Лабораторная работа № 7

ИЗУЧЕНИЕ ПРОЦЕССА РУЧНОЙ ДУГОВОЙ СВАРКИ

- * *Цель работы*: изучить процесс ручной дуговой сварки, ознакомиться с обозначением покрытых электродов, процессом зажигания и структурой электрической сварочной дуги, применяемым оборудованием, изучить факторы, влияющие на производительность сварки.
- * Содержание работы: ознакомление с техникой ручной дуговой сварки, получение навыков зажигания и поддержания дуги, определение экспериментально коэффициентов расплавления, наплавления и разбрызгивания металла, разработка технологии сварки заданной детали и выбор режимов сварки.
- * *Применяемое оборудование и материалы*: источник питания ВДУ-504, электродержатель, сварочные электроды, защитные щитки, молоток, клещи, весы с разновесами, спецодежда.

Порядок выполнения работы:

- а) взвесить заготовку, на которую будет производиться наплавка;
- б) определить погонный вес 1 см прутка электродной проволоки ($G_{y\partial}$), из которой изготовлен электрод (в случае применения обмазанных электродов погонный вес прутка определяют после снятия покрытия);
- в) определить вес прутка электродной проволоки (G_{3n}) в применяемом электроде (по длине прутка l (см) и весу 1 см прутка G_{yo}): $G_{3n} = G_{yo} \land l$;
 - г) произвести наплавку металла на заготовку применяемым электродом;
- д) в процессе наплавки зафиксировать действительную величину сварочного тока и время горения дуги;
- е) после наплавки зачистить валик наплавленного металла от шлака и брызг до металлического блеска и взвесить заготовку;
- ж) определить вес металлического прутка в огарке электрода (G_{ocm}) после сварки;
 - з) вычислить коэффициент расплавления по формуле:

$$\alpha_{\delta} \approx \frac{{}^{\text{H}}G_{\hat{y}\hat{e}} \square G_{\hat{t}\hat{n}\hat{o}}}{I_{\hat{n}\hat{a}} \angle t} \Gamma/A \cdot \text{yac},$$

где $G_{\mathfrak{I}\mathfrak{I}}$ – вес электродной проволоки в электроде, г; G_{ocm} – вес электродной проволоки в огарке электрода после окончания сварки, г; I_{ce} – величина сварочного тока в процессе сварки, A; t – время горения дуги, c;

и) вычислить коэффициент наплавки по формуле:

$$\alpha_i \approx \frac{G_1 \square G_0}{I_{\tilde{n}\tilde{a}} \angle t} \Gamma/A \cdot \text{vac},$$

где G_1 – вес заготовки после наплавления металла, г; G_0 – вес заготовки до наплавления металла.

к) вычислить процент потерь на угар и разбрызгивание металла электрода:

$$\phi \approx \frac{G_{\delta} \square G_{i}}{G_{\delta}} 100 \%,$$

где G_p – вес расплавленного металла электродной проволоки, г:

$$G_p = G_{\mathfrak{I}} - G_{ocm};$$

 $G_{\scriptscriptstyle H}$ – вес наплавленного металла на заготовку, г:

$$G_{H} = G_{1} - G_{0};$$

л) рассчитать норму времени сварки заготовки с параметрами сварного шва по варианту, заданному преподавателем:

$$t \approx \frac{\gamma \angle \hat{E}^2 \angle L}{2\alpha_i I_{\tilde{m}\hat{a}}} \Psi,$$

где $\gamma-7,8$ / 10^{-3} г/мм³ — плотность стали; K — катет сварного шва (толщина свариваемых заготовок, мм); L — длина сварного шва, мм; $I_{cs}=k$ / d_{3n} — величина сварочного тока, A; d_{3n} — диаметр электрода, мм; k — опытный коэффициент равный 40–60 для электродов со стержнем из низкоуглеродистой стали и 35–40 для электродов со стержнем из высоколегированной стали, A/мм; α_i — коэффициент наплавки;

$$G_{\mathfrak{I}} = \alpha_{\scriptscriptstyle H} \, \angle \, I_{ce} \, \angle t \, \angle \, K_{\mathfrak{I}},$$

где $K_{9\pi} = 1,3\Box 1,5$ — коэффициент, учитывающий потери электродов на остатках после сварки;

н) выбрать режимы сварки и источники питания (табл. 7.3 и 7.4).

