Introduction to Bash and Slurm

EDB/LEFE training - session 1

Anne-Sophie Benoiston anne-sophie.benoiston@univ-tlse3.fr Jordi Salmona jordi.salmona@gmail.com Imogen Dumville imogen.dumville@gmail.com

Who are we?

Anne-Sophie Benoiston

Bioinformatics engineer

Jordi Salmona

Post-doc

Imogen Dumville

M.Sc. Intern

Organization of the session

SIUCT workload manager

9:30 - 12:00

13:30 - 16:00

theory + exercises

Access the cluster to practice

Remotely accessing servers: putty, ssh, scp, FileZilla, MobaXterm

Command line window interfaces:

- Putty or <u>MobaXterm</u> (Windows), + ssh command
- Command line terminal (Linux/Apple) + ssh command

File transfer:

- FileZillla (all OS), <u>MobaXterm</u>, winscp (windows)
- scp command
- from folder interface (linux)

<u>This course</u>: MobaXterm chosen for its versatility (for Windows users)

Vocabulary:

- FTP: file transfer protocol
- SSH: secure shell
- SCP: secure copy

Practice to learn: connect to your Genotoul account

FileZilla

Download data

For the purpose of the exercises, download some data following one of these solutions:

- Enter this address in your **web navigator**: https://mothur.s3.us-east-2.amazonaws.com/wiki/misegsopdata.zip
- + unzip the file
- + copy the folder in your work/ directory using FileZilla
- Use wget in your terminal: cd work/
 then wget https://mothur.s3.us-east-2.amazonaws.com/wiki/miseqsopdata.zip
 and finally unzip the file unzip miseqsopdata.zip

Structure of a Unix system

Dennis Ritchie and Ken Thompson, inventors of Unix, working on a PDP-11 (a "minicomputer"!) on which the first version of Unix was ran

Introduction to Bash

What is Bash?

A **command-line interpreter** (or shell): provides a command-line interface to interact with a Unix OS

Developed in 1989 from the Bourne shell (sh)

Default shell on most Unix systems

Brian Fox, the author of Bash

Syntax of a Bash command

```
command [-options] [arguments]
Examples:
ls -l
head -n 30 sequence.fasta
cp -r ../exercise1 exercises/
Get help on a specific command:
man ls
```

```
"/" root directory

"~" home directory

"." current/working directory

"." parent directory

"-" last working directory
```

Change directory: cd [directory name]

"/" root directory

"~" home directory

"." current/working directory

".." parent directory

"-" last working directory

Change directory: cd [directory name]

A small exercise:

- "/" root directory
- "~" home directory
- "." current/working directory
- ".." parent directory
- "-" last working directory

Change directory: cd [directory name]


```
ls (list directory contents)
ls -lah
ls -lah work/
tree (list contents of directories in a tree-like format)
tree -dL 2
pwd (print working directory)
pwd
```

Absolute vs. relative path

```
An absolute path begins with the root "/"

/home/abenoiston/work/MiSeq_SOP/F3D0_S188_L001_R1_001.fastq

A relative path starts from where you are in the tree structure

work/MiSeq_SOP/F3D0_S188_L001_R1_001.fastq

(path from /home/abenoiston/)
```

Manipulate files and directories

Create and remove files/directories

```
touch / rm [file_name]

mkdir / rmdir [dir_name]

Copy files/directories

cp [-r] [source] [destination]

cp file1 file2

cp -r dir1 dir2
```

```
Move/rename files/directories
```

```
mv [source] [destination]
mv file_name existing_dir_name
mv old_file_name new_file_name
mv old_file_name
existing_dir_name/new_file_name
```

Find files and directories

```
find [dir_name] [-options] [parameter]
find myfolder/ -name "*.fastq"
find -type d
find -type f
```

Display file content

```
cat [file_name]
more [file_name]
less [file_name]
head [file_name]
tail [file_name]
```

Piping and redirection

Appending commands together with a pipe

echo "hello world" | grep hello

Sending output of a command to a file

echo "hello world" > hello.txt

Appending output of a command to a file (no overwriting)

echo "hello world" >> hello.txt

Getting input to a command from a file

cat < hello.txt</pre>

Searching files and counting words

Finding the word "hello"

```
echo "hello world" | grep hello <- remember this?</pre>
```

Or from a file...

```
grep "hello" filename
```

Lots of options; line number (-n); only match (-o); lines before -B and after -A

Counting the number of lines/words/characters

wc (often with -1)

→ Follow the file **Morning_tuto_bash_1.sh** on https://github.com/Imogen-D/Bases_De_Bash_Workshop

Owners and permissions

Owners and permissions

Owners:

- 1. The user who owns the file $(\underline{\mathbf{u}})$, usually the creator of the file
- 2. The group that owns the file (\underline{g}). If a user is a member of a certain group that owns a file, the user will also have certain permissions on that file.
- 3. The others, the rest of the world (o). In short, everyone is neither the owner of the file, nor a member of the group that owns the file.

Owners and permissions

Permissions:

- 1. Reading a file (<u>r</u>)
- 2. Writing a file (<u>w</u>)
- 3. Executing a file ($\underline{\mathbf{x}}$)

Understand access rights

Show the permissions on the files in a directory:

Permissions appear like this:

The first symbol indicates the nature of the file:

- d directory
- file
- 1 symbolic link

Change permissions

chmod (change mode, change permissions)

3 elements to choose:

- 1. To whom the change applies : $\underline{\mathbf{u}}$ (user), $\underline{\mathbf{g}}$ (group), $\underline{\mathbf{o}}$ (others), $\underline{\mathbf{a}}$ (all)
- 2. The change you want to make: +, -
- 3. The right we want to change: \underline{r} , \underline{w} , \underline{x}

Examples:

```
chmod o-r myfile
chmod u+rwx,g+rx-w,o+r-wx myfile
```

chown (*change owner*) Example: chown toto fichier1

Download files

Download files from online repositories: wget, curl

Wget: let's try with the WorldClim min temperature data

```
wget --no-check-certificate
https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_10m_tmin.zip
```

cURL: let's try with one of *Yersinia pestis'* reference genome

```
curl -L
"https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/015/336/265/GCF_015336265.1_ASM1533626v1/GC
F_015336265.1_ASM1533626v1_genomic.fna.gz" -o
GCF_015336265.1_ASM1533626v1_genomic.fna.gz
```

More information: https://linuxhint.com/what-is-the-difference-between-wget-vs-curl/

Unzip files

ZIP

Zip-Unzip files: tar, gzip, gunzip

gunzip: let's unzip the WorldClim data and the Yersinia genome

gunzip wc2.1_10m_tmin.zip

gzip GCF_015336265.1_ASM1533626v1_genomic.fna.gz

<u>tar</u>: let's compress folders of files for long term storage

mkdir -p zipping ; mkdir -p zipping/zippings_{001..100}/

tar -zcvf my-archive-name.tar.gz zipping

du -chs ./*

How much disk space is saved by the compression?

More info:https://lecrabeinfo.net/linux-compresser-decompresser-fichiers-dossiers-avec-tar-gzip-bzip2-xz.html

→ Follow the file **Morning_tuto_bash_2.sh** on https://github.com/Imogen-D/Bases_De_Bash_Workshop

```
cd ~/work
cd bash slurm training
mkdir data slumr # creates 3 folders
mv slumr slurm # oops we mispelled the folder, we rename it
cd data
wget https://mothur.s3.us-east-2.amazonaws.com/wiki/miseqsopdata.zip
unzip miseqsopdata.zip # files unzip in a folder named 'MiSeq SOP'
cd MiSeq_SOP
1s -1h # have a look at the files - look at the structure of the output
# let's organize our data:
mkdir fastq files
mv *.fastq fastq_files # moves all fasta files
pwd # check were we are
```

```
cd .. # go back to the parent folder
tree # have a look at how are organized the files in MiSeq SOP folder
# now look at the content of the files:
head -n 20 MiSeq_SOP/fastq_files/F3D1_S189_L001_R1_001.fastq
head -n 5 MiSeq SOP/fastq files/*.fastq
less MiSeq SOP/HMP MOCK.v35.fasta
# extract the first lines of this file and write them in another file:
head MiSeq SOP/HMP MOCK.v35.fasta > head file.txt
cat head file.txt
echo "THE END" >> head file.txt # print "THE END" at the end of the file
rm head file.txt # delete the file
# change permissions for others on MiSeq SOP:
chmod -R o-rwx MiSeq SOP/
```

Get commands' recent HISTORY

Obtain the last command.s

use the keyboard's up arrow

Get commands' HISTORY

Print the last [thousand] commands' history

history

or the last **n** [25] commands

history 25

clear [-c] your commands' history (if you have something to hide)

history -c

save your commands' history to a permanent file

history 500 > ./the_true_history

Bas relief, cercueuil, MUSEE SAINT-RAYMOND, MUSEE D'ARCHEOLOGIE DE TOULOUSE

more options with the manual's instructions

man history

Create links

Organizes your files and avoid duplicating them!

<u>Soft links -s (--symbolic) option.</u>: like windows shortcut [ln -s], **can** point to a file or a directory on a different filesystem or partition.

dd if=/dev/zero of=my-2mb-file bs=100000 count=20

ln -s my-2mb-file my-2mb-file-softlink #just a light link

<u>Hard links</u>: an additional name/location for an existing file [In], **not** for directories and files on a different filesystem or partition

ln my-2mb-file my-2mb-file-hardlink
#copied the size but not using more space

ls -lh my-2mb-file*

du -chs ./

Jokers and regular expressions

Jokers, wildcards and regular-expressions

<u>signification</u>	<u>bash</u>
joker (1 character)	?
joker (several characters)	*
character among	[]
character except	[!]
characters ? *	\? *

list all files with extension .txt:

ls *.txt
list files for individuals from SX00 to SX09
touch individual_SX{00..25}.txt
ls individual SX0?.txt

list SX and SY files from individual 01:
touch individual_SY{00..25}.txt
ls individual_S[XYZ]01.txt

What is that one doing ????

ls individual_S[XYZ][!023]1.txt

Regular Expressions - Quick Reference Guide

Non-capturing Named captures

Back references Numbered

Relative Named

Anchors		
* \$ 16 B A G 12 Z	start of line end of line word boundary not at word boundary start of subject first match in subject end of subject end of subject or before newline at end	

Non-printing characters		
a	alarm (BEL, hex 07)	
VCX.	"control-x"	
\e	escape (hex 1B)	
A	formfeed (hex 0C)	
\n	newline (hex 0A)	
r	carriage return (hex OD)	
\t	tab (hex 09)	
\ddd	octal code ddd	
\xhh	hex code hh	
hhh	hex code hhh	

Generi	c character types
\d	decimal digit
ND.	not a decimal digit
's	whitespace character
\S	not a whitespace char
\w	"word" character
WV	"non-word" character
POSIX	character classes
alnum	letters and digits
alpha	letters
agnii	character codes 0.127

alnum	letters and digits
alpha	letters
ascii	character codes 0-127
blank	space or tab only
cntrl	control characters
digit	decimal digits
graph	printing chars -space
lower	lower case letters
print	printing chars +space
punct	printing chars -alnum
space	white space
upper	upper case letters
word	"word" characters
xdigit	hexadecimal digits

Literal Characters	
Letters and digits match exactly Some special characters match exactly Escape other specials with backslash	a x B 7 0 @ - = % \. \\ \\$ \[
Character Groups Almost any character (usually not newline)	
Lists and ranges of characters Any character except those listed	[10] [^83]
Counts (add ? for non-greedy)	
0 or more ("perhaps some")	*
0 or 1 ("perhaps a") 1 or more ("some")	<u></u>
Between "n" and "m" of	[[]{n,m}
Exactly "n", "n" or more	[[{n}, [[{n,
Alternation	
Either/or	
Lookahead and Lookbehind	
Followed by	(?=[])
NOT followed by	(?!
Following NOT following	(?<=) (?) </td
140 Fichiowing	(, ,, 113/113
Grouping	(mm)
For capture and counts	(111)

(Ⅲ) (?:Ⅲ)

(?<name>|||)

\n \gn \g{n}

\g{-n} \k<name>

Character x x-y [:class:] [^:class:]	group contents individual chars character range posix char class negated class
Examples [a-zA-Z0-9 [[:alnum:]	
Comment (?#comme	s ent)
(?(conditio	nal subpatterns on)yes-pattern) on)yes no-pattern)
Recursive (?n) (?0) (?R) (?&name)	Numbered Entire regex Named
Replacem \$n refe	rence capture
\U uppe \I lowe	er case next char er case following er case next char er case following case folding
(?n:inserti	nal insertions on) on:otherwise)

Regular-expressions

Regex are very useful for complex requests

start of a line alphanumeric character string other characters allowed character string min,max length character. end of a line ^ [A-Z0-9] [._%+-] {2,}

Get properly formatted emails from a file

echo my-professional-email@bushpig-hunter.wwf > my_emails_file.txt grep -i -E '^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\$' *.txt

More information https://www.regular-expressions.info/

Tutorial 3

→ Follow the file **Morning_tuto_bash_3.sh** on https://github.com/Imogen-D/Bases_De_Bash_Workshop

Text editing

Text Editor Commands

Two major commands:

Sed

- Syntax from an original text editor 'ed'; Stream editor
- 1973-1974 by by Lee E. McMahon of Bell Labs
- In-line text file editor primarily for strings in files
- Using regular expression (regex)
- Substitution

Awk

	Common Regular Expressions			
Character	r Kind Explanation			
	Point	any character		
[]	hooks	character class: all the characters listed in the class, with the possibility of ranges whose limits are separated by "-". Ex: [0-9a-z] for all lowercase alphanumeric, or [0-z] for all characters in the Unicode table between "0" and "Z", i.e. uppercase alphanumeric plus ":;<=>?@" [2].		
[^]	brackets and circumflex	complemented class: all characters except those listed.		
۸	circumflex	marks the start of the string or line.		
\$	dollar	marks the end of the string or line.		
1	vertical bar	alternative - or recognizes one or the other		
()	parentheses	capturing group: used to limit the scope of a mask or alternative		
*	asterisk	0, 1 or more occurrences		
+	more	1 or more occurrences		
?	questioning	0 or 1 occurrence		
{}	braces	count: determines a number of characters fulfilling the criteria it follows. Ex: a{2} two occurrences of "a", a{1,10} (without spaces) between one and ten.		
(? <nom>pattern)</nom>	Named subpattern	names the result of a capturing group by name.		

Sed Syntax

Most common: substitution

```
sed [options] 's/REGEX/REPLACEMENT/[FLAGS]' file
sed [options] 's/foo/bar/[FLAGS]' file
Flags: g = global, [1:9] = number match, p = print
```

Removal of lines

```
sed [options] '1,3d'
```

Printing lines

```
sed -n 5,30p file
```

Options: -i, -n (often in combination with p) -> and more

```
echo 'abc' | sed 's/abc/xyz/'

And what is this one doing?

echo 'abc' | sed 's/./xyz/g'
```

Text Editor Commands

Two major commands:

Sed

Awk

- More applications; Turing-Complete
- 1977 at Bell Laboratories
- Named by: Alfred Aho, Peter Weinberger, and Brian Kernighan
- Often used on files with structure i.e. columns

Awk Syntax

Uses 'records' and 'fields' - Great for tabulated data - Default field separators is any whitespace

```
awk '
     BEGIN { actions }
     /pattern/ { actions }
      END { actions }
  filenames
```

Awk Syntax

Print command

Example

```
awk print $1, $3 shows first and third fields
```

Variables: NF; FS; OFS

```
fish|Eating|2
frog|Eating|10
crocodile|Sleeping|100
```

fish|Sleeping|200

```
awk -F '|' '$1 \sim fish/ {sum += $3} END {print sum}' inputfilename awk -F '|' '<math>$1 \sim fish$/ {sum += $3} END {print sum}' inputfilename awk -F '|' '<math>$1 == "fish" {sum += $3} END {print sum}' inputfilename
```

Text Editor Commands

One more command: split

```
split [options] filename prefix ; -l or -b ; -d ; --additional-suffix=.xml
lines, bytes, numeric
```

Text Editor Practise I

```
mkdir exercise2 ; cd exercise2 #making directory and file
echo 1 2 1 > exercise2.txt
echo 1 2 3 >> exercise2.txt
head exercise2.txt #looking at file
```

```
sed -i 's/1/4/2' exercise2.txt #changing the second instance of "1" to "4"
```

```
awk -F" " '{print $0, "the sum is "$1+$2+$3}' exercise2.txt > exercise2_sum.txt
#summing and creating new column
```

```
split -1 1 -d --additional-suffix .txt exercise2_sum.txt exercise2_; ls
#splitting the output file into separate numbered files
```

Conditional structures and loops

UNIX if statements

If statements only perform a task if a condition is true

Followed by then and/or else and/or elif

```
Boolean Operators

if [ $USER == 'bob' ] || [ $USER == 'andy' ] #OR
then
    ls -alh
else
    ls
fi

if [ -r $1 ] && [ -s $1 ] #AND
then
echo This file is useful.
fi
```

UNIX loops

While and For loops (+ until or select)

Followed by do and done

```
while read line

do

echo $line

done < file.txt
```

```
for i in 1 2 3 4 5

do
    echo "Welcome $i times"

done

for i in {0..10..2}
    do
    echo "Welcome $i times"

done
```

Text Editor Practise II

wget https://raw.githubusercontent.com/Imogen-D/Bases_De_Bash_Workshop/main/exercise2script.awk

```
#!/bin/bash
for file in $@; do
        if [ -f $file ] ; then
       echo "File is: $file"
                                    #print out filename
                             #print the total number of times the number 1 appears in the file
                 awk ' BEGIN { print "The number of times the number 1 appears in the file is:" ; }
                        /^1/ { counter+=1 : }
                        END { printf "%s\n", counter ; }
                      ' $file
        else
                 #print error info incase input is not a file
                 echo "$file is not a file, please specify a file." >&2 && exit 1
        fi
done
                     #terminate script with exit code 0 in case of successful execution
exit 0
```


Bonus

Aliases

```
To set a shortcut command for a long command!

e.g. instead of typing ls -lah

create an alias:

alias lh="ls -lah"

in your .bash_profile or .bashrc file (typically in your home directory ~)

and finally reload the file using:

source ~/.bash_profile
```


French Institute of Bioinformatics (IFB)

National infrastructure providing support, services, training

IT infrastructure

Cloud + Cluster

IFB-core Cluster since November 2018

4,300 cores, 2PB of storage

GenoToul since 2000

3,000 cores, >6PB of storage

The Genotoul cluster

http://bioinfo.genotoul.fr/

The Genotoul facility

The closest facility geographically

A well maintained website with furnished FAQ pages

A reactive support team

Most genomic tools already installed

Most used facility in EDB

http://bioinfo.genotoul.fr/

The Genotoul facility's structure

/home 100Mb, landing area + user-profile files

/work 1Tb temp. storage - working area

/save 250Gb back-up storage

/bank biological databases

/usr/local/bioinfo/src software modules

119 nodes with 3072 cores to run your jobs

http://bioinfo.genotoul.fr/

The Genotoul facility's rights and use

do not use except for profile-files

<mark>/work jobs <u>can</u> write</mark> here

/save jobs <u>cannot</u> write here

/bank read only

/usr/local/bioinfo/src read only

119 nodes to run your jobs only

Assess used space /computational time

http://bioinfo.genotoul.fr/index.php/ask-for/resources-request/

```
Reminder when opening an ssh connection
# Assess used space (du =disk usage)
du -csh /DIR NAME/USER NAME/*
# Assess used computational time
# 100,000 hours / user / year
squota cpu
Need more time? File a request at:
```

```
Informations sur le compte jsalmona (10-05-2022 00:05)

Home: 76.88M (1%)
Work: 706G (68%)
Save: 214.17G (85%)
CPU : 21983h (22%)
Expiration du compte: 31-08-2022
Expiration du mot de passe: 02-03-2023
```

Find modules / softwares / packages

```
All soft are listed there: http://bioinfo.genotoul.fr/index.php/resources-2/softwares/
Also consult the gt FAQ webpage: <a href="http://bioinfo.genotoul.fr/index.php/fag/software-fag/">http://bioinfo.genotoul.fr/index.php/fag/software-fag/</a>
search module soft name #(or part of soft name)
ls /usr/local/bioinfo/src | grep -i soft name
module avail: display all available software installed on the cluster
module avail category/soft name : display available versions for a specific
application (with category in bioinfo, compiler, mpi or system) (case sensitive)
module avail -t 2>&1 | grep -i soft name : display available versions for a
specific application
```

Load - Unload modules / packages / softwares

```
Consult the gt FAQ webpage: <a href="http://bioinfo.genotoul.fr/index.php/faq/software faq/">http://bioinfo.genotoul.fr/index.php/faq/software faq/</a>
module load bioinfo/blast-2.2.26  # load a module

which blastall  # verify the loaded module

# /usr/local/bioinfo/src/NCBI_Blast/blast-2.2.26/bin/blastall

module unload modulename  # : unload or remove a module

module purge  # unload or remove all modules

module help modulename  # path to the very useful "How to use SLURM soft name" file
```


Partitions

Partitions can be considered as **job queues**

With differing job size or time limit, or user access

On genotoul: workq is default

Queue	Access	Priority	Max time	Max slots
workq	everyone	100	4 days (96h)	3072
unlimitq	everyone	1	180 days	500
interq (runVisuSession.sh)	on demand		2 days (48h)	32
smpq	on demand		180 days	96
wflowq	specific software		180 days	3072

Introduction to SLURM

What is SLURM?

SLURM (Simple Linux Utility for Resource Management): software used to manage resources on the Genotoul cluster.

Book resources and launch the programs on the cluster nodes.

All commands begin with the letter s.

https://slurm.schedmd.com/documentation.html

SLURM vocabulary

CPU: the smallest unit of a computer processor (= a thread or a hyperthreaded core)

RAM: memory used by the processor to store the analyzed data

Task: the execution of a tool, may use several CPUs

Job: a resource reservation for a process

Job step: a "job step" is the part of a job that consists in executing a program

Task: a job step can use several "tasks" (if it can be parallelized)

Submit a job with SLURM

sbatch & srun

Two main commands to submit a job on the cluster with SLURM:

- **sbatch** is used to book resources and submit a job script for later execution
- srun is used to submit a job for execution or initiate job steps in real time

sbatch & srun: the main options

```
--cpus-per-task: advise the Slurm controller that ensuing job steps will require ncpus number of processors per task (default: 1)
```

--mem: specify the real memory required per node (default: 2G)

--mem-per-cpu: minimum memory required per allocated CPU

--ntasks: number of tasks (default: 1)

Monitor a job

squeue: view information about jobs located in the Slurm scheduling queue

```
squeue -u $USER # permet de voir les jobs de votre utilisateur

squeue -u $USER -t RUNNING # permet de voir les jobs en cours d'exécution

squeue -u $USER -t PENDING # permet de voir les jobs en attente

squeue -j <jobid> # permet de voir l'état d'un job à partir de son job id
```

Monitor a job

sacct displays accounting data for all jobs and job steps in the Slurm job accounting log or Slurm database

```
sacct -j <job_id> # consulter les informations de bases du job job_id
```

sacct --start=2021-03-01 # consulter les informations de l'ensemble de ses
jobs depuis le 1 mars 2021

sacct --format=JobID, JobName%30, State, Start, Elapsed, NodeList -j < job_id> #
afficher des informations détaillées pour le job job_id

Killing your jobs

The **scancel** command:

Kill the specified job

scancel job_id

Kill all job launched by the specified user

scancel -u username

Align reads from metabarcoding data

We will use programs from the obitools (set of programs specifically designed for analyzing NGS data in a DNA metabarcoding context):

- 1. **illuminapairedend**: aligns the two reads of a paired-end library sequenced using an Illumina platform
- 2. **obigrep**: selects a subset of sequence records from a sequence file
- 3. **obistat**: computes basic statistics for attribute values of sequence records

Align reads from metabarcoding data

```
cd ~/work/bash slurm training/slurm
mkdir metabarcoding
cd metabarcoding
mkdir analysis results # organize the folder
cd analysis
wget https://raw.githubusercontent.com/Imogen-D/Bases De Bash Workshop/main/align reads basic.sh
wget https://raw.githubusercontent.com/Imogen-D/Bases De Bash Workshop/main/align reads intermediate.sh
wget https://raw.githubusercontent.com/Imogen-D/Bases De Bash Workshop/main/align reads difficult.sh
cd ..
```

Align reads from metabarcoding data - basic

align_reads_basic.sh

```
#!/bin/bash
module load bioinfo/obitools-v1.2.11

# align reads that have a minimum alignment score of 40 + concatenate other reads:
srun illuminapairedend --score-min=40 -r ../../data/MiSeq_SOP/fastq_files/F3D0_S188_L001_R1_001.fastq
../../data/MiSeq_SOP/fastq_files/F3D0_S188_L001_R2_001.fastq > results/F3D0_S188_L001_R1R2_001.fastq
# remove unaligned reads:
srun obigrep -p 'mode!="joined"' results/F3D0_S188_L001_R1R2_001.fastq > results/F3D0_S188_L001_R1R2_001.ali.fastq
# compute stats:
srun obistat -c score results/F3D0_S188_L001_R1R2_001.ali.fastq > results/F3D0_S188_stats.txt
```

Terminal:

```
$ sbatch --cpus-per-task=1 --mem=2M analysis/align_reads_basic.sh
```

Align reads from metabarcoding data - intermediate

align_reads_intermediate.sh

```
$ sbatch analysis/align reads intermediate.sh
#!/bin/bash
#SBATCH -p workq
#SBATCH --mem=2M
#SBATCH --cpus-per-task=1
#SBATCH -o align reads output %j.out
#SBATCH -e align reads error %i.err
#SBATCH --mail-user=anne-sophie.benoiston@ird.fr
#SBATCH --mail-type=BEGIN, END, FAIL
module load bioinfo/obitools-v1.2.11
fastq R1="../../data/MiSeq SOP/fastq files/F3D141 S207 L001 R1 001.fastq"
fastq R2="../../data/MiSeq SOP/fastq files/F3D141 S207 L001 R2 001.fastq"
ipe_res="results/F3D141_S207_L001_R1R2_001.fastq"
grep_res="results/F3D141_S207_L001_R1R2_001.ali.fastq"
stat="results/F3D0 S188 L001 stat.txt"
srun -J "alignment" illuminapairedend --score-min=40 -r "${fastq_R1}" "${fastq_R2}" > "${ipe_res}"
srun -J "obigrep" obigrep -p 'mode!="joined"' "${ipe_res}" > "${grep_res}"
srun -J "stat" obistat -c score "${grep res}" > "${stat}"
```

Parallelize

Submitting jobs as an array

Lots of samples or files? -> Submit a job array, multiple jobs to be executed with identical parameters.

Multiple values be specified using a comma separated list and/or a range of values with a « - » separator.

