## AMENDMENT TO THE CLAIMS:

1. (Currently Amended) A compound of the formula

in which

Z<sub>1</sub> is an oxygen atom; or a sulfur atom;

Z<sub>2</sub> is an oxygen atom; or a sulfur atom;

R<sub>1</sub> is an aryl or heteroaryl group, which is unsubstituted or substituted; a phenyl or naphthyl group, which is substituted independently by 1 or 2 substituents R<sub>a</sub> and optionally further substituted independently by 1 to 3 substituents R<sub>b</sub>; or

R<sub>1</sub> is heteroaryl composed of a ring having 5 or 6 ring members or of a combination of at least two rings having in each case independently of one another 5 or 6 ring members, where 1 up to and including 4 of the ring members is (are) (a) heteroatom(s) selected from the group consisting of nitrogen, oxygen and sulfur, which heteroaryl is unsubstituted or substituted independently by 1 to 4 substituents R<sub>2</sub>:

 $R_2$  is hydrogen; or an organic substituent: a  $C_1$ - $C_0$ -alkvi,  $C_2$ - $C_0$ -alkvinyl or  $C_3$ - $C_0$ -cycloalkvil group, which group is unsubstituted or substituted independently by one or more substituents, selected from the group, consisting of the substituents  $R_0$ : a group  $C(=0)R_d$ ; or a group  $C(=S)R_d$ ;

R<sub>3</sub> is hydrogen; or an organic substituent; a C<sub>1</sub>-C<sub>e</sub>alkyl, C<sub>2</sub>-C<sub>e</sub>alkenyl, C<sub>2</sub>-C<sub>e</sub>alkvnyl or C<sub>3</sub>-C<sub>e</sub>cycloelkyl group, which group is unsubstituted or substituted independently by one or more substituents, selected from the group, consisting of the substituents R<sub>2</sub>, C<sub>1</sub>-C<sub>e</sub>alkoxy; halo-C<sub>1</sub>-C<sub>e</sub>alkylx, C<sub>3</sub>-C<sub>e</sub>cycloelkoxy; C<sub>1</sub>-C<sub>e</sub>alkylthio; halo-C<sub>1</sub>-C<sub>e</sub>alkylthio; C<sub>1</sub>-C<sub>e</sub>alkylamino; halo-C<sub>1</sub>-C<sub>e</sub>alkylamino; di-C<sub>1</sub>-C<sub>e</sub>alkylamino, in which the two alkyl groups are the same or different or, taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and

optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyano, nitro, halogen, C<sub>1</sub>-C<sub>6</sub>alkyl and C<sub>1</sub>-C<sub>6</sub>alkoxy, di-(halo-C<sub>1</sub>-C<sub>6</sub>alkyl)-amino, in which the two haloalkyl groups are the same or different, C<sub>2</sub>-C<sub>6</sub>cycloalkylamino; N-(C<sub>1</sub>-C<sub>6</sub>alkyl)-N-(C<sub>3</sub>-C<sub>6</sub>cycloalkyl)-amino; C<sub>1</sub>-C<sub>6</sub>alkoxycarbonyl; halo-C<sub>1</sub>-C<sub>6</sub>alkoxycarbonyl;

