Кодирование и декодирование текстов. Равномерные и неравномерные коды

Равномерные (фиксированной длины) и неравномерные (переменной длины) коды, уникальная декодируемость, префиксные коды, неравенство Крафта—Макмиллана, идея кода Хаффмана.

Цели урока

- Различать равномерные и неравномерные коды, понимать их назначение.
- Проверять префиксность и уникальную декодируемость кодов.
- Оценивать среднюю длину кода и сравнивать с энтропией.
- Декодировать поток по словарю; понимать идею кода Хаффмана.

Сценарий видео (7-11 минут)

- 0:00–0:40 Мотивация: почему одинаково кодировать не всегда выгодно; частые буквы vs редкие.
- 0:40-3:00 Базовые определения
 - **Равномерный код** фиксированная длина слова: m = \[log_2 \ N \].
 - Неравномерный код переменная длина, выгодно для частотных символов.
 - Префиксный код ни одно слово не является префиксом другого → мгновенная декодировка.
 - **Крафт**—**Макмиллан**: для префиксного кода \(\sum 2^{-l_i} \le 1\).
 - \circ Средняя длина: L_{avg} = \sum p_i\, l_i; нижняя граница H(X) \le L_{avg} < H(X)+1 для Хаффмана.
- 3:00–5:30 Префиксность и декодирование
 - Как выявить конфликт: префикс, двусмысленность при декодировании.
 - Алгоритм декодирования: идти по дереву; при листе выводить символ.
- 5:30–7:30 Идея Хаффмана (интуитивно)
 - Сливаем две наименее вероятные вершины, строим дерево, назначаем 0/1 по ребрам.
 - Выигрыш: частым короткие коды, редким длинные.

Быстрые примеры

Пример 1: Равномерный код

```
N = 40 символов \rightarrow m = \lceil \log_2 40 \rceil = 6 бит
```

Сообщение 200 символов: $I = 200 \times 6 = 1200$ бит = 150 В.

Пример 2: Неравномерный (префиксный) код

Словарь: $A \to 0$, $B \to 10$, $C \to 110$, $D \to 111$

Строка 0110111 декодируется как АС D: 0 | 110 | 111.

Пример 3: Крафт—Макмиллан

Длины: 1,2,3,3

Сумма: $2^{-1}+2^{-2}+2^{-3}+2^{-3}=1 \rightarrow$ возможен префиксный код.

Закрепление: задачи с подробными решениями

1. Равномерный код: объём сообщения

Условие: алфавит 50 символов, длина 180. Найти объём.

 $Peweeue: m = \lceil \log_2 50 \rceil = 6; I = 180 \times 6 = 1080$ бит = 135 В.

Ответ: 135 В.

2. Проверка префиксности

Условие: $A \rightarrow 0$, $B \rightarrow 01$, $C \rightarrow 011$, $D \rightarrow 111$. Является ли код префиксным?

Решение: слово В (01) имеет префикс А (0) → **не префиксный**, декодирование неоднозначно.

Крафт-сумма может быть ≤ 1 , но префиксность не гарантируется — это лишь необходимое условие для существования префиксного кода с такими длинами.

3. Декодирование по словарю

Условие: $A \rightarrow 0$, $B \rightarrow 10$, $C \rightarrow 110$, $D \rightarrow 111$. Декодировать **01011110110**.

Решение: 0 | 10 | 111 | 10 | 110 → A B D B C.

Oтвет: ABDBC.

4. Средняя длина и выигрыш

Условие: p(A,B,C,D) = (0.4, 0.3, 0.2, 0.1); код $A \rightarrow 0, B \rightarrow 10, C \rightarrow 110, D \rightarrow 111$.

Решение: $L_{avg} = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 3 = 1.9$ бита.

Равномерный: $m = \lceil \log_2 4 \rceil = 2$ → выигрыш 2 - 1.9 = 0.1 б/симв.

5. Идея Хаффмана (мини-пример)

Условие: p(A,B,C,D) = (0.4, 0.2, 0.2, 0.2). Построить коды.

Решение (один из вариантов): слить три по 0.2 последовательно; можно получить $A \to 0$, $B \to 10$, $C \to 110$, $D \to 111$. Коды Хаффмана не единственны, но L_{avg} минимальна среди префиксных бин. кодов.

Мини-викторина

- Что такое префиксный код? \rightarrow Ни одно слово не является префиксом другого.
- Зачем нужны неравномерные коды? → Сократить среднюю длину при неравных вероятностях.
- Крафт-сумма для длин (1,2,3,3) равна? → 1.
- Равномерный код для N=20 символов имеет длину? → 5 бит.
- Как декодировать поток в префиксном коде? → Идти по дереву до листа.

Конспект (коротко)

- **Равномерный**: m = \[log_2 N] бит/символ.
- Неравномерный: переменные длины; эффективен при разных вероятностях.
- Префиксный: мгновенная декодируемость; проверка префикса.
- **Крафт**—**Макмиллан**: $\(sum 2^{-1} \le 1)$ существование префиксного кода.
- Средняя длина: L_{avg} = \sum p_i l_i, для Хаффмана близка к энтропии.

Домашнее задание (самопроверка)

1. **Задача A**: N=64, длина текста 300. Найти объём (равномерный).

Ответ: m=6; $I=300\times6=1800$ бит = 225 В.

2. Задача В: Длины (1,2,3,3,4). Выполнима ли Крафт-сумма?

Решение: 1/2+1/4+1/8+1/8+1/16=1.0625 > 1 → нет префиксного кода.

3. **Задача С**: Декодировать **0110110111** при словаре $A \rightarrow 0$, $B \rightarrow 10$, $C \rightarrow 110$, $D \rightarrow 111$.

Ответ: A C B C D.

Визуальные подсказки

- Дерево кода с листами A,B,C,D.
- Таблица префиксности: примеры допустимых/недопустимых наборов.
- Гистограмма частот \rightarrow короткие/длинные коды.

Подготовлено для урока «Кодирование и декодирование текстов» · Печать: Ctrl/Cmd + P