Part D: Instrumental Variables

D3: Shift-Share and Other Formula Instruments

Kirill Borusyak

ARE 213 Applied Econometrics

UC Berkeley, Fall 2023

Constructed ("Formula") instruments

- So far we have considered IVs that can be viewed as-good-as-randomly assigned
- But some IVs are more complex:
 - constructed from multiple sources of variation
 - some as-good-as-random, some are not
- Why/when would one do that?
- What are the assumptions for IV validity?
- How to do this correctly?

D3 Outline

- Structure and examples of shift-share IVs
- 2 SSIV as leveraging a shock-level natural experiment
- SSIV as combining diff-in-diffs
- Formula instruments and recentering

Readings: Borusyak, Hull, Jaravel (2022), Borusyak and Hull (forthcoming)

Shift-share IV

• General structure of **shift-share IV** (SSIV):

$$Z_i = \sum_{k=1}^K S_{ik} g_k$$

- g_1, \ldots, g_K are a set of common **shocks** (or **shifts**) not specific to i
- S_{ik} are exposure **shares**, often with $\sum_k S_{ik} = 1$ for all i

3

SSIV examples: Bartik instrument

- ullet Consider estimating the inverse elasticity of regional labor supply: $Y_i = au D_i + arepsilon_i$
 - $Y_i = \text{log-change in region } i$'s average wage
 - $ightharpoonup D_i = \text{log-change in } i$'s employment over some period
 - $ightharpoonup \varepsilon_i = \text{labor supply shocks (e.g. migration, UI benefits)}$
- Need a region labor demand shock as IV
- Labor demand comes from different industries k: $D_i \approx \sum_k S_{ik} D_{ik}$
 - S_{ik} = initial share of k in i's employment
 - ▶ D_{ik} = log-change of k-specific employment in i
- Build a SSIV $Z_i = \sum_k S_{ik} g_k$ based on some shocks g_k that do not vary by region:
 - lacktriangle Observed growth rates of industry employment \Rightarrow Bartik (1991) instrument
 - ▶ Or specific industry labor demand shifts, e.g. change in import tariffs
 - $ightharpoonup Z_i = \text{prediction for } D_i \text{ using some shocks and initial exposure shares}$

SSIV examples: Enclave instrument

- "Enclave instrument" for migration (e.g. Card 2009):
 - ightharpoonup au = inverse elasticity of substitution between native and immigrant labor
 - Y_i = change in relative immigrant/native wage
 - $ightharpoonup D_i = \text{change in relative immigrant/native employment}$
 - Need relative labor supply shock as an IV
 - ▶ New immigrants from country k tend to go where there are historic enclaves of k's immigrants
 - $ightharpoonup Z_i = migration intensity prediction from historic enclaves & national inflows or "push shocks"$
 - $S_{ik} = \text{initial share of origin } k \text{ in } i$'s population
 - g_k = observed national migration growth from k (Card 2009) or dummy of war in k (Llull 2017)

SSIV examples: Spillovers

- Miguel and Kremer (2004): spillover effects of randomized deworming in Kenya
 - Y_i = educational achievement of student i
 - ▶ D_i = the number of i's neighbors (students who go to school within a certain distance from i) who have been dewormed
 - ▶ Use OLS: $Z_i = D_i$. Not usually understood as a shift-share design, but it is
 - $S_{ik} = ?$
 - $g_k = ?$

6

SSIV examples: China shock

- Autor, Dorn, Hanson (ADH, 2013): effect of import competition with China on regional labor markets in the US
 - $Y_i = \text{growth of manufacturing employment rate, unemployment rate, etc.}$
 - ▶ D_i = growth of import competition in region i (imports per US worker)
 - ▶ Endogeneity: D_i is affected by low productivity & demand in i
 - $Z_i = \sum_k S_{ik} g_k = \text{predicted growth of import competition}$
 - ullet $S_{ik}=10$ -year lagged share of manufacturing industry k in \emph{i} 's total employment
 - g_k = growth of industry import competition with China in 8 other countries (e.g. Australia)

