II SEMESTRE 2023 TIEMPO: 2 HORAS Y 30 MIN PUNTAJE TOTAL: 35 PTS

Segundo Examen Parcial

Instrucciones: Debe incluir todo el procedimiento que utilizó para llegar a sus respuestas. Trabaje en forma clara y ordenada y utilice cuaderno de examen u hojas debidamente grapadas. No se acogerán apelaciones en exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni el uso de dispositivos electrónicos con conectividad inalámbrica durante el desarrollo de la prueba.

#1. Considere la función $f:]-\infty, 2] \to \mathbb{R}$ cuya gráfica se presenta a continuación.

De acuerdo con la gráfica, responda las siguientes preguntas.

a) El conjunto de todos los valores de x para las cuales f'(x) < 0.

$$R/\left]\frac{1}{2}, \frac{4}{3}\right[$$
 1 Pt

b) El conjunto de todos los valores de x para las cuales f''(x) > 0. R/ $]-\infty, -1[\cup]\frac{4}{3}, 2[$ 1 Pt

c) El valor donde f alcanza el mínimo absoluto.

$$R/x = -1$$
 1 Pt

d) Las coordenadas de un punto de inflexión de f.

$$R/(\frac{4}{3},\frac{3}{2})$$
 1 Pt

e) ¿Posee f máximo absoluto? Justifique.

R/ No, ya que
$$\lim_{x\to -1^-} f(x) = +\infty$$
 1 Pt

Continúa en la siguiente página...

#2. Sea
$$g: \mathbb{R} - \{2\} \to \mathbb{R}$$
 tal que $g(x) = \frac{x^2}{x-2}$ y $g'(x) = \frac{x^2 - 4x}{(x-2)^2}$.

a) Indique las abscisas de los puntos máximos y mínimos relativos de g.

3 Pts

.....

$$g'(x) = \frac{x^2 - 4x}{(x - 2)^2} = \frac{x(x - 4)}{(x - 2)^2}$$

Cuadro de signos de g':

	∞ () 2	2 .	4 +	∞
x	- •	+	+	+	
$(x-2)^2$	+	+ •	+	+	
x-4	_	_	- (+	
g'(x)	+	_	_	+	
g(x)	7	X	>	7	

2 puntos

.....

Máximo relativo: x = 0

Mínimo relativo x = 4

1 punto

.....

b) Determine los intervalos de concavidad de g e indique (si hay) puntos de inflexión. 4 Pts

$$g''(x) = \frac{(2x-4)(x-2)^2 - 2(x^2-4x)(x-2)}{(x-2)^4} = \frac{8}{(x-2)^3}$$

1 punto

C: 1 "

Signo de g'':

	0 2	$+\infty$
8	+	+
x-2	_	+
g''	_	+
g	\cap	U

(2 puntos)

.....

$$\cap:]-\infty, 2[$$

$$\cup: \]2, +\infty[$$

No hay puntos de inflexión.

1 punto

.....

$m = \lim_{x \to \pm \infty} \frac{g(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2}{x^2 - 2x} = 1$	
0,5 puntos	
$b = \lim_{x \to \pm \infty} \left(\frac{x^2}{x - 2} - x \right) = \lim_{x \to \pm \infty} \frac{2x}{x - 2} = 2$	
1 punto	
Ecuación: $y = x + 2$	
0,5 puntos	
Determine los puntos de la curva de ecuación $y = \ln(x^2 + 1)$ en los cuales la recta normal es paralela a la recta de ecuación $x - y = 1$.	#3.
1 0	
$y' = \frac{1}{x^2 + 1} \cdot 2x = \frac{2x}{x^2 + 1}$	
$x - y = 1 \Rightarrow y = x - 1 \Rightarrow m = 1$	
1 punto	
$\frac{2x}{x^2 + 1} = -1 \Rightarrow 2x = -x^2 - 1 \Rightarrow x^2 + 2x + 1 = 0 \Rightarrow (x + 1)^2 = 0 \Rightarrow x = -1$	
1 punto	
Evaluando:	
$y(-1) = \ln 2$	
-	
El punto de la curva en los cuales la recta normal es paralela a la recta $x-y=1$ es $(-1, \ln 2)$ 1 punto	

c) Si se sabe que la gráfica de g posee una asíntota oblicua, determine su ecuación.

