MP* KERICHEN 2020-2021

DM n^o1 facultatif

Devoir de vacances supplémentaire à l'usage des futurs $\frac{5}{2}$ préparant Centrale ou les Mines. Ce devoir est long et facile, il a le mérite de faire une bonne révision du programme d'algèbre linéaire de MPSI, il est abordable par les plus téméraires des futurs $\frac{3}{2}$.

TRANSVEXIONS, AUTOMORPHISMES DE $\mathcal{L}(\mathbf{E})$

Notations

- Dans tout le problème n désigne un entier supérieur ou égal à 2,
- \mathcal{M}_n désigne l'algèbre des matrices carrées d'ordre n à coefficients réels,
- Pour tout élément M de \mathcal{M}_n et tout couple (i,j) d'éléments de $\{1,\ldots,n\}$, on désigne par $m_{i,j}$ le coefficient de M situé sur la i^e ligne et la j^e colonne.
- GL_n désigne l'algèbre des matrices carrées d'ordre n à coefficients réels inversible,
- SL_n désigne l'ensemble des élément de GL_n de déterminant 1.
- E désigne un espace vectoriel sur le corps \mathbf{R} des nombres réels, de dimension n,
- \mathbf{E}^* désigne le dual de \mathbf{E} .
- $(\vec{e}_1, \ldots, \vec{e}_n)$ désigne une base de \mathbf{E} et (e_1^*, \ldots, e_n^*) désigne sa base duale, c'est-à-dire que e_i^* est la i^e forme coordonnée dans la base $(\vec{e}_1, \ldots, \vec{e}_n)$, pour $i = 1, \ldots, n$.
- $-\mathcal{L}(\mathbf{E})$ désigne l'algèbre des endomorphismes de \mathbf{E} ,
- $GL(\mathbf{E})$ désigne le groupe des automorphismes de \mathbf{E} ,
- id désigne l'application identité sur **E**,
- Pour tout couple (i, j) d'éléments de $\{1, \ldots, n\}$, $E_{i,j}$ est l'élément de de \mathcal{M}_n dont tous les coefficients sont nuls à l'exception de celui situé sur la i^e ligne et j^e colonne,
- Pour tout couple (i, j) d'éléments distincts de $\{1, \ldots, n\}$ et tout réel λ non nul, $T_{i,j}(\lambda)$ désigne la matrice de transvection, $I_n + \lambda E_{i,j}$,
- Pour a_1, a_2, \ldots, a_n des réels, $\operatorname{diag}(a_1, \ldots, a_n)$ désigne la matrice diagonale dont le terme sur la i^e ligne et la i^e colonne est $a_{i,i}$, pour $i = 1, \ldots, n$.

Partie I

GÉNÉRATEURS DE $SL_n(\mathbf{R})$

- 1. (a) Pour tout élément (i, j, h, k) de $\{1, \ldots, n\}^4$, calculer le produit matriciel $E_{i,j}E_{h,k}$.
 - (b) Soient (i, j) et (h, k) des couples d'éléments distincts de $\{1, \ldots, n\}$ et λ et μ des réels non nuls. Calculer le produit matriciel $T_{i,j}(\lambda)T_{h,k}(\lambda)$. En déduire l'inversibilité et l'inverse de $T_{i,j}(\lambda)$.
- 2. Soient (i, j) un couple d'éléments distincts de $\{1, \ldots, n\}$, λ un réel non nul et A un élément de \mathcal{M}_n . Pour tout élément k de $\{1, \ldots, n\}$ C_k désigne la k^e colonne de A et L_k sa k^e ligne.
 - (a) Montrer que la matrice $AT_{i,j}(\lambda)$ se déduite de A par une transformation élémentaire portant sur les colonnes de A que l'on précisera.
 - (b) Doner un résultat analogue pour $T_{i,j}(\lambda)A$.

3. Soit A un élément de \mathcal{M}_n . On suppose que la première colonne ou la première ligne de A possède un élément non nul.

