10920ASTR660000 Computational Astrophysics 計算天文物理

Release date: 2021.04.08 Due in class: 2020.04.22 (submit to google classroom)

Problem Set 6

Reading Assignments

- 1. Read chapter 3.1 3.3 of "Galactic dynamics" by Binney and Tremain.
- 2. Read Barnes & Hut (1986) https://ui.adsabs.harvard.edu/#abs/1986Natur.324. .446B/abstract

Written Assignments

Orbits in a time-dependent potential (*Problem set credit: Charles Gammie*).

1. Consider a galaxy with a mid-plane potential of the form

$$\Phi(r,\theta,t) = v_c^2 \log(r) (1 + \epsilon \cos(m(\theta - \Omega_p t))). \tag{1}$$

This model has a flat rotation curve, a rotational potential pertubation of strength ϵ , and pattern speed Ω_p . The parameter m is an integer to represent the shape of the potential. Write down the expressions for angular velocity $\Omega(r)$ and epicyclic frequency $\kappa(r)$. [10 pts]

Programming Assignments

- 1. Following the above problem 1, write a Fortran program to simulate the orbits of a star in the potential in Equation 1 (use RK4 for time integration). For convenience, set $v_c = 1$. Read the entire problem before you start to code, so that your code is designed to handle every part.
 - (a) Set $\Omega_p = 1.5$ and $\epsilon = 0.1$, use matplotlib to draw the potential at t = 0 for m = 1, 2, 3. Which m best describe a "bar" potential? [10pts]
 - (b) Verify your code can integrate a circular orbit at r = 1 (set $\epsilon = 0$). *Hint*: use spherical coordinates and do not assume the potential is axisymmetric or static. [20pts]

- (c) Now give the star a small radial kick, i.e. set $v_r = v_c/100 = 0.01$ and restart the integration. Make a plot of r(t) and use it to verify that the epicyclic frequency matches the analytical results (for example: integrate for a period $\Delta t = 8\pi\kappa$ and verify that Δr returns to zero at the end). [20pts]
- (d) Verify that in part (c) angular momentum L and energy E are conserved (make plots of E(t) and L(t)). [10pts]
- (e) Now turn on a weak "bar" with $\epsilon = 0.02$, set $\Omega_p = 1.5$, and using the same initial orbits as in part (b). Verify that angular momentum L and energy E are not conserved, but the Jacobi integral H_J is by integrating for $\Delta t = 200$. Plot $(H_J(t) H_J(0)) / H_J(0)$. Hint: $H_J = E \Omega_p L$. [20pts]
- (f) Plot r(t), does the bar change the epicyclic amplitude of the star?[10pts]
- (g) Now reconfigure your code so that it can measure $\langle \dot{r}^2 \rangle^{1/2}$ from an integration out to t=200, setting that the bar strength $\epsilon=10^{-3}$. Make a plot of $\langle \dot{r}^2 \rangle^{1/2}$ vs. Ω_p while varying Ω_p from 0.2 to 2. Identify the features in the plot. What happened at the co-rotation resonance? [20pts]