R₄ is hydrogen; or an organic substituent; a substituent R₁; a substituent R₂; a C₁-Calkyl, Ca-Calkenyl, Ca-Calkynyl or Ca-Cacycloalkyl group, which group is unsubstituted or substituted independently by one or more substituents, selected from the group, consisting of the substituents R<sub>a</sub>, the substituents R<sub>b</sub> and a phenyl, benzoyl, phenoxy or heteroaryl group composed of a ring having 5 or 6 ring members or of a combination of at least two rings having in each case independently of one another 5 or 6 ring members. where 1 up to and including 4 of the ring members is (are) (a) heteroatom(s) selected from the group consisting of nitrogen, oxygen and sulfur, which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of the substituents R<sub>c</sub> a group CH<sub>2</sub>OR<sub>c</sub> a group CH<sub>2</sub>SR<sub>c</sub> a group CH<sub>2</sub>NHR<sub>1</sub>, which group is optionally further substituted at the nitrogen atom by C1-C, alkyl or halo-C1-C, alkyl; C1-Csalkoxy: halo-C1-Csalkoxy: C3-Cscycloalkoxy: a group OR1: C1-Csalky/thio: halo-C1-Castkvithio: a group SR1; C1-Castkvisulfinyl; hato-C1-Castkvisulfinyl; C1-Castkvisulfonyl; hato-C1-Csalkylsulfonyl: C1-Csalkylamino; halo-C1-Csalkylamino; di-C1-Csalkylamino, in which the two alkyl groups are the same or different or taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group consisting of cyang nitro, halogen, C+-C+alkyl and Ct-Caalkoxv: di-(halo-Ct-Caalkvl)-amino, in which the two haloalkyl groups are the same or different, C3-Cacycloalkylamino; N-(C1-Caalkyl)-N-(C3-Cacycloalkyl)-amino; a group NHR1, which group is optionally further substituted at the nitrogen atom by C1-C3alkyl or halo-C1-Csalkyl; a group C(=0)Rs; a group C(=0)Rs; a group C(=5)Rs; or a group C(=5)Rs;

or R<sub>3</sub> and R<sub>4</sub>, taken together, form, together with the nitrogen atom, to which they are attached, a ring which is unsubstituted or substituted; containing 1 ring nitrogen atom and 2 to 6 ring carbon atoms and optionally 1 further ring hereto atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyano, nitro, halogen, C<sub>1</sub>-C<sub>4</sub>alkyl and C<sub>1</sub>-C<sub>4</sub>alkoxy.

R<sub>a</sub> is cyano; nitro; halogen; C<sub>1</sub>-C<sub>6</sub>alkyl; halo-C<sub>1</sub>-C<sub>5</sub>alkyl; C<sub>1</sub>-C<sub>6</sub>alkoxy-C<sub>1</sub>-C<sub>6</sub>alkyl; C<sub>2</sub>-Calkenvi: haio-Co-Calkenvi: Co-Calkvnvi: haio-Co-Calkvnvi: Ca-Cacvoloalkvi: haio-Co-Cecycloaiky): hydroxy; C1-Cealkoxy; halo-C1-Cealkoxy; C3-Cecycloaikoxy; mercapto; C1halo-C<sub>1</sub>-C<sub>6</sub>alkylthio: C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl; halo-C<sub>1</sub>-C<sub>6</sub>alkylsulfinyl, Csalkylsulfonyl; halo-Ct-Csalkylsulfonyl; amino; Ct-Csalkylamino; halo-Ct-Csalkylamino; di-C1-C6alkylamino, in which the two alkyl groups are the same or different or, taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyang, nitro, halogen, C1-Caalkvl and C1-Caalkoxv; di-(halo-C1-Caalkvl)-amino, in which the two haloalkvl groups are the same or different; C3-Cacycloalkylamino; N-(C1-Calkyl)-N-(C3-Cacycloalkyl)amino: carboxy; C<sub>1</sub>-C<sub>6</sub>alkoxycarbonyl; halo-C<sub>1</sub>-C<sub>6</sub>alkoxycarbonyl; aminocarbonyl; C<sub>1</sub>-C<sub>n</sub>alkylaminocarbonyl, halo-C<sub>1</sub>-C<sub>n</sub>alkylaminocarbonyl; di-C<sub>1</sub>-C<sub>n</sub>alkylaminocarbonyl, in which the two alkyl groups are the same or different or, taken together, form, together with the nitrogen atom, to which they are attached, a ring containing 1 ring nitrogen atom and 2 to 12 ring carbon atoms and optionally 1 further ring hetero atom, which then replaces 1 ring carbon atom and is selected from the group, consisting of an oxygen, a sulfur and a nitrogen atom, which ring is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyang, nitro, halogen, C<sub>1</sub>-C<sub>2</sub>alkyl and C<sub>1</sub>-C<sub>2</sub>alkoxy, di-(halo-C<sub>1</sub>-C<sub>2</sub>alkyl)-aminocarbonyl, in which the two haloalkyl groups are the same or different; C1-Cealkylcarbonyl; halo-C1-Cealkylcarbonyl; or tri-C1-Cealkylsilyl, in which the three aikyl groups are the same or different;

