An ABC example: estimating the divergence time of primates

A short course on ABC lecture

DAMTP February 20 2017

Statistical inference on trees: timescales

- Introduction
- Primate fossil record
- Dating splits by ABC
- Today's posterior is tomorrow's prior: molecular data
- Conclusions

Charles Darwin (1809 - 1882)

Ernst Haeckel (1834-1919)

Haeckel tree of life (detail)

Haeckel tree of life (detail)

August Schleicher (1821-1868)

The Primates

Primate Evolution

Reconciling molecular and fossil records?

- Extant primates are strepsirrhines (lemurs and lorises) and haplorhines (tarsiers and anthropoids)
- Molecular estimate of time of divergence is approximately 90 mya
- Fossil record suggests 60-65 mya
- Fossil record is patchy

Problem: Use the fossil record to estimate the age of the last common ancestor of extant primates

Primate Data

Epoch	k	T_k	Observed number of species (D_k)
Late Pleistocene	1	0.15	19
Middle Pleistocene	2	0.9	28
Early Pleistocene	3	1.8	22
Late Pliocene	4	3.6	47
Early Pliocene	5	5.3	11
Late Miocene	6	11.2	38
Middle Miocene	7	16.4	46
Early Miocene	8	23.8	36
Late Oligocene	9	28.5	4
Early Oligocene	10	33.7	20
Late Eocene	11	37.0	32
Middle Eocene	12	49.0	103
Early Eocene	13	54.8	68
Pre-Eocene	14		0

The evolutionary process

What happened?

- Average sampling fraction of 5.7%
 - upper 95% limit 7.4%
- Estimated divergence time 81.5 mya
 - 95% CI (72.0, 89.6) mya

Tavaré, Marshall, Will, Soligo & Martin Nature, 2002

• Pravda, Times, BBC, ..., assorted religious fanatics, ...

Primate Evolution

Why more?

- Bayesian approach more natural
- Allows us to incorporate prior information
- Sampling fractions
 - probability of finding a fossil in bin i is α_i
 - $-\boldsymbol{\alpha}=\alpha\boldsymbol{p},\,\boldsymbol{p}$ known
 - reasonable?
- Other models for finds?
- Allowing for dinosaur extinction at K/T boundary?

Fossil record: ABC approach

Data can be thought of in two parts:

- (a) the observed number of fossils $F_{\rm obs}$ found
- (b) the proportions $p_{j, obs}$ found in jth bin

A suitable metric might be

$$\left| \frac{F}{F_{\text{obs}}} - 1 \right| + \sum_{j=1}^{k+1} |p_j - p_{j,\text{obs}}|$$

Results $\epsilon = 0.1$

Accepted 1/lambda values

0.008 0.010 0.012 Accepted gamma values

Hybrid ABC schemes

Some ABC technicalities

Sensitivity: Exploring Other Models

One advantage of ABC – it is easy to change the input . . .

- Choice of ρ
- Demography
- Sampling fractions
- K/T crash 65 mya
 - the time of origin of primates is even further back in the Cretaceous
- Poisson sampling scheme: length in bin matters
- Dating other split points

Hybrid ABC schemes: ABC-Gibbs

- J1 If currently at $\boldsymbol{\theta}=(\theta_1,\theta_2)$, draw θ_1' from $\pi(\theta_1|\mathcal{D},\theta_2)$ and set $\boldsymbol{\theta}=(\theta_1',\theta_2)$.
- J2 Draw θ_2' from $\pi(\theta_2)$ and simulate data \mathcal{D}' using parameter $\boldsymbol{\theta} = (\theta_1', \theta_2')$.
- J3 If $\mathcal{D} = \mathcal{D}'$, set $\boldsymbol{\theta} = (\theta_1', \theta_2')$ and return to step J1. Otherwise stay at $\boldsymbol{\theta} = (\theta_1', \theta_2)$ and return to step J2.

Steps J2 and J3 above are the mechanical version of the rejection algorithm which gives samples from $\pi(\theta_2|\mathcal{D},\theta_1)$.

