

)第4章 影像輪廓的擷取

- 4.1 輪廓與影像處理
- 4.2 研究輪廓的性質
- 4.3 利用微分擷取影像的輪廓
- 4.4 利用範本匹配法擷取輪廓
- 4.5 實際擷取影像輪廓
- 4.6 影像輪廓之簡化(細線化)處理
- 4.7 利用拉普拉斯與零點交叉求取輪廓
- 4.8 直線檢測

4.1 輪廓與影像處理

▶輪廓

- ▶ 字典中的解釋是顯示物體外緣的線條。
- ▶ 但在影像處理的範疇中,似乎應加上<mark>構成影像特徵的線條要素</mark>, 定義才會更清楚一些。
- ▶ 輪廓圖應當具有讓人一看就懂的特點。

擷取輪廓

邊緣擷取

4.2 研究輪廓的性質

- ▶ 影像中物體與物體,或者物體與背景的交界線,形成了所謂的輪廓。
- ▶ 在影像的灰階濃度和色彩發生急劇變化之處,就可以見到 輪郭。
- ▶ 自然影像中,當色彩產生變化時,一定也伴隨著相當程度的灰階濃度變化。
- ▶ 因此,在擷取輪廓時,首先應當著重於灰階濃度的變化。

- ▶ 圖4.1(a)是以階梯狀(Step)表現灰階濃度的急劇變化。可以很清楚地看見輪廓外形,稱為邊緣(Edge)。
 - ▶ 它是指在物體與背景的交界處,產生了明顯的階梯狀濃度變化。
- ▶ 圖4.1(b)中,是在線條位置產生了濃度變化,也很清楚地看見輪廓線條(Line)。
- ▶ 圖4.1(c)的灰階濃度呈折線狀變化,但當折線的角度較急陡時,仍能清楚地看見對應的輪廓。
- ▶ 圖4.1(d)雖然也有濃度變化,但因其變化平滑而緩慢,故看不清輪廓在何處。

4.3 利用微分擷取影像的輪廓

- ▶ 輪廓是濃度急遽變化的部分
 - ▶ 利用影像灰階濃度函數變化部分之微分運算,就能利用來擷取輪廓。
- ▶ 用來表示座標(x,y)濃度分配之微分值,也稱梯度(Gradient, G)
 - ▶ 可用含有大小與方向之向量(vector), $G(x,y)=(f_x,f_y)$ 表達。
 - 其中, f_x 為x方向的微分, f_y 為y方向的微分。
 - f_x , f_y 在數位影像中,可用 x方向的微分 $f_x = f(x+1,y)-f(x,y)$

(4.1)式

y方向的微分 $f_y = f(x,y+1) - f(x,y)$

加以計算。求得微分值 $f_x \cdot f_y$ 之後,可利用以下的公式計算出輪廓值的強度。

【強度】

$$\sqrt{f_x^2 + f_y^2}$$

(4.2)式

或是 $|f_x| + |f_y|$ (其中, | | | | 代表絕對値)

(4.3)式

【方向】向量 (f_x, f_y) 的方向

- ► 在數位影像中,因為數據(Data)是以一定間隔跳躍式排列,無法用具真正意義之微分作運算。因此,如公式(4.1),取相鄰圖素之間的差來運算,作近似之微分,稱之差分。
 - ▶為了進行微分運算,用相鄰圖素之間的運算來表達之 係數組合,稱為微分運算子(Operator)。

從暗處指向亮處

圖**4.3** 表示邊緣之 向量方向

表4.1 計算梯度變化的微分運算子

運算子名稱	通常的差分 (以式4.1爲例)			Roberts運算子			Sobel運算子		
	0	0	0	0	0	0	-1	0	1
求 f_x 的運算子	0	-1	1	0	-1	0	-2	0	2
	0	0	0	0	0	1	-1	0	1
	0	0	0	0	0	0	-1	-2	-1
求f,的運算子	0	-1	0	0	0	-1	0	0	0
	0	1	0	0	1	0	1	2	1

4.4 利用範本匹配法擷取輪廓

- ▶所謂範本匹配(Template matching),是指利用範本 (樣板),作匹配(符合,一致)比對的研究調查方式。
 - ▶ 先準備若干個用來表示輪廓之標準樣式(Pattern), 也就是範本,將影像的一部分拿來與範本一一做 比較,再從中選出最相似的一份。

▶ Prewitt方法

- ▶對應邊緣(edge)的八個不同的方向,準備8個遮罩 (mask)。
- ▶ 遮罩如何與實際影像作比較。其比較的方法如同 微分運算子之計算過程,我們先將輸入影像的圖 素,乘以其周圍圖素的遮罩值,計算其一致的程 度後,再進行比較。
- ▶逐一進行上述的計算。在這當中求得最大值的遮 罩方向,就是邊緣的方向,而其計算結果則為該 邊緣的強度。
- ▶其輸出的結果是與輪廓強度對應之灰階濃淡影像

圖4.4 使用範本匹配之遮罩圖群(Prewitt運算子)

輸入影像f(x,y)的灰階濃度

輸出影像g(x,y)的灰階濃度

(從所關注像素及周邊像素,計算出與各個遮罩圖的一致程度)

遮罩圖	a	Ъ	c	d	e	f	g	
計算結果	90	-110	-310	-310	-210	-10	190	290

例如,遮罩a計算如下

$$1 \times 50 + 1 \times 100 + 1 \times 100 + 1 \times 0 + (-2) \times 80 + 1 \times 100 + (-1) \times 0 + (-1) \times 0 + (-1) \times 100 = 90$$

(a) 原有影像

(b) 梯度(通常的差分)

(c) 梯度(Roberts)

(d) 梯度(Sobel)

範本匹配(Prewitt)

4.5 實際擷取影像輪廓

圖4.7 擷取輪廓的灰階變化

4.6 影像輪廓之簡化(細線化)處理

- ▶求得「與輪廓強度相對應的灰階影像」,所得到的輪廓線,經二值化後,若要讓線寬只占一個像素, 則線條還必須經過細線化處理。
- ▶ 二值化處理,需要對所擷取輪廓的輸出影像,進行 臨界值處理。
- ▶ 臨界值越大,輪廓線越模糊;反之,臨界值太小, 則不必要的雜訊會增多。
- ▶除了採用反覆試驗以確定出較合適的臨界值以外, 也可以考慮採用直條圖處理的辦法。

(a) 輸入的輪廓影像(Robert運算子,amp=5)

(b)二值化影像(臨界值50)

(c)二值化影像(臨界值100)

(d)二值化影像(臨界值150)

- ▶ 所謂細線化,就是把粗細不一的輪廓線條整理成寬 度為一個像素的處理方式。
- ▶利用臨界值處理後的二值影像,將較粗的輪廓線從 外側開始削細,直到變為只有一個像素的寬度為止。
- ► 細線化處理是在保持其連結性的前提下,逐步削掉 可刪除的像素。
- ► 細線化是在不改變形狀的情況下,削除所連結的像素。

▶細線化的代表性方法為「Hilditch法」,它是將符合以下六種條件的像素依序削除,直到再也沒有可削除的像素時,細線化的過程就結束了。

條件1	圖形的一部分
條件2	境界像素
條件3	保留端點
條件4	保留獨立點
條件5	保留連結性
條件6	線寬為2時,只除去單邊

圖4.9 像素的鄰近

圖4.10 像素的種類

連結數=0

連結數=2

連結數=1

連結數=3

連結數=1

連結數=4

圖4.11 連結數的範例

表4.2 連結數及像素的特徵

連結數	像素的特徵
0	獨立點或內部像素
1	端點或境界像素
2	連結點
3	分歧點
4	交叉點

▶研究連結狀態的參數(Parameter),也就是「連結 數」。

$$N = \sum_{k=1,3,5,7} (\bar{f}(x_k) - \bar{f}(x_k)\bar{f}(x_{k+1})\bar{f}(x_{k+2}))$$

(4.4)式 🟠

輸入輪廓影像(用Prewitt方法進行臨界值處理)

細線化影像(線條的寬度為1)

圖4.13 細線化

4.7 利用拉普拉斯與零點交叉求取輪廓

- ▶本節要說明的,則是 利用輪廓的強度資訊, 直接求得輪廓線條的 方法。
 - ▶輪廓的擷取是使用 二次微分來計算。 右圖為一次微分與 二次微分的關係。

圖4.14 1次微分與2次微分

- ▶ 二次微分的計算方法,可使用相當於二個變數函數的拉普拉斯(laplacian)之濾波器(filter)。
- ▶ 這個濾波器也可稱之為拉普拉斯濾波器。
- ▶ 要求取2個變數函數*f*(*x*,*y*)的拉普拉斯值,請使用偏微分,用以下公式表示:

$$L(x,y) = \frac{\partial^2}{\partial x^2} f(x,y) + \frac{\partial^2}{\partial y^2} f(x,y)$$
 (4.5)

▶ 如果是要求數位影像的拉普拉斯*L(x,y)*,因為是梯 度的再一次微分,所以可用下列簡單公式表示:

$$L(x,y) = 4 \cdot f(x,y) - \{f(x,y-1) + f(x,y+1) + f(x-1,y) + f(x+1,y)\}$$
(4.6) \overrightarrow{x}

