Cairo University, June, 2,2024

Problem B.

Input file:

standard input

Output file:

standard output

Time limit:

3 seconds

Memory limit:

1024 megabytes

You are given multiple pairs of equations representing straight lines in a 2D plane. Each equation is of the form ax + by + c = 0. Your task is to determine if the two equations in each pair represent the same line.

Two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are considered the same if there exists a non-zero constant k such that:

- $\bullet \ a_1 = k \cdot a_2$
- $\bullet \ b_1 = k \cdot b_2$
- $c_1 = k \cdot c_2$

Input

The first line of the input contains an integer T ($1 \le T \le 10^5$), the number of test cases.

Each of the next *T* lines contains six integers $a_1, b_1, c_1, a_2, b_2, c_2$ ($-10^{18} \le a_1, b_1, c_1, a_2, b_2, c_2 \le 10^{18}$), representing two equations of the form $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$.

Output

For each test case, output YES if the two lines are the same, otherwise output NO.

Example

standard input	standard output
3	YES
1 2 3 2 4 6	YES
1 -1 2 -2 2 -4	NO
1 1 1 1 1 2	

Note

In the first test case, the second line is exactly twice the first line, so they are the same.

In the second test case, the second line is exactly -2 times the first line, so they are the same.

In the third test case, the lines are clearly not the same as their coefficients do not satisfy the condition.

CS496 Selected Topics in Computer Science-2 FinalExam Spring 2024 Cairo University, June, 2,2024

Problem C.

Input file:

standard input standard output

Output file: Time limit:

2 seconds

Memory limit:

1024 megabytes

SCCA190

You are given a connected undirected graph with n vertices and m edges. Your task is to identify all the articulation points and bridges in the graph.

An articulation point (or cut vertex) is a vertex which, when removed (along with all the edges incident to it), increases the number of connected components of the graph.

A bridge (or cut edge) is an edge which, when removed, increases the number of connected components of the graph.

You need to find:

- 1. The number of articulation points and their IDs (sorted in ascending order, 0-based).
- 2. The number of bridges and their IDs (sorted in ascending order, 0-based as given in the input).

Input

The first line contains two integers n and m $(1 \le n \le 10^5, 0 \le m \le 10^5)$ — the number of vertices and edges in the graph respectively.

Each of the next m lines contains two integers u and v ($0 \le u, v < n$), describing an edge between vertex u and vertex v. It is guaranteed that the graph is connected.

Output

The first line should contain a single integer a — the number of articulation points.

The second line should contain a integers — the IDs of the articulation points sorted in ascending order.

The third line should contain a single integer b — the number of bridges.

The fourth line should contain b integers — the IDs of the bridges 0-based by the order they appeared in the input.

Example

standard input 10 11 3 8 0 2 3 1 2 9 8 1 3 5 0 3 8 2 6 0 3 0 3 6 7
8 4

Problem F.

Input file: Output file: standard input standard output

Time limit:

5 seconds

Memory limit:

1024 megabytes

Given a network with n cities and m one-way roads, each road connects city u to city v and has a maximum capacity c. Boss need to transport goods from city 1 to city n. The roads have a capacity limit, so moving more than c units of goods on a road will cause it to fail.

Your task is to determine the maximum number of goods that can be safely transported from city 1 to city n.

Input

The first line will contain T ($1 \le T \le 100$) the number of test cases.

Each test case will start with two space-separated integers n, and m

Then m lines follow, each line contains three space-separated integers u, v and c $(1 \le u, v \le n)$ $(1 \le c \le 10)$ which means there is directed road from city u to city v with capacity of c.

Output

For each test case, print a single integer the maximum number of pieces can be moved from city 1 to city n.

Scoring

Sub task #1 (100 points): $(1 \le n, m \le 100)$

Example

standard input	standard output	
3	20	
3 3	15	
1 2 10	0	
2 3 10		
1 3 10		
4 5		
1 2 10		
2 3 15		
1 3 5		
2 4 2		
3 4 40		
4 1		
1 2 10		

0 10 2 XIII) 5 15 YO

202/06/4

2 Least CS496 Selected Topics in Computer Science-2 FinalExam Spring 2024 Cairo University, June, 2,2024

Problem A.

Input file:

standard input

Output file:

standard output

Time limit:

2 seconds

Memory limit:

1024 megabytes

You are given a string S and a pattern P. Your task is to count the number of occurrences of P in S.

Input

The first line contains the text string S.

The second line contains the pattern string P.

Both strings contain lowercase Latin characters only.

Output

Print the number of occurrences of P in S.

Scoring

Subtask 1 (10 points): $(1 \le |S|, |P| \le 100)$.

Subtask 2 (20 points): $(1 \le |S|, |P| \le 5 \cdot 10^3)$.

Subtask 3 (70 points): $(1 \le |S|, |P| \le 10^6)$.

Where || is the string length.

Each subtask depends on its previous subtasks.

Examples

abaabab aba	standard output
aurauraura	3
axaaxbaaaabaa	5

Cairo University, June, 2,2024

Problem D.

Input file:

standard input

Output file:

standard output

Time limit:

1 second

TOWN Seavan Mnesy and Fegla are best friends living in a city represented by a coordinate system. Given their locations and a railway line the and a railway line, they want to meet on the railway line at a point such that their total travel distance is minimized is minimized.

Input

The input consists of four lines:

- The first line contains two integers x_1 and y_1 ($-10^9 \le x_1, y_1 \le 10^9$), the coordinates of Mnesy's location.
- The second line contains two integers x_2 and y_2 ($-10^9 \le x_2, y_2 \le 10^9$), the coordinates of Fegla's location.
- The third line contains two integers a_1 and b_1 ($-10^9 \le a_1, b_1 \le 10^9$), the coordinates of the first point on the railway line.
- The fourth line contains two integers a_2 and b_2 ($-10^9 \le a_2, b_2 \le 10^9$), the coordinates of the second point on the railway line.

Output

Output a single floating-point number, the minimized total distance Mnesy and Fegla have to travel to meet on the railway line. The answer should be accurate up to six decimal places.

Example

standard input	standard output
1 2	3.162278
3 4	
0 0	
4 4	

Note

- Ensure that both initial points (x_1, y_1) and (x_2, y_2) are on the same side of the railway line.
- he points defining the railway line (a_1, b_1) and (a_2, b_2) are distinct and the line they define is valid.
- Mnesy's and Fegla's initial positions are not on the railway line.

2/16

CS496 Selected Topics in Computer Science-2 FinalExam Spring 2024 Cairo University, June, 2,2024

Problem E.

Input file: standard input Output file: standard output Time limit:

2 seconds Memory limit: 1024 megabytes

Given a graph consists of n nodes and m bidirectional edges, find a route that traverses each edge exactly τ times, starting and ending at any vertex, or determine if such a route does not exist.

The first line contains a single integer t ($1 \le t \le 55$) denoting the number of test cases.

The first line of each test case contains three space-separated integers n, m and x (1 $\leq n \leq$ 500)

The next m lines of each test case, each contains two space-separated integers u and v $(1 \le u, v \le n)$ which means there is an undirected edge from node u to node v.

Output

For each test case, if there is no route print -1 otherwise print a single line containing the sequence of the route, if there are multiple solutions print any of them.

Scoring

Sub task #1 (60 points): (x = 1)Sub task #2 (40 points): $(1 \le x \le 5)$

Example

standard input	standard output
3	1 2 1 6 5 2 3 4
671	-1
2 5	3 1 2 3 4
1 6	
1 2	
2	
3	
3 4	
6	
4 1	
2	
3	
3	
4	
4 1	
2	
3	
3	
4	