IMPLEMENTATION PROCESS

Ehsan Yazdian

DESIGN FLOW

Xilinx Design Flow

THE DESIGN SUMMARY DISPLAYS DESIGN

DATA

- Quick View of Reports
- Constraints
- Project Status
- Device Utilization
- Obsign Summary Options Friedrad Design Summary Cortects

 | Comparison of the Control of the Cont
- Performance
- Constraints Reports

DESIGN ENTRY: HDL CODING, SCHEMATIC OR STATE MACHINE

SIMULATION BY TESTBENES

- After HDL coding, the code has to be tested using "tesbench".
- Simulation tools:
 - Active-HDL
 - Modelsim (Mentor Graphics)
 - Synopsys VCS (Synopsys)
 - ISIM (Xilinx)
 - NCVerilog (Cadence)thenches" (Verification).

WORKING WITH MODELSIM

• Basic Simulation Flow

ModelSim

- Project Flow
- Similar to the basic simulation flow.
- Differences:
 - Working library is created automatically.
 - Projects are persistent and will open every time you invoke ModelSim.

MODELSIM

SIMULATING THE DESIGN

- When you instantiate a device-specific component in your design, the simulator must reference a library that describes the functionality of the component to ensure proper simulation.
- Xilinx simulation libraries:
 - UNISIM library for functional simulation of Xilinx primitives
 - UniMacro library for functional simulation of Xilinx macros
 - XilinxCoreLib library for functional simulation of Xilinx cores
 - Xilinx EDK library for behavioral simulation of Xilinx Embedded Development Kit (EDK) IP components
 - SIMPRIM library for timing simulation of Xilinx primitives

Modelsim do file

vlib work

run 1000ns

- Generating a do file for project.
 - Using the automatic do file generated by Xilinx ISE.

Example

```
vlog "adder.v"
vlog "top.v"
vlog "testbench.v"
vlog "C:/Xilinx/13.4/ISE_DS/ISE//verilog/src/glbl.v"
vsim -voptargs="+acc" -t lps -lib work work.testbench glbl
do {wave.do}
view wave
view structure
view signals
do {testbench.udo}
```

Synthesis

Synthesis Definition

- Synthesis = Translation + Logic optimization +
 Technology Mapping
 - Translation: going from RTL to Boolean function
 - Logic Optimization: Optimizing and minimizing Boolean function
 - **Technology Mapping (TM): Map** the Boolean function to the target library

SYNTHESIS

o Input:

- HDL Code
- "Technology library" file Standard cells
 - Basic gates (AND, OR, NOR, ...)
 - Macro cells (Adders, Muxes, Memory, Flip-flops, ...)
- Constraint file (Timing, area, power, loading requirement, optimization Alg.)

Output:

- A gate-level "Netlist" of the des
- Timing files (.sdf)
- This process is done using various optimization algorithms

AN EXAMPLE

```
always @ (a, b)

case ({a,b})

2'b00: out = 1;

2'b01: out = 1;

2'b11: out = 1;

default: out = 0;

endcase
```

TRANSLATION

OPTIMIZATION

 $out = \bar{a} + b$

TECHNOLOGY MAPPING

SYNTHESIS OPERATION

- Generating an EDIF or NGC netlist to bring into the Xilinx implementation tools
 - The NGC file is a netlist that contains both logical design data and constraints that takes the place of both EDIF and NCF files.
- Popular synthesis tools

Vendor	Product	Platform
Xilinx	ISE-XST	FPGA
Mentor Graphics	Precision/	FPGA/ASIC
	LeonardoSpectrum	
Synplicity	Synplify Pro	ASIC
Cadence	Encounter RTL	ASIC
	Compiler	
Altera	Quarrtus II	FPGA

FEATURES OF SYNTHESIS TOOLS

- Interpret RTL code (Register-transfer level: Describing the code as registers and the combinational logics between them)
- Produce synthesized circuit netlist in standard EDIF (Electronic Design Interchange Format).
- Give preliminary performance estimates.
- Some can display circuit schematics corresponding to EDIF netlist.

SYNTHESIS

HDL Code to Netlist conversion

Synthesis

SYNTHESIS IS CONSTRAINT-DRIVEN

- Synthesis Constraints:
 - Speed: Maximum expected clock frequency
 - Area: Minimum Area on Chip
 - Power Consumption

IMPLEMENTATION

IMPLEMENTATION

• After synthesis the entire implementation process is performed by FPGA vendor tools.

- Implementation includes many phases
 - Translate
 - Map
 - Place & Route

IMPLEMENTATION

• Translate:

Merge multiple design files into a single netlist.

o Map:

• Group logical symbols from the netlist (gates) into physical components (slices and IOBs).

• Place & Route:

- Place components onto the chip, connect the components, and extract timing data into reports.
- Each phase generates files that allow you to use other Xilinx tools.
 - Floorplanner, FPGA Editor, XPower

ISE IMPLEMENTATION FLOW

TRANSLATE: NGDBUILD

- Putting all thing together, so that we need all parts of project
- Inputs:
 - Project synthesized EDIF file
 - UCF constraints file
 - Core's .edn file

Output: Native Generic Database (NGD)

MAP

- Map the generic form to device.
- Make necessary optimization, eliminate unnecessary logic.
- Estimate resource usage, just % (110%!)
- Input: NGD file
- Output: NCD, PCF, MRP (report)
 - NCD: Native Circuit Description.
 - A physical description of the design in terms of the components in the target Xilinx device.
 - PCF: Physical Constraints File

