EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

: 10152762

PUBLICATION DATE

09-06-98

APPLICATION DATE

: 21-11-96

APPLICATION NUMBER

08310594

APPLICANT: FURUKAWA ELECTRIC CO LTD:THE;

INVENTOR: SHOJI SATORU;

INT.CL.

: C22F 1/04 B22D 11/00 B22D 11/06 C22C 21/06 // C22F 1/00 C22F 1/00 C22F 1/00

C22F 1/00 C22F 1/00 C22F 1/00

TITLE

: PRODUCTION OF HARD ALUMINUM ALLOY SHEET EXCELLENT IN DI WORKABILITY

ABSTRACT:

PROBLEM TO BE SOLVED: To produce a hard Al alloy sheet excellent in DI workability by minimal stages at a low cost by subjecting a molten Al alloy of specific composition to continuous casting and rolling into a sheet by means of a twin-roll caster and then applying heat treatment, cold rolling, and annealing under respectively specified conditions.

SOLUTION: A molten Al alloy, having a composition containing, by weight, 0.5-2.5% Mg, 0.5-2.5% Mn, 0.1-0.7% Fe, 0.05-0.5% Si and 0.005-0.20% Ti independently or in combination with 0.0001-0.05% B and further containing one or ≥2 kinds among small amounts of Cu, Cr, and Zr, is solidified by means of a twin-roll caster at ≥50°C/sec solidification rate and then continuously cast and rolled into a sheet of 1-4mm thick under a load of ≥50kgf per millimeter of width. Subsequently, the sheet is held at 580-630°C for ≥6hr and then held at 480-530°C for 1hr. The sheet is cold-rolled at 50-95% rolling rate and then subjected to process annealing at 380-600°C for ≤2min and to finish annealing at 100-150°C for ≤8hr.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-152762

(43)公開日 平成10年(1998)6月9日

									
(51) Int.Cl. ⁶		識別記号		FI			·		
C 2 2 F	1/04			C 2 2	F	1/04		С	
B 2 2 D	11/00			B 2 2	D	11/00		E	
	11/06	3 3 0				11/06		3 3 0 B	
C 2 2 C	21/06			C 2 2		21/06		0000	
// C22F	1/00	673		C 2 2		1/00		673	
			審査請求				\circ		E de El con a
					8-4V-	54√)\$X	OL	(全 10 頁)	最終頁に続く
(21)出願番号		特願平8-310594		(71) 出	人類				
(22)出願日		平成8年(1996)11月21日						株式会社 区丸の内2丁	目6番1号
				(72)発	明者	田中	豊延		
						東京都	千代田	区丸の内2丁	目6番1号 古
								式会社内	
				(72)発明	明者	東海林	了		
						東京都	千代田日	区丸の内2丁	16番1号 古
								式会社内	
			1						

(54) 【発明の名称】 DI加工性に優れるアルミニウム合金硬質板の製造方法

(57)【要約】

【課題】 DI加工性に優れるアルミニウム合金硬質板を低コストで製造する方法を提供する。

【解決手段】 Mg 0.5~2.5wt%、Mn 0.5~2.5wt%、Fe 0.1~0.7wt%、Si0.05~0.5wt%を含有し、Ti 0.005~0.20wt%を単独であるいはB0.0001~0.05wt%とともに含有し、さらにCu0.05~0.5wt%、Cr0.05~0.3wt%、Zn0.05~0.5wt%の1種または2種以上を含有し、残部A1および不可避不純物からなるアルミニウム合金溶湯を、双ロールキャスターにより1mm以上4mm未満の板材に連続鋳造圧延し、次いで前記板材に所定の2段熱処理を施し、次いで所定の圧延率で冷間圧延し、その後必要に応じて仕上げ焼鈍を施す。

【効果】 双ロールキャスターの鋳塊は薄いため、鋳造 以降の工数が少なく製造コストが安価である。また鋳造、熱処理、圧延条件を規定することにより良好なDI 加工性が得られる。

【特許請求の範囲】

【請求項1】 Mg 0.5~2.5wt%、Mn 0.5~2.5wt%、Fe 0.1~0.7wt%、Si0.05~0.5wt%を含有し、Ti 0.005~0.20wt%を単独であるいはB0.0001~0.05wt% とともに含有し、さらにCu0.05~0.5wt%、Cr0.05~0.3wt%、Zn0.05~0.5wt%の1種または2種以上を含有し、残部AIおよび不可避不純物からなるアルミニウム合金溶湯を、双ロールキャスターにより、50℃/sec以上の凝固速度で凝固後、直ちに巾1mm当たり50kgf以上の荷重をかけて厚さ1mm以上4mm未満の板材に連続鋳造圧延し、次いで前記板材に580~630℃の温度で6時間以上保持後480~530℃の温度で1時間以上保持する熱処理を施し、次いで圧延率50~95%で冷間圧延し、その後必要に応じて100~150℃で8時間以下保持する仕上げ焼鈍を施すことを特徴とするDI加工性に優れるアルミニウム合金硬質板の製造方法。

【請求項2】 圧延率50~95%で冷間圧延したのち 380~600 ℃の温度で2分以下保持する中間焼鈍を施し、さらに50~95%の最終冷間圧延を施すことを特徴とする請求項1記載のDI加工性に優れるアルミニウム合金硬質板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主に2ピースアルミニウム缶の缶胴材(DI缶胴材)に適したDI加工性に優れるアルミニウム合金硬質板を低コストで製造する方法に関する。

[0002]

【従来の技術】一般に、アルミニウム缶ボディを製造する際にはDI (Drawing &: Ironing)加工 (深絞りとしごき加工)が行われるため、これらの材料にはDI加工性に優れるAI-Mn-Ms系のJISA3004合金などが広く用いられている。従来の缶ボディ材用アルミニウム合金板は、半連続鋳造法(DC鋳造法)により鋳造されたDC鋳塊を均質化処理、熱間租圧延、熱間仕上圧延、焼鈍、冷間加工といった多くの工程を経て製造されており製造コストが高かった。そこで工程短縮を目的に双ロール式などの連続鋳造圧延法が検討されるようになった。この双ロール式連続鋳造圧延法では、アルミニウム合金溶湯は、双ロールにより冷却され凝固した鋳塊が、直ちに同じ双ロールにより検状に圧延される。このようにして製出される鋳塊(板材)には、熱処理、冷間圧延、必要に応じ仕上げ焼鈍が施されたのち、DI加工が施される。

[0003]

【発明が解決しようとする課題】前記双ロール式連続鋳造圧延法では、凝固直後に圧下され急冷されるため、得られる鋳塊は非常に敞細な組織となり加工性に優れる。しかし析出する金属間化合物は直径が1μm以下の小さなものになるため、しごき加工時に焼付が発生し易いという問題がある。このため金型寿命が短く、歩留りが低

くなる。また深絞りの際の耳率が高いなどといった問題もある。このようなことから、本発明者らは缶ボディ材としての特性を良好に保持し、且つ鋳塊に析出する微細な金属間化合物を粗大化させる方法について、双ロール式連続鋳造圧延、鋳塊熱処理、冷間圧延、仕上げ焼鈍などでの諸条件を広く検討して、本発明を完成するに至った。本発明は、DI加工性に優れるアルミニウム合金硬質板を低コストで製造する方法を提供することにある。【0004】

【課題を解決するための手段】請求項1記載の発明は、 Mg $0.5\sim2.5$ wt%, Mn $0.5\sim2.5$ wt%, Fe $0.1\sim0.7$ w t%、Si0.05~0.5wt%を含有し、Ti 0.005~0.20wt% を単独であるいはB0.0001~0.05wt% とともに含有し、 さらにCu0.05~0.5wt%、Cr0.05~0.3wt%、Zn0.05 ~0.5wt%の1種または2種以上を含有し、残部A1およ び不可避不純物からなるアルミニウム合金溶湯を、双口 ールキャスターにより、50℃/sec以上の凝固速度で凝固 後、直ちに巾1mm当たり 50kgf以上の荷重をかけて厚さ 1 m以上4 m未満の板材に連続鋳造圧延し、次いで前記 板材に 580~630 ℃の温度で6時間以上保持後 480~53 0 ℃の温度で1時間以上保持する熱処理を施し、次いで 圧延率50~95%で冷間圧延し、その後必要に応じて 100 ~150 ℃で 8 時間以下保持する仕上げ焼鈍を施すことを 特徴とするDI加工性に優れるアルミニウム合金硬質板 の製造方法である。

【0005】請求項2記載の発明は、圧延率50~95%で 冷間圧延したのち 380~600 ℃の温度で2分以下保持す る中間焼鈍を施し、さらに50~95%の最終冷間圧延を施 すことを特徴とする請求項1記載のDI加工性に優れる アルミニウム合金硬質板の製造方法である。

