Admission to Candidacy Examination

in Real Analysis

August 1985

Notation: R - real numbers; λ - Lebesgue measure on R; M $_{\lambda}$ - the Lebesgue measurable sets; χ_{A} - characteristic function of A.

- 1. State and prove Lebesgue's Dominated Convergence Theorem.
- 2. State and prove Holder's inequality.
- 3. Prove that for every $\varepsilon > 0$, there exists an open dense subset 0 of R such that $\lambda(0) < \varepsilon$.
- 4. Let (X,A,u) be a finite measure space, f a real valued A-measurable function on X with range of f ⊂ [-M, M] for some M, 0 < M < ∞.</p>
 Define v on the Borel subsets of [-M, M] by

$$v(B) = \mu(f^{-1}(B)).$$

5. Let f: R + R, For ucR, & > 0, define

$$w(x, \delta) = \sup \{|f(z) - f(y)| : x, y : N_{\delta}(x)\}$$

and let

$$w(x) = \inf_{\delta > 0} w(x, \delta)$$

- a) Prove that f is continuous at $x \iff w(x) = 0$.
- b) Prove that for each a & R, the set

$$0_{\alpha} = (x \in \mathbb{R}; e(x) \leq \alpha)$$
 is open.

c) Prove that the set [x & R: f is continuous at x] is a G aet.

- 6. a) Let $f,g\in L^2$ ([0,1],M_{\(\lambda\)},\(\lambda\)) and let $F(x)=\int\limits_0^x f \,d\lambda$. Show that F is nondecreasing if and only if $f\geq 0$ a.e. on [0,1].
 - b) Show that if $\{F_n\}_{n=1}$ is a sequence of nondecreasing absolutely continuous functions on [0,1] such that $F_n(0)=0$ and $F_n(1)<\infty$, then F_n is absolutely continuous.
- 7. Let (X,A,μ) and (Y,B,ν) be complete measure spaces. Let $g \in L^1(X,A,\mu)$ and $h \in L^1(Y,B,\nu)$. Define f on $X \times Y$ by f(x,y) = g(x)h(y). Prove that $f \in L^1(X \times Y, H_{\mu \times \nu}, \mu \times \nu)$ and

8. Let u_1 and u_2 be nonzero finite measures on a measurable space (X,A). Define for E ϵ A

$$(\mu_1 \vee \mu_2)(E) = \sup \{\mu_1(A) + \mu_2(E - A): A \in A, A \in E\}.$$

It can be shown directly that $\mu_1 \vee \mu_2$ is a finite measure on (X, A). However, note that μ_1 , μ_2 are absolutely continuous with respect to $\mu_1 + \mu_2$. Let

$$f_1 = \frac{d\mu_1}{d(\mu_1 + \mu_2)}$$
 and $f_2 = \frac{d\mu_2}{d(\mu_1 + \mu_2)}$

Show that

$$(\mu_1 \vee \mu_2)(E) = \int_E (f_1 \vee f_2) d(\mu_1 + \mu_2)$$

where $(f_1 \vee f_2) (x) = \max \{f_1(x), f_2(x)\}.$

- 9. Let I: $L^1([0,1], H_{\lambda}, \lambda) \rightarrow R$ satisfy
- a) I is linear.
- b) If $f \geq g$, then I (f) \geq I(g).
- c) I (X;) = length of J if J is an interval.
- d) If $f_n \downarrow 0$, then $I(f_n) \downarrow 0$.

Prove the following:

- i) $I(X_0) = \lambda(0)$ for 0 open.
- ii) $I(X_F) = \lambda(F)$ if F is compact.
- iii) $I(X_E) = \lambda(E)$ if $E \in M_{\lambda}$.
- iv) $I(f) = \int f d\lambda$ if f is simple.
- v) I(f) = $\int f d\lambda$ if $f \in L^1([0,1], H_{\lambda}, \lambda)$.