Artificial Intelligence: Foundations & Applications

Introduction to Constraint Satisfaction Problem

Prof. Partha P. Chakrabarti & Arijit Mondal Indian Institute of Technology Kharagpur

Examples of CSP

- Crossword puzzle
- N-queens on chess board
- Knapsack
- Assembly scheduling
- Operations research
- Map coloring
- Time tabling
- · Airline/train scheduling
- Cryptic puzzle
- Boolean satisfiability
- Car sequencing
- Scene labeling
- etc.

CENTRAL TIMETABLE: SPRING SEMESTER (2019-2020)

Period	1	2	3	4	5		6	7	8	9
Time	8:00 AM -8:55 AM	9:00 AM -9:55AM	10:00AM -10:55AM	11:00 AM-	12:00 Noon -12:55 PM		2:00 PM - 2:55 PM	3:00 PM - 3:55 PM	4:00 PM-	5:00 PM 5:55 PM
	A3(1)	1 st Ye	ar LAB SLC C3 (1)	B3(1)	D3 (1) D4 (1)		H3(1)		(1, 2)	S3(1)
	-	1, 2)	C4 (1)	LAB SLOT))			LAB SLOT:	(1, 2)	55(1)
	74.70		ar LAB SLC			L				
	,	2	1	(2, 3)	A3(3)	U		U3(3)		12
TUE				(2, 3)		N	U4(3			2, 3)
	B3(2, 3)	ar LAB SLC	LAB SLOT	':K	c		LAB SLOT:		
	(F3(1)		E3(1)		X4(1)	X4(2)	X4(3)	
WED	C3(F4(1)	G3(1)	E4(1)	Н		AB SLOT:	121(0)	X4(4)
	C4(2, 3)	ar LAB SLC	LAB SLOT	':R					
THU	D4(4)	F3(2)	C4(4)	E3(2) E4(2)	G3(2)	H O	12(1)	V3	V2 (1, 2)	
THE		F4(2)		LAB SLOT	:M	U	-	AB SLOT:	(1, 2) N	S3(2)
			ar LAB SLC	OT O-1	<u></u>	R				
FRI	G3(3)	E3(3)	1	F3(3)	F2		V4(3	V3(3) (, 4)	12(2)	
		E4(3, 4)	LAB SLOT	i(3, 4) l':O		1	LAB SLOT:	P	S3(3)
SAT	EAA									
2 Hour Slot	3 hour slo	4 Hour	Slot Lab	Slot Lab S	lot for 1st year on	y S	Special Slot for	EAA Offi		

			Q					8
			ď			_		
						Q		7
		Q						6
							Q	5
	Q							4
				Q				3
Q								2
					Q			1
a	h	С	А	е	f	g	h	

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.

- Variables
 - A set of decision variables x_1, x_2, \dots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.
- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \dots, D_n from which it can take a value.
- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only
- Cost function for optimization (optional)
 - A set of optimization functions (typically min, max) O_1, O_2, \ldots, O_p

- Variables
 - A set of decision variables x_1, x_2, \ldots, x_n
- Domain of variables
 - Each variable has a domain (discrete or continuous) D_1, D_2, \ldots, D_n from which it can take a value.
- Satisfaction constraint
 - A finite set of satisfaction constraints C_1, C_2, \ldots, C_m
 - A constraint can be unary, binary or among many variables. Given a value of variables, any constraint will yield yes or no only
- Cost function for optimization (optional)
 - A set of optimization functions (typically min, max) O_1, O_2, \ldots, O_p
- Solution
 - A consistent assignment of domain values to each variable so that all constraints are satisfied and the optimization criteria (if any) are met.

N-Queens

Need to place N-queens on this board

Rules:

No queens are attacking each other

N-Queens

Need to place N-queens on this board

Rules:

No queens are attacking each other

- Variables: x_{ij} queen is in cell (i, j),
- Domains: $D_{ij} \in \{0, 1\}$

• Constraints:
$$\sum_{i} x_{ij} = 1, \sum_{j} x_{ij} = 1, \sum_{i,j} x_{ij} = N,$$
$$x_{ij} + x_{(i+k)(j+k)} \le 1, \quad x_{ij} + x_{(i+k)(j-k)} \le 1,$$

k is in appropriate range

 \bullet Search space $2^{64} = 18,446,744,073,709,551,616$

N-Queens (alternative model)

Need to place N-queens on this board

Rules:

No queens are attacking each other

N-Queens (alternative model)

Need to place N-queens on this board

Rules:

No queens are attacking each other

- Variables: x_i
- Domains: $D_i \in \{1, 2, ..., 8\}$
- Constraints: ...
- Search space $8^8 = 16,777,216$

N-Queens (alternative model)