Identification approaches

- Relevance makes sense: $Z_i = \sum_k S_{ik} g_k$ predicts $D_i = \sum_k S_{ik} D_{ik}$ if g_k predicts D_{ik}
- But how should think about exogeneity, $\mathbb{E}\left[\frac{1}{N}\sum_{i}Z_{i}\varepsilon_{i}\right]=0$?
 - Note: notation for non-random samples
- Two narratives + sets of sufficient conditions:
 - "Exogenous shocks" (Borusyak, Hull, Jaravel; BHJ, 2022): shock-level natural experiment, translated to the observation level
 - "Exogenous shares" (Goldsmith-Pinkham, Sorkin, Swift, 2020): combining diff-in-diffs in heterogeneous exposure

Outline

- Structure and examples of shift-share IVs
- SSIV as leveraging a shock-level natural experiment
- SSIV as combining diff-in-diffs
- 4 Formula instruments and recentering

Simple shock-level regressions

- Acemoglu, Autor, Dorn, Hanson, Price (2016) study the effect import competition with China on employment across $K \approx 400$ industries
 - ▶ IV with g_k : import competition with China in 8 other countries
 - A natural experiment: China growth is as-if random across industries

$$\mathbb{E}\left[g_k \mid \varepsilon_k, \text{pre-trends, industry characteristics}, \dots\right] = \theta$$
 for all k

▶ With covariates q_k , e.g. dummies of 10 broad sectors (electronics, food, etc.):

$$\mathbb{E}\left[g_k\mid\varepsilon_k,q_k,\text{pre-trends},\text{industry characteristics},\dots\right]=\theta'q_k\qquad\text{for all }k$$
 (where q_k always includes an intercept)

• Why aggregate to regional level?

Spillovers

- ADH and Acemoglu et al. (2016) estimate different economic parameters
- Import competition in k can reallocate workers to other industries \Rightarrow SUTVA violation
- If regional economies are isolated islands, SUTVA holds in ADH
 - Otherwise can incorporate spillovers across regions, e.g. via trade or migration (Adao, Arkolakis, Esposito 2022)
- Some outcomes are not well-defined at the industry level, e.g. unemployment

Translating to observation level

- Does the shock-level natural experiment imply exogeneity of SSIV?
- Yes, but $Q_i = \sum_k S_{ik} q_k$ must be controlled for
- $q_k = 1$, $S_i \equiv \sum_k S_{ik} = 1$ (complete shares): $Q_i = 1$
 - Weighted average of as-good-as-random shocks is as-good-as-random
 - ▶ Even if (lagged) shares are endogenous: $Cov[S_{ik}, \varepsilon_i] \neq 0$
 - \star E.g. if $\varepsilon_i = \sum_k S_{ik} \nu_k + \tilde{\varepsilon}_i$ where ν_k are some other industry shocks (say, automation)

Translating to observation level (2)

- $q_k = 1$, $S_i \neq 1$ (incomplete shares): $Q_i = \sum_k S_{ik} q_k = \sum_k S_{ik} = S_i$
 - Must control for the sum of exposure shares
 - ▶ In ADH, *k* are manufacturing industries (no China competition for services)
 - $ightharpoonup S_i = initial manufacturing share in region i$
 - $ightharpoonup Z_i$ is mechanically correlated with S_i
 - ▶ Is that a problem? Import competition does grow more in manuf.-heavy regions
 - ▶ But $Cov[S_i, \varepsilon_i] \neq 0$ via any reason for overall manuf. decline, other than China
 - Correct specification ≠ no OVB!
- $q_k =$ dummies for broad sectors, $S_i = 1$
 - ightharpoonup Control for Q_i = initial employment shares in each broad sector
 - ▶ To translate within-sector variation in g_k to the regional level

BHJ equivalence result

BHJ (**Prop.** 1): Consider SSIV estimator $\hat{\tau}$ from

$$Y_i = \tau D_i + \gamma' X_i + \varepsilon_i$$

instrumenting D_i by $Z_i = \sum_k S_{ik} g_k$ and controlling for X_i that include $Q_i = \sum_k S_{ik} q_k$.

