Mathematical Modeling and Engineering Problem solving

Chapter 1

Numerical Methods

 Numerical methods are techniques by which mathematical problems are formulated so that they can be solved with arithmetic operations.

- Pre-computer Era:
 - Analytical Solution
 - Graphical
 - Calculator

(a) Part 2: Roots of equations Solve f(x) = 0 for x.

(b) Part 3: Linear algebraic equations Given the a's and the c's, solve

$$a_{11}x_1 + a_{12}x_2 = c_1$$

$$a_{21}x_1 + a_{22}x_2 = c_2$$

for the x's.

Every part in this book requires some mathematical background

(d) Part 5: Curve fitting

(e) Part 6: Integration

$$I = \int_a^b f(x) \, dx$$

Find the area under the curve.

(f) Part 7: Ordinary differential equations Given

$$\frac{dy}{dt} \simeq \frac{\Delta y}{\Delta t} = f(t, y)$$

solve for y as a function of t.

$$y_{i+1} = y_i + f(t_i, y_i) \Delta t$$

Computers are great tools, however, without fundamental understanding of engineering problems, they will be useless.

Engineering Simulations

Benefits of Simulations

Cost savings by minimizing material usage. **Increased speed to market** through reduced product development time.

Optimized structural performance with thorough analysis **Eliminate** expensive trial-and-error.

The Engineering Problem Solving Process

Newton's 2nd law of Motion

- "The time rate change of momentum of a body is equal to the resulting force acting on it."
- Formulated as F = m.a

F = net force acting on the body

 $\mathbf{m} = \text{mass of the object (kg)}$

 $\mathbf{a} = \text{its acceleration } (\text{m/s}^2)$

- Some complex models may require more sophisticated mathematical techniques than simple algebra
 - Example, modeling of a falling parachutist:

$$F = F_D + F_U$$

 F_U = Force due to air resistance = -cv (c = drag coefficient)

 F_D = Force due to gravity = mg

$$\frac{dv}{dt} = \frac{F}{m}$$

$$F = F_D + F_U$$

$$F_D = mg$$

$$F_U = -cv$$

$$\frac{dv}{dt} = \frac{mg - cv}{m}$$

$$\frac{dv}{dt} = g - \frac{c}{m}v$$

- This is a first order ordinary differential equation.
 We would like to solve for v (velocity).
- · It can not be solved using algebraic manipulation
- Analytical Solution:

If the parachutist is initially at rest (v=0 at t=0), using calculus dv/dt can be solved to give the result:

Independent variable

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t}\right)$$
Forcing function

Parameters

Analytical Solution

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$

$$g = 9.8 \text{ m/s}^2 \text{ c} = 12.5 \text{ kg/s}$$

 $m = 68.1 \text{ kg}$

t (sec.)	V (m/s)
0	0
2	16.40
4	27.77
8	41.10
10	44.87
12	47.49
∞	53.39

If v(t) could not be solved **analytically**, then we need to use a numerical method to solve it

Numerical Solution

$$\frac{dv}{dt} \cong \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} \dots \frac{dv}{dt} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$

$$\frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} = g - \frac{c}{m}v(t_i)$$

This equation can be rearranged to yield

$$v(t_{i+1}) = v(t_i) + [g - \frac{c}{m}v(t_i)](t_{i+1} - t_i)$$

t (sec.)	V (m/s)
0	0
2	19.60
4	32.00
8	44.82
10	47.97
12	49.96
∞	53.39

To minimize the error, use a smaller step size, Δt No problem, if you use a computer!

Analytical

VS.

Numerical solution

m=68.1 kg c=12.5 kg/s g=9.8 m/s

t (sec.)	V (m/s)
0	0
2	16.40
4	27.77
8	41.10
10	44.87
12	47.49
∞	53.39

 $\Delta t = 2 \text{ sec}$

t (sec.)	V (m/s)
0	0
2	19.60
4	32.00
8	44.82
10	47.97
12	49.96
∞	53.39

 $\Delta t = 0.5 \text{ sec}$

t (sec.)	V (m/s)
0	0
2	17.06
4	28.67
8	41.95
10	45.60
12	48.09
∞	53.39

 $\Delta t = 0.01 \text{ sec}$

t (sec.)	V (m/s)
0	0
2	16.41
4	27.83
8	41.13
10	44.90
12	47.51
∞	53.39

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$

$$v(t_i + 1) = v(t_i) + \left[g - \frac{c}{m}v(t_i)\right]\Delta t$$

CONCLUSION: If you want to minimize the error, use a smaller step size, Δt

