A linear operator $f:R_2 o R_2$ maps the vectors $a=\begin{pmatrix}2\\-1\end{pmatrix}$ and $b=\begin{pmatrix}-3\\2\end{pmatrix}$ to the vectors $p=f(a)=\begin{pmatrix}2\\4\end{pmatrix}$ and $q=f(b)=\begin{pmatrix}-1\\-2\end{pmatrix}$. Find the matrix of f in the basis $\{a,q\}$.

1) Let us denote the matrix of vectors \vec{d} and \vec{b} as M_1 , and the matrix of vectors \vec{p} and \vec{q} as M_2 . Then we can write down application of the linear operator in the following way $AM_1=M_2$, where A is the matrix of linear operator f. Hence $A=M_2M_1^{-1}$, or

$$A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 6 & 8 \end{pmatrix} \tag{1}$$

2) Let us denote matrix A (1) in the basis of $\{a, q\}$ as matrix A'. Then the formula for change of the basis of linear operator is $A' = T^{-1}A$ T, where T is the transformation matrix from standars basis to $\{a, q\}$, which can be denoted as $T_{e \to \{a, q\}}$.

Knowing vectors \vec{a} and \vec{q} we can compose the thransition matrix: $T_{e \to \{a,q\}} = \begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix}$, and calculate the matrix A':

$$A' = \begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 3 & 4 \\ 6 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix} =$$

$$= \begin{pmatrix} 0.4 & -0.2 \\ -0.2 & -0.4 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\ 6 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -2 & 11 \end{pmatrix}$$
(2)

ADDITIONALLY we can make sure that our solution is correct by checking if the following equivalence holds:

$$AT = TA'$$

$$\begin{pmatrix} 3 & 4 \\ 6 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ -2 & 11 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -11 \\ 4 & -22 \end{pmatrix} = \begin{pmatrix} 2 & -11 \\ 4 & -22 \end{pmatrix}$$
(3)

The equivalence (3) holds so we have found correct matrices A (1) and A' (2).