This $\hat{\tau}$ can be obtained from a shock-level IV regression

$$\bar{\mathbf{y}}_{\mathbf{k}}^{\perp} = \tau \bar{\mathbf{d}}_{\mathbf{k}}^{\perp} + \theta' \mathbf{q}_{\mathbf{k}} + \bar{\varepsilon}_{\mathbf{k}},$$

- ullet instrumenting \bar{d}_k^\perp by g_k
- weighted by $s_k = \frac{1}{N} \sum_i S_{ik}$ capturing the average importance of shock k
- ullet where $ar{v}_k = \sum_i S_{ik} V_i / \sum_i S_{ik}$ are exposure-weighted averages of V_i
 - ullet e.g. $ar{arepsilon}_k$ is average residual of observations i with a high exposure to k
- ullet and V_i^{\perp} are residuals from regressing V_i on X_i (in the sample)

BHJ equivalence result: Proof

• Proof by exchanging the order of summation:

$$\hat{\tau} = \frac{\sum_{i} Z_{i} Y_{i}^{\perp}}{\sum_{i} Z_{i} D_{i}^{\perp}} = \frac{\sum_{i,k} S_{ik} g_{k} Y_{i}^{\perp}}{\sum_{i,k} S_{ik} g_{k} D_{i}^{\perp}} = \frac{\sum_{k} g_{k} \sum_{i} S_{ik} Y_{i}^{\perp}}{\sum_{k} g_{k} \sum_{i} S_{ik} D_{i}^{\perp}}$$

$$= \frac{\sum_{k} g_{k} \sum_{i} S_{ik} Y_{i}^{\perp}}{\sum_{k} g_{k} \sum_{i} S_{ik} D_{i}^{\perp}} = \frac{\sum_{k} s_{k} g_{k} \bar{y}_{k}^{\perp}}{\sum_{k} s_{k} g_{k} \bar{d}_{k}^{\perp}} = \frac{\sum_{k} s_{k} (g_{k} - \hat{\theta}' q_{k}) \bar{y}_{k}^{\perp}}{\sum_{k} s_{k} (g_{k} - \hat{\theta}' q_{k}) \bar{d}_{k}^{\perp}}$$

where the last equality holds because, when X_i includes Q_i ,

$$\sum_{k} s_k q_k \overline{v}_k^{\perp} = \frac{1}{N} \sum_{i,k} S_{ik} q_k V_i^{\perp} = \frac{1}{N} \sum_{i} Q_i V_i^{\perp} = 0$$

14

SSIV consistency

- Since one can view SSIV as using g_k as the IV, as-good-as-random assignment of g_k implies consistency of $\hat{\tau}$
 - ▶ Specifically, g_k should not correlate with $\bar{\varepsilon}_k$ (controlling for q_k):
 - ▶ In ADH, $\bar{\varepsilon}_k$ is unobserved determinants of regional employment, averaged among regions with a high employment share of k
- BHJ (Prop. 4): $\hat{\tau}$ is consistent for the (constant-effect) τ if
 - 1. $\mathbb{E}\left[g_k \mid \bar{\pmb{\varepsilon}}, \pmb{q}, \pmb{S}\right] = q_k' \theta$ for some θ (conditionally as-good-as-random shocks)
 - 2. $\mathbb{E}\left[\sum_{k} s_{k}^{2}\right] \to 0$ (many shocks with dispersed average exposure)
 - 3. $\operatorname{Cov}\left[g_{k},g_{k'}\mid \bar{\boldsymbol{\varepsilon}},\boldsymbol{q},\boldsymbol{S}\right]=0$ for $k\neq k'$ (uncorrelated shocks)
 - 4. $\frac{1}{N} \sum_{i} D_{i} Z_{i} \stackrel{P}{\rightarrow} \pi \neq 0$ (relevance)
 - * Typical i should have concentrated shock exposure (but to different shocks across i)
- If you can use g_k as IV (exogenous shocks), you can use it in SSIV across i, too!

