20

Name: (lémentine CARBON

Exercise 1. Fill in the blank:

$$\cos\left(-\frac{46\pi}{3}\right) = \cos\left(-\frac{45\pi}{3} - \frac{\pi}{3}\right) = \cos\left(-15\pi - \frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right)$$

$$= -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{3}$$

Exercise 2. Let $n \in \mathbb{N}$. Simplify:

$$\sqrt{\frac{(2n+5)!}{(2n+3)!}} = \frac{(2m+3)!(2m+4)(2m+5)}{(2m+3)!} = (2m+4)(2m+5)$$

Exercise 3. Let $\theta \in \mathbb{R}$ such that $\cos(\theta) = 1/5$. Determine the value of $\cos(2\theta)$:

$$V\cos(2\theta) = 2\cos^2(\theta) - 1 = 2 \times \left(\frac{1}{5}\right)^2 - 1 = \frac{2}{25} - 1 = -\frac{23}{25}$$

Exercise 4. Let $x \in \mathbb{R}$. Fill in the blanks:

$$\sin(x) = \frac{1}{2} \Leftrightarrow \exists k \in \mathbb{Z}, x = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad x = \pi - \frac{\pi}{6} + 2k\pi$$

$$\Leftrightarrow \exists k \in \mathbb{Z}, x = \frac{\pi}{6} + 2k\pi \quad \text{or} \quad x = \frac{5\pi}{4} + 2k\pi$$

Exercise 5. Let $u, v \in \mathbb{R}$. Fill in the blank with the addition (or subtraction) formula:

$$\sqrt{\cos(u+v)} = \cos(u)\cos(v) - \sin(u)\sin(v)$$

$$\sin(u-v) = \sin(u)\cos(v) - \sin(v)\cos(v)$$

Exercise 6. Let $s \in \mathbb{R}$. Recall the half-angle formula:

$$\sqrt{\sin^2(s)} = \frac{\Lambda - (05 (25))}{2}$$

Exercise 7. Fill in the blanks:

$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \qquad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \qquad \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

Exercise 8. Write the following expression with the \sum symbol.

$$V 1^{1} - 3^{2} + 5^{3} - 7^{4} + 9^{5} \cdots - 25^{12} = \sum_{k=1}^{12} (2k-1)^{k} (-1)^{k+1}$$