Results

Descriptives

Descriptives

	Sex
N	103
Missing	0

Frequencies

Frequencies of Sex

Sex	Counts	% of Total	Cumulative %
Male	52	50.5%	50.5%
Female	51	49.5%	100.0%

Plots

Sex

Descriptives

Descriptives

	Anxiety	Exam	Revise
N	103	103	103
Missing	0	0	0
Mean	74.3	56.6	19.9
Median	79.0	60.0	15.0
Standard deviation	17.2	25.9	18.2
Minimum	0.0560	2.00	0.00
Maximum	97.6	100	98.0
Skewness	-2.01	-0.373	2.01
Std. error skewness	0.238	0.238	0.238
Kurtosis	5.19	-0.852	4.77
Std. error kurtosis	0.472	0.472	0.472
Shapiro-Wilk W	0.822	0.955	0.804
Shapiro-Wilk p	<.001	0.002	<.001

Plots

Anxiety

Exam

Revise

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a numeric variable for Variable 2 / Independent Variables. Hence, the <u>Pearson correlation coefficient</u>, which is a measure for the strength of the linear relationship between two variables, seems to be a good option for you! In order to run this analysis in jamovi, go to: Regression > Correlation Matrix

- Drop your two variables in the white box at the right
- Under Correlation Coefficients, select Pearson (selected by default)
- Under Hypothesis, select your alternative hypothesis

Alternatively, you could perform a <u>linear regression analysis</u>. The test outcomes of both methods will be equivalent. Click on the links to learn more about these methods!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Scatterplot

Scatterplot

Scatterplot

Correlation Matrix

Correlation Matrix

		Revise	Exam	Anxiety
Revise	Pearson's r p-value	_		
Exam	Pearson's r p-value	0.397 *** <.001		
Anxiety	Pearson's r p-value	-0.709 *** <.001	-0.441 *** <.001	_ _

Note. * p < .05, ** p < .01, *** p < .001

Plot

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).