CSCE 633: Machine Learning

Lecture 23: Unsupervised Learning: Principal Component Analysis (PCA) and K-Means

Texas A&M University

10-16-19

Goals of this lecture

- PCA
- Clustering, K-Means

Dimensionality Reduction

Broad question

 How can we detect low dimensional structure in high dimensional data?

Motivations

- Exploratory data analysis & visualization: you can plot data now
- Compact representation: small memory/computational footprint, lossy data compression
- Robust statistical modeling: curse of dimensionality

What is curse of dimensionality

- In a high-dimensional space:
 - all intuition fails in higher dimensions
 - harder to generalize
 - harder to systematically search
 - harder to accurately approximate a target function
- On the positive side
 - "blessing of non-uniformity": examples aren't uniformly spread

What is curse of dimensionality

Example: a simple classification scheme (related to decision tree)

What is curse of dimensionality

Number of cells grows exponentially as dimensionality increases

r: number of divisions in each dimension

- Large number of cells, even if D is moderately large
- So to cover the whole space reasonably well, you need exponentially number of training data points

An overview of dimensionality reduction

Linear dimensionality reduction

- $\mathbf{x} \in \Re^D \to \mathbf{y} \in \Re^M$, $D \gg M$
- linear transformation of original space: $\mathbf{y} = \mathbf{U}^T \mathbf{x}$

An overview of dimensionality reduction

- Methods we have talked about so far use all predictors X_1, \cdots, X_p
- What if we transform them to a Z_1, \dots, Z_m that represent M < p linear combinations of our original p predictors?
- That is:

$$Z_m = \sum_{i=1}^p \phi_{jm} X_j$$

For constants $\phi_{1m}, \cdots, \phi_{pm}$ for $m = 1, \cdots, M$

Dimensionality reduction and Regression

We can use this in regression to fit:

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m Z_{im} + \epsilon_i$$

This results in constants $\beta_j=\sum_{m=1}^M\theta_m\phi_{jm}$ So dimension reduction gives same linear regression but constraints β

PCA

PCA: Population and Ads

- $Z_1 = 0.839 \times (pop p\bar{o}p) + 0.544 \times (ad \bar{ad})$
- $\phi_{11}=$ 0.839, $\phi_{21}=$ 0.544 are the principal component loadings
- What we want to do is maximize $Var(\phi_{11} \times (pop p\bar{o}p) + \phi_{21}(ad \bar{ad})$
- So each element i has $z_{i1} = 0.839 \times (pop_i p\bar{o}p) + 0.544 \times (ad_i \bar{ad})$, where the z_{11}, \dots, z_{n1} are the principal component scores

PCA Visuals

PCA: Challenges in Unsupervised Learning

- Learning patterns in data without supervised labels
- More Subjective
- No simple goal (prediction of response)
- Exploratory data analysis means no way to check if your answer is correct
- One can't do a bunch of 2D scatter plots $\binom{p}{2}$ plots

Principal Component Analysis (PCA): Representation

- Input: Data $\mathcal{D} = \{\mathbf{x_1}, \dots, \mathbf{x_N}\}$, $\mathbf{x_n} \in \Re^D$, centered inputs
- Output: Projected data $\{y_1, \dots, y_N\}$, $y_n \in \Re^M$, $D \gg M$
- Projection into subspace: $\mathbf{U} \in \Re^{D \times M}$

$$\mathbf{y_n} = \mathbf{U}^T \mathbf{x_n}$$
, $\mathbf{U}^T \mathbf{U} = \mathbf{I}$

- Evaluation metric: many possible metrics yielding the same solution
 - Derivation 1: Maximize captured variance
 - Derivation 2: Minimize projection error

B Mortazavi CSE

Matrix Diagonalization

- Converting a square matrix into a special type of matrix, i.e. diagonal, which shares the same fundamental properties of the underlying matrix
- A square matrix $\mathbf{A} \in \Re^{D \times D}$ can be decomposed into

$$\mathbf{A} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}^{-1}$$

• $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_D)$: diagonal constructed from eigenvalues of Λ

•
$$\mathbf{P} = \begin{bmatrix} | & | & | \\ \mathbf{e_1} & \dots & \mathbf{e_D} \\ | & | & | \end{bmatrix} \in \Re^{M \times M}$$
: matrix decomposed from the eigenvectors of \mathbf{A}

Principal Component Analysis (PCA): Optimization

• Compute covariance matrix

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^T \mathbf{X} = \frac{1}{N} \sum_{n} \mathbf{x_n} \mathbf{x_n}^T, \quad \mathbf{X} = \begin{bmatrix} & -\tilde{\mathbf{x}_1}^T - \\ & \vdots \\ & -\tilde{\mathbf{x}_N}^T - \end{bmatrix}$$

$$\mathbf{U} \in \Re^{D \times M}$$

• Diagonalize S, i.e. compute eigenvalues and eigenvectors

$$\mathbf{S} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} , \quad \mathbf{P} = \begin{bmatrix} | & & | \\ \mathbf{u_1} & \dots & \mathbf{u_D} \\ | & & | \end{bmatrix} \in \Re^{D \times D}$$

• Use the eigenvectors corresponding to the M largest eigenvalues

$$\mathbf{U} = \begin{bmatrix} | & & | \\ \mathbf{u_1} & \dots & \mathbf{u_M} \\ | & & | \end{bmatrix} \in \Re^{D \times M}$$

Principal Component Analysis (PCA): Optimization

• Compute covariance matrix

$$\mathbf{S} = \frac{1}{N} \mathbf{X}^T \mathbf{X} , \quad \mathbf{X} = \begin{bmatrix} & -\tilde{\mathbf{x}}_1^T - \\ & \vdots \\ & -\tilde{\mathbf{x}}_N^T - \end{bmatrix}$$

$$\mathbf{U} \in \Re^{D \times M}$$

important

Diagonalize S, i.e. compute eigenvalues and eigenvectors

$$\mathbf{S} = \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} , \quad \mathbf{P} = \begin{bmatrix} | & | \\ \mathbf{u_1} & \dots & \mathbf{u_D} \\ | & | \end{bmatrix} \in \Re^{D \times D}$$

• Use the eigenvectors corresponding to the M largest eigenvalues

$$\mathbf{U} = \begin{bmatrix} | & & | \\ \mathbf{u_1} & \dots & \mathbf{u_M} \\ | & & | \end{bmatrix} \in \Re^{D \times M}$$

Principal Component Analysis (PCA): Algorithm

- Step 0: Mean normalize input features
- Step 1: Compute covariance matrix $\mathbf{S} = \frac{1}{N} \mathbf{X}^T \mathbf{X} = \frac{1}{N} \sum_{n} \mathbf{x}_n \mathbf{x}_n^T$
- Step 2: Diagonalize **S** and find eigenvector matrix **P**
- Step 3: Take the first M ≪ D eigenvectors or principal components (corresponding to the M largest eigenvalues) and form reduced matrix U
- Step 3: Project data into reduced space: $\mathbf{z_n} = \mathbf{U}^T \mathbf{x_n}$

Principal Component Analysis (PCA)

Original Images

Eigenvectors

they look like blurred original images

Mean

$$\lambda_1 = 3.4 \cdot 10^5$$

$$\lambda_2 = 2.8 \cdot 10^5$$

$$\lambda_4 = 1.6 \cdot 10^5$$

Used to centralize inputs

Principal Component Analysis (PCA)

Applications of PCA

Preprocessing

Diagonalize data

$$oldsymbol{y}_i = oldsymbol{U}^{ ext{T}} oldsymbol{x}_i$$

Normalize data (whitening)

$$oldsymbol{y}_i = oldsymbol{\lambda}^{-1/2} oldsymbol{U}^{ ext{T}} oldsymbol{x}_i$$

Benefits:

- I) depress noisy features
- 2) couple with other models

Principal Component Analysis (PCA)

How to determined number of principal components *M*? Plot eigenspectrum

$$\frac{\sum_{d=1}^{M} \lambda_d}{\sum_{d=1}^{D} \lambda_d} \ge \text{threshold, where common choices are 95\%, 99\%}$$

B Mortazavi CSE

Clustering

Finding patterns/structure/sub-populations in data

Clustering

- find patterns/structure/sub-populations in data ("knowledge discovery")
- · training data does not include desired outputs
- less well-defined problem with no obvious error metrics
- topic modeling, market segmentation, clustering of hand-written digits, news clustering (e.g. Google news)

