一、环境

说明	地址
文档	https://docs.qq.com/doc/DYXVGTVFiWFlVWnd2
风场	20063,30031

二、计算逻辑

KPI_ID 存在 tb_kpi_dictionary 表中。

2.1 状态计算

状态表: data_status_his

Mysql 字段	IB 库字段	说明
farm_code	数据库名称	风场编号
turbine_code	数据表名	风场编号
status_start_time	real_time	开始时间
status_end_time	real_time(下一个字体开始时间)	结束时间
src_status_code	WT_Runcode	运行小类状态

基本上是根据 ib 库获取到的原始状态,然后再根据状态字典来匹配,如果连续时间相同状态,只取第一条。

注意: 如果直接返回的小类在状态字典中找不到对应的值,则设置为待机。

2.2 十分钟数据计算

也是根据 ib 库, 获取对应的字段来进行计算

十分钟表: b_kpi_turbine_avg10m

Mysql 字段	IB 库字段	说明
farm_code	对应 IB 库数据库名称	风场编号
turbine_code	对应 IB 库表名	风机编号
wind_speed_avg	iWindSpeed	平均风速
active_power_avg	iGenPower	平均功率
wind_direction_avg	iVaneDiiection	平均风向
energy_real	iKWh0verall_h	发电量

注意:十分钟风速及功率,都转化为:自由来流风速进行计算,而不是实际风速。 自由来流风速计算:

tb_model_transfer_function 表查 farm_code=站点编号,wtid=风机编号,返回a,b

**自由来流风速 = a * SCADA 风速 + b*

2.3 状态相关计算

涉及表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year

注意: tb_kpi_turbine_date 数据可由 tb_kpi_turbine_hour 数据相加所得,tb_kpi_turbine_month 数据可由 tb_kpi_turbine_date 相加数据所得。tb_kpi_turbine_year 数据可由 tb_kpi_turbine_month 相加数据所得。tb_kpi_farm_hour 数据可以由 tb_kpi_turbine_hour 相加所得。

2.3.1 计算状态次数

KPI_ID	说明	
23	故障次数	
25	维护次数	

根据 data_status_his 获取开始时间(status_start_time)在查询时间范围内某种状态 status_code 的记录次数,就是该状态的次数。

2.3.2 计算状态时长

KPI_ID	说明
24	故障时长
26	维护时长

根据 data_status_his 在查询时间范围内的结果交集在某种状态 status_code 的记录实际时长,就是该状态的实际时长。

2.4 风功率数据计算

更新频率:每天一次

数据库表: data_power_turbine_day

统计时间内,对应的风速的次数及功率累加。

统计区间按照表字段进行区分,如下图:

Name	Туре	Length	Decimals	Not null	Virtual	Key	Comment		
power0	double	15	2				风速0-2.5的功率(KW)		
count0	int	11	0				power0次数		
power3	double	15	2				风速3m/s的功率(KW)		
count3	int	11	0				power3次数		
power3_5	double	15	2				风速3.5m/s的功率 (KW)		
count3_5	int	11	0				power3_5次数		
power4	double	15	2				风速4m/s的功率		
count4	int	11	0				power4次数		
power4_5	double	15	2				风速4.5m/s的功率(KW)		
count4_5	int	11	0				power4_5次数	*	
power5	double	15	2				风速5m/s的功率(KW)	风速、功率	率区间分类
count5	int	11	0				power5次数		
power5_5	double	15	2				风速5.5m/s的功率 (KW)		
count5_5	int	11	0				power5_5次数		
power6	double	15	2				风速6m/s的功率(KW)		
count6	int	11	0				power6次数		
power6_5	double	15	2				风速6.5m/s的功率 (KW)		
count6_5	int	11	0				power6_5次数		
power7	double	15	2				风速7m/s的功率(KW)		

从十分钟数据表中 tb_kpi_turbine_avg10m 获取 active_power_avg(平均功率)、wind_speed_avg(平均风速)进行统计,归类到对应的分区进行统计。

2.5 发电量计算

涉及表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year

注意: tb_kpi_turbine_date 数据可由 tb_kpi_turbine_hour 数据相加所得, tb_kpi_turbine_month 数据可由 tb_kpi_turbine_date 相加数据所得。 tb_kpi_turbine_year 数据可由 tb_kpi_turbine_month 相加数据所得。 tb_kpi_farm_hour 数据可以由 tb_kpi_turbine_hour 相加所得。

KPI_ID	7///2)	说明
18		发电量

计算时间内 tb_kpi_turbine_avg10m 十分钟表发电量 energy_real 的累加,就是该时间内的发电总量。

2.5 MTBI 平均检修间隔时间

涉及表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year MTBI(平均检修间隔时间) = 统计周期*台数/(维护次数-1)

从 kpi 表中,获取 kpi_id 为下面的值的数据 kpi_value,就可以计算。

KPI_ID 说明

25 维护次数

5 平均检修间隔时间

2.6 MTBF 平均无故障运行时间

涉及表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、 tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year

MTBF(平均无故障运行时间) = (所有机组实际时长累加-中断-总故障时长) / 总故障次数

从 kpi 表中,获取 kpi_id 为下面的值的数据 kpi_value,就可以计算。

KPI_ID	说明
23	维护时长
24	故障时长
6	平均无故障运行时间

2.7 MTTR 平均故障修复时间

涉及表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year
MTTR(平均故障修复时间) = (总故障时间+总维护时间)/故障次数
从 kpi 表中,获取 kpi_id 为下面的值的数据 kpi_value,就可以计算。

KPI_ID	说明
23	故障次数
24	故障时长
26	维护时长
7	平均故障修复时间

2.8 损失发电量

存储表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year

注意: tb_kpi_turbine_date 数据可由 tb_kpi_turbine_hour 数据相加所得,tb_kpi_turbine_month 数据可由 tb_kpi_turbine_date 相加数据所得。tb_kpi_turbine_year 数据可由 tb_kpi_turbine_month 相加数据所得。tb_kpi_farm_hour 数据可以由 tb_kpi_turbine_hour 相加所得。

KPI_ID	说明
21	故障损失
22	维护损失
30	限电损失
41	电网故障损失
42	场内输变电设备故障损失

2.8.1 故障及维护损失

涉及表: data_status_his(状态历史表)、tb_kpi_turbine_avg10m(十分钟数据表)

- 从 data_status_his 表查出状态为上表包含的状态(字段 status_code = 2 故障、 = 4 维护的状态)
- 2. 从十分钟数据表 tb_kpi_turbine_avg10m 查出对应时间段的理论发电量 energy_theoretical、实际发电量 energy_real
- 3. 损失发电量 = 理论发电量 实际发电量
- 4. 每条损失发电量的时间间隔不超过10分钟,因为是与十分钟数据对应的;
- 5. 如果十分钟内只有一条损失发电量记录,则此条损失发电量的值等于此 10 分钟的损失发电量;如果十分钟内有多条损失发电量记录,则每一条损失发电量的值等于此 10 分钟的损失发电量乘以此条损失发电量记录时间长度占所有损失发电量记录时间长度之和的比例
- 6. 合并为一天的数据。

比如一条故障状态时间在[09:01:09~09:22:00],那么将此条状态记录拆成十分钟片段就是:

第一个片段: [09:00:00~09:10:00],有效时间是[09:01:09~09:10:00],比例 r=8:51/10:00=0.085,

第二个片段: [09:10:00~09:20:00],有效时间是[09:10:00~09:20:00],比例 r = 10:00/10:00=1

第三个片段: $[09:20:00\sim09:30:00]$,有效时间是 $[09:20:00\sim09:22:00]$,比例 r=2:00/10:00=0.2

