6.4 Compositions of Functions

Let f(x) and g(x) represent two functions. We have learned how to

- **Add** two functions (f + g)(x)
- **Subtract** two functions (f g)(x)
- **Multiply** two functions (fg)(x)
- **Divide** two functions $\frac{f}{g}(x)$
- Find the **Inverse** of a function $f^{-1}(x)$

Now, we need to learn how to put a function into another function. Say we want to put g(x) into f(x).

This is written as f(g(x)) or $(f \circ g)(x)$. f(g(x)) is an example of a **Composite Function**

Always remember to put the inner function in the outer function.

• If we want to put f(x) into g(x) the composition function is written as _____

Example. Let $f(x) = 4 + \sqrt{x^2 + 4x}$ and g(x) = x - 1. Determine the equation for each composition Function.

a)
$$f(g(x))$$

b)
$$g(f(x))$$

c)
$$g(g(x))$$

Find
$$g^{-1}(x)$$

d)
$$g(g^{-1}(x))$$

e)
$$g^{-1}(g(x))$$

Method for obtaining inverses

This method utilizes the fact that

$$f(f^{-1}(x)) = x$$
, $x \in D_{f^{-1}}$
 $f^{-1}(f(x)) = x$, $x \in D_f$

This may seem confusing, but it is a result of the most basic principles of function inverses. Think of a function as some sort of process that we put x through, and it outputs some term. A functions inverse is simply the reverse process. So if we put x through a process, f, then put it through the reverse process, f^{-1} , we end up with just x again.

The methodical approach can be summarized in the following steps:

1. Replace x with $f^{-1}(x)$ on both sides of the equation.

At this point, you should have a $f(f^{-1}(x))$ on one side of your equation and then a function of $f^{-1}(x)$ on the other.

2. Substitute in $f(f^{-1}(x)) = x$.

If we take the inverse of a function on the output of the function, f(x), we are left with the input. Therefore, if we take $f(f^{-1}(x))$, we are left with the original input, which is x. Therefore we know $f(f^{-1}(x)) = x$. Remember that, since the two expressions are equal, we can just replace $f(f^{-1}(x))$ with x.

3. Solve for $f^{-1}(x)$ in terms of x.

At this point, we have an x on one side of the equation, and then a function of $f^{-1}(x)$ on the other side. Try to solve for $f^{-1}(x)$ by getting it by itself on one side of the equation. This will tell you what the inverse function is.

Examples: Find the inverses for the following functions.

a)
$$f(x) = x + 4$$

b)
$$f(x) = (x + 4)^2 - 5$$

Example. If $(f \circ g)(x) = 8x^2 - 10x + 15$ and f(x) - 2x + 9 find g(x).

Example. Use the graphs of y = f(x) and y = g(x) to find each of the following compositions.

c.
$$f(g(0))$$

d.
$$g(f(0))$$

e.
$$g(g(3))$$

Domain of Composite Function Diagram

Let $(a,b)\epsilon g$ and $(b,c)\epsilon f$. Determine f(g(a))

NOTE: To define (fg)(x),

$$D_f \cap R_g \neq \emptyset$$

Then

$$D_{fog} = \left\{ x \in D_g, g(x) \in D_f \right\}$$

Example . Given that $f = \{(0,1), (1,3), (2,5), (3,7), (4,9)\}$ and $g = \{(0,0), (1,2), (2,4), (3,6), (4,8)\}$. Determine

- a) $(f \circ g)(x)$
- b) $(f \circ g)^{-1}(x)$
- c) g(f(x))
- d) $f^{-1}(x)$
- e) $(g \circ f^{-1})(x)$

Example. Given the following graph of f(x) and g(x). Graph $(f \circ g)(x)$.

x	g(x)	f(g(x))										0	У									
										\setminus		΄.										
												8 -										
											\setminus											
											1	6 -										
												4	┢							\Box		
													┖		_						f(x)
												2-	1	/						\vdash		
				+-				_				-	-	\leftarrow								X
			 -	+ -	<u> </u>	-	_	Н	\mathbf{L}	-	_	\vdash	⊁	1	\vdash	H	┞		\vdash	1	-	$\boldsymbol{\dashv}$
			10	 -	8	-	6_	_	4∖		2	,	-		\leftarrow	_ 4	1—	6	—	8		_10
				-						-	-	1			+							
				-			-			\		/_	┝		_					\vdash		
										\rightarrow	/-	4 -	┡			\				\vdash		
				-						_\	_	<u> </u>	-							\vdash		
			1								_	6 -	<u> </u>				\			\Box		
				_								Ľ.										
			1 🖳								_	8 -	L_					/				
												٥.							g	(x)		
			1 L_								L.	_										
												0										

Example. Given the graph of y = f(x) on the right and the functions g(x) = 2x + 1, h(x) = -x + 3, and $k(x) = (g \circ f \circ h)(x)$,

- (a) evaluate k(2)
- (b) graph $(g \circ h \circ f)(x)$.

Х	(g o h of)(x)

Example. Express h as the composition of two functions f and g, such that h(x) = f(g(x)).

a.
$$h(x) = 3^{2x^2-1}$$

b.
$$h(x) = x^4 + 5x^2 + 6$$

$$c. \quad h(x) = \frac{2x^2 - 1}{x^2}$$

$$d. \quad h(x) = \frac{1}{x-4}$$

Composite Functions

Exercise 6.4

Part A

1. Given $f(x) = \sqrt{x}$ and $g(x) = x^2 - 1$, find the following:

a. f(g(1))

b. g(f(1))

c. g(f(0))

d. f(g(-4))

e. f(g(x))

f. g(f(x))

2. For each of the following pairs of functions, find the composite functions $f \circ g$ and $g \circ f$. What is the domain of each composite function? Are the composite functions equal?

a. $f(x) = x^2$

b. $f(x) = \frac{1}{x}$ c. $f(x) = \frac{1}{x}$ $g(x) = x^2 + 1$ $g(x) = \sqrt{x+2}$

 $g(x) = \sqrt{x}$

Part B

3. Use the functions f(x) = 3x + 1, $g(x) = x^3$, $h(x) = \frac{1}{x+1}$, and $u(x) = \sqrt{x}$ to find expressions for the indicated composite function.

