15주차

2015. 12. 9.

후반부 강의 계획

9	마이크로프로세서 개요1 C언어	C언어 강의	보드 납땜 (컨트롤러부, LED)
10	마이크로프로세서 개요2 GPIO 1	마이크로프로세서란? Atmega128의 구조와 기능 Firmware ? GPIO ? LED 제어	C언어 Quiz
11	Interrupt GPIO 2	Interrupt 이해 및 실습	C언어 Quiz
12	타이머/카운터	타이머/카운터 이해 및 실습 + LED	C언어 Quiz
13	주변장치 제어1	인터럽트와 4x4 keypad 제어	4x4 Keypad
14	주변장치 제어2	인터럽트와 타이머/카운터를 이용한 7-Segment 제어	7-Segment
15	주변장치 제어3	디지털 시계 / 스톱워치	7-Segment + 4x4 Keypad
16	기말고사	기말고사 (실기)	

주요 특징

- ATMEGA1282 High-performance, Low-power AVR® 8-bit Microcontroller Advanced RISC Architecture
 - - 133 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers + Peripheral Control Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
 - On-chip 2-cycle Multiplier
 - Nonvolatile Program and Data Memories
 - 128K Bytes of In-System Reprogrammable Flash Endurance: 10,000 Write/Erase Cycles
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - 4K Bytes EEPROM
 - Endurance: 100,000 Write/Erase Cycles
 - 4K Bytes Internal SRAM
 - Up to 64K Bytes Optional External Memory Space
 - Programming Lock for Software Security
 - SPI Interface for In-System Programming
 - JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface
 - Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Two 8-bit PWM Channels
 - 6 PWM Channels with Programmable Resolution from 2 to 16 Bits
 - Output Compare Modulator
 - 8-channel, 10-bit ADC
 - 8 Single-ended Channels
 - 7 Differential Channels
 - 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
 - Byte-oriented Two-wire Serial Interface
 - Dual Programmable Serial USARTs
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with On-chip Oscillator
 - On-chip Analog Comparator

- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated RC Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
 - Software Selectable Clock Frequency
 - ATmega103 Compatibility Mode Selected by a Fuse
 - Global Pull-up Disable
- I/O and Packages
 - 53 Programmable I/O Lines
 - 64-lead TQFP and 64-pad MLF
- Operating Voltages
 - 2.7 5.5V for ATmega128L
 - 4.5 5.5V for ATmega128
- Speed Grades
 - 0 8 MHz for ATmega128L
 - 0 16 MHz for ATmega128

교재 15-20 페이지 참고

System Reset

- Power on Reset, External Reset, Brown Out Reset, Watch Dog Reset

(falling)

Table 19. Reset Characteristics										
Symbol	Parameter	Condition	Min	Тур	Max	Units				
V	Power-on Reset Threshold Voltage (rising)			1.4	2.3	٧				
V _{POT}	Power-on Reset Threshold Voltage (falling) ⁽¹⁾			1.3	2.3	V				
V _{BST}	RESET Pin Threshold Voltage		0.2 V _{CC}		0.85 V _{CC}	٧				
t _{BST}	Minimum pulse width on RESET Pin			50		ns				
V	Brown-out Reset Threshold Voltage ⁽²⁾	BODLEVEL = 1	2.5	2.7	3.2	V				
V _{BOT}		BODLEVEL = 0	3.7	4.0	4.5					
	Minimum low voltage	BODLEVEL = 1		2		μs				
t _{BOD}	period for Brown-out Detection	BODLEVEL = 0		2		μs				
V _{HYST}	Brown-out Detector hysteresis			50		mV				
Notes: 1. The Power-on Reset will not work unless the supply voltage has been below V _{PC}										

- Power on Reset (POR)

- External Reset

- Brown Out Reset

- Watch Dog Reset

7-Segment

- FND(Flexible Numeric Display)
 - = 7-segment

타이머 이용

카운터 이용

ESPEGE DIFFERENCE: 363083 **Function** ATMEGA8 Generator TTL 피오나 & surek

GPIO Control – 4x4 key matrix

KEY-PAD

실험 Control Board

MAIN CONNECTOR MODULE

ISP

실험 Main Board 1

IR

STEP MOTOR

실험 Main Board 2

실험 Main Board 3

KEY-PAD

레포트

1. 실험 완료 할 것

반드시 동작을 이해할 것!!!

2. Mission

2-1. (7-Segment 4개와 timer/counter 이용)

앞의 두 자리는 분(00~59), 두의 두 자리는 초(00~59) 를 표시하는 디지털 시계 코딩

2-2. (7-Segment 4개, timer/counter, 4x4 키패드 이용)

앞의 두 자리는 초(00~59), 두의 두 자리는 milli 초(00~59) 를 표시

임의의 버튼 1을 누르면 시작/멈춤

임의의 버튼 2를 누르면 00:00 으로 reset

3. 기말고사

- 실기, open book(단 실험 교재와 강의파일 만 허용)
- 범위
 - : C언어 firmware coding
 - : GPIO, External Interrupt, Timer/Counter
 - : LEDs, 7-Segment, 4x4 Keypad
 - : 책의 예제, Mission 들 참고할 것
- 12/16(수) 저녁 7시30분~9시30분, 의생대 401호
- 개인 노트북, 기본 소스코드 ok