- 6.1 Beiträge zur Konzeptbildung
- 6.2 Definition von RBF-Netzen
- 6.3 Zweischichtig, sequentielles Lernen
- 6.4 Weitere Lernvariante für RBF-Netze
- 6.5 Approximation und Regularisierung
- 6.6 Statistische Interpretation von RBF-Netzen

6.1 Beiträge zur Konzeptbildung

Es sei eine Funktionsapproximation gewünscht.

Überblick:

- Satz von Kolmogorov (1957)
- Interpolation nach Powell (1987)
- Neuronale Informationsverarbeitung

Satz von Kolmogorov (1957)

Gegeben sei eine I-dimensionale stetige Funktion f.

Dann existieren ein-dimensionale stetige Funktionen g_0 und g_j , $j\in\{1,\ldots,(2I+1)\}$, sowie Konstanten $lpha_i,\,i\in\{1,\ldots,I\}$, so daß gilt:

$$f(x_1,\ldots,x_I) \stackrel{!}{=} \sum_{j=1}^{2I+1} g_0\left(\sum_{i=1}^I lpha_i g_j(x_i)
ight)$$

Satz von Kolmogorov (1957)

Deutung: Jede multi-dimensionale stetige Funktion kann durch Kombination von ein-dimensionalen stetigen Funktionen repräsentiert werden.

Problem: Satz ist nicht konstruktiv.

Es ist unbekannt, wie g_0 und g_j , $j \in \{1, \ldots, (2I+1)\}$, gefunden werden.

Gegeben seien $oldsymbol{M}$ unterschiedliche Punkte

$$\{x^m \in \mathbb{R}^I | m=1,\ldots,M \}$$
 und reelle Zahlen $\{r^m \in \mathbb{R} | m=1,\ldots,M \}$.

Dann findet man eine Funktion $f: \mathbb{R}^I \to \mathbb{R}$ gemäß nachfolgender Definition, so daß die Interpolationsbedingung erfüllt ist:

$$f(x^m) := \sum_{j=1}^M w_j h_j(x^m) = r^m \, ; \quad m \in \{1, \dots, M\}$$

Als Interpolationsfunktionen h_j unterscheidet man lokalisierende und nicht-lokalisierende Basisfunktionen h, die nicht-linear sind. Dabei sei definiert: $h_j(x) := h(||x - x^j||) =: h(d)$

Lokalisierende Basisfunktionen:

$$d \to \infty \Rightarrow h(d) \to 0$$

Beispiele:

$$h(d):=e^{-\left(rac{d}{\sigma}
ight)^2}\,;$$
 Gauß-Funktion $h(d):=rac{1}{(\gamma^2+d^2)^\zeta}\,;$ $\zeta>0$

Nicht-lokalisierende Basisfunktionen:

$$d o\infty\Rightarrow h(d) o\infty$$
 oder $h(d) o$ Konstante $(
eq0)$

Beispiele:

$$egin{align} h(d) &:= (\gamma^2 + d^2)^\zeta\,; \quad \zeta > 0, \quad h(d) o \infty \ h(d) &:= rac{1}{1 + e^{-d}}\,; \quad h(d) o 1 \ \end{matrix}$$

Bestimmung der Koeffizienten w_j zur Interpolation.

Angenommen, Basisfunktion h und zugehörige Matrix H seien wie folgt gegeben:

$$egin{aligned} H := egin{pmatrix} h_{11} & \cdots & h_{1M} \ dots & dots \ h_{M1} & \cdots & h_{MM} \end{pmatrix} \ h_{mj} := h(\|x^m - x^j\|) \end{aligned}$$

$$m \in \{1,\ldots,M\}, \quad j \in \{1,\ldots,M\}$$

Weiterhin seien die Sollwerte gegeben:

$$R := egin{pmatrix} m{r}^1 \ dots \ m{r}^M \end{pmatrix}$$

Gesucht ist Vektor der Koeffizienten

$$w := egin{pmatrix} w_1 \ dots \ w_M \end{pmatrix}$$

Lösung: $R = H \cdot w \Longrightarrow w^* := H^{-1} \cdot R$

Neuronale Informationsverarbeitung

- Lokale Informationsverarbeitung (Neuronen sind sensitiv für lokalisierte Teilräume des Eingaberaumes mit Überlappungsgebieten)
- Partitionierung des Lernproblems

6.2 Definition von RBF-Netzen

Überblick:

- Topologie und Basisfunktionen
- Funktion eines RBF-Netzes
- Funktionsapproximation durch RBF-Netz
- Parameter eines RBF-Netzes
- Nicht-isotrope Basisfunktionen
- Einschub: Zufallsvariable, Mittelwert, Varianz, Kovarianz, Kovarianzmatrix

Topologie und Basisfunktionen

Ein RBF-Netz ist ein zweischichtiges Netz (d.h. <u>eine</u> verdeckte Schicht), deren Output-Knoten eine (gewichtete) Linearkombination von Projektionen auf radiale Basisfunktionen berechnen.

