$\label{eq:computer} \mbox{University of Pisa}$ $\mbox{M.Sc IN COMPUTER ENGINEERING}$

"LINEAR FEEDBACK SHIFT REGISTER"

AUTHOR

Francesco Iemma

Academic Year: 2020/2021

Contents

1	Introduction					
	1.1 Algorythm Description	2				
	1.2 LFSR's Properties	3				
	1.3 Possible Applications	3				
	1.4 Possible Architectures	4				
	1.4.1 Fibonacci LFSR	4				
	1.4.2 Galois LFSR	4				
	1.4.3 Comparison	5				
2	Architecture Description	6				
	2.1 D Flip-Flop with tap circuit	6				
	2.2 LFSR Implementation	7				
	2.3 Input/Output and Overall	8				
3	VHDL Code 9					
	3.1 D Flip-Flop with Set/Reset	9				
	3.2 D Flip-Flop with Set/Reset and Tap Circuit					
	3.3 LFSR	10				
4	Test-Plan 12					
	4.1 D-Flip-Flop Test	12				
	4.2 D-Flip-Flop with Tap Circuit Test					
	4.3 LFSR as Shift Register	14				
		14				
	4.4.1 LFSR Test-bench	15				
	4.4.2 C++ Test Program \dots	15				
	4.4.3 Helper Scripts	16				
		16				
	4.4.5 Check The Simulation With C++ Program \dots	17				
	4.4.6 LFSR Test Conclusion	18				
5	Logic Synthesis 19					
6	Conclusion 2					

Introduction

The Linear Feedback Shift Register (LFSR) is a shift register ¹ in which some bits are manipulated and fed back to the input in order to generate, thanks to the shifting, a sequence of bits. So we can say that its input is the output of a linear function of its previous state.

The initial value of the LFSR is the so-called seed and it affects the stream of bits generated by the LFSR. However, this stream is not (obviusly) really random because the number of possible states is finite and the stream of bits is determined by its current or previous state and, moreover, it is possible to compute the bit generated knowing the seed and the feedback function. Anyway if the feeback function is well-choosen then the LFSR can produce a sequence of bits that appears random and which has a very long cycle, so this means that the output starts to repeat the generated numbers after a very long time. So we can assume, at least within a cycle, that it generates random numbers. For this reason the sequences generated from an LFSR are called pseudo-random.

1.1 Algorythm Description

In order to understand the LFSR algorythm we need to discuss about the *feedback function*: it is the function which describes the way in which some spefic bits of the shift register are manipulated and then fed back to the input. Usually the arrangment of the inputs of the feedback function is represented as polynomial mod 2. In our case the feedback polynomial is:

$$1 + x^{11} + x^{13} + x^{14} + x^{16}$$

Analysing the polynomial we can understand how LFSR works. In particular the feedback polynomial indicates which bits of the shift register affects the next state, these are called *taps*. In most cases the way in which the taps affect the next state is using XOR gates (but also XNOR gates can be used).

Now let's assume that we have an LFSR with a length of N and see how it works. At the starting state in the LFSR we have the seed. Then the feedback logic starts to work and the bit released from this logic is the new 0^{th} bit and the others bits are shifted by one to the right and due to the shift the previous last bit, i.e. the $(N-1)^{th}$ which has become² the N^{th} , will be the output of the LFSR.

In a more formal way (let's assume b'_i the i-th old bit, b_i the i-th new bit, N the length of LFSR with N > 0, T the set which contains the indexes of the taps and y the function which represents the feedback logic) I can say:

- $b_0 = y(b'_i, ..., b'_k)$ where $j, ..., k \in T$
- $b_i = b'_{i-1}$ for $1 \le i < N$
- $output = b'_{N-1}$

¹A shift register is a sequential logic circuit made up of chain of flip flops, for each rising edge of the clock the value of each flip-flop is shifted to the next flip-flop

²with N^{th} we indicate the bit which is out of the LFSR. A shift register with a length of N has N bits and so its bits are the ones in the interval [0, N-1], the N^{th} doesn't exist but it's a way to indicate the "overflow" bit.

The taps in our case are the bits 11, 13, 14, 16 (we can recognize them gazing to the exponents of x in the feedback polynomial) so this means that the inputs of the feedback logic are these. And so in our previous notation (considering that we start to count from 0) we will have $T = \{10, 12, 13, 15\}$.

