Homework 1

1. a.

Each time line 2 is executed it performs n operations: n-1 for the times of the loop; 1 for the last check.

Each time line 3 is executed it performs 1 operation.

Each time line 5 is executed in the loop it performs 3 operation.

Each time line 6 is executed in the loop it performs 1 operation.

For the worst case when the new number is always the smallest in the current array:

- 1. **Each time line** 4 **is executed it performs** $2(1+\sum_{i=1}^{n-1}i)$ **operations**: The condition will execute i+1 times with 2 comparisons. As we can see, the number of i operations in line 4 will execute in this form: $1,2,3,4,\ldots,n-1$. Therefore, the condition in the while loop will be true for $\frac{1+n-1}{2}*(n-1)=n(n-1)/2$ times with executing 2*(n(n-1)/2+1)=n(n-1)+2 operations.
- 2. When in the loop, as it enters n(n-1) times, it performs n(n-1)/2*(3+1)=2n(n-1) operations.
- 3. The total operations will be $n+n-1+n(n-1)+2+2n(n-1)=3n^2-n+1$.

For the best case when the new number is always the largest in the current array:

- 1. Each time line 4 is executed it performs 2(n-1) operations: The condition will execute n times with 2 comparisons, but always be false.
- 2. Therefore, The total operations will be n+n-1+2(n-1)=4n-3.

Hence, as
$$T(n) <= 3n^2-n+1 <= 3n^2$$
 , $T(n) = O(n^2)$.

b.

As mentioned above, the number of operations in the best cases is 4n-3.

If the input is sorted in increasing order, i.e. sorted array, like [1, 3, 5, 6, 7], the algorithm performs a minimum number of operations, whose T(n) = O(n).

2. **a.** $f(n)=n^2,g(n)=4^{\log n}$

Ans:
$$f = \Theta(g)$$

b.
$$f(n) = n, g(n) = 2^{3 \log n}$$
.

Ans:
$$f = O(g)$$
 but $f
eq \Theta(g)$

$$ext{c. } f(n) = 10n^2, g(n) = 10^{10}n.$$

Ans:
$$g = O(f)$$
 but $g \neq \Theta(f)$

d.
$$f(n) = 3^n, g(n) = 3^{n \log n}$$

Ans:
$$f = O(g)$$
 but $f \neq \Theta(g)$

e.
$$f(n) = n^{2\log n}, g(n) = (\log n)^n.$$

$$\mathsf{Ans:} f = O(g)$$

f.
$$f(n) = n^4 + 3n^2 + 77, g(n) = n^4/1000.$$

Ans:
$$f = \Theta(g)$$

g.
$$f(n) = 5^n, g(n) = 4^n.$$

Ans:
$$g = O(f)$$
 but $g \neq \Theta(f)$

$$\mathbf{h.}\ f(n) = \log\log n, g(n) = \log n.$$

$$\mathsf{Ans:} f = O(g)$$

 ${f i.}\ f(n)=n$ when n is odd, $f(n)=n\log n$ when n is even; g(n)=n when n is even, $g(n)=n^2$ when n is odd.

Ans: None of these.

j. f(n)=n when n is odd, $f(n)=n^2$ when n is even; $g(n)=n^2+n$.

$$\mathbf{Ans:} f = O(g)$$

3. **a.** Let $f(n) = 5n^2 + 3n$ and $g(n) = 3n^3$. Show that f(n) = o(g(n)).

To show f(n)=o(g(n)), we need to prove f(n)<=cg(n),c>0 for $n\geq n_c$, i.e. to prove $\frac{f(n)}{g(n)}<=c$.

Proof:

$$\frac{f(n)}{g(n)} = \frac{5n^2 + 3n}{3n^3} = \frac{2}{3n} + \frac{1}{n^2} + 1$$

$$\text{As } n \ge 1, \frac{2}{3n} <= \frac{2}{3}, \frac{1}{n^2} \le 1$$

$$\frac{f(n)}{g(n)} = \frac{2}{3n} + \frac{1}{n^2} + 1 <= \frac{2}{3} + 1 + 1 = \frac{3}{8}$$
(1)

So for $n \geq n_c = 1$, f(n) <= cg(n).

b. Show that $2^n = o(3^n)$

To show f(n)=o(g(n)), we need to prove f(n)<=cg(n),c>0 for $n>n_c$, i.e. to prove $\frac{f(n)}{g(n)}<=c$.

