Занятие 4. Интегрирование тригонометрических функций

Интегралы вида $\int \sin^m x \cos^n x \, dx$. Интегралы вида $\int R(\sin x, \cos x) \, dx$. Интегрирование произведений синусов и косинусов.

I Интегралы вида $\int \sin^m x \cdot \cos^n x dx$, где $m, n \in \mathbb{Z}$

- 1. Если m нечётное положительное, то $\cos x = t$.
- 2. Если n нечётное положительное, то $\sin x = t$.
- 3. Если m+n чётное отрицательное, то tgx = t.
- 4. Если m и n чётные положительные, то применяют формулы понижения степени:

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x); \sin^2 x = \frac{1}{2} (1 - \cos 2x).$$

II Интегралы вида $\int \sin \alpha x \cdot \sin \beta x dx$, $\int \sin \alpha x \cdot \cos \beta x dx$, $\int \cos \alpha x \cdot \cos \beta x dx$. Произведение тригонометрических функций преобразуют в сумму:

$$\sin \alpha x \cdot \sin \beta x = \frac{1}{2} (\cos(\alpha - \beta)x - \cos(\alpha + \beta)x)$$

$$\sin \alpha x \cdot \cos \beta x = \frac{1}{2} (\sin(\alpha - \beta)x + \sin(\alpha + \beta)x)$$

$$\cos \alpha x \cdot \cos \beta x = \frac{1}{2} (\cos(\alpha - \beta)x + \cos(\alpha + \beta)x)$$

III Интегралы вида $\int R(\sin x, \cos x) dx$, где $R(\sin x, \cos x)$ — рациональная функция от $\sin x, \cos x$, приводятся к интегралам от рациональной алгебраической дроби с помощью следующих подстановок:

1.
$$R(-\sin x, \cos x) = -R(\sin x, \cos x)$$
 $\cos x = t$

2.
$$R(\sin x, -\cos x) = -R(\sin x, \cos x)$$
 $\sin x = t$

3.
$$R(-\sin x, -\cos x) = R(\sin x, \cos x)$$
 $tgx = t$

4. Универсальная подстановка:
$$tg \frac{x}{2} = t \sin x = \frac{2t}{1+t^2} \cos x = \frac{1-t^2}{1+t^2} dx = \frac{2dt}{1+t^2}$$

Найти интегралы

1.
$$\int \frac{\sin^3 x}{\cos x - 3} dx$$
. 2. $\int \frac{\cos^3 x}{\sin^4 x} dx$. 3. $\int \frac{dx}{3\cos^2 x + 4\sin^2 x}$. 4. $\int \cos^5 x \cdot \sin^2 x dx$. 5. $\int \frac{dx}{\sqrt{\cos^7 x \cdot \sin x}}$.

6.
$$\int \frac{dx}{5 + \sin x + \cos x}$$
. 7.
$$\int \cos 4x \cdot \cos 7x dx$$
. 8.
$$\int \sin^2 x \cdot \cos^4 x dx$$
. 9.
$$\int \cos^6 x dx$$
.

10.
$$\int \frac{\cos^3 x}{4\sin^2 x - 1} dx$$
. 11. $\int \frac{dx}{19\sin^2 x - 8\sin x \cos x - 3}$. 12. $\int \frac{\sin x \cos x}{(3 + \cos x)^2} dx$. 13. $\int \sqrt[3]{\sin^2 x} \cdot \cos^3 x dx$. 14. $\int \sin^4 x dx$.