Época de recurso

15 de Fevereiro de 2007

1. (5 valores) Apresente um exemplo de, ou justifique porque não existe(m):

- (a) conjuntos $A, B \subset \mathbb{R}$ com int A = int B e $\overline{A} \neq \overline{B}$;
- (b) um conjunto numerável $A \subseteq \mathbb{R} \setminus \mathbb{Q}$ tal que $A \cap [-\pi, \pi]$ seja finito;
- (c) uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que

$$\lim_{x \to -\infty} f(x) = 1, \lim_{x \to 1} f(x) = +\infty, \lim_{x \to +\infty} f(x) = 1 \text{ e CD}_f =] - 1, +\infty[;$$

(d) uma função contínua $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ tal que $f(\mathbb{R}) = \{1, \pi\};$

(e) funções
$$f,g \colon [0,2] \longrightarrow \mathbb{R}$$
 tais que $\int_0^2 f(x) \, dx = \int_0^2 g(x) \, dx$ e $f(x) \neq g(x), \forall x \in [0,2]$.

2. (5 valores) Diga, justificando, se cada uma das proposições seguintes é verdadeira ou falsa:

- (a) o conjunto $\{x \in \mathbb{R} : |x-8| = 3|x|\}$ possui mínimo e máximo;
- (b) a função $h(x) = \frac{x}{|x|}$, $x \in \mathbb{R} \setminus \{0\}$, pode ser estendida com continuidade ao ponto 0;
- (c) se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é tal que $2x^3 + 3x^2 + 1$ é o seu polinómio de Taylor de terceira ordem em torno do ponto 1 então $3x^2 + 1$ é o correspondente polinómio de Taylor de segunda ordem;
- (d) se $f: [0,1] \longrightarrow \mathbb{R}$ é contínua então f é derivável;

(e) se
$$f'(x) = 12x^2$$
, $\forall x \in \mathbb{R}$, e $f(0) = 1$ então $\int_{-1}^{1} f(x) dx = 0$.

- 3. (2 valores) Determine $\lim_{x\to 0} \frac{\cos 2x 1 + 2x^3}{x^2}$.
- 4. (2 valores) Esboce a região plana \mathcal{A} que é limitada pelas curvas de equações $y = \operatorname{ch} x$ e $y = \operatorname{ch} 2$.
 - (a) Determine a área de A.
 - (b) Determine o comprimento da linha que limita a região \mathcal{A} (note que tal linha é constituída por um segmento de recta e um arco de curva).
- 5. (2 valores) Calcule apenas uma das seguintes primitivas:

(a)
$$\int e^{x-2e^x} dx$$
; ou $\int \frac{1}{x+x\log^2 x} dx$; (b) $\int \frac{x^2+x-1}{x(x+1)^2} dx$.

6. (2 valores) Calcule apenas um dos seguintes integrais:

(a)
$$\int_0^1 x \arctan x^2 dx$$
; (b) $\int_{-1}^0 \sin \sqrt{x+1} dx$.

- 7. (2 valores) Sejam $f: \mathbb{R} \longrightarrow \mathbb{R}$ contínua e $F: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definida por $F(x) = \frac{1}{x^2} \int_{\text{sen } x}^{\text{sen } x^3} f(t) dt$.
 - (a) Justifique que F é derivável e determine F'.
 - (b) Suponha que f é uma função ímpar e mostre que F é uma função par.