4.8 \times 10^{-4} \, \text{Wm}^{-1} \\ & (ii) \ V_H = Bvd = 4 \times 10^{-4} \times 1.2 \times 1 \times 10^{-3} = 4.8 \times 10^{-7} \, \text{V} \\ & (iii) \ V_H = \frac{BI}{ntq} \Rightarrow n = \frac{BI}{V_H tq} \\ & = \frac{1.2 \times 100}{4.8 \times 10^{-7} \times 0.03 \times 1.6 \times 10^{-19}} = 5.2 \times 10^{28} \, \text{m}^{-3} \end{aligned} \qquad \begin{aligned} B &= 1.2T \\ d &= 1 \times 10^{-3} \, \text{m} \\ t &= 0.03 \, \text{m} \\ I &= 100 \, \text{A} \\ V &= 4 \times 10^{-4} \, \text{ms}^{-1} \\ q &= 1.6 \times 15^{-19} \, \text{C} \end{aligned}$$

EXAMPLE-02: 0.02 m প্রস্থের একটি ধাতব পাত $6 wbm^{-2}$ চৌম্বক আবেশ, ক্ষেত্রে পরস্পরের সাথে লম্বভাবে অবস্থান করে। পাতের মধ্যে ইলেক্ট্রনের তাড়ন বেগ $4 \times 10^{-3} ms^{-1}$ হলে সৃষ্ট হল বিভবের মান কত? $V_H = BVd = 6 \times 4 \times 10^{-3} \times 0.02 = 4.8 \times 10^{-4} \ v.$

উদাহরণ-2: বিদুৎবাহী দুটি লম্বা সমান্তরাল তার পরস্পর হতে $0.03 \mathrm{m}$ দুরে অবস্থিত । প্রত্যেক তারের ভিতর দিয়ে $12 \mathrm{A}$ বিদুৎ প্রবাহিত হলে তারের $0.1 \mathrm{m}$ দৈর্ঘ্যের উপর বলের মান কত।

$$F=rac{\mu_0 I_{1I_2l}}{2\pi d}=rac{4\pi imes 10^{-7} imes 12 imes 12 imes 0.1}{2\pi imes 0.03}=9.6 imes~10^{-5}N.$$
 একক দৈৰ্ঘ্য বলের মান, $rac{F}{l}=9.6 imes 10^{-4}N.$

EXAMPLE-03: 5T সুষম চৌম্বক ক্ষেত্রের সাথে 30^0 কোণে একটি $e^-10^5 ms^{-1}$ বেগে চলতে থাকলে ইলেকট্রনের উপর ক্রিয়াশীল বলের মান নির্ণয় কর।

$$F = q v B \sin\theta = 1.6 \times 10^{-19} \times 10^5 \times 5 \sin 30^0 = 4 \times 10^{-14} N$$

EXAMPLE-04: 1m দীর্ঘ একটি সোজা তারের মধ্যে দিয়ে 5A বিদ্যু প্রবাহিত হচ্ছে। তারটি একটি সুষম চৌম্বক ক্ষেত্রের সাথে 60^0 কোণে একই তলে অবস্থান করলে $\frac{\sqrt{3}}{2}$ মানের বল অনুভব করে। চৌম্বক ক্ষেত্রিটির ফ্লাক্স ঘনত্ব কত?

$$F = Bilsin\theta \Rightarrow B \times 5 \times 1 \times sin60^0 = \sqrt{3}/2 : B = 0.2T$$

EXAMPLE-05: একটি সোজা অনুভূমিক তারের মধ্যদিয়ে 25A তড়িৎ প্রবাহতি হচ্ছে। কত মানের চৌম্বক ক্ষেত্র তারের সাথে সমকোণে থাকলে তারের উপর ক্রিয়াশীল চৌম্বক বল তারের ওজনের সমান হবে। তামার তারটির ঘনত্ব $P=46.6 {
m gnm}^{-1}$

$$iLB = mg \Rightarrow B = \frac{mg}{il} = \frac{46.6 \times 9.8}{25} = 18.2672 \text{T (wbm}^{-2}), \frac{m}{L} = 46.6 \text{ gm m}^{-1}$$

TRY YOURSELF

EXERCISE – 01: 4 cm দীর্ঘ, 1 cm প্রস্থ ও 10^{-3} cm পুরুত্বের একটি পরিবাহীর মধ্য দিয়ে 3A তড়িৎ প্রবাহিত হচ্ছে। পরিবাহীর তলের সাথে লম্বভাবে 1.5 T চৌম্বক ক্ষেত্র প্রয়োগ করা হলে প্রস্থ বরাবর 10^{-5} হল বিভব পার্থক্য সৃষ্টি হয়। চার্জ বাহকের তাড়ন বেগ এবং পরিবাহীর প্রতি ঘনমিটারে চার্জের সংখ্যা নির্ণয় কর। $[Ans. 6.67 \times 10^{-4} \text{ ms}^{-1}, 2.81 \times 10^{29} \text{ m}^{-3}]$

EXERCISE – 02: $1.4~\rm T$ চৌম্বক ফ্লাক্স ঘনত্বের চৌম্বক ক্ষেত্রে $2.5~\rm cm$ প্রস্থ এবং $1~\rm mm$ পুরু একটি তামার পাত স্থাপন করে পাতের ভেতর দিয়ে $150\rm A$ বিদ্যুৎ প্রবাহ চালনা করা হলো। পাতের আড়াআড়ি হল বিভব পার্থক্য নির্ণয় কর। পাতের একক আয়তনে মুক্ত ইলেক্ট্রন সংখ্যা $8.4\times10^{28}~\rm m^{-3}$ [Ans. $15.6\times10^{-6}~\rm V$] **EXERCISE – 03:** কোন পরিবাহীর দৈর্ঘ্য, প্রস্থ, পুরুত্ব যথাক্রমে $4, 3, 2~\rm cm$ এর মধ্য দিয়ে $10\rm A$ বিদ্যুৎ প্রস্থ বরাবর প্রবাহিত হচ্ছে। দৈর্ঘ্যের সমান্তরালে $200\rm T$ চৌম্বক ফ্লাক্স প্রয়োগ করা হলে ভোল্টেজ কত? $\rm e^-$ এর তাড়ন বেগ $10^{-8}\times10^{-4}~\rm ms^{-1}$. [Ans. $0.192~\rm V$]

