PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 4 (Feb 13 – Feb 21)

- 1 (5+5+15+20) For each of the following polynomials, construct a splitting field L over \mathbb{Q} and compute the degree $[L:\mathbb{Q}]$.
 - 1) $t^4 + 7t^2 + 12$
 - 2) $t^4 + t^2 12$
 - 3) $t^{2n} 2^n$, where n = 3, 4.
 - 4) $t^{14} 1$.
- 2 (15) Let K L M be a field extension and K L, L M are algebraic extensions. Prove that K M is also an algebraic extension.
- **3** (15) Let α be transcendental over a field $K \subset \mathbb{C}$. Show that $K(\alpha)$ is not algebraically closed (hint: consider the polynomial $t^2 \alpha$).
- 4 (15) Let L: K be a splitting field extension for a non–constant polynomial $f \in K[t]$. Prove that [L: K] divides $(\deg f)!$ (hint: at the very end look at some binomial coefficients).