Lezione 19 Geometria I

Federico De Sisti 2024-04-18

1 Esercizi vari

Esercizio 1 Foglio 6

 $f:A\to A$ affinità ha un unico punto fisso se e solo se la sua parte lineare (φ) non ha l'autovalore 1

Svolgimento

Sia $F = \{x \in A | f(x) = x\}$

Supponiamo $F \neq \emptyset$ e $P \in F$ dico che

$$\star F = P + \ker(\varphi - Id).$$

dove $\ker(\varphi-Id)$ è l'autospazio di autovalore 1 di φ

$$u \in V$$
 $P + u \in F \Leftrightarrow P + u = f(P + u) = f(P) + \varphi(u) = P + \varphi(u) \Leftrightarrow \varphi(u) = u$ ovvero $u \in \ker(\varphi - Id)$

Se ora F ha un unico punto fisso \star implica che

$$ker(\varphi - Id) = \{0\}.$$

cio
è 1 non è autovalore di φ

Viceversa facciamo vedere che se $\ker(\varphi-Id)=\{0\}$ allora $F\neq\emptyset$ Cerchiamo Q+v tale che

$$f(Q+v) = Q+v$$

$$f(Q) + \varphi(v)$$

$$f(Q) - P = v - \varphi(v)$$

$$\overrightarrow{Qf(Q)} = -(\varphi - Id)(v)$$

Quindi, poiché $(\varphi - Id)$ è invertibile (per ipotesi), dato Q trovo un unico $v = -(\varphi - Id)^{-1}(\overline{Qf(Q)})$

per cui Q+v è un punto fisso

Esercizio 5 Foglio 6

$$f(x) = Ax + b$$
 in \mathbb{E}^2

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \quad b = 0$$

1

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad b = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

SvolgimentoA

- 1. è una traslazione quindi non ha punti fissi
- 2. $\det A = 1$ e A ortogonale

$$\begin{array}{l} AX+b=X\\ (A-I)X=-b\\ \left(\begin{array}{cc} 1/2 & -\sqrt{3}/2\\ \sqrt{3}/2 & 1/2 \end{array}\right) \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 0\\ -1 \end{pmatrix}\\ x_1=\det\begin{pmatrix} 0 & -\sqrt{3}/2\\ -1 & -1/2 \end{pmatrix} = -\frac{\sqrt{3}}{2} \quad x_2=\det\begin{pmatrix} -1/2 & 0\\ \sqrt{3}/2 & -1 \end{pmatrix} = \frac{1}{2}\\ 3. & \begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \in SO(2) \text{ rotazione di } \frac{\pi}{2}\\ \text{Esercizio da finire} \end{array}$$

2 Diangonalizzazione unitaria di operatori normali

 $(\mathbb{C}^n,$ prodotto hermitiano standard) $M^\star=\overline{M}^t$ Mè normale se $MM^\star=M^\star M$ siano normali le matrici

unitarie $MM^* = Id$ hermitiane $M = M^*$ antihermitiane $M = -M^*$

Teorema 1 (Spettrale)

 $M \ \hat{e} \ normale \ se \ e \ solo \ se \ \exists U \in U(n): \ U^tMU \ \hat{e} \ ortogonale$

nota

U(n) spazio delle matrici unitarie

$$\begin{split} L &= \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \quad L^\star = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \Rightarrow L \text{ matrice hermitiana} \\ \text{Trovo ora il polinomio caratteristico} \\ t^2 - 2t &= 0 \text{ che ha quindi autovalori } t = 0, t = 2 \\ v_0 &= \mathbb{C} \begin{pmatrix} 1 \\ i \end{pmatrix} \quad v_2 = \mathbb{C} \begin{pmatrix} 1 \\ -i \end{pmatrix} \\ \langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ -i \end{pmatrix} \rangle &= 1 \cdot 2 + i \cdot i = 0 \\ \langle \begin{pmatrix} 1 \\ i \end{pmatrix}, \begin{pmatrix} 1 \\ i \end{pmatrix} \rangle &= 1 \cdot 1 + i \cdot (-i) = 1 - i^2 = 2 \\ U &= \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ i/\sqrt{2} & -i/\sqrt{2} \end{pmatrix} \qquad U^-1LU = 0002. \end{split}$$

Dove il prodotto scalare standard è stato fatto per verificare che siano ortogonali, il secondo mi serve per normalizzare la matrice (di fatti divido per la radice del risultato)

Esempio 2 $L = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \text{ matrice ortogonale con determinante 1, quindi rotazione}$ il polinomio caratteristico è $t^2-\sqrt{3}t+1$ gli autovalori sono quindi $t=\frac{\sqrt{3}\pm i}{2}$ $v_{\frac{\sqrt{3}\pm i}{2}} = \mathbb{C} \begin{pmatrix} i \\ \pm 1 \end{pmatrix}$

$$U = \begin{pmatrix} i/\sqrt{2} & i/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}.$$

Ultimo esempio

$$L = \begin{pmatrix} 1+i & i \\ -i & 1+i \end{pmatrix} \quad L^{\star} = \begin{pmatrix} 1-i & i \\ -i & 1-i \end{pmatrix}$$

$$LL^{\star} = \begin{pmatrix} 3 & 2i \\ -2i & 3 \end{pmatrix} = L^{\star}L.$$

$$\begin{aligned} t^2 - 2(i+1) + 2i - 1 &= 0 \quad t_1, t_2 \\ v_{t_1} &= \mathbb{C} \begin{pmatrix} i \\ 1 \end{pmatrix} \quad v_{t_2} &= \mathbb{C} \begin{pmatrix} i \\ -1 \end{pmatrix} \\ U \text{ come nell'esercizio precedente} \end{aligned}$$