MCAL/MT - série 3 - (1 TD)

Ensemble non-dénombrable et Programmation chimique

Exercice $1: \mathbb{N} \to \mathbb{B}$ non-dénombrable

Q1. Complétez On note $\mathbb B$ l'ensemble des booléens $\{\mathbb V,\mathbb F\}$. $\mathbb N\to\mathbb B$ ϱ

prédicat

booléen : $\mathbb{N} \to \mathbb{B} = \{P \mid i \in \mathbb{N}, \ P(i) \in \mathbb{B}\}$. Considérons un prédicat P de $\mathbb{N} \to \mathbb{B}$. Il e complètement défini par un tableau $[0...\mathbb{N}[$ qui indique pour chaque entier i la valeur booléene P(i) associée.

Q2. Donnez quatre éléments de $\mathbb{N} \to \mathbb{B}$.

SOLUTION

 $\mathbb{N} \to \mathbb{B}$

 $P_0: i \mapsto \mathbb{F}$ la fonction constante, qui vaut toujours faux $P_1: i \mapsto \mathbb{V}$ la fonction constante, qui vaut toujours vrai

 $P_2: i \mapsto i \stackrel{?}{=} 0$ le test de nullité $P_3: i \mapsto i \mod 2 \stackrel{?}{=} 0$ le test de parité

Q3. Rangez vos 4 éléments dans un tableau de booléens à deux dimensions $[0..N[\times[0..N[$; **donnez** les 4 premières lignes, 6 premières colonnes du tableau.

SOLUTION

$\mathbb{N} =$	0	1	2	3	4	5	
P_0	F	F	F	\mathbb{F}	\mathbb{F}	\mathbb{F}	
P_1	V	V	V	V	\mathbb{V}	V	
P_2	V	F	\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}	
P_3	\mathbb{V}	F	V	F	\mathbb{V}	F	

Q4. Complétez la preuve $\mathbb{N} \to \mathbb{B}$ e

preuve par contradiction:

Luppo

 $\mathbb{N} \to \mathbb{B}$ soit dénombrable c'e

N. Holors il existe une bijection entre N et N \to B qui, à un entier ℓ , associe le prédicat P_ℓ . On peut alors ranger tous le $[0..N[\times[0..N[$

à la manière de George

 ℓ le

 P_{ℓ} . On peut donc re

 $\mathbb{N} \to \mathbb{B}$ par son numéro de ligne : la

ligne ℓ définit le prédicat P_ℓ .

Considérons la diagonale du tableau et exhibons une contradiction : Puisque le tableau contient tous le $P: \mathbb{N} \to \mathbb{B}$ défini par $P(i) \stackrel{\text{def}}{=} \neg (P_i(i))$ doit apparaître dans le tableau à une certaine ligne, disons ℓ , donc $P = P_\ell$.

Exemple : Le prédicat P correspond à la négation de la diagonale du tableau. Dans le cas du tableau de la question précédente, le prédicat P serait

$$P(0) = \mathbb{V}, \ P(1) = \mathbb{F}, \ P(2) = \mathbb{V}, \ P(3) = \mathbb{V}, \text{ etc}$$

Évaluons P au point ℓ :

$$P(\ell) = P_{\ell}(\ell)$$
 puisque $P = P_{\ell}$; mais, par ailleurs,

$$P(\ell) = \neg(P_{\ell}(\ell))$$
 par définition de P : Contradiction.

Conclusion : En suppo $\mathbb{N}\to\mathbb{B}$ dénombrable, on aboutit à une contradiction, donc $\mathbb{N}\to\mathbb{B}$ n'e

Exercice 2 : Génération de graphes en Gamma

Q5. Exécutez le programme Gamma Γ_1 ci-dessous sur le multi-ensemble $\{ITV(1,8)\}$ où \div est la division entière, c'est-à-dire $5 \div 2 = 2$.

$$\Gamma_1 \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} \mathrm{ITV}(x,y) & \xrightarrow{x \leq y+1} & \mathrm{ITV}(x,\ (x+y) \div 2), & \mathrm{ITV}(1+(x+y) \div 2,\ y) \\ \mathrm{ITV}(x,x) & \longrightarrow & \mathrm{N}(x) \end{array} \right.$$

SOLUTION

```
\begin{array}{l} \textit{\'etape 1.} & \text{ITV}(1,8) \to \text{ITV}(1,4), \ \text{ITV}(5,8) \\ \textit{\'etape 2.} & \text{ITV}(1,4) \to \text{ITV}(1,2), \ \text{ITV}(3,4) \\ \textit{\'etape 2.} & \text{ITV}(5,8) \to \text{ITV}(5,6), \ \text{ITV}(7,8) \\ \textit{\'etape 3.} & \text{ITV}(1,2) \to \text{ITV}(1,1), \ \text{ITV}(2,2) \\ \textit{\'etape 3.} & \text{ITV}(3,4) \to \text{ITV}(3,3), \ \text{ITV}(4,4) \\ \textit{\'etape 3.} & \text{ITV}(5,6) \to \text{ITV}(5,5), \ \text{ITV}(6,6) \\ \textit{\'etape 3.} & \text{ITV}(7,8) \to \text{ITV}(7,7), \ \text{ITV}(8,8) \\ \textit{\'etape 4.} & \text{ITV}(1,1) \to \text{N}(1), \ \text{ITV}(2,2) \to \text{N}(2), \ \dots, \ \text{ITV}(8,8) \to \text{N}(8) \\ \end{array}
```

Q6. (a) Combien d'applications de règles sont nécessaires avant d'arriver à la stabilité du multiensemble? (b) En combien d'étapes ¹ atteint-on la stabilité?

