Theoretische Physik II Elektrodynamik

Vorlesung von Prof. Dr. Michael Thoss im Wintersemester 2018

Markus Österle Andréz Gockel Damian Lanzenstiel Patrick Munnich 31. Januar 2019

Inhaltsverzeichnis

1	Relativitätstheorie und Elektrodynamik								2											
	1.1	Spezielle Relativitätstheorie (Wiederholung)																	2

Kapitel 0

Einführung

0.1 Zur Vorlesung

Dozent Michael Thoss

Übungen Donnerstag/Freitag (ILIAS) beginnt 18./19.10.18

Übungsleiter Jakob Bätge

Abgabe der Hausaufgaben bis Dienstag 12:00 - Briefkasten GuMi

Klausur 13.02.19, 10-12 Uhr, Hörsaal Anatomie (Nachklausur: 26.19, 10-12 Uhr)

Ankündigungen ILIAS Pass: theophy2.thoss18

Angaben Vorlesung: 4 SWS, Übung: 2 SWS, ECTS: 7

Vorkenntnisse Mathematik: Analysis für Physiker (Vektor Rechnung), Theoretische Physik I, Experimental Physik II.

Hinweis zu den Übungen

- Keine Anwesenheitspflicht.
- Keine Punktzahl nötig für Klausurzulassung.
- Kann auch wärend Übungen abgegeben werden.

Lehrbücher:

- W. Nolting, Grundkurs Theoretische Physik 3: Elektrodynamik (Springer)
- D.J. Griffiths, Elektrodynamik: Eine Einführung (Pearson)
- T. Fließbach, Elektrodynamik (Spektrum Akademischer Verlag)
- J.D. Jackson, Klassische Elektrodynamik (Walter de Gruyter) geht dieser Vorlesung hinaus

0.2 Einführung und Überblick

Die vier fundamentalen Wechselwirkungen (WW):

- Starke WW
- Elektromagnetische WW Wird in dieser Vorlesung betrachtet
- Schwache WW
- Gravitation

0.2.1 Rückblick

Theoretische Physik 1:

- Mechanik
- Punktmechanik: Bahnkurven von Körpern
- Bewegungsgleichung: $m\ddot{\pmb{r}} = \pmb{F}$

0.2.2 Elektrodynamik

- Grundlegende Größen
- Felder

•

$$m{E}(m{r},t)$$
 $m{B}(m{r},t)$

elektrisches Feld Magnetfeld

→ Feldtheorie sehr wichtiges Konzept

Wie sind Elektrische Felder definiert?

Experimentelle Definition als Messgröße: Kraft auf Ladung

$$\boldsymbol{F} = q(\boldsymbol{E}(\boldsymbol{r},t) + \boldsymbol{v} \times \boldsymbol{B}(\boldsymbol{r},t))$$

Theoretische Definition ist Mathematisch: Feldgleichungen-Maxwellgleichungen

$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \qquad \nabla \times \mathbf{B} - \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{j}$$

Hierbei steht ρ für die Ladungsdichte und j für die Stromdichte.

0.3 Aufbau der Vorlesung

1./2. Statische Phänomene: $\frac{\partial \boldsymbol{E}}{\partial t} = 0 = \frac{\partial \boldsymbol{B}}{\partial t}$

$$\Rightarrow \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \cdot \boldsymbol{B} = 0$$

$$\underbrace{\nabla \times \boldsymbol{E} = 0}_{\text{1. Elektrostatik}} \qquad \underbrace{\nabla \times \boldsymbol{B} = 0}_{\text{2. Magnetostatik}}$$

- 3. Zeitabhängige magnetische/elektrische Felder
- 4. Relativistische Formulierung der Elektrodynamik

Kapitel 1

Elektrostatik

Wir beschäftigen uns in diesem Kapitel mit **ruhenden Ladungen** und **zeitunabhängigen Feldern**. Das Grundproblem besteht darin, dass wir eine Ladungsverteilung haben und das Elektrische Feld und dessen Potential bestimmen wollen.

 \rightarrow Feld $\boldsymbol{E}(\boldsymbol{r}),$ el. Potential $\varPhi(\boldsymbol{r})$

• q₂ q₁ • • q₃

1.1 Elektrische Ladung und Coulomb'sches Gesetz

Ladung: Beobachtungstatsachen:

- i) Zwei Arten "+", "-"
- ii) Abgeschlossenes System: Ladung erhalten: $q = \sum_i q_i = \text{const.}$
- iii) Ladung ist quantisiert in Einheiten der Elementarladung:

$$q = ne, \ n \in \mathbb{Z}, \ e = 1,602 \cdot 10^{-19} \,\mathrm{C}$$

n=-1: für ein Elektron wäre ein Beispiel einer Punktladung

Kontinuierliche Ladungsverteilung Ladungsdichte $\rho(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Volumen}} = \frac{\Delta q}{\Delta V} \text{ Gesamtladung in } V \text{:}$

$$Q = \int_{V} \mathrm{d}^{3} r \, \rho(\mathbf{r})$$

1.1.1 Coulombsches Gesetz

Die Kraft, welche eine am Ort r_2 lokalisierte Punktladung auf eine Punktladung am Ort r_1 ausübt, ist gegeben durch:

$$oldsymbol{F}_{12} = k rac{q_1 q_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|^2} \underbrace{rac{oldsymbol{r}_1 - oldsymbol{r}_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|}}_{oldsymbol{e}_{r_{12}}}$$

- 1. $F_{12} \sim q_1 q_2$
- 2. $\mathbf{F}_{12} \sim \frac{1}{|\mathbf{r}_1 \mathbf{r}_2|^2}$

3.
$$F_{12} \sim q_1 q_2 e_{r_{12}}$$

4.
$$\mathbf{F}_{12} = -\mathbf{F}_{21}$$

Es gilt das Superpositionsprinzip: Das heißt, durch vektorielle Addition der Kräfte kann die Gesamtkraft ermittelt werden.

$$m{F}_1 = k \sum_{j=2}^N rac{q_1 q_j}{r_{1j}^2} m{e}_{r_{1j}}$$

Zur Konstanten k:

Die Konstante ist abhängig von dem verwendeten Maßsystemen.

i) Gauß-System (cgs):
$$k \equiv 1$$
, dyn = $\frac{\text{g} \cdot \text{cm}}{\text{s}^2} = 10^{-5} \,\text{N}$
1 dyn = $\frac{(1\text{ESE})^2}{\text{cm}^2}$ 1ESE = $\frac{\sqrt{\text{g} \cdot \text{cm}^3}}{\text{s}}$

ii) SI (MKSA-System): Definition von A = Ampère

$$\frac{\Delta F}{\Delta l} = 2 \cdot 10^{-7} \frac{\text{N}}{\text{m}}$$

$$\frac{\Delta F}{1 \text{ m}} \Rightarrow 1 \text{A} = \frac{1 \text{C}}{1 \text{s}} \rightarrow e = 1,602 \cdot 10^{-19} \text{ C} \qquad c \approx 3 \cdot 10^8 \frac{\text{m}}{\text{s}}$$

$$\frac{\Delta F}{\Delta l} = k \frac{2 l^2}{c^2 d} \rightarrow k = 2 \cdot 10^{-7} \frac{\text{N}}{\text{m}} \frac{c^2 1 \text{m}}{2(1 \text{A})^2} = 10^{-7} c^2 \frac{\text{N}}{\text{A}^2}$$

$$k = \frac{1}{4\pi \varepsilon_0}$$

Damit erhalten wir für die Dielektrizitätskonstante des Vakuums:

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

1.2 Elektrisches Feld

1.2.1 Feld eines Systems von Punktladungen

N-Ladungen q_1, \ldots, q_N ruhen an den Orten r_1, \ldots, r_N . Nun bringen wir eine Testladung q am Ort r mit ein.

Kraft von q_1 , q_2 auf q

$$\boldsymbol{F} = \frac{1}{4\pi\varepsilon_0} q \sum_{j=1}^{N} q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3} = q \boldsymbol{E}(\boldsymbol{r})$$

Somit ist das elektrisches Feld:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{N} q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}$$

Bemerkung

- i) Testladung klein (formal: $\lim_{q\to 0} \frac{F}{q}$)
- ii) math. $\boldsymbol{E}(\boldsymbol{r})$ Vektorpfeil

kartesisch:
$$\boldsymbol{E}(\boldsymbol{r}) = \begin{pmatrix} E_x(\boldsymbol{r}) \\ E_y(\boldsymbol{r}) \\ E_z(\boldsymbol{r}) \end{pmatrix}$$

iii) Wechselwirkungsprozess: 2 Teile

$$q_i \to \boldsymbol{E}(\boldsymbol{r}) \to \boldsymbol{F} = q\boldsymbol{E}(\boldsymbol{r})$$

iv) Superpositionsprinzip gilt

Feld einer kontinuierlichen Ladungsverteilung $\rho(r)$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{V} d^3r' \, \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$\rho(\mathbf{r}_j) = \frac{\Delta q_j}{\Delta V_j}$$

$$\int\limits_{V} \mathrm{d}^3 r' \qquad \rho(\boldsymbol{r}_j) = \frac{\Delta q}{\Delta V}$$
schließt alle

$$E(\mathbf{r}) = k \sum_{j} \Delta q_{j} \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$

$$= k \sum_{j} \Delta V_{j} \rho(\mathbf{r}_{j}) \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}}$$
mit $\Delta V_{j} \rightarrow 0$

$$= k \int_{V} d^{3}r' \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}}$$

Ladungsdichte einer Punktladung 1.2.3

Deltafunktion

$$\rho(\boldsymbol{r}) = q\delta(\boldsymbol{r} - \boldsymbol{r}_0)$$

Punktladung in $\mathbf{r}_0 \Rightarrow \rho(\mathbf{r}) = 0 \quad \mathbf{r} \neq \mathbf{r}_0$ Ladungsdichte divergiert in r_0

$$\rho(\mathbf{r}_0) = \infty$$

 $ho(oldsymbol{r}_0) = \infty$ Modell für Punktladung: Ladung q in Kugel mit Radius ε um $\mathbf{r}_0, \ \varepsilon \to 0$

$$\rho_2(\mathbf{r}) = \left\{ \begin{array}{cc} \frac{q}{v_k} & |\mathbf{r}| \le \varepsilon \\ 0 & \mathrm{sonst} \end{array} \right\} = \frac{q}{\frac{4}{3}\pi\varepsilon^3} \underbrace{\Theta(\varepsilon - |\mathbf{r}|)}_{\text{Stufen funktion}}$$

$$\rho(\boldsymbol{r}) = \lim_{\varepsilon \to 0} \ \rho_{\varepsilon}(\boldsymbol{r}) = \left\{ \begin{array}{cc} \infty & \boldsymbol{r} = 0 \\ 0 & \boldsymbol{r} \neq 0 \end{array} \right.$$

Divergenz muss so sein, dass

$$\int\limits_{\substack{V\\ \boldsymbol{r}_0 \in V}} \mathrm{d}^3 r \ \rho(\boldsymbol{r}) = q$$

Definition Delta-Funktion (Diracsche Deltafunktion)

1.

$$\delta(\boldsymbol{r} - \boldsymbol{r}_0) = \begin{cases} 0 & \boldsymbol{r} \neq \boldsymbol{r}_0 \\ \infty & \boldsymbol{r} = \boldsymbol{r}_0 \end{cases}$$

2.

$$\int_{V} d^{3}r \ f(\boldsymbol{r})\delta(\boldsymbol{r}-\boldsymbol{r}_{0}) = \begin{cases} f(\boldsymbol{r}_{0}) & \boldsymbol{r}_{0} \in V \\ 0 & \boldsymbol{r}_{0} \notin V \end{cases}$$

Mathematik

Distribution - Funktional

Funktional: Abb. Funktionen $\mapsto \mathbb{R}, \mathbb{C}$

$$\delta_{\boldsymbol{r}_0}: f \mapsto f(\boldsymbol{r}_0)$$

Physik

$$\int d^3r \ f(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}_0) = f(\mathbf{r})$$

 δ -Fkt. als Grenzwert einer Folge von Funktionen im Integral

$$\int d^3r \ f(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}_0) = \lim_{\varepsilon \to 0} \quad \int d^3r \ f(\mathbf{r})g_{\varepsilon}(\mathbf{r} - \mathbf{r}_0)$$

mit

$$\lim_{\varepsilon \to 0} g_{\varepsilon}(\boldsymbol{r} - \boldsymbol{r}_0) = \begin{cases} 0 & \boldsymbol{r} \neq \boldsymbol{r}_0 \\ \infty & \boldsymbol{r} = \boldsymbol{r}_0 \end{cases}$$
$$\int_{V} d^3 r \ g_{\varepsilon}(\boldsymbol{r} - \boldsymbol{r}_0) = 1$$

Beispiel: $g_{\varepsilon}(\boldsymbol{r}-\boldsymbol{r}_0)=\frac{\Theta(\varepsilon-|\boldsymbol{r}|)}{\frac{4}{3}\pi\varepsilon^3}$ Mehrere Punktladungen q_j in \boldsymbol{r}_j

$$ho(m{r}) = \sum_j q_j \delta(m{r} - m{r}_j)$$

$$\Rightarrow E(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \ \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \sum_j q_j \delta(\mathbf{r} - \mathbf{r}_j) \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \int_V d^3r' \ \delta(\mathbf{r} - \mathbf{r}_j) \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$= \frac{1}{4\pi\varepsilon_0} \sum_j q_j \frac{\mathbf{r} - \mathbf{r}_j}{|\mathbf{r} - \mathbf{r}_j|^3} \qquad \checkmark$$

1.2.4 Flächenladungsdichte

$$\sigma({m r}) = rac{ ext{Ladung}}{ ext{Fläche}} = rac{\Delta q}{\Delta A}$$

erzeugtes elektrisches Feld:

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int_{\substack{A \text{Flächen-} \\ \text{element}}} \sigma(r) \frac{r - r'}{|r - r'|^3}$$

Beispiel: Elektrisches Feld einer homogenen Flächenladung

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \, \sigma \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \qquad \boldsymbol{r}' = (x', y', 0)$$

Symmetrie: \boldsymbol{E} unabhängig von x, y $\boldsymbol{r} = (0, 0, z)$

$$r - r' = (-x', -y', z), |r - r'|^3 = (x'^2 + y'^2 + z^2)^{3/2}$$

$$E_x \sim \sigma \int_{-\infty}^{+\infty} dx' \int_{-\infty}^{+\infty} dy' \frac{(-x')}{(x'^2 + y'^2 + z^2)^{3/2}} = 0 = E_y$$

$$E = (0, 0, E_z)$$

$$E_{z} = \frac{1}{4\pi\varepsilon_{0}} \sigma_{z} \int_{-\infty}^{+\infty} dx' \underbrace{\int_{-\infty}^{+\infty} dy' \frac{(x')}{(x'^{2} + y'^{2} + z'^{2})^{3/2}}}_{(x'^{2} + y'^{2} + z^{2})^{3/2}} \Big|_{-\infty}^{+\infty} = \frac{1}{x'^{2} + z^{2}} \frac{\operatorname{sgn}(y')}{\sqrt{1 + \frac{x'^{2} + z^{2}}{y'^{2}}}} \Big|_{-\infty}^{+\infty} = \frac{2}{x'^{2} + z^{2}}$$

$$= \frac{1}{2\pi\varepsilon_{0}} \sigma_{z} \underbrace{\int_{-\infty}^{+\infty} dx' \frac{1}{x'^{2} + z^{2}}}_{\frac{1}{z} \arctan\left(\frac{x'}{2}\right) \Big|_{-\infty}^{+\infty} = \frac{1}{z} \operatorname{sgn}(z)\pi}$$

$$E_{z} = \frac{\sigma}{2\varepsilon_{0}} \operatorname{sgn}(z)$$

Grenzfläche:
$$z \to 0$$

$$egin{aligned} m{E} & \longrightarrow z > 0 \ -rac{\sigma}{2arepsilon_0} m{e}_z & z > 0 \ -rac{\sigma}{2arepsilon_0} m{e}_z & z < 0 \end{aligned} \ m{E}_{\perp_+} - m{E}_{\perp_-} = rac{\sigma}{arepsilon_0}, \qquad m{E}_{\parallel} = 0 \end{aligned}$$

1.2.5 Linenladungsdichte

$$\lambda(\boldsymbol{r}) = \frac{\text{Ladung}}{\text{Länge}} = \frac{\Delta q}{\Delta s}$$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \underbrace{\int\limits_{\gamma} \text{d}s' \ \lambda(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}}_{\text{Linienintegral}}$$

Beispiel: Elektrisches Feld einer homogenen Linienladung $\lambda = \text{const.}$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\gamma} ds' \, \lambda \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \qquad \gamma : z' \mapsto \mathbf{r}'(z') = \begin{pmatrix} 0 \\ 0 \\ z' \end{pmatrix}$$

$$= \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \, \frac{\mathbf{r} - (0, 0, z)^{\top}}{(x^2 + y^2 + (z - z')^2)^{3/2}}$$

$$\tilde{z} = z' - z:$$

$$E_x = \frac{\lambda x}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} dz' \frac{1}{(x^2 + y^2 + (z - z')^2)^{3/2}} = \frac{\lambda x}{4\pi\varepsilon_0} \underbrace{\int_{-\infty}^{\infty} d\tilde{z} \frac{1}{(x^2 + y^2 + \tilde{z}^2)^{3/2}}}_{\frac{2}{x^2 + y^2}} = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

Wegen der Symmetrie genau so:

The genant solution is
$$E_y = \frac{\lambda}{2\pi\varepsilon_0} \frac{x}{x^2 + y^2}$$

$$E_z = \frac{\lambda}{4\pi\varepsilon_0} \int_{-\infty}^{\infty} \mathrm{d}z' \, \frac{z - z'}{(x^2 + y^2 + (z - z')^2)^{3/2}} = 0$$

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{x^2 + y^2} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

$$\rho = \sqrt{x^2 + y^2} \quad \boldsymbol{E}(\boldsymbol{r}) = \frac{\lambda}{2\pi\varepsilon_0} \frac{1}{\rho} \boldsymbol{e}_{\rho}, \qquad \boldsymbol{e}_{\rho} = \begin{pmatrix} \cos\varphi \\ \sin\varphi \\ 0 \end{pmatrix}$$

1.3 Feldgleichungen und elektrostatisches Potential

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3r' \; \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

1.3.1 Elektrostatisches Potential

elektrische Feld ist ein Potentialfeld $\boldsymbol{E}(\boldsymbol{r}) = -\nabla \phi(\boldsymbol{r}) = -\left(\boldsymbol{e}_x \frac{\partial \phi}{\partial x} + \boldsymbol{e}_y \frac{\partial \phi}{\partial y} + \boldsymbol{e}_z \frac{\partial \phi}{\partial z}\right)$ Nebenrechnung:

$$egin{bmatrix} oldsymbol{r-r'} \ |oldsymbol{r-r'}|^3 = -oldsymbol{
abla} rac{1}{|oldsymbol{r-r'}|} \end{split}$$

zur Überprüfung hier die x-Komponente berechnet:

$$-\frac{\partial}{\partial x} \frac{1}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{1/2}} = \frac{-\left(-\frac{1}{2}\right)}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}} = \frac{(x-x')}{|\mathbf{r} - \mathbf{r}'|^3}$$

Somit erhalten wir für das \boldsymbol{E} -Feld:

$$\Rightarrow \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3r' \; \rho(\boldsymbol{r}') \left(-\boldsymbol{\nabla}_{\boldsymbol{r}} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \right) = (-) \boldsymbol{\nabla}_{\boldsymbol{r}} \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3r' \; \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

 \rightarrow elektrostatisches Potential

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \, \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + c$$

übliche Konvention: $c = 0 \quad (\phi(r) \stackrel{|r| \to \infty}{\to} 0)$

Beispiel: Potential einer Punktladung in r_0 :

$$\rho(\mathbf{r}) = q\delta(\mathbf{r} - \mathbf{r}_0)$$

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathbb{R}^3} d^3r' \, \frac{q\delta(\mathbf{r}' - \mathbf{r}_0)}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\mathbf{E}(\mathbf{r}) = -\nabla\phi = \frac{1}{4\pi\varepsilon_0} q \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} = \frac{1}{4\pi\varepsilon_0} q \frac{\mathbf{r} - \mathbf{r}_0}{|\mathbf{r} - \mathbf{r}_0|^3}$$

(Funktional-Analysis Siegfried Großmann Springer) (Landau-Lipschitz Buch geht weit der Vorlesung hinaus)

1.3.2 Feldgleichung (differentielle Form)

Rotation (Wirbel)

$$\operatorname{rot} \mathbf{E} = \mathbf{\nabla} \times \mathbf{E} = \mathbf{e}_{x} \left(\frac{\partial E_{z}}{\partial y} - \frac{\partial E_{y}}{\partial z} \right) + \mathbf{e}_{y} \left(\frac{\partial E_{x}}{\partial z} - \frac{\partial E_{z}}{\partial x} \right) + \mathbf{e}_{z} \left(\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} \right)$$

$$\Rightarrow \mathbf{\nabla} \times \mathbf{E} = -\mathbf{\nabla} \times (\mathbf{\nabla} \phi) = 0$$

Mathe: Sie sind äquivalent

- i) $\boldsymbol{E} = -\boldsymbol{\nabla}\phi$
- ii) $\nabla \times \mathbf{E} = 0$ (auf einfach zusammenhängendem Gebiet)
- iii) Kurvenintegral $\int_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E}$ ist Wegunabhängig

$$\int_{r_1}^{r_2} d\mathbf{r} \cdot \mathbf{E} = -\int_{r_1}^{r_2} dt \underbrace{\frac{d\mathbf{r}}{dt} \times \nabla \phi(\mathbf{r}(t))}_{\frac{d\phi}{2t}} = \underbrace{(\phi(\mathbf{r}_2) - \phi(\mathbf{r}_1))}_{\text{Potential differenz}}$$

Divergenz (Quellen)

$$\operatorname{div} \boldsymbol{E} = \boldsymbol{\nabla} \cdot \boldsymbol{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$$

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \nabla_{\boldsymbol{r}} \cdot \frac{1}{4\pi\varepsilon_0} \int d^3r' \ \rho(\boldsymbol{r}') \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$
$$= \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \rho(\boldsymbol{r}') \nabla_{\boldsymbol{r}} \cdot \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

x-Anteil:

$$\frac{\partial}{\partial x} \frac{x - x'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{1 \cdot [\dots]^{3/2} (x - x') (x - x')^{3/2} \cdot 2[\dots]^{1/2}}{[\dots]^3}$$

$$= \frac{[\dots]^{1/2} ((x - x')^2 + (y - y')^2 + (z - z')^2 - 3(x - x')^2)}{[\dots]^{3/2}}$$

$$= \frac{(y - y')^2 + (z - z')^2 - 2(x - x')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial y} \frac{y - y'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (z - z')^2 - 2(y - y')^2}{[\dots]^{3/2}}$$

$$\frac{\partial}{\partial z} \frac{z - z'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{(x - x')^2 + (y - y')^2 - 2(z - z')^2}{[\dots]^{3/2}}$$

$$\nabla \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} = 0 \quad \text{falls} \quad \mathbf{r} \neq \mathbf{r}'$$

 \Rightarrow falls $r \notin V$, d.h. r in Gebiet ohne Ladungsdichte $\rho(r) = 0$

$$\Rightarrow \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = 0$$

 $\boldsymbol{r} \in V$: Grenzwertbetrachtung (Regularisierung des Integranden) statt

$$\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = \frac{\boldsymbol{r} - \boldsymbol{r}'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}$$

betrachten wir:

$$f_a(\mathbf{r} - \mathbf{r}') = \frac{\mathbf{r} - \mathbf{r}'}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}} = \frac{\mathbf{r} - \mathbf{r}'}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}} \quad a \in \mathbb{R}, \ a > 0$$

am Ende Grenzwert $\lim_{a\to 0}$

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \lim_{a \to 0} \int_V \mathrm{d}^3 r' \; \rho(\boldsymbol{r}')$$
 $\nabla_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}')$

$$\frac{\partial}{\partial x} \frac{x - x'}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}} = \frac{[\dots + a^2]^{3/2} - (x - x')\frac{3}{2} \cdot 2(x - x')[\dots + a^2]^{3/2}}{[\dots + a^2]^3}$$
$$= \frac{(y - y')^2 + (z - z')^2 + a^2 - 2(x - x')^2}{[\dots + a^2]^{3/2}}$$

$$\boldsymbol{\nabla}_{\boldsymbol{r}} \cdot f_a(\boldsymbol{r} - \boldsymbol{r}') = \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}}$$

$$\lim_{a o 0}f_a(m{r}-m{r}')=\left\{egin{array}{cc} 0 & m{r}
eq m{r}' \ \infty & m{r}=m{r}' \end{array}
ight.$$

 \Rightarrow zum Integral $\int_V \mathrm{d}^3 r' \dots$ trägt (im Limes $a \to 0$) nur der Bereich $r' \approx r$ bei

$$K_{R}(\boldsymbol{r}) = \{ \boldsymbol{r}' \in \mathbb{R}^{3} : |\boldsymbol{r} - \boldsymbol{r}'| \leq R \}$$

$$\lim_{a \to 0} \int_{V} d^{3}r' \; \rho(\boldsymbol{r}') \boldsymbol{\nabla}_{\boldsymbol{r}} \cdot f_{a}(\boldsymbol{r} - \boldsymbol{r}')$$

$$= \lim_{a \to 0} \int_{K_{R}(\boldsymbol{r})} d^{3}r' \; \rho(\boldsymbol{r}') \frac{3a^{2}}{[(\boldsymbol{r} - \boldsymbol{r}')^{2} + a^{2}]^{5/2}}$$

$$+ \lim_{a \to 0} \int_{V/K_{R}(\boldsymbol{r})} d^{3}r' \rho(\boldsymbol{r}') \frac{3a^{2}}{[(\boldsymbol{r} - \boldsymbol{r}')^{2} + a^{2}]^{5/2}}$$

Wähle R klein genug, dass man innerhalb $K_R(r)$, $\rho(r')$ in Taylorreihe um r entwickeln kann.

$$\tilde{\boldsymbol{r}} = \boldsymbol{r}' - \boldsymbol{r}, \ \mathrm{d}^3 r' = \mathrm{d}^3 \tilde{r}$$

$$\int_{K_R(\boldsymbol{r})} \mathrm{d}^3 r' \ \rho(\boldsymbol{r}') \frac{3a^2}{[(\boldsymbol{r} - \boldsymbol{r}')^2 + a^2]^{5/2}} = \int_{K_R(0)} \mathrm{d}^3 \tilde{r} \ \rho(\boldsymbol{r} + \tilde{\boldsymbol{r}}) \frac{3a^2}{[\tilde{\boldsymbol{r}}^2 + a^2]^{5/2}}$$

Taylorentwicklung von $\rho(\mathbf{r} + \tilde{\mathbf{r}})$ um $\tilde{\mathbf{r}} = 0$

$$\rho(\mathbf{r} + \tilde{\mathbf{r}}) = \rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots$$

$$= \int_{K_R(0)} d^3 \tilde{r} \left(\rho(\mathbf{r}) + \tilde{\mathbf{r}} \cdot \nabla \rho(\mathbf{r}) + \dots \right) \frac{3a^2}{[\tilde{\mathbf{r}}^2 + a^2]^{5/2}}$$

1. Integral:

$$\int_{K_R(0)} d^3 \tilde{r} \, \rho(\mathbf{r}) \frac{3a^2}{(\tilde{r}^2 + a^2)^{5/2}} = \rho(\mathbf{r}) \underbrace{\int_0^R d\tilde{r} \, \frac{3a^2}{(\tilde{r}^2 + a^2)^{5/2}}}_{\left[\frac{\tilde{r}^3}{(\tilde{r}^2 + a^2)^{3/2}}\right]_0^R} \underbrace{\int_0^{\sin\theta d\theta \varphi} d\Omega}_{=4\pi}$$

$$= 4\pi \rho(\mathbf{r}) \frac{R^3}{(R^2 + a^2)^{3/2}} \xrightarrow[a \to 0]{} 4\pi \rho(\mathbf{r})$$

2. Integral:

$$\int_{K_R(0)} d^3 \tilde{r} \underbrace{\tilde{r}}_{\tilde{r}e_{\tilde{r}}} \cdot \nabla_{r} \rho(r) \frac{3a^2}{(\tilde{r}^2 + a^2)^{5/2}} = \underbrace{\int_{0}^{R} d\tilde{r} \frac{3a^2 \tilde{r}^3}{(\tilde{r}^2 + a^2)^{3/2}}}_{\frac{2}{3}a - 3a^2 \left(\frac{R^2 + \frac{2}{3}a^2}{(R^2 + a^2)^{3/2}}\right)} \underbrace{\int d\Omega \ e_{\tilde{r}} \cdot \nabla \rho(r)}_{\text{unabh. von } a} \xrightarrow[a \to 0]{} 0$$

Das gilt auch für alle höheren Terme. Alle höheren Terme werden im Limit $\lim_{a\to 0} = 0$.

$$\lim_{a \to 0} \int_{V} d^{3}r' \rho(\mathbf{r}) \nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^{2} + a^{2}]^{3/2}} = 4\pi \rho(\mathbf{r})$$

$$\Rightarrow \nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_{0}} \lim_{a \to 0} = \frac{1}{\varepsilon_{0}} \rho(\mathbf{r})$$

$$\nabla \cdot \mathbf{E}(\mathbf{r}) = \frac{1}{\varepsilon_{0}} \rho(\mathbf{r}) \quad \mathbf{r} \in \mathbb{R}^{3}$$

1.3.3 Zusammenfassung:

Feldgleichungen der Elektrostatik

Mathe: partielle DGL

$$m{
abla} \cdot m{E}(m{r}) = rac{1}{arepsilon_0}
ho(m{r})$$
 inhomogene DGL $m{
abla} imes m{E}(m{r}) = 0$ homogene DGL

DGL für Potential ϕ : $\boldsymbol{E} = -\boldsymbol{\nabla}\phi$

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla \cdot \begin{pmatrix} \partial_x \phi \\ \partial_y \phi \\ \partial_z \phi \end{pmatrix}$$
$$= -\underbrace{\begin{pmatrix} \partial^2 \phi \\ \partial x^2 + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \end{pmatrix}}_{=:\Delta \phi}$$

Partielle DGL 2. Ordnung:

Poissongleichung

$$\Delta \Phi({m r}) = -rac{1}{arepsilon_0}
ho({m r})$$

für Gebiete mit $\rho(\mathbf{r}) = 0$:

Laplacegleichung

$$\Delta \phi(\mathbf{r}) = 0$$

Darstellung der Deltafunktion:

$$\lim_{a \to 0} \int_{\mathbb{R}^3} d^3 r' \ \rho(\mathbf{r}') \underbrace{\nabla_{\mathbf{r}} \cdot \frac{(\mathbf{r} - \mathbf{r}')}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{3/2}}}_{\frac{3a^2}{[(\mathbf{r} - \mathbf{r}')^2 + a^2]^{5/2}} =: g_a(\mathbf{r}' - \mathbf{r})} = 4\pi \rho(\mathbf{r})$$

 $\frac{1}{4\pi}g_a$ liefert Grenzwertdarstellung der δ -funktion.

$$\lim_{a \to 0} \int_{\mathbb{R}^3} d^3 r' \ \rho(\mathbf{r}') \frac{1}{4\pi} g_a(\mathbf{r}' - \mathbf{r}) = \rho(\mathbf{r})$$

$$\lim_{a \to 0} g_a(\mathbf{r}' - \mathbf{r}) = \begin{cases} 0 & \mathbf{r} \neq \mathbf{r}' \\ \infty & \mathbf{r} = \mathbf{r}' \end{cases}$$

$$\delta(\mathbf{r}) = \lim_{a \to 0} \frac{1}{4\pi} \nabla_{\mathbf{r}} \cdot \frac{r^2}{(r^2 + a^2)^{3/2}}$$

$$\stackrel{\text{formal}}{=} \frac{1}{4\pi} \nabla \cdot \underbrace{\frac{\mathbf{r}}{r^3}}_{=-\nabla \frac{1}{a}} = -\frac{1}{4\pi} \nabla \cdot \left(\nabla \frac{1}{r}\right) = \frac{-1}{4\pi} \Delta \frac{1}{r}$$

$$\Rightarrow \qquad \boxed{\Delta \frac{1}{r} = -4\pi \delta(\mathbf{r})} \qquad \Rightarrow \qquad \boxed{\Delta \frac{1}{|\mathbf{r} - \mathbf{r}_0|} = -4\pi \delta(\mathbf{r} - \mathbf{r}_0)}$$

z.B. Potential einer Punktladung ρ q in r_0 :

$$\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

$$\Delta\phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} q \underbrace{\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=-4\pi\delta(\mathbf{r} - \mathbf{r}_0)} = -\frac{1}{\varepsilon_0} \underbrace{q\delta(\mathbf{r} - \mathbf{r}_0)}_{=\rho(\mathbf{r})} = \frac{1}{\varepsilon_0} \rho(\mathbf{r})$$

Wiederholung

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

$$\nabla \times \boldsymbol{E}(\boldsymbol{r}) = 0$$

$$\Rightarrow \qquad \boldsymbol{E} = -\nabla \Phi$$

$$\Rightarrow \qquad \Delta \Phi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

1.3.4 Integralsätze der Vektoranalysis

1) Gaußscher Satz:

Sei $\mathbf{A}(\mathbf{r})$ ein Vektorfeld im Volumen $V \subset \mathbb{R}^3$, so gilt:

$$\int_{V} d^{3}r \; \boldsymbol{\nabla} \cdot \boldsymbol{A}(\boldsymbol{r}) = \int_{\partial V} d\boldsymbol{f} \; \cdot \boldsymbol{A}(\boldsymbol{r})$$

$$\partial V \; \text{Rand von } V$$

$$d\boldsymbol{f} = \boldsymbol{n} \; d\boldsymbol{f}$$

$$\downarrow \text{nach außen orientierter Normaleneinheitsvektor}$$

Bemerkung:

i) Analogie 1D: Fundamentalsatz der Integralrechnung:

$$\int_{a}^{b} \mathrm{d}x \frac{\mathrm{d}f}{\mathrm{d}x} = f(b) - f(a)$$

ii) Geometrische / physikalische Interpretation: Fluss des Vektorfeldes ${\pmb A}$ durch ∂V

$$\int_{\partial V} \mathrm{d} \boldsymbol{f} \cdot \boldsymbol{A}$$

Integral über die Quellen von A

$$\int_V \mathrm{d}^3 r \boldsymbol{\nabla} \cdot \boldsymbol{A}$$

$$\mathbf{A} = \text{const.} \quad \rightarrow \quad \mathbf{\nabla} \cdot \mathbf{A} = 0$$

Beispiel: Geschwindigkeit einer Flüssigkeit: $\boldsymbol{A}(\boldsymbol{r}) = \boldsymbol{v}(\boldsymbol{r})$

$$\mathbf{v} = \text{const.}$$
 $\mathbf{\nabla} \cdot \mathbf{v} = 0$ $\int_{\partial V} d\mathbf{f} \cdot \mathbf{v} = 0$

 \Rightarrow Es gibt keine Quellen von v

$$\nabla \cdot \boldsymbol{r} \neq 0$$
 $\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{v} \neq 0$

iii)

$$\int_{V} d^{3}r \nabla \cdot \mathbf{A}(\mathbf{r}) = \int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} dz \left(\frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} \right)$$

$$\int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \underbrace{\int_{0}^{\Delta x} dx \frac{\partial A_{x}}{\partial x}}_{A_{x}(\Delta x, y, z) - A_{x}(0, y, z)}$$

$$= \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy A_{x}(\Delta x, y, z) - \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy A_{x}(0, y, z)$$

$$= \int_{F_{x}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{x}^{-}} d\mathbf{f} \cdot \mathbf{A}$$

 F_x^+ : $d\mathbf{f} = \mathbf{e}_x dy dz$ F_x^- : $d\mathbf{f} = -\mathbf{e}_x dy dz$

ebenso gilt dann für die anderen Koordinaten:

$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta z} dz \int_{0}^{\Delta y} dy \frac{\partial A_{y}}{\partial y} = \int_{F_{y}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{y}^{-}} d\mathbf{f} \cdot \mathbf{A}$$
$$\int_{0}^{\Delta x} dx \int_{0}^{\Delta y} dy \int_{0}^{\Delta z} dz \frac{\partial A_{z}}{\partial z} = \int_{F_{x}^{+}} d\mathbf{f} \cdot \mathbf{A} + \int_{F_{z}^{-}} d\mathbf{f} \cdot \mathbf{A}$$

$$\Rightarrow \int_{V} \mathrm{d}^{3} r \boldsymbol{\nabla} \cdot \boldsymbol{A} = \int_{\partial V} \mathrm{d} \boldsymbol{f} \cdot \boldsymbol{A}$$