💠 তড়িৎবাহী বদ্ধ বর্তনীর ওপর ক্রিয়াশীল টর্ক

FORMULA:	heta= কুশুলীর তলের সাথে লম্ব ও চৌম্বক
$0 \tau = \text{NI AB} = \text{NI ABsin}\theta$	ক্ষেত্র B এর মধ্যবর্তী কোণ।
	M = চৌম্বক ভ্ৰামক।
$\mathbf{O} \mathbf{M} = \mathbf{NI} \mathbf{A}$	

EXAMPLE - 01: একটি আয়তাকার কুন্ডলীর দৈর্ঘ্য 12 cm, প্রস্থ 8 cm এবং পাক সংখ্যা 50. এই কুন্ডলীকে 0.4T চৌম্বক আবেশ বিশিষ্ট চৌম্বক ক্ষেত্রের মধধ্যে রেখে 5A প্রবাহ চালনা করলে কুন্ডলীর টর্ক নির্ণয় কর। যখন কুন্ডলী তল- (a) চৌম্বক ক্ষেত্রের লম্ব দিকে থাকে (b) চৌম্বক ক্ষেত্রের সমান্তরালে থাকে।

SOLVE: 1 = 12 cm, b = 8 cm, $A = 1 \times b = (12 \times 8)$ cm

- (a) যখন কুন্ডলীর তল চৌম্বক আবেশের ওপর লম্ব, তখন কুন্ডলী তলের সাথে লম্ব ও চৌম্বক আবেশের মধ্যবর্তী কোণ $\theta=0^\circ$
- $\therefore \ \tau = NIAB sin \ \theta = 50 \times 5 \times 12 \times 8 \times 10^{-4} \times 0.4 \ sin0^\circ = \ 0$
- (b) যখন কুন্ডলীর তল চৌম্বক আবেশের সমান্তরালে থাকে, তখন $heta=90^\circ$ \therefore au=NIABsin heta
- $= 50 \times 5 \times 12 \times 8 \times 10^{-4} \times 0.4 \times \sin 90^{\circ} = 0.96 \text{ Nm. [Ans.]}$

EXAMPLE-02: একটি সমবাহু ত্রিভুজ কুঙলীকে যে কোন শীর্ষ বিন্দু থেকে বেঁধে উল্লেম্ব তলে ঝুলিয়ে রাখা হলো। এর প্রতিটি বাহু $0.02~\mathrm{m}$ এবং অনুভূমিক বরাবর $5\times10^{-2}~\mathrm{T}$ চৌম্বক ক্ষেত্র প্রয়োগ করা হলো তড়িৎ প্রবাহ 0.1A কুঙলীতে কি পরিমাণ টর্ক উৎপন্ন হবে যখন কুঙলীতল চুম্বম ক্ষেত্রের সাথে সমান্তরালে আছে?

SOLVE:
$$A = \frac{1}{2} \times$$
 ভূমি \times উচ্চতা $= \frac{1}{2} \times 0.02 \times \sqrt{(0.02)^2 - (0.01)^2} = 1.732 \times 10^{-4} \text{ m}^2$ $\tau = \text{NIABsin } \theta = 1 \times 5 \times 10^{-2} \times 0.1 \times 1.732 \times 10^{-4} = 8.66 \times 10^{-7} \text{ Nm}.$

TRY YOURSELF

EXERCISE – 01: 100 পাক $3.5 \times 10^{-2} \, \mathrm{m}$ ব্যাসার্ধ বিশিষ্ট একটি বৃত্তাকার কুন্ডলীতে প্রবাহ মাত্রা 1A একে $1.5 \times 10^{-2} \, \mathrm{wbm^{-2}}$ চৌম্বকক্ষেত্রে 30° কোণে রাখলে কত মানের টর্ক কুন্ডলীতে প্রযুক্ত হবে ? $[\mathrm{Ans.} \, 4.99 \times 10^{-3} \, \mathrm{Nm}]$

EXERCISE –02: 2 cm দীর্ঘ ও 1 cm প্রস্থের একটি আয়তাকার কুঙলী 2 T মানের সুষম চৌম্বক ক্ষেত্রের সমান্তরালে স্থাপন করা হল। কুঙলীতে 4 A তড়িৎ প্রবাহিত করলে এর ওপর ক্রিয়ারত টর্কের মান নির্ণয় কর। $[\text{Ans. } 16 \times 10^{-4} \text{ Nm}]$

EXERCISE – 03: একটি বর্তনীতে 5টি সমান আকারের পাক আছে। প্রতিটি পাকের ক্ষেত্রফল $0.02 m^2$ বর্তনীর মধ্য দিয়ে 3A বিদ্যুৎ প্রবাহিত হলে এর চৌম্বক ভ্রামকের মান কত হবে ? $[Ans.\ 0.3\ Am^2]$

পৃথিবীর চুম্বকত্ব ও এর উপাদান

FORMULA:

 $\mathbf{0} H = B\cos\delta \qquad \mathbf{2} V = B\sin\delta$

 $\mathbf{3} \ tan\delta = \frac{V}{H} \qquad \qquad \mathbf{4}B = \sqrt{V^2 + H^2}$

B = মোট চৌম্বক ক্ষেত্র

 δ . = বিনতি

6 $\tan \delta = \tan \delta' \times \cos \phi$ **6** $\cot^2 \delta = \cot^2 \delta_1 + \cot^2 \delta_2$

 $\mathbf{O}T = 2\pi \sqrt{\frac{I}{ML}}$

 $\mathbf{EXAMPLE} - \mathbf{01}$: কোনো স্থানে ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক ও উল্লম্ব উপাংশ যথাক্রমে $32\pi \mathrm{T}$ এবং $20\pi \mathrm{T}$ হলে ঐ স্থানের ভূ-চৌম্বক ক্ষেত্রের মান কত ?

SOLVE: B = $\sqrt{H^2 + V^2} = \sqrt{(32\mu T)^2 + (20\mu T)^2} = 37.73 \ \mu\lambda$ [Ans.]