[0006]

【発明の実施の形態】本発明で用いるアルミニウム合金の組成について説明する。Mgは、Siと共存してMg。Siを時効析出し、またCuと共存してAl-Cu-Mg系化合物を時効析出し、またAlマトリックスに固溶するなどして強度向上に寄与する。Mgの含有量を0.5~2.5ωt%に規定する理由は、0.5ωt%未満ではその効果が十分に得られず、2.5ωt%を超えると、しごき加工時の変形抵抗が大きくなってしごき加工後の缶の外観が著しく悪化するためである。

【0007】Mnは、FeまたはSiと共存して微細な晶出物を多数生成する。この晶出物は、のちの熱処理で粗大化して固体潤滑剤的作用を果たし、しごき加工での擦り傷や焼付き(ゴーリング)の発生を抑える。この他、MnはAlマトリックスに固溶して強度向上にも寄与する。Mnの含有量を $0.5\sim2.5$ wt%に規定した理由は、0.5wt%未満では晶出物が十分な量生成せず、2.5wt%を超えると $20\sim30$ μm径の粗大晶出物が生成してしごき加工性を阻害する恐れがあるためである。

【0008】Feは、前述のように、MnまたはSiと

共存して微細な晶出物を多数生成する。この晶出物は、のちの熱処理で粗大化して固体潤滑剤的作用を果たして、しごき加工時のゴーリングの発生を抑える。またFeはMn系化合物の晶出を促進する。Feの含有量を0.1~0.7wt%に規定した理由は、0.1wt%未満ではその効果が十分に得られず、0.7wt%を超えると20~30μm径の粗大晶出物が生成してしごき加工性を阻害する恐れがあるためである。

【0009】Siは、Mgとの間でMg2 Si化合物を析出し、またAlマトリックスに固溶して強度向上に寄与する。また前述のようにFeまたはMnとの間で晶出物を生成し、しごき加工時のゴーリングの発生を抑える。Siの含有量を $0.05\sim0.5$ wt%に規定した理由は、0.05wt%未満ではその効果が十分に得られず、0.5wt%を超えるとその効果が飽和する上、材料が硬化して成形性が悪化するためである。

【0010】Tiは鋳塊の結晶粒を微細化して製缶後の肌荒れを抑制する。Tiの含有量を 0.005~0.2wt%に規定した理由は、0.005wt%未満ではその効果が十分に得られず、0.2wt%を超えると初晶TiAl。が晶出してしごき加工性を阻害するためである。Tiと共にBを添加すると、Tiの効果が向上する。Bの含有量を0.0001~0.05wt%に規定した理由は、0.0001wt%未満ではその効果が十分に得られず、0.05wt%を超えるとTiB。の粗大粒子が生成してピンホール発生の原因となり、またしごき加工性を悪化させるためである。

【0011】本発明では上記各元素の他に、Cu、Zn、Crのうちの1種または2種以上を含有させて、強度をより一層向上させる。Cu、Zn、Crの含有量をそれぞれ0.05~0.5wt%、0.05~0.5wt%、0.05~0.3wt%に規定した理由は、下限値未満ではいずれもその効果が十分に得られず、上限値を超えるといずれもしごき加工性が悪化するためである。

【0012】本発明で前記アルミニウム合金の鋳造を双 ロールキャスターで行うのは、双ロールキャスターで製 出される鋳塊は比較的厚さの薄い板状鋳塊(厚さ1~4 mm) のため、従来のDC鋳塊(厚さ 200~ 500mm) のよ うに、鋳塊の均質化処理、熱間粗圧延、熱間仕上げ圧延 等の工程が省略できるためである。本発明において、双 ロールキャスターでの溶湯の凝固速度を50℃/sec以上に 規定した理由は、50℃/sec未満では鋳塊中心部に多量の 偏析が生じてしごき加工性が低下するためである。双口 ールキャスターでの圧延荷重を巾1mm当たり 50kgf以上 に規定した理由は、 50kgf未満では凝固時に生じる偏析 物が微細に粉砕されないため、熱処理後も偏析物が固溶 されずに残存してしごき加工性を害するためである。双 ロールキャスターで得られる板材の厚さを1mm以上4mm 未満に規定した理由は、1㎜未満では表層が極端に急冷 されて表層に割れが生じ、また!mm以上では鋳塊中心部 の冷却速度を50℃/sec以上にするのが困難になり、鋳塊

