

CP8319/CPS824 Lecture 4

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Last Lecture Review

2. Finish Markov Reward Process

3. Markov Decision Process

4. Policy Evaluation

5. Optimal Policy

Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random states $S_1, S_2, ...$ with the Markov property.

Definition

A Markov Process (or Markov Chain) is a tuple $\langle S, P \rangle$

- \mathcal{S} is a (finite) set of states
- P is a state transition probability matrix,

$$P_{S,S'} = P(S_{t+1} = S' | S_t = S)$$

$$\mathbf{P} = \begin{pmatrix} 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.2 & 0.4 & 0 & 0 & 0 & 0 \\ 0 & 0.4 & 0.2 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 \\ 0 & 0 & 0 & 0.4 & 0.2 & 0.4 & 0 \\ 0 & 0 & 0 & 0 & 0.4 & 0.2 & 0.4 \\ 0 & 0 & 0 & 0 & 0 & 0.4 & 0.6 \end{pmatrix}$$

Markov Reward Process

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple $\langle S, P, R, \gamma \rangle$

- S is a (finite) set of states
- P is a state transition probability matrix,

$$P_{S,S'} = P(S_{t+1} = S' | S_{t} = S)$$

- R is the reward function, $R(s) = \mathbb{E}[r_t | S_t = s]$
- γ is a discount factor, $\gamma \in [0, 1]$

Reward: +1 in s_1 , +10 in s_7 , 0 in all other states

Horizon and Return

Definition of *horizon*, *H*

- Number of time steps in each episode
- Can be infinite
- Otherwise called finite Markov reward process

Definition

The *return* G_t is the total discounted reward from time-step t.

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{k=0}^{H} \gamma^k r_{t+k}$$

- The *discount* $\gamma \in [0,1]$ is the present value of future rewards
- The value of receiving reward r after k time-steps is $\gamma^k r$
- This values immediate reward above delayed reward.
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation

Value Function

The value function v(s) gives the long-term value of state s

Definition

The state value function v(s) of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

Reward: +1 in s_1 , +10 in s_7 , 0 in all other states

What about the value function?

 $V = [1.53 \ 0.37 \ 0.13 \ 0.22 \ 0.85 \ 3.59 \ 15.31]$

Today's Agenda

1. Last Lecture Review

2. Finish Markov Reward Process

3. Markov Decision Process

4. Policy Evaluation

5. Optimal Policy

Computing the Value of MRP: Simulation

Could estimate by simulation (Monte Carlo)

- Generate a large number of episodes
- Average returns
- Concentration inequalities bound how quickly average concentrates to expected value
- Requires no assumption of Markov structure

Computing the Value of MRP: Bellman Equation

$$v(s) = \mathbb{E}[r_t|S_t = s] + \gamma \mathbb{E}[v(S_{t+1})|S_t = s]$$

$$= R(s) + \gamma \sum_{s' \in S} P_{s,s'}v(s')$$
immediate
reward
Discounted sum of
future rewards

The value function can be decomposed into two parts:

- immediate reward R_t
- discounted value of successor state $\gamma v(S_{t+1})$

Computing the Value of MRP: Bellman Equation

For finite state MRP, we can express V(s) using a matrix equation

$$\begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \vdots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \cdots & P(s_N|s_1) \\ P(s_1|s_2) & \cdots & P(s_N|s_2) \\ \vdots & \ddots & \vdots \\ P(s_1|s_N) & \cdots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix}$$

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

Computing the Value of MRP: Bellman Equation

For finite state MRP, we can express V(s) using a matrix equation

$$\begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix} = \begin{pmatrix} R(s_1) \\ \vdots \\ R(s_N) \end{pmatrix} + \gamma \begin{pmatrix} P(s_1|s_1) & \cdots & P(s_N|s_1) \\ P(s_1|s_2) & \cdots & P(s_N|s_2) \\ \vdots & \ddots & \vdots \\ P(s_1|s_N) & \cdots & P(s_N|s_N) \end{pmatrix} \begin{pmatrix} V(s_1) \\ \vdots \\ V(s_N) \end{pmatrix}$$

$$\mathbf{v} = \mathbf{r} + \gamma \mathbf{P} \mathbf{v}$$

$$\mathbf{v} - \gamma \mathbf{P} \mathbf{v} = \mathbf{r}$$

$$(\mathbf{I} - \gamma \mathbf{P}) \mathbf{v} = \mathbf{r}$$

$$\mathbf{v} = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{r}$$

Solving directly requires taking a matrix inverse $\sim O(N^3)$

Computing the Value of MRP: Iterative Algorithm

Use dynamic programming Value Iteration

- Initialize $v_0(s) = 0 \ \forall s \in \mathcal{S}$
- For k = 1 until convergence (i.e., iterations):
 - For all $s \in S$:

•
$$v_k(s) = R(s) + \gamma \sum_{s' \in S} P_{s,s'} v_{k-1}(s')$$

Computational complexity: for each iteration $O(N^2)$, where $N = |\mathcal{S}|$

Today's Agenda

1. Last Lecture Review

2. Finish Markov Reward Process

3. Markov Decision Process

4. Policy Evaluation

5. Optimal Policy

Markov Decision Process (MDP)

A Markov decision process (MDP) is a Markov reward process with decisions/actions

Definition

A *Markov Decision Process* is a tuple $\langle S, A, P, R, \gamma \rangle$

- S is a (finite) set of states
- \mathcal{A} is a finite set of actions
- P is dynamics/transition model for each action,

$$P_{s,s'}^{a} = P(S_{t+1} = s'|S_{t} = s, A_{t} = a)$$

- R is the reward function, $R(s, a) = \mathbb{E}[r_t | S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0, 1]$

s_1	s_2	s_3	S_4	S ₅	s ₆	S ₇

What are these two deterministic actions?

$$P(s'|s,a_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} P(s'|s,a_2) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

MDP: Policy

Definition

A *policy* π is a distribution over actions given states,

$$\pi(a|s) = P(A_t = a|S_t = s)$$

- Policy specifies what action to take in each state
 - Can be deterministic or stochastic
- A policy fully defines the behaviour of an agent
- MDP policies depend on the current state (not the history)
- i.e. Policies are stationary (time-independent),

$$A_t \sim \pi(\cdot | S_t), \forall t > 0$$

MDP Given a Policy

- Given an MDP $M = \langle S, A, P, R, \gamma \rangle$ and a policy π
- The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, \mathbf{P}^{\pi} \rangle$
- The state and reward sequence S_1, R_1, S_2, R_2 ... is a Markov reward process $\langle S, \mathbf{P}^{\pi}, R^{\pi}, \gamma \rangle$

With

$$P_{s,s'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) P_{s,s'}^{a}$$

$$R^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)R(s,a)$$

State Value Function

Definition

The state-value function $v^{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Today's Agenda

1. Last Lecture Review

2. Finish Markov Reward Process

3. Markov Decision Process

4. Policy Evaluation

5. Optimal Policy

Bellman Expectation Equation

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v^{\pi}(s) = \mathbb{E}_{\pi} \left[r_t + \gamma v^{\pi}(S_{t+1}) \mid S_t = s \right]$$
$$= \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^a v^{\pi}(s') \right)$$

MDP Policy Evaluation: Bellman Expectation Equation

The Bellman expectation equation can be expressed concisely using the induced MRP,

$$\mathbf{v}^{\pi} = \mathbf{r}^{\pi} + \gamma \mathbf{P}^{\pi} \mathbf{v}^{\pi}$$

with direct solution

$$\mathbf{v}^{\pi} = (\mathbf{I} + \gamma \mathbf{P}^{\pi})^{-1} \mathbf{r}^{\pi}$$

Not computationally efficient!

MDP Policy Evaluation: Iterative Algorithm

Initialize $v_0(s) = 0$ for all sFor k = 1 until convergence:
For all $s \in \mathcal{S}$: $v_{k+1}^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^a v_k^{\pi}(s') \right)$

This is known as Bellman expectation backup

s_1	S_2	S_3	S_4	S ₅	s ₆	S ₇

<u>Dynamics</u>: $P(s_6|s_6, a_2) = 0.5, P(s_7|s_6, a_2) = 0.5, ...$

<u>Reward</u>: for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise

Policy: Let $\pi(s) = a_2 \ \forall s$

What is v_1^{π} ?