EXAMPLE - 02: একটি বিনতি বৃত্তকে এমনভাবে রাখা হলো যেন এর চুম্বক শলাকা দন্ডায়মান অবস্থায় থাকে। বৃত্তটিকে এরপর 30° কোণে ঘুরালে বিনতি কোণ 45° পাওয়া যায়। বিনতি কোণের প্রকৃত মান নির্ণয় কর।

 ${f SOLVE}$: মনে করি, বিনতি কোণের প্রকৃত মান $=\delta$ \therefore $\frac{{f V}}{{f H}}= an\delta$

বৃত্তটিকে উল্লম্ব অক্ষে 30° কোণে ঘুরালে চৌম্বক মধ্যতলের সাথে তার কৌণিক ব্যবধান $90^\circ - 30^\circ = 60^\circ$

 \therefore নতুন অবস্থানে অনুভূমিক বরাবর H এর উপাংশ, $H_1 = H\cos 60^\circ \therefore \frac{V}{H_*} = \frac{V}{H\cos 60^\circ} = \tan 45^\circ$

 $\Rightarrow \tan \delta = \tan 45^{\circ} \cos 60^{\circ} = 1 \times \frac{1}{2} : \delta = 26.6^{\circ} \text{ [Ans.]}$

EXAMPLE - 03: কোন স্থানে আপাত বিনতির মান 60° এবং প্রথম তলের সাথে লম্বভাবে অবস্থিত অন্য তলে এর মান 45°. ঐ স্থানে বিনতির মান কত?

SOLVE: আমরা জানি, $cot^2\delta = cot^2\delta_1 + cot^2\delta_2 = cot^260^\circ + cot^245^\circ$

 $\Rightarrow \cot \delta = \frac{2}{\sqrt{3}} = 1.157 \Rightarrow \delta = 40.89^{\circ}$ [Ans.]

EXAMPLE – 04: একটি চুম্বকের জ্ঞতার ভ্রমক $10^{-5}~{
m kgm^2}$ এবং চৌম্বক ভ্রামক $1.974~{
m Am^2}$. ঐ স্থানে ভূ-চৌম্বকক্ষেত্রে অনুভূমির উপাংশের মান $32\mu{
m T}$ হলে দোলনকাল কত?

SOLVE : আমরা জানি,
$$T = 2\pi \sqrt{\frac{I}{MH}} = 2\pi \sqrt{\frac{10^{-5}}{1.974 \times 3.2 \times 10^{-5}}} = 2.5 \text{ sec [Ans.]}$$

EXAMPLE – 05: একই ভর ও আকৃতির দুটি দন্ড চুম্বককে একটি স্থানে সিল্কের সূতা দ্বারা ঝুলিয়ে দিয়ে চুম্বকদ্বয় একই সময়ে যথাক্রমে 20 ও 30টি দোলন দেয়। চুম্বক দুটির চৌম্বক ভ্রামকের (চুম্বকায়নের) অনুপাত কত?

SOLVE : থেছেতু,
$$T \propto \sqrt{\frac{1}{M}} \therefore \frac{M_2}{M_1} = \frac{T_1^2}{T_2^2}$$

$$\Rightarrow \frac{T_1}{T_2} = \frac{30}{20} = \frac{3}{2} \Rightarrow \frac{T_1^2}{T_2^2} = \frac{9}{4} \therefore \frac{M_2}{M_1} = \frac{4}{9} \text{ [Ans.]}$$

$$T_1 = \frac{t}{20}$$

$$T_2 = \frac{t}{30}$$

TRY YOURSELF

EXERCISE — 01: A স্থানে ভূ-চৌম্বক ক্ষেত্রের মান $50\mu T$ এবং বিনতি 60° , B স্থানে এদের মান যথাক্রমে $55\mu T$ এবং 30° হলে ঐ স্থান দুটির ভূ-চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশের তুলনা কর।[Ans: 0.52:1]

EXERCISE – 02: কোন স্থানে ভূ-চৌম্বক ক্ষেত্রের সমান্তরাল পরিমাত্রা $19~{
m Am}^{-1}$ এবং বিনতি 45° হলে সে স্থানে পৃথিবীর চৌম্বক ক্ষেত্রের পূর্ণমাত্রা কত? $[{
m Ans.}~26.87~{
m Am}^{-1}]$

EXERCISE – 03: কোন স্থানে ভূ-চৌম্বক ক্ষেত্রের মান $4 \times 10^{-5} \, \mathrm{T}$ এবং বিনতি 30° হলে ঐ স্থানে ভূ-চৌম্বক ক্ষেত্রের উল্লম্ব উপাংশ বের কর। $[\mathrm{Ans.} \ 2 \times 10^2 \, \mathrm{T}]$

EXERCISE – 04: লম্বা রেশমের সুতায় অনুভূমিকভাবে ঝুলন্ত এক জোড়া দন্ড চুম্বক মিনিটে দুবার কম্পিত হয় এবং একটি চুম্বকের মেরু উল্টিয়ে দিলে তারা একত্রে প্রতি মিনিটে ৩০টি দোলন দেয়। চুম্বক দুটির চৌম্বক মোমেন্ট এর তুলনা কর। $[Ans. \frac{113}{112}]$

EXERCISE – 05: বিনতি বৃত্তের যে কোন স্থানের জন্য আপাত বিনতির মান পাওয়া গেল 50°. বিনতি বৃত্তিবির উল্লেম্ব অক্ষে 90° ঘুরালে আপাত বিনতি কত হবে? ঐ স্থানে প্রকৃত বিনতি 45° [Ans. 61.45°]

EXERCISE – 06: কম্পন ম্যাগনেটোমিটারের দোলনার উপর একটি কম্পমান চুম্বকের দোলনকাল $2 \sec$. চুম্বকটির জড়তার ভ্রামক $7 \times 10^{-6} \ \mathrm{kgm^2}$ এবং ভূ-চৌম্বক ক্ষেত্রের আনুভূমিক প্রাবল্য $23.87 \ \mathrm{Am^{-1}}$ হলে চুম্বকটির চৌম্বক ভ্রামক নির্ণয় কর । $[\mathrm{Ans.} \ 2.89 \times 10^{-6} \ \mathrm{wb-m}]$

EXERCISE – 07: একটি কম্পন ম্যাগনেটোমিটারের দোলনায় রাখা একটি চুম্বক দুটি স্থানে 3 এবং 5 sec-এ 1টি পূর্ণ দোলন দেয়। এ দুটি স্থানে H এর অনুপাত কত? [Ans. 25:9]

EXERCISE – 08: কোন স্থানে ভূ-চুম্বকক্ষেত্রের মোট প্রাবল্য $0.98~\mathrm{Nwb^{-1}}$ এবং বিনতি 45° এবং অপর এক স্থানে মোট চৌম্বক প্রাবল্য $0.5~\mathrm{Nwb^{-1}}$ এবং বিনতি 60° . এই দুটি স্থানে ভূ-চুম্বকক্ষেত্রের প্রাবল্যের আনুভূমিক উপাংশের অনুপাত নির্ণয় কর। প্রথম স্থানে একটি চুম্বক আনুভূমিক সমতলে থেকে প্রতি মিনিটে 20 বার দোলন দিলে দিতীয় স্থানে এ চুম্বকটি প্রতি মিনিটে কতবার দোলন দিবে? [$\mathrm{Ans.}~2.77:1,~12.0128$]