In the following image it's possible to see a logic representation of a generic LFSR.

Figure 1.1: Logic representation of a LFSR

1.2 LFSR's Properties

Now let focus on a particular type of LFSR which has an interesting property, this is the so-called maximum-length LFSR. An LFSR is a maximum-length one, if and only if, the feedback polynomial is primitive and so it's necessary that:

- The number of taps is even
- The taps values are coprime

The property of a maximum-length LFSR is the following: if its length is N then it will assume all the possible $2^N - 1$ states (the state with all 0 is excluded because otherwise it will stop). Others properties for generic LFSRs are:

- As we can saw previously, the output is deterministic, in fact it's possible to compute it starting to the current state
- ullet The state with all zeroes is not allowed, for this reason even a maximum-length LFSR cannot generate a sequence of 2^N states

It's important to point out that even if the output is deterministic the LFSRs are spreadly used, this happens because some techniques can be adopted to resolve this issue, for example giving an irregular clock to the device or manipulating the output stream with some non-linear combination of two or more bits extracted from this stream.

1.3 Possible Applications

LFSRs are spreadly used in a lot of fields. Let's see the most important ones:

- They are used in Criptograhpy as pseudo-random number generators for stream-chipers (especially in military applications). In this field it's very important to resolve the issue about the deterministic behaviour of the LFSR in order to avoid possible attacks, some possible strategies are the ones seen in the previous section.
- They are used in Communication, for example in the Global Position System (GPS) and also in radio-jamming in order to generate a pseudo-random noise. Then another application in this field is for scrabbling, the bits produced from an LFSR are combined with the data bit in order to have a convenient stream of data that ensures good properties and better performance from the viewpoint of the modulator/demodulator. Then it is also used in CRC (Cyclic Redundancy Check).
- They are used in Electronics in order to do a pseudo-random testing of a circuit in order to test "all" possibile inputs of the circuit (in fact this technique is also called pseudo-exhaustive testing)

1.4 Possible Architectures

There are two type of possible LFSR's architectures:

- Fibonacci LFSR (also called "Many-To-One architecture", because from "many" bits you obtain "one" bit that is the new input bit)
- Galois LFSR (also called "One-To-Many architecture", because from "one" bit that is the last one and also the output you obtain "many" bits that are the ones which are in positions next to the taps)

Figure 1.2: LFSR Architectures - Source: www.eetimes.com

1.4.1 Fibonacci LFSR

The Fibonacci LFSR is the simplier possible architecture for an LFSR and it is also the standard one, basically the generical things said so far about LFSRs describe the Fibonacci LFSR. In fact, for instance, we can observe that the figure 1.2.(a) and the figure 1.1 are indeed the same figure with the difference that the 1.1 is a logic representation and so the gates have not been drawn (they are in the so-called "Feedback Logic").

1.4.2 Galois LFSR

The Galois LFSR is an alternative architecture for LFSR, from the point of view of the output it's, more or less³, equivalent to Fibonacci one (the output of a Galois it's the same of a Fibonacci) but indeed they are internally different. On the rising edge of the clock, all bits that are not taps are shifted unchanged to the right by one position. Instead the taps are XORed with the previous last bit and the output of this XOR operation goes to the next bit on the right. In a more formal way we can write (let's assume b'_i the i-th old bit, b_i the new i-th bit, N the length of LFSR with N > 0, T the set which contains the indexes of the taps):

- $b_0 = b'_{N-1}$
- $b_{i+1} = b'_i$ with $i \notin T$, $0 \le i \le N-1$
- $b_{j+1} = XOR(b_{N-1}', b_j)$ with $j \in T$, $0 \le j < N-1$
- $output = b'_{N-1}$

³A time offset is present and if some techniques are not adopted (the bit positions must be counted in the opposite direction of the shift) then one output is the reverse of the other one. In our case we neglect this difference because in any case the Galois is indeed a LFSR

1.4.3 Comparison

The Galois architecture has a big advantage with respect to Fibonacci one. In fact in the latter there is a chain of XOR gates and the XOR operations must be done in serial and it cannot be done in parallel. Furthermore, the propagation time of this chain is not negligible. On the other hand, in the Galois implementation, the XOR operations can be done in parallel and the propagation time regard a single gate (not a chain as in the Fibonacci's case). So the propagation time of Galois implementation is lesser than the Fibonacci one, this means that with this architecture we can achieve a faster clock frequency. In our case we have four taps, so if we assume that we have only XOR gates with two inputs and each one has a $t_{propagation_i} = x$ we are in the following situation:

• Fibonacci: we have to use three XOR gates (installed as we can see in the following image) and so the minimum clock period T is equal to $T = t_{propagation_1} + t_{propagation_2} = 2x$. Then the maximum frequency achievable is f = 1/T = 1/2x. If x = 4ns then f = 125MHz

Figure 1.3: Critical path (in red) related to XOR gate in Fibonacci with 4 taps

• Galois: also in this case we use three XOR gates, but in this case each one is installed between two flip-flop so the critical path is made up of one gate. Then $T = t_{propagation_1} = x$ and so f = 1/T = 1/x. If x = 4ns then f = 250MHz.

Figure 1.4: Critical path (in red) related to XOR gate in Galois

We can see that in this case $f_{Galois} = 2f_{Fibonacci}$ but if the number of taps increase we have a larger difference, for example with NumTaps = 8 I have $f_{Galois} = 3f_{Fibonacci}$, with NumTaps = 16 then $f_{Galois} = 4f_{Fibonacci}$. So if NumTaps is 2^a then $f_{Galois} = af_{Fibonacci}$. This results shown as the Galois implementation is better from the viewpoint of the maximum clock frequency.

This difference is bigger when the number of taps grows, but in most applications this difference is not so evident as in the example shown and, at the end of the day, the performance are more or less the same. For example if we use XOR gate with more inputs than two, the $t_{propagation}$ of Fibonacci is less than the one in the case of a cascade of XOR with two inputs. So the relation with Galois is not so unbalanced. Then in some FPGA are used LUTs that support 6 input logic function, so using a XOR with two inputs or a XOR with six is basically the same. Indeed, theoretically speaking, the difference in performance between the two implementations exists, and so in the following report it will be treaten the implementation in VHDL of an LFSR with Galois architecture and then its testing and its practical realization obtained by programming the ZyBo Board with Xilinx Vivado.

Architecture Description

As we discussed in the previous chapter, we will implement a Galois LFSR. Let's see the necessary devices to implement it. In order to implement a memory element I need a D Flip-Flop with set and reset. In fact we need to initialize each memory element to the seed value, so the i-th flip flop will be initialize with the i-th bit of the seed. The aim of the implementation is to have a functional LFSR, but another aim is also having a customizable LFSR. In order to do this we have to add a circuit to change (or not) the input of a simple flip-flop, we call this circuit tap circuit. It will allow to set the taps, changing a proper input of the LFSR.

2.1 D Flip-Flop with tap circuit

Assume that we have the i-th flip-flop and the j-th (with j = i + 1). If i is a tap then its output must be XORed with the N - 1 bit, otherwise the output of i goes unchanged to the input of j. So we have to implement the following logic function (described using a pseudo-code and assuming that feedback is the N - 1 bit):

```
void logicFunctionOmega(isTap_i, feedback)

if(isTap_i==true)
    input_j = xor(output_i, feedback);

else
    input_j = output_i;

}
```

Now we have to translate this logic function from this pseudo-code to logic gates. But, before doing this, we need to point out some concepts:

- $isTap_i$, feedback and $output_i$ are bits. We will use the following convention: $isTap_i$ is true if it is 1, it is false when it is 0.
- We know that the neutral element for the XOR is the 0 (A and B are the inputs of XOR: if B is 0 then A passes the gate unchanged), in fact the truth table for the XOR is:

Α	В	A xor B
0	0	0
0	1	1
1	0	1
1	1	0

Figure 2.1: XOR Truth Table

Α	В	А Ω В
0	0	0
0	1	0
1	0	0
1	1	1

Figure 2.2: Ω Truth Table. A is $isTap_i$ and B is feedback

After fixed these points we can implement our function, let's call it Ω and let see what is the expected truth table (see figure 2.2).

Remember that the output must be equal to B (feedback) if A(tap_i) is equal to 1, otherwise it must be equal to the neutral element of the xor, so 0.

