

Dokumentace k projektu pro předměty IZP a IUS

Iterační výpočty projekt č. 2

1. decembra 2014

Autor: Ján Mochňak, xmochn00@stud.fit.vutbr.cz

Fakulta Informačních Technologií Vysoké Učení Technické v Brně

Obsah

1	Úvod	1
2	Analýza problému	2
	2.1 Zadanie problému	2
	2.2 Možnosti výpočtu funkie tan	2
	2.2.1 Taylorov rozvoj	2
	2.2.2 Zreť azenie zlomkov	
3	Návrh riešenia problému	4
	3.1 Porovnanie presností výpočtov tangens	4
	3.2 Výpočet vzdialenosti a výšky meraného objektu	4
	3.2.1 Výpočet vzdialenosti	
	3.2.2 Výpočet výšky	4
4	Špecifikácia testov	5
5	Popis riešenia	6
	5.1 Analýza vstupných parametrov	6
	5.2 Ovládanie programu	6
	5.3 Implementácia	6
6	Záver	7
A	Metriky kódu	8

Úvod

Dokumentácia k druhému projektu do predmetov *základy programovania* a *softwérové inžinierstvo*, ktoré sa vyučujú na VUT v Brně.

Výsledkom projektu je konzolová aplikácia napísana v jazyku *C*, splňujúca štandard *C99*. Aplikácia má dve hlavné úlohy, jednou z nich je overenie správnosti implementácie matematickej funkcie *tangens* pomocou *Taylorového rozvoja* a pomocou *zreť azených zlomkov*. Tieto funkie sú implementované len pomocou základných matematických operácii. Druhá úloha tejto aplikácie spočíva vo výpočte vzdialenosti a výšky meraného objektu, v ktorej nájdeme využitie funkie *tangens*.

Analýza problému

Pre výpočet vzdialeností budeme potrebovať funkciu tangens, takže sa na možnosti implementácie tejto funckie pozrieme bližšie.

2.1 Zadanie problému

Hlavnou úlohou je vypočítanie vzdialenosti a výšky meraného objektu, predpokladáme, že merací prístroj má možnosť nastavenia aj jeho výšky. Grafické zobrazenie tohoto problému je v obrázku 2.1.

Obr. 2.1: Náčrtok meracieho zariadenia a meraného objektu.

2.2 Možnosti výpočtu funkie tan

Matematicky je funkcia tan definovaná ako:

$$\tan(x) = \frac{\sin(x)}{\cos(x)} \tag{2.1}$$

Ak by sme chceli teda vypočítať tangens úhla x, potrebovali by sme k tomu ešte aj funkie sínus a cosínus. A preto sa pozrieme na ďalšie možné výpočty.

2.2.1 Taylorov rozvoj

Taylorov rozvoj by sme dokázali vyjadriť takto:

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots$$
 (2.2)

Pričom v našom prípade rátame len s prvými 13 členmy Taylorovej rady, a to hlavne z dôvodu veľkosti dátoveho typu long unsigned int $(2^{63} - 1)$. Maximálny počet iterácii pre spresnenie výsledku je v tomto prípade len 13.

2.2.2 Zreťazenie zlomkov

Fuknciu tangens pomocou zreť azenia zlomkov, vyjadríme takto:

$$\tan(x) = \frac{1}{\frac{1}{x} - \frac{1}{\frac{3}{x} - \frac{1}{\frac{5}{x} - \frac{1}{\frac{7}{x} - \dots}}}$$
(2.3)

Výhodou tejto možnosti je hlavne možnosť viacero iterácii a teda vyššiej presnosti ako u Taylorového rozvoja. A z tohto dôvodu volíme, pre výpočet výšky a vzdialenosti meraného objektu túto funkciu.

Návrh riešenia problému

Po analýze funkcie tangens, som sa rozhodol akceptovať len hodnoty $0 < \alpha <= 1.4$ rad, ktoré sa nachadzajú v prvom kvadrante. Toto obmedzenie je pre naše účely dostačujúce, hodnota úhlov α a β by podľa obrázku 2.1 nemala presiahnúť 90° .

3.1 Porovnanie presností výpočtov tangens

Pri porovnávaní je potrebné zistit ako sa veľ mi sa odchyľ uje výsledok iterácií z našich implementácií funkcie tangens oproti funkcii *tan* z matematickej knižnice <math.h>. Rozdielom výsledkov je vyjadrená absolútna odchýlka pre každú iteráciu, ale aj funkciu.

3.2 Výpočet vzdialenosti a výšky meraného objektu

Ako implicitnú výšku zariadenia volíme 1.5, ktorá je definovaná zadaním. Pre výpočty použijeme definíciu tan v následujúcom tvare:

$$\tan(\alpha) = \frac{a}{b} = \frac{\text{protil'ahlá}}{\text{pril'ahlá}}$$
(3.1)

Inými slovami $tan(\alpha)$ je pomer dĺžok odvesny protiľ ahlej k tomuto uhlu a dĺžky odvesny k nemu priľ ahlej.