Общие сведения о сварке и процессах, происходящих при сварке

Сварка — технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей между свариваемыми частями при подведении энергии в виде тепла, давления или совместном их взаимодействии. Сваркой соединяют однородные и разнородные материалы.

В зависимости от вида подводимой энергии все способы сварки разделяют на три класса: термический, термомеханический и механический.

<u>К термическому классу</u> относятся способы сварки, осуществляемые плавлением с использованием тепловой энергии — дуговая, плазменная, электрошлаковая, электронно-лучевая, лазерная, газовая и др.

<u>К термомеханическому классу относятся</u> способы сварки, осуществляемые с использованием тепловой энергии и давления – контактная (стыковая, шовная, точечная), диффузионная и др.

<u>К механическому классу</u> относятся способы сварки, осуществляемые с использованием механической энергии и давления — трением, взрывом, холодная сварка давлением, ультразвуковая и др.

При дуговой сварке источником теплоты служит электрическая дуга, которая горит между электродом и заготовкой.

<u>Электрическая дуга</u> — мощный стабильный разряд электричества в ионизированной атмосфере газа и паров металла. Процесс зажигания дуги состоит из трех этапов:

- I короткое замыкание электрода на заготовку;
- II отвод электрода на расстояние 3–6 мм;
- III возникновение устойчивого дугового разряда.

Возможно зажигание дуги без короткого замыкания — спичкой или при помощи высокочастотного источника переменного тока, временно включаемого в сварочную цепь.

Ручную дуговую сварку выполняют сварочным покрытым электродом, который подают в зону горения дуги и перемещают вдоль сварного шва с помощью ручного электрододержателя. В процессе сварки (рис. 7.1) дуга горит между стержнем электрода 4, подключенного к одному полюсу источника питания, и основным металлом 6, подключенным ко второму источнику питания.

Рис. 7.1. Схема процесса сварки металлическим покрытым электродом: а — расстояние между рабочим торцом электрода и поверхностью сварочной ванны; б — глубина проплавления заготовки

Между электродом и заготовкой движется поток ионов 2 и электронов 5 с большой скоростью. Кинетическая энергия атомов металла, электронов и молекул газа при соударении между собой и металлом электрода и заготовок переходит в тепловую энергию. В результате температура в

дуговом промежутке повышается до 6000 °К. Стержень электрода и кромки свариваемых заготовок плавятся, образуя металлическую ванну. Вместе со стержнем электрода плавится покрытие 3, образуя газовую защитную атмосферу и жидкую шлаковую ванну на поверхности расплавленного металла. Металлическая и шлаковая ванна образуют сварочную ванну. По мере движения дуги сварочная ванна кристаллизуется и формируется сварной шов. Жидкий шлак после остывания образует твердую шлаковую корку 1.

В сварочной ванне при высоких температурах протекает металлургических процессов: испарение или окисление (выгорание) некоторых легирующих элементов (Si, Mn, Cr и др) и насыщение расплавленного металла кислородом, водородом и азотом из атмосферы. В результате происходит изменение состава металла сварного шва по сравнению с электродным и металлом заготовок, а также изменение его механических свойств, особенно при насыщении шва кислородом. Металл сварного шва имеет пониженную статическую и циклическую прочность, ударную вязкость, пластичность, приобретает повышенную химическую активность, что интенсифицирует процессы коррозии.

Для поддержания устойчивого горения дуги и обеспечения заданного состава и свойств шва в состав покрытия вводят: газо- и шлакообразующие раскислители ионизаторы, И легирующие Газообразующие компоненты при расплавлении выделяют газы, которые оттесняют от зоны сварки кислород, водород и азот, создавая газовую защиту. Шлакообразующие компоненты, расплавляясь, образуют сварочной ванной слой расплавленного шлака, закрывающий расплавленный металл от активных газов атмосферы. Температура плавления шлака ниже, чем металла, поэтому он кристаллизуется позже и предохраняет от окисления не только сварочную ванну, но и поверхность шва после затвердевания, образуя шлаковую корку 1, которая легко удаляется с поверхности шва. Раскислители восстанавливают окислы железа, которые образуются при сварке, несмотря на шлаковую и газовую защиту. Легирующие элементы служат для повышения механических свойств металла шва или придания ему каких-либо специальных свойств. Ионизаторы – вещества с низким ионизации (соли щелочных ИЛИ щелочно-земельных потенциалом металлов), облегчающие зажигание и увеличивающие устойчивость горения дуги.

