IMX8ULPCEC

i.MX 8ULP Applications Processor—Commercial Products

Rev. 1 — 09/2023 Data Sheet: Technical Data

The i.MX 8ULP family of processors features NXP's advanced implementation of the dual Arm® Cortex®-A35 cores alongside an Arm Cortex-M33. This combined architecture enables the device to run a rich operating system (such as Linux) on the Cortex-A35 core and an RTOS (such as FreeRTOS) on the Cortex-M33 core. It also includes a Fusion DSP for low-power audio and a HiFi4 DSP for advanced audio and machine learning applications. The i.MX 8ULP processor provides a 32-bit LPDDR3/LPDDR4/LPDDR4X memory interface and a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth™, GPS, and displays. Additionally, there are 2 co-processors connected to the Cortex-M33 core: PowerQuad and Casper, accelerating DSP and cryptography functions, respectively.

MCIMX8xxxxxxxxx

485 MAPBGA

15 x 15 mm, 0.5 mm pitch

512 FCBGA

9.4 x 9.4 mm, 0.4 mm pitch

Table 1. i.MX 8ULP features

Feature type	Application processor domain	Real-time processor domain
ARM Processor	Dual core Cortex®-A35	Cortex®-M33F
	Frequency: 800 MHz	Nominal (RUN) frequency: 216 MHz
	32 KB instruction and 32 KB data cache	32 KB instruction and 32 KB data cache
	Floating Point Unit (FPU)	Floating Point Unit (FPU)
	512 KB of L2 cache with Snoop Control Unit (SCU)	Memory Protection Unit (MPU)
	NEON [™] SIMD engine	Co-processor interface for
		PowerQuad hardware accelerator (Fixed and floating point +FFT) DSP functions
		CASPER Crypto/FFT engine
	_	Tensilica DSP Fusion F1 DSP processor Nominal frequency: 200 MHz
	32 channel DMA	32 channel DMA
On-chip memory	64 KB of RAM	768 KB of Shared Memory, zero wait state
	192 KB of Boot ROM	96 KB of Boot ROM

Table 1. i.MX 8ULP features (continued)

Feature type	Application processor domain	Real-time processor domain
External memory interfaces	FlexSPI Serial flash interface to quad/octalSPI flash device	Dual FlexSPI Serial flash interface to quad/ octalSPI flash device
	3 eMMC/SD host interfaces supporting eMMC5.1 and SD3.0	_
	32-bit LPDDR3, LPDDR4, LPDDR4x	
Security	Cryptographic acceleration supporting	EdgeLock secure enclave (ELke) as Root of Trust (RoT)
	symmetric and	Core supporting up-to 216 MHz
	asymmetric ciphering algorithms	Dedicated boot ROM with Advanced High Assurance boot (AHAB)
	SHA-256 hashing algorithm	ECDSA P256 based signature verification
	algonum	Support for symmetric Cryptographic acceleration (SGI)
		Support for Asymmetric Cryptographic acceleration (PKC)
		NIST compliant RNG with DRGB
		One-Time Programmable electrical fuse used for security keys
	NIST-approved random number generator	On-The-Fly decryption of the encrypted code stored in external flash device
	32 KB secure RAM	_
Communication, Timer, and Analog peripherals	Dual High speed USB OTG port with integrated PHY	_
	4x UART ports	4x UART ports
	2x SPI ports	4x SPI ports
	4x I2C ports	4x I2C ports
	I3C port	2x I3C ports
	2x I2S ports	4x I2S ports
	-	FlexCAN
	-	FlexIO
	1 x Ethernet 10/100- Mbit/s, compliant with the IEEE802.3-2002 standard.	-
	Secure and non-secure Watchdog timers	Secure and non-secure Watchdog timer for CM33. Watchdog timer for the Fusion DSP

Table 1. i.MX 8ULP features (continued)

Feature type	Application processor domain	Real-time processor domain		
	4x 32-bit timers	4x 32-bit timers		
	1x MQS	1x MQS		
	System timers	System timers		
	-	2x 12-bit ADC		
	-	2x DAC		
		2x analog CMP		
		8x DMIC (Dual/Stereo digital microphone interface)		
	Low power audio video video don	nain		
Processor	Tensilica HiFi4 DSP			
	Maximum Frequency up to 600) MHz		
	Quad MAC 32 with Dual Load/	Store		
	Cached Based design with AX	I access to LPDDR memory		
	Integrated Dual 2-way SMID V	FPU		
	32-channel DMA			
On-chip memory	64 KB on-chip RAM			
	32 KB instruction cache			
	64 KB data cache			
	64 KB ITCM			
	64KB DTCM			
External memory interfaces	32-bit LPDDR3, LPDDR4, LPD	DR4x		
Graphics, display and Camera interface	GPU3D			
	Support for Open GL ES 3	8.1, Vulkan 1.1, Open CL 2.x and Open VG1.1		
	GPU2D Composition Processi	ng Core (CPC) GPU		
	4-lane MIPI DSI interface			
	Dual lane MIPI CSI interface			
	Image Sensing interface (ISI) v	with one pixel link interface		
	PXP E-Ink Display Engine			
	Display controller (DCNano) the Displays and Video mode	at supports EPDC panels through MIPI, Smart		
	Can be optionally powered off	when not in use		
Audio peripherals	2 I2S ports			
Timers	1x 32-bit Timer			

Table 1. i.MX 8ULP features (continued)

Feature type	Application processor domain Real-time processor domain				
	1x Watchdog (WDOG) timer				
Low Power Implementation					
Power Management	uPower Sub-system for advanced Power measurement ¹ and control functionality				
	RISC-V ISA compliant CPU core				
	Dedicated code and data RAM				
	Critical path and process monitors to provide device parameters				
	Supports DVFS (Dynamic Voltage and Frequency Scaling)				
	Multiple power domains and ultra-low power modes allow flexible power saving				
	HiFi4 DSP can be power gated while keeping DSP domain operational for Voice trigger				

^{1.} Power measurement accuracy is expected to be +/- 10% after trim, for currents of 20% to 100% of switches' specified current value. This IP has not been characterized. Measure capability not implemented on all switches

The following table provides examples of orderable sample part numbers covered by this data sheet.

Table 2. Ordering information

MC Part Numbers	Cortex-A35 Speed Grade	Cortex-M33 Speed Grade (MHz)	Package	Temperature Range
MIMX8UD5DVP08SC	800 MHz	216	MAPBGA 15 mm x 15 mm, 0.5 mm pitch	T _a 0 to T _j +95 °C
MIMX8US3DVP08SC	800 MHz	216	MAPBGA 15 mm x 15 mm, 0.5 mm pitch	T _a 0 to T _j +95 °C

Table continues on the next page...

Table 2. Ordering information (continued)

MC Part Numbers	Cortex-A35 Speed Grade	Cortex-M33 Speed Grade (MHz)	Package	Temperature Range
MIMX8UD3DVK08SC	800 MHz	216	FCBGA 9.4 mm x 9.4 mm, 0.4 mm pitch	T _a 0 to T _j +95 °C
MIMX8UD5DVK08SC	800 MHz	216	FCBGA 9.4 mm x 9.4 mm, 0.4 mm pitch	T _a 0 to T _j +95 °C
MIMX8UD7DVP08SC	800 MHz	216	MAPBGA 15 mm x 15 mm, 0.5 mm pitch	T _a 0 to T _j +95 °C
MIMX8UD3DVP08SC	800 MHz	216	MAPBGA 15 mm x 15 mm, 0.5 mm pitch	T _a 0 to T _j +95 °C
MIMX8US5DVP08SC	800 MHz	216	MAPBGA 15 mm x 15 mm, 0.5 mm pitch	T _a 0 to T _j +95 °C
MIMX8US3DVK08SC	800 MHz	216	FCBGA 9.4 mm x 9.4 mm, 0.4 mm pitch	T _a 0 to T _j +95 °C
MIMX8UD5CVP08SC	800 MHz	216	MAPBGA 15 mm x 15 mm, 0.5 mm pitch	T _a -40 to T _j +105 °C

The following figure describes the part number nomenclature so users can identify the characteristics of the specific part number.

Table 3. Related Resources

Туре	Description
Selector Guide	The Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.
Reference Manual	The <i>i.MX 8ULP Applications Processor Reference Manual</i> contains a comprehensive description of the structure and function (operation) of the SoC.
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.
Chip Errata	The chip mask set errata provides additional or corrective information for a particular device mask set.
Package drawing	Package dimensions are provided in the data sheet.

Contents

i.MX 8ULP modules list	10	4.5.2	Nonswitching electrical characteristics	41
Specifications	20	4.5.3	Capacitance attributes	44
Application domain (implementing Arm C	ortex-	4.6	Switching electrical characteristics	44
A35)	20	4.6.1	General switching timing specifications	44
Memory system—application domain	20	4.6.2	GPIO rise and fall times	44
Peripherals—application domain	20	4.6.3	GPIO output buffer maximum frequency	46
Peripherals—low power audio video (LPA	AV)	4.6.4	GPIO input buffer maximum frequency	47
domain	22	4.7	Debug and trace modules	47
Graphics processor and human machine		4.7.1	JTAG timing specifications	48
interfaces	22	4.7.2	SWD Electricals	50
Real-time domain (implementing Arm Co	rtex-	5	Specifications—application domain	51
M33)	22	5.1	Application domain (APD) power modes	51
•		5.2		
Memory system—real-time domain	22			52
		5.3		
· · · · · · · · · · · · · · · · · · ·		5.4		
				52
-		5.4.1		
		5.4.2		
		5.4.3		
				59
		6		
		6.1		
		6.1.1	,	
The state of the s		6.2		
_		6.2.1		
=		6.2.2	=	
		6.2.3	-	
		6.2.4		
_		7		
		7.1	•	
		7.2		
		7.3		
				76
	27	7.3.1		
Thermal specifications	31	7.3.2		
		7.3.3		
-		7.3.4		
Core, platform, and system bus clock				91
	34	8	•	
		8.1		
		8.1.1		
		8.1.2		
•				-
	40		•	97
		8.2.1		
	Application domain (implementing Arm C A35)	interfaces 22 Real-time domain (implementing Arm Cortex-M33) 22 Fusion DSP domain 22 Memory system—real-time domain 22 Peripherals—real-time domain 22 Peripherals—real-time domain 22 System control modules 23 JTAG—system control 23 JTAG device identification register 23 Oscillators and PLLs 23 System oscillator (SYS OSC) 23 Real-Time Clock Oscillator (RTC OSC) 23 192 MHz Free-Running Oscillator (FRO) 23 1 MHz Low-Power Oscillator (LPO) 24 List of Frequency PLL (Fixed-freq PLL) 24 Fixed Frequency PLL (Fixed-freq PLL) 24 Fixed Frequency PLL (Fixed-freq PLL) 24 Power Management 24 Digital PMC 24 Analog power management controller (Analog PMC) 24 System specifications 25 Ratings 25 Thermal handling ratings 25 ESD handling ratings 25 Absolute maximum ratings 26 Recommended operating c	Specifications 20 4.5.3 Application domain (implementing Arm Cortex-A35) 4.6 4.6 A35) 20 4.6.1 Memory system—application domain 20 4.6.2 Peripherals—application domain 20 4.6.2 Peripherals—application domain 20 4.6.3 Peripherals—low power audio video (LPAV) 4.6.4 domain 22 4.7 Graphics processor and human machine 4.7.1 interfaces 22 4.7 Real-time domain (implementing Arm Cortex-M33) 22 5.1 M33) 22 5.1 Fusion DSP domain 22 5.2 Memory system—real-time domain 22 5.3 System control 23 5.4 JTAG—system control 23 5.4 JTAG—system control 23 5.4 <td< td=""><td>Application domain (implementing Arm Cortex- A35)</td></td<>	Application domain (implementing Arm Cortex- A35)

9.4 x 9.4 mm, 0.4 mm pitch, ball map	99	10	Revision History	101
Pin Multiplexing	100	10.1	Revision history	101
i.MX 8ULP pin multiplexing	100	Chapter	Legal information	102
	Pin Multiplexing	9.4 x 9.4 mm, 0.4 mm pitch, ball map99 Pin Multiplexing100 i.MX 8ULP pin multiplexing100	Pin Multiplexing100 10.1	Pin Multiplexing100 10.1 Revision history

1 i.MX 8ULP modules list

The i.MX 8ULP applications processor contains a variety of digital and analog modules.

In the Domain column in this table:

- APD = Application Power or A35 Domain (primarily controlled by the Cortex-A35 core)
- RTD = Real-Time or M33 Domain (primarily controlled by the Cortex-M33 core)
- LPAVD/Flex = Low Power Audio Video domain
- DSPD: DSP Processor Domain

Module	Domain	Description
Memories and memory	controllers	
SRAM1	LPAVD	An AXI RAM Controller (RAMC), which acts as an interface between the AXI bus and RAM, is used on each SRAM connected to the NIC crossbar.
SSRAM	RTD	768KB of System Memory shared between M33, Fusion and other Masters. SSRAM is divided into multiple partitions. System software will determine how each partition is utilized and CPU/Master controlling that partition. Fusion and M33 accesses these partition via dedicated tightly couple memory buses (TCM), with zero wait-state. There is also backdoor port that allows M33 DMA and other bus masters in the SoC to access this memory.
XCACHE	RTD	The AHB Cache Controller (CAC) is a processor-local Level 1 (L1) bus cache controller for use with cores using AMBA-AHB input/output buses. It is optimized for minimum RunIDD (dynamic power).
LPDDR4C	APD, LPAVD	The LPDDR Controller is a configurable DDR controller that provides interface to 32-bit LPDDR3, LPDDR4 and LPDDR4x memories. It supports up to 2 GB DDR memory space. The LDDR4C includes a DFI interface to work with PHY. The controller is responsible for communication with the system through AXI interface, DDR commands generation, DDR command optimizations, and read/ write data path. The PHY performs timing adjustment using special calibration mechanisms to ensure data capture margin at the supported clock rate.
FlexSPI0-2	APD, RTD	The Flexible Serial Peripheral Interface (FlexSPI) module provides an interface to various types of serial flash memory. The QSPI interface allows up to two serial flash connections. It supports 1-bit, 4-bit and 8-bit SPI bus width.
uSDHC0-2	APD	The ultra Secure Digital Host Controller (uSDHC) provides the interface between the host system and SD, SDIO or eMMC cards. The uSDHC acts as a bridge, passing host bus transactions to the cards by sending commands and performing data accesses to/from the cards or devices. It handles SD, SDIO and eMMC protocol at transmission level.

Module	Domain	Description		
Memories and memory controllers				
DMA0-2	APD, RTD	Direct Memory Access (DMA) is capable of performing complex data transfers with minimal intervention from a host processor. Each DMA module supports 32 DMA channels. The transfer control descriptors for each of the 32 channels located in system memory.		
DMAMUX0-2		The Direct Memory Access Multiplexer (DMAMUX) module routes DMA sources, called slots, to any of the supported DMA channels. On this device, DMAMUX is an integrated component within the DMA module.		
NIC-301	APD	The AMBA Network Interconnect Crossbar (NIC) is a high performance AMBA-compliant network infrastructure which arbitrates between multiple AXI or AHB masters to grant access to internal or external memories or other slave devices. It supports connectivity between several slave and master ports for parallel processing. It uses a hybrid round-robin arbitration scheme and contains frequency converters, data width converters, bus protocol converter, and AXI channel buffers.		
AXBS-Lite (XBAR_7x2 and XBAR_DSP) and AXBS-Full (AXBS0, AXBS1)	APD, RTD	AHB-Lite Cross Bar Switch (AXBS-Lite) is a crossbar switch module that arbitrates between multiple AHB masters to grant access to downstream AHB slave devices. The crossbar enables multiple masters to connect to slaves and parallel processing.		
AHB-PBridge (PBRIDGE0-5)	RTD, APD, LPAVD	The AHB-Peripheral Bridge (AHB-PBridge) module interfaces an AHB bus to the peripheral bus. There are 2 AHB-PBridge instances in this device. Each AHBPBridge module supports 128 IP slots. Each slot occupies 64 KB of address space.		
PortSplitter		The PortSplitter gasket splits an AHB master port to multiple AHB slave ports based on address decoding.		
BME	RTD	The Bit Manipulation Engine (BME) provides hardware support for atomic read-modify-write memory operations to the peripheral address space. This architectural capability is also known as "decorated storage" as it defines a mechanism to provide additional semantics for load and store operations to memory-mapped peripherals beyond just the reading and writing of data values to the addressed memory locations.		
Multicore peripherals				
MU0-3	RTD, LPAVD, and DSPD	Messaging Unit (MU) is a shared peripheral with a 32-bit IP bus interface and interrupt request signals to each host processor. The MU exposes a set of registers to each processor which facilitate inter-processor communication via 32-bit words, interrupts and flags. Interrupts may be independently masked by each processor to allow polled- mode operation. The uPower subsystem also contains 2 instances of MU module.		
SEMA42_0-2	APD, RTD, and LPAVD	The Hardware Semaphore (SEMA42) module provides the hardware support needed in multicore systems for implementing semaphores		

Table continues on the next page...

Module	Domain	Description			
Memories and memory controllers					
		and provide a simple mechanism to achieve "lock/unlock" operations via a single write access.			
XRDC	RTD	The Extended Resource Domain Controller (XRDC) provides an integrated, scalable architectural framework for access control, system memory protection and peripheral isolation. It allows software to assign chip resources (like processor cores, non-core bus masters, memory regions and slave peripherals) to processing domains, to support enforcement of robust operational environments. The XRDC implementation is distributed across multiple submodules instantiated throughout the device.			
MGR	RTD	The XRDC Manager (MGR) submodule coordinates all programming model reads and writes.			
MDAC	APD, RTD	The XRDC Master Domain Assignment Controller (MDAC) submodule handles resource assignments and generation of the domain identifiers.			
MRC	APD, RTD	The XRDC Memory Region Controller (MRC) submodule implements the access controls for slave memories based on the pre-programmed region descriptor registers			
PAC	APD, RTD	The XRDC Peripheral Access Controller (PAC) implements the access controls for slave peripherals based on the pre-programmed domain access control registers.			
TRDC	RTD	The Trusted Resource Domain Controller (TRDC) provides an integrated, scalable architectural framework for access control, system memory protection and peripheral isolation. It allows software to assign chip resources including processor cores, non-core bus masters, memory regions and slave peripherals to processing domains to support enforcement of robust operational environments.			
Connectivity and com	munications				
SAI0-7	APD, RTD	The Synchronous Audio Interface (SAI) module implements full-duplex serial interfaces with frame synchronization such as I2S, AC97, and CODEC/DSP interfaces.			
LPI2C0-7	APD, RTD	The Low Power Inter-Integrated Circuit (LPI2C) module implements an efficient interface to an I2C bus as a master. The LPI2C can continue operating while the processor is in stop mode provided an appropriate peripheral clock is available. This module is designed for low CPU overhead with DMA offloading of FIFO register accesses.			
I3C0-2	APD, RTD	I3C Master/Slave interface. Supports DDR.			
ENET	APD	10M/100M Ethernet Controller (ENET).			
FlexCAN	RTD	The FlexCAN module is a communication controller implementing the CAN protocol according to the ISO 11898-1 standard and CAN 2.0 B protocol specifications			

Table continues on the next page...

