19 BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift _® DE 3719239 A1

(51) Int. Cl. 4 C 08 L 69/00

> C 08 L 33/12 C 08 L 25/08 G 11 B 7/24 G 02 B 1/04

DEUTSCHES PATENTAMT

P 37 19 239.6 (21) Aktenzeichen: 6. 6.87 2 Anmeldetag: (3) Offenlegungstag:

15. 12. 88

(71) Anmelder:

Röhm GmbH, 6100 Darmstadt, DE

② Erfinder:

Fischer, Jens-Dieter, Dipl.-Ing. Dr.; Siol, Werner, Dipl.-Chem. Dr., 6100 Darmstadt, DE

(A) Verträgliche Polycarbonat-Polymethacrylat-Mischungen

Die Erfindung betrifft transparente, thermoplastisch verarbeitbare Polymermischungen aus (A) Polycarbonaten, insbesondere von Bisphenol A-Polycarbonaten, und (B) Methacrylat-Copolymerisaten, die auf 95 bis 5 Gew.-% Methylmethacrylat und 5 bis 95 Gew.-% Acryl- und/oder Methacrylestern mit carbocyclischen Gruppen im Esterrest hergestellt sind, und die noch weitere, aus α - β -ungesättigten Monomeren gebildete Polymerbausteine in Mengen von 0 bis 40 Gew.-% enthalten können.

37 19 239

Patentansprüche

1. Transparente, thermoplastisch verarbeitbare Polymermischung bestehend aus (A) einem aromatischen Polycarbonat und (B) einem Methacrylat-Copolymerisat, dadurch gekennzeichnet, daß das Copolymerisat

1. aus 95 bis 5 Gew.-%, insbesondere 95 bis 20 Gew.-%, Methylmethacrylateinheiten und gegebenenfalls weiteren α, β -ungesättigten Monomereinheiten in Mengen von 0 bis 40 Gew.-% und 2. aus 5 bis 95 Gew.-%, insbesondere 5 bis 80 Gew.-%, Acryl- und/oder Methacrylestereinheiten mit carbocyclischen Gruppen im Esterrest der Formel I

R₁ H oder CH₃ und

10

15

20

25

30

35

40

45

50

Y oder A-Y sind, wobei Y ein Cycloalkyl- oder ein einfach oder mehrfach alkylsubstituierter Cycloalkylrest mit 5-12 C-Atomen, oder ein gegebenenfalls alkyl- bzw. oxyalkylsubstituierter Arylrest mit 6 bis 12 C-Ato-

A eine Alkylengruppe, die auch verzweigt sein kann, mit 1 bis 6 C-Atomen oder eine Oxialkylengruppe mit 2 bis 4 C-Atomen sind,

3. ein Molekulargewicht über 30 000 hat.

2. Transparente, thermoplastisch verarbeitbare Polymermischung gemäß Anspruch 1, dadurch gekennzeichnet, daß das Copolymerisat (B) aus bis zu 40 Gew.-% Styrol- und/oder α-Methylstyrol-Einheiten

3. Transparente, thermoplastisch verarbeitbare Polymermischung gemäß den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß das Copolymerisat (B) aus bis zu 40 Gew.-% weiterer Acryl- und/oder Methacryleste-

4. Transparente, thermoplastisch verarbeitbare Polymermischung gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das Polycarbonat (A) das Polycarbonat von 2,2-Bis-(4-hydroxyphenyl)-propan ist. 5. Verwendung von Polymermischungen gemäß den Ansprüchen 1 bis 4 für die Herstellung von Formkör-

6. Verwendung von Polymermischungen gemäß den Ansprüchen 1 bis 4 für die Herstellung von für optische

Zwecke zu verwendenden Formkörpern. 7. Verwendung von Polymermischungen gemäß den Ansprüchen 1 bis 4 für die Herstellung optisch lesbarer Informationsträger.

Beschreibung

Gebiet der Erfindung

Die Erfindung betrifft Polymermischungen. Sie betrifft vor allem solche aus aromatischem Polycarbonat, insbesondere dem Polycarbonat von Bisphenol A, und Methacrylat-Polymeren bzw. Copolymeren, und die sich durch hohe Transparenz auszeichnen.

Stand der Technik

Polymermischungen, enthaltend ein aromatisches Polycarbonat als eine Komponente und ein Vinylpolymeres als eine andere Komponente, sind bekannt. Nach der DE-OS 23 29 585, Seiten 11 bis 12, werden völlig homogene und transparente Polycarbonat-Formmassen-Mischungen erhalten, wenn als aromatisches Polycarbonat ein solches von 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, das ist ein 0,0,0',0'-tetraalkyliertes Bisphenol, mit z. B. Polystyrol, als einem thermoplastischen Harz, abgemischt wird. Im Gegensatz dazu bestehen, nach den dortigen Ausführungen, Mischungen a 1s 2,2-Bis-(4-hydroxyphenyl)-propan-Polycarbonat, das ist das Polycarbonat von Bisphenol A, und Polystyrol aus zwei Phasen. Weitere thermoplastische Harze, die sich in diesen Mischungen ähnlich wie Polystyrol verhalten, sind, wie in der DE-OS, Seiten 5 und 6 beschrieben, auch Homound Copolymerisate von Acryl- und Methacrylverbindungen, wie z. B. von Methylacrylat, Ethylacrylat, Methylmethacrylat und Cyclohexylmethacrylat.

Polymethylmethacrylat-Formmasse, ein glasklarer, transparenter Kunststoff gibt mit dem Polycarbonat des Bisphenol A, einem ebenfalls transparenten Kunststoff, keine homogenen, transparenten Legierungen, sondern

wie u.a. aus der jap. Patentschrift 72 16 063 bekannt ist, Mischungen mit perlartigem Glanz.

Nach der DE-A 22 64 268 wird eine verbesserte Polycarbonat-Formmasse erhalten, wenn dem Polycarbonat ein Acrylpolymeres mit niedrigem Molekulargewicht, das ein aus 90 bis 75 Gew.-% Methylmethacrylat und 10

bis 25 Gew.-% eines Alkylacrylates der Formel

$$X$$
|
H₂C=C-COOR

mit X gleich H oder CH₃ und R ein organischer Rest mit 4 bis 12 Kohlenstoffatomen, bestehendes Copolymeres ist, zugesetzt wird. Die Menge des Copolymerzusatzes kann 0,01 bis etwa 50 Gew.-% des Gewichtes der Polycarbonatzusammensetzung betragen. Hierdurch wird die Schmelzviskosität des Polycarbonates bzw. der Mischung ohne Beeinträchtigung der Transparenz mit steigendem Copolymer-Zusatz laufend verringert.

