

Data Structures Using C++ 2E

Chapter 9
Searching and Hashing Algorithms

Objectives

- Learn the various search algorithms
- Explore how to implement the sequential and binary search algorithms
- Discover how the sequential and binary search algorithms perform
- Become aware of the lower bound on comparisonbased search algorithms
- Learn about hashing

Search Algorithms

- Item key
 - Unique member of the item
 - Used in searching, sorting, insertion, deletion
- Number of key comparisons
 - Comparing the key of the search item with the key of an item in the list
- Can use class arrayListType (Chapter 3)
 - Implements a list and basic operations in an array

Sequential Search

- Array-based lists
 - Covered in Chapter 3
- Linked lists
 - Covered in Chapter 5
- Works the same for array-based lists and linked lists
- See code on page 499

Sequential Search Analysis

- Examine effect of for loop in code on page 499
- Different programmers might implement same algorithm differently
- Computer speed affects performance

Sequential Search Analysis (cont'd.)

- Sequential search algorithm performance
 - Examine worst case and average case
 - Count number of key comparisons
- Unsuccessful search
 - Search item not in list
 - Make *n* comparisons
- Conducting algorithm performance analysis
 - Best case: make one key comparison
 - Worst case: algorithm makes n comparisons

Sequential Search Analysis (cont'd.)

- Determining the average number of comparisons
 - Consider all possible cases
 - Find number of comparisons for each case
 - Add number of comparisons, divide by number of cases

Sequential Search Analysis (cont'd.)

 Determining the average number of comparisons (cont'd.)

$$\frac{1+2+\ldots+n}{n}$$

It is known that

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Therefore, the following expression gives the average number of comparisons made by the sequential search in the successful case:

$$\frac{1+2+\ldots+n}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

Ordered Lists

- Elements ordered according to some criteria
 - Usually ascending order
- Operations
 - Same as those on an unordered list
 - Determining if list is empty or full, determining list length, printing the list, clearing the list
- Defining ordered list as an abstract data type (ADT)
 - Use inheritance to derive the class to implement the ordered lists from class arrayListType
 - Define two classes

Ordered Lists (cont'd.)

```
template <class elemType>
class orderedArrayListType: public arrayListType<elemType>
public:
    orderedArrayListType(int size = 100);
      //constructor
      //We will add the necessary members as needed.
private:
    //We will add the necessary members as needed.
template <class elemType>
class orderedLinkedListType: public linkedListType<elemType>
public:
```

Binary Search

- Performed only on ordered lists
- Uses divide-and-conquer technique

FIGURE 9-1 List of length 12

FIGURE 9-2 Search list, list[0]...list[11]

	[0]	[1]	[2]	[3]	[4]	[5]	4 [6]		seard [8]		st — [10]	[11]
list	4	8	19	25	34	39	45	48	66	75	89	95

FIGURE 9-3 Search list, list[6]...list[11]

Binary Search (cont'd.)

C++ function implementing binary search algorithm

```
template<class elemType>
int orderedArrayListType<elemType>::binarySearch
                               (const elemType& item) const
  int first = 0;
  int last = length - 1;
  int mid;
  bool found = false;
  while (first <= last && !found)
     mid = (first + last) / 2;
     if (list[mid] == item)
       found = true;
     else if (list[mid] > item)
       last = mid - 1;
     else
       first = mid + 1:
  if (found)
     return mid;
  else
     return -1:
}//end binarySearch
```

Binary Search (cont'd.)

Example 9-1

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
list	4	8	19	25	34	39	45	48	66	75	89	95

FIGURE 9-4 Sorted list for a binary search

Iteration	first	last	Mid	list[mid]	Number of comparisons
1	0	11	5	39	2
2	6	11	8	66	2
3	9	11	10	89	1(found is true)

TABLE 9-1 Values of first, last, and mid and the number of comparisons for search item 89

Binary Search (cont'd.)

TABLE 9-2 Values of first, last, and mid and the number of comparisons for search item 34

Iteration	first	last	mid	list[mid]	Number of comparisons
1	0	11	5	39	2
2	0	4	2	19	2
3	3	4	3	25	2
4	4	4	4	34	1 (found is true)

TABLE 9-3 Values of first, last, and mid and the number of comparisons for search item 22

Iteration	first	last	mid	list[mid]	Number of comparisons
1	0	11	5	39	2
2	0	4	2	19	2
3	3	4	3	25	2
4	3	2	The loop s	tops (because fi	rst > last)

Insertion into an Ordered List

- After insertion: resulting list must be ordered
 - Find place in the list to insert item
 - Use algorithm similar to binary search algorithm
 - Slide list elements one array position down to make room for the item to be inserted
 - Insert the item
 - Use function insertAt (class arrayListType)

- Algorithm to insert the item
- Function insertord implements algorithm

- Use an algorithm similar to the binary search algorithm to find the place where the item is to be inserted.
- if the item is already in this list
 output an appropriate message
 else
 use the function insertAt to insert the item in the list.

```
template <class elemType>
void orderedArrayListType<elemType>::insertOrd(const
elemType& item)
  int first = 0;
  int last = length - 1;
  int mid;
  bool found = false;
  if (length == 0) //the list is empty
     list[0] = item;
     length++;
  else if (length == maxSize)
     cerr << "Cannot insert into a full list." << endl;
  else
     while (first <= last && !found)
    mid = (first + last) / 2;
       if (list[mid] == item)
          found = true;
     else if (list[mid] > item)
       last = mid - 1;
     else
       first = mid + 1;
     }//end while
     if (found)
       cerr << "The insert item is already in the list. "
            << "Duplicates are not allowed." << endl;
     Else
       if (list[mid] < item)
       mid++;
       insertAt(mid, item);
}//end insertOrd
```

 Add binary search algorithm and the insertOrd algorithm to the class orderedArrayListType

```
template <class elemType>
class orderedArrayListType: public arrayListType<elemType>
{
  public:
     void insertOrd(const elemType&);
     int binarySearch(const elemType& item) const;
     orderedArrayListType(int size = 100);
};
```

- class orderedArrayListType
 - Derived from class arrayListType
 - List elements of orderedArrayListType
 - Ordered
- Must override functions insertAt and insertEnd of class arrayListType in class orderedArrayListType
 - If these functions are used by an object of type orderedArrayListType, list elements will remain in order

- Can also override function seqSearch
 - Perform sequential search on an ordered list
 - Takes into account that elements are ordered

TABLE 9-4 Number of comparisons for a list of length n

Algorithm	Successful search	Unsuccessful search
Sequential search	(n+1) / 2 = O(n)	n = O(n)
Binary search	$2\log_2 n - 3 = O(\log_2 n)$	$2\log_2(n+1) = O(\log_2 n)$

Lower Bound on Comparison-Based Search Algorithms

- Comparison-based search algorithms
 - Search list by comparing target element with list elements
- Sequential search: order n
- Binary search: order log₂n

Lower Bound on Comparison-Based Search Algorithms (cont'd.)

- Devising a search algorithm with order less than log₂n
 - Obtain lower bound on number of comparisons
- Cannot be comparison based

Theorem: Let L be a list of size n > 1. Suppose that the elements of L are sorted. If SRH(n) denotes the minimum number of comparisons needed, in the worst case, by using a comparison-based algorithm to recognize whether an element x is in L, then $SRH(n) \ge \log_2{(n+1)}$.

Corollary: The binary search algorithm is the optimal worst-case algorithm for solving search problems by the comparison method.

Hashing

- Algorithm of order one (on average)
- Requires data to be specially organized
 - Hash table
 - Helps organize data
 - Stored in an array
 - Denoted by HT
 - Hash function
 - Arithmetic function denoted by h
 - Applied to key X
 - Compute h(X): read as h of X
 - h(X) gives address of the item

Hashing (cont'd.)

- Organizing data in the hash table
 - Store data within the hash table (array)
 - Store data in linked lists
- Hash table HT divided into b buckets
 - -HT[0], HT[1], ..., HT[b-1]
 - Each bucket capable of holding r items
 - Follows that br = m, where m is the size of HT
 - Generally r = 1
 - Each bucket can hold one item
- The hash function h maps key X onto an integer t
 - h(X) = t, such that 0 <= h(X) <= b 1

Hashing (cont'd.)

- See Examples 9-2 and 9-3
- Synonym
 - Occurs if $h(X_1) = h(X_2)$
 - Given two keys X_1 and X_2 , such that $X_1 \neq X_2$
- Overflow
 - Occurs if bucket t full
- Collision
 - Occurs if $h(X_1) = h(X_2)$
 - Given X₁ and X₂ nonidentical keys

Hashing (cont'd.)

- Overflow and collision occur at same time
 - If r = 1 (bucket size = one)
- Choosing a hash function
 - Main objectives
 - Choose an easy to compute hash function
 - Minimize number of collisions
- If HTSize denotes the size of hash table (array size holding the hash table)
 - Assume bucket size = one
 - Each bucket can hold one item
 - Overflow and collision occur simultaneously

Hash Functions: Some Examples

- Mid-square
- Folding
- Division (modular arithmetic)
 - In C++

```
• h(X) = i_x % HTSize;
```

C++ function

```
int hashFunction(char *insertKey, int keyLength)
{
   int sum = 0;

   for (int j = 0; j < keyLength; j++)
       sum = sum + static_cast<int>(insertKey[j]);

   return (sum % HTSize);
} // end hashFunction
```

Collision Resolution

- Desirable to minimize number of collisions
 - Collisions unavoidable in reality
 - Hash function always maps a larger domain onto a smaller range
- Collision resolution technique categories
 - Open addressing (closed hashing)
 - Data stored within the hash table
 - Chaining (open hashing)
 - Data organized in linked lists
 - Hash table: array of pointers to the linked lists

Collision Resolution: Open Addressing

- Data stored within the hash table
 - For each key X, h(X) gives index in the array
 - Where item with key X likely to be stored

Linear Probing

- Starting at location t
 - Search array sequentially to find next available slot
- Assume circular array
 - If lower portion of array full
 - Can continue search in top portion of array using mod operator
 - Starting at t, check array locations using probe sequence
 - t, (t + 1) % HTSize, (t + 2) % HTSize, . . . , (t + j) % HTSize

Linear Probing (cont'd.)

- The next array slot is given by
 - -(h(X) + j) % HTSize where j is the jth probe
- See Example 9-4
- C++ code implementing linear programming

```
hIndex = hashFunction(insertKey);
found = false;

while (HT[hIndex] != emptyKey && !found)
    if (HT[hIndex].key == key)
        found = true;
    else
        hIndex = (hIndex + 1) % HTSize;

if (found)
    cerr << "Duplicate items are not allowed." << endl;
else
    HT[hIndex] = newItem;</pre>
```

Linear Probing (cont'd.)

- Causes clustering
 - More and more new keys would likely be hashed to the array slots already occupied

FIGURE 9-5 Hash table of size 20

FIGURE 9-6 Hash table of size 20 with certain positions occupied

FIGURE 9-7 Hash table of size 20 with certain positions occupied

Linear Probing (cont'd.)

- Improving linear probing
 - Skip array positions by fixed constant (c) instead of one
 - New hash address: $(h(X) + i \star c) \% HTSize$
 - If c = 2 and h(X) = 2k (h(X) even)
 - Only even-numbered array positions visited
 - If c = 2 and h(X) = 2k + 1, (h(X) odd)
 - Only odd-numbered array positions visited
 - To visit all the array positions
 - Constant c must be relatively prime to HTSize

Random Probing

- Uses random number generator to find next available slot
 - $-i^{th}$ slot in probe sequence: $(h(X) + r_i)$ % HTSize
 - Where r_i is the ith value in a random permutation of the numbers 1 to HTSize 1
 - All insertions, searches use same random numbers sequence
- See Example 9-5

Rehashing

- If collision occurs with hash function h
 - Use a series of hash functions: h_1, h_2, \ldots, h_s
 - If collision occurs at h(X)
 - Array slots $h_i(X)$, $1 \le h_i(X) \le s$ examined

Quadratic Probing

- Suppose
 - Item with key X hashed at t (h(X) = t and 0 <= t <= HTSize - 1)
 - Position t already occupied
- Starting at position t
 - Linearly search array at locations (t + 1)% HTSize, $(t + 2^2)\%$ HTSize = (t + 4)%HTSize, $(t + 3^2)\%$ HTSize = (t + 9)% HTSize, . . . , $(t + i^2)\%$ HTSize
- Probe sequence: t, (t + 1) % HTSize $(t + 2^2)$ % HTSize, $(t + 3^2)$ % HTSize, . . . , $(t + i^2)$ % HTSize

- See Example 9-6
- Reduces primary clustering
- Does not probe all positions in the table
 - Probes about half the table before repeating probe sequence
 - When HTSize is a prime
 - Considerable number of probes
 - Assume full table
 - Stop insertion (and search)

Generating the probe sequence

$$2^{2} = 1 + (2 \cdot 2 - 1)$$

$$3^{2} = 1 + 3 + (2 \cdot 3 - 1)$$

$$4^{2} = 1 + 3 + 5 + (2 \cdot 4 - 1)$$

$$\vdots$$

$$i^{2} = 1 + 3 + 5 + 7 + \dots + (2 \cdot i - 1), \quad i \ge 1.$$

Thus, it follows that

$$(t+i^2)$$
 % HTSize = $(t+1+3+5+7+...+(2\cdot i-1))$ % HTSize

Consider probe sequence

```
-t, t+1, t+2^2, t+3^2, ..., (t+l^2) % HTSize
```

- C++ code computes ith probe
 - $(t + \hat{r})$ % HTSize

```
int inc = 1;
int pCount = 0;

while (p < i)
{
    t = (t + inc) % HTSize;
    inc = inc + 2;
    pCount++;
}</pre>
```

Pseudocode implementing quadratic probing

```
int pCount;
int inc;
int hIndex;
hIndex = hashFunction(insertKey);
pCount = 0;
inc = 1;
while (HT[hIndex] is not empty
      && HT[hIndex] is not the same as the insert item
      && pCount < HTSize / 2)
    pCount++;
    hIndex = (hIndex + inc ) % HTSize;
    inc = inc + 2;
if (HT[hIndex] is empty)
    HT[hIndex] = newItem;
else if (HT[hIndex] is the same as the insert item)
    cerr << "Error: No duplicates are allowed." << endl;
else
    cerr << "Error: The table is full. "
         << "Unable to resolve the collisions." << endl;
```

- Random, quadratic probings eliminate primary clustering
- Secondary clustering
 - Random, quadratic probing functions of home positions
 - Not original key

- Secondary clustering (cont'd.)
 - If two nonidentical keys $(X_1 \text{ and } X_2)$ hashed to same home position $(h(X_1) = h(X_2))$
 - Same probe sequence followed for both keys
 - If hash function causes a cluster at a particular home position
 - Cluster remains under these probings

- Solve secondary clustering with double hashing
 - Use linear probing
 - Increment value: function of key
 - If collision occurs at h(X)
 - Probe sequence generation

```
(h(X) + i * g(X)) % HTSize where g is the second hash function, and i = 0, 1, 2, 3, \ldots
If the size of the hash table is a prime p, then we can define g as follows: g(k) = 1 + (k \% (p - 2))
```

See Examples 9-7 and 9-8

Deletion: Open Addressing

- Designing a class as an ADT
 - Implement hashing using quadratic probing
- Use two arrays
 - One stores the data
 - One uses indexStatusList as described in the previous section
 - Indicates whether a position in hash table free, occupied, used previously
- See code on pages 521 and 522
 - Class template implementing hashing as an ADT
 - Definition of function insert.

Collision Resolution: Chaining (Open Hashing)

- Hash table HT: array of pointers
 - For each j, where $0 \le j \le HTsize$ -1
 - HT[j] is a pointer to a linked list
 - Hash table size (HTSize): less than or equal to the number of items

FIGURE 9-10 Linked hash table

- Item insertion and collision
 - For each key X (in the item)
 - First find h(X) t, where $0 \le t \le HTSize 1$
 - Item with this key inserted in linked list pointed to by HT[t]
 - For nonidentical keys X₁ and X₂
 - If $h(X_1) = h(X_2)$
 - Items with keys X_1 and X_2 inserted in same linked list
 - Collision handled quickly, effectively

Search

- Determine whether item R with key X is in the hash table
 - First calculate h(X)
- Example: h(X) = T
 - Linked list pointed to by HT[t] searched sequentially

Deletion

- Delete item R from the hash table
 - Search hash table to find where in a linked list R exists
 - Adjust pointers at appropriate locations
 - Deallocate memory occupied by R

- Overflow
 - No longer a concern
 - Data stored in linked lists
 - Memory space to store data allocated dynamically
 - Hash table size
 - No longer needs to be greater than number of items
 - Hash table less than the number of items
 - Some linked lists contain more than one item
 - Good hash function has average linked list length still small (search is efficient)

- Advantages of chaining
 - Item insertion and deletion: straightforward
 - Efficient hash function
 - Few keys hashed to same home position
 - Short linked list (on average)
 - Shorter search length
 - If item size is large
 - Saves a considerable amount of space

- Disadvantage of chaining
 - Small item size wastes space
- Example: 1000 items each requires one word of storage
 - Chaining
 - Requires 3000 words of storage
 - Quadratic probing
 - If hash table size twice number of items: 2000 words
 - If table size three times number of items
 - Keys reasonably spread out
 - Results in fewer collisions

Hashing Analysis

- Load factor
 - Parameter α

$$\alpha = \frac{\text{Number of records in the table}}{HTSize}$$

TABLE 9-5 Number of comparisons in hashing

	Successful search	Unsuccessful search
Linear probing	$\frac{1}{2}\left\{1+\frac{1}{1-\alpha}\right\}$	$\frac{1}{2}\left\{1+\frac{1}{\left(1-\alpha\right)^2}\right\}$
Quadratic probing	$\frac{-\log_2(1-\alpha)}{\alpha}$	$\frac{1}{1-\alpha}$
Chaining	$1+\frac{\alpha}{2}$	α

Summary

- Sequential search
 - Order n
- Ordered lists
 - Elements ordered according to some criteria
- Binary search
 - − Order log₂n
- Hashing
 - Data organized using a hash table
 - Apply hash function to determine if item with a key is in the table
 - Two ways to organize data

Summary (cont'd.)

- Hash functions
 - Mid-square
 - Folding
 - Division (modular arithmetic)
- Collision resolution technique categories
 - Open addressing (closed hashing)
 - Chaining (open hashing)
- Search analysis
 - Review number of key comparisons
 - Worst case, best case, average case