Ejercicio 11 TDA-P3

Aguilar valentin

May 2, 2024

Análisis de Implementaciones de Vecindarios en Grafos

- 0.1 a) Inicializar la estructura a partir de un conjunto de aristas de ${\cal G}$
 - Ventajas: O(m).
- 0.2 b) Determinar si dos vértices v y w son advacentes
 - Lista de aristas: O(m).
 - Lista de adyacencias: O(d(v)).
 - Matriz de adyacencias: O(1).
- 0.3 c) Recorrer y/o procesar el vecindario N(v) de un vértice v dado
 - Lista de aristas: O(m).
 - Lista de adyacencias: O(d(v)).
 - Matriz de adyacencias: O(n).
- 0.4 d) Insertar un vértice v con su conjunto de vecinos N(v)
 - Lista de aristas: O(1).
 - Lista de adyacencias: O(n).
 - Matriz de adyacencias: $O(n^2)$.

0.5 e) Insertar una arista vw

- Lista de aristas: O(m).
- Lista de adyacencias: O(d(u) + d(v)).
- Matriz de adyacencias: O(1).

1 Análisis de Estructuras de Datos

1.1 a) Lista de aristas

- Ventajas:
 - Puedo acceder a vecindarios en O(1).
 - Puedo agregar y sacar vértices en tiempo lineal.
 - Puedo agregar aristas en tiempo decente.
- Desventajas:
 - A diferencia de la matriz, no accedo en O(1) a las adyacencias (la complejidad es más lenta).

1.2 b) Lista de adyacencias pero cada vecino se almacena junto con un índice a la posición que ocupa en la lista de adyacencias del otro vértice

- Ventajas:
 - Acceso más rápido para operaciones bidireccionales.
 - Simplificación de operaciones de eliminación.

1.3 c) Matriz de adyacencias

- * Ventajas:
 - · Acceso en O(1) a las adyacencias.
- * Desventajas:
 - · Ocupa $O(n^2)$ en memoria.
 - · Complejidad de $O(n^2)$ para borrar y agregar vértices.

1.4 d) Mix entre lista de adyacencias y matriz de adyacencias

- * Ventajas:
 - · Acceso rápido para comprobar adyacencias (O(1)).
 - · Inserciones y eliminaciones rápidas.

- \cdot Uso eficiente de memoria.
- * Desventajas:
 - \cdot Sobrecarga de memoria para las tablas de hash.
 - \cdot Menos predictibilidad en los tiempos de ejecución.