Topics in Algebra

David Cardozo

December 8, 2014

These are few notes and compilation of exercises of the book *Topics in Algebra*. by I. N. Herstein.

1 Preliminary notions

1.1 Set Theory

Given a set S we shall use the notation throughout $a \in S$ to read "a is an element of S". The set A will be said to be a subset of S if every element in A is an element of S, We shall write $A \subset S$. Two sets A and B are equal, if both $A \subset B$ and $B \subset A$. A set D will be called proper subset of S if $D \subset S$ but $D \neq S$. The null set is the set having no elements; it is a subset of every set. Given a set S we shall use the notation $A \{a \in S | P(a)\}$ to read " A is the set of all elements in S for which the property P holds.

Definition 1. The union of the two sets A and B, written as $A \cup B$, is the set $\{x | x \in A \text{ or } \in B\}$

Remark when we say that x is in A or x is in B, we mean x is in at least one of A or B, and may be in both.

Definition 2. The intersection of the two sets A and B, written as $A \cap B$, is the set $\{x | x \in A \text{ and } x \in B\}$

Two sets are said to be disjoint if their intersection is empty.

Proposition 1. For any three sets, A, B, C we have

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Proof. We will prove first $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$. Observe $B \subset B \cup C$, so that $A \cap B \subset A \cap (B \cup C)$, in the same line of reasoning, $C \subset B \cap C$, so that $A \cap C \subset A \cap (B \cap C)$, and we conclude $(A \cap B) \cup (A \cap C) \subset (A \cap (B \cup C)) \cup (A \cap (B \cup C)) = A \cap (B \cup C)$. Now for the other direction, let $x \in A \cap (B \cup C)$, so that $x \in A$, and $x \in B \cup C$; suppose the former, and we have that $x \in (A \cap B)$. The second possibility, namely, $x \in C$,

implies that $x \in A \cap C$. Thus in either case, $x \in (A \cap C) \cup (A \cap B)$, whence $A \cap (B \cup C) \subset (A \cap B) (A \cap C)$. Combining the two concluding assertions, they give us the equality of both sets

Given a set T, we say that T serves as an *index set* for the family $F = \langle A_{\alpha} \rangle$ of sets if for every $\alpha \in T$, there exist a set of A_{α} in the family F. By the iunion of the set A_{α} , where α is in T, we mean the set $\{x|x \in A_{\alpha} \text{ for at least one } \alpha \in T\}$. We denote it by $\bigcup_{\alpha \in T} A_{\alpha}$. Similarly, we denote the intersection of the sets A_{α} by $\bigcap_{\alpha \in T} A_{\alpha}$. The sets A_{α} are mutually disjoint if for $\alpha \neq \beta$, $A_{\alpha} \cap A_{\beta}$ is the null set.

Definition 3. Given the two sets A, B then the **difference set**, A - B, is the set $\{x \in A | x \notin N\}$

Proposition 2. For any set B, the set A satisfies

$$A = (A \cap B) \cup (A - B).$$

Proof. Again, using the same strategy used before, we will show first $(A \cap B) \cup (A - B) \subset A$, Observe that $A \cap B \subset A$, and $A - B \subset A$ so that $(A \cap B) \cup (A - B) \subset A$ Now, for the converse, we want to see $A \subset (A \cap B)$, first observe that if we suppose that $x \in A$, then either $x \in (A - B)$ or $x \in A \cap B$, so that in either case, eventually $x \in ((A \cap B) \cup (A - B))$, so we conclude $A \subset (A \cap B)$. Finally, combining the concluding assertions we have $A = (A \cap B)$ which proves our proposition.

Observe $B \cap (A - B)$ is the null set. Observe than when $B \subset A$, we call A - B the complement of B in A.

Definition 4. The binary relation \sim on A is said to be an equivalence relation on A if for all a, b, c in A

- $a \sim a$
- $a \sim b$ implies $b \sim a$
- $a \sim b$ and $b \sim c$ imply $a \sim c$

The first of these properties is called reflexivity, the second, symmetry, and the third, transitivity

Definition 5. If A is a set and if \sim is an equivalence relation on A, then the equivalence class of $a \in A$ is the set $\{x \in A | a \sim x\}$. We write it as cl(a).

Now it comes the first big result.

Theorem 1. The distinct equivalence classes of an equivalence relation on A provide us with a decomposition of A as a union of mutually disjoint subsets. Conversely, given a decomposition of A as a union of mutually disjoint, nonempty subsets, we can define an equivalence relation on A for which these subsets are the distinct equivalence classes.

