Metoda konečných prvků

Matěj Popďakunik

April 2, 2023

1 Úvod

not sure if II is referencing the right thing

1.1 Značení

- $\Omega \subset \mathbb{R}^n$ omezená oblast
- $\partial\Omega$ Liepschitzovská oblast lze pokrýt konečně mnoha grafy Liepschitzovských zobrazení, tj. $(|\phi(x) \phi(y)| < L||x y||)$
- $\bar{\Omega}$ uzávěr oblasti Ω
- $\mathcal{C}^{(k)}(\Omega)$ spojité funkce s derivacemi do k-tého řádu spojité na Ω
- $\mathcal{C}^{(\infty)}(\Omega)$ hladké funkce na Ω
- $\mathcal{C}_0^{(\infty)}(\Omega)$ hladké funkce na Ω s kompaktním nosičem
- $f \in \mathcal{C}^{(k)}(\Omega), \frac{\partial^{|\alpha|}}{\partial^{\alpha_1} x_1 \partial^{\alpha_2} x_2 ... \partial^{\alpha_n} x_n} f = \mathcal{D}^{\alpha}, \alpha = [\alpha_1, \alpha_2, ..., \alpha_n], |\alpha| = \sum_i \alpha_i$

Lebesgueovy prostory

- $\mathbb{L}_p(\Omega) = \{f : \Omega \mapsto \mathbb{R} | \text{měriteln\'e}, \int_{\Omega} |f(x)|^p dx < +\infty \} \ p \in \{1, +\infty\}$
- $\mathbb{L}_{\infty}(\Omega) = \{f: \Omega \mapsto \mathbb{R} | \text{měřiteln\'e}, (\exists K > 0)(s.v.x \in \Omega)(|f(x)| \leq K) \}$

1.2 Vztahy

Věta 1.1 (Minkowského nerovnost)

$$\left(\int_{\Omega} |f(x) + g(x)|^p dx\right)^{\frac{1}{p}} \le \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}} + \left(\int_{\Omega} |g(x)|^p dx\right)^{\frac{1}{p}} \tag{1}$$

Věta 1.2 (Holderova nerovnost)

$$Nech\check{t}\left(\frac{1}{p} + \frac{1}{q} = 1\right), f \in \mathbb{L}_p(\Omega), g \in \mathbb{L}_q(\Omega)$$

$$\int_{\Omega} |f(x)g(x)| dx \le \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}} * \left(\int_{\Omega} |g(x)|^q dx\right)^{\frac{1}{q}} \tag{2}$$

Věta 1.3 (Vnoření
$$L_p$$
 prostorů)
 $p_2 > p_1 \ge 1 \implies \mathbb{L}_{p_2}(\Omega) \subset \mathbb{L}_{p_1}(\Omega)$

 $D\mathring{u}kaz$:

$$\int_{\Omega} |f(x)|^{p_1} dx \le \text{Holder } (2) \le \left(\int_{\Omega} (|f(x)|^{p_1})^{\frac{p_1}{p_2}} \right)^{\frac{p_1}{p_2}} * \left(\int_{\Omega} 1^q dx \right)^{\frac{1}{q}}$$

$$\int_{\Omega} |f(x)|^{p_1} dx \le \left(\int_{\Omega} |f(x)|^{p_2} \right)^{\frac{p_1}{p_2}} * |\Omega|$$

$$\int_{\Omega} |f(x)|^{p_1} dx \le |\Omega| \int_{\Omega} |f(x)|^{p_2}$$

Sobolevovy prostory 1.3

 $\mathbb{D}=\mathcal{C}^{(\infty)}(\Omega)$

norma:
$$||u||_{W_p^{(k)}(\Omega)} = \sum_{|\alpha| \le K} ||D^{\alpha}u||_{\mathbb{L}_p(\Omega)}$$

normovaný prostor:
$$S_p^{(k)}(\Omega) = (\mathbb{D}; ||.||_{V^{(k)}(\Omega)})$$

normovaný prostor: $S_p^{(k)}(\Omega)=(\mathbb{D};||.||_{V_p^{(k)}(\Omega)})$ Tento prostor není úplný, proto použijeme standartní zúplňovací proceduru a dostaneme: $\mathbb{W}_p^{(k)}(\Omega)$

Obdobně můžeme postupovat pro $\mathbb{D}=\mathcal{C}_0^{(\infty)}(\Omega)$ a dostaneme $\mathbb{W}_p^{0(k)}(\Omega)$

Věta 1.4 (Věta o stopách)

 Ω - omezená oblast, $\partial\Omega$ - Liepschitzovská

$$\exists_1 T: \mathbb{W}_2^{(1)}(\Omega) \mapsto \mathbb{L}_p(\partial\Omega)$$
, omezený lineární operátor tak, že $\forall f \in C(\bar{\Omega}), Tf = f/\partial\Omega$

2 Okrajová úloha

 $\Omega \subset \mathbb{R}^n$ - omezená oblast, $\partial \Omega$ - Liepschitzovská

$$-\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + q(x) * u = f \quad \text{v } \Omega$$
 (3)

$$u|_{\Gamma_0} = g_0$$
 na Γ_0 (Dirichletova část) (4)

$$\sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_j} |_{\Gamma_1} = g_1 \quad \text{na } \Gamma_1 \quad \text{(Neumannova část)} \quad (5)$$

2.1 Výchozí vlastnosti

- $f, g \in \mathcal{C}(\bar{\Omega})$
- $a_{ij} \in \mathcal{C}^{(1)}(\bar{\Omega})$
- $g_{0,1} \in \mathcal{C}(\partial\Omega)$

2.2 Silně eliptický operátor

 $(\exists C_0>0)(\forall \xi\in\mathbb{R}^n)(\forall x\in\Omega)(\sum_{i,j=1}^n a_{ij}(x)\xi^i\xi^j\geq c_0\sum_{i=1}^n |\xi^i|^2)$ Klasické řešení 2 je funkce $u\in\mathcal{C}^{(2)}(\bar\Omega)$ splňující 2 bodově.

2.3 Slabá formulace

Vezmeme 3 a +- ji přenásobíme testovací funkcí Nechť $i \in \mathcal{C}^{(2)}(\bar{\Omega}), v \in \mathcal{C}^{(\infty)}(\bar{\Omega}), v|_{\Gamma_0=0}$

$$-\int_{\Omega} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij}(x) \frac{\partial u}{\partial x_{j}} \right) dx + \int_{\Omega} q(x) * u * v dx = \int_{\Omega} f * v dx \qquad (6)$$

Na první člen použijeme Greenovu identitu

$$-\int_{\Omega} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_{j}} N_{i} v \, dS + \int_{\Omega} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} \, dx + \int_{\Omega} q(x) * u * v \, dx = \int_{\Omega} f * v \, dx \quad (7)$$

První člen díky (4) a (5) upravíme na $-\int_{\Gamma_1}g_1v\ dS$ a pak ho přesuneme na druhou stranu.

