11 Interprétation géométrique des endomorphismes

Projections et symétries vectorielles

Soient E un espace vectoriel de dimension n et U, V deux sous-espaces vectoriels supplémentaires dans E et non réduits au vecteur nul.

On appelle **projection vectorielle de base** U **et de direction** V tout endomorphisme p de E tel que

$$p(u) = u$$
 et $p(v) = 0$ quels que soient $u \in U$ et $v \in V$.

On appelle symétrie vectorielle de base U et de direction V tout endomorphisme s de E tel que

$$s(u) = u$$
 et $s(v) = -v$ quels que soient $u \in U$ et $v \in V$.

Proposition Si l'endomorphisme p de E est une projection vectorielle, alors :

- 1) p n'est pas bijectif
- 2) $p \circ p = p$
- 3) p admet uniquement les valeurs propres 0 et 1 et E_0 est la direction de p et E_1 est la base de p.

Preuve Puisque $E = U \oplus V$, tout vecteur x de E s'écrit de manière unique x = u + v où $u \in U$ et $v \in V$. Donc p(x) = p(u + v) = p(u) + p(v) = u + 0 = u.

- 1) Puisque p(x) = u, il suit que Im(p) = U. Comme $V \neq \{0\}$, il apparaît que $U \neq E$, donc p n'est pas surjectif; a fortiori, p n'est pas bijectif.
- 2) $(p \circ p)(x) = p(p(x)) = p(p(u+v)) = p(u) = u = p(x).$
- 3) (a) Tout vecteur u de U est un vecteur propre associé à la valeur propre 1, car $p(u)=u=1\cdot u$.
 - (b) Tout vecteur v de V est un vecteur propre associé à la valeur propre 0, car $p(v)=0=0\cdot v$.
 - (c) Si x est un vecteur propre associé à la valeur propre λ , alors $u=p(x)=\lambda\,x=\lambda\,(u+v)=\lambda\,u+\lambda\,v,$ c'est-à-dire $(\lambda-1)\,u+\lambda\,v=0.$
 - i. $u \neq 0$ et $v \neq 0$ entraı̂ne la contradiction $\lambda 1 = 0$ et $\lambda = 0$, attendu que les vecteurs u et v sont linéairement indépendants.
 - ii. $u \neq 0$ et v = 0 donne $\lambda 1 = 0$, c'est-à-dire $E_1 = U$.
 - iii. u = 0 et $v \neq 0$ implique $\lambda = 0$, à savoir $E_0 = V$.
 - iv. u = 0 et v = 0 est impossible, car le vecteur propre $x \neq 0$.

Proposition Si l'endomorphisme s de E est une symétrie vectorielle, alors :

- 1) $s \circ s = id_{\mathbf{E}}$
- 2) s est bijectif
- 3) le déterminant de s est égal à ± 1
- 4) s admet uniquement les valeurs propres 1 et -1 et E_{-1} est la direction de s et E_1 est la base de s.

Preuve Puisque $E = U \oplus V$, tout vecteur x de E s'écrit de manière unique x = u + v où $u \in U$ et $v \in V$. Donc s(x) = s(u + v) = s(u) + s(v) = u - v.

1)
$$(s \circ s)(x) = s(s(x)) = s(s(u+v)) = s(u-v) = s(u) - s(v) = u - (-v)$$

= $u + v = x$

- 2) $s\circ s=id_{\rm E}$ signifie que $s^{-1}=s,$ c'est-à-dire que s est bijectif.
- 3) Soit A la matrice de s relativement à une base de E. L'identité $s \circ s = id_E$ signifie que $A^2 = I_n$. Il s'ensuit que $1 = \det(I_n) = \det(A^2) = (\det(A))^2$, si bien que $\det(A) = \pm 1$.
- 4) (a) Tout vecteur u de U est un vecteur propre associé à la valeur propre 1, car $s(u) = u = 1 \cdot u$.
 - (b) Tout vecteur v de V est un vecteur propre associé à la valeur propre -1, car $s(v) = -v = (-1) \cdot v$.
 - (c) Si x est un vecteur propre associé à la valeur propre λ , alors $u-v=s(x)=\lambda\,x=\lambda\,(u+v)=\lambda\,u+\lambda\,v$, c'est-à-dire $(\lambda-1)\,u+(\lambda+1)\,v=0$.
 - i. $u \neq 0$ et $v \neq 0$ entraı̂ne la contradiction $\lambda 1 = 0$ et $\lambda + 1 = 0$, attendu que les vecteurs u et v sont linéairement indépendants.
 - ii. $u \neq 0$ et v = 0 donne $\lambda 1 = 0$, c'est-à-dire $E_1 = U$.
 - iii. u = 0 et $v \neq 0$ implique $\lambda + 1 = 0$, à savoir $E_{-1} = V$.
 - iv. u = 0 et v = 0 est impossible, car le vecteur propre $x \neq 0$.
- 11.1 Dans \mathbb{R}^2 muni de sa base canonique, on considère les sous-espaces vectoriels

