

Geosimulation modelling

Judith Verstegen

Institute for Geoinformatics, University of Münster

September 6th 2019

Outline

- 1. Introduction: geosimulation models
- 2. Example of agent based modelling: pedestrians
- 3. Example of field-based modelling: land use change
- 4. PCRaster Python tutorial

1. Introduction: Geosimulation models

Different ways of dynamic modelling

Data-driven model	Theory-driven model	
Start with empirical data	Start with a theory i.e. system description	
Based on correlations between drivers and the system state		
Top-down	Bottom-up	
Also called: empirically-based model, statistical model, extrapolation model, machine learning model	Also called: process-based model, physically-based model (not the same), geosimulation model	
data model output	theory model output	

Example of a geosimulation model

What is a geosimulation model?

A **system** is a set of interacting entities forming an integrated whole.

A model is a purposeful and simplified representation of a system.

A **geosimulation model** is a **spatially explicit, process-based, dynamic** model, often with a focus on human or animal behavior.

With:

- i inputs
- **f** transition function
- **p** parameters in f
- **z** the system state
- *t* time step

Geosimulation modelling paradigms

	Agent-based modelling (multi-agent systems)	Field-based modelling (cellular automata)
system state	Set of discrete objects	Continuous or discrete
attribute(s)	Is linked to the agent	Has a value everywhere
processes	Behavior of a single agent	Behavior of cells that remain in their location

2. Agent-based modelling: Pedestrians

8

State of the art in pedestrian simulation

Agent-based model

Route choice behavior is simplistic:

- Agents have a 'perfect' map
- Streets are only geographic elements
- 'Optimal' routes

Distributed Simulation and Real Time Applications

Pedestrians - conceptual model

We implement:

- Other geographical elements, here nodes and regions, based on Lynch theory
- Hierarchical route choice

Filomena, Manley and Verstegen (2019), COSIT

Street segment usage for 1000 trips

Filomena, Manley and Verstegen (2019), COSIT

3. Field-based modelling: Land use change

Land use change dynamics in Brazil

MAGNET (CGE) and PLUC (spatial LU)

Results error propagation and sensitivity

van der Hilst et al. (2018), GCB-Bioenergy

4. PCRaster Python tutorial

What is PCRaster?

PCRaster is:

- software for map algebra and spatio-temporal (or geosimulation) modelling
- stand-alone (PCRcalc) or as a Python library
- PCRaster Python framework

Other properties

- available for Linux and Windows
- comes with the interactive visualization tool Aguila
- map format in gdal
- free and open source, download it at: http://pcraster.geo.uu.nl/

