Тема 19

Метод на резолюцията в съждителното и предикатното смятане от първи ред. Хорнови клаузи

Дефинира се понятието съждителен резолютивен извод и се доказва теоремата за коректност и пълнота на резолютивната изводимост. Описва се методът на резолюцията. Дефинира се понятието Хорнов дизюнкт и се доказва, че изпълнимите множества от Хорнови дизюнкти имат най-малък модел.

<u>Дефиниция:</u>

Съждителен дизюнкт се нарича крайно множество от съждителни литерали (променливи и отрицания на променливи)

Дефиниция:

Нека D_1 и D_2 са дизюнкти, а L е литерал. Казваме, че **правилото за резолюцията е приложимо за двойката** D_1 , D_2 относно литерала L ако $L \in D_1$ и $L^{\partial} \in D_2$. Записваме ! $R_L(D_1, D_2)$. Резултатът от прилагането му означаваме с $R_L(D_1, D_2)$, като $R_L(D_1, D_2) \leftrightharpoons (D_1\{L\}) \cup (D_2\setminus\{L^{\partial}\})$

Дефиниция:

Дизюнктът D е **резолвента** на D_1 и D_2 , ако съществува литерал L, такъв че $D=R_L(D_1,D_2)$

Лема:

Основание за коректността

Нека I е булева интерпретация, D_1 и D_2 са съждителни дизюнкти и $D=R_L(D_1,D_2)$. Ако $I\models\{D_1,D_2\}$, то $I\models D$.

Доказателство:

Ще разгледаме два случая: $I \vDash L$ и $I \not\vDash L$, като за всеки от тях ще докажем, че $I \vDash D$.

- 1. $I \vDash L$. Тогава $I \not\vDash L^{\partial}$. Тъй като $I \vDash D_2$, има литерал $M, M \in D_2$ и $I \vDash M$. Нека M е един такъв литерал. Тогава от $I \not\vDash L^{\partial}$ и $I \vDash L$, заключваме че $M \not\equiv L^{\partial}$. Следователно $M \in D_2 \backslash \{L^{\partial}\} \subseteq (D_1 \backslash \{L\}) \cup (D_2 \backslash \{L^{\partial}\}) = D$, поради което $I \vDash D$.
- 2. $I \not\models L$. Тъй като $I \models D_1$, има литерал $K, K \in D_1$ и $I \models K$. Нека K е един такъв литерал. Тогава от $I \models K$ и $I \not\models L$, заключваме че $K \not\models L$. Следователно $K \in D_1 \backslash \{L\} \subseteq (D_1 \backslash \{L\}) \cup (D_2 \backslash \{L^{\partial}\}) = D$, откъдето $I \models D$.

Дефиниция:

- $S^* \hookrightarrow \bigcup_{n=0}^{\infty} S_n$, където $S_0 \subseteq S_1 \subseteq S_2 \subseteq \cdots$ (S- множество от дизюнкти)
- $S_0 \leftrightharpoons S$
- $S_{n+1} \leftrightharpoons S_n \cup \{D |$ има литерал L и има дизюнкти $D_1, D_2 \in S_n : D = R_L(D_1, D_2)\}$

Наблюдение:

Нека I е булева интерпретация. Тогава $I \vDash S \leftrightarrow I \vDash S^*$ - непосредствено от лемата и дефиницията на S^*

Следствие:

Ако **■** ∈ S^* , то S е неизпълнимо

Дефиниция:

Нека S е множество от дизюнкти. **Резолютивен извод** от S се нарича крайна редица от дизюнкти, такава че всеки нейн член е или от S или е резолвента на два предходни члена. Казваме, че D е резолютивно изводим от S (и бележим с $S \vdash D$) ако има резолютивен извод от S, чийто последен член е дизюнктът D.

