CSI2110 Data Structures and Algorithms

Heaps

- Heaps
- Properties
- · Deletion, Insertion, Construction
- Implementation of the Heap
- Implementation of Priority Queue using a Heap
- · An application: HeapSort

Heaps (Min-heap)

Complete binary tree that stores a collection of keys (or key-element pairs) at its <u>internal</u> nodes and that satisfies the <u>additional property</u>:

 $key(parent) \leq key(child)$ REMEMBER: complete binary tree all levels are full, except the last one, which is left-filled 3

Max-heap

$key(parent) \ge key(child)$

We store the keys in the internal nodes only

After adding the \square leaves the resulting tree is full

Height of a Heap

- Theorem: A heap storing n keys has height O(log n)
 Proof:
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h 2 and at least one key at depth h 1, we have $n \ge 1 + 2 + 4 + ... + 2^{h-2} + 1$
 - Thus, $n \ge 2^{h-1}$, i.e., $h \le \log n + 1$

Notice that

- We could use a heap to implement a priority queue
- We store a (key, element) item at each internal node

removeMin():

- → Remove the root
- → Re-arrange the heap!

Removal From a Heap

- The removal of the top key leaves a hole
- We need to fix the heap
- First, replace the hole with the last key in the heap
- · Then, begin Downheap

RemoveMin()

Downheap

· Downheap compares the parent with the smallest child. If the child is smaller, it switches the two.

Downheap Continues

Downheap Continues

End of Downheap

Downheap terminates when the key is greater than the keys of both its children or the bottom of the heap is reached. 12

• (total #swaps) $\leq (h-1)$, which is $O(\log n)$

Heap Insertion

The key to insert is 6

Heap Insertion

Add the key in the *next available position* in the heap.

Now begin *Upheap*.

Upheap

· Swap parent-child keys out of order

Upheap Continues

End of Upheap

- Upheap terminates when new key is greater than the key
 of its parent c≤ the top of the heap is reached
- (total #swaps) (h 1), which is O(log n)

Heap Construction

We could insert the Items one at the time with a sequence of Heap Insertions:

$$\sum_{k=1}^{n} \log k = O(n \log n)$$

But we can do better

O(n) using Bottom-up Heap Construction

Bottom-up Heap Construction

 We can construct a heap storing n given keys using a bottom-up construction

Construction of a Heap

Idea: Recursively re-arrange each sub-tree in the heap starting with the leaves

Example 1 (Max-Heap)

--- keys already in the tree ---

I am now drawing the leaves anymore here

 $\underline{4} \leftrightarrow 9$

This is not a heap!

 $\underline{4} \leftrightarrow 7$

Finally: $\underline{2} \leftrightarrow 10$

--- keys given one at a time ---

Example 2 (min-heap)

[20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

20,23,7,6,12,4,15,16,27,11,5,25,8,7,10]

Analysis of Heap Construction

Number of swaps

Analysis of Heap Construction

Number of swaps

At level i the number of swaps is

∠ L-i for each node

At level i there are ≤ 2 nodes

Total:
$$\leq \sum_{i=0}^{L} (L - i) \cdot 2^{i}$$

Calculating $O(\Sigma(L - i)\cdot 2^i)$

Let
$$j = L-i$$
, then $i = L-j$ and $\sum_{i=0}^{L} (L-i)\cdot 2^{i} = \sum_{j=0}^{L} j 2^{L-j} = 2^{L} \sum_{j=0}^{L} j 2^{-j}$

Consider $\Sigma \mathbf{j} \cdot \mathbf{2}^{-\mathbf{j}}$:

$$\sum_{j=1}^{2} j \cdot 2^{-j} = 1/2 + 2 \cdot 1/4 + 3 \cdot 1/8 + 4 \cdot 1/16 + \cdots < = 1$$

$$= 1/2 + 1/4 + 1/8 + 1/16 + \cdots < = 1/2$$

$$+ 1/4 + 1/8 + 1/16 + \cdots < = 1/4$$

$$\sum_{j} \cdot 2^{-j}$$
 \leftarrow 2
So $2^{L} \sum_{j} 2^{-j} \leftarrow 2 \cdot 2^{L} = 2n$ where L is $O(\log n)$

$$2^{L} \sum_{j=1}^{L} j/2^{j} \leq 2^{L+1} = 2n$$

Where L is O(log n)

O(n)

So, the number of swaps is $\leq O(n)$

Review

- Geometric Sum: f(i) = aⁱ
- The geometric progressions have an exponential growth

$$S = \sum_{i=0}^{n} r^{i} = 1 + r + r^{2} + ... + r^{n}$$

$$rS = r + r^{2} + ... + r^{n} + r^{n+1}$$

$$rS - S = (r-1)S = r^{n+1} - 1$$

$$S = (r^{n+1}-1)/(r-1)$$
If $r=2$, $S = (2^{n+1}-1)$

Implementing a Heap with an Array

A heap can be nicely represented by a vector (array-based), where the node at rank i has

- left child at rank 2i

and

- right child at rank 2i + 1

1 2	2 3	4	5	6	7	8
-----	-----	---	---	---	---	---

The leaves do no need to be explicitly stored

Reminder

Left child of T[i]	T[2i]	if	$2i \le n$
Right child of T[i]	T[2i+1]	if	$2i + 1 \le n$
Parent of T[i]	T[i div 2]	if	i > 1
The Root	T[1]	if	$T \neq 0$
Leaf? T[i]	TRUE	if	2i > n

Implementation of a Priority Queue with a Heap

(remove root + downheap)

Application: Sorting Heap Sort

Construct initial heap O(n)

remove root O(1)re-arrange $O(\log n)$ times remove root O(1)re-arrange $O(\log (n-1))$...
...

When there are i nodes left in the PQ: Llog i

$$\rightarrow$$
TOT = $\sum_{i=1}^{n} \lfloor \log i \rfloor$

$$= (n + 1)q - 2^{q+1} + 2$$
 where $q = \lfloor \log (n+1) \rfloor$

 $O(n \log n)$ \square The heap-sort algorithm sorts a sequence S of n elements in O(n log n) time

> Remember it was the $O(n^2)$ running time of selectionsort and insertion-sort

Heap Sort animation

 https://www.youtube.com/watch?v=MtQL ll5KhQ

HeapSort in Place

Instead of using a secondary data structure P to sort a sequence S, We can execute heapsort « in place » by dividing S in two parts, one representing the heap, and the other representing the sequence. The algorithm is executed in two phases:

- ✓ Phase 1: We build a max-heap so to occupy the whole structure.
- ✓ Phase 2: We start with the part « sequence » empty and we grow it by removing at each step i (i=1..n) the max value from the heap and by adding it to the part « sequence », always maintaining the heap properties for the part « heap ».

Now the part heap is smaller, the part Sequence contains a single element.

Not a heap anymore!

Not a heap anymore!

Not a heap anymore!

Now it is a heap again!

Restructure 13 14 19 20 22

Restructure 15 10 11 19 20 22

Pseudocode for in-place HEAPSORT (based on wikipedia pseudocode)

```
procedure heapsort(A,n) {
 input: an unordered array A of length n
 heapify(A,n) // in O(n) with bottom-up heap construction
                 // or in O(n log n) with n heap insertions
// Loop Invariant: A[0:end] is a heap; A[end+1:n-1] is sorted
  end \leftarrow n - 1
  while end > 0 do
     swap(A[end], A[0])
     end \leftarrow end - 1
     downHeap(A, 0, end)
```

```
Procedure downHeap(A, start, end) {
  root \leftarrow start
  while root * 2 + 1 \le end do (While the root has at least one child)
     child \leftarrow root * 2 + 1 (Left child)
     swap ← root (Keeps track of child to swap with)
     if A[swap] < A[child]
        swap ← child
     (If there is a right child and that child is greater)
     if child+1 \le end and A[swap] < A[child+1]
        swap \leftarrow child + 1
     if swap = root
        (case in which we are done with downHeap)
        return
     else
        swap(A[root], A[swap])
        root \leftarrow swap (repeat to continue downHeap the child now)
```

```
procedure heapify(A, n)
  (start is assigned the index in 'A' of the last parent node)
  (the last element in a 0-based array is at index n-1;
  find the parent of that element)
  start \leftarrow floor ((n-2)/2)
  while start \geq 0 do
     (downHeap the node at index 'start' to the proper place)
     downHeap(A, start, n - 1)
     (go to the next parent node)
     start \leftarrow start - 1
// after this loop array A is a heap
```