COL751 - Lecture 22

1 Maximum Matching

A matching M in an undirected graph G = (V, E) is a set of edges that have no common vertex. Given a matching M, an alternating path w.r.t. M is a path whose edges alternates between matched and unmatched edges. An augmenting path w.r.t. M is an alternating path that starts and ends at free (unmatched) vertices.

It is easy to see that a matching M having and augmenting path can not be optimum. Berge proved that converse also holds.

Lemma 1 (Berge's Lemma). A matching M is maximum iff it has no augmenting path.

Proof: Let M be a matching for a graph G. If there is an M-augmenting path, say P, then we can get a matching of size 1 + |M| by switching edges along P. So a matching having an augmenting path cannot be maximum.

Next let us assume M is not maximum. We will prove that there exists an M-augmenting path. Let M_{opt} be a matching in G of maximum size. Consider the graph $H = (V, M \oplus M_{opt})$. Since degree of each vertex in H is at most two, H (after ignoring singleton vertices) is just a union of vertex-disjoint paths and cycles of even length. Moreover, no adjacent edges in H can lie in M or M_{opt} . Since $|M_{opt}| \geq |M|$, there must exist a path P in H such that $|M_{opt} \cap P| \geq |M \cap P|$. Such a path P must be an M-augmenting path as its endpoints must be unmatched. This proves the claim.

Figure 1: Depiction of paths and cycles in $M \oplus M_{opt}$. Edges in M are shown in blue, and edges in M_{opt} are shown in red.

Remark For any matching M, there exists a set C of size $(|M_{opt}| - |M|)$ comprising of vertex-disjoint augmenting-paths which when xored with M gives a maximum matching.

Lemma 2. Let M be a matching satisfying that each M-augmenting-path in G has length at least L, then $(|M_{opt}| - |M|)$ is at most n/L.

Proof: Let \mathcal{C} be a collection of vertex-disjoint M-augmenting paths whose edges lie in $M_{opt} \oplus M$. See Figure 1. As each M-augmenting path in G has length at least L, we have $|\mathcal{C}| \leq n/|L|$. Therefore, $(|M_{opt}| - |M|) = |\mathcal{C}| \leq n/|L|$.

Homework Prove that upper bound in Lemma 2 can be strengthened to $2|M_{opt}|/L$.

2 Maximum Matching in Bipartite graphs

We discussed earlier a max-flow-based approach for computing maximum-matching in bipartite graphs which had O(Time(max-flow)) = O(mn) time complexity. We will study in this section an improved algorithm for computing maximum matching in bipartite graphs that was given by Hopcroft and Karp (1973).

```
1 M \leftarrow \emptyset;

2 while (M \text{ is not maximum}) do

3 C = (P_1, \dots, P_{\alpha}) \leftarrow \text{Blocking set of augmenting paths};

4 M = M \oplus P_1 \oplus \dots \oplus P_{\alpha};

5 end

6 Return M;
```

Algorithm 1: Hopcraft-Karp(G)

Algorithm 1 presents an outline of the Hopcraft-Karp algorithm. We define below the notion on blocking set of augmenting paths.

Definition 1. Let M be a matching in graph G, and 'k' be length of smallest M-augmenting path. Then a **blocking set of augmenting paths** with respect to M is a set $\{P_1, \ldots, P_{\alpha}\}$ of vertex-disjoint augmenting paths of length k that is inclusion maximal.

Let H = H(M) be an orientation of G = (X, Y, E) such that all unmatched edges in G are directed from X to Y, and matched edges are directed from Y to X. The graph H satisfies the following property.

Property 1. There exists 1-1 correspondence between simple directed paths in H and alternating paths in G.

Let S be a set comprising of unmatched vertices in X. For $i \ge 0$, let L_i be the set of vertices at distance i from S in H. See Figure 2. Further, let H^* be a layered graph with vertex set

$$V^* = \bigcup_{i < k} L_i \bigcup (L_k \cap \text{unmatched-vertices}),$$

and edge-set E^* comprising of those edges in H that lie in $(L_{i-1} \times L_i)$, for some $i \in [1, k]$.

