IFT6135-H2019 - REPRESENTATION LEARNING

ASSIGNMENT 1, THEORETICAL PART

SANAE LOTFI

Num de matricule (Poly) : 1968682 Num de matricule (Udem) : 20147309

17th Februray, 2019

Multilayer Perceptrons and Convolutional Neural networks

Due Date: February 16th, 2019

Instructions

- For all questions, show your work!
- Use a document preparation system such as LaTeX.
- Submit your answers electronically via Gradescope.

Question 1 (4-4-4-2). Using the following definition of the derivative and the definition of the Heaviside step function :

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1+e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.
- *4. Although the Heaviside step function is not differentiable, we can define its **distributional derivative**. For a function F, consider the functional $F[\phi] = \int_{\mathbb{R}} F(x)\phi(x)dx$, where ϕ is a smooth function (infinitely differentiable) with compact support $(\phi(x) = 0$ whenever $|x| \ge A$, for some A > 0).

Show that whenever F is differentiable, $F'[\phi] = -\int_{\mathbb{R}} F(x)\phi'(x)dx$. Using this formula as a definition in the case of non-differentiable functions, show that $H'[\phi] = \phi(0)$. $(\delta[\phi] \doteq \phi(0))$ is known as the Dirac delta function.)

Answer 1. Write your answer here.

1. We know that the rectified linear unit, defined as : $g(x) = \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$, is continuous and differentiable on \mathbb{R}_+^* and \mathbb{R}_-^* .

Its derivative on these two intervals is : $g'(x) = \begin{cases} 1 = H(x) & \text{if } x > 0 \\ 0 = H(x) & \text{if } x < 0 \end{cases}$

g is differentiable in x=0 if its left derivative and right derivative in x=0 have the same value. We have :

$$\frac{d_+}{dx}g(x) = \lim_{\epsilon \to 0^+} \frac{g(0+\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0^+} \frac{\epsilon - 0}{\epsilon} = 1$$

and

$$\frac{d_{-}}{dx}g(x) = \lim_{\epsilon \to 0^{-}} \frac{g(0+\epsilon) - g(0)}{\epsilon} = \lim_{\epsilon \to 0^{-}} \frac{0-0}{\epsilon} = 0$$

thus, g is not differentiable in x = 0.

We conclude that g differentiable on \mathbb{R}_+^* and \mathbb{R}_-^* and its derivative is equal to the Heaviside step function on those two intervals.

Multilayer Perceptrons and Convolutional Neural networks

- 2. We can define g using H as follows: $\forall x \in \mathbb{R}, g(x) = x H(x) \text{ or } \forall x \in \mathbb{R}, g(x) = \int_{-\infty}^{x} H(x) dx$
- 3. To show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-kx}}$ for large k, it's enough to study the value of σ when k takes a large value :
 - For x = 0, $\sigma(x) = \frac{1}{2} = H(x)$,
 - For x > 0, $\sigma(x) \approx \frac{1}{1+0} \approx 1 = H(x)$ (because $\lim_{k \to \infty} \exp(-kx) = 0$, x > 0)).
 - For x < 0, $\sigma(x) \approx 0 = H(x)$ (because $\lim_{k \to \infty} \exp(-kx) = +\infty$ when x < 0).
- 4. By definition, we have : $F'[\phi] = \int_{\mathbb{R}} F'(x)\phi(x)dx$ We use the integration by parts to write, for given a and b in \mathbb{R} such that a < b:

$$\int_{a}^{b} F'(x)\phi(x)dx = [F(x)\phi(x)]_{a}^{b} - \int_{a}^{b} F(x)\phi'(x)dx$$

$$= F(b)\phi(b) - F(a)\phi(a) - \int_{a}^{b} F(x)\phi'(x)dx$$
(1)

Since ϕ has a compact support, we can calculate the limit of the above equation when a goes to $-\infty$ and b goes to $+\infty$. This gives us (since ϕ is null for negative and positive high values):

$$F'[\phi] = \int_{\mathbb{R}} F'(x)\phi(x)dx = \lim_{a \to -\infty} \lim_{b \to +\infty} \int_{a}^{b} F'(x)\phi(x)dx$$
$$= 0 - \int_{\mathbb{R}} F(x)\phi'(x)dx = -\int_{\mathbb{R}} F(x)\phi'(x)dx$$
(2)

If we use this formula to calculate $H'[\phi]$, then we have (since ϕ is null for negative and positive high values):

$$H'[\phi] = -\int_{\mathbb{R}} H(x)\phi'(x)dx$$
$$= -\int_{\mathbb{R}_+} \phi'(x)dx$$
$$= -\left[\phi(x)\right]_0^{+\infty}$$
$$= \phi(0)$$

Question 2 (5-8-5-5). Let x be an n-dimensional vector. Recall the softmax function : $S: \mathbf{x} \in \mathbb{R}^n \mapsto S(\mathbf{x}) \in \mathbb{R}^n$ such that $S(\mathbf{x})_i = \frac{e^{\mathbf{x}_i}}{\sum_j e^{\mathbf{x}_j}}$; the diagonal function : $\operatorname{diag}(\mathbf{x})_{ij} = \mathbf{x}_i$ if i = j and $\operatorname{diag}(\mathbf{x})_{ij} = 0$ if $i \neq j$; and the Kronecker delta function : $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$.

