પ્રશ્ન 1(અ) [3 ગુણ]

વિવિદ્ય નેટવર્ક ટોપોલોજીની યાદી બનાવો અને કોઈપણ એકની વિગતવાર ચર્ચા કરો.

જવાબ:

ટોપોલોજી	વર્ણન
સ્ટાર	બધા ઉપકરણો કેન્દ્રીય હબ/સ્વિચ સાથે જોડાયેલા
રિંગ	ઉપકરણો ગોળાકાર ફેશનમાં જોડાયેલા
બસ	બધા ઉપકરણો એક જ કેબલ સાથે જોડાયેલા
મેશ	દરેક ઉપકરણ બીજા દરેક ઉપકરણ સાથે જોડાયેલું
ટ્રી	રૂટ નોડ સાથે વંશવેલો માળખું
હાઇબ્રિડ	બે અથવા વધુ ટોપોલોજીનું સંયોજન

સ્ટાર ટોપોલોજી વિગતો:

• કેન્દ્રીય હબ: બધા નોડ્સ એક કેન્દ્રીય ઉપકરણ સાથે જોડાય છે

• **પોઇન્ટ-ટુ-પોઇન્ટ**: દરેક કનેક્શન નોડ અને હબ વચ્ચે સમર્પિત છે

• સરળ મેનેજમેન્ટ: ઇન્સ્ટોલ અને ટ્રબલશૂટ કરવું સરળ

મેમરી ટ્રીક: "STAR = Single Terminal All Reach"

પ્રશ્ન 1(બ) [4 ગુણ]

આધુનિક સંચાર પ્રણાલીઓમાં પોઇન્ટ-ટુ-પોઇન્ટ અને બ્રોડકાસ્ટ ટ્રાન્સમિશન ટેકનોલોજીનો ઉપયોગ કેવી રીતે થાય છે તે ઉદાહરણો સાથે સમજાવો. અને તેમના ફાયદા અને મર્યાદાઓની ચર્ચા કરો.

જવાબ:

ટેકનોલોજી	પોઇન્ટ-ટુ-પોઇન્ટ	બ્રોડકાસ્ટ
કનેક્શન	બે ઉપકરણો વચ્ચે સીધી લિંક	એક-થી-અનેક સંદેશાવ્યવહાર
ઉદાહરણ	ટેલિફોન, VPN ટનલ્સ	રેડિયો, TV, WiFi
ડેટા ફ્લો	દ્વિદિશાત્મક	એકદિશાત્મક/બહુદિશાત્મક

પોઇન્ટ-ટુ-પોઇન્ટ એપ્લિકેશન્સ:

• સમર્પિત લાઇન્સ: ઓફિસો વચ્ચે લીઝ્ડ લાઇન્સ

• સેટેલાઇટ લિંક્સ: ગ્રાઉન્ડ સ્ટેશનથી સેટેલાઇટ સંદેશાવ્યવહાર

• **કેબલ મોડેમ્સ**: ઘરથી ISP કનેક્શન

બ્રોડકાસ્ટ એપ્લિકેશન્સ:

• **WiFi નેટવર્કસ**: રાઉટર બહુવિધ ઉપકરણોને બ્રોડકાસ્ટ કરે છે

• ટેલિવિઝન: એક ટ્રાન્સમિટરથી અનેક રિસીવર્સ

મેમરી ટ્રીક: "P2P = Private Path, Broadcast = Big Audience"

પ્રશ્ન 1(ક) [7 ગુણ]

દરેક લેચરના કાર્ય સાથે OSI મોડેલનું વર્ણન કરો.

જવાબ:

લેચર	નામ	รเข้
7	એપ્લિકેશન	યુઝર ઇન્ટરફેસ, નેટવર્ક સેવાઓ
6	પ્રેઝન્ટેશન	ડેટા એન્ક્રિપ્શન, કોમ્પ્રેશન, ફોર્મેટિંગ
5	સેશન	સેશન સ્થાપિત કરે, મેનેજ કરે, સમાપ્ત કરે
4	ટ્રાન્સપોર્ટ	વિશ્વસનીય ડેટા ટ્રાન્સફર, એરર કરેક્શન
3	નેટવર્ક	રાઉટિંગ, લોજિકલ એડ્રેસિંગ (IP)
2	ડેટા લિંક	ફ્રેમ ફોર્મેટિંગ, એરર ડિટેક્શન
1	ફિઝિકલ	બિટ ટ્રાન્સમિશન, ઇલેક્ટ્રિકલ સિગ્નલ્સ

મુખ્ય કાર્યો:

• ઉપરના લેચર્સ (5-7): એપ્લિકેશન-સંબંધિત સેવાઓ સંભાળે છે

• નીચેના લેચર્સ (1-4): ડેટા ટ્રાન્સમિશન અને રાઉટિંગ સંભાળે છે

• **એન્કેપ્સુલેશન**: દરેક લેચર પોતાનું હેડર ઉમેરે છે

મેમરી ટ્રીક: "All People Seem To Need Data Processing"

પ્રશ્ન 1(ક અથવા) [7 ગુણ]

TCP/IP મોડેલના દરેક લેચરના કાર્ય સાથે વર્ણન લખો.

લેચર	नाभ	รเช้	પ્રોટોકોલ્સ
4	એપ્લિકેશન	યુઝર સેવાઓ, એપ્લિકેશન્સ	HTTP, FTP, SMTP, DNS
3	ટ્રાન્સપોર્ટ	એન્ડ-ટુ-એન્ડ કમ્યુનિકેશન	TCP, UDP
2	ઇન્ટરનેટ	રાઉટિંગ, લોજિકલ એડ્રેસિંગ	IP, ICMP, ARP
1	નેટવર્ક એક્સેસ	ફિઝિકલ ટ્રાન્સમિશન	Ethernet, WiFi

લેયર કાર્યો:

- એપ્લિકેશન: એપ્લિકેશન્સને નેટવર્ક સેવાઓ પ્રદાન કરે છે
- ટ્રાન્સપોર્ટ: વિશ્વસનીય અથવા અવિશ્વસનીય ડિલિવરી સુનિશ્ચિત કરે છે
- **ઇન્ટરનેટ**: IP એડ્રેસનો ઉપયોગ કરીને નેટવર્કમાં પેકેટ્સ રાઉટ કરે છે
- નેટવર્ક એક્સેસ: ફિઝિકલ ટ્રાન્સમિશન મીડિયા સંભાળે છે

મેમરી ટ્રીક: "Applications Transport Internet Networks"

પ્રશ્ન 2(અ) [3 ગુણ]

નેટવર્ક સુરક્ષામાં ફાયરવોલના કાર્યનું વર્ણન કરો.

