## Claims 2 to 11 as preliminarily amended:

## 2. A compound of formula I

where R is formyl, tetrazole, nitrile, a COOH group or a radical which can be hydrolyzed to COOH, and the other substituents have the following meanings:

- $R^2$  hydrogen, hydroxyl,  $NH_2$ ,  $NH(C_1-C_4-alkyl)$ ,  $N(C_1-C_4-alkyl)_2$ , halogen,  $C_1-C_4-alkyl$ ,  $C_1-C_4-ha-loalkoxy$  or  $C_1-C_4-alkyl$ thio;
- X  $CR^{14}$  which forms together with  $CR^3$  a 5- or 6-membered ring which is unsubstituted or substituted by one or two  $C_1$ - $C_4$ -alkyl groups and which ring consists of methylene and/or ethenylene members and one member selected from the group consisting of oxygen, sulfur, NH or  $N(C_1$ - $C_4$ -alkyl), or  $CR^{14}$  which forms together with  $CR^3$  a 6-membered ring which is unsubstituted or substituted by one or two  $C_1$ - $C_4$ -alkyl groups and which ring consists of methylene and/or ethenylene members;
- $\mathbb{R}^3$  is linked to  $\mathbb{C}\mathbb{R}^{14}$  as indicated above to give a 6-membered ring;
- $R^4$  and  $R^5$ , which are identical or different, are

phenyl or naphthyl, which are unsubstituted or substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -alkylamino or  $C_1$ - $C_4$ -dialkylamino; or

phenyl or naphthyl, which are connected together in the ortho position via a direct linkage, a methylene, ethylene or ethenylene group, an oxygen or sulfur atom or an  $SO_2$ , NH or N-alkyl group; or

 $C_3-C_7$ -cycloalkyl;

R<sup>6</sup> hydrogen,  $C_1-C_8$ -alkyl,  $C_3-C_6$ -alkenyl,  $C_3-C_6$ -alkynyl or  $C_3-C_8$ -cycloalkyl, where each of these radicals are unsubstituted or substituted one or more times by: halogen, nitro, cyano,  $C_1-C_4$ -alkoxy,  $C_3-C_6$ -alkenyloxy,  $C_3-C_6$ -alkynyloxy,  $C_1-C_4$ -alkylthio,  $C_1-C_4$ -haloalkoxy,  $C_1-C_4$ -alkylcarbonyl,

 $C_1$ - $C_4$ -alkoxycarbonyl,  $C_3$ - $C_8$ -alkylcarbonylalkyl,  $C_1$ - $C_4$ -alkylamino, di- $C_1$ - $C_4$ -alkylamino, phenyl or phenoxy which is substituted one or more times by halogen, nitro, cyano,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -haloalkoxy or  $C_1$ - $C_4$ -alkylthio;

phenyl or naphthyl, each of which is unsubstituted or substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -haloalkoxy, phenoxy,  $C_1$ - $C_4$ -alkylamino,  $C_1$ - $C_4$ -dialkylamino or dioxomethylene or dioxoethylene;

a five or six-membered heteroaromatic moiety containing one to three nitrogen atoms and/or one sulfur or oxygen atom, which can carry one to four halogen atoms and/or one or two of the following radicals:  $C_1-C_4$ -alkyl,  $C_1-C_4$ -haloalkyl,  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -haloalkoxy,  $C_1-C_4$ -alkylthio, phenyl, phenoxy or phenylcarbonyl, it being possible for the phenyl radicals in turn to carry one to five halogen atoms and/or one to three of the following radicals:  $C_1-C_4$ -alkyl,  $C_1-C_4$ -haloal-kyl,  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -haloal-kyl,  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -haloal-kyl,  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -haloal-kyl,  $C_1-C_4$ -alkylthio;

- Y sulfur or oxygen or a single bond;
- z sulfur, oxygen, -SO- or -SO<sub>2</sub>-.
- 3. The compound of formula I as defined in claim 2, wherein  $\mathbb{R}^{14}$  together with  $\mathbb{R}^3$  is a radical selected from the group consisting of  $-CH_2-CH_2-O-$ , -CH=CH-O-,  $-CH_2-CH_2-CH_2-O-$ ,  $-CH=CH-CH_2-O-$ , and  $-C(CH_3)=C(CH_3)-S-$ .
- 4. The compound of formula I as defined in claim 2, wherein R is  $\text{CO}_2\text{H}$ .
- 5. The compound of formula I as defined in claim 2, wherein  $\mathbb{R}^2$  is methoxy.
- 6. The compound of formula I as defined in claim 2, wherein  $\mathbb{R}^4$  and  $\mathbb{R}^5$  each are phenyl.
- 7. The compound of formula I as defined in claim 2, wherein  $R^6$  is  $C_1-C_8-alkyl$ .
- 8. The compound of formula I as defined in claim 2, wherein Y is oxygen.