Montrer qu'il existe deux éléments P et Q de \mathcal{M}_n , produits de matrices de transvections tels qu'en posant

$$B = PAQ$$
,

- i. $b_{1,1} = 1$;
- ii. $b_{i,1} = 0$, pour i = 2, ..., n;
- iii. $b_{1j} = 0$, pour j = 2, ..., n.

Indication: On pourra envisager pour commencer le cas où $a_{1,1}=1$.

4. Soit A un élément de \mathcal{M}_n de rang non nul r. Montrer qu'il existe deux éléments R et S de \mathcal{M}_n , produits de matrices de transvections tels que : RAS soit diagonale égale soit à r termes

 $\operatorname{diag}(\overline{1,1,\ldots 1},0\ldots 0)$, soit à $\operatorname{diag}(1,1,\ldots,1,d)$, avec $d=\operatorname{Det}(A)$, suivant que r< n ou r=n.

Indication: Le candidat a le choix entre démontrer ce résultat par récurrence, ou écrire en français un algorithme qui construit les matrices R et S.

- 5. (a) Montrer que SL_n est un sous-groupe de GL_n .
 - (b) Déduire de la question 4. que l'ensemble \mathcal{T} des matrices de transvection d'ordre n engendre le sous groupe SL_n .
- 6. Petit théorème de Frobenius Zolotarev —

On suppose dans cette question et seulement dans cette question que $n \geq 3$. Soit f une application de \mathcal{M}_n dans \mathbf{R} telle que :

- i. Pour tout couple (A, B) d'éléments de \mathcal{M}_n , f(AB) = f(A)f(B);
- ii. Pour tout élément A de \mathcal{M}_n diagonal, f(A) est le produit des termes diagonaux.
- (a) Donner un exemple d'une telle application.
- (b) Soient a un réel non nul et (α, β) un couple d'éléments distincts de $\{1, \ldots, n\}$. Evaluer

$$(I_n + 1 \cdot E_{\alpha,j})(I_n + aE_{j,\beta})(I_n + 1 \cdot E_{\alpha,j})^{-1}(I_n + aE_{j,\beta})^{-1}.$$

- (c) Calculer l'image par f d'une matrice T de transvection.
- (d) Déterminer f.

Une forme forte du théorème de Frobenius-Zolotarev est la détermination des morphismes de $(GL_n(\mathbf{C})\circ)$ dans (\mathbf{C}^*,\times) , voir préparation aux oraux 2018.

Partie II

Caractérisation de la Trace

1. Vérifier que l'application trace

$$\operatorname{Tr}: \mathcal{M}_n \to \mathbf{R}, : M \mapsto \operatorname{Tr}(\mathbf{M})$$

est une forme linéaire, et que pour tout couple (A, B) d'éléments de \mathcal{M}_n ,

$$Tr(AB) = Tr(BA).$$

- 2. Soit σ une forme linéaire sur \mathcal{M}_n telle que pour tout couple (A, B) d'éléments de \mathcal{M}_n , $\sigma(AB) = \sigma(BA)$.
 - (a) Montrer que pour tout couple (i, j) d'éléments distincts de $\{1, \ldots n\}, \sigma(E_{i,j}) = 0$.

- (b) Montrer que pour tout élément i de $\{1, \ldots n\}$, $\sigma(E_{i,i}) = \sigma(E_{1,1})$.
- (c) Montrer qu'il existe un réel λ tel que $\sigma = \lambda Tr$.
- 3. Soient \mathcal{C} le sous-espace vectoriel de \mathcal{M}_n engendré par les matrices de la forme AB BA, avec A et B des éléments de \mathcal{M}_n ,

$$C = \operatorname{vect}((AB - BA)_{(A,B) \in \mathcal{M}_n^2}),$$

et \mathcal{H} la droite vectorielle de \mathcal{M}_n engendré par id.

- (a) Montrer que \mathcal{C} est inclus dans le noyau de Tr.
- (b) Exhiber une famille libre de C de cardinal $n^2 1$.

