Bayesian Data Analysis

Sourish Das¹

¹Mathematics, Chennai Mathematical Institute, INDIA

Gaussian Gaussian Models

Different Approach to Choose Priors

Classical Bayesians

The prior is a necessary evil. Choose priors that interject the least information possible. The Flat Prior

Modern Parametric Bayesians

The prior is a useful convenience. Choose prior distributions with desirable properties (e.g. conjugacy). Given a distributional choice, prior parameters are chosen to interject the least information possible.

Subjective Bayesians

The prior is a summary of old beliefs Choose prior distributions based on previous knowledge - either the results of earlier studies or non-scientific opinion.

Introduction

Bayesian Analysis of Mean

Bayesian Analysis of the mean when variables are normally distributed and variance is also unknown.

Normal Model with unknown Variance

- ▶ Suppose $y_i \sim N(\mu, \sigma^2)$
 - where σ^2 and μ are unknown random variable
- ► The Bayesian setup still look familiar:

$$p(\mu, \sigma|y_1, ..., y_n) \propto p(y|\mu, \sigma)p(\mu, \sigma)$$

- we would like to make inferences about the marginal distributions $p(\mu|y)$ and $p(\sigma|y)$, where $y=(y_1,...,y_n)$; rather than the joint distribution $p(\mu,\sigma|y)$.
- Ultimately we would like to find:

$$p(\mu|y) = \int p(\mu, \sigma|y) d\sigma$$

Normal Model with unknown Variance

▶ Note that the equation

$$p(\mu|y) = \int p(\mu, \sigma|y) d\sigma$$

cen be presented as:

$$p(\mu|y) = \int p(\mu|\sigma, y)p(\sigma|y)d\sigma$$

The Classical Bayesian: normal model with unknown mean and variance

- ▶ The $y \sim N(\mu, \sigma^2)$ where μ and σ are both unknown and random variables.
- ▶ What prior distribution would you choose to represent the absence of any knowledge in this instance?
- ▶ What if we assumed that the two parameters were independent, so $p(\mu, \sigma^2) = p(\mu)p(\sigma^2)$?

The Classical Bayesian: normal model with unknown mean and variance

- ▶ The $y \sim N(\mu, \sigma^2)$ where μ and σ are both unknown and random variables. What prior should we choose?
- if $p(\mu, \sigma^2) = p(\mu)p(\sigma^2)$ one option would be to assume uniform prior distributions for both parameters. Thus

$$p(\mu) \propto c$$
 for $-\infty < \mu < \infty$
 $p(\sigma^2) \propto \frac{1}{\sigma^2}$ for $0 < \sigma^2 < \infty$

- ▶ And the joint prior density would be: $p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$?
- Are these distributions proper?

The Classical Bayesian: normal model with unknown mean and variance

- ▶ Let $y_i \sim N(\mu, \sigma^2)$ where i = 1, 2, ..., n and $p(\mu, \sigma^2) \propto \frac{1}{\sigma^2}$
- It can be shown that the conditional posterior distribution

$$p(\mu|\sigma^2, y) \sim N(\bar{y}, \sigma^2/n)$$

The Classical Bayesian: normal model with unknown mean and variance

▶ The marginal posterior distribution of μ is

$$p(\mu|y) = \int_0^\infty p(\mu, \sigma^2|y) d\sigma^2$$

It can be shown that

$$p(\mu|y) \sim t_{n-1}(\bar{y}, s^2/n)$$

Or more conviniently,

$$ho\left(rac{\sqrt{n}(\mu-ar{y})}{s}
ight)\sim t_{n-1}$$

The Classical Bayesian: normal model with unknown mean and variance

It can be shown that the marginal posterior distribution of σ^2 follows scaled-inverse χ^2 distribution

$$p(\sigma^2|y) = \int_{-\infty}^{\infty} p(\mu, \sigma^2|\bar{y}, s^2) d\mu$$

 $p(\sigma^2|y) \sim \text{Inv-}\chi^2(n-1, s^2)$

Or more conviniently,

$$p(\sigma^2|y) \sim \text{Inv-Gamma}((n-1)/2, (n-1)s^2/2)$$

The Classical Bayesian: normal model with unknown mean and variance

- ▶ Big point to note here:
- ► Though prior is flat and improper posterior is a proper probability distribution.
- ▶ Hence proper statistical inference can be drawn from it.

