SMART SOLUTIONS FOR RAILWAYS

A PROJECT REPORT

Submitted by

Team Id: PNT2022TMID37828 BATCH: B12-6A2E

1. PREM KUMAR R	410619104027
2. VISHAL S	410619104046
3. MOHAMED ISMAIL P M H	410619104020
4. SHEIK MOHAIDEEN R	410619104036
5. SAURAV SARDAR S	410619104037

In partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

In

COMPUTER SCIENCE AND ENGINEERING

DHAANISH AHMED COLLEGE OF ENGINEERING, PADAPAI, CHENNAI – 601301

ANNA UNIVERSITY: CHENNAI 600 025

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "Real-Time Communication System Powered by AI for Specially Abled" is the bonafide work of **PREM KUMAR R** (410619104027), **VISHAL S** (410619104046), **MOHAMED ISMAIL P M H** (410619104020), **SHEIK MOHAIDEEN R** (410619104036), **SAURAV SARDAR S** (410619104037), who carried out the project work under my supervision.

SIGNATURE
Mr. P. VELAVAN., M.E.,(PhD).,
HEAD OF THE DEPARTMENT
Computer Science Engineering
Dhaanish Ahmed College of Engineering
Padappai
Chennai – 601 301

SIGNATURE Mr. RAJASEKAR M.E,(Ph.D)., PROJECT GUIDE Assistant Professor

Assistant Professor Electronics and communications Engineering Dhaanish Ahmed College of Engineering Padappai Chennai - 601301

Project Viv	a-Voce held	on
-------------	-------------	----

ACKNOWLEDGEMENT

First and foremost, we thank the Almighty for helping us in all situations for bringing outthis project successfully.

We express our sincere heartfelt gratitude to **ALHAJ K. MOOSA**, Founder and Chairman, and **Mr. M. KADAR SHAH**, **B.A.**, **M.B.A.**, Secretary, Dhaanish Ahmed College of Engineering, Chennai.

We record our immense pleasure in expressing sincere gratitude to our Principal **Dr. Uma**Gowri.G and our Director **Dr.Paramasivan**, Ph.d, Dhaanish Ahmed College of Engineering,

for granting permission to undertake the project in our college.

We express our sincere thanks to our Head of the Department Mr.C.Ela yaraja, M.E.,(Ph.D)., Dhaanish Ahmed College of Engineering, and our project guide Mr. Rajasekhar, M.E.,

Assistant professor, Dhaanish Ahmed College of Engineering, for their constant encouragement and direction for this project.

We wish to express our thanks to all the **Faculty Member and Non-teachings staff** of the Department of Electronics and Communications Engineering for their valuable support.

We also thank our Parents and Friends for their support throughout the project.

TABLE OF CONTENTS:

S.NO	TITLE
1	INTRODUCTION
1.1	Project Overview
1.2	Purpose
2	LITERATURE SURVEY
2.1	Existing problem
2.2	References
2.3	Problem Statement Definition
3	IDEATION & PROPOSED SOLUTION
3.1	Empathy Map Canvas
3.2	Ideation & Brainstorming
3.3	Proposed Solution
3.4	Problem Solution Fit
4	REQUIREMENT ANALYSIS
4.1	Functional requirements
4.2	Non-Functional requirements
5	PROJECT DESIGN
1	

5.1	Data Flow Diagrams
5.2	Solution & Technical Architecture
6	PROJECT PLANNING & SCHEDULING
6.1	Sprint Planning & Estimation
6.2	Sprint Delivery Schedule
6.3	Milestone And Activity List
7	CODING & SOLUTIONING
7.1	Feature 1
7.2	Feature 2
8	TESTING
9	ADVANTAGES & DISADVANTAGES
10	FUTURE SCOPE
11	CONCLUSION

1. INTRODUCTION

1.1 Project Overview

- A Web page is designed for the public where they can book tickets by seeing the available seats.
- After booking the train, the person will get a QR code which has to be shown to the Ticket Collector while boarding the train.
- The ticket collectors can scan the QR code to identify the personal details.
- A GPS module is present in the train to track it. The live status of the journey is updated in the Web app continuously
- All the booking details of the customers will be stored in the database with a unique ID and they can be retrieved back whenthe Ticket Collector scans the QR Code.

