DC Circuits

Circuit Theorems

Linearity Property

A linear circuit is one whose output is linearly related (or directly proportional) to its input.

$$f(x_1 + x_2 + \dots + x_n) = f(x_1) + f(x_2) + \dots + f(x_n)$$

Superposition Theorem

The superposition principle states that the voltage across (or current through) an element in a linear circuit is the algebraic sum of the voltages across (or currents through) that element due to each independent source acting alone.

Steps to Apply Superposition Principle:

- Turn off all independent sources except one source. Find the output (voltage or current) due to that active source using nodal or mesh analysis.
- Repeat step 1 for each of the other independent sources.
- Find the total contribution by adding algebraically all the contributions due to the independent sources.

Two things have to be keep in mind:

- 1. When we say turn off all other independent sources:
 - ➤ Independent voltage sources are replaced by 0 V (short circuit)
 - ➤ Independent current sources are replaced by 0 A (open circuit).
- 2. Dependent sources are left intact because they are controlled by circuit variables.

Example

Use the superposition theorem to find v in the circuit shown below.

Solution

$$v = v_1 + v_2$$

$$v = \frac{4}{4+8} \times 6 + (4 \parallel 8) \times 3$$

$$v = \frac{1}{3} \times 6 + \left(\frac{4 \times 8}{4+8}\right) \times 3$$

$$v = 10 \text{ V}$$

Source Transformation

A source transformation is the process of replacing a voltage source v_s in series with a resistor R by a current source i_s in parallel with a resistor R, or vice versa.

Example

Use source transformation to find v_0 in the circuit below

Solution

Thevenin's Theorem

Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source V_{Th} in series with a resistor R_{Th} , where V_{Th} is the open-circuit voltage at the terminals and R_{Th} is the input or equivalent resistance at the terminals when the independent sources are turned off.

Finding V_{Th} and R_{Th} .

Finding R_{Th} when circuit has dependent sources.

Example

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit shown below.

Solution

$$R_{\text{Th}} = (4 \parallel 12) + 1$$

$$R_{\rm Th} = \frac{4 \times 12}{16} + 1$$

$$R_{\rm Th} = 4 \, \Omega$$

Using Superposition theorem,

$$V_{\text{Th}} = (4 \parallel 12) \times 2 + \frac{12}{4 + 12} \times 32$$

$$V_{\text{Th}} = 3 \times 2 + \frac{3}{4} \times 32 = 6 + 24$$

$$V_{\rm Th} = 30 \, \rm V$$

Norton's Theorem

Norton's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_N in parallel with a resistor R_N , where I_N is the short-circuit current through the terminals and R_N is the input or equivalent resistance at the terminals when the independent sources are turned off.

$$R_N = R_{\mathsf{Th}}$$

$$V_{ ext{Th}} = v_{oc}$$
 $I_N = i_{sc}$
 $R_{ ext{Th}} = rac{v_{oc}}{i_{sc}} = R_N$

Example

Find the Norton equivalent circuit of the circuit in figure below

Solution

Calculate R_{TH} (Method 1)

$$i = \frac{V_x}{2} + \frac{2V_x + V_x}{6}$$
 (1) $V_x = 1$ (2)

From Eq. (1) and (2): i = 1 A

$$R_{\rm Th} = \frac{1}{i} = \frac{1}{1} = 1 \,\Omega$$

Calculate R_{TH} (Method 2)

$$\frac{v}{6} - 10 + \frac{V_x}{2} = 0$$

$$v + 3V_x = 60$$
 (1)

$$v = 2V_{\chi} + V_{\chi}$$

$$-v + 3V_{\chi} = 0 \tag{2}$$

From Eq. (1) and (2):
$$6V_x = 60 \implies V_x = 10$$

$$V_{\rm Th} = V_x = 10 \,\mathrm{V}$$

$$R_{\rm Th} = \frac{V_{\rm Th}}{I_N} = \frac{10}{10} = 1 \,\Omega$$

Maximum Power Transfer

$$p = i^2 R_L = \left(\frac{V_{\rm Th}}{R_{\rm Th} + R_L}\right)^2 R_L$$

Maximum power is transferred to the load when the load resistance equals the Thevenin resistance as seen from the load ($R_L = R_{Th}$).

Homework

1 Use superposition principle to find i

For the circuit in figure below, find the terminal voltage V_{ab} using superposition.

3 Apply source transformation to find V_x in the circuit

Determine R_{Th} and V_{Th} at terminals 1-2 of the circuit

5 Determine the Norton equivalent at terminals a-b for the circuit

6 Obtain the Thevenin equivalent seen at terminals *a-b* of the circuit

7 Obtain the Thevenin and Norton equivalent circuits at the terminals a-b for the circuit

Compute the value of R that results in maximum power transfer to the 10- Ω resistor. Find the maximum power.

 \mathfrak{D} Find R_L for maximum power deliverable to R_L , and determine that maximum power.

In For the circuit in figure below, determine the value of R such that the maximum power delivered to the load is 3 mW.