- 1. Show that the derivative of the softmax function is $\frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j} = S(\boldsymbol{x})_i \left(\delta_{ij} S(\boldsymbol{x})_j\right)$.
- 2. Express the Jacobian matrix $\frac{\partial S(x)}{\partial x}$ using matrix-vector notation. Use diag(·).
- 3. Compute the Jacobian of the sigmoid function $\sigma(\mathbf{x}) = 1/(1 + e^{-\mathbf{x}})$.

4. Let \mathbf{y} and \mathbf{x} be n-dimensional vectors related by $\mathbf{y} = f(\mathbf{x})$, L be an unspecified differentiable loss function. According to the chain rule of calculus, $\nabla_{\mathbf{x}} L = (\frac{\partial \mathbf{y}}{\partial \mathbf{x}})^{\top} \nabla_{\mathbf{y}} L$, which takes up $\mathcal{O}(n^2)$ computational time in general. Show that if $f(\mathbf{x}) = \sigma(\mathbf{x})$ or $f(\mathbf{x}) = S(\mathbf{x})$, the above matrix-vector multiplication can be simplified to a $\mathcal{O}(n)$ operation.

Answer 2. 1. Let i and j be in $\{1,..,n\}$. The function $S_i: \boldsymbol{x} \in \mathbb{R}^n \mapsto S_i(\boldsymbol{x}) \in \mathbb{R}$, such that $S_i(\boldsymbol{x}) = S(\boldsymbol{x})_i = \frac{e^{\boldsymbol{x}_i}}{\sum_k e^{\boldsymbol{x}_k}}$, is differentiable with respect to x_j and we have :

$$\frac{dS(\boldsymbol{x})_{i}}{d\boldsymbol{x}_{j}} = \frac{\frac{de^{x_{i}}}{dx_{j}} \sum_{k} e^{\boldsymbol{x}_{k}} - e^{x_{i}} \frac{d\sum_{k} e^{\boldsymbol{x}_{k}}}{dx_{j}}}{\left(\sum_{k} e^{\boldsymbol{x}_{k}}\right)^{2}}$$

$$= \frac{\delta_{ij} e^{x_{i}} \sum_{k} e^{\boldsymbol{x}_{k}} - e^{x_{i}} e^{x_{j}}}{\left(\sum_{k} e^{\boldsymbol{x}_{k}}\right)^{2}}$$

$$= \frac{e^{x_{i}}}{\sum_{k} e^{x_{k}}} \left(\delta_{ij} - \frac{e^{x_{j}}}{\sum_{k} e^{x_{k}}}\right)$$

$$= S(\boldsymbol{x})_{i} \left(\delta_{ij} - S(\boldsymbol{x})_{j}\right)$$
(3)

2. Let i and j be in $\{1,..,n\}$. We have :

$$\left(\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}}\right)_{ij} = \frac{dS(\boldsymbol{x})_i}{d\boldsymbol{x}_j}
= S(\boldsymbol{x})_i \left(\delta_{ij} - S(\boldsymbol{x})_j\right)
= \begin{cases} S(\boldsymbol{x})_i S(\boldsymbol{x})_j & \text{if } i \neq j \\ S(\boldsymbol{x})_i S(\boldsymbol{x})_i - S(\boldsymbol{x})_i & \text{if } i = j \end{cases}$$
(4)

Thus, we have:

$$\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix}
\frac{dS(\boldsymbol{x})_1}{d\boldsymbol{x}_1} & \dots & \frac{dS(\boldsymbol{x})_1}{d\boldsymbol{x}_n} \\
\dots & \dots & \dots \\
\frac{dS(\boldsymbol{x})_n}{d\boldsymbol{x}_1} & \dots & \frac{dS(\boldsymbol{x})_n}{d\boldsymbol{x}_n}
\end{bmatrix} \\
= \begin{bmatrix}
-S(\boldsymbol{x})_1 S(\boldsymbol{x})_1 & \dots & -S(\boldsymbol{x})_1 S(\boldsymbol{x})_n \\
\dots & \dots & \dots & \dots \\
-S(\boldsymbol{x})_n S(\boldsymbol{x})_1 & \dots & -S(\boldsymbol{x})_n S(\boldsymbol{x})_n
\end{bmatrix} + \begin{bmatrix}
S(\boldsymbol{x})_1 & \dots & 0 \\
\dots & \dots & \dots \\
0 & \dots & S(\boldsymbol{x})_n
\end{bmatrix} \\
= -S(\boldsymbol{x}) S^{\mathsf{T}}(\boldsymbol{x}) + diag(S(\boldsymbol{x}))$$
(5)

