মূল বইয়ের অতিরিক্ত অংশ

নবম অধ্যায়: ত্রিকোণমিতিক অনুপাত

পরীক্ষায় কমন পেতে আরও প্রশ্ন ও সমাধান

চিত্রে, ABC একটি সমকোণী ত্রিভুজ, যার $\angle B = 90^\circ$

- ক. AB = 33 একক, AC = 545 একক হল, cot (90° C) এর
- খ. যদি A=y-x এবং B=2x+y হয়, তবে $\sin 3x$ কে উদ্দীপকের ত্রিভুজের বাহুর অনুপাতে প্রকাশ কর।
- গ. $10\left(\frac{\mathrm{BC}}{\mathrm{AC}}\right)^2 7\left(\frac{\mathrm{AB}}{\mathrm{AC}}\right) 4 = 0$ হলে, $\angle\mathrm{C}$ এর মান নির্ণয় কর।

১ নং প্রশ্নের <u>সমাধান</u>

ক পীথাগোরাসের উপপাদ্য অনুযায়ী, সমকোণী ∆ABC এর জন্য,

$$AB^2 + BC^2 = AC^2$$

বা,
$$BC^2 = AC^2 - AB^2$$

বা. BC =
$$\sqrt{545^2 - 33^2}$$

এখন,
$$\cot (90^{\circ} - C) = \tan C = \frac{33}{544}$$
 (Ans.)

খ প্রশানুসারে,

$$A = y - x (i)$$

 $B = 2x + y (ii)$

(ii) হতে (i) বিয়োগ করে পাই.

$$B - A = 3x$$

বা, $90^{\circ} - A = 3x$ [উদ্দীপক অনুসারে, $\angle B = 90^{\circ}$]

বা, $\sin{(90^{\circ} - A)} = \sin{3x}$ [উভয়পক্ষে sine অনুপাত নিয়ে]

বা, $\sin 3x = \cos A$

আবার,
$$\cos A = \frac{AB}{AC}$$

 $\therefore \sin 3x = \frac{AB}{AC} (Ans.)$

গ দেওয়া আছে,

$$10\left(\frac{BC}{AC}\right)^2 - 7\left(\frac{AB}{AC}\right) - 4 = 0$$

বা, $10\cos^2 C - 7\sin C - 4 = 0$

 $5. 10 - 10 \sin^2 C - 7 \sin C - 4 = 0$

বা, $-10\sin^2 C - 7\sin C + 6 = 0$

বা, $10 \sin^2 C + 7 \sin C - 6 = 0$

বা, $10 \sin^2 C - 5 \sin C + 12 \sin C - 6 = 0$

4, $5\sin C (2 \sin C - 1) + 6(2\sin C - 1) = 0$

বা, $(2 \sin C - 1) (5 \sin C + 6) = 0$

হয়, $2\sin C - 1 = 0$

অথবা, 5 sinC + 6 = 0

বা, 2sin C = 1

কিন্তু – 1 ≤ sin C ≤ 1

বা, $\sin C = \frac{1}{2} = \sin 30^{\circ}$: 5 $\sin C + 6 = 0$ সম্ভব নয়

প্রশ্ন \triangleright ২ কোন সমকোণী ত্রিভুজের অতিভুজ $\sqrt{1+p}$ এবং θ কোণের সন্নিহিত যে কোনো বাহু $\sqrt{2p}$ ।

۵

ক. তথ্যগুলো জ্যামিতিক চিত্রে উপস্থাপন করে অপর বাহুর দৈর্ঘ্য নির্ণয় কর।

 $\sec^2\theta + \tan^2\theta$ এর মান নির্ণয় কর।

প্রমাণ কর যে, $\frac{1 + \csc^2 \theta}{1 - \csc^2 \theta} = -\frac{1}{p}$

ক ধরি, ∆ABC সমকোণী ত্রিভুজের

অতিভুজ $AC = \sqrt{1+p}$, θ কোণের সন্নিহিত বাহু $BC = \sqrt{2p}$.

এখন, পিথাগোরাসের উপপাদ্য

অনুসারে পাই,

$$AC^2 = AB^2 + BC^2$$

বা,
$$(\sqrt{1+p})^2 = AB^2 + (\sqrt{2p})^2$$

বা,
$$1 + p = AB^2 + 2p$$

বা,
$$AB^2 = 1 + p - 2p$$

বা,
$$AB^2 = 1 - p$$

$$\therefore$$
 AB = $\sqrt{1-p}$ (Ans.)

খ 'ক' হতে পাই.

 \triangle ABC সমকোণী ত্রিভুজের AC = $\sqrt{1+p}$, BC = $\sqrt{2p}$

এবং
$$AB = \sqrt{1-p}$$
 এবং $\theta = \angle ACB$

এখন,
$$\sec\theta = \frac{AC}{BC} = \frac{\sqrt{1+p}}{\sqrt{2p}}$$

$$\tan\theta = \frac{AB}{BC} = \frac{\sqrt{1-p}}{\sqrt{2p}}$$

$$\therefore \sec^2\theta + \tan^2\theta = \left(\frac{\sqrt{1+p}}{\sqrt{2p}}\right)^2 + \left(\frac{\sqrt{1-p}}{\sqrt{2p}}\right)^2$$
$$= \frac{1+p}{2p} + \frac{1-p}{2p}$$
$$= \frac{1+p+1-p}{2p}$$

$$=\frac{2}{2p}=\frac{1}{p}$$
 (Ans.)

