Perceiver IO: A General Architecture for Structured Inputs & Outputs

by DeepMind

GLAMI AI Radek Bartyzal 7. 9. 2021

Motivation

Current state:

- NN architectures usually differ based on the input modality = audio, image, video, ...
- e.g. CNNs and Visual Transformers rely on image specific locality assumption
 - => convolutions, splitting the image into a grid
- Perceiver can only predicts logits

Author's goal:

- create competitive architecture without relying on these assumptions
 - => attend to the individual pixels in an image
 - => use same architecture for audio, video, 3D point cloud
- enable larger inputs to Transformers
- enable any output

Regular Transformers

 transform a set of tokens into another set of tokens of same length = 1 transformer layer

• core of the transformer layer = self-attention

Self Attention

- M input tokens = e.g. word embeddings
- from each input token, create Query, Key, Value vectors
- dot product Query * Key vectors => attention matrix of MxM
- dot product Att matrix * Value vectors => new set of token vectors
- => O(M^2) space, O(M^2 * d) time

Perceiver architecture

- 224x224 image = 50 000 pixels = M
- => impossible to calculate self-attention with O(50000*50000)
- => use cross-attention to inject the input information into the latent representation
- => attention from N latent vectors to M input tokens = O(N*M), N << M

- follow the cross-attention by regular self-attention on the latent space = O(N*N)
- repeat blocks of [cross-attention->regular-latent-attention]

Perceiver architecture

Perceiver IO

Perceiver IO

Perceiver IO

- autoencoder like structure
- encode = cross-attention of: input -> latent
- decode = cross-attention of: latent -> output
- don't repeatedly pass in input = does not help that much
- => not a RNN anymore :(

- positional encoding = domain specific = hand crafted
 - 1D = sequence = words
 - o 2D = image
 - o 3D = 3D point cloud
 - \circ 4D = video

Output Query vectors = decoder vectors

- Can be:
 - learned
 - hand crafted
 - simple function of the input
- number of decoder vectors = number of outputs = dynamic
- output dimension is fixed = task specific = e.g. 1000 for imagenet
- decode query vectors = task specific = hand crafted structure
 - simple classification => single learned embedding = token = query vector
 - word prediction => position in sentence + predict</pr>
 - optical flow of pixel => x,y coords of pixel + <optical flow task token>
 - Starcraft unit information => embedding of unit description
 - task specification token is needed only for multi-task models

Decoder vectors

- task_id = single learned embedding is enough for class. task = imagenet
- position = pos. embedding as query which will return predicted word distribution
- is_label = <learned token of give me label logits = 1000 dim for imagenet>

Tasks

Modalities	dalities Tasks Preprocessing		Postprocessing	# Inputs	# Outputs	
Text	Token-level pred.	Tokenization + Embed.	Linear projection	512×768	512×768	
Text	Byte-level pred.	Embed.	None	$2,048 \times 768$	$2,048 \times 768$	
Text	Multi-task (8 tasks)	Embed.	None	$2,048\times768$	8×768	
Video	Flow prediction	Conv+maxpool	RAFT upsampling	$22,816\times 64$	$11,408 \times 64$	
Video+Audio+Label	Auto-encoding	Patch: 1x4x4 Vid, 16 Aud	Linear projections	$50,657\times704$	$803,297\times512$	
StarCraft Unit Set	Encoding and Classification	Tokenization	Pointer network	512×256	512×128	
Image	Classification	None	None	$50,176 \times 3$	$1 \times 1,000$	

Table 1: We give details of each of the tasks we use to evaluate Perceiver IO here. The positional and task embeddings appended to inputs for each case are listed in Appendix Table 7.