3. Let i and j be in $\{1,..,n\}$. We have :

$$\left(\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}}\right)_{ij} = \frac{d(1/(1+e^{-x_i}))}{d\boldsymbol{x}_j}
= \frac{-de^{-x_i}/d\boldsymbol{x}_j}{\left(1+e^{-x_i}\right)^2}
= \frac{\delta_{ij}e^{-x_i}}{\left(1+e^{-x_i}\right)^2}
= \delta_{ij}\sigma(x_i)\left(1-\sigma_i(x_i)\right)
= \begin{cases} \sigma(x_i)\left(1-\sigma(x_i)\right) & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$$
(6)

Thus, we have:

$$\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}} = \begin{bmatrix}
\sigma(x_1) (1 - \sigma(x_1)) & \dots & 0 \\
\dots & \dots & \dots \\
0 & \dots & \sigma(x_n) (1 - \sigma(x_n))
\end{bmatrix}$$

$$= \operatorname{diag}(\sigma(\boldsymbol{x})) \operatorname{diag}(1_n - \sigma(\boldsymbol{x}))$$
(7)

where 1_n is the vector of length n with 1 in all its rows.

4. - If $f(\boldsymbol{x}) = \sigma(\boldsymbol{x})$, then

$$\nabla_{\boldsymbol{x}} L = (\frac{\partial \sigma(\boldsymbol{x})}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L = diag(\sigma(\boldsymbol{x})) \, diag(1_n - \sigma(\boldsymbol{x})) \nabla_{\boldsymbol{y}} L$$

The multiplication $diag(1_n - \sigma(\boldsymbol{x}))\nabla_{\boldsymbol{y}}L$ is a $\mathcal{O}(n)$ operation, because it can be seen as an elementwise multiplication between $\sigma(\boldsymbol{x}) - 1$ and $\nabla_{\boldsymbol{y}}L$. This will result a vector that we can name \mathbf{v} , then $\nabla_{\boldsymbol{x}}L = diag(\sigma(\boldsymbol{x}))\mathbf{v}$ can be seen as an element-wise product as well between $\sigma(\boldsymbol{x})$ and v, which is also a $\mathcal{O}(n)$ operation. Thus, the entire multiplication is simplified to a $\mathcal{O}(n)$ operation.

- If $f(\boldsymbol{x}) = S(\boldsymbol{x})$, then

$$\nabla_{\boldsymbol{x}} L = (\frac{\partial S(\boldsymbol{x})}{\partial \boldsymbol{x}})^{\top} \nabla_{\boldsymbol{y}} L = (-S(\boldsymbol{x})S^{\top}(\boldsymbol{x}) + diag(S(\boldsymbol{x}))) \nabla_{\boldsymbol{y}} L = diag(S(\boldsymbol{x})) \nabla_{\boldsymbol{y}} L - S(\boldsymbol{x})(S^{\top}(\boldsymbol{x}) \nabla_{\boldsymbol{y}} L)$$

The multiplication $diag(S(\boldsymbol{x}))\nabla_{\boldsymbol{y}}L$ is a $\mathcal{O}(n)$ operation, because it can be seen as an element-wise multiplication between $S(\boldsymbol{x})$ and $\nabla_{\boldsymbol{y}}L$. The multiplication $(S^{\top}(\boldsymbol{x})\nabla_{\boldsymbol{y}}L)$ is also a $\mathcal{O}(n)$ operation since its a multiplication between two vectros. This multiplication gives a scalar. Thus the rest is a product between a scalar and a vector. In conclusion, the matrix-vector multiplication is simplified to a $\mathcal{O}(n)$ operation.

Question 3 (3-3-3). Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_j e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: S(x+c) = S(x), where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?

- 3. Let \boldsymbol{x} be a 2-dimentional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimentional vector ($K \geq 2$). Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

Answer 3. 1. Let c be in \mathbb{R} and i in $\{1,..,n\}$, we have :

$$S(\boldsymbol{x}+c)_{i} = e^{\boldsymbol{x}_{i}+c} / \sum_{j} e^{\boldsymbol{x}_{j}+c}$$

$$= e^{\boldsymbol{x}_{i}} e^{c} / \sum_{j} e^{\boldsymbol{x}_{j}} e^{c}$$

$$= e^{\boldsymbol{x}_{i}} / \sum_{j} e^{\boldsymbol{x}_{j}}$$

$$= S(\boldsymbol{x})_{i}$$
(8)

We conclude that $S(\mathbf{x}+c)=S(\mathbf{x})$, thus softmax is translation-invariant.

2. To prove this, it's enough to find a counterexample.

In fact, for n=2, let's take $x_1=1$ and $x_2=0$ with c=2. We have $S_c(\boldsymbol{x})_1=S(2\boldsymbol{x})_1=e^{2*1}/(e^{2*1}+e^{2*0})=e^2/(e^2+1)\approx 0.88$. However, $S(\boldsymbol{x})_1=e^1/(e^1+e^0)=e/(e+1)=\approx 0.71$. It is clear that $S(c\boldsymbol{x})\neq S(\boldsymbol{x})$ in general (the following part shows that it is not true in general for any n and c=0 or arbitrarily large).

