MA 2073. HOMEWORK 3 DUE: FRIDAY FEBRUARY 7

Problems from text:

Section 3.6: 3, 4, 6, 9, 11, 13, 14, 24, 25, 32

Section 8.2: 1 - 5, 15, 17

Section 4.1: 13, 14, 15, 18, 21, 23, 24, 28, 32

Additional problems:

- 1. Let $W = span\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$. Show that if \mathbf{x} is orthogonal to each $\mathbf{v_j}$, for $1 \le j \le p$, then \mathbf{x} is orthogonal to every vector in W.
- 2. Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n . *Hints:* A subspace is closed under vector addition and scalar multiplication, and it contains the zero vector. It may be helpful to review the properties of the dot product.