Proof. Let the equivalence relation on A denoted by \sim . Observe first that $a \sim s$, so that $a \in \operatorname{cl}(a)$, whence the union of all $\operatorname{cl}(a)$'s is all of A. We will now prove that two equivalence classes are either equal or disjoint, so suppose for the contrary that two distinct classes $\operatorname{cl}(a)$ and $\operatorname{cl}(b)$ their intersection is nonempty; then there exist an element $x \in \operatorname{cl}(a)$ and $x \in \operatorname{cl}(b)$, that is, $x \sim a$ and $x \sim b$, and by transitivity property of the equivalence relationship, we have $a \sim b$, now let $y \in \operatorname{cl}(b)$; thus we have $b \sim y$. But, from $a \sim b$, and $b \sim y$, we have then $a \sim y$, so that, $y \in \operatorname{cl}(a)$, and we conclude $\operatorname{cl}(b) \subset \operatorname{cl}(a)$, we observe also that the argument for $y \in \operatorname{cl}(a)$ is symmetric, so that $\operatorname{cl}(a) \subset \operatorname{cl}(b)$, and we have the contradiction that we took two distinct classes, but $\operatorname{cl}(a) = \operatorname{cl}(b)$. We conclude then that the distinct $\operatorname{cl}(a)$'s are mutually disjoint and their union is A. Now for the other part of the theorem.

Suppose that $A = \cup A_{\alpha}$, where the a_{α} are mutually disjoint, nonempty sets. We define an equivalence relation \sim as: given $a \in A$ (since a is in exactly one of the A_{α}), we define $a \sim b$ if and only if a and b are in the same A_{α} , we need to check if \sim is an equivalence relation. First, observe $a \sim a$ since, again a is in exactly one of the A_{α} . Second, suppose $a \sim b$, that is $a, b \in A_{\alpha}$ for some unique α , which is the same as $b \sim a$. Finally, suppose $a \sim b$, and $b \sim c$ so that $a, b, c \in A_{\alpha}$ for some unique α , and we can see that $a \sim c$.

Finally, let us observe that for any $a \in A$, cl(a) is a subset of A, so that $cl(a) \subset A$, and $\bigcup_{\alpha \in A} cl(a) \subset A$; and let for $b \in A$, there exist a unique set cl(b) up to equivalence classes, so that $A \subset \bigcup_{\alpha \in A} cl(\alpha)$

1.2 Problems of Set Theory

5. For a finite set C let |C| indicate the number of elements in C. If A and B are finite sets prove $|A \cup B| = |A| + |B| - |A \cap B|$

Solution Suppose A and B are finite sets, so that there exist $n, m \in \mathbb{N}$ for which |A| = n, and |B| = m. Let us remark that if D, C are finite set which are disjoint, $|D \cup C|$ is |D| + |C|. Given this two facts, observe $A \cup B = (A - (A \cap B)) \cup B$, and $A - (A \cap B) \cap B = \emptyset$, so that $|A \cup B| = |A| - |A \cap B| + |B|$.

6. If A is a finite set having n elements, prove that A has exactly 2^n distinct subsets.

Solution The proof is by induction. First, observe that if a set A has one element, the subset of A are $\{\emptyset, A\}$ which has 2^1 elements, so that the assertion is true for n=1, now suppose that if a set A has n elements, then there are exactly 2^n distinct subsets. Now consider the set with n+1 elements given by $\{a\} \cup A$, with $a \notin A$. So that the subsets of $\{a\} \cup A$ are given by first taking the subsets of A, which we know have 2^n elements, and then taking a copy of these subset and adding the element a, so that there

exist:

$$2^{n} + 2^{n} = 2^{n}(1+1) = 2^{n}2 = 2^{n+1}$$

so that for a set with n+1 element, there are exactly 2^{n+1} subsets. Then, by the principle of mathematical induction, we have shown that If A is a finite set having n elements, prove that A has exactly 2^n distinct subsets.

10 Let S be a set and let S^* be the set whose elements are the various subsets of S. In S^* we define an addition and multiplication as follows: If $A, B \in S^*$:

- $A + B = (A B) \cup (B A)$
- $A \cdot B = A \cap B$

Prove the following laws:

$$(A+B) + C = A + (B+C)$$

Proof Observe that $x \in A + B$ if and only if, $x \notin A \cap B$, so that $x \in ((A+B)+C)$ if and only if $x \notin (A+B)\cap C$, or in other words, $x \notin (A\cap B\cap C)$, which by the property that \cap is associative, we have then $x \in (A+(B+C))$. So we conclude then (A+B)+C=A+(B+C).

