Consider a city network where we need to route a set of electric vehicles

which may require to be charged during its journey from some source to some destination. Let us assume that we have n cities (v_1,v_2,\ldots,v_n) and the distance between cities v_i and v_j be e_{ij} (if two cities are not connected directly then $e_{ij}=\infty$ and $e_{ij}=e_{ji}$). Assume that each city has a single charging station which can charge one EV at a time. Consider a set of k EVs namely P_1,P_2,\ldots,P_k . For each EV the following information is provided -

- (a) S_r source node
- (b) D_r destination node
- (c) B_r battery charge status initially
- (d) c_r charging rate for battery at a charging station (energy per unit time)
- (e) d_r discharging rate of battery while traveling (distance travel per unit charge)
- (f) M_r maximum battery capacity
- (g) s_r average traveling speed (distance per unit time).

Assume that all vehicles start their journey at t=0 and P_r reaches it destination at $t=T_r$. We need to route all the vehicles from their respective sources to destinations such that $\max\{T_r\}$ is minimized. You need to develop both optimal as well as heuristic algorithms.

