Universidade de Aveiro - Estatística Computacional e Simulação

Projeto 2 - Métodos de Monte Carlo em Inferência Estatística e Métodos de Reamostragem

Diogo Pedrosa(94358), Rita Ferrolho(88822)

Ano Letivo 2021/2022

EXERCÍCIO 1

Neste exercício, pretende-se calcular os valores corretos dos integrais I_1 (1) e I_2 (2) pelo Método de Integração de Monte Carlo. Também se pretende determinar os valores estimados para estes integrais, assim como os respetivos erros de Monte Carlo. Por fim, pretende-se comparar os valores estimados com os respetivos valores corretos.

$$I_1 = \int_0^1 \int_0^1 e^{-\frac{1}{2}(x^2 + y^2)} dx dy \tag{1}$$

$$I_1 = \int_{-2}^{2} \int_{-2}^{2} e^{\frac{1}{2}(x^2 + y^2)} dx dy \tag{2}$$

Passo 1) Sabe-se que:

• O Método de Monte Carlo é baseado na aproximação do valor médio dos valores de $g(X_i)$, para $i \in [1, N]$:

$$E[g(X)] \approx \frac{1}{N} \sum_{i=1}^{N} g(X_i)$$
(3)

• Em alternativa, caso $\{X_i\}_{i\in N}$ seja uma sucessão de variáveis i.i.d. de X, o valor exato de E[g(X)] também pode ser escrito da seguinte forma:

$$E[g(X)] = \lim_{N \to \inf} \frac{1}{N} \sum_{i=1}^{N} g(X_i)$$

$$\tag{4}$$

• Caso não seja possível resolver analiticamente um integral I pelo Método de Monte Carlo, pode-se calcular o valor desse integral pela Amostragem de Importância, um método que consiste em aproximar um integral segundo a expressão (5), onde A é o suporte do integral:

$$I = \int_{\mathcal{A}} f(x)g(x)dx = \int_{\mathcal{A}} g(x)h(x)\frac{f(x)}{h(x)}dx$$
 (5)

• A estimativa de um integral I, por simulação de Monte Carlo, pode ser obtida com a seguinte expressão genérica (6):

$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} g(X_i) \frac{f(X_i)}{h(X_i)}$$
(6)

Passo 2) Calcular o valor exato, valor estimado e erro do valor estimado, para o integral I_1

Sabe-se teoricamente que o valor do integral I_1 não pode ser determinado pelo Método de Monte Carlo. Contudo, $f_{X,Y} = \frac{1}{2\pi}e^{-\frac{1}{2}(x^2+y^2)}$ é a f.d. da variável aleatória normal bivariada (X,Y) quando as marginais X e Y são independentes e normais N(0,1). Resolvendo a integral I_1 com o auxílio de $f_{X,Y}$:

$$I_{1} = \int_{0}^{1} \int_{0}^{1} e^{-\frac{1}{2}(x^{2}+y^{2})} dx dy$$

$$= \int_{0}^{1} \int_{0}^{1} e^{-\frac{1}{2}x^{2}} e^{-\frac{1}{2}y^{2}} dx dy$$

$$= \int_{0}^{1} e^{-\frac{1}{2}x^{2}} dx \int_{0}^{1} \sqrt{2\pi} \underbrace{\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^{2}}}_{f.d.p \ de \ uma \ N(0,1)} dy$$

$$= (\Phi(1) - \Phi(0)) \sqrt{2\pi} \int_{0}^{1} \sqrt{2\pi} \frac{1}{\sqrt{2\pi} e^{-\frac{1}{2}x^{2}}} dx$$

$$= 2\pi (\Phi(1) - \Phi(0))^{2}$$

$$= 0.7320931$$

Aplicando a técnica da Amostragem de Importância, são definidas as seguintes funções como candidatas a funções de importância:

$$f_1(x,y) = 1, \ 0 < x, y < 1, \ f_2(x,y) = e^{-(x+y)}, \ 0 < x, y < \infty$$
 (7)

Note-se que f_1 e f_2 são as funções densidade de uma distribuição Uniforme e Exponencial bivariada, respetivamente.

