Notas históricas: Transformações lineares

(Mecânica, Teoria da Extensão, Mecânica Quântica)

1727	L. Euler	relação linear para tensão em função da extensão em elasticidade de corpos tridimensionais
1728 1823 1827	G. Cramer A.L. Cauchy J. Fourier	funcional linear "valor esperado" de distribuição de probabilidade tensor das tensões em elasticidade linear transformação de Fourier no livro <i>Théorie Analytique de la Chaleur</i>
1844 1844 1844,52	H.Grassman	noção de "substituição linear" (transformação linear de hoje) $\dim(V+W)+\dim(V\cap W)=\dim V+\dim W$ propriedades algébricas de "substituições lineares"
1904 1905	M. Fréchet A. Einstein	definição de derivada como transformação linear hipótese de linearidade da energia de fotão (nome "fotão": G. Lewis, 1923) na frequência de onda (confirmação experim.: R.A. Millikan, 1914)
1917 1925	J. Radon L. de Broglie	tranformação de Radon, base da Tomografia Computadorizada (1956-) hipótese de linearidade da energia no n $^{\circ}$ de onda p $/$ partículas
	1728 1823 1827 1844 1844,52 1904 1905	1728 G. Cramer 1823 A.L. Cauchy 1827 J. Fourier 1844 H. Grassman 1844,52 G. Eisenstein 1904 M. Fréchet 1905 A. Einstein 1917 J. Radon

Notas históricas: Equações lineares em dimensão infinita – eqs. diferenciais

corpo sob gravidade (Lei de Newton)

eqs. de 2ª ordem c/ coef. constantes

Ênfase em aplicações de MECÂNICA

2/3

Mecânica, Difusão, Electromagnetismo, Mecânica Quântica

viga eláctica

1687

1743

1744

I. Newton

L. Euler

Fuler

1/44	L. Euler	viga elastica
1746	J. d'Alembert	eq. de onda unidimensional
1748-49	L. Euler	raízes do método de variação de consts. (eqs. p/Júpiter, Saturno, Ter
1757	L. Euler	fluidos incompressíveis
1762	J. d'Alembert	Princípio de Sobreposição e redução de ordem
176683	JL. Lagrange	Método de variação das constantes
		Ênfase em aplicações de DIFUSÃO
1822	J. Fourier	eq. do calor no livro Théorie Analytique de la Chaleur
1855	W. Thomson	difusão de sinais eléctricos em cabo submarino
1855	A. Fick	difusão de substâncias
1856	H. Darcy	fluxo de fluido em meio poroso
		Ênfase em aplicações de ELECTROMAGNETISMO
1861-62	J.C. Maxwell	campo electromagnético
1868	J.C. Maxwell	"governadores" p/ estudo de estabilidade (controlo de sistemas)
1876	O. Heaviside	eq. do telégrafo ou do telegrafista
1874	L. Hermann	impulsos eléctricos em axónios de neurónios
1886	G.W. Hill	sistema infinito de eq. diferenciais p/ Lua
		Ênfase em aplicações de MECÂNICA QUÂNTICA
1926	E. Schrödinger	funções de onda de partículas (eq. de Schrödinger)
1928	P. Dirac	funções de onda p/ partículas c/ relatividade (eq. de Dirac)

Notas históricas: Equações lineares em dimensão infinita

- eqs. integrais e integro-diferenciais

Mecânica, Electromagnetismo

1811	J. Fourier	inversão do integral de Fourier
1823	N. Abel	curva p/ corpo sob gravidade constante s/ atrito demorar o mesmo
1837	I Liamilla	tempo ao ponto final de qualquer ponto na curva (tautocrónica)
1037	J. Liouville	probl. de valor inicial e de fronteira para eqs. diferenciais, ap. sucessivas
1887	C. Neumann	probl. de valor de fronteira para potencial da gravidade e eléctrico
1896	V. Volterra	relação com sistemas de equações lineares por discretização
1900	E. Fredholm	teoria geral de eqs. lineares integrais
1904-06	D. Hilbert	n
1907-08	E. Schmidt	n
1928	V. Volterra	eqs. integro-diferenciais e c/ atrasos (predador-presa e viscoelasticidade)
1942	V. Minorsky	" (teoria de controlo e estabilidade)
1951	V. Mishkis	" (teoria geral)