Number Theory Solution Set

Andy Jung and Gregory Pylypovych

September 28, 2019

1 Solutions

Easy Problem Solutions

- 1. You can write out the powers of 3 mod 7. $3^1 \equiv 3, 3^2 \equiv 2, 3^3 \equiv 6, 3^4 \equiv 4, 3^5 \equiv 5, 3^6 \equiv 1 \pmod{7}$. Therefore, the order is 6.
- 2. We note that $1025 = 2^{10} + 1 \rightarrow 2^{10} \equiv -1 \mod 1025$. 2 to a power less than 10 is lower than 1025. If the order is (10+k) for some k, $2^{10} * 2^k \equiv 1 \mod 1025 \rightarrow 2^k \equiv -1 \mod 1025$. Therefore, k = 10 and the order is 20.
- 3. $a^2 \equiv -1 \mod (a^2+1) \rightarrow a^4 \equiv 1 \mod (a^2+1)$. By looking at the size of the powers of a, we can see that 1 or 2 are not the orders. Therefore, the order is 4.
- 4. $a^{c+k} \equiv a^c * a^k \equiv a^c * 1 \equiv a^c \mod b$.

Medium Problem Solutions

- 1. $a^n \equiv 1 \pmod{a^n 1}$, $a^{\phi(a^n 1)} \equiv 1 \pmod{a^n 1}$. For all k < n, $(a^k 1) < (a^n 1) \to (a^k 1) \neq 0 \mod(a^n 1)$. Therefore, $ord_{a^n 1}(a) = n$ and because n is the order, $n \mid \phi(a^n 1)$
- 2. $10^{j} 10^{i} = 10^{i}(10^{j-i} 1) \rightarrow 1001 \mid (10^{j} 10^{i}) \rightarrow 1001 \mid (10^{j-i} 1) \rightarrow 10^{j-i} \equiv 1 \pmod{1001}$. $ord_{1001}(10) = 6 \rightarrow 6 \mid (j-i)$. From this and the conditions on i and j, we can see that there are 784 possibilities.

Hard Problem Solutions

1. $p \mid 5^p - 2^p$ or $p \mid 5^q - 2^q$. Case 1: $5^p - 2^p \equiv 5*1 - 2*1 = 3modp$. Therefore, if p divides this term, p = 3 and the term becomes $117(5^q - 2^q) \rightarrow q \mid 117 \rightarrow q = 3, 13$ or $q \mid 5^q - 2^q \rightarrow q = 3$ by the same logic as for p. Using symmetry, we have the set of solutions (p,q) = (3,3), (3,13), (13,3). Case 2: $p \mid 5^q - 2^q \rightarrow 5^q - 2^q \equiv 0 \pmod{p}$. $\rightarrow 2^q ((5*2^{-1})^q - 1) \equiv 0 \pmod{p} \rightarrow (5*2^{-1})^q - 1 \equiv 0 \pmod{p}$. Similarly, $(5*2^{-1})^p - 1 \equiv 0 \pmod{q}$. Let $a = (5*2^{-1})$. Therefore, $ord_p(a) \mid q, ord_q(a) \mid p$ and we also know that $ord_p(a) \mid (q-1), ord_q(a) \mid (p-1)$. To satisfy both these conditions

 $ord_p(a) = 1 \rightarrow a \equiv 1 \pmod{p} \rightarrow 5 * 2^{-1} \equiv 1 \pmod{p} \rightarrow 5 \equiv 2 \pmod{p}$, forcing p=3 as in case 1. Therefore, the only possible solutions are (p,q) = (3,3), (3,13), (13,3).