WHAT IS CLAIMED IS:

1. A compound of the Formula A:

5

wherein:

a is 0 or 1;

10 b is 0 or 1;

m is 0, 1 or 2;

n is 0, 1, 2 or 3;

p is 0, 1 or 2;

r is 0 or 1;

15 s is 0 or 1;

t is 2, 3, 4, 5 or 6;

u, v, w and x are independently selected from: CH and N;

20 y and z are independently selected from: CH and N, provided that at least one of y and z is N;

R1 is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 25 2) (C=O)_aO_baryl,
 - C2-C10 alkenyl, 3)

C2-C10 alkynyl, 4)

5) (C=O)_aO_b heterocyclyl, 6) (C=O)_aO_bC₃-C₈ cycloalkyl, 7) CO₂H, 8) halo, 5 9) CN, 10) OH, ObC1-C6 perfluoroalkyl, 11) $O_a(C=O)_bNR^7R^8$, 12) $NR^{c}(C=O)NR^{7}R^{8}$ 13) 10 $S(O)_mR^a$, 14) 15) $S(O)_2NR^7R^8$, $NR^{c}S(O)_{m}R^{a}$, 16) 17) oxo, 18) CHO, 15 19) NO₂, 20) NRc(C=O)ObRa, 21) O(C=O)ObC1-C10 alkyl, 22) O(C=O)ObC3-C8 cycloalkyl,

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one or more substituents selected from R^z;

R² is independently selected from:

O(C=O)Obaryl, and

O(C=O)Ob-heterocycle,

23)

24)

20

25 1) (C=O)_aO_bC₁-C₁₀ alkyl, 2) (C=O)_aO_baryl, 3) C2-C10 alkenyl, 4) C2-C10 alkynyl, (C=O)aOb heterocyclyl, 5) 30 6) (C=O)aObC3-C8 cycloalkyl, 7) CO₂H, halo, 8) 9) CN, 10) OH,

- 11) ObC1-C6 perfluoroalkyl,
- 12) $O_a(C=O)_bNR^7R^8$,
- 13) $NR^{c}(C=O)NR^{7}R^{8}$,
- 14) $S(O)_mR^a$,
- 5 15) $S(O)_2NR^7R^8$,
 - 16) NRcS(O)_mRa,
 - 17) CHO,
 - 18) NO₂,
 - 19) NRc(C=O)ObRa,
- 10 $O(C=O)O_bC_1-C_{10}$ alkyl,
 - 21) O(C=O)ObC3-C8 cycloalkyl,
 - 22) O(C=O)Obaryl, and
 - 23) O(C=O)O_b-heterocycle,

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R^z;

R³ and R⁴ are independently selected from: H, C₁-C₆-alkyl and C₁-C₆-perfluoroalkyl, or

20 R³ and R⁴ are combined to form -(CH₂)_t- wherein one of the carbon atoms is optionally replaced by a moiety selected from O, $S(O)_m$, - $N(R^b)C(O)$ -, and - $N(COR^a)$ -;

R⁵ is independently selected from:

- 25 1) H,
 - 2) $(C=O)O_bC_1-C_{10}$ alkyl,
 - 3) (C=O)ObC3-C8 cycloalkyl,
 - 4) (C=O)Obaryl,
 - 5) (C=O)Obheterocyclyl,
- 30 6) C₁-C₁₀ alkyl,
 - 7) aryl,
 - 8) C2-C10 alkenyl,
 - 9) C_2 - C_{10} alkynyl,
 - 10) heterocyclyl,

30

- 11) C3-C8 cycloalkyl,
- 12) SO₂Ra, and
- 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocyclyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from R^z;

 R^6 is NR^7R^8 , (C_1-C_6) alkyl, (C_1-C_6) perfluoroalkyl, (C_3-C_6) cycloalkyl, noboranyl, aryl, 2,2,2-trifluoroethyl, benzyl or heterocyclyl, said alkyl, cycloalkyl, noboranyl, aryl, heterocyclyl and benzyl is optionally substituted with one or more substituents selected from R^z :

