nature of roots are as follows:

In brief Nature of roots and corresponding C.F.

SI	Nature of Roots of A.E.	Roots	C.F.
1.	Real (ational) and Distinct roots	m_1, m_2, m_3	$C_1 e^{m_1 x} + C_2 e^{m_2 x} + C_3 e^{m_3 x}$
2.	Repeated roots	$m_1 = m_2,$ $m_1 = m_2 = m_3$	$(C_1 + C_2 x) e^{m_1 x}$ $(C_1 + C_2 x + C_3 x^2) e^{m_1 x}$
3.	Complex roots	$m_1 = \alpha + i\beta$ $m_2 = \alpha - i\beta$	$e^{\alpha x} [C_1 \cos \beta x + C_2 \sin \beta x]$
4.	Repeated Complex roots	$m_1 = m_2 = \alpha + i\beta$ $m_3 = m_4 = \alpha - i\beta$	$e^{\alpha x} \left[(C_1 + C_2 x) \cos \beta x + (C_3 + C_4 x) \sin \beta x \right]$
5.	Irrational	$m_1 = a + \sqrt{b}$ $m_2 = a - \sqrt{b}$	$e^{ax} \left[C_1 \cosh \sqrt{b} x + C_2 \sinh \sqrt{b} x \right]$
6.	Repeated irrational roots	$m_1 = m_2 = a + \sqrt{b}$ $m_3 = m_4 = a - \sqrt{b}$	$e^{ax} \left[(C_1 + C_2 x) \cosh \sqrt{b}x + (C_3 + C_4 x) \sinh \sqrt{b}x \right]$

camilians equation are (rational) and distinct.

Designation (Dr. - NO - D) Years of

OBJECTIVE TYPE QUESTIONS

Choose the correct alternative :

- The particular integral of $\frac{d^2y}{dx^2} + \frac{6dy}{dx} + 9y = 5e^{3x}$ is
 - (a) $\frac{5e^{3x}}{18}$ (b) $\frac{e^{3x}}{36}$ (c) $5e^{3x}$
- $(d) \ \frac{5e^{3x}}{36}$
- **Ans**. (d)

- The particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^x$ is
- (b) $e^{\frac{x}{3}}$
- (d) $e^{\frac{x}{2}}$

Ans. (b)

3. The particular integral of
$$2\frac{d^2y}{dx^2} + \frac{dy}{dx} + 3y = e^{2x}$$
 is

(a)
$$\frac{e^x}{13}$$

(a)
$$\frac{e^x}{13}$$
 (b) $\frac{e^{2x}}{13}$

$$(c) \frac{2x}{e^{27}}$$

(d) None of these

Ans. (b)

4. The particular integral of
$$4\frac{d^2y}{dx^2} + \frac{3dy}{dx} + 2y = e^{3x}$$
 is

$$(a) \frac{e^{3x}}{7}$$

(a)
$$\frac{e^{3x}}{7}$$
 (b) $\frac{e^{2x}}{47}$ (c) $\frac{e^{3x}}{27}$

(c)
$$\frac{e^{3x}}{27}$$

$$(d) \; \frac{e^{3x}}{47}$$

Ans. (d)

5. The particular integral of
$$2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = e^{-x}$$
 is

$$(a) - x e^{-x}$$

(b)
$$x e^{-x}$$

$$(c) - r e^{i}$$

(d)
$$xe^{x^2}$$

Ans. (a)

6. The particular integral of
$$\frac{d^2y}{dx^2} - 4y = e^{2x}$$
 is

(a)
$$x e^{2x}$$

(b)
$$2 \times e^{2x}$$
 (c) $\frac{xe^{2x}}{2}$

(c)
$$\frac{xe^{2x}}{2}$$

$$(d) \frac{xe^{2x}}{4}$$

Ans. (d)

7. Particular integral of
$$\frac{d^2y}{dx^2} + y = x^2$$
 is

(a)
$$x^2$$

$$(b) x^2 + 2$$

$$(c) x^2 - 2$$

(d) None of these

Ans. (c)

8. Particular integral of
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = x^2$$
 is

(a)
$$x^2 - 2x$$

$$(b) x^2 + 2x$$

$$(c) x^2 + 2$$

(d)
$$x^2 - 2$$

Ans. (a)

9. Particular integral of 2
$$\frac{d^2y}{dx^2} - y = x^3$$
 is

$$(a) x^3 + 12x$$

(a)
$$x^3 + 12x$$
 (b) $-(x^3 + 12x)$ (c) $x^3 + 12$

$$(c) x^3 + 12$$

$$(d) - x^3 - 12$$

Ans. (b)

10. Particular integral of
$$\frac{d^2y}{dx^2} + y = 1$$
 is

$$(d) x^2$$

Ans. (c)

(a) 0 (b) x (c) 1
11. The particular integral of
$$(D^2 + 4)$$
 $y = \cos 2x$ is

(a)
$$\frac{x}{4}\cos 2x$$

(b)
$$\frac{x}{4}\sin 2x$$
 (c) $x\cos 2x$

$$(c) x \cos 2x$$

$$(d) \frac{1}{4} \sin 2x$$

Ans. (b)

12. The particular integral of
$$\frac{d^2y}{dx^2} + y = \sin x$$
 is

(a)
$$-\frac{x}{2}\cos x$$

(a)
$$-\frac{x}{2}\cos x$$
 (b) $\frac{x}{2}\cos x$ (c) $-\frac{x}{2}\sin x$

$$(c) -\frac{x}{2}\sin x$$

Ans. (a)

13. The particular integral of
$$\frac{d^2y}{dx^2} - y = \cos x$$
 is

$$(a) -\frac{1}{2}\cos x \qquad (b) \frac{1}{2}\cos x$$

(b)
$$\frac{1}{2}\cos x$$

$$(c) -\frac{1}{2}\sin x$$

Ans. (a)

14. The particular integral of
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \sin 2x$$
 is

(a)
$$3 \sin 2x + 2 \cos 2x$$

(b)
$$\frac{1}{13}$$
 (3 sin 2x + 2 cos 2x)

(c) 13 (3
$$\sin 2x + 2 \cos 2x$$
)

(d)
$$-\frac{1}{13}(3\sin 2x + 2\cos 2x)$$

15. The particular integral of
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = e^x \sin x$$
 is

$$(a) - \frac{e^x}{13} (3\cos x - 2\sin x)$$

(c)
$$e^x$$
 (3 cos $x - 2 \sin x$)

16. The particular integral of
$$\frac{d^2y}{dx^2} + y = e^{2x} \cos x$$
 is

(a)
$$\frac{e^x}{4} (\sin x + \cos x)$$

$$(c) \frac{e^{2x}}{8} (\sin x + \cos x)$$

17. The particular integral of
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = \sin^2 x$$
 is

(a)
$$\frac{1}{2} - \frac{2}{13} (2 \sin 2x - 2 \cos 2x)$$

(c)
$$\frac{2}{13}$$
 (2 sin 2x - 3 cos 2x)

