Математический анализ Лекция 3

Никитин А.А.

МГУ им. М.В. Ломоносова, факультет ВМК Кафедра общей математики

Онлайн-курс по математике в Data Science 3 ноября, 2020г.

О ЗАМЕНЕ ЭКВИВАЛЕНТНЫХ СОМНОЖИТЕЛЕЙ

Пусть равенство $f(x) = h(x) \cdot g(x)$ выполняется при $x \to a$. Тогда, если $\lim_{x \to a} h(x) = 1$, то функции f и g называются эквивалентными. Обозначение: $f \sim g$ при $x \to a$.

ТЕОРЕМА

Пусть $f \sim g$ при $x \to a$. Тогда для любой функции φ одновременно существуют или не существуют пределы:

$$\lim_{x \to a} f(x)\varphi(x) \text{ u } \lim_{x \to a} g(x)\varphi(x),$$

причём если пределы существуют, то они равны. Тоже самое справедливо для пределов

$$\lim_{x \to a} \frac{\varphi(x)}{f(x)} \, \mathsf{u} \, \lim_{x \to a} \frac{\varphi(x)}{g(x)}.$$

ДОКАЗАТЕЛЬСТВО

Доказательство.

Предположим, что существует предел $\lim_{x o a} g(x) arphi(x)$. Тогда

$$\lim_{x \to a} f(x)\varphi(x) = \lim_{x \to a} h(x)g(x)\varphi(x) = \lim_{x \to a} h(x) \cdot \lim_{x \to a} g(x)\varphi(x) = \lim_{x \to a} g(x)\varphi(x).$$

Если известно, что существует $\lim_{x \to a} f(x) \varphi(x)$, то

$$\lim_{x\to a} g(x)\varphi(x) = \lim_{x\to a} \frac{f(x)}{h(x)}\varphi(x) = \frac{\lim_{x\to a} f(x)\varphi(x)}{\lim_{x\to a} h(x)} = \lim_{x\to a} f(x)\varphi(x).$$

Аналогично проверяется возможность замены на эквивалентную функцию в знаменателе. $(\mathbf{Д}/3)$

Непрерывность функции

Пусть функция $f: \mathbf{E} \mapsto \mathbb{R}$ определена в некоторой окрестности точки $a \in \mathbf{E}$, предельной для множества \mathbf{E} .

Определение

Будем говорить, что функция f непрерывна в точке a, если $\lim_{x \to a} f(x) = f(a)$.

Обозначение: $f \in C(a)$.

Это тождество можно переписать как: $\lim_{x\to a} f(x) = f(\lim_{x\to a} x)$, т.е непрерывные в точке функции, и только они, перестановочны с операцией предельного перехода.

Определение

Будем говорить, что функция f непрерывна на множестве $\mathbf{X} \subset \mathbf{E}$, если она непрерывна в каждой точке этого множества. Обозначение: $f \in C(\mathbf{X})$.

Непрерывность функции

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in \mathbf{E}, \ |x - a| < \delta(\varepsilon) \ \Rightarrow \ |f(x) - f(a)| < \varepsilon.$$

Примеры

1 $f(x) = c = const \in C(\mathbb{R})$, т.к. $\forall a \in \mathbb{R}$ имеем:

$$|f(x)-f(a)|=|c-c|=0<\varepsilon,\ \forall \varepsilon>0.$$

2) $f(x) = x \in C(\mathbb{R})$, т.к. $\forall a \in \mathbb{R}$ имеем:

$$|f(x) - f(a)| = |x - a| < \delta = \varepsilon.$$

3 $f(x) = \sin x \in C(\mathbb{R})$, т.к. $\forall a \in \mathbb{R}$ имеем:

$$|f(x)-f(a)|=|\sin x-\sin a|=2\left|\cos\frac{x+a}{2}\right|\left|\sin\frac{x-a}{2}\right|\leqslant 2\left|\frac{x-a}{2}\right|=|x-a|<\delta=\varepsilon.$$

Свойства непрерывных функций

Арифметические операции над непрерывными функциями

<u>Теорема</u>: Пусть на одном и том же множестве заданы функции f и g, непрерывные в точке a. Тогда функции $f\pm g$, $f\cdot g$ и $\frac{f}{g}$ также непрерывны в точке a (в случае частного нужно дополнительно требовать, чтобы $g(a)\neq 0$).

