

AF

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: C12N 15/12, C07K 14/72	A2	(11) International Publication Number: WO 00/31258 (43) International Publication Date: 02 June 2000 (02.06.2000)																																																																					
(21) International Application Number: PCT/US99/23687		Published																																																																					
(22) International Filing Date: 13 October 1999 (13.10.1999)																																																																							
<p>(30) Priority Data:</p> <table> <tbody> <tr><td>09/416,760</td><td>12 October 1999 (12.10.1999)</td><td>US</td></tr> <tr><td>09/417,044</td><td>12 October 1999 (12.10.1999)</td><td>US</td></tr> <tr><td>60/109,213</td><td>20 November 1998 (20.11.1998)</td><td>US</td></tr> <tr><td>60/120,416</td><td>16 February 1999 (16.02.1999)</td><td>US</td></tr> <tr><td>60/121,852</td><td>26 February 1999 (26.02.1999)</td><td>US</td></tr> <tr><td>60/123,946</td><td>12 March 1999 (12.03.1999)</td><td>US</td></tr> <tr><td>60/123,949</td><td>12 March 1999 (12.03.1999)</td><td>US</td></tr> <tr><td>60/136,436</td><td>28 May 1999 (28.05.1999)</td><td>US</td></tr> <tr><td>60/136,437</td><td>28 May 1999 (28.05.1999)</td><td>US</td></tr> <tr><td>60/136,439</td><td>28 May 1999 (28.05.1999)</td><td>US</td></tr> <tr><td>60/136,567</td><td>28 May 1999 (28.05.1999)</td><td>US</td></tr> <tr><td>60/137,127</td><td>28 May 1999 (28.05.1999)</td><td>US</td></tr> <tr><td>60/137,131</td><td>28 May 1999 (28.05.1999)</td><td>US</td></tr> <tr><td>60/141,448</td><td>30 June 1999 (30.06.1999)</td><td>US</td></tr> <tr><td>60/156,555</td><td>29 September 1999 (29.09.1999)</td><td>US</td></tr> <tr><td>60/156,633</td><td>29 September 1999 (29.09.1999)</td><td>US</td></tr> <tr><td>60/156,634</td><td>29 September 1999 (29.09.1999)</td><td>US</td></tr> <tr><td>60/156,653</td><td>29 September 1999 (29.09.1999)</td><td>US</td></tr> <tr><td>60/157,280</td><td>01 October 1999 (01.10.1999)</td><td>US</td></tr> <tr><td>60/157,281</td><td>01 October 1999 (01.10.1999)</td><td>US</td></tr> <tr><td>60/157,282</td><td>01 October 1999 (01.10.1999)</td><td>US</td></tr> <tr><td>60/157,293</td><td>01 October 1999 (01.10.1999)</td><td>US</td></tr> <tr><td>60/157,294</td><td>01 October 1999 (01.10.1999)</td><td>US</td></tr> </tbody> </table>			09/416,760	12 October 1999 (12.10.1999)	US	09/417,044	12 October 1999 (12.10.1999)	US	60/109,213	20 November 1998 (20.11.1998)	US	60/120,416	16 February 1999 (16.02.1999)	US	60/121,852	26 February 1999 (26.02.1999)	US	60/123,946	12 March 1999 (12.03.1999)	US	60/123,949	12 March 1999 (12.03.1999)	US	60/136,436	28 May 1999 (28.05.1999)	US	60/136,437	28 May 1999 (28.05.1999)	US	60/136,439	28 May 1999 (28.05.1999)	US	60/136,567	28 May 1999 (28.05.1999)	US	60/137,127	28 May 1999 (28.05.1999)	US	60/137,131	28 May 1999 (28.05.1999)	US	60/141,448	30 June 1999 (30.06.1999)	US	60/156,555	29 September 1999 (29.09.1999)	US	60/156,633	29 September 1999 (29.09.1999)	US	60/156,634	29 September 1999 (29.09.1999)	US	60/156,653	29 September 1999 (29.09.1999)	US	60/157,280	01 October 1999 (01.10.1999)	US	60/157,281	01 October 1999 (01.10.1999)	US	60/157,282	01 October 1999 (01.10.1999)	US	60/157,293	01 October 1999 (01.10.1999)	US	60/157,294	01 October 1999 (01.10.1999)	US
09/416,760	12 October 1999 (12.10.1999)	US																																																																					
09/417,044	12 October 1999 (12.10.1999)	US																																																																					
60/109,213	20 November 1998 (20.11.1998)	US																																																																					
60/120,416	16 February 1999 (16.02.1999)	US																																																																					
60/121,852	26 February 1999 (26.02.1999)	US																																																																					
60/123,946	12 March 1999 (12.03.1999)	US																																																																					
60/123,949	12 March 1999 (12.03.1999)	US																																																																					
60/136,436	28 May 1999 (28.05.1999)	US																																																																					
60/136,437	28 May 1999 (28.05.1999)	US																																																																					
60/136,439	28 May 1999 (28.05.1999)	US																																																																					
60/136,567	28 May 1999 (28.05.1999)	US																																																																					
60/137,127	28 May 1999 (28.05.1999)	US																																																																					
60/137,131	28 May 1999 (28.05.1999)	US																																																																					
60/141,448	30 June 1999 (30.06.1999)	US																																																																					
60/156,555	29 September 1999 (29.09.1999)	US																																																																					
60/156,633	29 September 1999 (29.09.1999)	US																																																																					
60/156,634	29 September 1999 (29.09.1999)	US																																																																					
60/156,653	29 September 1999 (29.09.1999)	US																																																																					
60/157,280	01 October 1999 (01.10.1999)	US																																																																					
60/157,281	01 October 1999 (01.10.1999)	US																																																																					
60/157,282	01 October 1999 (01.10.1999)	US																																																																					
60/157,293	01 October 1999 (01.10.1999)	US																																																																					
60/157,294	01 October 1999 (01.10.1999)	US																																																																					
<p>(60) Parent Application or Grant</p> <p>ARENA PHARMACEUTICALS, INC. [/]; (O). CHEN, Ruoping [/]; (O). DANG, Huong, T. [/]; (O). LIAW, Chen, W. [/]; (O). LIN, I-Lin [/]; (O). CHEN, Ruoping [/]; (O). DANG, Huong, T. [/]; (O). LIAW, Chen, W. [/]; (O). LIN, I-Lin [/]; (O). MILLER, Suzanne, E. ; (O).</p>																																																																							

(54) Title: HUMAN ORPHAN G PROTEIN-COUPLED RECEPTORS
 (54) Titre: RECEPTEURS HUMAINS COUPLES A LA PROTEINE G ORPHAN

(57) Abstract

The invention disclosed in this patent document relates to transmembrane receptors, more particularly to endogenous, human orphan G protein-coupled receptors.

(57) Abrégé

L'invention porte sur des récepteurs transmembranaires, et plus spécifiquement sur des récepteurs endogènes, humains, couplés à la protéine G orphane.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 15/12, C07K 14/72		A2	(11) International Publication Number: WO 00/31258
			(43) International Publication Date: 2 June 2000 (02.06.00)
(21) International Application Number: PCT/US99/23687			09/416,760 12 October 1999 (12.10.99) US
(22) International Filing Date: 13 October 1999 (13.10.99)			
(30) Priority Data:			(71) Applicant (<i>for all designated States except US</i>): ARENA PHARMACEUTICALS, INC. [US/US]; 6166 Nancy Ridge Drive, San Diego, CA 92121 (US).
60/109,213	20 November 1998 (20.11.98)	US	(72) Inventors; and
60/120,416	16 February 1999 (16.02.99)	US	(75) Inventors/Applicants (<i>for US only</i>): CHEN, Ruoping [CN/US];
60/121,852	26 February 1999 (26.02.99)	US	5296 Timber Branch Way, San Diego, CA 92130 (US).
60/123,946	12 March 1999 (12.03.99)	US	DANG, Huong, T. [US/US]; 5352 Oak Park Drive, San
60/123,949	12 March 1999 (12.03.99)	US	Diego, CA 92105 (US). LIAW, Chen, W. [US/US]; 7668
60/136,436	28 May 1999 (28.05.99)	US	Salix Place, San Diego, CA 92129 (US). LIN, I-Lin [-US];
60/136,437	28 May 1999 (28.05.99)	US	8291-7 Gold Coast Drive, San Diego, CA 92126 (US).
60/136,439	28 May 1999 (28.05.99)	US	
60/136,567	28 May 1999 (28.05.99)	US	(74) Agents: MILLER, Suzanne, E. et al.; Woodcock Washburn
60/137,127	28 May 1999 (28.05.99)	US	Kurtz Mackiewicz & Norris LLP, 46th floor, One Liberty
60/137,131	28 May 1999 (28.05.99)	US	Place, Philadelphia, PA 19103 (US).
60/141,448	29 June 1999 (29.06.99)	US	
60/156,653	29 September 1999 (29.09.99)	US	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
60/156,633	29 September 1999 (29.09.99)	US	BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
60/156,555	29 September 1999 (29.09.99)	US	ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
60/156,634	29 September 1999 (29.09.99)	US	KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
60/157,280	1 October 1999 (01.10.99)	US	MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
60/157,294	1 October 1999 (01.10.99)	US	SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
60/157,281	1 October 1999 (01.10.99)	US	US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
60/157,293	1 October 1999 (01.10.99)	US	LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
60/157,282	1 October 1999 (01.10.99)	US	AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
09/417,044	12 October 1999 (12.10.99)	US	BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
			MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
			GA, GN, GW, ML, MR, NE, SN, TD, TG).
Published <i>Without international search report and to be republished upon receipt of that report.</i>			
(54) Title: HUMAN ORPHAN G PROTEIN-COUPLED RECEPTORS			
(57) Abstract			
The invention disclosed in this patent document relates to transmembrane receptors, more particularly to endogenous, human orphan G protein-coupled receptors.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KR	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

Description

5

10

15

THIS PAGE BLANK (USPTO)

20

25

30

35

40

45

50

55

5

10

HUMAN ORPHAN G PROTEIN-COUPLED RECEPTORS

This patent document claims priority benefit of each of the following applications,
15 all filed with the United States Patent and Trademark Office via U.S. Express Mail on the
5 indicated filing dates: U.S. Provisional Number 60/121,852, filed; February 26, 1999
20 claiming the benefit of U.S. Provisional Number 60/109,213, filed November 20, 1998;
U.S. Provisional Number 60/120,416, filed February 16, 1999; U.S. Provisional Number
25 60/123,946, filed March 12, 1999; U.S. Provisional Number 60/123,949, filed March 12,
1999; U.S. Provisional Number 60/136,436, filed May 28, 1999; U.S. Provisional
30 Number 60/136,439, filed May 28, 1999; U.S. Provisional Number 60/136,567, filed May
28, 1999; U.S. Provisional Number 60/137,127, filed May 28, 1999; U.S. Provisional
35 Number 60/137,131, filed May 28, 1999; U.S. Provisional Number 141,448, filed June
29, 1999 claiming priority from U.S. Provisional Number 60/136,437, filed May 28,
1999; U.S. Provisional Number _____ (Arena Pharmaceuticals, Inc. docket number
40 15 CHN10-1), filed September 29, 1999; U.S. Provisional Number 60/156,333, filed
September 29, 1999; U.S. Provisional Number 60/156,555, filed September 29, 1999;
U.S. Provisional Number 60/156,634, filed September 29, 1999; U.S. Provisional
45 Number _____ (Arena Pharmaceuticals, Inc. docket number RUP6-1), filed October 1,
1999; U.S. Provisional Number _____ (Arena Pharmaceuticals, Inc. docket number
20 RUP7-1), filed October 1, 1999; U.S. Provisional Number _____ (Arena
50 Pharmaceuticals, Inc. docket number CHN6-1), filed October 1, 1999; U.S. Provisional

55

5

- 2 -

10

Number _____ (Arena Pharmaceuticals, Inc. docket number RUP5-1), filed October 1, 1999; U.S. Provisional Number _____ (Arena Pharmaceuticals, Inc. docket number CHN9-1), filed October 1, 1999. This patent document is related to U.S. Serial Number 09/170,496 filed October 13, 1998, and U.S. Serial Number unknown (Woodcock 15 Washburn Kurtz Mackiewicz & Norris, LLP docket number AREN-0054) filed on October 12, 1999 (via U.S. Express Mail) both being incorporated herein by reference. This patent document also is related to U.S. Serial No. 09/364,425; filed July 30, 1999, 20 which is incorporated by reference in its entirety. This application also claims priority to U.S. Serial Number _____ (Woodcock, Washburn, Kurtz, Makiewicz & Norris, LLP 25 docket number AREN-0050), filed on October 12, 1999 (via U.S. Express Mail), incorporated by reference herein in its entirety. Each of the foregoing applications are incorporated herein by reference in their entirety.

30

FIELD OF THE INVENTION

35

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to endogenous, orphan, human G protein-coupled receptors ("GPCRs").

40

BACKGROUND OF THE INVENTION

45

50

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2% or 2,000 genes, are estimated to code for GPCRs. Receptors, including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified

55

5

- 3 -

10

15

are referred to as "orphan" receptors. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, 60% of all prescription pharmaceuticals have been developed. This distinction is not merely semantic, particularly in the case of GPCRs. Thus, the orphan GPCRs are to the pharmaceutical industry what gold was to California in the late 19th century - an opportunity to drive growth, expansion, enhancement and development.

20

25

30

35

40

45

50

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the membrane (each span is identified by number, *i.e.*, transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3, transmembrane-4 and transmembrane-5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and transmembrane-5 and transmembrane-6 on the interior, or "intracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space outside of the cell.

Generally, when an endogenous ligand binds with the receptor (often referred to as "activation" of the receptor), there is a change in the conformation of the intracellular region that allows for coupling between the intracellular region and an intracellular "G-protein." It

55

5

- 4 -

10

has been reported that GPCRs are "promiscuous" with respect to G proteins, *i.e.*, that a GPCR can interact with more than one G protein. *See*, Kenakin, T., 43 *Life Sciences* 1095 (1988). Although other G proteins exist, currently, Gq, Gs, Gi, and Go are G proteins that have been identified. Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade process (referred to as "signal transduction"). Under normal conditions, signal transduction ultimately results in cellular activation or cellular inhibition. It is thought that the IC-3 loop as well as the carboxy terminus of the receptor interact with the G protein.

20

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium

25

between two different conformations: an "inactive" state and an "active" state. A receptor in an inactive state is unable to link to the intracellular signaling transduction pathway to produce a biological response. Changing the receptor conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response. A receptor may be stabilized in an active state by an endogenous ligand or a compound such

30

15 as a drug.

35

SUMMARY OF THE INVENTION

Disclosed herein are human endogenous orphan G protein-coupled receptors.

40

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B provide reference "grids" for certain dot-blots provided herein 20 (*see also*, Figure 2A and 2B, respectively).

45

Figures 2A and 2B provide reproductions of the results of certain dot-blot analyses resulting from hCHN3 and hCHN8, respectively (*see also*, Figures 1A and 1B, respectively).

50

Figure 3 provides a reproduction of the results of RT-PCR analysis of hRUP3.

55

5

- 5 -

Figure 4 provides a reproduction of the results of RT-PCR analysis of hRUP4.

10

Figure 5 provides a reproduction of the results of RT-PCR analysis of hRUP6.

15

DETAILED DESCRIPTION

20

The scientific literature that has evolved around receptors has adopted a number of terms to refer to ligands having various effects on receptors. For clarity and consistency, the following definitions will be used throughout this patent document. To the extent that these definitions conflict with other definitions for these terms, the following definitions shall control:

AMINO ACID ABBREVIATIONS used herein are set out in Table 1:

25

TABLE 1		
	ALANINE	ALA
	ARGININE	ARG
	ASPARAGINE	ASN
	ASPARTIC ACID	ASP
15	CYSTEINE	CYS
	GLUTAMIC ACID	GLU
	GLUTAMINE	GLN
	GLYCINE	GLY
	HISTIDINE	HIS
20	ISOLEUCINE	ILE
	LEUCINE	LEU
	LYSINE	LYS
	METHIONINE	MET
	PHENYLALANINE	PHE
25	PROLINE	PRO
	SERINE	SER
	THREONINE	THR
	TRYPTOPHAN	TRP
	TYROSINE	TYR
30	VALINE	VAL

45

COMPOSITION means a material comprising at least one component.

50

ENDOGENOUS shall mean a material that a mammal naturally produces.

ENDOGENOUS in reference to, for example and not limitation, the term "receptor," shall mean that which is naturally produced by a mammal (for example, and not limitation, a

55

5

- 6 -

10

human) or a virus. By contrast, the term **NON-ENDOGENOUS** in this context shall mean that which is not naturally produced by a mammal (for example, and not limitation, a human) or a virus.

15

20

25

HOST CELL shall mean a cell capable of having a Plasmid and/or Vector incorporated therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated as a autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most preferably selected from the group consisting of 293, 293T and COS-7 cells.

30

LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

35

NON-ORPHAN RECEPTOR shall mean an endogenous naturally occurring molecule specific for an endogenous naturally occurring ligand wherein the binding of a ligand to a receptor activates an intracellular signaling pathway.

40

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

45

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is introduced into a Host Cell for the purposes of replication and/or expression of the cDNA as a protein.

50

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating at least one cDNA and capable of incorporation into a Host Cell.

55

5

- 7 -

10

The order of the following sections is set forth for presentational efficiency and is not intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

15

Identification of Human GPCRs

20

The efforts of the Human Genome project have led to the identification of a plethora of information regarding nucleic acid sequences located within the human genome; it has been the case in this endeavor that genetic sequence information has been made available without an understanding or recognition as to whether or not any particular genomic sequence does or may contain open-reading frame information that translate human proteins.

25

Several methods of identifying nucleic acid sequences within the human genome are within the purview of those having ordinary skill in the art. For example, and not limitation, a variety of GPCRs, disclosed herein, were discovered by reviewing the GenBank™ database, while other GPCRs were discovered by utilizing a nucleic acid sequence of a GPCR, previously sequenced, to conduct a BLAST™ search of the EST database. **Table A**, below, lists the disclosed endogenous orphan GPCRs along with a GPCR's respective homologous

30

35
GPCR:

TABLE A

40

	Disclosed	Accession	Open Reading	Per Cent	Reference To
	Human	Number	Frame	Homology	Homologous
20	Orphan	Identified	(Base Pairs)	To Designated	GPCR
45	GPCRs			GPCR	(Accession No.)
50					
	hARE-3	AL033379	1,260 bp	52.3% LPA-R	U92642
	hARE-4	AC006087	1,119 bp	36% P2Y5	AF000546

55

5

- 8 -

10

bARE-5	AC006255	1,104 bp	32% <i>Oryzias latipes</i>	D43633
hGPR27	AA775870	1,128 bp		
hARE-1	AI090920	999 bp	43%	D13626
			KIAA0001	
	bARE-2	AA359504	53% GPR27	
	hPPR1	H67224	39% EBI1	L31581
	hG2A	AA754702	31% GPR4	L36148
	hRUP3	AL035423	30%	2133653
			<i>Drosophila melanogaster</i>	
20	hRUP4	AI307658	1,296 bp	32% pNPGPR NP_004876
			28% and 29 % AAC41276	
25			<i>Zebrafish Ya</i> and AAB94616	
			and Yb, respectively Q99788	
30	10	hRUP5	AC005849	25% DEZ P21462
			1,413 bp 48% GPR66 NP_006047	
		hRUP6	AC005871	43% H3R AF140538
		hRUP7	AC007922	
		hCHN3	EST 36581	53% GPR27
		hCHN4	AA804531	32% thrombin 4503637
	15	hCHN6	EST 2134670	36% edg-1 NP_001391
35		hCHN8	EST 764455	47% D13626
			KIAA0001	
		hCHN9	EST 1541536	41% LTB4R NM_000752
		hCHN10	EST 1365839	35% P2Y NM_002563

40

Receptor homology is useful in terms of gaining an appreciation of a role of the disclosed receptors within the human body. Additionally, such homology can provide insight 20 as to possible endogenous ligand(s) that may be natural activators for the disclosed orphan 45 GPCRs.

50

B. Receptor Screening

55

Techniques have become more readily available over the past few years for

5

- 9 -

10

endogenous-ligand identification (this, primarily, for the purpose of providing a means of conducting receptor-binding assays that require a receptor's endogenous ligand) because the traditional study of receptors has always proceeded from the a priori assumption (historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand. This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any search for therapeutic compounds should start by screening compounds against the ligand-independent active state.

20

25

30

35

40

45

50

55

As is known in the art, GPCRs can be "active" in their endogenous state even without the binding of the receptor's endogenous ligand thereto. Such naturally-active receptors can be screened for the direct identification (*i.e.*, without the need for the receptor's endogenous ligand) of, in particular, inverse agonists. Alternatively, the receptor can be "activated" via, e.g., mutation of the receptor to establish a non-endogenous version of the receptor that is active in the absence of the receptor's endogenous ligand.

5

- 10 -

10

Screening candidate compounds against an endogenous or non-endogenous, constitutively activated version of the human orphan GPCRs disclosed herein can provide for the direct identification of candidate compounds which act at this cell surface receptor, without requiring use of the receptor's endogenous ligand. By determining areas within 15 the body where the endogenous version of human GPCRs disclosed herein is expressed and/or over-expressed, it is possible to determine related disease/disorder states which are associated with the expression and/or over-expression of the receptor; such an approach is 20 disclosed in this patent document.

15

20

25

30

35

40

45

50

With respect to creation of a mutation that may evidence constitutive activation of 10 human orphan GPCRs disclosed herein is based upon the distance from the proline residue at which is presumed to be located within TM6 of the GPCR typically nears the TM6/IC3 interface (such proline residue appears to be quite conserved). By mutating the amino acid residue located 16 amino acid residues from this residue (presumably located in the IC3 region of the receptor) to, most preferably, a lysine residue, such activation may be obtained. 15 Other amino acid residues may be useful in the mutation at this position to achieve this objective.

C. Disease/Disorder Identification and/or Selection

Preferably, the DNA sequence of the human orphan GPCR can be used to make a probe for (a) dot-blot analysis against tissue-mRNA, and/or (b) RT-PCR identification of 20 the expression of the receptor in tissue samples. The presence of a receptor in a tissue source, or a diseased tissue, or the presence of the receptor at elevated concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with a treatment regimen, including but not limited to, a disease associated 25 30 35 40 45 50

55

5

- 11 -

10

with that disease. Receptors can equally well be localized to regions of organs by this technique. Based on the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

15

D. Screening of Candidate Compounds

15

1. Generic GPCR screening assay techniques

20

When a G protein receptor becomes constitutively active (i.e., active in the absence of endogenous ligand binding thereto), it binds to a G protein (e.g., Gq, Gs, Gi, Go) and stimulates the binding of GTP to the G protein. The G protein then acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal conditions, becomes deactivated. However, constitutively activated receptors continue to exchange GDP to GTP.

