TEST REPORT

Reference No. WTS14S0514571E

FCC ID : 2ACEVS8

Applicant..... : IED CONEXION VIRTUAL S.A DE C.V

Address Rio Tiber # 103 Int 502 Colonia DF CP: 06500 Cuauhtemoc Mexico

Manufacturer Shenzhen Kente Science & Technology Co.,Ltd.

Address...... : Rm ABC, 15F, B Tower, Xuesong Building, Tairan 6th Rd, Tairan

Industrial & Trading Park, Futian, Shenzhen, China

Product Name.....: 4.5 inch smartphone

Model No. : QUANTUM S8

Standards...... : FCC CFR47 Part 15 Section 15.247:2012

Date of Receipt sample : May 30, 2014

Date of Test : May 09~Jun.23, 2014

Date of Issue : Jun.30, 2014

Test Result..... : Pass *

*Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Testing location: The same as above Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by: Approved by:

Zero Zhou / Project Engineer

Philo Zhong / Manager

Reference No.: WTS14S0514571E Page 2 of 63

2 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
	15.247(d)	
Dond odgo	15.247(d)	PASS
Band edge	15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Maximum Permissible Exposure	4.4207/b)/4)	DACC
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	5
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.2 DETAILS OF E.U.T.	
	4.3 CHANNEL LIST	
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	8
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
6	CONDUCTED EMISSION	
•	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	10
	6.3 MEASUREMENT DESCRIPTION	
7	6.4 CONDUCTED EMISSION TEST RESULT	
/	7.1 EUT OPERATION	
	7.2 TEST SETUP	
	7.3 SPECTRUM ANALYZER SETUP	
	7.4 TEST PROCEDURE	
	7.6 SUMMARY OF TEST RESULTS	
8	BAND EDGE MEASUREMENT	20
	8.1 TEST PROCEDURE	
	8.2 TEST RESULT	
9	20 DB BANDWIDTH MEASUREMENT	
	9.1 TEST PROCEDURE	
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 Test Procedure	
	10.2 TEST RESULT	30
11	HOPPING CHANNEL SEPARATION	36
	11.1 TEST PROCEDURE	
10	11.2 TEST RESULT	
12		
	12.1 TEST PROCEDURE	
13	DWELL TIME	
	13.1 TEST PROCEDURE	
	13.2 Test Result	44

Reference No.: WTS14S0514571E Page 4 of 63

14	4 ANTENNA REQUIREMENT					
15	RF EX	XPOSURE	51			
	15.1 15.2	REQUIREMENTSTHE PROCEDURES / LIMIT				
16	PHO1	TOGRAPHS -MODEL QUANTUM S8 TEST SETUP	52			
	16.1 16.2	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUPPHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP				
17	PHO1	TOGRAPHS - CONSTRUCTIONAL DETAILS	55			
	17.1 17.2	MODEL QUANTUM S8 EXTERNAL VIEW				

Reference No.: WTS14S0514571E Page 5 of 63

4 General Information

4.1 General Description of E.U.T.

Product Name : 4.5 inch smartphone

Model No. : QUANTUM S8

Model Difference : N/A

GSM Band(s) : GSM 850/1900MHz

GPRS Class : 12

WCDMA Band(s) : FDD Band II/V

Wi-Fi Specification : 802.11b/g/n HT20/n HT40
Bluetooth Version : Bluetooth v4.0 with BLE

GPS : Support

NFC : N/A

4.2 Details of E.U.T.

Operation Frequency : GSM/GPRS 850: 824~849MHz

PCS/GPRS 1900: 1850~1910MHz

WCDMA/UPA/DPA Band V: 824~849MHz WCDMA/UPA/DPA Band II: 1850~1910MHz

WiFi:

802.11b/g/n HT20:2412-2462MHz 802.11n HT40:2422-2452MHz

Bluetooth:

2402-2480MHz GPS:1.57GHz

Max. RF output power : GSM 850: 33.22dBm

PCS 1900: 30.47dBm

WCDMA Band V:22.61dBm WCDMA Band II:22.88dBm

WiFi:8.87dBm

Bluetooth:3.97dBm

Type of Modulation : GSM,GPRS:GMSK

WCDMA: QPSK WiFi: CCK, OFDM

Bluetooth: GFSK, Pi/4 DQPSK,8DPSK

Antenna installation : GSM/WCDMA:Monopole antenna

WiFi/Bluetooth: Monopole antenna

Antenna Gain : GSM 850: 0dBi

Reference No.: WTS14S0514571E Page 6 of 63

PCS 1900: 0dBi

WCDMA Band II: 0dBi WCDMA Band V: 0dBi

WiFi: 0dBi

Bluetooth: 0dBi

Technical Data : (1)DC 5V, 1000mA by Adapter

(Adapter Input: AC 100-240V, 50/60Hz, 0.15A) (2)DC 3.7V by Battery(Capacity: 1550mAh)

(3)DC 5V for USB charging

Adapter : M/N: F2S8C01

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

Reference No.: WTS14S0514571E Page 7 of 63

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests; the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, July 12, 2012.