Доказательство.

Вытекает из теоремы об арифметических операциях над функциями, имеющими предел.

Непрерывность композиции функций

<u>ТЕОРЕМА</u>: Если $f: \mathbf{X} \to \mathbf{X} \mapsto \mathbb{R}$, $g: \mathbf{Y} \to \mathbf{X} \mapsto \mathbb{R}$, $f(\mathbf{X}) \subset \mathbf{Y}$ и функция f непрерывна в точке $x_0 \in \mathbf{X}$, а функция g непрерывна в точке $y_0 = f(x_0)$, то сложная функция g(f(x)) непрерывна в точке x_0 .

Доказательство.

Вытекает из теоремы о пределе композиции функций.

Определения

ОДНОСТОРОННЯЯ НЕПРЕРЫВНОСТЬ

ОПРЕДЕЛЕНИЕ: Функция f называется непрерывной в точке a справа (слева), если правый (левый) предел этой функции в точке a существует и равен частному значению f(a) функции f в точке a.

точка разрыва

 $\underline{\text{ОПРЕДЕЛЕНИЕ}}$: Если функция $f: \mathbf{E} \mapsto \mathbb{R}$ не является непрерывной в некоторой точке множества \mathbf{E} , то эта точка называется точкой разрыва функции f, т.е.

a — точка разрыва функции f, если:

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x \in \mathbf{E}, \ |x - a| < \delta : |f(x) - f(a)| \geqslant \varepsilon_0.$$

ПРИМЕРЫ

Пример 1

$$f(x) = |\mathit{sgn}x| = egin{cases} 1, & \mathsf{если}\ x
eq 0; \ 0, & \mathsf{если}\ x = 0. \end{cases}$$

$$\exists \lim_{x \to 0-0} f(x) = \lim_{x \to 0+0} f(x) = 1, \text{ ho } f(0) = 0 \neq 1 = \lim_{x \to 0} f(x).$$

ПРИМЕРЫ

Пример 2

$$f(x) = sgn(x) = egin{cases} -1, & ext{если } x < 0; \ 0, & ext{если } x = 0; \ 1, & ext{если } x > 0 \end{cases}$$
 $\exists \lim_{x o 0 - 0} f(x) = -1
eq 1 = \lim_{x o 0 + 0} f(x).$

ПРИМЕРЫ

Пример 3

$$f(x) = egin{cases} \sinrac{1}{x}, & ext{если } x
eq 0; \ 0, & ext{если } x = 0. \end{cases}$$
 $\# \lim_{x o 0} f(x).$

Классификация точек разрыва

Устранимый разрыв

ОПРЕДЕЛЕНИЕ: Точка a называется точкой устранимого разрыва функции f, если предел этой функции в точке a существует, но в данной точке функция f либо не определена, либо имеет частное значение $f(a) \neq \lim_{x \to a} f(x)$.

Классификация точек разрыва

РАЗРЫВ ПЕРВОГО РОДА

 $\underline{\text{ОПРЕДЕЛЕНИЕ}}$: Точка a называется точкой разрыва первого рода функции f, если существуют не равные между собой, односторонние пределы

$$\lim_{x \to a-0} f(x) = f(a-0) \neq f(a+0) = \lim_{x \to a+0} f(x).$$

Классификация точек разрыва

РАЗРЫВ ВТОРОГО РОДА

 $\underline{\text{ОПРЕДЕЛЕНИЕ}}$: Точка a называется точкой разрыва второго рода функции f, если в этой точке функция f не имеет по крайней мере одного из односторонних пределов, или если хотя бы один из них бесконечен.

