Algorithmen und Datenstrukturen

J. Milkovits

Last Edited: 31. Juli 2020

Inhaltsverzeichnis

1	Einleitung 1							
	1.1 Probleme in der Informatik							1
	1.2 Definitionen für Algorithmen							1
2	2 Sortieren							2
_	2.1 Einführung ins Sortieren							2
	2.2 Analyse von Algorithmen - Teil 1							2
	2.3 Analyse von Algorithmen - Teil 2							3
								3 4
	2.4 Analyse von Algorithmen - Teil 3							
	2.5 Insertion Sort							7
	2.6 Bubble Sort							9
	2.7 Selection Sort							9
	2.8 Divide-And-Conquer-Ansatz							10
	2.9 Merge Sort							10
	2.10 Quicksort							12
	2.11 Laufzeitanalyse von rekursiven Algorithmen							13
3	Grundlegende Datenstrukturen 17							
	3.1 Stacks							17
	3.2 Verkettete Listen							19
	3.3 Queues							20
	3.4 Binäre Bäume							23
	3.5 Binäre Suchbäume							$\frac{23}{27}$
	5.9 Dinare Suchbaume	• •		•		•	•	41
4	Travancea Batta Stratetares							30
	4.1 Rot-Schwarz-Bäume							30
	4.2 AVL-Bäume							31
	4.3 Splay-Bäume							33
	4.4 Binäre Max-Heaps							34
	4.5 B-Bäume							36
5	5 Randomized Data Structures							38
J	5.1 Skip Lists							38
	•							
	5.2 Hashtables							
	5.3 Bloom-Filter			•		•	•	40
6	1 0						41	
	6.1 Graphen							41
	6.2 Breadth-First Search (BFS)							42
	6.3 Depth-First Search(DFS)							43
	6.4 Minimale Spannbäume							45
	6.5 Kürzeste Wege in (gerichteten) Graphen							47
	6.6 Maximaler Fluss in Graphen							48

7	Advanced Designs							
	7.1	Dynamische Programmierung						
	7.2	Greedy-Algorithmus						
	7.3	Backtracking						
	7.4	Metaheuristiken						
	7.5	Amortisierte Analyse						
8	NP							

1 Einleitung

1.1 Probleme in der Informatik

- Problem im Sinne der Informatik
 - Enthält eine Beschreibung der Eingabe
 - Enthält eine Beschreibung der Ausgabe
 - Gibt keinen Übergang von Eingabe und Ausgabe an
 - z.B.: Finde den kürzesten Weg zwischen zwei Orten
- Probleminstanzen
 - Probleminstanz ist eine konkrete Eingabenbelegung, für die entsprechende Ausgabe gewünscht ist
 - z.B.: Was ist der kürzeste Weg vom Audimax in die Mensa?

1.2 Definitionen für Algorithmen

- Begriff des Algorithmus
 - Endliche Folge von Rechenschritten, der eine Ausgabe in eine Eingabe verwandelt
- Anforderungen an Algorithmen
 - Spezifizierung der Eingabe und Ausgabe

Anzahl und Typen aller Elemente ist definiert

• Eindeutigkeit

Jeder Einzelschritt ist klar definiert und ausführbar Die Reihenfolge der Einzelschritte ist festgelegt

• Endlichkeit

Notation hat eine endliche Länge

- Eigenschaften von Algorithmen
 - Determinier theit

Für gleiche Eingabe stets die gleiche Ausgabe (andere mögliche Zwischenzustände)

• Determinismus

Für gleiche Eingabe stets identische Ausführung und Ausgabe

• Terminierung

Algorithmus läuft für jede Eingabe nur endlich lange

• Korrektheit

Algorithmus berechnet stets die spezifizierte Ausgabe (falls dieser terminiert)

• Effizienz

Sparsamkeit im Ressourcenverbrauch (Zeit, Speicher, Energie,...)

2 Sortieren

2.1 Einführung ins Sortieren

• Das Sortierproblem

- Ausgangspunkt: Folge von Datensätzen $D_1, D_2, ..., D_n$
- Zu sortierende Elemente heißen auch Schlüssel(werte)
- Ziel: Datensätze so anzuordnen, dass die Schlüsselwerte sukzessive ansteigen/absteigen
- Bedingung: Schlüsselwerte müssen vergleichbar sein
- Durchführung:
 - Eingabe: Sequenz von Schlüsselwerten $\langle a_1, a_2, ..., a_n \rangle$
 - Engabe ist eine Instanz des Sortierproblems
 - Ausgabe: Permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ derselben Folge mit Eigenschaft $a'_1 \leq ... \leq a'_n$
- Algorithmus korrekt, wenn dieser das Problem für alle Instanzen löst

• Exkurs: Totale Ordnung

- Sei M eine nicht leere Menge und $\leq \subseteq MxM$ eine binäre Relation auf M
- Das Paar (M, \leq) heißt genau dann totale Relation auf der Menge M, wenn Folgendes erfüllt ist:
 - Reflexivität: $\forall x \in M : x \leq x$
 - Transitivität: $\forall x, y, z \in M : x \leq y \land y \leq z \Rightarrow x \leq z$
 - Antisymmetrie: $\forall x,y \in M: x \leq y \land y \leq x \Rightarrow x = y$
 - Totalität: $\forall x, y \in M : x \leq y \lor y \leq x$
- z.B.: \leq Ordnung auf natürlichen Zahlen bildet eine totale Ordnung $(1 \leq 2 \leq 3...)$
- z.B.: Lexikographische Ordnung \leq_{lex} ist eine totale Ordnung $(A \leq B \leq C...)$

• Vergleichskriterien von Sortieralgorithmen

- Berechnungsaufwand O(n)
- Effizient: Best Case vs Average Case vs Worst Case
- Speicherbedarf:
 - in-place (in situ): Zusätzlicher Speicher von der Eingabegröße unabhängig
 - out-of-place: Speichermehrbedarf von Eingabegröße abhängig
- Stabilität: Stabile Verfahren verändern die Reihenfolge von äquivalenten Elementen nicht
- Anwendung als Auswahlfaktor:
 - Hauptoperationen beim Sortieren: Vergleiche und Vertausche
 - Diese Operationen können sehr teuer oder sehr günstig sein, je nach Aufwand
 - Anpassung des Verfahrens abhängig von dem Aufwand dieser Operationen

2.2 Analyse von Algorithmen - Teil 1

• Schleifeninvariante (SIV)

- Sonderform der Invariante
- Am Anfang/Ende jedes Schleifendurchlaufs und vor/nach jedem Schleifendurchlauf gültig
- Wird zur Feststellung der Korrektheit von Algorithmen verwendet
- Eigenschaften:
 - Initialisierung: Invariante ist vor jeder Iteration wahr
 - Fortsetzung: Wenn SIV vor der Schleife wahr ist, dann auch bis Beginn der nächsten Iteration
 - Terminierung: SIV liefert bei Schleifenabbruch, helfende Eigenschaft für Korrektheit
- Beispiel für Umsetzung: Insertion Sort SIV

• Laufzeitanalyse

- Aufstellung der Kosten und Durchführungsanzahl für jede Zeile des Quelltextes
- Beachte: Bei Schleifen wird auch der Aufruf gezählt, der den Abbruch einleitet
- Beispiel für Umsetzung: Insertion Sort Laufzeit
- Zusätzliche Überprüfung des Best Case, Worst Case und Average Case

• Effizienz von Algorithmen

- Effizienzfaktoren
 - Rechenzeit (Anzahl der Einzelschritte)
 - Kommunikationsaufwand
 - Speicherplatzbedarf
 - Zugriffe auf Speicher
- Laufzeit hängt von versch. Faktoren ab
 - Länge der Eingabe
 - Implementierung der Basisoperationen
 - Takt der CPU

2.3 Analyse von Algorithmen - Teil 2

• Komplexität

- Abstrakte Rechenzeit T(n) ist abhängig von den Eingabedaten
- Übliche Betrachtungsweise der Rechenzeit ist asymptotische Betrachtung

Asymptotik

- Annäherung an einer sich ins Unendliche verlaufende Kurve
- z.B.: $f(x) = \frac{1}{x} + x$ | Asymptote: g(x) = x | $(\frac{1}{x}$ läuft gegen Null)

• Asymptotische Komplexität

- Abschätzung des zeitlichen Aufwands eines Algorithmus in Abhängigkeit einer Eingabe
- Beispiel für Umsetzung: Insertion Sort Laufzeit Θ

• Asymptotische Notation

- Betrachtung der Laufzeit T(n) für sehr große Eingaben $n \in \mathbb{N}$
- Komplexität ist unabhängig von konstanten Faktoren und Summanden
- Nicht berücksichtigt: Rechnergeschwindigkeit / Initialisierungsauswände
- Komplexitätsmessung via Funktionsklasse ausreichend
 - Verhalten des Algorithmus für große Problemgrößen
 - Veränderung der Laufzeit bei Verdopplung der Problemgröße

• Gründe für die Nutzung der theoretischen Betrachtung statt der Messung der Laufzeit

- $\bullet \ \ Vergleichbarkeit$
 - Laufzeit abhängig von konkreter Implementierung und System
 - Theoretische Betrachung ist frei von Abhängigkeiten und Seiteneffekten
 - Theoretische Betrachtung lässt direkte Vergleichbarkeit zu
- Aufwand
 - Wieviele Testreihen?
 - In welcher Umgebung?
 - Messen führt in der Ausführung zu hohem, praktischen Aufwand
- Komplexitätsfunktion
 - Wachstumsverhalten ausreichend
 - Praktische Evaluation mit Zeiten nur für Auswahl von Systemen mögliche
 - Theoretischer Vergleich (Funktionsklassen) hat ähnlichen Erkenntnisgewinn

2.4 Analyse von Algorithmen - Teil 3

Θ-Notation

- \bullet O-Notation beschränkt eine Funktion asymptotisch von oben und unten
- Funktionen $f, g: \mathbb{N} \to \mathbb{R}_{>0}$ (N: Eingabelänge, \mathbb{R} : Zeit)

Für alle n größer gleich n_0

- $\Theta(g)$ enthält alle f, die genauso schnell wachsen wie g
- Schreibweise: $f \in \Theta(g)$ (korrekt), manchmal auch $f = \Theta(g)$
- g(n) ist eine asymptotisch scharfe Schranke von f(n)
- $f(n) = \Omega(g(n))$ gilt, wenn f(n) = O(g(n)) und $f(n) = \Omega(g(n))$ erfüllt sind

Abbildung 1: Veranschaulichung

- z.B.: $f(n) = \frac{1}{2}n^2 3n \mid f(n) \in \Theta(n^2)$?
- Aus $\Theta(n^2)$ folgt, dass $g(n) = n^2$
- Vorgehen:
 - Finden eines n_0 und c_1, c_2 , sodass
 - $c_1 * g(n) \le f(n) \le c_2 * g(n)$ erfüllt ist
 - Konkret: $c_1 * n^2 \le \frac{1}{2}n^2 3n \le c_2 * n^2$
 - Division durch n^2 : $c_1 \leq \frac{1}{2} \frac{3}{n} \leq c_2$
 - Ab n = 7 positives Ergebnis: $0,0714 \mid n_0 = 7$
 - Deswegen setzen wir $c_1 = \frac{1}{14}$
 - Für $n \to \infty$: $0,5 \mid c_2 = 0,5$
 - · Natürlich auch andere Konstanten möglich

• O-Notation

• O-Notation beschränkt eine Funktion asymptotisch von oben

Für alle n größer gleich n_0

- O(g) enthält alle f, die höchstens so schnell wie g wachsen
- Schreibweise: f = O(g)
- $f(n) = \Theta(g) \to f(n) = O(g) \mid \Theta(g(n)) \subseteq O(g(n))$
- Ist f in der Menge $\Theta(g)$, dann auch in der Menge O(g)

- z.B.: f(n) = n + 2 | f(n) = O(n)?
- Jaf(n)ist Teil von O(n) für z.B. c=2 und $n_0=2$

Abbildung 2: Veranschaulichung

• O-Notation Rechenregeln

- Konstanten:
 - $f(n) = a \text{ mit } a \in \mathbb{R} \text{ konstante Funktion} \to f(n) = O(1)$
 - z.B. $3 \in O(1)$
- Skalare Multiplikation:
 - f = O(g) und $a \in \mathbb{R} \to a * f = O(g)$
- Addition:
 - $f_1 = O(g_1)$ und $f_2 = O(g_2) \to f_1 + f_2 = O(\max\{g_1, g_2\})$
- Multiplikation:
 - $f_1 = O(g_1)$ und $f_1 = O(g_2) \to f_1 * f_2 = O(g_1 * g_2)$

• Ω -Notation

• Ω -Notation beschränkt eine Funktion asymptotisch von unten

- Ω -Notation enthält alle f, die mindestens so schnell wie g wachsen
- Schreibweise: $f = \Omega(g)$

Abbildung 3: Veranschaulichung

• Komplexitätsklassen

 $\bullet \ n$ ist hier die Länge der Eingabe

Klasse	Bezeichnung	Beispiel
$\Theta(1)$	Konstant	Einzeloperation
$\Theta(\log n)$	Logarithmisch	Binäre Suche
$\Theta(n)$	Linear	Sequentielle Suche
$\Theta(n \log n)$	Quasilinear	Sortieren eines Arrays
$\Theta(n^2)$	Quadratisch	Matrixaddition
$\Theta(n^3)$	Kubisch	Matrixmultiplikation
$\Theta(n^k)$	Polynomiell	
$\Theta(2^n)$	Exponentiell	Travelling-Salesman*
$\Theta(n!)$	Faktoriell	Permutationen

- Ausführungsdauer, falls eine Operation n genau $1\mu s$ dauert

Eingabe- ${f g}$ röße ${m n}$	$\log_{10} n$	n	n ²	n^3	2 ⁿ
10	1µs	10µs	100µs	1ms	~1ms
100	2µs	100µs	10ms	1s	~4x10 ¹⁶ y
1000	3µs	1ms	1s	16min 40s	?
10000	4µs	10ms	1min 40s	~11,5d	?
10000	5µs	100ms	2h 46min 40s	~31,7y	?

• Asymptotische Notationen in Gleichungen

- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$
- $\Theta(n)$ fungiert hier als Platzhalter für eine beliebige Funktion f(n) aus $\Theta(n)$
- z.B.: f(n) = 3n + 1

• o-Notation

- o-Notation stellt eine echte obere Schranke dar
- Ausschlaggebend ist, dass es für alle $c \in \mathbb{R}_{>0}$ gelten muss
- Außerdem < statt \le
- z.B.: $2n = o(n^2)$ und $2n^2 \neq o(n^2)$

$$o(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) < cg(n) \}$$

Gilt für **alle** Konstanten c > 0. In 0-Notation gilt es für eine Konstante c > 0

• ω -Notation

- ω -Notation stellt eine echte untere Schranke dar
- Ausschlaggebend ist, dass es für alle $c \in \mathbb{R} > 0$ gelten muss
- Außerdem > statt \ge
- z.B.: $\frac{n^2}{2} = \omega(n)$ und $\frac{n^2}{2} \neq \omega(n^2)$

$$\omega(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le cg(n) < f(n) \}$$

2.5 Insertion Sort

• Idee

- Halte die linke Teilfolge sortiert
- Füge nächsten Schlüsselwert hinzu, indem es an die korrekte Position eingefügt wird
- Wiederhole den Vorgang bis Teilfolge aus der gesamten Liste besteht

• Code

```
FOR j = 1 TO A.length - 1
  key = A[j]
  // Füge A[j] in die sortierte Sequenz A[0...j-1] ein
  i = j - 1
WHILE i >= 0 and A[i] > key
        A[i + 1] = A[i]
        i = i - 1
A[i + 1] = key
```

• Schleifeninvariante von Insertion Sort

• Zu Beginn jeder Iteration der for-Schleife besteht die Teilfolge A[0...j-1] aus den Elementen der ursprünglichen Teilfolge A[0...j-1] enthaltenen Elementen, allerdings in sortierter Reihenfolge.