Module	Domain	Description
Memories and memory contro	llers	
LPUART0-7	APD, RTD	The Low Power Universal Asynchronous Receiver/Transmitter (LPUART) module provides asynchronous, serial communication capability with external devices. LPUART supports non-return-to-zero (NRZ) encoding format and IrDA-compatible infrared (low-speed) SIR format. The LPUART can continue operating while the processor is in stop mode if an appropriate peripheral clock is available. This module is designed for low CPU overhead with DMA offloading of FIFO register accesses.
LPSPI0-5	APD, RTD	The Low Power Serial Peripheral Interface (LPSPI) module implements an efficient interface to a SPI bus as a master and/or a slave. The LPSPI can continue operating while the processor is in stop mode if an appropriate peripheral clock is available. This module is designed for low CPU overhead with DMA off-loading of FIFO register accesses.
USB-OTG0-1, USB-XBAR	APD, RTD	The Universal System Bus On-The-Go (USB-OTG) module is a USB 2.0-compliant implementation. The registers and data structures of this USB controller are based on the Enhanced Host Controller Interface Specification for Universal Serial Bus(EHCI). This module can act as a host, a device or an On-The-Go negotiable host/device on the USB bus.
USBDCD	APD	The USBDCD module works with the USB transceiver to detect whether the USB device is attached to a Charging Port, either a Dedicated Charging Port (DCP) or a Charging Downstream Port (CDP).
USB-PHY	APD	The Universal System Bus Physical Layer (USB-PHY) macrocell implements USB physical layer connecting to USB host/device systems at low-speed, full-speed, and high-speed. USB-PHY provides a standard UTMI interface for connection to the USB-OTG controller.
FlexIO0-1	APD, RTD	The Flexible Input/Output (FlexIO) module is capable of supporting a wide range of protocols including, but not limited to: UART, I2C, SPI, I2S, camera interface, display interface, PWM waveform generation, etc.
Timers		
LPTMR0-1	APD, RTD	The Low Power Timer (LPTMR) module is a 16-bit timer which operates as real-time interrupt or pulse accumulator. This LPTMR module can remain functional when the chip is in low power modes, provided the reference clock to this timer is active.
LPTPM0-8	APD, RTD	The Timer/Pulse Width Modulation Module (LPTPM or TPM) is a multi- channel timer module that supports input capture, output compare, and the generation of PWM signals. The counter, compare and capture registers are clocked by an asynchronous clock that can remain enabled in low power modes.

Table continues on the next page...

Module	Domain	Description
Memories and memory co	ntrollers	
LPIT0-1	APD, RTD	Low Power Periodic Interrupt Timer (LPIT) is a multi- channel timer module that can generate independent pre- trigger and trigger outputs. These timer channels can operate individually or can be chained together. The pre- trigger and trigger outputscan be used to trigger other modules on the device. The LPIT can also operate in low power modes.
MRT	RTD	The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each channel can be programmed with an independent time interval.
TSTMR0-1	APD, RTD	The TSTMR module is a free running incrementing counter that starts running after system reset de-assertion and can be read at any time by the software for determining the software ticks. The TSTMR is a 64-bit clock cycle counter. It runs off the 1 MHz clock and resets on every system reset. The counter only stops when the clock to the TSTMR is disabled.
WDOG0-8 APD, DSPD, RTD and LPAVD		The Watchdog Timer (WDOG) module keeps a watch on the system functioning and resets it in case of its failure. Reasons for failure include run-away software code and the stoppage of the system clock that in a safety critical system can lead to serious consequences. In such cases, the WDOG brings the system into a safe state of operation. The WDOG monitors the operation of the system by expecting periodic communication from the software, generally known as servicing orrefreshing the WDOG. If this periodic refreshing does not occur, the WDOG resets the system. There are two instances of WDOG in the uPower subsystem and two instances within the EdgeLock secure enclave subsystem.
EWM	RTD	The External Watchdog Monitor (EWM) module is designed to monitor external circuits, as well as the software flow. This provides a back-up mechanism to the internal WDOG that can reset the system. The EWM differs from the internal WDOG in that it does not reset the system. The EWM, if allowed to time-out, provides an independent trigger pin that when asserted resets or places an external circuit into a safe mode.
Graphic Processor Human	Machine Interfaces	
GPU-3D	LPAVD	Verisilicon GCNanoUltra3.1 supports Open GL ES 3.1, Vulkan 1.3, Open CL 3.0 and Open VG1.1
GPU-2D	LPAVD	GPU-2D supports user interface rendering and performs functions like blending, filtering, rotation, overlay, resizing, transparency, and other dynamic effects.
MIPI DSI Controller	LPAVD	The MIPI Display Serial Interface Controller (DSI Controller) is responsible for serializing display data from the GPU. Data can come from either the GPU or the processor/DMA controller.

Table continues on the next page...

15 / 105

Table continued from the previous page...

Module	Domain	Description
Memories and memory cor	ntrollers	
MIPI-CSI-2 Controller	LPAVD	MIPI Camera Serial Interface (MIPI-CSI-2) is a dual lane interface that supports up to 1500 Mbps.
MIPI D-PHY	LPAVD	Both MPI-DSI (4-lane) and MIPI-CSI-2 (2-lane) use MIPI Display Physical Layer (D-PHY).
LCDIF/DCNano	LPAVD	The DCNano (from Verisilicon) is a general purpose display controller used to drive a wide range of display devices varying in size and capabilities.
SPDIF	LPAVD	The Sony/Philips Digital Interface (SPDIF) audio block is a stereo transceiver that allows the processor to receive and transmit digital audio. The SPDIF transceiver allows the handling of both SPDIF channel status (CS) and User(U) data and includes a frequency measurement block that allows the precise measurement of an incoming sampling frequency.
PDM/MICFIL	LPAVD, DSPD	PDM Microphone Interface (DMIC) allows connection of MEMS digital microphones with PDM output to the MCU. The interface can support from 1 to 16 microphones, using up to 8 input data lines and one clock line.
PXP	LPAVD	Pixel Pipeline interface to process graphics buffers composite video and graphics data before sending to an display.
EPDC	LPAVD	The Electrophoretic Display Controller(EPDC) is a feature-rich, low power and high performance direct drive active matrix EPD controller. It is specifically designed to drive E•INK [™] EPD panels supporting a wide variety of TFT backplanes.
ISI	LPAVD	The Image Sensing Interface (ISI) module interfaces 1 pixel link source to obtain the image data for processing in its pipeline channels.
Analog	1	
ADC0-1	RTD	Analog to Digital Converter (ADC) is a 12-bit resolution, successive approximation analog to digital converter. The ADC module supports up to 16 single-ended external analog inputs. It outputs 12-bit, 10-bit, or 8-bit digital signal in right-justified unsigned format.
DAC0-1	RTD	Digital to Analog Converter (DAC) is the 12-bit resolution digital-to- analog converters with programmable reference generator output. The output of the DAC can be placed on an external pin or set as one of the inputs to the analog comparator or ADC.
CMP0-1	RTD	The Comparator (CMP) module provides a circuit for comparing two analog input voltages. The comparator circuit is designed to operate across the full range of the supply voltage (rail to rail operation).
Security		
CAAM	APD	Cryptographic Acceleration and Assurance Module (CAAM) is an multi- function accelerator that supports the cryptographic functions common

Table continues on the next page...

Module	Domain	Description
Memories and memory contro	ollers	
		in many security protocols. This includes AES128, AES256, DES, 3DES, SHA1, SHA224, SHA256, and a random number generator with a true entropic seed. CAAM includes a DMA engine that is descriptor based to reduce processor-accelerator interaction. Security feature clear keys and memories when on-chip security monitor detects tampering. The Secure RAM is implemented and provides secure storage of sensitive information both in on-chip RAM and in off-chip, nonvolatile memory.
EdgeLock secure enclave (ELke)	RTD	RISC-V based Root of Trust. Part of M33 domain. It includes dedicated ROM that authenticates any FW images via Advanced HAB(AHAB). ELke also moderates any Read/writes to the fuses apart from crypto accelerators.
CRC ¹	RTD	The Cyclic Redundancy Check (CRC) module is a hardware CRC generator circuit using 16/32-bit shift register. The CRC module supports error detection for all single, double, odd, and most multibits errors, programmable initial seed value, and optional feature to transpose input data and CRC result via transpose register.
OTFAD ²	RTD	The On-The-Fly AES Decryption (OTFAD) module provides an advanced hardware implementation that minimizes any incremental cycles of latency introduced by the decryption in the overall external memory access time. The OTFAD engine also includes complete hardware support for a standard AES key unwrap mechanism to decrypt a key BLOB data instruction containing the parameters needed for up to 4 unique AES contexts.
Debug and Test		
DAP	RTD	Debug Port Access (DAP) provides debugger access to on- chip system resources via the SWJ-DP port. The DAP provides internal system access to A35 Debug Port, M33 Debug Port, System Bus, JTAG controller, and SoC Control and Status. TheDAP also enables system access to CoreSight debug subsystem through the APBIC port.
СТМ	RTD	Cross Trigger Matrix (CTM) is a component of the Embedded Cross Trigger (ECT), which is key in the multi- core debug strategy. The CTM receives signals from various sources (i.e. cores and peripherals) and propagates or routes them to the different debug resources of the SoC. Those debug resources can include time stamping capability, real-time trace, triggers and debug interrupts.
ETF	RTD	The Embedded Trace FIFO (ETF) consists of a formatter, control, and the trace RAM. It is a configuration of the Trace Memory Controller (TMC). The ETF will have a memory size of 16Kbytes. The ETF and associated memory should be connected in the system such that it will retain the information though a warm or cold reset of the system. This is to allow for debug information to be retained for debugging problems that may arise and cause a reset of the system.

Module	Domain	Description				
Memories and memory controlle	ers					
ETR	RTD	The ETR is a trace sink that redirects the trace stream onto the AXI bus to external storage. It can utilize a single contiguous region or a scattered allocation of blocks for a circular buffer. Reading of the AXI based trace buffer can either be done directly over AXI from a normal bus master. The ETR is a configuration option of the TMC as is the ETF.				
FUNL	RTD	The Trace Funnel (FUNL) is used when there is more than one trace source. The Trace Funnel combines multiple trace stream onto a single ATB bus. The Trace Funnel includes an arbiter that determines the priority of the ATB inputs.				
Replicator	RTD	The Trace Replicator (Replicator) enables two trace sinks (TPIU and TMC) to be wired together and receive ATB trace data from the same trace source. It takes incoming data from a single source and replicates it to two master ports.				
TPIU	RTD	Trace Port Interface Unit (TPIU) acts as a bridge between on-chip trace data, ID distinguishable, and a TPA. It receives ATB trace data and sends it off chip via Arm's standard trace interface. The TPIU includes ATB interface, APB interface, Formatter, Asychronous FIFO, Register bank, Trace out serializer, and a Pattern generator.				
SWO	RTD	Single Wire Output (SWO) is a trace data drain that acts as bridge between the on-chip trace data to a data stream that is captured by the Trace Port Analyzer. It is a TPIU-like device that supports a limited subset of the full TPIU functionality for asimple debug solution.				
TimeStamp Components		The timestamp components generate and distribute a consistent timestamp value for multiple processors and other blocks in a SoC. [revisit]				
JTAGC	RTD	Joint Test Action Group Controller (JTAGC) provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard				
Clock Sources and Control						
CGC0-2	RTD, APD, LPAVD	The System Clock Generation (SCG) module is responsible for clock generation and distribution across this device. Functions performed by the SCG include: clock reference selection, generation of clock used to derive processor, system, peripheral bus and external memory interface clocks; source selection for peripheral clocks; and, control of power saving clock gating mode.				
PCC0-5	RTD, APD	The Peripheral Clock Control (PCC) module is responsible for clock selection, optional division and clock gating mode for peripherals in their respected power domain.				

Table continues on the next page...

Module	Domain	Description			
Memories and memory controlle	ers	·			
RTC OSC		The Real Time Clock Oscillator (RTC OSC) module provides the clock source for the Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC.			
SYS OSC		The System Oscillator (SYS OSC) module is a crystal oscillator. The SYS OSC, in conjunction with an external crystal or resonator, generates a reference clock for this device. It also supports optionally external input bypass clock from EXTAL signal directly.			
USB PLL		USB Phase Locked Loop (USB PLL) is embedded in the USB transceiver block. This PLL allows an exact 480 MHz to be generated from a supported reference clock of 24 MHz. The output of this PLL is primarily used for PLL operation. The USB PLL clock is also made available as a clock source for other peripherals in the SoC.			
Fixed-Freq PLL (PLL0)		The Fixed-freq PLL is the same as the USB PLL. In addition to the main clock output, this PLL also includes 4 Phase Fractional Dividers (PFDs) that can generate other clock frequencies. There is one instance of the Fixed-freq PLL (PLL0) provides clocks for M4 core and buses and peripherals in the Realtime domains.			
Frac-N PLL (PLL1-3)		The Fractional-N (Frac-N) PLL can generate an output clock of 528 MHz from a supported reference clock. In addition to the main clock output, this PLL also includes up to 4 Phase Fractional Dividers (PFDs) that can generate other clock frequencies. This PLL also supports tunnable clock for audio applications.			
AV Frac-N-PLL		1.2 GHz Fractional PLL			
192 MHz FRO		Low Power IRC with tuning logic to generate 192 MHz. System defaults to FRO for as initial boot clock.			
LPO (1 MHz)		The Internal Reference Clock (1 MHz) module is an internal oscillator that can generate a reference clock of 1 MHz. The LPO clock is enabled in all modes of operation, including all low power modes.			
Power Management					
Micro-Power (uPower)	RTD, APD	Dedicated RISC-V based Power management and control block. Allows DVFS via dedicated processor monitors and control logic.			
Digital PMC		The Digital PMC module allows user software to control power modes of the chip and to optimize power consumption for the level of functionality needed. There are two instances of Digital PMC on this device, one for each main power domain. It is a part of micro-Power subsystem.			
Analog PMC		The Analog PMC consists of voltage/current references, core logic supply regulators, memory supply regulators, Back and Forward Biasing regulators, monitors and power switches, etc. There are three			

Table continues on the next page...

Module	Domain	Description
Memories and memor	y controllers	
		Analog PMC subsystems in 8ULP, one associated with the M33 power domain, one with LPAV and the other with the A35 power domain.
System Control		
RMC0-1		Reset Mode Controller (RMC) implements reset modes and reset functions of the chip.
CMC0-2	APD, RTD, LPAVD	The Real Time Domain Core Mode Controller (CMC0) is responsible for sequencing the M33 CPU and associated logic through the different operating modes. The Application Domain Core Mode Controller (CMC1) is responsible for sequencing the A35 CPU cluster and associated logic through the different operating modes. CMC2 is the CMC instance in the low-power audio video domain (LPAV), which is a slave domain without internal ARM Core. Its Low Power Modes, Clock Gate Modes and reset follows the Master Domain, either Real-time or Application domain.
WUU0-1	APD, RTD	The Low-Leakage Wake-Up Unit (LLWU) module allows user to select up to 32 external pin sources and up to 8 internal modules as a wakeup source from low-leakage power modes. Also known as LLWU.
WIC		The Wakeup Interrupt Controller (WIC) module is capable of interrupt detection and wake up a processor when it is in low power mode.
WKPU0-1	RTD, APD	Wakeup Unit (WKPU) module is capable of interrupt detection and wake a Cortex-A processor when it is in low power mode. There is one WKPU instance for each A35 Core on i.MX 8ULP.
IOMUXC0-2	APD, RTD	The Input/Output Multiplexing Controller (IOMUXC) enables the chip to share one pad for multiple signals from different peripheral interfaces. This pad sharing mechanism is done by multiplexing the pad's input and output signals. TheIOMUXC also controls the pads setting parameters and digital filter functions of the pad. In addition, the IOMUXC controls input multiplexing logic for input signals multiplexed at multiple locations
SIM0-2	APD, RTD, LPAVD	The System Integration Module (SIM) provides system control and chip configuration registers. The SIM may include the TSTMR module.
TRGMUX0-1	APD, RTD	Peripheral Trigger Multiplexing (TRGMUX)
RGPIO2P0-1	RTD, APD	The Rapid General-Purpose Input and Output with 2 Ports (RGPIO2P) is similar to the RGPIO module, except it has an AHB-lite port, in addition to the IPS port, for faster access.
OCOTP_CTRL		The On-Chip One-Time-Programmable Controller (OCOTP_CTRL) module provides an interface for reading, programming and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses. The OCOTP_CTRL also provides a set of volatile software-accessible

Table continues on the next page...

Module	Domain	Description				
Memories and memory controllers						
signals which can be used for software control of hardwanot requiring non-volatility.						
Co-Processors	1					
PowerQuad	RTD	PowerQuad is a Digital Signal Co-Processing companion to a Cortex-M v8M CPU core. It can be accessed via Co-processor interface provided by the Cortex CPU, and via AHB address space.				
CASPER	RTD	The Cryptographic Accelerator and Signaling Processing Engine with RAM-sharing (CASPER) peripheral provides acceleration of asymmetric cryptographic algorithms as well as optionally of certain signal processing algorithms.				

- 1. Only available in EdgeLock secure enclave document
- 2. Only available in security RM

2 Specifications

NOTE

- · All the specifications/values contained in the subsequent sections of this document are preliminary and subject to change.
- · Any reference to VDD or VDD throughout the document corresponds to VDD_DIG0, VDD_DIG1 or VDD_DIG2, depending on where the module resides physically.

2.1 Application domain (implementing Arm Cortex-A35)

Application domain is built around a dual core Cortex-A35 cluster optimized for 800 MHz operation for Linux based applications. The Application domain has several different power islands where each island is optimized for idle, low power idle and suspend modes. The i.MX 8ULP processor provides a 32-bit LPDDR3, LPDDR4, and LPDDR4X memory interface and a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth[™], GPS, and displays.

2.1.1 Memory system—application domain

2.1.1.1 Internal memory (application domain)

- SRAM0 (64KB)
- SRAM2 (256 KB shared with L2 Cache)

2.1.1.2 eMMC

eMMC is a managed NAND device.