Proof:

$$\frac{f(n)}{g(n)} = \frac{2^n}{3^n} = (\frac{2}{3})^n \le 1^n = 1 \tag{2}$$

So for $n \geq n_c = 1$, f(n) <= cg(n).

$4.\,$ a. Suppose k=3. What is the best order in which to perform the merges? Justify your answer.

Suppose k=3, lists would be L_1, L_2, L_3 of lengths $l_1 \leq l_2 \leq l_3$, respectively.

If we merge from the beginning:

- \circ Let $L_{1,2}$ denotes the merged list of L_1,L_2 . A new length will be $l_{1,2}=l_1+l_2$. The number of operations would be l_1+l_2+1 .
- \circ Let $L_{1,2,3}$ denotes the merged list of L_1,L_2,L_3 . A new length will be $l_{1,2,3}=l_{1,2}+l_3=l_1+l_2+l_3$. The number of operations would be $l_{1,2}+l_3+1$.
- \circ The total number of operations would be $l_1+l_2+1+l_{1,2}+l_3+1=l_1+l_2+1+l_1+l_2+l_3+1=2l_1+2l_2+l_3+2$

If we merge from the end:

- \circ Let $L_{2,3}$ denotes the merged list of L_2,L_3 . A new length will be $l_{2,3}=l_2+l_3$. The number of operations would be l_2+l_3+1 .
- \circ Let $L_{1,2,3}$ denotes the merged list of L_1,L_2,L_3 . A new length will be $l_{1,2,3}=l_{2,3}+l_1=l_1+l_2+l_3$. The number of operations would be $l_{2,3}+l_1+1$.
- \circ The total number of operations would be $l_2+l_3+1+l_{2,3}+l_1+1=l_2+l_3+1+l_1+l_2+l_3+1=2l_2+2l_3+l_1+2$

So as $l_1 \le l_2 \le l_3$, merging from the beginning has fewer operations compared to the end one. It is because each merging accumulates the former operations again, so merging the lists first that have a lower size will have fewer operations, i.e. merge in an order: 1->2->3

b. Suppose k=3. What is the best order in which to perform the merges? Justify your answer.

Suppose k=4, lists would be L_1,L_2,L_3,L_4 of lengths $l_1 \leq l_2 \leq l_3 \leq l_4$, respectively.

If we merge from the beginning:

- \circ Let $L_{1,2}$ denotes the merged list of L_1,L_2 . A new length will be $l_{1,2}=l_1+l_2$. The number of operations would be l_1+l_2+1 .
- \circ Let $L_{1,2,3}$ denotes the merged list of L_1,L_2,L_3 . A new length will be $l_{1,2,3}=l_{1,2}+l_3=l_1+l_2+l_3$. The number of operations would be $l_{1,2}+l_3+1$.
- \circ Let $L_{1,2,3,4}$ denotes the merged list of L_1,L_2,L_3,L_4 . A new length will be $l_{1,2,3,4}=l_{1,2,3}+l_4=l_1+l_2+l_3+l_4$. The number of operations would be $l_{1,2,3}+l_4+1$.
- \circ The total number of operations would be $l_1+l_2+1+l_{1,2}+l_3+1+l_{1,2,3}+l_4+1=3l_1+3l_2+2l_3+l_4+3$

If we merge from the end:

- \circ Let $L_{3,4}$ denotes the merged list of L_3,L_4 . A new length will be $l_{3,4}=l_3+l_4$. The number of operations would be l_3+l_4+1 .
- \circ Let $L_{2,3,4}$ denotes the merged list of L_2,L_3,L_4 . A new length will be $l_{2,3,4}=l_{3,4}+l_2=l_3+l_4+l_2$. The number of operations would be $l_{3,4}+l_2+1$.
- \circ Let $L_{1,2,3,4}$ denotes the merged list of L_1,L_2,L_3,L_4 . A new length will be $l_{1,2,3,4}=l_{2,3,4}+l_1=l_1+l_2+l_3+l_4$. The number of operations would be $l_{2,3,4}+l_1+1$.
- \circ The total number of operations would be $l_3+l_4+1+l_{3,4}+l_2+1+l_{2,3,4}+l_1+1=3l_3+3l_4+2l_2+l_1+3$

So as $l_1 \le l_2 \le l_3 \le l_4$, merging from the beginning has fewer operations compared to the end one, i.e. merge in an order: 1->2->3->4