

W. J. C.
2/14/58

NASA

MEMORANDUM

PROPELLANT VAPORIZATION AS A CRITERION FOR ROCKET-
ENGINE DESIGN; EXPERIMENTAL PERFORMANCE,
VAPORIZATION, AND HEAT-TRANSFER RATES
WITH VARIOUS PROPELLANT COMBINATIONS

By Bruce J. Clark, Martin Hersch, and Richard J. Priem

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION
WASHINGTON
January 1959

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 12-29-58E

PROPELLANT VAPORIZATION AS A CRITERION FOR ROCKET-ENGINE DESIGN;
EXPERIMENTAL PERFORMANCE, VAPORIZATION, AND HEAT-TRANSFER
RATES WITH VARIOUS PROPELLANT COMBINATIONS

By Bruce J. Clark, Martin Hersch, and Richard J. Priem

SUMMARY

Experimental combustion efficiencies of eleven propellant combinations were determined as a function of chamber length. Efficiencies were measured in terms of characteristic exhaust velocities at three chamber lengths and in terms of gas velocities. The data were obtained in a nominal 200-pound-thrust rocket engine. Injector and engine configurations were kept essentially the same to allow comparison of the performance.

The data, except for those on hydrazine and ammonia-fluorine, agreed with predicted results based on the assumption that vaporization of the propellants determines the rate of combustion. Decomposition in the liquid phase may be responsible for the anomalous behavior of hydrazine.

Over-all heat-transfer rates were also measured for each combination. These rates were close to the values predicted by standard heat-transfer calculations except for the combinations using ammonia.

INTRODUCTION

The importance of the vaporization process in rocket-engine combustion was indicated in a previous experimental study (ref. 1) of the effect of injection processes on engine performance. This study showed qualitatively that atomization of the slower vaporizing propellant gave the greatest increase in combustion efficiency. Recent analytical studies (refs. 2 to 5), based on the concept of propellant vaporization as the rate-controlling combustion process, have shown how changes in drop size, gas velocity, drop velocities, chamber pressure, propellant temperature, and propellant type affect combustor performance. Qualitatively, these calculations agree with the available data. However, specific studies

of each of these variables under controlled test conditions are required to evaluate the concept. The vaporization-rate calculations for heptane, ammonia, hydrazine, oxygen, and fluorine (ref. 5) indicated that there would be large differences in combustion efficiency with these propellants. The purpose of this report is to show the effect of these propellants on experimental combustion efficiency and heat-transfer rate, and to relate these results to the analytical vaporization rates of reference 5 and to calculated heat-transfer rates.

Eleven different propellant combinations were tested under controlled conditions in one type and thrust-level engine. One propellant was injected either as a finely atomized spray or as a gas, and the second propellant was injected as a relatively coarse spray from a pair of impinging jets so that the vaporization rate of the second propellant would be slower than that of the first. The injection velocity and orifice diameter for the second propellant were kept constant for all the combinations in order to limit the variations in drop size to effects due to differences in propellant properties. By this method, it was possible to determine the effect on performance of changing the propellant and to compare apparent vaporization rates.

The experimental data are presented in graphical form to show the effect of propellant changes on combustion efficiency. The comparison with analytical results is presented in terms of the percent of one propellant unvaporized.

APPARATUS AND PROCEDURE

Rocket Engine

Tests were run in a rocket engine designed for a nominal 200-pound thrust with heptane-oxygen at a 300-pound-per-square-inch chamber pressure (fig. 1). The injector, combustion chamber, and nozzle were separable units. The engine had a contraction ratio of 6.4 and a throat diameter of 0.79 inch. Solid uncooled chambers 1 and 3 inches long and a water-cooled chamber 8 inches long were used.

Injectors for liquid-liquid and liquid-gaseous propellant combinations were similar (figs. 2 and 3). One liquid propellant was sprayed into the chamber in a flat sheet from two impinging jets of 0.089-inch diameter. When the second propellant was liquid, it was introduced through two parallel rows of 0.032-inch holes to form sprays parallel to the spray sheet of the other propellant. Gaseous propellants were introduced behind the spray of the impinging jets through a diffuser with a 15° half-angle. With liquid-liquid propellant combinations, the fuel was always the propellant in the impinging jets. With gaseous-liquid combinations, the liquid was atomized by the impinging jets.

Performance Measurements

Chamber pressure was measured both by a recording Bourdon-tube-type instrument and by a strain-gage transducer with output recorded on a galvanometer-type instrument.

Liquid fuel and liquid oxidant flow rates and coolant water rate were measured by rotating-vane meters. A sharp-edged orifice was used to measure gaseous flow rates. The pressure and temperature of the gas upstream of the orifice were measured with a Bourdon-tube instrument and an iron-constantan thermocouple. Orifice pressure drop was measured by strain gages read on potentiometer- and galvanometer-type recording instruments. Iron-constantan thermocouples were used to measure propellant temperatures and coolant water temperatures. Gas velocities were measured by streak photography through a transparent plastic chamber by the method of reference 1.

Pressure transducers had a maximum error of ± 1 percent and the maximum error of the flowmeters was ± 2 percent, so that the maximum possible error in c^* values was ± 3 percent. A complete list of symbols used in this report is given in appendix A. Actual reproducibility of c^* was approximately ± 2 percent; five or more runs were used to determine average c^* values. Errors in temperature measurements allowed a heat-transfer error of ± 10 percent. Maximum error of gas velocities measured by streak photography was estimated as ± 20 percent.

Experimental Procedure

Table I lists the various propellant combinations that were investigated, including the maximum theoretical c^* values and corresponding mixture ratios. The effects of the mixture ratios on theoretical c^* values (refs. 6 to 10 and unpublished NASA data) are shown in figure 4. In table I the oxidant and fuel weight flows and injection velocities are given for these mixture ratios with a constant velocity in the impinging jets. The resultant chamber pressures at 100 percent efficiency and the propellant temperatures measured during the tests are also listed.

Only runs with weight flows within ± 5 percent of the values in table I were used for data. Chamber pressure and weight flows were measured to determine experimental c^* values. Test firings were of approximately 3 seconds duration.

RESULTS AND DISCUSSION

Performance Comparisons

The experimental engine data for each run are listed in table II. Average experimental data are presented in figure 5 as the variation of combustion efficiency η_c with chamber length for each propellant combination.

For the liquid fuels (heptane, ammonia, and hydrazine) the η_c (fig. 5(a)) with liquid oxygen was approximately the same as with gaseous oxygen. With liquid fluorine, ammonia and hydrazine gave lower efficiencies than with either liquid oxygen or gaseous oxygen. Liquid oxygen and liquid fluorine gave approximately the same efficiency with hydrogen.

Of all the fuels used, gaseous hydrogen with any oxidant generally burned with the highest efficiency (fig. 5(b)). In the 8-inch chamber length the combustion efficiency of the liquid oxygen - gaseous methane combination was greater than the efficiencies of the liquid oxygen - liquid fuel combinations but less than the liquid oxygen - gaseous hydrogen combination.

