# **PETfold:**

# About RNAs which do not fold into the lowest free energy

Stefan E Seemann

Bled (Slovenia), 19th February 2008

# **Outline**

- Motivation
- ❖ PETfold –

**Combined Model** 

- ❖ Pfold Model
- Parameter tuning
- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

Motivation
PETfold – Combined Model
Pfold Model
Parameter tuning
Performance
Conclusion
Further work
PETfold v1.0

### **Motivation**

#### Motivation

- ❖ PETfold Combined Model
- ❖ Pfold Model
- Parameter tuning
- Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

### H/ACA box small nucleolar RNA

- class of 'housekeeping' non-coding RNAs
- guides chemical modifications of RNA genes (methylation or pseudouridylation)
- mostly target ribosomal RNAs and spliceosomal RNAs



## Snake H/ACA box small nucleolar RNA

#### Motivation

- ❖ PETfold Combined Model
- ❖ Pfold Model
- Parameter tuning
- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

- Rfam family HACA\_Sno\_Snake (RF00098)
  - → 22 sequences, 86.85% MPI



## **PETfold** – Combined Model

Motivation

### ❖ PETfold – Combined Model

- ❖ Pfold Model
- Parameter tuning
- Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

Former methods combining the duality of energy minimization and evolutionary conservation:

- FOLDALIGN, Dynalign, PMcomp and LocARNA using Sankoff algorithm
- Stemloc and Consan are SCFG based approaches without energy model
- CMfinder combines implicitly energy contribution with SCFG

### PETfold- combined model:

- Probabilistic Evolutionary and Thermodynamic folding
- Functional boxes are sequencial & structural conserved
- Natural unselected subsequence folds in energetic stable structure

# **Pfold Model**

- Motivation
- ❖ PETfold Combined Model

### ❖ Pfold Model

- Parameter tuning
- ❖ Performance
- Conclusion
- ❖ Further work
- ❖ PETfold v1.0







# **PETfold – Combined Model**

- Motivation
- ❖ PETfold Combined Model

#### ❖ Pfold Model

- Parameter tuning
- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

Pfold model: Combined SCFG multiplying rule probs with phylogenetic tree probs

PETfold extension of folding energy probs and structural constraints



# PETfold - Combined Model

- Motivation
- ❖ PETfold Combined Model

#### ❖ Pfold Model

- Parameter tuning
- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

## **Maximum Expected Accuracy**

Search consensus structure with maximal expected overlap.
Reliability score in Pfold:

$$\mathcal{R}_{A,T,M}(i,j) = \sum_{(i,j) \in \sigma} \mathsf{Pr}_{\tau_M(\sigma)}(\mathsf{r}(\sigma),A)$$

 $\Pr_{\tau_M(\sigma)}(\mathsf{r}(\sigma),A)$  ... probability distribution on consensus structures Combined evolutionary and thermodynamic model:

$$\begin{split} \text{ex-over}(\sigma) &= \sum_{(i,j) \in \sigma} \left( \mathcal{R}_{A,T,M}(i,j) + \frac{\beta}{n} \sum_{u} p_{f_A^{-1}(i,j)}^{s_u} \right) \\ &+ \sum_{i \in \text{sg}(\sigma)} \alpha \left( \mathcal{R}^{\text{sg}}{}_{A,T,M}(i) + \frac{\beta}{n} \sum_{u} q_{f_A^{-1}(i)}^{s_u} \right) \end{split}$$

# **PETfold – Combined Model**

- Motivation
- ❖ PETfold Combined Model

#### ❖ Pfold Model

- Parameter tuning
- Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

### Free parameters:

- $\alpha$  ... weights single-stranded against base pair positions ( $\alpha \leq 0.5$ )
- ullet  $\beta$  ... thermodynamic overlap ( $\beta=1$ )
- Reliability threshold of conserved functional substructure → assumption: highly evolutionary reliable substructures are functional
  - $lacktriangle p_{bp}^{threshold}$  ... minimal base paired reliability

# Parameter tuning

- Motivation
- ❖ PETfold Combined Model
- ❖ Pfold Model

### Parameter tuning

- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

### CMfinder SARSE dataset

- Rfam seed alignments of 46 RNA families
  - → 17 families used in former evaluations <sup>1</sup> and
     29 with high quality alignment according SARSE project<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Z Yao et al., Bioinformatics 2006; E Torarinsson et al., Bioinf. 2007 <sup>2</sup>E S Andersen et al., RNA 2007

# Parameter tuning

- Motivation
- ❖ PETfold Combined Model
- Pfold Model

### Parameter tuning

- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

### Mean MCCs of test data to Rfam structures



(
$$\alpha=0.2$$
 and  $0.1 \leq p_{ss}^{threshold} \leq 1$  and  $0.1 \leq p_{bp}^{threshold} \leq 1$ )

# Parameter tuning

- Motivation
- ❖ PETfold Combined Model
- ❖ Pfold Model

### Parameter tuning

- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

### Mean MCCs of test data to Rfam structures



(several 
$$\alpha$$
 and  $0.9 \le p_{ss}^{threshold} \le 1$  and  $p_{bp}^{threshold} = 0.9$ )

# **Performance**

- Motivation
- ❖ PETfold Combined Model
- ❖ Pfold Model
- Parameter tuning

### ❖ Performance

- Conclusion
- Further work
- ❖ PETfold v1.0

|                   | $PPV^3$ | SEN <sup>4</sup> | ACC <sup>5</sup> | MCC <sup>6</sup> | $R_5{}^{7}$ |
|-------------------|---------|------------------|------------------|------------------|-------------|
| PETfold           | 0.852   | 0.876            | 0.864            | 0.850            | 0.722       |
| Pfold             | 0.662   | 0.843            | 0.747            | 0.710            | 0.575       |
| <b>RNAalifold</b> | 0.758   | 0.842            | 0.799            | 0.789            | 0.652       |

<sup>&</sup>lt;sup>3</sup>Positive predictive value

<sup>&</sup>lt;sup>4</sup>sensitivity

<sup>&</sup>lt;sup>5</sup>accuracy

<sup>&</sup>lt;sup>6</sup>Matthews correlation coefficient

 $<sup>^{7}</sup>R_{5}$  correlation coefficient

# **Conclusion**

- Motivation
- ❖ PETfold Combined Model
- Pfold Model
- Parameter tuning
- Performance

#### Conclusion

- ❖ Further work
- ❖ PETfold v1.0

- Base pairs with higher impact than single-stranded positions
- Structurally conserved RNA-motifs are supported by folding energy
- Performance increasement by fusion of evolutionary and thermodynamic information
- Parameter settings as suggestion cases where evolutionary conservation is more important
- Conservation thresholds are correlated to number of substructures in alignment (as measured by Pcluster)

# **Further work**

- Motivation
- ❖ PETfold Combined Model
- ❖ Pfold Model
- Parameter tuning
- ❖ Performance
- Conclusion
- ❖ Further work
- ❖ PETfold v1.0

 Correlation between the diversity of alignments and evolutionary constraints



## PETfold v1.0

- Motivation
- ❖ PETfold Combined Model
- ❖ Pfold Model
- Parameter tuning
- ❖ Performance
- Conclusion
- Further work

#### ❖ PETfold v1.0

PETfold.pl –fasta example/example.fasta

# Acknowledgement

- Motivation
- ❖ PETfold –

**Combined Model** 

- ❖ Pfold Model
- Parameter tuning
- ❖ Performance
- Conclusion
- Further work
- ❖ PETfold v1.0

- Rolf Backofen
- Jan Gorodkin
- Bjarne Knudsen
- Ivo Hofacker