We can easily recognize that the "mysterious" logic function Ω is indeed the AND gate. So the logic block diagram of a flip-flop with the tap circuit is the following:

Figure 2.3: Logic block diagram of a D Flip-Flop with set/reset and tap circuit.

2.2 LFSR Implementation

Once we have the D Flip-Flop with the tap circuit if we want to implement a LFSR with a length of N, we need N D Flip-Flop with tap circuit.

Figure 2.4: Implementation of a LFSR (length of 4) with D Flip-Flop with tap circuit. (For simplicity we neglect the links for clock and set/reset)

It's important to do some observations about this implementation.

- The first flip flop (the 0^{th}) is a particular one. Its input port "isTap" must be linked to the ground (it must be always 0) because doesn't exist a flip flop before the zero one.
- The initialization of the flip-flops is ensured by the basic D Flip-Flop linking the set port of the i^{th} flip-flop to seed[i] (this is not shown in figure 2.4)

2.3 Input/Output and Overall

Abstracting from the internal details it's possible to describe the LFSR as in the image 2.5.

Figure 2.5: Logic block diagram of a LFSR with a length of N.

Let's analyse the input/output ports:

- seed[N-1:0]: it contains the initialization value of the LFSR (the so-called seed). As we said previously the i-th set port of the flip-flop will be connected to seed[i].
- isTap[N-2:0]: it indicates which are the taps. Its length is N-1 because there is no flip-flop before the 0^{th} flip-flop and so its isTap port will be connected to the ground (zero).
- reset: the reset in common for all flip-flops.
- *clock*: the clock in common for all flip-flops.
- ullet output Bit: the bit that is the result of the LFSR's algorithm.

Let's sum up the operations done by the LFSR:

The LFSR is programmable, because once we have fixed the length N it can works with any polynomial feedback because of isTap[N-2:0]. Then it's also possible to initialize, at the reset, the shift register using seed[N-1:0]. Then, when all these signal are given to the device, it start to work and to produce a pseudo-random sequence of bits.

VHDL Code

In this section we will see the VHDL code for all the devices seen previously: starting from the basic ones, that are necessary to implement an LFSR, to arrive at the LFSR itself.

3.1 D Flip-Flop with Set/Reset

The basic device needed for the LFSR is a D Flip-Flop wit Set/Reset.

```
- D Flip-Flop with Set/Reset
2
     library ieee;
3
     use ieee.std_logic_1164.all;
4
5
     entity dff is
6
       port (
7
         clk
                : in
                       std_logic;
                      std_logic;
std_logic;
8
         reset : in
q
         set
                : in
10
         d
                : in std logic;
11
                : out std_logic
         q
12
13
     end dff;
14
     architecture rtl of dff is
15
16
     begin
17
       dff_p:process(reset,clk)
18
       begin
         if reset = '0' then
19
20
            q \ll set;
21
          elsif(rising_edge(clk)) then
22
           q \ll d;
23
         end if;
24
       end process;
     end rtl;
```

The behaviour of this device is very simple, at the initialization phase (when reset is 0) the output is initialized with the set value. Then in the normal case the output follow the input and it is update at each rising edge of the clock.

3.2 D Flip-Flop with Set/Reset and Tap Circuit

The memory cell which maintains a bit within the LFSR is the D-Flip-Flop with Set/Reset and tap circuit that implements the characteristic features of the LFSR which differentiates it from a simple shift register.

```
-- D Flip-Flop with Set/Reset and tap circuit
library ieee;
use ieee.std_logic_1164.all;

entity dff_tap_circuit is
port(
clk : in std_logic;
reset : in std_logic;
```

```
std_logic;
std_logic;
9
                                          -- initialization input
          \operatorname{set}
                      : in
10
          d in
                      : in
                                           -- it indicates if the input must be changed
11
          isTap
                      : in
                             std_logic;
12
                                           -- (it does if the previous ff is a tap)
          feedback : in std_logic;
                                           -- it is the feedback bit (the N-1)
13
14
                      : out std logic
15
16
     end dff_tap_circuit;
17
18
     architecture rtl of dff tap circuit is
19
     component dff is
20
21
        port (
22
          clk
                 : in
                        std_logic;
23
          reset : in
                       std_logic;
24
                        std_logic;
          set
                 : in
                 : in std_logic;
: out std_logic
25
          d
26
          \mathbf{q}
        );
27
28
     end component;
29
30
     signal new_d : std_logic;
31
        internal dff : dff
32
33
        port map(
34
                => clk,
          clk
35
          reset => reset,
36
          set
                => set,
37
          d
                 => \text{new}_{d},
38
                 \Rightarrow q_out
          q
39
        );
40
41
       new d <= d in xor (isTap and feedback);
42
43
     end rtl;
```

This device acts as the previous, the only difference is the addition of the tap circuit which is described in the row 41.