MAP

 Digital Circuit Element to Technology Element Mapping

MAP REPORT

Command Line: map -ise test_implementation.ise -intstyle ise -p xc3sd1800a-fg676-5 -cm area -ir

off -pr off -c 100 -o top_map.ncd top.ngd top.pcf

Target Device: xc3sd1800a

Target Package: fg676

Target Speed: -5

Mapper Version: spartan3adsp -- \$Revision: 1.51 \$

Mapped Date: Sat Mar 09 01:16:17 2013

Design Summary

Number of 4 input LUTs: 3 out of 33,280 1%

Number of occupied Slices: 2 out of 16,640 1%

Number of Slices containing only related logic: 2 out of 2 100%

Number of Slices containing unrelated logic: 0 out of 2 0%

Number of bonded IOBs: 8 out of 519 1%

Number of BUFGMUXs: 1 out of 24 4%

Average Fanout of Non-Clock Nets: 1.67

PAR (PLACE & ROUTE)

- Place and Route all the logics
- Some of placing process done in previous steps
- Overused area give error in this section
- o Input: Unrouted .ncd
- Output: Routed .ncd

PLACE & ROUTE

• Sitting place for each element of circuit

PLACE & ROUTE REPORT

- Place & route report
- Static Timing Report

CONFIGURATION

- Once a design is implemented, you must create a file that the FPGA can understand
- This file is called a bitstream: a BIT file (.bit extension)
- The BIT file can be downloaded directly into the FPGA, or the BIT file can be converted into a PROM file, which stores the programming information

IMPACT SOFTWARE

CONFIGURATION OF SRAM BASED FPGAS

MAJOR FPGA VENDORS

FPGA Vendors

- Xilinx, Inc.
- Altera Corp.
- Lattice Semiconductor
- Microsemi (Actel)
- Quick Logic Corp.
- Atmel
- Achronix
- Tabula

XILINX FPGA FAMILIES

- High-performance families
 - Virtex (220 nm)
 - Virtex-E, Virtex-EM (180 nm)
 - Virtex-II , Virtex-II PRO (130 nm)
 - Virtex-4 (90 nm)
 - Virtex-5 (65 nm)
 - Virtex-6 (40 nm)
 - Artix-7 (28 nm)
 - Kintex-7 (28 nm)
 - Virtex-7 (20nm)

- Low Cost Family
 - Spartan/XL derived from XC4000
 - Spartan-II
 - Spartan-IIE
 - Spartan-3 (90 nm)
 - Spartan-3E logic optimized
 - Spartan-3A I/O optimized
 - Spartan-3A DSP DSP optimized
 - Spartan-6 (45 nm)

XILINX FPGA FAMILIES

Features	Artix TM -7	Kintex TM -7	Virtex®-7	Spartan®-6	Virtex-6
Logic Cells	215,000	480,000	2,000,000	150,000	760,000
BlockRAM	13Mb	34Mb	68Mb	4.8Mb	38Mb
DSP Slices	740	1,920 3,600 180		2,016	
DSP Performance (symmetric FIR)	930GMACS	2,845GMACS 5,335GMACS 140GMACS		2,419GMACS	
Transceiver Count	16	32	96	8	72
Transceiver Speed	6.6Gb/s	12.5Gb/s	28.05Gb/s	3.2Gb/s	11.18Gb/s
Total Transceiver Bandwidth (full duplex)	211Gb/s	800Gb/s	2,784Gb/s	50Gb/s	536Gb/s
Configuration AES	Yes	Yes	Yes	Yes	Yes
I/O Pins	500	500	1,200	576	1,200
I/O Voltage	1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V	1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V	1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V	1.2V, 1.5V, 1.8V, 2.5V, 3.3V	1.2V, 1.5V, 1.8V, 2.5V
EasyPath TM Cost Reduction Solution	-	Yes	Yes	-	Yes

FPGA NOMENCLATURE

FPGA NOMENCLATURE

Example:	XC3S250E	<u>-4</u> FT	256	С	S1 (optional code to specify	Stepping 1)
Device Type -		TT		T		
Speed Grade -		_		L	— Temperature Range	
ackage Type-			L		— Number of Pins	DS312_03_082409

Device		Speed Grade	Package Type / Number of Pins		Temperature Range (T _J)	
XC3S100E	-4	Standard Performance	VQ100 VQG100	100-pin Very Thin Quad Flat Pack (VQFP)	С	Commercial (0°C to 85°C)
XC3S250E	- 5	High Performance	CP132 CPG132	132-ball Chip-Scale Package (CSP)	Т	Industrial (-40°C to 100°C)
XC3S500E			TQ144 TQG144	144-pin Thin Quad Flat Pack (TQFP)		
XC3S1200E			PQ208 PQG208	208-pin Plastic Quad Flat Pack (PQFP)		
XC3S1600E			FT256 FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		
	•		FG320 FGG320	320-ball Fine-Pitch Ball Grid Array (FBGA)		
			FG400 FGG400	400-ball Fine-Pitch Ball Grid Array (FBGA)		
			FG484 FGG484	484-ball Fine-Pitch Ball Grid Array (FBGA)		37

ALTERA FPGA DEVICES

Technology	Low-cost	Mid-range	High- performance
130 nm	Cyclone		Stratix
90 nm	Cyclone II		Stratix II
65 nm	Cyclone III	Arria I	Stratix III
40 nm	Cyclone IV	Arria II	Stratix IV

HOW TO SELECT AN APPROPRIATE FPGA

1. Speed Requirement

- If the Maximum Frequency requirement for the design is not met with a particular Xilinx device,
 - choose a Xilinx device of higher Speed Grade
 - switch to next generation Xilinx Product Family.
- In Target Device Name, -x indicates Speed Grade available for the device. (Higher the indicated Speed Grade number, higher is the maximum frequency obtained through that device)

2. Logic Density

- Device utilization summary
- 3. Package Type and Number of I/O Pins