গ 'ক' হতে পাই,

 $\triangle ABC$ সমকোণী ত্রিভুজের $AC = \sqrt{1+p}$, $BC = \sqrt{2p}$

$$AB = \sqrt{1-p}$$
 এবং $\theta = \angle ACB$

$$\therefore \csc\theta = \frac{AC}{AB} = \frac{\sqrt{1+p}}{\sqrt{1-p}}$$

বামপক্ষ =
$$\frac{1 + cosec^2\theta}{1 - cosec^2\theta}$$

$$=\frac{1+\left(\frac{\sqrt{1+p}}{\sqrt{1-p}}\right)^2}{1-\left(\frac{\sqrt{1+p}}{\sqrt{1-p}}\right)^2}$$

$$= \frac{1 + \frac{1+p}{1-p}}{1 - \frac{1+p}{1-p}}$$

$$= \frac{\frac{1-p+1+p}{1-p}}{\frac{1-p-1-p}{1-p}}$$

$$= \frac{2}{(1-p)} \times \frac{(1-p)}{-2p}$$

$$= \frac{-1}{p}$$

$$= \frac{vinn}{1-cosec^2\theta} = \frac{-1}{p}$$
 (প্রমাণিত)

প্রশ্ন ১৩ যোহা তার বাসা A থেকে 120 মিটার পূর্বদিকে B-তে যাওয়ার পর সোজা উত্তর দিকে 50 মিটার গিয়ে তার স্কুল C-তে পৌছাল।

ক.
$$\sec A = \frac{5}{4}$$
 হলে, $\tan A = \overline{\Phi}$ ত?

গ. প্রমাণ কর যে,
$$\tan A \sqrt{\frac{1-\sin A}{1+\sin A}} = \frac{5}{18}$$
.

ক দেওয়া আছে, $\sec A = \frac{5}{4}$

আমরা জানি,
$$\sec^2 A - \tan^2 A = 1$$

$$\therefore \tan A = \frac{3}{4} (Ans.)$$

খ চিত্ৰ হতে,

$$\sin C = \frac{AB}{AC} = \frac{120}{130} = \frac{12}{13}$$

$$\sec A = \frac{AC}{AB} = \frac{130}{120} = \frac{13}{12}$$

$$\cot A = \frac{AB}{BC} = \frac{120}{50} = \frac{12}{5}$$

এখন,
$$sinC(secA + cotA) = \frac{12}{13} \left(\frac{13}{12} + \frac{12}{5}\right)$$

$$= \frac{12}{13} \times \frac{65 + 144}{60}$$

$$= \frac{12}{13} \times \frac{209}{60}$$

$$= \frac{209}{13 \times 5}$$

$$= \frac{209}{65} \text{ (Ans.)}$$

গ চিত্ৰ হতে,

চিত্ৰ হতে,
$$\tan A = \frac{BC}{AB} = \frac{50}{120} = \frac{5}{12}$$

$$\sin A = \frac{BC}{AC} = \frac{50}{130} = \frac{5}{13}$$

$$\hline \Rightarrow = \tan A \sqrt{\frac{1 - \sin A}{1 + \sin A}}$$

$$= \frac{5}{12} \sqrt{\frac{\frac{1 - \frac{5}{13}}{1 + \frac{5}{13}}}{\frac{13 + \frac{5}{13}}{13}}}$$

$$= \frac{5}{12} \sqrt{\frac{\frac{8}{13}}{\frac{18}{13}}}$$

$$= \frac{5}{12} \sqrt{\frac{\frac{8}{13}}{\frac{18}{13}}}$$

$$= \frac{5}{12} \sqrt{\frac{4}{9}}$$

$$= \frac{5}{12} \cdot \frac{2}{3} = \frac{5}{18}$$

$$\therefore \tan A \sqrt{\frac{1 - \sin A}{1 + \sin A}} = \frac{5}{18}$$
 (প্রমাণিত)

প্রশ্ ▶8

২

8

- যদি $\sin\!lpha=rac{1}{2}$ হয় তাহলে, $\tan\!lpha$ এর মান বের কর।
- জ্যামিতিকভাবে প্রমাণ কর যে, $\sin^2\alpha + \cos^2\alpha = 1$
- সমাধান কর: $2 \sin^2 \alpha + 3 \cos \alpha = 3$, যেখানে α সূক্ষ্কোণ।

৪ নং প্রশ্নের সমাধান

ক দেওয়া আছে,
$$\sin \alpha = \frac{1}{2}$$

$$\alpha = 30^{\circ}$$

$$\therefore \tan \alpha = \tan 30^{\circ} = \frac{1}{\sqrt{3}} \text{ (Ans.)}$$

টাত্রানুসারে,
$$\sin\alpha = \frac{AB}{AC}$$

$$\cos\alpha = \frac{BC}{AC}$$

$$\sin^2\alpha + \cos^2\alpha$$

$$= \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2$$

$$= \frac{AB^2}{AC^2} + \frac{BC^2}{AC^2}$$

ত্রিকোণমিতিক অনুপাত

$$=rac{AB^2+BC^2}{AC^2}$$
 $=rac{AC^2}{AC^2}$ [পিথাগোরাসের সূত্র হতে]
 $=1=$ ডানপক্ষ

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 (প্রমাণিত)

গ প্রদত্ত সমীকরণ,
$$2\sin^2\alpha + 3\cos\alpha - 3 = 0$$

$$\sqrt{1}$$
, $2(1 - \cos^2 \alpha) + 3 \cos \alpha - 3 = 0$

বা,
$$2 - 2\cos^2\alpha + 3\cos\alpha - 3 = 0$$

$$\boxed{4}, -2\cos^2\alpha + 3\cos\alpha - 1 = 0$$

বা,
$$2\cos^2\alpha - 3\cos\alpha + 1 = 0$$

বা,
$$2\cos^2\alpha - 2\cos\alpha - \cos\alpha + 1 = 0$$

বা,
$$2\cos\alpha(\cos\alpha - 1) - 1(\cos\alpha - 1) = 0$$

বা,
$$(\cos \alpha - 1)(2\cos \alpha - 1) = 0$$

$$\overline{$$
হয়, $\cos \alpha - 1 = 0$

অথবা,
$$2\cos\alpha - 1 = 0$$

বা,
$$\cos\alpha = 1$$

বা,
$$2\cos\alpha = 1$$

বা,
$$\cos\alpha = \cos 0^{\circ}$$

বা,
$$\cos\alpha = \frac{1}{2} = \cos 60^\circ$$

8

$$\alpha = 60^{\circ}$$

কিন্তু, $\alpha=0^\circ$ গ্রহণযোগ্য নয় কারণ α সূক্ষ্মকোণ।

প্রশ্ন \blacktriangleright ৫ $\csc{(90-\theta)}=rac{5}{3}$ একটি ত্রিকোণমিতিক সমীকরণ।

tanθ এর মান নির্ণয় কর।

উদ্দীপকের আলোকে দেখাও যে, $\sec^2\theta - \tan^2\theta = \sin^2\theta + \cos^2\theta = 1$ 8