• Korrektheit von Insertion Sort

- Initialisierung:
 - Beginn mit j=1, also Teilfeld A[0...j-1] besteht nur aus einem Element A[0]. Dies ist auch das ursprüngliche Element und Teilfeld ist sortiert.

• Fortsetzung:

• Zu zeigen ist, dass die Invariante bei jeder Iteration erhalten bleibt. Ausführungsblock der for-Schleife sorgt dafür, dass A[j-1], A[j-2],... je um Stelle nach rechts geschoben werden bis A[j] korrekt eingefügt wurde. Teilfeld A[0...j] besteht aus ursprünglichen Elementen und ist sortiert. Inkrementieren von j erhält die Invariante.

• Terminierung:

- Abbruchbedingung der for-Schleife, wenn j > A.length 1. Jede Iteration erhöht j. Dann bei Abbruch ist j = n und einsetzen in Invariante liefert das Teilfeld A[0...n-1] welches aus den ursprünglichen Elementen besteht und sortiert ist. Teilfeld ist gesamtes Feld.
- Algorithmus Insertion Sort arbeitet damit korrekt.

• Laufzeitanalyse von Insertion Sort

Laufzeit:
$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) +$
$c_5 \sum_{j=1}^{n-1} t_j + c_6 \sum_{j=1}^{n-1} (t_j - 1) + c_7 \sum_{j=1}^{n-1} (t_j - 1)$
$+c_8(n-1)$

Zeile	Kosten	Anzahl
1	c_1	n
2	c_2	n-1
3	0	n-1
4	C4	n-1
5	c ₄	$\sum_{j=1}^{n-1} t_j$
6	c ₆	$\sum_{j=1}^{n-1} (t_j - 1)$
7	c ₇	$\sum_{j=1}^{n-1} (t_j - 1)$
8	c ₈	n-1

- Festlegung der Laufzeit für jede Zeile
- \bullet Jede Zeile besitzt gewissen Kosten c_i
- Jede Zeile wird x mal durchgeführt
- Laufzeit = Anzahl * Kosten jeder Zeile
- Schleifen: Abbruchüberprüfung zählt auch
- t_j : Anzahl der Abfragen der While-Schleife

- Warum n in Zeile 1?
 - Die Überprüfung der Fortführungsbedingung beinhaltet auch die letze Überprüfung
 - Quasi die Überprüfung, durch die die Schleife abbricht
- Warum $\sum_{j=1}^{n-1}$ in Zeile 5?
 - Aufsummierung aller einzelnen t_i über die Anzahl der Schleifendurchläufe
 - Diese ist allerdings n-1 und nicht n, da die Abbruchüberprüfung dort auch enthalten ist
- Warum $t_i 1$ in Zeile 6?
 - ullet Selbes Argument wie oben, bei t_j ist die Abbruchüberprüfung enthalten
 - Deswegen wird die while-Schleife nur t_i 1-mal ausgeführt

• Best Case

- zu sortierendes Feld ist bereits sortiert
- t_j wird dadurch zu 1, da die While-Schleife immer nur einmal prüft (Abbruch)
- Die zwei Zeilen innerhalb der While-Schleife werden nie ausgeführt
- Durch Umformen ergibt sich, dass die Laufzeit eine lineare Funktion in n ist

• Worst Case

- zu sortierendes Feld ist umgekehrt sortiert
- t_i wird dadurch zu j+1, da die While-Schleife immer die gesamte Länge prüft
- Durch Umformen ergibt sich, dass die Laufzeit eine quadratische Funktion in n ist (n^2)

• Average Case

- im Mittel gut gemischt
- t_j wird dadurch zu j/2
- Die Laufzeit bleibt aber eine quadratische Funktion in n (n^2)

• Asymptotische Laufzeitbetrachtung Θ

- T(n) lässt sich als quadratische Funktion $an^2 + bn + c$ betrachten
- Terme niedriger Ordnung sind für große n irrelevant
- Deswegen Vereinfachung zu n^2 und damit $\Theta(n^2)$

2.6 Bubble Sort

- Idee
 - Vergleiche Paare von benachbarten Schlüsselwerten
 - Tausche das Paar, falls rechter Schlüsselwert kleiner als linker
- Code

```
FOR i = 0 TO A.length - 2
FOR j = A.length - 1 DOWNTO i + 1
IF A[j] < A[j-1]
SWAP(A[j], A[j-1])</pre>
```

- Analyse von Bubble Sort
 - Anzahl der Vergleiche:
 - Es werden stets alle Elemente der Teilfolge miteinander verglichen
 - Unabhängig von der Vorsortierung sind Worst und Best Case identisch
 - Anzahl der Vertauschungen:
 - Best Case: 0 Vertauschungen
 - Worst Case: $\frac{n^2-n}{2}$ Vertauschungen
 - Komplexität:
 - Best Case: $\Theta(n)$
 - Average Case: $\Theta(n^2)$
 - Worst Case: $\Theta(n^2)$

2.7 Selection Sort

- Idee
 - Sortieren durch direktes Auswählen
 - MinSort: "wähle kleines Element in Array und tausche es nach vorne"
 - MaxSort: "wähle größtes Element in Array und tausche es nach vorne"
- Code MinSort

```
FOR i = 0 TO A.length - 2
k = i
FOR j = i + 1 TO A.length - 1
IF A[j] < A[k]
k = j
SWAP(A[i], A[k])</pre>
```

2.8 Divide-And-Conquer-Ansatz

- Anderer Ansatz im Gegensatz zu z.B. InsertionSort (inkrementelle Herangehensweise)
- Laufzeit ist im schlechtesten Fall immer noch besser als InsertionSort
- Prinzip: Zerlege das Problem und löse es direkt oder zerlege es weiter
- Divide:
 - Teile das Problem in mehrere Teilprobleme auf
 - Teilprobleme sind Instanzen des gleichen Problems
- Conquer:
 - Beherrsche die Teilprobleme rekursiv
 - Falls Teilprobleme klein genug, löse sie auf direktem Weg
- Combine:
 - Vereine die Lösungen der Teilprobleme zu Lösung des ursprünglichen Problems

2.9 Merge Sort

- Idee
 - Divide: Teile die Folge aus n Elementen in zwei Teilfolgen von je $\frac{n}{2}$ Elemente auf
 - Conquer: Sortiere die zwei Teilfolgen rekursiv mithilfe von MergeSort
 - Combine: Vereinige die zwei sortierten Teilfolgen, um die sortierte Lösung zu erzeugen

• Code

```
MERGE-SORT (A,p,r)
IF p < r
    q = |(p+r)/2| // Teilen in 2 Teilfolgen
    MERGE-SORT(A,p,q) // Sortieren der beiden Teilfolgen
    MERGE-SORT(A,q+1,r)
    MERGE(A,p,q,r) // Vereinigung der beiden sortierten Teilfolgen
MERGE(A,p,q,r) // Geteiltes Array an Stelle q
n_1 = q - p + 1
n_2 = r - q
Let L[0...n_1] and R[0...n_2] be new arrays
FOR i = 0 TO n_1 - 1 // Auffüllen der neu erstellten Arrays
    L[i] = A[p + i]
FOR j = 0 TO n_2 - 1
    R[j] = A[q + j + 1]
L[n_1] = \infty // Einfügen des Sentinel-Wertes
R[n_2] = \infty
i = 0
j = 0
FOR k = p TO r // Eintragweiser Vergleich der Elemente
    IF L[i] \leq R[j]
        A[k] = L[i] // Sortiertes Zurückschreiben in Original-Array
        i = i + 1
    ELSE
        A[k] = R[j]
        j = j + 1
```

• Korrektheit von MergeSort

• Schleifeninvariante

Zu Beginn jeder Iteration der for-Schleife (Letztes for in Methode MERGE) enthält das Teilfeld A[p...k-1] die k-p kleinsten Elemente aus $L[0...n_1]$ und $R[0...n_2]$ in sortierter Reihenfolge. Weiter sind L[i] und R[i] die kleinsten Elemente ihrer Arrays, die noch nicht zurück kopiert wurden.

• Initialisierung

Vor der ersten Iteration gilt k=p. Daher ist A[p...k-1] leer und enthält 0 kleinste Elemente von L und R. Wegen i=j=0 sind L[i] und R[i] die kleinsten Elemente ihrer Arrays, die noch nicht zurück kopiert wurden.

• Fortsetzung

Müssen zeigen, dass Schleifeninvariante erhalten bleibt. Dafür nehmen wir an, dass $L[i] \leq R[j]$. Dann ist L[i] kleinstes Element, welches noch nicht zurück kopiert wurde. Da Array A[p...k-1] die k-p kleinsten Elemente enthält, wird der Array A[p...k] die k-p+1 kleinsten Elemente enthalten, nachdem der Wert nach der Durchführung von A[k]=L[i] kopiert wurde. Die Erhöhung der Variablen k und i stellt die Schleifeninvariante für die nächste Iteration wieder her. Wenn L[i]>R[j] dann analoges Argument in der ELSE-Anweisung.

• Terminierung

Beim Abbruch gilt k=r+1. Durch die Schleifeninvariante enthält A[p...r] die kleinste Elemente von $L[0...n_1]$ und $R[0...n_2]$ in sortierter Reihenfolge. Alle Elemente außer der Sentinels wurden komplett zurück kopiert. MergeSort ist außerdem ein stabiler Algorithmus.

• Analyse von MergeSort

- Ziel: Bestimme Rekursionsgleichung für Laufzeit T(n) von n Zahlen im schlechtesten Fall
- Divide: Berechnung der Mitte des Feldes: Konstante Zeit $\Theta(1)$
- Conquer: Rekursives Lösen von zwei Teilproblemen der Größe $\frac{n}{2}$: Laufzeit von 2 $T(\frac{n}{2})$
- Combine: MERGE auf einem Teilfeld der Länge n: Lineare Zeit $\Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{falls } n = 1 \\ 2 \ T(\frac{n}{2}) + \Theta(n) & \text{falls } n > 1 \end{cases}$$

• Lösen der Rekursionsgleichung mithilfe eines Rekursionsbaums

$$T(n) = \begin{cases} c & \text{falls } n = 1 \\ 2T(n/2) + cn & \text{falls } n > 1 \end{cases}$$

$$T(n) \quad cn \quad cn \quad cn$$

$$T(n/2) \quad T(n/2) \quad cn/2 \quad cn/4 \quad$$

- Verwenden der Konstante c statt $\Theta(1)$
- cn stellt den Aufwand an der ersten Ebene dar
- Der addierte Aufwand jeder Stufe (aller Knoten) ist auch cn
- Die Azahl der Ebenen lässt sich mithilfe von lg(n) + 1 bestimmen (2-er Logarithmus)
- Damit ergibt sich für die Laufzeit: $cn \cdot lg(n) + cn$
- Für $\lim_{n\to\infty}$ wird diese zu $n \cdot lg(n)$
- Laufzeit beträgt damit $\Theta(n \cdot lg(n))$
- Laufzeit von MergaSort ist in jedem Fall gleich

2.10 Quicksort

• Idee

• Pivotelement:

Wahl eines Pivotelement x aus dem Array

• Divide:

Zerlege den Array A[p...r] in zwei Teilarrays A[p...q-1] und A[q+1...r], sodass jedes Element von A[p...q-1] kleiner oder gleich A[q] ist, welches wiederum kleiner oder gleich jedem Element von A[q+1...r] ist. Berechnen Sie den Index q als Teil vom Partition Algorithmus.

• Conquer:

Sortieren beider Teilarrays A[p...q-1] und A[q+1...r] durch rekursiven Aufruf von Quicksort.

• Combine:

Da die Teilarrays bereits sortiert sind, ist keine weitere Arbeit nötig um diese zu vereinigen. A[p...r] ist nun sortiert.

Code

• Korrektheit von Quicksort

• Schleifeninvariante:

Zu Beginn jeder Iteration der for-Schleife gilt für den Arrayindex k folgendes:

```
1. Ist p \le k \le i, so gilt A[k] \le x
2. Ist i+1 \le k \le j-1, so gilt A[k] > x
3. Ist k=r, so gilt A[k] = x
```

 $\bullet \ \ Initial is ierung:$

Vor der ersten Iteration gilt i=p-1 und j=p. Da es keine Werte zwischen p und j gibt und es auch keine Werte zwischen i+1 und j-1 gibt, sind die ersten beiden Eigenschaften trivial erfüllt. Die Zuweisung in $\mathbf{x} = \mathbf{A}[\mathbf{r}]$ sorgt für die Erfüllung der dritten Eigenschaft.

• Fortsetzung:

Zwei mögliche Fälle durch IF A[j] $\leq x$. Wenn A[j] > x, dann inkrementiert die Schleife nur den Index j. Dann gilt Bedingung 2 für A[j-1] und alle anderen Einträge bleiben unverändert. Wenn A[j] $\leq x$, dann wird Index i inkrementiert und die Einträge A[i] und A[j] getauscht und schließlich der Index j erhöht. Wegen des Vertauschens gilt A[i] $\leq x$ und Bedingung 1 ist erfüllt. Analog gilt A[j-1] > x, da das Element welches mit A[j-1] vertauscht wurde wegen der Invariante gerade größer als x ist.

• Terminierung:

Bei der Terminierung gilt, dass j = r. Daher gilt, dass jeder Eintrag des Arrays zu einer der drei durch die Invariante beschriebenen Mengen gehört.

• Performanz von Quicksort

- Abhängig von der Balanciertheit der Teilarrays
 - Definition Balanciert: ungefähr gleiche Anzahl an Elementen
 - Teilarrays balanciert: Laufzeit asymptotisch so schnell wie MergeSort
 - Teilarrays unbalanciert: Laufzeit kann so langsam wie InsertionSort laufen
- Zerlegung im schlechtesten Fall
 - Partition zerlegt Problem in ein Teilproblem mit n-1 Elementen und eins mit 0 Elementen
 - Unbalancierte Zerlegung zieht sich durch gesamte Rekursion
 - Zerlegung kostet $\Theta(n)$
 - Aufruf auf Feld der Größe 0: $T() = \Theta(1)$
 - Laufzeit (rekursiv):

•
$$T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)$$

- Insgesamt folgt: $T(n) = \Theta(n^2)$
- Zerlegung im besten Fall
 - Problem wird so balanciert wie möglich zerlegt
 - Zwei Teilprobleme mit maximaler Größe von $\frac{n}{2}$
 - Zerlegung kostet $\Theta(n)$
 - Laufzeit (rekursiv):
 - $T(n) \leq 2T(\frac{n}{2}) + \Theta(n)$
 - Laufzeit beträgt: $O(n \lg(n))$
 - Solange die Aufteilung konstant bleibt, bleibt die Laufzeit $O(n \lg(n))$

2.11 Laufzeitanalyse von rekursiven Algorithmen

- Analyse von Divide-And-Conquer Algorithmen
 - T(n) ist Laufzeit eines Problems der Größe n
 - Für kleines Problem benötigt die direkte Lösung eine konstante Zeit $\Theta(1)$
 - $\bullet\,$ Für sonstige n gilt:
 - Aufteilen eines Problems führt zu a Teilproblemen
 - Jedes dieser Teilprobleme hat die Größe $\frac{1}{h}$ der Größe des ursprünglichen Problems
 - Lösen eines Teilproblems der Größe $\frac{n}{h}$: $T(\frac{n}{h})$
 - Lösen a solcher Probleme: $a T(\frac{n}{h})$
 - D(n): Zeit um das Problem aufzuteilen (Divide)
 - \bullet C(n): Zeit um Teillösungen zur Gesamtlösung zusammenzufügen (Combine)

$$T(n) = \begin{cases} \Theta(1) & \text{falls } n \le c \\ a \ T(\frac{n}{b}) + D(n) + C(n) & \text{sonst} \end{cases}$$

• Substitutionsmethode

- Idee: Erraten einer Schranke und Nutzen von Induktion zum Beweis der Korrektheit
- Ablauf:
 - 1. Rate die Form der Lösung (Scharfes Hinsehen oder kurze Eingaben ausprobieren/einsetzen)
 - 2. Anwendung von vollständiger Induktion zum Finden der Konstanten und Beweis der Lösung

• Beispiel

- Betrachten von MergeSort:
 - $T(1) \leq c$

•
$$T(n) \le T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + cn$$

• Ziel:

Obere Abschätzung $T(n) \leq g(n)$ mit g(n) ist eine Funktion, die durch eine geschlossene Formel dargestellt werden kann.