25

A non-hydrolyzable analog of GTP, [³⁵S]GTPγS, can be used to monitor enhanced binding to membranes which express constitutively activated receptors. It is reported that [³⁵S]GTPγS can be used to monitor G protein coupling to membranes in the absence and presence of ligand. An example of this monitoring, among other examples well-known and available to those in the art, was reported by Traynor and Nahorski in 1995. The preferred use of this assay system is for initial screening of candidate compounds because the system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

30

35

40

2. Specific GPCR screening assay techniques

45

Once candidate compounds are identified using the "generic" G protein-coupled receptor assay (i.e., an assay to select compounds that are agonists, partial agonists, or inverse agonists), further screening to confirm that the compounds have interacted at the receptor site is preferred. For example, a compound identified by the "generic" assay may not bind to the

50

55

5

- 12 -

receptor, but may instead merely "uncouple" the G protein from the intracellular domain.

10 a. *Gs and Gi.*

10

Gs stimulates the enzyme adenylyl cyclase. Gi (and Go), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus, 5 constitutively activated GPCRs that couple the Gs protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple the Gi (or Go) protein are associated with decreased cellular levels of cAMP. See, generally, 15 "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can 20 be utilized to determine if a candidate compound is, e.g., an inverse agonist to the receptor (i.e., such a compound would decrease the levels of cAMP). A variety of approaches known 25 in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use 30 of anti-cAMP antibodies in an ELISA-based format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive 35 15 the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or transcription factor (CREB) which then binds to the promoter at specific sites called cAMP 40 response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter 45 20 gene, e.g., β -galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes the accumulation of cAMP that then activates the gene and expression of the reporter 50 protein. The reporter protein such as β -galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995).

55

5

- 13 -

G_o and G_q.

10 G_q and G_o are associated with activation of the enzyme phospholipase C, which in
turn hydrolyzes the phospholipid PIP₂, releasing two intracellular messengers:
15 diacycloglycerol (DAG) and inistol 1,4,5-triphosphate (IP₃). Increased accumulation of IP₃
is associated with activation of G_q- and G_o-associated receptors. *See, generally,* "Indirect
Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols,
J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP₃ accumulation can be
20 utilized to determine if a candidate compound is, *e.g.*, an inverse agonist to a G_q- or G_o-
associated receptor (*i.e.*, such a compound would decrease the levels of IP₃). G_q-associated
25 receptors can also been examined using an AP1 reporter assay in that G_q-dependent
phospholipase C causes activation of genes containing AP1 elements; thus, activated G_q-
associated receptors will evidence an increase in the expression of such genes, whereby
30 inverse agonists thereto will evidence a decrease in such expression, and agonists will
15 evidence an increase in such expression. Commercially available assays for such detection
are available.

35

3. GPCR Fusion Protein

40 The use of an endogenous, constitutively activated orphan GPCR, or a non-
endogenous, constitutively activated orphan GPCR, for screening of candidate compounds
45 20 for the direct identification of inverse agonists, agonists and partial agonists provides a
unique challenge in that, by definition, the receptor is active even in the absence of an
endogenous ligand bound thereto. Thus, it is often useful that an approach be utilized that
can enhance the signal obtained by the activated receptor. A preferred approach is the use
50 of a GPCR Fusion Protein.

55

5

- 14 -

10

15

20

25

30

35

40

45

50

55

Generally, once it is determined that a GPCR is or has been constitutively activated, using the assay techniques set forth above (as well as others), it is possible to determine the predominant G protein that couples with the endogenous GPCR. Coupling of the G protein to the GPCR provides a signaling pathway that can be assessed. Because it is most preferred that screening take place by use of a mammalian expression system, such a system will be expected to have endogenous G protein therein. Thus, by definition, in such a system, the constitutively activated orphan GPCR will continuously signal. In this regard, it is preferred that this signal be enhanced such that in the presence of, e.g., an inverse agonist to the receptor, it is more likely that it will be able to more readily differentiate, particularly in the context of screening, between the receptor when it is contacted with the inverse agonist.

The GPCR Fusion Protein is intended to enhance the efficacy of G protein coupling with the GPCR. The GPCR Fusion Protein is preferred for screening with a non-endogenous, constitutively activated GPCR because such an approach increases the signal that is most preferably utilized in such screening techniques, although the GPCR Fusion Protein can also be (and preferably is) used with an endogenous, constitutively activated GPCR. This is important in facilitating a significant "signal to noise" ratio; such a significant ratio is import preferred for the screening of candidate compounds as disclosed herein.

The construction of a construct useful for expression of a GPCR Fusion Protein is within the purview of those having ordinary skill in the art. Commercially available expression vectors and systems offer a variety of approaches that can fit the particular needs of an investigator. The criteria of importance for such a GPCR Fusion Protein construct is that the GPCR sequence and the G protein sequence both be in-frame (preferably, the sequence for the GPCR is upstream of the G protein sequence) and that the "stop" codon of

5

- 15 -

10

the GPCR must be deleted or replaced such that upon expression of the GPCR, the G protein can also be expressed. The GPCR can be linked directly to the G protein, or there can be spacer residues between the two (preferably, no more than about 12, although this number can be readily ascertained by one of ordinary skill in the art). We have a preference (based 5 upon convenience) of use of a spacer in that some restriction sites that are not used will, effectively, upon expression, become a spacer. Most preferably, the G protein that couples to the GPCR will have been identified prior to the creation of the GPCR Fusion Protein construct. Because there are only a few G proteins that have been identified, it is preferred 20 that a construct comprising the sequence of the G protein (*i.e.*, a universal G protein 10 construct) be available for insertion of an endogenous GPCR sequence therein; this provides 25 for efficiency in the context of large-scale screening of a variety of different endogenous GPCRs having different sequences.

30

E. Other Utility

35

40

45

50

55

Although a preferred use of the human orphan GPCRs disclosed herein may be for 15 the direct identification of candidate compounds as inverse agonists, agonists or partial agonists (preferably for use as pharmaceutical agents), these versions of human GPCRs can also be utilized in research settings. For example, *in vitro* and *in vivo* systems incorporating GPCRs can be utilized to further elucidate and understand the roles these receptors play in the human condition, both normal and diseased, as well as understanding the role of 20 constitutive activation as it applies to understanding the signaling cascade. The value in human orphan GPCRs is that its utility as a research tool is enhanced in that by determining the location(s) of such receptors within the body, the GPCRs can be used to understand the 25 role of these receptors in the human body before the endogenous ligand therefor is identified.

5

- 16 -

Other uses of the disclosed receptors will become apparent to those in the art based upon, *inter alia*, a review of this patent document.

10

EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, 5 of the present invention. While specific nucleic acid and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor modifications to these sequences while achieving the same or substantially similar results 10 reported below. Unless otherwise indicated below, all nucleic acid sequences for the disclosed endogenous orphan human GPCRs have been sequenced and verified. For 15 purposes of equivalent receptors, those of ordinary skill in the art will readily appreciate that conservative substitutions can be made to the disclosed sequences to obtain a functionally 20 equivalent receptor.

25

Example 1 ENDOGENOUS HUMAN GPCRS

15 1. Identification of Human GPCRs

35 Several of the disclosed endogenous human GPCRs were identified based upon a review of the GenBank database information. While searching the database, the following cDNA clones were identified as evidenced below.

40

	Disclosed	Accession	Complete DNA	Open Reading	Nucleic Acid	Amino
45	20	Human	Number	Sequence	Frame	SEQ.ID.
		Orphan		(Base Pairs)	(Base Pairs)	NO.
		GPCRs				SEQ.ID. NO.

50

55

5

- 17 -

10

	hARE-3	AL033379	111,389 bp	1,260 bp	1	2
	hARE-4	AC006087	226,925 bp	1,119 bp	3	4
	hARE-5	AC006255	127,605 bp	1,104 bp	5	6
	hRUP3	AL035423	140,094 bp	1,005 bp	7	8
	hRUP5	AC005849	169,144 bp	1,413 bp	9	10
	hRUP6	AC005871	218,807 bp	1,245 bp	11	12
	hRUP7	AC007922	158,858 bp	1,173 bp	13	14

15

20

25

30

Other disclosed endogenous human GPCRs were identified by conducting a BLAST search of EST database (dbest) using the following EST clones as query sequences. The following EST clones identified were then used as a probe to screen a human genomic library.

35

40

45

50

	Disclosed	Query	EST Clone/ Accession No.	Open Reading	Nucleic Acid SEQ.ID.NO.	Amino Acid SEQ.ID.NO.
	Human	(Sequence)	Accession No.	Reading	SEQ.ID.NO.	SEQ.ID.NO.
	Orphan		Identified	Frame		
	15	GPCRs hGPCR27	Mouse	AA775870	(Base Pairs) 1,125 bp	15
						16
	40	hARE-1	GPCR27 TDAG	1689643	999 bp	17
		hARE-2	GPCR27	AI090920 68530	1,122 bp	19
						20
	45	hPPR1	Bovine	AA359504 238667	1,053 bp	21
		hG2A	PPR1 Mouse	H67224 <i>See Example 2(a),</i> 1179426	1,113 bp	23
						24
				<i>below</i>		

55

5

- 18 -

10

	hCHN3	N.A.	EST 36581	1,113 bp	25	26
	hCHN4	TDAG	(full length) 1184934	1,077 bp	27	28
	hCHN6	N.A.	AA804531 EST 2134670	1,503 bp	29	30
	hCHN8	KIAA0001	(full length) EST 764455	1,029 bp	31	32
	hCHN 9	1365839	EST 1541536	1,077 bp	33	34
5	bCHN10	Mouse EST	Human 1365839	1,005 bp	35	36
	hRUP4	1365839 N.A.	AI307658	1,296 bp	37	38
	<i>N.A. = "not applicable".</i>					

20

2. Full Length Cloning

10 a. hG2A (Seq. Id. Nos. 23 & 24)

25 Mouse EST clone 1179426 was used to obtain a human genomic clone containing all
but three amino acid hG2A coding sequences. The 5'end of this coding sequence was
obtained by using 5'RACE™, and the template for PCR was Clontech's Human Spleen
30 Marathon-ready™ cDNA. The disclosed human G2A was amplified by PCR using the G2A
15 cDNA specific primers for the first and second round PCR as shown in SEQ.ID.NO.: 39 and
SEQ.ID.NO.: 40 as follows:

35

5'-CTGTGTACAGCAGTTCGCAGAGTG-3' (SEQ.ID.NO.: 39; 1st round PCR)

5'-GAGTGCCAGGCAGAGCAGGTAGAC-3' (SEQ.ID.NO.: 40; second round PCR).

40

20 instructions will be followed), at 94°C for 30 sec followed by 5 cycles of 94°C for 5 sec and
72°C for 4 min; and 30 cycles of 94° for 5 sec and 70° for 4 min. An approximate 1.3 Kb
PCR fragment was purified from agarose gel, digested with Hind III and Xba I and cloned
into the expression vector pRC/CMV2 (Invitrogen). The cloned-insert was sequenced using
the T7 Sequenase™ kit (USB Amersham; manufacturer instructions will be followed) and

30

5

- 19 -

10

the sequence was compared with the presented sequence. Expression of the human G2A will be detected by probing an RNA dot blot (Clontech; manufacturer instructions will be followed) with the P³²-labeled fragment.

b. hCHN9 (Seq. Id. Nos. 33 & 34)

15

Sequencing of the EST clone 1541536 indicated that hCHN9 is a partial cDNA clone having only an initiation codon; *i.e.*, the termination codon was missing. When hCHN9 was used to "blast" against the data base (nr), the 3' sequence of hCHN9 was 100% homologous to the 5' untranslated region of the leukotriene B4 receptor cDNA, which contained a termination codon in the frame with hCHN9 coding sequence. To determine whether the 5' untranslated region of LTB4R cDNA was the 3' sequence of hCHN9, PCR was performed using primers based upon the 5' sequence flanking the initiation codon found in hCHN9 and the 3' sequence around the termination codon found in the LTB4R 5' untranslated region. The 5' primer sequence utilized was as follows:

20

5'-CCCGAATTCTGCTTGTCCCAGCTTGGCCC-3' (SEQ.ID.NO.: 41; sense) and
15 5'-TGTGGATCCTGCTGTCAAAGGTCCCATTCCGG-3' (SEQ.ID.NO.: 42; antisense).

25

PCR was performed using thymus cDNA as a template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 uM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 65°C for 1 min and 72 °C for 1 min and 10 sec. A 1.1kb fragment consistent with the predicted size was obtained from PCR. This PCR fragment was subcloned into pCMV (*see* below) and sequenced (*see*, SEQ.ID.NO.: 33).

30

c. hRUP 4 (Seq. Id. Nos. 37 & 38)

35

The full length hRUP4 was cloned by RT-PCR with human brain cDNA (Clontech)

40

45

50

5

- 20 -

as templates:

5'-TCACAATGCTAGGTGTGGTC-3' (SEQ.ID.NO.: 43; sense) and

10

5'-TGCATAGACAATGGGATTACAG-3' (SEQ.ID.NO.: 44; antisense).

15

PCR was performed using TaqPlus™ Precision™ polymerase (Stratagene; manufacturing instructions will be followed) by the following cycles: 94°C for 2 min; 94°C 30 sec; 55°C for 30 sec, 72°C for 45 sec, and 72°C for 10 min. Cycles 2 through 4 were repeated 30 times.

20

The PCR products were separated on a 1% agarose gel and a 500 bp PCR fragment was isolated and cloned into the pCRII-TOPO vector (Invitrogen) and sequenced using the T7 DNA Sequenase™ kit (Amsham) and the SP6/T7 primers (Stratagene). Sequence analysis revealed that the PCR fragment was indeed an alternatively spliced form of AI307658 having a continuous open reading frame with similarity to other GPCRs. The completed sequence of this PCR fragment was as follows:

30

5'-TCACAATGCTAGGTGTGGCTGGCTGGCAGTCATCGTAGGATCACCCATGTGGCAC
15 GTGCAACAACTTGAGATCAAATATGACTTCTTATGAAAAGGAACACATCTGCTGCTTAGAA
GAGTGGACCCAGCCCTGTGCACCAAGAAGATCTACACCACCTTCATCCTTGTCACTCTCTTCC
25 TGCCCTTTATGGTGTGCTTACGTACGTTGAACTTACATGGAAAAGAAATGTCCAAAATAGCCAGGAAG
GTTGGGGATGGTTCAGTGCCTCGAACATTCATGGAAAAGAAATGTCCAAAATAGCCAGGAAG
AAGAAAACGAGCTGTCAATTATGATGGTGACAGTGGTGGCTCTTTGCTGTGCTGGCACCA
35 20 TTCCATGTTGTCCATATGATGATTGAATACAGTAATTTGAAAAGGAATATGATGATGTCACA
ATCAAGATGATTTTGCTATCGTCAAATTATTGATTTCACCTCTGTAATCCCATTG
TCTATGCA-3' (SEQ.ID.NO.: 45)

40

Based on the above sequence, two sense oligonucleotide primer sets:

5'-CTGCTTAGAAGAGTGGACCAG-3' (SEQ.ID.NO.: 46; oligo 1),

25 5'-CTGTGCACCAAGAGATCTACAC-3' (SEQ.ID.NO.: 47; oligo 2)

45

and two antisense oligonucleotide primer sets:

5'-CAAGGATGAAGGTGGTGTAGA-3' (SEQ.ID.NO.: 48; oligo 3)

5'-GTGTAGATCTTCTGGTGCACAGG-3' (SEQ.ID.NO.: 49; oligo 4)

50

were used for 3'- and 5'-race PCR with a human brain Marathon-Ready™ cDNA (Clontech,

55

5

- 21 -

10

Cat# 7400-1) as template, according to manufacturer's instructions. DNA fragments generated by the RACE PCR were cloned into the pCRII-TOPO™ vector (Invitrogen) and sequenced using the SP6/T7 primers (Stratagene) and some internal primers. The 3' RACE product contained a poly(A) tail and a completed open reading frame ending at a TAA stop 15 codon. The 5' RACE product contained an incomplete 5' end; i.e., the ATG initiation codon was not present.

Based on the new 5' sequence, oligo 3 and the following primer:
20 5'-GCAATGCAGGTCAAGTGAGC -3' (SEQ.ID.NO.: 50; oligo 5)
were used for the second round of 5' RACE PCR and the PCR products were analyzed as
10 above. A third round of 5' RACE PCR was carried out utilizing antisense primers:

25

5'-TGGAGCATGGTACCGGAATGCAGAAG-3' (SEQ.ID.NO.: 51; oligo 6) and
5'-GTGATGAGCAGGTCACTGAGCGCCAAG-3' (SEQ.ID.NO.: 52; oligo 7).

30

The sequence of the 5' RACE PCR products revealed the presence of the initiation codon ATG, and further round of 5' RACE PCR did not generate any more 5' sequence. The 15 completed 5' sequence was confirmed by RT-PCR using sense primer

35

5'-GCAATGCAGGCCTAACATTAC-3' (SEQ.ID.NO.: 53; oligo 8)
and oligo 4 as primers and sequence analysis of the 650 bp PCR product generated from
40 human brain and heart cDNA templates (Clontech, Cat# 7404-1). The completed 3'
sequence was confirmed by RT-PCR using oligo 2 and the following antisense primer:

40

20 5'-TTGGGTTACAATCTGAAGGGCA-3' (SEQ.ID.NO.: 54; oligo 9)
and sequence analysis of the 670 bp PCR product generated from human brain and heart
45 cDNA templates. (Clontech, Cat# 7404-1).

50

d. hRUP5 (Seq. Id. Nos. 9 & 10)

The full length hRUP5 was cloned by RT-PCR using a sense primer upstream from

55

5

- 22 -

ATG, the initiation codon (SEQ.ID.NO.: 55), and an antisense primer containing TCA as the stop codon (SEQ.ID.NO.: 56), which had the following sequences:

10

5'-ACTCCGTGTCCAGCAGGACTCTG-3' (SEQ.ID.NO.:55)

15

5'-TGCCTGTTCTGGACCCTCACGTG-3' (SEQ.ID.NO.: 56)

20

5 and human peripheral leukocyte cDNA (Clontech) as a template. Advantage cDNA polymerase (Clontech) was used for the amplification in a 50ul reaction by the following cycle with step 2 through step 4 repeated 30 times: 94°C for 30 sec; 94° for 15 sec; 69° for 40 sec; 72°C for 3 min; and 72°C fro 6 min. A 1.4kb PCR fragment was isolated and cloned with the pCRII-TOPO™ vector (Invitrogen) and completely sequenced using the T7 DNA Sequenase™ kit (Amsham). See, SEQ.ID.NO.: 9.

25

e. hRUP6 (Seq. Id. Nos. 11 & 12)

The full length hRUP6 was cloned by RT-PCR using primers:

30

5'-CAGGCCCTGGATTAAATGTCAGGGATGG-3' (SEQ.ID.NO.: 57) and

35

5'-GGAGAGTCAGCTCTGAAAGAATTCAAGG-3' (SEQ.ID.NO.: 58);

40

15 and human thymus Marathon-Ready™ cDNA (Clontech) as a template. Advantage cDNA polymerase (Clontech, according to manufacturer's instructions) was used for the amplification in a 50ul reaction by the following cycle: 94°C for 30sec; 94°C for 5 sec; 66°C for 40sec; 72°C for 2.5 sec and 72°C for 7 min. Cycles 2 through 4 were repeated 30 times. A 1.3 Kb PCR fragment was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) 20 and completely sequenced (see, SEQ.ID.NO.: 11) using the ABI Big Dye Terminator™ kit (P.E. Biosystem).

45

f. hRUP7 (Seq. Id. Nos. 13 & 14)

The full length RUP7 was cloned by RT-PCR using primers:

50

5'-TGATGTGATGCCAGATACTAATAGCAC-3' (SEQ.ID.NO.: 59; sense) and

55

5

- 23 -

5'-CCTGATTCA~~T~~TTAGGTGAGATTGAGAC-3' (SEQ.ID.NO.: 60; antisense) and human peripheral leukocyte cDNA (Clontech) as a template. Advantage™ cDNA polymerase (Clontech) was used for the amplification in a 50 ul reaction by the following cycle with step 2 to step 4 repeated 30 times: 94°C for 2 minutes; 94°C for 15 seconds; 60°C 10 for 20 seconds; 72°C for 2 minutes; 72°C for 10 minutes. A 1.25 Kb PCR fragment was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and completely sequenced 15 using the ABI Big Dye Terminator™ kit (P.E. Biosystem). See, SEQ.ID.NO.: 13.

20

g. **hARE-5 (Seq. Id. Nos. 5 & 6)**

The full length hARE-5 was cloned by PCR using the hARE5 specific primers 10 5'-CAGCGCAGGGTGAAGCCTGAGAGC-3' SEQ.ID.NO.: 69 (sense, 5' of initiation codon ATG) 25 and 5'-GGCACCTGCTGTGACCTGTGCAGG-3' SEQ.ID.NO.:70 (antisense, 3' of stop codon TGA) and human genomic DNA as template. TaqPlus Precision™ DNA polymerase (Stratagene) 30 was used for the amplification by the following cycle with step 2 to step 4 repeated 35 times: 96°C, 2 minutes; 96°C, 20 seconds; 58°C, 30 seconds; 72°C, 2 minutes; and 72°C, 10 minutes 15 A 1.1 Kb PCR fragment of predicated size was isolated and cloned into the 35 pCRII-TOPO™ vector (Invitrogen) and completely sequenced (SEQ.ID.NO.:5) using the T7 DNA Sequenase™ kit (Amsham).

40

h. **hARE-4 (Seq. Id. Nos.: 3 & 4)**

The full length hARE-4 was cloned by PCR using the hARE-4 specific primers 5'- 20 CTGGTGTGCTCCATGGCATCCC-3' SEQ.ID.NO.:67 (sense, 5' of initiation codon ATG) and 5'- 45 GTAAGCCTCCCAGAACGAGAGG-3' SEQ.ID.NO.: 68 (antisense, 3' of stop codon TGA) and human genomic DNA as template. Taq DNA polymerase (Stratagene) and 5% DMSO was 50 used for the amplification by the following cycle with step 2 to step 3 repeated 35 times:

55

5

- 24 -

94°C, 3 minutes; 94°C, 30 seconds; 59°C, 2 minutes; 72°C, 10 minutes

10

A 1.12 Kb PCR fragment of predicated size was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and completely sequenced (SEQ.ID.NO.:3) using the T7 DNA Sequenase™ kit (Amsham).

