"Business Process Technologies" [3] Analysis and Optimization

Bloom's Taxonomy Verbs by <u>Fractus Learning</u>, Lizenz: CC-BY-SA 4.0

Evaluation Logical devices of deviced degreement based on internal proposed of the company concludes and deviced dependent of several devices of company concludes and deviced device

Lerning Goals

- ✓ Understand the utility of process analysis
- ✓ Understand the different types of process analyses
- ✓ Perform analyses on processes
- ✓ Use classical (reductionist) process optimization patterns on processes

Agenda

- Analysis
 - Analysis in the BPM cycle
 - Process analysis by process type
 - Analyzing to-be-processes using Signavio

- Optimization
 - Approaches
 - Patterns
 - Robotic Process Automation
 - Application
 - Comparison to Business Reengineering

[03.1] Analysis

Process analyis in the BPM cycle

- In many scenarios, formal process analysis aids understanding a modeled tobe-process with respect to
 - Costs
 - Time
 - Resources
 - Use of IT systems
 - Use of documents
 - Involvement of roles

[03.2] Analysis by process type

Process analysis by process type

As-Is-Process

- Business ProcessIntelligence
 - Data preparation
 - Reports
- Business Activity Monitoring
 - Event definition
 - Event monitoring

To-Be-Process

- Estimation of quantity structure
- Simulation

Documentation for both types

Models

Text documentation

Types of metrics in process analysis

Process-oriented

- Time-oriented
 - Execution time
 - Total duration
- Value-oriented
 - Process cost
- Quantity-oriented
 - (Non-)Executed steps

Resource-oriented

- Time-oriented
 - Usage time
 - Wait time
 - Failure time
- Value-oriented
 - Usage cost
 - Idle cost
- Quantity-oriented
 - Input/Output

Prof. S Prof. Dr. Gero Lückemeyer I Business Process Technologies I Folie 8

[03.3] Analysis Questions

Process analysis questions & example Signavio reports

[03.4] Analysis in Signavio

Example resource analysis: necessary process parameters

Scenarios group settings for different aspects for a what-if comparison.

Prof. Dr. Oliver Höß, Prof. Dr. Gero Lückemeyer I Business Process Technologies I Folie 13

Example resource analysis: results

Resource Planning (Pl 31.10.2013 09:59:23	,			
09:59:23				
		ı		
Incident Management				
18250				
		Company - Dispatcher	r	
Input factor	Average processing	Workload [h]	Workload [h, incl.	Nr. of full resources
	time [min]		contingency	
			allowance]	
1,00	5,00			
0,70	5,00			
0,30	10,00			
0,30	10,00	912,50	912,50	0,52
	14,50	912,50	912,50	0,52
	18250 Input factor 1,00 0,70 0,30	1,00 5,00 0,70 5,00 0,30 10,00 0,30 10,00	18250 Company - Dispatcher	Table Company - Dispatcher

Company - IT Specialis	et .		Sum		
Workload [h]		Nr. of full resources	Workload [h]	Workload [h, incl. contingency allowance]	Nr. of full resources
1.520,83	1.520,83	0,86	1.520,83	1.520,83	0,86
1.064,58	1.064,58	0,60	1.064,58	1.064,58	0,60
912,50	912,50	0,52	912,50	912,50	0,52
			912,50	912,50	0,52
3.497,92	3.497,92	1,99	4.410,42	4.410,42	

[03.5] Optimization: Steps

Optimization: Steps

Opportunity Name	Priority	Automation Type
Invoice Reconciliation	1	Task
Password Reset	2	Task
Employee Department Transfer	3	Flow
Expense Approval	4	Decision

Quelle: D. Brakoniecki: Robotics in Context: Finding the Right Tool to Solve the Right Process Problem of Dr. Oliver Höß, Prof. Dr. Gero Lückemeyer | Business Process Technologies | Folie 16 BPMCE 2019, London.

Process optimization - Approaches

Classical-reductionist

- Simplify
- Standardise, automate
- Parallelise/Reorder
- Reduce waste
 - Categories: Stock, Waiting times, Overprocessing, Redundant work, Movement, Overproduction, Waste
- Changed division of labor along the value chain

Potential-oriented

- Individualize
- Reduce latency
- Enrich
- Monetarize time/attention
- Generalize for new purposes/products

Prof. Dr. Oliver Höß, Prof. Dr. Gero Lückemeyer I Business Process Technologies I Folie 17

Case study: Spare part order

Source: Gadatsch

Case study: Spare part order (2)

Comparison Process Optimization and Business Reengineering

	Business Reengineering	Process Optimization
Effect on existing organization	Fundamental change, replacement with new organization	Enhance existing organization
Organizational change	Radical change ("Quantum leap")	Moderate change
Process description	General understanding, abstraction from details	Process analysis and detailed description ("sharpen the saw")

[03.6] Automation

Automation Analysis – Sample Open Source Tool Chain

Automation Analysis: Sample Architecture

Accelerating/Reducing Media Breaks: Robotic Process Automation (RPA)

- Lifting "Quick Wins"
- Automating input processing across applications
 - Remove media breaks
 - Reduce errors
 - Save time
- Specialized tools
 - e.g. UIPath

Quelle: https://venturebeat.com/2019/04/30/robotic-process-automation-company-uipath-raises-568-million-at-7-billion-valuation/

Process optimisation: Payment Process Example

Quelle: D. Brakoniecki: Robotics in Context: Finding the Right Tool to Solve the Right Process Problem of Dr. Oliver Höß, Prof. Dr. Gero Lückemeyer | Business Process Technologies | Folie 26 BPMCE 2019, London.

Process optimisation: Payment Process Example

Robotic Process Automation (RPA): 10 Entwicklertage sparen 3,3 FTE Aufwand/Durchlauf!

Quelle: D. Brakoniecki: Robotics in Context: Finding the Right Tool to Solve the Right Process Problem of Dr. Oliver Höß, Prof. Dr. Gero Lückemeyer I Business Process Technologies I Folie 27 BPMCE 2019, London.

Summary

- ✓ BPM-Tools offer wide-range simulations for many aspects.
- ✓BPM optimizes processes continuously using classicalreductionist approaches with well-known criteria as well as potential-oriented approaches.
- ✓ Systematic automation and digital transformation of processes require comprehensive analyses and (mostly) time.
- ✓ For quick efficiency gains, companys currently increasingly use the approach "Robotic Process Automation", in fact matured tools for presentation integration of heterogenous applications.

Thank you very much

For your attention!