2) Stokescher Satz

Sei A(r) ein Vektorfeld, F eine Fläche mit Randkurve ∂F , so gilt:

$$\int\limits_{F}\mathrm{d}\boldsymbol{r}\cdot\boldsymbol{A}(\boldsymbol{r})=\int\limits_{F}\mathrm{d}\boldsymbol{f}\cdot\left(\boldsymbol{\nabla}\times\boldsymbol{A}(\boldsymbol{r})\right)$$
 Linienintegral \to ∂F

$$d\mathbf{f} = \mathbf{n} df$$

Richtung von df und Umlauf sinn von ∂F : rechte Hand Regel. Beispiel:

$$\mathbf{A}(\mathbf{r}) = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\nabla \times \mathbf{A} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_y}{\partial x} - \frac{\partial A_z}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1+1 \end{pmatrix} = 2\mathbf{e}_z$$

$$\mathbf{r}(\varphi) = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix} \qquad \varphi \in [0, 2\pi]$$

$$\frac{\partial \mathbf{r}}{\partial \varphi} = R \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$$

$$\int_{\partial F} d\mathbf{r} \cdot \mathbf{A}(\mathbf{r}) = \int_0^{2\pi} d\varphi \frac{\partial \mathbf{r}}{\partial \varphi} \cdot \mathbf{A}(\mathbf{r}(\varphi))$$

$$= \int_0^{2\pi} d\varphi R(+\sin^2 \varphi + \cos^2 \varphi) = 2\pi R^2$$

$$\int_F d\mathbf{f} \underbrace{(\nabla \times \mathbf{A})}_{z=2\pi} = 2\pi R^2$$

Vektorfeld ohne Wirbel z.B. $\mathbf{A} = \text{const.}$

$$\nabla \times \mathbf{A} = 0$$

Bemerkung:

1.3.5 Integrale Form der Feldgleichung

1.3.6 Gaußsches Gesetz

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

$$\int_V d^3 \boldsymbol{r} \nabla \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \int_V d^3 \boldsymbol{r} \rho(\boldsymbol{r}) = \frac{1}{\varepsilon_0} Q_V$$

$$= \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{E}(\boldsymbol{r})$$

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{\varepsilon_0} Q_V$$

Berechnung elektrischer Felder für hochsymmetrische Ladungsverteilungen

Beispiel:

Homogen geladene Kugel mit Radius R und Gesamtladung Q. Damit ist die Ladungsdichte innerhalb der Kugel:

$$ho = rac{Q}{V} = rac{Q}{rac{4}{3}\pi R^3}$$
 $m{E}(m{r}) = E_r(r)m{e}_r$
 $m{r} = r \left(egin{matrix} \sin heta \cos arphi \\ \sin heta \sin arphi \\ \cos heta \end{matrix}
ight)$

$$e_r = \frac{r}{r}$$

Fluss von \boldsymbol{E} durch Oberfläche einer Kugel mit Radius r

$$d\mathbf{f} = \mathbf{e}_r r^2 \sin \theta d\theta d\varphi \quad \Rightarrow \quad d\mathbf{f} \cdot \mathbf{E} = E_r(r) r^2 \sin \theta d\theta d\varphi$$

$$\int_{\partial K_r(0)} d\mathbf{f} \, \mathbf{E} = \int_0^{\pi} d\theta \, \int_0^{2\pi} d\varphi E_r(r) r^2 \sin \theta$$

$$= E_r(r) r^2 4\pi$$

$$= \frac{1}{\varepsilon_0} Q_{K_r(0)} = \frac{1}{\varepsilon_0} \int_{K_r(0)} d^3 r \, \rho(\mathbf{r}) = \frac{1}{\varepsilon_0} \left\{ \begin{array}{l} Q & r > R \\ Q_{\overline{R}^3}^{r^3} & r \le R \end{array} \right.$$

$$\Rightarrow E_r(r) = \frac{Q}{4\pi\varepsilon_0} \left\{ \begin{array}{l} \frac{1}{r^2} & r > R \\ \frac{r}{R^3} & r \le R \end{array} \right.$$

1.3.7 Satz von Stokes

$$\nabla \times E = 0$$

Definition: $\gamma = \partial F$

 \int_{γ} ist dann ein Linienintegral über eine geschlossene Kurve

$$\int_{\gamma} \mathrm{d} m{r} \cdot m{E} = \int_{F} \mathrm{d} m{f} \cdot (m{
abla} imes m{E}) = 0$$

1.3.8 Zusammenfassung: Feldgleichungen der Elektrostatik differentielle Darstellung:

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \quad \nabla \times \boldsymbol{E} = 0 \quad \rightarrow \quad \boldsymbol{E} = -\nabla \Phi \quad \rightarrow \quad \Delta \Phi = -\frac{1}{\varepsilon_0} \rho$$

Integral Darstellung:

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} Q_V \qquad , \qquad \oint_{\gamma} d\boldsymbol{r} \cdot \boldsymbol{E} = 0$$

1.4 Elektrostatische Energie

potentielle Energie einer Punktladung im äußeren elektrischen Feld Kraft auf Ladung q:

$$F = aE$$

Die Arbeit bei Verschiebung der Ladung von \boldsymbol{a} nach \boldsymbol{b}

$$W = -\int_{a}^{b} d\mathbf{r} \cdot \mathbf{F} = -q \int_{a}^{b} d\mathbf{r} \cdot \mathbf{E}(\mathbf{r})$$
$$= q \int_{a}^{b} d\mathbf{r} \cdot \nabla \Phi = q \underbrace{(\Phi(b) - \Phi(a))}_{\text{Potential difference}}$$

Die Arbeit um q aus dem unendlichen ∞ nach r zu bringen ist dann:

$$W = q(\Phi(\mathbf{r}) - \Phi(\infty))$$

Zur Referenz: $\Phi(\infty) = 0$

Damit ist die Energie der Ladung q im äußeren Feld:

$$\Rightarrow$$
 $W = q \Phi(r)$ $E = -\nabla \Phi$

1.4.1 Elektrostatische Potentielle Energie

Energie einer Verteilung von Punktladungen

N Ladungen q: an Orten r_i Zunächst: $\underbrace{i-1}_{\text{erzeugen am Ort } r_i}$ bei r_j

Das Potential

$$\Phi(\boldsymbol{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{i-1} \frac{q_i}{|\boldsymbol{r}_j - \boldsymbol{r}_i|}$$

Arbeit um i-te Ladung aus dem unendlichen nach r zu bringen:

$$W_i = q_i \Phi(\mathbf{r}_i) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^{i-1} \frac{q_i q_j}{r_{ij}}$$

Somit ergibt sich die gesamte Arbeit für N Ladungen als:

$$\begin{split} W &= \sum_{i=2}^{N} W_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=2}^{N} \sum_{j=1}^{i-1} \frac{q_i q_j}{r_{ij}} \\ &= \frac{1}{4\pi\varepsilon_0} \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\j\neq i}}^{N} \frac{q_i q_j}{r_{ij}} \\ \Rightarrow W &= \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}} \end{split}$$

$$W = \frac{1}{2} \sum_{i=1}^{N} q_i \left(\sum_{\substack{j \\ j \neq i}} \frac{1}{4\pi\varepsilon_0} \frac{q_j}{r_{ij}} \right) = \frac{1}{2} \sum_{i=1}^{N} q_i \Phi_{\not i}(\boldsymbol{r}_i)$$

Energie einer kontinuierlichen lokalisierten Ladungsverteilung

$$W = \frac{1}{8\pi\varepsilon_0} \int d^3r \int d^3r' \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}$$
$$= \frac{1}{2} \int d^3r \ \rho(\mathbf{r}) \underbrace{\frac{1}{4\pi\varepsilon_0} \int_{\mathbb{R}^3} d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r}_j - \mathbf{r}_i|}}_{\Phi(\mathbf{r})}$$

$$m{E}_{
m ext}
ightharpoons W_{
m ext} = \int {
m d}^3 r \;
ho(m{r}) m{arPhi}_{
m ext}(m{r})$$

Energie W durch E ausdrücken:

$$\Delta \Phi = -\frac{1}{\varepsilon_0} \rho \quad \Rightarrow \quad W = -\frac{1}{2} \int d^3 r \varepsilon_0 \underbrace{\Delta \Phi(\mathbf{r}) \Phi(\mathbf{r})}_{\boldsymbol{\nabla} \cdot (\boldsymbol{\Phi} \boldsymbol{\nabla} \Phi)^{-}(\boldsymbol{\nabla} \Phi)^{2}} \\
= -\frac{\varepsilon_0}{2} \underbrace{\int_{\mathbb{R}^3} d^3 r \boldsymbol{\nabla} \cdot (\boldsymbol{\Phi} \boldsymbol{\nabla} \Phi)}_{K_R(0)} + \frac{\varepsilon_0}{2} \int d^3 r \boldsymbol{E}^{2}(\boldsymbol{r}) \\
\lim_{R \to \infty} \int_{K_R(0)} d^3 r \boldsymbol{\nabla} \cdot (\boldsymbol{\Phi} \boldsymbol{\nabla} \Phi) = \lim_{R \to \infty} \int_{\partial K_R(0)} d\boldsymbol{f} \cdot \underbrace{(\boldsymbol{\Phi} \boldsymbol{\nabla} \Phi)}_{R \to \infty} = 0 \\
= \frac{\varepsilon_0}{2} \int d^3 r \boldsymbol{E}^{2}(\boldsymbol{r})$$

Zur Umformung oben wurde benutzt:

$$\Phi \overset{R \to \infty}{\sim} \frac{1}{R} \qquad \nabla \Phi \sim \frac{1}{R^2} \qquad \mathrm{d} \boldsymbol{f} = \boldsymbol{n} \underbrace{\mathrm{d} \boldsymbol{f}}_{\sim R^2}$$

Damit ergibt sich für die Energie einer Verteilung von Punktladungen

$$\Rightarrow \qquad W = \frac{\varepsilon_0}{2} \int d^3 r \; \boldsymbol{E}^2(\boldsymbol{r})$$

nicht für Punkladungen selbst!!!

Energiedichte des elektrostatischen Feldes

$$w(oldsymbol{r}) = rac{arepsilon_0}{2} oldsymbol{E}^2(oldsymbol{r})$$

 ${\it Beispiel:} \ {\bf Plattenkondensator}$

Fläche
$$F$$
, Ladung $\rightarrow \sigma = \frac{q}{F} \rightarrow \mathbf{E} = \frac{\sigma}{\varepsilon_0} \mathbf{e}_x$

 \to Die Energiedichte ist: $w=\frac{\varepsilon_0}{2} {\pmb E}^2=\frac{\sigma^2}{2\varepsilon_0}$ (nicht für Punktladungen)

 \to Die Energie beträgt: $W=\int \mathrm{d}^3 r w({\bm r})=l\cdot F\cdot \frac{\sigma^2}{2\varepsilon_0}$

Potentialdifferenz - Spannung

$$\Phi(\mathbf{r}) - \Phi(0) = -\int_0^{\mathbf{r}} d\mathbf{r}' \cdot \mathbf{E}(\mathbf{r}') = -\int_0^x dx' \frac{\sigma}{\varepsilon_0} = -\frac{\sigma}{\varepsilon_0} x$$

Die Spannung zwischen zwei Kondensatorplatten ist dann:

$$U = \varPhi(0) - \varPhi(l) = \frac{\sigma}{\varepsilon_0} l = \frac{q}{\varepsilon_0 F} l$$

Die Kapazität ist also:

$$C = \frac{q}{U} = \frac{\varepsilon_0 F}{I}$$

Was ist die Energie bei einer Verteilung von Punktladungen und bei einer kontinuierlichen Ladungsverteilung. Bei einer kontinuierlichen Ladungsverteilung haben wir herausgefunden:

$$W = \frac{1}{8\pi\varepsilon_0} \sum_{\substack{i,j\\i\neq j}} \frac{q_i q_j}{r_{ij}} \qquad \text{für Punktladungen}$$

Die Energie der Punktladung selbst steckt hier nicht drinnen. Man muss dabei aufpassen, welche Gleichung man für welches Modell benutzt.

$$E = \frac{1}{4\pi\varepsilon_0} q \frac{\mathbf{r}}{r^3} \qquad \int d^3 r \ E^2 = \int d^3 r \ \frac{1}{r^4} = \infty$$

1.5 Verhalten des el. Feldes an Grenzflächen mit Flächenladung

ightarrow Diskontinuitäten von ${m E}$

Beispiel: Wir betrachten eine homogene Flächenladung.

$$\Rightarrow \mathbf{E} = \frac{\sigma}{2\varepsilon_0} \mathrm{sgn}(z) \mathbf{e}_z$$

$$m{E}_{\perp}=\pmrac{\sigma}{2arepsilon_0}m{e}_z$$

$$E_{\parallel}=0$$

Das elektrische Feld $\boldsymbol{E}_{\parallel}$ ist gleich der Ableitung des elektrischen Potentials:

Das elektrische Potential ist also stetig.

Normalkomponente E_{\perp}

Gaußscher Satz für V:

$$\int_{V} d^{3}r' \nabla \cdot \boldsymbol{E}(\boldsymbol{r'}) = \int_{\partial V} d\boldsymbol{f'} \boldsymbol{E}(\boldsymbol{r})$$

$$= \int_{\text{Mantel}} d\boldsymbol{f'} \boldsymbol{E} + \int_{\partial V_{+}} d\boldsymbol{f'} \boldsymbol{E}(\boldsymbol{r}) + \int_{\partial V_{-}} d\boldsymbol{f'} \boldsymbol{E}$$

$$\downarrow^{\Delta_{z \to 0}} \qquad \downarrow^{\Delta_{z \to 0}} \qquad \downarrow^{\Delta_{z \to 0}}$$

$$\int_{F} df' \boldsymbol{n} \cdot \boldsymbol{E}_{+} \qquad -\int_{F} df' \boldsymbol{n} \cdot \boldsymbol{E}_{-}$$

 E_{\pm} ist das Feld auf beiden Seiten der Grenzfläche

$$\int_{\partial V} d\mathbf{f}' \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{F} d\mathbf{f} \mathbf{n} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{F \to 0} F \mathbf{n} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r}))$$

$$\int_{V} d^{3} \mathbf{r}' \nabla \cdot \mathbf{E}(\mathbf{r}') = \frac{1}{\varepsilon_{0}} \int_{V} d^{3} \mathbf{r}' \rho(\mathbf{r}) = \frac{1}{\varepsilon_{0}} \int_{F} d\mathbf{f}' \sigma(\mathbf{r}') \xrightarrow{F \to 0} \frac{1}{\varepsilon_{0}} F \sigma(\mathbf{r})$$

$$\Rightarrow \mathbf{n} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = \frac{1}{\varepsilon_{0}} \sigma(\mathbf{r})$$

$$E_{\perp_{\pm}} = \mathbf{n} \cdot \mathbf{E}_{\pm} \qquad E_{\perp_{+}}(\mathbf{r}) - E_{\perp_{-}}(\mathbf{r}) = \frac{1}{\varepsilon_{0}} \sigma(\mathbf{r})$$

Tangentialkomponente E_{\parallel}

Satz von Stokes:

$$0 = \oint_{r} d\mathbf{r} \mathbf{E}(\mathbf{r}') = \int_{0}^{\infty} \cdots + \int_{0}^{\infty} \cdots + \int_{0}^{\infty} d\mathbf{r}' \mathbf{E} + \int_{0}^{\infty} d\mathbf{r}' \mathbf{E}$$

$$= 0 \text{ für } \Delta z \to 0$$

$$\int_{0}^{\infty} d\mathbf{r}' (\mathbf{E}_{+} - \mathbf{E}_{-})$$

$$0 = \oint_{\gamma} d\mathbf{r}' \cdot \mathbf{E} \xrightarrow{\Delta z \to 0} \int_{-\frac{L}{2}}^{-\frac{L}{2}} ds \mathbf{t} \cdot (\mathbf{E}_{+} - \mathbf{E}_{-}) \xrightarrow{L \to 0} L \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$
$$\to \mathbf{t} \cdot (\mathbf{E}_{+}(\mathbf{r}) - \mathbf{E}_{-}(\mathbf{r})) = 0$$

 \rightarrow Die Tangentialkomponente ist stetig

$$E_{\parallel_+} = E_{\parallel_-}$$

Insgesamt ergibt sich damit:

$$oldsymbol{E}_{+}(oldsymbol{r}) - oldsymbol{E}_{-}(oldsymbol{r}) = rac{\sigma}{arepsilon_0} oldsymbol{n}$$

Das elektrische Potential Φ ist damit stetig.

$$\underbrace{\Phi(\mathbf{r}_b) - \Phi(\mathbf{r}_a)}_{\Phi_+(\mathbf{r}) - \Phi_-(\mathbf{r})} = \int_{\mathbf{r}_a}^{\mathbf{r}_b} d\mathbf{r}' \cdot \mathbf{E} \stackrel{\Delta z \to 0}{\longrightarrow} 0$$

Und hiermit auch auf beiden Seiten der Flächenladung symmetrisch.

1.5.1 Randbedingungen an el. Leitern

Leiter: Material mit freibeweglichen Ladungsträgern (Metall)

Eigenschaften von \boldsymbol{E} im Leiter:

i)
$$E = 0$$

ii)
$$0 = \nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho, \qquad \rho(\boldsymbol{r}) = 0$$

iii) Nettoladung befinden sich an Oberfläche

iv) Potential
$$\Phi(\mathbf{r}_b) - \Phi(\mathbf{r}_a) = 0 \rightarrow \Phi(\mathbf{r}) = \text{const.}$$

Randbedingungen

$$egin{aligned} m{E}_{+} - m{E}_{-} &= rac{\sigma^{-}}{arepsilon_{0}} m{n} \ m{E}_{-} &= 0 \ \
ightarrow m{E}_{+}(m{r}) &= rac{\sigma(m{r})}{arepsilon_{0}} m{n}(m{r}) \end{aligned}$$

[Folie: Ladung an Oberfläche eines Leiters]

1.6 Randwertprobleme (RWP) der Elektrostatik und Lösungsmethoden

1.6.1 Formulierung des Randwertproblems

Das elektrische Potential: $\Phi(r)$: $E(r) = -\nabla \Phi(r)$

$$\mathbf{\Delta} \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 Poisson-Gleichung

Für eine gegebene lokale Ladungsverteilung ρ gilt:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$\to \Phi(\mathbf{r}) \stackrel{|\mathbf{r}| \to \infty}{\longrightarrow} 0$$

Typische Problemstellung:

Ladungsverteilung ρ + Werte des Potentials auf Randfläche

Beispiel:

Randwertproblem: Gegeben: $\rho(\mathbf{r}')$ im Raumbereich V

 $\Phi(r)$ oder E(r) auf Randfläche ∂V Gesucht: $\Phi(r)$, E(r) überall in V

Zwei Fälle:

- i) $\varPhi(\boldsymbol{r})$ ist auf der Randfläche gegeben
 - $\rightarrow \textbf{Dirichlet-Randbedingung}$
- ii) $\boldsymbol{E}(\boldsymbol{r})$ ist auf der Randfläche gegeben
 - → Neumannsche Randbedingung

Gegeben sei: $n \cdot E$ dies ist gleich der Normalenableitung:

$$oldsymbol{n}\cdotoldsymbol{E}=-oldsymbol{n}oldsymbol{
abla}\Phi=-rac{\partial\Phi}{\partial n}$$

Wir beschränken uns vorwiegend auf den ersten Fall. Zur Lösung dieser Probleme gibt es einige Methoden. Zum Einstieg und zur betrachten wir zunächst die Methode der Spiegelladung.

1.6.2 Methode der Bildladung (Spiegelladung)

Punktladung vor leitender, geerdeter Metallplatte

$$oldsymbol{\Delta} \Phi(oldsymbol{r}) = -rac{1}{arepsilon_0}
ho(oldsymbol{r}) = -rac{q}{arepsilon_0} \delta(oldsymbol{r} - oldsymbol{r}_0)$$
 $oldsymbol{r} \in V \qquad oldsymbol{r}_0 = (d,0,0) \qquad V = \{oldsymbol{r} \in \mathbb{R}^3, x > 0\}$

Randbedingungen:

$$\Phi(\mathbf{r}) = 0$$
 für $\mathbf{r} \in \partial V$, d.h. $\mathbf{r} = (0, y, z)$

Idee: Ersetze ursprüngliche Problem durch "Fiktives" Problem mit zusätzlichen Ladungen außerhalb von V, welche die Randbedingungen simulieren.

Potential der Punkladungen in r_0 :

$$\Phi_q(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_0|}$$

addiere Ladung -q in $\mathbf{r}'_0 = (-d, 0, 0) = -\mathbf{r}_0$

$$\Phi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{|\boldsymbol{r} - \boldsymbol{r}_0|} - \frac{q}{|\boldsymbol{r} + \boldsymbol{r}_0|} \right)$$

Schauen wir nun nach, ob dies die Poisson-Gleichung erfüllt:

$$\Delta \Phi = \frac{q}{4\pi\varepsilon_0} \left(\underbrace{\Delta \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} - \boldsymbol{r}_0)} - \underbrace{\Delta \frac{1}{|\boldsymbol{r} + \boldsymbol{r}_0|}}_{=-4\pi\delta(\boldsymbol{r} + \boldsymbol{r}_0)} \right)$$

$$= -\frac{q}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}_0) + \frac{q}{\varepsilon_0} \underbrace{\delta(\boldsymbol{r} + \boldsymbol{r}_0)}_{=0 \text{ für } \boldsymbol{r} \neq -\boldsymbol{r}_0} \checkmark \forall \boldsymbol{r} \in V$$

Diskussion der Lösung

i) Struktur

$$\Phi(\mathbf{r}) = \underbrace{\frac{q}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} - \mathbf{r}_0|}}_{=: \Phi_{\mathrm{s}}(\mathbf{r})} + \underbrace{\frac{(-q)}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} + \mathbf{r}_0|}}_{=: \Phi_{\mathrm{hom}}(\mathbf{r})}$$

 $r \in V$

$$\Delta \Phi_{
m s}(m{r}) = -rac{1}{arepsilon_0}
ho(m{r})$$
 Poisson-Gleichung $\Delta \Phi_{
m hom}(m{r}) = 0$ Laplace-Gleichung

Mathematisch: Lösung inhomogener DGL

$$\Phi(m{r}) = \Phi_{
m s}(m{r}) + \Phi_{
m hom}(m{r})$$

 \varPhi_{hom} wird so gewählt, dass die Randbedingungen erfüllt werden:

$$oldsymbol{r} \in \partial V: \quad \Phi_{\mathrm{o}}(oldsymbol{r}) = \Phi_{\mathrm{s}}(oldsymbol{r}) + \Phi_{\mathrm{hom}}(oldsymbol{r})$$

ii) Elektrisches Feld

$$\boldsymbol{E} = -\boldsymbol{\nabla}\Phi = \frac{q}{4\pi\varepsilon_0} \left(\frac{(x-d,y,z)}{|\boldsymbol{r} - \boldsymbol{r}_0|^3} - \frac{(x+d,y,z)}{|\boldsymbol{r} + \boldsymbol{r}_0|^3} \right)$$

An der Oberfläche $x \to 0$, $x \ge 0$ $|\mathbf{r} \pm \mathbf{r}_0|^3 \to (d^2 + y^2 + z^2)$

$$\left. oldsymbol{E}(oldsymbol{r})
ight|_{oldsymbol{r} \in \partial V} = -rac{qd}{2\piarepsilon_0} rac{1}{(d^2+y^2+z^2)^{3/2}} oldsymbol{e}_x$$

Durch das externe elektrische Feld verschieben sich die Ladungsträger im Metall und es entsteht eine Influenzladung an der Oberfläche.

iii) Influenzladung auf Metalloberfläche

$$oldsymbol{E}_{+}-oldsymbol{E}_{-}=rac{\sigma}{arepsilon_{0}}oldsymbol{n}\qquadoldsymbol{n}=oldsymbol{e}_{x}$$

 $r \in \partial V$:

$$\sigma(\mathbf{r}) = \varepsilon_0 \mathbf{E}_+(\mathbf{r}) = -\frac{qd}{2\pi (d^2 + y^2 + z^2)^{3/2}}$$

gesamte influenzierte Ladung

$$q_i = \int_{\partial V} \mathrm{d}f \ \sigma(m{r}) = \dots = -q$$

iv) Kraft zwischen Punktladungen und Metallplatte

$$F = q\tilde{E}(r_0) = \frac{-q^2}{4\pi\varepsilon_0(2d)^2}e_x$$

Eindeutigkeit der Lösung des Randwertproblems

Dirichlet-Randwertproblem:

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$

$$\Phi(\mathbf{r}) = \Phi_0(\mathbf{r})$$
 $\mathbf{r} \in \partial V$

Annahme: Φ_1 , Φ_2 lösen RWP

d.h.
$$\Delta \Phi_1(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r}) = \Delta \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in V$$

$$\Phi_1(\boldsymbol{r}) = \Phi_0(\boldsymbol{r}) = \Phi_2(\boldsymbol{r}) \qquad \boldsymbol{r} \in \partial V$$

Setze:

$$egin{aligned} \Psi(m{r}) &:= arPhi_1(m{r}) - arPhi_2(m{r}) \ & \Delta arPhi(m{r}) = 0 \quad m{r} \in V \ & m{r} \in \partial V \quad \Psi(m{r}) = arPhi_1(m{r}) - arPhi_2(m{r}) = 0 \end{aligned}$$

Greensche Identität:

g, h Funktionen an V:

$$\int_{V} d^{3}r \left[\left((\nabla g(\mathbf{r})) \cdot (\nabla h(\mathbf{r})) \right) + g(\mathbf{r}) \Delta h(\mathbf{r}) \right]$$

$$= \int_{\partial V} d\mathbf{f} \cdot (g(\mathbf{r}) \nabla h(\mathbf{r}))$$

$$= \int_{\partial V} df g(\mathbf{r}) \underbrace{\mathbf{n} \cdot \nabla h(\mathbf{r})}_{=\frac{\partial h}{\partial r}(\mathbf{r})}$$

$$h = g = \Psi$$

$$\Rightarrow \int_{V} d^{3}r \ ((\nabla \Psi)^{2} + \Psi(\mathbf{r}) \underbrace{\Delta \Psi(\mathbf{r})}_{=0}) = \int_{\partial V} df \ \underbrace{\Psi(\mathbf{r})}_{=0} \frac{\partial \Psi(\mathbf{r})}{\partial n}$$

$$\Rightarrow \int_{V} d^{3}r \ (\nabla \Psi(\mathbf{r}))^{2} = 0 \quad \Rightarrow \quad \nabla \Psi(\mathbf{r}) = 0 \quad \mathbf{r} \in V$$

$$\Psi(\mathbf{r}) = \text{const.} \quad \Psi(\mathbf{r}) = 0 \text{ in } V \quad \Rightarrow \quad \Phi_{1}(\mathbf{r}) = \Phi_{2}(\mathbf{r})$$

1.6.3 Formale Lösungen des elektrostatischen Randwertproblems mit Greenschen Funktionen (GF)

GF: generelle Methode um inhomogene DGL zu lösen

$$\Delta \Phi(\boldsymbol{r}) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r})$$

25

Greensche Funktionen der Poisson-Gleichung: $\mathcal{G}(r,r')$ mit

Greensche Funktionen der Poisson-Gleichung

$$\Delta_{\boldsymbol{r}}\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = -\frac{1}{\varepsilon_0}\delta(\boldsymbol{r}-\boldsymbol{r}')$$

Diese Gleichung geht vor einer Punktladung mit q=1 aus, ist hier aber zunächst einmal eine Definition.

 \mathcal{G} bekannt

Dirichlet-Randwertproblem

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$ Φ_0 V $\bullet q$

Green'sche Funktionen (GF):

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r}, \mathbf{r}') = -\frac{1}{\varepsilon_0}\delta(\mathbf{r} - \mathbf{r}')$$

$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = 0$$
für
$$\mathbf{r} \in \partial V \quad \mathbf{r}' \in V$$

Hiermit haben wir das Grenzwertproblem auf eine Integration zurückgeführt. Dies werden wir nun Beweisen:

Beiweis:

Die 2. Greensche Identität lautet:

$$\int_{V} d^{3}r' \left(g(\mathbf{r}') \Delta_{\mathbf{r}'} h(\mathbf{r}') - h(\mathbf{r}') \Delta_{\mathbf{r}'} g(\mathbf{r}') \right)$$

$$= \int_{\partial V} d\mathbf{f}' \cdot \left(g(\mathbf{r}') \nabla_{\mathbf{r}'} h(\mathbf{r}') - h(\mathbf{r}') \nabla_{\mathbf{r}'} g(\mathbf{r}') \right)$$

$$g(\mathbf{r}') := \Phi(\mathbf{r}') \qquad h(\mathbf{r}') := \mathcal{G}(\mathbf{r}', \mathbf{r})$$

$$\Rightarrow \int_{V} d^{3}r' \left[\Phi(\mathbf{r}') \underbrace{\Delta_{\mathbf{r}'} \mathcal{G}(\mathbf{r}', \mathbf{r})}_{=-\frac{1}{\varepsilon_{0}} \delta(\mathbf{r}' - \mathbf{r})} - \mathcal{G}(\mathbf{r}', \mathbf{r}) \underbrace{\Delta_{\mathbf{r}'} \Phi(\mathbf{r}')}_{=-\frac{1}{\varepsilon_{0}} \rho(\mathbf{r}')} \right]$$

$$= \int_{\partial V} d\mathbf{f}' \left[\underbrace{\Phi(\mathbf{r}')}_{=\Phi_{0}(\mathbf{r}')} \nabla_{\mathbf{r}'} \mathcal{G}(\mathbf{r}', \mathbf{r}) - \underbrace{\mathcal{G}(\mathbf{r}', \mathbf{r})}_{=0} \nabla_{\mathbf{r}'} \Phi(\mathbf{r}') \right]$$

$$\Rightarrow = -\frac{1}{\varepsilon_{0}} \Phi(\mathbf{r}) + \frac{1}{\varepsilon_{0}} \int_{V} d^{3}r' \ \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r})$$

$$= \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}') \nabla_{\mathbf{r}'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$= \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}') \frac{\partial}{\partial n'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$

$$\Rightarrow \Phi(\mathbf{r}) = \int_{V} d^{3}r' \ \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} d\mathbf{f}' \ \Phi_{0}(\mathbf{r}') \frac{\partial}{\partial n'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$
Es gilt (HA):
$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = \mathcal{G}(\mathbf{r}', \mathbf{r}) \quad \text{Reziprozit\"{at}}$$

$$\to \nabla_{\mathbf{r}'} \mathcal{G}(\mathbf{r}, \mathbf{r}') = \nabla_{\mathbf{r}'} \mathcal{G}(\mathbf{r}', \mathbf{r}')$$

$$\Delta_{\mathbf{r}} \mathcal{G}(\mathbf{r}, \mathbf{r}') = \Delta_{\mathbf{r}'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$

Potential bei Randwertproblem

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi_{0}(\mathbf{r}') \frac{\partial}{\partial n'} \mathcal{G}(\mathbf{r}, \mathbf{r}')$$
(1)

Wiederholung

$$\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$$
 $\mathbf{r} \in V$ Φ_0 V $\bullet q$

Green'sche Funktionen:

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r},\mathbf{r}') = -\frac{1}{\varepsilon_0}\delta(\mathbf{r} - \mathbf{r}')$$
 $\mathbf{r},\mathbf{r}' \in V$ $\mathbf{r}' \in V$ für $\mathbf{r} \in \partial V$ $\mathbf{r}' \in V$

Wenn die Green'sche Funktion \mathcal{G} die Bedingungen erfüllt, können wir das Potential so schreiben wie in Gleichung (??).

Bemerkungen:

i) Spezialfälle:

2) $V = \mathbb{R}^3$, lokalisierte Ladungsverteilung ρ

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3 \mathbf{r}' \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

$$\mathcal{G}(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

$$\int_{\partial V} \cdots \to 0$$

 $\Rightarrow \Phi(\mathbf{r}) = \Phi_0$

eine **spezielle Lösung** für \mathcal{G}

ii) ${\mathcal G}$ ist auch die Lösung einer inhomogenen partiellen DGL

$$\mathcal{G}(m{r},m{r}') = \underbrace{\mathcal{G}_s(m{r},m{r}')}_{\substack{ ext{Spezielle} \\ ext{L\"osung der} \\ ext{inhomogenen}}}_{\substack{ ext{L\"osung der} \\ ext{homogenen} \\ ext{DGL}}} \underbrace{\begin{array}{c} ext{L\"osung zugeh\"origen} \\ ext{homogenen} \\ ext{DGL} \end{array}}_{\substack{ ext{L\"osung der} \\ ext{homogenen} \\ ext{DGL}}}$$

$$\Delta_{m{r}'}\mathcal{G}_s(m{r},m{r}') = -\frac{1}{\varepsilon_0}\delta(m{r}-m{r}')$$

$$\Delta_{m{r}'}F(m{r},m{r}') = 0$$

$$\mathcal{G}_j(m{r},m{r}') = \frac{1}{4\pi\varepsilon_0}\frac{1}{|m{r}-m{r}'|} \qquad \text{Laplace anwenden !}$$

$$\mathcal{G}(m{r},m{r}') = \frac{1}{4\pi\varepsilon_0}\frac{1}{|m{r}-m{r}'|} + \underbrace{F(m{r},m{r}')}_{\substack{ ext{Simple loss} \\ ext{Simple loss}}}_{\substack{ ext{Simple loss} \\ ext{Simple loss}}}$$

F(r, r') so wählen, dass die Randbedingungen erfüllt sind: $\mathcal{G}(r, r') = 0$ $r \in \partial V$.

1.6.4 Greensche Funktion des Dirichlet Randwertproblems einer Ebene

$$\Delta_{\boldsymbol{r}'}\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = -\frac{1}{\varepsilon_0}\delta(\boldsymbol{r}-\boldsymbol{r}') \qquad \boldsymbol{r},\boldsymbol{r}' \in V$$

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = 0 \qquad \boldsymbol{r} \in \partial V \ (\mathbf{z}=0), \quad \boldsymbol{r}' \in V$$

$$V = \{\boldsymbol{r} \in \mathbb{R}^3 | \boldsymbol{z} < 0\}$$

$$\boldsymbol{r} \in \partial V \ (\mathbf{z}=0), \quad \boldsymbol{r}' \in V$$
 Spiegelladung

Analog: Punktladung "q=1" in \boldsymbol{r}' vor leitender Ebene mit Potential 0

$$\Phi(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{|\mathbf{r} - \mathbf{r}'|} - \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|} \right) \qquad \tilde{\mathbf{r}}' = (x', y', -z')$$

$$\mathcal{G}(\boldsymbol{r},\boldsymbol{r}') = \frac{1}{q}\Phi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} - \frac{1}{|\boldsymbol{r} - \tilde{\boldsymbol{r}}'|} \right)$$

Beweis:

$$\Delta_{\mathbf{r}}\mathcal{G}(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi\varepsilon_{0}} \left(\Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|} - \Delta_{\mathbf{r}} \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|} \right) = -\frac{1}{\varepsilon_{0}} \delta(\mathbf{r} - \mathbf{r}')$$

$$\parallel \qquad \qquad \parallel$$

$$-4\pi\delta(\mathbf{r} - \mathbf{r}') \qquad -4\pi\delta(\mathbf{r} - \tilde{\mathbf{r}}') = 0$$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (z')^2}} = \frac{1}{\sqrt{(x - x')^2 + (y - y')^2 + (-z)^2}}$$

$$= \frac{1}{|\mathbf{r} - \tilde{\mathbf{r}}'|}$$

$$G(\mathbf{r}, \mathbf{r}') = 0 \quad \mathbf{r} \in \partial V$$

Bemerkung:

i)
$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} + F(\boldsymbol{r}, \boldsymbol{r}')$$

 $F(\boldsymbol{r}, \boldsymbol{r}') = -\frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \tilde{\boldsymbol{r}}'|}$
 $\Delta_{\boldsymbol{r}} F(\boldsymbol{r}, \boldsymbol{r}') = 0$ (da $\Delta_{\boldsymbol{r}'} F(\boldsymbol{r}, \boldsymbol{r}') = -4\pi\delta(\boldsymbol{r} - \tilde{\boldsymbol{r}}')$ und $\tilde{\boldsymbol{r}}' \notin V$!!!)

ii) Symmetrie der Greenschen Funktion (Reziprozitätsrelation):

$$G(\mathbf{r}, \mathbf{r}') = G(\mathbf{r}', \mathbf{r})$$

 \rightarrow formale Lösung des Randwertproblems für eine beliebige Ladungsverteilung und Randwerte $\Phi_0(\mathbf{r})$ in der Ebene:

$$\Phi(\mathbf{r}) = \int_{V} d^{3}r' \mathcal{G}(\mathbf{r}, \mathbf{r}') \rho(\mathbf{r}') - \varepsilon_{0} \int_{\partial V} df' \Phi_{0}(\mathbf{r}') \frac{\partial \mathcal{G}}{\partial n'} \qquad \Phi_{0}(x, y, 0) \xrightarrow{z} \qquad \Phi \equiv 0$$

$$\rho \equiv 0 \quad \Rightarrow \quad \Phi(\mathbf{r}) = \varepsilon_{0} \int_{V} dy' dx' \Phi_{0}(x', y', 0) \frac{\partial \mathcal{G}}{\partial n'} \qquad x$$

1.6.5 Separation der Variablen und Entwicklung nach orthogonalen Funktionen

Eine allgemeine Methode zur Lösung partieller DGL.