By replacing step J3 with

J3' If $\rho(\mathcal{D}, \mathcal{D}') \leq \epsilon$, set $\boldsymbol{\theta} = (\theta_1', \theta_2')$ and return to step J1. Otherwise stay at $\boldsymbol{\theta} = (\theta_1', \theta_2)$ and return to step J2.

we can generate approximate draws from $\pi(\theta_2|\mathcal{D}, \theta_1)$.

 Could also use Approximate Metropolis-within-Gibbs and other variants

Dealing with Sampling Fractions

$$f(\pmb{\lambda},\tau,\mathcal{N},\pmb{\alpha}|\mathcal{D}) \propto \mathbb{P}(\mathcal{D}|\pmb{\alpha},\pmb{\lambda},\tau,\mathcal{N})\mathbb{P}(\mathcal{N}|\tau,\pmb{\lambda})f(\tau)f(\pmb{\lambda})f(\pmb{\alpha})$$
 where

- $\lambda = (\lambda, \gamma, \rho)$ growth parameters,
- $\alpha = (\alpha_1, \dots, \alpha_{14})$ sampling fractions
- \bullet \mathcal{N} is the underlying tree structure

Give sampling fractions independent Beta(a, b) priors

Gibbs-ABC Example

Split the random variable into two parts: α and $(\lambda, \tau, \mathcal{N})$

Sample from the two conditional distributions

- $f(\boldsymbol{\alpha} \mid \mathcal{D}, \boldsymbol{\lambda}, \tau, \mathcal{N})$
- $f(\tau, \lambda, \mathcal{N} \mid \mathcal{D}, \alpha)$

Conditional distribution of α

$$f(\boldsymbol{\alpha} \mid \mathcal{D}, \boldsymbol{\lambda}, \tau, \mathcal{N})$$

$$\propto f(\boldsymbol{\alpha}, \boldsymbol{\lambda}, \tau, \mathcal{N} \mid \mathcal{D})$$

$$\propto \mathbb{P}(\mathcal{N} \mid \tau, \lambda) f(\tau) f(\lambda) f(\boldsymbol{\alpha}) \mathbb{P}(\mathcal{D} \mid \tau, \boldsymbol{\lambda}, \mathcal{N}, \boldsymbol{\alpha})$$

$$\propto f(\boldsymbol{\alpha}) \mathbb{P}(\mathcal{D} \mid \mathcal{N}, \boldsymbol{\alpha})$$

$$\propto \Pi_{i=1}^{14} \alpha_i^{d_i} (1 - \alpha_i)^{N_i - d_i} \alpha_i^{a-1} (1 - \alpha_i)^{b-1}$$

$$\propto \Pi f_{\beta}(\alpha_i; d_i + a, N_i - d_i + b)$$

Posterior mean of $\alpha_i = \frac{a+d_i}{N_i+a+b} pprox \frac{d_i}{N_i}$

Conditional distribution of $(\tau, \lambda, \mathcal{N})$

$$f(\tau, \lambda, \mathcal{N}|\mathcal{D}, \alpha) \propto f(\lambda, \tau, \mathcal{N}, \alpha|\mathcal{D})$$

$$\propto \mathbb{P}(\mathcal{D}|\lambda, \alpha, \mathcal{N}, \alpha)\mathbb{P}(\mathcal{N}|\tau, \lambda)f(\tau)f(\lambda)$$

Simulate from this using ABC: accept $(\lambda, \tau, \mathcal{N})$ if $\rho(\mathcal{D}, \mathcal{D}') < \epsilon$, where \mathcal{D}' represents the simulated data

Metric and Priors

$$au \sim U[0, 100]$$

$$\alpha \sim U[0, 100]$$
 $\alpha \sim U[0, 0.6]$

$$\rho \sim U[0, 0.8]$$
 $\gamma \sim U[0.005, 0.015]$
 $1/\lambda \sim U[2, 3]$

$$\gamma \sim U[0.005, 0.015]$$

$$1/\lambda \sim U[2, 3]$$

$$a = 0.1$$

$$b = 1$$

$$\epsilon = 0.2$$

Same metric as before

No free lunches

Tweak metric

- The observed N_0 values are too small
 - require $N_0 > 235$
 - change the metric

$$\rho(\mathcal{D}, \mathcal{D}') = \sum_{i=1}^{k} \left| \frac{D_i}{D_+} - \frac{D_i'}{D_+'} \right| + \left| \frac{D_+'}{D_+} - 1 \right| + \left| \frac{N_0'}{N_0} - 1 \right|$$