$$U = \Delta \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 et $V = \Delta \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

On désigne par s la symétrie vectorielle de base U et de direction V et par p la projection vectorielle de base V et de direction U.

Donner les matrices de s et de p dans la base canonique.

Indication : quelles sont les matrices de s et de p dans la base $\mathcal{B}' = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$; $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$?

11.2 Dans \mathbb{R}^3 muni de sa base canonique, on considère les sous-espaces vectoriels

$$\mathbf{U} = \Delta \left(\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right) \quad \text{et} \quad \mathbf{V} = \left\{ (x\,;y\,;z) \in \mathbb{R}^3 : x - y = 0 \right\}.$$

On désigne par s la symétrie vectorielle de base U et de direction V et par pla projection vectorielle de base V et de direction U.

Donner les matrices de s et de p dans la base canonique.

Déterminer la nature géométrique des endomorphismes de \mathbb{R}^2 et de \mathbb{R}^3 de 11.3 matrices:

$$1) \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$

$$2) \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$$

1)
$$\begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$
 2) $\begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix}$ 3) $\begin{pmatrix} 1 & 0 \\ 2\sqrt{3} & -1 \end{pmatrix}$

$$4) \begin{pmatrix} a & a-1 \\ -a & 1-a \end{pmatrix}$$

$$5) \begin{pmatrix} 0 & 2 \\ \frac{1}{2} & 0 \end{pmatrix}$$

4)
$$\begin{pmatrix} a & a-1 \\ -a & 1-a \end{pmatrix}$$
 5) $\begin{pmatrix} 0 & 2 \\ \frac{1}{2} & 0 \end{pmatrix}$ 6) $\begin{pmatrix} 3 & -4 & -2 \\ 4 & -7 & -4 \\ -5 & 10 & 6 \end{pmatrix}$

7)
$$\begin{pmatrix} 5 & -8 & -4 \\ 8 & -15 & -8 \\ -10 & 20 & 11 \end{pmatrix}$$
 8) $\frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ 9) $\begin{pmatrix} 3 & 0 & -4 \\ 2 & -1 & -2 \\ 2 & 0 & -3 \end{pmatrix}$

$$8) \ \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

$$9) \begin{pmatrix} 3 & 0 & -4 \\ 2 & -1 & -2 \\ 2 & 0 & -3 \end{pmatrix}$$

- On considère l'espace euclidien \mathbb{R}^3 muni de la base canonique. 11.4
 - 1) Déterminer la matrice relativement à la base canonique de la projection orthogonale sur le plan π d'équation x - 2y + 3z = 0.
 - 2) Déterminer la matrice relativement à la base canonique de la projection orthogonale sur la droite vectorielle $\Delta \left(\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \right)$.

Endomorphismes orthogonaux de \mathbb{R}^2

- Soient $(e_1; e_2)$ la base canonique de \mathbb{R}^2 et r la rotation vectorielle d'angle α . 11.5
 - (a) Quelles sont les composantes du vecteur $r(e_1)$ dans la base canonique?
- (b) Quelles sont les composantes du vecteur $r(e_2)$ dans la base canonique?
- (c) Quelle est la matrice A associée à rdans la base canonique?
- 2) Vérifier que A est orthogonale et que det(A) = 1.
- 3) Montrer que A n'admet aucune valeur propre si $\alpha \notin \pi \mathbb{Z}$.
- Soit $A = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$ la matrice de l'endomorphisme s de \mathbb{R}^2 relati-11.6 vement à la base canonique
 - 1) Vérifier que A est orthogonale et que det(A) = -1.

