

d= are tg: 03 $h = \sqrt{0.3^2 + 0.4^2} = 0.5 m$ Cos x = 04/65 2en a = 03/65 20 ESQUEMA de LAS PUERZAS

3° CALCULO & LOS COMPONENTES

| F12= + |F1 cos x = 02304 N Fig= - |F1| ren x = -0'1728N

 $F22 = + (F2) \cos \alpha = 02304N$ F25 = + | F2 | 2en 0 = 01728N

) Fa= F12+ F2x= 04668N) Fy = F19+ F2y = Ø

9, 1 90 From AL

140 CALCULO DELA FUERZA TOTAL

LILOS SIGNOS SE VEN EN EL ESQUEMA del PUNTO[2]!

— CODO COMO MIVEL DE REFERENCIA DE Ep el
$$\infty$$
; $Ep(\infty) = \emptyset$ -
$$Ep = K q_0 \sum_{r} q_i \qquad (r = distancia de qia q_0)$$
de qo debido a q_i

$$\frac{\text{PINAL}}{\text{Ep8}} = 9 \cdot 10^{9} \, \frac{\text{Nm}^{2}}{\text{c}^{2}} \left(4 \cdot 10^{6} \text{c} \right) \left[\frac{2 \cdot 10^{6} \text{c}}{\sqrt{03} \, \text{m}} + \frac{2 \cdot 10^{6} \text{c}}{\sqrt{03} \, \text{m}} \right] = +0'3223$$

(Se ha hocho tradajo CONTRA EL CAMPO) (yaque la carga qo se "ha acercado" a 91592)

90>0 91 592>0

$$\frac{\text{ENICIAL}}{\text{Epi}} = 9.10^{9} \frac{\text{Nm}^{2}}{\text{c}^{2}} \left(+ 10^{\circ} \text{C} \right) \cdot \left[\frac{+10.10^{\circ}}{\text{o}^{1} \text{m}} + \frac{+20.10^{\circ}}{\text{o}^{2} \text{m}} + \frac{30.10^{\circ}}{\text{o}^{4} \text{m}} \right] = 0^{\circ} 2475 \text{J}$$

$$\frac{\text{PINAL}}{\text{Epi}} = 9.10^{9} \frac{\text{Nm}^{2}}{\text{c}^{2}} \left(+ 10^{\circ} \text{C} \right) \cdot \left[\frac{+10.10^{\circ} \text{C}}{\text{o}^{2} \text{m}} + \frac{+20.10^{\circ} \text{C}}{\text{o}^{2} \text{m}} + \frac{30.10^{\circ} \text{C}}{\text{o}^{2} \text{m}} \right] = 0^{\circ} 405 \text{J}$$

Se ha hecho trabajo contra el campo, ya que qzyqz (ambas positivas) re han acercado a qo (positiva).

- CALCULAR LA FUERZA EJERCIDA POR 91,925 93 SOBRE 90
- CALCULAR EL FNCREMENTO DE ENERGIA POTENCIAL de go CUANDO go MUEVE A LA POSICIONO

[1°] CALCULO DE MODULOS

$$92 \triangleright (Fz) = \left| 9.10^9 \frac{Nm^2}{C^2} \frac{(10^6c)(-20.10^6c)}{(0^6 1m)^2} \right| = 18N$$

TOMO EXES! 5 1 2

3 CALCULO DE LOS COMPONENTES (REVISANDO SIEMPRE EL ESQUEMA)

$$F_{12} = +|F_{1}| = qN$$

 $F_{19} = \emptyset$

)
$$F2x = + (F2) = 18N$$

) $F25 = \emptyset$

$$Fz_5 = \emptyset$$

$$\begin{cases} F_{3x} = \emptyset \\ F_{3b} = + |F_3| = 9N \end{cases}$$

$$F_{x} = \sum F_{ix} = 2AN$$

$$F_{5} = \sum F_{iy} = 9N$$

$$F_{y} = 9N$$

$$F_{x} = 2AN$$

_ ESCOJO COMO NIVEL de REFERENCIA de Ep el 00: Ep(00)=0

Ep = dego debidoa qi Kgo Zqi (r=distancia de qi a qo)

EINAL Epi =
$$9.10^9 \frac{Nm^2}{C^2} \cdot (10^{-6}c) \cdot \left[\frac{(+10^{-5}c)}{o'1m} + \frac{(-20.10^{-6}c)}{o'1m} + \frac{(-30.10^{-6}c)}{o'1732m} \right] = -2'459J$$

$$\frac{\text{PINAL}}{\text{Ep8}} = 9.10^{9} \, \frac{\text{Nm}^{2}}{\text{c}^{2}} \cdot \left(+10^{\circ} \text{C}\right) \cdot \left[\frac{(+10^{\circ} \text{C})}{0'1414m} + \frac{(-20.10^{\circ} \text{C})}{0'0432m} + \frac{(-30.10^{\circ} \text{C})}{0'0732m}\right] = -4'325 \, \text{J}$$

Es el campo el que ha hecho trabajo, la carga positiva qo se ha. ocercado a las cargas negativas.

