5.2 Watermarking Using Side Information

Some Terrible Things for You

- Shannon's Theorem
- ...

Skip it.

5.3 Dirty-Paper Codes

Dirty-Paper Code

Classical notion of a code:

One message, one code word.

Dirty-paper code

 One message, a set of candidate code words.

Find the code word fits best the host signal for a message.

An Illustration

System 8: E_DIRTY_PAPER/D_DIRTY_PAPER

- Based on E_BLK_FIXED_R/D_BLK_CC
- TWO SETS of reference marks, W_0 and W_1 , to encode ONE BIT of information.
- \bullet Embed 0: use the reference mark in \mathcal{W}_0
 - $\bullet~$ Has highest correlation with $\mathbf{v}_{\mathbf{o}}.$
- Embed 1: use the reference mark in W_1
 - ullet Has highest correlation with v_o .

Illustration

Performance

False positive rate:

$$(|\mathcal{W}_0| + |\mathcal{W}_1|)P_{fp0}$$

- Keep it constant: adjust numbers of reference marks and threshold.
- Constant payload (1-bit).
- Constant robustness.

Now why vary the number of reference marks?

Fidelity.

Average Mean Squared Error

Limitation

The embedder and detector both use exhaustive search to find the best matches in \mathcal{W}_0 and \mathcal{W}_1 , this system is only practical when the size of these sets is small.

Least significant bit (LSB) watermarking

Modify c_0 so that the least significant bit encodes the message.

Embed 10000011

● Cover image ⇒ Watermarked image:

2-bit

Examples

Simple

Advantages

- High Payload
- Good fidelity for 1-bit only.

Drawbacks

- Not robust
- False positive probability?

Quantization Index Modulation

LSB is a QIM.

Separate the range of scalar into two sets

- even for 0
- odd for 1

Or in a 2-ary scalar watermarking, the code book C_0 , C_1 are defined as

$$C_m = \{ (m+2k) | k \in \mathbb{Z}, m \in \{0, 1\} \}.$$
 (1)

Illustration

The closest code.

Why Quantization?

From exhaustive search to simple rounding!

In General

For a M-ary scalar watermarking

• The code books
$$C_m, m \in \{0, 1, \cdots, M-1\}$$

$$C_m = \{ (m + kM)\Delta | k \in \mathbb{Z} \}.$$

ullet Embedding m into s: find k so that

$$\min_{k} |s - (m + kM)\Delta|.$$

Detection

$$[y/\Delta] \mod M$$
.

Lattice Codes

From one dimension to two dimension

$$C_0 = \{(k_1 + k_2) \mod 2 = 0\}$$

 $C_1 = \{(k_1 + k_2) \mod 2 = 1\}.$

More General

Binning scheme

- Hashing
- ...

Presentation: 8.2

General form of a perceptual model

Presentation: Project 1

- E_BLIND
- D_LC

The key points

- The tips
 - Scaling and shifting of the reference mark etc.
 - Noise from value clipping
 - Use low/high contrast image
- Performance: the plot of detection value
 - Using different reference mark
 - Using different cover work