Dostaneme:

$$\int_{\Omega} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} dx + \int_{\Omega} q(x) * u * v dx = \int_{\Omega} f * v dx + \int_{\Gamma_{1}} g_{1} v dS$$
 (8)

První část označme a(u, v) a druhou $\tilde{F}(v)$

$$a(u,v) = \tilde{F}(v)$$

a použijeme $w \in \mathbb{W}_2^{(1)}(\Omega): Tw|_{\Gamma_0} = g_0: u = w + z$. A tedy:

$$a(z, w) = F(v) - a(w, v)$$

are correct

a označme
$$V = \left\{ z \in \mathbb{W}_2^{(1)}(\Omega) | Tz|_{\Gamma_0} = 0 \right\}$$

Věta 2.1

Funkce $u \in \mathbb{W}_2^{(1)}(\Omega)$ je slabé řešení 2, pokud $(\exists w \in \mathbb{W}_2^{(1)}(\Omega))(Tw|_{\Gamma_0} = g_0), u = w + z$ a z je řešení variační úlohy $(\forall v \in V)(a(z,v) = F(v))$

Poznámka. Pro zajištění existence řešení:

$$a_{ij} \in L_{\infty}(\Omega), q \in L_{\infty}(\Omega), f \in L_2(\Omega), g_1 \in L_2(\Gamma_1), g_0 \in T(\mathbb{W}_2^{(1)}(\Omega))$$

Věta 2.2 (Lax-Milgramova věta)

Nechť V je Hilbertův prostor, $a(\cdot,\cdot)$ je bilineární forma, F je spojitý lineární funkcionál na V a platí:

1.
$$a(\cdot, \cdot)$$
 je omezená: $(\exists K > 0)(\forall u, v \in V)(|a(u, v)| < K||u||||v||)$

2.
$$a(\cdot,\cdot)$$
 je V-eliptická: $(\exists \alpha > 0)(\forall v \in V)(a(u,u) > \alpha||u||^2)$

$$Pak \ (\exists_1 z \in V) (\forall v \in V) (a(z, v) = F(v))$$

Poznámka. Splnění požadavků Lax-Milgramovy věty:

• F je spojitý, lineární:

$$|F(v)| = |-a(w,v) + \int_{\omega} f(x)v dx + \int_{\Gamma_1} g_1(x)v \ dS|$$

- a(w,v)je dáno vlastnosti $a(\cdot,\cdot)$
- $\begin{array}{l} |\int_{\omega} f(x)v dx| \leq \left(\int_{\Omega} |f(x)|^2 \ dx \right)^{\frac{1}{2}} \left(\int_{\Omega} |v(x)|^2 \ dx \right)^{\frac{1}{2}} = \\ = ||f||_{L_2(\Omega)} ||v||_{L_2(\Omega)} \end{array}$

$$- |\int_{\Gamma_1} g_1(x)v \ dS| \le \left(\int_{\Gamma_1} |g_1(x)|^2 \ dS \right)^{\frac{1}{2}} \left(\int_{\Gamma_1} |Tv(x)|^2 \ dS \right) =$$

$$= ||g_1||_{L_2(\Gamma_1)} \times K_t ||v||_{\mathbb{W}_2^{(1)}(\Omega)}$$

• $a(\cdot, \cdot)$ je omezená:

$$|a(u,v)| = \left| \int_{\Omega} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} + q(x)uv \ dx \right| \leq$$

$$\leq K_{a,q} \left(\sum_{i,j=1}^{n} \left| \left| \frac{\partial u}{\partial x_{j}} \right| |_{L_{2}(\Omega)} \right| \left| \left| \frac{\partial v}{\partial x_{i}} \right| |_{L_{2}(\Omega)} + ||u||_{L_{2}(\Omega)} ||v||_{L_{2}(\Omega)} + \right) \leq$$

$$\leq K_{a,q}(u^{2} + 1) ||u||_{\mathbb{W}_{2}^{(1)}(\Omega)} ||v||_{\mathbb{W}_{2}^{(1)}(\Omega)}$$

• $a(\cdot, \cdot)$ je V-eliptická: $a(u, u) = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_j} \frac{\partial u}{\partial x_i} + q(x)u^2 dx = (chybibarevne) \implies$ $\implies a(n, n) \ge c_0 \sum_{i=1}^{n} \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^2 dx + d_0 \int_{\Omega} |i|^2 dx \ge$ $\ge min\{c_0, d_0\} ||u||^2_{\mathbb{W}_2^{(1)}(\Omega)}$ chybi barevne

2.4 Galerkinova metoda

Galerkinova metoda pro přibližné řešení variační úlohy 2.3 $(\forall v \in V)(a(z, v) = F(v))$

Nechť $V_h \subset\subset V$ je konečně-rozměrný podprostor V a hledáme aproximaci z_h řešení z úlohy 2.3 v prostoru V_h tak, aby $(\forall v \in V_n)(a(z_n, v) = F(v))$

Poznámka. Řešení 2.4 jednoznačně existuje díky Laxově-Milgramově větě.

Poznámka. Budeme zkoumat chybu Galerkinovy metody (později v kontextu MKP): $z-z_n$

Věta 2.3 (Céova)

Nechť pro a(.,.) a F platí výše uvedené předpoklady a z řeší 2.3 . Pak pro řešení z_h úlohy 2.4 platí

$$||z_h - z||_V \le \frac{K}{\alpha} \min\{||z - v||_V | v \in V_h\}$$

$$\tag{9}$$

Důkaz:

Z 2.3 a 2.4 platí $a(z,v) = F(v) \land a(z_h,v) = F(v)$ pro $v \in V_h \implies a(z,v) - a(z_h,v) = 0 \implies a(z-z_h,v) = 0$

Platí že $a(\cdot, \cdot)$ je V-eliptická:

r habi ze
$$a(z)$$
 je v emputada. $\alpha ||z-z_h||_v^2 \le a(z-z_h,z-z_h) = \text{vkládáme } v \in V_h = a(z-v,z-z_h) + a(v-z_h,z-z_h) = (\star)$

Platí že $z-v\in V$ a $v-z_h\in V_h$, dále vidíme že druhý sčítanec je 0 díky prvnímu řádku důkazu.

$$\begin{array}{l} (\star) \leq a(z-v,z-z_h) \leq K||z-v||_V||z-z_h||_V \implies \\ \Longrightarrow \alpha ||z-z_h||_V \leq K||z-v||_V \forall v \in V_h \text{ (konečně rozměrný)} \implies \\ \Longrightarrow ||z-z_h||_V \leq \frac{K}{\alpha} min\{||z-v||_V | v \in V_h\} \end{array}$$

Tady možná ten obrázek koule lol

2.5 Postup MKP pro řešení 2 na konkrétní oblasti

Z 2.3 máme $a(z, v) = F(v) \forall v \in V$

- 1. Diskretizace Ω
 - $\bullet\,$ základní rozdělení Ω podle jejího tvaru
 - Pravidlo zjemňování, např. podle středů stran
- 2. Konstrukce prostrou V_h určíme bázi $V_h = [\phi_1, \phi_2, ..., \phi_n]_{\lambda}$, kde ϕ_j budou po částech lineární (nebo později polynomiální) tak, aby ϕ_j byly = 1 v jednom uzlu a = 0 ve všech ostatních

- Zároveň platí že $supp\phi_j\cap\phi_k\neq\emptyset$ pro sousední uzly
- - tj. hledáme $z_n=\sum_{j=1}^D\alpha_j\phi_j$ a za v dosadíme $\phi_l, l=1,2...,D\Longrightarrow a(\sum_{j=1}^D\alpha_j\phi_j,\phi_l)=F(\phi_l), l=1,...,D$
 - $\bullet \implies (\alpha_j)_{j=1}^D$ nalezneme ze soustavy lineárních rovnic:

$$\sum_{j=1}^{D} \alpha_j a(\phi_j, \phi_k) = F(\phi_l) \tag{10}$$

- kde $a(\phi_j, \phi_k) = \int_{\Omega} \sum_{i,k=1}^{2} a_{ik}(x) \frac{\partial \phi_j}{\partial x_i} \frac{\partial \phi_l}{\partial x_k} + q(x) \phi_j \phi_l \ dx = 0$ pro $(supp \phi_j)^{\circ} \cap (supp \phi_k)^{\circ} = \emptyset$
- \implies matice soustavy 10je řídká.

Možná vyměň obrázky

(a) Diskretizace Ω Bíla je původní oblast, žlutě základní rozdělení, červeně zjemnění

(b) Vztah ϕ_i a ϕ_k

(c) Graf funkce ϕ_j

Obrázek 1

Vlastnost aproximace z_h :

$$z_h(x_J) = \sum_{j=1}^{D} \alpha_j \phi_j(x_j) = \sum_{j=1}^{D} \alpha_j \delta_{jJ} = \alpha_J$$
(11)

Poznámka (Zpracování zaoblených částí $\partial\Omega$).

