DETEKCIJA I REŠAVANJE NONOGRAM SLAGALICE

Srbislav Vučenović, SW-77/2017 Đorđe Ognjenović, SW-2/2016

Fakultet tehničkih nauka, Univerzitet u Novom Sadu

Uvod

Nonogram je logička puzla sa mrežom, u kojoj je cilj da se u mreži ćelije oboje, ili ne oboje, na osnovu brojeva sa strana mreže, da bi se dobila skrivena slika. Brojevi predstavljaju koliko ima obojenih ćelija u vrsti ili koloni. Uobičajeno, nonogram puzle su crno bele boje.

U ovom projektu ćemo rešavati nonogram puzle na osnovu učitane slike uz korišćenje DFS i backtracking algoritma.

Problem

Potrebno je detektovati nonogram na slici, detektovati brojeve na nonogramu (koji predstavljaju broj obojenih polja u vrsti ili koloni) i rešiti nonogram na osnovu detektovanih brojeva.

Metodologija

Za rešavanje problema korišćeno je: numpy, tenserflow i openCV.

Da bi prepoznali nonogram i brojeve na njemu sliku smo konvertovali u grayscale i iskoristili Canny detektor ivica koji je ivice na slici predstavljao kao bele piksele.

	1	2	2	4	4
2					
4					
3					
2					
2					

Sledeće što smo trebali uraditi jeste prepoznati linije na nonogramu, ali prije toga smo uradili dilaciju odnosno umanjili regione crnih piksela da bi izrazili regione od interesa, tj. linije.

Metodologija

Za detektovanje linija iskoristili smo Hough transformaciju (tehnika za izdvajanje osobina koja se koristi u analizi slike).

	1	2	2	4	4
2					
4					
3					
2					
2					

Nakon što smo detektovali linije i izfiltrirali one koje nam trebaju, pronašli smo presjeke tih linija tj. tačke koje koristimo da bi dobili regione u kojima se nalaze brojevi nonograma. Izdvojili smo regione brojeva posebno za redove i kolone nonograma.

	1	2	2	4	4
2					
4					
3					
2					
2					

Posebno izdvojene regione brojeva iz vrste/kolone prosleđujemo istreniranoj neuronskoj mreži za klasifikaciju cifara u nonogramu. Nakon toga dobijamo liste vrsta i kolona koje sadrže brojeve neophodne za rešavanje nonograma.

Koristili smo DFS i backtracking algoritme za rešavanje nonograma. Oba algoritma su koristila permutacije mogućih rešenja svakog reda.

Na osnovu rezultata oba algoritma generišemo kranji nonogram.

Skup podataka

Slike koje smo koristili za nonogram smo preuzeli sa interneta ili smo fotografisali.

Zaključak

Na osnovu vremena izvršavanja, ispostavilo se da je backtracking bolji algoritam za nonograme. Takođe vršimo proveru da li su brojevi u nonogrami dobro učitani. Generalno program nije imao problema sa detekcijom cifara. Međutim, u nonogramima gde je različit font, tj. gde se cifre vidno razlikuju, se ne detektuju tačne cifre. Na primer cifru 1 bez "postolja" često detektuje kao cifru 4.