ANÁLISIS ESTRUCTURAL

TALLER 4. Análisis de carga en pórticos – 2017-2

Nombre:			

Encontrar las fuerzas internas (diagramas de momento, cortante y fuerza axial) para el pórtico de concreto de la figura cuando está sujeto a las cargas mostradas. Las columnas tienen sección cuadrada de 200 mm de lado y la viga tiene una sección rectangular de 200 mm x 250 mm.

PROCEDIMIENTO:

- 1. Generación del vector {F}= {N}-{L}
 - a) Determinar el vector de cargas aplicado en los nodos $\{N\}$. Identificar y almacenar el vector $\{N_0\}$.

$$V = \left\{ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18 \end{array} \right.$$

b) Identificar los elementos con cargas en las luces, luego generar el vector de reacciones de empotramiento en coordenadas locales {I} de cada elemento. Almacenar dichos vectores en la matriz tridimensional MLL.

$$l_{1} = \begin{cases} & \begin{cases} x_{i} & \\ y_{i} & \\ z_{i} & \\ x_{f} & \\ y_{f} & \\ z_{f} & \end{cases} & l_{2} = \begin{cases} & \begin{cases} x_{i} & \\ y_{i} & \\ x_{f} & \\ y_{f} & \\ z_{f} & \end{cases} & l_{3} = \begin{cases} & \begin{cases} x_{i} & \\ y_{f} & \\ y_{f} & \\ z_{f} & \end{cases} & l_{4} = \begin{cases} & \begin{cases} x_{i} & \\ y_{i} & \\ x_{f} & \\ y_{f} & \\ z_{f} & \end{cases} & l_{5} = \begin{cases} & \begin{cases} x_{i} & \\ y_{i} & \\ x_{f} & \\ y_{f} & \\ z_{f} & \end{cases} & l_{5} = \end{cases}$$

c) Calcular el vector de reacciones de empotramiento en coordenadas globales $\{L\}$ de cada elemento. $\{L\} = [T] * \{I\}$

MLG: matriz de almacenamiento de reacciones de empotramiento en coordenadas globales de cada elemento

```
MLG \leftarrow ceros(6,1,Ne)
para i \leftarrow 1 \ hasta \ Ne \ hacer:
MLG(i) \leftarrow MAT(i) * MLL(i)
fin
```

$$L_1 = \left\{ egin{array}{c} 10 \ 12 \ 11 \ 2 \ 3 \ 3 \ \end{array}
ight. L_2 = \left\{ egin{array}{c} 1 \ 2 \ 3 \ 5 \ 6 \ \end{array}
ight. L_3 = \left\{ egin{array}{c} 4 \ 5 \ 6 \ 78 \ 9 \ \end{array}
ight.$$

d) Ensamblar los vectores {L} y {F} de la estructura ({F} = {N} - {L}). Almacenar los vectores {L₀}, {L₁} y {F₀}.

```
L \leftarrow ceros(NGL, 1)
para i \leftarrow 1 \ hasta \ Ne \ hacer:
para j \leftarrow 1 \ hasta \ 6 \ hacer:
L(MGL(i,j), 1) \leftarrow L(MGL(i,j), 1) + MLG(j, 1, i)
fin
fin
L0 \leftarrow L(1: NGLL, 1)
L1 \leftarrow L(NGLL + 1: NGL, 1)
```

$$L = \left\{ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18 \end{array} \right.$$

$$F = \left\{ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18 \end{array} \right.$$

- 2. Acciones en los extremos de los elementos en coordenadas globales
 - a) Ensamblar el vector $\{U\}$. Almacenar el vector $\{U_1\}$.

$$U = \left\{ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18 \end{array} \right.$$

b) Subdividir la matriz de rigidez global en las matrices K₀, K₁, K₂ y K₃.

```
K0 \leftarrow KG(1:NGLL, 1:NGLL)

K1 \leftarrow KG(1:NGLL, NGLL + 1:NGL)

K2 \leftarrow KG(NGLL + 1:NGL, 1:NGLL)

K3 \leftarrow KG(NGLL + 1:NGL, NGLL + 1:NGL)
```

c) Encontrar los desplazamientos en los grados de libertad libres y el vector (F1).

```
Feff \leftarrow F0 - K1 * U1
U0 \leftarrow inversa(K0) * Feff
F1 \leftarrow K2 * U0 + K3 * U1
```

Desplazamientos:

d) Encontrar las reacciones, $\{N_1\}$, (recordar que $\{F\} = \{N\} - \{L\}$).

```
N1 \leftarrow F1 + L1

R_{12} (kN) =  R_{16} (kN) =  R_{16} (kN) =  R_{17} (kN) =  R_{17} (kN) =  R_{18} (kN-m) =  R_{18} (kN-m) =  R_{18} (kN-m) =
```

e) Encontrar las fuerzas internas en coordenadas globales para cada elemento. {F} = [K]*{U}

