China-France Mathematics Talents Class

Variétés différentielles

- Examen du 22/02/2023 -14h30 - 17h30

Les exercices peuvent être traités indépendamment mais certains pourront utiliser des résultats obtenus auparavant.

I. Soit M une variété différentiable et $\omega_1, \omega_2 \in \Omega^{2k+1}(M)$ deux formes différentielles fermées $(d\omega_1 = d\omega_2 = 0)$ telles que $\omega_1 - \omega_2$ est exacte. Montrer que $\omega_1 \wedge \omega_2$ est exacte.

II. Soit E un espace vectoriel réel de dimension $n \geq 2$.

- a) Quelles sont les dimensions de $\Lambda^{n-1}(E)$ et $\Lambda^n(E)$?
- b) Soit (e_1, \ldots, e_n) une base de E et soit F le sous-espace engendré par (e_1, \ldots, e_{n-1}) . Montrer que l'inclusion $F \to E$ induit une application linéaire injective $\Lambda^k(F) \to \Lambda^k(E)$ pour tout $k \ge 1$. On identifiera désormais $\Lambda^k(F)$ avec son image dans $\Lambda^k(E)$.
- c) Montrer que pour tout élément $\alpha \in \Lambda^{n-1}(E)$, il existe $\beta \in \Lambda^{n-2}(F)$ et $\gamma \in \Lambda^{n-1}(F)$ tels que $\alpha = \beta \wedge e_n + \gamma$.
- d) Montrer (par récurrence sur n) que tout élément de $\Lambda^{n-1}(E)$ est décomposable, c'est-à-dire peut s'écrire sous la forme $x_1 \wedge \ldots \wedge x_{n-1}$ pour certains $x_1, \ldots, x_{n-1} \in E$.
 - III. Soit X un champ de vecteurs C^{∞} sur \mathbb{R}^n tel que la norme de X est bornée.

Soit $x \in \mathbb{R}^n$ et $\gamma: I \to \mathbb{R}^n$ la courbe intégrale de X passant par x (c'est-à-dire vérifiant $\gamma(0) = x$ et $\dot{\gamma}(t) = X_{\gamma(t)}$ pour tout $t \in I$. On suppose que I est l'intervalle ouvert maximal de définition de γ et on suppose qu'il existe $b \in \bar{I} \setminus I$.

- a) Montrer qu'il existe une suite t_n de I avec $\lim_{n\to+\infty}t_n=b$.
- b) Montrer que soit $t_n < b$ pour tout $n \in \mathbb{N}$, soit $t_n > b$ pour tout $n \in \mathbb{N}$. Dans la suite de l'exercice on supposera qu'on est dans le premier cas, donc I =]a, b[avec $a \in \mathbb{R} \cup \{-\infty\}$.
 - c) Montrer que la suite $\gamma(t_n)_{n\in\mathbb{N}}$ est une suite de Cauchy de \mathbb{R}^n . On note y sa limite.
- d) Soit $c:]-\epsilon,\epsilon[\to\mathbb{R}^n$ la courbe intégrale de X passant par y. Montrer que la courbe $\tilde{\gamma}:]b,a+\epsilon[$ définie par

$$\tilde{\gamma}(t) := \begin{cases} \gamma(t) & \text{si } t \in]a, b[\\ c(t-b) & \text{si } t \in [b, b+\epsilon[$$

est de classe C^1 .

- e) En déduire que $I = \mathbb{R}$ et que donc X est complet.
- **IV.** Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction C^{∞} .
- a) Montrer qu'il existe un unique champ de vecteurs X sur \mathbb{R}^n vérifiant $\langle X_x, Y \rangle = df_x(Y)$ pour tout $x \in \mathbb{R}^n$ et pour tout $Y \in \mathbb{R}^n$. On appelle X le gradient de f.

Dans la suite de l'exercice on suppose que $||X_x|| = 1$ pour tout $x \in \mathbb{R}^n$.

- b) Montrer que $|f(y) f(x)| \le ||y x||$ quels que soient $x, y \in \mathbb{R}^n$.
- c) Montrer que X est complet. On appelle φ_t le flot de X, qui est donc défini pour tout $t \in \mathbb{R}$.
 - d) Soit $x \in \mathbb{R}^n$. Montrer que $f(\varphi_t(x)) = t + f(x)$ pour tout $t \in \mathbb{R}$.
 - e) Montrer que $\|\varphi_t(x) x\| \leq |t|$ pour tout $t \in \mathbb{R}$.
- f) En déduire que $\|\varphi_t(x) x\| = |t|$ pour tout $t \in \mathbb{R}$, et que $t \mapsto X_{\varphi_t(x)}$ est une fonction constante pour chaque x fixé.
 - g) Montrer que $\varphi_t(x) = x + tX_x$ pour tout $t \in \mathbb{R}$ et $x \in \mathbb{R}^n$.
 - h) En déduire que pour x, y tels que f(x) = f(y), on a $\langle X_x, y x \rangle = 0$.
 - i) Montrer que $M:=f^{-1}(0)$ est une sous-variété de \mathbb{R}^n . Quelle est sa dimension ?
- j) Soit $x \in M$. Montrer que M est contenue dans le sous-espace affine $x + T_x M$ de \mathbb{R}^n . En déduire que M est égale à ce sous-espace.
- k) Montrer que X est un champ de vecteurs constant sur \mathbb{R}^n et trouver toutes fonctions lisses $f: \mathbb{R}^n \to \mathbb{R}$ dont le gradient est de norme constante égale à 1.
 - **V.** Soient k et n deux entiers tels que $1 \le k \le n-1$ et soit $S^k \subset \mathbb{R}^n$ la sphère

$$S^k := \{(x_1, \dots, x_{k+1}, 0, \dots, 0) \in \mathbb{R}^n \mid x_1^2 + \dots + x_{k+1}^2 = 1\}.$$

- a) Montrer que l'ouvert $U_{n,k} := \mathbb{R}^n \setminus S^k$ est difféomorphe à $\mathbb{R}^n \setminus (\mathbb{R}^k \cup \{P\})$, où P est un point de $\mathbb{R}^n \setminus \mathbb{R}^k$. Indication : on pourra utiliser des projections stéréographiques sur S^n . Il n'est pas nécessaire de faire des calculs explicites, on se contentera d'expliquer l'idée générale.
 - b) Calculer les groupes de cohomologie à support compact de $U_{n,n-1}$.
- c) En utilisant la suite exacte de Mayer-Vietoris, calculer les groupes de cohomologie à support compact de $U_{n,k}$ pour $k \le n-2$ (on suppose ici que $n \ge 3$).
- d) Soit $n' \geq 2$ un entier et $k' \in \{1, \ldots, n'-1\}$. Montrer que si $U_{n,k}$ est difféomorphe à $U_{n',k'}$ alors n=n' et k=k'.
- e) Le résultat précédent reste-t-il vrai si on suppose seulement que $U_{n,k}$ et $U_{n',k'}$ ont le même type d'homotopie ?