1.2 Purpose

The Purpose of our Project is

- ✓ To reduce the work load of the user and also the use of paper.
- ✓ To enable online Ticket Booking
- ✓ To track the live location of train
- ✓ To enable Automatic Ticket Verification system
- ✓ To reduce the work load of Travelling Ticket Examiner (TTE)

2. <u>LITERATURE SURVEY</u>

2.1 Existing Problem:

- ➤ Passengers who need to book train tickets have to follow a tedious procedure to get a ticket reserved.
 - ➤ They have to wait in the Ticket booking counter to do the reservation.
- ➤ Also the TTE has a heavy workload in processing all the paper documents in verifying a user's ticket.
 - ➤ Public users wish to track their train journey to have a sophisticated travel.

2.2 References:

☆ https://www.ibm.com/blogs/internet-of-things/connected-trains-rail-travel/

 $\frac{https://indianrailways.gov.in/railwayboard/uploads/directorate/secretary_branches/IR_Reforms/Innovation}{n\%20in\%20Indian\%20Railways\%20.pdf}$

- ☆ Indian Railways Vision 2020 (Para 6.1 Reinventing Passenger Services with Change for a better tomorrow as the motto, Page8-9)
- ☆ Travel, Transportation & Hospitality page on www.tcs.com
- ★ https://international-railway-saftey-council.com/about-us
- ★ http://sts.hitachirsil.com/en/products-services/glossary

2.3 Problem Statement Definition:

- Railway Passengers need a way to book their tickets easily without delay and tedious process so that the passengers getbenefits by saving their time and energy in travelling.
- Ticket checkers are in need of a Digital verification system of passenger's tickets to avoid huge use of pen and paper.
- Passengers need a platform to track the current location and status of trains in order to avoid anxiety of fear of missing thetrain.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.3 Proposed Solution

S.No	Parameter	Description
1.	Problem Statement (Problem to be solved)	How might we reduce the workload of the user and the use of paper while booking tickets? How to ease the work of verifying the Tickets which is usually done by TTE thereby reducing the paperwork?
2.	Novelty / Uniqueness	 User friendly interface (Web Page) to book the ticket. Unique QR code for each user to verify their tickets. GPS Module to track the location of Train andlive status is updated in the Web app
3.	Idea / Solution description	A Web UI is designed to enable online ticket booking anda QR code is generated for the user who has bookedthe ticket to verify it with Travelling Ticket Examiner (TTE) which is done using Cloud Service.
4.	Social Impact / Customer Satisfaction	 This model reduces the time consuming ticket booking by automating the process. TTE can easily verify the details of the passenger using the QR code generated while booking the ticket which may reduce the use of paper work.

		❖ The location of the train is updated periodically in the web app so customers can easily track the status of the train which may help the customer to arrive on time.
5.	Business Model (Revenue Model)	 → This solution gives a feasibility to reduce the conventional ticket booking mechanism at counters which is tedious and time consuming, also the verification of the tickets is simplified. Since it also gives an additional train tracking method it will be more welcomed by the users. → This model helps businessmen and travellers to book the tickets easily and it provides flexibility so customers will prefer this model which may increase the revenue of this model. → Selling a Product which enables online booking platform and automatic verification system would fetch more revenues to the Organisation, also the Online Platform has to be maintained continuously and so, the business will sustain and can be improved if required.
6.	Scalability of the Solution	 ★ We propose a solution which works on the SaaS(Software as a Service) cloud model wherein all necessities are deployed in the web browser which gives an easy access and also the cost is minimal which gives a scaled solution approach. ★ The cloud is deployed as a public cloud model which gives a feasible access to upload passenger details and to retrieve data. ★ Further a QR code is generated to hold the unique data of user in cloud,and a GPS module is attached to Iot platform inorder to monitor the train location which gives an additional tracking mechanism to ensure reliability.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirement

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The user can easily book the tickets at their own pace based on the availability of seats without waiting in the ticket counter.
NFR-2	Security	User's personal details are safely stored in the Cloud. QR code reduces the duplicate train tickets.
NFR-3	Reliability	As IBM cloud is used to store the information about the customers this product is highly reliable.
NFR-4	Performance	The Web UI provides smooth user experience and improves the performance of this solution.
NFR-5	Availability	App is readily available on play store for mobile phone users or user can access the website using web browser.
NFR-6	Scalability	This solution can be easily scaled up based on the customer demand.

$\underline{\textbf{4.2}} \textbf{Non-Functional Requirement}$

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Ticket Registration	Registration through Official website Registration through Form Registration through App
FR-2	User Ticket Confirmation	Confirmation via QR code Confirmation via message
FR-3	Ticket Verification	Ticket collector check the tickets using the QR code which is generated during ticket booking.
FR-4	TTE work load reduction	TTE can simply scan the QR code to identify the personal details and also to reduce the use of paper.
FR-5	Database Storage	All the booking details of the customer is stored in the database with unique ID which can retrieved back when the ticket collector scans the QR code.
FR-6	Train Tracking	The live status of the journey is updated in the web continuously

5. PROJECT DESIGN

5.1 Data Flow Diagram

<u>5.2 Solution And Technical Architecture</u> Solution architecture

Technical Architecture

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Numb er	User Story / Task	Story Point s	Priority	Team Members
	SPRIN	VT-1				
Sprint-1	IBM Cloud Service	USN-1	Create the IBM Cloud services which are being used in this project.	2	Medium	PREM KUMAR R MOHAMED ISMAIL P M H VISHAL S SHEIK MOHAIDEEN R SOURAV SARDAR
Sprint-1	Software	USN-2	Installation of python IDLE along with thelibraries such as wiotp-sdk, ibmcloudant, opency-python and pyzbar	6	High	PREM KUMAR R MOHAMED ISMAIL P M H SHEIK MOHAIDEEN R
Sprint- 1	Create IBM WatsonIOT platform	USN-3	IBM Watson IOT platform acts as the mediator To connect the web application toIOT devices, So create the IBM Watson platform.	6	High	PREM KUMAR R VISHAL S SOURAV SARDAR
Sprint- 1	Creating Device in IBM Watson IOT platform	USN-4	In order to connect the IOT device to the IBMcloud, create a device in the IBM Watson IOT Platform and get the device crendentials		High	PREM KUMAR RVISHAL S

	SPRI	NT-2				
Sprint-2	API keys for NodeRED Service	USN-1	Configure the connection security and create API keys that are used in the Node-RED Services for accessing the IBM IOTPlatform	6	High	PREM KUMAR R MOHAMED ISMAIL P M H VISHAL S SOURAV SARDAR
Sprint-2	Node RED App	USN-2	Create a Node-RED service.	6	High	PREM KUMAR R VISHAL S SHEIK MOHAIDEEN RSOURAV SARDAR
	SPRI	INT-3				
Sprint-3	Python Code	USN-1	Develop a Python Script for publishing the Location (latitude and longitude) data to the IBM IOT Platform and the other python code To read the QR Code and fetch the data from Cloudant DB.	6	High	PREM KUMAR R VISHAL S SHEIK MOHAIDEEN R
	SPR	INT-4				
Sprint-4	Web Application	USN-1	Develop the web application using Node-RED	6	High	PREM KUMAR R MOHAMED ISMAIL P M H VISHAL S SHEIK MOHAIDEEN R
Sprint-4	Testing	USN-2	Testing the Web UI by giving the requiredinputs	6	High	PREM KUMAR R MOHAMED ISMAIL P M H VISHAL S SOURAV SARDAR

