$\overline{\text{NSCC}}$, CLIQUE

5.272 nclass

DESCRIPTION LINKS GRAPH

Origin Derived from nvalue.

Constraint nclass(NCLASS, VARIABLES, PARTITIONS)

Arguments NCLASS : dvar

VARIABLES : collection(var-dvar)
PARTITIONS : collection(p - VALUES)

Restrictions

```
\begin{split} |\text{VALUES}| &\geq 1 \\ & \text{required}(\text{VALUES}, \text{val}) \\ & \text{distinct}(\text{VALUES}, \text{val}) \\ & \text{NCLASS} &\geq 0 \\ & \text{NCLASS} &\leq \min(|\text{VARIABLES}|, |\text{PARTITIONS}|) \\ & \text{NCLASS} &\leq \text{range}(\text{VARIABLES}.\text{var}) \\ & \text{required}(\text{VARIABLES}, \text{var}) \\ & \text{required}(\text{PARTITIONS}, \text{p}) \\ & |\text{PARTITIONS}| &\geq 2 \end{split}
```

Purpose

Number of partitions of the collection PARTITIONS such that at least one value is assigned to at least one variable of the collection VARIABLES.

Example

$$(2, \langle 3, 2, 7, 2, 6 \rangle, \langle p - \langle 1, 3 \rangle, p - \langle 4 \rangle, p - \langle 2, 6 \rangle))$$

Note that the values of $\langle 3,2,7,2,6 \rangle$ occur within partitions $p-\langle 1,3 \rangle$ and $p-\langle 2,6 \rangle$ but not within $p-\langle 4 \rangle$. Consequently, the nclass constraint holds since its first argument NCLASS is set to value 2.

Typical

```
\begin{split} & \text{NCLASS} > 1 \\ & \text{NCLASS} < |\text{VARIABLES}| \\ & \text{NCLASS} < \frac{\text{range}(\text{VARIABLES.var})}{|\text{VARIABLES}| > |\text{PARTITIONS}|} \end{split}
```

Symmetries

- Items of VARIABLES are permutable.
- Items of PARTITIONS are permutable.
- Items of PARTITIONS.p are permutable.
- An occurrence of a value of VARIABLES.var can be replaced by any other value that also belongs to the same partition of PARTITIONS.
- All occurrences of two distinct tuples of values in VARIABLES.var or PARTITIONS.p.val can be swapped; all occurrences of a tuple of values in VARIABLES.var or PARTITIONS.p.val can be renamed to any unused tuple of values.

20000128 1775

Arg. properties

• Functional dependency: NCLASS determined by VARIABLES and PARTITIONS.

• Extensible wrt. VARIABLES when NCLASS = |PARTITIONS|.

Algorithm

[27, 40].

See also

related: nequivalence(variable \in partition replaced by variable mod constant), ninterval(variable \in partition replaced by variable/constant), npair(variable \in partition replaced by pair of variables).

specialisation: nvalue ($variable \in partition$ replaced by variable).

used in graph description: in_same_partition.

Keywords

characteristic of a constraint: partition.

constraint arguments: pure functional dependency.

constraint type: counting constraint, value partitioning constraint. **final graph structure:** strongly connected component, equivalence.

modelling: number of distinct equivalence classes, functional dependency.

 $\overline{\text{NSCC}}$, CLIQUE

Arc input(s)	VARIABLES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{variables1}, \texttt{variables2})$
Arc arity	2
Arc constraint(s)	$\verb in_same_partition (variables 1.var, variables 2.var, PARTITIONS) $
Graph property(ies)	NSCC= NCLASS

Graph model

Parts (A) and (B) of Figure 5.592 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NSCC** graph property we show the different strongly connected components of the final graph. Each strongly connected component corresponds to a class of values that was assigned to some variables of the VARIABLES collection. We effectively use two classes of values that respectively correspond to values {3} and {2,6}. Note that we do not consider value 7 since it does not belong to the different classes of values we gave: all corresponding arc constraints do not hold.

Figure 5.592: Initial and final graph of the nclass constraint

20000128 1777