2.20 - Marine Hydrodynamics, Spring 2005 Lecture 20

2.20 - Marine Hydrodynamics Lecture 20

Chapter 6 - Water Waves

6.1 Exact (Nonlinear) Governing Equations for Surface Gravity Waves, Assuming Potential Flow

Unknown variables

Velocity field: $\overrightarrow{v}\left(x,y,z,t\right) = \nabla\phi\left(x,y,z,t\right)$

Position of free surface: $y = \eta\left(x, z, t\right)$ or $F\left(x, y, z, t\right) = 0$

Pressure field: p(x, y, z, t)

Governing equations

Continuity: $\nabla^2 \phi = 0 \quad y < \eta \text{ or } F < 0$

Bernoulli for P-Flow: $\frac{\partial \phi}{\partial t} + \frac{1}{2} \left| \nabla \phi \right|^2 + \frac{p - p_a}{\rho} + gy = 0; \quad y < \eta \quad \text{or} \quad F < 0$

Far way, no disturbance: $\partial \phi / \partial t$, $\nabla \phi \to 0$ and $p = \underbrace{p_a}_{\text{atmospheric}} - \underbrace{\rho g y}_{\text{hydrostatic}}$

Boundary Conditions

1. On an impervious boundary B(x, y, z, t) = 0, we have KBC:

$$\vec{v} \cdot \hat{n} = \nabla \phi \cdot \hat{n} = \frac{\partial \phi}{\partial n} = \vec{U}(\vec{x}, t) \cdot \hat{n}(\vec{x}, t) = U_n \text{ on } B = 0$$

Alternatively: a particle P on B remains on B, i.e., B is a material surface. For example if P is on B at $t = t_0$, P stays on B for all t.

$$B(\vec{x}_P, t_0) = 0$$
, then $B(\vec{x}_P(t), t) = 0$ for all t ,

so that, following P B is always 0.

$$\therefore \frac{DB}{Dt} = \frac{\partial B}{\partial t} + (\nabla \phi \cdot \nabla) B = 0 \text{ on } B = 0$$

For example, for a flat bottom at $y=-h \Rightarrow B=y+h=0 \Rightarrow$

$$\frac{DB}{Dt} = \left(\frac{\partial \phi}{\partial y}\right) \left(\underbrace{\frac{\partial}{\partial y}(y+h)}_{1}\right) = 0 \Rightarrow \frac{\partial \phi}{\partial y} = 0 \text{ on } B = y+h = 0$$

2. On the free surface, $y = \eta$ or $F = y - \eta(x, z, t) = 0$ we have KBC and DBC.

KBC: free surface is a material surface, no normal velocity relative to the free surface. A particle on the free surface remains on the free surface for all times.

$$\frac{DF}{Dt} = 0 = \frac{D}{Dt} (y - \eta) = \underbrace{\frac{\partial \phi}{\partial y}}_{\text{vertical}} - \underbrace{\frac{\partial \eta}{\partial t} - \frac{\partial \phi}{\partial x}}_{\text{vertical}} \underbrace{\frac{\partial \eta}{\partial x}}_{\text{of f.s.}} - \underbrace{\frac{\partial \phi}{\partial z}}_{\text{slope}} \underbrace{\frac{\partial \eta}{\partial z}}_{\text{slope}} \text{ on } y = \underbrace{\eta}_{\text{still unknown}}$$

DBC: $p = p_a$ on $y = \eta$ or F = 0. Apply Bernoulli equation at $y = \eta$:

$$\frac{\partial \phi}{\partial t} + \underbrace{\frac{1}{2} |\nabla \phi|^2}_{\text{pon-linear term}} + g \underbrace{\eta}_{\text{still unknown}} = p_a \text{ on } y = \eta$$

6.2 Linearized (Airy) Wave Theory

Assume small wave amplitude compared to wavelength, i.e., small free surface slope

$$\frac{A}{\lambda} << 1$$

Consequently

$$\frac{\phi}{\lambda^2/T}, \frac{\eta}{\lambda} << 1$$

We keep only linear terms in ϕ , η .