Utilizou-se uma amostragem de dimensão N=1000, valores obtidos a partir das diferentes distribuições consideradas, sendo utilizados no cálculo de g(x,y), tendo sido, posteriormente calculada a média das observações de g(x,y) e que correspondem à aproximação do valor do integral.

- Uniforme Neste caso, utilizamos f_1 . Obtemos então as funções $f_1(x,y) = 1$ e $g(x,y) = e^{-\frac{1}{2}(x^2+y^2)}$
- Exponencial Neste caso, utilizamos f_2 . Obtemos então as funções $f_1(x,y) = e^{-(x+y)} e g(x,y) = \frac{e^{-\frac{1}{2}(x^2+y^2)}}{e^{-(x+y)}}$

De seguida apresenta-se uma tabela com os valores das estimativas obtidas para o integral considerando as diferentes f.d.p, bem como os respetivos desvios padrão e erros.

Função Utilizada	Aproximação	Desvio Padrão	Erro
f_1	0.7389136	0.1510576	0.004776862
f_2	0.7004373	0.921784	0.02914937

Table 1: aergwerg

Da análise da tabela conclui-se que a melhor f.d.p a ser usada no método da amostragem de importâncias é a função f_1 pois é a que se aproxima mais do valor real 0.7320931. Também apresenta um desvio padrão menor, e o valor erro de Monte Carlo também é menor.

Passo 3) Calcular o valor exato, valor estimado e erro do valor estimado, para o integral I_2

Para o cálculo do integral I_2 utilizou-se o Método de Monte Carlo e o Método da Amostragem de Importâncias. Em primeiro lugar, temos de calcular o valor real de I_2 , para tal foi usado o **RStudio**, com a função "adaptIntegrate" do pacote "cubature".

$$I_{2} = \int_{-2}^{2} \int_{-2}^{2} e^{\frac{1}{2}(x^{2}+y^{2})} dx dy$$

$$= \int_{-2}^{2} \int_{-2}^{2} e^{\frac{1}{2}x^{2}} e^{\frac{1}{2}y^{2}} dx dy$$

$$= \int_{-2}^{2} \int_{-2}^{2} e^{x^{2}} e^{-\frac{1}{2}x^{2}} e^{y^{2}} e^{-\frac{1}{2}y^{2}} dx dy$$

$$= \int_{-2}^{2} e^{y^{2}} e^{-\frac{1}{2}y^{2}} dy \int_{-2}^{2} e^{x^{2}} e^{-\frac{1}{2}x^{2}} dx$$

$$= 89.45028$$

Como o valor do integral em ordem a y é igual ao integral em ordem a x, basta saber o valor de um deles e depois elevar ao quadrado, daí o valor de I_2 .

Para a amostragem de importância foi necessário ajustar g(x, y) ao intervalo de integração pretendido (de -2 a 2), obtendo uma nova expressão para g(x, y):

$$g(x,y) = 4 \times 4 \times e^{\frac{1}{2}(x^2 + y^2)} \tag{8}$$

Foram gerados 1000 valores de x e y, provenientes de uma distribuição uniforme U(-2,2). Em seguida calculou-se a média de g(x,y), o desvio padrão e o erro de Monte Carlo, que serão posteriormente apresentados.

Foi usado também o Método de Monte Carlo, gerando valores de x e y, provenientes de uma distribuição normal truncada no intervalo]-2,2[, isto é, os valores de $x,y\in]-2,2[$.

Geraram-se N=1000 valores de x e y a partir de uma distribuição normal, onde os valores superiores a 2 e inferiores a -2 são rejeitados.

$$I_{2} = \int_{-2}^{2} \int_{-2}^{2} e^{\frac{1}{2}(x^{2}+y^{2})} dxdy$$

$$= \int_{-2}^{2} \int_{-2}^{2} e^{(x^{2}+y^{2})} e^{-\frac{1}{2}(x^{2}+y^{2})} dxdy$$

$$= \int_{-2}^{2} \int_{-2}^{2} 2\pi \frac{1}{2\pi} e^{(x^{2}+y^{2})} e^{-\frac{1}{2}(x^{2}+y^{2})} dxdy$$

$$= \int_{-2}^{2} \int_{-2}^{2} 2\pi e^{(x^{2}+y^{2})} \frac{1}{2\pi} e^{-\frac{1}{2}(x^{2}+y^{2})} dxdy$$

$$= \int_{-2}^{2} \int_{-2}^{2} g(x,y) \underbrace{f(x,y)}_{f.d.p \ de \ uma \ distribuicão \ normal \ bivariada} dxdy$$