Zur Vereinfachung: Laplace. Gl
 $\Delta \Phi = 0$ + Randbedingung

Es soll also immer gelten $\rho = 0$

Verbindung zur Poisson-Gl: $\Delta \Phi(\mathbf{r}) = -\frac{1}{\varepsilon_0} \rho(\mathbf{r})$

$$\Phi(\mathbf{r}) = \Phi_s(\mathbf{r}) + \Phi_{\mathrm{hom}} \qquad \Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \Phi_{\mathrm{hom}}$$

Motivation: 1-Dim Randwertproblem

$$\Phi(x) = ? \qquad \rho = 0$$

$$\Delta\Phi(x) = \frac{\mathrm{d}^2\Phi}{\mathrm{d}x^2} = 0$$

$$\Rightarrow \Phi(x) = c_1 + c_2x$$

Randbedingungen:

$$\begin{split} \varPhi(0) &= c_1 = \varPhi_1 \qquad \varPhi(l_x) = \varPhi_1 + c_2 l_x = \varPhi_2 \\ &\to c_2 = \frac{\varPhi_2 - \varPhi_1}{l_x} \quad \to \quad \varPhi(x) = \varPhi_1 + \frac{\varPhi_2 - \varPhi_1}{l_x} x \\ &\Rightarrow \pmb{E} = - \pmb{\nabla} \varPhi = - \frac{\varPhi_2 - \varPhi_1}{l_x} \pmb{e}_x \end{split}$$

2-Dim Randwertproblem

Wir suchen:
$$\Phi = \Phi(x,y)$$
 mit $\rho = 0$
$$0 = \Delta \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2}$$

Randbedingungen:

i)
$$\Phi(\mathbf{r}) = 0$$
 $y = 0$

ii)
$$\Phi(\mathbf{r}) = 0$$
 $x = 0$

iii)
$$\Phi(\mathbf{r}) = 0$$
 $x = l_x$

iv)
$$\Phi(\mathbf{r}) = \Phi_R(x)$$
 $y = l_y$

Separationsansatz: $\Phi(x,y) = f(x)g(y)$

$$0 = \Delta \Phi = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(x)g(y)$$
$$= \frac{\partial^2 f}{\partial x^2} g(y) + f(x) \frac{\partial^2 g}{\partial y^2}$$
$$= \Delta \Phi = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d}y^2}$$

$$0 = \Delta \Phi = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} g(y) + f(x) \frac{\mathrm{d}^2 g}{\mathrm{d}y^2} \qquad \left| \cdot \frac{1}{f g} \right|$$

umformen:

$$\Rightarrow \underbrace{\frac{1}{f(x)} \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}}_{\text{Fkt. von}x} = -\underbrace{\frac{1}{g(y)} \frac{\mathrm{d}^2 g}{\mathrm{d}y^2}}_{\text{Fkt. von}y} = \text{const.} = -\alpha^2$$

$$\frac{\mathrm{d}^2 f}{\mathrm{d}x^2} = -\alpha^2 f(x) \quad \text{mit } e^{i\alpha x} \qquad \frac{\mathrm{d}^2 g}{\mathrm{d}y^2} = \alpha^2 g(y) \quad \text{mit } e^{\alpha y}$$

$$e^{i\alpha x} \Rightarrow f(x) = a\sin(\alpha x) + b\cos(\alpha x)$$
 $e^{\alpha y} \Rightarrow g(x) = c\sinh(\alpha y) + d\cosh(\alpha y)$

$$\Phi(x,y) = f(x) \cdot g(y)$$

Randbedingungen:

i)
$$0 = \Phi(x,0) = f(x) \cdot d \Rightarrow d = 0$$

ii)
$$0 = \Phi(0, y) = b \cdot g(y) \implies b = 0$$

$$\Rightarrow \Phi(x,y) = a\sin(\alpha x)c\sinh(\alpha y) = A\sin(\alpha x)\sinh(\alpha y)$$

$$\parallel$$

$$a \cdot c$$

iii)
$$0 = \Phi(l_x, y) = A \sin(\alpha l_x) \sinh(\alpha y) \rightarrow \sin(\alpha l_x) = 0 \quad \Rightarrow \quad \alpha = \frac{n\pi}{l_x} \qquad n \in \mathbb{Z}(\text{oder } n \in \mathbb{N})$$

$$\rightarrow \Phi_n(x,y) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

iv)
$$\Phi(x, l_y) = \Phi_R(x)$$

$$\Rightarrow \varPhi_R(x) = A_n \sin \left(\frac{n\pi x}{l_x}\right) \sinh \left(\frac{n\pi l_y}{l_x}\right) \qquad \forall x \in [0, l_x]$$

im allgemeinen ist dies nicht möglich, aber da es sich um eine lineare DGL ($\Delta \Phi = 0$) handelt:

 \rightarrow Linearkombinationen von Lösungen sind auch Lösungen

Ansatz für allgemeine Lösung:

$$\Phi(x,y) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

Der Ansatz erfüllt $\Delta \Phi = 0$ und erfüllt die Randbedingungen i), ii), iii). Um iv) zu erfüllen fordern wir:

$$\Phi_R(x) \stackrel{!}{=} \underbrace{\sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l_x}\right)}_{\text{Entwicklung}} \underbrace{\sinh\left(\frac{n\pi l_y}{l_x}\right)}_{\text{const.}}$$

Der erste Teil des Ausdrucks entspricht der Entwicklung von $\Phi_R(x)$ nach Funktionen $\sin\left(\frac{n\pi x}{l_x}\right)$ also einer Fourier-Reihe.

Bestimmung von A_n : Multipliziere mit $\sin\left(\frac{m\pi x}{l_x}\right)$ $m \in \mathbb{N}$ und danach Integration:

$$\int_{0}^{l_{x}} dx \sin\left(\frac{m\pi x}{l_{x}}\right) \varPhi_{R}(x) = \sum_{n=1}^{\infty} A_{n} \sinh\left(\frac{n\pi l_{y}}{l_{x}}\right) \underbrace{\int_{0}^{l_{x}} dx \sin\left(\frac{m\pi x}{l_{x}}\right) \sin\left(\frac{n\pi x}{l_{x}}\right)}_{=\frac{l_{x}}{2}\delta_{nm}}$$

$$= A_{m} \frac{l_{x}}{2} \sinh\left(\frac{m\pi l_{y}}{l_{x}}\right)$$

$$A_{m} = \frac{2}{l_{x} \sinh\left(\frac{m\pi l_{y}}{l_{x}}\right)} \int_{0}^{l_{x}} dx \sin\left(\frac{m\pi x}{l_{x}}\right) \varPhi_{R}(x)$$

in $\Phi(x,y)$ einsetzen

$$\Delta \Phi(\mathbf{r}) = 0 + \text{Randbedingungen}$$

$$\Phi = \Phi(x, y) = f(x)g(y)$$

$$\Phi_n(x, y) = A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

$$n \in \mathbb{N}$$

$$\Phi(x, y) = \sum_n A_n \sin\left(\frac{n\pi x}{l_x}\right) \sinh\left(\frac{n\pi y}{l_x}\right)$$

$$A_n = \frac{2}{l_x \sinh\left(\frac{n\pi l_y}{l_x}\right)} \int_0^{l_x} \mathrm{d}x \sin\left(\frac{n\pi x}{l_x}\right) \Phi_R(x)$$

Zu dem Problem gehört die Skizze aus Abschnitt ??: 2-Dim Randwertproblem.

1.6.6 Vollständige Orthonormale Funktionensysteme (VONS)

Betrachte Funktionen g(x), h(x) auf $I = [a, b] \subset \mathbb{R}$

$$g, h: I \to \mathbb{R} (\mathbb{C})$$

Skalarprodukt:
$$(g,h) = \int_a^b \mathrm{d}x \ g^*(x)h(x)$$

 $(g,h) = 0$: g und h orthogonal, $(g,g) = 1$: g normiert Norm: $||g|| = \sqrt{(g,g)}$

Ein abzählbarer Satz von Funktionen $\{f_n\} = \{f_1, f_2, \dots\}$

Heißt orthonormiert falls: $(f_m, f_n) = \delta_{nm} \rightarrow \mathbf{Orthonormal system}$

Vollständigkeit: Ein Satz von Funktionen heißt vollständig (VONS) falls **jede** quadratintegrable¹ Funktion $g: I \to \mathbb{R}(\mathbb{C})$ in der Form $g(x) = \sum_{n=1}^{\infty} a_n f_n(x)$ dargestellt werden kann. Genauer: $\lim_{n \to \infty} \int_a^b \mathrm{d}x \mid g(x) - \sum_{n=1}^{\infty} a_n f_n(x) \mid = 0$

Bestimmung der Koeffizient a_n :

$$g(x) = \sum_{n} a_n f_n(x) \qquad \left| \int dx \ f_m^*(x) \right|$$

$$\int_a^b dx \ f_m^*(x) g(x) = \sum_{n=1}^\infty \underbrace{\int_a^b dx \ f_m^*(x) f_n(x)}_{=\delta_{nm}} = a_m$$

$$g(x) = \sum_{n} a_n f_n(x) = \sum_{n} (f_n, g) f_n(x)$$

$$= \sum_{n} \int_a^b dx' \ f_n^*(x') g(x') f_n(x)$$

$$= \int_a^b dx' \ g(x') \underbrace{\sum_{n=1}^\infty f_n(x) f_n^*(x')}_{=\delta(x-x')}$$

da $\int_a^b \mathrm{d}x' g(x') = g(x)$

Vollständigkeitsrelation

$$\sum_{n=1}^{\infty} f_n(x) f_n^*(x') = \delta(x - x')$$

Beispiele:

1)

$$f_n(x) = \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$

Bedeutung der einzelnen Terme $(f_n, f_m) = \delta_{nm}$

 $g: I \to \mathbb{R} \quad g(0) = 0 = g(l)$

$$g(x) = \sum_{n} a_n \sqrt{\frac{l}{2}} \sin\left(\frac{n\pi x}{l}\right)$$

2) Fourierreihe: $\{f_n\}$: n = 0: $\frac{1}{\sqrt{l}}$

$$n \in \mathbb{N}: \qquad \sqrt{\frac{2}{l}} \sin\left(\frac{n\pi x}{l}\right) \quad ; \qquad \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \qquad I = [0, l]$$
$$g(x) = a_0 \frac{1}{\sqrt{l}} + \sum_{n=1}^{\infty} \left[a_n \sqrt{\frac{2}{l}} \sin\left(\frac{n\pi x}{l}\right) + b_n \sqrt{\frac{2}{l}} \cos\left(\frac{n\pi x}{l}\right) \right]$$

¹Falls $\int dx |g(x)|^2$ existient

Vektoren	Bezeichnung	Funktionen
\overline{r}	Vektor	g(x)
$\{oldsymbol{e}_n\}$	Basis	$\{f_n(x)\}$
$\{oldsymbol{e}_n\}\ (oldsymbol{e}_n\cdotoldsymbol{e}_{n'})=\delta_{nn'}$	Orthonormierung	$(f_n,f_{n'})=\delta(oldsymbol{r}-oldsymbol{r}_0)_{nn'}$
$oldsymbol{r} = \sum_{n=1}^3 a_n oldsymbol{e}_n$	Entwicklung	$(f_n, f_{n'}) = \delta(\mathbf{r} - \mathbf{r}_0)_{nn'}$ $g(x) = \sum_{n=1}^{\infty} a_n f_n(x)$
$a_n = (\boldsymbol{e}_n \cdot \boldsymbol{r})$	Entwicklungs- koeffizienten	$a_n = (f_n, g)$
$m{r} \coloneqq egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}$	Darstellung durch Spaltenvektor	$g(x) := \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \end{pmatrix}$

1.6.7 Laplace-Gleichung in Kugelkoordinaten

Separationsansatz:

$$\Phi(r, \theta, \varphi) = \frac{U(r)}{r} P(\cos \theta) Q(\varphi)$$

1. Term:

$$\frac{1}{r} \frac{\partial^2}{\partial r^2} \left(\cancel{r} \frac{U(r)}{\cancel{r}} P(\cos \theta) Q(\varphi) \right) = P(\cos \theta) Q(\varphi) \frac{1}{r} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2}$$

$$\Rightarrow 0 = PQ \frac{1}{r} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} + UQ \frac{1}{r^3 \sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + UP \frac{1}{r^3 \sin^2 \theta} \frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2} \quad \left| \cdot \frac{r^3 \sin^2 \theta}{UPQ} \right|$$

$$\Rightarrow \underbrace{-r^2 \sin^2 \theta \frac{1}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \sin \theta \frac{1}{P} \frac{\mathrm{d}^2}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) = \underbrace{\frac{1}{Q} \frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2}}_{\text{unabhängig von } \varphi} = \text{const.} := -m^2$$

$$\underbrace{-m^2 \sin^2 \theta \frac{1}{U} \frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \sin \theta \frac{1}{P} \frac{\mathrm{d}^2 U}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) = \underbrace{\frac{1}{Q} \frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2}}_{\text{unabhängig von } r, \theta}$$

für Q:

Lösung:

i)
$$\frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2} + m^2 Q = 0$$

$$Q(\varphi) = e^{im\varphi} = \cos(m\varphi) + i\sin(m\varphi)$$
$$Q(\varphi + 2\pi) = Q(\varphi) \quad \text{da} \quad e^{im(\varphi + 2\pi)} = e^{im\varphi} \quad \Rightarrow \quad m = \mathbb{Z}$$

$$\frac{r^2}{U}\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} + \frac{1}{P\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}P}{\mathrm{d}\theta}\right) = \frac{m^2}{\sin^2\theta}$$

$$\underbrace{\frac{r^2}{U}\frac{\mathrm{d}^2 U}{\mathrm{d}r^2}}_{\text{unabh. von }\theta} = -\underbrace{\frac{1}{P\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}P}{\mathrm{d}\theta}\right)}_{\text{unabh. von }V} = \mathrm{const.} := \lambda$$

ii)

$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{\lambda}{r^2} U(r) = 0$$

 \rightarrow Lösung für $\lambda = l(l+1)$ (Warum das eine Lösung ist, wird in iii) erklärt)

$$U(r) = a_l r^{l+1} + b_l r^{-l}$$

 \rightarrow Spezielle Lösung für m=0:

$$\Phi(r,\theta) = \frac{U(r)}{r} P_l(\cos\theta) = (a_l r^l + b_l r^{-l-1}) P_l(\cos\theta)$$

allg. Lösung: $\Delta \varPhi = 0$ für $\frac{\partial \varPhi}{\partial \varphi} = 0$

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} (a_l r^l + b_l r^{-l-1}) P_l(\cos \theta)$$
durch Randbedingungen festgelegt

iii)

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m^2}{\sin^2 \theta} \right) P(\cos \theta) = 0$$

$$x := \cos \theta \quad P(x) : \text{ DGL für } P(x) \quad \frac{\mathrm{d}}{\mathrm{d}\theta} P(x(\theta)) = \frac{\mathrm{d}P}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin \theta \frac{\mathrm{d}P}{\mathrm{d}x}$$

$$\mathrm{d}x = -\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta}$$

$$\Rightarrow -\frac{\mathrm{d}}{\mathrm{d}x} \left(-\sin^2 \theta \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$$

Zugeordnete Legendresche DGL

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} \left((1 - x^2) \frac{\mathrm{d}P}{\mathrm{d}x} \right) + \left(\lambda - \frac{m^2}{1 - x^2} \right) P(x) = 0$$

Spezialfall: Zylindersymmetrische Probleme: Φ unabhängig von φ

ightarrow Legendre-Polynome

$$\frac{\partial \varPhi}{\partial \varphi} = 0, \quad Q(\varphi) = e^{im\varphi} \Rightarrow m = 0 \Rightarrow Q(\varphi) = 1$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^2)\frac{\mathrm{d}P}{\mathrm{d}x}\right) + \lambda P(x) = 0$$

Legendresche DGL

$$(1 - x^2)\frac{\mathrm{d}^2 P}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}P}{\mathrm{d}x} + \lambda P(x) = 0$$

Potenzreihenansatz: $P(x) = \sum_{k=0}^{\infty} a_k x^k$

 \rightarrow Fließbach

 \rightarrow Legendre Polynome

 \rightarrow relevante Lösung nur für $\lambda = l(l+1)$ $l \in \mathbb{N}_0$

Wiederholung

Laplace-Gleichung in Kugelkoordinaten

$$\Delta \Phi = 0$$
 $\Phi(r, \theta, \varphi)$

$$\Phi(r, \theta, \varphi) = \frac{U(r)}{r} P(\cos \theta) Q(\varphi)$$

$$\frac{\mathrm{d}^2 Q}{\mathrm{d}\varphi^2} + m^2 Q = 0 \qquad m \in \mathbb{Z}$$

$$\rightarrow Q(\varphi) = e^{im\varphi}$$

$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{\lambda}{r^2} U = 0 \qquad \lambda = l(l+1) \quad l \in \mathbb{N}_0$$

$$U(r) = a_l r^{l+1} + b_l r^{-l}$$

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}P}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m^2}{\sin^2 \theta} \right) P(\cos \theta) = 0$$

Zylindersymmetrische Probleme: $\frac{\mathrm{d}\Phi}{\mathrm{d}\varphi}=0 \quad \rightarrow \quad m=0$

- $\rightarrow P_l(\cos\theta)$: Legendre-Polynome
- \rightarrow allgemeine Lösung:

$$\Phi(r,\theta) = \sum_{l=0}^{\infty} \left(a_l r^l + b_l r^{-l-1} \right) P_l(\cos \theta)$$

Beispiel: Leitende Kugel im homogenen Feld

Die Frage ist jetzt was ist das äußere Potential und das äußere E-Feld:

$$\Phi(\mathbf{r})$$
 für $|\mathbf{r}| > R$ $\rightarrow \mathbf{E}(\mathbf{r})$

Lösung des Randwertproblems $\Delta \Phi(\mathbf{r}) = 0$ für $|\mathbf{r}| > R$ mit der Randbedingungen:

$$\Phi(\mathbf{r}) = \Phi_0 \text{ für } |\mathbf{r}| = R$$

$$\Phi(\mathbf{r}) \xrightarrow{|\mathbf{r}| \to \infty} -E_0 z + \text{const.} = -E_0 r \cos \theta + \Phi_1$$

Aufgrund der Zylindersymmetrie des Problems ist Φ eine Funktion von θ und r: $\Phi(r,\theta)$

$$\to \Phi(r,\theta) = \sum_{l=0}^{\infty} \left(a_l r^l + b_l r^{-l-1} \right) P_l(\cos \theta)$$

i)
$$r = R$$

$$\Phi(R,\theta) = \sum_{l=0}^{\infty} \left(a_l R^l + b_l R^{-l-1} \right) P_l(\cos \theta)$$

$$\stackrel{!}{=} \Phi_0 \cdot 1 = \Phi_0 P_0(\cos \theta)$$

an Beide Seiten Multiplizieren wir $\int_{-1}^{1} d(\cos \theta) P_n(\cos \theta)$ für $n = 0, 1, 2, 3, \dots$

$$\sum_{l=0}^{\infty} \left(a_l R^l + \frac{b_l}{R^{l+1}} \right) \underbrace{\int_{-1}^{1} \mathrm{d}(\cos\theta) P_n(\cos\theta) P_l(\cos\theta)}_{\delta_{nl} \frac{2}{2n+1}} = \Phi_0 \underbrace{\int_{-1}^{1} \mathrm{d}(\cos\theta) P_n(\cos\theta) P_0(\cos\theta)}_{\delta_{n0} \frac{2}{2n+1} = 2\delta_{n_0}}$$

$$\Rightarrow \sum_{l=0}^{\infty} \frac{2}{2n+1} \left(a_l R^l + \frac{b_l}{R^{l+1}} \right) \delta_{nl} = 2\Phi_0 \delta_{n0} \qquad n = 0, 1, 2, \dots$$

$$\underline{n=0}: \qquad 2 \left(a_0 R^0 + \frac{b_0}{R} \right) = 2\Phi_0 \qquad \Rightarrow b_0 = R(\Phi_0 - a_0)$$

$$\underline{n\neq 0}: \qquad \frac{2}{2n+1} \left(a_n R^n + \frac{b_n}{R^{n+1}} \right) = 0 \quad \Rightarrow b_n = R^{2n+1} a_n$$

ii)
$$r \to \infty$$

$$\Phi(\mathbf{r}) \to -E_0 r \cos \theta + \Phi_1
= -E_0 r P_1(\cos \theta) + \Phi_1 P_0(\cos \theta) \quad \stackrel{r \to \infty}{\longleftarrow} \quad \sum_{l=0}^{\infty} \left(a_l r^l + \frac{b_l}{R^{l+1}} \right) P_l(\cos \theta)$$

$$\Rightarrow \sum_{l=0}^{\infty} \left(a_l r^l + \frac{b_l}{R^{l+1}} \right) \delta_{nl} \frac{2}{2n+1} \quad \stackrel{r \to \infty}{\longrightarrow} \quad 2\Phi_1 \delta_{n0} - E_0 r \delta_{n1} \frac{2}{2n+1} = 2\Phi_1 \delta_{n0} - \frac{2}{3} E_0 r \delta_{n1}$$

für n = 0, 1, 2, ...

$$\underline{n=0:} \quad \left(a_0 + \frac{b_0}{r}\right) 2 \xrightarrow{r \to \infty} 2\Phi_1 \qquad \Rightarrow \qquad a_0 = \Phi_1$$

$$\underline{n=1:} \quad \left(a_1 r + \frac{b_1}{r^2}\right) \frac{2}{\beta} \xrightarrow{r \to \infty} -\frac{2}{\beta} E_0 r \qquad \Rightarrow \qquad a_1 = E_0$$

$$\underline{n>1:} \quad \left(a_n r^n + \frac{b_n}{r^{n+1}}\right) \frac{2}{2n+1} \xrightarrow{r \to \infty} \quad \Rightarrow \qquad a_n = 0$$

$$\Phi(r,\theta) = \left[\Phi_1 + \frac{R(\Phi_0 - \Phi_1)}{r}\right] \underbrace{P_0(\cos\theta)}_{=1} + \left[-E_0r + \frac{E_0R^3}{r^2}\right] \underbrace{P_1(\cos\theta)}_{\cos\theta}$$

Potential einer Kugel im homogenen E-Feld

$$\rightarrow \Phi(r,\theta) = \Phi_1 + (\Phi_0 - \Phi_1)\frac{R}{r} - E_0 r \cos \theta + E_0 \frac{R^3}{r^2} \cos \theta$$

Diskussion der Bedeutung der einzelnen Terme:

- ullet Φ_1 ist eine Konstante die auf das Potential keine physikalische Auswirkung hat.
- $-E_0r\cos\theta$ ist das Potential des äußeren Feldes.
- $\Phi_0 \Phi_1$ ist das Potential einer möglichen Gesamtladung auf der Kugel.
- $E_0 \frac{R^3}{r^2} \cos \theta$ ist der Beitrag der Ladungsverschiebung auf der Kugel. Also das Potential der Influenzierten Ladungen.

Eine Kugel mit Ladung Q ohne äußeres Feld $(E_0 = 0)$:

Eine ungeladene Kugel: $Q=0 \longrightarrow \Phi_1=\Phi_0$

$$\rightarrow \Phi(r,\theta) = \Phi_0 - E_0 r \cos \theta + E_0 \frac{R^3}{r^2} \cos \theta$$

Lösung für $m \neq 0$ (Potenzreihenansatz)

 \rightarrow Zugeordnete Legendre-Polynome

$$P_l^m(x)$$
 $x = \cos \theta$

• Allgemeine Struktur:

$$P_l^m \sim (1-x^2)^{|m|/2} \times \text{ Polynom } (l-|m|)\text{-ten Grades}$$

Zusammenfassung der Funktionen:

$$P, \theta$$
 in Produkt: $P_l^m(\cos \theta)Q_m(\varphi)$

\Rightarrow Kugelflächenfunktionen

$$\mathcal{Y}_{lm}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}$$

$$l = 0, 1, 2, \dots$$
 $m = 0, \pm 1, \pm 2, \dots, \pm l$ $\theta \in [0, \pi]$ $\varphi \in [0, 2\pi]$

Allgemeine Lösung der Laplace-Gleichung in Kugelkoordinaten:

$$\Phi(r, \theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(a_{lm} r^{l} + \frac{b_{lm}}{r^{l+1}} \right) \mathcal{Y}_{lm}(\theta, \varphi)$$

$$\Delta \Phi = 0$$

1.7 Multipolentwicklung

Beliebige endlich große Ladungsverteilung

$$q = \int \mathrm{d}^3 r'
ho(m{r}')$$
 $m{r} \gg R \quad \varPhi(m{r}) pprox rac{1}{4\piarepsilon_0} rac{q}{r}$

statische, lokalisierte Ladungsverteilung:

$$\rho(\boldsymbol{r}) = \begin{cases} \text{beliebig} & r < R \\ 0 & r > R \end{cases}$$

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_V d^3r' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Für $r>R:\ |{m r}'|<|{m r}|$ — Taylorentwicklung von $\frac{1}{|{m r}-{m r}'|}$ in ${m r}'$ — d.h. in x_1',x_2',x_3'

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{\sqrt{(x_1 - x_1'^2) + (x_2 - x_2'^2) + (x_3 - x_3'^2)}} \qquad \mathbf{r} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Taylorentwicklung:

$$f(\mathbf{r}') = f(x_1', x_2', x_3') = f(0, 0, 0) + \sum_{i=1}^{3} x_i' \frac{\partial f}{\partial x_i}(0) + \frac{1}{2} \sum_{i,j=1}^{3} x_i' x_j' \frac{\partial^2 f}{\partial x_i' \partial x_j'}(0) + \dots$$

Zuerst berechnen wir die einzelnen Terme:

$$f(\mathbf{r}') = \frac{1}{|\mathbf{r} - \mathbf{r}'|}: \ f(0) = \frac{1}{r} \qquad \frac{\partial f}{\partial x_i'} = \frac{(x_i - x_i')}{|\mathbf{r} - \mathbf{r}'|^3} \bigg|_{0} = \frac{x_i}{r^3} \qquad \frac{\partial^2 f}{\partial x_i' \partial x_j'}(0) = \dots = \frac{3x_i x_j - r^2 \delta_{ij}}{r^5}$$

Für $|\boldsymbol{r}| < |\boldsymbol{r}'|$:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3r \rho(\mathbf{r}') \left\{ \frac{1}{r} + \sum_{i=1}^3 \frac{x_i' x_i}{r^3} + \frac{1}{2} \sum_{i,j} x_i' x_j' \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} + \dots \right\}$$

Den letzten (mit einem Pfeil markierten) Term schauen wir uns jetzt noch einmal genauer an.

$$\sum_{i,j} x_i' x_j' r^2 \delta_{ij} = r^2 \sum_{i} x_i'^2 = r^2 r'^2 = r'^2 \sum_{i} x_i^2 = \sum_{i,j} r'^2 x_i x_j \delta_{ij}$$

Somit können wir den letzten Term umschreiben als:

$$\sum_{i,j} x_i' x_j' \frac{(3x_i x_j - r^2 \delta_{ij})}{r^5} = \sum_{i,j} x_i x_j \frac{(3x_i' x_j' - r'^3 \delta_{ij})}{r^5}$$

Das Potential unserer Ladungsverteilung im externen E-Feld ergibt sich dann als

$$\Phi(\boldsymbol{r}) = k \left\{ \frac{1}{r} \underbrace{\int \mathrm{d}^3 r' \rho(\boldsymbol{r}')}_{q \text{ Gesamtladung (Monopol)}} + \sum_{i=1}^3 \frac{x_i}{r^3} \underbrace{\int \mathrm{d}^3 r' x_i' \rho(\boldsymbol{r}')}_{p_i \text{ Dipolmoment } \boldsymbol{p} = (p_1, p_2, p_3)} + \frac{1}{2} \sum_{i,j} \frac{x_i x_j}{r^5} \underbrace{\int \mathrm{d}^3 r' \rho(\boldsymbol{r}') (3x_i' x_j' - r'^2 \delta_{ij})}_{=: Q_{ij} \text{ Quadrupolmoment}} + \dots \right\}$$

$$\Rightarrow \Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{q}{r} + \frac{\mathbf{r} \cdot \mathbf{p}}{r^3} + \frac{1}{2} \sum_{i,j} \frac{x_i x_j}{r^5} Q_{ij} + \dots \right\}$$

Diskussion:

i) Monopol

$$egin{aligned} arPhi_M(m{r}) &= rac{1}{4\piarepsilon_0}rac{q}{r} & \propto rac{1}{r} ext{ dominiert für } q
eq 0 \end{aligned} \
ightarrow m{E}_M(m{r}) &= -m{
abla} arPhi_M = rac{q}{4\piarepsilon_0}rac{m{r}}{r^3} & \propto rac{1}{r^2} \end{aligned}$$

ii) Dipol

$$\Phi_D(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{r} \cdot \mathbf{p}}{r^3} \qquad \propto \frac{1}{r^2}$$

Das elektrische Feld:

$$\boldsymbol{E}_D = -\boldsymbol{\nabla}\Phi_D$$

$$\nabla_{\boldsymbol{r}} \left(\boldsymbol{p} \cdot \frac{\boldsymbol{r}}{r^{3}} \right) : \quad \frac{\partial}{\partial x} \left(p_{x} \frac{x}{r^{3}} + p_{y} \frac{y}{r^{3}} + p_{z} \frac{z}{r^{3}} \right) = \left(\frac{p_{x}}{r^{3}} - 3p_{x} \frac{xx}{r^{5}} - 3p_{y} \frac{yx}{r^{5}} - 3p_{z} \frac{zx}{r^{5}} \right)$$

$$= \frac{p_{x}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} x$$

$$\frac{\partial}{\partial y} (\dots) = \frac{p_{y}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} y$$

$$\frac{\partial}{\partial z} (\dots) = \frac{p_{z}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} z$$

$$\Rightarrow \nabla_{\boldsymbol{r}} \left(\boldsymbol{p} \cdot \frac{\boldsymbol{r}}{r^{3}} \right) = \frac{\boldsymbol{p}}{r^{3}} - 3 \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{r^{5}} \boldsymbol{r}$$

$$\boldsymbol{E}_{D} = -\nabla \Phi_{D} = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{3(\boldsymbol{p} \cdot \boldsymbol{r})\boldsymbol{r}}{r^{5}} - \frac{\boldsymbol{p}}{r^{3}} \right] \qquad \propto \frac{1}{r^{3}} \quad \boldsymbol{r} \neq 0$$

Beispiel: für die Realisierung eines Dipols

Punktladungen: $q_0, -q_0$ in r_+, r_-

Gesamtladung: $q = q_0 - q_0 = 0$

$$egin{aligned} & egin{aligned} & eta \Phi_M(m{r}) \equiv 0 \ & \Phi(m{r}) = rac{1}{4\piarepsilon_0} \left(rac{q_0}{|m{r}-m{r}_+|} - rac{q_0}{|m{r}-m{r}_-|}
ight) = rac{1}{4\piarepsilon_0} \left(rac{m{r}\cdotm{p}}{r^3} + \ldots
ight) \ &
ho(m{r}') = q_0\delta(m{r}'-m{r}_+) - q_0\delta(m{r}'-m{r}_-) \ & m{p} = \int \mathrm{d}^3r'
ho(m{r}')m{r}' = q_0m{r}_+ - q_0m{r}_- = q_0m{d} \ & m{p} = q_0m{d} \end{aligned}$$

mehrere Punktladungen q_i in r_i

$$ightarrow oldsymbol{p} = \sum_i q_i oldsymbol{r}_i$$

iii) Quadrupolmoment

$$Q_{ij} = \int d^3r' \rho(\mathbf{r}') (3x_i'x_j' - r'^2 \delta_{ij})$$

Quadrupoltensor $Q = \begin{pmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{pmatrix}$

Eigenschaften

- i) Spurfrei: $\mathrm{tr}(Q) = \sum_i Q_{ii} = 0 \quad \Rightarrow 2$ unabhängige Elemente
- ii) Symmetrisch: $Q_{ij} = Q_{ji} \quad \Rightarrow 3$ unabhängige Elemente
- $\Rightarrow 5$ unabhängige Elemente

Ableitung in Kugelkoordinaten

⇒ Sphärische Multipolmomente

1.7.1 Multipolentwicklung der Energie der Ladungsverteilung im äußeren Feld

Energie:

$$W = \int d^3r \rho(\mathbf{r}) \Phi(\mathbf{r}) \tag{1.1}$$

Wir stellen uns vor, das E-Feld wird von sehr weit entfernten Ladungen erzeugt. Wir machen somit also die Annahme, dass sich $\Phi(r)$ in dem Gebiet, wo $\rho(r)$ ist, sich nur wenig ändert.

 \rightarrow Taylorentwicklung von $\Phi(\mathbf{r})$ um $\mathbf{r}=0$

$$\Phi(\mathbf{r}) = \Phi(0) + \mathbf{r} \cdot \nabla \Phi(0) + \frac{1}{2} \sum_{i,j} x_i x_j \frac{\partial^2 \Phi}{\partial x_i \partial x_j}(0) + \dots$$

$$= \Phi(0) - \mathbf{r} \cdot \mathbf{E}(0) - \underbrace{\frac{1}{2} \sum_{i,j} x_i x_j \frac{\partial E_j}{\partial x_i}(0)}_{= \frac{1}{6} \sum_{i,j} (3x_i x_j - r^2 \delta_{ij}) \frac{\partial E_j}{\partial x_i}(0)$$

Dies gilt, da:

$$\sum_{i,j} r^2 \delta_{ij} \frac{\partial E_j}{\partial x_i}(0) = r^2 \underbrace{\sum_i \frac{\partial E_i}{\partial x_i}(0)}_{\nabla \cdot \mathbf{E}(0) = 0}$$

 $\nabla \cdot \boldsymbol{E} = 0$ gilt, da \boldsymbol{E} ein äußeres Feld ist. Damit erhalten wir dann für die Energie mit Formel (??):

Wechselwirkungsenergie zweier Dipole

Betrachte 2 Punktdipole p_1, p_2 in r_1, r_2 . p_2 erzeugt am Ort r_1 das äußere Feld:

$$\begin{split} \boldsymbol{E}(\boldsymbol{r}_1) &= \frac{1}{4\pi\varepsilon_0} \left[\frac{3(\boldsymbol{p}_2 \cdot \boldsymbol{r}_{12})\boldsymbol{r}_{12}}{r_{12}^5} - \frac{\boldsymbol{p}_2}{r_{12}^3} \right] \\ \rightarrow W &= -\boldsymbol{p}_1 \cdot \boldsymbol{E}(\boldsymbol{r}_1) = \frac{1}{4\pi\varepsilon_0} \left[\frac{\boldsymbol{p}_1 \cdot \boldsymbol{p}_2}{r_{12}^3} - \frac{3(\boldsymbol{p}_2 \cdot \boldsymbol{r}_{12})(\boldsymbol{p}_1 \cdot \boldsymbol{r}_{12})}{r_{15}^5} \right] \qquad \propto \frac{1}{r_{12}^3} \end{split}$$

Je nach Orientierung der Dipole ist diese Wechselwirkung anziehend oder abstoßend.

z.B.: $\boldsymbol{p}_1, \boldsymbol{p}_2 \perp \boldsymbol{r}_{12}$

$$\rightarrow W = \frac{1}{4\pi\varepsilon_0} \frac{\boldsymbol{p}_1 \cdot \boldsymbol{p}_2}{r_{12}^3} \begin{cases} > 0 & \uparrow \uparrow \\ < 0 & \uparrow \downarrow \end{cases} \text{ abstoßend}$$
 anziehend

1.8 Elektrostatik in Materie - Dielektrika

Definition: Dielektrika

Nichtleitende Substanzen (Gase, Flüssigkeiten, Festkörper). Die Ladungsträger sind also fest gebunden.

äußere Felder \Rightarrow Polarisation

Mechanismen

- i) **Verschiebungspolarisation** (Deformationspolarisation) neutrales Atom
- ii) **Orientierungspolarisation**Molekül mit permanentem Dipolmoment z.B. Wasser

Phänomenologie: Experimentalphysik

Plattenkondensator:

ohne Medium:

mit Medium:

1.8.1 Makroskopische Feldgleichungen der Elektrostatik

Ausgangspunkt: allgemeine (mikroskopische) Feldgleichungen

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$$

$$\nabla \times \boldsymbol{E} = 0$$

$$\Rightarrow \begin{array}{c} \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3 r' \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

$$\Rightarrow \rho$$

Makroskopische Messungen: $\approx 10^{23}$ Teilchen \rightarrow Mittlung über mikroskopische Details.

1.8.2 Mittelung von Funktionen

Wir haben eine physikalische Größe A(r) und wollen diese Mitteln.

$$\langle A \rangle(\boldsymbol{r}) := \int_{\mathbb{R}^3} \mathrm{d}^3 r' f(\boldsymbol{r} - \boldsymbol{r}') A(\boldsymbol{r}')$$

= $\int_{\mathbb{R}^3} \mathrm{d}^3 r' f(\boldsymbol{r}') A(\boldsymbol{r} - \boldsymbol{r}')$

f: legt Bereich fest, über den gemittelt wird

Eigenschaften:

i)
$$\int d^3r' f(\mathbf{r}') = 1$$

- ii) $f(\mathbf{r}) \geq 0$
- iii) Eine glatte Funktion, die sich auf molekularer Skala (nm) wenig ändert.

mit
$$L, \Delta L \gg a$$

Wir schauen uns nun an wie die Ableitung einer gemittelten Funktion aussieht.

$$\frac{\partial}{\partial x_i} \langle A \rangle(\mathbf{r}) = \frac{\partial}{\partial x_i} \int d^3 r' f(\mathbf{r}') A(\mathbf{r} - \mathbf{r}')$$
$$= \int d^3 r' f(\mathbf{r}') \frac{\partial A}{\partial x_i} (\mathbf{r} - \mathbf{r}')$$
$$= \langle \frac{\partial A}{\partial x_i} \rangle(\mathbf{r})$$

1.8.3 Bestimmung von $\langle \rho \rangle$

Aufteilung der Materie in Untereinheiten:

Festkörper:

Elementarzellen:

Gas:

Moleküle

 ρ_n : Ladungsdichte des n-ten Moleküls bzgl. des Schwerpunktes r_n . Die gesamte Ladungsdichte ist somit:

$$ho_g(m{r}) = \sum_n
ho_n(m{r} - m{r}_n)$$

 $\rho_g(\mathbf{r})$ sind hierbei alle gebundenen Ladungen. Zusätzlich gibt es möglicherweise freie Ladungsträger $\rho_f(\mathbf{r})$ \Rightarrow gesamte Ladungsdichte

$$\rho(\mathbf{r}) = \rho_f(\mathbf{r}) + \rho_g(\mathbf{r})$$

Mittlung von ρ_g über einen makroskopisch kleinen aber mikroskopisch großen Bereich:

$$\langle \rho_g \rangle(\boldsymbol{r}) = \int d^3 r' f(\boldsymbol{r}') \rho_g(\boldsymbol{r} - \boldsymbol{r}')$$

$$= \int d^3 r' f(\boldsymbol{r}') \sum_n \rho_n(\boldsymbol{r} - \boldsymbol{r}' - \boldsymbol{r}_n)$$

$$= \sum_n \int_{\mathbb{R}^3} d^3 r' f(\boldsymbol{r}') \rho_n(\boldsymbol{r} - \boldsymbol{r}' - \boldsymbol{r}_n)$$

Nun Betrachten wir den letzten Term:

$$\int d^3r' f(\mathbf{r}') \rho_n(\underbrace{\mathbf{r} - \mathbf{r}' - \mathbf{r}_n}) = \int d^3r' \underbrace{f(\mathbf{r} - \mathbf{r}_n - \tilde{\mathbf{r}})}_{\text{ändert sich wenig auf molekularer Skala a mol. Skala}}_{p_n(\tilde{\mathbf{r}}) \approx 0 \text{ für } |\tilde{\mathbf{r}}| \gg a}$$

Taylorentwicklung in \tilde{r} : $f(r-r_n-\tilde{r})=f(r-r_n)-\tilde{r}\cdot\nabla f(r-r_n)+\dots$

$$= f(\boldsymbol{r} - \boldsymbol{r}_n) \underbrace{\int d^3 \tilde{r} \rho_n(\tilde{\boldsymbol{r}})}_{=q_n} - \nabla f(\boldsymbol{r} - \boldsymbol{r}_n) \cdot \underbrace{\int d^3 r' \tilde{\boldsymbol{r}} \rho_n(\tilde{\boldsymbol{r}})}_{=\boldsymbol{p}_m \text{Dipolmoment}} + \dots$$

Höhere Terme werden vernachlässigen z.B. das Quadrupolmoment.

$$= f(\boldsymbol{r} - \boldsymbol{r}_n)q_n - \underbrace{\boldsymbol{\nabla}f(\boldsymbol{r} - \boldsymbol{r}_n) \cdot \boldsymbol{p}_m}_{=\boldsymbol{\nabla} \cdot (\boldsymbol{p}_n f(\boldsymbol{r} - \boldsymbol{r}_n))} + \dots$$

$$= \int \mathrm{d}^3r' q_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) f(\boldsymbol{r} - \boldsymbol{r}') - \boldsymbol{\nabla} \cdot \int \mathrm{d}^3r' \boldsymbol{p}_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) f(\boldsymbol{r} - \boldsymbol{r}') + \dots$$

$$= \langle q_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) \rangle(\boldsymbol{r}) - \boldsymbol{\nabla} \cdot \langle \boldsymbol{p}_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) \rangle(\boldsymbol{r}) + \dots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Gesamtladung im SP Dipolmoment im SP

$$\langle \rho_g \rangle = \sum_n \int \dots$$

= $\langle \sum_n q_n \delta(\mathbf{r}' - \mathbf{r}_n) \rangle(\mathbf{r}) - \nabla \cdot \langle \sum_n \mathbf{p}_n \delta(\mathbf{r}' - \mathbf{r}_n) \rangle(\mathbf{r}) + \dots$

Der **erste Term** steht für die mittlere Gesamtladung der gegebenen Ladungen = 0 für:

- i) neutrale Untereinheiten
- ii) makroskopisch neutraler Körper

Der zweite Term wird Definiert als das makroskopische Dipolmoment =: $P(r) = \frac{\text{Dipolmoment}}{\text{Volumen}}$

$$P(r) = \sum_{n} p_{n} \int d^{3}r' \delta(r' - r_{n}) f(r - r')$$
(1.2)

$$= \sum_{n} \mathbf{p}_{n} f(\mathbf{r} - \mathbf{r}_{n}) \approx \frac{1}{V} \sum_{m, \mathbf{r}_{n} \in V} \mathbf{p}_{n}$$
(1.3)

$$f(\mathbf{r} - \mathbf{r}_n) \approx \begin{cases} \frac{1}{V} & |\mathbf{r} - \mathbf{r}_n| \le L \\ 0 & \text{sonst} \end{cases}$$

→ gemittelte (makroskopische) Ladungsdichte:

$$\langle \rho \rangle(\boldsymbol{r}) = \langle \rho_f \rangle(\boldsymbol{r}) + \underbrace{\langle \sum_n q_n \delta(\boldsymbol{r}' - \boldsymbol{r}_n) \rangle(\boldsymbol{r})}_{\text{Gesamtladung}} - \boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}) + \dots$$

Gemittelte makroskopische Ladungsverteilung

$$\langle \rho \rangle(\boldsymbol{r}) = \langle \rho_f \rangle(\boldsymbol{r}) - \boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}) + \dots$$

Daraus folgt:

$$ightarrow \mathbf{\nabla} \cdot \langle m{E}
angle (m{r}) = rac{1}{arepsilon_0} \langle
ho
angle (m{r}) = rac{1}{arepsilon_0} \langle
ho_f
angle (m{r}) - rac{1}{arepsilon_0} \mathbf{\nabla} \cdot m{P}(m{r}) + \dots$$

Dies können wir umformen in etwas, das der Maxwellgleichung ähnelt:

$$\nabla \cdot \underbrace{\left(\varepsilon_0 \langle E \rangle + P + \ldots\right)}_{:=D(r)} = \langle \rho_f \rangle (r)$$

D(r) := dielektrische Verschiebung.

$$\rightarrow \quad \nabla \cdot \boldsymbol{D}(\boldsymbol{r}) = \langle \rho_f \rangle(\boldsymbol{r})$$

1.8.4 Makroskopische Feldgleichungen der Elektrostatik (Wiederholung)

$$abla \cdot D(r) =
ho_f(r)$$

$$abla \times E(r) = 0$$

$$abla = \varepsilon_0 E + P + \dots$$

Diese Gleichungen können wir nun mit dem Satz von Gauß und dem Satz von Stokes auch in Integraler Form schreiben:

$$\oint_{\partial V} d\mathbf{f} \cdot \mathbf{D} = \int_{V} d^{3}r \nabla \cdot \mathbf{D} = \int_{V} d^{3}r \rho_{f}(\mathbf{r}) = q_{f_{V}}$$

$$\int_{\partial V} d\mathbf{f} \nabla \times \mathbf{E} = \oint_{\partial F} d\mathbf{r} \cdot \mathbf{E} = 0$$

Wiederholung

Makroskopische Feldgleichungen der Elektrostatik

$$\nabla \times \boldsymbol{E}(\boldsymbol{r}) = 0 \qquad \langle E \rangle(\boldsymbol{r})$$

$$\nabla \cdot \boldsymbol{D}(\boldsymbol{r}) = \rho_f(\boldsymbol{r})$$

$$D = \varepsilon_0 E + P + \dots$$

Wir haben hier jetzt zwei Feldgleichungen für zwei Vektorfelder. Dies reicht nicht aus um beide Vektorfelder eindeutig zu bestimmen. Hierfür müssen wir die Wirbel und Quellen beider Felder beschreiben. \boldsymbol{E} und \boldsymbol{D} sind also nicht unabhängig sondern miteinander verknüpft.

Bemerkung: (Schlussfolgerungen aus den Feldgleichungen der Elektrostatik)

i) Es sieht so aus als ob **D** nur von der freien Ladungsdichte abhängt, dies ist aber nur in manchen fällen so (Plattenkondensator).

Es gilt nur wenn $\nabla \times \boldsymbol{D} = 0$

Gegenbeispiel: homogen polarisierte Kugel:

$$\boldsymbol{E} = -\frac{1}{3\varepsilon_0} \boldsymbol{P}$$
 in der Kugel

$$ightarrow \mathbf{D} = arepsilon_0 \mathbf{E} + \mathbf{P} = rac{2}{3} \mathbf{P}$$

ii)

$$m{E} = rac{1}{arepsilon_0} (m{D} - m{P})$$

 \boldsymbol{E} hängt über die Polarisation direkt von dem Medium ab.

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \nabla \cdot \boldsymbol{D} - \frac{1}{\varepsilon_0} \nabla \cdot \boldsymbol{P}$$
$$= \frac{1}{\varepsilon_0} \rho_f - \frac{1}{\varepsilon_0} \nabla \cdot \boldsymbol{P}$$

 \rightarrow Polarisations ladungsdichte $\rho_p = - \boldsymbol{\nabla} \cdot \boldsymbol{P}$

$$\Rightarrow \quad oldsymbol{
abla} \cdot oldsymbol{E} = rac{1}{arepsilon_0} (
ho_f +
ho_p)$$

iii) Die Polarisation wirkt wie ein inneres Zusatzfeld, das sich mit dem durch ρ_f erzeugten Feld E_0 überlagert. $E=E_0+E_p$

Im Plattenkondensator:

$$oldsymbol{E}_p = -rac{1}{arepsilon_0} oldsymbol{P}$$

$$E = E_0 - \frac{1}{\varepsilon_0} P$$

mit
$$\boldsymbol{E}_0 = \frac{1}{\varepsilon_0} \boldsymbol{D}$$

iv) Potential

$$\nabla \times \langle \boldsymbol{E} \rangle = 0$$

$$\langle \boldsymbol{E} \rangle = - \boldsymbol{\nabla} \langle \boldsymbol{\Phi} \rangle$$

Einfach aber zu viel Zeitaufwand für die Vorlesung

$$\langle \boldsymbol{\Phi} \rangle = \frac{1}{4\pi\varepsilon_0} \int d^3 r' \frac{\langle \boldsymbol{\rho} \rangle (\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}$$
$$= \frac{1}{4\pi\varepsilon_0} \int d^3 r' \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \left(\rho_f(\boldsymbol{r}') - \boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}') + \dots \right)$$

v) Zusammenhang zwischen P und E: Suszeptibilität

$$P = P(E)$$
 $P(E = 0) = 0$

Entwicklung von P in Potenzen von E:

$$P_i = \sum_{j=1}^{3} \gamma_{ij} E_j + \sum_{j,k=1}^{3} \beta_{ijk} E_j E_k + \dots$$

 γ_{ij} & β_{ijk} sind Materialkonstanten lineare Näherung: allgemeines **anisotropes** Dielektrikum

$$P_i = \sum_j \gamma_{ij} E_j$$

isotropes Dielektrikum:

$$P_i = \gamma E_i$$

$$P = \chi_e \varepsilon_0 E$$
 $\chi_e \varepsilon_0 = \gamma$

 χ_e ist die Dielektrische Suszeptibilität

 ε_r ist die relative Dielektrizitätskonstante $\varepsilon=\varepsilon_r\varepsilon_0$ ist die Dielektrizitätskonstante

Typische Werte für ε_r :

Medium

$$\varepsilon_r$$

 Vakuum:
 $\varepsilon_r = 1$

 H2:
 1,00025

 N2:
 1,00055

 H2O:
 80,1

$$oldsymbol{D} = arepsilon oldsymbol{E} = arepsilon_0 arepsilon_r oldsymbol{E}$$

 ε_0 ist die elektrische Feldkonstante oder auch Permittivität / Dielektrizitätskonstante des Vakuums

1.8.5 Feldgleichungen für lineares, isotropes Dielektrikum

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{D} =
ho_f$$
 $oldsymbol{
abla} imes oldsymbol{E} = 0$

homogenes Medium $\varepsilon = \text{const.}$

$$\begin{split} \varepsilon \boldsymbol{\nabla} \cdot \boldsymbol{E} &= \rho_f \\ \rightarrow \boldsymbol{\nabla} \cdot \boldsymbol{E} &= \frac{1}{\varepsilon \rho_f} = \underbrace{\frac{1}{\varepsilon_r}}_{\text{Medium}} \frac{1}{\varepsilon_0} \rho_f \\ \boldsymbol{\nabla} \times \boldsymbol{E} &= 0 \\ \Delta \Phi &= -\boldsymbol{\nabla} \cdot \boldsymbol{E} \\ &= -\frac{1}{\varepsilon} \rho_f \\ \rightarrow \quad \Delta \Phi &= -\frac{1}{\varepsilon_0} \frac{1}{\varepsilon_r} \rho_f \\ \uparrow \end{split}$$

1.8.6 Punktladung in homogenem Dielektrikum (lineare Näherung)

$$ho_f(m{r}) = q\delta(m{r})$$
 $m{
abla} \cdot m{E}(m{r}) = rac{1}{arepsilon}q\delta(m{r})$
 $m{
abla} imes m{E}(m{r}) = 0$

Nun können wir das \boldsymbol{E} -Feld im Vakuum bestimmen:

$$\rightarrow \quad \boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon} q \frac{\boldsymbol{r}}{r^3}$$

$$= \frac{1}{\varepsilon_r} \underbrace{\frac{1}{4\pi\varepsilon_0} q \frac{\boldsymbol{r}}{r^3}}_{=\boldsymbol{E}_{\mathrm{vak}}}$$

$$= \frac{1}{\varepsilon_r} \boldsymbol{E}_{\mathrm{vak}}(\boldsymbol{r}) < \boldsymbol{E}_{\mathrm{vak}}(\boldsymbol{r})$$

$$\rightarrow \quad \boldsymbol{P} = \chi_e \varepsilon_0 \boldsymbol{E} = (\varepsilon_r - 1) \varepsilon_0 \boldsymbol{E}$$

$$= \frac{(\varepsilon_r - 1)}{4\pi\varepsilon_r} q \frac{\boldsymbol{r}}{r^3}$$

$$\Rightarrow \quad \boldsymbol{E} = \boldsymbol{E}_{\mathrm{vak}} - \frac{1}{\varepsilon_0} \boldsymbol{P}$$

Hier erkennt man explizit, dass das Vakuum-Feld von der Polarisation vermindert wird.

$$\boldsymbol{D} = \varepsilon \boldsymbol{E} = \frac{1}{4\pi} q \frac{\boldsymbol{r}}{r^3}$$

In diesem einfachen Fall ist D vollständig durch die freie Ladung q (in der Abbildung Positiv) bestimmt.

1.8.7 Zusammenhang zwischen atomarer/molekularer Polarisierbarkeit und Suszeptibilitäten

Verschiebungspolarisation:

$$\boldsymbol{p} = \alpha \boldsymbol{E}_{lokal}$$

 \Rightarrow Polarisation:

$$P = np = n\alpha E_{\text{lok}}$$

n ist die Teilchenzahldichte.

Aus den makroskopischen Gleichungen haben wir erhalten:

$$m{P} = \chi_e arepsilon_0 m{E}_{\ \parallel}$$
 makroskopisches Feld

In einem verdünnten Gas gilt: $E_{\mathrm{lok}} \approx E$

$$\Rightarrow \quad \chi_e \varepsilon_0 \mathbf{E} = n\alpha \mathbf{E} \quad \Rightarrow \qquad \boxed{\chi_e = \frac{n\alpha}{\varepsilon_0}}$$

$$\varepsilon_r = 1 + \frac{n\alpha}{\varepsilon_0}$$

1.8.8 Randwertprobleme

$$\nabla \times \mathbf{E} = 0$$
 $\nabla \cdot \mathbf{D} = \rho_f$
 $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ $\mathbf{P} = \mathbf{P}(\mathbf{E})$

lineares homogenes Dielektrikum

$$m{
abla} \cdot m{E} = rac{1}{arepsilon}
ho_f \qquad m{
abla} imes m{E} = 0$$

$$\Delta \Phi = -rac{1}{arepsilon}
ho_f$$

\rightarrow Randwertproblem:

Gegeben: ρ_f, ε Randbedingungen

Gesucht: Φ , \boldsymbol{E}

1.8.9 Randbedingungen für D, E an einer Grenzschicht mit Flächenladung

Erinnerung: mikroskopische Feldgleichungen

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{E} = rac{1}{arepsilon_0}
ho \quad
ightarrow \quad oldsymbol{n} \cdot (oldsymbol{E}_1 - oldsymbol{E}_2) = rac{\sigma}{arepsilon_0}$$
 $oldsymbol{
abla} imes oldsymbol{E} \cdot (oldsymbol{E}_1 - oldsymbol{E}_2) = 0$

für makroskopische Feldgleichungen:

$$abla \cdot D =
ho_f \quad \Rightarrow \quad n \cdot (D_1 - D_2) = \sigma_f$$

$$abla \times D = 0 \quad \Rightarrow \quad t \cdot (E_1 - E_2) = 0$$

speziell lineare, homogene Dielektrika ($\varepsilon_1 = \text{const.}, \varepsilon_2 = \text{const.}$):

$$\boldsymbol{D}_i = \varepsilon_i \boldsymbol{E}_i \qquad i = 1, 2$$

$$\boldsymbol{n} \cdot (\varepsilon_1 \boldsymbol{E}_1 - \varepsilon_2 \boldsymbol{E}_2) = \sigma_f$$

Falls $\sigma_f = 0$ (es gibt also **keine** Ladung an der Oberfläche);

$$\Rightarrow \quad m{n}m{E}_1 = rac{arepsilon_2}{arepsilon_1}m{n}m{E}_2$$

Das heißt, das E-Feld ist unstetig wenn $\varepsilon_1 \neq \varepsilon_2$ (aufgrund der **Polarisationsladung**).

Wiederholung

zu Randbedingunen für D und E an Grenzflächen mit Flächenladung

$$\boldsymbol{n} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) = \sigma_f$$
$$\boldsymbol{t} \cdot (\boldsymbol{E}_1 - \boldsymbol{E}_2) = 0$$

Beispiel: Plattenkondensator mit Dielektrikum

Für den linken Bereich gilt (analog auch rechts):

$$m{n}\cdot(m{D}_M-m{D}_L)=\sigma=rac{q}{F}$$

Für den mittleren Bereich:

$$\frac{\mathrm{d}D_x}{\mathrm{d}x} = \boldsymbol{\nabla} \cdot \boldsymbol{D}_M = 0$$
$$\rightarrow \boldsymbol{D}_M = \sigma \boldsymbol{e}_x$$

$$E_{M} = \frac{1}{\varepsilon} D_{M} = \frac{\sigma}{\varepsilon} e_{x}$$

$$= \frac{1}{\varepsilon_{r}} \underbrace{\frac{\sigma}{\varepsilon_{0}} e_{x}}_{E_{\text{vak}}} = \frac{1}{\varepsilon_{r}} E_{M_{\text{vak}}} \leq E_{M_{\text{vak}}}$$

$$P = \chi_{e} \varepsilon_{0} E = (\varepsilon_{r} - 1) \varepsilon_{0} E$$

$$= \begin{cases} 0 & L/R \\ \frac{\varepsilon_{r} - 1}{\varepsilon_{r}} \sigma e_{x} & M \end{cases}$$

$$\Rightarrow E_{M} = E_{\text{vak}} - \frac{1}{\varepsilon_{0}} P$$

Spannung und Kapazität

$$\begin{split} \boldsymbol{E} &= -\boldsymbol{\nabla} \cdot \boldsymbol{\Phi} \qquad \boldsymbol{\Phi}(x) = -\frac{\sigma}{\varepsilon} x \\ U &= \boldsymbol{\Phi}(0) - \boldsymbol{\Phi}(d) = \frac{\sigma d}{\varepsilon} = \frac{q}{\varepsilon F} d = \frac{1}{\varepsilon_r} \underbrace{\frac{q}{\varepsilon_0 F} d}_{U_{\text{vak}}} \leq U_{\text{vak}} \\ C &= \frac{q}{U} = \frac{\varepsilon F}{d} = \varepsilon_r \underbrace{\frac{\varepsilon_0 F}{d}}_{C_{\text{rob}}} \geq C_{\text{vak}} \end{split}$$

Dies gilt für den Fall eines Kondensators mit fester Ladung aud den Platten.

anderes Szenario: feste Spannung

Hier muss deshalb Ladung in den Kondensator fließen um das \boldsymbol{E} -Feld konstant zu halten. Dadurch steigt die Kapazität.

$$C = \frac{q}{U} = \frac{\varepsilon F}{d}$$

$$E = \frac{\sigma}{\varepsilon} = \frac{\varepsilon}{\varepsilon_0} \sigma_0 \frac{1}{\varepsilon} = \frac{\sigma_0}{\varepsilon_0} = E_{\text{vak}}$$

$$D = \varepsilon E = \frac{\varepsilon}{\varepsilon_0} \underbrace{\varepsilon_0}_{D_{\text{vak}}} \underbrace{E_{\text{vak}}}_{D_{\text{vak}}} = \varepsilon_r D_{\text{vak}}$$

1.8.10 Elektrostatische Energie in Dielektrika

im Vakuum:

$$W = \frac{\varepsilon_0}{2} \int_V d^3 r \left(\boldsymbol{E}(\boldsymbol{r}) \right)^2$$

(Bei komplexem Feld Betragsquadrat nehmen $|\boldsymbol{E}(\boldsymbol{r})|^2$. Dies ist nur ein technischer Trick, da \boldsymbol{E} -Felder Reell sind)

makroskopisches Feld in Medien:

$$W = \frac{1}{2} \int_{V} d^{3}r \mathbf{D} \cdot \mathbf{E} = \frac{\varepsilon}{2} \int_{V} d^{3}r (\mathbf{E}(\mathbf{r}))^{2}$$

$${\varepsilon \mathbf{E}}$$

Plattenkondensator: $C = \frac{\varepsilon F}{d} \quad U = Ed$ Energie:

$$W = \frac{1}{2}CU^2 = \frac{1}{2}\frac{\varepsilon F}{d}E^2d^2 = \frac{1}{2}\overbrace{\varepsilon \boldsymbol{E}}^{\boldsymbol{D}} \cdot \boldsymbol{E} \overbrace{Fd}^{\boldsymbol{V}} = \frac{1}{2}\boldsymbol{D} \cdot \boldsymbol{E} \cdot \boldsymbol{V}$$

 \rightarrow Energie dichte:

$$\frac{W}{V} = \frac{1}{2} \boldsymbol{D} \cdot \boldsymbol{E}$$

Kapitel 2

Magnetostatik

Elektrostatik:

ruhende Ladungen \Rightarrow es wirken Zeitunabhängige elektrische Felder $\boldsymbol{E}(\boldsymbol{r})$

Magnetostatik:

magnetische Felder entstehen aus bewegten Ladungen

Kraft auf bewegte Ladung:

$$F = q(E + v \times B)$$

Magnetfelder von Bewegten Ladungen sind zeitlich verändert und daher kompliziert zu beschreiben. Daher verwenden wir hier ersteinmal statische Ströme die konstande Magnetfelder erzeugen.

Magnetostatik:

$$\begin{array}{c} \text{station\"{a}re} \\ \text{Str\"{o}me} \end{array} \Rightarrow \begin{array}{c} \text{zeitunabh\"{a}ngige} \\ \text{Magnetfelder} \\ \boldsymbol{B(r)} \end{array}$$

Zunächst müssen wir erst einige Dinge Definieren:

2.1 Strom, Stromdichte und Kontinuitätsgleichung

2.1.1 Strom

metallischer Leiter:

$$I = \frac{\text{Ladung}}{\text{Zeit}} = \frac{\Delta q}{\Delta t}$$
 $[I] = 1 \text{ A} = \text{C s}^{-1}$

Beispiel: Stationärer Strom

Ladungsträger mit:

v: Geschwindigkeit (const.)

n: homogene Dichte

q: Ladung

Leiter mit: F: Querschnittsfläche

in Δt : $n \cdot F \cdot v \cdot \Delta t$ Ladung durch F

Ladung: $\Delta q = qnFv\Delta t$

Strom: $I = \frac{\Delta q}{\Delta t} = q \cdot n \cdot v \cdot F$

2.1.2 Stromdichte:

$$j = \frac{\text{Strom}}{\text{Fläche}} = \frac{I}{F}$$

Beispiel: $\mathbf{j} = q \cdot n \cdot v$

Die Stromdichte soll eine vektorielle Größe sein um die Richtung des Stromes mit einzubeziehen.

$$oldsymbol{j}(oldsymbol{r},t)$$

$$I = \int_E \mathrm{d} oldsymbol{f} \cdot oldsymbol{j}(oldsymbol{r},t)$$

Zusammenhang: $\boldsymbol{j}, \rho, \boldsymbol{r}$:

Beispiel:
$$j = \underbrace{q \cdot n}_{\rho} \cdot v$$

$$j(r,t) = \rho(r,t)v(r,t)$$

Stromdichte von Punktladungen

Punktladungen q_i mit Ortsvektoren \boldsymbol{r}_i und Geschwindigkeiten $\boldsymbol{v}_i = \dot{\boldsymbol{r}}_i(t)$

$$\rho(\boldsymbol{r},t) = \sum_i q_i \delta(\boldsymbol{r} - \boldsymbol{r}_i(t))$$

$$oldsymbol{j}(oldsymbol{r},t) = \sum_i q_i \dot{oldsymbol{r}}_i \delta(oldsymbol{r} - oldsymbol{r}_i(t))$$

Linienströme

Ströme durch dünne Drähte

$$s \mapsto \boldsymbol{r}(s) \qquad \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}s} = \frac{\boldsymbol{j}}{|\boldsymbol{j}|}$$

beliebige Funktion h(r). Es gilt außerdem:

$$\mathrm{d} \boldsymbol{f} = \frac{\boldsymbol{j}}{|\boldsymbol{j}|} \mathrm{d} f \qquad \mathrm{d} \boldsymbol{f} = \mathrm{d} \boldsymbol{f} \cdot \frac{\boldsymbol{j}}{|\boldsymbol{j}|}$$

$$\int d^{3}r \boldsymbol{j}(\boldsymbol{r},t)h(\boldsymbol{r})$$

$$= \int ds d\boldsymbol{f} \boldsymbol{j}(\boldsymbol{r},t)h(\boldsymbol{r})$$

$$= \int ds d\boldsymbol{f} \frac{\boldsymbol{j}}{|\boldsymbol{j}|} \boldsymbol{j}h$$

$$= \int_{x} ds \frac{\boldsymbol{j}}{|\boldsymbol{j}|} h(\boldsymbol{r}) \underbrace{\int d\boldsymbol{f} \cdot \boldsymbol{j}(\boldsymbol{r},t)}_{=I(\boldsymbol{r},t)}$$

$$= \int_{\gamma} d\boldsymbol{r}h(\boldsymbol{r})I(\boldsymbol{r},t) = I \int_{\gamma} d\boldsymbol{r}h(\boldsymbol{r})$$

$$I = \int_{\gamma} drh(\boldsymbol{r})I(\boldsymbol{r},t) = I \int_{\gamma} drh(\boldsymbol{r})$$

effektiv gilt also:

$$,, \mathbf{j} \mathrm{d}^3 r = I \mathrm{d} \mathbf{r}$$

2.1.3 Kontinuitätsgleichung

Ladungsdichte: $\rho(\mathbf{r}, t)$ Ladung in $V: \int_V d^3r \rho(\mathbf{r}, t)$

Strom von Ladungen aus V (durch ∂V):

$$I = \int_{\partial V} \mathrm{d}\boldsymbol{f} \cdot \boldsymbol{j}(\boldsymbol{r}, t)$$

in abgeschlossenen Systemen gilt: Die Ladung ist konstant:

für beliebige V

Kontinuitätsgleichung

$$\frac{\partial \rho(\boldsymbol{r},t)}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r},t) = 0$$

2.1.4 Magnetostatik

Stationärer (zeitunabhängigen) Fall

$$\rho = \rho(\mathbf{r}), \quad \mathbf{j} = \mathbf{j}(\mathbf{r})$$

$$\frac{\partial}{\partial t}\rho = 0 \quad \Rightarrow \quad \nabla \cdot \underline{\boldsymbol{j}(\boldsymbol{r})} = 0$$
Stationäre Ströme

Konsequenz: Durch jeden Querschnitt eines Leiters fließt der selbe Strom.

$$0 = \int_{V} d^{3}r \, \nabla \cdot \boldsymbol{j} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{j} = \int_{F_{1}} d\boldsymbol{f} \cdot \boldsymbol{j} + \int_{F_{2}} d\boldsymbol{f} \cdot \boldsymbol{j} = -I_{1} + I_{2}$$
$$\Rightarrow I_{1} = I_{2}$$

2.2 Gesetz von Biot-Savart

stationärer Strom in Leiter \rightarrow Magnetfeld

Das Magnetfeld d \boldsymbol{B} am Ort \boldsymbol{r} verursacht durch Strom I im Linienelement d \boldsymbol{l} in \boldsymbol{r}' .

$$d\mathbf{B}(\mathbf{r}) = k' I d\mathbf{l} \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$|\mathrm{d} m{B}| \propto I, \ |\mathrm{d} m{l}|, \ \frac{1}{|m{r} - m{r}'|^2}$$

Richtung von: $d\mathbf{B} \propto d\mathbf{l} \times (\mathbf{r}, \mathbf{r}')$

Die Konstante k' im SI-Einheiten-System ist:

$$k' = \frac{\mu_0}{4\pi}$$

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{V s}}{\text{A m}}$$

Sie ist definiert über:

$$\varepsilon_0 \mu_0 = \frac{1}{c^2}$$
 c : Lichtgeschw. in Vakuum

Einheit:

$$[\boldsymbol{B}] = rac{\mathrm{V} \ \mathrm{s}}{\mathrm{m}^2} = 1 \ \mathrm{Tesla}$$

Biot-Savart-Gesetz

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} I \int_{\gamma} \mathrm{d}\boldsymbol{l}' \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

Diese Formel gibt das Magnetfeld für einen Stromdurchflossenen dünnen Leiter an.

Für eine ausgedehnte Stromdichte j(r) gilt:

"d³
$$r\boldsymbol{j}(\boldsymbol{r}) = Id\boldsymbol{l}$$
" $\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3r \boldsymbol{j}(\boldsymbol{r}') \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$

Ähnlich in der Elektrostatik:

$$E(r) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \rho(r') \frac{r - r'}{|r - r'|^3}$$

Hier ist $\rho(r)$ aber ein Skalarfeld. j(r) ist ein Vektorfeld! Deshalb ist die Berechnung von Magnetfeldern komplizierter.

Beispiel: Magnetfeld eines langen Drahtes:

$$j(r) = I\delta(x)\delta(y)e_z$$

Setzen wir dies nun ins Biot-Savart-Gesetz ein, erhalten wir das ${m B}\text{-Feld}$ dieses Leiters:

$$B(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3r' I \delta(x') \delta(y') \mathbf{e}_z \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

$$\mathbf{r}' = (0,0,z')$$

$$= \frac{\mu_0}{4\pi} \int_{-\infty}^{\infty} dz' \mathbf{e}_z \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

Nebenrechnung:

$${m B}({m r})$$
 hängt nicht von z ab $\to {m r}=(x,y,0) \quad \to {m r}-{m r}'=(x,y,-z')$

$$e_z \times (r - r') = \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$= \frac{\mu_0 I}{4\pi} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} \int_{-\infty}^{\infty} dz' \frac{1}{[x^2 + y^2 + z'^2]^{3/2}}$$

$$= \frac{\mu_0 I}{4\pi} \frac{2}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{2\pi} \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$
(*)

In Zylinderkoordinaten:

$$\mathbf{r} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ z \end{pmatrix} \qquad \rho^2 = x^2 + y^2$$

$$\mathbf{e}_{\varphi} = \frac{\frac{\partial \mathbf{r}}{\partial \varphi}}{|\frac{\partial \mathbf{r}}{\partial \varphi}|} = \frac{1}{\rho} \begin{pmatrix} -\rho \sin \varphi \\ \rho \cos \varphi \\ 0 \end{pmatrix} = \frac{1}{\sqrt{x^2 + y^2}} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$$

$$\Rightarrow \quad \boldsymbol{B} = \frac{\mu_0}{2\pi} I \frac{1}{\rho} \boldsymbol{e}_{\varphi}$$

2.3 Kraft eines äußeren Magnetfeldes auf einen Stromdurchflossenen Leiter

$$\mathrm{d} m{F} = I \mathrm{d} m{l} imes m{B}(m{r})$$

$$|\mathrm{d} m{F}| \propto I, \ |\mathrm{d} m{l}|, \ |m{B}|$$
 Richtung von: $\mathrm{d} m{F} \propto \mathrm{d} m{l} imes m{B}(m{r})$

Damit ist die Kraft auf eine beliebige Leiterschleife:

$$m{F} = I \int_{\gamma} \mathrm{d}m{l} imes m{B}(m{r})$$

Für eine ausgedehnte Stromverteilung gilt dann:

$$m{F} = \int \mathrm{d}^3 r \; m{j}(m{r}) imes m{B}(m{r})$$

2.3.1 Kraft zwischen zwei Stromdurchflossenen Leitern

 I_2 erzeugt am Ort \boldsymbol{r}_1 das Magnetfeld:

$$\boldsymbol{B}(\boldsymbol{r}_1) = \frac{\mu_0}{4\pi} I_2 \int_{\gamma} d\boldsymbol{l}_2 \times \frac{\boldsymbol{r}_1 - \boldsymbol{r}_2}{|\boldsymbol{r}_1 - \boldsymbol{r}_2|^3}$$

 \rightarrow Kraft auf Linienelement d l_1 in r_1 :

$$d\mathbf{F}_{12} = I_1 d\mathbf{l}_1 \times \mathbf{B}(\mathbf{r}_1)$$

$$= \frac{\mu_0}{4\pi} I_1 I_2 d\mathbf{l}_1 \times \int_{\gamma_2} \times \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|^3}$$

Die Kraft auf Leiterschleife 1 ist dann:

$$oldsymbol{F}_{12} = rac{\mu_0}{4\pi} I_1 I_2 \int_{\gamma_1} \int_{\gamma_2} \mathrm{d}oldsymbol{l}_1 imes \left(\mathrm{d}oldsymbol{l}_2 imes rac{oldsymbol{r}_1 - oldsymbol{r}_2}{|oldsymbol{r}_1 - oldsymbol{r}_2|^3}
ight)$$

Beispiel: Kraft zwischen zwei parallelen Drähten

$$d\mathbf{\textit{F}}_{12} = \frac{\mu_0}{4\pi} I_1 I_2 d\mathbf{\textit{l}}_1 \times \int_{\gamma} d\mathbf{\textit{l}}_2 \times \frac{\mathbf{\textit{r}}_1 - \mathbf{\textit{r}}_2}{|\mathbf{\textit{r}}_1 - \mathbf{\textit{r}}_2|^3}$$

$$e_z dl_1$$

Aus der Skizze gilt:

$$d\mathbf{l}_2 = dz_2\mathbf{e}_z$$
 $\mathbf{r}_1 = (0, 0, 0)$ $\mathbf{r}_2 = (a, 0, z_2)$

Nebenrechnung:

$$d\mathbf{l}_2 \times (\mathbf{r}_1 - \mathbf{r}_2) = dz_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} -a \\ 0 \\ -z_2 \end{pmatrix} = dz_2 \begin{pmatrix} 0 \\ -a \\ 0 \end{pmatrix}$$

$$\rightarrow d\mathbf{F}_{12} = \frac{\mu_0}{4\pi} I_1 I_2 dl_1 \underbrace{e_z \times \begin{pmatrix} 0 \\ -a \\ 0 \end{pmatrix}}_{=a\mathbf{e}_x} \underbrace{\int_{-\infty}^{\infty} dz_2 \frac{1}{\left(a^2 + z_2^2\right)^{3/2}}}_{=\frac{2}{a^2} \text{ wie oben(??)}} \qquad \uparrow \rightarrow \downarrow \uparrow \qquad \downarrow \uparrow$$

Kraft pro Länge:

$$rac{\mathrm{d}oldsymbol{F}_{12}}{\mathrm{d}l_1} = rac{\mu_0}{2\pi} rac{I_1I_2}{a} oldsymbol{e}_x$$

2.4 Feldgleichungen der Magnetostatik und Vektorpotential

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int \mathrm{d}^3 r' \boldsymbol{j}(\boldsymbol{r}') \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

2.4.1 Vektorpotential

$$\boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \, \boldsymbol{j}(\boldsymbol{r'}) \times \underbrace{\frac{\boldsymbol{r} - \boldsymbol{r'}}{|\boldsymbol{r} - \boldsymbol{r'}|^3}}_{-\nabla_{\boldsymbol{r}} \times \left(\boldsymbol{j}(\boldsymbol{r'}) \frac{1}{|\boldsymbol{r} - \boldsymbol{r'}|}\right)}$$

Mit einer Identität des ersten Übungsblattes:

$$\nabla \times (f\mathbf{G}) = f\nabla \times \mathbf{G} - \mathbf{G} \times \nabla f$$

(Die Rotation von G fällt weg, da j nur von r' abhängt.)

$$\Rightarrow \quad \boldsymbol{B}(\boldsymbol{r}) = \boldsymbol{\nabla}_{\boldsymbol{r}} \times \frac{\mu_0}{4\pi} \int \mathrm{d}^3 r' \frac{\boldsymbol{j}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} = \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})$$
Vektorpotential

$$m{B}(m{r}) = m{
abla} imes m{A}(m{r}) \quad \leftarrow m{A}$$
 nicht eindeutig festgelegt

$$A' = A + G$$
 mit $\nabla \times G = 0$ \rightarrow $G(r) = \nabla \Lambda(r)$
 \rightarrow $\nabla \times A' = \nabla \times A + \nabla \times G = B$

$$\Rightarrow A(r) = \frac{\mu_0}{4\pi} \int d^3r' \frac{j(r')}{|r-r'|} + \nabla \Lambda(r) \Rightarrow \nabla \times A(r) = B(r)$$

Transformation: Eichtransformation

$$m{A}(m{r})
ightarrow m{A}' = m{A} + m{\nabla} \Lambda$$

Magnetostatik: übliche Wahl: $\Lambda \equiv 0$

$$\Rightarrow$$
 $\mathbf{A} = \frac{\mu_0}{4\pi} \int d^3r' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$

Eine andere Eichung ist die Coulomb-Eichung:

$$\Rightarrow \nabla \cdot \mathbf{A} = 0$$

$$\nabla \cdot \mathbf{A} = \frac{\mu_0}{4\pi} \int d^3 r' \underbrace{\nabla_{\mathbf{r}} \cdot \left(\mathbf{j}(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \right)}_{= \mathbf{j}(\mathbf{r}') \cdot \underbrace{\nabla_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|}}_{= -\nabla_{\mathbf{r}'} \cdot \left(\mathbf{j}(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) + \underbrace{\left(\nabla_{\mathbf{r}'} \cdot \mathbf{j}(\mathbf{r}') \right)}_{= 0} \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

$$= -\frac{\mu_0}{4\pi} \int_{\mathbb{R}^3} d^3 r' \nabla_{\mathbf{r}'} \cdot \left(\frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right)$$

$$= -\frac{\mu_0}{4\pi} \lim_{R \to \infty} \int_{K_R(0)} d^3 r' \nabla_{\mathbf{r}'} \cdot \left(\frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \right)$$

$$= \frac{\mu_0}{4\pi} \lim_{R \to \infty} \int_{\partial K_R(0)} d\mathbf{f}' \cdot \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} = 0$$

Beispiel: homogenes Magnetfeld

$$m{B} = m{B}_0 \qquad m{B} = m{
abla} imes m{A}$$
 $m{A} = rac{1}{2} m{B} imes m{r}$

Mit der Identität:

$$\nabla \times (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{a}(\nabla \cdot \boldsymbol{b}) - \boldsymbol{b}(\nabla \cdot \boldsymbol{a}) + (\boldsymbol{b} \cdot \nabla)\boldsymbol{a} - (\boldsymbol{a} \cdot \nabla)\boldsymbol{b}$$

$$\rightarrow \nabla \times \boldsymbol{A} = \frac{1}{2}\nabla \times (\boldsymbol{B} \times \boldsymbol{r}) = \frac{1}{2}\boldsymbol{B}\underbrace{\nabla \cdot \boldsymbol{r}}_{=3} - \frac{1}{2}\underbrace{(\boldsymbol{B} \cdot \nabla)\boldsymbol{r}}_{=\boldsymbol{B}} = \boldsymbol{B}$$

Mit der Identität:

$$\nabla \cdot (\boldsymbol{a} \times \boldsymbol{b}) = \boldsymbol{b} \cdot (\nabla \times \boldsymbol{a}) - \boldsymbol{a} \cdot (\nabla \times \boldsymbol{b})$$

$$\Rightarrow \nabla \cdot \boldsymbol{A} = \frac{1}{2} \nabla \cdot (\boldsymbol{B} \times \boldsymbol{r}) = -\frac{1}{2} \boldsymbol{B} \cdot \underbrace{(\nabla \times \boldsymbol{r})}_{=0} = 0$$

andere mögliche Wahl:

$$m{A}' = rac{1}{2} m{B} \times m{r} + \underbrace{m{\nabla} rac{r^2}{2}}_{=m{r}} = m{A} + m{r}$$
 $m{\nabla} \times m{A}' = \underbrace{m{\nabla} \times m{A}}_{=m{B}} + \underbrace{m{\nabla} \times m{r}}_{=0} = m{B}$

$$oldsymbol{B}(oldsymbol{r}) = rac{\mu_0}{4\pi} \int \mathrm{d}^3 r' oldsymbol{j}(oldsymbol{r}') imes rac{oldsymbol{r} - oldsymbol{r}'}{|oldsymbol{r} - oldsymbol{r}'|^3} = oldsymbol{
abla} imes oldsymbol{A}(oldsymbol{r})$$

2.4.2 Feldgleichungen der Magnetostatik

Divergenz (Quellen)

$$abla \cdot \boldsymbol{B}(\boldsymbol{r}) = \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})) = 0$$

$$\Rightarrow \quad \boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r}) = 0$$

In der Elektrostatik gilt:

$$oldsymbol{
abla} \cdot oldsymbol{E}(oldsymbol{r}) = rac{1}{arepsilon_0}
ho(oldsymbol{r})$$

Es gibt also keine "magnetischen Ladungen" wie beim elektrischen Feld. integrale Formulierung:

$$0 = \int_{V} d^{3}r \boldsymbol{\nabla} \cdot \boldsymbol{B} = \int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{B}$$

Rotation (Wirbel)

$$oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A}$$

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \nabla \Lambda$$

$$\Rightarrow \nabla \times \mathbf{B} = \nabla \times (\nabla \times \mathbf{A})$$

$$= \nabla (\nabla \cdot \mathbf{A}) - \Delta \mathbf{A}$$

$$\nabla \cdot \mathbf{A} = \underbrace{\nabla \cdot \left(\frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}\right)}_{=0} + \nabla \cdot (\nabla \Lambda) = \Delta \Lambda$$

$$\Delta \mathbf{A} = \frac{\mu_0}{4\pi} \int d^3 r' \mathbf{j}(\mathbf{r}') \underbrace{\Delta \frac{1}{|\mathbf{r} - \mathbf{r}'|}}_{=-4\pi\delta(\mathbf{r} - \mathbf{r}')} + \Delta \nabla \Lambda = -\mu_0 \mathbf{j}(\mathbf{r}) + \Delta (\nabla \Lambda)$$

mit:
$$\Delta \boldsymbol{A} = \begin{pmatrix} \Delta A_x \\ \Delta A_y \\ \Delta A_z \end{pmatrix}$$

$$\Rightarrow$$
 $\nabla \times \boldsymbol{B} = \nabla (\Delta \Lambda) + \mu_0 \boldsymbol{j} - \Delta (\nabla \Lambda) = \mu_0 \boldsymbol{j}$

Kürzbar, da partielle Ableitungen vertauschbar sind.

$$oldsymbol{
abla} imes oldsymbol{B} = \mu_0 oldsymbol{j}$$

integrale Formulierung:

$$\int_{\partial F} d\boldsymbol{r} \cdot \boldsymbol{B}(\boldsymbol{r}) = \int_{F} d\boldsymbol{f} \cdot (\boldsymbol{\nabla} \times \boldsymbol{B}) = \mu_{0} \underbrace{\int_{F} d\boldsymbol{f} \cdot \boldsymbol{j}(\boldsymbol{r})}_{I_{F}} = \mu_{0} I_{F}$$

Ampèresches Durchflutungsgesetz

$$\Rightarrow \quad \oint_{\partial F} \mathrm{d} \boldsymbol{r} \cdot \boldsymbol{B}(\boldsymbol{r}) = \mu_0 I_F$$

Magnetfeld eines stromdurchflossenen Leiters mit homogener Stromdichte

Aufgrund der Symmetrie verwenden wir Zylinderkoordinaten:

$$m{r} = egin{pmatrix}
ho\cosarphi \
ho\sinarphi \ z \end{pmatrix}$$

Die Stromdichte ist dann:

$$egin{aligned} oldsymbol{j} &= oldsymbol{e}_z \left\{ egin{array}{ll} rac{I}{\pi R^2} &
ho \leq R \\ 0 & \mathrm{sonst.} \end{array}
ight. \ &= oldsymbol{e}_z rac{I}{\pi R^2} heta(R-
ho) \end{aligned}$$

Symmetrie:

$$m{B}(m{r}) = B_{arphi}(
ho)m{e}_{arphi} \qquad m{e}_{arphi} = egin{pmatrix} -\sinarphi \\ \cosarphi \\ 0 \end{pmatrix}$$

F ist ein Kreis mit Radius ρ (kleiner oder größer als R) Hierauf wenden wir das Ampèresche Durchflutungsgesetz an:

Unter Verwendung von:

$$d\mathbf{f}' = \mathbf{e}_z df = \mathbf{e}_z \rho' d\rho' d\varphi'$$

$$\mu_{0} \int_{F} d\mathbf{f}' \cdot \mathbf{j}(\mathbf{r}') = \int_{\partial F} d\mathbf{r}' \cdot \mathbf{B}(\mathbf{r}')$$

$$= \mu_{0} \int_{0}^{\rho} d\rho' \int_{0}^{2\pi} d\varphi' \rho' \frac{I}{\pi R^{2}} \theta(R - \rho)$$

$$= \mu_{0} \frac{I}{\pi R^{2}} 2\pi \int_{0}^{\rho} d\rho' \rho' \theta(R - \rho)$$

$$= \begin{cases} \int_{0}^{R} \cdots = \frac{1}{2} R^{2} & \rho > R \\ \int_{0}^{\rho} \cdots = \frac{1}{2} \rho^{2} & \rho \leq R \end{cases}$$

$$\Rightarrow \mu_{0} \int_{F} d\mathbf{f}' \cdot \mathbf{j}(\mathbf{r}') = \mu_{0} \begin{cases} I & \rho > R \\ \frac{\rho^{2}}{R^{2}} I & \rho \leq R \end{cases}$$

$$\int_{\partial F} d\mathbf{r}' \cdot \mathbf{B}(\mathbf{r}') = \int_{0}^{2\pi} d\varphi \frac{d\mathbf{r}'}{d\varphi} \cdot \mathbf{B} = \int_{0}^{2\pi} d\varphi \rho B_{\varphi}(\rho) = 2\pi \rho B_{\varphi}(\rho)$$

mit:

$$m{r}(
ho) = egin{pmatrix}
ho\cosarphi \\
ho\sinarphi \\ 0 \end{pmatrix} \qquad rac{\mathrm{d}r'}{\mathrm{d}arphi} = egin{pmatrix} -
ho\sinarphi \\
ho\cosarphi \\ 0 \end{pmatrix} =
hom{e}_arphi$$

Damit erhalten wir:

$$\mu_0 \int_F \mathrm{d} \boldsymbol{f}' \cdot \boldsymbol{j}(\boldsymbol{r}') = 2\pi \rho B_{\varphi}(\rho)$$

Daraus folgt:

$$\Rightarrow \mu_0 I_F = \rho B_{\varphi}(\rho) 2\pi$$

Dies können wir umstellen in:

$$\Rightarrow B_{\varphi}(\rho) = \frac{\mu_0}{2\pi} \frac{I_F}{\rho}$$

$$\Rightarrow \mathbf{B}(\mathbf{r}) = \frac{\mu_0}{2\pi} I \mathbf{e}_{\varphi} \begin{cases} \frac{1}{\rho} & \rho > R \\ \frac{\rho}{R^2} & \rho \le R \end{cases}$$

Differentialgleichung für das Vektorpotential

$$oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A} \qquad oldsymbol{
abla} imes oldsymbol{B} = \mu_0 oldsymbol{j}$$

$$\mu_0 \mathbf{j} = \nabla \times \mathbf{B} = \nabla \times (\nabla \times \mathbf{A})$$
$$= \nabla (\nabla \cdot \mathbf{A}) - \Delta \mathbf{A}$$

falls $\nabla \cdot \mathbf{A} = 0$ (Coulomb-Eichung)

$$\Rightarrow \qquad \boxed{ \Delta oldsymbol{A} = -\mu_0 oldsymbol{j} }$$

Wichtig: Die Komponenten sind nicht unabhängig voneinander aufgrund unserer Annahme $\nabla \cdot A=0$ analog: $\Delta \Phi=-\frac{1}{\varepsilon_0}\rho$

2.4.3 Feldgleichungen der Magnetostatik (Wiederholung)

$$abla \cdot \boldsymbol{B} = 0$$

$$\int_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{B} = 0$$

$$abla \times \boldsymbol{B} = \mu_0 \boldsymbol{j} \quad \text{(Ampère)}$$

$$\int_{\partial F} d\boldsymbol{r} \cdot \boldsymbol{B} = \mu_0 I_F$$

Und für das Vektorpotential:

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} \qquad \Rightarrow \Delta \boldsymbol{A} = -u_0 \boldsymbol{i}$$

2.5 Multipolentwicklung - Magnetisches Moment

$$\boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\boldsymbol{j}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

64

mit $\nabla \cdot \mathbf{A} = 0$ (Coulomb-Eichung)

Wir betrachten eine lokalisierte Ladungsverteilung:

$$j(r) = \begin{cases} \text{beliebig} & r < R \\ 0 & r > R \end{cases}$$

Für r > R > r' machen wir eine Taylorentwicklung:

$$\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} = \frac{1}{r} + \frac{\boldsymbol{r}}{r^3} \cdot \boldsymbol{r}' + \dots$$

$$\Rightarrow \boldsymbol{A}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left\{ \frac{1}{r} \int d^3 r' \boldsymbol{j}(\boldsymbol{r}') + \frac{1}{r^3} \int d^3 r' (\boldsymbol{r} \cdot \boldsymbol{r}') \boldsymbol{j}(\boldsymbol{r}') + \dots \right\}$$

Es gilt: in der Magnetostatik $\nabla \cdot \mathbf{j} = 0$

i) Das Integral über die Stromdichte verschwindet:

$$\int d^3r' \boldsymbol{j}(\boldsymbol{r}') = 0$$

ii)
$$\int d^3r'(\mathbf{r} \cdot \mathbf{r}') \mathbf{j}(\mathbf{r}) = -\mathbf{r} \times \underbrace{\frac{1}{2} \int d^3r'(\mathbf{r}' \times \mathbf{j}(\mathbf{r}'))}_{\substack{:= \mathbf{m} \\ \text{magnetisches} \\ \text{Dipolmoment}}}$$

Die Entwicklung des Vektorpotentials wird dann zu:

$$\Rightarrow A(r) = \frac{\mu_0}{4\pi} \underbrace{\frac{m{m} imes r}{r^3}}_{\propto rac{1}{r^2}}$$

Für das Magnetfeld gilt:

$$\Rightarrow \quad B = \mathbf{\nabla} imes \mathbf{A} = rac{\mu_0}{4\pi} \mathbf{\nabla} imes \left(\mathbf{m} imes rac{\mathbf{r}}{r^3}
ight)$$

Mit der Identität: $\nabla \times (f\mathbf{G}) = f \nabla \times \mathbf{G} - \mathbf{G} \times \nabla f$

$$\begin{split} \boldsymbol{\nabla} \times \left(\frac{1}{r^3} (\boldsymbol{m} \times \boldsymbol{r}) \right) &= \frac{1}{r^3} \underbrace{\boldsymbol{\nabla} \times (\boldsymbol{m} \times \boldsymbol{r})}_{=2\boldsymbol{m}} - (\boldsymbol{m} \times \boldsymbol{r}) \times \underbrace{\boldsymbol{\nabla} \frac{1}{r^3}}_{=-\frac{3r}{r^5}} \\ &= \frac{1}{r^3} 2\boldsymbol{m} + \frac{3}{r^5} \underbrace{(\boldsymbol{m} \times \boldsymbol{r}) \times \boldsymbol{r}}_{(\boldsymbol{m} \cdot \boldsymbol{r})\boldsymbol{r} - (\boldsymbol{r} \cdot \boldsymbol{r})\boldsymbol{m}} \\ &= \frac{3\boldsymbol{r} (\boldsymbol{m}\boldsymbol{r})}{r^5} - \frac{\boldsymbol{m}}{r^3} \end{split}$$

Beim B-Feld erhalten wir für den ersten nicht verschwindenden Term den Dipolterm:

Multipolentwicklung des Magnetfeldes (1. Term)

$$\Rightarrow \quad \boldsymbol{B}(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \left[\frac{3\boldsymbol{r}(\boldsymbol{m} \cdot \boldsymbol{r})}{r^5} - \frac{\boldsymbol{m}}{r^3} \right] \qquad r > R$$

Der große Unterschied zum \boldsymbol{E} -Feld ist, dass der führende Term ein Dipol ist. Das \boldsymbol{B} -Feld hat also keinen Monopol.

Beispiel: Magnetisches Dipolmoment einer Drahtschleife

$$ho = \sqrt{x^2 + y^2}$$
 $e_{\varphi} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$ I R z $j = I\delta(\rho - R)\delta(z)e_{\varphi}$ $m = \frac{1}{2}\int \mathrm{d}^3 r \; m{r} imes m{j}(m{r})$

Nebenrechnung:

$$r \times e_{\varphi} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ z \end{pmatrix} \times \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}$$
$$= \begin{pmatrix} -z \cos \varphi \\ -z \sin \varphi \\ \rho \end{pmatrix}$$
$$= \rho \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - z \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix}$$
$$= \rho e_{z} - z e_{\varphi}$$

$$\Rightarrow \mathbf{m} = \frac{1}{2} I \int_0^\infty \rho \, d\rho \int_0^{2\pi} d\varphi \int_{-\infty}^\infty dz \, \delta(\rho - R) \delta(z) (\rho \mathbf{e}_z - z \mathbf{e}_\varphi)$$
$$= \frac{I}{2} R^2 2\pi \mathbf{e}_z$$

$$\Rightarrow \quad \boldsymbol{m} = \underbrace{\pi R^2}_F I \boldsymbol{e}_z = F I \boldsymbol{e}_z$$

Das Magnetische Moment einer Spule:

$$m = NI \cdot Fe_z$$

[Folie: Vergleich idealer Dipol und Leiterschleife] [Folie: Vergleich *E*-Feld einer elektrischer Dipol und Magnetfeld um Leiterschleife]

2.5.1 Kraft auf eine lokalisierte Stromverteilung in einem äußeren Magnetfeld ${\cal B}$

 $m{j}(m{r})=0$ für $|m{r}|>0$ Taylorentwicklung von $m{B}(m{r})$ um $m{r}=0$:

$$egin{aligned} m{B}(m{r}) &= m{B}(0) + (m{r} \cdot m{\nabla}) m{B}(m{r}) igg|_{m{r}=0} + \dots \ \\ &\longrightarrow & m{F} = \int \mathrm{d}^3 r \left(m{j}(m{r}) imes m{B}(m{r})
ight) \end{aligned}$$

$$\boldsymbol{F} = \underbrace{\int d^3 r \left(\boldsymbol{j}(\boldsymbol{r}) \times \boldsymbol{B}(0) \right)}_{=\left(\underbrace{\int d^3 r \boldsymbol{j}(\boldsymbol{r})}_{=0}\right) \times \boldsymbol{B}(0)} + \int d^3 r \left[\boldsymbol{j}(\boldsymbol{r}) \times (\boldsymbol{r} \cdot \boldsymbol{\nabla}) \boldsymbol{B}(\boldsymbol{r}) \right] + \dots$$

Der verschwindende Teil ist ein homogenes B-Feld (B= const.), und übt daher keine Kraft auf Stromverteilung aus.

Die Komponenten des Kraftvektors sind:

$$\boldsymbol{F}_i = \int \mathrm{d}^3 r \left[\boldsymbol{j} \times (\boldsymbol{r} \cdot \boldsymbol{\nabla}) \boldsymbol{B} \right]_i$$

Nun nutzen wie die folgende Identität:

$$(\boldsymbol{a} \times \boldsymbol{b})_i = \sum_{k,l} \varepsilon_{ikl} \ a_k b_l$$

 ε_{ikl} ist das Levi-Civita Symbol.

Damit ergibt sich:

$$egin{aligned} (m{j} imes (m{r} \cdot m{
abla}) m{B})_i &= \sum_{k,l} arepsilon_{ikl} \ j_k \underbrace{[(m{r} \cdot m{
abla}) B]_l}_{(m{r} \cdot m{
abla}) B_l = (m{
abla} B_l) \cdot m{r} \end{aligned}$$
 $= \sum_{k,l} arepsilon_{ikl} \ j_k (m{
abla} B_l \cdot m{r})$

$$\rightarrow F_{i} = \sum_{k,l} \varepsilon_{ikl} \underbrace{\int d^{3}r \left[(\boldsymbol{\nabla}B_{l}) \cdot \boldsymbol{r} \right] j_{k}}_{ = \int d^{3}r \left[\left[(\boldsymbol{\nabla}B_{l}) \cdot \boldsymbol{r} \right] \boldsymbol{j} \right]_{k} \overset{\text{Identität}}{=} -\frac{1}{2} \left[\boldsymbol{\nabla}B_{l} \times \int d^{3}r \; \boldsymbol{r} \times \boldsymbol{j} \right]$$

Hier die benutzte Identität (aus den Hausaufgaben):

$$\frac{1}{2}\boldsymbol{a} \times \int d^3r(\boldsymbol{r} \times \boldsymbol{j}(\boldsymbol{r})) = -\int d^3r(\boldsymbol{a} \cdot \boldsymbol{r})\boldsymbol{j}(\boldsymbol{r}) \qquad (\boldsymbol{\nabla} \cdot \boldsymbol{j} = 0)$$

Damit ergibt sich für die Kraft:

$$F_{i} = -\frac{1}{2} \sum_{k,l} \varepsilon_{ikl} \left[\nabla B_{l} \times \underbrace{\int d^{3}r \ r \times j(r)}_{=2m} \right]_{k}$$

$$= -\sum_{k,l} \varepsilon_{ikl} \underbrace{(\nabla B_{l} \times m)}_{-[m \times \nabla B_{l}]_{k} = -(m \times \nabla)_{k} B_{l}}$$

$$= \sum_{k,l} \varepsilon_{ikl} \ (m \times \nabla)_{k} B_{l}$$

$$= [(m \times \nabla) \times B]_{i}$$

$$F_{i} = [(m \times \nabla) \times B]_{i}$$

Wir können nun mit der Identität umschreiben:

$$(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c} = \boldsymbol{b}(\boldsymbol{c} \cdot \boldsymbol{a}) - \boldsymbol{a}(\boldsymbol{b} \cdot \boldsymbol{c})$$

$$F = (m \times \nabla) \times B(0)$$

$$= \nabla(m \cdot B) - m(\underbrace{\nabla \cdot B}_{=0})$$

$$\Rightarrow \quad \boldsymbol{F} = \boldsymbol{\nabla} (\boldsymbol{m} \cdot \boldsymbol{B}(0))$$

Also: $\mathbf{m} \perp \mathbf{B} \Rightarrow \mathbf{F} = 0$

 \rightarrow potentielle Energie:

$$W = -\boldsymbol{m} \cdot \boldsymbol{B}(0)$$

Drehmoment:

$$m{N} = m{m} imes m{B}(0)$$
 $m{N} = \int \mathrm{d}^3 r \; m{r} imes (m{j} imes m{B})$

2.6 Magnetostatik in Materie

mikroskopische Feldgleichungen:

$$\nabla \cdot \boldsymbol{B} = 0$$
 $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{i}$

2.6.1 Makroskopische Feldgleichungen

Definition Mittlung:

$$\langle \boldsymbol{B} \rangle(\boldsymbol{r}) = \int \mathrm{d}^3 r' f(\boldsymbol{r}') \boldsymbol{B}(\boldsymbol{r} - \boldsymbol{r}')$$

Es muss weiterhin gelten:

$$\nabla \cdot \langle \boldsymbol{B} \rangle (\boldsymbol{r}) = 0$$
 $\nabla \times \langle \boldsymbol{B} \rangle (\boldsymbol{r}) = \mu_0 \langle \boldsymbol{j} \rangle (\boldsymbol{r})$

Aus Zeitgründen werden wir hier nichts weiter genau herleiten wie in der Elektrostatik, sondern im wesentlichen die Ergebnisse Besprechen.

Aufteilung der Stromdichte:

$$oldsymbol{j} = oldsymbol{j}_g + oldsymbol{j}_f$$

 $\langle j_g \rangle$

Mittlung:

$$ightarrow raket{\langle oldsymbol{j}_g
angle = oldsymbol{
abla} imes \langle oldsymbol{j}_m oldsymbol{m} \delta(oldsymbol{r}' - oldsymbol{r}_n)
angle(oldsymbol{r}) + \dots} \ = oldsymbol{
abla} imes oldsymbol{M}(oldsymbol{r})$$

Mit

$$\boldsymbol{m}_n = \frac{1}{2} \int \mathrm{d}^3 r' \boldsymbol{r}' \times \boldsymbol{j}_n(\boldsymbol{r}')$$

Und M(r): makroskopische Magnetisierung

$$[\boldsymbol{M}] = \frac{A}{m^2} m = \frac{A}{m} = \frac{\text{magnetisches Dipolmoment}}{\text{Volumen}}$$

$$\Rightarrow \quad \boldsymbol{\nabla} \times \langle \boldsymbol{B} \rangle (\boldsymbol{r}) = \mu_0 \langle \boldsymbol{j} \rangle (\boldsymbol{r}) = \mu_0 \langle \boldsymbol{j}_f \rangle (\boldsymbol{r}) + \mu_0 \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r}) + \dots$$

$$\Rightarrow \quad \boldsymbol{\nabla} \times \underbrace{\left(\frac{1}{\mu_0} \langle \boldsymbol{B} \rangle (\boldsymbol{r}) - \boldsymbol{M}(\boldsymbol{r}) - \dots\right)}_{:=\boldsymbol{H}(\boldsymbol{r})} = \langle \boldsymbol{j}_f \rangle (\boldsymbol{r})$$

$$[\boldsymbol{H}] = \frac{A}{m}$$

2.6.2 Makroskopische Feldgleichunge der Magnetostatik

$$abla \cdot \boldsymbol{B} = 0$$
 $\nabla \times \boldsymbol{H} = \boldsymbol{j}_f$
$$\boldsymbol{H} = \frac{1}{\mu_0} \boldsymbol{B} - \boldsymbol{M} - \dots$$

Integrale Form:

$$\oint_{\partial V} d\boldsymbol{f} \cdot \boldsymbol{B} = \int_{V} d^{3}r \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$$

$$\oint_{\partial F} d\boldsymbol{r} \cdot \boldsymbol{H} = \int_{F} d\boldsymbol{f} \boldsymbol{\nabla} \times \boldsymbol{H} = \int_{F} d\boldsymbol{f} \cdot \boldsymbol{j}_{f} = I_{F}$$

Magnetisierung \rightarrow Zusatzfeld \boldsymbol{B}_M

$$\boldsymbol{B} = \boldsymbol{B}_0 + \boldsymbol{B}_M$$

mit $\boldsymbol{B}_0 = \mu_0 \boldsymbol{H}$ und $\boldsymbol{B}_M = \mu_0 \boldsymbol{M}$

2.6.3 Vektorpotential

$$egin{aligned} m{B} &= m{
abla} imes m{A} &
ightarrow & \langle m{B}
angle &= m{
abla} imes \langle m{A}
angle \ m{A} &= 0 & m{
abla} \cdot m{A} &= 0 \end{aligned}$$

$$m{A}(m{r}) &= rac{\mu_0}{4\pi} \int \mathrm{d}^3 r' rac{m{j}(m{r}')}{|m{r} - m{r}'|} \qquad (\Lambda = 0 \quad m{
abla} \cdot m{A} &= 0)$$

Wir benutzen $\langle \boldsymbol{j} \rangle = \langle \boldsymbol{j}_f \rangle + \langle \boldsymbol{j}_g \rangle$ und $\langle \boldsymbol{j}_g \rangle = \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r})$

$$\Rightarrow \langle \boldsymbol{A} \rangle (\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\langle \boldsymbol{j} \rangle (\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

$$= \frac{\mu_0}{4\pi} \int d^3 r' \frac{\langle \boldsymbol{j}_f \rangle (\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|} + \underbrace{\frac{\mu_0}{4\pi} \int d^3 r' \frac{\boldsymbol{\nabla}_{\boldsymbol{r}'} \times \boldsymbol{M}(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}}_{= \frac{\mu_0}{4\pi} \int d^3 r' \boldsymbol{M}(\boldsymbol{r}') \times \frac{(\boldsymbol{r} - \boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|^3}$$

Erklärung der letzten Umformung:

$$\int d^{3}r' \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \nabla_{\boldsymbol{r}'} \times \boldsymbol{M}(\boldsymbol{r}') = \int d^{3}r' \nabla_{\boldsymbol{r}'} \times \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|} \boldsymbol{M}\right) \underbrace{-\left(\nabla_{\boldsymbol{r}'} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|}\right)}_{=\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|}} \times \boldsymbol{M}$$

$$= \underbrace{\int d^{3}r' \nabla_{\boldsymbol{r}'} \times \left(\frac{\boldsymbol{M}}{|\boldsymbol{r} - \boldsymbol{r}'|}\right)}_{=\frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|}} + \int d^{3}r' \boldsymbol{M}(\boldsymbol{r}') \times \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^{3}}$$

$$= \lim_{R \to \infty} \int_{K_{R}(0)} d^{3}r' \nabla_{\boldsymbol{r}'} \times \left(\frac{\boldsymbol{M}}{|\boldsymbol{r} - \boldsymbol{r}'|}\right)$$

$$= \int_{\partial K_{R}(0)} d\boldsymbol{f}' \times \frac{\boldsymbol{M}}{|\boldsymbol{r} - \boldsymbol{r}'|} = 0$$

2.6.4 Magnetisierung und Suszeptibilität

$$M = M(H)$$

lineare Näherung, isotrope Medien:

$$M = \chi_m H$$

 χ_m : magnetische Suszeptibilität

$$\rightarrow \quad \boldsymbol{B} = \mu_0(\boldsymbol{H} + \boldsymbol{M}) = \mu_0(\boldsymbol{H} + \chi_m \boldsymbol{H})$$

$$= \underbrace{(1 + \chi_m)}_{=\mu_r} \mu_0 \boldsymbol{H}$$

$$= \mu \boldsymbol{H}$$

 μ_r : relative Permeabilität $\mu = \mu_0 \mu_r$: Permeabilität

Kapitel 3

Zeitabhängige elektromagnetische Felder - Elektrodynamik

bisher Zeitunabhängige Felder:

$$m{
abla} \cdot m{D} =
ho \qquad m{
abla} imes m{E} = 0 \qquad \text{Elektrostatik}$$
 $m{
abla} \cdot m{B} = 0 \qquad m{
abla} imes m{H} = m{j} \qquad \text{Magnetostatik}$

Zeitabhängige Felder:

$$\boldsymbol{B}(\boldsymbol{r},t) \leftrightarrow \boldsymbol{E}(\boldsymbol{r},t)$$

3.1 Maxwell-Gleichungen

$$oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{D} =
ho \qquad oldsymbol{
abla} imes oldsymbol{E} + rac{\partial oldsymbol{B}}{\partial t} = 0$$
 $oldsymbol{
abla} \cdot oldsymbol{B} = 0 \qquad oldsymbol{
abla} imes oldsymbol{H} - rac{\partial oldsymbol{D}}{\partial t} = oldsymbol{j}$

 $\frac{\partial \boldsymbol{B}}{\partial t}$ ist die Induktion

 $\frac{\partial \mathbf{D}}{\partial t}$ ist der Verschiebungsstrom

3.1.1 Faraday'sches Induktionsgesetz

$$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\int_{F} d\boldsymbol{f} \cdot (\boldsymbol{\nabla} \times \boldsymbol{E}) = -\int d\boldsymbol{f} \cdot \frac{\partial \boldsymbol{B}}{\partial t} = \underbrace{\int_{\partial F} d\boldsymbol{r} \cdot \boldsymbol{E}}_{U_{\text{ind}}} = -\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\int_{F} d\boldsymbol{f} \cdot \boldsymbol{B}}_{\boldsymbol{\Phi}_{m}(t)}$$

 $\Phi_m(t)$ ist der Fluss des ${\pmb B}$ -Feldes durch F

$$U_{\mathrm{ind}} = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{F} \mathrm{d}\boldsymbol{f} \cdot \boldsymbol{B}$$

Bemerkung:

i) Vorzeichen-Strom

$$\partial F$$
 j $t_2 > t_1$ $B(t_1) > B(t_2)$

$$\Phi_m(t_1) = \int_F d\mathbf{f} \mathbf{B}_1 > \Phi_m(t_2) = \int_F d\mathbf{f} \mathbf{B}_2$$
$$\frac{d}{dt} \Phi_m(t) \le 0$$
$$\to U_{\text{ind}} = \int_{\partial F} d\mathbf{r} \cdot \mathbf{E} = -\frac{d}{dt} \Phi_m > 0$$

Mit $j = \sigma E$, wobei σ die Leitfähigkeit des Leiters ist erhalten wir:

$$ightarrow \int_{\partial F} \mathrm{d} m{r} \cdot m{j} > 0 \qquad
ightarrow \quad m{j} \parallel \partial F$$

\Rightarrow Lenz'sche Regel:

Der induzierte Strom und das damit verbundene Magnetfeld sind so gerichtet, dass sie der Ursache ihrer Entstehung entgegenwirken.

Hier fällt das äußere B-Feld ab, wodurch ein Strom entsteht, der wiederum ein B-Feld B_{ind} induziert welches gegen den Abfall wirkt, also das äußere B-Feld verstärkt.

ii) Φ_m hängt nicht von der speziellen Form der Fläche F ab, sondern nur vom Rand ∂F .