Presnosť, resp. počet iterácií sme si zvolili 11, pretože po tejto iterácii je výsledok pre datový typ double rovnaký. Tým sme dosiahli najvyššiu možnú presnosť.

3.2.1 Výpočet vzdialenosti

Vzdialenosť objektu od meracieho prístroja si z obrázku 2.1 vyjadríme takto:

$$\tan(\alpha) = \frac{c}{d} \Rightarrow d = \frac{c}{\tan(\alpha)}$$
 (3.2)

Pri výpočte $tan(\alpha)$ využijeme metódu zreť azených zlomkov (viz. 2.2.2).

3.2.2 Výpočet výšky

Výšku meraného objektu si vieme opäť odvodiť z obrázka 2.1:

$$\tan(\beta) = \frac{v_1}{d} \Rightarrow v = c + \tan(\beta) * d \tag{3.3}$$

K výslednej výške je potreba pripočítať výšku zariadenia c. Pri výpočte $\tan(\beta)$ využijeme metódu zreť azených zlomkov (viz. 2.2.2). Pre tento výpočet si musíme najprv vypočítať jeho vzdialenosť d pomocou 3.2.1.

Špecifikácia testov

```
Test 1: Chybná syntaxe → Detekce chyby.
```

```
./proj2 ; nedostatok parametrov
./proj2 -tan ; správne -tan
./proj2 -m ; je potrebné zadat' hodnotu úhlu
./proj2 -m -c 2.2 ; výška musí byt' nastavená pred úhlami
./proj2 -c 2.2 ; potreba nastavit' hodnotu úhlu -m
```

Test 2: Nesmyslná syntaxe → Detekce chyby.

```
./proj2 --tan 5 1 10 ; úhol nieje z intervalu <0,1.4>
./proj2 --tan 0.165461 1 52 ; maximálny počet iterácií je 13
./proj2 -c 233 -m 1.2 ; maximálna výška 100
```

Test 3: Porovnanie výpočtov → Predpokladaný výstup.

```
./proj2 --tan 1.024 10 10
10 1.642829e+00 1.642552e+00 2.773337e-04 1.642829e+00 0.000000e+00
./proj2 --tan 0.785398163 10 10
10 1.000000e+00 9.999992e-01 8.095039e-07 1.000000e+00 1.110223e-16
```

Test 4: Výpočet vzdialenosti a výšky → Predpokladaný výstup.

```
./proj2 -m 0.3

4.8490922156e+00

7.6106234032e+00

./proj2 -m 0.3 0.9

4.8490922156e+00

7.6106234032e+00

./proj2 -c 1.7 -m 0.15 1.3

1.1248205560e+01

4.2217188781e+01
```

Popis riešenia

5.1 Analýza vstupných parametrov

Pre overenie správnosti zadania číselných hodnôt sú použité funkcie strtod a strdol, ktoré viedlo k zjednodušeniu kódu.

5.2 Ovládanie programu

Program obsahuje nápovedu, ktorú vyvoláme parametrom –help. Nápoveda obsahuje presné informácie o vstupných parametroch, ktoré určujú funkciu programu.

Všetky chybné výstupy sa zobrazujú do štadardného chybového výstupu, validné výstupu sa zobrazujú do štandardného výstupu.

5.3 Implementácia

Parametry z príkazového riadka spracováva funkcia parse_args, ktorá naplní štruktúru params. Následne podľa tejto štruktúry rozvetvíme program na dve časti, jedna z nich spracováva parameter –tan a druhá –m.

Pri výpočtoch odchýlky používame funkciu show_tan_diff_table, ktorá postupne iteruje a zobrazuje výsledky na štandardný výstup. Implementáciu Tayloroveho rozvoja nájdeme vo funkci taylor_tan a metódu zreť azených zlomkov cfrac_tan.

Pre výpočet vzdialenosti použivame funkciu calculate_distance a výsledok z nej zobrazíme na štandardný výstup. Pre výpočet výšky objektu je použitá funkcia calculate_height, predtým je však potreba overiť, či bol zadaný aj úhol β , keďže je tento parameter voliteľný. Výsledok je následne vypísaný na štandardný výstup.

Ak v tomto priebehu nastena chyba, (napr. nevalidné hodnoty parametrov) nastavíme hodnotu premennej err a následne zavoláme funkciu show_error_and_halt, ktorá program ukonči s chybovou hláškou.

Záver

toto je zaver

Dodatok A

Metriky kódu

Počet súborov: 1 súbor

Počet riadkov zdrojového textu: 238 riadkov

Veľkosť statických dát: 312B

Veľkosť spustiteľ ného súbora: 9753B (Ubuntu x86, pri preklade bez ladiacich informácií)