

دانشکده مهندسی برق

یادگیری تقویتی در کنترل

تمرین هشتم: LQR مبتنی بر

استاد: دکتر سعید شمقدری

دانشجو: سیده ستاره خسروی

زمستان ۱۴۰۳

چکیده

در تمرین سری هشتم یادگیری تقویتی در کنترل با ۲ سوال از مبحث کنترل بهینه، یادگیری تقویتی مبتنی بر نقاد و بازیگر مواجه هستیم، که در هر فصل به سوال و یا سوالات مطرح شده پاسخ داده شده است.

واژههای کلیدی: یادگیری تقویتی، کنترل بهینه، نقاد، بازیگر

فهرست مطالب

٩	وان	عنو
ب	ِست مطالبب	فهرا
ج	ِست تصاویر و نمودارها	فهرا
	ل ۱: کنترل بهینه مبتنی بر نقاد و بازیگر	
	١.١ مقدمه	
١	١.٢ سوال اول	,
٧	۱.۳ سوال دوم	

فهرست تصاویر و نمودارها

صفحه				عنوان
✓	1.5	م دسگارا کنت	· نمودا. حالتها	1 15:

فصل ۱: کنترل بهینه مبتنی بر نقاد و بازیگر

۱.۱ مقدمه

در این فصل به ۲ سوال مربوط به بادگیری تقویتی و حل مسئله کنترل بهینه مبتنی بر Actor Critic پاسخ داده می شود.

۱.۲ سوال اول

صورت سوال:

۱) برای سیستم غیرخطی افاین زیر،

$$\dot{x}(t) = \begin{bmatrix} x_2 \\ -x_1 \left(\frac{\pi}{2} + \arctan(5x_1)\right) - \frac{5x_1^2}{2(1+25x_1^2)} + 4x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \end{bmatrix} u(t), \qquad x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

فرض کنید $Q=\begin{bmatrix}0&0\\0&1\end{bmatrix}$ و $Q=\begin{bmatrix}0&0\\0&1$ هستند. یک کنترل کننده با رویکرد actor-critic برای این سیستم طراحی critic کنید. تابع پایه مربوط به شبکه $\sigma_a(x)=x_2$ را به صورت $\sigma_a(x)=x_2$ در نظر گرفته و توابع پایه مرتبط با شبکه $\phi_c(x)=[x_1\ x_2\ x_1x_2\ x_1^2\ x_2^2\ x_1^2\ arctan(5x_1)\ x_1^3]$ را به صورت $\phi_c(x)=[x_1\ x_2\ x_1x_2\ x_1^2\ x_2^2\ x_1^2\ arctan(5x_1)\ x_1^3]$

الف) الگوریتم actor-critic مطرح شده برای سیستم گسسته را به سیستم پیوسته تعمیم دهید.

ب) با استفاده از الگوریتم قسمت الف نمودار همگرایی وزنهای شبکههای actor و critic نمودار مربوط به حالات سیستم و سیگنال کنترلی متناظر را رسم نمایید.

پاسخ بخشهای الف و ب:

در این بخش برای حل سوال چون نتواستیم از روش مطرح شده در کلاس برای حل سوال پیش برویم، از روش مطرح شده در کلاس برای حل سوال پیش برویم، از روش Actor Critic روش Actor Critic مبتنی بر learning استفاده کردیم. ابتدا این الگوریتم را شرح داده، تعمیم آن به پیوسته را مطرح کرده و کد آن را مینویسیم.

میدانیم که برای یک سیستم گسسته Q- learning به صورت زیر بدست می آید.

Subject	-
Year: Month: Day: Page:	~
Year: Month: Day: Page: Chestainy bin 1 QR Low	(عر
	٠
Oleung Sil : 1 Malel Free just in sind Ofi for of cold co	
ن ده ې سو د .	الت
راش عبع من مبدل نیار به سل ستم ی توان بیاس میند را میس مرد. راش عبع می مبدل نیار به سل ستم ی توان بیاس میند را میس مرد. را ش عبع می مبدل نیار به سل ستم ی توان بیاس می مرد.	1
Que (nu, un) , remoun) , V (nk+1)	_ (
/ (M) May May (M)	
Q Cnn, un), r (nn, un) + y v (nn, 1)	•
Star See a Hearth	
((nu) = min (Q + (nu , u))	
((ru) s pin ((cnu, u))	
h+ (m) = any mix (02*(m, u)) 2 (2*(m, u).	
h'(nu) say mis (C)*(nu,u)) & C)*(nu,u).	(
بالكريند زين الني الرساد ان سيد زين الني الني الني الني الني الني الني ال	(
The state of the s	

در ادامه داریم:

در نهایت بحث بهبود سیاست نیز به صورت زیر می گردد.

$$\frac{\partial}{\partial u} \left(\frac{\partial u}{\partial u}, h(n_{k}) + \frac{\partial}{\partial u} \varphi(2_{k+1}) - \frac{\partial}{\partial u} \varphi(2_{k}) = 0 \right)$$

که نهایتا الگوریتم آن به صورت زیر خواهد بود:

برای سیستم گسسته زمان که دیدیم به چه صورت می شود. در پیوسته زمان نیز مشابه قبل است با این تفاوت:

$$egin{aligned} V(x) &= x^T P x = ar{x}^T ar{P} = ar{P}^T ar{x}
ightarrow \phi(x) \ &\dot{x} = f + g u \ &V(x) &= W^T \phi(x) \ &W^T \left(\phi(x(t)) - \phi(x(t+T))
ight) = \int_t^{t+T} r(au) \, d au \end{aligned}$$

كه البته كدنويسي آن مشابه حالت گسسته است.

برای کدنویسی باید دقت شود، برخلاف روش ارائه شده در کلاس، در این روش باید وزنهای مورد استفاده، برحسب u هم باشند، بعلاوه اینکه هر سطر باید توان زوج از حالتها و ورودیها باشد. به همین دلیل از توابع پایهای صورت سوال نمی توانیم استفاده کنیم، و توابع دیگری را باید لحاظ کنیم.

به صورت زیر توابع پایهای را تشکیل میدهیم.

```
syms X1 X2 U;
assume([X1 X2 U] , 'real');

% phi(z) z = [X ; u] for q learning
phi = [X1^2 X1*X2 X2^2 ...
```

X1^4 X1^3*X2 X1^2*X2^2 X1*X2^3 X2^4 ... X1^6 X1^5*X2 X1^4*X2^2 X1^3*X2^3 X1^2*X2^4 X1*X2^5 X2^6 ... X1*U X2*U X1^3*U X2^3*U X1^5*U X2^5*U ...

X1^4*X2*U X1*X2^4*U X1^2*X2*U X1*X2^2*U U^2]';

%% define basis functions

چون قرار است از استراتژی Q Learning برای حل استفاده کنیم، باید بدانیم که از فرمت z باید استفاده شود، و به همین ترتیب در تابع پایهای باید z هم وجود داشته باشد، چون باید از z نسبت به z نسبت به z نسبت به استفاده شود، و به همین ترتیب در تابع پایهای باید z نسبت به z نسبت به z مشتق بگیریم تا بتوانیم مسئله را حل کنیم.

در ادامه به تعداد مقادیر توابع پلیهای نیاز به وزنهای حقیقی است، این وزنها را تعریف و تابع \mathbf{Q} را تشکیل می دهیم.

```
% Q = W'*phi for q learning
Ws = sym('Ws' , [size(phi , 1) , 1]);
assume(Ws , 'real');
Q = Ws'*phi;
```

سپس می دانیم که با استفاده از مشتق Q بر حسب U مقدار بهینه بدست می آید، که به صورت زیر مشتق گرفته و مقادیر بهینه را نیز بدست آورده و ذخیره می کنیم و به گونه ای ذخیره سازی را تغییر می دهیم که محاسبات سریعتر انجام شود.

```
dotQ = diff(Q, U);
          Us = solve(dotQ , U) ;
           uFCN = matlabFunction(Us);
           phiFCN = matlabFunction(phi);
                                                تنظیمات آموزش را به صورت زیر تعیین می کنیم:
               nP = 500;
              M = 100;
              W = zeros(size(phi , 1) , nP); W(end , 1) = 1;
               R = 1; Q = [0 0; 0 1];
                سيس در ادامه مطابق الگوريتمي كه در صفحه چهار آورديم، آموزش را كدنويسي كرديم.
PHI = [];
SAI = [];
   xt = [-1; 1];
   ut = uFCN(W(6, j), W(7, j), W(8, j), W(9, j), xt(1), xt(2));
   ut = ut + 0.01*randn;
   xt1 = [xt(2); -1*xt(1)*((pi/2) + atan(5*xt(1))) - 5*xt(1)^2/(2*(1+25*xt(1)^2)) + 4*xt(2) + 3*ut];
   ut1 = uFCN(W(6, j),W(7, j),W(8, j),W(9, j), xt1(1), xt1(2));
   PHI = [PHI ; phiFCN(ut , xt(1) , xt(2))'-phiFCN(ut1 , xt1(1) , xt1(2))'];
   SAI = [SAI ; xt'*Q*xt + ut'*R*ut] ;
W(: , j+1) = PHI \setminus SAI;
disp(['Iteration(' num2str(j) ')']);
if norm(W(:, j+1)-W(:, j)) < 1e-4
   break;
```

for j = 1:nP

for k

end

end

end

دینامیک سیستم و شرایط اولیه را درون باکسها مشخص کردیم.

یس از انجام آموزش، نتایج به صورت زیر است:

۱.۳ سوال دوم

صورت سوال:

۲) روند تبدیل الگوریتم ۳ به الگوریتم ۴ در مقاله مربوط به یادگیری تقویتی معکوس را توضیح دهید. (مقاله: Inverse Reinforcement Learning for Adversarial Apprentice Games)

پاسخ:

اولین گام، تقریب توابع ارزش با استفاده از شبکههای عصبی است، به این صورت که برای تابع ارزش، ورودی کنترلی و ورودی مخرب، به صورت زیر تقریب میزنیم.

$$\hat{V}_l^{ji} = \left(C_l^{ji}\right)^T \varphi(x_l) \tag{35}$$

$$\bar{u}_l^{j(i+1)} = \left(W_l^{ji}\right)^T \phi(x_l) \tag{36}$$

$$\bar{v}_l^{j(i+1)} = \left(H_l^{ji}\right)^T \rho(x_l) \tag{37}$$

where $\varphi(x_l)$ in (21), $\phi(x_l) = [\phi_1(x_l) \ \phi_2(x_l) \ \cdots \ \phi_{N_2}(x_l)]^T$, and $\rho(x_l) = [\rho_1(x_l) \ \rho_2(x_l) \ \cdots \ \rho_{N_3}(x_l)]^T$ are activation vector functions of three NNs, respectively. Moreover, $C_i^{ji} \in \mathbb{R}^{N_1}$.

در ادامه، معادله بلمن اصلی در الگوریتم ۳ گام چهارم، که معادله ۳۳ می باشد:

$$V_{l}^{ji}(x_{l}(t+T)) - V_{l}^{ji}(x_{l}(t))$$

$$+ \int_{t}^{t+T} 2\left(\left(u_{l}^{j(i+1)}\right)^{T} R_{l}\left(u_{l} - u_{l}^{ji}\right)\right) d\tau$$

$$- \left(v_{l}^{j(i+1)}\right)^{T} S_{l}\left(v_{l} - v_{l}^{ji}\right) d\tau$$

$$= \int_{t}^{t+T} \left(-q^{T}(x_{l}) Q_{l}^{j} q(x_{l})\right)$$

$$- \left(u_{l}^{ji}\right)^{T} R_{l} u_{l}^{ji} + \left(v_{l}^{ji}\right)^{T} S_{l} v_{l}^{ji} d\tau.$$
(33)

با جایگزینی تقریبهای شبکه عصبی به معادله ۳۸ تبدیل می گردد:

$$\left(C_{l}^{ji}\right)^{T} \left[\varphi\left(x_{l}(t+T)-\varphi\left(x_{l}(t)\right)\right)\right]
+2\sum_{h=1}^{m}r_{h}\left(W_{l,h}^{ji}\right)^{T}\int_{t}^{t+T}\phi\left(x_{l}\right)\tilde{u}_{l,h}^{ji}d\tau
-2\sum_{p=1}^{k}s_{p}\left(H_{l,p}^{ji}\right)^{T}\int_{t}^{t+T}\rho\left(x_{l}\right)\tilde{v}_{1,p}^{ji}d\tau
=\bar{e}_{l}^{ji}(t)-\int_{t}^{t+T}\left(q^{T}\left(x_{l}\right)\hat{Q}_{l}^{j}q\left(x_{l}\right)+\left(\bar{u}_{l}^{ji}\right)^{T}R_{l}\bar{u}_{l}^{ji}
-\left(\bar{v}_{l}^{ji}\right)^{T}S_{l}\bar{v}_{l}^{ji}\right)d\tau$$
(38)

در اینجا انتگرالها و رابطه زیر:

$$\Delta \varphi = \varphi(x_l(t+T)) - \varphi(x_l(t))$$

از طریق دادههای مشاهده شده، محاسبه می شوند. روش BLS نیز، وزنها را با لحاظ یک معادله خطی از روی دادههای مشاهده شده حل می کند.

سپس به روزرسانی وزن جریمه حالت، یا درواقع معادله ۳۴ در الگوریتم ۳:

$$\int_{t}^{t+T} q^{T}(x_{l}) Q_{l}^{j+1} q(x_{l}) d\tau \qquad (34)$$

$$= \int_{t}^{t+T} \left(u_{e}^{*T} R_{l} u_{e}^{*} - 2 u_{e}^{*T} R_{l} u_{l}^{j} + (v_{l}^{j})^{T} S_{l} v_{l}^{j} \right) d\tau$$

$$- V_{l}^{j} (x_{l}(t+T)) + V_{l}^{j} (x_{l}(t)).$$

با جایگزینی خروجیهای شبکه عصبی که در ۴۱ آمده تبدیل میشود:

$$\int_{t}^{t+T} q^{T}(x_{l}) \hat{Q}_{l}^{j+1} q(x_{l})
= \int_{t}^{t+T} \left(u_{e}^{*T} R_{l} u_{e}^{*} - 2 u_{e}^{*T} R_{l} W_{l}^{j} \phi + \rho^{T} H_{l}^{j} S_{l} \left(H_{l}^{j} \right)^{T} \rho \right) d\tau
- \left(C_{l}^{j} \right)^{T} (\varphi(x_{l}(t+T) - \varphi(x_{l}(t)))$$
(41)

وزنهای Q نیز، از طریق رابطه \P بدست می آیند:

$$\operatorname{vecm}\left(\hat{Q}_{l}^{j+1}\right) = \left(\bar{\Gamma}_{l}^{T}\bar{\Gamma}_{l}\right)^{-1}\bar{\Gamma}_{l}^{T}Y_{l}^{j}.$$

باید به میزان زیر:

$$N_1 \ge N_1 + mN_2 + kN_3$$

نقطده داده جمع شود تا ماتریسهای مورد استفاده در بدست آوردن Q، معکوس پذیر شوند. از اینتروالهای زمانی کوچک T باید جهت گسسته سازی استفاده شود.