Wir "raten": $T(n) \leq 4cn \ lg(n)$ und nehmen dies für alle n' < n an und zeigen es für n.

- Induktion:
 - lg steht hier für log_2
 - $n = 1: T(1) \le c$

•
$$n = 2$$
: $T(2) \le T(1) + T(1) + 2c$
 $\le 4c \le 8c$
 $T(2) = 4c * 2 lq(2) = 8c$

- Hilfsbehauptungen:
 - (1): $\left|\frac{n}{2}\right| + \left[\frac{n}{2}\right] = n$
 - (2): $\left\lfloor \frac{n}{2} \right\rfloor \leq \frac{n}{2} \leq \frac{2}{3}n$
 - (3): $log_c(\frac{a}{b}) = log_c(a) log_c(b)$
 - (4): $log_c(a*b) = log_c(a) + log_c(b)$
- Induktionsschritt:
 - Annahme: n > 2 und sei Behauptung wahr für alle n' < n.

$$T(n) \leq T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + cn$$

$$\leq 4c \left\lfloor \frac{n}{2} \right\rfloor lg(\left\lfloor \frac{n}{2} \right\rfloor) + 4c \left\lceil \frac{n}{2} \right\rceil lg(\left\lceil \frac{n}{2} \right\rceil) + cn$$

$$(HB) \leq 4c \cdot lg(\frac{2}{3}n) \cdot (\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil + cn$$

$$\leq 4c \cdot lg(\frac{2}{3}n) \cdot n + cn$$

$$(HB) \leq 4cn \cdot (lg(\frac{2}{3}) + lg(n)) + cn$$

$$= 4cn \cdot lg(n) + 4cn \cdot lg(\frac{2}{3})$$

$$= 4cn \cdot lg(n) + cn(1 + 4 \cdot (lg(2) - lg(3)))$$

$$\leq 4cn \cdot lg(n)$$

$$\Rightarrow \Theta(n lg(n))$$

• Rekursionsbaum

- Idee: Stellen das Ineinander-Einsetzen als Baum dar und Analyse der Kosten
- Ablauf:
 - 1. Jeder Knoten stellt die Kosten eines Teilproblems dar
 - Die Wurzel stellt die zu analysierenden Kosten T(n) dar
 - Die Blätter stellen die Kosten der Basisfälle dar (z.B. T(0))
 - 2. Berechnen der Kosten innerhalb jeder Ebene des Baums
 - 3. Die Gesamtkosten sind die Summe über die Kosten aller Ebenen
- Rekursionsbaum ist nützlich um Lösung für Subsitutionsmethode zu erraten
- Beispiel: $T(n) = 3T(\left|\frac{n}{4}\right|) + \Theta(n^2)$
 - Vorüberlegungen:
 - $\Rightarrow T(n) = 3T(\frac{n}{4}) + cn^2 \ (c > 0)$
 - · Je Abstieg verringert sich die Größe des Problems um den Faktor 4.
 - · Erreichen der Randbedingung ist vonnöten, die Frage ist wann dies geschieht.
 - Größe Teilproblem bei Level i: $\frac{n}{4^i}$
 - Erreichen Teilproblem der Größe 1, wenn $\frac{n}{4^i}=1$, d.h. wenn $i=log_4(n)$ \Rightarrow Baum hat also log_4n+1 Ebenen
 - Kosten pro Ebene:
 - Jede Ebene hat 3-mal soviele Knoten wie darüber liegende
 - Anzahl der Knoten in Tiefe i ist 3^i
 - Kosten $c(\frac{n}{4^{i}})^{2}$, $i = 0...log_{4}n 1$
 - Anzahl · Kosten = $3^i \cdot c(\frac{n}{4^i})^2 = (\frac{3}{16})^i \cdot cn^2$
 - Unterste Ebene:
 - $3^{log_4(n)} = nlog_4(3)$ Knoten
 - Jeder Knoten trägt T(1) Kosten bei
 - Kosten unten: $n^{log_4(3)} \cdot T(1) = \Theta(n^{log_4(3)})$
 - Addiere alle Kosten aller Ebenen:

$$\begin{split} \bullet \ T(n) &= cn^2 + \frac{3}{16}cn^2 + (\frac{3}{16})^2cn^2 + \dots + (\frac{3}{16})^{log_4n - 1}cn^2 + \Theta(n^{log_4(3)}) \\ &= \sum_{i=0}^{log_4n - 1} (\frac{3}{16})^icn^2 + \Theta(n^{log_4^3}) \\ &= \frac{(\frac{3}{16}log_4n}) - 1}{\frac{3}{16} - 1} \cdot cn^2 + \Theta(n^{log_43}) \end{split}$$

(Verwendung der geometrischen Reihe)

• Verwendung einer unendlichen fallenden geometrischen Reihe als obere Schranke:

$$T(n) = \sum_{i=0}^{\log_4 n - 1} (\frac{3}{16})^i \cdot cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} (\frac{3}{16})^i \cdot cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - \frac{3}{16}} \cdot cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} \cdot cn^2 + Theta(n^{\log_4 3}) = O(n^2)$$

- Jetzt Subsitutionsmethode:
 - Zu zeigen: $\exists d > 0 : T(n) \leq dn^2$
 - Induktionsanfang:

$$T(n) = 3 \cdot T(\lfloor \frac{1}{4} \rfloor) + c \cdot 1^{2}$$
$$= 3 \cdot T(0) + c = c$$

• Induktionsschritt:

$$T(n) \le 3 \cdot T(\left\lfloor \frac{n}{4} \right\rfloor) + cn^2$$

$$\le 3 \cdot d(\left\lfloor \frac{n}{4} \right\rfloor)^2 + cn^2$$

$$\le 3d(\frac{n}{4})^2 + cn^2$$

$$= \frac{3}{16}dn^2 + cn^2$$

$$\le dn^2, \text{ falls } d \ge \frac{16}{13}c$$

• Mastertheorem

• Idee:

Seien $a \geq 1$ und b > 1 Konstanten. Sei f(n) eine positive Funktion und T(n) über den nichtnegativen ganzen Zahlen über die Rekursionsgleichung $T(n) = a T(\frac{n}{b}) + f(n)$ defininiert, wobei wir $\frac{n}{b}$ so interpretieren, dass damit entweder $\lfloor \frac{n}{b} \rfloor$ oder $\lceil \frac{n}{b} \rceil$ gemeint ist. Dann besitzt T(n) die folgenden asymptotischen Schranken (a und b werden aus f(n) gelesen):

- 1. Gilt $f(n) = O(n^{\log_b(a-\epsilon)})$ für eine Konstante $\epsilon > 0$, dann $T(n) = \Theta(n^{\log_b(a)})$
- 2. Gilt $f(n) = O(n^{\log_b(a)})$, dann gilt $T(n) = \Theta(n^{\log_b(a)} \lg(n))$
- 3. Gilt $f(n) = \Omega(n^{\log_b(a+\epsilon)})$ für eine Konstante $\epsilon > 0$ und a $f(\frac{n}{b}) \le c$ f(n) für eine Konstante c < 1 und hinreichend großen n, dann ist $T(n) = \Theta(f(n))$

• Erklärung:

- In jedem der 3 Fälle wird die Funktion f(n) mit $n^{\log_b(a)}$ verglichen
 - 1. Wenn f(n) polynomial kleiner ist als $n^{\log_b(a)}$, dann $T(n) = \Theta(n^{\log_b(a)})$
 - 2. Wenn f(n) und $n^{\log_b(a)}$ die gleiche Größe haben, gilt $T(n) = \Theta(n^{\log_b(a)} \lg(n))$
 - 3. Wenn f(n) polynomial größer als $n^{\log_b(a)}$ und a $f(\frac{n}{b}) \leq c$ f(n) erfüllt, dann $T(n) = \Theta(f(n))$
- (polynomial größer/kleiner: um Faktor n^{ϵ} asymptotisch größer/kleiner)
- Nicht abgedeckte Fälle:
 - Wenn einer dieser Fälle eintritt, kann das Mastertheorem nicht angewendet werden
 - 1. Wenn f(n) kleiner ist als $n^{log_b(a)}$, aber nicht polynomial kleiner
 - 2. Wenn f(n) größer ist als $n^{\log_b(a)}$, aber nicht polynomial größer
 - 3. Regularitätsbedingung $a f(\frac{n}{h}) \leq c f(n)$ wird nicht erfüllt
 - 4. a oder b sind nicht konstant (z.B. $a = 2^n$)

• Beispiel:

•
$$T(n) = 9T(\frac{n}{3}) + n$$

•
$$a = 9, b = 3, f(n) = n$$

•
$$log_b(a) = log_3(9) = 2$$

•
$$f(n) = n = O(n^{\log_b(a-\epsilon)})$$

= $O(n^{2-\epsilon})$

- Ist diese Gleichung für ein $\epsilon > 0$ erfüllt? $\Rightarrow \epsilon = 1$
- 1. Fall $\Rightarrow T(n) = \Theta(n^2)$

$$\bullet \ T(n) = T(\frac{2n}{3}) + 1$$

•
$$a = 1, b = \frac{3}{2}, f(n) = 1$$

•
$$log_{\frac{3}{2}}1 = 0$$

•
$$f(n) = 1 = O(n^{log_b(a)})$$

= $O(n^0)$
= $O(1)$

• 2.Fall
$$\Rightarrow T(n) = \Theta(1 * lg(n)) = \Theta(lg(n))$$

•
$$T(n) = 3(T^{\frac{n}{4}}) + n \ lg(n)$$

•
$$a = 3, b = 4, f(n) = n \lg(n)$$

•
$$n^{\log_b(a)} = n^{\log_4(3)} < n^{0.793}$$

•
$$\epsilon = 0.1$$
 im Folgenden

•
$$f(n) = n \ lg(n) \ge n \ge n^{0.793 + 0.1} \ge n^{0.793}$$

• 3.Fall
$$\Rightarrow f(n) = \Omega(n^{\log_b(a+0.1)})$$

•
$$af(\frac{n}{h}) = 3f(\frac{n}{4}) = 3(\frac{n}{4}) lg(\frac{n}{4}) \le \frac{3}{4}n lg(n)$$

• Damit ist auch die Randbedingung erfüllt und $T(n) = \Theta(n \lg(n))$

3 Grundlegende Datenstrukturen

3.1 Stacks

- Abstrakter Datentyp Stack
 - new S()
 - Erzeugt neuen (leeren) Stack
 - s.isEmpty()
 - Gibt an, ob Stack s leer ist
 - s.pop()
 - Gibt oberstes Element vom Stack s zurück und löscht es vom Stack
 - Gibt Fehlermeldung aus, falls der Stack leer ist
 - s.push(k)
 - Schreibt k als neues oberstes Element auf Stack s
 - Abstrakter Aufbau:
 - LIFO-Prinzip Last in, First out

• Beispiel Bitcoin

scriptPubKey:
OP_DUP OP_HASH160 56fa64a8bd7852d2c58095fa9a2fcd52d2c580b65d35549d
OP_EQUALVERIFY OP_CHECKSIG

• Stacks als Array

	0	1	2	3	4	5	6	7	8
s	12	47	17	98	72				

- s.top zeigt immer auf oberstes Element
- pop() führt dazu, dass s.Top sich eins nach links bewegt
- push(k) führt dazu, dass s. Top sich eins nach rechts bewegt

• Stacks als Array - Methoden, falls maximale Größe bekannt

```
new(S)

1 S.A[]=ALLOCATE(MAX);
2 S.top=-1;
```

```
pop(S)

1 IF isEmpty(S) THEN
2 error 'underflow'
3 ELSE
4 S.top=S.top-1;
5 return S.A[S.top+1];
```

```
isEmpty(S)

1   IF S.top<0 THEN
2    return true
3   ELSE
4    return false;</pre>
```

```
push(S,k)

1 IF S.top==MAX-1 THEN
2 error 'overflow'
3 ELSE
4 S.top=S.top+1;
5 S.A[S.top]=k;
```

- Stacks mit variabler Größe Einfach
 - Falls push(k) bei vollem Array ⇒ Vergößerung des Arrays
 - \bullet Erzeugen eines neuen Arrays mit Länge + 1 und Umkopieren aller Elemente
 - Durchschnittlich $\Omega(n)$ Kopierschritte pro push-Befehl
- Stacks mit variabler Größe Verbesserung
 - Idee:
 - Wenn Grenze erreicht, Verdopplung des Speichers und Kopieren der Elemente
 - Falls weniger als ein Viertel belegt, schrumpfe das Array wieder
 - Methoden:

RESIZE(A,m) reserviert neuen Speicher der Größe m und kopiert A um

```
isEmpty(S)
new(S)
1 S.A[]=ALLOCATE(1);
                                     1 IF S.top<0 THEN
2 S.top=-1;
                                     2
                                          return true
                                     3 ELSE
3 S.memsize=1;
                                     4
                                          return false;
                                     push(S,k)
pop(S)
1 IF isEmpty(S) THEN
                                     1 S.top=S.top+1;
2
    error 'underflow'
                                      S.A[S.top]=k;
3 ELSE
                                     3 IF S.top+1>=S.memsize THEN
    S.top=S.top-1;
                                         S.memsize=2*S.memsize;
5
    IF 4*(S.top+1) == S.memsize THEN
                                         RESIZE(S.A,S.memsize);
6
       S.memsize=S.memsize/2;
       RESIZE(S.A,S.memsize);
    return S.A[S.top+1];
```

• Im Durchschnitt für jeder der mindestens n Befehle $\Theta(1)$ Umkopierschritte

3.2 Verkettete Listen

• Aufbau

(doppelt) verkettete Liste

• Verkettete Listen durch Arrays

Entspricht doppelter Verkettung zwischen 45 und 12

• Elementare Operationen auf Listen

- Suche nach Element
 - Laufzeit beträgt im Worst Case $\Theta(n)$ \Rightarrow Keine Überprüfung, ob Wert bereits in Liste, sonst $\Theta(n)$
 - Code:

- Einfügen eines Elements am Kopf der Liste
 - Laufzeit beträgt $\Theta(1)$, da Einfügen am Kopf
 - Code:

```
insert(L,x)
x.next = 1.head;
x.prev = nil;
IF L.head != nil THEN
    L.head.prev = x;
L.head = x;
```

- Löschen eines Elements aus Liste
 - Laufzeit beträgt $\Theta(1)$, da hier Pointer auf Objekt gegeben Löschen eines Wertes k mithilfe von Suche beträgt $\Omega(n)$
 - Code:

```
delete (L,x)
IF x.prev != nil THEN
    x.prev.next = x.next
ELSE
```

```
L.head = x.next;
IF x.next != nil THEN
    x.next.prev = x.prev;
```

• Vereinfachung per Wächter/Sentinels

• Ziel ist die Eliminierung der Spezialfälle für Listenanfang/-ende

Sentinel ist "von außen" nicht sichtbar

Leere Liste besteht nur aus Sentinel

• Löschen mit Sentinels:

```
deleteSent(L,x)
x.prev.next = x.next;
x.next.prev = x.prev;
```

3.3 Queues

- Abstrakter Datentyp Queue
 - new Q()
 - Erzeuge neue (leere) Queue
 - q.isEmpty()
 - Gibt an, ob Queue q leer ist
 - q.dequeue()
 - Gibt vorderstes Element aus q zurück und löscht es auf Queue
 - Fehlermeldung, falls Queue leer ist
 - q.enqueue(k)
 - Schreibt k als neues hinterstes Element auf q
 - Fehlermeldung, falls Queue voll ist
 - Abstrakter Aufbau:
 - FIFO-Prinzip / First in, First out