গ. দেখাও যে,
$$\csc\theta - \cot\theta = \frac{1}{2}$$

৫ নং প্রশ্নের সমাধান

ক দেওয়া আছে, $\csc(90 - \theta) = \frac{5}{2}$

বা,
$$\sec\theta = \frac{5}{3}$$

বা,
$$\sec^2\theta = \frac{25}{9}$$
; [বর্গ করে]

বা,
$$1 + \tan^2 \theta = \frac{25}{9}$$

বা,
$$\tan^2\theta = \frac{25}{\Omega} - 1$$

বা,
$$\tan^2\theta = \frac{25-9}{9}$$

বা,
$$\tan^2\theta = \frac{16}{9}$$

∴
$$\tan\theta = \frac{4}{3}$$
; $[\theta সুক্ষাকোণ]$ (Ans.)

খ 'ক' হতে প্রাপ্ত $\sec\theta = \frac{5}{2}$

এবং $\tan\theta = \frac{4}{3}$

$$\therefore \sec^2 \theta - \tan^2 \theta = \left(\frac{5}{3}\right)^2 - \left(\frac{4}{3}\right)^2$$
$$= \frac{25}{9} - \frac{16}{9} = \frac{25 - 16}{9} = \frac{9}{9} = 1$$

$$\therefore \sec^2\theta - \tan^2\theta = 1$$

আবার,
$$\sec\theta = \frac{5}{3}$$

$$\therefore \quad \cos\theta = \frac{3}{5}$$

এবং
$$\frac{\sin\theta}{\cos\theta} = \frac{4}{3}$$
; $\left[\because \tan\theta = \frac{\sin\theta}{\cos\theta}\right]$

•

$$\exists i, \quad \sin\theta = \frac{4}{3} \times \cos\theta$$

বা,
$$\sin\theta = \frac{4}{3} \times \frac{3}{5}$$

$$\therefore \sin\theta = \frac{4}{5}$$

$$\sin^2 \theta + \cos^2 \theta = \left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2$$

$$= \frac{16}{25} + \frac{9}{25}$$

$$= \frac{16 + 9}{25}$$

$$= \frac{25}{25} = 1$$

$$: \sec^2\theta - \tan^2\theta = \sin^2\theta + \cos^2\theta = 1$$
 (দেখানো হলো)

গ 'খ' হতে পাই.

$$\sin\theta = \frac{4}{5}$$
 এবং $\tan\theta = \frac{4}{3}$

$$\therefore \csc\theta = \frac{1}{\sin\theta} = \frac{5}{4} \dots \text{ (iii)}$$

এবং
$$\cot\theta = \frac{1}{\tan\theta} = \frac{3}{4}$$
 ... (iv)

(iii) হতে (iv) বিয়োগ করে পাই,

$$\csc\theta - \cot\theta = \frac{5}{4} - \frac{3}{4}$$
$$= \frac{5-3}{4}$$
$$= \frac{2}{4}$$

$$\therefore \csc \theta - \cot \theta = \frac{1}{2}$$
 (দেখানো হলো)

প্রাচ্চ ΔABC-এ ∠B = 90°.

২

ক.
$$\sin^2\theta + \frac{1}{\sec^2\theta} + \frac{3}{2}$$
 এর মান কত?

$$\sin A + \sin^2 C + \cos C + \cos^2 A = \overline{\Phi \circ}$$
 8

খ.
$$\sin A + \sin^2 C + \cos C + \cos^2 A = \overline{\Phi \circ}$$
? 8
গ. প্রমাণ কর যে, $\sqrt{\frac{1-\sin A}{1+\sin A}} = \sec A - \tan A$. 8

উত্তর: ক.
$$\frac{5}{2}$$
; খ. $\frac{5}{2}$

২

প্রাচ্ব PQ = a, RP =
$$\sqrt{a^2 + b^2}$$
, $\angle R = \theta$

ক. tanθ এর ত্রিকোণমিতিক অনুপাত বের কর।

an heta এর মান ব্যবহার করে $rac{a\sin heta-b\cos heta}{a\sin heta+b\cos heta}$ এর মান বের কর।8

গ. tanP + sinP = m, tanP - sin P = n হয়, তবে প্রমাণ কর যে, $m^2 - n^2 = 4\sqrt{mn}$

উত্তর: ক.
$$tan\theta = \frac{a}{b}$$
; খ. $\frac{a^2 - b^2}{a^2 + b^2}$

প্রা ►৮ AABC এ ∠B = 90°, BC = 4 সে. মি. এবং AB = 3 সে. মি.

ক. tanA এবং cosecA এর মান নির্ণয় কর।

খ.
$$\frac{\sec^2 A - \csc^2 A}{\sec^2 A + \csc^2 A}$$
 এর মান নির্ণয় কর।

গ. $\angle A=x+y$ এবং $\angle C=x-y$ হলে x ও y এর মান নির্ণয় কর।8

উত্তর: ক.
$$\frac{4}{3}$$
; $\frac{5}{4}$; খ. $\frac{7}{25}$; গ. $x = 45^{\circ}$, $y = 8^{\circ}$

প্রা ১ ৯ f(x) = sinx

ক.
$$~\frac{1-tan^2\theta}{1+tan^2\theta}$$
 এর মান নির্ণয় কর । যখন $~\theta=30^{\circ}$

খ.
$$\{f(x)\}^4 + \{f(x)\}^2 = 1$$
 হলে প্রমাণ কর যে,
$$\left\{\frac{f(x)}{f(90^\circ - x)}\right\}^4 - \left\{\frac{f(x)}{f(90^\circ - x)}\right\}^2 = 1$$

গ. সমাধান কর: $2\{f(90^{\circ}-\theta)\}^2+3f(\theta)-3=0$ যেখানে θ সৃক্ষকোণ

উত্তর: ক. $\frac{1}{2}$; গ. 30°

প্রমান ১০
$$\frac{\sec x + \tan x}{\sec x - \tan x} = 3$$

 $\sin x = \overline{\Phi}$ ত?

