Intro to GPUs

Stefano Markidis and Sergio Rivas-Gomez

Four Key-Points

- GPUs are specialized hardware, initially designed for graphics applications and now widely used in HPC applications.
- 2. GPUs can be either integrated in the processor or have dedicated chip.
- 3. When using dedicated GPU, we need a CPU that acts as host and provides OS services to the GPU
- 4. To move data from GPU memory to CPU memory is relatively slow.

GPUs

GPU = Graphical Processing Unit

= specialized microcircuit to accelerate the creation and manipulation of images in video frame for display devices.

GPU Design Motivation: Process Pixels in Parallel

Data parallel workloads

- In 1080i and 1080p mode videos, 1920 x 1080 pixels = 2M pixels per video frame → compute intensive
- Computation on each pixel is independent from computation on other pixels.
 - No need for synchronization or sophisticated control

GPUs are more and more present in HPC!

- Why so?
 - Lots of parallelism at low clock speed
 → power efficient
 - GPUs compete well in terms of FLOPS/Watt vs traditional HPC CPUs
- GPUs are a core technology in many world's fastest and most energy-efficient supercomputers
 - In the current *Green500*, the top 6 most energy-efficient supercomputers use NVIDIA P100 GPUs

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)	Power	Power Efficiency (GFlops/watts)
1	61	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan	36,288	1,998.0	142	14.110
2	465	kukai – ZettaScaler–1.6 GPGPU system, Xeon E5–2650Lv4 14C 1.7GHz, Infiniband FDR, NVIDIA Tesla P100 , ExaScalar Yahoo Japan Corporation Japan	10,080	460.7	33	14.046
3	148	AIST AI Cloud - NEC 4U-8GPU Server, Xeon E5-2630Lv4 10C 1.8GHz, Infiniband EDR, NVIDIA Tesla P100 SXM2, NEC National Institute of Advanced Industrial Science and Technology Japan	23,400	961.0	76	12.681
4	305	RAIDEN GPU subsystem - NVIDIA DGX-1, Xeon E5-2698v4 20C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100 , Fujitsu Center for Advanced Intelligence Project, RIKEN Japan	11,712	635.1	60	10.603
5	100	Wilkes-2 - Dell C4130, Xeon E5-2650v4 12C 2.2GHz, Infiniband EDR, NVIDIA Tesla P100 , Dell University of Cambridge United Kingdom	21,240	1,193.0	114	10.428

Where do you find GPUs?

- Integrated: Every laptop has an integrated GPU built into its processor, i.e. Intel HD or Iris Graphics.
- Dedicated: A standalone GPU uses its own processor and memory. Most dedicated GPUs are removable. They require more power but also provide higher performance

Source: PC Authority

Source: bit-tech.ne

Question: What is the main difference between these two kinds of GPUs?

Vendors of dedicated GPUs

- Some of the most famous GPU vendors are:
 - NVIDIA (https://www.nvidia.se/)
 - AMD (http://www.amd.com/en-us/products/graphics)
 - ASUS (https://www.asus.com/)
- In this course, we will focus on programming NVIDIA GPUs.

GPUs as Accelerators

- Problem: Dedicated GPUs still require OS, IO
- Solution: "Hybrid System"
 - CPU provides management and basic services
 - "Accelerators", (or co-processors) such as GPUs, provide compute power

Weakness of GPUs

Getting data from/to GPU is slow

NVIDIA TESLA K40 = the most common GPU on supercomputers in Nov. 2016 Top500 list

... but not for too long ... NVLink

To summarize

- 1. GPUs are specialized hardware, initially designed for graphics applications and now widely used in many different areas.
- 2. GPUs can be either integrated in the processor or have dedicated chip. We focus on dedicated GPUs.
- 3. When using dedicated GPU, we need a CPU that acts as host and provide OS services to the GPU.
- 4. To move data from GPU memory to CPU memory is "relatively" slow so this might impact the way we program GPUs.