• FCC – Registration No.: 880581

Waltek Services (Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

Reference No.: WTS14S0514571E Page 8 of 63

5 Equipment Used during Test

5.1 Equipments List

5.1	Equipments List					
Condu	ucted Emissions					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.18,2013	Sep.17,2014
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.18,2013	Sep.17,2014
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.18,2013	Sep.17,2014
4.	Cable	LARGE	RF300	-	Sep.18,2013	Sep.17,2014
3m Se	mi-anechoic Chamb	er for Radiation E	missions			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.18,2013	Sep.17,2014
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.18,2013	Sep.17,2014
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.19,2014	Apr.18,2015
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.18,2013	Sep.17,2014
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2014	Apr.18,2015
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2014	Apr.18,2015
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2014	Mar.16,2015
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.10,2014	Apr.09,2015
RF Co	nducted Testing					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer	R&S	ESCI	101155	Sep.18,2013	Sep.17,2014
2.	Humidity Chamber	GF	GTH-225-40- 1P	IAA061213	May 16,2014	May 15,2015
3.	DC Power Supply	EVERFINE	WY305	1004002	Apr.11,2014	Apr.10,2015

Reference No.: WTS14S0514571E Page 9 of 63

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Dedicted Spurious Emissions toot	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS14S0514571E Page 10 of 63

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB_{\mu}V$ between 0.5MHz & 5MHz $60~dB_{\mu}V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in communication mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

Live line:

Neutral line:

Reference No.: WTS14S0514571E Page 13 of 63

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: DA 00-705
Test Result: PASS
Measurement Distance: 3m

Limit:

L						
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS14S0514571E Page 15 of 63

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0 ° to 360 °

Turn Table

Absorbers

PC Spectrum AMP Combining

Analyzer

Network

The test setup for emission measurement above 1 GHz.

System

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	2	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS14S0514571E Page 16 of 63

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS14S0514571E Page 17 of 63

7.6 Summary of Test Results

Test Frequency: 32.768kHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

The worst mode: transmitting mode (Adapter Operation)

Remark: only the worst data (GFSK modulation mode) were reported.

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Low	Channel				
165.28	24.68	PK	176	1.1	Н	17.01	41.69	46.00	-4.31
165.28	24.37	PK	298	1.3	V	17.01	41.38	46.00	-4.62
4816.00	54.29	PK	84	1.5	V	-1.06	53.23	74.00	-20.77
4816.00	46.85	Ave	84	1.5	V	-1.06	45.79	54.00	-8.21
7224.00	50.56	PK	25	1.2	V	1.33	51.89	74.00	-22.11
7224.00	46.27	Ave	25	1.2	V	1.33	47.60	54.00	-6.40
2324.19	47.31	PK	235	1.9	V	-13.19	34.12	74.00	-39.88
2324.19	43.96	Ave	235	1.9	V	-13.19	30.77	54.00	-23.23
2357.02	44.86	PK	301	1.2	V	-13.14	31.72	74.00	-42.28
2357.02	39.29	Ave	301	1.2	V	-13.14	26.15	54.00	-27.85
2484.76	47.26	PK	315	1.8	Н	-13.08	34.18	74.00	-39.82
2484.76	43.95	Ave	315	1.8	Н	-13.08	30.87	54.00	-23.13

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	Channe	el			
165.28	24.67	PK	3	1.1	Н	17.01	41.68	46.00	-4.32
165.28	23.51	PK	119	1.2	V	17.01	40.52	46.00	-5.48
4880.00	53.18	PK	131	1.3	V	-0.62	52.56	74.00	-21.44
4880.00	47.31	Ave	131	1.3	V	-0.62	46.69	54.00	-7.31
7320.00	48.63	PK	292	1.1	V	2.21	50.84	74.00	-23.16
7320.00	46.71	Ave	292	1.1	V	2.21	48.92	54.00	-5.08
2329.31	46.83	PK	277	1.7	Н	-13.19	33.64	74.00	-40.36
2329.31	43.66	Ave	277	1.7	Н	-13.19	30.47	54.00	-23.53
2351.02	46.08	PK	283	1.9	V	-13.14	32.94	74.00	-41.06
2351.02	42.96	Ave	283	1.9	V	-13.14	29.82	54.00	-24.18
2485.77	46.98	PK	60	1.6	V	-13.08	33.90	74.00	-40.10
2485.77	43.21	Ave	60	1.6	V	-13.08	30.13	54.00	-23.87