Buď se modré částí z 2a se převedou pomocí konformních zobrazení na \triangle nebo tvar Ω aproximujeme polygonem, viz 2b

(a) Příklad zaoblené oblasti

(b) Aproximace zaoblení trojúhelníky

Obrázek 2

Příklad (MKP v 1D). Okrajová úloha (tj. 2)

$$-(p(x)u')' + q(x)u = f(x), na(a, b)$$
(12)

$$u(a) = 0, u'(b) = 0 (13)$$

Variační formulace (tj. 2.3):

$$a(u,v) = \int_a^b p(x)u'v' + q(x)uv \ dx, F(v) = \int_a^b f(x)v \ dx \implies$$

$$\implies V = \{v \in \mathbb{W}_2^{(1)}(a,b)|v|_{x=a} = 0\}, a(u,v) = F(v) \forall v \in V \quad (14)$$

MKP pro 14: (a,b) dělíme stejnoměrně (viz obrázek 3b) kde $h=\frac{b-a}{D}$ Dostáváme funkce ϕ_k jako v obrázku 3a Z toho vidíme že platí:

$$a(\phi_{j}, \phi_{l}) = \begin{cases} 0 & \text{pro } l \neq j - 1, j, j + 1\\ \int_{x_{j-1}}^{x_{j+1}} & \\ \int_{x_{j}}^{x_{j}} & \text{pro } l = j - 1\\ \int_{x_{j}}^{x_{j+1}} & \text{pro } l = j + 1 \end{cases}$$

$$(15)$$

- (a) Funkce ϕ_k na 1D oblasti
- (b) Příklad diskretizace 1D oblasti

Obrázek 3

Tvar bazické funkce:

$$\phi_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}} & \text{na} < x_{j-1}, x_{j} > \\ \frac{x_{j+1} - x}{x_{j+1} - x_{j}} & \text{na} < x_{j}, x_{j+1} > \\ 0 & \text{jinak} \end{cases}$$
(16)

Pak:

$$a(\phi_{j}, \phi_{j}) = \int_{x_{j-1}}^{x_{j}} p(x) \left(\frac{1}{x_{j} - x_{j-1}}\right)^{2} + q(x) \left(\frac{x - x_{j-1}}{x_{j} - x_{j-1}}\right)^{2} dx + \int_{x_{j}}^{x_{j+1}} p(x) \left(\frac{-1}{x_{j+1} - x_{j}}\right)^{2} + q(x) \left(\frac{x_{j+1} - x_{j}}{x_{j+1} - x_{j}}\right)^{2} dx \quad (17)$$

$$a(\phi_{j}, \phi_{j-1}) = \int_{x_{j-1}}^{x_{j}} p(x) \left(\frac{1}{x_{j} - x_{j-1}}\right) \left(\frac{-1}{x_{j} - x_{j-1}}\right) + q(x) \left(\frac{x - x_{j-1}}{x_{j} - x_{j-1}}\right) \left(\frac{x_{j} - x}{x_{j} - x_{j-1}}\right) dx \quad (18)$$

$$a(\phi_{j}, \phi_{j+1}) = \int_{x_{j}}^{x_{j+1}} p(x) \left(\frac{-1}{x_{j+1} - x_{j}}\right) \left(\frac{1}{x_{j+1} - x_{j}}\right) + q(x) \left(\frac{x_{j+1} - x_{j}}{x_{j+1} - x_{j}}\right) \left(\frac{x - x_{j}}{x_{j+1} - x_{j}}\right) dx \quad (19)$$

Použijeme substituci:

$$y = \frac{x - x_{j-1}}{x_j - x_{j-1}} \text{na} \langle x_{j-1}, x_j \rangle \mapsto \langle 0, 1 \rangle$$
 (20)

$$y = \frac{x_{j+1} - x}{x_{j+1} - x_j} \text{na} \langle x_j, x_{j+1} \rangle \mapsto \langle 0, 1 \rangle$$
 (21)

Pak:

Byla chyba na tabuli v

$$a(\phi_{j}, \phi_{j}) = \int_{0}^{1} p((x_{j} - x_{j-1})y + x_{j-1}) \frac{dy}{x_{j} - x_{j-1}} + \int_{0}^{1} q((x_{j} - x_{j-1})y + x_{j-1})y^{2}(x_{j} - x_{j-1}) dy - \int_{0}^{1} p(-(x_{j+1} - x_{j})y + x_{j+1}) \frac{dy}{x_{j+1} - x_{j}} - \int_{0}^{1} q(-(x_{j+1} - x_{j})y + x_{j+1})y^{2}(x_{j+1} - x_{j}) dy$$
 (22)

$$a(\phi_{j}, \phi_{j-1}) = -\int_{0}^{1} p((x_{j} - x_{j-1})y + x_{j-1}) \frac{dy}{x_{j} - x_{j-1}} - \int_{0}^{1} q((x_{j} - x_{j-1})y + x_{j-1})y(1 - y)(x_{j} - x_{j-1}) dy \quad (23)$$

$$a(\phi_{j}, \phi_{j+1}) = -\int_{0}^{1} p(-(x_{j+1} - x_{j})y + x_{j+1}) \frac{dy}{x_{j+1} - x_{j}} - \int_{0}^{1} q(-(x_{j+1} - x_{j})y + x_{j+1})y(1 - y)(x_{j+1} - x_{j}) dy \quad (24)$$

Z toho je poznat že matice $a(\phi_i, \phi_l)$ je symetrická

3 Základní aspekty MKP (Ciarlet str. 38)

Věta 3.1 (MKP1)

Množina $\bar{\Omega}$ (z 2) je rozdělena triangulací \mathcal{T}_h na konečný počet podmmnožin K (oblastí konečných prvků) tak, že

- 1. $\bar{\Omega} = \bigcup_{K \in \mathcal{T}_i} \bar{K}$
- 2. $(\forall K \in \mathcal{T}_h)(K \neq \emptyset \ a \ K \ je \ oblast)$
- 3. $(\forall K_1, K_2 \in \mathcal{T}_h)(K_1 \neq K_2 \implies K_1 \cap K_2 = \emptyset)$
- 4. $(\forall K \in \mathcal{T}_h)(\partial K \text{ je Lipschitzovská})$

Věta 3.2 (MKP2)

Na každé množině $K \in \mathcal{T}_h$ definujeme vhodné funkce sloužící k aproximaci řešení variační úlohy 2.3 . Tyto funkce jsou polynomy, nebo "blízké" polynomům

Věta 3.3 (MKP3)

Aproximaci řešení variační úlohy 2.3 hledáme pomocí bazických funkcí, jejichž nosič je co nejmenší při zachování shodného popisu tvaru těchto funckí.

Definice 3.1 (Konečný prvek). Nechť

- 1. $K \subset \mathbb{R}^n$ je omezená oblast s po částech hladkou hranicí
- 2. \mathcal{P} je konečně rozměrný prostor funckí na \bar{K}
- 3. $\mathcal{N} = \{N_1, ..., N_2\}$ je báze $\mathcal{P}^{\#}$

Pak $(K, \mathcal{P}, \mathcal{N})$ se nazývá konečný prvek, K je oblast prvku, \mathcal{P} jsou tvarové funkce a \mathcal{N} uzlové proměnné.

Báze v \mathcal{P} duální k \mathcal{N} se nazývá nulová báze.