খ.
$$(\tan^2 x - \cos^2 x)$$
 রাশিটির মান বের কর।

গ. প্রমাণ কর যে,
$$\sin^2 x - \cos^4 x = -\frac{5}{16}$$

উত্তর: ক. $\frac{1}{2}$; খ. $-\frac{5}{12}$

প্রমান ১১
$$\cos\theta = \frac{p^2 - q^2}{p^2 + q^2}$$

২

খ.
$$\tan\theta - \sec\theta = \overline{\Phi o}$$
?

গ. প্রমাণ কর যে, $\frac{\tan\theta}{\sec\theta+1}=\frac{\sec\theta-1}{\tan\theta}=\frac{q}{p}$ 8

উত্তর: ক.
$$\frac{2pq}{p^2+q^2}$$
; খ. $\frac{q-p}{p+q}$ ।

উত্তর: ক. $\frac{2pq}{p^2+q^2}$; খ. $\frac{q-p}{p+q}$ । $\begin{tabular}{l} $2pq$ \\ <math>2pq$ \end{tabular}$ কোনো সমকোণী ত্রিভুজের অতিভুজ $\sqrt{1+p}$ এবং θ

কোণের সন্নিহিত বাহু $\sqrt{2p}$ ।

ক. তথ্যগুলো জ্যামিতিক চিত্রে উপস্থাপন করে অপর বাহুর দৈর্ঘ্য নির্ণয়

খ.
$$\sec^2\theta + \tan^2\theta$$
 এর মান নির্ণয় কর।

গ. প্রমাণ কর যে,
$$\frac{1+cosec^2\theta}{1-cosec^2\theta}=-\frac{1}{p}$$

উত্তর: ক.
$$\sqrt{1-p}$$
 ; খ. $\frac{1}{p}$

২

প্রস্কান
$$\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}=\frac{\sqrt{3}+1}{\sqrt{3}-1}$$
 ; যখন α সূক্ষকোণ।

ক. α এর মান নির্ণয় কর।

খ. প্রমাণ কর যে,
$$3\cot^2(\alpha+30^\circ)+\frac{1}{4}\csc\alpha+5\sin^2(\alpha+15^\circ)$$

$$-4\cos^2(\alpha+30^\circ)-\sin 90^\circ=2$$

গ.
$$\tan\theta \sin^2\!2\alpha \tan\alpha \tan2\alpha = \frac{3}{4}$$
 হলে দেখাও যে, $\sin^2\!\theta + \cos^2\!\theta = 1$ 8 উত্তর: ক. 30° |

নিজেকে যাচাই করার জন্য অধ্যায়ের মডেল প্রশ্নপত্রের ওপর পরীক্ষা দাও। তোমার করা উত্তরগুলো পরের পৃষ্ঠায় দেওয়া উত্তরপত্র থেকে মিলিয়ে নাও। প্রয়োজনে ্রিক্রিক্তি উত্তরপত্রটি শিক্ষক বা অভিভাবককে দিয়ে মূল্যায়ন করাও।

সূজনশীল বহুনির্বাচনি প্রশ্ন

১
$$\operatorname{cosecA} = \frac{a}{b}$$
 হলে, $\operatorname{tanA} = \overline{\Phi}\overline{\Phi}$?

$$K \frac{b}{\sqrt{a^2 - b^2}} \qquad L \frac{\sqrt{a^2 - b^2}}{b}$$

$$M \frac{b}{\sqrt{a^2 + b^2}} \qquad N \frac{b}{\sqrt{a^2 + b^2}}$$

২. উপরের চিত্রে cosθ = কোনটি?

$$K \frac{AC}{AB}$$

$$L \frac{BC}{AB}$$
N $\frac{AB}{AB}$

৩. $tanθ = \frac{3}{4}$ হলে $cos^2θ$ এর মান কত?

$$K \frac{16}{9}$$

$$L \frac{25}{16}$$

8. $\csc\theta + \cot\theta = \frac{5}{6} \sqrt[3]{e}$, $\csc\theta - \cot\theta = \sqrt[3]{e}$?

$$K \frac{1}{6}$$

$$L = \frac{5}{6}$$

$$N_{\frac{6}{5}}$$

 $cos A \sqrt{sec^2 A - 1} = \overline{\Phi \circ}$?

L cosA

M sinA N cosA.cotA ৬. sinθ এবং cosecθ এর মধ্যে সম্পর্ক কোনটি?

 $K \sin\theta = \csc\theta$

 $M \sin\theta \cdot \csc\theta = 1$

$$N \frac{1}{\sin \theta} + \frac{1}{\csc \theta} = 1$$

৭. $\sin\theta = \frac{4}{5}$ এবং θ সূক্ষ্মকোণ হলে $\tan\theta = ?$

$$\frac{5}{\sqrt{21}}$$

$$\perp \frac{\sqrt{41}}{5}$$

$$M_{\frac{3}{4}}^{\frac{3}{4}}$$

$$N_{\frac{4}{3}}$$

b. $\cos^2\theta - \sin^2\theta = \frac{5}{6}$ হলে $\cos^4\theta - \sin^4\theta$ এর

$$\frac{1}{2}$$

N
$$\frac{1}{\sqrt{5}}$$

$$K \frac{1}{\sqrt{3}}$$

$$M\sqrt{3}$$

১০. $\sin^2 A = \frac{1}{2}$ হলে $\cos 2A = \overline{\Rightarrow o}$?

$$K \frac{1}{\sqrt{2}}$$

$$L = \frac{1}{2}$$

সময়: ৩০ মিনিট: মান-৩০

নিচের কোনটি সঠিক?

K i ଓ ii M ii ଓ iii ட i ଓ iii N i, ii & iii

১২. θ স্থূলকোণ হলে—

i. sinθ এর মান ধনাত্মক

ii. cosθ এর মান ঋণাত্মক

iii. tanθ এর মান ধনাত্মক নিচের কোনটি সঠিক?

iii 🛭 iii M

N i, ii & iii

নিচের তথ্যের আলোকে (১৩ ও ১৪) নং প্রশ্নের উত্তর দাও:

ABC সমকোণী ত্রিভুজে ∠B = 1 সমকোণ এবং tanA = 1

১৩. sin2A এর মান কত?