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

Proof Observe:

$$A \cdot B + A \cdot C = A \cap B + A \cap C$$

$$A \cap B + A \cap C = (A \cap B - A \cap C) \cup (A \cap C - A \cap B)$$

$$(A \cap B - A \cap C) \cup (A \cap C - A \cap B) = A \cap (B - C) \cup A \cap (C - B)$$

$$A \cap (B - C) \cup A \cap (C - B) = A \cap ((B - C) \cup (C - B))$$

$$A \cap (B - C) \cup A \cap (C - B) = A \cdot (B + C)$$

$$A \cdot A = A$$

Proof By definition. $A \cdot A = A \cap A = A$

$$A + A = \emptyset$$

Proof By definition. $A + A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$

If A + B = A + C, then B = C **Proof** Suppose is false that B = C, without loss of generalization, say that $x \in B$, but $x \notin C$. So two cases can happen:

- i) if $x \in A + B$, observe that $x \notin A$. Note that $x \in A + B$ is equivalent to $x \in A + C$, so that $x \in C$. A contradiction.
- ii) if $x \notin A + B$, we have that $x \notin A + C$, so that $x \in A \cap C$, which implies again $x \in C$. A contradiction.

We conclude then, if A + B = A + C, then B = C. (The system just described is an example of a *Boolean Algebra*.) **12.** Let S be the set of all integers an let n > 1 be a fixed integer. Define for $a, b \in S$, $a \sim b$ if a - b is a multiple of n.

Proposition 3. \sim is an equivalence relation

Proof First, observe that $a \sim a$ since a-a=0 ad $0 \cdot n=0$, second, suppose $a \sim b$, or in other words, kn=a-b for some integer k, observe -kn=b-a, and we have then $b \sim a$. Finally, suppose $a \sim b$ and $b \sim c$, more explicitly, kn=a-b and gn=b-c for some integers k and g, take note that kn+gn=(k+g)n=a-c, so that $a \sim c$.

Proposition 4. There are exactly n distinct classes

Proof Let cl(0), ...,cl(n-1), be the n different equivalence classes, defined by \sim as above, observe that for an integer $x \geq n$, cl(x) is: $\{m \in \mathbb{Z} | x \sim m\}$, note that if $x \geq n$ is equivalent to say that, there exist integers E = 0, 1, ... and K = 0, ..., n-1 such that x = En + K. Since $x \sim m$, $En + K \sim m$, which by definition is: there exist an integer R for which Rn = (En + K) - m, or (R - E)n = K - m, so that $K \sim m$, and since K = 0, ..., n-1, w have shown for $x \geq n$, x is in the any of the equivalence classes of cl(0), cl(1), ... cl(n-1).

1.3 Mappings

We introduce the concept of a mapping of one set into another. Informally, a mapping from one set, S, into another, T, is a ruler that associates with each element in S a unique element t in T.

Definition 6. If S and T are nonempty sets, then a **mapping** from S to T is a subset, M, of $S \times T$ such that for every $s \in S$ there is a unique $t \in T$ such that the ordered pair (s,t) is in M.

Alternatively and for pedagogical reasons, we think of a mapping as a rule that associates any element $s \in S$ some element $t \in T$. We shall say that t is the image of s under the mapping. **Notation Remarks** Let σ be a mapping from S to T; we denote this by writing $\sigma: S \to T$ or $S \xrightarrow{\sigma} T$, strangely enough, if t is the image of s under σ we shall represent this fact by $t = s\sigma$. Algebraists often write mappings on the right.

Given a mapping $\tau: S \to T$ we define for $t \in T$, the inverse image of t with respect to τ to be the set $\{s \in S | t = s\tau\}$

Definition 7. The mapping τ of S into T is said to be **onto** T if given $t \in T$ there exits an element $s \in S$ such that $t = s\tau$

Observe that we call the subset $S\tau = \{x \in T | x = s\tau \text{ for some } s \in S\}$ the **image** of S under τ , then τ is onto if the image of S under τ is all of T.

Definition 8. The mapping τ of S into T is said to be a **one-to-one** mapping if whenever $s_1 \neq s_2$, then $s_1\tau = s_2\tau$.

Remark Observe that the mapping τ is one-to-one if for any $t \in T$ the inverse image of t is either empty or is a set consisting of one element.

Definition 9. The two mappings σ and τ of S into T are said to be **equal** if $s\sigma = s\tau$ for every $s \in S$.

Definition 10. If $\sigma: S \to T$ and $\tau: T \to U$ then the **composition** of σ and τ (also called their product) is the mapping $\sigma \circ \tau: S \to U$ defined by means of $s(\sigma \circ \tau) = (s\sigma)\tau$ for every $s \in S$

Remark that it is read from left to right; that is, $\sigma \circ \tau$: first perform σ and then do τ .

For mappings of sets, provided the products make sense, the following holds:

Proposition 5 (Associative Law). If $\sigma: S \to T$, $\tau: T \to U$, and $\mu: U \to V$, then $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$.

