数字逻辑电路

清华大学计算机系

陶品

taopin@tsinghua.edu.cn

办公室: FIT 3-531 (13717813059)

课程基本情况 (5)

- 教学形式:讲课,辅导,网上、定时和现场答疑
- 学时安排:3学分,共48学时
- ■教学内容
 - □ 第一章:前言和基本知识介绍
 - □ 第二章 逻辑代数和化简方法
 - □ 第三章: 门电路
 - □ 第四章: 组合逻辑电路
 - □ 第五章: 肘序逻辑电路
 - □ 第六章: 可编程逻辑电路
 - □ 数字逻辑电路课程总复习

(第1周, 前3学时)

(第2、3周, 共6学时)

(第4周, 共3学时)

(第5~7周, 共9学时)

(第8~12周,共15学时)

(第13~15周, 共9学时)

(第16周,3学时)

第三章 组合逻辑电路

- 3.1 3 =
- 3.2 门电路
- 3.3 常用的中规模组合逻辑电路
- 3.4 运算器与ALU
- 3.5 组合逻辑电路中的竞争与冒险问题

3.1 组合逻辑引言 (1)

- 3.1 引言
 - □组合逻辑的概念
 - □组合逻辑电路的特点
 - □典型的组合逻辑电路
 - □集成电路的分类
 - □集成电路发展历史

- 3.1 组合逻辑引言 (2)
- 3.1 引言
 - □组合逻辑的概念
 - □组合逻辑电路的特点
 - □典型的组合逻辑电路
 - □集成电路的分类
 - □集成电路发展历史

3.1组合逻辑引言(3)

- ■組合逻辑的概念:组合逻辑函数的输出 状态取决于所有输入状态的"逻辑组 合",如与非、与或逻辑等。
- ■组合逻辑电路:实现组合逻辑函数的电路称为"组合逻辑电路",是主要的一类数字逻辑电路。另一类数字逻辑电路是"财序逻辑电路"。组合与财序电路构成了数字逻辑电路的基础。

- 3.1 组合逻辑引言 (4)
- 3.1 引言
 - □组合逻辑的概念
 - □组合逻辑电路的特点
 - □典型的组合逻辑电路
 - □集成电路的分类
 - □集成电路发展历史

3.1 组合逻辑引言 (5)

- ■组合逻辑电路的特点:
 - □电路的输出只是和输入的当前状态有关, 和过去的状态无关。
 - 口区别于时序电路:和过去的状态有关。

3.1 组合逻辑引言 (6)

组合逻辑: 电路的输出只是和当前状态有关,和过去的状态无关。

理想情况:门 电路没有延迟

3.1 组合逻辑引言 (7)

实际情况:门电 路存在延迟 t_{pD}

3.1 组合逻辑引言 (8)

3.1 组合逻辑引言 (9)

- 3.1 引言
 - □组合逻辑的概念
 - □组合逻辑电路的特点
 - 口典型的组合逻辑电路
 - □集成电路的分类
 - □集成电路发展历史

3.1 组合逻辑引言 (10)

- ■典型的组合逻辑电路
 - 口门电路 (Gates)
 - □译码器 (Decoders) 和编码器 (Encoders)
 - □数据选择器 (Multiplexer)
 - □加法器 (Adders)
 - □奇偶校验器
 - □ 算术逻辑单元 (ALU: Arithmetic Logic Units)

3.1 组合逻辑引言 (11)

- 3.1 引言
 - □组合逻辑的概念
 - □组合逻辑电路的特点
 - □典型的组合逻辑电路
 - 口集成电路的分类
 - □集成电路发展历史

3.1 组合逻辑引言 (12)

- ■集成电路的分类
 - □ 桉功能分:
 - 模拟电路:也叫线性电路,如通信电路
 - 数字电路:从门电路到微处理器、存储器等多种
 - □ 按半导体制造工艺:
 - TTL: (也叫双极型, TTL,LTTL,STTL,LSTTL,ECL···)
 - MOS: (PMOS,NMOS,CMOS,BiCMOS···)
 - □ 按封装 (外形) 分:
 - 双列直插
 - 表面封装
 - BGA(Ball Grid Array)
 - PLCC, 等等
 - □ 按集成规模分:
 - 小、中、大、超大、甚大规模集成电路

• • • • •

3.1 组合逻辑引言 (13)

■ 两大类工艺技术的特点:

	速度	功耗	集成度
TTL(晶体管晶体管逻辑)	快	大	低
MOS(金属氧化物半导体)	慢	小	高

- 目前常用器件的工艺:
 - □ CMOS (互补金属氧化物半导体)

3.1 组合逻辑引言 (14)

- 3.1 引言
 - □组合逻辑的概念
 - □组合逻辑电路的特点
 - □典型的组合逻辑电路
 - □集成电路的分类
 - □集成电路发展历史

3.1 组合逻辑引言 (15)

- ■集成电路发展历史
 - □ "集成电路" (Integrated Circuit: IC) 是相对"分立原件"而言的,是所有以半导体工艺将电路集成到一块芯片的器件总称。
 - □半导体制造工艺的发展带动了集成电路的更新换代。
 - □VLSI (超大规模集成电路) 时代存储器件制造工艺带动了整个微处理器的更新换代。没有IC制造工艺发展就没有现代计算机。

3.1 组合逻辑引言 (16)

- ■集成电路集成度定律:
 - □摩尔定律:单个芯片集成度每18个月翻 一翻
 - 集成电路内部的连线宽度是主要的指标:
 0.8 μm, 0.35 μm, 0.25μm, 0.18μm,
 0.13μm, 45nm, 7nm, 5nm, 3nm, 2nm,
 18A, 14A ······.

硅原子大小: 0.117nm 量子隧穿效应尺寸: 1nm

3.1 组合逻辑引言 (17)

- 按规模分:
 - □小规模集成电路 (SSI: Small Scale IC)
 - □中规模集成电路 (MSI: Medium Scale IC)
 - □ 大规模集成电路 (LSI: Large Scale IC)
 - □ 超大规模集成电路 (VLSI: Very large Scale IC)
 - □ 甚大规模集成电路 (ULSI: Ultra large Scale IC)

3.1 组合逻辑引言 (18)

(1) Small Scale IC (SSI)

小规模 IC 1965年

规模: 12个门/片电路以下

主要产品: 门电路

触发器 (Flip Flop)

3.1 组合逻辑引言 (19)

(2) Medium Scale IC (MSI) 中规模 IC 1970年 规模: 12-99个门/片 主要产品: 逻辑功能部件 4位ALU (8位寄存器)

3.1 组合逻辑引言 (20)

(3) Large Scale IC (LSI) 大规模 IC 1976年 规模: 100-9999个门/片 主要产品:规模更大的功能部件 存储器,8位CPU

3.1 组合逻辑引言 (21)

(4) Very large Scale IC (VLSI) 超大规模 IC 80年代初 规模: 10,000-99,999门 (5) Ultra large Scale IC (ULSI) Giga Scale IC (GSI) 甚大(极大)规模IC,现代 规模: 1,000,000门以上 21世纪以后主要面对功耗问题。

摩尔定律的挑战

各类封装

- ■安装半导体集成电路芯片用的外壳,起看安放、固定、密封、保护芯片和增强电热性能的作用。
- 沟通芯片内部世界与外部电路的桥梁
 - □ 芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。
- 封装对CPU和其他LSI集成电路都起着重要的作用(保护、互连等)。

芯片制造流程

- TO-5封装
- DIP双列直插式封装
- SMT表面贴封装
- QFP四面平面封装
- PGA插针网格阵列封装
- BGA球栅阵列封装
- CSP芯片尺寸封装
- MCM多芯片模块

三维集成技术

- · 三维 (Three-dimensional) 集成芯片技术
 - 使得摩尔定律得以延续

- 在垂直方向实现芯片层的互连,能够很好的减小线

长, 增加集成密度, 提高芯片性能

- 存在形式

集成电路如此复杂, 是怎么造出来的?