- 2) Montrer que A admet 1 et -1 pour valeurs propres et que les espaces propres associés sont $E_1 = \Delta \begin{pmatrix} \cos\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) \end{pmatrix}$ et $E_{-1} = \Delta \begin{pmatrix} -\sin\left(\frac{\alpha}{2}\right) \\ \cos\left(\frac{\alpha}{2}\right) \end{pmatrix}$. Indication: $\cos(\alpha) = 1 2\sin^2\left(\frac{\alpha}{2}\right) = 2\cos^2\left(\frac{\alpha}{2}\right) 1$ et $\sin(\alpha) = 2\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{2}\right)$.
- 3) En déduire que s est une symétrie vectorielle orthogonale de base E_1 et de direction E_{-1} .

Théorème Les endomorphismes orthogonaux de \mathbb{R}^2 sont les rotations vectorielles et les symétries vectorielles orthogonales.

$$\det(A) = 1 \iff A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \text{ rotation}$$

$$\det(A) = -1 \iff A = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} \text{ symétrie orthogonale}$$

L'axe de la symétrie est le sous-espace propre E_1 associé à la valeur propre 1; sa direction est le sous-espace propre E_{-1} associé à la valeur propre -1.

Preuve Si A = $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est une matrice orthogonale, alors ses colonnes constituent une base orthonormée, d'où résultent les équations

$$a^{2} + c^{2} = 1$$
, $b^{2} + d^{2} = 1$ et $ab + cd = 0$.

Des deux premières équations, on déduit l'existence de deux réels α et β tels que $\begin{cases} a = \cos(\alpha) \\ c = \sin(\alpha) \end{cases}$ et $\begin{cases} b = \sin(\beta) \\ d = \cos(\beta) \end{cases}$. La troisième équation entraı̂ne

$$0 = \cos(\alpha) \sin(\beta) + \sin(\beta) \cos(\beta) = \sin(\alpha + \beta).$$

- 1) Si $\alpha + \beta = 2 k \pi$, c'est-à-dire $\beta = -\alpha + 2 k \pi$, alors $A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$.
- 2) Si $\alpha + \beta = \pi + 2k\pi$, à savoir $\beta = \pi \alpha + 2k\pi$, alors $A = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix}$.
- 11.7 Vérifier que les endomorphismes de \mathbb{R}^2 donnés ci-dessous par leur matrice relativement à la base canonique sont des endomorphismes orthogonaux, et les caractériser géométriquement :

$$1) \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$2) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$3) \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$4) \ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$5) \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

$$6) \begin{pmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

$$7) \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$$

$$8) \begin{pmatrix} \frac{5}{13} & \frac{12}{13} \\ -\frac{12}{13} & \frac{5}{13} \end{pmatrix}$$

9)
$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}$$

Endomorphismes orthogonaux de \mathbb{R}^3

Théorème Un endomorphisme orthogonal h de \mathbb{R}^3 tel que $\det(h) = 1$ est une rotation autour d'un axe.

L'axe d'une rotation différente de l'identité est l'espace propre E_1 associé à la valeur propre 1. L'amplitude α de la rotation est donnée par $\cos(\alpha) = \frac{{\rm Tr}(h)-1}{2}$.

Preuve Soit A la matrice de h relativement à une base orthonormée. On suppose $\det(A) = \det({}^t\!A) = 1$ et ${}^t\!AA = I$.

$$\begin{aligned} \det(\mathbf{A} - \mathbf{I}) &= 1 \cdot \det(\mathbf{A} - \mathbf{I}) = \det({}^t\!\mathbf{A}) \, \det(\mathbf{A} - \mathbf{I}) = \det({}^t\!\mathbf{A} \, (\mathbf{A} - \mathbf{I})) \\ &= \det({}^t\!\mathbf{A} \mathbf{A} - {}^t\!\mathbf{A}) = \det(\mathbf{I} - {}^t\!\mathbf{A}) = \det({}^t\!\mathbf{I} - {}^t\!\mathbf{A}) = \det({}^t\!(\mathbf{I} - \mathbf{A})) \\ &= \det(\mathbf{I} - \mathbf{A}) = \det(-(\mathbf{A} - \mathbf{I})) = (-1)^3 \cdot \det(\mathbf{A} - \mathbf{I}) = -\det(\mathbf{A} - \mathbf{I}) \\ \mathrm{De} \, \det(\mathbf{A} - \mathbf{I}) = -\det(\mathbf{A} - \mathbf{I}), \, \mathrm{on \, \, tire \, que \, } \det(\mathbf{A} - \mathbf{I}) = 0. \end{aligned}$$

