Sections 4.1 Number Theory

What is Number Theory?

Comp 232

Instructor: Robert Mearns

- 1. Number theory is the part of mathematics devoted to the study of the integers and their properties.
- 2. Key ideas in number theory include divisibility, modular arithmetic, prime integers, greatest common divisors and least common multiples.
- 3. Representations of integers, including binary and hexadecimal representations, are part of number theory. This will be used to represent different number types in computer memory
- 4. We will look at several computer applications of Number Theory.

Section 4.1

Divisibility Modular Arithmetic

Section 4.2

Computer representation of Integers

Section 4.3

Prime numbers
Greatest Common Divisors

1. Terms and Definitions

Term	Definition	Example
Divisor	Division Algorithm	$\frac{11}{4} = 2 + \text{remainder } 3$
Dividend	d is the a is the q is the divisor dividend quotient remainder	Hence: 4 is the divisor 11 is the dividend
Quotient	Iff $\forall a,d \exists q,r, a,d,q,r \in \mathbb{Z}, d > 0, 0 \leq r < d,$ a/d = q + remainder r	2 is the quotient 3 is the remainder
Remainder	Note: Remainder r is Positive or 0 and less than d Notation: q = a div d r = a mod d	da2ici _{Dgmail.com}
Divides	d d a	Ex 1 $\frac{12}{4}$ = 3 or $12 = 4 \times 3$
Factor	divides a is a factor of a is a multiple of d Iff $\forall a,d \exists q, \ a,d,q \in \mathbb{Z}, \ d \neq 0,$	Hence: 4 divides 12: 4 12 4 is a factor of 12 12 is a multiple of a
Multiple	a/d = q or a =dq Note: Remainder r is 0 Notation: d a is read as "d divides a" d a means a/b	Ex 2 $\frac{11}{4}$ = 2 + remainder 3 4 11 because the remainder \neq 0
		3

Terms and Definitions (continued)

Term	Definition	Example
Congruent	a is congruent to r, modulo m	Examples:
	Iff $\forall a,r,m, a,r \in \mathbb{Z}, m \in \mathbb{Z}^+$,	$m \mid (a-b) \rightarrow a \equiv b \mod m$
Modulo	m (a-r)	$3 \mid (3-0) \rightarrow 3 \equiv 0 \mod 3$
	Notation: a ≡ r mod m is read as	$3 \mid (4-1) \rightarrow 4 \equiv 1 \mod 3$
	"a is congruent to r modulo m"	$3 \mid (5-2) \rightarrow 5 \equiv 2 \mod 3$
	Note: a≡r mod m	$3 \mid (6-0) \rightarrow 6 \equiv 0 \mod 3$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Note that the congruence
	\rightarrow a = mq + r	values b are really the
	→ Congruence value r (where r>0) is the remainder where a is divided by m Hence: r = a mod m	remainders when divide the given numbers a by 3:
	panda2ici	$\frac{5}{3} = 1 + \text{remainder } 2$
	panda2ici@gmail.con	Hence $5 \equiv 2 \mod 3$

Ex 1: Does 7 divide 833 ? $\frac{833}{7}$ = 119 + remainder 0. Hence 7 divides 811

Write:

 $7\mid 833=7\mid (833-0)$ $833\equiv 0 \mod 7$ or 0 = $833\mod 7$ because 0 is the remainder when 833 is divided by 7

Ex 2: Does 7 | 377? (Use the calculator to get)
$$\frac{377}{7} = 53.857142 857142...$$

- Decimal part = 0.85... is not the remainder but $0.85... \rightarrow remainder \neq 0$
- Remainder $\neq 0 \rightarrow 7$ 377
- How do we calculate remainder: $377 (53 \times 7) = 377 371 = 6$, hence remainder = 6
- Write: 377/7 = 53+remainder 6 OR $377 \equiv 6 \mod 7$ OR $6 = 377 \mod 7$

Ex 3:
$$50 \equiv ? \mod 6$$

Step1
$$\frac{50}{6} = 8.33..$$

Step 2
$$50-6 \times 8 = 2 \rightarrow \text{rem} = 2 \rightarrow 50 \equiv 2 \mod 6$$
 OR 2 = 50 $\mod 6$

Ex 4:
$$492 \equiv ? \mod 15$$

Step1
$$\frac{492}{15} = 32.8$$

Step 2
$$492 - 15 \times 32 = 12 \rightarrow \text{rem} = 12 \rightarrow 492 \equiv 12 \mod 15$$
 OR $12 = 492 \mod 15$

Ex 5:
$$492 \equiv ? \mod 6$$

Step1
$$\frac{492}{6} = 82$$

Step 2 The rem =
$$0 \rightarrow 492 \equiv 0 \mod 6$$
 OR 0 = 492 mod 6

2. The Mod m Relation is a Function

Ex 1: Consider mod 3 Relation with Domain as **Z** +

The Mod 3 function is many to 1

There are an infinite number of values that map from \mathbf{Z}^+ to each value in the Range $\{0,1,2\}$

If the Codomain = $\{0,1,2\}$ the Mod 3 function is Onto this Codomain

Note: The Mod m function maps every element in the Domain **Z** ⁺ (positive Integers) to a unique value in the set {0,1,2,3,..., m-1}

Ex 2: Consider negative Integers in the Domain of Mod m function.

