Assignment 3.4

Read up on cross validation as a form of evaluation. What is done in cross validation? Consider especially leave-one-out cross validation and k-fold cross validation. Shortly explain the processes and their differences! For what purpose do we need either? How would a leave-one-out cross validation look in a concept learning setting?

Cross-validation (Rotation Estimation):

- It is a resampling procedure used to evaluate machine learning models on a limited data sample.
- The procedure has a single parameter called *k* that refers to the number of record groups that a given data sample is to be split into.

k-fold Cross-validation:

- In this flagship classifier evaluation method, the process of cross-validation is divided into *k*-folds.
- The value k is a hyperparameter and when a specific value for k is chosen it may be used in the reference to the model like k=10 (optimal) making it as 10-fold cross-validation.
- The larger the value of k higher the bias of the CV error and the lower variance.
- Process:
- Shuffle the dataset randomly.
- \blacksquare Split the dataset into k groups.
- For each unique group perform:
 - i. Take the group as a holdout or test data.
 - ii. Take the rest of the group as the training data.
 - iii. Fit a model on the training set and evaluate it on the test set.
 - iv. Output the evaluation score.
- Summarize the performance of the model using the mean of the scores.

- Each observation in the data sample is assigned to an individual group and stays in that group for the duration of the procedure.
- Meaning, each sample is given the chance to be used in the holdout set **once** and used to train the model *k-1* times.
- Purpose:

Used to test the generalizability of the model.

k = 9				7	Те	st																
#	Α	В	С	D	E	Т		#	Α	В	С	D	E	Т		#	Α	В	С	D	E	Т
20	0	1	0	1	1	+		20	0	1	0	1	1	+		20	0	1	0	1	1	+
21	1	0	0	0	0	-		21	1	0	0	0	0	_		21	1	0	0	0	0	-
22	0	0	1	0	0	-		22	0	0	1	0	0	-1		22	0	0	1	0	0	-
23	1	2	0	0	1	+	口〉	23	1	2	0	0	1	+	口〉	23	1	2	0	0	1	+
24	0	0	2	1	1	+	,	24	0	0	2	1	1	+	,	24	0	0	2	1	1	+
25	1	2	0	0	0	-		25	1	2	0	0	0	-		25	1	2	0	0	0	-
26	2	1	1	0	0	+		26	2	1	1	0	0	+		26	2	1	1	0	0	+
27	1	1	1	2	0	-		27	1	1	1	2	0	-		27	1	1	1	2	0	-
28	0	1	2	2	0	+	İ	28	0	1	2	2	0	+		28	0	1	2	2	0	+

Leave-One-Out Cross-Validation (LOOCV):

- It is a configuration of k-fold cross validation where k is set to the number of examples, N in the dataset (k=N).
- LOOCV is an extreme version of *k*-fold cross-validation that has the maximum computational cost.
- It requires one model to be created and evaluated for each example in the training dataset.
- Process:
- Take 1 out of N as the test example (used for evaluation).
- Rest as the training data (used to fit a model).
- Choose a model (usually RandomForestClassifer with a *random state*).
- Save the score from each evaluation.
- Present the final mean estimate as model performance.

• Purpose:

The benefit of so many fit and evaluated models is a more robust estimate of model performance as each row of data is given an opportunity to represent the entirety of the test data.

- Recommended using when the size of the dataset is small or when estimated model performance is critical.
- Not recommended using when:
 - I. The size of the dataset is humungous Due to the fact of performing multiple evaluations per iterations.
 - II. There are costlier models to fit.
 - III. Prone to low bias It performs as expected when training with the presented scenario and on the test data but, when made to evaluate on a new test example especially in a production setting then it underperforms.

LOOCV	k-fold CV
A special case of k -fold CV when $k = N$	Dataset grouped into chunks of k sizes ($k < N$)
<i>N-1</i> for training; 1 out of <i>N</i> for test	<i>k-1</i> fold for training; 1-fold for test
Computationally expensive to perform	Computationally economic to perform
Convergence time is higher	Better convergence in comparison to LOOCV

LOOCV in a Concept Learning perspective

As concept learning can be viewed as a task of searching through a large set of hypotheses we can use it for determining whether a classifier evaluation strategy is apt or not.

- In LOOCV since we consider the entire dataset (N), it is directly proportional to the increase in the traces for S and G, the strategy would take computationally high time to converge.
- Depending upon the correct concept learning algorithm the learner is guaranteed to find the target concept.