Point Cloud Affordance Highlighter

Amirali Changizi - s324771 Meelad Dashti - s328715 Kimia Dorrani - s329154

Roadmap

Introduction

Using Neural Fields and Vision-Language Models for Unsupervised Affordance Detection

What are Affordances?

- Regions on objects that support meaningful interactions
 - Bag → Grasp
 - Bed → Lay
 - Bottle → Pour
 - Chair → Support

Why is Affordance Detection Important?

Critical for robotics and human-object interaction

- Enables:
 - Autonomous manipulation
 - Scene understanding
 - o Human-robot collaboration

Current Challenges

- Reliance on labeled datasets
- Limited to specific object categories
- Complex geometric features
- Limited generalization

Related Work

- Traditional Affordance Detection
- 3D AffordanceNet
- Interaction-driven 3D Affordance Grounding (IAG)
- Vision-Language Models in 3D (e.g., CLIP-based)

Our Approach

- Label-free pipeline using:
 - Neural fields
 - Pre-trained vision-language models (CLIP)
 - Differentiable point cloud rendering
- Benefits:
 - No manual annotations needed
 - Works with real-world sensor data
 - Flexible across different 3D formats

Pipeline Overview

Point Cloud Processing

- Three Potential Approaches:
 - Direct Point Cloud Rendering (Selected)
 - 2. Mesh Approximation
 - 3. Voxel-based Conversion

- Why Direct Rendering?
 - Preserves original geometry
 - Avoids reconstruction artifacts
 - Computationally efficient

Neural Highlighter Network

Semantic Loss

Experiments: 3D AffordanceNet

Objective: Pipeline evaluation across three experiments

Grid Search: Systematic exploration of Hyperparameters

Prompt Strategies: Basic, Action, Affordance-Specific

22,949 shapes, 23 classes, 18 affordances

Test: 5 objects, **Test**: 5 objects

Input: 2,048 points per model

Evaluation Metrics: IoU, AloU, mean IoU

Experiment 1: Single Class and Affordance Pair

Objective: Evaluate the **cut** affordance for the **knife** class.

Results: Single Class and Affordance Pair

Config	Shape	Prompt Strategy	Thres hold	Learning Rate	Depth	Augment ations	Views	loU	aloU
Config 1	d7	Basic	0.01	0.001	4	1	2	0.938	0.109
Config 2	24	Affordance-s pecific	0.94	0.001	4	1	2	0.394	0.391
Config 3	1e	Action	0.1	0.001	4	3	4	0.703	0.117
Config 4	За	Action	0.02	0.001	4	3	2	0.712	0.044
Config 5	d7	Basic	0.1	0.001	4	3	2	0.972	0.1389

Configs 3 and 5 were selected as the best-performing configurations based on their IoU, aloU, and strong alignment with ground truth during visual inspections. This evaluation involved analyzing a total of **240 renders** to identify the top-performing configurations.

IoU vs. aloU: Evaluation Metrics

Average IoU computed across a range of thresholds, from 0.0 to 0.99 in 0.01 increments, providing a comprehensive evaluation of segmentation performance.

Test Set Observations: Generalization Performance

Object	loU
2	0.4820
3	0.8630
5	0.3534
Mean IoU	0.339

Results for Config 3 (**Action Prompt**) - Knife Class with fixed threshold 0.1

Experiment 2: Single Class with Multiple Affordances

Objective: Evaluate the model's ability to generalize across multiple affordances (openable, pushable, pull) within the door class.

Basic: A 3D render of a gray door with highlighted {affordance type} regions.

2 Affordance Specific:

Openable: A 3D render of a gray door with highlighted hinge regions and handle areas that enable opening movement.

Pushable: A 3D render of a gray door with highlighted flat surface regions designed for pushing.

Pull: A 3D render of a gray door with highlighted regions showing handles, grip spots, or edges used for pulling.

Predicted

Config 2

Results: Single Class with Multiple Affordances

Config	Affordan ce	Prompt Strategy	Thres hold	Learning Rate	Depth	Augment ations	Views	IoU	aloU
Config 1	Pushable	Basic	0.3	0.0001	5	3	2	0.215	0.1623
Config 2	Openable	Basic	0.1	0.0001	5	3	2	0.6694	0.3837
Config 3	Pull	Basic	0.1	0.001	4	3	2	0.6670	0.6619

The best configurations for each affordance were selected based on IoU, aloU, and visual inspections. After analyzing 640 renders, the overall poor performance led us to test all three configurations further.