SOLUTION

On applique 7 fois la première règle et 8 fois la seconde. On atteint la stabilité en 4 étapes.

Q7. Généralisation (a) Expliquez l'effet du programme Γ_1 sur le multi-ensemble $\{ITV(1,n)\}$ où n est un entier > 1. (b) En combien d'applications de règles et combien d'étapes obtient-on la stabilité?

SOLUTION

Il produit le multi-ensemble constituté des entiers de 1 à n annotés par le constructeur N. On obtient $\{N(1), \ldots, N(n)\}$ en ? ? ? applications de la première règle et n applications de la seconde règle, le tout en $1 + \log_2(n)$ étapes.

^{1.} une étape = une application en parallèle des règles

Représentation d'un graphe par un multi-ensemble On peut décrire un graphe par l'ensemble de ses arcs. On notera ARC(i, j) un arc entre le nœud i et le nœud j.

Q8. (a) Donnez le multi-ensemble correspondant au graphe 3 et (b) dessinez le graphe correspondant au multi-ensemble $\{ARC(1,1),ARC(2,3)\}$

SOLUTION
$$G \simeq \{ ARC(1,1), ARC(1,3), ARC(3,1), ARC(3,3) \} \quad et \quad \mathcal{M} \simeq 1$$

Q9. On considère un multi-ensemble \mathcal{M} qui contient des nœuds N(i) numérotés de 1 à n. Donnez un programme Gamma qui – à partir des nœuds de \mathcal{M} et de l'atome $G(p) \in \mathcal{M}$ – construit un graphe à exactement p arcs différents entre des nœuds de \mathcal{M} .

Indication : L'atome G(...) de \mathcal{M} qui sert à contrôler l'arrêt de la réaction.

$$\begin{cases} & \mathrm{N}(i), \ \mathrm{N}(j), \ G(p) & \xrightarrow{p>0} & \mathrm{N}(i), \ \mathrm{N}(j), \ \mathrm{Arc}(i,j), & \underbrace{G(p-1)}_{\mathrm{ou} \ G((p-1) \div 2), \ G(p \div 2)} \\ & & \mathrm{Arc}(i,j), \ \mathrm{Arc}(i,j) & \xrightarrow{(2)} & \mathrm{Arc}(i,j), \ G(1) \end{cases}$$

La version G(p-1) est séquentielle et donne un algorithme en p étapes; tandis que la version $G((p-1) \div 2)$, $G(p \div 2)$ est parallèlle et permet d'obtenir un algorithme en $\log_2(p)$ étapes.

Q10. Notre but est d'adapter le programme précédent pour garantir qu'on construit un graphe connexe c'est-à-dire un graphe qui ne contient pas de sous-graphes disjoints 2 . Cette fois on commence avec un atome G'(p) dans un multi-ensemble \mathcal{M}' de nœuds primés, notés N'(i) pour indiquer qu'il ne font pas partie du graphe connexe. L'idée est de changer un noeud N'(i) en N(i) lorsqu'il se trouve connecté au graphe. Donnez un programme Gamma qui – à partir des nœuds de \mathcal{M}' et de l'atome G'(p) – construit un graphe connexe à exactement p arcs différents entre des nœuds de \mathcal{M}' .

SOLUTION

On conserve les deux règles du programme précédent. La règle (3) permet de créer un nœud initial dans le graphe; elle ne s'applique qu'une fois puisqu'elle transforme l'atome G' en G utilisé par les autres règles. La règle (4) permet d'ajouter un nœud N(j), non connecté, dans le graphe.

$$\left\{ \begin{array}{ccc} \mathbf{N}'(i), G'(p) & \xrightarrow{p>0} & \mathbf{N}(i), \ G(p) \\ \mathbf{N}'(i), \ \mathbf{N}(j), \ G(p) & \xrightarrow{p>0} & \mathbf{N}'(i), \ \mathbf{N}'(j), \ \mathrm{Arc}(i,j), \ G((p-1) \div 2), \ G(p \div 2) \end{array} \right.$$

Exercice 3: Machines de Turing à 3.. 2.. 1 bande(s)

On considère l'alphabet $\Sigma = \{\Box, \$, 1, 0, \S\}$. Le symbole \S servira de marqueur. On s'intéresse à l'opération $S : \{0,1\}^* \to 1^*0^*$ qui prend en paramètre un mot binaire $\omega \in \{0,1\}^*$ et range tous les 1 du mot avant les 0.

