Frozen Locks: Neutrino Set, Neutrino Mass Rows & Water Rows (v2)

Rosetta Stone of Physics — Evan Wesley, Reality Encoded September 13, 2025

Purpose

This note freezes three seed groups:

- Neutrino mixing (canonical set, v2) exact rational locks for the three angles and a CP phase.
- 2. **Neutrino mass rows (v1)** a small-denominator rational for the mass-splitting ratio in normal ordering.
- 3. Water rows (benchmark, v1) exact rational/identity anchors for solvent resonance and bioelectrochemistry knobs in EKTL/engine tests.

We report MDL[[] p/q] = $\lceil \log_2 p \rceil + \lceil \log_2 q \rceil$. Transcendentals (e.g. $\pi, \ln 2$) carry zero MDL charge in this program.

1 Frozen Neutrino Mixing Set (v2)

Canonical locks (as in the CKM/PMNS double-ledger):

$$\sin^2 \theta_{12} = \frac{7}{23}, \quad \sin^2 \theta_{13} = \frac{2}{89}, \quad \sin^2 \theta_{23} = \frac{9}{16}, \quad \delta_{PMNS} = -\frac{\pi}{2}$$

Derived, zero-cost consequences. First-row probabilities are exact rationals:

$$|U_{e1}|^2 = \frac{1392}{2047}, \quad |U_{e2}|^2 = \frac{609}{2047}, \quad |U_{e3}|^2 = \frac{2}{89}.$$

No extra parameters beyond the seeds above.

Audit Table (Neutrino Mixing)

#	Quantity	Exact value	p	q	$\mathrm{MDL}[[]p/q]$	Status/Notes
N1	$\sin^2 \theta_{12}$	7/23	7	23	3+5=8 bits	FROZEN (v2)
N2	$\sin^2 \theta_{13}$	2/89	2	89	1+7=8 bits	\mathbf{FROZEN} (v2)
N3	$\sin^2\theta_{23}$	9/16	9	16	4 + 4 = 8 bits	\mathbf{FROZEN} (v2)
N4	$\delta_{ m PMNS}$	$-\pi/2$	_	-	0 bits	FROZEN (phase; transcendental)
D1	$ U_{e1} ^2$	1392/2047	1392	2047	11 + 11 = 22 bits	Derived (0 model bits)
D2	$ U_{e2} ^2$	609/2047	609	2047	10 + 11 = 21 bits	Derived (0 model bits)
D3	$ U_{e3} ^2$	2/89	2	89	1+7=8 bits	Derived (0 model bits)

MDL subtotal (Neutrino mixing seeds). MDL[] mix = 8 + 8 + 8 + 9 = 24 bits].

2 Frozen Neutrino Mass Rows (v1)

We freeze normal ordering and a compact rational for the *splitting ratio*; the absolute mass scale remains unfrozen (set by external priors, e.g. cosmology) to avoid unnecessary MDL.

Definition

Let

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2$$
, $\Delta m_{31}^2 \equiv m_3^2 - m_1^2$, NO: $\Delta m_{21}^2 > 0$, $\Delta m_{31}^2 > 0$.

Frozen rational ratio (small denominator):

$$R_{21/31} \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} = \frac{2}{65}$$

This choice $(2/65 \approx 0.030769)$ is a tight small-denominator fit to the standard-normal-ordering ratio and keeps the registry compact.

Audit Table (Neutrino Mass)

#	Quantity	Exact value	p	q	$\mathrm{MDL}[[]p/q]$	Status/Notes
	Ordering $\Delta m_{21}^2/\Delta m_{31}^2$	$\begin{array}{c} \text{NO} \\ 2/65 \end{array}$	$\frac{-}{2}$	-65	$0 \text{ bits} \\ 1 + 6 = 7 \text{ bits}$	FROZEN (symbolic) FROZEN (v1)
$\overline{\mathrm{B0}}$	$m_1^{ m bench}$	$1/1000 \; eV$	1	1000	0 + 10 = 10 bits	Benchmark only; non-parametric

Consequences. Given any lightest mass m_1 , the spectrum is

$$m_2 = \sqrt{m_1^2 + \Delta m_{21}^2}, \qquad m_3 = \sqrt{m_1^2 + \Delta m_{31}^2}, \qquad \frac{\Delta m_{21}^2}{\Delta m_{31}^2} = \frac{2}{65}.$$

The laboratory observables

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2}, \qquad m_{\beta\beta} = \left| |U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{i\alpha_{21}} + |U_{e3}|^2 m_3 e^{i\alpha_{31}} \right|$$

are then fully determined by the mixing seeds (Sec. 1), this rational $R_{21/31}$, the lightest mass m_1 , and two Majorana phases $(\alpha_{21}, \alpha_{31})$ (no new seeds). A convenient non-parametric benchmark is $m_1 = 1 \text{ meV}$, for which one can print Σm_i , m_{β} , and the $m_{\beta\beta}$ envelope (min/max over phases) as in your one-cell script.