Within the limits of experimental accuracy the η_c of heptane, ammonia, and hydrazine with liquid and gaseous oxygen were the same in an 8-inch chamber. When burned with fluorine, ammonia gave a lower performance than hydrazine. In the shorter chamber lengths, hydrazine gave higher performance values with oxygen than the other fuels (except hydrogen).

Figure 6 shows a comparison of combustion efficiencies based on c^* measurements with efficiencies from gas velocity measurements. Gas velocities were converted to efficiencies by dividing by the gas velocity that would occur in the chamber at theoretical c^* , as in reference 1. For the 8-inch chamber lengths efficiencies as determined from measured gas velocities agree well with efficiencies determined from c^* values. As was found in reference 11, efficiencies from c^* values in the shorter chamber lengths are higher than efficiencies from gas velocities for corresponding points within an 8-inch chamber; the reason for this is suggested in a later section of this report.

Vaporization-Rate Comparisons

Reference 5 presents an analytical correlation between percent vaporized and an effective length for various propellants, where:

$$\text{Effective length} = \frac{L P^{0.66} u_{\text{fin}}^{0.4} (1.9 \times 10^{-5})}{(1 - T^*)^{0.4} v_0^{0.75} M_{g,m}^{1.45}} \quad (1)$$

To compare these experimental results with the analytical data of reference 5, the combustion efficiencies were converted to a percent of one propellant vaporized (ref. 4); this assumes that the vaporization of this propellant controls the combustion rate. Experimental gas velocity data were corrected to percent of one propellant vaporized by the technique described in appendix B. The actual chamber length was converted to an effective length by using the appropriate conversion factors as described hereafter.

The initial propellant temperature and the chamber pressure were measured directly. Injection velocity was obtained from the measured flow rate and the injector orifice area. The final gas velocity was calculated from isentropic flow relations and actual engine efficiency as shown in appendix C. For the total chamber length L , $1\frac{3}{4}$ inches were added to the cylindrical length of the chamber to account for the effect of the gases accelerating to the nozzle throat.

The mass median drop size was determined by combining the following correlations obtained in references 12 and 13. For impinging jets of heptane,

$$\frac{D_j}{D_{30}} = 2.64 \sqrt{D_j V_j} + 0.97 D_j \Delta V \quad (2)$$

For crosscurrent breakup of jets of various liquids,

$$D_{30} \propto \left(\frac{\sigma \mu_l}{\rho_l \rho_s} \right)^{1/4} \quad (3)$$

The mass median drop size $M_{g,m}$ can be related to the volume mean drop size D_{30} for any particular drop-size distribution. For the distribution found in reference 12, $M_{g,m}$ is within a few percent of $0.75 D_{30}$.

In equation (2) the jet diameter and jet velocity were determined from experimental conditions. However, the gas velocity surrounding the jet cannot be determined in this manner. In reference 12 the stream of air had a constant velocity; in a rocket engine, as the propellants vaporize, this velocity increases from zero at the injector face to the velocity at the nozzle inlet. An average value of 100 feet per second was assumed for these calculations. This velocity may represent that obtained in the first quarter of the chamber, or it may represent velocity perturbations produced by small pressure fluctuations. The propellant properties in equation (3) were evaluated at the injection temperatures shown in table I. It is assumed herein that the effect of liquid properties on the drop sizes formed by impinging jets will be the same as for crosscurrent jets.

Comparison of Experimental and Analytical Data

Figure 7 shows the percent mass unvaporized of the controlling propellant determined from experimental data, as a function of the effective length calculated by equation (1). For each vaporizing propellant the correlation of the data obtained with different combinations is good. In the cases of heptane, liquid oxygen, and fluorine the spread of the experimental data is less than the spread in the analytical results of reference 5, as shown by the shaded area. For ammonia and hydrazine the experimental spread is larger than the analytical spread.

The experimental data agree fairly well with the analytically predicted values except for ammonia-fluorine and the combinations involving hydrazine. The experimental points indicate that ammonia-fluorine burns more slowly than is predicted by vaporization-rate calculations and that hydrazine burns faster than predicted. A possible explanation for the discrepancies with hydrazine may be the fact that hydrazine decomposes at about 1000° R (ref. 14), which is about the temperature the drop reaches as it vaporizes. This decomposition, if sufficiently rapid, could cause the drops to shatter and thus result in a higher vaporization rate. A slow decomposition rate would add heat to the drops without shattering them. This additional heat, which was not considered in the analytical calculations, would also result in a higher vaporization rate. Another possible explanation for the deviation in the results for hydrazine may be the unusually large drop size calculated for hydrazine by equation (3), due to the high surface tension of hydrazine. This large drop size decreased the effective length by 45 percent. Thus, the data for hydrazine may be overcorrected for drop size.

The curves shown in figure 6 indicated that the combustion efficiency as determined from c^* measurement in a short engine is higher than that determined from gas velocity measurement at the same

intermediate point in a long engine. This can be predicted by the analytical model of vaporization-limited combustion. The gas velocity at a point in the short engine is much higher than at that point in the long engine because of the lower pressure and density at lower efficiency (this effect of density on gas velocity is explained in appendix C). The higher gas velocity would result in an increased vaporization rate, giving higher combustion efficiency in the short engine. The measured gas velocity data agree with measured c^* data when compared on the basis of vaporization rates, as shown in figure 7.

Heat-Transfer Comparison

Experimental heat-transfer rates for the various propellant combinations in a water-cooled 8-inch chamber are listed in table III. Calculated heat-transfer rates for the same combinations at 100 percent combustion efficiency are also listed. In order to compare the analytical and experimental rates, analytical rates for 100 percent combustion efficiency were modified for the actual efficiency and gas velocity distribution of the engine, as described in appendix D.

Table III shows that the experimental heat-transfer rates were between 5 percent higher and 21.6 percent lower than these corrected analytical rates, except for the propellant combinations involving liquid ammonia.

The low heat-transfer rates with ammonia may be due to film cooling with the ammonia. Gas-side wall temperatures calculated from the experimental heat-transfer rates, and the boiling points of the controlling propellants at the experimental pressures, are also listed in table III. Since the wall temperature is well above the boiling points of the cryogenic propellants liquid oxygen and fluorine, they could not have formed a film on the wall. Wall temperatures are well below the boiling points of heptane and hydrazine, so that they could form stable films and maintain a sizeable heat-transfer rate across the film without boiling. Since the wall temperature is near the boiling point of ammonia, this fuel could act as a film coolant. Heat transfer from the gases would cause the ammonia film to boil rather than to heat the wall. Heat transfer to the coolant would be small because the gas side of the wall is maintained at a low temperature by the boiling ammonia. The data of reference 15 indicate that 15 to 20 percent of all the ammonia injected would be needed on the wall to provide this cooling. This would not decrease η_c if the film vaporized by the time it entered the nozzle.