Need to place N-queens on this board

Rules:

No queens are attacking each other

- Variables: x_i
- Domains: $D_i \in \{1, 2, ..., 8\}$
- Constraints: ...
- Search space $8^8 = 16,777,216$

Other variants:

- At least a gueen on the main diagonal
- Two queens on the two main diagonals
- Enumeration of all solutions

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
<i>S</i> ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

• Domains: $D_i \in \{1, 2, 3\}$

• Constraints:
$$x_1 \neq x_2, x_1 \neq x_3, \dots$$

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

• Domains: $D_i \in \{1, 2, 3\}$

• Constraints: $x_1 \neq x_2, x_1 \neq x_3, \dots$

Graph coloring problem.

Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Is it possible to schedule all flights using 3 gates?

Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Is it possible to schedule all flights using 3 gates?

Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Is it possible to schedule all flights using 3 gates?

- Variables: x_i slot for Flight F_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \dots$

Flight	Arrv. time	Dept. time
F1	0715	0815
F2	0800	0900
F3	0830	0930
F4	0845	0945
F5	0915	1015
F6	0845	0945

Is it possible to schedule all flights using 3 gates?

- Variables: x_i slot for Flight F_i
- Domains: $D_i \in \{1, 2, 3\}$
- Constraints: $x_1 \neq x_2, x_1 \neq x_3, \dots$

Interval Graphs.

Cryptarithmetic

Cryptarithmetic

• Variables: *S*, *E*, *N*, *D*, *M*, *O*, *R*, *Y*,

• Domains: $D_i \in \{0, 1, ..., 9\}$

• Constraints: All different, $10 \times M + O = S + M + C_{1000}, \dots$

Cryptarithmetic

```
S E N D
+ M O R E
M O N E Y
```

```
    Variables: S, E, N, D, M, O, R, Y,
    Domains: D<sub>i</sub> ∈ {0, 1, ..., 9}
    Constraints: All different, 10 × M + O = S + M + C<sub>1000</sub>, ...
```

```
MiniZinc implementation:
include "alldifferent.mzn";
var 1..9: S; var 0..9: E; var 0..9: N; var 0..9: D;
var 1..9: M; var 0..9: 0; var 0..9: R; var 0..9: Y;
constraint
              1000 * S + 100 * E + 10 * N + D
            + 1000 * M + 100 * 0 + 10 * R + E
= 10000 * M + 1000 * O + 100 * N + 10 * E + Y:
constraint alldifferent([S,E,N,D,M,O,R,Y]);
solve satisfy;
```

Knapsack

• There are n items namely, O_1, O_2, \ldots, O_n . Item O_i weighs w_i and provides profit of p_i . Target is to select a subset of the items such that the total weight of the items does not exceed W and profit is maximized.

image source: Wikipedia

Knapsack

• There are n items namely, O_1, O_2, \ldots, O_n . Item O_i weighs w_i and provides profit of p_i . Target is to select a subset of the items such that the total weight of the items does not exceed W and profit is maximized.

- Variables: x_i selection of ith item
- **Domains:** {0, 1}
- Constraints: $\sum_{i} x_i \times w_i \leq W$
- Optimization function: $\sum_{i} x_i \times p_i$

• There are n possible locations to setup warehouses (W) which will deliver goods to m customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.

- There are n possible locations to setup warehouses (W) which will deliver goods to m customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_i warehouse location, y_{ij} amount served by W_i to C_i
 - **Domains:** $x_i \in \{0, 1\}, y_{ii} \in \{0, \infty\}$
 - Constraints: $\sum_{i} y_{ji} = d_i$,

- There are n possible locations to setup warehouses (W) which will deliver goods to m customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_i warehouse location, y_{ij} amount served by W_i to C_i
 - **Domains:** $x_i \in \{0, 1\}, y_{ii} \in \{0, \infty\}$
 - Constraints: $\sum_{j} y_{ji} = d_i$, $\sum_{i} y_{ji} x_j \left(\sum_{i} d_i \right) \le 0$

- There are n possible locations to setup warehouses (W) which will deliver goods to m customers (C). Cost to setup W_j warehouse is f_j . Customer C_i has a demand of d_i which needs to fulfilled by the warehouses. Delivery cost per unit item from W_j to C_i is c_{ji} . Target is to minimize total cost to serve the required demands.
 - Variables: x_i warehouse location, y_{ij} amount served by W_i to C_i
 - **Domains:** $x_i \in \{0, 1\}, y_{ii} \in \{0, \infty\}$
 - Constraints: $\sum_{j} y_{ji} = d_i$, $\sum_{i} y_{ji} x_j \left(\sum_{i} d_i \right) \le 0$
 - Optimization function: $\sum_{i} x_j \times f_j + \sum_{i,j} c_{ji} \times y_{ji}$

