TANGENTS AND NORMALS

Excercise 10.2

Q2. In fig 1, if TP and TQ are two tangents to a circle with centre O so that $\angle POQ = 110^\circ$ then $\angle PTQ$ is equal to.

Solution: Let us assume the centre $\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Any point \mathbf{X} on the circle is given as

$$\mathbf{X} = \mathbf{O} + \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \tag{1}$$

The input parameters are given as

Input Parameters	Value
О	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
radius	1cm
$\angle POQ$	110°
P	$\begin{pmatrix} \cos 110^{\circ} \\ \sin 110^{\circ} \end{pmatrix}$
Q	$\begin{pmatrix} \cos 0^{\circ} \\ \sin 0^{\circ} \end{pmatrix}$

Table 1:

For tangent TP

$$\mathbf{n}_1 = \mathbf{P} - \mathbf{O} \tag{2}$$

$$= \begin{pmatrix} \cos 110^{\circ} \\ \sin 110^{\circ} \end{pmatrix} = \begin{pmatrix} 1 \\ \tan 110^{\circ} \end{pmatrix} \tag{3}$$

$$\mathbf{m}_1 = \begin{pmatrix} 1 \\ -\cot 110^{\circ} \end{pmatrix} \tag{4}$$

For tangent TQ

$$\mathbf{n}_2 = \mathbf{Q} - \mathbf{O} \tag{5}$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{6}$$

$$\mathbf{m}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{7}$$

The equation of TP is given as

$$\mathbf{n}_{1}^{\top} \left(\mathbf{x} - \begin{pmatrix} \cos 110^{\circ} \\ \sin 110^{\circ} \end{pmatrix} \right) = 0$$

$$\begin{pmatrix} -0.342 & 0.939 \end{pmatrix} \mathbf{x} = 1$$

$$(8)$$

The equation of TQ is given as

$$\mathbf{n}_{2}^{\top} \left(\mathbf{x} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = 0 \tag{10}$$
$$\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 1 \tag{11}$$

The tangent point can be calculated by solving (9) and (11)

$$\begin{pmatrix} -0.342 & 0.939 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1.428 \end{pmatrix}$$
(12)

The angle between two lines with slope \mathbf{m}_1 and \mathbf{m}_2 s given as

$$\cos \theta = \frac{\mathbf{m}_1^{\top} \mathbf{m}_2}{\|\mathbf{m}_1\| \|\mathbf{m}_2\|} \tag{14}$$

$$= \frac{\left(1 - \cot 110^{\circ}\right) \left(0\right)}{\left(\csc 110^{\circ}\right) \left(1\right)} \tag{15}$$

$$= -\cos 110^{\circ} \tag{16}$$

$$\implies \theta = 70^{\circ} \tag{17}$$

Hence, $\angle PTQ = 70^{\circ}$. See Fig 1

Figure 1: