Séance II : Modélisation par des EDP

A) Objectifs de la séance

A la fin de cette séance,

- Je sais écrire l'équation de la chaleur.
- Je sais adimensionner un problème.
- Je sais déterminer de quel type est une équation aux dérivées partielles donnée.
- Je sais reconnaître les conditions aux limites d'un problème aux dérivées partielles.
- Je connais les propriétés fondamentales des équations hyperboliques, elliptiques et paraboliques.
- Je connais la définition d'un problème bien posé.

CS 1A - EDP 2019-2020

B) Pour se familiariser avec les concepts (à traiter avant les séances de TD)

Les questions II.1 et II.2 sont à traiter avant la troisième séance de TD. Les corrigés sont disponibles sur internet. *Ne regardez pas* les solutions avant d'avoir fini de travailler sur ces questions.

Question II.1

Quelle est la nature des problèmes suivants ?

Q. II.1.1 Soient $\kappa > 0$ et c définie sur]0,1[. Le problème s'écritThe problem reads

$$\begin{cases} -\kappa u''(x) + u'(x) + c(x)u(x) = f(x), & x \in]0,1[,\\ u(0) = 0 & \text{et} & u'(1) + u(1) = 0, \end{cases}$$

Q. II.1.2 Soit Ω le carré $]0,1[\times]0,1[$ de \mathbb{R}^2 , u^0 , f deux fonctions définies sur Ω , A une matrice carrée de taille 2 définie sur Ω et g définie sur les côtés N (nord) et S (sud) de Ω . Le problème s'écritThe problem reads

$$\begin{cases} \partial_t u - \operatorname{div}_x(A(x)\operatorname{grad}(u)) = f, & t > 0, x \in \Omega \\ u(0,\cdot) = u^0 \\ u(t,\cdot)|_{N \cup S} = g \\ \partial_n u(t,\cdot)|_{\partial \Omega \setminus (N \cup S)} = 0 \end{cases}$$

Question II.2

Soit une masse m de 500g pendue à un fil de longueur ℓ égale à 10cm, inélastique et de masse supposée négligeable. On suppose qu'il n'y a pas de frottement. On arrondit la constante de gravité terrestre à $10m.s^{-2}$. On appelle θ l'angle que fait le fil avec l'axe vertical dirigé vers le bas, mesuré dans le sens trigonométrique. On fixe un temps d'observation T.

Q. II.2.1 Montrez que l'équation adimensionnée qui régit le mouvement angulaire du centre de gravité de la masse est $\theta'' + 100 \, T^2 \sin(\theta) = 0$. Faire un dessin est fortement recommandé.

Q. II.2.2 De quelle nature est l'équation ?

C) Exercices

Exercice II.1

On s'intéresse à la propagation d'une infection sur une île, que l'on modélise par sa surface ouverte Ω supposée bornée. On va calculer la densité v, c'est-à-dire le nombre d'individus infectés par kilomètre carré, en utilisant un modèle de propagation faisant intervenir

• deux types de mouvement : la diffusion classique, représentant le comportement spatial moyen de la population de coefficient constant $\kappa > 0$, et la différence des flux intégrés, représentant spécifiquement les mouvements des individus infectés en chaque point x, de constante D positive,

CS 1A - EDP 2019-2020

• la modélisation d'infection ou guérison spontanée par une source f dépendant du temps et de l'espace.

L'équivalent d'une étude énergétique menée en transfert thermique repose sur la fonctionnelle

$$\mathcal{H}: w \mapsto \frac{1}{2} \int_{\Omega} \left(\kappa \|\nabla w(x,y)\|^2 + c(x,y)w(x,y)^2 \right) dx dy + \frac{D}{2} \left(\int_{\Omega} w(x,y)dx dy \right)^2 - \int_{\Omega} f(x,y)w(x,y)dx dy,$$

où $\|\cdot\|$ désigne la norme euclidienne classique sur \mathbb{R}^2 , (\cdot,\cdot) le produit scalaire euclidien sur \mathbb{R}^2 , c et f sont des fonctions ne dépendant que de l'espace.

E. II.1.1 En supposant que la dimension de c est une fréquence journalière (j^{-1}) , donner les dimensions de f, κ , D et \mathcal{H} .

E. II.1.2 En définissant un temps de référence T, une surface de référence S et une densité de référence W, donner la relation entre κ , T, S et W pour que la fonctionnelle adimensionnée $\mathcal{H}_{\text{adim}}$ soit de la forme

$$\mathcal{H}_{\text{adim}}: w \longmapsto \frac{1}{2} \int_{\Omega} \left(\|\nabla w\|^2 + c_{\text{adim}} w^2 \right) + \frac{D_{\text{adim}}}{2} \left(\int_{\Omega} w \right)^2 - \int_{\Omega} f_{\text{adim}} w. \tag{II.1}$$

On précisera c_{adim} , D_{adim} et f_{adim} .

E. II.1.3 Expliquer pourquoi les hypothèses sur c_{adim} , D_{adim} et f_{adim} sont les mêmes que sur c, D et f.

E. II.1.4 En supposant pouvoir mettre le problème sous forme d'EDP, donner les conditions au bord pertinentes pour ce problème.

Exercice II.2

Soient L>0, c>0 et v>0. On considère une plaque carrée homogène de côté L dont la température à l'instant t=0 est décrite par une fonction u. Les bords sont maintenus à température nulle et une source stationnaire f est appliquée en tout point de la plaque. L'évolution de la température est gouvernée par le problème suivant

$$\begin{cases} \partial_t u(t,x,y) - \nu \Delta u(t,x,y) = f(t,x,y), \ t > 0, \ x,y \in]0, L[, \\ u(0,x,y) = u^0(x,y), \ x,y \in]0, L[, \\ \text{condition au bord} \end{cases}$$
 (II.2)

E. II.2.1 Quelle est la dimension de ν ?

E. II.2.2 Adimensionner le problème pour se ramener au carré $\Omega =]0,1[\times]0,1[$.

E. II.2.3 Quel temps d'observation *T* faut-il choisir pour que le coefficient adimensionné devant l'opérateur Laplacien soit égal à 1 ?

E. II.2.4 De quel type est le problème adimensionné?

E. II.2.5 Si on suppose que la solution admet une limite en temps long u_{∞} , de quel problème u_{∞} est-elle la solution ?

CS 1A - EDP 2019-2020

Exercice II.3

Résoudre par la méthode des caractéristiques l'équation

$$\begin{cases} \partial_t u(t,x) + \partial_x u(t,x) - 3u(t,x) = t, & t > 0, x \in \mathbb{R} \\ u(0,\cdot) : x \mapsto x^2 \end{cases}$$

D) Approfondissement

Exercice II.4

**E. II.4.1 Montrer la proposition suivante :

Proposition. Soient I un intervalle de \mathbb{R} , $V_0 \subset \Omega \subset \mathbb{R}^3$, $\Phi : I \times \Omega \to \Omega$ de classe C^1 , $V_t := \Phi(t, V_0)$, $\vec{u} = \partial_t \Phi$ de classe $C^1(I \times \Omega)$. Soit $C : (t, x) \mapsto C(t, x)$ de classe $C^1(I \times \Omega)$. Alors

$$\iiint_{V_t} C(t, \mathbf{x}) \lambda(d \mathbf{x}) = \iiint_{V_t} \partial_t C(t, \mathbf{x}) \lambda(d \mathbf{x}) + \iiint_{V_t} div(C\mathbf{u})(t, \mathbf{x}) \lambda(d \mathbf{x})
= \iiint_{V_t} \partial_t C(t, \mathbf{x}) \lambda(d \mathbf{x}) + \iint_{\partial V_t} (C\mathbf{u})(t, \gamma) \cdot \mathbf{n}(t, \gamma) d\gamma.$$

E. II.4.1 Justifier la définition des conditions de Robin-Fourier.

Chapitre III: Corrections des exercices

Solution de Q. II.2.1 Vu en cours : $\theta'' + (T^2g/l)\sin(\theta) = 0$. Ici, g/l = 100.