Parametric Bayesian Method

Conjugate Prior

Let \mathcal{F} denote the class of density functions $f(x|\theta)$ (indexed by θ). A class \mathcal{P} of prior distributions is said to be a conjugate family for \mathcal{F} if $p(\theta|x)$ is in the class \mathcal{P} for all $x \in \chi$ and $p \in \mathcal{P}$.

Conjugate Prior

Data Model	Conhugate Prior	
$X heta \sim N(heta, \sigma^2)$ $ heta$ unknown, σ^2 known	$ heta \sim N(m,s^2)$	
$X heta \sim N(\mu, heta) \ heta$ unknown, μ known	$ heta \sim extit{IG}(lpha,eta)$	
$X heta \sim Poisson(heta) \ heta$ unknown	$ heta \sim extstyle extst$	
$X heta \sim Binomail(n, heta)$ $ heta$ unknown , n is knknown	$ heta \sim extit{Beta}(lpha,eta)$	
$X heta \sim \textit{Gamma}(u, heta)$ $ heta$ unknown , $ u$ is knknown	$ heta \sim extstyle extstyle ag{C}$	CHENNAI MATHEMATICAL INSTITUTE

Parametric Bayesian: Gaussian model with unknown mean and variance

- ▶ The $y \sim N(\mu, \sigma^2)$ where μ and σ^2 are both unknown and random variables.
- ▶ What prior distribution would you choose ?
- ▶ Parametric Bayesian: Conjugate Prior
- ▶ For the normal model with unknown mean and variance, the conjugate prior for the joint distribution of μ and σ^2 is Normal-Inverse χ^2 distribution

Parametric Bayesian: Gaussian model with unknown mean and variance

Normal-Inverse χ^2 prior distribution:

- Suppose $p(\mu, \sigma^2) \sim \text{N-Inv-}\chi^2(\mu_0, \sigma_0^2/k_0; \nu_0, \sigma_0^2)$
- ▶ The above expression can be expressed as

$$p(\mu, \sigma^2) = p(\mu|\sigma^2)p(\sigma^2)$$

where $p(\mu|\sigma^2) \sim N(\mu_0, \sigma^2/k_0)$ and $p(\sigma^2) \sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2)$

Parametric Bayesian: Gaussian model with unknown mean and variance

- ▶ Suppose $y_1, ..., y_n \sim N(\mu, \sigma^2)$ and the prior distribution is $p(\mu, \sigma^2) \sim \text{N-Inv-}\chi^2(\mu_0, \sigma_0^2/k_0; \nu_0, \sigma_0^2)$
- ▶ The posterior distribution is $p(\mu, \sigma^2 | y_1, ..., y_n) \sim \text{N-Inv-}\chi^2(\mu_n, \sigma_n^2 / k_n; \nu_n, \sigma_n^2)$ where
 - $\mu_n = \frac{k_0}{k_0 + n} \mu_0 + \frac{n}{k_0 + n} \bar{y}$ $k_n = k_0 + n$

 - $\nu_n = \nu_0 + n$
 - $\nu_n \sigma_n^2 = \nu_0 \sigma_0^2 + (n-1)s^2 + \frac{k_0 n}{k_0 + n} (\bar{y} \mu_0)^2$

Parametric Bayesian: Gaussian model with unknown mean and variance

- ▶ Big point to note here:
- ► The prior is proper. Hence posterior is a proper probability distribution.
- ▶ Hence proper statistical inference can be drawn from it.
- ▶ If prior is proper then posterior will always be proper. But if prior is improper then posterior is not necessarily proper.

Application

Application

What is the average blood pressure reading of a sub-population of 20 adult men?

- Let y_i denote the blood pressure of individual i and assume that y_i is normally distributed.
- Let μ denote the average blood pressure of the group.
- ▶ Thus $y_i \sim N(\mu, \sigma^2)$

Application: Flat Prior

- ▶ The sample average is $\bar{y} = 128$ and sample sd is s = 7.67
- ▶ The marginal distribution is $p(\mu|y) \sim t_{n-1}(\bar{y}, s^2/n)$
- ▶ By the properties of t-distribution which we can find as $E(\mu|y) = \bar{y} = 128$ and $Var(\mu|y) = \left(\frac{s^2}{n-2}\right) = 3.27$

Application: Flat Prior

Analytical Results:

$$E(\mu|y) = \bar{y} = 128 \text{ and } Var(\mu|y) = \left(\frac{s^2}{n-2}\right) = 3.27$$

