Introducción al Diseño Lógico (E0301)

Ingeniería en Computación

Gerardo E. Sager

Clase 12 curso 2021

Circuitos Secuenciales Sincrónicos

- Temas a tratar
 - Introducción
 - Máquinas de Estado Finito
 - Modelo de Moore
 - Modelo de Mealy
 - Análisis de circuitos secuenciales sincrónicos
 - Sintesis de circuitos secuenciales sincrónicos
 - Ejemplos

Introducción

Introducción

Esquema general de un circuito secuencial síncrono:

 El bloque "Estado" está formado por biestables, todos ellos sincronizados con la misma señal de reloj

Máquinas de estados

- El comportamiento de un circuito síncrono se puede representar mediante una máquina de estados (FSM, o "Finite State Machine")
- Una máquina de estados tiene los siguientes elementos:
 - X = Entradas
 - Y = Salidas
 - Z = Estados (valores de los biestables, cambian con cada flanco de reloj)
 - ō = Funciones de estado (funciones combinacionales de entrada de los biestables)
 - λ = Funciones de salida (combinacionales)
- Una FSM se define como una secuencia de eventos en tiempos discretos. El estado Z cambia en cada evento (el cambio está definido por δ).

Modelo de Moore

- En el modelo de Moore las salidas dependen únicamente de los estados (no de las entradas)
- Máquina de estados de Moore:
 - Z = δ (X, Z)
 - Y = λ (Z)
- Estructura de un circuito asociado a un modelo de Moore:

Modelo de Moore

- El reloj y el reset no aparecen en las máquinas de estados, la asociación entre estas señales en un circuito y la máquina de estados es:
 - En cada flanco de reloj se produce una transición o cambio de estado
 - El reset se utiliza únicamente para establecer el estado inicial
- En las máquinas de estados de Moore las salidas cambian únicamente si hay un cambio de estado:
 - Las salidas están sincronizadas con el reloj

Modelo de Moore

- Una FSM se puede representar también mediante un diagrama de estados (STG o "State Transition Graph"):
 - Cada estado se representa con un círculo
 - Cada transición de estado se representa con una flecha
 - Los diferentes valores de las entradas se representan en las flechas
 - En el caso del modelo de Moore, las salidas se representan dentro de cada estado

Modelo de Mealy

- En el modelo de Mealy las salidas dependen tanto de los estados como de las entradas (caso general)
- Máquina de estados de Mealy:
 - Z = δ (X, Z)
 - Y = λ (X, Z)
- Estructura de un circuito asociado a un modelo de Mealy:

Modelo de Mealy

Diagrama de estados de Mealy:

- Cada estado se representa con un círculo
- Cada transición de estado se representa con una flecha
- Los diferentes valores de las entradas se representan en las flechas
- En el caso del modelo de Mealy, las salidas se representan también en las flechas (dependen del estado y de las entradas)

Modelo de Mealy

- Igual que en Moore, el reloj y el reset no aparecen en el STG, están implícitos
- En las máquinas de estados de Mealy las salidas pueden cambiar en cualquier momento (basta con que cambie una entrada del circuito):
 - Las salidas no están sincronizadas con el reloj
 - NOTA: Aunque las salidas no estén sincronizadas con el reloj, el circuito sigue siendo síncrono (todos los biestables están sincronizados con el mismo reloj)

Análisis y Síntesis de Circuitos Secuenciales Síncronos

- Análisis: A partir de un circuito obtener su funcionalidad
 - Circuitos Combinacionales:
 - Obtener tablas de verdad o funciones booleanas de las salidas
 - Circuitos Secuenciales
 - Obtener diagrama de estados, o funciones de estado y salidas (δ y λ)
- Síntesis: Dada una funcionalidad, obtener la implementación de un circuito
 - Circuitos Combinacionales:
 - Obtener expresiones boolenas, implementar con puertas lógicas, multiplexores, decodificadores, etc.
 - Circuitos Secuenciales:
 - Obtener diagrama de estados e implementar las funciones de estado y de salida (δ y λ) con puertas lógicas, multiplexores, decodificadores

- Análisis: Obtener tabla de transiciones, calcular δ y λ, y obtener diagrama de estados.
- Ejemplo:

Tabla de transiciones:

Q1	Q0	ln	D1	D0	Q1+	Q0+	Out
0	0	0	0	1	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	0	0	1
0	1	1	1	0	1	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

Diagrama estados (Mealy):

Diagrama estados (Moore):