Let's find the expression of $S(c\mathbf{x})_i$ for a given i in $\{1,...,n\}$ and $c \geq 0$:

$$S(c\mathbf{x})_{i} = e^{c\mathbf{x}_{i}} / \sum_{j} e^{c\mathbf{x}_{j}}$$

$$= e^{c\mathbf{x}_{i}} / \sum_{j} e^{c\mathbf{x}_{j}}$$

$$= 1 / \sum_{i} e^{c(\mathbf{x}_{j} - \mathbf{x}_{i})}$$

$$(9)$$

- If c = 0, then $S(c\mathbf{x})_i = 1/n$. In this case, all the classes have the same probability and the transformation becomes not interesting (since our goal is to be able to find the class with the highest probability).
- If c is arbitrarily large, let $L = argmax\{x_j, j \in \{1, .., n\}\}$ be the set of the arguments all the elements of the vector \boldsymbol{x} that share the highest value. We put k = card(L). We have that:

$$S(c\mathbf{x})_i = \begin{cases} \frac{1}{k} & \text{if } i \in L\\ 0 & i \notin L \end{cases}$$
 (10)

We notice then that in this case, any little difference between the values of the vector \boldsymbol{x} is translated by big changes in terms of probability. In case k=1, we obtain that the element of the vector \boldsymbol{x} with the highest value gets a probability of 1 while all other elements get a probability of 0. This makes us lose a lot of information concerning to which extent the element with the highest value is superior to other elements.

3. Let x be a 2-dimentional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. We have :

$$S(\boldsymbol{x}) = \begin{bmatrix} e^{\boldsymbol{x}_1}/e^{\boldsymbol{x}_1} + e^{\boldsymbol{x}_2} \\ e^{\boldsymbol{x}_2}/e^{\boldsymbol{x}_1} + e^{\boldsymbol{x}_2} \end{bmatrix}$$

$$= \begin{bmatrix} 1/(1 + e^{\boldsymbol{x}_2 - \boldsymbol{x}_1}) \\ 1 - 1/(1 + e^{\boldsymbol{x}_2 - \boldsymbol{x}_1}) \end{bmatrix}$$

$$= \begin{bmatrix} \sigma(\boldsymbol{x}_1 - \boldsymbol{x}_2) \\ 1 - \sigma(\boldsymbol{x}_1 - \boldsymbol{x}_2) \end{bmatrix}$$

$$= [\sigma(z), 1 - \sigma(z)]^{\top}$$
(11)

where $z = \boldsymbol{x}_1 - \boldsymbol{x}_2$.

- 4. Let \boldsymbol{x} be a K-dimentional vector ($K \geq 2$). We can write :
 - $S(\mathbf{x})_1 = e^{x_1} / \sum_{j=1}^K e^{x_j} = 1/1 + \sum_{j=2}^K e^{x_j x_1},$
 - $\forall i \in \{2, ..., K\}, S(\boldsymbol{x})_i = e^{x_i} / \sum_{i=1}^K e^{x_i} = e^{x_i x_1} / 1 + \sum_{i=2}^K e^{x_i x_1}$

If we put $y_i = x_{i+1} - x_1, \forall i \in \{1, ..., K-1\}$, then we have :

- $S(\mathbf{x})_1 = e^0/e^0 + \sum_{i=1}^{K-1} e^{y_i}$,
- $\forall i \in \{2, ..., K\}, S(\boldsymbol{x})_i = e^{y_{i-1}}/e^0 + \sum_{j=1}^{K-1} e^{y_j}$

We conclude that : $S(\mathbf{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top}).$

Question 4 (15). Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{i=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \le k \le K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 4. Let x be in \mathbb{R} , we have :

$$tanh(x) = (e^{x} - e^{-x})/(e^{x} + e^{-x})$$

$$= 2 \times 1/(1 + e^{-2x}) - 1$$

$$= 2\sigma(2x) - 1$$
(12)

Thus, $\sigma(x) = \frac{1}{2} \tanh(\frac{x}{2}) + \frac{1}{2}$.

Let $\boldsymbol{x} \in \mathbb{R}^D$. We write then :

$$y(x,\Theta,\sigma)_{k} = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_{i} + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \left[\frac{\omega_{kj}^{(2)}}{2} tanh \left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)}}{2} x_{i} + \frac{\omega_{j0}^{(1)}}{2} \right) + \frac{\omega_{kj}^{(2)}}{2} \right] + \omega_{k0}^{(2)}$$

$$= \sum_{j=1}^{M} \left[\frac{\omega_{kj}^{(2)}}{2} tanh \left(\sum_{i=1}^{D} \frac{\omega_{ji}^{(1)}}{2} x_{i} + \frac{\omega_{j0}^{(1)}}{2} \right) \right] + \sum_{j=1}^{M} \frac{\omega_{kj}^{(2)}}{2} + \omega_{k0}^{(2)}$$

$$(13)$$

We conclude then that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, where :

•
$$\tilde{\omega}^{(1)} = \frac{1}{2}\omega^{(1)}$$

•
$$\tilde{\omega}^{(2)}$$
 is defined such as : $\tilde{\omega}_{kj}^{(2)} = \begin{cases} \frac{1}{2}\omega_{kj}^{(2)} & \text{if } j \neq 0\\ \sum_{l=1}^{M} \frac{\omega_{kl}^{(2)}}{2} + \omega_{k0}^{(2)} = \sum_{l=0}^{M} \frac{\omega_{kl}^{(2)}}{2} + \frac{\omega_{k0}^{(2)}}{2} & \text{if } j = 0 \end{cases}$

We can write Θ' in a more compact way using Θ :

$$\Theta' = \frac{1}{2}\Theta + \frac{1}{2}(Z, \omega^{(2)}B)$$

where Z is a zero matrix of the same dimensions as $\omega^{(1)}$ and B is a matrix of the same dimensions as $\omega^{(2)\top}$ with $B_{ij} = \begin{cases} 1 & \text{if } j = 1 \\ 0 & \text{otherwise} \end{cases}$ (the first column contains values equal to one and the rest of the matrix has values equal to 0).