A função g(x,y) equivavle à seguinte expressão:

$$g(x,y) = 2\pi e^{(x^2 + y^2)} \tag{9}$$

De seguida calculou-se os valores de g(x, y) para o intervalo considerado, procedendo ao calculo da média de g(x, y).

Apresenta-se na tabela em baixo a valor da aproximação obtida , o erro de monte carlo e o desvio obtidos para os dois métodos utilizados.

Método Utilizado	Aproximação	Desvio Padrão	Erro de Monte Carlo
Amostragem de Importância	86.62921	96.36651	3.047377
Método de Monte Carlo	98.08152	339.8993	10.74856

Ao analisar a tabela é possível concluir que a Amostragem de Importância obteve melhores resultados que o Método de Monte Carlo. A Amostragem de Importância apresenta um valor de aproximação 98.08152 mais próximo do valor real, 89.45028. Apresenta ainda um desvio padrão menor, e o valor erro de Monte Carlo também é menor.

EXERCÍCIO 2

Considerou-se a seguinte série temporal,

$$X_t = aX_{t-1} + bX_{t-1}Y_{t-1} + Y_t,$$

onde $Y \sim N(0,1)$. Sabe-se que

$$S = \frac{\sum_{t=2}^{N} X_t X_{t-1}}{\sum_{t=2}^{N} X_{t-1}^2}$$

é o estimador de mínimos quadrados do parâmetro a. Suponha-se que os parâmetros do modelo, de dimensão 100, são os seguintes a = 0.4 e b = 0.1.

- 2 a) Vai-se utilizar o método das réplicas com N=1000 para se estimar o pârametro a, com N=1000 réplicas. Para gerar cada réplica utilizou-se o seguinte algoritmo no Rstudio:
 - Inicializou-se um ciclo para gerar de 1 a 1000 réplicas;

- Criou-se o vetor $Y \sim N(0,1)$;
- Inicializou-se o vetor X;
- Definiu-se a semente, $X_1 = Y_1$;
- Defeniu-se um novo ciclo em que:
 - Gerou-se os valores de X_t , através da fórmula apresentada anteriormente;
 - Determinou-se o estimador S de a;
- A estimativa de a guardou-se num array t2;

Após se calcular todas as réplicas, calculou-se a média de t2, pois esta representa uma estimativa do parâmetro a.

No final calculou-se o intervalo de confiança (98% de confiança), a estimativa do viés do parâmetro, o desvio padrão do estimador, o valor do erro quadrático médio do estimador (EQM) e realizou-se um box-plot do viés amostral.

Para se determinar o intervalo de confiança a 98%, com $\alpha = 2\%$, tem-se que

$$L_{inf} = \bar{S} - Z_{1 - \frac{\alpha}{2}} \frac{S_N}{\sqrt{N}}$$

$$L_{sup} = \bar{S} + Z_{1 - \frac{\alpha}{2}} \frac{S_N}{\sqrt{N}}$$

Onde, S_N^2 é a variância empírica associada à amostra $(S^{(1)}, S^{(2)}, \dots, S^{(N)})$ e $Z_{1-\frac{\alpha}{2}}$ é o quantil de probabilidade $1-\frac{\alpha}{2}$ de uma N(0,1). Abaixo encontra-se os resultados obtidos do desvio padrão, erro quadrático médio, o intervalo de confiança e o viés numa tabela e também se encontra o o boxplot da amostra dos enviesamentos.

