

INSTITUTO DE PESQUISA ECONÔMICA APLICADA – IPEA

A EFICIÊNCIA DAS POLÍTICAS DE SEGURANÇA PÚBLICA NO COMBATE A CRIMINALIDADE E A VIOLÊNCIA NA CIDADE DE SALVADOR NA BAHIA.

DISSERTAÇÃO DE MESTRADO

RICARDO WANNER DE GODOY

BRASÍLIA-DF 2021

Anexo A: Validação do ABM em Excel e R

Validação do ABM

Nessa etapa têm-se a validação dos cenários (DMU) simulados pela Modelagem Baseado em Agentes, aqui ocorre de fato uma análise da eficiência e produtividade das variáveis de Inputs (Insumos) e Outputs (Produtos) do modelo pelo método estatístico DEA. Para a execução da validação foram, inicialmente, selecionadas seis variáveis do modelo, sendo elas três de Inputs (Insumos) e três de Outputs (Produtos). O resultado dessa validação foi ranqueado do maior para o menor valor (na primeira validação os cálculos foram realizados com a ajuda de uma planilha do Excel), com base nas simulações dos quatro cenários (DMU). Assim sendo, nesta parte do estudo será apresentado cálculos que identificará o DMU (cenário hipotético) com a melhor eficiência e produtividade, ou seja o Benchmarking do modelo.

Nessa etapa será realizada a validação dos cenários (DMU) simulados pela Modelagem Baseado em Agentes - ABM, aqui ocorrerá de fato uma análise da eficiência e produtividade das variáveis de *Inputs* (Insumos) e *Outputs* (Produtos) do modelo pelo método estatístico DEA.

Para a execução da validação foram, inicialmente, selecionadas seis variáveis do modelo, sendo elas três de *Inputs* (Insumos) e três 3 de *Outputs* (Produtos), como podemos perceber no **Quadro 1**.

Quadro 1: Variáveis de *Inputs* e *Outputs* do modelo.

Itens	Variável
Input 1	prc_acao_policial
Input 2	qtd_politicas_publicas
Input 3	prc_aplicacao_pol_publicas
Output 1	% Cidadãos
Output 2	% Infratores
Output 3	% Ressocializados

O resultado dessa validação será ranqueado do maior para o menor valor (na primeira validação os cálculos foram realizados com a ajuda de uma planilha do Excel), com base nas simulações dos quatro cenários. Assim sendo, neste estudo será realizado cálculos que identificará o DMU com a melhor eficiência e produtivo, ou seja o *Benchmarking* do modelo.

Segue a **Tabela 1** das DMUs com os seus respectivos *Inputs* (Insumos) e *Outputs* (Produtos), que serão avaliados pelo método estatístico DEA.

Tabela 1: Valores das variáveis de *Inputs* e *Outputs* do modelo.

DMU	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3
Cenário 1	30%	0D	0%	76%	24%	0%
Cenário 2	0%	3D	90%	100%	0%	0%
Cenário 3	30%	4D	80%	52%	0%	48%
Cenário 4	20%	0D	0%	0%	100%	0%

Fonte: Elaboração Própria

Para que ocorra uma avaliação do modelo foi necessário atribuir pesos para cada *Inputs* (Insumos) e *Outputs* (Produtos), segue a **Tabela 2**.

Tabela 2: Valores dos pesos de *Inputs* e *Outputs* do modelo.

Pesos	10	1	1	8	1	10
DMU	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3
Cenário 1	30%	0D	0%	76%	24%	0%
Cenário 2	0%	3D	90%	100%	0%	0%
Cenário 3	30%	4D	80%	52%	0%	48%
Cenário 4	20%	0D	0%	0%	100%	0%

Segue a fórmula, descrita na **Figura 1**, que foi utilizada para a realização do cálculo da produtividade dos cenários (DMU) com múltiplos *Inputs* (Insumos) e *Outputs* (Produtos), percebe-se que nesse caso foi utilizado peso para descobrir a produtividade.

Figura 1: Fórmula da Produtividade do DEA.