For example:
$$()|_{y=\eta} = \underbrace{()_{y=0}}_{\text{keep}} + \underbrace{\eta \frac{\partial}{\partial y} ()|_{y=0}}_{\text{discard}} + \dots$$
 Taylor series

6.2.1 BVP In this paragraph we state the Boundary Value Problem for linear (Airy) waves.

$$y = 0 \quad \frac{\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial y} = 0}{\nabla^2 \phi = 0}$$

$$y = -h \quad \frac{\partial^2 \phi}{\partial y} = 0$$

	Finite depth $h = const$	Infinite depth
GE:	$\nabla^2 \phi = 0, -h < y < 0$	$\nabla^2 \phi = 0, y < 0$
BKBC:	$\frac{\partial \phi}{\partial y} = 0, y = -h$	$\nabla \phi \to 0, \ y \to -\infty$
FSKBC:	$\frac{\partial \phi}{\partial y} = \frac{\partial \eta}{\partial t}, y = 0$	$\partial^2\phi$. $\partial\phi$ ϕ
FSDBK:	$\frac{\partial \phi}{\partial t} + g\eta = 0, y = 0$	$g o rac{\partial^2 \phi}{\partial t^2} + g rac{\partial \phi}{\partial y} = 0$

Introducing the notation {} for infinite depth we can rewrite the BVP:

Constant finite depth h

$$\nabla^2 \phi = 0, \quad -h < y < 0$$

$$\frac{\partial \phi}{\partial y} = 0, \quad y = -h$$

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial y} = 0, \quad y = 0$$

$$\left\{ \nabla^2 \phi = 0, \ y < 0 \right\} \tag{1}$$

$$\{\nabla\phi \to 0, \ y \to -\infty\}$$
 (2)

$$\left\{ \frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial y} = 0, \quad y = 0 \right\} \tag{3}$$

Given ϕ calculate:

$$\eta\left(x,t\right) = -\frac{1}{g} \left. \frac{\partial \phi}{\partial t} \right|_{y=0}$$

$$p - p_a = \underbrace{-\rho \frac{\partial \phi}{\partial t}}_{\text{dynamic}} - \underbrace{\rho g y}_{\text{hydrostatic}}$$

$$\left\{ \eta\left(x,t\right) = -\frac{1}{g} \left. \frac{\partial \phi}{\partial t} \right|_{y=0} \right\} \tag{4}$$

$$\left\{ p - p_a = \underbrace{-\rho \frac{\partial \phi}{\partial t}}_{\text{dynamic}} - \underbrace{\rho g y}_{\text{hydrostatic}} \right\}$$
 (5)

6.2.2 **Solution** Solution of 2D periodic plane progressive waves, applying separation of variables.

We seek solutions to Equation (1) of the form $e^{i\omega t}$ with respect to time. Using the KBC (2), after some algebra we find ϕ . Upon substitution in Equation (4) we can also obtain η .

$$\phi = \frac{gA}{\omega} \sin(kx - \omega t) \frac{\cosh k (y + h)}{\cosh kh} \qquad \left\{ \phi = \frac{gA}{\omega} \sin(kx - \omega t) e^{ky} \right\}$$

$$\eta = A \cos(kx - \omega t) \qquad \left\{ \eta = A \cos(kx - \omega t) \right\}$$

where A is the wave amplitude A = H/2.

Exercise Verify that the obtained values for ϕ and η satisfy Equations (1), (2), and (4).

- 6.2.3 Review on plane progressive waves
 - (a) At t=0 (say), $\eta=A\cos kx\to \text{periodic in }x$ with **wavelength**: $\lambda=2\pi/k$ Units of λ : [L]

$$k = \text{wavenumber} = 2\pi/\lambda$$
 [L⁻¹]

(b) At x=0 (say), $\eta=A\cos\omega t\to \text{periodic in }t$ with **period:** $T=2\pi/\omega$ Units of T:[T]

$$\omega = \text{frequency} = 2\pi/T \qquad [T^{-1}], \text{ e.g. rad/sec}$$

(c) $\eta = A \cos \left[k \left(x - \frac{\omega}{k} t \right) \right]$ Units of $\frac{\omega}{k}$: $\left[\frac{L}{T} \right]$

Following a point with velocity $\frac{\omega}{k}$, i.e., $x_p = \left(\frac{\omega}{k}\right)t + const$, the phase of η does not change, i.e., $\frac{\omega}{k} = \frac{\lambda}{T} \equiv V_p \equiv \underline{\text{phase velocity}}$.