જવાબ:

કાયરવોલ કાર્યો:

- **પેકેટ ફિલ્ટરિંગ**: આવતા અને જતા નેટવર્ક ટ્રાફિકને નિયંત્રિત કરે છે
- એક્સેસ કંટ્રોલ: અનધિકૃત એક્સેસ પ્રયાસોને અવરોધે છે
- ટ્રાફિક મોનિટરિંગ: નેટવર્ક એક્ટિવિટીને લોગ કરે અને વિશ્લેષિત કરે છે

પ્રકારો:

- હાર્ડવેર ફાયરવોલ: સંપૂર્ણ નેટવર્કનું રક્ષણ કરતું ભૌતિક ઉપકરણ
- **સોફ્ટવેર ફાયરવોલ**: વ્યક્તિગત કમ્પ્યુટર્સ પર ઇન્સ્ટોલ કરાયેલો પ્રોગ્રામ
- સ્ટેટફુલ ઇન્સ્પેક્શન: કનેક્શન સ્ટેટ્સ અને કોન્ટેક્સ્ટ ટ્રેક કરે છે

ਮੇਮરੀ ਟ੍ਰੀs: "Firewall = Filter, Access, Monitor"

પ્રશ્ન 2(બ) [4 ગુણ]

FDDI અને CDDI તેમની મુખ્ય લાક્ષણિકતાઓ, ફાયદા અને એપ્લિકેશનના સંદર્ભમાં સરખામણી કરો.

લક્ષણ	FDDI	CDDI
મીડિયમ	ઓપ્ટિકલ ફાઇબર	ટ્વિસ્ટેડ પેર કોપર
સ્પીડ	100 Mbps	100 Mbps
અંતર	200 કિમી સુધી	100 મીટર સુધી
કિંમત	વધુ	ઓછી
સુરક્ષા	વધુ (ટેપ કરવું મુશ્કેલ)	ઓછી (ટેપ કરવું સરળ)
ઇન્સ્ટોલેશન	જટિલ	સરળ

FDDI ફાયદાઓ:

• લાંબું અંતર: કેમ્પસ-વ્યાપી નેટવર્કને સપોર્ટ કરે છે

• ઉચ્ચ સુરક્ષા: ઇલેક્ટ્રોમેગ્નેટિક ઇન્ટરફેરન્સથી મુક્ત

• વિશ્વસનીયતા: વધુ સારી એરર ડિટેક્શન અને રિકવરી

CDDI ફાયદાઓ:

• કિફાયતી: વર્તમાન કોપર ઇન્ફ્રાસ્ટ્રક્ચરનો ઉપયોગ

• સરળ ઇન્સ્ટોલેશન: સ્ટાન્ડર્ડ ટ્વિસ્ટેડ પેર કેબ્લિંગ

• **સુસંગતતા**: વર્તમાન નેટવર્ક સાધનો સાથે કામ કરે છે

ਮੇਮਣੀ ਟ੍ਰੀs: "FDDI = Fiber Distance, CDDI = Copper Cost"

પ્રશ્ન 2(ક) [7 ગુણ]

ઇથરનેટ, ફાસ્ટ ઇથરનેટ, ગીગાબિટ ઇથરનેટ સમજાવો અને સરખામણી કરો.

જવાબ:

увіз	સ્પીડ	સ્ટાન્ડર્ડ	કેબલ પ્રકાર	અંતર
ઇથરનેટ	10 Mbps	802.3	Coax/UTP	100m
ફાસ્ટ ઇથરનેટ	100 Mbps	802.3u	UTP Cat5	100m
ગીગાબિટ ઇથરનેટ	1000 Mbps	802.3z/ab	Cat5e/6, Fiber	100m/5km

મુખ્ય તફાવતો:

• સ્પીડ ઇવોલ્યુશન: દરેક જનરેશનમાં 10x વધારો

• મીડિયા સપોર્ટ: કોક્સથી ટ્વિસ્ટેડ પેરથી ફાઇબર સુધી

- **એપ્લિકેશન્સ**: LAN બેકબોન, સર્વર કનેક્શન્સ, ડેસ્કટોપ
- બેકવર્ડ કોમ્પેટિબિલિટી: નવા સ્ટાન્ડર્ડ જૂના ઉપકરણોને સપોર્ટ કરે છે

સ્ટાન્ડર્ડસ:

• **10Base-T**: ટ્વિસ્ટેડ પેર પર 10 Mbps

• **100Base-TX**: કેટેગરી 5 UTP પર 100 Mbps

• **1000Base-T**: ร้2่วเอใ 5e/6 UTP นอ 1 Gbps

ਮੇਮਣੀ ਟ੍ਰੀs: "Every Fast Gigabit = 10, 100, 1000"

પ્રશ્ન 2(અ અથવા) [3 ગુણ]

નેટવર્ક ઇન્ફ્રાસ્ટ્રક્ચરમાં રાઉટરની તેની ભૂમિકા અને કાર્ય સમજાવો.

જવાબ:

રાઉટર કાર્યો:

• **પેકેટ ફોરવર્ડિંગ**: વિવિધ નેટવર્કો વચ્ચે ડેટા પેકેટ્સ રાઉટ કરે છે

• પાથ ડિટર્મિનેશન: રાઉટિંગ ટેબલનો ઉપયોગ કરીને શ્રેષ્ઠ રૂટ પસંદ કરે છે

• નેટવર્ક આઇસોલેશન: બ્રોડકાસ્ટ ડોમેઇન્સને અલગ કરે છે

મુખ્ય ભૂમિકાઓ:

• ઇન્ટર-નેટવર્ક કમ્યુનિકેશન: LANs ને WANs સાથે જોડે છે

• ટ્રાફિક મેનેજમેન્ટ: નેટવર્કો વચ્ચે ડેટા ફ્લોને નિયંત્રિત કરે છે

• પ્રોટોકોલ ટ્રાન્સલેશન: વિવિધ નેટવર્ક પ્રોટોકોલ્સ વચ્ચે કન્વર્ટ કરે છે

ਮੇਮਣੀ ਟੀਡ: "Router = Route, Isolate, Connect"

પ્રશ્ન 2(બ અથવા) [4 ગુણ]

FDDI (ફાઇબર ડિસ્ટ્રિબ્યુટેડ ડેટા ઇન્ટરફેસ) ની રચના સમજાવો અને તેના ફાયદાઓ જણાવો.

