

人工智能 --启发式搜索

饶洋辉 数据科学与计算机学院, 中山大学 raoyangh@mail.sysu.edu.cn

- A*搜索
- A*的性质
- 如何构造启发式函数
- 在实例中运行A*

*Slides based on those of Sheila McIlraith

动机

- 在盲目搜索中,我们没有考虑边界上的节点哪一个 更具有"前景" (promising)
- 例如在一致代价搜索时,我们总是扩展从初始状态 到达当前状态的成本最小的那条路径,却没有考虑 过从当前状态点沿着当前路径到达目标路径的成本
- 但是,在许多情况下,我们可以有额外的知识来衡量当前节点,例如可以知道当前节点到达目标节点的成本

启发式搜索

- 对于一个具体的问题,构造一个专用于该领域的<mark>启</mark> 发式函数*h*(*n*),该函数用于估计从节点*n*到达目标节 点的成本
- 要求对于所有满足目标条件的节点n, h(n) = 0
- 在不同的问题领域中,对上述的成本的估计有不同的方法。即,启发式函数是随领域不同而不同的

启发式函数示例: 直线距离(欧氏距离)

Straight-line distant to Bucharest	ice
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

贪心最佳优先搜索(Greedy BFS)

- 利用启发式函数h(n) 来对边界上的节点进行排序
- 我们贪心地希望找到成本最低的解
- 但是,这种做法忽略了从初始状态到达节点n的成本
- 因此这种做法可能"误入歧途",<mark>选择了离初始状态</mark> 很远(成本很高),但根据h(n)看起来离目标状态很 近的节点 选择的节点预估值大于实际值

因此Greedy BFS 既不是完备的,也不是最优的。

示例

Arad-Sibiu-RV-Pitesli-Bucharest: 140 + 80 + 97 + 101 = 140 + 278 = 418Arad-Sibiu-Fagaras-Bucharest: 140 + 99 + 211 = 140 + 310 = 450

A*搜索

一致代价搜索是按照g(n)的值进行排序的

- 定义评价函数f(n) = g(n) + h(n)
- g(n)是从初始节点到达节点n的路径成本
- h(n)是从n节点到达目标节点的成本的启发式估计值
- 因此, *f* (*n*)是经过节点*n*从初始节点到达目标节点的路径成本的估计值
- 利用节点对应的f (n)值来对边界上的节点进行排序

示例

Arad-Sibiu-RV-Pitesli-Bucharest: 418

h(n)的条件:可采纳性

- 假设 $c(n_1 \rightarrow n_2) \ge s > 0$. 每个状态转移(每条边)的成本是<mark>非负</mark>的,而且不能无穷地小
- 假设 $h^*(n)$ 是从节点n到目标节点的最优路径的成本 (当节点n到目标节点不连通时, $h^*(n) = \infty$)
- 所以,可采纳的启发式函数低估了当前节点到达目标节点 的成本,使得实际成本最小的最优路径能够被选上
- 因此,对于任何目标节点g, h(g) = 0

一致性(单调性)

C(N1-Nr) 7/2 / V(N')

对于任意节点n₁和n₂, 若

$$h(n_1) \le c(n_1 \to n_2) + h(n_2)$$

则h(n)具有一致性/单调性 相当于和真实的 $h^*(n)$ 差距越来越小

注意到,<mark>满足一致性的启发式函数也一定满足可采纳性</mark>(证明 如下)

Case 1: 从节点n没有路径到达目标节点,则可采纳性一定成立

Case 2: 假设 $n = n_1 \rightarrow n_2 \rightarrow ... \rightarrow n_k$ 是从节点n到目标节点的一条最优路径。可以使用数学归纳法证明对于所有的i, $h(n_i) \leq h^*(n_i)$

大部分的可采纳的启发式函数也满足一致性/单调性

有一致性就一定是可采纳性

示例: 直线距离

示例: 可采纳但不具备单调性的启发式函数

因为h(n2) > c(n2→n4) + h(n4), 下面的启发式函数不是单调的, 但是却是可采纳的

虽然确实可以找到最优路径,但是在搜索过程中错误地忽略了n2 而去扩展n1

时间和空间复杂度

h(n) = 0 时,对于任何n这个启发式函数都是单调的。 A*搜索会变成一致代价搜索

因此一致代价的时间/空间复杂度的下界也适用于A*搜索。 因此A*搜索仍可能是指数复杂度,除非我们能才找到好的 h函数

可采纳性意味着最优性

- 假设最优解的成本是C*
- 最优解一定会在所有成本大于C*的路径之前被扩展到
- 成本≤ C*的路径的数量是有限的
- 因此最终应该可以检测到最优解

可采纳性意味着最优性

最优解一定会在所有成本大于*C**的路径之前被扩展到证明:

- 假设p* 是一个最优解的路径
- 假设p是一条满足 $c(p) > c(p^*)$ 的路径,而且路径p在 p^* 之前被扩展
- 那么扩展了到路径p时,肯定会有一个p*上的节点n处在边界上
- 因为p在p *之前被扩展,因此p路径的最后的节点x有 $f(x) \leq f(n)$
- 因此 $c(p) = f(x) \le f(n) = g(n) + h(n) \le g(n) + h^*(n) = c(p^*)$
- $\operatorname{Al}(p) > c(p^*)$ 相矛盾

可采纳+环产最优 -致性+环二最优

- 启发式函数的一致性可以保证我们在第一次遍历到一个节点时,就是沿着到这个节点的最优路径扩展的
- 因此,<mark>只要启发式函数具备一致性,就能在进行环检测之后仍然保持最优性</mark>
- 但是,如果启发式函数只有可采纳性,则不一定能在使用 了环检测之后仍保持最优性
- 为了解决这个问题:必须对于之前遍历过的节点,必须记录其扩展路径的成本。这样的话,若出现到达已遍历过节点但成本更低的路径,则需重新扩展而不能剪枝

Proposition 1: 一条路径上的节点的 f 函数值应该是非递减的

证明:

$$f(n1) = g(n1) + h(n1)$$

$$f(n2) = g(n2) + h(n2) = g(n1) + c(n1 - n2) + h(n2)$$

$$h(n1) \le c(n1 - n2) + h(n2)$$

Proposition 2: 如果节点n2在节点n1之后被扩展,则有 $f(n1) \leq f(n2)$

证明:

有以下两种情况:

- 当n1被扩展,n2还在边界上。由于n2在n1之后扩展,说明 $f(n1) \le f(n2)$
- 当n1被扩展,n2的祖先节点n3在边界上,则 $f(n1) \le f(n3)$ 。 再根据Proposition 1, $f(n1) \le f(n3) \le f(n2)$

Proposition 3: 在遍历节点n时,所有f值小于f(n)的节点都已经被遍历过了证明:

- 假设存在路径 $p = n1 \rightarrow n2... \rightarrow n_k$ 还没有被遍历过,但 $f(n_k) < f(n)$
- 假设n_i 是路径 p上最后被遍历的节点
- 那么节点 n_{i+1} 应该已经在n被探索时的边界上了,因此f(n) $\leq f(n_{i+1})$
- 根据Proposition 1, $f(n_{i+1}) \leq f(n_k)$
- 因此 $f(n) \leq f(n_k)$,与假设矛盾

Proposition 4: A*搜索第一次扩展到某个状态,就是沿着最小成本的路径进行扩展的

证明:

假设路径 $p=n1 \rightarrow n2... \rightarrow nk=n$ 是第一条被发现的到达n的路径 假设路径 $pj=m1 \rightarrow m2... \rightarrow mj=n$ 是第二条被发现的到达n的路径 假设g(p)是通过p路径到达n节点的成本 假设g(pj)是通过pj路径到达n节点的成本 根据Proposition 2, $g(p)+h(n)\leq g(pj)+h(n)$ 因此 $g(p)\leq g(pj)$.

IDA*

A*搜索和宽度优先搜索 (BFS) 或一致代价搜索 (UCS) 一样存在潜在的空间复杂度过大的问题

IDA*- 迭代加深的A*搜索与迭代加深搜索一样用于解决 空间复杂度的问题

就像迭代加深算法,但用于划定界限的不是深度,而是使用f值(g+h)

在每次迭代时,划定的界限是f值超过上次迭代的界限最少的 节点的f值

A*搜索: 总结

- 定义一个评价函数为f(n) = g(n) + h(n)
- 我们使用f(n)函数来对边界上的节点进行排序
- 可接纳性: $h(n) \leq h^*(n)$
- 一致性: 对于任意节点n1和n2: $h(n1) \le c(n1 \to n2) + h(n2)$
- 启发式函数具有一致性说明其也具有可接纳性
- 启发式函数具有可接纳性说明其也具有最优性
- A*搜索具有指数级的空间复杂度

一致性会导致的结果: 总结

- 1. 一条路径上的节点的 f 值应该是非递减的
- 2. 如果n2节点在n1节点之后扩展,那么 $f(n1) \leq f(n2)$
- 3. 当节点n被扩展时,f值小于节点n的路径都被扩展过了
- 4. A*搜索第一次扩展到某个状态,就是沿着最小成本的 路径进行扩展的
- 5. 只要启发式函数具备一致性,就能在进行环检测之后仍然保 持最优性

构建启发式函数: 松弛问题

通过考虑一个比较简单的问题,并将 h(n)设置为简单问题中到达目标的成本

8数码问题: 当满足下面条件时,可以把方块A移动到B位置

- A方块与B位置相邻(上/下/左/右相邻)
- B位置是空的

可以放松一些条件使得问题变简单

- 1. 只要方块A和B位置相邻就可以把A移动到B(不考虑B是否为空的)
- 2. 只要B位置为空的,就可以把A移动到B(忽略相邻的条件)
- 3. 任何情况下都可以把A移动到B(忽略两个条件)

构建启发式函数: 松弛问题

#3 可以推导出 "不在目标位置方块数" (misplaced)的启发式函数 h(n) = 当前状态与目标状态位置不同的方块数

可采纳性:对于没有在目标位置上的方块,我们需要至少一次动作才能把其移动到目标位置,这个动作的成本大于等于1。

单调性:任何动作都最多只能消除一个不在目标状态上的方块,因此对于任何8数字的状态 $h(n1) - h(n2) \le 1 \le c(n1 \to n2)$ — 90

#1 可以推导出 "<mark>曼哈顿距离" (Manhattan)的启发式函数</mark> h(n) = 所有方块到达其目标位置的曼哈顿距离之和

可采纳性: 对于每个不在目标位置的方块,都需要至少d个动作才能到 达目标位置,其中d是该方块初始位置到目标位置的曼哈顿距离。不同 的两个不在目标位置的方块,它们的这些动作是不同的。

单调性: 任何动作最多能使一个不在目标位置的方块的曼哈顿距离减少1,因此 $h(n1) - h(n2) \le 1 \le c(n1 \to n2)$

构建启发式函数: 松弛问题

Theorem. 在松弛问题中,到达某个节点的最优成本是原始问题中到达该节点的启发式函数值

证明:

- 若P是一个初始问题,设 P_i 是问题P的松弛问题
- 那么 $Sol(P) \subseteq Sol(P_j)$, Sol(P)表示问题P的解节点集
- 于是 $mincost(Sol(P_j)) \le mincost(Sol(P)), mincost(S)$ 表示到 达节点集S中的节点的最小成本
- 因此 $h(n) \leq h^*(n)$

比较两种启发式函数

Definition. 假如启发式函数h1和h2都是可采纳的,并且对于除了目标节点之外的其他节点,都有 $h1(n) \le h2(n)$,我们称h2函数**支配**了h1函数(或者h2函数比h1含有更多信息)

Theorem. 假如h2函数支配了h1函数,那么在使用A*算法时,使用h2函数扩展的节点,使用h1函数也会扩展到。

Depth	IDS	A*(Misplaced) h1	A*(Manhattan) h2
10	47,127	93	39
14	3,473,941	539	113
24		39,135	1,641

使用带环检测的A*算法解决8数码问题

采用Manhattan启发式函数,用带环检测的A*搜索初始状态和目标状态如下图所示的8数码问题,画出搜索图,图中标明所有节点的f,g,h值

初始: 2 8 3 1 6 4 7 5

目标:	1	2	3
	8		4
	7	6	5

积木世界规划

现有积木若干,积木可以放在桌子上,也可以放在另一块积木上面。有两种操作:

- ① move(x, y): 把积木x放到积木y上面。前提是积木x和y上面都没有其他积木。
- ② moveToTable(x): 把积木x放到桌子上,前提是积木x上面无 其他积木,且积木x不在桌子上。

设计本问题的一个启发式函数h(n),满足 $h(n) \le h^*(n)$,然后用 A^* 搜索初始状态和目标状态如下图所示的规划问题:

 a
 c

 初始:
 c

 b
 目标:

 a

 b

积木世界规划

- 积木处于其目标位置: 以该积木为顶的塔出现在目标状态中
- 启发式函数: 令h(n)为状态n中不在目标状态的积木数
- 可采纳性:对于每个不在目标位置的积木,需要至少1步动作来使得其到达目标位置。每块不在目标位置的积木要移动到目标位置的动作都不相同(即不存在一个动作使得两块积木同时到达目标位置的情况)
- 单调性:任何动作最多都只能消除一个不在目标位置的积木

积木世界规划

- 是否可以设计一个更好的具有可采纳性的启发式函数?
 - (考虑下面的策略)
- ▶ 当积木x已经处于其目标位置,我们说x是一个good tower
- ▶ 如果当前状态下采取某一个动作可以创建一个good tower,则进行该动作;
- ➤ 否则,把一个积木移到桌上,但要确保移动的这个积 木不是good tower

c (

滑动积木游戏

- 一个盒子中有七个格子,里面放了黑色,白色两种木块;
- 三个黑色在左边,三个白色在右边,最右边一个格子空着;
- 一个木块移入相邻空格,耗散值(成本)为1;
- 一个木块相邻一个或两个其他木块跳入空格,耗散值(成本)为跳过的木块数;
- 游戏中将所有白色木块跳到黑色木块左边为成功;

滑动积木游戏

- 令h(n)为每个白色木块前的黑色木块数目和
- $EX \rightarrow XE, EXY \rightarrow YXE, EXYZ \rightarrow ZXYE$
- 每个代价为1的动作使h(n)至多下降1
- 每个代价为2的动作使h(n)至多下降2
- 因此h(n)是单调的

传教士和野蛮人的问题

- 有N 个传教士和N个野蛮人在河的左岸
- 有一艘可以载K个人的小船
- 寻求一种可以把所有人运到河的右岸的方法
- 并且要求无论何时何地 (在河的任意岸或在小船上), 传教士的人数 ≥ 野蛮人的人数 或 传教士的人数 = 0

形式化传教士和野蛮人的问题

- 状态 (M, C, B) 表示: M 左岸的传教士的人数, C 左岸的野蛮人的人数, B = 1表示小船在河的左岸
- 动作 (m, c) 表示: m 小船上的传教士的人数, c 小船上的野蛮人的人数
- 前提条件: 传教士的人数和野蛮人的人数满足题目中的约束
- 动作的效果

$$(M, C, 1) \rightarrow (m,c) \rightarrow (M-m,C-c,0)$$

 $(M, C, 0) \rightarrow (m,c) \rightarrow (M+m,C+c,1)$

$$(N,N,I) \longrightarrow (0,0,0)$$

对于K≤3时的启发式函数

h1(n) = M + C的启发式函数是可采纳的吗?

不是, 考虑状态 (1, 1, 1)时,

$$h1(n) = 2$$
, $4 \ln^*(n) = 1$

假设h(n) = M + C - 2B

单调性:

$$(M, C, 1) \rightarrow (m,c) \rightarrow (M-m,C-c,0)$$

 $h(n_1) - h(n_2) = m + c - 2 \le K - 2 \le 1$
 $(M, C, 0) \rightarrow (m,c) \rightarrow (M+m,C+c,1)$
 $h(n_1) - h(n_2) = 2 - (m+c) \le 1$, since $m+c \ge 1$

直接证明可采纳性

当B=1,

在最好的情形下,我们在最后一步把3个人送到河的右岸 在此之前,我们可以把三个人送到右岸,再由一个人把船摆 渡到左岸。因此,每次来回都只能渡2个人过河,

因此,我们需要 $\geq 2\left|\frac{M+C-3}{2}\right|+1\geq M+C-2$ 个动作 当B=0, $2\left|\frac{M+C-1}{2}\right|+1=M+C-1$ 我们需要一个人将船摆渡到左岸,这样就形成了B=1的情 形。现在我们需要把M+C+1的人摆渡到右岸 因此,我们需要M+C=2 \geq M+C个动作 M+C-1+1 \geq M+C

练习

利用带环检测的宽度优先搜索解决M = 3, K = 2的时候的传教士和野蛮人的问题

练习

利用带环检测的A*搜索解决M = 5, K = 3的时候的传教士和野蛮人的问题