- 9. The compound of formula I as defined in claim 2, wherein Z is oxygen or sulfur.
- 10. The compound of formula I as defined in claim 2, wherein Z is oxygen.
- 11. The compound of formula I as defined in claim 2, wherein R is tetrazole, nitrile or a group

where R1 has the following meanings:

- a) hydrogen;
- b) succinylimidoxy;
- c) a five-membered heteroaromatic ring linked by a nitrogen atom, selected from the group consisting of: pyrrolyl, pyrazolyl, imidazolyl and triazolyl, which ring can carry one or two halogen atoms and or one or two of the following radicals: C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy or C<sub>1</sub>-C<sub>4</sub>-alkylthio;
- d) a radical  $\longrightarrow$   $(O)_m \longrightarrow (P)_m \longrightarrow (P)$

are identical or different, have the following meanings:

- hydrogen,
- C<sub>1</sub>-C<sub>8</sub>-alkyl, C<sub>3</sub>-C<sub>6</sub>-alkenyl, C<sub>3</sub>-C<sub>6</sub>-alkynyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, where these alkyl, cycloalkyl, alkenyl and alkynyl groups can each carry one to five halogen atoms and/or one or two of the following groups: C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-alkylthio, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy, C<sub>3</sub>-C<sub>6</sub>-alkenyloxy, C<sub>3</sub>-C<sub>6</sub>-alkenylthio, C<sub>3</sub>-C<sub>6</sub>-alkynyloxy or C<sub>3</sub>-C<sub>6</sub>-alkynylthio,
- $C_1-C_4$ -alkylcarbonyl,  $C_1-C_4$ -alkoxycarbonyl,  $C_3-C_6$ -alkenylcarbonyl,  $C_3-C_6$ -alkynylcarbonyl,  $C_3-C_6$ -alkynyloxycarbonyl,
- phenyl, which is unsubstituted or substituted one or more times by halogen, nitro, cyano, C<sub>3</sub>-C<sub>6</sub>-alkenylcarbonyl, C<sub>3</sub>-C<sub>6</sub>-alkynylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy or C<sub>1</sub>-C<sub>4</sub>-alkylthio,
- di-C<sub>1</sub>-C<sub>4</sub>-alkylamino, or

 $R^7$  and  $R^8$  together form a  $C_4$ - $C_7$ -alkylene chain which is unsubstituted or substituted by  $C_1$ - $C_4$ -alkyl, and may contain a hetero atom selected from the group consisting of oxygen,

sulfur and nitrogen, or  $R^7$  and  $R^8$  together form a  $CH_2$ -CH=CH-  $CH_2$  or CH=CH-( $CH_2$ )<sub>3</sub> chain;