Exposure-robust inference

- \bullet Complication: observations with similar shares are exposed to the same shocks, both g_k and unobserved ν_k
 - Conventional clustering of SE wouldn't capture that (e.g. by state or Conley spatial clustering)
- Adao, Kolesar, Morales (2019) derive corrected formula
 - Leverages independence of g_k , regardless of correlations in ε_i
- BHJ show SE from the shock-level equivalent regression are valid
 - ► Convenient solution, directly extends to autocorrelation, spatial clustering, etc.
 - ▶ In Stata and R, package *ssaggregate* does the conversion

Extensions

- "Estimated shocks"
 - ▶ Things are more complicated when g_k is an equilibrium object (e.g. national employment growth rate by industry or migration inflow by origin country)
- Panel data
 - ▶ In panels, exogenous shock variation can come from the cross-section *or* the time series (Nakamura and Steinsson 2014, Nunn and Qian 2014)
- Heterogeneous effects
 - ▶ LATE logic goes through, even if Z_i is misspecified (but D_i is specified correctly)

Application: ADH

- Region i = commuting zone (N = 722)
- Industry k = SIC4 manufacturing industry (K = 397)
- Two periods t: 1991–2000 and 2000–2007
- Y_{it} = local change in manufacturing employment rate
 - $ightharpoonup D_{it} = local growth of Chinese imports in $1,000/worker$
- \bullet X_{it} include period FE and (non-lagged) total manufacturing share
- $Z_{it} = \sum_{k} S_{ikt} g_{kt}$ where:
 - ▶ S_{ikt} = lagged share of k in total employment of i; $\sum_k S_{ikt}$ = lagged total share of manufacturing in employment
 - $g_{kt} = \text{growth of Chinese imports in eight non-US countries in $1,000/US worker}$
- If $q_{kt} = \text{period FE}$, $Q_{it} = ?$

Application: ADH

- Region i = commuting zone (N = 722)
- Industry k = SIC4 manufacturing industry (K = 397)
- Two periods t: 1991–2000 and 2000–2007
- Y_{it} = local change in manufacturing employment rate
 - $ightharpoonup D_{it} = \text{local growth of Chinese imports in } 1,000/\text{worker}$
- \bullet X_{it} include period FE and (non-lagged) total manufacturing share
- $Z_{it} = \sum_{k} S_{ikt} g_{kt}$ where:
 - ▶ S_{ikt} = lagged share of k in total employment of i; $\sum_k S_{ikt}$ = lagged total share of manufacturing in employment
 - $g_{kt} = \text{growth of Chinese imports in eight non-US countries in $1,000/US worker}$
- If $q_{kt} = \text{period FE}$, $Q_{it} = \sum_k S_{ikt} q_{kt} = \text{period FE} \times \text{lagged total manuf. share}$

BHJ revisit ADH

Balance tests to verify conditional as-good-as-random shock assignment:

- Shocks are uncorrelated with industry observables, controlling for period FE
- ullet SSIV is uncorrelated with regional observables, controlling for period FE imes lagged total manuf. share

Balance variable	Coef.	SE	
Panel A: Industry-level balance			
Production workers' share of employment, 1991	-0.011	(0.012)	
Ratio of capital to value-added, 1991	-0.007	(0.019)	
Log real wage (2007 USD), 1991	-0.005	(0.022)	
Computer investment as share of total, 1990	0.750	(0.465)	
High-tech equipment as share of total investment, 1990	0.532	(0.296)	
No. of industry-periods	•	794	
Panel B: Regional balance			
Start-of-period % of college-educated population	0.915	(1.196)	
Start-of-period % of foreign-born population	(2.920	(0.952)	
Start-of-period % of employment among women	-0.159	(0.521)	
Start-of-period % of employment in routine occupations	-0.302	(0.272)	
Start-of-period average offshorability index of occupations	0.087	(0.075)	
Manufacturing employment growth, 1970s	0.543	(0.227)	
Manufacturing employment growth, 1980s	0.055	(0.187)	
No. of region-periods			

