Heat Transfer: Conduction

Introduction to the transient heat conduction

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Categories of transient problems:

- Understanding and abstraction of the problem
- Problem reduction and selection of the appropriate solution strategy

Body with homogeneous temperature:

- Down-scaling of the problem
- Dimensionless numbers
- Mathematical solution of the differential equation

Review: Fourier's differential equation

"fried egg"

Transient heat conduction:

3-D conservation equation without advection and source

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right)$$

Temperature of the body:

Not homogeneous:

[1] Lee, Soochan et al. "Hot Spot Cooling and Harvesting CPU Waste Heat Using Thermoelectric Modules." (2014).

[2] www.travelportal.cz

How can transient problems be categorized?

Temperature of the body:

homogeneous (Bi ≪ 1)

Temperature inside the body:

[1] www.mychicagosteak.com/steak-university/done-perfection-guide-steak-doneness/

How can transient problems be categorized?

How to simplify the problem?

Temperature of the body:

Temperature inside the body:

Boundary condition on the surface:

→ What conditions must be met for a homogeneous body temperature?

Bi ≪ 1:

- Homogeneous temperature in the body
- $ightharpoonup R_{\lambda}$ negligible
- Small bodies or bodies with high thermal conductivity

Bi ≈ 1:

- Similar contributions of heat conduction and convection
- $ightharpoonup R_{\lambda} \approx R_{\alpha}$

Bi $\gg 1$:

- Higher thermal resistance
- $ightharpoonup R_{\lambda} \gg R_{\alpha}$
- Frequent in bodies with low thermal conductivity

Temperature of a copper sphere T(t)with initial temperature T_0

ambient T_A

Energy balance:

Change of internal energy = heat flux entering control volume

$$\frac{dU}{dt} = -\dot{Q}_{convection}$$

$$\rho c_p V \frac{dT}{dt} = -\alpha A (T - T_A)$$

Dimensionless temperature:

$$\Theta^* = \frac{T(t) - T_0}{T_A - T_0}$$

$$\Theta^* = \frac{T(t) - T_0}{T_A - T_0} \qquad \qquad \frac{d\Theta^*}{dt} = \frac{1}{T_A - T_0} \frac{dT}{dt}$$

Substituting:

$$\frac{d\Theta^*}{dt} + \frac{\alpha A}{\rho c_p V} \cdot \underbrace{\frac{(T - T_0) - (T_A - T_0)}{T_A - T_0}}_{\Theta^* - 1} = 0$$

Temperature of a copper sphere T(t) with initial temperature T_0

ambient T_A

Equation for the temperature T(**t**) :

$$\frac{d\Theta^*}{\Theta^* - 1} = -\frac{\alpha A}{\rho c_p V} dt$$

Integration with initial condition:

$$\Theta_0^* = \frac{T_0 - T_0}{T_A - T_0} = 0$$

$$\int_{\Theta_0^*}^{\Theta^*} \frac{d\Theta^*}{\Theta^* - 1} = -\frac{\alpha A}{\rho c_p V} \int_0^t dt$$

Result:

$$\ln\left(\frac{\Theta^* - 1}{\Theta_0^* - 1}\right) = \ln(1 - \Theta^*) = -\frac{\alpha A}{\rho c_p V} t$$
$$\Theta^* = 1 - e^{-\frac{\alpha A}{\rho c_p V} t}$$

Temperature of a copper sphere T(t) with initial temperature T_0

ambient T_A

Result:

$$\Theta^* = 1 - e^{-\frac{\alpha A}{\rho c_p V} t}$$

Review: Biot number

$$Bi = \frac{\alpha L}{\lambda}$$
 with $L = \frac{d}{2}$

$$Bi = \frac{\text{outer resistance}}{\text{inner resistance}} \ll 1$$

Definition: Fourier number

$$Fo = \frac{\lambda t}{\rho c_p L^2} = \frac{at}{L^2}$$
 with $a = \frac{\lambda}{\rho c_p}$

Insertion: Fourier number

Non-dimensionalization of the conservation equation:

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right)$$

$$\frac{\rho c_p T_{\text{ref}}}{t_{\text{ref}}} \frac{\partial T^*}{\partial t^*} = \frac{T_{\text{ref}} \lambda}{L^2} \frac{\partial}{\partial x^*} \left(\frac{\partial T^*}{\partial x^*} \right)$$

$$\frac{\partial T^*}{\partial t^*} = \frac{\lambda t_{\text{ref}}}{\rho c_p L^2} \frac{\partial}{\partial x^*} \left(\frac{\partial T^*}{\partial x^*}\right)$$

$$\frac{\partial T^*}{\partial t^*} = Fo \frac{\partial^2 T^*}{\partial x^{*2}}$$

$$T = T^* \cdot T_{ref}$$

 $t = t^* \cdot t_{ref}$
 $x = x^* \cdot L$

Note: Quantities marked with * are dimensionless T_{ref} , t_{ref} and L are reference quantities

Definition: Fourier number:

The Fourier number is a dimensionless time parameter.

It describes the duration of a thermal process in relation to the duration of heat transport.

Temperature of a copper sphere T(t) with initial temperature T_0

ambient T_A

Result:

$$\Theta^* = 1 - e^{-\frac{\alpha L}{|\mathbf{p}(\mathbf{r})|^{1/2}} \frac{\alpha L}{|\mathbf{l}|^2}}$$

How to simplify the problem?

Semi-infinite bodies

Where does the temperature change at the beginning of the experiments?

→ mathematically everywhere!

As long as the temperature "on the right" has not changed significantly, the boundary condition on the right side is irrelevant

Definition: Semi-infinite body:

Object where a temperature change imposed on one side has not significantly propagated to the other side.

Differential equation in 1D:

$$\rho c_p \frac{\partial T}{\partial t} = -\lambda \frac{\partial^2 T}{\partial x^2} \longrightarrow \text{analytical Solution}$$

(Video "Semi-infinite Plate")

UNIVERSITY OF TWENTE.

How to simplify the problem?

Prebuilt solutions: Heisler diagram in dimensionless form

(in the Video "Dimensionless numbers and Heisler diagram")

If the problem cannot be simplified, numerical methods are the methods of choice.

Comprehension questions

Under what conditions can the temperature within a body be assumed to be homogeneous?

Which dimensionless numbers can be used for this purpose?

What does the Fourier number describe?

