

Introduction
to

GAME
THEORY

Durbasmriti Saha 01/06/2025

MATCHING PENNIES

- You and your friend simultaneously reveal a penny
- If both pennies show heads or both show tails, your friend has to pay you \$1
- If one penny shows head and other tail, you have to pay your friend \$1

Matching pennies

Your friend

Head

Tail

You

1 -1	-1 1
-1 1	1 -1

NASH THEOREM

- There must be at least one Nash equilibrium for all finite games
 - -But here there are no equilibria in pure strategies
- But there is another type of equilibrium

Bar Scene

Question: Understand the situation and find out if the situation explained in this scene is a Nash equilibrium or not?

MIXED STRATEGY NASH EQUILIBRIUM

- If no equilibrium exists in pure strategies, one must exist in mixed strategy
- A mixed strategy is a probability distribution over two or more pure strategies
 - -That is players choose randomly among their options in equilibrium.
 - -If mixtures are mutual best responses, the set of strategies is a mixed Nash equilibrium.

MATCHING PENNIES 2.0

- Suppose you are playing the game against Mind reader.
- How can you avoid losing?
- Answer: Flip the coin
- - At best, the mind reader could only win half the time.

Matching pennies

Your friend

Head (.5) Tail (.5)

Head(.5)

5	
4	
	್ಡ

You

1 -1	-1 1

Zero-Sum
Mixed
Strategy game

- What is EU(l) = f(Pu)
- Some % of time,
 Player 2 gets -3
- The rest of the time she gets 1.

- What is EU(l) = f(Pu)
- Some % of time, Player 2
 gets -3
- The rest of the time she gets 1.
- EU(1) = Pu(-3) + (1-Pu)(1)

	Left (Pl)	Right (Pr)
Op (Fu	3 -3	-2 2
HMOM	-1 1	0 0

- What is EU(r) = f(Pu)
- Some % of time, Player 2 gets 2.
- The rest of the time she gets 0.
- EU(r) = Pu(2) + (1-Pu)(0)

	Left	(Pl)	Right (Pr
Up (Pu)	3	-3	-2 2
Down	-1	1	0 0

•
$$EU(1) = EU(r)$$

• $EU(1) = Pu(-3)+(1-Pu)(1)$

•
$$EU(r) = Pu(2) + (1-Pu)(0)$$

•
$$Pu(-3)+(1-Pu)(1) = Pu(2) + (1-Pu)(0)$$

- What is EU(u) = f(Pl)
- Some % of time, Player 2 gets 3.
- The rest of the time she gets -2.
- EU(u) = Pl(3) + (1-Pl)(-2)

	Left (PI)	Right (Pr)
Op (Pu	3 -3	-2 2
Down	-1 1	0 0

- What is EU(d) = f(Pl)
- Some % of time, Player 2
 gets -1
- The rest of the time she gets 0
- EU(d) = Pu(-1) + (1-Pu)(0)

	Left (Pl)	Right (Pr)
7	3 -3	-2 2
	-1 1	0 0

•
$$EU(u) = EU(d)$$

•
$$EU(u) = Pl(3)+(1-Pl)(-2)$$

•
$$EU(d) = Pl(-1) + (1-Pl)(0)$$

•
$$Pl(3)+(1-Pl)(-2) = Pl(-1) + (1-Pl)(0)$$

THE MIXED STRATEGY NASH EQUILIBRIUM

$$Pl = 1/3, Pu = 1/6$$

BATTLE OF THE SEXES

- A man and a woman want to get together for an evening of entertainment, but they have no means of communication.
- They can either go to the ballet or the fight.
 - the man prefers going to the fight
 - The woman prefers going to the ballet
 - But they prefer being together than being alone

Woman Battle of Sexes Fight Ballet Man

Battle Player 2 of Sexes Right Left Player 1 Down

- What is EU(l) = f(Pu)
- Some % of time, Player 2 gets 2
- The rest of the time she gets 0
- EU(1) = Pu(2) + (1-Pu)(0)

Left	Right
1 2	0 0
0 0	2 1

- What is EU(r) = f(Pu)
- Some % of time, Player 2 gets 0
- The rest of the time she gets 1
- EU(r) = Pu(0) + (1-Pu)(1)

Left	Right
1 2	0 0
0 0	2 1

•
$$EU(1) = EU(r)$$

•
$$EU(1) = Pu(2)+(1-Pu)(0)$$

•
$$EU(d) = Pu(0) + (1-Pu)(1)$$

•
$$Pu(2)+(1-Pu)(0) = Pu(0) + (1-Pu)(1)$$

EU(1	1) =	EU	(d)
10(1	~/		(4)

$$EU(u) = f(Pl)$$

$$EU(d) = f(Pl)$$

Three equations three variables

d D

Down

Left

Right

1 2	0 0
0 0	2 1

- What is EU(u) = f(Pl)
- Some % of time, Player 2 gets 1.
- The rest of the time she gets 0.
- EU(u) = Pl(1) + (1-Pl)(0)

Left	Right
1 2	0 0
0 0	2 1

- What is EU(d) = f(Pl)
- Some % of time, Player 2 gets 0.
- The rest of the time she gets 2.
- EU(d) = Pl(0) + (1-Pl)(2)

Left	Right
1 2	0 0
0 0	2 1

•
$$EU(u) = EU(d)$$

•
$$EU(u) = Pl(1)+(1-Pl)(0)$$

•
$$EU(d) = Pl(0) + (1-Pl)(2)$$

•
$$Pl(1)+(1-Pl)(0) = Pl(0) + (1-Pl)(2)$$

$$>> P1 = 2/3$$

Battle of Sexes

Player 2

Ballet(2/3) Fight(1/3)

Player 1

Ballet (1/3)	1 2	0 0
Fight (2/3)	0 0	2 1

HOW TO CALCULATE PAYOFFS

- 1. Find the probability of each outcome occurs in equilibrium.
- 2. For each outcome, multiply that probability by a particular player's payoff.
- 3. Sum all of those numbers together.

HOW TO CALCULATE PAYOFFS

- 1. Find the probability of each outcome occurs in equilibrium.
- 2. For each outcome, multiply that probability by a particular player's payoff.
- 3. Sum all of those numbers together.

Battle of Sexes

Player 1

Player 2

Ballet(2/3) Fight(1/3)

Hight Ballet (2/3) 1/9 0 0 1/9 0 0 1/9 2 1 2/9

HOW TO CALCULATE PAYOFFS

- 1. Find the probability of each outcome occurs in equilibrium.
- 2. For each outcome, multiply that probability by a particular player's payoff.
- 3. Sum all of those numbers together.

Battle of Sexes

Player 2

Ballet(2/3) Fight(1/3)

HOW TO CALCULATE PAYOFFS

- 1. Find the probability of each outcome occurs in equilibrium.
- 2. For each outcome, multiply that probability by a particular player's payoff.
- 3. Sum all of those numbers together.

Battle of Sexes

Player 2

Ballet(2/3) Fight(1/3)

Player 1

Battle of Sexes

Player 2

Ballet(2/3) Fight(1/3)

Player 1

Ballet (1/3)	2*2/9	0 * 1/9
ignt 2/3)	0 * 4/9	1 * 2/9

Sum=6/9 =2/3