1. Электроды для ручной дуговой сварки

<u>Покрытые электроды</u> для ручной дуговой сварки классифицируют по назначению, виду и толщине покрытия, допустимому пространственному положению сварки или наплавки, роду и полярности сварочного тока.

Различают электроды для сварки сталей, чугуна, алюминия, меди.

При сварке стали учитывают её химический состав и свойства, обозначая электроды для сварки:

- углеродистых и низколегированных конструкционных сталей с σ_{e} ≤ 600 MПа У;
- легированных конструкционных сталей с σ_{e} □ 600 МПа Л;
- легированных теплоустойчивых сталей Т;
- высоколегированных и сталей с особыми свойствами В;
- для наплавки поверхностных слоев с особыми свойствами Н.

В зависимости от механических свойств наплавленного металла применяются электроды 14 типов: Э42, Э46A, Э50, Э60, Э70, ... Э150.

Тип электрода обозначается буквой Э с цифрой, указывающей гарантированное временное сопротивление разрыву наплавленного металла в кгс/мм². Буква А после цифр обозначает повышенную пластичность наплавленного металла.

По виду покрытия электроды разделяются на:

- 1) A-c кислым покрытием (OMM-5, AHO-2, CM-5, ЦМ-7, МЭЗ-04 и др), содержащим оксиды железа, марганца, кремния, иногда титана. При наплавлении покрытия выделяется большое количество O_2 , H_2 , кроме того, оно токсично. Эти электроды обеспечивают стабильное горение дуги на переменном и постоянном токе. Металл шва отличается повышенным содержанием окислов, плотностью и пластичностью;
- 2) Б с основным покрытием (УОНИ-13/45, УОНИ-13/5БК, УОНИ-В/85, АНО-Т, ОЗС-5, ДСК-50, СН-11, УП-1/45 и др), содержащим мрамор СаСО $_3$, плавиковый шпат Са F_2 , кварцевый песок, ферросплавы. Наплавленный металл имеет повышенную прочность на ударный изгиб, малую склонность к старению и появлению трещин. Эти электроды применяются для сварки на постоянном токе обратной полярности ответственных конструкций из углеродистых и легированных сталей;
- 3) P-c рутиловым покрытием (O3C-12, AHO-32, O3C-6, AHO-6, MP-4, O3Л-32 и др), содержащим рутил TiO_2 , мрамор $CaCO_3$, полевой шпат $K_2O \angle Al_2O_3 \angle 6SiO_2$, каолин, иногда железный порошок. Они обеспечивают устойчивое горение дуги и хорошее формирование шва во всех пространственных положениях;
- 4) Ц с целлюлозным покрытием (ОМА-2, ВСЦ-1, ВСЦ-2, ВСП-1, ВСЦ-4М и др). При плавлении покрытия выделяется большое количество газов. Эти электроды применяются для сварки металла малой толщины и при сварке в сложных монтажных условиях;
- 5) Π с прочими покрытиями (ильменитовым, рутил-ильменитовым AHO-24, рутил-основным AHO-30, фтористо-кальциевым AHO-Д и др).

По толщине покрытия (отношению диаметра электрода D к диаметру стержня d) электроды изготавливают:

- М с тонким покрытием D/d ≤ 1,2;
- C со средним покрытием 1,2 ≤ D/d ≤ 1,45;
- -Д − с толстым покрытием 1,45 \leq D/d \leq 1,8;
- $-\Gamma$ с особо толстым покрытием D/d ≥ 1,8.

По допустимому пространственному положению сварки электроды разделяются: для всех положений -1; для всех положений, кроме

вертикального, -2; для нижнего, горизонтального и вертикального -3; для нижнего -4.

По качеству изготовления, состоянию поверхности покрытия электроды бывают 1, 2, 3 групп.

По роду и полярности применяемого при сварке или наплавке тока и номинальному напряжению холостого хода источника переменного тока электроды подразделяются: 0 — обратная полярность постоянного тока; 4 — любая; 5 — прямая; 6 — обратная для постоянного тока и для переменного тока с напряжением холостого хода 70 В.

Примеры условного обозначения электродов:

а) тип Э46А по ГОСТ 9467-75 марки УОНИ-13/45 диаметром 3,0 для сварки углеродистых и низколегированных сталей — У, с толстым покрытием — Д, 2-й группы с механическими свойствами направленного металла: σ \square 460 МПа (43), δ – 22 % (2), КСU = 0,35 Дж/мм² при t = – 40 °C (5) с основным покрытием Б для сварки во всех пространственных положениях — 1, на постоянном токе обратной полярности 0:

б) типа Э-09X1МФ по ГОСТ 9467-75 марки ЦЛ-20 диаметром 40 мм для сварки легированных теплоустойчивых сталей — Т с толстым покрытием Д 3-й группы с механическими свойствами наплавленного металла — прочностью на ударный изгиб КСU = 0,35 Дж/мм² при 0 °С (2) и длительной прочностью при t \square 580 °С (7) с основным покрытием Б для сварки во всех пространственных положениях 1 на постоянном токе обратной полярности 0:

$$\frac{9 - 09X1M - ЦЛ - 20 - 4,0 - ТД3}{E - 27 Б1,0}$$
 ГОСТ 9466-75, ГОСТ 9467-75.

2. Устройство и работа сварочного трансформатора и выпрямителя

электрической питания ДУГИ применяются источники переменного тока (сварочные трансформаторы) и постоянного тока (сварочные выпрямители и генераторы-преобразователи). Сварочный трансформатор состоит из понижающего силового трансформатора и подвижной специального устройства (дросселя, шунта, предназначенного для регулирования силы сварочного тока, напряжения, и обеспечения, чаще всего, падающей вольт-амперной характеристики. Сварочные трансформаторы могут быть с нормальным и повышенным магнитным рассеянием, механическим и электрическим регулированием сварочного тока и напряжения.

Наиболее широко применяются сварочные трансформаторы с повышенным магнитным рассеянием. По способу изменения магнитного рассеяния и индуктивного сопротивления они могут быть с магнитным

шунтом, подвижными катушками и витковым (ступенчатым) регулированием. У трансформаторов с подвижным магнитным шунтом типа СТШ (рис. 7.2), который конструктивно выполнен из двух половин, расходящихся в противоположные стороны, сила сварочного тока регулируется изменением положения шунта в магнитном сердечнике. Когда шунт полностью вдвинут в сердечник, магнитный поток рассеяния и реактивная ЭДС рассеяния максимальны, а сварочный ток минимален.

У трансформаторов с подвижными катушками типа ТС, ТСК, ТД (рис. 7.3) магнитное рассеяние регулируется изменением расстояния между неподвижной первичной 1 и подвижной вторичной 2 обмотками. Это изменение осуществляется поворотом рукоятки 3 и винта, связанного с подвижной обмоткой. Сила сварочного тока увеличивается при сближении обмоток и уменьшается при увеличении расстояния между ними. Напряжение холостого хода при сдвинутых катушках больше, а при раздвинутых — меньше. У трансформаторов типа ТСК конденсаторы, включенные параллельно первичной обмотке, обеспечивают повышение коэффициента мощности.

Рис. 7.2. Электрическая схема сварочного трансформатора типа СТШ 500-80

Рис. 7.3. Сварочный трансформатор типа ТСК-500

В трансформаторах типа ТД применено двухдиапазонное плавное регулирование тока: в диапазоне малых токов катушки первичной и вторичной обмоток включаются последовательно, а больших — параллельно. Включение и отключение катушек производится переключателем, смонтированным внутри трансформаторов.

Сварочные выпрямители и генераторы выпускаются с падающими и жесткими внешними характеристиками типа ВД. Предназначены для ручной дуговой сварки, резки, наплавки, автоматической дуговой сварки под флюсом, а с жесткими внешними характеристиками типов ВС,ВДГ, ВМ и универсальные ВДУ, ВСУ — для дуговой сварки плавящимся электродом в защитных газах и под флюсом.

2.3. Выбор режима сварки

Режим обусловливает характер протекания процесса сварки и обеспечивает получение сварного шва заданной формы и размеров. Все параметры режима определяются диаметром, типом и маркой электрода, коэффициентом наплавки, родом, полярностью и силой тока, напряжением дуги, скоростью сварки, углом наклона и движения электрода, массой наплавленного металла.

Диаметр электрода выбирается в зависимости от толщины свариваемого металла. При сварке в нижнем положении для выбора диаметра можно пользоваться таблицей 7.1.

Выбор диаметра стержня электрода по толщине свариваемого металла

Толщина <i>S</i> свариваемого металла, мм	до 1,5	до 2	2–3	3–5	5–10	Свыше 10
Диаметр <i>d</i> стержня электрода, мм	1–1,6	2	3	3–4	4–5	5–6

При сварке горизонтальных, вертикальных и потолочных швов, независимо от толщины свариваемого металла, применяют электроды диаметром $d_{\scriptscriptstyle 3} \,\square\, 4$ мм.

Тип и марка электрода выбираются в зависимости от марки и механических свойств (σ_{e} , σ_{m} , KCV, δ) свариваемого металла, назначения и условий работы конструкции (табл. 8.2).

Сила сварочного тока I выбирается в зависимости от диаметра стержня электрода $d_{\mathfrak{p}}$ и положения сварного шва в пространстве. При сварке в нижнем положении:

$$I = k \angle d_a$$
, A,

где k — опытный коэффициент равный 40—60 для электродов со стержнем из низкоуглеродистой стали и 35—40 для электродов со стержнем из высоколегированной стали, A/MM.

При сварке горизонтальных и вертикальных швов сила тока уменьшается на 10–15 %, а потолочных — на 15–20 %. Чрезмерно большой сварочный ток приводит к перегреву и разбрызгиванию электродного металла, ухудшению формирования шва, а при сварке тонкостенных заготовок — к прожогу стенок. Сварка на малых токах сопровождается неустойчивым горением дуги, непроваром, малой производительностью.

Род тока и полярность выбираются в зависимости от марки свариваемого металла, его толщины, марки электрода, назначения конструкции. Сварка на постоянном токе обратной полярности применяется для тонкостенных заготовок и высоколегированных сталей с целью исключения их перегрева. Сварку углеродистых сталей обычно выполняют на переменном токе.

Напряжение для устойчивого горения дуги U_{δ} определяется по формулам:

$$U_{\partial} = U_{\kappa a} + E_c \angle l$$
 или $U_{\partial} = 20 + 0.04I$,

где $U_{\kappa a}=20\div22$ — суммарное падение напряжения на катоде и аноде, В; $E_c=3,3\div3,8$ — градиент напряжения (напряженность электрического поля) в столбе дуги, В/мм; $l=(0,5\div1,1)$ d_3 — длина дуги, мм; I — сварочный ток, А.

По выбранным U_{δ} и I с учетом производительности и КПД выбирают тип сварочного трансформатора (табл. 7.3) или выпрямителя (табл. 7.4).

1.4. Техника ручной дуговой сварки

Виды сварных соединений и швов. Применяют следующие сварные соединения: стыковое, внахлестку, тавровое, угловое и боковое (рис. 7.4).

При сварке нижних стыковых швов электрод располагают под углом 70–80° к заготовке для обеспечения равномерного покрытия жидкого металла расплавленным шлаком. Для образования сварного шва (рис. 7.5а) электроду сообщается сложное движение: поступательное вдоль оси со скоростью плавления стержня для поддержания определенной длины дуги и вдоль кромок со скоростью сварки. Колебание конца электрода поперек шва (рис. 7.5б) необходимо для получения определенной его ширины, хорошего провара кромок и замедления остывания сварочной ванны.

