Logical Expressions

CS 350: Computer Organization & Assembler Language Programming [2/2: Associativity/Commutativity]

A. Why?

- Logical operations on bits is the lowest level of computation we do.
- Converting truth tables to expressions tells us how to do logical calculations.

B. Outcomes

At the end of today, you should:

• Be able to perform logical operations on individual bits using truth tables and simplifications.

C. Logical Values, Logical Operations/Connectives

- Boolean logic named after George Boole
- The logical constants are true and false (typically written 1 and 0 or T and F).
- The logical operations/connectives are functions on 1 or 2 logical values.
 - Analogous to +, -, etc. on numbers.
 - NOT (unary), AND, OR, XOR, NAND, NOR (binary)
 - Others often used: IMPL, IFF
 - Truth tables are often used to show the possible results of logical expressions.

X	Y	AND	OR	XOR	X NAND Y	NOR	IFF	X IMPL Y	X	NOT X
0	0	0	0	0	1	1	1	1	0	1
0	1	0	1	1	1	0	0	1	1	0
1	0	0	1	1	1	0	0	0		
1	1	1	1	0	0	0	1	1		

- NOT X = 1 iff X = 0
- $X \ AND \ Y = 1 \ \text{iff} \ X = Y = 1$
- $X \ OR \ Y = 1 \ \text{iff} \ X = 1 \ \text{or} \ Y = 1 \ \text{or both ("inclusive" or)}$
- $X \times XOR Y = 1$ iff $X \neq Y$ [one is 1, the other is 0] ("exclusive" or)
- $X \ NAND \ Y = NOT \ (X \ AND \ Y) = 0 \ iff \ X = Y = 1$
- X NOR Y = NOT (X OR Y) = 1 iff X = Y = 0
- More terminology:
 - $X \ AND \ Y$ is the **conjunction** of X and Y; its conjuncts are X and Y.
 - X OR Y is the **disjunction** of X and Y; its disjuncts are X and Y.
 - $X \times XOR \ Y$ is the **exclusive** OR of X and Y; its disjuncts are X and Y.
 - \bullet *IMPL* is the **conditional** operator
 - If true and false are 1 and 0, then IMPL behaves like \leq .
 - $0 \le 0$, $0 \le 1$, $1 \le 1$, but not $1 \le 0$. I.e., $X \ IMPL \ Y$ behaves like $(NOT \ X) \ OR \ Y$.
 - *IFF* is the **biconditional**
 - IFF behaves like equality: X IFF Y is true when X and Y are both true or both false.
- Commutative Operators: $(X \ op \ Y = Y \ op \ X)$ [Added 2/2/14]
 - AND, OR, NAND, NOR, XOR, IFF are commutative
 - IMPL is not commutative
- Associative Operators: $((X \ op \ Y) \ op \ Z = X \ op \ (Y \ op \ Z))$ [Added 2/2/14]
 - AND, OR are associative
 - NAND, NOR, XOR, IMPL, IFF not associative
- **Precedences** (higher/stronger to lower/lower): NOT, AND/NAND, OR/XOR, IMPL, IFF.
 - Example: NOT X AND Y OR Z means ((NOT X) AND Y) OR Z.
 - Example: NOT (X AND NOT Y OR Y) means NOT ((X AND (NOT Y)) OR Y).

- Associativity: [Updated 2/2/14]
 - For AND, OR, NAND, NOR, use left associativity.
 - $X ext{ op } Y ext{ op } Z = (X ext{ op } Y) ext{ op } Z ext{ by default}$
 - (For AND and OR this isn't critical.)
 - For *IMPL* and *IFF*, use **right associativity**.
 - X op Y op Z = X op (Y op Z) by default
- Truth tables for larger expressions
 - A table with n variables has 2^n rows.
 - For expressions with > 1 operator, there are two styles of truth tables.
- Style 1: Each column contains a whole expression. Example:

X	Y	NOT Y	X AND NOT Y	X AND NOT Y OR Y	NOT (X AND NOT Y OR Y)
0	0	1	0	0	1
0	1	0	0	0	1
1	0	1	1	1	0
1	1	0	0	1	0

- Style 2: Columns can contain just the main operator of an expression.
 - We use extra parentheses to make it clearer what operands an operator has. Using this style, the equivalent table is

X	Y	NOT	((X	AND	NOT Y)	OR	Y)
0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	1
1	0	0	1	1	1	1	0
1	1	0	1	0	0	1	1

• The first style involves more writing, but it's easy to see what each column's expression is. The second style is briefer but a bit harder to read and write.

