11. Commutative Algebra and Geometry

Noetherian Rings

Definition: A ring is Noetherian if it satisfies either of the following equivalent conditions:

- 1. Every ideal is finitely generated.
- 2. Every ascending chain $I_0 \subset I_1 \subset \cdots$ of ideals eventually stabilizes.

Theorem: (Hilbert's Basis Theorem) If R is Noetherian, then so is R[x].

Proof: The proof of Hilbert's theorem is given in detail in DF, Theorem 21 of Section 9.6. The idea is something like this. Suppose I is an ideal of R[x]. Then each element f of I is a polynomial of degree n: $f = a_n x^n + \ldots$ where $a_n \in R$ is not zero. Here a_n is called the leading term of f The ideal $\ell(I)$ of leading terms of I is the ideal of R generated by the leading terms of all elements of I. Since R is Noetherian, $\ell(I)$ is finitely generated. If b_1, \ldots, b_N generate $\ell(I)$, we can find elements f_1, \ldots, f_N so that $f_i = b_i x_i^k + \ldots$ in I.

Now let g be any element of I of degree m. Suppose m is larger

Affine space, points, and ideals

Affine *n*-space over a field k, written \mathbb{A}^n_k is the set of points (x_1, \ldots, x_n) with coordinates in k. The ring $k[x_1, \ldots, x_n]$ is the ring of polynomial functions on \mathbb{A}^n_k .

Sets and ideals:

- ▶ If $X \subset \mathbb{A}^n_k$ is a subset, then $I(X) = \{f : f(x) = 0 \forall x \in \mathbb{A}^n_k \|.$
- ▶ If $f_1, ..., f_k$ are a collection of elements in $k[x_1, ..., x_n]$ then $Z(f_1, ..., f_k) = \{x \in \mathbb{A}^n_k : f_1(x) = \cdots = f_k(x) = 0\}$. Notice that $Z(f_1, ..., f_k) = Z(I)$ where I is the ideal of functions generated by the f_i .

Both operations are inclusion reversing: $X \subset Y$ implies $I(Y) \subset I(X)$ and $J \subset L$ implies $Z(L) \subset Z(J)$.

The sets Z(I) satisfy the axioms for the closed sets of a topology, called the *zariski topology*. A set X of the form Z(I) is called an (affine) algebraic set.

Lemma: If $X \subset \mathbb{A}_k^n$, then $X \subset Z(I(X))$. If $J \subset k[x_1, \dots, x_n]$ is an

Coordinate rings and morphisms

If X is an algebraic set, then the ring $k[X] = k[x_1, \ldots, x_n]/I(X)$ is called the coordinate ring of X. Notice that elements of this ring give well-defined functions on X; they are called "regular functions" on X.

Definition: A map $f: X \to Y$ between algebraic sets is called a morphism if there are polynomials so that the map f is given by

$$f(x_1,\ldots,x_n)=(\phi_1(x_1,\ldots,x_n),\cdots,\phi_m(x_1,\ldots,x_n))$$

A morphism whose inverse is also a morphism is called an isomorphism of algebraic sets.

In general, if $f: x \to Y$ is a morphism, and $h \in k[Y]$ is a regular function on Y then the composition $h \circ f$ is a regular function on X. This operation is called *pullback*.

The pullback induces a welldefined algebra homomorphism $f^*: k[Y] \to k[X]$.

Universal property

Theorem: Suppose $\phi: X \to Y$ is an arbitrary map of algebraic sets. Then ϕ is a morphism if and only if, for every $f \in k[Y]$, the composition $f \circ \phi$ is in k[X]. If ϕ is a morphism, then $\phi(v) = w$ if and only if $\tilde{\phi}^{-1}(I(v)) = I(w)$ where $\tilde{\phi}$ is the pullback of ϕ .

Proof: The second part first. If $\phi(v) = w$, and $f \in I(w)$, then $f(\phi(v)) = 0$ so $\tilde{\phi}(I(w)) \subset I(v)$ and $(\tilde{\phi})^{-1}I(v) \supset I(w)$. Since I(w) is maximal, we have $(\tilde{\phi})^{-1}(I(v)) = I(w)$. Conversely, if $(\tilde{\phi})^{-1}(I(v)) = I(w)$, then $f(\phi(v)) = 0$ if and only if f(w) = 0 so $I(\phi(v)) = I(w)$ and therefore $\phi(v) = w$.