2.1.2 Peripherals—application domain

2.1.2.1 Security—application domain

The following section provides detail about the security modules.

i.MX 8ULP Applications Processor—Commercial Products, Rev. 1, 09/2023

2.1.2.1.1 True Random Number Generator (TRNG)

The TRNG module is used to generate high quality, cryptographically secure, random data. The TRNG module is capable of generating its own entropy using an integrated ring oscillator. In addition, the module's Pseudo-Random Number Generator (PRNG) provides accelerated processing of pseudo-random data.

2.1.2.1.2 Real-Time Clock (RTC)

The RTC module provides 64-bit monotonic counter with roll-over protection, 32-bit seconds counter with roll-over protection and 32-bit alarm. This timer module is extremely low power that allows it to operate on a backup power supply when the main power supply is cut off. The RTC remains functional in all low power modes and can generate an interrupt to exit any low power mode.

2.1.2.1.3 Battery-Backed secure module (BBSM)

The Battery-Backed Security Module (BBSM) serves as nonvolatile security logic and storage for Edgelock secure enclave. See S400 Reference Manual for BBSM chapter.

The following table shows the osc32 specs of this module.

Symbol	Parameter	Min	Тур	Max	Unit
f _{osc_lo}	Oscillator crystal	-	32.768	-	kHz
V _{ec_extal32}	Externally provided input clock amplitude	0.7	-	VDD_VBAT18_CA P	V

2.1.2.2 Timers—application domain

The i.MX 8ULP Application Domain implements the following timers:

- Low Power Periodic Interrupt Timer (LPIT)
- Timer/PWM Module (LPTPM)
- External Watchdog Monitor(EWM)
- Time stamp timer module (TSTMR)
- · Watchdog Timer (WDOG)
- · Multirate Timer (MRT)

See i.MX 8ULP modules list.

2.1.2.3 Connectivity and communications—applications domain

The i.MX 8ULP Application Domain implements the following connectivity and communications peripherals:

- · Secure Digital (SD) Interface via the uSDHC
- Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
- Low Power Inter-Integrated Circuit (LPI2C)
- Low Power Serial Peripheral Interface (LPSPI)
- Universal System Bus On-The-Go (USB-OTG)
- Improved Inter-Integrated Circuit Interface (I3C)
- · Flexible Serial Peripheral Interface (FlexSPI)
- 10/100 Mpbs Ethernet Controller (ENET)

Flexible Input/Output (FlexIO)

See the i.MX 8ULP modules list for more details.

2.2 Peripherals—low power audio video (LPAV) domain

2.2.1 Graphics processor and human machine interfaces

The i.MX 8ULP Application Domain implements the following graphics processor human machine interfaces:

- 3D graphics processing unit (GPU-3D)
- 2D graphics processing unit (GPU-2D)
- MIPI Display Serial Interface Controller (MIPI DSI)
- · DCNano Display Controller
- · Pixel Pipeline interface (PXP)
- MIPI Camera Serial Interface (MIPI-CSI)
- The Electrophoretic Display Controller (EPDC)
- · HiFi4 DSP

See the i.MX 8ULP modules list for more details.

2.3 Real-time domain (implementing Arm Cortex-M33)

The real-time domain is built around an Arm Cortex-M33 processor that contains a floating-point unit and is optimized for lowest possible leakage.

2.3.1 Fusion DSP domain

Fusion DSP is part of real-time domain (RTD) and runs at the same core voltage as CM33. Similar to LPAV domain, this is also considered a slave domain and does not have its own power modes but follows M33. This domain comes up as "disabled" until it is explicitly enabled by M33 during boot.

2.3.2 Memory system—real-time domain

2.3.2.1 Internal memory—real-time domain

The real-time domain contains 768 KB of SRAM. Each sub-block can be power-gated under software control to optimize power consumption.

2.3.3 Peripherals—real-time domain

2.3.3.1 Analog—real-time domain

The i.MX 8ULP Real-Time Domain implements the following analog peripherals:

- · 12-bit Analog to Digital Converter
- 12-bit Digital to Analog Converter
- Comparators

See i.MX 8ULP modules list for more details.

2.3.3.2 Connectivity and communications—real-time domain

The i.MX 8ULP Real-Time Domain implements the following connectivity and communications peripherals:

- Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
- · Low Power Inter-Integrated Circuit (LPI2C)
- · Low Power Serial Peripheral Interface (LPSPI)
- Rapid General-Purpose Input and Output with 2 Ports (RGPIO2P)
- Flexible Input/Output (FlexIO)
- Flexible Controlled Area Network (FlexCAN)

See the i.MX 8ULP modules list for more details.

3 System control modules

3.1 JTAG—system control

Joint Test Action Group Controller (JTAGC) provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001 standard.

3.2 JTAG device identification register

The device identification register (Device_ID) is 32-bit length register which provides component identification information. For more details, see the device identification register section of i.MX 8ULP Applications Processor Reference Manual for details. This table shows the Device_ID fields for each i.MX 8ULP silicon revision.

Table 4. JTAG device identification register information

Silicon Revision	Version (4 MSBs)	Part Number	Manufacturer Identity	IEEE 1149.1 Requirement (LSB)
A2	0001	1000100011101000	0000001110	1

The contents of the Device_ID register are also mirrored in a SIM register called MIRROR_OF_JTAG_ID_REG (address:2802_A010). See the i.MX8ULPRM for details.

3.3 Oscillators and PLLs

3.3.1 System oscillator (SYS OSC)

The system oscillator (SYS OSC) is a crystal oscillator. The SYS OSC, in conjunction with an external crystal or resonator, generates a reference clock for this chip. It also provides the option for external input bypass clock from the EXTAL signal directly.

3.3.2 Real-Time Clock Oscillator (RTC OSC)

The RTC OSC module provides the clock source for the Real-Time Clock module. The RTC OSC module, in conjunction with an external crystal, generates a 32.768 kHz reference clock for the RTC.

3.3.3 192 MHz Free-Running Oscillator (FRO)

Low Power internal reference clock (IRC) with tuning logic to generate 192 MHz. System defaults to FRO for as initial boot clock.

3.3.4 1 MHz Low-Power Oscillator (LPO)

The Internal Reference Clock (1 MHz) module is an internal oscillator that can generate a reference clock of 1 MHz. The LPO clock is enabled in all modes of operation, including all low power modes.

3.3.5 USB PLL

The USB PLL is embedded in the USB transceiver block. This PLL allows an exact 480 MHz to be generated from a supported reference clock of 24 MHz. The output of this PLL is primarily used for USB operations on USB-OTG0. The USB PLL clock is also made available as a clock source for other peripherals on the device.

3.3.6 Fixed Frequency PLL (Fixed-freq PLL)

In addition to the main clock output, this PLL also includes 4 Phase Fractional Dividers (PFDs) that can generate other clock frequencies. There is one instance of the Fixed-freq PLL (PLL0), which provides clocks for the M33 core, buses, and peripherals in the real-time domain.

3.3.7 Fractional-N PLL (FracN PLL)

The Fractional-N (Frac-N) PLL can generate an output clock 528 MHz from a supported reference clock. In addition to the main clock output, this PLL also includes up to four Phase Fractional Dividers (PFDs) that can generate other clock frequencies. This PLL also supports a tunable clock for audio applications.

3.4 Power Management

The i.MX 8ULP implements multiple options minimizing application power consumption:

- On chip power management including regulators, drivers and switches for flexible power supplies, efficient power consumption and short wake up time
- · Multiple power domains and ultra-low power modes allow flexible power saving
- · Voltage and frequency scaling in dynamic operating modes
- · Software-controlled clock gating for cores and peripherals

3.4.1 Digital PMC

The digital PMC module allows user software to control power modes and of the chip and to optimize power consumption for the level of functionality needed. There are two instances of digital PMC on this chip, one for each main power domain.

3.4.2 Analog power management controller (Analog PMC)

The Analog PMC consists of voltage/current references, core logic supply regulators, memory supply regulators, back and forward biasing regulators, monitors and power switches, etc. There are two Analog PMC subsystems, one associated with the M33 power domain and the other with the A35 power domain.

Table 5. Analog PMC rise and fall trip point specifications

		Rise			Fall		
	Fuse setting	Min	Тур	Max	Min	Тур	Max
LVD1	0x3	0.805	0.825	0.845	0.78	0.8	0.82
LVD2	0x7	0.908	0.928	0.948	0.88	0.9	0.92
LVD3	0x7	0.98	0.928	0.948	0.88	0.9	0.92

Table 5. Analog PMC rise and fall trip point specifications (continued)

		Rise			Fall		
	Fuse setting	Min	Тур	Max	Min	Тур	Max
HVD1		1.232	1.252	1.272	1.209	1.229	1.249
HVD2		1.232	1.252	1.272	1.209	1.229	1.249
HVD3		1.232	1.252	1.272	1.209	1.229	1.249

4 System specifications

4.1 Ratings

4.1.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

^{1.} Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

4.1.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	_	1

^{1.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.1.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-1000	+1000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-250	+250	V	2

^{1.} Determined according to JEDEC Standard JS-001, JOINT JEDEC/ESDA STANDARD FOR ELECTROSTATIC DISCHARGE SENSITIVITY TEST - HUMAN BODY MODEL (HBM) - COMPONENT LEVEL.

^{2.} Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

^{2.} Determined according to JEDEC Standard JS-002, ESDA/JEDEC JOINT STANDARD FOR ELECTROSTATIC DISCHARGE SENSITIVITY TESTING - CHARGED DEVICE MODEL (CDM) - DEVICE LEVEL.

4.1.4 Absolute maximum ratings

CAUTION

Stresses beyond those listed under this table may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE

Any reference to VDD or V_{DD} throughout the document corresponds to VDD_DIG0, VDD_DIG1 or VDD_DIG2, depending on where the module resides physically.

Table 6. Absolute maximum ratings

Parameter Description	Symbol	Min	Max	Unit
BBSM domain LDO supply input	VDD_VBAT42	-0.3	4.5	V
M33/A35 PMC and PMC IO supply input	VDD_PMC18	-0.3	1.98	V
1.8V IO supply reference and A35 supply reference input	VDD18_IOREF_1/2	-0.3	1.98	V
Real-time domain LDO and internal memory LDO supply input	VDD_PMC18_DIG0	1.14	1.89	V
Real-time domain core (CM33) and logic supply input	VDD_DIG0	-0.3	1.155	V
Application domain core (CA35) and logic supply inputs	VDD_DIG1	-0.3	1.155	V
GPIO Port A supply input	VDD_PTA	-0.3	3.96	V
GPIO Port B supply input	VDD_PTB	-0.3	1.98	V
GPIO Port C supply input	VDD_PTC	-0.3	3.96	V
GPIO Port D supply input	VDD_PTD	-0.3	3.96	V
GPIO Port E supply input	VDD_PTE	-0.3	3.96	V
GPIO Port F supply input	VDD_PTF	-0.3	3.96	V
DDR I/O supply input (output driver)	VDDQ_DDR	-0.3	1.2	V
DDR pre-driver supply input	VDDQX_DDR	-0.3	1.2	V
I/O supply for CKE and RESET_N pads.	VDDQX_AO_DDR	-0.3	1.2	V
PLL 1.0 V supply	VDD_DDR_PLL	-0.3	1.1	V
MIPI DSI 1.1V supply input	VDD_DSI11	-0.3	1.155	V
MIPI DSI 1.8V supply input	VDD_DSI18	-0.3	1.98	V
USB PHY 3.3V supply input	VDD_USB33	-0.3	3.6	V
USB PHY 1.8V supply input	VDD_USB18	-0.3	1.98	V
USB0 VBUS detection	USB0_VBUS_DETECT	-0.3	5.6	V
USB1 VBUS detection	USB1_VBUS_DETECT	-0.3	5.6	V
PLL analog supply input	VDD_PLL18	-0.3	1.98	V
ADC high reference supply input	VREFH_ANA18	-0.3	1.98	V

Table 6. Absolute maximum ratings (continued)

Parameter Description	Symbol	Min	Max	Unit
ADC analog and IO 1.8V supply input	VDD_ANA18	-0.3	1.98	V
ADC analog and IO 3.3V or 1.8V supply input	VDD_ANA33	-0.3	3.96	V

4.1.5 Recommended operating conditions—system

Table 7. Recommended operating conditions¹

Symbol	Description	Conditions	Min	Тур	Max	Units
	BBSM (Always On) Domain Supply \	/oltage Requirer	nents			
VDD_VBAT42	_	2.4	3.0	4.5	V	
VDD_VBAT18_CAP	BBSM domain LDO output	_	_	1.8	_	V
	Real Time Domain (M33 domain) Supp	ly Voltage Requi	rements	}		
VDD_PMC18	M33/A35 PMC and PMC IO supply input	_	1.71	1.8	1.89	V
VDD_FUSE18	eFuse supply input	_	1.71	1.8	1.9	V
VDD18_IOREF_1	1.8V IO supply reference and A35 supply reference input	_	1.71	1.8	1.89	V
VDD18_IOREF_2	1.8V IO supply reference and A35 supply reference input	_	1.71	1.8	1.89	V
VDD_PMC18_DIG0 ² M33 domain LDO supply input		_	1.14	1.2	1.89	V
VDD_PMC11_DIG0_CAP3 M33 domain LDO supply output		_	0.65	_	1.1	V
Real Ti	me Domain (M33 domain) PMC 0 Regis	ster Configuration	n Requii	rements		
<pmc active="" for="" mode="" register=""></pmc>	PMC0 Active mode LDO configuration requirement	Active mode AFBB ⁴ =VDD	1.0	_	1.15	V
<pmc active<br="" for="" register="">Mode></pmc>	PMC0 Active mode LDO Bypass	Active mode AFBB=VDD	1.0	_	1.15	V
<pmc active="" for="" mode="" register=""></pmc>	PMC0 Active mode LDO configuration requirement	Active mode ARBB ⁵ =1.3 V	0.9	_	1.15	V
<pmc active="" bypass="" for="" ldo="" mode="" pmc0="" register=""></pmc>		Active mode ARBB=1.3 V	0.9	_	1.15	V
<pmc for="" mode="" pmc0="" register="" sleep=""></pmc>		Sleep mode AFBB=VDD	1.0	_	1.15	V
<pmc deep<br="" for="" register="">Sleep Mode></pmc>			_	_	V	
<pmc down="" for="" mode<="" p="" power="" register=""> Down Mode></pmc>		Power Down mode	0.65	_	-	V

Table 7. Recommended operating conditions¹ (continued)

Symbol	Description	Conditions	Min	Тур	Max	Uni
		RBB=Enable d				
RDIG0	External board routing impedance from VDD_PMC11_DIG0_CAP to VDD_DIG0	_	_	_	50	mΩ
	Application Domain (A35 domain) Supp	ly Voltage Requi	rements			
VDD_DIG1 ⁷ VDD_DSI11 ⁸	Application domain core (CA35) and logic supply inputs	Active mode AFBB=VDD	1.0	_	1.15	V
_	MIPI DSI 1.1V supply input	Sleep mode AFBB=VDD	1.0	_	1.15	V
		Deep Sleep mode	0.65	_	_	V
		RBB=Optiona				
		Power Down mode	0.65	_	_	\
		RBB=Enable d				
	GPIO Supplies					
VDD_PTA ^{9,10}	FSGPIO Port A supply input (low voltage range)	_	1.71	1.8	1.98	V
	FSGPIO Port A supply input (high voltage range)	_	3.0	3.3	3.6	١
	FSGPIO Port A supply input (continuous voltage range, derated2)	_	1.71		1.98	\
	FSGPIO Port A supply input (continuous voltage range, derated)	_	1.98		2.7	١
	FSGPIO Port A supply input (continuous voltage range, normal)	_	2.7		3.6	\
VDD_PTB	FSGPIO Port B supply input (low voltage range)	_	1.71	1.8	1.98	١
	FSGPIO Port B supply input (continuous voltage range, derated2)	_	1.71		1.98	١
VDD_PTC	STGPIO Port C supply input (low-voltage range)	_	1.65	1.8	1.95	V
	STGPIO Port C supply input (high voltage range)	_	2.7	3.3	3.6	\

Table 7. Recommended operating conditions¹ (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units	
VDD_PTD	STGPIO Port D supply input (low-voltage range)	ge range)		1.95	V		
	STGPIO Port D supply input (high voltage range)	_	2.7	3.3	3.6	V	
VDD_PTE	FSGPIO Port E supply input (low voltage range)	_	1.71	1.8	1.98	V	
	FSGPIO Port E supply input (high voltage range)	_	3.0	3.3	3.6	V	
	FSGPIO Port E supply input (continuous voltage range)	_	1.71	_	1.98	V	
	FSGPIO Port E supply input (continuous voltage range, derated2)	_	1.98	_	2.7	V	
	FSGPIO Port E supply input (continuous voltage range, derated)	_	2.7	_	3.6	V	
VDD_PTF 11	FSGPIO Port F supply input (low voltage range, normal)	_	1.71	1.8	1.98	V	
	FSGPIO Port F supply input (high voltage range)	_	3.0	3.3	3.6	V	
	FSGPIO Port F supply input (continuous voltage range, derated2)	_	1.71	_	1.98	V	
	FSGPIO Port F supply input (continuous voltage range, derated)	_	1.98	_	2.7	V	
	FSGPIO Port F supply input (continuous voltage range, normal)	_	2.7	_	3.6	V	
	Peripheral/Interface Su	upplies					
VDDQ_DDR	DDR I/O supply input (output driver): LPDDR3	_	1.14	1.2	1.3	V	
	DDR I/O supply input (output driver): — 1.06 LPDDR4		1.06	1.1	1.17	V	
	DDR I/O supply input (output driver): LPDDR4x			0.65	V		
VDDQX_DDR	DDR I/O supply input (pre-driver): — 1.14 1.2 LPDDR3		1.2	1.3	V		
	DDR I/O supply input (pre-driver): LPDDR4	_	1.06	1.1	1.17	1.17 V	
	DDR I/O supply input (pre-driver): LPDDR4x	_	1.06	1.1	1.17	V	
VDDQX_AO_DDR	DDR I/O supply for CKE and RESET_N pads: LPDDR3	_	1.14	1.2	1.3	V	

Table 7. Recommended operating conditions¹ (continued)

