Backpropagation in CNN

In CNN (or any neural network), backpropagation is the **core learning algorithm** that:

- 1. Finds the error in prediction
- 2. Traces it backward to each layer
- 3. Adjusts the weights so that the error becomes smaller next time

$$X \longrightarrow \bigotimes \longrightarrow Z_1 \xrightarrow{\text{relin}} A_1 \xrightarrow{\text{max}} P_1 \xrightarrow{\text{flatter}} F \longrightarrow Z_2 \xrightarrow{\text{Signation}} A_2 \longrightarrow L$$

$$W_1, b_1$$

$$Formard Prop$$

$$Z_1 = ConV(X, W_1) + b_1 \qquad F = flatten(P_1)$$

$$A_1 = \text{relin}(Z_1) \qquad Z_2 = W_2P + b_2$$

$$P_1 = \text{maxpool}(A_1) \qquad A_2 = \sigma(Z_2)$$

Backpropagation = 2 Steps

Step Name	What Happens
Forward Pass	Input flows through CNN, predicts output
Backward Pass	Error is sent backward to update weights

Backpropagation only updates weights in:

- Convolution layers (filters)
- **Dense layers** (neurons)

Pooling layers do **not** have weights, so they **just pass** gradients backward.

Mathematically, What Happens?

Forward:

Output = Activation(Weighted_Sum_of_Inputs)

Backward:

Weight = Weight - LearningRate × Gradient_of_Error

• The "gradient" tells the direction and size of change needed to reduce the error.

Steps:

1. Forward Pass

- Input flows forward
- Filters extract features
- Final Dense layer makes prediction

2. Calculate Loss (Error)

Compare prediction vs actual (e.g., using cross-entropy)

3. Backward Pass (Backpropagation)

- From output to input:
 - Output Layer → update dense weights
 - Dense → send gradients to Flatten
 - Conv Layer 2 → update filters
 - Conv Layer 1 → update filters

Pooling layers: pass gradients only (no update)

4. Update Weights

Using gradients and learning rate

Example with Keras

Keras handles backprop automatically:

model.compile(optimizer='adam', loss='categorical_crossentropy') model.fit(X_train, y_train)

Here:

- loss: used to compute the error
- optimizer: applies backprop and updates weights

Behind the scenes:

- TensorFlow computes all gradients
- Applies backpropagation
- Adjusts weights layer-by-layer

Key Concepts in CNN Backpropagation

(A) Chain Rule

Backpropagation uses the **chain rule** to compute gradients layer by layer:

$$rac{\partial ext{Loss}}{\partial W} = rac{\partial ext{Loss}}{\partial ext{Output}} \cdot rac{\partial ext{Output}}{\partial W}$$

(B) CNN-Specific Challenges

1. Weight Sharing:

 The same kernel (filter) is applied across the entire image → gradients are summed over all locations.

2. Pooling Layers:

- Max Pooling only backpropagates gradients to the winning neuron (the one with the max value).
- Average Pooling distributes gradients equally.

3. Convolutional Layers:

• Gradients are computed for both kernels and input feature maps.

Backpropagation Steps in CNNs

Step 1: Forward Pass

Compute predictions using:

- Convolutions (conv2D).
- Pooling (MaxPooling2D).
- Fully connected layers (Dense).

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

model = Sequential([
    Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
    MaxPooling2D((2,2)),
    Flatten(),
    Dense(10, activation='softmax')
])
```

Step 2: Compute Loss

Compare predictions (y_pred) with true labels (y_true):

$\operatorname{Loss} = \operatorname{CategoricalCrossentropy}(y_{\operatorname{true}}, y_{\operatorname{pred}})$

Step 3: Backward Pass (Gradient Calculation)

(A) Fully Connected (Dense) Layer Gradients

Standard backpropagation (like in regular neural networks):

$$rac{\partial ext{Loss}}{\partial W} = ext{Error} imes ext{Activation}^T$$

(B) Convolutional Layer Gradients

- 1. Gradient w.r.t. Kernels (Filters):
 - Sum gradients over all input locations where the kernel was applied.

$$\frac{\partial \text{Loss}}{\partial K} = \text{Input Patch} \times \text{Upstream Gradient}$$

2. Gradient w.r.t. Input Feature Maps:

 Propagate gradients back to the input using full convolution (flipped kernel).

$$rac{\partial \mathrm{Loss}}{\partial X} = \mathrm{Upstream} \; \mathrm{Gradient} \star \mathrm{Rot} 180(K)$$

(where ★ is cross-correlation and Rot180 flips the kernel 180°).

(C) Pooling Layer Gradients

- Max Pooling: Only the neuron with the max value gets the gradient.
- Average Pooling: Distributes gradient equally to all neurons in the pooling window.

```
# Max Pooling Gradient (Pseudocode)
if neuron_was_max:
    gradient = upstream_gradient
else:
    gradient = 0
```

Step 4: Update Weights

Use optimizers (e.g., SGD, Adam) to adjust weights:

$$W_{ ext{new}} = W_{ ext{old}} - \eta \cdot rac{\partial ext{Loss}}{\partial W}$$

Keras Implementation (Automatic Backpropagation)

You don't need to manually implement backprop—Keras handles it:

model.compile(optimizer='adam', loss='categorical_crossentropy') model.fit(X_train, y_train, epochs=10)

X Disadvantages / Challenges

Disadvantage	Why it Happens
! Vanishing gradients	Small gradients → weights stop updating
! Overfitting	Learns too well → performs badly on new data
! Computational cost	Backprop on large CNNs = expensive
! Sensitive to learning rate	Too high \rightarrow unstable, too low \rightarrow very slow
! Needs labeled data	Supervised learning needs correct answers