CS446: Machine Learning

Spring 2018

Machine Problem 5

Handed Out: Jan. 16, 2018 Due: Feb. 22, 2018 (11:59 AM Central Time)

Part 1: Setup

• Remote connect to a EWS machine.

```
ssh (netid)@remlnx.ews.illinois.edu
```

• Load python module, this will also load pip and virtualenv.

```
module load python/3.4.3
```

• Reuse the virtual environment from previous MPs.

```
source ~/cs446sp_2018/bin/activate
```

• Copy mp5 into your svn directory, and change directory to mp5.

```
cd ~/(netid) svn cp https://subversion.ews.illinois.edu/svn/sp18-cs446/_shared/mp5 . cd mp5
```

• Install the requirements through pip.

```
pip install --upgrade pip
pip install -r requirements.txt
```

• Create data directory, download the data into the data directory, and unzip the data.

```
mkdir data
wget --user (netid) --ask-password \
https://courses.engr.illinois.edu/cs446/sp2018/\
secure/assignment5_data.zip -0 data/assignment5_data.zip
unzip data/assignment5_data.zip -d data/
```

• Prevent svn from checking in the data directory.

```
svn propset svn:ignore data .
```

Part 2: Exercises

In this exercise we will use SVM to recognize handwritten digits. The dataset we use is MNIST handwritten digit database, where every handwritten digit image is represented as 28×28 pixels, each with value 0 to 255. We want to classify each image as one of 0 to 9.

Figure 1: MNIST examples.

In the provided version of MNIST dataset, features are flattened into $784 = 28 \times 28$ dimensional vectors. To save running time, we only use the first 50%(5000) of the original MNIST test data as our training dataset, and the next 50%(5000) of the original test data as our test dataset.

In this exercise, we will first use Scikit Learn's built-in multiclass classification functions to train one-vs-rest(one-vs-all) and one-vs-one multiclass linear SVM models. Then we will implement one-vs-rest and one-vs-one multiclass classifiers ourselves, using binary SVM models.

Throughout the exercise, we will use sklearn.svm.LinearSVC as our binary SVM classifier, with default parameters unless specifically mentioned, and random_state=12345 for reproductivity. If you are not familiar with Scikit Learn, please make sure you understand how to use fit and predict methods in the above link.

Part 2.1 Using Built-in Multiclass Functions

In this exercise, we will use Scikit Learn's sklearn.multiclass.OneVsRestClassifier and sklearn.multiclass.OneVsOneClassifier to perform multiclass classification. We

will also use Crammer-Singer multiclass SVM (the multiclass SVM formulation in the lecture), which is supported in sklearn.svm.LinearSVC.

Task 1:

Implement sklearn_multiclass_prediction in model/sklearn_multiclass.py, which takes training and test features and labels, as well as a string mode being one of "ovr", "ovo", or "crammer". The function should pick the correct classifier to train and predict labels for both training and test data.

Thinking Questions: How would you compare OVR, OVO and Crammer-Singer, in terms of classification accuracy and time efficiency?

Part 2.2 Implementing One-vs-Rest and One-vs-One Classification

In this exercise, we will use sklearn.svm.LinearSVC only with binary labels, 0 and 1.
(You can use any other two labels, but 0 and 1 are recommended.) We will implement class
MulticlassSVM in model/self_multiclass.py, which is constructed given mode being
one of "ovr" and "ovo". When fit and predict methods are called, it will call the correct
version of multiclass classification given mode.

Task 2:

Implement bsvm_ovr_student bsvm_ovo_student in model/self_multiclass.py, which takes training data X and y, and returns a python dict with keys being labels for OVR, and pairs of labels for OVO, and with values being trained OVR or OVO binary sklearn.svm.LinearSVC classifiers.

Task 3:

Implement scores_ovr_student scores_ovo_student

in model/self_multiclass.py, which takes features X, and returns a number of votes of the Score with shape (#Samples, #Labels), where Score(i,j) is the number of votes of the j-th label received for the i-th sample in OVO, and is the confidence score of the j-th label for the i-th sample in OVR (use decision_function as confidence score).

Thinking Questions: Why do we need use confidence scores for OVR? Why do we not use confidence scores for OVO?

After the scoring functions are implemented, predict_ovr and predict_ovo will return the labels with maximum votes.

Part 2.3 Implementing Multiclass SVM

In this part, we will implement our own loss function of (Crammer-Singer) multiclass linear

SVM as:

$$\min_{w_1, \dots, w_K} \frac{1}{2} \sum_{j=1}^K \|w_j\|_2^2 + C \sum_{i=1}^N \max_{j=1 \dots K} \left(1 - \delta_{j, y_i} + w_j^\top x_i\right) - w_{y_i}^\top x_i$$

where $\delta_{j,y_i}=1$ if $j=y_i$ and 0 if $j\neq y_i$, and optimize it via gradient descent. Your task is to compute the loss function and the gradients of the loss function w.r.t. $W=[w_1,...,w_K]^{\top}\in\mathbb{R}^{K\times d}$, given $W,\,X=[x_1,...,x_N]^{\top}\in\mathbb{R}^{N\times d},\,Y=[y_1,...,y_N]\in\{0,...,9\}^N$ and C=1.

Task 4:

Implement loss_student grad_student in model/self_multiclass.py, which takes W, X and y, and returns the loss function and its gradient w.r.t. W respectively.

Hint:

- 1. Think some concrete cases, for example the one in the written assignment.
- 2. Though not required, try using matrix operations of Numpy when possible for faster performance. Some useful functions: np.sum, np.max, np.argmax.

Part 2.4 Comparing Built-in and Self-Implemented Functions

Compare the classification accuracy of self-implemented and built-in OVR and OVO. They should be almost the same. It is normal to be a little bit off for OVO, due to tie-breaking; but you should not get more than 0.5% difference. For OVR, the accuracy should be exactly the same. For Crammer-Singer multiclass SVM, it is normal that your accuracy is different from that of the built-in function, due to implementation details.

Part 3: Writing Tests

In **test.py** we have provided basic test-cases. Feel free to write more. To test the code, run

nose2

Part 4: Submit

Submitting the code is equivalent to committing the code. This can be done with the follow command:

```
svn commit -m "Some meaningful comment here."
```

Lastly, double check on your browser that you can see your code at

```
https://subversion.ews.illinois.edu/svn/sp18-cs446/(netid)/mp5/
```

Note: The assignment will be autograded. It is important that you do not use additional libraries, or change the provided functions input and output.