Symbol	nbol Description		Min	Тур	Max	Units
	DDR I/O supply for CKE and — 1.06 1.1 RESET_N pads: LPDDR4		1.17	V		
	DDR I/O supply for CKE and RESET_N pads: LPDDR4x	_	1.06	1.1	1.17	V
VDD_DDR_PLL	DDR PLL 1.0 V supply	_	0.65	1.0	1.15	V
VDD_DSI11	MIPI DSI 1.1V supply input	_	0.8	1.1	1.155	V
VDD_DSI18	MIPI DSI 1.8V supply input	_	1.71	1.8	1.89	V
VDD_CSI11 ¹²	MIPI CSI 1.1 V supply input	_	0.8	1.1	1.155	V
VDD_CSI18	VDD_CSI18 MIPI CSI 1.8V supply input		1.71	1.8	1.89	V
VDD_USB33	VDD_USB33 USB PHY 3.3V supply input		3.0	3.3	3.6	V
VDD_USB18	USB PHY 1.8V supply input	_	1.71	1.8	1.89	V
USB0_VBUS_DETECT	BUS_DETECT USB0 VBUS detection		4.0 ¹³ or	5.0	5.5	V
			3.014			
USB1_VBUS_DETECT	USB1 VBUS detection	_		5.0	5.5	V
	Analog Supplies		_			
VDD_PLL18	VDD_PLL18 PLL analog supply input — 1.71 1.8		1.89	V		
VREFH_ANA18	VREFH_ANA18 ADC high reference supply input — 1.7		1.71	1.8	1.89	V
VREFL_ANA	ANA ADC low reference supply input — 0 0		0	V		
VDD_ANA18	ADC analog and IO 1.8V supply input	_	1.71	1.8	1.89	V
VDD_ANA33	D_ANA33 ADC analog and IO 3.3V or 1.8V — 1.71 1. supply input		1.8 or 3.3	3.6	V	

- 1. All supply inputs shown represent the voltage at the package ball.
- 2. If VDD_PMC18_DIG0 is operated at 1.8 V, it should be tied to VDD_PMC18 at the board level.
- 3. In M33 LDO bypass mode, LDO_EN should be tied to GND. It would be better to add 10k pull down on VDD_PMC18_DIG0 and VDD_PMC11_DIG0_CAP. Also, in LDO bypass mode, VDD_DIG0 should be driven by PMIC or external power supply. In M33 LDO enable mode, LDO_EN should be pulled up to VDD_PMV18. VDD_PMC11_DIG0_CAP should be connected to VDD_DIG0 at the board-level. The voltage observed at VDD_PMC11_DIG0_CAP differs from the from the programmed voltage on the internal LDO because the sense point for the LDO is on-chip.
- 4. Asymmetric Forward Body Bias; see the Power Management chapter in i.MX 8ULP Reference Manual for details.
- 5. Asymmetric Reverse Body Bias; see the Power Management chapter in i.MX 8ULP Reference Manual for details.
- 6. Reverse Body Bias; see the Power Management chapter in i.MX 8ULP Reference Manual for details.
- 7. VDD_DIG1 and VDD_DIG2 should be shorted together at the board-level.
- 8. VDD_DSI11 and VDD_DSI18 should be powered even if MIPI DSI is not used..
- VDD_PTA must be powered during a power-on reset (POR) for the CMC0 Mode register (MR) BOOTCFG and BOOTMODE field to properly latch the boot configuration and boot mode from the PTA and BOOT_MODE signals.
- 10. VDD_ANA33 must be shorted to VDD_PTA at the board level.
- 11. VDD_PTF must be powered during a power-on reset (POR) for the SMC1 Mode register (MR) BOOTCFG field to properly latch the boot configuration from the PTF signals (GPIO Boot mode).
- 12. If the MIPI CSI is used, VDD_CSI11 must be connected to VDD_DIG1 at board level. If MIPI CSI is not used, VDD_CSI11 can be connected to ground through a 10KΩ resistor.
- 13. The i.MX 8ULP USB PHY provides two options for reporting VBUS valid back to the USB controller:
 - A programmable internal VBUS_VALID comparator (the default option), or

- An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V
 14. The i.MX 8ULP USB PHY provides two options for reporting VBUS valid back to the USB controller:
 - · A programmable internal VBUS_VALID comparator (the default option), or
 - An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V.

4.1.6 Thermal specifications

4.1.6.1 Thermal operating requirements

Table 8. Thermal operating requirements

	Symbol	Parameter	Min.	Max.	Unit
	T _j	Die junction temperature—Commercial	-	95	°C
ĺ	T _a	Die ambient temperature—Commercial	0	-	°C

4.1.6.2 Thermal attributes

Table 9. Thermal resistance data

Rating	Board type ¹	Symbol	15x15 mm Package Value	9.4 x 9.4 mm Package Value	Unit
Junction to Ambient Thermal Resistance ²	Four-layer board, 2s2p	$R_{ heta JA}$	21.4	20	°C/W
Junction-to-Top of Package Thermal Characterization Parameter ²	Four-layer board, 2s2p	$\Psi_{ m JT}$	0.4	0.1	°C/W
Junction to Case Thermal Resistance ³	Single-layer board (1S)	$R_{\theta JC}$	7.1	4.2	°C/W

- 1. Thermal test board meets JEDEC specification for this package (JESD51-9). PCB has 89 thermal vias under the die shadow area.
- 2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant to predict the performance of a package in an application-specific environment
- 3. Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature is the surface temperature of package top side.

NOTE
Non-uniform power was applied on to the die.

4.2 System clocks

4.2.1 Clock modules

4.2.1.1 Oscillator electrical specifications

4.2.1.1.1 Oscillator DC electrical specifications

Table 10. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{EXTAL}	EXTAL input voltage — external clock mode	0	_	V _{DD}	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 x V _{DD}	_	V _{DD}	V	
V _{IL}	Input low voltage — EXTAL pin in external clock mode	V _{SS}	_	0.35 x V _{DD}	V	
I _{DD}	Current consumption (high-gain mode)	_	2	_	mA	
	Current consumption (low-power mode)	_	1	_	mA	
C _x	EXTAL load capacitance	_	_	_		1
C _y	XTAL load capacitance	_	_	_		1
R _F	Feedback resistor — low-power mode (HGO=0)	_	_	_	МΩ	12
	Feedback resistor — high-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor — low-power mode (HGO=0)	_	0	_	Ω	
	Series resistor — high-gain mode (HGO=1)					
V _{pp} ³	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.8	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	0.75 x VDD_PMC18	0.8 x VDD_PMC18	_	V	

- 1. See crystal or resonator manufacturer's recommendation
- 2. When low power mode is selected, R_F is integrated and must not be attached externally.
- 3. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

4.2.1.1.2 System oscillator frequency specifications

Table 11. System oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit
f _{osc_lo}	Oscillator crystal or resonator frequency — low-frequency mode	4	24	32	MHz
t _{dc_extal}	Input clock duty cycle (external clock mode)	49		51	%
t _{start}	Start-up time (if 24MHz used only, high gainand low power mode	_	0.2	_	ms

4.2.1.2 32 kHz oscillator electrical specifications

4.2.1.2.1 32 kHz oscillator DC electrical specifications

Table 12. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
R _F	Internal feedback resistor	_	100	_	ΜΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	1.5	2.0	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	_	0.6	_	V

^{1.} When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

4.2.1.2.2 32 kHz oscillator frequency specifications

Table 13. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	_	32.768	_	kHz	
t _{start}	Crystal start-up time	_	500	_	ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700	_	V_{BAT}	mV	2, 3

- 1. Proper PC board layout procedures must be followed to achieve specifications.
- 2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.
- 3. The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT}.

4.2.1.3 Free-running oscillator FRO-192M specifications

Table 14. FRO-192M specifications

Symbol	Characteristic	Min.	Тур.	Max.	Unit
f _{fro192m}	FRO-192M frequency (nominal)	192		MHz	
Δf _{fro192m}	Frequency deviation • 1T trim (Open loop)	_	_	±1.5	%
t _{startup}	Start-up time	_	70	_	μs
jit _{cyc}	Cycle to cycle jitter	_	105	_	ps
I _{fro192m}	Current consumption	_	40	50	μΑ

NOTE

Any divided versions of the FRO that are not being used anywhere should be turned off to save power.

4.2.1.4 LPO 1 MHz oscillator specifications

Parameter	Min.	Тур.	Max.	Unit
Frequency	_	1 (+10,-20%%)	_	MHz
Duty cycle	_	50% (±5%)	_	
Start-up time	_	85 (±20%)	_	μs
Current	_	1.25	_	μΑ

4.2.2 Core, platform, and system bus clock frequency

4.2.2.1 Maximum operating frequencies

Table 15. Maximum operating frequencies¹, ²

Power Domain	Min. Voltage (V) ³	Maximum ⁴ Frequency	Biasing setting
Cortex A35	1.05	800 MHz	AFBB enabled
	1.0	650 MHz	
Cortex M33/Fusion	1.05	216/200 MHz	AFBB enabled
	1.0	127/127 MHz	
	0.9	38.4/38.4 MHz	ARBB enabled
VBAT	_	32 kHz	AFBB enabled

- 1. All Peripherals to support a core voltage of 0.8V-1.15V.
- 2. Retention mode (shared memory retained) can still be supported at a lower voltage (0.65 V)
- 3. Voltage at the pin
- 4. All values are subject to change

Table 16. Clock frequencies

Clock name	Voltage range at the pin				
	1.05 V	1.0 V	0.9 V w/ARBB		
CM33_BUSCLK	108	65	20		
CM33_SLOWCLK	24	20	12.5		
DSP CORECLK	200	150	50		
DSP_BUSCLK	100	75	25		
DSP_SLOWCLK	33	33	24		
FlexSPI0	177	99	48		
FlexSPI1	177	99	48		
LPUART0	60	60	48		
LPI2C0	60	60	48		
LPSPI0	60	60	48		

Table 16. Clock frequencies (continued)

Clock name		Voltage range at the pin	
	1.05 V	1.0 V	0.9 V w/ARBB
I3C0	25	25	24
FlexCAN0	40	40	32
FLEXIO	80	50	32
SAI	50	50	24
LPIT0	60	60	32
WDOG0	24	24	24
ADC0	60	60	32
LPTPM0	60	60	32
TPIU	100	50	24
SWO	100	50	24
NIC_AP_CLK	452	328	_
NIC_PER_CLK	226	164	_
XBAR_AP_CLK	226	164	_
XBAR_BUS_CLK	113	82	_
AD_SLOW_CLK	37.7	27.3	_
uSDHC0	198	99	_
uSDHC1-PTD	164	82	_
uSDHC1-PTE/F	99	48	_
uSDHC2-PTD	82	41	_
uSDHC2-PTF	99	48	_
USB	480	480	_
ENET	198	198	_
FlexSPI2-PTD	164	82	_
FlexSPI2-PTE	99	48	_
LPUART4	60	60	_
LPI2C4	60	60	_
LPSPI4	125	96	_
I3C2	25	25	_
FLEXIO1	80	50	_
LPTPM4	60	60	_
LPIT1	60	60	_

Table continues on the next page...

Table 16. Clock frequencies (continued)

Clock name	Voltage range at the pin				
	1.05 V	1.0 V	0.9 V w/ARBB		
WDOG	25	25	_		
SAI1	50	50	_		
HIFI4_CLK	475	264	_		
NIC_HIFI4_CLK	238	132	_		
NIC_LPAV_AXI_CLK	316.8	198	_		
NIC_LPAV_AHB_CLK	158.4	96	_		
LPAV_BUS_CLK	79.2	48	_		
DDR_CLK	266 ¹ , ²	200	_		
DDR PHY	528 ¹	400	_		
GPU3D	288	198	_		
GPU2D	288	198	_		
DCNano	105	75	_		
MIPI CSI	140	140	_		
MIPI CSI UI	93	93	_		
ISI	93	93	_		
MIPI CSI ESC	80	50	_		
EPDC	297	198	_		
WDOG5	20	20	_		
LPTPM8	60	60	_		

^{1.} Supported only for LPDDR4/4x

4.3 Power sequencing—system

4.3.1 Power-on sequencing

The power-on sequencing requirements for the device are described in this section.

VBAT Domain Power Supply

VDD_VBAT42 must be powered and stable before all other supplies begin to ramp up.

Real-Time Domain Power Supplies

The Real-Time Domain supplies must be powered and stable before RESET0_B is deasserted. The real-time domain supplies listed below may be powered on in any order except for those indicating specific sequencing requirements.

^{2.} The PLL4 PFD0 PLL output clock maximum frequency when VDD_DIG2 = 1.0 V nominal is 528 MHz. The PLL2_VCO output clock maximum frequency when VDD_DIG1 = 1.0 V nominal is 725 MHz. When VDD_DIG0, VDD_DIG1 or VDD_DIG2 is at 0.9 V nominal, the fastest selectable clock source available is the FRO192 for the corresponding domain

- When RTD is being powered by internal M33 LDO(LDO_ENABLE pin is pulled up to VDD_PMC18), VDD_PMC18_DIG0 and VDD_PMC18 must be powered on together, or VDD_PMC18 must be powered on first followed by VDD_PMC18_DIG0. VDD18_IOREF_1/2 must be powered up together with VDD_PMC18.
- VDD_PTA and VDD_PTB must be powered no later than VDD_PMC18_DIG0 ramp up.
- VDD_ANA18 must be powered on before or at same time of VDD_PMC18.
- VDD_FUSE18
- VDD_PLL18
- VREFH ANA18
- VREFL_ANA
- VDD_ANA33

When RTD is being powered by an external PMIC power supply rail(LDO_ENABLE pin is tied to 0):

The VDD_PMC18_DIG0 and VDD_PMC11_DIG0_CAP should be shorted to GND with 10KOhm.

- VDD_PMC18 and VDD18_IOREF_1/2 must be powered up together.
- VDD_ANA18 must be powered on before or at same time of VDD_PMC18
- VDD_FUSE18
- VDD_PLL_18
- VREFH_ANA18
- VREFL_ANA
- VDD ANA33
- VDD_DIG0
- VDD_PTA and VDD_PTB must be powered before VDD_ DIG0 ramp up

Application and Low Power Audio Video Domain Power Supplies

For Single and Dual Boot options, the Application and Low Power Audio Video Domain power supplies must be powered on and stable before the CA35 core exits reset.

For LP boot, this is handled by uPower FW that communicates with PMIC to enable all power supplies on demand

The application domain supplies listed below may be powered on in any order except for those indicating specific sequencing requirements.

- VDD_DIG1
- VDD_PTE and VDD_PTF must be powered before VDD_DIG1 ramp up.
- VDD_DIG2 must be powered together with VDD_DDR_PLL
- VDDQX_AO and VDDQX must be powered together or after VDD_DIG2 and VDD_DDR_PLL.
- VDD_DIG2 and VDD_DDR_PLL need to kept at same voltage levels during system operation.
- The VDDQ must be powered together with VDDQX_AO and VDDQX or after them.
- VDD_PTD: VDD18_IOREF_1/2 must be powered on before VDD_PTD
- · VDDQX must always be greater than or equal to VDDQ.
- MIPI_DSI18
- MIPI_CSI18
- MIPI_DSI11 (MIPI_DSI_11 should be shorted to VDD_DIG2 when used)
- MIPI_CSI11

Data Sheet: Technical Data 37 / 105

- VDD_USB0_18
- VDD_USB0_33
- VDD_USB1_18
- VDD_USB1_33

The following figure shows the power-on sequence.

Data Sheet: Technical Data 38 / 105

4.3.2 Power down sequencing

As a rule, reverse the order detailed above. Pay attention for the VDD_PTC and VDD_PTD being powered OFF before the VDD18_IOREF_1/2 being powered OFF.

4.4 Requirements for unused interfaces

This table shows the required connections for unused interfaces. See i.MX 8ULP Hardware Developers Guide, for details.

Table 17. Required connections for unused interfaces

Module	Supply Name	Description	Recommendations if module is unused
ADC	VREFH_ANA18	High Reference supply for ADC	10 kΩ resistor to ground
	VREFL_ANA	Low Reference supply for ADC	Must be powered
	VDD_ANA18	1.8 V supply for ADC Analog and IO segment	Must be powered
	VDD_ANA33	ADC analog and IO 3.3 V or 1.8 V supply input	10 kΩ resistor to ground
DAC	DAC0_OUT	DAC0 output	Leave unconnected
	DAC1_OUT	DAC1 output	Leave unconnected
MIPI DSI	VDD_DSI11	MIPI 1.1 V supply	Must be powered
	VDD_DSI18	MIPI 1.8 V supply	Must be powered
	DSI_CLK_N	MIPI Negative Clock Signal	Leave unconnected
	DSI_CLK_P	MIPI Positive Clock Signal	Leave unconnected
	DSI_DATA0_N	MIPI Negative Data0 Signal	Leave unconnected
	DSI_DATA0_P	MIPI Positive Data0 Signal	Leave unconnected
	DSI_DATA1_N	MIPI Negative Data1 Signal	Leave unconnected
	DSI_DATA1_P	MIPI Positive Data1 Signal	Leave unconnected
	DSI_DATA2_N	MIPI Negative Data2 Signal	Leave unconnected
	DSI_DATA2_P	MIPI Positive Data2 Signal	Leave unconnected
	DSI_DATA3_N	MIPI Negative Data3 Signal	Leave unconnected
	DSI_DATA3_P	MIPI Positive Data3 Signal	Leave unconnected
MIPI CSI	VDD_CSI11	MIPI 1.1 V supply	10 kΩ resistor to ground
	VDD_CSI18	MIPI 1.8 V supply	10 kΩ resistor to ground
	CSI_CLK_N	MIPI Negative Clock Signal	Leave unconnected
	CSI_CLK_P	MIPI Positive Clock Signal	Leave unconnected
	CSI_DATA0_N	MIPI Negative Data0 Signal	Leave unconnected
	CSI_DATA0_P	MIPI Positive Data0 Signal	Leave unconnected
	CSI_DATA1_N	MIPI Negative Data1 Signal	Leave unconnected
	CSI_DATA1_P	MIPI Positive Data1 Signal	Leave unconnected

Table 17. Required connections for unused interfaces (continued)

Module	Supply Name	Description	Recommendations if module is unused
	CSI_DATA2_N	MIPI Negative Data2 Signal	Leave unconnected
	CSI_DATA2_P	MIPI Positive Data2 Signal	Leave unconnected
	CSI_DATA3_N	MIPI Negative Data3 Signal	Leave unconnected
	CSI_DATA3_P	MIPI Positive Data3 Signal	Leave unconnected
Port A Signals	VDD_PTA	Port A supply	Must be powered
Port B Signals	VDD_PTB	Port B 1.8 V supply	Must be powered
Port C Signals	VDD_PTC	Port C supply	10 kΩ resistor to ground
Port D Signals	VDD_PTD	Port D supply	10 kΩ resistor to ground
Port E Signals	VDD_PTE	Port E supply	Must be powered
Port F Signals	VDD_PTF	Port F supply	Must be powered
USB0	VDD_USB33	USB0 PHY 3.3 V supply	Must be powered
	VDD_USB18	USB0 PHY 1.8 V supply	Must be powered
	USB0_DM	USB D- Analog Data Signal on the USB Bus	Leave unconnected
	USB0_DP	USB D+ Analog Data Signal on the USB Bus	Leave unconnected
	USB0_VBUS_DETECT	USB0 VBUS Detect	10 kΩ resistor to ground
USB1	VDD_USB33	USB1 PHY 3.3 V supply	Must be powered
	VDD_USB18	USB1 PHY 1.8 V supply	Must be powered
	USB1_DM	USB D- Analog Data Signal on the USB Bus	Leave unconnected
	USB1_DP	USB D+ Analog Data Signal on the USB Bus	Leave unconnected
	USB1_VBUS_DETECT	USB1 VBUS Detect	10 kΩ resistor to ground

