Ejercicio determinante

Anthony Contreras

Tabla de Contenidos

[Participación en clase 12] Ejercicio determinante	1
Resolución Prueba 02	1
Link	1

[Participación en clase 12] Ejercicio determinante

Resolución Prueba 02

• Nombre: Anthony Contreras

• Fecha: 26/01/2025

• Curso: Métodos Númericos GR1CC

Link

Paricipación 2

Resuelva el siguiente ejercicio:

En base a la siguiente propiedad del determinante detA:

Property: Determinants of Triangular Matrices

The determinant of a triangular matrix is the product of the entries on the main diagonal:

$$\begin{vmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{vmatrix} = adf, \quad \begin{vmatrix} u & 0 & 0 \\ v & w & 0 \\ x & y & z \end{vmatrix} = uwz.$$

Figura 1: Propiedad

Ejercicio 1

Calcule el determinante de:

A =

1	5	3	5	2	1	-4	-4	2	-4
5	1	0	3	-2	0	3	4	0	1
4	4	2	2	2	-4	5	-4	5	5
5	0	0	5	0	-4	-1	4	3	-1
2	0	-1	3	0	0	2	4	1	4
-1	4	-2	2	-3	-2	-1	1	-2	2
0	5	-1	5	-3	-1	-2	-3	-2	3
5	1	-4	-4	2	-2	3	-3	4	3
-4	5	0	-2	-2	-3	3	3	0	-4
-3	3	-1	5	1	-1	-2	4	4	-2

%load_ext autoreload

The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload

```
%autoreload 2
from src import (
    eliminacion_gaussiana,
    descomposicion_LU,
    resolver_LU,
    matriz_aumentada,
    separar_m_aumentada,
def calc_determinante(A: list[list[float]]) -> float:
    Calcula el determinante de una matriz usando eliminación de Gauss con pivoteo parcial.
    Este método transforma la matriz en una matriz triangular superior,
    y luego el determinante es el producto de los elementos de la diagonal principal.
    ## Parámetros
    A : list[list[float]]
        Matriz cuadrada de tamaño n x n.
    ## Retorno
    float
        Determinante de la matriz A.
    n = len(A)
    U = [row[:] for row in A]
    detA = 1
    for i in range(n):
        max_row = i
        for k in range(i + 1, n):
            if abs(U[k][i]) > abs(U[max_row][i]):
                max_row = k
        if i != max_row:
            U[i], U[max_row] = U[max_row], U[i]
            detA *= -1
```

```
if U[i][i] == 0:
    return 0

for k in range(i + 1, n):
    factor = U[k][i] / U[i][i]
    for j in range(i, n):
        U[k][j] -= factor * U[i][j]

for i in range(n):
    detA *= U[i][i]
```

El determinante para la metriz 1 es: 9912776.0

```
A2 = [
    [2, 2, 4, 5, -2, -3, 2, -2],
    [-1, -1, 3, 2, 1, 1, -4, 4],
    [2, 5, -3, -3, -2, 2, 5, 3],
    [-2, -4, 0, 1, -1, 5, -4, -1],
    [1, -2, -1, 5, 5, 2, 1, -2],
    [5, 4, 0, 3, 4, -1, -3, -2],
    [4, -4, 1, 2, 3, 3, -1, 3],
    [-2, 1, -3, 0, 5, 4, 4, -4],
```

```
print(f"El determinante para la metriz 2 es: {calc_determinante(A2)}")
```

El determinante para la metriz 2 es: 2341546.0