• Penalises trees with N_0 values far from 235

Results: $\epsilon = 0.3$

	min	LQ	Median	mean	UQ	Max
N_0	184	212	224	226	238	279
au	0.0	8.0	18.6	26.3	36.8	99.5

Sensitivity: Exploring Other Models

One advantage of ABC – it is easy to change the input . . .

- Choice of ρ
- Demography
- Sampling fractions
- K/T crash 65 mya
 - the time of origin of primates is even further back in the Cretaceous
- Poisson sampling scheme: length in bin matters
- Dating other split points

Old World/New World Split

Epoch	k	T_k	$\begin{array}{c} {\sf Hap/Strep} \\ {\sf number \ of} \\ {\sf species \ } (D_k) \end{array}$	$\begin{array}{c} {\sf Plat/Cat} \\ {\sf number \ of} \\ {\sf species \ } (D_k^*) \end{array}$
Late Pleistocene	1	0.15	19	19
Middle Pleistocene	2	0.9	28	28
Early Pleistocene	3	1.8	22	22
Late Pliocene	4	3.6	47	44
Early Pliocene	5	5.3	11	10
Late Miocene	6	11.2	38	33
Middle Miocene	7	16.4	46	43
Early Miocene	8	23.8	36	30
Late Oligocene	9	28.5	4	3
Early Oligocene	10	33.7	20	6
Late Eocene	11	37.0	32	2
Middle Eocene	12	49.0	103	0
Early Eocene	13	54.8	68	
Pre-Eocene	14		0	

Dating Two Splits

Details

- $N_0=235$ species for the Strep/Hap,
- $\epsilon = 0.4$ for both metrics

	min	LQ	Median	mean	UQ	Max
$\overline{N_0}$	159	212	234	233	254	303
au	0.9	12.1	17.6	20.1	25.3	94.5
$ au^*$	1.6	14.5	18.2	19.6	23.5	82.9

The median posterior sampling fractions ($\times 100$)

								_		•	,	
	α_1	α_2	α_4	α_5	α_6	α_8	α_9	α_{10}	α_{11}	α_{12}	α_{13}	α_{14}
Г	8	10	12	3	6	7	1	8	22	41	80	1
L	8	8	8	4	4	4	1	4	8	8	8	1

Posteriors

Dating Two Splits, revisited

The structure of branching processes

- Our approach to inferring multiple split points is heuristic
- What other approaches might work?
- Consider conditioning the process on a split at a fixed time
 - leads to a size-biassed GW process
 - For ABC, need to be able to simulate the process
 - Can use rejection . . .

A(nother) fishbone process

Which metric?

$$\rho(\mathcal{D}, X) = \sum_{i=1}^{14} \left| \frac{D_i}{D_+} - \frac{X_i}{X_+} \right| + \left| \frac{X_+}{D_+} - 1 \right| + \left| \frac{X_0}{N_0} - 1 \right|.$$

Match up:

- Proportions of fossils observed in each bin
 - Total number of fossils observed
 - Number of extant species

What happened?

Combining fossil record with molecular data

Yesterday's posterior is tomorrow's prior . . .

- Estimate posterior for two primate divergence times
- Use as prior for dating nodes from molecular data (mcmctree)

Data are updated from earlier analysis

The posteriors

The phylogeny of the species (Poisson model)

The molecular data

References

- ST, Marshall C, Will O, Soligo C & Martin R (2002)
 Using the fossil record to estimate the age of the last common ancestor of extant primates. *Nature*, 416, 726–729
- Wilkinson R & ST (2009) Estimating primate divergence times by using conditioned birth-and-death processes. Theoretical Population Biology, 75, 278–295
- Wilkinson R, Steiper M, Soligo C, Martin R, Yang Z & ST (2011) Dating primate divergences through an integrated analysis of palaeontological and molecular data. Systematic Biology, 60, 16–31.