

最优化理论 Optimality Theory

目录(CONTENT)

- 01 课程简介(Introduction)
- 02 线性规划(Linear Programming)
- 03 非线性规划(Non-Linear Programming)
- 04 整数规划(Integer Programming)
- 05 动态规划(Dynamic Programming)

单纯形方法 Simplex Method

■ 主要内容

- ▶ 单纯形方法原理
- ➤ 两阶段法和大M方法
- ▶ 退化情形
- ▶ 修正单纯形方法

■ 单纯形法基本思路

有选择地取(而不是枚举所有的)基本可行解,即是从可行域的一个顶点出发,沿着可行域的边界移到另一个相邻的顶点,要求新顶点的目标函数值不比原目标函数值差,如此迭代,

- 纯形法的基本过程

■ 表格法

f

 \mathcal{X}_{B}

 \mathcal{X}_N

右端

 \mathcal{X}_{B}

f

0	I_m	$B^{-1}N$	$B^{-1}b$
1	0	$c_B B^{-1} N$ - c_N	$c_B B^{-1} b$

$$\min f$$

s.t.
$$x_B + B^{-1}Nx_N = B^{-1}b$$
,
 $f + 0 \cdot x_B + (c_B B^{-1}N - c_N)x_N = c_B B^{-1}b$
 $x_B \ge 0, x_N \ge 0$

表格法

$$i \Box B^{-1}N = B^{-1}(A_{N(1)}, A_{N(2)}, ..., A_{N(n-m)})
= (B^{-1}A_{N(1)}, B^{-1}A_{N(2)}, ..., B^{-1}A_{N(n-m)})
= (y_{N(1)}, y_{N(2)}, ..., y_{N(n-m)})
B^{-1}b = (\overline{b_1}, \overline{b_2}, ..., \overline{b_3}),
(c_B B^{-1}N - c_N)_i = (c_B B^{-1}A_i - c_i) = -\overline{c_i} = (z_i - c_i)$$

■ 表格法

单纯形表

右端向量

离基变量

进基变量

	\boldsymbol{x}_{1}	•••	X_r		\boldsymbol{x}_{m}	\boldsymbol{x}_{m+1}	•••	X_k	•••	X_n	RHS
	0	•••	0	•••	0	$-\overline{c}_{m+1}$	•••	$-\overline{c}_k$	•••	$-\overline{c}_n$	z_0
\mathbf{x}_1	1	•••	0	•••	0	\overline{a}_{1m+1}	•••	\overline{a}_{1k}	•••	\overline{a}_{1n}	$\overline{m{b}}_{\!\scriptscriptstyle 1}$
•	•	••	•		•	•		•		•	•
x_r	0	•••	1	•••	0	\overline{a}_{rm+1}	•••	\overline{a}_{rk}^*	•••	\overline{a}_{rn}	$\overline{m{b}}_{\!r}$
•	•		•	•••	•	•		/ :		•	• •
\mathcal{X}_{m}	0	•••	0	•••	1	\overline{a}_{mm+1}	/	\overline{a}_{mk}	•••	\overline{a}_{mn}	$\overline{m{b}}_{\!m}$

■ 两阶段法

第一阶段: 不考虑原LP问题是否有基可行解,添加人工变量,构造仅含人工变量的目标函数,得辅助规划(3.2.4)

单纯型法求解上述模型,若有目标函数=0,说明原问题存在初始基本可行解,转入第二阶段。否则,原问题无可行解,计算停止。

第二阶段:将第一阶段计算得到的最终表,除去人工变量,从该初始基本可行解开始,用单纯形法求原问题的最优解或判定原问题无界。

■ 大M法

现在关键是如何选取目标函数,因要包含原问题, 所以必须包含原目标。联系到两阶段法,我们要强 迫人工变量取值为0,于是加上一个惩罚因子,因为 是极小化,所以希望这个惩罚因子越大越好!!

在目标函数中增加 $M\sum_{i=1}^{m}x_{n+i}$ 项,得如下规划

$$\min z = c^{\mathrm{T}} x + M \sum_{i=n+1}^{n+m} x_i$$

$$s.t.\begin{cases} Ax + x_{\alpha} = b \\ x \ge 0, x_{\alpha} \ge 0 \end{cases}$$

■ 单人工变量技巧

引入单个人工变量 x_q :由(3.2.15)得,

$$x_{\mathbf{B}} + \mathbf{B}^{-1} N x_{N} - x_{\alpha} \mathbf{e} = \overline{\mathbf{b}}, \quad (3.2.16)$$
$$x \ge 0, \ x_{\alpha} \ge 0$$

其中 $e = (1,1,...,1)^T$ 为分量全为一的m维列向量. 下面考虑如何求得(3.2.16)的一个BFS. 设 $\bar{b} = (\bar{b_1},\bar{b_2},...,\bar{b_m})$.

$$\Leftrightarrow \quad \overline{b}_r = \min\{\overline{b}_i\} < 0.$$

将 x_{α} 引入基:以第r行为主行,经主元消去,则 x_{α} 将进基。

此时右端向量变为:
$$\begin{cases} \overline{b_r'} = -\overline{b_r} \\ \overline{b_i'} = \overline{b_i} - \overline{b_r}, \quad i \neq r. \end{cases}$$

于是得到 (3.2.16) 的一个BFS, x_{α} 为基变量. 从而可以用两阶段或大M方法求得最优解。

■ 单人工变量技巧

$$\min x_1 + 2x_2$$
s.t. $x_1 - x_2 \ge 1$,
$$-x_1 + 2x_2 \ge 2$$

 $x_1, x_2 \geq 0,$

引进松驰变量x3,x4,化为标准型

$$\min \ x_1 + 2x_2$$

s.t.
$$x_1 - x_2 - x_3 = 1$$
,
 $-x_1 + 2x_2 - x_4 = 2$
 $x_i \ge 0, i = 1, 2, ..., 4$

■ 单人工变量技巧

引进松驰变量x3,x4,化为标准型

min
$$x_1 + 2x_2$$

s.t. $x_1 - x_2 - x_3 = 1$,
 $-x_1 + 2x_2 - x_4 = 2$
 $x_i \ge 0, i = 1, 2, ..., 4$

等式两端乘以(-1),引进人工变量x5,化为

$$\begin{cases}
-x_1 + x_2 + x_3 = -1, \\
x_1 - 2x_2 + x_4 = -2 \implies (3.2.17)
\end{cases}
-x_1 + x_2 + x_3 - x_5 = -1, \\
x_1 - 2x_2 + x_4 - x_5 = -2, \\
x_i \ge 0, i = 1, 2, ..., 4$$

- 单人工变量技巧
 - 利用表格形式求解一个(3.2.17)的BFS:

				\mathcal{X}_4		
X_3	-2 -1	3	1	-1	0	1
X_5	-1	2	0	-1	1	2

■ 单人工变量技巧

• 于是得到(3.2.17)的一个BFS,下面再用两阶段 (或大M)法求解之. $\min x_5$

$$-2x_1 + 3x_2 + x_3 - x_4 = 1,$$

$$-x_1 + 2x_2 - x_4 + x_5 = 2$$

$$x_i \ge 0, i = 1, 2, ..., 5$$

				\mathcal{X}_4		
$[x_3]$	-2 -1 -1	[3]	1	-1	0	1
X_5	-1	2	0	-1	1	2
	-1	2	0	-1	0	2

单人工变量技巧

 χ_3 \mathcal{X}_4 X_5

\mathcal{X}_2	$-\frac{2}{3}$	1	1/3	-1/
X_5	1/3	0	$-\frac{2}{3}$	-}

 X_1 X_2 X_3

$$-\frac{7}{3}$$
 1 $\frac{7}{3}$ $-\frac{7}{3}$ 0 $\frac{7}{3}$ $\frac{1}{3}$ 0 $\frac{7}{3}$ 1 $\frac{7}{3}$ 0 $-\frac{2}{3}$ $-\frac{1}{3}$ 1 $\frac{4}{3}$ 1 $\frac{7}{3}$ 0 $-\frac{2}{3}$ $-\frac{1}{3}$ 0 $\frac{4}{3}$

	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4
x_2	0	1	-1	-1
\mathcal{X}_1	1	0	-2	-1
	0	0	0	0

 X_5

■ 单人工变量技巧

• 于是得到进行第二阶段时的初始表。

	\mathcal{X}_1	\mathcal{X}_2	X_3	\mathcal{X}_4	
\mathcal{X}_2	0	1	-1	-1	3
\mathcal{X}_1	1	0	-1 -2	-1	4
	0	0	-4	-3	10

•由上知道这是最优单纯形表。

■ 退化情形

• 单纯形法收敛定理要求BFS非退化,这个限制可以去掉吗? 试看下例。

例 (3.3.1): 用单纯形法求解下面的LP

$$\min -\frac{3}{4}x_4 + 20x_5 - \frac{1}{2}x_6 + 6x_7$$

$$x_1 + \frac{1}{4}x_4 - 8x_5 - x_6 + 9x_7 = 0$$

$$x_2 + \frac{1}{2}x_4 - 12x_5 - \frac{1}{2}x_6 + 3x_7 = 0$$

$$x_3 + x_6 = 1$$

$$x_i \ge 0, i = 1, 2, ..., 7$$

• 注意到该LP有一个明显的BFS

$$x=(0, 0, 1, 0, 0, 0, 0)$$

■ 退化情形

	x_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5	\mathcal{X}_{6}	\mathcal{X}_7	
\mathcal{X}_1	1	0	0	1/4	-8	-1	9	0
x_2	0	1	0	$\frac{1}{2}$	-8 -12 0	$-\frac{1}{2}$	3	0
X_3	0	0	1	0	0	1	0	1
	0	0	0	3/4	-20	1/2	-6	0

■ 退化情形

X_4	4	0	0	1	-32	-4	36	0
X_2	-2	1	0	0	4	$\frac{3}{2}$	-15	0
X_3	0	0	1	0	-32 4 0	1	0	1
	-3	0	0	0	4	3.5	-33	0

■ 退化情形

X_4	4	8	0	1	0	8	-84	0
x_5	$-\frac{1}{2}$	1/4	0	0	1	3/8	$-\frac{15}{4}$	0
x_3	4 -½ 0	0	1	0	0	1	0	1
	-1	-1	0	0	0	2	-18	0