Figure 2: Layered structure obtained from BFS traversal in H from set S as supernode.

Figure 3: Depiction of DFS traversal from vertices x_1, x_2 lying in S in layered graph H^* . DFS traversal from each $x_i \in S$ terminates on reaching free nodes in Y.

Figure 4: A blocking set of augmenting paths. Note that after updating matching M as $M = M \oplus P_1 \oplus \cdots \oplus P_{\alpha}$, (i) matched and unmatched edges in P_1, \ldots, P_{α} will be swapped, (ii) orientation of edges in P_1, \ldots, P_{α} will thus be reversed in H = H(M).

Lemma 3. A blocking set of augmenting paths w.r.t. a matching M in a connected bipartite graph G = (X, Y, E) can be computed in O(m) time, where m denotes the number of edges in G.

Proof: Observe that k, i.e. length of smallest augmenting path in G, can be computed in O(m) time by simply performing a BFS in H from the set S. In particular, $k = \min\{dist_H(S, y) \mid y \in Y \text{ is free}\}$. Similarly, sets L_0, L_1, \ldots, L_k , and graph H^* can also be computed in O(m) time.

To compute C, we perform a modified DFS traversal from vertices in S in graph H^* such that traversal from each $x_i \in S$ terminates as soon as it encounters a free vertex in set Y. The time complexity of this step is O(m) as each vertex is visited at most once during the DFS traversal from nodes in S.

Lemma 4. Let M be a matching in a bipartite graph G = (X, Y, E), k be length of smallest M-augmenting path, and $C = (P_1, \ldots, P_{\alpha})$ be a blocking set of augmenting paths. Then each augmenting path w.r.t. matching $M^* = (M \oplus P_1 \oplus \cdots \oplus P_{\alpha})$ has length larger than k.

Proof: Let \mathcal{E} be collection of edges lying in P_1, \ldots, P_{α} , and $V_{\mathcal{E}} = \bigcup_{i=1}^{\alpha} V(P_i)$ be endpoints of edges in set \mathcal{E} . Let Q be a smallest augmenting path with respect to matching M^* . We have following two cases:

Case 1: $Q \cap V_{\mathcal{E}} = \emptyset$.

In this case length of Q must be at least k+1 as blocking set \mathcal{C} was inclusion maximal.

Case 2: $Q \cap V_{\mathcal{E}} \neq \emptyset$.

In this case Q must contain an edge matched under M^* lying in set \mathcal{E} . This is because all M^* -matched edges incident to vertices in $V_{\mathcal{E}} = \bigcup_{i=1}^{\alpha} V(P_i)$ lies in \mathcal{E} . Since matched edges lying in $H(M^*)$ are directed from L_i to L_{i-1} , for some $i \in [1, k]$, the length of augmenting path Q must be at least k+2.

Lemma 5. The number of iterations of While loop in Algorithm 1 is at most $2\sqrt{n}$.

Proof: By Lemma 4, after each iteration of While loop in Algorithm 1, the length of smallest augmenting path increases. So, after first \sqrt{n} iterations of While loop, the length of smallest augmenting path is at least \sqrt{n} . At this stage, due to Lemma 2, $|M_{opt}|$ and |M| differs by at most \sqrt{n} . This proves that the total number of iterations must be at most $2\sqrt{n}$ as each iteration increases the size of matching by at least one.

We thus have the following result.

Theorem 1 (Hopcraft and Karp, 1973). There exists an algorithm that given any n vertex, m edges connected bipartite graph G computes a maximum matching of G in $O(m\sqrt{n})$ time.

Homework Design an algorithm that for any connected bipartite graph G = (X, Y, E) computes in O(|E|) time a matching M of size at least $0.999 \times |M_{opt}|$.