Note: $\frac{b}{a} = q + remainder r$,

The remainder r is positive or 0 by definition and $0 \le r < a$

(i)
$$-44 \equiv ? \mod 3$$
:
Step1 $\frac{-44}{3} = -14.66$
 $\frac{-44}{3} = -14 - 0.66$ (- 0.66 is not the remainder but it \rightarrow the remainder \neq 0)
 $\frac{-44}{3} = -14 - 1 + 1 - 0.66 = -15 + 0.34$ (subtract / add 1 is done to ensure excess > 0)

Step 2
$$-44 - (-15 \times 3) = -44 + 45 = 1 \rightarrow \text{rem} = 1 \rightarrow 1 = -44 \mod 3$$

(ii)
$$-82 \equiv ? \mod 3$$

Step1 $\frac{-82}{3} = -27.33$
 $\frac{-82}{3} = -27 - 0.33 = -27 - 1 + 1 - 0.33 = -28 + 0.67$

Step 2
$$-82 - (-28 \text{ X } 3) = -82 + 84 = 2 \rightarrow \text{ the remainder} = 2 \rightarrow 2 = -82 \text{ mod } 3$$

(iii) In a similar way
$$\frac{-90}{3} \rightarrow \text{rem} = 0 \rightarrow 0 = -90 \mod 3$$

Conclusion: The Congruence function mod 3 maps Negative Integers onto the Codomain {0,1,2} Hence the Congruence function mod 3 maps all Z onto the Codomain {0,1,2}

3. Theorems concerning Division and Modular arithmetic

Note the three equivalent statements: $r = a \mod m \Leftrightarrow m \mid a - r \Leftrightarrow a \equiv r \mod m$

Ex 1: Theorem: For all $a, b \in \mathbb{Z}$, $(a \equiv b \mod m)$ iff $(a \mod m = b \mod m)$

Part 1 (if): If $(a \mod m = b \mod m)$ then $(a \equiv b \mod m)$

Proof (Direct)

- 1. Let a mod $m = r_1$
- 2. →
- **3**. →
- **4.** →
- 5. Similarly if $b \mod m = r_2$
- 6. $\rightarrow r_2 = b q_2 \text{ m}, q_2 \in \mathbf{Z}$
- 7. Since $r_1 = r_2$
- 8. –
- 9. →
- 10. \rightarrow m | (a-b) \rightarrow a \equiv b mod m

QED

Def of mod m

Def Division

Algebra, get Γ_1 on LHS

Def Mod, Div, Algebra

Given

Substitute

Algebra, leave a-b on LHS

Def of Div

Def of mod m

Part 2 (only if): If $(a \equiv b \mod m)$ then $(a \mod m = b \mod m)$ Proof (Contradiction)

1. Either
$$(a \mod m = b \mod m)$$

or $(a \mod m \neq b \mod m)$

2. Assume a mod $m \neq b \mod m$

3. let a mod $m = r_1$

4. m |

5.

6.

7. Similarly if b mod $m = r_2$

8.

9.

10.

11.

12.

13. $m \mid a - b \text{ is false}$

14. \rightarrow a \equiv b mod m is false

15. Contradiction

 \rightarrow a mod m = b mod m

list all possible conclusions

Assume not wanted conclusion

Def mod

Def of Div

Algebra, n_1 on LHS

Def mod, Div, Algebra

Assumption line 2

Substitute

Algebra, a-b on LHS

Algebra, Factor

Def of Div

Def mod

Given $a \equiv b \mod m$

Only remaining possibility in line 1

QED

Ex 2: Theorem: $\forall a,b,c,m \in \mathbb{Z}, \ m \ge 2, \ c > 0$, if $a \equiv b \mod m$ then and $ac \equiv bc \mod mc$ Proof (Direct)

1.
$$a \equiv b \mod m$$

2. m | (a-b)

3. $a - b = qm, q \in Z$

4. (a - b)c = qmc

5. ac - bc = q(mc)

6. mc | (ac - bc)

7. $ac \equiv bc \mod mc$

QED

Given

Def of mod

Def division

Multiply by c

Distributive, associative

Def of division

Def. of mod

- Ex 3: Consider the proposition: If $k \mid m$ n then $k \mid m$ or $k \mid n$. Is the proposition true or false. Prove your conjecture.
- Ex 4: When an Integer n is divided by 7 the remainder is 5. What is the remainder when 9n is divided by 7?
- Ex 5: State the value(s) of r if $r = n^2 \mod 8$, $n \in \mathbb{Z}^+$, n is odd
- Ex 6: Prove that $r = 7 \mod 13$ iff $4r = 2 \mod 13$