TD 1: Architecture des ordinateurs

Architecture générale

Question 1 Complétez le schéma de la machine de Von Neumann suivant :

Question 2 Complétez le schéma du PC suivant :

Question 3 Sachant que le bus d'adresse du processeur est de 16 bits avec un alignement à l'octet, quelle est la taille de l'espace mémoire maximum que celui-ci peut adresser ?

<u>Question 4</u> Un bus est caractérisé, entre autres, par son taux de transfert (débit), c'est-à-dire la quantité d'informations qui peuvent être transmises par unité de temps. Ce taux de transfert dépend de:

- la fréquence de l'horloge du bus, exprimée en MHz; et la « largeur du bus » nombre de bit
- La fréquence du bus est définie par sa **fréquence** (exprimée en hertz), c'est-à-dire le nombre de paquets de données envoyés ou reçus par seconde.
- On parle de cycle pour désigner chaque envoi ou réception de données. La « largeur de bus » est le nombre de bits que le bus peut transmettre simultanément.
 Cette « largeur du bus » correspond au nombre de lignes physiques du bus sur lesquelles les données.

Cette « largeur du bus » correspond au nombre de lignes physiques du bus sur lesquelles les données sont envoyées de manière simultanée. Par exemple, une nappe de 32 fils de données permet de transmettre 32 **bits** en parallèle. De cette façon, il est possible de connaître le débit maximal du bus (ou taux de transfert maximal), c'est-à-dire la quantité de données qu'il peut transporter par unité de temps, **en multipliant sa « largeur de bande » par sa fréquence**. Calcul du taux de transfert (débit) d'un bus d'une largeur de 16 bit, cadencé à une fréquence de 133 MHz

Calculer les taux de transfert suivant :

A/

Largeur du bus (bits)	32	64	64	64
Fréquence du bus (Mhz)	66	66	100	133
Taux de transfert (Mo/s)				

B/

Largeur du bus (bits)	16	32	32	32	32
Fréquence du bus (Mhz)	8.33	8.33	33.33	66.66	66.66
Taux de transfert (Mo/s)					

<u>Question 5</u> Quelles sont les principales différences entre la RAM et la ROM? où utilise-t-on de la ROM?

<u>Question 6</u> Convertir en binaire, puis en octal, et enfin hexadécimal les nombres suivants :

100, 127, 128, 256, 1000, 1023, 1024, 10000.

Question 7 Convertir en binaire, puis en octal, et enfin en hexadécimal les nombres suivants : $(5A)_{16}$, $(CFBA)_{16}$, $(E10D)_{16}$, $(FF)_{16}$, $(B00)_{16}$, $(F000)_{16}$, $(FFFF)_{16}$.

<u>Question 8</u> Soit x une base quelconque, montrer que $(10101)_x$ est un multiple de $(111)_x$; exprimer le quotient dans les bases 2, 8, 10, 16.

Question 9 Ecrire un programme en C pour faire la conversion d'un nombre de la base 10 vers la base 2

Question 10 A partir du programme précédant écrire un programme C pour la conversion d'un nombre de la base a vers la base b