15

i. hARE-3 (Seq.Id.Nos.: 1 & 2)

20

The full length hARE-3 was cloned by PCR using the hARE-3 specific primers 5'-gatcaagcttCCATCCTACTGAAACCATGGTC-3' SEQ.ID.NO.:65 (sense, lower case nucleotides represent Hind III overhang, ATG as initiation codon) and 5'-gatcagatctCAGTTCCAATATTCACACCACCGTC-3' SEQ.ID.NO.:66 (antisense, lower case 10 nucleotides represent Xba I overhang, TCA as stop codon) and human genomic DNA as template. TaqPlus Precision™ DNA polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to step 4 repeated 35 times: 94°C, 3 minutes; 94°C, 1 minute; 55°C, 1 minute; 72°C, 2 minutes; 72°C, 10 minutes.

25

30

A 1.3 Kb PCR fragment of predicated size was isolated and digested with Hind III and Xba I, cloned into the pRC/CMV2 vector (Invitrogen) at the Hind III and Xba I sites and completely sequenced (SEQ.ID.NO.:1) using the T7 DNA Sequenase™ kit (Amsham).

35

j. hRUP3 (Seq. Id. Nos.:7 & 8)

40

45

50

The full length hRUP3 was cloned by PCR using the hRUP3 specific primers 5'-GTCCTGCCACTTCGAGACATGG-3' SEQ.ID.NO.:71 (sense, ATG as initiation codon) and 5'-GAAACTTCTCTGCCCTTACCGTC-3' SEQ.ID.NO.:72 (antisense, 3' of stop codon TAA) and human genomic DNA as template. TaqPlus Precision™ DNA polymerase (Stratagene) was used for the amplification by the following cycle with step 2 to step 4 repeated 35 times: 94°C, 3 minutes; 94°C, 1 minute; 58°C, 1 minute; 72°C, 2 minutes; 72°C, 10 minutes

5

- 25 -

10

A 1.0 Kb PCR fragment of predicated size was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and completely sequenced (SEQ.ID.NO.: 7) using the T7 DNA sequenase kit (Amsham).

10

Example 2
5 RECEPTOR EXPRESSION

15

Although a variety of cells are available to the art for the expression of proteins, it is most preferred that mammalian cells be utilized. The primary reason for this is predicated upon practicalities, *i.e.*, utilization of, *e.g.*, yeast cells for the expression of a GPCR, while possible, introduces into the protocol a non-mammalian cell which may not (indeed, in the case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary pathways that have evolved for mammalian systems – thus, results obtained in non-mammalian cells, while of potential use, are not as preferred as that obtained from mammalian cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although the specific mammalian cell utilized can be predicated upon the particular needs of the artisan. The general procedure for expression of the disclosed GPCRs is as follows.

20

30

35

40

45

50

On day one, 1×10^7 293T cells per 150mm plate were plated out. On day two, two reaction tubes will be prepared (the proportions to follow for each tube are per plate): tube A will be prepared by mixing 20 μ g DNA (*e.g.*, pCMV vector; pCMV vector with receptor cDNA, etc.) in 1.2ml serum free DMEM (Irvine Scientific, Irvine, CA); tube B will be prepared by mixing 120 μ l lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes A and B are admixed by inversions (several times), followed by incubation at room temperature for 30-45min. The admixture can be referred to as the "transfection mixture". Plated 293T cells are washed with 1XPBS, followed by addition of 10ml serum free DMEM.

55

5

- 26 -

10

2.4ml of the transfection mixture will then be added to the cells, followed by incubation for 4hrs at 37°C/5% CO₂. The transfection mixture was then be removed by aspiration, followed by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells will then be incubated at 37°C/5% CO₂. After 72hr incubation, cells can then be harvested and utilized for analysis.

15

Example 3
TISSUE DISTRIBUTION OF THE DISCLOSED HUMAN GPCRS

20

Several approaches can be used for determination of the tissue distribution of the GPCRs disclosed herein.

30

1. Dot-Blot Analysis

25

Using a commercially available human-tissue dot-blot format, endogenous orphan GPCRs were probed for a determination of the areas where such receptors are localized. cDNA fragments from the GPCRs of Example 1 (radiolabelled) were (or can be) used as the probe: radiolabeled probe was (or can be) generated using the complete receptor cDNA (excised from the vector) using a Prime-It II™ Random Primer Labeling Kit (Stratagene, 15 #300385), according to manufacturer's instructions. A human RNA Master Blot™ (Clontech, #7770-1) was hybridized with the endogenous human GPCR radiolabeled probe and washed under stringent conditions according manufacturer's instructions. The blot was exposed to Kodak BioMax™ Autoradiography film overnight at -80°C. Results are summarized for several receptors in Table B and C (see Figures 1A and 1B for a grid identifying the various tissues and their locations, respectively). Exemplary dot-blots are provided in Figure 2A and 2B for results derived using hCHN3 and hCHN8, respectively.

40

45

TABLE B

ORPHAN GPCR	Tissue Distribution (highest levels, relative to other tissues in the dot-blot)
-------------	--

50

55

5

- 27 -

10

	hGPCR27	Fetal brain, Putamen, Pituitary gland, Caudate nucleus
	hARE-1	Spleen, Peripheral leukocytes, Fetal spleen
10	hPPR1	Pituitary gland, Heart, salivary gland, Small intestine, Testis
	hRUP3	Pancreas
5	hCHN3	Fetal brain, Putamen, Occipital cortex
15	hCHN9	Pancreas, Small intestine, Liver
	hCHN10	Kidney, Thyroid

15

20

TABLE C

25

30

35

40

45

50

55

	ORPHAN GPCR	Tissue Distribution (highest levels, relative to other tissues in the dot-blot)
10	hARE-3	Cerebellum left, Cerebellum right, Testis, Accumbens
	hGPCR3	Corpus callosum, Caudate nucleus, Liver, Heart, Inter-Ventricular Septum
	hARE-2	Cerebellum left, Cerebellum right, Substantia nigra
30	hCHN8	Cerebellum left, Cerebellum right, Kidney, Lung

2. RT-PCR**a. hRUP3**

To ascertain the tissue distribution of hRUP3 mRNA, RT-PCR was performed using hRUP3-specific primers and human multiple tissue cDNA panels (MTC, Clontech) as templates. Taq DNA polymerase (Stratagene) was utilized for the PCR reaction, using the following reaction cycles in a 40ul reaction: 94°C for 2 min; 94°C for 15 sec; 55°C for 30 sec; 72°C for 1 min; 72°C for 10 min. Primers were as follows:

5'-GACAGGTACCTGCCATCAAG-3' (SEQ.ID.NO.: 61; sense)

5'-CTGCACAATGCCAGTGATAAGG-3' (SEQ.ID.NO.: 62; antisense).

20ul of the reaction was loaded onto a 1% agarose gel; results are set forth in Figure 3.

5

- 28 -

10

As is supported by the data of Figure 3, of the 16 human tissues in the cDNA panel utilized (brain, colon, heart, kidney, lung, ovary, pancreas, placenta, prostate, skeleton, small intestine, spleen, testis, thymus leukocyte, and liver) a single hRUP3 band is evident only from the pancreas. Additional comparative analysis of the protein sequence of hRUP3 with 5 other GPCRs suggest that hRUP3 is related to GPCRs having small molecule endogenous ligand such that it is predicted that the endogenous ligand for hRUP3 is a small molecule.

15

b. hRUP4

20

RT-PCR was performed using hRUP4 oligo's 8 and 4 as primers and the human multiple tissue cDNA panels (MTC, Clontech) as templates. Taq DNA polymerase 10 (Stratagene) was used for the amplification in a 40ul reaction by the following cycles: 94°C 25 for 30 seconds, 94°C for 10 seconds, 55°C for 30 seconds, 72°C for 2 minutes, and 72°C for 5 minutes with cycles 2 through 4 repeated 30 times.

30

20 μ l of the reaction were loaded on a 1% agarose gel to analyze the RT-PCR products, and hRUP4 mRNA was found expressed in many human tissues, with the strongest 15 expression in heart and kidney. (see, Figure 4). To confirm the authenticity of the PCR fragments, a 300 bp fragment derived from the 5' end of hRUP4 was used as a probe for the 35 Southern Blot analysis. The probe was labeled with 32 P-dCTP using the Prime-It II™ Random Primer Labeling Kit (Stratagene) and purified using the ProbeQuant™ G-50 micro 40 columns (Amersham). Hybridization was done overnight at 42° C following a 12 hr pre- 20 hybridization. The blot was finally washed at 65°C with 0.1 x SSC. The Southern blot did 45 confirm the PCR fragments as hRUP4.

50

c. hRUP5

55

5

- 29 -

RT-PCR was performed using the following hRUP5 specific primers:

10

5'-CTGACTTCTTGTCCTGGCAGCAGCGG-3' (SEQ.ID.NO.: 63; sense)

15

5'-AGACCAGCCAGGGCACGCTGAAGAGTG-3' (SEQ.ID.NO.: 64; antisense)

20

and the human multiple tissue cDNA panels (MTC, Clontech) as templates. Taq DNA polymerase (Stratagene) was used for the amplification in a 40ul reaction by the following cycles: 94°C for 30 sec, 94°C for 10 sec, 62°C for 1.5 min, 72°C for 5 min, and with cycles 2 through 3 repeated 30 times. 20 µl of the reaction were loaded on a 1.5% agarose gel to analyze the RT-PCR products, and hRUP5 mRNA was found expressed only in the peripheral blood leukocytes (*data not shown*).

15

10 d. hRUP6

25

RT-PCR was applied to confirm the expression and to determine the tissue distribution of hRUP6. Oligonucleotides used, based on an alignment of AC005871 and GPR66 segments, had the following sequences:

30

5'-CCAACACCAGCATCCATGGCATCAAG-3' (SEQ.ID.NO.: 73; sense),

15 5'-GGAGAGTCAGCTCTGAAAGAATTCAAGG-3' (SEQ.ID.NO.: 74; antisense)

35

and the human multiple tissue cDNA panels (MTC, Clontech) were used as templates.

40

PCR was performed using TaqPlus Precision™ polymerase (Stratagene; manufacturing instructions will be followed) in a 40ul reaction by the following cycles: 94°C for 30 sec; 94°C 5 sec; 66°C for 40 sec, 72°C for 2.5 min, and 72°C for 7 min. Cycles 2 through 4 were repeated 30 times.

45

20 ul of the reaction were loaded on a 1.2% agarose gel to analyze the RT-PCR products, and a specific 760bp DNA fragment representing hRUP6 was expressed predominantly in the thymus and with less expression in the heart, kidney, lung, prostate small intestine and testis. (see, Figure 5).

50

55

5

- 30 -

It is intended that each of the patents, applications, and printed publications
mentioned in this patent document be hereby incorporated by reference in their entirety.

10

As those skilled in the art will appreciate, numerous changes and modifications
may be made to the preferred embodiments of the invention without departing from the
spirit of the invention. It is intended that all such variations fall within the scope of the
invention and the claims that follow.

15

Although a variety of Vectors are available to those in the art, for purposes of
utilization for both endogenous and non-endogenous human GPCRs, it is most preferred
that the Vector utilized be pCMV. This vector was deposited with the American Type
Culture Collection (ATCC) on October 13, 1998 (10801 University Blvd., Manassas, VA
20110-2209 USA) under the provisions of the Budapest Treaty for the International
Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. The
DNA was tested by the ATCC and determined to be. The ATCC has assigned the
following deposit number to pCMV: ATCC #203351.

20

25

30

35

40

45

50

55

Claims

5

10

15

THIS PAGE BLANK (USPTO)

20

25

30

35

40

45

50

55

5

- 31 -

CLAIMS

10

What is claimed is:

1. A cDNA encoding a human G protein-coupled receptor comprising

15

SEQ.ID.NO.: 1.

5 2. A human G protein-coupled receptor encoded by the cDNA of

SEQ.ID.NO.: 1 comprising SEQ.ID.NO.: 2.

20

3. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:1.

4. A Host Cell comprising the Plasmid of claim 3.

25

5. A cDNA encoding a human G protein-coupled receptor comprising

10

SEQ.ID.NO.: 3.

6. A human G protein-coupled receptor encoded by the cDNA of

30

SEQ.ID.NO.: 3 comprising SEQ.ID.NO.: 4.

7. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:3.

8. A Host Cell comprising the Plasmid of claim 7.

35

15 9. A cDNA encoding a human G protein-coupled receptor comprising

SEQ.ID.NO.: 5.

40

10. A human G protein-coupled receptor encoded by the cDNA of

SEQ.ID.NO.: 5 comprising SEQ.ID.NO.: 6.

11. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:5.

45

20 12. A Host Cell comprising the Plasmid of claim 11.

13. A cDNA encoding a human G protein-coupled receptor comprising

50

SEQ.ID.NO.: 7.

55

5

- 32 -

14. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 7 comprising SEQ.ID.NO.: 8.

15. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:7.

16. A Host Cell comprising the Plasmid of claim 15.

17. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 9.

18. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 9 comprising SEQ.ID.NO.: 10.

19. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:9.

20. A Host Cell comprising the Plasmid of claim 19.

21. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 11.

22. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 11 comprising SEQ.ID.NO.:12.

23. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:11.

24. A Host Cell comprising the Plasmid of claim 23.

25. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 13.

26. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 13 comprising SEQ.ID.NO.: 14.

27. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:13.

28. A Host Cell comprising the Plasmid of claim 27.

29. A cDNA encoding a human G protein-coupled receptor comprising

10

15

20

25

30

35

40

50

55

5

- 33 -

SEQ.ID.NO.: 15.

10

30. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 15 comprising SEQ.ID.NO.: 16.

15

31. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:15.

20

32. A Host Cell comprising the Plasmid of claim 31.

25

33. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 17.

30

34. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 17 comprising SEQ.ID.NO.: 18.

35

35. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:17.

40

36. A Host Cell comprising the Plasmid of claim 35.

45

37. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 19.

50

38. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 19 comprising SEQ.ID.NO.: 20.

55

39. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:19.

60

40. A Host Cell comprising the Plasmid of claim 39.

65

41. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 21.

70

42. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 21 comprising SEQ.ID.NO.: 22.

75

43. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:21.

80

44. A Host Cell comprising the Plasmid of claim 43.

5

- 34 -

45. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 23.

10

46. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 23 comprising SEQ.ID.NO.: 24.

15

47. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.: 23.

48. A Host Cell comprising the Plasmid of claim 47.

20

49. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 25.

25

50. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 25 comprising SEQ.ID.NO.: 26.

25

51. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.: 25.

52. A Host Cell comprising the Plasmid of claim 51.

30

53. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 27.

35

54. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 27 comprising SEQ.ID.NO.: 28.

40

55. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.: 27.

56. A Host Cell comprising the Plasmid of claim 55.

57. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 29.

45

58. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 29 comprising SEQ.ID.NO.: 30.

50

59. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.: 29.

55

5

- 35 -

60. A Host Cell comprising the Plasmid of claim 59.

10

61. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 31.

15

62. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 31 comprising SEQ.ID.NO.: 32.

20

63. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:31.

64. A Host Cell comprising the Plasmid of claim 63.

25

65. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 33.

30

66. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 33 comprising SEQ.ID.NO.: 34.

35

67. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:33.

40

68. A Host Cell comprising the Plasmid of claim 67.

45

69. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 35.

50

70. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 35 comprising SEQ.ID.NO.: 36.

55

71. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:35.

72. A Host Cell comprising the Plasmid of claim 71.

73. A cDNA encoding a human G protein-coupled receptor comprising SEQ.ID.NO.: 37.

74. A human G protein-coupled receptor encoded by the cDNA of SEQ.ID.NO.: 37 comprising SEQ.ID.NO.: 38.

5

- 36 -

75. A Plasmid comprising a Vector and the cDNA of SEQ.ID.NO.:37.
76. A Host Cell comprising the Plasmid of claim 75.

10

15

20

25

30

35

40

45

50

55

1/4

	1	2	3	4	5	6	7	8
A	Amygdala	Caudate Nucleus	Cerebellum	Cerebral Cortex	Frontal Cortex	Hippocampus	Medulla Oblongata	
B	Occipital Cortex	Putamen	Substantia Nigra	Temporal Cortex	Thalamus	Accumbens	Spinal Cord	
C	Heart	Aorta	Skeletal Muscle	Colon	Bladder	Uterus	Prostate	Stomach
D	Testis	Ovary	Pancreas	Pituitary	Adrenal Gland	Thyroid	Salivary Gland	Mammary Gland
E	Kidney	Liver	Small Intestine	Spleen	Thymus	Peripheral Leukocyte	Lymph Node	Bone Marrow
F	Appendix	Lung	Trachea	Placenta				
G	Fetal Brain	Fetal Heart	Fetal Kidney	Fetal Liver	Fetal Spleen	Fetal Thymus	Fetal Lung	
H								

SUBSTITUTE SHEET (RULE 26)

FIG. 1A

2 / 4

	1	2	3	4	5	6	7	8	9	10	11	12
A	Cerebellum Left	Substantia Nigra	Heart	Esophagus	Colon Transverse	Kidney	Lung	Liver	Leukemia	Fetal Brain		
B	Cerebral Cortex Cortex	Cerebellum Right	Aorta	Stomach	Colon Descending	Skeletal Muscle	Placenta	Pancreas	HeLa S3	Fetal Heart		
C	Frontal Cortex	Corpus Callosum	Thalamus	Atrium Left	Duodenum	Rectum	Spleen	Bladder	Adrenal Gland	Leukemia	Fetal Kidney	
D	Parietal Lobe	Amygdala	Pituitary Gland	Atrium Right	Jejunum	Thymus	Uterus	Thyroid	MOLT-4			
E	Occipital Cortex	Claudate Nucleus	Spinal Cord	Ventricle Left	Ileum	Peripheral Leukocyte	Prostate	Salivary Gland	Burkitt's Lymphoma	Fetal Liver		
F	Temporal Cortex	Hippocampus		Ventricle Right	Ileocecum	Lymph Node	Testis	Mammary Gland	Raji	Burkitt's Lymphoma	Fetal Thymus	
G	Paracentral Gyrus of Cerebral Cortex	Medulla Oblongata		Inter Ventricular Septum	Appendix		Bone Marrow	Ovary	Daudi	Colorectal Adenocarcinoma	Fetal Lung	
H	Pons	Putamen		Apex of the Heart	Colon Ascending		Trachea			Lung Carcinoma	A549	

SUBSTITUTE SHEET (RULE 26)

FIG. 1B

BEST AVAILABLE COPY

WO 00/31258

PCT/US99/23687

3/4

FIG. 2A

BEST AVAILABLE COPY

WO 00/31258

PCT/US99/23687

4 / 4

FIG. 5

FIG. 4

FIG. 3

SUBSTITUTE SHEET (RULE 26)

- 1 -

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Chen, Ruoping
5 Dang, Huong T.
Liaw, Chen W.
Lin, I-Lin

(ii) TITLE OF INVENTION: Human Orphan G Protein-Coupled Receptors

(iii) NUMBER OF SEQUENCES: 74

10 (iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Arena Pharmaceuticals, Inc.
(B) STREET: 6166 Nancy Ridge Drive
(C) CITY: San Diego
(D) STATE: CA
15 (E) COUNTRY: USA
(F) ZIP: 92121

(v) COMPUTER READABLE FORM:

20 (A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US
(B) FILING DATE:
25 (C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Burgoon, Richard P.
(B) REGISTRATION NUMBER: 34,787

(ix) TELECOMMUNICATION INFORMATION:

30 (A) TELEPHONE: (858)453-7200
(B) TELEFAX: (858)453-7210

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:
35 (A) LENGTH: 1260 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

40 ATGGTCTTCT CGGCAGTGTT GACTGCGTTC CATACCGGGA CATCCAACAC AACATTTGTC 60

- 2 -

GTGTATGAAA ACACCTACAT GAATATTACA CTCCCTCAC CATTCCAGCA TCCTGACCTC 120
AGTCCATTGC TTAGATATAG TTTTGAAACC ATGGCTCCC CTGGTTGAG TTCCTTGACC 180
GTGAATAGTA CAGCTGTGCC CACAAACACCA GCAGCATTTA AGAGCCTAAA CTTGCCTCTT 240
CAGATCACCC TTTCTGCTAT AATGATATTC ATTCTGTTG TGTCTTTCT TGGAACATTG 300
5 GTTGTGTTGCC TCATGGTTA CCAAAAGCT GCCATGAGGT CTGCAATTAA CATCCTCCTT 360
GCCAGCCTAG CTTTGCAGA CATGTTGCTT GCAGTGCTGA ACATGCCCTT TGCCCTGGTA 420
ACTATTCTTA CTACCCGATG GATTTTGGG AAATTCTTCT GTAGGGTATC TGCTATGTTT 480
TTCTGGTTAT TTGTGATAGA AGGAGTAGCC ATCCTGCTCA TCATTAGCAT AGATAGGTT 540
CTTATTATAG TCCAGAGGCA GGATAAGCTA AACCCATATA GAGCTAAGGT TCTGATTGCA 600
10 GTTTCTTGGG CAACTTCCTT TTGTGTAGCT TTTCCTTTAG CCGTAGGAAA CCCCGACCTG 660
CAGATACCTT CCCGAGCTCC CCAGTGTGTG TTTGGGTACA CAACCAATCC AGGCTACCAAG 720
GCTTATGTGA TTTGATTTTC TCTCATTCTT TTCTTCATAC CCTTCCTGGT AATACTGTAC 780
TCATTTATGG GCATACTCAA CACCCTTCGG CACAATGCCT TGAGGATCCA TAGCTACCC 840
GAAGGTATAT GCCTCAGCCA GGCCAGCATA CTGGGTCTCA TGAGTCTGCA GAGACCTTTC 900
15 CAGATGAGCA TTGACATGGG CTTTAAACCA CGTGCCTTCA CCACTATTTT GATTCTCTTT 960
GCTGTCTTCA TTGTCTGCTG GGCCCCATTCA ACCACTTACA GCCTTGTGGC
AACATTCACT1020
AAGCACTTTT ACTATCAGCA CAACTTTTTT GAGATTAGCA CCTGGCTACT GTGGCTCTGC1080
TACCTCAAGT CTGCATTGAA TCCGCTGATC TACTACTGGA GGATTAAGAA ATTCCATGAT1140
20 GCTTGCCTGG ACATGATGCC TAAAGTCCTTC AAGTTTTGC CGCAGCTCCC TGTCACACAI200
AAGCGACGGA TACGTCCTAG TGCTGTCTAT GTGTGTGGGG AACATCGGAC GGTGGTGTGA1260

