This two functions have L-Lipschitz continuous gradient we know that if $f: \mathbb{R}^n \to \mathbb{R}$ and f has a minimizer \mathbb{R}^n then from the inequality in problem 1.2 b we have: $\frac{1}{2} + \frac{1}{2} \| \sqrt{1+2} \|$

 $= \frac{1}{2} \left[\frac{1}{2}$

Similarly $Z = x_2$ minimize $f_{x_2}(x)$ (2) $f(x_1) - f(x_2) - \nabla f(x_2)(x_1 - x_2) > \frac{1}{2\lambda} \| \nabla f(x_2) - \nabla f(x_1) \|_2^2$ Now we can combine 1, 2 inequality: $(\nabla f(x_2) - \nabla f(x_1))^T (x_2 - x_1) > \frac{1}{\lambda} \| \nabla f(x_2) - \nabla f(x_1) \|_2^2$