Конспект билетов

Теория вероятностей

Содержание

1	Дискретное вероятностное пространство, классическая вероятность, геометрическая вероятность	4
2	Колмогоровское определение вероятностного пространства. Свойства вероятности 2.1 Колмогоровское определение вероятностного пространства	4 4
3	Независимость событий, условная вероятность, формула полной вероятности, формула Байеса	4
4	Схема испытаний Бернулли: два определения и их эквивалентность	4
5	Распределения в \mathbb{R} , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ по функции распределения 5.1 Распределения в \mathbb{R} , функция распределения и её свойства	4 4 4
6	Дискретные и абсолютно непрерывные распределения в R. Плотность. Связь плотности и функции распределения. Примеры 6.1 Дискретные и абсолютно непрерывные распределения в R. 6.2 Плотность 6.3 Связь плотности и функции распределения 6.4 Примеры	5 5 5 5
7	Распределения в \mathbb{R}^n , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ по функции распределения $(6/\mathbf{д})$ 7.1 Распределения в \mathbb{R}^n , функция распределения и её свойства	5 5
8	Дискретные и абсолютно непрерывные распределения в \mathbb{R}^n . Плотность. Связь плотности и функции распределения. Примеры	5
9	Случайные величины и случайные векторы. Характеристики случайной величины (вектора): распределение вероятностей, функция распределения, плотность. Действия над случайными величинами (векторами) 9.1 Случайные величины и случайные векторы 9.2 Характеристики случайной величины (вектора): распределение вероятностей, функция распределения, плотность 9.3 Действия над случайными величинами (векторами)	5 5 6
10	Теорема о плотности $\varphi(\xi)$. Маргинальные распределения. Вычисление маргинальной плотности 0.1 Теорема о плотности $\varphi(\xi)$	6 6 6
11	Случайные величины и случайные векторы. Независимость и критерий независимости. Независимость функций от векторов 11.1 Случайные величины и случайные векторы. Независимость и критерий независимости	6 6
12	Независимость случайных величин. Формула свёртки и её обобщения для разности, произведения и частного	6
13	Математическое ожидание случайной величины: дискретные и абсолютно непрерывные величины. Примеры	6

14	Основные свойства математического ожидания. Математическое ожидание произведения независимых величин	7
15	Теорема о замене переменных в интеграле Лебега (б/д). Подсчёт математического ожидания от функции от случайной величины. Примеры	7
16	Дисперсия, ковариация, корреляция и их свойства. Примеры	7
17	Неравенство Коши – Буняковского. Неравенство Маркова. Неравенство Чебышёва. Закон больших чисел в форме Чебышёва	7
18	Виды сходимостей и взаимосвязи между ними	7
19	Виды сходимостей. Критерий сходимости п.н. Теорема Рисса и её следствие. Наследование сходимости при арифметических операциях 19.1 Виды сходимостей. Критерий сходимости п.н. 19.2 Теорема Рисса и её следствие	7 7 8
20	Критерий слабой сходимости в терминах функции распределения (б/д). Центральная предельная теорема (б/д). Переформулировка в интегральном виде. Теорема Муавра-Лапласа: локальная и интегральная 20.1 Теорема Муавра-Лапласа: локальная и интегральная	8 8
21	Закон больших чисел и усиленный закон больших чисел (б/д)	8
22	Предельная теорема Пуассона.	8
23	Гауссовские векторы. Эквивалентность определений (доказательство в одну сторону). Теорема о том, что распределение гауссовского вектора однозначно задаётся ковариационной матрицей, вектором средних. Плотность гауссовского вектора. Независимость компонент 23.1 Гауссовские векторы. Эквивалентность определений (доказательство в одну сторону)	8 8 9 9
24	Случайные процессы. Дискретное и непрерывное время. Траектории случайного процесса. Примеры	9
2 5	Симметричное случайное блуждание на прямой. Траектории. Распределение: $P(S_n=k)$. Принцип отражения и вероятность возвращения в нуль 25.1 Принцип отражения и вероятность возвращения в нуль	9 9
26	Распределение максимума случайного блуждания. Закон повторного логарифма (б/д)	9
27	Ветвящийся процесс Гальтона—Ватсона. Производящая функция и её свойства. Вероятность вырождения и технология ее вычисления 27.1 Определение формы Риманова объёма и ее связь с дифференциальной формой (тензором Леви-Чивиты) 27.2 Определение интеграла первого рода скалярной функции по гладкому многообразию	10 10 10
28	28.1 Дивергенция и ротор векторного поля в области трехмерного евклидова пространства 28.2 Геометрический смысл дивергенции и ротора векторного поля	10 10 11