实际是复杂的三维结构

3D SOC

综合集成

三维集成技术

- 新型的互连模式NoC(Network-on-chip)
 - 将网络技术引入芯片中,通过"网络"实现互连
 - 异构性、互连性、可扩展性等特点,能够简化互连 复杂度,优化系统性能
 - NoC扩展到3D NoC,可以有效提高芯片性能,具

三维集成芯片的挑战

- 三维集成面临的最大的问题就是高功耗
 - 电力资源的浪费
 - 一严重的热问题
 - 热区域会改变元件的属性,降低系统性能, 甚至会烧毁元件
 - -延迟问题
 - 高功耗使得元件以及通信延迟增大
 - 系统可靠性
- 系统功耗是影响三维集成芯片性能的关键 因素,低功耗设计成为三维芯片设计的重要环节

低功耗优化的研究

动态电压调节动态任务调度

• 高层级

布图规划布局及 布线

• 物理设计

TSV热传导技术 流通道技术

• 硬件级

3.1组合逻辑引言——小结

3.1 引言

- □组合逻辑的概念
- □组合逻辑电路的特点
- □典型的组合逻辑电路
- □集成电路的分类
- □集成电路发展历史,工艺带动IC发展,
- □ 当集成度提高,功耗、散热、封装等要认 真考虑

第三章 组合逻辑电路

- 3.1 引言
- 3.2 门电路
- 3.3 常用的中规模组合逻辑电路
- 3.4 运算器与ALU
- 3.5 组合逻辑电路中的竞争与冒险问题

- 3.2 门电路 (1)
- 3.2 门电路
 - □门电路的基本知识
 - □典型与非门电路结构 (不考!)
 - □与非门电路的外部特性与级连
 - □集电极开路(OC)与非门
 - 口三态门

3.2 门电路 (2)

- 3.2 门电路
 - □门电路的基本知识
 - □典型与非门电路结构
 - □与非门电路的外部特性与级连
 - □集电极开路(OC)与非门
 - 口三态门

3.2 门电路 (3)

- ■门电路构成数字逻辑电路的基本元件
- ■门电路一般包括:
 - □非门(也称反相器)
 - 口与门
 - 口与非门
 - 口或门
 - 口或非门
 - □与或非门

• • • • • • •

3.2 门电路 (4)

A
$$\longrightarrow$$
 F $\stackrel{A}{=}$ $\stackrel{A}{=$

$$\begin{array}{cccc}
A & & & & & & & & & & & & \\
B & & & & & & & & & & & & & & & \\
F & = & \overline{A} & \bullet & B & & & & & & & & \\
\end{array}$$

$$F = A \bullet B + C \bullet D$$

3.2 门电路 (5)

■实际的与非门器件

74LS00

2输入4与非门

74LS30

8输入与非门

Plastic or ceramic casing

Dual-in-line Package

3.2 门电路 (6)

- ■门电路的一些应用
 - □用与非门实现封锁电路(由C控制)

$$\begin{cases}
C = 1 & F = \overline{P} \\
C = 0 & F = 1
\end{cases}$$

$$\begin{array}{c|c}
A & & \\
B & & \\
C & & \\
\end{array}$$

$$\begin{cases}
A = 1 & F = \overline{AB} \\
C = 0 & F = 1
\end{cases}$$

3.2 门电路 (7)

- ■门电路的一些应用
 - □用与或非门实现封领

$$F = AB + CD + E$$

3.2 门电路 (8)

- ■门电路的一些应用
 - □用与或非门实现数据选择

当C=1时,A被选中

当C=O时,B被选中

3.2 门电路 (9)

■等价问题:逻辑等价则电路图等价, 反之亦然。

先"与"后"非"和先"非"后"或"等价

$$F = \overline{PC}$$
 $F = \overline{P} + \overline{C} = \overline{PC}$

3.2 门电路 (10)

先"或"后"非"和先"非"后"与"等价

$$F = \overline{P + C}$$
 $F = \overline{P} \bullet \overline{C} = \overline{P + C}$

3.2 门电路 (11)

- ■正逻辑与负逻辑
 - □在逻辑电路中,常用电平的高、低表示逻辑0、1
 - □ 若H=1, L=0, 称正逻辑
 - □ 若H=0, L=1, 称负逻辑。
 - □在本课程中,一律采用正逻辑。

3.2 门电路 (12)

