COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 15

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for V and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2^2 = \|\vec{x}_i - \vec{x}_j\|_2^2.$$

Letting $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^k .

1

LAST CLASS: PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T = CV^T$$

• \mathbf{VV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$) onto the subspace \mathcal{V} .

d-dimensional space

LAST CLASS: PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T = CV^T$$

• \mathbf{VV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$) onto the subspace \mathcal{V} .

d-dimensional space

LAST CLASS: PROJECTION VIEW

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T = CV^T$$

• \mathbf{VV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$) onto the subspace \mathcal{V} .

d-dimensional space v_1 ... v_2 k-dim. subspace v

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Will show above in homework. Today's focus: How do we find V and V?

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$ and $\mathbf{X}\mathbf{V}\mathbf{V}^T$ is still a good approximation for \mathbf{X} :

$$\mathbf{XVV^T} = \mathop{\arg\min}_{\mathbf{B} \text{ with rows in } \mathcal{V}} \|\mathbf{X} - \mathbf{B}\|_F^2.$$

Will show above in homework. Today's focus: How do we find \mathcal{V} and \mathbf{V} ?

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

 The rows of X can be approximately reconstructed from a basis of k vectors.

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

 The rows of X can be approximately reconstructed from a basis of k vectors.

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•						
		•				
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					•	•
					•	
	•	•			•	•
	_					450.000
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•				•	•	•
					•	•
•	•	•		•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

10000* bathrooms+ 10* (sq. ft.) ≈ list price

(-4, -4)						
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					_	
•	•	•	•	•		•
•	•	•	•	•	•	•
	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that $\mathbf{V}\mathbf{V}^T$ is idempotent. I.e., $(\mathbf{V}\mathbf{V}^T)(\mathbf{V}\mathbf{V}^T)\vec{y} = (\mathbf{V}\mathbf{V}^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that \mathbf{VV}^T is idempotent. I.e., $(\mathbf{VV}^T)(\mathbf{VV}^T)\vec{y} = (\mathbf{VV}^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Quick Exercise 2: The projection is orthogonal to its complement: For any $\vec{y} \in \mathbb{R}^d$, $\langle \mathbf{V} \mathbf{V}^T \vec{y}, (\mathbf{I} - \mathbf{V} \mathbf{V}^T) \vec{y} \rangle = 0$

PROPERTIES OF PROJECTION MATRICES

Quick Exercise 1: Show that \mathbf{VV}^T is idempotent. I.e., $(\mathbf{VV}^T)(\mathbf{VV}^T)\vec{y} = (\mathbf{VV}^T)\vec{y}$ for any $\vec{y} \in \mathbb{R}^d$.

Quick Exercise 2: The projection is orthogonal to its complement: For any $\vec{y} \in \mathbb{R}^d$, $\langle \mathbf{VV}^T \vec{y}, (\mathbf{I} - \mathbf{VV}^T) \vec{y} \rangle = 0$

Implies the Pythagorean Theorem: Show that for any $\vec{y} \in \mathbb{R}^d$,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}.$$

BEST FIT SUBSPACE

If $\vec{x}_1, \dots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T and \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find \mathcal{V} (equivalently \mathbf{V})?

BEST FIT SUBSPACE

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T and \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find \mathcal{V} (equivalently \mathbf{V})?

$$\begin{aligned} & \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{min}} \| \mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T \|_F^2 &= \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X} \mathbf{V} \mathbf{V}^T)_{i,j})^2 \\ &= \sum_{i=1}^n \| \vec{x}_i - \mathbf{V} \mathbf{V}^T \vec{x}_i \|_2^2 \\ &= \sum_{i=1}^n \| \vec{x}_i \|_2^2 - \| \mathbf{V} \mathbf{V}^T \vec{x}_i \|_2^2 \end{aligned}$$

7

BEST FIT SUBSPACE

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T and \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find \mathcal{V} (equivalently \mathbf{V})?

$$\begin{aligned} \underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\text{min}} & \|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 &= \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{X}\mathbf{V}\mathbf{V}^T)_{i,j})^2 \\ &= \sum_{i=1}^n \|\vec{x}_i - \mathbf{V}\mathbf{V}^T\vec{x}_i\|_2^2 \\ &= \sum_{i=1}^n \|\vec{x}_i\|_2^2 - \|\mathbf{V}\mathbf{V}^T\vec{x}_i\|_2^2 \end{aligned}$$