29	Определение производной Ли тензорного поля через его обратный перенос фазовым	
	потоком. Выражение компонент производной Ли тензорного поля по векторному полю	
	через компоненты этих полей. Выражение производной Ли для тензорных полей типов	
	$(0,0),\ (1,0)$ и $(0,1)$	11
	29.1 Определение производной Ли тензорного поля через его обратный перенос фазовым потоком	11
	29.2 Выражение компонент производной Ли тензорного поля по векторному полю через компо-	
	ненты этих полей	11
	29.3 Выражение производной Ли для тензорных полей типов $(0,0),(1,0)$ и $(0,1)$	11
	T7 V TT 1 1 1	10
30	Коммутативность производной Ли и внешнего дифференциала формы.	12
31	Правило Лейбница для внутреннего произведения векторного поля на внешнее произ-	
	ведение двух дифференциальных форм	12
32	Магическое тождество Картана.	12

1 Дискретное вероятностное пространство, классическая вероятность, геометрическая вероятность

Опр Элементарные события (исходы) и и х пространство

Опр Дискретное вероятностное пространство

Опр Классическая вероятностная модель

Опр Модель геометрической вероятности

2 Колмогоровское определение вероятностного пространства. Свойства вероятности

2.1 Колмогоровское определение вероятностного пространства

Опр Событие и вероятностная мера (вероятность)

2.2 Свойства вероятности

Вероятность обладает 7 свойствами; доказывать некоторые из них лучше, опираясь на рисунок Опр Вероятностное пространство

3 Независимость событий, условная вероятность, формула полной вероятности, формула Байеса

Опр Независимые события

Опр Условная вероятность

Опр Разбиение

Theorem Формула полной вероятности

Theorem Формула Байеса

4 Схема испытаний Бернулли: два определения и их эквивалентность

Опр Попарно независимые события

Опр Независимые в совокупности события

Далее конспект составлен по билету №4 Победоса

Опр 1 Схема испытаний Бернулли

Опр 1 Схема испытаний Бернулли

5 Распределения в \mathbb{R} , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ по функции распределения

5.1 Распределения в $\mathbb{R},$ функция распределения и её свойства

Опр Борелевская сигма-алгебра $\mathcal{B}(\mathbb{R})$

Опр Распределение вероятностей

 $\mathbf{O}\pi\mathbf{p}$ Функция распределения

Свойства Функции распределения

Первое свойство тривиально. Во втором надо понимать связь пределов и параметров. С третьим я не согласен

5.2 Теорема о построении вероятностной меры на $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ по функции распределения

Theorem

- 6 Дискретные и абсолютно непрерывные распределения в \mathbb{R} . Плотность. Связь плотности и функции распределения. Примеры
- 6.1 Дискретные и абсолютно непрерывные распределения в $\mathbb R$

Опр Дискретные распределения вероятности

6.2 Плотность

Опр Абсолютно непрерывное распределение, его плотность

6.3 Связь плотности и функции распределения

Плотность и функция распределения связаны формулой Ньютона–Лейбница

6.4 Примеры

By the text

- 7 Распределения в \mathbb{R}^n , функция распределения и её свойства. Теорема о построении вероятностной меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ по функции распределения (6/д)
- 7.1 Распределения в \mathbb{R}^n , функция распределения и её свойства

By the text

Многомерная функция распределения обладает 3 свойствами. Первое доказывается вводом функции одной переменной (как с частными производными), а затем совместно с остальным свойствами доказывается аналогично одномерному случаю

7.2 Теорема о построении вероятностной меры на $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ по функции распределения (6/д)

By the text

8 Дискретные и абсолютно непрерывные распределения в \mathbb{R}^n . Плотность. Связь плотности и функции распределения. Примеры

By the text

- 9 Случайные величины и случайные векторы. Характеристики случайной величины (вектора): распределение вероятностей, функция распределения, плотность. Действия над случайными величинами (векторами)
- 9.1 Случайные величины и случайные векторы

By the text

9.2 Характеристики случайной величины (вектора): распределение вероятностей, функция распределения, плотность

