Quantum Mechanics in Cosmic Structure Formation: Dark Matter as a Cosmic Sponge

Mukshud Ahamed

June 29, 2024

Abstract

This paper presents a comprehensive quantum mechanics framework to describe the role of dark matter in cosmic structure formation. Dark matter is conceptualized as a cosmic sponge, facilitating the nucleation and condensation of cosmic dust on the spacetime manifold. The models integrate quantum state representation, Hamiltonians, quantum tunneling, and entanglement, providing a novel perspective on dark matter and its interaction with cosmic dust.

1 Introduction

Dark matter constitutes approximately 27% of the universe's mass-energy content, playing a critical role in the formation and evolution of cosmic structures. This paper utilizes advanced quantum mechanics models to explore dark matter's function as a cosmic sponge, aiding in the nucleation and condensation of cosmic dust. By integrating quantum principles with cosmology, we aim to provide a deeper understanding of dark matter's influence on the universe.

2 Quantum State Representation of Matter

Matter particles, including cosmic dust and dark matter particles, are represented as quantum states. For a system with N particles, each particle i has a quantum state $|\psi_i\rangle$:

$$|\psi_i\rangle = \alpha_i |0\rangle + \beta_i |1\rangle \,, \tag{1}$$

where α_i and β_i are complex probability amplitudes satisfying:

$$|\alpha_i|^2 + |\beta_i|^2 = 1. (2)$$

3 Hamiltonian for the System

The Hamiltonian H represents the total energy of the system, incorporating the internal energy of matter particles, interaction energy between matter and dark matter particles, and potential energy in the gravitational field:

$$H = H_{\text{internal}} + H_{\text{interaction}} + H_{\text{potential}}.$$
 (3)

3.1 Internal Energy

The internal energy H_{internal} accounts for the intrinsic energy of the matter particles:

$$H_{\text{internal}} = \sum_{i} \epsilon_{i} |\psi_{i}\rangle \langle \psi_{i}|, \qquad (4)$$

where ϵ_i is the internal energy of particle i.

3.2 Interaction Energy

The interaction energy $H_{\text{interaction}}$ describes the interactions between matter and dark matter particles:

$$H_{\text{interaction}} = \sum_{i \neq j} V_{ij} |\psi_i\rangle \langle \psi_j|, \qquad (5)$$

where V_{ij} is the interaction potential between particles i and j.

3.3 Potential Energy

The potential energy $H_{\text{potential}}$ in the gravitational field is given by:

$$H_{\text{potential}} = \sum_{i} \phi_{i} |\psi_{i}\rangle \langle \psi_{i}|, \qquad (6)$$

where ϕ_i is the gravitational potential experienced by particle i.

4 Time Evolution of Quantum States

The time evolution of the quantum states is governed by the Schrödinger equation:

$$i\hbar \frac{d}{dt} |\psi_i(t)\rangle = H |\psi_i(t)\rangle.$$
 (7)

For a time-independent Hamiltonian, the solution is:

$$|\psi_i(t)\rangle = e^{-iHt/\hbar} |\psi_i(0)\rangle.$$
 (8)

5 Quantum Tunneling Probability

The probability of a particle tunneling through a potential barrier is described by:

$$P_{\text{tunnel}} \approx e^{-2\gamma d},$$
 (9)

where

$$\gamma = \frac{\sqrt{2m(V_0 - E)}}{\hbar}.\tag{10}$$

Here, m is the mass of the particle, V_0 is the height of the potential barrier, E is the energy of the particle, and d is the width of the potential barrier.

6 Quantum Entanglement

Entanglement creates correlations between quantum states of particles. For two entangled particles, the state is:

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right). \tag{11}$$

7 Condensation of Matter

The condensation of matter is described by the formation of bound states from unbound particles through quantum interactions facilitated by dark matter.

7.1 Nucleation Rate

The nucleation rate J of matter particles is influenced by quantum tunneling and entanglement effects:

$$J = J_0 e^{-\Delta G^*/k_B T},\tag{12}$$

where J_0 is the prefactor, ΔG^* is the Gibbs free energy barrier for nucleation, k_B is the Boltzmann constant, and T is the temperature.

7.2 Gibbs Free Energy Barrier

The Gibbs free energy barrier ΔG^* is modified by quantum effects:

$$\Delta G^* = \Delta G_0^* - \hbar \omega \ln P_{\text{tunnel}} - \lambda E_{\text{ent}}.$$
 (13)

Here, ΔG_0^* is the classical energy barrier, $\hbar \omega$ represents the energy correction due to quantum tunneling, and $\lambda E_{\rm ent}$ represents the energy contribution from entanglement.

7.3 Particle Interaction Energy

The interaction energy between particles E_{int} includes contributions from both classical gravitational interactions and quantum effects:

$$E_{\rm int} = E_{\rm grav} + E_{\rm quant},\tag{14}$$

where E_{grav} is the gravitational interaction energy and E_{quant} includes contributions from tunneling and entanglement.

8 Simulation of Quantum State Evolution

To illustrate the theoretical concepts, we conducted a simulation of the quantum state evolution for a DNA sequence. The DNA sequence was encoded into quantum states, and the time evolution was computed using a simplified Hamiltonian.

8.1 Encoding the DNA Sequence

The DNA sequence "AT" was encoded as follows:

$$A \to [1, 0]^T,$$

$$T \to [0, 1]^T.$$
(15)

8.2 Hamiltonian Definition

A simplified Hamiltonian H was defined, incorporating internal and interaction energies:

$$H = H_{\text{internal}} + H_{\text{interaction}},$$
 (16)

where

$$H_{\text{internal}} = I, \quad H_{\text{interaction}} = \frac{1}{10} \left(R + R^T \right).$$
 (17)

Here, I is the identity matrix and R is a random interaction matrix.

8.3 Time Evolution

The time evolution of the quantum states was computed using the Schrödinger equation:

$$|\psi(t)\rangle = e^{-iHt/\hbar} |\psi(0)\rangle.$$
 (18)

8.4 Results

Figure 1: Evolution of Quantum States Over Time

9 Conclusion

This paper integrates advanced quantum mechanics concepts to describe the role of dark matter in cosmic structure formation. By conceptualizing dark matter as a cosmic sponge, we elucidate its role in facilitating the nucleation and condensation of cosmic dust. The presented mathematical framework provides a novel perspective on dark matter and its interaction with cosmic

dust, contributing to a deeper understanding of the fundamental processes that shape our universe.

Acknowledgments

We acknowledge the invaluable contributions of Mukshud Ahamed, whose pioneering work and insights have significantly advanced our understanding of quantum mechanics in cosmology.