KOMPRESJA INFORM	KOMPRESJA INFORMACJI W SYSTEMACH TELEINFORMATYCZNYCH				
Temat ćwiczenia:	Kwantowanie liniowe, kwantowanie dynamiczne				
Temat cwiczema.	i kwantowanie nieliniowe w oparciu o krzywą.				
Numer ćwiczenia:	Ćwiczenie nr 2.				
Termin zajęć:	Środa, 9:15-11:00 TP				
Data wykonania ćwiczenia:	19.10.2022	Data oddania sprawozdania:	26.10.2022		
Skład grupy:		Prowadzący:	Ocena:		
Mateusz Franków 259740		Dr. inż. Robert Hossa			

Spis treści

1.	Ce	el éwiczenia	. 2
2.	Pr	zebieg ćwiczenia	. 2
	2.1.	Kwantyzacja liniowa	. 3
	2.2.	Wpływ wartości liczby bitów na jakość badanego sygnału mowy w przetworniku wym	
		Zależności <i>SNR</i> (mi) przy b =const	
		nioski	

1. Cel ćwiczenia

Zapoznanie się i porównanie kwantyzerów liniowych i nieliniowych, zależność parametrów na poprawność sygnału mowy.

2. Przebieg ćwiczenia

2.1. Kwantyzacja liniowa

Wynik symulacji:

Rys.1. Szumy kwantyzacji dla kwantyzera liniowego SQRN=f(liczba bitów)

Wykres ma charakter liniowy ze współczynnikiem nachylenia a=6,05 [db/bit] w przedziale od 8 do 12 bitów.

Obliczenia:

$$a = \frac{(SQNR(12) - SQNR(8))}{(12 - 8)} = \frac{40,1908 - 15,9895}{4} = \frac{24,2013}{4} = 6,0503 \approx 6,05$$

Wynik różni się od wartości 6,02 [db/bit] ponieważ jest to wartość idealna dedykowana dla nieskończonej ilości próbek. Wartość 6,05 [db/bit] powstała na podstawie skończonej ilości próbek.

2.2. Wpływ wartości liczby bitów na jakość badanego sygnału mowy w przetworniku liniowym.

Liczba	Wrażenia subiektywne	SQNR	Szybkość
bitów -		[dB]	transmisji – v
b			[kb/s], fs=8 kHz
4	Przekaz niezrozumiały	-11.46	32
5	Przekaz niezrozumiały	-4.42	40
6	Przekaz niezrozumiały	2.69	48
7	Przekaz częściowo zrozumiały, bardzo wysoki	9.60	56
	poziom szumów i trzasków		
8	Przekaz częściowo zrozumiały, uciążliwe trzaski,	16.09	64
	zniekształcenia		
9	Przekaz akceptowalny, słyszalny szum, brak	22.12	72
	trzasków, mowa zrozumiała		
10	Zrozumiały przekaz, średni poziom szum	28.17	80
11	Zrozumiały przekaz, ledwo słyszalny szum	34.11	88
	(w dłużej perspektywie może być drażniący)		
12	Brak percepcji szumów kwantyzacji, przekaz	40.19	96
	idealny, próg percepcji szumów kwantyzacji		
13	Brak percepcji szumów kwantyzacji	46.21	104
14	Brak percepcji szumów kwantyzacji	52.19	112
15	Brak percepcji szumów kwantyzacji	58.20	120
16	Brak percepcji szumów kwantyzacji	64.29	128

- a. Próg percepcji szumów kwantyzacji wynosi ~40dB (12bitow kwantyzera liniowego).
- b. Minimalna prędkość transmisji dla częstotliwości próbkowania 8kHz, która zapewnia brak percepcji szumów kwantyzacji wynosi 96kb/s.

$$v = 8\ 000Hz * 12bit\'ow = 96kb/s$$

- c. Próg akceptowanej jakości sygnału wynosi 9bitów, czyli SQNR = ~22[dB].
- d. Minimalna wymagana szybkość transmisji na wyjściu kodera,
 która zapewnia akceptowalną jakość sygnału dla próbkowania
 fs = 8kHz wynosi 72kb/s.

Obliczenia:

$$v = 8\ 000\ Hz * 9\ bitow = 72kb/s$$

2.3. Zależności *SNR*(mi) przy **b**=const

Rys2. Zależność SNR(mi) przy b=const

a. Liczba bitów w kwantowaniu nieliniowym wystarczająca do uzyskania poziomu szumu kwantowania SQNR [dB], który jest "prawie" ignorowany przez narządy słuchu wynosi 8 bitów.

Porównanie kwantyzera liniowego z nieliniowym przy SQNR~40 [dB]:

Kwantyzer liniowy: 12 bitów, 96kb/s

Kwantyzer nieliniowy: 8 bitów, 64kb/s, 8000 operacji/s

Różnica: 4bity, 32kb/s

Im bliżej "0" tym amplituda jest bardziej rozciągnięta.

b. W oparciu o otrzymane poziomy percepcji szumów kwantowania dla badanych kwantyzerów można określić zysk w postaci 3bitów na próbkę oraz 24kb/s szybkości transmisji.

Porównanie kwantyzera liniowego z nieliniowym przy SQNR~20 [dB]:

Kwantyzer liniowy: 9bitów, 72kb/s przepustowości Kwantyzer nieliniowy: 6bitów, 32kb/s przepustowości

Różnica: 3bitów, 40kb/s

Kwantyzer nieliniowy zyskuje 3bity tracąc przepustowość wynoszącą 40kb/s, jednak zapewnia ten sam SQNR.

c. W oparciu o otrzymane poziomy percepcji szumów kwantowania dla kwantyzerów dynamicznego i nieliniowego dla SQNR=~21 [dB] zysk ilości bitów na próbkę oraz szybkości transmisji wynikający z zastosowania kwantyzera dynamicznego 4 bitowego wynosi: 2 bity i 8kb/s.

Porównanie kwantyzera dynamicznego 4 bity z kwantyzerem liniowym i nieliniowym przy SQNR~20 [dB]:

Kwantyzer dynamiczny: 4bity, 32kb/s przepustowości Kwantyzer liniowy: 9bitów, 72kb/s przepustowości Kwantyzer nieliniowy: 6bitów, 32kb/s przepustowości Kwantyzer dynamiczny 4 bitowy jest porównywalny kwantyzerowi nieliniowemu 6 bitowemu i liniowemu 9 bitowemu. W przypadku kwantyzera dynamicznego występują drobne szumy, jednak nie przeszkadzają one w zrozumieniu mowy.

3. Wnioski

W ćwiczeniu brałem pod uwagę skończony horyzont obserwacji, dlatego wynik (6,05[dB/bit]) nieznacznie różni się od idealnego wyniku zakładającego nieskończoną ilość próbek (6,02[dB/bit]). Na podstawie ćwiczenia można stwierdzić, że kwantyzacja nieliniowa jest bardziej efektywna niż kwantyzacja liniowa.

Wartości liczby bitów przetwornika liniowego wynosząca 9 (v= 72kb/s) gwarantuje akceptowalną jakość badanego sygnału mowy. Próg percepcji szumów wynosi 40dB, dla kwantyzera liniowego wynosi on 12 bitów(v=96kb/s). Parametr μ zwiększa dopasowanie SQNR, od wartości ~150μ, SQNR ma wartość praktycznie stałą.

Kwantyzer nieliniowy oszczędza bity, nie wpływając na SQNR. Kwantyzer dynamiczny 4 bitowy porównywalny jest z kwantyzerem liniowym 9 bitowym i nieliniowym 6 bitowym. Kwantyzery dynamiczne bazują na dużej złożoności obliczeniowej przez co opłacają się jedynie dla małych ilości bitów (do 5 bitów).