BHJ revisit ADH

TABLE 4 Shift-share IV estimates of the effect of Chinese imports on manufacturing employment									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Coefficient	$ \begin{array}{c} -0.596 \\ (0.114) \end{array} $)-0.489 (0.100)	$\begin{pmatrix} -0.267 \\ (0.099) \end{pmatrix}$)-0.314 (0.107)	-0.310 (0.134)	-0.290 (0.129)	-0.432 (0.205)		
Regional controls									
Autor et al. (2013) controls	✓	✓	✓		✓	✓	✓		
Start-of-period mfg. share	✓								
Lagged mfg. share		✓	✓	✓	✓	✓	/		
Period-specific lagged mfg. share				✓	✓	✓	✓		
Lagged 10-sector shares					✓		✓		
Local Acemoglu et al. (2016) controls						✓			
Lagged industry shares							✓		
SSIV first stage <i>F</i> -stat.	185.6	166.7	123.6	272.4	64.6	63.3	27.6		
No. of region-periods	1,444	1,444	1,444	1,444	1,444	1,444	1,444		
No. of industry-periods	796	794	794	794	794	794	794		

• Adding Q_{it} changes the estimate: China shock g_{kt} is larger in the 2000s (post WTO entry) when overall manuf. decline is stronger for other reasons

Outline

- 1 Structure and examples of shift-share IVs
- 2 SSIV as leveraging a shock-level natural experiment
- SSIV as combining diff-in-diffs
- 4 Formula instruments and recentering

Brazilian trade liberalization

• Dix-Carneiro and Kovak (2016) study the long-run labor market effects of Brazilian trade liberalization in early 1990s, by OLS in a cross-section of regions:

$$Y_{i, \mathsf{post}} - Y_{i, \mathsf{pre}} = au D_i + \mathsf{controls} + arepsilon_i, \qquad D_i = Z_i = \sum_k S_{ik} g_k$$

- ightharpoonup K = 20 tradable industries (agriculture + 19 manuf. industries)
- ullet $S_{ik}pprox$ pre-period employment shares relative to total tradable employment
- g_k is change in tariffs (> 0 in agriculture, < 0 in all manuf. industries)
- Narrative for OLS validity?
 - "Along with regional differences in industry mix, the cross-industry variation in tariff cuts provides the identifying variation"
 - Tariff cuts are driven by heterogeneity in initial levels from 1957
- Could the exogenous shocks approach be used?

Not a natural experiment in shocks

- Only 20 industries
- Agriculture is \approx 40% of employment (Herfindahl $\sum_k s_k^2$ is large)
- Because of how tariffs changed, D_i has a 99% correlation with $S_{i,agriculture}$
 - ightharpoonup Essentially a DiD with continuous treatment intensity $S_{i,agriculture}$
 - ▶ Should be justified by parallel trends, not a natural experiment in shocks
- Goldsmith-Pinkham, Sorkin, Swift (GPSS, 2020) develop this view

Exogenous shares approach

- Assume **exogenous shares**: $Cov[\varepsilon_i, S_{ik}] = 0$ for every k
 - With Y_i measured in differences, this is PTA (K times)
 - Strong assumption even though shares are measured in the pre-period
 - ▶ Wrong: "shares are not affected by ε_i " (they can't be)
 - Correct: "all unobservables are uncorrelated with everything about local shares"
 - Rules out any unobserved u_k shocks that affect regions based on S_{ik}
- Then we have K valid IVs: S_{i1}, \ldots, S_{iK}
 - ▶ SSIV $Z_i = \sum_k S_{ik} g_k$ is just a reasonable way to combine them
 - ightharpoonup 2SLS (for small K) and LIML are other reasonable ways
 - ▶ Or just using your favorite share (e.g. of agriculture)
 - ▶ GPSS prove a numerical equivalence: SSIV estimator is GMM with $S_{i1}, ..., S_{iK}$ as IVs and a weight matrix that depends on g_k

Rotemberg weights

- If you insist on using SSIV (and not LIML), GPSS recommend computing Rotemberg weights $\hat{\alpha}_k$:
 - $\hat{\tau} = \sum_k \hat{\alpha}_k \hat{\tau}_k$ for $\hat{\tau}_k$ that uses S_{ik} as IV one at a time
 - $\hat{\alpha}_k$ are higher for k with more extreme shocks and larger first stages
 - $\hat{\alpha}_k$ add up to one but need not be positive
- Then scrutinize validity of the share IVs with highest Rotemberg weights