单个片段损失发电量= max(0.0,(理论功率/6-实际发电量)) * r;然后累加。 求出每个十分钟发电量之后,然后根据天进行合并。

2.8.2 电网及场内变电设备损失

涉及表: data_fault_his(历史故障表)、dict_fault_model(故障解析表)、tb_kpi_turbine_avg10m(十分钟数据表)

- 1. 从 data_fault_his 表查和 dict_fault_model 故障码相同,且故障描述 dict_fault_model.fault_ch_name 包含: 电网、箱变、电缆。
- 2. 从十分钟数据表 tb_kpi_turbine_avg10m 查出对应时间段的理论发电量 energy_theoretical、实际发电量 energy_real
- 3. 损失发电量 = 理论发电量 实际发电量
- 4. 每条损失发电量的时间间隔不超过10分钟,因为是与十分钟数据对应的;
- 5. 如果十分钟内只有一条损失发电量记录,则此条损失发电量的值等于此 10 分钟的损失发电量;如果十分钟内有多条损失发电量记录,则每一条损失发电量的值等于此 10 分钟的损失发电量乘以此条损失发电量记录时间长度占所有损失发电量记录时间长度之和的比例
- 6. 合并为一天的数据。

2.9 PBA(发电量可利用率)

数据来源: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year

存储表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year PBA(发电可利用率) = (实际发电量) / (实际发电量+损失发电量) 损失发电量 = 故障损失+维护损失+限电损失

主要根据来源表的 KPI_ID 获取以下信息,就可以求出 PBA(发电量可利用率)

KPI_ID	说明
18	发电量
22	维护损失
30	限电损失
4	基于发电量的可利用率

2.10 节能减排

来源表: tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year
从涉及表里面获取以下 KPI = 9 发电量的值,就可以计算节能减排对应的字段值。

KPI_ID	说明
18	发电量
38	co2 减排
39	种树
40	节约煤

存储表: data_save_energy、tb_kpi_turbine_hour、tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

tb_kpi_farm_hour、tb_kpi_farm_date、tb_kpi_farm_month、tb_kpi_farm_year

公式:

- 1₎ CO2 (万吨)=发电量 ×2.6 ÷ 10000
- ₂₎ 植树(亿棵)=发电量 ×300 ÷ 100000000
- 3)标准煤(万吨)=发电量 ×0.1229 ÷ 10000

2.11 TBA 时间可利用率

KPI_ID	说明
24	故障时长
26	维护小时数

39	种树
40	节约煤

从以下表中获取 kpi=24、kpi=26 的 kpi_value 字段,就可以获取对应的故障时长、维护时长数据。

涉及表: dict_turbine(求风场的时候求风机台数,从而求出风场总时长)、tb_kpi_turbine_month、tb_kpi_turbine_year、tb_kpi_farm_year

存储表: tb_kpi_turbine_month、tb_kpi_turbine_year、tb_kpi_farm_year
TBA(时间可利用率) = (实际时长-故障时长)/实际时长

2.12 等效利用小时数

KPI_ID	说明	
18	发电量	
16	等效利用小时数	

从以下表中获取 kpi=18、kpi_value 字段,就可以对应发电量的数据。

涉及表: tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year

存储表: tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year

Euhour(等效利用小时数) = 实际发电量 / 额定功率

2.13 发电小时数

数据来源表: tb_kpi_turbine_avg10m

存储表: tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

求十分钟数据(tb_kpi_turbine_avg10m)中,如果有发电量(energy_real)大于 0,那么就相当于 10 分钟发电量。

2.14 有效风时

数据来源表: tb_kpi_turbine_avg10m

存储表: tb_kpi_turbine_date、tb_kpi_turbine_month、tb_kpi_turbine_year、

求十分钟数据(tb_kpi_turbine_avg10m)中,如果有(wind_speed_avg)风速大于3m/s,那么就相当于10分钟有效风时。

三、能效评估

3.1 WT 数据

基于测风塔数据获取到原始信息,通过计算得到 WT 数据,其结果存在data_wt

Mysql 字段	说明
farm_code	风场编号
turbine_code	风机编号
wind_speed	风速
power	功率
real_time	时间
create_time	创建时间