■ 退化情形

x_6	$-\frac{3}{2}$	1	0	1/8	0	1	$-\frac{21}{2}$	0
X_5	1/ ₁₆	$-\frac{1}{8}$	0	$-\frac{3}{64}$	1	0	3/16	0
x_3	3/2	-1	1	$\frac{1}{8}$ $-\frac{3}{64}$ $-\frac{1}{8}$	0	0	21/2	1
	2	-3	0	1/4	0	0	3	0

■ 退化情形

X_6	2	-6	0	$-\frac{5}{2}$	56	1	0	0
x_7	1/3	$-\frac{2}{3}$	0	$-\frac{1}{4}$	16/3	0	1	0
x_3	-2	6	1	5/2	-56	0	0	1
1					-16			

■ 退化情形

x_1	1	-3	0	$-\frac{5}{4}$	28	1/2	0	0
X_7	0	1/3	0	1/6	– 4	$-\frac{1}{6}$	1	0
X_3	0	0	1	0	28 -4 0	1	0	1
	0	2	0	7/4	-44	$-\frac{1}{2}$	0	0

■ 退化情形

X_1	1	-3	0	$-\frac{5}{4}$	28	1/2	0	0
X_7	0	1/3	0	1/6	– 4	$-\frac{1}{6}$	1	0
x_3	0	0	1	0	28 -4 0	1	0	1
	0	2	0	7/4	-44	-½	0	0

■ 退化情形

	\boldsymbol{x}_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	x_6	\mathcal{X}_7	
\mathcal{X}_1	1	0	0	1/4	-8	-1	9	0
x_2	0	1	0	1/2	-12	$-\frac{1}{2}$	3	0
x_3	0	0	1	0	0	1	0	1
	0	0	0	3/4	-8 -12 0 -20	1/2	-6	0

■ 退化情形

初始表如下:

第6次迭代如下:

•	\mathcal{X}_1	\mathcal{X}_2	x_3	\mathcal{X}_4	\mathcal{X}_5	x_6	\mathcal{X}_7	
x_1	1	0	0	1/4	-8	-1	9	0
x_2	0	1	0	$\frac{1}{2}$	-12	$-\frac{1}{2}$	3	0
x_3	0	0	1	0	0	1	0	1
	0	0	0	3/4	-8 -12 0 -20	1/2	-6	0

■ 退化情形

- 前例表明算法会无限循环下去,能否找到一种办法避免出现这种情况?
 - (a) 摄动法

考虑 min
$$cx$$

s.t. $Ax = b$, $i = 1, 2, ...m$
 $x \ge 0$, (3.3.1)

设 $A = [B, N], x = (x_B, x_N), x_B$ 为基变量, x_N 为非基变量 $x_B + B^{-1}Nx_N = B^{-1}b = \overline{b}$ (3.2.15)

退化情形

• 下面讨论这种办法的可行性。

对右端向量b作如下摄动。令

$$b(\varepsilon) = b + \sum_{j=1}^{n} \varepsilon^{j} p_{j}, \qquad (3.3.2)$$

其中 $\epsilon > 0$ 充分小, ϵ^{j} 表示 ϵ 的j次方, p_{i} 是A的第j列。

于是得(3.3.1) 的摄动问题:

min
$$cx$$

 $s.t.$ $Ax = b(\varepsilon),$ $i = 1, 2, ...m$
 $x \ge 0,$ (3.3.3)

■ 退化情形

下面我们将证明当适当对ε取值时,LP(3.3.3)非退化,且可以通过求解LP(3.3.3)来确定原LP(3.3.1)的最优解或得出其他结论。

定理3.3.1 对于LP(3.3.1),存在实数 $ε_1 > 0$,使得 $0 < ε < ε_1$ 时,

摄动问题(3.3.3)非退化。

定理3.3.2 设对于充分小 $\varepsilon > 0$, $\hat{x}(\varepsilon)$ 是摄动问题(3.3.3)

的BFS,则 $\hat{x}(0)$ 是LP(3.3.1)的BFS。

推论 设对于充分小 $\varepsilon > 0$, $\hat{x}(\varepsilon)$ 是摄动问题(3.3.3)的最优解,

则 $\hat{x}(0)$ 是LP(3.3.1)的最优解。

定理3.3.3 若摄动问题(3.3.3)无可行解,则LP(3.3.1)无可行解。

定理3.3.4 设对于充分小 ε > 0,摄动问题(3.3.3)无界,则LP问

题(3.3.1)也无界。

■ 退化情形

- 前面分析表明摄动问题当ε>0充分小时非退化,因此可以避免循环,并且通过求解摄动问题一定能够给出线性规划 (3.3.1)的解答。
- 下一个问题是如何求解摄动问题?此时需要处理两个问题: (1) 初始可行解; (2) 迭代过程中如何处理 $b(\varepsilon)$.

