Ejercicios resueltos de integración. 2a parte.

Juan Gabriel Gomila, Arnau Mir y Llorenç Valverde

Ejercicio 1

- O Calcular el área entre las curvas $f(x) = 2x^2 4$ y $g(x) = -3x^2 + 10$, para $-1 \le x \le 1$.
- Calcular el área encerrada por las curvas $f(x) = x^4$ y $g(x) = -2x^2 + 3$.

Solución

Apartado a). Hagamos primero un esbozo de las gráficas de f y g para x entre -1 y 1:

Solución

Apartado a). Hagamos primero un esbozo de las gráficas de f y g para x entre -1 y 1:

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx =$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-3x^2 + 10 - 2x^2 + 4) dx$$
=

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-3x^2 + 10 - 2x^2 + 4) dx$$
$$= \int_{-1}^{1} (-5x^2 + 14) dx$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-3x^2 + 10 - 2x^2 + 4) dx$$

$$= \int_{-1}^{1} (-5x^2 + 14) dx = \left[-5\frac{x^3}{3} + 14x \right]_{-1}^{1}$$

$$=$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-3x^{2} + 10 - 2x^{2} + 4) dx$$

$$= \int_{-1}^{1} (-5x^{2} + 14) dx = \left[-5\frac{x^{3}}{3} + 14x \right]_{-1}^{1}$$

$$= -\frac{5}{3} + 14 - \left(-\frac{5}{3} - 14 \right)$$

$$=$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-3x^{2} + 10 - 2x^{2} + 4) dx$$

$$= \int_{-1}^{1} (-5x^{2} + 14) dx = \left[-5\frac{x^{3}}{3} + 14x \right]_{-1}^{1}$$

$$= -\frac{5}{3} + 14 - \left(-\frac{5}{3} - 14 \right)$$

$$= -\frac{10}{3} + 28 = \frac{74}{3} \approx 24.6667.$$

Apartado b). Hagamos primero un esbozo de las gráficas de f y g:

Solución (cont.)

Apartado b). Hagamos primero un esbozo de las gráficas de f y g:

Solución (cont.)

Solución (cont.)

$$f(x) = g(x),$$

Solución (cont.)

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3,$$

Solución (cont.)

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3, \Rightarrow x^4 + 2x^2 - 3 = 0,$$

Solución (cont.)

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3, \Rightarrow x^4 + 2x^2 - 3 = 0,$$

 $x^2 = \frac{-2 \pm \sqrt{4 + 12}}{2} =$

Solución (cont.)

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3, \Rightarrow x^4 + 2x^2 - 3 = 0,$$

 $x^2 = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} =$

Solución (cont.)

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3, \Rightarrow x^4 + 2x^2 - 3 = 0,$$

 $x^2 = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} = 1, -3.$

Solución (cont.)

A continuación, hemos de hallar los puntos de corte de las dos funciones que representarán los extremos de la integral a calcular:

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3, \Rightarrow x^4 + 2x^2 - 3 = 0,$$

 $x^2 = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} = 1, -3.$

La única solución admisible es $x^2 = 1$,

Solución (cont.)

A continuación, hemos de hallar los puntos de corte de las dos funciones que representarán los extremos de la integral a calcular:

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3, \Rightarrow x^4 + 2x^2 - 3 = 0,$$

 $x^2 = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} = 1, -3.$

La única solución admisible es $x^2 = 1$, de donde $x = \pm 1$.

Solución (cont.)

A continuación, hemos de hallar los puntos de corte de las dos funciones que representarán los extremos de la integral a calcular:

$$f(x) = g(x), \Rightarrow x^4 = -2x^2 + 3, \Rightarrow x^4 + 2x^2 - 3 = 0,$$

 $x^2 = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} = 1, -3.$

La única solución admisible es $x^2=1$, de donde $x=\pm 1$. Los puntos de corte serán, pues (-1,1) y (1,1), tal como se observa en la gráfica de las funciones f y g.

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx =$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-2x^2 + 3 - x^4) dx$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-2x^{2} + 3 - x^{4}) dx$$
$$= \left[-2\frac{x^{3}}{3} + 3x - \frac{x^{5}}{5} \right]_{-1}^{1}$$
$$=$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-2x^{2} + 3 - x^{4}) dx$$

$$= \left[-2\frac{x^{3}}{3} + 3x - \frac{x^{5}}{5} \right]_{-1}^{1}$$

$$= -\frac{2}{3} + 3 - \frac{1}{5} - \left(\frac{2}{3} - 3 + \frac{1}{5}\right)$$

$$=$$

Solución (cont.)

$$\int_{-1}^{1} (g(x) - f(x)) dx = \int_{-1}^{1} (-2x^2 + 3 - x^4) dx$$

$$= \left[-2\frac{x^3}{3} + 3x - \frac{x^5}{5} \right]_{-1}^{1}$$

$$= -\frac{2}{3} + 3 - \frac{1}{5} - \left(\frac{2}{3} - 3 + \frac{1}{5}\right)$$

$$= -\frac{4}{3} + 6 - \frac{2}{5} = \frac{64}{15} \approx 4.2667.$$

Ejercicio 2

- O Calcular el volumen de revolución al girar la curva $y = x^2$ alrededor del eje X para $2 \le x \le 5$.
- O Calcular el volumen de revolución al girar la curva $y = \sqrt{x}$ alrededor del eje Y para $1 \le x \le 9$.
- O Calcular el volumen de revolución al girar la curva y = x + 3 alrededor del eje y = 5 para $0 \le x \le 5$.

Solución

Apartado a). Hagamos un gráfico de la función para tener una idea de los que nos piden:

Solución

Apartado a). Hagamos un gráfico de la función para tener una idea de los que nos piden:

Solución (cont.) El volumen pedido será:

Solución (cont.

$$V = \pi \int_{2}^{5} (x^2)^2 dx$$

Solución (cont.)

$$V = \pi \int_{2}^{5} (x^{2})^{2} dx = \pi \int_{2}^{5} x^{4} dx =$$

Solución (cont.)

$$V = \pi \int_2^5 (x^2)^2 dx = \pi \int_2^5 x^4 dx = \pi \left[\frac{x^5}{5} \right]_2^5 =$$

Solución (cont.)

$$V = \pi \int_{2}^{5} (x^{2})^{2} dx = \pi \int_{2}^{5} x^{4} dx = \pi \left[\frac{x^{5}}{5} \right]_{2}^{5} = \frac{\pi}{5} \left(5^{5} - 2^{5} \right)$$

Solución (cont.)

$$V = \pi \int_{2}^{5} (x^{2})^{2} dx = \pi \int_{2}^{5} x^{4} dx = \pi \left[\frac{x^{5}}{5} \right]_{2}^{5} = \frac{\pi}{5} \left(5^{5} - 2^{5} \right)$$
$$= \frac{3093\pi}{5} \approx 1943.3892.$$

Solución

Apartado a). Hagamos un gráfico de la función para tener una idea de los que nos piden:

Solución

Apartado a). Hagamos un gráfico de la función para tener una idea de los que nos piden:

Solución (cont.) El volumen pedido será:

Solución (cont.

$$V = 2\pi \int_{1}^{9} x \cdot \sqrt{x} \, dx$$

Solución (cont.)

$$V = 2\pi \int_{1}^{9} x \cdot \sqrt{x} \, dx = 2\pi \int_{1}^{9} x^{\frac{3}{2}} \, dx = 0$$

Solución (cont.)

$$V = 2\pi \int_{1}^{9} x \cdot \sqrt{x} \, dx = 2\pi \int_{1}^{9} x^{\frac{3}{2}} \, dx = 2\pi \left[\frac{x^{\frac{5}{2}}}{\frac{5}{2}} \right]_{1}^{9}$$

Solución (cont.)

$$V = 2\pi \int_{1}^{9} x \cdot \sqrt{x} \, dx = 2\pi \int_{1}^{9} x^{\frac{3}{2}} \, dx = 2\pi \left[\frac{x^{\frac{5}{2}}}{\frac{5}{2}} \right]_{1}^{9}$$
$$= \frac{4\pi}{5} \left(9^{\frac{5}{2}} - 1^{\frac{5}{2}} \right) = \frac{968\pi}{5} \approx 608.2123.$$