

正弦稳态电路的功率守恒

$$\Psi$$
 平均功率守恒: $P = \sum P_k = \sum R_k I_k^2$

4 无功功率守恒:
$$Q = \sum_{k} Q_{k} = \sum_{k} X_{k} I_{k}^{2} = \sum_{k} (X_{k} - X_{k}) I_{k}^{2}$$

$$♣$$
 视在功率不守恒: $S \neq \sum S_k$

目录

- 5.1 非正弦周期交流电路的分析和计算
- 5.2 RC串联电路的频率特性
- 5.3 RC串/并联电路的频率特性
- 5.4 RLC串联电路的频率特性与串联谐振
- 5.5 LC并联电路的频率特性

◆ 电力工程和电子工程中,除了遇到前面已经讨论的直流与 正弦信号激励外,还会遇到激励和响应随时间不按正弦 规律变化的电路,如电信工程方面传输的各种信号大多 就是按非正弦规律变动的。

- ▲非正弦周期交流信号的特点:
 - ♣ 不是正弦波
 - ♣ 按周期规律变化

非正弦周期交流电路

- +非正弦周期信号的产生:
 - ♣ 信号发生器
 - ♣ 电路中有非线性元件
 - ♣ 由不同频率的正弦信号共同作用等
- ▲ 半波整流电路的输出信号

5.1 非正弦周期交流电路的分析和计算

1. 非正弦周期信号

任何一个满足狄利赫利条件的非正弦周期信号f(t), 均可以分解成傅里叶级数。

- → 狄里赫利(Dirichlet)条件:
- 1. 在一个周期内只含有有限个第一类不连续的点
- 2. 在一个周期内只含有有限个极值点
- 3. 在一个周期内函数绝对值的积分为有限值:

$$\int_0^T \left| f(t) \right| dt < \infty$$

$$f(t) = F_0 + \sum_{k=1}^{\infty} F_{km} \sin(k\omega t + \psi_k)$$

1. 非正弦周期信号

- → 设一个非正弦周期信号(函数)都可以分解为:
 - 一个恒定分量与一系列不同角频率的正弦量之和

$$f(t) = F_0 + \sum_{k=1}^{\infty} F_{km} \sin(k\omega t + \psi_k)$$

 F_0 — 恒定分量(直流分量): f(t) 在一周内的平均值

$$F_{1m} \sin(\omega t + \psi_1)$$
:基波,一次谐波: $\omega = \frac{2\pi}{T}$ 为基波频率

 $F_{km} \sin(k\omega t + \psi_k)$:高次谐波 $(k = 2, 3, \dots)$: $k\omega$ 为 k 次谐波角频率

展开式可用公式计算或查表

1. 非正弦周期信号

$$u_{s}(t) = U_{0} + \sum_{k=1}^{\infty} U_{km} \sin(k\omega t + \psi_{k}) = U_{0} + u_{1}(t) + u_{2}(t) + \cdots$$

■ 分析方法: 谐波分析法

- ↓ 1.根据线性电路的叠加原理,非正弦周期信号作用下的线性电路稳态响应可以视为一个恒定分量和无穷多个正弦分量单独作用下各稳态响应分量之叠加。因此,非正弦周期信号作用下的线性电路稳态响应分析可以转化成直流电路和正弦电路的稳态分析
- ♣ 2. 应用电阻电路计算方法计算出恒定分量作用于线性电路 时的稳态响应分量

利用直流稳态方法: C — 断路, L — 短路

♣ 3. 应用相量法计算出不同频率正弦分量作用于线性电路时的稳态响应分量

各次谐波单独作用时,利用相量法: $X_{Lk} = k\omega L$, $X_{Ck} = \frac{1}{k\omega C}$

♣ 4. 对各分量在时间域(瞬时值形式)进行叠加,即可得到 线性电路在非正弦周期信号作用下的稳态响应

2. 非正弦周期电流电路分析

中 例: 已知 $R = \omega L = \frac{1}{\omega C} = 2\Omega$, $u(t) = (10 + 100 \sin \omega t + 40 \sin 3\omega t) V$,

求: $i(t), i_L(t), i_C(t)$

$$I_{L0} = 5 A, I_{C0} = 0 A, I_{0} = 5 A$$

$$I_{L1} = 25 \angle -45^{\circ} A$$
, $I_{C1} = 25 \angle 45^{\circ} A$, $I_{1} = 25 \sqrt{2} A$

$$I_{L2} = 4.5 \angle -71.6^{\circ} A$$
, $I_{C2} = 13.5 \angle 18.4^{\circ} A$, $I_{2} = 14.2 \angle -0.04^{\circ} A$