6.2.4 Dispersion Relation

So far, any ω, k combination is allowed. However, recall that we still have not made use of the FSBC Equation (3). Upon substitution of ϕ in Equation (3) we find that the following relation between h, k, and ω must hold:

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial y} = 0 \xrightarrow[\phi = \frac{gA}{\omega} \sin(kx - \omega t)f(z)]{} -\omega^2 \cosh kh + gk \sinh kh = 0 \Rightarrow \omega^2 = gk \tanh kh$$

• This is the **Dispersion Relation**

$$\omega^2 = gk \tanh kh \qquad \qquad \{\omega^2 = gk\} \tag{6}$$

Given h, the Dispersion Relation (6) provides a **unique** relation between ω and k, i.e., $\omega = \omega(k; h)$ or $k = k(\omega; h)$.

• Proof

$$C \equiv \frac{\omega^2 h}{g} \underbrace{=}_{\text{from (6)}} (kh) \tanh(kh)$$

$$\frac{C}{kh} = \tanh kh$$

$$\frac{C}{kh} = \tanh kh$$

obtain unique solution for k

- Comments
- General As $\omega \uparrow$ then $k \uparrow$, or equivalently as $T \uparrow$ then $\lambda \uparrow$.

- Phase speed
$$V_p \equiv \frac{\lambda}{T} = \frac{\omega}{k} = \sqrt{\frac{g}{k}} \tanh kh$$
 $\left\{ V_p = \sqrt{\frac{g}{k}} \right\}$

Therefore as $T \uparrow$ or as $\lambda \uparrow$, then $V_p \uparrow$, i.e., longer waves are 'faster' in terms of phase speed.

- Water depth effect For waves the same k (or λ), at different water depths, as $h \uparrow$ then $V_p \uparrow$, i.e., for fixed $k V_p$ is fastest in deep water.
- Frequency dispersion Observe that $V_p = V_p(k)$ or $V_p(\omega)$. This means that waves of different frequencies, have different phase speeds, i.e., frequency dispersion.

6.2.5 Solutions to the Dispersion Relation : $\omega^2 = gk \tanh kh$

Property of $\tanh kh$:

$$\tanh kh = \frac{\sinh kh}{\cosh kh} = \frac{1-e^{-2kh}}{1+e^{-2kh}} \cong \left\{ \begin{array}{l} kh \text{ for } kh << 1. \text{ In practice} \\ 1 \text{ for } kh >\sim 3. \text{ In practice} \\ \end{array} \right. \stackrel{\text{long waves shallow water}}{\underbrace{h < \lambda/20}} \\ \text{short waves deep water}$$

Shallow water waves	Intermediate depth	Deep water waves
or long waves	or wavelength	or short waves
$kh \ll 1$	Need to solve $\omega^2 = gk \tanh kh$	kh >> 1
	given ω, h for k	$\sim h > \lambda/2$
	(given k, h for ω - easy!)	
$\omega^2 \cong gk \cdot kh \to \omega = \sqrt{gh} \ k$	(a) Use tables or graphs (e.g.JNN fig.6.3)	$\omega^2 = gk$
$\lambda = \sqrt{gh} \ T$	$\omega^2 = gk \tanh kh = gk_{\infty}$	$\lambda = \frac{g}{2\pi}T^2$
	$\Rightarrow \frac{k_{\infty}}{k} = \frac{\lambda}{\lambda_{\infty}} = \frac{V_p}{V_{n\infty}} = \tanh kh$	$\lambda (\lambda (\text{in ft.}) \approx 5.12T^2 \text{ (in sec.)})$
	(b) Use numerical approximation	
	(hand calculator, about 4 decimals)	
	i. Calculate $C = \omega^2 h/g$	
	ii. If $C > 2$: "deeper" \Rightarrow	
	$kh \approx C(1 + 2e^{-2C} - 12e^{-4C} + \ldots)$	
	If $C < 2$: "shallower" \Rightarrow	
	$kh \approx \sqrt{C}(1 + 0.169C + 0.031C^2 + \dots)$	
No frequency dispersion	Frequency dispersion	Frequency dispersion
$V_p = \sqrt{gh}$	$V_p = \sqrt{\frac{g}{k} \tanh kh}$	$V_p = \sqrt{\frac{g}{2\pi}\lambda}$

6.3 Characteristics of a Linear Plane Progressive Wave

Linear Solution:

$$\eta = A\cos\left(kx - \omega t\right); \quad \phi = \frac{Ag}{\omega} \frac{\cosh k \left(y + h\right)}{\cosh kh} \sin\left(kx - \omega t\right), \text{ where } \omega^2 = gk \tanh kh$$

