Module Interface Specification for STEM Moiré GPA

Alexandre Pofelski macid: pofelska github: slimpotatoes

November 17, 2017

1 Revision History

Date	Version	Notes
14/11/2017	1.0	First draft

2 Symbols, Abbreviations and Acronyms

The same Symbols, Abbreviations and Acronyms as in the SRS, the TestPlan and the MG (available in STEM Moiré GPA repository) are used in the Module Interface Specifications document.

addition to document

Contents

1	Revision History			
2	Symbols, Abbreviations and Acronyms			
3	Introduction			
4	Notation			
5	Module Decomposition			
6	MIS of Hardware Hiding Module (M 1)			
	6.1 Module			
	6.2 Uses			
	6.3 Syntax			
	6.3.1 Exported Access Programs			
	6.4 Semantics			
	6.4.1 State Variables			
	6.4.2 Access Routine Semantics			
7	MIS of STEM Moiré GPA Control Module (M 2)			
	7.1 Module			
	7.2 Uses			
	7.3 Syntax			
	7.3.1 Exported Access Programs			
	7.4 Semantics			
	7.4.1 State Variables			
	7.4.2 Access Routine Semantics			
8	MIS of STEM Moiré GPA GUI Module (M 3)			
	8.1 Module			
	8.2 Uses			
	8.3 Syntax			
	8.3.1 Exported Access Programs			
	8.4 Semantics			
	8.4.1 State Variables			
	8.4.2 Access Routine Semantics			
9	MIS of Input Module (M 4)			
	9.1 Module			
	9.2 Uses			
	9.3 Syntax			
	9.3.1 Exported Access Programs			

	9.4	Semantics	5
		9.4.1 State Variables	5
		9.4.2 Access Routine Semantics	5
10	B #TC		_
10		of SMH Simulation (M 5)	6
		Module	6
		Uses	6
	10.3	Syntax	6
		10.3.1 Exported Access Programs	6
	10.4	Semantics	6
		10.4.1 State Variables	6
		10.4.2 Access Routine Semantics	6
11	MIS	of GPA Module (M 6)	7
		Module	7
		Uses	7
		Syntax	7
	11.0	11.3.1 Exported Access Programs	7
	11 /	Semantics	7
	11.4	11.4.1 State Variables	7
		11.4.2 Access Routine Semantics	7
12	MIS	of Mask Module (M 7)	8
	12.1	Module	8
		Uses	8
		Syntax	8
		12.3.1 Exported Access Programs	8
	12.4	Semantics	8
		12.4.1 State Variables	8
		12.4.2 Access Routine Semantics	8
			Ŭ
13	MIS	of Unstrained region (M 8)	8
	13.1	Module	8
	13.2	Uses	9
	13.3	Syntax	9
		13.3.1 Exported Access Programs	9
	13.4	Semantics	9
		13.4.1 State Variables	9
		13.4.2 Access Routine Semantics	9
	B # T C		_
14		of Conversion Module (M 9)	9
	14.1	Module	9
	1 /4 * 3	Ligan	

	14.3	Syntax	9
		14.3.1 Exported Access Programs	9
	14.4	Semantics	10
		14.4.1 State Variables	10
		14.4.2 Access Routine Semantics	
15	MIS	S of 2D Strain Tensor Module (M 10)	10
		Module	10
		Uses	
		Syntax	
		15.3.1 Exported Access Programs	
	15.4	Semantics	
		15.4.1 State Variables	
		15.4.2 Access Routine Semantics	
16	MIS	S of Fourier Transform Module (M 11)	11
		Module	
		Uses	
		Syntax	
	10.0	16.3.1 Exported Access Programs	
	16 4	Semantics	
	10.1	16.4.1 State Variables	
		16.4.2 Access Routine Semantics	
17	MIS	S of Gradient Module (M 12)	12
Τ,		Module	
		Uses	
		Syntax	
	11.0	17.3.1 Exported Access Programs	
	17 4	Semantics	
	11.1	17.4.1 State Variables	
		17.4.2 Access Routine Semantics	
			12
18		S of Least Square Fit Method Module (M 13)	12
		Module	12
		Uses	13
	18.3	Syntax	
		18.3.1 Exported Access Programs	
	18.4	Semantics	13
		18.4.1 State Variables	13
		18.4.2 Access Routine Semantics	13

