

I dxi Driver

SOMMAIRE

Projet

Organisation

Approche et reflexion

Réalisation du projet

Conclusion

Démo

PROJET

Taxi Driver

Problématique à résoudre

Tester différentes approches d'IA pour gagner au jeu Taxi-V3

Organisation

Nos outils pour gérer notre projet

OUTIL DE TRAVAIL

- TEAMS
- GITLAB REPO
- TRELLO

SERVEUR & DATA

HEBERGEMENT LOCAL

TECHNOS UTILISÉES

• JUPYTER NOTEBOOK

PYTHON

DJANGO

LIBRAIRIES

- NUMPY
- PANDAS
- TENSORFLOW
- GYM

Organisation

Gestion d'équipe

FONCTIONNEMENT

- Découpement et affectation des taches
- Réunion hebdomadaire
- Peer programming
- Versionning et Pull Requests

Comment avons-nous procédé

FONCTIONNEMENT

Respect du github flow par branches (feature, bugfix, etc)

```
PROBLÈMES GITLENS JUPYTER SORTIE CONSOLE DE DÉBOGAGE TERMINAL

bootstrap
bugfix/js-chart
feature/deep-qlearning-integration
feature/django-app
feature/integration-sarsa
feature/tests
feature/update-tests
* master

(END)
```


Comment avons-nous procédé

FONCTIONNEMENT

- Respect du github flow par branches (feature, bugfix, etc)
- Protection des branches principales

Comment avons-nous procédé

FONCTIONNEMENT

- Respect du github flow par branches (feature, bugfix, etc)
- Protection des branches principales
- Mirroring gitlab > Github

ARCHITECTURE DU PROJET

Comment avons-nous procédé

STRUCTURE

- Django (MVT, Services, classes)
- Respect des conventions de nommages
- Flake8 & black : detection et correction automatiques d'erreurs

Approche et reflexion

Comment avons-nous pris en main le projet

APPROCHE

- Recherche types d'algo
- Selection et implementation
- Test de performance
- Comparaison des performances
- Front pour selection et configuration d'algo
- Vue comparative des différents résultats

Algorithmes implémentés

3 algorithmes implémentés

- SARSA
- Q-LEARNING
- DEEP Q-LEARNING

Q-Learning

Explication & réalisation

ALGORITHME

- Model off policy
- Mise à jour de la Q table en prenant la valeur max
- Prise de décision en fonction d'epsilon greedy
- Paramètres modifiables par l'utilisateur
- Sauvegarde des résultats d'entrainements avec différents paramètres

```
> ~
        nb_{episodes_list} = [i for i in range(1, 50001) if (i)/10000 % 1 = 0]
        learning_rate_list = [0.5, 0.6, 0.7, 0.8, 0.9]
        reward_discount_rate_list = [0.9, 0.786, 0.618, 0.5, 0.382, 0.2, 0.1]
        decay_rate_list = [0.01, 0.03, 0.05, 0.07, 0.1]
        best_avg_rewards = 0
        best_nb_episodes = 0
        best_learning_rate = 0
        best reward discount rate = 0
        best_decay_rate = 0
        for nb_episodes in nb_episodes_list:
            for learning_rate in learning_rate_list:
                for reward_discount_rate in reward_discount_rate_list:
                    for decay_rate in decay_rate_list:
                        training_result = play_to_taxi(environment=env,
                                q_table=q_table,
                                 epsilon=epsilon_rate,
                                 epsilon_min=epsilon_min,
                                 epsilon_max=epsilon_max,
                                 learning_rate=learning_rate,
                                episodes=nb_episodes,
                                 reward_discount_rate=reward_discount_rate,
                                 decay_rate=decay_rate,
                                training=True,
                                 show_print=False,
                                 reset=True
```