4.5 Electrical Characteristics and Thermal Specifications

4.5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

Data Sheet: Technical Data 40 / 105

All digital I/O switching characteristics, unless otherwise specified, assume:

- 1. output pins
 - have C_L=15 pF loads,
 - · are slew rate disabled, and
 - · are normal drive strength

4.5.2 Nonswitching electrical characteristics

4.5.2.1 GPIO DC Electrical Requirements

Table 18. STGPIO DC electrical characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{oh}	High-level output voltage	loh= -0.1mA DSE=1	0.8*VDD_PTx	_	_	V
		loh= -2mA DSE=0	0.8*VDD_PTx	_	_	V
V _{ol}	Low-level output voltage	lol= 0.1mA DSE=1			0.125*VDD_PT x	V
		lol= 2mA DSE=0	_	_	_	٧
V _{ih}	High-level input voltage	_	0.7*VDD_PTx	_	VDD_PTx	V
V _{il}	Low-level input voltage	_	0		0.3*VDD_PTx	V
I _{in}	Input current (no PU/PD)	VI = 0, VI = VDD_PTx PUN = "H", PDN = "H"	-1	_	1	uA

i.MX 8ULP Applications Processor—Commercial Products, Rev. 1, 09/2023

42 / 105

Table 19. FailSafe GPIO (FSGPIO) DC Electrical Requirements

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{oh}	High-level output voltage	Ioh= -10mA (Normal Voltage Range) Ioh=-6mA (Derated Voltage Range) Ioh=-5mA (Derated2 Voltage Range) Ioh=-10mA (Low Voltage Range) Ioh=-10mA (High Voltage Range) DSE=1	VDD_PTx-0.5			V
		Ioh= -5mA (Normal Voltage Range) Ioh=-3mA (Derated Voltage Range) Ioh=-2.5mA (Derated2 Voltage Range) Ioh=-5mA (Low Voltage Range) Ioh=-5mA (High Voltage Range) DSE=0	VDD_PTx-0.5	_	_	V
V _{ol}	Low-level output voltage	Iol= 10mA (Normal Voltage Range) Iol=6mA (Derated Voltage Range) Iol=5mA (Derated2 Voltage Range) Iol=10mA (Low Voltage Range) Iol=10mA (High Voltage Range) DSE=1	_	_	0.5	V
		Iol= 5mA (Normal Voltage Range) Iol=3mA (Derated Voltage Range) Iol=2.5mA	_	_	0.5	V

Table 19. FailSafe GPIO (FSGPIO) DC Electrical Requirements (continued)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		(Derated2 Voltage Range) Iol=5mA (Low Voltage Range) Iol=5mA (High Voltage Range) DSE=0				
V _{ih}	High-level input voltage	All Voltage Range	0.75*VDD18_IO REF_x	_	VDD_PTx	V
V _{il}	Low-level input voltage	All Voltage Range	0	_	0.3*VDD18_IO REF_x	V
I _{in}	Input current (no PU/PD)	VI = 0, VI = VDD_PTx PUN = "H", PDN = "H"	-1	_	1	uA

4.5.2.1.1 GPIO Pull-up and Pull-Down Resistance

Table 20. Failsafe GPIO (FSGPIO) pull-up and pull-down resistance (PTA, PTB, PTE and PTF)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
R Pull up	Pull-up resistance	25		50	kΩ	1
R Pull down	Pulldown resistance	25		50	kΩ	1

^{1.} Failsafe GPIOs (FSGPIO) are used on ports A, B, E, and F.

Table 21. Standard GPIO (STGPIO) pull-up and pull-down resistance (PTC, PTD)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
R Pull up	Pull-up resistance high voltage range (2.7 V – 3.6 V)	10		100	kΩ	1
	Pull-up resistance low voltage range (1.71 V – 1.89 V)	20		50	kΩ	
R Pull down	Pulldown resistance high voltage range (2.7 V – 3.6 V)	10		100	kΩ	1
	Pulldown resistance high	20		50	kΩ	

Table 21. Standard GPIO (STGPIO) pull-up and pull-down resistance (PTC, PTD) (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	voltage range (1.71 V – 1.89 V)					

1. Standard GPIOs (STGPIO) are used on Port C and Port D.

4.5.3 Capacitance attributes

See the device IBIS model for pin capacitance values for the package being used.

4.6 Switching electrical characteristics

4.6.1 General switching timing specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timer functions.

Table 22. General switching timing specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
tw_GPIO_sync	GPIO pin interrupt pulse width (Digital Filter disabled) — Synchronous path	1.5	_	_	Bus clock cycles ¹	2
tw_RESET_async	External RESET and NMI pin interrupt pulse width — Asynchronous path	30	_	_	ns	3
tw_GPIO_async	GPIO pin interrupt pulse width — Asynchronous path	30	_	_	ns	3

- 1. See the Clocking chapter in i.MX 8ULP Reference Manual for details.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the shortest pulse that is guaranteed to be recognized.

4.6.2 GPIO rise and fall times

Table 23. FSGPIO rise and fall times

Symbol	Parameter		Condition		Min	Тур	Max	Unit
t _{rf}	time Voltage Range	CL=15pF	Slow Slew Rate, High Drive Strength		2.2176	5.3834	ns	
		Normal VDD_PTx = 2.7 - 3.6 V		Standard Slew Rate, High Drive Strength		0.509	1.0907	ns
				Slow Slew Rate, Standard Drive Strength		2.9165	6.3051	ns
				Standard Slew Rate, Standard Drive Strength		0.6188	1.3144	ns

Table 23. FSGPIO rise and fall times (continued)

Symbol	Parameter		Condition		Min	Тур	Max	Unit
t _{rf}	transition time	Continuous Voltage Range	CL=15pF	Slow Slew Rate, High Drive Strength		1.8083	4.2001	ns
	VDD_PTx = 1.98 - 2.7 V			Standard Slew Rate, High Drive Strength		0.347	1.1157	ns
				Slow Slew Rate, Standard Drive Strength		2.4988	4.7943	ns
			Standard Slew Rate, Standard Drive Strength		0.4346	0.7815	ns	
t _{rf}	transition time		CL=15pF	Slow Slew Rate, High Drive Strength		1.5285	3.0727	ns
	V		VDD_PTx =	Standard Slew Rate, High Drive Strength		0.2984	0.4355	ns
				Slow Slew Rate, Standard Drive Strength		2.1201	3.5707	ns
				Standard Slew Rate, Standard Drive Strength		0.3569	0.6338	ns
t _{rf}	transition time	High Voltage Range VDD_PTx =	CL=15pF	Slow Slew Rate, High Drive Strength		2.3523	5.5195	ns
		3.0 - 3.6 V		Standard Slew Rate, High Drive Strength		0.6938	1.5374	ns
				Slow Slew Rate, Standard Drive Strength		3.02	6.6893	ns
			Standard Slew Rate, Standard Drive Strength		0.8121	1.6844	ns	
t _{rf}	t _{rf} transition Low Voltage Range VDD_PTx = 1.71 - 1.98 V	CL=15pF	Slow Slew Rate, High Drive Strength		1.4732	3.1865	ns	
		Standard Sie		Standard Slew Rate, High Drive Strength		0.2944	0.4472	ns

Table 23. FSGPIO rise and fall times (continued)

Symbol	Parameter	Condition		Min	Тур	Max	Unit
			Slow Slew Rate, Standard Drive Strength		2.0494	3.6952	ns
		F	Standard Slew Rate, Standard Drive Strength		0.3523	0.636	ns

Table 24. STGPIO rise and fall times

Symbol	Parameter		Condition		Min	Тур	Max	Unit
t _{rf}	transition time	High Voltage Range	CL=15pF	Standard Slew Rate, High Drive Strength		0.2807	0.3698	ns
		VDD_PTx = 2.7 - 3.6 V		Standard Slew Rate, Standard Drive Strength		0.3334	0.437	ns
t _{rf}	transition time	Med Voltage Range VDD_PTx =	CL=15pF	Standard Slew Rate, High Drive Strength		0.2346	0.3007	ns
		1.71 - 1.95 V		Standard Slew Rate, Standard Drive Strength		0.2538	0.3135	ns
t _{rf}	transition time	Low Voltage Range VDD_PTx =	CL=15pF	Standard Slew Rate, High Drive Strength		0.3522	0.6169	ns
		1.14 - 1.32 V		Standard Slew Rate, Standard Drive Strength		0.6808	1.7133	ns

4.6.3 GPIO output buffer maximum frequency

Table 25. GPIO output buffer maximum frequency

Symbol	Parameter	Condition	Min	Max	Unit
F _{max} (low drive low slew)	Maximum Frequency	VDD_PTx = 1.71 - 1.95 V, CL = 5pf	_	120	MHz
		VDD_PTx = 1.71 - 1.95 V, CL = 10pf	_	100	MHz
		VDD_PTx = 1.71 - 1.95 V, CL = 40pf	_	50	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 5pf	_	115	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 10pf	_	95	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 40pf	_	40	MHz

Table 25. GPIO output buffer maximum frequency (continued)

Symbol	Parameter	Condition	Min	Max	Unit
F _{max} (low drive high slew)	Maximum Frequency	VDD_PTx = 1.71 - 1.95 V, CL = 5pf	-	185	MHz
	requeries	VDD_PTx = 1.71 - 1.95 V, CL = 10pf	-	145	MHz
		VDD_PTx = 1.71 - 1.95 V, CL = 40pf	-	50	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 5pf	-	170	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 10pf	-	130	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 40pf	-	40	MHz
F _{max} (high drive low slew)	Maximum Frequency	VDD_PTx = 1.71 - 1.95 V, CL = 5pf	-	140	MHz
	ricquority	VDD_PTx = 1.71 - 1.95 V, CL = 10pf	-	125	MHz
		VDD_PTx = 1.71 - 1.95 V, CL = 40pf	-	85	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 5pf	-	130	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 10pf	-	115	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 40pf	-	70	MHz
F _{max} (high drive high slew)	Maximum Frequency	VDD_PTx = 1.71 - 1.95 V, CL = 5pf	-	235	MHz
	requericy	VDD_PTx = 1.71 - 1.95 V, CL = 10pf	_	200	MHz
		VDD_PTx = 1.71 - 1.95 V, CL = 40pf	_	100	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 5pf	-	215	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 10pf	_	185	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 40pf	-	80	MHz

4.6.4 GPIO input buffer maximum frequency

Table 26. GPIO input buffer maximum frequency

Symbol	Parameter	Condition	Min	Max	Unit
Input buffer Fmax	Maximum frequency of input buffer	VDD_PTx = 1.71 - 1.95 V, CL = 50 fF	550	_	MHz
		VDD_PTx = 2.7 - 3.6 V, CL = 50 fF	430	_	MHz

4.7 Debug and trace modules

Data Sheet: Technical Data 47 / 105

4.7.1 JTAG timing specifications

Table 27. JTAG timing specifications

Symbol	Parameter	Min	Max	Unit					
J1	TCLK frequency of operation								
	Boundary Scan	1	10	MHz					
	• JTAG	0	25	MHz					
J2	TCLK cycle period	1000/J1	_	ns					
J3	TCLK clock pulse width								
	Boundary Scan	50	_	ns					
	• JTAG	20	_	ns					
J4	TCLK rise and fall times	_	3	ns					
J5	Boundary scan input data setup time to TCLK rise	20	_	ns					
J6	Boundary scan input data hold time after TCLK rise	5	_	ns					
J7	TCLK low to boundary scan output data valid	_	28	ns					
J8	TCLK low to boundary scan output high-Z	_	25	ns					
J9	TMS, TDI input data setup time to TCLK rise	10.5	_	ns					
J10	TMS, TDI input data hold time after TCLK rise	2.5	_	ns					
J11	TCLK low to TDO data valid	_	19	ns					
J12	TCLK low to TDO high-Z	2	_	ns					
J13	TRST assert time	100	_	ns					
J14	TRST setup time (negation) to TCLK high	8	_	ns					

Data Sheet: Technical Data 48 / 105

49 / 105

Output data valid

Data Sheet: Technical Data

TDO

Figure 7. Test Access Port timing

4.7.2 SWD Electricals

Table 28. SWD timing specificaions

Symbol	Description	Min	Max	Unit
J1	SWD_CLK frequency of operation	_	25	MHz
J2	SWD_CLK cycle period	1000/J1	_	ns
J3	SWD_CLK clock pulse width	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	37	ns
J12	SWD_CLK high to SWD_DIO high-Z	2	_	ns

Data Sheet: Technical Data 50 / 105

5 Specifications—application domain

5.1 Application domain (APD) power modes

Table 29. APD power modes

Powe	r Mode	Min. Voltage at the pin (V) VDD_DIG1	Max Frequency (MHz) CA35	Biasing Setting	Description
Active	Over Drive	1.05	800	AFBB enabled	All logic is functional in this mode.
	Normal Drive	1	650 MHz	AFBB enabled	Allows Dynamic Voltage Scaling
Sleep		0.9	-	RBB enabled (optional)	Core in Wait-for- Interrupt (WFI)
					Core, bus, peripheral clock gating configurable by software
Deep Sleep		0.65	-	RBB enabled	Core is in wait- for-interrupt(WFI) state
					Core/System clock gated

Table 29. APD power modes (continued)

Power Mode	Min. Voltage at the pin (V) VDD_DIG1	Max Frequency (MHz) CA35	Biasing Setting	Description
				Some peripheral optional functional
				SRAM contents retained
				DRAM optionally self-refresh
Power Down	0.65	-	RBB enabled	Core/System/ peripherals power gated
				SRAM with configurable retention
				DRAM optionally self-refresh
Deep Power Down	-	-	-	APD domain completely power agted

5.2 Recommended operating conditions—application domain

See Table 7

5.3 Power sequencing—application domain

See Power sequencing—system.

5.4 Peripheral operating requirements and behaviors

5.4.1 DDR timing—application domain

See LPDDR Controller (LPDDRC).

5.4.2 Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC timing—application domain

The uSDHC interfaces confirms the following eMMC, SD, and SDIO specifications.

- eMMC Electrical Standard revision 5.1 (JESD84-B51A)
- SD Physical Specification revision 3.0
- SDIO Physical Specification revision 3.0

The following table shows eMMC/SD/SDIO mode supports on each port.

Table 30. eMMC/SD/SDIO mode support

uSDCH Instance		uSDHC0	uSDHC1		uSDHC2		
Port Mux (Usage)		D (eMMC/SD)	D (eMMC/SD)	E (SD/SDIO)	D (SD/SDIO)	E (SD/SDIO)	F (SD/SDIO)
Modes	I/O Voltage						
MMC Legacy	3.3 V, 1.8 V	Yes	Yes	No	No	No	No
eMMC High- Speed SDR	3.3 V, 1.8 V	Yes	Yes	No	No	No	No
eMMC High- Speed DDR	3.3 V, 1.8 V	Yes	Yes	No	No	No	No
eMMC HS200	1.8 V	Yes	Yes	No	No	No	No
eMMC HS400	1.8 V	Yes	Yes	No	No	No	No
SD Default	3.3 V	Yes	Yes	Yes	Yes	Yes	Yes
SD High- Speed	3.3 V	Yes	Yes	Yes	Yes	Yes	Yes
SD SDR12	1.8 V	Yes	Yes	Yes	Yes	Yes	Yes
SD SDR25	1.8 V	Yes	Yes	Yes	Yes	Yes	Yes
SD SDR50	1.8 V	Yes	Yes	Yes	Yes	Yes	Yes
SD SDR104	1.8 V	Yes	Yes	Yes	Yes	Yes	Yes
SD DDR50	1.8 V	Yes	Yes	Yes	Yes	Yes	Yes

Table 31. eMMC SD Modes

Modes	Bus Width	I/O Voltage	Max Clock Frequency	Transfer rate	Max Throughput	Introduced in Spec Version
MMC Legacy	1, 4, 8	3.3 V, 1.8 V, 1.2 V	26 MHz	Single	26 MB/sec	
eMMC High- Speed SDR	1, 4, 8	3.3V , 1.8 V, 1.2 V	52MHz	Single	52 MB/sec	
eMMC High- Speed DDR	4, 8	3.3 V, 1.8 V, 1.2 V	52MHz	Dual	104 MB/sec	
eMMC HS200	4, 8	1.8 V, 1.2 V	200MHz	Single	200 MB/sec	
eMMC HS400	8	1.8 V, 1.2 V	200MHz	Dual	400 MB/sec	
SD Default	4	3.3 V	25 MHz	Single	12.5 MB/sec	
SD High-Speed	4	3.3 V	50 MHz	Single	25 MB/sec	
SD SDR12	4	1.8 V	25 MHz	Single	12.5 MB/sec	
SD SDR25	4	1.8 V	50 MHz	Single	25 MB/sec	

Table continues on the next page...

Data Sheet: Technical Data 53 / 105

Table 31. eMMC SD Modes (continued)

Modes	Bus Width	I/O Voltage	Max Clock Frequency	Transfer rate	Max Throughput	Introduced in Spec Version
SD SDR50	4	1.8 V	100 MHz	Single	50 MB/sec	
SD SDR104	4	1.8 V	208 MHz	Single	104 MB/sec	
SD DDR50	4	1.8 V	50 MHz	Dual	50 MB/sec	

The following table shows the frequencies at different functional modes and voltages.

