Frühjahr 11 Themennummer 2 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei G ein beschränktes nicht-leeres Gebiet in $\mathbb C$ und seien $f,g:\overline G\to\mathbb C$ stetige Funktionen, deren Einschränkungen auf G holomorph sind. Zeigen Sie: Gilt |f(z)|=|g(z)| für alle $z\in\partial G$ und haben f und g keine Nullstellen in $\overline G$, so gibt es ein $\lambda\in\mathbb C$ mit $|\lambda|=1$, so dass $f=\lambda g$.

Lösungsvorschlag:

Wir können die Funktion $h:\overline{G}\to\mathbb{C},z\mapsto\frac{f(z)}{g(z)}$ betrachten, die holomorph auf G, stetig und nullstellenfrei auf dem Kompaktum \overline{G} ist. Nach dem Maximumsprinzip (oder dem Minimumsprinzip) muss h auf \overline{G} konstant sein, weil wegen $|h|_{\partial G}|\equiv 1$ jeder Punkt im Gebiet G ein lokales Maximum und Minimum von |h| ist. Wegen |h(z)|=1 für alle $z\in G$ muss also $h|_{\overline{G}}\equiv \lambda$ für ein $\lambda\in\mathbb{C}$ mit $|\lambda|=1$ sein. Es folgt somit $f=\lambda g$ nach Multiplikation mit der nullstellenfreien Funktion g.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$