18. Particular integral of
$$(D^2 + a^2) y = \cos ax$$
 is:

$$(a) \ \frac{-x}{2a} \cos a \ x$$

(c)
$$\frac{1}{2a}\sin a x$$

19.
$$e^{iax}$$
 is equal to

- (a) $\sin a x + i \cos ax$ (c) $\sin ax i \cos ax$

20.
$$\frac{1}{f(D)}x^n$$
 sin ax is equal to

(a)
$$e^{iax} \frac{1}{f(D+ia)} x^n$$

(c) Real part of
$$e^{iax} \frac{1}{f(D+ia)} x^n$$

21.
$$\frac{1}{f(D)}x^n \cos ax$$
 is equal to

(a) Real part of
$$e^{iax} \frac{1}{f(D+ia)} x^n$$

(c)
$$e^{iax} \frac{1}{f(D+ia)} x^n$$

22.
$$\frac{1}{D-a}\phi(x)$$
 is equal to

(a)
$$e^{ax} \int \phi(x) e^x dx$$

(c)
$$e^{ax} \int e^{-ax} \phi(x) dx$$

(b)
$$\frac{e^x}{13} (3 \cos x - 2 \sin x)$$

(b)
$$e^{2x} (\sin x + \cos x)$$

(b)
$$\frac{1}{2} + \frac{2}{13} (2 \sin 2x - 3 \cos 2x)$$

(d)
$$\frac{1}{2} + \frac{1}{26} \left(-2\sin 2x + 3\cos 2x \right)$$
 Ans. (d)

(b)
$$\frac{1}{2a}\cos a x$$

(d)
$$\frac{x}{2a}\sin a x$$

Ans. (d)

(R.G.P.V, Bhopal, 1Semester June, 2007)

(b)
$$\cos ax - i \sin ax$$

(d)
$$\cos ax + i \sin ax$$

Ans. (d)

(b) Imaginary part of
$$e^{iax} \frac{1}{f(D+ia)} x^n$$

Ans. (b)

(b) Imaginary part of
$$e^{iax} \frac{1}{f(D+ia)} x^n$$

Ans. (a)

(b)
$$\int e^{-ax} \phi(x) dx$$

(d)
$$e^{ax} \int \phi(x) dx$$

Ans. (c)

23.
$$\frac{1}{D-3i}$$
 sec 3 x is equal to

(a)
$$e^{3x} \int e^{-3x} \sec 3x \, dx$$

(b)
$$\int e^{-3x} \sec 3x \, dx$$

(c)
$$e^{3ix} \int e^{-3ix} dx$$

(d)
$$e^{-3tx} \int e^{-3tx} \sec 3x \, dx$$
 Ans.

24. The complementary function for the solution of the differential equation $2x^2y'' + 3xy' - 3y = x^3$ is

(a)
$$Ax + Bx^{-3/2}$$

(c)
$$Ax^2 + Bx$$

9)

(b)
$$Ax + Bx^{3/2}$$

(d)
$$Ax^{3/2} + Bx^{3/2}$$
 Ans. (a)

25. Solution of
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$
 is

(a)
$$y = C_1 e^x + C_2 e^{2x}$$

(c)
$$y = (C_1 + C_2 x + C_3 x^2)e^{-x}$$

(b)
$$y = C_1 + (C_2 + C_3 x) e^{-x}$$

(d) $y = C_1 + C_2 e^{-x}$

(d)
$$y = C_1 + C_2 e^{-x}$$
 Ans. (b)

(A.M.I.E.T.E. June 2009)

26. The basis of solutions for the differential equation
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$$
 are

(a)
$$x$$
, $x I_n x$,

(c)
$$\frac{1}{x}, \frac{1}{x^2}$$

(b)
$$I_n x$$
, e^x

(d)
$$\frac{1}{x^2}e^x$$
, $xI_n x$ (R.G.P.V., Bhopal, June, 2008)

The complementary function for the solution of the differential equation $2x^2y'' + 3xy' - 3y = x^3$ is obtained as

(a)
$$Ax + Bx^{-3/2}$$

(b)
$$Ax + Bx^{3/2}$$

(c)
$$Ax^2 + Bx$$

(d)
$$Ax^{-3/2} + Bx^{3/2}$$

Ans. (a)

28. The substitutions in solving the homogeneous linear equations are

(a)
$$x = e^z$$
, $x \frac{dy}{dx} = Dy$, $x^2 \frac{d^2y}{dx^2} = D(D-1)y$, where $D = \frac{d}{dz}$

(b)
$$z = e^x$$
, $x \frac{dy}{dx} = Dy$, $x^2 \frac{d^2y}{dx^2} = D(D-1)y$, where $D = \frac{d}{dz}$