Table 32. uSDHC frequencies at different modes

Interface	Protocol	Mode	Freq at 1.1	v OD (MHz)	Freq at 1.0	v NM (MHz)
			1.8v	3.3v	1.8v	3.3v
uSDHC0	PTD	HS400	200	N/A	148	N/A
		SDR104	200		148	
		SDR	100		100	
		DDR	50	50	50	50
uSDHC1	PTD	HS400	166	N/A	148	N/A
		SDR104	166		148	
		SDR	100		83	
		DDR	50	50	50	50
uSDHC1	PTF	SDR	100	50	83	50
		DDR	50	N/A	50	N/A
uSDHC2	PTD	SDR104	166	N/A	148	N/A
		SDR	100	50	83	50
		DDR	50	N/A	`50	N/A
uSDHC2	PTF	SDR	100	50	83	50
		DDR	50	N/A	50	N/A
uSDHC2	PTE	SDR	100	50	83	50
		DDR	50	N/A	50	N/A

5.4.2.1 AC timing specification of eMMC and SD operation modes up to 52MHz in SDR mode

The following table shows the AC timing specifications of:

- eMMC Legacy
- eMMC High-Speed SDR
- · SD Default
- · SD High-speed
- SD SDR12
- SD SDR25

Table 33. eMMC/SD timing specification for operation modes up to 52 MHz

ID	Parameter	Symbols	Min.	Max.	Unit
		Card Input Clock			
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz
SD2	Clock Low Time	t _{WL}	7	_	ns
SD3	Clock High Time	t _{WH}	7	_	ns
SD4	Clock Rise Time	t _{TLH}	_	3	ns
SD5	Clock Fall Time	t _{THL}	_	3	ns
	uSDHC Output/Card Inpu	ts SD_CMD, SDx_DATAx (Reference to C	CLK)	
SD6	uSDHC Output Delay	t _{OD}	-6.6	3.6	ns
	uSDHC Input/Card Output	ts SD_CMD, SDx_DATAx (Reference to C	CLK)	
SD7	uSDHC Input Setup Time	t _{ISU}	2.1	_	ns
SD8	uSDHC Input Hold Time ⁴	t _{IH}	1.1	_	ns

- 1. In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 $\rm V.$
- 2. In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In High-speed mode, clock frequency can be any value between 0–50 MHz.
- 3. In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In High-speed mode, clock frequency can be any value between 0–52 MHz.
- 4. To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.

The following figure lists the timing characteristics.

5.4.2.2 AC timing specification of eMMC DDR52 and SD DDR50 modes

The following table lists the timing characteristics of eMMC DDR52 mode and SD DDR50 mode, and the following figure depicts the input and output timing diagram at uSDHC IO pins. Note that SDx_DATA signals are triggered and sampled on both edges of the clock, and the SDx_CMD signal is triggered and sampled only on rising edge.

Table 34. AC timing specifications of eMMC DDR52 and SD DDR50 modes

ID	Parameter	Symbols	Min.	Max.	Unit				
	Card Input Clock								
SD1	Clock Frequency (eMMC5.1 DDR)	f _{PP}	0	52	MHz				
SD1	Clock Frequency (SD3.0 DDR)	f _{PP}	0	50	MHz				
	uSDHC Output / Car	rd Inputs SDx_DATAx (Refe	erence to CLK)						
SD2	uSDHC Output Delay	t _{OD}	3.0	6.4	ns				
	uSDHC Input / Card Outputs SDx_DATAx (Reference to CLK)								
SD3	uSDHC Input Setup Time	t _{ISU}	2.4	_	ns				
SD4	uSDHC Input Hold Time	t _{IH}	1.2	_	ns				

Data Sheet: Technical Data 56 / 105

5.4.2.3 SDR50/SDR104 AC timing

The following table shows the timing of SDR50/SDR104, and the figure depicts the SDR50/SDR104 timing characteristics.

Table 35. SDR50/SDR104 interface timing specification

ID	Parameter	Symbols	Min.	Max.	Unit				
	Card Input Clock								
SD1	Clock Frequency Period	t _{CLK}	4.8	_	ns				
SD2	Clock Low Time	t _{CL}	4.6 x t _{CLK}	0.54 x t _{CLK}	ns				
SD3	Clock High Time	t _{CH}	4.6 x t _{CLK}	0.54 x t _{CLK}	ns				
	uSDHC Output/Card Inputs	SD_CMD, SDx_DATA	x in SDR50 (Refere	ence to CLK)					
SD4	uSDHC Output Delay	t _{OD}	-3.8	1.6	ns				
	uSDHC Output/Card Inputs S	SD_CMD, SDx_DATAx	in SDR104 (Refer	ence to CLK)					
SD5	uSDHC Output Delay	t _{OD}	-1.5	0.9	ns				
	uSDHC Input/Card Outputs	SD_CMD, SDx_DATA	x in SDR50 (Refere	ence to CLK)					
SD6	uSDHC Input Setup Time	t _{ISU}	2.1	_	ns				
SD7	uSDHC Input Hold Time	t _{IH}	1.1	_	ns				
	uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) ¹								
SD8	Card Output Data Window	t _{ODW}	0.5 x t _{CLK}	_	ns				

^{1.} Data window in SDR104 mode is variable.

Data Sheet: Technical Data 57 / 105

5.4.2.4 HS200_AC_timing

The following table lists the HS200 timing characteristics and the subsequent figure depicts the timing of HS200 mode.

Table 36. HS200 interface timing specifications

ID	Parameter	Symbols	Min.	Max.	Unit				
	Card Input clock								
SD1	Clock Frequency Period	t _{CLK}	5.0	_	ns				
SD2	Clock Low Time	t _{CL}	0.46 × t _{CLK}	0.54 × t _{CLK}	ns				
SD3	Clock High Time	t _{CH}	0.46 × t _{CLK}	0.54 × t _{CLK}	ns				
	uSDHC Output/SD_0	CMD, SDx_DATA	in HS200 (Reference to	o CLK)					
SD5	uSDHC Output Delay	t _{OD}	-1.5	0.9	ns				
	uSDHC Input/SD_CMD, SDx_DATAx in HS200 (Reference to CLK)								
SD8	Input Valid Window	t _{ODW}	0.5 x t _{CLK}	_	ns				

5.4.2.5 HS400 AC timing

The following table lists the HS400 timing characteristics, and the subsequent figure depicts the timing of HS400. Be aware that only data is sampled on both edges of the clock. The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check parameters SD5, SD6, and SD7 in Table 35 for CMD input/output timing for HS400 mode.

Table 37. HS400 interface timing specifications

ID	Parameter	Symbol	Min.	Max.	Unit				
Card Input cloc	Card Input clock								
SD1	Clock Frequency	f _{pp}	0	200	MHz				
SD2	Clock Low Time	t _{CL}	0.46 x t _{CLK}	0.54 x t _{CLK}	ns				
SD3	Clock High Time	t _{CH}	0.46 x t _{CLK}	0.54 x t _{CLK}	ns				
uSDHC Output/	Card inputs DAT (Reference	to SCK)							
SD4	Output Skew from Data of Edge of SCK	t _{OSkew1}	0.45	_	ns				
SD5	Output Skew from Edge of SCK to Data	t _{OSkew2}	0.45	_	ns				
uSDHC input/Card Outputs DAT (Reference to Strobe)									
SD6	uSDHC input skew	t _{RQ}	_	0.45	ns				
SD7	uSDHC hold skew	t _{RQH}	_	0.45	ns				

5.4.3 Timer specifications—application domain

See General switching timing specifications for EWM, LPTMR, and TPM.

5.4.4 Connectivity and communications specifications—application domain

5.4.4.1 Ethernet Controller (ENET) AC electrical specifications

The following timing specifications are defined at the chip I/O pin and must be translated appropriately to arrive at timing specifications/constraints for the physical interface.

5.4.4.1.1 ENET MII mode timing

5.4.4.1.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK)

The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency.

The following table describes MII receive signal timings and the figure below depicts the timing parameters (M1–M4).

Table 38. MII receive signal timing

ID	Characteristic	Min.	Max.	Unit
M1	ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup	5	-	ns
M2	ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold	5	-	ns
M3	ENET_RX_CLK pulse width high	35%	65%	ENET_RX_CLK period
M4	ENET_RX_CLK pulse width low	35%	65%	ENET_RX_CLK period

5.4.4.1.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)

The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency.

The table below describes the timing parameters (M5–M8).

Table 39. MII transmit signal timing

ID	Characteristic	Min.	Max.	Unit
M5	ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid	5	_	ns
M6	ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid	_	20	ns
M7	ENET_TX_CLK pulse width high	35%	65%	ENET_TX_CLK period
M8	ENET_TX_CLK pulse width low	35%	65%	ENET_TX_CLK period

The following figure MII transmit signal timings, as described in the table.

5.4.4.1.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)

The table below describes the timing parameter (M9) .

Table 40. MII asynchronous inputs signal timing

ID	Characteristic	Min.	Max.	Unit
M9 ¹	ENET_CRS to ENET_COL minimum pulse width	1.5	_	ENET_TX_CLK period

1. ENET_COL has the same timing in 10-Mbit 7-wire interface mode.

The following figure shows MII asynchronous input timings.

5.4.4.1.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)

The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz.

The table below describes the timing parameters (M10–M15).

Table 41. MII serial management channel timing

ID	Characteristic	Min.	Max.	Unit
M10	ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay)	0	_	ENET_TX_CLK period
M11	ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay)	_	5	ns
M12	ENET_MDIO (input) to ENET_MDC rising edge setup	18	_	ns
M13	ENET_MDIO (input) to ENET_MDC rising edge hold	0	_	ns
M14	ENET_MDC pulse width high	40%	60%	ENET_MDC period
M15	ENET_MDC pulse width low	40%	60%	ENET_MDC period

The following figure shows MII asynchronous input timings.

Data Sheet: Technical Data 62 / 105

5.4.4.1.2 RMII mode timing

In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.

The table below describes the timing parameters (M16-M21).

Table 42. RMII signal timing

ID	Characteristic	Min.	Max.	Unit
M16	ENET_CLK pulse width high	35%	65%	ENET_CLK period
M17	ENET_CLK pulse width low	35%	65%	ENET_CLK period
M18	ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid	4	-	ns
M19	ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid	-	13	ns
M20	ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup	3.5	-	ns
M21	ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold	2	-	ns

The following figure shows RMII mode timings.

5.4.4.2 LPUART

See General switching timing specifications.

5.4.4.3 Inter-Integrated Circuit Interface (I²C) timing

Table 43. I ²C timing (Standard, Fast modes)

Parameter	Symbol	Standa	rd Mode	Fast	Fast Mode		
		Min.	Max.	Min.	Max.		
SCL Clock Frequency	f _{SCL}	0	100	0	400	kHz	
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	_	μs	
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	_	μs	
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	_	μs	
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs	
Data hold time for I ² C bus devices	t _{HD} ; DAT	01	3.45 ²	03	0.9 ¹	μs	
Data set-up time	t _{SU} ; DAT	250 ⁴	_	100 ^{2,5}	_	ns	
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁶	300	ns	
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁵	300	ns	
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	_	μs	
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs	
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns	

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines
- 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 3. Input signal Slew = 10 ns and Output Load = 50 pF
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode I^2C bus device can be used in a Standard mode I^2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I^2C bus specification) before the SCL line is released.
- 6. C_b = total capacitance of the one bus line in pF.

Table 44. I ²C 1 Mbps timing

Parameter	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCLH}	0	1	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	ns
LOW period of the SCL clock	t _{LOW}	0.5	_	ns
HIGH period of the SCL clock	t _{HIGH}	0.26	_	ns
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	_	ns
Data hold time for I ₂ C bus devices	t _{HD} ; DAT	0	_	ns
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _{rCL}	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _{rCL1}	20 +0.1C _b	120	ns
Set-up time for STOP condition	t _{fCL}	0.26	_	ns
Bus free time between STOP and START condition	t _{rDA}	0.5	_	ns
Pulse width of spikes that must be suppressed by the input filter	t _{fDA}	0	50	ns

5.4.4.4 Improved Inter-Integrated Circuit Interface (I3C) specifications

Unless otherwise specified, I3C specifications are timed to/from the V_{IH} and/or V_{IL} signal points.

Table 45. MIPI-I3C specifications when communicating with legacy I²C devices

Symbol	Characteristic	400 kHz/F	400 kHz/Fast mode		100 kHz/Fast mode 1 MHz/ Fast+ mode		ast+ mode	Unit
		Min.	Max.	Min.	Max.			
f _{SCL}	SCL Clock Frequency	0	0.4	0	1.0	MHz		
t _{SU_STA}	Set-up time for a repeated START condition	600	_	260	_	ns		
Hold time (repeated) START condition	t _{HD} ; STA	600	_	260	_	ns		
t _{LOW}	LOW period of the SCL clock	1300	_	500	_	ns		
t _{HIGH}	HIGH period of the SCL clock	600	_	260	_	ns		
t _{SU_DAT}	Data set-up time	100	_	50	_	ns		
t _{HD_DAT}	Data hold time for I ₂ C bus devices	0	_	0	_	ns		
t _f	Fall time of SDA and SCL signals	20 + 0.1C _b ¹	300	20 + 0.1C _b ¹	120	ns		
t _r	Rise time of SDA and SCL signals	20 + 0.1C _b ¹	300	20 + 0.1C _b ¹	120	ns		
t _{SU_STO}	Set-up time for STOP condition	600	_	260	_	ns		

Table 45. MIPI-I3C specifications when communicating with legacy I²C devices (continued)

Symbol	Characteristic	400 kHz/Fast mode		1 MHz/ Fast+ mode		Unit
		Min.	Max.	Min.	Max.	
t _{BUF}	Bus free time between STOP and START condition	1.3	_	0.5	_	μs
t _{SP}	Pulse width of spikes that must be suppressed by the input filter	0	50	0	50	ns

^{1.} C_b = total capacitance of the one bus line in pF.

Table 46. MIPI-I3C open drain mode specifications

Symbol	Characteristic	Min.	Max.	Unit	Notes
t _{LOW_OD}	LOW period of the SCL clock	200	_	ns	
t _{DIG_OD_L}		t _{LOW_OD} + t _{fDA_OD} (min)	_	ns	
t _{HIGH}	HIGH period of the SCL clock	t _{CF}	12	ns	
t _{fDA_OD}	Fall time of SDA signal	20 +0.1C _b	120	ns	1
t _{SU_OD}	Data set-up time during open drain mode	3	_	ns	
t _{CAS}	Clock after START (S) Condition • ENTAS0 • ENTAS1 • ENTAS2 • ENTAS3	38.4 n 38.4 n 38.4 n 38.4 n	1 μ 100 μ 2 m 50 m	s s s	
t _{CBP}	Clock before STOP (P) condition	t _{CAS} (min)/2	_	ns	
t _{MMOverlap}	Current master to secondary master overlap time during handoff	t _{DIG_OD_L}	_	ns	
t _{AVAL}	Bus available condition	1	_	μs	
t _{IDLE}	Bus idle condition	1	_	ms	
t _{MMLock}	Time internal where new master not driving SDA low	t _{AVAL}	_	μs	

^{1.} C_b = total capacitance of the one bus line in pF.

Table 47. MIPI-I3C push-pull specifications for SDR and HDR-DDR modes

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
f _{SCL}	SCL Clock Frequency	0.01	12	12.9	MHz	
t _{LOW}	LOW period of the SCL clock	24	_	_	ns	
t _{DIG_L}		32	_	_	ns	
t _{HIGH_MIXE}	HIGH period of the SCL clock for a mixed bus	24	_	_	ns	

Symbol	Characteristic	Min.	Тур.	Max.	Unit	Notes
t _{DIG_H_MIXE}		32	_	45	ns	1
t _{HIGH}	HIGH period of the SCL clock	24	_	_	ns	
t _{DIG_H}		32	_	_	ns	
t _{SCO}	Clock in to data out for a slave	_	_	12	ns	
t _{CR}	SCL clock rise time	_	_	150 x 1/ f _{SCL} (capped at 60)	ns	
t _{CF}	SCL clock fall time	_	_	150 x 1/ f _{SCL} (capped at 60)	ns	
t _{HD_PP}	SDA signal data hold • Master mode • Slave mode	t _{CR} + 3 and t _{CF} + 3	_ _	_	ns	
t _{SU_PP}	SDA signal setup	3	<u> </u>	_	ns	
t _{CASr}	Clock after repeated START (Sr)	t _{CAS} (min)	_	_	ns	
t _{CBSr}	Clock before repeated START (Sr)	t _{CAS} (min)/2	_	_	ns	
C _b	Capacitive load per bus line		_	50	pF	

1. When communicating with an I3C Device on a mixed Bus, the $t_{\text{DIG_H_MIXED}}$ period must be constrained in order to make sure that I²C devices do not interpret I3C signaling as valid I²C signaling.

5.4.4.5 Low-power serial peripheral interface (LPSPI) switching specifications—application domain

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes. See the LPSPI chapter of the chip reference manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.

Table 48. LPSPI master mode timing

Symbol	Description	Min.	Max.	Unit	Notes
LP1	Frequency of operation • LPSPI0-LPSPI3 • LPSPI4-LPSPI5	f _{periph} /2048 f _{periph} /2048	30 60	MHz MHz	1
LP2	SPSCK period (t _{SPSK}) • LPSPI0-3 • LPSPI4-5	33.33 16.67	2048 x t _{periph} 2048 x t _{periph}	ns	
LP3	Enable lead time	1/2	_	t _{SPSK}	2
LP4	Enable lag time	1/2	_	t _{SPSK}	2
LP5	Clock (SPSCK) high or low time	t _{SPSCK} /2 - 2	t _{SPSCK} /2 + 2	ns	_
LP6	Data setup time (inputs) • LPSPI0-3 • LPSPI4-5	12.0 6.0		ns	_
LP7	Data hold time (inputs)	0	_	ns	_
LP8	Data valid (after SPSCK edge) • LPSPI0-3 • LPSPI4-5		9.0 6.0	ns	_
LP9	Data hold time (outputs)	-1	_	ns	_

^{1.} The frequency of operation is also limited to a minimum of $f_{periph}/2048$ and a max of $f_{periph}/2$, where f_{periph} is the LPSPI peripheral functional clock.

The following figures show the master mode timing characteristics for LPSPI.

Data Sheet: Technical Data 68 / 105

^{2.} $t_{periph} = 1/f_{periph}$

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1. bit order is LSB. bit 1. bit 6. MSB.