Твърдение:

Нека S е множество от дизюнкти. D е дизюнкт. Тогава $S \overset{r}{\vdash} D \leftrightarrow D \in S^*$ Доказателство:

(→) Нека $S \vdash^r D$. Ще докажем, че $D \in S^*$:

Има резолютивен извод $S-D_1,\dots,D_n$ на D. С индукция ще докажем, че ако D_1,\dots,D_n е резолютивен извод от S и $k\leq n$, то $D_k\in S^*$

- 1. Ако D_1 е резолютивен извод от S, то D_1 ∈ S
- 2. Нека всеки път когато D_1, \dots, D_n е резолютивен извод от S, да е изпълнено $D_1 \in S^*$, за $k=1,\dots,n$
- 3. Разглеждаме резолютивен извод от S с дължина n+1: D_1,\dots,D_n,D_{n+1} . Нека $1\leq k\leq n+1$
 - За $k \leq n, D_1, \dots, D_n$ е резолютивен извод от S и $D_1, \dots, D_n \in S^*$
 - За k = n + 1 са в сила:
 - $D_{n+1} \in S \to D_{n+1} \in S^*$ - $R_L(D_i, D_i), i, j < n+1$ и $D_i, D_i \in S^*$

Но S^* е затворено относно правилото за резолюцията, следователно $D_{n+1} \in S^*$

(←) Нека $D \in S^*$. Ще докажем, че $S \vdash^r D$:

Нека $D \in S^*$. С индукция по n ще докажем, че ако $D \in S_n$, то $S \vdash D$

- 1. За n=0, $D \in S_0 = S$ и тогава D е резолютивен извод от S. Следователно $S \vdash^r D$
- 2. Нека за някое n е в сила $D \in S^* \to S \overset{r}{\vdash} D$
- 3. $_{{\sf He}\kappa a}\, {\it D} \in {\it S}_{n+1}.$ Тогава:
 - $D \in S_n$ и от индукционната хипотеза следва, че $S \overset{r}{\vdash} D$

• $D = R_L(D_i, D_i), D_1, D_2 \in S_n$

Нека α е резолютивен извод на D_1 от S, β е резолютивен извод на D_2 от S. Разглеждаме $\alpha\beta D$ – крайна редица от дизюнкти, резолютивен извод на D от S. Следователно $S \ D$

Теорема:

За коректност на резолютивната изводимост.

Ако $S \vdash$ **п**, то S е неизпълнимо.

Доказателство:

Ако $S \vdash$ \blacksquare , то от предното <u>Твърдение</u> следва, че $\blacksquare \in S^*$, откъдето следва, че S е неизпълнимо.

Теорема:

За пълнота на резолютивната изводимост.

Нека S е множество от дизюнкти. Ако S е неизпълнимо, то $S \overset{r}{\vdash} \blacksquare$ Доказателство:

Ще докажем с допускане на противното:

Нека S е неизпълнимо. Да допуснем, че НЕ е изпълнено $S \vdash \blacksquare$. Тогава $\blacksquare \notin S^*$. S^* е фамилия от крайни непразни множества. Следователно S^* има минимална трансверзала. Нека A е минимална трансверзала за S^* . A е множество от литерали. Нека P е произволна променлива. Тогава имаме един от следните случаи:

- $P \in A$, $\neg P \notin A$
- $P \notin A$, $\neg P \in A$
- $P \notin A$, $\neg P \notin A$
- $P \in A, \neg P \in A$

Да допуснем, че $P \in A$, $\neg P \in A$. От свойствата на минималната трансверзала следва: Има $D_1 \in S^*$, такова че $A \cap D_1 = \{P\}$.

Има $D_2 \in S^*$, такова че $A \cap D_2 = \{ \neg P \}$.

$$P \in D_1, \neg P \in D_2$$
: $R_P(D_1, D_2) = D = (D_1 \setminus \{P\}) \cup (D_2 \setminus \{\neg P\})$.

Но $D \in S^*$ (затворено относно правилото за резолюцията).

