Dancing Hexapod Group ID: 12

Manas Chaudhari Ayesha Mudassir Siddharth Sarangdhar Kedar Tatwawadi

Problem Statement

 Making an autonomous dancing that will choose dance moves based on the beats and the tempo of the song.

Requirements

Functional

- Liveness: Perform dance moves in response to the data received.
- Safety: Hexapod shouldn't lose balance, or cause damage to itself.
- Timeliness: The delay between beat and the response should not be noticeable.
- Hexapod should perform at least 5 different moves.
- A UI for interaction with the Hexapod

Requirements

- Non-Functional
 - Wireless Communication
 - Movements shouldn't be jerky.
 - The user must be alerted in case of failure by the Hexapod.

Implementation Details

UI on Android

Dance Moves

Beat Patterns

Beat Detection

Communication

- Hexapod processes around 1600 interrupts per second.
- Minimal decision making on Hexapod for Timeliness.
- Designed the communication protocol with minimum payload size.
- Overwrote Xbee Port UARTO for Bluetooth Operation, as Hexapod doesn't have a spare UART port.

Levels of beat detection

- Audio with only single periodic beat
- Audio having single beat but with variable periods
- Audio with multiple beats with different periods with same intensities
- Audio with multiple beats with different periods with different intensities
- Audio with lyrics or other instruments having rhythmic elements which are not beats.

Deviation from problem statement

- Static processing vs Streamed processing
- Autonomous dance move selection

Energy Calculations

- Due to very high current requirement of hexapod, experimental energy profiling was difficult.
- Battery rating: 5000 mAh, 7.4V
- Average current when servo motors switched on <= 10A (30 mins time for discharging)
- Average power requirement <= 74 W
- <= because of full discharge assumption.

Problems Faced

Hardware Limitations

Hexapod

- Bulky Design. Not suitable for Dance moves.
 - Lifting the bot is difficult due to its weight.
- Tips of the legs are rubber padded which results in jerks.
- Non-symmetric servo motor placement. Stability Issues.

Hardware Limitations

- Android Phone
 - Implementation of ~50 order High Pass Filter for beat detection on vocal songs is too intensive for Android device
 - Limited buffer size for raw audio playback (30 seconds)
 - Single dance move per beat pattern played

Angle Calculations

- Calculating min inter step delay for a move:
- NRS-993 Motor specifications: 150 ms /60°.
- Example:
 - Hands air:
 - Legs 1,3,5: [90 60 20] to [90 0 100]
 - Legs 2,4,6: [90 60,20] to [90 40 0]
 - Max angle difference for any motor = 80° .
 - Expected min delay: 200 ms.
 - We have taken a safety factor of 2.

Problems Faced

- Different hexapod than what was used in the past project.
 - Code from past project could not be used.
 - Hexapod GUI was not working
- Bluetooth communication was not working for unclear reasons.
- Extremely high current rating (15 A)
 - Experimental energy profiling was difficult.
- We received the hexapod battery after the first demo which resulted in large delay.

Project Reusability and Deliverables

- Use of Existing Open Source Libraries as far as possible
 - Musicg: Reading PCM data from a .wav file
- Creation of Android compatible Beat-Detection module in JAVA.
- Beat detection code in MATLAB.
- Generation of Documentation (ongoing)
 - Doxygen for code documentation.

Future Improvements

Streamed processing

- Support for long songs
- This would unlock more extensions
 - Multiple moves per song
 - Autonomous selection of dance moves based on decision tree constructed using spectral features.

Other extensions

- Dedicated processor
 - Work on vocal songs by implementing high order filters
- Mounting artificial head on Camera pod to add more flavor to dancing.
- Designing more complex dance moves.

THANK YOU