2. 非正弦周期电流电路分析

求: $i(t), i_L(t), i_C(t)$

$$i_L(t) = \left[5 + 25\sqrt{2}\sin(\omega t - 45^\circ) + 4.5\sqrt{2}\sin(3\omega t - 71.6^\circ)\right]A$$

$$i_C(t) = \left[25\sqrt{2}\sin(\omega t + 45^\circ) + 13.5\sqrt{2}\sin(3\omega t + 18.4^\circ)\right]A$$

$$i(t) = \left[5 + 50 \sin \omega t + 14.2 \sqrt{2} \sin(3\omega t - 0.04^{\circ}) \right] A$$

2. 非正弦周期电流电路分析

4 例: 已知 $u_s(t) = (2 + 10 \sin 5t) V, i_s(t) = 4 \sin 4t A, 求: i_L(t)$

$$i_L(t) = \left[2 + 0.4\sin(5t - 168.2^{\circ}) + 0.3\sin(4t - 165.1^{\circ})\right]A$$

3. 非正弦周期量的有效值

- ▲ 幅值: 峰值
- + 平均值: $F_0 = \frac{1}{T} \int_0^T f(t) dt$
- ♣ 周期量有效值的定义: $F \triangleq \sqrt{\frac{1}{T}} \int_0^T f^2(t) dt$

3. 非正弦周期量的有效值

- + 非正弦周期量: $f(t) = F_0 + \sum_{k=1}^{\infty} F_{km} \sin(k\omega t + \psi_k)$
- + 将f(t)代入有效值定义式,并利用三角函数的正交性:

$$i, \quad \frac{1}{T} \int_0^T F_0^2 dt = F_0^2$$

$$F \triangleq \sqrt{\frac{1}{T} \int_0^T f^2(t) dt}$$

$$ii, \quad \frac{1}{T} \int_0^T 2F_0 F_{km} \sin(k\omega t + \psi_k) dt = 0$$

iii,
$$\frac{1}{T} \int_{0}^{T} F_{km}^{2} \sin^{2}(k\omega t + \psi_{k}) dt = \frac{F_{km}^{2}}{2} \triangleq F_{k}^{2}$$
 $F_{km} = \sqrt{2}F_{k}$
iv, $\frac{1}{T} \int_{0}^{T} 2F_{km} \sin(k\omega t + \psi_{k}) F_{qm} \sin(q\omega t + \psi_{q}) dt = 0 \quad (k \neq q)$

3. 非正弦周期量的有效值

▲ 非正弦周期电流的有效值:

$$I = \sqrt{I_0^2 + I_1^2 + I_2^2 + I_3^2 \dots} = \sqrt{I_0^2 + \sum_{K=1}^{\infty} I_k^2}$$

▲ 非正弦周期电压的有效值:

$$U = \sqrt{U_0^2 + U_1^2 + U_2^2 + U_3^2 + \dots} = \sqrt{U_0^2 + \sum_{K=1}^{\infty} U_k^2}$$

- ↓ 以上两式表明,非正弦周期电流或电压的有效值为其直流 分量和各次谐波分量有效值的平方和的平方根
- ▲ 注意: 使用公式时一定要准确

$$I = \sqrt{2^2 + 6^2 + 4^2} = \sqrt{56} = 7.5 A$$

非正弦周期电流电路的平均功率

→ 如图所示一端口N的端口电压u(t)和电流i(t)的关联参考 方向下,一端口电路吸收的瞬时功率和平均功率为:

$$p(t) = u(t) \times i(t), P = \frac{1}{T} \int_0^T p(t)dt$$

■ 非正弦周期电流电路的平均功率

→ 一端口电路的端口电压u(t)和电流i(t)均为非正弦周期量, 其傅里叶级数形式分别为:

$$u(t) = U_0 + \sum_{k=1}^{\infty} U_{km} \sin(k\omega t + \psi_{uk})$$

$$i(t) = I_0 + \sum_{k=1}^{\infty} I_{km} \sin(k\omega t + \psi_{ik})$$

▲ 在图示关联参考方向下,一端口电路吸收的平均功率:

$$P = \frac{1}{T} \int_0^T p(t) dt = \frac{1}{T} \int_0^T u(t) \times i(t) dt$$

■ 非正弦周期电流电路的平均功率

▲ 将上式进行积分,并利用三角函数的正交性:

$$i, \quad \frac{1}{T} \int_0^T U_0 I_0 dt = U_0 I_0 \triangleq P_0$$

$$ii, \quad \frac{1}{T} \int_0^T U_0 I_{km} \sin(k\omega t + \psi_{ik}) dt = 0$$

iii,
$$\frac{1}{T} \int_0^T I_0 U_{km} \sin(k\omega t + \psi_{uk}) dt = 0$$

$$iv, \quad \frac{1}{T} \int_0^T U_{km} \sin(k\omega t + \psi_{uk}) \times I_{km} \sin(k\omega t + \psi_{ik}) dt$$

$$= \frac{U_{km} I_{km}}{2} \cos(\psi_{uk} - \psi_{ik}) = U_{k} I_{k} \cos \varphi_{Zk} \triangleq P_{k}$$

$$v, \quad \frac{1}{T} \int_0^T U_{km} \sin(k\omega t + \psi_{uk}) \times I_{qm} \sin(q\omega t + \psi_{iq}) dt = 0 \ (k \neq q)$$

故:
$$P = P_0 + \sum_{k=1}^{\infty} P_k = U_0 I_0 + \sum_{k=1}^{\infty} U_k I_k \cos \varphi_{Zk}$$

- 上式表明:不同频率的电压与电流只构成瞬时功率,不能构成平均功率,只有同频率的电压与电流才能构成平均功率
- ↓ 电路的平均功率等于直流分量和各次谐波分量各自产生的平均功率之和,即平均功率守恒

→ 若某电阻中流过的非正弦周期电流的有效值为I,显然, 该电阻吸收的平均功率为:

$$P = P_0 + \sum_{k=1}^{\infty} P_k = RI_0^2 + \sum_{k=1}^{\infty} RI_k^2 = RI^2$$

→ 例: 已知一端口电路的端口电压u(t)和电流i(t)均为非正弦周期量,其表达式分别为:

$$u(t) = 10 + 100 \sin \omega t + 40 \sin(2\omega t + 30^{\circ}) \text{ V}$$

$$i(t) = 2 + 4\sin(\omega t + 60) + 2\sin(3\omega t + 45)$$
 A

求一端口电路吸收的平均功率P=?

$$P = 10 \times 2 + \frac{100 \times 4}{2} \cos(0^{\circ} - 60^{\circ}) = 120 \text{ W}$$

lack la

$$R = 16\Omega, U_{AB} = U$$

电路如图所示,试求电压U和电阻R的值。

 $R = 10\Omega, U = 13 \text{ V}$

电路如图所示,含源线性二端网络Ns的端口 $U\sim I$ 关系如图(b)所示,试求图(a)中的电流I。

I = -2.2 A

目录

- 5.1 非正弦周期交流电路的分析和计算
- 5.2 RC串联电路的频率特性
- 5.3 RC串/并联电路的频率特性
- 5.4 RLC串联电路的频率特性与串联谐振
- 5.5 LC并联电路的频率特性

$$U_{2} = \frac{U_{1}}{1 + j\omega R C}$$

▲ 网络函数:

$$= |N(j\omega)| \angle \varphi(\omega)$$

$$\varphi(\omega)^{\sim}\omega$$
 — 相频特性

$$N(j\omega) = \frac{U_2}{U_1} = \frac{1}{1 + j\omega RC} = \frac{1}{\sqrt{1 + (\omega RC)^2}} \angle - \arctan \omega RC$$

$$|N(j\omega)| = \frac{U_2}{U_1} = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$N(j\omega) = \frac{U_2}{\cdot \cdot \cdot}$$

$$U_1$$

$$= \frac{1}{\sqrt{1 + (\omega R C)^2}} \angle - \arctan \omega R C$$

$$\varphi(\omega) = -\arctan \omega R C$$

RC低通滤波器

 ω_c : 截止角频率

→ 电路作用:

滤掉输入信号的高频成分,通过低频成分。

RC高通滤波器

$$N(j\omega) = \frac{U_2}{\cdot} = \frac{j\omega RC}{1 + j\omega RC}$$

$$U_1$$

滤掉输入信号的低频成分, 通过高频成分。

$$|N(j\omega)| = \frac{U_2}{U_1} = \frac{\omega R C}{\sqrt{1 + (\omega R C)^2}}$$

$$\varphi(\omega) = 90^{\circ} - \arctan \omega R C$$

◆ 非正弦周期电流电路的分析。