Summary

- Two sets of narratives & formal conditions for SSIV validity
 - Pick one ex ante, then validate ex post
- Exogenous shocks is appropriate when you could imagine using your shocks as IVs in some shock-level analysis
 - Check balance at the shock level
 - Include share-aggregated controls (especially with incomplete shares)
 - Use exposure-robust inference
- Exogenous shares is appropriate when you would be OK using any other combination of shares as the IV
 - Scrutinize share IVs with high Rotemberg weights
 - Report LIML (or just switch to it). Run overidentification test (w/ usual caveats)
- Pre-trend & balance tests no SSIV at the observation level are useful in both cases

Outline

- Structure and examples of shift-share IVs
- 2 SSIV as leveraging a shock-level natural experiment
- SSIV as combining diff-in-diffs
- Formula instruments and recentering

Formula treatments and instruments

- SSIVs are only a special case of treatments and instruments constructed from multiple sources of variation
- Let's develop an instinct to:
 - Identify settings that are in this class
 - Ask which determinants are as-good-as-random and which are non-random
 - Understand what it means to call your shocks as-good-as-random, by thinking of counterfactuals shocks
 - Recognize that OVB is possible even with as-good-as-random shocks
 - Know how to fix OVB, via "recentering"
 - ► Have no fear of designs with "Non-Random Exposure to Exogenous Shocks" (following Borusyak and Hull (forthcoming) and related work)

Example 1: Miguel and Kremer (2004)

- $D_i = Z_i$ = the number of kid i's dewormed neighbors
- Implicitly constructed from two sources of variation: who neighbors whom S_{ik} and who gets dewormed g_k
- g_k are as-good-as-random, S_{ik} are non-random (potentially correlated with errors)
- g_k were randomized according to some randomization protocol: say, stratified by gender
 - ▶ We can rerun the protocol many times and see which sets of kids could as likely have been dewormed instead
- OVB is still possible: Z_i is mechanically correlated with the numbers of male neighbors and female neighbors
- OVB is fixed by controlling for this number of neighbors of each gender

Example 2: Nonlinear spillovers

• Now suppose $D_i = Z_i = \text{dummy of having at least one dewormed neighbor}$

• Constructed from the same S_{ik} and g_k but nonlinear in (g_1, \ldots, g_K) :

$$Z_i = \max_k S_{ik} g_k$$

• What could cause OVB here?

• How to fix it?

Example 3: Effects of transportation

• Theory suggests transportation upgrades affect local outcomes (e.g. land value) of regions *i* by increasing their "market access":

$$\Delta Y_i = au \Delta \log M A_i + arepsilon_i$$
 where $M A_{it} = \sum_{k=1}^N {\sf TravelTime}({\sf loc}_i, {\sf loc}_k, g_t)^{-1} {\sf Pop}_k, \qquad t=0,1$

- $ightharpoonup g_t$ is transportation network
- ▶ loc_k is region's location on the map
- ▶ Pop_k is regional population (assume time-invariant)
- \triangleright ε_i is effects of unobserved local shocks (e.g. amenities or productivity)
- Consider best-case scenario of "exogenous transportation shocks"
 - ▶ At t = 0 no transportation; at t = 1 roads are built in a RCT
 - lacktriangle Randomizing the network \Longrightarrow as-good-as-random $\Delta \log \textit{MA}_i$

Illustration: Market access on a square island

Start from no roads, assume $Pop_i = 1$ everywhere $\implies \log MA_{i0} = \log MA_{i1} = 0$

Illustration: Market access on a square island

Randomly connect adjacent regions by road

Get variation in $\Delta \log MA_i$. Is it as-good-as-random?

OVB problem

- No! Market access growth is systematically higher in the center
 - ► Central regions have higher "propensity" to be near random lines
 - And could have systematically different ε_i , leading to OVB
- Can we measure i's propensity to get MA growth from random lines? Yes!
 - Simulate random counterfactual networks $g^{(s)}$ for many s = 1, ..., S, holding $w = (loc_k, Pop_k)_{k=1}^K$ fixed;
 - ▶ Compute $\Delta \log MA_i(g^{(s)}; w)$ by the formula;
 - Average across simulations to get expected MA growth

$$\mu_i(w) = \mathbb{E}\left[\Delta \log MA_i\left(g^{(s)}; w\right) \mid w\right] \approx \frac{1}{S} \sum_s \Delta \log MA_i\left(g^{(s)}; w\right)$$

33

 $\Delta \log MA_i$ in a random **counterfactual** network draw

Yet another counterfactual network draw

Average across 1,000 draws: expected MA growth μ_i

How to use μ_i ?

