5.1.1 5.1.2

5.2.1

5.2.2

5

5

6

6

Digital Design

Zusammenfassung

Joel von Rotz & Andreas Ming / Quelldateien

Inhaltsverzeichnis 1 VHDL 2 2 1.1 1.1.1 2 2 2 Transactions 2 1.2.2 2 2 1.3 Architektur Entity 2 3 1.5 3 1.6.1 3 1.6.2 3 3 3 3 Sensitivity List 3 1.8 3 3 1.8.2 VHDL Syntax 3 3 Vivado 4 3.1 4 4 Finite State Machines (FSM) 4.1 FSM-Typ: Mealy 4 4 5 5 5 5 5 5 **Prozess Templates** 5

1. VHDL -

i Hinweis

Very High Speed Integrated Circuit Hardware Description Language ist einer Hardwarebeschreibung und keine Programmiersprache.

1.1 **Entwicklung**

1.1.1 Designflow

1.1.2 Struktur Datei

```
-- File: MyComponent.vhd
-- Author: myself
-- Date: yesterday
library ...
-- Library einbinden
-- Packages aus Library bekanntgeben
entity ...
-- Schnittstelle der Komponente gegen aussen
```

-- Funktion (Innenleben) der Komponente

1.2 Synthesis & Simulation

Synthesis vs. Implementation

- Synthesis generiert die Netlist des VHDL-Codes und beschreibt.
- Implementation wendet die Contraints an und

Innenleben des Komponents. Darin wird beschrieben, wie

i rtl & struct

Der Name rt1 wird verwendet, um grundlegende Logik-Komponenten zu definieren, wie zum Beispiel OR, XOR, AND, etc. struct beinhaltet eine Kombination/Anwendung von rtl-Komponenten.

1.4 **Entity**

Eine Entity beschreibt den Komponenten für äusserliche Zugriffe. Es wird nur die Struktur des Komponents bekannt gegeben, aber nicht den Inhalt des Komponenten.

i Hinweis

Alles was in der Entity bekannt ist (inkl. Libraries), ist auch in der zugehörigen Architecture bekannt.

1.5 Components

1.6 Kombinatorische Logik

Folgend sind *Process Statements* in Kurzschreibweise - Concurrent Signal Assignments - Selected Signal Assignment - Conditional Signal Assignment

Process Statements Alle Signal Assignments ausserhalb von process (Concurrent-, Selected-, Conditional-Signal Assignment) sind Process Statements in Kurzschreibform! sig <= not sig; -- Process Statement stud <= happy when mep >= C else satisfied when mep >= E else sad; -- Process Statement

1.6.1 Concurrent Signal Assignments

1.6.2 Selected Signal Assignments case

${\bf 1.6.3}\quad \hbox{Conditional Signal Assignments when/else}$

1.7 Prozesse/Sequential Statements

```
-- process sensitivity list
P1: process (i1, i2, i3)

-- local variable (only known in P1)
variable v_tmp : std_logic;
begin
  v_tmp := '0';
  if i1 = '1' and i2 = '0' then v_tmp := '1'; end if;
```

```
o1 <= v_tmp and i3;
-- process P1 drives signal o1
  o2 <= v_tmp xor i3;
-- process P1 drives signal o2
end process P1;</pre>
```

1.7.1 Sensitivity List

Prozesse werden mit Hilfe einer Sensitivity List auf ausgewählte Signale sensitiv gemacht.