Representation Input: Data $\mathcal{D} = \{x_1, \dots, x_N\}$

Output: Clusters μ_1, \ldots, μ_K

Decision: Cluster membership, the cluster id assigned to sample

 x_n , i.e. $A(x_n) \in \{1, \dots, K\}$

Evaluation metric: Distortion measure

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x_n} - \boldsymbol{\mu_k}\|_2^2$$
, where $r_{nk} = 1$ if $A(\mathbf{x_n}) = k$, 0

otherwise

Intuition: Data points assigned to cluster k should be close to centroid μ_k

Evaluation Metric:

$$\min_{r_{nk}} J = \min_{r_{nk}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x_n} - \boldsymbol{\mu_k}\|_2^2$$

Optimization:

- Step 0: Initialize μ_k to some values
- Step 1: Assume the current value of μ_k fixed, minimize J over r_{nk} , which leads to the following cluster assignment rule

$$r_{nk} = \left\{ egin{array}{ll} 1, & ext{if } k = arg \min_j \|\mathbf{x_n} - \boldsymbol{\mu_j}\|_2^2 \\ 0, & ext{otherwise} \end{array}
ight\}$$

- Step 2: Assume the current value of r_{nk} fixed, minimize J over μ_k , which leads to the following rule to update the prototypes of the clusters $\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$
- Step 3: Determine whether to stop or return to Step 1

Remarks

- The centroid μ_k is the means of data points assigned to the cluster k, hence the name K-means clustering.
- The procedure terminates after a finite number of steps, as the procedure reduces *J* in both Step 1 and Step 2
- There is no guarantee the procedure terminates at the global optimum of J. In most cases, the algorithm stops at a local optimum, which depends on the initial values in Step 0 → random restarts to improve chances of getting closer to global optima

Example

Application: vector quantization

- We can replace our data points with the centroids μ_k from the clusters they are assigned to \to vector quantization
- We have compressed the data points into
 - a codebook of all the centroids $\{\mu_1, \ldots, \mu_K\}$
 - a list of indices to the codebook for the data points (created based on r_{nk})
- \bullet This compression is obviously lossy as certain information will be lost if we use a very small K

Question: vector quantization with K-means

Assume that the images bellow are created by vectoring the original image with K-means using different values of K. What is the correct combination?

Original Image

A)
$$K = 25$$
 $K = 10$

B)
$$K = 3$$

$$K = 10$$

$$K = 10$$

$$K = 3$$

Question: vector quantization with K-means

Assume that the images bellow are created by vectoring the original image with K-means using different values of K. What is the correct combination?

Original Image

A)
$$K = 25$$
 $K = 10$ $K = 3$

B)
$$K = 3$$
 $K = 10$

$$K = 10$$

$$K = 3$$

$$K - 3$$

K = 25

Probabilistic interpretation of clustering

- We want to find p(x) that best describes our data
- The data points seem to form 3 clusters
- However, we cannot model p(x) with simple and known distributions, e.g. one Gaussian

Probabilistic interpretation of clustering

- ullet Instead, we will model each region with a Gaussian distribution ullet Gaussian mixture models (GMMs)
- Question 1: How do we know which (color) region a data point comes from?
- Question 2: What are the parameters of Gaussian distributions in each region?
- We will answer both in an unsupervised way from data $\mathcal{D} = \{x_1, \dots, x_n\}$

Univariate Gaussian distribution

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Multivariate Gaussian distribution

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\varSigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\varSigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\varSigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

B Mortazavi CSE

Covariance matrix

- Covariance between two random variables X and Y $Cov(X,Y) = \mathbb{E}((X \mathbb{E}(X))(Y \mathbb{E}(Y))) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y)$
- The covariance matrix provides a way to summarize the covariances of all pairs of variables $(\Sigma)_{ii} = Cov(X_i, X_i)$
- ullet Σ is always positive definite

Isocontours

• For a function $f: \mathbb{R}^2 \to \mathbb{R}$ an isocontour is a set of the form $\{\mathbf{x} \in \mathbb{R}^2 : f(\mathbf{x}) = c\}$

The diagonal covariance case

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

$$oldsymbol{arSigma} = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

$$oldsymbol{arSigma} oldsymbol{arSigma} = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight] \qquad oldsymbol{arSigma} = \left[egin{array}{cc} 2 & 0 \ 0 & 1 \end{array}
ight]$$

$$\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Question: Which is correct in this non-diagonal covariance case?