19	MIS	of Phase Operation Module (M 14)	13
	19.1	Module	13
	19.2	Uses	13
	19.3	Syntax	14
		19.3.1 Exported Access Programs	14
	19.4	Semantics	14
		19.4.1 State Variables	14
		19.4.2 Access Routine Semantics	14
20	MIS	of Data Structure Module (M 15)	14
	20.1	Module	14
	20.2	Uses	15
	20.3	Syntax	15
		20.3.1 Exported Access Programs	15
	20.4	Semantics	15
		20.4.1 State Variables	15
		20.4.2 Access Routine Semantics	15
21	MIS	of Generic GUI/Plot Module (M 16)	15
	21.1	Module	15
	21.2	Uses	15
	21.3	Syntax	15
		21.3.1 Exported Access Programs	15
	21.4	Semantics	15
		21.4.1 State Variables	15
		21.4.2 Access Routine Semantics	15
22	Ann	endix	17

3 Introduction

The following document details the Module Interface Specifications for STEM Moiré GPA. The full documentation and implementation can be found in STEM Moiré GPA repository.

4 Notation

The structure of the MIS for modules comes from [?], with the addition that template modules have been adapted from [?]. The mathematical notation comes from Chapter 3 of [?]. For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by STEM Moiré GPA.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	an integer number
natural number	\mathbb{N}	a natural number
real	\mathbb{R}	a real number

The specification of STEM Moiré GPA uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, STEM Moiré GPA uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input STEM Moiré GPA Control STEM Moiré GPA GUI User Input SMH simulation GPA Mask Unstrained region Conversion 2D strain tensor
Fourier Transform Least square fitting method Phase calculation Gradient Generic GUI/Plot Data structure	

Table 1: Module Hierarchy

LIST ALL MIS to refer them in other document

6 MIS of STEM Moiré GPA Control Module (M 2)

6.1 Module

main

6.2 Uses

- STEM Moié GPA GUI
- Processing modules
 - Unstrained region
 - Conversion
 - SMH Simulation
 - GPA
 - 2D Strain Tensors
- Data Structure

6.3 Syntax

6.3.1 Exported Access Programs

Name	In	Out	Exceptions
	=	-	-

6.4 Semantics

STEM Moiré GPA is designed to have the different steps of the process flow driven by user directly through GUI_SMG. The STEM Moiré GPA Control Module uses the events in STEM Moié GPA GUI to use the processing modules in the order defined by the user.

6.4.1 State Variables

6.4.2 Access Routine Semantics

():

- transition:
- output:
- exception:

7 MIS of STEM Moiré GPA GUI Module (M 3)

7.1 Module

GUI_SMG

7.2 Uses

- Generic GUI/Plot
- Data Structure

7.3 Syntax

7.3.1 Exported Access Programs

Name	In	Out	Exceptions
	-	-	-

7.4 Semantics

STEM Moiré GPA process flow is driven by user through GUI_SMG. User triggers the events that start the wished processing step.

7.4.1 State Variables

7.4.2 Access Routine Semantics

():

- transition:
- output:
- exception:

8 MIS of Input Module (M 4)

8.1 Module

Input

8.2 Uses

- STEM Moié GPA GUI
- Data Structure

8.3.1 Exported Access Programs

Name	In	Out	Exceptions
	=	-	=

8.4 Semantics

8.4.1 State Variables

8.4.2 Access Routine Semantics

():

- transition:
- output:
- exception:

9 MIS of SMH Simulation (M 5)

9.1 Module

SMHSimCalc

9.2 Uses

- Fourier Transform
- Input
- Data Structure

9.3 Syntax

9.3.1 Exported Access Programs

\mathbf{Name}	${f In}$	Out	Exceptions
SMHsim	$I_{SMH_{\mathrm{exp}}} : \mathbb{R}^2 \to \mathbb{R}$	$\widetilde{I}_{SMH_{\mathrm{exp}}}$: \mathbb{R}^2 $ o$ \mathbb{C}	Nlim.zero()
	$I_{C_{\mathrm{ref}}}: \mathbb{R}^2 \to \mathbb{R} , p \in$	$\widetilde{I}_{SMH_{\mathrm{sim}}}$: $\mathbb{R}^2 \to \mathbb{C}$	
	\mathbb{R}^{+*} , $p_{\text{ref}} \in \mathbb{R}^{+*}$	$N_{\mathrm{lim}} \in \mathbb{N}^*$	

9.4 Semantics

9.4.1 State Variables

None

9.4.2 Access Routine Semantics

 $SMHsim(I_{SMH_{exp}}, I_{C_{ref}}, p, p_{ref})$:

- output:
 - $\widetilde{I}_{SMH_{\mathrm{exp}}}$ such that

$$\widetilde{I}_{SMH_{\,\mathrm{exp}}}(ec{
u}) = \mathcal{FT}[I_{SMH_{\,\mathrm{exp}}}(ec{r})]$$

- $\widetilde{I}_{SMH_{\mathrm{sim}}}$ such that

$$\begin{split} \widetilde{I}_{SMH_{\text{sim}}}(\vec{\nu}) &= \frac{1}{p^2} \sum_{\vec{q} \in Q_{lim}} \mathcal{FT}[I_{C_{\text{ref}}}(\vec{\nu} - \frac{\vec{q}}{p})] \\ \text{with } Q_{\text{lim}} &= \{ \forall (n,m) \in \mathbb{Z}^2 \cap [-N_{\text{lim}}, N_{\text{lim}}]^2, \ \vec{q} = n\vec{u_x} + m\vec{u_y} \} \\ \text{and } N_{\text{lim}} &= \Xi(\frac{p}{p_{\text{ref}}}) \text{ with } \Xi \text{ the floor function} \end{split}$$

• exception:

10 MIS of GPA Module (M 6)

10.1 Module

GPA

10.2 Uses

- Mask
- Fourier Transform
- Phase
- Gradient
- Data Structure

10.3.1 Exported Access Programs

Name	In	Out	Exceptions
Phase		$P_{\vec{g}}: \mathbb{R}^2 \to \mathbb{R} , \overrightarrow{\Delta g}: \mathbb{R}^2 \to \mathbb{R}^2, P_{\Delta \vec{g}}: \mathbb{R}^2 \to \mathbb{R}$	-

10.4 Semantics

10.4.1 State Variables

10.4.2 Access Routine Semantics

Phase $(\widetilde{I}_{SMH_{\exp}}, M, \overrightarrow{g_0})$:

- output:
 - $-P_{\vec{g}}$ such that

$$\forall \vec{r} \in \mathbb{R}^2, \ P_{\vec{g}}(\vec{r}) = \arg(i\mathcal{F}\mathcal{T}[M \times \widetilde{I}_{SMH_{\exp}}])$$

- $\overrightarrow{\Delta g}$ such that

$$\forall \vec{r} \in \mathbb{R}^2, \ \Delta \overrightarrow{g}(\vec{r}) = \frac{1}{2\pi} \operatorname{grad}(\operatorname{unwrap}(P_{\vec{g}}(\vec{r}))) - \overrightarrow{g_0}(\vec{r})$$

 $-P_{\Delta\vec{g}}$ such that

$$\forall \vec{r} \in \mathbb{R}^2, \ P_{\Delta \vec{g}}(\vec{r}) = \text{wrap}(\text{unwrap}[P_{\vec{g}}(\vec{r})] - 2\pi \overrightarrow{g_0}(\vec{0}) \cdot \vec{r})$$

• exception:

11 MIS of Mask Module (M 7)

11.1 Module

Mask

11.2 Uses

- \bullet Input
- Data structure

11.3.1 Exported Access Programs

Name	In	Out	Exceptions
MCirc	$(x_c, y_c) \in \mathbb{N}^2 , R \in$	$M: \mathbb{R}^2 \to \mathbb{R}, \overrightarrow{g_0}:$	
	\mathbb{R}^{+*}	$\mathbb{R}^2 o \mathbb{R}$	

11.4 Semantics

11.4.1 State Variables

11.4.2 Access Routine Semantics

 $MaskGene(x_c, y_c, R)$:

- output:
 - M such that

$$M(x,y) = \begin{cases} 1, & (x - x_c)^2 + (y - y_c)^2 \le R^2 \\ 0, & (x - x_c)^2 + (y - y_c)^2 > R^2 \end{cases}$$

 $-\overrightarrow{g_0}$ such that

$$\forall \vec{r} \in \mathbb{R}^2, \ \overrightarrow{g_0}(\vec{r}) = \begin{bmatrix} x_c \\ y_c \end{bmatrix}$$

• exception:

12 MIS of Unstrained region (M 8)

12.1 Module

URefCalc

12.2 Uses

- Least Square Fit
- Input
- Data Structure

12.3 Syntax

12.3.1 Exported Access Programs

Name	In	Out	Exceptions
ZeroStrain	$\overrightarrow{\Delta g}^M: \mathbb{R}^2 \to \mathbb{R}^2, \ bla$	$\overrightarrow{\Delta g}^M: \mathbb{R}^2 \to \mathbb{R}^2$	-

12.4 Semantics

12.4.1 State Variables

12.4.2 Access Routine Semantics

():

- transition:
- output:
- exception:

13 MIS of Conversion Module (M 9)

13.1 Module

 ${\bf MtoCConv}$

13.2 Uses

- Input
- Data Structure

13.3 Syntax

13.3.1 Exported Access Programs

Name	In	Out	Exceptions
conversion	$p \in \mathbb{R} , (n,m) \in \mathbb{N}^2,$ $\overrightarrow{g}_{\mathrm{uns}}^{M_{\mathrm{exp}}} : \mathbb{R}^2 \to \mathbb{R}^2$	$\overrightarrow{g_j}_{uns}^{C_{exp}}: \mathbb{R}^2 \to \mathbb{R}^2$	_

13.4 Semantics

13.4.1 State Variables

13.4.2 Access Routine Semantics

conversion $(p, \overrightarrow{g}_{uns}^{M_{exp}})$:

ullet output: $\overrightarrow{g}_{\mathrm{uns}}^{M_{\mathrm{exp}}}$ such that

$$\forall \vec{r} \in \mathbb{R}^2, \ \overrightarrow{g_{j\,\mathrm{uns}}^{\prime}}(\vec{r}) = \overrightarrow{g_{j\,\mathrm{uns}}^{\prime}}(\vec{r}) + p \times \begin{bmatrix} n \\ m \end{bmatrix}$$

• exception:

14 MIS of 2D Strain Tensor Module (M 10)

14.1 Module

 $2D_Strain$

14.2 Uses

Data Structure

14.3 Syntax

14.3.1 Exported Access Programs

Name	In	Out	Exceptions
CalcStrain	$g_{1_{\mathrm{uns}}}^{C_{\mathrm{exp}}}: \mathbb{R}^2 \to \mathbb{R}^2 ,$ $g_{2}^{C_{\mathrm{exp}}}: \mathbb{R}^2 \to \mathbb{R}^2 .$	$T: \mathbb{R}^2 \to \mathbb{R}^4$	_
	3Zuns		
	$\Delta g_{1_{\mathrm{uns}}}^{C_{\mathrm{exp}}} : \mathbb{R}^2 \to \mathbb{R}^2$,		
	$\Delta g_{2_{ ext{uns}}}^{C_{ ext{exp}}}: \mathbb{R}^2 o \mathbb{R}^2$		

14.4 Semantics

14.4.1 State Variables

14.4.2 Access Routine Semantics

 $\mathbf{CalcStrain}(g_{1_{\mathrm{uns}}}^{C_{\mathrm{exp}}}, g_{2_{\mathrm{uns}}}^{C_{\mathrm{exp}}}, \Delta g_{1_{\mathrm{uns}}}^{C_{\mathrm{exp}}}, \Delta g_{2_{\mathrm{uns}}}^{C_{\mathrm{exp}}}) \colon$

- output:
- exception:

15 MIS of Fourier Transform Module (M 11)

2D Fourier transform

15.1 Module

FTCalc

15.2 Uses

Data Structure

15.3.1 Exported Access Programs

Name	In	Out	Exceptions
$\mathcal{F}\mathcal{T}$	$f: \mathbb{R}^2 \to \mathbb{R}$	$f: \mathbb{R}^2 o \mathbb{C}$	-
$\mathrm{i}\mathcal{F}\mathcal{T}$	$f: \mathbb{R}^2 \to \mathbb{C}$	$f: \mathbb{R}^2 \to \mathbb{R}$	-

15.4 Semantics

15.4.1 State Variables

None

15.4.2 Access Routine Semantics

Calculate the 2D Fourier transform of a function f $\mathcal{FT}(f(x,y))$:

• output: $\widetilde{f}(\nu,\mu)$ such that

$$\forall (\nu,\mu) \in \mathbb{R}^2 \land \forall (x,y) \in \mathbb{R}^2, \ \widetilde{f}(\nu,\mu) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2i\pi(\nu x + \mu y)} dx dy$$

• exception:

Calculate the 2D inverse Fourier transform of a function \widetilde{f} i $\mathcal{FT}(\widetilde{f}(\nu,\mu))$:

• output: f(x,y) such that

$$\forall (x,y) \in \mathbb{R}^2 \land \forall (\nu,\mu) \in \mathbb{R}^2, \ f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \widetilde{f}(\nu,\mu) e^{2i\pi(\nu x + \mu y)} dx dy$$

• exception:

16 MIS of Gradient Module (M 12)

2D Gradient

16.1 Module

GradCalc

16.2 Uses

Data Structure

16.3 Syntax

16.3.1 Exported Access Programs

Name	In	Out	Exceptions
grad	$f: \mathbb{R}^2 \to \mathbb{R}$	$f: \mathbb{R}^2 \to \mathbb{R}^2$	-

16.4 Semantics

16.4.1 State Variables

16.4.2 Access Routine Semantics

Calculate the 2D gradient of a 2D function f grad(f):

• output: $\nabla f(x,y)$ such that

$$\forall (x,y) \in \mathbb{R}^2, \ \nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{bmatrix}$$

• exception:

17 MIS of Least Square Fit Method Module (M 13)

2D linear least square method to fit a function f

17.1 Module

LSFMCalc

17.2 Uses

Data Structure

17.3 Syntax

17.3.1 Exported Access Programs

Name	In	Out	Exceptions
lsfm	$f: \mathbb{R}^2 \to \mathbb{R}$	$f: \mathbb{R}^2 \to \mathbb{R}$	-

17.4 Semantics

17.4.1 State Variables

17.4.2 Access Routine Semantics

Calculate the 2D fit of a function f using the linear least square method on a domain $U = ([x_0, x_1]; [y_0, y_1]) \in \mathbb{R}^2$ lsfm(f,U):

• output: fit(x,y) = ax + by such that

$$\forall (x,y) \in U, \ E(a,b) = \int_{x_0}^{x_1} \int_{y_0}^{y_1} [f(x,y) - fit(x,y)]^2 dx dy \text{ is minimized}$$

$$\Rightarrow \frac{\partial E}{\partial a} = 0 \land \frac{\partial E}{\partial b} = 0 \Rightarrow a = \frac{\int_{x_0}^{x_1} \int_{y_0}^{y_1} x f(x,y) dx dy}{\int_{x_0}^{x_1} \int_{y_0}^{y_1} x^2 dx dy} \land b = \frac{\int_{x_0}^{x_1} \int_{y_0}^{y_1} y f(x,y) dx dy}{\int_{x_0}^{x_1} \int_{y_0}^{y_1} y^2 dx dy}$$

• exception:

18 MIS of Phase Operation Module (M 14)

18.1 Module

PhaseCalc

18.2 Uses

Data Structure

18.3 Syntax

18.3.1 Exported Access Programs

\mathbf{Name}	${ m In}$	\mathbf{Out}	Exceptions
unwrap	$f: \mathbb{R}^2 \to]-\pi,\pi]$	$f: \mathbb{R}^2 \to \mathbb{R}$	-
wrap	$f: \mathbb{R}^2 \to \mathbb{R}$	$f:\mathbb{R}^2 o]-\pi,\pi]$	-
arg	$z \in \mathbb{C}$	$\phi\in]-\pi,\pi]$	

18.4 Semantics

18.4.1 State Variables

18.4.2 Access Routine Semantics

wrap(f):

 \bullet output: g such that

$$\forall (x,y) \in \mathbb{R}^2, \exists k \in \mathbb{Z} | g(x,y) = f(x,y) + 2k\pi \land g(x,y) \in]-\pi,\pi]$$

• exception:

unwrap(f):

 \bullet output: g such that

$$\forall (x,y) \in \mathbb{R}^2, \exists k \in \mathbb{Z} | g(x,y) = f(x,y) + 2k\pi \wedge g \text{ is continous}$$

$$\Rightarrow \forall (x,y) \in \mathbb{R}^2, \exists k \in \mathbb{Z} | \lim_{(x,y) \to (x_0,y_0)} g(x,y) = g(x_0,y_0) = f(x_0,y_0) + 2k\pi$$

• exception:

arg(z):

• output: ϕ such that

$$\phi = \arg(z) = \operatorname{atan2}(z) = \operatorname{atan2}(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)})$$

• exception:

19 MIS of Data Structure Module (M 15)

19.1 Module

 ${\bf DataStruct}$

19.2 Uses

19.3 Syntax

19.3.1 Exported Access Programs

Name	In	Out	Exceptions
set	Metadata	-	-

19.4 Semantics

19.4.1 State Variables

19.4.2 Access Routine Semantics

():

- transition:
- output:
- exception:

20 MIS of Generic GUI/Plot Module (M 16)

20.1 Module

GUIGene

20.2 Uses

Hardware-Hiding Data Structure

20.3 Syntax

20.3.1 Exported Access Programs

Name	In	Out	Exceptions
	-	-	_

20.4 Semantics

20.4.1 State Variables

20.4.2 Access Routine Semantics

():

- transition:
- output:
- exception:

21 Appendix