

# **BBMerlion**

### Differentiation

By: Zhafir Aglna Tijani

### Definisi

### Differentiation

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- F'(x) menggambarkan rate of change dari f(x) (
   Rasio perubahan fungsi f(x) pada tiap x )
- Sangat berguna untuk memahami karakteristik grafik, seperti kapan ia akan naik, kapan ia akan turun, nilai maksimal/minimal grafik, kelengkungan, dan semacamnya

#### DITICITATION

Limit tadi maksudnya apa ?



$$\frac{f(x+h)-f(x)}{f(x+h)}$$

#### h

- •Adalah gradien dari garis, yg merupakan perkiraan (approximation) dari grafik f(x)
- •Jika h semakin kecil dan semakin kecil, maka garis approksimasi tadi akan semakin mendekati garis fungsi sesungguhnya
- •Inilah yang disebut differentiation
- Pada grafik di bagian kanan, gradien garis tersebut adalah positif, jadi bisa ditarik kesimpulan bahwa jika f'(x) > 0, maka f(x) sedang "Increasing"
- Sebaliknya jika di kiri, f'(x) < 0, maka f(x) sedang "Decreasing"
- Jika f'(x)=0, maka F(x) adalah critical point

## Differentiation

- F'(x) pada sebuah grafik menentukan karakteristik bahwa dia increasing/decreasing di titik x
- F"(x) pada sebuah grafik menentukan fungsi itu concave atau convex
- Jika f"(x) = 0 atau F"(x) doesn't exist, x adalah inflection point (titik dimana concavity berubah / datar)



## Differentiation

- Summary 1
- If f'(x) < 0 and f''(x) < 0, then the graph is concave downwards
- If f'(x) < 0 and f''(x) > 0, then the graph is convex downwards
- If f'(x) > 0 and f''(x) < 0, then the graph is concave upwards
- If f'(x) > 0 and f''(x) > 0, then the graph is convex upwards
- If f'(x) = 0 and f''(x) < 0, then x is a local maximum point
- If f'(x) = 0 and f''(x) > 0, then x is a local minimum point
- If f"(x) = 0, the concavity is inconclusive

### Differentiation

Trivial matters

 Dalam beberapa buku/soal, convex terkadang disebut sebagai concave up, dan concave sebagai concave down

# Fungsi f(x) dari fungsi f'(x)

- Bentuk fungsi f(x) bisa ditebak ( can be expected ) jika grafik f'(x) diketahui
- How ? Yaitu dengan Sifat f'(x) dan f"(x)
- Dari grafik f'(x), kita bisa mengetahui nilai dari f'(x) dan juga f''(x)
- Grafik f(x) tidak perlu digambar secara akurat, hanya sketsa (yang penting bentuk dan titik2 pentingnya sesuai). Kecuali jika diminta secara detil, banyak bantuan detil akan diberikan

# Example

The graph of f'(x) is showed in figure below, sketch the graph of f(x)!



Ans: Step 1: Definisikan f'(x) dan f''(x) setiap kejadian yang ada di grafik

```
When -\infty < x < -2, f'(x) = negative, f''(x) = positive constant -2 < x < -1, f'(x) = positive, f''(x) = positive contant -1 < x < 1, f'(x) = positive constant, f''(x) = 0 1 < x < 2, f'(x) = positive, f''(x) = negative contant 2 < x < \infty, f'(x) = negative, f''(x) = negative contant And f'(x) = 0 while x = -2 and x = 2
```

Step 2 : Dari yang diketahui, simpulkan bentuk grafik sesuai karakteristik

```
When -\infty < x < -2, f'(x) = negative, f''(x) = positive constant \Rightarrow Convex downwards -2 < x < -1, f'(x) = positive, f''(x) = positive contant \Rightarrow Convex upwards -1 < x < 1, f'(x) = positive constant, f''(x) = 0 \Rightarrow Increasing slope 1 < x < 2, f'(x) = positive, f''(x) = negative contant \Rightarrow Concave upwards 2 < x < \infty, f'(x) = negative, f''(x) = negative contant \Rightarrow Concave downwards
```

# Example

#### Step 3: Sum it up

```
When -\infty < x < -2, f'(x) = negative, f''(x) = positive constant \rightarrow Convex downwards
        -2 < x < -1, f'(x) = positive, f''(x) = positive contant \rightarrow Convex upwards
        -1 < x < 1, f'(x) = positive constant, f''(x) = 0 Increasing slope
        1 < x < 2, f'(x) = positive, f''(x) = negative contant <math>\rightarrow Concave upwards
        2 < x < \infty, f'(x) = negative, f''(x) = negative contant \rightarrow Concave downwards
                                                                          X=2
```