D'après le théorème du bas de la page 9.4, cela signifie que 1 est une valeur propre. Il existe donc un vecteur e_3 non nul tel que $h(e_3) = e_3$.

La droite $\Delta(e_3)$ constitue ainsi un sous-espace invariant. Vu l'exercice 10.11, son orthogonal e_3^{\perp} est aussi un sous-espace invariant.

Si $(e_1; e_2)$ forme une base orthonormée de e_3^{\perp} , alors la matrice de h relativement

à la base orthonormée
$$(e_1; e_2; e_3)$$
 est de la forme $\begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix}$ où \mathbf{B} est la

matrice, dans la base $(e_1; e_2)$, de la restriction de h au sous-espace e_3^{\perp} .

Puisque $1 = \det(h) = 1 \cdot \det(B) = \det(B)$ et que B est une matrice orthogonale d'ordre 2, on conclut, grâce au théorème de la page 11.4, que B est la matrice d'une rotation dans le plan vectoriel $\Pi(e_1; e_2) = e_3^{\perp}$.

La matrice de
$$h$$
 dans la base $(e_1; e_2; e_3)$ s'écrit donc $\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

En particulier $\text{Tr}(h) = 2\cos(\alpha) + 1$, si bien que $\cos(\alpha) = \frac{\text{Tr}(h) - 1}{2}$

Théorème Si h est un endomorphisme orthogonal de \mathbb{R}^3 avec $\det(h) = -1$, alors il existe une rotation r d'axe $\Delta(a)$ et une symétrie orthogonale s dont le plan est normal à $\Delta(a)$ telles que $h = r \circ s = s \circ r$.

L'axe de la rotation est l'espace propre E_{-1} associé à la valeur propre -1. L'amplitude α de la rotation est donnée par $\cos(\alpha) = \frac{\text{Tr}(h)+1}{2}$.

Dans le cas particulier où Tr(h) = 1, h est une symétrie orthogonale : le plan de symétrie est l'espace propre E_1 associé à la valeur propre 1.

Preuve Soit A la matrice de h relativement à une base orthonormée. On suppose $\det(A) = \det({}^t\!A) = -1$ et ${}^t\!AA = I$.

$$\det(A + I) = -(-1) \cdot \det(A + I) = -\det({}^{t}A) \det(A + I) = -\det({}^{t}A (A + I))$$

$$= -\det({}^{t}AA + {}^{t}A) = -\det(I + {}^{t}A) = -\det({}^{t}I + {}^{t}A) = -\det({}^{t}(I + A))$$

$$= -\det(I + A) = -\det(A + I)$$

De det(A + I) = -det(A + I), on tire que det(A + I) = 0.

D'après le théorème du bas de la page 9.4, cela signifie que -1 est une valeur propre. Il existe donc un vecteur e_3 non nul tel que $h(e_3) = -e_3$.

La droite $\Delta(e_3)$ constitue ainsi un sous-espace invariant. Vu l'exercice 10.11, son orthogonal e_3^{\perp} est aussi un sous-espace invariant.

Si $(e_1\,;e_2)$ forme une base orthonormée de $e_3^\perp,$ alors la matrice de h relativement

à la base orthonormée $(e_1; e_2; e_3)$ est de la forme $\begin{pmatrix} B & 0 \\ 0 & 0 & -1 \end{pmatrix}$ où B est la

matrice, dans la base $(e_1; e_2)$, de la restriction de h au sous-espace e_3^{\perp}

Puisque $-1 = \det(h) = -1 \cdot \det(B) = -\det(B)$ et que B est une matrice orthogonale d'ordre 2, on conclut, grâce au théorème de la page 11.4, que B est la matrice d'une rotation dans le plan vectoriel $\Pi(e_1; e_2) = e_3^{\perp}$.

