Class36-38

November 16, 2020

0.1 Inference for simple linear regression

0.1.1 A hypothesis test for β

We can find optimal point estimates for β_0 , β_1 by minimizing the least squares function, but point estimates do not give us information about how β_0 , β_1 with different samples from our population. Every sample of data would give us a different "optimal" point estimate for β_0 , β_1 . It is natural to ask whether or not β_1 will be statistically different than zero—whether or not a relationship between random variables X and Y is probable.

A natural hypothesis to test β_1 is

$$H_{\text{null}}: \beta_1 = 0 \tag{1}$$

$$H_{\text{Alte.}}: \beta_1 \neq 0 \tag{2}$$

(3)

If we can collect enough data to disprove that $\beta_1 = 0$ then there may be a relationship between X and Y. In addition to a hypothesis, we need a signfiicance level α and most important: a test statistic.

Test statistic A (probably expected by now) test statistic for β_1 is

$$t = \frac{\beta_1 - \beta_1_{\text{Null}}}{se(\beta_1)} \tag{4}$$

From above, our null value for β_1 ($\beta_{1 \text{ Null}}$) is zero.

$$t = \frac{\beta_1 - 0}{se(\beta_1)} = \frac{\beta_1}{se(\beta_1)} \tag{5}$$

If we can find an expression for the standard error of β_1 then we can compute our test statistic and compare our test stat to a distribution when we assume the null hypothesis, when we assume that β_1 is zero.

The standard error (you'll derive in this week's homework) for β_1 is

$$se(\beta_1) = \frac{\sigma^2}{\sum_i (x_i - \bar{x})^2} \tag{6}$$

where σ^2 is the variance from our linear regression.

pvalue If we can show that our estimate of β_1 is normally distributed then we know (from an earlier class) our test will have a student's t distribution. It turns out (you'll show in your homework) that we assumed y_1, y_2, \dots, y_n come from a normal distribution and any linear combination of random variables following a normal distribution also has a normal distribution. We will see (in your homework) that the estimate for β_1 is a linear combination of Ys which are normally distributed. So we can assume then β_1 follows a normal ditribution and our test statistic has a student's t distribution.

The two-sided pvalue from our hypothesis test is computed as

$$pvalue = p(T_{null} > t_{observed}) + p(T_{null} < -t_{observed})$$
 (7)

Small pvalues indicate the null hypothesis is unlikely and that β_1 is probably not zero.

0.1.2 Example dataset

The data is a classic set of 442 diabetes patients. The dataset contains 10 variables related to diabetes and a continuous measure of diseases progression.

We will plot one of the covariates—BMI— against this measure of disease prgoression and fit a simple linear regression.

```
import seaborn as sns
from statsmodels.regression.linear_model import OLS
import statsmodels.api as sm

import sklearn
from sklearn.datasets import load_diabetes

X, y = load_diabetes(return_X_y=True)
bmi = X[:,2]

bmi=sm.add_constant(bmi)
plt.style.use("fivethirtyeight")

fig,ax = plt.subplots()
sns.scatterplot(bmi[:,1],y, ax=ax)

ax.set_xlabel("BMI")
ax.set_ylabel("Disease progression")
```

```
results = OLS(y,bmi).fit()
results.summary()
```

/usr/local/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[27]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================									
Dep. Variab	le:			У	R-sqı	uared:			0.344
Model:			OL	S	Adj.	R-squar	ed:		0.342
Method:		Least	Square	s	F-sta	atistic:			230.7
Date:		Mon, 16	Nov 202	0	${\tt Prob}$	(F-stat	istic)		3.47e-42
Time:			10:31:41			Likeliho	-2454.0		
No. Observations:			44	2	AIC:				4912.
Df Residual	s:		44	0	BIC:				4920.
Df Model:				1					
Covariance '	Type:	n	onrobus	t					
========			======		=====		=====		=======
	coet	f std	err		t	P>	t	[0.025	0.975]
const	152.133	5 2.	974	51	.162	0.0	00	146.289	157.978
x1	949.4353	62.	515	15	. 187	0.0	00	826.570	1072.301
Omnibus:	=======		11.67	===: 4	Durb	====== in-Watso	====== n:		1.848
Prob(Omnibu	s):		0.00	3	Jarqı	ıe-Bera	(JB):		7.310
Skew:			0.15	6	Prob	(JB):			0.0259
Kurtosis:			2.45	3	Cond	. No.			21.0

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

0.2 R^2

The coefficient of determination (R^2) describes one minus the variance in the errors made by a regression model divided by the variance in errors if we used the mean as a predictor. If we call the variance in errors made by a regression model SSE and variance in errors made by using the simple mean as SST then

$$R^2 = 1 - \frac{SSE}{SST}$$

Values of R^2 close to 1 mean we make smaller errors whe nusing our regression model and values of R^2 close to zero says our errors using a regression model are the same as if we used the simple mean.

How do we find the variance of the errors made when we choose a regression model? Well that is

$$SSE = \sum_{i} (y_i - \hat{y}_i)^2$$

where \hat{y}_i is our prediction of the true value y_i form our regression. We can do the same for \bar{y} .

$$SST = \sum_{i} (y_i - \bar{y})^2$$

The acronym **SSE** stands for "Sum Squares Error" and the acronym **SST** stands for "Sum Squares Total". The expression for \mathbb{R}^2 is then the relative reduction in variance from our regression model.