MDL subtotal (Neutrino mass seeds). MDL[] mass = $0+7=\boxed{7 \text{ bits}}$. (If an absolute anchor like $\Delta m_{31}^2=2453/10^6 \, \text{eV}^2$ were ever frozen, it would add $\approx 32 \, \text{bits}$; we leave it unfrozen here.)

3 Frozen Water Rows (Benchmark v1)

Instrument-facing anchors for solvent resonance and bioelectrochemical checks in EKTL/engine experiments. Exact rationals (or identities) keep MDL minimal while enabling reproducible tests.

Solvent Resonance Anchors

Primary dielectric relaxation (Debye) and a hydration tail; frequency drives are rational multiples of the center.

$$\boxed{\tau_D = \frac{83}{10} \text{ ps}, \qquad \tau_H = 1 \text{ ns}, \qquad \mathcal{R} = \left\{\frac{1}{2}, \ 1, \ 2, \ 3\right\}}$$

Angular resonance $\omega_0 = 1/\tau$, drive set $\omega = r \omega_0$ with $r \in \mathcal{R}$; linear frequency $f_0 = \omega_0/(2\pi)$ is allowed (explicit 2π costs zero MDL).

Bioelectrochemical Benchmarks

Reference membrane potential and pH gradient for Nernst gates; simple rationals/integers.

$$\Delta \psi_{\rm ref} = \frac{3}{20} \text{ V } (= 150 \text{ mV}), \qquad \Delta p H_{\rm ref} = 1$$

At temperature T, the dimensionless proton chemical potential is

$$\ln a = \frac{q_e \, \Delta \psi}{k_B T} + (\ln 10) \, \Delta \text{pH},$$
 bit-normalized gate: $\ln a / \ln 2$.

Any fitted small rational approximation to $\ln a / \ln 2$ should be recorded as a separate derived line (no new seeds).

Audit Table (Water)

#	Quantity	Exact value	p	q	$\mathrm{MDL}[[]p/q]$	Status/Notes
$\overline{\mathrm{W1}}$	$ au_{ m D}/{ m ps}$	83/10	83	10	7 + 4 = 11 bits	FROZEN (Debye center)
W2	$ au_{ m H}/ m ns$	1/1	1	1	0+0=0 bits	FROZEN (hydration center)
W3	r_1 (drive ratio)	1/2	1	2	0+1=1 bits	FROZEN
W4	r_2	1	1	1	0+0=0 bits	FROZEN
W5	r_3	2	2	1	1+0=1 bits	FROZEN
W6	r_4	3	3	1	2+0=2 bits	FROZEN
B1	$\Delta \psi_{\rm ref} ({\rm V})$	3/20	3	20	2+5=7 bits	FROZEN
B2	$\Delta \mathrm{pH}_{\mathrm{ref}}$	1	1	1	0 + 0 = 0 bits	FROZEN

MDL subtotal (Water seeds). MDL[] water = 11 + 0 + 1 + 0 + 1 + 2 + 7 + 0 = 22 bits.

4 Seed MDL Totals (this document)

$$\begin{aligned} \text{MDL}[] & \text{mix} = 24 \text{ bits}, & \text{MDL}[] & \text{mass} = 7 \text{ bits}, & \text{MDL}[] & \text{water} = 22 \text{ bits} \\ & \Rightarrow & \boxed{\text{MDL}[] & \text{seeds, total} = 53 \text{ bits.}} \end{aligned}$$

For baseline comparison: encoding neutrino mixing (4 floats), a splitting ratio (1 float), and water anchors (8 floats) with 64-bit reals would cost $(4+1+8) \times 64 = 832$ bits. Thus these freezes yield a conservative net saving of $832 - 53 = \boxed{779 \text{ bits}}$ before counting any derived observables (which cost 0 model bits under this program).

5 Freeze Checklist & Provenance

- Versioning. This file is Frozen v2 (mix), v1 (mass), v1 (water). Replacements should increment version tags and list superseded row IDs.
- Scope. Mass ordering and the ratio $R_{21/31}$ are frozen; the absolute mass scale remains unfrozen (external prior). If you later freeze an absolute anchor (e.g. Δm_{31}^2 as a rational), add it here with a new row.
- Benchmark link. The non-parametric $m_1 = 1 \text{ meV}$ benchmark corresponds to your one-cell neutrino script; it does not add MDL.
- Water provenance. Debye $\sim 8.3 \, \mathrm{ps}$, hydration $\sim 1 \, \mathrm{ns}$; drive ratios $\{1/2, 1, 2, 3\}$; bioelectric knobs $\Delta \psi \approx 150 \, \mathrm{mV}$, $\Delta \mathrm{pH} = 1$.