

Description

The VSM4N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =60V, I_{D} =4.5A $R_{DS(ON)}$ < 45mΩ @ V_{GS} =10V (Typ: 38mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM4N06-S8	VSM4N06	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

<u> </u>			
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	4.5	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	3.0	А
Pulsed Drain Current	I _{DM}	20	А
Maximum Power Dissipation	P _D	2	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient ^(Note 2)	$R_{\theta JA}$	62.5	°C/W

Electrical Characteristics (T_A=25 $^{\circ}$ C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	69	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	2.0	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =4.5A		38	45	
Forward Transconductance	g FS	V _{DS} =5V,I _D =4.5A	11	-	-	S
Dynamic Characteristics (Note4)	<u>'</u>		•			
Input Capacitance	C _{lss}			450		PF
Output Capacitance	C _{oss}	V _{DS} =25V,V _{GS} =0V,		60		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz		25		PF
Switching Characteristics (Note 4)	•		•	•		
Turn-on Delay Time	t _{d(on)}		-	4.7	-	nS
Turn-on Rise Time	t _r		-	2.3	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{Ds} =30V, I_{D} =4.5A V_{GS} =10V, R_{GEN} =3 Ω		15.7	-	nS
Turn-Off Fall Time	t _f			1.9	-	nS
Total Gate Charge	Qg	V _{DS} =30V,I _D =4.5A,	-	8.5	-	nC
Gate-Source Charge	Q _{gs}		_	1.6	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V		2.2	-	nC
Drain-Source Diode Characteristic	cs					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =4.5A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	4.5	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, I _F =4.5A	-	25	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$		35	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD))

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

T_J-Junction Temperature(°C)

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Vds Drain-Source Voltage (V)
Figure 8 Safe Operation Area

T_J-Junction Temperature(℃)

Figure 9 BV_{DSS} vs Junction Temperature

T_J-Junction Temperature(℃)

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance