Desambiguación del Sentido de las Palabras

(Word Sense Disambiguation)

M

Introducción

- ¿qué es ambigüedad?
- ¿qué significa desambiguar?
- ¿qué entendemos por sentido de las palabras?
- ¿en qué consiste la tarea de desambiguación del sentido de las palabras?

Ambigüedad en el Lenguaje

- Léxica
 - □ habla, aviso ¿verbo o sustantivo?
- Sintáctica
 - □ Veo un gato con el telescopio (con cola larga).
- De referencia
 - Juan tomó la torta de la mesa y la comió (y la limpió).
- Y otras más...

Ambigüedad Semántica de la Palabra

- Dados estos ejemplos de uso de la palabra gato:
 - "Saca el gato a pasear"
 - "Saca el gato de la cajuela"
 - "Saca el gato tridimensional del closed"

- ¿en los cuatro casos hablamos del mismo gato?
- ¿cuál es el sentido correcto en cada oración?
- ¿por qué o cómo lo pudimos determinar?

Polisemia y Ambigüedad Semántica

- Polisemia Una palabra puede poseer varios significados posibles.
- Por ejemplo, gato posee 3 sentidos:
 - 1. Animal felino
 - 2. Herramienta para levantar cosas pesadas
 - 3. Juego de 3 en línea o Tic-Tac-Toe.

Desambiguar el Sentido de las

Palabras

- Es el proceso de decidir (seleccionar) el sentido de una palabra en su contexto.
- Decimos "seleccionar" porque cada palabra tiene un conjunto determinado de sentidos posibles.
- Este problema surge debido a que las palabras pueden asumir diferentes significados dependiendo del contexto en el que se usan.
- Nos referiremos a esta tarea como WSD

М

Aplicaciones prácticas

- Traducción automática
 - ☐ Traducir "bill" del inglés al español:
 - ¿El pico de un pájaro o cuenta bancaria?
- Recuperación de información
 - □ Encontrar páginas web sobre "Java"
 - ¿el lenguaje de programación, el tipo de café, ó la isla en el archipiélago de Indonesia?
- Búsqueda de respuestas
 - □ ¿Dónde está la estación Hidalgo?
 - ¿me preguntan por un lugar o por una persona?

El problema de WSD

- 1. Elegir un repositorio de sentidos
 - Diccionario o tesauros de referencia, donde se indiquen los distintos sentidos de las palabras.
- 2. Diseñar un procedimiento de desambiguación.

(Este es el punto que trataremos en detalle)

- 3. Evaluar el rendimiento del procedimiento
 - Corpus etiquetado manualmente
 - Usar el sentido más frecuente (baseline)

¿cómo hacerlo automáticamente?

Enfoques de WSD

- 1. Métodos basados en conocimiento
 - Hacen uso de recursos léxicos tales como diccionarios o tesauros.
- 2. Métodos supervisados
 - Requieren de un <u>corpus etiquetado</u>.
 - Incluyen métodos mínimamente supervisados.
- 3. Métodos no supervisados
 - Discriminación del sentido de las palabras

Métodos Basados en Conocimiento Podemos distinguir 3 tipos básicos:

- Basados en diccionarios
 - □ Usan las distintas definiciones de un término
- Basados en Tesauros/Ontologías
 - Consideran categorías semánticas de las palabras.
 - □ Aprovechan relaciones léxicas entre las palabras.
- Basados en traducciones en otro lenguaje
 - Usar "modelo de lenguaje" de otro lenguaje para decidir mejor traducción, y con ello, sentido correcto.

M

Basados en Diccionarios

- Las palabras usadas en las definiciones de una palabra suelen ser indicadores adecuados de sus sentidos.
- Algoritmo de LESK (1986):
 - □ Dada una palabra w, en un contexto c, y con sentidos $s_1, ..., s_k$.
 - \square Extraer del diccionario la bolsa de palabras correspondiente a cada sentido s_k .
 - Comparar cada bolsa de palabras con las palabras del contexto. Seleccionar el sentido con el mayor traslape.

Basados en Tesauros

- Las categorías semánticas de las palabras del contexto determinan la categoría semántica de todo el contexto, y a su vez el sentido de las palabras que lo conforman.
- Algoritmo de WALTER (1987):
 - Cada palabra tiene uno o varios categorías semánticas que corresponden a sus diferentes sentidos.
 - □ Para cada categoría semántica se cuentan las palabras que la disparan.
 - Se selecciona la categoría semántica con mayor conteo.
 Esta establece el sentido de todas las palabras.

La Ontología "WordNet"

- Una ontología de relaciones léxicas
- Se organiza en conjuntos de sinónimos:
 - Una palabra que tiene varios sentidos pertenece a varios SYNSETS (conjuntos de sinónimos)
- Considera varias relaciones entre SYNSETS
 - □ Hiponimia, hiperonimia, meronimia, etc.
- Incluye información sobre sustantivos, verbos y adjetivos+adverbios
- También incluye un conjunto de glosas (definiciones) por sysnset (¡sirven para método de Lesk!)

Basados en Ontologías

- La densidad de las palabras del contexto es mayor en el vecindario del sentido correcto.
- Algoritmo Aguirre-Rigau (1996):
 - Se identifican todos los nodos que corresponden a los distintos sentidos de la palabra a desambiguar W y de las palabras del contexto
 - □ Se mide la densidad conceptual alrededor de cada sentido de W
 - □ Se elige el sentido con la mayor densidad

Basado en traducciones

- La desambiguación de las palabras puede realizarse considerando sus traducciones en otros lenguajes.
- Algoritmo de Dagan-Itai (1991):
 - Identificar en un corpus en un segundo lenguaje todas las traducciones de la palabra que se desea desambiguar.
 - Contar las veces que cada traducción ocurre junto a las traducciones de las palabras del contexto.
 - □ Seleccionar el sentido con la mayor cuenta.

Problemas/novedades del

- enfoque pocas ontologías disponibles.
 - Poco cobertura de conocimiento de dominio restringido.
 - □ Disponibles en unos cuantos lenguajes.
- Trabajo reciente en modificar métodos clásicos
 - Por ejemplo, en Lesk se miden similitudes de segundo orden, es decir, se usan las definiciones de los términos de la definición.
- Mucho trabajo en <u>enriquecimiento automático</u> de ontologías.
 - □ Idea es obtener de texto plano varias glosas por concepto, asi como extraer varias instancias por concepto.

Métodos supervisados

Principales características

- Requieren de corpus etiquetado
 - □ Por ejemplo SemCor o Senseval
- Aplican algoritmos de AA
 - Bayes y SVM son los más usados actualmente, aunque también se usan ensambles.
- Los atributos más utilizados son:
 - □ las palabras, sus lemas, POS, y posiciones.
- Más precisos que los basados en conocimiento, pero su aplicación se limita a <u>pocas</u> palabras.

Datos problemáticos

Sense	n-secmic Nouns	Average number of examples	
1	9082	13.51	
2	1368	4.61	
3	544	3.68	
4	228	3.55	
5	117	3.24	
6	59	2.74	
7	43	3.52	
8	22	3.13	
9	8	3.17	
10	4	2.33	
>10	11	1.75	

- Alto grado de polisemia, especialmente en verbos aunque también en sustantivos.
- Ejemplos por clase muy <u>desbalanceados</u>. La mayor parte se concentran en el primer sentido.