By the text

Утв

Для доказательства необходимости поместим борелевское множество на i место и воспользуемся сохранением бореливости. Для достаточно распишем, что такое декартово произведение и воспользуемся свойством сигма-алгебры

9.3 Действия над случайными величинами (векторами)

Theorem

Доказывается по определению случайного вектора

10 Теорема о плотности $\varphi(\xi)$. Маргинальные распределения. Вычисление маргинальной плотности

10.1 Теорема о плотности $\varphi(\xi)$

Theorem

- 1. Перейдём к интегралу плотности вероятности и разделим M на два множества
- 2. Та часть, что не пересекается с областью значений, вклад в интеграл давать не будет.
- 3. Сделаем замену переменных в соответствии с теоремой и проследим, что множество интегрирования верно

10.2 Маргинальные распределения

By the text

10.3 Вычисление маргинальной плотности

Theorem Вычисление маргинальной плотности

Расписываем плотность по определению и находим общие части с переменными, которые могут именоваться по-другому

11 Случайные величины и случайные векторы. Независимость и критерий независимости. Независимость функций от векторов

11.1 Случайные величины и случайные векторы. Независимость и критерий независимости

By the text

Theorem Критерий независимости

Необходимость докажем, используя определение декартова произведения Для доказательства достаточности распишем вторую разность

By the text

11.2 Независимость функций от векторов

By the text

12 Независимость случайных величин. Формула свёртки и её обобщения для разности, произведения и частного

By the text

13 Математическое ожидание случайной величины: дискретные и абсолютно непрерывные величины. Примеры

By the text

Теория вероятностей Конспект билетов

14 Основные свойства математического ожидания. Математическое ожидание произведения независимых величин

By the text

В 7 свойстве расписываем заведомо неотрицательную величину и получаем условие на детерминант, откуда получаем требуемое. В 8 лучше сразу записать произведение детерминантов

15 Теорема о замене переменных в интеграле Лебега (6/д). Подсчёт математического ожидания от функции от случайной величины. Примеры

By the text

16 Дисперсия, ковариация, корреляция и их свойства. Примеры

Опр Дисперсия

Свойства Дисперсии

Первое свойство доказывается в силу линейности матожидания (выносим, где надо, скаляры). Это и последнее свойство можно будет доказать с помощью ковариации

By the text

 y_{TB}

Лучше доказывать по Википедии

17 Неравенство Коши – Буняковского. Неравенство Маркова. Неравенство Чебышёва. Закон больших чисел в форме Чебышёва

By the text

18 Виды сходимостей и взаимосвязи между ними

By the text

Theorem О связи видов сходимости

- 1. С помощью трёх последовательностей
- 2. Аналогично.
- 3. Пользуемся ограниченностью случайной величины, определением непрерывности и в конце расписываем матожидание по линейности: X ограничен из ограниченности индикатора, Y из определения непрерывности, Z из ограниченности функции на том промежутке
- 19 Виды сходимостей. Критерий сходимости п.н. Теорема Рисса и её следствие. Наследование сходимости при арифметических операциях
- 19.1 Виды сходимостей. Критерий сходимости п.н.

Theorem Kpumepuŭ cxodumocmu n.н.

Рассмотрим определение несходимости и введём обозначение для кванторной записи. Смотрим объединение, затем переходим к всеобъемлющему обозначению и к пределу в силу свойства меры

Теория вероятностей Конспект билетов

19.2 Теорема Рисса и её следствие

Theorem Pucca.

- 1. Записываем определения сходимости по вероятности и предела.
- 2. Переходим к объединению по k без ε , затем череда сравнений и неравенств предельный переход
- 3. В конце пользуемся критерием сходимости п.н.

