Prove each of the following statements, or give a counterexample

a. Breadth-first search is a special case of uniform-cost search.

When all step costs are equal (and let's assume equal to 1), g(n) is just a multiple of depth n. Thus, breadth-first search and uniform-cost search would behave the same in this case f(n) = g(n) = 1*(depth of n)

g(n): a path cost to n from a start state

Breadth First Search (BFS)

Uniform Cost Search (USC)

b. Depth-first search is a special case of best-first tree search.

Breadth-first search is best-first search with f(n) = depth(n); depth-first is best-first search with f(n) = -depth(n).

c. Uniform-cost search is a special case of A* search.

A* search: f(n) = g(n) + h(n) Uniform-cost search: f(n) = g(n) Thus, for h(n) = 0, uniform cost search will produce the same result as A* search

h(n): a heuristic estimate of cost from n to a goal state g(n): a path cost to n from a start state

Evaluation function: f(n) = (2 - w)g(n) + wh(n)

Completeness

w = 0: f(n)=2g(n) --> Uniform Cost Search, which is complete.

w = 1: $f(n)=g(n) + h(n) --> A^*$, which is complete.

w = 2: f(n)=2h(n) --> greedy Best First Search, which is not complete.

Cost > 0 so f(n) > 0.

$$f(n) = (2 - w)g(n) + wh(n)$$

0 < w < 2

Evaluation function: f(n) = (2 - w)g(n) + wh(n)

Optimality

The algorithm is guaranteed to be optimal for $0 \le w \le 1$, since scaling g(n) by a constant has no effect on the relative ordering of the chosen paths, but, if w > 1 then it is possible the wh(n) will overestimate the distance to the goal, making the heuristic inadmissible. If $w \le 1$, then it will reduce the estimate, but it is still guaranteed to underestimate the distance to the goal state.

Evaluation function: f(n) = (2 - w)g(n) + wh(n)

Search behavior with w = 0, 1, 2

w	f(n)	Algorithm
w = 0	f(n) = 2g(n)	Uninformed best-first search
w=1	f(n) = g(n) + h(n)	A* search
w = 2	f(n) = 2h(n)	Greedy best-first search