• Queues als (virtuelles) zyklisches Array

Bekannt: Maximale Elemente gleichzeitig in Queue

- Problem, falls Q.rear und Q.front auf selbes Element zeigen
 - Speichere Information, ob Schlange leer oder voll, in boolean empty
 - Alternativ: Reserviere ein Element des Arrays als Abstandshalter
- Methoden für zyklisches Array

```
Q leer, wenn front==rear
                                           Q voll, wenn front==rear
    und empty==true
                                              und empty==false
new(Q)
                                      isEmpty(Q)
1 Q.A[]=ALLOCATE(MAX);
                                      1 return Q.empty;
2 Q.front=0;
3 Q.rear=0;
4 Q.empty=true;
                                      enqueue (Q,k)
dequeue (Q)
  IF isEmpty(Q) THEN
                                        IF Q.rear==Q.front AND !Q.empty
    error 'underflow'
                                        THEN error 'overflow'
  ELSE
                                     3 ELSE
3
4
    Q.front=Q.front+1 mod MAX;
                                     4
                                           Q.A[Q.rear]=k;
    IF Q.front==Q.rear THEN
                                      5
                                           Q.rear=Q.rear+1 mod MAX;
        Q.empty=true;
6
                                      6
                                           Q.empty=false;
     return Q.A[Q.front-1 mod MAX];
```

• Queues durch einfach verkettete Listen

(einfach) verkettete Liste

Methoden:

```
isEmpty(Q)
new(Q)
                                    1 IF Q.front==nil THEN
1 Q.front=nil;
                                    2
                                         return true
2 Q.rear=nil;
                                    3 ELSE
                                         return false;
dequeue (Q)
                                    enqueue (Q,x)
1 IF isEmpty(Q) THEN
                                    1 IF isEmpty(Q) THEN
    error 'underflow'
2
                                    2
                                           Q.front=x;
3 ELSE
                                    3 ELSE
4
     x=Q.front;
                                           Q.rear.next=x;
                                    5 x.next=nil;
5
     Q.front=Q.front.next;
     return x;
                                    6 Q.rear=x;
```

• Laufzeit

- Enqueue: $\Theta(1)$
- Dequeue: $\Theta(1)$

3.4 Binäre Bäume

• Bäume durch verkettete Listen

Baum-Bedingung: Baum ist leer oder...
es gibt einen Knoten r ("Wurzel"), so dass jeder Knoten v von der Wurzel aus
per eindeutiger Sequenz von child-Zeigern erreichbar ist:
v = r.child[i1].child[i2]....child[im]

Bäume sind "azyklisch" (Keine rückführende Spur")

• Darstellung als (ungerichteter) Graph

• Allgemeine Begrifflichkeiten

Höhe des Baumes/ tree height = maximale Tiefe eines Knoten

- Blatt: Knoten ohne Nachfolger
- Nachkomme von x: Erreichbar durch Pfad ausgehend von x

• Begrifflichkeiten Binärbaum

- Jeder Knoten hat maximal zwei Kinder left=child[0] und right=child[1]
- Ausgangsgrad jedes Knoten ist ≤ 2
- Höhe leerer Baum per Konvention -1
- Hohe (nicht-leerer) Baum: $\max\{\mbox{H\"{o}he aller Teilb\"{a}ume der Wurzel}\} \,+\, 1$
- Halbblatt: Knoten mit nur einem Kind

• Traversieren von Bäumen

- Darstellung eines Baumes mithilfe einer Liste der Werte aller Knoten
- Laufzeit bei n Knoten: T(n) = O(n)
- Nutzung der Preorder für das Kopieren von Bäumen
 - 1. Preorder betrachtet Knoten und legt Kopie an
 - 2. Preorder geht dann in Teilbäume und kopiert diese
- Nutzung der Postorder für das Löschen von Bäumen
 - 1. Postorder geht zuerst in Teilbäume und löscht diese
 - 2. Betrachten des Knoten erst danach und dann Löschung dieses

inorder (T.root) ergibt 23 23 24 25 preorder (T.root) ergibt 23 17 9 23 24 25 postorder (T.root) ergibt

9 17 25 24 23

Code:

• Eindeutige Bestimmbarkeit von Bäumen

• Nur In-,Pre-,Postorder reichen nicht zur eindeutigen Bestimmbarkeit von Bäumen ⇒ Preorder/Postorder + Inorder + eindeutige Werte sind notwendig

(2) Identifiziert Werte im linken und rechten Teilbaum

• Abstrakter Datentyp Baum

- Abstrakter Aufbau:
 - new T()
 - Erzeugt neuen Baum namens t
 - t.search(k)
 - Gibt Element x in Baum t mit x.key == k zurück
 - t.insert(k)
 - Fügt Element x in Baum t hinzu
 - t.delete(x)
 - Löscht x aus Baum t
- Suche nach Elementen:
 - Laufzeit = $\Theta(n)$ (Jeder Knoten maximal einmal, jeder Knoten im schlechtesten Fall)
 - Starte mit search(T.root,k)
 - Code:

```
search(x,k)
IF x == nil THEN return nil;
IF x.key == k THEN return x;
y = search(x.left,k);
IF y != nil THEN return y;
return search(x.right,k);
```

- Einfügen von Elementen:
 - Laufzeit = $\Theta(1)$
 - Hier wird als Wurzel eingefügt (Achtung: Erzeugt linkslastigen Baum)
 - Code:

```
insert(T,x) // x.parent == x.left == x.right == nil;
IF T.root != nil THEN
    T.root.parent = x;
    x.left = T.root;
T.root = x;
```

- Löschen von Elementen:
 - Laufzeit = $\Theta(h)$ (Höhe des Baumes, h=nmöglich)
 - Hier: Ersetze \boldsymbol{x} durch Halbblatt ganz rechts

• Connect-Algorithmus:

• Delete-Algorithmus:


```
• Laufzeit = \Theta(1)
 connect(T,y,w) // Connects w to y.parent
 v = y.parent;
 IF y != T.root THEN
     IF y == v.right THEN
         v.right = w;
     ELSE
         v.left = w;
 ELSE
     T.root = w;
 IF w != nil THEN
     w.parent = v;
      delete(T,x) // assumes x in T
      y = T.root;
      WHILE y.right != nil DO
          y = y.right;
      connect(T,y,y.left);
      if x != y THEN
          y.left = x.left;
          IF x.left != nil THEN
              x.left.parent = y;
          y.right = x.right;
          IF x.right != nil THEN
              x.right.parent = y;
```

connect(T,x,y);

3.5 Binäre Suchbäume

• Definition

- Totale Ordnung auf den Werten
- Für alle Knoten z gilt: Wenn x Knoten im linken Teilbaum von z, dann $x.key \le z.key$ Wenn y Knoten im rechten Teilbaum von z, dann $y.key \ge z.key$
- Preorder/Postorder + eindeutige Werte ⇒ Eindeutige Identifizierung

• Suchen im Binären Suchbaum

• Einfügen im Binary Search Tree

- Laufzeit = O(h) (Höhe)
- Code:

```
search(x,k) // 1. Aufruf x = root
IF x == nil OR x.key == k THEN
    return x;
IF x.key > k THEN
    return search(x.left,k);
ELSE
    return search(x.right,k);
```

• Iterativer Code:

```
iterative-search(x,k)
WHILE x != nil AND x.key != k DO
    IF x.key > k THEN
        x = x.left;
    ELSE
        x = x.right;
return x;
```

- Laufzeit = O(h)
- Aufwendiger, da Ordnung erhalten werden muss
- Code:

```
insert (T,z) // z.left == z.right == nil;
x = T.root;
px = nil;
WHILE x != nil DO
    px = x;
    IF x.key > z.key THEN
        x = x.left;
    ELSE
        x = x.right;
z.parent = px;
IF px == nil THEN
    T.root = z;
ELSE
    IF px.key > z.key THEN
        px.left = z;
    ELSE
        px.right = z;
```

• Löschen im BST

• Verschiedene Fälle:

Löschen im BST (I) zu löschender Knoten **z** hat maximal ein Kind

Löschen im BST (II) rechtes Kind von Knoten z hat kein linkes Kind

Löschen im BST (III) "kleinster" Nachfahre vom rechten Kind von z

• Code

```
transplant(T,z,z.left)
// Hängt Teilbaum v an Parent von u
                                           ELSE
transplant(T,u,v)
                                                IF z.right == nil THEN
IF u.parent == nil THEN
                                                   transplant(T,z,z,left)
    T.root = v;
                                               ELSE
ELSE
                                                   y = z.right;
    IF u == u.parent.left THEN
                                                   WHILE y.left != nil DO y = y.left;
        u.parent.left = v;
                                                   IF y.parent != z THEN
   ELSE
                                                        transplant(T,y,y.right)
        u.parent.right = v;
                                                        y.right = z.right;
IF v != nil THEN
                                                        y.right.parent = y;
    v.parent = u.parent;
                                                   transplant(T,z,y)
                                                   y.left = z.left;
                                                   y.left.parent = y;
```

- Laufzeit = O(h)
- \bullet Laufzeit ist damit besser, wenn viele Suchoperationen und hklein relativ zu n

delete(T,z)

IF z.left == nil THEN

• Höhe eines BST

- Best Case:
 - Vollständiger Baum (Alle Blätter gleiche Tiefe)
 - $h = O(log_2n)$
 - Laufzeit = $O(log_2n)$
- Worst Case:
 - Degenerierter Baum (lineare Liste)
 - h = n 1
 - Laufzeit = $\Theta(n)$
- Durchschnittliche Höhe:
 - Erwartete Höhe: $\Theta(log_2n)$

• Suchbäume als Suchindex

- Knoten speichert nur Primärschlüssel und Zeiger auf Daten
- Zusätzliche Indizes möglich, kosten aber Speicherplatzbedarf

4 Advanced Data Structures

4.1 Rot-Schwarz-Bäume

Definition

- Binärer Suchbaum mit Zusatzeigenschaften
- Zusatzeigenschaften:
 - Jeder Knoten hat die Farbe rot oder schwarz
 - Die Wurzel ist schwarz
 - Wenn ein Knoten rot ist, sind seine Kinder schwarz ("Nicht-Rot-Rot-Regel")
 - Für jeden Knoten hat jeder Pfad zu einem Blatt die selbe Anzahl an gleichen schwarzen Knoten
- Halbblätter im RBT sind schwarz
- Schwarzhöhe eines Knoten: Eindeutige Anzahl von schwarzen Knoten auf dem Weg zu einem Blatt im Teilbaum des Knoten
- Für leeren Baum gibt Schwarzhöhe = 0 (SH(nil) = 0)
- Höhe eines Rot-Schwarz-Baums
 - $h \le 2 \cdot log_2(n+1)$ (n Knoten)
 - In jedem Unterteilbaum gleiche Anzahl schwarzer Knoten
 - Maximal zusätzlich gleiche Anzahl roter Knoten auf diesem Pfad
 - Einigermaßen ausbalanciert \Rightarrow Höhe $O(\log n)$
- Alle folgenden Algorithmen arbeiten mithilfe eines Sentinels (zeigt auf sich selbst)

• Einfügen

- Laufzeit: $\Theta(h)$ (h jedoch log n)
- 1. Finde Elternknoten wie im BST (BST-Einfüge Algorithmus)
- 2. Färbe den neuen Knoten rot
- 3. Wiederherstellen der Rot-Schwarz-Bedingung

```
fixColorsAfterInsertion(T,z)
```

```
// solange der Elternknoten rot ist
WHILE z.parent.color == red DO
                                                 // Linkes Kind (if-Fall)
    IF z.parent == z.parent.parent.left THEN
        y = z.parent.parent.right;
                                                 // Fall 1
        IF y != nil AND y.color == red THEN
            z.parent.color = block;
            y.color = black;
            z.parent.parent.color = red;
            z = z.parent.parent;
                                                 // rekursiv nach oben weiterführen
        ELSE
                                                 // Fall 2
                                                 // Zwischenfall (2.1)
            IF z == z.parent.right THEN
                z = z.parent;
                rotateLeft(T,z);
            z.parent.color = black;
            z.parent.parent.color = red;
            rotateRight(T, z.parent.parent);
    ELSE
                                                 // Rechtes Kind (else-Fall)
        // Tauschen von rechts und links
    T.root.color = black;
                                                 // Setzen der Wurzel auf Schwarz
```

• Hilfsmethode rotateLeft

• Löschen

- Laufzeit: $O(h) = O(\log n)$
- analog zum binären Suchbaum, aber neue Node erbt Farbe der alten Node
- Wenn neueNode schwarz war \Rightarrow Fixup
- Verschiedene Fälle, die auch gegenseitig Voraussetzungen füreinander sind
- Da das Ganze jedoch etwas umfangreicher ist, findet es sich nicht hier in der Zusammenfassung

• Worst-Case-Laufzeiten

• Einfügen: $\Theta(\log n)$ • Löschen: $\Theta(\log n)$ • Suchen: $\Theta(\log n)$

4.2 AVL-Bäume

• Definition:

- $h \le 1.441 \cdot log \ n$ (optimierte Konstanten 1,441 vs 2 (RBT))
- Binärer Suchbaum
- Allerdings Balance in jedem Knoten nur -1, 0, 1
- Balance für x: $B(x) = H\ddot{o}he(rechter Teilbaum)$ $H\ddot{o}he(linker Teilbaum)$

• AVL vs. Rot-Schwarz

- *AVL*:
 - Einfügen und Löschen verletzen in der Regel öfter die Baum-Bedingung
 - Aufwendiger zum Rebalancieren
- Rot-Schwarz:
 - Suchen dauert evtl. länger
- Konklusion:
 - AVL geeigneter, wenn mehr Such-Operationen und weniger Einfügen und Löschen
- Gemeinsamkeiten:
- AVL \subset Rot-Schwarz
- AVL Baum \Rightarrow Rot-Schwarz-Baum mit Höhe $\lceil \frac{h+1}{2} \rceil$
- Für jede Höhe $h \ge 3$ gibt es einen RBT, der kein AVL-Baum ist (AVL \ne RBT)

• Einfügen

- Einfügen funktioniert wie beim Binary Search Tree mit Sentinel
- Erfordert danach jedoch Rebalancieren weiter oben im Baum
- Rebalancieren: (verschiedene Fälle)

• Löschen

- Analog zum binären Suchbaum
- Rebalancieren bis eventuell in die Wurzel notwendig

• Worst-Case-Laufzeiten

- Einfügen: $\Theta(\log n)$
- Löschen: $\Theta(\log n)$
- Suchen: $\Theta(\log n)$
- theoretisch bessere Konstanten als RBT
- in Praxis aber nur unwesentlich schneller

4.3 Splay-Bäume

• Definition

- selbst-organisierende Listen
- Ansatz: Einmal angefragte Werte werdeb wahrs. noch öfter angefragt
- Angefragte Werte nach oben schieben
- \bullet Splay-Bäume sind Untermenge von BST

• Splay-Operationen

- Suchen oder Einfügen: Spüle gesuchten oder neu eingefügten Knoten an die Wurzel
- Splay: (Folge von Zig-,Zig-Zig-, Zig-Zag-Operationen) splay(T,z)

```
WHILE z != T.root DO
    IF z.parent.parent == nil THEN
        zig(T,z);
    ELSE
        IF z == z.parent.parent.left.left OR
        z == z.parent.parent.right.right THEN
        zigZig(T,z);
    ELSE
        zigZag(T,z);
```

Zig-Zag-Operation =Rechts-Links- oder Links-Rechts-Rotation

Zig-Zig-Operation =Links-Links- oder Rechts-Rechts-Rotation

Zig-Operation

=einfache Links- oder Rechts-Rotation

• Suchen

- Laufzeit: O(h)
- Suche des Knotens wie im BST
- Hochspülen des gefundenen Knotens (alternativ zuletzt besuchter Knoten, falls nicht gefunden)

• Einfügen

- Laufzeit: O(h)
- Suche der Position wie im BST
- Einfügen und danach hochspülen des eingefügten Knotens

• Löschen

- Laufzeit: O(h)
- 1. Spüle gesuchten Knoten per Splay-Operation nach oben
- 2. Lösche den gesuchten Knoten (Wenn einer der beiden entstehenden Teilbäume leer, dann fertig)
- 3. Spüle den größten Knoten im linken Teilbaum nach oben (kann kein rechtes Kind haben)
- 4. Hänge rechten Teilbaum an größten Knoten aus 3. an

• Laufzeit Splay-Bäume

- Amortisierte Laufzeit: Laufzeit pro Operation über mehrere Operationen hinweg
- Worst-Case-Laufzeit pro Operation: $O(\log_n n)$

4.4 Binäre Max-Heaps

• Definition

- Heaps sind keine BSTs
- Eigenschaften binäre Max-Heaps:
 - bis auf das unterste Level vollständig und dort von links gefüllt ist
 - Für alle Knoten gilt: x.parent.key ≥ x.key
 - Maximum des Heaps steht damit in der Wurzel
- $h \leq \log n$, da Baum fast vollständig

• Heaps durch Arrays

• Einfügen

- Idee: Einfügen und danach Vertauschen nach oben, bis Max-Eigenschaft wieder erfüllt ist
- Laufzeit: O(h) = O(log n)
 insert(H,k) // als unbeschränktes Array
 H.length = H.length + 1;
 H.A[H.length-1] = k;

 i = H.length 1;
 WHILE i > 0 AND H.A[i] > H.A[i.parent]
 SWAP(H.A, i, i.parent);
 i = i.parent;

• Lösche Maximum

- 1. Ersetze Maximum durch letztes "Blatt
- 2. Vertausche Knoten durch Maximum der beiden Kinder (heapify)

```
extract-max(H)
                                        IF isEmpty(H) THEN return error 'underflow';
                                            max = H.A[0];
                                            H.A[0] = H.A[H.length - 1];
                                            H.length = H.length - 1;
                                            heapify(H, 0);
                                            return max;
heapify(H, i)
maxind = i;
IF i.left < H.length AND H.A[i] < H.A[i.left] THEN</pre>
    maxind = i.left;
IF i.right < H.length AND H.A[maxind] < H.A[i.right] THEN</pre>
    maxind = i.right;
IF maxind != i THEN
    SWAP(H.A, i, maxind);
    heapify(H, maxind);
```

• Heap-Konstruktion aus Array

- Blätter sind für sich triviale Max-Heaps
- Bauen von Max-Heaps für Teilbäume mithilfe Rekursion per heapify
- (Array nicht unbedingt in richtiger Reihenfolge)

```
buildHeap(H.A) // Array in H.A
H.length = A.length;
FOR i = ceil((H.length-1)/2) - 1 DOWNTO 0 DO
    heapify(H.A,i);
```

• Heap-Sort

• Idee: Bauen des Heaps aus Array und dann Extraktion des Maximums heapSort(H.A)

4.5 B-Bäume

• Definition

- Jeder B-Baum hat einen angebenen Grad also z.B. t=2
- Eigenschaften:
 - Wurzel zwischen [1, ..., 2t 1] Werte
 - Knoten zwischen [t-1,...2t-1] Werte
 - Werte innerhalb eines Knotens aufsteigend geordnet
 - Blätter haben alle die gleiche Höhe
 - Jeder innere Knoten mit n Werten hat n+1 Kinder, sodass gilt: $k_0 \le key[0] \le k_1 \le key[1] \le \dots \le k_{n-1} \le key[n-1] \le k_n$


```
    x.n
    Anzahl Werte eines Knoten x
    x.key[0],...,x.key[x.n-1]
    (geordnete) Werte in Knoten x
    x.child[0],...,x.child[x.n]
    Zeiger auf Kinder in Knoten x
```

- Höhe B-Baum: $h \leq log_t \frac{n+1}{2}$ (Grad t und n Werte)
- \bullet B-Baum wird für größere t flacher

• Suche

search(x, k)

```
WHILE x != nil DO
    i = 0;
WHILE i < x.n AND x.key[i] < k DO
        i++;
IF i < x.n AND x.key[i] == k THEN
        return(x, i);
ELSE
        x = x.child[i];
return nil;</pre>
```

• Einfügen

- Einfügen erfolgt immer in einem Blatt
- Falls das Blatt voll ist, muss jedoch gesplittet werden
- ⇒ Beim Durchlaufen des Baumes an jeder notwendigen (voll) Position splitten
- Splitten:
 - Bricht volle Node auf und fügt mittleren Wert zur Elternnode hinzu
 - Aus den anderen Werten entstehen nun jeweils eigene Kinder
 - An der Wurzel splitten erzeugt neue Wurzel und erhöht Baumhöhe um eins
- Ablauf zusammengefasst:
 - 1. Start bei Wurzel, falls kein Platz mehr splitten
 - 2. Durchlaufen des Baumes bis zur richtigen Position und immer, falls voll, splitten
 - 3. Einfügen der Node (fertig)

insert(T, z)

Wenn Wurzel schon 2t-1 Werte, dann splitte Wurzel Suche rekursiv Einfügeposition:

Wenn zu besuchendes Kind 2t-1 Werte, splitte es erst Füge z in Blatt ein

• Löschen

- Wenn Blatt noch mehr als t-1 Werte, kann der Wert einfach entfernt werden
- Allerdings durchlaufen wir hier den Baum auch wieder von oben und stellen gewisse Voraussetzungen her
- Durchlaufen des Baumes von oben und Anwendung der folgenden Algorithmen

Allgemeines Verschmelzen:

- Kind und alle rechten/linken Geschwisterknoten nur t-1 Werte
- \bullet Wenn Elternknoten vorher min. t Werte
 - ⇒ keine Änderung oberhalb notwendig

Allgemeines Rotieren/Verschieben:

- Kind nur t-1 Werte
- Geschwister jedoch mehr als t-1 Werte
- keine Änderung oberhalb notwendig

• Code:

delete(T, k)

Wenn Wurzel nur 1 Wert und beide Kinder t-1 Werte, verschmelze Wurzel und Kinder (reduziert Höhe um 1) Suche rekursiv Löschposition: Wenn zu besuchendes Kind nur t-1 Werte,

Wenn zu besuchendes Kind nur t-1 Werte, verschmelze es oder rotiere/verschiebe Entferne Wert k im inneren Knoten/Blatt // Ohne Probleme, aufgrund vorheriger Anpassung

• Laufzeiten

• Einfügen: $\Theta(\log_t n)$ • Löschen: $\Theta(\log_t n)$

• Suchen: $\Theta(\log_t n)$

• Nur vorteilhaft wenn Daten blockweise eingelesen werden

• O-Notation versteckt hier konstanten Faktor t für Suche innerhalb eines Knotens

5 Randomized Data Structures

5.1 Skip Lists

• Idee

- Einfügen von "Express-Liste" mit einigen Elementen
- Beginne mit Suche in der Express-Liste mit weniger Elementen
- \bullet Falls das suchende Element kleiner als nächstes Element in Express-Liste \Rightarrow weiter nach rechts
- Falls nicht \Rightarrow Eine Stufe nach unten wandern und dort weiter suchen

- Verbesserung: Zusätzliche Stufen an Express-Listen
- Anwendung:
 - Gut für parallele Verarbeitung z.B. Multicore-Systeme (Einfügen und Löschen)
 - Dafür logarithmische Laufzeit nur im Durchschnitt
- Auswahl von Elementen:
 - \bullet Abhängig von einer gewählten Wahrscheinlichkeit p
 - \bullet Element kommt mit Wahrscheinlichkeit p in übergeordnete Liste
 - Höhe: $h = O(\log_{\frac{1}{n}} n)$
 - Anzahl Elemente: $n \Rightarrow pn \Rightarrow p^2n \Rightarrow \dots$ (unten nach oben)

• Implementierung

L.head - erstes/oberstes Element der Liste
L.height - Höhe der Skiplist
x.key - Wert
x.next - Nachfolger
x.prev - Vorgänger
x.down - Nachfolger Liste unten
x.up - Nachfolger Liste oben
nil - kein Nachfolger / leeres Element

• Suche

• Laufzeit ist von Expresslisten abhängig

```
search(L, k)
current = L.head;
WHILE current != nil DO
    IF current.key == k THEN
        return current;
    IF current.next != nil AND current.next.key <= k THEN
        current = current.next;
    ELSE
        current = current.down;
return nil;</pre>
```

• Einfügen

- Füge auf unterster Ebene ein
- \bullet Evtl. auf höheren Ebenen mit zufälliger Wahl mithilfe von p auf jeder Ebene

• Löschen

• Entferne Vorkommen des Elements aus allen Ebenen

• Laufzeiten

- Einfügen: $\Theta(\log_{\frac{1}{p}}n)$
- Löschen: $\Theta(\log_{\frac{1}{p}}n)$
- Suchen: $\Theta(\log_{\frac{1}{n}}n)$
- (Im Durchschnitt)
- O-Notation versteckt konstanten Faktor $\frac{1}{p}$
- Speicherbedarf im Durchschnitt: $\frac{n}{1-p}$

5.2 Hashtables

• Idee

- Hashfunktion sollte gut verteilen
- h(x) sollte uniform sein
- Unabhängig im Intervall [0, T.length 1] verteilt
- Einfügen mit konstant vielen Array-Operationen
- Kollisionsauflösung z.B. mithilfe von Linked Lists
- Neue Elemente werden vorne angefügt
- Konstante Anzahl an Array-Operationen
- Soviele Schritte wie die Liste lang ist
- Uniforme Hashfunktion
 - $\Rightarrow \frac{n}{T.length}$ Einträge pro Liste

• Hash-Funktionen

Array T[]

- Universelle Hash-Funktion:
 - Wähle zufällige $a, b \in [0, p-1], p \ prim, a \neq 0$
 - $h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod T.length$
- Krypthographische Hash-Funktionen:
 - MD5, SHA-1, SHA-2, SHA-3
 - $h(x) = MD5(x) \mod T.length$

• Hashtables vs. Bäume

- Hashtables:
 - nur Suche nach bestimmten Wert möglich
 - meist größer als zu erwartende Anzahl Einträge
- Bäume:
 - schnelles Traversieren zu Nachbarn möglich
 - Bereichssuche möglich

• Laufzeiten

- Wählt mal T.length = n ergibt sich konstante Laufzeit
- Einfügen: $\Theta(1)$
- Löschen: $\Theta(1)$
- Suchen: $\Theta(1)$
- (Im Durchschnitt, beim Einfügen sogar im Worst-Case)
- Speicherbedarf i.d.R. höher als n, meist ca. $1, 33 \cdot n$

5.3 Bloom-Filter

• Idee

- Speicherschonende Wörterbucher mit kleinem Fehler
- z.B. Vermeidung von schlechten Passwörtern
 - 1. Abspeichern aller schlechten Passwörter in kompakter Form
 - 2. Prüfe, ob eingegebenes Passwort im Bloom-Filter
- z.B. Erkennen von schädlichen Websites (Chrome früher)

• Erstellen

- n Elemente $x_0, ..., x_{n-1}$
- m Bits-Speicher z.B. als Bit-Array
- k gute Hash-Funktionen $H_0, ..., H_{k-1}$ mit Bildbereich 0, 1, ..., m-1
- Empfohlene Wahl: $k = \frac{m}{n} \cdot ln2$ (Fehlerrate von ca. 2^{-k})
- Code:

initBloom(X, BF, H) // H Array of hash functions

- 1. Initialisiere Array mit 0-Einträgen
- 2. Schreibe für jedes Element in jede Bit-Position $H_0(x_i), ..., H_{k-1}(x_i)$ eine 1

• Suche

```
result = 1;
FOR j = 0 TO H.length - 1 DO
    result = result AND BF[H[j](y)];
return result;
```

• Gibt an, dass y im Wörterbuch, falls alle k Einträge für y in BF = 1 sind

in Wörterbuch:

nicht in Wörterbuch:

- Eventuell "false positives" (1, obwohl y nicht im Wörterbuch)
 - Passiert, falls die Einträge vorher von anderen Werten getroffen wurden
 - Daher gute Hashfunktionen und Filtergröße nicht zu klein

6 Graph Algorithms

6.1 Graphen

- (Endlicher) gerichteter Graph
 - (endlicher) gerichteter Graph G = (V, E)
 - \bullet besteht aus (endlicher) Knotenmenge V
 - besteht aus (endlicher) Kantenmenge $E \subseteq VxV$
 - $(u, v) \in E$: Kanten von Knoten u zu v
 - Kanten haben eine Richtung

• Ungerichtete Graphen

- (endlicher) ungerichteter Graph G = (V, E)
- \bullet besteht aus (endlicher) Knotenmenge V
- besteht aus (endlicher) Kantenmenge $E \subseteq VxV$, sodass $(u,v) \in E \Leftrightarrow (v,u) \in E$
- Kanten haben keine Richtung

• Pfadfinder

- \bullet Knoten v ist von Knoten u erreichbar, wenn es einen Pfad gibt
- u ist immer von u per leerem Pfad (k=1) erreichbar
- Länge des Pfades = k 1 = Anzahl Kanten

• Zusammenhänge

- Ungerichtet: Zusammenhängend wenn jeder Knoten von jedem anderen Knoten aus erreichbar ist
- Gerichtet: Stark zusammenhängend, wenn obiges auch gemäß Kantenrichtung gilt

• Bäume und Subgraphen

Graph G ist ein Baum, wenn V leer ist oder wenn es einen Knoten in V gibt, von dem aus jeder andere Knoten eindeutig erreichbar ist (Wurzel). Graph G' = (V', E') ist Subgraph von G = (V, E), wenn $V' \subseteq V$ und $E' \subseteq E$.

• Darstellung von Graphen

- Als Adjazentmatrix (1, wenn Kante von i zu j / 0, wenn keine Kante)
- Bei ungerichteten Graphen ist Matrix spiegelsymmetrisch zur Hauptdiagonalen
- Speicherbedarf: $\Theta(|V^2|)$

- Auch darstellbar als Array mit verketteten Listen
- Speicherbedarf: $\Theta(|V| + |E|)$

• Gewichtete Graphen

- gewichteter gerichteter Graph G = (V, E)
- besitzt zusätzlich Funktion $w: E \to R$
- Abspeichern des Werts einer Kante w((u, v))

6.2 Breadth-First Search (BFS)

• Idee

- Besuche zuerst alle unmittelbaren Nachbarn, dann deren Nachbarn, usw.
- Anwendung: Webcrawling, Garbage Collection,...

