ECE2810J Data Structures and Algorithms

Topological Sorting

- ► Learning Objectives:
- Know what a topological sorting is and why it is useful
- Know the topological sorting algorithm and its runtime complexity

Topological Sorting

- **Topological sorting**: an ordering on nodes of a directed graph so that for each edge (v_i, v_j) (means: an edge from v_i to v_j) in the graph, v_i is before v_j in the ordering.
 - Also known as topological ordering.

A topological sorting is: A, G, D, B, E, C, F

Which Graph Has Topological Sorting?

- Is there any "topological sorting" for directed graph with cycles?
 - In other words, can we order the nodes so that for each edge (v_i, v_j) , v_i is before v_j in the ordering?
 - Answer: No! (Why?)
- How about directed acyclic graph (DAG)?
 - Yes! Guarantee to have a topological ordering.
 - ▶ Why? There is always a source node S in a DAG. Put S first. For the graph without S, again, there is a source node. Put it next ...
- ► Next, we will focus on topological sorting on DAG.

Topological Sorting

- Topological sorting is not necessarily unique:
 - ▶ A, G, D, B, E, C, F and A, B, G, D, E, F, C are both topological sorting.
- Are the following orderings topological sorting?
 - ▶ A, B, E, G, D, C, F
 - A, G, B, D, E, F, C

Topological Sorting Applications

Scheduling tasks when some tasks depend on other tasks being completed.

Serialization
Parallel → Serial
Sort out complex
dependencies

Topological Sorting Applications

Evaluating a combination logic circuit given a set of inputs.

Topological Sorting: Algorithm

- Based on a queue.
- Algorithm:
 - 1. Compute the in-degrees of all nodes. (in-degree: number of incoming edges of a node.)
 - **Enqueue** all in-degree 0 nodes into a queue.
 - 3. While queue is not empty
 - 1. Dequeue a node v from the queue and visit it.
 - 2. Decrement in-degrees of node v's neighbors.
 - 3. If any neighbor's in-degree becomes 0, enqueue it into the queue.

In-degrees

A	В	С	D	Е	F	G
0	1	2	2	2	1	0

Dequeue A, visit A, and decrement in-degrees of A's neighbors.

In-degrees

Α	В	С	D	Е	F	G
0	1	2	2	2	1	0

In-degrees

Α	В	С	D	Е	F	G
0	40	2	2 1	2	1	0

_			
A			
			40

Dequeue G, visit G, and decrement in-degrees of G's neighbors.

In-degrees

Α	В	С	D	Е	F	G
0	0	2	1	2	1	0

I			
Ι Δ			
			4.4

In-degrees

Α	В	С	D	Е	F	G
0	0	2	40	2	1	0

Α	G			
				12

Dequeue B, visit B, and decrement in-degrees of B's neighbors.

In-degrees

Α	В	С	D	Е	F	G
0	0	2	0	2	1	0

A	G			
				42

Topological Sorting Algorithm

Example

Oueue

D

Dequeue D, visit D, and decrement in-degrees of D's neighbors.

In-degrees

Α	В	С	D	Е	F	G
0	0	2 1	0	2 1	1	0

Α	G	В		
				14

In-degrees

Α	В	С	D	E	F	G
0	0	1	0	40	1	0

Α	G	В	D			15
---	---	---	---	--	--	----

Queue

Ε

Dequeue E, visit E, and decrement in-degrees of E's neighbors.

In-degrees

Α	В	С	D	Е	F	G
0	0	1	0	0	1	0

Α	G	В	D		
		_	_		47

In-degrees

Α	В	(C)	D	Е	F	G
0	0	40	0	0	40	0

A G B D E	Α	G	В	D	Е		47
-----------	---	---	---	---	---	--	----

Dequeue C, visit C, and decrement in-degrees of C's neighbors.

In-degrees

Α	В	С	D	Е	F	G
0	0	0	0	0	0	0

A G B D E	

Dequeue F, visit F, and decrement in-degrees of F's neighbors.

In-degrees

Α	В	С	D	Е	F	G
0	0	0	0	0	0	0

|--|

Oueue

Queue is now empty. Done!

In-degrees

Α	В	С	D	Е	F	G
0	0	0	0	0	0	0

A G	В	D	Е	С	F
-----	---	---	---	---	---

Topological Sorting Time Complexity

Assume adjacency list representation

- 1. Compute the in-degrees of all nodes.
- 2. Enqueue all in-degree 0 nodes into a queue.
- 3. While queue is not empty
 - 1. Dequeue a node v from the queue and visit it.
 - 2. Decrement in-degrees of node v's neighbors.
 - 3. If any neighbor's in-degree becomes 0 ...
 - ... place it in the queue.

```
O(|V| + |E|) in total
```

O(|V|) in total

O(|V|) in total

O(|E|) in total

O(|V|) in total

Total running time is O(|V| + |E|).

LeetCode: Problem 207. Course Schedule

Problem 14. Longest Common Prefix

Problem 720. Longest Word in Dictionary

Problem 692. Top K Frequent Words