5

25

Bei diesen Copolymeren handelt es sich also um polymere Weichmacher, deren Molekulargewicht zur Erzielung der beschriebenen Verträglichkeit aufgrund eigener Versuche mit entsprechenden Copolymeren unter 15 000 liegen muß. Zur Herstellung von Polymerlegierungen, die auch im Bereich hoher Polymethacrylat-Anteile technisch interessante Eigenschaften haben, sind solche Copolymere wegen des bekannten Abfalls der mechanischen Eigenschaften im Molekulargewichtsbereich unter 100 000, insbesondere unter 50 000 (siehe Kunststoff-Handbuch, Band IX, Vieweg/Esser: Polymethacrylate, S. 112 ff) jedoch völlig ungeeignet.

Verträgliche Polymermischungen, die aus einem Polycarbonat, wie dem Bisphenol A-Polycarbonat und einem Copolymerisat aus monomeren Estern der Acryl- und/oder Methacrylsäure mit C₁—C₁₀-Alkoholen und einem UV-absorbierendem Monomeren der Formel

worin R_1 für Wasserstoff oder einen Methylrest und Y für Sauerstoff oder einen Rest NR_2 mit R_2 Wasserstoff oder Alkylrest stehen, und Z ein UV-absorbierender Rest, nämlich ein 2-Hydroxyphenylbenzotriazolrest, ein 2-Hydroxyphenzo- oder acetophenonrest oder ein α -Cyano- β , β -diphenylrest ist, bestehen, sind in der deutschen Anmeldung P 35 18 538.4 beschrieben.

Solche, auch thermoplastisch verarbeitbare Polymermischungen aus Polycarbonat und Copolymeren des Methylmethacrylats und Monomeren mit ausgeprägtem Absorptionsvermögen für Ultraviolettstrahlung, und die als Lichtschutzmittel zur Verbesserung der Lichtbeständigkeit von z. B. Kunststoffen, insbesondere durch deren Beschichtung dienen, sind nur sehr speziell brauchbare Polymermischungen und von dem hohen Preis der damit eingebrachten UV-Absorber her, für breit anwendbare, thermoplastisch verarbeitbare Massen, prohibitiv. In der deutschen Anmeldung P 36 32 946.0 sind thermoplastisch verarbeitbare Methylmethacrylat-Copolymere mit Methacrylamiden als Comonomere, die am Amidstickstoff mit einem organischen Rest eines cyclischen Moleküls substituiert sind, und der weiter kein ausgeprägtes UV-Absorptionsvermögen besitzt, beschrieben. Diese Copolymeren bilden mit Polycarbonaten, insbesondere Bisphenol A-Polycarbonaten, transparente, thermoplastisch verarbeitbare Polymermischungen.

Thermoplastische Formmassen als Polymermischungen aus einem Polycarbonat, einem Copolymeren, aus Styrol, Methylmethacrylat und N-Phenylmaleinimid, und einem Pfropfpolymerisat von Methylmethacrylat auf Kautschuk, sind nach EP-A 173 146 nicht verträglich. Ebenso sind die aus EP-A 144 231 bekannten Polymermischungen, bestehend aus einem Polycarbonat und einem Copolymeren von Methylmethacrylat/N-Phenylmaleinimid und/oder einem EPDM-g-Methylmethacrylat/N-Phenylmaleinimid-Copolymeren, nicht voll kompatibel.

Transparente, thermoplastisch verarbeitbare Polymermischungen aus aromatischen Polycarbonaten, insbesondere dem Polycarbonat von Bisphenol A, und einem Methacrylat-Copolymerisat, das aus Methylmethacrylateinheiten und N-Cyclohexylmaleinimideinheiten aufgebaut ist, sind in der deutschen Anmeldung P 37 09 562.5 beschrieben. Zum Aufbau des Methacrylat-Copolymerisates können wahlweise noch weitere Monomere in Mengen von 0 bis 40 Gew.-%, wie u.a. Cycloalkyl- oder Alkylester der Acryl- bzw. Methacrylsäure, mitverwendet werden. Die Polymermischungen lassen sich wie die aus P 36 32 946.0, im Vergleich zu den Einzelkomponenten, nämlich dem Bisphenol A-Polycarbonat oder dem Polymethylmethacrylat, infolge ihrer geringen optischen Doppelbrechung und/oder verringerten Wasseraufnahme, vorteilhaft als optische Harzmaterialien verwenden.

Aufgabe und Lösung

Polymermischungen aus aromatischem Polycarbonat und Methylmethacrylat-Copolymerisaten mit N-haltigen Comonomer-Bausteinen, zeigen noch Eigenschaften, die insbesondere ihre Verwendung als optische Harzmaterialien nachteilig beeinflussen. Bei ihrer thermoplastischen Verarbeitung, insbesondere in Gegenwart von O2 treten, wie schon lange von N-haltigen Polymermaterialien bekannt, Veränderungen ein, wobei die extrudierten oder spritzgegossenen Teile gelb verfärbt werden. Es bestand daher die Aufgabe, transparente, thermoplastisch verarbeitbare Polymermischungen, bestehend aus aromatischem Polycarbonat und einem Polymeren, das bis zu hohen Anteilen aus Methylmethacrylat aufgebaut ist, zu finden, wobei das Methylmethacrylat-Polymere durch Einbau weiterer Monomerer so verändert wird, daß es mit dem Polycarbonat verträglich wird und die so hergestellten neuen Mischungen die bisher aufgetretenen nachteiligen Eigenschaften nicht mehr haben.

Gegenstand der Erfindung sind thermoplastisch verarbeitbare Formmassen, die verträgliche Polymermischungen von Polycarbonaten und durch Copolymerisation von Methylmethacrylat mit carbocyclischen Gruppen, wie Cyclohexyl- oder Phenylgruppen, im Esterrest enthaltenden Acryl- und/oder Methacrylestern, und

37 19 239 OS

gegebenenfalls weiteren Monomeren, wie Styrol und insbesondere α -Methylstyrol oder weiteren Methacryl-

bzw. Acrylestern, hergestellten Polymerisaten sind.