EXERCISE — 09: একটি বিনতি বৃত্তকে এমনভাবে রাখা হলো যেন এর চুম্বক শলাকা পুরোপুরি উল্লম্ব থাকে। বৃত্তটিকে এরপর উল্লম্ব অক্ষে 30° কোণে ঘুরালে আপাত বিনতি 30° হয়। বিনতির প্রকৃত মান নির্ণয় কর। [Ans. 16.12°]

Type-08: গ্যালভানোমিটার সংক্রম্ভ সমস্যাবলী

EXAMPLE – 01: একটি চলকুণ্ডলী গ্যালভানোমিটারের আয়তাকার কুণ্ডলীর দৈর্ঘ্য 4cm, প্রস্থ 2cm এবং পাক সংখ্যা 500। কুণ্ডলীর 3T এর সুষম চৌম্বকক্ষেত্রের সমান্তরালে ঝুলানো আছে। কুণ্ডলির ভেতর দিয়ে 5mA তড়িৎ প্রবাহ চালনা করা হলে এর বিক্ষেপ 5^0 হয়। ঝুলানো তারের ব্যবর্তন ধ্রুবক বের কর।

আমরা জানি,
$$l = \frac{\tau \theta}{NBA} = \ \tau = \frac{NBA}{\theta} = \frac{500 \times 3T \times 8 \times 10^{-4} m^2 \times 5 \times 10^{-3} A}{5 \ deg} = 1.2 \times 10^{-3} Nm \ deg^{-1} \ (Ans:)$$

EXAMPLE-02: কোন গ্যালভানোমিটারের অভ্যন্তরীণ রোধ 50Ω । এর সাথে 5Ω এর একটি সান্ট ব্যবহার করা হল । বর্তনীতে কত রোধ দিলে মূল প্রবাহরে মান অপরিবর্তিত থাকবে ? যদি মূল প্রবাহরে মান 1.1~A হয়, তবে গ্যালভানোমিটারের দুই প্রান্তে বিভব পার্থক্য কত হবে, যখন (ক) সান্ট ব্যবহার করা হয়েছে (খ) সান্ট ব্যবহার করা হয়েনি ।

সমাধান ঃ সান্ট ব্যবহার করায় এটি গ্যালভানোমিটারের সাথে সমান্তরাল থাকায় তুল্য রোধ R হলে.

$$\frac{1}{R} = \frac{1}{G} + \frac{1}{S} = \frac{1}{500} + \frac{1}{50} = \frac{1+1}{500} = \frac{11}{500} \therefore R = \frac{50}{11} \Omega$$

এই তুল্য রোধ R গ্যালভানোমিটারের রোধ G এর চেয়ে যতটা কম হবে ততটা রোধ বর্তনীতে শ্রেণী-সমবায়ে যুক্ত করলে মূল প্রবাহরে মান অপরিবর্তিত থাকবে । ধরা যাক, R রোধ যুক্ত করতে হবে। তাহলে,

 $R'=G-R=50\Omega-rac{50}{11}\Omega=rac{500}{11}$ Ω (ক) সান্ট ব্যবহার করার সময় গ্যালভানোমিটারের দুই প্রান্তের বিভব পার্থক্য, V=IR=1.1A $imes rac{50}{11}$ $\Omega=5V$ (খ) যখন সান্ট ব্যবহার করা হয়নি , তখন বিভব পার্থক্য, $V'=IG=1.1A \times 50\Omega=55V$.

 $\mathbf{EXAMPLE}$ – $\mathbf{03}$: একটি চুম্বকের জড়তার ভ্রামক $5 \times 10^{-5} kg \ m^2$ এবং চৌম্বক ভ্রামক $2 \times 10^4 Acm^2$ । এক কোন স্থানে দুলতে দিলে প্রতি দুই মিনিটে 120 টি দোলন সম্পন্ন করে। ঐ স্থানে ভূ- চৌম্বকক্ষেত্রের অনুভূমিক উপাংশের মান কের কর।

সমাধান ঃ আমরা জানি,
$$T=2\pi\sqrt{\frac{1}{MH}}$$
 বা, $T^2=4\pi^2\frac{I}{MH}$ বা, $H=\frac{4\pi^2I}{MT^2}$

$$= \frac{4 \times 9.87 \times 5 \times 10^{-5} \text{kgm}^2}{2 \text{Am}^2 \times (1 \text{s})^2} = 9.87 \times 10^{-4} \text{ T} : H = 987 \text{ }\mu\text{T}$$

For MCQ:

ঘূর্ণায়মান ইলেকট্রনের কারণে যে তড়িৎ প্রবাহ সৃষ্টি হয় তার মানঃ

$$i = \frac{e}{T} = \frac{ev}{2\pi r} \left[T = \frac{2\pi r}{v} \right]$$

এখানে v রৈখিক বেগ, e ইলেকট্রনের চার্জ $(1.6 \times 10^{-19} \mathrm{C})$ এরূপ তড়িৎবাহী লুপের জন্য চৌম্বক দ্বিমেরু ভ্রামক $(\mu_I) =$

কৌণিক ভরবেগ , μ_l = $\mathrm{iA} = \frac{erv}{2} = \frac{e}{2m}$. $\mathrm{mvr} = \frac{el}{2m}$; $\mathrm{L} = \mathrm{mvr} =$ কৌণিক ভরবেগ . এখানে m ইলেকট্রনের ভর , $\frac{e}{m}$ কক্ষীয় গতি.