Die Basisfunktionen gehören zu den verdeckten Knoten, die eine lokalisierte Antwort auf den Input erzeugen.

Topologie und Basisfunktionen

Funktion eines RBF-Netzes

Lineare Kombination von nicht-linearen Basisfunktionen:

$$y_k(x) := \sum_{j=1}^J w_{jk} h_j(x) \, ; \quad k \in \{1,\cdots,K\}$$

Wichtigste Basisfunktion:

Radial-symmetrischer Gauß (synonym Isotroper Gauß)

$$\|h_j(x):=h(\|x-\mu^j\|):=e^{-rac{\|x-\mu^j\|^2}{2\sigma_j^2}}$$

Funktionsapproximation durch RBF-Netz

RBF-Netz repräsentiert eine stetige Funktion, wobei die Anzahl der Basisfunktionen von der Komplexität der zu repräsentierenden Funktion abhängt.

Anzahl J der Basisfunktionen h_j ist klein im Vergleich zur Anzahl M der Trainingselemente.

 \Rightarrow Approximation statt Interpolation.

Zwei Parameterarten.

- Parameter der einzelnen RBFs:
 - Zentren μ^j
 - Distanzen σ_j , je zw. Zentrum und Wendepunkt einer Gauß-Kurve
- Parameter zur Kombination der RBFs:
 - Faktoren (Gewichte) w_{jk}

Basisfunktionen sind nicht mehr auf Trainingselementen lokalisiert.

 \Rightarrow Lokalisierung μ^j ist Teil des Lernens.

Hinweis: Ergänzend zur Lokalisierung μ^j , wird auch die Anzahl J der Basisfunktionen gelernt. D.h., die Anzahl der Knoten der verdeckten Schicht wird gelernt.

Jede Basisfunktion hat eine individuelle Einzugsweite, charakterisiert durch σ_j .

Falls σ_j klein/groß, dann ist die Basisfunktion für einen kleinen/großen Teilbereich des Eingaberaums zuständig.

Weiterhin gilt: Falls die σ_j der Basisfunktionen klein/groß, dann beeinflußen wenige/viele Basisfunktionen das Ergebnis der Netzanwendung auf ein bestimmtes Eingabelement.

 \Rightarrow Anpassung von σ_i ist Teil des Lernens.

Faktor w_{jk} gewichtet die Rolle der Basisfunktion h_j bei der Berechnung der k.ten Output-Komponente.

⇒ Ermittlung dieser Gewichte ist auch Teil des Lernens.

Nicht-isotrope Basisfunktionen

Verallgemeinerung des radial-symmetrischen Gauß zu einem nicht-isotropen Gauß als Basisfunktion.

Definition der Basisfunktion mit Kovarianzmatrix S_j :

$$h_j(x) := e^{-rac{1}{2}(x-\mu^j)^T(S_j)^{-1}(x-\mu^j)}$$

Im Falle eines I-dimensionalen Input-Vektors hat jede Basisfunktion dann I(I+3)/2 justierbare Parameter: I Parameter in μ^j und I(I+1)/2 Parameter in S^j .

Balance erforderlich zwischen kleiner Zahl von (nicht-isotropen) Basisfunktionen mit vielen justierbaren Parametern und großer Zahl von (isotropen) Basisfunktionen mit wenigen Parametern.

Einschub: Zufallsvariable, Mittelwert

6. Netze radialer Basisfunktionen 21 / ϵ

Einschub: Varianz, Kovarianz

Varianz
$$G_{\times \times} := \frac{1}{M} \sum_{(\times^m - \overline{\times})^2} \frac{M}{m=1}$$
 $\lim_{x \to \infty} \frac{1}{M} = \lim_{x \to \infty} \frac{1}{M} = \lim_{x$

Einschub: Kovarianzmatrix

Einschub: Kovarianzmatrix

Einschub: Kovarianzmatrix

6.3 Zweischichtig, sequentielles Lernen

Überblick:

- Annahmen für das Lernen
- Art des Lernens in den Schichten
- MEANS Cluster-Algorithmus
- ISODATA Cluster-Algorithmus
- Lineare Regression durch Pseudo-Inverse

Annahmen für das Lernen

Es sei eine Funktionsapproximation gewünscht.

