Lecturer	. Mark Da	ly	Subject	. Mathem	atics 1	
Course. 1	BSc Software Des	sign (Game/Web	Dev) Year 1			
2) Use or 3) Pleaso		· photocopying p ginal version and			quired.	
Ques No.	Determine the points (x,y) from the table below:					Marks.
1(a)	x	x^2	-x	-6	f(x)	
(i)	-4	16	4	-6	14	
(1)	-3	9	3	-6	6	
	-2	4	2	-6	0	
	-1.5	2.25	1.5	-6	-2.25	
	-1	1	1	-6	-4	
	-0.5	0.25	0.5	-6	-5.25	
	0	0	0	-6	-6	
	0.5	0.25	-0.5	-6	-6.25	
	1	1	-1	-6	-6	
	1.5	2.25	-1.5	-6	-5.25	
	2	4	-2	-6	-4	
	2.5	6.25	-2.5	-6	-2.25	
	3	9	-3	-6	0	
	4	16	-4	-6	6	
	5	25	-5	-6	14	
	6	36	-6	-6	24	
	-6 -4	4 -2	25 - 20 - 15 - 10 - 5 -	2	4 6	
			-10			

Lecturer. Mark Daly				Subject.	ject. Mathematics 1		
Course.	BSc Software	Design (Gan	ne/Web Dev) Y	ear 1			
(2) Use or (3) Pleas	e hand in the	(for photoco) original vers	border lines. pying purposes ion and not the indicate clearl	e photocopy.	answer req	uired.	
Ques No.							Marks.
1(a)							
(ii)		From the graph and the table above, the function crosses the x-axis (i.e. the function is zero) when $x = -2$ and 3					
(iii)	It is apparent from the graph and the table above that the function has a turning point in the vicinity of $(0.5,-6.25)$; i.e. when $x = 0.5$.						10
(h)	Determine th	e points (x,y)	from the table	below:			
(b)	x	x^3	$-8x^2$	+2x	10	f(x)	
	-3	-27	-72	-6	10	-95	
	-2.5	-15.63	-50	-5	10	-60.63	
	-2	-8	-32	-4	10	-34	
	-1.5	-6.75	-18	-3	10	-14.38	
	-1	-1	-8	-2	10	-1	
	-0.5	-0.13	-2	-1	10	6.88	
	0	0	0	0	10	10	
	0.5	0.13	-2	1	10	9.13	
	1	1	-8	2	10	5	
	1.5	3.38	-18	3	10	-1.63	
	2	8	-32	4	10	-10	
	2.5	15.63	-50	5	10	-19.38	
	3	27	-72	6	10	-29	
	3.5	42.88	-98	7	10	-38.13	
	4	64	-128	8	10	-46	
	4.5	91.13	-162	9	10	-51.88	
	5	125	-200	10	10	-55	
	5.5	166.38	-242	11	10	-54.63	
	6	216	-288	12	10	-50	
	6.5	274.63	-338	13	10	-40.38	
	7	343	-392	14	10	-25	
	7.5	421.88	-450	15	10	-3.13	
	8	512	-512	16	10	26	
	8.5	614.13	-578	17	10	63.13	
	9	729	-648	18	10	109	

School of Engineering Model Answers/Marking Scheme

Lecturer. Mark Daly Subject. **Mathematics 1** Course. BSc Software Design (Game/Web Dev) Year 1 (1) Please do not write outside the border lines. (2) Use only black pen (for photocopying purposes). (3) Please hand in the original version and not the photocopy. (4) For descriptive questions please indicate clearly the type of answer required. Graph shown below: Ques No. Marks. 1(a) 100 **(i)** 50 9 -3 -1 3 5 1 -50 -100 (ii) From the graph and the table above, the function crosses the x-axis (i.e. the function is zero) when x is close to -1, 1.5 and 7.5 (iii) It is apparent from the graph above that this cubic equation exhibits the usual twin turning points. It has 2 turning points: the first is close to when x = 0 (i.e. close to the point (0,10)) and the second is close to when x = 5 (near the point (5,-55)). 10