SUMMARY OF RESULTS

Characteristic exhaust velocity and combustion efficiency of a nominal 200-pound-thrust engine were experimentally determined for eleven propellant combinations at several chamber lengths for a spray formed by two impinging jets. Of all the propellants tested, hydrogen with any oxidant gave the highest combustion efficiency.

A comparison of the experimental results with calculations, based on the assumption that vaporization of the propellants determines the rate of combustion, showed fair agreement except for ammonia-fluorine and combinations that included hydrazine. Decomposition of the hydrazine in the liquid phase may be responsible for the anomalous behavior of hydrazine.

Over-all heat-transfer rates were also determined for each propellant combination and were compared with values calculated by standard heat-transfer equations. The calculated heat-transfer rates agree with the experimental rates for all propellant combinations except ammonia, which may have acted as a film coolant.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, October 1, 1958

APPENDIX A

SYMBOLS

A	cross-sectional area, sq in.
c^*	characteristic exhaust velocity, ft/sec
c_x^*, c_n^*	theoretical characteristic exhaust velocity for gas phase mixture ratio occurring at point x or point n, ft/sec
D_j	injection orifice diameter, in.
D_{30}	volume-number-mean drop diameter, in.
\mathcal{F}	fraction of fuel vaporized, dimensionless
g	gravitational constant, ft/sec ²
L	total chamber length, in.
M	molecular weight
$M_{g,m}$	mass median drop radius produced by injector, in.
o/f	oxidant-fuel weight ratio
\mathcal{O}	fraction of oxidant vaporized, dimensionless
P	chamber total pressure, lb/sq in. abs
p	static pressure, lb/sq in. abs
R	molar gas constant, in./°R
T	temperature, °R
T^*	reduced temperature of propellant
u	gas velocity at any point, ft/sec
u_{fin}	final gas velocity reached with complete combustion before nozzle, in./sec
v_j	jet velocity, ft/sec

ΔV	velocity difference between injected liquid and gases surrounding liquid jet, ft/sec
v_0	injection velocity, in./sec
W	mass-flow rate in gas phase, lb/sec
w_f	fuel weight flow, lb/sec
w_o	oxidant weight flow, lb/sec
γ	specific heat ratio, dimensionless
η_c	combustion efficiency, percent of theoretical characteristic exhaust velocity or gas velocity
μ_l	absolute liquid viscosity of propellant, lb/(in.)(sec)
ρ	density, lb/cu in.
σ	liquid surface tension of propellant, lb/in.

Subscripts:

g	gaseous
l	liquid
n	nozzle throat
th	theoretical for complete combustion
s	gas stream
x	point x
1	case, or point, 1
2	case, or point, 2

APPENDIX B

RELATION BETWEEN GAS VELOCITY AND PERCENT OF PROPELLANTS VAPORIZED

Gas velocity measurements are converted to percent of propellant vaporized by assuming that propellant vaporization limits the rate of combustion. The following schematic diagram is used for illustration:

From the continuity equation,

$$u_x = \frac{W_x}{\rho_x A_x}$$

or

$$\frac{u_x}{u_{th}} = \frac{W_x \rho_{th}}{W_{th} \rho_x} \quad (B1)$$

If the gases are assumed to follow the ideal gas law,

$$\rho_x = \frac{p_x}{R \frac{T_x}{M_x}}$$

or

$$\frac{\rho_{th}}{\rho_x} = \frac{p_{th}}{p_x} \frac{T_x/M_x}{T_{th}/M_{th}} \quad (B2)$$

When the experimental c^* equation is used, and the static- and total-pressure ratios are assumed to be approximately equal in the chamber,

$$P_x = \frac{c_n^* W_n}{A_n g}$$

and

$$\frac{p_{th}}{p_x} = \frac{P_{th}}{P_x} = \frac{c_{th}^* w_{th}}{c_x^* w_n} \quad (B3)$$

From the theoretical c^* equation,

$$c_x^* = \frac{\sqrt{g\gamma R}}{\gamma + 1} \sqrt{\frac{T_x}{M_x}} \cdot \frac{2}{\gamma(\gamma - 1)}$$

Hence, if γ is assumed constant,

$$\frac{T_x/M_x}{T_{th}/M_{th}} = \frac{c_x^{*2}}{c_{th}^{*2}} \quad (B4)$$

Since

$$\left. \begin{array}{l} w_x = \theta_x w_o + \varphi_x w_f \\ w_n = \theta_n w_o + \varphi_n w_f \end{array} \right\} \quad (B5)$$

and, combining equations ((B1) to (B5)),

$$\frac{u_x}{u_{th}} = \left(\frac{\theta_x w_o + \varphi_x w_f}{\theta_n w_o + \varphi_n w_f} \right) \frac{c_x^{*2}}{c_n^* c_{th}^*} \quad (B6)$$

Thus, the gas velocity efficiency at any point x is a function of the percent of fuel and oxidant vaporized at point x (θ_x and φ_x) and at the nozzle (θ_n and φ_n) and of the theoretical c^* values, c_n^* , c_x^* , and c_{th}^* .

For the results reported herein, the percent vaporized at the nozzle was determined from c^* measurements. The oxidant was assumed to be completely vaporized at all points in the chamber in the cases of the three propellant combinations for which gas velocity measurements were made. For the heptane - liquid-oxygen combination, the equation resulting from this assumption is plotted in figure 8.

APPENDIX C

FINAL GAS VELOCITY CALCULATIONS

In the analysis of reference 2, the final gas velocity when all of the propellants are burned is used to describe the gas velocity environment of the drop throughout its history. This final gas velocity becomes one of the correlating factors used to obtain an effective length and can be computed from the throat velocity, or from theoretical c^* , when isentropic expansion and no combustion in the nozzle are assumed.

If propellant vaporization is assumed to limit the combustion in an actual engine, the final gas velocities can be related to the actual engine efficiency as follows:

Case 1 in the diagram illustrates an engine vaporizing all the propellants. The engine of case 2 has the same propellant weight flow and chamber geometry as case 1 except that it is shorter and vaporizes only part of the propellants. The resultant inefficiency of the case 2 engine gives it a lower chamber pressure (P_2):

$$\frac{P_2}{P_1} = \frac{c_2^*}{c_1^*} = \eta_c$$

A typical gas velocity profile is shown for case 1. Point (1) in case 1 has the same percentage of the propellants vaporized as point (2) in case 2. If the T/M value of the gases is assumed to be the same at points 1 and 2, their densities will be functions only of P_1 and P_2 :

$$\frac{\rho_1}{\rho_2} = \frac{P_1}{P_2} = \frac{1}{\eta_c}$$

From the continuity equation,

$$\frac{u_2}{u_1} = \frac{\rho_1}{\rho_2} = \frac{1}{\eta_c}$$

To describe the gas velocity profile in case 2, a fictitious final gas velocity ($u_{fin,2}$) must be used, so that

$$\frac{u_{fin,2}}{u_{fin,1}} = \frac{u_2}{u_1} = \frac{1}{\eta_c}$$

The final gas velocities used as factors in the effective length in this correlation were obtained by dividing the theoretical gas velocity for complete combustion by the experimental engine efficiency.

