

Assignment of Grades in a Discrete Mathematics Class.

D

The Function f Maps A to B.

Examples of Different Types of Correspondences.

Adams

Chou

Stevens

Goodfriend •
Rodriguez •

Functions

EXAMPLE Determine whether the functions are one-to-one, onto, or both?

Correspondences	One-to-one	Onto	Note

Inverse Functions

The Function f^{-1} Is the Inverse of Function f.

Let f be a one-to-one correspondence from the set A to the set B.

The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that f (a) = b.

If a function f is not a one-to-one correspondence, we cannot define an inverse function of f .

Let f be the function from **R** to **R** with $f(x) = x^2$. Is f invertible?

Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?

Compositions of Functions

2.2 Functions

DEFINITION

A sequence is a function from a subset of the set of integers (usually either the set $\{0, 1, 2, ...\}$ or the set $\{1, 2, 3, ...\}$) to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where the initial term a and the common difference d are real numbers.

 $-1, 3, 7, 11, \dots$

2.3 Sequences and Summations

DEFINITION $a, ar, ar^2, \dots, ar^n, \dots$

where the *initial term* a and the *common ratio* r are real numbers.

$$1, -1, 1, -1, 1, \dots$$

$$6, 2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \dots$$

11/14/2021

Sequences and Summations

$$\sum_{j=m}^{n} a_j$$
, or $\sum_{m \le j \le n} a_j$ $a_m + a_{m+1} + \cdots + a_n$

Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1} - a}{r - 1}, r \neq 1$	

Sequences and Summations

$$\sum_{j=m}^{n} a_j$$
, or

 $\sum_{m \leq j \leq n} a_j$

$$a_{m+1} + \dots + a_n$$
 $\sum_{s \in S} f(s)$

Some Useful Summation Formulae.

$$\begin{array}{c|c}
Sum & Closed Form \\
\hline
\sum_{k=1}^{n} k \\
\sum_{k=1}^{n} k^2 \\
\sum_{k=1}^{n} k^3 \\
k & \frac{n(n+1)(2n+1)}{6} \\
\hline
\sum_{k=1}^{n} k^3 \\
n & \frac{n^2(n+1)^2}{4}
\end{array}$$

$$a_m + a_{m+1} + \cdots + a_n$$

DREAM OF INNOVATION

EXAMPLE

2.3

Sequences and Summations

Find
$$\sum_{k=50}^{100} k^2$$
.

Sum	Closed Form
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$

Cardinality

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-toone correspondence from A to B
- A set that is either finite or has the same cardinality as the set of positive integers is called countable.
- A set that is not countable is called uncountable.

N

Z

Q

R

Excel: The set of all finite strings over the alphabet of lowercase letters is countable.

Cardinality

- Cardinality = number of elements in a set.
- The sets A and B have the same cardinality if and only if there is a one-toone correspondence from A to B
- A set that is either finite or has the same cardinality as the set of positive integers is called countable.
- A set that is not countable is called *uncountable*.

Excel: The set of all finite strings over the alphabet of lowercase letters is countable.