Programming Assignment 3 – Code Book

Raw Data Information:

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

Transformations:

The raw data, which was separated to a training set and a test set, was merged into a single dataset. Only the variables which measured the mean or standard deviation of their corresponding measurement were extracted. Label names were fixed for readability.

Final Dataset information:

Following the transformations, 2 datasets with identical variable names were created:

alldata.txt

This dataset contains the complete clean data for all the participants for all their runs.

meandata.txt

This dataset contains the mean of each variable, per participant per activity.

Variable information:

<u>subjectid</u> – a unique number between 1-30 identifying a unique subject.

activity – a factor with 6 levels, each corresponding to an activity:

- 1. WALKING
- 2. WALKING_UPSTAIRS
- 3. WALKING DOWNSTAIRS
- 4. SITTING
- STANDING
- 6. LAYING

Getting and Cleaning Data course on Coursera - final assignment

Other variables:

The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz. Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag). Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerkMay, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).

These signals were used to estimate variables of the feature vector for each pattern: ('-XYZ' is used to denote 3-axial signals in the X, Y and Z directions)

- 1. tBodyAcc-XYZ
- 2. tGravityAcc-XYZ
- 3. tBodyAccJerk-XYZ
- 4. tBodyGyro-XYZ
- 5. tBodyGyroJerk-XYZ
- 6. tBodyAccMag
- 7. tGravityAccMag
- 8. tBodyAccJerkMag
- 9. tBodyGyroMag
- 10. tBodyGyroJerkMag
- 11. fBodyAcc-XYZ
- 12. fBodyAccJerk-XYZ
- 13. fBodyGyro-XYZ
- 14. fBodyAccMag
- 15. fBodyAccJerkMag
- 16. fBodyGyroMag
- 17. fBodyGyroJerkMag

The set of variables that were estimated from these signals, per each direction are:

- 1. mean(): Mean value
- 2. std(): Standard deviation

Overall, there are 8 measurements that have X, Y, and Z directions and another 9 measurements, and the variables measures the mean and standard deviation for each measurement, for a total of (8*3+9)*2 = 66 variables.