Valor real de a	0.4
Estimador de a	0.4123643
Vies	0.0123643
$\hat{\sigma^2}$	0.100879
EQM	0.02279214
$IC_{98\%}$]0.4058127; 0.4189159[

Table 2: Resultados método das réplicas

Com a análise do boxplot, pode-se observar que a distância inter-quartil é relativamente pequena, o que pode indicar que não existe muita variabilidade de t2, isto é, os valores de t2 estão muito próximos do valor real de a. Observando o valor do desvio padrão pode se corroborar isso, visto que tem um valor reduzido de 0.100879

Consegue-se observar também a presença de outliers no boxplot oq ue pode indicar que em certas réplicas o valor do enviesamento foi superior ao valor originar

Relativamente ao intervalo de confiança, pode-se observar que a não pertence ao intervalo, no entanto a amplitude do intervalo é reduzida.

Para concluir, fazendo uma suma de tudo pode-se afirmar que o métodos das réplicas produziu um bom estimador de a.

2 - b) Para esta alinea, pretende-se encontrar outra estimativa de a, mas aplicando métodos de reamostragem. Tem-se os seguintes métodos de reamostragem:

Figure 1: Boxplot da amostra dos enviesamentos

- Método de Bootstrap é uma classe de métodos de Monte Carlo não-paramétricos que estimam a distribuição da população por reamostragem. Neste método, a distribuição da população finita representada pela amostra pode ser encarada como uma pseudo-população. Através da geração repetida de amostras aleatórias desta pseudo-população (reamostragem), a distribuição de amostragem de uma estatística pode ser estimada.
- Método de Jackknife baseia-se no seguinte principio, em cada reamostra de dimensão n1 vai-se deixando de fora uma observação. É um método que nos permite estimar ´o viés e o desvio padrão.

Antes de se aplicar os métodos, verificou-se se as amostras já estavam enviesadas. Aplicou-se no Rstudio um algoritmo onde foram geradas 100 observações de X e Y, tendo em conta que Y segue uma distribuição N(0,1), e inicializando o estimador, depois verificou-se se cada amostra X segue o modelo da serie temporal. Por fim calculou-se o estimador. O valor obtido para este estimador foi 0.4395482. Como a estimativa não está muito longe do valor real, pode se prosseguir para a aplicação dos métodos de bootstrap e jackknife.

Para aplicar o método de bootstrap aplicou-se um algoritmo com os seguintes passos:

- Gerar a amostra bootstrap, indexada em $b=1,2,\ldots,B$, através da amostragem com reposição da amostra observada;
- Calcular a estimativa de a para cada realização, através do estimador S, que por sua vez é guardado num array theta.b.

Após se aplicar o algoritmo obteve-se uma estimativa de a calculando a média dos valores de theta.b. De seguida apresenta-se esse valor como também o valor do viés e do desvio padrão.

Valor real de a	0.4	
Estimador de a	0.28767	
$V\hat{i}es$	-0.11233	
$\hat{\sigma^2}$	0.0454909	

Table 3: Resultados método Bootstrap

Consegue-se observar que os resultados são bastantes negativos, pois o valor real é 0.4 e o estimador é 0.28767. O desvio padrão e a estimativa corroboram isso.

Depois foi se aplicar o método de Jackknife, como o algoritmo é bastante complexo não se irá apresentar aqui o mesmo. Os resultados obtidos no Rstudio apresentam-se na tabela abaixo:

Valor real de a	0.4	
Estimador de a	0.4110865	
$V\hat{i}es$	0.01108648	
$\hat{\sigma^2}$	0.1018395	

Table 4: Resultados método de Jackkife

Neste método, contrariamente ao método do bootstrap, o estimador de a (0.4110865) já se aproxima bastante do valor real, pelo que, se pode afirmar que é uma estimativa bastante boa. Os resultados do estimador do viés e do desvio padrão corroboram isso.

2 - c) Ao compararmos as tabelas 4, 5 e 6, que representam as estimativas do método das réplicas, bootstrap e JackKnife, respetivamente, pode-se concluir que a melhor estimativa foi a do método de Jacknife. Não só apresenta uma melhor estimativa comparativamente aos outros, como também apresenta um melhor viés e um melhor desvio padrão. De realçar que o método das réplicas também conseguiu uma boa estimativa, contratiamente ao método de bootstrap, que se desaconselha a utilizar para este caso.