Ребро CC_1 — перпендикуляр к плоскости ABC, поэтому CE — ортогональная проекция наклонной ME на эту плоскость, а угол CEM — линейный угол двугранного угла между секущей плоскостью и плоскостью ABC. Из прямоугольного треугольника CEM находим, что

$$ME = \sqrt{CM^2 + CE^2} = \sqrt{\frac{1}{4} + \frac{9}{8}} = \frac{\sqrt{11}}{2\sqrt{2}},$$
$$\cos \angle CEM = \frac{CE}{ME} = \frac{\frac{3\sqrt{2}}{4}}{\frac{\sqrt{11}}{2\sqrt{2}}} = \frac{3}{\sqrt{11}}.$$

Пятиугольник KBCDL — ортогональная проекция сечения KPMQL на плоскость ABC, а поскольку

$$S_{KBCDL} = S_{ABCD} - S_{\Delta AKL} = S_{ABCD} - \frac{1}{4}S_{\Delta ABD} = 1 - \frac{1}{8} = \frac{7}{8},$$

то по теореме о площади ортогональной проекции

$$S_{KPMQL} = \frac{S_{KBCDL}}{\cos \angle CEM} = \frac{\frac{7}{8}}{\frac{3}{\sqrt{11}}} = \frac{7\sqrt{11}}{24}.$$

Подготовительные задачи

- **1.** Дан куб $ABCDA_1B_1C_1D_1$ с ребром a. Найдите площадь сечения плоскостью, проходящей через:
 - а) две его диагонали;
 - б) середины трёх рёбер, исходящих из одной вершины;
 - в) вершину B_1 и середины рёбер AB и AD;
 - г) диагональ AC_1 параллельно прямой BD;
 - д) середину ребра AB параллельно прямым BD и BC_1 .
- **2.** Дан правильный тетраэдр ABCD с ребром a. Найдите площадь сечения плоскостью, проходящей через:
 - а) середину ребра AD параллельно плоскости ABC;
 - б) вершину D и середины рёбер AB и BC;
 - в) середину ребра AB параллельно рёбрам AC и BD;
 - Γ) высоту DH тетраэдра параллельно ребру AC;
 - д) центры граней *ABC*, *ABD* и *BCD*.
- **3.** Дана правильная четырёхугольная пирамида SABCD с вершиной S. Все рёбра пирамиды равны a. Найдите площадь сечения плоскостью, проходящей через:
- а) середину ребра SA параллельно плоскости основания пирамиды;
 - б) диагональ BD основания и середину ребра SC;

- в) ребро AB и середину ребра SD;
- г) центр основания параллельно плоскости ASB;
- д) середину ребра SC и точку A параллельно диагонали BD основания.
- **4.** Дана правильная треугольная призма $ABCA_1B_1C_1$. Все рёбра призмы равны a. Найдите площадь сечения плоскостью, проходящей через:
 - а) вершины A, B_1 и C;
 - б) ребро BC и центр основания $A_1B_1C_1$;
 - в) центры граней ABC, AA_1B_1B и BB_1C_1C ;
 - г) прямую BC_1 параллельно медиане AM основания ABC;
 - д) середину ребра BB_1 параллельно прямым BA_1 и B_1C_1 .
- **5.** Дана правильная шестиугольная призма $ABCDEFA_1B_1C_1D_1E_1F_1$. Все рёбра призмы равны a. Найдите площадь сечения плоскостью, проходящей через:
 - а) вершины A, B и C_1 ;
 - б) вершины B, F и C_1 ;
 - в) вершины A, B и D_1 ;
 - г) центр основания ABCDEF параллельно прямым DE и AE_1 ;
 - д) середины рёбер BC, EF и центр грани AA_1B_1B .
- **6.** Дана правильная шестиугольная пирамида SABCDEF с вершиной S. Стороны основания пирамиды равны a, а боковые рёбра равны 2a. Найдите площадь сечения плоскостью, проходящей через:
 - а) вершину S и диагональ BD основания;
 - б) середины рёбер AB и EF параллельно высоте пирамиды;
 - в) вершину S и середины рёбер AB и AF;
 - Γ) точки A, D и середину ребра SE;
 - д) ребро AB и середину ребра SD.

Задачи на доказательство и вычисление

- **7.1.** Плоскость α проходит через высоту DD_1 правильного тетраэдра ABCD и ребро AD.
 - а) Докажите, что плоскость α перпендикулярна ребру BC.
- б) Найдите площадь сечения тетраэдра плоскостью α , если ребра тетраэдра равны a.
- **7.2.** Через вершины C , B_1 и D_1 куба $ABCDA_1B_1C_1D_1$ проведена плоскость α .
- а) Докажите, что плоскость α перпендикулярна диагонали AC_1 куба.
 - б) Найдите площадь куба плоскостью α , если ребро куба равно a.