• Algorithmus

```
BFS(G,s) //G=(V,E) s = source node in V
 FOREACH u in V-{s} DO
     u.color = WHITE;
                             // Weiß = noch nicht besucht
     u.dist = +\infty
                             // Setzen der Distanzen auf Unendlich
                             // Setzen der Vorgänger auf nil
     u.pred = nil;
                              // Anfang bei Startnode
 s.color = GRAY;
 s.dist = 0;
 s.pred = nil;
 newQueue(Q);
 enqueue(Q,s);
 WHILE !isEmpty(Q) DO
 u = dequeue(Q);
 FOREACH v in adj(G,u) DO
      IF v.color == WHITE THEN
          v.color == GRAY;
          v.dist = u.dist+1;
          v.pred = u;
          enqueue(Q,v);
                              // Knoten abgearbeitet
 u.color = BLACK;
• Laufzeit: O(|V| + |E|)
```

 \bullet Nach Algorithmus steht in v die kürzeste Distanz von s nach v

• Kürzeste Pfade ausgeben

```
print-path(G,s,v) // Assumes that BFS(G,s) has already been executed

IF v == s THEN
    print s;

ELSE
    IF v.pred == nil THEN
        print 'no path from s to v'
    ELSE
        print-path(G,s,v.pred);
        print v;
```

• Abgeleiteter BFS-Baum

- Subgraph $G_{pred}^s = (V_{pred}^s, E_{pred}^s)$ von G:
 - $V^s_{pred} = \{v \in V | v.pred \neq nil\} \cup \{s\}$
 - $E^s_{pred} = \{(v.pred, v) | v \in V^s_{pred} \{s\}\}$
- G^s_{pred} enthält alle von s aus erreichbaren Knoten in G
- Außerdem handelt es sich hier nur um kürzeste Pfade

6.3 Depth-First Search(DFS)

• Idee

- Besuche zuerst alle noch nicht besuchten Nachfolgeknoten
- "Laufe so weit wie möglich weg vom aktuellen Knoten"

• Algorithmus

```
DFS(G)
FOREACH u in V DO
    u.color = WHITE;
    u.pred = nil;
time = 0;
                        // time hier als globale Variable
FOREACH u in v DO
    IF u.color == WHITE THEN
        DFS-VISIT(G,u) // Start eines rekursiven Aufrufs
DFS-VISIT(G,u)
time = time + 1;
                       // discovery time
u.disc = time;
u.color = GRAY;
FOREACH v in adj(G,u) DO
    IF v.color == WHITE THEN
        v.pred = u;
        DFS-VISIT(G,v);
u.color = BLACK;
time = time + 1;
                   // finish time
u.finish = time;
```

\bullet DFS-Wald = Menge von DFS-Bäumen

- Subgraph $G_{pred} = (V, E_{pred})$ von G
- besteht aus $E_{pred} = (v.pred, v) | v \in V, v.pred \neq nil$
- DFS-Baum gibt nicht unbedingt den kürzesten Weg wieder

• Kantenarten

• Baumkanten: alle Kanten in G_{pred}

 \bullet Vorwärtskanten: alle Kanten in G zu Nachkommen in $G_{pred},$ die nicht Baumkante

• Rückwärtskanten: alle Kanten in G zu Vorfahren in G_{pred} , die nicht Baumkante

• Kreuzkanten: alle anderen Kanten in G (inkl. Schleifen)

• Anwendungen DFS

• Job Scheduling (Job X muss vor Job Y beendet sein)

• Topologisches Sortieren

- nur für dag (directed acyclic graph)
- Kanten immer nur nach rechts
- Sortierung aber nicht eindeutig

TOPOLOGICAL-SORT(G)

newLinkedList(L);

 $\operatorname{run}\ \operatorname{DFS}(G)$ but, each time a node is finished, insert in front of L return L.head

• Starke Zusammenhangskomponenten

• Knotenmenge $C \subseteq V$, so dass es zwischen zwei Knoten $u, v \in C$ einen Pfad von u nach v gibt und es keine Menge $D \subseteq V$ mit $C \subsetneq D$ gibt, für die obiges auch gilt.

Eigenschaften:

- Verschiedene SCC's sind disjunkt
- Zwei SCC's sind nur in eine Richtung verbunden

• Algorithmus:

- DFS zweimal laufen lassen Einmal auf Graph GEinmal auf Graph $G^T = (V, E^T)$ (transponiert)
- Dadurch bleiben die SCC's gleich, die Kanten drehen sich aber jeweils um
- Code: SCC(G)

```
run DFS(G) compute G^T run DGS(G^T) but visit vertices in main loop in descending finish time from 1 output each DFS tree from above as one SCC
```

6.4 Minimale Spannbäume

• Definition

- Verbindung aller Knoten miteinander
- Minimaler Spannbaum \Rightarrow Minimales Gewicht

• Allgemeiner Algorithmus

```
genericMST(G,w)

A = Ø
WHILE A does not form a spanning tree for G DO
    find safe edge {u,v} for A
    A = A \cup \{ \{u,v\} \}
return A
```


Terminologie:

- Schnitt (S, V-S) partioniert Knoten in zwei Mengen
- {u,v} überbrückt Schnitt, wenn $u \in S$ und $v \in V S$
- Schnitt respektiert $A\subseteq E$, wenn keine Kante $\{u,v\}$ aus A den Schnitt überbrückt
- {u,v} leichte Kante für (S, V-S), wenn w({u,v}) minimal für alle den Schnitt überbrückenden Kanten
- {u,v} sicher für A, wenn $A \cup \{\{u,v\}\}$ Teilmenge eines MST

• Algorithmus von Kruskal

- Lässt parallel mehrere Unterbäume eines MST wachsen
- In Worten: Suchen der "kleinsten" Kante und Zusammenfügen von Mengen, falls noch nicht geschehen

```
• Laufzeit: O(|E| \cdot log|E|)

MST-Kruskal(G,w)

A = \emptyset

FOREACH v in V DO

set(v) = \{v\}; // Menge mit sich selbst

Sort edges according to weight in nondecreasing order

FOREACH \{u,v\} in E according to order DO

IF set(u) != set(v) THEN // Mengen noch nicht verbunden

A = A \cup \{\{u,v\}\}\};

UNION(G,u,v); // Zusammenführen der Mengen aller Knoten aus den Sets return A;
```

• Algorithmus von Prim

- Konstruiert einen MST Knoten für Knoten
- Fügt immer leichte Kante zu zusammenhängender Menge hinzu
- Laufzeit: $O(|E| + |V| \cdot log|V|)$ MST-Prim(G,w,r) // r is given root

 FOREACH v in V DO

 v.key = + ∞ ;
 v.pred = nil;
 r.key = - ∞ Q = V;
 WHILE !isEmpty(Q) DO

 u = EXTRACT-MIN(Q); // smallest key value
 FOREACH v in adj(u) DO

 IF v \in Q and w({u,v})<v.key THEN

 v.key = w({u,v});
 v.pred = u;

6.5 Kürzeste Wege in (gerichteten) Graphen

• Definition

- SSSP Single-Source Shortest Path
- \bullet Von Quelle s ausgehend die kürzesten Pfad zu allen anderen Knoten
- Kürzester Pfad: Minimales Gewicht von einem zum anderen Knoten
- BFS findet nur minimale Kantenwege (nicht Gewichtswege)
- MST minimiert das Gesamtgewicht des Baumes (nicht zu einzelnen Kanten)
- Negative Kantengewichte sind erlaubt, aber keine Zyklen mit negativem Gesamtgewicht

• Gemeinsame Idee für Algorithmen - Relax

• Verringere aktuelle Distanz von Knoten v, wenn durch Kante (u, v) kürzer erreichbar

• Bellman-Ford-Algorithmus

```
• Laufzeit: \Theta(|E| \cdot |V|)
 Bellman-Ford-SSSP(G,s,w)
 initSSSP(G,s,w);
 FOR i = 1 TO V-1 DO
      FOREACH (u,v) in E DO
          relax(G,u,v,w);
 FOREACH (u,v) in E DO
                          // Prüfung ob negativer Zyklus
      IF v.dist > u.dist+w((u,v)) THEN
          return false;
 return true;
 initSSSP(G,s,w)
 FOREACH v in V DO
      v.dist = \infty;
      v.pred = nil;
 s.dist = 0;
```

• TopoSort für dag

- Erhalten des kürzesten Pfades durch das topologische Sortieren
- Laufzeit: $\Theta(|E| + |V|)$ TopoSort-SSSP(G,s,w) // G muss dag sein initSSSP(G,s,w); execute topological sorting FOREACH u in V in topological order DO FOREACH v in adj(u) DO relax(G,u,v,w);

• Dijkstra-Algorithmus

- Voraussetzung: Keine negativen Kantengewichte
- Laufzeit: $\Theta(|V| \cdot log|V| + |E|)$ Dijkstra-SSSP(G,s,w) initSSSP(G,s,w); Q = V; WHILE !isEmpty(Q) DO u = EXTRACT-MIN(Q); // smallest distance FOREACH v in adj(u) DO relax(G,u,v,w);

6.6 Maximaler Fluss in Graphen

• Idee

- Kanten haben Flusswert und maximale Kapazität
- Jeder Knoten (außer s und t) haben den gleichen eingehenden und ausgehenden Fluss
- Ziel: Finde maximalen Fluss von s nach t
- s: Source/Quelle
- t: Target/Senke

• Flussnetzwerk:

Ein Flussnetzwerk ist ein gewichteter, gerichteter Graph G=(V,E) mit Kapazität c, so dass $c(u,v)\geq 0$ für $(u,v)\in E$ und c(u,v)=0 für $(u,v)\notin E$, mit zwei Knoten $s,t\in V$, so dass jeder Knoten von s aus erreichbar ist und t von jedem Knoten aus erreichbar ist. Damit gilt $|E|\geq |V|-1$.

• Fluss:

Ein Fluss $f: VxV \to \mathbb{R}$ für ein Flussnetzwerk G = (V, E) mit Kapazität c und Quelle s und Senke t erfüllt $0 \le f(u, v) \le c(u, v)$ für alle $u, v \in V$, sowie für alle $u \in V - \{s, t\}$: $\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$ (ausgehend = eingehend)

• Wert eines Flusses

Der Wert |f| eines Flusses $f: VxV \to \mathbb{R}$ für ein Flussnetzwerk G ist: $|f| = \sum_{v \in V} f(s, v) = \sum_{v \in V} f(v, s)$

• Transformationen

• Restkapazitätsgraph

- Wird für Ford-Fulkerson benötigt
- Restkapazität $c_f(u, v)$:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{falls } (u,v) \in E \\ f(v,u) & \text{falls } (v,u) \in E \\ 0 & \text{sonst} \end{cases}$$

• $G_f = (V, E_f)$ mit $E_f = \{(u, v) \in VxV | c_f(u, v) > 0\}$

ullet Suche eines Pfades von s nach t und Erhöhung aller Flüsse um niedrigsten möglichen Wert auf Pfad

• Ford-Fulkerson-Algorithmus

- Idee: Suche Pfad von s nach t, der noch **erweiterbar** ist
- \bullet Suche dieses Pfades im Restkapazitätsgraphen G_f (mögliche Zu- und Abflüsse)
- Code:

FOREACH e in E do e.flow = 0; WHILE there is path p from s to t in
$$G_{flow}$$
 DO
$$c_{flow}(p) = \min \; \{c_{flow}(u,v) \; : \; (\texttt{u,v}) \; \text{in p} \}$$
 FOREACH e in p DO
$$\text{IF e in E THEN} \\ \text{e.flow} = \text{e.flow} + c_{flow}(p);$$
 ELSE
$$\text{e.flow} = \text{e.flow} - c_{flow}(p);$$

- Die Pfadsuche erfolgt z.B. per BFS oder DFS
- Laufzeit: $O(|E| \cdot u \cdot |f^*|)$ $(O(|V| \cdot |E|^2)$ Mit Verbesserung nach Edmonds-Karp) (wobei f^* maximaler Fluss und Fluss um bis zu $\frac{1}{u}$ pro Iteration wächst)

• Beispiel:

7 Advanced Designs

7.1 Dynamische Programmierung

• Anwendung

Anwendung, wenn sich Teilprobleme überlappen

- 1. Wir charakterisieren die Struktur einer optimalen Lösung
- 2. Wir definieren den Wert einer optimalen Lösung rekursiv
- 3. Wir berechnen den Wert einer optimalen Lösung (meist bottom-up Ansatz)
- 4. Wir konstruieren eine zugehörige optimale Lösung aus berechneten Daten

• Stabzerlegungsproblem

Ausgangsproblem: Stangen der Länge n cm sollen so zerschnitten werden, dass der Erlös r_n maximal ist, indem die Stange in kleinere Stäbe geschnitten wird.

Länge i	0	1	2	3	4	5	6	7	8	9	10
Preis p_i	0	1	5	8	9	10	17	17	20	24	30

Beispiel: Gesamtstange hat Länge 4. Welchen Erlös kann man max. erhalten?

Optimaler Erlös: zwei 2cm lange Stücke (5 + 5 = 10)

- Aufteilung der Eisenstange:
 - Stange mit Länge n kann auf 2^{n-1} Weisen zerlegt werden
 - Position i: Distanz vom linken Ende der Stange
 - Aufteilung in k Teilstäbe $(1 \le k \le n)$
 - optimale Zerlegung: $n = i_1 + i_2 + ... + i_k$
 - maximaler Erlös: $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$
 - z.B.: $r_4 = 10$ (siehe oben)

• Rekursive Top-Down Implementierung:

```
CUT-ROD(p,n) // p Preis-Array, n Stangenlänge

IF n== 0
    return 0;
q = -∞;
FOR i = 1 TO n // nicht Start bei 0, sonst kein Rekursionsschritt
    q = max(q, p[i] + CUT-ROD(p, n - i));
return q;
```

- Stabzerlegung via Dynamischer Programmierung:
 - Ziel

Mittels dynamischer Programmierung wollen wir CUT-ROD in einen effizienten Algorithmus verwandeln.

• Bemerkung:

Naiver rekursiver Ansatz ist ineffizient, da dieser immer wieder diesselben Teilprobleme löst.

- Ansatz:
 - Jedes Teilproblem nur einmal lösen. Falls die Lösung eines Teilproblems nochmal benötigt wird, schlagen wir diese nach.
- Dynamische Programmierung wird zusätzlichen Speicherplatz benutzen um Laufzeit einzusparen.
- Reduktion der exponentiellen Laufzeit auf polynomielle.
- Rekursive Top-Down mit Memoisation:
 - Idee: Speicherung der Lösungen der Teilprobleme
 - Laufzeit: $\Theta(n^2)$ MEMOIZED-CUT-ROD(p, n) Let r[0...] be new array FOR i = 0 TO n $r[i] = -\infty$ return MEMOIZED-CUT-ROD-AUX(p, n, r) MEMOIZED-CUT-ROD-AUX(p, n, r) // r new Array // Abfrage ob vorhanden IF $r[n] \geq 0$ return r[n] IF n == 0q = 0ELSE $q = -\infty$ FOR i = 1 to nq = max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p, n - i, r))// Abspeichern r[n] = qreturn q

- Bottom-Up Ansatz:
 - Laufzeit: $\Theta(n^2)$
 - Sortieren der Teilprobleme nach ihrer Größe und lösen in dieser Reihenfolge
 - Immer alle kleineren Teilprobleme bei bestimmten Wert bereits gelöst BOTTOM-UP-CUT-ROD(p, n)

```
Let r[0...n] be a new array r[0] = 0

FOR j = i TO n q = -\infty

FOR i = 1 TO j q = max(q, p[i] + r[j - i])

r[j] = q

return r[n]
```

• Teilproblemgraph $(i \to j \text{ bedeutet, dass Berechnung von } r_i \text{ den Wert } r_j \text{ benutzt})$

• Fibonacci-Zahlen

- $F_1 = F_2 = 1$
- $F_n = F_{n-1} + F_{n-2}$
- Naiver rekursiver Algorithmus:

FIB(n)

IF
$$n \le 2$$

 $f = 1$;
ELSE
 $f = FIB(n-1) + FIB(n-2)$;
return f ;
FIB(3) FIB(2) FIB(3)
FIB(2) FIB(1) Laufzeit: $T(n) = T(n-1) + T(n-2) + \Theta(1)$
 $\Rightarrow \Theta(2^n)$

Gleiche Teilprobleme werden wieder mehrmals gelöst

- Rekursiver Algorithmus mit Memoisation
 - Wieder Abspeichern von Teilproblemen um Laufzeit einzusparen
 - Laufzeit: $\Theta(n)$ MEMOIZED-FIB(n) Let m[0...n-1] be a new array FOR i = 0 TO n - 1m[i] = 0return MEMOIZED-FIB-AUX(n, m) MEMOIZED-FIB-AUX(n, m) IF m[n-1] != 0return m[n-1]; // Auslesen von gespeicherten Werten IF $n \leq 2$ f = 1;ELSE f = MEMOIZED-FIB-AUX(n-1, m) + MEMOIZED-FIB-AUX(n-2, m);m[n-1] = f;return f;
- Bottom-Up Algorithmus
 - Hier wieder Berechnen aller Teilprobleme von unten beginnend BOTTOM-UP-FIB(n)

```
Let m[0...n-1] be a new array
FOR i = 1 TO n
    IF i = 0
        f = 0;
ELSEIF i \leq 2
        f = 1;
ELSE
        f = m(i-1) + m(i-2);
    m[i] = f;
return m[n];
```

7.2 Greedy-Algorithmus

- Idee
 - Trifft stets die Entscheidung, die in diesem Moment am besten erscheint
 - Trifft lokale optimale Entscheidung (evtl. nicht global die Beste)
- Aktivitäten-Auswahl-Problem
 - Definition
 - 11 anstehende Aktivitäten $S = \{a_1, ..., a_{11}\}$
 - Startzeit s_i und Endzeit f_i , wobei $0 \le s_i < f_i < \infty$
 - Aktivität a_i findet im halboffenen Zeitintervall $[s_i, f_i)$ statt
 - Zwei Aktivititäten sind kompatibel, wenn sich deren Zeitintervalle nicht überlappen

