

Deep Generative Models

Instructor: Hongfei Xue

Email: hongfei.xue@charlotte.edu

Class Meeting: Tue & Thu, 4:00 PM - 5:15 PM, WWH 130

Where We Came From

VAEs, 2013

GANs, 2014

PixelCNN, 2016

BigGAN, 2019

Imagen, 2022

Generative Models

GAN: Hard to train two networks; hard to converge; biased discriminator

How the Diffusion Model Works?

Reverse Process

The sculpture is already complete within the marble block, before I start my work. It is already there, I just have to chisel away the superfluous material.

Michelangelo

Denoising (Reverse) Process

Train a Noise Predictor

Forward/Diffusion Process:

Diffusion Model

Forward Process

Reverse Process

VAE vs. Diffusion Model

Denoising Diffusion Probabilistic Models (DDPM)

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x_0

Denoising Diffusion Probabilistic Models (DDPM)

What I told you:

Denoising Diffusion Probabilistic Models (DDPM)

Algorithm 2 Sampling

1: $\mathbf{x}_{T} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: $\mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}$ 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ | $\mathbf{if} \ t > 1$, else $\mathbf{z} = \mathbf{0}$ | during the denoising steps?!
4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for
6: return \mathbf{x}_0

Probabilistic Explanation

$$\begin{split} P_{\theta}(\mathbf{x}_0) &= \int\limits_{\mathbf{x}_1:\mathbf{x}_T} P\left(\mathbf{x}_T)P_{\theta}(\mathbf{x}_{T-1}|\mathbf{x}_T) \dots P_{\theta}(\mathbf{x}_0|\mathbf{x}_1)d\mathbf{x}_1 : \mathbf{x}_T \\ &= \log\int\limits_{\mathbf{q}} \frac{p(\mathbf{x}_{0:T})q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} d\mathbf{x}_{1:T} \\ &= \log \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\frac{p(\mathbf{x}_{0:T})q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \log \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &\geq \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})p(\mathbf{x}_0|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})p(\mathbf{x}_0|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})p(\mathbf{x}_0|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})p(\mathbf{x}_0|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})p(\mathbf{x}_0|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})p(\mathbf{x}_0|\mathbf{x}_0)}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log p(\mathbf{x}_0|\mathbf{x}_0) \right] \right] + \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log p(\mathbf{x}_0|\mathbf{x}_0) \right] \right] + \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log p(\mathbf{x}_0|\mathbf{x}_0) \right] \right] + \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log p(\mathbf{x}_0|\mathbf{x}_0) \right] \right] + \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log p(\mathbf{x}_0|\mathbf{x}_0) \right] \right] + \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \left[\log \frac{p(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{1:T}|\mathbf$$

We add noise step by step:

• We have α_t to control how much noise we want to add.

- Equation: $x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 \alpha_t} z_1$
- α_t decreases when t increases.

• We have α_t to control how much noise we want to add.

Combine them, we have:

 χ_t

$$=\sqrt{\alpha_t \alpha_{t-1}}$$

 χ_{t-2}

$$+\sqrt{1-\alpha_t}$$

$$+\sqrt{\alpha_t(1-\alpha_{t-1})}$$

 z_{t-1}

Let's formulate it:

$$\begin{aligned} x_t &= \sqrt{\alpha_t} \left(\sqrt{\alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_{t-1}} z_{t-1} \right) + \sqrt{1 - \alpha_t} z_t \\ &= \sqrt{\alpha_t \alpha_{t-1}} x_{t-2} + \left(\sqrt{\alpha_t (1 - \alpha_{t-1})} z_{t-1} + \sqrt{1 - \alpha_t} z_t \right) \end{aligned}$$

