IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Original): A process for the preparation of polyurethane foams having improved long-term stability by reacting

- a) polyisocyanates with
- b) compounds having at least two hydrogen atoms reactive with isocyanate groups, in the presence of inhibitors in an amount of from 01. to 20% by weight, based on the weight of the polyurethane,

wherein the inhibitors are embedded in a substance which is inert under the conditions of the polyurethane preparation.

Claim 2 (Original): A process as claimed in claim 1, wherein the inhibitors are embedded in a wax.

Claim 3 (Original): A process as claimed in claim 1, wherein the inert substances have a melting point such that they melt during the reaction which results in the polyurethane.

Claim 4 (Original): A process as claimed in claim 1, wherein the inert substances have a heat of fusion of from 50 to 250 joules/gram.

Claim 5 (Currently Amended): A process as claimed in claim 1, wherein the melting point of the inert substances is from 20 to 150[[C]] °C.

Claim 6 (Original): A process as claimed in claim 2, wherein the wax contains one or more polar groups.

Claim 7 (Currently Amended): A process as claimed in claim 1, wherein the inhibitors are selected from the group consisting of α,β -unsaturated compounds, carboxylic acids, carboxylic acid derivatives, ketones Θ_1 aldehydes, lactones, lactams Θ_2 cyclic ethers, esters, sulfonic acids, cyclic sulfonic esters Θ_2 sulfones, salts of metals of subgroups I, II Θ_2 organic cyclic compounds, inorganic Θ_3 organic acids Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_3 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_3 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_3 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_4 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_4 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_4 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_4 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_4 and Θ_4 acid derivatives which can liberate acids in a hydrolysis process Θ_4 and Θ_4 acid derivatives Θ_4 a

Claim 8 (Original): A process as claimed in claim 1, wherein the encapsulated inhibitors are present in particulate form.

Claim 9 (Currently Amended): A process as claimed in claim 8, wherein the particles have a median particle diameter of from 20 to 800 cm μm.

Claim 10 (Currently Amended): A polyurethane which can be prepared by a process as claimed in any of claims 1 to 9 claim 1.