6.3.1 Velocity field

Velocity on free surface $\vec{v}(x, y = 0, t)$		
$u(x,0,t) \equiv U_o = A\omega \frac{1}{\tanh kh} \cos(kx - \omega t)$	$v(x, 0, t) \equiv V_o = A\omega \sin(kx - \omega t) = \frac{\partial \eta}{\partial t}$	
Velocity field $\vec{v}(x,y,t)$		
$u = \frac{\partial \phi}{\partial x} = \frac{Agk}{\omega} \frac{\cosh k (y+h)}{\cosh kh} \cos (kx - \omega t)$ $= \underbrace{A\omega}_{U} \frac{\cosh k (y+h)}{\sinh kh} \cos (kx - \omega t) \Rightarrow$	$v = \frac{\partial \phi}{\partial y} = \frac{Agk}{\omega} \frac{\sinh k (y+h)}{\cosh kh} \sin (kx - \omega t)$ $= \underbrace{A\omega}_{U} \frac{\sinh k (y+h)}{\sinh kh} \sin (kx - \omega t) \Rightarrow$	
$\frac{u}{U_o} = \frac{\cosh k (y+h)}{\cosh kh} \begin{cases} \sim e^{ky} & \text{deep water} \\ \sim 1 & \text{shallow water} \end{cases}$	$\frac{v}{V_o} = \frac{\sinh k (y+h)}{\sinh kh} \begin{cases} \sim e^{ky} & \text{deep water} \\ \sim 1 + \frac{y}{h} & \text{shallow water} \end{cases}$	
• u is in phase with η	• v is out of phase with η	

Velocity field $\vec{v}(x,y)$		
Shallow water	Intermediate water	Deep water
$\begin{array}{c} V_{p=\sqrt{gh}} \\ u/U_{0} \\ u=0 \\ u/U_{0}=1 \end{array}$	y u/U ₀	v = 0 $v = 0$ $v = 0$ $v = 0$ $v = 0$
$V_{p} = \sqrt{gh}$ V/V_{0} $V = 0$ $V/V_{0} = 1 + y/h$	y/h $-1 \frac{v/V_0}{v/V_0} \frac{u/U_0}{u/U_0}$ $1/\cosh(kh)$ Shallow water / Long waves: kh << 1 $u = \frac{A\omega}{kh} \cos(kx - \omega t) = \eta \sqrt{\frac{g}{h}}$ $v = A\omega \left(1 + \frac{y}{h}\right) \sin(kx - \omega t)$	$\begin{array}{c} y \\ \hline v = 0 \end{array} \qquad \begin{array}{c} v \\ \hline v = 0 \end{array}$ Rule of thumb $\begin{array}{c} \frac{u}{u_s} = \frac{v}{v_o} \approx 4\% \ \ \text{at} \ y = -\frac{\lambda}{2} \\ \left(\cosh \ kh - l, \sinh \ kh - kh \right) \end{array}$

6.3.2 Pressure field

- Total pressure $p = p_d \rho gy$.
- Dynamic pressure $p_d = -\rho \frac{\partial \phi}{\partial t}$.
- Dynamic pressure on free surface $p_d(x, y = 0, t) \equiv p_{d_o}$

Pressure field		
Shallow water	Intermediate water	Deep water
$p_d = \rho g \eta$	$p_d = \rho g A \frac{\cosh k (y+h)}{\cosh kh} \cos (kx - \omega t)$	$p_d = \rho g e^{ky} \eta$
	$= \rho g \frac{\cosh k \left(y+h\right)}{\cosh kh} \eta$	
$\frac{p_d}{p_{d_o}}$ same picture as $\frac{u}{U_o}$		
$\frac{p_d(-h)}{p_{d_o}} = 1 \text{ (no decay)}$	$\frac{p_d(-h)}{p_{d_o}} = \frac{1}{\cosh kh}$	$\frac{p_d\left(-h\right)}{p_{d_o}} = e^{-ky}$
$p = \underbrace{\rho g(\eta - y)}_{\text{"hydrostatic" approximation}}$		$p = \rho g \left(\eta e^{ky} - y \right)$

6.3.3 Particle Orbits ('Lagrangian' concept)

Let $x_p(t), y_p(t)$ denote the position of particle P at time t.