Es wurde gefunden, daß glasklare Polymethacrylatharze mit Kunststoffeigenschaften und Polycarbonate, wie das Polycarbonat des Bisphenols A, das seinerseits zu den schlagzähen, transparenten Kunststoffen zählt, überraschenderweise nach den für "Compatible Polymers" in Polymer Handbook, Second Edition, 1975, III, 211 bis 213, ersichtlichen Kriterien, zu verträglichen und wiederum glasklaren neuen Kunststoffen legiert werden können, wenn als Polymethacrylatharze Copolymerisate eingesetzt werden, die aus 95 bis 5 Gew.-%, insbesondere 95 bis 20 Gew.-% Methylmethacrylat und 5 bis 95 Gew.-%, insbesondere 5 bis 80 Gew.-% eines Acrylsäureund/oder Methacrylsäureesters mit einer carbocyclischen Gruppe im Esterrest aufgebaut sind. Der carbocyclische Rest ist aliphatisch oder aromatisch, und kann weitere Substituenten, insbesondere Alkylgruppen, tragen. Die carbocyclische Gruppe im Esterrest der Acryl- bzw. Methacrylverbindung kann direkt an das Estersauerstoffatom, oder sie kann über andere Gruppen, insbesondere über Alkylengruppen, an diese gebunden sein. Bei der Herstellung des Copolymerisats können noch weitere α , β -ungesättigte Monomere, wie insbesondere α-Methylstyrol und/oder weitere Methacryl- bzw. Acrylverbindungen, insbesondere deren Ester, in Mengen von 0 bis 40 Gew.-%, insbesondere in Mengen von 2,5 bis 40 Gew.-% und vor allem in Mengen von 5 bis 35 Gew.-%, mitverwendet werden.

Überraschenderweise sind die erfindungsgemäßen Polymermischungen über den ganzen Legierungsbereich, d. h. bei Verhältnissen aromatisches Polycarbonat (A): Polymethacrylat-Copolymerisat (B) von 99,1:0,9 bis 0,9:99,1, in Gew.-%, verträglich. Technisch interessante Legierungen enthalten jedoch mehr als 5 Gew.-%, und

vor allem mehr als 10 Gew.-%, der einen oder anderen Komponente.

Daß Methylmethacrylat-Copolymerisate der angegebenen Art mit Polycarbonaten, wie insbesondere dem Polycarbonat von Bisphenol A, erfindungsgemäße, verträgliche Polymermischungen mit hohen optischen Qualitäten ergeben, war nach dem Stand der Technik und insbesondere nach der im Stand der Technik vorgestellten DE-OS 23 29 585 nicht zu erwarten und ist überraschend.

Die Verträglichkeit von Polycarbonat und Polymethacrylatharz wird erfindungsgemäß dadurch herbeige-

(I)

führt, daß Acryl- und/oder Methacrylester der allgemeinen Formel

$$\begin{array}{c|c}
R_1 & O \\
 & \parallel \\
H_2C = C - C - O - X
\end{array}$$

worin

25

R₁ H oder CH₃ und

Y oder A-Y sind, wobei Y ein Cycloalkyl- oder ein einfach oder mehrfach alkylsubstituierter Cycloalkylrest mit 5 bis 12 C-Atomen, oder ein gegebenenfalls alkyl- bzw. oxyalkylsubstituierter Arylrest mit 6 bis 12 C-Atomen, und A eine Alkylengruppe, die auch verzweigt sein kann, mit 1 bis 6 C-Atomen oder eine Oxialkylengruppe mit 2 bis 4 C-Atomen sind,

als Comonomere in Mengen von 5 bis 95 Gew.-% im Polymethacrylatharz einpolymerisiert sind. Beispiele solcher Acryl- und Methacrylester mit carbocyclischen Gruppen im Esterrest sind Cyclopentylmethacrylat, Cyclohexylacrylat, Cyclohexylmethacrylat, 3,3,5-Trimethylcyclohexylmethacrylat, 4-t-Butylcyclohexylacrylat, 4-t-Butylcyclohexylmethacrylat, 3-Cyclohexylpropylmethacrylat, Phenylmethacrylat, 4-t-Butylphenylmethacrylat, 4-Methoxyphenylmethacrylat Benzylmethacrylat, 1-Phenylethylmethacrylat, 2-Phenylethylacrylat, 2-Phenylethylmethacrylat, 3-Phenylpropylacrylat, 3-Phenylpropylmethacrylat, 2-Phenoxyethylmethacrylat,

Die vorliegende Erfindung ist gerichtet auf eine transparente, thermoplastisch verarbeitbare Polymermi-2-Naphthylmethacrylat. schung, bestehend aus (A) einem aromatischen Polycarbonat und (B) einem Methacrylat-Copolymerisat, wobei

das Copolymerisat (B)

1. aus 95 bis 5 Gew.-%, insbesondere 95 bis 20 Gew.-% Methylmethacrylateinheiten und gegebenenfalls weiteren α , β -ungesättigten Monomereinheiten in Mengen von 0 bis 40 Gew.-%, insbesondere 2,5 bis 40 2. aus 5 bis 95 Gew.-%, insbesondere 5 bis 80 Gew.-%, Acryl- und/oder Methacrylestereinheiten mit

carbocyclischen Gruppen im Esterrest der Formel I

$$\begin{array}{c|c}
R_1 & O \\
\downarrow & \parallel \\
H_1C = C - C - O - X
\end{array}$$

worin

55

60

65

R1 Hoder CH3 und

Y oder A-Y sind, wobei Y ein Cycloalkyl- oder ein einfach oder mehrfach alkylsubstituierter Cycloalkylrest mit 5 bis 12 C-Ato-

men, oder ein gegebenenfalls alkyl- bzw. oxyalkylsubstituierter Arylrest mit 6 bis 12 C-Atomen, und A eine Alkylengruppe, die auch verzweigt sein kann, mit 1 bis 6 C-Atomen oder eine Oxyalkylengruppe mit 2 bis 4 C-Atomen sind,

5

10

15

55

besteht und 3. ein Molekulargewicht über 30 000 hat.

Das Polycarbonat (A) ist insbesondere das Reaktionsprodukt von 2,2-Bis-(4-hydroxyphenyl)-propan, als Bisphenol A bekannt, und Phosgen.

