Cálculo Diferencial e Integral en Varias Variables

Mauro Polenta Mora

Ejercicio 1

Consigna

- 1. Sean a>0 y $f:[a,+\infty)\to\mathbb{R}$ una función continua tal que $f(t)\geq0$. Definimos $F(x) = \int_{a}^{x} f(t) dt$. Demostrar que:

 - F(x) es creciente. $\int_a^{+\infty} f(t) dt$ converge sii F(x) está acotada superiormente.
- 2. Se
a $g:[a,+\infty)\to\mathbb{R}$ una función continua que verifica $0\leq f(t)\leq g(t)$ para todo $t \geq a$.
 - 1. Probar que si $\int_a^{+\infty} g(t) dt$ converge, entonces $\int_a^{+\infty} f(t) dt$ también converge.
 - 2. Si $\int_a^{+\infty} f(t) dt$ diverge, entonces $\int_a^{+\infty} g(t) dt$ diverge.

Resolución

Parte 1

Para esta parte queremos demostrar que:

- F(x) es creciente.
- $\int_{a}^{+\infty} f(t)dt$ converge sii F(x) está acotada superiormente.

Lo primero viene dado gratis, pues la función $f(t) \geq 0$ por hipótesis, esto significa que al aumentar x voy a estar sumando un poquito más de area a la integral.

Para la segunda parte, expandamos un poco sobre lo que tenemos que probar. En primer lugar, que $\int_{a}^{+\infty} f(t)dt$ sea convergente, significa que:

• $\lim_{x\to\infty} F(x) = L < \infty$

En este caso como F(x) es creciente, por definición de límite se tiene que:

• $F(x) \leq L$ para todo $x \in \mathbb{R}$

Es decir que F(x) está acotada superiormente.

Ahora, partamos del otro lado, si F(x) está acotada superiormente, es decir:

• F(x) < K para todo $x \in \mathbb{R}$

Considerando K como el supremo del conjunto de cotas superiores, tenemos que: Dado $\varepsilon>0$, existe $x_0\in[a,+\infty)$ tal que $\forall x>x_0:x\in(K-\varepsilon,K]$. Esto último la definición de límite para K, solo considerando un lado del entorno, por lo que necesariamente F(x) converge a K.