A Rede de Computadores

Time Limit: 3s

O professor da disciplina Fundamentos de Redes dividiu a turma em N grupos, numerados de 1 a N. Cada grupo i teria que rodar um experimento de uma rede de computadores, com as seguintes condições:

- 1. o grupo seria composto por n_i alunos;
- 2. o experimento teria duração de uma hora;
- 3. a rede de teria de ser composta por, no mínimo, n_i computadores conectados, isto é, dados quaisquer dois computadores distintos da rede, é possível trocar mensagens entre estes computadores, direta ou indiretamente;
- 4. durante a execução de um experimento, uma rede de computadores conectados pode ser utilizada apenas por um único grupo.

A universidade possui M computadores em rede disponíveis para os experimentos dos alunos, rotulados $C1, C2, \ldots, CM$. Contudo, devido a falhas nos cabeamentos e equipamentos, e também em razão da distribuição física dos computadores, dados dois computadores Ci e Cj, com $i \neq j$, pode ser possível ou não trocar mensagens entre eles.

Dadas as composições dos grupos e as conexões entre os computadores da universidade, determine o número máximo de grupos que podem trabalhar na universidade, simultaneamente, no intervalo de uma hora.

Entrada

A entrada é composta de T ($1 \le T \le 15$) casos de teste, onde o valor de T é dado na primeira linha da entrada.

A primeira linha de um caso de teste contém os inteiros N ($1 \le N \le 1.000$) e M ($1 \le M \le 100.000$), separados um espaço em breve, representando o número de grupos de alunos e o número de computadores da universidade, respectivamente.

A segunda linha contém N inteiros positivos n_i ($1 \le n_i \le 100$), separados por espaços em branco, representando o número de alunos que compõem o grupo i ($1 \le i \le N$).

A terceira linha contém um inteiro P ($0 \le P \le 300.000, P \le M(M-1)/2$), que indica o número de conexões entre os computadores da universidade.

As P linhas seguintes contém uma conexão cada, indicada por um par de rótulos Cj, Ck ($1 \le j, k \le M, j \ne k$), separados um espaço em branco, que significa que é possível trocar mensagens, direta ou indiretamente, entre os computadores Cj e Ck.

Saída

Para cada caso de teste deve ser impressa a mensagem "Caso #t: G grupo(s)", onde t é o número do caso de teste (cuja contagem inicia com o número 1) e G é o número máximo de equipes que podem trabalhar, simultaneamente, conforme detalhado anteriormente. Cada mensagem deve ser seguida de uma quebra de linha.

Exemplos de entradas	Exemplos de saídas
1 3 3	Caso #1: 3 grupo(s)
1 1 1	
0	
3	Caso #1: 2 grupo(s)
2 4	Caso #2: 1 grupo(s)
2 2	Caso #3: 1 grupo(s)
2	
C1 C4	
C2 C3	
2 4	
2 2	
2	
C1 C4	
C2 C1 4 10	
5 5 5 5	
8	
C1 C8	
C2 C5	
C9 C3	
C4 C10	
C7 C6	
C1 C6	
C4 C7	
C3 C2	

Este problema foi elaborado para ensino e docência. Quaisquer coincidências com problemas já existentes favor entrar em contato (edsonalves@unb.br) para que as devidas providências sejam tomadas.