K 1 $M\frac{1}{2}$

১৪. অপর কোণ দুইটি কত?

K 45°, 45° M 45°, 30°

L 30°, 45° N 30°, 30°

১৫. $A = 45^{\circ}$ হলে, $\frac{1 - \tan^2 A}{1 + \tan^2 A} = \overline{\Phi}$

 M_0

১৬. $\theta = 90^{\circ}$ এর জন্য নিচের কোনগুলি সংজ্ঞায়িত? K cotθ, secθ L $\sin\theta$, $\tan\theta$

M cosecθ, secθ N $\cot\theta$, $\cos\theta$

১৭. △ABC এর ∠A %∠B = 1 % 2 এবং

∠B ঃ ∠C = 2 ঃ 3 হলে ∠C এর পরিমাপ— L 60° M 45° N 30°

১৮. sec²30° – cosec²90° এর মান কত?

১৯. $\cot (90^{\circ} - \theta) = \frac{4}{3}$ হলে $\cos \theta$ এর মান কত?

২০. sin²25° + sin²65° এর মান কত?

২১. $\sin 2\theta = \frac{\sqrt{3}}{2}$ হলে, θ এর মান কত?

 $\mathsf{M}\ 60^\circ$

N 90°

২২. $\sec\theta = \frac{2}{\sqrt{3}}$ হলে, $\tan\theta$ এর মান নিচের কোনটি?

 $K \frac{1}{\sqrt{3}}$ L 1 $M \sqrt{3}$ N 2 ২৩. $\sin\theta + \cos\theta = \sqrt{2}$ হলে θ এর মান কোনটি? K 0° L 90° M 60° N 45°

২৪. $\sec(90^{\circ} - \theta) = \frac{5}{3}$ হলে, $\csc\theta - \cot\theta$ এর

 $\mathsf{K} \; \frac{4}{3} \;\;\; \mathsf{L} \; \frac{3}{4} \;\;\;\; \mathsf{M} \; \frac{3}{5} \;\;\; \mathsf{N} \; \frac{1}{3}$

২৫. θ = 0° এর ক্ষেত্রে—

 $i. \;\; cosec heta$ এবং cot heta এর মান অসংজ্ঞায়িত

ii. প্রান্তীয় ও আদি বাহু একই রশ্মি

iii. $\sec\theta$ এবং $\tan\theta$ এর মান সংজ্ঞায়িত নিচের কোনটি সঠিক?

Ківі

L i ଓ iii M ii 🛭 iii N i, ii & iii

২৬. θ = 45° এর ক্ষেত্রে—

sin²θ + tan²θ এর মান ³/₂

ii. $\sin^2\theta + \cos^2\theta$ এর মান $\frac{2}{3}$

iii. $1 - \sin^2\theta$ এর মান $\frac{1}{2}$

নিচের কোনটি সঠিক?

L ii ଓ iii Mi ७ iii

N i, ii & iii নিচের তথ্যের আলোকে (২৭ ও ২৮) নং প্রশ্নের উত্তর দাও :

∆ABC-এ ∠B = এক সমকোণ। AB = 2 একক এবং AC = 3 একক।

২৭. cosecC এর মান কত?

২৮. cotA এর মান কত?

$$K \frac{2}{\sqrt{5}}$$
 L M $\frac{3}{2}$ N

নিচের তথ্যের আলোকে (২৯ ও ৩০) নং প্রশ্নের

২৯. sinθ = কত?

৩০. $\cot^2 \theta = \overline{\Phi}$ × $\frac{25}{144}$ M $\frac{144}{25}$

২

8

8

সূজনশীল রচনামূলক প্রশ্ন

সময়: ২ ঘণ্টা ৩০ মিনিট;

8

8

২

8

8

২

8

8

[বি. দ্র. যে কোনো ৭টি প্রশ্নের উত্তর দিতে হবে। প্রতি প্রশ্নের মান ১০ **3.b** $cosec \theta = \sqrt{\frac{1+x}{1-x}}$ $\sin^2\! heta$ এর মান নির্ণয় কর।

খ. দেখাও যে,
$$tan\theta = \sqrt{\frac{1-x}{2x}}$$

গ. প্রমাণ কর যে,
$$\frac{\sec\theta - \tan\theta}{\sec\theta + \tan\theta} = \frac{1 - \sqrt{1 - x^2}}{x}$$

২. ► ABC সমকোণী ত্রিভুজে
$$\angle A$$
 সমকোণ $| BC = 25$ সে.মি., AB = 20 সে.মি. এবং $\angle ACB = \theta$.

ক.
$$\theta$$
 এর বিপরীত বাহু চিহ্নিত কর এবং $\sin\!\theta$ এর মান নির্ণয় কর ।

খ. দেখাও যে,
$$\sin^2\theta - \cos^2\theta = \frac{7}{25}$$

গ্. প্রমাণ কর যে,
$$\frac{\cot B + \tan C}{\cot C + \tan B} = \cot B.\tan C.$$

9.
$$\blacktriangleright$$
 (i) $\cot^4 A - \cot^2 A = 1$ (ii) $\sec A + \tan A = \frac{7}{3}$

ক.
$$\sec\theta = 4\sqrt{2}$$
 এবং $\sin\theta = \frac{1}{2\sqrt{2}}$ হলে $\tan\theta$ এর মান কত?