(c)
$$x = e^{-z}$$
, $\frac{dy}{dx} = Dy$, $x^2 \frac{d^2y}{dx^2} = D(D-1)y$, where $D = \frac{d}{dz}$

Ans.(a)

(d) None of these

29. The complementary function for the solution of the differential equation.

$$x^2y'' + xy' + y = \log x \sin(\log x)$$

(a)
$$C_1 + C_2 \sin(\log x)$$

(b)
$$C_1 \cos(\log x) + C_2 \sin(\log x)$$

(d)
$$(C_1 + C_2 x) \sin(\log x)$$

Ans.(b)

(c)
$$C_1 \cos(\log x) + C_2$$

30. The integrating factor of $\cos^2 x \frac{dy}{dx} + y = \tan x$ is

Ans.(d)

31. The integrating factor of
$$x(x-1)\frac{dy}{dx} - (x-2)y = x^2(2x-1)$$
 is

(a)
$$\frac{x^3 - 1}{x}$$

(b)
$$\frac{x^3+1}{x}$$

(c)
$$\frac{x-1}{x^2}$$

$$(d) \frac{x+1}{x^3}$$

32. Solution
$$(x-y-1)\frac{dy}{dx} = 1$$
 is

(a)
$$x - y - z = c e^{t}$$
 (b) $x + y = c e^{t}$

$$(c) x - y - 2 = e^{t}$$

(c)
$$x-y-2=e^{y}$$
 (d) $x-y-2=c e^{y}$

Ans.(a)

33. P.1. of
$$(D^2 + 4) y = \sin 3x$$
 is

(a)
$$-\frac{1}{10}\sin 3x$$
 (b) $\frac{1}{2}\sin 3x$

(b)
$$\frac{1}{2} \sin 3x$$

(c)
$$\frac{1}{3}\sin 2x$$

$$(d) -\frac{1}{5}\sin 3x$$

Ans.(d)

34. P.I. of
$$(D^2 - 2D + 1) y = e^x$$
 is

(a)
$$\frac{x^2}{2}e^x$$
 (b) $\frac{x}{2}e^x$

(b)
$$\frac{x}{2}e^x$$

$$(c) \frac{x}{4} e^{x^2}$$

$$(d) \ \frac{x^2}{5} e^{2x}$$

Ans.(a)

35. On putting
$$x = e^z$$
, the transformed differential equation of $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$ is

(a)
$$\frac{d^2y}{dz^2} - y = e^x$$
 (b) $\frac{d^2y}{dz^2} + y = e^z$ (c) $\frac{dy}{dz} + y = e^z$ (d) $\frac{dy}{dz} - y = e^{z^2}$

(b)
$$\frac{d^2y}{dz^2} + y = e^z$$

(c)
$$\frac{dy}{dz} + y = e^{x}$$

$$(d) : \frac{dy}{dz} - y = e^{z^2}$$

Ans. (b)

(a)
$$\frac{dy}{dx} + py = Q$$
 where P and Q are the functions of x only

(b)
$$\frac{dy}{dx} + py = Q$$
, where P and Q are the functions of y only

(c)
$$\frac{dy}{dx} + py = Q$$
, where P is function of x and Q is function of y

(d)
$$\frac{dy}{dx} + py = Q$$
, where P is funtion y and Q is a function of x.

Ans. (a)

37. Let y_1, y_2 be two linearly independent solutions of the differential equations $yy'' - (y)^2 = 0$. Then $c_1 v_1 + c_2 v_2$, where c_1 , c_2 are contants is a solution of this differential equation for

(a)
$$c_1 = c_2 = 0$$
 only

(b)
$$c_1 = 0$$
 or $c_2 = 0$

(b) no value of
$$c_1$$
, c_2

(d) all real
$$c_1, c_2$$

Ans. (*d*)

38. The solution of the differential equation
$$y'' + 2y' + y = 0$$
, $y(0) = 1$, $y'(0) = -1$ is

(a)
$$xe^{-x}$$

(b)
$$-xe^{-x}$$

$$(c) - e^{-x}$$

Ans. (d)

39. The solution of the differential equation
$$y'' + a^2y = 0$$
; $y(0) = 0$, $y'(0) = a$ is

$$(a) \cos x$$

$$(b) \sin x$$

$$(c) \cos ax$$

Ans. (d)

40. Which of the following is not a solution of the equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$$

(a)
$$e^{2x}$$

(b)
$$e^{-3}$$

(c)
$$3e^{2x} + 5e^{-3x}$$

(d)
$$c_1 e^{2x} + c_2 e^{-3x} + 1$$

Ans. (d)

41. The complementary function of
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$$
 is

(a)
$$y = (c_1 + c_2 x)e^{3x}$$
 (b) $y = (c_1 + c_2)e^{3x}$ (c) $y = (c_1 + c_2 x)e^{-3x}$ (d) $y = (c_1 + c_2)e^{-3x}$

(c)
$$y = (c_1 + c_2 x)e^{-3}$$

(d)
$$y = (c_1 + c_2)e^{-3x}$$

Ans. (a)

42. The equation
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = 0$$
 has the solution

(a)
$$c_1e^x + c_2e^{2x}$$

(b)
$$c_1 e^{-x} + c_2 e^2$$

(c)
$$c_1 e^x \cos(2x + c_2)$$

(a)
$$c_1 e^x + c_2 e^{2x}$$
 (b) $c_1 e^{-x} + c_2 e^{2x}$ (c) $c_1 e^x \cos(2x + c_2)$ (d) $c_1 e^{-x} \sin(2x + c_2)$

Ans. (c)

(c)
$$y = a + bx + cx^2 + dx^3$$

(d)
$$y = a + bx + cx^2 + de^{2x}$$

50. The particular integral of the differential equation $\frac{d^2y}{dx^2} + a^2y = \sin ax$ is

(a)
$$-\frac{x}{2a}\cos ax$$
 (b) $\frac{x}{2a}\cos ax$

(b)
$$\frac{x}{2a}\cos ax$$

$$(c) - \frac{ax}{2}\cos ax \qquad (d) \frac{ax}{2}\cos ax$$

(d)
$$\frac{ax}{2}\cos ax$$

Ans. (a)

51. The solution of the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$ is

(a)
$$y = ae^x + be^{2x} + \frac{1}{2}e^{3x}$$

(b)
$$y = ae^{-x} + be^{-2x} + \frac{1}{2}e^{3x}$$

(c)
$$y = ae^x + be^{-2x} + \frac{1}{2}e^{3x}$$

(d)
$$y = ae^{-x} + be^{2x} + \frac{1}{2}e^{3x}$$

Ans. (a)

52. The roots of the auxiliary equation of the differential equation $\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 9y = 4e^{3t}$ are

$$(a) 3, -3$$

$$(c)$$
 -3, -3

(d) None of these Ans. (b) (GBTU 2011) Fill in the blanks in each of the following

53. Particular integral of
$$(D^2 - 4D + 4) y = \sin 2x$$
 is

(GBTU 2011) Ans.
$$\frac{1}{8}\cos 2x$$

54. The solution of
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 4y = 0$$
 is

Ans.
$$y = c_1 e^{-x} + (c_2 + c_3 x)e^{2x}$$

55. The particular integral of
$$(D^2 + 9) y = \sin 3x$$
 is

Ans. P.I.=
$$-\frac{x}{6}\cos 3x$$

56. The particular integral of
$$(D^2 + 6D + 5) y = 4e^x$$
 is

Ans.
$$P.I. = \frac{1}{3}e^{x}$$

57. The solution of
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} = 0$$
 is

Ans.
$$c_1 + c_2 x^2$$

58. The particular intagral of
$$\frac{d^2y}{dx^2} + y = 2\cos h \ 3x$$
 is

Ans.
$$-\frac{1}{4}\cosh 3x$$

The differential equation whose auxiliary equation has the roots 0, -1, -1 is

Ans. $(D^3 + 2D^2 + D) y = 0$

Ans.
$$(D^3 + 2D^2 + D) y = 0$$

The complementary function of the differential equation $x^2y'' + xy' + y = \log x^2$ is 60.

