ACH2002

Introdução à Ciência da Computação II Aula 1

Apresentação da Disciplina

Professora:

Fátima L. S. Nunes

Apresentação da Disciplina

Dados informativos

Unidade: Escola de Artes, Ciências e Humanidades

Curso: Sistemas de Informação

Semestre: II - 2010.

Horas totais previstas: 60 horas.

Quem sou eu?

- Fátima de Lourdes dos Santos Nunes Marques
- Graduação em Ciência da Computação (Unesp Bauru)
- Mestrado em Engenharia Elétrica (EESC-USP)
- Doutorado em Ciências Física Computacional (IFSC-USP)
- Pós-doutorado em Engenharia Elétrica (EESC-USP)
- fatima.nunes@usp.br
- Áreas de pesquisa: processamento de imagens, realidade virtual, banco de dados, aplicações em saúde

Objetivo

- Apresentar técnicas de desenvolvimento de programas corretos e bem estruturados.
- Apresentar técnicas de análise de algoritmos.

Programa Resumido

Conceitos de orientação a objetos (herança, interfaces, classes abstratas, documentação).

Introdução ao desenvolvimento e análise de algoritmos.

Bibliografia

- Livros texto:
 - Kon, F.; Goldman, A.; Silva, P.J.S. "Introdução à Ciência de Computação com Java e Orientado a Objetos", IME - USP, 2005. Disponível em:
 - http://ccsl.ime.usp.br/introCCJavaOO
 - Goodrich, M.; Tamassia, R. Estruturas de Dados e Algoritmos em Java. Ed. Bookman, 2a. Ed. 2002.

Bibliografia

Literatura complementar:

GRIES,D. The Science of Programming, Berlin, Springer, 1981.- CAMARÃO, C.; FIGUEIREDO,L. Programação de Computadores em Java, Livros Técnicos e Científicos Editora, 2003.

CAMARÃO, C.; FIGUEIREDO, L. Programação de computadores em Java. Rio de Janeiro: LTC, 2003.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos - Trad. 2.º Ed. Americana. Ed. Campus, 2002.

HOROWITZ E SAHNI - Fundamentos de Estrutura de Dados, Rio de Janeiro, Campus, 1986.

WAZLAWICK, R. S. Análise e Projeto de Sistemas de Informação Orientados a Objetos. Ed. Campus, 2004.

ZIVIANI, N. – Projeto de Algoritmos, 2ª Ed., Editora Thomson, 2004.

TENEMBAUM, A.M., et all. Data Structures Using C, Prentice-Hall, 1990.

WIRTH, N. Algorithms + Data Structures = Programs, Prentice-Hall, 1986

Aulas e listas de exercício

- Aulas:
 - exposição dos temas do curso PODE (E DEVE) PERGUNTAR À VONTADE!
 - participação dos alunos na construção do conhecimento
 - durante a aula
 - pequenas homeworks (fixação e/ou preparação)
- Listas de exercícios:
 - Não é para entregar, não valem nota, mas questões podem cair na prova
 - Não serão corrigidas em sala (procurem os monitores, se necessário a professora)
- Aulas e listas disponibilizadas no sistema CoL

Atendimento

- Atendimento de dúvidas dos alunos
 - Pelos monitores (horários a confirmar)
 - Pelo professor (Sala: 61 do Bloco A1 − 1º andar)
 - Segundas-feiras das 13h30min às 16h30min.
 - •Se precisar de outro horário, agende! Email com o título "ATENDIMENTO"
 - NÃO ESPEREM AS PROVAS!!!

Avaliação do aprendizado

- Frequência mínima: 70%.
- Avaliação:
 - Duas provas (P1 e P2)
 - Dois trabalhos (T1, T2 e T3): exercícios-programas (EPs)
- Prova substitutiva:
 - somente para quem perdeu uma das provas (FECHADA)
 - substitui a que você perdeu
 - envolve todo o conteúdo ministrado na disciplina.
 - DIFÍCIL: USEM SÓ EM CASO DE EMERGÊNCIA!
- •Qualquer tentativa de fraude implicará em zero na atividade.

Avaliação do aprendizado

- Média de Provas (MP):
 - MP = (2*P1 + 3*P2) / 5
- Média de Trabalhos (MT):
 - MT = (T1 + T2 + T3) / 3

Avaliação do aprendizado

- Média Final (MF) :
 - se MP >= 5,0 e MT >= 5,0
 MF = (7*MP + 3*MT) / 10
 senão
 MF = mínimo(MP, MT)

- Se MF \geq = 5,0 \rightarrow aluno aprovado
- Se 3,0 <= MF < 5,0 \rightarrow recuperação
- Se MF $< 3.0 \rightarrow$ aluno reprovado.

Avaliação do aprendizado - Recuperação

- Se 3 <= MF < 5 → recuperação (REC)
 - MFR (Média Final após recuperação):
 - REC: envolve todo o conteúdo ministrado na disciplina.
 - É obrigatória (não fez → REC = 0)
 - Se MFR >= 5.0 → aluno aprovado
 - Se MFR < 5,0 → aluno reprovado

Sobre os EPs

- Oportunidade de aprendizado
- Entrega pelo CoL
 - Encerra à meia-noite da data marcada (sem prorrogação!!!)
 - Problemas com upload
 - Façam uploads de versões anteriores antes
 - A professora n\u00e3o resolve problemas de CoL!!!
- Plágio total ou parcial
 - Zero para todos os envolvidos

Dúvidas?

Importantíssimo – avisos gerais:

- A programação é preliminar e pode estar sujeita a mudanças.
- A disciplina tem 6 créditos, sendo 4 teóricos e 2 de trabalho:
 - Por isso: Trabalhos (EPs são obrigatórios!!!)
- Sistema CoL:
 - responsabilidade é do aluno!
 - única responsabilidade do professor: incluir as turmas e os alunos!
- Monitorias!!! Participem!

Importantíssimo – avisos gerais:

- Sobre as notas:
 - É um stress atender aluno chorando por nota...
 - Então, não façam isso!
 - Todo o aluno tem o direito (e deve exercê-lo!) de ver a correção da prova...
 - mas não tem o direito de ficar chorando nota e complementos de nota...
 - ... portanto: o jeito é estudar!
 - A professora sempre estará disponível nos horários de atendimento e em horários marcados. Aproveitem!!!

Avisos – Provas e Trabalhos

- Nas provas o aluno deve trazer OBRIGATORIAMENTE um documento de identificação com fotografia (recomendável cartão USP)
- Os alunos que não comparecerem a uma das provas poderão fazer a prova substitutiva.
- Avaliações (provas e trabalhos) são individuais
- Trabalhos e provas copiados: atribuição de nota zero para todos os envolvidos.

E finalmente...

- Programação se aprende fazendo
- Não adianta "ler algoritmos"
- Por isso:
 - há 2 créditos de trabalho 2 horas de trabalho por semana no laboratório!!!
 - façam listas de exercícios no momento certo (não deixem acumular!)
 - aprendizado é diretamente proporcional às HBCs !!!

ACH2002

Introdução à Ciência da Computação II Aula 1

Apresentação da Disciplina

Professora:

Fátima L. S. Nunes