খ. (i) হতে প্রমাণ কর যে,
$$\cos^4 A + \cos^2 A = 1$$

$$8. \blacktriangleright \sec A = \frac{2}{\sqrt{3}}$$

খ. দেখাও যে,
$$\cos^2 A - \sin^2 A = \frac{1}{2}$$

গ. দেখাও যে,
$$\sqrt{\frac{\sec A + 1}{\sec A - 1}} = \cot A + \csc A$$

৫. ►
$$tanA + secA = \frac{x}{y}$$
 এবং A সূম্মকোণ।

ক.
$$A=60^\circ$$
 হলে দেখাও যে, $x=\frac{y}{2-\sqrt{3}}$ খ. $x=y\sqrt{3}$ হলে A এর মান নির্ণয় কর।

খ.
$$x = v\sqrt{3}$$
 হলে A এর মান নির্ণয় কর।

গ. প্রমাণ কর যে,
$$\cos A = \frac{2xy}{x^2 + y^2}$$

৬.
$$\blacktriangleright$$
 $\triangle ABC$ এ $\angle B = 90^\circ$ এবং $\tan\theta = \frac{1}{\sqrt{3}}$

- খ. প্রমাণ কর যে, $\frac{\csc^2\theta \sec^2\theta}{\csc^2\theta + \sec^2\theta} = \frac{1}{2}$.
- গ. $\angle A=x-y= heta$ এবং $\angle C=x+y$ হলে x ও y এর মান নির্ণয় কর। 8

৭. ▶
$$\csc{(90-\theta)} = \frac{5}{3}$$
 একটি ত্রিকোণমিতিক সমীকরণ।

খ. উদ্দীপকের আলোকে দেখাও যে,
$$\sec^2\theta - \tan^2\theta = \sin^2\theta + \cos^2\theta = 1$$
 8

গ. দেখাও যে,
$$\csc\theta - \cot\theta = \frac{1}{2}$$

ক. ১ম চিত্রে tanθ এর মান কত?

খ. প্রমাণ কর যে,
$$\frac{\sec\theta + \tan\theta}{\sec\theta - \tan\theta} = \frac{1 + \sqrt{1 - x^2}}{x}$$

৯.
$$\blacktriangleright$$
 $\tan^2\theta - (1+\sqrt{3})\tan\theta + \sqrt{3}$ একটি রাশি, যেখানে $0^\circ < \theta < 60^\circ$

ক. প্রদন্ত রাশিটির উৎপাদকদ্বয়ের অন্তর নির্ণয় কর। ২ খ. রাশিটির মান শূন্য (0) হলে দেখাও যে, 8
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$$
.

গ. প্রমাণ করো যে,
$$\cot 2A \neq \frac{2\cot A}{\cot^2 A - 1}$$
 যেখানে $A = \theta + 15^\circ$ 8

১০.
$$ightharpoonup P = \csc\theta + 1$$
 এবং $Q = \csc\theta - 1$

ক.
$$PQ = 1$$
 হলে, $tan\theta$ এর মান নির্ণয় কর।

খ. দেখাও যে,
$$(P^{-1} + Q^{-1}) \csc\theta = 2\sec^2\theta$$

গ.
$$(P-1)^2 + (Q+1)^2 = 4$$
 হলে, θ এর মান নির্ণয় কর।

১১. ►
$$\sqrt{6}\cos(A-B) = \sqrt{3} = 2\sin(A+B)$$
 এবং A, B সূক্ষ্যকোণ।

গ.
$$\theta = \frac{1}{2}(A + B)$$
 হলে, প্রমাণ কর যে, $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$.

	' -																										
							2	<u> বি</u>	শৌল	বহুনি	নৰ্বাচ	নি	ম	ডল ১	প্রশ্নপ	ত্রের	উভ	র									
,		······						`		• • • • • • • • • • • • • • • • • • • •		- '							· · · · · · · · · · · · · · · · · · ·		·····					·····	
şK	ų K	৩	Ν	8	Ν	œ	M	৬	M	٩	Ν	ъ	L	৯	М	১০	Ν	77	Κ	১২	Κ	১৩	Κ	78	Κ	36	М
১৬ N	১٩ K	১৮	Ν	১৯	Κ	২০	Ν	২১	Κ	২২	Κ	২৩	Ν	২8	Ν	২৫	Ν	২৬	М	২৭	M	২৮	Κ	২৯	L	೨೦	Κ

সূজনশীল রচনামূলক | মডেল প্রশ্নপত্রের উত্তর

5.
$$\mathbf{\overline{q}}$$
. $\frac{1-x}{1+x}$

২. ক.
$$\frac{4}{5}$$

8.
$$\Phi \cdot \frac{5}{2}$$

৭. ক.
$$\frac{4}{3}$$

৮. ক.
$$\sqrt{\frac{1-x}{2x}}$$
; গ. $m = 24^{\circ}$, $n = 18^{\circ}$ ৯. ক. $\sqrt{3} - 1$

৯. ক.
$$\sqrt{3} - 1$$

ኔኔ. ক. 60° খ. 52
$$\frac{1^{\circ}}{2}$$
, 7 $\frac{1^{\circ}}{2}$

সুজনশীল বহুনির্বাচনি প্রশ্ন

সময়: ৩০ মিনিট: মান-৩৫

১. $\sin\theta + \cos\theta = a$ হলে, $\sin^4\theta + \cos^4\theta$ এর মান কত?

K
$$1 + \frac{1}{2}(a^2 - 1)^2$$
 L $1 - \frac{1}{2}(a^2 - 1)^2$
M $\frac{1}{2}(a^2 - 1)^2$ N $1 + \frac{1}{2}(a^2 - 1)$

২.
$$\sec\theta = \sqrt{x^2 + 1}$$
 হলে $\tan\theta = \overline{\Phi}$?

K x L
$$\frac{1}{x}$$

M $x^2 - 1$ N $\sqrt{1 - x^2}$

৩.
$$\sec\theta + \tan\theta = 2$$
 ইলে $1 + \sin\theta = \overline{\phi}$ ত?
 $K \cos\theta$ $L 2 \cos\theta$

8.

 $M \sin \theta$

চিত্র থেকে কোনটি PM এর সঠিক মান?

N $2 \sin\theta$

 $\begin{array}{ccccc} K & OP \sin \theta & & L & OP \cos \theta \\ M & OM \sin \theta & & N & OM \cos \theta \end{array}$

$$\mathfrak{E}$$
. $\sin\theta \sqrt{1 + \tan^2\theta} = \overline{\Phi \circ}$?
 $K \operatorname{cosec} \theta \qquad L \operatorname{sec} \theta$
 $M \cot\theta \qquad N \tan\theta$

 একটি সমকোণী ত্রিভুজের ত্রিকোণমিতিক অনুপাত কয়টি?