Seien $(x^m, r^m) \in \mathbb{R}^I imes \mathbb{R}$ die Trainingselemente, mit $m \in \{1, \dots, M\}$.

Seien $h_j(x)$ die Symbole für die Basisfunktionen, mit $j \in \{1,\dots,J\}$.

Sei f(x) das Symbol für den reellen Netzwerk-Output (oBdA skalar).

Art des Lernens in den Schichten

1. Schicht: Unüberwachtes Lernen der Basisfunktionen bzgl. Eingabedaten x^m (keine Berücksichtigung von r^m). Gelernt werden μ^j, σ_j, J .

2. Schicht: Überwachtes Lernen der Faktoren w_j für die Linearkombination der Basisfunktionen h_j , durch Lineare Regression unter Berücksichtigung von r^m .

Ziel: Unüberwachtes Lernen, d.h. Clustern von Trainingsdaten zur Bestimmung von Anzahl, Lage, Ausdehnung der Basisfunktionen.

Methode: Partitionierung von Ω_T in J disjunkte Teilmengen Cl_j , durch Minimierung der Intra-Cluster-Varianz V_{IC} .

$$V_{IC} := rac{1}{J} \sum\limits_{j=1}^{J} \left(rac{1}{M_j} \sum\limits_{x^m \in Cl_j} \|x^m - \mu^j\|^2
ight)$$

$$\mu^j := rac{1}{M_i} \sum\limits_{x^m \in CL} x^m \,, \quad M_j := |Cl_j| \,.$$

Algorithmus im Überblick:

- ullet Initialisierung der Zentren der Mengen Cl_j .
- ullet Zugehörigkeiten von Elementen x^m zu den Mengen Cl_j festlegen bzw. ändern.
- ullet Berechnung bzw. Neuberechnung der Zentren μ^j .

```
proc MEANS
{ Für alle j initialisiere mu[j] beliebig
 Wiederhole solange sich Cl[i] ändern
   Für alle x[m] aus Omega[T] // Gruppierung
    \{ j_b = arg min \{ ||x[m] - mu[j]| | \} \}
      füge x[m] zu Cl[j_b] hinzu
   Für alle Cl[i]
      M[j] = Anzahl(Cl[j]) // Anzahl Elemente
       mu[j] = 1/M[j] * Summe(Cl[j]) // Zentrum
```

Bemerkungen:

- ullet Bei jeder Iteration wird garantiert, daß V_{IC} nicht wächst.
- Manche Cluster bleiben eventuell leer.
- Resultierende Cluster hängen leider von Initialisierung ab.
- ullet Zentren μ_j der Cluster als Zentren der Basisfunktionen verwenden.
- Die Kovarianzmatrizen S_j der Cluster zur Definition von nicht-isotropen Basisfunktionen verwenden. Oder die Varianzen σ_j der Cluster zur Definition von isotropen Basisfunktion verwenden.

ISODATA Cluster-Algorithmus

Iterative Self-Organizing DATA Analysis Technique.

Algorithmus im Überblick:

- Die Anzahl der Cluster ist variabel.
- Start mit Vorgabe niedriger Zahl von Clustern.
- Variieren der Größe und Gestalt der Cluster.
- Anfangsclusterung mit MEANS.
- Split-Operation falls Streuung im Cluster zu groß.
- Merge-Operation falls die Zentren der Cluster zu eng benachbart.

Funktioniert besser als MEANS (reduzierte Abhängigkeit von Initialisierung).

ISODATA Cluster-Algorithmus

Lineare Regression durch Pseudo-Inverse

- Gewichtsvektoren zwischen verdeckter Schicht und Ausgabeschicht werden unter der Annahme gelernt, dass die Basisfunktionen der verdeckten Schicht vorliegen.
- Diese Basisfunktionen werden auf die Trainingselemente angewendet.
- Weil die Knoten der Ausgabeschicht als Propagierungsfunktion den Linearen Assoziator und als Aktivierungsfunktion die Identität haben, ist nur noch eine Lineare Regression erforderlich.
- Beim Batch-Lernen erfolgt die Lineare Regression mit der Pseudo-Inversen (siehe Unterkapitel 4.5), und führt zur Minimierung des Mean-Squared-Error.