Crossword puzzle

Fill in words from the list in the given 8 × 8 board: HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US

```
• Variables: R_1, C_3, C_5, R_8, ...,
```

• Domains: $R_1 \in \{HOSES, LASER, SHEET, SNAIL, STEER\}, C_3 \in \{ALSO, SAME, \ldots\}$

• Constraints: $R_1[3] = C_3[1],...$

Variant of crossword puzzle (practice problem)

Pack the following words in the given 8 × 8 board:
ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN

Rules:

- All words must read either across or down, as in a crossword puzzle.
- No letters are adjacent unless they belong to one of the given words.
- The words are rookwise connected.
- Words overlap only when one is vertical and the other is horizontal.

Solution overview

· CSP graph creation

- Create a node for every variable. All possible domain values are initially assigned to the variable
- Draw edges between nodes if there is a binary Constraint. Otherwise draw a hyper-edge between nodes with constraints involving more than two variables

• Constraint propagation

Reduce the valid domains of each variable by applying node consistency, arc / edge Consistency, K-Consistency, till no further reduction is possible. If a solution is found or the problem found to have no consistent solution, then terminate

Search for solution

- Apply search algorithms to find solutions
- There are interesting properties of CSP graphs which lead of efficient algorithms in some cases: *Trees, Perfect Graphs, Interval Graphs, etc.*
- Issues for Search: Backtracking Scheme, Ordering of Children, Forward Checking (Look-Ahead) using Dynamic Constraint Propagation

Solving by converting to satisfiability (SAT) problems

Search formulation of CSP

- Standard search formulation of CSP
 - Initial state: all unassigned variables
 - State: partial assignment of the variables
 - Successor function: assign a value to unassigned variables
 - Goal state: all variables are assigned and satisfies all constraints
 - Path cost: uniform path cost

Constraint propagation

Constraints

- Unary constraints or node constraints (eg. $x_i \neq 9$)
- Binary constraints or edge between nodes (eg. $x_i \neq x_i$)
- Higher order or hyper-edge between nodes (eg. $x_1 + x_2 = x_3$)

Node consistency

- For every variable V_i , remove all elements of D_i that do not satisfy the unary constraints for the variable
- First step is to reduce the domains using node consistency

Arc consistency

- For every element x_{ij} of D_i , for every edge from V_i to V_j , remove x_{ij} if it has no consistent value(s) in other domains satisfying the Constraints
- Continue to iterate using arc consistency till no further reduction happens.

Path consistency

• For every element y_{ij} of D_i , choose a path of length L with L variables, use a consistency checking method similar to above to reduce domains if possible

Arc consistency check (AC-3)

```
AC-3(csp) // inputs - CSP with variables, domains, constraints
     queue ← local variable initialized to all arcs in csp
     while queue is not empty do
       (X_i, X_i) \leftarrow \text{pop(queue)}
        if Revise(csp, X_i, X_i) then
           if size of D_i = 0 then return false
           for each X_k in X_i.neighbors-\{X_i\} do
              add (X_k, X_i) to queue
     return true
Revise(csp, X_i, X_i)
    revised \leftarrow false
     for each x in D_i do
        if no value y in D_i allows (x, y) to satisfy constraint between X_i and X_i then
           delete x from D_i
4.
           revised \leftarrow true
     return revised
```

Arc consistency check (AC-3)

```
AC-3(csp) // inputs - CSP with variables, domains, constraints
     queue ← local variable initialized to all arcs in csp
     while queue is not empty do
       (X_i, X_i) \leftarrow \text{pop(queue)}
        if Revise(csp, X_i, X_i) then
           if size of D_i = 0 then return false
           for each X_k in X_i.neighbors-\{X_i\} do
              add (X_k, X_i) to queue
     return true
Revise(csp, X_i, X_i)
                                                                                 Complexity?
    revised \leftarrow false
     for each x in D_i do
        if no value y in D_i allows (x, y) to satisfy constraint between X_i and X_i then
           delete x from D_i
4.
           revised \leftarrow true
     return revised
```