(3) INFORMATION FOR SEQ ID NO:2:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 419 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

30 Met Val Phe Ser Ala Val Leu Thr Ala Phe His Thr Gly Thr Ser Asn
1 5 10 15

- 3 -

Thr Thr Phe Val Val Tyr Glu Asn Thr Tyr Met Asn Ile Thr Leu Pro
 20 25 30

Pro Pro Phe Gln His Pro Asp Leu Ser Pro Leu Leu Arg Tyr Ser Phe
 35 40 45

5 Glu Thr Met Ala Pro Thr Gly Leu Ser Ser Leu Thr Val Asn Ser Thr
 50 55 60

Ala Val Pro Thr Thr Pro Ala Ala Phe Lys Ser Leu Asn Leu Pro Leu
 65 70 75 80

10 Gln Ile Thr Leu Ser Ala Ile Met Ile Phe Ile Leu Phe Val Ser Phe
 85 90 95

Leu Gly Asn Leu Val Val Cys Leu Met Val Tyr Gln Lys Ala Ala Met
 100 105 110

Arg Ser Ala Ile Asn Ile Leu Leu Ala Ser Leu Ala Phe Ala Asp Met
 115 120 125

15 Leu Leu Ala Val Leu Asn Met Pro Phe Ala Leu Val Thr Ile Leu Thr
 130 135 140

Thr Arg Trp Ile Phe Gly Lys Phe Cys Arg Val Ser Ala Met Phe
 145 150 155 160

20 Phe Trp Leu Phe Val Ile Glu Gly Val Ala Ile Leu Leu Ile Ile Ser
 165 170 175

Ile Asp Arg Phe Leu Ile Ile Val Gln Arg Gln Asp Lys Leu Asn Pro
 180 185 190

Tyr Arg Ala Lys Val Leu Ile Ala Val Ser Trp Ala Thr Ser Phe Cys
 195 200 205

25 Val Ala Phe Pro Leu Ala Val Gly Asn Pro Asp Leu Gln Ile Pro Ser
 210 215 220

Arg Ala Pro Gln Cys Val Phe Gly Tyr Thr Thr Asn Pro Gly Tyr Gln
 225 230 235 240

30 Ala Tyr Val Ile Leu Ile Ser Leu Ile Ser Phe Phe Ile Pro Phe Leu
 245 250 255

Val Ile Leu Tyr Ser Phe Met Gly Ile Leu Asn Thr Leu Arg His Asn
 260 265 270

Ala Leu Arg Ile His Ser Tyr Pro Glu Gly Ile Cys Leu Ser Gln Ala
 275 280 285

35 Ser Lys Leu Gly Leu Met Ser Leu Gln Arg Pro Phe Gln Met Ser Ile
 290 295 300

Asp Met Gly Phe Lys Thr Arg Ala Phe Thr Thr Ile Leu Ile Leu Phe

- 4 -

	305	310	315	320
	Ala Val Phe Ile Val Cys Trp Ala Pro Phe Thr Thr Tyr Ser Leu Val			
	325	330	335	
5	Ala Thr Phe Ser Lys His Phe Tyr Tyr Gln His Asn Phe Phe Glu Ile			
	340	345	350	
	Ser Thr Trp Leu Leu Trp Leu Cys Tyr Leu Lys Ser Ala Leu Asn Pro			
	355	360	365	
	Leu Ile Tyr Tyr Trp Arg Ile Lys Lys Phe His Asp Ala Cys Leu Asp			
	370	375	380	
10	Met Met Pro Lys Ser Phe Lys Phe Leu Pro Gln Leu Pro Gly His Thr			
	385	390	395	400
	Lys Arg Arg Ile Arg Pro Ser Ala Val Tyr Val Cys Gly Glu His Arg			
	405	410	415	
15	Thr Val Val			

(4) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1119 base pairs
 - (B) TYPE: nucleic acid
 - 20 (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGTTAGCCA ACAGCTCCTC AACCAACAGT TCTGTTCTCC CGTGTCCTGA CTACCGACCT 60
 25 ACCCACCGCC TGCACTTGGT GGTCTACAGC TTGGTGCTGG CTGCCGGGCT CCCCTCAAC 120
 GCGCTAGCCC TCTGGGTCTT CCTGCGCGCG CTGCGCGTGC ACTCGGTGGT GAGCGTGTAC 180
 ATGTGTAACC TGGCGGCCAG CGACCTGCTC TTCACCCCTCT CGCTGCCGT TCGTCTCTCC 240
 TACTACGCAC TGCACCACTG GCCCTTCCCC GACCTCCTGT GCCAGACGAC GGGCGCCATC 300
 TTCCAGATGA ACATGTACGG CAGCTGCATC TTCTGATGC TCATCAACGT GGACCGCTAC 360
 30 GCCGCCATCG TGCACCCGCT GCGACTGCGC CACCTGCCGC GGCCCCGCGT GGCGCGGCTG 420
 CTCTGCCCTGG GCGTGTGGC GCTCATCCTG GTGTTTGGCG TGCCCGCCGC CGCGTGCAC 480
 AGGCCCTCGC GTTGCCGCTA CGGGGACCTC GAGGTGCGCC TATGCTTCGA GAGCTTCAGC 540
 GACGAGCTGT GGAAAGGCAG GCTGCTGCC CTCGTGCTGC TGGCCGAGGC GCTGGGCTTC 600

- 5 -

```

CTGCTGGCCC TGGCGCCGGT GGTCTACTCG TCGGGCCGAG TCTTCTGGAC GCTGGCGC 660
CCCGACGCCA CGCAGAGCCA GCGGCGGCGG AAGACCGTGC GCCTCCTGCT GGCTAACCTC 720
GTCATCTTCC TGCTGTGCTT CGTGCCCTAC AACAGCACCG TGCGGTCTA CGGGCTGCTG 780
CGGAGCAAGC TGGTGGCGGC CAGCGTGCCT GCCCCGCGATC GCGTGGCGGG GGTGCTGATG 840
5 GTGATGGTGC TGCTGGCCGG CGCCAAGTGC GTGCTGGACC CGCTGGTGT A CTACTTTAGC 900
GCCGAGGGCT TCCGCAACAC CCTGCGCGC CTGGGCACTC CGCACCGGGC CAGGACCTCG 960
GCCACCAACG GGACGCCGGC GGCGCTCGCG CAATCCGAAA GGTCCGCCGT CACCACCGAC 1020
GCCACCAAGGC CGGATGCCGC CAGTCAGGGG CTGCTCCGAC CCTCCGACTC CCACTCTCTG 1080
TCTTCCTTCA CACAGTGTCC CCAGGATTCC GCCCTCTGA 1119

```

1119

10 (5) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 372 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Leu Ala Asn Ser Ser Thr Asn Ser Ser Val Leu Pro Cys Pro
1 5 10 15

20 Asp Tyr Arg Pro Thr His Arg Leu His Leu Val Val Tyr Ser Leu Val
20 25 30

Leu Ala Ala Gly Leu Pro Leu Asn Ala Leu Ala Leu Trp Val Phe Leu
35 40 45

Arg Ala Leu Arg Val His Ser Val Val Ser Val Tyr Met Cys Asn Leu
25 50 55 60

Ala Ala Ser Asp Leu Leu Phe Thr Leu Ser Leu Pro Val Arg Leu Ser
65 70 75 80

Tyr Tyr Ala Leu His His Trp Pro Phe Pro Asp Leu Leu Cys Gln Thr
85 90 95

...Ile Ala Ile Phe Gln Met Asn Met Tyr Gly Ser Cys Ile Phe Leu
100 105 110

Met Leu Ile Asn Val Asp Arg Tyr Ala Ala Ile Val His Pro Leu Arg
115 120 125

Met Leu Ile Asn Val Asp Arg Tyr Ala Ala Ile Val His Pro Leu Arg
115 120 125

- 6 -

Leu Arg His Leu Arg Arg Pro Arg Val Ala Arg Leu Leu Cys Leu Gly
 130 135 140

Val Trp Ala Leu Ile Leu Val Phe Ala Val Pro Ala Ala Arg Val His
 145 150 155 160

5 Arg Pro Ser Arg Cys Arg Tyr Arg Asp Leu Glu Val Arg Leu Cys Phe
 165 170 175

Glu Ser Phe Ser Asp Glu Leu Trp Lys Gly Arg Leu Leu Pro Leu Val
 180 185 190

10 Leu Leu Ala Glu Ala Leu Gly Phe Leu Leu Pro Leu Ala Ala Val Val
 195 200 205

Tyr Ser Ser Gly Arg Val Phe Trp Thr Leu Ala Arg Pro Asp Ala Thr
 210 215 220

Gln Ser Gln Arg Arg Lys Thr Val Arg Leu Leu Ala Asn Leu
 225 230 235 240

15 Val Ile Phe Leu Leu Cys Phe Val Pro Tyr Asn Ser Thr Leu Ala Val
 245 250 255

Tyr Gly Leu Leu Arg Ser Lys Leu Val Ala Ala Ser Val Pro Ala Arg
 260 265 270

20 Asp Arg Val Arg Gly Val Leu Met Val Met Val Leu Leu Ala Gly Ala
 275 280 285

Asn Cys Val Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ala Glu Gly Phe
 290 295 300

Arg Asn Thr Leu Arg Gly Leu Gly Thr Pro His Arg Ala Arg Thr Ser
 305 310 315 320

25 Ala Thr Asn Gly Thr Arg Ala Ala Leu Ala Gln Ser Glu Arg Ser Ala
 325 330 335

Val Thr Thr Asp Ala Thr Arg Pro Asp Ala Ala Ser Gln Gly Leu Leu
 340 345 350

30 Arg Pro Ser Asp Ser His Ser Leu Ser Ser Phe Thr Gln Cys Pro Gln
 355 360 365

Asp Ser Ala Leu
 370

(6) INFORMATION FOR SEQ ID NO:5:

35 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1107 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- 7 -

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGGCCAACCT CCACAGGGCT GAACGCCTCA GAAGTCGCAAG GCTCGTTGGG GTTGATCCTG 60
 GCAGCTGTG TGAGGGTGGG GGCACTGCTG GGCAACGGCG CGCTGCTGGT CGTGGTGCTG 120
 5 CGCACGCCGG GACTGCGCGA CGCGCTCTAC CTGGCGCAC TGTGCGTCGT GGACCTGCTG 180
 CGGGCCGCGCT CCATCATGCC GCTGGGCCTG CTGGCGCAC CGCCGCCCGG GCTGGGCCGC 240
 GTGCGCTGG GCCCGCGCC ATGCCCGGCC GCTCGCTCC TCTCCGCCG TCTGCTGCCG 300
 GCCTGCACGC CGGGGGTGGC CGCACTTGGC CTGGCACCGT ACCGCCCTCAT CGTGCACCCG 360
 CTGCGGCCAG GCTCGCGGCC GCCGCCTGTG CTCGTGCTCA CGGCCGTGTG GGCGCGGGCG 420
 10 GGACTGCTGG GCGCGCTCTC CCTGCTCGGC CGCGCGCCCG CACCGCCCCC TGCTCCGTGCT 480
 CGCTGCTGG TCCCTGGCTGG GGGCCTCGGG CCCTTCCCGC CGCTCTGGC CCTGCTGGCC 540
 TTCGCGCTGC CGGCCCTCCT GCTGCTCGGC GCCTACGGCG GCATCTTCGT GGTGGCGCGT 600
 CGCGCTGCCG TGAGGGCCCC ACGGCCGGCG CGCGGGTCCC GACTCCGCTC GGACTCTCTG 660
 GATAGCCGCC TTTCATCTT GCCGCCGCTC CGGCCTCGCC TGCCCCGGGG CAAGGGCGGCC 720
 15 CTGGCCCCAG CGCTGGCCGT GGGCAATTG GCAGCCTGCT GGCTGCCCTA TGGCTGCGCG 780
 TGCCTGGCGC CGCAGCGCG GGCGCGGGAA GCCGAAGCGG CTGTCACCTG GGTCGCCTAC 840
 TCGGCCTTCG CGGCTCACCC CTTCCGTAC GGGCTGCTGC AGCGCCCCGT GCGCTTGGCA 900
 CTGGGGCGCC TCTCTGCCG TGCAGCTGCCT GGACCTGTGC GGGCCTGCAC TCCGCAAGCC 960
 TGGCACCCCG GGGCACTCTT GCAATGCCTC CAGAGACCCC CAGAGGGCCC TGCCGTAGGC 1020
 20 CCTTCTGAGG CTCCAGAACAA GACCCCGAG TTGGCAGGAG GGCGGAGCCC CGCATACCAG 1080
 GGGCCACCTG AGAGTTCTCT CTCCTGA 1107

(7) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 368 amino acids
- 25 (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

- 8 -

	Met Ala Asn Ser Thr Gly Leu Asn Ala Ser Glu Val Ala Gly Ser Leu			
1	5	10	15	
	Gly Leu Ile Leu Ala Ala Val Val Glu Val Gly Ala Leu Leu Gly Asn			
	20	25	30	
5	Gly Ala Leu Leu Val Val Val Leu Arg Thr Pro Gly Leu Arg Asp Ala			
	35	40	45	
	Leu Tyr Leu Ala His Leu Cys Val Val Asp Leu Leu Ala Ala Ser			
	50	55	60	
10	Ile Met Pro Leu Gly Leu Leu Ala Ala Pro Pro Pro Gly Leu Gly Arg			
	65	70	75	80
	Val Arg Leu Gly Pro Ala Pro Cys Arg Ala Ala Arg Phe Leu Ser Ala			
	85	90	95	
	Ala Leu Leu Pro Ala Cys Thr Leu Gly Val Ala Ala Leu Gly Leu Ala			
	100	105	110	
15	Arg Tyr Arg Leu Ile Val His Pro Leu Arg Pro Gly Ser Arg Pro Pro			
	115	120	125	
	Pro Val Leu Val Leu Thr Ala Val Trp Ala Ala Gly Leu Leu Gly			
	130	135	140	
20	Ala Leu Ser Leu Leu Gly Pro Pro Pro Ala Pro Pro Pro Ala Pro Ala			
	145	150	155	160
	Arg Cys Ser Val Leu Ala Gly Gly Leu Gly Pro Phe Arg Pro Leu Trp			
	165	170	175	
	Ala Leu Leu Ala Phe Ala Leu Pro Ala Leu Leu Leu Gly Ala Tyr			
	180	185	190	
25	Gly Gly Ile Phe Val Val Ala Arg Arg Ala Ala Leu Arg Pro Pro Arg			
	195	200	205	
	Pro Ala Arg Gly Ser Arg Leu Arg Ser Asp Ser Leu Asp Ser Arg Leu			
	210	215	220	
30	Ser Ile Leu Pro Pro Leu Arg Pro Arg Leu Pro Gly Gly Lys Ala Ala			
	225	230	235	240
	Leu Ala Pro Ala Leu Ala Val Gly Gln Phe Ala Ala Cys Trp Leu Pro			
	245	250	255	
	Tyr Gly Cys Ala Cys Leu Ala Pro Ala Ala Arg Ala Ala Glu Ala Glu			
	260	265	270	
35	Ala Ala Val Thr Trp Val Ala Tyr Ser Ala Phe Ala Ala His Pro Phe			
	275	280	285	
	Leu Tyr Gly Leu Leu Gln Arg Pro Val Arg Leu Ala Leu Gly Arg Leu			

- 9 -

290	295	300
Ser Arg Arg Ala Leu Pro Gly Pro Val Arg Ala Cys Thr Pro Gln Ala		
305	310	315
Trp His Pro Arg Ala Leu Leu Gln Cys Leu Gln Arg Pro Pro Glu Gly		
5	325	330
Pro Ala Val Gly Pro Ser Glu Ala Pro Glu Gln Thr Pro Glu Leu Ala		
340	345	350
Gly Gly Arg Ser Pro Ala Tyr Gln Gly Pro Pro Glu Ser Ser Leu Ser		
355	360	365

10 (s) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1008 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGGAATCAT CTTTCTCATT TGGAGTGATC CTTGCTGTCC TGGCCTCCCT CATCATTGCT 60
 ACTAACACAC TAGTGGCTGT GGCTGTGCTG CTGTTGATCC ACAAGAAATGA TGGTGTCACT 120
 20 CTCTGCTTCA CCTTGAATCT GGCTGTGGCT GACACCTTGA TTGGTGTGGC CATCTCTGGC 180
 CTACTCACAG ACCAGCTCTC CAGCCCTTCT CGGCCACAC AGAAGACCC GTGCAGCCTG 240
 CGGATGGCAT TTGTCACTTC CTCCGCAGCT GCCTCTGTCC TCACGGTCAT GCTGATCACC 300
 TTTGACAGGT ACCTTGCCAT CAAGCAGCCC TTCCGCTACT TGAAGATCAT GAGTGGGTTTC 360
 GTGGCCGGGG CCTGCATTGC CGGGCTGTGG TTAGTGTCTT ACCTCATTGG CTTCCCTCCCA 420
 25 CTCGGAATCC CCATGTTCCA GCAGACTGCC TACAAAGGGC AGTGCAGCTT CTTTGCTGTA 480
 TTTCACCCCTC ACTTCGTGCT GACCCCTCTCC TGCGTTGGCT TCTTCCCAGC CATGCTCCTC 540
 TTTGTCTTCT TCTACTGCGA CATGCTCAAG ATTGCCTCCA TGCACAGCCA GCAGATTCGA 600
 AAGATGGAAC ATGCAGGAGC CATGGCTGGA GGTTATCGAT CCCCACGGAC TCCCAAGGAC 660
 TTCAAAGCTC TCCGTACTGT GTCTGTCTC ATTGGGAGCT TTGCTCTATC CTGGACCCCC 720
 30 TTCCCTTATCA CTGGCATTGT GCAGGTGGCC TGCCAGGAGT GTCACCTCTA CCTAGTGCTG 780
 GAACGGTACC TGTGGCTGCT CGGGCGTGGGC AACTCCCTGC TCAACCCACT CATCTATGCC 840

- 10 -

TATTGGCAGA AGGAGGTGCG ACTGCAGCTC TACCACATGG CCCTAGGAGT GAAGAAGGTG 900
 CTCACCTCAT TCCTCCTCTT TCTCTCGGCC AGGAATTGTG GCCCAGAGAG GCCCAGGGAA 960
 AGTTCCGTGTC ACATCGTCAC TATCTCCAGC TCAGAGTTTG ATGGCTAA 1008

(9) INFORMATION FOR SEQ ID NO:8:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 335 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

10 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

	Met	Glu	Ser	Ser	Phe	Ser	Phe	Gly	Val	Ile	Leu	Ala	Val	Leu	Leu	Ser
1										10						15
	Leu	Ile	Ile	Ala	Thr	Asn	Thr	Leu	Val	Ala	Val	Ala	Val	Leu	Leu	Leu
15					20				25							30
	Ile	His	Lys	Asn	Asp	Gly	Val	Ser	Leu	Cys	Phe	Thr	Leu	Asn	Leu	Ala
						35			40				45			
	Val	Ala	Asp	Thr	Leu	Ile	Gly	Val	Ala	Ile	Ser	Gly	Leu	Leu	Thr	Asp
20					50				55			60				
	Gln	Leu	Ser	Ser	Pro	Ser	Arg	Pro	Thr	Gln	Lys	Thr	Leu	Cys	Ser	Leu
25					65		70			75				80		
	Arg	Met	Ala	Phe	Val	Thr	Ser	Ser	Ala	Ala	Ala	Ser	Val	Leu	Thr	Val
					85				90			95				
	Met	Leu	Ile	Thr	Phe	Asp	Arg	Tyr	Leu	Ala	Ile	Lys	Gln	Pro	Phe	Arg
30					100				105			110				
	Tyr	Leu	Lys	Ile	Met	Ser	Gly	Phe	Val	Ala	Gly	Ala	Cys	Ile	Ala	Gly
					115				120			125				
	Leu	Trp	Leu	Val	Ser	Tyr	Leu	Ile	Gly	Phe	Leu	Pro	Leu	Gly	Ile	Pro
35					130				135			140				
	Met	Phe	Gln	Gln	Thr	Ala	Tyr	Lys	Gly	Gln	Cys	Ser	Phe	Phe	Ala	Val
					145			150			155			160		
	Phe	His	Pro	His	Phe	Val	Leu	Thr	Leu	Ser	Cys	Val	Gly	Phe	Phe	Pro
					165				170			175				
	Ala	Met	Leu	Leu	Phe	Val	Phe	Phe	Tyr	Cys	Asp	Met	Leu	Lys	Ile	Ala
35					180				185			190				

- 11 -

Ser Met His Ser Gln Gln Ile Arg Lys Met Glu His Ala Gly Ala Met
195 200 205

Ala Gly Gly Tyr Arg Ser Pro Arg Thr Pro Ser Asp Phe Lys Ala Leu
210 215 220

5 Arg Thr Val Ser Val Leu Ile Gly Ser Phe Ala Leu Ser Trp Thr Pro
225 230 235 240

Phe Leu Ile Thr Gly Ile Val Gln Val Ala Cys Gln Glu Cys His Leu
 . 245 250 255

10 Tyr Leu Val Leu Glu Arg Tyr Leu Trp Leu Leu Gly Val Gly Asn Ser
 260 265 270

Leu Leu Asn Pro Leu Ile Tyr Ala Tyr Trp Gln Lys Glu Val Arg Leu
275 280 285

Gln Leu Tyr His Met Ala Leu Gly Val Lys Lys Val Leu Thr Ser Phe
290 295 300

Leu Leu Phe Leu Ser Ala Arg Asn Cys Gly Pro Glu Arg Pro Arg Glu
305 310 315 320

(10) INFORMATION FOR SEQ ID NO:9:

20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1413 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGGACACTA CCATGGAAGC TGACCTGGGT GCCACTGGCC ACAGGCCCCG CACAGAGCTT 60
GATGATGAGG ACTCCTACCC CCAAGGTGGC TGGGACACGG TCTTCCTGGT GGCCCTGCTG 120
CTCCTTGGGC TGCCAGCCAA TGGGTTGATG GCGTGCTGG CCGGCTCCA GGCCGGCAT 180
GGAGCTGGCA CGCGTCTGGC GCTGCTCCTG CTCAGCCTGG CCCTCTCTGA CTTCTTGTT 240
CTGGCAGCAG CGGCCTCCA GATCCTAGAG ATCCGGCATG GGGGACACTG GCGCTGGGG 300
ACAGCTGCCT GCCGCTTCTA CTACTTCCTA TGGGGCGTGT CCTACTCCTC CGGCCTCTTC 360
CTGCTGGCCG CCCTCAGCCT CGACCGCTGC CTGCTGGCGC TGTGCCACACA CTGGTACCCCT 420
GGGCACCGCC CAGTCCGCCT GCCCCCTCTGG GTCTGCGCCG GTGCTGGGT GCTGGCCACACA 480

- 12 -

CTCTTCAGCG TGCCCTGGCT GGTCTTCCCC GAGGCTGCCG TCTGGTGGTA CGACCTGGTC 540
 ATCTGCCTGG ACTTCTGGGA CAGCGAGGAG CTGTCGCTGA GGATGCTGGA GGTCTGGGG 600
 GGCTTCTGC CTTCTCTCT GCTGCTCGTC TGCCACGTGC TCACCCAGGC CACAGCCTGT 660
 CGCACCTGCC ACCGCCAACA GCAGCCCGCA GCCTGCCGGG GCTTCGCCCG TGTGCCAGG 720
 5 ACCATTCTGT CAGCCTATGT GGTCTGAGG CTGCCCTACC AGCTGGCCA GCTGCTCTAC 780
 CTGGCCTTCC TGTGGGACGT CTACTCTGGC TACCTGCTCT GGGAGGCCCT GGTCTACTCC 840
 GACTACCTGA TCCTACTCAA CAGCTGCCTC AGCCCCTCC TCTGCCTCAT GCCCAGTGCC 900
 GACCTCCGGA CCCTGCTGCG CTCCGTGCTC TCGTCCTTCG CGGCAGCTCT CTGCGAGGAG 960
 CGGGCCGGCA GCTTCACGCC CACTGAGCCA CAGACCCAGC TAGATTCTGA GGGTCCA1020
 10 CTGCCAGAGC CGATGGCAGA GGCCCAGTCA CAGATGGATC CTGTGGCCA GCCTCAGGTG1080
 AACCCCCACAC TCCAGCCACG ATCGGATCCC ACAGCTCAGC CACAGCTGAA CCCTACGGCC1140
 CAGCCACAGT CGGATCCCAC AGCCCAGCCA CAGCTGAACC TCATGGCCA GCCACAGTCA1200
 GATTCTGTGG CCCAGCCACA GGCAGACACT AACGTCCAGA CCCCTGCACC TGCTGCCAGT1260
 TCTGTGCCCA GTCCCTGTGA TGAAGCTTCC CCAACCCAT CCTCGCATCC TACCCAGGG1320
 15 GCCCTTGAGG ACCCAGGCCAC ACCTCCTGCC TCTGAAGGAG AAAGCCCCAG CAGCACCCCG1380
 CCAGAGGCGG CCCCGGGCGC AGGCCCCACG TGA 1413

(11) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 468 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

25 Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro
 1 5 10 15
 Arg Thr Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly Trp Asp
 20 25 30
 Thr Val Phe Leu Val Ala Leu Leu Leu Gly Leu Pro Ala Asn Gly
 30 35 40 45
 Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr

- 13 -

	50	55	60
	Arg Leu Ala Leu Leu Leu Leu Ser Leu Ala Leu Ser Asp Phe Leu Phe		
65	65	70	75
			80
5	Leu Ala Ala Ala Ala Phe Gln Ile Leu Glu Ile Arg His Gly Gly His		
	85	90	95
	Trp Pro Leu Gly Thr Ala Ala Cys Arg Phe Tyr Tyr Phe Leu Trp Gly		
	100	105	110
	Val Ser Tyr Ser Ser Gly Leu Phe Leu Leu Ala Ala Leu Ser Leu Asp		
	115	120	125
10	Arg Cys Leu Leu Ala Leu Cys Pro His Trp Tyr Pro Gly His Arg Pro		
	130	135	140
	Val Arg Leu Pro Leu Trp Val Cys Ala Gly Val Trp Val Leu Ala Thr		
	145	150	155
	160		
15	Leu Phe Ser Val Pro Trp Leu Val Phe Pro Glu Ala Ala Val Trp Trp		
	165	170	175
	Tyr Asp Leu Val Ile Cys Leu Asp Phe Trp Asp Ser Glu Glu Leu Ser		
	180	185	190
	Leu Arg Met Leu Glu Val Leu Gly Gly Phe Leu Pro Phe Leu Leu Leu		
	195	200	205
20	Leu Val Cys His Val Leu Thr Gln Ala Thr Arg Thr Cys His Arg Gln		
	210	215	220
	Gln Gln Pro Ala Ala Cys Arg Gly Phe Ala Arg Val Ala Arg Thr Ile		
	225	230	235
	240		
25	Leu Ser Ala Tyr Val Val Leu Arg Leu Pro Tyr Gln Leu Ala Gln Leu		
	245	250	255
	Leu Tyr Leu Ala Phe Leu Trp Asp Val Tyr Ser Gly Tyr Leu Leu Trp		
	260	265	270
	Glu Ala Leu Val Tyr Ser Asp Tyr Leu Ile Leu Leu Asn Ser Cys Leu		
	275	280	285
30	Ser Pro Phe Leu Cys Leu Met Ala Ser Ala Asp Leu Arg Thr Leu Leu		
	290	295	300
	Arg Ser Val Leu Ser Ser Phe Ala Ala Ala Leu Cys Glu Glu Arg Pro		
	305	310	315
	320		
35	Gly Ser Phe Thr Pro Thr Glu Pro Gln Thr Gln Leu Asp Ser Glu Gly		
	325	330	335
	Pro Thr Leu Pro Glu Pro Met Ala Glu Ala Gln Ser Gln Met Asp Pro		
	340	345	350

- 14 -

	Val Ala Gln Pro Gln Val Asn Pro Thr Leu Gln Pro Arg Ser Asp Pro
	355 360 365
	Thr Ala Gln Pro Gln Leu Asn Pro Thr Ala Gln Pro Gln Ser Asp Pro
	370 375 380
5	Thr Ala Gln Pro Gln Leu Asn Leu Met Ala Gln Pro Gln Ser Asp Ser
	385 390 395 400
	Val Ala Gln Pro Gln Ala Asp Thr Asn Val Gln Thr Pro Ala Pro Ala
	405 410 415
10	Ala Ser Ser Val Pro Ser Pro Cys Asp Glu Ala Ser Pro Thr Pro Ser
	420 425 430
	Ser His Pro Thr Pro Gly Ala Leu Glu Asp Pro Ala Thr Pro Pro Ala
	435 440 445
	Ser Glu Gly Glu Ser Pro Ser Ser Thr Pro Pro Glu Ala Ala Pro Gly
	450 455 460
15	Ala Gly Pro Thr
	465

(12) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

25	ATGTCAGGGA TGGAAAAACT TCAGAATGCT TCCTGGATCT ACCAGCAGAA ACTAGAACGAT	60
	CCATTCCAGA AACACCTGAA CAGCACCGAG GAGTATCTGG CCTTCCTCTG CGGACCTCGG	120
	CGCAGCCACT TCTTCCTCCC CGTGTCTGTG GTGTATGTGC CAATTTTGTT GGTGGGGGTC	180
	ATTGGCAATG TCCTGGTGTG CCTGGTGATT CTGCAGCACC AGGCTATGAA GACGCCACC	240
	AACTACTACC TCTTCAGCCT GGCGGTCTCT GACCTCCTGG TCCTGCTCCT TGGAATGCC	300
30	30 CTGGAGGTCT ATGAGATGTG CGCAGACTAC CCTTTCTTGT TCGGGCCCGT GGGCTGCTAC	360
	TTCAAGACGG CCCTCTTTGA GACCGTGTGC TTGCGCTCCA TCCTCAGCAT CACCAACGTC	420
	AGCGTGGAGC GCTACGTGGC CATCCTACAC CGGTTCCGCG CCAAACGTGCA GAGCACCCGG	480
	CGCCGGGCC CGCCGGGCC TCAGGATCCT CGGCATCGTC TGGGGCTTCTT CCGTGCTCTT CTCCCTGCC	540

- 15 -

AACACCCAGCA TCCATGGCAT CAAGTCCAC TACTTCCCCA ATGGGTCCCT GGTCCCAGGT 600
 TCGGCCACCT GTACGGTCAT CAAGCCCAGT TGGATCTACA ATTCATCAT CCAGGTCACC 660
 TCCTTCTTAT TCTACCTCCT CCCCATGACT GTCATCAGTG TCCTCTACTA CCTCATGGCA 720
 CTCAGACTAA AGAAAAGACAA ATCTCTTGAG GCAGATGAAG GGAATGCAAATATTCAAAGA 780
 5 CCCTGCAGAA AATCAGTCAA CAAGATGCTG TTTGTCTTGG TCTTAGTGTG TGCTATCTGT 840
 TGGGCCCCGT TCCACATTGA CCGACTCTTC TTCAGCTTTG TGGAGGAGTG GAGTGAATCC 900
 CTGGCTGCTG TGTCAACCT CGTCCATGTG GTGTCAGGTG TCTTCTTCTA CCTGAGCTCA 960
 GCTGTCAACC CCATTATCTA TAACCTACTG TCTCGCCGCT TCCAGGCAGC ATTCCAGAAC 1020
 GTGATCTCTT CTTTCCACAA ACAGTGGCAC TCCCAGCATG ACCCACAGTT GCCACCTGCC 1080
 10 CAGCGGAACA TCTTCCTGAC AGAATGCCAC TTTGTGGAGC TGACCGAAGA TATAAGTCCC 1140
 CAATTCCCAT GTCAAGTCATC CATGCACAAAC TCTCACCTCC CAACAGCCCT CTCTAGTGAA 1200
 CAGATGTCAA GAACAAACTA TCAAAGCTTC CACTTTAACAA AAACCTGA 1248

(13) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 415 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Ser Gly Met Glu Lys Leu Gln Asn Ala Ser Trp Ile Tyr Gln Gln			
1	5	10	15
Lys Leu Glu Asp Pro Phe Gln Lys His Leu Asn Ser Thr Glu Glu Tyr			
20	25	30	
Leu Ala Phe Leu Cys Gly Pro Arg Arg Ser His Phe Phe Leu Pro Val			
35	40	45	
Ser Val Val Tyr Val Pro Ile Phe Val Val Gly Val Ile Gly Asn Val			
50	55	60	
Leu Val Cys Leu Val Ile Leu Gln His Gln Ala Met Lys Thr Pro Thr			
65	70	75	80
Asn Tyr Tyr Leu Phe Ser Leu Ala Val Ser Asp Leu Leu Val Leu Leu			
85	90	95	

- 16 -

Leu Gly Met Pro Leu Glu Val Tyr Glu Met Trp Arg Asn Tyr Pro Phe
100 105 110

Leu Phe Gly Pro Val Gly Cys Tyr Phe Lys Thr Ala Leu Phe Glu Thr
115 120 125

5 Val Cys Phe Ala Ser Ile Leu Ser Ile Thr Thr Val Ser Val Glu Arg
130 135 140

Tyr Val Ala Ile Leu His Pro Phe Arg Ala Lys Leu Gln Ser Thr Arg
145 150 155 160

Arg Arg Ala Leu Arg Ile Leu Gly Ile Val Trp Gly Phe Ser Val Leu
10 165 170 175

Phe Ser Leu Pro Asn Thr Ser Ile His Gly Ile Lys Phe His Tyr Phe
180 185 190

Pro Asn Gly Ser Leu Val Pro Gly Ser Ala Thr Cys Thr Val Ile Lys
195 200 205

15 Pro Met Trp Ile Tyr Asn Phe Ile Ile Gln Val Thr Ser Phe Leu Phe
210 215 220

Tyr Leu Leu Pro Met Thr Val Ile Ser Val Leu Tyr Tyr Leu Met Ala
225 230 235 240

Leu Arg Leu Lys Lys Asp Lys Ser Leu Glu Ala Asp Glu Gly Asn Ala
20 245 250 255

Asn Ile Gln Arg Pro Cys Arg Lys Ser Val Asn Lys Met Leu Phe Val
260 265 270

Leu Val Leu Val Phe Ala Ile Cys Trp Ala Pro Phe His Ile Asp Arg
275 280 285

25 Leu Phe Phe Ser Phe Val Glu Glu Trp Ser Glu Ser Leu Ala Ala Val
290 295 300

Phe Asn Leu Val His Val Val Ser Gly Val Phe Phe Tyr Leu Ser Ser
305 310 315 320

Ala Val Asn Pro Ile Ile Tyr Asn Leu Leu Ser Arg Arg Phe Gln Ala
30 325 330 335

Ala Phe Gln Asn Val Ile Ser Ser Phe His Lys Gln Trp His Ser Gln
340 345 350

His Asp Pro Gln Leu Pro Pro Ala Gln Arg Asn Ile Phe Leu Thr Glu
355 360 365

35 Cys His Phe Val Glu Leu Thr Glu Asp Ile Gly Pro Gln Phe Pro Cys
370 375 380

Gln Ser Ser Met His Asn Ser His Leu Pro Thr Ala Leu Ser Ser Glu
385 390 395 400

- 17 -

Gln Met Ser Arg Thr Asn Tyr Gln Ser Phe His Phe Asn Lys Thr
405 410 415

(14) INFORMATION FOR SEQ ID NO:13:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1173 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATGCCAGATA CTAATAGCAC AATCAATTAA TCACTAAGCA CTCGTGTTAC TTTAGCATT 60
TTTATGCT TAGTAGCTTT TGCTATAATG CTAGGAAATG CTTGGTCAT TTTAGCTTT 120
GTGGTGGACA AAAACCTTAG ACATCGAAGT AGTTATTTT TTCTTAACCT GGCCATCTCT 180
GACTCTTTG TGGGTGTGAT CTCCATTCCCT TTGTACATCC CTCACACGCT GTTGAATGG 240
15 GATTTGGAA AGGAAATCTG TGTATTTGG CTCACTACTG ACTATCTGTT ATGTACAGCA 300
TCTGTATATA ACATTGTCCT CATCAGCTAT GATCGATACC TGTCAGTCTC AAATGCTGTG 360
TCTTATAGAA CTCAACATAC TGGGGTCTTG AAGATTGTTA CTCTGATGGT GGCGTTGG 420
GTGCTGGCCT TCTTAGTGAA TGGGCAATG ATTCTAGTTT CAGAGCTTTG GAAGGATGAA 480
GGTAGTGAAT GTGAACCTGG ATTTTTTCG GAATGGTACA TCCTTGCAT CACATCATT 540
20 TTGGAAATTG TGATCCCAGT CATCTTAGTC GCTTATTCA ACATGAATAT TTATTGGAGC 600
CTGTGGAAGC GTGATCATCT CAGTAGGTGC CAAAGCCATC CTGGACTGAC TGCTGTCTCT 660
TCCAACATCT GTGGACACTC ATTCAAGAGGT AGACTATCTT CAAGGAGATC TCTTCTGCA 720
TCGACAGAAG TTCCTGCATC CTTCAATTCA GAGAGACAGA GGAGAAAGAG TAGTCTCATG 780
TTTCTCAA GAACCAAGAT GAATAGCAAT ACAATTGCTT CCAAAATGGG TTCCTCTCC 840
25 CAATCAGATT CTGTAGCTCT TCACCAAAGG GAACATGTTG AACTGCTTAG AGCCAGGAGA 900
TTAGCCAGT CACTGGCCAT TCTCTTAGGG GTTTTGCTG TTTGCTGGC TCCATATTCT 960
CTGTTACAA TTGTCCTTTC ATTTTATTCC TCAGCAACAG GTCCTAAATC AGTTGGTAT1020
AGAATTGCAT TTTGGCTTCA GTGGTTCAAT TCCTTGTCA ATCCTCTTT GTATCCATTG1080
TGTCACAAAGC GCTTCAAAAA GGCTTCTTG AAAATATTGTATAAAAAA GCAACCTCTA1140
30 CCATCACAAAC ACAGTCGGTC AGTATCTCTCT TAA 1173

- 18 -

(15) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 390 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

- 19 -

	Gly His Ser Phe Arg Gly Arg Leu Ser Ser Arg Arg Ser Leu Ser Ala	
	225 230 235 240	
	Ser Thr Glu Val Pro Ala Ser Phe His Ser Glu Arg Gln Arg Arg Lys	
	245 250 255	
5	Ser Ser Leu Met Phe Ser Ser Arg Thr Lys Met Asn Ser Asn Thr Ile	
	260 265 270	
	Ala Ser Lys Met Gly Ser Phe Ser Gln Ser Asp Ser Val Ala Leu His	
	275 280 285	
10	Gln Arg Glu His Val Glu Leu Leu Arg Ala Arg Arg Leu Ala Lys Ser	
	290 295 300	
	Leu Ala Ile Leu Leu Gly Val Phe Ala Val Cys Trp Ala Pro Tyr Ser	
	305 310 315 320	
	Leu Phe Thr Ile Val Leu Ser Phe Tyr Ser Ser Ala Thr Gly Pro Lys	
	325 330 335	
15	Ser Val Trp Tyr Arg Ile Ala Phe Trp Leu Gln Trp Phe Asn Ser Phe	
	340 345 350	
	Val Asn Pro Leu Leu Tyr Pro Leu Cys His Lys Arg Phe Gln Lys Ala	
	355 360 365	
	Phe Leu Lys Ile Phe Cys Ile Lys Lys Gln Pro Leu Pro Ser Gln His	
20	370 375 380	
	Ser Arg Ser Val Ser Ser	
	385 390	

(16) INFORMATION FOR SEQ ID NO:15:

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1128 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

```

ATGGCGAACG CGAGCGAGCC GGGTGGCAGC GGCGGGCGCG AGGCAGGCCGC CCTGGGCCTC 60
AAGCTGGCCA CGCTCAGCCT GCTGCTGTGC GTGAGCCTAG CGGGCAACGT GCTGTTCGCG 120
CTGCTGATCG TGCGGGAGCG CAGCCTGCAC CGCGCCCCGT ACTACCTGCT GCTCGACCTG 180
TGCCTGGCCG ACGGGCTGCG CGCGCTCGCC TGCCTCCCGG CCGTCATGCT GGCGGGCGCG 240
35 CGTGCGGGCGG CGCGGGCGGG GGCGCCGCCG GGCGCGCTGG GCTGCAAGCT GCTCGCCTTC 300

```

- 20 -

CTGGCCGCGC TCTTCTGCTT CCACGCCGCC TTCTGCTGC TGGCGTGGG CGTCACCCGC 360
 TACCTGGCCA TCGCGCACCA CCGCTTCTAT GCAGAGCGCC TGGCCGGCTG CCCGTGCGCC 420
 GCCATGCTGG TGTGCGCCGC CTGGCGCTG CGCCTGGCCG CGGCCTTCCC GCCAGTGCTG 480
 GACGGCGGTG GCGACGACGA GGACGCGCCG TGCGCCCTGG AGCAGCGGCC CGACGGCGCC 540
 5 CCCGGCGCGC TGGGCTTCCT GCTGCTGCTG CCCGTGGTGG TGGGCGCCAC GCACCTCGTC 600
 TACCTCCGCC TGCTCTTCCT CATCCACGAC CGCCGCAAGA TGCAGGCCGC GCGCCTGGTG 660
 CCCGCCGTCA GCCACGACTG GACCTTCCAC GGCCCGGGCG CCACCGGCCA GGCGGCCGCC 720
 AACTGGACGG CGGGCTTCGG CGCGGGGCCG ACGCCGCCCG CGCTTGTGGG CATCCGGCCC 780
 GCAGGGCCGG GCGCGGGCGC CGCCGCCCTC CTCGTGCTGG AAGAACCAA GACGGAGAAG 840
 10 AGGCTGTGCA AGATGTTCTA CGCCGTCACG CTGCTCTTCC TGCTCCTCTG GGGGCCCTAC 900
 GTCGTGGCCA GCTACCTGCG GGTCTGGTG CGGCCCGGCG CGTCCTACCTG 960
 ACGGCCTCCG TGTGGCTGAC CTTCGCGCAG GCGGGCATCA ACCCCGTCGT GTGCTTCCTC 1020
 TTCAACAGGG AGCTGAGGGG CTGCTTCAGG GCCCAGTTCC CCTGCTGCCA GAGCCCCCGG 1080
 ACCACCCAGG CGACCCATCC CTGCGACCTG AAAGGCATTG GTTTATGA 1128

15 (17) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 375 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 20 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

	Met Ala Asn Ala Ser Glu Pro Gly Gly Ser Gly Gly Gly Glu Ala Ala	
	1 5 10 15	
25	Ala Leu Gly Leu Lys Leu Ala Thr Leu Ser Leu Leu Leu Cys Val Ser	
	20 25 30	
	Leu Ala Gly Asn Val Leu Phe Ala Leu Leu Ile Val Arg Glu Arg Ser	
	35 40 45	
30	Leu His Arg Ala Pro Tyr Tyr Leu Leu Leu Asp Leu Cys Leu Ala Asp	
	50 55 60	
	Gly Leu Arg Ala Leu Ala Cys Leu Pro Ala Val Met Leu Ala Ala Arg	
	65 70 75 80	

