Discrete Mathematics

Daniel Gonzalez Cedre

University of Notre Dame Spring of 2023

Chapter 4

Mathematical Induction

4.1 Weak Induction

Definition 4.1 (Well-Order).

If X is a set with a relation \leq defined on it, we say that \leq is a well-order on X : \Leftrightarrow every non-empty subset of X has a minimal element. Formally, \leq is a well-order on X : \Leftrightarrow $(\forall A \in \mathcal{P}(X))(\exists a \in A)(\forall b \in A)a \leq b$.

Theorem 4.1 (\mathbb{N} is Well-Ordered).

$$(\forall A \subseteq \mathbb{N}) (A \neq \emptyset \Rightarrow (\exists a \in A) (\forall b \in A) (a \leqslant b))$$

This says that every nonempty subset of \mathbb{N} has a least element (according to the \leq order defined on \mathbb{N}). Proof.

This proof is left as an exercise.

Q.E.D.

Theorem 4.2 (Weak Induction).

If $\varphi(\cdot)$ is a wff, then

$$(\forall n \in \mathbb{N}) (\varphi(n)) \Leftrightarrow \varphi(0) \land (\forall k \in \mathbb{N}) (\varphi(k) \Rightarrow \varphi(k+1)).$$

Proof.

There are two fragments to this proof: the forward (\Rightarrow) direction and the backward (\Leftarrow) direction.

Fragment 1 (\Rightarrow):

Suppose that $(\forall n \in \mathbb{N})(\varphi(n))$. Since $0 \in \mathbb{N}$, we then obviously have $\varphi(0)$. Now, let $k \in \mathbb{N}$ and assume $\varphi(k)$. Since $k+1 \in \mathbb{N}$, we know from our initial assumption that $\varphi(k+1)$. Thus, we have $(\forall k \in \mathbb{N})(\varphi(k) \Rightarrow \varphi(k+1))$, and we have reached both of our desired conclusions.

Fragment 2 (\Leftarrow):

Assume $\varphi(0)$ and $(\forall k \in \mathbb{N}) (\varphi(k) \Rightarrow \varphi(k+1))$. Towards a contradiction, suppose that there is some $n \in \mathbb{N}$ such that $\neg \varphi(a)$. Consider $A := \{x \in \mathbb{N} \mid \neg \varphi(x)\}$, which we clearly know exists by Axiom 4. We know that $n \in A$ because we assumed that $\neg \varphi(n)$, which implies that $A \neq \emptyset$. Then, we can use Theorem 4.1 to conclude that there is a minimal element a in A.

Since we know that $\varphi(0)$, it follows that $a \neq 0$, so a must be a successor number. This means there is a $b \in \mathbb{N}$ such that b+1=a.

If $b \in A$, then that would mean that $a \le b$ since a is minimal in A. However, we know that b < b + 1 = a, so we would then have $a \le b < a$. Therefore, $b \notin A$.

Q.E.D.

Notice that the above theorem actually generalizes beyond just \mathbb{N} . In fact, we can generalize the proof of Theorem 4.2 to any well-ordered set X by replacing k+1 with the least element of the non-empty subset $X \setminus \{\ell \in X \mid \ell \leq k\}$.

Let's practice induction by proving the following few theorems.

Theorem 4.3 (Gaussian Summation Formula).

$$(\forall n \in \mathbb{N}) \left(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \right).$$

Proof.

We will prove the claim by induction on $n \in \mathbb{N}$.

Base Case:

Observe that $\sum_{i=0}^{0} i = 0 = \frac{0*(0+1)}{2}$. Therefore, the statement is satisfied at 0.

Inductive Step:

Let $k \in \mathbb{N}$ and assume $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$ (this is our *inductive hypothesis*). Now, observe

$$\sum_{i=0}^{k+1} i = \left(\sum_{i=0}^{k} i\right) + (k+1) \qquad \text{by definition}$$

$$= \left(\frac{k(k+1)}{2}\right) + (k+1) \qquad \text{by the inductive hypothesis}$$

$$= (k+1)\left(\frac{k}{2}+1\right) \qquad \text{by factoring out } (k+1)$$

$$= \frac{(k+1)(k+2)}{2} \qquad \text{because } \frac{k}{2}+1 = \frac{k}{2}+\frac{2}{2} = \frac{k+2}{2}.$$

Thus, we have that $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$, as desired.

Therefore, we can conclude that $(\forall n \in \mathbb{N}) \left(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \right)$.

Q.E.D.

Theorem 4.4 (Gaussian Summation Formula).

$$(\forall n \in \mathbb{N}_+)(3n \leqslant 3^n).$$

Proof.

We will prove the claim by induction on $n \in \mathbb{N}_+$.

Base Case:

Observe that $3 \cdot 0 = 0 \le 1 = 3^0$.

Inductive Step:

Let $k \in \mathbb{N}_+$ and assume $3 \cdot k \leq 3^k$ (this is our *inductive hypothesis*). Now, observe

$$\begin{array}{ll} 3\cdot (k+1) = 3\cdot k + 3 & \text{by the distributive property of multiplication} \\ \leqslant 3^k + 3 & \text{by the } inductive \ hypothesis} \\ \leqslant 3^k + 3^k & \text{because } 1 \leqslant k \ \Rightarrow \ a^1 \leqslant a^k \ \text{if } a < 0^{\dagger \ddagger} \\ \leqslant 3^k + 3^k + 3^k \ \text{since } a^k \ \text{is always positive if } 0 < a^{\dagger \ddagger} \\ = 3 \cdot 3^k & \text{because } \sum_{i=1}^m a = m \cdot a \ \text{for any } a^{\dagger \ddagger} \\ = 3^{k+1} & \text{because } a^b a^c = a^{b+c} \ \text{for any } a^{\dagger \ddagger} \end{array}$$

So, $3 \cdot (k+1) \leq 3^{k+1}$, as desired.

Therefore, $(\forall n \in \mathbb{N})(3n \leqslant 3^n)$.

Q.E.D.

[†]This is true in any ordered semiring where exponentiation is defined recursively in terms of multiplication.

 $^{^{\}ddagger}$ You can assume "basic grade-school" properties of algebra like these without special mention.