

SOEN 691-UU Big Data Analytics Code Clone Detection

Team:

Pulkit Wadhwa	40082832
Ankur Aggarwal	40105298
Jasmeet	40088712

TABLE OF CONTENTS

- INTRODUCTION
- **DATASET**
- ALGORITHMS
- PERFORMANCE
- FUTURE WORK

O1 INTRODUCTION

- Code Clones: Similar or identical fragments of code
- Do Code Clones really matter?
 - Defect prone
 - Problem of redundancy and increase in size of program
- Motivation:
 - Detecting clones can help in decreasing maintenance cost.
 - Auto Comment Generation of programs.

DataSet Generation

- No available Dataset of code clones, thus No Definitive features that characterize these clones
- Used <u>IJADataset</u> which has a collection of Java programs.
- Performed lexical analysis on these Java source codes to generate tokens for each program.
- <u>JAVALANG</u> tool was used for lexical Analysis
- Tokens include keyword, identifier, modifier, separator.
- Used the count of each token as features to generate the dataset.

DataSet Generation

 DataSet Contains 56,168 rows (or programs),including 10k duplicates approx and 15 different features

```
public class AddTwoNumbers {
   public static void main(String[] args) {
     int num1 = 5, num2 = 15, sum;
     sum = num1 + num2;
     System.out.println("Sum of these numbers: "+sum);
   }
}
```


Keyword Identifier Separator Operator Modifier String Null BasicType DecimalInter Boolean DecimalFloat Annotation HexInteger OctalInteger HexFloatingPoin

Injecting Code Clones in Dataset

The approach we followed to add code clones in DataSet are :-

- Type 1 clones(Exact CLones)
 - Created multiple copies of the codes.
 - Addition of comments in few codes.
- Type 2 clones(Renamed CLones):
 - Modifications in identifier names including Type 1 changes.

Algorithms Used

- Challenges
 - 1. High dimensional feature vector representing each program
 - Comparison of instance with all other instances in dataset for finding similarity is expensive.
- K-Means Clustering: Group the points into K clusters on the basis of distance between points.
- We used K-Means implementation of scikit-learn
- Initially we used original higher dimensional dataset for clustering

Choosing Right Value of K

- Inertia_:Sum of squared distances of samples to their closest cluster center.
- Aim to choose k that have a small value of inertia
- Used Elbow method for finding the right value of K.
- We can choose the elbow point k=5 as after this point change in inertia isn't signficant

Clustering with k=5

- Used k(number of clusters)=5
- Maximum iterations=10,000 and initialisation method of k-means++

Drawbacks k=5

- K=5 won't be a good clone detector.
- Dataset contains 45k non duplicated programs so ideally it should have around 45k clusters.
- To deal with problem of dimensionality we also tried PCA(Principal Component Analysis) dimensionality reduction technique.
- Results with clustering on dimensionally reduced data were same, Elbow was at k=5

Advanced Approach 1

- To Deal with first challenge we used dimensionality reduction technique.
- Second can be addressed using a combination of clustering and nearest neighbour search.
- Clustering(k=5) helped to divide input space into smaller subspaces.
- Next step was to find nearest neighbours in these subspaces.
- Used Hashing as a candidate for nearest neighbour search.

Locality Sensitive Hashing using Random Projection

- Locality Sensitive Hashing solves both the problems.
- The first Hash function reduces the dimensionality of the dataset.
- Further second Hash Function gives the exact similar pairs we use band=1
- As problem demanded to find the exact similar items instead of finding the candidate pairs for similarity

Performance

- Compared the performance of both the approaches on the basis of execution time.
- Locality sensitive Hashing detected duplicates faster than using Clustering and Hashing together.

Approach	Execution TIme
PCA,K-Means Clustering and Hashing	3.71 Seconds
Locality Sensitive Hashing Using Random Projection	2.16 Seconds
Locality Sensitive Hashing Using Gaussian Projection(Scikit learn)	1.82 Seconds

05Future Work

- Extending our work for Semantic clones.
- Including more programming languages.
- Parallelized implementation of Locality Sensitive Hashing.

REFERENCES

- https://towardsdatascience.com/locality-sensitive-hashing-for-music-search-f2f1940ace23
- https://heartbeat.fritz.ai/k-means-clustering-using-sklearn-and-python-4a054d67b187
- https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb
- http://courses.cs.vt.edu/cs5704/spring16/handouts/5704-10-CodeClones.pdf

Thank you!