જવાબ:

FDDI રચના:

ઘટકો:

• ક્યુઅલ રિંગ: રિડન્ડન્સી માટે પ્રાઇમરી અને સેકન્ડરી રિંગ્સ

- ટોકન પાસિંગ: મીડિયા એક્સેસ કંટ્રોલ માટે ટોકનનો ઉપયોગ
- કન્સન્ટ્રેટર્સ: બહુવિધ સ્ટેશનોને રિંગ સાથે જોડે છે

ફાયદાઓ:

• ઉચ્ચ વિશ્વસનીયતા: ફોલ્ટ ટોલેરન્સ માટે ડ્યુઅલ રિંગ

• ઝડપી સ્પીડ: 100 Mbps ડેટા ટ્રાન્સમિશન રેટ

• **લાંબું અંતર**: 200 કિમી સુધી રિંગ સર્કમફરન્સને સપોર્ટ કરે છે

• સેલ્ફ-હીલિંગ: લિંક નિષ્ફળ જાય ત્યારે ઓટોમેટિક રીકોન્ફિગરેશન

મેમરી ટ્રીક: "FDDI = Fast, Dual, Distance, Immune"

પ્રશ્ન 2(ક અથવા) [7 ગુણ]

નેટવર્ક ઉપકરણોનો રોલ સમજાવો. બધા ઉપકરણો વિશે ટૂંકમાં વર્ણન કરો.

જવાબ:

ઉપકરણ	લેચર	รเช้
રીપીટર	ફિઝિકલ	સિગ્નલ્સ રિજનરેટ કરે છે, અંતર વધારે છે
હબ	ફિઝિકલ	બહુવિદ્ય ઉપકરણો જોડે છે, શેર કરેલ બેન્ડવિડ્થ
બ્રિજ	ડેટા લિંક	LANs જોડે છે, કોલિઝન્સ ઘટાડે છે
સ્વિથ	ડેટા લિંક	ઇન્ટેલિજન્ટ હબ, સમર્પિત બેન્ડવિડ્થ
કાઉટર	નેટવર્ક	વિવિધ નેટવર્કો જોડે છે, રાઉટિંગ
ગેટવે	બદ્યા લેયર્સ	પ્રોટોકોલ કન્વર્ઝન, નેટવર્ક ઇન્ટરકને ક ્શન

ઉપકરણ કાર્યો:

• રીપીટર: સિગ્નલ્સ એમ્પ્લિફાઇ અને રિજનરેટ કરે છે

• હલ: બહુવિદ્ય ઉપકરણો માટે સરળ કનેક્શન પોઇન્ટ

• **બ્રિજ**: MAC એડ્રેસના આધારે ઇન્ટેલિજન્ટ ફોરવર્ડિંગ

• સ્વિચ: બહુવિધ પોર્ટ્સ સાથે ઉચ્ચ-પ્રદર્શન બ્રિજ

• રાઉટર: નેટવર્કો વચ્ચે ઇન્ટેલિજન્ટ પાથ સિલેક્શન

• ગેટવે: સંપૂર્ણ પ્રોટોકોલ સ્ટેક કન્વર્ઝન

મેમરી ટ્રીક: "Repeat, Hub, Bridge, Switch, Route, Gateway"

પ્રશ્ન 3(અ) [3 ગુણ]

કોઈપણ ત્રણ ડેટા લિંક લેચર પ્રોટોકોલને નામ આપો અને કોઈપણ એકને વિગતવાર સમજાવો.

જવાબ:

ડેટા લિંક લેચર પ્રોટોકોલ્સ:

- HDLC (High-Level Data Link Control)
- PPP (Point-to-Point Protocol)
- Ethernet (IEEE 802.3)

HDLC પ્રોટોકોલ વિગતો:

• ફ્રેમ સ્ટ્રક્ચર: Flag, Address, Control, Data, FCS, Flag

• **એરર ડિટેક્શન**: ફ્રેમ ચેક સિક્વન્સ (FCS)

• ફ્લો કંટ્રોલ: સ્લાઇડિંગ વિન્ડો મેકેનિઝમ

HDLC ફ્રેમ ફોર્મેટ:

++	_++
Flag Addr Ctrl	Data FCS Flag
8bit 8bit 8bit	
++	-++

મેમરી ટ્રીક: "HDLC = High Data Link Control"

પ્રશ્ન 3(બ) [4 ગુણ]

ડેટા લિંક સ્તર પર error control અને flow control સમજાવો

જવાબ:

કંટ્રોલ પ્રકાર હેતુ		પદ્ધતિઓ	
Error Control	ટ્રાન્સમિશન એરર્સ ડિટેક્ટ અને કરેક્ટ કરવા	CRC, Checksum, Parity	
Flow Control	ડેટા ટ્રાન્સમિશન રેટ મેનેજ કરવા	Stop-and-Wait, Sliding Window	

Error Control પદ્ધતિઓ:

• **ડિટેક્શન**: CRC, Checksum એરર્સ ઓળખે છે

• รริยาง: ARQ (Automatic Repeat Request)

• प्रिवेन्शन: Forward Error Correction (FEC)

Flow Control પદ્ધતિઓ:

• Stop-and-Wait: એક ફ્રેમ મોકલો, ACK ની રાહ જુઓ

• Sliding Window: ACK પહેલાં બહુવિધ ફ્રેમ્સ મોકલો

• **બફર મેનેજમેન્ટ**: રિસીવર ઓવરફ્લો અટકાવે છે

મેમરી ટ્રીક: "Error = Detect, Flow = Control"

પ્રશ્ન 3(ક) [7 ગુણ]

IPv6 અને IPv4 ની સરખામણી કરો.