- We know that $z_t, z_{t-1}, ..., \sim \mathcal{N}(0, I)$.
- So $\sqrt{\alpha_t(1-\alpha_{t-1})}z_{t-1}\sim\mathcal{N}\big(0,\alpha_t(1-\alpha_{t-1})\big)$, and $\sqrt{1-\alpha_t}z_t\sim\mathcal{N}(0,1-\alpha_t)$
- We also know that $\mathcal{N}(0, \sigma_1^2 I) + \mathcal{N}(0, \sigma_2^2 I) = \mathcal{N}(0, (\sigma_1^2 + \sigma_2^2) I)$.

$$\begin{split} x_t &= \sqrt{\alpha_t \alpha_{t-1}} x_{t-2} + \left(\sqrt{\alpha_t (1 - \alpha_{t-1})} z_{t-1} + \sqrt{1 - \alpha_t} z_t \right) \\ &= \sqrt{\alpha_t \alpha_{t-1}} x_{t-2} + \sqrt{1 - \alpha_t \alpha_{t-1}} \tilde{z}_{t-1} \\ &= \sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \tilde{z}_1 \\ \text{Where } \bar{\alpha}_t &= \alpha_t \alpha_{t-1}, \dots, \alpha_1 \\ z_t, z_{t-1}, \dots, \sim \mathcal{N}(0, I) \\ \tilde{z}_t, \tilde{z}_{t-1}, \dots, \sim \mathcal{N}(0, I) \end{split}$$

$$\begin{aligned} x_t &= \sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \tilde{z}_1 \\ \text{Where } \bar{\alpha}_t &= \alpha_t \alpha_{t-1}, \dots, \alpha_1 \\ \tilde{z}_t, \tilde{z}_{t-1}, \dots, \sim \mathcal{N}(0, I) \end{aligned}$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Denoising/Reverse Process

- Goal: $q(x_{t-1}|x_t)$, but we don't know how to calculate it. We only know $q(x_t|x_{t-1})$.
- Using Bayes Rule we have:

$$q(x_{t-1}|x_t) = q(x_t|x_{t-1})$$
 $q(x_{t-1})$ Hard to model directly.

- Instead, we can model $q(x_{t-1}|x_t,x_0)$
- Using Bayes Rule we have:

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)}$$

For each term, we have:

each term, we have:
$$\begin{aligned} x_t &= \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \tilde{z}_1 \\ q(x_{t-1}|x_0) &= \sqrt{\bar{\alpha}_{t-1}} x_0 + \sqrt{1 - \bar{\alpha}_{t-1}} z \sim \mathcal{N} \big(\sqrt{\bar{\alpha}_{t-1}} x_0, 1 - \bar{\alpha}_{t-1} \big) \\ q(x_t|x_0) &= \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} z \sim \mathcal{N} \big(\sqrt{\bar{\alpha}_t} x_0, 1 - \bar{\alpha}_t \big) \\ q(x_t|x_{t-1}, x_0) &= \sqrt{\bar{\alpha}_t} x_{t-1} + \sqrt{1 - \bar{\alpha}_t} z \sim \mathcal{N} \big(\sqrt{\bar{\alpha}_t} x_{t-1}, 1 - \bar{\alpha}_t \big) \end{aligned}$$

So, we have:

$$q(x_{t-1}|x_t,x_0) \propto \exp(-\frac{1}{2}(\frac{(x_t-\sqrt{\alpha_t}x_{t-1})^2}{\beta_t} + \frac{(x_{t-1}-\sqrt{\overline{\alpha}_{t-1}}x_0)^2}{1-\overline{\alpha}_{t-1}} - \frac{(x_t-\sqrt{\overline{\alpha}_t}x_0)^2}{1-\overline{\alpha}_t})), \text{ let } 1 - \alpha_t = \beta_t$$

$$= \exp\left(-\frac{1}{2}\left(\frac{\alpha_t}{\beta_t} + \frac{1}{1-\overline{\alpha}_{t-1}}\right)x_{t-1}^2 - \left(\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\overline{\alpha}_{t-1}}}{1-\overline{\alpha}_{t-1}}x_0\right)x_{t-1} + C(x_t,x_0)\right)\right), \text{ C is a constant}$$
18

Denoising/Reverse Process

$$q(x_{t-1}|x_t, x_0) \propto \exp(-\frac{1}{2}(\frac{(x_t - \sqrt{\alpha_t}x_{t-1})^2}{\beta_t} + \frac{(x_{t-1} - \sqrt{\overline{\alpha}_{t-1}}x_0)^2}{1 - \overline{\alpha}_{t-1}} - \frac{(x_t - \sqrt{\overline{\alpha}_t}x_0)^2}{1 - \overline{\alpha}_t})), \text{ let } 1 - \alpha_t = \beta_t$$

$$= \exp\left(-\frac{1}{2}\left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \overline{\alpha}_{t-1}}\right)x_{t-1}^2 - \left(\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\overline{\alpha}_{t-1}}}{1 - \overline{\alpha}_{t-1}}x_0\right)x_{t-1} + C(x_t, x_0)\right)\right), \text{ C is a constant}$$

• For normal distribution we have:
$$\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) = \exp\left(-\frac{1}{2}\left(\frac{1}{\sigma^2}x^2 - \frac{2\mu}{\sigma^2}x + \frac{\mu^2}{\sigma^2}\right)\right)$$

So, we have:

$$\sigma^2 = \frac{1}{\left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)}$$
 is a constant

$$\frac{2\mu}{\sigma^2} = \left(\frac{2\sqrt{\alpha_t}}{\beta_t}x_t + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}x_0\right)$$
We can estimate x_{t-1} from x_t, x_0

$$\widetilde{\mu}_t(x_t, x_0) = \frac{\sqrt{\overline{\alpha}_t}(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} x_t + \frac{\sqrt{\overline{\alpha}_{t-1}}\beta_t}{1 - \overline{\alpha}_t} x_0$$
We don't know this in reverse process Actually, we even don't need the reverse process if

we know this. LOL.

Denoising/Reverse Process

$$\sigma^2 = \frac{1}{\left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)}$$

$$\widetilde{\mu}_t(x_t, x_0) = \frac{\sqrt{\overline{\alpha}_t}(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t} x_t + \frac{\sqrt{\overline{\alpha}_{t-1}}\beta_t}{1 - \overline{\alpha}_t} x_0$$

- But we have: $x_t = \sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 \overline{\alpha}_t} z_t$
- So, $x_0 = \frac{1}{\sqrt{\overline{\alpha}_t}} (x_t \sqrt{1 \overline{\alpha}_t} z_t)$

Estimated by the neural network

Finally, we have:
$$\tilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} z_t)$$

Algorithm 2 Sampling

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Sampling from the data distribution

- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return \mathbf{x}_0

Diffusion Model

Forward Process

Reverse Process

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \overline{\text{Uniform}}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x_0

Stable Diffusion

Latent Diffusion

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_{\theta}(\mathbf{x}_t,t)$

Time representation: sinusoidal positional embeddings or random Fourier features.

U-Net

Contracting path

- block consists of:
 - 3x3 convolution
 - 3x3 convolution
 - ReLU
 - max-pooling with stride of 2 (downsample)
- repeat the block N times, doubling number of channels

Expanding path

- block consists of:
 - 2x2 convolution (upsampling)
 - concatenation with contracting path features
 - 3x3 convolution
 - 3x3 convolution
 - ReLU
- repeat the block N times, halving the number of channels

U-Net

- Originally designed for applications to biomedical segmentation
- Key observation is that the output layer has the same dimensions as the input image (possibly with different number of channels)

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the "PhC-U373" data set. (b) Segmentation result (cyan mask) with manual ground truth (yellow border) (c) input image of the "DIC-HeLa" data set. (d) Segmentation result (random colored masks) with manual ground truth (yellow border).

Applications: AI Art

Applications: Colorization, Inpainting, Restoration, Outfilling

Questions?