Figure 24. LPSPI master mode timing (CPHA = 0)

- - 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 25. LPSPI master mode timing (CPHA = 1)

Table 49. LPSPI slave mode timing

Symbol	Description	Min.	Max.	Unit	Notes
LP1	Frequency of operation				1
	• LPSPI0-LPSPI3	_	15	MHz	
	• LPSPI4-LPSPI5	_	30	MHz	
LP2	SPSCK period (t _{SPSK})				
		66.67	2048 x t _{periph}	ns	

Table 49. LPSPI slave mode timing (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	• LPSPI0-3	33.33	2048 x t _{periph}		
	• LPSPI4-5				
LP3	Enable lead time	1	_	t _{periph}	2
LP4	Enable lag time	1	_	t _{periph}	2
LP5	Clock (SPSCK) high or low time	t _{SPSCK} /2 - 2	t _{SPSCK} /2 + 2	ns	_
LP6	Data setup time (inputs) • LPSPI0-3 • LPSPI4-5	7.0 4.0	_ _	ns	_
LP7	Data hold time (inputs) • LPSPI0-3 • LPSPI4-5	5.0 3.0	_ _ _	ns	_
LP8	SPI_SPSCK to SPI_MISO data valid (output data valid): (t _{SPSCK2DV}) • LPSPI0-3 • LPSPI4-5	_ _	15 13	ns	
LP9	SPI_SPSCK to SPI_MISO data invalid (output data hold): (t _{SPSCK2DH}) • LPSPI0-3 • LPSPI4-5	2.0 2.0	_ _ _	ns	
LP10	SPI_SS active to SPI_MISO driven (t _{SS2DRV})	12	_	ns	_
LP11	SPI_SS inactive to SPI_MISO not driven (t _{SS2HIZ})	12		ns	_

^{1.} The frequency of operation is also limited to a minimum of $f_{periph}/2048$ and a max of $f_{periph}/4$, where f_{periph} is the LPSPI peripheral functional clock.

The following figures show the slave mode timing characteristics for LPSPI.

^{2.} $t_{periph} = 1/f_{periph}$

5.4.4.6 USB Full Speed Transceiver and High Speed PHY specifications

This section describes the High Speed USB PHY parameters. The high speed PHY is capable of full and low speed signaling as well.

The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification with the amendments below.

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000

- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the Revision 2.0 Specification
 - Revision 2.0 plus errata and ecn June 4, 2010
- Battery Charging Specification (available from USB-IF)
 - Revision 1.2, December 7, 2010

USB0_VBUS pin is a detector function which is 5v tolerant and complies with the above specifications without needing any external voltage division components.

6 Specifications—LPAV domain

6.1 LPDDR Controller (LPDDRC)

The LPDDR Controller is a configurable DDR controller that provides interface to LPDDR3, LPDDR4 and LPDDR4X memories. The LPDDR4/4X includes a DFI interface to work with PHY. The controller is responsible for communication with the system through AXI interface, DDR commands generation, DDR command optimizations, and read/ write data path. The PHY performs timing adjustment using special calibration mechanisms to ensure data capture margin at the supported clock rate.

6.1.1 LPDDR3/4/4X parameters

The LPDDR Memory Controller (LPDDRC) is designed to be compatible with JEDEC-compliant SDRAMs.

- JESD209-4B compliant LPDDR4/LPDDR4X memories
- · JESD209-3C compliant LPDDR3 memory

LPDDRC operation is contingent upon the board's DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 8ULP application processor. Timing diagrams and tolerances required to work with these memories are specified in the respective documents and are not reprinted here. Meeting the necessary timing requirements for a DDR memory system is highly dependent on the components chosen and the design layout of the system as a whole. NXP cannot cover in this document all the requirements needed to achieve a design that meets full system performance over temperature, voltage, and part variation; PCB trace routing, PCB dielectric material, number of routing layers used, placement of bulk/decoupling capacitors on critical power rails, VIA placement, GND and Supply planes layout, and DDR controller/PHY register settings all are factors affecting the performance of the memory system. Consult the hardware user guide for this device and NXP validated design layouts for information on how to properly design a PCB for best DDR performance. NXP strongly recommends duplicating an NXP validated design as much as possible in the design of critical power rails, placement of bulk/decoupling capacitors and DDR trace routing between the processor and the selected DDR memory. All supporting material is readily available on device page i.MX8 Processors

Processors that demonstrate full DDR performance on NXP validated designs, but do not function on customer designs, are not considered marginal parts. A report detailing how the returned part behaved on an NXP validated system will be provided to the customer as closure to a customer's reported DDR issue. Customers bear the responsibility of properly designing the Printed Circuit Board, correctly simulating and modeling the designed DDR system, and validating the system under all expected operating conditions (temperatures, voltages) prior to releasing their product to market.

The following table shows the configuration for LPDDR3/4/4X used in i.MX 8ULP.

Table 50. LPDDR3/4/4x configurations

Parameter	LPDDR3	LPDDR4	LPDDR4X
Data rates	800 MT/s ¹	1056 MT/s	1056 MT/s
Bus width	32-bit	32-bit	32-bit
Channels	1	2	2
Chip Selects	2	2	2

^{1.} With ODT enabled

6.2 Display, Video, and Audio Interfaces

6.2.1 MIPI DSI timing—LPAV domain

The i.MX 8ULP conforms to the MIPI Alliance Specification for Display Serial Interface Version 1.1 compliant for MIPI display port x4 lanes. It also supports MIPI Specification for D-PHY Version 2.1 and is backward compatible with MIPI Specification for D-PHY v1.2 and D-PHY v1.1

6.2.2 MIPI CSI timing—LPAV domain

The i.MX 8ULP conforms to the MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) Version 1.1 compliant for MIPI display port x2 lanes. It also supports MIPI DPHYSM V1.1 specification.

6.2.3 PDM Microphone Interface (MICFIL) timing parameters

NOTE

These timing requirements apply only if the clock divider is enabled (PDM_CTRL2[CLKDIV]=0), otherwise there are no special timing requirements.

The PDM microphones must meet the setup and hold timing requirements shown in the following table. The "k" factor value in Table 51 depends on the selected quality mode as shown in Table 52.

Table 51. Timing parameters

Parameter	Value
trs, tfs	<= \frac{\text{floor(K x CLKDIV)} - 1}{\text{@(moduleNickname)_CLK_ROOT rate}}
trh. tfh	>=0

 [@]moduleNickname= PDM. Depending on K value, the user must make sure floor(K x CLKDIV) > 1 to avoid timing problems.

Table 52. K factor value

Quality factor	K factor
High Qaulity	1/2
Medium Quality, Very Low Quality 0	1
Low Quality, Very Low Quality 1	2
Very Low Quality 2	4

6.2.4 EPDC timing specifications

The following table containg the EPDC timing specifications,

AXI bus clock domain: 316.8 MHz

PIX clock domain: 300 MHz

Table 53. EPDC timing specifications

Parameter	EPDC IO ports	Note
EPDC output skew	GDCLK	Minimize the output skew to be <1/4
	GDSP	EPDC internal pixel clock cycle.
	GDRL	
	SDCLK	
	SDCLKN	
	SDLE	
	SDOEZ	
	SDOED	
	SDOE	
	SDDO[*]	
	SDCE[*]	
	SDSHR	
EPDC input skew	PWRSTAT	Minimize the input skew to be <1/4
	PWRIRQ	EPDC AXI bus clock cycle.
EPDC output skew	BDR[*]	Minimize the output skew to be <1/4
	PWRCTRL[*]	EPDC AXI bus clock cycle.
	PWRWAKE	
	PWRCOM	

7 Specifications—real-time domain

7.1 Real time domain (RTD) power modes

Table 54. RTD power modes

Power Mode		Min. Voltage at the pin (V) VDD_DIG0	Max Frequency (MHz) CM33/ Fusion DSP	Biasing Setting	Description
Active	Over Drive	1.05	216/200	AFBB enabled	All logic is functional in this mode.
					Allows Dynamic Voltage Scaling(DVS)
	Normal Drive	1	127/127	AFBB enabled	
	Under Drive	0.9	38.4/38.4	ARBB enabled	
Sleep		0.9	-	RBB enabled (optional)	Core in Wait-for- Interrupt (WFI) Core, bus, peripheral clock gating configurable by software
Deep Sleep		0.65	-	RBB enabled	Core is in wait- for-interrupt(WFI) state Core/System clock gated
					Some peripheral optional functional SRAM contents retained
POWER DOWN		0.65	-	RBB enabled	Core/System/ peripherals power gated
					SRAM with configurable retention
					Comparator, LP timers optionally functional
DEEP POWER DO	WN	-	-	-	RTD domain completely power gated

Table 54. RTD power modes (continued)

Power Mode	Min. Voltage at the pin (V) VDD_DIG0	Max Frequency (MHz) CM33/ Fusion DSP	Biasing Setting	Description
				DGO (aka Always ON) domain ON
				Comparator, LP timers optionally functional

7.2 Power sequencing—real-time domain

See Power sequencing—system.

7.3 Peripheral operating requirements and behaviors—real-time domain

7.3.1 FlexSPI parameters

The FlexSPI bus interface can operate in Single Data Rate (SDR) or Double Data Rate (DDR) signaling modes. Different AC timings are specified for SDR and DDR signaling modes.

The FlexSPI interface uses the Read Strobe signal (DQS) as the reference clock to sample input data. There are two types of flash memory devices: one with a Read Strobe pin and one without. The FlexSPI interface supports both types of memory device. When the external flash device does not have a DQS pin, the FlexSPI controller internally generates a dummy Read Strobe and loopback.

FlexSPI supports the following clocking scheme for a read data path:

- Dummy read strobe generated by the FlexSPI controller and looped back internally (FlexSPIn_MCR0[RXCLKSRC] = 0x0, or Mode 0)
- Read strobe provided by memory device and input from DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x3 or Mode 3)

The maximum FlexSPI frequency depends on the following factors:

- · Bus signaling mode: SDR or DDR
- · Clocking scheme for read data path
- · IO voltage level
- Core voltage level
- · Type of IO pad, where the FlexSPI interface is multiplexed

See the tables below to know the FlexSPI maximum supported frequencies in various modes at different locations.

Table 55. FlexSPI frequency for various modes on RTD

Interface	Modes			Frequency at (MHz) ¹	1.0v ND	Frequency at 0.9v ARBB (MHz)	
		1.8v ²	3.3v ³	1.8v	3.3v	1.8v	3.3v
FlexSPI0_A	Mode 0 SDR	90	86	90	86	45	45
	Mode 0 DDR	45	43	45	43	22	22
FlexSPI0_B	Mode 0 SDR	60	60	60	60	45	45

Table 55. FlexSPI frequency for various modes on RTD (continued)

Interface	Modes			Frequency at (MHz) ¹	1.0v ND	Frequency at 0.9v ARBB (MHz)	
	Mode 0 DDR	30	30	30	30	22	22
FlexSPI0_A/B	Mode 3 DDR	180	100	100	100	45	45
FlexSPI1_A/B	Mode 0 SDR	60	60	60	60	60	45
	Mode 0 DDR	30	30	30	30	30	22
	Mode 3 DDR	180	100	100	100	42	42

- 1. Voltage at the pin.
- 2. 1.8 v corresponds to PAD voltage
- 3. 3.3v corresponds to PAD voltage

Table 56. FlexSPI frequency for various modes on APD

Interface	Modes	Frequency at 1.05v OD (MHz)		Frequency at 1.0v ND (MHz) ¹	
		1.8v ²	3.3v ³	1.8v	3.3v
FlexSPI2_A (PTD	Mode 0 SDR	90	90	90	88
pins)	Mode 0 DDR	45	45	45	44
FlexSPI2_B (PTD	Mode 0 SDR	60	60	60	60
pins)	Mode 0 DDR	30	30	30	30
FlexSPI2_A/B (PTD pins)	Mode 3 DDR	166	100	83	100
FlexSPI2_A/B (PTE pins)	Mode 0 SDR	60	60	60	50
	Mode 0 DDR	30	30	30	25
	Mode 3 DDR	100	83	50	50

- 1. Voltage at the pin.
- 2. 1.8 v corresponds to PAD voltage
- 3. 3.3v corresponds to PAD voltage

7.3.1.1 FlexSPI timings for SDR with internal loopback input sample (Mode 0 - FlexSPIn_MCR0[RXCLKSRC] = 0x0)

Table 57. FlexSPI timings for SDR in Mode 0

ID	Parameter	Min.	Max.	Unit
-	FlexSPIx[A/B]_SCLK cycle frequency	_	See Mode 0 in Table 58	MHz
t ₁	FlexSPIx[A/B]_SCLK High or Low Time	7.5	_	ns
t ₂	FlexSPlx[A/B]_SSy_B pulse width	1.0	_	SCLK

78 / 105

Table 57. FlexSPI timings for SDR in Mode 0 (continued)

ID	Parameter	Min.	Max.	Unit
t ₃	FlexSPIx[A/B]_SSy_B lead time ^{1, 2}	Tcss + 0.5	_	SCLK
t ₄	FlexSPIx[A/B]_SSy_B lag time ^{1, 3}	Tcsh	_	SCLK
t ₅	FlexSPlx[A/B]_DATAy output delay	See SDR output hold for Mode 0 in Table 58	See SDR output setup for Mode 0 in Table 58	ns
t ₆	FlexSPIx[A/B]_DATAy setup time	See SDR input setup for Mode 0 in Table 58	_	ns
t ₇	FlexSPIx[A/B]_DATAy hold time	See SDR Input Hold for Mode 0 in Table 58	_	ns

- 1. Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).
- Tcss: Chip select output setup time.
- Tcsh: Chip select output hold time.

Table 58. FlexSPI AC specifications for SDR mode 0

Parameter	Max interface freque	Unit					
Frequency SDR	90 - 84	90 - 84 83 - 61 60-51 ≤ 50 N					
SDR input setup	7	7	8	8	ns		
SDR input hold	0	0	0	0	ns		
SDR output setup	3.5	4.25	4.25	8	ns		
SDR output hold	- 3.5	- 4.25	- 4.25	- 8	ns		

7.3.1.2 SDR timing diagrams for Mode 0

The following timing diagrams are valid for FlexSPIn_MCR0[RXCLKSRC] = 0x0.

Data Sheet: Technical Data

7.3.1.3 FlexSPI timings for DDR with internal loopback input sample (Mode 0 - FlexSPIn_MCR0[RXCLKSRC] = 0x0)

Table 59. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (DDR mode)

ID	Parameter	Min.	Max.	Unit
	FlexSPIx[A/B]_SCLK cycle frequency	_	See Mode 0 in Table 60	MHz
t ₁	FlexSPIx[A/B]_SCLK high or low time	15	_	ns
t ₂	FlexSPIx[A/B]_SSy_B pulse width	1	_	SCLK
t ₃	FlexSPIx[A/B]_SSy_B lead time ¹	(TCSS + 0.5) / 2	_	SCLK
t ₄	FlexSPIx[A/B]_SSy_B lag time ¹	TCSH/2	_	SCLK
t ₅	FlexSPIx[A/B]_DATAy output valid time	_	See DDR output setup for mode 0 in Table 60	ns
t ₆	FlexSPIx[A/B]_DATAy output hold time	See DDR Output Hold for mode 0 in Table 60	_	ns
t ₇	FlexSPIx[A/B]_DATAy setup time	See DDR Input Setup for Mode 0 in Table 60	_	ns
t ₈	FlexSPIx[A/B]_DATAy hold time	See DDR Input Hold for Mode 0 in Table 60	_	ns

^{1.} Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

Table 60. FlexSPI DDR AC specifications for Mode 0

Parameter	Max interfac	Unit	
Frequency DDR	45 -40	MHz	
DDR input setup	7	8	ns
DDR input hold	0	0	ns
DDR output setup	3	3	ns
DDR output hold	- 3	- 3	ns

7.3.1.4 DDR Timing Diagrams for Mode 0

7.3.1.5 FlexSPI timings for SDR with external DQS input sample (Mode 3 - FlexSPIn_MCR0[RXCLKSRC] = 0x3)

Table 61. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (SDR mode)

ID	Parameter	Min.	Max.	Unit
	FlexSPlx[A/B]_SCLK cycle frequency		See values in Table 62	MHz
t ₁	FlexSPIx[A/B]_SCLK high or low time	2.25	_	ns
t ₂	FlexSPIx[A/B]_SSy_B pulse width ¹	CSINTERVAL	_	SCLK
t ₃	FlexSPIx[A/B]_SSy_B lead time ^{2, 3}	Tcss + 0.5	_	SCLK
t ₄	FlexSPIx[A/B]_SSy_B lag time ^{2, 4}	Tcsh	_	SCLK
t ₅	FlexSPIx[A/B]_DATAy output delay	See SDR output hold for Mode 3 in Table 62	See SDR output setup for Mode 3 in Table 62	ns
t ₆	FlexSPIx[A/B]_DATAy input setup time	See SDR input setup for Mode 3 in Table 62		ns
t ₇	FlexSPIx[A/B]_DATAy input hold time	See SDR input hold for Mode 3 in Table 62		

^{1.} Minimum is 2 SCLK cycles even if CSINTERVAL value is less than 2.

^{2.} Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).

- 3. Tcss: Chip select output setup time.
- 4. Tcsh: Chip select output hold time.

Table 62. FlexSPI AC SDR specifications for input mode 3

Parameter	Max interface fre	Unit				
Frequency SDR	180	166	100	83	50 - 42	MHz
SDR input setup	0.6	0.6	0.8	1.2	2.75	ns
SDR input hold	-0.6	-0.6	-0.8	-1.2	-2.75	ns
SDR output setup	1.5	2	3.5	4.25	8	ns
SDR output hold	-1.5	-2	-3.5	-4.25	-8	ns

7.3.1.6 SDR timing diagrams for Mode 3

The following timing diagrams are valid for FlexSPIn_MCR0[RXCLKSRC] = 0x3.

7.3.1.7 FlexSPI timings for DDR with external DQS input sample (Mode 3 - FlexSPIn_MCR0[RXCLKSRC] = 0x3)

Table 63. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode)

ID	Parameter	Parameter Min.		Unit
	FlexSPIx[A/B]_SCLK cycle frequency	_	See values in Table 64	MHz

Table 63. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode) (continued)

ID	Parameter	Min.	Max.	Unit
t ₁	FlexSPIx[A/B]_SCLK high or low time	2.25	_	ns
t ₂	FlexSPIx[A/B]_SSy_B pulse width	1	_	SCLK
t ₃	FlexSPIx[A/B]_SSy_B lead time ^{1, 2}	(Tcss + 0.5) / 2	_	SCLK
t ₄	FlexSPIx[A/B]_SSy_B lag time ^{1, 3}	Tsch / 2	_	SCLK
t ₅	FlexSPIx[A/B]_DATAy output valid time	_	See DDR output setup for Mode 3 in Table 64	ns
t ₆	FlexSPIx[A/B]_DATAy output hold time	See DDR output hold for Mode 3 in Table 64	_	ns
t ₉	FlexSPIx[A/B]_DATAy input setup skew	_	See DDR input setup for Mode 3 in Table 64	ns
t ₁₀	FlexSPIx[A/B]_DATAy input hold skew	_	See DDR input hold for Mode 3 in Table 64	ns

- 1. Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).
- 2. Tcss: Chip select output setup time
- 3. Tcsh: Chip select output hold time

Table 64. FlexSPI AC DDR specifications for Mode 3

Parameter	Max interface	Unit				
Frequency DDR	180	166	100	83	50 - 42	MHz
DDR input setup	0.6	0.6	0.8	1.2	2.75	ns
DDR input hold	-0.6	-0.6	-0.8	-1.2	-2.75	ns
DDR output setup	0.6	0.6	1	1.25	3	ns
DDR output hold	-0.6	-0.6	-1	-1.25	-3	ns

7.3.1.8 DDR timing diagrams for Mode 3

Data Sheet: Technical Data 82 / 105

7.3.2 Analog modules

7.3.2.1 12-bit ADC electrical specifications

All ADC channels meet the 12-bit single-ended accuracy specifications.

