Размер эффекта и анализ мощности

Поздняков Иван

Какой эффект больше?

p = 0.003096

p = 0.008289

Какой эффект больше?

p = 0.003096

$$X_1 = \mathcal{N}(0,1)$$

 $X_2 = \mathcal{N}(0.03,1)$ $N = 10000$

p = 0.008289

$$X_1 = \mathcal{N}(0,1)$$

 $X_2 = \mathcal{N}(0.25,1)$ $N = 250$

Размер эффекта - оценка величины эффекта

- ЗАВИСИТ от различия (связи) между группами
- ЗАВИСИТ от вариабельности внутри групп
- НЕ ЗАВИСИТ от величины выборки
- НЕ СВЯЗАН с p-value напрямую
- И p-value, и размер эффекта следует указывать в результатах

Нестандартизованный	Стандартизованный	
Эффект выражен в единицах используемой шкалы	Эффект выражен в универсальных единицах: Cohen's d, η², r, R²	
Сравнение с результатами	Сравнение с результатами	
исследований, использующих только	исследований, использующих другую	
данную шкалу	шкалу	
Не учитывает дисперсию	Учитывает дисперсию	

Статистический тест	Размер эффекта	Смысл	Оценка
T-tect	Cohen's d, Hedges' g	Разница средних в стандартных отклонениях	$Cohen's \ d = \frac{\bar{x}_1 - \bar{x}_2}{s_{pooled}}$
Корреляция	r (и статистика, и размер эффекта!)	Сила связи от -1 до 1	$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$
Линейная регрессия	R^2	Доля объясненной дисперсии от 0 до 1	$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$
ANOVA	[Partial/generalized] η^2 , ω	Доля объясненной дисперсии от 0 до 1	$\eta^2 = \frac{SS_{between}}{SS_{total}}$

	Effect size		
ES index	Small	Medium	Large
$d = \frac{m_A - m_B}{\sigma}$.20	.50	.80
	.10	.30	.50

000

Dear researchers proposing to replace Cohen's completely arbitrary d = 0.2, 0.5, 0.8 benchmarks with different values: I am sorry to inform you the problem was not with the numbers. The problem was that numbers do not mean anything outside of a very specific context. Thank you.

β - вероятность ошибки II типа (не обнаружить эффект, когда он действительно существует)

При анализе мощности стандартное значение (1 - β) = 0.8

Размер выборки (n) Уровень а (0.05)

Размер эффекта

Мощность теста 1 - β (обычно 0.8)

Любые 3 из 4

Размер эффекта

Подбор размера выборки для обнаружения эффекта с заданной вероятностью (n)

Уровень а (0.05) Мощность теста 1 - β (обычно 0.8)

Любые 3 из 4

Размер эффекта

Размер выборки (n)

Уровень а (0.05) Расчет мощности:
Вероятность получить
статистически значимый
эффект при заданном размере
эффекта и размере выборки

Статистическая мощность теста (1 - β)

Любые 3 из 4

Расчет размер эффекта, который можно обнаружить при данном размере выборки и статистической мощности

Размер эффекта

Размер выборки (п)

Уровень а (0.05) Мощность теста 1 - β (обычно 0.8)

Инструменты расчета

- Пакет R `pwr`
- Программа (Windows, MacOS) G*Power
- Симуляции

Taket R pwr

```
> pwr::pwr.t.test(d = 0.5, power = 0.8, sig.level = 0.05)
     Two-sample t test power calculation
              n = 63.76561
              d = 0.5
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
NOTE: n is number in *each* group
```

Taket R'pwr'

```
> pwr::pwr.t.test(n = 30, d = 0.5, sig.level = 0.05)
     Two-sample t test power calculation
              n = 30
              d = 0.5
      sig.level = 0.05
          power = 0.4778965
    alternative = two.sided
NOTE: n is number in *each* group
```

Taket R pwr

```
> pwr::pwr.t.test(n = 30, power = 0.8, sig.level = 0.05)
     Two-sample t test power calculation
              n = 30
              d = 0.7356292
      sig.level = 0.05
          power = 0.8
    alternative = two.sided
NOTE: n is number in *each* group
```

Спасибо за внимание

Успешных расчетов!