Homework 11 (Due Nov 7, 2022)

Jack Hyatt MATH 574 - Discrete Mathamatics - Fall 2022

November 13, 2022

Justify all of your answers completely.

1. Let $n \in \mathbb{N}$. Prove that if $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $ab \equiv cd \pmod{n}$.

Proof. Assume
$$a \equiv c \pmod{n}$$
 and $b \equiv d \pmod{n}$. So $\exists x, y \in \mathbb{Z}$ s.t. $a = c + xn$ and $b = d + yn$. So $ab = (c + xn)(d + yn) = cd + n(cy + dx + xyn) \equiv cd \pmod{n}$.

2. Which elements of \mathbb{Z}_{12} are invertible? For each element that is invertible, give its inverse.

A class will be invertible iff the gcd(a,12)=1, where a is the number we are looking at. By inspection, we see that 1,5,7,11 will fit that criteria. 1 is clearly its own inverse. For the other 3 numbers, we just have to look between them to see which multiply to get 1 (mod 12).

- $5 \cdot 5 \equiv 1 \pmod{12}$ $7 \cdot 7 \equiv 1 \pmod{12}$
- $11 \cdot 11 \equiv 1 \pmod{12}$
- 3. Let $n \in \mathbb{N}$. Define a function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ by $f([a]) = [a^2]$.
 - (a) Prove that, if n = 1 or n = 2, then f is bijective.

Case n=1:

In \mathbb{Z}_1 , there is only 1 congruence class, namely, [0]. *Obviously*, a function that maps a domain of only [0] to a codomain of only [0] is bijective.

Case n=2:

In \mathbb{Z}_2 , there are 2 congruence class, namely, [0] and [1]. 0 and 1 both have the property where they are their own squares. So 0 goes to 0 and 1 goes to 1. So f is bijective.

(b) Prove that for $n \geq 3$, f is not injective. (Hint: try to find two different elements $[a] \neq [b]$ such that f([a]) = f([b]).)

Note: f([1]) = [1].

If we can show that there is another class, a, s.t. f([a]) = [1], then we know f isn't injective.

Looking at [n-1], where $n \ge 3$, we see that $f([n-1]) = [(n-1)^2] = [n^2 - 2n + 1] = [n(n-2) + 1] \equiv [1]$. Since $n \ge 3$, we know that n-1 > 1.

4. Suppose $m, n \in \mathbb{Z}$ are not both 0. Let $d = \gcd(m, n)$. Prove that $\gcd(\frac{m}{d}, \frac{n}{d}) = 1$.

Let $d = \gcd(m, n)$. Using Jeff Bezos' identity, we know that $\exists a, b \in \mathbb{Z}$ s.t. $d = \gcd(m, n) = am + bn$. Since d isn't 0 and divides both m and n, we can divide by d and get $a\frac{m}{d} + b\frac{n}{d} = 1$. So since the linear combination of two integers is 1, the lowest positive number, and the gcd of two integers is the smallest positive integer to make out of a linear combination, then $\gcd(\frac{m}{d}, \frac{n}{d}) = 1$.

- 5. Let $a, b \in \mathbb{Z}$ not both zero. Prove or disprove:
 - (a) If gcd(a, b) = 1, then $gcd(a^2, b^2) = 1$.

Since a and b are coprime, they have no prime factors in common. Let $a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_n^{\alpha_n}$ and $b = q_1^{\beta_1} \cdot q_2^{\beta_2} \cdot \ldots \cdot q_m^{\beta_m}$. Since $p_i \neq q_j$ for any pair i,j, doubling all the powers will not change that fact. So a^2 and b^2 will not have any common prime factors, being coprime.

(b) If gcd(a, b) = 1, then gcd(a, 2b) = 1.

We see that a = 2 and b = 3 will disprove this. gcd(2,3) = 1 and gcd(2,6) = 2.

6. Let $n \in \mathbb{Z}$. Prove that gcd(n, n+2) = 1 if and only if n is odd.

Proof. Showing if gcd(n, n + 2) = 1, then n is odd.

This is clear since if n was even, then the gcd(n, n + 2) will be two.

Showing if n is odd, then gcd(n, n + 2) = 1

Assume n is odd, then $\exists k \in \mathbb{Z} \text{ s.t. } n = 2k + 1$. Assume towards contradiction that $\gcd(n, n + 2) \geq 2$. Let $d = \gcd(n, n + 2)$. So d|n and d|n + 2. So then $n \equiv 0 \pmod{d}$ and $n + 2 \equiv 0 \pmod{d}$. Denote [a] to be $a \pmod{d}$.

$$[n+2] - [n] = [0] \implies [2] = [0] \implies d = 2$$

So then 2|n, which makes n even. But we assumed n to be odd, a contradiction.

7. Let $a, b \in \mathbb{Z}$ not both zero. If gcd(a, b) = 1 and $a \mid n$ and $b \mid n$, prove that $ab \mid n$.

Assume gcd(a, b) = 1 and $a \mid n$ and $b \mid n$. Since a and b are coprime, then they can be written as a product their prime factors and no prime will be in both a and b. Let $a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_n^{\alpha_n}$ and $b = q_1^{\beta_1} \cdot q_2^{\beta_2} \cdot \ldots \cdot q_m^{\beta_m}$ where no $p_i = q_j$. Since a and b both divide n, the prime factorization of a and b are in the prime factorization of n. Since a and b share no primes, a and b primes are completely in n's factorization with no overlap. So then $ab \mid n$.

8. Let $a, b \in \mathbb{N}$. Define the least common multiple lcm(a, b) as the smallest positive integer that is a multiple of both a and b. Prove that ab = lcm(a, b) if and only if gcd(a, b) = 1.

Proof. Showing if gcd(a,b) = 1, then lcm(a,b) = ab. Assume gcd(a,b) = 1. Let n = lcm(a,b). So $a \mid n$ and $b \mid n$. So $ab \mid n$ using (7). So $\exists k \in \mathbb{Z} \text{ s.t. } abk = n$. So $ab = \frac{n}{k}$, and $\frac{n}{k} \in \mathbb{Z}$. But ab is a common multiple of a and b, while n is the least common multiple. So that must make k = 1.

Showing if $\operatorname{lcm}(a,b) = ab$, then $\gcd(a,b) = 1$ by contrapositive. Assume $\gcd(a,b) > 1$. Let $d = \gcd(a,b)$. Then $\exists x,y \in \mathbb{Z} \text{ s.t. } dx = a \text{ and } dy = b$. Then dxy will divide both a and b. So $\operatorname{lcm}(a,b) \leq dxy < dxdy = ab$. So $\gcd(a,b) > 1 \implies \operatorname{lcm}(a,b) < ab$.