Problem Set 11 *

Ian McGroarty Course Number: 625.603

April 16, 2019

^{*}Problem list

Problem 9.2.6.

$$H_0: \mu_x = \mu_y$$

$$H_1: \mu_x < \mu_y$$

$$t = \frac{\bar{x} - \bar{y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$$

$$t = \frac{6\bar{5}.2 - 7\bar{5}.5}{13.9 \sqrt{\frac{1}{9} + \frac{1}{12}}} = -1.6804$$
Theorem 9.2.2 (pg 452)

By Theorem 9.2.2.b (pg 452) H_0 should be rejected if $t \leq -t_{\alpha,n+m-2}$. In this case, $t_{0.05,19} = -1.729$. Since -1.6804 > -1.729 we can not reject the null hypothesis. There does not appear to be a significant difference in the lifespans of alcoholic authors and non alcoholic authors.

Problem 9.3.4.

$$H_0: \sigma_x^2 = \sigma_y^2$$
$$H_1: \mu_x < \mu_y$$

By Theorem 9.3.1.c (pg 464) we can reject the null hypothesis if:

$$s_y^2/s_x^2 \le f_{\alpha/2,m-1,n-1} \text{ or } \ge f_{1-\alpha/2,m-1,n-1}$$

 $3.18/5.67 \le f_{0.025,9,9} \text{ or } \ge f_{0.975,9,9}$
 $0.561 \le 0.248 \text{ or } \ge 4.03$

Since neither of these conditions are met, we can not reject the null hypothesis. It does not appear that a strong magnetic field

Problem 9.4.4.

$$H_0: p_S = p_{NS}$$

$$H_1: p_S \neq p_{NS}$$

$$p_e = \frac{x+y}{n+m}$$

$$= \frac{53+705}{91+1117} = 0.6275$$

$$z = \frac{\frac{x}{n} - \frac{y}{m}}{\sqrt{\frac{p_e(1-p_e)}{n} - \frac{p_e(1-p_e)}{m}}}$$

$$= \frac{\frac{53}{91} - \frac{705}{1117}}{\sqrt{\frac{0.63(1-0.63)}{91} - \frac{0.63(1-0.63)}{1117}}} = -0.9246$$
Theorem 9.4.1 (pg 469)

By Theorem 9.4.1 (pg 469) we may reject H_0 if z is either $\leq -z_{\alpha/2}$ or $\geq z_{\alpha/2}$ Since z=-0.9246 satisfies neither of these conditions ($z_{0.005} = 2.575$) we can not reject the null hypothesis. Thus, it appears that there is not a significant difference in the probability of finding a UFO on the ground whether your in Spain or not. So basically this is guaranteed proof that aliens are real and they ARE AMONG US.

Problem 9.5.6. A $100(1-\alpha)\%$ confidence interval for the variance ratio , σ_X^2/σ_Y^2 is given by:

$$\frac{s_x^2}{s_Y^2} F_{\alpha/2,m-1,n-1}, \frac{s_X^2}{s_Y^2} F_{1-\alpha/2,m-1,n-1} \qquad \text{Theorem 9.5.2}$$

$$\frac{0.0002103}{0.0000955} F_{0.025,9,8}, \frac{0.0002103}{0.0000955} F_{0.975,9,8}$$

$$\frac{0.0002103}{0.0000955} 0.226, \frac{0.0002103}{0.0000955} 4.43$$

$$(0.498, 9.755)$$

No conclusions can be drawn about the *true* variances being different since the ratio $\sigma_X^2/\sigma_Y^2 = 1$ is contained in the confidence interval. Therefore, the case study was within reason to assume that the variances are equal.