By the text

В доказательстве наследования для сходимости по распределению везде пользуемся следствием теоремы Рисса

20 Критерий слабой сходимости в терминах функции распределения (б/д). Центральная предельная теорема (б/д). Переформулировка в интегральном виде. Теорема Муавра-Лапласа: локальная и интегральная

By the text

20.1 Теорема Муавра-Лапласа: локальная и интегральная

Лучше всего доказывать по лекции 9 (49:15)

Theorem Муавра-Лапласа локальная

- 1. Воспользуемся формулой Стирлинга для всех факториалов
- 2. Неравенство с φ сведём к равномерной сходимости.
- 3. Распишем вероятность суммы и перейдём к задаче сведения степеней к экспоненте. Для этого прологарифмируем, введём функцию, посчитаем её производные в разных точках.
- 4. Воспользуемся остаточным членом в форме Лагранжа.
- 5. Перейдём к равномерной сходимости и получим требуемое

Theorem *Муавра-Лапласа интегральная*

Интегральная теорема следует из локальной. Надо лишь расписать сумму, вычленить мелкость разбиения и перейти к пределу, то есть интегралу

21 Закон больших чисел и усиленный закон больших чисел (б/д)

By the text

22 Предельная теорема Пуассона.

Theorem Предельная Пуассона

Доказывается расписыванием левой и правой частей по определению и сравнением в конце

- 23 Гауссовские векторы. Эквивалентность определений (доказательство в одну сторону). Теорема о том, что распределение гауссовского вектора однозначно задаётся ковариационной матрицей, вектором средних. Плотность гауссовского вектора. Независимость компонент
- 23.1 Гауссовские векторы. Эквивалентность определений (доказательство в одну сторону).

Theorem О равносильных определениях гауссовского вектора

Теория вероятностей Конспект билетов

- 1. $1 \Rightarrow 2$: записываем производящую функцию сдвига вектора.
- 2. Перейдём к диагональной матрице, но не с помощью одного поворота, а двух, где второй хитро задан.
- 3. Посчитаем характеристическую функцию нового вектора и получим состав этого нового вектора.
- 4. Вернёмся к исходному вектору и получим требуемое.

23.2 Плотность гауссовского вектора.

Theorem O nnomhocmu

- 1. Рассмотрим несодержательный вырожденный случай и перейдём к невырожденному.
- 2. Введём матрицу A и рассмотрим диффеоморфизм с ней связанный.
- 3. Перейдём к обратному диффеоморфизму и вычислим плотность уже требуемого вектора

23.3 Теорема о том, что распределение гауссовского вектора однозначно задаётся ковариационной матрицей, вектором средних

23.4 Независимость компонент

Следствие

Действительно, сведём к характеристической функции и зафиксируем отсутствие недиагональных компонент

24 Случайные процессы. Дискретное и непрерывное время. Траектории случайного процесса. Примеры

By the text

25 Симметричное случайное блуждание на прямой. Траектории. Распределение: $P(S_n = k)$. Принцип отражения и вероятность возвращения в нуль

By the text

25.1 Принцип отражения и вероятность возвращения в нуль.

- 1. Сведём задачу к точке (1,1) и посчитаем для конкретного n.
- 2. Просуммируем для всех n. Сумму можно посчитать явно и после разных подстановок получить требуемое

26 Распределение максимума случайного блуждания. Закон повторного логарифма (6/д)

By the text

В следствии из распределения модуля используем факт: $P(S_n) = 1 - F_{S_n}(x-1), P(M_n) = 1 - F_{M_n}(x-1)$ By the text

27 Ветвящийся процесс Гальтона—Ватсона. Производящая функция и её свойства. Вероятность вырождения и технология ее вычисления

By the text

Теория вероятностей

 y_{TB}

Если процесс выродился на n шаге, то он выродился и на последующих. Отсюда возрастание и значение искомого предела получается q

By the text

28 Производящая функция числа частиц в момент времени n, общего числа частиц к моменту n и общего числа частиц за все время. Технология вычисления вероятности того, что всего в процессе было k частиц

By the text

В процессе доказательств утверждений не обращать внимание на комментарии в квадратных скобках

29 Ковариацонная функция случайного процесса и её свойства. Гауссовские процессы. Критерий существования (б/д)

By the text

30 Эквивалентные определения винеровского процесса

By the text

31 Винеровский процесс. Существование. Свойства траекторий: непрерывность и недифференцируемость траекторий, закон повторного логарифма (б/д)

By the text

32 Марковское свойство и свойство отражения винеровского процесса. Марковский момент и момент остановки. Строго марковское свойство и усиленное свойство отражения (б/д)

By the text

Принцип отражения следует из марковского свойства

By the text

33 Марковский момент и момент остановки. Примеры. Теорема Башелье. Распределение первого момента пересечения уровня x и его среднее

By the text

Для доказательства утверждения специально берём рациональные параметры, чтобы получить счётное объединение

By the text