predicting drug-target binding affinity with graph neural networks

Presented by: Youssef Ezz Eldeen Ezzat

Directed By: Francesc Seratosa

Contents

- Introduction to Drug Target Affinity(DTA)
- Drug and Protein representation
- Affinity measurements
- Datasets
- Previous work
- GraphDTA paper overview
- Results

Introduction

- A virus encodes one or more proteases which are enzymes that spur the formation of new protein products, thus play crucial roles in virus replication
- proteases are important targets for the design and development of potent antiviral agents or drugs

Introduction

Binding affinity is the strength of the binding interaction between a single molecule (e.g., a virus protein) to its ligand or binding partner (e.g., a drug)

Protein representation

- A protein sequence is the order of amino acids in a protein. Amino acids are the building blocks of proteins
- an example of a protein sequence, representing the first 7 amino acids of the protein insulin (GIVEQCC ...):
 - G: Glycine
 - I: Isoleucine
 - V: Valine
 - E: Glutamic acid
 - Q: Glutamine
 - C: Cysteine
 - Cysteine

SMILES notation

- "Simplified Molecular-Input Line-Entry System"
- popular method for specifying molecules with text strings.
- by humans and computers
 - Methane: "C"
 - Ethanol: "CCO"
 - Benzene: "clccccl"
 - Glucose: "OC[C@@H]1OC@HC@@HC@H[C@H]1O"

molecular graph

- A molecular graph describes the set of atoms in a molecule and how they are bonded together
- G = (V,E), where V is the set of N nodes and E is the set of edges represented as an adjacency matrix A

An example of converting a benzene molecule into a molecular graph. Note that atoms are converted into nodes and chemical bonds into edges.

binding affinity measures

- The kinase dissociation constant(Kd)
 - measures the equilibrium between the ligand(drug)-protein complex and the dissociated components

$$PL \xrightarrow{K_d} P + L \qquad K_d = \frac{[P][L]}{[PL]}$$

- Where [P] is the free protein concentration
- [L] is the free ligand concentration
- [PL] is the protein-ligand complex

binding affinity measures

- The kinase Inhibition Constant(Ki)
 - represents the affinity of the drug molecule for its target receptor, specifically in the context of competitive inhibition.

binding affinity measures

- inhibitory concentration 50% (IC50)
 - the concentration at which the inhibitor causes a 50% inhibition of enzymatic activity
 - less precise than Ki or Kd
 - A lower IC50 value indicates a higher affinity of the drug for the receptor

$$0.5 = \frac{K_{\rm m} + [S]}{K_{\rm m} \left(1 + \frac{\rm IC_{50}}{K_{\rm i}}\right) + [S]} \qquad \rm IC_{50} = K_{\rm i} \left(1 + \frac{[S]}{K_{\rm m}}\right)$$

• [S] is the concentration of the natural substrate that competes with the inhibitor for binding to the target.

Bioactivity values found from ChEMBL for the imatinib-SRC pair

Drug	Type	Value	Units	Target
IMATINIB	Ki	31000	nM	SRC
IMATINIB	Kd	10000	nM	SRC
IMATINIB	IC50	100000	nM	SRC

- Benchmark dataset davis
- Benchmark dataset kiba
- In house dataset URV

- Benchmark dataset davis
 - Kd values in the Davis dataset were transformed into logspace (pKd) as: $pkd = -log_{10}(^{Kd}/_{1e9})$
 - ranging from 5.0 to 10.8

- Benchmark dataset davis
 - contains the binding affinities for all pairs of 68 drugs and 442 targets, total of 30056 interactions
 - 25047 train set + 5011 test set
 - 69% of which have affinity values of Kd = 10000 nM (pKd=5) indicating weak or no interaction.

- Benchmark dataset kiba
 - Kinase Inhibitor Bioactivity Data Set
 - binding affinity might be measured by Kd, Ki or IC50
 - integrates the information from IC50, Ki, and Kd measurements into a single bioactivity score

$$\text{KIBA} = \begin{cases} K_{\text{i}} \text{ adj} & \text{if IC}_{50} \text{ and } K_{\text{i}} \\ & \text{are present} \end{cases}$$

$$KIBA = \begin{cases} K_{\text{d}} \text{ adj} & \text{if IC}_{50} \text{ and } K_{\text{d}} \\ & \text{are present} \end{cases}$$

$$(K_{\text{i}} \text{ adj} + K_{\text{d}} \text{ adj})/2 \text{ if IC}_{50}, K_{\text{i}}, \text{ and } K_{\text{d}} \\ & \text{are present} \end{cases}$$

- Benchmark dataset kiba
 - measured as KIBA scores and ranging from 0.0 to 17.2
 - Total of118257 interactions(98547 train set + 19710 test set)
 - most interactions between 10 and 15 kiba score

- In URV-May-2024 database, the URV systematically collected all structures from the Protein Data Bank(PDB) [11] containing the SARS-CoV-2 Mpro protein also known as the main protease or 3CL protease, is a key enzyme in the replication and transcription of the SARS-CoV-2 virus, which causes COVID-19.
- Dataset was refined by selecting structures with available IC50 values from ChEMBL [12] and BindingDB [13] databases, resulting in a final set of 233 structures. For each structure, we obtained the inhibitor's structure in SDF format, the protein-inhibitor complex in PDB format, and the corresponding IC50 value for Mpro inhibition.

IC50 represents the concentration of inhibitor required to inhibit 50% of enzyme activity. Additionally, we transformed IC50 values into pIC50, the negative logarithm (base 10) of the IC50 value, where a higher pIC50 value indicates a more potent inhibitor.

Previous Work

- collaborative filtering (2017): utilizes a similarity measure to identify drugs and targets that are similar to the query drug and target. This allows the model to leverage existing data on similar compounds and targets to make predictions for new ones
- DeepDTA model (2018): uses a deep neural network architecture with two branches
 - (CNNs):for capturing local patterns in SMILES notation of drugs
 - (RNNs):for capturing sequential information in protein sequences.
- WideDTA model (2019): uses CNNs to learn complex patterns from both the drug SMILES notation and target protein sequence representations.

GraphDTA paper overview(2020)

- a new neural network architecture capable of directly modeling drugs as molecular graphs
- tests the hypothesis that a graph structure could yield a better representation for drugs
- outperforms previous deep learning models

GraphDTA architecture

- Protein branch
- Drug branch
 - 4 variant models
- Combined representation

Protein Branch

Drug Branch

GCN model

 graph convolutional operator from the <u>"Semi-supervised</u> <u>Classification with Graph Convolutional Networks"</u> paper in 2017.

Implemented in torch_geometric as GCNConv

- A is the normalized adjacency matrix N * N
- X is node feature matrix N * C
- W weight matrix of size C * F
- Z node-level output matrix N * F

Drug Branch

GCN-based model

Combined fully connected layers

Contribution

- Fork the GraphDTA code repository
- Refactor the code
- Train the given 4 models on 3 datasets
- Plot and compare the resulting MSEs

train and test GCN-based model with davis dataset

optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	512
train size	20036
validation size	5010
validation percentage	20.0 %
MSE	0.25293395

real affinity vs predicted affinity for model GCNNet on database davis

train and test GATGCN-based model with davis

optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	512
train size	20036
validation size	5010
validation percentage	20.0 %
MSE	0.27028632
IMPE	0.27028032

real affinity vs predicted affinity for model GAT_GCN on database davis

train and test GAT-based model with davis dataset

optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	512
train size	20036
validation size	5010
validation percentage	20.0 %
MSE	0.2513844

train and test GinConv-based model with davis

8	
optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	512
train size	20036
validation size	5010
validation percentage	20.0 %
MSE	0.23514226

real affinity vs predicted affinity for model GINConvNet on database davis

train and test GCN-based model with kiba dataset

ADAM
0.0005
1000
512
78836
19709
20.0 %
0.2024536

train and test GATGCN-based model with kiba

	AG .
optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	512
train size	78836
validation size	19709
validation percentage	20.0 %
MSE	0.15026996

train and test GAT-based model with kiba dataset

optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	512
train size	78836
validation size	19709
validation percentage	20.0 %
MSE	0.19964518

train and test GINCONV-based model with kiba

4	
optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	512
train size	78836
validation size	19709
validation percentage	20.0 %
MSE	0.1673416

real affinity vs predicted affinity for model GINConvNet on database kiba

train and test GCN-based model with URV dataset

optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	4
train size	238
validation size	60
validation percentage	20.0 %
MSE	0.35485

train and test GATGCN-based model with URV

optimizer	ADAM
learning rate	0.0001
epochs	1000
train batch size	8
train size	238
validation size	60
validation percentage	20.0 %
MSE	0.51364166

real affinity vs predicted affinity for model GAT_GCN on database urv

train and test GAT-based model with URV dataset

optimizer	ADAM
learning rate	0.0005
epochs	1000
train batch size	4
train size	208
validation size	90
validation percentage	30.0 %
MSE	0.50838196

real affinity vs predicted affinity for model GATNet on database urv

train and test GINCONV-based model with URV

optimizer	ADAM	
learning rate	0.0001	
epochs	1000	
train batch size	8	
train size	238	
validation size	60	
validation percentage	20.0 %	
MSE	0.3247614	

real affinity vs predicted affinity for model GINConvNet on database urv

Summary of results

model	dataset	MSE in paper	MSE obtained
GCN-based	davis	0.254	0.25
GATGCN-based	davis	0.245	0.27
GAT-based	davis	0.232	0.25
GINCONV-based	davis	0.229	0.24
GCN-based	kiba	0.179	0.2
GATGCN-based	kiba	0.147	0.15
GAT-based	kiba	0.139	0.2
GINCONV-based	kiba	0.139	0.17
GCN-based	URV	-	0.35
GATGCN-based	URV	-	0.51
GAT-based	URV	-	0.51
GINCONV-based	URV	_	0.32

Conclusion

- the sample size of the data including train and test sets is largest in kiba then davis followed by URV.
- kiba dataset has the best diversity specially for the target proteins as it integrates different bioactivity scores