Das Copolymerisat (B) und die darin copolymerisierten Monomeren der Formel I zeichnen sich gegenüber den in der deutschen Anmeldung P 35 18 538.4 beschriebenen Copolymeren und Monomeren dadurch aus, daß sie im gesamten optisch sichtbaren Bereich bis hin in den UV-Bereich von 340 nm keine wesentliche Absorption haben.

Durchführung der Erfindung

Die erfindungsgemäß mit Polycarbonaten, insbesondere dem Polycarbonat von Bisphenol A, verträglichen Polymethacrylatharze sind vorteilhafterweise wesentlich aus Methylmethacrylat aufgebaut.

In Mengen von 5 bis 95 Gew.-% enthält erfindungsgemäß das Methacrylatpolymere copolymerisierte Acrylund/oder Methacrylester-Einheiten oben angegebener Struktur I. Das Copolymerisat kann in Mengen von 0 bis 40 Gew.-%, insbesondere in Mengen von 2,5 bis 40 Gew.-% und vor allem in Mengen von 5 bis 35 Gew.-%, weitere Einheiten α , β -ungesättigter Monomerer, wie z. B. Styrol, α -Methylstyrol, Acrylsäure bzw. Methacrylsäure oder deren Alkylester mit 2 bis 10 C-Atomen im Esterrest, wobei die Alkylgruppen auch verzweigt sein können, enthalten.

Die Herstellung dieser statistisch aufgebauten Copolymerisate wird nach bekannten Verfahren zur Polymerisation a, \(\beta\)-ungesättigter Verbindungen, insbesondere der radikalischen Polymerisation, beispielsweise in Substanz oder in Lösung oder als Suspensionspolymerisation, durchgeführt. Als radikalische Polymerisationsinitiatoren können dazu Azoverbindungen, wie Azodiisobutyronitril, oder Peroxide, wie Dibenzoylperoxid, Dilauroylperoxid, oder Redoxsysteme dienen, oder die Startradikale können strahlenchemisch erzeugt werden. (Vgl. H. Rauch-Puntigam, Th. Völker "Acryl- und Methacrylverbindungen, Springer Verlag 1967). Es ist bekannt, daß die Verträglichkeit von Polymeren in Mischungen von ihren Polymerisationsgraden abhängt, und zwar nimmt in der Regel die Verträglichkeit mit steigendem Molekulargewicht der Polymeren ab, wobei die Mischung dann zwei- bzw. mehrphasig wird. Für die Herstellung von erfindungsgemäßen Polycarbonat-Polymethacrylat-Legierungen werden Methacrylat-Copolymere eingesetzt, die Molekulargewichte, Mw, in g pro Mol, wie sie beispielsweise mit Hilfe der Gelpermeations-Chromatographie oder mit der Streulichtmethode bestimmbar sind, über 30 000, von etwa 30 000 bis 250 000, vorzugsweise etwa 50 000 bis 150 000 haben und deren reduzierten Viskositäten η spec/c, gemessen gemäß DIN 51 562, in Chloroform als Lösungsmittel, im Bereich von 18 bis 65 ml/g, bevorzugt im Bereich von 30 bis 50 ml/g, liegen. Die Herstellung der so molekulargewichtsgeregelten Copolymerisate wird insbesondere durch Polymerisation in Gegenwart von Übertragungsreglern, wie insbesondere den dazu bekannten Mercaptanen, durchgeführt (s. dazu Houben-Weyl, Methoden der organischen Chemie, Band XIV,1, 1961, Seite 66). So sind beispielsweise Methylmethacrylat-Copolymerisate mit 5 bis 50 Gew.-% Cyclohexylmethacrylat und einem ŋspec/c von 40 bis 45 ml/g über den gesamten Legierungsbereich mit Bisphenol A-Polycarbonat, z. B. Makrolon®1189, das ein nspec/c von 43 ml/g (gemessen in Chloroform) hat, verträglich. Methacrylatharze aus 100 Gew.-% Phenylmethacrylat bzw. solchen, überwiegend aus Phenylmethacrylat aufgebauten, sind mit Bisphenol-A-Polycarbonat, z. B. Makrolon®1189 oder Makrolon®3100 ebenfalls über den gesamten Legierungsbereich verträglich.

Die erfindungsgemäßen Polycarbonat-verträglichen Methacrylat-Copolymeren lassen sich zu glasklaren farblosen Formkörpern thermoplastisch verarbeiten, welche Vicat-Erweichungstemperaturen, VET, gemessen nach DIN 53 460, von etwa 100 bis 130°C aufweisen.

Als mit den erfindungsgemäßen Methacrylatcopolymerisaten verträgliche Polycarbonate, werden insbesondere aromatische Polycarbonate, vor allem Polycarbonate des Bisphenol A, eingesetzt.

Polycarbonate des Bisphenol A sind glasklare, zähe Kunststoffe und z. B. unter der Bezeichnung Makrolon[®] im Handel. Die Molekulargewichte, *Mw* (s. dazu oben), der diesen Kunststoffen zugrundeliegenden Carbonatpolymeren liegen im Bereich von etwa 20 000 bis 60 000, insbesondere 20 000 bis 40 000 und die Vicat-Erweichungstemperaturen, *VET*, dieser Kunststoffe, gemessen nach DIN 53 460, liegen bei 140°C.

Vorteile der Erfindung

Durch Legieren der beiden Kunststoffarten wird ein transparentes Kunststoffsystem mit anderen, insbesondere mit günstigeren Eigenschaften erhalten, als sie die Einzelkunststoffe vor dem Legieren zeigen. Beispielsweise kann die thermoplastische Verarbeitung des Poly-Bisphenol A-Carbonats, das als Materialeigenschaft eine hohe Schmelzviskosität hat, durch Zulegieren von thermoplastischem Polymethacrylat-Kunststoff erleichtert werden, ohne daß andere Eigenschaften des Polycarbonates wie dies bekanntermaßen durch Zulegieren niedermolekularer Acrylpolymerer geschieht, wesentlich verändert werden.