 $a. f \circ u$

b. $u \circ h$

c. gof

d. uog

 $e. h \circ u$

f. fog

g. $h \circ (f \circ u)$

h. (fog)au

i. $g \circ (h \circ u)$

4. Express h as the composition of two functions f and g, such that h(x) = f(g(x)).

a. $h(x) = (2x^2 - 1)^4$

b. $h(x) = \sqrt{5x - 1}$

c. $h(x) = \frac{1}{x - 4}$

d. $h(x) = (2 - 3x)^{\frac{5}{2}}$

e. $h(x) = x^4 + 5x^2 + 6$

f. $h(x) = (x+1)^2 - 9(x+1)$

5. If $f(x) = \sqrt{2 - x}$ and $f(g(x)) = \sqrt{2 - x^3}$, then what is g(x)?

6. If $g(x) = \sqrt{x}$ and $f(g(x)) = (\sqrt{x} + 7)^2$, then what is f(x)?

7. Let g(x) = x - 3. Find a function f so that $f(g(x)) = x^2$.

8. Let $f(x) = x^2$. Find a function g so that $f(g(x)) = x^2 + 8x + 16$.

9. Let f(x) = x + 4 and $g(x) = (x - 2)^2$. Find a function u so that $f(g(u(x))) = 4x^2 - 8x + 8$.

10. If $f(x) = \frac{1}{1-x}$ and g(x) = 1-x, determine

b. f(g(x))

11. If f(x) = 3x + 5 and $g(x) = x^2 + 2x - 3$, determine x such that f(g(x)) = g(f(x)).

12. If f(x) = 2x - 7 and g(x) = 5 - 2x.

a. determine $f \circ f^{-1}$ and $f^{-1} \circ f$.

b. show that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

1. a. 0 b. 0 c. -1 d. $\sqrt{15}$ e. $\sqrt{x^2-1}$ f. x-1

2. a. $f(g(x)) = x, x \ge 0$; $g(f(x)) = |x|, x \in R$; $f \circ g \ne g \circ f$ b. $f(g(x)) = \frac{1}{x^2 + 1}, x \in R$; $g(f(x)) = \frac{1}{x^2} + 1, x \ne 0$; $f \circ g \ne g \circ f$

c. $f(g(x)) = \frac{1}{\sqrt{x+2}}, x > -2; g(f(x)) = \sqrt{\frac{1+2x}{x}}, x < -\frac{1}{2}$ or x > 0; $f \circ g \neq g \circ f$

3. a. $3\sqrt{x} + 1$ **b.** $\frac{1}{\sqrt{x+1}}$ **c.** $(3x+1)^3$

d. $\sqrt{x^3}$ **e.** $\frac{1}{\sqrt{x}+1}$ **f.** $3x^3+1$ **g.** $\frac{1}{3\sqrt{x}+2}$ **h.** $3x\sqrt{x}+1$

i. $\frac{1}{(\sqrt{r}+1)^3}$

4. a. $f(x) = x^4$, $g(x) = 2x^2 - 1$ b. $f(x) = \sqrt{x}$, g(x) = 5x - 1

c. $f(x) = \frac{1}{x}$, g(x) = x - 4 d. $f(x) = x^{\frac{1}{2}}$, g(x) = 2 - 3x

e. $f(x) = x(x + 1), g(x) = x^2 + 2$

f. $f(x) = x^2 - 9x$, g(x) = x + 1

5. $g(x) = x^3$

 $6. f(x) = (x + 7)^2$

 $7. f(x) = (x + 3)^2$

8. g(x) = x + 4 or g(x) = -x - 4

9. u(x) = 2x or u(x) = -2x + 4

10. a. $\frac{x}{x-1}$ b. $\frac{1}{x}$ 11. -2, -3 12. a. x

1. Given the following functions, determine the following in simplest **exact** form.

$$f(x) = \{(1,2), (2,3), (3,5), (5,7)\} \qquad g(x) = \{(1,4)\}$$

$$h(x) = -2\cos(2x + \pi) + 1 \qquad m(x) = x^2 + 1$$
a.
$$(f^{-1} + g)(x)$$

$$f(x) = \{(1,2),(2,3),(3,5),(5,7)\}$$
 $g(x) = \{(1,4),(3,7),(5,9),(9,2)\}$

$$h(x) = -2\cos(2x + \pi) + 1$$

$$m(x) = x^2 + 1$$

a.
$$(f^{-1}+g)(x$$

b.
$$(f \times g)(3)$$

c.
$$(g \circ h)(\pi)$$

d.
$$\left(\frac{f}{m}\right)(x)$$

- 2. Given the graph of y = f(x) on the right and the functions g(x) = 2x + 1, h(x) = -x + 3, and $k(x) = (g \circ f \circ h)(x)$
- evaluate k(2)(a)

graph $(g \circ h \circ f)(x)$. (b)

x	$(g \circ h \circ f)(x)$

3. Given the graph y = k(x) below and the functions $g(x) = 2^{x-1}$, $h(x) = \log_2(x^2 + 1)$, $m(x) = \sqrt{16 - x^2}$, graph of y = f(x) below, $k(x) = \frac{(g \circ f \circ h)(x)}{h(x)}$ and $n(x) = (f \circ m \circ f)(x)$ determine the following:

