Adversarial Training for Textual Entailment with Knowledge-Guided Examples

jcykcai

Motivations

- Datasets tend to be homogeneous.
- Models overfit to repetitive patterns, but fail to cover longtail patterns or linguistic phenomena such as negation.

Motivations

- Deep learning methods generally do NOT
 - incorporate intuitive rules such as negation
 - consider large-scale linguistic resources such as PPDB or WordNet

- How to do with Intuitive rules and linguistic resources
- Task-specific?
- Model-independent ?

Source	ρ	$f_{oldsymbol{ ho}}(ext{s})$	$g_{ ho}$				
Knowledge Base, GKB							
WordNet	hyper(x, y)		⊑				
	anto(x, y)		人				
	syno(x, y)	Replace x with y in s	⊑				
PPDB	$x \equiv y$						
SICK	c(x, y)		c				
Hand-authored, GH							
Domain knowledge	NEG	NEGATE(s)	人				
Neural Model, G ^{s2s}							
Training data	(s2s, c)	$\mathbb{G}_c^{s2s}(s)$	с				

P	a person on a horse jumps over a broken down airplane		
\mathbf{H}' : $\mathbb{G}^{\mathrm{s2s}}_{c=\sqsubseteq}$	a person is on a horse jumps over a rail, a person jumping over a plane		
\mathbf{H}' : $\mathbb{G}_{c=\perp}^{\mathrm{s2s}}$	a person is riding a horse in a field with a dog in a red coat		
\mathbf{H}' : $\mathbb{G}^{\mathrm{s2s}}_{c=\#}$	a person is in a blue dog is in a park		
P (or H)	a dirt bike rider catches some air going off a large hill		
\mathbf{P}' : $\mathbb{G}_{\rho=\equiv,g_{\rho}=\sqsubseteq}^{\mathrm{KB}(\mathrm{PPDB})}$	a dirt motorcycle rider catches some air going off a large hill		
\mathbf{P} ': $\mathbb{G}_{\rho=c,g_{\rho}=\#}^{\mathrm{KB}(\mathrm{SICK})}$	a dirt bike man on yellow bike catches some air going off a large hill		
P' : $\mathbb{G}_{\rho=syno,g_{\rho}=\sqsubseteq}^{KB(WordNet)}$	a dirt bike rider catches some atmosphere going off a large hill		
\mathbf{P} ': $\mathbb{G}^{\mathrm{Hand}}_{ ho=\mathrm{NEG},g_{ ho}=oldsymbol{\wedge}}$	a dirt bike rider do not catch some air going off a large hill		

Algorithm 1 Training procedure for ADVENTURE.

```
1: pretrain discriminator \mathbb{D}(\hat{\theta}) on X;
 2: pretrain generators \mathbb{G}_c^{s2s}(\hat{\phi}) on X;
 3: for number of training iterations do
         for mini-batch B \leftarrow X do
             generate examples from \mathbb{G}
 5:
                Z_G \Leftarrow \mathbb{G}(B; \phi),
 6:
            balance X and Z_G s.t. |Z_G| \le \alpha |X|
 7:
            optimize discriminator:
 8:
                \hat{\theta} = \operatorname{argmin}_{\theta} L_{\mathbb{D}}(X + Z_G; \theta)
 9:
            optimize generator:
10:
                \hat{\phi} = \operatorname{argmin}_{\phi} L_{\mathbb{G}^{s2s}}(\mathcal{Z}_G; L_{\mathbb{D}}; \phi)
11:
```

Update $\theta \leftarrow \hat{\theta}; \phi \leftarrow \hat{\phi}$

12:

Experiments

SNLI	1%	10%	50%	100%
$\overline{\mathbb{D}}$	57.68	75.03	82.77	84.52
$\mathbb{D}_{ ext{retro}}$	57.04	73.45	81.18	84.14
AdvEntuRe				
$\perp \mathbb{D} + \mathbb{G}^{s2s}$	58.35	75.66	82.91	84.68
$\perp \mathbb{D} + \mathbb{G}^{\text{rule}}$	60.45	77.11	83.51	84.40
$\square + \mathbb{G}^{\text{rule}} + \mathbb{G}^{\text{s2s}}$	59.33	76.03	83.02	83.25
SciTail	1%	10%	50%	100%
SciTail D	1%	10%	50% 73.24	100% 74.29
\square	<u> </u>			
	56.60	60.84	73.24	74.29
\mathbb{D} $\mathbb{D}_{\mathrm{retro}}$	56.60	60.84	73.24	74.29
D Dretro ADVENTURE	56.60 59.75	60.84 67.99	73.24 69.05	74.29 72.63

	\mathcal{R}/\mathcal{C}	SNLI (5%)	SciTail (10%)
□ +Crule	\mathbb{D}	69.18	60.84
	+ PPDB	72.81 (+3.6%)	65.52 (+4.6%)
	+ SICK	71.32 (+2.1%)	67.49 (+6.5%)
	+ WordNet	71.54 (+2.3%)	64.67 (+3.8%)
	+ HAND	71.15 (+1.9%)	69.05 (+8.2%)
	+ all	71.31 (+2.1%)	64.16 (+3.3%)
D+(G ^{s2s}	\mathbb{D}	69.18	60.84
	+ positive	71.21 (+2.0%)	67.49 (+6.6%)
	+ negative	71.76 (+2.6%)	68.95 (+8.1%)
	+ neutral	71.72 (+2.5%)	-
	+ all	72.28 (+3.1%)	70.77 (+9.9%)

Learn a Lesson

- Easiest way to do a good but not exciting work
 - Find right problem
 - do trivial but promising ideas
 - make elaborate experiment analysis.