Titanic - Machine Learning from Disaster

Lab Report

Name: Marzuk Entsie Sanni

Submission Date: 1st January 3, 2025

1. Introduction

Objective

The goal of this project was to develop a predictive model to determine passenger survival based on the Titanic dataset. This exercise strengthened understanding of the end-to-end machine learning pipeline, including data exploration, preprocessing, feature engineering, model selection, and evaluation.

2. Data Exploration and Visualization

2.1 Dataset Overview

- Source: Titanic dataset (train.csv, test.csv).
- Key Features: Survival, Pclass, Age, Sex, SibSp, Parch, Ticket, Fare, Cabin, Embarked.

2.2 Key Statistics

Summary statistics for numerical features (mean, median, standard deviation).

2.3 Visualizations

- Survival rates by:
 - Gender
 - o Title
 - o Age Groups
 - o Sex

3. Data Cleaning and Preprocessing

3.1 Handling Missing Values

• Approach for handling missing values in Age, Embarked, and other columns.

3.2 Encoding Categorical Variables

Conversion of categorical variables like Sex and Embarked to numerical values.

3.3 Normalization/Scaling

Scaling techniques used for numerical features.

3.4 Train-Validation Split

• Details of the split (e.g., 80-20 split).

4. Feature Engineering

4.1 New Features and Justification

• Description of new features created (e.g., FamilySize, IsAlone, Title, AgeGroup).

- FamilySize: This feature captures the total number of family members aboard the Titanic (calculated as SibSp + Parch + 1). My justification for this is that family presence could significantly influence survival rates, as families might prioritize saving each other during the disaster
- IsAlone: Traveling alone might have impacted survival chances, as isolated individuals might have been less likely to receive assistance.
- AgeGroup: Categorized passengers into age groups (Child, Teen, Young Adult, Adult, Senior). Survival likelihood could vary across age demographics, with children and seniors possibly prioritized during evacuation.
- Title: Titles reflect social status and gender roles, both of which likely influenced survival rates.

4.2 Feature Selection

- Techniques used (e.g., correlation matrix, feature importance scores).
- Final selected features for model training.

5. Model Selection and Training

5.1 Models Trained

- Logistic Regression
- Random Forest
- Support Vector Machines

5.2 Cross-Validation and Metrics

• Table comparing model performance on validation data (Accuracy, Precision, Recall, F1-score, ROC-AUC).

	Accuracy	Precision	Recall	F1	ROC-AUC	CV Score
Logistic Regression	0.842105	0.756757	0.756757	0.756757	0.810284	0.791209
Random Forest	0.807018	0.692308	0.729730	0.710526	0.835732	0.789011
SVM	0.789474	0.658537	0.729730	0.692308	0.833801	0.802198

6. Model Optimization

6.1 Hyperparameter Tuning

• RandomizedSearchCV results for each model.

6.2 Final Optimized Model Performance

• Comparison of optimized model metrics.

	Accuracy	Precision	Recall	F1 Score	ROC-AUC
Logistic Regression	0.815789	0.735294	0.675676	0.704225	0.779396
Random Forest	0.842105	0.806452	0.675676	0.735294	0.798877
SVM	0.789474	0.658537	0.729730	0.692308	0.773956

7. Testing and Submission

7.1 Test Set Predictions

Description of the best model used for test data predictions.

7.2 Submission File

Marzuk_submission.csv.

8. Conclusion

Key Insights

- Factors that most influenced survival (e.g., gender, Title, Age, Fare).
- I faced a challenge of improving my models performance and I was able to improve it by generating new features and also adjusting threshold in a attempt to improve the model.

Future Work

• Possible improvements or additional analyses (e.g., ensemble models, deeper feature engineering).