Содержание.

- 1. Что такое временные ряды
- 2. Классификация временных рядов
- 3. Основные понятия для анализа временных рядов
- 4. Базовые преобразования временных рядов.
- 5. Классические подходы к предсказанию
- 6. Современные подходы к предсказанию
- 7. Поиск аномалий во временных рядах

Что есть временной ряд?

По критерию размерности ряды могут быть одномерными и многомерными. Одномерные ряды представляют зависимость одной метрики (параметра) от времени, т.е. следующая конечная последовательность чисел:

$$ts = (t_i, v_i), t_i < t_j, \forall i < j,$$

где t - время, v - отслеживаемая метрика.

$$ts = (t_i, v1_i, v2_i, \dots, vn_i), t_i < t_j, \forall i < j$$

где t - время, v1..vn - отслеживаемые метрики.

Что временным рядом не является

Во временных рядах значение признака измеряется через постоянные интервалы времени.

Если интервалы разные хотя бы для двух разных t, мы имеем дело со стохастическим процессом.

Какие бывают временные ряды?

- 1. Стационарные
- 2. Интегрированные
- 3. Сезонные
- 4. Цикличные
- 5. Детерминированные

Определять тип временного ряда важно для построения автоматической системы предсказания.

Стационарный ряд

Самым простым типом временного ряда является так называемый стационарный временной ряд. Стационарный временной ряд это такой случайный процесс, дисперсия и матожидание которого не зависят от времени, а между соседними значениями нет значимой корреляции.

Ряд y_1, \ldots, y_T стационарен, если $\forall s$ распределение y_t, \ldots, y_{t+s} не зависит от t, т. е. его свойства не зависят от времени.

Интегрированный ряд

Следующий простой тип временных рядов называется интегрированным рядом. Интегрированный ряд это такой ряд, при дифференцировании которого получается стационарный ряд. Самым известным примером такого ряда является модель случайного блуждания.

$$y_{t+1} = y_t + e_t, e_t -$$

$$y(t) = at + b + e_t, e_t -$$

случайная компонента.

случайная компонента.

Сезонный ряд

Теперь, если ряд не является ни стационарным, ни интегрированным, это значит, что данный ряд может быть классифицирован в зависимости от наличия или отсутствия у него сезонности - периодичного повторения паттерна через равные промежутки времени.

Цикличный ряд

Цикличность отличается от периодичности тем, что период цикличности в данном случае не является постоянной величиной.

Детерминированный ряд

Детерминированный ряд - любой ряд, не содержащий случайной компоненты, который точно описывается некой аналитической функцией от времени.

Компоненты ряда

Итак, каждый временной ряд может содержать в себе следующие компоненты.

- Линейный тренд
- Сезонность
- Цикличность
- Ошибка

Базовые понятие для анализа временных рядов

- Лаги временного ряда
- Период сезонности
- Автокорреляция
- Гетероскедастичность
- Стационарность

Лаги временного ряда

Лагом ${\bf k}$ для точки ${\bf t}$ временного ряда ${\bf Y}$ называется значение данного ряда в точке ${\bf t}$ - ${\bf k}$.

Период сезонности

Ряд Y_t имеет период сезонности s, если $\forall t \ Y_{t-s} = Y_t$

Автокорреляция

Автокорреляция временного ряда - это классическая корреляция Пирсона, взятая относительно самого себя, сдвинутого на некий лаг **k**.

$$\mathbf{r}_{XY} = rac{\mathbf{cov}_{XY}}{\sigma_X \sigma_Y} = rac{\sum (X - ar{X})(Y - ar{Y})}{\sqrt{\sum (X - ar{X})^2 \sum (Y - ar{Y})^2}}.$$

Здесь Х - исходный временной ряд, У - сдвинутый относительно самого себя.

Коррелограммы

Гетероскедастичность

Гетероскедастичность - непостоянство дисперсии.

Базовые преобразования временных рядов

- Временные преобразования
- Стабилизация дисперсии логарифмирование, преобразование Бокса-Кокса.
- Дифференцирование ряда

Временные преобразования ряда

Зачастую очень помогает изменить "гранулярность" ряда, те временные промежутки значений. Или взять определенный период ряда. На классическом примере ниже, переход от месячных измерений удоев поголовья скота к средним дневным, значительно упростил структуру временного ряда.

Стабилизация дисперсии.

При непостоянной дисперсии первое, что стоит сделать - взять логарифм от значений ряда.

Стабилизация дисперсии.

Развитие идеи логарифмирования - преобразование Бокса-Кокса.

$$y_t = egin{cases} \exp(w_t) & ext{if } \lambda = 0; \ (\lambda w_t + 1)^{1/\lambda} & ext{otherwise}. \end{cases}$$

Стабилизация дисперсии.

Развитие идеи логарифмирования - преобразование Бокса-Кокса.

$$\lambda = -1$$

$$\lambda = 2$$

Дифференцирование ряда

Дифференцирование порядка ${\bf k}$ - взятие разности $Y_t^{diff} = Y_t - Y_{t-1}$

Критерий Дики-Фуллера - на стационарность.

временной ряд: $y^T = y_1, \dots, y_T;$

нулевая гипотеза: H_0 : ряд нестационарен;

альтернатива: H_1 : ряд стационарен;

статистика: неважно;

нулевое распределение: табличное.

Критерий Ланга-Бокса - на автокорреляцию.

$$ilde{Q}=n\left(n+2
ight) \sum_{k=1}^{m}rac{\hat{
ho}_{k}^{2}}{n-k},$$

где n — число наблюдений, $\hat{
ho}_k$ — автокорреляция k-го порядка, и m — число проверяемых лагов.

 H_0 : данные являются случайными (то есть представляют собой белый шум).

 H_a : данные не являются случайными.