Foundations Probability: Multivariate Models

Wafaa Mohammed

Exercise 3.1. [Uncorrelated does not imply independent]

Let $X \sim U(-1,1)$ and $Y = X^2$. Clearly Y is dependent on X (in fact, Y is uniquely determined by X). However, show that $\rho(X,Y) = 0$. Hint: if $X \sim U(a,b)$ then E[X] = (a+b)/2 and $V[X] = (b-a)^2/12$.

Solution.

$$E[X] = \frac{a+b}{2} = 0, V[X] = \frac{(b-a)^2}{12} = \frac{1}{3}$$

$$\rho(X,Y) = \frac{Cov[X,Y]}{\sqrt{V[X]V[Y]}} (1)$$

$$Cov[X,Y] = E[XY] - E[X]E[Y]$$

$$Cov[X,Y] = E[X^3] - E[X]E[X^2] (2)$$

using $E[g[X]] = \int_a^b p(X) g(X) dx$ and the fact that the density for a uniformly distributed variable $= \frac{1}{b-a}$ which is equal to $\frac{1}{2}$ for X:

$$E[X^{2}] = \int_{-1}^{1} \frac{1}{2} X^{2} dx = \frac{X^{3}}{6} \Big|_{-1}^{1} = \frac{1}{3}$$

$$E[X^3] = \int_{-1}^{1} \frac{1}{2} X^3 dx = \frac{X^4}{8} \Big|_{-1}^{1} = 0$$

Substituting in 2:

$$Cov[X,Y] = 0 - 0 * \frac{1}{3} = 0$$

$$V[Y] = E[Y^2] - (E[Y])^2$$

$$E[Y^2] = E[X^4] = \int_{-1}^{1} \frac{1}{2} X^4 dx = \frac{X^5}{10} \Big|_{-1}^{1} = \frac{1}{5}$$

$$V[Y] = \frac{1}{5} - (\frac{1}{3})^2 = \frac{4}{45}$$

Substituting in 1: $\rho(X,Y) = \frac{0}{\sqrt{\frac{1}{2}*\frac{4}{45}}} = 0$