

Básicos

X Diversificado

HOJA GUÍA- BIMESTRE 2019

Curso	FISICA	Grado	SEXTO
Profesor	Juan Pablo Rivas	Fecha	14 de Enero al 15 de
			Marzo

Metas semanales

Meta No. 1 Del 14 al 18 de enero.	Procuro organizar un plan de vida personal
Meta No. 2 Del 21 al 25 de enero.	Me preocupo por mi formación profesional
Meta No. 3 Del 28 de enero al 1 de febrero.	Entrego mis trabajos y deberes a tiempo
Meta No. 4 Del 4 al 8 de febrero.	Me preocupo por los demás
Meta No. 5 Del 11 al 15 de febrero.	Procuro vivir los buenos modales "presentarse"
Meta No. 6 Del 18 al 22 de febrero.	Soy puntual en mi horario
Meta No. 7 Del 25 de febrero al 1 de marzo.	Procuro vivir los buenos modales "conversación"
Meta No. 8 Del 4 al 8 de marzo.	Estudio con responsabilidad
	Al entrar y salir del Centro saludo al Señor en el
Meta No. 9 Del 11 al 15 de marzo.	Oratorio

PLAN PREVISTO

NOMBRE DE UNIDAD: Cinemática

Contenido	Actividad	Fecha	Ponderación	Nota obtenida
Movimiento Rectilíneo Uniforme Movimiento Rectilíneo Uniformemente Acelerado o Variado	Asignación de ejercicios y Laboratorio	Semana 1	5	
Movimiento Vertical -Caída Libre y Tiro Vertical-	Asignación de ejercicios y Laboratorio	Semana 2	10	
Movimiento en dos dimensiones -Tiro Horizontal y Parabólico-	Asignación de ejercicios y Laboratorio	Semana 4	10	
Movimiento Circular	Asignación de ejercicios y Laboratorio	Semana 6	10	
	Proyecto de Unidad Construcción de Máquina de Goldberg	Semana 7	15	
			Zona	
			Examen	
			Total	

OBSERVACIONES:

Se deberá seguir las instrucciones impartidas por su catedrático y las normativas del curso y del colegio.

-Propuesta de Secuencia Didáctica-

- 1. Título del Tema
- 2. Competencia
- 3. Marco Teórico
- 4. Ecuaciones
- 5. Ejercitación y/o ejemplos
- 6. Práctica y Evaluación

Ejemplo:

MOVIMIENTO RECTILÍNEO UNIFORME (MRU) Y UNIFORMEMENTE ACELERADO O VARIADO (MRUV)

Competencia: Aplica razones físicas espacio-temporales del movimiento en una y dos dimensiones (cinemática), en la resolución de problemas de su entorno.

MOVIMIENTO RECTILÍNEO UNIFORME -MRU-

Es aquel con velocidad constante y cuya trayectoria es una línea recta. Observa que cuando afirmamos que la velocidad es constante estamos afirmando que no cambia ni su valor (también conocido como **módulo, rapidez**) ni la dirección del movimiento.

Un movimiento rectilíneo uniforme es aquel que tiene su velocidad constante y su trayectoria es una línea recta. Esto implica que:

- > El espacio recorrido es igual que el desplazamiento.
- > En tiempos iguales se recorren distancias iguales.
- La rapidez es siempre constante y coincide con el módulo de la velocidad.

Ecuaciones y Gráficas del MRU

Velocidad

La velocidad del cuerpo es constante y por tanto igual a la velocidad inicial. Su unidad en el Sistema Internacional (S.I.) es el metro por segundo (m/s).

$$v = v_0 = \text{constante}; \ v = \frac{\Delta x}{\Delta t} = \frac{x - x_0}{t - t_0}$$

donde:

- v es la velocidad.
- v₀ es la velocidad inicial

Posición

Su unidad en el Sistema Internacional (S.I.) es el metro (m) y se obtiene por medio de la siguiente expresión:

$$x = x_0 + v \bullet t$$

donde:

- x₀ es la posición inicial.
- v es la velocidad que tiene el cuerpo a lo largo del movimiento.
- t es el intervalo de tiempo durante el cual se mueve el cuerpo.

Observe lo que t representa en la ecuación de posición: El intervalo de tiempo durante el cual se mueve el cuerpo. Dicho intervalo a veces es representado por t y otras por Δt . En cualquiera de los casos, $t = \Delta t = t$ - t_0 siendo t y t_0 los instantes de tiempo final e inicial respectivamente del movimiento que estamos estudiando. La inclinación de la recta de la gráfica depende de la velocidad. A mayor pendiente, mayor velocidad. Por otro lado, recuerda puedes deducir ésta, la gráfica de la distancia recorrida coincide con el área encerrada entre el eje x y la linea que representa la velocidad en el intervalo de tiempo considerado (que en nuestro caso hemos llamado t).

Aceleración

Su unidad en el Sistema Internacional (S.I.) es el metro por segundo al cuadrado (m/s²). Su valor a lo largo del movimiento siempre es cero.

En aquellos casos en los que la posición inicial es cero ($x_0 = 0$), la distancia recorrida y la posición coinciden, y su valor es:

$$S = x = v \bullet t$$

Por último, cuando tengas que usar las ecuaciones anteriores recuerda usar un convenio de signos para indicar el movimiento.

Por ejemplo:

- La posición del cuerpo se considera de igual signo que el semieje (semieje positivo o semieje negativo) en el que se encuentre.
- La velocidad se considera de igual signo que el sentido del eje (sentido positivo o sentido negativo) en el que se desplace.

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO -MRUV-

Se nombra movimiento rectilíneo uniformemente acelerado (MRUA) o movimiento rectilíneo uniformemente variado (MRUV) a fenómenos físicos cómo: si dejas caer una moneda al suelo (caída libre), lanzar un objeto hacia arriba (tiro vertical), un vehículo en movimiento, etc. (sin considerar la masa del objeto y la fricción); cuando su trayectoria es una línea recta y su aceleración es constante. Esto implica que la velocidad aumenta o disminuye su módulo de manera uniforme. La aceleración es responsable de que cambie el módulo de la velocidad.

Ecuaciones y Gráficas del MRUV

Velocidad

Su unidad en el Sistema Internacional (S.I.) es el metro por segundo (m/s). Cambia de manera uniforme y se obtiene por medio de la siguiente expresión:

$$v = v_0 + at$$

donde:

- v_0 es la velocidad inicial.
- a es la aceleración que tiene el cuerpo.
- t es el intervalo de tiempo en el que se estudia el movimiento.

A mayor pendiente, mayor es la aceleración del cuerpo.

Posición

Su unidad en el Sistema Internacional (S.I.) es el metro (m) y se calcula mediante la siguiente expresión:

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

donde:

- x₀ es las posición inicial.
- v₀ es la velocidad inicial.
- a es la aceleración.
- t es el intervalo de tiempo en el que se estudia el movimiento.

Gráficamente se trata de una parábola donde x_0 representa la posición inicial del cuerpo y a la aceleración del mismo.

Aceleración

Su unidad en el Sistema Internacional (S.I.) es el metro por segundo al cuadrado (m/s²). Su valor permanece constante y distinto de 0.

$$a = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$

Cuando:

a>0, la velocidad aumenta su valor y se dice que el cuerpo está acelerando.

a<0, la velocidad disminuye su valor y se dice que el cuerpo está frenando.

Observe lo que t representa en las ecuaciones anteriores: El intervalo de tiempo durante el cual se mueve el cuerpo. Dicho intervalo a veces es representado por t y otras por Δt . En cualquier caso $t = \Delta t = t$ - t_0 siendo t y t_0 los instantes de tiempo final e inicial respectivamente.

Por último, recuerda que, si consideras el eje vertical y, puedes encontrar la ecuación de posición anterior en la forma

$$y = y_0 + v_0 t + \frac{at^2}{2}$$

Aspectos a Valuar	2.5	2	1.5	1
Terminología Matemática - Ecuaciones- y Notación - dimensionales-	La terminología y notación correctas, fueron siempre usadas, en orden haciendo fácil de entender lo que fue hecho.	La terminología y notación correctas, en la mayoría usadas, aunque no fue tan fácil de entender lo que fue hecho.	La terminología y notación no se aprecian y no fue es fácil entender lo que fue hecho.	Hay poco uso o uso inapropiado de la terminología y la notación.
Razonamiento Matemático	Usa razonamiento matemático complejo, completo y refinado.	Usa razonamiento matemático efectivo y más o menos completo.	Alguna evidencia de razonamiento matemático.	Poca evidencia de razonamiento matemático.
Estrategia Procedimientos	Usa una estrategia eficiente y efectiva para resolver problemas.	Por lo general, usa una estrategia efectiva para resolver problemas.	Algunas veces usa una estrategia efectiva para resolver problemas, pero no lo hace consistentemente.	Raramente usa una estrategia efectiva y clara para resolver problemas.
Respuestas	Todos los problemas fueron resueltos y respuestas a lapicero.	Todos, menos 1 o 2 de los problemas fueron resueltos.	Al menos 3 o más de los problemas no fueron resueltos.	Los problemas no fueron resueltos.