<u>6.2 Sprint Delivery Schedule:</u>

Sprint	Total Story Point s	Durati on	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprin t-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprin t-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprin t-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Sprint 1 Average Velocity:

Average Velocity = 20/6 = 3.3

Sprint 2 Average Velocity:

Average Velocity = 20/6 = 3.3

Sprint 3 Average Velocity:

Average Velocity = 20/6 = 3.3

Sprint 4 Average Velocity:

Average Velocity = 20/6 = 3.3

6.3 MILESTONE AND ACTIVITY LIST

IDEATION PHASE

TITLE	DESCRIPTION	DATE
Literature Survey	Literature survey on the selected project & gathering information by referring the, technical papers, research publications etc.	15 OCTOBER 2022
Empathy Map for Web Phishing Detection	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements	19 OCTOBER 2022
Problem Statement	Prepare the problem statement document	15 OCTOBER 2022
Brainstorming Idea Generation Prioritization	List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	19 OCTOBER 2022

PROJECT DESIGN PHASE 1

TITLE	DESCRIPTION	DATE
Problem Solution Fit	Prepare problem - solution fit document.	26 OCTOBER 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	26 OCTOBER 2022
Solution Architecture	Prepare solution architecture document.	26 OCTOBER 2022

PROJECT DESIGN PHASE 2

TITLE	DESCRIPTION	DATE
Solution Requirements	Prepare the functional requirement document.	26 OCTOBER 2022
Customer Journey Map	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	26 OCTOBER 2022
Data Flow Diagrams and User Stories	Draw the data flow diagrams and submit for review.	26 OCTOBER 2022
Technology Stack	Prepare the technology architecture diagram	26 OCTOBER 2022

PROJECT PLANNING PHASE

TITLE	DESCRIPTION	DATE
Project Planning	Prepare the planning for this project	11 NOVEMBER 2022
Milestone and Activity List	Prepare the milestones & activity list of the project	11 NOVEMBER 2022

PROJECT DEVELOPMENT

TITLE	DESCRIPTION	DATE
Project Development Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it	18 NOVEMBER 2022

7. CODING & SOLUTIONING

7.1 FEATURE 1

TRAIN TICKET BOOKING

1. Creating Web UI using NodeRed

2 .Details triggered to cloudant database

WEB UI INTERFACE

OR CODE SCANNER

PYTHON CODE FOR SCANNER

```
import cv2
import numpy as np
import time
import pyzbar.pyzbar as pyzbar
from ibmcloudant.cloudant_v1 import CloudantV1
from ibmcloudant import CouchDbSessionAuthenticator
from ibm_cloud_sdk_core.authenticators import BasicAuthenticator
authenticator = BasicAuthenticator('apikey-v2-
30hnmyd6h3fiaj69li9ggw9blvoscijj6mf87ria6u36',
'bb766c5fb0c091d29b60a401aa387f73')
service = CloudantV1(authenticator=authenticator)
service.set_service_url('https://apikey-v2-
30hnmyd6h3fiaj69li9ggw9blvoscijj6mf87ria6u36:bb766c5fb0c091d29b60a401
aa387f73@1717b467-7b77-4dd9-8752-45993d2399a3-
bluemix.cloudantnosqldb.appdomain.cloud')
cap= cv2.VideoCapture(0)
font = cv2.FONT HERSHEY PLAIN
while True:
 _, frame = cap.read()
 decodedObjects = pyzbar.decode (frame)
 for obj in decodedObjects:
  #print ("Data", obj.data)
  a=obj.data.decode('UTF-8')
  cv2.putText(frame, "Ticket", (50, 50), font, 2, (255, 0, 0), 3)
  #print (a)
  try:
    response = service.get_document(
     db='booking',
     doc_id = a
     ).get_result()
    print(response)
    time.sleep(5)
  except Exception as e:
    print ("Not a Valid Ticket")
    time.sleep(5)
 cv2.imshow("Frame",frame)
 if cv2.waitKey(1) & 0xFF == ord('q'):
```

break cap.release() cv2.destroyAllWindows() client.disconnect()