Métodos mínimamente

- Supervisados
 La idea es tener el menor número de ejemplos
 etiquetados manualmente por sentido.
 - □ El etiquetado es muy costoso; además no puede hacerlo cualquiera.
- Se han usado algoritmos de <u>bootstrapping</u>
 - □ Co-training
 - Self-Training
- También se ha usado la <u>Web</u> para extraer automáticamente más ejemplos por sentido

Receta de Bootstrapping

- Ingredientes
 - □ Unos POCOS ejemplos etiquetados por sentido
 - MUCHOS ejemplos sin etiquetar
 - □ UNO o VARIOS (al gusto) clasificadores base
- Resultado
 - □ Un clasificador que MEJORA el rendimiento de los clasificadores base.

Procedimiento general

- Un conjunto L de ejemplos etiquetados
- Un conjunto U de ejemplos no-etiquetados
- Un conjunto de clasificadores $\{C_i\}$
- Seleccionar un subconjunto de ejemplos U'
 - Se seleccionan aleatoriamente P ejemplos de U
- 2. Se hacen / iteraciones
 - Se entrena C_i con L y se etiqueta U'
 - Se seleccionan los mejores G ejemplos, y se agregan a L
 - Se vuelve a llenar U' con ejemplos de U

La Web como corpus

- Construir corpus anotado usando oraciones obtenidas de la Web. La idea es usar frases monosémicas para buscar estos ejemplos.
- Algoritmo Mihalcea (1999)
 - □ Extraer, usando algunas <u>heurísticas</u>, un conjunto de frases de búsqueda a partir de un diccionario.
 - □ Buscar en la Web usando las frases de búsqueda
 - Remplazar, en los ejemplos bajados, las frases de búsqueda por el sentido de la palabra correspondiente.
 - □ Almacenar los nuevos ejemplos.

Métodos NO supervisados

- Tarea conocida como Discriminación del sentido de las palabras (Pedersen and Bruce, 1997).
- El objetivo es <u>agrupar palabras</u> considerando la similitud de sus contextos. Se basa en las siguientes hipótesis:
 - Las palabras con significados similares tienden a ocurrir en contextos similares
 - Uno puede conocer el significado de una palabra por las palabras que la acompañan.

M

Métodos NO supervisados (2)

- Entonces, <u>agrupan</u> las palabras basándose en la similitud de su contexto.
- Cada grupo representa un sentido distinto, aunque no están etiquetados.
- El único recurso necesario es un conjunto de datos NO etiquetado, es decir, muchos ejemplos de uso de la palabra.
 - □ ¡y un buen *algoritmo de agrupamiento*!

Métodos NO supervisados (2)

- Ventaja: su independencia hacia los datos etiquetados.
- Desventajas principales:
 - Los grupos NO representan los verdaderos sentidos.
 - □ La cantidad de sentidos resultantes pueden variar.
 - □ Difícil medir similitud de (pequeños) contextos
 - Muchas veces no presentan palabras en común
 - Para mejorar esta medición se han usado representaciones de segundo orden (Purandare and Pedersen, 2004).

Evaluación

- Conjuntos de prueba estándar: SENSEVAL-3.
 - Tareas: etiquetar todas las palabras o sólo un pequeño conjunto predeterminado.
 - □ Para el segundo caso proporciona ejemplos de entrenamiento y prueba.
- Los puntos de referencia son:
 - □ La evaluación humana (etiquetas de corpus)
 - □ Sentido más frecuente

Métricas de Evaluación

- Precisión
 - ejemplos clasificados correctamente / ejemplos clasificados
- Recuerdo
 - ejemplos clasificados correctamente / total de ejemplos

SENSEVAL-3: Resultados

- 47 Sistemas participantes:
 - □ 38 en supervisados
 - □ 9 en basados en conocimiento (y algunos híbridos)

Categoría		Precisión	Recuerdo
MFS		55.2%	55.2%
Supervisados	Mejor	72.9%	72.9%
	Peor	78.2%	31.0%
	Promedio	67.5%	65.2%
Basados en	Mejor	66.1%	65.7%
conocimiento	Peor	19.7%	11.7%
	Promedio	44.0%	41.9%