25/06/2022-Shift 1

EE24BTECH11021 - Eshan Ray

- 1) Let a circle C touch the lines L_1 : $4x-3y+K_1=0$ and L_2 : $4x-3y+K_2=0$, K_1 , $K_2 \in R$. If a line passing through the centre of the circle C intersects L_1 at (-1,2) and L_2 at (3, -6), then the equation of circle C is [Jun-2022]
 - a) $(x-1)^2 + (y-2)^2 = 4$
 - b) $(x+1)^2 + (y-2)^2 = 4$
 - c) $(x-1)^2 + (y+2)^2 = 16$
 - d) $(x-1)^2 + (y-2)^2 = 16$
- 2) The value of $\int_0^\pi \frac{e^{\cos x} \sin x}{(1+\cos^2 x)(e^{\cos x}+e^{-\cos x})} dx$ is equal to [Jun-2022]

 - a) $\frac{\pi^2}{4}$ b) $\frac{\pi^2}{2}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$
- 3) Let a, b and c be the length of sides of triangle ABC such that $\frac{a+b}{7} = \frac{b+c}{8} = \frac{c+a}{9}$. If r and R are the radius of incircle and radius of circumcircle of the triangle \overrightarrow{ABC} , respectively then the value of $\frac{R}{r}$ is equal to [Jun-2022]

 - a) $\frac{5}{2}$ b) 2 c) $\frac{3}{2}$

 - d) 1
- 4) Let $f: N \to R$ be a function such that f(x+y) = 2f(x) f(y) for natural numbers x and y. If f(1) = 2, then the value of α for which

$$\sum_{k=1}^{10} f(\alpha + k) = \frac{512}{3} \left(2^{20} - 1 \right)$$

[Jun-2022] holds, is

- a) 2
- b) 3
- c) 4
- d) 6
- 5) Let A be a 3×3 real matrix such that $A \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$; $A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ and $A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. If

 $X = (x_1, x_2, x_3)^{\mathsf{T}}$ and I is an identity matrix of order, then the system $(A - 2I)X = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ has [Jun-2022]

- a) no solution
- b) infinitely many solutions
- c) unique solution
- d) exactly two solutions
- 6) Let $f: R \to R$ be defined as $f(x) = x^3 + x 5$. If g(x) is a function such that $f(g(x)) = x, \forall x \in R$, then g'(63) is equal to [Jun-2022]

 - a) $\frac{1}{49}$ b) $\frac{3}{49}$ c) $\frac{43}{49}$ d) $\frac{91}{49}$
- 7) Consider the following two propositions:

*P*1:
$$\sim (p \rightarrow \sim q)$$

P2:
$$(p \land \sim q) \land ((\sim p) \lor q)$$

If the proposition $p \to ((\sim p) \lor q)$ is evaluated as FALSE, then: [Jun-2022]

- a) P1 is TRUE and P2 is FALSE
- b) P1 is FALSE and P2 is TRUE
- c) Both P1 and P2 are FALSE
- d) Both P1 and P2 are TRUE
- 8) If $\frac{1}{2 \cdot 3^{10}} + \frac{1}{2^2 \cdot 3^9} + \cdots + \frac{1}{2^{10} \cdot 3} = \frac{K}{2^{10} \cdot 3^{10}}$, then the remainder when K is divided by 6 is [Jun-2022]
 - a) 1
 - b) 2
 - c) 3
 - d) 5
- 9) Let f(x) be a polynomial function such that $f(x) + f'(x) + f''(x) = x^5 + 64$. Then, the value of $\lim_{x\to 1} \frac{f(x)}{r-1}$ [Jun-2022]
 - a) -15
 - b) -60
 - c) 60
 - d) 15
- 10) Let E_1 and E_2 be two events such that the conditional probabilities

$$P(E_1 \mid E_2) = \frac{1}{2}, P(E_2 \mid E_1) = \frac{3}{4} \text{ and } P(E_1 \cap E_2) = \frac{1}{8} \text{ Then } :$$
 [Jun-2022]

- a) $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$
- b) $P(E_{1} \cap E_{2}) = P(E_{1}) \cdot P(E_{2})$
- c) $P(E_1 \cap E_{\prime 2}) = P(E_1) \cdot P(E_2)$
- d) $P(E_{1} \cap E_{2}) = P(E_{1}) \cdot P(E_{2})$
- 11) Let $A = \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$. If M and N are two matrices given by $M = \sum_{k=1}^{10} A^{2k}$ and $N = \sum_{k=1}^{10} A^{2k}$ $\sum_{k=1}^{10} A^{2k-1}$ then MN^2 is [Jun-2022]
 - a) a non-identity symmetric matrix
 - b) a skew-symmetric matrix
 - c) neither symmetric and skew-symmetric matrix
 - d) an identity matrix

12) Let $g: (0, \infty) \to R$ be a differentiable function such that

$$\int \left(\frac{x(\cos x - \sin x)}{e^x + 1} + \frac{g(x)(e^x + 1 - xe^x)}{(e^x + 1)^2} \right) dx = \frac{xg(x)}{e^x + 1} + c,$$

for all x>0, where c is an arbitrary constant. Then,

[Jun-2022]

- a) g is decreasing in $\left(0, \frac{\pi}{4}\right)$
- b) g' is increasing in $(0, \frac{\pi}{4})$
- c) g + g' is increasing in $\left(o, \frac{\pi}{2}\right)$
- d) g g' is increasing in $\left(0, \frac{\pi}{2}\right)$
- 13) Let $f: R \to R$ and $g: R \to R$ be two functions defined by $f(x) = \log_e(x^2 + 1) e^{-x} + 1$ and $g(x) = \frac{1 2e^{2x}}{e^x}$. Then, for which of the following range of α , the inequality

$$f\left(g\left(\frac{(\alpha-1)^2}{3}\right)\right) > f\left(g\left(\alpha-\frac{5}{3}\right)\right) holds?$$

[Jun-2022]

- a) (2,3)
- b) (-2, -1)
- c) (1,2)
- d) (-1,1)
- 14) Let $\overrightarrow{d} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \, a_i > 0$, i = 1, 2, 3 be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of \overrightarrow{d} on the vector $3\hat{i} + 4\hat{j}$ be 7. Let \overrightarrow{b} be a vector obtained by rotating \overrightarrow{d} with 90. If \overrightarrow{d} , \overrightarrow{b} and x axis are coplanar, then the projection of a vector \overrightarrow{b} on $3\hat{i} + 4\hat{j}$ is equal to [Jun-2022]
 - a) $\sqrt{7}$
 - b) $\sqrt{2}$
 - c) 2
 - d) 7
- 15) Let y = y(x) be the solution of differential equation $(x + 1)y' y = e^{3x}(x + 1)^2$, with $y(0) = \frac{1}{3}$. Then, the point $x = -\frac{4}{3}$ for the curve y = y(x) is : [Jun-2022]
 - a) not a critical point
 - b) a point of local maxima
 - c) a point of local minima
 - d) a point of inflection