注意到 $B^{-1}b \ge 0$ 并不能保证 $B^{-1}b(\varepsilon) \ge 0$,因此不是直接由 LP(3.3.1)的BFS都可得到LP(3.3.3)的BFS,如下例:

$$\begin{cases} x_1 + x_2 = 1 \\ -x_1 + x_3 = 0 \\ x_i \ge 0 \end{cases}$$
 (3.3.7) \Rightarrow BFS $x^{(0)} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$,

■ 退化情形

• 对应的摄动问题约束为

$$\begin{cases} x_1 + x_2 = 1 + \varepsilon + \varepsilon^2 \\ -x_1 + x_3 = -\varepsilon + \varepsilon^3 \end{cases}$$

$$x_i \ge 0$$
(3.3.8)

⇒ BFS $x^{(0)}$ 对应(3.3.8)的基本解 $x^{(0)}(\varepsilon)^{\mathrm{T}} = (0,1+\varepsilon+\varepsilon^2,-\varepsilon+\varepsilon^3)$

不可行($0 < \varepsilon < 1$ 时),

幸运的是我们可以通过将变量下标进行适当调整,使得上述情况不出现。改变标号,使得(3.3.8)为如下等价约束:

■ 退化情形

(3.3.9)的BFS $x^{(0)}=(1,0,0)$ 对应(3.3.1)的BFS

 $x^{(0)}(\varepsilon)^{\mathrm{T}} = (1+\varepsilon+\varepsilon^2, \varepsilon^2-\varepsilon^3, 0)(\varepsilon 充分小),$ • 一般地,若已知LP(3.3.1)的一个BFS,则进行列调换,把

基列排在非基列的左边,并相应地改变变量的下标,使其从1 开始按递增顺序排列,这样x1,x2,...,xm是基变量,然后再建立 摄动问题(3.3.3). 这时,若(3.3.1)的现行BFS是

$$\begin{cases} x_{i} = \overline{b}_{i}, & i=1,2,...,m, \\ x_{i} = 0, i = m+1,...,n. \end{cases}$$
 (3.3.11) \Rightarrow

$$\begin{cases} x_{i}(\varepsilon) = \overline{b}_{i} + \varepsilon^{i} + \sum_{j=m+1}^{n} y_{ij} \varepsilon^{j}, & i=1,2,...,m, \\ x_{i}(\varepsilon) = 0, i = m+1,...,n. \end{cases}$$
(3.3.12)

是摄动问题的一个 BFS 。

■ 退化情形

• 于是可以用单纯形法求解下去。但右端向量含有参数 ϵ ,这对计算有影响吗?实际上我们可以不必让 ϵ 取具体数字。注意到: $\bar{h}(\epsilon)$

 $\frac{\overline{b}_r(\varepsilon)}{y_{rk}} = \min\left\{\frac{\overline{b}_i(\varepsilon)}{y_{ik}} \middle| y_{ik} > 0\right\}$ (3.3.13),

$$\frac{\overline{b}_{i}(\varepsilon)}{y_{ik}} = \frac{\overline{b}_{i}}{y_{ik}} + \sum_{j=1}^{n} \frac{y_{ij}}{y_{ik}} \varepsilon^{j}, \quad (3.3.14)$$

ε是充分小的正数, 因此多项式(3.3.14)的大小主要决定于低次项,于是为确定最小比值,只需从ε的零次项开始,逐项比较幂的系数. 首先比较零次项,即 \bar{b}_i/y_{ik} ($y_{ik}>0$)零次项小的其比值比小. 零次项相同时再比较一次项, 依此下去. 即按多项式系数的字典序比较大小,选择最小者.

■ 退化情形

• 概言之,以如下步骤确定离基变量:

(a)令

$$I_0 = \left\{ r \left| \frac{\overline{b_r}}{y_{rk}} = \min \left\{ \frac{\overline{b_i}}{y_{ik}} \middle| y_{ik} > 0 \right\} \right\}$$

若 I_0 中只有一个元素r,则 x_B 为离基变量

(b) 置j=1.

(c)令

$$I_{j} = \left\{ r \middle| \frac{y_{rj}}{y_{rk}} = \min_{i \in I_{j-1}} \left\{ \frac{y_{ij}}{y_{ik}} \right\} \right\}$$

若 I_j 中只有一个元素r,则 x_{B_r} 为离基变量.

(d) 置j:=j+1,转(c).

退化情形

例:用摄动法解例(3.3.1),初始单纯形表如下

	x_1	\mathcal{X}_2	x_3	\mathcal{X}_{4}^{\prime}	X_5	x_6	\mathcal{X}_7	
x_1	1	0	0	1/4	-8	-1	9	0
x_2	0	1	0	1/2	-12	$-\frac{1}{2}$	3	0
X_3	0	0	1	0	0	1	0	1
	0	0	0	3/4	-8 -12 0 -20	1/2	-6	0

X_1	1	$-\frac{1}{2}$	0	0	-2	-3/4	15/2	0
X_4	0	2	0	1	-24	-1	6	0
X_3	0	0	1	0	0	(1)	0	1
	0	$-\frac{3}{2}$	0	0	-2	5/4	-21/2	0

■ 退化情形

X_1	1	$-\frac{1}{2}$	3/4	0	-2	0	15/2	3/4
X_4	0	2	1	1	-24	0	6	1
x_6	0	0	1	0	0	1	15/ ₂ 6 0	1
	0	$-\frac{3}{2}$	$-\frac{5}{4}$	0	-2	0	$-\frac{21}{2}$	$-\frac{5}{4}$

- •判别数满足,这是最优单纯形表。
- •最优解(3/4,0,0,1,0,1,0),最优值-5/4

■ 退化情形

Bland规则(退化问题的处理):

1> 设 $h = \min\{i \mid \xi_i > 0, 1 \le i \le n\}$, 其中 ξ_i 为检验数,确定 x_h 入基。

即在单纯形表中选最左边的正检验数对应的非基变量入基。

2> 如果有几个比值 $\frac{b_j}{a_{jh}}(a_{jh}>0)$ 达到最小值 θ ,则令

$$k = \min\{j \mid \frac{b_j}{a_{jh}} = \theta, 1 \le j \le m, a_{jh} > 0\}$$
,并确定 x_k 出基。

即在比值达到最小的行中,选最上面的那行所对应的基变量 x_k 出基。

注意 解LP问题时常遇到基本可行解退化的情形, 但在迭代过程中极少出现循环情形。

■ 退化情形

- 应该说明的是,
- 1.对于退化问题不用摄动法也不一定出现循环。
- 2.事实上,退化问题是常见的,但迭代中发生循环现象很少。
- 3.实际问题中,几乎不发生。
- 4.关于退化和循环的研究,主要是理论意义。

■ 修正单纯形方法

在前面单纯形方法的讨论中知道:每次迭代都要修改单纯形表中 $(m+1)\cdot(n+1)$ 个元素,我们能否避免这个计算?换言之,只计算一个较小的矩阵,如(m+1)(m+1)阶矩阵,并且当我们需要计算检验数 $\overline{c}_j = c_j - c_B B^{-1} A_j$ 和列 $B^{-1} A_i = y_i$ 时能够立即计算出来??

下面我们将介绍一种方法:修正单纯形方法.

基本思想: 给定初始基本可行解以后通过修改旧基的逆B⁻¹来获得新基的逆B⁻¹,进而完成单纯形法的其他运算。在整个过程中始终保存现行基的逆。

	\mathbf{X}_1	X_2	X ₃	X_4	X5	X ₆	R Hasan Un	iversity Of Technology
z'	2	3	1	0	0	0	0	
X_4	1	[3]	1	1	0	0	15	15/3
X_5	2	3	-1	0	1	0	18	18/3
\mathbf{x}_6	1	-1	1	0	0	1	3	_

初始单纯型表

$$(B,I) \rightarrow (I,B^{-1})$$

$$(B,I) \to (I,B^{-1}) \quad B = (A_2 \ A_1 \ A_3) = \begin{pmatrix} 3 & 1 & 1 \\ 3 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

最优单纯	型表	\mathbf{X}_1	\mathbf{X}_2	X ₃	X_4	X 5	\mathbf{X}_6	RHS	
	z'	0	0	0	-5/6	-1/3	-1/2	-20	
	\mathbf{X}_2	0	1	0	1/4	0	-1/ 4	3	
	\mathbf{x}_1	1	0	0	-1/6	1/3	1/2	5	
	X 3	0	0	1	5/12	-1/3	1/4	1	

最优解:
$$(x_1,x_2,x_3,x_4,x_5x_6)=(5,3,1,0,0,0)$$
, max z=20

■ 修正单纯形方法

怎样由修改 B^{-1} 来获得 \hat{B}^{-1} 呢?为此考察它们之间的关系: 设在某次迭代时,主元消去前,可行基为:

$$B = (p_{B_1}, p_{B_2}, ..., p_{B_n}, ..., p_{B_m})$$
 (3.4.1)

主元消去后,新的可行基为

$$\hat{B} = (p_{B_1}, p_{B_2}, ..., p_k, ..., p_{B_m})$$
 (3.4.2)

回忆单纯形方法,不妨设初始单纯形表中系数矩阵含有单位阵,即系数矩阵为

$$(p_{B_1}, p_{B_2}, ..., p_{B_r}, ..., p_{B_m}, ..., p_k, ..., I),$$
 (3.4.3)

其中I是单位阵,它作为初始基. 当B作为基矩阵时,(3.4.3) 式就转化为: $(e_1,e_2,...,e_r,....,e_m,...,y_k,....,B^{-1})$, (3.4.4)

■ 修正单纯形方法

当取 \hat{B} 作为基矩阵时,应以 y_{rk} 为主元,通过主元消去运算把B化为单位矩阵,即把(3.4.4)化为:

$$(e_1, e_2, ..., y_{B_r},, e_m, ..., e_r,, \hat{B}^{-1}),$$
 (3.4.5)

由(3.4.4)和(3.4.5)可知, B^{-1} 经以 y_{rk} 为主元的主元消去,得到 \hat{B}^{-1} . 因此, B^{-1} 与 \hat{B}^{-1} 有如下关系:

$$\hat{b}_{ij} = b_{ij} - \frac{y_{ik}}{y_{rk}} b_{rj}, i \neq r,$$
 (3.4.6)

$$\hat{b}_{rj} = \frac{b_{rj}}{y_{rk}},\tag{3.4.7}$$

其中 $b_{ii}(\hat{b}_{ii})$ 是 $B^{-1}(\hat{B}^{-1})$ 的第i行第j列元素.