Ans.
$$(c_1 \cos \log x + c_2 \sin \log x)$$

To transform $x \frac{d^2y}{dx^2} + \frac{dy}{dx} = \frac{2y}{x}$ into the linear differential equation with constant coefficients, we put 61.

The no. of arbitrary constants in the general solution of a differential equation is equal to of the 62. differential equation. Ans. Order

Match the following

63. (i)
$$\frac{1}{f(D)}e^{ax}$$

(a)
$$\frac{1}{f(-a^2)}\cos ax$$

(ii)
$$\frac{1}{f(D^2)}\cos ax$$

(b)
$$[f(D)]^{-1}x^m$$

$$(iii) \ \frac{1}{f(D)} x^m$$

(c)
$$e^{ax} \frac{1}{f(D+a)} \phi(x)$$

(iv)
$$\frac{1}{f(D)}e^{ax}\phi(x)$$

(d)
$$\frac{1}{f(a)}e^{ax}$$

Ans. $(i) \rightarrow (d)$

$$(ii) \rightarrow (a)$$

$$(iii) \rightarrow (b)$$

$$(iv) \rightarrow (c)$$

Indicate True or False for the following:

64. The P.I. of
$$\frac{d^2y}{dx^2} + y = \sin 3x$$
 is $-\frac{1}{8}\sin 3x$.

65. The P.I. of
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = e^{3x}$$
 is $\frac{1}{21}e^{3x}$

66. The P.I. of
$$\frac{1}{f(D)}e^{2x}\phi(x) = e^{2x}\frac{1}{f(D+2)}\phi(x)$$
.

67. The P.L of $\frac{d^2y}{d^2y} + y = x^2$ is x^2 .

Ans. False

Choose the correct answer:

1. If
$$\frac{dx}{dt} + 4y = 0$$
 and $\frac{dy}{dt} - 4x = 0$ then $x = (i) - A \sin 4t + B \cos 4t$

$$(i) - A \sin 4t + B \cos 4t$$

(iii)
$$A \sin 4t + B \cos 4t$$

2. If
$$\frac{dx}{dt} + 5y = 0$$
 and $\frac{dy}{dt} - 5x = 0$ then $y = 0$

(i)
$$A \cos 5t - B \sin 5t$$

$$(iii) - A\cos 5t + B\sin 5t$$

3. If
$$\frac{dx}{dt} - y = t$$
 and $\frac{dy}{dt} = t^2 - x$ then $x = t$

(i)
$$c_1 \cot t + c_2 \sin t + t^2 - 1$$

(iii)
$$c_1 \cos t + c_2 \sin t + t^2 - 1$$

(ii)
$$A \sin 4t - B \cos 4t$$

(ii)
$$A \cos 5t + B \sin 5t$$

Ans. (i)

(ii)
$$c_1 \cos t + c_2 \sin t - t^2 + 1$$

a radgid bas baco(iv)
$$c_1 \cos t - c_2 \sin t - t^2 + 1$$

4. If
$$\frac{dx}{dt} = 3x + 2y$$
, $\frac{dy}{dt} = 5x + 3y$, then $x = \frac{1}{2}$

(i)
$$e^{3t} (c_1 \cos h \sqrt{10} t + c_2 \sin h \sqrt{10} t)$$

(iii)
$$e^{-3t} (c_1 \cos h \sqrt{10} t + c_2 \sin h \sqrt{10} t)$$

(ii)
$$(c_1 \cos h \sqrt{10} t + c_2 \sin h \sqrt{10} t)$$

(iv)
$$e^{3t} (c_1 \cos h \sqrt{10} t - c_2 \sin h \sqrt{10} t)$$
 Ans. (i)