Problem 10.2.6.

$$P_{X_1,\dots,X_i}(k_1,\dots,k_t) = \frac{n!}{k_1!\dots k_t!} p_1^{k_1}\dots p_t^{k_t} \qquad \text{Theorem 10.2.1 (pg 485)}$$

$$= \frac{5!}{(2!)(2!)(1!)(0!)} (0.713)^2 (0.270)^2 (0.01)^1 (0.007)^0$$

$$= 0.01112$$

Problem 10.3.6.

$$H_0: p_1 = \frac{1291.1}{5139} = 0.2514, p_2 = 0.749$$

$$H_1: p_1 \neq 0.2514, p_2 \neq 0.749$$

$$d = \sum_{i=1}^{t} \frac{(k_i - np_i)^2}{np_{i_0}} \geq \chi^2_{1-\alpha,t-1} \text{Theorem 10.3.1 (pg 489)}$$

$$= \frac{(1383 - 5139(0.2451))^2}{5139(0.2514)} + \frac{(3756 - 5139(0.749))^2}{5139(0.749)} \geq \chi^2_{0.95,1}$$

$$= 11.97 + 2.25 - 14.04 > 3.841$$

Since d satisfies the rejection criteria in Theorem 10.3.1 we can reject the null hypothesis.

Problem 10.4.10. To claim that a Poisson pdf can model these data is to say that:

 H_0 : P(i turnovers happen in a given game) = $e^{-\lambda} \lambda^i / i!, i = 0, 1, 2, ...$

where λ is the expected number of turnovers in a given game:

$$\lambda_e = \frac{800}{440} = 1.82.$$

The estimated frequencies are calculated by: $(440e^{-1.82}(1.82)^i/)i!$ The fourth column of table one lists the entire set of $n\hat{p}'_{i_0}s$. (Note that for the 6+ row, the probability is forced such that the total probability is 1.) Now even though it is close, to comply with the $n\hat{p}_{i_0} \geq 5$ requirement dictated by theorem 10.4.1 (pg 499), we must combine the last 2 row into a "5+" category. This is demonstrated in table 2. Now using Theorem 10.4.1.b, the test statistic is defined as 3.52 (calculations shown in the 4th column of table 2):

$$d_1 = \sum_{i=1}^t \frac{(k_i - np_i)^2}{np_{i_0}}$$

With 6 classes and one estimated parameter, the number of degrees of freedom associated with d_1 is 4(=6-1-1). In order to test H_0 at the $\alpha = 0.05$ level of significance, we should reject H_0 is

$$d_1 \ge \chi^2_{0.95.4}$$

Since 3.52 < 9.488 we can not reject the null hypothesis. Thus, it appears that the distribution of turnovers does in fact follow a Poisson distribution.

Problem 10.5.6. Well I wasn't about to do this by hand! I couldn't find an R package that does it so I used excel! Figure 1 has the R_iC_j matrix and Figure 2 shows the d_2 calculation. With r = 3 and c = 3 the number of degrees of freedom associated with the test statistic is 4. By Theorem 10.5.1 (pg 510) H_0 should be rejected if $d_2 \geq \chi^2_{0.95,4} = 9.488$. Hence, we can not reject the null hypothesis. It appears that the blood pressure of the father and child are dependent.

Problem Randomization Test. I got a p-value of 0.0013. This feels like not enough of an answer. So here is my R code :).

1 Tables

i	k	ik	p	np
0	75	0	0.16	71.29
1	125	125	0.29	129.75
2	126	252	0.27	118.07
3	60	180	0.16	71.63
4	34	136	0.07	32.59
5	13	65	0.03	11.86
6	7	42	0.01	4.80
	440	800	1	440
		!	1	<u>i</u>

Table 1:

i	k	np	d
0	75	71.29	0.19
1	125	129.75	0.17
2	126	118.07	0.53
3	60	71.63	1.89
4	34	32.59	0.06
5	20	16.66	0.67
			3.52

Table 2:

	lower	middle	upper
lower	11.12	11.48	10.40
middle	10.45	10.78	9.77
upper	9.43	9.74	8.83

Figure 1: R_iC_j table

	lower	middle	upper	Total
lower	0.75	0.02	0.55	1.32
middle	0.03	0.00	0.06	0.09
upper	1.25	0.01	1.14	2.40
Total	2.03	0.03	1.76	3.81

Figure 2: d_1 's table