AIM

Programs on feedforward network to classify any standard dataset available in the public domain.

Dataset used: HR_comma_sep.csv

Programming code:

```
import numpy as np
import pandas as pd

# Load data
data=pd.read_csv('HR_comma_sep.csv')
```

data.head()

OUTPUT:

		satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_5years	sales	salary
	0	0.38	0.53	2	157	3	0	1	0	sales	low
	1	0.80	0.86	5	262	6	0	1	0	sales	medium
	2	0.11	0.88	7	272	4	0	1	0	sales	medium
;	3	0.72	0.87	5	223	5	0	1	0	sales	low
	4	0.37	0.52	2	159	3	0	1	0	sales	low

Programming code:

from sklearn import preprocessing

Creating labelEncoder

le = preprocessing.LabelEncoder()

Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary'])

data['sales']=le.fit_transform(data['sales'])

```
X=data[['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours',
'time_spend_company', 'Work_accident', 'promotion_last_5years', 'sales', 'salary']]
y=data['left']
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 70% training and 30% test
from sklearn.neural_network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden_layer_sizes=(6,5),
            random_state=5,
            verbose=False.
            learning_rate_init=0.01)
# Fit data onto the model
clf.fit(X_train,y_train)
OUTPUT:
  MLPClassifier(hidden_layer_sizes=(6, 5), learning_rate_init=0.01,
                  random state=5)
Programming code:
ypred=clf.predict(X_test)
# Import accuracy score
from sklearn.metrics import accuracy_score
# Calcuate accuracy
accuracy_score(y_test,ypred)
  0.938666666666666
```