Carbon Dioxide (CO₂) Digital Subtraction Angiography

Fred A Weaver MD
Professor and Chief
Division of Vascular Surgery &
Endovascular Therapy
USC CardioVascular Thoracic Institute
Keck Medical Center
University of Southern California

Disclosures

Fred A Weaver MD Nothing to Disclose

Objectives

- Contrast Nephrotoxicity
- CO₂ Angiography Technique
- CO₂ Angiography Applications

Mortality stratified by contrastinduced nephropathy

From A M et al. Mayo Clin Proc. 2008;83:1095-1100

Thirty-day mortality rates with different types of radiographic procedures and routes of contrast administration, stratified by presence of diabetes mellitus (DM) and elevated creatinine

A. CT with IV B. Coronary C. Venography D. Non cardiac Angio

Carbon Dioxide as Intravascular Contrast Agent

- Used in 1950's
- Diagnosis of pericardial effusion
- 100-200 bolus of CO₂ intravenous
- Trapping of CO₂ in Right Atrium

CO₂ Advantages

- Inexpensive
- Widely Available
- Highly Soluble in blood
- Eliminated via lungs
- No nephrotoxicity
- No allergic reactions
- Low Viscosity (smaller catheters)

- Fill bag 3x directly
- Fill 60cc syringe 3x
- Self contained, closed one –way valve system
- Room air contamination minimized

Technology Requirements

- Digital, Flat Panel
- Increased frame rate, 3 to 6 frames per second, stacking technology is required
- Fixed dedicated angiographic equipment, portable C-arm inadequate

Technique

- Hand inject < 50 cc
- Closed, self contained system
- Change position of patient for clearing
- Allow reabsorption time
- Decrease volume around viscerals

Vapor Lock

- CO₂ bouyant gas
 - Filling of non-dependent vessels
- Bouyancy > Energy of Blood flow = trapped gas "vapor lock"
- Increased with room air contamination
- Use of a self contained system reduces room air contamination

Applications of Carbon Dioxide Angiography

- EVAR
- Renal
- Peripheral
- TIPS
- Vena Cava and Hepatic venography

lodine vs CO₂

lodine

 CO_2

Endoleak

lodine

 CO_2

Results

Moos, Arch Surg. 2011;146(12):1428-1432

- **1**988 2009
- 951 patients
- 1,007 cases using CO₂
 - 519 Iodine
- Average age: 64 years old
- Male: 60.4%

Angiograms (1007)

- Aortograms with/without LE run-off
- Cavagrams
- Extremity alone
- Splanchnic venograms
- Pulmonary

Interventions (499)

- Arterial interventions
- IVC filters
- TIPS

Contrast used, by procedure									
Procedure (n)	CO ₂ alone (%)	Median (mL)	CO ₂ + Iodine (%)	Median (mL)					
Aortography (527)	246 (46.7)	240	281 (53.3)	15					
Renal/visceral PTA/Stent (53)	12 (22.6)	225	41 (77.4)	10					
Extremity PTA/stent (41)	31 (75.6)	180	10 (24.4)	4					
EVAR (62)	21 (33.9)	180	41 (66.1)	30					
TIPS (98)	27 (27.6)	100	71 (72.4)	125					
TJLB (54)	48 (88.9)	60	6 (11.1)	10					
IVC (176)	170 (96.6)	60	6 (3.4)	3					
Hepatic venography (30)	25 (83.3)	60	5 (16.7)	30					

Complications

- Abdominal pain
- Transient hypotension
- Renal failure
- Misc Other

- Puncture site hematoma
- Nausea
- Death

Complications

- Total: 6%
- Puncture site hematoma = 16 (1.6%)

CO₂ specific complications

- Abdominal Pain = 14 (1.4%)
 - Transient = 10
 - Pancreatitis = 4 (3 resolved)

None since self contained, closed system adopted

Complications

Deaths = 4 (0.4%)
 Metastatic adenocarcinoma
 Refractory cardiomyopathy
 TIPS/Left hepatic perforation
 Suppurative pancreatitis

Pre-op and Post-op Renal Function

Comparison of preoperative and postoperative creatinine values

Pre- procedur e creatinine (mg/dL)	n (%)	preop cr, mean ± SD (mg/dL)	postop cr, mean ± SD (mg/dL)	P value	Rise in Cr (>0.5), n	Δ, mean ± SD
<1.2	196 (28)	0.9 ± 0.2	0.9 ± 0.3	NS	5	0.05 ± 0.3
1.3 - 1.9	259 (37)	1.6 ± 0.2	1.6 ± 0.5	NS	12	0.04 ± 0.45
>2	245 (35)	3.1 ± 1.3	3.2 ± 1.6	NS	27	0.19 ± 0.91
Total	700	2.1 ± 1.2	2.1 ± 1.4	NS	44	

Conclusions

- CIN is significant and potentially lethal entity
- CO₂ applications for diagnostic and interventional procedures are safe
- CO₂ as a contrast agent effectively preserves renal function
- CO₂ should be considered for patients with renal dysfunction
- With the exception of hydration only documented preventative strategy to prevent renal dysfunction
- Room air contamination responsible for majority of CO₂ mediated complications, self contained closed system important