Aus der Skizze und mit Satz von Gauß. (Der Fluss durch eine geschlossene Fläche ist gleich 0):

$$\Phi = \int_{F} d\mathbf{f} \cdot \mathbf{B} = 0$$

$$\Phi_{m_{1}} = \Phi_{m_{2}}$$

$$0 = \int_{F} d\mathbf{f} \cdot \mathbf{B} = \underbrace{\int_{F_{1}} d\mathbf{f}_{1} \cdot \mathbf{B}}_{\Phi_{m_{1}}} - \underbrace{\int_{F_{2}} d\mathbf{f}_{2} \cdot \mathbf{B}}_{\Phi_{m_{2}}}$$

- iii) Eine Flussänderung kann auf verschiedene Weise zustandekommen:
 - Veränderung des Magnetfeldes $\boldsymbol{B}(t)$
 - Bewegung der Leiterschleife im äußeren Feld

$$\mathbf{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Ein zeitlich verändertes B-Feld erzeugt ein elektrisches Wirbelfeld analog zu:

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j}$$

3.1.2 Maxwellscher Verschiebungsstrom

Magnetostatik:

$$\nabla \times \boldsymbol{H} = \boldsymbol{j}$$
 Ampère

Dies kann in der Elektrodynamik nicht gelten, dies zeigen wir indem wir auf beiden Seiten die Divergenz bilden.

$$\underbrace{\boldsymbol{\nabla}\cdot(\boldsymbol{\nabla}\times\boldsymbol{H})}_{=0}=\boldsymbol{\nabla}\cdot\boldsymbol{j}\quad\Rightarrow\quad\boldsymbol{\nabla}\cdot\boldsymbol{j}=0\quad\text{bei station\"{a}ren Str\"{o}men}$$

im Allgemeinen haben wir zeitlich abhängige Ströme:

$$\nabla \cdot \boldsymbol{j}(\boldsymbol{r},t) \overset{\text{i.A.}}{\neq} 0$$

Kontinuitätsgleichung:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j} = 0$$

Ergänzung:

$$egin{aligned} oldsymbol{
abla} & oldsymbol{
abla} oldsymbol{
abla} & oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{(\nabla imes oldsymbol{H})} = oldsymbol{
abla} \cdot oldsymbol{j} + oldsymbol{
abla} \cdot oldsymbol{j}_0 \\ & = oldsymbol{
abla} oldsymbol{
abla} \cdot oldsymbol{
abla} \cdot oldsymbol{j}_0 = rac{\partial
ho}{\partial t} oldsymbol{
abla} \cdot old$$

Damit erhalten wir für die die Stromdichte:

$$oldsymbol{
abla} imes oldsymbol{H} - rac{\partial oldsymbol{D}}{\partial t} = oldsymbol{j}$$

Beispiel: Plattenkondensator

$$D = \begin{cases} \sigma e_x & \text{innen} \\ 0 & \text{außen} \end{cases}$$

$$\sigma = \frac{q}{F}$$

$$\frac{\partial \mathbf{D}}{\partial t} = \frac{e_x}{F} \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{I}{F} e_x$$

$$\parallel \mathbf{D}$$

$$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{j}$$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} = \frac{I}{F} e_x$$

$$\downarrow \mathbf{D}$$

$$\downarrow \mathbf{H}$$

$$\downarrow \mathbf{H}$$

$$\downarrow \mathbf{H}$$

3.1.3 Lösung der Differentialgleichungen

$$egin{aligned} oldsymbol{
abla} \cdot oldsymbol{D} &=
ho & oldsymbol{
abla} imes oldsymbol{E} + rac{\partial oldsymbol{B}}{\partial t} = 0 \\ oldsymbol{
abla} \cdot oldsymbol{B} &= 0 & oldsymbol{
abla} imes oldsymbol{H} - rac{\partial oldsymbol{D}}{\partial t} = oldsymbol{j} \end{aligned}$$

Zwei homogene und zwei inhomogene Differentialgleichungen. Zur Lösung benötigt man also zusätzliche Materialgleichungen:

$$B = \mu_0 (H + M)$$
 $D = \varepsilon_0 E + P$

bei linearen Medien:

$$\boldsymbol{B} = \mu \boldsymbol{H} \qquad \boldsymbol{D} = \varepsilon \boldsymbol{E}$$

Die Kraft ist:

$$F = q(E + v \times B)$$

Intagrale Form der Maxwell-Gleichungen

$$\oint_{\partial V} d\mathbf{f} \cdot \mathbf{B} = 0 \qquad \oint_{\partial F} d\mathbf{r} \cdot \mathbf{E} + \frac{d}{dt} \int_{F} d\mathbf{f} \cdot \mathbf{B} = 0$$

$$\oint_{\partial V} d\mathbf{f} \cdot \mathbf{D} = \int_{V} d^{3}r \rho(\mathbf{r}) = Q \qquad \oint_{\partial F} d\mathbf{r} \cdot \mathbf{H} - \frac{d}{dt} \int_{F} d\mathbf{f} \cdot \mathbf{D} = \int_{F} d\mathbf{f} \cdot \mathbf{j} = I$$

Mikroskopische Maxwell-Gleichungen:

formal:

$$m{D} = arepsilon_0 m{E} \qquad m{H} = rac{1}{\mu_0} m{B}$$
 $m{\nabla} \cdot m{B} = 0 \qquad m{\nabla} imes m{E} + rac{\partial m{B}}{\partial t} = 0$ $m{\nabla} \cdot m{E} = rac{1}{arepsilon_0} m{
ho} \qquad m{\nabla} imes m{B} - arepsilon_0 \mu_0 rac{\partial m{E}}{\partial t} = \mu_0 m{j}$

3.2 Potentiale der Elektrodynamik - Eichtransformation

$$\nabla \cdot \boldsymbol{B} = 0 \qquad \boldsymbol{B}(\boldsymbol{r}, t) = \nabla \times \boldsymbol{A}(\boldsymbol{r}, t)$$

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0 \qquad 0 = \nabla \times \boldsymbol{E} + \frac{\partial}{\partial t} \nabla \times \boldsymbol{A}$$

$$= \nabla \times \left(\boldsymbol{E} + \frac{\partial \boldsymbol{A}}{\partial t} \right)$$

$$\Rightarrow \boldsymbol{E} + \frac{\partial \boldsymbol{A}}{\partial t} = -\nabla \Phi$$

 Φ ist ein skalares Potential

$$\Rightarrow \qquad \boldsymbol{E}(\boldsymbol{r},t) = -\boldsymbol{\nabla}\Phi(\boldsymbol{r},t) - \frac{\partial\boldsymbol{A}(\boldsymbol{r},t)}{\partial t}$$

Damit haben wir die beiden homogenen Gleichungen gelöst. Wir können E- und B-Felder nun durch die Potentiale Φ und A ausdrücken.

3.2.1 Bestimmungsgleichung für Φ, A

$$D = \varepsilon E \qquad H = \frac{1}{\mu} B$$

$$\Rightarrow \quad \nabla \cdot E = \frac{1}{\varepsilon} \rho$$

$$\frac{1}{\varepsilon} \rho = \nabla \cdot \left(-\nabla \Phi - \frac{\partial A}{\partial t} \right) = -\Delta \Phi - \frac{\partial}{\partial t} \nabla \cdot A$$

$$\Rightarrow \quad \Delta \Phi + \frac{\partial}{\partial t} \nabla \cdot A = -\frac{1}{\varepsilon} \rho$$

$$\nabla \times B - \varepsilon \mu \frac{\partial E}{\partial t} = \mu j$$

$$\mu j = \underbrace{\nabla \times (\nabla \times A)}_{=\nabla \cdot (\nabla \cdot A) - \Delta A} - \varepsilon \mu \frac{\partial}{\partial t} \left(-\nabla \Phi - \frac{\partial A}{\partial t} \right)$$

$$\Rightarrow \quad \Delta A - \varepsilon \mu \frac{\partial^2 A}{\partial t^2} - \nabla \cdot \left(\nabla \cdot A + \varepsilon \mu \frac{\partial \Phi}{\partial t} \right) = -\mu j$$

3.2.2 Eichtransformation

 Φ , **A** sind durch:

$$oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A} \qquad oldsymbol{E} = -oldsymbol{
abla} \Phi - rac{\partial oldsymbol{A}}{\partial t}$$

nicht eindeutig festgelegt.

Eichtransformation:

$$A'(\mathbf{r},t) = A(\mathbf{r},t) + \nabla \Lambda(\mathbf{r},t)$$

$$\Phi'(\mathbf{r},t) = \Phi(\mathbf{r},t) - \frac{\partial \Lambda(\mathbf{r},t)}{\partial t}$$

$$\nabla \times A' = \nabla \times A + \underbrace{\nabla \times (\nabla \Lambda)}_{=0} = \nabla \times A = B \quad \checkmark$$

$$-\nabla \Phi' - \frac{\partial A'}{\partial t} = -\nabla \Phi + \underbrace{\nabla \frac{\partial \Lambda}{\partial t}}_{=0} - \frac{\partial A}{\partial t} - \frac{\partial A}{\partial t} \underbrace{\nabla \Lambda}_{=0} = E \quad \checkmark$$

 \rightarrow verschiedene Eichungen.

1) Coulomb-Eichung

$$\nabla \cdot \mathbf{A}(\mathbf{r}, t) = 0$$

$$\rightarrow \Delta \Phi(\mathbf{r}, t) = -\frac{1}{\varepsilon} \rho(\mathbf{r}, t)$$

$$\Phi(\mathbf{r}, t) = \frac{1}{4\pi\varepsilon} \int d^3 r' \frac{\rho(\mathbf{r}', t)}{|\mathbf{r} - \mathbf{r}'|}$$

$$\rightarrow \Delta \mathbf{A} - \varepsilon \mu \frac{\partial^2 \mathbf{A}}{\partial t^2} = \mu \mathbf{j} + \varepsilon \mu \nabla \frac{\partial \Phi}{\partial t}$$

Typische Anwendung:

Bei statischen Problemen und bei nicht relativistischen Geschwindigkeiten. Die Coulomb-Eichung ist nicht Lorenz-invariant.

2) Lorenz-Eichung

$$\boldsymbol{\nabla} \cdot \boldsymbol{A} + \varepsilon \mu \frac{\partial \boldsymbol{\Phi}}{\partial t} = 0$$

Im Vakuum: $\varepsilon \mu = \varepsilon_0 \mu_0 = \frac{1}{c^2}$

$$\rightarrow \quad \Delta \Phi + \frac{\partial}{\partial t} \left(-\varepsilon \mu \frac{\partial \Phi}{\partial t} \right) = 0$$

$$\rightarrow \quad \Delta \Phi - \varepsilon \mu \frac{\partial^2 \Phi}{\partial t^2} = 0 \ / \ -\frac{1}{\varepsilon} \rho$$

$$\rightarrow \quad \Delta \boldsymbol{A} - \varepsilon \mu \frac{\partial^2 \boldsymbol{A}}{\partial t^2} = 0 / \mu_0 \boldsymbol{j}$$

3.3 Energie und Impuls elektromagnetischer Felder

3.3.1 Energie des EM-Feldes

System von Punktladungen q_i, m_i, r_i, v_i im Volumen V: Kraft auf Ladungen im elektromagnetischen Feld:

$$F_i = q_i \left(E(r_i, t) + v_i \times B(r_i, t) \right)$$

Zeitliche Änderung der Energie der Punktladungen durch die elektromagnetischen Felder:

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{mat}} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i} \frac{m_{i}}{2} \boldsymbol{v}_{i}^{2} = \sum_{i} \boldsymbol{v}_{i} \cdot m_{i} \cdot \frac{\mathrm{d}\boldsymbol{v}_{i}}{\mathrm{d}t} = \sum_{i} \boldsymbol{v}_{i} \cdot \boldsymbol{F}_{i}$$

$$= \sum_{i} q_{i} \boldsymbol{v}_{i} \cdot \boldsymbol{E}(\boldsymbol{r}_{i}, t) + \sum_{i} q_{i} \underbrace{\boldsymbol{v}_{i} \cdot (\boldsymbol{v}_{i}) \times \boldsymbol{B}(\boldsymbol{r}_{i}, t)}_{=0}$$

$$= \sum_{i} q_{i} \boldsymbol{v}_{i} \cdot \boldsymbol{E}(\boldsymbol{r}_{i}, t)$$

formale Kontinuierliche Beschreibung: $\boldsymbol{j}(\boldsymbol{r},t)=\sum_i q_i \dot{\boldsymbol{r}}_i \delta(\boldsymbol{r}-\boldsymbol{r}_i(t))$

$$ightarrow \frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{mat}} = \int_{V} \mathrm{d}^{3}r \; \boldsymbol{j}(\boldsymbol{r},t) \cdot \boldsymbol{E}(\boldsymbol{r},t)$$

Energiedichte w_{mat} : $W_{\text{mat}} = \int_V d^3 r \ w_{\text{mat}}(\mathbf{r})$

$$\Rightarrow \int_{V} d^{3}r \; \boldsymbol{j} \cdot \boldsymbol{E} = \frac{d}{dt} \int_{V} d^{3}r \; w_{\text{mat}} = \int_{V} d^{3}r \; \frac{\partial}{\partial t} w_{\text{mat}}$$

$$\Rightarrow \int_{V} d^{3}r \; \left(\frac{\partial w_{\text{mat}}}{\partial t} - \boldsymbol{j} \cdot \boldsymbol{E} \right) = 0 \quad \forall \; V$$

$$\Rightarrow \frac{\partial w_{\text{mat}}}{\partial t} = \boldsymbol{j} \cdot \boldsymbol{E} \quad \hat{=} \quad \text{Leistungsdichte}$$

$$[\boldsymbol{j}][\boldsymbol{E}] = \frac{A}{m^{2}} \frac{V}{m} = \frac{W}{m^{2}}$$

Die gesamte Änderung der Energie der Materie im Volumen V ist dann:

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{mat}_{V}} = \int_{V} \mathrm{d}^{3}r \; \boldsymbol{j} \cdot \boldsymbol{E}$$

Außerdem gilt auch:

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{mat}} = -\frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{feld}}$$

Wir wollen nun j ersetzen und nutzen:

$$\boldsymbol{j} = \boldsymbol{\nabla} \times \boldsymbol{H} - \frac{\partial \boldsymbol{D}}{\partial t} \quad \Rightarrow \quad \boldsymbol{j} \cdot \boldsymbol{E} = \boldsymbol{E} \cdot (\boldsymbol{\nabla} \times \boldsymbol{H}) - \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t}$$

 \boldsymbol{E} mal der Rotation von \boldsymbol{H} können wir umformen als:

$$oldsymbol{
abla} \cdot (oldsymbol{E} imes oldsymbol{H}) = oldsymbol{H} \cdot \underbrace{(oldsymbol{
abla} imes oldsymbol{E})}_{-rac{\partial oldsymbol{B}}{\partial t}} - oldsymbol{E} \cdot (oldsymbol{
abla} imes oldsymbol{H})$$

Zur Vereinfachung und Interpretation: $H = \frac{1}{\mu} B$ $D = \varepsilon E$ $\varepsilon, \mu \text{const.}$

$$\boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} = \frac{1}{\mu} \boldsymbol{B} \cdot \frac{\partial \boldsymbol{B}}{\partial t} = \frac{1}{2} \frac{1}{\mu} \frac{\partial}{\partial t} (\boldsymbol{B} \cdot \boldsymbol{B}) = \frac{1}{2} \frac{\partial}{\partial t} (\boldsymbol{H} \cdot \boldsymbol{B})$$

$$\boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} = \varepsilon \boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t} = \frac{\varepsilon}{2} \frac{\partial}{\partial t} (\boldsymbol{E} \cdot \boldsymbol{E}) = \frac{1}{2} \frac{\partial}{\partial t} (\boldsymbol{E} \cdot \boldsymbol{D})$$

$$\frac{\mathrm{d}}{\mathrm{d}t} W_{\mathrm{mat}_{V}} = -\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} \int_{V} \mathrm{d}^{3} r \, (\boldsymbol{H} \cdot \boldsymbol{B} + \boldsymbol{E} \cdot \boldsymbol{D}) - \int_{V} \mathrm{d}^{3} r \, \boldsymbol{\nabla} \cdot (\boldsymbol{E} \times \boldsymbol{H})$$

Elektrostatik:

$$w_{\rm el} = \frac{\varepsilon_0}{2} \boldsymbol{E}^2$$
 (Vakuum) $w_{\rm el} = \frac{1}{2} \boldsymbol{E} \cdot \boldsymbol{D}$ (Medium)

Magnetostatik:

$$w_{\text{mag}} = \frac{1}{2\mu_0} \boldsymbol{B}^2$$
 (Vakuum) $w_{\text{mag}} = \frac{1}{2} \boldsymbol{H} \cdot \boldsymbol{B}$ (Medium)

Energie des elektromagnetischen Feldes:

$$\frac{1}{2} \int_{V} d^{3}r \; (\boldsymbol{H} \cdot \boldsymbol{B} + \boldsymbol{E} \cdot \boldsymbol{D}) = W_{\text{em}_{V}}$$

Energiedichte:

$$\begin{split} w_{\mathrm{em}} &= \frac{1}{2} (\boldsymbol{H} \cdot \boldsymbol{B} + \boldsymbol{E} \cdot \boldsymbol{D}) \\ \frac{\mathrm{d}}{\mathrm{d}t} W_{\mathrm{mat}_{V}} &= -\frac{\mathrm{d}}{\mathrm{d}t} W_{\mathrm{em}_{V}} - \underbrace{\int_{V} \mathrm{d}^{3} r \; \boldsymbol{\nabla} \cdot (\boldsymbol{E} \times \boldsymbol{H})}_{\text{Energie, die aus } V} \end{split}$$

$$m{S}(m{r},t) = m{E} imes m{H}$$
 Pointing-Vektor
$$\int_V \mathrm{d}^3 r \; m{\nabla} m{S} = \int_{\partial V} \mathrm{d} m{f} \cdot m{S}$$

$$[m{S}] = [m{E}][m{H}] = rac{\mathrm{V}}{\mathrm{m}} rac{\mathrm{A}}{\mathrm{m}} = rac{\mathrm{W}}{\mathrm{m}^2} = rac{\mathrm{J}}{\mathrm{m}^2 \mathrm{s}} = rac{\mathrm{Energie}}{\mathrm{Fl\"{a}\ddot{c}he} \; \cdot \; \mathrm{Zeit}}$$

S: Energiestromdichte

$$\int_{\partial V} \mathrm{d} m{f} \cdot m{S}$$

Energiestrom des EM-Feldes durch die Fläche ∂V .

Energiebilanz

$$\underbrace{\frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{mat}_{V}}}_{\text{an Ladungen in V verrichtete}} + \underbrace{\frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{em}_{V}}}_{\text{Änderung der EM Feldenergie}} = \underbrace{-\int_{\partial V}\mathrm{d}\boldsymbol{f}\cdot\boldsymbol{S}}_{\text{Fluss der EM Feldenergie aus V}}$$

Bemerkungen:

i) abgeschlossenes System (ohne Energiestromdichte ach außen) z.B. \mathbb{R}^3

$$\int_{\partial V} \mathrm{d}\boldsymbol{f} \cdot \boldsymbol{S} \to 0$$

ii) Gebiet ohne Ladungen und Ströme $\rho = \boldsymbol{j} = 0 \; \text{ in} V. \; w_{\text{mat}} = \boldsymbol{j} \cdot \boldsymbol{E} = 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}W_{\mathrm{mat}_{V}} = -\int_{\partial V}\mathrm{d}m{f}\cdotm{S}$$

iii) differentielle Form:

$$\int_{V} d^{3}r \left[\frac{\partial w_{\text{em}}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{S} + \boldsymbol{j} \cdot \boldsymbol{E} \right] = 0$$

Poyntigsches Theorem

$$\rightarrow \frac{\partial w_{\rm em}}{\partial t} + \frac{\partial w_{\rm mat}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{S} = 0$$

oder auch: Kontinuitätsgleichung für Energie

$$\frac{\partial}{\partial t}w + \boldsymbol{\nabla} \cdot \boldsymbol{S} = 0$$

Analogie:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{j} = 0$$

iv) Poynting-Vektor

$$\boldsymbol{S} = \boldsymbol{E} \times \boldsymbol{H}$$
 Energiestromdichte

Beachte: Nur $\boldsymbol{\nabla}\cdot\boldsymbol{S}$ oder $\int_{\partial V}\mathrm{d}\boldsymbol{f}\cdot\boldsymbol{S}$ haben physikalische Bedeutung.

$$oldsymbol{S} o oldsymbol{S} + oldsymbol{
abla} imes oldsymbol{G}$$

 $S \neq 0$, aber kein Energiestrom:

$$E = Ee_x$$
 $H = He_y$ $E, H const.$

$$S = E \times H = EHe_z \neq 0$$

aber: $\nabla \cdot \mathbf{S} = 0 \rightarrow \text{kein Beitrag !}$

Beispiel: Energietransport in el./mag. Wellen im Vakuum

ebene Welle:

$$E = E_0 \cos(kz - \omega t) e_x$$

$$B = \frac{E_0}{c} \cos(kz - \omega t) e_y$$

$$\frac{\omega}{k} = c \qquad \lambda = \frac{2\pi}{k}$$

mit $c^2 = \frac{1}{\varepsilon_0 \mu_0}$

$$S = E \times H = \frac{1}{\mu_0} E \times B = \frac{1}{\mu_0} \frac{E_0^2}{c} \cos^2(kz - \omega t) e_z$$
$$= c\varepsilon_0 E_0^2 \cos^2(kz - \omega t) e_z$$

explizite Energiebilanz:

$$\frac{\partial}{\partial t}(w_{\text{mat}} + w_{\text{em}}) = -\boldsymbol{\nabla} \cdot \boldsymbol{S}$$

$$w_{\text{em}} = \frac{1}{2} (\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{H} \cdot \boldsymbol{B}) = \frac{1}{2} (\varepsilon_0 \boldsymbol{E}^2 + \frac{1}{\mu_0} \boldsymbol{B}^2)$$
$$= \frac{\varepsilon_0}{2} (\boldsymbol{E}^2 + c^2 \boldsymbol{B}^2) = \varepsilon_0 E_0^2 \cos^2(kz - \omega t)$$
$$\frac{\partial}{\partial t} w_{\text{em}} = 2\omega \varepsilon_0 E_0^2 \cos(\dots) \sin(\dots)$$
$$\nabla \cdot \boldsymbol{S} = \frac{\partial S}{\partial z} = -2 \underbrace{kc}_{=\omega} \varepsilon_0 E_0^2 \cos(\dots) \sin(\dots)$$

3.3.2 Impuls des EM-Feldes - Maxwellscher Spannungstensor

Wir betrachten ein System von Punktladungen: q_i, m_i, r_i, v_i Impuls: $p_i = m_i v_i$

$$D = \varepsilon E$$
 $B = \mu H$

Die zeitliche Änderung des gesamten Impulses der Teilchen durch EM-Felder:

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{P}_{\mathrm{mat}} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{i} \boldsymbol{p}_{i} = \sum_{i} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{p}_{i}$$

$$= \sum_{i} \boldsymbol{F}_{i} = \sum_{i} q_{i} \left(\boldsymbol{E}(\boldsymbol{r}_{i}, t) + \boldsymbol{v}_{i} \times \boldsymbol{B}(\boldsymbol{r}_{i}, t) \right)$$

 \rightarrow Kontinuierliche Beschreibung:

$$\rho(\boldsymbol{r},t) = \sum_{i} q_{i} \delta(\boldsymbol{r} - \boldsymbol{r}_{i}(t))$$

$$\boldsymbol{j}(\boldsymbol{r},t) = \sum_{i} q_{i} \boldsymbol{v}_{i} \delta(\boldsymbol{r} - \boldsymbol{r}_{i}(t))$$

$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{P}_{\mathrm{mat}} = \int_{V} \mathrm{d}^{3} r \, \underbrace{(\rho \boldsymbol{E}(\boldsymbol{r},t) + \boldsymbol{j} \times \boldsymbol{B}(\boldsymbol{r},t))}_{\mathrm{Kraftdichte}}$$

$$\rho = \mathbf{\nabla} \cdot \mathbf{D} \quad \mathbf{j} = \mathbf{\nabla} \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t}$$

$$\Rightarrow \rho E + j \times B = -\frac{\partial}{\partial t} (D \times B) + \sum_{i,k=1}^{3} \frac{\partial T_{ik}}{\partial x_k} e_i$$

Maxwellscher Spannungstensor:

Symmetrischer Tensor 2. Stufe:

$$T_{ik} = \varepsilon E_i E_k - \frac{1}{\mu} B_i B_k - \frac{1}{2} \delta_{ik} (\varepsilon \mathbf{E}^2 - \frac{1}{\mu} \mathbf{B}^2)$$

physikalisch: Impulsstromdichte

Impulsbilanz

$$\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{P}_{\mathrm{mat}_{V}} + \frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}^{3}r \; (\boldsymbol{D} \times \boldsymbol{B}) = \sum_{i=1}^{3} \underbrace{\left(\int_{V} \mathrm{d}^{3}r \sum_{k=1}^{3} \frac{\partial T_{ik}}{\partial x_{k}} \boldsymbol{e}_{i} \right)}_{= \int_{\partial V} \mathrm{d}\boldsymbol{f} \cdot \boldsymbol{T}_{i}}$$

Die *i*-te Zeile dieser 3×3 -Matrix wäre als Vektor: $T_i = (T_{i1}, T_{i2}, T_{i3})$

$$\underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{P}_{\mathrm{mat}_{V}}}_{\text{Änderung des Impulses der Teilchen}} + \underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \mathrm{d}^{3} r(\boldsymbol{D} \times \boldsymbol{B})}_{\text{Änderug des Impulses des EM-Feldes in } V} = \underbrace{\sum_{i=1}^{3} \int_{\partial V} \mathrm{d}\boldsymbol{f} \cdot \boldsymbol{T}_{i}}_{\text{Impulsfluss des EM-Feldes aus } V}$$

differentiell:

$$ho m{E} + m{j} imes m{B} + rac{\partial}{\partial t} (m{D} imes m{B}) = \sum_i (m{
abla} \cdot m{T}_i) m{e}_i$$

i) Impuls des EM-Feldes

$$P_{\text{em}_V} = \int_V d^3 r \underbrace{(\mathbf{D} \times \mathbf{B})}_{=\mathbf{q}}$$

$$m{g} \coloneqq ext{Impulsdichte}$$
 $m{D} = \varepsilon m{E} \qquad m{B} = \mu m{H}$

$$ightarrow g = arepsilon \mu \underbrace{m{E} imes m{H}}_{=m{S}} = arepsilon_r \mu_r \underbrace{arepsilon_0 \mu_0}_{=rac{1}{c^2}} m{S} = arepsilon_r \mu_r rac{1}{c^2} m{S}$$

$$\left[\frac{1}{c^2} \boldsymbol{S}\right] = \frac{\text{Impuls}}{\text{Volumen}}$$

Impulsdichte einer ebenen Wellen:

$$E = E_0 \cos(kz - \omega t) e_x$$

$$B = \frac{E_0}{c} \cos(kz - \omega t) e_y$$

$$S = E \times H = c\varepsilon_0 E_0^2 \cos^2(kz - \omega t) e_z$$

$$g = \frac{\varepsilon_0}{c} E_0^2 \cos^2(kz - \omega t) e_z$$

ii) Maxwellscher Spannungstensor - Impulsdichte

$$T_{ik} = \varepsilon E_i E - k + \frac{1}{\mu} B_i B_k - \frac{1}{2} \delta_{ik} \left(\varepsilon \mathbf{E}^2 + \frac{1}{\mu} \mathbf{B}^2 \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathbf{P}_{\mathrm{mat}_V} + \mathbf{P}_{\mathrm{em}_V} \right) = \sum_i \left(\int_V \mathrm{d}\mathbf{f} \cdot \mathbf{T}_i \right) \mathbf{e}_i$$

Analogie: Energiebilanz

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(W_{\mathrm{mat}_{V}} + W_{\mathrm{em}_{V}} \right) = - \int_{\partial V} \mathrm{d}\boldsymbol{f} \cdot \boldsymbol{S}$$

 $\Rightarrow - \pmb{T}_i \text{ Impulsstromstärke zu } P_i \\ [T_{ik}] = \frac{\text{Impuls}}{\text{Fläche} \cdot \text{Zeit}}$

 T_{ik} : Berechnung von Kräften auf geladene materielle Körper im EM-Feld.

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{P} = \sum_{i} \int_{\partial V} \mathrm{d}\mathbf{f} \cdot \mathbf{T}_{i} \mathbf{e}_{i}$$

$$= \sum_{i=1}^{3} \underbrace{\left(\frac{\mathrm{d}}{\mathrm{d}t} P_{i}\right)}_{\mathrm{Kraft}} \mathbf{e}_{i}$$

$$\Rightarrow \mathrm{d}K_{i} = (\mathbf{n} \cdot \mathbf{T}_{i}) \mathrm{d}f$$

$$\Rightarrow \left[\frac{\mathrm{d}K_{i}}{\mathrm{d}f}\right] = \frac{\mathrm{Kraft}}{\mathrm{Fläche}} = \mathrm{Druck}$$

Beispiel: Plattenkondensator

$$E = \begin{cases} Ee_x & \text{innen} \\ 0 & \text{außen} \end{cases}$$
 $B = 0$

Krafttensor innen:

$$T_{ik} = \underbrace{\varepsilon E_i E_k}_{=\varepsilon_0 E^2 \delta_{ix} \delta_{kx}} + \underbrace{\frac{1}{\mu} B_i B_k}_{=0} - \frac{1}{2} \delta_{ik} \left(\underbrace{\varepsilon \mathbf{E}^2}_{\varepsilon_0 E^2} + \underbrace{\frac{1}{\mu} \mathbf{B^2}}_{=0} \right)$$

Krafttensor außen:

$$T_{ik} = 0$$

$$T_{xx} = \frac{\varepsilon_0}{2}E^2$$
 $T_{yy} = T_{zz} = -\frac{\varepsilon_0}{2}E^2$ sonst $= 0$

$$T_{ik} = \frac{\varepsilon_0}{2} E^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Kraft in x-Richtung:

$$K_{x} = \int_{\substack{\partial V \\ = (T_{xx}, T_{xy}, T_{xz}) = \frac{\varepsilon_{0}}{2} E^{2} \mathbf{e}_{x}}} d\mathbf{f} \cdot \frac{\varepsilon_{0}}{2} E^{2} \mathbf{e}_{x}$$

 $\mathrm{d}\boldsymbol{f} = \mathrm{d}y\mathrm{d}z\boldsymbol{e}_x$

$$K_x = \int_{F_x} \mathrm{d}f \frac{\varepsilon_0}{2} E^2 = \frac{\varepsilon_0}{2} E^2 F_x$$

$$\to \frac{\mathrm{Kraft}}{\mathrm{Fläche}} : \frac{K_x}{F_x} = \frac{\varepsilon_0}{2} E^2 = \frac{\sigma^2}{2\varepsilon_0}$$

$$\mathbf{K} = (K_x, 0, 0)$$

3.4 Elektromagnetische Wellen

3.4.1 Maxwell-Gleichungen in einem Isolator - Homogene Wellengleichung

$$\rho_f = 0 = \boldsymbol{j}_f$$

$$D = \varepsilon E$$
 $B = \mu H$

$$\nabla \cdot \mathbf{E} = 0 \qquad \nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \qquad \nabla \times \mathbf{B} - \varepsilon \mu \frac{\partial \mathbf{E}}{\partial t} = 0$$

$$0 = \underbrace{\nabla \times (\nabla \times \mathbf{E})}_{\nabla \underbrace{(\nabla \cdot \mathbf{E})}_{=0} - \Delta \mathbf{E}} + \frac{\partial}{\partial t} \underbrace{\nabla \times \mathbf{B}}_{=\varepsilon \mu \frac{\partial \mathbf{E}}{\partial t}} = -\Delta \mathbf{E} + \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$\Rightarrow \Delta \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

$$\varepsilon \mu = \varepsilon_r \mu_r \varepsilon_0 \mu_0 = \frac{\varepsilon_r \mu_r}{c^2}$$
 $n = \sqrt{\varepsilon_r \mu_r}$

n ist der Brechungsindex des betrachteten Materials $v=\frac{c}{n}$ die Geschwindigkeit der EM-Welle in diesem Material.

$$\Rightarrow \qquad \Delta \boldsymbol{E} - \frac{n^2}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$$

außerdem gilt:

$$0 = \underbrace{\nabla \times (\nabla \times B)}_{\nabla \underbrace{(\nabla \cdot B)}_{-\Delta B} - \Delta B} - \varepsilon \mu \frac{\partial}{\partial t} \underbrace{\nabla \times E}_{= -\frac{\partial B}{\partial t}}$$

$$\Rightarrow \qquad \Delta \boldsymbol{B} - \frac{n^2}{c^2} \frac{\partial^2 \boldsymbol{B}}{\partial t^2} = 0$$

homogene Wellengleichung $(\Psi(\mathbf{r},t))$

$$\Delta\Psi - \frac{n^2}{c^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

$$\Psi = E_x, E_y, E_z, B_x, B_y, B_z$$

Wiederholung

Maxwell-Gl für Isolator: $\rho_f = 0 = j_f$ $D = \varepsilon E$ $H = \frac{1}{\mu}B$

$$\nabla \cdot \boldsymbol{E} = 0$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$
 $\nabla \times \boldsymbol{B} - \varepsilon \mu \frac{\partial \boldsymbol{E}}{\partial t} = 0$

$$\varepsilon\mu = \varepsilon_r \mu_r \varepsilon_0 \mu_0 = \frac{\varepsilon_r \mu_r}{c^2} = \begin{bmatrix} n^2 \\ \frac{1}{c^2} = \frac{1}{v^2} \end{bmatrix}$$
 $n = \sqrt{\varepsilon_r \mu_r}$ homogene Wellengleichungen:

$$\Rightarrow \qquad \Delta \boldsymbol{E} - \frac{n^2}{c^2} \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0 \qquad \Rightarrow \qquad \Delta \boldsymbol{B} - \frac{n^2}{c^2} \frac{\partial^2 \boldsymbol{B}}{\partial t^2} = 0$$

$$\Rightarrow \qquad \Delta \boldsymbol{B} - \frac{n^2}{c^2} \frac{\partial^2 \boldsymbol{B}}{\partial t^2} = 0$$

für jede Komponente von \boldsymbol{E} und \boldsymbol{B} gilt:

$$\Delta\Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

Aus den Maxwell-Gleichungen ist aber zu sehen, dass E und B-Felder nicht unabhängig voneinander sind.

3.4.2Homogene Wellengleichung für skalare Funktion in einer Raumdimension

$$\Psi(x,t) \qquad \frac{\partial^2 \Psi}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

Funktionen der Form $\Psi_{\pm}(x,t) = f(x \pm vt)$ erfüllen die Wellengleichung.

$$\frac{\partial^2}{\partial x^2} f(x \pm vt) = f''(x \pm vt)$$

$$\frac{\partial^2 f}{\partial t^2} = \frac{\partial}{\partial t} f'(x \pm vt) \cdot (\pm v) = v^2 f''(x \pm vt)$$

Wie sehen diese Lösungen nun aus?

$$\Psi_{-}(x,t) = f(x - vt)$$

$$\Psi_-(x,0) = f(x) \leftarrow t = 0$$

$$t > 0: \quad \Psi_{-}(x,t) = f(x-vt)$$

$$\Psi_{+}(x,t) = f(x+vt)$$

Wellengleichungen sind linear \Rightarrow Linearkombinationen von Lösungen sind wieder Lösungen.

$$\Psi(x,t) = a_1 \Psi_1(x,t) + a_2 \Psi_2(x,t)$$

= $a_1 f_1(x+vt) + a_2 f_2(x-vt)$

Im allgemeinen muss es aber nicht sein, dass eine Welle bei Zeittransformationen ihre Form beibehält!