1.8 Grundlegende Konzepte

1.8.1 Ports & Signale

Port sind die Anschlüsse eines Komponents und Signale sind Komponent-interne Signale, welche von aussen nicht zugreifbar sind.

std_logic, std_ulogic, std_logic_vector(a downto b)

1.8.2 Treiber <=

Der Treiber <= beschreibt, dass das linke Signal vom rechten Signal angetrieben wird. Folgendes Beispiel beschreibt einen Inverter:

```
Inv_Out <= not Inv_In;</pre>
```

2. VHDL Syntax

```
y <= (0 => '0', 1 => '0', 2 => '0', 3 => '0');
y <= (others => '0');
y <= "0000";
```

Conditional Signal Assignment

```
y <= x when en = '1' else "0000";
y <= x when en = '1' else (others => '0');
```

Prozess Statement with sequential loop-Statement

```
process(x,en)
begin
  for k in 3 downto 0 loop
    y(k) <= x(k) and en;
  end loop;
end process;</pre>
```

3. Vivado ———

3.1 Project Summary

3.1.1 Utilization

Unter *Utilization* in der *Project Summary* kann die <u>Post-</u>Synthesis und -Implementation beschreibt die verwe

4. Finite State Machines (FSM) —

Eine Zustandsmaschine beschreibt ein System in diskreten Zuständen. In **VHDL** wird für Mealy- & Moore-Automaten jeweils ein <u>memoryless</u> und ein <u>memorizing</u> Prozess verwendet. Der <u>memoryless</u> Prozess verarbeitet die Zustandswechsel und die Ausgänge (wobei dies Abhängig vom FSM-Typ ist). Der <u>memorizing</u> Prozess ist für die Zustands-Zurücksetzung und -zuweisung zuständig.

i Allgemeine Definition ZSM

$$o[k] = g(i[k], s[k])$$

$$s[k+1] = f(i[k], s[k])$$

k: diskrete Zeit mit $t = k \cdot T_{CLK}$, k = 0 entspricht Reset-Zeitpunkt

s: Zustand des Systems mit $s \in S = \{S_0, S_1, \dots S_N\}$

i: Input des Systems mit $i \in I = \{I_0, I_1, \dots I_M\}$

Output des Systems mit

 $o : o \in O = \{O_0, O_1, \dots, O_K\}$

Output Funktion, berechnet aktuellen Output

des Systems

Next-State Funktion, berechnet nächsten

[·] Zustand des Systems

4.1 FSM-Typ: Mealy

$$o[k] = g(i[k], s[k])$$

$$s[k+1] = f(i[k], s[k])$$

Beim *Mealy* werden die Ausgänge <u>beim Zustandswechsel</u> geändert.

4.2 FSM-Typ: Moore

$$o[k] = g(s[k])$$

$$s[k+1] = f(i[k], s[k])$$

Beim Moore werden die Ausgänge im Zustand geändert.

FSM-Typ: Medvedev 4.3

Medvedev hat eine ähnlichen Aufbau wie Moore, wobei der Ausgang direkt dem Zustandswert entspricht und keine Zwischen-Konvertierung gemacht wird.

$$o[k] = s[k]$$

$$s[k+1] = f(i[k], s[k])$$

4.4 Parasitäre Zustände

Jedes weitere Zustands-Flip-Flop erweitert die Anzahl Faktoren um den Faktor 2 ($S = 2^N$). Ungebrauchte Zustände werden parasitäre Zustände genannt.

$$n_{para} = 2^N - S$$
 $n_{para}|_{S=3, N=2} = 2^2 - 3 = 1$

Folgende Formel kann die Anzahl benötigten Flip-Flops berechnen

$$N = \lceil \log_2(S) \rceil = \left\lceil \frac{\log(S)}{\log(2)} \right\rceil$$
 $N|_{S=3} = \lceil \log_2(5) \rceil = 3$

N: Anzahl Flip-Flops

S: Anzahl verwendete Zustände

4.5 State Encoding

Zustände können auf verschiedene Arten dargestellt werden, bekannte Varianten sind binär und One Hot.

Zustand	Binär	One-Hot
S_0	00	001
S_1	01	010
S_2	10	100
Parasitäre Zustände	11	000, 011, 111, 110, 101

Parasitäre Zustände

Alle ungebrauchten Zustände sind parasitäre Zustände!

4.5.1 Binär

Meistverwendetes Format ist binär, da es kompakt und einfach erweiterbar ist.

- $S_0 \rightarrow 0000$
- $S_1 \rightarrow 0001$
- $S_2 \rightarrow 0010$

4.5.2 One-Hot

Bei One-Hot ist ein Bit high und alle anderen Bits low oder in anderen Worten, nur ein Bit ist aktiv.