So, f(x) is approximately shown in figure below

X=-2



### Differentitation

 Review: menurunkan fungsi y terhadap x (differentiate y with respect to x), adalah seperti ini

$$y = ax \Longrightarrow \frac{dy}{dx} = a$$

$$y = uv \Longrightarrow \frac{dy}{dx} = u'v + v'u$$

$$y = a \ln x \Rightarrow \frac{dy}{dx} = \frac{a}{x}$$

$$y = ax^n \Longrightarrow \frac{dy}{dx} = nax^{n-1}$$

$$y = \frac{u}{v} \Longrightarrow \frac{dy}{dx} = \frac{v'u - u'v}{v^2}$$

$$y = e^{ax} \Longrightarrow \frac{dy}{dx} = ae^{ax}$$

### More about e

- e adalah bilangan natural = 2.71828......
- e menarik karena beberapa sifatnya dalam Calalusaylor Series Differensial

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

$$y = e^{ax} \Longrightarrow \frac{dy}{dx} = ae^{ax}$$

Logaritma

$$e \log x = \ln x$$

Integral

$$\int \frac{1}{x} dx = \ln x \qquad \int e^{ax} dx = \frac{1}{a} e^{ax}$$

# Implicit differentiation

 Sekarang, bagaimana cara mencari differensial terhadap x. jika y ada dalam bentuk yg tidak biasa ? misalkan

$$x^3 + 2x + 2y^2 = 0$$

Kita bisa menggunakan implicit differentiation dengan cara

$$\frac{d}{dx}x^3 + \frac{d}{dx}2x + \frac{d}{dx}2y^2 = 0$$
Cannot be solved directly

$$\frac{d}{dx}x^3 + \frac{d}{dx}2x + \frac{dy}{dx}\frac{d}{dy}2y^2 = 0$$

$$3x^2 + 2x + 4y\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-3x^2 - 2x}{4y}$$

## More examples

Find the implicit differentiation of this form with respect to x

$$e^{2x} + 3x + \ln y = 0$$

#### Ans:

$$\frac{d}{dx}e^{2x} + \frac{d}{dx}3x + \frac{d}{dx}\frac{dy}{dy}\ln y = 0$$

$$\frac{d}{dx}e^{2x} + \frac{d}{dx}3x + \frac{dy}{dx}\frac{d}{dy}\ln y = 0$$

$$2e^{2x} + 3 + \frac{dy}{dx} \frac{1}{y} = 0$$

$$\frac{dy}{dx} = -y(2e^{2x} + 3)$$

### Try solve this!

Find the implicit differentiation of this form with respect to x

$$(2y+2)^2 + \cos x = 5y$$

### Parametric Differentiation

 Selain secara implisit, terkadang persamaan dinyatakan dalam bentuk parametric, contoh bentuk parametric adalah sebagai berikut

$$x = \cos t \qquad \qquad y = t^2 + 2$$

 Terkadang, kita diharuskan mencari dy/dx dari fungsi tersebut. Cara termudah adalah dengan mencari kedua turynan dari masing2 variabel terhadap t. Lalu dy/dx dapat didefinisikan sebagai

$$\frac{dy}{dx} = \frac{dt}{dx}$$
Dalam kasus ini
$$\frac{dy}{dt} = -\sin t$$

$$\frac{dx}{dt} = 2t$$

$$\frac{dy}{dx} = -\frac{\sin t}{2t}$$

 Saat nilai dy/dx ini adalah 0 , maka nilai t pada saat itu disebut dengan stationary point

# Example

Find the stationary point in the range of  $0 \le t \le \pi/2$  of the parametric function that given below  $x = \sin t^2$ 

Step 1 : cari dx/dt

$$\frac{d}{dt}\sin t^2 = 2t\cos t^2$$

Step 3 : cari dy/dx

$$\frac{dy}{dt} = \frac{6t\sin t^2}{2t\cos t^2} \quad \frac{dy}{dt} = \tan t^2$$

$$y = -3\cos t^2$$

Step 2 : cari dy/dt

$$-\frac{d}{dt}3\cos t^2 = 6t\sin t^2$$

Step 4 : cari t ya membuat dy/dx=0

$$\frac{dy}{dt} = 0 \qquad t = 0$$

Therefore, the stationary point is t = 0

- Tangent line (garis singgung) adalah garis yang menyinggung hanya di satu titik dari sebuah kurva
- Normal line (garis normal) adalah garis yang tegak lurus terhadap garis singgung, dan melewati titik yg dissinggung oleh tangent line
- 2 hal yang penting dalam mencari kedua garis ini adalah Gradien dan Titik yang disinggung
- Cara untuk mencari persamaan garis akan sama, yang berbeda hanyalah gradien m, titik yg dilewati akan sama yaitu (X,Y).