বোরের তত্ত্ব থেকে পাই , $L=n\,\frac{h}{2\pi},\,h\to$ প্লাঙ্কের ধ্রুব ($6.626\,\times\,10^{-23}\,\mathrm{J.s})$.. চৌম্বক দ্বিমেরু ভ্রামক , $\mu_l=\frac{e}{2m}\,(n\frac{h}{2\pi})=\,n\,(\frac{eh}{4\pi m})$

 $rac{eh}{4\pi m}$ একটি ধ্রুবক রাশি এ ধ্রুব রাশিকে বলা হয় বোর ম্যাগনেটণ, যা চৌম্বক দ্বিমেরু ভ্রামকের মূল একক।

বোর ম্যাগনেটন, $\mu_B=rac{eh}{4\pi m}=9.27 imes~10\text{-}24~\mathrm{Am}^2~\therefore \mu_1=\mathrm{n}\mu_B$

n=1 [প্রথম কক্ষপথের জন্য] $\mu_l=\mu_B$ অথাৎ চৌম্বক দ্বিমেরু ভ্রামক $\mu_l=1$ ম্যাগনেটন ।

st ইলেক্ট্রনের স্পিন গতির জন্য চৌম্বক দ্বিমেরু ভ্রামকের মান $rac{\mu_{S}}{l_{c}}=rac{e}{m}$ কক্ষীয় গতি.

$$\mu_S=rac{el_S}{m}$$
 কিন্তু ইলেকট্রনের জন্য $l_S=rac{1}{2}(rac{h}{2\pi})$ হয়।

$$\mu_S = \frac{m}{\frac{el_S}{4\pi m}} = 1$$
 ম্যাগনেটন $[9.27 \times 10^{-24} \text{ Am}^2]$ যা প্রথম কক্ষীয় চৌম্বক দ্বিমেরু ভ্রামকের সমান।

উদাহরণ st হাইড্রোজেন পরমানুর প্রথম কক্ষপথের ব্যাসার্ধ $0.23 \dot{A}$ হাইড্রোজেন এর মধ্যে 2.10
m v বিভব পার্থক্য সৃষ্টি করলে এর চৌম্বক দ্বিমেরু ভ্রামকের মান কত হবে? এবং প্রবাহ মাত্রাও নির্ণয় কর।

প্রবাহ মাত্রাণ্ড i =
$$\frac{2ev}{2\pi r}$$
 = $\frac{ev}{\pi r}$ = $\frac{1.6 \times 10^{-19} \times 8.6 \times 10^5}{\pi \times 0.53 \times 10^{10}}$ = $5.1 \times 10\text{-}5A$.
$$\frac{1}{2}\text{mv}^2 = \text{ ev} = 2.10 \times 1.6 \times 10^{-19} = 9.1 \times 10^{-31} \times \text{v}^2 \quad \therefore \text{v} = 8.6 \times 10^5 \text{ms}^{-1}$$

$$\frac{1}{2}$$
mv² = ev = 2.10 × 1.6 × 10⁻¹⁹ = 9.1 × 10⁻³¹ × v² : v = 8.6 × 10⁵ms⁻¹

$$r = 0.53 \dot{A} = 0.53 \times 10^{-10} \text{m}$$
, $h = 6.626 \times 10^{-34}$ J.S

চৌম্বক দ্বিমেরু ভ্রামক ঃ $\mu_l = i A = 5.1 \times 10 - 5 \times \pi \times r^2 = 8.48 \times 10^{-15} Am^2$

$$= 9.15 \times 10^8$$
 ম্যাগনেটন. ($\frac{2erv}{2} = erv$)

চৌম্বক প্রকৃতি ঃ

চৌম্বক দৈর্ঘ্য
$$= 0.85 \text{ or, } \frac{l}{L} = 0.85$$

চৌম্বক দিমেরু ভ্রামক বা চৌম্বক ভ্রামক,M = m(21)

* চুম্বকায়ন তীব্রতাঃ কোন চৌম্বক পর্দাথের প্রতি একক আয়তনের চৌম্বক ভ্রামককে চুম্বকায়ন বা চুম্বকায়ন তীব্রতা বলে।

$$I = \frac{M}{V}Am^{-1}$$

*চৌম্বক প্রাবল্য ঃ চৌম্বক প্রাবল্য
$$=rac{\emph{চৌম্বক আবেশ}}{\emph{চৌম্বক প্রবেশ্যতা}}=rac{B}{\mu_0}$$

$$*$$
 চৌম্বক প্রবেশতা $= \frac{\vec{b}$ াম্বক আবেশ $= \mu = \frac{B}{H} \text{TmA}^{-1}$

শূন্যস্থানে,
$$\mu_0=rac{B_0}{H}$$

$$st$$
 চৌম্বক গ্রাহীতা $=rac{DR}{BR}$ স্বকায়ন তীব্রতা ho , $K=rac{I}{H}$

$$*$$
 আপেক্ষিক চৌম্বক প্রবেশ্যতা $=$ $\dfrac{i \imath ($ কান মাধ্যমে প্রবেশ্যতা $}{$ শূন্যস্থানে প্রবেশ্যতা $}$ $,\mu_r=\dfrac{\mu}{\mu_0}$

ভায়াচৌম্বক পদার্থঃ $\mu < 1, k$ এর মান (-)ve , k তাপমাত্রায় উপর নির্ভরশীল এটি চৌম্বক ক্ষেত্রের প্রবলতর অংশ হতে দূর্বল অংশে গমন করে।এ জাতীয় পদার্থ কঠিন,তরল বায়ুবীয় হতে পারে।

যেমনঃ সোনা, রুপা,তামা, দস্তা, বিসমাত, পানি, হাইড্রোজেন, এন্টিমনি ও নিষ্ক্রিয় গ্যাস, অ্যালকোহল ইত্যাদি।

MCQ

* একটি বিদ্যুৎ সরবারহ লাইন $80\mathrm{A}$ তড়িৎ প্রবাহ $3\mathrm{m}$ দুরবর্তী এক স্থান হতে অন্য স্থানে প্রেরণ করছে এই তড়িৎ প্রবাহের দরুন লাইনের 1.5m নীচে চৌম্বক ক্ষেত্রের মান কত?

$$B = \frac{\mu_0 i}{2\pi a} = \frac{4\pi \times 10^{-7} \times 80}{2\pi \times 1.5} = 1.07 \times 10-5T$$

(A)
$$1.07 \times 10^{-5}$$
T (B) 2.13×10^{-5} T

(C)
$$1.07 \times 10^{-6}$$
T (D) 2.13×10^{-6} T

st একটি বৃত্তকার কুন্ডলীর ব্যাস $10 {
m cm}$ এবং পাক সংখ্যা 80। কুন্ডলীর মধ্যদিয়ে কত তড়িৎ চললে কুন্ডলীর কেন্দ্রে $50 {
m \mu T}$ চৌম্বক ক্ষেত্র সৃষ্টি হতে?

