PabloBarrioSeco - 100363856

Sesión 2: Diseño de una máquina de estados

ESTUDIO PREVIO

1. Diseño del circuito: diagrama de estados que representa el funcionamiento del sistema según el modelo de Mealy, tabla de transición de estados, mapas de Karnaugh y expresiones simplificadas de las salidas PA, PB y PC (funciones de salida) así como de las entradas de los biestables (funciones de estado).

Diagrama de estados:

Tabla detransiciones:

		Q_1	Q_2	Е	D	Q_1	Q ₂ '	D ₁	D ₂	P _A	P _B	Pc
0		0	0	0	0	Χ	Χ	Χ	Х	Χ	X	X
1		0	0	0	1	Χ	Χ	Χ	Χ	Χ	X	X
2		0	0	1	0	Χ	Χ	Χ	Χ	Χ	X	X
3		0	0	1	1	Χ	X	Χ	X	Χ	X	X
4	А	0	1	0	0	0	1	0	1	0	0	0
5		0	1	0	1	0	1	0	1	0	0	0
6		0	1	1	0	1	0	1	0	1	0	0
7		0	1	1	1	1	0	1	0	0	0	0
8	В	1	0	0	0	0	1	0	1	0	0	0
9		1	0	0	1	0	1	0	1	0	0	0
10		1	0	1	0	1	1	1	1	0	1	0
11		1	0	1	1	1	1	1	1	0	0	0
12	С	1	1	0	0	0	1	0	1	0	0	0
13		1	1	0	1	0	1	0	1	0	0	0
14		1	1	1	0	0	1	0	1	0	0	1
15		1	1	1	1	0	1	0	1	0	0	0

Expresiones de las salidas y las entradas simplificadas mediante Karnaugh:

$$D_{1} = E$$

$$D_{2} = E + Q = E + Q_{2} = \overline{E}Q$$

$$P_{A} = E \cdot D Q$$

$$P_{B} = E \cdot D Q$$

$$P_{C} = E \cdot D Q_{2} \cdot Q_{1}$$

2. Esquemático del circuito.

3. Simulaciones del circuito que demuestren el correcto funcionamiento del circuito.

<u>Captura antes de la simulación:</u>

Captura después de la simulación:

