

FIGURE 1

MRTLACLLL MNRCWA.LFL	100 IDSVGSEDSL GDP.GEEDGA PAVPPQQW HAKWSQAA QAPVSQP	AVCKTRTVIY AECKTRTEVF SYCRALERLV SYCHPIETLV ATCOPREVV TQCMPREVCI	200 RVHHRSVKVA QVQLRPVQVR ETANVTMQLL EESNITMQIM GQHQVRMQIL STSYLSKTLF
AFESGLDLSD	SIRDLQRLLE SFDDLQRLLH LLAGLAL WSLALLLYLH LAALLQLAPA	SLTIAEPAMI	NTSSVKCQPS NNRNVQCRPT GDENLHCVPV NDEGLECVPT PDDGLECVPT NSEGLQCMNT
GPREAPAAAA	IERLARSQIH YEMLSDHSIR RLFPCFLQ NFLLSWVH SPLLRRLL TVLYPEYWKM	LPIRRKRSI. .LARGRRSLG FQE.VWGR FMD.VYQR WID.VYTR	VEVKRCTGCC VEVQRCSGCC VSLLRCTGCC VPLMRCGGCC VTVQRCGGCC
	AEEAEIPREV AEGDPIPEEL MPVM M	ATKHVPEKRP SGGELES NGSSEVEVVP GGQNHHEVVK APGHQKKVVS	SANFLIWPPC NANFLWWPPCEHMFSPSCEXIFKPSCAKQLVPSC
MHLIGFFSVA CSLIAAALL	51 IGGGYLAHVL AEEAEIPREV SLCCYIRLVS AEGDPIPEEL MPVM NAWW	101 DTSLRAHGVH ELDLNMTRSHPMSAGPMAEG	151 EIPRSQVDPT EISRRLIDRT DUVSEYPSEV DIFQEYPDEI PLTVELMGTV DVGKEFGVAT
PDGF-B PDGF-B P1GF-1 VEGF-165 VEGF-B167	PDGF-A PDGF-B PIGF-1 VEGF165 VEGF-B167	PDGF-A PDGF-B PIGF-1 VEGF-167 VEGF-B167	PDGF-A PDGF-B PLGF-1 VEGF165 VEGF-B167 VEGF-C

250 TSLNPDYREE GSQEQRAKTP	VPRR CSERRKH CPRCTQH	350 RCDKPRR RCRKLRR QCVCKNKLFP SQCGANREFD
AARPVTRSPG EK DR DVYRQVHSII	LKETLGA .MKPERCGDA .ARQENPCGP AVKPDSPRPL	
HLECACAT HLACKCETVA HVRCECRPLR HNKCECRPKK HSQCECRPKK HSQCECRPKK	VRRPFKGKHR KFKHTHDKTA	
LKEVQVRLEE FKKATVTLED .SYVELTFSQ .HIGEMSFLQ		301 ODPOTCKCSC KNTDS.RCKA PDDRTCRCRC RRRSFLRCQG LDEETCQCVC RAGLRPASCG
KVEYVRKKPK KIEIVRKKPI KIRSGDRP RIKPHQGQ MIRYPSSQ	251 DTDVR QTRVTIRTVR	301 ODPQTCKCSC PDPRTCRCRC LDEETCQCVC
201 PDGF-A PDGF-B PIGF-1 VEGF165 VEGF-B167	PDGF-A PDGF-B PIGF-1 VEGF165 VEGF-B167	PDGF-A PDGF-B P1GF-1 VEGF165 VEGF-B167

FIGURE 2 B

400					Control of the contro	ENTCOCVCKR TCPRNOPLNP GKCACECTES POKCLLKGKK FHHUTCSCIK		434						
351						ENTCQCVCKR		401						
	PDGF-A	PDGF-B	P1GF-1	VEGF165	VEGF-B167	VEGF-C			PDGF-A	PDGF-B	PlGF-1	VEGF165	VEGF-B167	

