Title: Business Intelligence Project Author: Natasha Gichira, Emmanuel Agre, Ryan Gitonga, Fredrick

Koech, Dennis Muriuki Date: (23/10/23)

Student Details

Student ID Number	124255,120415,124562,118
Student Name	Natasha
	Gichira,
	Em-
	manuel
	Agre,
	Ryan Gi-
	tonga, Fredrick
	Koech,
	Dennis
	Muriuki
BBIT 4.2 Group	\mathbf{C}
BI Project Group Name/ID (if applicable)	Challengers

EVALUATION METRICS

Loading the Dataset

library(readr)

machine_readable_business_employment_data_jun_2023_quarter <- read_csv("machine-readable-business-employment-data-jun-2023-quarter.csv")

Source:

The dataset that was used can be downloaded here: $<\!https://www.stats.govt.nz/large-datasets/csv-files-for-download//>$

Reference:

*<## Stats
NZ & Tatauranga, A. (2023). Business Employment Data June Quater .
https://www.stats.govt.nz/large-datasets/csv-files-for-download/# no
lint —->

Executable code

set.seed(7)

 $class_model_glm <- train(class \sim ., data = machine_readable_business_employment_data_jun_2023_quarter_train, \\ method = "glm", metric = "Accuracy", trControl = train_control)$

```
print(class_model_glm)

set.seed(7) class_model_knn <- train(class ~ ., data = machine_readable_business_employment_data_jun_2023_quarter_method = "knn", metric = "ROC", trControl = train_control)

print(class_model_knn)

predictions <- predict(class_model_knn, machine_readable_business_employment_data_jun_2023_quarter_test[, 1:8])

print(predictions) confusion_matrix <- caret::confusionMatrix(predictions, machine_readable_business_employment_data_1:9]$class)

print(confusion_matrix)

predictions <- predict(class_model_knn, machine_readable_business_employment_data_jun_2023_quarter_test[, 1:8], type = "prob")

print(predictions)

roc curve <- roc(machine_readable_business_employment_data_jun_2023_quarter_testclass, predictionsneg)
```

Plot the ROC curve

```
plot(roc_curve, main = "ROC Curve for KNN Model", print.auc = TRUE, print.auc.x = 0.6, print.auc.y = 0.6, col = "blue", lwd = 2.5)

train_control <- trainControl(method = "repeatedcv", number = 5, repeats = 3, classProbs = TRUE, summaryFunction = mnLogLoss) set.seed(7)

Employment_model_cart <- train(class ~ ., data = machine_readable_business_employment_data_jun_2023_quarter, method = "rpart", metric = "logLoss", trControl = train_control)

print(Employment_model_cart)
```