La matrice de h dans la base $(e_1; e_2; e_3)$ s'écrit donc $\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

En particulier $Tr(h) = 2 \cos(\alpha) - 1$, si bien que $\cos(\alpha) = \frac{Tr(h)+1}{2}$.

$$\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & -1
\end{pmatrix} = \begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix} \begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & 1
\end{pmatrix}$$

montre que $h = r \circ s = s \circ r$ où r est la rotation d'axe $\Delta(e_3)$ et s la symétrie orthogonale dont le plan est $\Pi(e_1; e_2) = e_3^{\perp}$.

Dans le cas particulier où Tr(h) = 1, alors $\cos(\alpha) = \frac{\text{Tr}(h)+1}{2} = 1$, si bien que $\alpha = 2 k \pi$. Il en résulte $r = \text{Id}_{\mathbb{R}^3}$ et h = s.

11.8 Vérifier que les endomorphismes de \mathbb{R}^3 donnés ci-dessous par leur matrice relativement à la base canonique sont des endomorphismes orthogonaux, et les caractériser géométriquement :

1)
$$\frac{1}{5} \begin{pmatrix} 4 & -3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 2) $\frac{1}{49} \begin{pmatrix} 23 & -36 & 24 \\ -36 & -31 & -12 \\ 24 & -12 & -41 \end{pmatrix}$

$$3) \ \frac{1}{9} \begin{pmatrix} 1 & -4 & 8 \\ -4 & 7 & 4 \\ 8 & 4 & 1 \end{pmatrix}$$

$$4) \ \frac{1}{7} \begin{pmatrix} 6 & -2 & 3 \\ -2 & 3 & 6 \\ -3 & -6 & 2 \end{pmatrix}$$

$$5) \ \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ 2 & 2 & -1 \\ -2 & 1 & -2 \end{pmatrix}$$

$$6) \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

7)
$$\frac{1}{11} \begin{pmatrix} 9 & 6 & -2 \\ 2 & -6 & -9 \\ 6 & -7 & 6 \end{pmatrix}$$

$$8) \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- Relativement à la base canonique de \mathbb{R}^3 , déterminer la matrice de la symétrie orthogonale s de \mathbb{R}^3 par rapport au plan d'équation x+y+z=0 et celle de la symétrie orthogonale t de \mathbb{R}^3 relativement au plan d'équation 3x+y+4z=0. Déterminer ensuite la matrice de $r=s\circ t$ et caractériser géométriquement r.
- 11.10 1) Soit s la symétrie orthogonale de \mathbb{R}^3 relativement au plan vectoriel engendré par a = (-1; 3; 1) et b = (3; 1; 2). Déterminer la matrice de s relativement à la base canonique $(e_1; e_2; e_3)$ de \mathbb{R}^3 .
 - 2) Considérons l'endomorphisme r de \mathbb{R}^3 défini par $r(e_1) = e_2$, $r(e_2) = e_3$ et $r(e_3) = e_1$. Prouver que r est une rotation, dont on déterminera l'axe et l'amplitude.
 - 3) Déterminer un endomorphisme s' de \mathbb{R}^3 tel que $s' \circ s = r$, et caractériser géométriquement s'.
- 11.11 Déterminer les matrices relativement à la base canonique des rotations de \mathbb{R}^3 d'axe $\Delta((1;1;1))$ et dont l'amplitude α est telle que $\cos(\alpha) = \frac{3}{5}$.

Réponses

11.1 matrice de
$$s: \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$$
 matrice de $p: \frac{1}{4} \begin{pmatrix} 1 & -3 \\ -1 & 3 \end{pmatrix}$

11.2 matrice de
$$s: \begin{pmatrix} -3 & 2 & 0 \\ -4 & 3 & 0 \\ -2 & 2 & -1 \end{pmatrix}$$
 matrice de $p: \begin{pmatrix} 2 & -1 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$