D. Alternate Notations

• Instead of words as operators, people often use symbols.

Operator	Alternatives
AND	^, juxtaposition, *
OR	v, +
XOR	\oplus
IMPL	\rightarrow , \Rightarrow
IFF	\leftrightarrow , \Leftrightarrow
NOT	\sim , \neg , !, overbar, prime

• Note: Be careful to distinguish between \overline{X} \overline{Y} , i.e., NOT X AND NOT Y, and \overline{X} \overline{Y} , i.e., NOT $(X \ AND \ Y)$.

E. Tautologies, Contradictions, and Contingencies

- A logical expression is a
 - **Tautology** if it is always true (regardless of the values we assign its variables). I.e., its truth table has 1 in all rows.
 - Contradiction if it is always false (0's in all rows) .
 - Contingency if it has a mix of rows with 0's and 1s
 - (I.e., it's neither a tautology nor a contradiction.)
 - If something is not a tautology, it's a contradiction or contingency
 - Not of "always true" means "sometimes, possibly always false."
 - If something is not a contradiction, it's a tautology or contingency.
 - Not of "always false" means "sometimes, possibly always true."
- Two expressions are **logically equivalent** if their truth tables match.
 - You can substitute logically equivalent expressions for each other.
 - (Substitute equals for equals.)
 - If P and Q are equivalent, then P IFF Q is a tautology, and vice versa.
 - If P is a tautology, then NOT P is a contradiction, and vice versa.

- If P is a contingency, then NOT P is also a contingency, and vice versa.
- But,
 - If P is a not a tautology, then P is a contingency or contadiction
 - (Column not all 1's = Column mix of 0's and 1's or all 0's)
 - If P is a not a contradiction, then P is a contingency or tautology

Logical Expressions

CS 350: Computer Organization & Assembler Language Programming

A. Why?

- Logical operations on bits is the lowest level of computation we do.
- Mathematical calculations on bits can be viewed as logical operations on bits.

B. Outcomes

After this activity, you should be able to

• Perform logical operations on individual bits using truth tables and simplifications.

C. Questions

- 1. What is the minimal parenthesization for ((NOT X) OR (NOT Y)) AND Z? (I.e., which parentheses are redundant because of the precedence/associativity rules?)
- 2. What do we get if we add the redundant parentheses back to $NOT\ X\ AND\ Y$ $OR\ Z$? (Don't bother adding parentheses around individual variables.)
- 3. Write a truth table for *NOT* (*X AND Y*) and *NOT X OR NOT Y*. (You should find they are equivalent; i.e., have exactly the same result columns.) [In the next lecture, we'll see that this is one of DeMorgan's laws.]
- 4. Write a truth table for ((X NAND Y) NAND Z) and (X NAND (Y NAND Z)). Are they equivalent?

Solution

- $(NOT\ X\ OR\ NOT\ Y)\ AND\ Z$ 1.
- ((NOT X) AND Y) OR Z 2.
- The two expressions are indeed equivalent. 3.

X	Y	NOT	(X	AND	Y)	((NOT X)	OR	(NOT Y))
0	0	1	0	0	0	1	1	1
0	1	1	0	0	1	1	1	0
1	0	1	1	0	0	0	1	1
1	1	0	1	1	1	0	0	0

4. They are not equivalent. (They're equal iff X = Z.)

X	Y	\boldsymbol{Z}	((X	NAND	Y)	NAND	Z)	(X	NAND	(Y	NAND	Z))
0	0	0	0	1	0	1	0	0	1	0	1	0
0	0	1	0	1	0	0	1	0	1	0	1	1
0	1	0	0	1	1	1	0	0	1	1	1	0
0	1	1	0	1	1	0	1	0	1	1	0	1
1	0	0	1	1	0	1	0	1	0	0	1	0
1	0	1	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	1	0	1	0	1	1	0
1	1	1	1	0	1	1	1	1	1	1	0	1