► Numerical Results:

Summary of mu :

Min. 1st Qu. Median Mean 3rd Qu. Max. 121.3 126.8 128.0 128.0 129.2 135.9

Variance of mu:

[1] 3.285445

Sd of mu:

[1] 1.81258

95% CI of mu :

2.5% 97.5% 124.3952 131.5632

Application: Flat Prior

- ▶ The sample average is $\bar{y} = 128$ and sample sd is s = 7.67
- ▶ The marginal distribution of σ^2 is $p(\sigma^2|y) \sim \text{Inv-}\chi^2(n-1,s^2)$
- By the properties of scales inv χ^2 -distribution we can find as $E(\sigma^2|y) = s^2\left(\frac{n-1}{n-3}\right) = 64.9$ $\sqrt{E(\sigma^2|y)} = \sqrt{64.9} = 8.06$

Application: Expert's Opinion with Conjugate Prior

- ► An expert believes the average blood pressure would be in the range of 110 and 130 with a most confident region would be about 120
- Suitable Conjugate Prior which Models the Expert's View: The average blood pressure μ follow $N(\mu_0, \sigma_0^2/k_0)$ where $\mu_0 = 120$, $\sigma_0^2 = 5^2$ and $k_0 = 1$
- ▶ *k*₀ indicate number of prior (or historical) data points or number of experts.
- $\sigma^2 \sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2)$, where $\nu_0 = 1$ indicates prior 'degrees of freedom' which impose a Cauchy prior on μ and $\sigma_0 = 5$

Application: Expert's Opinion with Conjugate Prior

- lacktriangle The marginal posterior distribution is $p(\mu|y) \sim t_{
 u_n}(\mu_n, \sigma_n^2/k_n)$
- By the properties of t-distribution which we can find as

$$E(\mu|y) = \mu_n = \frac{k_0}{k_0 + n} \mu_0 + \frac{n}{k_0 + n} \bar{y}$$

$$= \frac{1}{1 + 20} 120 + \frac{20}{1 + 20} 128$$

$$= 127.62$$

$$\nu_{n}\sigma_{n}^{2} = \nu_{0}\sigma_{0}^{2} + (n-1)s^{2} + \frac{k_{0}n}{k_{0}+n}(\bar{y}-\mu_{0})^{2}$$

$$= 1*5^{2} + (20-1)*7.67^{2} + \frac{1*20}{1+20}(128-120)^{2}$$

$$= 1203.7$$
Chennal Mathematical Institute

Application: Expert's Opinion with Conjugate Prior

- ▶ The marginal distribution is $p(\mu|y) \sim t_{\nu_n}(\mu_n, \sigma_n^2/k_n)$
- By the properties of t-distribution which we can find as

$$E(\mu|y) = \mu_n = \frac{k_0}{k_0 + n} \mu_0 + \frac{n}{k_0 + n} \bar{y}$$

$$= \frac{1}{1 + 20} 120 + \frac{20}{1 + 20} 128$$

$$= 127.62$$

$$Var(\mu|y) = \frac{\nu_n}{\nu_n - 2} \frac{\sigma_n^2}{k_n}$$

$$= \frac{1203.7}{(\nu_n - 2) \times k_n} = \frac{1203.7}{(1 + 20 - 2) * 21}$$

$$= 3.02$$
CHENNAI MATHEMATICAL INSTITUTE

Application: Expert's Opinion with Conjugate Prior

Analytical Results:

$$E(\mu|y) = \bar{y} = 127.62$$
 and $Var(\mu|y) = 3.02$

Numerical Results:

```
Summary of mu :
   Min. 1st Qu.
                 Median
                           Mean 3rd Qu.
                                            Max.
          126.9
  121.7
                  128.0
                                   129.1
                           128.0
                                           135.5
Variance of mu:
[1] 3.015166
Sd of mu:
[1] 1.736423
95% CI of mu:
    2.5%
            97.5%
124.5702 131.4364
```

Hands-on time

- ▶ Open 03_Gaussian_Gaussian_Model_R_Code.R
- ▶ Run the code and reproduce the result
- ► Check out the effect of sample size
- ► Try n = 4, 6, 8, 10, 12, 16, 20
- ► For each choices of n note down the 95% CI for both flat prior and conjugate prior method.

Thank You

sourish@cmi.ac.in
www.cmi.ac.in/~sourish