Man kann zeigen, dass die allgemeine Lösung der Wellengleichung in einer Dimension geschrieben werden kann als:

$$\Psi(x,t) = f(x+vt) + g(x-vt)$$

Besonders Wichtig:

Ebene Wellen (1D)

$$\Psi_{\pm}(x,t) = a\cos(kx \pm \omega t)$$
$$= a\cos(k(x \pm \frac{\omega}{k}t))$$

 $a\in\mathbb{R}\quad \omega,k\in\mathbb{R}\quad \omega,k>0$

 Ψ_{\pm} löst die Wellengleichung: (siehe später explizit bei §D ebener Welle)

$$\frac{\partial^2}{\partial x^2}\Psi - \frac{1}{v^2}\frac{\partial^2}{\partial t^2}\Psi = 0$$

falls $\frac{\omega}{k} = v$

Dispersions relation:

$$\omega = kv = \omega(k)$$

Wellenzahl k, Wellenlänge $\lambda = \frac{2\pi}{k}$

$$\Psi_{\pm}(x + n\lambda, t) = a\cos(k(x + n\lambda) \pm \omega t)$$
$$= a\cos(kx \pm \omega t + kn\lambda)$$
$$= a\cos(kx \pm \omega t)$$
$$= \Psi_{\pm}(x, t)$$

Die Kreisfrequenz ω , Frequenz $\nu = \frac{\omega}{2\pi}$, Schwingungsdauer $\tau = \frac{1}{\nu} = \frac{2\pi}{\omega}$

$$\Psi_{\pm}(x, t + n\tau) = a\cos(kx \pm \omega(t + n\tau)) = a\cos(kx \pm \omega t \pm n\underbrace{\omega\tau}_{=2\pi}) \quad n \in \mathbb{Z}$$
$$= a\cos(kx \pm \omega t) = \Psi_{+}(x, t)$$

Die Phasengeschwindigkeit v:

$$v = \frac{\omega}{k} = \frac{\lambda}{2\pi}\omega = \lambda\nu = \frac{\lambda}{\tau}$$

Ebenso wird die Wellengleichung mit einem Sinus gelöst:

$$\Psi_{\pm}(x,t) = a\sin(kx \pm \omega t)$$

Beide Lösungen sind also enthalten in:

$$\Psi(x,t) = ae^{i(\overbrace{kx-\omega t}^{\varphi \text{ Phase}})}$$

$$a \in \mathbb{C}$$
 $k \in \mathbb{R}$

$$\omega = v|k|$$

Für Physikalische Felder gilt:

$$\Psi(x,t) = \Re\left(ae^{i(kx-\omega t)}\right)$$

3.4.3 Ebene Wellen in 3 Raumdimensionen

$$\Delta \Psi(\boldsymbol{r},t) - \frac{1}{v^2} \frac{\partial^2}{\partial t^2} \Psi(\boldsymbol{r},t) = 0$$

eben Welle:

$$\Psi(\mathbf{r},t) = ae^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)}$$

Mit dem Wellenvektor:

$$\boldsymbol{k} = (k_x, k_y, k_z)^{\top}$$

und der Frequenz $\omega \geq 0$

$$\begin{split} \Delta\Psi &= \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) a e^{i(\boldsymbol{k}\cdot\boldsymbol{r} - \omega t)} \\ &= i^2 (k_x^2 + k_y^2 + k_z^2) a e^{i(\boldsymbol{k}\cdot\boldsymbol{r} - \omega t)} \\ &= -k^2 \Psi \end{split}$$

$$\frac{\partial^2 \Psi}{\partial t^2} = -\omega^2 \Psi$$

$$\Delta\Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = \overbrace{\left(-k^2 + \frac{\omega^2}{v^2}\right)}^{=0} \Psi = 0$$

$$k^2 = \frac{\omega^2}{v^2}$$
 $\omega = v|\mathbf{k}|$

Bemerkung:

i) ebene Welle: $\Psi(\boldsymbol{r},\boldsymbol{t}) \text{ konstant falls Phase konstant.}$ $\varphi(\boldsymbol{r},t) = \boldsymbol{k}\cdot\boldsymbol{r} - \omega t = \text{const.}$ Für festes $t\colon \boldsymbol{k}\cdot\boldsymbol{r} = \text{const.}$

ii) Phasengeschwindigkeit

$$v = \frac{\omega}{|\boldsymbol{k}|}$$

iii) Wellengleichung linear

 \Rightarrow Linearkombinationen von Lösungen sind wieder Lösungen.

$$\Psi(\mathbf{r},t) = a_1 e^{i(\mathbf{k}_1 \cdot \mathbf{r} - \omega_1 t)} + a_2 e^{i(\mathbf{k}_2 \cdot \mathbf{r} - \omega_2 t)}$$

Allgemeine Lösung der Wellengleichung

$$\Psi(\mathbf{r},t) = \int d^3k \ a(\mathbf{k})e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$
$$\omega(\mathbf{k}) = v|\mathbf{k}|$$

3.4.4 Ebene elektromagnetische Wellen

$$\Rightarrow \qquad \Delta \mathbf{E} - \frac{1}{v^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \Rightarrow \qquad \Delta \mathbf{B} - \frac{1}{v^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$

Lösungen:

$$oldsymbol{E} = oldsymbol{E}_0 e^{i(oldsymbol{k}\cdotoldsymbol{r}-\omega t)} \qquad oldsymbol{B} = oldsymbol{B}_0 e^{i(ilde{oldsymbol{k}}\cdotoldsymbol{r}- ilde{\omega}t)}$$

$$\omega = v|\mathbf{k}| \quad \tilde{\omega} = v|\tilde{\mathbf{k}}| \quad \mathbf{k}, \tilde{\mathbf{k}} \in \mathbb{R}^3$$

i)
$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$

$$i(\mathbf{k} \times \mathbf{E}_0)e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} = i\tilde{\omega}\mathbf{B}_0e^{i(\tilde{\mathbf{k}}\cdot\mathbf{r}-\tilde{\omega}t)}$$
 $\forall \mathbf{r}, t$
 $\Rightarrow \tilde{\mathbf{k}} = \mathbf{k} \quad \tilde{\omega} = \omega$

$$\Rightarrow \boldsymbol{k} \times \boldsymbol{E}_0 = \omega \boldsymbol{B}_0 \rightarrow \boldsymbol{B}_0 = \frac{1}{\omega} \boldsymbol{k} \times \boldsymbol{E}_0$$

$$B \perp k$$
. E

$$\Rightarrow \boldsymbol{B} = \frac{1}{\omega} \boldsymbol{k} \times \boldsymbol{E}$$

ii)
$$\nabla \cdot \boldsymbol{E} = 0$$

$$0 = \nabla \cdot \mathbf{E}_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$
$$= i(\mathbf{k} \cdot \mathbf{E}_0) e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

$$\Rightarrow \mathbf{k} \cdot \mathbf{E}_0 \rightarrow \mathbf{k} \cdot \mathbf{E}_0 = 0$$

$$m{k} \perp m{E}$$

iii)
$$\nabla \cdot \mathbf{B} = 0$$

 $\Rightarrow \mathbf{k} \cdot \mathbf{B}_0 = 0 \Rightarrow \mathbf{k} \cdot \mathbf{B} = 0$

 $\boldsymbol{B} \perp \boldsymbol{k}$ nichts neues, wissen wir schon aus i)

iv)
$$\nabla \times \boldsymbol{B} = \frac{1}{v^2} \frac{\partial \boldsymbol{E}}{\partial t}$$

 $\Rightarrow i \boldsymbol{k} \times \boldsymbol{B}_0 = -i \frac{1}{v^2} \omega \boldsymbol{E}_0$
 $\Rightarrow \boldsymbol{k} \times \boldsymbol{B}_0 = -\frac{\omega}{v^2} \boldsymbol{E}_0$

$$\Rightarrow \boldsymbol{E} = -\frac{v^2}{\omega} \boldsymbol{k} \times \boldsymbol{B}$$

E, B, k orthogonal zueinander

 \Rightarrow transversale Welle

Beziehung zwischen der Amplitude von B, E:

$$|\boldsymbol{B}| = \frac{1}{\omega} |\boldsymbol{k} \times \boldsymbol{E}| = \frac{|\boldsymbol{k}|}{\omega} |\boldsymbol{E}| = \frac{1}{v} |\boldsymbol{E}|$$

o.B.d.A. $\mathbf{k} = k\mathbf{e}_z$

$$\begin{aligned} \boldsymbol{E} &= (E_{0_x} \boldsymbol{e}_x + E_{0_y} \boldsymbol{e}_y) e^{i(k \cdot z - \omega t)} \\ \boldsymbol{B} &= \frac{1}{\omega} \boldsymbol{k} \times \boldsymbol{E} = \frac{k}{\omega} \boldsymbol{e}_z \times (E_{0_x} \boldsymbol{e}_x + E_{0_y} \boldsymbol{e}_y) e^{i(k \cdot z - \omega t)} \\ &= \frac{1}{v} (-E_{0_y} \boldsymbol{e}_x + E_{0_x} \boldsymbol{e}_y) e^{i(k \cdot z - \omega t)} \end{aligned}$$

i.A.
$$E_{0_x}, E_{0_y} \in \mathbb{C}$$

$$\boldsymbol{E} = \Re\left(\boldsymbol{E}_0 e^{i(k\cdot z - \omega t)}\right)$$

Beispiel: $E_{0_y} = 0$ $E_{0_x} \in \mathbb{R}$

$$\boldsymbol{E} = E_{0_x} \cos(kz - \omega t) \boldsymbol{e}_x$$

$$\boldsymbol{B} = \frac{E_{0_x}}{v}\cos(kz - \omega t)\boldsymbol{e}_y$$

3.4.5 Polarisation ebener EM-Wellen

Charakterisierung der Schwingungsrichtung $\mathbf{k} = k\mathbf{e}_z$

$$\boldsymbol{E} = (E_{0_x} \boldsymbol{e}_x + E_{0_y} \boldsymbol{e}_y) e^{i(kx - \omega t)}$$

$$E_{0_x} = |E_{0_x}|e^{i\varphi}$$
 $E_{0_y} = |E_{0_y}|e^{i(\varphi+\delta)}$

Physikalisches Feld:

$$\mathbf{E} = \Re \left[(E_{0x} \mathbf{e}_x + E_{0y} \mathbf{e}_y) e^{i(k \cdot r - \omega t)} \right]$$
$$= |E_{0x}| \cos(kz - \omega t + \varphi) \mathbf{e}_x + |E_{0y}| \cos(kz - \omega t + \varphi + \delta) \mathbf{e}_y$$

Fälle:

i)
$$\delta = 0$$
 oder $\delta = \pm \pi$ $\Rightarrow \mathbf{E} = \underbrace{(|E_{0_x}|\mathbf{e}_x \pm |E_{0_y}|\mathbf{e}_y)}_{\text{orts- und Zeitunabh.}} \cos(kz - \omega t)$

o E schwingt in fester Richtung! Die Polarisationsrichtung o linear Polarisiert

ii)
$$\delta = \pm \frac{\pi}{2} \quad |E_{0_x}| = |E_{0_y}| = E$$
 Zirkulär Polarisiert

$$E = E \underbrace{(e_x \cos(kz - \omega t + \varphi)) \mp e_y \sin(kz - \omega t + \varphi))}_{=r(t)}$$

|r|=1 und r läuft mit ω um die z-Achse

iii) $\delta, |E_{0_x}|, |E_{0_y}|$ beliebig: elliptisch Polarisiert

Wiederholung

$$E = E_0 e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \qquad \omega = |\mathbf{k}| v$$

$$B = B_0 e^{i(\tilde{\mathbf{k}} \cdot \mathbf{r} - \tilde{\omega} t)} \stackrel{!}{=} \frac{1}{\omega} \mathbf{k} \times \mathbf{E}$$

andere Formen der EM-Wellen

Wellenpakete:

$$\boldsymbol{E}(\boldsymbol{r},t) = \int \mathrm{d}^3k \boldsymbol{a}(\boldsymbol{k}) e^{i(\boldsymbol{k}\cdot\boldsymbol{r} - \omega(k)t)}$$

Kugelwellen

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 \frac{e^{i(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t)}}{r}$$

eine Kugelwelle hat Amplitude $\rho \propto \frac{1}{r}$ Flächen gleicher Phase (wie im Bild zu sehen).

3.5 Reflexion und Brechung von EM-Wellen an Grenzflächen

Wir betrachten eine ebene Grenzfläche (x-y-Ebene) zwischen zwei ungeladenen, nicht leitenden Medien.

Aus der Skizze:

$$v_1 = \frac{1}{\sqrt{\varepsilon_1 \mu_1}}, \ \omega_e = v_1 k_e$$

und \mathbf{k}_e ohne y-Komponente

$$\boldsymbol{k}_e = \begin{pmatrix} k_{e_x} \\ 0 \\ k_{e_z} \end{pmatrix}$$

Die einfallende Welle sieht folgendermaßen aus:

$$egin{aligned} m{E}_e &= m{E}_{e_0} e^{i(m{k}_e \cdot m{r} - \omega_e t)} \ m{B}_e &= rac{1}{\omega_e} m{k}_e imes m{E}_e = rac{1}{v_1} rac{m{k}_e}{k_e} imes m{E}_e \end{aligned}$$

reflektierte Welle

$$egin{aligned} oldsymbol{E}_r &= oldsymbol{E}_{r_0} e^{i(oldsymbol{k}_r \cdot oldsymbol{r} - \omega_r t)} \ oldsymbol{B}_r &= rac{1}{v_1} rac{oldsymbol{k}_r}{k_r} imes oldsymbol{E}_r \end{aligned}$$

gesamtes Feld in Medium 1:

$$E_1 = E_e + E_r$$

transmittierte Welle

$$egin{aligned} oldsymbol{E}_2 &= oldsymbol{E}_{2_0} e^{i(oldsymbol{k}_2 \cdot oldsymbol{r} - \omega_2 t)} \ oldsymbol{B}_2 &= rac{1}{v_2} rac{oldsymbol{k}_2}{k_2} imes oldsymbol{E}_2 \end{aligned}$$

3.5.1 Stetigkeitsbedingunen an Grenzflächen

Hier: ungeladene, nicht leitende Medien: $\rho_f = 0 = \mathbf{j}_f$ Maxwell-Gl. \Rightarrow Stetigkeitsbedingungen für $\mathbf{r} = (x, y, 0)$

i) mit
$$\nabla \cdot \boldsymbol{D} = 0$$

$$\boldsymbol{n} \cdot (\boldsymbol{D}_1 - \boldsymbol{D}_2) = 0 \quad \Rightarrow \quad \varepsilon_1 \boldsymbol{n} \cdot \boldsymbol{E}_1 - \varepsilon_2 \boldsymbol{n} \cdot \boldsymbol{E}_2 = 0$$

ii) mit
$$m{
abla} imes m{E} = -rac{\partial m{B}}{\partial t}$$
 und $m{t} \sim m{e}_x, m{e}_y$

$$\boldsymbol{t} \cdot (\boldsymbol{E}_1 - \boldsymbol{E}_2) = 0$$

iii) mit
$$\nabla \cdot \boldsymbol{B} = 0$$

$$\boldsymbol{n} \cdot (\boldsymbol{B}_1 - \boldsymbol{B}_2) = 0$$

iv) mit
$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$

$$\mathbf{t} \cdot (\mathbf{H}_1 - \mathbf{H}_2) = 0 \quad \Rightarrow \quad \frac{1}{\mu_1} \mathbf{t} \cdot \mathbf{B}_1 - \frac{1}{\mu_2} \mathbf{t} \cdot \mathbf{B}_2 = 0$$

Erläuterung zu Punkt ii) und iv):

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \rightarrow \boldsymbol{t} \cdot (\boldsymbol{E}_2 - \boldsymbol{E}_1) = 0$$

$$\int_{F} d\mathbf{f} \cdot (\mathbf{\nabla} \times \mathbf{E}) = -\int_{F} d\mathbf{f} \cdot \frac{\partial \mathbf{B}}{\partial t} = -\frac{d}{dt} \int_{F} d\mathbf{f} \mathbf{B}$$

$$= \int_{\partial F} d\mathbf{r} \cdot \mathbf{E} \qquad \rightarrow \qquad \int ds \ \mathbf{t} \cdot (\mathbf{E}_{2} - \mathbf{E}_{1}) = 0$$

Aus den vier Stetigkeitsbedingungen ergeben sich folgende Schlussfolgerungen:

ii)
$$\begin{aligned} \boldsymbol{t} \cdot \boldsymbol{E}_2 &= \boldsymbol{t} \cdot \boldsymbol{E}_1 = \boldsymbol{t} \cdot (\boldsymbol{E}_e + \boldsymbol{E}_r) \\ \Rightarrow \boldsymbol{t} \cdot \boldsymbol{E}_{2_0} e^{i(\boldsymbol{k}_2 \cdot \boldsymbol{r} - \omega_2 t)} &= \boldsymbol{t} \cdot \boldsymbol{E}_{e_0} e^{i(\boldsymbol{k}_e \cdot \boldsymbol{r} - \omega_e t)} + \boldsymbol{t} \cdot \boldsymbol{E}_{r_0} e^{i(\boldsymbol{k}_r \cdot \boldsymbol{r} - \omega_r t)} \end{aligned}$$

 $\forall r = (x, y, 0), \forall t \rightarrow \text{Die Orts- und Zeitabhängigkeit im Exponenten muss gleich sein!}$

$$\mathbf{k}_2 \cdot \mathbf{r} - \omega_2 t = \mathbf{k}_e \cdot \mathbf{r} - \omega_e t = \mathbf{k}_r \cdot \mathbf{r} - \omega_r t$$

$$r = 0 : \Rightarrow \omega_2 = \omega_e = \omega_r := \omega$$

Die gleiche Schlussfolgerung geht für die Wellenvektoren nicht, da wir hier die z-Komponente gar nicht beachten und damit keine Aussagen über die Gleichheit der Vektoren machen können.

Für die einfallende und reflektierte Welle im Medium 1 gilt:

$$v_1 = \frac{\omega_e}{|\boldsymbol{k}_e|} = \frac{\omega_r}{|\boldsymbol{k}_r|}$$

$$\rightarrow |\mathbf{k}_e| = |\mathbf{k}_r| := k_1$$

Somit sind auch beide Wellenlängen λ_1 gleich!

Für die Welle im Medium 2 gilt:

$$\begin{aligned} k_2 &= \frac{\omega_2}{v_2} = \omega \sqrt{\varepsilon_2 \mu_2} \\ &= \omega \sqrt{\frac{\varepsilon_2 \mu_2}{\varepsilon_1 \mu_1}} \sqrt{\varepsilon_1 \mu_1} = \underbrace{\frac{\omega}{v_1}}_{k_1} \sqrt{\frac{\varepsilon_2 \mu_2}{\varepsilon_1 \mu_1}} = k_1 \sqrt{\frac{\varepsilon_2 \mu_2}{\varepsilon_1 \mu_1}} = k_1 \cdot \frac{n_2}{n_1} \end{aligned}$$

weiterhin:
$$t = 0$$
: $\Rightarrow \mathbf{k}_2 \cdot \mathbf{r} = \mathbf{k}_e \cdot \mathbf{r} = \mathbf{k}_r \cdot \mathbf{r}$

$$k_{2_x}x + k_{2_y}y = k_{e_x}x + \underbrace{k_{e_y}y}_{=0} = k_{r_x}x + k_{r_y}y =$$

 $k_{e_y}=0 \implies k_{2_y}=0=k_{r_y} \Rightarrow \pmb{k}_e, \pmb{k}_r, \pmb{k}_2$ liegen in einer Ebene (hier: x-z-Ebene), der Einfallsebene.

$$\mathbf{k}_e = k_e(\sin \theta_e \mathbf{e}_x + \cos \theta_e \mathbf{e}_z)$$

 $\mathbf{k}_r = k_r(\sin \theta_r \mathbf{e}_x - \cos \theta_r \mathbf{e}_z)$

$$\boldsymbol{k}_2 = k_2(\sin\theta_2\boldsymbol{e}_x + \cos\theta_2\boldsymbol{e}_z)$$

$$k_e = k_r := k_1$$

Reflexionsgesetz

$$\mathbf{r} = (x, 0, 0) : \mathbf{k}_e \cdot \mathbf{r} = \mathbf{k}_r \cdot \mathbf{r}$$

$$\mathbf{k}_e \cdot \mathbf{r} = x k_1 \sin \theta_e$$

$$\mathbf{k}_r \cdot \mathbf{r} = x k_1 \sin \theta_r$$

Reflexionsgesetz

$$\theta_e = \theta_r$$

${\bf Brechungsgesetz}$

$$\boldsymbol{r} = (x, 0, 0): \quad \boldsymbol{k}_2 \cdot \boldsymbol{r} = \boldsymbol{k}_e \cdot \boldsymbol{r}$$

$$k_2 \sin \theta_2 = k_1 \sin \theta_1$$
$$k_2 = k_1 \sqrt{\frac{\varepsilon_2 \mu_2}{\varepsilon_1 \mu_1}} = k_1 \frac{n_2}{n_1}$$

n: Brechungsindex

Snellius'sches Brechungsgesetz

$$\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$$

Für $n_2 > n_1$: Grenzfall $\theta_1 := \theta_g$ bei dem **Totalreflexion** auftritt (d.h. $\theta_2 = \frac{\pi}{2}$)

$$\sin \theta_g = \frac{n_2}{n_1} \sin \frac{\pi}{2} = \frac{n_2}{n_1}$$

z.B. Wasser $~n_1\approx 1{,}33,~{\rm Luft}~~n_2\approx 1 \Rightarrow \theta_g\approx 49^\circ$

3.5.2 Intensitätsbeziehungen bei Reflexion und Brechung

Wiederholung

$$egin{aligned} m{E}_l &= m{E}_{l_0} e^{i(m{k}_l m{r} - \omega t)} & l = e, r, 2 \ m{B}_l &= rac{1}{\omega} m{k}_e imes m{E}_l \ m{E}_1 &= m{E}_e + m{E}_r \end{aligned} egin{aligned} m{arepsilon}_{2}, \mu_{2}, n_{2} & m{ heta}_{2} \ m{arepsilon}_{2}, \mu_{2}, n_{2} & m{ heta}_{2} \ m{ heta}_{2}, \mu_{2}, n_{2} & m{ heta}_{2}, \mu_{2}, \mu_{2}, h_{2} & m{ heta}_{2}, h_{2} & m{ heta}_{2}, \mu_{2}, h_{2} & m{ heta}_{2}, h_{2} &$$

Stetigkeitsbedingungen an der Grenzfläche
$$r=(x,y,0)$$
 hier: $r=0,\ t=0$ $t\sim e_x,e_y$
i)
$$n\cdot (D_2-D_1)=0$$

$$\Rightarrow e_z\cdot (\varepsilon_2 E_{20}-\varepsilon_1(E_{e_0}+E_{r_0}))=0$$
ii)
$$t\cdot (E_2-E_1)=0$$

$$\Rightarrow t\cdot (E_{20}-E_{e_0}-E_{r_0})=0$$
iii)
$$n\cdot (B_2-B_1)=0$$

$$\Rightarrow e_z\cdot \left[k_2\times E_{20}-k_e\times E_{e_0}-k_r\times E_{r_0}\right]=0$$
iv)
$$t\cdot (H_2-H_1)=0 \qquad H_i=\frac{1}{\mu}B_i$$

$$\Rightarrow t\cdot \left[\frac{1}{\mu_2}k_2\times E_{20}-\frac{1}{\mu_1}k_r\times E_{r_0}-\frac{1}{\mu_1}k_e\times E_{e_0}\right]=0$$

Wir zerlegen die Amplitude der einfallenden Welle in Anteile parallel und senkrecht zur Einfallsebene (x-z-Ebene).

$$egin{aligned} oldsymbol{E}_{e_0} &= oldsymbol{E}_{e_0}_{\parallel} + oldsymbol{E}_{e_0}_{\perp} \ oldsymbol{E}_{e_0} &= (oldsymbol{e}_y \cdot oldsymbol{E}_{e_0}) \cdot oldsymbol{e}_y \end{aligned}$$

$$\Rightarrow$$
 $m{E}_e = m{E}_{e_{\parallel}} + m{E}_{e_{\perp}}$ ebenso für $m{E}_r$ und $m{E}_2$

Den einen Fall betrachten wir genauer die anderen sind ähnlich und werden deswegen nicht genauer besprochen.

I) \boldsymbol{E}_{e} senkrecht zur Einfallsebene polarisiert:

$$\boldsymbol{E}_{e_0} = E_{e_0} \boldsymbol{e}_u$$

Es folgt aus der Skizze:

$$k_2 = k_2(\sin \theta_2 e_x + \cos \theta_2 e_z)$$

$$k_e = k_e(\sin \theta_1 e_x + \cos \theta_1 e_z)$$

$$k_r = k_r(\sin \theta_1 e_x + \cos \theta_1 e_z)$$

Aus den Stetigkeitsbedingunen folgt:

$$E_{r_0} = E_{r_0} e_y$$
 $E_{2_0} = E_{2_0} e_y$

ii)
$$\boldsymbol{t} = \boldsymbol{e}_y$$

$$\Rightarrow \qquad 0 = E_{2_0} - E_{e_0} - E_{r_0}$$

- iii) Diese Bedingung liefert im wesentlichen das Brechungsgesetz
- iv) $t = e_x$:

$$0 = \frac{1}{\mu_2} \underbrace{\mathbf{e}_x \cdot (\mathbf{k}_2 \times \mathbf{E}_{2_0})}_{=-\mathbf{k}_2 \cdot (\mathbf{e}_x \times \mathbf{E}_{2_0})} - \frac{1}{\mu_1} \underbrace{\mathbf{e}_x \cdot (\mathbf{k}_e \times \mathbf{E}_{e_0})}_{=-E_{e_0} k_e \cos \theta_1} - \frac{1}{\mu_1} \underbrace{\mathbf{e}_x \cdot (\mathbf{k}_r \times \mathbf{E}_{r_0})}_{=E_{r_0} k_r \cos \theta_1}$$

$$\Rightarrow \qquad 0 = -\frac{k_2}{\mu_2} E_{20} \cos \theta_2 + \frac{k_e}{\mu_1} E_{e_0} \cos \theta_1 - \frac{k_r}{\mu_1} E_{r_0} \cos \theta_1$$

$$E_{r_0} = E_{2_0} - E_{e_0}$$

$$k_e = k_r = k_1 = \frac{\omega}{v_1} = \omega \sqrt{\varepsilon_1 \mu_1}$$
$$k_2 = \omega \sqrt{\varepsilon_2 \mu_2}$$

$$\Rightarrow 0 = -\omega \sqrt{\frac{\varepsilon_2}{\mu_2}} E_{2_0} \cos \theta_2 + \omega \sqrt{\frac{\varepsilon_1}{\mu_1}} E_{e_0} \cos \theta_1 - \omega \sqrt{\frac{\varepsilon_1}{\mu_1}} (E_{2_0} - E_{e_0}) \cos \theta_1$$

Umformen mit Brechungsindex $n_i = \sqrt{\varepsilon_{r_i} \mu_{e_i}}$

$$\Rightarrow \left(\frac{E_{2_0}}{E_{e_0}}\right)_{\perp} = \frac{2\sqrt{\frac{\varepsilon_1}{\mu_1}}\cos\theta_1}{\sqrt{\frac{\varepsilon_1}{\mu_1}\cos\theta_1 + \sqrt{\frac{\varepsilon_2}{\mu_2}\cos\theta_2}}} = \frac{2n_1\cos\theta_1}{n_1\cos\theta_1 + \frac{\mu_1}{\mu_2}n_2\cos\theta_2}$$

Einfalls- und Ausfallswinkel können wir mit dem Brechungsgesetz ineinander umformen: $\cos\theta_2 = \sqrt{1-\sin^2\theta_2} = \sqrt{1-\frac{n_1^2}{n_2^2}\sin^2\theta_1} \text{ und } E_{r_0} = E_{2_0} - E_{e_0}$

Senkrechter Einfall

$$\Rightarrow \left(\frac{E_{2_0}}{E_{e_0}}\right)_{\perp} = \frac{n_1 \cos \theta_1 - \frac{\mu_1}{\mu_2} n_2 \cos \theta_2}{n_1 \cos \theta_1 + \frac{\mu_1}{\mu_2} n_2 \cos \theta_2}$$

II) \boldsymbol{E}_{e} parallel zur Einfallsebene

Paralleler Einfall

$$\begin{split} \left(\frac{E_{2_0}}{E_{e_0}}\right)_{\parallel} &= \frac{2n_1 \cos \theta_1}{\frac{\mu_1}{\mu_2} n_2 \cos \theta_1 + n_1 \cos \theta_2} \\ \left(\frac{E_{r_0}}{E_{e_0}}\right)_{\parallel} &= \frac{\frac{\mu_1}{\mu_2} n_2 \cos \theta_1 - n_1 \cos \theta_2}{\frac{\mu_1}{\mu_2} n_2 \cos \theta_1 + n_1 \cos \theta_2} \end{split}$$

Bemerkungen:

i) Fresnelsche Formeln: da meist gilt $\frac{\mu_1}{\mu_2}\approx 1$

ii) Senkrechter Einfall:

$$\frac{E_{2_0}}{E_{e_0}} = \frac{2n_1}{n_1 + n_2} \qquad \frac{E_{r_0}}{E_{e_0}} = \frac{n_1 - n_2}{n_1 + n_2}$$

$$= n_2 \text{ erfüllt } \checkmark$$

für $n_1=n_2$ erfüllt \checkmark für $n_2\gg n_1$: $\frac{E_{2_0}}{E_{e_0}}=\frac{2}{1+\frac{n_2}{n_1}}$ erfüllt \checkmark

iii) Brewster-Winkel:

$$\left(\frac{E_{r_0}}{E_{e_0}}\right)_{\parallel} = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2}$$

Wir wollen für θ_B : $\left(\frac{E_{r_0}}{E_{e_0}}\right)_{\parallel} = 0$ also Zähler = 0:

$$n_2 \cos \theta_1 = n_1 \cos \theta_2$$
 $= n_1 \sqrt{1 - \sin^2 \theta_2} = n_1 \sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_1}$

$$\frac{n_2}{n_1} = \frac{\sqrt{1 - \frac{n_1^2}{n_2^2} \sin^2 \theta_B}}{\cos \theta_B}$$

 $\Rightarrow \tan \theta_B = \frac{n_2}{n_1}$

Beispiel:

Luft
$$\rightarrow$$
 Glas $\frac{n_2}{n_1} \approx 1.5 \rightarrow \theta_B \approx 56^{\circ}$

Es gilt:
$$\theta_B + \theta_w = \frac{\pi}{2}$$

Einschub

Nun noch eine Erklärung die etwas umständlicher ist: (Zu senkrechtem Einfall)

$$\begin{aligned} & \boldsymbol{E}_{e_0} = E_{e_0} \boldsymbol{e}_y \\ & \boldsymbol{E}_{r_0} = E_{r_0} \boldsymbol{e}_y \quad \boldsymbol{E}_{2_0} = E_{2_0} \boldsymbol{e}_y \end{aligned}$$

ii)
$$t = e_x$$
:

$$0 = \boldsymbol{e}_x \cdot (\boldsymbol{E}_{2_0} - \boldsymbol{E}_{r_0} - \boldsymbol{E}_{e_0})$$

$$\Rightarrow \quad E_{2_{0_x}} = E_{r_{0_x}}$$

$$0 = \mathbf{e}_z \cdot (\varepsilon_2 \mathbf{E}_{2_0} - \varepsilon_1 \mathbf{E}_{r_0} - \varepsilon_1 \mathbf{E}_{e_0})$$

$$\Rightarrow \quad \varepsilon_2 E_{2_{0_z}} = \varepsilon_1 E_{r_{0_z}}$$

 $\mathbf{k}_e, \mathbf{k}_r, \mathbf{k}_2$ in x-z-Ebene

$$m{k}_r = egin{pmatrix} k_{r_x} \\ 0 \\ k_{r_z} \end{pmatrix} \qquad m{k}_2 = egin{pmatrix} k_{2_x} \\ 0 \\ k_{2_z} \end{pmatrix}$$

$$0 = \mathbf{k}_r \cdot \mathbf{E}_{r_0} = k_{r_x} E_{r_{0_x}} + k_{r_z} E_{r_{0_z}} \quad \leftarrow \quad 0 = k_{r_x} E_{2_{0_x}} + k_{r_z} \frac{\varepsilon_2}{\varepsilon_1} E_{2_{0_z}}$$

$$0 = \mathbf{k}_2 \cdot \mathbf{E}_{2_0} = k_{2_x} E_{e_{0_x}} + k_{2_z} E_{2_{0_z}} \quad \to \quad E_{2_{0_x}} = -\frac{k_{r_z}}{k_{r_x}} \frac{\varepsilon_2}{\varepsilon_1} E_{2_{0_z}}$$

$$\Rightarrow \quad 0 = \left[-k_{z_x} \frac{k_{r_z}}{k_{\ell_x}} \frac{\varepsilon_2}{\varepsilon_1} + k_{2_z} \right] E_{2_{0_z}}$$

$$k_{2_x} = k_{r_x}$$

3.6 Aspekte der Absorption und Dispersion elektromagnetischer Felder

bisher galt: freie Ausbreitung der EM-Wellen

in Medien gilt:

Absorption:

und **Dispersion**:

3.6.1 Elektromagnetische Wellen in elektrischen Leitern

bisher galt: Isolator/Vakuum freie Ladungen und freie Ströme = 0 $\rho_f = 0 = j_f$ im Leiter gilt: Ohmsche Leiter $j = \sigma E$ $\rho = 0$ σ : Leitfähigkeit

$$D = \varepsilon E$$
 $B = \mu H$

Maxwell-Gleichungen:

$$abla \cdot \boldsymbol{E} = 0$$
 $abla \cdot \boldsymbol{B} = 0$

$$abla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$abla \times \boldsymbol{B} - \mu \varepsilon \frac{\partial \boldsymbol{E}}{\partial t} = \mu \boldsymbol{j} = \mu \sigma \boldsymbol{E}$$

Bemerkung:

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho$$

$$\frac{\partial \rho}{\partial t} = -\nabla \boldsymbol{j} = -\sigma \nabla \boldsymbol{E} = -\frac{\sigma}{\varepsilon} \rho$$

$$\rho(\boldsymbol{r}, t) = e^{-\frac{\sigma}{\varepsilon} t} \rho(\boldsymbol{r}, t = 0)$$

somit ist die Annahme $\rho = 0$ gerechtfertigt.

$$0 = \nabla \times (\nabla \times \mathbf{E}) + \frac{\partial}{\partial t} (\nabla \times \mathbf{B})$$
$$= \nabla (\nabla \mathbf{E}) - \Delta \mathbf{E} + \frac{\partial}{\partial t} (\mu \varepsilon \frac{\partial \mathbf{E}}{\partial t} + \mu \sigma \mathbf{E})$$
$$\partial^2 \mathbf{E} \quad \partial \mathbf{E}$$

$$\Rightarrow \qquad \Delta \boldsymbol{E} - \mu \varepsilon \frac{\partial^2 \boldsymbol{E}}{\partial t^2} - \mu \sigma \frac{\partial \boldsymbol{E}}{\partial t} = 0$$

Analog kann man auch nach $\Delta \boldsymbol{B}$ auflösen:

$$\Rightarrow \qquad \Delta \boldsymbol{B} - \mu \varepsilon \frac{\partial^2 \boldsymbol{B}}{\partial t^2} - \mu \sigma \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

Diese Beiden Gleichungen nennt man auch Telegraphen-Gleichungen.

Ansatz zur Lösung: monochromatische, ebene Welle $\mathbf{k} = k\mathbf{e}_z$

$$m{E}(m{r},t) = m{E}_0 e^{i(m{k}\cdotm{r}-\omega t)} = m{E}_0 e^{i(kr-\omega t)}$$

 $m{B}(m{r},t) = m{B}_0 e^{i(kr-\omega t)}$

$$\Rightarrow 0 = -k^2 + \mu \varepsilon \omega^2 + i\omega \mu \sigma = -k^2 + \mu \omega^2 \underbrace{\left(\varepsilon + i\frac{\sigma}{\omega}\right)}_{=:n}$$

η : verallgemeinerte Dielektrizitätskonstante

Dispersions relation im leitenden Medium $(k(\omega))$

$$\Rightarrow k^2 = \mu \eta \omega^2 = \mu \omega^2 \left(\varepsilon + i \frac{\sigma}{\omega} \right)$$

Hieraus folgt, dass k komplex ist und einen Imaginärteil haben muss: $k=k_R+ik_I$

$$\Rightarrow k^2 = k_R^2 - k_I^2 + 2ik_R k_I$$
$$\stackrel{!}{=} \mu \varepsilon \omega^2 + i\mu \sigma \omega$$

$$\Rightarrow k_{R/I} = \omega \sqrt{\frac{\varepsilon \mu}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon \omega}\right)^2} \pm 1 \right]^{\frac{1}{2}}$$

$$E = E_0 e^{i(kz - \omega t)}$$

$$= E_0 e^{i((k_R + ik_I)z - \omega t)}$$

$$= E_0 e^{-k_I z} e^{i(k_R z - \omega t)}$$

Eindringtiefe: $d = \frac{1}{k_I}$

typische Werte:

Kupfer:
$$\sigma = 5.81 \cdot 10^7 \frac{1}{\Omega m}$$

$$\frac{\nu}{1 \text{ MHz}} = \frac{d}{66 \mu m}$$

$$6 \cdot 10^{14} \text{ Hz} = 2.7 \text{ nm}$$

Bemerkung: Man kann Zeigen, dass, anders als im Vakuum, im Medium das B-Feld Phasenverschoben zum E-Feld ist. Wir werden hierauf aus Zeitgründen nicht genauer eingehen.

3.6.2 Frequenzabhängigkeit der Dielektrizitätskonstanten - Dispersion Modell für $\varepsilon(\omega)$

Wir betrachten hier nicht magnetisierbare Medien. Es soll gehen $\mu_r \approx 1$.

$$\varepsilon = \varepsilon_0 (1 + \chi_e)$$
 $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E} = \frac{\text{Dipole}}{\text{Volumen}} = N \langle \mathbf{p} \rangle$

Die Polarisation ist die mittlere Dipol-dichte pro Volumen.

Die Verschiebungsolarisation ist:

$$\langle \boldsymbol{p} \rangle = \alpha \boldsymbol{E}$$

 α : atomare Polarisierbarkeit

$$\chi_e = \frac{N\alpha}{\varepsilon_0}$$

 χ_e : elektrische Suszeptibilität

Effekt ist ein anderer.