O _v Produtividade =	
Iv	$X_1 * V_1 + X_2 * V_2 + X_3 * V_3$
Elementos	Descrição
Ov	Output virtual
$\mathbf{I}_{\mathbf{v}}$	Input virtual
yo	Quantidade de <i>Output</i>
Uo	Utilidade (peso) do Output

Fonte: Adaptado de MARIANO (2015)

Xi

Vi

Segue a **Tabela 3** com os cálculos da fórmula de produtividade, os valores iniciais estão sendo multiplicados pelos pesos já demonstrados.

Quantidade de Input

Utilidade (peso) do Input

Tabela 3: Multiplicação dos valores e pesos dos *Inputs* e *Outputs* do modelo.

Peso	10	1	1	8	1	10
DMU	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3
Cenário 1	30 * 10 = 300	0 * 1 = 0	0 * 1 = 0	76 * 8 = 608	24 * 1 = 24	0 * 10 = 0
Cenário 2	0 * 10 = 0	3 * 1 = 3	90 * 1 = 90	100 * 8 = 800	0 * 1 = 0	0 * 10 = 0
Cenário 3	30 * 10 = 300	4 * 1 = 4	80 * 1 = 80	52 * 8 = 416	0 * 1 = 0	48 * 10 = 480
Cenário 4	20 * 10 = 20	0 * 1 = 0	0 * 1 = 0	0 * 8 = 0	100 * 1 = 100	0 * 10 = 0

Segue a **Tabela 4** com os valores finais da multiplicação dos Inputs (Insumos) e Outputs (Produtos).

Tabela 4: Valores finais da multiplicação dos *Inputs* e *Outputs* do modelo.

Peso	10	1	1	8	1	10
DMU	Input 1	Input 2	Input 3	Output 1	Output 2	Output 3
Cenário 1	300			632		
Cenário 2	93			800		
Cenário 3	384			896		
Cenário 4		20			100	

Fonte: Elaboração Própria

Segue a **Tabela 5** com os valores finais da produtividade, onde pode-se perceber que os cenários 2 e 3 são os que apresentam uma melhor classificação perante os dois outros cenários.

Tabela 5: Valores finais da produtividade por DMU do modelo.

DMU	Eficiência	Produtividade	Rank
Cenário 1	?	2,106	?
Cenário 2	?	8,602	?
Cenário 3	?	2,333	?
Cenário 4	?	0,5	?

Fonte: Elaboração Própria

Nesse momento será utilizado a fórmula da eficiência como pode-se ser observada na **Figura 2**, onde se busca o melhor DMU que apresente o número igual a 1, nesse caso se faz necessário pegar o maior valor de produtividade e dividi-lo com os outros valores um a um, nesse momento se descobre o Benchmarking do modelo.

Figura 2: Fórmula da Eficiência do DEA.

 $\begin{array}{c} P \\ \textbf{Eficiência} = & ------ \\ P_{max} \end{array}$

Fonte: Adaptado de MARIANO (2015)

Segue a **Tabela 6** com os valores finais de eficiência, onde pode-se perceber que o cenário 2 é o que apresenta os valores referencial igual a 1.

Tabela 6: Valores finais da eficiência por DMU do modelo.

DMU	Eficiência	Produtividade	Rank
Cenário 1	0,244	2,106	3
Cenário 2	1	8,602	1
Cenário 3	0,271	2,333	2
Cenário 4	0,058	0,5	4

Fonte: Elaboração Própria

Validação do ABM em R

Nessa sessão é apresentado a validação do modelo utilizando a ferramenta "R" com o apoio do pacote "Benchmarking". Aqui é exposto o posicionamento dos quatro cenários (DMU) em relação à fronteira de produção.

Nessa sessão será apresentado a validação do modelo utilizando a ferramenta R com o apoio do pacote "*Benchmarking*". Aqui será apresentado o posicionamento dos quatro cenários (DMU) em relação à fronteira de produção.

Segue a **Tabela 7** com as DMUs e seus respectivos valores, que foi carregou pelo *Script*¹ do R por meio do arquivo "PSPBA.xlsx", com os seus respectivos *Inputs* (Insumos) e *Outputs* (Produtos) que serão avaliados. Por um motivo de peso e melhor adequação dos Outputs,

¹ Um Scripting ou linguagem de Script é uma linguagem de programação que suporta Scripts, programas escritos para um sistema de tempo de execução especial que automatiza a execução de tarefas que poderiam alternativamente ser executadas uma por vez por um operador humano. Linguagens de Script são frequentemente interpretadas (ao invés de compiladas).

foi definido valores negativos para o *Output* 2, nesse caso ele é o número de Infratores o que representa os valores de produto negativo, quanto mais próximo de zero melhor.

