

Dating recommendations using Spark

Felipe Chamma, Felipe Formenti, Ryan Speed

Agenda

- 1 The problem
- 2 Data set description
- 3 Predicting Ratings
- 4 The love_scoreTM feature
- 5 JSON data output

1 - The problem

- Czech dating website
- Improve matchmaking
- Improve scalability
- Test Spark for real

Data set description

168,791 users User_id, gender

17,359,346 ratings User_id_1, user_id_2, rating (0-10)

0.06% Matrix sparsity

Count by gender

 Males are the majority, after cleaning data for unknowns (which was allowed back in 2006)

Ratings by gender

	Total Ratings	Mean	SD
F-M	7.10 M	6.92	2.74
M-F	3.23 M	5.48	3.12
F-F	1.24 M	5.14	3.21
M-M	683 k	4.46	3.32

Ratings by gender

M-F

250000

300000

200000

100000

3

5 6

8 9

F - F

Predicting Ratings

Splitting users into gender/preference matrices

Male - Female

Female - Male

Items

Jsers

Items

	1	2	3		N
1				•••	
2					
3				•••	
				•••	
N					

	1	2	3		N
1				•••	
2					
3					
•••					
N					

Collaborative filtering methods

UV decomposition

- Good approach if appropriate k is chosen
- Much faster

Similarity matrix

Would take forever

UV Matrix Decomposition

Users

Matrix decomposition

Root mean squared error vs. k value

The love_scoreTM feature

The metric

$$love_score\left(U_i, U_j\right) = \lambda_1 \left(10 - |Att(U_i) - Att(U_j)|\right) + \lambda_2 Pref(U_i, U_j) + \lambda_3 Pref(U_j, U_i)$$

$$Pref(U_i, U_j) = \hat{f}(U_i, U_j) - \overline{U_{iG}}$$

$$\hat{f}(U_i, U_j)$$
: predicted rating of user j by user i

5 - JSON data output

- Using Flask app running on EC2 server
- Data stored in Amazon RDS (postgreSQL)
- Request of recommendations by user_id: <u>http://ec2-52-87-166-242.compute-1.</u> amazonaws.com:5000/id/8

How it looks

```
© ec2-52-87-166-242.compute-1.amazonaws.com:5000/id/8
"8": [
    "id_recommended_user": "50",
    "love_score": 0.8508841673,
    "predicted rating": 7.77
    "id recommended user": "2",
    "love_score": 0.8271911317,
    "predicted rating": 6.44
    "id recommended user": "5",
    "love score": 0.6849168816,
    "predicted rating": 6.61
    "id_recommended_user": "10",
    "love score": 0.649129936,
    "predicted rating": 9.62
    "id recommended user": "9",
                                                                                                                       UNIVERSITY OF
    "love_score": 0.5890780752,
                                                                                                                       SAN FRANCISCO
```


How it looks

```
© ec2-52-87-166-242.compute-1.amazonaws.com:5000/id/8
"id_recommended_user": "50",
"love_score": 0.8508841673,
"predicted rating": 7.77
"id recommended user": "2",
"love_score": 0.8271911317,
"predicted rating": 6.44
"id recommended user": "5",
"love score": 0.6849168816,
"predicted rating": 6.61
"id recommended_user": "10",
"love score": 0.649129936,
"predicted rating": 9.62
"id recommended user": "9",
"love_score": 0.5890780752,
```


Thanks

You can find us at LinkedIn:

- 🔟 Felipe Chamma <u>/fchamma</u>
- 🛅 Felipe Formenti <u>/felipeformenti</u>
- 📊 Ryan Speed <u>/speedryan</u>