Die Wärmeformbeständigkeit nach Vicat (VET nach DIN 53 460) bzw. die mit diesen korrelierenden Glasübergangstemperaturen Tg (gemessen nach der DSC-Methode, s. dazu Polymer Handbook, 2. Auflage, III, S. 139-141) der erfindungsgemäß einzusetzenden Polymethacrylatharze, mit Werten von etwa 100 bis 130°C, liegen meist gegenüber denen von gebräuchlichen, handelsüblichen Polymethacrylatformmassen, deren Werte

etwa 100°C betragen, deutlich höher.

40

50

Die erfindungsgemäßen Legierungen zeigen überraschenderweise über dem gesamten bzw. einem weiten Mischungsbereich, Wärmeformbeständigkeiten, die gegenüber denjenigen der Einzelkunststoffe, wie insbesondere dem gegenüber Polymethylmethacrylat deutlich höher wärmeformbeständigen Polycarbonat des Bisphe-

nol A, meist nur um wenige Temperaturgrade niedriger liegen.

Mischungen der Polymer-Komponenten (A) und (B) lassen sich beispielsweise als Granulat durch Extrusion oder Spritzguß zu den verschiedensten Formkörpern, bestehend aus den erfindungsgemäßen Polymermischungen verarbeiten. Als Beispiele seien Platten, Hohlkammerplatten, Formkörper für optische Zwecke, wie Linsen oder Prismen oder Lichtleiter oder Reflektoren, und optisch lesbare Informationsträger genannt. Die heute zu deren Herstellung u.a. verwendeten Polymer-Materialien, wie Bisphenol A-Polycarbonat oder Polymethylmethacrylat, verursachen Probleme bezüglich optischer Doppelbrechung bzw. Wasseraufnahme. Hier zeigen die erfindungsgemäßen Materialien deutliche Vorteile, auch gegenüber den Legierungen, die mit Methacrylatcopolymerisaten, aufgebaut mit Stickstoff-haltigen Comonomeren, hergestellt werden können.

Durch Gießen von die Polymerkomponenten (A) und (B) enthaltenden Lösungen, lassen sich Folien oder

Formkörper der erfindungsgemäßen Polymermischungen herstellen.

Beispiele

A. Beispiele 1-15

Herstellung von Methacrylat-(Co)-Polymerisaten

Beispiel 1

Einem Gemisch aus 80 Gew.-Teilen Methylmethacrylat (MMA) und 20 Gew.-Teilen Cyclohexylmethacrylat (CHMA) werden 0,2 Gew.-Teile Dilauroylperoxid (als Initiator) und 0,7 Gew.-Teile Dodecylmercaptan als Molekulargewichtsregler unter Rühren hinzugefügt. Diese Lösung wird in einem Folienschlauch im Wasserbad 3 h bei 55°C und 16 h bei 50°C polymerisiert und zur Endpolymerisation 3 h bei 110°C im Trockenschrank getempert. Das so gewonnene und zur Herstellung von Polymermischungen gemäß den Beispielen 16-20 eingesetzte Polymerisat ist farblos und völlig transparent. Das mittlere Molekulargewicht wurde zu Mw = 75 000 und die Glasübergangstemperatur Tg zu 108°C bestimmt.

Beispiel 2

Ein Gemisch aus 78 Gew.-Teilen MMA, 20 Gew.-Teilen CHMA und 2 Gew.-Teilen Cyclohexylacrylat (CHA) wurde mit 0,2 Gew. Teilen Dilauroylperoxid sowie 0,7 Gew. Teilen Dodecylmercaptan gemäß Beispiel 1 polymerisiert. Das daraus resultierende und zur Herstellung von Polymermischungen gemäß den Beispielen 21-25 eingesetzte Polymerisat ist farblos und völlig transparent. Es wurde das mittlere Molekulargewicht zu $Mw = 78\,000$ und die Glasübergangstemperatur zu $Tg = 105^{\circ}$ C bestimmt.

Beispiel 3

Einem Gemisch aus 80 Gew.-Teilen MMA; 10 Gew.-Teilen CHMA und 10 Gew.-Teilen α-Methylstyrol (α-MS) werden als Initiatoren 0,1 Gew.-Teile 2,2'-Bis-(tert-butylperoxy)butan sowie 0,4 Gew.-Teile tert-Butylperoctoat und 0,8 Gew.-Teile Dodecylmercaptan als Molekulargewichtsregler hinzugefügt. Diese Lösung wird im Wasserbad in einem Folienschlauch 65 h bei 60°C und 24 h bei 62°C polymerisiert und zur Endpolymerisation 10 h bei 125°C getempert. Das so gewonnene und zur Herstellung von Polymermischungen gemäß den Beispielen 26-30 eingesetzte Polymerisat ist farblos und völlig transparent. Das mittlere Molekulargewicht beträgt Mw = 80000, die Glasübergangstemperatur Tg = 121°C.

Beispiel 4

In einem Gemisch aus 75 Gew.-Teilen MMA, 10 Gew.-Teilen CHMA, 10 Gew.-Teilen α -MS und 5 Gew.-Teilen CHA werden als Initiatoren 0,4 Gew. Teile tert-Butylperpivalat, 0,15 Gew. Teile 2,2'-Azobis-(isobutyronitril) und 0,4 Gew.-Teile Dilauroylperoxid sowie 2,2'-Bis-(tert-butylperoxy)butan und 0,44 Gew.-Teile Dodecylmercaptan als Molekulargewichtsregler gelöst. Diese Lösung wird gemäß den vorausgehenden Beispielen 70 h bei 65°C im Wasserbad polymerisiert und zur Endpolymerisation 7 h bei 100°C und 10 h bei 125°C im Trockenschrank getempert. Das resultierende farblose und völlig klare Polymerisat weist ein mittleres Molekulargewicht $Mw = 125\,000$ auf und wird zur Herstellung von Polymermischungen gemäß den Beispielen 31-35 eingesetzt.

Beispiel 5

In 90 Gew.-Teilen MMA und 10 Gew.-Teilen 4-tert-Butylcyclohexylmethacrylat werden 0,2 Gew.-Teile Dilauroylperoxid sowie 0,55 Gew.-Teile Dodecylmercaptan gelöst. Diese Lösung wird im Folienschlauch im Wasserbad 8 h bei 50°C polymerisiert und zur Endpolymerisation 3 h bei 110°C getempert. Das mittlere Molekulargewicht des farblosen und völlig transparenten Polymerisats, das zur Herstellung der Polymermischungen gemäß den Beispielen 36-40 eingesetzt wird, beträgt Mw = 95000.