or 2 substituents R<sub>8</sub>, which are attached to adjacent carbon atoms, taken together, are -(CH<sub>2</sub>-)<sub>8</sub>, -(CH<sub>2</sub>-)<sub>4</sub>, -(CH<sub>2</sub>-)<sub>5</sub>; -(CH=CH-)<sub>2</sub>; -OCH<sub>2</sub>O-; -O-(CH<sub>2</sub>-)<sub>2</sub>O-; -QCF<sub>2</sub>O-; -(CF<sub>2</sub>-)<sub>2</sub>O-; -O-(CF<sub>2</sub>-)<sub>2</sub>O-;

R<sub>b</sub> is halogen, C<sub>1</sub>-C<sub>6</sub>alkey, C<sub>2</sub>-C<sub>6</sub>alkenyl; C<sub>2</sub>-C<sub>6</sub>alkey, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>2</sub>-C<sub>6</sub>alkoxy, C<sub>2</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub>6</sub>alkoxy, C<sub>1</sub>-C<sub></sub>

which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of the substituents  $R_n$ :

R<sub>6</sub> is a substituent R<sub>8</sub>; or a phenyl, benzyl, benzyl, phenoxy or heteroaryl group composed of a ring having 5 or 6 ring members or of a combination of at least two rings having in each case independently of one another 5 or 6 ring members, where 1 up to and including 4 of the ring members is (are) (a) heteroatom(s) selected from the group consisting of nitrogen, oxygen and sulfur, which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of the substituents R<sub>4</sub>;

 $R_0$  is a substituent  $R_1$ ;  $C_1$ - $C_0$ alkyl; halo- $C_1$ - $C_0$ alkyl;  $C_1$ - $C_0$ alkyl; a group  $CH_2R_1$ ; which group is optionally further substituted at the nitrogen atom by  $C_1$ - $C_0$ alkyl or halo- $C_1$ - $C_0$ alkyl;  $C_2$ - $C_0$ alkenyl; halo- $C_2$ - $C_0$ alkynyl; halo- $C_1$ - $C_0$ alkyl halo- $C_1$ 

different, C<sub>3</sub>-C<sub>6</sub>cycloalkylamino; N-(C<sub>1</sub>-C<sub>6</sub>alkyl)-N-(C<sub>3</sub>-C<sub>6</sub>cycloalkyl)-amino; or a group NHR<sub>1</sub>, which group is optionally further substituted at the nitrogen atom by C<sub>1</sub>-C<sub>6</sub>alkyl or halo-C<sub>1</sub>-C<sub>6</sub>alkyl:

 $R_{\rm g}$  is a carbocyclyl or heterocyclyl group, which group is monocyclic or bicyclic and is non-aromatic, in which group 1 or 2 of the ring members are optionally selected from the group, consisting of the groups C(=0), S(=0) and S(=0), and which group is unsubstituted or substituted independently by 1 to 4 substituents, selected from the group, consisting of cyano, nitro, halogen,  $C_1$ - $C_4$ alkyl and  $C_1$ - $C_4$ alkoxy;

 $R_5$  is hydrogen; C<sub>1</sub>-C<sub>6</sub>alkyl or halo-C<sub>1</sub>-C<sub>9</sub>alkyl; or an unsubstituted or substituted alkyl-group; or forms, taken together with  $R_8$  or with a monovalent substituent attached to that atom of  $R_6$ , via which atom  $R_6$  is directly connected with the carbon atom, shown in the formula I, which carries  $R_5$ , one additional bond;

 $R_6$  and  $R_7$ , taken together, form, together with the two carbon atoms, shown in the formula I, to which atoms they are attached, a bicyclic ring system, which ring system is carbocyclic or heterocyclic, which ring system is substituted, in the manner shown in the formula I, by the four substituents  $-N(R_2)-C(=Z_1)-R_1$ ,  $-C(=Z_2)-N(R_3)-R_4$ ,  $R_5$  and  $R_8$ , and which ring system is optionally further substituted;

and  $R_8$  is hydrogen; or an unsubstituted or substituted a  $C_1$ - $C_0$ alkyl group; or forms, taken together with  $R_5$  or with a monovalent substituent attached to that atom of  $R_7$ , via which atom  $R_7$  is directly connected with the carbon atom, shown in the formula I, which carries  $R_8$ , one additional bond, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

