Teoria Sygnałów w zadaniach

Tomasz Grajek, Krzysztof Wegner

Politechnika Poznańska

Wydział Elektroniki i Telekomunikacji

Katedra Telekomunikacji Multimedialnej i Mikroelektroniki

pl. M. Skłodowskiej-Curie 5

60-965 Poznań

www.et.put.poznan.pl

www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 Wszelkie prawa zastrzeżone ISBN 978-83-939620-1-3 Wydrukowano w Polsce **Zadanie 1.** Oblicz transformatę Fouriera sygnału f(t) przedstawionego na rysunku za pomocą twierdzeń.

Sygnal f(t) możemy opisać jako:

$$f(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ 1 - t^2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (1)

W pierwszej kolejności wyznaczamy pochodną sygnału f(t)

$$g(t) = f'(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 \cdot t & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (2)

Można sprawdzić, że całkując sygnał g(t) otrzymamy sygnał f(t), czyli:

$$f(t) = \int_{-\infty}^{t} g(x) \cdot dx \tag{3}$$

Skoro tak jest, to transformatę sygnału f(t) mozna wyznaczyć z twierdzenia o całkowaniu sygnału, w tym przypadku całkować będziemy sygnał g(t):

$$F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
(4)

Pytanie, czy można dalej uproście sygnał g(t) dokonując jego rózniczkowania. Wyznaczmy pochodną sygnału g(t), czyli drugą pochodną sygnału f(t):

$$h(t) = \frac{\partial}{\partial t}g(t) = \frac{\partial^2}{\partial t^2}f(t)$$
 (5)

$$h(t) = g'(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases} + 2 \cdot \delta(t+1) + 2 \cdot \delta(t-1)$$
 (6)

Funkcja h(t) składa się z dwóch sygnałów $h_1(t)$ i $h_2(t)$

$$h(t) = h_1(t) + h_2(t) (7)$$

$$h_1(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ -2 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases}$$
 (8)

$$h_2(t) = 2 \cdot \delta(t+1) + 2 \cdot \delta(t-1) \tag{9}$$

Wyznaczenie transformaty sygnału $h_2(t)$ złożonego z delt Diracka jest znacznie prostsze.

$$H_2(j\omega) = \int_{-\infty}^{\infty} h_2(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt \tag{10}$$

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$H_{2}(\jmath\omega) = \int_{-\infty}^{\infty} h_{2}(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= \int_{-\infty}^{\infty} (2 \cdot \delta(t+1) + 2 \cdot \delta(t-1)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= 2 \cdot \int_{-\infty}^{\infty} (\delta(t+1) + \delta(t-1)) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt$$

$$= 2 \cdot \left(\int_{-\infty}^{\infty} \delta(t+1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t-1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right)$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t-t_{0}) \cdot f(t) \cdot dt = f(t_{0}) \right\}$$

$$= 2 \cdot \left(e^{-\jmath \cdot \omega \cdot (-1)} + e^{-\jmath \cdot \omega \cdot 1} \right)$$

$$= 2 \cdot \left(e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right)$$

$$= 2 \cdot \left(e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right)$$

$$= 4 \cdot \frac{e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega}}{2}$$

$$= \left\{ \cos(x) = \frac{e^{\jmath \cdot x} + e^{-\jmath \cdot x}}{2} \right\}$$

$$= 4 \cdot \cos(\omega)$$

Transformata sygnału $h_2(t)$ to $G_2(j\omega) = 4 \cdot \cos(\omega)$

Funkcja $h_1(t)$ jest jeszcze zbyt złożona tak wiec wyznaczamy pochodną raz jeszcze

$$i(t) = h'_1(t) = \begin{cases} 0 & t \in (-\infty; -1) \\ 0 & t \in (-1; 1) \\ 0 & t \in (1; \infty) \end{cases} - 2\delta(t+1) + 2\delta(t-1)$$

$$(11)$$

czyli po prostu

$$i(t) = h_1'(t) = -2\delta(t+1) + 2\delta(t-1)$$
(12)

Wyznaczanie transformaty sygnału i(t) złożonego z delt Diracka jest znacznie prostsze.

$$I(j\omega) = \int_{-\infty}^{\infty} i(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$$
 (13)

Podstawiamy do wzoru na transformatę wzór naszej funkcji

$$\begin{split} I(\jmath\omega) &= \int_{-\infty}^{\infty} i(t) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= \int_{-\infty}^{\infty} \left(-2 \cdot \delta(t+1) + 2 \cdot \delta(t-1) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 2 \cdot \int_{-\infty}^{\infty} \left(-\delta(t+1) + \delta(t-1) \right) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \\ &= 2 \cdot \left(\int_{-\infty}^{\infty} -\delta(t+1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt + \int_{-\infty}^{\infty} \delta(t-1) \cdot e^{-\jmath \cdot \omega \cdot t} \cdot dt \right) \\ &= \left\{ \int_{-\infty}^{\infty} \delta(t-t_0) \cdot f(t) \cdot dt = f(t_0) \right\} \\ &= 2 \cdot \left(-e^{-\jmath \cdot \omega \cdot (-1)} + e^{-\jmath \cdot \omega \cdot 1} \right) \\ &= 2 \cdot \left(-e^{\jmath \cdot \omega} + e^{-\jmath \cdot \omega} \right) \\ &= -2 \cdot \left(e^{\jmath \cdot \omega} - e^{-\jmath \cdot \omega} \right) \cdot \frac{2 \cdot \jmath}{2 \cdot \jmath} \\ &= -4 \cdot \frac{e^{\jmath \cdot \omega} - e^{-\jmath \cdot \omega}}{2 \cdot \jmath} \\ &= \left\{ \sin \left(x \right) = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2 \cdot \jmath} \right\} \\ &= -4 \cdot \jmath \cdot \sin \left(\omega \right) \end{split}$$

Transformata sygnału i(t) to $I(j\omega) = -j \cdot 4 \cdot \sin(\omega)$

Następnie możemy wykorzystać twierdzenie o całkowaniu aby wyznaczyć transformatę sygnału $h_1(t)$ na podstawie transformaty sygnału $i(t) = h'_1(t)$

$$i(t) \stackrel{F}{\to} I(\jmath\omega)$$

$$h_1(t) = \int_{-\infty}^t i(\tau) \cdot d\tau \stackrel{F}{\to} H_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot I(\jmath\omega) + \pi \cdot \delta(\omega) \cdot I(0)$$

Podstawiając obliczoną wcześniej transformatę $I(j\omega)$ sygnału i(t) otrzymujemy transformatę $H_1(j\omega)$ sygnału $h_1(t)$

$$H_{1}(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot I(\jmath\omega) + \pi \cdot \delta(\omega) \cdot I(0)$$

$$= \frac{1}{\jmath \cdot \omega} \cdot (-\jmath \cdot 4 \cdot \sin(\omega)) + \pi \cdot \delta(\omega) \cdot (-\jmath \cdot 4 \cdot \sin(0))$$

$$= -\frac{1}{\omega} \cdot 4 \cdot \sin(\omega) - \pi \cdot \delta(\omega) \cdot \jmath \cdot 4 \cdot \sin(0)$$

$$= -4 \cdot \frac{\sin(\omega)}{\omega} - \pi \cdot \delta(\omega) \cdot \jmath \cdot 4 \cdot 0$$

$$= -4 \cdot \frac{\sin(\omega)}{\omega} - 0$$

$$= \left\{ Sa(x) = \frac{\sin(x)}{x} \right\}$$

$$= -4 \cdot Sa(\omega)$$

Ostatecznie transformata sygnału $h_1(t)$ jest równa $H_1(j\omega) = -4 \cdot Sa(\omega)$. Korzystając z jednorodności transformaty Fouriera

$$g_1(t) \xrightarrow{F} G_1(\jmath\omega)$$

$$g_2(t) \xrightarrow{F} G_2(\jmath\omega)$$

$$g(t) = g_1(t) + g_2(t) \xrightarrow{F} G(\jmath\omega) = G_1(\jmath\omega) + G_2(\jmath\omega)$$

można wyznaczyć transformatę Fouriera $G(j\omega)$ funkcji g(t)

$$G(\jmath\omega) = G_1(\jmath\omega) + G_2(\jmath\omega)$$

$$= -2 \cdot A \cdot Sa(\omega \cdot t_0) + 2 \cdot A \cdot cos(\omega \cdot t_0)$$

$$= -2 \cdot A \cdot (Sa(\omega \cdot t_0) - cos(\omega \cdot t_0))$$

Znając transformatę $G(\jmath\omega)$ i korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę $F(\jmath\omega)$ funkcji f(t)

$$g(t) \stackrel{F}{\to} G(\jmath\omega)$$

$$f(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{F} F(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Podstawiając otrzymujemy

$$\begin{split} F(\jmath\omega) &= \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0) \\ &= \frac{1}{\jmath \cdot \omega} \cdot \left(-2 \cdot A \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) \right) + \pi \cdot \delta(\omega) \cdot \left(-2 \cdot A \cdot \left(Sa\left(0 \cdot t_0\right) - \cos\left(0 \cdot t_0\right) \right) \right) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot \left(Sa\left(0\right) - \cos\left(0\right) \right) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot (1-1) \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - \pi \cdot \delta(\omega) \cdot 2 \cdot A \cdot 0 \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) - 0 \\ &= -\frac{2 \cdot A}{\jmath \cdot \omega} \cdot \left(Sa\left(\omega \cdot t_0\right) - \cos\left(\omega \cdot t_0\right) \right) \end{split}$$

Ostatecznie transformata sygnału f(t) jest równa $F(j\omega) = -\frac{2\cdot A}{j\cdot \omega}\cdot (Sa\left(\omega\cdot t_0\right)-\cos\left(\omega\cdot t_0\right)).$

Zadanie 2. Oblicz transformatę Fouriera sygnału f(t) = sgn(t) za pomocą twierdzeń.

Sygnał f(t) można zapisać jako

$$f(t) = sgn(t)$$

$$= \mathbb{1}(t) - \mathbb{1}(-t)$$

$$= f_1(t) - f_2(t)$$

Wyrażnie widac iż funkcja jest złożeniem dwóch skoków jednostkowych

$$f_1(t) = \mathbb{1}(t)f_2(t)$$
 = $\mathbb{1}(-t)$

Transformaty sygnału $f_1(t)=\mathbbm{1}(t)$ nie można wyznaczyć wprost ze wzoru. Ale łatwo można wyznaczyć pochodnią $f_1'(t)$

$$g(t) = f_1'(t) = \delta(t)$$

dla której w bardzo łatwy sposób można wyznaczyć transformatę Fouriera.

$$G(\jmath\omega) = \int_{-\infty}^{\infty} g(t) \cdot e^{-\jmath \cdot \omega \cdot t}$$

$$= \int_{-\infty}^{\infty} \delta(t) \cdot e^{-\jmath \cdot \omega \cdot t}$$

$$= \left\{ \int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) \cdot dt = f(t_0) \right\}$$

$$= e^{-\jmath \cdot \omega \cdot 0}$$

$$= e^{0}$$

$$= 1$$

Transformatą Fouriera sygnału $g(t) = \delta(t)$ jest $G(j\omega) = 1$

Korzystając z twierdzenia o całkowaniu można wyznaczyć transformatę funkcji $f_1(t)$

$$g(t) \xrightarrow{F} G(\jmath\omega)$$

$$f_1(t) = \int_{-\infty}^{t} g(\tau) \cdot d\tau \xrightarrow{F} F_1(\jmath\omega) = \frac{1}{\jmath \cdot \omega} \cdot G(\jmath\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$

Tak wiec mamy

$$F_1(j\omega) = \frac{1}{j \cdot \omega} \cdot G(j\omega) + \pi \cdot \delta(\omega) \cdot G(0)$$
$$= \frac{1}{j \cdot \omega} \cdot 1 + \pi \cdot \delta(\omega) \cdot 1$$
$$= \frac{1}{j \cdot \omega} + \pi \cdot \delta(\omega)$$

A wiec transformata skoku jednostkowego jest $F_1(j\omega)=\frac{1}{j\cdot\omega}+\pi\cdot\delta(\omega)$ Funkcję $f_2(t)$ można zapisać jako

$$f_2(t) = \mathbb{1}(-t)$$
$$= \mathbb{1}(-1 \cdot t)$$

$$= f_1(-1 \cdot t)$$

A wiec transformatę funkcji $f_2(t)$ można wyznaczyć z twierdzenia o zmianie skali

$$\begin{split} f_1(t) &\overset{F}{\to} F_1(\jmath \omega) \\ f_2(t) &= f_1(a \cdot t) \overset{F}{\to} F_2(\jmath \omega) = \frac{1}{|a|} \cdot F_1(\jmath \frac{\omega}{a}) \end{split}$$

$$F_2(\jmath\omega) = \frac{1}{|a|} \cdot F_1(\jmath\frac{\omega}{a})$$

$$= \left\{a = -1\right\}$$

$$= \frac{1}{|-1|} \cdot \frac{1}{\jmath \cdot \frac{\omega}{-1}} + \pi \cdot \delta(\frac{\omega}{-1})$$

$$= \frac{1}{1} \cdot \frac{1}{-\jmath \cdot \omega} + \pi \cdot \delta(-\omega)$$

$$= -\frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega)$$

A więc transformata funkcji $f_2(t)$ jest równa $F_2(\jmath\omega) - \frac{1}{\jmath\cdot\omega} + \pi\cdot\delta(\omega)$ Transformatę funkcji f(t) możemy wyznaczyć z twierdzenia o jednorodności

$$f_1(t) \xrightarrow{F} F_1(\jmath\omega)$$

$$f_2(t) \xrightarrow{F} F_2(\jmath\omega)$$

$$f(t) = f_1(t) + f_2(t) \xrightarrow{F} F(\jmath\omega) = F_1(\jmath\omega) + F_2(\jmath\omega)$$

$$F(\jmath\omega) = F_1(\jmath\omega) - F_2(\jmath\omega)$$

$$= \frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega) - \left(-\frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega)\right)$$

$$= \frac{1}{\jmath \cdot \omega} + \pi \cdot \delta(\omega) + \frac{1}{\jmath \cdot \omega} - \pi \cdot \delta(\omega)$$

$$= \frac{2}{\jmath \cdot \omega}$$

Ostatecznie transformata funkcji f(t)jest równa $F(\jmath\omega)=\frac{2}{\jmath\cdot\omega}.$