Exemple: S(000111) = 111000 et S(10101) = 11100 et $S(\epsilon) = \epsilon$

Le but de cet exercice est de réaliser l'opération S de trois façons : avec une MT à 3 bandes (B_1, B_2, B_3) , puis à 2 bandes (B_1, B_2) , puis à une seule bande (B_1) . Au départ le mot ω est inscrit sur la bande B_1 ; les autres bandes contiennent juste un \S ; la tête de lecture/écriture de chaque bande est positionnée sur le \S . À la fin de l'exécution, la bande B_1 doit contenir le mot $S(\omega)$.

3

^{2.} Un nœud N(i) sans arc ne constitue pas un graphe.

Indication : On indiquera devant l'action $\ell/e:d$ le numéro de la bande concernée. Les transitions qui ont des actions simultanées sur plusieurs bandes seront notées : q $\xrightarrow{(1)\ell_1/e_1:d_1\ (2)\ell_2/e_2:d_2\ (3)\ell_3/e_3:d_3} \textcircled{q'}$.

Si une transition n'a pas d'action sur la bande B_2 , on ne décrit pas d'action $(2)\ldots$, on se contentera d'indiquer les actions sur B_1 et $B_3: \textcircled{q} \xrightarrow{(1)\ell_1/e_1:d_1\ (3)\ell_3/e_3:d_3} \textcircled{q'}$.

Q11. Donnez une MT $M_{\frac{3}{\S}}$ qui recherche le symbole \S vers la droite et ramène la tête de lecture/écriture de B_1 sur le \S .

SOLUTION

Q12. (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec une MT M_3 à 3 bandes (B_1, B_2, B_3) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_3(10101)$.

SOLUTION _

- 1. Au départ les tête de lecture/écriture de B_1, B_2 et B_3 sont placées sur le \$
- 2. On parcourt B_1 de la gauche vers la droite : lorsqu'on rencontre un 0, on le recopie sur B_2 ; lorsqu'on rencontre un 1, on le recopie sur B_3 . On inscrit un \S à la fin du mot ω sur B_1 . On obtient

$$B_1 = \$10101 \square \quad B_2 = \$00 \quad B_3 = \$111$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

3. On recopie B_2 sur B_1 en se déplaçant vers la gauche. Au passage on efface B_2 . On obtient

$$B_1 = \$10100 \quad B_2 = \$ \quad B_3 = \$111$$

4. On recopie B_3 sur B_1 en se déplaçant vers la gauche. Au passage on efface B_3 . On obtient

$$B_1 = \$11100 \quad B_2 = \$ \quad B_3 = \$$$

Q13. Donnez les transitions de la MT M_3 à trois bandes qui réalise S.

SOLUTION

Q14. (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_2 à 2 bandes (B_1, B_2) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_2(10101)$.

SOLUTION _

- 1. Au départ les tête de lecture/écriture de B_1 et B_2 sont placées sur le \$
- 2. On parcourt B_1 de la gauche vers la droite, lorsqu'on rencontre un 0, on le recopie sur B_2 . On inscrit un \S à la fin du mot ω sur B_1 .

$$B_1 = \$10101 \S \quad B_2 = \$00$$

3. On lit B_2 de droite à gauche et on recopie les 0 de B_2 sur B_1 au-delà du \S . Au passage on efface B_2 . On se replace sur \S de B_1 . On obtient

$$B_1 = \$10101\S00 \quad B_2 = \$$$

4. On parcours B_1 de droite à gauche et on écrit les 1 qu'on rencontre sur B_2 . On obtient

$$B_1 = \$10101\S00 \quad B_2 = \$111$$

5. On se replace sur \S de B_1 . Au passage on efface B_1 , y compris le \S . On obtient

$$B_1 = \S 00 \quad B_2 = \$ 111$$

6. On recopie B_2 sur B_1 sur \S puis vers la gauche. Lorsqu'on s'arrête, on inscrit \$ sur B_1 . On obtient

$$B_1 = \$11100 \quad B_2 = \$111$$

Q15. Donnez les transitions de la MT M_2 à deux bandes qui réalise S.

Q16. (a) Décrivez en français, étape par étape, l'algorithme qui réalise l'opération S avec un MT M_1 à une bande (B_1) et (b) donnez l'état des bandes et la position des tête de lecture/écriture à la fin de chaque étape lorsqu'on exécute $M_1(10101)$.

SOLUTION

- 1. Au départ la tête de lecture/écriture est sur \$
- 2. On parcourt B_1 vers la droite à la recherche d'un 0 qu'on remplace par \S .
- 3. On parcourt B_1 vers la droite à la recherche d'un 1 qu'on remplace par le 0 qu'on a supprimé. Si on arrive sur \square sans avoir rencontré de 1, on passe à l'étape 5.
- 4. On parcourt B_1 vers la gauche à la recherche du \S qu'on remplace par le 1 qu'on vient de supprimer. On reprend à l'étape 2.
- 5. On parcourt B_1 vers la gauche à la recherche du \S qu'on remplace par 0 et on s'arrête.

Les étapes de l'algorithme sont les suivantes :

Q17. Donnez les transitions de la MT M_1 à une bande qui réalise S.

SOLUTION