▶ 拉普拉斯值也可用微分運算子的微分演算加以計算

- ▶ 相對於梯度有大小與方向性,拉普拉斯則只有大小。
- ▶拉普拉斯有很多種類。
- ▶ 拉普拉斯是輸出以0為中心, 擷取正負值。
- ▶ 隨著所使用的拉普拉斯種類不同,輸出影像的樣子,或多或少會有點差異。
- ► 任一輸出的輪廓線都會「夾著輪廓線條的亮區及暗區」 成對出現。

表4.3 拉普拉斯計算用的微分運算子

運算子名稱	拉普拉斯1 ((4.5)式的範例)			拉	拉普拉斯2			拉普拉斯3		
	0	-1	0	-1	-1	-1	1	-2	1	
求得L(x,y)的運算子	-1	4	-1	-1	8	-1	-2	4	-2	
	0	-1	0	-1	-1	-1	1	-2	1	

(a) 拉普拉斯1

(b) 拉普拉斯2

圖4.15 拉普拉斯濾波器的處理範例

- ▶ 微分是計算鄰近像素的差,因此其結果受到雜訊的 影響頗大。
- ▶ 使用拉普拉斯求取輪廓線條時,必須充份去除雜訊 的影像,才能得到令人滿意的結果。
- ▶ 滿足以下條件的像素,為零點交叉的像素。
- ●●●── 像素值使用補償值(OFFSET),鄰近有正負像素。
- ●●●──**像素值不使用補償值,鄰近有與自己正負相反的**像素。

▶輪廓線條的顯示方式:

- ●●●── 擷取出多條細的輪廓線條。
- ●●●──在正負波峰(波谷)的交界,求得零點交叉,所以其 特徵是擷取的輪廓線條不會斷斷續續。

4.8 直線檢測

- ▶ 邊緣檢測所得到的交界,內含雜訊,而且不連續。
- ► Hough變換法,能從鋸齒狀、線條不連續的輪廓線條影像中,檢測出直線。
 - ▶ 影像中的直線,可用下列式子表示:

$$y = ax + b \tag{4.7}$$

▶ a為斜率,b為在y軸上之切片線段。如果影像中的像素(*x₁,y₁*)是在直線上,將它代入(4.7)式時,可寫成

$$b = -x_1 a + y_1 \tag{4.8}$$

▶ 在*a-b*空間內,可以想像成斜率為-x₁,而*b*切片線段則為y₁直線。

圖4.17 *x-y*影像空間與*a-b*參數空間

圖4.18 x-y影像空間上的直線

θ - ρ 參數空間

圖4.19 用 θ -ρ參數空間,表達直線

輸入影像空間

Hough變換影像空間

$$\rho_{1} = \left(j - \frac{X_SIZE}{2}\right)\cos\theta_{1} + \left(\frac{Y_SIZE}{2}\right)\sin\theta_{1}$$

$$\nu_{1} = \rho_{1} \frac{Y_SIZE}{2\sqrt{\left(\frac{X_SIZE}{2}\right)^{2} + \left(\frac{Y_SIZE}{2}\right)^{2}}} + \frac{Y_SIZE}{2}$$

$$u_{1} = \frac{\theta_{1}}{\pi}X_SIZE$$
圖4.20 輸入影像空間及Hough變換影像空間

(a) 原影像

(c) θ - ρ 參數空間

(b) 邊緣檢測二值化

(d) 原影像及檢測之直線

圖**4.21 Hough**變換法

編號	(θ, ρ)	直線方程式
	(θ, ρ)	
1	(0.0, -80.6)	$-80.6 = x\cos(0.0) + y\sin(0.0)$
2	(0.7, 41.0)	$41.0 = x\cos(0.7) + y\sin(0.7)$
3	(0.7, 79.2)	$79.2 = x\cos(0.7) + y\sin(0.7)$
4	(80.9, -87.7)	$-87.7 = x\cos(80.9) + y\sin(80.9)$
⑤	(81.6, 22.6)	$22.6 = x\cos(81.6) + y\sin(81.6)$
6	(81.6, 87.7)	$87.7 = x\cos(81.6) + y\sin(81.6)$
7	(149.1, -84.9)	$-84.9 = x\cos(149.1) + y\sin(149.1)$
8	(149.1, -28.3)	$-28.3 = x\cos(149.1) + y\sin(149.1)$
9	(149.1, 86.3)	$86.3 = x\cos(149.1) + y\sin(149.1)$
10	(179.3, -79.2)	$-79.2 = x\cos(179.3) + y\sin(179.3)$
1	(179.3, -42.4)	$-42.4 = x\cos(179.3) + y\sin(179.3)$
(12)	(178.6, -79.2)	$79.2 = x\cos(178.6) + y\sin(178.6)$

(b) 所檢測的直線

圖4.22 (θ,ρ)及直線

(a) 直線的交叉點

(b) 原影像與變換的影像

圖4.23 直線的交叉點與變換的影像

