United College of Engineering and Research, Prayagraj Department of Computer Science

$\begin{array}{c} {\rm B.Tech(2020\text{-}21)} \\ {\rm Discrete~Structures~and~Theory~of~Logic(KCS~303)} \\ {\rm Assignment\text{-}1} \end{array}$

QNo.	Question	CO	Bloom's
		Type	level
1	Show that the relation R on the set Z of integers given by $R = \{(a,b): 3 \text{ divides } (a-b)\},\$	CO1	L3
	is an equivalence relation.		
2	Let R be a relation on the set of natural numbers N, as $R = \{(x,y) \mid x,y \in N, 3x+y = 0\}$	CO1	L2
	19}. Find the domain and range of R. Verify whether R is reflexive.		
3	Prove that $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{(n+1)}$	CO1	L4
4	If set A has 3 elements then find the number of symmetric relations defined on set A.	CO1	L3
5	If $f: A \to B$ is one-one onto mapping, then prove that $f^{-1}: B \to A$ will be also one-one onto mapping.	CO1	L4
6	If $D(n)$ is the set positive odd integers i.e. $D(n) = \{1,3,5,7,\ldots\}$, then prove with the	CO1	L4
	help of mathematical induction $P(n) = 1+3^n$ is divisible by 4.		
7	Determine whether each of these functions are bijective from R to R.	CO1	L4
	1. $f(x) = x^2 + 1$		
	2. $f(x) = x^3$		
	x^2+1		
	3. $f(x) = \frac{x^2 + 1}{x^2 + 2}$		
8	Prove that $(A \cup B) \cap C = A \cup (B \cap C)$ if and only if $A \subseteq C$	CO1	L3
9	Show that $(A-B)\cap (B-A) = \phi$	CO1	L2
10	Let A be a set of 10 distinct elements. Determine the following:-	CO1	L2
	1 N 1 C 1:00 4 1: 1 4: A		
	1. Number of different binary relations on A.		
	2. Number of different reflexive binary relations on A.		
11	Prove that the relation "congruence modulo m" defined as	CO1	L2
	\cong = { (a,b) ! (a-b) is divisible by m } over the set of positive integers is an		
	equivalence relation. Show that if $a \cong b$ and $c \cong d$, then $(a+c) \cong (b+d)$.		
12	Prove that for any two sets A and B, $(A \cup B)' = A' \cap B'$	CO1	L2
13	If f: A \rightarrow B and g: B \rightarrow C are invertible functions then show that gof: A \rightarrow C is	CO1	L3
	invertible. And $(gof)^{-1} = f^{-1}og^{-1}$	001	 T /
14	Prove by principle of mathematical induction method that the sum of finite number of	CO1	L4
	terms of geometric progression, $a + ar + ar^2 + ar^3 + \dots + ar^{n-1} = \frac{a(r^n - 1)}{r - 1}$ if $r \neq 1$		
	1.	001	T.0
15	Let $A = \{1,2,3,4,\dots,13\}$. Consider the equivalence relation on $A \times A$ defined by	CO1	L3
	(a,b)R(c,d) if $a+d=b+c$. Find the equivalence class of $(5,8)$.		

Bloom's Taxonomy levels (1- Remembering, 2- Understanding, 3- Applying, 4- Analyzing, 5- Evaluating, 6- Creating)

 \mathbf{CO} - Course Outcome

Bloom's level wise marks distribution