Duální báze k
$$\mathcal{N} = (N_1, ..., N_d)$$
 v $\mathcal{P} : (\Phi_1, ..., \Phi_d)$, kde $N_i(\Phi_i) = \delta_{ij}$

3.1 Příklady:

3.1.1 1D prvek s nejvýše lineárními polynomy:

$$K = (0,1), \mathcal{P} = \{v : <0,1 > \mapsto \mathbb{R} | v(x) = a + bx, a, b \in \mathbb{R}\} \implies dim(\mathcal{P}) = 2 \implies \mathcal{N} = (N_1, N_2)$$

Proto zvolíme: $N_1(v) = v(0), N_2(v) = v(1)$

Lemma 3.4

 $Pak(K, \mathcal{P}, \mathcal{N}) je KP$

Důkaz: • K = (0,1) je omezená oblast v $\mathbb{R} \checkmark$

- $\mathcal P$ má dimenzi 2 \checkmark
- Je \mathcal{N} báze $\mathcal{P}^{\#}$? tj LN?: Nechť $v_0(x) = a + bx$ je libovolný, $\Longrightarrow (N_1(v_0) = v_0(0) = a) \land N_2(v_0) = v_0(1) = a + b$ a nechť $N_1(v_0) = 0 \land N_2(v_0) = 0$ $\Longrightarrow (a = 0) \land (a + b = 0) \Longrightarrow a = b = 0 \Longrightarrow v_0(x) = 0 \Longrightarrow (N_1, N_2)$ je LN \checkmark

Definice 3.2. Tento prvek nazýváme jako tzv. lineární Lagrangeův prvek

Definice 3.3 (Duální (uzlové) báze).
$$N_i(\Phi_j) = \delta_{ij}$$
 označme $\Phi_i(x) = a_i + b_i x, i=1,2$

Highlight prave s hl strany + align

$$N_1(\Phi_1) = 1(\Phi_1(0) = 1) : a_1 = 1$$
 $N_1(\Phi_2) = 0(\Phi_2(0) = 0) : a_2 = 0$
 $N_2(\Phi_1) = 0(\Phi_1(1) = 0) : a_1 + b_1 = 0N_2(\Phi_2) = 1(\Phi_2(1) = 1) : a_2 + b_2 = 1$ (25)

Zapišme dohromady že se zvýrazněné strany rovnají.

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix} \implies \Phi_1(x) = 1 - x \qquad (26)$$

Obrázek 4: Vzhled 1D Lagrangeovského prvku

3.1.2 1D prvek s nejvýše kvadratickými polynomy:

 $K=(0,1), \mathcal{P}=\{v:<0,1>\mapsto\mathbb{R}|v(x)=a+bx+cx^2,a,b,c\in\mathbb{R}\}\Longrightarrow dim(\mathcal{P})=3\Longrightarrow\mathcal{N}=(N_1,N_2,N_3)$ Například zvolme $N_1(v)=v(0),N_2(v)=v(1),N_3(v)=v(\frac{1}{2})$

Lemma 3.5 $(K, \mathcal{P}, \mathcal{N})$ je KP

Důkaz: • K = (0,1) je omezená oblast v $\mathbb{R} \checkmark$

- \mathcal{P} má dimenzi 3, obsahuje polynomy \checkmark
- Je \mathcal{N} báze $\mathcal{P}^{\#}$? tj LN?: Nechť $v_0(x) = a + bx + cx^2$ je libovolný, v situaci $N_1(v_0) = 0 \wedge N_2(v_0) = 0 \wedge N_3(v_0) = 0$ máme $\implies (a = 0) \wedge (a + b + c = 0) \wedge (a + \frac{1}{2}b + \frac{1}{4}c = 0) \implies a = b = c = 0 \implies (N_1, N_2, N_3)$ je LN \checkmark

Definice 3.4. Toto nazýváme kvadratickým Lagrangeovským prvkem.

Definice 3.5 (Duální báze). Chceme $N_i(\Phi_j) = \delta_{ij}$, označme $\Phi_i(x) = a_i + b_i x + c_i x^2$. Dostáváme následující rovnice.

$$\Phi: a_1 = 1\Phi_2: a_2 = 0\Phi_3: a_3 = 0$$

$$a_1 + b_1 + c_1 = 0a_2 + b_2 + c_3 = 1a_3 + b_3 + c_3 = 0$$

$$a_1 + \frac{1}{2}b_1 + \frac{1}{4}c_1 = 0a_2 + \frac{1}{2}b_2 + \frac{1}{4}c_2 = 0a_1 + \frac{1}{2}b_1 + \frac{1}{4}c_1 = 1$$
 (27)

Zapišme tento systém jako matici:

matice

Dostáváme následující:

$$\Phi_1(x) = 1 - 3x + 2x^2, \Phi_2(x) = -x + 2x^2, \Phi_3(x) = 4x - 4x^2$$
(28)

Obrázek 5: Vzhled 1D kvadratického Lagrangeovského prvku

 $\begin{array}{lll} \textit{Poznámka}. & \text{Pro} & \text{vlastnost} & 3. & \text{jsme} & \text{použili} & \text{kritérium} & \text{LN} & \text{v} & \mathcal{P}^\# \\ (N_1,...,N_d) & \text{je} & \text{LN} <=> [(\forall v_0 \in \mathcal{P})(\forall j \in \{1,...,d\})(N_j(v_0)=0) \implies v_0 \equiv 0] & \text{maybe fix} \\ \textit{Poznámka}. & \text{Budeme využívat zužování polynomů na lineární nadplochy v} & \mathbb{R}^n \\ & \text{popsatelné} & \text{pomocí} & \text{lineárních} & \text{funkcionálů:} \\ \textit{M} \subset \mathbb{R}^n & \text{je lineární nadplocha} <=> (\exists \alpha \in \mathbb{R})(\exists f \in (\mathbb{R}^n)^\#)(M \equiv \{x \in \mathbb{R} | f(x)=\alpha\}) \end{array}$

Pro jednoduchost níže zvolíme $\alpha = 0$ (Případným posunem počátku souřadnic)

Lemma 3.6 (O redukci)

Nechť \mathcal{P} je polynom stupně $\mathcal{D} \geq 1$ v n proměnných, který je roven 0 v nadrovině V, která je popsána funkcionálem $L \in (\mathbb{R}^n)^{\#}$ (tj. $V \equiv \{x \in \mathbb{R}^n | L(x) = 0\}$). Pak existuje polynom Q stupně $\mathcal{D} - 1$ tak, že $(\forall x \in \mathbb{R}^n)(P(x) = L(x) * Q(x))$

 $\begin{array}{ll} D\mathring{u}kaz: \ \mathsf{Z\acute{a}m\check{e}na} \ \mathsf{prom\check{e}nn\acute{y}ch} \ \mathsf{tak}, \ \check{\mathsf{z}e} \ L(x) = L(\hat{x},x_n) = x_n \ (\mathsf{kde} \ \hat{x} = [x_1,...,x_{n-1}]), \\ \mathsf{pak} \ V \equiv x_n = 0 \\ & \ \mathsf{Pak} \ P(x) = P(\hat{x},x_n) = \sum_{j=0}^{\mathcal{D}} \sum_{|\hat{j}|=0}^{\mathcal{D}-j} c_{\hat{j}j} \cdot \hat{x}^{\hat{j}} \cdot x_n^j \ \mathsf{kde} \ \hat{j} = [j_1,...,j_{n-1}] \ , |\hat{j}| = \\ & \ \sum_{k=1}^{n-1} j_k, \ \hat{x}^{\hat{j}} = \prod_{l=1}^{n-1} x_l^{j_l} \\ & \ \mathsf{Z} \ \mathsf{podm\acute{n}nky} \ P|_V = 0 \ \Longrightarrow \ P|_V = P(\hat{x},0) = \sum_{j=0}^{\mathcal{D}} \sum_{|\hat{j}|=0}^{\mathcal{D}-j} c_{\hat{j}j} \cdot \hat{x}^{\hat{j}} \cdot 0^j \\ & \ \Longrightarrow \sum_{|\hat{j}|=0}^{\mathcal{D}-j} c_{\hat{j}0} \cdot \hat{x}^{\hat{j}} \equiv 0, \forall \hat{x} \in \mathbb{R}^{n-1} \\ & \ \Longrightarrow c_{\hat{j}0} = 0 \forall j \end{array}$

$$\Rightarrow P(\hat{x}, x_n) = \sum_{j=1}^{\mathcal{D}} \sum_{|\hat{j}|=0}^{\mathcal{D}-j} c_{\hat{j}j} \cdot \hat{x}^{\hat{j}} \cdot x_n^j = x_n \sum_{j=1}^{\mathcal{D}} \sum_{|\hat{j}|=0}^{\mathcal{D}-j} c_{\hat{j}j} \cdot \hat{x}^{\hat{j}} \cdot x_n^{j-1}$$

$$x_n \text{ je námi hledané } L(x), \text{ zbytek označme jako } Q(x)$$

4 Nejpoužívanější typy konečných prvků

Poznámka. Ukážeme v $\mathbb{R}^2,\,\mathcal{K}$ bude simplex s vrcholy $z_1,z_2,z_3.$ Lineární polynom v $\mathbb{R}^2:v_0(x_1,x_2)=a+bx_1+cx_2$ Kvadratický polynom v $\mathbb{R}^2:v_0(x_1,x_2)=a+bx_1+cx_2+dx_1^2+ex_1x_2+fx_2^2$

