Introduction to Algebraic Information Theory for Quantitative Finance Homework 2

August 30, 2025

Timothy Tarter
James Madison University
Department of Mathematics

- 1. Prove that the ring $\mathbb{Z}_{82} \simeq \langle 41 \rangle \times \langle 2 \rangle$.
- 2. Prove that if $R = \langle I_1 \rangle \times \cdots \times \langle I_n \rangle$ then $|R| = |\langle I_1 \rangle| \times \cdots \times |\langle I_n \rangle|$ iff R is a PID.
- 3. For the following rings, determine if they are ID, PID, ED, or Fields:
 - The ring of upper triangular matrices over \mathbb{C} , with + as vector addition and \times as matrix multiplication / the standard inner product.
 - \bullet \mathbb{Z}
 - \bullet \mathbb{Z}_{32}
 - \bullet \mathbb{Z}_{41}
- 4. Find $787^{-1} \mod 1447$ and $1447^{-1} \mod 787$.
- 5. Find $1061^{-1} \mod 997$ and $997^{-1} \mod 1061$.
- 6. Find $619^{-1} \mod 2003$ and $2003^{-1} \mod 619$.
- 7. Find $1567^{-1} \mod 23$ and $23^{-1} \mod 1567$.
- 8. Find $6473^{-1} \mod 4973$ and $4973^{-1} \mod 6473$.
- 9. Find $42^{87} \mod 79$.
- 10. Find $96^{114} \mod 23$.
- 11. Find $5162^{242} \mod 240$.
- 12. Find $56^{2003} \mod 2000$.
- 13. Solve $x^2 \equiv 14 \mod 17$, if such roots exist.
- 14. Find all the ideals of the ring \mathbb{Z}_{231} , and for each such ideal I, compute \mathbb{Z}_{231}/I . What is it isomorphic to by FHT?

15. For the previous problem: is \mathbb{Z}_{231} an ID, PID, ED, or field? What about the quotient groups you computed?