Network Flow

Here is an example of an "empty" flow graph:

Here is an example of some flow going through ...

Finding the Maximum Flow in a Flow Network

$$S \to A \to C \to B \to T$$

The forward edges on this path are SA, AC, and BT.

The backward edge is CB.

Now, let's augment this path:

As mentioned before, it is impossible to reach B on an augmenting path since all edges leading to B are at full capacity already.

Applications of Network Flow

Bipartite Matching

Instance of Bipartite Matching

Set of companies: ...

Set of students: {Amanda, Belinda, Cameron, David, Elyse}

Set of offers: ...

Second Instance of Bipartite Matching

Set of boys: {Bob, Dave, Fred, Harvey}

Set of girls: {Alice, Carol, Elaina, Giselle}

Set of ordered pairs: ...

Indirect use of bipartite matching

<u>Cow Steeplechase Problem (from USACO) – Utilizes bipartite matching indirectly</u>

... the most number of line segments that mutually don't intersect one another.

Network Flow for other matching problems

Example Problem: Grand Dinner Problem (from ACMUVA)

Museum Guard Problem: 2009 South East Regional

(picture/graph on the next page)

g₁: maximum number of shifts guard₁ can work