- How to avoid OVB? Can regress ΔY_i on $\Delta \log MA_i$ by OLS, controlling for μ_i
- Or instrument $\Delta \log MA_i$ by **recentered** MA growth, $\tilde{Z}_i = \Delta \log MA_i \mu_i$

How to use μ_i ?

- How to avoid OVB? Can regress ΔY_i on $\Delta \log MA_i$ by OLS, controlling for μ_i
- Or instrument $\Delta \log \textit{MA}_i$ by **recentered** MA growth, $\tilde{\textit{Z}}_i = \Delta \log \textit{MA}_i \mu_i$

How recentering & controlling corrections work

- Recentering reduced-form: ΔY_i on $\tilde{Z}_i = \Delta \log MA_i \mu_i$
 - ► Treated group: regions that got more MA growth than expected because certain connections got built and not others
 - Control group: regions with less MA growth than expected
 - Valid if realized and counterfactual networks are equally likely
- First stage: should be close to 1. Why?
- Controlling approach: OLS of ΔY_i on $\Delta \log MA_i$ controlling for μ_i
 - lacksquare Same using recentered IV + controlling for μ_i
 - ▶ Can help efficiency by removing some variation from ε_i like any other predetermined control (e.g. coordinates or initial MA level)

Recentering in practice

- What if shocks don't come from an RCT?
- Researcher claiming a natural experiment should specify shock counterfactuals they have in mind
 - ▶ Defines a natural experiment, as opposed to a quasi-experiment (as in diff-in-diffs)
- BH study the effects of Chinese high-speed railways (HSR) on employment growth
 - ▶ Observe 149 *planned* HSR lines: 83 open by 2016 and 66 don't
 - Assume timing of opening is random within groups of similar lines
 - Generate counterfactual networks by reshuffling opening status of planned lines within groups

Planned HSR lines

Actual network and MA growth

Example counterfactual 2016 network

BH's formal framework

- Outcome equation $Y_i = \tau D_i + \varepsilon_i$ (for a fixed sample)
 - ► Extensions to heterogeneous effects, other controls, multiple treatments, nonlinear outcome models, panel data
- Consider a candidate instrument $Z_i = f_i(g; w)$, where $g = (g_1, \dots, g_K)$ are shocks, w collects predetermined variables, f_i are known formulas
 - ▶ Nests reduced-form regressions when $D_i = Z_i$
- Assume shock exogeneity: $g \perp \!\!\! \perp \varepsilon \mid w$
 - **Exclusion:** shocks g don't causally affect Y_i other than through D_i
 - ightharpoonup Independence: g is assigned independently of potential outcomes, conditionally on w
- Assume conditional distribution $G(g \mid w)$ is known (e.g. via randomization protocol or uniform across some permutations of g)

Identification

• These assumptions imply that the sole confounder generating OVB is the **expected instrument** $\mu_i = \mathbb{E}\left[f_i(g; w) \mid w\right] \equiv \int f_i(g; w) dG(g \mid w)$:

$$\mathbb{E}\left[\frac{1}{N}\sum_{i}Z_{i}\varepsilon_{i}\right] = \mathbb{E}\left[\frac{1}{N}\sum_{i}\mu_{i}\varepsilon_{i}\right] \neq 0, \text{ in general}$$

- Thus, recentered instrument $\tilde{Z}_i = Z_i \mu_i$ satisfies $\mathbb{E}\left[\frac{1}{N}\sum_i \tilde{Z}_i \varepsilon_i\right] = 0$
- If Z_i is relevant, recentered IV estimator is consistent as long as Z_i are weakly mutually dependent, regardless of mutual correlation in ε_i
- What about inference?
 - ▶ Conventional inference restricts dependence of $\tilde{Z}_{i\varepsilon_{i}}$
 - Randomization inference leverages shock counterfactuals