- **7.3.** Через вершину S и диагональ BD основания правильной шестиугольной пирамиды SABCDEF проведена плоскость α .
- а) Докажите, что расстояние от центра основания до этой плоскости в три раза меньше расстояния до этой плоскости от точки F.
- б) Найдите площадь сечения пирамиды плоскостью α , если сторона основания равна $\sqrt{3}$, а угол между боковой гранью и плоскостью основания равен 60° .
- **7.4.** Плоскость α проходит через сторону AB основания ABC правильной треугольной призмы $ABCA_1B_1C_1$ и середину ребра B_1C_1 .
- а) Пусть M точка пересечения плоскости α с прямой CC_1 . Докажите, что C_1 середина отрезка CM.
- б) Найдите площадь сечения призмы плоскостью α , если все рёбра призмы равны a.
- **7.5.** Через вершину S правильной четырёхугольной пирамиды и середины сторон AD и CD основания проведена плоскость α ; K точка пересечения этой плоскости с прямой BC.
 - а) Докажите, что отрезок СК вдвое меньше стороны основания.
- б) Найдите площадь сечения пирамиды плоскостью α , если сторона основания пирамиды равна a, а боковое ребро равно 2a.
- **7.6.** Дана правильная шестиугольная призма. Плоскость α проходит через сторону одного основания и противолежащую ей сторону другого основания.
- а) Докажите, что плоскость α проходит через середины двух противоположных боковых рёбер призмы.
- б) Найдите площадь сечения призмы плоскостью α , если боковые грани призмы квадраты со стороной 2.
- **7.7.** Через диагональ B_1D_1 грани $A_1B_1C_1D_1$ и середину ребра DC правильной четырёхугольной призмы $ABCDA_1B_1C_1D_1$ проведена плоскость α .
 - а) Постройте точку пересечения этой плоскости с прямой CC_1 .
- б) Найдите площадь сечения призмы плоскостью α , если AB=a, $CC_1=2a$.
- **7.8.** Плоскость α перпендикулярна основанию правильной треугольной пирамиды SABC и делит стороны AB и BC основания пополам.
- а) Докажите, что плоскость α делит боковое ребро в отношении 1:3, считая от вершины S.
- б) Найдите площадь сечения пирамиды этой плоскостью, если известно, что сторона основания равна 2, а высота пирамиды равна 4.

- **7.9.** Точки M и N середины рёбер SA и SB правильной треугольной пирамиды SABC с вершиной S. Через M и N проведена плоскость, перпендикулярная плоскости основания.
- а) Докажите, что эта плоскость делит медиану CE основания в отношении 1:5, считая от точки E.
 - б) Найдите площадь сечения, если AB = 36, SA = 31.
- **7.10.** В правильной треугольной пирамиде SABC сторона основания AB равна 12, а боковое ребро SA равно 13. Точки M и N середины рёбер SA и SB соответственно. Плоскость α содержит прямую MN и перпендикулярна плоскости основания пирамиды.
- а) Докажите, что плоскость α делит медиану CE основания в отношении 5:1, считая от точки C.
- б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью α .
- **7.11.** На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E=6EA$. Точка T середина ребра B_1C_1 . Известно, что $AB=4\sqrt{2}$, AD=12, $AA_1=14$.
- а) Докажите, что плоскость ETD_1 делит ребро BB_1 в отношении 4:3.
 - б) Найдите площадь сечения параллелепипеда плоскостью ETD_1 .
- **7.12.** На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E:EA=5:3$, на ребре BB_1 точка F так, что $B_1F:FB=5:11$. Точка T середина ребра B_1C_1 . Известно, что $AB=6\sqrt{2}$, AD=10, $AA_1=16$.
 - а) Докажите, что плоскость EFT проходит через вершину $D_1.$
 - б) Найдите площадь сечения параллелепипеда плоскостью *EFT*.
- **7.13.** Дана правильная четырёхугольная пирамида PABCD с вершиной в точке P. Через точку C и середину ребра AB перпендикулярно к основанию пирамиды проведена плоскость α .
- а) Докажите, что плоскость α делит ребро BP в отношении 2:1, считая от точки B.
- б) Найдите площадь сечения пирамиды плоскостью α , если известно, что PA=10, AC=16.
- **7.14.** В правильной шестиугольной пирамиде с вершиной S стороны основания ABCDEF равны 6, а боковые рёбра равны 12. Точки K и M середины рёбер и SF и SE соответственно.
 - а) Постройте сечение пирамиды плоскостью ВКМ.
 - б) Найдите площадь полученного сечения.