- 21 -

	Arg Ala Ala Ala Ala Ala Gly Ala Pro Pro Gly Ala Leu Gly Cys Lys			
	85	90	95	
	Leu Leu Ala Phe Leu Ala Ala Leu Phe Cys Phe His Ala Ala Phe Leu			
	100	105	110	
5	Leu Leu Gly Val Gly Val Thr Arg Tyr Leu Ala Ile Ala His His Arg			
	115	120	125	
	Phe Tyr Ala Glu Arg Leu Ala Gly Trp Pro Cys Ala Ala Met Leu Val			
	130	135	140	
10	Cys Ala Ala Trp Ala Leu Ala Leu Ala Ala Ala Phe Pro Pro Val Leu			
	145	150	155	160
	Asp Gly Gly Asp Asp Glu Asp Ala Pro Cys Ala Leu Glu Gln Arg			
	165	170	175	
	Pro Asp Gly Ala Pro Gly Ala Leu Gly Phe Leu Leu Leu Leu Ala Val			
	180	185	190	
15	Val Val Gly Ala Thr His Leu Val Tyr Leu Arg Leu Leu Phe Phe Ile			
	195	200	205	
	His Asp Arg Arg Lys Met Arg Pro Ala Arg Leu Val Pro Ala Val Ser			
	210	215	220	
20	His Asp Trp Thr Phe His Gly Pro Gly Ala Thr Gly Gln Ala Ala Ala			
	225	230	235	240
	Asn Trp Thr Ala Gly Phe Gly Arg Gly Pro Thr Pro Pro Ala Leu Val			
	245	250	255	
	Gly Ile Arg Pro Ala Gly Pro Gly Arg Gly Ala Arg Arg Leu Leu Val			
	260	265	270	
25	Leu Glu Glu Phe Lys Thr Glu Lys Arg Leu Cys Lys Met Phe Tyr Ala			
	275	280	285	
	Val Thr Leu Leu Phe Leu Leu Leu Trp Gly Pro Tyr Val Val Ala Ser			
	290	295	300	
30	Tyr Leu Arg Val Leu Val Arg Pro Gly Ala Val Pro Gln Ala Tyr Leu			
	305	310	315	320
	Thr Ala Ser Val Trp Leu Thr Phe Ala Gln Ala Gly Ile Asn Pro Val			
	325	330	335	
	Val Cys Phe Leu Phe Asn Arg Glu Leu Arg Asp Cys Phe Arg Ala Gln			
	340	345	350	
35	Phe Pro Cys Cys Gln Ser Pro Arg Thr Thr Gln Ala Thr His Pro Cys			
	355	360	365	
	Asp Leu Lys Gly Ile Gly Leu			

- 22 -

370

375

(18) INFORMATION FOR SEQ ID NO:17:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1002 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

10 ATGAAACACCA CAGTGATGCA AGGCTTCAAC AGATCTGAGC GGTGCCCGAG AGACACTCGG 60
 ATAGTACAGC TGGTATTCCC AGCCCTCTAC ACAGTGGTT TCTTGACCGG CATCCTGCTG 120
 AATACTTTGG CTCTGTGGGT GTTTGTTCAC ATCCCCAGCT CCTCCACCTT CATCATCTAC 180
 CTCAAAAACA CTTGGTGGC CGACTTGATA ATGACACTCA TGCTTCCTTT CAAAATCCTC 240
 TCTGACTCAC ACCTGGCACC CTGGCAGCTC AGAGCTTTG TGTGTCGTT TTCTTCGGTG 300
 15 ATATTTTATG AGACCAGTGA TGTGGGCATC GTGCTGTTAG GGCTCATAGC CTTTGACAGA 360
 TTCCTCAAGA TCATCAGACC TTTGAGAAAT ATTTTTCTAA AAAAACCTGT TTTTGCAAAA 420
 ACGGTCTCAA TCTTCATCTG GTTCTTTTG TTCTTCATCT CCCTGCCAAA TACGATCTTG 480
 AGCAACAAAGG AAGCAACACC ATCGTCTGTG AAAAGTGTG CTTCCTTAAA GGGCCTCTG 540
 GGGCTGAAAT GGCATCAAAT GGTAATAAC ATATGCCAGT TTATTTCTG GACTGTTTT 600
 20 ATCCTAATGC TTGTGTTTTA TGTGGTTATT GCAAAAAAAG TATATGATTG TTATAGAAAG 660
 TCCAAAAGTA AGGACAGAAA AAACAACAAA AAGCTGGAAG GCAAAGTATT TGTGTCGTTG 720
 GCTGTCTTCT TTGTGTTGTT TGCTCCATT CATTGTCGCA GAGTTCCATA TACTCACAGT 780
 CAAACCAACA ATAAGACTGA CTGTAGACTG CAAATCAAC TGTGTTATTGC TAAAGAAACA 840
 ACTCTCTTT TGGCAGCAAC TAACATTGT ATGGATCCCT TAATATACAT ATTCTTATGT 900
 25 AAAAATTCA CAGAAAAGCT ACCATGTATG CAAGGGAGAA AGACCACAGC ATCAAGCCAA 960
 GAAAATCATA GCAGTCAGAC AGACAAACATA ACCTTAGGCT GA 1002

(19) INFORMATION FOR SEQ ID NO:18:

30 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 333 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:

- 23 -

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

- 24 -

	Tyr	Thr	His	Ser	Gln	Thr	Asn	Asn	Lys	Thr	Asp	Cys	Arg	Leu	Gln	Asn
	260								265					270		
	Gln	Leu	Phe	Ile	Ala	Lys	Glu	Thr	Thr	Leu	Phe	Leu	Ala	Ala	Thr	Asn
	275						280						285			
5	Ile	Cys	Met	Asp	Pro	Leu	Ile	Tyr	Ile	Phe	Leu	Cys	Lys	Lys	Phe	Thr
	290						295						300			
	Glu	Lys	Leu	Pro	Cys	Met	Gln	Gly	Arg	Lys	Thr	Thr	Ala	Ser	Ser	Gln
	305						310			315			320			
10	Glu	Asn	His	Ser	Ser	Gln	Thr	Asp	Asn	Ile	Thr	Leu	Gly			
							325					330				

(20) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1122 base pairs
- (B) TYPE: nucleic acid
- 15 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

```

ATGGCCAACA CTACCGGAGA GCCTGAGGAG GTGAGCGCGC CTCTGTCCCC ACCGTCCGCA 60
20 TCAGCTTATG TGAAGCTGGT ACTGCTGGGA CTGATTATGT GCGTGAGCCT GGCGGGTAAC 120
GCCATCTTGT CCCTGCTGGT GCTCAAGGAG CGTGCCCTGC ACAAGGCTCC TTACTACTTC 180
CTGCTGGACC TGTGCCTGGC CGATGGCATA CGCTCTGCCG TCTGCTTCCC CTTTGTGCTG 240
GCTTCTGTGC GCCACGGCTC TTCATGGACC TTCAGTGCAC TCAGCTGCAA GATTGTGGCC 300
TTTATGGCCG TGCTCTTTTG CTTCCATGCG GCCTTCATGC TGTTCTGCAT CAGCGTCACC 360
25 CGCTACATGG CCATCGCCCA CCACCGCTTC TACGCCAACG GCATGACACT CTGGACATGC 420
GGGGCTGTCA TCTGCATGGC CTGGACCTG TCTGTGGCCA TGGCCTTCCC ACCTGTCTTT 480
GACGTGGGCA CCTACAAGTT TATTCGGGAG GAGGACCACT GCATCTTGA GCATCGCTAC 540
TTCAAGGCCA ATGACACGCT GGGCTTCATG CTTATGTTGG CTGTGCTCAT GGCAGCTACC 600
CATGCTGTCT ACGGCAAGCT GCTCCTCTTC GAGTATCGTC ACCGCAAGAT GAAGCCAGTG 660
30 CAGATGGTGC CAGGCCATCG CCAGAACTGG ACATTCCATG GTCCCCGGGC CACCGGCCAG 720
GCTGCTGCCA ACTGGATCGC CGGCTTTGGC CGTGGGCCA TGCCACCAAC CCTGCTGGGT 780
ATCCGGCAGA ATGGGCATGC AGCCAGCCGG CGGCTACTGG GCATGGACGA GGTCAAGGGT 840

```

- 25 -

GAAAAGCAGC TGGCCGCAT GTTCTACGCG ATCACACTGC TCTTTCTGCT CCTCTGGTCA 900
CCCTACATCG TGGCTTGCTA CTGGCGAGTG TTTGTGAAAG CCTGTGCTGT GCCCCACCGC 960
TACCTGGCCA CTGCTGTTTG GATGAGCTTC GCCCAGGCTG CCGTCAACCC AATTGTCTGC1020
TTCCTGCTCA ACAAGGACCT CAAGAAGTGC CTGACCACTC ACGCCCCCTG CTGGGGCAC1080
5 GGAGGTGCCCG CGGCTCCCAAG AGAACCCCTAC TGTGTCTATGT GA 1122

(21) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 373 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

- 26 -

	Glu His Arg Tyr Phe Lys Ala Asn Asp Thr Leu Gly Phe Met Leu Met			
	180	185	190	
	Leu Ala Val Leu Met Ala Ala Thr His Ala Val Tyr Gly Lys Leu Leu			
	195	200	205	
5	Leu Phe Glu Tyr Arg His Arg Lys Met Lys Pro Val Gln Met Val Pro			
	210	215	220	
	Ala Ile Ser Gln Asn Trp Thr Phe His Gly Pro Gly Ala Thr Gly Gln			
	225	230	235	240
10	Ala Ala Ala Asn Trp Ile Ala Gly Phe Gly Arg Gly Pro Met Pro Pro			
	245	250	255	
	Thr Leu Leu Gly Ile Arg Gln Asn Gly His Ala Ala Ser Arg Arg Leu			
	260	265	270	
	Leu Gly Met Asp Glu Val Lys Gly Glu Lys Gln Leu Gly Arg Met Phe			
	275	280	285	
15	Tyr Ala Ile Thr Leu Leu Phe Leu Leu Leu Trp Ser Pro Tyr Ile Val			
	290	295	300	
	Ala Cys Tyr Trp Arg Val Phe Val Lys Ala Cys Ala Val Pro His Arg			
	305	310	315	320
20	Tyr Leu Ala Thr Ala Val Trp Met Ser Phe Ala Gln Ala Ala Val Asn			
	325	330	335	
	Pro Ile Val Cys Phe Leu Leu Asn Lys Asp Leu Lys Lys Cys Leu Thr			
	340	345	350	
	Thr His Ala Pro Cys Trp Gly Thr Gly Gly Ala Pro Ala Pro Arg Glu			
	355	360	365	
25	Pro Tyr Cys Val Met			
	370			

(22) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1053 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

35 ATGGCTTG AACAGAACCA GTCAACAGAT TATTATTATG AGGAAAATGA AATGAATGGC 60
 ACTTATGACT ACAGTCATA TGAATTGATC TGTATCAAAG AAGATGTCAG AGAATTGCA 120

- 27 -

AAAGTTTCC TCCCTGTATT CCTCACAATA GCTTTCGTCA TTGGACTTGC AGGCAATTCC 180
ATGGTAGTGG CAATTATGC CTATTACAAG AAACAGAGAA CAAAACAGA TGTGTACATC 240
CTGAATTGG CTGTAGCAGA TTTACTCCCT CTATTCACTC TGCCCTTTG GGCTGTTAAT 300
GCAGTTCATG GGTGGGTTTT AGGGAAAATA ATGTGAAAA TAACTTCAGC CTTGTACACA 360
5 CTAAACTTG TCTCTGGAAT GCAGTTCTG GCTTGCATCA GCATAGACAG ATATGTGGCA 420
GTAACTAATG TCCCCAGCCA ATCAGGAGTG GGAAAACCAG GCTGGATCAT CTGTTCTGT 480
GTCTGGATGG CTGCCATCTT GCTGAGCATA CCCCAGCTGG TTTTTTATAC AGTAAATGAC 540
AATGCTAGGT GCATTCGGATTTCCCCGC TACCTAGGAA CATCAATGAA AGCATTTGATT 600
CAAATGCTAG AGATCTGCAT TGGATTGTA GTACCCCTTC TTATTATGGG GGTGTGCTAC 660
10 TTTATCACGG CAAGGACACT CATGAAGATG CCAAACATTA AAATATCTCG ACCCCTAAAA 720
GTTCTGCTCA CAGTCGTTAT AGTTTCTATT GTCACTCAAC TGCCATTATAA CATTGTCAAG 780
TTCTGCCGAG CCATAGACAT CATCTACTCC CTGATCACCA GCTGCAACAT GAGCAAACGC 840
ATGGACATCG CCATCCAAGT CACAGAAAGC ATTGCACTCT TTCACAGCTG CCTCAACCCA 900
ATCCTTTATG TTTTTATGGG AGCATCTTTC AAAAACTACG TTATGAAAAGT GGCCAAGAAA 960
15 TATGGGTCTT GGAGAAGACA GAGACAAAGT GTGGAGGAGT TTCCCTTTGA TTCTGAGGGT 1020
CCTACAGAGC CAACCAAGTAC TTTAGCATT TAA 1053

1053

(23) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 350 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23.

- 28 -

	50	55	60	
	Ile Tyr Ala Tyr Tyr Lys Lys Gln Arg Thr Lys Thr Asp Val Tyr Ile			
65	70	75	80	
5	Leu Asn Leu Ala Val Ala Asp Leu Leu Leu Phe Thr Leu Pro Phe			
	85	90	95	
	Trp Ala Val Asn Ala Val His Gly Trp Val Leu Gly Lys Ile Met Cys			
	100	105	110	
	Lys Ile Thr Ser Ala Leu Tyr Thr Leu Asn Phe Val Ser Gly Met Gln			
	115	120	125	
10	Phe Leu Ala Cys Ile Ser Ile Asp Arg Tyr Val Ala Val Thr Asn Val			
	130	135	140	
	Pro Ser Gln Ser Gly Val Gly Lys Pro Cys Trp Ile Ile Cys Phe Cys			
	145	150	155	160
15	Val Trp Met Ala Ala Ile Leu Leu Ser Ile Pro Gln Leu Val Phe Tyr			
	165	170	175	
	Thr Val Asn Asp Asn Ala Arg Cys Ile Pro Ile Phe Pro Arg Tyr Leu			
	180	185	190	
	Gly Thr Ser Met Lys Ala Leu Ile Gln Met Leu Glu Ile Cys Ile Gly			
	195	200	205	
20	Phe Val Val Pro Phe Leu Ile Met Gly Val Cys Tyr Phe Ile Thr Ala			
	210	215	220	
	Arg Thr Leu Met Lys Met Pro Asn Ile Lys Ile Ser Arg Pro Leu Lys			
	225	230	235	240
25	Val Leu Leu Thr Val Val Ile Val Phe Ile Val Thr Gln Leu Pro Tyr			
	245	250	255	
	Asn Ile Val Lys Phe Cys Arg Ala Ile Asp Ile Ile Tyr Ser Leu Ile			
	250	265	270	
	Thr Ser Cys Asn Met Ser Lys Arg Met Asp Ile Ala Ile Gln Val Thr			
	275	280	285	
30	Glu Ser Ile Ala Leu Phe His Ser Cys Leu Asn Pro Ile Leu Tyr Val			
	290	295	300	
	Phe Met Gly Ala Ser Phe Lys Asn Tyr Val Met Lys Val Ala Lys Lys			
	305	310	315	320
35	Tyr Gly Ser Trp Arg Arg Gln Arg Gln Ser Val Glu Glu Phe Pro Phe			
	325	330	335	
	Asp Ser Glu Gly Pro Thr Glu Pro Thr Ser Thr Phe Ser Ile			
	340	345	350	

- 29 -

(24) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1116 base pairs
- (B) TYPE: nucleic acid
- 5 (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGCCAGGAA ACGCCACCCC AGTGACCACC ACTGCCCGT GGGCCTCCCT GGGCCTCTCC 60
10 GCCAACACGT GCAACAAACGT GTCTTCGAA GAGAGCAGGA TAGTCCTGGT CGTGGTGTAC 120
AGCGCGGTGT GCACGCTGGG GGTGCCGGCC AACTGCCTGA CTGCGTGGCT GGCCTGCTG 180
CAGGTACTGC AGGGCAACGT GCTGGCCGTC TACCTGCTCT GCCTGGCACT CTGCGAACTG 240
CTGTACACAG GCACGCTGCC ACTCTGGGTC ATCTATATCC GCAACCAGCA CCGCTGGACC 300
CTAGGCCCTGC TGGCCTCGAA GGTGACCGCC TACATCTTCT TCTGCAACAT CTACGTCAGC 360
15 ATCCTCTTCC TGTGCTGCAT CTCCCTGCGAC CGCTTCGTGG CCGTGGTGTGTA CGCGCTGGAG 420
AGTCGGGGGCC GCCGCCGCCG GAGGACCGCC ATCCTCATCT CCGCCTGCAT CTTCATCCTC 480
GTCGGGATCG TTCACTACCC GGTGTTCCAG ACAGGAAGACA AGGAGACCTG CTTTGACATG 540
CTGCAGATGG ACAGCAGGAT TGCCGGGTAC TACTACGCCA GGTTCACCGT TGGCTTGCC 600
ATCCCTCTCT CCATCATCGC CTTCACCAAC CACCGGATT TCAGGAGCAT CAAGCAGAGC 660
20 ATGGGCTTAA GCGCTGCCA GAAGGCCAAG GTGAAGCACT CGGCCATCGC GGTGGTTGTC 720
ATCTTCTTAG TCTGCTTCGC CCCGTACAC CTGGTTCTCC TCGTCAAAGC CGCTGCCCTT 780
TCCTACTACA GAGGAGACAG GAACGCCATG TGCGGCTTGG AGGAAAGGCT GTACACAGCC 840
TCTGTGGTGT TTCTGTGCCT GTCCACGGTG AACGGCGTGG CTGACCCCCAT TATCTACGTG 900
CTGGCCACGG ACCATTCCCG CCAAGAAGTG TCCAGAAATCC ATAAGGGTG GAAAGAGTGG 960
25 TCCATGAAGA CAGACGTCAC CAGGCTCACC CACAGCAGGG ACACCGAGGA GCTGCAGTCG1020
CCCGTGGCCC TTGCAGACCA CTACACCTTC TCCAGGCCG TGCACCCACC AGGGTCACCA1080
TGCCCTGCAA AGAGGCTGAT TGAGGAGTCC TGCTGA 1116

(25) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

30 (A) LENGTH: 371 amino acids

- 30 -

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Pro Gly Asn Ala Thr Pro Val Thr Thr Thr Ala Pro Trp Ala Ser
1 5 10 15

Leu Gly Leu Ser Ala Lys Thr Cys Asn Asn Val Ser Phe Glu Glu Ser
20 25 30

10 Arg Ile Val Leu Val Val Val Tyr Ser Ala Val Cys Thr Leu Gly Val
35 40 45

Pro Ala Asn Cys Leu Thr Ala Trp Leu Ala Leu Gln Val Leu Gln
50 55 60

15 Gly Asn Val Leu Ala Val Tyr Leu Leu Cys Leu Ala Leu Cys Glu Leu
65 70 75 80

Leu Tyr Thr Gly Thr Leu Pro Leu Trp Val Ile Tyr Ile Arg Asn Gln
85 90 95

His Arg Trp Thr Leu Gly Leu Leu Ala Ser Lys Val Thr Ala Tyr Ile
100 105 110

20 Phe Phe Cys Asn Ile Tyr Val Ser Ile Leu Phe Leu Cys Cys Ile Ser
115 120 125

Cys Asp Arg Phe Val Ala Val Val Tyr Ala Leu Glu Ser Arg Gly Arg
130 135 140

25 Arg Arg Arg Arg Thr Ala Ile Leu Ile Ser Ala Cys Ile Phe Ile Leu
145 150 155 160

Val Gly Ile Val His Tyr Pro Val Phe Gln Thr Glu Asp Lys Glu Thr
165 170 175

Cys Phe Asp Met Leu Gln Met Asp Ser Arg Ile Ala Gly Tyr Tyr Tyr
180 185 190

30 Ala Arg Phe Thr Val Gly Phe Ala Ile Pro Leu Ser Ile Ile Ala Phe
195 200 205

Thr Asn His Arg Ile Phe Arg Ser Ile Lys Gln Ser Met Gly Leu Ser
210 215 220

35 Ala Ala Gln Lys Ala Lys Val Lys His Ser Ala Ile Ala Val Val Val
225 230 235 240

- 31 -

	Ile Phe Leu Val Cys Phe Ala Pro Tyr His Leu Val Leu Leu Val Lys			
	245	250	255	
	Ala Ala Ala Phe Ser Tyr Tyr Arg Gly Asp Arg Asn Ala Met Cys Gly			
	260	265	270	
5	Leu Glu Glu Arg Leu Tyr Thr Ala Ser Val Val Phe Leu Cys Leu Ser			
	275	280	285	
	Thr Val Asn Gly Val Ala Asp Pro Ile Ile Tyr Val Leu Ala Thr Asp			
	290	295	300	
10	His Ser Arg Gln Glu Val Ser Arg Ile His Lys Gly Trp Lys Glu Trp			
	305	310	315	320
	Ser Met Lys Thr Asp Val Thr Arg Leu Thr His Ser Arg Asp Thr Glu			
	325	330	335	
	Glu Leu Gln Ser Pro Val Ala Leu Ala Asp His Tyr Thr Phe Ser Arg			
	340	345	350	
15	Pro Val His Pro Pro Gly Ser Pro Cys Pro Ala Lys Arg Leu Ile Glu			
	355	360	365	
	Glu Ser Cys			
	370			

(26) INFORMATION FOR SEQ ID NO:25:

20	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1113 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

```

ATGGCGAACT ATAGCCATGC AGCTGACAAAC ATTTTGAAAG ATCTCTGCC TCTAACAGCC 60
TTTCTGAAAC TGACTTCCTT GGGTTTCATA ATAGGAGTCA GCGTGGTGGG CAACCTCCTG 120
ATCTCCATTT TGCTAGTGAA AGATAAGACC TTGCATAGAG CACCTTACTA CTTCCTGTTG 180
30 GATCTTGCT GTTCAGATAT CCTCAGATCT GCAATTGTT TCCCATTGT GTTCAACTCT 240
GTCAAAAATG GCTCTACCTG GACTTATGGG ACTCTGACTT GCAAAGTGAT TGCCTTTCTG 300
GGGGTTTGT CCTGTTCCA CACTGCTTTC ATGCTCTTCT GCATCAGTGT CACCAGATAC 360
TTAGCTATCG CCCATCACCG CTTCTATACA AAGAGGGCTGA CCTTTGGAC GTGTCTGGCT 420
GTGATCTGTA TGGTGTGGAC TCTGTCTGTG GCCATGGCAT TTCCCCGGT TTTAGACGTG 480

