311551069 余忠旻 Lab7: Let's Play DDPM

1. Introduction

用 conditional DDPM 來生成立體幾何圖形的圖片。圖形包含 3 種形狀和 8 種顏色,總共 24 種幾何圖形。另外,一張圖片可以包含 1 至 3 個圖形。一張圖片可以有多個 labels,因此會把 labels 對應到 one-hot vector 後 embedding 在 UNet architecture 做訓練。Sampling 的時候,會從 test.json 和 new_test.json 中得知每個圖片要生成的幾何圖形的種類和個數,去生成圖片並交給助教所提供的 evaluator 來判斷圖片是否符合要求。

2. Implementation details

A. Describe how you implement your model, including your choice of DDPM, UNet architectures, noise schedule, and loss functions.

■ Main structure

Diffusion model 的核心精神是學習一個逐步 denoise 的過程,可以把 diffusion model 過程的每個影像表示為 Markov chain。而訓練中加入很小的高斯 雜訊則是來自 Gaussian noise。而網路 θ 要學的東西就是如何 denoising,如下 圖:

因此 DDPM 的優化目標就是,讓網路預測的噪音和真實的噪音一致,也就是在訓練的時候,會隨機選擇一個訓練樣本 -> 從 1-T 中隨機抽樣一個 t -> 隨機產生噪音並計算當前所產生的帶噪音數據(紅色框所示) -> 輸入網路預測噪音 -> 計算產生噪音和預測噪音的 L2 loss -> 計算 gradient 並更新網路。

Sampling 的時候則是,會從一個隨機噪音開始,利用訓練好的網路預測噪音,然後計算條件分布的均值(紅色框部分),然後用均值和標準差乘以一個隨機噪音,直到 t=0 完成新樣本的生成(最後一步不加噪音)。

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon) \ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: $\mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}$ 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\tilde{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: $\mathbf{end} \ \mathbf{for}$ 6: $\mathbf{return} \ \mathbf{x}_{0}$

在訓練的時候,由於噪音圖片和原始圖片是相同維度的,DDPM 會採用AutoEncoder 的架構,也就是下圖顯示 UNet architecture,當中我們會有 time embedding 來將 timestep 編碼到網路中,並且增加 label embedding,幫助我們生成相對應條件的圖片。

Training process (Algorithm 1)實作部分如下:

```
for epoch in range(1,args.ep+1):
    for i, (images, conditions) in enumerate(train_loader):
        total_loss = 0
        images = images.to(device)
        labels = conditions.to(device)
        t = diffusion.sample_timesteps(images.shape[0]).to(device)
        x_t, noise = diffusion.noise_images(images, t)
        if np.random.random() < 0.1:
            labels = None
        predicted_noise = model(x_t, t, labels)
        loss = criterion(noise, predicted_noise)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        ema.step_ema(ema_model, model)

        total_loss += loss.item()</pre>
```

Sampling process (Algorithm 2)實作部分如下:

```
def sample(self, model, n, labels, cfg_scale=3):
    model.eval()
    with torch.no_grad():
        x = torch.randn(n, 3, self.img_size, self.img_size).to(self.device)
        for i in reversed(range(1, self.noise_steps)):
        t = (torch.ones(n) * i).long().to(self.device)
        predicted_noise = model(x, t, labels)
        if cfg_scale > 0:
            uncond_predicted_noise = model(x, t, None)
            predicted_noise = torch.lerp(uncond_predicted_noise, predicted_noise, cfg_scale)
        alpha = self.alpha[t][:, None, None, None]
        alpha = self.alpha[t][:, None, None, None]
        beta = self.beta[t][:, None, None, None]
        if i > 1:
            noise = torch.randn_like(x)
        else:
            noise = torch.zeros_like(x)
        x = 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(1 - alpha_hat))) * predicted_noise) + torch.sqrt(beta) * noise

        model.train()
        return x
```

Loss function

我 loss function 用的是 MSELoss,來計算產生噪音和預測噪音的 L2 loss

Prediction type

根據 Denoising Diffusion Probabilistic Models [1] 的 equation (8),我們可以用它來做 predict the noisy sample:

$$L_{t-1} = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} \| \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) \|^2 \right] + C$$
 (8)