11.3 Nature Base

1) projection
$$\Delta((1;0))$$

$$\Delta((2;1))$$

2) projection
$$\Delta((3;1))$$

$$\Delta((2;1))$$

3) symétrie
$$\Delta((1;\sqrt{3})$$

$$\Delta((0;1))$$

4) projection
$$\Delta((1;-1))$$

$$\Delta((1-a);a)$$

5) symétrie
$$\Delta((2;1))$$

$$\Delta((2;-1))$$

6) projection
$$\{(x:$$

$$\Delta((2, 1))$$

projection
$$\{(x; y; z) \in \mathbb{R}^3 : x - 2y - z = 0\}$$
 $\Delta((2; 4; -5))$

$$\Delta((2;4;-5))$$

$$\{(x;y;z) \in \mathbb{R}^3 : x-2y-z=0\} \quad \Delta((2;4;-5))$$

$$\Delta\big((2;4;-5)\big)$$

symétrie

9)

projection
$$\{(x; y; z) \in \mathbb{R}^3 : x + y + z = 0\}$$

$$\Delta((1;1;1)) \{(x;y;z) \in \mathbb{R}^3 : x - z = 0\}$$

1)
$$\frac{1}{14} \begin{pmatrix} 13 & 2 & -3 \\ 2 & 10 & 6 \\ -3 & 6 & 5 \end{pmatrix}$$

2)
$$\frac{1}{14} \begin{pmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{pmatrix}$$

1)
$$r(e_1) = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix}$$
 $r(e_2) = \begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix}$ $A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$

 $\Delta((2;1;1))$

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

- 1) rotation d'amplitude 180°
- 2) rotation d'amplitude -90°
- 3) symétrie orthogonale d'axe $\Delta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- 4) symétrie orthogonale d'axe $\Delta\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$
- 5) rotation d'amplitude 53,13°
- 6) symétrie orthogonale d'axe $\Delta\left(\begin{pmatrix}1\\-2\end{pmatrix}\right)$
- 7) symétrie orthogonale d'axe $\Delta\left(\begin{pmatrix}1\\5\end{pmatrix}\right)$
- 8) rotation d'amplitude -67.38°
- 9) symétrie orthogonale d'axe $\Delta\left(\begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix}\right)$

11.8

- 1) rotation d'axe $\Delta((0;0;1))$ et d'amplitude 36,87°
- 2) rotation d'axe $\Delta \left(\left(6\,; -3\,; 2\right) \right)$ et d'amplitude 180°
- 3) symétrie orthogonale de plan d'équation 2x + y 2z = 0
- 4) rotation d'axe $\Delta((-2;1;0))$ et d'amplitude 73,40°
- 5) composé d'une rotation d'axe $\Delta((1;0;2))$ et d'amplitude 48,19° et d'une symétrie orthogonale de plan d'équation x + 2z = 0
- 6) rotation d'axe $\Delta((\sqrt{3}+\sqrt{2};1;\sqrt{2}+1))$ et d'amplitude 56,60°

- 7) composé d'une rotation d'axe $\Delta((1;-4;-2))$ et d'amplitude 24,62° et d'une symétrie orthogonale de plan d'équation x-4y-2z=0
- 8) homothétie de rapport -1

11.9 matrice de
$$s: \frac{1}{3}\begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$
 matrice de $t: \frac{1}{13}\begin{pmatrix} 4 & -3 & -12 \\ -3 & 12 & -4 \\ -12 & -4 & -3 \end{pmatrix}$ matrice de $r: \frac{1}{39}\begin{pmatrix} 34 & -19 & 2 \\ 13 & 26 & 26 \\ -14 & -22 & 29 \end{pmatrix}$ rest une rotation d'axe $\Delta((-3;1;2))$ et d'amplitude $50,13^{\circ}$

11.10 1) matrice de
$$s: \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

- 2) axe de rotation : $\Delta((1;1;1))$ amplitude : 120°
- 3) matrice de s': $\frac{1}{3}\begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$ s' est une symétrie orthogonale de plan d'équation x-2 y+z=0

11.11
$$\frac{1}{15} \begin{pmatrix} 11 & 2+4\sqrt{3} & 2-4\sqrt{3} \\ 2-4\sqrt{3} & 11 & 2+4\sqrt{3} \\ 2+4\sqrt{3} & 2-4\sqrt{3} & 11 \end{pmatrix} \text{ et sa transposée}$$