中心部に多量の偏析が生じるためである。

【0013】双ロールキャスターにより製出された鋳塊には、熱処理が一段目と二段目に分けて施される。一段目熱処理で組織の均質化を図るとともに前述の微細な晶出物を1μm以上の大きさに粗大化させ、しごき加工時のゴーリングの発生を防止する。次いで二段目熱処理でMn等の固溶元素を析出させて耳率の低減を図る。

【0014】一段目熱処理の保持条件を 580~630 ℃の温度で6時間以上に規定した理由は、熱処理温度が 580 ℃未満、または熱処理時間が6時間未満では、組織の均質化が不十分であり、また微細晶出物が1μm以上に粗大化しない。従ってしごき加工時にゴーリングが発生するためである。一方熱処理温度が 630℃を超えると局所的に融解して外観を損ねるためである。二段目熱処理の保持条件を 480~530 ℃の温度で1時間以上に規定した理由は、熱処理温度が 480℃未満または熱処理時間が1時間未満では、Mnが十分に析出せず、また熱処理温度が 530℃を超えるとMnが析出しなくなり、いずれの場合も耳率が増加するためである。

【0015】冷間圧延の圧延率を50~95%に規定した理由は、圧延率が50%未満では金属間化合物が微細に分散せず、かつ十分な強度が得られない、また95%を超えると強度が高くなりすぎてしごき加工性が低下する(破胴率が高くなる)ためである。特に望ましい圧延率は60~90%である。

【0016】冷間圧延の途中に中間焼鈍を施しても良い。中間焼鈍を施すと再結晶が起き、耳率が一層低下する。中間焼鈍により強度も調整される。前記中間焼鈍の条件を 380~520 ℃の温度で2分以内に規定した理由は、温度が 380℃未満では再結晶が不完全なため、また温度が 520℃を超え、または保持時間が2分を超えると析出物の再固溶量が多くなり、いずれの場合もしごき加工性が低下する。保持時間は、保持無し、即ち目標温度に到達後すぐに冷却しても良いし、到達後2分以内保持しても良い。

【0017】さらに、必要に応じて仕上げ焼鈍を施して、しごき加工性の向上を図る。仕上げ焼鈍の条件を 100~150 ℃、8時間以下に規定した理由は、 100℃未満ではその効果が十分に得られず、 150℃を超え、または8時間を超えると D I 成形時の加工硬化が過度に進み、しごき加工で割れ(破胴)が発生し易くなるためである。

[0018]

【実施例】本発明を実施例により詳細に説明する。

(実施例1)表1に示す組成のアルミニウム合金を、双ロールキャスターにて連続鋳造圧延して、厚さ 3.9mmの板材とし、この板材に 620℃にて 9 時間保持後 520℃にて 2 時間保持する熱処理を施し、次いで圧延率74%の冷間圧延を施して厚さ1.0mm の板材とし、次いで 520℃で 30sec 保持する中間焼鈍を施し、さらに70%の冷間圧延

を施して厚さ0.30mmの板材とし(トータル圧延率92%)、この板材に 120℃で2時間保持する仕上げ焼鈍を施して缶胴用板材を製造した。前記連続鋳造圧延での圧延荷重は 200kgf/mmとした。

【0019】得られた合金板について、機械的性質(耐力(YS),引張強さ(TS),伸び)を調べた。また33mmゆ、 肩R2.5mm のポンチを用いて57mmゆのブランクをクリア ランス30%で深絞りして耳率を測定した。また製缶ライ ンにて、絞り成形、再絞り成形、3段のしごき成形(最終のしごき率40%)を行い、缶側壁厚さが 105μmの缶を1万缶成形し、そのときの破胴数を調べた。また塗装ベーキング条件に相当する 200℃で20分間の加熱処理を施した合金板について、前記と同じ機械的性質を調べた。結果を表2に示す。

