AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

(Previously Presented) A method of transferring packets from

Listing of Claims:

-	(
2	communication hardware to a host computing device, the method comprising:
3	receiving a set of packets at a communication interface;
4	in a hybrid buffer of a host computing device, writing a first type II
5	completion line configured to identify a first payload buffer in which payloads of
6	a first subset of the packets are stored, wherein the type II completion line
7	includes an address or index of a payload buffer and other information common to
8	the set of packets;
9	for each packet in the set of packets, writing a corresponding per-packet
10	type I completion line in the hybrid buffer, wherein the type I completion line
11	includes information about a length of the packet, a length and a storage location
12	of a header for the packet, and other information useful for processing the packet;
13	after writing said per-packet type I completion lines, writing a type 0
14	completion line, wherein a type 0 completion line indicates that no more packets
15	are currently stored following the address or index indicated in the type II
16	completion line;
17	signaling the host computing device that a set of packets is ready to be
18	processed by configuring a single completion descriptor to identify the hybrid
19	buffer in which the completion lines were stored; and
20	at the host computing device, reading the single completion descriptor and
21	accessing the identified hybrid buffers to process the packets.

1	2. (Previously Presented) The method of claim 1, further comprising:					
2	in the hybrid buffer, writing a second type II completion line configured to					
3	identify a second payload buffer in which payloads of a second subset of the					
4	packets are stored.					
1	3. (Cancelled)					
1	4. (Currently Amended) The method of elaim 3 claim 1, wherein said					
2	completion descriptor comprises only said hybrid buffer identity.					

1 5. (Cancelled)

2

- 6. (Currently Amended) The method of elaim 5 claim 1, wherein:
 said first type II completion line further comprises a checksum type field
 and a checksum start field; and
 said checksum type field and said checksum start field apply to every
 packet in the first subset of packets.
 - (Previously Presented) The method of claim 1, wherein said writing a per-packet type I completion line comprises packing said per-packet completion lines into the hybrid buffer.
- 8. (Previously Presented) The method of claim 7, further comprising:
 packing headers of the packets into the hybrid buffer.
- 1 9. (Previously Presented) The method of claim 1, wherein each said 2 per-packet type I completion line comprises:

3	a length of a header of the corresponding packet; and						
4	a length of a payload of the corresponding packet.						
1	10. (Previously Presented) The method of claim 9, wherein each said						
2	per-packet type I completion line further comprises:						
3	an offset of the payload of the corresponding packet within a buffer in						
4	which the payload is stored; and						
5	a checksum of the corresponding packet.						
1	11. (Original) The method of claim 1, wherein each packet in the set of						
2	packets is part of the same communication connection.						
1	12. (Previously Presented) The method of claim 1, further comprising						
2	at the host computing device, after said signaling:						
3	reading said per-packet type I completion lines until encountering said						
4	type 0 completion lines; and						
5	using said per-packet type I completion lines to access headers and						
6	payloads of the corresponding packets.						
1	13. (Previously Presented) A computer readable medium storing						
2	instructions that, when executed by a computer, cause the computer to perform a						
_							

method of transferring packets from communication hardware to a host computing device, the method comprising:

receiving a set of packets at a communication interface;

in ahybrid buffer of a host computing device, writing a first type II completion line configured to identify a first payload buffer in which payloads of a first subset of the packets are stored, wherein the type II completion line

4

9	includes an address or index of a payload buffer and other information common to
10	the set of packets;
11	for each packet in the set of packets, writing a corresponding per-packet
12	type I completion line in the hybrid buffer, wherein the type I completion line
13	includes information about a length of the packet, a length and a storage of a
14	header for the packet, and other information useful for processing the packet;
15	after writing said per-packet completion lines, writing a type 0 completion
16	line, wherein a type 0 completion line indicates that no more packets are currently
17	stored following the address or index indicated in the type II completion line; and
18	signaling the host computing device that a set of packets is ready to be
19	processed by configuring a single completion descriptor to identify the hybrid
20	buffer in which the completion lines were stored; and
21	at the host computing device, reading the single completion descriptor and
22	accessing the identified hybrid buffers to process the packet.

