'ARIABLE SYSTEMS 2×2 Process

71 UZ

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} G_1, & G_{12} \\ G_{21}, & G_{22} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

$$\begin{array}{c|c}
\hline
 & & \\
\hline$$

Decembrahized

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} G_c, & O \\ O & G_{c2} \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \qquad u = G_c \underbrace{e}$$

$$\begin{bmatrix} 1 + G_p G_c \end{bmatrix} y = G_p G_c y^{SP}$$

$$y = \begin{bmatrix} 1 + G_p G_c \end{bmatrix} G_p G_c y^{SP}$$

Mutivariable CLCE

$$\begin{bmatrix}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{bmatrix} \begin{bmatrix}
G_{C_{1}} & O \\
O & G_{C_{2}}
\end{bmatrix} + \begin{bmatrix}
I & O \\
O & I
\end{bmatrix}$$

$$\begin{bmatrix}
I + G_{P}G_{C} = G_{11}G_{C_{1}} + G_{12}G_{C_{2}} \\
G_{11}G_{C_{1}} & G_{21}G_{C_{2}} + I
\end{bmatrix}$$

$$\begin{bmatrix}
I + G_{P}G_{C} = G_{11}G_{C_{1}} + G_{12}G_{C_{2}} \\
G_{11}G_{C_{1}} + G_{12}G_{C_{2}} + G_{12}G_{2}
\end{bmatrix} - G_{12}G_{21}G_{21}G_{22}G_{22} - G_{21}G_{21}G_{22}G_{22}G_{22}$$

$$\Rightarrow CI CC^{MV} : I + G_{11}G_{C_{1}} + G_{22}G_{C_{2}} + G_{11}G_{22}G_{C_{2}} - G_{21}G_{21}G_{22}G_{22}G_{22}$$

$$\Rightarrow I + G_{11}G_{C_{1}} + G_{22}G_{C_{2}} + G_{11}G_{22}G_{C_{2}}G_{12}G_{21}
\end{bmatrix} = 0$$
Figure & \(\mathbb{B} \)

$$y_1 = 2u_1 + 4u_2$$

$$y_2 = 3u_1 + 1u_2$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \begin{cases} y_1 - u_1 \\ y_2 - u_2 \end{cases}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} u_2 \\ u_1 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 0 & 3 \end{bmatrix}$$

: diagonally dominant

$$NI = \frac{|K|}{\prod K_{ii}}$$

$$NI = \frac{|K|}{\prod K_{ii}}$$

$$NI = \frac{|K|}{\prod K_{21} |K|}$$

$$\frac{|K|}{|K|} = \frac{|K|}{\prod K_{22}}$$

NI =

NI<0

Guaranteed integrably unptable

NI >0 A houranteel integral stability

Necessary but not sufficient condition

RELATIVE GAIN ARRAY i y, y2 YN
J U, U2 UN
Die = > 10 d Uktj & Au other in puto constant
$=\frac{\partial y_i/\partial y_i}{\partial y_i}$
Aij = 38i/Juj uk = j = Au other in puto constant ue all other controllers off us all other controllers off us all other windred constant. Prefer such paired
Six of Gais sign flips depending on whether other loops are on or Mg
other loops are most off
Avoid such pairings

$$\lambda y = \frac{\partial y_{i}/\partial u_{i}}{\partial y_{i}/\partial u_{i}} = \frac{\langle x_{i} \rangle - \langle x_{i$$

$$NII = \frac{|K|}{\prod K_{AA}}$$

$$RGA = K (K')^{T}$$
Prefor if pairing of $\lambda_{ij} \sim 1$
Avoid $\lambda_{ij} < 0$