MATH 570, Homework 8

Colin Roberts
October 20, 2017

Solutions

Problem 1. The two parts of this problem are unrelated.

- (a) Prove that the circle $S^1 = \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ is not a retract of the closed disk $\overline{B^2} = \{x \in \mathbb{R}^2 \mid ||x|| \le 1\}$.
- (b) Suppose $f: S^1 \to S^1$ is a map which is not homotopic to the identity map on S^1 . Prove that f(x) = -x for some point $x \in S^1$.

Proof (a). Suppose that S^1 is a retract of $\overline{B^2}$. Then $\iota_{S^1}\colon S^1\to \overline{B^2}$ is the inclusion map which induces an injection on the fundamental groups given by $(\iota_{S^1})_*\colon \pi_1(S^1)\hookrightarrow \pi_1(\overline{B^2})$. But note that $\pi_1(S^1)=\mathbb{Z}$ and $\pi_1(\overline{B^2})$ is the trivial group. This is a contradiction since there is \underline{no} injection from \mathbb{Z} to the trivial group.

.

Proof (b). Suppose that f is not homotopic to Id. Then, for a contradiction, suppose that $f(x) \neq -x$ for any point x. From the last homework, we know that if for any x, $f(x) \neq -x = -\mathrm{Id}(x)$, then $f(x) \simeq \mathrm{Id}$. This contradicts our supposition that $f(x) \neq -x$ at some point since otherwise f would be homotopic to Id. Thus f(x) = -x for some point.

Problem 2. Let S^1 be the unit circle and let $C = S^1 \times [-1, 1]$ be a cylinder. Prove that $S^1 \simeq C$.

:

Proof. Consider the following maps $f: S^1 \times [-1,1] \to S^1 \times \{0\}$ and and $g: S^1 \times \{0\} \hookrightarrow S^1 \times [-1,1]$ with $f(\theta,x) \mapsto (\theta,0)$ and $g(\theta,0) \mapsto (\theta,0)$. Note that $S^1 \times \{0\} \cong S^1$ and we have $f \circ g = \mathrm{Id}_{S^1}$. Then consider $H: I \times [-1,1] \to [-1,1]$ defined by

$$H(t,x) = (1-t)x.$$

So we have H continuous and $H(0,x)=Id_{[-1,1]}(x)$ and H(1,x)=0. Then $\mathrm{Id}_{S^1}\times H$ is continuous and provides a homotopy equivalence between $g\circ f$ and $Id_{S^1\times [-1,1]}$. So we have $g\circ f\simeq Id_{S^1\times [-1,1]}$. Hence, $C\simeq S^1$.

Problem 3. A topological space X is *contractible* if $Id_X: X \to X$ is homotopic to a constant map.

- (a) Prove that X is contractible if and only if X is homotopy equivalent to a one-point space.
- (b) Let X and Y be topological spaces. Prove that if either X or Y is contractible, then every continuous map from X to Y is homotopic to a constant map.

:

Proof (a). For the forward direction, suppose that X is contractible. Thus Id_X is homotopic via H(t,x) to a constant map. Then let $f\colon X\to \{p\}$ be defined by f(x)=p and let $g\colon \{p\}\to X$ be defined by g(x)=p and let $g\colon \{p\}\to X$ be

defined by g(p) = q for some specific $q \in X$. and note that $f \circ g = \mathrm{Id}_{\{p\}}$. Consider then $g \circ f$ and note $g \circ f \simeq \mathrm{Id}_X$ by the homotopy H given by the fact X is contractible. Thus $X \simeq \{p\}$, with $\{p\}$ a one point space.

For the converse, suppose that $X \simeq \{p\}$ with $\{p\}$ a one point space. Then there exists $f \colon X \to \{p\}$ and $g \colon \{p\} \to X$ with $f \circ g \simeq \operatorname{Id}_{\{p\}}$ and $g \circ f \simeq \operatorname{Id}_X$. Note that $g \circ f(x) = q$ for all $x \in X$ and some $q \in X$. This then implies that X is contractible since $g \circ f$ is a constant map that is homotopic to the identity map on X, Id_X .

Proof (b). Without loss of generality, let Y be contractible. Thus Id_Y is homotopic to a constant map C. Let $f\colon X\to Y$ be a continuous map. Then notice that $f=\mathrm{Id}_Y\circ f\simeq C\circ f=C$. Thus we have f is homotopic to a constant map.

Problem 4. The fundamental theorem of algebra states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Give a proof of the fundamental theorem of algebra using facts related to the fundamental group of the circle (there are many other different proofs).

Let $f(x) = x^n + c_1 x^{n-1} + \dots + c_{n-1} x + c_n$ be a polynomial with n > 0 and each $c_i \in \mathbb{C}$. We want to show that there are n complex numbers, including multiplicities, x_i such that $f(x_i) = 0$.

Proof. We may assume without loss of generality that p(z) is monic. So let

$$p(z) = a_0 + a_1 z + \dots + a_{n-1} z^{n-1} + z^n.$$

Supposing p(z) has no roots in \mathbb{C} , we will show p is constant. First, consider for a fixed $r \in \mathbb{C}$ the loop

$$f_r(s) = \frac{p(re^{2\pi is})/p(r)}{|p(re^{2\pi is})/p(r)|}$$

Indeed, by assumption the denominators are never zero, so this function is continuous for all $s \in [0,1]$. Further, each value $f_r(s)$ is on the unit circle. Finally, $f_r(0) = (p(r)/p(r))/|p(r)/p(r)| = 1$, and $f_r(1)$ yields the same value, so this is a closed path based at 1.

We note this function is continuous in both s and r (indeed, they are simply rational functions defined for all s, r), so that $f_r(s)$ is a homotopy of loops as r varies. If r = 0, then the function is constant for all s, and so for any fixed r, the loop $f_r(s)$ is homotopic to the constant loop.

Now fix a value of r which is larger than both $|a_0| + \cdots + |a_{n-1}|$ and 1. For |z| = r, we have

$$|z^n| = r \cdot r^{n-1} > (|a_0| + \dots + |a_{n-1}|)|z^{n-1}|$$

And hence $|z^n| > |a_0 + a_1z + \cdots + a_{n-1}z^{n-1}|$. It follows that the polynomial $p_t(z) = z^n + t(a_{n-1}z^{n-1} + \cdots + a_0)$ has no roots when both |z| = r and $0 \le t \le 1$. Fixing this r, and replacing p with $p_t(z)$ in the formula for $f_r(s)$, we have a homotopy from $f_r(s)$ (when t = 1, nothing is changed) to the loop which winds around the unit circle n times, where n is the degree of the polynomial. Indeed, plug in t = 0 to get $f_r(s) = (r^n e^{2\pi i n s}/r^n)/|r^n e^{2\pi i n s}/r^n|$, which is the loop $\omega_n(s) = e^{2\pi i n s}$.

In other words, we have shown that the homotopy classes of f_r and ω_n are equal, but f_r is homotopic to the constant map. Translating this into fundamental groups, as $\pi_1(S^1, 1) = \mathbb{Z}$, we note that $[\omega_n] = [f_r] = 0$, but if $\omega_n = 0$ then it must be the case that n = 0, as \mathbb{Z} is the free group generated by ω_1 . Hence, the degree of p to begin with must have been 0, and so p must be constant.