Beispiel 6

Einem Gemisch von 90 Gew.-Teilen MMA und 10 Gew.-Teilen 3-Cyclohexylpropylmethacrylat werden 0,2 Gew.-Teile Dilauroylperoxid und 0,62 Gew.-Teile Dodecylmercaptan hinzugefügt. Diese Lösung wird, gemäß Beispiel 5, 19 h bei 50°C im Wasserbad polymerisiert und zur Endpolymerisation 3 h bei 110°C getempert. Das zur Herstellung von Polymermischungen gemäß den Beispielen 41-45 eingesetzte Polymerisat ist farblos, völlig klar und besitzt ein mittleres Molekulargewicht $Mw=89\,000$.

5

10

25

55

Beispiel 7

In einem Gemisch von 75 Gew.-Teilen MMA und 25 Gew.-Teilen Phenylmethacrylat (PhMA) werden 0,2 Gew.-Teile Dilauroylperoxid und 0,55 Gew.-Teile Dodecylmercaptan gelöst. Die Lösung wird gemäß den vorangehenden Beispielen im Wasserbad 18 h bei 50°C und 22 h bei 60°C polymerisiert und zur Endpolymerisation 3 h bei 110° C getempert. Das Polymerisat ist farblos, transparent, weist ein mittleres Molekulargewicht von $M_W = 84\,000$ auf, besitzt eine Glasübergangstemperatur $T_g = 110^{\circ}$ C sowie eine Vicat-Erweichungstemperatur $VET = 107^{\circ}$ C und wird zur Herstellung von Polymermischungen gemäß den Beispielen 46—50 eingesetzt.

Beispiel 8

Eine sonst zu Beispiel 7 analoge Lösung mit 0,3 Gew.-Teilen Dodecylmercaptan als Molekulargewichtsregler wird im Folienschlauch im Wasserbad 17 h bei 60° C polymerisiert und zur Endpolymerisation 12 h bei 110° C getempert. Das zur Herstellung von Polymermischungen gemäß den Beispielen 51-55 eingesetzte Polymerisat ist farblos, völlig klar und besitzt ein mittleres Molekulargewicht $Mw=149\,000$.

Beispiel 9

In 100 Gew.-Teilen PhMA werden 0,2 Gew.-Teile Dilauroylperoxid und 0,5 Gew.-Teile Dodecylmercaptan gelöst. Diese Lösung wird gemäß den vorhergehenden Beispielen 66 h bei 50°C polymerisiert und zur Endpolymerisation 12 h bei 110°C getempert. Das Polymerisat ist farblos, transparent, weist ein mittleres Molekulargewicht $Mw = 78\,000$ auf und wird zur Herstellung von Polymermischungen gemäß den Beispielen 56—60 verwendet.

Beispiel 10

In einem Gemisch aus 60 Gew.-Teilen MMA, 20 Gew.-Teilen α -MS sowie 20 Gew.-Teilen PhMA werden als Initiatoren 0,4 Gew.-Teile tert-Butylperpivalat 0,1 Gew.-Teile 2,2'-Azobis-(isobutyronitril), 0,37 Gew.-Teile Dilauroylperoxid 0,3 Gew.-Teile tert-Butylperoctoat sowie 0,05 Gew.-Teile 2,2'-Bis-(tert-butylperoxy)butan und als Molekulargewichtsregler 0,55 Gew.-Teile Dodecylmercaptan gelöst. Diese Lösung wird im Wasserbad im Folienschlauch 65 h bei 60°C sowie 90 h bei 65°C polymerisiert und zur Endpolymerisation 12 h bei 110°C getempert. Das zur Herstellung von Polymermischungen gemäß den Beispielen 61—65 verwendete Polymerisat ist farblos, völlig klar, besitzt ein mittleres Molekulargewicht $Mw=89\,000$ und weist eine Glasübergangstemperatur Tg=117°C sowie eine Vicat-Erweichungstemperatur VET 112°C auf.

Beispiel 11

In einem Gemisch aus 55 Gew.-Teilen MMA, 20 Gew.-Teilen α -MS, 20 Gew.-Teilen PhMA und 5 Gew.-Teilen CHA werden 0,4 Gew.-Teile tert-Butylperpivalat, 0,2 Gew.-Teile 2,2'-Azobis-(isobutyronitril), 0,8 Gew.-Teile Dilauroylperoxid und 0,05 Gew.-Teile 2,2'-Bis(tert-butylperoxy)butan als Initiatoren sowie 0,45 Gew.-Teile Dodecylmercaptan als Molekulargewichtsregler gelöst. Diese Lösung wird gemäß den vorhergehenden Beispielen 96 h bei 65°C polymerisiert und zur Endpolymerisation 7 h bei 100°C sowie 10 h bei 125°C getempert. Das Polymerisat ist farblos, transparent, besitzt ein mittleres Molekulargewicht $Mw = 130\,000$ und wird zur Herstellung von Polymermischungen gemäß den Beispielen 66—70 verwendet.

Beispiel 12

Einem Gemisch von 45 Gew.-Teilen MMA, 45 Gew.-Teilen PhMA und 10 Gew.-Teilen Styrol werden als Initiatoren 0,2 Gew.-Teile 2,2'-Azobis(-isobutyronitril) und 0,05 Gew.-Teile 2,2'-Bis-(tert-butylperoxy)butan sowie 0,8 Gew.-Teile tert-Dodecylmercaptan als Molekulargewichtsregler zugegeben. Diese Lösung wird im Folienschlauch im Wasserbad 20 h bei 55° C polymerisiert und zur Endpolymerisation 12 h bei 110° C getempert. Das zur Herstellung von Polymermischungen gemäß den Beispielen 71 – 75 verwendete Polymerisat ist farblos, völlig klar und weist ein mittleres Molekulargewicht $Mw = 102\,000$ auf.

Beispiel 13

In einem Gemisch aus 90 Gew.-Teilen MMA und 10 Gew.-Teilen 2-Phenylethylmethacrylat werden 0,2 Gew.-Teile Dilauroylperoxid (Initiator) und 0,7 Gew.-Teile Dodecylmercaptan gelöst. Die Polymerisation dieser Lösung erfolgt gemäß den vorangegangenen Beispielen 3 h bei 55°C und 16 h bei 50°C im Wasserbad sowie 3 h bei 110°C im Trockenschrank zur Endpolymerisation. Das so erhaltene Polymerisat ist farblos, transparent,

besitzt ein mittleres Molekulargewicht von $MW = 78\,000$, weist eine Glasübergangstemperatur von $Tg = 104^{\circ}$ C auf und wird zur Herstellung von Polymergemischen gemäß den Beispielen 76—80 verwendet.