正逻辑与负逻辑的不同表示

功能表

A	В	F
L	L	Н
Н	L	Н
L	Н	Н
Н	H	L

正逻辑

A	В	F
0	0	1
1	0	1
0	1	1
1	1	0

F = AB

负逻辑

A	В	F
1	1	0
0	1	0
1	0	0
0	0	1

F = A + B

3.2 门电路 (13)

- 3.2 门电路
 - □门电路的基本知识
 - □典型TTL与非门电路结构(不考!)
 - □TTL与非门电路的外部特性与级连
 - □TTL集电极开路 (OC) 与非门
 - □TTL三态门

3.2 门电路 (14)

最简单的二值逻辑——开关

3.2 门电路 (15)

晶体管的工作状态

- 1.截止状态
- 2. 放大状态
- 3. 他和状态
- 4.倒置状态

3.2 门电路 (16)

■截止状态

- ▶ 条件: V_b<0.7v</p>

3.2 门电路 (17)

■放大状态

- \triangleright 条件: $V_h=0.7v$, I_h 较小, I_c 足够大。

 \triangleright 结果: $I_c = \beta \times I_b$ 放大系数 β : 20~100

放大状态

$$V_b=0.7v$$
, $I_c=\beta\times I_b$

3.2 门电路 (18)

■饱和状态

ightarrow条件: $V_b=0.7v$, I_b 较大, $I_c<\beta\times I_b$

➤ 结果: V_c=0.1v~0.3v,

3.2 门电路 (19)

●倒置状态

- \triangleright 条件: $V_b=0.7v$, $V_e>V_c$, 发射极电平高,集电极电平低
- \triangleright 结果: $I_e = \beta' \times I_b$, 放大系数 β' 大约等于0.5

3.2 门电路 (20)

■关于多发射极三极管:

图中是双发射极三极管,对于不同的发射极可以接不同的电压,数字电路中一般有两种电压,一种是"高"(3.6V~5V),另一种是"低"(0.3V以下)

图中是双发射极都可能为"高"或"低",只要有一个为低(假设Ve1=0),当V₁-Ve1>0.7V,则整个三极管处于导通状态。

3.2 门电路 (21)

■关于多发射极三极管:

如果Ve1和Ve2都为高, V_I - Ve1<0.7V, V_I - Ve2<0.7V,则三 极管处于截止状态。

实际上多发射极可以完成逻辑"与"的功能。

3.2 门电路 (22)

■与非门的外部功能

I_{i}	AD
H	 AK
1	

A	В	F
0	0	1
1	0	1
0	1	1
1	1	0

3.2 门电路 (23)

- · 典型的五管TTL"与非门"
 - > 只分析原理, 不讲如何设计。

3.2 门电路 (24)

 I_{R1} 流向A, 其电流为 $I_A = I_{IL} = (V_{cc} - V_{be1} - V_A)/R1 = 1.4 \text{ mA}$

 $V_{b1}=V_A+V_{be1}=0.8V$, I_{c1} 很小, $I_{c1}<I_{b1}$ × β ,T1深饱和

3.2 门电路 (25)

T1深饱和, $V_{c1}=V_A+V_{ce1}=0.1~V~+0.3~V~=0.4~V~,~T_2~T_5$ 截止

3.2 门电路 (26)

■輸入为低

 $V_{c2} \approx V_{cc}$ T_{3} T_{4} 导通,输出电压: $V_{oh} = V_{c2} - V_{be3} - V_{be4} = 3.6 \text{ V}$

输出电流 loh:从T4向外流。

结论:与非门输入至少有一个为低时,输出为高。

3.2 门电路 (27)

Vb2最大只能到1.4V:因为当Vb2=1.4V时,T2和T5就处于导通状态,Vb2被嵌位在1.4V。

T₁工作在倒置状态。

3.2 门电路 (28)

I_{R1}全部流向T₂基极,输入A和B的漏电流I_{IH},从多发射极流入 T2工作在什么状态?

