Today

- Last time
 - Generalized linear models
 - Multi-class classification
- Today
 - Towards support vector machines
 - Perceptron algorithm (e.g., Hastie Section 4.5, Bishop Section 4.1.7)
 - Support vector machines

- Announcements
 - Homework 1 is due Wed, Sep 30 before class
 - Feedback https://forms.gle/VuCpbuRoPyZrohf57

Towards support vector machines - finding linear separators

Finding linear separators of two classes

Geometry of linear separators (see blackboard)

A plane can be specified as the set of all points given by:

$$\mathbf{p} = \mathbf{a} + s\mathbf{u} + t\mathbf{v},$$

 $(s,t) \in \mathcal{R}$.

Vector from origin to a point in the plane

Two non-parallel directions in the plane

Alternatively, it can be specified as:

$$(\mathbf{p} - \mathbf{a}) \cdot \mathbf{n} = 0 \Leftrightarrow \mathbf{p} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$$
Normal vector
(we will call this w)

Only need to specify this dot product, a scalar (we will call this the offset, b)

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

Important note: changing notation!

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output class 1
 - Negative, output class 2

Example: Spam

- Imagine 3 features (spam is "positive" class):
 - 1. free (number of occurrences of "free")
 - 2. money (occurrences of "money") $w \cdot f(x)$
 - 3. BIAS (intercept, always has value 1) $\sum w_i \cdot f_i(x)$

$$\sum_{i}^{w} w_{i} \cdot f_{i}(x)$$

x f(x) BIAS: 1 free: 1 money: 1

w

$$(1)(-3) + (1)(4) + (1)(2) + \cdots$$

 $w.f(x) > 0 \rightarrow SPAM!!!$

Note: The BIAS term determines the threshold

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1

Other corresponds to Y=-1

 \overline{w}

BIAS : -3
free : 4
money : 2

The perceptron algorithm

- Start with weight vector = $\vec{0}$
- For each training instance (x_i, y_i):
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x_i) \ge 0 \\ -1 & \text{if } w \cdot f(x_i) < 0 \end{cases}$$

- If correct (i.e., y=y_i), no change!
- If wrong: update

$$w = w + y_i f(x_i)$$

Geometrical interpretation on board

Preceptron and logistic regression

- Logistic regression with $h_{\theta}(x) = g(\theta^T x)$ with $g(z) = 1/(1 + e^{-z})$
- Now set

$$g(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

and use SGD update rule as before

$$\theta^{(k+1)} = \theta^k + \alpha \left(y^{(i)} - h_{\theta^{(k)}}(x^{(i)}) \right) x^{(i)}$$

gives the perceptron algorithm (with $\alpha=1/2$)

- If misclassified $(y^{(i)} h_{\theta^{(k)}}(x^{(i)}) \neq 0)$, then update weight $\theta^{(k)}$ with $x^{(i)}$
- Note that $y^{(i)} h_{\theta^{(k)}}(x^{(i)}) = -2$ if $y^{(i)} = -1$ and $h_{\theta^{(k)}}(x^{(i)}) = 1$

Logistic regression

- Consider $g(z)=1/(1+e^{-z})$ and recall that the probability $p(y=1\,|\,x;\theta)=h_{\theta}(x)=g(\theta^Tx)$
- Predict label "1" if $h_{\theta}(x) \ge 0.5$ which is equivalent to $\theta^T x \ge 0$
- The larger $h_{\theta}(x)$, the more confident we are that we correctly predict the label "1", i.e., $\theta^T x \gg 0$
- Similarly, confident in prediction "0" if $\theta^T x \ll 0$
- Note that θ is the normal vector of a hyperplane

Linear Separators

Which of these linear separators is optimal?

Find separator with largest margin

Support vector machines

Support vector machines

 SVMs (Vapnik, 1990's) choose the linear separator with the largest margin

Good according to intuition, theory, practice

Support vector machines: 3 key ideas

1. Use **optimization** to find solution (i.e. a hyperplane) with few errors

2. Seek large margin separator to improve generalization

3. Use **kernel trick** to make large feature spaces computationally efficient

Notation

- Class labels $y \in \{-1,1\}$
- Parametrize with w, b rather than θ (intercept treated separately)

$$h_{\theta}(x) = g(w^T x + b)$$

with

$$g(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases}$$

Functional margin

- Define functional margin of training sample $(x^{(i)}, y^{(i)})$ w.r.t. (w, b) as $\hat{\gamma}^{(i)} = y^{(i)}(w^Tx + b)$
 - If $y^{(i)} = 1$, then need $w^T x + b \gg 0$ for $\hat{\gamma}^{(i)}$ large
 - If $y^{(i)} = -1$, then need $w^T x + b \ll 0$ for $\hat{\gamma}^{(i)}$ large
 - Holds $y^{(i)}(w^Tx + b) > 0$, then prediction correct
- Large functional margin = confident + correct prediction
- Scaling
 - For our choice g(z) = 1? $z \ge 0$: 0 have $g(2w^Tx + 2b) = g(w^Tx + b)$

which means that $h_{ heta}$ is invariant under scaling even though $\hat{\gamma}^{(i)}$ is not

-> normalize by enforcing ||w||=1

Geometric margin

[board]

Geometric margin of (w,b)

w.r.t.
$$(x^{(i)}, y^{(i)})$$

$$\gamma^{(i)} = y^{(i)} \left(\frac{w^T}{\|w\|} x^{(i)} + \frac{b}{\|w\|} \right)$$

 Geometric margin is invariant under scaling of w, b (e.g., replace w, bwith 2w,2b then $\gamma^{(i)}$ doesn't change)

• Geometric margin w.r.t. set 20

$$\gamma = \min_{i=1,...,N} \gamma^{(i)}$$

Optimal margin classifier

- Find decision boundary that maximizes geometric margin
- ullet Assumption: Training set ${\mathscr D}$ is linearly separable
- Pose optimization problem

$$\max_{\gamma,w,b} \gamma$$

$$\mathbf{s.t.} \qquad y^{(i)}(w^Tx^{(i)} + b) \ge \gamma, \quad i = 1,...,N$$

- Constraint ||w||=1 ensures that functional margin $((\hat{\gamma}^{(i)}=)y^{(i)}(w^Tx^{(i)}+b))$ is equal to geometric margin
- Constraint ||w|| = 1 leads to non-convex set (hard to optimize over) [in contrast to $||w|| \le 1$]

Optimal margin classifier (cont'd)

• Note that functional margin $\hat{\gamma}$ and geometric margin γ are related as $\gamma = \hat{\gamma}/\|w\|$

Optimize normalized functional margin

$$\max_{\hat{\gamma},w,b} \frac{\hat{\gamma}}{\|w\|}$$
 s.t.
$$y^{(i)}(w^Tx^{(i)}+b) \geq \hat{\gamma}, \quad i=1,...,N$$

• Got rid of constraint ||w|| = 1 but introduced objective $\hat{\gamma}/||w||$

Optimal margin classifier (cont'd)

- Invoke that functional margin $\hat{\gamma}$ depends on scaling
 - Multiplying w,b by constant, multiplies $\hat{\gamma}$ by that constant
- Introducing constraint $\hat{\gamma}=1$, which indeed is a scaling constraint on w,b and obtain $_1$

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^Tx^{(i)} + b) \ge 1$, i = 1,...,N

- Note: maximizing $\hat{\gamma}/\|w\|$ (with $\hat{\gamma}=1$) is same as minimizing $\|w\|^2$
- Convex quadratic objective, linear constraints
- The solution is the optimal margin classifier