Reinforcement Learning

Parameter	Description	Parameter	Description
\overline{i}	Type of the Pipe	e_t	Efficiency Percentage
j	Transfer Location	T_i	Standard Production Time
t	Time (day)	$F_{i,t}$	Forecast Order Quantity
$m_{i,t}$	Stock Level	$Q_{i,j,t}$	Total Order Quantity
n	Order Quantity Limit	$a_{i,j}$, t	Transferred Order Quantity
c	Stock Capacity	p_t	Penalty

Table 1: RL Parameters.

State Vector:

$$s_t = (F_{1,t}, ..., F_{I,t}, Q_{1,1,t}, ...Q_{I,J,t}, m_{1,t}, ...m_{I,t})$$

Action Vector:

$$a_t = (a_{1,1}, t, ..., a_{I,J}, t)$$

Reward Function:

$$\begin{aligned} p_t - T_i \leftarrow p_t & \text{if} & c > m_{i,t} + a_{i,1},_t \\ p_t + T_i \leftarrow p_t & \text{if} & Q_{i,t},_j > n \end{aligned}$$

State Transitions:

$$\begin{split} m_{i,t+1} &= m_{i,t} + a_{i,1} ,_t + min(Q_{i,j} ,_{t+1} - a_{i,j} ,_t , 0) \\ Q_{i,j} ,_{t+1} &= Q_{i,j} ,_t - a_{i,j} ,_t \end{split}$$

Transfer Locations (j):

$$Stock: j = 1 \\ Production: j = 2 \\$$