${\bf Elettromagnetismo}$

Oudeys

October 18, 2024

Contents

\mathbf{C}	ontei	\mathbf{nts}												
1	Elettrostatica													
	1.1	Polari	izzazione dei dielettrici											
		1.1.1	Costante dielettrica del vuoto											
		1.1.2	Costante dielettrica relativa											
		1.1.3	Costante dielettrica assoluta											
	1.2	Carica	a elettrica e legge di Coulumb											
		1.2.1	Carica elettrica											
		1.2.2	Legge di Coulumb											
		1.2.3	Legge di Coulumb nel vuoto											
	1.3	Camp	oo elettrico											
		1.3.1	Intensità del campo elettrico											
		1.3.2	Principio di sovrapposizione											
		1.3.3	Campo generato da un dipolo elettrico											
	1.4	Energ	ia potenziale elettrica											
	1.5	Poten	ziale elettrico											
		1.5.1	Potenziale elettrico per un sistema di cariche											
		1.5.2	Potenziale generato da un dipolo elettrico											
		1.5.3	Tensione - Differenza di potenziale elettrico											
		1.5.4	Superfici equipotenziali											
	1.6	Teore	ma di Gauss											
		1.6.1	Flusso di un vettore											
		1.6.2	Teorema di Gauss											
		1.6.3	Conduttore sferico											
		164	Campo elettrico generato da un piano infinito di carica											

	1.7	Capacità di una conduttore	1(
		1.7.1 Capacità elettrostatica	10										
		1.7.2 Capacità di un conduttore sferico	10										
	1.8	Condensatori	1										
		1.8.1 Capacità di un condensatore	11										
		1.8.2 Condensatore piano	11										
		1.8.3 Condensatore sferico	11										
		1.8.4 Condensatore cilindrico	11										
		1.8.5 Effetto di un dielettrico in un condensatore	11										
		1.8.6 Lavoro di carica di un condensatore	11										
		1.8.7 Condensatori in parallelo	1.										
2	Cor	rente elettrica	13										
	2.1	Intensità di corrente	13										
		2.1.1 Effetto Volta	13										
		2.1.2 Forza elettromotrice	13										
	2.2	Le leggi di Ohm	14										
		2.2.1 I legge di Ohm	14										
		2.2.2 II legge di Ohm	14										
	2.3	Effetto Joule	15										
		2.3.1 Energia dissipata	15										
		2.3.2 Potenza dissipata	15										
		2.3.3 Calore dissipato	15										
	2.4	Resistenze in serio e in parallelo	16										
		2.4.1 Resistenze in serie	16										
		2.4.2 Resistenze in parallelo	16										
		2.4.3 Legge di Ohm per i circuiti chiusi	16										
	2.5	Leggi di Kirchoff	17										
		2.5.1 I legge di Kirchoff	17										
		2.5.2 II legge di Kirchoff	17										
	2.6	Corrente elettrica nei liquidi	18										
		2.6.1 Leggi di Faraday	18										
	2.7	Corrente elettrica nei gas	19										
		2.7.1 Legge di Paschen	19										
3	Mag	gnetismo	20										
	3.1												
	3.2	Campo magnetico generato da una corrente elettrica	2										
	3 3	Induzione elettromagnetica	25										

Alg	ebra	e.	lementare	,

October 18, 2024

3.4	Correnti alternate .														23	}
3.5	Elettromagnetismo														24	ļ

1 Elettrostatica

1.1 Polarizzazione dei dielettrici

1.1.1 Costante dielettrica del vuoto

$$\epsilon_0 = 8.85 \cdot 10^{-12} \frac{C^2}{N \cdot m^2}$$

1.1.2 Costante dielettrica relativa

$$\epsilon_r = \frac{\epsilon}{\epsilon_0}$$

1.1.3 Costante dielettrica assoluta

$$\epsilon = \epsilon_r \cdot \epsilon_0$$

1.2 Carica elettrica e legge di Coulumb

1.2.1 Carica elettrica

$$[Q]=[T][i]$$

C

1.2.2 Legge di Coulumb

$$F = K \cdot \frac{Q_1 \cdot Q_2}{r^2}$$

Costante di Coulumb: $K = \frac{1}{4\pi\epsilon} = \frac{1}{4\pi\epsilon_0\epsilon_r}$

1.2.3 Legge di Coulumb nel vuoto

$$F = K_0 \cdot \frac{Q_1 \cdot Q_2}{r^2}$$

Costante di Coulumb nel vuoto: $K_0 = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \frac{N \cdot m^2}{C^2}$

1.3 Campo elettrico

1.3.1 Intensità del campo elettrico

$$\begin{split} [E] &= [L][M][T]^{-3}[i]^{-1} \\ \frac{N}{C} &= \frac{V}{m} \end{split}$$

$$E = \frac{F}{q}$$

$$= K \cdot \frac{Q \cdot q}{r^2} \cdot \frac{1}{q}$$

$$= K \cdot \frac{Q}{r^2}$$

$$\mathbf{E} = \lim_{q \to 0} \frac{\mathbf{F}}{q}$$

1.3.2 Principio di sovrapposizione

$$\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \ldots + \mathbf{E}_n$$

$$= \sum_i \mathbf{E}_i$$

1.3.3 Campo generato da un dipolo elettrico

$$E_r = k \cdot \frac{2p \cdot \cos \theta}{r^3}$$

$$E_{\theta} = k \cdot \frac{2p \cdot \sin \theta}{r^3}$$

Momento di dipolo:

$$\vec{p} = q \cdot \vec{a}$$

1.4 Energia potenziale elettrica

$$[E_p] = [L]^2 [M] [T]^{-2}$$
 J

$$E_p = K \cdot \frac{Q \cdot q}{r}$$

1.5 Potenziale elettrico

$$\begin{split} [V_p] &= [L]^2 [M] [T]^{-3} [i]^{-1} \\ V &= \frac{J}{C} \end{split}$$

$$V_p = \frac{E_p}{q}$$

$$= K \cdot \frac{Q \cdot q}{r} \cdot \frac{1}{q}$$

$$= K \cdot \frac{Q}{r}$$

1.5.1 Potenziale elettrico per un sistema di cariche

$$V = V_1 + V_2 + \dots + V_n$$

$$= K \cdot \left(\frac{Q_1}{r_1} + \frac{Q_2}{r_2} + \dots + \frac{Q_n}{r_n}\right)$$

$$= \sum_i V_i$$

$$= \sum_i \frac{Q_i}{r_i}$$

1.5.2 Potenziale generato da un dipolo elettrico

$$V = K \cdot \frac{p \cdot \cos \theta}{r^2}$$

$$\theta < \frac{\pi}{2} \Rightarrow V > 0$$

$$\theta > \frac{\pi}{2} \Rightarrow V < 0$$

1.5.3 Tensione - Differenza di potenziale elettrico

$$V_A - V_B$$

$$L_{a \to B} = E_A - E_B$$

$$= -\Delta E$$

$$= q \cdot (V_A - V_B)$$

$$= -q \cdot \Delta V$$

1.5.4 Superfici equipotenziali

$$L = q \cdot (V_A - V_B) = 0$$

1.6 Teorema di Gauss

1.6.1 Flusso di un vettore

$$\Phi_S(\mathbf{E}) = \mathbf{E} \cdot \mathbf{S} = E \cdot S \cdot \cos \theta = E_n \cdot S$$

1.6.2 Teorema di Gauss

$$\Phi_S(\mathbf{E}) = \frac{Q}{\epsilon_0}$$

$$\Phi_S(\mathbf{E}) = \frac{1}{\epsilon_0} \cdot \sum_i Q_i$$

1.6.3 Conduttore sferico

$$E = K \cdot \frac{Q}{l^2}$$

$$V = K \cdot \frac{Q}{l}$$

1.6.4 Campo elettrico generato da un piano infinito di carica

$$E = \frac{\sigma}{2\epsilon_0}$$

Densità superficiale di carica elettrica:

$$\sigma = \frac{\Delta Q}{\Delta S}$$

1.7 Capacità di una conduttore

1.7.1 Capacità elettrostatica

$$[C] = [L]^{-2}[M]^{-1}[T]^4[i]^2$$

$$C = \frac{Q}{V}$$

$$F = \frac{C}{V}$$

1.7.2 Capacità di un conduttore sferico

$$C = \frac{Q}{V} = \frac{Q \cdot R}{K \cdot Q} = \frac{R}{K} = 4\pi\epsilon_0 \cdot R$$