જવાબ:

લક્ષણ	IPv4	IPv6
એડ્રેસ લેન્થ	32 બિટ્સ	128 બિટ્સ
એડ્રેસ સ્પેસ	4.3 બિલિયન	340 અન્ડેસિલિયન
હેડર સાઇઝ	20-60 બાઇટ્સ (વેરિએબલ)	40 બાઇટ્સ (ફિક્સ્ડ)
નોટેશન	ડેસિમલ (192.168.1.1)	હેક્સાડેસિમલ (2001:db8::1)
ફ્રગમેન્ટેશન	રાઉટર અને હોસ્ટ	માત્ર હોસ્ટ
સિક્યુરિટી	વૈકલ્પિક (IPSec)	બિલ્ટ-ઇન (IPSec)
કોન્ફિગરેશન	મેન્યુઅલ/DHCP	ઓટો-કોન્ફિગરેશન

IPv4 Gะเองยา: 192.168.1.100

IPv6 GEเษะยเ: 2001:0db8:85a3:0000:0000:8a2e:0370:7334

મુખ્ય તફાવતો:

• **એડ્રેસ એક્ઝોસ્ચન**: IPv4 એડ્રેસ લગભગ સમાપ્ત

• **હેડર એફિશિયન્સી**: IPv6 સિમ્પ્લિફાઇડ હેડર સ્ટ્રક્ચર

• **સિક્યુરિટી**: IPv6 માં બિલ્ટ-ઇન સિક્યુરિટી ફીચર્સ

• ક્વોલિટી ઓફ સર્વિસ: IPv6 માં વધુ સારો QoS સપોર્ટ

ਮੇਮਣੀ ਟ੍ਰੀਡ: "IPv6 = Infinite, Integrated, Improved"

પ્રશ્ન 3(અ અથવા) [3 ગુણ]

કમ્પ્યુટર નેટવર્કમાં વપરાતા guided અને unguided ટ્રાન્સમિશન મીડિયા વચ્ચેનો તફાવત સમજાવો

મીડિયા પ્રકાર	Guided	Unguided
વ્યાખ્યા	ભૌતિક પાથ અસ્તિત્વમાં છે	કોઈ ભૌતિક પાથ નથી
ઉદાહરણો	ટ્વિસ્ટેડ પેર, Coax, ફાઇબર	રેડિયો, માઇક્રોવેવ, સેટેલાઇટ
દિશા	પોઇન્ટ-ટુ-પોઇન્ટ	બ્રોડકાસ્ટ

Guided મીડિયા:

• ટ્વિસ્ટેડ પેર: ટેલિફોન લાઇન્સ, LANs

• **કોએક્સિયલ કેબલ**: કેબલ TV, જૂના નેટવર્કસ

• ફાઇબર ઓપ્ટિક: હાઇ-સ્પીડ, લોંગ-ડિસ્ટન્સ

Unguided મીડિયા:

• રેડિયો વેવ્સ: WiFi, Bluetooth

• માઇક્રોવેલ્સ: પોઇન્ટ-ટુ-પોઇન્ટ લિંક્સ

• **ઇન્ફારેડ**: શોર્ટ-રેન્જ કમ્યુનિકેશન

મેમરી ટ્રીક: "Guided = Ground, Unguided = Air"

પ્રશ્ન 3(બ અથવા) [4 ગુણ]

સર્કિટ સ્વિચિંગ અને પેકેટ સ્વિચિંગનું વર્ણન કરો.

જવાબ:

લક્ષણ	સર્કિટ સ્વિચિંગ	પેકેટ સ્વિચિંગ
કનેક્શન	સમર્પિત પાથ સ્થાપિત	કોઈ સમર્પિત પાથ નથી
રિસોર્સ એલોકેશન	ફિક્સ્ડ બેન્ડવિડ્થ	શેર કરેલા રિસોર્સિસ
ઉદાહરણ	પરંપરાગત ટેલિફોન	ઇન્ટરનેટ
કિલે	કોન્સ્ટન્ટ	વેરિએબલ

સર્કિટ સ્વિશિંગ:

• સેટઅપ ફેઝ: સમર્પિત કનેક્શન સ્થાપિત કરે છે

• ડેટા ટ્રાન્સફર: કોન્ટિન્યુઅસ ટ્રાન્સમિશન

• **ટિયરડાઉન**: કનેક્શન રિસોર્સિસ રિલીઝ કરે છે

પેકેટ સ્વિચિંગ:

• સ્ટોર-એન્ડ-ફોરવર્ડ: પેકેટ્સ ઇન્ટરમીડિયેટ નોડ્સ પર સ્ટોર થાય છે

• ડાયનેમિક રાઉટિંગ: દરેક પેકેટ સ્વતંત્ર રીતે રાઉટ થાય છે

• રિસોર્સ શેરિંગ: બેન્ડવિડ્થ યુઝર્સ વચ્ચે શેર થાય છે

ਮੇਮਰੀ ਟ੍ਰੀs: "Circuit = Continuous, Packet = Pieces"

પ્રશ્ન 3(ક અથવા) [7 ગુણ]

IPv4 અથવા IPv6 ને વિગતવાર સમજાવો.

જવાલ (IPv4):

IPv4 એડ્રેસ સ્ટ્રક્ચર:

• 32-બિટ એડ્રેસ: 4 ઓક્ટેટ્સમાં વિભાજિત

• **ડોટેડ ડેસિમલ**: 192.168.1.1 ફોર્મેટ

• નેટવર્ક + હોસ્ટ: એડ્રેસ નેટવર્ક અને હોસ્ટ ભાગોમાં વિભાજિત

ક્લાસ	રેન્જ	નેટવર્ક બિટ્સ	હોસ્ટ બિટ્સ	ઉપયોગ
Α	1-126	8	24	મોટા નેટવર્કસ
В	128-191	16	16	મધ્યમ નેટવર્કસ
С	192-223	24	8	નાના નેટવર્કસ

સ્પેશિયલ એડ્રેસિસ:

• **લૂપબેક**: 127.0.0.1 (લોકલ હોસ્ટ)

• มเฮ**่นะ**: 192.168.x.x, 10.x.x.x, 172.16-31.x.x

• **GISSIE2**: 255.255.255.255

સબનેટિંગ:

• સબનેટ માસ્ક: નેટવર્ક પોર્શન ઓળખે છે

• CIDR: Classless Inter-Domain Routing

• વેરિએબલ લેન્થ: વિવિધ સબનેટ સાઇઝિસ

IPv4 હેડર:

0		16
+		+
Vers	sion IHL	Type of Service
+	·	+
	Total Leng	th
+	·	+
Iden	ntification	Flags Fragment
+	·	+
TTI	Protocol	Header Checksum
+	·	+
	Source Add	ress
+	·	+
[Destination A	Address
+	·	+

ਮੇਮਰੀ ਟ੍ਰੀs: "IPv4 = 4 octets, 32 bits, Classes A-C"

પ્રશ્ન 4(અ) [3 ગુણ]

ARP અને RARP ના પૂરા નામ આપો અને તેમનું વર્ણન કરો.

જવાબ:

પૂરા નામો:

• ARP: Address Resolution Protocol

• RARP: Reverse Address Resolution Protocol

પ્રોટોકોલ	รเช้
ARP	IP એડ્રેસને MAC એડ્રેસ પર મેપ કરે છે
RARP	MAC એડ્રેસને IP એડ્રેસ પર મેપ કરે છે

ARP પ્રોસેસ:

• **રિકવેસ્ટ**: "કોની પાસે IP 192.168.1.1 છે?"