GLUE

Model	Tokenization	N (# inputs)	M (# latents)	Depth	Params	FLOPs	Average
BERT Base (test) [21]	SentencePiece	512	512	12	110M	109B	81.0
BERT Base (ours)	SentencePiece	512	512	12	110 M	109B	81.1
Perceiver IO Base	SentencePiece	512	256	26	223M	119B	81.2
BERT (matching FLOPs)	UTF-8 bytes	2048	2048	6	20M	130B	71.5
Perceiver IO	UTF-8 bytes	2048	256	26	201M	113B	81.0
Perceiver IO++	UTF-8 bytes	2048	256	40	425M	241B	81.8

Table 2: **Perceiver IO on language**: results on the GLUE benchmark (higher is better). Following [21] we exclude the WNLI task. We use Pearson correlation on STS-B, Matthews correlation on CoLa and accuracy on the remaining tasks.

GLUE

- multitask = 1 model for all tasks
- input concat with special token:
 - o 1 for all tasks = shared input token
 - o 1 for each = task specific input token
 - = like CLS token = decoder vector
 - a task specific head, a 2-layer MLP, is applied to generate the output logits corresponding to each task
- multitask query = use decoder vectors specific to each task
 - no input token
 - no output 2-layer heads?

Multitask method	Avg.
Single task	81.0
Shared input token	81.5
Task specific input token	81.8
Multitask Query	81.8

Table 3: Multitask Perceiver IO. Results use the same metric as Table 2 (higher is better).

SOTA on Optical flow

- input: 2 images = consecutive frames from video
- output: displacement of each pixel between the 2 images
- PWCNet, RAFT = slow, hand-crafted architectures, very task specific

Network	Sintel.clean	Sintel.final	KITTI
PWCNet [75]	2.17	2.91	5.76
RAFT [84]	1.95	2.57	4.23
Perceiver IO	1.81	2.42	4.98

Table 4: Optical Flow evaluated on Sintel [10] and KITTI with average end-point error (EPE) (lower is better). Baselines are reported from [74].

Optical flow

Input:

- concat the frames along channels
- extract 3x3 area around each pixel
- => 3x3 x 3=channels x 2=frames = 54 values for each pixel
- then concatenate a fixed position encoding to the 54 values

Decoder vector = same embedding as used for input

Audio Video Class reconstruction

- inputs:
 - padded with modality-specific embeddings
 - o raw video pixels, audio, one-hot label
- outputs = raw reconstruction of video, audio, one-hot label

Figure 4: Audio-visual autoencoding with 88x compression. Side-by-side: inputs on left, reconstructions right (class label not shown).

	Model	Pretrained?	Top-1 Acc
1 100	ConvNet baselines		
Image classification	ResNet-50 [30]	N	78.6
9	NFNet-F6+SAM [8]	N	86.5
- loorned not embeddings -	Meta Pseudo Labels [60]	Y	90.2
 learned pos embeddings = 	ViT baselines		
no hand-crafted information	ViT-B/16 [24]	N	77.9
about the structure	ViT-H/14 (pretrained) [24]	Y	88.6
	DeiT 1000 epochs [86]	N	85.2
=> pretty cool	CaiT-M48 448 [87]	N	86.5
 also permutation invariant 	w/ 2D Fourier features		
	Perceiver	N	78.6
	Perceiver IO	N	79.0
	Perceiver IO (pretrained)	Y	84.5
	w/ learned position features		
	Perceiver (learned pos)	N	67.6
	Perceiver IO (learned pos)	N	72.7
	w/ 2D conv + maxpool preprocessing		
	Perceiver (conv)	N	77.4
	Perceiver IO (conv)	N	82.1

Conclusion

Pros:

- latent space transformer
- linear scaling with input size
- multiple domains, tasks supported

Cons:

does not support generative modeling

Positional encodings = these are domain dependent

- spatial information is important, Transformer are invariant to it
- => use positional encodings = Scalable Fourier features
 - get k frequency bands, k-th band has frequency 2^k
 - sample positional encodings along those bands
 - concat these encodings to the input token vectors
 - 1 row on the figure below = 1 positional encoding

Sources

- Paper: https://arxiv.org/abs/2107.14795
- Pytorch: https://github.com/lucidrains/perceiver-pytorch
- JAX: https://github.com/deepmind/deepmind-research/tree/master/perceiver