1 Constants and Dimensions

Symbol	Value	Unit	Description
\overline{g}	9.81	$\frac{m}{s^2}$	acceleration of gravity
ho	1025	$\frac{\frac{m}{s^2}}{\frac{kg}{m^3}}$	density of water
L	2.0	$\overset{m}{m}$	length of hull
B	1.08	m	beam of hull
m	55.0	kg	mass of hull
\overline{rg}	$\begin{bmatrix} 0.2 & 0 & -0.2 \end{bmatrix}^T$	\overline{m}	CG of hull
R_{44}	$0.4 \cdot B$	m	radii of gyrations
R_{55}	$0.25 \cdot L$	m	radii of gyrations
R_{66}	$0.25 \cdot L$	m	radii of gyrations
T_{yaw}	1	s	time constant in yaw
U_{max}	6	knot	max forward speed
B_{pont}	0.25	\overline{m}	beam of one pontoon
y_{pont}	0.395	m	distance from centerline to waterline area center
$\hat{C}w_{pont}$	0.75	_	waterline area coefficient
Cb_{pont}	0.4	_	block coefficient

Waterline area of one pontoon

$$Aw_{pont} = Cw_{pont}LB_{pont} \tag{1}$$

2 Skew symetric matrix

$$S\left(\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}\right) = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$
 (2)

3 Kinetics

$$\nu_1 = \begin{bmatrix} u & v & w \end{bmatrix}^T \qquad \qquad \nu_2 = \begin{bmatrix} p & q & r \end{bmatrix}^T \tag{3}$$

$$M_{RB}^{CG} = \begin{bmatrix} (m+m_p)I & 0\\ 0 & I_g \end{bmatrix} \qquad C_{RB}^{CG} = \begin{bmatrix} (m+m_p)S(\nu_2) & 0\\ 0 & -S(I_g\nu_2) \end{bmatrix}$$
(4)

Transform ${\cal M}_{RB}$ and ${\cal C}_{RB}$ from the ${\cal C}_G$ to the ${\cal C}_O$

$$H = \begin{bmatrix} I & S(rg)^T \\ 0 & I \end{bmatrix} \tag{5}$$

$$M_{RB} = H^T M_{RB}^{CG} H (6)$$

$$C_{RB} = H^T C_{RB}^{CG} H (7)$$

(8)

4 Hydrodynamics

Hydrodynamic added mass

$$M_A = \begin{bmatrix} 0.1 * m & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1.5 * m & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1.0 * m & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.2 * Ig(1,1) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.8 * Ig(2,2) & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.7 * Ig(3,3) \end{bmatrix}$$
(9)

$$C_A = \begin{bmatrix} 0 & -S(M_{A,11}\nu_{r,1} + M_{A,12}\nu_{r,2}) \\ -S(M_{A,11}\nu_{r,1} + M_{A,12}\nu_{r,2}) & -S(M_{A,21}\nu_{r,1} + M_{A,22}\nu_{r,2}) \end{bmatrix}$$
(10)

System mass and Coriolis-centripetal matrices

$$M = M_{RB} + M_A \tag{11}$$

$$C = C_{RB} + C_A \tag{12}$$

5 Hydro statics

Water volume displacement

$$\nabla = \frac{m + m_p}{\rho} \tag{13}$$

Draft

$$T = \frac{\nabla}{2Cb_{nont}B_{nont}L} \tag{14}$$

$$KB = \frac{1}{3} \left(5\frac{T}{2} - \frac{\nabla}{2LB_{pont}} \right);$$
 (15)

$$I_T = \frac{2}{12} L B_{pont}^3 \frac{6 \cdot C w_{pont}^3}{(1 + C w_{pont})(1 + 2C w_{pont})} + 2 * A w_{pont} y_{pont}^2$$
(16)

$$I_L = \frac{0.8 \cdot 2}{12} B_{pont} L^3 \tag{17}$$

$$GM_T = KB + \frac{I_T}{\nabla} - T + rg_z \tag{18}$$

$$GM_L = KB + \frac{I_L}{\nabla} - T + rg_z \tag{19}$$

(20)

$$G = H^T G_{CF} H; (22)$$

$$\omega_3 = \sqrt{G_{33}/M_{33}} \tag{23}$$

$$\omega_4 = \sqrt{G_{44}/M_{44}} \tag{24}$$

$$\omega_5 = \sqrt{G_{55}/M_{55}} \tag{25}$$

6 Linear Damping

$$h = \begin{bmatrix} -24.4 \frac{g}{U_{max}} \\ 0 \\ -2 \cdot 0.3 \cdot \omega_3 M_{33} \\ -2 \cdot 0.2 \cdot \omega_4 M_{44} \\ -2 \cdot 0.4 \cdot \omega_5 M_{55} \\ \frac{-M_{66}}{T_{yaw}} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{-M_{66}}{T_{yaw}} 10abs(r) \end{bmatrix}$$

$$(26)$$

$$\tau_{damp} = h \cdot \nu_r \tag{27}$$

7 Transformation

$$R = R_z R_y R_x = \begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix}$$
(28)

$$T = \begin{bmatrix} 1 & \sin(\phi)\tan(\theta) & \cos(\phi)\tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \frac{\sin(\phi)}{\cos(\theta)} & \frac{\cos(\phi)}{\cos(\theta)} \end{bmatrix}$$
(29)

$$J = \begin{bmatrix} R & 0 \\ 0 & T \end{bmatrix} \tag{30}$$

8 State derivative

$$\dot{x} = \begin{bmatrix} \frac{M}{\tau + \tau_{damp} + \tau_{cf} - C\nu_r - G\eta - g_0} \\ J\nu \end{bmatrix}$$
 (31)