	А	В	С	D	Е	F	G	Н	1	J	K
1	nb_episodes	epsilon_rate	epsilon_min	epsilon_max	learning_rate	reward_disco	decay_rate	avg_rewards	avg_steps	duration	
2	10000	1.0	0.01	1.0	0.5	0.9	0.01	6.8	14.2	8,1	
3	10000	1.0	0.01	1.0	0.5	0.9	0.03	6.84	14.16	8,9	
4	10000	1.0	0.01	1.0	0.5	0.9	0.05	6.85	14.15	7,6	
5	10000	1.0	0.01	1.0	0.5	0.9	0.07	6.87	14.13	8,7	
6	10000	1.0	0.01	1.0	0.5	0.9	0.1	6.83	14.17	9	
7	10000	1.0	0.01	1.0	0.5	0.786	0.01	6.84	14.16	9	
8	10000	1.0	0.01	1.0	0.5	0.786	0.03	6.83	14.17	8,9	
9	10000	1.0	0.01	1.0	0.5	0.786	0.05	6.79	14.21	7,4	
10	10000	1.0	0.01	1.0	0.5	0.786	0.07	6.82	14.18	7,3	
11	10000	1.0	0.01	1.0	0.5	0.786	0.1	6.85	14.15	7,3	
12	10000	1.0	0.01	1.0	0.5	0.618	0.01	6.81	14.19	7,8	
13	10000	1.0	0.01	1.0	0.5	0.618	0.03	6.87	14.13	8	
14	10000	1.0	0.01	1.0	0.5	0.618	0.05	6.81	14.19	7,4	
15	10000	1.0	0.01	1.0	0.5	0.618	0.07	6.86	14.14	7,6	
16	10000	1.0	0.01	1.0	0.5	0.618	0.1	6.84	14.16	7,6	
17	10000	1.0	0.01	1.0	0.5	0.5	0.01	6.86	14.14	8,4	
18	10000	1.0	0.01	1.0	0.5	0.5	0.03	6.85	14.15	8,4	
19	10000	1.0	0.01	1.0	0.5	0.5	0.05	6.8	14.2	7,4	
20	10000	1.0	0.01	1.0	0.5	0.5	0.07	6.82	14.18	8,4	
21	10000	1.0	0.01	1.0	0.5	0.5	0.1	6.85	14.15	8,8	
22	10000	1.0	0.01	1.0	0.5	0.382	0.01	6.81	14.19	7,6	
23	10000	1.0	0.01	1.0	0.5	0.382	0.03	6.81	14.19	8,3	
24	10000	1.0	0.01	1.0	0.5	0.382	0.05	6.84	14.16	7	
25	10000	1.0	0.01	1.0	0.5	0.382	0.07	6.82	14.18	8,8	
26	10000	1.0	0.01	1.0	0.5	0.382	0.1	6.84	14.16	7,8	
27	10000	1.0	0.01	1.0	0.5	0.2	0.01	6.81	14.19	7	
28	10000	1.0	0.01	1.0	0.5	0.2	0.03	6.82	14.18	7,1	
29	10000	1.0	0.01	1.0	0.5	0.2	0.05	6.82	14.18	9	
_30	10000		0.01	1.0	0.5	0.2	0.07	6.82	14.18	7	
4	q-l	earning	\oplus								

SARSA

Explication & réalisation

ALGORITHME

- Modèle on Policy
- Mise à jour de la Q table en fonction d'upsilon Greedy
- Prise de décision en respectant la policy & Epsilon
 Greedy
- Paramètres modifiables par l'utilisateur
- Sauvegarde des résultats d'entrainements avec différents paramètres

