Data Visualization

2017-01-23

Agenda

- Examples
- Software
- Theory
- Making good visualizations
- Preattentive cognition

See Also

The Visual Display of Quantitative Information by Edward Tufte

Examples

Morton Thoikol and Solid Rocket Boosters

id Rocket Boosters

on on nce

Morton Thoikol and Solid Rocket Boosters

Anscombe's Quartet

	x1	y1	x2	y2		x 3	y3	x4	y4
3	10	8.04	10	9.14	•	10	7.46	8	6.58
	8	6.95	8	8.14		8	6.77	8	5.76
	13	7.58	13	8.74		13	12.74	8	7.71
	9	8.81	9	8.77	-	9	7.11	8	8.84
	11	8.33	11	9.26	-	11	7.81	8	8.47
	14	9.96	14	8.10		14	8.84	8	7.04
	6	7.24	6	6.13		6	6.08	8	5.25
	5	4.26	5	3.10		5	5.39	19	12.50
	12	10.84	12	9.13		12	8.15	8	5.56
	7	4.82	7	7.26		7	6.42	8	7.91
	5	5.68	5	4.74		5	5.73	8	6.89

Anscombe's Quartet

Purposes of Visualization

- Supporting exploratory data analysis (exploratory)
- Explaining or supporting presentation (explanatory)

Visualization Software

Visualization Software

- MATLAB (Octave/gnuplot)
- Python
 - matplotlib
 - Seaborn
 - o ggplot
- Python and Web
 - Bokeh
 - plotly
- Web
 - o D3
- On the extremes:
 - OpenGL / WebGL
 - Tableau

D3.js

- Data Driven Documents
- Grew out of <u>Mike Bostock</u>'s graduate work
- Lots of examples
- YouTube tutorial (from Galvanize!)

D3 Hello World

Let's Make a Bar Chart

D3 Bar Chart Example

```
<!DOCTYPE html>
<meta charset="utf-8">
<style>
.bar {
  fill: steelblue:
.bar:hover {
  fill: brown;
.axis {
  font: 10px sans-serif;
.axis path,
.axis line {
  fill: none;
  stroke: #000;
  shape-rendering: crispEdges;
.x.axis path {
  display: none;
</style>
<body>
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 40},
    width = 960 - margin.left - margin.right,
    height = 500 - margin.top - margin.bottom;
var x = d3.scale.ordinal()
    .rangeRoundBands([0, width], .1);
var y = d3.scale.linear()
    .range([height, 0]);
var xAxis = d3.svg.axis()
    .scale(x)
    .orient("bottom");
```

```
function type(d) {
var yAxis = d3.svg.axis()
                                                                             d.frequency = +d.frequency;
    .scale(y)
                                                                             return d:
    .orient("left")
    .ticks(10, "%");
var svg = d3.select("body").append("svg")
                                                                           </script>
    .attr("width", width + margin.left + margin.right)
    .attr("height", height + margin.top + margin.bottom)
  .append("q")
    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
d3.tsv("data.tsv", type, function(error, data) {
  if (error) throw error;
  x.domain(data.map(function(d) { return d.letter; }));
 y.domain([0, d3.max(data, function(d) { return d.frequency; })]);
  svg.append("q")
      .attr("class", "x axis")
      .attr("transform", "translate(0," + height + ")")
      .call(xAxis);
  svg.append("q")
      .attr("class", "y axis")
      .call(yAxis)
    .append("text")
      .attr("transform", "rotate(-90)")
      .attr("y", 6)
      .attr("dy", ".71em")
      .style("text-anchor", "end")
      .text("Frequency");
  svg.selectAll(".bar")
      .data(data)
    .enter().append("rect")
      .attr("class", "bar")
      .attr("x", function(d) { return x(d.letter); })
      .attr("width", x.rangeBand())
      .attr("y", function(d) { return y(d.frequency); })
      .attr("height", function(d) { return height - y(d.frequency); });
});
```

D3, HTML, CSS, SVG

```
<!DOCTYPE html>
<meta charset="utf-8">
<etv1e>
  fill: steelblue:
.bar:hover {
  fill: brown;
.axis {
  font: 10px sans-serif;
.axis path,
.axis line {
 fill: none;
  stroke: #000;
  shape-rendering: crispEdges;
.x.axis path {
  display: none;
</style>
<body>
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 30, left: 40},
    width = 960 - margin.left - margin.right,
    height = 500 - margin.top - margin.bottom;
var x = d3.scale.ordinal()
    .rangeRoundBands([0, width], .1);
var y = d3.scale.linear()
    .range([height, 0]);
var xAxis = d3.svg.axis()
    .scale(x)
    .orient("bottom");
```

```
function type(d) {
var yAxis = d3.svg.axis()
                                                                             d.frequency = +d.frequency;
    .scale(y)
                                                                             return d:
    .orient("left")
    .tick-/10
                                                                           </script>
         d3.select("body").append("svg")
    .attr("height", height + margin.top + margin.bottom)
    .attr("transform", "translate(" + margin.left + "," + margin.top + ")");
d3.tsv("data.tsv", type, function(error, data) {
  if (error) throw error;
  x.domain(data.map(Nnction(d) { return d.letter; }));
 y.do air (10, do.m.
                                                  ency; })]);
  svg. pp =na ( g )
      attr("class",
                        axis")
                                    (0," + height + ")")
      call(xAxis);
                        axis")
      attr("class",
    .append("text")
      attr("transform", "rotate(-90)")
      attr("y", 6)
      style("text-andhor", "end")
      elestAll(" har!
      data(data)
      attr ("class",
                                   rn x(d.letter); })
      attr("width", x.rangeBand())
       attr("y", function(d) { return y(d.frequency); })
      .attr("height", function(d) { return height - y(d.frequency); });
});
```