【0020】

									
No	Mg wt%	Mn	Fe	Si	Ti	В	Cu	C r	Zn
a	0.99	1.20	0.42	0. 22	0.01	0.002	0.18		0.15
	1.00	1.20	0.42	0. 22	0.01	0.002	0.23		0.01
С	1. 18	1.04	0.40	0.17	0.03	0.002	0.15	0.19	0.12
d	1. 23	1.06	0.45	0. 20	0.03	0. 002	0.21	0.02	0.02
е	0. 38	1.05	0.38	0.18	0.01	0.001	0.02	0.02	
f	1. 18	0.10	0.38	0.18	0.02	0.002	0.18	0.05	0.05
g	1.10	1.00	0.05	0.03	0.02	0.003	0.19	0.02	0.03
h	3.00	1.05	0.38	0.18	0.02	0.002	0.22	0.10	0.05
i	1. 05	2.85	0.35	0.18	0.03	0.002	0.16	0.11	0.02
j	1. 20	1.05	0.85	0. 58	0.02	0.002	0.14	0.05	0.18
k	1. 10	1.05	0.38	0. 19	0.30	0. 110	0.18	0. 05	0. 05
m	1. 02	1.05	0. 25	0.15			0.10	0.03	0.08
n	1. 10	1.05	0.38	0.19	0.02	0.001	0.66	0.05	0.60
р	1. 10	1.05	0.38	0. 19	0.03	0.003	0.14	0.48	0.05
	a b c d e f g h i j k m n	a 0.99 b 1.00 c 1.18 d 1.23 e 0.38 f 1.18 g 1.10 h 3.00 i 1.05 j 1.20 k 1.10 m 1.02 n 1.10	wix a 0.99 1.20 b 1.00 1.20 c 1.18 1.04 d 1.23 1.05 f 1.18 0.10 g 1.10 1.00 h 3.00 1.05 i 1.20 1.05 k 1.10 1.05 n 1.02 1.05 n 1.10 1.05	wix a 0.99 1.20 0.42 b 1.00 1.20 0.42 c 1.18 1.04 0.40 d 1.23 1.06 0.38 f 1.18 0.10 0.38 g 1.10 1.00 0.05 h 3.00 1.05 0.38 i 1.20 1.05 0.85 k 1.10 1.05 0.38 m 1.02 1.05 0.25 n 1.10 1.05 0.38	wi% 0 0 42 0 22 b 1.00 1.20 0.42 0.22 c 1.18 1.04 0.40 0.17 d 1.23 1.06 0.45 0.20 e 0.38 1.05 0.38 0.18 f 1.18 0.10 0.38 0.18 g 1.10 1.00 0.05 0.03 h 3.00 1.05 0.38 0.18 i 1.05 0.38 0.18 j 1.20 1.05 0.85 0.58 k 1.10 1.05 0.38 0.19 m 1.02 1.05 0.25 0.15 n 1.10 1.05 0.38 0.19	wix 0.99 1.20 0.42 0.22 0.01 c 1.18 1.04 0.40 0.17 0.03 d 1.23 1.06 0.45 0.20 0.03 e 0.38 1.05 0.38 0.18 0.01 f 1.18 0.10 0.38 0.18 0.02 g 1.10 1.00 0.05 0.03 0.02 h 3.00 1.05 0.38 0.18 0.02 i 1.05 2.85 0.35 0.18 0.03 j 1.20 1.05 0.85 0.58 0.02 k 1.10 1.05 0.38 0.19 0.30 m 1.02 1.05 0.25 0.15 — n 1.10 1.05 0.38 0.19 0.02	wix 0.99 1.20 0.42 0.22 0.01 0.002 c 1.18 1.04 0.40 0.17 0.03 0.002 d 1.23 1.06 0.45 0.20 0.03 0.002 e 0.38 1.05 0.38 0.18 0.01 0.001 f 1.18 0.10 0.38 0.18 0.02 0.002 g 1.10 1.00 0.05 0.03 0.02 0.002 h 3.00 1.05 0.38 0.18 0.02 0.002 j 1.20 1.05 0.85 0.58 0.02 0.002 k 1.10 1.05 0.38 0.19 0.30 0.110 m 1.02 1.05 0.25 0.15 — — n 1.10 1.05 0.38 0.19 0.02 0.001	a 0.99 1.20 0.42 0.22 0.01 0.002 0.18 b 1.00 1.20 0.42 0.22 0.01 0.002 0.18 c 1.18 1.04 0.40 0.17 0.03 0.002 0.15 d 1.23 1.06 0.45 0.20 0.03 0.002 0.15 e 0.38 1.05 0.38 0.18 0.01 0.001 0.02 f 1.18 0.10 0.38 0.18 0.02 0.002 0.18 g 1.10 1.05 0.38 0.18 0.02 0.002 0.002 0.18 g 1.10 1.05 0.38 0.18 0.02 0.002 0.002 0.19 h 3.00 1.05 0.85 0.58 0.02 0.002 0.14 k 1.10 1.05 0.38 0.19 0.30 0.110 0.18 m 1.02 1.05 0.25 0.15 — — — 0.10 n <th< td=""><td>a 0.99 1.20 0.42 0.22 0.01 0.002 0.18 —— b 1.00 1.20 0.42 0.22 0.01 0.002 0.18 —— c 1.18 1.04 0.40 0.17 0.03 0.002 0.15 0.19 d 1.23 1.06 0.45 0.20 0.03 0.002 0.15 0.19 e 0.38 1.05 0.38 0.18 0.01 0.001 0.02 0.02 f 1.18 0.10 0.38 0.18 0.02 0.002 0.18 0.05 g 1.10 1.00 0.05 0.03 0.02 0.002 0.18 0.05 h 3.00 1.05 0.38 0.18 0.02 0.002 0.22 0.10 i 1.05 2.85 0.35 0.18 0.02 0.002 0.16 0.11 j 1.20 1.05 0.85 0.58 0.02 0.002 0.14 0.05 k 1.10 1.05</td></th<>	a 0.99 1.20 0.42 0.22 0.01 0.002 0.18 —— b 1.00 1.20 0.42 0.22 0.01 0.002 0.18 —— c 1.18 1.04 0.40 0.17 0.03 0.002 0.15 0.19 d 1.23 1.06 0.45 0.20 0.03 0.002 0.15 0.19 e 0.38 1.05 0.38 0.18 0.01 0.001 0.02 0.02 f 1.18 0.10 0.38 0.18 0.02 0.002 0.18 0.05 g 1.10 1.00 0.05 0.03 0.02 0.002 0.18 0.05 h 3.00 1.05 0.38 0.18 0.02 0.002 0.22 0.10 i 1.05 2.85 0.35 0.18 0.02 0.002 0.16 0.11 j 1.20 1.05 0.85 0.58 0.02 0.002 0.14 0.05 k 1.10 1.05