(Previously Presented) A computer readable medium containing a 2 data structure configured for describing multiple packets to a host computing 3 device, the data structure comprising: 4 one or more headers of packets being transferred from communication 5 hardware to the host computing device; 6 for each of the packets, a corresponding per-packet type I completion line 7 stored in a hybrid buffer, wherein the type I completion line is configured to 8 identify: 9 a length of a header of the corresponding packet;

a length of a payload of the corresponding packet; and information configured to identify a location of the payload; a type 0 completion line, wherein a type 0 completion line is a null completion line used to

10

11

13	indicate	no 1	more j	packets a	re ci	urrently	stored;	and	
							_		

a single completion descriptor configured to identify the hybrid buffer,
 thereby facilitating the efficient transfer of the packets

- 1 15. (Previously Presented) The computer readable medium of claim
 2 14, wherein each said per-packet type I completion line further comprises:
 3 a checksum of the corresponding packet.
- 1 16. (Previously Presented) The computer readable medium of claim
 2 14, wherein said data structure further comprises a payload type II completion line
 3 configured to identify a second data structure in which payloads of the packets are
 4 stored
- 1 17. (Previously Presented) The computer readable medium of claim
 2 16, wherein said information in said per-packet type I completion line comprises
 3 an offset of the payload in the second data structure.
- 1 18. (Previously Presented) The computer readable medium of claim 2 16, wherein:
- said payload type II completion line further comprises a set of parameters
 applicable to each of the packets; and
- a first parameter in said set of parameters is configured to identify a
 checksum type.
- 1 19. (Original) The computer readable medium of claim 14, wherein the 2 headers are stored in fixed-sized portions of the data structure.

1	(Previously Presented) A computing device, comprising:
2	a communication interface configured to transfer packets from a
3	communication link to the computing device;
4	software for operating the communication interface;
5	payload memory buffers for receiving payloads of packets transferred from
6	the communication interface;
7	hybrid buffers for receiving headers of the packets transferred from the
8	communication interface and completion lines configured to facilitate processing
9	of the packets by the software;
10	a single completion descriptor configured for the communication interface
11	to use to signal the software that one or more packets have been transferred to the
12	computing device;
13	wherein said completion lines in a hybrid buffer include:
14	a payload type II completion line configured to identify a first
15	payload buffer in which payloads of one or more of the packets are stored,
16	wherein the type II completion line includes an address or index of a
17	payload buffer and other information common to the set of packets;
18	per-packet type I completion lines configured to identify locations
19	of the packets' payloads in the first payload buffer and locations of the
20	packets' headers in the first hybrid buffer, wherein the type I completion
21	line includes information about a length of the packet, a length and a
22	storage of a header for the packet, and other information useful for
23	processing the packet; and
24	a type 0 completion line, wherein a type 0 completion line
25	indicates that no more packets are currently stored following the address or
26	index indicated in the type II completion line.

1	21. (Previously Presented) The computing device of claim 20, wherein							
2	said completion lines further include:							
3	a type 0 completion line, where in a type 0 completion line indicates that							
4	no more completion lines are stored in the hybrid buffer.							
1	22. (Previously Presented) The computing device of claim 20, wherein							
2	a single completion descriptor used by the communication interface to signal the							
3	transfer of a first set of packets is configured by the communication interface to							
4	include only the identity of the hybrid buffer in which headers of the first set of							
5	packets are stored.							
1	23. (Previously Presented) The computing device of claim 20, wherein:							
2	said payload type II completion line further comprises a set of parameters							
3	common to the one or more packets; and							
4	the set of parameters comprises a checksum type.							
1	24. (Previously Presented) The computing device of claim 20, wherein							
2	each said per-packet type I completion line corresponds to one packet and							
3	comprises:							
4	a length of a header of the corresponding packet; and							
5	a length of the payload of the corresponding packet.							

1 2

3

- 1 26. (Currently Amended) The computing device of claim 24, wherein
- 2 each said per-packet type I completion line further comprises a checksum of the
- 3 corresponding packet.