R⁷ and R⁸ are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 15 3) (C=O)ObC3-C8 cycloalkyl,
 - 4) (C=O)Obaryl,
 - 5) (C=O)Obheterocyclyl,
 - 6) C₁-C₁₀ alkyl,
 - 7) aryl,
- 20 8) C₂-C₁₀ alkenyl,
 - 9) C_2 - C_{10} alkynyl,
 - 10) heterocyclyl,
 - 11) C3-C8 cycloalkyl,
 - 12) SO₂Ra, and
- 25 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from Rz, or

R⁷ and R⁸ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 5-7 members in each ring and optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one or more substituents selected from R^z;

Rz is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 3) (C_0-C_6) alkylene- $S(O)_mR^a$,
- 5 4) oxo,
 - 5) OH,
 - 6) halo,
 - 7) CN,
 - 8) $(C=O)_rO_s(C_2-C_{10})$ alkenyl,
- 10 9) $(C=O)_{r}O_{s}(C_{2}-C_{10})$ alkynyl,
 - 10) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
 - $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
 - 12) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
 - 13) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
- 15 14) $C(O)R^a$,
 - 15) (C₀-C₆)alkylene-CO₂R^a,
 - 16) C(O)H,
 - 17) (C₀-C₆)alkylene-CO₂H,
 - 21) $C(O)N(R^b)_2$,
- 20 22) $S(O)_{m}Ra$,
 - 23) $S(O)_2N(R^b)_2$
 - 21) $NR^{c}(C=O)O_{b}R^{a}$,
 - 22) $O(C=O)O_bC_1-C_{10}$ alkyl,
 - 23) O(C=O)ObC3-C8 cycloalkyl,
- 25 O(C=O)Obaryl, and
 - 25) O(C=O)O_b-heterocycle,

said a'kyl, alkenyl, alkynyl, cycloalkyl, aryl, and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, and N(R^b)₂;

30

R^a is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₆)cycloalkyl, substituted or unsubstituted aryl, (C₁-C₆)perfluoroalkyl, 2,2,2-trifluoroethyl, or substituted or unsubstituted heterocyclyl; and

Rb is H, (C_1-C_6) alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl, substituted or unsubstituted heterocyclyl, (C_3-C_6) cycloalkyl, $(C=0)C_1-C_6$ alkyl, $(C=0)C_1-C_6$ alkyl or $S(O)_2R^a$;

- 5 Rc is selected from:
 - 1) H,
 - C_{1} - C_{10} alkyl,
 - 3) aryl,
 - 4) C2-C₁₀ alkenyl,
- 10 5) C₂-C₁₀ alkynyl,
 - 6) heterocyclyl,
 - 7) C3-C8 cycloalkyl,
 - 8) C₁-C₆ perfluoroalkyl,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from Rz;

or a pharmaceutically acceptable salt or a stereoisomer thereof.

2. The compound according to Claim 1 of the Formula B:

20

$$(R^1)_n - \bigvee_{W=1}^{N} \bigvee_{X=1}^{N} \bigcap_{N=1}^{N} \bigcap_{N=1$$

wherein:

25 a is 0 or 1; b is 0 or 1; m is 0, 1 or 2;

```
n is 0, 1, 2 or 3;
       p is 0, 1 or 2;
       r is 0 or 1;
      s is 0 or 1;
 5
       u, v, w and x are independently selected from: CH and N, provided that only one of u,
       v, w and x may be N;
       R<sup>1</sup> is independently selected from:
10
               1)
                        (C=O)_aO_bC_1-C_{10} alkyl,
               2)
                        (C=O)<sub>a</sub>O<sub>b</sub>aryl,
               3)
                       C2-C10 alkenyl,
               4)
                        C2-C10 alkynyl,
               5)
                        (C=O)<sub>a</sub>O<sub>b</sub> heterocyclyl,
15
               6)
                        (C=O)<sub>a</sub>O<sub>b</sub>C<sub>3</sub>-C<sub>8</sub> cycloalkyl,
               7)
                       CO<sub>2</sub>H,
               8)
                        halo,
               9)
                       CN,
                        OH.
               10)
20
               11)
                        ObC1-C6 perfluoroalkyl,
               12)
                       O_a(C=O)_bNR^7R^8,
                        NR^{c}(C=O)NR^{7}R^{8}
               13)
               14)
                        S(O)_mR^a,
                        S(O)_2NR^7R^8,
               15)
                        NRcS(O)mRa,
25
               16)
               17)
                       oxo,
               18)
                        CHO,
               19)
                        NO<sub>2</sub>,
               20)
                       NRc(C=O)ObRa,
30
               21)
                       O(C=O)O_bC_1-C_{10} alkyl,
               22)
                        O(C=O)ObC3-C8 cycloalkyl,
               23)
                        O(C=O)Obaryl, and
                        O(C=O)O<sub>b</sub>-heterocycle,
               24)
      said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted
```

with one or more substituents selected from RZ;

R² is independently selected from:

- 1) $(C=O)_aO_bC_1-C_{10}$ alkyl,
- 2) $(C=O)_aO_baryl$,
- 5 3) C₂-C₁₀ alkenyl,
 - 4) C2-C₁₀ alkynyl,
 - 5) $(C=O)_aO_b$ heterocyclyl,
 - 6) (C=O)_aO_bC₃-C₈ cycloalkyl,
 - 7) CO₂H,
- 10 8) halo,
 - 9) CN,
 - 10) OH,
 - 11) ObC1-C6 perfluoroalkyl,
 - 12) $O_a(C=O)_bNR^7R^8$,
- 15 NR $^{c}(C=O)NR^{7}R^{8}$,
 - $S(O)_m Ra$
 - 15) $S(O)_2NR^7R^8$,
 - 16) NRcS(O)mRa,
 - 17) CHO,
- 20 18) NO₂,
 - 19) $NR^{c}(C=O)O_{b}R^{a}$,
 - 20) $O(C=O)O_bC_1-C_{10}$ alkyl,
 - 21) O(C=O)O_bC₃-C₈ cycloalkyl,
 - 22) O(C=O)Obaryl, and
- 25 O(C=O)O_b-heterocycle,

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one, two or three substituents selected from R^z;

R⁵ is independently selected from:

- 30 1) H,
 - 2) $(C=O)O_bC_1-C_{10}$ alkyl,
 - 3) $(C=O)O_bC_3-C_8$ cycloalkyl,
 - 4) (C=O)Obaryl,
 - 5) (C=O)Obheterocyclyl,
- 35 6) C₁-C₁₀ alkyl,

- 7) aryl,
- 8) C2-C10 alkenyl,
- 9) C2-C₁₀ alkynyl,
- 10) heterocyclyl,
- 11) C3-C8 cycloalkyl,
 - 12) SO₂Ra, and
 - 13) $(C=O)NRb_2$,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from R^z;

R⁶ is NR⁷R⁸, (C₁-C₆)alkyl, (C₁-C₆)perfluoroalkyl, (C₃-C₆)cycloalkyl, noboranyl, aryl, 2,2,2-trifluoroethyl, benzyl or heterocyclyl, said alkyl, cycloalkyl, noboranyl, aryl, heterocyclyl and benzyl is optionally substituted with one or more substituents selected from R^z;

15

10

5

R⁷ and R⁸ are independently selected from:

- 1) H,
- 2) $(C=O)O_bC_1-C_{10}$ alkyl,
- 3) (C=O)ObC3-C8 cycloalkyl,
- 20 4) (C=O)Obaryl,
 - 5) (C=O)Obheterocyclyl,
 - 6) C₁-C₁₀ alkyl,
 - 7) aryl,
 - 8) C2-C₁₀ alkenyl,
- 25 9) C₂-C₁₀ alkynyl,
 - 10) heterocyclyl,
 - 11) C3-C8 cycloalkyl,
 - 12) SO₂Ra, and
 - 13) $(C=O)NRb_2$,
- said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from R^z, or

R⁷ and R⁸ can be taken together with the nitrogen to which they are attached to form a monocyclic or bicyclic heterocycle with 5-7 members in each ring and optionally

containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic or bicyclic heterocycle optionally substituted with one or more substituents selected from R^z;

- 5 Rz is selected from:
 - 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
 - 2) $O_r(C_1-C_3)$ perfluoroalkyl,
 - 3) (C_0-C_6) alkylene- $S(O)_mR^a$,
 - 4) oxo,
- 10 5) OH,
 - 6) halo,
 - 7) CN,
 - 8) $(C=O)_rO_s(C_2-C_{10})$ alkenyl,
 - 9) $(C=O)_rO_s(C_2-C_{10})$ alkynyl,
- 15 10) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
 - 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
 - 12) $(C=O)_rO_s(C_0-C_6)$ alkylene-heterocyclyl,
 - 13) $(C=O)_{r}O_{s}(C_{0}-C_{6})$ alkylene- $N(R^{b})_{2}$,
 - 14) $C(O)R^{a}$,
- 20 (C₀-C₆)alkylene-CO₂R^a.
 - 16) C(O)H,
 - 17) (C₀-C₆)alkylene-CO₂H,
 - 18) $C(O)N(R^b)_{2}$,
 - 19) $S(O)_mR^a$,
- 25 20) $S(O)_2NR^9R^{10}$
 - 21) $NR^{c}(C=O)O_{b}R^{a}$,
 - 22) $O(C=O)O_bC_1-C_{10}$ alkyl,
 - 23) O(C=O)O_bC₃-C₈ cycloalkyl,
 - 24) O(C=O)Obaryl, and
- 30 25) O(C=O)O_b-heterocycle,

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, and N(R^b)₂;

R^a is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₆)cycloalkyl, substituted or unsubstituted aryl, (C₁-C₆)perfluoroalkyl, 2,2,2-trifluoroethyl, or substituted or unsubstituted heterocyclyl; and

Rb is H, (C1-C6)alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl, substituted or unsubstituted heterocyclyl, (C3-C6)cycloalkyl, (C=O)OC1-C6 alkyl, (C=O)C1-C6 alkyl or S(O)₂R^a;

Rc is selected from:

- 10 1) H,
 - 2) C₁-C₁₀ alkyl,
 - 3) aryl,
 - 4) C2-C10 alkenyl,
 - 5) C2-C₁₀ alkynyl,
- 15 6) heterocyclyl,
 - 7) C3-C8 cycloalkyl,
 - 8) C₁-C₆ perfluoroalkyl,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from R^z;

20

or a pharmaceutically acceptable salt or a stereoisomer thereof.

3. The compound according to Claim 2 of the Formula B:

$$(R^1)_n - \bigvee_{W = X}^u \bigvee_{N}^N \bigcap_{R^5}^{SO_2R^6}$$

25

wherein:

```
a is 0 or 1;
       b is 0 or 1;
       m is 0, 1 or 2;
       n is 0, 1, 2 or 3;
 5
      p is 0, 1 or 2;
       r is 0 or 1;
       s is 0 or 1;
       u, v, w and x are independently selected from: CH and N, provided that only one of u,
10
      v, w and x may be N;
       R1 is independently selected from:
                1)
                        (C=O)_aO_bC_1-C_{10} alkyl,
               2)
                        (C=O)<sub>a</sub>O<sub>b</sub>aryl,
15
               3)
                        C2-C10 alkenyl,
                        C2-C10 alkynyl,
               4)
               5)
                        (C=O)<sub>a</sub>O<sub>b</sub> heterocyclyl,
               6)
                        (C=O)<sub>a</sub>O<sub>b</sub>C<sub>3</sub>-C<sub>8</sub> cycloalkyl,
               7)
                        CO<sub>2</sub>H,
20
               8)
                        halo,
                        CN,
               9)
                10)
                        OH,
                        O<sub>b</sub>C<sub>1</sub>-C<sub>6</sub> perfluoroalkyl,
                11)
                        O_a(C=O)_bNR^7R^8,
                12)
                        NR^{c}(C=O)NR^{7}R^{8},
25
                13)
                14)
                        S(O)_mR^a,
                        S(O)_2NR^7R^8,
                15)
                        NRcS(O)mRa,
                16)
                17)
                        oxo,
30
                18)
                        CHO,
                        NO<sub>2</sub>,
                19)
               20)
                        NRc(C=O)ObRa,
               21)
                        O(C=O)ObC1-C10 alkyl,
               22)
                        O(C=O)ObC3-C8 cycloalkyl,
35
               23)
                        O(C=O)Obaryl, and
```

24) O(C=O)O_b-heterocycle,

said alkyl, aryl, alkenyl, alkynyl, heterocyclyl, and cycloalkyl optionally substituted with one or more substituents selected from R^z;

R² is independently selected from:

- 5 l) C₁-C₆ alkyl,
 - 2) aryl,
 - 3) heterocyclyl,
 - 4) CO₂H,
 - 5) halo,
- 10 6) CN,
 - 7) OH,
 - 8) $S(O)_2NR^7R^8$,

said alkyl, aryl and heterocyclyl optionally substituted with one, two or three substituents selected from R^z;

15

R⁵ is independently selected from:

- 1) H,
- 2) C₁-C₁₀ alkyl,
- 3) aryl, and
- 20 4) C3-C8 cycloalkyl,

said alkyl, cycloalkyl and aryl is optionally substituted with one or more substituents selected from R^z;

R⁶ is NR⁷R⁸, (C₁-C₆)alkyl, (C₁-C₆)perfluoroalkyl, (C₃-C₆)cycloalkyl, noboranyl, aryl, 2,2,2-trifluoroethyl, benzyl or heterocyclyl, said alkyl, cycloalkyl, noboranyl, aryl, heterocyclyl and benzyl is optionally substituted with one or more substituents selected from R^z;

R7 and R8 are independently selected from:

- 30 1) H,
 - 2) $(C=O)O_bC_1-C_{10}$ alkyl,
 - 3) (C=O)ObC3-C8 cycloalkyl,
 - 4) (C=O)Obaryl,
 - 5) (C=O)Obheterocyclyl,

- 6) C₁-C₁₀ alkyl,
- 7) aryl,
- 8) C2-C₁₀ alkenyl,
- 9) C2-C₁₀ alkynyl,
- 5 10) heterocyclyl,
 - 11) C₃-C₈ cycloalkyl,
 - 12) SO₂Ra, and
 - 13) $(C=O)NRb_{2}$

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from R^z, or

Rz is selected from:

- 1) $(C=O)_rO_s(C_1-C_{10})$ alkyl,
- 2) $O_r(C_1-C_3)$ perfluoroalkyl,
- 15 3) (C_0-C_6) alkylene- $S(O)_mR^a$,
 - 4) oxo,
 - 5) OH,
 - 6) halo,
 - 7) CN,
- 20 8) $(C=O)_rO_s(C_2-C_{10})$ alkenyl,
 - 9) $(C=O)_rO_s(C_2-C_{10})$ alkynyl,
 - 10) $(C=O)_rO_s(C_3-C_6)$ cycloalkyl,
 - 11) $(C=O)_rO_s(C_0-C_6)$ alkylene-aryl,
 - 12) $(C=O)_{\Gamma}O_{S}(C_{0}-C_{6})$ alkylene-heterocyclyl,
- 25 13) $(C=O)_rO_s(C_0-C_6)$ alkylene- $N(R^b)_2$,
 - 14) $C(O)R^{a}$,
 - 15) (C₀-C₆)alkylene-CO₂R^a,
 - 16) C(O)H,
 - 17) (C₀-C₆)alkylene-CO₂H,
- 30 18) $C(O)N(R^b)_2$,
 - 19) $S(O)_mR^a$, and
 - 20) $S(O)_2NR_9R_{10}$
 - 21) NRc(C=O)ObRa,
 - 22) $O(C=O)O_bC_1-C_{10}$ alkyl,

- 23) O(C=O)ObC3-C8 cycloalkyl,
- 24) O(C=O)Obaryl, and
- 25) O(C=O)O_b-heterocycle,

said alkyl, alkenyl, alkynyl, cycloalkyl, aryl, and heterocyclyl is optionally substituted with up to three substituents selected from R^b, OH, (C₁-C₆)alkoxy, halogen, CO₂H, CN, O(C=O)C₁-C₆ alkyl, oxo, and N(R^b)₂;

R^a is (C₁-C₆)alkyl, (C₃-C₆)cycloalkyl, substituted or unsubstituted aryl, or heterocyclyl; and

10

Rb is H, (C₁-C₆)alkyl, substituted or unsubstituted aryl, substituted or unsubstituted benzyl, substituted or unsubstituted heterocyclyl, (C₃-C₆)cycloalkyl, (C=O)OC₁-C₆ alkyl, (C=O)C₁-C₆ alkyl or S(O)₂R^a;

- 15 Rc is selected from:
 - 1) H,
 - 2) C₁-C₁₀ alkyl,
 - 3) aryl,
 - 4) C2-C₁₀ alkenyl,
- 20 5) C₂-C₁₀ alkynyl,
 - 6) heterocyclyl,
 - 7) C3-C8 cycloalkyl,
 - 8) C₁-C₆ perfluoroalkyl,

said alkyl, cycloalkyl, aryl, heterocylyl, alkenyl, and alkynyl is optionally substituted with one or more substituents selected from R^z;

or a pharmaceutically acceptable salt or a stereoisomer thereof.

4. The compound according to Claim 1 which is:

30

N-[4-(3-phenylquinoxalin-2-yl)benzyl]propane-1-sulfonamide.

5. The TFA salt according to Claim 1 which is:

N-[4-(3-phenylquinoxalin-2-yl)benzyl]propane-1-sulfonamide.

6. The compound according to Claim 1 which is selected from:

$$\begin{array}{c|c}
R & R \\
\downarrow & \downarrow & \downarrow \downarrow$$

or a pharmaceutically acceptable salt or a stereoisomer thereof.

7. The TFA salt according to Claim 1 which is selected from:

or a stereoisomer thereof.

- 8. A pharmaceutical composition comprising a pharmaceutical carrier, and dispersed therein, a therapeutically effective amount of a compound of Claim 1.
- 9. A pharmaceutical composition comprising a pharmaceutical carrier, and dispersed therein, a therapeutically effective amount of a compound of Claim 4.
 - 10. A pharmaceutical composition comprising a pharmaceutical carrier, and dispersed therein, a therapeutically effective amount of a compound of Claim 6.

15

- 11. A method of inhibiting one or more of the isoforms of Akt in a mammal which comprises administering to the mammal a therapeutically effective amount of a compound of Claim 1.
- 20 12. A method of inhibiting one or more of the isoforms of Akt in a mammal which comprises administering to the mammal a therapeutically effective amount of a compound of Claim 4.
- 13. A method of inhibiting one or more of the isoforms of Akt in a mammal which comprises administering to the mammal a therapeutically effective amount of a compound of Claim 6.
 - 14. A method for treating cancer which comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 1.
 - 15. A method for treating cancer which comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 4.

