Prices are Risky Business

Machine Learning in Insurance Pricing
Alistair Rogers

Revenue - Cost = Profit

Mainly what this talk covers

Costs

Claim Frequency

At what rate will you make claims?

Claim Severity

What's the average claim amount you would make?

$$\frac{\text{Claim Count}}{\text{Exposure}} \times \frac{\text{Claim Amount}}{\text{Claim Count}} = \frac{\text{Claim Amount}}{\text{Exposure}}$$

Frequency

Exposure = 11/12 = 0.92 **Frequency** = 0/0.92 = 0

Frequency Model - Poisson Regression

- Predicts Claim Frequency
 - Rates or Counts

Weighted/Offsetted by Exposure

Some maths about modelling rates vs counts

Severity

Severity Model - Gamma Regression

• Arises from poisson processes

Weighted/Offsetted by Claim Count

 Some maths about modelling total value vs average

Perils

Putting it all together

Frequency Model
Accidental Damage
Fire and Theft
Third Party Damage
Personal Injury

Windscreen

Packages that allow Poisson and Gamma Regression

Explainable Boosting Machine - in develop as of 26/04/23

Yeah but how do I get a price?

Another way...

Expected Customer Life Time Value

Thank you!