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Aktivitäten: $\{a_3, a_9, a_{11}\}$ Aktivitäten: $\{a_1, a_4, a_8, a_{11}\}$ Aktivitäten: $\{a_2, a_4, a_9, a_{11}\}$

- Ansatz mittels dynamischer Programmierung
 - Menge von Aktivitäten, die starten nachdem a_i endet und enden, bevor a_j startet $S_{ij} = \{a \in S, a = (s, f) : s \ge f_i, f < s_j\}$
 - Definiere maximale Menge A_{ij} von paarweise kompatiblen Aktivitäten in S_{ij} . $c[i,j] = |A_{ij}|$
 - Optimale Lösung für Menge S_{ij} die Aktivitäten a_k enthält: $c[i,j]=\max_{a_k\in S_{ij}}\{c[i,k]+c[k,j]+1\}\ (0, \text{ falls } S_{ij}=\emptyset)$
- Greedy-Wahl
 - lokal die beste Wahl
 - Auswahl der Aktivität mit geringster Endzeit (möglichst viele freie Ressourcen)
 - Also hier Teilprobleme, die nach a_1 starten
 - $S_k = \{a_i \in S : s_i \geq f_k\}$: Menge an Aktivitäten, die starten, nachdem a_k endet
 - Optimale-Teilstruktur-Eigenschaft Wenn a_1 in optimaler Lösung enthalten ist, dann besteht optimale Lösung zu ursprünglichem Problem aus Aktivität a_1 und allen Aktivitäten zur einer optimalen Lösung des Teilproblems S_1
- Rekursiver Greedy-Algorithmus
 - Voraussetzung: Aktivitäten sind monoton steigend nach der Endzeit sortiert
 - Laufzeit: $\Theta(n)$

```
RECURSIVE-ACTIVITY-SELECTOR(s,f,k,n) 

// s Anfangszeitenarray, f Endzeitenarray, 

// k Index von Teilproblem, n Größe Anfangsproblem 

m = k + 1; 

WHILE m \le n and s[m] < f[k] // Suche nach erster Kompatibilität 

m = m + 1; 

IF m \le n // Ausgabe des Elements und Berechnung weiterer Aktivitäten 

return \{a_m\} \cup RECURSIVE-ACTIVITY-SELECTOR(s,f,m,n) 

ELSE 

return \emptyset
```

- $\bullet \ \ Iterativer \ Greedy-Algorithmus$
 - Voraussetzung: Aktivitäten sind monoton steigend nach der Endzeit sortiert
 - Laufzeit: Θ(n)
 GREEDY-ACTIVITY-SELECTOR(s,f)

7.3 Backtracking

• Suchbaum - Baum der Möglichkeiten

- Darstellung aller für ein Problem bestehenden Möglichkeiten
- Problem: Dreimal hintereinander der selbe Buchstabe (A,B)

• Backtracking - Idee

- Lösung finden via Trial and error
- Schrittweises Herantasten an die Gesamtlösung
- \bullet Falls Teillösung inkorrekt \to Schritt zurück und andere Möglichkeit
- Voraussetzung:
 - Lösung setzt sich aus Komponenten zusammen (Sudoku, Labyrinth,...)
 - Mehrere Wahlmöglichkeiten für jede Komponente
 - Teillösung kann getestet werden

• Damenproblem

Auf einem Schachbrett der Größe $n \cdot n$ sollen n Damen so positioniert werden, dass sie sich gegenseitig nicht schlagen können. Wie viele Möglichkeiten gibt es, n Damen so aufzustellen, dass keine Damen eine andere schlägt.

- n=8:4 Milliarden Positionierungen
- Optimierte Suche: In jeder Zeile/Spalte nur eine Dame
- Reduziert Problem auf 40.000 Positionierungen (ohne Diagonale)

PLACE-QUEENS(Q,r) // Q Array, r Index der ersten leeren Zeile

• Allgemeiner Backtracking-Algorithmus

```
BACKTRACKING(A, s)

IF alle Komponenten richtig gesetzt return true;

ELSE

WHILE auf aktueller Stufe gibt es Wahlmöglichkeiten wähle einen neuen Teillösungsschritt

Teste Lösungsschritt gegen vorliegende Einschränkungen IF keine Einschränkung THEN setze die Komponente

ELSE

Auswahl(Komponente) rückgängig machen BACKTRACKING(A, s + 1)
```

7.4 Metaheuristiken

• Optimierungsproblem

- Lösungsstrategien:
 - Exakte Methode
 - Approximations methode
 - · Heuristische Methode
- Einschränkungen
 - Antwortzeit
 - · Problemgröße
 - \Rightarrow exkludieren oft exakte Methoden

• Heuristik

- Technik um Suche zur Lösung zu führen
- Metaheuristik (Higher-Level-Strategie)
 - soll z.B. Hängenbleiben bei lokalem Maxima verhindern
- Leiten einer Suche
 - 1. Finde eine Lösung (z.B. mit Greedy-Algorithmus)
 - 2. Überprüfe die Qualität der Lösung
 - 3. Versuche eine bessere Lösung zu finden
 - Herausfinden in welcher Richtung bessere Lösung evtl. liegt
 - ggf. Wiederholung dieses Prozesses
- Finden einer besseren Lösung
 - Modifikation der Lösung durch erlaubte Operationen
 - Dadurch erhalten wir Nachbarschaftslösungen
 - ⇒ Suche nach besseren Lösungen in der Nachbarschaft

• Rucksackproblem

	1	2	3	4	5	6	7	8	9
Wert	79	32	47	18	26	85	33	40	45
Größe	85	26	48	21	22	95	43	45	55

- Rucksack hat eine Kapazität von 101, 9 verschiedene Gegenstände
- Ziel: Höchster Wert der Gegenstände im Rucksack
- Beispiellösung: 3 + 5 (Wert 73, Größe 70)
- Nachbarschaftslösungen:
 - 2,3 und 5: Wert 105, Größe 96
 - 1,3 und 5: Wert 152, Größe 155 (problematisch)
 - 3: Wert 47, Größe 48

Nachbarschaft:

- \bullet Suchraum S kann sehr groß sein
- Einschränkung des Suchraums in der Nähe des Punktes
- Distanzfunktion $d: SxS \to \mathbb{R}$
- Nachbarschaft: $N(x) = \{ y \in S : d(x, y) \le \epsilon \}$

• Zufällige Suche

- Idee und Ablauf
 - Suche nach globalem Optimum
 - Anwenden der Technik auf aktuelle Lösung im Suchraum
 - Wahl einer neuen zufälligen Lösung in jeder Iteration
 - Falls die neue Lösung besseren Wert liefert \Rightarrow neue **aktuelle** Lösung
 - Terminierung, falls keine weiteren Verbesserungen oder Zeit vorbei
- Code

```
RANDOM-SEARCH

best <- irgendeine initiale zufällige Lösung
REPEAT

S <- zufällige Lösung

IF (Quality(S) > Qualityy(best)) THEN

best <- S

UNTIL best ist die ideale Lösung oder Zeit ist vorbei return best
```

- Nachteile
 - Potentiell lange Laufzeit
 - Laufzeit abhängig von der initialien Konfiguration
- Vorteile
 - Algorithmus kann beim globalen Optimum terminieren

• Bergsteigeralgorithmus

- Idee und Ablauf
 - Nutzung einer iterativen Verbesserungstechnik
 - Anwenden der Technik auf aktuelle Lösung im Suchraum
 - Auswahl einer neuen Lösung aus Nachbarschaft in jeder Iteration
 - Falls diese besseren Wert liefert, überschreiben der aktuellen Lösung
 - Falls nicht, Wahl einer anderen Lösung aus Nachbarschaft
 - Terminierung, falls keine weiteren Verbesserungen oder Zeit vorbei
- \bullet Code

```
HILL-CLIMBER
T \le Distribution von m\"{o}glichen Zeitintervallen
S <- irgendeine initiale zufällige Lösung
best <- S
REPEAT
    time <- zufälliger Zeitpunkt in der Zukunft aus T
    REPEAT
        wähle R aus der Nachbarschaft von S
        IF Quality(R) > Quality(S) THEN
            S <- R
    UNTIL S ist ideale Lösung oder time ist erreicht oder totale Zeit erreicht
    IF Quality(S) > Quality(best) THEN
        best <- S
    S <- irgendeine zufällige Lösung
UNTIL best ist die ideale Lösung oder totale Zeit erreicht
return best
```

- Nachteile
 - Algorithmus terminiert in der Regel bei lokalem Optimum
 - Keine Auskunft, inwiefern sich lokale Lösung von Globaler unterscheidet
 - Optimum abhängig von Initialkonfiguration
- Vorteile
 - Einfach anzuwenden

• Iterative lokale Suche

- Idee und Ablauf
 - Suche nach anderen lokalen Optima bei Fund eines lokalen Optimas
 - Lösungen nur in der Nähe der "Homebase"
 - Entscheidung, ob neue oder alte Lösung
 - Bergsteigeralgo zu Beginn, danach aber großen Sprung um anderes Optimum zu finden
- Code

```
ITERATIVE-LOCAL-SEARCH
T \le Distribution von m\"{o}glichen Zeitintervallen
S <- irgendeine initiale zufällige Lösung
H <- S
            // Wahl des Homebasepunktes
best <- S
REPEAT
    time <- zufälliger Zeitpunkt in der Zukunft aus T
    REPEAT
        wähle R aus der Nachbarschaft von S
        IF Quality(R) > Quality(S) THEN
            S <- R
    UNTIL S ist ideale Lösung oder time ist erreicht oder totale Zeit erreicht
    IF Quality(S) > Quality(best) THEN
        best <- S
    H <- NewHomeBase(H,S)
    S <- Perturb(H)
UNTIL best ist die ideale Lösung oder totale Zeit erreicht
return best
```

- Perturb:
 - ausreichend weiter Sprung (außerhalb der Nachbarschaft)
 - Aber nicht soweit, dass es eine zufällige Wahl ist
- NewHomeBase:
 - wählt die neue Startlösung aus
 - · Annahme neuer Lösungen nur, wenn die Qualität besser ist

• Simulated Annealing

- Idee und Ablauf
 - Wenn neue Lösung besser, dann wird diese immer gewählt
 - Wenn neue Lösung schlechter, wird diese mit gewisser Wahrscheinlichkeit gewählt $Pr(R,S,t)=e\frac{Quality(R)-Quality(S)}{t}$
 - Der Bruch ist negativ, da R schlechter ist als S
- Code

```
SIMULATED-ANNEALING  \begin{tabular}{ll} $t < -$ Temperatur, initial eine hohe Zahl $S < -$ irgendeine initiale zufällige Lösung $best < -$ S$ REPEAT <math display="block"> & \text{wähle R aus der Nachbarschaft von S} \\ & \text{If Quality(R)} > \text{Quality(S) oder zufälliges} \\ & & Z \in [0,1] < e \frac{Quality(R) - Quality(S)}{t} $ THEN $S < -$ R$ $ dekrementiere t $$ IF Quality(S) > Quality(best) THEN $$ best < -$ S$ UNTIL best ist die ideale Lösung oder Temperatur $\leq 0$ return best $$ $
```

- Tabu-Search
 - Idee und Ablauf
 - Speichert alle bisherigen Lösungen und Liste und nimmt diese nicht nochmal
 - · Kann sich jedoch von der optimalen Lösung entfernen
 - Tabu List hat maximale Größe, falls voll, werden älteste Lösungen gelöscht
 - Code

```
TABU-SEARCH
1 <- maximale Größe der Tabu List
n <- Anzahl der zu betrachtenden Nachbarschaftslösungen
S <- irgendeine initiale zufällige Lösung
best <- S
L <- { } Tabu List der Länge l
Füge S in L ein
REPEAT
    IF Length(L) > 1 THEN
        Entferne ältestes Element aus L
    wähle R aus Nachbarschaft von S
    FOR n - 1 mal DO
        Wähle W aus Nachbarschaft von S
        IF W \notin L und (Quality(W) > Quality(R)) oder R \in L) THEN
            R < - W
    IF R \notin L THEN
        S < - R
        Füge R in L ein
    IF Quality(S) > Quality(best) THEN
        best <- S
UNTIL best ist die ideale Lösung oder totale Zeit erreicht
return best
```

• Populationsbasierte Methode

- Bisher: Immer nur Betrachtung einer einzigen Lösung
- Hier: Betrachtung einer Stichprobe von möglichen Lösungen
- Bei der Bewertung der Qualität spielt die Stichprobe die Hauptrolle
- z.B. Evolutionärer Algorithmus

• Evolutionärer Algorithmus

- Idee und Ablauf
 - Algorithmus aus der Klasse der Evolutionary Computation
 - generational Algorithmus: Aktualisierung der gesamten Stichprobe pro Iteration
 - steady-state Algorithmus: Aktualisierung einzelner Kandidaten der Probe pro Iteration
 - Resampling-Technik: Generierung neuer Strichproben basierend auf vorherigen Resultaten
- Abstrakter Code (Allgemeiner Breed und Join)

```
ABSTRACT-EVOLUTIONARY-ALGORITHM  \begin{array}{llll} {\rm P} & < - & {\rm generiere~initiale~Population} \\ {\rm best} & < - & \boxdot & // & {\it leere~Menge} \\ {\rm REPEAT} & {\rm AssesFitness(P)} \\ {\rm FOR~jedes~individuelle~} P_i \in P~{\rm DO} \\ {\rm If~best} & = & \boxdot & {\rm oder~Fitness}(P_i) > {\rm Fitness(best)~THEN} \\ {\rm best} & < - & P_i \\ {\rm P} & < - & {\rm Join(P,~Breed(P))} \\ {\rm UNTIL~best~ist~die~ideale~L\"osung~oder~totale~Zeit~erreicht} \\ {\rm return~best} \\ \end{array}
```

- Breed: Erstellung neuer Stichprobe mithilfe Fitnessinformation
- Join: Fügt neue Population der Menge hinzu
- Initialisierung der Population
 - Initialisierung durch zufälliges Wählen der Elemente
 - Beeinflussung der Zufälligkeit bei Vorteilen möglich
 - Diversität der Population (alle Elemente in Population einzigartig)
 - Falls neue zufällige Wahl eines Individuums
 - Entweder Vergleich mit allen bisherigen Individuen $(O(n^2))$
 - Oder besser: Nutzen eines Hashtables zur Überprüfung auf Einzigartigkeit (O(n))
- Evolutionsstrategien Ideen
 - Generiere Population zufällig
 - Beurteile Qualität jedes Individuums
 - Lösche alle bis auf die μ besten Individuen
 - Generie $\frac{\lambda}{u}$ -viele Nachfahren pro bestes Individuum
 - Join Funktion: Die Nachfahren ersetzen die Individuen

 $\bullet \ Algorithmus \ der \ Evolutions strategie$

return best

```
(\mu, \lambda) -EVOLUTION-STRATEGY
\mu <- Anzahl der Eltern (initiale Lösung)
\lambda <- Anzahl der Kinder
P <- {}
FOR \lambda\text{-oft} DO
     P <- {neues zufälliges Individuum}
best <- \odot
REPEAT
     FOR jedes individuelle P_i \in P DO
          AssesFitness(P_i)
          IF best = \odot oder Fitness(P_i) > Fitness(best) THEN
               best <- P_i
     Q <- die \mu Individueen deren Fitness() am Größten ist
     P <- {}
     FOR jedes Element Q_j \in Q DO
          FOR \frac{\lambda}{\mu}-oft DO
               \overset{\mu}{\mathtt{P}} \leftarrow \mathtt{P} \cup \{\mathtt{MUTATE}(Q_j)\}
UNTIL best ist die ideale Lösung oder totale Zeit erreicht
```