■ 退化情形

这样,有了初始表(即问题的系数矩阵,费用向量和右端向量子集组成),当前表*和基B,则修正单纯形方法就可进行下去了

■ 修正单纯形方法

1) 给定初始可行基的逆 B^{-1} , 计算单纯形乘子 $w = c_B B^{-1}$, 右端向量 $\overline{b} = B^{-1}b$ 。组成下表

W	$c_{\scriptscriptstyle B} \overline{b}$
\mathbf{B}^{-1}	b

- 2) 对每个非基变量计算判别数 $z_j c_j = w \cdot p_j c_j$; 令 $z_k c_k = \max\{z_j c_j\}.$ 若 $z_k c_k \le 0$,则停止计算,当前BFS即最优解,否则转步(3)。
- 3) 计算主列 $y_k = B^{-1}p_k$.若 $y_k \le 0$,停止计算,问题无界. 否则转4

■ 修正单纯形方法

4) 把主列置于逆矩阵表的右边,组成下列表

	W	$c_{\scriptscriptstyle B} \overline{b}$
\mathcal{X}_{B}	B^{-1}	b

$$\frac{x_k}{z_k - c_k}$$

$$\frac{y_k}{y_k}$$

按最小比值确定主行,令

$$\frac{\overline{b}_r}{y_{rk}} = \min \left\{ \frac{\overline{b}_i}{y_{ik}} \middle| y_{rk} > 0 \right\}$$

r行为主行,以y_{rk}为主元进行主元消去,然后去掉原来的主列,返回步骤(2).

■ 修正单纯形方法

例3.4.1 用修正单纯形法解下列LP

min
$$2x_1 + x_2 - x_3 - 3x_4 + x_5$$

s.t. $-3x_1 + x_2 + x_3 - x_4 + 2x_5 \le 5$,
 $2x_1 - x_3 + x_4 - x_5 \le 6$,
 $x_2 + 2x_3 - x_4 + x_5 \le 3$,
 $x_j \ge 0, j = 1,...,5$

■ 修正单纯形方法

例3.4.1 用修正单纯形法解下列LP

标准形:

min
$$2x_1 + x_2 - x_3 - 3x_4 + x_5$$

s.t. $-3x_1 + x_2 + x_3 - x_4 + 2x_5 + x_6 = 5$,
 $2x_1 - x_3 + x_4 - x_5 + x_7 = 6$,
 $x_2 + 2x_3 - x_4 + x_5 + x_8 = 3$,
 $x_j \ge 0, j = 1, ..., 8$

■ 修正单纯形方法

约束方程的系数矩阵

$$A=(p_1,p_2,p_3,p_4,p_5,p_6,p_7,p_8)$$

$$= \begin{pmatrix} -3 & 1 & 1 & -1 & 2 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 6 \\ 3 \end{pmatrix}$$

取初始可行基 $B = (p_6, p_7, p_8) = I_3, \overline{b} = (5, 6, 3)^T$.

按定义计算单纯形乘子w=(0,0,0),目标函数值f=0,构造初表:

0	0	0	0
1	0	0	5
0	1	0	6
0	0	1	3

■ 修正单纯形方法

$$w=(0,0,0)$$

第1次迭代:

$$z_{1} - c_{1} = wp_{1} - c_{1} = (0,0,0)(-3,2,0)^{T} - 2 = -2;$$

$$z_{2} - c_{2} = wp_{2} - c_{2} = (0,0,0)(1,0,1)^{T} - 1 = -1;$$

$$z_{3} - c_{3} = wp_{3} - c_{3} = 1; \quad z_{4} - c_{4} = wp_{4} - c_{4} = 3$$

$$z_{5} - c_{5} = wp_{5} - c_{5} = -1$$

 $z_4 - c_4 = 3$ 为最大 $\Rightarrow x_4$ 为进基变量,计算主列

 $y_4 = B^{-1}p_4 = (-1,1,-1)^T$ 有唯一正分量⇒正分量对应行离基

0	0	0	0
1	0	0	5
0	1	0	6
0	0	1	3

3 -1 1 -1

■ 修正单纯形方法

以主列的元素y2=1为主元,做主元消去得:

	0	- 3	0	-18
x_6	1	1	0	1 1
x_4	0	1	0	6
x_8	0	1	1	9

第二次迭代

由上表知单纯形乘子w=(0,-3,0),下计算判别数

$$z_{1}-c_{1} = (0,-3,0)(-3,2,0)^{T}-2 = -8; z_{2}-c_{2} = (0,-3,0)(1,0,1)^{T}-1 = -1;$$

$$z_{3}-c_{3} = (0,-3,0)(1,-1,2)^{T}+1 = 4; z_{5}-c_{5} = (0,-3,0)(2,-1,1)^{T}-1 = 2;$$

$$z_{7}-c_{7} = (0,-3,0)(0,1,0)^{T}-0 = -3$$

$$\Rightarrow x_{3}$$
 进基

■ 修正单纯形方法

计算主列
$$y_3 = B^{-1}p_3 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

由于y,有正分量,故可选择离基变量,构造下表

	0	-3	0	-18
x_6	1	1	0	11
X_4	0	1	0	6
x_8	0	1	1	9

■ 修正单纯形方法

以у33=1为主元,做主元消去运算:

第3次迭代:

$$w = (0, -7, -4)$$

$$z_1 - c_1 = -16;$$

$$z_2 - c_2 = -5;$$

$$\mathbf{z}_5 - \mathbf{c}_5 = 2;$$

$$z_7 - c_7 = -7;$$

$$z_{8} - c_{8} = -4;$$

 $\Rightarrow x_5$ 进基

0	- 7	-4	-54
1	1	0	11
0	2	1	15
0	1	1	9

计算主列

 X_{4}

$$y_5 = B^{-1}p_5 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

■ 修正单纯形方法

由于火有正分量,故可选择离基变量,构造下表

	0	-7	-4	-54
x_6	1	1	0	1 1
x_4	0	2	1	15
x_3	0	1	1	9

 $\begin{array}{c|c} x_5 \\ \hline 2 \\ \hline -1 \\ 0 \\ \end{array}$

以y15做主元消去

	-2	- 9	-4	-76
x_5	1	1	0	1 1
x_4	1	3	1	26
x_3	0	1	1	9

■ 修正单纯形方法

第4次迭代

$$w = (-2, -9, -4)$$
 $z_1 - c_1 = -14; z_2 - c_2 = -7;$
 $z_6 - c_6 = -2; z_7 - c_7 = -9;$
 $z_8 - c_8 = -4; \Rightarrow 达到最优$
最优解: $(x_1, ..., x_5) = (0, 0, 9, 26, 11)$
最优值 $f_{min} = -76$

■ 逆的乘积形式

初看起来,用修改的(m+1)×(m+1)矩阵代替(m+1)×(n+1)的表,似乎明显的节省了计算量。然而这一方法需要计算原问题表中的yj和w•pj,若对每一个非基序列都要进行这样的计算,则需要m(n-m)次乘法。这个数量并不明显小于原单纯形算法中计算量。然而这个算法重要性在于其精巧和在其他一些问题上的很好应用。下面我们将给出一种改进形式的方法,其基的逆矩阵以乘积形式存储,从而节省了存储空间。

■ 逆的乘积形式

设有可行基矩阵

$$B = (p_{B_1}, p_{B_2}, ..., p_{B_n}, ..., p_{B_m})$$
 (3.4.1)

其逆 B^{-1} 已知. 设在迭代中用非基列 p_k 替换基列 p_B , 得新基

$$\hat{B} = (p_{B_1}, p_{B_2}, ..., p_k,, p_{B_m})$$

$$= (Be_1,, By_k,, Be_m)$$

$$= B(e_1,, y_k,, e_m) = BT$$
(3.4.8)

由(3.4.8)式得到

$$\hat{B}^{-1} = T^{-1} B^{-1} = EB^{-1}$$
 (3.4.9)

■ 逆的乘积形式

曲于
$$T = \begin{pmatrix} 1 & 0 & \dots & y_{1k} & \dots & 0 \\ 0 & 1 & \dots & y_{2k} & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & y_{rk} & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & y_{mk} & \dots & 1 \end{pmatrix}$$

$$1) = \begin{pmatrix} 1 & 0 & \dots & -\frac{y_{1k}}{y_{rk}} & \dots & 0 \\ 0 & 1 & \dots & -\frac{y_{2k}}{y_{rk}} & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \frac{1}{y_{rk}} & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & -\frac{y_{mk}}{y_{rk}} & \dots & 1 \end{pmatrix}$$

■ 逆的乘积形式

这样,新基的逆 \hat{B}^{-1} 就可表成初等矩阵E与旧基的逆 B^{-1} 的乘积。

若在第一次迭代中基的逆 $B^{-1}_{1} = I$,则第二次迭代中,基的逆

$$B_2^{-1} = E_1 \quad B_1^{-1} = E_1$$

在第三次迭代中, 基的逆

$$B_3^{-1} = E_2 B_2^{-1} = E_2 E_1$$

依次下去,一般的,第t次迭代,有

$$B_{t}^{-1} = E_{t-1} \quad B_{t-1}^{-1} = E_{t-1} E_{t-2} \dots E_{2} E_{1}$$
 (3.4.12)

■ 逆的乘积形式

下面讨论如何利用初等阵来计算单纯形方法中所需数据。

(1) 用初等阵E右乘一个行向量

$$cE = (c_1, c_2, \dots, c_m) \begin{pmatrix} 1 & \cdots & g_1 & \cdots & 0 \\ 0 & \cdots & g_2 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & g_m & \cdots & 1 \end{pmatrix}$$

■ 逆的乘积形式

(2) 用E左乘一个列向量

$$Ep = \begin{pmatrix} 1 & \dots & g_{1} & \dots & 0 \\ 0 & \dots & g_{2} & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & g_{m} & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{m} \end{pmatrix} = \begin{pmatrix} a_{1} \\ \vdots \\ a_{r-1} \\ 0 \\ a_{r+1} \\ \vdots \\ a_{m} \end{pmatrix} + a_{r} \begin{pmatrix} g_{1} \\ \vdots \\ g_{r-1} \\ g_{r} \\ g_{r+1} \\ \vdots \\ g_{m} \end{pmatrix}$$

$$= \hat{a} + a_r g \qquad (3.4.14)$$

■ 逆的乘积形式

(3)计算有关递推公式

计算单纯形乘子:

$$w = c_R B_t^{-1} = (((c_R E_{t-1}) E_{t-2} ...) E_1)$$
 (3.4.15)

计算主列

$$y_k = B_t^{-1} p_k = (E_{t-1}...(E_2(E_1 p_k)))$$
 (3.4.16)

计算右端列

$$\overline{b} = B_t^{-1}b = E_{t-1}(B_t^{-1}b) \tag{3.4.17}$$

■ 逆的乘积形式

例3.4.2,用改进修正单纯形法解LP

 $x_j \ge 0, j = 1,...,6$

min
$$x_1 - x_2 - 2x_3$$

s.t. $x_1 + x_2 + x_3 \le 8$,
 $-x_1 + x_2 - x_3 \le 2$,
 $-x_2 + 2x_3 \le 4$,
标准形: $x_j \ge 0$, $j = 1, 2, 3$
min $x_1 - x_2 - 2x_3$
s.t. $x_1 + x_2 + x_3 + x_4 = 8$,
 $-x_1 + x_2 - x_3 + x_5 = 2$,
 $-x_2 + 2x_3 + x_6 = 4$,

