Multislice Diffraction Theory

Erik Bigwood

7/23/17

Contents

1	Fun	nctions]						
	1.1	$lambda_from_eV$]
	1.2	rotate_vec_array .]

1 Functions

1.1 lambda_from_eV

This function takes an energy in eV and returns the relativistic electron wavelength. The equation is shown below:

$$\lambda = \sqrt{\frac{h^2 c^2}{E^2 - m_0^2 c^2}} \tag{1}$$

1.2 rotate_vec_array

Iterates over each vector in the n x 3 array Λ and rotates them around \hat{x} , \hat{y} , then \hat{z} by tx, ty, and tz (rad) respectively. That is,

$$\left(\forall v \in \Lambda\right) \left(v \to R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) \cdot v = \mathcal{R}v\right) \tag{2}$$

rotation_mat Returns a matrix corresponding to a rotation around \hat{x} , \hat{y} , then \hat{z} by tx, ty, and tz (rad) respectively.¹

That is,

$$\mathcal{R} = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x) \tag{3}$$

rotation_mat_x Returns the rotation matrix around \hat{x} by θ_x , $R_x(\theta_x)$.

rotation_mat_y Returns the rotation matrix around \hat{y} by θ_y , $R_y(\theta_y)$.

rotation_mat_z Returns the rotation matrix around \hat{z} by θ_z , $R_z(\theta_z)$.

¹See rotation matrices.