MU: matriz de almacenamiento de desplazamientos de cada elemento

MFG: matriz de almacenamiento de fuerzas internas globales de cada elemento

U: vector de desplazamientos de los grados de libertad

```
\begin{array}{l} U \leftarrow concatenar(U0,U1) \\ MU \leftarrow ceros(6,1,Ne) \\ para \ i \leftarrow 1 \ hasta \ Ne \ hacer: \\ para \ j \leftarrow 1 \ hasta \ 6 \ hacer: \\ MU(j,1,i) \leftarrow U(MGL(i,j),1) \\ fin \\ fin \\ MFG \leftarrow ceros(6,1,Ne) \\ para \ i \leftarrow 1 \ hasta \ Ne \ hacer: \\ MFG(i) \leftarrow MAG(i) * MU(i) \\ fin \end{array}
```

$$K_1 = \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right\} egin{array}{c} 10 & \\ 12 & \\ 11 & \\ 2 & \\ 3 & \\ \end{array}$$

$$K_2 = \left\{ \begin{array}{c} U_2 = \left\{ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6 \end{array} \right\}$$

$$F_2 = \left\{ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6 \end{array} \right\}$$

$$K_3 = \left\{ egin{array}{c} & & & & \\ &$$

$$K_{4} = \begin{bmatrix} & & & & \\$$

$$K_5 = \left\{ egin{array}{c} U_5 = \left\{ egin{array}{c} 16 \\ 17 \\ 18 \\ 4 \\ 5 \\ 6 \end{array}
ight. \end{array}
ight.$$

f) Calcular el vector {N} de cada elemento. {N} = {L} + {F}

MN: matriz de almacenamiento de los vectores {N} de cada elemento

```
MN \leftarrow ceros(6,1,Ne)

para i \leftarrow 1 \ hasta \ Ne \ hacer:

MN(i) = MLG(i) + MFG(i)

fin
```

$$N_{1} = \begin{cases} & \begin{cases} 10 \\ 12 \\ 11 \end{cases} & N_{2} = \begin{cases} & \begin{cases} 1\\ 2\\ 3\\ 4\\ 5\\ 6 \end{cases} & N_{3} = \begin{cases} \begin{cases} 1\\ 5\\ 6\\ 7\\ 8\\ 9 \end{cases} \end{cases} \\ N_{4} = \begin{cases} & \begin{cases} 13\\ 14\\ 15\\ 1\\ 2\\ 2 \end{cases} & N_{5} = \begin{cases} \end{cases} \\ \begin{cases} 16\\ 17\\ 18\\ 4\\ 5\\ 6 \end{cases} \\ N_{5} = \begin{cases} \end{cases} \\ \begin{cases} 16\\ 17\\ 18\\ 4\\ 5\\ 6 \end{cases} \\ \begin{cases} 16\\ 17\\ 18\\ 4\\ 5\\ 6 \end{cases} \\ \end{cases}$$

g) Acciones en los extremos de los elementos en coordenadas locales. $\{f\} = [T]^T * \{N\}$

MFL: matriz de almacenamiento de fuerzas internas locales de cada elemento

```
MFL \leftarrow ceros(6,1,Ne)

para i \leftarrow 1 \ hasta \ Ne \ hacer:

MFL(i) \leftarrow transponerMAT(i) * MN(i)

fin
```

$$egin{aligned} f_1 = \left\{ & & \\ & &$$

3. Dibujar los diagramas de fuerza axial, cortante y momento.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	_
668.7	0	2.6	-333.3	0	0	0	0	0	-333.3	0	0	-2.1	0	2.6	0	0	0	1
0	324.6	0	0	-2.3	3.5	0	0	0	0	-3.5	-2.3	0	-320.0	0	0	0	0	2
2.6	0	18.2	0	-3.5	3.5	0	0	0	0	3.5	3.5	-2.6	0	2.1	0	0	0	3
-333.3	0	0	835.4	0	2.6	-500.0	0	0	0	0	0	0	0	0	-2.1	0	2.6	4
0	-2.3	-3.5	0	330.1	4.3	0	-7.8	7.8	0	0	0	0	0	0	0	-320.0	0	5
0	3.5	3.5	2.6	4.3	21.6	0	-7.8	5.2	0	0	0	0	0	0	-2.6	0	2.1	6
0	0	0	-500.0	0	0	500.0	0	0	0	0	0	0	0	0	0	0	0	7
0	0	0	0	-7.8	-7.8	0	7.8	-7.8	0	0	0	0	0	0	0	0	0	8
0	0	0	0	7.8	5.2	0	-7.8	10.4	0	0	0	0	0	0	0	0	0	9
-333.3	0	0	0	0	0	0	0	0	333.3	0	0	0	0	0	0	0	0	10
0	-3.5	3.5	0	0	0	0	0	0	0	6.9	3.5	0	0	0	0	0	0	11
0	-2.3	3.5	0	0	0	0	0	0	0	3.5	2.3	0	0	0	0	0	0	12
-2.1	0	-2.6	0	0	0	0	0	0	0	0	0	2.1	0	-2.6	0	0	0	13
0	-320.0	0	0	0	0	0	0	0	0	0	0	0	320.0	0	0	0	0	14
2.6	0	2.1	0	0	0	0	0	0	0	0	0	-2.6	0	4.3	0	0	0	15
0	0	0	-2.1	0	-2.6	0	0	0	0	0	0	0	0	0	2.1	0	-2.6	16
0	0	0	0	-320.0	0	0	0	0	0	0	0	0	0	0	0	320.0	0	17
0	0	0	2.6	0	2.1	0	0	0	0	0	0	0	0	0	-2.6	0	4.3	18

K (MN,m)