A cooling spine of square cross-sectional area A, length ℓ , and conductivity k extends from a wall maintained at temperature T_w . The surface convection coefficient between the spine and the surrounding air is h, the air temperature is T_a , and the tip of the spine is insulated. Determine the heat conducted by the spine g and the temperature of the tip T^{ℓ} .

Figure 95.1: Cooling Spine Problem Sketch

Determine the rate of radiant heat emission q in Btu/hr from a black body of unit area A at a temperature T, when ambient temperature is T_a .

Figure 106.1: Radiant Energy Emission Problem Sketch

Problem Sketch

Representative Finite Element Model

Material Properties	Geometric Properties	Loading
$\varepsilon = \text{emissivity} = 1.0$	A = 1 ft ² F = form factor = 1.0	$T = 3000^{\circ}F$ $T_a = 0^{\circ}F$

Analysis Assumptions and Modeling Notes

A conversion factor of 144 in²/ft² is included in the area input to convert the default Stefan-Boltzmann constant to feet units. The temperature offset of 460°F is required to convert the input Fahrenheit temperature to an absolute (Rankine) temperature. The node locations are arbitrarily selected as coincident.

A short, solid cylinder is subjected to the surface temperatures shown. Determine the temperature distribution within the cylinder

Figure 96.1: Short, Solid Cylinder Problem Sketch

Material Properties	Geometric Properties	Loading
k = 1.0 Btu/hr-ft-°F	$r = \ell = 0.5 \text{ ft}$	$T_{top} = 40^{\circ}F$
		$T_{bot} = T_{wall} = 0$ °F

A semi-infinite solid, initially at a temperature T_o , is subjected to a linearly rising surface temperature $T_s = 3600$ t, where T_s is in °F and t is time in hours. Determine the temperature distribution in the solid at t = 2 min.

Figure 114.1: Linearly-rising Surface Temperature Problem Sketch

Representative Finite Element Model

Material Properties	Loading
k = 10 Btu/hr-ft-°F	$T_0 = 0$ °F @ t = 0
$\gamma = 500 \text{ lb/ft}^3$	$T_s = 120$ °F @ t = 2 (ramped) (see Fig-
$c = 0.2 \text{ Btu/lb-}^{\circ}\text{F}$	ure 114.2: Temperature vs. Time
	Plot (p. 306))

An assembly consisting of a heater with capacitance C_1 and surface area A_1 is surrounded by a box having capacitance C_2 and surface area A_2 . The box is initially at a uniform temperature T_0 . The heater, which supplies heat at a rate q, is turned on and remains on until the surrounding box temperature reaches a value T_{off} . The heater then switches off until the box temperature lowers to T_{on} and then switches on again. Determine the temperature response of the box and the heater status vs. time.

Figure 159.1: Temperature-controlled Heater Problem Sketch

Problem Sketch

Representative Finite Element Model

Material Properties	Geometric Properties	Loading
$C_1 = 2.7046 \times 10^{-4}$ Btu/°F $C_2 = 2.7046 \times 10^{-3}$ Btu/°F $h = 4 \text{ Btu/hr-ft}^2$ -°F	$A_1 = 8.1812 \times 10^{-3}$ ft $A_2 = 4.1666 \times 10^{-2}$ ft	$q = 10 \text{ Btu/hr}$ $T_{on} = 100^{\circ}\text{F}$ $T_{off} = 125^{\circ}\text{F}$ $T_{o} = 70^{\circ}\text{F}$

Two bodies, A and B, are initially at a temperature of 100° C. A temperature of 500° C is then imposed at the left edge, E_{A1} , of A. Further, the right edge, E_{B2} , of B is heated to attain a temperature of 850° C and is subsequently cooled back to 100° C. Compute the interface temperature (right edge) of A, E_{A2} , and the amount of heat flow through the interface when the right edge of E_{B2} is at 600° C and 850° C, respectively. Also, compute the heat flow through the interface when B is subsequently cooled to 100° C.

Figure 23.1: Contact Problem Sketch

Problem Sketch (not to scale)

Representative Finite Element Model

Material Properties	Geometric Proper- ties	Loading
$E = 10 \times 10^6 \text{ N/m}^2$	h = 0.1 m	T _{ref} = 100°C

Material Properties	Geometric Proper- ties	Loading
K = 250 W/m°C α = 12 x 10 ⁻⁶ m/m°C Contact Conduct- ance = 100 W/°C (per contact ele- ment)	$\ell_1 = 0.4 \text{ m}$ $\ell_2 = 0.5 \text{ m}$ $\delta \ell = 0.0035$ m	Load Step 1 T@E ₁ = 500°C Load Step 2 T@E ₂ = 850°C Load Step 3 T@E ₂ = 100°C