Beispiel 14

5

20

25

Einem Gemisch von 90 Gew.-Teilen MMA und 10 Gew.-Teilen 3-Phenylpropylmethacrylat (3-PPMA) werden 0,2 Gew.-Teile Dilauroylperoxid sowie 0,51 Gew.-Teile Dodecylmercaptan hinzugefügt. Diese Lösung wird im Folienschlauch im Wasserbad 3 h bei 55°C sowie 60 h bei 50°C polymerisiert und zur Endpolymerisation 3 h bei 110°C getempert. Das zur Herstellung von Polymermischungen gemäß den Beispielen 81–85 verwendete Polymerisat ist farblos, transparent, weist eine Glasübergangstemperatur von Tg = 103°C auf und besitzt ein mittleres Molekulargewicht $Mw = 100\,000$.

Beispiel 15

Ein Gemisch aus 88 Gew.-Teilen MMA, 10 Gew.-Teilen 3-PPMA und 2 Gew.-Teilen 3-Phenylpropylacrylat wird wie in Beispiel 14 polymerisiert (gleicher Initiator und Regler und die gleichen Mengen derselben, sowie dieselben Polymerisationsbedingungen). Das resultierende Polymerisat ist farblos, transparent und besitzt ein mittleres Molekulargewicht von Mw = 10000.

B. Beispiele 16-90

Erfindungsgemäße Mischungen

Beispiele 16-20

Das gemäß Beispiel 1 hergestellte Copolymerisat wird mit Makrolon[®]1189 (beide in Granulatform) in den angegebenen Mengenverhältnissen gemischt und auf einem Einschnecken-Mischextruder als Band extrudiert. An Bandproben werden visuelle Prüfungen, Messungen der Glasübergangstemperatur Tg per DSC (s. dazu Polymer-Handbook, 2. Aufl. III, S. 139—141), Messungen der Vicat-Erweichungstemperatur VET nach DIN 53 460 an 3 mm dicken Prüfplättchen (aus den extrudierten Bändchen auf einer Anker-Spritzgußmaschine hergestellt) durchgeführt, sowie auf einer Kofler-Heizbank (Chem.-Ing-Techn. 1950, S. 289) der Trübungspunkt (Trübungstemperatur) T_{Tr} bestimmt, der den von der Mischungszusammensetzung abhängigen Phasenübergang, homogen nach heterogen, des Gemischs charakterisiert: LCST-Verhalten. (D.R. Paul, Polymer Blends and Mixtures, 1985, S. 1—3, Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster).

	1411/16/21 409 100	~*				
35	Beisp. Nr.	Makrolon/Copolymerisat (GewTeile)	Aussehen des Extrudats	Tg (°C)	VET (°C)	<i>T</i> _{Tr} ± 15 (°C)
						224
	16	90/10	klar, farblos	_	- -	219
40		70/30	klar, farblos	_	-	226
	17		klar, farblos	117	119	
	18	50/50	klar, farblos		_	246
	19	30/70			_	> 260
	20	10/90	klar, farblos		138	
		Makrolon 1198	klar, farblos	138		
45	Vergl.	Marion 1150	klar, farblos	108	110	
		Copolymerisat 1	12101, 101 0100			Ldon

Striche bei Meßdaten in dieser und den nachfolgenden Tabellen bedeuten, daß keine Messungen durchgeführt wurden.

Beispiele 21-25

Makrolon 1189 und das gemäß Beispiel 2 hergestellte Copolymerisat werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 16-20 auf T_{Tr} untersucht.

5	Beisp. Nr.	Makrolon/ Copolymerisat (GewTeile)	Aussehen des Extrudats	<i>T_{Tr}</i> ± 15 (°C)
i o	21 22 23 24 25	90/10 70/30 50/50 30/70 10/90	klar, farblos klar, farblos klar, farblos klar, farblos klar, farblos	216 212 218 238 >260
65 ·	Vergl.	Copolymerisat 2 (Tg 105°C)	klar, farblos	•

Beispiele 26-30

Makrolon $^{\circ}$ 1189 und das gemäß Beispiel 3 hergestellte Copolymerisat werden gemischt, extrudiert und gemäß den Beispielen 16-20 auf T_{g} untersucht.

Gien 10—20 and 1g and 1 // 2					5
Beisp. Nr.	Makrolon/ Copolymerisat	Aussehen des Extrudats	Tg (°C)	<i>T_{Tr}</i> ±15 (°C)	
26	90/10	klar, farblos	_	232	10
27	70/30	klar, farblos	_	214	
28	50/50	klar, farblos	125	235	
29	30/70	klar, farblos	_	255	
30	10/90	klar, farblos	_	> 260	
Vergl.	Copolymerisat 3	klar, farblos	121		15

Beispiele 31-35

Makrolon $^{\odot}$ 1189 und das gemäß Beispiel 4 hergestellte Copolymerisat werden gemischt, extrudiert und gemäß den Beispielen 21 -25 auf T_{Tr} untersucht.

Beisp. Nr.	Makrolon/ Copolymerisat (GewTeile)	Aussehen des Extrudats	<i>T_{Tr}</i> ±15 (°C)
31	90/10	klar, farblos	186
32	70/30	klar, farblos	178
33	50/50	klar, farblos	175
34	30/70	klar, farblos	188
35	10/90	klar, farblos	245
Vergl.	Copolymerisat 4	klar, farblos	

35

Beispiele 36-45

Makrolon $^{\odot}$ 1189 und das gemäß den Beispielen 5 und 6 hergestellte Copolymerisat werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 21-25 auf T_{Tr} untersucht.