- 2. (Original) A compound according to claim 1 of the formula I, in which Z<sub>1</sub> is an oxygen atom, or, where appropriate, a tautomer thereof.
- (Original) A compound according to claim 1 of the formula I, in which Z<sub>2</sub> is an oxygen atom, or, where appropriate, a tautomer thereof.

 (Original) A compound according to claim 1 of the formula I, in which R<sub>1</sub> is a phenyl, pyridyl or pyrazolyl group, which is unsubstituted or substituted, or, where appropriate, a tautomer thereof.

5. (Original) A compound according to claim 4 of the formula I, in which R<sub>1</sub> is a pyrazol-5-yl group, which is substituted in the 3-position by halogen, halo-C<sub>1</sub>-C<sub>6</sub>alkyl or halo-C<sub>1</sub>-C<sub>6</sub>alkoxy and in the 1-position by a pyrid-2-yl group, which group is substituted in the 3-position by chlorine or bromine, or, where appropriate, a tautomer thereof.

 (Original) A compound according to claim 1 of the formula I, in which R<sub>2</sub> is hydrogen or C<sub>1</sub>-C<sub>n</sub>alkyI, or, where appropriate, a tautomer thereof.

 (Original) A compound according to claim 1 of the formula I, in which R<sub>3</sub> is hydrogen or C<sub>1</sub>-C<sub>6</sub>alkyl, or, where appropriate, a tautomer thereof.

(Original) A compound according to claim 1 of the formula I, in which R<sub>4</sub> is C<sub>1</sub>-C<sub>6</sub>alkyl, or, where appropriate, a tautomer thereof.

9. (Original) A compound according to claim 1 of the formula I, in which  $R_5$  and  $R_8$ , taken together, are a bond, or, where appropriate, a tautomer thereof.

10. (Original) A compound according to claim 1 of the formula I, in which the two carbon atoms, shown in the formula I, to which atoms  $R_6$  and  $R_7$  are attached, are two ring members of an aromatic ring, or, where appropriate, a tautomer thereof.

11. (Original) A pesticidal composition, which comprises at least one compound according to claim 1 of the formula I or, where appropriate, a tautomer thereof, in each case in free form or in agrochemically utilizable salt form, as active ingredient and at least one auxiliary.

- 12. (Original) A composition according to claim 11 for controlling insects or representatives of the order Acarina.
- 13. (Original) A method for controlling pests, which comprises applying a composition according to claim 11 to the pests or their environment.
- 14. (Original) A method according to claim 13 for controlling insects or representatives of the order Acarina
- 15. (Original) A method according to claim 13 for the protection of plant propagation material from the attack by pests, which comprises treating the propagation material or the site, where the propagation material is planted.
- 16. (Original) Plant propagation material treated in accordance with the method described in claim 15.
- 17. (Original) A compound of the formula B

in which R<sub>1</sub>, R<sub>5</sub>, R<sub>6</sub>, R<sub>7</sub> and R<sub>8</sub> have the meanings given in claim 1 for the formula I, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

18. (Original) A compound of the formula D

in which  $Z_1$ ,  $R_1$ ,  $R_2$ ,  $R_5$ ,  $R_6$ ,  $R_7$  and  $R_8$  have the meanings given in claim 1 for the formula 1; and R is OH,  $C_1$ - $C_4$ alkoxy or CI, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

## 19. (Original) A compound of the formula AA

in which R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub>, R<sub>5</sub>, R<sub>6</sub>, R<sub>7</sub> and R<sub>8</sub> have the meanings given in claim 1 for the formula I, or, where appropriate, a tautomer thereof, in each case in free form or in salt form.

## 20. (New) Compounds of formulae VIIa and VIIb

## wherein

Ro1 is hydrogen; amino or nitro;

R<sub>02</sub> is hydrogen or C<sub>1</sub>-C<sub>4</sub>alkyl;

 $R_{03}$  is  $C_1\text{-}C_4\text{alkyl}$ ,  $C_1\text{-}C_4\text{alkyl}$  mono- or disubstituted by cyano, COOH, nitro,  $C_1\text{-}C_4\text{alkoxy}$  or cyclopropyl;  $C_2\text{-}C_8\text{alkenyl}$ ,  $C_2\text{-}C_8\text{alkenyl}$  substituted by halogen;  $C_1\text{-}C_4\text{alkoxy}$ ,  $C_3\text{-}C_6\text{-alkinyl}$ , cyclopropyl, cyclobutyl, cyclopentyl, cyclopropyl substituted by  $C_1\text{-}C_4\text{alkyl}$ , pyridyl, phenyl- $C_2\text{-}C_6\text{alkenyl}$  or cyclopropyl; cyclobutyl substituted by  $C_1\text{-}C_4\text{alkyl}$ , cyclopentylthio- $C_1\text{-}C_4\text{alkyl}$ , benzyloxy, benzyloxy substituted by halogen; benzylthio- $C_1\text{-}C_4\text{alkyl}$ , thiophenyle cyclopentylthio-the benzyl group may itself be substituted by  $C_1\text{-}C_4\text{alkyl}$ , thiophenyle bentzyles.

substituted by halophenyl; phenoxy- $C_1$ - $C_4$ alkyl, wherein the phenyl group may be mono- or disubstituted by halogen; phenyl- $C_1$ - $C_4$ alkyl, wherein the phenyl group may itself be mono- or disubstituted by substituents selected from halogen, nitro, benzothiazol-2-yloxy,  $C_1$ - $C_4$ haloalkyl,  $C_1$ - $C_4$ alkoxy and  $C_1$ - $C_4$ alkyl; 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 1,2,3,4-tetrahydro-naphthalenyl substituted by  $C_1$ - $C_4$ alkoxy;  $C_2$ - $C_6$ alkenyloxy, isoxazolyl substituted by  $C_1$ - $C_4$ alkyl; thiazolyl,  $C_1$ - $C_4$ alkoxycarbonyl- $C_1$ - $C_4$ alkyl, phenyl substituted by hydroxy, halophenyloxy,  $C_1$ - $C_4$ alkyl-silyl( $C_1$ - $C_4$ -alkyl)3 or  $C_2$ - $C_6$ alkinyl; pyridyl substituted by  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkyl,  $C_2$ - $C_6$ alkenylthio- $C_1$ - $C_4$ alkyl,  $C_3$ - $C_6$ alkinylthio- $C_1$ - $C_4$ alkyl, dioxolan-2-yl- $C_1$ - $C_4$ alkyl,  $(C_1$ - $C_4$ alkyl-dioxolan-2-yl)- $C_1$ - $C_4$ alkyl, triazolyl- $C_1$ - $C_4$ alkyl, thienyl- $C_1$ - $C_4$ alkyl, morpholinyl- $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkyl, halo-substituted-thiazolyl- $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkyl,  $C_1$ - $C_4$ alkyl, wherein the quinoline group may be substituted by  $C_1$ - $C_4$ -haloalkyl;

Rna is C1-Cahaloalkvl:

Ros is halogen;

each of  $R_{0\theta}$  and  $R_{010}$ , which may be the same or different, represents hydrogen,  $C_1$ - $C_6$ alkyl,  $C_1$ - $C_6$ alkoxycarbonyloxy,  $C_1$ - $C_6$ alkylcarbonylamino, hydroxy, cyano, halogen or  $C_1$ - $C_6$ lkoxy:

R<sub>07</sub> is hydrogen, nitro or halogen;

Y<sub>01</sub> is C(R<sub>08</sub>), sulfur, nitrogen or a chemical bond;

R<sub>08</sub> is hydrogen, halogen, C<sub>1</sub>-C<sub>4</sub>alkyl or nitro; and

 $Y_{02}$  is  $C(R_{09})$ , a chemical bond, or is nitrogen or sulfur; and  $R_{09}$  is hydrogen, phenyl, phenyl substituted by halogen, or halogen.