Solution de Q. II.1.1 κ est en km^2/j , f en nombre d'individus par km^2 et par jour, D est en $km^{-2}.j^{-1}$ et \mathcal{H} en nombre d'individus au carré par jour et par km^2 .

Solution de Q. II.1.2 $\kappa = S/T$: normal, cela correspond à une viscosité.

En effet, $\int \|\nabla w\|^2$ est homogène à $1/S^2$ et doit être homogène à $\int cw^2$ qui est homogène à 1/(TS). Donc κ est homogène à $(1/(TS))/(S^2) = S/T$. Il suffit de diviser les quantités c, D, et f par $\kappa = S/T$.

Solution de Q. II.1.3 Parce que la division ou la multiplication par des nombres positifs ne change pas la positivité et/ou la régularité requises.

Solution de Q. II.1.4 Neumann (pas de flux au bord).

Solution de Q. II.2.1 ν est en m^2/s .

Solution de Q. II.2.2 On adimensionne *x*, *y* par rapport à la longueur d'observation *L* :

$$\begin{cases} \partial_t u(t,x,y) - \frac{1}{L^2} \nu \Delta u(t,x,y) = f(t,x,y), \ t > 0, \ x,y \in]0,1[, \\ u(0,x,y) = u^0(x,y), \ x,y \in]0,1[, \\ u_\infty(x,0) = u_\infty(1,y) = u_\infty(x,1) = u_\infty(0,y) = 0, \qquad x,y \in]0,1[\end{cases}$$

Solution de Q. II.2.3 On prend $T = L^2/\nu$.

Solution de Q. II.3

$$\begin{cases} -\nu \Delta^2 u(x,y) = g(x,y), \ x,y \in]0, L[, \\ u_{\infty}(x,0) = u_{\infty}(L,y) = u_{\infty}(x,L) = u_{\infty}(0,y) = 0, \qquad x,y \in]0, L[\end{cases}$$
(II.3)

Solution de Q. II.3 On raisonne par analyse-synthèse.

Supposons que l'équation admet une solution u de classe $C^1(\mathbb{R}^+ \times \mathbb{R})$. On définit $w: t \mapsto u(t, x(t))$ pour $x: \mathbb{R}^+ \to \mathbb{R}$, de classe $C^1(\mathbb{R}^+)$ à choisir pour que w soit "simple".

Or, pour tout $t \ge 0$, $w'(t) = \partial_t u(t, x(t)) + x'(t) \partial_x u(t, x(t))$. En choisissant $x': t \mapsto 1$, on obtient

$$\begin{cases} w'(s) = 3w(s) + s, & \forall s > 0, \\ w(t) = u(t, x). \end{cases}$$

La formule de Duhamel, vue en cours, nous donne

$$\forall t > 0$$
, $w(t) = e^{3t}w(0) + \int_0^t se^{3(t-s)}ds = e^{3t}w(0) + \frac{1}{9}(e^{3t} - 3t - 1).$

Or w(0) = u(0, x(0)) = u(0, x - t), car la caractéristique qui passe par le point (x, t) du demi-plan espace-temps, est exactement la courbe $s \mapsto x - t + s$.

La solution donnée par la méthode des caractéristiques est donc

$$u:(t,x)\longmapsto e^{3t}(x-t)^2+\frac{1}{9}(e^{3t}-(3t+1).$$

Montrons qu'il y a unicité de la solution. Si u_1 et u_2 sont solutions, alors $\bar{u} = u_2 - u_1$ est solution de

$$\begin{cases} \partial_t u(t,x) + \partial_x u(t,x) - 3u(t,x) = 0, & t > 0, x \in \mathbb{R} \\ u(0,\cdot) : x \mapsto 0 \end{cases}$$

Par la même démarche que précédemment, on trouve nécessairement

$$\bar{u}:(t,x)\longmapsto 0.$$

Donc $u_1 = u_2$.