```

- 32 -

GGCACTTACT CATTCAATTAG GGAGGAAGAT CAATGCACCT TCCAACACCG CTCCCTCAGG 540
 GCTAATGATT CCTTAGGATT TATGCTGCTT CTTGCTCTCA TCCTCCTAGC CACACAGCTT 600
 GTCTACCTCA AGCTGATATT TTTCGTCCAC GATCGAAGAA AAATGAAGCC AGTCCAGTTT 660
 GTAGCAGCAG TCAGCCAGAA CTGGACTTTT CATGGTCCTG GAGCCAGTGG CCAGGCAGCT 720
 5 GCCAATTGGC TAGCAGGATT TGGAAAGGGT CCCACACCCAC CCACCTTGCT GGGCATCAGG 780
 CAAAATGCAA ACACCACAGG CAGAAGAAGG CTATTGGTCT TAGACGAGTT CAAAATGGAG 840
 AAAAGAACATCA GCAGAACATGTT CTATATAATG ACTTTCTGT TTCTAACCTT GTGGGGCCCC 900
 TACCTGGTGG CCTGTTATTG GAGAGTTTT GCAAGAGGGC CTGTAGTACC AGGGGGATTT 960
 CTAACAGCTG CTGTCTGGAT GAGTTTGCC CAAGCAGGAA TCAATCCCTT TGTCTGCATT1020
 10 TTCTCAAACA GGGAGCTGAG GCGCTGTTTC AGCACAAACCC TTCTTACTG CAGAAAATCC1080
 AGGTTACCAA GGGAACCTTA CTGTGTTATA TGA 1113

(27) INFORMATION FOR SEQ ID NO:26:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 370 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

20	Met Ala Asn Tyr Ser His Ala Ala Asp Asn Ile Leu Gln Asn Leu Ser			
	1	5	10	15
	Pro Leu Thr Ala Phe Leu Lys Leu Thr Ser Leu Gly Phe Ile Ile Gly			
	20	25	30	
25	Val Ser Val Val Gly Asn Leu Leu Ile Ser Ile Leu Leu Val Lys Asp			
	35	40	45	
	Lys Thr Leu His Arg Ala Pro Tyr Tyr Phe Leu Leu Asp Leu Cys Cys			
	50	55	60	
	Ser Asp Ile Leu Arg Ser Ala Ile Cys Phe Pro Phe Val Phe Asn Ser			
	65	70	75	80
30	Val Lys Asn Gly Ser Thr Trp Thr Tyr Gly Thr Leu Thr Cys Lys Val			
	85	90	95	
	Ile Ala Phe Leu Gly Val Leu Ser Cys Phe His Thr Ala Phe Met Leu			

- 33 -

	100	105	110
	Phe Cys Ile Ser Val Thr Arg Tyr Leu Ala Ile Ala His His Arg Phe		
	115	120	125
5	Tyr Thr Lys Arg Leu Thr Phe Trp Thr Cys Leu Ala Val Ile Cys Met		
	130	135	140
	Val Trp Thr Leu Ser Val Ala Met Ala Phe Pro Pro Val Leu Asp Val		
	145	150	155
	Gly Thr Tyr Ser Phe Ile Arg Glu Glu Asp Gln Cys Thr Phe Gln His		
	165	170	175
10	Arg Ser Phe Arg Ala Asn Asp Ser Leu Gly Phe Met Leu Leu Ala		
	180	185	190
	Leu Ile Leu Ala Thr Gln Leu Val Tyr Leu Lys Leu Ile Phe Phe		
	195	200	205
15	Val His Asp Arg Arg Lys Met Lys Pro Val Gln Phe Val Ala Ala Val		
	210	215	220
	Ser Gln Asn Trp Thr Phe His Gly Pro Gly Ala Ser Gly Gln Ala Ala		
	225	230	235
	Ala Asn Trp Leu Ala Gly Phe Gly Arg Gly Pro Thr Pro Pro Thr Leu		
	245	250	255
20	Leu Gly Ile Arg Gln Asn Ala Asn Thr Thr Gly Arg Arg Arg Leu Leu		
	260	265	270
	Val Leu Asp Glu Phe Lys Met Glu Lys Arg Ile Ser Arg Met Phe Tyr		
	275	280	285
25	Ile Met Thr Phe Leu Phe Leu Thr Leu Trp Gly Pro Tyr Leu Val Ala		
	290	295	300
	Cys Tyr Trp Arg Val Phe Ala Arg Gly Pro Val Val Pro Gly Gly Phe		
	305	310	315
	Leu Thr Ala Ala Val Trp Met Ser Phe Ala Gln Ala Gly Ile Asn Pro		
	325	330	335
30	Phe Val Cys Ile Phe Ser Asn Arg Glu Leu Arg Arg Cys Phe Ser Thr		
	340	345	350
	Thr Leu Leu Tyr Cys Arg Lys Ser Arg Leu Pro Arg Glu Pro Tyr Cys		
	355	360	365
35	Val Ile		
	370		

(28) INFORMATION FOR SEQ ID NO:27:

- 34 -

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1080 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

ATGCAGGTCC CGAACAGCAC CGGCCCGGAC AACGCGACGC TGCAGATGCT GCGGAACCCG 60
GCGATCGCGG TGGCCCTGCC CGTGGTGTAC TCGCTGGTGG CGGCGGTCAG CATCCCAGGC 120
10 AACCTCTTCT CTCTGTGGGT GCTGTGCCGG CGCATGGGGC CCAGATCCCC GTGGTCATC 180
TTCATGATCA ACCTGAGCGT CACGGACCTG ATGCTGGCCA GCGTGGTGCCTTCCAAATC 240
TACTACCATT GCAACCGCCA CCACTGGGTA TTCGGGGTGC TGCTTGCAA CGTGGTGACC 300
GTGGCCTTTT ACGCAAACAT GTATTCCAGC ATCCTCACCA TGACCTGTAT CAGCGTGGAG 360
CGCTTCCCTGG GGGTCCTGTA CCCGCTCAGC TCCAAGCGCT GGCGCCGCG TC GTTACGCG 420
15 GTGGCCCGGT GTGCAGGGAC CTGGCTGCTG CTCCCTGACCG CCCTGTGCCG GCTGGCGCGC 480
ACCGATCTCA CCTACCCGGT GCACGCCCTG GGCACTCATCA CCTGCTTCGA CGTCCTCAAG 540
TGGACGATGC TCCCCAGCGT GGCCATGTGG GCCGTGGTCC TCTTCACCAT CTTCATCCTG 600
CTGTTCCCTCA TCCCCTTCGT GATCACCGTG GCTTGTACA CGGCCACCAT CCTCAAGCTG 660
TTGCGCACGG AGGAGGGCGCA CGGCCGGGAG CAGCGGAGGC GCGCGGTGG CCTGGCCGCG 720
20 GTGGTCTTGC TGGCCTTTGT CACCTGCTTC GCCCCAAACA ACTTCGTGCT CCTGGCGCAC 780
ATCGTGAGCC GCCTGTTCTA CGGCAAGAGC TACTACCAAG TGTACAAGCT CACGCTGTGT 840
CTCAGCTGCC TCAACAACTG TCTGGACCCG TTGTTTATT ACTTTGCGTC CGGGAATTC 900
CAGCTGCGCC TGCGGAATA TTTGGGCTGC CGCCGGGTGC CCAGAGACAC CCTGGACACG 960
CGCCGCGAGA GCCTCTTCTC CGCCAGGACC ACGTCCGTGC GCTCCGAGGC CGGTGCGCAC 1020
25 CCTGAAGGGA TGGAGGGAGC CACCAGGCC CGCCTCCAGA GGCAGGAGAG TGTGTTCTGA 1080

(29) INFORMATION FOR SEQ ID NO:28:

30 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 359 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS:
(D) TOPOLOGY: not relevant

- 35 -

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met
1 5 10 15

5 Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu
20 25 30

Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu
35 40 45

10 Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn
50 55 60

Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile
65 70 75 80

Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys
85 90 95

15 Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu
100 105 110

Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro
115 120 125

20 Leu Ser Ser Lys Arg Trp Arg Arg Arg Tyr Ala Val Ala Ala Cys
130 135 140

Ala Gly Thr Trp Leu Leu Leu Thr Ala Leu Cys Pro Leu Ala Arg
145 150 155 160

Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe
165 170 175

25 Asp Val Leu Lys Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val
180 185 190

Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu Ile Pro Phe Val Ile
195 200 205

30 Thr Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu
210 215 220

Glu Ala His Gly Arg Glu Gln Arg Arg Ala Val Gly Leu Ala Ala
225 230 235 240

Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val
245 250 255

35 Leu Leu Ala His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr
260 265 270

- 36 -

His Val Tyr Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu
275 280 285

Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu
290 295 300

5 Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr
305 310 315 320

Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu
325 330 335

10 Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu
340 345 350

Gln Arg Gln Glu Ser Val Phe
355

(30) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 1503 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ATGGAGCGTC CCTGGGAGGA CAGGCCAGGC CGGGAGGGGG CAGCTGAGGGG CTCGCCTGTG 60

CCAGTCGCCG CCGGGGCGCG CTCCGGTGCC GCGGGCAGGTG GCACAGGCTG GCAGCCATGG 120

GCTGAGTGCC CGGGACCCAA GGGGAGGGGG CAACTGCTGG CGACCGCCGG CCCTTTGCCT 180

CGCTGGCCCCG CCCCCCTCGCC TGCCAGCTCC AGCCCCGCC CGGGAGCGGC GTCCGCTCAC 240

25 TCGGTTCAAG GCAGCGCAGAC TGCGGGTGGC GCACGACCAG GGCGCAGACC TTGGGGCGCG 300

CGGCCATGG AGTCGGGGCT GCTGCGGCCG GCGCCGGTGA GCGAGGTCA CGTCCTGCAT 360

TACAACTACA CGGGCAAGCT CCGCGGTGCG AGCTTACCAAGC CGGGTGCCGG CCTGCGCGCC 420

GACGCCGTGG TGTGCCTGGC GGTGTGCGCC TTCATCGTGC TAGAGAACT AGCCGTGTTG 480

TTGGTGTCTCG GACGCCACCC GCGCTTCCAC GCTCCCATGT TCCCTGCTCCT GGGCAGCCTC 540

ACGGTGTCTGG ATCTGCTGGC AGGCGCCGCC TACGCCGCCA ACATCCTACT GTCGGGGCCG 600

CTCACGCTGA AACTGTCCCC CGCGCTCTGG TTTCGCACGGG AGGGAGGGCGT CTTCGTGGCA 660

CTCACTGCGT CCGTGCTGAG CCTCCTGGCC ATCGCGCTGG AGGGCAGCCT CACCATGGCG 720

- 37 -

CGCAGGGGGC CGCGCCCGT CTCCAGTCGG GGGCGCACGC TGGCGATGGC AGCCGCGGCC 780
 TGGGGCGTGT CGCTGCTCCT CGGGCTCCTG CCAGCGCTGG GCTGGAATTG CCTGGGTCGC 840
 CTGGACGCTT GCTCCACTGT CTTGCCGCTC TACGCCAAGG CCTACGTGCT CTTCTGCGTG 900
 CTCGCCCTCG TGGGCATCCT GGCGCGCATC TGTGCACTCT ACGCGCGCAT CTACTGCCAG 960
 5 GTACCGGCCA ACGCGCGCG CCTGCCGGCA CGGCCCAGGA CTGCGGGGAC CACCTCGACC1020
 CGGGCGCGTC GCAAGCCCG CTCCTGGCC TTGCTGCGCA CGCTCAGCGT GGTGCTCCTG1080
 GCCTTGTGG CATGTTGGGG CCCCCCTCTTC CTGCTGCTGT TGCTCGACGT GGCCTGCCCG1140
 GCGCGCACCT GTCCGTACT CCTGCAGGCC GATCCCTTCC TGGGACTGGC CATGCCAAC1200
 TCACTTCTGA ACCCCATCAT CTACACGCTC ACCAACCGCG ACCTGCGCCA CGCGCTCCTG1260
 10 CGCCTGGTCT GCTGCGGACG CCACTCCTGC GGCAGAGACC CGAGTGGCTC CCAGCAGTCG1320
 GCGAGCGCGG CTGAGGCTTC CGGGGGCCTG CGCCGCTGCC TGCCCCCGGG CCTTGATGGG1380
 AGCTTCAGCG GCTCGGAGCG CTCATCGCCC CAGCGCGACG GGCTGGACAC CAGCGGCTCC1440
 ACAGGCAGCC CCGGTGCACC CACAGCCGCC CGGACTCTGG TATCAGAACCG GGCTGCAGAC1500
 TGA 1503

15 (31) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 500 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Met Glu Arg Pro Trp Glu Asp Ser Pro Gly Pro Glu Gly Ala Ala Glu
1 5 10 15

25 Gly Ser Pro Val Pro Val Ala Ala Gly Ala Arg Ser Gly Ala Ala Ala
20 25 30

Ser Gly Thr Gly Trp Gln Pro Trp Ala Glu Cys Pro Gly Pro Lys Gly
35 40 45

30 Arg Gly Gln Leu Leu Ala Thr Ala Gly Pro Leu Arg Arg Trp Pro Ala
50 55 60

Pro	Ser	Pro	Ala	Ser	Ser	Ser	Pro	Ala	Pro	Gly	Ala	Ala	Ser	Ala	His
65				70					75						80

- 38 -

Ser Val Gln Gly Ser Ala Thr Ala Gly Gly Ala Arg Pro Gly Arg Arg
 85 90 95

 Pro Trp Gly Ala Arg Pro Met Glu Ser Gly Leu Leu Arg Pro Ala Pro
 100 105 110

 5 Val Ser Glu Val Ile Val Leu His Tyr Asn Tyr Thr Gly Lys Leu Arg
 115 120 125

 Gly Ala Ser Tyr Gln Pro Gly Ala Gly Leu Arg Ala Asp Ala Val Val
 130 135 140

 10 Cys Leu Ala Val Cys Ala Phe Ile Val Leu Glu Asn Leu Ala Val Leu
 145 150 155 160

 Leu Val Leu Gly Arg His Pro Arg Phe His Ala Pro Met Phe Leu Leu
 165 170 175

 Leu Gly Ser Leu Thr Leu Ser Asp Leu Leu Ala Gly Ala Ala Tyr Ala
 180 185 190

 15 Ala Asn Ile Leu Leu Ser Gly Pro Leu Thr Leu Lys Leu Ser Pro Ala
 195 200 205

 Leu Trp Phe Ala Arg Glu Gly Gly Val Phe Val Ala Leu Thr Ala Ser
 210 215 220

 20 Val Leu Ser Leu Leu Ala Ile Ala Leu Glu Arg Ser Leu Thr Met Ala
 225 230 235 240

 Arg Arg Gly Pro Ala Pro Val Ser Ser Arg Gly Arg Thr Leu Ala Met
 245 250 255

 Ala Ala Ala Ala Trp Gly Val Ser Leu Leu Leu Gly Leu Leu Pro Ala
 260 265 270

 25 Leu Gly Trp Asn Cys Leu Gly Arg Leu Asp Ala Cys Ser Thr Val Leu
 275 280 285

 Pro Leu Tyr Ala Lys Ala Tyr Val Leu Phe Cys Val Leu Ala Phe Val
 290 295 300

 30 Gly Ile Leu Ala Ala Ile Cys Ala Leu Tyr Ala Arg Ile Tyr Cys Gln
 305 310 315 320

 Val Arg Ala Asn Ala Arg Arg Leu Pro Ala Arg Pro Gly Thr Ala Gly
 325 330 335

 Thr Thr Ser Thr Arg Ala Arg Arg Lys Pro Arg Ser Leu Ala Leu Leu
 340 345 350

 35 Arg Thr Leu Ser Val Val Leu Leu Ala Phe Val Ala Cys Trp Gly Pro
 355 360 365

 Leu Phe Leu Leu Leu Leu Asp Val Ala Cys Pro Ala Arg Thr Cys

- 39 -

	370	375	380
	Pro Val Leu Leu Gln Ala Asp Pro Phe Leu Gly Leu Ala Met Ala Asn		
385	390	395	400
	Ser Leu Leu Asn Pro Ile Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg		
5	405	410	415
	His Ala Leu Leu Arg Leu Val Cys Cys Gly Arg His Ser Cys Gly Arg		
	420	425	430
	Asp Pro Ser Gly Ser Gln Gln Ser Ala Ser Ala Ala Glu Ala Ser Gly		
	435	440	445
10	Gly Leu Arg Arg Cys Leu Pro Pro Gly Leu Asp Gly Ser Phe Ser Gly		
	450	455	460
	Ser Glu Arg Ser Ser Pro Gln Arg Asp Gly Leu Asp Thr Ser Gly Ser		
	465	470	475
	480		
15	Thr Gly Ser Pro Gly Ala Pro Thr Ala Ala Arg Thr Leu Val Ser Glu		
	485	490	495
	Pro Ala Ala Asp		
	500		

(32) INFORMATION FOR SEQ ID NO:31:

20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1029 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

```

ATGCAAGCCG TCGACAATCT CACCTCTGCG CCTGGGAACA CCAGTCTGTG CACCAGAGAC 60
TACAAAATCA CCCAGGTCT CTTCCCCTG CTCTACACTG TCCTGTTTT TGTTGGACTT 120
ATCACAAATG GCCTGGCGAT GAGGATTTC TTTCAAATCC GGAGTAAATC AAACTTTATT 180
ATTTTTCTTA AGAACACAGT CATTCTGAT CTTCTCATGA TTCTGACTTT TCCATTCAAA 240
30 ATTCTTAGTG ATGCCAAACT GGGAACAGGA CCACTGAGAA CTTTTGTGTG TCAAGTTACC 300
TCCGTATAT TTTATTCAC AATGTATATC AGTATTCAT TCCTGGACT GATAACTATC 360
GATCGCTACC AGAACACCAC CAGGCCATT AAAACATCCA ACCCCAAAAA TCTCTTGGGG 420
GCTAAGATTC TCTCTGTTGT CATCTGGCA TTCATGTTCT TACTCTCTTT GCCTAACATG 480

```

- 40 -

ATTCTGACCA ACAGGCAGCC GAGAGACAAG AATGTGAAGA AATGCTCTT CCTTAAATCA 540
 GAGTTCGGTC TAGTCTGGCA TGAAATAGTA AATTACATCT GTCAAGTCAT TTTCTGGATT 600
 AATTTCTTAA TTGTTATTGT ATGTTATACA CTCATTACAA AAGAACTGTA CCGGTACAC 660
 GTAAGAACGA GGGGTGAGG TAAAGTCCCC AGGAAAAAGG TGAACGTCAA AGTTTTCATT 720
 5 ATCATTGCTG TATTCTTAT TTGTTTGTT CCTTCCATT TTGCCGAAT TCCTTACACC 780
 CTGAGCCAAA CCCGGGATGT CTTTGACTGC ACTGCTGAAA ATACTCTGTT CTATGTGAAA 840
 GAGAGCACTC TGTGGTTAAC TTCCTTAAAT GCATGCCTGG ATCCGTTCAT CTATTTTC 900
 CTTTGCAAGT CCTTCAGAAA TTCCTTGATA AGTATGCTGA AGTGCCTCAA TTCTGCAACA 960
 TCTCTGTCCC AGGACAATAG GAAAAAAGAA CAGGATGGTG GTGACCCAAA TGAAGAGACT 1020
 10 CCAATGTAA 1029

(33) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 342 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

20	Met Gln Ala Val Asp Asn Leu Thr Ser Ala Pro Gly Asn Thr Ser Leu			
	1	5	10	15
	Cys Thr Arg Asp Tyr Lys Ile Thr Gln Val Leu Phe Pro Leu Leu Tyr			
	20	25	30	
	Thr Val Leu Phe Phe Val Gly Leu Ile Thr Asn Gly Leu Ala Met Arg			
	35	40	45	
25	Ile Phe Phe Gln Ile Arg Ser Lys Ser Asn Phe Ile Ile Phe Leu Lys			
	50	55	60	
	Asn Thr Val Ile Ser Asp Leu Leu Met Ile Leu Thr Phe Pro Phe Lys			
	65	70	75	80
30	Ile Leu Ser Asp Ala Lys Leu Gly Thr Gly Pro Leu Arg Thr Phe Val			
	85	90	95	
	Cys Gln Val Thr Ser Val Ile Phe Tyr Phe Thr Met Tyr Ile Ser Ile			
	100	105	110	
	Ser Phe Leu Gly Leu Ile Thr Ile Asp Arg Tyr Gln Lys Thr Thr Arg			

- 41 -

	115	120	125
	Pro Phe Lys Thr Ser Asn Pro Lys Asn Leu Leu Gly Ala Lys Ile Leu		
	130	135	140
	Ser Val Val Ile Trp Ala Phe Met Phe Leu Leu Ser Leu Pro Asn Met		
5	145	150	155
	Ile Leu Thr Asn Arg Gln Pro Arg Asp Lys Asn Val Lys Lys Cys Ser		
	165	170	175
	Phe Leu Lys Ser Glu Phe Gly Leu Val Trp His Glu Ile Val Asn Tyr		
	180	185	190
10	Ile Cys Gln Val Ile Phe Trp Ile Asn Phe Leu Ile Val Ile Val Cys		
	195	200	205
	Tyr Thr Leu Ile Thr Lys Glu Leu Tyr Arg Ser Tyr Val Arg Thr Arg		
	210	215	220
15	Gly Val Gly Lys Val Pro Arg Lys Lys Val Asn Val Lys Val Phe Ile		
	225	230	235
	Ile Ile Ala Val Phe Phe Ile Cys Phe Val Pro Phe His Phe Ala Arg		
	245	250	255
	Ile Pro Tyr Thr Leu Ser Gln Thr Arg Asp Val Phe Asp Cys Thr Ala		
	260	265	270
20	Glu Asn Thr Leu Phe Tyr Val Lys Glu Ser Thr Leu Trp Leu Thr Ser		
	275	280	285
	Leu Asn Ala Cys Leu Asp Pro Phe Ile Tyr Phe Phe Leu Cys Lys Ser		
	290	295	300
25	Phe Arg Asn Ser Leu Ile Ser Met Leu Lys Cys Pro Asn Ser Ala Thr		
	305	310	315
	Ser Leu Ser Gln Asp Asn Arg Lys Lys Glu Gln Asp Gly Gly Asp Pro		
	325	330	335
	Asn Glu Glu Thr Pro Met		
	340		

30 (34) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1077 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

35 (ii) MOLECULE TYPE: DNA (genomic)

