Definition 1 (Complex of R-modules 1.10). A complex of R-Modules is a sequence of modules F_i

and maps $F_i to F_{i-1}$ such that the compositions $F_{i+1} \to F_i \to F_{i-1}$ are all zero. The homology of this complex at F_i is the module

$$\ker (F_i \to F_{i-1}) \operatorname{im} (F_{i+1} \to F_i)$$

A free resolution of an R-module M is a complex

$$\mathcal{F}: \ldots \to F_n \overset{\rightarrow}{\phi_n} \ldots \to F_1 \overset{\rightarrow}{\phi_1} F_0$$

of free R-Modules such that $\operatorname{coker} \phi_1 = M$ and $\mathcal F$ is exact (sometimes we add " $\to 0$ " to the right of $\mathcal F$ and then insist that $\mathcal F$ be exact except at F_0). We shall sometimes abuse this notation and say that an exact sequence

$$\mathcal{F}: \ldots \to F_n \overset{\rightarrow}{\phi_n} \ldots \to F_1 \overset{\rightarrow}{\phi_1} F_0 \to M \to 0$$

is a resolution of M. The image of the map ϕ_i is called the ith syzygy module of M. A resolution $\mathcal F$ is a graded free resolution if R is a graded ring, the F_i are graded free modules, and the maps are homogeneous maps of degree 0. Of course only graded modules can have graded free resolutions. If for some $n < \inf$ we have $F_{n+1} = 0$, but $F_i \neq 0 \forall 0 \le i \le n$, then we shall say that $\mathcal F$ is a finite resolution of length n.

Theorem 1 (Hilberts syzygy theorem1.13). If $R = l[x_1, ..., x_r]$, then every finitely generated graded R-Module has a finite graded free resolution of length $\leq r$.

Theorem 2 (Buchberger's Criterion 15.8). The elements g_1, \ldots, g_t form a Gröbner basis $\iff h_{ij} = 0$ forall i and j

Notation 1 (). In the following we let F be a free module with basis and let M be a submodule of F generated by monomials m_1, \ldots, m_t . Let

$$\phi: \bigoplus_{j=1}^{t} S\epsilon_j \to F; \phi\left(\epsilon_j\right) = m_j$$

be a homomorphism from a free module whose image is M. For each pair of indices i, j such that m_i and m_j involve the same basis element of F, we define

$$m_{ij} := m_i / \operatorname{GCD}(m_i, m_j),$$

and we define σ_{ij} to be the element of ker ϕ given by

$$\sigma_{ij} := m_{ji}\epsilon_i - m_{ij}\epsilon_j.$$

Lemma 3 ([1][15.1). With notation as above, ker ϕ is generated by the σ_{ij} .

Definition 2 (initial term 325). If > is a monomial order, then for any $f \in F$ we define the initial term of f, written in_> (f) to be the greatest term term of f with respect to the order >, and if M is a submodule of F we define $in_>(M)$ to be the monomial submodule generated by the elements $in_<(f)$ forall $f \in M$. When there is no danger of confusion we will simply write in in place of in_>.

Definition 3 (Groebnerbasis 328). A Gröbner basis with respect to an order > on a free module with basis F is a set of elements $g_1, \ldots, g_t \in F$ such that if M is the submodule of F generated by g_1, \ldots, g_t , then $in_>(g_1), \ldots, in_>(g_t)$ generate $in_>(M)$. We then say, that g_1, \ldots, g_t is a Gröbner basis for M

Proposition-Definition 4 (15.6). Let F be a free S-module with basis and monomial order >. If $f, g_1, \ldots, g_t \in F$ then there is an expression

$$f = \sum f_i g_i + f' with f' \in F, f_i \in S_i,$$

where none of the monomials of f' is in $(in(g_1), \ldots, in(g_t))$ and

$$in(f) \ge in(f_i g_i)$$

for every i. Any such f' is called a remainder of f with respect to g_1, \ldots, d_t , and an expression $f = \sum f_i g_i + f'$ satisfying the condition of the proposition is called a standard expression for f in terms of g_i .

Algorithmus 1 (Division Algorithm 328). Lef F be a free S-module with basis and a fixed monomial order. If $f, g_1, \ldots, g_t \in F$, then we may produce a standard expression

$$f = \sum m_u g_{s_u} + f'$$

for f with respect to g_1, \ldots, g_t by defining the indices s_u and the terms m_u inductively. Having chosen s_1, \ldots, s_p and m_1, \ldots, m_p , if

$$f_p' := f - \sum_{u=1}^p m_u g_{s_u} \neq 0$$

and m is the maximal term of f'_p that is divisible by some $in(g_i)$, then we choose

$$s_{p+1} = i, m_{p+1} = m/in(g_i)$$

This process terminates when either $f'_p = 0$ or no $in(g_i)$ divides a monomial of f'_p ; the remainder f' is then the last f'_p produced.

Algorithmus 2 (Buchberger's Algorithm 333). In the situation of Theorem 15.8, suppose that M is a submodule of F, and let $g_1, \ldots, g_t \in M$ be a set of generators of M. Compute the remainders h_{ij} . If all of the $h_{ij} = 0$, then the g_i form a Gröbner basis for M. If some $h_{ij} \neq 0$, then replace g_1, \ldots, g_t with g_1, \ldots, g_t, h_{ij} , and repeat the process. As the submodule generated by the initial forms of g_1, \ldots, g_t, h_{ij} is strictly larger than that generated by the initial forms of g_1, \ldots, g_t , this process must terminate after finitely many steps. The upperbound

$$b = ((r+1)(d+1)+1)^{2^{(s+1)}(r+1)}$$

, where

 $r = \text{number of variables} d = \text{maximum degree of the polynomials } g_i$, and s = the degree of the Hilbert polynomial (this

Definition 4 (334).

$$\tau_{ij} := m_{ji}\epsilon_i - m_{ij}\epsilon_j - \sum_{u} f_u^{(ij)}\epsilon_u$$

, for i < j such that $in(g_i)$ and $in(g_j)$ involve the same basis element of F.

Theorem 5 (Schreyer [1][15.10).] With the notation as above, suppose that g_1, \ldots, g_t is a Gröbner basis. Let > be the monomial order on $\bigoplus_{j=1}^t S\epsilon_j$ defined by taking $m\epsilon_u > n\epsilon_v \iff$

$$\in (mg_u) > \in (ng_v)$$
 with respect to the given order on F

or

$$\in (mg_u) = \in (ng_v) (up \ to \ a \ scalar) \ butu < v.$$

The τ_{ij} generate the syzygies on the g_i . In fact, the τ_{ij} are a Gröbner basis for the syzygies with respect to the order >, and $\in (\tau_{ij}) = m_{ji}\epsilon_i$.

Beweis. We show first that the initial term of τ_{ij} is $m_{ji}\epsilon_i$. We have

$$m_{ii} \in (g_i) = m_{ij} \in (g_i)$$
,

Literatur

[1] David Eisenbud. Commutative Algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, 1995.