Inference SLAM as a Maximum Likelihood Problem

given; measurements Z

unbinoun: variables (state)

p(0/2), problem: lind best 0, ie. O that maximizes p(0/2)

Objection: $Q^* = arymax P(Q|Z)$

junistion sensor models p(2, 0)

 $P(\theta|Z)$ Euges rule $\frac{P(Z|\theta)}{P(Z)}$ P(0)

P(2) evidence independent of θ

 $O^* = argmax P(210) p(0)$

maximum a posteriori (MAP)

in the absonce of prior information, we can imaginize likelihood

 $Q^* = argmex P(Z|Q)$ meximum likelihood (ML)

L(O; Z) - to enaphasize O is the varieble
- does not need to be normalized

P(Z(G) = II p(Z(G)) factorization

because of conditional en dependence of measurements given O

this factorization corresponds to the factor graph

 $P(Z|Q) = P(P|X_0) P(u,|X_0,X_1) P(m,|l,X_0) P(m,|l,X_0)$ $Z = \{P, u, m, mz\} \quad \theta = \{X_0, X_1, l\}$

Least - Squares Problem

if h/0) linear: h(x) = Hx + h.

$$(Hx-d)^{T} \mathcal{E}^{-1} (Hx-d) = (Hx-d)^{T} \mathcal{E}^{-\frac{1}{2}} \mathcal{E}^{-\frac{1}{2}} (Hx-d)$$

$$\mathcal{E}^{-\frac{1}{2}} H \times -\mathcal{E}^{-\frac{1}{2}} d$$

$$\mathcal{E}^{-\frac{1}{2}} H \times -\mathcal{E}^{-\frac{1}{2}} d$$

argnin E ||A; x-b; || ELZnorn

gruin
$$\|Ax - b\|$$

$$A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{m}, b \in \mathbb{R}^{m}$$

 $(|Ax-b||^2 = (Ax-b)^T (Ax-b)$

= xTATAX - ZAT6x + 676

how to find minimum? set derivative to O

 $\frac{\partial \|A \times -b\|^2}{\partial x} \stackrel{!}{=} 0 : ZA^TA \times -ZA^Tb = 0$

ATAX = AT normal equations

solution: $x = (A^TA)^{-1}A^Tb$

pseudo inverse

argmax TTp(zl0)

arguin 1/40-bll

mgmir. 21/h;(0)//2

A note: we have not solved Ax = b

in general no exact solution because of noise!

instead we have solved asymin 11 Ax- 6112

why is (ATA) a bad idea? O(n3)

0 (n 2.373)

but with a huge constant

in SLAM n >> 1000

1D Example

factor graph: $P = \begin{cases} X_0 & X_1 & X_2 \\ U_1 & U_2 \\ d_0 & d_1 \end{cases}$ $\begin{cases} h_u(x_0, X_1) - u_1 \\ F_u(x_0, X_1) - u_1 \end{cases}^2$ $\begin{cases} h_u(x_0, X_1) - u_1 \\ F_u(x_0, X_1) - u_1 \end{cases}^2$

 $+ \|h_u(x_1, x_2) - u_2\|_{\mathcal{E}_u}^2 + \|h_d(x_0, l) - d_0\|_{\mathcal{E}_d}^2 + \|h_d(x_1, l) - d_1\|_{\mathcal{E}_d}^2$ + 11 hd (x2, 2) - d2 1/2.

 $h_{p}(x) = x \quad P=0 \quad \sigma_{u} = \text{dem } 0.01 \text{m}$ $h_{u}(\text{dex}_{A}, x_{B}) = x_{B} - x_{A} \quad \sigma_{u} = \text{dem } 0.1 \text{m}$ $h_{d}(x, l) = l - x \quad \sigma_{d} = 0.01 \text{m}$

A is sparse! structure of the fector

normal equations ATAX= ATA X= (ATA)-1 ATA

$$=\begin{bmatrix}0\\1\\3\\2\end{bmatrix}X_1\\X_2\\1$$

how to avoid inverse?