Obrázek 6: Simplex ve 2D

4.1 Lagrangeův prvek

Uzlové proměnné poskytují hodnoty funkcí v \mathcal{P} ve vybraných uzlech

4.1.1 Lineární Lagrangeův prvek

 \mathcal{P} obsahuje nejvýše lineární polynomy v \mathbb{R}^n

- K je simplex \checkmark
- \mathcal{P} má dimenzi 3 \checkmark
- Jako bázi $\mathcal N$ navrhneme $N_1(v)=v(z_0), N_2(v)=v(z_1), N_3(v)=v(z_2)$

Lemma 4.1

 $Pak(K, \mathcal{P}, \mathcal{N}) je KP$

 $D\mathring{u}kaz$: Ukážeme LN (N_1, N_2, N_3) pomocí kritéria výše:

Nechť pro všechna $v \in \mathcal{P} : N_j(v) = 0, j \in \{1, 2, 3\} \implies v(z_j) = 0$

Argument jedné proměnné:

Protože $v(z_0)=0 \land v(z_1)=0 \land v \in \mathcal{P}$ je lineární polynom $\implies v|_{V_1}$ je lineární polynom jedné proměnné

tj:
$$V_1 \equiv \begin{cases} x_1(s) &= z_0^1 + (z_1^1 - z_0^1)s \\ x_2(s) &= z_0^2 + (z_1^2 = z_0^2)s \end{cases}$$
, $s \in \mathbb{R} \implies v|_{V_1} = v(x_1(s), x_2(s))$ je

lineární polynom proměnné \underline{s} , přitom se rovná 0 pro s=0,1 $\implies v|_{V_1}\equiv 0$ všude na V_1

Lemma 4.2 (Redukční lemma)

 $v(x_1,x_2) = L_1(x_1,x_2) \cdot \hat{v}(x_1,x_2), \ kde\ V_1 \equiv L_1(x_1,x_2) = 0, \ \hat{v}\ m\acute{a}\ stupe\check{n}\ 0$ $Protože\ L_1(z_2) \neq 0 (z_2 \notin V_1)\ a\ p\check{r}itom\ v(z_2) = 0 \implies jedin\check{e}\ \hat{v}(z_2) = 0$ $P\check{r}edchoz\'{i}\ implikuje:\ \hat{v}\equiv 0 \implies v\equiv 0 \implies (N_1,N_2,N_3)\ jsou\ LN$

Obrázek 7: $N_j(v) = v(z_{j-1})$ opět vyjde že splníme definici konečného prvku

Poznámka (K lineárnímu Lagrangeovu prvku). K čemu to je? Porovnejme jak vypadá pokud budeme KP skládat

- (a) Takto prvky vypadají v případě, že uzly jsou v rozích trojúhelníků. všimněme si že funkce je spojitá
- (b) Takto prvky vypadají v případě, že uzly nejsou v rozích trojúhelníků. Jsou spojité v jedné hodnotě ale jinak většinou nejsou.

Většinou doporučujeme používat uzly v rozích z důvodů nespojitosti, ale existují příklady kdy se používá druhá možnost. Například se zmiňme o tzv. Cruzeix-Raviartův prvek. Ten se používá v problematice proudění u tzv. nekonformní metody konečných prvků.

4.2 Kvadratický Lagrangeův prvek

 ${\mathcal P}$ obsahuje polynomy stupně menší než 2

$$v \in \mathcal{P} \implies v(x_1, x_2) = a + bx_1 + cx_1 + dx_1^2 + ex_1x_2 + fx_2^2 \implies \dim \mathcal{P} = 6$$
 (29)

$$\mathcal{N} = (N_1, ..., N_6) : N_j(v) = v(z_{j-1}), j = 1, ..., 6 \text{ pro } v \in C(\bar{K})$$

Tvrzení 4.1

 \mathcal{N} je báze $\mathcal{P}^{\#}$

Obrázek 9: Kvadratický Lagrangeův prvek

 $D\mathring{u}kaz$: Použijeme opět kritérium: $(N_i(v) = 0 \forall j = 1, ..., 6) \implies v \equiv 0$.

Tedy nechť: $v(z_5) = 0, v(z_n) = 0, ..., v(z_0) = 0$

 V_1 dána funkcionálem $L_1:V_1\equiv L_1(x_1,x_2)=0$ a dim $V_1=1$ a $v(z_0)=0,v(z_1)=0,v(z_3),$ tj. Kvadratický polynom 1 proměnné se rovná 0 ve 3 bodech, $\Longrightarrow v|_{V_1}\equiv 0$

Použijeme lemma o redukci: $v(x_1, x_2) = L_1(x_1, x_2)w_1(x_1, x_2)$, w_1 je lineární polynom, kde $L_1(z_i) \neq 0$ pro j = 2, 4, 5

Protože $v(z_i) = 0, j = 2, 4, 5 \implies w_1(z_i) = 0, j = 2, 4, 5$

 $w_1(z_2)=0, w_1(z_4)=0$ a $w_1|_{V_2}$ je lineární polynom jedné proměnné = 0 ve 2 bodech $\implies w_1|_{V_2}\equiv 0 \implies (V_2\equiv L_2(x_1,x_2)=0) \implies$

 $\implies w_1(x_1, x_2) = L_2(x_1, x_2) * w_2(x_1, x_2), w_2 \equiv \text{const a } w_2(z_5) = 0 \implies v = L_1 L_2 w_2 \equiv 0 \text{ všude } \implies \mathcal{N} \text{ je báze}$

- (a) Lagrangeovy prvky stupně 3
- (b) Lagrangeovy prvky stupně 4

Poznámka (Lagrangeovy prvky stupně $\mathcal{D} > 2$).

4.3 Hermiteův prvek

Obrázek 11: Hermiteův prvek

Funckionály v \mathcal{N} používající hodnoty funkcí a jejich derivací (tj. \mathcal{P} obsahuje alespoň kubické polynomy)

Nechť tedy dim $\mathcal{P}=10$ (kubické) $\Longrightarrow \mathcal{N}=(N_1,...,N_{10})$: $N_j(v)=v(z_{j-1},j=1,2,3),\ N_10(v)=v(z_3)$ a $v'(z_0)=\binom{N_4(v)}{N_5(v)},v'(z_1)=\binom{N_6(v)}{N_7(v)},v'(z_2)=\binom{N_8(v)}{N_9(v)},$

Tvrzení 4.2

 \mathcal{N} je báze $\mathcal{P}^{\#}$

 $D\mathring{u}kaz$: využití redukce: na V_1 : $v|_{V_1}$ je kubický polynom 1 proměnné jehož 2 hodnoty a 2 derivace = 0. $\implies v|_{V_1} \implies v = L_1w_1, \, w_1$ je Kvadratický

 $w_1|_{V_2}$ je kvadratický (1 hodnota, 2 derivace = 0) $\implies w|_{V_2} \equiv 0 \implies w_1 = L_2w_2, w_2$ je lineární, $w_2|_{V_3}$ je lineární polynom (derivace = 0) \implies je konstantní.

