Instructor: Tatsunari Watanabe

TA: Carlos Salinas

## MA 26500 Quiz 5

July 6, 2016

1. Which of the following are not a basis for the vector space of all symmetric  $2 \times 2$  matrices? Why? [HINT: Recall that a symmetric matrix must satisfy  $A = A^{T}$ .]

$$A. \ \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$$

$$B. \ \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}.$$

$$\text{C. } \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ -1 & 1 - \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

2. Which of the following are *not* a basis for  $\mathbb{R}^3$ ? Why?

A. 
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}.$$

$$B. \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\}.$$

C. 
$$\left\{ \begin{bmatrix} 0\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\5\\0 \end{bmatrix} \right\}.$$