

معماری و سازمان کامپیوتر

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امیر خورسندی

بهار ۱۴۰۲

ساختار پردازنده

ساختار پردازنده

انواع ساختار پردازنده

- یک ثبات خاص منظوره
- چند پردازنده همه منظوره
 - حافظه پشته
 - ساختار ترکیبی

ثبات ها

• دسترسی به آن ها در مقایسه با حافظه بسیار سریع تر می باشد.

• در کامپیوتر پایه تنها یک ثبات (AC) برای محاسبات وجود داشت.

• در کامپیوترهای امروزی تعداد ثبات بیشتری برای محاسبات در دسترس هستند.

ساختار پردازنده با ثبات های همه منظوره

ساختار دستور

SELA	SELB	SELD	OPR
3	3	3	5

/_	OPR Select	Operation	Symbol
-	00000 00001 00010 00101 00110 01000 01010 01100	Transfer A Increment A Add A + B Subtract A - B Decrement A AND A and B OR A and B XOR A and B Complement A	TSFA INCA ADD SUB DECA AND OR XOR COMA
	10000 11000	Shift right A Shift left A	SHRA SHLA

۷ امیر خورسندی

حافظه پشته

• آن چیزی که آخر از همه در پشته ذخیره می شود اول از همه پردازش می شود.

• عموماً برای ذخیره آدرس برگشت و وضعیت سیستم استفاده می شود.

• برای کار با پشته یک ثبات SP استفاده می شود.

• حافظه پشته می تواند به صورت ثبات و یا درون حافظه اصلی پیاده شود.

۸ امیر خورسندی

حافظه به صورت ثبات

نوشتن در پشته

• تحت عنوان عمل Push كردن ناميده مي شود.

- SP←SP+1 •
- $M[SP] \leftarrow DR$, $Empty \leftarrow 0$
 - SP=0: Full←1 •

خواندن از پشته

• تحت عنوان عمل Pop كردن ناميده مي شود.

- $DR \leftarrow M[SP]$
- $SP \leftarrow SP-1$, $Full \leftarrow 0$
 - SP=0: Empty←1 •

ساختار حافظه با حافظه پشته

قاعده معكوس لهستاني

$$(3*4)+(5*6)$$

Push 3

Push 4

Pop 3, 4

Push 3*4

Push 5

Push 6

Pop 5,6

Push 5*6

Pop 12, 30

Push 42

انواع پردازنده برحسب دستورات

RISC •

- دستورات کوتاه و ساده
- طول دستورات ثابت است.
- تعداد دستورات بیشتر برای یک برنامه

CISC •

- دستورات پیچیده و طولانی
 - دستورات با طول متغير
- تعداد دستورات کمتر برای برنامه

امير خورسندي امير خورسندي

انواع دستورات براساس تعداد عملوند

ADD R3, R1, R2

MOV R1, ADDR MUL R1, R2

ADD OPR1
Push A
Push B

POP ADD

• سه عملوندی

• دو عملوندی

• تک عملوندی

• صفر عملوندی

انواع دستورات براساس عملکرد

- انتقال داده •
- محاسبات، منطق و شیفت
- کنترل روند برنامه: شرطی و غیر شرطی

روش های آدرس دهی

• آدرس دهی ضمنی

CMA

• آدرس دهی بلافصل

ADD 5

روش های آدرس دهی (ادامه)

• آدرس دهی ثبات

ADD R₁, R₂

• آدرس دهی غیر مستقیم با ثبات

ADD M[AR]

امیر خورسندی

روش های آدرس دهی (۱دامه)

• آدرس دهی مستقیم

ADD X

• آدرس دهی غیر مستقیم

ADD X I

روش های آدرس دهی (۱دامه)

• آدرس دهی افزایش/کاهش خودکار

ISZ X

• آدرس دهی نسبی

BUNR X

۲۰ امیر خورسندی

روش های آدرس دهی (ادامه)

• آدرس دهی پایه و ایندکس

MOV [BP][CX]

كلمه وضعيت برنامه

• بیت های پرچم که نشان دهنده وضعیت نتیجه اجرای دستورات هستند.

• در دستورات کنترل روند برنامه به آن ها رجوع می شود.