• **રિપ્લાય**: "192.168.1.1 MAC 00:1A:2B:3C:4D:5E પર છે"

• કેશ: ભવિષ્યના ઉપયોગ માટે મેપિંગ્સ સ્ટોર કરે છે

RARP પ્રોસેસ:

• **ડિસ્કલેસ વર્કસ્ટેશન્સ**: સર્વરથી IP મેળવે છે

• **બ્રોડકાસ્ટ રિક્વેસ્ટ**: MAC એડ્રેસ મોકલે છે

• **સર્વર રિસ્પોન્સ**: એસાઇન કરેલ IP રિટર્ન કરે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "ARP = Address to MAC, RARP = Reverse"

પ્રશ્ન 4(બ) [4 ગુણ]

DSL ટેકનોલોજીનું તેના ફાયદા અને મર્યાદાઓ સાથે વર્ણન કરો.

જવાબ:

DSL (Digital Subscriber Line):

SISK	સ્પીડ	અંતર
ADSL	8 Mbps સુધી	5.5 કિમી
VDSL	52 Mbps સુધી	1.5 કિમી
SDSL	2 Mbps સુધી	3 કિમી

ફાયદાઓ:

- વર્તમાન ઇન્ફ્રાસ્ટ્રક્ચર: ટેલિફોન લાઇન્સનો ઉપયોગ કરે છે
- **હંમેશા ઓન**: કોન્ટિન્યુઅસ ઇન્ટરનેટ કનેક્શન
- વોઇસ + ડેટા: સાથે સાથે ફોન અને ઇન્ટરનેટ
- કિફાયતી: ઘરેલું ઉપયોગકર્તાઓ માટે પોસાય

મર્યાદાઓ:

- અંતર આદ્યારિત: અંતર સાથે સ્પીડ ઘટે છે
- અપલોડ સ્પીડ: ડાઉનલોડ સ્પીડ કરતાં ઓછી (ADSL)
- લાઇન ક્વોલિટી: કોપર વાયરની સ્થિતિથી પ્રભાવિત
- ઉપલબ્ધતા: બધા વિસ્તારોમાં ઉપલબ્ધ નથી

ਮੇਮਣੀ ਟ੍ਰੀਡ: "DSL = Digital Subscriber Line"

પ્રશ્ન 4(ક) [7 ગુણ]

DNS- ડોમેન નેમ સિસ્ટમની ભૂમિકા.

જવાબ:

DNS รเขโ:

- નેમ રિઝોલ્યુશન: ડોમેન નેમ્સને IP એડ્રેસિસમાં કન્વર્ટ કરે છે
- હાયરાર્કિકલ સ્ટ્રક્ચર: ટ્રી-જેવા માળખામાં ગોઠવાયેલું
- ડિસ્ટ્રિબ્યુટેડ ડેટાબેસ: માહિતી બહુવિધ સર્વર્સ પર સ્ટોર થાય છે

DNS હાયરાર્કી:

- રૂટ ડોમેન: સર્વોચ્ચ સ્તર (.)
- **ટોપ-લેવલ ડોમેન**: .com, .org, .net, .edu
- क्षेडन्ड-**લेयલ sìभेन**: google.com, yahoo.com

DNS રિઝોલ્યુશન પ્રોસેસ:

1. **કલાયન્ટ કવેરી**: યુઝર <u>www.example.com</u> ટાઇપ કરે છે

2. **લોકલ DNS**: લોકલ કેશ ચેક કરે છે

3. **૩ટ સર્વર**: ૩ટ DNS સર્વર ક્વેરી કરે છે

4. **TLD સર્વર**: .com સર્વર કવેરી કરે છે

5. **ઓથોરિટેટિવ સર્વર**: IP એડ્રેસ મેળવે છે

6. **રિસ્પોન્સ**: કલાયન્ટને IP રિટર્ન કરે છે

DNS રેકોર્ડ પ્રકારો:

• A રેકોર્ડ: ડોમેનને IPv4 એડ્રેસ પર મેપ કરે છે

• AAAA રેકોર્ડ: ડોમેનને IPv6 એડ્રેસ પર મેપ કરે છે

• **CNAME**: કેનોનિકલ નેમ (એલિયાસ)

• MX: મેઇલ એક્સચેન્જ સર્વર

• NS: નેમ સર્વર રેકોર્ડ્સ

ਮੇਮરੀ ਟ੍ਰੀs: "DNS = Domain Name System"

પ્રશ્ન 4(અ અથવા) [3 ગુણ]

DHCP અને BOOTP નું પૂરું નામ આપો. અને તેમનું વર્ણન કરો.

જવાબ:

પૂરા નામો:

• **DHCP**: Dynamic Host Configuration Protocol

• BOOTP: Bootstrap Protocol

પ્રોટોકોલ	รเช้
DHCP	ઓટોમેટિકલી IP એડ્રેસિસ એસાઇન કરે છે
ВООТР	ડિસ્કલેસ વર્કસ્ટેશન્સને IP એડ્રેસ પ્રદાન કરે છે

DHCP પ્રોસેસ:

• ડિસ્કવર: ક્લાયન્ટ બ્રોડકાસ્ટ રિક્વેસ્ટ

• **ઓફર**: સર્વર IP એડ્રેસ ઓફર કરે છે

• **રિકવેસ્ટ**: ક્લાયન્ટ સ્પેસિકિક IP રિક્વેસ્ટ કરે છે

• એકનોલેજ: સર્વર એસાઇનમેન્ટ કન્કર્મ કરે છે

BOOTP પ્રોસેસ:

• સ્ટેટિક કોન્ફિગરેશન: પ્રી-કોન્ફિગર્ડ IP એસાઇનમેન્ટ્સ

• ડિસ્કલેસ બૂટ: વર્કસ્ટેશન્સ નેટવર્કથી બૂટ થાય છે

• **સર્વર રિસ્પોન્સ**: IP અને બૂટ માહિતી પ્રદાન કરે છે

મેમરી ટ્રીક: "DHCP = Dynamic, BOOTP = Bootstrap"

પ્રશ્ન 4(બ અથવા) [4 ગુણ]

વર્યુંઅલ સર્કિટ્સ અને ડેટાગ્રામ નેટવર્ક્સ વચ્ચેના તફાવતો લખો.