An even more compact way consists of writing Θ' as follows :

$$\Theta' = \frac{1}{2}\Theta + \frac{1}{2}\Theta\tilde{B}$$

Where \tilde{B} is a $(M+D+2)\times (K+M)$ matrix, defined as follows:

$$\tilde{B}_{ij} = \begin{cases} 1 & \text{if } i \in \{D+2, ..., D+M+2\} \text{ and } j=1\\ 0 & \text{otherwise} \end{cases}$$

Question 5 (2-2-2-2). Given $N \in \mathbb{Z}^+$, we want to show that for any $f : \mathbb{R}^n \to \mathbb{R}^m$ and any sample set $S \subset \mathbb{R}^n$ of size N, there is a set of parameters for a two-layer network such that the output y(x) matches f(x) for all $x \in S$. That is, we want to interpolate f with y on any finite set of samples S.

1. Write the generic form of the function $y: \mathbb{R}^n \to \mathbb{R}^m$ defined by a 2-layer network with N-1 hidden units, with linear output and activation function ϕ , in terms of its weights and biases $(\mathbf{W}^{(1)}, \mathbf{b}^{(1)})$ and $(\mathbf{W}^{(2)}, \mathbf{b}^{(2)})$.

2. In what follows, we will restrict $\mathbf{W}^{(1)}$ to be $\mathbf{W}^{(1)} = [\mathbf{w}, \cdots, \mathbf{w}]^T$ for some $\mathbf{w} \in \mathbb{R}^n$ (so the rows of $\mathbf{W}^{(1)}$ are all the same). Show that the interpolation problem on the sample set $\mathcal{S} = \{\mathbf{x}^{(1)}, \cdots \mathbf{x}^{(N)}\} \subset \mathbb{R}^n$ can be reduced to solving a matrix equation : $\mathbf{M}\tilde{\mathbf{W}}^{(2)} = \mathbf{F}$, where $\tilde{\mathbf{W}}^{(2)}$ and \mathbf{F} are both $N \times m$, given by

$$\tilde{\boldsymbol{W}}^{(2)} = [\boldsymbol{W}^{(2)}, \boldsymbol{b}^{(2)}]^{\top}$$
 $\boldsymbol{F} = [f(\boldsymbol{x}^{(1)}), \cdots, f(\boldsymbol{x}^{(N)})]^{\top}$

Express the $N \times N$ matrix \boldsymbol{M} in terms of \boldsymbol{w} , $\boldsymbol{b}^{(1)}$, ϕ and $\boldsymbol{x}^{(i)}$.

- *3. **Proof with Relu activation.** Assume $\boldsymbol{x}^{(i)}$ are all distinct. Choose \boldsymbol{w} such that $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$ are also all distinct (Try to prove the existence of such a \boldsymbol{w} , although this is not required for the assignment See Assignment 0). Set $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon$, where $\epsilon > 0$. Find a value of ϵ such that \boldsymbol{M} is triangular with non-zero diagonal elements. Conclude. (Hint: assume an ordering of $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$.)
- *4. Proof with sigmoid-like activations. Assume ϕ is continuous, bounded, $\phi(-\infty) = 0$ and $\phi(0) > 0$. Decompose \boldsymbol{w} as $\boldsymbol{w} = \lambda \boldsymbol{u}$. Set $\boldsymbol{b}_j^{(1)} = -\lambda \boldsymbol{u}^{\top} \boldsymbol{x}^{(j)}$. Fixing \boldsymbol{u} , show that $\lim_{\lambda \to +\infty} \boldsymbol{M}$ is triangular with non-zero diagonal elements. Conclude. (Note that doing so preserves the distinctness of $\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}$.)
- **Answer 5.** 1. Let's write the generic form of the function $y: \mathbb{R}^n \to \mathbb{R}^m$ defined by a 2-layer network with N-1 hidden units, with linear output and activation function ϕ , in terms of its weights and biases $(\mathbf{W}^{(1)}, \mathbf{b}^{(1)})$ and $(\mathbf{W}^{(2)}, \mathbf{b}^{(2)})$:

$$y(x)_k = \sum_{j=1}^{N-1} \omega_{kj}^{(2)} \phi \left(\sum_{i=1}^n \omega_{ji}^{(1)} x_i + b_j^{(1)} \right) + b_k^{(2)}$$