Theory and Vocabulary

Data Taxonomy and Visual Encodings

Relational Data Model

- Database is a collection of tables
- Tables are a list of records
- Records are datapoints giving values for attributes

Name	Color	Mass	Kingdom	Taste Rating	
Apple	Red	400g	Plantae	Okay	
Banana	Yellow	800g	Plantae	Good	
Morel	Greenish	350g	Fungi	Bad	
Cow	Black/White	250,000g	Anamalia	Excellent	

- Nominal (=, ≠)
 - Types and categories (mathematical set)

- Ordinal (=, ≠, ≤)
 - Has an order (mathematical set with order relation)

- Interval (=, ≠, ≤, +, -)
 - Has a meaningful difference between values (mathematical group)

- Ratio $(=, \neq, \leq, +, -, x, \div)$
 - Has a meaningful one and zero point and ratio between values (mathematical *field*)

- Nominal (=, ≠)
 - Types and categories (mathematical set)
- Ordinal (=, ≠, ≤)
 - Has an order (mathematical set with order relation)
 - o E.g: Rankings, grades
- Quantitative
 - Interval (=, ≠, ≤, +, -)
 - Has a meaningful difference between values (mathematical group)
 - E.g: Dates, location, geometric points, temperature (C and F)
 - Ratio (=, ≠, ≤, +, -, x, ÷)
 - Has a meaningful one and zero point and ratio between values (mathematical field)
 - E.g: Distance, mass, temperature (K), time, counts

- Nominal (=, ≠)
 - Types and categories (mathematical set)
- Ordinal (=, ≠, ≤)
 - Has an order (mathematical set with order relation)
 - E.g: Rankings, grades
- Quantitative
 - Interval (=, ≠, ≤, +, -)
 - Has a meaningful difference between values (mathematical *group*)
 - E.g: Dates, location, geometric points, temperature (C and F)
 - Ratio (=, \neq , \leq , +, -, x, \div)
 - Has a meaningful one and zero point and ratio between values (mathematical field)
 - E.g: Distance, mass, temperature (K), time, counts
- Topological
 - Connectivity, inclusion

Visual Encodings

Visual Encodings of **Nominal** Data

Visual Encodings of **Nominal** Data

Text

A B C D E F

Color hue

Shape On the state of the state

Visual Encodings of **Ordinal** Data

Visual Encodings of **Ordinal** Data

Color saturation

Color luminance

Area, Volume

Position

Time, Animation

Visual Encodings of **Quantitative** Data

Visual Encodings of **Quantitative** Data

Color saturation

Color luminance

Position

Length, Area, Volume

Angle

Time, Animation

Charts

Chart: noun

- 1. A common pattern for combining visual encodings of data.
- 2. A visual sentence constructed with data encodings as words.

Chart Suggestions—A Thought-Starter

Applying the Theory

 http://www.nytimes.com/interactive/2012/05/17/business/dealbook/how-the-fa cebook-offering-compares.html

Company	IPO Year	IPO Value	1st Day Value	3 Year Value
Apple	1980	\$3.4B	\$4.5B	\$2.6B
Microsoft	1986	\$1.1B	\$1.5B	\$4.1B
Google	2004	\$28B	\$33B	\$140B

Making Good Visualizations

Not Making Bad Visualizations

Graphical Integrity

Graphical Integrity: Principles

- Proportionality (between data and physical representation)
- Match dimensions (between data and physical representation)
- Provide important context

Graphical Ratio: 530px / 60px = 8.8 Data Ratio: 27.5mpg / 18mpg = 1.5

Lie factor = size of effect shown in graph size of effect in the data

What about color?

Match Dimensions

686px/315px = 2.2 = 27%/12% ... seems legit ...?

192kpx/39kpx = 5 >> 2.2 = 27%/12% ... not so much.

686 pixels tall

281x686 = 192k pixels

THE SHRINKING FAMILY DOCTOR

Percentage of Doctors Devoted Solely to Family Practice

315 pixels tall

124x315 = 39k pixels

1: 2,247 RATIO TO POPULATION 8,023 Doctors

Providing Context

\$0

Graphical Integrity

Graphical Ratio: 530px / 60px = 8.8 Data Ratio: 27.5mpg / 18mpg = 1.5

Maximizing Impact

Data ink

• The ink (pixels) devoted to representing data

Data ink Ratio

Non-data ink

Redundant data

Redundant Data

Non-data ink

- Redundant data
- Metadata

Improving charts

- Erase redundant data (within reason)
- Erase metadata (within reason)
- Iterate design
- Avoid chartjunk

Chartjunk

THE SHRINKING FAMILY DOCTOR In California

Percentage of Doctors Devoted Solely to Family Practice

Story: Putting Bacon in Context

Remove backgrounds

Remove redundant labels

Remove borders

Reduce colors

Remove special effects

Lighten labels

Or remove lines

Direct label

Calories per 100g

Calories per 100g

Using Attentive Cognition

Attentive Processing

Preattentive Processing

15483111254680<mark>9</mark>8808

Visual Processing System

Preattentive Stimuli

Preattentive Stimuli

- Interactive Applications
 - http://learnforeverlearn.com/preattentive/
- More on theory and types
 - http://www.perceptualedge.com/articles/ie/visual_perception.pdf
- Applications to computer vision
 - http://mplab.ucsd.edu/~marni/lgert/Malik_Perona_1990.pdf

Post-Preattentive Takeaways

- Draw the viewer's attention
- Don't distract the viewer