6. Vektorska algebra

1. Odredite duljinu vektora $\vec{a} = \vec{p} - 2\vec{q}$ ako je

$$|\vec{p}| = 2, \ |\vec{q}| = 3, \ \sphericalangle(\vec{p}, \vec{q}) = \frac{\pi}{6}.$$

- 2. Ako je vektor $\vec{c}=\vec{i}+y\vec{j}+z\vec{k}$ okomit na vektore $\vec{a}=\vec{i}-2\vec{j}+\vec{k}$ i $\vec{b}=-\vec{i}+\vec{j}+2\vec{k}$ izračunaj komponente y i z.
- 3. Zadane su točke $A(2,3,2), B(0,1,\underline{1}), C(4,4,0), D(\underline{8},6,6)$. Odredite vektorsku projekciju vektora \overrightarrow{AB} na vektor \overrightarrow{CD} i njenu duljinu.
- 4. Zadani su vektori \vec{a}, \vec{b} i \vec{c} takvi da \vec{a} i \vec{b} nisu kolinearni i vrijedi $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Izrazite vektor \vec{a} preko vektora \vec{c} i \vec{d} , gdje je $\vec{d} = 2\vec{a} + 3\vec{b}$.
- 5. Zadani su vektori \vec{p} i \vec{q} takvi da vrijedi

$$|\vec{p}| = 2, |\vec{q}| = 3, \langle (\vec{p}, \vec{q}) = \frac{\pi}{3}.$$

- (a) Izrazite vektor \vec{n} preko vektora \vec{p} i \vec{q} ako vrijedi $\vec{n}\cdot\vec{p}=7$ i $\vec{n}\cdot\vec{q}=3.$
- (b) Izrazite jedinični vektor vektora \vec{n} preko \vec{p} i \vec{q} .
- 6. Odredite vektor \vec{b} koji je kolinearan s vektorom $\vec{a}=(2,-1,2)$ i zadovoljava uvjet $\vec{a}\cdot\vec{b}=-18$.
- 7. Zadani su vektori $\vec{a}=(0,2\lambda,\lambda),\; \vec{b}=(2,2,1)$ i $\vec{c}=(-1,-2,-1).$
 - (a) Odredite λ iz uvjeta $(\vec{a} \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \lambda$.
 - (b) Odredite vektor \vec{d} iz uvjeta $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ i $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$.
 - (c) Pokažite da su vektori $\vec{a} \vec{d}$ i $\vec{b} \vec{c}$ kolinearni.
- 8. Odredite površinu trokuta što ga određuju vektori

$$\vec{a} = 2\vec{i} + 3\vec{j} + 5\vec{k}$$
 i $\vec{b} = \vec{i} + 2\vec{j} + \vec{k}$.

9. Odredite površinu trokuta s vrhovima A(1,1,1), B(2,3,4) i C(4,3,2).

1

- 10. Trokut ABC zadan je vektorima $\overrightarrow{AB} = 3\vec{p} 4\vec{q}$ i $\overrightarrow{BC} = \vec{p} + 5\vec{q}$, pri čemu je $|\vec{p}| = |\vec{q}| = 2$, $\sphericalangle(\vec{p}, \vec{q}) = \frac{\pi}{3}$. Odredite površinu P i visinu v_C spuštenu iz vrha C.
- 11. Odredite površinu P i visinu v_B spuštenu iz vrha B u trokutu ABC sa vrhovima A(1, -2, 8), B(0, 0, 4), C(6, 2, 0).
- 12. Neka su \vec{m} i \vec{n} jedinični vektori koji zatvaraju kut od $\frac{\pi}{4}$. Odredite površinu paralelograma s dijagonalama $\vec{e} = 2\vec{m} \vec{n}$ i $\vec{f} = 4\vec{m} 5\vec{n}$.
- 13. Neka su \vec{a} i \vec{b} jedinični vektori koji zatvaraju kut od $\frac{\pi}{3}$.
 - (a) Izračunajte površinu romba što ga razapinju vektori \vec{a} i \vec{b} .
 - (b) Izračunajte duljine dijagonala romba.
- 14. Zadani su vektori $\vec{a}=(1,2\alpha,1),\, \vec{b}=(2,\alpha,\alpha)$ i $\vec{c}=(3\alpha,2,-\alpha).$
 - (a) Nađite volumen paralelepipeda razapetog vektorima \vec{a}, \vec{b} i $\vec{c}.$
 - (b) Odredite α tako da \vec{a}, \vec{b} i \vec{c} budu komplanarni.
- 15. Zadane su točke A(1,2,1), B(3,-2,1), C(1,4,3) i D(5,0,5). Izračunajte volumen paralelepipeda razapetog vektorima \overrightarrow{AB} , \overrightarrow{AC} i \overrightarrow{AD} .
- 16. Pokažite da ako za tri proizvoljna vektora \vec{a}, \vec{b} i \vec{c} vrijedi $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$, onda su vektori \vec{a}, \vec{b} i \vec{c} komplanarni, a vektori $\vec{A} = \vec{a} \vec{c}$ i $\vec{B} = \vec{b} \vec{a}$ kolinearni.
- 17. Odredite jedinični vektor okomit na vektore $\vec{a} = (-2, -6, -1)$ i $\vec{b} = (1, 2, 0)$ koji s vektorom $\vec{c} = (-2, 1, 0)$ zatvara šiljasti kut. U smjeru tog jediničnog vektora odredite \vec{d} takav da vektori \vec{a}, \vec{b} i \vec{d} budu stranice paralelepipeda čiji je volumen V = 18.