Math 237 – Linear Algebra Fall 2017

Version 1

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

G1. Compute the determinant of the matrix $\begin{bmatrix} 2 & 3 & 0 & 1 \\ -1 & 3 & 1 & 4 \\ 0 & 2 & 0 & 3 \\ 1 & -1 & 3 & 5 \end{bmatrix}.$

Solution: -60.

G3. Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

G4. Compute the geometric multiplicity of the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus the geometric multiplicity is 2.

G1:

G3:

G4:

Name:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

G1. Compute the determinant of the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}.$

Solution: -1.

G3. Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

G4. Compute the geometric multiplicity of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

G1: G3: G4:

Math 237 – Linear Algebra Fall 2017

Version 3 Fall 2017 Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

G1. Compute the determinant of the matrix $\begin{bmatrix} 3 & -1 & 0 & 7 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$

Solution: 2

G3. Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{\begin{bmatrix}1\\3\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}\right)$$

G4. Compute the geometric multiplicity of the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus the geometric multiplicity is 2.

G1: G3:

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

G1. Compute the determinant of the matrix $\begin{bmatrix} 2 & 3 & 0 & 1 \\ -1 & 3 & 1 & 4 \\ 0 & 2 & 0 & 3 \\ 1 & -1 & 3 & 5 \end{bmatrix}.$

Solution: -60.

G3. Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{\begin{bmatrix}1\\3\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}\right)$$

G4. Compute the geometric multiplicity of the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$\text{RREF}(B-2I) = \text{RREF}\left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix}\right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus the geometric multiplicity is 2.

G1: G3:

Math 237 – Linear Algebra Fall 2017

Version 5 Fall 2017 Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

G1. Compute the determinant of the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}.$

Solution: -1.

G3. Compute the eigenspace of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the eigenspace is spanned by $\begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}$.

G4. Compute the geometric multiplicity of the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus the geometric multiplicity is 2.

G1:

G3:

G4:

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

G1. Compute the determinant of the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 - 1 & \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix}.$

Solution:

$$\det\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 - 1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix} = -\det\begin{bmatrix} -1 & 0 & 4 \\ 1 & 1 & -1 \\ 1 & 1 & 3 \end{bmatrix} + (-2)\det\begin{bmatrix} 3 & 0 & 4 \\ 2 & 1 & -1 \\ 0 & 1 & 3 \end{bmatrix} = -1(-4) + (-2)(20) = -36$$

G3. Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}\right)$$

G4. Compute the geometric multiplicity of the eigenvalue -1 in the matrix $\begin{bmatrix} 4 & -2 & -1 \\ 15 & -7 & -3 \\ -5 & 2 & 0 \end{bmatrix}$.

Solution:

RREF
$$(A+I) = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{1}{5} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the geometric multiplicity is 2.

G1: G3: G4: