Geometrie

March 8, 2024

Chapter 1

Theorème des cercles qui font bisous-bisous

1.1 Figure

Figure 1.1: Schema de deux cercles qui font des bisous et leur enfant

1.2 Trouvons r_3 par rapport à r et r_1

Pour commencer, traçons les triangles rectangles dont on aurait besoin pour la résolution du problème.

Figure 1.2: Rajout des trois triangles rectangles

De part la figure ci-dessus, nous pouvons en déduire la relation suivante

$$x_3 = x_1 + x_2$$

1. Trouvons x_1

Pour trouver x_1 , utilisons le théorème de Pythagore sur T_1 :

$$AC^2 = AF^2 + FC^2$$

Soit:

$$(r+r_2)^2 = (r-r_2)^2 + x_1^2$$

Dévéloppons :

$$r^2 + 2rr_2 + r_2^2 = r^2 - 2rr_2 + r_2^2 + x_1^2$$

Réarrangeons :

$$y^2 + 2rr_2 + y_2^2 = y^2 - 2rr_2 + y_2^2 + x_1^2$$

$$4rr_2 = x_1^2$$

Donc:

$$x_1 = 2\sqrt{rr_2}$$

2. Trouvons x_2

 $\overline{\text{A l'instar de}} \ x_1$, nous avons :

$$x_2 = 2\sqrt{r_1 r_2}$$

3. Trouvons x_3

De même pour x_3 , nous avons :

$$x_3 = 2\sqrt{rr_1}$$

Une fois que nous avons trouvé x_1 , x_2 et x_3 , nous pouvons maintenant chercher r_2 .

Nous avons maintenant:

$$2\sqrt{rr_1} = 2\sqrt{rr_2} + 2\sqrt{r_1r_2}$$

Divisons le tout par 2 :

$$\sqrt{rr_1} = \sqrt{rr_2} + \sqrt{r_1 r_2}$$

Sortant $\sqrt{r_2}$:

$$\sqrt{rr_1} = \sqrt{r_2}(\sqrt{r} + \sqrt{r_1})$$

Divisons le tout par $(\sqrt{r} + \sqrt{r_1})$:

$$\frac{\sqrt{rr_1}}{(\sqrt{r}+\sqrt{r_1})}=\sqrt{r_2}$$

(Je ne sais pas pour quoi mais cette formule ne donne pas la solution) Inversion :

$$\frac{\sqrt{r} + \sqrt{r_1}}{\sqrt{rr_1}} = \frac{1}{\sqrt{r_2}}$$

Séparons les dividendes :

$$\frac{\sqrt{r}}{\sqrt{rr_1}} + \frac{\sqrt{r_1}}{\sqrt{rr_1}} = \frac{1}{\sqrt{r_2}}$$

Simplifions:

$$\frac{\sqrt[4]{r}}{\sqrt[4]{r}\sqrt{r_1}} + \frac{\sqrt[4]{r_1}}{\sqrt[4]{r}\sqrt{r_1}} = \frac{1}{\sqrt{r_2}}$$

Soit la relation suivante :

$$\boxed{\frac{1}{\sqrt{r_2}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r}}}$$

1.3 Trouvons r_n en fonction de n

En utilisant la formule trouvée ci-dessus, remplaçons r_2 par r_n , r_1 par r_{n-1} et comme r représent le rayon du premier cercle, il est constant donc r = 1.

Soit:

$$\frac{1}{\sqrt{r_n}} = \frac{1}{\sqrt{r_{n-1}}} + 1$$

$$\frac{1}{\sqrt{r_n}} = \frac{1 + \sqrt{r_{n-1}}}{\sqrt{r_{n-1}}}$$

6 CHAPTER 1. THEORÈME DES CERCLES QUI FONT BISOUS-BISOUS

$$\sqrt{r_n} = \frac{1}{\frac{1+\sqrt{r_{n-1}}}{\sqrt{r_{n-1}}}}$$

La formule finale :

$$r_n = \left(\frac{1}{\frac{1+\sqrt{r_{n-1}}}{\sqrt{r_{n-1}}}}\right)^2$$

1.4 Trouvons le centre du cercle nouvellement créé

Comme $y_n = r_n$, nous n'avons plus à chercher y. Il nous reste plus que x_n : Posons:

$$x_1 = FC$$
 et $x_2 = CG$

Nous avons deux formule possible :

$$x_n = x_A + FC$$

Οl

$$x_n = x_{n-1} - CG$$