જવાબ:

લક્ષણ	વર્યુંઅલ સર્કિટ્સ	ડેટાગ્રામ નેટવર્ક્સ
કનેક્શન	કનેક્શન-ઓરિએન્ટેડ	કનેક્શનલેસ
સેટઅપ	સેટઅપ ફેઝ જરૂરી	કોઈ સેટઅપ જરૂરી નથી
રાઉટિંગ	બધા પેકેટ્સ માટે એક જ પાથ	સ્વતંત્ર રાઉટિંગ
ઓર્ડર	પેકેટ્સ ક્રમમાં આવે છે	ક્રમ બહાર આવી શકે છે
વિશ્વસનીયતા	વધુ વિશ્વસનીય	ઓછી વિશ્વસનીય
ઓવરહેડ	વધુ સેટઅપ ઓવરહેડ	ઓછો પર-પેકેટ ઓવરહેડ

વર્યુંઅલ સર્કિટ્સ:

• પાથ એસ્ટેબ્લિશમેન્ટ: વર્યુઅલ કનેક્શન બનાવે છે

• સ્ટેટ ઇન્ફોર્મેશન: કનેક્શન સ્ટેટ મેન્ટેઇન કરે છે

• **G**ียเ**๔ะยเ**้า: ATM, Frame Relay

ડેટાગ્રામ નેટવર્ક્સ:

• સ્વતંત્ર પેકેટ્સ: દરેક પેકેટ અલગથી રાઉટ થાય છે

• સ્ટેટલેસ: કોઈ કનેક્શન સ્ટેટ મેન્ટેઇન નથી

• **ઉદાહરણો**: ઇન્ટરનેટ પ્રોટોકોલ (IP)

મેમરી ટ્રીક: "Virtual = Connection, Datagram = Independent"

પ્રશ્ન 4(ક અથવા) [7 ગુણ]

ટ્રાન્સપોર્ટ લેયરમાં TCP અને UDP પ્રોટોકોલ સમજાવો

લક્ષણ	ТСР	UDP
કનેક્શન	કનેક્શન-ઓરિએન્ટેડ	કનેક્શનલેસ
વિશ્વસનીયતા	વિશ્વસનીય	અવિશ્વસનીય
હેડર સાઇઝ	20 બાઇટ્સ	8 બાઇટ્સ
ફ્લો કંટ્રોલ	હા	ना
એરર કંટ્રોલ	ঙা	મૂળભૂત
સ્પીડ	ધીમી	ઝડપી

TCP (Transmission Control Protocol):

• થ્રી-વે હેન્ડશેક: SYN, SYN-ACK, ACK

• ફ્લો કંટ્રોલ: સ્લાઇડિંગ વિન્ડો મેકેનિઝમ

• એરર રિકવરી: ગુમ થયેલા પેકેટ્સનું રિટ્રાન્સમિશન

• કંજેશન કંટ્રોલ: નેટવર્ક ઓવરલોડ અટકાવે છે

TCP હેડર:

0	16	32
+	+	
Source	Port Destin	ation Port
+		
	Sequence Number	
+		
Ack	nowledgment Numb	er
+		
Hdr	U A P R S F	Window
Len	R C S S Y I	Size
+	+	

UDP (User Datagram Protocol):

• સરળ પ્રોટોકોલ: ન્યૂનતમ ઓવરહેડ

• બેસ્ટ એફર્ટ: ડિલિવરીની કોઈ ગેરંટી નથી

• **એપ્લિકેશન્સ**: DNS, DHCP, સ્ટ્રીમિંગ મીડિયા

• **રીઅલ-ટાઇમ કમ્યુનિકેશન**: વોઇસ, વિડિયો એપ્લિકેશન્સ

UDP હેડર:

0	16	32
+	+	+
Source Port	Destinati	on Port
+ Length	+ Checks	
+	+	+

એપ્લિકેશન્સ:

• TCP: વેબ બ્રાઉઝિંગ, ઈમેઇલ, ફાઇલ ટ્રાન્સફર

• UDP: ઓનલાઇન ગેમિંગ, વિડિયો સ્ટ્રીમિંગ, DNS ક્વેરીઝ

ਮੇਮਣੀ ਟ੍ਰੀs: "TCP = Reliable, UDP = Fast"

પ્રશ્ન 5(અ) [3 ગુણ]

નીચેનામાંથી કોઈ પણ બે સમજાવો. (1) WWW (2) FTP (3) SMTP

જવાબ:

WWW (World Wide Web):

• **HTTP ม่เวเรา**เต: HyperText Transfer Protocol

• વેબ બ્રાઉઝર: ક્લાયન્ટ સોફ્ટવેર (Chrome, Firefox)

• વેબ સર્વર: વેબ પેજ સર્વ કરે છે (Apache, IIS)

FTP (File Transfer Protocol):

• ફાઇલ ટ્રાન્સફર: ફાઇલો અપલોડ અને ડાઉનલોડ કરવા

• બે મોડ્સ: એક્ટિવ અને પેસિવ મોડ

• ઓથેન્ટિકેશન: યુઝરનેમ અને પાસવર્ડ જરૂરી

સેવા	પોર્ટ	รเข้
www	80/443	વેબ પેજ ડિલિવરી
FTP	20/21	ફાઇલ ટ્રાન્સફર

ਮੇਮਣੀ ਟ੍ਰੀs: "WWW = Web, FTP = Files"

પ્રશ્ન 5(બ) [4 ગુણ]

સિમેટ્રિક અને એસિમેટ્રિક એન્ક્રિપ્શન અલ્ગોરિધમ્સ વચ્ચેનો તફાવત લખો.

લક્ષણ	સિમેટ્રિક	એસિમેટ્રિક
કીઝ	એન્ક્રિપ્શન/ડિક્રિપ્શન માટે એક જ કી	વિવિદ્ય કીઝ (પબ્લિક/પ્રાઇવેટ)
સ્પીડ	ઝડપી	ધીમી
કી ડિસ્ટ્રિબ્યુશન	મુશ્કેલ	સરળ
ઉદાહરણો	AES, DES	RSA, ECC

સિમેટ્રિક એન્ક્રિપ્શન:

• સિંગલ કી: મોકલનાર અને મેળવનાર બંને એક જ કીનો ઉપયોગ

• ક્રી મેનેજમેન્ટ: સુરક્ષિત કી ડિસ્ટ્રિબ્યુશન જરૂરી

• પર્ફોર્મન્સ: ઝડપી એન્ક્રિપ્શન/ડિક્રિપ્શન

• એપ્લિકેશન્સ: બલ્ક ડેટા એન્ક્રિપ્શન

એસિમેટ્રિક એન્ક્રિપ્શન:

• કી પેર: એન્ક્રિપ્શન માટે પબ્લિક કી, ડિક્રિપ્શન માટે પ્રાઇવેટ કી

• કી ડિસ્ટ્રિબ્યુશન: પબ્લિક કી ખુલ્લેઆમ શેર કરી શકાય

• પર્ફોર્મન્સ: સિમેટ્રિક કરતાં ધીમું

• એપ્લિકેશન્સ: ડિજિટલ સિગ્નેચર્સ, કી એક્સચેન્જ

મેમરી ટ્રીક: "Symmetric = Same, Asymmetric = Different"

પ્રશ્ન 5(ક) [7 ગુણ]

ક્રિપ્ટોગ્રાકીના સંદર્ભમાં "એન્ક્રિપ્શન" અને "ડિક્રિપ્શન" શબ્દોને વ્યાખ્યાયિત કરો.