 Indication: on pourra considérer la base canonique de \mathcal{M}_n .
- (c) Montrer que $\mathcal{C} = \text{Ker}(\text{Tr})$ et que $\mathcal{M}_n = \mathcal{C} \oplus \mathcal{H}$.
- 4. Pour tout couple (i,j) d'éléments de $\{1,\ldots n\}$, on pose $F_{i,j}=I_n+E_{i,j}$. Soient (i,j) un couple d'éléments de $\{1,\ldots n\}$ et (h,k) un couple d'éléments distincts de $\{1,\ldots n\}$, calculer le produit matriciel $F_{h,k}^{-1}F_{i,j}F_{h,k}$.
- 5. Soit θ une forme linéaire sur \mathcal{M}_n tel que pour tout élément A de \mathcal{M}_n et tout élément B de GL_n ,

$$\theta(AB) = \theta(BA).$$

Montrer qu'il existe un réel λ tel que $\theta = \lambda \text{Tr}$.

Partie III

AUTOMORPHISMES DE L'ALGÈBRE $\mathcal{L}(\mathbf{E})$

On appelle automorphisme de l'algèbre $\mathcal{L}(\mathbf{E})$, tout morphisme de l'algèbre $\mathcal{L}(\mathbf{E})$ dans ellemême qui est bijectif. L'ensemble des automorphismes de l'algèbre $\mathcal{L}(\mathbf{E})$ sera noté $\mathcal{AUT}(E)$, on admet, fait trivial, que $\mathcal{AUT}(E)$ est un sous-groupe du groupe des permutations de $\mathcal{L}(E)$. Pour tout élément g de GL_n , on désigne par A_g l'application de $\mathcal{L}(\mathbf{E})$ dans $\mathcal{L}(\mathbf{E})$ qui à un élément uassocie $g \circ u \circ g^{-1}$,

$$A_g : \mathcal{L}(\mathbf{E}) \to \mathcal{L}(\mathbf{E}), ; u \mapsto g \circ u \circ g^{-1}.$$

1. (a) Montrer que pour tout élément g de GL_n , A_g est un automorphisme de $\mathcal{L}(E)$, un tel automorphisme est dit intérieur.

Montrer que

$$\chi : \operatorname{GL}_n \to \mathcal{AUT}(\mathbf{E}); g \mapsto A_g$$

est un morphisme du groupe $\mathcal{GL}(E)$ dans le groupe $\mathcal{AUT}(E)$. L'application χ est elle injective?

- 2. (a) Soit g un élément de $\mathcal{L}(E)$ tel que pour tout élément \vec{x} de \mathbf{E} , la famille (x, g(x)) soit liée. Montrer que g est élément de \mathcal{H} .
 - (b) Déduire de la sous-question précédente le noyau de χ .
- 3. Soit (ϕ, \vec{x}) un élément de $\mathbf{E}^* \times \mathbf{E}$, on définit l'application

$$u_{\phi,\vec{x}}: \mathbf{E} \to \mathbf{E}; \ \vec{y} \mapsto \phi(\vec{y})\vec{x}.$$

On admettra, résultat évident, qu'une telle application est un endomorphisme.

- (a) Déterminer l'image et le noyau de $u_{\phi,\vec{x}}$.
- (b) Donner une condition nécessaire et suffisante portant sur (ϕ, \vec{x}) pour que $u_{\phi,\vec{x}}$ soit un projecteur non nul.

- 4. Pour tout couple (i,j) d'éléments de $\{1,\ldots,n\}$, on pose $u_{i,j}=u_{e_i^*\vec{e}_i}$.
 - (a) Soient i, j, h, k des éléments de $\{1, \ldots, n\}$. Calculer $u_{i,j} \circ u_{h,k}$.
 - (b) Que peut-on dire de la famille $(u_{i,j})_{(i,j)\in\{1,n\}^2}$
- 5. Soit \mathcal{P} l'ensemble des projecteurs non nuls de \mathbf{E} . On définit sur \mathcal{P} la relation \prec par, pour tout p et tout q éléments de \mathcal{P} , $p \prec q$ si $p = p \circ q = q \circ p$.
 - (a) Montrer que la relation \prec est une relation d'ordre sur \mathcal{P} . Est-ce une relation d'ordre totale?
 - (b) On appelle élément minimal de \mathcal{P} pour la relation \prec , tout élément p de \mathcal{P} tel que pour tout élément q de \mathcal{P} , si $q \prec p$ alors q = p.

