	1	<u>CLAIMS</u>
	2	
	3	What is claimed is:
	4	
	5	Claim 1. A method for diagnosing or monitoring
	6	multiple sclerosis (MS) in a mammal comprising:
	7	obtaining a sample of body fluid from said mammal, wherein
	8	said body fluid includes blood, blood products and saliva;
	9	contacting said sample with at least one protein
	10	associated with multiple sclerosis, wherein said contacting is
	11	by an enzyme-linked immunosorbent assay (ELISA);
Ō	12	determining a level of at least one autoantibody specific
	13	for said at least one protein in said sample; and,
ħĮ P	14	comparing said level of said at least one autoantibody
	15	with statistically significant levels thereof, wherein
Lä Lä Lä	16	diagnosis or monitoring of MS in said mammal is achieved.
li C	17	
hai Mi	18	Claim 2. The method of claim 1, wherein said mammal is a
	19	human.
	20	
	21	Claim 3. The method of claim 1, wherein said protein is myelin
	22	basic protein (MBP).
	23	
	24	Claim 4. The method of claim 1, wherein said ELISA comprises
	25	the steps of:

1

ű.
ű
Ø
Ŋ
<u> </u>
, Tagg

5
ļ.
ļis
ļīs
ufus Etta
l.a

1	mixing said sample with at least one compound effective to
2	optimize the signal to noise ratio;
3	contacting said sample with an immunosorbent comprising
4	said at least one protein having a high specific affinity for
5	said at least one autoantibody; and,
6	determining an amount of said at least one autoantibody
7	bound by said at least one protein on said immunosorbent using
8	an antibody composition having an affinity for said at least
9	one autoantibody and operably linked to a signal generating
10	system.
11	
12	Claim 5. The method as in claim 4, wherein said signal
13	generating system is a tetramethylbenzidine substrate.
14	
15	Claim 6. The method as in claim 4, wherein said at least one
16	autoantibody is anti-MBD IgG
17	
18	Claim 7. The method as in claim 6, wherein said antibody
19	composition comprises purified anti-human IgG conjugated to
20	horseradish peroxidase.
21	
22	Claim 8. The method as in claim 4, wherein said at least one
23	autoantibody is anti-MBP IgM.
24	
25	Claim 9. The method as in claim 8, wherein said antibody

E)
ű
47
T.
<u> </u>
ال _{ال} ية.
€
Hi
<u> </u>
eges Sta
15

1	composition comprises purified anti-human IgM conjugated to
2	horseradish peroxidase.
3	
4	Claim 10. The method as in claim 4, wherein said at least one
5	autoantibody includes anti-MBP IgG and anti-MBP IgM.
6	
7	Claim 11. A kit for diagnosing multiple sclerosis (MS) or
8	monitoring disease state in MS patients, comprising:
9	at least one biomolecule or an immunologically detectable
10	fragment thereof which is upregulated in MS patients, said
11	biomolecule having an affinity for at least one additional
12	biomolecule whose presence is diagnostic of MS, said at least
13	one biomolecule being immobilizable on a solid support; and,
14	at least one labeled biomplecule having a binding affinity
15	for said at least one additional biomolecule;
16	whereby performance of at least one analysis determinative
17	of the presence of statistically significant levels of said at
18	least one biomolecule or an immunologically detectable fragment
19	thereof, is carried out on a sample of body fluid and provides
20	a means for diagnosing or monitoring disease state.
21	
22	Claim 12. The kit as defined in claim 11, wherein said sample
23	of body flyid is blood, blood products, or saliva.
24	
25	Claim 13. The kit as defined in claim 11, wherein said at

1 least one biomolecule is myelin basic protein (MBP)/ 2 3 Claim 14. The kit of claim 11, wherein said/at least one 4 additional biomolecule includes anti-MBP IgM and anti-MBP IgG. 5 6 Claim 15. The kit as defined in claim 11, wherein said at 7 least one additional biomolecule is anti-MBP IgM. 9 Claim 16. The kit as defined in claim 15, wherein said labeled 10 biomolecule is anti-human IqM $\not c$ onjugated to horseradish peroxidase. The kit as defined in claim 11, wherein said at least one additional biomoxecule is anti-MBP IgG. Claim 18. The kit as defined in claim 17, wherein said labeled anti/-haman biomolecule is IgG conjugated to horseradish peroxidase. 19 The/kit of claim 11, wherein said monitoring is 20 21 carried out on a single sample

22

Claim 20. The kit of claim 11, wherein said monitoring is carried out on multiple samples such that at least one analysis is carried out on a first sample and at least another analysis

is carried out on a second sample.	
Claim 21. The kit of claim 20, wherein said first and secon	d
samples are obtained at different time periods.	
1	