Lecturer.	Mark Daly	Subject.	Mathematics 1	
	Sc Software Design (Game/Web Dev) Year	L		
(2) Use or (3) Please	e do not write outside the border lines. aly black pen (for photocopying purposes). The hand in the original version and not the phoescriptive questions please indicate clearly the	1 0	swer required.	
Ques No. 2(a)	Determine the value(s) of x for which the dete space is the set of values for which the matrix	rminant is zer is non-singula	o. The complementary	Marks.
(i)	$\begin{vmatrix} 1 & 0 & 0 \\ 2 & 3x & -4 \\ 5 & 0 & x \end{vmatrix} = (1)(x)(3x) = 0$ $\Rightarrow determinant = 0 \Leftrightarrow x$ The matrix is non-singular $\forall x \in \mathbb{R} \setminus \{0\}$	=0.		3
(ii)	$\begin{vmatrix} 2 & 1 & 6 \\ 3 & -x & 4 \\ -6 & 0 & 1-x \end{vmatrix} \Rightarrow determinant = 0$ The matrix is non-singular $\forall x \in \mathbb{R} \setminus \{\frac{1}{4}\}$	-	•	3
(b)	To calculate the inverse of the matrix A calculate its determinant to determine if it is calculate the adjoint. First the determinant: $ A = \begin{vmatrix} 1 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix}$ $= (-1 \times (-3) - 3 \times 1) + (3 \times (-1) - 2 \times (-1) + $	non-zero. If $ \begin{array}{c c} -2 \\ 1 & 3 \\ -3 \end{array} $	it is non-zero, then we	
	As the determinant is non-zero, the inverse ex $A^* = \begin{pmatrix} \Delta_{11} & \Delta_{12} & \Delta_{13} \\ \Delta_{21} & \Delta_{22} & \Delta_{23} \\ \Delta_{31} & \Delta_{32} & \Delta_{33} \end{pmatrix} \text{ where }$ $\Delta(i,j) \text{ is the 2x2 formed by remov}$ $\Delta_{11} = (-1)^2 (-1 \times (-1)^2 (-1 \times (-1)^3) + (-1)^3 (-1)$	ing the j th row $3)-3\times1)=$ $-(-2)\times1)=$ $-2)\times(-1))=$ $-3\times(-1)$	and i^{th} column of A. 0 $= 1$ $= 1$ $= 3$ $= -5$	

Lecturer.	Mark Daly S	ubject.	Mathematics 1	
	Sc (Computing & Software Engineering) Year			
(2) Use on (3) Please	do not write outside the border lines. by black pen (for photocopying purposes). hand in the original version and not the photococcipitive questions please indicate clearly the ty		er required.	
Ques No.				Marks.
(c)	$\Delta_{31} = (-1)^4 (2 \times 1 - (-1)^3)$ $\Delta_{32} = (-1)^5 (1 \times 1 - 1 \times 1)$ $\Delta_{33} = (-1)^6 (1 \times (-1) - 1)$ The adjoint of A is thus $A^* = \begin{pmatrix} 0 & 1 \\ 3 & -5 & -1 \\ 1 & -2 & -1 \end{pmatrix}$ with the inverse of A defined: $A^{-1} = \frac{1}{ A } A^* = \frac{1}{1} \begin{pmatrix} 0 \\ 3 & -1 \\ 1 & -2 & -1 \end{pmatrix}$ The system of equations can be expressed as AX: $A = \begin{pmatrix} 1 & 1 & -2 \\ 2 & -1 & 3 \\ -1 & 1 & -3 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ A is the matrix from (b). We can use the result follows: $AX = B \Rightarrow (A^{-1}A)X = B$ where I is the identity matrix. Therefore the solution by A ⁻¹ . Then $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{1} \begin{pmatrix} 0 & 1 & 1 \\ 3 & -5 & -7 \\ 1 & -2 & -3 \end{pmatrix}$	$(-1) = -1$ $1 \times 2 = -1$ $1 \times 3 = -1$ $1 \times 4 = -1$ $1 \times $	$= \begin{pmatrix} 0 \\ 5 \\ -4 \end{pmatrix}$ to solve the system as a sained by multiplying B	12
	Therefore $x=1$, $y=3$, $z=1$ is the solution of the system.	=2		2
(i)	Taylor series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ $f(x) = \sin(x)$ $x_0 = \pi/2$	n		
	J () 2()			