APPENDIX D

HEAT-TRANSFER CALCULATIONS

Analytical heat-transfer rates were calculated for the particular engine used in this work. These calculations were made with the assumption of 100 percent combustion efficiency and a constant gas velocity along the entire chamber length. The gas-film heat-transfer coefficients were evaluated by using the Colburn equation and the averaged properties of the gases at the film temperatures.

In the experiments, 100 percent combustion efficiency was never attained. The calculated heat-transfer rates were accordingly modified for the lower chamber pressures and gas velocities at the nozzle inlet by assuming that each factor was approximately proportional to combustion efficiency. The measurements of gas velocities showed that the average gas velocity along the chamber length was about 70 percent of the velocity at the nozzle inlet. Because most of the resistance to heat transfer occurs in the gas-side film, as a close approximation the calculated over-all heat-transfer rates were multiplied by $0.7 \eta_c^2$ to correct for the actual engine conditions.

REFERENCES

1. Heidmann, M. F., and Auble, C. M.: Injection Principles from Combustion Studies in a 200-Pound-Thrust Rocket Engine Using Liquid Oxygen and Heptane. NACA RM E55C22, 1955.
2. Priem, Richard J.: Propellant Vaporization as a Criterion for Rocket-Engine Design; Numerical Calculations of Chamber Length to Vaporize a Single n-Heptane Drop. NACA TN 3985, 1957.
3. Priem, Richard J.: Propellant Vaporization as a Criterion for Rocket-Engine Design; Calculations Using Various Log-Probability Distributions of Heptane Drops. NACA TN 4098, 1957.
4. Heidmann, Marcus F., and Priem, Richard J.: Propellant Vaporization as a Criterion for Rocket Engine Design; Relation Between Percentage of Propellant Vaporized and Engine Performance. NACA TN 4219, 1958.
5. Priem, Richard J.: Propellant Vaporization as a Criterion for Rocket-Engine Design; Calculations of Chamber Length to Vaporize Various Propellants. NACA TN 3883, 1958.

6. Gordon, Sanford, and Huff, Vearl N.: Theoretical Performance of Liquid Ammonia and Liquid Fluorine as a Rocket Propellant. NACA RM E53A26, 1953.
7. Gordon, Sanford, and Huff, Vearl N.: Theoretical Performance of Liquid Hydrazine and Liquid Fluorine as a Rocket Propellant. NACA RM E53E12, 1953.
8. Gordon, Sanford, and Huff, Vearl N.: Theoretical Performance of Liquid Hydrogen and Liquid Fluorine as a Rocket Propellant. NACA RM E52L11, 1953.
9. Huff, Vearl N., Fortini, Anthony, and Gordon, Sanford: Theoretical Performance of JP-4 Fuel and Liquid Oxygen as a Rocket Propellant. II - Equilibrium Composition. NACA RM E56D23, 1956.
10. Gordon, Sanford, and Glueck, Alan R.: Theoretical Performance of Liquid Ammonia with Liquid Oxygen as a Rocket Propellant. NACA RM E58A21, 1958.
11. Heidmann, M. F., and Auble, C. M.: Rocket Performance Measurements with Streak Photographs. Preprint No. 239-55, Am. Rocket Soc., 1955.
12. Ingebo, Robert D.: Drop-Size Distributions for Impinging-Jet Breakup in Airstreams Simulating the Velocity Conditions in Rocket Combustors. NACA TN 4222, 1958.
13. Ingebo, Robert D., and Foster, Hampton H.: Drop-Size Distribution for Crosscurrent Breakup of Liquid Jets in Airstreams. NACA TN 4087, 1957.
14. Clark, Charles C.: Hydrazine. Mathieson Chem. Corp., Baltimore (Md.), 1953.
15. Morrell, Gerald: Investigation of Internal Film Cooling of 1000-Pound-Thrust Liquid-Ammonia - Liquid-Oxygen Rocket-Engine Combustion Chamber. NACA RM E51E04, 1951.

TABLE I. - TEST CONDITIONS

Oxidant	Oxidant injection temperature, °F	Fuel	Fuel injection temperature, °F	Flow rates			Total	o/f, theoretical c*	P, maximum theoretical c*	c*, maximum theoretical equil.
				1b/sec	ft/sec	Fuel				
Oxygen (l)	-320	Methane (g)	40 to 50	0.486	75.0	0.214	12.8	0.700	a2.27	a261
		Heptane (l)	50 to 70	.652	65.0	.277	75.0	.929	2.35	350
		Ammonia (l)	25 to 40	.319	54.0	.251	75.0	.570	1.27	209
		Hydrazine (l)	40 to 50	.293	50.0	.406	75.0	.699	0.72	273
		Hydrogen (g)	60 to 70	.486	75.0	.152	60.5	.683	3.20	324
		Heptane (l)	68	.652	15.1	.277	75.0	.929	2.35	353
Oxygen (g)	70 to 80	Ammonia (l)	65 to 60	.319	12.3	.251	75.0	.570	1.27	212
		Hydrazine (l)	75 to 80	.293	3.6	.406	75.0	.699	.72	276
		Hydrogen (l)	50	.792	60.5	.406	75.0	1.198	1.95	538
		Ammonia (l)	50	.752	57.0	.251	75.0	1.003	3.00	446
Fluorine (l)	-320	Hydrogen (g)	50	.632	75.0	.126	40.6	.758	5.00	402
										8430

aThe liquid oxygen-gaseous methane combination was run at this o/f rather than at the o/f for maximum c*, which is 6120 feet per second, corresponding to an o/f of 2.87.

TABLE II. - EXPERIMENTAL ENGINE DATA

(a) Gaseous methane with liquid oxygen

Run	Chamber pressure, lb/sq in. abs	Oxidant flow, lb/sec	Fuel flow, lb/sec	Total flow, lb/sec	Mixture ratio, oxidant to fuel	Characteristic velocity			Coolant flow, lb/sec	Coolant temperature rise, ΔT_F	Heat-transfer rate Experimental, Btu (sq in.)(sec)	Heat-transfer rate Average, Btu (sq in.)(sec)
						Experimental ft/sec	Percent of theoretical	Average				
Chamber length, 1 in.												
275	160	0.466	0.222	0.708	2.19	3640	61.8	59.2	-----	-----	-----	-----
276	163	.517	.224	.741	2.51	3470	58.4	-----	-----	-----	-----	-----
277	163	.524	.224	.748	2.54	3440	57.8	-----	-----	-----	-----	-----
Chamber length, 3 in.												
267	200	0.494	0.234	0.728	2.11	4320	73.5	72.6	-----	-----	-----	-----
269	190	.466	.228	.694	2.04	4350	74.2	-----	-----	-----	-----	-----
271	185	.474	.194	.668	2.44	4370	72.8	-----	-----	-----	-----	-----
272	185	.476	.197	.673	2.41	4340	72.5	-----	-----	-----	-----	-----
273	185	.491	.195	.686	2.52	4210	70.0	-----	-----	-----	-----	-----
Chamber length, 8 in.												
278	220	0.463	0.230	0.693	2.01	5020	86.1	84.3	5.76	8.0	0.602	0.549
279	220	.472	.225	.697	2.10	4980	85.2	-----	1.61	16.0	.516	-----
280	220	.492	.215	.697	2.24	4980	84.3	-----	1.60	15.0	.408	-----
281	220	.482	.220	.702	2.19	4950	84.1	-----	1.59	16.0	.509	-----
282	220	.486	.220	.706	2.21	4920	83.3	-----	-----	-----	-----	-----
283	218	.474	.225	.699	2.11	4920	83.9	-----	5.98	6.5	.517	-----
284	220	.488	.220	.708	2.22	4910	85.3	-----	4.07	7.0	.569	-----

