Rappels de Topologie (suite)

Exercice 1. Normes usuelles sur \mathbb{R}^n Rappelons la définition des normes usuelles sur l'espace vectoriel \mathbb{R}^n , comme applications de \mathbb{R}^n dans \mathbb{R}^+ : pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\},\$$

$$||x||_1 = |x_1| + \dots + |x_n|,\$$

$$||x||_2 = \sqrt{|x_1|^2 + \dots + |x_n|^2},\$$

- 1. Montrer que $\|\cdot\|_{\infty}$, $\|\cdot\|_1$ et $\|\cdot\|_2$ sont des normes dans \mathbb{R}^n .
- 2. Montrer que ces trois normes sont équivalentes.
- 3. Donner les trois distances dans l'ensemble \mathbb{R}^n induites par les normes $\|\cdot\|_{\infty}$, $\|\cdot\|_1$ et $\|\cdot\|_2$. On notera ces distances d_{∞} , d_1 et d_2 .
- 4. Dessiner deux points distincts dans \mathbb{R}^2 et représenter leur distance au sens de d_1 , d_2 et d_{∞} .
- 5. Dans \mathbb{R}^2 , représenter les boules fermées $\overline{B}_{d_1}(0,1)$, $\overline{B}_{d_2}(0,1)$ et $\overline{B}_{d_{\infty}}(0,1)$.

Exercice 2. Représentation des formes linéaires. Notons $(\cdot|\cdot)$ le produit scalaire euclidien dans \mathbb{R}^n .

- 1. Soit $L: \mathbb{R}^n \longrightarrow \mathbb{R}$. Montrer que L est linéaire si et seulement si il existe un vecteur v dans \mathbb{R}^n tel que pour tout $x \in \mathbb{R}^n$, L(x) = (v|x).
- 2. On munit \mathbb{R}^n de la norme euclidienne. Quelle est alors, dans la question ci-dessus, la norme de L?

Exercice 3. Exemples concrets. Considérons les sous-ensembles suivants de \mathbb{R}^2 :

$$A = \{(x, x^3) : x < 1\},$$

$$B = \{(n, \frac{1}{n+1}) : n \in \mathbb{N}\},$$

$$C = \{(x, y) \in \mathbb{R}^2 : y \ge x^2, y > x+1\}.$$

- 1. Représenter dans le plan chacun de ces ensembles.
- 2. Déterminer leur intérieur, leur frontière et leur adhérence.
- 3. Lesquels de ces ensembles sont compacts?

Exercice 4. Limites. Soient $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \sin(\frac{y^2}{x}), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

- 1. Montrer que f admet la même limite selon toutes les directions en (0,0) mais que f n'est pas continue en (0,0).
- 2. Montrer que les fonctions suivantes, notées g et h, sont continues au point (0,0).

$$g(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases} \quad h(x,y) = \begin{cases} (x-y)\frac{x^2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$