Neural Network Implementation Quiz: Blackbody Radiation Prediction

Problem Statement

Implement a neural network to predict radiated power P (W) using the Stefan-Boltzmann law:

$$P = \sigma A T^4$$

where:

- $\sigma = 5.67 \times 10-8 \ W/m^2 K^4$
- $T \epsilon [100][1000] K$ (temperature)
- $A \in [0.1, 10] \ m^2$ (surface area)

Dataset

File: blackbody_data.csv

Columns:

- 1. Temperature (K)
- 2. Area (m^2)
- 3. Radiated_Power (W) (precomputed using $P = \sigma A T^4$)

Tasks

1. Data Preprocessing

- Load the dataset and split into 80% training and 20% testing sets.
- Normalize/standardize input features (T, A) and target (P) if needed.

2. Model Architecture

- Design a neural network with:
 - o At least 2 hidden layers.
 - o Appropriate activation functions (e.g., ReLU, linear, sigmoid).
 - o Output layer for regression.