$1^{\underline{a}}$ Prova - MTM1039 - T 11 08 de Abril de 2016

1. 2. 3. 4.

Coloque o nome em todas as folhas. É proibido usar calculadora ou similares. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. Nesta prova A^t denota sempre a transposta da matriz A.

5. Σ

Questão 1. (2pts) Considerando as matrizes:

$$A = \left[\begin{array}{cc} 1 & 0 & 1 \\ 0 & -1 & 2 \end{array} \right], B = \left[\begin{array}{cc} 1 & 3 \\ 0 & 0 \\ 0 & 0 \end{array} \right], C = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right].$$

- (a) Qual(is) está(ão) na forma escalonada reduzida? (não precisa justificar)
- (b) Se for possível, calcule

$$\bullet$$
[i] $BA - C$

•
$$[ii] C((AB)C)^t + 2C$$

Questão 2. (2pts) Resolva os sistemas lineares usando o método de Gauss-Jordan (obtendo a solução após chegar na forma esc. red.) (Sugestão: os dois sistemas podem ser resolvidos simultaneamente)

(a)
$$\begin{cases} x - 2y + z &= 1\\ 2x - 5y + z &= -2\\ 3x - 7y + 2z &= -1 \end{cases}$$

(b)
$$\begin{cases} x - 2y + z = 2 \\ 2x - 5y + z = -1 \\ 3x - 7y + 2z = 2 \end{cases}$$

Questão 3. (2.5pts) Considere a matriz
$$A = \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & -1 & 0 \end{bmatrix}$$

- (a) Calcule, usando escalonamento, o determinante de $A + A^t$. Com base nisto, $A + A^t$ é invertível? Caso seja, encontre a inversa de $A + A^t$;
- (b) Volte para a matriz A. Determine os valores reais λ , tais que existe $X^t = \begin{bmatrix} x & y & z & w \end{bmatrix} \neq \bar{0}$ que satisfaz

$$AX = \lambda X;$$

(c) Para cada um dos valores de λ encontrados no item anterior, determinar todos $X^t = \left[\begin{array}{ccc} x & y & z & w \end{array}\right]$ tais que

$$AX = \lambda X$$
.

Questão 4. (2.5pts) Responda VERDADEIRO ou FALSO, com uma breve justificativa:

- i-() Duas matrizes de ordem 4×4 Ae B sempre satisfazem AB=BA;
- ii-() Pode-se mostrar que "para matrizes $n \times n$, se AB é invertível, então as matrizes A e B são invertíveis" sem usar determinantes;
- iii-() Se $A^3 = \bar{0}$, então $(Id_n A)^{-1} = Id_n + A + A^2$;
- iv-() Se A é uma matriz 3×3 e $B = A \cdot ((3A)^t \cdot A^{-1})$, então $\det(B) = 9 \det(A)$;
- v-() O cofator \widetilde{a}_{12} da matriz $A=\left[\begin{array}{cc} 2 & 3 \\ 4 & 1 \end{array}\right]$ é -4.

Questão 5. (1pt) Se A e B são matrizes 4×2 e 2×4 , respectivamente, mostre que $\det(AB) = 0$. (Sugestão; analise os sistemas $BX = \bar{0}$ e $ABX = \bar{0}$)