1 Basic Equations 1

1 Basic Equations

The so-called Stokes stream function, used in axisymmetric situations, is given by

$$\mathbf{u} = \begin{bmatrix} \frac{1}{r} \partial_z \psi \ \hat{\mathbf{r}} \\ u_{\phi} \ \hat{\phi} \\ -\frac{1}{r} \partial_r \psi \ \hat{\mathbf{z}} \end{bmatrix}; \tag{1}$$

here we define A in the same way.

Using the definitions in

$$\begin{split} \partial_t \left[\frac{1}{r} \left(\nabla^2 \psi - \frac{2 \partial_r \psi}{r} \right) \right] + \frac{1}{r^2} J(\psi, \nabla^2 A - \frac{2 \partial_r \psi}{r}) &= \frac{\partial_z A}{r^3} \left(\nabla^2 A - \frac{2 \partial_r A}{r} \right) \\ &+ \frac{1}{r} J \left(A, \frac{1}{r} \left(\nabla^2 A - \frac{2 \partial_r A}{r} \right) \right) - \frac{2 B_\phi \partial_z B_\phi}{r} \\ &+ \nu \left\{ \nabla^2 \left[\frac{1}{r} \left(\nabla^2 \psi - \frac{2 \partial_r \psi}{r} \right) \right] - \frac{1}{r^2} \left(\nabla^2 \psi - \frac{2 \partial_r \psi}{r} \right) \right\} \end{split}$$
(2)

For the expanded form of the Ψ equation, Susan gets:

$$\partial_t u_\phi + \frac{J(\psi, u_\phi)}{r} + \frac{u_\phi \partial_z \psi}{r^2} = \frac{J(A, B_\phi)}{r} + \frac{B_\phi \partial_z A}{r^2} + \nu \left(\nabla^2 u_\phi - \frac{u_\phi}{r} \right)$$
(3)

$$\partial_t A = \frac{1}{r} J(A, \psi) + \eta \left(\nabla^2 A - \frac{2\partial_r A}{r} \right) \tag{4}$$

Susan gets:

$$\partial_t A = \frac{1}{r} J(A, \Psi) + \frac{1}{Rm} \left[-\frac{1}{r} \partial_r A + \partial_r^2 A + \partial_z^2 A \right]$$
 (5)

$$\partial_t B_\phi = \frac{1}{r} J(A, u_\phi) + \frac{1}{r} J(B_\phi, \psi)$$

$$+ \frac{1}{r^2} B_\phi \partial_z \psi - \frac{1}{r^2} u_\phi \partial_z A + \eta \left(\nabla^2 B_\phi - \frac{1}{r^2} B_\phi \right)$$
 (6)

2 Detailed Derivation of Ψ Equation

The Ψ equation, governing the x- and z-components of the velocity, is particularly tricky to derive so I will write out the steps here.

1. Find $\hat{\mathbf{r}}$ and $\hat{\mathbf{z}}$ components of the momentum equation, i.e.:

$$\partial_t u_z + [u \cdot \nabla u]_z = [(\nabla \times B) \times B]_z + \frac{1}{\text{Re}} [\nabla^2 u]_z$$
 (7)

We sub in our stream/flux function notation and expand the operators in cylindrical coordinates. Then take ∂_r of the resulting equation to obtain:

$$\begin{split} \frac{1}{r^2}\partial_t\partial_r\Psi - \frac{1}{r}\partial_t\partial_r^2\Psi - \frac{3}{r^4}\partial_z\Psi\partial_r\Psi + \frac{1}{r^3}\partial_r\left(\partial_z\Psi\partial_r\Psi\right) + \frac{2}{r^3}\partial_z\Psi\partial_r^2\Psi - \frac{1}{r^2}\partial_r\left(\partial_z\Psi\partial_r^2\Psi\right) \\ - \frac{2}{r^3}\partial_r\Psi\partial_r\partial_z\Psi + \frac{1}{r^2}\partial_r\left(\partial_r\Psi\partial_r\partial_z\Psi\right) = \\ \partial_r\left(B_\theta\partial_zB_\theta\right) + \frac{2}{r^3}\partial_z^2A\partial_zA - \frac{1}{r^2}\partial_r\left(\partial_z^2A\partial_zA\right) + \frac{3}{r^4}\partial_zA\partial_rA - \frac{1}{r^3}\partial_r\left(\partial_zA\partial_rA\right) - \frac{2}{r^3}\partial_zA\partial_r^2A \\ + \frac{1}{r^2}\partial_r\left(\partial_zA\partial_r^2A\right) + \frac{1}{\text{Re}}\left[\frac{3}{r^4}\partial_r\Psi - \frac{3}{r^3}\partial_r^2\Psi + \frac{2}{r^2}\partial_r^3\psi - \frac{1}{r}\partial_r^4\Psi\right] \end{split} \tag{8}$$

