PROOFS: HOMEWORK 4

ANDREW TSENG: ART2589

Problem 2.34

Part A

Given that a and b are nonzero polynomials, then the $\deg(a)$ and $\deg(b)$ are the highest power within the polynomials. By definition and properties of multiplying, $a \cdot b$ is the field of the product of the two nonzero polynomials which means that highest power of $a \cdot b$ is the $\deg(a) + \deg(b)$.

Part B

Assume that polynomial a has a multiplicative inverse, meaning that there exists polynomials $b, c \in F[x]$. Thus b(x)c(x) = 1, since b, c exist in F[x], then deg(b) = deg(c) = 0. Meaning that deg(a) = 0, implying that a is a constant polynomial.

Assume that the polynomial a is a constant polynomial, meaning that deg(a) = 0. Let b, c be the multiplicative inverses of a such that c(x)b(x) = 1. Since deg(b) + deg(c) = 0 and we know that b, c are nonnegative polynomials since they are in the field F, then b, c are multiplicative inverses.

Part C

Part D

Problem 2.37

Reducing the polynomial to the form, (x+a)(x+b)(x+c), we create the system equations with a, b, c

$$abc = 1$$
$$2(a+b) + c = 0$$
$$ab + 2c(a+b) = 1$$

After solving the variables we find that a + b + c = 0 and abc = 1, where there is no solution since a, b, c > 0. Thus the polynomial is irreducuble.

Problem 2.38

1	\overline{x}	x^2	1+x	$1 + x^2$	$x + x^2$	$1 + x + x^2$
	0	0	0	0	0	0
1	$\frac{x}{x}$	x^2	$\frac{1+x}{1+x}$	$1 + x^2$	$x + x^2$	$1 + x + x^2$
x	x^2	x+1	$x + x^2$	1	$x^2 + x + 1$	$x^2 + 1$
x+1	$x^2 + x$	$x^2 + x + 1$	$1 + x^2$	x^2	1	x
x^2	x+1	$x + x^2$	$1 + x + x^2$	$1 + x^2$	1	x
$1 + x^2$	1	x	x^2	$1 + x + x^2$	1+x	$x + x^2$
$x + x^2$	$x^2 + x + 1$	$1 + x^2$	1	1+x	x	x^2
$1 + x + x^2$	$1 + x^2$	1	x	$x + x^2$	x^2	1+x
						-

Problem 2.40

Both rings hold p^e elements but $F_{p^e}[X]$ holds the coefficients of the polynomial while $Z/(p^e)Z$ holds all values from 0 to p^e-1 . This means all values in the modulos ring are distinct while the polynomial ring does not guarantee this.