در نهایت الگوریتم ۳:

Algorithm 3 Model-Free Integral Inverse RL Algorithm for Adversarial Apprentice Game

- 1: **Initialization**: select $Q_l^0 \ge 0$, $R_l > 0$, $S_l > 0$, initial stabilizing u_l^{00} , and small thresholds ε_1 , ε_2 . Set j = 0. Apply stabilizing u_l to the learner dynamics (31).
- 2: Outer j iteration loop based on inverse optimal control
- 3: **Inner** *i* **iteration loop using optimal control:** given j, set i = 0, and use initial stabilizing u_i^{j0} .
- 4: Off-policy Integral RL for solving V_I^j , u_I^j and v_I^j

$$V_{l}^{ji}(x_{l}(t+T)) - V_{l}^{ji}(x_{l}(t))$$

$$+ \int_{t}^{t+T} 2\left(\left(u_{l}^{j(i+1)}\right)^{T} R_{l}\left(u_{l} - u_{l}^{ji}\right)\right) d\tau$$

$$- \left(v_{l}^{j(i+1)}\right)^{T} S_{l}\left(v_{l} - v_{l}^{ji}\right) d\tau$$

$$= \int_{t}^{t+T} \left(-q^{T}(x_{l}) Q_{l}^{j} q(x_{l})\right)$$

$$- \left(u_{l}^{ji}\right)^{T} R_{l} u_{l}^{ji} + \left(v_{l}^{ji}\right)^{T} S_{l} v_{l}^{ji} d\tau.$$
(33)

- 5: Stop if $\|V_l^{ji} V_l^{j(i-1)}\| \le \varepsilon_1$, then set $V_l^j = V_l^{ji}$, $u_l^j = u_l^{ji}$ and $v_l^j = v_l^{ji}$. Otherwise, set $i \leftarrow i+1$ and go to Step 4.
- 6: State-penalty weight Q_l^{j+1} update using the expert's demonstration u_s^*

$$\int_{t}^{t+T} q^{T}(x_{l}) Q_{l}^{j+1} q(x_{l}) d\tau \qquad (34)$$

$$= \int_{t}^{t+T} \left(u_{e}^{*T} R_{l} u_{e}^{*} - 2 u_{e}^{*T} R_{l} u_{l}^{j} + (v_{l}^{j})^{T} S_{l} v_{l}^{j} \right) d\tau$$

$$- V_{l}^{j} (x_{l}(t+T)) + V_{l}^{j} (x_{l}(t)).$$

7: **Stop if** $||Q_l^{j+1} - Q_l^j|| \le \varepsilon_2$. Otherwise, set $u_l^{(j+1)0} = u_l^j$ and $j \leftarrow j+1$, then go to Step 3.

به الگوريتم ۴ تبديل مي شود:

Algorithm 4 Model-Free Integral Inverse RL Algorithm via NNs for Adversarial Apprentice Game

- 1: **Initialization**: select $\hat{Q}_l^0 \ge 0$, stabilizing \bar{u}_l^{00} , and small thresholds ε_1 , ε_2 . Apply stabilizing u_l to (31). Set j = 0.
- 2: Outer j iteration loop based on inverse optimal control
- 3: **Inner** *i* **iteration loop using optimal control:** given j, set i = 0, and use initial stabilizing \bar{u}_{1}^{j0} .
- 4: Off-policy integral RL for solving C_l^{ji} , W_l^{ji} and H_l^{ji} by (40).
- 5: Stop if $\|\hat{V}_l^{ji} \hat{V}_l^{j(i-1)}\| \le \varepsilon_1$, then set $(C_l^j W_l^j H_l^j)$ = $(C_l^{ji} W_l^{ji} H_l^{ji})$. Otherwise, set $i \leftarrow i+1$ and go to Step 4.
- 6: State-penalty weight \hat{Q}_l^{j+1} update by (43) using the expert's demonstration u_e^* .
- 7: **Stop if** $\|\hat{Q}_l^{j+1} \hat{Q}_l^j\| \le \varepsilon_2$. Otherwise, set $\bar{u}_l^{(j+1)0} = \bar{u}_l^j$ and $j \leftarrow j+1$ and go to Step 3.