

CMOS Fabrication

Dr. Bassam Jamil

Adopted from slides of the textbook

CMOS Fabrication

- ☐ CMOS transistors are fabricated on silicon wafer
- ☐ Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- ☐ Typically use p-type substrate for nMOS transistors
- □ Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- ☐ Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- ☐ Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Detailed Mask Views

- □ Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Process Characteristics

TABLE 3.2 CMOS process characteristics

Manufacturer		Intel							IBM			
Feature Size f	nm	250	180	130	90	65	45	32	130	90	65	45
Reference		[Bohr96]	[Yang98]	[Tyagi00]	[Thompson02]	[Bai04]	[Mistry07]	[Natarajan08]	[Sleight01]	[Khare02]	[Lee05]	[Narasimha06]
V_{DD}	V	1.8	1.5	1.3	1.2	1.2	1	1	1.2	1	1	1
$L_{ m gate}$	nm	180	140	70	50	35	35	30	60	45	40	35
t_{OX}	nm	4.1	3	1.5	1.2	1.2	1	0.9	2.3	1.85	1.05	1.15
$I_{\mathrm{dsat-}n}$	μ A/ μ m	700	940	1170	1449	1460	1360	1550	915	1000	1137	1140
$I_{\mathrm{dsat}-p}$	μ A/ μ m	320	420	600	725	880	1070	1210	520	480	700	800
$I_{ m off}$	nA/μm	1	3	100	400	100	100	100	100	200	200	200
Strain		no	no	no	yes	yes	yes	yes	no	no	yes	yes
High-k Gates		no	no	no	no	no	yes	yes	no	no	no	no
Gate Pitch	nm	640	480	336	260	220	160	112.5	325	245		190
Metal1 Pitch	nm	640	500	350	220	210	150	112.5	350	245		140
Metal Layers		5	6	6	7	8	9	9	8	10	10	10
Material		A1	Al	Cu	Cu	Cu	Cu	Cu	Cu	Cu	Cu	Cu
Low-k Dielectric		none	FSG	FSG	CDO	CDO	CDO	CDO	SiLK	SiLK	CDO	Porous
k		3.9	3.55	3.6	2.9	2.9					2.75	2.4
SRAM Cell Size	μ m ²	10.26	5.59	2.09	1	0.57	0.346	0.171	1.8	0.99	0.65	0.37

Fabrication

- ☐ Chips are built in huge factories called fabs
- ☐ Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- ☐ Start with blank wafer
- ☐ Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

Oxidation

- ☐ Grow SiO₂ on top of Si wafer
 - 900 1200 C with H₂O or O₂ in oxidation furnace

SiO₂

Photoresist

- □ Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Photoresist SiO₂

Lithography

- ☐ Expose photoresist through n-well mask
- ☐ Strip off exposed photoresist

Photoresist SiO₂

Etch

- ☐ Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Photoresist SiO₂

p substrate

Strip Photoresist

- ☐ Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- □ Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- ☐ Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- ☐ Subsequent steps involve similar series of steps

n well p substrate

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)</p>
- □ Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Polysilicon Patterning

☐ Use same lithography process to pattern polysilicon

Self-Aligned Process

- ☐ Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- □ Pattern oxide and form n+ regions
- ☐ Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- Historically dopants were diffused
- Usually ion implantation today
- ☐ But regions are still called diffusion

N-diffusion cont.

☐ Strip off oxide to complete patterning step

P-Diffusion

□ Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metalization

- ☐ Sputter on aluminum over whole wafer
- ☐ Pattern to remove excess metal, leaving wires

Layout

- ☐ Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- ☐ Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- \square Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μ m in 0.6 μ m process

Simplified Design Rules

Conservative rules to get you started

Inverter Layout

- ☐ Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - In f = 0.6 μ m process, this is 1.2 μ m wide, 0.6 μ m long