(b) Heptane with liquid oxygen

Run	Chamber length, 1 in.	Chamber length, 3 in.	Chamber length, 8 in.	Characteristic velocity			Coolant flow, lb/sec	Coolant temperature rise, ΔT_F	Heat-transfer rate Experimental, Btu (sq in.)(sec)	Heat-transfer rate Average, Btu (sq in.)(sec)	
				Experimental ft/sec	Percent of theoretical	Average					
Chamber length, 1 in.											
505	161	0.665	0.289	0.954	2.30	2660	44.7	43.9	-----	-----	
506	157	.650	.285	.935	2.28	2660	44.7	-----	-----	-----	
507	160	.660	.285	.945	2.32	2680	45.1	-----	-----	-----	
508	158	.670	.289	.959	2.32	2600	45.7	-----	-----	-----	
509	156	.650	.284	.934	2.29	2640	44.4	-----	-----	-----	
510	156	.660	.286	.946	2.31	2600	43.7	-----	-----	-----	
511	155	.655	.284	.939	2.31	2610	43.8	-----	-----	-----	
512	155	.653	.281	.934	2.32	2620	44.1	-----	-----	-----	
513	159	.655	.281	.934	2.32	2690	45.3	-----	-----	-----	
514	157	.656	.284	.940	2.31	2640	44.4	-----	-----	-----	
515	154	.678	.285	.963	2.38	2510	42.2	-----	-----	-----	
516	156	.668	.301	.969	2.22	2530	42.6	-----	-----	-----	
517	156	.665	.300	.969	2.22	2560	43.1	-----	-----	-----	
Chamber length, 3 in.											
417	250	0.660	0.282	0.942	2.34	3850	64.7	65.7	-----	-----	
418	252	.658	.285	.945	2.35	3990	65.4	-----	-----	-----	
419	229	.656	.277	.933	2.37	3880	65.2	-----	-----	-----	
420	251	.650	.282	.932	2.30	3910	65.7	-----	-----	-----	
421	253	.640	.281	.921	2.28	3990	67.0	-----	-----	-----	
422	242	.650	.286	.936	2.27	3910	65.7	-----	-----	-----	
423	250	.653	.282	.935	2.32	3920	65.9	-----	-----	-----	
Chamber length, 8 in.											
424	271	0.658	0.290	0.946	2.26	4620	77.8	76.2	-----	-----	
425	260	.570	.313	.885	1.81	4640	78.0	-----	-----	-----	
426	270	.653	.295	.928	2.15	4590	77.3	-----	-----	-----	
427	267	.667	.286	.953	2.33	4430	74.5	-----	-----	-----	
428	267	.665	.274	.939	2.42	4490	75.4	-----	-----	-----	
429	270	.665	.269	.932	2.46	4580	77.2	-----	-----	-----	
430	267	.678	.270	.948	2.51	4500	75.6	3.79	14.0	1.06	1.18
502	270	.675	.291	.956	2.40	4460	75.0	3.05	14.1	1.17	-----
503	270	.672	.282	.954	2.48	4470	75.2	3.14	18.9	1.15	-----
504	270	.667	.275	.940	2.45	4530	76.3	3.14	19.4	1.22	-----
									20.6	1.29	-----

TABLE II. - Continued. EXPERIMENTAL ENGINE DATA

(c) Liquid ammonia with liquid oxygen

Run	Chamber pressure, lb/sq in., abs	Oxidant flow, lb/sec	Fuel flow, lb/sec	Total flow, lb/sec	Mixture ratio, oxidant: fuel	Characteristic velocity expirical or theoretical	Percent mental, or theoretical	Average lb/sec	Coolant flow, lb/sec	Coolant temperature rise, °F	Heat-transfer rate Experimental, Btu (sq in.) (sec)	Average, Btu (sq in.) (sec)
Chamber length, 1 in.												
443	108	0.342	0.260	0.602	1.31	2840	49.5	52.5	-----	-----	-----	-----
450	107	.324	.246	.570	1.31	2970	51.3	-----	-----	-----	-----	-----
451	106	.299	.249	.548	1.20	3040	52.5	-----	-----	-----	-----	-----
452	115	.299	.264	.563	1.13	3220	55.5	-----	-----	-----	-----	-----
454	113	.296	.261	.557	1.13	3200	55.2	-----	-----	-----	-----	-----
455	117	.306	.260	.566	1.25	3150	54.3	-----	-----	-----	-----	-----
456	113	.342	.257	.599	1.13	2980	51.4	-----	-----	-----	-----	-----
458	110	.314	.273	.587	1.15	2960	51.0	-----	-----	-----	-----	-----
459	110	.306	.270	.578	1.15	3020	50.0	-----	-----	-----	-----	-----
Chamber length, 3 in.												
445	144	0.299	0.252	0.551	1.19	4150	71.3	70.4	-----	-----	-----	-----
446	146	.324	.250	.574	1.29	4020	69.4	-----	-----	-----	-----	-----
445	150	.347	.253	.600	1.37	3960	68.5	-----	-----	-----	-----	-----
448	147	.304	.250	.554	1.22	4190	72.3	-----	-----	-----	-----	-----
447	151	.324	.248	.572	1.51	4170	72.0	-----	-----	-----	-----	-----
448	154	.351	.241	.577	1.57	4260	75.5	-----	-----	-----	-----	-----
459	145	.294	.257	.551	1.14	4160	71.8	-----	-----	-----	-----	-----
470	147	.324	.248	.572	1.51	4060	70.1	-----	-----	-----	-----	-----
471	150	.314	.249	.567	1.28	4170	71.9	-----	-----	-----	-----	-----
472	148	.352	.252	.594	1.52	3970	68.5	-----	-----	-----	-----	-----
475	147	.306	.250	.576	1.50	4030	69.6	-----	-----	-----	-----	-----
474	151	.352	.248	.680	1.34	4100	70.7	-----	-----	-----	-----	-----
476	152	.328	.253	.581	1.29	4150	71.5	-----	-----	-----	-----	-----
477	150	.354	.254	.688	1.31	4050	69.7	-----	-----	-----	-----	-----
478	147	.334	.253	.685	1.51	3970	68.5	-----	-----	-----	-----	-----
Chamber length, 8 in.												
454	170	0.569	0.250	0.819	1.48	4350	74.7	77.0	-----	5.40	4.0	0.222
455	165	.554	.251	.805	1.41	4300	74.1	-----	-----	-----	-----	-----
456	168	.501	.259	.760	1.34	4360	79.3	-----	-----	2.11	7.3	.309
457	162	.527	.247	.774	1.32	4460	76.7	-----	-----	1.24	11.5	.286
458	161	.521	.247	.768	1.30	4470	77.1	-----	-----	1.24	10.7	.276
459	164	.534	.247	.761	1.35	4460	78.9	-----	-----	1.25	10.5	.265
440	165	.531	.246	.777	1.31	4410	77.6	-----	-----	1.24	11.2	.278
441	164	.534	.251	.785	1.33	4450	77.4	-----	-----	1.08	9.0	.194
461	160	.518	.261	.779	1.29	4360	75.1	-----	-----	1.08	8.8	.190
462	161	.507	.269	.781	1.17	4550	78.5	-----	-----	1.09	9.5	.207
463	159	.506	.261	.787	1.17	4420	76.2	-----	-----	1.05	12.1	.208
465	165	.509	.254	.762	1.21	4650	79.9	-----	-----	1.05	11.6	.198
466	161	.299	.246	.585	1.17	4580	79.0	-----	-----	1.36	13.5	.255
468	167	.540	.251	.831	1.36	4460	77.0	-----	-----	1.872	13.5	-----

(d) Hydrazine with liquid oxygen

Chamber length, 1 in.												
571	178	0.248	0.397	0.643	0.620	4370	70.8	68.1	-----	-----	-----	-----
572	177	.240	.427	.667	.581	4190	68.0	-----	-----	-----	-----	-----
573	191	.286	.404	.690	.708	4150	67.3	-----	-----	-----	-----	-----
574	180	.278	.399	.677	.700	4240	68.7	-----	-----	-----	-----	-----
575	168	.352	.399	.751	.831	4050	65.8	-----	-----	-----	-----	-----
Chamber length, 3 in.												
564	201	0.397	0.304	0.701	1.31	4550	73.5	74.7	-----	-----	-----	-----
565	297	.296	.406	.702	.976	4660	75.6	-----	-----	-----	-----	-----
566	211	.309	.408	.717	.757	4650	75.4	-----	-----	-----	-----	-----
567	207	.291	.422	.713	.690	4590	74.5	-----	-----	-----	-----	-----
568	210	.301	.422	.723	.713	4590	74.5	-----	-----	-----	-----	-----
Chamber length, 8 in.												
565	222	0.518	0.419	0.775	0.754	4770	77.2	78.8	2.27	22.0	1.000	0.382
564	217	.508	.425	.775	.725	4640	76.0	-----	2.28	21.5	-----	-----
565	217	.509	.413	.737	.748	4750	77.0	-----	2.41	20.7	-----	-----
566	-----	-----	-----	-----	-----	-----	-----	2.48	20.6	1.020	-----	-----
567	215	.598	.402	.690	.718	4390	79.6	-----	2.47	19.2	-----	-----
568	205	.504	.412	.716	.736	4550	75.5	-----	2.47	19.2	-----	-----
569	208	.508	.408	.716	.754	4590	74.4	-----	2.46	14.0	-----	-----
570	210	.529	.408	.756	.805	4510	75.1	-----	2.46	19.0	-----	-----

(e) Hydrogen with liquid oxygen

Chamber length, 1 in.												
518	217	0.496	0.149	0.645	5.53	5350	65.4	65.2	-----	-----	-----	-----
520	210	.498	.157	.655	5.18	5070	63.3	-----	-----	-----	-----	-----
521	210	.491	.146	.637	5.36	5210	65.1	-----	-----	-----	-----	-----
522	215	.491	.142	.633	5.46	5370	67.1	-----	-----	-----	-----	-----
523	211	.494	.147	.640	5.35	5000	65.0	-----	-----	-----	-----	-----
Chamber length, 3 in.												
547	288	0.501	0.192	0.653	5.40	6170	77.0	77.7	-----	-----	-----	-----
548	254	.491	.152	.643	5.22	5250	78.0	-----	-----	2.22	41.0	1.82
549	261	.488	.156	.640	5.21	6200	77.5	-----	2.22	41.6	1.84	-----
550	259	.495	.150	.645	5.24	6140	77.2	-----	2.22	42.0	1.87	-----
551	292	.495	.159	.637	5.58	7190	89.7	-----	2.22	39.0	1.73	-----
552	255	.496	.152	.648	5.26	6220	77.6	-----	2.22	40.0	1.77	-----
553	255	.488	.159	.640	5.29	6300	78.6	-----	2.22	40.0	1.77	-----
Chamber length, 8 in.												
554	290	0.481	0.141	0.629	5.40	7290	91.0	91.8	2.18	42.0	1.85	1.73
555	290	.486	.141	.627	5.44	7310	91.5	-----	2.22	41.0	1.82	-----
556	290	.478	.141	.619	5.39	7400	92.4	-----	2.22	41.6	1.84	-----
557	290	.498	.159	.637	5.58	7340	92.7	-----	2.22	42.0	1.87	-----
558	295	.491	.142	.636	5.46	7520	91.4	-----	2.22	39.0	1.73	-----
560	293	.485	.150	.633	5.22	7310	91.3	-----	2.22	40.0	1.77	-----
561	295	.475	.152	.625	5.19	7460	93.1	-----	2.21	39.5	1.75	-----
562	295	.478	.153	.631	5.15	7340	92.2	-----	2.19	40.0	1.76	-----
563	300	.473	.157	.650	5.01	7520	93.8	-----	2.21	39.7	1.75	-----
564	295	.478	.151	.629	5.17	7350	91.8	-----	2.18	39.7	1.73	-----