$$B = \frac{\mu_0 N i}{2R} = \frac{4\pi \times 10^{-7} \times 80 \times i}{2 \times 5 \times 10^{-2}} = 50 \times 10^{-6} :: i = 0.05A$$

- (A) 0.01A (B) 0.05A
- (C) 0.05A (D) 0.005A

st $15\mathrm{m}$ ও $10\mathrm{m}$ দৈর্ঘ্যের দুটি তারের মধ্যদিয়ে $5\mathrm{A}$ ও $7\mathrm{A}$ বিদ্যুৎ প্রবাহিত হচ্ছে। তারদ্বয় $4\mathrm{cm}$ ব্যাবধানে অবস্থিত হলে এদের প্রতি একক দৈর্ঘ্যে ক্রিয়াশীল বলের মান কত?

$$F = \frac{\mu_0 I_{1l_2 l}}{2\pi d} = \frac{4\pi \times 10^{-7} \times 5 \times 7}{2\pi \times 0.4} = 1.75 \times 10^{-4} \text{ Nm}^{-1}$$

- (A) $1.75 \times 10^{-4} \text{Nm}^{-1}$ (B) $1.75 \times 10-5 \text{Nm}^{-1}$
- (C) $1.5 \times 10^{-4} \text{ Nm}^{-1}$ (D) কোনটিই নয়

 $*~0.5\mathrm{T}$ সুষম চৌম্বক ক্ষেত্রের সাথে 60^0 কোণে একটি ইলেকট্রন $10^5\mathrm{ms}^{-1}$ বেগে চলতে থাকলে ইলেকট্রনের উপর ক্রিয়াশীল বলের মান নির্ণয় কর।

$$F = \text{qvB sin}\theta = 1.6 \times 10^{-19} \times 10^5 \times 0.5 \text{ sin}60^0 = 6.93 \times 10^{-15} \text{N}$$

- (A) 8.3×10^{-15} N (B) $4.63 \times 10^{-1}5BN$
- (C) 6. 93×10^{-15} N (D) কোনটিই নয়

st গতিশীল একটি ইলেকট্রনের উপর $1500 {
m vm}^{-1}$ মানের তড়িৎ ক্ষেত্র ও $40 {
m T}$ মানে চৌম্বক ক্ষেত্রে ক্রিয়ার করে কোন বল উৎপন্ন করে না। ইলেকট্রনের সর্বনিমু দ্রুতি নির্ণয় কর।

$$F = qE + q vBsin\theta = 0 \implies v = \frac{-E}{Bsin\theta} : v = \frac{1500}{40} = 37.5 \text{ ms}^{-1}$$

 $\sin\! heta$ এর মান সর্বোচ্চ হলে $\,{
m v}\,$ সর্বনিম্ন হবে। $\sin\! heta$ এর সর্বোচ্চ মান 1.

*একটি প্রোটন $2.8 imes 10^7 \; ext{ms}^{-1}$ উলম্ব বেগে বিষুব রেখায় পৃথিবী পৃষ্ঠে এসে আঘাত করে। বিষুব রেখা পৃথিবীর চৌম্বক ক্ষেত্রের অনুভমিক উপাংশের মান $30\mu {
m T}$ প্রোটোনের উপর চৌম্বক বল ও মহাকর্ষ বলের অনুপাত কর।

$$F_B = qvB\sin\theta = 1.6 \times 10^{-19} \times 2.8 \times 10^7 \times 30 \times 10^{-6} \times \sin 90^0$$

মহাকর্ষ বল,
$$F_G = mg = 1.6 \times 10\text{-}27 \times 9.8 = 1.63 \text{ 7} \times 10\text{-}26 \text{ N}$$

$$\frac{F_B}{F_G} = \frac{1.344 \times 10^{16}}{1.637 \times 10^{16}}$$
 F_B: F_G = 8.2 × 10⁹ : 1

- (A) $8.2 \times 10^9 : 1$ (B) $8.2 : 10^{-9}$
- (B) 1: 1.22 × 10⁻¹⁰ (D) সবগুলো

*(2×10⁻³)×(2× 10⁻⁶) ×(2×10⁻⁴) আকরের একটি তামার পাতকে 0.65T চৌম্বক ক্ষেত্রে এমনভাবে স্থাপন করা হল যা চৌম্বক ক্ষেত্রে পাতের লম্বভাবে থাকে। পাতটির দু'পাশের বিভব পার্থক্য 100
m V এবং আপেক্ষিক রোধ $4.8 imes 10^{-4}$ $\Omega-m$ | পাতটি প্রস্থ বরাবর কত হল ভোল্টেজ সৃষ্টি হবে ? তামার মুক্ত ইলেকট্রন সংখ্যা $8.49 imes 10^{28}$ তামার পাতের প্রস্তচ্ছেদ, $A = db = 2 \times 10^{-6} \times 2 \times 10^{-4} \text{ m}^2$

একক আয়তনে মুক্ত ইলেক্ট্রনের সংখ্যা = $\frac{8.49 \times 10^{28}}{8 \times 10^{-13}}$ = 1.06125×10^{41} টি e^-

$$R=Vi \Rightarrow \rho \frac{l}{A} = 100 \times i \Rightarrow 4.8 \times 10^{-13} \times \frac{2 \times 10^{-3}}{4 \times 10^{-10}} = 100i \Rightarrow i = 240A$$

$$V_{H} = \frac{BI}{nbq} = \frac{0.65 \times 240}{1.00125 \times 10^{41} \times 1.6 \times 10^{-19} \times 2 \times 10^{-6}} = 4.59 \times 10^{-15} \text{v}$$

$$V_{H} = \frac{BI}{nha} = \frac{0.65 \times 240}{1.00125 \times 10^{41} \times 1.6 \times 10^{-19} \times 2 \times 10^{-6}} = 4.59 \times 10^{-15} \text{ V}$$

 $1 {
m m}$ লম্বা একটি তার $10 {
m amp}$ তড়িৎ প্রবাহ করে এবং প্রবাহের দিক $1.5 {
m T}$ চৌম্বক ক্ষেত্রের সাথে 30^0 কোণ করে আছে। তারটির উপর চৌম্বক বলের মান নির্ণয় কর।

