Задача 10-3 Насос

Поршневой насос состоит из цилиндрического сосуда с подвижным поршнем, соединенным с электромотором (на рисунке не показан). К цилиндру подключены два клапана 1 и 2. Каждый клапан можно считать идеальным: он пропускает газ (без сопротивления) в одну сторону и

полностью перекрывает поток при изменении его направления. Насос подключают к сосуду, объем которого равен V. Электродвигатель заставляет поршень периодически перемещаться от начального положения (когда объем камеры равен v_0), до конечного положения (в котором объем камеры равен v_1) и обратно.

Численные значения параметров установки следующие:

- объем сосуда $V = 20,00 \ \pi$;
- полный объем камеры насоса $v_0 = 1{,}00\pi$;
- объем камеры при вдвинутом поршне («мертвое» пространство) $v_1 = 0.20 \ \pi$;
- атмосферное давление $P_0 = 1,0 am M = 1,0 \cdot 10^5 \, \Pi a$;

Насос работает медленно, поэтому все процессы следует считать изотермическими. Трением и вязкостью воздуха можно пренебречь.

Часть 1. Накачка.

Для накачивания воздуха в сосуд клапаны устанавливают так, чтобы клапан 1 открывается, когда газ входит в сосуд (естественно, когда давление в камере насоса незначительно превышает давление в сосуде) и закрывается, не давая газу выходить из сосуда. Клапан два

соединяет камеру насоса с атмосферой, он не дает выходить воздуху из камеры насоса и открывается, когда давление в камере насоса становиться чуть ниже атмосферного давления.

Обозначим P_k - давление в сосуде после k циклов работы насоса.

1.1 После совершения k циклов работы насоса давление в сосуде поднялось до значения P_k . Постройте схематический график процессов в камере насоса на диаграмме (P,v), где P,v - давление и объем газа в камере. Началом цикла считайте положение полностью выдвинутого поршня (v_0) и давления в камере P_0

Запишите уравнения всех процессов P(V), укажите начальные и конечные значения параметров газа на каждом участке цикла. Все результаты (в виде формул) занесите в таблицу 1.

Таблица 1. Цикл накачки.

Процесс	Начальное состояние		Уравнение процесса	Конечное состояние	
	Объем	Давление		Объем	Давление
$1 \rightarrow 2$					
$2 \rightarrow 3$					
•••					

- 1.2 Перед началом работы насоса давление в сосуде равно атмосферному давлению P_0 . На бланке 1 постройте графики двух первых циклов. Оцифровку оси давления проведите самостоятельно. В таблице укажите численные значения параметров в вершинах цикла.
- 1.3~ Пусть давление в сосуде после k~ циклов равно $P_k=2.0~amm$. На бланке 2~ постройте график одного следующего цикла. Оцифровку оси давления проведите самостоятельно, она может отличаться от оцифровки предыдущего графика. В таблице укажите численные значения параметров в вершинах цикла.
- 1.4 Покажите, что давление в сосуде после k циклов P_k , может быть выражено через давление после (k-1) цикла P_{k-1} с помощью рекуррентной формулы

$$P_k = \gamma P_{k-1} + a \,, \tag{1}$$

Где γ , a - постоянные величины. Выразите значения параметров γ , a через характеристики установки v_0, v_1, V и атмосферное давление P_0 .

- 1.5 Найдите, до какого максимального давления \overline{P} можно поднять давление в сосуде.
- 1.6 Обозначим $\delta_k = \overline{P} P_k$ отклонение давления в сосуде после k циклов от максимально возможного. Выразите величину δ_k через δ_{k-1} и параметры γ, a из формулы (1).
- 1.7 Получите формулу, описывающую в явном виде давление в сосуде P_k в зависимости от числа совершенных циклов k. Постройте схематический график этой зависимости.
- 1.8 Рассчитайте, сколько циклов должен совершить насос, чтобы давление в сосуде достигло значения $0.95\overline{P}$.

Часть 2. Откачка.

Насос может, как накачивать воздух в сосуд, так и откачивать его из сосуда. Для этого только необходимо изменить направление пропускания клапанов (см. рис).

2.1 Пусть после k циклов давление в сосуде опустилось до значения P_k . Постройте схематический график цикла откачки воздуха из сосуда (P,v), где P,v - давление и объем газа в

камере. Началом цикла считайте положение полностью задвинутого поршня (v_1) и давление в камере насоса P_0 .

Запишите уравнения всех процессов P(V), укажите начальные и конечные значения параметров газа на каждом участке цикла. Все результаты (в виде формул) занесите в Таблицу 2, аналогичную Таблице 1.

2.2 Получите формулу, описывающую давление в сосуде P_k в зависимости от числа совершенных циклов k .

- 2.3 Рассчитайте, до какого значения понизится давление в сосуде после 50 циклов работы насоса.
- 2.4 До какого минимального значения можно понизить давление в сосуде?

Бланк к задаче 10-3 «Насос»

Циклы 1, 2

Таблица состояний.

Точка	Объем	Давление					
	ν (л)	<i>P</i> (атм.)					
Цикл 1	Цикл 1						
Цикл 2	Цикл 2						

Цикл (k+1)

Таблица состояний.

Точка	Объем	Давление
	v (л)	<i>P</i> (атм.)

