Time Series Forecasting: Cardano(ADA)

Springboard Capstone Project 3
Hastings Reeves
August 18, 2021

Overview: What is Cardano?

-Proof of Stake blockchain platform: founded on peer-reviewed research and developed through evidence-based methods.

-Seeks to combine pioneering technologies with security and sustainability through it's decentralized applications, systems, and societies.

Use Cases for Cardano

Example 1: Education

- -ATALA: ID and Credentials solution built on Cardano Blockchain.
- -Provide secure method for storing immutable academic transcripts that students or institutions can store and retrieve from a tamper-free ecosystem.

Example 2: Retail

- -ATALA: Anti-counterfeit solutions through the blockchain technology.
- -Provide a method to determine whether or not a good is fake, taking an ongoing problem of counterfeit goods (\$300bn loss in 2020) by determining authenticity so consumers can buy with confidence

Example 3: Agriculture

- -ATALA, EMURGO: Traceability and transparency solution through the Cardano Blockchain.
- -Provide farmers, haulers and retailers with a way to confidently track and manage their goods from field to store. Decreases interruptions of the supply chain.

Project Objective:

Analyze price action for Cardano's native token, ADA, and predict future price action.

Data:

- -I was able to download csv files for BTC, ETH and ADA off of the Kaggle Competition website.
- -The date range began in 2013 for BTC, 2015 for ETH and 2017 for ADA. 2013 was the first major bull run for BTC where the market grew over 1000% in under a year.

Libraries:

-EXPLORATORY DATA ANALYSIS: Pandas, Numpy, Matplotlib.pyplot, Seaborn -PREPROCESSING: Statsmodels(api, tsa.stattools, ARIMA), sklearn.metrics -MODELING: pmdarima.arima, ADFTest, fbprophet

Features:

SNo: Serial number

Date : Date of observation

Open: Opening price on a given day High: Highest price on a given day Low: Lowest price on a given day Close: Closing price on a given day Volume: Volume of transactions on a

given day

Market Cap : Market capitalization in USD

Understanding the market: Bitcoin, Ethereum and Cardano

Bitcoin

The Original Cryptocurrency:

- Deflationary Asset
- Challenges the legacy banking system and governmental currencies.
- Early '21 marked the first time that total market cap valuation exceeded \$1.0 Trillion.

Ethereum

Blockchain technology:

- Thousands of Decentralized applications are run through the Ethereum Blockchain.
- Created a platform for NFT's, decentralized finance, buying and trading native tokens for different projects.

Cardano

Blockchain Competitor:

- Seeks to reduce energy
 consumption by using proof of
 stake to incentivize ADA miners
 to retain their tokens in order to
 retain their influence on it's
 blockchain.
- Addresses similar issues that Ethereum is attempting to solve.

Marketcap in Billions(\$) over time: Log scale

Market Cap: As BTC moves, so moves the market.

Implications:

- As we can see,
 BTC's fluctuation
 in Market Cap
 value has a
 tremendous impact
 on ETH and ADA.
- Market Cap Values:
 - o BTC: \$861.32
 - o ETH: \$372.4 B
 - o ADA: \$66.09 B

Market trends: Macro moves

Transaction Volume:

As BTC moves, so moves the market.

Implications:

 Again, BTC leads the way for all native tokens in transaction volume per day.

Price:

Percentage of Price Change over time

Shifting of big gains:

 While BTC experienced astronomical returns early on, ETH and ADA look to follow a similar path and provide an opportunity to return more value on an investment.

Predictive analysis: Prepare data for ARIMA model

Constraints:

- Non-stationary data
- -Large peaks, volatile price movement
- -Lack of clear trend
- -Lack of seasonality

Pre-processing:

Gaps or duplicates in Date Column	 Check to make sure there are no gaps in dates Compare DF date column with a set of expected dates.
Trend, Seasonality, Noise	 There is an upward trend, driven by two massive peaks There is no seasonality Variance in the price is high and volatile.
Stationary data	 KPSS(y) where y is the target variable Indicated a need to difference the data in order to achieve stationarity. Difference = 1
Train/Test Split	I chose a 80/20 split for my data.

Building the Baseline ARIMA Model

Determining P, D, Q values:

- 1. Evaluate_Arima_Model function that uses the Mean Absolute Error as an indicator for Best Model.
 - a. Pass this function into
 Evaluate_Models function that
 iterates through a range of 0-3 to
 determine which P, D, Q values
 performance best based off of
 their MAE.
 - b. Result: ARIMA(1,0,2)
 - i. d should be 1

- 2. Set Difference to 1
- a. Use Lag plots to determine P and Q values.
- b. Result: Inconclusive on lag plots.
 - i. ACF for P, PACF for Q.
 - ii. Random Walk model.
 - 1. Hyndman
 - iii. ARIMA(0,1,0)

Baseline Results:

Model 1: ARIMA(1,1,2):

MAPE = 6.284

Model 2: ARIMA(0,1,0)

MAPE = 6.267

Conclusions: As expected, both models had a hard time determining future price action.

Modeling:

Time Frames	 Focus on the first peak, and the middle 'valley' For each model: Full TF, Peak TF, Valley TF
MAPE and Distribution of Residuals	Use MAPE as a performance metricPlot Distribution of Residuals
PMD ARIMA	Use PMD ARIMA and compare P, D, Q values with Baseline model
FB Prophet	Use Facebook Prophet on outlined Time Frames

Steps:

-Import PMD Arima: Start p, q = 0 and d=2, max p,d,q =5.

-Results: Best Model --ARIMA(0,2,4)

-Interesting that the d value was set to 2

Full TF Results:

PMD ARIMA: Valley

ARIMA(2,2,3)

Valley Time Frame: 6/30/2018 - 7/21/2020

Does the prediction fit the actual values any better?

Valley TF Results:

PMD ARIMA: Peak TF

PMD ARIMA Third Prediction

ARIMA(3,2,1)

Peak Time Frame: 10/01/2017 - 1/31/2019

Does the prediction fit the actual values any better?

Peak TF Results:

FB Prophet: Full TF

Really easy to use compared to other models

Does the prediction fit the actual values any better?

Full TF Results:

MAPE = .74

PMD ARIMA fit to the full time frame better

FB Prophet: Valley TF

Does the prediction fit the actual values any better?

Valley TF Results:

FB Prophet: Peak TF

Does the prediction fit the actual values any better?

Peak TF Results:

Modeling Results:

Peak Time Frame produced best results.

The only distribution of the Residuals that was close to a Normal Distribution were the Peak TFs.

Focusing on a smaller time frame yielded better results than attempting to train the entirety of this data set.

MAPE:

 $PROPHET_PEAK_TF = .22$

 $PMD_PEAK_TF = .28$

Conclusion and Recommendations:

Smaller Time Frames

It is clear from the results, that the clearer the trend and the smaller the time frame, the better the performance of the model.

It is also clear that even on a smaller time frame, if the variance in the data is too great, the model will not fit predicted values well.

Transaction Volume

It would be worthwhile to observe the relationship between price action and Transaction volume on a given day.

Introducing a multivariate time series forecasting approach would be interesting.

BTC and ETH

When investing in any cryptocurrency it is imperative to keep tabs on the price action of BTC and ETH.

It is possible to predict well-defined trends with FB Prophet and PMD ARIMA and make informed guesses based on BTC and ETH movements on when trends may reverse.