**Tangent Line** 

$$m = \frac{df(X)}{dx}$$

**Normal Line** 

$$m = -\frac{1}{\frac{df(X)}{dx}}$$

**Straight Line Equation** 

$$y-Y=m(x-X)$$



Tangent line



- Example
- Find the tangent and normal line for curve  $f(x) = x^2 + 2x 7$  at the point where x = 3
- Step: 1: cari titik yang disinggung When x = 3, then  $f(x) = (3)^2 + 2(3) - 7 = 8$ The intersection point is (3, 8)

Step 2 : Cari gradient dari tangent line dan normal line

#### **TANGENT LINE**

$$m = \frac{df(X)}{dx}$$

$$m = \frac{d(x^2 + 2x - 7)}{dx}$$

$$m = 2x + 2 = 2(3) + 2 = 8$$

#### **NORMAL LINE**

Since m for tangent line is 8, then

$$m = -\frac{1}{m}$$

$$m = -\frac{1}{8}$$

Step 3 : cari garis yang dimaksud

#### **Straight Line Equation**

$$y-Y=m(x-X)$$

#### **TANGENT LINE**

$$y-8 = 8(x-3)$$

$$y = 8x - 24 + 8$$

### y = 8x - 16

#### **NORMAL LINE**

$$y - 8 = -\frac{1}{8}(x - 3)$$

$$y = -\frac{1}{8}x + \frac{3}{8} + 8$$

$$y = -\frac{1}{8}x + \frac{27}{8}$$

# Application of differentiation

 Aplikasi yang paling umum adalah optimisasi

 Optimisasi adalah cara untuk mencari nilai maksimal atau minimal dari sebuah masalah When

$$\frac{d}{dx}f(a) = 0$$

$$f(a) = \frac{Max}{Min}$$

# Application of Differentiation

### 6 steps of Optimization

- i. Ask yourself: Apa yg diminta, apa variabel yang digunakan, apa yang dikasih, dan apa saja kondisi-kondisinya
- ii. Draw a diagram : Gambar agar lebih jelas visualisasinya
- iii. Introduce Notation for main objective: Tulis fungsi yang ingin kita cari dalam bentuk matematika (ex: F = 20a + b, dimana F adalah y ingin kita cari)
- iv. Express F in terms of 1 Variable: Ubah semua hal dalam satu variabel, cari relasi antara variabel 1 dengan yang lain
- v. Find the maximum or minimum value by differentiation
- vi. Substitute the value, find the objective function

## Application of differentiation

### Example :

A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to create the can!

#### Step 1 : Ask Yourself

Yang diminta : Minimize the cost  $\rightarrow$  Minimize the area of metal!

Kondisi : Cylinder Volume =  $1 L \rightarrow 1000 cm^3$ 

Variabel yang digunakan : V = Volume, A = Area, r = jari-jari, h = tinggi silinder

#### Step 2 : Draw a Diagram



# Application of Differentiation

#### Step 3: Introduce a notation/function

Kita ingin mencari nilai minimum "Area of the metal". Seperti yang kita ketahui, total luas permukaan sebuah tabung adalah 2 X (Luas Alas) + Luas Selimut. Jadi bisa dirumuskan luas metal adalah

$$A = 2\pi r^2 + 2\pi rh$$

#### Step 4: Express A in terms of 1 variable

Seperti yang terlihat, fungsi A memiliki dua variabel yaitu r dan h. Oleh karena itu, kita harus mencari tahu hubungan antara r dan h. Periksa kembali apa yang kita miliki, kita tahu bahwa Volume silinder adalah 1000 cm<sup>3</sup>. Maka bisa ditulis

$$V = \pi r^2 h = 1000$$

$$h = \frac{1000}{\pi r^2}$$

$$A = 2\pi r^2 + \frac{2000}{r}$$

# Application of Differentiation

Step 5: Find the minimum value by differentiation

$$\frac{dA}{dr} = \frac{d}{dr} (2\pi r^2 + \frac{2000}{r})$$

$$\frac{dA}{dr} = 4\pi r - \frac{2000}{r^2} = \frac{4(\pi r^3 - 500)}{r^2}$$

To find minimum, 
$$f'(r) = 0$$

$$\frac{4(\pi r^3 - 500)}{r^2} = 0$$

$$\pi r^3 = 500$$

$$r = \sqrt[3]{500/\pi}$$

Step 6 : Substitute the value, find the objective function

$$A = 2\pi (500/\pi)^{\frac{2}{3}} + \frac{2000}{\sqrt[3]{500/\pi}}$$

# A Level Syllabus

#### 5.1 Differentiation Include:

- Graphical interpretation (i) f'(x) > 0, f'(x) = 0, and f'(x) < 0) (ii) f''(x) > 0 and f''(x) < 0)
- Relating the graph of y = f'(x) to the graph of y = f(x)
- Differentiation of simple functions defined implicitly or parametrically
- Finding the numerical value of a derivative at a given point using graphic calculator
- Finding equations of tangents and normals to curves
- Solving practical problems involving differentiation

### References

Optimization :
 <a href="http://www.mccc.edu/~silvere/documents/">http://www.mccc.edu/~silvere/documents/</a>
 Chap4\_Sec7StewartMAT151.pdf

http://www.mathsrevision.net/node/64