s_1	S_2	S_3	S_4	s_5	s ₆	<i>S</i> ₇

<u>Dynamics</u>: $P(s_6|s_6, a_2) = 0.5, P(s_7|s_6, a_2) = 0.5, ...$

<u>Reward</u>: for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise

Policy: Let $\pi(s) = a_2 \ \forall s$

What is v_1^{π} ?

$$v_1^{\pi} = [1,0,0,0,0,0,10]$$

s_1	<i>S</i> ₂	S_3	S_4	S ₅	s ₆	S ₇

Dynamics: $P(s_6|s_6, a_2) = 0.5, P(s_7|s_6, a_2) = 0.5, ...$

<u>Reward</u>: for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise

Policy: Let $\pi(s) = a_2 \ \forall s$

Assume $v_1^{\pi} = [1,0,0,0,0,0,10]$ and $k = 1, \gamma = 0.5$

What is $v_2^{\pi}(s_6)$?

s_1	S_2	S_3	S_4	<i>S</i> ₅	s ₆	S ₇

<u>Dynamics</u>: $P(s_6|s_6, a_2) = 0.5$, $P(s_7|s_6, a_2) = 0.5$, ...

<u>Reward</u>: for all actions, +1 in state s_1 , +10 in state s_7 , 0 otherwise

Policy: Let $\pi(s) = a_2 \ \forall s$

Assume $v_1^{\pi} = [1,0,0,0,0,0,10]$ and $k = 1, \gamma = 0.5$

What is $v_2^{\pi}(s_6)$?

$$v_2^{\pi}(s_6) = R(s_6, a_2) + \gamma \times 0.5 \times v_1^{\pi}(s_6) + \gamma \times 0.5 \times v_1^{\pi}(s_7)$$
$$= 0 + 0.5 \times 0.5 \times 0 + 0.5 \times 0.5 \times 10 = 2.5$$

Today's Agenda

1. Last Lecture Review

2. Finish Markov Reward Process

Markov Decision Process

4. Policy Evaluation

5. Optimal Policy

Action Value Function

Definition

The *action-value function* $Q^{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t, = s, A_t = a]$$

The action-value function can be decomposed using Bellman equation,

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[r_t + \gamma Q^{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

$$= R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P_{s, s'}^{a} \left(\sum_{a' \in \mathcal{A}} \pi(a' | s') Q^{\pi}(s', a') \right)$$

Optimal Value Function

Definition

The *optimal state-value function* $v^*(s)$ is the maximum value function over all policies

$$v^*(s) = \max_{\pi} v^{\pi}(s)$$

The optimal action-value function $Q^*(s, a)$ is the maximum action-value function over all policies

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

- The optimal value function specifies the best possible performance in the MDP.
- An MDP is "solved" when we know the optimal value fn.

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi' \text{ if } v^{\pi}(s) \geq v^{\pi'}(s), \forall s$$

Theorem

For any Markov Decision Process

- There exists an optimal policy π^* that is better than or equal to all other policies, $\pi^* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal value function, $v^{\pi^*}(s) = v^*(s)$, or $\pi^* = \operatorname*{argmax} v^{\pi}(s)$
- All optimal policies achieve the optimal action-value function, $Q^{\pi^*}(s,a) = Q^*(s,a)$

Optimal Policy Using Optimal Action-Value Function

An optimal policy can be found by maximising over $Q^*(s, a)$,

$$\pi^*(a|s) = \begin{cases} 1, & \text{if } a = \max_{a \in \mathcal{A}} Q^*(s, a) \\ 0, & \text{otherwise} \end{cases}$$

- There is always a deterministic optimal policy for any MDP
- If we know $Q^*(s, a)$, we immediately have the optimal policy

7 discrete states (location of rover)

2 actions: Left or Right

How many deterministic policies are there?

Is the optimal policy for a MDP always unique?

7 discrete states (location of rover)

2 actions: Left or Right

How many deterministic policies are there?

 2^7

Is the optimal policy for a MDP always unique?

No, there may be two actions that have the same optimal value function

Optimal Policy Search

- One option is searching to compute best policy
- Number of deterministic policies is $|\mathcal{A}|^{|\mathcal{S}|}$
- Better Options (will be covered in future lectures):
 - Value Iteration
 - Policy Iteration
 - Q-learning