

Figura 4.1. Circuito para comprobar el Teorema de Superposición.

4.5.2

-Analizamos el circuito y vemos que posee 3 mallas por lo tanto vamos a tener 3 valores de intensidad

-Aplicamos el método de resolución de mallas y obtenemos el siguiente sistema ecuaciones

A:
$$I_1 + 2.2I_1 - 2.2I_2 = 20$$

B:
$$0.82I_2 + 2.2I_2 - 2.2I_1 + 0.47I_2 - 0.47I_3 = 0$$

$$C: \quad 0.47I_3 - 0.47I_2 = -12$$

-Resolvemos el sistema y vemos que tenemos 3 ecuaciones con 3 incógnitas

A:
$$3.2I_1 - 2.2I_2 = 20$$

B:
$$-2.2I_1 + 3.9I_2 - 0.47I_3 = 0$$

$$C: -0.47I_2 + 0.47I_3 = -12$$

-Para la resolución de este sistema de ecuaciones utilizamos nuestra herramienta de preferencia

-Colocamos nuestros valores

-El resultado es:

$$x_1 = \frac{4250}{603}$$

$$x_2 = \frac{700}{603}$$

$$x_3 = \frac{-690700}{28341}$$

Por lo tanto, los valores de nuestras intensidades son:

$$I_1 \approx 7.048$$

$$I_2 \approx 1.16$$

$$I_3 \approx -24.371$$

Sabemos que la intensidad I_2 para por la malla 2 por lo tanto procedemos a calcular la caída de voltaje en (VA)

$$VA = I_2 \times R$$

$$VA = \frac{700}{603} \times 0.82$$

$$VA = 0.9519 V$$

La intensidad (I_x) la calculamos sabiendo que por esa rama pasan la I_2 y la I_3

$$I_X = I_2 - I_3$$

$$I_X = 25.531 \, mA$$

Aplicando el teorema de superposición obtenemos lo siguiente

4.5.3 Cuando hacemos O a la fuente de voltaje V2 (12v)

-Aplicamos el método de resolución de mallas y obtenemos el siguiente sistema ecuaciones

A:
$$I_1 + 2.2I_1 - 2.2I_2 = 20$$

B:
$$0.82I_2 + 2.2I_2 - 2.2I_1 + 0.47I_2 - 0.47I_3 = 0$$

C:
$$0.47I_3 - 0.47I_2 = 0$$

-Resolvemos el sistema y vemos que tenemos 3 ecuaciones con 3 incógnitas

A:
$$3.2I_1 - 2.2I_2 = 20$$

B:
$$-2.2I_1 + 3.9I_2 - 0.47I_3 = 0$$

$$C: -0.47I_2 + 0.47I_3 = 0$$

-Para la resolución de este sistema de ecuaciones utilizamos nuestra herramienta de preferencia

-Colocamos nuestros valores

El sistema de ecuaciones:
$$\begin{cases} 3.2 & x_1 + 2.2 & x_2 + 3.49 & x_3 = 20 \\ -2.2 & x_1 + 3.49 & x_2 + -0.47 & x_3 = 0 \\ 0 & x_1 + -0.47 & x_2 + 0.47 & x_3 = 0 \end{cases}$$

-El resultado es:

$$x_1 = \frac{7550}{603}$$

$$x_2 = \frac{5500}{603}$$

$$x_3 = \frac{5500}{603}$$

Por lo tanto, los valores de nuestras intensidades son:

 $I_1 \approx 12.52 mA$

 $I_2 \approx 9.12 mA$

 $I_3 \approx 9.12 mA$

Sabemos que la intensidad I_2 para por la malla 2 por lo tanto procedemos a calcular la caída de voltaje en (VA)

$$VA = I_2 \times R$$

$$VA = \frac{5500}{603} \times 0.82$$

$$VA = 7.479 V$$

La intensidad (I_x) la calculamos sabiendo que por esa rama pasan la I_2 y la I_3

$$I_X = I_2 - I_3$$

$$I_X = 0 mA$$

4.5.4 Cuando hacemos O a la fuente de voltaje V1 (20v)

-Aplicamos el método de resolución de mallas y obtenemos el siguiente sistema ecuaciones

A:
$$0.47I_1 - 0.47I_2 = 12$$

B:
$$0.82I_2 + 2.2I_2 - 2.2I_3 + 0.47I_2 - 0.47I_1 = 0$$

C:
$$I_3 + 2.2I_3 - 2.2I_2 = 0$$

-Resolvemos el sistema y vemos que tenemos 3 ecuaciones con 3 incógnitas

A:
$$0.47I_1 - 0.47I_2 = 12$$

B:
$$-0.47I_1 + 3.49I_2 - 2.2I_3 = 0$$

C:
$$-2.2I_2 + 3.3I_3 = 0$$

-Para la resolución de este sistema de ecuaciones utilizamos nuestra herramienta de preferencia

-Colocamos nuestros valores

-El resultado es:

$$x_1 = \frac{364200}{10951}$$

$$x_2 = \frac{1800}{233}$$

$$x_3 = \frac{1200}{233}$$

Por lo tanto, los valores de nuestras intensidades son:

 $I_1 \approx 33.25 mA$

 $I_2 \approx 7.75 mA$

 $I_3 \approx 5.15 mA$

Sabemos que la intensidad I_2 para por la malla 2 por lo tanto procedemos a calcular la caída de voltaje en (VA)

$$VA = I_2 \times R$$

$$VA = \frac{1800}{233} \times 0.82$$

$$VA = 6.335 V$$

La intensidad (I_x) la calculamos sabiendo que por esa rama pasan la I_2 y la I_3

$$I_X = I_1 - I_2$$

$$I_X = 25.534 \ mA$$

4.5.5 Para finalizar sumamos nuestros voltajes y corrientes y analizamos

$$I_X = 25.534 - 0$$

$$I_X = 25.534$$

$$VA = 7.479 - 6.335$$

$$VA = 1.144$$

Calculo de errores

Voltaje total (VA)

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{0.951 - 0.952}{0.951} \times 100\% = -0.00105\%$$

Voltaje(VA) cuando V2=0

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{7.479 - 7.48}{7.479} \times 100\% = -0.000133\%$$

Voltaje(VA) cuando V1=0

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{6.335 - 6.53}{6.335} \times 100\% = -0.03\%$$

Corriente total (Ix)

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{25.531 - 25.5}{25.531} \times 100\% = 0.00121\%$$

Corriente (Ix) cuando V2=0

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = 0\%$$

Corriente (Ix) cuando V1=0

$$e\% = \frac{Vt - Ve}{Vt} \times 100 = \frac{25.534 - 25.5}{25.534} \times 100\% = 0.00133\%$$

Tabla 4.1 Medición de voltaje aplicando superposición

Voltaje total (VA)		Voltaje(VA) cuando V2=0		Voltaje(VA) cuando V1=0	
Calculado	Medido	Calculado	Medido	Calculado	Medido
0.951 V	0.952 V	7.479 V	7.48 V	6.335 V	6.53 V

Tabla 4.2 Medición de corriente aplicando superposición

Corriente total (Ix)		Corriente (Ix) cuando V2=0		Corriente (Ix) cuando V1=0	
Calculado	Medido	Calculado	Medido	Calculado	Medido
25.531 mA	25.5 mA	0	0	25.534 mA	25.5 mA