જવાબ:

એન્ક્રિપ્શન:

• વ્યાખ્યા: પ્લેઇનટેક્સ્ટને સાઇફરટેક્સ્ટમાં કન્વર્ટ કરવાની પ્રક્રિયા

• હેતુ: ડેટાની ગોપનીયતાનું રક્ષણ

• ઇનપુટ: પ્લેઇનટેક્સ્ટ + કી

• આઉટપુટ: સાઇફરટેક્સ્ટ

ડિક્રિપ્શન:

• વ્યાખ્યા: સાઇફરટેક્સ્ટને પાછા પ્લેઇનટેક્સ્ટમાં કન્વર્ટ કરવાની પ્રક્રિયા

• હેતુ: મૂળ ડેટા પુનઃપ્રાપ્ત કરવા

• ઇનપુટ: સાઇફરટેક્સ્ટ + કી

• આઉટપુટ: પ્લેઇનટેક્સ્ટ

ક્રિપ્ટોગ્રાફિક પ્રક્રિયા:

1. **મોકલનાર**: કીનો ઉપયોગ કરીને મેસેજ એન્ક્રિપ્ટ કરે છે

2. **ટ્રાન્સમિશન**: નેટવર્ક પર સાઇફરટેક્સ્ટ મોકલે છે

3. મેળવનાર: કીનો ઉપયોગ કરીને સાઇફરટેક્સ્ટ ડિક્રિપ્ટ કરે છે

4. **રિકવરી**: મૂળ પ્લેઇનટેક્સ્ટ મેસેજ મેળવે છે

એન્ક્રિપ્શનના પ્રકારો:

• સ્ટ્રીમ સાઇફર: એક સમયે એક બિટ/બાઇટ એન્ક્રિપ્ટ કરે છે

• બ્લોક સાઇફર: નિર્ધારિત-સાઇઝના બ્લોક્સ એન્ક્રિપ્ટ કરે છે

• હેશ ફંક્શન: વન-વે એન્ક્રિપ્શન (કોઈ ડિક્રિપ્શન નથી)

એપ્લિકેશન્સ:

• ડેટા પ્રોટેક્શન: સુરક્ષિત ફાઇલ સ્ટોરેજ

• કમ્યુનિકેશન: સુરક્ષિત મેસેજિંગ

• ઓથેન્ટિકેશન: ડિજિટલ સિગ્નેચર્સ

• પ્રાઇવસી: વ્યક્તિગત માહિતીનું રક્ષણ

સિક્યુરિટી આવશ્યકતાઓ:

• ગોપનીયતા: માત્ર અધિકૃત યુઝર્સ જ વાંચી શકે

• અખંડિતા: ડેટા સાથે છેડછાડ થઈ નથી

• ઓથેન્ટિકેશન: મોકલનારની ઓળખ ચકાસવી

• નોન-રિપ્યુડિએશન: મોકલનાર મોકલવાનો ઇનકાર કરી શકતો નથી

મેમરી ટ્રીક: "Encryption = Hide, Decryption = Reveal"

પ્રશ્ન 5(અ અથવા) [3 ગુણ]

IMAP અને POP3 વચ્ચેનો તકાવત લખો.

લક્ષણ	IMAP	POP3
સ્ટોરેજ	સર્વર-સાઇડ	ક્લાયન્ટ-સાઇડ
એક્સેસ	બહુવિધ ઉપકરણો	એક ઉપકરણ
ઓફલાઇન	મર્યાદિત	સંપૂર્ણ એક્સેસ

IMAP (Internet Message Access Protocol):

• સર્વર સ્ટોરેજ: મેસેજ સર્વર પર રહે છે

• મલ્ટિ-ડીવાઇસ: બહુવિધ ઉપકરણોથી એક્સેસ

• સિન્કોનાઇઝેશન: ફેરફારો બધા ઉપકરણોમાં સિન્ક થાય છે

POP3 (Post Office Protocol 3):

• ડાઉનલોડ: મેસેજ ક્લાયન્ટ પર ડાઉનલોડ થાય છે

• સિંગલ ડીવાઇસ: એક ઉપકરણ એક્સેસ માટે શ્રેષ્ઠ

• સ્ટોરેજ: ક્લાયન્ટ મેસેજ સ્ટોરેજ મેનેજ કરે છે

મેમરી ટ્રીક: "IMAP = Internet Access, POP3 = Post Office"

પ્રશ્ન 5(બ અથવા) [4 ગુણ]

સંક્ષિપ્તમાં Information Technology (સુધારા) અધિનિયમ, 2008 અને ભારતમાં સાયબર કાયદાઓ પર તેની અસરનું વર્ણન કરો.

જવાબ:

IT અધિનિયમ 2008 મુખ્ય લક્ષણો:

• સાયબર ક્રાઇમ્સ: વિવિધ સાયબર અપરાધોની વ્યાખ્યા

• ડેટા પ્રોટેક્શન: પ્રાઇવસી અને સિક્યુરિટી આવશ્યકતાઓ

• **ડિજિટલ સિગ્નેચર્સ**: ઈ-સિગ્નેચર્સની કાનૂની માન્યતા

• પેનલ્ટીઝ: ઉલ્લંઘન માટે દંડ અને કેદ

મુખ્ય સુધારાઓ:

• **કલમ 66A**: આક્રામક મેસેજને ગુનાહિત બનાવ્યું (પછીથી ૨દ)

• કલમ 69: માહિતી ઇન્ટરસેપ્ટ કરવાની સરકારી શક્તિ

• **કલમ 72A**: વ્યક્તિગત માહિતી જાહેર કરવા માટે સજા

• **કલમ 43A**: ડેટા બ્રીચ માટે વળતર

સાયબર કાયદાઓ પર અસર:

• કાનૂની ફ્રેમવર્ક: વ્યાપક સાયબર કાયદાનું માળખું

• બિઝનેસ કોમ્પ્લાયન્સ: ડેટા સુરક્ષા આવશ્યકતાઓ

• વ્યક્તિગત અધિકારો: પ્રાઇવસી પ્રોટેક્શન મેકેનિઝમ

• કાયદાનો અમલ: સાયબર ક્રાઇમ્સની તપાસ માટે સાધનો

મેમરી ટ્રીક: "IT Act = Internet Technology Act"

પ્રશ્ન 5(ક અથવા) [7 ગુણ]

સિમેટ્રિક અને એસિમેટ્રિક એન્ક્રિપ્શન અલ્ગોરિદ્યમ્સ વચ્ચેનો તફાવત.