	column 1	column 2	column 3	column 4	column 5	column 6	column 7	column 8	column 9	column 10
1	nb_episodes	epsilon_rate	epsilon_min	epsilon_ı	learning_rate	reward_discou	decay_rate	avg_rewards	avg_steps	duration
2	10000	1.0	0.01	1.0	0.5	0.9	0.01	5.76	22.4	7.016526222229004
3	10000	1.0	0.01	1.0	0.5	0.9	0.03	5.47	16.15	12.667381048202515
4	10000	1.0	0.01	1.0	0.5	0.9	0.05	6.54	16.64	18.305476665496826
5	10000	1.0	0.01	1.0	0.5	0.9	0.07	6.17	22.3	24.37621283531189
6	10000	1.0	0.01	1.0	0.5	0.9	0.1	6.47	15.9	29.806821584701538
7	10000	1.0	0.01	1.0	0.5	0.786	0.01	5.4	46.91	45.63572859764099
8	10000	1.0	0.01	1.0	0.5	0.786	0.03	4.93	59.41	59.37526273727417
9	10000	1.0	0.01	1.0	0.5	0.786	0.05	6.53	42.95	70.98104333877563
10	10000	1.0	0.01	1.0	0.5	0.786	0.07	7.95	57.37	83.6065731048584
11	10000	1.0	0.01	1.0	0.5	0.786	0.1	6.42	42.01	93.87324500083923
12	10000	1.0	0.01	1.0	0.5	0.618	0.01	7.34	69.7	114.36566472053528
13	10000	1.0	0.01	1.0	0.5	0.618	0.03	6.68	70.7	133.4906759262085
14	10000	1.0	0.01	1.0	0.5	0.618	0.05	6.72	63.4	151.27170062065125
15	10000	1.0	0.01	1.0	0.5	0.618	0.07	6.38	68.21	169.46469640731812
16	10000	1.0	0.01	1.0	0.5	0.618	0.1	7.81	69.42	188.0488133430481
17	10000	1.0	0.01	1.0	0.5	0.5	0.01	6.45	82.83	209.52252626419067
18	10000	1.0	0.01	1.0	0.5	0.5	0.03	7.68	89.92	232.066570520401
19	10000	1.0	0.01	1.0	0.5	0.5	0.05	9.2	89.57	254.52487683296204
20	10000	1.0	0.01	1.0	0.5	0.5	0.07	5.19	80.48	275.1728301048279
21	10000	1.0	0.01	1.0	0.5	0.5	0.1	6.71	75.67	296.8964207172394
22	10000	1.0	0.01	1.0	0.5	0.382	0.01	4.74	83.11	319.75680208206177
23	10000	1.0	0.01	1.0	0.5	0.382	0.03	4.16	69.3	341.0043978691101
24	10000	1.0	0.01	1.0	0.5	0.382	0.05	6.27	75.98	361.5018730163574
25	10000	1.0	0.01	1.0	0.5	0.382	0.07	7.69	71.93	381.98092794418335
26	10000	1.0	0.01	1.0	0.5	0.382	0.1	6.11	82.09	403.9304850101471

Deep Q-Learning

Modèle

ALGORITHME

Création du modèle

```
def build_model(actions):
    model = Sequential()
    model.add(Embedding(500, 10, input_length=1))
    model.add(Reshape((10,)))
    model.add(Dense(50, activation='relu'))
    model.add(Dense(50, activation='relu'))
    model.add(Dense(50, activation='relu'))
    model.add(Dense(actions, activation='linear'))
    return model
```

Deep Q-Learning

Environnement et configuaration

ALGORITHME

- Import de l'environnement Taxi V3
- Police : epslylon greed
- Création de l'agent (dqn)
- Metrique : mae

Deep Q-Learning

Entrainement et utilisation

ALGORITHME

- Entrainement en utilisant le gpu
- Savegarde des poids (100k -> 1000k)
- Chargement des poids pour utiliser les models

TESTS UNITAIRE DE SERVICES

TESTS DES ALGO

- Tests sur les 3 classes de services
- plusieurs methodes par tests
- generation d'un rapport de coverage

Web App

World Wide Web

DJANGO

- Réception des informations de formulaire
- Lancement de l'algorithme selectionné avec les paramètres utilisateur
- Envoi du résultat
- Comparatif des résultats

T-AIA-902 Accueil

 Algo^*

T-AIA-902 Accueil Nb episodes* 3000 default = 10 000 Epsilon rate* 1,0 default = 1.0 Epsilon min* 0,01 default = 0.01 Epsilon max* 1,0 default = 1.0 Learning rate* 0,5 default = 0.8 Reward discount rate* 0,786 default = 0.786 Decay rate* 0,1 default = 0.07

Graphique comparatif des différents algos

Conclusion

Pour conclure!

- Découverte du RL/deep RL
- Différents algorithmes plus ou moins efficaces
- Projet complet
- Jeu simple

DÉMO

https://travel-resolver-100.netlify.app/