3.2 门电路 (29)

由于 I_{b2} ≈ $I_{R_1} = (V_{CC}-2.1V)/3K ≈ 1mA,$

 I_{c2} 最大电流为10mA (=Vcc/R2), I_{c2} < I_{b2} × β

所以T2工作在饱和状态下

3.2 门电路 (30)

$$V_{c2} = V_{b3} = V_{e2} + V_{ce2} = 0.7V + 0.3V = 1V$$

由于Vb3=Vc2=1V,所以T3处于导通状态,T4处于截止状态

3.2 门电路 (31)

 $I_{b5} = I_{c2} - I_{R3} = (5V-0.3V-0.7V)/500 - 0.7V/360 \approx 6mA$

由于I_{c5} 由外部提供,外部不可能提供大于120mA以上的电流。 所以T5工作在饱和状态。

3.2 门电路 (32)

由于T5工作在饱和状态,所以输出电压 = V_{C5} = 0.1V ~ 0.3V

结论: 当输入都为高时, 与非门的输出为低。

3.2 门电路 (33)

与非门结构
 省
 与非门结构
 T2
 R4 3K
 T3,T4
 F
 与
 T5
 W 动板

R1

3K

R2

500

T3

R5

100

T4

T5

腾

柱

T3-T4称"1"驱动级, T5称"0"驱动级, 组成推-拉式输出结构, 又称图腾柱结构 (Totem)输出 TTL与非门需要5个晶体管和5个电阻,

CMOS与非门只需要4个MOS管,所以集成度高

3.2 门电路 (37)

开关特性: TTL线路为什么 有较快的开关速度?

输入由"1"跳至"0"时,因 T1射极突跳至"0",I_{R1}流入T1 射极

T2, T5此时尚未脱离饱和, V_{C1} 仍为1.4V, T1处于放大状态

于是有很大的电流从T2基极流向T1,

使T2基区存储电荷迅速消散

加快T2退出绝和,T2截止,因而加快与非门输出由"O"向"1"的转换

3.2 门电路 (38)

开关特性:TTL线路为什么 有较快的开关速度?

在T2由饱和向截止转换肘, V_{C2}升高,使T3、T4同肘导通

"1"驱动级给尚未脱离饱和的T5提 供很大集流,使T5迅速脱离饱和。

在T5脱离饱和时,V_{C2}抬高,I_{R2}减少,I_{b5}随之减少,T5吸收不了由T3,T4流来的电流。

3.2 门电路 (39)

开关特性:TTL线路为什么 有较快的开关速度?

T3,T4流来的电流,它们大部分流向输出负载电容,使它迅速充电,加快输出电压上升

R3为T5基区电荷的逸散提供了通路,使T5截止过程加快

3.2 门电路 (39)

✓ TTL与MOS管与非门的延迟对比

		TTL管				MOS管		
	标准74 序列	快速 74H系 列	高速 74F系 列	先进肖 特基 74AS系 列	4000系 列	HC/HC T系列	低压 LVC系 列	
延时t _{pd}	10	6	3	1.5	100	10	3.8	

注: 门延时不但与TTL、MOS技术方案选择有关,也与门电路的尺寸、工艺有着直接关系。分立器件的体积较大、延迟也高,而28nm的MOSFET非门延迟在ps(皮秒)量级,远小于分立器件的延时。

3.2 门电路

- 3.2 门电路
 - □门电路的基本知识
 - □TTL典型与非门电路结构
- → □TTL与非门电路的外部特性与级连
 - □集电极开路(OC)与非门
 - 口三态门

3.2 门电路

- □ 与非门电路的外部特性
 - □开关特性
 - □转移特性
 - □直流参数
 - ■与非门电路的级联
 - □负载计算
 - □非正常状态分析

技术参数

- ■主要有下列参数:
 - □扇入 (Fan-in) 一个门的可用输入数目
 - □扇出 (Fan-out) 一个门的输出可以驱动的标准门个数
 - □传输延迟 (Propagation Delay)
 从输入传输到输出所需要的时间。 电路的处理速度与电路门的最大传输延迟成反比例关系
 - □功耗 (Power Dissipation) 逻辑门消耗的能量,以热的形式散发

传输延迟

■传输延迟

- □ 是信号变化时从输入传输到输出所需要的时间
- □ 最大和最小值的中间50%点作为时间参考点.
- □ 高到低 (t_{PHL}) 或低到高(t_{PLH}) 输出信号改变可能有不同的传输延迟
- □ 高到低 (HL) 或低到高 (LH)跃迁是根据输出关系定义
 - 不是输入关系
 - 一个高到低 (HL) 输入跃迁导致:
 - 如果是非门,则得到一个低到高的输出跃迁
 - 如果是同相门,则得到一个高到低的输出跃迁

非门传输延迟

- IN -OUT
- ■传输延迟以高低的中间点为参考点
 - $t_{PHL} = 1.3 \text{ ns}$ $t_{PLH} = 1.2 \text{ ns}$ $t_{pd} = avg(t_{PHL}, t_{PLH}) = 1.25 \text{ ns}$

3.2 门电路 (40)

• 延迟时间的测量

3.2 门电路 (40)

• 延迟时间的测量

如果没有输入,什么 情况下能形成自激震 荡?

3.2 门电路 (40)

• 自激震荡电路

这是永动机吗?

3.2 门电路 (41)

• 转移特性:门电路中输出电压随输入电压的变化特性。V_{IN}-V_{OUT} 关系曲线)

在曲线上, V_{OUT} 急剧下降时的 V_{IN} 称: 阈值电压 V_{T} ,或称门槛电压

3.2 门电路 (42)

■直流参数

- □ "0"输入电流 I_{II} <=1.6 mA
- □ "1"输出电流 I_{OH} <= 0.4 mA = 400 uA
- □ "1"输出电压 V_{oh} >=3^V (10个负载)

- □ "1"输入电流 l_{II} <=40 uA
- □ "0"输出电流 l₀₁<=16 mA
- □ "0"输出电压 V_{ol}<=0.35^V (10个负载)

3.2 门电路 (43)

- ■与非门电路的外部特性
 - □开关特性
 - □转移特性
 - □直流参数
- ⇒ ■与非门电路的级联
 - □负载计算
 - □非正常状态分析

3.2 门电路 (44)

- 门电路级联:前一个器件的输出就是后一个器件的输入,后一个是前一个的负载,两者要相互影响
- 关键问题:每个门电路可以级联多少负载?

3.2 门电路 (45)

3.2 门电路 (46)

■负载能力的计算 $(I_{OH}$ 和 I_{IH} 的计算)

$$I^{OH} = N*I^{IH}$$

$$N = I_{OH}/IIH$$

= 400 uA /40 uA
=10

3.2 门电路 (47)

■负载能力的计算 $(I_{OH}$ 和 I_{TH} 的计算)

$$I^{O\Gamma} = N*I^{I\Gamma}$$

$$N = I_{OL}/IIL$$

$$= 16\text{mA}/1.6\text{mA}$$

$$= 10$$

3.2 门电路 (48)

■ 当负载数量超过理论值时,门电路进入非正常 工作状态。负载大于与非门承受能力时,低电 平变高,高电平变低。

负载数量过多时, 情况怎样?

3.2 门电路 (49)

· 负载大于与非门承受能力的状态分析(IOL)

正常工作时,T5处于饱和状态,T5的Vc=0.3v, I_c 小于 $\beta \times I_b$

当负载增大时,l_{OL}增大到l_c ≥β×l_b,T5将脱离饱和状态进 入放大状态,Vc不能保持 O.3v以下,将会增大

T5的输出就无法保持"低"的有效状态

3.2 门电路 (50)

■负载大于与非门承受能力的状态分析(loн)

3.2 门电路 (51)

■负载>与非门承受能力的状态分析 (1oH)

正常工作时,T3,T4处于导通状态,T3基极的电流非常小,R2上的压降可以忽略,所以T3基极的电压为5v

输出电压为5v-0.7v-0.7v=3.6v

当负载 (1OH)非常大时,R2上的电流也增大,R2上的压降也会增大,T3基极的电压会下降

所以输出的电压会降低。不能保持在3.6v左右

结论

- ■负载大于与非门承受能力时,低电平变高,高电平变低。与非门处于非正常工作方式,将会导致整个逻辑电路不能工作。
- ■所以,在实际设计逻辑电路过程中, 一定要考虑带负载能力。

技术参数--噪音容限 (Noise Margin)

■噪音容限 (Noise Margin)

■ 叠加到正常输入值的最大的外部噪音电压,它不会 在电路的输出产生不可预料的变化

低电平电平噪声容限:
$$V_{NL} = V_{OFF} - V_{SL} = V_{OFF} - 0.4$$

高电平电平噪声容限:
$$V_{NH} = V_{SH} - V_{ON} = 2.4 - V_{ON}$$

3.2 门电路 (52) ——小结

- ■与非门电路的外部特性
 - □开关特性
 - □转移特性
 - □直流参数
- ■与非门电路的级联
 - □负载计算
 - □非正常状态分析

3.2 门电路 (53)

- 3.2 门电路
 - □门电路的基本知识
 - □典型与非门电路结构
 - □与非门电路的外部特性与级连
- → 口集电极开路 (OC) 与非门
 - 口三态门

3.2 门电路 (54)

- ■电路设计中"线与"问题!
 - □在电路设计中经常需要一些逻辑电路的多个输出直接连接在一起,实现"线与"。
 - □例如简单的中断逻辑示意。

3.2 门电路 (55)

- "线与"的定义
 - □如果把驱动电路A、B、C·····的输出直接挂向总线,要求当某一驱动器向总线发送数据 D时,其余驱动器输出均为"1"。这样,总线状态为各驱动器输出状态之"与",即 D·1·1·····=D,把这种与连接称为"线与"(Wired AND)。

3.2 门电路 (56)

■普通与非门输出实现"线与"时的电流流向

普通与非门是否可以实现"线与"功能?

3.2 门电路 (57)

不能!

>为什么普通与非门输出不能直接"线与"连在一起?

左面与非门的输出为
"1",T3和T4导通,
右面与非门的输出为
"0",T2和T5导通

如果"线与"在一起,由于在Vcc和"地"之间形成了一个通路,流过这个通路的电流约为5v/100=50mA。

3.2 门电路 (58)

这个电流数值以远远超过 正常工作电流,将会损坏 左面的T4或右面的T5。

3.2 门电路 (59)

- ■使用普通逻辑门实现"线与"时带来的问题
 - □图腾输出结构的电路, 是不能把它们的输出线与在一起的。
 - □否则, 当一门电路的输出为"H", 另一为"L"时, 有大电流从"H"端流向"L"端, 电流太大, 会烧坏与非门。

3.2 门电路 (60)

逻辑设计中遇到"线与"时怎么办?

方法之一:

采用集电极开路输出 (OC)的门电路!

3.2 门电路 (61)

■集电极开路输出门电路

把T3、T4网络去掉,这种输出结构称为OC输出结构。 这种门电路称为OC门。

线与时,输出回路间的电流 通路不复存在。电流都是由 VCC和R_L 联合提供。

一般R_L 称为上兹电阻,阻值为1.5K, 所以当线与的输出为低电平时,T5 上的最大电流为5V/1.5K =3.3mA。 不会损坏器件。

3.2 门电路 (62)

■ 集电极开路输出门电路线与在一起时情况分析

3.2 门电路 (63)

- ■集电极开路输出与非门电路存在的问题: 由于OC门输出不是Totem结构,电路的上升延迟很大
 - □T5退饱和很慢
 - □对输出负载的充电电流只能通过外接的R_L 来提供。因此,输出波形的上升沿时间很 大。
 - □采用OC门只适合速度较慢的电路,对于速度要求较快(例如CPU的数据总线),就不能使用OC门

3.2 门电路 (64)

■思考题:请同学们自己思考: OC门 是否可以和普通与非门实现"线 与"?

3.2 门电路 (65)

- 3.2 门电路
 - □门电路的基本知识
 - □典型与非门电路结构
 - □与非门电路的外部特性与级连
 - □集电极开路(OC)与非门
- → □三态门

3.2 门电路 (66)

- · 三态门电路(Tri-State Circuit)的特点
 - ▶三态门电路即保留了Totem输出结构,又具有 OC门输出可以"线与"的特点
 - ▶完成"线与"逻辑的速度较快

3.2 门电路 (67)

■三态门电路的基本原理

- ▶当控制G=1时, 电路是一个图腾结构的与非门
- ▶ 当G=O, T3、T4、T5均截止,与非门输出F=Z(高阻态)

3.2 门电路 (68)

• 三态电路的功能表

功能表

	F	G	В	A
—高阻态	 Z	0	X	X
	1	1	0	0
正常态	1	1	0	1
上中心	1	1	1	0
	0	1	1	1

功能表

3.2 门电路 (69)