Nakonec použijme $z_3 \implies v = L_1 L_2 L_3 w_3 \equiv 0 \implies \mathcal{N}$ je báze.

Rozmysleme jak se přenáší v' na $w'_{1,2}$

4.4 Argyrisův prvek

Funckionály používající hodnoty 1. a 2. derivace argumentu.

 \mathcal{P} obsahuje polynomy stupně menší nebo rovno 5 $\Longrightarrow \dim \mathcal{P} = 21,$ tj. $N_j(v) = v(z_{j-1}, j = 1, 2, 3), \ v'(z_0) = \binom{N_4(v)}{N_5(v)}, v'(z_1) = \binom{N_6(v)}{N_7(v)}, v'(z_2) = \binom{N_8(v)}{N_9(v)}, \ v''(z_0) = \binom{N_10(v)N_12(v)}{N_12(v)N_11(v)}, v''(z_1) = \binom{N_13(v)N_15(v)}{N_15(v)N_14(v)}, v''(z_2) = \binom{N_16(v)N_17(v)}{N_17(v)N_18(v)}, \ N_{19}(v) = \partial_n v(z_3), N_{20}(v) = \partial_n v(z_4), N_{21}(v) = \partial_n v(z_5), \ \mathrm{kde} \ \partial_n v(z_j) = v'(z_j) \cdot \vec{n}(z_j)$

Tvrzení 4.3

 \mathcal{N} je báze $\mathcal{P}^{\#}$

Poznámka. Hermite/Agyris: používáme $v'(z_j) \in \mathbb{R}^2, v''(z_j) \in \mathbb{R}^{2,2}$, například $v'(z_j) = \begin{pmatrix} \partial_{x_1} v(z_j) \\ \partial_{x_2} v(z_j) \end{pmatrix}$ nebo $v'(z_j) = \begin{pmatrix} \partial_{s_1} v(z_j) \\ \partial_{s_2} v(z_j) \end{pmatrix}$. Porovnání můžeme vidět v 13

Obrázek 13: Rozdíl mezi lokální a globální bází

5 Interpolant

Poznámka. Obecnější funkce budeme promítat do \mathcal{P} (nejdříve na jediném konečném prvku, pak na síti)

Definice 5.1. Nechť $(\mathcal{K}, \mathcal{P}, \mathcal{N})$ je konečný prvek, dim $\mathcal{P} = d, (\Phi_1, ..., \Phi_d)$ je uzlová báze, D_{N_j} je definiční obor funkcionálu $N_j \in \mathcal{N}, j = 1, ..., d$

Pak výraz $y_k u = \sum_{j=1}^d N_j(u) \Phi_j$ pro $u \in \bigcap_{j=1}^d D_{N_j}$ se nazývá lokální interpolant funkce u

Poznámka. Jde o souřadnicové vyjádření v bázi $(\Phi_1,...,\Phi_d)$, tj
 pro $\hat{u}\in\mathcal{P}$ je $\sum_{j=1}^d N_j(\hat{u})\Phi_j=\hat{u}$, ale pro $\hat{i}\notin\mathcal{P}$ nikoliv

Obrázek 14

Příklad. Lineární Lagrange $(\mathcal{K}, \mathcal{P}, \mathcal{N})$, $N_1(v) = v(0,0)$, $N_2(v) = v(1,0)$, $N_3(v) = v(0,1)$

Určíme nulovou bázi, $\Phi_j(x_1, x_2) = c_{1j} + c_{2j}x_1 + c_{3j}x_2$: $N_j(\Phi_l) = \delta_{jl}$ Rovnice:

fix align

$$j = 1c_{11}$$
 $= 1j = 2$ $c_{12} = 0j = 3$ $c_{13} = 0$ (30)
 c_{11} $+c_{21} = 0$ $c_{12} + c_{22} = 1$ $c_{13} + c_{23} = 0$ (31)
 c_{11} $+c_{31} = 0$ $c_{12} + c_{32} = 0$ $c_{13} + c_{33} = 1$ (32)

Z čehož dostaneme:

$$\Phi_1(x_1, x_2) = 1 - x_1 - x_2, \Phi_2(x_1, x_2) = x_1, \Phi_3(x_1, x_2) = x_2 \tag{33}$$

Chybi cele lol

chybi prvni

cast

Důkaz:

Pro druhou část tvrzení:

 $\mathbb{W}_{\infty}^{(r+1)}(\Omega) = \{ v \in_{\infty} (\Omega) | (\forall |\alpha| \le r+1) (\mathcal{D}^{\alpha} v \in L_{\infty}) \},$

 $L_{\infty}(\Omega) = \{ v : (\Omega) \mapsto \mathbb{R} | (\exists K > 0) (S \forall x \in \Omega) (|v(x)| \le K) \}$

Provedeme pro r=0 (Lagrange), víme: $\mathcal{Y}_{\mathcal{J}}u\in\mathcal{C}^{(0)}$ z předchozí vlastnosti a $\mathcal{Y}_{\mathcal{J}}u(x)=\mathcal{Y}_Ku(x)$ pro $x\in\bar{K}, K\in\mathcal{J}$ a $\mathcal{Y}_Ku(x)\in\mathcal{P}_K$ (tj je polynom), tj. $\mathcal{Y}_K u(x) \in C^{(\infty)}(\bar{K})$

Prozkoumáme možnost derivování $\mathcal{Y}_{\mathcal{J}}u$ v Ω (pomocí derivací ve smyslu distribucí)

Pro $k \in \hat{n}$:

$$\implies \partial_{x_k} \mathcal{Y}_{\mathcal{J}} u \in L_{\infty}(\Omega), tj. \mathcal{Y}_{\mathcal{J}} u \in \mathbb{W}_{\infty}^{(1)}(\Omega)$$

Poznámka. Pro \mathcal{J} triangulaci Ω:

obrázek

Definice 5.2. Nechť $(\mathcal{K}, \mathcal{P}, \mathcal{N})$ a $(\tilde{\mathcal{K}}, \tilde{\mathcal{P}}, \tilde{\mathcal{N}})$ jsou KP, $F(x) = \mathbb{A}x + b$ je afinní zobrazení $\mathcal{K} \mapsto \mathcal{K}$, \mathbb{A} je regulární.

Pokud:

- 1. $F(\mathcal{K} = \tilde{\mathcal{K}})$
- 2. $F^*(\tilde{\mathcal{P}}) = \mathcal{P}$, kde $F^*(\tilde{v}) = \tilde{v} \cdot F$ pro $\tilde{v} \in \tilde{\mathcal{P}}$
- 3. $F_x(\mathcal{N}) = \tilde{\mathcal{N}}$, kde $(F_*N)(\tilde{v}) = N(\tilde{v} \cdot F)$ pro $N \in \mathcal{N}$

Pak říkáme, že $(\mathcal{K},\mathcal{P},\mathcal{N})$ a $(\tilde{\mathcal{K}},\tilde{\mathcal{P}},\tilde{\mathcal{N}})$ jsou afinně ekvivalentní. Budeme značit \sim^A

 $P \check{r} iklad$ (Lineární Lagrange). $\bar{K_1} = [z_1, z_2, z_3]_{\mathcal{H}}\,, \bar{K_2} = [u_1, u_2, u_3]$

$$\bar{K}_1 = \left\{ x \in \mathbb{R}^2 | (\exists \alpha_1, \alpha_2, \alpha_3 \in <0, 1>, \sum_{j=1}^3 \alpha_j = 1)(x = \sum_{j=1}^3 \alpha_j z_j) \right\}$$

