# Lógica de programação

Prof. Ismar



1

# lógica

 A palavra lógica está normalmente relacionada com o modo de pensar de um indivíduo em termos de racionalidade e coerência. "Podemos relacionar a lógica com a "correção do pensamento", pois uma de suas preocupações é determinar quais operações são válidas e quais não são, fazendo análises das formas e leis do pensamento.

Como filosofia, ela procura saber por que pensamos assim e não de outro jeito.

Como arte ou técnica, ela nos ensina a usar corretamente as leis do pensamento."

Lógica de Programação – André Luiz Villar Forbellone

### lógica

- "Poderíamos dizer que a lógica é a "arte de bem pensar", que é a "ciência das formas do pensamento".
- Visto que a forma mais complexa do pensamento é o raciocínio, a lógica estuda a "correção do raciocínio". Podemos ainda dizer que a lógica tem em vista a "ordem da razão". Isto dá a entender que a nossa razão pode funcionar desordenadamente. Por isso a lógica estuda e ensina a colocar "ordem no pensamento"."

Lógica de Programação – André Luiz Villar Forbellone



3

# lógica

Todo cachorro é um mamífero.

Todo mamífero é um animal. Portanto, todo cachorro é um animal.

Japão é um país do continente asiático.

Todos os japoneses são de Japão.

Logo, todos os japoneses são asiáticos.



### lógica

Tudo o que fazemos no dia-a-dia envolve um pensamento lógico. Tomamos decisões baseados em lógica.

Em programação também é assim:

Todo procedimento que se faz dentro de programação, deve ser feito baseado em um pensamento lógico que foi previamente definido.

O objetivo da lógica de programação é desenvolver o raciocínio lógico, buscando a melhor solução para um determinado problema.

Em Lógica de Programação se aprende a <u>teoria da programação</u> que pode ser aplicada em qualquer linguagem de programação.

A lógica é um requisito básico para se aprender qualquer linguagem de programção.

5

#### O que se aprende em lógica de programação?

#### criar algoritmos

Algoritmo é uma espécie de passo-a-passo para se solucionar um problema.

O algoritmo é o caminho a ser seguido para se chegar a uma solução.

Analogia: Receita de um bolo - Se todos os passos forem seguidos, teremos o bolo (a ordem é importante)

Algoritmo é uma sequência ordenada de passos que ao ser executada vai solucionar um problema ou realizar uma tarefa.

### Representação de algoritmos

Existem basicamente três tipos de representação de algoritmos

- Descrição Narrativa
- Fluxogramas
- pseudocódigo

7

#### Representação de algoritmos

• Descrição narrativa:

O algoritmo é descrito passo a passo e todas as tarefas a devem ser executadas em linguagem natural, no nosso caso, em português.

#### Representação de algoritmos

#### • Fluxograma

É a representação por meio de símbolos gráficos que mostram a sequência de Execução.

Existem símbolos padronizados para início, entrada de dados, cálculos, saída de dados, fim e outras funções.



9

#### Representação de algoritmos

Símbolos básicos do fluxograma



10

#### Representação de algoritmos

#### Pseudocódigo

Pseudocódigo é uma forma genérica de escrever um algoritmo, utilizando uma linguagem simples sem necessidade de conhecer a sintaxe de nenhuma linguagem de programação.

#### VisualG

11

#### Representação de algoritmos

#### VisualG

É um programa que edita, interpreta e executa algoritmos com uma linguagem próxima do português estruturado.



#### Conceitos básicos e tipos de dados



13

### Constantes e Variáveis

- Constantes:
  - Dados que não se modificam:
  - Numéricos;
  - Data;
  - Lógica;
  - Caracter (texto, literal, string);
- Variáveis:
  - Representação simbólica dos elementos;
  - Corresponde a uma posição de memória;
  - Conteúdo pode se alterado;
  - Mesmo tipo de dados que: Constantes;

# Tipos de Variáveis

| Algoritmo | С     | Bits | Bytes |
|-----------|-------|------|-------|
| Caractere | char  | 8    | 1     |
| Inteiro   | int   | 32   | 4     |
| Real      | float | 32   | 4     |
|           |       |      |       |

15

Na tabela abaixo, em ordem crescente, estão as unidades de medida em tecnologia.

| Unidade   | Símbolo | Valor            |
|-----------|---------|------------------|
| Bit       | ь       | dígito binário   |
| Byte      | В       | 8 bits           |
| Kilobyte  | kByte   | 1.024 bytes      |
| Megabyte  | MB      | 1.024 kilobytes  |
| Gigabyte  | GB      | 1.024 megabytes  |
| Terabyte  | ТВ      | 1.024 gigabyte   |
| Petabyte  | PB      | 1.024 terabytes  |
| Exabyte   | EB      | 1.024 petabytes  |
| Zettabyte | ZB      | 1.024 exabytes   |
| Yottabyte | YB      | 1.024 zettabytes |
|           |         |                  |