 $F = ilB \sin \theta = 10 \times 1 \times 1.5 \times \sin 30^{\circ} = 7.5N$

- (A) 7.5N (B) 12.99N
- (C) .75N (D) 1.3N

Exercises

- ১। 1cm, প্রস্থ 4cm দীর্ঘ এবং 10^{-3} cm পুরুত্ববিশিষ্ট একটি পরিবাহকের মধ্য দিয়ে 3A তড়িৎ প্রবাহ চলনা করা হল। যখন পরিবাহকের তলের সাথে লম্ব বরাবর $1.5 {
 m T}$ এর একটি চৌম্বকক্ষেত্র প্রয়োগ করা হয় তখন এর প্রস্থ বরাবর $10^{-5} {
 m V}$ এর হল বিভব পার্থক্য সষ্টি হয়। আধান বাহকের সঞ্চরণ বেগ এবং প্রতি ঘন সেন্টিমিটারে আধান বাহকের সংখ্যা নির্ণয় কর ৷[Ans: $6.67 \times 10^4 ms^{-1}; 2.81 \times 10^{23} cm^{-3}$]
- ২। 0.02 প্রস্তের একটি ধাতব পাত $5\mathrm{T}$ চৌমকক্ষেত্রে পরস্পরের সাথে লম্বভাবে অবস্থিত। পাতের মধ্য ইলেট্রনের তাড়ন বেগ $4 \times 10^{-3} ms^{-1}$ হলে সৃষ্ট হল বিভরের মান নির্ণয় কর। $\left[\text{Ans: } 4 \times 10^{-3} v \right]$
- ৩। দুটি দীর্ঘ সরল সমান্তরাল তারের মধ্য দিয়ে যথাক্রমে 4A এবং 6A তড়িৎ প্রবাহ চলছে। তারদ্বয়ের মধ্যবর্তী দূরত্ব 3cm হলে দ্বিতীয় তারের প্রবাহের জন্য প্রথম তারের প্রতি একক দৈর্ঘ্য ক্রিয়াশীল বলের মান নির্ণয় কর।

$$\left[\text{Ans: 1.6}\times 10^{-4}\text{Nm}^{-1}\right]$$

- 8। 5Ω রোধের একটি গ্যালভানোমিটারের সাথে কত রোধের এটি সান্ট যুক্ত করলে মূল প্রবাহের 2%গ্যালভানোমিটারের মধ্য দিয়ে যাবে ? [Ans: 1.02Ω]
- e। একটি গ্যালভানোমিটারের রোধ 102Ω । এর সাথে কত সান্ট যুক্ত করলে মূল তড়িৎ প্রবাহের 99% সান্টের মধ্য দিয়ে প্রবাহিত যাবে ? [Ans: 1.03 Ω]
- ৬। একটি গ্যালভানোমিটারের রোধ 100Ω । এর সাথে যুক্ত সান্টের রোধ 4Ω ,গ্যালভানোমিটার প্রবাহ $0.45~{
 m A}$ হলে মূল প্রবাহ নির্ণয় কর। [Ans: 11.7 A]
- ৭। একটি ভোল্টমিটারের পাল্লা $20~{
 m V}$ এবং রোধ 500Ω । এই ভোল্টমিটারের সাথে 2000Ω এর একটি রোধ শ্রেণী সমবায়ে যুক্ত করলে এর দ্বারা কত ভোল্ট বিভব পার্থক্য মাপা সম্ভব হবে ? [Ans: 100 V]
- ৮। কোন একটি ভোল্টমিটারের রোধ 100Ω এবং এটি 50~
 m V মাপতে পারে । ভোল্টমিটারটি দ্বারা 500~
 m V মাপতে হলে কী ব্যবস্থা নিতে হবে ? [Ans: 900Ω রোধ শ্রেণীতে লাগাতে হবে]

- **৯**। একটি চল কুণ্ডলী গ্যালভানোমিটারের আয়াতকার কুণ্ডলীর ক্ষেত্রফল $0.05 \times 0.02m^2$ ও পাক সংখ্যা 200 । কণ্ডলী খাড়াভাবে $5 \times 10^{-2}T$ মানের সুষম কেন্দ্রগামী চৌম্বকক্ষেত্রে ঝুলানো আছে। ঝুলনতারে $1 {
 m rad}$ বিক্ষেপে $1.25 \times 10^3 N.m$ টক সৃষ্টি হয়। কত অ্যাম্পিয়ার বিদ্যুৎ প্রবাহে বিক্ষেপ 6^0 হবে । [Ans: $1.309 \times 10^{-7}{
 m A}$]
- ১০। হাইড্রোজেন পরমাণুতে একটি ইলেকট্রন প্রোটনকে কেন্দ্র করে $5.3 \times 10^{-11} {
 m m}$ ব্যাসার্ধের একটি কক্ষপথে $2.18 \times 10^6 m s^{-1}$ বেগে আবর্তন করছে। প্রোটনের অবস্থানে এটি কত মানের চৌম্বকক্ষেত্র সৃষ্টি করে? [Ans: 112.42 T]
- ১১। হাইড্রোজেন পরমাণুর ইলেকট্রন নিউক্লায়াসের চারদিকে $5.3\times 10^{-11}{
 m m}$ ব্যাসার্ধের বৃত্তকার পথে $2.2\times 10^6 ms^{-1}$ বেগে ঘুরে কেন্দ্রে $12.53~{
 m Wb~m^{-2}}$ ফ্লাক্স ঘনত্ব উৎপন্ন করে । ইলেকট্রনের চার্জ নির্ণয় কর । [Ans: $1.6\times 10^{-19}{
 m C}$]
- ১২। একটি খাড়া তারের মধ্য দিয়ে নিচের দিকে $25~{
 m A}$ তড়িৎ প্রবাহ চলছে। তার থেকে $7~{
 m m}$ দূরে একটি ইলেক্ট্রন $44 imes 10^4 ms^{-1}$ বেগে নিচের দিকে গতিশীল। ইলেক্ট্রনের উপর ক্রিয়াশীল বলের মান নির্ণয় কর।

[Ans: 5. 03 \times 10⁻²⁰ N]