3.2 自由来流风速&功率

由WT数据,得到自由来流风速,其结果存在data_freestream_speed

Mysql 字段	说明
farm_code	风场编号
turbine_code	风机编号
scada_speed	风速
freestream_speed	自由来流风速
st_freestream_speed	标密自由来流风速
power	功率
real_time	数据时间
create_time	创建时间

3.3 机舱传递函数

基于自由来流风速,得到机舱传递函数,其结果存在tb_model_transfer_function

Mysql 字段	说明
farm_code	风场编号
farm_name	风场名称
wtid	风机编号
a	函数系数

b	函数截距
rr	拟合度

3.4 风能捕获系数

基于自由来流风速及奖距角,计算机组的的风能捕获系数,结果储存在tb_wind_energy_capture_coefficient 表中。

Mysql 字段	说明
farm_name	风场名称
farm_code	风场编号
wtid	风机编号
Ср	风能捕获系数
calculation_date	时间

四、智能预警

4.1 SCADA 预警配置表

Scada 预警涉及到的数据表有: 预警标签表 tb_model_farm_tag、预警模型表 tb_model_info、模型所需标签表 tb_model_tag、MySE3.0 模型所需配置表 tb_model_tags_dict、预警模型参数表 tb_model_threshold、预警运行记录表 tb_model_check_list、预警排查方案表 tb_model_check_scheme。各表结构参考 ER 视图。

4.2 SCADA 预警结果表

基于已建的模型,结合运行数据,此运行结果存 tb_model_predict_detailtime 和 tb_model_predict_count,表结构参考 ER 视图,tb_model_predict_detailtime 指运行结果的实时记录,tb_model_predict_count 结合模型筛选逻辑及排查方案,自动将工单结果写入 count 表中。

PS: 工单下单逻辑

- 1. 统计该机组和该模型预警开始时刻过去触发次数
- 2. 统计该模型预警开始时刻过去触发机组数

判断触发次数和触发机组数

1.判断触发机组数<=2 and 触发次数>=导出次数

1.判断过去一个月健康度未完成工单中 type 类型,如果不在里面,下发,反之不下发(具体见内容三)

2.当过去一周触发机组数==71 时,邮件提醒

未排查工单超过一个月:再次下发预警工单。

未排查工单一个月内:更新结束时间,持续时间(旧+新持续时间)、累计故障次数(旧次数+新次数)

4.3 越限分析

结合机组运行数据,越限分析明细数据 data_overrun_detail,越限分析结果数据 data_overrun,表结构参考 ER 视图。

计算逻辑,基于离散率主线,结合故障代码手册中的限值表,选定相应的越限原则,进行相关指标的计算。

4.4 健康度分析

涉及到的数据表有:半直驱健康度模型及指标 healthy_state_cfg、双馈健康度模型及指标 healthy_state_cfg_my、半直驱健康度——部件整机表 healthy_state_component、双馈健康度——部件整机表 healthy_state_component_my、半直驱健康度——部件指标表 healthy_state_index、双馈健康度——部件指标表 healthy_state_index_my、健康度——部件最后时间 healthy_state_component_lasttime,表结构参考 ER 视图。

健康度计算的子指标结果值<=0.1 即判定为较差(高级);子指标结果值>0.1 且<=0.4,即判定为警惕(中级)。

4.5 故障树

涉及到的配置表有:风机故障详细记录表 data_fault、风机故障码字典表 dict fault model、故障地址码对应用原因及解决方案字典表 dict fault solution。

运行结果表有:故障树记录表tb_wind_fault_tree、故障节点发生概率预测tb_wind_fault_tree_forecast、机组哪些模式是否触发过tb_wind_fault_tree_model_maping。

PS: 故障树的构建需要参考历史故障维修记录表。