- 1. Let $\{\alpha_n\}_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^N and $\{\alpha_n\}_{k\in\mathbb{N}}$ a subsequence. χ_n converges $1\overline{0}$ $\chi\in\mathbb{R}$. Show that χ_n converges to χ .
- 2. Say $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in \mathbb{R}^N s.t. $\lim_{n\to\infty} x_n^2 = 0$. Show $\lim_{n\to\infty} x_n = 0$.
 - (1) Ut \$ > 0 given. I NENS.F. | nn-x | < E + N > N we have

$$n_{k} \geq k \geq N$$

$$\Rightarrow |\alpha_{n_{k}} - x| < \varepsilon$$

2 Ut 270 given. $\exists N \in \mathbb{N}$ s.t. $|\chi_n^2 - 0| < \varepsilon^2$ $\Rightarrow |\chi_n|^2 < \varepsilon^2$ $\Rightarrow |\chi_n - 0| = |\chi_n| < \varepsilon$

$$\Rightarrow$$
 $\lim_{n \to \infty} a_n = 0$.