6. Netze radialer Basisfunktionen 37 / 65

Lineare Regression durch Pseudo-Inverse

Funktion des RBF-Netzes: $f(x) := \sum_{j=1}^J w_j h_j(x)$

Trainingsdaten:
$$(x^m, r^m) \in \Omega_T \subset \mathbb{R}^I \times \mathbb{R}$$

Fehlerfunktion:
$$D(w) := rac{1}{2} \sum_{m=1}^M (f(x^m) - r^m)^2$$

Optimaler Gewichtsfektor:
$$w^* := \underbrace{(H^T \cdot H)^{-1} \cdot H^T}_{\mathsf{Pseudo-Inverse \ von \ } H} \cdot R$$

Es ist w^* der Vektor mit den J optimalen Gewichten, H die $(M \times J)$ -Matrix mit Komponenten $h_j(x^m)$, und R der Vektor mit den M Solldaten.

6. Netze radialer Basisfunktionen 38 /

6.4 Weitere Lernvariante für RBF-Netze

Überblick:

- Diskussion über das zweistufige Lernen
- Integriertes Lernen aller Parameter
- Zweistufiges und integriertes Lernen

Vorteile:

- Partitionierung des Lernproblems durch zweistufiges Lernen von zwei Parameterarten. Dies bewirkt eine Effizienzsteigerung beim Lernen.
- Transformation der Eingabe-(Roh-)Daten in einen anderen Raum, in welchem das Problem linearer Natur ist.
- Lernen der Gewichtsvektoren (in der zweiten Stufe) durch einfache, lineare Regression.

6. Netze radialer Basisfunktionen 40 / ϵ

Nachteile:

- ullet Die unabhängige Optimierung der Basisfunktionen von Solldaten r^m kann ein Problem sein.
- ullet Zur Abtastung eines I-dimensionalen Eingaberaumes wächst die notwendige Zahl der Basisfunktionen exponentiell mit I.
- Oft haben bestimmte Dimensionen in den mehr-dimensionalen Eingabedaten keinen Einfluß auf die Ausgabedaten. Dies führt aber nicht zur Verringerung der Zahl der Basisfunktionen.

6. Netze radialer Basisfunktionen 41 /

Abtastung Eingabe Gereich 2.B. wit 4 Basisfunktionen je Dimension, Somit 4 x 4 bei 7 Dimensjonen Biw. 43 Gei 3 Dimensionen Exponentieller tuwachs mit Dimensionsrahl.

6. Netze radialer Basisfunktionen 42 /

6. Netze radialer Basisfunktionen 43 / 0

Nachteile:

- Wenn die intrinsische Dimensionalität der Eingabedaten und die Lage des eingebetteten Unterraumes bekannt wäre, dann könnte man besser geeignete Basisfunktionen definieren, um deren Anzahl zu reduzieren.
- Die Anzahl der Basisfunktionen sollte in denjenigen Teilgebieten des Eingaberaumes dicht verteilt sein, wo der Abbildungfehler groß ist, z.B. wo Funktionen stark gekrümmt sind.

6. Netze radialer Basisfunktionen 44 / 6

6. Netze radialer Basisfunktionen 45 /

6. Netze radialer Basisfunktionen 46 / 68

Integriertes Lernen aller Parameter

- Integriertes, überwachtes Lernen aller Parameter der zwei Parameterarten, d.h. keine Organisation in zwei Stufen, auch Basisfunktionen überwacht lernen.
- Gradientenabstiegsverfahren in nicht-konvexer Fehlerfunktion.
- Realisiert eine ganzheitliche, nicht-lineare Regression.
- Verfahren ermittelt eventuell nur lokales Minimum (statt globales) der Fehlerfunktion.
- Verfahren würde eine konstante Zahl von Basisfunktionen zu Grunde legen, also die Anzahl der verdeckten Knoten nicht lernen.

6. Netze radialer Basisfunktionen 47 /

Zweistufiges und integriertes Lernen

- Die Vorteile des zweistufigen Lernens und des integrierten Lernens könnten in folgendem Verfahren kombiniert werden.
- Erst zweistufiges Lernen, dann integriertes Lernen anschließen.
- Die Ergebnisse des zweistufigen Lernens dienen zur Initialisierung des Gradientenabstiegs beim integrierten Lernen.
- Dadurch wird Effizienz gesteigert und die Chance auf Erreichen des globalen Minimums der Fehlerfunktion erhöht.