3.3 LFSR

Now we see the way in which we have to aggregate the previous devices in order to implement an LFSR.

We use (0 to N) instead of (N downto 0) in the declaration of the standard logic vectors for is Tap and seed, because they are not numbers but they indicate positions, so the left-most bit is the one for the 0^{th} flip-flop and so in order to access it I would like to use the following notation: vector(0) and not this vector(N-1). To achieve this aim I have to use the keyword to instead of downto.

```
-LinearFeedbackShiftRegister
 1
2
      library ieee;
3
      \mathbf{use} \;\; \mathrm{ieee.std\_logic\_1164.\,all} \; ;
4
 5
      entity lfsr is
6
        generic (Nbit : positive := 16);
7
        port (
                        : in std_logic;
           clock
9
                               std_logic;
           reset
                        : in
10
           isTap
                        : in
                                std_logic_vector(0 to Nbit-2);
11
                        : in
                               \operatorname{std} = \operatorname{logic} = \operatorname{vector} (0 \text{ to } \operatorname{Nbit} - 1);
           seed
           outputBit : out std_logic;
12
13
           -- debugging
                       : out std logic vector (Nbit-1 downto 0)
14
           state
15
        );
      end lfsr;
16
17
18
19
      architecture rtl of lfsr is
        component dff_tap_circuit is
20
21
```

```
: in std_logic;
: in std_logic;
22
               clk
23
               reset

        set
        : in
        std_logic;

        d_in
        : in
        std_logic;

        isTap
        : in
        std_logic;

        feedback
        : in
        std_logic;

24
25
26
27
28
               \mathbf{q}_{-}\mathbf{out}
                              : out std_logic
            );
29
30
         end component;
31
         \mathbf{signal} \;\; \mathsf{lastBit} \;\; : \;\; \mathsf{std\_logic} \; := \;\; `0 \; `;
32
33
         signal intercon : std_logic_vector(0 to Nbit-2);
34
      begin
         GEN: for i in 0 to Nbit-1 generate
35
            FIRST: if i = 0 generate
36
            FF1: \ dff\_tap\_circuit \ \textbf{port} \ map(clock \, , \ reset \, , \ seed (i) \, , \ lastBit \, , \ '0 \, ' \, , \ lastBit
37
                  , intercon(i));
            end generate FIRST;
38
39
40
            INTERNAL: if (i>=1) and (i<Nbit-1) generate
            FFI: dff\_tap\_circuit \ \textbf{port} \ map(clock \ , \ reset \ , \ seed \ (i) \ , \ intercon \ (i-1) \ , \ is Tap
41
                  (i-1), lastBit, intercon(i);
            end generate INTERNAL;
42
43
44
            LAST: if i=Nbit-1 generate
            45
46
            end generate LAST;
         end generate GEN;
47
48
49
         state <= intercon & lastBit;</pre>
         outputBit <= lastBit;
50
51
      end rtl;
```

In the next chapter we will see the strategies to test this device and to ensure that it works as a Linear Feedback Shift Register.

Test-Plan

In this chapter we will test the LFSR implemented in VHDL in the previous chapter. In order to accomplish this aim we will start testing the basic elements of the implementation up to the final LFSR. The tests performed and explained will be:

- Test of a simple D-Flip-Flop
- Test of a D-Flip-Flop with tap circuit
- Test of the LFSR with isTap inputs to 0, so it's a simple shift register
- Final test of the LFSR using a C++ program which does in software what we implemented in hardware using VHDL

In some cases only a portion of the code will be shown, for the full code see files in LFSR/hdl/tb/When we indicate the number of clock cycles we don't consider the clock cycles of the reset state. So "after x clock cycles" means "after x clock cycles counted from when reset is not active.