[0021]

	【表	2]			ר	_	<u> </u>		
分	No		加熱	処理前	<u></u>		加熱処	理後	
カ舞	ł	Y S MPa		伸び %	耳率	Y S MPa	T S MPa	伸び %	製缶上の不具合 ()内数字は1万個 当たりの破胴数
本発明	b	294 305		4 4	4 3	291 289	316 315	5 6	不具合なし 不具合なし
例		299 301	311 310	4	3 3	294 290	319 313	6 5	不具合なし不具合なし
比較例	1	245 288 298 333 301	261 298 305 339 312	4 3 3 2 4	3 3 3 4	232 276 288 317 288	249 292 310 331 313	5 4 4 3 5	強度不足 ゴーリング発生 ゴーリング発生 破胴数多い(12) かピング割れ多発
	j	303	314	2	5	290	321	3	ピンホール発生 破胴数多い(6)
	k	302	311	4	3	290	316	5	ピ/ホール発生 破胴数多い(5)
	m n p	303 311 313	309 319 321	4 4 4	3 3 4	293 296 301	315 321 323	5 5 5	肌荒れ発生 破胴数多い(6) 破胴数多い(8)

【0022】表2より明らかなように、本発明例の No. a~dはベーク前後とも機械的性質に優れ、また耳率が低く、しごき加工性に優れ、従って製缶上または製品としての問題は何もなかった。これに対しMgの少ない No.eはベーク後の強度が低く、Mnの少ない No.f、FeとSiの少ない No.gはゴーリングが発生した。Mgの多い No.hは破胴数が多く、Mnの多い No.iはしぼり加工性が低下したためカッピング割れが多発した。Fe、Si、Bの多い No.j、Ti、Bの多い No.kはピンホールが発生し、また破胴数が多くなった。TiとBが添加されていない No.mは鋳塊の組織が粗く製缶後に肌荒れが生じた。Cu、Cr、Znの多い No.n、pは

