Continuous control with deep reinforcement learning

October 31, 2018

1 Methods

I leveraged many components of the codes provided by Udacity to solve OpenAI Gym's Pendulum environment. In this project I used a policy-gradient actor-critic algorithm which is described in [2]. TThe Actor-Critic learning algorithm represent the policy function. The policy function is called the actor, and the value function called the critic. Given the current state of the environment, the actor produces an action and the critic produces a TD error signal given the state and reward. In order for the critic to estimat the action-value function Q(s,a), it requires the output of the actor. The output of the critic drives learning in both the actor and the critic. In this project I used neural networks to represent the actor and critic structures.

A major challenge of learning in continuous action spaces is exploration. An advantage of off-policies algorithms such as DDPG is that we can treat the problem of exploration independently from the learning algorithm. We constructed an exploration policy μ' by adding noise sampled from a noise process $\mathcal N$ to our actor policy

$$\mu'(s_t) = \mu(s_t | \theta_t^{\mu}) + \mathcal{N} \tag{1}$$

 \mathcal{N} can be chosen to chosen to suit the environment. As detailed in the supplementary materials we used an Ornstein-Uhlenbeck process [1] to generate temporally correlated exploration for exploration efficiency in physical control problems with inertia [2]. The detail of algorithm is provided as follow1.

Hyper Parameters used in this study are as follow.

Neural network with following architecture was used for DDPG actor and DDPG Critic.

2 Results

The algorithm was converged in 103 iterations with hyper-parameters noted in the method section. Figure 2 shows the score versus episode numbers.

Table 1: Hyper Parameters

Parameter	Value
Replay Buffer Size	9e5
Mini Batch Size	256
Discount Factor	0.99
Soft Update Target	1e-3
Learning Rate Actor	9e-4
Learning Rate Critic	9e-4
L2 Weight Decay	0

Figure 1: Neural network Architecture

Algorithm 1 DDPG algorithm [2]

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^{\mu}$ Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}$$

end for end for

3 Future Direction

- Hyper parameter tunning of algorithm to improve the performance.
- Tunning the structure of the Neural network to improve the performance.
- Trying other algorithm such as PPO, TRPO and D4PG.

Figure 2

References

- [1] Uhlenbeck, G. E., and Ornstein, L. S., 1930. "On the theory of the brownian motion". *Physical review*, **36**(5), p. 823.
- [2] Timothy, P., Jonathan, J., Alexander, P., Nicolas, H., Tom, E., Yuval, T., David, S., and Daan, W. "Continuous control with deep reinforcement learning". arXiv preprint arXiv:1509.02971.