

Agenda Construct relationships The multitrait-multimethod matrix Traditional approach Modern CFA approach Other strategies

Assessing Convergent & Discriminant Validity

- Easiest approach: look at the correlations!
 - Is the magnitude of the correlation consistent with predictions about the strength of the relationship?
- No magic cutoffs here, no rules of thumb.
 - O Remember the continuum idea...
 - O If you are arguing that two constructs are distinct, the correlation between the two should be less than the reliability of either measure.
- Some people will test for a significant difference between convergent and discriminant correlations.
 - Why is this probably a bad idea?

CFA for Discriminant Validity

- To establish whether two measures are really distinct:
 - O Do all the items load onto one common factor? Or do we need "scale" factors to differentiate the two?
 - O Test a one-factor vs. two-factor CFA model & evaluate fit.
- Need to be careful here if our two-factor model fits better, is it for a substantive or a trivial reason?
 - E.g., response scale differences, frame of reference differences.
- Look at the factor correlations.
 - O These are the relationships among our latent constructs, after accounting for error.
 - Oconfidence intervals around these can be helpful (do they exclude 1.0?). Again, no magic cutoffs.

Convergent & Discriminant Validity in the Nomological Net

- O Stronger argument: Constructs that are similar should have similar nomological nets. Constructs that are different should not.
 - Compared to another measure, does your test predict outcomes in a similar (convergent) or different (discriminant) way?
 - O Does it have similar (convergent) or different (discriminant) relationships with other variables?
 - O Does your test have incremental (discriminant) validity over another measure in predicting an outcome?

Be Careful!

- McDonald (1999) gives an example of a nomological net relating depression and self-punitive attitudes.
- There are four possible models for the relationship between the two:
 - Depression causes self-punitive attitudes.
 - O Self-punitive attitudes cause depression.
 - Depression is a subdomain of self-punitive attitudes.
 - O Self-punitive attitudes are a subdomain of depression.
- We can draw all four of these...

SEM & the Nomological Net

- The causal argument (1st 2 models) is one important issue... but not the only one.
- O The latter 2 models are just as problematic from a convergent/discriminant validity perspective.
 - Are we measuring 2 different constructs? Or one subdomain of a broader construct?
- If we just test one SEM model and find it fits well, we haven't answered this question.
 - And comparing these models doesn't help they will yield identical fit indices.
- O So what's the solution? What other evidence can you use to support your choice of model?

The MTMM Approach

- Formally, the multitrait-multimethod matrix.
- Proposed in 1959 by Campbell & Fiske.
- Rule out method bias or method similarities as an alternative explanation for observed relationships among constructs.
- Logic:
 - If we are measuring something real, we should be able to measure it in different ways and get consistent results.
 - If we get high correlations across different things using the same method, maybe we're measuring the method and not the construct.

			Matha J	1	Method 2			N 11 10		
		A	Method B	C	A	иеtnoa В	C	A	Лethod В	3 C
	Α	(.89)	В			В	u	71		
Method 1	В	.51	(.89)							
	С	.38	.37	(.76)						
	Α	.57	.22	.09	(.93)					
Method 2	В	.22	.57	.10	.68	(.94)				
	С	.11	.11	.46	.59	.58	(.84)			
	Α	.56	.22	.11	.67	.42	.33	(.94)		
Method 3	В	.23	.25	.12	.43	.66	.34	.67	(.92)	
	С	.11	.11	.45	.34	.32	.58	.58	.60	(.85)

		Method 1				Method	d 2	Method 3		
		Α	В	С	Α	В	С	Α	В	2
	Α	(.89)								
Method 1	В	.51	(.89)							
	С	.38	.37	(.76)						7
	A	.57	.22	.09	(.93)				2	
Method 2	В	.22	.57	.10	.68	(.94)				
	С	.11	.11	.46	.59	.58	(.84)			
	A	.56	.22	.11	.67	.42	.33	(.94)		
Method 3	В	.23	.25	.12	.43	.66	.34	.67	(.92)	
	С	.11	.11	.45	.34	.32	.58	.58	.60 (.85)

			Method	1		Metho	d 2	N	Method	3
		Α	В	С	Α	В	С	Α	В	С
	Α	(.89)								
Method 1	В	.51	(.89)							
	С	.38	.37	(.76)						
	Α	.57	.22	.09	(.93)					
Method 2	В	.22	.57	.10	.68	(.94)				
	С	.11	.11	.46	.59	.58	(.84)		2	J
	Α	.56	.22	.11	.67	.42	.33	(.94)		
Method 3	В	.23	.25	.12	.43	.66	.34	.67	(.92)	
	С	.11	.11	.45	.34	.32	.58	.58	.60	(.85)
Correlation CONVERO They show	GENC	E . Calle	d MON							ons.

			Method	1		Method	d 2	Method 3		
		Α	В	С	Α	В	С	A	В	С
	Α	(.89)								
Method 1	В	.51	(.89)							
	С	.38	.37	(.76)						
	A	.57	.22	.09	(.93)					
Method 2	В	.22	.57	.10	.68	(.94)				
	С	.11	.11	.46	.59	.58	(.84)			
	A	.56	.22	.11	.67	.42	.33	(.94)		
Method 3	В	.23	.25	.12	.43	.66	.34	.67	(.92)	
	С	.11	.11	.45	.34	.32	.58	.58	.60	(.85)
Correlation general creations should be	ud fa	actor. Ca								

Evaluating the MTMM

- Old approach: look at the correlations!
- More modern approach: CFA
 - Test a model of trait factors against a model of method factors.
 - Can use correlated errors that is, error terms within the same method are likely to be correlated.

Evaluating the MTMM

- O Very popular idea for a long time.
 - For many, the MTMM is construct validity.
- Empirically very difficult to obtain.
 - Humphreys (1960), Cronbach (1989)
 - Why?
- O Sometimes it just doesn't make sense.
 - Not all characteristics can be measured using all methods!
- O Sometimes it's a wild goose chase.
 - Exhibit A: assessment centers

More Ways to Get Evidence About Construct Relationships

- Known-groups validity: does your measure yield different scores for people who are known to differ on the construct?
 - Ochallenge: how do you **know** they differ?
 - Ex: prisoners vs. nuns, mental patients vs. "normals"
- Experimental manipulation: if a manipulation should induce change in a variable, does it induce change in your measure?
 - Appropriate for state or malleable measures.

Bottom Line

- If your test looks like your construct, walks like your construct, sounds like your construct...
 - … it's probably reasonable to proceed as if it really is measuring your construct.
- Accumulation of evidence is important here.
 - Construct validation is never "done."
- O Testing alternative explanations is also important.
 - Just providing convergent evidence is not enough!
 - Focus on the most relevant alternative explanations first

 use judgment.

Questions?

For next time: Consequences of testing (specifically: test bias, precision of individual test scores).

Read: DeVellis pp. 110-114; Drasgow & Kang (1984) Reading Response #11