TD_magjanvaz_enunciado

2022-10-09

```
rm(list=ls())
source("teoriadecision_funciones_incertidumbre.R")
```

Enunciado

Una pareja está organizando el cumpleaños de su hijo de 7 años Ha invitado a 10 compañeros de clase, pero solo 5 de ellos han confirmado que irán, y 1 de ellos avisó de que no podrá. De modo que en la fiesta, contando al cumpleañero, habrá entre 6 y 10 niños, pero no pueden saber cuántos irán. Las opciones que tienen para celebrarlo son: alquilar un castillo hinchable para poner en su jardín, que cuesta $70 \, \in \, y$ tiene capacidad para todos los niños al mismo tiempo, y preparar ellos la merienda, que costaría $5 \, \in \, por$ cada niño, además de la tarta que son $15 \, \in \, o$. Otra opción que se plantean es llevarlos a una piscina de bolas, que cuesta $15 \, \in \, o$ por niño, e incluye la merienda y el entretenimiento.

Esquema

El problema presenta un modelo de costes (desfavorable)

Hay dos posibles elecciones:

- -Castillo hinchable
- -Piscina de bolas

Hay cinco posibles estados de la naturaleza:

- -Hay 6 niños en el cumpleaños
- -Hay 7 niños en el cumpleaños
- -Hay 8 niños en el cumpleaños
- -Hay 9 niños en el cumpleaños
- -Hay 10 niños en el cumpleaños

Resolución

Veamos los costes que presenta cada tipo de fiesta según la cantidad de niños que acudan. Lo calculamos de forma vectorial para mayor facilidad y optimizar el script.

```
castillo = 6:10*5+70+15; castillo
```

```
## [1] 115 120 125 130 135
```

```
piscina = 6:10*15; piscina
```

```
## [1] 90 105 120 135 150
```

En caso de querer crearlas de la forma habitual, casilla por casilla para que sea más intuitivo, podríamos hacer un bucle para cada alternativa:

```
castillo2= numeric(5)

for (i in 1:5){
   niños=i+5;
   castillo2[i] = niños*5+70+15;
}
```

[1] 115 120 125 130 135

```
piscina2=numeric(5)

for(i in 1:5){
   niños=i+5;
   piscina2[i]=niños*15;
}

piscina2
```

[1] 90 105 120 135 150

Ahora con ambos vectores construimos la matriz para nuestro problema, y lo evaluamos según todos los métodos que conocemos.

											Punto	
	e1	e2	e3	e4	e5	Wald	Optimista	Hurwicz	${\bf Savage}$	Laplace	Ideal	Conteo
$\overline{d1}$	115	120	125	130	135	135	115	125	25	125	29.58	1
d2	90	105	120	135	150	150	90	120	15	120	15.81	5
iAlt.Opt (Desfav.)	_	-	-	-	-	d1	d2	d2	d2	d2	d2	d2

Como podemos ver, si el único criterio para elegir el plan del cumpleaños es minimizar el coste la **mejor opción** es la **piscina de bolas**, salvo que los padres opten por la estrategia "**pesimista**" en la cuál se plantean que el número máximo de amigos de su hijo acudirían al cumpleaños y en cuyo caso la opción más rentable sería el **castillo hinchable**.