

Report Number: F690501/RF-RTL003483 Page: 1 of 48

TEST REPORT

of

FCC Part 15 Subpart B&C §15.247

FCC ID: A3LCL80

Equipment Under Test : Digital Camera

Model Name : SAMSUNG CL80 (the addition of model

names: SAMSUNG ST5500, VLUU ST5500)

Serial No. : N/A

Applicant : SAMSUNG ELECTRONICS CO., LTD.

Manufacturer : Samsung Electronics America Inc.

Date of Test(s) : $2009.12.02 \sim 2009.12.04$

Date of Issue : 2009.12.04

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Duke Ko

Approved By

Denny Ham

Date

2009.12.04

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003483 Page: 2 of 48

INDEX

Table of contents

1. General information	3
2. Transmitter AC Power Line Conducted Emission	7
3. Receiver AC Power Line Conducted Emission	12
4. Transmitter radiated spurious emissions and conducted spurious emission	16
5. Receiver Radiated Spurious Emission	29
6. 6 dB bandwidth	31
7. Maximum peak output power	36
8. Power Spectral Density	41
9. Antenna requirement	46
10. RF Exposure evaluation	47

Report Number: F690501/RF-RTL003483 Page: 3 of 48

1. General Information

1.1. Testing Laboratory

SGS Testing Korea Co., Ltd.

- Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-dong, Korea

- 705, Dongcheon-dong Suji-gu, Yongin-si, Gyeonggi-do, Korea

www.electrolab.kr.sgs.com

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371

1.2. Details of Applicant

Applicant : SAMSUNG ELECTRONICS CO., LTD.

Address : 416, Maetan-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

Contact Person : Park, Yong Sang Phone No. : +82 +31 8006 8314

1.3. Description of EUT

Kind of Product	Digital Camera
Model Name	SAMSUNG CL80 (the addition of model names : SAMSUNG ST5500, VLUU ST5500)
Serial Number	N/A
Power Supply	DC 3.8 V (Li-ion Battery)
Frequency Range	2412 ~ 2462 MHz (802.11b/g)
Modulation Technique	DSSS, OFDM
Number of Channels	11 ch.
Operating Conditions	0 ~ 40 ℃
Antenna Type	Integral Type (FPCB Antenna)
Antenna Gain	-0.71 dBi
H/W Version	SP1_PV_09XXXX
S/W Version	910081

1.4 Details of modification

- For marketing strategy, added model names are used for overseas version.
- All models are exactly same for the hardware and software.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003483 Page: 4 of 48

1.5. Test Equipment List

EQUIPMENT	MANUFACTURER	MODEL	CAL DUE.
Signal Generator	Rohde & Schwarz	SMR40	Jan. 21, 2010
Spectrum Analyzer	Agilent	E4440A	Apr. 01, 2010
Spectrum Analyzer	R & S	FSV30	May 15, 2010
Preamplifier	H.P	8447F	Jul. 02, 2010
Preamplifier	Agilent	8449B	Apr. 01, 2010
High Pass Filter	Wainwright	WHK3.0/18G-10SS	Sep. 29, 2010
Test Receiver	R & S ESU26		Apr. 21, 2010
Bilog Antenna	Bilog Antenna SCHWARZBECK MESSELEKTRONIK VULB9163		Jul. 22, 2010
Horn Antenna	Horn Antenna R & S HF 906		Jan. 10, 2010
Anechoic Chamber	SY Corporation	$L \times W \times H$ $(9.6 \text{ m} \times 6.4 \text{ m} \times 6.6 \text{ m})$	Jan. 31, 2010
Two-Line V-Network	R & S	ENV216	Jan. 07, 2010
Test Receiver	R & S	ESHS10	Jul. 13, 2010
Anechoic Chamber	SY Corporation	$L \times W \times H$ (6.5 m×3.5 m×3.5 m)	N.C.R

Report Number: F690501/RF-RTL003483 Page: 5 of 48

1.6. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD:FCC Part15 subpart B&C							
Standard section	Standard section Test Item						
15.207	Transmitter AC Power Line Conducted Emission	Complied					
15.107	Receiver AC Power Line Conducted Emission	Complied					
15.205(a) 15.209 15.247(d)	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied					
15.109(a)	Receiver Radiated Spurious Emission	Complied					
15.247(a)(2)	6 dB Bandwidth and 99% BW	Complied					
15.247(b)(3)	Maximum Peak Output Power	Complied					
15.247(e)	Power Spectral Density	Complied					

Report Number: F690501/RF-RTL003483 Page: 6 of 48

1.7. Conclusion of worst-case

The field strength of spurious emission was measured in three orthogonal EUT positions(X-axis, Y-axis and Z-axis). Worst case is z-axis.

1.8 Test report revision

Revision	Report number	Description
0	F690501/RF-RTL003483	Initial

Report Number: F690501/RF-RTL003483 Page: 7 of 48

2. Transmitter AC Power Line Conducted Emission

2.1. Test Setup

2.2. Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Eneguatory of Emission (MHz)	Conducted limit (dBμV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15 – 0.50	66-56*	56-46*			
0.50 – 5.00	56	46			
5.00 – 30.0	60	50			

^{*} Decreases with the logarithm of the frequency.

Report Number: F690501/RF-RTL003483 Page: 8 of 48

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

- 1. The test procedure is performed in a $6.5m \times 3.6m \times 3.6m$ (L×W×H) shielded room. The EUT along with its peripherals were placed on a $1.0m(W) \times 1.5m(L)$ and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

Report Number: F690501/RF-RTL003483 Page: 9 of 48

2.4. Test Results (Worst case configuration_11b mode)

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Frequency range : 0.15 MHz - 30 MHz

Measured Bandwidth : 9 kHz

FREQ.	LEVEL	(dBuV)	LINE	LIMIT(dBuV)	MARG	IN(dB)
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.21	46.30	33.60	Н	63.21	53.21	16.91	19.61
0.41	40.40	28.80	Н	57.65	47.65	17.25	18.85
0.53	39.90	26.50	Н	56.00	46.00	16.10	19.50
1.85	33.20	22.60	Н	56.00	46.00	22.80	23.40
6.20	37.70	28.80	Н	60.00	50.00	22.30	21.20
9.03	35.50	28.50	Н	60.00	50.00	24.50	21.50
0.19	30.00	20.50	N	64.26	54.26	34.26	33.76
0.42	41.00	29.30	N	57.55	47.55	16.55	18.25
0.53	40.20	26.80	N	56.00	46.00	15.80	19.20
1.93	34.10	23.10	N	56.00	46.00	21.90	22.90
6.10	34.30	26.20	N	60.00	50.00	25.70	23.80
25.00	21.40	13.90	N	60.00	50.00	38.60	36.10

Note;

Line (H) : Hot Line (N) : Neutral

Report Number: F690501/RF-RTL003483 Page: 10 of 48

Plot of Conducted Power line

Test mode: (Hot)

Report Number: F690501/RF-RTL003483 Page: 11 of 48

Test mode: (Neutral)

Report Number: F690501/RF-RTL003483 Page: 12 of 48

3. Receiver AC Power Line Conducted Emission

3.1. Test Setup- Same as clause 2.1.

3.2. Limit

According to §15.107(a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

Evacuation of Emission (MHz)	Conducted limit (dBμV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15 – 0.50	66-56*	56-46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

^{*} Decreases with the logarithm of the frequency.

Report Number: F690501/RF-RTL003483 Page: 13 of 48

3.3. Test Procedures- Same as clause 2.3.

3.4. Test Results (Worst case configuration 11b mode)

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line;

Addition,

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Frequency range : 0.15 MHz - 30 MHz

Measured Bandwidth : 9 kHz

FREQ.	LEVEL	(dBuV)	LINE	LIMIT((dBuV)	MARG	IN(dB)
(MHz)	Q-Peak	Average	LINE	Q-Peak	Average	Q-Peak	Average
0.22	38.60	21.30	Н	63.01	53.01	24.41	31.71
0.41	40.50	27.90	Н	57.65	47.65	17.15	19.75
0.53	39.70	25.80	Н	56.00	46.00	16.30	20.20
1.95	31.40	21.00	Н	56.00	46.00	24.60	25.00
6.43	35.30	27.20	Н	60.00	50.00	24.70	22.80
25.90	19.70	13.70	Н	60.00	50.00	40.30	36.30
0.18	44.30	21.70	N	64.49	54.49	20.19	32.79
0.42	40.80	28.60	N	57.55	47.55	16.75	18.95
0.53	40.10	26.50	N	56.00	46.00	15.90	19.50
1.85	33.90	23.50	N	56.00	46.00	22.10	22.50
6.10	33.70	25.90	N	60.00	50.00	26.30	24.10
25.19	21.70	21.90	N	60.00	50.00	38.30	28.10

Note;

 $\begin{array}{ccc} Line \left(\ H \ \right) & : & Hot \\ Line \left(\ N \ \right) & : & Neutral \end{array}$

Report Number: F690501/RF-RTL003483 Page: 14 of 48

Plot of Conducted Power line

Test mode: (Hot)

Report Number: F690501/RF-RTL003483 Page: 15 of 48

Test mode: (Neutral)

Report Number: F690501/RF-RTL003483 Page: 16 of 48

4. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

4.1. Test Setup

4.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 24 GHz Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003483 Page: 17 of 48

4.1.2. Conducted Spurious Emission

4.2. Limit

According to \$15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section \$15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section \$15.205(a), must also comply the radiated emission limits specified in section \$15.205(c))

According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Distance (Meters)	Field Strength (dBµV/m)	Field Strength (μV/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

Report Number: F690501/RF-RTL003483 Page: 18 of 48

4.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

4.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz for Peak detection and frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz.

4.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=100 kHz, VBW=100 kHz.

Report Number: F690501/RF-RTL003483 Page: 19 of 48

4.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

4.4.1. Spurious Radiated Emission (Worst case configuration 11b mode)

The frequency spectrum from 30 MHz to 1000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Radiated Emissions		Ant	Correctio	n Factors	Total	Total FCC Lin		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
181.787	37.60	Peak	Н	9.42	-26.39	20.63	43.50	22.87
211.269	38.90	Peak	Н	10.56	-26.14	23.32	43.50	20.18
234.791	45.50	Peak	Н	11.84	-25.94	31.40	46.00	14.60
258.273	48.60	Peak	Н	12.01	-25.78	34.83	46.00	11.17
281.755	47.20	Peak	Н	12.93	-25.70	34.43	46.00	11.57
305.238	43.40	Peak	Н	13.43	-25.66	31.17	46.00	14.83
328.679	38.80	Peak	Н	14.06	-25.75	27.11	46.00	18.89
352.202	34.60	Peak	Н	14.77	-25.85	23.52	46.00	22.48
540.018	36.50	Peak	V	17.88	-26.53	27.85	46.00	18.15
Above 600.000	Not detected	-	-	-	-	-	-	-

Remark:

^{1.} All spurious emission at channels are almost the same below 1 GHz, so that the channel was chosen at representative in final test.

^{2.} Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL003483 Page: 20 of 48

4.4.2. Spurious Radiated Emission

The frequency spectrum above 1000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB.

DSSS: 802.11b

Low Channel (2412 MHz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2390.000	24.46	Peak	V	28.05	4.84	57.35	74.00	16.65
*2390.000	13.67	Average	V	28.05	4.84	46.56	54.00	7.44

Radiated Emissions		Ant	Correctio	n Factors	Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4824.125	45.86	Peak	V	33.01	-27.79	51.08	74.00	22.92
Above 4900.000	Not detected	-	-	-	-	-	-	-

Middle Channel (2437 MHz)

Radi	Radiated Emissions		Ant	Correction Factors		Total	FCC Limit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4873.136	45.18	Peak	V	33.14	-27.63	50.70	74.00	23.30
Above 4900.000	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL003483 Page: 21 of 48

High Channel (2462 MHz)

Radiated Emissions		Ant	Correctio	n Factors	Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2483.500	25.83	Peak	V	28.18	4.78	58.79	74.00	15.21
*2483.500	12.85	Average	V	28.18	4.78	45.81	54.00	8.19

Radi	Radiated Emissions		Ant	Correctio	Correction Factors		FCC L	imit
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4925.693	44.52	Peak	V	33.29	-27.38	50.43	74.00	23.57
Above 5000.000	Not detected	-	-	-	-	-	-	-

OFDM: 802.11g Low Channel (2412 MHz)

Radiated Emissions		Ant	Correction Factors		Total	FCC Limit		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2390.000	33.02	Peak	V	28.05	4.84	65.91	74.00	8.09
*2390.000	18.78	Average	V	28.05	4.84	51.67	54.00	2.33

Radi	Radiated Emissions		Ant	Correctio	n Factors	Total	FCC Limit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4823.972	45.16	Peak	V	33.01	-27.79	50.38	74.00	23.62
Above 4900.000	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL003483 Page: 22 of 48

Middle Channel (2437 MHz)

Radiated Emissions		Ant	Correctio	n Factors	Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4874.006	44.71	Peak	V	33.15	-27.62	50.23	74.00	23.77
Above 4900.000	Not detected	-	-	-	-	-	-	-

High Channel (2462 MHz)

Radiated Emissions		Ant	Correction Factors		Total	FCC L	imit	
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*2483.500	32.19	Peak	V	28.18	4.78	65.15	74.00	8.85
*2483.500	17.85	Average	V	28.18	4.78	50.81	54.00	3.19

Radiated Emissions		Ant	Correctio	Correction Factors		FCC Limit		
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4923.948	44.84	Peak	V	33.29	-27.38	50.74	74.00	23.26
Above 5000.000	Not detected	-	-	-	-	-	-	-

