What is Statistical Learning? Concepts and Framework

MUTLU LEARNING HUB

Contents

What is Statistical Learning?

Supervised vs. Unsupervised Learning

Parametric vs. Non-Parametric

Statistical Learning Framework

Question:

How many bikes will be rented tomorrow if it's sunny and 25 °C?

- Goal: Predict an outcome (Y) from influencing factors (X).
- Inputs (X): Temperature, weather, day of the week
- Output (Y): Number of bike rentals
- Model:

$$Y = f(X) + \epsilon$$

- f(X): Predictable pattern from data
- ε: Random noise / uncertainty

Observed bike rentals (dots) and underlying trend (line).

Supervised vs. Unsupervised Learning

Question:

Do we have labeled data to learn from, or only raw data to explore?

Supervised Learning

 Predict an outcome (Y) from known inputs (X)

Unsupervised Learning

Find patterns using only inputs (X)

Supervised Learning: Predicting Outcomes

Question:

How can you predict bike rentals for tomorrow using past data?

- Inputs (X): temperature, weather, day of week
- Outputs (Y): number of rentals
- Goal: Learn the relationship X → Y to predict future rentals
- Intuition: Like using yesterday's data to forecast tomorrow

Observed rentals (dots) and predicted trend (line).

Unsupervised Learning: Station Segmentation

Question:

How can you group bike stations based on similar rental behavior?

- Only inputs (X) are available:
 - Average rentals per day
 - Station capacity
- Goal: Discover hidden patterns or clusters in the data
- Intuition: Identify stations with similar usage without knowing outputs
- Practical insight: Optimize resource allocation and maintenance schedules

Clusters of stations based on average rentals and station capacity.

Two Main Approaches to Find f(X)

Question:

Should we assume a shape for f(X), or let the data decide?

Parametric Methods

 Assumption: a specific functional form for f(X)

Non-Parametric Methods

 No assumption about the form of f(X)

Parametric Methods

Question:

How can you predict bike rentals based on temperature using a simple model.

- Assumption: specific functional form for f(X)
- Example: Linear regression $(f(X) = \beta_0 + \beta_1 X)$
- Pros: Simple, interpretable, fast
- Cons: May underfit if the true relationship is complex

Red line: Linear (parametric) fit.

Non-Parametric Methods

Question:

How can you predict bike rentals based on temperature without assuming a fixed trend.

- No assumption about the functional form of f(X)
- Example: k-Nearest Neighbors
- Pros: Flexible, can capture complex patterns
- Cons: Requires more data, less interpretable
- Intuition: The model adapts to local patterns in the data

Red line: KNN (non-parametric) fit.

Summary & What's Next

- Statistical learning studies how to estimate f(X) from data.
- Two main settings: supervised vs. unsupervised.
- Approaches: parametric vs. non-parametric.

Coming Up Next:

We'll dive deeper into **Supervised Learning in Action**:

- Regression
- Classification
- Model evaluation with train/test split

Thank You!

MUTLU LEARNING HUB