■ 逆的乘积形式

约束方程的系数矩阵

$$A = (p_1, p_2, p_3, p_4, p_5, p_6)$$

$$= \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ -1 & 1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 2 \\ 4 \end{pmatrix}$$

取初始可行基 $B_1 = (p_4, p_5, p_6) = I_3 = B_1^{-1}$, 第一次迭代:

$$\overline{b} = B_1^{-1}b = (5,6,3)^T,$$

$$x_B^T = (x_4, x_5, x_6) = (8,2,4), x_B^T = (x_1, x_2, x_3) = (0,0,0).$$
在当前*BFS*处目标函数值 $f = 0$ 。

■ 逆的乘积形式

$$W = c_B B_1^{-1} = (0,0,0)$$

$$z_1 - c_1 = wp_1 - c_1 = -1; z_2 - c_2 = wp_2 - c_2 = 1;$$

$$z_3 - c_3 = wp_3 - c_3 = 2; z_3 - c_3 = \max\{z_i - c_i\}$$

 $z_3 - c_3 = 3$ 为最大 $\Rightarrow x_3$ 为进基变量,计算主列

$$y_3 = B_1^{-1} p_3 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \Rightarrow x_6$$
 選基(min $\left\{ \frac{8}{1}, \frac{4}{2} \right\} = \frac{\overline{b_3}}{y_{33}}$)

初等阵E1的非单位向量列出现在r=3的位置,

即其第3列,由主列 y_3 得此列为 $g = \begin{pmatrix} -1/2 \\ 1/2 \\ 1/2 \end{pmatrix}$

■ 逆的乘积形式

在计算机中存储 $\begin{bmatrix} g \\ 3 \end{bmatrix}$,用它描述初等阵 E_1

第二次迭代

$$\overline{b} = E_{1}(B_{1}^{-1}b) = \begin{pmatrix} 8 \\ 2 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} -1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}, \quad w = c_{B}E_{1} \\
= (0, 0, -2)E_{1} = (0, 0, -1)$$

$$x_{B} = \begin{pmatrix} x_{4} \\ x_{5} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}, \quad x_{N} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{6} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad z_{1} - c_{1} = -1; \quad z_{2} - c_{2} = 2;$$

$$z_{1} - c_{1} = -1; \quad z_{2} - c_{2} = 2;$$

$$z_{2} - c_{3} = -1;$$

$$z_{1} - c_{1} = -1; \quad z_{2} - c_{2} = 2;$$

$$z_{2} - c_{3} = -1;$$

$$z_{3} - c_{4} = -1;$$

$$z_{4} - c_{5} = -1;$$

$$z_{5} - c_{6} = -1;$$

$$z_{7} - c_{1} = -1;$$

$$z_{7} - c_{1} = -1;$$

$$z_{7} - c_{1} = -1;$$

$$z_{7} - c_{7} = -1;$$

$$z_{7}$$

■ 逆的乘积形式

计算主列

$$y_2 = E_1 p_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} -1/2 \\ 1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 3/2 \\ 1/2 \\ -1/2 \end{pmatrix}$$

$$\frac{\overline{b_1}}{y_{12}} = \min\left\{\frac{6}{3/2}, \frac{4}{1/2}\right\} \Rightarrow x_4$$
 選基。

 E_2 的非单位列g出现在r=1的位置,由主列 y_2 得:

$$g = \begin{pmatrix} 2/3 \\ -1/3 \\ 1/3 \end{pmatrix}, 存储 \begin{bmatrix} g \\ 1 \end{bmatrix}$$

■ 逆的乘积形式

第3次迭代

$$\overline{b} = E_2(B_2^{-1}b) = E_2\begin{pmatrix} 6\\4\\2 \end{pmatrix} = \begin{pmatrix} 0\\4\\2 \end{pmatrix} + 6\begin{pmatrix} 2/3\\-1/3\\1/3 \end{pmatrix} = \begin{pmatrix} 4\\2\\4 \end{pmatrix},$$

$$\mathbf{x}_{\mathrm{B}} = \begin{pmatrix} \mathbf{x}_{2} \\ \mathbf{x}_{5} \\ \mathbf{x}_{3} \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 4 \end{pmatrix}, \ \mathbf{x}_{\mathrm{N}} = \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{4} \\ \mathbf{x}_{6} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$w = c_B E_2 E_1$$
 $f_3 = f_2 - \overline{b_1}(z_2 - c_2) = 4 - 2 \times 4 = -12.$ $= (-1, 0, -2)E_2 E_1 = (-\frac{3}{4}, 0, -\frac{1}{3})$ $z_1 - c_1 = -\frac{7}{3}; z_2 - c_2 = -4/3;$ $z_6 - c_6 = -1/3;$ \Rightarrow 最优.

小结和作业

■ 第五次作业

118页习题 1、2、3、4

小结和作业

■ 小结

- > 线性规划单纯形表
- ▶ 退化情形
- ▶ 修正单纯形法
- ▶ 逆的乘积形式