Pak
$$F(x) = F(\sum_{j=1}^{3} \alpha_j z_j) = \mathbb{A}(\sum_{j=1}^{3} \alpha_j z_j) + b = \sum_{j=1}^{3} \alpha_j \mathbb{A} z_j + 1 \cdot b = \sum_{j=1}^{3} \alpha_j \mathbb{A} z_j + \sum_{j=1}^{3} \alpha_j b = \sum_{j=1}^{3} \alpha_j (\mathbb{A} z_j + b)$$
 Tak vzniká soustava rovnic pro prvky \mathbb{A} a b

$$\sum_{j=1}^{3} \alpha_j \mathbb{A} z_j + \sum_{j=1}^{3} \alpha_j b = \sum_{j=1}^{3} \alpha_j (\mathbb{A} z_j + b)$$

 $\mathbb{A}z_i + b = u_j, j = 1, 2, 3$ při zadaných $z_j, u_j, j = 1, 2, 3$, řešitelné jednoznačně $\implies F(\bar{K}_1) = \bar{K}_2$

 $\mathcal{P}_{1,2}$ polynomy stupně ≤ 1 na $\bar{K}_1, \bar{K}_2,$ pro $\tilde{v} \in \mathcal{P}_2$ je $(\tilde{v} \cdot F)(x) = \{x \in \bar{K}_1\} = 0$ $\tilde{v}(F_x)$ je polynom stupně ≤ 1 na \bar{K}_1

 $\Longrightarrow F^*(\mathcal{P}_2) \subset \mathcal{P}_1 \text{ a pro } v \in \mathcal{P}_\infty \Longrightarrow v(x) = v(F^{-1}(\tilde{x})) \text{ polynom stupně}$ $\leq 1 \text{ na } K_2 \Longrightarrow v \cdot F^{-1} \in \mathcal{P}_2 \Longrightarrow F^*(\mathcal{P}_2) = \mathcal{P}_1$

Pro
$$N_j \in \mathcal{N}_{K_1} \implies N_j(v) = v(z_j)$$
 a pro $\tilde{v} \in \mathcal{P}_2$ je $\tilde{v}(u_j) = \tilde{N}_j = \tilde{v}(F(z_j)) = (\tilde{v} \cdot F)(z_j) = N_j(\tilde{v} \cdot F) \implies \tilde{N}_j = F_*(N_j)$

Každé 2 line8rn9 Lagrangeovy prvky jsou afinně ekvivalentní.

místo cdot to má být composition, asi předchozích pět řádku

 $P\check{r}iklad$ (Kvadratické Lagrangeovy prvky). Pro \sim^A :

První bod:

F=F(x)najdeme opět pomocí $z_j,u_j,j=1,2,3 \implies F(\bar{K}_1)=\bar{K}_2$ Druhý bod:

- 1. pro $\tilde{v} \in \mathcal{P}_2$ (stupně ≤ 2) $\implies \tilde{v} \circ F(x)$ je stupně ≤ 2 na $\bar{K}_1 \implies \tilde{v} \circ F(x) \in \mathcal{P}_\infty \implies F^*(\mathcal{P}_2) \subset \mathcal{P}_1$
- 2. pro $v \in \mathcal{P}_1 \implies v(x) = v(F^{-1}(y)) = (v \circ F^{-1})(y)$

To dohromady dává $F^*(\mathcal{P}_2) = \mathcal{P}_1$

Třetí bod:

Nechť $N_j \in \mathcal{N}_1, j = 1, 2, 3$, pak pro $\tilde{v} \in \mathcal{P}_2$ je $\tilde{v}(u_j) = \tilde{N}_j(\tilde{v}) = \tilde{v}(F(z_j)) = (\tilde{v} \circ F)(z_j) = N_i(\tilde{v} \circ F) \implies F_*(N_i) = \tilde{N}_i$

 $(\tilde{v} \circ F)(z_j) = N_j(\tilde{v} \circ F) \implies F_*(N_j) = \tilde{N}_j$ Pro \sim^A je tedy nutné, aby $u_j = F(z_j), j = 4, 5, 6$, tj, barycentrické souřadnice musí být stejné $\implies \operatorname{pak} \tilde{N}_j = F_*(N_j)$, pro $j = 4, 5, 6 \implies \sim^A$

 $P\check{r}\hat{\imath}klad$ (Hermiteův prvek).

6 Dodatek

6.1 Úkol 1 - Příklad 9

Určete prvky matice lineární soustavy rovnic pro okrajovou úlohu řešenou metodou konečných prvků

$$-(\lambda(x)u')' + q(x)u = f(x) \ v \ (a,b)$$
 (34)

$$u|_{x=a} = 0, u|_{x=b} = 0 (35)$$

kde $a=2,b=3,\lambda(x)=1+x,q(x)=2$ a síť MKP je rovnoměrná a daná uzly:

$$x_j = a + jh, h = \frac{b - a}{m} \tag{36}$$

kde $m \in \mathbb{N}$ je počet prvků diskretizující interval (a,b), který je obecným parametrem.

6.1.1 Vzorce použité z přednášky

$$a(\phi_{j}, \phi_{j}) = \int_{0}^{1} p((x_{j} - x_{j-1})y + x_{j-1}) \frac{dy}{x_{j} - x_{j-1}} + \int_{0}^{1} q((x_{j} - x_{j-1})y + x_{j-1})y^{2}(x_{j} - x_{j-1}) dy - \int_{0}^{1} p(-(x_{j+1} - x_{j})y + x_{j+1}) \frac{dy}{x_{j+1} - x_{j}} - \int_{0}^{1} q(-(x_{j+1} - x_{j})y + x_{j+1})y^{2}(x_{j+1} - x_{j}) dy$$
 (37)

$$a(\phi_j, \phi_{j-1}) = -\int_0^1 p((x_j - x_{j-1})y + x_{j-1}) \frac{dy}{x_j - x_{j-1}} - \int_0^1 q((x_j - x_{j-1})y + x_{j-1})y(1 - y)(x_j - x_{j-1}) dy$$
 (38)

$$a(\phi_j, \phi_{j+1}) = -\int_0^1 p(-(x_{j+1} - x_j)y + x_{j+1}) \frac{dy}{x_{j+1} - x_j} - \int_0^1 q(-(x_{j+1} - x_j)y + x_{j+1})y(1 - y)(x_{j+1} - x_j) dy$$
(39)

6.1.2 Řešení

Ze zadání vidíme následující užitečné vztahy:

$$h = \frac{1}{m} \tag{40}$$

$$x_{i} - x_{i-1} = h = x_{i+1} - x_{i} (41)$$

$$x_{j-1} - x_{j+1} = -2h (42)$$

Dosazením zadání do (37) a použitím (41) dostaneme:

$$a(\phi_j, \phi_j) = \int_0^1 (1 + hy + x_{j-1}) \frac{dy}{h} + \int_0^1 2y^2(h) dy - \int_0^1 (1 - hy + x_{j+1}) \frac{dy}{h} - \int_0^1 2y^2(h) dy$$
(43)

$$a(\phi_j, \phi_j) = \int_0^1 \frac{1}{h} (1 + hy + x_{j-1}) + 2hy^2 - \frac{1}{h} (1 - hy + x_{j+1}) - 2hy^2 dy$$
 (44)

$$a(\phi_j, \phi_j) = \int_0^1 \frac{1 + x_{j-1}}{h} + y + 2hy^2 - \frac{1 + x_{j+1}}{h} + y - 2hy^2 dy$$
 (45)

$$a(\phi_j, \phi_j) = \int_0^1 \frac{x_{j-1} - x_{j+1}}{h} + 2y + 0y^2 dy$$
 (46)