6. Netze radialer Basisfunktionen 48 / 6

6.5 Approximation und Regularisierung

Überblick:

- Gut oder schlecht gestellte Probleme
- Beispiele für schlecht gestellte Probleme
- Regularisierung
- Lineare Regression und Regularisierung

Gut oder schlecht gestellte Probleme

Bezugnahme auf Hadamard (1923).

Gut gestelltes (well-posed) Problem:

- Es existiert eine Lösung, und die
- Lösung ist eindeutig, und die
- Lösung hängt kontinuierlich von Eingabedaten ab.

Ist eine dieser Bedingungen nicht erfüllt, so ist das Problem schlecht gestellt (ill-posed).

6. Netze radialer Basisfunktionen 50 /

Beispiele für schlecht gestellte Probleme

- ullet Lineare Algebra: $y=Ax \stackrel{?}{\Longrightarrow} x=A^{-1}y$
- Regelungstheorie: Prozeßidentifikation aus Beobachtung
- Computer Vision: Szenenrekonstruktion aus Bildern

6. Netze radialer Basisfunktionen

Regularisierung

Änderung/Verbesserung der Problemeigenschaften (ill-posed ⇒ well-posed) durch:

- mehr Meßergebnisse,
- Vorverarbeitung der Meßergebnisse,
- Definition von Zwängen durch zusätzliches Wissen.

6. Netze radialer Basisfunktionen 52 / 65

Regularisierung

6. Netze radialer Basisfunktionen 53 / 65

Regularisierung

Bezugnahme auf Poggio, Girosi (1990).

$$G(f) := rac{1}{2} \sum\limits_{m=1}^{M} (f(x^m) - r^m)^2 + rac{\lambda}{2} \int |R_f|^2 dx$$

Generischer Regularisierungsoperator R_f für die Funktion f, der z.B. die Glattheit von f mißt.

Rolle (Wichtigkeit) des Regularisierungsterms wird festgelegt mit Hilfe des Regularisierungsparameters λ .

Bemerkung: Es gibt auch Regularisierungsterme mit mehreren Regularisierungsparametern.

Verwendung der empirischen Fehlerfunktion D(w) in der Definition einer allgemeineren Kostenfunktion (loss function) G(w):

$$G(w) := D(w) + \underbrace{rac{1}{2} \sum\limits_{j=1}^{J} \lambda_j w_j^2}_{ ext{Bestrafungsterm}}$$

Der zusätzliche Term bewirkt einen "Zwang" bezüglich der zu lernenden Funktion f, z.B. "bestraft" große Gewichte w_i .

Die Regularisierungsparameter $\lambda_j \geq 0$ kontrollieren das Ausmaß der Bestrafung:

$$\lambda_j$$
 klein \Rightarrow dichte Anpassung an Messungen λ_j groß \Rightarrow Verzicht auf dichte Anpassung

6. Netze radialer Basisfunktionen 56 / ϵ

$$egin{aligned} rac{\partial G}{\partial w_j} = \underbrace{\sum\limits_{m=1}^{M} (f(x^m) - r^m) \overbrace{rac{\partial f}{\partial w_j}}^{M,j}(x^m)}_{rac{\partial D}{\partial w_j}} + \lambda_j w_j \stackrel{!}{=} 0 \ ; \ j \in \{1,\dots,J\} \end{aligned}$$

$$\sum\limits_{m=1}^{M}f(x^{m})h_{j}(x^{m})+\lambda_{j}w_{j}=\sum\limits_{m=1}^{M}r^{m}h_{j}(x^{m})$$

6. Netze radialer Basisfunktionen

Vektor-Notation:

$$ec{h}^{sp_j,T} \cdot F + \lambda_j w_j = ec{h}^{sp_j,T} \cdot R$$

mit

$$ec{h}^{sp_j} := (h_j(x^1), \ldots, h_j(x^M))^T$$

$$F:=(f(x^1),\ldots,f(x^M))^T$$

$$R:=(r^1,\ldots,r^M)^T$$

Nun Stapel von J Gleichungen zusammenfassen.