Example:

sbatch --array=1-10

--array=0,6,16-32

--array=0-16:4 #a step of 4

--array=1-10%2 #a maximum of 2 simultaneously running task

Submitting jobs as an array

Lots of samples or files? -> Submit a job array, multiple jobs to be executed with identical parameters.

Multiple values specified using a comma separated list and/or a range of values with a « - » separator.

Example:

```
#SBATCH --array=1-1000

LINE=$(sed -n "$SLURM_ARRAY_TASK_ID"p File.txt)
echo $LINE

call-program-name-here $LINE
```

Align reads from metabarcoding data - difficult

The idea is to align all fastq files at the same time.

We will take advantage of SLURM arrays to do that:)

Align reads from metabarcoding data - difficult

We have fastq files for 20 samples in ~/work/bash_slurm_training/data/MiSeq_SOP/fastq_files

So we have to create an array with 6 jobs

Align reads from metabarcoding data - difficult

align_reads_difficult.sh

```
$ sbatch analysis/align reads difficult.sh
#!/hin/hash
#SBATCH -p worka
#SBATCH --mem=2M
#SBATCH --array=0-19
#SBATCH -o align_reads_output_%j.out
#SBATCH -e align reads error %j.err
#SBATCH --mail-type=BEGIN, END, FAIL
module load bioinfo/obitools-v1.2.11
data folder="../../data/MiSeg SOP/fastg files"
results_folder="results"
fastq_R1=("${data_folder}"/*_R1_001.fastq)
fastq_R1_id=$(basename -s .fastq "${fastq_R1[$SLURM_ARRAY_TASK_ID]}")
fastq R2=("${data folder}"/* R2 001.fastq)
fastq R2 id=$(basename -s .fastq "${fastq R2[$SLURM ARRAY TASK ID]}")
ipe res=$(echo "$fastq R1 id.fastq" | sed 's/R1/R1R2/g')
grep res=$(echo $ipe res | sed 's/.fastq/.ali.fastq/g')
obi res=$(echo "$fastq R1 id.fastq" | sed 's/R1 001.fastq/stat.txt/g')
srun -J "${fastq R1 id} alignment" illuminapairedend --score-min=40 -r "$data_folder"/"$fastq_R1_id.fastq" "$data_folder"/"$fastq_R1_id.fastq" >
"$results folder"/"${ipe res}"
srun -J "${fastq_R1_id} obigrep" obigrep -p 'mode!="joined"' "$results_folder"/"${ipe_res}" > "$results_folder"/"${grep_res}"
srun -J "${fastq R1 id} obistat" obistat -c score "$results folder"/"${grep res}" > "$results folder"/"${obi res}"
```

Use R on the cluster

Use R in an interactive mode

Check-out the tutorial: http://www.nathalievialaneix.eu/doc/pdf/tutoR cluster.pdf

1. get connected to a node

srun --pty # do not run R on the master

2. load the R module of the version of your choice

module load system/R-3.5.1 #(for the last R version)

3. launch R

Use R in a submitted job

Check-out the tutorial: http://www.nathalievialaneix.eu/doc/pdf/tutoR cluster.pdf

1. load the R module of the version of your choice

module load system/R-3.5.1

2. launch R script

R my_script.R my_parameter1 my_parameter2

Find R packages

search_R_package package_name

Useful resources

Linux/Bash:

- <u>Linux genotoul-bioinfo</u>
- https://doc.ubuntu-fr.org/accueil

Sed:

- https://www.gnu.org/software/sed/manual/html_node/Command_002dLine-Options.html
- https://www.grymoire.com/Unix/Sed.html

Awk:

- https://www.funtoo.org/Awk by Example, Part 1
- https://www.grymoire.com/Unix/Awk.html

•

Using a cluster:

- Cluster Genotoul: training, FAQ, ask for resources... http://bioinfo.genotoul.fr/
- Cluster genotoul-bioinfo
- Utilisation d'un cluster de calcul (IFB)
- https://www.cism.ucl.ac.be/Services/Formations/slurm/2016/slurm.pdf