Remarks;

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental Frequency.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5. Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL003483 Page: 23 of 48

4.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission

DSSS: 802.11b Low Channel

Report Number: F690501/RF-RTL003483 Page: 24 of 48

Middle Channel

Report Number: F690501/RF-RTL003483 Page: 25 of 48

High Channel

Report Number: F690501/RF-RTL003483 Page: 26 of 48

OFDM: 802.11g

Low Channel

Report Number: F690501/RF-RTL003483 Page: 27 of 48

Middle Channel

Report Number: F690501/RF-RTL003483 Page: 28 of 48

High Channel

Report Number: F690501/RF-RTL003483 Page: 29 of 48

5. Receiver Radiated spurious emissions

5.1. Test setup - Same as clause 4.1.

5.1.1. Receiver Radiated Spurious Emissions - Same as clause 4.1.1.

5.2. Limit

According to §15.109(a), Except for Class A digital devices, the field strength of radiated emission from unintentional radiator at a distance of 3 m shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30 - 88	3	40.0	100
88 – 216	3	43.5	150
216 – 960	3	46.0	200
Above 960	3	54.0	500

5.3. Test Procedures - Same as clause 4.3.

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

5.3.1. Test Procedures for Radiated Spurious Emissions- Same as clause 4.3.1.

Report Number: F690501/RF-RTL003483 Page: 30 of 48

5.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

3.4.1. Spurious Radiated Emission (Worst case configuration 11b mode)

The frequency spectrum from 30 MHz to 1000 MHz was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values.

Radi	ated Emissio	ons	Ant	Correction Factors		Total	FCC L	imit
Frequency (MHz)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
187.827	37.10	Peak	Н	10.00	-26.34	20.76	43.50	22.74
211.309	40.80	Peak	Н	10.56	-26.14	25.22	43.50	18.28
234.791	45.70	Peak	Н	11.84	-25.94	31.60	46.00	14.40
258.273	48.20	Peak	Н	12.01	-25.78	34.43	46.00	11.57
281.755	48.70	Peak	Н	12.93	-25.70	35.93	46.00	10.07
305.238	43.20	Peak	Н	13.43	-25.66	30.97	46.00	15.03
328.679	38.10	Peak	Н	14.06	-25.75	26.41	46.00	19.59
352.202	35.70	Peak	Н	14.77	-25.85	24.62	46.00	21.38
540.018	36.00	Peak	V	17.88	-26.53	27.35	46.00	18.65
Above 600.000	Not detected	-	-	-	-	-	-	-

Remark:

- 1. All spurious emission at channels are almost the same below 1 GHz, so that the channel was chosen at representative in final test.
- 2. Actual = Reading + AF + AMP + CL

Report Number: F690501/RF-RTL003483 Page: 31 of 48

6. 6 dB Bandwidth Measurement and 99% BW

6.1. Test Setup

6.2. Limit

6.2.1. 6 dB Bandwidth

According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902 ~928 MHz , $2400 \sim 2483.5$ MHz, and $5725 \sim 5825$ MHz bands. The minimum of 6dB Bandwidth shall be at least 500 kHz

6.2.2. 99% BW

Not Applicable

6.3. Test Procedure

- 1. The 6 dB band width was measured with a spectrum analyzer connected to RF antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 6 dB band width of the emission was determined.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=100 kHz, VBW=100 kHz, Span=50 MHz.

Report Number: F690501/RF-RTL003483 Page: 32 of 48

6.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Channel	Channel Frequency (MHz)	6 dB Bandwidth (MHz)	Minimun Limit (MHz)
	Low	2412	6.92	
DSSS (802.11b)	Middle	2437	6.16	
	High	2462	6.29	0.5
	Low	2412	15.68	0.3
OFDM (802.11g)	Middle	2437	15.75	
	High	2462	15.95	

Operation Mode	Channel	Channel Frequency (MHz)	99 % Bandwidth (MHz)	Limit
DSSS (802.11b)	Low	2412	11.96	Not Applicable
	Middle	2437	11.96	
	High	2462	11.96	
OFDM (802.11g)	Low	2412	16.27	
	Middle	2437	16.27	
	High	2462	16.27	

Report Number: F690501/RF-RTL003483 Page: 33 of 48

DSSS: 802.11b Low Channel

Middle Channel

Report Number: F690501/RF-RTL003483 Page: 34 of 48

High Channel

OFDM: 802.11g

Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003483 Page: 35 of 48

Middle Channel

High Channel

Report Number: F690501/RF-RTL003483 Page: 36 of 48

7. Maximum Peak Output Power Measurement

7.1. Test Setup

7.2. Limit

According to §15.247(b)(3), for systems using digital modulation in the 902 ~ 928 MHz, 2400 ~2483.5 MHz, and 5725 ~ 5850 MHz band: 1 Watt. As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements. The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4), the conducted output power limit specified in paragraph(b) of this section is based on the use of antenna with directional gains that do not exceed 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the Spectrum analyzer as RBW = 1 MHz, VBW ≥ RBW, Span = Auto, Channel BW = 99 % BW.