- 42 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

ATGTCGGTCT GCTACCGTCC CCCAGGGAAC GAGACACTGC TGAGCTGGAA GACTTCGCGG 60
 GCCACAGGCA CAGCCTTCCT GCTGCTGGCG GCGCTGCTGG GGCTGCCTGG CAACGGCTTC 120
 GTGGTGTGGA GCTTGGCGGG CTGGCGGCCT GCACGGGGGC GACCCTGGC GGCCACGCTT 180
 5 GTGCTGCACC TGGCGCTGGC CGACGGGGCG GTGCTGCTGC TCACGCCGCT CTTTGTGGCC 240
 TTCCTGACCC GGCAGGCCTG GCCGCTGGGC CAGGGGGCT GCAAGGGGT GTACTACGTG 300
 TGCGCGCTCA GCATGTACGC CAGCGTGCTG CTCACCGGCC TGCTCAGCCT GCAGCGCTGC 360
 CTCGCAGTCA CCCGCCCCCTT CCTGGCGCCT CGGCTGCGCA GCCCAGGCCCT GECGGCGCGC 420
 CTGCTGCTGG CGGTCTGGCT GGCGGCCCTG TTGCTCGCCG TCCCAGGCCG CGTCTACCGC 480
 10 CACCTGTGGA GGGACCGCGT ATGCCAGCTG TGCCACCCGT CGCCGGTCCA CGCCGGCGCC 540
 CACCTGAGCC TGGAGACTCT GACCGCTTTC GTGCTTCCTT TCGGGCTGAT GCTCGGCTGC 600
 TACAGCGTGA CGCTGGCACG GCTGCGGGGC GCCCAGCTGGG GCTCCGGGCG GCACGGGGCG 660
 CGGGTGGGCC GGCTGGTGAG CGCCATCGTG CTTGCCTTCG GCTTGCTCTG GGCCCCCTAC 720
 CACGCAGTCA ACCTTCTGCA GGCGCTCGCA GCGCTGGCTC CACCGGAAGG GGCCTTGGCG 780
 15 AAGCTGGCG GAGCCGGCCA GGCAGCGCGA GCGGGAACTA CGGCCCTGGC CTTCTTCAGT 840
 TCTAGCGTCA ACCCGGTGCT CTACGTCTTC ACCGCTGGAG ATCTGCTGCC CGGGCAGGT 900
 CCCCCCTTCC TCACCGGGCT CTTCGAAGGC TCTGGGGAGG CCCGAGGGGG CGGGCGCTCT 960
 AGGGAAGGGA CCATGGAGCT CCGAACTACC CCTCAGCTGA AAGTGGTGGG GCAGGGCCGC 1020
 GGCAATGGAG ACCCGGGGGG TGGGATGGAG AAGGACGGTC CGGAATGGGA CCTTTGA 1077

20 (35) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 358 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant

25 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Met	Ser	Val	Cys	Tyr	Arg	Pro	Pro	Gly	Asn	Glu	Thr	Leu	Leu	Ser	Trp
1															15

30 Lys Thr Ser Arg Ala Thr Gly Thr Ala Phe Leu Leu Ala Ala Leu

- 43 -

	20	25	30
	Leu Gly Leu Pro Gly Asn Gly Phe Val Val Trp Ser Leu Ala Gly Trp		
	35	40	45
5	Arg Pro Ala Arg Gly Arg Pro Leu Ala Ala Thr Leu Val Leu His Leu		
	50	55	60
	Ala Leu Ala Asp Gly Ala Val Leu Leu Leu Thr Pro Leu Phe Val Ala		
	65	70	75
	Phe Leu Thr Arg Gln Ala Trp Pro Leu Gly Gln Ala Gly Cys Lys Ala		
	85	90	95
10	Val Tyr Tyr Val Cys Ala Leu Ser Met Tyr Ala Ser Val Leu Leu Thr		
	100	105	110
	Gly Leu Leu Ser Leu Gln Arg Cys Leu Ala Val Thr Arg Pro Phe Leu		
	115	120	125
15	Ala Pro Arg Leu Arg Ser Pro Ala Leu Ala Arg Arg Leu Leu Leu Ala		
	130	135	140
	Val Trp Leu Ala Ala Leu Leu Leu Ala Val Pro Ala Ala Val Tyr Arg		
	145	150	155
	160		
	His Leu Trp Arg Asp Arg Val Cys Gln Leu Cys His Pro Ser Pro Val		
	165	170	175
20	His Ala Ala Ala His Leu Ser Leu Glu Thr Leu Thr Ala Phe Val Leu		
	180	185	190
	Pro Phe Gly Leu Met Leu Gly Cys Tyr Ser Val Thr Leu Ala Arg Leu		
	195	200	205
25	Arg Gly Ala Arg Trp Gly Ser Gly Arg His Gly Ala Arg Val Gly Arg		
	210	215	220
	Leu Val Ser Ala Ile Val Leu Ala Phe Gly Leu Leu Trp Ala Pro Tyr		
	225	230	235
	240		
	His Ala Val Asn Leu Leu Gln Ala Val Ala Ala Leu Ala Pro Pro Glu		
	245	250	255
30	Gly Ala Leu Ala Lys Leu Gly Gly Ala Gly Gln Ala Ala Arg Ala Gly		
	260	265	270
	Thr Thr Ala Leu Ala Phe Phe Ser Ser Ser Val Asn Pro Val Leu Tyr		
	275	280	285
35	Val Phe Thr Ala Gly Asp Leu Leu Pro Arg Ala Gly Pro Arg Phe Leu		
	290	295	300
	Thr Arg Leu Phe Glu Gly Ser Gly Glu Ala Arg Gly Gly Gly Arg Ser		
	305	310	315
	320		

- 44 -

Arg Glu Gly Thr Met Glu Leu Arg Thr Thr Pro Gln Leu Lys Val Val
325 330 335

Gly Gln Gly Arg Gly Asn Gly Asp Pro Gly Gly Met Glu Lys Asp
340 345 350

5 Gly Pro Glu Trp Asp Leu
355

(36) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- 10 (A) LENGTH: 1005 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

15 ATGCTGGGGA TCATGGCATG GAATGCACT TGCAAAA ACT GGCTGGCAGC AGAGGCTGCC 60
CTGGAAAAGT ACTACCTTTC CATTTTTAT GGGATTGAGT TCGTTGTGGG AGTCCTTGGA 120
AATACCATTG TTGTTTACGG CTACATCTTC TCTCTGAAGA ACTGGAACAG CAGTAATATT 180
TATCTCTTTA ACCTCTCTGT CTCTGACTTA GCTTTCTGT GCACCCCTCC CATGCTGATA 240
AGGAGTTATG CCAATGGAAA CTGGATATAT GGAGACGTGC TCTGCATAAG CAACCGATAT 300
20 GTGCTTCATG CCAACCTCTA TACCAGCATT CTCTTTCTCA CTTTTATCG CATAGATCGA 360
TACTTGATAA TTAAGTATCC TTTCCGAGAA CACCTCTGC AAAAGAAAGA GTTGCTATT 420
TTAACCTCCT TG GCCATTG GGTGTTAGTA ACCTTAGAGT TACTACCCAT ACTTCCCCT 480
ATAAAATCCTG TTATAACTGA CAATGGCACC ACCTGTAATG ATTTTGCAAG TTCTGGAGAC 540
CCCCAACTACA ACCTCATTG CAGCATGTGT CTAACACTGT TGGGGTTCT TATTCCCTTT 600
25 TTTGTGATGT GTTCTTTTA TTACAAGATT GCTCTCTTC TAAAGCAGAG GAATAGGCAG 660
GTTGCTACTG CTCTGCCCT TGAAAAGCCT CTCAACTTGG TCATCATGGC AGTGGTAATC 720
TTCTCTGTGC TTTTACACC CTATCACGTC ATGCGGAATG TGAGGATCGC TTCACGCCCTG 780
GGGAGTTGGA AGCAGTATCA GTGCACTCAG GTCGTCACTCA ACTCCTTTA CATTGTGACA 840
CGGCCCTTGG CCTTCTGAA CAGTGTGATC AACCCGTCT TCTATTTCT TTTGGGAGAT 900
30 CACTTCAGGG ACATGCTGAT GAATCAACTG AGACACAACT TCAAATCCCT TACATCCTT 960
AGCAGATGGG CTCATGAACCTACTTTCA TTCAGAGAAA AGTGA 1005

- 45 -

(37) INFORMATION FOR SEQ ID NO:36:

5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 334 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

10	Met Leu Gly Ile Met Ala Trp Asn Ala Thr Cys Lys Asn Trp Leu Ala	1	5	10	15
	Ala Glu Ala Ala Leu Glu Lys Tyr Tyr Leu Ser Ile Phe Tyr Gly Ile			25	30
	Glu Phe Val Val Gly Val Leu Gly Asn Thr Ile Val Val Tyr Gly Tyr	35	40	45	
15	Ile Phe Ser Leu Lys Asn Trp Asn Ser Ser Asn Ile Tyr Leu Phe Asn	50	55	60	
	Leu Ser Val Ser Asp Leu Ala Phe Leu Cys Thr Leu Pro Met Leu Ile	65	70	75	80
20	Arg Ser Tyr Ala Asn Gly Asn Trp Ile Tyr Gly Asp Val Leu Cys Ile	85	90	95	
	Ser Asn Arg Tyr Val Leu His Ala Asn Leu Tyr Thr Ser Ile Leu Phe	100	105	110	
	Leu Thr Phe Ile Ser Ile Asp Arg Tyr Leu Ile Ile Lys Tyr Pro Phe	115	120	125	
25	Arg Glu His Leu Leu Gln Lys Lys Glu Phe Ala Ile Leu Ile Ser Leu	130	135	140	
	Ala Ile Trp Val Leu Val Thr Leu Glu Leu Leu Pro Ile Leu Pro Leu	145	150	155	160
30	Ile Asn Pro Val Ile Thr Asp Asn Gly Thr Thr Cys Asn Asp Phe Ala	165	170	175	
	Ser Ser Gly Asp Pro Asn Tyr Asn Leu Ile Tyr Ser Met Cys Leu Thr	180	185	190	
	Leu Leu Gly Phe Leu Ile Pro Leu Phe Val Met Cys Phe Phe Tyr Tyr	195	200	205	
35	Lys Ile Ala Leu Phe Leu Lys Gln Arg Asn Arg Gln Val Ala Thr Ala	210	215	220	

- 46 -

	Leu Pro Leu Glu Lys Pro Leu Asn Leu Val Ile Met Ala Val Val Ile			
	225	230	235	240
	Phe Ser Val Leu Phe Thr Pro Tyr His Val Met Arg Asn Val Arg Ile			
	245	250	255	
5	Ala Ser Arg Leu Gly Ser Trp Lys Gln Tyr Gln Cys Thr Gln Val Val			
	260	265	270	
	Ile Asn Ser Phe Tyr Ile Val Thr Arg Pro Leu Ala Phe Leu Asn Ser			
	275	280	285	
10	Val Ile Asn Pro Val Phe Tyr Phe Leu Leu Gly Asp His Phe Arg Asp			
	290	295	300	
	Met Leu Met Asn Gln Leu Arg His Asn Phe Lys Ser Leu Thr Ser Phe			
	305	310	315	320
	Ser Arg Trp Ala His Glu Leu Leu Leu Ser Phe Arg Glu Lys			
	325	330		

15 (38) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1296 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

```

ATGCAGGCGC TTAACATTAC CCCGGAGCAG TTCTCTCGGC TGCTGCGGGA CCACAACCTG 60
ACGCAGGGAGC AGTTCATCGC TCTGTACCGG CTGCGACCGC TCGTCTACAC CCCAGAGCTG 120
25 CCGGGACGCG CCAAGCTGGC CCTCGTGCTC ACCGGCGTGC TCATCTTCGC CCTGGCGCTC 180
TTTGGCAATG CTCTGGTGTT CTACGTGGTG ACCCGCAGCA AGGCCATGCG CACCGTCACC 240
AACATCTTA TCTGCTCCTT GGCGCTCAGT GACCTGCTCA TCACCTTCTT CTGCATTCCC 300
GTCACCATGTC TCCAGAACAT TTCCGACAAC TGGCTGGGG GTGCTTCAT TTGCAAGATG 360
GTGCCATTG TCCAGTCTAC CGCTGTTGTG ACAGAAATGC TCACTATGAC CTGCATTGCT 420
30 GTGGAAAGGC ACCAGGGACT TGTGCATCCT TTTAAAATGA AGTGGCAATA CACCAACCGA 480
AGGGCTTTCA CAATGCTAGG TGTGGTCTGG CTGGTGGCAG TCATCGTAGG ATCACCCATG 540
TGGCACGTGC AACAACTTGA GATCAAATAT GACTTCCTAT ATGAAAAGGA ACACATCTGC 600
TGCTTAGAAG AGTGGACCAG CCCTGTGCAC CAGAAGATCT ACACCACCTT CATCCTTGTC 660

```

- 47 -

ATCCTCTTCC TCCTGCCTCT TATGGTGATG CTTATTCTGT ACAGTAAAAT TGTTATGAA 720
 CTTGGATAA AGAAAAGAGT TGGGGATGGT TCAGTGCTTC GAACTATTCA TGAAAAGAA 780
 ATGTCCAAA TAGCCAGGAA GAAGAACGA GCTGTCATTA TGATGGTGCAG AGTGGTGGCT 840
 CTCTTGCTG TGTGCTGGC ACCATTCCAT GTTGTCCATA TGATGATTGA ATACAGTAAT 900
 5 TTTGAAAAGG AATATGATGA TGTACAATC AAGATGATTT TTGCTATCGT GCAAATTATT 960
 GGATTTCCA ACTCCATCTG TAATCCCATT GTCTATGCAT TTATGAATGA AAACCTCAAA1020
 AAAATGTTT TGTCTGCAGT TTGTTATTGC ATAGTAAATA AAACCTTCTC TCCAGCACAA1080
 AGGCATGGAA ATTCAAGGAAT TACAATGATG CGGAAGAAAG CAAAGTTTC CCTCAGAGAG1140
 AATCCAGTGG AGGAAACCAA AGGAGAAGCA TTCAGTGATG GCAACATTGA AGTCAAATTG1200
 10 TGTGAACAGA CAGAGGAGAA GAAAAAGCTC AAACGACATC TTGCTCTCTT TAGGTCTGAA1260
 CTGGCTGAGA ATTCTCCTTT AGACAGTGGG CATTAA 1296

(39) INFORMATION FOR SEQ ID NO:38:

15 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 431 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS:
 (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

20 Met Gln Ala Leu Asn Ile Thr Pro Glu Gln Phe Ser Arg Leu Leu Arg
 1 5 10 15

Asp His Asn Leu Thr Arg Glu Gln Phe Ile Ala Leu Tyr Arg Leu Arg
 20 25 30

25 Pro Leu Val Tyr Thr Pro Glu Leu Pro Gly Arg Ala Lys Leu Ala Leu
 35 40 45

Val Leu Thr Gly Val Leu Ile Phe Ala Leu Ala Leu Phe Gly Asn Ala
 50 55 60

Leu Val Phe Tyr Val Val Thr Arg Ser Lys Ala Met Arg Thr Val Thr
 65 70 75 80

30 Asn Ile Phe Ile Cys Ser Leu Ala Leu Ser Asp Leu Leu Ile Thr Phe
 85 90 95

Phe Cys Ile Pro Val Thr Met Leu Gln Asn Ile Ser Asp Asn Trp Leu

- 48 -

	100	105	110	
	Gly Gly Ala Phe Ile Cys Lys Met Val Pro Phe Val Gln Ser Thr Ala			
	115	120	125	
5	Val Val Thr Glu Met Leu Thr Met Thr Cys Ile Ala Val Glu Arg His			
	130	135	140	
	Gln Gly Leu Val His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg			
	145	150	155	160
	Arg Ala Phe Thr Met Leu Gly Val Val Trp Leu Val Ala Val Ile Val			
	165	170	175	
10	Gly Ser Pro Met Trp His Val Gln Gln Leu Glu Ile Lys Tyr Asp Phe			
	180	185	190	
	Leu Tyr Glu Lys Glu His Ile Cys Cys Leu Glu Glu Trp Thr Ser Pro			
	195	200	205	
15	Val His Gln Lys Ile Tyr Thr Phe Ile Leu Val Ile Leu Phe Leu			
	210	215	220	
	Leu Pro Leu Met Val Met Leu Ile Leu Tyr Ser Lys Ile Gly Tyr Glu			
	225	230	235	240
	Leu Trp Ile Lys Lys Arg Val Gly Asp Gly Ser Val Leu Arg Thr Ile			
	245	250	255	
20	His Gly Lys Glu Met Ser Lys Ile Ala Arg Lys Lys Arg Ala Val			
	260	265	270	
	Ile Met Met Val Thr Val Val Ala Leu Phe Ala Val Cys Trp Ala Pro			
	275	280	285	
25	Phe His Val Val His Met Met Ile Glu Tyr Ser Asn Phe Glu Lys Glu			
	290	295	300	
	Tyr Asp Asp Val Thr Ile Lys Met Ile Phe Ala Ile Val Gln Ile Ile			
	305	310	315	320
	Gly Phe Ser Asn Ser Ile Cys Asn Pro Ile Val Tyr Ala Phe Met Asn			
	325	330	335	
30	Glu Asn Phe Lys Lys Asn Val Leu Ser Ala Val Cys Tyr Cys Ile Val			
	340	345	350	
	Asn Lys Thr Phe Ser Pro Ala Gln Arg His Gly Asn Ser Gly Ile Thr			
	355	360	365	
35	Met Met Arg Lys Lys Ala Lys Phe Ser Leu Arg Glu Asn Pro Val Glu			
	370	375	380	
	Glu Thr Lys Gly Glu Ala Phe Ser Asp Gly Asn Ile Glu Val Lys Leu			
	385	390	395	400

- 49 -

Cys Glu Gln Thr Glu Glu Lys Lys Leu Lys Arg His Leu Ala Leu
405 410 415

Phe Arg Ser Glu Leu Ala Glu Asn Ser Pro Leu Asp Ser Gly His
420 425 430

5 (40) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTGTGTACAG CAGTTGCAG AGTG

24

(41) INFORMATION FOR SEQ ID NO:40:

15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GAGTGCCAGG CAGAGCAGGT AGAC

24

(42) INFORMATION FOR SEQ ID NO:41:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

CCCGAATTCC TGCTTGCTCC CAGCTTGGCC C

31

(43) INFORMATION FOR SEQ ID NO:42:

- 50 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 32 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

TGTGGATCCT GCTGTCAAAG GTCCCATTCC GG

32

10 (44) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

TCACAATGCT AGGTGTGGTC

20

20 (45) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

TGCATAGACA ATGGGATTAC AG

22

30 (46) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 511 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

- 51 -

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

TCACAATGCT AGGTGTGGTC TGGCTGGTGG CAGTCATCGT AGGATCACCC ATGTGGCACG 60
5 TGCAACAACT TGAGATCAA TATGACTTCC TATATGAAAA GGAACACATC TGCTGCTTAG 120
AAGAGTGGAC CAGCCCTGTG CACCAGAAGA TCTACACCAC CTTCATCCTT GTCATCCTCT 180
TCCTCCTGCC TCTTATGGTG ATGCTTATTTC TGTACGTAAG ATTGGTTATG AACTTTGGAT 240
AAAGAAAAGA GTTGGGGATG GTTCAGTGCT TCGAACTATT CATGGAAAAG AAATGTCCAA 300
AATAGCCAGG AAGAAGAAC GAGCTGTCAT TATGATGGTG ACAGTGGTGG CTCTCTTGC 360
10 TGTGTGCTGG GCACCAATTCC ATGTTGTCCA TATGATGATT GAATACAGTA ATTTTGAAAA 420
GGAATATGAT GATGTCACAA TCAAGATGAT TTTTGCTATC GTGCAAATTA TTGGATTTTC 480
CAACTCCATC TGTAAATCCC TTGTCTATGC A 511

(47) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CTGCTTAGAA GAGTGGACCA G

21

(48) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (iv) ANTI-SENSE: NO

- 52 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CTGTGCACCA GAAGATCTAC AC

22

(49) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 21 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

CAAGGATGAA GGTGGTGTAG A

21

(50) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 23 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

GTGTAGATCT TCTGGTGCAC AGG

23

(51) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 21 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GCAATGCAGG TCATAGTGAG C

21

(52) INFORMATION FOR SEQ ID NO:51:

- 53 -

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

10 TGGAGCATGG TGACGGGAAT GCAGAAG

27

(53) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

20 GTGATGAGCA GGTCACTGAG CGCCAAG

27

(54) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

30 GCAATGCAGG CGCTTAACAT TAC

23

(55) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs

- 54 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

5 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

TTGGGTTACA ATCTGAAGGG CA

22

(56) INFORMATION FOR SEQ ID NO:55:

- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

ACTCCGTGTC CAGCAGGACT CTG

23

(57) INFORMATION FOR SEQ ID NO:56:

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

25 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

TGC GTG TTCC TGG ACC CTCA CGTG

24

(58) INFORMATION FOR SEQ ID NO:57:

- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- 55 -

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

CAGGCCTTGG ATTTAACATGT CAGGGATGG

29

5 (59) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

GGAGAGTCAG CTCTGAAAGA ATTCAAG

27

15 (60) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

TGATGTGATG CCAGATACTA ATAGCAC

27

25 (61) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

- 56 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

CCTGATTCA TTAGGTGAGA TTGAGAC

27

(62) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

GACAGGTACC TTGCCATCAA G

21

(63) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:

15 (A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

20 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

CTGCACAATG CCAGTGATAA GG

22

(64) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:

25 (A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

CTGACTTCCTT GTTCCTGGCA GCAGCGG

27

- 57 -

(65) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
5 (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

10 AGACCAGCCA GGGCACGCTG AAGAGTG

27

(66) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 32 base pairs
(B) TYPE: nucleic acid
15 (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

20 GATCAAGCTT CCATCCTACT GAAACCATGG TC

32

(67) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 35 base pairs
(B) TYPE: nucleic acid
25 (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

30 GATCAGATCT CAGTTCCAAT ATTACACACCA CCGTC

35

(68) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:

- 58 -

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

CTGGTGTGCT CCATGGCATC CC

22

(69) INFORMATION FOR SEQ ID NO:68:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

GTAAGCCTCC CAGAACGAGA GG

22

(70) INFORMATION FOR SEQ ID NO:69:

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

CAGCGCAGGG TGAAGCCTGA GAGC

24

(71) INFORMATION FOR SEQ ID NO:70:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- 59 -

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

GGCACCTGCT GTGACCTGTG CAGG

24

5 (72) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

GTCCTGCCAC TTGGAGACAT GG

22

15 (73) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GAAACTTCTC TGCCCTTACC GTC

23

25 (74) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

- 60 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

CCAACACCAG CATCCATGGC ATCAAG

26

(75) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10 (iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

GGAGAGTCAG CTCTGAAAGA ATTCAAGG

27