 $\text{b. } \sec^2\theta\sqrt{1+\tan^2\theta} = \overline{\Phi}$

 $K \sec \theta$ L $\cos \theta$ M $\sin \theta$ N $\sec^3 \theta$

১০. নিচের তথ্যগুলো লক্ষ্য কর:

i. $2-(1-\cot^2\theta)$ এর মান $\csc 2\theta$ ii. $\sin^2\theta+2=3-\cos^2\theta$

iii. $\frac{\csc\theta}{\sin\theta} - \sec\theta.\cos^2\theta.\csc^2\theta = 2$

নিচের কোনটি সঠিক?

Kigii Li Mii Nii

১১. নিচের তথ্যগুলো লক্ষ্য কর—

i. $\sin^2\theta - \cos^2\theta = 1$ ii. $\csc^2\theta - \cot^2\theta = 1$ iii. $\sec^2\theta = 1 + \tan^2\theta$

উপরের তথ্যের ভিত্তিতে নিচের কোনটি সঠিক?

Kigii Liigiii Migiii Ni,iigiii

১২. নিচের তথ্যগুলো লক্ষ্য কর:

i. $\cos 0^{\circ} = \sin 90^{\circ}$ ii. $\sin (90^{\circ} - \theta) = -\cos \theta$ iii. $\tan (90^{\circ} - \theta) = \cot \theta$

নিচের কোনটি সঠিক?

ii. − 1 ≤ sinθ ≤ 1 iii. − 1 ≤ tanθ ≤ 1 উপরের তথ্যের আলোকে নিচের কোনটি

সঠিক?
Kiওii Liওiii
Miiওiii Ni,iiওiii

উপরের চিত্রের আলোকে (১৪–১৬) নং প্রশ্নের উত্তর দাও:

১৪. sinθ ÷ sin(90° − θ) এর মান কত?

 $\mathsf{K} \; \frac{\mathsf{PM}}{\mathsf{OM}} \; \; \mathsf{L} \; \; \frac{\mathsf{PM}}{\mathsf{OP}} \; \; \; \mathsf{M} \; \frac{\mathsf{OM}}{\mathsf{PM}} \; \; \mathsf{N} \; \; \frac{\mathsf{OP}}{\mathsf{OM}}$

১৫. θ = 45° এবং OP = 2 হলে, PM এর মান কত?

K 1 L $\frac{1}{2}$ M $\sqrt{2}$ N $\frac{1}{\sqrt{2}}$

১৬. OP = 2 এবং OM = $\sqrt{3}$ হলে, θ = কত? K 90° L 60° M 45° N 30°

১৭. $\frac{1-\tan^2 60^\circ}{1+\sin^2 60^\circ}+2\sin^2 60^\circ$ এর মান কত?

 $K \frac{5}{14} L 1 M -1 N \frac{1}{2}$

sinθ এর মান কত?

 $\mathbb{K} \frac{1}{\sqrt{3}}$ $\mathbb{L} \frac{\sqrt{2}}{\sqrt{3}}$ $\mathbb{N} \sqrt{2}$

১৯. $\tan\theta = \frac{1}{\sqrt{3}}$ হলে, $\sin\theta$ এর মান কোনটি?

 $K \frac{\sqrt{3}}{2} L \frac{1}{2} M \frac{1}{3} N 0$

২০. $\tan\theta = \frac{3}{4}$ হলে, $\cos^2\theta = \overline{\Phi}$ ত?

 $K \frac{16}{9} L \frac{25}{16} M \frac{16}{25} N \frac{9}{16}$

২১. $\cos\theta = \frac{1}{2}$ হলে $\cot\theta$ এর মান কত?

$$K \frac{1}{\sqrt{3}} L 1 M \sqrt{3} N 2$$

২২. $tanA = \frac{4}{3}$ হলে, cosA এর মান কত?

$$K_{\frac{3}{5}}$$
 $L_{\frac{5}{3}}$ $M_{\frac{4}{5}}$ $N_{\frac{5}{4}}$

২৩. $\tan \theta = \frac{5}{12}$ হলে অতিভূজ কত?

২৪. $\sin x = \cos 40^\circ$ হলে x এর মান নিচের কোনটি?

K 40° L 45° M 50° N 90°

২৫. $\sin\theta + \cos\theta = \sqrt{2}$ এর সমাধান কোনটি, যখন $0^{\circ} < \theta < 90^{\circ}$.

K
$$\theta = \frac{\pi}{6}$$
 L $\theta = \frac{\pi}{4}$ M $\theta = \frac{\pi}{3}$ N $\theta = \frac{\pi}{2}$

২৬. θ = 30° এর ক্ষেত্রে —

i. $4 \sin\theta = \frac{1}{\cos 2\theta}$

ii. $tan2\theta = sec2\theta$

iii. $tan2\theta = 2sin2\theta$

নিচের কোনটি সঠিক?

Kigii Ligiii Miigiii Ni,iigiii

নিচের চিত্রের আলোকে (২৭ ও ২৮) নং প্রশ্নের উত্তর দাধ্য

২৭. tanθ = কত?

$$K\sqrt{3}$$
 L $\frac{1}{\sqrt{3}}$ M 1 N $\sqrt{2}$

২৮. $2 \sin\theta \cos\theta = \overline{\Phi}$ ত?

K 0 L 1 M $\sqrt{2}$ N 2 নিচের শর্তের আলোকে (২৯ ও ৩০) নং প্রশ্নের উত্তর দাও •

 $2\cos(A + B) = 1 = 2\sin(A - B)$

২৯. A – B এর মান কত ডিগ্রী?

K 30° L 45° M 60° N 90°

৩০. A + B এবং A - B এর অনুপাত নিচের কোনটি?

K 1:1 L 1:2 M 2:1 N 1:3

সুজনশীল রচনামূলক প্রশ্ন

সময়: ২ ঘণ্টা ৩০ মিনিট: মান-৭০

[বি. দ্র. যে কোনো ৭টি প্রশ্নের উত্তর দিতে হবে। প্রতি প্রশ্নের মান ১০

২

২

8

\$\.\blacktriangleright \tan\theta + \sin\theta = a এবং \tan\theta - \sin\theta = b