Spatially-clustered standard errors

Conley spatially-clustered standard errors are based on

$$\widehat{Var}\left(\sum_{i} \tilde{Z}_{i} \varepsilon_{i}\right) = \sum_{i,j: \ d(i,j) < d_{max}} \kappa\left(\frac{d(i,j)}{d_{max}}\right) \cdot \tilde{Z}_{i} \hat{\varepsilon}_{i} \hat{\varepsilon}_{j} \tilde{Z}'_{j}$$

- b d(i,j) is geographic distance
- lacksquare d_{max} is the distance cutoff such that $\operatorname{Cov}\left[ilde{Z}_{i}arepsilon_{i}, ilde{Z}_{j}arepsilon_{j}
 ight]=0$ if $d(i,j)>d_{max}$
- $\blacktriangleright \kappa(\cdot)$ is a kernel function:
 - ★ Uniform kernel: $\kappa(x) = \mathbf{1}[|x| \le 1]$
 - ★ Bartlett kernel: $\kappa(x) = \max\{1 |x|, 0\}$

Randomization inference

• To test the **sharp null** $\tau = b$ (assuming constant effects), compute statistic

$$T(g) = \frac{1}{N} \sum_{i} (Y_i - bD_i) \left(f_i(g; w) - \mu_i(w) \right)$$

ullet For many simulated counterfactual shocks $g^{(s)}$, compute

$$T(g^{(s)}) = \frac{1}{N} \sum_{i} (Y_i - bD_i) \left(f_i(g^{(s)}; w) - \mu_i(w) \right)$$

- Check that T(g) is not in the tails of the distribution of $T(g^{(s)})$
 - ▶ If $\tau = b$ holds, no reason for ε_i to correlate with more $f_i(g, w)$ than $f_i(g^{(s)}, w)$
 - ▶ But if $\tau \neq b$, $T(g^{(s)})$ are centered around 0 while T(g) is not
- \bullet Tests and confidence intervals are valid in finite samples, with no assumptions on ε
- This statistic is natural but any statistic T(g; Y bD, w) would work, too

Almost done

- √ We tried to develop an instinct to:
 - Identify settings that are in formula instruments class
 - Ask which determinants are as-good-as-random and which are non-random
 - Understand what it means to call your shocks as-good-as-random, by thinking of counterfactuals shocks
 - Recognize that OVB is possible even with as-good-as-random shocks
 - Know how to fix OVB, via "recentering"
- ightarrow Final task: have no fear of designs with non-random exposure to exogenous shocks

Example 4: Simulated instruments

- Currie and Gruber (1996a,b) study the effects of Medicaid eligibility on health outcomes
- OLS is surely biased because richer households are less likely to be eligible
- Assume variation in eligibility policy across states is exogenous
 - But policy is a complicated object: set of eligibility rules
 - Construct a scalar measure of policy generosity as IV
 - "Simulated instrument": % of population nationally that would be eligible under policy of i's state

Example 4: Simulated instruments

- What do you think of the simulated instrument: Exogeneity? Relevance?
- How can we recast household i's Medicaid eligibility D_i as a formula treatment?
- What is a household's expected eligibility?
- What does recentering / controlling for it mean here?
- What if D_i = Medicaid takeup, rather than eligibility?

Application to Obamacare

- Borusyak and Hull (2021) estimate crowding-out effects of Medicaid takeup (D_i) on private health insurance (Y_i)
- Leverage eligibility expansions to 146% of FPL under the Affordable Care Act
 - ▶ 11 of 13 states with Democratic governor, 8 of 30 states with Republican governor
 - View expansion decisions as random across states with same-party governors, but not household demographics or pre-2014 policy
- Compare two IVs:
 - Simulated IV: expansion dummy (controlling for governor's party)
 - ► Recentered IV: predict eligibility from expansion decisions & non-random demographics, and recenter
- By not fearing non-random exposure, recentered IV has much better first-stage
 - ► ~2x smaller standard errors