ЛОКАЛЬНЫЕ И ГЛОБАЛЬНЫЕ СВОЙСТВА НЕПРЕРЫВНЫХ ФУНКЦИЙ

Локальные свойства

Локальными называют такие свойства функции, которые справедливы в сколь угодно малой окрестности фиксированной точки области определения функции. Эти свойства характеризуют поведение функции при стремлении аргумента к исследуемой точке.

ПРИМЕРЫ

- Непрерывность функции в некоторой точке её области определения;
- 2 Арифметические операции над непрерывными функциями;
- Непрерывность композиции;

Локальные и глобальные свойства непрерывных функций

Глобальные свойства

Глобальные свойства — это свойства, связанные со всей областью определения функции.

ПРИМЕРЫ

- **1** Монотонность функции на сегменте [a, b];
- Непрерывность функции на отрезке;

Локальные свойства непрерывных функций

Финальная ограниченность

<u>ТЕОРЕМА</u>: Если $\exists \lim_{x \to a} f(x)$, то функция f — ограничена в проколотой δ -окрестности для некоторого $\delta > 0$.

Доказательство.

$$\exists \lim_{x \to a} f(x) = b \iff \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in \overset{\circ}{U}_{\delta}(a) \Rightarrow$$
$$\Rightarrow |f(x) - b| < \varepsilon \iff b - \varepsilon < f(x) < b + \varepsilon.$$

Если $a \in \mathbf{E}$, то обозначим $m = \min\{b - \varepsilon, f(a)\}$, $M = \max\{b + \varepsilon, f(a)\}$. Тогда

$$\forall x \in \overset{\circ}{U}_{\delta}(a) \cap \mathsf{E} \ \Rightarrow \ m \leqslant f(x) \leqslant M.$$

ЛОКАЛЬНЫЕ СВОЙСТВА НЕПРЕРЫВНЫХ ФУНКЦИЙ

ОБ УСТОЙЧИВОСТИ ЗНАКА НЕПРЕРЫВНОЙ В ТОЧКЕ ФУНКЦИИ

 $\underline{\mathrm{TEOPEMA}}$: Пусть $f: \mathbf{E} \mapsto \mathbb{R}$ — непрерывна в точке a этого множества, и её значение в этой точке $f(a) \neq 0$. Тогда существует такая окрестность, в которой функция f сохраняет свой знак.

Доказат<u>ельство.</u>

Т.к. $f \in C(a)$, то

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ : \ \forall x \in U_{\delta}(a) \cap \mathbf{E} \ \Rightarrow$$

$$\Rightarrow |f(x) - f(a)| < \varepsilon \Leftrightarrow f(a) - \varepsilon < f(x) < f(a) + \varepsilon.$$

Если в качестве ε взять положительное число $\frac{|f(a)|}{2}$, то оба числа $f(a)-\varepsilon$ и $f(a)+\varepsilon$ будут положительны при f(a)>0 и отрицательны при f(a)<0. Откуда и вытекает требуемое.

Глобальные свойства непрерывных функций

О ПРОХОЖДЕНИИ НЕПРЕРЫВНОЙ ФУНКЦИИ ЧЕРЕЗ НУЛЬ ПРИ СМЕНЕ ЗНАКОВ

Пусть функция f — непрерывна на [a,b], и пусть $f(a)\cdot f(b)<0$ (т.е. её значения на концах есть числа разных знаков). Тогда $\exists \xi \in (a,b): f(\xi)=0$.

Доказательство.

Делим отрезок $[a,b]=I_0$ пополам. Если $f\left(\frac{a+b}{2}\right) \neq 0$, то на концах одного их двух полученных в результате деления отрезков, функция снова принимает значения разных знаков. Делим данный отрезок (I_1) пополам, и т.д.