We can write it in a compact way:

$$y(\boldsymbol{x})_k = \boldsymbol{w}_k^{(2)\top} \phi \left(\boldsymbol{W}^{(1)} \boldsymbol{x} + \boldsymbol{b}^{(1)} \right) + b_k^{(2)}$$

where $\phi\left(\boldsymbol{W}^{(1)}\boldsymbol{x} + \boldsymbol{b}^{(1)}\right)_{j} = \phi((\boldsymbol{W}^{(1)}\boldsymbol{x} + \boldsymbol{b}^{(1)})_{j}) = \phi\left(\sum_{i=1}^{n} \omega_{ji}^{(1)} x_{i} + b_{j}^{(1)}\right)$, for $j \in \{1, ..., N-1\}$ and $\boldsymbol{W}^{(2)} = [\boldsymbol{w}_{1}^{(2)}, \cdots, \boldsymbol{w}_{m}^{(2)}]^{T}$.

Thus, we can write (using the same convention for ϕ applied to a vector):

$$y(\boldsymbol{x}) = \boldsymbol{W}^{(2)} \phi \left(\boldsymbol{W}^{(1)} \boldsymbol{x} + \boldsymbol{b}^{(1)} \right) + \boldsymbol{b}^{(2)}$$

2. The interpolation problem on the sample set $S = \{x^{(1)}, \cdots x^{(N)}\} \subset \mathbb{R}^n$ is about solving the equation:

$$F = [f(x^{(1)}), \cdots, f(x^{(N)})]^{\top} = [y(x^{(1)}), \cdots, y(x^{(N)})]^{\top}$$

Thus, we need to solve the equations:

$$f(\boldsymbol{x}^{(i)}) = \boldsymbol{W}^{(2)} \phi \left(\boldsymbol{W}^{(1)} \boldsymbol{x}^{(i)} + \boldsymbol{b}^{(1)} \right) + \boldsymbol{b}^{(2)}, \quad \forall i \in \{1, .., N\}$$

$$\Longrightarrow f^{\top}(\boldsymbol{x}^{(i)}) = \phi \left(\boldsymbol{W}^{(1)} \boldsymbol{x}^{(i)} + \boldsymbol{b}^{(1)} \right)^{\top} \boldsymbol{W}^{(2)\top} + \boldsymbol{b}^{(2)\top}, \quad \forall i \in \{1, .., N\}$$

$$\Longrightarrow f^{\top}(\boldsymbol{x}^{(i)}) = \left[\phi \left(\boldsymbol{W}^{(1)} \boldsymbol{x}^{(i)} + \boldsymbol{b}^{(1)} \right)^{\top}, 1 \right] \begin{bmatrix} \boldsymbol{W}^{(2)\top} \\ \boldsymbol{b}^{(2)\top} \end{bmatrix}, \quad \forall i \in \{1, .., N\}$$

$$(14)$$

where $\phi\left(\boldsymbol{W}^{(1)}\boldsymbol{x}^{(i)} + \boldsymbol{b}^{(1)}\right)_{j} = \phi((\boldsymbol{W}^{(1)}\boldsymbol{x}^{(i)} + \boldsymbol{b}^{(1)})_{j}) = \phi\left(\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} + b_{j}^{(1)}\right)$, for $j \in \{1, ..., N-1\}$. Thus, we need to solve the equation:

$$\boldsymbol{F} = [f(\boldsymbol{x}^{(1)}), \cdots, f(\boldsymbol{x}^{(N)})]^{\top} = \begin{bmatrix} \sigma \left(\boldsymbol{W}^{(1)} \boldsymbol{x}^{(1)} + \boldsymbol{b}^{(1)}\right)^{\top} & 1 \\ \vdots & \vdots \\ \sigma \left(\boldsymbol{W}^{(1)} \boldsymbol{x}^{(N)} + \boldsymbol{b}^{(1)}\right)^{\top} & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{W}^{(2)\top} \\ \boldsymbol{b}^{(2)\top} \end{bmatrix}$$
(15)

We put:

$$ilde{oldsymbol{W}}^{(2)} = [oldsymbol{W}^{(2)}, oldsymbol{b}^{(2)}]^{ op} \quad ext{and} \quad oldsymbol{M} = \left[egin{array}{ccc} \phi\left(oldsymbol{W}^{(1)}oldsymbol{x}^{(1)} + oldsymbol{b}^{(1)}
ight)^{ op} & 1 \\ & \ddots & & \ddots \\ & \phi\left(oldsymbol{W}^{(1)}oldsymbol{x}^{(N)} + oldsymbol{b}^{(1)}
ight)^{ op} & 1 \end{array}
ight]$$

We can write the : $M\tilde{W}^{(2)} = F$. Where M is an $N \times N$ matrix defined by :

$$M_{ij} = \begin{cases} \phi \left(\mathbf{W}^{(1)} \mathbf{x}^{(i)} + \mathbf{b}^{(1)} \right)_{j} = \phi \left(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b_{j}^{(1)} \right), & \text{if } i \in \{1, .., N\} \text{ and } j \in \{1, .., N - 1\} \\ 1, & \text{if } i \in \{1, .., N\} \text{ and } j = N \end{cases}$$

Conclusion: We showed that the interpolation problem on the sample set $S = \{x^{(1)}, \dots x^{(N)}\} \subset \mathbb{R}^n$ can be reduced to solving a matrix equation: $M\tilde{W}^{(2)} = F$, where $\tilde{W}^{(2)}$ and M are given by the expressions above.