4.1 D-Flip-Flop Test

In order to test the simpler device (dff) we give as input 0, so the expected result is that until we change the input the output remains 0.

```
dff_process : process(clk_tb, reset tb)
2
      \overline{\text{variable t}}: integer := \overline{0};
3
      begin
         if(reset\_tb='0') then
4
5
           t := 0:
           d tb <= '0';
6
         elsif (rising_edge(clk_tb)) then
8
           case(t) is
              when 5 \implies d_tb \ll '1';
9
10
              when 10 \Rightarrow \text{end sim} \ll
              when others \Rightarrow null;
11
12
           end case ;
13
           t := t + 1;
        end if;
14
```

The test consist in given 0 at the reset and then after 5 clock cycles change the input to 1. As we can see in the image flip flop works as we expected:

- At the reset the output is equal to the value of the set
- The ouput remains unchanged until the input is 0, when the input change to 1 (5 clocks after the end of reset) also the output follows it after a clock cycle.

Figure 4.1: Simulation of dff test-bench using ModelSim

4.2 D-Flip-Flop with Tap Circuit Test

Now we want to test also the flip-flop with tap circuit, if the input is Tap is 0 the flip-flop works exactly as the previous one. Instead if is Tap is 1 and the feedback bit is 1 too then it's like an inverter (because the xor at the input has always an input at 1).

```
dff_process : process(clk_tb, reset tb)
 2
       \overline{\text{variable t}}: integer := 0;
 3
       _{\rm begin}
 4
          if(reset_tb='0') then
 5
6
             isTap tb \ll 0; — It's a normal dff
             feedback_tb <= '1';
d_tb <= '0';</pre>
 7
 8
             d tb <=
          elsif (rising_edge(clk_tb)) then
9
10
             case(t) is
                when 5 \Rightarrow d_tb <= '1';
when 10 \Rightarrow isTap_tb <= '1'; d_tb <= '0';
11
12
                when 15 \implies d \ tb = '1';
13
                \mathbf{when} \ 20 \implies \mathrm{end\_sim} \mathrel{<=} \ `0 \ `;
14
15
                \mathbf{when}\ \mathbf{others}\ \Longrightarrow\ \mathbf{null}\,;
16
             end case ;
             t\mathop{:=} t+1;
17
18
          end if;
       end process;
```

So we expect that for the first 10 clock cycles after reset the waves are the same of the previous case and then they present a inverter-like behaviour.

Figure 4.2: Simulation of test-bench of dff with tap circuit using ModelSim

From the figure 4.2 we can say that the behaviour is the one that we expect:

- In the first 10 clock cycles (after the reset) the waves are the same of the dff case. This is right because in this period we have is Tap to 0 and so the tap circuit is disabled
- When is Tap goes to 1 the dff with tap circuit works as an inverter (remember that feedback is 1). In fact in this moment we can see that the output remains one even if the input goes from 1 to 0. This happens because the input goes to 0 so the output at the next clock cycle will became one but it is already one, then it remains 1.

When the input goes to 1 (after 15 clock cycles), the output, after a clock cycle, goes to 0 as we expected.

4.3 LFSR as Shift Register

If all bits of isTap are setted to 0 then we have a simple shift register because there are no taps. So this test consists in doing this and in controlling the proper work of this shift register.

```
lfsr test process : process(clk tb, reset tb)
2
     variable t: integer := 0;
3
     begin
4
       if(reset_tb=0)
5
         isTap\_tb \le "000000000000000000";
6
         \mathtt{seed\_tb} \ <= \ "0000101011000110"
7
8
       elsif (rising edge(clk tb)) then
9
         if actual state=seed tb and t=0 then
10
           t := t + 1;
11
          elsif actual_state=seed_tb and t=1 then
12
           end sim <= 0;
13
         end if:
14
       end if;
     end process;
```

We stop the simulation when the actual state of the shift register is equal to the initial one, hence we expect that the simulation ends after 16 clock cycles because the register has a length of 16 and so after this period each bit are shifted 16 times and so it has returned in the initial position.

The reason why we neglect the first time that th actual state is equal to the seed is because this happens at the initialization and if we consider this the first time then the simulation ends early.

Figure 4.3: Part of the simulation of the test-bench of a lfsr setted as shift register

In the figure 4.3 we can see the initial part of the simulation, as we can see the first states of the device are the ones that we expect from a shift register.

