社会统计学及SPSS软件应用 STATISTICS WITH SPSS

Instructor:王荣欣

Email: rxwang@qq.com

周一3-4节、单周周四3-4节, 3A106-2

2020年11月30日

CONTENTS

因子分析

- 因子分析例子
- 统计软件操作

因子分析的步骤

- 1 计算所有变量的相关矩阵。
 - (1) 大部分相关系数大于0.3。
 - (2) KMO测度。0.9以上为非常好,0.8以上为好,0.7为一般,0.5以下不能接受。
- 2 提取因子(求解初始因子)。
- 3 进行因子旋转(通过坐标变换使因子解的实际意义更容易解释)。
- 4 因子的解释与命名。
- 5 计算因子值。

- 1 1990年30个省、自治区、直辖市的数据
- 2 变量包括:初中以上文化程度的人口比例(x3)、人均 国民收入(x4)、城镇人口比例(x5)、多孩率(x1)、 综合节育率(x2)

. corr x1 x2 x3 x4 x5 (obs=30)

	xl	x 2	ж3	x4	x 5
 хl	1.0000				
x2	-0.7610	1.0000			
x 3	-0.5418	0.2929	1.0000		
x4	-0.4528	0.2528	0.7712	1.0000	
x 5	-0.4534	0.2447	0.8488	0.8777	1.0000

多孩率(x1)和综合节育率(x2)之间存在较强的相关关系,另外三个社会经济变量之间也存在较强的相关关系。

. estat kmo

Kaiser-Meyer-Olkin measure of sampling adequacy

kmo	Variable
0.6577	хl
0.5770	x2
0.7989	ж3
0.7831	x4
0.7000	x 5
0.7132	Overall

KMO值在0.7以上,说明可以对该数据进行因子分析。

选择任意一种求解方法:

- 1 factor x1-x5,pf
- 2 factor x1-x5,pcf
- 3 factor x1-x5,ipf
- 4 factor x1-x5,ml

以主成分分析法为例

- 1 factor x1-x5,pcf /*主成分分析法*/
- 2 greigen, yline(1) /*特征值*/
- 3 screeplot /*碎石图*/
- 4 rotate, varimax /*因子旋转(最大方差法)*/

. factor x1-x5,pcf (obs=30)

Factor analysis/correlation Number of obs = 30
Method: principal-component factors Retained factors = 2
Rotation: (unrotated) Number of params = 9

Factor	Eigenvalue	Difference	Proportion	Cumulative
Factorl	3.25028	2.03049	0.6501	0.6501
Factor2	1.21979	0.97016	0.2440	0.8940
Factor3	0.24963	0.06862	0.0499	0.9439
Factor4	0.18102	0.08174	0.0362	0.9801
Factor5	0.09928		0.0199	1.0000

LR test: independent vs. saturated: chi2(10) = 110.81 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

ac	torl	Fac	ctor2		Uniqueness
0.	7616	0	5543	3	0.1127
0.	5684	-0	7684		0.0865
0.	8918	0	2550	9	0.1396
0.	8704	0	3466		0.1223
0.	8912	0	3701		0.0689

第一个因子与x3、x4、x5更紧密,第二个因子与x1、x2更紧密。

曲线开始变平的前一个点被认为是提取的最大因子数。后面的这些散点就像山脚下的碎石,舍去这些"碎石",并不会损失很多

□因子旋转

. rotate, varimax

Factor analysis/correlation Number of obs = 30
Method: principal-component factors Retained factors = 2
Rotation: orthogonal varimax (Kaiser off) Number of params = 9

Factor	Variance	Difference	Proportion	Cumulative
Factorl	2.68177	0.89348	0.5364	0.5364
Factor2	1.78829		0.3577	0.8940

Rotated factor loadings (pattern matrix) and unique variances

Variable	Factorl	Factor2	Uniqueness
×1	-0.3530	-0.8733	0.1127
x2	0.0757	0.9528	0.0865
x3	0.8917	0.2555	0.1396
x4	0.9220	0.1664	0.1223
x 5	0.9520	0.1575	0.0689

通过因子旋转后, 使每个因子上的载荷尽可能地拉开距离。

因子旋转后, x1和x2更接近十字线的纵轴(因子2), x3、x4、x5更接近横轴(因子1)

参考文献

1 郭志刚, 2015, 《社会统计分析方法——SPSS软件应用(第二版)》, 北京: 中国人民大学出版社