 $A \cap D = (D_1 \setminus \{P\}) \cup (D_2 \setminus \{\neg P\}) \cap A = \emptyset \cup \emptyset = \emptyset$, което е невъзможно.

Оттук получаваме, че следната булева интерпретация I_A :

$$I_A[P] = \left\{ egin{aligned} \mathbb{N} & P \in A \\ \mathbb{J} & P \not\in A \end{aligned} \end{aligned}$$
 има свойството: $L \in A \longrightarrow I_A \vDash L.$

Наистина:
$$L \in A \to \begin{cases} L = Q, \ I_A[Q] = \mathbb{N} & \text{т. e. } I_A \vDash L \\ L = \neg Q, \ Q \not\in A, \ I_A[Q] = \mathbb{N} & \text{т. e. } I_A \vDash L \end{cases}$$
 Ще покажем, че I_A е модел за S^* . Нека $D \in S^*$. Тогава има литерал L , такъв че

Ще покажем, че I_A е модел за S^* . Нека $D \in S^*$. Тогава има литерал L, такъв че $L \in A \cap D$. Следователно $L \in A$, откъдето $I_A \models L$ и $I_A \models D$. Следователно $I_A \models S^*$, т.е. S^* е изпълнимо. Но S^* е изпълнимо тогава и само тогава когато S е изпълнимо, откъдето достигнахме то противоречие с условието, че S е неизпълнимо. Следователно ако S е

неизпълнимо, то $S \vdash$

Метод на резолюцията

Дефиниция:

Един дизюнкт наричаме **Хорнов** ако най-много един от неговите литерали е

- ■ е Хорнов дизюнкт.
- {*p*} е Хорнов дизюнкт (факт).
- $\{p, \neg q_1, ..., \neg q_n\}, n > 0$ е Хорнов дизюнкт (правило).
- $\{\neg q_1, ..., \neg q_m\}, m > 0$ е Хорнов дизюнкт (цел).

Дефиниция:

Крайно множество от Хорнови дизюнкти, съдържащо само правила и факти, наричаме (Хорнова) **програма**.

Твърдение:

Нека S е множество от Хорнови дизюнкти и $\blacksquare \notin S$.

Ако S е неизпълнимо, то:

- 1. *S* съдържа поне един факт.
- 2. *S* съдържа поне една цел.

Доказателство:

(1.) Ще докажем с допускане на противното:

Нека *S* удовлетворява условието и да допуснем, че *S* не съдържа факти.

Нека $D \in S \to D \neq \emptyset$ е цел или правило и в D има най-много един позитивен литерал. Тогава съществува q, такава че $\neg q \in D$. Дефинираме булева интерпретация I_{Λ} , такава че за всяка съждителна променлива p, $I_{\Lambda}[p] = \Lambda$. Тогава за всяка съждителна променлива p имаме: $I_{\Lambda}[p] \models \neg p$.

Но в D винаги има поне един непозитивен литерал $\to I_{\Lambda} \models D \to I_{\Lambda} \models S$, оттук S е изпълнимо, с което достигнахме до протичоречие с условието, че S е неизпълнимо. (2.) Нека S не съдържа цели.

Нека $D \in S$, $D \neq \emptyset$, е факт или правило, т.е. има поне един позитивен литерал.

Разглеждаме интерпретацията $I_{\rm H}[p] = {\rm H}$ за всяка променлива p.

Получаваме, че $I_{\rm H} \vDash D \to I_{\rm H} \vDash S$, оттук S е изпълнимо, с което достигнахме до протичоречие с условието, че S е неизпълнимо.

Дефиниция:

Нека S е множество от Хорнови дизюнкти и X е непразно множество от модели на S. Дефинираме следната булева интерпретация: I_X , такава че за всяка съждителна променлива p е изпълнено: $I_X[p] = \mathsf{I} \leftrightarrow$ за всяка интерпретация $J \in X$, $J[p] = \mathsf{I}$.

Лема:

Нека S е множество от Хорнови дизюнкти и $X \neq \emptyset$ е множество от модели на S. Тогава $I_X \models S$.