Repeat this process for the $\hat{\mathbf{r}}$ component of the momentum equation,

$$\partial_t u_r + \left[u \cdot \nabla u \right]_r = \left[(\nabla \times B) \times B \right]_r + \frac{1}{\text{Re}} \left[\nabla^2 u \right]_r \tag{9}$$

and take ∂_z of the expanded equation to obtain

$$\frac{1}{r}\partial_{t}\partial_{z}^{2}\Psi - \frac{1}{r^{3}}\partial_{z}\left(\partial_{z}\Psi\partial_{z}\Psi\right) + \frac{1}{r^{2}}\partial_{z}\left(\partial_{z}\Psi\partial_{z}\partial_{r}\Psi\right) - \frac{1}{r^{2}}\partial_{z}\left(\partial_{r}\Psi\partial_{z}^{2}\Psi\right) - \frac{1}{r}2u_{\theta}\partial_{z}u_{\theta}$$

$$= -\frac{1}{r^{2}}\partial_{z}^{3}A\partial_{r}A - \frac{1}{r^{2}}\partial_{z}^{2}A\partial_{r}\partial_{z}A + \frac{2}{r^{3}}\partial_{r}\partial_{z}A\partial_{r}A - \frac{1}{r^{2}}\partial_{r}^{2}\partial_{z}A\partial_{r}A - \frac{1}{r^{2}}\partial_{r}^{2}A\partial_{r}\partial_{z}A$$

$$+ \frac{1}{Re}\left[-\frac{1}{r^{2}}\partial_{z}^{2}\partial_{r}\Psi + \frac{1}{r}\partial_{z}^{2}\partial_{r}^{2} + \frac{1}{r}\partial_{z}^{4}\right] \quad (10)$$

It is clear from the ∂_t terms that we must combine these equations by subtracting the $\hat{\mathbf{z}}$ equation from the $\hat{\mathbf{r}}$ equation.

When we do, we can simplify the LHS of the equation to:

$$\frac{1}{r}\partial_t \left(\nabla^2 \Psi - \frac{2}{r}\partial_r \Psi \right) + J \left(\Psi, \frac{1}{r^2} \left(\nabla^2 \Psi - \frac{2}{r}\partial_r \Psi \right) \right) - \frac{1}{r} 2u_\theta \partial_z u_\theta \tag{11}$$

Note that the relevant quantity appears to be $\nabla^2 \Psi - \frac{2}{r} \partial_r \Psi$, and that the $\frac{1}{r^2}$ in the second term cannot come out of the Jacobian (a point of disagreement with Jeff's equation above). Also I'm confused why Jeff's has no u_{θ} term. The RHS of this equation is significantly more complicated.

3 Recovery of Narrow Gap Equations

A Cylindrical derivatives

Everything here follows http://farside.ph.utexas.edu/teaching/336L/Fluidhtml/node177.html#scyl.

For a scalar field ψ ,

$$\nabla \psi = \frac{\partial \psi}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial \psi}{\partial \phi} \hat{\phi} + \frac{\partial \psi}{\partial z} \hat{\mathbf{z}}.$$
 (12)

However, for a vector field \mathbf{u} ,

$$\nabla \cdot \mathbf{u} = \frac{1}{r} \frac{\partial (ru_r)}{\partial r} + \frac{1}{r} \frac{\partial u_\phi}{\partial \phi} + \frac{\partial u_z}{\partial z}$$
 (13)

and

$$\nabla \times \mathbf{u} = \left(\frac{1}{r} \frac{\partial u_z}{\partial \phi} - \frac{\partial u_\phi}{\partial z}\right) \hat{\mathbf{r}} + \left(\frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r}\right) \hat{\phi} + \left(\frac{1}{r} \frac{\partial (ru_\phi)}{\partial r} - \frac{1}{r} \frac{\partial u_r}{\partial \phi}\right) \hat{\mathbf{z}}. \tag{14}$$

We also need the ϕ component of the convective derivative $\mathbf{u} \cdot \nabla \mathbf{u}$,

$$[\mathbf{u} \cdot \nabla \mathbf{u}]_{\phi} = \mathbf{u} \cdot \nabla u_{\phi} + \frac{u_r u_{\phi}}{r}, \tag{15}$$

and finally, the vector Laplacian,

$$(\nabla^2 \mathbf{u})_r = \nabla^2 u_r - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_\phi}{\partial \phi}$$
 (16)

$$(\nabla^2 \mathbf{u})_{\phi} = \nabla^2 u_{\phi} + \frac{2}{r^2} \frac{\partial u_r}{\partial \phi} - \frac{u_{\phi}}{r^2}$$
(17)

$$(\nabla^2 \mathbf{u})_z = \nabla^2 u_z,\tag{18}$$

where ∇ on the vector components is given by equation (12).

Note that, expanding the definition of the vector Laplacian, where the cylindrical scalar Laplacian is substituted in for $\nabla^2 u_r$ and $\nabla^2 u_z$