TABLE II. - Continued. EXPERIMENTAL ENGINE DATA

(f) Heptane with gaseous oxygen

Run	Chamber pressure, lb/sq in. abs	Oxidant flow, lb/sec	Fuel flow, lb/sec	Total flow, lb/sec	Mixture ratio, oxidant:fuel	Characteristic velocity, ft/sec	Experimental, ft/sec	Percent of theoretical	Coolant flow, lb/sec	Coolant temperature rise, °F	Heat-transfer rate, Btu/(sq in.) (sec)	Average, Btu/(sq in.) (sec)
Chamber length, 1 in.												
114	164	0.848	0.309	0.955	2.08	2700	44.9	44.3	---	---	---	---
115	159	0.848	0.282	0.930	2.30	2700	44.9	44.3	---	---	---	---
116	160	0.848	0.287	0.935	2.26	2700	44.9	44.3	---	---	---	---
117	156	0.848	0.268	0.916	2.42	2600	44.7	44.3	---	---	---	---
118	159	0.848	0.280	0.928	2.32	2710	45.2	44.7	---	---	---	---
119	155	0.848	0.272	0.920	2.38	2600	44.7	44.3	---	---	---	---
Chamber length, 3 in.												
107	220	0.706	0.298	1.004	2.37	3400	56.0	57.2	---	---	---	---
108	205	0.651	0.294	0.945	2.21	3430	57.2	57.2	---	---	---	---
109	198	0.627	0.286	0.913	2.19	3420	56.9	57.2	---	---	---	---
110	198	0.637	0.278	0.910	2.29	3420	56.9	57.2	---	---	---	---
111	200	0.658	0.285	0.914	2.58	3460	57.6	57.2	---	---	---	---
112	197	0.626	0.281	0.907	2.23	3440	57.1	57.2	---	---	---	---
113	197	0.644	0.265	0.907	2.45	3430	57.1	57.2	---	---	---	---
Chamber length, 8 in.												
120	260	0.636	0.280	0.918	2.23	4580	75.0	72.3	1.37	55.7	1.03	1.05
121	250	0.636	0.280	0.916	2.21	4510	71.6	1.39	55.5	1.987	1.04	1.05
122	255	0.625	0.247	0.912	2.69	4560	75.6	1.40	57.0	58.2	1.06	1.05
123	255	0.670	0.266	0.956	2.52	4510	71.7	1.39	55.5	1.44	59.5	1.15
124	255	0.626	0.299	0.920	2.09	4560	72.5	1.42	55.8	1.02	1.05	1.05
125	253	0.648	0.272	0.920	2.38	4550	72.4	1.42	55.8	1.02	1.05	1.05

(g) Ammonia with gaseous oxygen

Chamber length, 1 in.												
149	100	0.294	0.201	0.495	1.46	5100	54.2	55.6	---	---	---	---
150	105	0.284	0.217	0.501	1.51	5110	56.2	56.6	---	---	---	---
151	107	0.284	0.240	0.524	1.18	5220	54.6	55.0	---	---	---	---
152	107	0.284	0.238	0.522	1.19	5240	56.0	56.4	---	---	---	---
153	110	0.289	0.240	0.529	1.20	5290	56.6	57.0	---	---	---	---
154	110	0.294	0.241	0.535	1.22	5250	56.2	56.6	---	---	---	---
155	110	0.294	0.257	0.531	1.24	5260	56.7	57.1	---	---	---	---
156	110	0.294	0.259	0.533	1.25	5260	56.5	56.9	---	---	---	---
157	110	0.294	0.240	0.534	1.22	5260	56.2	56.6	---	---	---	---
Chamber length, 3 in.												
132	128	0.516	0.196	0.512	1.61	3950	67.0	68.0	---	---	---	---
133	141	0.411	0.221	0.532	1.41	4250	72.2	72.2	---	---	---	---
134	140	0.420	0.238	0.558	1.54	5960	67.3	67.3	---	---	---	---
135	151	0.320	0.236	0.546	1.42	5970	67.4	67.4	---	---	---	---
136	144	0.402	0.274	0.576	1.10	5960	67.2	67.2	---	---	---	---
137	155	0.321	0.219	0.600	1.15	4070	69.1	69.1	---	---	---	---
138	150	0.321	0.275	0.595	1.17	5970	67.4	67.4	---	---	---	---
139	150	0.316	0.279	0.595	1.12	5970	67.4	67.4	---	---	---	---
140	153	0.354	0.214	0.548	1.64	5890	66.1	66.1	---	---	---	---
141	149	0.307	0.272	0.578	1.13	5950	67.1	67.1	---	---	---	---
142	148	0.302	0.268	0.570	1.15	4020	66.0	66.0	---	---	---	---
143	150	0.326	0.269	0.595	1.79	5930	66.6	66.6	---	---	---	---
144	149	0.361	0.212	0.545	1.56	4070	69.1	69.1	---	---	---	---
145	149	0.316	0.266	0.582	1.19	5930	67.7	67.7	---	---	---	---
146	145	0.320	0.261	0.574	1.55	5980	67.7	67.7	---	---	---	---
147	145	0.322	0.262	0.574	1.28	5930	67.7	67.7	---	---	---	---
Chamber length, 8 in.												
126	163	0.514	0.259	0.573	1.21	4470	75.9	74.7	1.44	8.00	0.131	0.024
127	160	0.327	0.235	0.570	1.54	4450	75.3	1.49	8.00	7.38	1.231	1.240
128	164	0.305	0.278	0.565	1.09	4440	75.4	1.48	7.90	7.30	1.231	1.240
129	165	0.322	0.266	0.566	1.21	4450	75.3	1.41	8.15	7.30	1.230	1.239
130	163	0.322	0.260	0.562	1.24	4420	75.0	1.39	8.10	7.25	1.238	1.248
131	165	0.322	0.259	0.561	1.24	4490	66.2	1.41	8.10	7.25	1.235	1.246
217	161	0.300	0.285	0.505	1.13	4280	72.8	1.60	10.00	10.00	1.720	1.720
218	163	0.326	0.268	0.596	1.22	4520	73.4	1.16	10.00	9.236	1.200	1.200
219	167	0.309	0.273	0.561	1.18	4270	72.5	1.08	9.236	9.236	1.229	1.229
220	159	0.320	0.260	0.560	1.23	4350	73.7	1.17	9.40	9.40	1.229	1.229
221	159	0.319	0.265	0.584	1.20	4300	75.1	1.17	9.50	9.50	1.229	1.229
222	158	0.318	0.261	0.579	1.30	4310	73.9	1.18	9.70	9.70	1.229	1.229
223	156	0.318	0.244	0.562	1.50	4390	74.6	1.20	9.00	9.00	1.227	1.227

(h) Hydrazine with gaseous oxygen

Chamber length, 1 in.												
175	182	0.505	0.407	0.710	0.744	4050	65.0	65.1	---	---	---	---
176	180	0.277	0.412	0.689	0.670	4120	66.1	66.1	---	---	---	---
177	180	0.283	0.407	0.690	0.695	4120	66.1	66.1	---	---	---	---
178	180	0.286	0.407	0.693	0.703	4110	66.0	66.0	---	---	---	---
179	180	0.291	0.407	0.698	0.714	4080	65.7	65.7	---	---	---	---
180	180	0.294	0.408	0.694	0.700	4140	66.5	66.5	---	---	---	---
181	182	0.286	0.408	0.694	0.700	4140	66.5	66.5	---	---	---	---
182	180	0.291	0.408	0.699	0.713	4170	67.0	67.0	---	---	---	---
Chamber length, 5 in.												
171	203	0.291	0.412	0.703	0.707	4560	75.1	75.1	---	---	---	---
172	202	0.287	0.407	0.694	0.702	4600	75.7	75.7	---	---	---	---
173	200	0.287	0.410	0.697	0.700	4580	72.6	72.6	---	---	---	---
174	202	0.287	0.410	0.697	0.700	4580	73.5	73.5	---	---	---	---
Chamber length, 8 in.												
204	210	0.300	0.450	0.750	0.697	4540	72.8	74.	1.50	31.0	0.205	0.205
205	---	---	---	---	---	---	---	---	1.16	35.1	.015	.015
206	---	---	---	---	---	---	---	---	1.15	35.0	.005	.005
207	210	1.300	0.414	0.714	0.724	4640	74.3	74.3	---	---	---	---
208	210	1.317	0.406	0.725	0.780	4660	74.6	74.6	1.20	34.0	.016	.016
209	210	1.322	0.392	0.714	0.801	4760	76.2	76.2	1.20	33.5	.004	.004
210	205	1.392	0.416	0.708	0.704	4570	73.2	73.2	---	---	---	---