FIGURE 2 C

FIGURE 3

Relative luciferase activity

VEGF-C alignment

Hum Mou Qua	1 50 HMLLGFF6VA CSLLAAALLP GPREAPAAAA AFESGLDLSD AEPDAGEATA MHLLCFLSLA CSLLAAALIP SPREAPATVA AFESGLGFSE AEPDGGEVKA MHLLEMLSLG CCLAAGAVLL GPROPPVA.A AYESGHGYYE EEPGAGEPKA
Hum Mou Qua	51 YASKOLEEQL RSVSSVDELM TVLYPEYWKM YKCQLRKGGW QHNREOANLN FEGKOLEEQL RSVSSVDELM SVLYPDYWKM YKCQLRKGGW QQPTLN HASKOLEEQL RSVSSVDELM TVLYPEYWKM FKCQLRKGGW QHNREHSSSD
Hum Mou Qua	101 SRTEETIKFA AAHYNTEILK SIDNEWRKTQ CMPREVCIDV GKEFGVATNT TRTGDSVKFA AAHYNTEILK SIDNEWRKTQ CMPREVCIDV GKEFGAATNT TRSDDSLKFA AAHYNAEILK SIDTEWRKTQ GMPREVCVDL GKEFGATTNT
Hum Mou Qua	250 FFKPPCVBVY RCGGCCNSEG LQCMNTETSY LSKTLFEITV PLSQGPKPVT FFKPPCVSVY RCGGCCNSEG LQCMNTETGY LSKTLFEITV PLSQGPKPVT FFKPPCVSIY RCGGCCNSEG LQCMNISTNY ISKTLFEITV PLSHGPKPVT
Hum Mou Qua	250 IEFANHTECR CHEKLDYYRQ VHEIIRRELP ATLPQCQAAN KTCPTNYWN IEFANHTECR CHEKLDYYRQ VHEIIRRELP ATLPQCQAAN KTCPTNYWN VEFANHTECR CHEKLDYYRQ VHEIIRRELP ATQTQCHVAN KTCPKNHVWN
Hum Mou Qua	251 NHICRCLAQE DFMFSBDAGD DSTDGFHDIC GPNKELDEET CQCVCRAGLR NYMCRCLAQQ DFIFYSNVED DSTNGFHDVC GPNKELDEDT CQCVCKGGLR NQTCRCLAQH DFGFSSHLGD SDTSEGFHIC GPNKELDEET CQCVCKGGVR
Hum Mou Qua	301 PASCGPHKEL DRNSCQCVCK NKLFPSQCGA NREFDENTCQ CVCKRTCPRN PSSCGPHKEL DRDSCQCVCK NKLFPNSCGA NREFDENTCQ CVCKRTCPRN PISCGPHKEL DRASCQCMCK NKLLPSSCGP NKEFDEEKCQ CVCKRTCPKH
Hum Mou Qua	351 OPLNPGKCAC ECTESPOKCL LKGKKFHHOT CSCYRRPCTN ROKACEPFGL OPLNPGKCAC ECTENTOKCF LKGKKFHHOT CSCYRRPCAN RLKHCDPGLS HPLNPGKCAC ECTESPNKCF LKGKRFHHOT CSCYRPPCTV RTKRCDAGFL
Hum Mou Qua	

FIGURE 5

8 / 16

FIGURE 6A

SUBSTITUTE SHEET (RULE 26)

Non-reducing

FIGURE 6B

WO 98/33917 PCT/US98/01973

10 / 16

LYSATES

MEDIA

11 / 16

FIGURE 8A

FIGURE 9

16 13 TODSUKFAAAHYNTELLKSIDNEWRKTQCMPREVCIDUGKEFGAATNTFFKPPCVSVTRCGGCCNSEGLQCMNTSTGYLSKTLFEITVPLSGGFKPVTISFANHTSGRCHSKLDVYRQVHSIIR FESGLGFSEAEPDGGEVKAPEGKNLEEQLRSVSSVDELMSVLYPDYWKMYKCQLRKGGWQ....QPTLNTRDL.D....A..AT.YAS.D.:.....T...E......HNRB.AN..S. FIGURE 10 RSLPATLQCQAANKTCPTNYVWNNYMCRCLAQQDFIFYSNVEDDSTNGFHDVJCGPNKELDEDTCQCVCKGGLRPSS CGPHKELDRDSCQCVCKNKLFPNS N-terminal propeptide ₹....A. CGANREFDENTCQCVCKRT BR3P homology VEGF homology CPRNOPLAPGKCACECВ ZE..M.S.DAG....D....T 31 32 MHLLCFLSLACLLAAALIPSPREAPATVAAG.F.V.....L.G.....AA.. CANRLKHCDPGLSFSEEVCRGVPSYWKRPHLN T. Q.A.E. .GF.Y.QMS Signal sequence TENTOKCFLKGKKFHHOTCSCYRRPн.т.SP...L.... human mouse

HUMAN Exon length	Donor site	Intron length	Acceptor site	
	3AT(49)		YAS. F.TAT.GCA.AGC	
E2.214.bpGAG.A	rc.rrg.aaa.agtaagtatgg .rc.rrg.aaa.agtaagtatgg	E2.214.bp. GAG.ATC.TTG.AAA.Agtaagtatggg1.6.kbatgacttgacagGT.ATT.GAT.AAT T. S. KT(180)	T.ATT.GAT.AAT	-
E3.191.bpCTC.A	GC.AAG.ACG.gtggggtattgl .LPQ(231)	E3 191 bp. CTC.AGC.AAG.GCgtgggtattgt9.kb.cccttcttgtag.11A.111.GAA.AA.BA.AA.AA.AA.AA.AA.AA.AA.AA.AA.AA.A	T. CAG. GCA. GCG	
E4.152.bpACA.C	TA.CCA.CAgtgagtatgaat .GD(266)	E4.152.bpACA.CTA.CCA.CAgtgagtatgaattaaa.s.lo.koccccccasgo.c	STD.	
ES.107.bpGCT.C	GA.GAT.Ggtagcagaatg TCS(378)	E5.107.bpGCT.GGA.GAT.Ggtagcagaacg	TAC.AGA.CGG	
E6.334.bpCAA.	E6.334.bpCAA.ACA.TGC.AGgtaagagatccro .0mS(419)Stop	E6.334.bpCAA.ACA.TGC.AGgtaagagatcctu.xu.rg.cccc.gcccccgg.		
E7. (501).bpCA	E7. (501).bpcaa.arg.agc.raa.grargracrgrrarrgrarrar	TGTTAITGTAITAI		

FIGURE 11A

MOUSE

FIGURE 11B

E7.506.bp..CAT.CTG.AAC.TAA.GATCATACC...ATTGTATTATAAgctgtgaag

Schematic structure of the human VEGF-C gene

FIGURE 12

SUBSTITUTE SHEET (RULE 26)