- A partir de la descripción de la funcionalidad de un circuito secuencial, los pasos a seguir para obtener la implementación son:
 - Obtener diagrama de estados
 - Codificación de estados
 - Obtener Tablas de salidas y de transiciones de estados
 - Tabla inversa de biestables (o tabla de excitación)
 - Obtener funciones de salida
 - Obtener funciones de estado
 - Implementación
- La diferencia entre Moore y Mealy está en las funciones de salida

Tabla de excitación (o tablas inversas) de biestables

- Tablas inversas o tablas de excitación:
 - Describen todas las posibles de combinaciones de entradas que permiten pasar del estado actual Q al estado siguiente Q+

- Problema: Diseñar un circuito secuencial síncrono que permita detectar una secuencia de tres o más unos consecutivos a través de una entrada serie.
 - La entrada se lee en cada flanco ascendente de reloj
 - La salida se activa cuando se detecta la secuencia

- Ejemplo de secuencia de entradas y salidas:
 - X:001101111100111
 - Z:000000011100001

Ejemplo 1: Mealy con biestables D:

Diagrama de estados:

Codificación de estados:

Estado	Q1	Q0
S0	0	0
S1	0	1
S2	1	1
	1	0
	•	~

Estado no alcanzable

Mealy con biestables D :

Tabla de transiciones y tabla de salidas (combinadas juntas):

In	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Х	Х	Х
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Х	Х	Х
1	1	1	1	1	1

Mealy con biestables D :

Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	Out	D1	D0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	Х	Х	Х	Х	Х
0	1	1	0	0	0	0	0
1	0	0	0	1	0	0	1
1	0	1	1	1	0	1	1
1	1	0	Х	Х	Х	Х	Х
1	1	1	1	1	1	1	1

Función de salida:

Funciones de estado

$$D_0 = In$$

Ejemplo 2. Mealy con biestables J-K :

 Tabla inversa de biestables (biestables J-K):

In	Q1	Q0	Q1+	Q0+	Out	J1	K1	J0	K0
0	0	0	0	0	0	0	Х	0	Х
0	0	1	0	0	0	0	Х	Х	1
0	1	0	Х	Х	Х	Х	Х	Х	Х
0	1	1	0	0	0	Х	1	Х	1
1	0	0	0	1	0	0	Х	1	Х
1	0	1	1	1	0	1	Х	Х	0
1	1	0	Х	Х	Х	Х	Х	Х	Х
1	1	1	1	1	1	Х	0	Х	0

- 5. Función de salida: $Out = Q_1 In$
- Funciones de estado

$$K_0 = \overline{In}$$

- Mealy con biestables J-K:
 - 7. Implementación

$$Out = Q_1 In$$

$$J_0 = In$$

$$K_0 = \overline{In}$$

$$J_1 = Q_0 In$$

$$K_1 = \overline{In}$$

Ejemplo 4: Mealy, otra codificación diferente:

Diagrama de estados:

Codificación de estados:

- Mealy con biestables D (codificación diferente):
 - Tablas de transiciones y salidas (combinadas en una sola):

In	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	Х	Х	Х
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	Х	Х	Х

- Mealy con biestables D :
 - Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	Out	D1	D0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	1	1	Х	Х	Х	Х	Х
1	0	0	0	1	0	0	1
1	0	1	1	0	0	1	0
1	1	0	1	0	1	1	0
1	1	1	Х	Х	Х	Х	Х

Función de salida:

6 Funciones de estado

- Mealy con biestables D (codificación diferente):
 - Implementación

Con esta otra codificación sale más complejo y se requieren más puertas lógicas para la implementación

$$Out = Q_1 In$$

$$D_1 = In(Q_0 + Q_1)$$

$$D_0 = \overline{Q_1} \overline{Q_0} In$$

Ejemplo 5: Moore con biestables D:

Diagrama de estados:

Codificación de estados:

Estado	Q1	Q0
S0	0	0
S1	0	1
S2	1	1
S3	1	0

- Moore con biestables D :
 - Tablas de transiciones y salidas:

Q1	Q0	Out
0	0	0
0	1	0
1	0	0
1	1	1

Moore con biestables D :

Tabla inversa de biestables (biestables D):

ln	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	1
1	0	1	1	1	1	1
1	1	0	1	0	1	0
1	1	1	1	0	1	0

Función de salida:

Q1	Q0	Out
0	0	0
0	1	0
1	0	0
1	1	1

Funciones de estado

$$\begin{split} D_1 &= Q_0 In + Q_1 In = \\ &= (Q_0 + Q_1) In \end{split}$$

$$D_0 = \overline{Q_1} In$$

Moore con biestables D:

7. Implementación

