Universidad de Guadalajara Centro Universitario de Ciencias Exactas e Ingenierías

Ingeniería en Computación Seminario de Solución de Problemas de Inteligencia Artificial II Profesor: Campos Peña Diego

> Lepiz Hernández Manuel Alejandro Código: 214797998

Proyecto Final

Introducción

Se realizará en Python la implementación de los Algoritmos Regresion Logistica, K-Vecinos, SVM, Naive-Bayes, y una Red Neuronal usando un archivo .csv para la entrada de datos.

Se hará uso de un data set sobre un zoológico.

Y se evaluarán los resultados usando las métricas accuracy, precision, sensitivity, specifity y f1 score.

Desarrollo

Tabla de variables

Variable Name	Role	Туре	Demographic	Description	Units	Missing Values
animal_name	ID	Categorical				no
hair	Feature	Binary				no
feathers	Feature	Binary				no
eggs	Feature	Binary				no
milk	Feature	Binary				no
airborne	Feature	Binary				no
aquatic	Feature	Binary				no
predator	Feature	Binary				no
toothed	Feature	Binary				no
backbone	Feature	Binary				no
Variable Name	Role	Туре	Demographic	Description	Units	Missing Values
breathes	Feature	Binary				no
venomous	Feature	Binary				no
fins	Feature	Binary				no
legs	Feature	Categorical				no
tail	Feature	Binary				no
domestic		Binary				no
domestic	Feature	Dillary				
catsize	Feature	Binary				no

Tipos de datos

Additional Variable Information

1. animal name: Unique for each instance

2. hair: Boolean

3. feathers: Boolean

4. eggs: Boolean

5. milk: Boolean

6. airborne: Boolean

7. aquatic: Boolean

8. predator: Boolean

9. toothed: Boolean

10. backbone: Boolean

11. breathes: Boolean

12. venomous: Boolean

13. fins: Boolean

14. legs: Numeric (set of values: {0,2,4,5,6,8})

15. tail: Boolean

16. domestic: Boolean

17. catsize: Boolean

18. type: Numeric (integer values in range [1,7])

Nombre de los animales

Class Labels

Class# -- Set of animals:

- 1 -- (41) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin, elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink, mole, mongoose, opossum, oryx, platypus, polecat, pony, porpoise, puma, pussycat, raccoon, reindeer, seal, sealion, squirrel, vampire, vole, wallaby,wolf
- 2 -- (20) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet, penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren
- 3 -- (5) pitviper, seasnake, slowworm, tortoise, tuatara
- 4 -- (13) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse, sole, stingray, tuna
- 5 -- (4) frog, frog, newt, toad
- 6 -- (8) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp
- 7 -- (10) clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug, starfish, worm

Resultados esperados

Se usó la implementación de un Clasificador, que fue usado en las prácticas anteriores.

Y se añadió el método de Red Neuronal.

_	esion Logist	ica	_			
	pr	ecision	recall	f1-score	support	
	1	1.00	1.00	1.00	12	
	2	1.00	1.00	1.00	2	
	3	0.00	0.00	0.00	1	
	4	0.67	1.00	0.80	2	
	6	1.00	1.00	1.00	3	
	7	1.00	1.00	1.00	1	
a	accuracy			0.95	21	
ma	acro avg	0.78	0.83	0.80	21	
weigh	nted avg	0.92	0.95	0.93	21	

K Vecinos Precision						
		precision	recall	f1-score	support	
	1	1.00	1.00	1.00	12	
	2	1.00	1.00	1.00	2	
	3	0.00	0.00	0.00	1	
	4	0.67	1.00	0.80	2	
	6	1.00	1.00	1.00	3	
	7	1.00	1.00	1.00	1	
accur	асу			0.95	21	
macro		0.78	0.83	0.80	21	
weighted	avg	0.92	0.95	0.93	21	

, O	SVM					
	Precision: 0	9.71				
∃		precision	recall	f1-score	support	
	1	1.00	0.92	0.96	12	
	2	0.33	1.00	0.50	2	
	3	0.00	0.00	0.00	1	
	4	0.50	1.00	0.67	2	
	6	9.00	0.00	0.00	3	
	7	7 0.00	0.00	0.00	1	
	accuracy	/		0.71	21	
	macro avg	g 0.31	0.49	0.35	21	
	weighted avg	9.65	0.71	0.66	21	

Naive Bayes Precision: 0.	86				
	precision	recall	f1-score	support	
1	1.00	0.92	0.96	12	
2	1.00	1.00	1.00	2	
3	0.00	0.00	0.00	1	
4	0.40	1.00	0.57	2	
6	1.00	1.00	1.00	3	
7	0.00	0.00	0.00	1	
accuracy			0.86	21	
macro avg	0.57	0.65	0.59	21	
weighted avg	0.85	0.86	0.84	21	

Red Neuronal Precision: 0.	.95				
	precision	recall	f1-score	support	
1	1.00	1.00	1.00	12	
2	1.00	1.00	1.00	2	
3	0.00	0.00	0.00	1	
4	0.67	1.00	0.80	2	
6	1.00	1.00	1.00	3	
7	1.00	1.00	1.00	1	
accuracy			0.95	21	
macro avg	0.78	0.83	0.80	21	
weighted avg	0.92	0.95	0.93	21	

Conclusión

Los resultados fueron acercados a los esperados, de manera general.

Siendo que en comparativa son bastante acertados en cuanto a performance.

Los Algoritmos realizaron bien las clasificación, aunque en Regresión Logistica, K Vecinos, Red Neuronal se puede notar que son los mejores para realizar la clasificación.

El peor por mucha diferencia fue SVM.

No se pudo crear una gráfica para la visualización de los datos ya que eran muchas etiquetas las existentes.