1

Probability and Random Processes

Gude Prayarsh EE22BTECH11023*

Q)Ten coins are tossed. What is the probability of getting atleast 8 heads?

Solution:

Parameter	Value	Description
n	10	number of tosses
p	$\frac{1}{2}$	Probability for Heads
q	$\frac{1}{2}$	Probability for Tails
$\mu = np$	5	mean of the distribution
$\sigma^2 = npq$	2.5	variance of the distribution

Gaussian Distribution

Let us define a random variable X which represents the number of Heads.

$$X = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \tag{1}$$

For $X \ge 8$

1) With a 0.5 correction:

$$Pr(X \ge 8) = 1 - Pr(X < 7.5)$$
 (2)

$$\Pr(X \ge 8) = Q\left(\frac{7.5 - \mu}{\sigma}\right) \tag{3}$$

$$Pr(X \ge 8) = Q(\sqrt{2.5}) = Q(1.5811)$$
 (4)

$$\implies \Pr(X \ge 8) = 0.0569276$$
 (5)

2) Without correction:

$$Pr(X \ge 8) = 1 - Pr(X < 8)$$
 (6)

$$\Pr\left(X \ge 8\right) = Q\left(\frac{8-\mu}{\sigma}\right) \quad (7)$$

$$\Pr(X \ge 8) = Q\left(\frac{3}{\sqrt{2.5}}\right) = Q(1.8973) \tag{8}$$

$$\implies \Pr(X \ge 8) = 0.0288898$$
 (9)

Binomial Distribution

$$Pr(X \ge 8) = 1 - Pr(X < 8)$$
 (10)

$$= \sum_{k=8}^{10} \binom{n}{k} p^k (1-p)^{n-k}$$
 (11)

$$= 0.0546875$$
 (12)

Fig. 1: Binomial vs Guassian