Рис. 7.4. Типы сварных соединений и подготовка кромок сварного шва: а — стыковое; б — внахлестку; в — тавровое; г — угловое; д — боковое; е, ж, з, и — подготовка кромок

 Таблица 7.2

 Типы и марки электродов в зависимости от марки и механических свойств свариваемого металла

Марка	ка Механические свойства Тип			Коэффиц иент		еханичес гва метал				
стали	σ _ε , ΜΠα	σ _m , ΜΠα	КСV, Дж/м ²	δ, %	электрода	Марка электродов	наплавки α_{H} , $\Gamma/A/c$	σ_e , МПа	КСV, Дж/м ²	δ, %
Ст.3 пс,	380	230		25	Э42	AHO-5, AHO-6,	11; 8,5	420	0,8	18
Ст.3 кп (2-6)					Э42А	OMA-2, ВСП-1, СМ-11,	10		1,5	22
						УП1-45, УП2-45	9,5; 10			
14Γ, 09Γ2	440	290		21	Э46	AHO-3, AHO-4, MP-3,	8,5; 7,8	460	0,8	18
						O3C-4, O3C-6, O3C-12,	8,5; 10,5		1,4	22
						AHO-13, AHO-18	8,5; 10			
09Г2С	460	330	0,3	21	Э50	ВСЦ-3, ВСН-3	10; 9	500	1,3	20
10Г2С1Д					Э50А	(для постоянного тока),				
18Γ2						ДСК-50, АНО-11				
14Г2АСРД	520	400	0,3	19		УОНИ13/65	9	600	1,0	18
15Г2АФД				(-60 °C)	Э60	(постоянный ток)				
15XA	600	450		16	Э60А					
15Г2АЮГ										
14X2ΓMP	700	600		12	Э70	ЛКЗ-70 (постоянный ток)	9,5	700	0,6	14
12XH2										
20XMA					Э09МХ	ЦЛ-14, O3C-1	10,5	460	0,9	18
					теплоусто		8			
					йчивые					

Таблица 7.3 **Технические данные сварочных трансформаторов**

Технические	Тип трансформаторов с повышенным магнитным рассеянием								ТДЭ- 250	С нормал. рассеянием
данные	СТШ-250	СТШ-300	СТШ-500	TC300	TC500	ТСП-2	ТД300	ТД500	ОУ2	ТСД-500
Напряжение питающей сети, В	380	380/220	380/220	380/220	380/220	380/220	380	380	380	380
Напряжение холостого хода, В	61	63	60	68	60	62	61; 79	59; 73	50	30
Вторичное напряжение при нагрузке, В	30	30	30	30	30	20	30	30	30	40
Номинальный режим работы ПР, %	20	60	60	65	65	20	60	65	20	65
Номинальный сварочный ток, А	250	300	500	300	500	300	300	500	250	500
Пределы регулирования сварочного тока, А	80–260	110–405	145–650	110–385 (30–110)	165–650	90–300	60–400	100–560	90–250	200–600
КПД, %	73	88	90	84	85	76	86	87	67	87
Номинальная мощность, кВА	_	20	32	20	32	11,5	19,5	32	12,7	40
Габаритные размеры, мм	420x310x x425	545x695x x787	670x666x x753	760x520x x970	840x575x x1060	510x370x x590	692x620x x710	720x580x x850	395x275 x535	1242x950x x818
Масса, кг	44	158	220	185	250	63	137	210	42	445

Технические данные сварочных выпрямителей

	Модель							
	Однопо	остовые	Однопо	остовые				
	с падающей		с жес	сткой	Многопостовые			
Параметр	характер	оистикой	характер	оистикой				
	ВД-306	ВД-502	ВДУ-305	ВДУ-504	ВДМ1001 УЗ (7 постов)	ВДМ-1601 (9 постов)		
Выпрямленное								
напряжение холостого	70	80	70	80	60	70		
хода, В								
Номинальный сварочный ток при ПН = 60 %, А	315	500	315	500	1000	1600		
Номинальное								
напряжение при	32	40	38	18-50	60	60		
нагрузке, В	32	40	30	10 30	00	00		
Пределы регулирования	45-315	50-500	50-315	70-500				
сварочного тока, А	10 010		20 212	, 0 200				
Потребляемая	21	42	23	40	89	122		
мощность, кВА	21	12		10		122		
Коэффициент полезного действия, %	70	69		82	90	90		
Коэффициент мощности					0,91			
Габаритные размеры, мм,								
длина	765	805	984	1275	1050	35		
ширина	735	805	630	816	700	820		
высота	772	1062	720	940	900	1630		
Масса, кг	170	370	250	380	400	770		

Характер колебательных движений определяется формой, размером и положением шва в пространстве. При сварке необходимо внимательно следить за расплавлением кромок основного металла и конца электрода, проваром корня шва и не допускать затекания жидкого шлака вперед дуги.

