INDEX

Sr.No.	PRACTICALS	SIGN
1.	Blinking of LEDs	
2.	Program using Light Sensitive Sensors.	
3.	Program using temperature sensors.	
4.	Program using humidity sensors.	
5.	Program using Line tracking sensors.	
6.	Program using Ultrasonic Sensors.	
7.	Program using digital infrared motion sensors.	
8.	Program using gas sensors.	
9.	Program using servo motors.	
10.	Program making Joystick with Arduino.	

Introduction to Arduino

Introduction to Arduino circuits and breadboarding

Blinking of LEDs

Code:

```
int red=12;
void setup()
{
    pinMode(red, OUTPUT);
}
void loop()
{
    digitalWrite(red, HIGH);
    delay(1000);
    digitalWrite(red, LOW);
    delay(1000);//Delay a little bit to improve simulation performance
}
```


Program using Light Sensitive Sensors

Code:

```
int IdrPin = A0;
int ledPin = 9;
int IdrValue;
void setup() {
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);
}

void loop() {
  IdrValue = analogRead(IdrPin);
  Serial.println(IdrValue);
  if (IdrValue < 500) {
    digitalWrite(ledPin, HIGH);
  } else {
    digitalWrite(ledPin, LOW);
  }
  delay(100);
}</pre>
```


Program using temperature sensors

Code:

```
byte tmp = A1;
byte led= 2;
int temp;
void setup()
 pinMode (tmp, INPUT);
 pinMode(2, OUTPUT);
 Serial.begin(9600);
void loop()
temp=analogRead(temp);
 temp=temp * 0.488;
 Serial.print("temp:");
 Serial.println(temp);
 if (temp < 50){
 digitalWrite(2, HIGH);
 else {
  digitalWrite(2, LOW);
 delay(1000);
```


Program using humidity sensors

Code:

```
void setup() {
    Serial.begin(9600);
    Serial.println("Simulated DHT11 Sensor");
}
void loop() {
    int sensorValue = analogRead(A0);
    float humidity = map(sensorValue, 0, 1023, 20, 90);
    Serial.print("Simulated Humidity: ");
    Serial.print(humidity);
    Serial.println(" % ");
    delay(1000);
}
```


Programs using Line tracking sensors

```
int sensorPin = 2;
int ledPin = 13;
void setup() {
  pinMode(sensorPin, INPUT);
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);
}
void loop() {
  int sensorValue = digitalRead(sensorPin);
  if (sensorValue == LOW) {
    digitalWrite(ledPin, HIGH);
    Serial.println("Line detected!");
```

```
} else {
    digitalWrite(ledPin, LOW);
    Serial.println("No line detected.");
}
delay(1000);
}
```


PRACTICAL NO. 6

Programs using Ultrasonic Sensors

```
const int trigPin = 9;
const int echoPin = 10;
long duration;
int distance;
void setup() {
   Serial.begin(9600);
   pinMode (trigPin, OUTPUT);
   pinMode (echoPin, INPUT);
}
void loop() {
```

```
digitalWrite(trigPin, LOW);
  delayMicroseconds (2);
  digitalWrite(trigPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  duration= pulseIn (echoPin, HIGH);
  distance = duration * 0.34 / 2;
  Serial.print("Distance: ");
  Serial.print(distance);
  Serial.println("cm");
  delay(2000); //Delay for readability
}
Output:
```


Programs using digital infrared motion sensors

```
const int PIR_PIN = 2;
const int LED_PIN = 13;
void setup() {
  pinMode(PIR_PIN, INPUT);
  pinMode(LED_PIN, OUTPUT);
  Serial.begin(9600);
```

```
void loop() {
  int motionState = digitalRead(PIR_PIN);
  if (motionState == HIGH) {
    digitalWrite(LED_PIN, HIGH);
    Serial.println("Motion Detected!");
  } else {
    digitalWrite(LED_PIN, LOW);
    Serial.println("No Motion");
  }
  delay(500);
}
```


PRACTICAL NO. 8

Programs using gas sensors

```
int LED = 13;
```

```
int MQ2pin = A0;
void setup()
{
    Serial.begin(9600);
}
void loop()
{
    float sensorValue;
    sensorValue = analogRead(MQ2pin);
    if(sensorValue >= 250)
    {
        digitalWrite(LED, HIGH);
        Serial.print(sensorValue);
        Serial.println(" | GAS DETECTED");
    }
    else
    {
        digitalWrite(LED, LOW);
        Serial.println("Sensor Value: ");
        Serial.println(sensorValue);
    }
    delay(1000);
}
```


PRACTICAL NO. 9

Programs using servo motors

Code:

```
#include<Servo.h>
Servo servo1;
int pos = 0;
void setup()
{
   servo1.attach(13);
}
void loop()
{
   for(pos=0;pos<=180;pos++)
   {
      servo1.write(pos);
      delay(15);
   }
   for(pos=180;pos>=0;pos--)
   {
      servo1.write(pos);
      delay(15);
   }
}
```


Programs making Joystick with Arduino

```
int x[50] = \{0\};
int y[50] = \{0\};
int LED_UP = 2;
int LED_DOWN = 3;
int LED_RIGHT = 4;
int LED_LEFT = 5;
void setup() {
 Serial.begin(9600);
 pinMode(LED_UP, OUTPUT);
 pinMode(LED_DOWN, OUTPUT);
 pinMode(LED_RIGHT, OUTPUT);
 pinMode(LED_LEFT, OUTPUT);
void loop() {
 long int sum X = 0;
 long int sumY = 0;
 for (int i = 0; i < 50; i++) {
  x[i] = analogRead(A0);
  sum X += x[i];
  y[i] = analogRead(A1);
  sumY += y[i];
 int Xm = sum X / 50;
 int Ym = sum Y / 50;
 int up = 0;
 int down = 0;
 int right = 0;
 int left = 0;
 if (Xm <= 500) {
  up = map(Xm, 500, 0, 0, 100);
 if (Xm >= 500) {
  down = map(Xm, 500, 1021, 0, 100);
 if (Ym <= 506) {
  right = map(Ym, 506, 0, 0, 100);
 if (Ym >= 506) {
  left = map(Ym, 506, 1021, 0, 100);
 digitalWrite(LED_UP, LOW);
```

```
digitalWrite(LED_DOWN, LOW);
 digitalWrite(LED_RIGHT, LOW);
 digitalWrite(LED_LEFT, LOW);
 if (up > down) {
  digitalWrite(LED_UP, HIGH);
} else if (down > up) {
  digitalWrite(LED_DOWN, HIGH);
if (right > left) {
  digitalWrite(LED_RIGHT, HIGH);
} else if (left > right) {
  digitalWrite(LED_LEFT, HIGH);
 String phrase1 = "Xm = " + String(Xm) + " - Ym = " + String(Ym);
 String phrase2 = "UP: " + String(up) + " - DOWN: " + String(down) + " - RIGHT: " + String(right) +
"-LEFT: " + String(left);
 Serial.println(phrase1);
 Serial.println(phrase2);
 delay(1000);
```