Тогда мы либо на каком-то шаге попадём в точку $c\in(a,b):f(c)=0$, либо получим стягивающуюся систему сегментов $\{I_n\}$ на концах которых функция f принимает значения разных знаков. В последнем случае, на основании принципа вложенных сегментов, $\exists!c\in\bigcap_{n=1}^{\infty}I_n$. По построению

 $\exists \{a_n\},\ \{b_n\}$ — две последовательности концов отрезков I_n такие, что $f(a_n)<0,\ f(b_n)>0$ и $\lim_{\substack{n\to\infty\\n\to\infty}}a_n=\lim_{\substack{n\to\infty\\n\to\infty}}b_n=c.$ По свойствам предела и определению непрерывности, получаем:

$$\lim_{n\to\infty}f(a_n)=f(c)\leqslant 0,\ \lim_{n\to\infty}f(b_n)=f(c)\geqslant 0\ \Rightarrow\ f(c)=0.$$

Глобальные свойства непрерывных функций

О ПРОХОЖДЕНИИ НЕПРЕРЫВНОЙ ФУНКЦИИ ЧЕРЕЗ ЛЮБОЕ ПРОМЕЖУТОЧНОЕ ЗНАЧЕНИЕ

 $\underline{ ext{ТЕОРЕМА}}$: Пусть функция f непрерывна на отрезке [a,b], причём $f(a)=lpha,\ f(b)=eta,\ a\ \gamma$ – произвольное число, заключённое между lpha и eta. Тогда

$$\exists \xi \in [a,b] : f(\xi) = \gamma.$$

Доказательство.

Если $\alpha=\beta=\gamma$, то в качестве ξ берём a или b. По этой же причине очевидны случаи, когда $\gamma=\alpha$ или $\gamma=\beta$.

Пусть $\alpha \neq \beta$. Не ограничивая общности считаем, что $\alpha < \gamma < \beta$.

Рассмотрим функцию $g(x) = f(x) - \gamma$. Как разность двух непрерывных функций, функция g — непрерывна на [a,b], и принимает на концах этого сегмента значения разных знаков:

$$g(a) = f(a) - \gamma = \alpha - \gamma < 0, \quad g(b) = f(b) - \gamma = \beta - \gamma > 0$$

По теореме о прохождении непрерывной функции через любое промежуточное значение $\exists \xi \in (a,b): g(\xi)=0 \Rightarrow f(\xi)=\gamma.$

Следствие

Метод интервалов для решения неравенств

Функция может изменить свой знак только при переходе через точку, в которой она равна нулю, или через точку разрыва. На любом интервале из области определения, не содержащем таких точек, функция во всех точках принимает значения одного знака.

Π РИМЕР

Решить неравенство: $x^2 - 2x - 8 \ge 0$

Первая теорема Вейерштрасса

Первая теорема Вейерштрасса

 $\underline{\mathrm{TEOPEMA}}$: Если f непрерывна на отрезке [a,b], то она ограничена на нём.

Доказательство.

Докажем, что функция f ограничена сверху. Ограниченность снизу показывается аналогично.

От противного. Предположим, что f не ограничена сверху. Тогда для $\forall n \in \mathbb{N}$ найдётся хотя бы одна точка $x_n \in [a,b]$ такая, что $f(x_n) > n$. Следовательно, последовательность $\{f(x_n)\}$ — бесконечно большая. Т.к. $\{x_n\} \subset [a,b]$, то $\{x_n\}$ — ограничена. По теореме Больцано-Вейерштрасса найдётся подпоследовательность $\{x_{n_k}\}$, сходящаяся к точке ξ . Все элементы $\{x_n\}$ лежат на [a,b], следовательно, и $\xi \in [a,b]$. Далее, т.к. $f \in C[a,b]$, то $\{f(x_{n_k})\}$ — $f(\xi)$, но это противоречит тому, что подпоследовательность $\{f(x_{n_k})\}$, будучи выделена из бесконечно большой последовательности, сама является бесконечно большой.