Report Number: F690501/RF-RTL003483 Page: 37 of 48

7.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Channel	Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)
	Low	2412	19.74	30
DSSS (802.11b)	Middle	2437	18.27	30
	High	2462	18.35	30
OFDM (802.11g)	Low	2412	16.16	30
	Middle	2437	17.10	30
	High	2462	16.70	30

Report Number: F690501/RF-RTL003483 Page: 38 of 48

DSSS: 802.11b Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003483 Page: 39 of 48

High Channel

OFDM: 802.11g Low Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003483 Page: 40 of 48

Middle Channel

High Channel

Report Number: F690501/RF-RTL003483 Page: 41 of 48

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1. Test Setup

8.2. Limit

§15.247(e) For digitally modulated system, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

8.3. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the Max Hold function record the separation of adjacent channels.
- 4. Repeat above procedures until all frequencies measured were complete.
- 5. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using; RBW=3 kHz, VBW=10 kHz, Span=300 kHz and Sweep=100 s.

Report Number: F690501/RF-RTL003483 Page: 42 of 48

8.4. Test Results

Ambient temperature : 24 $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Frequency	Final RF Power Level in 3 kHz BW (dBm)	Maximum Limit (dBm)
	2412 MHz	-4.78	8
DSSS (802.11b)	2437 MHz	-4.74	8
	2462 MHz	-4.90	8
	2412 MHz	-12.04	8
OFDM (802.11g)	2437 MHz	-11.29	8
	2462 MHz	-11.95	8

Report Number: F690501/RF-RTL003483 Page: 43 of 48

DSSS: 802.11b Low Channel

Middle Channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report Number: F690501/RF-RTL003483 Page: 44 of 48

High Channel

OFDM: 802.11g Low Channel

Report Number: F690501/RF-RTL003483 Page: 45 of 48

Middle Channel

High Channel

Report Number: F690501/RF-RTL003483 Page: 46 of 48

9. Antenna Requirement

9.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dBi.

9.2. Antenna Connected Construction

Antenna used in this product is Integral type (FPCB) gain of -0.71 dBi.

Report Number: F690501/RF-RTL003483 Page: 47 of 48

10. RF Exposure Evaluation

10.1 Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in §1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength(V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time		
(A) Limits for Occupational /Control Exposures						
300 – 1500			F/300	6		
1500 - 100000			5	6		
(B) Limits for General Population/Uncontrol Exposures						
300 – 1500			F/1500	6		
<u>1500 - 100000</u>			1	<u>30</u>		

10.1.1. Friis transmission formula: $Pd = (Pout*G)/(4*pi*R^2)$

Where $Pd = power density in mW/cm^2$

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Report Number: F690501/RF-RTL003483 Page: 48 of 48

10.1.2. Test Result of RF Exposure Evaluation

Test Item : RF Exposure Evaluation Data

Test Mode : Normal Operation

10.1.3. Output Power into Antenna & RF Exposure Evaluation Distance

DSSS: 802.11b

Channel	Channel Frequency (MHz)	Output Peak Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at 20cm (mW/cm ²)	LIMITS (mW/cm²)
Low	2412	19.74	-0.71	0.0159	1
Middle	2437	18.27	-0.71	0.0113	1
High	2462	18.35	-0.71	0.0115	1

OFDM: 802.11g

Channel	Channel Frequency (MHz)	Output Peak Power to Antenna (dBm)	Antenna Gain (dBi)	Power Density at 20cm (mW/cm²)	LIMITS (mW/cm²)
Low	2412	16.16	-0.71	0.0070	1
Middle	2437	17.10	-0.71	0.0087	1
High	2462	16.70	-0.71	0.0079	1

Note:

10.2. Collocation RF exposure WLAN and BT

- Worst cases of WLAN is 0.0159 mW/cm² at 2412 MHz.
- Worst cases of BT is 0.0009 mW/cm² at 2441 MHz.
- RF Exposure of BT is very small portion of 1 mW/cm².

^{1.} The power density Pd (5th column) at a distance of 20cm calculated from the friis transmission formula is far below the limit of 1 mW/cm^2 .