3. Proof with Relu activation.

Let's assume that $\boldsymbol{x}^{(i)}$ are all distinct, and choose \boldsymbol{w} such that $\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}$ are also all distinct (the existence of \boldsymbol{w} was proved in assignment 0). Let $\boldsymbol{b}_{j}^{(1)} = -\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon$, where $\epsilon > 0$. Let's find a value of ϵ such that \boldsymbol{M} is triangular with non-zero diagonal elements.

We have from the previous question that:

$$\begin{aligned} \mathbf{M}_{ij} &= \begin{cases} \phi\left(\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} + b_{j}^{(1)}\right), & \text{if } i \in \{1,..,N\} \text{ and } j \in \{1,..,N-1\} \\ 1, & \text{if } i \in \{1,..,N\} \text{ and } j = N \end{cases} \\ &= \begin{cases} \max\left(\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} + b_{j}^{(1)}, 0\right), & \text{if } i \in \{1,..,N\} \text{ and } j \in \{1,..,N-1\} \\ 1, & \text{if } i \in \{1,..,N\} \text{ and } j = N \end{cases} \\ &= \begin{cases} \max\left(\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon, 0\right), & \text{if } i \in \{1,..,N\} \text{ and } j \in \{1,..,N-1\} \\ 1, & \text{if } i \in \{1,..,N\} \text{ and } j = N \end{cases} \end{aligned}$$

Without loss of generality, we suppose an order on our vectors : $\mathbf{w}^{\top} \mathbf{x}^{(1)} > \ldots > \mathbf{w}^{\top} \mathbf{x}^{(N)}$ (the inequalities are strict since the values are distinct by choice of \mathbf{w}).

We put $\epsilon = min\{\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(j)}, i < j, i \text{ and } j \text{ in } \{1,..,N\}\}$. Using our hypothesis, we see that $\epsilon > 0$. Furthermore, by definition of epsilon, we have for i > j that : $\alpha_{ij} = \boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} + \epsilon = \epsilon - (\boldsymbol{w}^{\top}\boldsymbol{x}^{(j)} - \boldsymbol{w}^{\top}\boldsymbol{x}^{(i)}) \leq 0$. Thus, $M_{ij} = max(\alpha_{ij}, 0) = 0$ for i > j and $j \neq N$. The matrix \boldsymbol{M} is upper triangular. The diagonal elements are given by :

$$M_{ii} = \begin{cases} max \left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} - \boldsymbol{w}^{\top} \boldsymbol{x}^{(i)} + \epsilon, 0 \right) = max \left(\epsilon, 0 \right) = \epsilon & \text{if } i \neq N \\ 1 & \text{if } i = N \end{cases}$$
(16)

Which means that for all $i \in \{1,..,N\}$, $M_{ii} > 0$. In other words, \mathbf{M} is triangular with non-zero diagonal elements. Thus \mathbf{M} is invertible and the matrix equation $\mathbf{M}\tilde{\mathbf{W}}^{(2)} = \mathbf{F}$ can be solved using the inverse of \mathbf{M} . Conclusion: the subset \mathcal{S} being fixed as well as the vector \mathbf{w} , we can find the weights matrix $\tilde{\mathbf{W}}^{(2)} = \mathbf{M}^{-1}\mathbf{F}$ such that we interpolate f with g.

4. Proof with sigmoid-like activations.

Let's assume ϕ is continuous, bounded, $\phi(-\infty) = 0$ and $\phi(0) > 0$. We decompose \boldsymbol{w} as $\boldsymbol{w} = \lambda \boldsymbol{u}$ and set $\boldsymbol{b}_j^{(1)} = -\lambda \boldsymbol{u}^\top \boldsymbol{x}^{(j)}$. Fixing \boldsymbol{u} , let's show that $\lim_{\lambda \to +\infty} \boldsymbol{M}$ is triangular with non-zero diagonal elements. We have :

$$\begin{aligned} \mathbf{M}_{ij} &= \begin{cases} \phi\left(\boldsymbol{w}^{\top}\boldsymbol{x}^{(i)} + b_{j}^{(1)}\right), & \text{if } i \in \{1,..,N\} \text{ and } j \in \{1,..,N-1\} \\ 1, & \text{if } i \in \{1,..,N\} \text{ and } j = N \end{cases} \\ &= \begin{cases} \phi\left(\lambda(\boldsymbol{u}^{\top}\boldsymbol{x}^{(i)} - \boldsymbol{u}^{\top}\boldsymbol{x}^{(j)})\right), & \text{if } i \in \{1,..,N\} \text{ and } j \in \{1,..,N-1\} \\ 1, & \text{if } i \in \{1,..,N\} \text{ and } j = N \end{cases} \end{aligned}$$

The diagonal elements are given by:

$$M_{ii} = \begin{cases} \phi(0) & \text{if } i \neq N \\ 1 & \text{if } i = N \end{cases}$$
 (17)

Which means that for all $i \in \{1, ..., N\}$, $M_{ii} > 0$.