- e) a radical O—  $(CH_2)_p$  S—  $R^9$ , where k is 0, 1 and 2, p is 1, 2, 3 and 4, and  $R^9$  is  $C_1$ – $C_4$ -alkyl,  $C_1$ – $C_4$ -haloalkyl,  $C_3$ – $C_6$ -alkenyl,  $C_3$ – $C_6$ -alkynyl or phenyl, which is unsubstituted or substituted one or more times by halogen, nitro, cyano,  $C_3$ – $C_6$ -alkenylcarbonyl,  $C_3$ – $C_6$ -alkynylcarbonyl,  $C_1$ – $C_4$ -alkyl,  $C_1$ – $C_4$ -haloalkyl,  $C_1$ – $C_4$ -alkoxy,  $C_1$ – $C_4$ -haloalkoxy or  $C_1$ – $C_4$ -alkyl-thio;
- f) a radical  $OR^{10}$ , where  $R^{10}$  is
  - hydrogen, the cation of an alkali metal or an alkaline earth metal or an environmentally compatible organic ammonium ion;
  - $C_3-C_8$ -cycloalkyl which may carry one to three  $C_1-C_4$ -alkyl groups;
  - C<sub>1</sub>-C<sub>8</sub>-alkyl which may carry one to five halogen atoms and/ or one of the following radicals: C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-alkyl-thio, cyano, C<sub>1</sub>-C<sub>4</sub>-alkylcarbonyl, C<sub>3</sub>-C<sub>8</sub>-cycloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the aromatic radicals in turn may carry one to five halogen atoms and/or one to three of the following radicals: nitro, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy and/or C<sub>1</sub>-C<sub>4</sub>-alkylthio;
  - C<sub>1</sub>-C<sub>8</sub>-alkyl which may carry one to five halogen atoms and which carries one of the following radicals: a 5-membered heteroaromatic ring containing one to three nitrogen atoms or a nitrogen atom and an oxygen or sulfur atom, which may carry one to four halogen atoms and/or one or two of the following radicals: nitro, cyano, C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, phenyl, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy and/or C<sub>1</sub>-C<sub>4</sub>-alkylthio;
  - $C_2-C_6$ -alkyl which carries one of the following radicals in position 2:  $C_1-C_4$ -alkoxyimino,  $C_3-C_6$ -alkynyloxyimino,  $C_3-C_6$ -haloalkenyloxyimino or benzyloxyimino;
  - C<sub>3</sub>-C<sub>6</sub>-alkenyl or C<sub>3</sub>-C<sub>6</sub>-alkynyl which may carry one to five halogen atoms;
  - phenyl which may carry one to five halogen atoms and/or one to three of the following radicals: nitro, cyano,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -haloalkoxy and/or  $C_1$ - $C_4$ -alkylthio;

- a 5-membered heteroaromatic ring which is bonded via a nitrogen atom and containing one to three nitrogen atoms, which may carry one or two halogen atoms and or one or two of the following radicals: C<sub>1</sub>-C<sub>4</sub>-alkyl, C<sub>1</sub>-C<sub>4</sub>-haloalkyl, C<sub>1</sub>-C<sub>4</sub>-alkoxy, phenyl, C<sub>1</sub>-C<sub>4</sub>-haloalkoxy and/or C<sub>1</sub>-C<sub>4</sub>-alkyl-thio;
- a radical N = 0 where  $R^{11}$  and  $R^{12}$ , which are identical  $R^{12}$

or different are:

 $C_1-C_8$ -alkyl,  $C_3-C_6$ -alkenyl,  $C_3-C_6$ -alkynyl,  $C_3-C_8$ -cycloalkyl, it being possible for these radicals to carry a  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -alkylthio and/or phenyl which may carry one to five halogen atoms and/or one to three of the following radicals: nitro, cyano,  $C_1-C_4$ -alkyl,  $C_1-C_4$ -haloalkyl,  $C_1-C_4$ -haloalkoxy,  $C_1-C_4$ -haloalkoxy and/or  $C_1-C_4$ -alkylthio; phenyl which may carry one or more of the following radicals: halogen, nitro, cyano,  $C_1-C_4$ -alkyl,  $C_1-C_4$ -haloalkyl,  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -haloalkoxy or  $C_1-C_4$ -alkylthio; or  $C_1$ -alkoxy,  $C_1$ -cy-haloalkoxy or  $C_1$ -cy-alkylene chain which may carry one to three  $C_1-C_4$ -alkyl groups and which may contain a hetero atom selected from the group consisting of nitrogen, oxygen and sulfur;

- $C_1-C_4$ -alkyl,  $C_3-C_6$ -alkenyl,  $C_3-C_6$ -alkynyl,  $C_3-C_8$ -cycloalkyl, it being possible for these radicals to carry a  $C_1-C_4$ -alkoxy,  $C_1-C_4$ -alkylthio and/or a phenyl radical, or
- phenyl which may carry one or more of the following radicals: halogen, nitro, cyano,  $C_1$ - $C_4$ -alkyl,  $C_1$ - $C_4$ -haloalkyl,  $C_1$ - $C_4$ -alkoxy,  $C_1$ - $C_4$ -haloalkoxy or  $C_1$ - $C_4$ -alkylthio.