Отчет по лабораторной работе 2

Генералов Даниил, НПИбд-01-21, 1032202280

Содержание

4	Выводы	11								
3	Выполнение лабораторной работы 3.1 Первая модель	7 7 9								
2	Задание	6								
1	. Цель работы									

Список иллюстраций

3.1	Топология			_	_	_							_			_		_		7

Список таблиц

1 Цель работы

В рамках этой лабораторной работы требуется произвести расчет сети Fast Ethernet.

2 Задание

Требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.

3 Выполнение лабораторной работы

Для выполнения приведена диаграмма топологии сети, которую требуется расчитать. Мы имеем 6 случаев, которые различаются длиной этих сегментов.

Рис. 2.4. Топология сети

Рис. 3.1: Топология

3.1 Первая модель

Чтобы проверить работоспособность сети относительно первой модели, нужно посчитать диаметр домена коллизий и проверить, что он не превышает допустимого. В нашем случае сеть содержит два хаба класса II, которые

ограничивают диаметр домена коллизий длиной в 205 метров. Сеть состоит только из соединений 100BASE-TX. Также, сеть можно разделить на две части, которые соединены сегментом 4: каждая из них по отдельности может иметь диаметр 200 метров. Поэтому сначала нужно проверить, удолетворяет ли требованию первой модели отдельная группа сегментов (1,2,3), отдельная группа сегментов (5,6), а затем их комбинация.

	Максима.	л ь Грыпі вы ша	ет	Привыша	ет	Привыша	ет
	диаметр	ЛИ		ли	Максима.	пыни ый	
	ИЗ	длину	Диаметр	длину	общий	длину	
Вариант	(1,2,3)	200?	(4,5)	200?	диаметр	205?	Вердикт
1	188	Нет	194	Нет	198	Нет	Сеть
							работоспособна
2	180	Нет	188	Нет	283	Да	Не
							соответствует
3	155	Нет	190	Нет	200	Нет	Сеть
							работоспособна
4	135	Нет	170	Нет	164	Нет	Сеть
							работоспособна
5	155	Нет	190	Нет	210	Да	Не
							соответствует
6	168	Нет	170	Нет	207	Да	Не
							соответствует

В каждом из этих вариантов, отдельные части удолетворяют требованию модели, а их комбинация – нет. Поэтому, мы можем предсказать, что в вариантах 2, 5 и 6 сеть будет успешно определять коллизии между узлами 1, 2 и 3, а также между 4 и 5, но кадры, которые должны идти по сегменту 4, будут теряться без возможности распознать коллизию.

3.2 Вторая модель

Для расчета сети по второй модели нужно посчитать максимальное время прохождения сигнала по сети. Для этого учитывается длина провода, скорость передачи сигнала в нем, а также время задержки от хабов.

В нашей сети используется витая пара категории 5, которая имеет удельное время двойного оборота в 1.112би/м. Помимо этого, мы работаем с двумя хабами класса II и портами ТХ, которые вносят задержку в 92би. Чтобы сеть считалась работоспособной, нужно, чтобы задержка внутри сети не привышала 412би, поскольку 100би требуется для узлов, которые подключены ТХ-портами.

Как и раньше, мы расчитываем работоспособность для двух половин сети отдельно, а затем для всей сети вместе. Для двух половин время задержки в проводе не должно превышать (412-92=320)би, а значит максимальная длина провода не должна быть больше (320би / 1.112би/м) = 287.76м.

Для сети в целом присутствуют постоянные задержки от терминалов и двух хабов класса 2, поэтому время задержки не больше (412-92-92=228)би, а длина провода – не больше (228би / 1.112би/м) = 205.03м. Помимо этого, для безопасности рекомендуется соблюдать бюджет в 4би, который ещё ограничивает длину провода до (224би / 1.112би/м) = 201.43м.

Как видно из предыдущей таблицы, в каждом случае, каждая из половин сети удолетворяет первому требованию. Более того, ровно те сети, которые удолетворяли первой модели, также удолетворяют второй модели, хотя это могло бы быть не так – если бы максимальный диаметр сети был больше 201, но меньше 205, то такая сеть выходила бы за границы бюджета для задержек во второй модели, но удолетворяла бы первой модели

	Максимальный	Привышает ли	
Вариант	общий диаметр	длину 201.43?	Вердикт
1	198	Нет	Сеть
			работоспособна

	Максимальный	Привышает ли	
Вариант	общий диаметр	длину 201.43?	Вердикт
2	283	Да	Не соответствует
3	200	Нет	Сеть
			работоспособна
4	164	Нет	Сеть
			работоспособна
5	210	Да	Не соответствует
6	207	Да	Не соответствует

4 Выводы

Я получил опыт вычисления сетей Fast Ethernet с использованием двух моделей. Эти две модели дают ответы, которые соответствуют друг другу в пределах погрешности, и некоторые из необъясненных значений в первой модели непосредственно вытекают из более сложного анализа во второй модели. Поэтому можно сделать вывод, что эти две модели в целом взаимозаменяемы.