	Receiver	ceiver	Turn	Turn RX Ante		Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High	Channel				
165.28	25.68	PK	41	1.1	Н	17.01	42.69	46.00	-3.31
165.28	24.36	PK	152	1.2	V	17.01	41.37	46.00	-4.63
4936.00	52.98	PK	227	1.7	V	-0.24	52.74	74.00	-21.26
4936.00	47.68	Ave	227	1.7	V	-0.24	47.44	54.00	-6.56
7404.00	50.62	PK	232	1.6	V	2.84	53.46	74.00	-20.54
7404.00	45.96	Ave	232	1.6	V	2.84	48.80	54.00	-5.20
2320.78	48.85	PK	270	1.6	Н	-13.19	35.66	74.00	-38.34
2320.78	44.89	Ave	270	1.6	Н	-13.19	31.70	54.00	-22.30
2375.49	46.34	PK	20	2.0	V	-13.14	33.20	74.00	-40.80
2375.49	42.97	Ave	20	2.0	V	-13.14	29.83	54.00	-24.17
2486.41	48.37	PK	248	2.0	Н	-13.08	35.29	74.00	-38.71
2486.41	42.26	Ave	248	2.0	Н	-13.08	29.18	54.00	-24.82

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS14S0514571E Page 20 of 63

8 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: DA 00-705
Test Mode: Transmitting

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

Test plots

Reference No.: WTS14S0514571E Page 24 of 63

9 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

Modulation	Test Channel Bandwidth		
GFSK	Low	0.928MHz	
GFSK	Middle	0.928MHz	
GFSK	High	0.928MHz	
Pi/4 DQPSK	Low	1.252MHz	
Pi/4 DQPSK	Middle	1.252MHz	
Pi/4 DQPSK	High	1.252MHz	
8DPSK	Low	1.270MHz	
8DPSK	Middle	1.270MHz	
8DPSK	High	1.270MHz	

Test plots

Reference No.: WTS14S0514571E Page 30 of 63

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

10.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	3.50	30
GFSK	Middle	3.78	30
GFSK	High	3.97	30
Pi/4 DQPSK	Low	3.19	30
Pi/4 DQPSK	Middle	3.66	30
Pi/4 DQPSK	High	3.92	30
8DPSK	Low	3.73	30
8DPSK	Middle	3.93	30
8DPSK	High	3.97	30

Test plots

Reference No.: WTS14S0514571E Page 36 of 63

11 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	1.000	PASS
GFSK	Middle	1.000	PASS
GFSK	High	1.000	PASS
Pi/4 DQPSK	Low	1.000	PASS
Pi/4 DQPSK	Middle	1.000	PASS
Pi/4 DQPSK	High	1.000	PASS
8DPSK	Low	1.000	PASS
8DPSK	Middle	1.000	PASS
8DPSK	High	1.000	PASS

Test plots

Reference No.: WTS14S0514571E Page 42 of 63

12 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

12.2 Test Result

Test Plot: 79 Channels in total

Reference No.: WTS14S0514571E Page 44 of 63

13 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: DA 00-705

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

13.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)			
DH5	1600/79/6*0.4*79*(MkrDelta)/1000			
DH3	1600/79/4*0.4*79*(MkrDelta)/1000			
DH1	1600/79/2*0.4*79*(MkrDelta)/1000			
Remark: Mkr Delta is once pulse time.				

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.931	0.313	0.4
		middle	2.931	0.313	0.4
		High	2.931	0.313	0.4
Pi/4DQPSK	DH5	Low	2.931	0.313	0.4
		middle	2.931	0.313	0.4
		High	2.931	0.313	0.4
8DPSK	DH5	Low	2.931	0.313	0.4
		middle	2.931	0.313	0.4
		High	2.931	0.313	0.4

Remark: only the worst data were recorded.

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a monopole antenna, fulfil the requirement of this section.

Reference No.: WTS14S0514571E Page 51 of 63

15 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method KDB 447498 D01 v05r02 General RF Exposure Guidance v05

15.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [f(GHz)] 3.0 for 1-g SAR and 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

15.2 The procedures / limit

Conducted Peak power(dBm)	Conducted Peak power(mW)	Source-based time- averaged maximum conducted output power(mW)	Minimum test separation distance required for the exposure conditions (mm)	SAR Test Exclusion Thresholds(mW)
3.97	2.495	2.495	5	10

Remark: Max. duty factor is 100%

Calculation formula: Source-based time-averaged maximum conducted output power(mW) =Conducted peak power(mW)*Duty factor

16 Photographs – Model QUANTUM S8 Test Setup

16.1 Photograph – Conducted Emission Test Setup

16.2 Photograph – Radiation Spurious Emission Test Setup

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Reference No.: WTS14S0514571E Page 53 of 63

Reference No.: WTS14S0514571E Page 54 of 63

17 Photographs - Constructional Details

17.1 Model QUANTUM S8 External View

Reference No.: WTS14S0514571E Page 56 of 63

Reference No.: WTS14S0514571E Page 57 of 63

Reference No.: WTS14S0514571E Page 58 of 63

17.2 Model QUANTUM S8 - Internal Photos

Reference No.: WTS14S0514571E Page 60 of 63

Reference No.: WTS14S0514571E Page 61 of 63

Reference No.: WTS14S0514571E Page 62 of 63

Reference No.: WTS14S0514571E Page 63 of 63

=====End of Report=====