8.4 Moving average models

Rather than using past values of the forecast variable in a regression, a moving average model uses past forecast errors in a regression-like model.

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q},$$

where ε_t is white noise. We refer to this as an **MA(**q**) model**, a moving average model of order q. Of course, we do not *observe* the values of ε_t , so it is not really a regression in the usual sense.

Notice that each value of y_t can be thought of as a weighted moving average of the past few forecast errors. However, moving average models should not be confused with the moving average smoothing we discussed in Chapter 6. A moving average model is used for forecasting future values, while moving average smoothing is used for estimating the trend-cycle of past values.

Figure 8.6: Two examples of data from moving average models with different parameters. Left: MA(1) with $y_t=20+\varepsilon_t+0.8\varepsilon_{t-1}$. Right: MA(2) with $y_t=\varepsilon_t-\varepsilon_{t-1}+0.8\varepsilon_{t-2}$. In both cases, ε_t is normally distributed white noise with mean zero and variance one.

Figure 8.6 shows some data from an MA(1) model and an MA(2) model. Changing the parameters θ_1,\ldots,θ_q results in different time series patterns. As with autoregressive models, the variance of the error term ε_t will only change the scale of the series, not the patterns.

It is possible to write any stationary AR(p) model as an $MA(\infty)$ model. For example, using repeated substitution, we can demonstrate this for an AR(1) model:

$$\begin{split} y_t &= \phi_1 y_{t-1} + \varepsilon_t \\ &= \phi_1 (\phi_1 y_{t-2} + \varepsilon_{t-1}) + \varepsilon_t \\ &= \phi_1^2 y_{t-2} + \phi_1 \varepsilon_{t-1} + \varepsilon_t \\ &= \phi_1^3 y_{t-3} + \phi_1^2 \varepsilon_{t-2} + \phi_1 \varepsilon_{t-1} + \varepsilon_t \end{split}$$

Provided $-1 < \phi_1 < 1$, the value of ϕ_1^k will get smaller as k gets larger. So eventually we obtain

$$y_t = \varepsilon_t + \phi_1 \varepsilon_{t-1} + \phi_1^2 \varepsilon_{t-2} + \phi_1^3 \varepsilon_{t-3} + \cdots,$$

The reverse result holds if we impose some constraints on the MA parameters. Then the MA model is called **invertible**. That is, we can write any invertible MA(q) process as an $AR(\infty)$ process. Invertible models are not simply introduced to enable us to convert from MA models to AR models. They also have some desirable mathematical properties.

For example, consider the MA(1) process, $y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1}$. In its AR(∞) representation, the most recent error can be written as a linear function of current and past observations:

$$arepsilon_t = \sum_{j=0}^{\infty} (- heta)^j y_{t-j}.$$

When $|\theta|>1$, the weights increase as lags increase, so the more distant the observations the greater their influence on the current error. When $|\theta|=1$, the weights are constant in size, and the distant observations have the same influence as the recent observations. As neither of these situations make much sense, we require $|\theta|<1$, so the most recent observations have higher weight than observations from the more distant past. Thus, the process is invertible when $|\theta|<1$.

The invertibility constraints for other models are similar to the stationarity constraints.

- For an MA(1) model: $-1 < \theta_1 < 1$.
- For an MA(2) model: $-1 < \theta_2 < 1, \;\; \theta_2 + \theta_1 > -1, \;\; \theta_1 \theta_2 < 1.$

More complicated conditions hold for $q \geq 3$. Again, R will take care of these constraints when estimating the models.