L. C. 1	2018 2019	(6833	613.3 614. †
base to normal equations: ATA x informat	tion matrix.	Hessian .	L12.3 L13.)
Solve by spanne matoix factorization	ion		
Cholesky: ATA = RTR, whe		pertriangular	
RTRX = A A A Solve by forward-/backgubstit	bution		
$R^{T}y = A^{T}b$	Rx = y	R1,17,=	$d_1 \gamma_1 = \frac{d_1}{R_{11}}$
RTY ATB	\[\] = \[\] \[\] = \[\] \[[RZ.1 YE+	Rziz 1/2 = dz 1/2=
O d	(2)	matlab	(ATA) (ATL)
LDL: faster than Choleshy, avoids on square roots square = exact			
Q12: more numerically stable, but so works directly on A			Ab mormal eq. 1. b. b. b. teast-sq.
A = Q[R] argmin square, orthogonal			
square, orthogod Ax-b 2 = Q[0]x-b 1 Q orthonormal QTQ[2]x-Q	2	COLOR	26
$= \ \mathbb{C}_{0} \ \times - $		Q is neve	r explicitly formed
$= \ \mathbb{Z}x - d\ ^2 +$	*		e maintain QTb
exact solution	residual	Kx=d	solve by backsub
1 note: A FQR, QE	IR mrm, R	e Rax	=y in Cholesky!

Nonlinear Least-Squares

argmin $\{ \{ \{ h_i(X) - z_i \} \}_{z_i}^2 \}$

linear case: h(x) = ho + HX

Solution directly by solving normal equations

nonlinear case: no dinct solution possible, have to iterate

need: initial estimate X°

linearize h with X° as linearization point

Taylor expansion:

- scalar valued function with one variable

 $h(X) = h(X^{0} + A) = h(X^{0}) + h'(X^{0}) A + \frac{1}{2}h''(X^{0})A^{2} + \frac{1}{6}h''(X^{0})A^{3} + \frac{1}{6}h''(X^{0})A^{3}$

Dis now the variable, Xo is a constant

- general case, $X \in \mathbb{R}^m$, $h(X) \in \mathbb{R}^m$

 $h(X) = h(X^{\circ} + A) \approx h(X^{\circ}) + HA$

drop higher order terms

linear approx.

 $H = \frac{\partial h(X)}{\partial X} \Big|_{X=X^0} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}} = \frac{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}{\left| \frac{\partial h_i(X)}{\partial X_i} \right|_{X_i=X^0_i}}$

Hessian: nxnxm

variables XER, measurements Z = {Z; }EIR, initial estimate Xo

$$h(x_{\bullet}X^{\circ} + \Delta) \approx h(X^{\circ}) + \frac{\partial h(X)}{\partial X}|_{X}$$

least-squeene:
argmin
$$\sum_{i} \|h_{i}(X) - Z_{i}\|_{\mathcal{E}_{i}}^{2}$$

Taylor expansion: $h(\mathcal{E}_{k}X^{o} + \Delta) \approx h(X^{o}) + \frac{\partial h(X)}{\partial X}|_{X=X^{o}}$
 $g(X) = g(X^{o} + \Delta) \approx \sum_{i} \|H_{i}A + h(X^{o}) - Z_{i}\|_{\mathcal{E}_{i}}^{2}$

= [| A: A - b: ||2

$$= \|A \Delta - b\|^2 = L(\Delta)$$

A* = argmin | AA-b|

 $\sqrt{1} = X - X_{\circ}$

thisher order terms Hessian/tensor

 $X^{n+1} = X^n + \Delta^*$

E-= (H A + h(X0)-2)

10: as drawn

DN/12m, in different hyperplanes (fangents) in Rn

n=2: plane

11 HD+h(X°)-2112

10: as drawn

RM/Rm. m different (que double) functions in 1724

n=Z: (quadratte function) elliptic paraboloid

side note: units and role of cov. matrix