しごき加工性が低下して破胴数が増加した。

【0023】(実施例2)実施例1で用いた No.bのアルミニウム合金を、双ロールキャスターで連続鋳造し、得られた鋳塊に、熱処理、冷間圧延、中間焼鈍、または仕上げ焼鈍などを施して缶胴用板材を製造した。製造条件は種々に変化させた。得られた板材について実施例1と同じ調査を行った。従来のDC鋳造法により鋳造した鋳塊(厚さ500mm)を用いて製造したものについても同様の調査を行った。製造条件を表3、4に、調査結果を表5、6にそれぞれ示す。

【0024】 【表3】

					<u> </u>		-		5)———
分	No	鋳造	Г—Ф -		熱熱	心理	圧	中間焼鈍	- 仕上焼鈍
類			凝固	圧延	3		延		
		板厚	速度	荷重	1段目	2段目	率	mm-℃-sec	mm-℃-hr
		1112			<u> </u>				
本	1	2.0	200	50	620-9	520-2	85	- 10/1. - 1	0.3-120-2
発	2	2.0	200	100	620-9	520-2	85		0.3-120-2
明	3	2.0	200	200	620-9	520-2	85		0.3-120-2
例									
	4	3.9	50	50	620-9	520-2	70	1 -520-30	0.3-120-2
	5	3.9	50	100	620-9	520-2	70	1 -520-30	0.3-120-2
	6	3.9	50	200	620-9	520-2	70	1 -520-30	0.3-120-2
	7	3.9	50	200	620-9	520-2	70	1 -520-90	0.3-120-2
	8	3.9	50	200	620-9	520-2	70	1 -520-30	
		1.0	200	50	500.0	400 7	70		
	9	1.0	300	50	580 -6	480-1	70		
	10	1.0	300	50	580–6	480–1	70		0.3-150-8
	11	1.0	300	50	580 -6	480-1	70	1 -600-120	
	12	1.0	300	50	580 - 6	480-1	70	1 -380-0	
			500	50		100 1	. 0	1 000 0	
比	13	5.0	40	200	620-9	520-2	70	1 -520-30	0.3-120-2
較	14	3.9	50	30	620-9	520-2	70	1 -520-30	0.3-120-2

(注) ①凝固速度℃/sec、②圧延荷重Kgf/mm、③温度(℃)-時間(hr)、 ④最終冷間圧延率%、⑤厚さ(mm)-温度(℃)-時間(秒、hr)。

[0025]

							 4		(5)
分	1	鋳造	<u> </u>	2	熱	熱処理		中間焼鈍	仕上焼鈍
類	i	-	凝固	圧延		3 ——	延		
		板厚	速度	荷重	1段目	2段目	率	mm - ℃-sec	mn-C-hr
14	15								
比	1	3.9	50	200	550-9	520-2	70	1 -520-30	0.3-120-2
較		3.9	50	200	650-6	520-2	70	1 -520-30	0.3-120-2
例	17	3.9	50	200	620-4	520-2	70	1 -520-30	0. 3-120-2
	18	3.9	50	200	620-9	450-2	70	1 -520-30	0. 3-120-2
	19	3.9	50	200	620-9	550-2	70	1 -520-30	0.3-120-2
	20	3.9	50	200	620-9	520-0.		1 -520-30	0.3-120-2
	21	1.0	50	200	580-6	480-1	40	0. 5-520-30	0. 3-120-2
	22	3.9	50	200	620-9	520-2	70	1 -300-30	0. 3-120-2
	23	3.9	50	200	620-9	520-2	70	1 -620-30	0. 3-120-2
	24	3.9	50	200	620-9	520-2	70	1 -520-200	0. 3-120-2
:	25	3.9	50	200	620-9	520-2	70	1 -520-30	0. 3-180-4
	26	3. 9	50	200	620-9	520-2	70	1 -520-30	0. 3-120-10
従	27	500			600-6	520-2	6		0. 3-120-2
来例	28	500 -	-		600-6	520-2		1 -520-30	0. 3-120-2

(注) ①~⑤表3と同じ、⑥熱延上がり板厚 No.29は2mm, No.30は4mm。

[0026]