#### Todas as unidades

- · 1 Bit = Binary Digit
- · 8 Bits = 1 Byte
- · 1024 Bytes = 1 Kilobyte
- · 1024 Kilobytes = 1 Megabyte
- · 1024 Megabytes = 1 Gigabyte
- · 1024 Gigabytes = 1 Terabyte
- · 1024 Terabytes = 1 Petabyte
- · 1024 Petabytes = 1 Exabyte
- · 1024 Exabytes = 1 Zettabyte
- · 1024 Zettabytes = 1 Yottabyte
- · 1024 Yottabytes = 1 Brontobyte
- $\cdot$  1024 Brontobytes = 1 Geopbyte
- · 1024 Geopbytes = 1 Saganbyte 1024 Saganbytes = 1 Pijabyte
- 1024 Dishutes 1 Alphabute
- 1024 Pijabytes = 1 Alphabyte

- · 1024 Alphabytes = 1 Kryatbyte
- · 1024 Kryatbytes = 1 Amosbyte
- · 1024 Amosbytes = 1 Pectrolbyte
- · 1024 Pectrolbytes = 1 Bolgerbyte
- · 1024 Bolgerbytes = 1 Sambobyte
- · 1024 Sambobytes = 1 Quesabyte
- · 1024 Quesabytes = 1 Kinsabyte
- · 1024 Kinsabytes = 1 Rutherbyte
- · 1024 Rutherbytes = 1 Dumbnibyte
- · 1024 Dumbnibytes = 1 Seaborgbytte
- · 1024 Seaborgbyttes = 1 Bohrbyte
- · 1024 Bohrbytes = 1 Hassiubyte
- · 1024 Hassiubytes = 1 Meitnerbyte
- · 1024 Meitnerbytes = 1 Dormstadbyte
- · 1024 Dormstadbytes = 1 Teoentbyte

17

### Operadores

- Operadores Aritméticos:
  - Resultados Numéricos;
- Operadores Relacionais:
  - Utilizados para comparar;
- Operadores Lógicos:
  - Retorna se o resultado é verdadeiro ou falso;

# Operadores Aritméticos

| Operação                  | Símbolo |
|---------------------------|---------|
| Adição                    | +       |
| Subtração                 | -       |
| Multiplicação             | *       |
| Divisão                   | 1       |
| Exponenciação             | **      |
| Módulo (Resto da Divisão) | %       |

19

# Operadores Relacionais

| Descrição        | Símbolo |
|------------------|---------|
| Igual a          | =       |
| Diferente de     | <> ou # |
| Maior que        | >       |
| Menor que        | <       |
| Maior ou Igual a | >=      |
| Menor ou Igual a | <=      |

# Operadores Lógicos

| Algoritmo | С   | Símbolo |
|-----------|-----|---------|
| E         | AND | &&      |
| OU        | OR  | П       |
| NÃO       | NO  | !       |

21

#### Vetor

Vetor é um tipo de variável que armazena um conjunto de valores indexados. Cada um desses valores se comporta como se fosse uma variável independente.

Declaração de um vetor:

v: vetor [1..5] de inteiro



22

#### Matriz

Matriz é um vetor bidimensional que armazena um conjunto de valores indexados. Cada um desses valores se comporta como se fosse uma variável independente.

Declaração de uma matriz:

m: vetor [1..3, 1..5] de inteiro



23

Um algoritmo é definido como uma sequência finita de operações que, quando executadas na ordem estabelecida, atingem um objetivo determinado em um tempo finito.

Um algoritmo deve atender aos seguintes requisitos:

- possuir um estado inicial;
- consistir de uma sequência lógica finita de ações claras e precisas;
- produzir dados de saída corretos;
- possuir estado final previsível (deve sempre terminar).

## Referências Bibliográficas

- MIZRAHI, V. V. **Treinamento em linguagem c**. São Paulo: Makron Books do Brasil, 2005. v. 1. 241p.
- MIZRAHI, V. V. **Treinamento em linguagem c**. São Paulo: Makron Books do Brasil, 2004. v. 2. 273p.
- SCHILDT, H. **C completo e total**. 3. ed. São Paulo: Makron Books do Brasil, 1997. 827p.
- MANZANO, J. A. N. G.; OLIVEIRA, J. F. **Algoritmos**: logica para desenvolvimento de programacao de computa. 13. ed. São Paulo: Erica, 2002. 236p.

25