7.2 FEATURE 2

GPS TRACKING

Node RED flows:

Creating Web UI for Tracking:

Train Tracking in World Map:

CODE FOR DELHI EXPRESS

```
import wiotp.sdk.device
import time
import random
myConfig = {
"identity" :{
"orgId":"njd5v1",
"typeId": "nodeMCU",
"deviceId": "Delhi_Express"
},
"auth":{
"token": "Prems1428"
}
def myCommandCallback(cmd):
 print("Message received fromIBM IoT Platform: %s" % cmd.data['command'])
 m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
def pub(data):
 client.publishEvent(eventId = "status", msgFormat="json", data=myData, qos=0,
onPublish=None)
 print("Published data Successfully: %s",myData)
while True:
myData = {'name':'Delhi Express','lat':13.344279,'lon':80.214367}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':13.515254,'lon':80.093518}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':13.728799,'lon':80.005627}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':13.910160,'lon':79.906750}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':14.102035,'lon':79.851819}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':14.261807,'lon':79.862805}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':14.623537,'lon':79.950695}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':15.111987,'lon':79.994641}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':15.313413,'lon':80.005627}
```

```
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':15.567568,'lon':80.104504}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':15.747405,'lon':80.269299}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':15.821409,'lon':80.302258}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':15.927082,'lon':80.445080}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':16.022141,'lon':80.554943}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':17.033801,'lon':80.295512}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':18.383088,'lon':18.383088}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':19.074762,'lon':79.487698}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':20.179065,'lon':79.001439}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':21.306421,'lon':78.789356}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':22.518024,'lon':77.829404}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':23.264139,'lon':77.429333}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':24.509723,'lon':78.330212}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':25.668840,'lon':78.451062}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':26.177704,'lon':78.170910}
pub(myData)
time.sleep(3)
myData = {'name':'Delhi Express','lat':27.505914,'lon':77.676526}
pub(myData)
time.sleep(3)
```

```
myData = {'name':'Delhi Express','lat':28.302041,'lon':77.308484} pub(myData) time.sleep(3) client.commandCallback = myCommandCallback client.disconnect
```

CODE FOR MYSURU EXPRESS

```
import wiotp.sdk.device
import time
import random
myConfig = {
"identity":{
"orgId":"njd5v1",
"typeId": "nodeMCU",
"deviceId": "Mysuru Express"
"auth":{
"token": "Prems1428"
def myCommandCallback(cmd):
 print("Message received fromIBM IoT Platform: %s" % cmd.data['command'])
 m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
def pub(data):
 client.publishEvent(eventId = "status", msgFormat="json", data=myData, qos=0,
onPublish=None)
 print("Published data Successfully: %s",myData)
while True:
  myData = {'name':'Mysuru SF Express','lat':11.024938,'lon':76.982315}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':11.220325,'lon':77.570083}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':11.564960,'lon':77.993057}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':11.780142,'lon':78.037002}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.134824,'lon':78.130386}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.226105,'lon':78.091934}
  pub(myData)
```

```
time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.344187,'lon':78.037002}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.489034,'lon':78.009536}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.655239,'lon':77.866714}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.735622,'lon':77.756851}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.907020,'lon':77.696426}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.987323,'lon':77.646988}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.955205,'lon':77.509659}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.665958,'lon':77.136123}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.548022,'lon':76.921890}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Mysuru SF Express','lat':12.336809,'lon':76.644485}
  pub(myData)
  time.sleep(3)
  client.commandCallback = myCommandCallback
client.disconnect()
```

CODE FOR GOA EXPRESS

```
import wiotp.sdk.device
import time
import random
myConfig = {
"identity" :{
"orgId":"njd5v1",
"typeId":"nodeMCU",
"deviceId":"Goa_Express"
},
"auth":{
"token":"Prems1428"
}
}
def myCommandCallback(cmd):
```

```
print("Message received fromIBM IoT Platform: %s" % cmd.data['command'])
 m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
def pub(data):
 client.publishEvent(eventId = "status", msgFormat="json", data=myData, qos=0,
onPublish=None)
 print("Published data Successfully: %s",myData)
while True:
  myData = {'name':'Goa Express','lat':11.688572, 'lon':78.098877}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':11.711433, 'lon':78.076905}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':11.978226, 'lon':78.116730}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':12.085676, 'lon': 78.119477}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':12.402400, 'lon':78.023347}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':12.884795, 'lon':77.707490}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':13.018630,'lon':77.614106}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':13.334194, 'lon':77.086762}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':13.299448, 'lon':76.858796}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':13.344884,'lon': 76.205109}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':13.619985, 'lon':75.966157}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':13.974739, 'lon':76.119965}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':14.423398, 'lon':75.949677}
  pub(myData)
  time.sleep(3)
  myData = {'name':'Goa Express','lat':14.922914, 'lon':75.389374}
```

```
pub(myData)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.119216, 'lon':75.389374}
pub(myData)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.449980, 'lon':74.406230}
pub(myData)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.352006,'lon':74.307353}
pub(myData)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.314922, 'lon':74.218089}
pub(myData)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.283131, 'lon':74.146678}
pub(myData)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.276839, 'lon':74.129855}
pub(myData)
time.sleep(3)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.282800, 'lon':74.125392}
pub(myData)
time.sleep(3)
time.sleep(3)
myData = {'name':'Goa Express','lat':15.296378,'lon':74.135692}
pub(myData)
time.sleep(3)
client.commandCallback = myCommandCallback
client.disconnect()
```

8. TESTING

Here We Get The Expected Output By Providing The Desired User Input Where The QR Code Is Generated And The Same Data Is Stored In The Form Of Json Cloudant DB

9. ADVANTAGES

- ☆ Work load of the user is greatly reduced.
- ☆ Passenger's can book tickets from their convenient place and time
- ☆ TTE can easily verify tickets without the need to carry several documents pertaining to passenger details.
- ☆ Since cloudant database retrieval is possible only for the TTE (Admin) secure data handling is made possible.
- ☆ Passenger's can track the location of the train which gives them more flexibility in planning their schedules.
- **☆** Cost of implementation is less.

DISADVANTAGES

- ☆ Since the solution is built on a Web UI which requires internet facility, this may serve to be an issue.
- ☆ Network errors can cause serious issues while ticket booking and verification.
- ☆ System compatibility to adapt the user interface may limit booking facility.
- ☆ Tracking of trains may be an issue at unlocalized terrains.

GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-52030-1660988264

10. FUTURE SCOPE

- One of the most significant benefits of an online reservation system is that they are always open for business and can acceptbookings 24/7, so the customers don't have to wait until the next day to make a reservation or worse.
- By having an online reservation system, we're one step ahead of the game, tipping the scales in the favor when prospectsresearch and compare the capabilities against the competitors.
- We will be able to create mobile smartphone applications in the future. The framework already serves desktop computers andwe will be able to make web browsers compliant in the future.
- India is projected to account for 40% of the total global share of rail activity by 2050. This allows great potential for the onlineticket booking platform industry.

11. CONCLUSION

- Smart Solutions for railways is designed to reduce the work load of the user and also the use of paper.
- A Web page is designed for the public where they can book tickets by seeing the available seats.
- After booking the train, the person will get a QR code which has to be shown to the Ticket Collector while boarding the train.
- The ticket collectors can scan the QR code to identify the personal details.
- A GPS module is present in the train to track it. The live status of the journey is updated in the Web app continuously
- All the booking details of the customers will be stored in the database with a unique ID and they can be retrieved back whenthe Ticket Collector scans the QR Code.