- ১৩। 100Ω রোধের একটি গালভানোমিটার 0.1A তড়িৎ প্রবাহ মাত্রায় পূর্ণ স্কেল বিক্ষেপ দেয়। একে (ক) 10~A তড়িৎ প্রবাহ মাত্রায় পূর্ণ স্কেল বিক্ষেপ দেয় এরূপ একটি অ্যামিটারে রূপান্তরিত করতে কত রোধের সান্ট ব্যবহার করতে হবে ? (খ) 100V- এ পূর্ণ স্কেল বিক্ষেপ দেয় এরূপ একটি ভোল্টমিটারে রূপান্তরিত করতে কত রোধ শ্রেণী সমবায়ে যুক্ত করতে হবে। Ans: (ক) $1.01~\Omega$, (খ) $900~\Omega$)
- ১৪ ৷ A স্থানে ভূ- চৌম্বকক্ষেত্রের মান $50\mu T$ এবং বিনতি 60^{0} , B স্থানে এদর মান যথাক্রমে $55\mu T$ এবং 30^{0} হলে ঐ স্থান দুটির ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশের তুলনা কর ৷ $[{f Ans:0.52:1}]$
- ১৫। কোন স্থানে ভূ চৌম্বকক্ষেত্রের প্রাবল্যের অনুভূমিক ও উল্লম্ব উপাংম যথাক্রমে $31.85 \mu T$ এবং $47.77 \mu T$ । ঐ স্থানে ভূ চৌম্বকক্ষেত্রের মোট প্রাবল্য ও বিনতি নির্ণয় কর। $\left[{
 m Ans:} \ {
 m 57.41} \mu T \ ; {
 m 56.31}^0
 ight]$
- ১৭। $4 \times 10^{-3} kg \ m^2$ জড়তার ভ্রামকের একটি দণ্ড চুম্বক মুক্তভাবে দোলনকালে 2 মিনিটে 88 টি দোলন দেয় । পরীক্ষণীয় স্থঅনে MH এর মান নির্ণয় কর। $[{
 m Ans: 8.5 \times 10^{-2} \ kgm^2 s^{-2}}]$
- ১৮। $0.5~{
 m Am^2}$ চৌম্বক ভ্রামকবিশিষ্ট কোন দণ্ড চুম্বককে অনুভূমিক ও মুক্তভাবে দোল দিলে প্রতি মিনিটে 5 বার পূর্ণ দোল দেয় । ঐ চুম্বকের জড়তার ভ্রামক নির্ণয় কর । ${
 m [Ans: 5.8 \times 10^{-5}~kgm^2]}$
- ১৯। সমান ভর ও একই আকারের দুটি দণ্ড চুম্বককে কোন এক স্থানে ঝুলিয়ে দিলে এরা একই সময়ে যথাক্রমে 12 এবং 15 বার দোলে । এদের চৌম্বক ভ্রামকের অনুপাত নির্ণয় কর । [Ans: 16: 25]
- ২০। কোন স্থানের ভূ-টৌম্বকক্ষেত্রের সমান্তরাল পরিমাত্রা $19.1 \mu T$ এবং বিনতি 30^0 হলে, সে স্থানে পৃথিবীর চৌম্বকক্ষেত্রের পূর্ণমাত্রা কত ? $[{f Ans}: 22.05\ \mu T]$
- ২১। A স্থানে ভূ- চৌম্বকক্ষেত্রের মান $98~\mu T$ ও বিনতি 45^0 এবং B স্থানে চৌম্বকক্ষেত্র ও বিনতি যথাক্রমে $50~\mu T$ ও 60^0 । ঐ দুই স্থানে অনুভূমিক উপাংশের অনুপাত নির্ণয় কর। $[{f Ans}: 2.77:1]$
- ২২। কোন স্থানের ভূ– চৌম্বকক্ষেত্রের মান $4 \times 10^{-5}~T$ বিনতি 60^0 । ঐ স্থানে ভূ-চৌম্বকক্ষেত্রের আনুভূমিক ও উল্লম্ব উপাংশ নির্ণয় কর। $[{
 m Ans:}\, {
 m 20} imes {
 m 10^{-6}}\, {
 m T};\, {
 m 36.}\, {
 m 64} imes {
 m 10^{-6}}\, {
 m T}]$
- ২৩। কোন স্থানে ভূ-টৌম্বকক্ষেত্রের অনুভূমিক উপাংশ $28~\mu T$ এবং বিনতি 30^0 । ঐ স্থানে ভূ-টৌম্বকক্ষেত্রের মোট প্রাবল্যের মান কত ? $[{f Ans}: 32.33~\mu T]$

২৪। কোন কম্পন ম্যাগনেটোমিটারে একটি চুম্বক প্রতি মিনিটে 30টি পূর্ণ দোলন দেয়। যদি ঐ চুম্বকের চৌম্বক ভ্রামক $1.2Am^2$ হয় এবং ঐ স্থানের ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশ $30~\mu T$ তবে ঐ চুম্বকের জড়তার ভ্রামক নির্ণয় কর। $[Ans: 3.64 \times 10^{-6}~kgm^2]$

২৫। একটি দণ্ড চুম্বক ঢাকায় ও লন্ডনে যথাক্রমে 4_S এবং 5.5_S এ একটি পূর্ণ দোলন সম্পন্ন করে। ঢাকায় ভূ - চৌম্বকক্ষেত্রের প্রাবল্যের অনুভূমিক উপাংশ $34~\mu T$ হলে লন্ডনে এর মান কত হবে ? $[{f Ans}:17.98~\mu T]$

২৬। একটি চুম্বকের জড়তার ভ্রামক $10^{-5}\ kgm^2$ এবং চৌম্বক ভ্রামক $1.974\ Am^2$ । এক কোন স্থানে দুলতে দিলে প্রতি মিনিটে ২৪টি দোল দেয় । ঐ স্থানের চৌম্বক ক্ষেত্রের অনুভূমিক উপাংশের মান বের কর । $\ [{f Ans: 32\ \mu T}]$

২৭। $0.3~Am^2$ চৌম্বক ভ্রামকবিশিস্ট কোন দণ্ড চুম্বককে অনুভূমিক ও মুক্তভাবে দোল দিলে তা প্রতি মিনিটে চারবার পূর্ণ দোলণ দেয়। ঐ চুম্বকের জড়তার ভ্রামক নির্ণয় কর। $(H=32~\mu T)$ |

[
$$Ans: 5.47 \times 10^{-5} \ kgm^2$$
]

২৮। L দৈর্ঘ্যের একটি তারের মধ্যদিয়ে i তড়িৎ প্রবাহিত হচ্ছে। তারটিকে বাকিয়ে একটি বৃত্তাকার কুন্ডলী তৈরী করে একটি চৌম্বক ক্ষেত্রের মধ্যে স্থাপন করা হল। প্রমান কর যে, বৃত্তকার কুন্ডলীর উপর প্রযুক্ত বলের মান সর্বাধিক হবে যদি তারটিকে এক পাকে জড়ানো যায় এবং সর্বাধিক টর্কের মান হবে $\frac{1}{4\pi}L^2iB$