Matrix-Notation:

$$H^T \cdot F + L \cdot w = H^T \cdot R$$

mit

$$egin{aligned} H &:= egin{pmatrix} h_1(x^1) & \cdots & h_J(x^1) \ dots & &dots \ h_1(x^M) & \cdots & h_J(x^M) \end{pmatrix} = &dots egin{pmatrix} ec{h}^{ze_1} \ dots \ ec{h}^{ze_M} \end{pmatrix} \ = &dots & (ec{h}^{sp_1} & \cdots & ec{h}^{sp_J}) \end{aligned}$$

und

$$L := egin{pmatrix} \lambda_1 & \cdots & 0 \ & \ddots & \ 0 & \cdots & \lambda_J \end{pmatrix}; \quad w := (w_1, \dots, w_J)^T.$$

Es gilt:

$$f(x^m) = \sum\limits_{j=1}^J w_j h_j(x^m) = ec{h}^{ze_m} \cdot w$$

Zusammenfassung für alle $m \in \{1, \dots, M\}$: $F = H \cdot w$

Verwendung in erster Formel von letzter Folie:

$$oldsymbol{H}^T \cdot oldsymbol{R} = oldsymbol{H}^T \cdot oldsymbol{F} + oldsymbol{L} \cdot oldsymbol{w} = oldsymbol{H}^T \cdot oldsymbol{H} + oldsymbol{L} \cdot oldsymbol{w} = oldsymbol{H}^T \cdot oldsymbol{H} + oldsymbol{L} \cdot oldsymbol{w} = oldsymbol{H}^T \cdot oldsymbol{H} + oldsymbol{L} \cdot oldsymbol{w}$$

Ergibt optimalen Gewichtsvektor unter Zwang:

$$w^* := (H^T \cdot H + L)^{-1} \cdot H^T \cdot R$$

→ allg. Pseudoinverse

6.6 Statistische Interpretation von RBF-Netzen

Überblick:

- Funktion von RBF-Netz als Bayes-Formel
- Probabilistische Deutung von RBF-Netzen

Annahme: RBF-Netze zur Klassifikation

Funktion von RBF-Netz als Bayes-Formel

(2)

 $P(x) \stackrel{!}{=} \sum_{j'} P(x|j') \cdot P(j')$ Deutung von P(x|j): Zugehörigkeit von x zu einer bestimmten

Gauß-Verteilung (Nummer j).

Deutung von $P(j|c^k)$: Relevanz der Gauß-Funktion j für die Charakterisierung der Klasse c^k .

(1)

(3)

Funktion von RBF-Netz als Bayes-Formel

$$egin{aligned} P(x) &= \sum\limits_{k=1}^K P(x|c^k) \cdot P(c^k) \ &= \sum\limits_{k=1}^K \left(\sum\limits_{j=1}^J P(x|j) \cdot P(j|c^k)
ight) \cdot P(c^k) \ &= \sum\limits_{j=1}^J \sum\limits_{k=1}^K \underbrace{P(x|j)}_{ ext{unabh. von }\sum_k} \cdot P(j|c^k) \cdot P(c^k) \ &= \sum\limits_{j=1}^J P(x|j) \cdot P(j) \end{aligned}$$

Netze radialer Basisfunktionen

Funktion von RBF-Netz als Bayes-Formel

Einsetzen von Gleichung 2 und 3 in Gleichung 1:

$$egin{array}{lll} P(c^k|x) & = & rac{\sum_{j=1}^J P(x|j) \cdot P(j|c^k) \cdot P(c^k) \cdot rac{P(j)}{P(j)}}{\sum_{j'} P(x|j') \cdot P(j')} \ & = & \sum_{j=1}^J rac{P(j|c^k) \cdot P(c^k)}{P(j)} \cdot rac{P(x|j) \cdot P(j)}{\sum_{j'} P(x|j') \cdot P(j')} \ & = & P(c^k|j) & = & P(j|x) \ & = & P_{ij}(x) \end{array}$$

6. Netze radialer Basisfunktionen 64 / 0

Probabilistische Deutung von RBF-Netzen

Das Lernen eines RBF-Netzes wird so realisiert, dass sich für einen Input-Vektor x die a posteriori Wahrscheinlichkeit für eine Klasse c^k ergibt.

Eine Basisfunktion h_j gibt die Wahrscheinlichkeit der Zugehörigkeit des Input-Vektors x zur Gauß-Funktion mit Nummer j an.

Das Gewicht w_{jk} gibt die Relevanz der Gauß-Funktion j für die Charakterisierung der Klasse c^k an, ausgedrückt als bedingte Wahrscheinlichkeit.

6. Netze radialer Basisfunktionen 65 / 0