- ক. দেখাও যে, a + b = 2 sin0.sec0.
- খ. প্রমাণ কর যে, $(a^2 b^2)^2 = 16ab$.
- গ. দেখাও যে, $\sec\theta = \sqrt{ab}.\csc^2\theta$.
- ২. ► ABC সমকোণী ত্রিভুজে $\angle B = 90^\circ$ এবং $tanA = \frac{1}{\sqrt{3}}$ এবং

P = tanA + secA

- ক. প্রমাণ কর যে, $\sin^2\theta + \cos^2\theta = 1$
- খ. $\frac{cosec^2A sec^2A}{cosec^2A + sec^2A}$ এর মান নির্ণয় কর।
- গ. উদ্দীপকের সাহায্যে প্রমাণ কর যে, $P^2=rac{1+sinA}{1-sinA}$
- ৩. \triangleright $P = 2 \sin^2 \theta$ এবং $Q = 2 + \tan^2 \theta$
- ক. যদি $\sin(90^{\circ} \theta) = 1$ হয়, তবে $\sec\theta$ এর মান কত?
- খ. প্রমাণ কর যে, $P^{-1} + Q^{-1} = 1$
- গ. দেখাও যে, $P + Q = tan^2\theta.sin^2\theta + 4$
- 8.▶ একটি সমকোণী ত্রিভুজের $\angle B = 90^\circ$, BC = x এবং AB = y
- ক. A কোণকে সূক্ষ্মকোণ বিবেচনা করে x ও y এর মাধ্যমে এর ত্রিকোণমিতিক অনুপাত নির্ণয় কর।
- খ. উদ্দীপকের আলোকে প্রমাণ কর, $\frac{x \sin A y \cos A}{x \sin A + y \cos A} = \frac{x^2 y^2}{x^2 + y^2}$ 8
- গ. প্রমাণ কর, $\sec^2 A \tan^2 A = 1$
- **৫. ►** A = 1 + cosθ এবং B = 1 cosθ
- ক. √AB এর মান কত?
- খ. প্রমাণ কর যে, $(\csc\theta \cot\theta)^2 = \frac{B}{\Delta}$.
- গ. প্রমাণ কর যে, $\sqrt{\frac{A}{B}} = \csc\theta + \cot\theta$
- $\bullet. \triangleright \cos^2 A + \cos^4 A = 1$
- ক. দেখাও যে, $\frac{\cos^2\!A}{1+\cos^2\!A}$ = $(1+\cos\!A)\,(1-\cos\!A)$
- খ. প্রমাণ কর যে, $\cot^4 A \cot^2 A = 1$
- গ. দেখাও যে, $\tan^4 A + \tan^2 A = 1$ এবং $\sin^2 A + \sec^2 A = 2$

- ক. ΔPQR এর পরিসীমা নির্ণয় কর।
- খ. $\frac{\sin P + \cos Q + \cot R}{\sin Q + \tan P + \cos R}$ এর মান নির্ণয় কর। 8
- গ. প্রমাণ কর যে, $\sin x + \cos 3y = \sqrt{2}$.

b. Þ

২

8

- ক. tanα এর মান নির্ণয় কর।
- খ. উদ্দীপকের আলোকে প্রমাণ কর যে,

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

- গ $.\sqrt{3}\cos\theta+\sin\theta=2$ থেকে θ এর মান নির্ণয় করে দেখাও যে, $\theta=lpha$
- **b.** \triangleright p = cot (A + B), q = cot (A − B), r = sin A

ক.
$$r = \frac{3}{4}$$
 হলে $tanA$ এর মান নির্ণয় কর।

- খ. $p=1,\,q=\sqrt{3}$ হলে A ও B এর মান নির্ণয় কর। যেখানে A ও B সৃক্ষকোণ।
- গ. $A-B=\theta$ এবং $q=\sqrt{5}$ হলে $\frac{cosec^2\theta-sec^2\theta}{cosec^2\theta+sec^2\theta}$ এর মান নির্ণয়
- ১০. ► $2\cos(A B) = \sqrt{3}$ এবং $2\sin(A + B) = \sqrt{3}$ যেখানে A
- এবং B সূক্ষকোণ।
- ক. $2\sin x = \sqrt{2}$ হলে $\cot \frac{2x}{3}$ এর মান নির্ণয় কর।
- খ. A ও B এর মান নির্ণয় কর।
- গ. জ্যামিতিক পর্ম্বতিতে A কোণের ত্রিকোণোমিতিক অনুপাত নির্ণয় কর।
- **33.** \blacktriangleright $x = \sin \theta, y = \cos \theta$
- ক. দেখাও যে, $\frac{x}{v}\sqrt{1-x^2}=x$
- খ. $y-x=\sqrt{2}x$ হলে দেখাও যে, $x+y=\sqrt{2}y$
- গ. সমাধান কর ៖ $2-5x=x^2-y^2$ যখন θ সূক্ষ্কোণ।

সৃজনশীল বহুনির্বাচনি | মডেল প্রশ্নপত্রের উত্তর

7	L	২	Κ	৩	L	8	Κ	œ	Ν	৬	М	٩	Κ	ъ	Ν	৯	L	১০	М	77	L	১২	М	১৩	Κ	78	М	ን৫	М
১৬	L	١٩	Κ	ኔ৮	Κ	አ ৯	L	২০	М	২১	Κ	২২	Κ	২৩	L	২৪	М	২৫	L	২৬	L	২৭	М	২৮	L	২৯	Κ	೦೦	М

সূজনশীল রচনামূলক | মডেল প্রশ্নপত্রের উত্তর

- ২. খ. $\frac{1}{2}$
- ৩. ক.1
- \bullet . ক. $\sin\theta$;
- ক. 4.73 একক (প্রায়);
 - খ. $\frac{3\sqrt{3}}{2+3\sqrt{3}}$;
- $rac{1}{\sqrt{3}}$

- ৯. ক. $\frac{3}{\sqrt{7}}$
 - খ. $A = 37\frac{1}{2}$ ° এবং $B = 7\frac{1}{2}$ (গ) $\frac{2}{3}$
- **১**০. ক. $\sqrt{3}$:
 - খ. A = 45° এবং B = 15°;
- **১১.** গ. 30°