Test Set Observations: Generalization Performance

Config	Mean IOU
Config Pushable	0.0930
Config Openable	0.0270
Config Pull	0

Visual results for the pushable, openable, and pull affordances in the test set. Predictions were often misaligned or incomplete.

Experiment 3: Generalization of single affordance over multiple Classes

Objective: Evaluate the model's ability to generalize a single affordance **contain** across diverse object classes **vase**, **bowl** and **bottle**.

- **Basic:** A 3D render of a gray {shape class} with highlighted contain regions.
- 2 Action: A 3D render indicating the parts of the gray {shape class} that can be used to contain.
- **3Affordance Specific:** A 3D render of a gray {shape class} with highlighted regions showing the sharp blade edge and cutting tip, emphasizing the main cutting surface and pointed end.

Results: Generalization of single affordance over multiple Classes

Shape class	Prompt Strategy	Threshold	Learning Rate	Depth	Augmentations	Views	loU	aloU
Bottle	Affordance	0.1	0.001	4	3	2	0.9043	0.6939
	specific							
Vase	Affordance	0.1	0.001	4	1	3	0.652	0.648
	specific							
Bowl	Affordance	0.1	0.001	5	1	3	0.9155	0.295
	specific							

The bottle configuration for the affordance contain was selected as the best-performing configuration based on their IoU, aIoU, and strong alignment with ground truth during visual inspections. This evaluation involved analyzing a total of **412 renders** to identify the top-performing configurations.

Test Set Observations: Generalization Performance

Extension of the pipeline: Adding background and augmentation

Background

No Background Outdoor Indoor

Augmentation

Default Transform
Viewpoint Transform
Lighting Transform
Balanced Transform

Augmentation types and backgrounds

Augmentation Type	Background	mloU	
	No Background	0.4924	
	Outdoor 1	0.3011	
Balanced	Outdoor 2	0.3430	
	Indoor 1	0.1657	
	Indoor 2	0.1861	
	No Background	0.5360	
	Outdoor 1	0.3330	
Viewpoint	Outdoor 2	0.4790	
	Indoor 1	0.6639	
	Indoor 2	0.3654	

Augmentation Type	Background	mloU	
	No Background	0.5881	
	Outdoor 1	0.3342	
Lighting	Outdoor 2	0.5799	
	Indoor 1	0.4261	
	Indoor 2	0.0669	
	No Background	0.6790	
	Outdoor 1	0.3263	
Default	Outdoor 2	0.4708	
	Indoor 1	0.3851	
	Indoor 2	0.1921	

Comparison of augmentation strategies and background types tested on object class knife with affordance cut using config 5 over 3 shapes by mIoU.

Extensions 2

LiDAR

LiDAR

KIRI Engine Application

Extensions 26

Alternative Backbones

OpenCLIP: Poor Results

open_clip

An open source implementation of CLIP.

OpenShape: Resource Intensive 💢

Conclusion

3D Highlighter architecture shows promise for label-free affordance detection.

Performance depends heavily on hyperparameter tuning and effective prompt engineering.

Future work should focus on improving generalization and using alternative backbones

Thank you

References

- [1] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learning to predict 3d objects with an interpolation-based differentiable renderer. In Advances in Neural Information Processing Systems(NeurIPS), volume 32, 2019. 1
- [2] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive language-image learning. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), page 2818–2829. IEEE, June 2023. 8
- [3] Dale Decatur, Itai Lang, and Rana Hanocka. 3d highlighter: Localizing regions on 3d shapes via text descriptions. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 20930–20939, 2023. 1
- [4] Sheng Deng, Xun Xu, Chaozheng Wu, Ke Chen, and Kui Jia. 3d affordancenet: A benchmark for visual object affordance understanding. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 1778–1787, 2021. 1
- [5] Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xuanlin Li, Shizhong Han, Hong Cai, Fatih Porikli, and Hao Su.= Openshape: Scaling up 3d shape representation towards open world understanding, 2023. 8
- [6] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021. 1
- [7] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tomp- kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual computing and beyond. Computer Graphics Forum, 41(1):1–12, 2022. 1
- [8] Yuhang Yang, Wei Zhai, Hongchen Luo, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Grounding 3d object affordance from 2d interactions in images, 2023.