Análise Quantitativa de Dados em Linguística

Interação

Ronaldo Lima Jr.

ronaldojr@letras.ufc.br
ronaldolimajr.github.io

Universidade Federal do Ceará

Interação

Interação (entre variáveis preditoras

Duas variáveis previsoras podem ter um efeito aditivo sobre a variável resposta, ou podem interagir entre elas

- ightarrow **Efeito aditivo**: adoçar o café com açúcar e adoçar o café com mel sobre o grau de doçura do café
 - quanto mais de qualquer um dos dois, mais doce o café
- ightarrow **Efeito com interação**: colocar açúcar no café e mexer o café sobre o grau de doçura do café
 - nenhum dos dois sozinho tem efeito sobre a doçura do café, apenas os dois combinados

Interação

"A variável x afeta o resultado y?"

ightarrow Se a resposta for "depende de (outra variável x_2)", é porque x e x_2 interagem

• Ex.:

Colocar açúcar no café adoça o café?

Depende. Só se mexer o café também.

Mexer o café adoça o café?

Depende. Só se colocar açúcar também.

Há interação entre *predisposição genética para diabetes tipo II* e *padrão de dieta ocidental*.

→ O padrão de dieta ocidental aumenta o risco de diabetes tipo II?

Depende. Aumenta apenas para pessoas com risco genético alto, mas não para as outras.

https://en.wikipedia.org/wiki/Interaction_(statistics)

Há interação entre *educação* e *orientação política* sobre a aceitação de que existe aquecimento global.

→ O nível de educação afeta a aceitação de que há aquecimento global?

Depende. Há mais aceitação com o aumento da educação apenas entre liberais e moderados, mas a aceitação diminui com o aumento da educação entre os mais conservadores.

Imagine o seguinte estudo:

- Objetivo: determinar qual complemento de comida produz o maior grau de satisfação
- Experimento com duas comidas (cachorro quente e sorvete) e dois complementos (calda de chocolate e mostarda)
- Participantes provam cada uma das quatro combinações e dão uma nota de satisfação para cada uma

Perguntas de pesquisa:

- Qual complemento de comida produz o maior grau de satisfação, calda de chocolate ou mostarda?
- O que interfere mais com o grau de satisfação, a comida ou o complemento?

Claramente, depende!

Quando há interação entre as variáveis previsoras, não é possível falar do efeito (main effect) de uma sem considerar a outra (e o interaction effect)

Modelo sem interação

Main effects sem incluir o termo de interação

O modelo estima cachorro quente com calda de chocolate como proporcionando maior grau de satisfação (porém com ps>0.05 e $R^2=0.02$)

Modelo com interação

```
1 m1 = lm(Enjoyment ~ Food * Condiment, data = tasting)
2 summary(m1)
  Coefficients:
4
                                Estimate Std. Error t value Pr(>|t|)
   (Intercept)
                                 65.317 1.120 58.34 <2e-16 ***
6 FoodIce Cream
                                27.731 1.583 17.52 <2e-16 ***
7 CondimentMustard
                                24.289 1.583 15.34 <2e-16 ***
  FoodIce Cream: CondimentMustard -56.028 2.239 -25.02 <2e-16 ***
   Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
10
11 Residual standard error: 5.007 on 76 degrees of freedom
12 Multiple R-squared: 0.8935, Adjusted R-squared: 0.8892
13 | F-statistic: 212.4 on 3 and 76 DF, p-value: < 2.2e-16
```


Modelo com interação

```
1 Coefficients:
2 Estimate Std. Error t value Pr(>|t|)
3 (Intercept) 65.317 1.120 58.34 <2e-16 ***
4 FoodIce Cream 27.731 1.583 17.52 <2e-16 ***
5 CondimentMustard 24.289 1.583 15.34 <2e-16 ***
6 FoodIce Cream:CondimentMustard -56.028 2.239 -25.02 <2e-16 ***
```

- \rightarrow Este modelo estima ($R^2 = 0.89$) grau de satisfação =
 - 93 para sorvete com cobertura de chocolate
 - 90 para cachorro quente com mostarda
 - 65 para cachorro quente com cobertura de chocolate
 - 61 para sorvete com mostarda

Interação – exemplo 2 (Gries, Stefan Th 2013)

- 80 alunos de alunos alemães de inglês-L2
- 2 turmas (CLASS) com 40 alunos em cada
- Fizeram um ditado em inglês (L2) e em alemão (L1)
- Erros foram contados (GERMAN e ENGLISH) para verificar se é possível prever erros na L2 com base nos erros na L1

Interação – exemplo 2 (Gries, Stefan Th 2013)

Table 44. The results of the linear model in (57)

	SumSq	Estimate	Std. error	<u>t</u>	p
Intercept	23.61	2.75	1.52	1.8	0.08
GERMAN	2931.69	1.75	0.09	20.1	< 0.001
CLASS	3010.30	-8.72	0.43	-20.37	< 0.001
Residual var.	558.68				
overall R^2/p	mult. R^2 =	adj. $R^2=$		$F_{2.77} =$	p<0.001
	0.974	0.973		1416	_

Table 45. The results of the linear model in (58)

SumSq	Estimate	Std. error	<u>t</u>	<u>p</u>
24.9	2.82	1.15	2.44	0.017
2461.42	1.64	0.07	24.29	< 0.001
0.25	-0.28	1.15	-0.25	0.807
241.73	-0.515	0.07	-7.61	< 0.001
316.95				
mult. R^2 =	adj. R ² =		$F_{3.76} =$	p<0.001
0.985	0.984		1661	
	24.9 2461.42 0.25 241.73 316.95 mult. <i>R</i> ² =	24.9 2.82 2461.42 1.64 0.25 -0.28 241.73 -0.515 316.95 mult. R^2 adj. R^2	24.9 2.82 1.15 2461.42 1.64 0.07 0.25 -0.28 1.15 241.73 -0.515 0.07 316.95 mult. R^2 = adj. R^2 =	

¹ English ~ German + Class

^{2 |} English ~ German * Class

Interação – exemplo 2 (Gries, Stefan Th 2013)

Interação - conclusão

- Será errôneo (e pode ser perigoso) interpretar os *main effects* de variáveis que interagem sem incluir a interação
- Nem todas as interações são tão óbvias como a do colocar açúcar e mexer a colher para adoçar o café ou como a do experimento com comidas e condimentos
- Infelizmente, nenhum software ou modelo informa automaticamente se duas variáveis previsoras interagem. Cabe ao pesquisador prever possíveis casos de interação, tentar visualizá-los em gráficos exploratórios e testá-los nos modelos estatísticos