但論文發現省略前面 weight 項($\frac{1}{2\sigma_t^2}$),反而可以幫助網路更加集中 在較困難的 sample,因此最終 loss 可寫作 simplified noise predicting:

$$L_{t-1} = \, \mathbb{E}_{\mathbf{x}_0,\,\epsilon} igg[\Big\| \epsilon \, - \, \epsilon_{ heta} \Big(\sqrt{ar{lpha}}_t \mathbf{x}_0 + \sqrt{1 - ar{lpha}_t} \epsilon,\, t \Big) \Big\|_2^2 igg]$$

而我使用的就是 simplified noise predicting。

■ Noise schedule

我用的是 sigmoid noise schedule,主要是因為 linear noise schedule 的 缺點是資料破壞得太快,而在 Improved Denoising Diffusion Probabilistic Models [2] 這篇論文有提到 cosine noise schedule 能得到較好結果,而 經過實驗,我發現我的 diffusion model 架構搭配 sigmoid noise schedule 訓練比較好,因此我使用 sigmoid noise schedule,公式如下:

```
# sigmoid betas chedule
def prepare_noise_schedule(self):
    betas = torch.linspace(-6, 6, self.noise_steps)
    return torch.sigmoid(betas) * (self.beta_end - self.beta_start) + self.beta_start
```

UNet architecture

我的 UNet architecture 如上,encoder 部分是由許多 doubleConv、residualBlock 以及 subsampling 所組成的,主要是透過採樣來降低 feature 的空間大小(H 和 W),decoder 則是相反,由許多的 doubleConv、residualBlock 和 upsampling 所組成的,主要是將被壓縮的 feature 逐漸恢復。除此之外,還有 self-attention 和 skip connection 來幫助訓練,self-attention 能增加網路的全局建模能力,skip connection 則是 concatenate 了encoder 中間得到的同維度 feature,有利於網路優化。

而 time embedding 和 label embedding,我分別加在 residualBlock 和 subsampling/upsampling 部分,能提供 UNet 知道 timestamp 和 lable 資訊,這樣在訓練時能更有效率。

Dataloader

dataloader 主要分為可以分成兩種模式,一種取 training dataset 的 image 和 condition,一種是取 testing dataset 的 condition。

下圖是取 training dataset 的部分,可以看到我們會先將 object.json 讀進來,當中會有立體幾何圖形所對應的代碼 (0~23)。接著,我們會把 train.json 讀進來,當中會顯示 image 以及圖片所對應的立體幾何圖形, image 部分則會經過前處理,也就是 pad 成正方形,resize 成 32*32 (我實驗環境 64*64 的 image 會 out of memory,所以降低 resolution 來訓練),最

後轉成 tensor 和 normalize。condition 部分則是將它轉成 one hot vector (也就是圖片有的 label 相對應的 index 為 1, 其餘為 0)。

```
def __init__(self):
    self.max_objects =
     with open('objects.json', 'r') as file:
    self.classes = json.load(file)
self.numclasses = len(self.classes)
     self.img_names = []
     self.img_conditions=[]
     with open('train.json', 'r') as file:
    dict = json.load(file)
           for img_name, img_condition in dict.items():
               self.img_names.append(img_name)
self.max_objects = max(self.max_objects, len(img_condition))
                self.img_conditions.append([self.classes[condition] for condition in img_condition])
     self.transformations = transforms.Compose([
   transforms.Pad(padding=(0, 40, 0, 40), fill=(255, 255, 255), padding_mode='edge'),
   transforms.Resize((32, 32)),
          transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
     1)
def __len__(self):
    return len(self.img_names)
def __getitem__(self, index):
    img = Image.open(os.path.join('iclevr', self.img_names[index])).convert('RGB')
     img = self.transformations(img)
     condition = self.int2onehot(self.img_conditions[index])
     return img, condition
     onehot = torch.zeros(self.numclasses)
     for i in int list:
          onehot[i] = 1.
     return onehot
```

下圖是取 testing dataset 的部分,跟取 training dataset 差不多,也就是 object.json 讀進來,當中會有立體幾何圖形所對應的代碼 (0~23),然後將 test condition 讀進來,將它轉成 one hot vector (也就是圖片有的 label 相對 應的 index 為 $\mathbf{1}$,其餘為 $\mathbf{0}$)

Advanced technique

Exponential Moving Average (EMA)