જવાબ:

પાસું	સિમેટ્રિક એન્ક્રિપ્શન	એસિમેટ્રિક એન્ક્કિપ્શન
કીનો ઉપયોગ	એન્ક્રિપ્ટ/ડિક્રિપ્ટ માટે એક જ કી	વિવિધ કીઝ (પબ્લિક/પ્રાઇવેટ)
કી મેનેજમેન્ટ	મુશ્કેલ કી ડિસ્ટ્રિબ્યુશન	સરળ કી ડિસ્ટ્રિબ્યુશન
પર્ફોર્મન્સ	ઝડપી પ્રોસેસિંગ	ધીમી પ્રોસેસિંગ
કી લેન્થ	ટૂંકી કીઝ (128-256 બિટ્સ)	લાંબી કીઝ (1024-4096 બિટ્સ)
સ્કેલેબિલિટી	નબળી (n² કી પેર્સ જરૂરી)	સારી (n કી પેર્સ જરૂરી)
ઉદાહરણો	AES, DES, 3DES, Blowfish	RSA, ECC, DSA, ElGamal

સિમેટ્રિક એન્ક્રિપ્શન વિગતો:

• અભોરિધમ પ્રકારો: સ્ટ્રીમ સાઇફર્સ, બ્લોક સાઇફર્સ

• કી ડિસ્ટ્રિબ્યુશન પ્રોબ્લેમ: કી એક્સચેન્જ માટે સુરક્ષિત ચેનલ જરૂરી

• **એપ્લિકેશન્સ**: બલ્ક ડેટા એન્ક્રિપ્શન, VPNs, ફાઇલ એન્ક્રિપ્શન

• ફાયદાઓ: ઝડપી, મોટા પ્રમાણમાં ડેટા માટે કાર્યક્ષમ

• ગેરફાયદાઓ: કી મેનેજમેન્ટ જટિલતા, ડિજિટલ સિગ્નેચર્સ નથી

એસિમેટ્રિક એન્ક્રિપ્શન વિગતો:

• **પબ્લિક કી ઇન્ફ્રાસ્ટ્રક્ચર**: કી મેનેજમેન્ટ માટે PKI

• ડિજિટલ સિગ્નેચર્સ: ઓથેન્ટિકેશન અને નોન-રિપ્યુડિએશન

• **એપ્લિકેશન્સ**: ઈમેઇલ સિક્યુરિટી, SSL/TLS, ડિજિટલ સર્ટિફિકેટ્સ

• ફાયદાઓ: સુરક્ષિત કી એક્સચેન્જ, ડિજિટલ સિગ્નેચર્સ

• ગેરફાયદાઓ: કોમ્પ્યુટેશનલી ઇન્ટેન્સિવ, ધીમી પ્રોસેસિંગ

હાઇબ્રિડ અપ્રોચ:

• બેસ્ટ ઓફ બોથ: સિમેટ્રિક અને એસિમેટ્રિક એન્ક્રિપ્શનનું સંયોજન

• કી એક્સચેન્જ: કી ડિસ્ટ્રિબ્યુશન માટે એસિમેટ્રિક

• ડેટા એન્ક્રિપ્શન: વાસ્તવિક ડેટા માટે સિમેટિક

• **ઉદાહરણ**: SSL/TLS બંને પદ્ધતિનો ઉપયોગ કરે છે

વાસ્તવિક-દુનિયાના એપ્લિકેશન્સ:

• **બેંકિંગ**: ATM ટ્રાન્ઝેક્શન્સ સિમેટ્રિક એન્ક્રિપ્શનનો ઉપયોગ કરે છે

• **ઇ-કોમર્સ**: HTTPS હાઇબ્રિડ એન્ક્રિપ્શનનો ઉપયોગ કરે છે

• **ઈમેઇલ**: PGP કી એક્સચેન્જ માટે એસિમેટ્રિકનો ઉપયોગ કરે છે

• **મોબાઇલ**: WhatsApp એન્ડ-ટુ-એન્ડ એન્ક્રિપ્શનનો ઉપયોગ કરે છે

સિક્યુરિટી વિચારણાઓ:

• કી લેન્થ: લાંબી કીઝ વધુ સારી સિક્યુરિટી પ્રદાન કરે છે

• અલ્ગોરિદ્યમ મજબૂતતા: સાબિત અલ્ગોરિદ્યમ્સ પસંદ કરો

• ઇમ્પ્લિમેન્ટેશન: યોગ્ય કોડિંગ વલ્નરેબિલિટીઝ અટકાવે છે

• **કી સ્ટોરેજ**: સુરક્ષિત કી મેનેજમેન્ટ આવશ્યક

પર્કોર્મન્સ સરખામણી:

ઓપરેશન	સિમેટ્રિક (AES)	એસિમેટ્રિક (RSA)
એન્ક્રિપ્શન	~1000 MB/s	~1 MB/s
કી જનરેશન	ઝડપી	ધીમી
મેમરી ઉપયોગ	ઓછો	વધુ
CPU ઉપયોગ	ઓછો	વધુ

ભવિષ્યના ટ્રેન્ડ્સ:

• ક્વોન્ટમ કમ્પ્યુટિંગ: વર્તમાન એસિમેટ્રિક અલ્ગોરિધમ્સ માટે ખતરો

• પોસ્ટ-ક્વોન્ટમ ક્રિપ્ટોગ્રાફી: નવા અલ્ગોરિધમ્સ વિકસાવાઈ રહ્યા છે

• એલિપ્ટિક કર્વ: વધુ કાર્યક્ષમ એસિમેટ્રિક એન્ક્રિપ્શન

• **લાઇટવેઇટ ક્રિપ્ટોગ્રાફી**: IoT ઉપકરણો માટે

મેમરી ટ્રીક: "Symmetric = Same Speed, Asymmetric = Advanced Security"