Beisp. Nr.	Makrolon/ Copolymerisat nach Beisp. 5 (GewTeile)	Aussehen des Extrudats	<i>T_{Tr}</i> ±15 (°C)
36	90/10	klar, farblos	196
37	70/30	klar, farblos	190
38	50/50	klar, farblos	186
39	30/70	klar, farbios	192
40	10/90	klar, farblos	> 260
Vergl.	Copolymerisat 5	•	
Beisp. Nr.	Makrolon/ Copolymerisat nach Beisp. 6 (GewTeile)	Aussehen des Extrudats	<i>T_{Tr}</i> ±15 (°C)
41	90/10	klar, farblos	215
42	70/30	klar, farblos	182
43	50/50	klar, farblos	181
44	30/70	klar, farblos	190
45	10/90	klar, farblos	> 260
Vergl.	Copolymerisat 6	klar, farblos	

Beispiele 46-50

Makrolon $^{\circ}$ 1189 und das gemäß Beispiel 7 hergestellte Copolymerisat werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 16-20 auf Tg, VET und T_{Tr} untersucht.

_		•				
	Beisp. Nr.	Makrolon/ Copolymeres (GewTeile)	Aussehen des Extrudats	Tg (°C)	VET (°C)	T _{Tr} ±15 (°C)
					•	050
10	46	90/10	klar, farblos	· —	-	260
	46	70/30	klar, farblos	_		250
	47		klar, farblos	119	114	> 260
	48	50/50	klar, farblos	_	_	> 260
	49	30/70		_		> 260
15	50 Vergl.	10/90 Copolymerisat 7	klar, farblos klar, farblos	110	107	

Beispiele 51-55

Makrolon $^{\circ}$ 3100 und das gemäß Beispiel 8 hergestellte Copolymerisat werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 21 – 25 auf T_{Tr} untersucht.

·	Beisp. Nr.	Makrolon/ Copolymerisat (GewTeile)	Aussehen des Extrudats	<i>T_{Tr}</i> ± 15 (°C)
	51 52 53 54 55 Vergl. Vergl.	90/10 70/30 50/50 30/70 10/90 Copolymeres 8 Makrolon®3100 (Tg148°C)	klar, farblos klar, farblos klar, farblos klar, farblos klar, farblos klar, farblos	224 229 240 > 260 > 260

20

25

30

35

40

55

65

Beispiel 56-60

Makrolon®1189 und das gemäß Beispiel 9 hergestellte Copolymerisat werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 21-25 auf T_{Tr} untersucht.

15	Beisp. Nr.	Makrolon/ Polymerisat (GewTeile)	Aussehen des Extrudats	<i>T_{Tr}</i> ±15 (°C)
50	56 57 58 59 60 Vergl.	90/10 70/30 50/50 30/70 10/90 Polymerisat 9	kiar, farbios kiar, farbios kiar, farbios kiar, farbios kiar, farbios kiar, farbios	223 216 225 240 > 260

Beispiele 61-65

Makrolon®1189 und das gemäß Beispiel 10 hergestellte Copolymerisat werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 16-20 auf Tg, VET und T_{77} untersucht.

Beisp. Nr.	Makrolon/ Copolymerisat (GewTeile)	Aussehen des Extrudats	Tg (°C)	<i>VET</i> (°C)	<i>T_{Tr}</i> ±15 (°C)
61	90/10	klar, farblos	-		235
62	70/30	klar, farblos	_	-	232
63	50/50	klar, farblos	125	118	250
64	30/70	klar, farblos	_	_	> 260
65	10/90	klar, farblos	_	_	> 260
Vergl.	Copolymerisat 10	klar, farblos	117	112	

Beispiele 66-75

Makrolon $^{\odot}$ 1189 und die gemäß den Beispielen 11 und 12 hergestellten Copolymerisate werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 21 – 25 auf T_{77} untersucht.

Beisp. Nr.	Makrolon/ Copolymerisat nach Beisp. 11 (GewTeile)	Aussehen des Extrudats	<i>T</i> _{Tr} ±15 (°C)
66	90/10	klar, farblos	197
67	70/30	klar, farblos	186
68	50/ 5 0	klar, farblos	217
69	30/70	klar, farblos	240
70	10/90	klar, farblos	> 260
Vergl.	Copolymerisat 11	klar, farblos	
Beisp. Nr.	Makrolon/ Copolymerisat nach Beisp. 12 (GewTeile)	Aussehen des Extrudats	<i>T</i> _{Tr} ±15 (°C)
71	90/10	klar, farblos	208
72	70/30	klar, farblos	196
73	50/50	klar, farblos	207
74	30/70	klar, farblos	236
75	10/90	klar, farblos	>260
Vergl.	Copolymerisat 12	klar, farblos	

Beispiele 76-85

Makrolon $^{\oplus}$ 1189 und die gemäß den Beispielen 13 und 14 hergestellten Copolymerisate werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 16-20 auf T_{T} und T_{T} untersucht.

Beisp. Nr.	Makrolon/ Copolymerisat nach Beisp. 13 (GewTeile)	Aussehen des Extrudats	Tg (°C)	T _{Tr} ± 15 (°C)	
				<u> </u>	55
76	90/10	klar, farblos	_	223	
77	70/30	klar, farblos	_	212	
78	50/50	klar, farblos	115	219	
79	30/70	klar, farblos	_	. 243	60
80	10/90	klar, farblos		> 260	
Vergl.	Copolymerisat 13	klar, farblos	104		

65

Beisp. Nr.	Makrolon/ Copolymerisat nach Beisp. 13 (GewTeile)	Aussehen des Extrudats	Tg (°C)	<i>T_{Tr}</i> ± 15 (°C)
 		11 6 11		207
81	90/10	klar, farblos	_	194
82	70/30	klar, farblos		
83	50/50	kiar, farblos	112	206
	30/70	klar, farblos	_	228
84		klar, farblos	-	>260
85 Vergl.	10/90 Copolymerisat 14	klar, farblos	103	:

Beispiele 86-90

Makrolon $^{\circ}$ 1189 und das gemäß Beispiel 15 hergestellte Copolymerisat werden in den angegebenen Mengenverhältnissen gemischt, extrudiert und gemäß den Beispielen 21 -25 auf T_{Tr} untersucht.

Beisp. Nr.	Makrolon/ Copolymerisat (GewTeile)	Aussehen des Extrudats	T _{Tr} ±15 (°C)
86 87 88 89 90 Vergi.	90/10 70/30 50/50 30/70 10/90 Copolymerisat 15	klar, farblos klar, farblos klar, farblos klar, farblos klar, farblos klar, farblos	192 186 192 218 > 260