Name:.			•••••				
Roll No.		**********		•••••	•••••		
Invigilat	or's S	ignature :	•••••	•••••	•••••		
	. *.		2010	-11	5/EC-513,	2010-11	
			IKOL	SYSTEM			
Time Allotted: 3 Hours					Full M	larks : 70	
	Th	e figures in t	he marg	in indicate j	full marks.		
Candia	lates (are required		neir answer practicable		on words	
	* *		GROU	P – A			
		(Multiple (Choice '	Type Que	stions)		
1. Ch	oose 1	he correct a	ternativ	es for any to	en of the fol	lowing:	
					1	$0 \times 1 = 10$	
i)	The affe	e insertion o	f negativ	ve feedback	in a conti	ol system	
	a)	the transie	nt respo	nse to vani	sh uniforml	y	
	b)	the transie	nt respo	nse to deca	y very fast		
	c)	no change	in trans	ient respon	se	·	
•	d)	the transie	nt respo	nse decays	at a slow s	tate.	
ii)	The	The location of the closed loop conjugate pair of poles on					
	the	Jw axis indi	cates the	at the syste	m is		
• 1	a)	stable		b) u	nstable	•	
	c)	marginally	stable	d) cr	itrically sta	ble.	
5403						Turn over	

iii)	The	e gain of a system is	lO. In te	erms of dB it is				
•	a)	0 dB	b)	1 dB				
	c)	20 dB	d)	100 dB.				
iv)	The phase margin of a system is used to specify							
	a)	time response	b)	frequency response				
	c)	absolute stability	d)	relative stability.				
v)		he gain of an open le rgin	oop sys	tem is doubled, the gain				
i.	a)	is not affected	b)	gets doubled				
	c)	becomes half	d)	becomes 1/4th.				
vi)	vi) Addition of poles to the closed loop transfer fu							
	a)	increases rise time	b)	decreases rise time				
	c)	increases overshoot	d)	has no effect.				
vii)	A sy	ystem has a pole at	origin, i	ts impulse response will				
	a)	constant	b)	ramp				
	c)	decaying exponentia	ally d)	oscillatory.				
viii)	In force-voltage analogous system, displacement is							
		equivalent to						
•	a)	current	b)	flux				
	c)	charge	(d)	inductance.				
5403	. ,	2						

- Root locus technique is applicable to ix)
 - single loop system a)
 - multiple loop system b)
 - single as well as multiple loop system c)
 - not more than two loop systems. d)
- The Z transform F(Z) of function $f(nt) = a^{nt}$ is x)
 - $\frac{Z}{z-a^{T}}$
- b) $\frac{Z}{z+a^T}$

- d) $\frac{Z}{z-a^{-T}}$.
- The membership value of Fuzzy control sytem is varied xi) within the range
 - a) 0 to 1
 - b) 1 to 2
 - 0 to 1.c)
- the state variable xii) The transfer function for representation $\frac{dx}{dt} = Ax + Bu$, Y = Cx + Du is given by
 - a) $D+C(SI-A)^{-1}B$ b) $B(SI-A)^{-1}C+D$
 - c) $B(SI-A)^{-1}B+C$ d) $C(SI-A)^{-1}D+B$.

5403

[Turn over

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. A system is represented by the state & output equations is given below. Find:
 - a) Characteristic equation
 - b) The poles.

$$\dot{X} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 3 & 2 \end{bmatrix} X + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$Y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} X.$$

3. For a unity feedback system having open loop transfer function as $G(s) = \frac{k(s+2)}{s^2(s^2+7s+12)}$, determine (a) number of

types of the system, (b) error constants and (c) steady state error for parabolic input.

4. Find $\frac{C}{R}$ of the following signal flow graph using Mason's gain formula.

5403

- 5. For a system with $F(s)=s^4+22s^3+10s^2+s+k=0$, obtain the marginal value of k & the frequency of oscillation for that value of k.
- 6. A system is described by $\dot{X} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $Y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$

Check the controllability & observability of the system.

GROUP - C (Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. The open loop transfer function of an unity feedback system is given by $G(s) = \frac{k}{s(1+0.02s)(1+0.04s)}$. draw the Bode plot.

Find the gain margin & phase margin. Hence find the values of open loop gain so that the system has a phase margin of 45°.

- 8. The loop transfer function of a feedback control system is given by $G(s)H(s) = \frac{k(s+6)}{s(s+4)}$.
 - a) Sketch the root locus plot with K as a variable parameter & show that loci of complex roots are part of a circle.
 - b) Determine the break away/break in points if any.
 - c) Determine the range of K for which the system is underdamped.

5403

5

[Turn over

- 9. a) Find the z-transform of $\sin \omega t$.
 - b) A sampled data system has a transfer function : G(s) = 1/(s+1). If the sampling time is one second and the system is subjected to unit-step input function, determine the discrete time response.
 - c) Obtain z-transform for the following block diagram shown in the figure.

- 10. a) Write down the advantages and disadvantages of state space techniques.
 - b) Realize H(s) in cascade form:

$$H(s) = \frac{s(s+2)}{(s+1)(s+3)(s+4)}$$

5403

c) Obtain the eigenvalues and eigenvectors for a system described by

$$\dot{X} = \begin{bmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} U \text{ and } Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X. \qquad 3 + 6 + 6$$

- 11. a) Write a note on PID controller.
 - b) With the help of an example, explain the principle of fuzzy logic in control engineering.
 5 + 10