Topics in statistics III/IV (MATH3361/4071)

Michaelmas term, 2018-2019

Homework 4: One step estimators, Confidence intervals, & hypothesis test

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1

(Log likelihood ratio statistic) Let $x_1, x_2, ..., x_n$ be IID random variables generated from a distribution f_{θ} labeled by a d-dimensional parameter $\theta \in \Theta \subset \mathbb{R}^d$, and admitting PDF $f(\cdot|\theta)$. Assume the conditions from the Cramér Theorem are satisfied, and that θ_0 is the true value. Prove that

$$W_{\rm LR}(\theta_0) = -2(\ell_n(\theta_0) - \ell_n(\hat{\theta}_n)) \xrightarrow{D} \chi_d^2$$

it is where $\hat{\theta}_n$ is the MLE of θ .

Hint-1 Expand $\ell_n(\theta_0)$ around $\hat{\theta}_n$ by Taylor expansion

Hint-2 Prove that $W_{LR}(\theta_0) \xrightarrow{a.s.} n(\theta_0 - \hat{\theta}_n)^T \mathcal{I}(\theta_0)(\theta_0 - \hat{\theta}_n)$

Hint-3 Prove that $W_{\rm LR}(\theta_0) \xrightarrow{D} \chi_d^2$

Exercise 2

Let $x_1, ..., x_n \stackrel{IID}{\sim} f_{\theta}$ with unknown parameter $\theta \in (0, \infty)$ and PDF

$$f(x|\theta) = \begin{cases} \theta \exp(-x) + (1-\theta)x \exp(-x) &, x \ge 0\\ 0 &, x < 0 \end{cases}$$

- 1. Calculate the moment estimator $\tilde{\theta}_n$ of θ , (I give you a bit of freedom here)
- 2. Calculate the asymptotic distribution of the $\tilde{\theta}_n$
- 3. Find the 1-step estimator $\check{\theta}_n$ of θ such that it can be asymptotically efficient.

Hint: Recall that $\Gamma(a)=\int_0^\infty x^{a-1}e^{-x}\mathrm{d}x$, and $\Gamma(a)=(a-1)\Gamma(a-1)$

Exercise 3

Let

$$y_i \stackrel{\text{ind}}{\sim} \text{Bin}(n, \pi_i)$$

where i = 1, ..., N. Consider that the probability of success is modeled such as

$$logit(\pi_i) = x_i^T \theta \tag{1}$$

where $\operatorname{logit}(\pi_i) = \operatorname{log}(\frac{\pi_i}{1-\pi_i})$. Here $x_i = (x_{i,1}, ..., x_{i,d})^T$ are known vertors containing the values of the d regessions at the i-th observation, and $\theta \in \mathbb{R}^d$.

1. Show that

$$\pi_i = \frac{e^{x_i^T \theta}}{1 + e^{x_i^T \theta}}$$

2. Assume that the MLE $\hat{\theta}$ of θ is known/calculated. Show that the (1-a) Wald confidence interval for the unknown parameter θ , by using the observed information matrix, is

C.I.:
$$\{\theta \in \mathbb{R}^d : (\hat{\theta}_n - \theta)^T X^T (\operatorname{diag}_{\forall i} (n\hat{\pi}_i (1 - \hat{\pi}_i))) X (\hat{\theta}_n - \theta) \le \chi_{d, 1-a}^2 \}$$

where

$$\hat{\pi}_i = \frac{e^{x_i^T \hat{\theta}}}{1 + e^{x_i^T \hat{\theta}}}$$

X is the so called design matrix from the regression

$$\begin{bmatrix} \operatorname{logit}(\pi_1) \\ \vdots \\ \operatorname{logit}(\pi_N) \end{bmatrix} = \underbrace{\begin{bmatrix} \longleftarrow x_1^T \longrightarrow \\ \vdots \\ \longleftarrow x_N^T \longrightarrow \end{bmatrix}}_{=X} \theta$$

and
$$\operatorname{diag}_{\forall i}(\heartsuit_i) = \begin{bmatrix} \heartsuit_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \heartsuit_N \end{bmatrix}$$
.

3. Find the score statistic rejection area for the hypothesis test $H_0: \theta = \theta_*$ versus $H_1: \theta \neq \theta_*$.