Series de potencias. Método de Newton: f(x) = cos(x)

Nayra K.D, Javier L.M y José Eduardo L.P

ULL.Facult.Matem

12 de mayo del 2014

Indice

1	Motivación y objetivos3
2	Introducción9
3	Fórmulas
4	Máquina14
5	Tabla de errores
6	Gráfica de errores
0	Análisis de resultados
8	Conclusiones
9	Bibliografía 29

• Confección un informe en LATEX.

- Confección un informe en LATEX.
- Utilización del método de Newton.

- Confección un informe en LATEX.
- Utilización del método de Newton.
- Aplicación del método de Newton a la función: f(x) = cos(x).

- Confección un informe en LATEX.
- Utilización del método de Newton.
- Aplicación del método de Newton a la función: f(x) = cos(x).
- Creación de una presentación en Beamer.

- Confección un informe en LATEX.
- Utilización del método de Newton.
- Aplicación del método de Newton a la función:f(x) = cos(x).
- Creación de una presentación en Beamer.
- Realización de un código en Python.

- Confección un informe en LATEX.
- Utilización del método de Newton.
- Aplicación del método de Newton a la función: f(x) = cos(x).
- Creación de una presentación en Beamer.
- Realización de un código en Python.
- Introducir fórmulas matemáticas, gráficos, imágenes, etc.

Introducción

Las series de potencias pueden ser interpretada como una función de x:

$$f(x) = \sum_{n=0}^{\infty} a_n * (x - c)^n$$

cuyo dominio es el conjunto de los $x \in R$ para los que la serie es convergente y el valor de f(x) es, precisamente, la suma de la serie en ese punto x. Las series de potencias son funciones continuas y derivables de cualquier orden. Más aún, su función derivada es, otra vez, una serie de potencias.

Introducción

El método de Newton es una aplicación del cálculo diferencial que se utiliza para hallar los ceros de una función derivable de n-esimo grado. Los procedimientos para hallar las raíces o ceros de funciones lineales o cuadráticas a partir de los coeficientes de la ecuación son sencillos y exactos.

Figura: Método de Newton

Fórmulas

A

continuación procederemos a identificar algunas de las fórmulas que usamos en el desarrollo de la investigación.

• Método de Newton: $x = xo - \frac{f(xo)}{f'(xo)}$

Fórmulas

Α

continuación procederemos a identificar algunas de las fórmulas que usamos en el desarrollo de la investigación.

- Método de Newton: $x = xo \frac{f(xo)}{f'(xo)}$
- Función con la que trabajaremos: f(x) = cos(x) x

Fórmulas

Α

continuación procederemos a identificar algunas de las fórmulas que usamos en el desarrollo de la investigación.

- Método de Newton: $x = xo \frac{f(xo)}{f'(xo)}$
- Función con la que trabajaremos: f(x) = cos(x) x
- Derivada de la función: -sen(x) 1

Máquina

• Sistema operativo(S.O.) 'Linux-3.2.0-61-generic-i686-with-Ubuntu-12.04-precise'

• El tipo de compilador: Python

'2.7.3'

Tabla de errores

<i>x</i> ₀	error
0.496558178297	7.04158813835
2.13100384448	1.2330160875
0.689662720778	2.089972175491
0.739652997531	0.0675861206807
0.739085204376	0.000768237751393
0.739085133215	9.62821076424e-08
0.739085133215	1.50215851291e-15
0.739085133215	0.0

Cuadro: Tabla de errores

Gráfica de errores

Figura: Gráfico de errores

Curiosidad: 0.739652997531, 0.739085204376 y 0.739085133215, errores muy diferentes.

- Curiosidad: 0.739652997531, 0.739085204376 y 0.739085133215, errores muy diferentes.
- 2 Mayor x_n , mayor es el error.

- Curiosidad: 0.739652997531, 0.739085204376 y 0.739085133215, errores muy diferentes.
- 2 Mayor x_n , mayor es el error.
- \odot x mayores, más valores de x_n y muchos más errores.

- Curiosidad: 0.739652997531, 0.739085204376 y 0.739085133215, errores muy diferentes.
- 2 Mayor x_n , mayor es el error.
- \odot x mayores, más valores de x_n y muchos más errores.
- Cercanía de los puntos en la gráfica.

- Curiosidad: 0.739652997531, 0.739085204376 y 0.739085133215, errores muy diferentes.
- 2 Mayor x_n , mayor es el error.
- \odot x mayores, más valores de x_n y muchos más errores.
- Ocercanía de los puntos en la gráfica.
- Conclusión: la función tienda a cero.

Emplear fórmulas y demostraciones matemáticas.

- Emplear fórmulas y demostraciones matemáticas.
- Introducir texto en LATEXy a realizar presentaciones en BEAMER.

- Emplear fórmulas y demostraciones matemáticas.
- Introducir texto en LATEXY a realizar presentaciones en BEAMER.
- Introducir tablas que muestren los datos de nuestro experimento.

- Emplear fórmulas y demostraciones matemáticas.
- Introducir texto en LATEXy a realizar presentaciones en BEAMER.
- Introducir tablas que muestren los datos de nuestro experimento.
- Introducir figuras y gráficas diseñadas en el programa matplolib.

- Emplear fórmulas y demostraciones matemáticas.
- Introducir texto en LATEXy a realizar presentaciones en BEAMER.
- Introducir tablas que muestren los datos de nuestro experimento.
- Introducir figuras y gráficas diseñadas en el programa matplolib.
- Diseñando una demostración matemática por medio de la demostración hacia delante.

- Emplear fórmulas y demostraciones matemáticas.
- ② Introducir texto en LATEXy a realizar presentaciones en BEAMER.
- Introducir tablas que muestren los datos de nuestro experimento.
- Introducir figuras y gráficas diseñadas en el programa matplolib.
- Diseñando una demostración matemática por medio de la demostración hacia delante.
- Proponiendo un programa python para resolver nuestro problema.

- Emplear fórmulas y demostraciones matemáticas.
- Introducir texto en LATEXy a realizar presentaciones en BEAMER.
- Introducir tablas que muestren los datos de nuestro experimento.
- Introducir figuras y gráficas diseñadas en el programa matplolib.
- Diseñando una demostración matemática por medio de la demostración hacia delante.
- Proponiendo un programa python para resolver nuestro problema.
- Análisis de los resultados del programa python y opinión personal.

Bibliografia

- Webcindario. Cálculo Diferencial: http://ed21.webcindario.com/CalculoDiferencial/metodoNewton.htm
- Wordpress. Método de Newton. http://metododenewton.wordpress.com/
- Funciones-python. Método Newton-Raphson tutorias.com/funciones — pythonmetodo — newton — raphson/
- Series de potencias. ocw.uji.es/material/4929/raw
- Informe final. Campus virtual.

 http://campusvirtual.ull.es/1314/pluginfile.php/
 /197709/mod_resource/content/2/memte.pdf