Замечание

Для интервала (конечного или бесконечного) данное утверждение уже не имеет места.

Вторая теорема Вейерштрасса

Определение

Число M (число m) называется точной верхней (точной нижней) гранью функции f на множестве \mathbf{E} , если выполнены два требования:

Обозначение: $M = \sup_{\mathbf{E}} f(x), \quad m = \inf_{\mathbf{E}} f(x)$

Утверждение

Если функция f ограничена на множестве $\mathbf E$ сверху (снизу), то $\exists \sup f(x) \ (\exists \inf f(x))$

Вторая теорема Вейерштрасса

$$f(x) = egin{cases} x^2, & ext{ec.nu } x \in (0,1); \ 1/2, & ext{ec.nu } x = 0, \, x = 1. \end{cases}$$

Верхняя (M=1) и нижняя (m=0) грани этой функции не достижимы, т.е. $\nexists x \in [0,1]: f(x)=1$ (f(x)=0.)

Вторая теорема Вейерштрасса

вторая теорема Вейерштрасса

<u>ТЕОРЕМА</u>: Если f непрерывна на отрезке [a,b], то она достигает на нём точных верхней и нижней граней. Т.е.

$$\exists x_1, x_2 \in [a, b] : f(x_1) = \sup_{[a, b]} f(x), f(x_2) = \inf_{[a, b]} f(x).$$

Доказательство.

По первой теореме Вейерштрасса функция f ограниченна на [a,b].

Поэтому $\exists \sup_{[a,b]} f(x)$, $\exists \inf_{[a,b]} f(x)$. Обозначим их через M и m соответственно.

Предположим, что точная верхняя грань не достижима, т.е.

$$\forall x \in [a, b] \Rightarrow f(x) < M.$$

Рассмотрим функцию $F(x)=rac{1}{M-f(x)}$. Т.к. M-f(x)>0, то F-

непрерывна на [a,b]. По первой теореме Вейерштрасса функция F – ограничена на [a,b]. Следовательно,

$$\exists A > 0 : \frac{1}{M - f(x)} \leqslant A \iff f(x) \leqslant M - \frac{1}{A}, \ \forall x \in [a, b].$$

Это противоречит тому, что $M = \sup_{[x,b]} f(x)$.

Обратная функция

Понятие обратной функции

Функция $g: \mathbf{Y} \mapsto \mathbf{X}$ называется обратной для функции $f: \mathbf{X} \mapsto \mathbf{Y}$, если $g\big(f(x)\big) = x$ для $\forall x \in \mathbf{X}$ и $f\big(g(y)\big) = y$ для $\forall y \in \mathbf{Y}$

<u>Крите</u>рий обратимости

Обратная функция существует тогда и только тогда, когда f есть взаимно однозначное отображение множества \mathbf{X} на множество \mathbf{Y} .

Обратная функция

Доказательство.

Действительно, если существует обратная функция, то $\forall y \in \mathbf{Y}$ найдётся прообраз x = g(y), т.к. тогда f(x) = f(g(y)) = y. Кроме того, при $x_1 \neq x_2$ обязательно $g(f(x_1)) = x_1 \neq x_2 = g(f(x_2))$. Поэтому $f(x_1) \neq f(x_2)$. Обратно, если известно, что f есть взаимно однозначное отображение множества \mathbf{X} на множество \mathbf{Y} , то обратное отображение определяется правилом: каждому $y \in \mathbf{Y}$ ставится в соответствие тот элемент $x \in \mathbf{X}$, для которого y = f(x). Здесь по построению f(g(y)) = y и g(f(x)) = x

Теорема о монотонности и непрерывности обратной функции

Теорема

Если числовая функция f непрерывна и монотонно возрастает (убывает) на промежутке X, то множество её значений Y также является промежутком и существует обратная функция $g: Y \mapsto X$, которая непрерывна и монотонно возрастает (убывает) на Y.