On page 6, paragraph 2, please make the following changes:

As shown in Figs. 2-3, the carriage assembly (18) contains the entire firing assembly, including a carriage (42), preferably constructed of 10/20 steel hardened to Rockwell 55. The carriage (42), of course, may be constructed of any suitable material known in the art. As shown in Fig. 3, the carriage (42) includes a front plate (44), a bottom plate pair (46) and a back strap (48). Provided on the bottom plate pair (46) are a plurality of holes and a slot (50). The slot (50) is preferably cut at a forty-five degree angle, with parallel walls (52) opening to a circular recess (54), having a diameter greater than the distance between the walls (52). Means are provided for pivotably coupling the carriage assembly (18) to the frame (12) in a manner which allows the carriage assembly (18) to disengage from the frame (12) upon pivoting the carriage assembly (18) a predetermined angle in relation to the frame (12). As shown in Fig. 2, this pivotable coupling means is a flat-sided pin (56), provided through the circular recess (54). The is a flatsided pin (56) which has a diameter across a first dimension only slightly smaller than the diameter of the circular recess (54), and a distance across a transverse direction only slightly smaller than the distance between the walls (52) of the slot (50). Preferably, this narrower distance is maintained across the entire dimension of the flat-sided pin (56), allowing the carriage assembly (48) to be removed from the frame (12) when the carriage assembly (18) is rotated a predetermined angle relative to the frame (12). The flat-sided pin (56) is secured to the frame (12) in such a manner that the carriage assembly (18) must be rotated in excess of fortyfive degrees before the flat-sided pin (56) is in proper alignment with the walls (52) of the slot (50) to allow the carriage assembly (18) to be removed from the frame. The flat-sided pin (56) is frictionally engaged with the frame (12) to prevent rotation of the flat-sided pin (56) relative to

the frame (12). Rotation of the flat sided pin (56) would prevent the desired removal of the carriage assembly (18) from the frame (12) upon rotation to the predetermined angle.

On page 12, paragraph 3, through page 13, paragraph 2, please make the following changes:

When it is desired to utilize the firearm (10) of the present invention, the tab (176) of the rear carriage catch (174) is moved rearward sufficiently to allow the keeper (180) to clear the lip (286) of the trigger guard assembly (96). (Fig. 2). The trigger guard (20) is then utilized to rotate the carriage assembly (18) in a counter-clockwise rotation around the flat sided pin (56). Means are provided for releasably engaging the hammer (66) when the carriage assembly (18) is pivoted in a first direction and for releasing the hammer (66) when the carriage assembly (18) is pivoted in a second direction. In the preferred embodiment, the engaging and releasing means is the primer pocket (224). As the carriage assembly (18) rotates, the primer pocket (224) motivates the hammer (66) in a counter-clockwise rotation. As the carriage assembly (18) rotates, the outward catch (80) of the hammer (66) contacts the sloped nose (206) of the hammer catch (194). The sloped nose (206) biases the hammer catch (194) rearward against the tension of the spring (208) until the outward catch (80) passes the nose (206), and allows the spring (208) to again motivate the hammer catch (194) forward. As shown in Fig. 12, the nose (206) of the hammer catch (194) is shaped with a flat bottom to prevent the outward catch (80) from passing by the hammer catch (194) in a clockwise motion until the hammer catch (194) is motivated rearward.

Means are provided for preventing the carriage assembly (18) from pivoting to a sufficient predetermined angle to allow the carriage assembly (18) to disengage from the frame (12). In the preferred embodiment, this means is the forward carriage release (268). If it is desired to remove the entire carriage assembly (18) for cleaning, inspection or repair, a finger of

a user (not shown) may be placed into the recess (282) to engage the finger recess (274) of the forward carriage release (268). Using the trigger guard (20) as a handle, the forward carriage release (268) is rotated clock-wise against the compression spring (280) until the catch plate (278) is retracted sufficiently so as to allow the stop (132) of the trigger guard assembly (96) to pass. To release the carriage assembly (18) the carriage assembly (18) must be rotated enough to align the flat sided pin (56) with the walls (52), to allow the flat sided pin (56) to move through the slot (50) and allow the carriage assembly (18) to disengage from the rest of the firearm (10). (Fig. 13). Although the flat sided pin (56) and slot (50) may be constructed of any suitable design or orientation, in the preferred embodiment, the flat sided pin (56) and slot (50) are oriented so that the flat sided pin (56) can slide through the slot (50) when the carriage assembly is oriented at an angle greater than thirty degrees, more preferably greater than forty degrees, and most preferably, forty-five degrees. Whatever angle for release is selected, it is important that the forward carriage release (268) and stop (132) be constructed in a manner such that the carriage assembly (18) cannot be released from the remainder of the firearm (10) unless the forward carriage release (268) has been manually rotated in a clockwise manner.

On page 14, paragraph 2, please make the following changes:

If it is desired to fire the firearm (10) the carriage assembly (18) is rotated as described above sufficiently to allow the carriage assembly (18) to clear the upper aperture (14) in the frame (12). The ignition system (250) is then inserted into the primer pocket (224) until it rests in an orientation such as that shown in Figs. 8, 14 and 15. Once the ignition system (250) has been so positioned, the carriage assembly (18) is rotated clockwise until the trigger guard assembly (96) contacts the rear carriage catch (174). (Fig. 16). The angle of both the trigger guard assembly (96) and the rear carriage catch (174) allow the rotation of the trigger guard assembly (96) to push the rear carriage catch (174) against the torsion of the torsion spring (192). Contact of the beak (184) with the hammer catch (194) prevents the rear carriage catch (174) from over rotating through either manual motivation or motivation by the trigger guard assembly (96). As the carriage assembly (18) rotates, the nose (206) of the hammer catch (194) engages the outward catch (80) of the hammer (66). To cock the hammer (66), means are provided for engaging the hammer (66) against pivoting relative to the frame (12) when the carriage assembly (18) is rotated in a clockwise rotation. In the preferred embodiment, the engaging means is while the sear (222), which engages the inward catch (82), thereby preventing the hammer (66) from rotating with the carriage assembly (18).