(91) Construct a 16 x 1 multiplexere with two 8x1 and one do 1 multiplexere. Use black d'agrans.

(9)2) Construct a 5 to 3d line de coder with four 3 to 8 line decoders with enable and 2 to 4 line decoder. Use block diagrams for the components.

(33) Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions:

Trough table
$$\rightarrow$$

X Y Z F₁ F₂ F₃

P₀ 0 0 0 0 0 0

P₁ 0 0 0 0 0 0

P₂ 0 1 0 1 0 0

P₃ 0 1 0 0 1 0

P₄ 1 0 0 0 1 0

D₆ 1 0 1 1 0

b)
$$F_1 = (y' + x)^2$$
, $F_2 = y'z' + x'y + yz'$, $F_3 = (x+y)^2$
= $y'z + xz$ = $xz + yz$

Trouth table -

X	9y Z	FIFE					
Po O	00	010					
0,0	01	100					
D2 0	10	010					
0, 0	1 1	011					
04 1	00	010					
05 1	0 1	101					
06 1	10	010					
02 1	1 1	101					

(9)4) Implement the following Boolean function with a multiplexer

0

F=1

Q5) Write the HDL description of 4 bit priority encoder circuit given below.

Ars > library ieee;

use ieee std_logic=164 all;

entity lab9bis

Port (D3, D1, D2, D3; in std_logic;

Poret (D3, D2, D1, D0: in old_logic; end lob9b;

evel 10575;

coe architecture behavioral of lab9 is

signal a, b: std_lagic;

begin

a <= not D1;

b <= a and D1;

X <= D3 or D2;

Y <= D3 or b;

V <= D0 or D1 or D2 or D3;

end behavioral;

\$\$\forall An 8x1 multiplexer has inputs A, Band C connected to the selection inputs \$2, \$1 & So respectively. The data inputs To through Tx arce as follows -

a)
$$I_1 = I_2 = I_7 = 0$$
; $I_3 = I_6 = 1$; $I_6 = I_4 = 0$; if $I_6 = 0$?
b) $I_7 = I_2 = 0$; $I_{13} = I_7 = 1$; $I_{14} = I_5 = 0$; and $I_{16} = I_6 = 0$?

Ans a) I, = [= = I, =0; I3=I5 = 1; I0=I4=D; I6=D; B 400000000 0 $T_0 = D$ 0 00 000 0 I1= 0 00 0 0 T2 = 0 1 I3 = 1 0 0 I4= D 0 T= 1 0

0

0

1000	00	01	بال.	10
00				
01			I	U
11	1			
10			[]	

F= ABC'D' + B'C'D + A'BC+ AB'C

b) I1=I2=0; I3=I7=1; I4=[5=0; and I0=I6=0'.

 $I_e = D$

T7= 0

	-1	- Y	,, -3	, -,	, , - ,	3
•	A	B	C	D	F	
	00	0	00	0	0	I°=0,
	00000	00	1	0	00	I1=0
	000	1	00	0	00	I2 = 0
	00	İ	1	0		T3 = 1
	T	00	00	0	01	I4 = D
	1	00	1	0	0	Is = D
	1	1	00	0	0	$T_6 = D'$
	1	1	1	0	-	T7=1
				1		

F= A'B'C'D' + ABD' + AB'D+ BC

(97) A programmable logic array (PLA) is shown in the Agurce

Ans > From the above fig.,

I In I To Di onli It Di.

9)8) Dream a PLA circuit to implement the functions