Proof. So, it us see that the composition makes sense to be equal, observe that $\sigma \circ \tau$ takes an element of $s \in S$ to $t \in T$ so that $(\sigma \circ \tau) \circ \mu$ make sense and takes S into V. Similarly $\tau \circ \mu$ takes T into V and $\sigma \circ (\tau \circ \mu)$ takes also S into V, so we are rest to check if both functions are equal. So, we start with an element s in S and we want to see that $s((\sigma \circ \tau) \circ \mu) = s(\sigma \circ (\tau \circ \mu))$.

By definition of the composition of maps $s((\sigma \circ \tau) = (s(\sigma \circ \tau))\mu = ((s\sigma)\tau)\mu$, whereas $s(\sigma \circ (\tau \circ \mu)) = (s\sigma)(\tau \circ \mu) = (((s\sigma)\tau)\mu$. Thus, we conclude $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$.

Proposition 6. Let $\sigma: S \to T$ and $\tau: T \to U$; then

- $\sigma \circ \tau$ is **onto** if each of σ and τ is onto.
- $\sigma \circ \tau$ is **one-to-one** if each of σ and τ is one-to-one.

Proof. • Suppose σ , and τ both are onto functions, that is, $S\sigma = T$, and $T\tau = U$, so we establish that $(S\sigma)\tau = U$, or equivalently, $S(\sigma \circ \tau) = U$, and we have then $\sigma \circ \tau$ is onto.

• Suppose that s_1, s_2 ar elements of S, and that $s_1 \neq s_2$. By the one-to-one property of σ , $s_1\sigma \neq s_2\sigma$. Since τ is also one-to-one, and $s_1\sigma, s_2\sigma$ are distinct elements of T, $(s_1\sigma)\tau \neq (s_2\sigma)\tau$, therefore $s_1(\sigma \circ \tau) = (s_1\sigma)\tau \neq (s_2\sigma)\tau = s_2(\sigma \circ \tau)$, and we establish the lemma.

Now, let us suppose that σ is a one-to-one mapping of S onto T; we call σ a **one-to-one correspondence** between S and T. so observe that for any $t \in T$, there exist $s \in S$ such that $t = s\sigma$; and by the property of one-to-one, this s is unique. We define the mapping $\sigma^{-1}: T \to S$ by $s = t\sigma^{-1}$ if and only if $t = s\sigma$. This map, is called the **inverse** of σ . Observe $\sigma \circ \sigma^{-1}$ maps S to S, note that $s(\sigma \circ \sigma^{-1}) = (s\sigma)\sigma^{-1} = t\sigma^{-1} = s$. so that $\sigma \circ \sigma^{-1}$ is the identity operator on S, similarly $\sigma^{-1} \circ \sigma$ is again the identity mapping of T. Conversely, if $\sigma: S \to T$ is such that there exist $\mu: T \to S$ with the property that $\sigma \circ \mu$ and $\mu \circ \sigma$ are the identity mappings on S and T respectively, we claim that σ is a one-to-one correspondence between S and T. First, observe that σ is onto, this given by the fact that, let $t \in T$, so that $= t = tI_t = t(\mu \circ \sigma) = (t\mu)\sigma$, and we take note that $t\mu \in S$ so that we shown that there exist $s \in S$ such that $t = s\sigma$ for any t and we conclude, σ is onto. Second, suppose $s_1\sigma=s_2\sigma$; take note that $s_1 = s_1 I_s = s_1(\sigma \circ \mu) = (s_1 \sigma) \mu = (s_2 \sigma) \mu = s_2(\sigma \circ \mu) = s_2 I_s = s_2$ The preceding discussion proves then:

Proposition 7. The mapping $\sigma: S \to T$ is a **one-to-one correspondence** between S and T if and only if there exist a mapping $\mu: T \to S$ such that $\sigma \circ \mu$ and $\mu \circ \sigma$ are the identity mappings on S and T respectively.

Definition 11. If S is a nonempty set then A(S) is the **set of all one-to-one mappings** of S onto itself.

A(S) plays a universal type of role in groups. We state the following theorem as the recollection of th previous lemma and results:

Theorem 2. If σ, τ, μ are elements of A(S), then:

- $\sigma \circ \tau$ is in A(S).
- $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$.
- There exist an element i (the identity map) in A(S) such that $\sigma \circ i = i \circ \sigma = \sigma$.
- There exist an element $\sigma^{-1} \in A(S)$ such that $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = i$.

Proof. • Given by Proposition 6

- Given by Proposition 5
- Given by Proposition 7
- Given by Proposition 7

Proposition 8. If S has more than two elements we can find two elements σ, τ in A(S) such that $\sigma \circ \tau \neq \tau \circ \sigma$.

7