SPM8 for Basic and Clinical Investigators

Preprocessing

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial filtering

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial filtering

FIL Methods Group

Two Approaches to Slice Timing Correction

- Addition of temporal basis functions to the first-level statistical model
- Correction using temporal interpolation

Slice Timing Correction

Slice Timing Correction

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial normalization
- Spatial filtering

FIL Methods Group

Signal Dropout and Geometric Distortion

Jezzard and Balaban, MRM (1995)

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial normalization
- Spatial filtering

Head Motion in fMRI

- The goal is to compare brain locations across time
- Subjects move relative to the recording system
- Individual voxel time series are affected by this motion
- Motion effects on signal amplitude are nonlinear and complex
- Motion therefore inflates the residual variance and reduces detection sensitivity
- Task correlated motion is particularly problematic

Head Motion Detection

- compute time series center-of-intensity
- compute variance map of time series
- single-slice animation

Head Motion Detection

compute time series center-of-intensity

Head Motion Detection

- compute time series center-of-intensity
- compute variance map of time series
- single-slice animation

- Prevention
- Prospective correction
- Realignment
- Covariate correction with head motion estimates
- Movement by distortion effect correction with fieldmaps
- Covariate correction with outlier identification

- Prevention
- Prospective correction
- Realignment
- Covariate correction with head motion estimates
- Movement by distortion effect correction with fieldmaps
- Covariate correction with outlier identification

- Prevention
- Prospective correction
- Realignment
- Covariate correction with head motion estimates
- Movement by distortion effect correction with fieldmaps
- Covariate correction with outlier identification

Prospective Motion Correction

Prospective motion correction makes predictions that may be dependent on outdated information.

"We drive into the future using only our rearview mirror." - Marshall McLuhan

- Prevention
- Prospective correction
- Realignment
- Covariate correction with head motion estimates
- Movement by distortion effect correction with fieldmaps
- Covariate correction with outlier identification

FIL Methods Group

Spatial Realignment

- Realignment (of same-modality images from same subject) involves two stages:
 - Registration determining the 6 parameters that describe the rigid body transformation between each image and a reference image
 - Reslicing re-sampling each image according to the determined transformation parameters

Spatial Realignment

Spatial Realignment: Registration

- Determine the rigid body transformation that minimises the sum of squared difference between images
- Rigid body transformation is defined by:
 - 3 translations in X, Y & Z directions
 - 3 rotations about X, Y & Z axes
- Operations can be represented as affine transformation matrices:

$$x_1 = m_{1,1}x_0 + m_{1,2}y_0 + m_{1,3}z_0 + m_{1,4}$$

$$y_1 = m_{2,1}x_0 + m_{2,2}y_0 + m_{2,3}z_0 + m_{2,4}$$

$$z_1 = m_{3,1}x_0 + m_{3,2}y_0 + m_{3,3}z_0 + m_{3,4}$$

Spatial Realignment: Registration

- Iterative procedure (Gauss-Newton ascent)
- Additional scaling parameter
- Nx6 matrix of realignment parameters written to file (N is number of scans)
- Orientation matrices in header of image file (data not changed until reslicing)

Spatial Realignment: Reslicing

- Application of registration parameters involves re-sampling the image to create new voxels by interpolation from existing voxels
- Interpolation can be nearest neighbour (O-order), tri-linear (1st-order), (windowed) fourier/sinc, or nth-order "b-

before correction

after correction

Effects of Realignment on Statistical Maps

Residual Error After Realignment

Even after realignment a considerable amount of the variance can be accounted for by movement

Causes:

- 1. Movement between and within slice acquisition
- 2. Interpolation artifacts due to resampling
- 3. Non-linear distortions and drop-out due to inhomogeneity of the magnetic field

Mitigation of Head Motion Effects

- Prevention
- Prospective correction
- Realignment
- Covariate correction with head motion estimates
- Movement by distortion effect correction with fieldmaps
- Covariate correction with outlier identification

Realignment with Movement Covariates

Friston et al., Movement-related effects in fMRI time series. Magn. Reson. Med. 35:346-355 (1996)

- estimate motion parameters
- use estimates as confounds in the statistical model

Movement Correction

No correction

Covariate correction

Unwarp correction

Mitigation of Head Motion Effects

- Prevention
- Prospective correction
- Realignment
- Covariate correction with head motion estimates
- Movement by distortion effect correction with fieldmaps
- Covariate correction with outlier identification

Movement-by-Distortion Interactions

Time dependent fMRI signal changes are dependent upon:

position of the object in the scanner

geometric distortion

B₀ field effects

slice select gradient edge effects

history of the position of the object

spin history effects

Movement-by-Distortion Interactions

Movement Correction

No correction

Covariate correction

Unwarp correction

$$t_{\text{max}} = 9.57$$

Mitigation of Head Motion Effects

- Prevention
- Prospective correction
- Realignment
- Covariate correction with head motion estimates
- Movement by distortion effect correction with fieldmaps
- Covariate correction with outlier identification

Outlier Identification

Global mean

Global Std. Dev.

Translation

Rotation

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial normalization
- Spatial filtering

Temporal Filtering

Time ----

Respiration Modulates BOLD Contrast

Cardiac Motion Modulates BOLD Contrast

Respiration Modulates BOLD Contrast Time Series

Birn et al., Neuroimage (2006)

Respiration Modulates BOLD Contrast

Respiration Modulates BOLD Contrast at Rest

Birn et al., Neuroimage (2006)

Respiration Modulates BOLD Contrast at Rest

Cardiovascular and Respiratory Artifacts

Poncelet et al., Brain parenchyma motion: measurement with cine echo-planar MR imaging. Radiology 185:645-651 (1992).

Biswal et al., Reduction of physiological fluctuations in fMRI using digital filters. Magn. Reson. Med. 35:107-113 (1996).

Hu et al., Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn. Reson. Med. 34:201-212 (1995).

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial filtering

Global signal changes

Global Intensity Variation

- machine instability
- global blood flow changes
 - arousal
 - respiratory effects
 - drug effects

Global Intensity Normalization

Intensity normalization per time point

Global Intensity Normalization

Intensity normalization per time point

Global Intensity Normalization

Intensity normalization per session

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial filtering

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial filtering

Spatial filtering

FIL Methods Group

Spatial Filtering

Time ----

Gaussian Kernel

Spatial Filtering

Slice from nonsmoothed noise volume

Same slice after 8mm isotropic smoothing

voxel size 1mm³

How much smoothing?

- Noise reduction
- Spatial normalization compensation
- Matched filter theorem

fMRI Preprocessing

- Slice timing correction
- Geometric distortion correction
- Head motion correction
- Temporal filtering
- Intensity normalization
- Spatial filtering

FIL Methods Group

Further Information

References for the material covered in the lecture and additional material are available at:

www.neurometrika.org

Contact: zeffiro@neurometrika.org