Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer:

Optimal value of ridge regression: 10

Optimal valued of lasso regression: 0.001

Ridge regression observation:

Ridge regression with alpha value 10:

R2 value of train data: 0.871473053608503 R2 value of test data: 0.852868745368521

25 feature coefficients for ridge regression as mentioned in table:

Alpha value: 10

	Feature	Coefficient
1	OverallQual	0.228
12	GrLivArea	0.187
5	BsmtFinSF1	0.137
10	2ndFlrSF	0.129
8	TotalBsmtSF	0.126
3	ExterQual	0.120
24	SaleType_New	0.115
9	1stFlrSF	0.110
4	BsmtQual	0.106
13	GarageArea	0.102
15	Neighborhood_NridgHt	0.088
2	OverallCond	0.085
14	Neighborhood_NoRidge	0.077
19	Exterior2nd_CmentBd	0.076
17	RoofMatl_WdShngl	0.072
23	Heating_Wall	0.023
6	BsmtFinSF2	0.021
0	constant	0.000
21	Heating_Grav	-0.002
20	Heating_GasW	-0.006
11	LowQualFinSF	-0.020
25	SaleCondition_Partial	-0.021
22	Heating OthW	-0.025
7	BsmtUnfSF	-0.028
18	Exterior1st CemntBd	-0.074
16	Condition2 PosN	-0.123
10	CONGIGORIZ_POSIN	-0.123

Ridge regression with alpha value 20:

R2 value of train data: 0.871307552559561 **R2 value of test data**: 0.8543328475466883

25 feature coefficients for ridge regression as mentioned in table:

Alpha value: 20

	Feature	Coefficient
1	OverallQual	0.226
12	GrLivArea	0.187
5	BsmtFinSF1	0.136
10	2ndFlrSF	0.128
8	TotalBsmtSF	0.125
3	ExterQual	0.121
9	1stFlrSF	0.110
4	BsmtQual	0.106
13	GarageArea	0.103
24	SaleType_New	0.094
15	Neighborhood_NridgHt	0.088
2	OverallCond	0.083
14	Neighborhood_NoRidge	0.077
17	RoofMatl_WdShngl	0.071
19	Exterior2nd_CmentBd	0.060
23	Heating_Wall	0.023
6	BsmtFinSF2	0.021
0	constant	0.000
25	SaleCondition_Partial	-0.000
21	Heating_Grav	-0.002
20	Heating_GasW	-0.006
11	LowQualFinSF	-0.020
22	Heating_OthW	-0.024
7	BsmtUnfSF	-0.027
18	Exterior1st_CemntBd	-0.057
16	Condition2_PosN	-0.121

Observation:

yes, there is the change in r2 values. r2 value train data is slightly decreased but test data is slightly increased but overall not major change. no of feature variable has not changed but their co-efficient are changed because the regularization is the sum of the squared of the co-efficient of the features.

Lasso regression observation:

lasso regression with alpha value 0.001:

R2 value of train data: 0.8713707835676202 R2 value of test data: 0.8536053358864661

21 feature coefficients for ridge regression as mentioned in table:

Alpha value: 0.001

	Feature	Coefficient
12	GrLivArea	0.339
1	OverallQual	0.231
5	BsmtFinSF1	0.165
3	ExterQual	0.119
4	BsmtQual	0.105
13	GarageArea	0.102
8	TotalBsmtSF	0.099
24	SaleType_New	0.094
15	Neighborhood_NridgHt	0.088
2	OverallCond	0.084
14	Neighborhood_NoRidge	0.076
17	RoofMatl_WdShngl	0.071
19	Exterior2nd_CmentBd	0.066
6	BsmtFinSF2	0.031
23	Heating_Wall	0.023
0	constant	0.000
10	2ndFlrSF	0.000
9	1stFlrSF	0.000
7	BsmtUnfSF	-0.000
25	SaleCondition_Partial	-0.000
21	Heating_Grav	-0.001
20	Heating_GasW	-0.005
22	Heating_OthW	-0.024
11	LowQualFinSF	-0.033
18	Exterior1st_CemntBd	-0.064
16	Condition2_PosN	-0.123

lasso regression with alpha value 0.002:

R2 value of train data: 0.8710904228930105 R2 value of test data: 0.8560525531267705

20 feature coefficients for ridge regression as mentioned in table:

Alpha value: 0.002

	Feature	Coefficient
12	GrLivArea	0.338
1	OverallQual	0.232
5	BsmtFinSF1	0.164
3	ExterQual	0.120
4	BsmtQual	0.105
13	GarageArea	0.102
8	TotalBsmtSF	0.100
24	SaleType_New	0.093
15	Neighborhood_NridgHt	0.087
2	OverallCond	0.083
14	Neighborhood_NoRidge	0.075
17	RoofMatl_WdShngl	0.071
6	BsmtFinSF2	0.030
19	Exterior2nd_CmentBd	0.026
23	Heating_Wall	0.022
21	Heating_Grav	-0.000
0	constant	0.000
10	2ndFlrSF	0.000
9	1stFlrSF	0.000
7	BsmtUnfSF	-0.000
25	SaleCondition Partial	0.000
20	Heating GasW	-0.004
22	Heating_CasW	-0.023
18	Exterior1st CemntBd	-0.023
11	LowQualFinSF	-0.024
• • •		
16	Condition2_PosN	-0.121

Observation: yes, there is a change in r2 value of train data is slightly decreased but test data is slightly increased but overall, not major change. Number of variables has also changed but the co-efficient has no change since the regularization has the absolute summation of co-efficient of the features.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

I will choose the lasso regression with alpha value of 0.001 because it helps in feature selection and we have reduced the no of features to 21. Lasso regression also helps in reducing multi collinearity.

Question 3

After building the model, you realised that the five most important predictor variables in the

lasso model are not available in the incoming data. You will now have to create another model

excluding the five most important predictor variables. Which are the five most important

predictor variables now?

Answer:

In the current model, the 5 most important variables are below,

1) GrLivArea

2) OverallQual

3) BsmtFinSF1

4) Condition2_PosN

5) ExterQual

After removing the above 5 varibales in the dataset, below are the 5 most important variables,

1) 2ndFlrSF

2) 1stFlrSF

3) TotalBsmtSF

4) Neighborhood_NridgHt

5) BsmtQual

Train data r2 value: 0.8685895645260896

Test data r2 values: 0.8615086351527038

So, r2 values of train and test data have changed after removing the top 5 feature variables but not

major difference.

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of

the same for the accuracy of the model and why?

Answer:

We should try to build simple model, but it should not be so simple that it will generalized everything in the data set and it will provide biased prediction. Also, simple models are more robust compare to complex models. Simple model can make errors in train data set, but complex model will perform good on train set because of its mimicking property of train set(overfitting). There are ways to make sure that model is robust and generalized which are below.

- 1) Bias v/s Variance trade off: simple model has high bias but low variance. Complex model has high variance but low bias. Bias refers the accuracy on test data set whereas variance refers the degree of the change in model when we change the training set. We need to find the middle ground b/w bias and variance so that total error is minimized at an accountable threshold value.
- 2) Regularization: This process is the well know technique to balance b/w simple and complex models by giving some weightage on the coefficient terms of alpha. We can regularized the model with different techniques like ridge, lasso, elastic net.