Zhichao Jia

E-mail: jiazhichao6688@gmail.com Personal Website LinkedIn Phone: +1-667-900-4624

EDUCATION

Johns Hopkins University

Baltimore, MD

Master of Science and Engineering in Applied Mathematics and Statistics; GPA: 4.0/4.0 Sept. 2021 - Dec. 2022

Thesis: First-Order Methods for Nonsmooth Nonconvex Functional Constrained Optimization with or without Slater Points Advisor: Benjamin Grimmer

Courses: Nonlinear Optimization, Stochastic Optimization, Large-Scale Optimization in Data Science, Control Theory, Statistical Theory

Sun Yat-Sen University

Guangzhou, China

Bachelor of Science in Information and Computing Science; GPA: 3.7/4.0

Sept. 2017 - Jun. 2021

Thesis: On an FFHE-Inspired Method for Effectively Solving Differential Riccati Equations

Courses: Real Analysis, Linear Algebra, Numerical Methods, Statistics, Optimization Methods, Machine Learning, Data Mining, Programming

Research Experience

Applications of the FFHE Method in Time-Varying Control Systems Advisor: Associate Professor Tao Wang

Sun Yat-Sen University, China

Jan. 2020 - May 2021

• Applied to CTECQP: Implement a tailored novel fast and flexible holomorphic embedding (FFHE) method for solving continuous-time equality constrained quadratic programming (CTECQP) problems.

- Applied to MDRE: Extend the FFHE method to dealing with matrix differential Riccati equations (MDRE).
- o Promotion on FFHE: Carry out certain strategies to optimize the series expansion, rational approximation, adaptive segmentation and automatic correction for the FFHE method and achieve better performance. "On a Tailored Fast and Flexible Holomorphic Embedding Method for Time-Varying Control Systems" by Y. Ding, Z. Jia, Z.

The Augmented Lagrangian Method for Nonconvex Problems

Fang, T. Wang, Y. Zhang, submitted to IEEE Trans on Auto Control.

Carnegie Mellon University, PA (Online)

Advisor: Assistant Professor Jovan Ilic

May 2020 - Jul. 2020

• Algorithm Realization and Experimental Analysis: Implement the augmented Lagrangian method solving nonconvex optimization problems with equality constraints; Compare its performance under different choices of related hyper-parameters and with other classic constrained methods.

"Implementation and Analyzing of Augmented Lagrangian Method" Abstract by Z. Jia, Z. Hu, J. Ma, accepted by ICAPM 2021 (presentation only).

First-Order Methods for Nonconvex Nonsmooth Constrained Optimization Johns Hopkins University, MD Advisor: Assistant Professor Benjamin Grimmer Oct. 2021 - present

o Algorithm Design and Theoretical Analysis: Present a modified inexactly proximally guided switching subgradient method solving nonconvex nonsmooth constrained optimization problems based on newly proposed Slater point-type assumptions and measurements of stationarity; Provide theoretical results on its convergence rates, feasibility guarantee and compactness assumption; Conduct numerical experiments on sparse phase retrieval problems.

The SPSA method for Constrained Stochastic Optimization

Johns Hopkins University, MD

Advisor: Professor James Spall

May 2022 - present

- o SPSA-based Constrained Algorithms: Propose an SPSA-based switch updating method and an SPSA-based random-search projection method built on the simultaneous perturbation stochastic approximation (SPSA) solving constrained stochastic problems under specific assumptions; Show convergence results and numerical performance of them.
- o Distributions of SPSA Sampling: Generate computational and experimental results on the advantages of non-Bernoulli distributions compared to using Bernoulli distribution in SPSA sampling for specific constrained cases.

Stochastic Gradient Descent Methods with Stochastic Polyak Stepsizes

Johns Hopkins University, MD

Advisor: Assistant Professor Nicolas Loizou

Jun. 2022 - present

- SPS in Different Problem Settings: Apply two variants of stochastic Polyak stepsizes (SPS) to the stochastic gradient descent method solving weakly convex and sharp stochastic optimization problems and present their convergence results.
- SPS in Constrained Algorithms: Apply one variant of SPS to the stochastic switching subgradient method solving constrained stochastic optimization problems and present its convergence result.

AWARDS

- Third Prize of China Undergraduate Mathematical Contest in Modeling (top 40%) in Sept. 2019
- Ranked 6th in Datathon@LISH in Feb. 2022

SKILLS

• Programming Languages: C, C++, Python, Matlab, SQL, R