King Saud University College of Computer and Information Sciences Computer Science Department

ملك سعود King Saud Universi	WO.O'V
College of Computer & Inform Sciences	nation

Computer Science Department

Course Code:	CSC 339	/ 10
Course Title:	Theory of Computation	
Semester:	2 nd (1443)	
Exercises Cover Sheet:	Homework#1	, 10
Due-Date :	Thursday 21 April 11:59	

Name ID

	Course Learning Outcomes	Relevant Question No	Full Mark	Student Mark
CLO 1	Identify regular and non-regular languages (K1)			
CLO 2	Identify decidable and non-decidable, NP-complete, and reducible problems (K1)			
CLO 3	Produce computing-based solutions using regular expressions, and context free grammar (K2)			
CLO 4	Design different machine models (DFA, NFA, PDA, TM) (S1)	Part 1	5	
CLO 5	Evaluate the language accepted by a machine, a regular expression, and a context free grammar (S1)	Part 2	2	
CLO 6	Evaluate the time and space complexity of a Turing machine (S1)	Part 3	3	

• Design a Turing machine with input alphabet $\Sigma = \{0, 1\}$ that accepts the language $L = \{0^i 1^{2i} \mid i \geq 0\}$.

• Design a deterministic Turing machine with input alphabet $\Sigma = \{a, b, \$\}$ that accepts the language $L = \{w\$w \mid w \in \{a,b\}^*\}$.

• Construct a Turing machine that computes f (n) = 3n where integers are represented in unary notation

1. Given the Turing machine M with input alphabet {0, 1} in Figure 1 answer the following question

• Trace the computation for the input string 110.

$$#9010#7#1910#7#11920#7#11092#7
#11930#$$

• Trace the computation for the input string 101.

what is the language accepted by M?

$$\{w: w \in \{0.13^* \text{ and does not start with } 10\}$$

- Which statement is correct?
 - A. M halts on all inputs
 - B. M never halts on some inputs
 - C. M does not halt on any input
 - D. None
- The machine M is decidable:
 - A. True
 - B. False

1. Given the Turing machine M with input alphabet {0, 1} in Figure 1, give

- Trace the computation for the input string **1010**.
- Accepted language
- The time complexity and its corresponding class
- The space complexity and its corresponding class

• Trace the computation for the input string 1010.

Accepted language

The time complexity and its corresponding class

The space complexity and its corresponding class