4.6 Goldene Regeln der (FSM) Implementierung

- Memoryless Process (kombinatorische Logik)
 - Alle Eingangssignale der FSM und der aktuelle Zustand müssen in der sensitivity list aufgeführt werden.
 - Jedem Ausgangssignal muss für mögliche Kombination von Eingangswerten (inkl. parasitäre Input-Symbole) ein Wert zugewiesen werden. **Keine** Zuweisung bedeutet sequentielles Verhalten (Speicher)!
 - Parasitäre Zustände sollten mittels others abgefangen werden.
- Memorizing Process (sequentielle Logik)
 - Ausser Clock und (asynchronem) Reset dürfen keine Signale in die sensitivity list aufgenommen werden.
 - Das den Zustand repräsentierende Signal muss einen Reset-Wert erhalten.

5. Prozess Templates -

i Hinweis

Der Inhalt der Prozess-Templates wird in den =>CUSTOM gekennzeichneten Abschnitten geschrieben.

Positive Getriggertes D-FlipFlop

Mit asynchronem Reset 5.1.1

```
-- mit asynchronem Reset
process (rst, clk)
-- Deklarationen => CUSTOM
begin
  if rst = '1' then
    -- asynchr. Reset => CUSTOM
    Q <= '0';
  elsif rising_edge(clk) then
    -- getaktete Logik => CUSTOM
    Q \leq D;
  end if;
end process;
```

5.1.2 Ohne Reset

```
process (clk)
-- Deklarationen => CUSTOM
begin
  if rising_edge(clk) then
    -- getaktete Logik => CUSTOM
    Q <= D;
  end if;
end process;</pre>
```

5.2 Finite State Machine

5.2.1 Mealy

```
type state is (S0, S1, S2);
signal c_st, n_st : state;
p_seq: process (rst, clk) -- <1>
begin
 if rst = '1' then
   c_st <= S0;
 elsif rising_edge(clk) then
   c_st <= n_st;
 end if;
end process;
p_com: process (i, c_st) -- <2>
begin
 -- default assignments
 n_st <= c_st; -- remain in current state</pre>
  o <= '1'; -- most frequent value
  -- specific assignments
 case c_st is
   when S0 =>
     if i = "00" then
        o <= '0';
       n_st <= S1;
      end if;
    when S1 =>
      if i = "00" then
        n_st <= S2;
      elsif i = "10" then
       n_st <= S0;
      end if:
    when S2 =>
      if i = "10" then
       o <= '0';
       n_st \le S0;
      elsif i = "11" then
        n_st <= S1;
      end if;
```

```
when others =>
    -- handle parasitic states
    n_st <= S0;
    end case;
end process;</pre>
```

- 1. Memorizing (sequentielle Logik)
- 2. Memoryless (kombinatorische Logik)

5.2.2 Moore

```
type state is (S0, S1, S2);
signal c_st, n_st : state;
p_seq: process (rst, clk) -- <1>
begin
  if rst = '1' then
   c_st <= S0;
  elsif rising_edge(clk) then
   c_st <= n_st;</pre>
  end if;
end process;
p_com: process (i, c_st) -- <2>
  -- default assignments
 n_st <= c_st; -- remain in current state</pre>
 o <= '1'; -- most frequent value
  -- specific assignments
  case c_st is
   when S0 =>
     if i = "00" then
       n_st <= S1;
      end if;
    when S1 =>
      if i = "00" then
       n_st <= S2;
      elsif i = "10" then
       n_st <= S0;
      end if;
      o <= '0'; -- uncondit. output assignment
    when S2 =>
      if i = "10" then
        n_st <= S0;
      elsif i = "11" then
       n_st <= S1;
     end if;
    when others =>
      -- handle parasitic states
      n_st \le S0;
  end case;
end process;
```

- 1. Memorizing (sequentielle Logik)
- 2. Memoryless (kombinatorische Logik)