TABLE II. - Concluded. EXPERIMENTAL ENGINE DATA

(f) Hydrazine with fluorine

Run	Chamber pressure, lb/sq in., abs	Oxidant flow, lb/sec	Fuel flow, lb/sec	Total flow, lb/sec	Mixture ratio, oxidant: fuel	Characteristic velocity		Coolant flow, lb/sec	Coolant temperature rise, °F	Heat-transfer rate	
						Experimental, ft/sec	Percent of theo- retical			Average	(sq in.) (sec)
Chamber length, 1 in.											
347	305	0.681	0.404	1.084	1.68	4450	62.5	57.8	---	---	---
348	298	.886	.596	1.282	2.16	3760	57.8	---	---	---	---
Chamber length, 3 in.											
340	390	0.911	.601	1.302	2.53	4730	66.4	66.7	---	---	---
341	355	.775	.404	1.179	1.92	4730	66.4	---	---	---	---
342	355	.775	.408	1.183	1.90	4710	66.0	---	---	---	---
343	360	.775	.406	1.171	1.96	4850	66.0	---	---	---	---
Chamber length, 8 in.											
344	410	0.760	0.412	1.172	1.85	5520	77.5	78.6	2.82	29.0	1.64
345	424	.781	.408	1.178	1.98	5660	79.7	79.7	2.40	29.5	1.65
346	427	.795	.402	1.197	1.99	5620	78.7	78.7	2.32	24.5	1.63

(g) Liquid ammonia with liquid fluorine

		Chamber length, 1 in.									
		Oxidant	Fuel	Total	Mixture	Characteristic	Coolant	Coolant	Heat-transfer		
Chamber length, 3 in.											
328	170	0.575	0.279	0.854	2.06	5170	45.0	45.4	---	---	---
329	190	.717	.357	1.074	2.19	5090	43.7	43.7	---	---	---
330	192	.850	.398	1.248	2.23	5740	48.4	48.4	---	---	---
Chamber length, 8 in.											
325	410	0.866	0.276	1.142	2.21	4210	59.7	58.9	---	---	---
326	275	.775	.258	1.033	2.00	4170	59.2	59.2	---	---	---
327	267	.781	.257	1.036	2.04	4070	57.7	57.7	---	---	---
Chamber length, 1 in.											
333	345	0.810	0.271	1.081	2.09	5640	71.6	71.3	4.66	15.0	1.21
334	347	.826	.268	1.093	2.02	4810	69.6	69.6	4.70	14.0	1.30
335	348	.801	.265	1.066	2.03	4970	70.3	70.3	4.70	14.0	1.30
336	315	.658	.274	1.933	2.40	5340	75.9	75.9	4.65	14.2	1.32

(h) Hydrogen with fluorine

		Chamber length, 1 in.									
		Oxidant	Fuel	Total	Mixture	Characteristic	Coolant	Coolant	Heat-transfer		
Chamber length, 3 in.											
319	284	0.646	0.143	0.899	4.52	5680	67.4	67.6	---	---	---
317	275	.654	.128	1.262	4.96	5700	67.0	67.0	---	---	---
318	277	.656	.136	1.792	4.83	5520	65.7	65.7	---	---	---
319	280	.624	.134	1.758	4.66	5830	69.4	69.4	---	---	---
Chamber length, 8 in.											
312	291	0.601	0.107	0.708	5.62	6500	77.4	78.6	---	---	---
313	330	.636	.151	1.787	4.21	6610	70.6	70.6	---	---	---
314	330	.636	.141	1.777	4.15	6710	79.9	79.9	---	---	---
315	321	.643	.129	1.772	4.36	6570	79.5	79.5	---	---	---
Chamber length, 8 in.											
320a	517	0.593	0.141	0.634	8.71	7850	89.9	89.9	---	---	---
320b	517	.591	.116	1.706	8.57	7640	89.7	89.7	---	---	---
321	---	---	---	---	---	---	---	---	4.46	77.5	2.46
322	515	.491	.156	1.647	8.14	7950	90.1	90.1	4.20	76.0	2.49
323	---	---	---	---	---	---	---	---	4.20	80.0	2.50

TABLE III. - AVERAGE HEAT-TRANSFER RESULTS

Fuel	Propellants Oxidant	Heat-transfer rates, Btu/(sq in.)(sec)		Ratio of experimental heat transfer to analytical, actual efficiency	Calculated gas side wall tempera- ture, °F	Boiling tem- perature of propellant in imping- ing jets, °F
		Analytical	Experi- mental			
		At 100 percent efficiency	At actual efficiency			
Heptane	Oxygen (l)	2.82	1.15	1.18	1.03	294
Ammonia	Oxygen (l)	2.07	.860	.243	.283	460
Hydrazine	Oxygen (g)	2.49	.984	.982	.996	127
Hydrogen	Oxygen (g)	3.04	1.84	1.79	.972	224
Heptane	Hydrazine	2.80	1.04	1.05	1.01	224
Ammonia	Hydrazine	2.10	.815	.224	.275	430
Hydrazine	Hydrazine	2.50	.967	.805	.833	-220
Ammonia	Fluorine (l)	4.48	1.62	1.27	.784	356
Hydrazine	Fluorine (l)	5.14	2.07	1.64	.792	126
Hydrogen	Hydrogen	4.08	2.37	2.49	1.05	500
					356	-226

Figure 1. - Rocket engine.

Figure 2. - Liquid-liquid injector.

Figure 3. - Liquid-gaseous injector.

Figure 4. - Theoretical exhaust velocities as functions of oxidant-fuel weight ratios for various propellants.

Figure 5. - Performance results comparing various oxidants and fuels.
 (a) Fuels with various oxidants.

(b) Oxidants with various fuels.
Figure 5. - Concluded. Performance results comparing various oxidants and fuels.

(a) Heptane with liquid oxygen.

(b) Ammonia with liquid oxygen.

(c) Hydrazine with liquid oxygen.

Figure 6. - Comparison of combustion efficiencies obtained from characteristic exhaust velocities and chamber gas velocities for various propellant combinations.

Figure 7. - Comparison of experimental and analytical results, using the model of propellant vaporization as the rate-controlling process.

Figure 8. - Gas velocity ratios for various amounts of fuel evaporated. Heptane with liquid oxygen at an oxidant-fuel ratio of 2.5.