Figure 4.4: Complete simulation of the test-bench of a lfsr setted as shift register

In the figure 4.4 we can see the complete configuration (in order to have a more compact image the format of the state is hexadecimal). Here we can see that after the reset the shift register spends 16 clock cycles to reach its initial state as we expected.

4.4 LFSR

In order to prove the proper work of the LFSR we do a final test using a test-bench in VHDL and a C++ program. The program does in software the operations that are done in hardware by an LFSR. Both the test-bench and the program write their output on a file, the two file must be equal to ensure the correctness of the LFSR. Two script helps in doing this operations, one compiles and executes the C++ program, instead the other one compares the two output file using the UNIX tool diff. The scripts work only in a UNIX-like environment.

4.4.1 LFSR Test-bench

The test-bench is like the previous one, but in this case the tap are setted at the following feedback polynomial:

 $1 + x^{11} + x^{13} + x^{14} + x^{16}$

Then in terms of bit position the taps are: 10, 12, 13. Because of the fact that we start to count from 0. The bits 0 and 15 (i.e. the first one and the last one are always taps in a LFSR because the output is fed back to the input, but they are not taps in the sense that the must be XORed).

```
lfsr_test_process : process(clk_tb,reset tb)
2
     \mathbf{variable} \ \mathbf{t} : \mathbf{integer} := 0;
3
4
        if(reset\_tb='0') then
5
          is Tap\_tb <= \ "00000000010110";
6
          \mathtt{seed\_tb} \mathrel{<=} "000010111000110";
7
8
        elsif (rising_edge(clk_tb)) then
9
          if actual_state=seed_tb and t=0 then
10
             t := t + 1;
          elsif actual_state=seed_tb and t=1 then
end_sim <='0';</pre>
11
12
13
          end if;
14
        end if;
15
     end process;
16
     write_file : process
17
     variable BUF : line;
18
19
     begin
20
        loop
          wait on clk_tb until clk_tb='1';
21
          if reset tb = 1, then
             WRITE(BUF, output_tb);
23
24
             WRITEline (OUT LFSR, BUF);
25
          end if:
26
        end loop;
     end process;
```

The last process is in charge of writing the output on a file in order to compare it afterwards with the output of the C++ program.

The statement at row 21 means that the output is written in the file on the rising edge of the clock (it waits until the clock changes from 0 to 1). Then at row 22 the if statement is needed in order to avoid the print of the output during the reset state.

4.4.2 C++ Test Program

The C++ program follows the same approach of the VHDL implementation. It is a Galois LFSR implemented in software. Anyway the implementation is not very performing because the target of the program is to test an already implemented hardware LFSR and not to implement in the most efficient way an LFSR.

```
1
     int main()
2
3
         // Initialization value
        4
        // Actual state of the LFSR
5
6
        int actual_state[N];
7
         ^{\prime}/ Reset \overline{Phase}: actual state is initialized to the seed value
8
        for (int i = 0; i < N; i++)
9
          actual_state[i] = seed[i];
        do {
10
            Feedback bit
11
12
          int lastBit = actual_state[N-1];
           // Next LFSR state
13
          int next_state[N];
14
15
          // Shift operation
          \  \  \, \textbf{for} \, (\, \textbf{int} \  \  \, i \, = \, 0 \, ; \  \  \, i \! < \!\! N; \  \  \, i \! + \!\! + \!\! )
16
17
             if(i!=0 && isTap(i−1))
```

```
19
                    state[i] = xorFunction(actual state[i-1], lastBit);
20
            else i\overline{f} ( i==0)
21
              next_state[i] = lastBit;
22
23
              next_state[i] = actual_state[i-1];
24
25
          // The next state became the actual state
26
27
          for (int i = 0; i < N; i++)
28
            actual_state[i] = next_state[i];
29
30
          // Print the output
          cout << lastBit << endl;</pre>
31
32
       }while(!compare(actual_state, seed));
33
       /* Print the output of the last state (i.e. the first of the new cycle)
34
35
          This is necessary to emulate the effect of the end sim
36
         * in VHDL. When the condition in the while is true t\overline{h}en
37
         *\ the\ simulation\ ends\ but\ in\ the\ ModelSim\ simulation
38
          it\ ends\ after\ a\ clock\ (because\ end\_sim\ goes\ to\ 0\ after
39
         st a clock cycle). So the output of \overline{the} first state of the
40
         * new cycle must be considered */
41
       cout << actual_state[N-1] << endl;</pre>
       return 0;
42
43
```

Only the main is shown, for the complete code see

```
/lfsr_cpp/lfsr_software.cpp
```

It's important to underline the statement at row 41. This statement is necessary in order to take into account the fact that the ModelSim simulation ends after a clock cycle, that is the period that the signal that is in charge of ending simulation needed to change from 0 to 1. More in the comment within the code.