Tabela 7: Valores das variáveis de Inputs e Outputs do modelo em R.

RStud	io Source E	ditor					
SMB4	A ×						
>	1 7 F	ilter					
^	DMU [‡]	Input1 [‡]	Input2 [‡]	Input3 [‡]	Output1 [‡]	Output2 [‡]	Output3 [‡]
1	Cenario1	30	0	0	76	-24	0
2	Cenario2	0	3	90	100	0	0
3	Cenario3	30	4	80	52	0	48
4	Cenario4	20	0	0	0	-100	0

Fonte: Elaboração Própria

Segue a **Tabela 8** das DMUs com os seguintes cálculos realizados pela ferramenta R dos CRS (Retornos Constantes à Escala) e os VRS (Retornos Variáveis à Escala), com os seus respectivos *Inputs* (Insumos) e *Outputs* (Produtos) que serão avaliados. Logo, nesse momento ficou evidente que os cenários 2 e 3 estão se destacando como mais eficientes.

Tabela 8: Resultados por DMU das variáveis de Inputs e Outputs do modelo em R.

Fonte: Elaboração Própria

Segue a **Tabela 9** com as DMUs com os seguintes cálculos realizados pela ferramenta R dos CRS (Retornos Constantes à Escala) e os VRS (Retornos Variáveis à Escala), sendo

orientado aos *Inputs* (Insumos). Logo, nesse momento ficou evidente que os cenários 2 e 3 estão se destacando como mais eficientes.

Tabela 9: Retorno da eficiência por DMU das variáveis de Inputs do modelo em R.

tab_e	io Source E ff_Esc_Input	×					
	DMU [‡]	RND_Input [‡]	RNC_Input [‡]	CRS_Input [‡]	VRS_Input [‡]	Eficiência [‡]	Retorno_Escala
1	Cenario1	0	1	0	1	0	Decrescente
2	Cenario2	1	1	1	1	1	Constante
3	Cenario3	1	1	1	1	1	Constante
4	Cenario4	0	0	0	0	NaN	Constante

Fonte: Elaboração Própria

Segue a **Tabela 10** com as DMUs com os seguintes cálculos realizados pela ferramenta R dos CRS (Retornos Constantes à Escala) e os VRS (Retornos Variáveis à Escala), sendo orientado aos *Outputs* (Produtos). Logo, nesse momento ficou evidente que os cenários 2 e 3 estão se destacando como mais eficientes.

Tabela 10: Retorno da eficiência por DMU das variáveis de Outputs do modelo em R.

_	ff_Esc_Outp						
	DMU [©]	RND_Output *	RNC_Output	CRS_Output [‡]	VRS_Output [‡]	Eficiência [‡]	Retorno_Escala
1	Cenario1	-Inf	1	-Inf	1	-Inf	Decrescente
2	Cenario2	1	1	1	1	1	Constante
3	Cenario3	1	1	1	1	1	Constante
4	Cenario4	-Inf	1	-Inf	1	-Inf	Decrescente

Fonte: Elaboração Própria

Segue o **Gráfico 1** da fronteira de produção das DMUs com os seguintes cálculos realizados pela ferramenta R dos CRS (Retornos Constantes à Escala), sendo orientado aos *Inputs*

(Insumos). Logo, nesse momento ficou evidente que os cenários 3 e 2 estão se destacando como os mais produtivos.

Gráfico 1: Fronteira de produção com retornos constantes (CRS) em R.

Fonte: Elaboração Própria

Segue o **Gráfico 2** da fronteira de produção das DMUs com os seguintes cálculos realizados pela ferramenta R dos VRS (Retornos Variáveis à Escala), sendo orientado aos *Inputs* (Insumos). Logo, nesse momento ficou evidente que os cenários 3 e 2 estão se destacando como os mais produtivos.

Gráfico 2: Fronteira de produção com retornos variáveis (VRS) em R.