Рис. 7.5. Положение (a) и поперечное движение (б) электрода при сварке нижних стыковых швов

При сварке однослойных швов (рис. 7.6a) дуга возбуждается на краю скоса кромки (в точке A), а затем перемещается вниз для проваривания корня шва. На скосах кромок движение электрода замедляется для исключения прожога в зазоре. При сварке многослойных швов (рис. 7.6б) особое внимание уделяется

качественному выполнению первого слоя с проваром корня шва, определяющего прочность всего шва. Процесс заканчивается заваркой кратера.

Сварка вертикальных швов (рис. 7.6в) выполняется короткой дугой при перемещении электрода снизу вверх и сверху вниз. При сварке горизонтальных швов дуга возбуждается на нижней горизонтальной кромке, а затем переносится на наклонную для поддержания стекающей капли металла.

Рис. 7.6. Положение и движения электрода при сварке однослойных (а), многослойных (б), вертикальных (в) и потолочных (г) швов

Сварка потолочных швов (рис. 7.6г) выполняется короткой дугой при периодическом замыкании электрода с ванной жидкого металла. Короткие швы длиной до 250 мм сваривают за один проход, т. е. при движении электрода от начала шва к концу. Средние (250–1000 мм) и длинные (≥ 1000 мм), сваривают за несколько проходов от середины к краям или обратноступенчатым способом.

Достоинства и недостатки ручной дуговой сварки. Достоинства: возможность получения неразъемных соединений ИЗ большинства применяемых в машиностроении сплавов; возможность осуществления сварки в любых пространственных положениях; возможность сварки заготовок любой толщины многослойными Недостатки: потребность швами. квалифицированном персонале; невысокая производительность из-за ограничения величины сварочного тока и утомления сварщика; разогрев стержня электрода и его покрытия при сварке на повышенном токе и, как следствие, ухудшение защиты сварочной ванны, дуги и шва, разбрызгивание (до 30%) металла, снижение механических свойств соединения и ухудшение его внешнего вида.

- 3. Описание порядка выполнения работы, определения коэффициентов расплавления, наплавки, процента потерь металла, нормы времени сварки, величины сварочного тока, напряжения дуги, расхода электродов. Выбор сварочного оборудования.
 - 4. Результаты подсчетов данных свести в табл. 7.5.
 - 5. Выводы по полученным результатам.

Таблица 7.5

Записи к лабораторной работе № 7 «Определение коэффициента расплавления и наплавки, процента угара и разбрызгивания при ручной дуговой сварке»

$N_{\underline{0}}$	Характ	еристика эл	ектродов	Род	Положени	Режим	сварки
п/п	обмазка	диаметр	толщина	тока	ев	сила	напряже
		электрода	слоя		пространст	тока I_{ce} ,	ние U_{∂} ,
		, MM	обмазки,		ве	A	В
			MM				

Продолжение табл. 7.5

	Лп	ина	Вес прутка		Bec	Вес пла	Вес пластины,	
Время	электрода, мм		электродной проволоки, г		расплавленн	I I		
наплавки			провол	IOKII, I	ОГО			
t, cek	до	после	до	после	электродног	до	после	
i, cck	сварки		сварки,	сварки,	о металла,	сварки	сварки	
	Сварки	Сварки	$G_{\scriptscriptstyle \mathfrak{I}\!\!J}$	G_{ocm}	G_p , г	Сварки	Сварки	

Окончание табл. 7.5

Вес наплавленного электродного металла G_{ν} , г	Коэффициент расплавления α_p , Γ/a /ч	Коэффициент наплавки α _н , г/а/ч	Процент потерь на угар и разбрызгивание φ , %
n/			19