Доказателство:

Ако J е булева интерпретация, то на J можем да съпоставим множеството A_J на всички променливи верни в J: $A_J = \{p \mid J[p] = \mathsf{H}\}$.

И обратното – на всяко подмножество от съждителни променливи - A, можем да съпоставим булева интерпретация $J_A[p] = \mathsf{H} \leftrightarrow p \in A$.

За I_X получаваме $I_X[p] = \mathsf{И} \leftrightarrow p \in A_{I_X} \leftrightarrow$ за всяка интерпретация $J \in X, J[p] = \mathsf{И} \leftrightarrow$ за всяка интерпретация $J \in X, p \in A_J \leftrightarrow p \in \bigcap_{J \in X} A_J$. Тоест $A_{I_X} = \bigcap_{J \in X} A_J$. I_X е сечение на интерпретациите от X. Нека $D \in S$. Тогава $D \neq \blacksquare$.

Имаме следните случаи за D:

- $D = \{p\}$ е факт. Нека $J \in X$. Тогава $J \models S, J \models P, J[p] = И \to$ за всяко $J \in X, \ J[p] = И \to I_X[p] = И$. Следователно $I_X \models D$.
- $D=\{\neg q_1,\dots,\neg q_n\},\ n>0$ е цел. Нека $J\in X$. Тогава J е модел за D. Тогава съществува $q_i\colon J[q_i]= Л$. Оттук $q_i\notin A_I\to q_i\notin A_{I_X}$. Следователно $I_X[q_i]= Л$, т.е. $I_X\vDash D$.
- $D = \{p, \neg q_1, ..., \neg q_n\}, \ n > 0$ е правило. Имаме два случая:
 - 1. p е вярно във всички модели (аналогично на D- факт) т.е. $p \in A_I$, за всяко $J \to p \in A_{I_X}$, откъдето $I_X \vDash D$.
 - 2. Съществува модел $J \in X$, за който p не е вярно (аналогично на D- цел) Тогава $p \notin A_J \to$ съществува $q_i \colon J[q_i] = \mathcal{I} \to q_i \notin A_J$. Тогава $q_i \notin A_{I_X}$, откъдето следва, че $I_X[q_i] = \mathcal{I} \to I_X \models D$.

<u>Дефиниция:</u>

Нека S е множество от Хорнови дизюнкти. Един модел I_m на S се нарича най-малък* модел на S, ако за всеки модел I на S е в сила $A_{I_m} \subseteq A_I$. Тоест всеки път когато $I \models S$ и p е съждителна променлива е в сила: $I_m[p] = \mathsf{M} \to I[p] = \mathsf{M}$.

Теорема:

Всяко изпълнимо множество от Хорнови дизюнкти има <u>най-малък</u>* модел. *Локазателство:*

Нека X е множеството от всички модели на S. Изпълнимостта на S означаваме с $X = \{J \mid J \models S\} \neq \emptyset$. Моделът I_X е модел за S (от предходната лема). От дефиницията на I_X имаме, че ако $I_X[p] = \mathsf{U}$, то за всеки модел $J \in X$ е изпълнено $J[p] = \mathsf{U}$, но X е множеството от всички модели за $S \to \mathsf{or}\ I_X[p] = \mathsf{U}$ получаваме $J[p] = \mathsf{U}$ за всеки модел J на S.

^{* &}quot;най-малък" е по-строго ограничение от "минимален". "най-малък" елемент съществува когато може да се дефинира пълна наредба между елементите на даденото множество, т.е. когато всеки два елемента са сравними. Тогава "най-малък" елемент се дефинира като елемент по-малък от всички останали. "минимален" елемент може да има и при липса на пълна наредба – тогава "минимален" елемент се дефинира като елемент, който е по-малък от всички с които е сравним. Т.е. "минимален" и "най-малък" са еквивалентни когато може да се дефинира пълна наредба между елементите на множеството.