- **7.15.** Точка M середина ребра CD единичного куба $ABCDA_1B_1C_1D_1$. Через вершину A_1 проведена плоскость, параллельная прямым AM и D_1M .
 - а) Докажите, что эта плоскость проходит через середину ребра АВ.
 - б) Найдите площадь сечения куба этой плоскостью.
- **7.16.** Дан параллелепипед $ABCDA_1B_1C_1D_1$ с основаниями ABCD и $A_1B_1C_1D_1$. Точки M и N середины рёбер AD и CD соответственно, точка K лежит на ребре BB_1 , причём $B_1K:KB=1:2$.
- а) Докажите, что плоскость, проходящая через точки M, N и K, делит ребро CC_1 в отношении 2:7, считая от точки C.
- б) Найдите площадь сечения параллелепипеда этой плоскостью, если параллелепипед $ABCDA_1B_1C_1D_1$ правильная четырёхугольная призма, сторона основания ABCD равна $4\sqrt{2}$, а боковое ребро равно 12.
- **7.17.** В правильной треугольной призме $ABCA_1B_1C_1$ проведено сечение плоскостью, проходящей через середину M ребра AB, точку B_1 и точку K, лежащую на ребре AC и делящую его в отношении AK:KC=1:3.
- а) Докажите, что эта плоскость проходит через середину ребра A_1C_1 .
- б) Найдите площадь сечения, если известно, что сторона основания призмы равна $4\sqrt{2}$, а высота призмы равна $8\sqrt{2}$.
- **7.18.** Основание четырёхугольной пирамиды SABCD параллелограмм ABCD.
- а) Постройте сечение пирамиды плоскостью, проходящей через середину ребра AB параллельно плоскости SAD.
- б) Найдите площадь полученного сечения, если площадь грани SAD равна 16.
- **7.19.** Основанием пирамиды SABCD с равными боковыми рёбрами является прямоугольник ABCD. Плоскость α проходит через сторону AB основания и середину высоты пирамиды.
- а) Докажите, что плоскость α делит боковое ребро SD в отношении 1:2, считая от вершины S.
- б) Найдите площадь сечения пирамиды плоскостью α , если AB=6, AD=8, а высота пирамиды равна 6.
- **7.20.** Через середину ребра AB куба $ABCDA_1B_1C_1D_1$ проведена плоскость, параллельная прямым BD_1 и A_1C_1 .
- а) Докажите, что эта плоскость делит диагональ DB_1 в отношении 3:5, считая от от вершины D.

- б) Найдите площадь полученного сечения, если ребро куба равно 4.
- **7.21.** Дан параллелепипед $ABCDA_1B_1C_1D_1$. Плоскость α проходит через прямую BA_1 параллельно прямой CB_1 .
- а) Докажите, что плоскость α делит диагональ AC_1 параллелепипеда в отношении 1:2, считая от вершины A.
- б) Найдите площадь сечения параллелепипеда плоскостью α , если он прямой, его основание ABCD ромб с диагоналями AC=10 и BD=8, а боковое ребро параллелепипеда равно 12.
- **7.22.** Дана треугольная призма $ABCA_1B_1C_1$. Плоскость α проходит через прямую BC_1 параллельно прямой AB_1 .
 - а) Докажите, что плоскость α проходит через середину ребра AC.
- б) Найдите площадь сечения призмы плоскостью α , если призма правильная, сторона её основания равна $2\sqrt{3}$, а боковое ребро равно 1.
- **7.23.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания AB равна 6, а боковое ребро AA_1 равно $4\sqrt{3}$. На рёбрах AB, A_1D_1 и C_1D_1 отмечены точки M, N и K соответственно, причём $AM = A_1N = C_1K = 1$.
- а) Пусть L точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL квадрат.
 - б) Найдите площадь сечения призмы плоскостью MNK.
- **7.24.** В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания AB равна 6, а боковое ребро AA_1 равно $2\sqrt{2}$. На рёбрах AB, A_1B_1 и B_1C_1 отмечены точки M, N и K соответственно, причём $AM = B_1N = C_1K = 2$.
- а) Пусть L точка пересечения плоскости MNK с ребром AC. Докажите, что MNKL квадрат.
 - б) Найдите площадь сечения призмы плоскостью MNK.