35

- 16. A method for treating cancer which comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 6.
- 5 17. A pharmaceutical composition made by combining the compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 18. A process for making a pharmaceutical composition comprising combining a compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 19. The composition of Claim 8 further comprising a second compound selected from:
 - an estrogen receptor modulator, 1)
- 15 2) an androgen receptor modulator,
 - 3) retinoid receptor modulator,
 - 4) a cytotoxic agent,
 - 5) an antiproliferative agent,
 - 6) a prenyl-protein transferase inhibitor,
- 20 7) an HMG-CoA reductase inhibitor,
 - an HIV protease inhibitor, 8)
 - 9) a reverse transcriptase inhibitor,
 - an angiogenesis inhibitor, 10)
 - a PPAR-y agonists, 11)
- 25 12) a PPAR-δ agonists,
 - 13) an inhibitor of cell proliferation and survival signaling, and
 - 14) an agent that interfers with a cell cycle checkpoint.
- 20. The composition of Claim 19, wherein the second compound is 30 an angiogenesis inhibitor selected from the group consisting of a tyrosine kinase inhibitor, an inhibitor of epidermal-derived growth factor, an inhibitor of fibroblastderived growth factor, an inhibitor of platelet derived growth factor, an MMP inhibitor, an integrin blocker, interferon-α, interleukin-12, pentosan polysulfate, a cyclooxygenase inhibitor, carboxyamidotriazole, combretastatin A-4, squalamine, 6-
- 35 O-(chloroacetyl-carbonyl)-fumagillol, thalidomide, angiostatin and troponin-1.

- The composition of Claim 19, wherein the second compound is an estrogen receptor modulator selected from tamoxifen and raloxifene.
- 5 22. A method of treating cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with radiation therapy.
- 23. A method of treating or preventing cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with a compound selected from:
 - 1) an estrogen receptor modulator,
 - 2) an androgen receptor modulator,
 - 3) retinoid receptor modulator,
- 15 4) a cytotoxic agent,
 - 5) an antiproliferative agent,
 - 6) a prenyl-protein transferase inhibitor,
 - 7) an HMG-CoA reductase inhibitor,
 - 8) an HIV protease inhibitor,
- 20 9) a reverse transcriptase inhibitor,
 - 10) an angiogenesis inhibitor,
 - 11) a PPAR-γ agonists,
 - 12) a PPAR-δ agonists,
 - 13) an inhibitor of inherent multidrug resistance,
- 25 an anti-emetic agent,
 - an agent useful in the treatment of anemia,
 - 16) an agent useful in the treatment of neutropenia,
 - 17) an immunologic-enhancing drug,
 - 18) an inhibitor of cell proliferation and survival signaling, and
- 30 an agent that interfers with a cell cycle checkpoint.
 - 24. A method of treating cancer which comprises administering a therapeutically effective amount of a compound of Claim 1 in combination with radiation therapy and a compound selected from:
- 35 an estrogen receptor modulator,

25.

paclitaxel or trastuzumab.

	2)	an androgen receptor modulator,
	3)	retinoid receptor modulator,
	4)	a cytotoxic agent,
	5)	an antiproliferative agent,
5	6)	a prenyl-protein transferase inhibitor,
	7)	an HMG-CoA reductase inhibitor,
	8)	an HIV protease inhibitor,
	9)	a reverse transcriptase inhibitor,
	10)	an angiogenesis inhibitor,
10	11)	a PPAR-γ agonists,
	12)	a PPAR-δ agonists,
	13)	an inhibitor of inherent multidrug resistance,
	14)	an anti-emetic agent,
	15)	an agent useful in the treatment of anemia,
15	16)	an agent useful in the treatment of neutropenia,
	17)	an immunologic-enhancing drug,
	18)	an inhibitor of cell proliferation and survival signaling, and
	19)	an agent that interfers with a cell cycle checkpoint.

administering a therapeutically effective amount of a compound of Claim 1 and

A method of treating or preventing cancer which comprises