FEATURE EXTRACTION FROM LABELED BLOBS

A presentation by **Hans Emmanuel Hernandez** (2020-11387)

OBJECTIVES

In this activity, we perform feature extraction on a set of images. Specifically, we have the following objectives:

- Perform preliminary image segmentation
- Perform preliminary morphological operations
- Label blobs as distinct regions in an image
- Perform feature extraction
- Extract various properties and visualize them on a feature space
- Apply these techniques on multiple images
- Discuss the principles behind feature extraction and the apparent pitfalls of some methods

RESULTS AND ANALYSIS

IMAGE PREPARATIONS

Figure 1. A sample image of coins and its corresponding grayscale histogram.

We choose an image of coins and compute for its corresponding grayscale histogram. **As we can see in Fig. 1, most of the pixels have a grayscale value of zero due to the black background.** To be safe, we choose a threshold value above zero that is close enough to isolate the features of the coins.

IMAGE SEGMENTATION

Figure 2. Various thresholding conditions on the image.

From Fig. 2, we set choose the best thresholding condition as T>30. If the pixel values are within the range of T>30, they are set to True which corresponds to white in grayscale value. The pixels that fall outside of this condition are set to False which corresponds to black in grayscale, effectively preserving the black background while the coins are primarily set to white.

MORPHOLOGICAL OPERATIONS AND LABELING

Figure 3. Numbered coins after morphological operations.

To clean the objects, we perform morphological operations, specifically morphological closing followed by morphological opening. As discussed previously, the closing operation dilates then erodes the image to fill in any small holes or gaps that we may have missed from segmentation. The opening operation erodes then dilates this image to preserve the edges and shapes of the larger objects. Finally, we label these morphed objects and assign indices which we affix to their centroids.

MORE ON LABELING

Figure 4. Labeled blobs of the original image sample of coins.

By default, all pixels having a value of zero are set as the background of the image while the rest of the connected regions are labeled accordingly. As we can see in Fig. 4, the package was able to separate 11 distinct blobs from the background. We can also see that the blob edges are well preserved and did not merge nor break after previous morphological operations.

FEATURE EXTRACTION

index	perimeter	area	eccentricity	bbox-0	bbox-1	bbox-2	bbox-3
1	302.73506	6698	0.127755943	3	3	95	96
2	302.73506	6689	0.139908256	3	101	95	194
3	374.0904	10134	0.068598768	7	353	121	467
4	373.26198	10103	0.106893577	8	471	121	585
5	356.19091	9221	0.100809012	18	220	126	329
6	296.83557	6397	0.156155693	129	16	219	106
7	296.24978	6434	0.170650768	129	112	219	202
8	339.70563	8408	0.118571409	143	444	246	548
9	341.11984	8441	0.118492863	143	553	246	657
10	255.96551	4621	0.121430292	166	247	244	323
11	250.45079	4563	0.167956244	167	328	243	405

Figure 5. Extracted features from the labeled blobs and the scatter plot of area and eccentricity values.

Since we have already labeled each blob in the previous slide, we simply call the regionprops function to extract the features of each blob. By specifying the properties we want to measure, we can display various attributes as we can see in Fig. 5. We have also scatter plotted the area and eccentricity values of the blobs to visualize them onto a 'feature space' separated by indices that indicate the blob identity.

EXTRA DEMONSTRATIONS

FEATURE EXTRACTION: WATERMELON SEEDS

Figure 6. A sample image of watermelon slices and its corresponding grayscale histogram.

Figure 7. Various thresholding conditions for image segmentation. T<50 was chosen to avoid further sensitivities in morphological operations.

FEATURE EXTRACTION: WATERMELON SEEDS

Figure 8. Labeled images after morphological operations.

Again, we repeat the same set of morphological operations as before: morphological closing then opening. Surprisingly enough, the algorithm was able to pick out every single watermelon seed in the image; even those that are embedded inside the watermelon flesh. We map these blobs out onto our 'feature space' for feature extraction.

FEATURE EXTRACTION: WATERMELON SEEDS

Figure 9. Extracted features from the labeled watermelon seeds and the scatter plot of area, perimeter, and eccentricity values.

We have successfully extracted the following features from the watermelon seeds of the image: **perimeter**, **area**, **eccentricity**, **and the bounding box coordinates**. As we can see on the scatter plot, **watermelon seed # 16 has the highest values for both the area and perimeter while watermelon # 17 had the lowest for both**. However, if we look back in Fig. 8, we will find that **this is not necessarily true** because the surrounding flesh of seed # 16 was superimposed due to segmentation sensitivities which in turn could have been enhanced further by subsequent morphological operations (i.e. in choosing the structuring element). The low values for seed # 17 are also attributed mainly to the fact that half of the seed is out of the picture and thus, **its measurement values did not manifest accurately in feature extraction.** Therefore, it is important to always know the context at which we are extracting our features from.

FEATURE EXTRACTION: SEASHELLS

Figure 10. A sample image of seashells and its corresponding grayscale histogram.

Figure 11. Various thresholding conditions for image segmentation. T>30 was chosen to avoid further sensitivities in morphological operations.

FEATURE EXTRACTION: SEASHELLS

Figure 12. Labeled images after morphological operations.

Again, we repeat the same set of morphological operations as before: morphological closing then opening. The algorithm seemed to work very solidly for the seashells since most of the blobs do not contain holes.

FEATURE EXTRACTION: SEASHELLS

index	perimeter	area	eccentricity	bbox-0	bbox-1	bbox-2	bbox-3
1	709.31075	25553	0.887987	67	1648	352	1790
2	719.49452	29213	0.85093503	68	65	353	219
3	698.82547	23992	0.89821695	68	1828	352	1963
4	733.15137	29909	0.84085025	69	654	353	814
5	720.52395	27758	0.86431673	69	1454	353	1605
6	725.59502	28399	0.85740477	71	457	353	617
7	700.8671	26664	0.86487524	72	265	352	409
8	733.00923	30087	0.84793048	72	858	356	1020
9	711.69553	27518	0.86070412	73	1265	352	1417
10	723.69553	29125	0.84967294	74	1070	355	1225
11	732.72496	27177	0.88886122	382	69	675	216
12	720.58283	25416	0.89498898	386	262	677	399
13	742.22244	30815	0.85579466	387	448	677	612
14	723.83766	28218	0.86976342	387	860	679	1009
15	727.35238	29603	0.85209509	392	655	675	809
16	730.0803	28716	0.86282922	392	1062	682	1215
17	718.90873	28173	0.8652202	395	1262	680	1413
18	750.12193	27581	0.86704722	395	1455	678	1603
19	730.84986	31056	0.83045164	397	1648	682	1815
20	747.193	32093	0.82261578	397	1844	685	2013
21	739.29351	30982	0.83669602	732	40	1020	208
22	737.29351	31323	0.82035578	733	244	1019	410
23	730.56558	30143	0.84915449	736	452	1025	609
24	714.18081	26366	0.87775988	736	864	1026	1005
25	722.72496	27092	0.89186469	736	1268	1030	1406
26	726.0803	28586	0.86314533	737	654	1026	807
27	729.69553	27174	0.87938013	737	1057	1031	1202
28	742.80822	31401	0.83809172	738	1649	1029	1814
29	723.21024	27364	0.8779638	739	1459	1030	1601
30	743.05087	31110	0.84229646	740	1848	1031	2012
31	511.91378	17452	0.49072184	1049	48	1194	210
32	463.00209	13523	0.8017823	1049	434	1219	543
33	535.08535	16895	0.48290732	1056	248	1196	410
34	1016.9331	72521	0.4538145	1068	634	1354	950
35	1188.6804	61744	0.47600843	1070	976	1358	1269
36	995.54329	67355	0.45274376	1070	1321	1355	1649
37	999.30065	67485	0.51252181	1076	1681	1356	2012
38	410.0904	10119	0.84058826	1201	524	1355	612
39	493.38687	16893	0.40524598	1207	46	1350	205
40	496.25693	17053	0.48899465	1209	243	1354	405

Figure 13. Extracted features from the labeled seashells.

Figure 14. Scatter plot of eccentricity values of the labeled seashells.

Again, we have successfully extracted the following features from the watermelon seeds of the image: perimeter, area, eccentricity, and the bounding box coordinates. However, since we are now more interested in the eccentricity values of the seashells, we scatter plot them in Fig. 14. As we can see, the more globular or rounded seashells (index nos. 31, 33, 34, 35, 36, 37, 39, 40) have a lower eccentricity value which is accurate to how eccentricity values work: the closer it is to zero, the rounder the object is. The values that are closer to one are more parabolic in terms of curves.

13 REFLECTION

REFLECTION

Overall, this was a great activity!

Combining image segmentation and morphological operation techniques to extract image features has got to be one of the most satisfying computational activities yet. In this activity, I was able to holistically relate each previous techniques and reconcile them into a singular algorithm. I also learned how to label objects of interest and extract the features from each region accordingly.

Besides that, I believe that my results are accurate and stayed true to the topic, with additional cross references and analyses. I also cross-validated my results with my peers. However, if I was given more time, I would implement these morphological operations on more complex images like satellite data and space data.

SELF-GRADE

Technical Correctness: 35/35

I believe that my results are correct through math, research, and through validation with my peers and with my instructors.

Quality of Presentation: 35/35

I believe that the quality of my powerpoint is up to par with the course expectations. I constructed the figures as instructed, and exported my data accordingly.

Self-Reflection: 30/30

I believe that I have acknowledged and reflected upon the activity well enough. I also have complete citation on the next slide.

Initiative: 10/10

I went above and beyond with my data presentation, and included extra analyses for the activities.

REFERENCES

[1] Chatterjee, S. (2022, July 26). What is Feature Extraction? Feature Extraction in Image Processing | Great Learning. Great

Learning Blog: Free Resources What Matters to Shape Your Career!

https://www.mygreatlearning.com/blog/feature-extraction-in-image-processing/

[2] How to use the skimage.measure.regionprops function in skimage | Snyk. (n.d.). Snyk Advisor.

https://snyk.io/advisor/python/skimage/functions/skimage.measure.regionprops

[3] Module: measure — skimage v0.13.1 docs. (n.d.).

https://www.devdoc.net/python/scikit-image-doc-0.13.1/api/skimage.measure.html

[4] Segmentation — Bioimage analysis fundamentals in Python. (n.d.).

https://jni.github.io/i2k-skimage-napari/lectures/2_segmentation_and_regionprops.html

[5] Singh, A. (2023). 3 Beginner-Friendly Techniques to Extract Features from Image Data using Python. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2019/08/3-techniques-extract-features-from-image-data-machine-learning-python/