We take $\lambda > 0$. Just like the previous question, we assume (without loss of generality) an order on our vectors: $\boldsymbol{u}^{\top}\boldsymbol{x}^{(1)} > \ldots > \boldsymbol{u}^{\top}\boldsymbol{x}^{(N)}$ (the inequalities are strict since the values are distinct by choice of $\lambda \boldsymbol{u}$ and since the factor $\lambda > 0$, this doesn't change the inequality).

Thus, for i > j and $j \neq N$, $\lim_{\lambda \to +\infty} M_{ij} = \phi(-\infty) = 0$, using the order hypothesis. From the other side, we assume that the value of $\phi(+\infty) = l$ exists (some continuous and bounded functions don't have a finite limit in $+\infty$). We have, for i < j and $j \neq N$, $\lim_{\lambda \to +\infty} M_{ij} = \phi(+\infty) = l$.

Conclusion: $\lim_{\lambda \to +\infty} M$ is triangular with non-zero diagonal elements. Thus it is invertible and the matrix equation $M\tilde{W}^{(2)} = F$ can be solved using the inverse of the limit matrix of M because

 $\tilde{\boldsymbol{W}}^{(2)}$ and \boldsymbol{F} do not depend on λ . In other words, the subset \mathcal{S} being fixed as well as the vector \boldsymbol{w} , we can find the weights matrix $\tilde{\boldsymbol{W}}^{(2)} = \boldsymbol{M}^{-1} \boldsymbol{F}$ such that we interpolate f with y.

Question 6 (6). Compute the *full*, *valid*, and *same* convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 6. To compute the convolution, we will the use the expression $(x*k)_{ij} = \sum_{p,q} x_{i+p,j+q} k_{r_1-p,r_2-q}$ where $r_1 \times r_2$ is the size of the kernel.

- full convolution: consists of adding the maximum zero-padding such that the convolution product with the kernel still takes into account elements from the original matrix. In this case, the maximum possible zero-padding is 2. We obtain the following 1D matrix: [1, 2, 5, 8, 6, 8].
- valid convolution: consists of adding no zero-padding and performing the classic convolution product between the original matrix and the kernel. We obtain the following 1D matrix: [5,8].
- same convolution: consists of adding the enough zero-padding such that the output of the convolution product has the same dimension as the original matrix. In this case, the necessary zero-padding is 1. We obtain the following 1D matrix: [2, 5, 8, 6].

Question 7 (5-5). Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 7. 1. The dimensionality of the feature map after the first layer is given by the relation : $o = \lfloor \frac{i+2p-(d(k-1)+1)}{s} \rfloor + 1$, where i is the size of the input, p is the padding, d is the dilation, k is the size of the kernel and s is the stride.

Thus: $o = \lfloor \frac{256+2\times0-(1\times(8-1)+1)}{2} \rfloor + 1 = 125$ and the output shape of the first layer is (64, 125, 125). In the same way we calculate the output of the next layers:

- The output shape of the second layer is (64, 25, 25) (because $d = \lfloor \frac{125+2\times0-5}{1} \rfloor + 1 = 25$).
- The output shape of the third layer is (128, 24, 24) (because $d = \lfloor \frac{25+2\times 1-4}{1} \rfloor + 1 = 24$).

Thus the dimensionality (scalar) of the output of the last layer is : $128 \times 24 \times 24 = 73728$.

2. The number of parameters that are needed for the last layer is : $64 \times 4 \times 4 \times 128 = 131072$ parameters.

Question 8 (4-4-4). Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide the correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (e.g. same k for both width and height).

1. The output shape of the first layer is (64, 32, 32).

Prof : Aaron Courville

- (a) Assume k = 8 without dilation.
- (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assume we are not using padding or dilation.
 - (b) Assume d = 2, p = 2.
 - (c) Assume p = 1, d = 1.

Answer 8. We base the answers of all the following questions on the following expression of the output shape of a convolutional layer : $o = \lfloor \frac{i+2p-(d(k-1)+1)}{s} \rfloor + 1$, where i is the size of the input, p is the padding, d is the dilation, k is the size of the kernel and s is the stride. The only reason we didn't give the details of the calculations is because they are very repetitive and simple

Here are the answers:

- 1. The output shape of the first layer is (64, 32, 32).
 - (a) Assuming k = 8 without dilation (d = 1), we can take : p = 3 and s = 2.
 - (b) Assuming d = 7, and s = 2, we can take : k = 2 and p = 3.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) For pooling with non-overlapping window, we should have $k \leq s$, we can take : k = 4 and s = 4
 - (b) The output shape if k = 8 and s = 4 is : (64, 7, 7).
- 3. The output shape of the last layer is (128, 4, 4).
 - (a) Assuming we are not using padding (p=0) or dilation (d=1), we can take : k=5 and s=1.
 - (b) Assuming d=2, p=2, we can take : k=5 and s=1.
 - (c) Assuming p = 1, d = 1, we can take : k = 4 and s = 2.