So want to maximize $\sum_i \|\mathbf{V}\mathbf{V}^T\vec{x}_i\|_2^2 = \sum_i \vec{x}_i^T \mathbf{V}\mathbf{V}^T \mathbf{V}\mathbf{V}^T \vec{x}_i = \sum_i \|\mathbf{V}^T \vec{x}_i\|_2^2$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\mathop{\arg\max}_{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}} \sum_{i=1}^n \|\mathbf{V}^T \vec{x_i}\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v_j}, \vec{x_i} \rangle^2$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\operatorname*{arg\;max}_{\text{orthonormal}\;\mathbf{V}\in\mathbb{R}^{d\times k}}\sum_{i=1}^{n}\|\mathbf{V}^{T}\vec{x_{i}}\|_{2}^{2}=\sum_{j=1}^{k}\sum_{i=1}^{n}\langle\vec{v_{j}},\vec{x_{i}}\rangle^{2}=\sum_{j=1}^{k}\|\mathbf{X}\vec{v_{j}}\|_{2}^{2}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \sum_{i=1}^n \|\mathbf{V}^T \vec{x_i}\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v_j}, \vec{x_i} \rangle^2 = \sum_{j=1}^k \|\mathbf{X} \vec{v_j}\|_2^2$$

Surprisingly, can find the columns of \mathbf{V} , $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$ec{v}_1 = \mathop{\mathsf{arg\,max}}_{ec{v} \; \mathsf{with} \; \|v\|_2 = 1} \|\mathbf{X} \vec{v}\|_2^2.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \sum_{i=1}^n \|\mathbf{V}^T \vec{x_i}\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v_j}, \vec{x_i} \rangle^2 = \sum_{j=1}^k \|\mathbf{X} \vec{v_j}\|_2^2$$

Surprisingly, can find the columns of \mathbf{V} , $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2 = 1}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \sum_{i=1}^n \|\mathbf{V}^T \vec{x_i}\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v_j}, \vec{x_i} \rangle^2 = \sum_{j=1}^k \|\mathbf{X} \vec{v_j}\|_2^2$$

Surprisingly, can find the columns of \mathbf{V} , $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$ec{v}_1 = \mathop{\mathrm{arg\;max}}_{ec{v} \; \mathrm{with} \; \|v\|_2 = 1} ec{v}^T \mathbf{X}^T \mathbf{X} ec{v}.$$

$$\vec{v}_2 = \mathop{\arg\max}_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal }\mathbf{V} \in \mathbb{R}^{d \times k}}{\arg\max} \sum_{i=1}^n \|\mathbf{V}^T \vec{x_i}\|_2^2 = \sum_{j=1}^k \sum_{i=1}^n \langle \vec{v_j}, \vec{x_i} \rangle^2 = \sum_{j=1}^k \|\mathbf{X} \vec{v_j}\|_2^2$$

Surprisingly, can find the columns of \mathbf{V} , $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } ||v||_2=1}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \mathop{\text{arg max}}_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

$$\vec{v}_k = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v_j} \rangle = 0 \ \forall j < k}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\operatorname*{arg\;max}_{\text{orthonormal}\;\mathbf{V}\in\mathbb{R}^{d\times k}}\sum_{i=1}^{n}\|\mathbf{V}^{T}\vec{x_{i}}\|_{2}^{2}=\sum_{j=1}^{k}\sum_{i=1}^{n}\langle\vec{v_{j}},\vec{x_{i}}\rangle^{2}=\sum_{j=1}^{k}\|\mathbf{X}\vec{v_{j}}\|_{2}^{2}$$

Surprisingly, can find the columns of \mathbf{V} , $\vec{v}_1, \dots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } ||v||_2=1}{\text{arg max}} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \mathop{\text{arg max}}_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0} \vec{v}^T \boldsymbol{X}^T \boldsymbol{X} \vec{v}.$$

. .

$$\vec{v}_k = \underset{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_j \rangle = 0 \ \forall j < k}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

These are exactly the top k eigenvectors of $\mathbf{X}^T\mathbf{X}$.