

Solution of Ordinary Differential Equations (Initial Value Problems) - Lecture 05

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

Outline

In this lecture we will

- review the most commonly used form of 4 stage Runge-Kutta scheme
- work on two example problems using Euler explicit and 4 stage Runge-Kutta scheme
 - Problem with a high frequency content
 - Problem with discontinuity

Four-Stage Runge-Kutta

The 4-Stage Runge-Kutta methods are the most popular. This involves comparing terms to fourth order and results in 11 equations in 13 unknowns. This leads to a 2-parameter family of schemes that yield 4th order accuracy.

$$w_{i+1} = w_i + \frac{1}{6} [k_1 + 2k_2 + 2k_3 + k_4]$$

$$k_1 = \Delta t \ f(t_i, w_i)$$

$$k_2 = \Delta t \ f\left(t_i + \frac{\Delta t}{2}, w_i + \frac{k_1}{2}\right)$$

$$k_3 = \Delta t \ f\left(t_i + \frac{\Delta t}{2}, w_i + \frac{k_2}{2}\right)$$

$$k_4 = \Delta t \ f\left(t_i + \Delta t, w_i + k_3\right)$$

The most common choice of parameters is shown on the right. Note that intermediate function evaluations are required.

Runge-Kutta (RK) Example 1

This example has a lot of high frequency content

$$\frac{dy}{dt} = -y - \sin(t) \qquad y(0) = 1$$

The exact solution is

Use Euler Explicit and 4 stage Runge-Kutta to numerically solve ybetween t=0 and t=100

$$\left\{ \left\{ y[t] \rightarrow \frac{1}{2} e^{-t} \left(1 + e^{t} \cos[t] - e^{t} \sin[t] \right) \right\} \right\}$$

$$h = \Delta t = 1.0$$
 — Euler Explicit — Exact — 4 Stage Runge-Kutta

Note the significant improvement with the 4-Stage RK method.

AE/ME 5830 Spring 2018

RK Example 1 – Error for $\Delta t=1.0$

The Step Size for this calculation was $h = \Delta t = 1.0$

Note the magnitude of the errors for this step size.

RK Example 1 – Error for $\Delta t=1.0 \& 0.1$

AE/ME 5830

Spring 2018

Runge-Kutta (RK) Example 2

This example has a discontinuity in the forcing function.

$$\frac{dy}{dx} = f(x) = \begin{cases} \frac{1}{(x-1)} & x < 0\\ \frac{1}{(x+1)} & x > 0 \end{cases}$$

Note the f is discontinuous in x

subject to y(-5) = 5

The forcing function

The issue here is what happens after you integrate through the discontinuity.

AE/ME 5830 Spring 2018

Here are solutions on a coarse grid with dx=1.

The table shows that the RK error is much less than the Euler explicit error until the discontinuity

$\mathbf{X}_{\mathbf{i}}$	Exact	Euler	Error	4- Stage	Error
		Explicit		Runge - Kutta	
-5	5.	5.	0.	5.	0.
-4	4.81767	4.83333	0.0156618	4.81768	$5.21643 \text{\fine} 10^{-6}$
-3	4.59452	4.63333	0.038812	4.59453	$7.24917 \text{\fine} 10^{-6}$
-2	4.30683	4.38333	0.0765061	4.30683	2.94171 ± 10^{-6}
-1	3.90135	4.05	0.148651	3.90127	- 0.00007413
0	3.20818	3.55	0.341819	3.54016	0.331983
1	3.90132	4.55	0.648679	4.23461	0.333287
2	4.30678	5.05	0.743216	4.64016	0.33338
3	4.59446	5.38333	0.788869	4.92786	0.333398
4	4.81761	5.63333	0.815727	5.15101	0.333404
5	4.99993	5.83333	0.833407	5.33333	0.333407
1	AE/ME 5830			S_1	pring 2018 8

Runge-Kutta (RK) Example 2

Note that the RK error is much smaller than the Euler Explicit error on any mesh until the value of x=0 is crossed. At that point, the errors "jump" and approach the same order of magnitude (more or less).

Taylor series expansions are not valid across a discontinuity. This impacts the accuracy of the method and is an important topic in compressible fluid dynamics.

AE/ME 5830

Summary

In this lecture we have

- reviewed the most commonly used form of 4-stage Runge-Kutta scheme
- examined the 4-stage RK performance relative to the Euler explicit method on two examples
 - A problem with high frequency content
 - A problem with discontinuity