- CALCULAR LA FUERZA EJERCIDA POR 91,92,93,9,795 SOBRE 90 - CALCULAR EL INCREMENTO DE ENERGIA 95 (1) - -POTENCIAL DE GO CUANDO GO SE MUEUE al PUNTO (0,1) 920 41=-10MC 94=-40MC 95 = +50mc. 92= -20MC 40 9i | LEY de COULOMB | (r= distancia de giago) DISTANCIA 94-90 = \22+22=VX DISTANCIA 95-90 = V12+12 = V2 degiengo 2 ESQUEMA de las FUERZAS. 1 CALCULO & MODULOS $q \cdot |F_1| = \left| q \cdot 10^q \frac{Nm^2}{c^2} \left(\frac{+10^{\circ}C}{(2m)^2} \right) \right| = \frac{q}{400}N$

$$\begin{array}{c|c} \boxed{1} \ \text{CALCULO & MODULOS} \\ \hline q_1 \blacktriangleright |F_1| = | \ q_1 10^q \ \frac{Nm^2}{c^2} \ \frac{(+10^c)(-10\cdot10^c)}{(2m)^2} | = \frac{q}{400} N \\ \hline q_2 \blacktriangleright |F_2| = | \ q_1 10^q \ \frac{Nm^2}{c^2} \ \frac{(+10^c)(-20\cdot10^6c)}{(2m)^2} | = \frac{18}{400} N \\ \hline q_3 \blacktriangleright |F_3| = | \ q_1 10^q \ \frac{Nm^2}{c^2} \ \frac{(+10^6c)(+30\cdot10^6c)}{(2m)^2} | = \frac{27}{400} N \\ \hline q_4 \blacktriangleright |F_4| = | \ q_1 10^q \ \frac{Nm^2}{c^2} \ \frac{(+10^6c)(-40\cdot10^6c)}{(\sqrt{8}m)^2} | = \frac{36}{800} N \\ \hline q_5 \blacktriangleright |F_5| = | \ q_1 10^q \ \frac{Nm^2}{c^2} \ \frac{(+10^6c)(+50\cdot10^6c)}{(\sqrt{2}m)^2} | = \frac{45}{200} N \\ \hline \end{array}$$

95 = |FS| = |9.109 Nm2 (+10°C) (+50-10°C) |= 45/200 N (V2m)2. |= 45/200 N (V2m)2.

 $F_{22} = -0.045N$ $F_{32} = 0.0675N$ $F_{33} = -0.0675N$) F1 x= + 0'0225 N) F10= Ø

) Fuz = +|Fu|
$$\cos 45^\circ = +50318 \text{ N}$$

) Fuy = +|Fu| $2 \cos 45^\circ = +50318 \text{ N}$
) F52 = +|F5| $\cos 45^\circ = +50318 \text{ N}$

Fsy = - | Fs | zen 45° = - 01591~

Fa= & Fix = + 61684 N Fo= [Fig = -01948N

14 CALCULO de la PUERZA TOTAL

ESCODO COMO NIVER de REPERENCIA de Ep el 00: Ep(00)=0-

Kgo \(\frac{qi}{r} \) (r= distercia de qi a qo)

FINAL Epi =
$$9.10^9 \frac{Nm^2}{c^2} (+10^6) \left[\frac{-10.10^6}{2m} + \frac{-20.10^6}{2m} + \frac{+30.10^6}{2m} + \frac{-40.10^6}{\sqrt{8}} + \frac{+50.10^6}{\sqrt{2}} \right] = \frac{10.10^6}{c^2} \left[\frac{-10.10^6}{\sqrt{3}} + \frac{-20.10^6}{\sqrt{3}} + \frac{-20.10^6}{\sqrt{3}} + \frac{-40.10^6}{\sqrt{3}} + \frac{-40.10^6}{\sqrt{3}} + \frac{+50.10^6}{\sqrt{3}} + \frac{-40.10^6}{\sqrt{3}} + \frac{-40$$

>> Hay que hace trabajo contira EL CAMPO, ya que qo >0 re acerca a las cargas positivas y se aleja de las regativas.

Ē.ds=|Ē|.ds.con €

EDERCICIOS

SIMETRIA ESPERICA

CALCULAR EL CAMPO ELECTRICO PRODUCIDO POR UNA CARGA PUNTUAL A DISTANCIA Y

TOMO COMO SUP. de Gauls una esfera CENTRADA en 19:

⇒ Éyds FORMAN ANGULO de O° ⇒ É.di. E.ds

> |E| ES CTE. EN LA ESPERA >> SALE FUERA de la ∫

$$E \int_{SUP} dS = E \cdot (4\pi r^2) = \frac{1}{E} \begin{pmatrix} CARGA \\ DENTRO \end{pmatrix} = \frac{4}{E} \Rightarrow E = \frac{4}{4\pi E r^2}$$

CALCULAR É PRODUCIDO POR UNA ESPERA AISLANTE CON CARGA +9 . LA CARGA ESTA DISTRIBUIDA UNIFORMEMENTE - EL PADIO de la ESPERA es R

_ A DISTANCIAS V > R NO LO HAGO - HACEDLO COMO EJERCICIO.

TOMO COMO SUP de Gaus una enfera CONCENTRICA.:

> È 5 de FORMAN ANGULO de 0° → É de = E.ds

E es CTE. en la ESFERA >> SALE FUERAdela J

$$E \cdot \int_{\text{sup}} dS = E \cdot (4\pi r^2) = \frac{1}{E} \left(\frac{\text{CARCA}}{\text{DENTRO}} \right) = \frac{qr}{E} \implies E = \frac{q}{4\pi 2} \frac{r}{R^3}$$

CARBA en la esfera de vadio V = 9r:

$$4r/\sqrt{\frac{q}{\sqrt{3}Rr^3}} = \frac{q}{\sqrt{3}RR^3} \Rightarrow qr = q\frac{r^3}{R^3}$$

CALCULAR É PRODUCIDO POR UNA ESPERA CONDUCTORA. CARGADA CON CARGA +q. EL RADIO es R. LAS CARGAS -ESTAN EN EQUILIBRIO.

- A DISTANCIAS V>R NO LO HAGO - HACEDLO COMO EJETRCICIO.

-
$$r < R$$
 Si ESTÁ EN EQUILIBRIO \Rightarrow A MOVIMIENTO DE CARGAS \Rightarrow \Rightarrow FUERZA SOBRE ELLAS \Rightarrow $\vec{E} = \frac{\vec{F} = \emptyset}{9} = \emptyset$

(Si SE USA EL TEOREMA de GAUB, con una esfera CONCENTRICA, NO HAY CARGA ALMACENADA EN QUE EL INTERIOR DE UN CONDUCTOR EN GAUILIBRIO)

E) Encicio

CALCULAR É PRODUCIDO POR DOS ESFERAS CONDUCTORAS
CONCENTRICAS. CARGAS Y DIMENSIONES en La FIGURA

SIMETRIA CILINDRICA

G CALCULAR É PRODUCIOO POR UN HILO INFINITO (RECTILINEO)

CARGADO CON X (C/m)

E di

TOMO COMO SUP de GAUB UN CILINDRO CONCENTRICO -

DARRIBA É L ds D É ds = Ø (cos 90=0)

> ABADO E b ds > E.ds = Ø

> LATERAL E y ds FORMAN ANGULO de 0° > E.ds = E.ds

SENGL LATERAL ES CTE (ESTA a DISTANCIA FI)A del HILO

=> SALE FUERA de la S

 $\int \vec{E} \, d\vec{s} = \phi + \phi + E \cdot \int ds = \frac{1}{2} \left(\frac{\text{carga}}{\text{DENTINO}} \right) = \frac{\lambda \cdot h}{2} \Rightarrow \vec{E} = \frac{\lambda h \cdot \epsilon}{2Rr \cdot h} = \frac{\lambda}{2Rr \cdot h} = \frac{\lambda}{2Rr \cdot h}$

CALCULAR É PRODUCIDO POR UN CILINDRO ENFINITO
AISLANTE Y CARGADO CON > (C/m).(R= RADIO LA CILINDRO)

R. AS

100

- A DISTANCIAS Y >R NO LO HAGO - MAGEDLO COMO EJERCICIO

TOMO COMO SUP de GAUS UN CILINDRO CONCENTRICO. de radio r, de altura h =>

SADRIBA SABADO dE SE PERPENDICULARES =

= LATERAL) Es ds FORMAN ANGULO (> E.ds = 0)

Es cte. => Sale Fuera de la s

Tr = Carga en el cicinoro de radio r

$$\frac{qr}{\left[Rr^2 \cdot h \right]} = \frac{q = \lambda \cdot h}{\left[RR^2 \cdot h \right]}$$

 $\int_{SUP} \frac{1}{12\pi} ds = \int_{SUP} \frac{1}{12\pi} ds = \frac{1}{12\pi} \left(\frac{1}{12\pi} \frac{1}{12\pi} \right) = \frac{1}{12\pi} \left(\frac{1}{12\pi} \frac{1}{12$

 $\Rightarrow E = \frac{1}{\varepsilon} \left[\lambda h \frac{r^2}{R^2} \right] \frac{1}{2 \pi r h} = \frac{\lambda r}{2 \pi \varepsilon} R^2.$

6

CAI CULAR É PRODUCIOO POR DOSCILINUROS COAXIALES CONDUCTORES. CARGAS Y DIMENSIONES EN LA PIGURA.

ALTURA ENFINITA. Las carbas estan en Equilibrio

SIMETRIA PLATUA

CALCULAR É PRODUCIDO POR UN PLANO ENFINITO CARBADO con CARBA O (C/m2)

TOMO COMO SUP. de GAUB UN PARALELEPÍPEDO, ORIENTADO COMO EN LA PIGURA.

⇒ ARPIBA Ēyds 0° ⇒ Ē.ds=E.ds.1 ABADO ARCO (E,ds)=0° > E.ds=E.ds.1 LATERAL ARCO (E, ds)=90° => E-ds=E.ds. Ø=Ø

>> ARRIBA & ABASO /E/es CTE >> E SALE FUERAJELAS

 $E \int_{SUP}^{dS} = \emptyset + E / dS + E \cdot \int_{SUP}^{dS} = 2 \cdot E \cdot A = \frac{1}{5} \left(\frac{CAR6A}{OENTRO} \right) = \frac{O \cdot A}{5}$ ABADO and

- CALCULAR EL CAMPO ELECTRICO É PRODUCIDO POR UN PLANO CONDUCTOR INFINITO, de ESPESOR d. CARGA POR UNIDAD de. - SUPERFICIE = O (C/m2). LAS CARGAS ESTAN EN EQUILIBRIO - DENIRO del CONDUCTOR (-d/22 v < d/2) \$\rightarrow{\text{\text{E}}}, ya que si existiera => \text{\text{Existiera}} una Fuerza F = q E sobre las cargas=) Se reverian => i No ESTARÍAN EN EQUILIBRIO Ē = Ø - FUERD (por arriba) (der) (USANDO EL TEOREMA de GAUB PODRÍA DEMOSTRARSE QUE LA CARBA NETA DENTRO TOMO COMO SUP. de Gans un DEL COMOUCTOR es (1) paralelepipedo. (ver figura) ARCO (E,ds)=00 > E.ds=E.ds.1 . ADEMAS E=ctes Saledelos ARCO (Ē, d\$)=90° => Ē.d\$ = \$ (cos 90°=0) ABADO ARCO $(\bar{E}, d\bar{s}) = ? |\bar{E} = 0! \Rightarrow \bar{E} d\bar{s} = \emptyset$ $S \in .dS = E \cdot SdS + O + O = E \cdot A = \frac{1}{E} \begin{pmatrix} carea \\ OENTRO \end{pmatrix} = \frac{1}{E} (O \cdot A)$ - Fuera (pa abaje) (re-dz) (Nato hago, es similar)

(Nato hago, es similar)

(Nato hago, es similar)

(Nato hago, es similar)

(Nato hago, es similar) E= O/E MELECTRICO (AISLANTE). PLANO e INFINITO, de espesord y CARGA por UNIDAD de SUPERFICIE = O (C/m3) - FUERA (por arriba) $(r > d_2)$ (NoloHago - DENTRO (-d/2 < V < d/2) por SIMETRIA,) para V>0 E nacia arriba para r=0 Ē=0 TE 1 ds implio! _ TOMO COMO SUP. de GAUSS un PARALELEPIPEDO ASENTADO enr=d => ELds = E.ds = 0 - LATERALES Ê=Ø ⇒ Ē·ds=Ø - ABAJO (CARGA) - ARRIBA E= De y ARCO (E.JS)= 0 = E.JS = E.JS.1 $\int \vec{\epsilon} d\vec{s} = \phi + \phi + E \cdot \int ds = E \cdot A = \frac{1}{2} \left(\frac{CAR6A}{DENTRO} \right) = \frac{1}{2} \left(\frac{CAR6A}{dA} \right)$ LATERALES ABADO シモ= をな

8

EN UN DISPOSITIVO SE TIENE:
$$E(x)\left(\frac{\vee}{m}\right) = \begin{cases} 20x+10 & 0 \le x \le o'1m \\ 15-30x & o'1 \le x \le o'3m \end{cases}$$
SUPONIENDO QUE ÉTIENE LA DIRECCION
$$0 \in x \in x \in x$$
DEL EDE $x \in y$ que $V(0) = 0$.

$$V(x=01) = -11V$$
 $V(x=03) = -29$ $V(x=04) = -4V$

- COMOROBAR QUE -d//2=E:

$$-\frac{dV}{dx} = -(-20x - 10) \sin \frac{-dV}{dx} = -30x + 15 \sin \frac{-dV}{dx} = 6x \sin \frac{\pi}{2}$$

