Classe: 1ère année S 2

de Mathématiques n°1

Prof: garrab wissem

Année scolaire : 2015/2016

Durée: 1heure 30 min

Exercice $N^{\circ}1:(4 pts)$

Préciser la bonne réponse (Pour chaque proposition une seule des réponses données est correcte). 1/pour tout angle aigu x on a :

$$a)\cos(x) \le [\cos(x)]^{-2}$$

$$6) \left[\cos(x)\right]^{-4} \ge \left[\cos(x)\right]^{-2} \qquad c) \cos(x) \le \sqrt{\cos(x)}$$

$$c)\cos(x) \le \sqrt{\cos(x)}$$

2/ Soient
$$X = \sqrt{(1+10^{10})}$$
 et $Y = 1+10^{10}$ alors: a) $X \prec Y$ b) $X \succ Y$ c) $X = Y$

a)
$$X \prec Y$$

6)
$$X \succ Y$$

c)
$$X = Y$$

3/Soient
$$M = \left| \sqrt{10} - 7 \right|$$
 et $N = \left| 3 - 5\sqrt{2} \right|$ alors: a) $M \prec N$ b) $M \succ N$ c) $M = \sqrt{10} - 7$

fors: a)
$$M \prec N$$

6)
$$M > N$$

$$c) M = \sqrt{10} - 7$$

$$4/P = |2\sqrt{2} - 2| - \sqrt{(2\sqrt{2} - 3)^2}$$
 est égale à :

$$a)-1$$

6)
$$4\sqrt{2} - 5$$
 c) -5

$$c)-5$$

Exercice N°2:(4 pts)

Soit x un réel tel que : $-3 \prec x \prec \frac{1}{2}$.

1/Donner un encadrement de 2x+3 puis de $(2x-1)^2$.

$$2/Soit A = \frac{2x+1}{x-1}$$

a) Montrer que $x-1 \neq 0$.

6) Montrer que
$$A = 2 + \frac{3}{x-1}$$

c) En déduire un encadrement de A puis de $\left|A-\frac{3}{2}\right|$

Exercice N°3:(2,5 pts)

1/ Résoudre dans IR.

$$\left| x - \sqrt{3} \right| = 2\sqrt{3}$$

$$\left|x - \sqrt{3}\right| = 2\sqrt{3}$$
 $\left|3x - \sqrt{7}\right| \ge 2 - \sqrt{7}$ $\left|2x - \sqrt{7}\right| < \sqrt{7}$

$$|2x-\sqrt{7}| \prec \sqrt{7}$$

2/Déterminer chacune des ensembles suivantes (écrire les résultats sous forme d'intervalles):

$$E = \left\{ x \in IR \quad \text{tel que } -2 \prec x \leq 3 \right\}$$

$$E = \left\{ x \in IR \quad \text{tel que } -2 \prec x \leq 3 \right\}$$

$$/ \qquad F = \left\{ x \in IR \quad \text{tel que } \frac{1}{3} \leq \frac{1}{2x+1} \leq 2 \right\}$$

Exercice N°4:(9,5 pts)

On considère la figure suivante telle que ABC est un triangle rectangle en B, AB = 3, AC = 6 et le triangle BCD est équilatérale. (recopier la figure sur votre copie). 1/a) Calculer BC.

- b) Calculer $\cos(B\hat{A}C)$ puis déduire la mesure de $B\hat{A}C$.
- 2/ La bissectrice de l'angle BÂC coupe [BC] en L et [DC] en K.
 - a) Exprimer $\tan(\hat{LAB})$ en fonction de LB puis en déduire que LB= $\sqrt{3}$.
 - *b)* Montrer que (LK)\\(BD).
 - c) En déduire que $\frac{CK}{CD} = \frac{CL}{CB}$
- 3/ La parallèle à (AB) passant par L coupe (AC) en $\mathcal M$. Calculer CM.
- 4/Montrer que $(MK)\setminus (AD)$.