 $\mathbf{2} \; \mathbf{Pts}$

#6. Resuelva los siguientes problemas:

a)	Un objeto se deja caer desde una altura de 100 metros sobre el suelo, y t segundos después su altura está dada por $h(t) = 100 - \frac{1}{2}gt^2$, donde g es la aceleración y su valor es aproximadamente de 9,81 m/s ² . ¿Cuál es la velocidad del objeto justo antes de tocar el suelo? 3 Pts
	, , ,
	$h(t) = 100 - \frac{1}{2} \cdot 9,8t^2 \Rightarrow h(t) = 100 - 4,9t^2$
	$v(t) = h'(t) \Rightarrow v(t) = -9,8t$
	1 punto
	$h = 0 \Rightarrow 100 - 4,9t^2 = 0 \Rightarrow t \approx -4,52 \text{ o } t \approx 4,52$
	1 punto
	$v(4,52) \approx (-9,8) \cdot (4,52) \approx -44,27$
	La velocidad justo antes de caer al suelo es de aproximadamente 44,27 m/s.
	1 punto
<i>b</i>)	Considere un triángulo rectángulo de catetos con medidas a y b . Si el cateto de medida a decrece a razón de 0,5 cm/min y el cateto de medida b crece a razón de 2 cm/min, determine la tasa de cambio del área del triángulo cuando $a=16$ cm y $b=12$ cm. 4 Pts
	$rac{da}{dt} = -0,5\mathrm{cm/min}$ $rac{db}{dt} = 2\mathrm{cm/min}$
	2 puntos
	$A = \frac{ab}{2}$
	$\frac{dA}{dt} = \frac{1}{2} \left(\frac{da}{dt} \cdot b + a \cdot \frac{db}{dt} \right)$
	1 punto
	$\frac{dA}{dt}\mid_{a=16,\ b=12} = \frac{1}{2} \left(-0, 5 \cdot 12 + 16 \cdot 2 \right) = 13$
	El área del triángulo aumenta a una tasa de $13\mathrm{cm}^2/\mathrm{min}$.
	1 punto

c) Se desea construir un recipiente reforzado para almacenar una sustancia tóxica con forma de cilindro circular recto de volumen 900π cm³. Se sabe que el precio de construir la tapa y el fondo del cilindro es de 250 por cada cm²; mientras que la parte lateral cuesta 150 por cada cm². Determine la medida de la altura h del cilindro, de manera que el costo de construirlo sea mínimo.

.....

$$V = \pi r^2 h \Rightarrow \pi r^2 h = 900\pi \Rightarrow h = \frac{900}{r^2}$$

$$C = 2\pi r^2 \cdot 250 + 2\pi r h \cdot 150 \Rightarrow C = 500\pi r^2 + 300\pi r \cdot \frac{900}{r^2}$$

$$C(r) = 500\pi r^2 + \frac{270000\pi}{r}$$

.....

$$C'(r) = 0 \Longleftrightarrow 1000\pi r - \frac{270\,000\pi}{r^2} = 0 \Longleftrightarrow r^3 = 270 \Longleftrightarrow r = 3\sqrt[3]{10} \approx 6,46$$

1 punto

1 punto

.....

$$C''(r) = 1000\pi + \frac{54\,0000}{r^3} \Rightarrow C''(6,46) > 0$$

Por el criterio de la segunda derivada si $r \approx 6,46$ el costo es mínimo.

1 punto

.....

$$h = \frac{900}{\left(3\sqrt[3]{10}\right)^2} \approx 21,54$$

Para que el costo sea mínimo la altura debe ser de aproximadamente 21,54 cm

1 punto

.....

FÓRMULAS

Área lateral de un cilindro: $A_L = 2\pi rh$ Volumen de un cilindro: $V = \pi r^2 h$

.....

De acuerdo con lo indicado en el programa, en la pregunta 6.c. se desarrollará el atributo asociado al curso.

Atributo: conocimiento de ingeniería.

Nivel: inicial.

Contenido: problemas de máximos y mínimos.

Objetivo: resuelva problemas que involucren los conceptos de máximo y mínimo de una función.