Použijeme vztah (42)

$$a(\phi_j, \phi_j) = \int_0^1 \frac{-2h}{h} + 2y \, dy \tag{47}$$

$$a(\phi_j, \phi_j) = \int_0^1 -2 + 2y \, dy \tag{48}$$

$$a(\phi_i, \phi_i) = -2 + 1 = -1 \tag{49}$$

Stejným způsobem spočtěme (38):

$$a(\phi_j, \phi_{j-1}) = -\int_0^1 (1 + hy + x_{j-1}) \frac{dy}{h} - \int_0^1 2y(1 - y)(h) \ dy$$
 (50)

$$a(\phi_j, \phi_{j-1}) = -\int_0^1 \frac{1 + x_{j-1}}{h} + y + 2hy(1 - y) \ dy \tag{51}$$

$$a(\phi_j, \phi_{j-1}) = -\int_0^1 \frac{1 + x_{j-1}}{h} + (1 + 2h)y - 2hy^2 dy$$
 (52)

$$a(\phi_j, \phi_{j-1}) = -\frac{1+x_{j-1}}{h} - \frac{(1+2h)}{2} + \frac{2h}{3}$$
 (53)

Dosaďme za $x_{j-1} = 2 + (j-1)h$:

$$a(\phi_j, \phi_{j-1}) = -\frac{3}{h} - (j-1) - \frac{(1+2h)}{2} + \frac{2h}{3}$$
 (54)

$$a(\phi_j, \phi_{j-1}) = -j + \frac{1}{2} - \frac{3}{h} - \frac{h}{3}$$
 (55)

Nakonec ještě použijeme (40):

$$a(\phi_j, \phi_{j-1}) = -j + \frac{1}{2} - 3m - \frac{1}{3m}$$
(56)

Pro (39) buď využijme toho že matice je symetrická nebo jednoduše spočtěme:

$$a(\phi_j, \phi_{j+1}) = -\int_0^1 (1 - hy + x_{j+1}) \frac{dy}{h} - \int_0^1 2hy(1 - y) \ dy$$
 (57)

$$a(\phi_j, \phi_{j+1}) = -\int_0^1 \frac{(1 - hy + x_{j+1})}{h} + 2hy(1 - y) \ dy \tag{58}$$

$$a(\phi_j, \phi_{j+1}) = -\int_0^1 \frac{(1+x_{j+1})}{h} + (2h-1)y - 2hy^2 dy$$
 (59)

Opět dosaďme za $x_{j+1} = 2 + (j+1)h$:

$$a(\phi_j, \phi_{j+1}) = -\int_0^1 \frac{(3 + (j+1)h)}{h} + (2h-1)y - 2hy^2 dy$$
 (60)

$$a(\phi_j, \phi_{j+1}) = -\left(\frac{(3+(j+1)h)}{h} + \frac{2h-1}{2} - \frac{2h}{3}\right)$$
 (61)

$$a(\phi_j, \phi_{j+1}) = -\frac{(3+(j+1)h)}{h} - \frac{1}{2} + \frac{2h}{6}$$
(62)

$$a(\phi_j, \phi_{j+1}) = -\frac{3}{h} - j - \frac{1}{2} + \frac{2h}{6}$$
(63)

A opět použijeme (40):

$$a(\phi_j, \phi_{j+1}) = -3m - j - \frac{1}{2} + \frac{1}{3m}$$
(64)

6.1.3 Výsledek

Nakonec tedy dostáváme:

$$a(\phi_i, \phi_i) = -1 \tag{65}$$

$$a(\phi_j, \phi_{j-1}) = -j + \frac{1}{2} - 3m - \frac{1}{3m}$$
(66)

$$a(\phi_j, \phi_{j+1}) = -3m - j - \frac{1}{2} + \frac{1}{3m}$$
(67)

6.2 Úkol 2 - Příklad 11

6.2.1 Zadání

Nechť $\Omega \subset \mathbb{R}^n$ je omezená oblast, n=2, p=2, k=5. Dokažte ekvivalenci výrazů

$$\sum_{|\alpha| \le k} \|\mathcal{D}^{\alpha} u\|_{L_p(\Omega)} \tag{68}$$

 \mathbf{a}

$$\left(\sum_{|\alpha| \le k} \int_{\Omega} |\mathcal{D}^{\alpha}(x)|^p dx\right)^{\frac{1}{p}} \tag{69}$$

pro $u \in \mathbb{W}_p^{(k)}(\Omega)$. Nalezněte přitom konkrétní podobu konstant ekvivalence.

6.2.2 Řešení

Nejprve dosadme zadání do výrazů, dostaneme:

$$||u||_1 \coloneqq \sum_{|\alpha| < 5} ||\mathcal{D}^{\alpha} u||_{L_2(\Omega)} \tag{70}$$

a

$$||u||_2 \coloneqq \left(\sum_{|\alpha| \le 5} \int_{\Omega} |\mathcal{D}^{\alpha}(x)|^2 dx\right)^{\frac{1}{2}} \tag{71}$$

V (70) poznáváme normu Sobelevova prostoru $\mathbb{W}_2^{(5)},$ můžeme ji rozepsat jako

$$||u||_1 = \sum_{|\alpha| \le 5} \left(\int_{\Omega} |\mathcal{D}^{\alpha} u|^2 dx \right)^{\frac{1}{2}}$$
 (72)

Ukazujeme tedy ekvivalenci norem,

tj. chceme ukázat že $\exists a,b\in\mathbb{R}$ tak, že $a\|u\|_2\leq \|u\|_1\leq b\|u\|_2$ Ukažme první nerovnost:

$$a\left(\sum_{|\alpha|\leq 5} \int_{\Omega} |\mathcal{D}^{\alpha}(x)|^2 dx\right)^{\frac{1}{2}} \leq \sum_{|\alpha|\leq 5} \|\mathcal{D}^{\alpha}u\|_{L_2(\Omega)}$$

S použitím Minkowského nerovnosti máme:

$$\sum_{|\alpha| \le 5} \|\mathcal{D}^{\alpha} u\|_{L_2(\Omega)} \ge \|\sum_{|\alpha| \le 5} \mathcal{D}^{\alpha} u\|_{L_2(\Omega)} = \left(\int_{\Omega} \left| \sum_{|\alpha| \le 5} \mathcal{D}^{\alpha}(x) \right|^2 dx \right)^{\frac{1}{2}} \ge \tag{73}$$

Dále využijeme faktu, že $\left(\sum_{i}x_{i}\right)^{2}\geq\sum_{i}\left(x_{i}\right)^{2}$

$$\geq \left(\int_{\Omega} \sum_{|\alpha| \leq 5} |\mathcal{D}^{\alpha}(x)|^2 dx \right)^{\frac{1}{2}} = \left(\sum_{|\alpha| \leq 5} \int_{\Omega} |\mathcal{D}^{\alpha}(x)|^2 dx \right)^{\frac{1}{2}} \tag{74}$$

Jako a tedy můžeme zvolit a=1Ukažme druhou nerovnost:

$$\sum_{|\alpha| \le 5} \left(\int_{\Omega} |\mathcal{D}^{\alpha} u|^2 \ dx \right)^{\frac{1}{2}} \le b \left(\sum_{|\alpha| \le 5} \int_{\Omega} |\mathcal{D}^{\alpha} (x)|^2 dx \right)^{\frac{1}{2}}$$

Využijeme toho že pro $y_i > 0, i \in \hat{n}$ platí

$$\sqrt{\sum_{i=1}^{n} y_i} \ge \frac{1}{n} \sum_{i=1}^{n} \sqrt{y_i} \tag{75}$$

Z toho máme:

$$\left(\sum_{|\alpha| \le 5} \int_{\Omega} |\mathcal{D}^{\alpha}(x)|^2 dx\right)^{\frac{1}{2}} \ge \frac{1}{\sum_{|\alpha| \le 5} 1} \sum_{|\alpha| \le 5} \left(\int_{\Omega} |\mathcal{D}^{\alpha}u|^2 dx\right)^{\frac{1}{2}} \tag{76}$$

Z toho vidíme:

$$b = \sum_{|\alpha| \le 5} 1 = 21$$

Tedy nakonec platí:

$$||u||_2 \le ||u||_1 \le 21||u||_2 \tag{77}$$