• Variables: A, B, C, D

• Domain: {1, 2, 3}

• Constraints: $A \neq B$, C < B, C < D

• Variables: A, B, C, D
• Domain: $\{1, 2, 3\}$
• Constraints: $A \neq B, C < B, C < D$

queue: AB, BA, BC, CB, CD, DC

• Variables: A, B, C, D
• Domain: $\{1, 2, 3\}$
• Constraints: $A \neq B, C < B, C < D$

queue: AB, BA, BC, CB, CD, DC pop(queue) // AB

• Variables: A, B, C, D • Domain: $\{1, 2, 3\}$ • Constraints: $A \neq B$, C < B, C < D

queue: AB, BA, BC, CB, CD, DC

pop(queue) // AB

No change in queue. queue=BA, BC, CB, CD, DC

• Variables: A, B, C, D
• Domain: $\{1, 2, 3\}$
• Constraints: $A \neq B, C < B, C < D$

queue: AB, BA, BC, CB, CD, DC pop(queue) // AB

No change in queue. queue=BA, BC, CB, CD, DC

pop(queue) // BA

• Variables: A, B, C, D • Domain: $\{1, 2, 3\}$ • Constraints: $A \neq B, C < B, C < D$

queue: AB, BA, BC, CB, CD, DC
pop(queue) // AB
No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA
No change in queue. queue=BC, CB, CD, DC

• Variables: A, B, C, D

queue: AB, BA, BC, CB, CD, DC
pop(queue) // AB
No change in queue. queue=BA, BC, CB, CD, DC
pop(queue) // BA
No change in queue. queue=BC, CB, CD, DC
pop(queue) // BC

• Domain: {1, 2, 3}

• Constraints: $A \neq B$, C < B, C < D

```
    Variables: A, B, C, D
    Domain: {1, 2, 3}
    queue: AB, BA, BC, CB, CD, DC
    pop(queue) // AB
    No change in queue. queue=BA, BC, CB, CD, DC
    pop(queue) // BA
    No change in queue. queue=BC, CB, CD, DC
    pop(queue) // BC
    Remove 1. D<sub>B</sub> = {2, 3}
```

• Constraints: $A \neq B$, C < B, C < D

```
• Variables: A, B, C, D
                                       • Domain: {1, 2, 3}
        queue: AB, BA, BC, CB, CD, DC
        pop(queue) // AB
        No change in queue, queue=BA, BC, CB, CD, DC
        pop(queue) // BA
        No change in queue, queue=BC, CB, CD, DC
        pop(queue) // BC
        Remove 1. D_R = \{2, 3\}
        Add AB to gueue. gueue=CB, CD, DC, AB
        pop(queue) // CB
        Remove 3. D_C = \{1, 2\}
        No change in queue, queue=CD, DC, AB
        pop(queue) // CD
        No change. queue=DC, AB
        pop(queue) // DC
        Remove 1. D_D = \{2, 3\}
        No change, queue=AB
        pop(queue) // AB
        No change in queue. queue=∅
```

• Constraints: $A \neq B$, C < B, C < D

```
A = \{1, 2, 3\}, B = \{2, 3\},\

C = \{1, 2\}, D = \{2, 3\}.
```

Sudoku

AC-3 limitations

- After successful run of AC-3
 - There can be only one solution
 - There can be more than one solutions
 - There may be no solution and it fails to identify

Examination schedule

Student	Subjects
S ₁	C_1, C_2, C_3
S ₂	C_2, C_3, C_4
S ₃	C_3, C_4
S ₄	C_3, C_4, C_5
S ₅	C_1, C_5, C_6

Is it possible to conduct all these exams in 3 days assuming one exam per day?

• How does naive BFS & DFS perform?

Backtracking search

- Backtracking is a basic search methodology for solving CSP
- Basic steps:
 - Assign one variable at a time
 - Fix ordering of variables (eg. $C_1 = 1, C_2 = 3$ is same as $C_2 = 3, C_1 = 1$)
 - Check constraint
 - · Check with previously assigned variables

Backtracking search

```
Backtrack(assignment)

if assignment is complete then return success, assignment

var ← Choose-unassigned-variable()

for each value of Domain(var) do

if value is consistent with the assignment then

add var = value to assignment

result = Backtrack(assignment)

if result ≠ failure return result, assignment

return failure
```

Choices:

- Variable to be assigned next
- Value to be assigned to the variable next
- Early detection of failure

Heuristic strategy

- Variable ordering
 - Static or random
 - Minimum remaining values
 - Variable with fewest legal values (also known as most constrained variable)
 - Degree heuristic
 - Variable with the largest number of constraints on other unassigned variables
- Choice of value
 - Least constraining value
 - Value that leaves most choices for the neighboring variables in the constraint graph

IIT Kharagpur 2.

• Forward checking propagates information from assigned to unassigned variables

• Forward checking propagates information from assigned to unassigned variables

• Forward checking propagates information from assigned to unassigned variables

• Forward checking propagates information from assigned to unassigned variables

• Forward checking propagates information from assigned to unassigned variables

Special cases

- General CSP problem is NP-Complete
- For perfect graphs, chordal graphs, interval graphs, the graph coloring problem can be solved in polynomial time
- Tree structured CSP can be solved in polynomial time

Thank you!