1.8 Condensatori

1.8.1 Capacità di un condensatore

$$C = \frac{Q}{\Delta V}$$

1.8.2 Condensatore piano

$$C = \epsilon \cdot \frac{S}{d}$$

1.8.3 Condensatore sferico

$$C = \frac{4\pi\epsilon \cdot R_1 \cdot R_2}{R_2 - R_1}$$

1.8.4 Condensatore cilindrico

$$C = \frac{2\pi\epsilon \cdot l}{\log\left(\frac{R_2}{R_1}\right)}$$

1.8.5 Effetto di un dielettrico in un condensatore

$$\frac{C}{C_0} = \epsilon_r$$

1.8.6 Lavoro di carica di un condensatore

$$L = \frac{1}{2} \cdot \frac{Q^2}{C} = \frac{1}{2} \cdot C \cdot \Delta V^2$$

1.8.7 Condensatori in parallelo

$$C_1 = \frac{Q_1}{\Delta V} \dots C_n = \frac{Q_n}{\Delta V}$$

Capacità equivalente:

$$C_{eq} = C_1 + C_2 + \ldots + C_n = \frac{Q_1 + Q_2 + \ldots + Q_n}{\Delta V} = \frac{Q}{\Delta V}$$

Condensatori in serie:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$$

Elettronvolt:

$$L = q \cdot \Delta V$$

2 Corrente elettrica

2.1 Intensità di corrente

$$\begin{bmatrix} i \end{bmatrix}$$

$$A = \frac{C}{s}$$

$$i = \frac{\Delta Q}{\Delta t}$$

2.1.1 Effetto Volta

$$L = e \cdot V_i$$

2.1.2 Forza elettromotrice

$$\begin{split} [fem] &= [L]^2 [M] [T]^{-3} [i]^{-1} \\ V &= \frac{J}{C} \end{split}$$

$$fem = \frac{\Delta L}{\Delta q}$$

2.2 Le leggi di Ohm

2.2.1 I legge di Ohm

$$V_B - V_A = \Delta V = R \cdot i \Leftrightarrow R = \frac{\Delta V}{i}$$

Resistenza:

$$R = R_0 \cdot (1 + \alpha \cdot t)$$

Conduttanza:

$$c = \frac{1}{R}$$

2.2.2 II legge di Ohm

$$R = \rho \cdot \frac{l}{S}$$

Conducibilità del materiale:

$$\lambda = \frac{1}{\rho}$$

Resistività dei metalli:

$$\rho = \rho_0 \cdot (1 + \alpha \cdot t)$$

2.3 Effetto Joule

2.3.1 Energia dissipata

$$L = R \cdot i^2 \cdot \Delta t = \Delta V \cdot i \cdot \Delta t = \frac{(\Delta V)^2}{R} \cdot \Delta t$$

2.3.2 Potenza dissipata

$$P = \frac{L}{\Delta t} = R \cdot i^2 \cdot = \Delta V \cdot i = \frac{(\Delta V)^2}{R}$$

2.3.3 Calore dissipato

$$Q = \frac{R \cdot i^2 \cdot \Delta t}{4,186J/cal}$$

2.4 Resistenze in serio e in parallelo

2.4.1 Resistenze in serie

$$R_{eq} = R_1 + R_2 + \ldots + R_n = \sum_{i} R_i$$

2.4.2 Resistenze in parallelo

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n} = \sum_{i} \frac{1}{R_i}$$

2.4.3 Legge di Ohm per i circuiti chiusi

$$fem = (R+r) \cdot i = \Delta V + r \cdot i$$

2.5 Leggi di Kirchoff

2.5.1 I legge di Kirchoff

$$\sum_{i} i_i = 0$$

2.5.2 II legge di Kirchoff

$$\sum_{i} fem_{i} = \sum_{i} i_{i} \cdot R_{i}$$

2.6 Corrente elettrica nei liquidi

2.6.1 Leggi di Faraday

$$M = k \cdot Q$$

II legge di Faraday:

2.7 Corrente elettrica nei gas

2.7.1 Legge di Paschen

$$V = k \cdot P \cdot d$$

- 3 Magnetismo
- 3.1 Campo magnetico

3.2 Campo magnetico generato da una corrente elettrica

3.3 Induzione elettromagnetica

3.4 Correnti alternate

3.5 Elettromagnetismo