Week 9 Graph Sketching & Kinematics Lecture Note

Notebook: Computational Mathematics

Created: 2020-04-21 2:48 PM **Updated:** 2020-05-22 5:27 PM

Author: SUKHJIT MANN

Cornell Notes

Topic:

Graph Sketching & Kinematics

Course: BSc Computer Science

Class: Computational Mathematics[Lecture]

Date: May 22, 2020

Essential Question:

What is a function and what are its applications to kinematics (simple motion)?

Questions/Cues:

- What is the definition of a function?
- What are surjective, injective and bijective functions?
- What are Cartesian Coordinates?
- What is the Distance Formula used to find the distance between two points P and Q?

Notes

What is a function?

A function f(x) links elements x,y of two sets X and Y

f(x) tells you what to do with an input x:

ex. f(x)=2x+4 multiply by 2 and add 4

f(3)=2×3+4=10 f(-1)=2×(-1)+4=2

f(13)=2×13+4=143

Domain of a function: elements of X on which f is defined

ex. -4<x<4 or (-4,4): all values between -4 and 4 excluding -4,4

45x54 or [-4,4] includes -4,4

-4<x≤4 or [-4,4] includes 4 not -4

-4≤x<4 U 6<x<8 or (-4,4) U (6,8) etc...

Codomain of a function: elements of Y linked by f to X

(codomain also called range or image)

- o the function f(x) = 2x+4 maps a real number to a real number; the domain is the set of all real number
- The domain and range can also be restricted and written in interval notation by inequalities or braces like above

What is a function?

Domain X Codomain Y

Surjective function: to each y∈Y →at least one x∈X

Injective function:

to each x∈X → only one distinct y∈Y

Bijective function: Injective+Surjective

• A bijective function has one-to-one correspondence, it's a one-to-one function

Cartesian Coordinates

System of two perpendicular axes, x,y, to map and label points on the plane:

each point P is labeled by a pair of numbers (x,y)

x is the length of the projection of the point on the x-axis

and y is the length of the projection of the point on y-axis

Generic point on y-axis P(0,y) Generic point on x-axis P(x,0)

Distance between P and Q:

Using Pythagoras theorem

$$d_{PO} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Examples: f(x)= -2x+4 Domain R

	-5	-4	-3	-1	EW.	0
f(x)	=-2(-5)+4=14	=12	=10	-8	-6	-4
coordinates	(-5, 14)	(-4,12)	(-3,10)	(-2,8)	(-1,6)	(0,4)

¥	1	2	ä	4	5	
f(x)	=-2(1)+4=2	=0	=-2	=-4		
coordinates	(1,2)	(2,0)	(3,-2)	(4, 4)		

Note: β=180-α tan(β)=a/b=4/2 =2

In general for a straight line y=mx+n

with restan(o)

In our case n=4 m=tan(a)=-tan(β)=-2

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=-2(0)+4=4 Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=0 Solve -2x₀+4=0 \rightarrow 2 x₀=4 \rightarrow x₀=2

Examples: quadratic function $f(x) = x^2-4x$ D= R

	2.0	-3	-1
$\ell(\mathbf{a})$	-(-3)2+12-21	-12	-5
coordinates	(-3,21)	(-2,12)	(-1.5)

	0		2
f(x)	-0	2-3	7-9
coordinates	10,01	(1,-3)	124)

×	Table 1	C9 10	100	6
f(a)	-(3)2-12-3	-0	- 5	-12
coordinates	(1,-3)	(4,0)	(5.5)	(6,12)

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=(0)²-4(0)=0 Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=x₀²-4x₀=0

Solve $x_0^2 - 4x_0 = x_0(x_0 - 4) = 0 \rightarrow x_0 = 0$, $x_0 = 4$

Generic quadratic function f(x)= ax2+bx +c

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=a(0)²+b(0)+c=c Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=ax₀²+bx₀+c=0

Solve $ax_0^2+bx_0+c=0 \rightarrow x_0=(-b\pm\sqrt{(b^2-4ac)})/(2a)$

Cubic function $f(x)=ax^3+bx^2+cx+d$ Ex: x^3-4x D=R

*	4		127	1		1
f(x)	=(-4)*-4(-4)=-48	=(-3)*-4(-3)=-15	=(-2)*-4(-2)=0	-1	=0	=-3
coordinates	(-4,-48)	(-3,-15)	(-2,0)	(-1,3)	(0,0)	(1,-3)

*	2		a.
f(x)	=(2)3-4(2)=0	=(3)3-4(3)=15	=48
coordinates	(2,0)	(3,15)	(4,48)

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=(0)³-4(0)=0

Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=x₀³-4x₀=0

Solve $x_0^3-4x_0=x_0(x_0^2-4)=0$ $\rightarrow x_0=0$, $x_0=\pm 2$

Note: a vertical line intersects the curve in <u>only one point</u> → single-valued functions

In this week, we learned about what a function, surjective/injective functions, the Cartesian coordinate system and distance formula.