Table 65. ADC Electrical Specifications (VREFH=VDD_ANA_18 and VADIN_{max}≤VREFH)

Symbol	Description	Min	Тур	Max	Unit	Notes
VADIN	Input voltage	VREFL	_	VREFH	V	_
CADIN	Input capacitance	_	4.5	_	pF	_
RADIN	Input resistance	_	500	_	Ω	_
RAS	Analog source resistance	_	_	5	ΚΩ	1
fADCK	ADC Conversion clock frequency	8	_	66	MHz	
Csample	Sample cycles	3.5	_	131.5		2
Ccompare	Fixed compare cycles	_	17.5	_	cycles	
Cconversion	Conversion cycles	Cconversion= Csample + cycles Ccompare			cycles	
TUE	Total unadjusted Error	_	-14 to -2	_	LSB	3
DNL	Differential nonlinearity	_	±1.2	_	LSB	3,4
INL	Integral nonlinearity	_	±1.2	_	LSB	3,4
ENOB	Effective number of bits					5
	Single-ended mode					
	Avg = 1	_	10.5	_		
	Avg = 2	_	10.8	_		
	Avg = 16	_	11.4	_		
	Differential mode					
	Avg = 1	_	11.4	_		

Table 65. ADC Electrical Specifications (VREFH=VDD_ANA_18 and VADIN_{max}≤VREFH) (continued)

Symbol	Description	Min	Тур	Max	Unit	Notes
	Avg = 2	_	_	_		
	Avg = 16	_	_	_		
SINAD	Signal to noise plus distortion	SINAD=6.02 x ENOB + 1.76 dB			dB	
EFS	Full-scale error	_	-4	_	LSB	3
EZS	Zero-scale error	_	0.05	_	LSB	3
lin_ext_leak	External channel leakage current	— 30 500 nA		nA		
EIL	Input leakage error	RAS * lin mV				

- 1. This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns.
- 2. See Figure 37.
- 3. 1 LSB = (VREFH VREFL)/2N, N=12
- 4. ADC conversion clock at max frequency and using linear histogram.
- 5. Input data used for test was 1 kHz sine wave.

Table 66. ADC electrical specifications (VREFH=1.68 V and VADIN_{max}≤VDD_PTA_{max})¹

Symbol	Description	Min	Typ ²	Max	Unit	Notes
VADIN	Input voltage— Port A	VREFL	_	VDD_PTA _{max}	V	
	Input voltage— Port B			VDD_PTB _{max}		
CADIN	Input capacitance		4.5	_	pF	
RADIN	Input resistance		1	_	ΚΩ	
RAS	Analog source resistance		_	5	ΚΩ	3
fADCK	ADC conversion clock frequency	8	_	66	MHz	
Csample	Sample cycles	3.5	_	131.5	_	4
Ccompare	Fixed compare cycles	_	17.5	_	Cycles	
Cconversion	Conversion cycles	Cconversion= Cs	Cconversion= Csample + Ccompare			
TUE	Total unadjusted error	_	-14 to -2	_	LSB	5
DNL	Differential nonlinearity	_	±1.2	_	LSB	5,6

Table 66. ADC electrical specifications (VREFH=1.68 V and VADIN_{max}≤VDD_PTA_{max})¹ (continued)

Symbol	Description	Min	Typ ²	Max	Unit	Notes
INL	Integral nonlinearity	_	±1.2	_	LSB	5,6
ENOB	Effective Number	of Bits				7
	Single-ended mo	de				
	Avg = 1	_	10.3	_		
	Avg = 2	_	10.6	_		
	Avg = 16	_	11.3	_		
	Differential mode					
	Avg = 1	_	11.2	_		
	Avg = 2	_	_	_		
	Avg = 16	_	_	_		
SINAD	Signal to noise plus distortion	SINAD=6.02 x Ef	NOB + 1.76		dB	
EFS	Full-scale error	_	-4	_	LSB	5
EZS	Zero-scale error	_	0.05	_	LSB	5
lin_ext_leak	External channel leakage current	_	30	500	nA	
EIL	Input leakage error	RAS * lin			mV	

- 1. Values in this table are based on design simulations.
- 2. Typical values assume VDD_ANA_18 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 3. This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns.
- 4. See Figure 37.
- 5. 1 LSB = (VREFH VREFL)/2N, N=12
- 6. ADC conversion clock at max frequency and using linear histogram.
- 7. Input data used for test was 1 kHz sine wave.

Table 67. ADC electrical specifications (1V≤VREFH<VDD_ANA18_{MIN} and VADIN_{MAX}≤VREFH) ¹

Symbol	Description	Min	Typ ²	Max	Unit	Notes
VADIN	Input voltage	VREFL	_	VREFH	V	_
CADIN	Input capacitance	_	4.5	_	pF	_
RADIN	Input resistance	_	500	_	Ω	

Table 67. ADC electrical specifications (1V≤VREFH<VDD_ANA18_{MIN} and VADIN_{MAX}≤VREFH) ¹ (continued)

Symbol	Description	Min	Typ ²	Max	Unit	Notes
RAS	Analog source resistance	_	_	5	ΚΩ	3
fADCK	ADC conversion clock frequency	8	_	44	MHz	
Csample	Sample cycles	3.5	_	131.5	_	4
Ccompare	Fixed compare cycles	_	17.5	_	Cycles	
Cconversion	Conversion cycles	Cconversion= C	sample + Ccompa	re	Cycles	
TUE	Total unadjusted error	_	-14 to -2	_	LSB	5
DNL	Differential nonlinearity	-	±1.2	_	LSB	5,6
INL	Integral nonlinearity	-	±1.2	_	LSB	5,6
ENOB	Effective num	ber of bits	1			7
	Single-ended	mode				
	Avg = 1	_	9.8	_	_	
	Avg = 2	_	10.2	_	_	•
	Avg = 16	_	11.1	_	_	
	Differential m	ode	1	1	l	
	Avg = 1	_	10.7	_	_	
	Avg = 2	_	_	_	_	
	Avg = 16	_	_	_	_	
SINAD	Signal to noise plus distortion	SINAD=6.02 x E	ENOB + 1.76		dB	
EFS	Full-scale error	-	-4	_	LSB	5
EZS	Zero-scale error	_	0.05	_	LSB	5
lin_ext_leak	External channel	_	30	500	nA	_

Table 67. ADC electrical specifications (1V≤VREFH<VDD_ANA18_{MIN} and VADIN_{MAX}≤VREFH) ¹ (continued)

Symbol	Description	Min	Typ ²	Max	Unit	Notes
	leakage current					
EIL	Input leakage error	RAS * lin	RAS * lin			_

- 1. Values in this table are based on design simulations.
- 2. Typical values assume VDD_ANA_18 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 3. This resistance is external to the SoC. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns.
- 4. See Figure 37.
- 5. 1 LSB = (VREFH VREFL)/2N, N=12
- 6. ADC conversion clock at max frequency and using linear histogram.
- 7. Input data used for test was 1 kHz sine wave.

The following figure shows a plot of the ADC sample time versus RAS.

Data Sheet: Technical Data 87 / 105

7.3.2.1.1 ADC operating conditions

7.3.2.2 12-bit DAC electrical characteristics

7.3.2.2.1 12-bit DAC operating requirements

Table 68. 12-bit DAC operating conditions

Symbol	Description	Min	Тур	Max	Unit	Notes
C _L	Output load capacitance	_	50	100	pF	1
IL	Output load current	_	_	±1	mA	2

- 1. The DAC output can drive R and C loading. The user should consider both DC and dynamic application requirements. 50pF CL provides the best dynamic performance, while 100pF provides the best DC performance.
- 2. Sink or source current ability.

Table 69. DAC characteristics

Symbol	Description	Test Conditions	Min.	Тур.	Мах.	Units	Notes
IDDA_LS	Supply Current in Low	Code 800h, VDD_ANA18	_	80	120	μΑ	1
	Speed mode	selected, no Rload	_	80	_		2
IDDA_MS	Supply Current in		_	250	450		1
	Middle Speed mode		_	250	_		2
IDDA_HS	Supply Current in High		_	500	850		1
	Speed mode		_	500	_		2

Table 69. DAC characteristics (continued)

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units	Notes
VDACOUTL	DAC low level output voltage	VDD_ANA18 selected, Rload=18k, Cload=50pF	VSS	_	0.15	V	3
VDACOUTH	DAC high level output voltage		VDD_ANA18 -0.15	_	VDD_ ANA1 8		
DNL	Differential non- linearity error	Code 100h -> F00h best fit curve	_	±0.5	±1	LSB	_
INL	Integral non-linearity error	Code 100h -> F00h best fit curve	_	±2	_		4 5
EO	Offset error	Code 100h	_	±0.6	_	%FSR	_
TEO	Offset error temperature coefficient	Code 100h	_	±30	_	uV/°C	_
EG	Gain error	Code F00h	_	±0.3	_	%FSR	-
TEG	Gain error temperature coefficient	Code F00h	_	10	_	ppm of FSR/°C	_
TFS_LS	Full scale setting time in Low Speed mode	Code 100h -> F00h or F00h -> 100h @ ZTC current	_	5	_	μs	6
	Code 100h -> F00h or F00h -> 100h @ PTAT current	_	5	_			
TFS_MS	Full scale setting time in Middle Speed mode	Code 100h -> F00h or F00h -> 100h @ ZTC current	_	1	_		
		Code 100h -> F00h or F00h -> 100h @ PTAT current	_	1	_		
TFS_HS	Full scale setting time in High Speed mode	Code 100h -> F00h or F00h -> 100h @ ZTC current	_	0.5	_		
		Code 100h -> F00h or F00h -> 100h @ PTAT current	_	0.5	_		
TCC_LS	Code to code setting time in Low Speed	Code 7F7h -> 807h or 807h -> 7F7h @ ZTC current	_	1	_		
	mode	Code 7F7h -> 807h or 807h -> 7F7h @ PTAT current	_	1	_		
TCC_MS	Code to code setting time in Middle Speed	Code 7F7h -> 807h or 807h -> 7F7h @ ZTC current	_	0.5	_		
	mode	Code 7F7h -> 807h or 807h -> 7F7h @ PTAT current	_	0.5	_		
TCC_HS	Code to code setting time in High Speed	Code 7F7h -> 807h or 807h -> 7F7h @ ZTC current	_	0.3	_		
mode		Code 7F7h -> 807h or 807h -> 7F7h @ PTAT current	_	0.3	_		

Table 69. DAC characteristics (continued)

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units	Notes
	Slew rate in Low Speed mode	Code 100h -> F00h or F00h -> 100h @ ZTC current	_	0.24	_	V/µs	7
		Code 100h -> F00h or F00h -> 100h @ PTAT current	_	0.24	_		
SR_MS	Slew rate in Middle Speed mode	Code 100h -> F00h or F00h -> 100h @ ZTC current	_	1.2	_		
		Code 100h -> F00h or F00h -> 100h @ PTAT current	_	1.2	_		
	Slew rate in High Speed mode	Code 100h -> F00h or F00h -> 100h @ ZTC current	_	2.4	_		
		Code 100h -> F00h or F00h -> 100h @ PTAT current	_	2.4	_		
PSRR	Power supply rejection ratio	Code 800h, ΔVDD_ANA18=100mV, VREFH_ANA12 selected	_	70	_	dB	8
Glitch	Glitch energy	Code 100h -> F00h -> 100h	_	30	_	nV-s	_
		Code 7FFh -> 800h -> 7FFh	_	30	_		
СТ	Channel to channel crosstalk	_	_	_	-80	dB	9
ROP	Output resistance	Code 100h -> 2A8h and D58h -> F00h	_	200	_	Ω	10
		Code 2A8h and D58h	_	30	_	Ω	

- 1. DAC output reference current is configured as either the PTAT current reference or the internal current reference in the DAC Status and Control Register (DAC_CR2).
- 2. DAC output reference current is configured as the ZTC current reference in the DAC Status and Control Register (DAC_CR2).
- 3. It is recommended to operate the DAC in the output voltage range between 0.15 V and

(VDD_ANA18

-0.15

- V) for best accuracy. Linearity of the output voltage outside this range will be affected as current load increases.
- 4. When VDD_ANA18 is selected as the reference (DAC_CR[DACRFS]=1b).
- 5. When the VREFH_ANA18 is selected as the reference (DAC_CR[DACRFS]=0b).
- 6. The DAC output remains within ±0.5 LSB of the final measured value for digital input code change. Noise on the power supply can cause this performance to degrade to ±1 LSB. This parameter represents both rising edge and falling edge settling time.
- 7. Time for the DAC output to transition from 10% to 90% signal amplitude (rising edge or falling edge).
- 8. PSRR=20*log{ΔVDD_ANA18 /ΔVDAC_OUT}
- 9. If two DACs are used and sharing the same VREFH.
- 10. Based on design simulation.

7.3.2.3 CMP electrical specifications

Table 70. CMP Operating Conditions

Symbol	Description	Min	Тур	Max	Unit
VREFH_EXT	External reference voltage	1	_	1.98	V
VREFH_INT ¹	Internal reference voltage	_	1.3	_	V

^{1.} This is an internally generated voltage reference generated by PMC0.

Table 71. CMP Characteristics

Symbol	Description	Condition	Min	Тур	Max	Unit
VAIN	Analog input voltage		0		VDD_PTx ¹	V
VAIO	Analog input offset voltage				20	mV
VH	Analog	Hysctrl[1:0]=00		5		mV
	comparator hysteresis	Hysctrl[1:0]=01		10		mV
		Hysctrl[1:0]=10		20		mV
		Hysctrl[1:0]=11		30		mV
TDHS	Propagation delay, high-speed mode	Nominal supply			50	ns
TDHS	Propagation delay, low-speed mode				5	μs
	Analog comparator initialization delay				20	μs
INL	8B DAC integral non- linearity		-1		1	LSB
DNL	8B DAC differential non- linearity		-1		1	LSB

^{1.} The maximum input voltage for CMP analog inputs associated with Port A (PTA) is VDD_PTA. The maximum input voltage for CMP analog inputs associated with Port B (PTB) is VDD_PTB.

7.3.3 Timer specifications—real-time domain

See General switching timing specifications.

7.3.4 Connectivity and communications specifications—real-time domain

7.3.4.1 LPUART

See General switching timing specifications.

7.3.4.2 Inter-Integrated Circuit Interface (I²C) timing—real-time domain

See Inter-Integrated Circuit Interface (I²C) timing.

92 / 105

7.3.4.3 LPSPI switching specifications—real-time domain

See Low-power serial peripheral interface (LPSPI) switching specifications—application domain.

7.3.4.4 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

All timing shown is also with respect to input signal transitions of 3 ns and a 50 pF maximum load.

Table 72. I2S/SAI master mode timing

Num.	Parameter	Min	Max	Unit
S1	I2S_MCLK cycle time	20	_	ns
S2	I2S_MCLK (as an input) pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	40	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS output valid	_	17.5	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	17.5	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	19.8	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Data Sheet: Technical Data

Table 73. I2S/SAI slave mode timing

Num.	Parameter	Min	Max	Unit
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	40	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/ I2S_RX_BCLK	10	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/ I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	18	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	2	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	_	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	_	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	17.0	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

7.3.4.5 FlexIO specifications—real-time domain

See General switching timing specifications

7.3.4.6 CAN switching specifications

See General switching timing specifications.

8 Package information

This section contains package information for the following packages:

- MAPBGA 15 x 15 mm, 0.5 mm pitch (485 MAPBGA)
- FCBGA 9.4 x 9.4 mm, 0.4 mm pitch (512 FCBGA)

8.1 MAPBGA, 15 x 15 mm, 0.5 mm pitch (485 MAPBGA)

This section includes the following information for the 15 \times 15 mm, 0.5 mm pitch package:

- · Case outline
- · Ball map

8.1.1 15 x 15 mm package case outline

The following figure shows the top, bottom, and side views of the 15×15 mm MAPBGA package.

Data Sheet: Technical Data 94 / 105

PBGA-485 I/O 15 X 15 X 1.38 PKG, 0.5 PITCH

NOTES:

- ALL DIMENSIONS IN MILLIMETERS.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

PIN A1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM C.

DATUM C, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

Figure 42. Notes on 15 x 15 mm case outline

8.1.2 15 x 15 mm, 0.5 mm pitch, ball map

The following figure shows the 15 × 15 mm, 0.5 mm pitch, ball map.

8.2 FCBGA, 9.4 x 9.4 mm, 0.4 mm pitch (512 FCBGA)

This section includes the following information for the 9.4 x 9.4 mm, 0.4 mm pitch package (512 FCBGA).

- · Case outline
- · Ball map

8.2.1 9.4 x 9.4 mm package case outline

The following figure shows the top, bottom, and side views of the 9.4 x 9.4 mm FCBGA package.

FC-PBGA-512 I/O 9.4 X 9.4 X 0.811 PKG, 0.4 PITCH

SOT2147-1

99 / 105

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

PIN A1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM C.

DATUM C, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

Figure 44. 9.4 x 9.4 mm case outline notes

8.2.2 9.4 x 9.4 mm, 0.4 mm pitch, ball map

The following page shows the 9.4 x 9.4 mm, 0.4 mm pitch, ball map.

Data Sheet: Technical Data

Figure 45. 9.4 x 9.4 mm ballmap

9 Pin Multiplexing

9.1 i.MX 8ULP pin multiplexing

See the attached IO Definition and Package Ballmap spreadsheet for the pinout table of 485 MAPBGA as well as 512 FCBGA package.

Data Sheet: Technical Data 100 / 105

10 Revision History

10.1 Revision history

The following table shows the revision history of this document.

Table 74. Revision history

Revision number	Date	Substantial changes
Rev 1	09/2023	Initial Release.

Data Sheet: Technical Data 101 / 105

Legal information

Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision,

Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by NXP Semiconductors is under license.

Cadence — the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All rights reserved worldwide.

EdgeLock — is a trademark of NXP B.V.

i.MX — is a trademark of NXP B.V.

I2C-bus — logo is a trademark of NXP B.V.

Data Sheet: Technical Data 104 / 105

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2023.

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2023
Document identifier: IMX8ULPCEC