Халтаев Т.Р.

Теорема Журавлева о ДНФ типа сумма тупиковых

Элементарная конъюнкция (ЭК) — это произведение переменных без повторений, но, может быть, с отрицаниями.

Носитель функции алгебры логики (Φ АЛ) f — это множество наборов, на которых она равна 1. Носитель будем обозначать N_f .

Максимальная грань — это грань из носителя функции, которую нельзя вложить ни в одну другую грань из носителя. Просто грань — это носитель ЭК.

ДНФ A, реализующая ФАЛ f, является $mynu\kappa o so \check{u}$ ДНФ, если f не реализуется ДНФ A' ($f \neq A'$) для любой ДНФ A', полученной из A в результате удаления некоторых букв или целых ЭК. Проще говоря, тупиковая ДНФ — это ДНФ, состоящая из максимальных граней, ни одну из которых нельзя выкинуть, сохранив при этом N_f .

ДНФ $muna\ cymma\ mynukoвыx\ (ДНФ\ \Sigma T)\ \Phi AЛ\ f$ — дизъюнкция всех тех различных максимальных граней этой $\Phi AЛ$, которые входят в хотя бы одну тупиковую ДНФ $\Phi AЛ\ f$.

Пусть $\alpha \in N_f$. Пучок $\Pi_{\alpha}(f)$ — это множество всех максимальных граней внутри N_f , которые проходят через α .

Пусть $N_K \subseteq N_f$ — максимальная грань внутри носителя. Точку $\alpha, \alpha \in N_K$, будем называть регулярной точкой ФАЛ f внутри грани N_K , если найдется точка $\beta, \beta \in N_f \setminus N_K$, для которой имеет место включение $\Pi_{\beta}(f) \subseteq \Pi_{\alpha}(f)$.

Грань N_K ФАЛ f называется регулярной гранью этой ФАЛ, если все точки N_K регулярны внутри грани N_K .

Теорема 1. Максимальная грань N_K $\Phi A \Pi f$ входит в $\Pi H \Phi \Sigma T$ тогда и только тогда, когда эта грань N_K не является регулярной гранью $\Phi A \Pi f$.

Доказательство. Пусть N_K является регулярной гранью Φ АЛ f и пусть $\alpha_1, \ldots, \alpha_s$ — все ее регулярные точки. Тогда для каждого $j, j = 1, \ldots, s$, в силу регулярности точки α_j , найдется точка $\beta_j \in N_f \setminus N_K$ такая, что любая максимальная грань Φ АЛ f, проходящая через точку β_j , проходит и через точку α_j . Следовательно, любая система максимальных граней Φ АЛ f, покрывающая точки β_1, \ldots, β_s , неизбежно покроет и все точки $\alpha_1, \ldots, \alpha_s$. Таким образом, грань N_K , состоящая из регулярных точек, не может входить в тупиковое покрытие множества N_f максимальными гранями, и поэтому N_K не может входить в ДНФ ΣT Φ АЛ f.

Пусть теперь N_K — нерегулярная грань Φ АЛ f и значит содержит точку α , которая не регулярна внутри N_K . И пусть $N_f \setminus N_K = \{\beta_1, \ldots, \beta_q\}$. Из нерегулярности точки α следует, что для любого $j, j = 1, \ldots, q$ пучок $\Pi_{\beta_j}(f)$ не может быть вложен в пучок $\Pi_{\alpha}(f)$. Поэтому в $\Pi_{\beta_j}(f)$ найдется грань Π_{K_j} , которая проходит через точку β_j , но не проходит через точку α . Следовательно, из покрытия множества N_f максимальными гранями $N_K, N_{K_1}, \ldots, N_{K_q}$ нельзя удалить грань N_K , так как только она покрывает в нем точку α . Таким образом, любое тупиковое покрытие множества N_f , являющееся подпокрытием указанного покрытия, будет соответствовать

тупиковой ДНФ, содержащей N_K . Значит N_K входит в ДНФ ΣT ФАЛ f. Теорема доказана.