	Model Answers/Marking Scheme	
Lecturer	. Mark Daly Subject. Mathematics 1	
Course.	BSc Software Design (Game/Web Dev) Year 1	
(2) Use or (3) Please	e do not write outside the border lines. ally black pen (for photocopying purposes). be hand in the original version and not the photocopy. bescriptive questions please indicate clearly the type of answer required.	
Ques No.	Then $f(\pi/2) = \sin(\pi/2) = 1$	Marks.
3(a)	$f^{(1)}(x) = \cos(x) \Rightarrow f^{(1)}(\pi/2) = 0$	
	$ f^{(2)}(x) = -\sin(x) \Rightarrow f^{(2)}(\pi/2) = -1 f^{(3)}(x) = -\cos(x) \Rightarrow f^{(3)}(\pi/2) = 0 $	
	$f^{(4)}(x) = \sin(x) \Rightarrow f^{(4)}(\pi/2) = 1$ $f^{(5)}(x) = \cos(x) \Rightarrow f^{(5)}(\pi/2) = 0$	
	The first six terms in the Taylor series are defined: $T_5(x) = \sum_{n=0}^{5} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$	
	$= f(\pi/2) + f^{(1)}(\pi/2)(x - x_0) + \frac{f^{(2)}(\pi/2)}{2!}(x - x_0)^2 + \dots + \frac{f^{(5)}(\pi/2)}{5!}(x - x_0)^5$	
(**)	$= 1 + 0 + (-1)\frac{(x - \pi/2)^2}{2!} + 0 + \frac{(x - \pi/2)^4}{4!} + 0$ $f(x) = e^x \qquad x = 0$	5
(ii)	$f(x)=e^{x} x_0=0$ Then $f(0)=e^{0}=1$	
	$f^{(1)}(x) = f(x) = e^{x} \Rightarrow f^{(1)}(0) = f(0) = 1$ $f^{(2)}(x) = f(x) = e^{x} \Rightarrow f^{(2)}(0) = f(0) = 1$ $f^{(3)}(x) = f(x) = e^{x} \Rightarrow f^{(3)}(0) = f(0) = 1$	
	$f^{(4)}(x) = f(x) = e^{x} \Rightarrow f^{(4)}(0) = f(0) = 1$ $f^{(5)}(x) = f(x) = e^{x} \Rightarrow f^{(5)}(0) = f(0) = 1$	
	The first six terms in the Taylor series are defined: $T_5(x) = \sum_{n=0}^{5} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$	
	$= f(0) + f^{(1)}(0)(x) + \frac{f^{(2)}(0)}{2!}(x)^{2} + \dots + \frac{f^{(5)}(0)}{5!}(x)^{5}$	
	$=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!}$	5
(b)	$e^2 \simeq 7.389056$ We've already determined that	
	$T_5(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!}$ for exp(x) about x ₀ =0.	
	Substitute 2 for x in $T_5(x)$ to get the approximation for $exp(x)$ at 2.	

. Mark Daly Subject. Mathematics 1	
e do not write outside the border lines. nly black pen (for photocopying purposes). e hand in the original version and not the photocopy.	
So the error is $ f(x)-T_5(x) = 7.389-7.27 = 0.11 \approx 0.2$	Marks.
$f(x) = \left(\cos^2(x) + \sin^2(x)\right)e^{2x}$	10
As $\cos^2(x) + \sin^2(x) = 1$ then $f(x) = e^{2x}$. Using the chain rule we get $\frac{d}{dx} f(x) = 2e^{2x}$	5
$f(x)=e^{\ln e^x }$ Here use the identity $e^{\ln u(x) }=u(x)$ with $u(x)=e^x$	3
$\frac{d}{dx}f(x) = \frac{d}{dx}e^{x} = e^{x}$ $f(x) = e^{\cos(2x)}$ You use the chain rule 2 times to get	5
$\frac{d}{dx} f(x) = \underbrace{e^{\cos(2x)}}_{1^{st} Chain Rule} \times \underbrace{\left(-\sin(2x)\right) \times 2}_{2^{nd} Chain Rule}$	5
$f(x) = \frac{x^8 - 1}{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}$ From your lectures you know that $x^8 - 1 = (x - 1)(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$ Then and $\Rightarrow \frac{d}{dx} f(x) = \frac{d}{dx} \frac{x^8 - 1}{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1} = \frac{d}{dx}(x - 1) = 1$	5
	BSc Software Design (Game/Web Dev) Year 1 e do not write outside the border lines. Ally black pen (for photocopying purposes). The band in the original version and not the photocopy. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive questions please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly the type of answer required. The secriptive question is also please indicate clearly expected in the type of answer required. The secriptive question is also please in the type