Question: Which is correct in this non-diagonal covariance case? Correct answer is C

By increasing the off-diagonal elements from 0.5 to 0.8, the distribution is more and more thinly peaked along the line where x_1 is equal to x_2

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for x

$$p(\mathbf{x}) = \sum_{k=1}^K \omega_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

- K: number of Gaussians
- μ_k, Σ_k : mean & covariance of k^{th} component
- ω_k : component weights, how much component k contributes to the final distribution

$$\omega_k > 0 \;,\;\; orall k \;\; ext{ and } \;\; \sum_{k=1}^K \omega_k = 1$$

 ω_k can be represented by the prior distribution: $\omega_k = p(z = k)$, which decides which mixture to use

GMM as the marginal distribution of a joint distribution

- Consider the following joint distribution $p(\mathbf{x}, z) = p(z)p(\mathbf{x}|z)$
- z is a discrete random variable taking values between 1 and K, "selects" a Gaussian component
- We denote prior $\omega_k = p(z = k)$
- Assume Gaussian conditional distributions $p(\mathbf{x}|z=k) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$
- Then the marginal distribution of x is

$$p(\mathbf{x}) = \sum_{k=1}^{K} \omega_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})$$

(which is the Gaussian mixture model)

GMM as the marginal distribution of a joint distribution

• The joint distribution between x and z (representing color) are

$$p(\mathbf{x}|z = red) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$$

$$p(\mathbf{x}|z = blue) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

$$p(\mathbf{x}|z = green) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

• The marginal distribution is thus

$$p(\mathbf{x}) = p(red)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(blue)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) + p(green)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3)$$

Parameter estimation for GMMs: the easy case with complete data

We know the component in which each sample belongs to

- Data $\mathcal{D} = \{(\mathbf{x}_1, z_1), \dots, (\mathbf{x}_N, z_N)\}$
- We want to find $\theta = \{\mu_k, \Sigma_k, \omega_k\}$
- Maximum log-likelihood: $\theta^* = arg \max \log(p(\mathcal{D})|\theta)$

Solution

$$\omega_{k} = \frac{\sum_{n} \gamma_{nk}}{\sum_{k} \sum_{n} \gamma_{nk}} \quad \boldsymbol{\mu_{k}} = \frac{1}{\sum_{n} \gamma_{nk}} \sum_{n} \gamma_{nk} \mathbf{x_{n}}$$

$$\boldsymbol{\Sigma_k} = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\mathbf{x_n} - \boldsymbol{\mu_k}) (\mathbf{x_n} - \boldsymbol{\mu_k})^T$$

where $\gamma_{nk} = 1$ if $z_n = k$

Parameter estimation for GMMs: the easy case with complete data

Understanding the intuition

$$\omega_k = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}} \qquad \mu_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \mathbf{x_n}$$
$$\Sigma_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\mathbf{x_n} - \mu_k) (\mathbf{x_n} - \mu_k)^T$$

- For ω_k : count the number of data points whose z_n is k and divide by the total number of data points
- For μ_k : get all the data points whose z_n is k, compute their mean
- For Σ_k : get all the data points whose z_n is k, compute their covariance

Parameter estimation for GMMs: incomplete data

Trick: estimation with soft γ_{nk}

$$\gamma_{nk} = p(z_n = k | \mathbf{x_n})$$

$$\omega_k = \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}$$

$$\mu_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \mathbf{x_n}$$

$$\Sigma_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\mathbf{x_n} \mu_k) (\mathbf{x_n} \mu_k)^T$$

Every data point $\mathbf{x_n}$ is assigned to a component fractionally according to $p(z_n = k|\mathbf{x_n})$, also called responsibility

Parameter estimation for GMMs: incomplete data

Trick: estimation with soft γ_{nk}

Since we do not know θ to begin with, we cannot compute the soft γ_{nk} But we can invoke an iterative procedure and alternate between estimating γ_{nk} and using the estimated γ_{nk} to compute μ_k and Σ_k

- Step 0: guess θ with initial values
- Step 1: compute γ_{nk} using current θ
- Step 2: update θ using computed γ_{nk}
- Step 3: go back to Step 1

Questions: i) is this procedure correct, for example, optimizing a sensible criteria? ii) practically, will this procedure ever stop instead of iterating forever? The answer lies in the Expectation Maximization (EM) algorithm, a powerful procedure for model estimation with unknown data

Takeaways and Next Time

- PCA
- K-Means
- Next Time: More Unsupervised Learning