

Trabajo práctico 8 Integración DSP y uP

Autores:

- Gerard Brian
- Raimondi Marcos

Índice

Consigna	2
Resolución	3
Memoria ram	3
File Register	4
Integración File Register - Memoria Ram	5
Pruebas del funcionamiento en la FPGA	7

Consigna

- Ejercicio 1

Utilizando los desarrollos anteriores integrar el DSP y el uP tomando como referencia los siguientes lineamientos:

• El GPIO de salida se utiliza para escribir los comandos en el Register File (RF) particionando los 32bits en command[31:24], enable[23] y data[22:0].

Se debe implementar una interfaz denominada Register File, la cual es un banco de registros que almacena los comandos enviados desde el uP.

- Se debe implementar una BRAM
- Los datos se guardan a la frecuencia de clock.
- La memoria comienza a loguear cuando detecta el flanco ascendente de o run log y guarda datos en cada ciclo de clock hasta llegar a la posición final de la memoria.

Resolución

Se decidió agregar dos nuevos módulos al sistema con sus respectivas pruebas con los datos obtenidos en las simulaciones siguientes.

```
Lop (top.v) (6)
Lop u_micro: uArtix735 (uArtix735.bd) (1)
U_systemI: system (system.v) (4)
U_systemQ: system (system.v) (4)
U_vio: vio (vio.bd) (1)
U_file_register: file_register (file_register.v)
U_bram: bram (bram.v) (1)
```

Memoria ram

Prueba de cargado de memoria y posteriormente algunas lectura de la misma.

En la misma se puede apreciar cómo una vez completa la memoria o_mem_full se pone en alto.

run all

Memory full

Data read from memory: 31

Expected: 31

Data read from memory: 32

Expected: 32

Data read from memory: 33

Expected: 33

Para el diseño de la memoria ram se tuvo en cuenta que la cantidad de datos para guardar iba a ser muy pequeña (8 bits) en comparación de la RAM (32 bits). Por lo que se optó por guardar la salida de los 2 filtros en los bits [7:0] la señal filtrada de I y en [16:8] la señal filtrada de Q:

```
assign data_tx_to_mem = {{16{1'b0}}} , filter_out_Q , filter_out_I};
```

File Register

Para este caso se hizo más extensa la prueba ya que debíamos probar parte por parte cómo interactuaba el file register con los comandos que le llegaban.

cmd: Reset
 Se envía la señal para activar el reset, y luego se envía otra para desactivarlo.

cmd: Enable_TX y Enable_RX

cmd: phase_sel

cmd: Lectura_BER
 Se le asignó un valor a la ber, para comprobar si era posible la lectura

Integración File Register - Memoria Ram

Se probó la integración de los dos módulos entre si y se obtuvo los resultados esperados

• Envío de comando de escritura en memoria

Lectura de la memoria

addr_to_read = 1017
data_to_micro = 1016
addr_to_read = 1018
data_to_micro = 1017
addr_to_read = 1019
data_to_micro = 1018
addr_to_read = 1020
data_to_micro = 1019
addr_to_read = 1021
data_to_micro = 1020
addr_to_read = 1021
data_to_micro = 1020
addr_to_read = 1022
data_to_micro = 1021
addr_to_read = 1022
data_to_micro = 1021
addr_to_read = 1023
data_to_micro = 1023
data_to_micro = 1023

Pruebas del funcionamiento en la FPGA

Para iniciar el sistema se escribe el comando start: El cual envía el comando EN_TX y EN_RX iniciando así el sistema.

Seleccionamos la phase, deshabilitamos tx y rx con el comando stop

Seleccionamos el comando 5 para guardar los datos en la memoria y luego con el comando 7 0 preguntamos si la memoria se encuentra llena

con el comando read leemos varios valores de la memoria para luego poderlos graficar

para leer un valor unico usamos el siguiente comando

para la lectura de la BER samples

Una vez obtenemos las muestras se guardan en un archivo txt el cual con un script de python se lee y se grafica para lo cual el resultado es el siguiente:

