RBI

Santhosh Kumar Krishnan 5/21/2020

1.READ DATA AND INSTALL LIBRARIES

RBI <- read.csv("D:/Data Science/Dr Vinod online classes/Class 5-Cluster/RBI.csv")
head(RBI,3)</pre>

States_Union <fctr></fctr>	BirthRate <dbl></dbl>	MortalitityRate <int></int>	PowerAvailability Ro
1 Andaman & Nicobar Islands	12.0	20	473.8
2 Andhra Pradesh	16.8	37	1019.8
3 Arunachal Pradesh	18.8	30	427.5
3 rows			
			>

```
library(dplyr)
```

```
##
## Attaching package: 'dplyr'
```

```
## The following objects are masked from 'package:stats':
##
## filter, lag
```

```
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

```
library(factoextra)
```

```
## Loading required package: ggplot2
```

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3
WBa

library(cluster)

2.REMOVE THE RESPONSE VARIABLE

```
df <- RBI[,-1]
rownames(df) <- RBI[,1]
head(df,3)</pre>
```

	BirthRate	MortalitityRate	PowerAvailability	Road
	<dbl></dbl>	<int></int>	<dbl></dbl>	
Andaman & Nicobar Islands	12.0	20	473.8	
Andhra Pradesh	16.8	37	1019.8	
Arunachal Pradesh	18.8	30	427.5	
3 rows				
				>

3.CHECK NAs AND SCALE THE DATA

summary(df)#no NAs

```
##
                 MortalitityRate PowerAvailability RoadLength
     BirthRate
                 Min. : 9.00 Min. : 227.9 Min. : 214
## Min.
         :12.00
                 1st Qu.:19.75 1st Qu.: 471.9
## 1st Qu.:15.10
                                               1st Qu.: 14311
## Median :16.90
                 Median :27.00 Median : 985.2
                                               Median : 50940
## Mean :18.27
                 Mean :27.92
                               Mean : 1690.6
                                               Mean :127004
## 3rd Qu.:21.18
                 3rd Qu.:36.25
                               3rd Qu.: 1442.5
                                               3rd Qu.:216547
## Max. :26.70
                 Max. :50.00 Max. :17281.5
                                               Max. :608140
```

```
df <- scale(df)#scaled data
head(df)</pre>
```

```
##
                              BirthRate MortalitityRate PowerAvailability
## Andaman & Nicobar Islands -1.4924049
                                             -0.6737197
                                                              -0.39161250
## Andhra Pradesh
                             -0.3502988
                                              0.7730047
                                                              -0.21588252
## Arunachal Pradesh
                             0.1255788
                                              0.1772946
                                                              -0.40651414
                             0.8869829
## Assam
                                              1.6240190
                                                              -0.45868599
## Bihar
                              1.9101196
                                              1.1985118
                                                              -0.47075536
## Chandigarh
                                             -0.5886182
                             -1.0879090
                                                              -0.05370242
##
                             RoadLength
## Andaman & Nicobar Islands -0.8596848
## Andhra Pradesh
                             0.3558963
## Arunachal Pradesh
                            -0.6954134
## Assam
                             1.3649922
## Bihar
                             0.5405426
## Chandigarh
                             -0.8488543
```

4.FIND EUCLIDEAN DIST FOR SAMPLE DATA

```
ind <- sample(1:nrow(df),15,replace = T)
df15 <- df[ind,]
df15_dist <- dist(df15)</pre>
```

5.CHECK FOR CLUSTER FORMATION

```
fviz_dist(df15_dist)
```


6.NUMBER OF CLUSTER USING WSS

fviz_nbclust(df,kmeans,method='wss')+geom_vline(xintercept = 5,linetype=7,col='green')

Number of clusters k

7.K MEANS

df.km=kmeans(df,5,nstart=20)
df.km

```
## K-means clustering with 5 clusters of sizes 2, 10, 4, 14, 6
##
## Cluster means:
      BirthRate MortalitityRate PowerAvailability RoadLength
                                          3.7851447 -0.8641901
## 1 0.7204257
                     -0.7162704
## 2 0.3896908
                       0.6113119
                                         -0.2248171 -0.3492352
## 3 -0.4871136
                      -0.3758646
                                         -0.2133319 1.6745781
  4 -0.8346741
                      -0.8743159
                                         -0.1649130 -0.5974956
   5
     1.3826887
                       1.5105504
                                         -0.3600015 1.1478930
##
## Clustering vector:
   Andaman & Nicobar Islands
                                         Andhra Pradesh
                                                                  Arunachal Pradesh
##
                                                        2
                                                                                   2
                                                   Bihar
                                                                         Chandigarh
##
                        Assam
##
                                                       5
                Chhattisgarh
                                                                        Daman & Diu
##
                                    Dadra& Nagar Haveli
##
                                                        1
                                                                                   1
                            2
                        Delhi
##
                                                     Goa
                                                                            Gujarat
##
##
                      Haryana
                                       Himachal Pradesh
                                                                  Jammu and Kashmir
##
                            2
##
                    Jharkhand
                                               Karnataka
                                                                             Kerala
##
##
                 Lakshadweep
                                         Madhya Pradesh
                                                                        Maharashtra
                                                        5
                                                                                   3
##
                            4
##
                      Manipur
                                               Meghalaya
                                                                            Mizoram
##
                            4
                                                        2
                                                                                   2
                                                  Odisha
                                                                         Puducherry
##
                     Nagaland
##
                                                                                   4
##
                       Punjab
                                               Rajasthan
                                                                             Sikkim
##
                                                       5
                   Tamil Nadu
##
                                               Telangana
                                                                            Tripura
##
                                                                                   4
##
               Uttar Pradesh
                                             Uttarakhand
                                                                        West Bengal
##
                                                        2
                                                                                   3
##
## Within cluster sum of squares by cluster:
## [1] 5.069544 7.120893 4.249168 7.815848 3.958959
    (between_SS / total_SS = 79.8 %)
##
## Available components:
##
## [1] "cluster"
                                                      "withinss"
                                                                      "tot.withinss"
                       "centers"
                                       "totss"
                       "size"
                                                      "ifault"
## [6] "betweenss"
                                       "iter"
```

Arunachal Pradesh	Andhra Pradesh	Andaman & Nicobar Islands	
2	2	4	##
Chandigarh	Bihar	Assam	##
4	5	5	##
Daman & Diu	Dadra& Nagar Haveli	Chhattisgarh	##
1	1	2	##
Gujarat	Goa	Delhi	##
2	4	4	##
Jammu and Kashmir	Himachal Pradesh	Haryana	##
4	4	2	##
Kerala	Karnataka	Jharkhand	##
4	3	2	##
Maharashtra	Madhya Pradesh	Lakshadweep	##
3	5	4	##
Mizoram	Meghalaya	Manipur	##
2	2	4	##
Puducherry	Odisha	Nagaland	##
4	5	4	##
Sikkim	Rajasthan	Punjab	##
4	5	4	##
Tripura	Telangana	Tamil Nadu	##
4	2	3	##
West Bengal	Uttarakhand	Uttar Pradesh	##
3	2	5	##

8.ADD MEMBERSHIP TO THE DATA

RBI_1 <- cbind(RBI,Clusters=df.km\$cluster)
head(RBI_1,3)</pre>

	States_Union <fctr></fctr>	BirthRate <dbl></dbl>	Mortalitity
Andaman & Nicobar Islands	Andaman & Nicobar Islands	12.0	
Andhra Pradesh	Andhra Pradesh	16.8	
Arunachal Pradesh	Arunachal Pradesh	18.8	
3 rows 1-5 of 7 columns			
			>

9.HEIRARCHICAL CLUSTEING

```
df.dist <- dist(df,method="euclidean")
df.hc <- hclust(df.dist,method='ward.D2')</pre>
```

10.VISUALIZE DENDOGRAM

fviz_dend(df.hc)

Cluster Dendrogram

11.CLUSTERING USING CUTREE

grp <- cutree(df.hc,k=5)</pre>

12.ADD MEMBERSHIP TO THE DATA

RBI_2 <- cbind(RBI,clusters=grp)
head(RBI_2,3)</pre>

	States_Union <fctr></fctr>	BirthRate <dbl></dbl>	Mortalitity
Andaman & Nicobar Islands	Andaman & Nicobar Islands	12.0	
Andhra Pradesh	Andhra Pradesh	16.8	
Arunachal Pradesh	Arunachal Pradesh	18.8	
3 rows 1-5 of 7 columns			
			>

13. COMPARISION OF KMEANS AND HCLUST

```
table(df.km$cluster,grp)
```

```
## grp

## 1 2 3 4 5

## 1 0 0 0 2 0

## 2 0 10 0 0 0

## 3 0 0 0 0 4

## 4 10 3 0 0 1

## 5 0 0 6 0 0
```

14.K MEANS CLUSTERING

```
fviz_cluster(list(cluster=grp, data = df), palette = "jco",ggtheme = theme_classic())
```


15.HIERARCHICAL CLUSTERING

```
fviz_cluster(df.km, data = df, palette = "jco",ggtheme = theme_minimal())
```


16.PROFILING KMEANS AND HCLUST GROUPS OF ORIGINAL DATA

aggregate(RBI[,-1],by=list(df.km\$cluster),mean)

Group.1 <int></int>	BirthRate <dbl></dbl>	MortalitityRate <dbl></dbl>	PowerAvailability <dbl></dbl>	RoadLength <dbl></dbl>
1	21.30000	19.50000	13451.1500	693.50
2	19.91000	35.10000	992.0400	75959.60
3	16.22500	23.50000	1027.7250	371761.25
4	14.76429	17.64286	1178.1643	39673.71
5	24.08333	45.66667	572.0167	294780.67
5 rows				

aggregate(RBI[,-1],by=list(grp),mean)

Group.1 <int></int>	BirthRate <dbl></dbl>	MortalitityRate <dbl></dbl>	PowerAvailability <dbl></dbl>	RoadLength <dbl></dbl>

Group.1 <int></int>	BirthRate <dbl></dbl>	MortalitityRate <dbl></dbl>	PowerAvailability <dbl></dbl>	RoadLength <dbl></dbl>
1	14.42000	15.80000	1161.0700	16052.10
2	18.98462	32.92308	1085.3308	73819.46
3	24.08333	45.66667	572.0167	294780.67
4	21.30000	19.50000	13451.1500	693.50
5	15.94000	21.20000	961.1200	336379.80
5 rows				

CONCLUSION 1.Kmeans Clustering has 5 clusters of sizes 10,13,6,2,5.

2. Heirarchical clustering 5 clusters of sizes 10,14,6,2,4.