Let $(\bar{x}; \bar{y})$ denote the mean position of particle P.

The position P can be rewritten as $x_p(t) = \bar{x} + x'(t)$, $y_p(t) = \bar{y} + y'(t)$, where (x'(t), y'(t)) denotes the departure of P from the mean position.

In the same manner let $\vec{v} \equiv \vec{v}(\bar{x}, \bar{y}, t)$ denote the velocity at the mean position and $\vec{v}_p \equiv \vec{v}(x_p, y_p, t)$ denote the velocity at P.

$$\vec{v_p} = \vec{v}(\bar{x} + x', \bar{y} + y', t) \underset{\text{TSE}}{\Longrightarrow}$$

$$\vec{v_p} = \vec{v}(\bar{x}, \bar{y}, t) + \underbrace{\frac{\partial \vec{v}}{\partial x}(\bar{x}, \bar{y}, t) x' + \frac{\partial \vec{v}}{\partial y}(\bar{x}, \bar{y}, t) y' + \dots}_{\text{ignore - linear theory}} \Rightarrow$$

$$\vec{v_p} \cong \vec{v}$$

To estimate the position of P, we need to evaluate (x'(t), y'(t)):

$$x' = \int dt \ u(\bar{x}, \bar{y}, t) = \int dt \ \omega A \frac{\cosh k (\bar{y} + h)}{\sinh k h} \cos (k\bar{x} - \omega t) \Rightarrow$$

$$= -A \frac{\cosh k (\bar{y} + h)}{\sinh k h} \sin (k\bar{x} - \omega t)$$

$$y' = \int dt \ v(\bar{x}, \bar{y}, t) = \int dt \ \omega A \frac{\sinh k (\bar{y} + h)}{\sinh k h} \sin (k\bar{x} - \omega t) \Rightarrow$$

$$= A \frac{\sinh k (\bar{y} + h)}{\sinh k h} \cos (k\bar{x} - \omega t)$$

Check: On $\bar{y} = 0$, $y' = A \cos(k\bar{x} - \omega t) = \eta$, i.e., the vertical motion of a free surface particle (in linear theory) coincides with the vertical free surface motion.

It can be shown that the particle motion satisfies

$$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} = 1 \Leftrightarrow \frac{(x_p - \bar{x})^2}{a^2} + \frac{(y_p - \bar{y})^2}{b^2} = 1$$

where $a = A \frac{\cosh k (\bar{y} + h)}{\sinh kh}$ and $b = A \frac{\sinh k (\bar{y} + h)}{\sinh kh}$, i.e., the particle orbits form closed ellipses with horizontal and vertical axes a and b.

(a) deep water kh >> 1: $a=b=Ae^{\overline{ky}}$ circular orbits with radii $Ae^{\overline{ky}}$ decreasing exponentially with depth

(b) shallow water kh << 1:

$$a = \frac{A}{kh} = \ const. \ ; \ b = A(1 + \frac{y}{h})$$
 decreases linearly with depth

(c) Intermediate depth

6.3.4 Summary of Plane Progressive Wave Characteristics

f(y)	Deep water/ short waves $kh > \pi \text{ (say)}$	Shallow water/ long waves $kh << 1$
$rac{\cosh k(y+h)}{\cosh kh} = f_1\left(y ight) \sim ext{e.g.} p_d$	e^{ky}	1
$rac{\cosh k(y+h)}{\sinh kh} = f_2\left(y ight) \sim \ ext{e.g.} u,a$	e^{ky}	$\frac{1}{kh}$
$rac{\sinh k(y+h)}{\sinh kh} = f_3\left(y ight) \sim ext{e.g. } v,b$	e^{ky}	$1+\frac{y}{h}$

$C\left(x\right) = \cos\left(kx - \omega t\right)$	$S(x) = \sin(kx - \omega t)$
(in phase with η)	(out of phase with η)
$\frac{\eta}{A} = C\left(x\right)$	
$\frac{u}{A\omega} = C\left(x\right) f_2\left(y\right)$	$\frac{v}{A\omega} = S(x) f_3(y)$
$\frac{p_{d}}{\rho gA} = C\left(x\right) f_{1}\left(y\right)$	
$\frac{y'}{A} = C(x) f_3(y)$	$\frac{x'}{A} = -S(x) f_2(y)$
$\frac{a}{A} = f_2(y)$	$\frac{b}{A}=f_{3}\left(y ight)$

