Bias Estimation of Biological Reference Points Under Two-Parameter SRRs

Nick Grunloh

In collaboration with: Dr. E.J. Dick Dr. H. K.H. Lee

Mangel et al. 2013, CJFAS

$$\frac{dB(t)}{dt} = \frac{\alpha B(t)}{1 + \beta B(t)} - (M + F(t))B(t)$$

$$h = \frac{\frac{\alpha}{M}}{4 + \frac{\alpha}{M}}$$

$$\frac{F^*}{M} = \sqrt{\frac{4h}{1-h}} - 1$$

$$\frac{B^*}{B_0} = \frac{\sqrt{\frac{4h}{1-h} - \frac{4h}{1-h}}}{\frac{4h}{1-h} - \frac{1}{1-h}}$$

Introduction 00

$$\frac{dB(t)}{dt} = \frac{\alpha B(t)}{1 + \beta B(t)^{\frac{1}{\gamma}}} - (M + F(t))B(t)$$

Mangel et al. (2013) suggest exploration of three parameter stock recruit relationships (SRRs) to avoid pre-determined reference points (RP) in assessments

$$\frac{dB(t)}{dt} = \frac{\alpha B(t)}{1 + \beta B(t)} - (M + F(t))B(t)$$

$$\frac{B^*}{B_0} = \frac{1}{\frac{F^*}{M} + 2}$$

Introduction 00

$$egin{aligned} &\log(F^*) \sim \mathsf{N}(\mu,\sigma^2) \ &\updownarrow \ &2rac{B^*}{B_0} \ \sim \ \mathsf{logit} ext{-N}\left(\mathsf{log}(2M) - \mu,\sigma^2
ight) \end{aligned}$$

Pella-Tomlinson Production Model

$$I(t) \sim LN(qB(t), \sigma^2)$$
 $\frac{dB(t)}{dt} = R_{\theta}(B(t)) - F(t)B(t)$ $R_{\theta}(B) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K}\right)^{\gamma - 1}$ $\theta = (r, K, \gamma)$

$$\gamma = 2 \Rightarrow \mathsf{Schaefer} \; \mathsf{Model}$$

Pella-Tomlinson Production Model

$$I(t) \sim LN(qB(t), \sigma^2)$$

 $\frac{dB(t)}{dt} = R_{\theta}(B(t)) - F(t)B(t)$
 $R_{\theta}(B) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K}\right)^{\gamma - 1}$
 $\theta = (r, K, \gamma)$

$$\gamma = 2 \Rightarrow \mathsf{Schaefer} \; \mathsf{Model}$$

Catch

Catch

Flat

Contrast

Flat: Misspecified SRR

Biomass

Depletion

Contrast: Misspecified SRR

Biomass

Depletion

ContrastT45: Misspecified SRR Biomass Depletion

ContrastT60: Misspecified SRR Biomass Depletion

SchnuteExpT45: Misspecified SRR Biomass Depletion

SchnuteExpT30: Misspecified SRR Biomass Depletion

SchnuteExpT30L2: SRR

Biomass

Depletion

SchnuteExpT30L3: SRR

Biomass

Depletion

SchnuteFlatT30: SRR

Biomass

Depletion