4.4.3 Helper Scripts

The first script is in charge of compiling the code and redirecting the output in the file output.txt.

```
1 #!/bin/bash
2 g++ lfsr_software.cpp -o lfsr
3 ./lfsr > output.txt
```

The second one is in charge of use the tool diff to compare the output of the program and the output of the ModelSim simulation.

```
\#!/bin/bash
2
    # Check if there are differences between two file
3
    VAR='diff output.txt ../LFSR/ModelSim/LFSR test/fileout.tv'
4
5
    if [-z "$VAR"]
6
7
    then
8
       echo "OK - NO DIFFERENCES"
q
     else
10
       echo $VAR
11
     fi
12
    echo "Press a key to exit"
13
    read input
```

At row 6 the output of diff is controlled and the condition in the if statement return true if and only if the command return null (so it means that there are no differences between the two files). Otherwise it means that there are some differences and so these are shown.

4.4.4 ModelSim Simulation

The first step of the complete test is the ModelSim simulation performed with the test-bench seen at paragraph 4.4.1.

Figure 4.5: Part of the simulation of the lfsr test-bench

In the figure 4.5 is shown the output of the lfsr simulation as in the wave form. From this we can extract very poor information, in fact the only thing that we can say is that at the first view the output doesn't show a pattern and so maybe it can considered pseudo-random, but in order to be sure of this we have to check the output of this simulation with the C++ program output.

4.4.5 Check The Simulation With C++ Program

After the ModelSim simulation we have the output in the file at the following path:

```
/LFSR/ModelSim/LFSR_test/fileout.tv
```

Now we have to use the helper scripts.

The first thing to do is to go in the directory in which there are C++ program and scripts.

Then we can execute the script which compiles and redirect the output of the program to the file output.txt

```
./run_lfsr.sh
```

If the console gives no error then the compilation and the execution are done successfully. So now we can check the two output using the proper script:

```
./check.sh
```

If the console returns

```
OK - NO DIFFERENCES
```

Then it means that the test is ended successfully and that the LFSR implemented in VHDL works in a proper way. In the figure 4.6 we can see the output of the last steps in Linux console.

```
fraie@fraiePC:-/Documenti/GitHub/LinearFeedbackShiftRegister/lfsr_cpp Q = - □ S

fraie@fraiePC:-/Documenti/GitHub/LinearFeedbackShiftRegister/lfsr_cpp$ ./run_lfsr.sh
fraie@fraiePC:-/Documenti/GitHub/LinearFeedbackShiftRegister/lfsr_cpp$ ./check.sh

OK - NO DIFFERENCES
Press a key to exit

fraie@fraiePC:-/Documenti/GitHub/LinearFeedbackShiftRegister/lfsr_cpp$
```

Figure 4.6: Execution of the scripts in Linux console

4.4.6 LFSR Test Conclusion

For a complete test plan we have to test all the $2^{16}-1$ (Remember that the state with all 0 is not allowed) possible seeds and so we have to do 65535 tests and comparisons. Only in this way we can be sure, without doubts, that the LFSR works properly. Anyway we do only some tests and we can say with a reasonable confidence that the LFSR works in a proper way. In particular three tests are performed with the following seeds:

• 0000101011000110

```
/lfsr_cpp/output.txt
/LFSR/ModelSim/LFSR_test/fileout.tv
```

1100101010100111

```
/lfsr_cpp/output1.txt
/LFSR/ModelSim/LFSR_test/fileout1.tv
```

 \bullet 0000000000000110

```
/lfsr_cpp/output2.txt
/LFSR/ModelSim/LFSR_test/fileout2.tv
```

Each test has been performed as the one previously explained and each one has given a successfully output.

Logic Synthesis

Ricordarsi di scrivere che si deve invertire la polarità del reset

Conclusion