

Dynamic System

Comparison between
Kalman filter and
Sequential Least
Squares estimation

Kalman filter vs. sequential LSQ

The table below compares the two algorithms

Kalman filter	sequential LSQ
state estimation	Est. of parameters, constant in time
prediction	
 correction/update 	
$\hat{oldsymbol{x}}_{n n} = \hat{oldsymbol{x}}_{n n-1} + K_n \left(oldsymbol{z}_n - oldsymbol{H}_n \hat{oldsymbol{x}}_{n n-1} ight)$	$\hat{m{x}}_n = \hat{m{x}}_{n-1} + \left[\hat{\sigma}_{0n-1}^2 m{\Sigma} (\hat{m{x}}_{n-1})^{-1} + m{A}_n^T m{P}_n m{A}_n ight]^{-1}.$
$oldsymbol{K}_n = oldsymbol{P}_{n n-1}oldsymbol{H}_n^T \left(oldsymbol{H}_noldsymbol{P}_{n n-1}oldsymbol{H}_n^T + oldsymbol{R}_n ight)^{-1}$	$egin{aligned} oldsymbol{A_n^T} oldsymbol{P_n} \left[oldsymbol{y_n} - oldsymbol{A_n} \hat{oldsymbol{x}}_{n-1} ight] \end{aligned}$
$P_{n n} = \left(I - K_n H_n ight) P_{n n-1}$	$oldsymbol{\Sigma}(oldsymbol{\hat{x}}_n) = \hat{\sigma}_{0n}^2 \left[\hat{\sigma}_{0n-1}^2 oldsymbol{\Sigma}(oldsymbol{\hat{x}}_{n-1})^{-1} + oldsymbol{A}_n^T oldsymbol{P}_n oldsymbol{A}_n ight]^{-1}$
$\hat{\bm{x}}_{n n-1} = \bm{\Phi}_{n-1 n-1} \cdot \hat{\bm{x}}_{n-1 n-1}$	
$P_{n n-1} = \Phi_{n-1 n-1} P_{n-1 n-1} \Phi_{n-1 n-1}^T + Q$	

Question: Can we proof that the Kalman filter algorithm can be related to the sequential LSQ in case of time-invariant parameters?

Kalman filter vs. sequential LSQ - cont'd

The Kalman filer degrades to the sequential LSQ estimation, if

- the state transition matrix $\Phi_{n-1|n-1}$ is the identity matrix
- ullet the process noise covariance matrix Q is zero

$$egin{aligned} \Phi_{n-1|n-1} &= I & \Rightarrow & \hat{x}_{n|n-1} &= \hat{x}_{n-1|n-1} \ Q &= 0, \, \Phi_{n-1|n-1} &= I & \Rightarrow & P_{n|n-1} &= P_{n-1|n-1} \end{aligned}$$

In other word the prediction step is not effective. Thus in the following we drop the notation $n \mid n-1$ and just write

$$\begin{split} P_{n|n} &= \left(I - K_n H_n \right) P_{n|n-1} \quad \Rightarrow \quad P_n = \left(I - K_n H_n \right) P_{n-1} \\ K_n &= P_{n|n-1} H_n^T \left(H_n P_{n|n-1} H_n^T + R_n \right)^{-1} \\ &\Rightarrow \quad K_n = P_{n-1} H_n^T \left(H_n P_{n-1} H_n^T + R_n \right)^{-1} \\ P_n &= P_{n-1} - K_n H_n P_{n-1} \\ &\Rightarrow \quad P_n = P_{n-1} - P_{n-1} H_n^T \left(H_n P_{n-1} H_n^T + R_n \right)^{-1} H_n P_{n-1} \end{split}$$

Matrix inversion Lemma, for B, D being positive definite matrices

$$(B^{-1} - CD^{-1}C^T)^{-1} = B - BC(D + C^TBC)^{-1}C^TB$$

Kalman filter vs. sequential LSQ - cont'd

We identify

$$B = P_{n-1}, C = H_n^T, D = R_n$$

and are able to write

$$\boldsymbol{P}_n = \left(\boldsymbol{P}_{n-1}^{-1} + \boldsymbol{H}_n^T \boldsymbol{R}_n \boldsymbol{H}_n\right)^{-1}$$

which turns out to be equivalent to the covariance update for the sequential LSQ.

A similar derivation can be made for \hat{x}_n .