我們訓練時會想要更穩定的訓練,不要震盪太大,而 EMA 實質上就是一種 smoother training,他更新的時候不太容易受到 outliers 的影響,他作法是 從 main model 複製一份初始的 model weights,更新的時候會根據 moving average from main model 來更新 EMA model,因此更新的公式如下:

$$w = \beta \cdot w_{old} + (1 - \beta) \cdot w_{new}$$
, $\beta = 0.995$

程式碼實作部分如下:

```
class EMA:
   def __init__(self, beta):
    super().__init__()
    self.beta = beta
   def update_model_average(self, ma_model, current_model):
        for current_params, ma_params in zip (current_model.parameters()), ma_model.parameters()):
            old_weight, up_weight = ma_params.data, current_params.data
            ma_params.data = self.update_average(old_weight, up_weight)
   def update_average(self, old, new):
       if old is None:
       return old * self.beta + (1 - self.beta) * new
   def step_ema(self, ema_model, model, step_start_ema=2000):
       if self.step < step_start_ema:</pre>
            self.reset_parameters(ema_model, model)
            self.step += 1
        self.update_model_average(ema_model, model)
   def reset_parameters(self, ema_model, model):
        ema_model.load_state_dict(model.state_dict())
```

Classifier Free Guidance (CFG)

在這次作業中,我們會想要同時讓模型保有生成能力,並且能準確生成相對應 condition 的圖片,在 Classifier-Free Diffusion Guidance [3] 這篇論文中,他可以避免 posterior collapse (model ignore conditional information just generate any image),他做法是捨棄原本外部的 classifier,而是提出一個等價的結構,從而讓 diffusion model 可以成功完成條件生成的任務。

而實際做法是,他會有兩種採樣的輸入,一種是 conditional (random Gaussian noise + label embedding),一種是 unconditional。兩種輸入都會送到同一個 diffusion model,從而讓其能夠具有 unconditional 和 conditional 的生成能力。

原本的 noise 更新的方式:

$$\epsilon_{ heta}(x_t,t) \sim \epsilon_{ heta}(x_t) - \sqrt{1-\overline{lpha}_t} igtharpoons_{x_t} log p_{\phi}(y|x_t)$$

而 classifier-free 用另一個近似的等價結構替換了後面那一項:

$$\hat{\epsilon}_{ heta}(x_t|y) = \epsilon_{ heta}(x_t) + s \cdot (\epsilon_{ heta}(x_t,y) - \epsilon_{ heta}(x_t))$$

表示 conditional 的輸入,表示 unconditional 的輸入(會將 condition y 設為 NULL),用這兩項之差乘以一個係數來替換掉原來的那一項。

實作時,這兩種 sampling 比例如下,conditional 和 unconditional 分別是 9:1,並且 predicted noise 會 linear interpolate 從 unconditional predicted noise 逐漸到 conditional predicted noise

training 和 sampling 程式碼實作如下:

```
for epoch in range(1,args.ep+1):
    for i, (images, conditions) in enumerate(train_loader):
        total_loss = 0
        images = images.to(device)
        labels = conditions.to(device)
        t = diffusion.sample_timesteps(images.shape[0]).to(device)
        x t. noise = diffusion.noise images(images, t)
        if np.random.random() < 0.1:
            labels = None
        predicted_noise = model(x_t, t, labels)
        loss = criterion(noise, predicted_noise)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        ema.step_ema(ema_model, model)

        total_loss += loss.item()</pre>
```

```
def sample(self, model, n, labels, cfg_scale=3):
    model.eval()
    with torch.no_grad():
        x = torch.randn(n, 3, self.img_size, self.img_size).to(self.device)
    for i in reversed(range(1, self.noise_steps)):
        t = (torch.ones(n) * i).long().to(self.device)
        predicted noise = model(x, t, labels)
        if cfg_scale > 0:
            uncond_predicted_noise = model(x, t, None)
            predicted_noise = torch.lerp(uncond_predicted_noise, predicted_noise, cfg_scale)
        alpha = self.alpha[t][; None, None, None]
        alpha_hat = self.alpha_hat[t][; None, None, None]
        beta = self.beta[t][:, None, None, None]
        if i > 1:
            noise = torch.randn_like(x)
        else:
            noise = torch.zeros_like(x)
        x = 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(1 - alpha_hat))) * predicted_noise) + torch.sqrt(beta) * noise

        model.train()
        return x
```