	【表 5	5]			}		<u> </u>		
			加熱如	1.理前		<u></u>	口熱処理		
分	No		**						製缶上の不具合
類		YS	TS	伸び	耳率	YS	TS	伸び	()内数字は1万個
		MPa	MPa	*	%	MPa	MPa	%	当たりの破胴数
本	1	305	309	4	3	289	315	6	不具合なし
発	2	302	304	4	4	290	317	6	Л
明	3	294	311	4	4	291	316	5	л
例			<u></u>					·	
	4	279	292	4	3	288	312	6	不具合なし
	5	292	309	4	3	290	319	6	Л
	6	290	307	4	3	286	312	6	n
	7	289	307	4	3	286	310	5	不具合なし
	8	289	307	4	3	284	310	6	Л
	9	284	302	4	3	283	306	5	不具合なし
	10	287	301	4	3	285	309	6	Ħ
	11	295	311	4	3	293	319	5	不具合なし
	12	287	306	4	3	285	314	6	n
比	13	280	311	2	3	291	317	3	破胴数多い(7)
較	14	303	310	2	3	290	316	4	破胴数多い(9)

[0027]

	【表	6]			٦	~_			
	Ma		加熱	処理前			加熱処	理後	
分類	No	Y S MPa	T S MPa	伸び %	耳率	YS	TS	伸び	
	<u> </u>		1.11. 6	~	7.0	MPa	MPa	*	当たりの破胴数
比	15	291	309	4	3	286	314	5	ゴーリング発生
較	16	285	306	3	4	280	313	4	局所的に融解
例	17	291	310	3	3	288	314	4	ゴーリング発生
:	18	295	312	4	5	291	315	6	耳率不良
	19	285	302	4	5	283	306	6	耳率不良
	20	290	307	4	5	286	312	6	耳率不良
	21	247	291	1	4	266	295	2	破胴数多い(23)
	22	300	310	3	3	289	313	4	破胴数多い(11)
	23	288	305	2	3	283	307	4	破胴数多い(13)
	24	291	309	3	3	288	312	4	破胴数多い(10)
	25	286	294	2	3	281	291	3	破胴数多い (6)
	26	288	295	3	3	279	299	4	破胴数多い (4)
É	27	281	300	4	3	260	286	6	工程数が多く製造コ
E .	28	289	311	5	3	269	300	İ	ストが高い

【0028】本発明例のNo.1~12は、従来例のNo.27,28 より耐力が高く、その他はほぼ同等の特性であった。こ れに対して鋳塊板厚の厚いNo.13 および連続鋳造時に材 料に十分な圧延荷重をかけずに鋳造したNo.14 は、均質 化処理後も鋳造時に生じた中央部偏析が粗大に残るため 素板中央部に粗大な金属間化合物が存在し破胴数が多か った。No.15 は一段目熱処理温度が低いため、No.17 は 熱処理時間が短いため、組織の均質化が不十分であり、 また微細晶出物が粗大化しなかったためしごき加工時に ゴーリングが発生した。No.16 は一段目熱処理温度が高 いため局所的に融解して外観が悪化した。No.18 は二段 目熱処理温度が低いため、またNo.20 は熱処理時間が短 いため、またNo.19 は二段目熱処理温度が高いため、い ずれもMnが十分に析出せず、耳率が大きくなった。N 0.21 は最終冷間圧延率が低いため金属間化合物が微細 に分散せず、強度が低下した。またNo.22 は中間焼鈍温 度が低いため再結晶が不十分で破胴数が増加した。No.2 3 は中間焼鈍温度が高いため、No.24 は中間焼鈍時間が 長いため、いずれも析出物が再固溶してしごき加工性が

低下し破胴数が増加した。No.25 は仕上焼鈍温度が高いため、またNo.26 は仕上焼鈍時間が長いため、いずれも加工硬化が過度となり破胴数が増加した。

【0029】前記実施例以外に、別途、熱処理を施さない場合について実験したところ、中間焼鈍、仕上焼鈍の有無に関わらず、素板強度が異常に高くなり、また伸びが異常に低くなり、その為しごき加工で割れが多発した。

【0030】前記実施例では、双ロールキャスターにより鋳造した薄い鋳塊を用いたため工程数が少なく製造コストが安かった。

[0031]

【発明の効果】以上に述べたように、本発明では鋳造を 双ロールキャスターを用いて行うので鋳塊厚さが薄く、 そのため鋳造以降の工数が少なく、製造コストが安価で ある。また製缶材としての特性および品質は、鋳造、熱 処理、冷間圧延を適正な条件で行うことにより従来材と 同等に保持できる。依って工業上顕著な効果を奏する。

フロントページの続き

(51) Int. Cl. ⁶		識別記号	FI		
C 2 2 F	1/00	683	C 2 2 F	1/00	683
	•	684			684C
		685			685Z
		686			686A
		691			691B
					691C
		694			694A