7.5 Amortisierte Analyse

• Kosten von Operationen

- Bisher: Betrachtung von Algorithmen, die Folge von Operationen auf Datenstrukturen ausführen
- ullet Abschätzung der Kosten von n Operationen im Worst-Case
- Dies liefert die obere Schranke für die Gesamtkosten der Operationenfolge
- Nun: Amortisierte Analyse: Genauere Abschätzung des Worst Case
- Voraussetzung: Nicht alle Operationen in der Operationenfolge gleich teuer
- z.B. eventuell abhängig vom aktuellen Zustand der Datenstruktur
- Amortisierte Analyse garantiert die mittlere Performanz jeder Operation im Worst-Case

• Beispiel Binärzähler

- Eigenschaften
 - \bullet k-Bit Binärzähler hier als Array
 - Codierung der Zahl als $x = \sum_{i=0}^{k-1} 2^i b_i$
 - Initialer Array für x = 0:

b_{k-1}	b_{k-2}			b_2	b_1	b_0
0	0		:	0	0	0

- Inkrementieren eines Binärzählers
 - Erhöhe x um 1
 - Beispiel: x = 3
 - INCREMENT kostet 3, da sich drei Bitpositionen ändern

- Teuerste INCREMENT-Operation
 - INCREMENT flippt k-1 Bits von 1 zu 0 und 1 Bit von 0 auf 1
 - Kosten nicht konstant, stark abhängig von Datenstruktur

b_{k-1}	b_{k-2}			b_2	b_1	b_0	
0	1	:		 1	1	1]
b_{k-1}	b_{k-2}			b_2	b_1	b_0) +1
1	0			 0	0	0	~

- Traditionelle Worst-Case Analyse
 - Worst-Case Kosten von n INCREMENT-Operationen auf k-Bit Binärzähler
 - Anfangswert x = 0
 - Schlimmster Kostenfall: INCREMENT-Operation hat k Bitflips
 - n-mal inkrementieren sorgt für Kosten: $T(n) \leq n \cdot k \in O(kn)$

• Aggregat Methode - Beispiel Binärzähler

- Eigenschaften
 - Methode für Amortisierte Analyse
 - Sequenz von n-Operationen kostet Zeit T(n)
 - Durchschnittliche Kosten pro Operation $\frac{T(n)}{n}$
 - Ziel: T(n) genau berechnen, ohne jedes Mal Worst-Case anzunehmen
 - Ansatz: Aufsummation der tatsächlich anfallenden Kosten aller Operationen
- Durchführung

- Genauere Kostenanalyse
 - Nun in der Lage T(n) genau auszurechnen
 - Bei n Operationen ändert sich das Bit b_i genau $\lfloor \frac{n}{2^i} \rfloor$ -mal
 - Bits b_i mit $i > log_2$ n ändern sich nie
 - Über alle k Bits aufsummieren liefert:

$$T(n) = \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor = n \sum_{i=0}^{k-1} \frac{1}{2^i} < n \sum_{i=0}^{\infty} \frac{1}{2^i} \le 2n \in O(n)$$

- Obere Schranke: $T(n) \leq 2n$
- Kosten jeder INCREMENT-Operation im Durchschnitt: $\frac{2n}{n}=2\in O(1)$

• Account Methode - Beispiel Binärzähler

- Eigenschaften
 - Besteuerung einer Operationen, so dass sie Kosten anderer Operationen mittragen
 - Zuweisung von höherer Kosten (Amortisierte Kosten), als ihre tatsächlichen Kosten sind
 - Guthaben: Differenz zwischen amortisierten und tatsächlichen Kosten
 - Nutzung dieses Guthabens für Operationen bei denen amortisiert < tatsächlich
 - Guthaben darf nicht negativ werden:
 Summe amortisierte Kosten > Summe tatsächliche Kosten
- Wahl der Amortisierten Kosten Binärzähler
 - Setzen eines Bits von $0 \to 1$ zahlt 2 Einheiten ein / Bezeichnung f_i
 - Setzen eines Bits von $1 \rightarrow 0$ zahlt 0 Einheiten ein / Bezeichnung e_i
 - Tatsächliche Kosten t_i : Anzahl der Bitflips bei der i-ten INCREMENT-Operation $t_i=e_i+f_i$
 - Amortisierte Kosten betragen: $a_i = 0 \cdot e_i + 2 \cdot f_i$
- Kostenbeispiel
 - Jede Bitflip Operation kostet zusätzlich 1 Einheit
 - Setzen Bit $0 \to 1$: Zahlt 2 ein, kostet aber $1 \to +1$ Guthaben
 - Setzen Bit $1 \to 0$: Zahlt 0 ein, kostet aber $1 \to -1$ Guthaben

- Obere Schranken der Kosten
 - Guthaben auf dem Konto entspricht der Anzahl der auf 1 gesetzten Bits
 - Kosten: $T(n) \sum_{i=1}^{n} t_i \leq v \sum_{i=1}^{n} a_i$
 - Nun Abschätzung dieser Formel zum Erhalten einer oberen Schranke
 - Beobachtung: Bei jeder INCREMENT höchstens ein neues Bit von 0 auf 1
 - Für alle i gilt damit $f_i \leq 1$
 - Amortisierte Kosten jeder Operation höchstens $2 \cdot f_i \leq 2$
 - Insgesamt: $T(n) = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i \le 2n \in O(n)$

• Potential-Methode - Beispiel Binärzähler

- Eigenschaften
 - Betrachtung welchen Einfluss die Operationen auf die Datenstruktur haben
 - Potentialfunktion $\phi(i)$: Hängt vom aktuellen Zustand der Datenstruktur nach *i*-ter Operation ab
 - Ausgangspotential sollte vor jeglicher Operation nicht negativ sein $\phi(0) \geq 0$
- Amortisierte Kosten
 - Amortisierte Kosten der *i*-ten Operation: (Summe tatsächliche Kosten + Potentialänderung) $a_i = t_i + \phi(i) \phi(i-1)$
 - Summe der amortisierten Kosten:

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \phi(i) - \phi(i-1)) = \sum_{i=1}^{n} t_i + \phi(n) - \phi(0)$$

• Wenn für jedes i gilt $\phi(i) \ge \phi(0)$:

Summe der amor. Kosten ist gültige obere Schranke an Summe der tatsächlichen Kosten

- Potential-Methode anhand des Binärzählers
 - $\phi(i)$: Anzahl der 1-en im Array nach i-ter INCREMENT-Operation $\to \phi(i)$ nie negativ und $\phi(0)=0$
 - Angenommen i-te Operation setzt e_i Bits von 1 auf 0, dann hat diese Operation Kosten $t_i \leq e_i + 1$
 - Neues Potential: $\phi(i) \leq \phi(i-1) e_i + 1 \Leftrightarrow \phi(i) \phi(i-1) \leq e_i$
 - Amortisierte Kosten der *i*-ten INCREMENT-Operation:

$$a_i = t_i + \phi(i) - \phi(i-1) \le e_i + 1 + 1 - e_i = 2$$

• Insgesamt: $T(n) = \sum_{i=1}^{n} t_i \le \sum_{i=1}^{n} a_i \le 2n \in O(n)$

8 NP

• Berechnungsprobleme

- Sind alle Probleme in polynomieller Zeit lösbar? $(O(n^k))$
- \bullet Nein \Rightarrow Manche nur in superpolynomieller Zeit lösbar
- Polynomielle Probleme: "einfach"
- Superpolynomielle Probleme: "hart"

• Klasse P

- Klasse aller Polynomialzeitprobleme
- Problem ist effizient lösbar gdw. es in polynomieller Zeit lösbar ist
- Gilt für Polynome beliebigen Grades (auch n^k)
- Zeitkomplexität n^k mit großem k bedenklich, jedoch fast nie notwendig
- $\bullet\,\,n$ beschreibt die Länge der Eingabe
- Beispiele: Binäre Addition, Kürzeste Wege, Sortieren,...

• Klasse NP

- Enthält "einfach zu verifizierende" Probleme (polynomieller Zeit)
- Enthält Probleme mit "kurzem Beweis" (Länge polynomiell in Länge der Instanz)
- Also: Klasse aller Probleme, deren Lösung in Polynomialzeit verifizierbar ist
- Beispiele: Soduko, 3D-Matching,...
- Beispiel: Faktorisierungsproblem
 - Jede nicht Primzahl kann eindeutig als Primzahlprodukt geschrieben werden
 - $35 = 5 \cdot 7$, $117 = 3 \cdot 3 \cdot 13$,...
 - Faktorsieren auf klassischen Computern schwer
 - $n \longrightarrow^{schwer} p, q$
 - $n, p, q \longrightarrow^{leicht}$ ist $n = p \cdot q$?
- Rucksackproblem auch in polynomieller Laufzeit verifizierbar
- Hamilton-Kreis-Problem
 - Hamiltonischer Kreis: Zyklus, der alle Knoten, aber nicht unbedingt alle Kanten enthält
 - \bullet Entscheidungsalgorithmus listet alle möglichen Permutationen der Knoten aus G auf
 - Prüfung bei jeder Permutation, ob es ein Hamiltonischer Kreis ist
 - Laufzeit:
 - Kodierung via Adjazenzmatrix: m Knoten \Rightarrow Matrix mit n=m x m Einträgen
 - m! mögliche Permutationen der Knoten
 - $\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}})$
 - \Rightarrow superpolynomielle Laufzeit (liegt **nie** in $O(n^k)$)
 - Allerdings: Einfacher, wenn nur Beweis verifiziert werden muss
 - ⇒ Test, ob es sich um Permutation der Knoten handelt
 - ⇒ Test, ob alle angegebenen Kanten auf Kreis im Graphen existieren
 - \Rightarrow Verifikationsalgorithmus V mit quadratischer Laufzeit
 - Verifikationsalgorithmus: V(x,y) = 1/0 (1, falls Kreis/0, falls nicht)
 - Damit: Hamilton-Kreis \in NP

• Entscheidungsproblem vs Optimierungsproblem

- Optimierungsproblem: Lösung nimmt bestimmten Wert an
- Entscheidungsproblem: Binäre Antwort (Ja/Nein)
- Bei NP Betrachtung von Entscheidungsproblemen
- Optimierungsproblem oft in verwandtes Entscheidungsproblem umwandelbar
- Verwandtes Entscheidungsproblem: dem zu optimierenden Wert wird eine Schranke auferlegt

• P versus NP

$$L \in P \longrightarrow L \in NP \longrightarrow P \subseteq NP$$

- Für viele wichtige Probleme ist jedoch unbekannt, ob sie in P (effizient) lösbar sind
- Unbekannt ob $P \neq NP$
- Intuitive Frage: Ist das Finden eines Beweises schwieriger als dessen Überprüfung? \Rightarrow Ja, also $P \neq NP$ gilt
- \bullet In den letzten 50 Jahren kein Beweis für P=NP
- Eines der wichtigsten offenen Probleme der theoretischen Informatik
- Konsequenzen eines Beweises von P = NP:
 - P = NP: dramatisch, vieles bisher schwieriges lösbar (Rucksack, Kryptographie)
 - $P \neq NP$: nicht dramatisch, mgl. interessante Konsequenzen in Kryptographie

• NP-Vollständigkeit

- Problem befindet sich in NP
- Problem ist so "schwer" wie jedes Problem in NP
- Beweis: Zeigen, dass kein effizienter Algorithmus existiert
- Werkzeug: Reduktionen (zum Vergleich verschiedener Probleme)
- NP-Härte/NP-Schwere:
 - Klassifikation von Problemen als schwierig, trotz fehlender genauer Zuordnung
 - Starke Indikatoren, dass Problem L nicht in P ist:
 - L ist mindestens so schwierig, wie alle anderen Probleme in NP
 - Daraus folgt, dass L nur in P, wenn P = NP (unwahrscheinlich)
- Definitionen
 - Problem L ist **NP-schwer**, wenn $L' \leq_p L$ für alle $L' \in NP$
 - Problem L ist **NP-vollständig**, wenn L sowohl NP-schwer als auch in NP ist
 - z.B.: Hamilton-Kreis ist NP-vollständig

• Reduktionen

- Reduktionsidee
 - Betrachte Problem A, das wir in polynomieller Zeit lösen wollen
 - \bullet Bereits bekannt: Problem B (in polynomieller Zeit lösbar)
 - Benötigt wird Prozedur, die Instanzen der Probleme ineinander überführt
 - ⇒ Transformation benötigt polynomielle Zeit
 - \Rightarrow Antworten sind gleich

polynomieller Entscheidungsalgorithmus für A

• Beispiel:

- Intuitiv: Reduktion von A auf B, wenn Umformulierung möglich
 - ⇒ Jede Instanz A kann leicht in Instanz von B umformuliert werden
 - \Rightarrow Lösung der Instanz B liefert Lösung von Instanz A
- Reduktion: Lösen von linearen Gleichungen auf quadratische Gleichnungen
 - Lineare Gleichung $ax + b = 0 \Rightarrow x = \frac{-b}{a}$
 - Quadratische Gleichung $ax^2 + bx + 0 = 0 \Rightarrow x = \frac{-b}{a}, x = 0$
 - Quadratische Gleichung liefert also auch Lösung für lineare Gleichung
- Formale Definition:

A lässt sich auf B in **polynomieller Zeit reduzieren**, mit Schreibweise $A \leq_p B$, wenn eine in polynomieller Zeit berechenbare Funktion $f: \{0,1\}^* \to \{0,1\}^*$ existiert, sodass für alle $x \in \{0,1\}^*$ gilt:

$$x \in A$$
 genau dann, wenn $f(x) \in B$

Illustration der Polynomialzeitreduktion:

• Travelling-Salesman Problem

- Beschreibung
 - Reisender plant Rundreise durch mehrere Städte
 - Start und Ziel ist eine vorgegebene Stadt
 - Jede Stadt nur einmal besucjhen
 - Ziel: Minimale Reiselkosten

Eine optimale Route mit Kosten 7 verläuft von A \rightarrow D \rightarrow B \rightarrow C \rightarrow A

• Problem:

- Anzahl der Rundreisen (n-1)!
- Stark nach oben explodierende Zahlen
- Brute-Force für große n praktisch unmöglich
- Es existiert kein effizienter Algorithmus, der das TSP effizient löst
- TSP ist NP-vollständig
- Beweis NP-Vollständigkeit
 - Zeigen: TSP gehört zu NP und TSP ist NP-schwer
- TSP gehört zu NP
 - Gegeben: Instanz des Problems TSP, Folge der n Knoten der Tour (Zertifikat)
 - Verifikationsalgorithmus überprüft, ob Folge jeden Knoten genau einmal enthält
 - Außerdem Aufsummieren der Kantenkosten und überprüfen, ob diese maximal k ist
 - Verifikation läuft in polynomieller Laufzeit ⇒ gehört zu NP
- TSP ist NP-schwer
 - Wir zeigen $HAM KREIS \leq_p TSP$
 - Start: Instanz von HAM KREIS mit G = (V, E)
 - Konstruiere Instanz von TSP

$$\Rightarrow G' = (V, E') \text{ mit } E' = \{(i, j) : i, j \in V \text{ und } i \neq j\}$$

- Definiere Kostenfunktion c(i,j) = 0, falls $(i,j) \in E / c(i,j) = 1$, falls $(i,j) \notin E$
- Instanz von TSP ist $\langle G', c, 0 \rangle$ (Konstruktion in polynomieller Zeit) (0: Kosten von 0)
- Zeige jetzt: G besitzt hamiltonischen Kreis \Leftrightarrow G' enthält Tour mit Kosten ≤ 0
- \Rightarrow Graph G besitzt einen hamiltonischen Kreis h

Jede Kante von h gehört zu E und daher besitzt laut Kostenfunktion der Graph G' die Kosten 0

Damit ist h eine Tour in G' mit den Kosten 0.

• \Leftarrow Graph G besitzt eine Tour h' mit Kosten kleiner gleich 0

Die Kosten der Kanten in E' haben die Werte 0 und 1. Die Kosten der Tour betragen exakt 0 und jede Kante muss die Kosten 0 haben.

Damit hat h' nur Kanten von E.

Damit folgt, dass h' ein Hamiltonischer Kreis des Graphen G ist.