Information Theory Practice Set 1

Lakshmi Prasad Natarajan

Solutions are not to be returned

Reading Exercise

Example 2.2.1 from Cover and Thomas.

Practice Set

1. Joint entropy of independent random variables.

Recall that the random variables X_1, \ldots, X_n are independent if $p(x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i)$.

(a) Argue that if X_1, \ldots, X_n are independent then

$$H(X_n|X_1,\ldots,X_{n-1})=H(X_n).$$

(b) Show that if X_1, \ldots, X_n are independent then

$$H(X_1, \dots, X_n) = H(X_1) + \dots + H(X_n).$$
 (1)

- 2. We showed in the class that the entropy of any random variable is greater than on equal to zero. What about the conditional entropy H(Y|X)? Can you argue that $H(Y|X) \ge 0$ for any jointly distributed random variables (X,Y)?
- 3. Suppose a random variable Y is a function of another random variable X. That is, the value of Y is completely (deterministically) based on the value of X.
 - (a) For each choice of $x \in \mathcal{X}$, what is the value of H(Y|X=x)?
 - (b) Is the value of H(Y|X) equal to zero?
 - (c) Can you now argue that H(X) = H(Y) + H(X|Y)? Hint: Use chain rule on H(X,Y) in two different ways.
 - (d) Now use the fact that conditional entropy $H(X|Y) \geq 0$ to conclude that $H(X) \geq H(Y)$.

Remark: This proves that the entropy of a function of a random variable is less than or equal to the entropy of the random variable itself. That is, if g is any function then $H(g(X)) \leq H(X)$. In other words, performing deterministic computations on a random variable can not increase the entropy.

- 4. Can you design examples of jointly distributed random variables X, Y (can you create a table of joint probability mass functions as done in Lecture 3) such that
 - (a) H(Y|X) = 0.
 - (b) H(Y|X) = H(Y).
 - (c) H(Y|X=x) > H(Y) for at least one choice of $x \in \mathcal{X}$.
- 5. Entropy of Geometric Distribution.

From Example 1.2 of Information Theory: From Coding to Learning by Polyanskiy and Wu.

Let $\mathcal{X} = \{1, 2, 3, \dots\}$ and α be such that $0 < \alpha < 1$. Let X be a random variable with distribution

$$P[X = x] = \alpha (1 - \alpha)^{x - 1}, x \in \mathcal{X}.$$

Compute the entropy of X. You can express this using the binary entropy function $h_2(p) = -p \log p - (1-p) \log (1-p)$.

6. Condensation test for convergence.

We will use a result from real analysis, called *condensation test*, to verify if some series converge. The context of the condensation test is as follows:

Let $\{a_n : n \ge 1\}$ be a non-increasing sequence of non-negative real numbers, i.e., $a_n \ge 0$ and $a_n \ge a_{n+1}$ for all n. Let the sequence $\{b_n\}$ be defined as follows

$$b_n = 2^n a_{2^n}$$
,

that is, the n^{th} element of sequence b is equal to the 2^n th element of sequence of a multiplied by 2^n . For instance, if $a_n = \frac{1}{\log_2 n}$, $n \ge 2$, then $b_n = \frac{2^n}{n}$, $n \ge 2$.

Theorem (Condensation Test). $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.

That is, $\sum_{n=1}^{\infty} a_n < \infty$ if and only if $\sum_{n=1}^{\infty} b_n < \infty$.

Use the condensation test to check if the following series $\sum_{n} a_n$ converge.

(a)
$$a_n = \frac{1}{n}$$

(b)
$$a_n = \frac{1}{n^2}$$

(c)
$$a_n = \frac{1}{n \log n}, n \ge 2$$

(d)
$$a_n = \frac{1}{n(\log n)^2}, n \ge 2$$

7. Infinite Entropy.

From Example 1.3 of Information Theory: From Coding to Learning by Polyanskiy and Wu.

(a) Show that there exists an
$$\alpha \in \mathbb{R}$$
 such that $\sum_{n=2}^{\infty} \frac{\alpha}{n \left(\log n\right)^2} = 1$.

(b) With α as above, consider a random variable X with $\mathcal{X} = \{2, 3, 4, \dots\}$ and

$$P[X = n] = \frac{\alpha}{n \left(\log n\right)^2}.$$

Argue that H(X) is not finite.