

Spatial Semantic Pointers (SSPs)

Chris Eliasmith SYDE 556/750

Spatial Semantic Pointers

- Semantic pointers represent standard discrete structures (lists, trees, etc.)
- SSPs allow recurrent convolutions to have fractional powers $B^k = B \circledast B \circledast \ldots \circledast B$

B appears k times

Compute fractional k in Fourier space

$$B^k = \mathcal{F}^{-1}\left\{\mathcal{F}\left\{B\right\}^k\right\}, \quad k \in \mathbb{R}.$$

$$S(x,y) = X^x \circledast Y^y = \mathcal{F}^{-1} \{ \mathcal{F} \{ X \}^x \odot \mathcal{F} \{ Y \}^y \}$$

Spatial Semantic Pointers

Represent continuous space (Clifford torus)

$$S(x,y) = X^x \circledast Y^y$$

- Heat map to visualize vector contents
- Dot product between SSP at every possible position and S

$$M = \sum_{i=1}^{m} OBJ_i \circledast S_i$$

Spatial Manipulations

Desiderata	Accuracy	
	Non-Neural	Neural
Query single object	99.1%	95.7%
Query missing object	99.4%	96.7%
Query location	97.3%	94.7%
Query duplicate object	97.4%	95.3%
Query Region	90.4%	73.5%
Slide single object in group	75.7%	67.3%
(all objects)		
Slide single object in group	100.0%	100.0%
(moved object)		
Slide whole group	97.8%	96.7%
Readout x-y location from	95.7%	94.1%
SSP		
Construct SSP from x-y loca-	100.0%	99.0%
tion		

Navigating to Goal

SSPs

Single layer MLP,

RMSE: 0.0529

same for each encoding (tried many more).

Random Mapping RMSE: 0.2580

2D Coordinates RMSE 0.1984

Good for General ML

SSPs are more accurate on a large majority of 122 standard ML benchmarks.

Scaling

Example 10x10 joined, hierarchical environment

Scaling

Performance of different encoders on 10x10 large maze from any point to any other

How to Choose Axis Vectors

Randomly (examples til now)

Tuning curves of neurons with random axis vectors and evenly tiled SSPs as encoders

Empirical Grid Cells

Grid cells in rat entorhinal cortex (Moser et al., 2015)

How to Choose Axis Vectors

With plane wave structure

Tuning curves of neurons with structured axis vectors and encoders picking out plane waves

How to Choose Axis Vectors

Sums of planar waves

Grid Cells

- With plane wave structure, spiking neurons give grid cell responses
- We can combine them to get place cells (with standard NEF decoders)

SSP Grid cells

Place Cells

Distance between ideal and represented place cells

Mathematical properties

Euclidean space is preserved on a high-d torus

$$S(x_1,y_1) \circledast S(x_2,y_2) = S(x_1+x_2,y_1+y_2)$$

• E.g., $S(x,y) \circledast S(\Delta x, \Delta y) = X^{x+\Delta x} \circledast Y^{y+\Delta y}$

 We get the benefits of high-d representation, with accurate low-d Euclidean representation

Cognitive SLAM

- SLAM with complex features at certain spatial locations
- Start with no knowledge, bind vector descriptions to particular location in space
- Combines spatial and 'symbol' repn in neural network
- Semantic map as opposed to standard 'image registration' map

Cognitive SLAM Model

- Path integrator tracks ego position from velocity
- SLAM model learns env map, outputs allo- and ego-centric position

Path Integration

 One-minute long paths in 2D and 3D, spiking network

Cognitive SLAM

- Learns env by end of 20s path, full spiking
- Scaling up; symbols 'over' space

Cognitive SLAM

Learns maps in LTM bound to position

Navigation network

Combined the above into a network to recall location and navigate to arbitrary objects in a maze.

- SSPs can be a method for encoding and processing probabilities
- Method directly connects neural networks to probabilistic reasoning
- SSP based methods are efficient

Background

Kernel Density Estimators

From a dataset

$$\mathcal{D} = (x_1, x_2, \dots, x_n)$$

With a kernel function

$$k_h(x, x') = k\left(\frac{\|x - x'\|}{h}\right)$$

We can estimate the probability of x

$$P_{\mathcal{D}}(X=x) = \frac{1}{nh} \sum_{x_i \in \mathcal{D}} k_h(x, x_i)$$

Kernel Density Estimators Examples

Problems

- KDE memory grows linearly with the number of observations
- KDE time to compute a probability grow linearly with # of observations

But...

Not if your kernel is a dot product

$$k_h(\mathbf{x}, \mathbf{x}') \approx \phi_h(\mathbf{x}) \cdot \phi_h(\mathbf{x}') \implies P(\mathbf{X} = \mathbf{x}) = \frac{1}{nh} \sum_{\mathbf{x} \in \mathcal{D}} \phi_h(\mathbf{x}) \cdot \phi_h(\mathbf{x}_i)$$

SSPs induce a quasi-kernel

'quasi' because there are negatives

Can convert to probability estimator

$$P_{\mathcal{D}}(X=x) = \max\{0, \phi(x) \cdot M_{\mathcal{D},h} - \xi\}$$

Glad et al, 2003

$$ReLU(\mathbf{w} \cdot \mathbf{z} + b)$$

So SSP memory is a latent probability distribution

- The distribution is stored in bundles of vector symbols.
- We can apply manipulations to bundles to produce probabilistic statements

$$M_{\mathcal{D}} = \frac{1}{n} \sum_{\mathbf{x}_i \in \mathcal{D}} \phi(\mathbf{x}_i)$$

$$P(X = \mathbf{x}) = \phi_h(\mathbf{x}) \cdot M_{\mathcal{D}}$$

Conditioning

$$P(X = x \mid Y = y) \approx \phi_X(x) \cdot [M_D \circledast \phi^{-1}(y)]$$

- Mutual Information (MI) is a common objective function used in exploration
- Gaussian Processes (GPs) are a convenient, but computationally intensive tool for computing MI
- We use Spatial Semantic
 Pointers and Bayesian linear
 regression to approximate a
 GP while improving in
 memory and time complexity

$$MI(X;Y) = H(Y) - H(Y|X)$$
 where $H(Y) = -\sum p(y)log(p(y))$

Results

Himmelblau Function

Sampled from GP with Matern Kernel + 1% noise

GMM with noise ~ (Matern Kernel + 1% noise)

SSPs for Sampling

- Current methods require knowledge not accessible to a neural system (e.g. the encoding, gradients)
- We use Langevin dynamics to do MCMC sampling with SSPs
- Supports conditioning easily as well
- Turns latent repns into samples in an encoding agnostic manner

SSPs for Sampling

Implementing the dynamics in a SNN generates effective samples

$$f(\phi(t)) = \tau \gamma \nabla_{\phi(t)} \log P(x) + \phi(t),$$

SSPs for Sampling

Sampling using dynamics for both continuous and discrete PDFs

Where we differ:

- Provide a general and abstract framework for modelling probabilities
- Draw a direct connection between cognitive models and probability statements
- Provide network architectures for conditioning, marginalization, entropy, sampling, and mutual information

Three difficult optimization problems

We use SSPs to represent possible trajectories

Hybrid repn: sum(agent*trajectory)

As good or better performance than SoA

Much faster (53x-175x)

- From O(N³) to O(1) in number of samples

Conclusion

- SSPs support a variety of types of inference for cognitive models
 - Binding spatial and 'symbolic' representations
 - Representations of sampled data that can be used for probabilistic inference
- Improves
 - Interpretability
 - Efficiency (SWaP critical)
- Best engineered systems continue to learn from understanding biological solutions