• 两种基本的三态与非门

\overline{G}	$A \bullet B$	F
1	X	Z
0	1	0
0	0	1

简化表示

功能表

\overline{G}	$A \bullet B$	F
0	X	Z
1	1	0
1	0	1

3.2 门电路 (70)

• 两个三态门和总线相连("线与")

电路1、2只能有一个处于正常态 若要求D₁向BUS传送,则应有:

$$\overline{G_1} = 0, \overline{G_2} = 1$$

若要求D2向BUS传送,则应有:

$$\overline{G_1} = 1, \overline{G_2} = 0$$

3.2 门电路 (71)

• 三态总线的状态转换

若原来是D1向BUS传送,现在要改为 D2向BUS传送,如何实现这种转换? 应使门1由正常态转为高阻态,快于 门2由高阻态转为正常态。

即有一短暂过程门1、2均处于高阻态。否则,门1、2有一短暂过程均处于正常态,于是门1、2输出间有很大的浪涌电流,从而影响BUS正常工作。

3.2 门电路 (72)

- 三态门的应用——1位双向总线驱动器
 - · 双向总线驱动器,又称收发器 (Transceiver)

E="1"时,读操作,上面三态门正常工作

E= "O" 时, 写操作, 下面三态门正常工作

3.2 门电路 (73)

• 三态门的应用——4位双向总线驱动器

E= "0" 时, 读操作 E= "1" 时, 写操作

3.2 门电路 (74)

注意:数据的流向与电流的方向没有直接关系。

3.2 门电路 (75)

• 普通门与三态门外部特性比较

		I_{IL}	I _{IH}	I _{OL}	I _{OH}	V_{H}	$V_{ m L}$
普通门		1.6mA	40μΑ	16mA	0.4mA	3.6V	0.3V
三态门	正常态	1.6mA	40μΑ	64mA	6.5mA	3.6V	0.3V
	Z态	40μΑ	40μΑ	40μΑ	40μΑ	5V 1.5	5V 0V

 I_{17} I_{07}

118

机械计算机

Babbage, 1834 布尔代数, 1847 硅谷复原, 2008

真空管计算机

真空管和第一台通用计算机

阴极发射的电 子全部被阳极 接收时为"1"

栅极

通过在栅极施加一个电位可以控制从阴极 到阳极通过的 电子县

阳极

阳极收集电子

阴极 通电后阴 极向阳极 发射电子

要想使阴极能够发射电子就要将阴极加热到数百摄氏度高温

1946年

第一台通用计算机 ENIAC

(Electronic Numerical Integrator And Calculator)

投资48万美元,20000个真空管

167m², 27吨, 150kW

算力: 每秒5000次加法或者400次乘法

据说ENIAC一运行,整个费城都会停电!

晶体管计算机

晶体管的诞生

1947年,第一支晶体管在美国贝尔实验室诞生,发明人为: 肖克利 (W. Shockley) 、巴丁 (J. Bardeen)和布莱坦(W. Brattain)

1956年 诺贝尔物理奖

[Wiki: Transistor]

1954年,贝尔实验室 第一台晶体管计算机 TRADIC

> 684个晶体管 <100W

红石计算机

水计算机

多米诺骨牌计算机

与门

异或门

或门

光计算机

全光信息处理逻辑器件设计

一种光逻辑门

光学二进制进位加法器

一种光学二进制半加器及制备方法

3.2 门电路 (76) —小结

- 3.2 门电路
 - □门电路的基本知识
 - □典型与非门电路结构
 - □与非门电路的外部特性与级连
 - □集电极开路(OC)与非门
 - 口三态门

作业: 第三章3.9, 3.10, 3.11, 3.14, 3.15, 3.16

3.10 图 3-52 所示电路为一三态门工作系统,门 A、B 从总线接收数据;门 C、D 向总线发送数据。若电路工作在图上所标状态下,在图上标出电流的流向。

3.15 分析由基本门组成的电路如图 3-57 所示,指出产生 CP 脉冲的电路。

3.16 计算图 3-58 所示由 TTL 门组成的环形振荡器的频率? 门的平均传输时间 tpd=20ns。