B. Specify the hyperparameters (learning rate, epochs, etc.)

- epoch size: 300

batch size: 48

learning rate: 3e-4

optimizer: AdamW

loss function: MSE

noise steps T: 1000

- beta start β_1 : 1e-4

- beta end β_T : 0.02

4. Results and discussion

A. Show your results based on the testing data.

test.json (0.72222)

new_test.json(0.75)

B. Discuss the results of different model architectures.

■ 我在 lable embedding 部分,實作了兩種做法:

一種是在上述的 Implementation details 所提到,將 lable embedding 做在 subsampling/upsampling。

另一種做法是將 label condition expand 成圖片的 w*h, 並將它當作 additional input channels 當作輸入(也就是原本輸入為(bs, 3, 28, 28), 加上 label embedding 變成(bs, 16, 28, 28))。

lable embedding on subsampling/upsampling block

label add as additional input channels

可以觀察到 lable embedding on subsampling/upsampling block 效果比較好,並且訓練也比較穩定,因為在許多層都可以看見 label embedding 的資訊,所以訓練比較好 (跟 time embedding 做法類似)。而另一種 label

add as additional input channels 這種方法,可能因為 label condition 資訊是跟圖片的 RGB channel 一起當輸入的,經過 UNet 許多層之後,condition的資訊會有所損失,導致訓練比較不好。

Noise scheduling

Noise scheduling 會關係 conditional DDPM 資料破壞的速度,這會影響訓練出來的結果,因此我有將不同的 noise scheduling 去做比較:

我總共有比較三種 noise scheduling,分別是 linear、quadratic、sigmoid noise schedule,而 cosine noise scheduling 我也有跑實驗,只是效果很差,可能有寫錯或不適合我的 conditional DDPM 架構,這裡我就不討論 cosine noise schedule。

```
# linear beta schedule
def prepare_noise_schedule(self):
    return torch.linspace(self.beta_start, self.beta_end, self.noise_steps)

# cosine beta schedule
def prepare_noise_schedule(self, s=0.008):
    steps = self.noise_steps + 1
    x = torch.linspace(0, self.noise_steps, steps)
    alphas_cumprod = torch.cos(((x / self.noise_steps) + s) / (1 + s) * torch.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0.0001, 0.9999)

# quadratic beta schedule
def prepare_noise_schedule(self):
    return torch.linspace(self.beta_start**0.5, self.beta_end**0.5, self.noise_steps) ** 2

# sigmoid betas chedule
def prepare_noise_schedule(self):
    betas = torch.linspace(-6, 6, self.noise_steps)
    return torch.sigmoid(betas) * (self.beta_end - self.beta_start) + self.beta_start
```

linear noise scheduling

quadratic noise scheduling

sigmoid noise scheduling

可以觀察到 sigmoid noise scheduling 訓練是最穩定的,而 linear noise scheduling 最震盪的,原因是因為 linear noise scheduling 會造成資料破壞得太快,導致訓練結果會稍微差一點。

5. Experimental results

```
37@ec037:~/DLP/lab7$ python3 sampling.py
Using device: cuda
/home/pp037/.local/lib/python3.8/site-packages/torchvision/models/_utils.py:208: U
serWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
/home/pp037/.local/lib/python3.8/site-packages/torchvision/models/_utils.py:223: U
serWarning: Arguments other than a weight enum or `None` for 'weights' are depreca
ted since 0.13 and may be removed in the future. The current behavior is equivalen
t to passing `weights=None`.
  warnings.warn(msg)
test.json
score1: 0.7083333333333334
score1: 0.722222222222222
score1: 0.7083333333333334
score1: 0.6944444444444444
score1: 0.680555555555556
score1: 0.6944444444444444
score1: 0.7083333333333334
score1: 0.7083333333333334
score1: 0.6944444444444444
score1: 0.6944444444444444
max score: 0.722222222222222
avg score: 0.7013888888888888
new_test.json
score2: 0.7380952380952381
score2: 0.7261904761904762
score2: 0.7142857142857143
score2: 0.7380952380952381
score2: 0.75
score2: 0.7261904761904762
score2: 0.7380952380952381
score2: 0.7380952380952381
score2: 0.7142857142857143
score2: 0.7261904761904762
max score: 0.75
avg score: 0.730952380952381
```

6. Reference

- 1. [NIPS 2020] Denoising Diffusion Probabilistic Models
- 2. [PMLR 2021] Improved Denoising Diffusion Probabilistic Models
- 3. [NeurIPS 2021] Classifier-Free Diffusion Guidance