Soit p un élément de \mathcal{P} . Etablir l'équivalence des énoncés suivants :

- i. p est de rang 1;
- ii. p est un élément minimal de \mathcal{P} pour la relation \prec ;
- iii. Il existe un élément (ϕ, \vec{x}) de $\mathbf{E}^* \times \mathbf{E}$ tel que : $p = u_{\phi, \vec{x}}$ et $\phi(\vec{x}) = 1$.
- 6. Soient A un automorphisme de l'algèbre $\mathcal{L}(\mathbf{E})$ et p un élément de \mathcal{P} .
 - (a) Montrer que A(p) est un projecteur.
 - (b) On suppose que p est un élément minimal de \mathcal{P} pour la relation \prec . Montrer A(p) est encore un élément minimal de \mathcal{P} pour la relation \prec .
 - (c) En déduire qu'il existe une famille $(\vec{\epsilon}_1, \vec{\epsilon}_2 \dots \vec{\epsilon}_n)$ d'éléments de \mathbf{E} et une famille $(\phi_1, \phi_2, \dots \phi_n)$ d'éléments de \mathbf{E}^* telle que, pour tout élément i de $\{1, \dots, n\}$: i. $\phi_i(\vec{\epsilon}_i) = 1$; ii. $A(u_{i,i}) = u_{\phi_i, \vec{\epsilon}_i}$.
 - (d) Calculer pour tout couple (i, j) d'éléments de $\{1, \ldots, n\}$, $\phi_i(\vec{\epsilon_j})$. Que peut-on en déduire sur les familles $(\vec{\epsilon_1}, \ldots, \vec{\epsilon_n})$ et (ϕ_1, \ldots, ϕ_n) ?
- 7. Soit un couple (i, j) d'éléments de $\{1, \ldots, n\}$.
 - (a) pour tout élément k de $\{1, \ldots n\}$ distinct de j calculer $A(u_{i,j}) \circ u_{\phi_k, \vec{\epsilon}_k}$. En déduire le rang et le noyau de $A(u_{i,j})$.
 - (b) Calculer $A(u_{i,j}) \circ A_i(u_{j,i})$. En déduire l'image de $A(u_{i,i})$.
 - (c) Montrer qu'il existe un réel non nul $\lambda_{i,j}$ tel que : $A(u_{i,j}) = \lambda_{i,j} u_{\phi_j,\vec{\epsilon_i}}$
- 8. Soient i, j et k des éléments de $\{1, \ldots, n\}$. Montrer que $\lambda_{i,j}\lambda_{j,k} = \lambda_{i,k}$. En déduire que $\lambda_{i,j} = \frac{\lambda_{i,1}}{\lambda_{j,1}}$.
- 9. (a) Montrer qu'il existe une base $(\vec{\alpha}_1, \dots, \vec{\alpha}_n)$ de \mathbf{E} , telle que si $(\alpha_1^*, \dots, \alpha_n^*)$ désigne sa base duale, alors, pour tout élément (i, j) de $\{1, \dots, n\}$,

$$A(u_{i,j}) = u_{\alpha_j^*, \vec{\alpha}_i}.$$

- (b) Posons g l'automorphisme de \mathbf{E} qui envoie la base $(\vec{e}_1, \ldots, \vec{e}_n)$ sur la base $(\vec{a}_1, \ldots, \vec{a}_n)$, alors A et A_g coïncident sur la base $(u_{i,j})_{(i,j)\in\{1,\ldots,n\}^2}$, d'après (a), donc $A = A_g$.
- (c) Tout automorphisme de \mathcal{L} est intérieur.

* *