All diese Gleichungen würde man für langsam schwingende Felder erhalten also für $\omega \to 0$. Bei Tieffrequenten Wellen können die Ladungen den Feldern folgen und schwächen diese dadurch ab. Bei Hochfrequenten Wellen können die Ladungen den Feldern nicht mehr folgen und der

Klassisches Oszillatormodell für die Bindung von Elektronen in Atomen

 ω_0 : Frequenz γ : Dämpfung

Dies können wir durch einen getriebenen, gedämpften, harmonischen Oszillator darstellen:

$$m(\ddot{\boldsymbol{r}} + \gamma \dot{\boldsymbol{r}} + \omega_0^2 \boldsymbol{r}) = q \boldsymbol{E}(\boldsymbol{r}, t)$$

 \rightarrow Dipolmoment: $\boldsymbol{p} = q\boldsymbol{r}$ q = -e

$$\Rightarrow m(\ddot{\boldsymbol{p}} + \gamma \dot{\boldsymbol{p}} + \omega_0^2 \boldsymbol{p}) = e^2 \boldsymbol{E}$$

statischer Grenzfall: E(r,t) = E(r)

 $\Rightarrow \dot{\mathbf{p}} = 0 = \ddot{\mathbf{p}}$

$$\Rightarrow \quad \boldsymbol{p} = \frac{e^2 \boldsymbol{E}}{m\omega_0^2} = \alpha \boldsymbol{E} \quad \rightarrow \quad \alpha = \frac{e^2}{m\omega_0^2}$$
$$\Rightarrow \quad \chi_e = \frac{Ne^2}{\varepsilon_0 m\omega_0^2}$$

zeitabhängiger Fall: ${m E} = {m E}_0 e^{-i\omega t}$ $e^{ikz} = e^{i{2\pi\over\lambda}z}$

Mechanik:

 \Rightarrow p(t): erzwungene Schwingung mit Frequenz ω

$$p(t) = p_0 e^{-i\omega t}$$

$$m(-\omega^2 - i\gamma\omega + \omega_0^2) p_0 e^{-i\omega t} = e^2 E_0 e^{-i\omega t}$$

$$\Rightarrow p_0 = \underbrace{\frac{e^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}}_{\alpha(\omega)} E_0$$

$$\Rightarrow \chi_e(\omega) = \frac{N\alpha(\omega)}{\varepsilon_0}$$

$$= \frac{Ne^2}{\varepsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

$$\Rightarrow \varepsilon(\omega) = \varepsilon_0 \varepsilon_r(\omega)$$

$$= \varepsilon_0 (1 + \chi_e(\omega))$$

Dispersions relation im leitenden Medium $\varepsilon_r(\omega)$

$$\varepsilon_r(\omega) = 1 + \frac{Ne^2}{\varepsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

Realteil:

$$\Re(\varepsilon_r(\omega)) = 1 + \frac{Ne^2}{\varepsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}$$

Imaginärteil:

$$\Im(\varepsilon_r(\omega)) = \frac{Ne^2}{\varepsilon_0 m} \frac{\gamma \omega}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}$$

Bemerkung: Dispersion

Frequenzabhängigkeit von $\varepsilon = \varepsilon(\omega) = \varepsilon_R + i\varepsilon_I$

Brechungsindex $n = \sqrt{\varepsilon_r \mu_r} = n(\omega)$ normale Dispersion: $\frac{d\varepsilon_R}{d\omega} > 0$ anormale Dispersion: $\frac{d\varepsilon_R}{d\omega} < 0$

Verallgemeinert auf j Elektronen im Atom:

 f_j : Elektronen mit Frequenz ω_j, γ_j

$$\varepsilon_r(\omega) = 1 + \frac{Ne^2}{\varepsilon_0 m} \sum_j \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega_j}$$

Die Quantenmechanik erklärt diese Sprünge durch Energieniveaus:

Bedeutung der komplexen/frequenzabhängigen Dielektrizitäts-3.6.3 konstante

Wellengleichung im Medium $\varepsilon = \varepsilon(\omega)$ $\mu \approx \mu_0$ $\sigma = 0$

$$\Delta \mathbf{E} - \mu_0 \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

$$\mathbf{E} = \mathbf{E}_0 e^{i(kz - \omega t)} \qquad \qquad -k^2 + \mu_0 \varepsilon \omega^2 = 0$$

$$\Rightarrow k^2 = \mu_0 \varepsilon \omega^2 = \mu_0 (\varepsilon_R + i\varepsilon_I) \omega^2$$

$$k = k_R + ik_I$$

$$k_R^2 - k_I^2 + 2ik_R k_I = \mu_0 \varepsilon_R \omega^2 + i\mu_0 \varepsilon_I \omega^2$$

$$k_{R/I} = \omega \sqrt{\frac{\mu_0 \varepsilon_R}{2}} \left[\sqrt{1 + \left(\frac{\varepsilon_I}{\varepsilon_R}\right)^2} \pm 1 \right]^{\frac{1}{2}}$$

$$\varepsilon_I \approx 0 \quad k_I \approx 0 \quad k_R \approx \omega \sqrt{\mu_0 \varepsilon_R(\omega)}$$

$$\Rightarrow \quad \boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 e^{-k_I z} e^{i(k_R z - \omega t)}$$

Ausbreitungsgeschwindigkeit:

$$v = \frac{\omega}{k_R} = v(\omega) = \frac{c}{n(\omega)}$$

3.7 Allgemeine Lösung der Maxwell-Gl. - Retardierte Potentiale

Wir suchen Lösungen der Gleichungen:

$$\nabla \cdot \boldsymbol{B} = 0 \qquad \nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \times \boldsymbol{B} - \underbrace{\varepsilon_0 \mu_0}_{\frac{1}{c^2}} \frac{\partial \boldsymbol{E}}{\partial t} = \mu_0 \boldsymbol{j}$$

gegeben: $f(\mathbf{r}, t), \mathbf{j}(\mathbf{r}, t)$ gesucht: $\mathbf{E}(\mathbf{r}, t), \mathbf{B}(\mathbf{r}, t)$

zur formalen Lösung der Gleichungen verwenden wir die Potentiale Φ, A der Elektrodynamik

$$oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A} \qquad \qquad oldsymbol{E} = -oldsymbol{
abla} oldsymbol{\Phi} - rac{\partial oldsymbol{A}}{\partial t}$$

Lorenzeichung:

$$\nabla \cdot \boldsymbol{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} = 0$$

Aus den inhomogenen Gleichungen erhalten wir die entkoppelten Wellengleichungen der Potentiale:

$$\Delta \Phi - \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2} = -\frac{1}{\varepsilon_0} \rho$$

$$\Delta \boldsymbol{A} - \frac{1}{c^2} \frac{\partial^2 \boldsymbol{A}}{\partial t^2} = -\mu_0 \boldsymbol{j}$$

Nebenbemerkung:

$$\Delta \Psi(\boldsymbol{r},t) - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Psi(\boldsymbol{r},t) =: \Box \Psi(\boldsymbol{r},t)$$

 $mit \square : d$ 'Alembert Operator

$$\Box = \Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$$

Aus der Elektro-/Magnetostatik ist bekannt:

$$\frac{\partial}{\partial t}\Phi = 0 = \frac{\partial}{\partial t}\mathbf{A}$$

$$\Delta \Phi(m{r}) = -\frac{1}{arepsilon_0}
ho$$
 Poisson-Gleichung $\Delta m{A}(m{r}) = -\mu_0 m{j}$

Die Lösungen waren:

$$\Phi(\mathbf{r}) = \Phi_{\text{hom}}(\mathbf{r}) + \Phi_{\text{inh}}(\mathbf{r}) \qquad \text{mit} \qquad \Phi_{\text{inh}}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int d^3\mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

sowie für das Vektorpotential:

$$m{A}(m{r}) = m{A}_{
m hom}(m{r}) + m{A}_{
m inh}(m{r}) \qquad \qquad {
m mit} \qquad m{A}_{
m inh}(m{r}) = rac{\mu_0}{4\pi} \int {
m d}^3 m{r}' rac{m{j}(m{r})}{|m{r} - m{r}'|}$$

und $\Delta A_{\text{hom}}(r) = 0$

Wir können die Diskussion auf das skalare Potential Φ beschränken:

$$\Delta \Phi - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Phi = -\frac{1}{\varepsilon_0} \rho$$

$$\Phi(\mathbf{r},t) = \Phi_{\text{hom}} + \Phi_{\text{inh}}$$

 $\varPhi_{\rm hom}$: allgemeine Lösung der homogenen DGL $\Delta\varPhi_{\rm hom}-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\varPhi_{\rm hom}=0$ $\varPhi_{\rm inh}$: spezielle Lösung der inhomogenen DGL $\Delta\varPhi_{\rm inh}-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\varPhi_{\rm inh}=-\frac{1}{\varepsilon_0}\rho$

Lösung der homogenen Wellengleichung liefert z.B. Kugelwellen oder ebene Wellen:

$$\Phi_{\text{hom}}(\mathbf{r},t) = \Re \left\{ ae^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)} \right\}$$

mit $\mathbf{k} \in \mathbb{R}^3$, $|\mathbf{k}| = \frac{\omega}{c}$ bzw.: $\omega(\mathbf{k}) = |\mathbf{k}|c$

Die allgemeine Lösung erhalten wir nun durch Linearkombination:

$$\Phi_{\text{hom}}(\boldsymbol{r},t) = \Re \left\{ \int \mathrm{d}^3 \boldsymbol{k} \ a(\boldsymbol{k}) e^{i(\boldsymbol{k} \cdot \boldsymbol{r} - \omega(\boldsymbol{k})t)} \right\}$$

Bestimmung einer speziellen Lösung der inhomogenen Wellengleichung:

$$\Delta \Phi - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Phi = -\frac{1}{\varepsilon_0} \rho$$

zur Lösung der DGL betrachten wir eine Fouriertransformation von $\Phi(r,t)$ bezüglich der Variablen t.

$$\tilde{\varPhi}(\boldsymbol{r},\omega) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}t \varPhi(\boldsymbol{r},t) e^{i\omega t}$$

Man kann danach zurücktransformieren:

$$\Phi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \tilde{\Phi}(\mathbf{r},t) e^{-i\omega t}$$

wir können dies nun ineinander einsetzen um zu sehen ob dasselbe wieder herauskommt oder ob wir bei der Berechnung etwas verloren haben.

$$\Phi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt' \Phi(\mathbf{r},t) e^{i\omega t} \right\} e^{-i\omega t}$$

$$= \int_{-\infty}^{\infty} dt' \Phi(\mathbf{r},t) \underbrace{\frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega e^{i\omega(t-t')}}_{=\delta(t-t')}$$

$$= \Phi(\mathbf{r},t)$$

Somit haben wir keine Information gewonnen oder erzeugt. Wir haben den Ausdruck lediglich in eine andere Darstellung umgeformt.

Wir setzen nun die Fourierdarstellung in die DGL ein:

$$\frac{\partial^{2}}{\partial t^{2}} \Phi(\mathbf{r}, t) = \frac{1}{\sqrt{2\pi}} \int d\omega \, \tilde{\Phi}(\mathbf{r}, t) \underbrace{\frac{\partial^{2}}{\partial t^{2}} e^{-i\omega t}}_{=-\omega^{2} e^{-i\omega t}}$$
$$= \frac{1}{\sqrt{2\pi}} \int d\omega (-\omega^{2}) \tilde{\Phi}(\mathbf{r}, t) e^{-i\omega t}$$

Damit gilt:

$$\frac{1}{\sqrt{2\pi}} \int d\omega e^{-i\omega t} \left(\Delta + \frac{\omega^2}{c^2} \right) \tilde{\varPhi}(\boldsymbol{r}, t) = -\frac{1}{\varepsilon_0} \rho(\boldsymbol{r}, t)$$
Fouriertrafo.
$$\stackrel{\text{von } \rho}{=} \frac{1}{\sqrt{2\pi}} \int d\omega e^{-i\omega t} \left(-\frac{1}{\varepsilon_0} \right) \tilde{\rho}(\boldsymbol{r}, \omega)$$

Helmholtz-Gleichung

$$\Rightarrow \quad \left(\Delta + \frac{\omega^2}{c^2}\right)\tilde{\varPhi}(\boldsymbol{r},t) = -\frac{1}{\varepsilon_0}\tilde{\rho}(\boldsymbol{r},\omega) \tag{*}$$

Zur Bestimmung der Lösung von (??) betrachten wir zunächst eine Analogie zur Elektrostatik: $\omega \to 0 \quad (\hat{=} \frac{\partial}{\partial t} = 0)$

$$\Rightarrow \quad \Delta \tilde{\Phi} = -\frac{1}{\varepsilon_0} \tilde{\rho} \qquad \text{Poisson-Gleichung}$$

spezielle Lösung (ohne Randbedingungen)

$$\tilde{\varPhi}(\boldsymbol{r},\omega=0) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\boldsymbol{r}')}{|\boldsymbol{r}-\boldsymbol{r}'|} = \int d^3r' \mathcal{G}(\boldsymbol{r},\boldsymbol{r}')\rho(\boldsymbol{r}')$$

mit der Green'schen Funktion:

$$\mathcal{G}(\boldsymbol{r}, \boldsymbol{r}') = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

Diese erfüllt die Laplace Gleichung:

$$\Delta_{m{r}}\mathcal{G}(m{r},m{r}') = -rac{1}{arepsilon_0}\delta(m{r}-m{r}')$$

Wir benötigen eine Verallgemeinerung für $\omega \neq 0$:

$$\left(\Delta_{\boldsymbol{r}} + \frac{\omega^2}{c^2}\right) \mathcal{G}_{\omega}(\boldsymbol{r}, \boldsymbol{r}') = -\frac{1}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}')$$

Es zeigt sich, dass gilt:

$$\left(\Delta_{\boldsymbol{r}} + \frac{\omega^2}{c^2}\right) \frac{1}{4\pi\varepsilon_0} \frac{e^{\pm ik|\boldsymbol{r}-\boldsymbol{r}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|} = -4\pi\delta(\boldsymbol{r}-\boldsymbol{r}') = \mathcal{G}(\boldsymbol{r},\boldsymbol{r}')$$

Mit $k = \frac{\omega}{c}$ folgt daraus:

$$\left(\Delta_{\boldsymbol{r}} + \frac{\omega^2}{c^2}\right) \frac{1}{4\pi\varepsilon_0} \frac{e^{\pm i\frac{\omega}{c}|\boldsymbol{r} - \boldsymbol{r}'|}}{|\boldsymbol{r} - \boldsymbol{r}'|} = -\frac{1}{\varepsilon_0} \delta(\boldsymbol{r} - \boldsymbol{r}')$$

und somit:

$$\tilde{\varPhi}(\boldsymbol{r},\omega) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \underbrace{\frac{e^{\pm i\frac{\omega}{c}|\boldsymbol{r}-\boldsymbol{r}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|}}_{G_{\omega}(\boldsymbol{r},\boldsymbol{r}')} \tilde{\rho}(\boldsymbol{r}',\omega)$$

Da die Lösung gleich der Green'schen Funktion (\mathcal{G}_{ω}) mal der inhomogenität $(\tilde{\rho})$ ist.

Für das Potential Φ erhalten wir nun durch Rücktransformation:

$$\Phi(\mathbf{r},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\omega \tilde{\Phi}(\mathbf{r},\omega) e^{-i\omega t}$$

$$= \frac{1}{\sqrt{2\pi}} \int d\omega \frac{1}{4\pi\varepsilon_0} \int d^3 r' \frac{e^{\pm i\frac{\omega}{c}|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|} e^{-i\omega t} \tilde{\rho}(\mathbf{r}',\omega)$$

$$= \frac{1}{4\pi\varepsilon_0} \int d^3 r' \frac{1}{|\mathbf{r}-\mathbf{r}'|} \underbrace{\frac{1}{\sqrt{2\pi}} \int d\omega \ \tilde{\rho}(\mathbf{r}',\omega) e^{-i\omega(t-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}}_{=\rho(\mathbf{r}',t-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}$$

$$\Rightarrow \Phi(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\mathbf{r}',t-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}{|\mathbf{r}-\mathbf{r}'|}$$

wie in der Elektrostatik, aber:

$$t \to \tilde{t} = t - \frac{|\mathbf{r} - \mathbf{r}'|}{c} \tag{*}$$

Die neue Zeit ist also die alte Zeit minus der räumliche Abstand durch die Ausbreitungsgeschwindigkeit also die alte Zeit minus die Zeit in der die Änderung voranschreiten konnte.

physikalische Bedeutung:

Betrachte Änderung der Ladungsverteilung ρ in r' zur Zeit \tilde{t} .

 \Rightarrow Die Änderung des elektro-magnetischen Feldes (oder Φ) verbreitet sich mit Lichtgeschwindigkeit c. In der Entfernung |r-r'| ändert sich das Feld erst zur späteren Zeit $t=\tilde{t}+\frac{|r-r'|}{c}$. Wegen der verzögerten Änderung heißt die Potential-Lösung auch **retardierendes Potential**.

Retardierendes Potential

$$\Phi_{\rm ret}(\boldsymbol{r},t) = \frac{1}{4\pi\varepsilon_0} \int \mathrm{d}^3r' \frac{\rho(\boldsymbol{r}',t-\frac{|\boldsymbol{r}-\boldsymbol{r}'|}{c})}{|\boldsymbol{r}-\boldsymbol{r}'|}$$

Dies ist eine spezielle Lösung der inhomogenen Wellengleichung:

$$\left(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \Phi = -\frac{1}{\varepsilon_0} \rho(\mathbf{r}, t)$$

Die entsprechende Lösung der Gleichung für das Vektorpotential A:

$$\left(\Delta - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\boldsymbol{A} = -\mu_0\boldsymbol{j}(\boldsymbol{r},t)$$

ist:

Retardierendes Vektorpotential

$$\mathbf{A}_{\text{ret}}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int d^3r' \frac{\mathbf{j}(\mathbf{r}',t - \frac{|\mathbf{r} - \mathbf{r}'|}{c})}{|\mathbf{r} - \mathbf{r}'|}$$

Damit haben wir die spezielle oder auch partikuläre Lösung der inhomogene Wellengleichung gefunden.

Die Felder erhalten wir gemäß:

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} \qquad \boldsymbol{E} = -\boldsymbol{\nabla} \Phi - \frac{\partial A}{\partial t}$$

Bemerkung: Wir haben vorhin nur die Lösung mit $e^{+i\frac{\omega}{c}|\boldsymbol{r}-\boldsymbol{r}'|}$ betrachtet, die uns auf die retardierenden Potentiale geführt hat. Die andere Lösung mit $e^{-i\frac{\omega}{c}|\boldsymbol{r}-\boldsymbol{r}'|}$ würde uns auf andere Potentiale führen: avancierte Potentiale

$$\Phi_{\rm av}(\boldsymbol{r},t) = \frac{1}{4\pi\varepsilon_0} \int {\rm d}^3r' \frac{\rho(\boldsymbol{r}',t+\frac{|\boldsymbol{r}-\boldsymbol{r}'|}{c})}{|\boldsymbol{r}-\boldsymbol{r}'|}$$

Diese Lösung der avancierten Potentiale führt uns darauf, dass die Änderung von ρ für $\tilde{t} = t + \frac{|r-r'|}{c} > t$ die Felder zu einem früheren Zeitpunkt t beeinflusst. Dies **widerspricht dem Kausalitätsprinzip** und wurde deshalb vorhin von uns ignoriert. Die Lösung ist dennoch hilfreich falls man ein Problem nur mit der allgemeinen Lösung (\pm) Lösen kann (Siehe: Feldtheorie, S-Matrix-Formalismus).

Wiederholung

Maxwellgleichungen:

$$\nabla \cdot \boldsymbol{B} = 0 \qquad \nabla \times \boldsymbol{E} + \frac{\partial \boldsymbol{B}}{\partial t} = 0$$

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\varepsilon_0} \rho \qquad \nabla \times \boldsymbol{B} - \underbrace{\varepsilon_0 \mu_0}_{\frac{1}{c^2}} \frac{\partial \boldsymbol{E}}{\partial t} = \mu_0 \boldsymbol{j}$$

Potentiale:

$$oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A} = -oldsymbol{
abla} oldsymbol{\Phi} - rac{\partial oldsymbol{A}}{\partial t}$$

Lorenzeichung:

$$\nabla \cdot \mathbf{A} + \frac{1}{c^2} \frac{\partial \Phi}{\partial t} = 0$$

Entkoppelte Wellengleichungen der Potentiale:

$$\Delta \Phi - rac{1}{c^2} rac{\partial^2 \Phi}{\partial t^2} = -rac{1}{arepsilon_0}
ho \qquad \qquad \Delta {m A} - rac{1}{c^2} rac{\partial^2 {m A}}{\partial t^2} = -\mu_0 {m j}$$

Retardierende Potentiale:

$$\Phi_{\text{ret}}(\boldsymbol{r},t) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{\rho(\boldsymbol{r}',t-\frac{|\boldsymbol{r}-\boldsymbol{r}'|}{c})}{|\boldsymbol{r}-\boldsymbol{r}'|} \qquad \boldsymbol{A}_{\text{ret}}(\boldsymbol{r},t) = \frac{\mu_0}{4\pi} \int d^3r' \frac{\boldsymbol{j}(\boldsymbol{r}',t-\frac{|\boldsymbol{r}-\boldsymbol{r}'|}{c})}{|\boldsymbol{r}-\boldsymbol{r}'|}$$

Zum Verständnis des Retardierenden Potentials Skizze (??).

Elektromagnetische Potentiale und Felder bewegter Punkt-3.8 ladungen

$$\rho(\mathbf{r},t) = q\delta(\mathbf{r} - \mathbf{R}(t))$$
 $\mathbf{j}(\mathbf{r},t) = q\mathbf{V}(t)\delta(\mathbf{r} - \mathbf{R}(t))$

 $mit \ \boldsymbol{V}(t) = \dot{\boldsymbol{R}}(t)$

$$\Phi(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int d^3r' \frac{q\delta(\mathbf{r}' - \mathbf{R}(\tilde{t}))}{|\mathbf{r} - \mathbf{r}'|}$$

$$\tilde{t} = t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}$$

 $\tilde{t}=t-\frac{|{\bf r}-{\bf r}'|}{c}$ Wir wollen nun das folgende Integral lösen:

$$\int d^{3}r' \frac{q\delta(\mathbf{r}' - \mathbf{R}(\tilde{t}))}{|\mathbf{r} - \mathbf{r}'|} = \int d^{3}r' \int_{-\infty}^{\infty} dt' \frac{q\delta(\mathbf{r}' - \mathbf{R}(\tilde{t}))}{|\mathbf{r} - \mathbf{r}'|} \delta(t' - \tilde{t})$$

$$= \int d^{3}r' \int dt' \frac{\delta(\mathbf{r}' - \mathbf{R}(t'))\delta(t' - t + \frac{|\mathbf{r} - \mathbf{r}'|}{c})}{|\mathbf{r} - \mathbf{r}'|}$$

$$= \int dt' \int d^{3}r' \frac{\delta(\mathbf{r}' - \mathbf{R}(t'))\delta(t' - t + \frac{|\mathbf{r} - \mathbf{r}'|}{c})}{|\mathbf{r} - \mathbf{r}'|}$$

$$= \int dt' \frac{\delta(t' - t + \frac{|\mathbf{r} - \mathbf{R}(t')|}{c})}{|\mathbf{r} - \mathbf{R}(t')|}$$

$$= \int dt' \frac{\delta(f(t'))}{|\mathbf{r} - \mathbf{R}(t')|}$$

Wir benutzen eine Eigenschaft der δ -Funktion:

$$\delta(f(t')) = \sum_{j} \frac{\delta(t' - t_j)}{\left| \left(\frac{\mathrm{d}f}{\mathrm{d}t'} \right)_{t' = t_j} \right|}$$

 t_j : Nullstellen von f(t')

f(t') hat höchstens eine Nullstelle: $t_j =: t_{\text{ret}}$ $t_{\text{ret}}: f(t_{\text{ret}}) = 0$

$$t_{\rm ret} = t - \frac{|\boldsymbol{r} - \boldsymbol{R}(t_{\rm ret})|}{c}$$

gegeben: $t, \boldsymbol{r} \to t_{\rm ret}(\boldsymbol{r}, t)$

Berechnen wir zuerst die Ableitung:

$$\frac{\mathrm{d}f}{\mathrm{d}t'} = 1 + \frac{1}{c} \frac{\mathrm{d}}{\mathrm{d}t'} | \boldsymbol{r} - \boldsymbol{R}(t') |$$

$$= 1 - \frac{1}{c} \frac{(\boldsymbol{r} - \boldsymbol{R}(t')) \cdot \boldsymbol{\dot{R}}(t')}{|\boldsymbol{r} - \boldsymbol{R}(t')|}$$

$$= 1 - \underbrace{\boldsymbol{e}_{\boldsymbol{r} - \boldsymbol{R}(t')} \cdot \boldsymbol{\dot{V}}(t')}_{\leq |\boldsymbol{e} \cdot \boldsymbol{\dot{V}}_{c}| \leq |\boldsymbol{\dot{V}}_{c}| < 1}$$

$$\int dt' \frac{\delta(f(t'))}{|\mathbf{r} - \mathbf{R}(t')|} = \int dt' \frac{\delta(t' - t_{\text{ret}})}{\left| \left(\frac{df}{dt'} \right)_{t' = t_{\text{ret}}} \right|} \cdot \frac{1}{|\mathbf{r} - \mathbf{R}(t')|}$$

$$= \int dt' \frac{\delta(t' - t_{\text{ret}})}{|\mathbf{r} - \mathbf{R}(t_{\text{ret}})| - \frac{1}{c}(\mathbf{r} - \mathbf{R}(t_{\text{ret}})) \cdot \mathbf{V}(t_{\text{ret}})}$$

$$= \frac{1}{|\mathbf{r} - \mathbf{R}(t_{\text{ret}})| - \frac{1}{c}(\mathbf{r} - \mathbf{R}(t_{\text{ret}})) \cdot \mathbf{V}(t_{\text{ret}})}$$

Damit haben wir das integral gelöst und erhalten:

Lienard-Wiechert-Potentiale

$$\Rightarrow \quad \Phi(\mathbf{r}, t) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{R}(t_{\text{ret}})| - \frac{1}{c}(\mathbf{r} - \mathbf{R}(t_{\text{ret}})) \cdot \mathbf{V}(t_{\text{ret}})}$$

$$\Rightarrow \quad \mathbf{A}(\mathbf{r}, t) = \frac{\mu_0}{4\pi} \quad \frac{q\mathbf{V}(t_{\text{ret}})}{|\mathbf{r} - \mathbf{R}(t_{\text{ret}})| - \frac{1}{c}(\mathbf{r} - \mathbf{R}(t_{\text{ret}})) \cdot \mathbf{V}(t_{\text{ret}})}$$

Beispiele:

i) statischer Grenzfall: ruhende Punktladung:

$$V = 0$$
 $R = R_0$ $A(r,t) = 0$

$$\Phi(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{R}_0|}$$

ii) gleichförmig bewegte Punktladung:

$$V = V_0 = \text{const.}$$
 $R(t) = R_0 + V_0 \cdot t$

Bestimmung von t_{ret} :

$$t_{\mathrm{ret}} = t - \frac{|\boldsymbol{r} - \boldsymbol{R}(t_{\mathrm{ret}})|}{c}$$

$$c(t - t_{\text{ret}}) = |\mathbf{r} - \mathbf{R}(t_{\text{ret}})|$$

$$= |\underbrace{\mathbf{r} - \mathbf{R}(t)}_{=:\mathbf{d}(\mathbf{r},t)} + \underbrace{\mathbf{R}(t) - \mathbf{R}(t_{\text{ret}})}_{=\mathbf{V}_0 \cdot (t - t_{\text{ret}})}|$$

$$\Rightarrow c^{2}(t - t_{\text{ret}})^{2} = |\boldsymbol{d} - \boldsymbol{V}_{0} \cdot (t - t_{\text{ret}})|^{2}$$

$$= d^{2} + 2 \cdot \underbrace{\boldsymbol{d} \cdot \boldsymbol{V}_{0}}_{dV_{0} \cos \alpha} \cdot (t - t_{\text{ret}}) + V_{0}^{2} \cdot (t - t_{\text{ret}})^{2}$$

$$\Rightarrow t - t_{\text{ret}} = \frac{dV_0 \cos \alpha}{c^2 - V_0^2} + \frac{d}{c^2 - V_0^2} \sqrt{V_0^2 \cos^2 \alpha + c^2 - V_0^2}$$

$$= \frac{dV_0 \cos \alpha}{c^2 - V_0^2} + \frac{d}{c^2 - V_0^2} \sqrt{-V_0^2 \sin^2 \alpha + c^2}$$

$$= \frac{|\boldsymbol{d}(\boldsymbol{r}, t)|}{c^2 - V_0^2} \left(V_0 \cos \alpha + \sqrt{c^2 - V_0^2 \sin^2 \alpha} \right)$$

Im Nenner des Retardierenden Potentials steht:

$$\begin{aligned} |\underline{r} - \underline{R}(t_{\text{ret}})| &- \frac{1}{c} (\underline{r} - \underline{R}(t_{\text{ret}})) \cdot \underline{V}(t_{\text{ret}}) \\ &= \underline{r} - \underline{R}(t) + \underline{R}(t) - \underline{R}(t_{\text{ret}}) \\ &= \underline{d} + \underline{V}_0 \cdot (t - t_{\text{ret}}) \\ &= \underline{c} \cdot (t - t_{\text{ret}}) - \frac{1}{c} \underline{V}_0 \cdot (\underline{d} + \underline{V}_0(t - t_{\text{ret}})) \\ &= \frac{1}{c} (c^2 - V_0^2)(t - t_{\text{ret}}) - \frac{1}{c} V_0 d \cos \alpha \\ &= \frac{1}{c} |\underline{d}| \left(\underline{V}_0 \cos \alpha + \sqrt{c^2 - V_0^2 \sin^2 \alpha} - \underline{V}_0 \cos \alpha \right) \\ &= |\underline{d}(\underline{r}, t)| \sqrt{1 - \frac{V_0^2}{c^2} \sin^2 \alpha} \\ &= |\underline{d}(\underline{r}, t)| \sqrt{1 - \frac{V_0^2}{c^2} \sin^2 \alpha} \\ &\Rightarrow \underline{A}(\underline{r}, t) = \frac{\mu_0}{4\pi} \quad \frac{q \underline{V}_0}{|\underline{r} - \underline{R}(t)| \sqrt{1 - \frac{V_0^2}{c^2} \sin \alpha^2}} \end{aligned}$$

für langsame Teilchen gilt: $\frac{V_0}{c} \ll 1$ (nichtrelativistisch):

$$ightarrow \Phi(\boldsymbol{r},t) = rac{1}{4\pi\varepsilon_0} rac{q}{|\boldsymbol{r} - \boldsymbol{R}(t)|}$$

3.8.1 Felder einer gleichförmig-bewegten Punktladung

$$oldsymbol{E} = -oldsymbol{
abla} \Phi - rac{\partial oldsymbol{A}}{\partial t} \qquad oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A}$$

Komplikationen $\alpha = \alpha(\mathbf{r}, t)$ Dies wird z.B. im Griffitz genau hergeleitet, ist aber obwohl es nicht zu kompliziert ist, zu langwierig für de Vorlesung.

$$\boldsymbol{E} = \frac{q}{4\pi\varepsilon_0} \frac{1 - \frac{V_0^2}{c^2}}{\left(1 - \frac{V_0^2}{c^2}\sin^2\alpha^2\right)^{\frac{3}{2}}} \frac{\boldsymbol{r} - \boldsymbol{R}(t)}{|\boldsymbol{r} - \boldsymbol{R}(t)|^3}$$
$$\boldsymbol{B} = \frac{1}{c^2} (\boldsymbol{V}_0 \times \boldsymbol{E})$$

Bei kleinen Geschwindigkeiten gilt:

 $\frac{V_0}{c} \ll 1$:

$$ightarrow E pprox rac{q}{4\piarepsilon_0} rac{m{r} - m{R}(t)}{|m{r} - m{R}(t)|^3} \qquad m{B} pprox 0$$

 $\frac{V_0}{c}$: endlich

1)
$$d \perp \mathbf{R}$$
 $\alpha = \frac{\pi}{2}$

$$\Rightarrow \mathbf{E} = \frac{q}{4\pi\varepsilon_0} \frac{1}{\sqrt{1 - \frac{V_0^2}{c^2}}} \frac{\mathbf{r} - \mathbf{R}(t)}{|\mathbf{r} - \mathbf{R}(t)|^3} > \frac{q}{4\pi\varepsilon_0} \frac{\mathbf{r} - \mathbf{R}(t)}{|\mathbf{r} - \mathbf{R}(t)|^3}$$

2)
$$d \parallel R \quad \alpha = 0$$

$$\Rightarrow \quad \boldsymbol{E} = \frac{q}{4\pi\varepsilon_0} \left(1 - \frac{V_0^2}{c^2}\right) \frac{\boldsymbol{r} - \boldsymbol{R}(t)}{|\boldsymbol{r} - \boldsymbol{R}(t)|^3} \; < \; \frac{q}{4\pi\varepsilon_0} \frac{\boldsymbol{r} - \boldsymbol{R}(t)}{|\boldsymbol{r} - \boldsymbol{R}(t)|^3}$$

[Folie: E- und B-Felder von Ladungen die sich mit nahezu Lichtgeschwindigkeit bewegen.]

3.8.2 Felder einer (allgemein) bewegten Punktladung

$$oldsymbol{E} = -oldsymbol{
abla} \Phi - rac{\partial oldsymbol{A}}{\partial t} \qquad oldsymbol{B} = oldsymbol{
abla} imes oldsymbol{A}$$

Wird ebenfalls nicht in der Vorlesung berechnet da es zu langwierig ist.

$$oldsymbol{d}_{ ext{ret}} \coloneqq oldsymbol{r} - oldsymbol{R}(t_{ ext{ret}}) \qquad oldsymbol{e}_{ ext{ret}} \coloneqq rac{oldsymbol{d}_{ ext{ret}}}{|oldsymbol{d}_{ ext{ret}}|} \qquad oldsymbol{eta}(t) = rac{oldsymbol{V}(t)}{c}$$

$$\begin{split} \boldsymbol{E}(\boldsymbol{r},t) &= \frac{q}{4\pi\varepsilon_0} \frac{(\boldsymbol{e}_{\mathrm{ret}} - \boldsymbol{\beta}(t_{\mathrm{ret}}))(1-\beta^2(t_{\mathrm{ret}}))}{(1-\boldsymbol{e}_{\mathrm{ret}} \cdot \boldsymbol{\beta}(t_{\mathrm{ret}}))^3 |\boldsymbol{d}_{\mathrm{ret}}(\boldsymbol{r},t)|^2} \\ &+ \frac{q}{4\pi\varepsilon_0} \frac{\boldsymbol{e}_{\mathrm{ret}} \times \left[\left(\boldsymbol{e}_{\mathrm{ret}} - \boldsymbol{\beta}(t_{\mathrm{ret}}) \times \dot{\boldsymbol{\beta}}(t_{\mathrm{ret}}\right)\right]}{c \ (1-\boldsymbol{e}_{\mathrm{ret}} \cdot \boldsymbol{\beta}(t_{\mathrm{ret}}))^3 |\boldsymbol{d}_{\mathrm{ret}}(\boldsymbol{r},t)|} \\ \boldsymbol{B}(\boldsymbol{r},t) &= \frac{1}{c} \boldsymbol{e}_{\mathrm{ret}} \times \boldsymbol{E}(\boldsymbol{r},t) \end{split}$$

Bemerkung:

- a) Der erste Term des E-Feldes: $\sim \frac{1}{d_{\rm ret}^2} \stackrel{r \to \infty}{\longrightarrow} \frac{1}{r^2} \text{ wie in der Elektrostatik}$ unabhängig von der Beschleunigung $\dot{\beta}$
- b) Der zweite Term des E-Feldes: $\sim \frac{1}{d_{\mathrm{ret}}} \stackrel{r \to \infty}{\longrightarrow} \frac{1}{r} \text{ dominiert für } r \to \infty$

 $\sim \dot{\boldsymbol{\beta}}$ verschwindet für eine gleichförmig Bewegte Ladung

3.9 Elektromagnetische Felder oszillierender Quellen -EM-Strahlung

oszillierende Ladungs-/Stromverteilung

$$\rho(\mathbf{r},t) = \rho(\mathbf{r})e^{-i\omega t}$$
$$\mathbf{j}(\mathbf{r},t) = \mathbf{j}(\mathbf{r})e^{-i\omega t}$$

Aus Einfachheitshalber in der Notation bekommen die Orts- und Zeitabhängigen Funktionen dieselben symbole wie die nur Ortsabhängigen.

Beispiele:

Vektorpotential:

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{j}(\mathbf{r}', t - \frac{|\mathbf{r} - \mathbf{r}'|}{c})}{|\mathbf{r} - \mathbf{r}'|} = \frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{j}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} e^{-i\omega \left(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}\right)}$$

$$= e^{-i\omega t} \underbrace{\frac{\mu_0}{4\pi} \int d^3 r' \frac{\mathbf{j}(\mathbf{r}') e^{ik|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|}}_{=:\mathbf{A}(\mathbf{r})} = e^{-i\omega t} \mathbf{A}(\mathbf{r})$$

Wir interessieren uns für zeitabhängige Felder in Raumbereichen außerhalb der Ladung-/Stromverteilung

Annahmen:

i) zeitabhängige Felder im großen Abstand zur Quelle

$$j(r') = \begin{cases} 0 & r' > R_0 \\ \text{sonst} & \text{beliebig} \end{cases}$$

 \rightarrow Betrachtung von \boldsymbol{A} (von \boldsymbol{A} ist Ausreichend)

$$B = \nabla \times A$$

E = ?

$$\nabla \times \boldsymbol{B}(\boldsymbol{r},t) - \frac{1}{c^2} \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t} = \mu_0 \boldsymbol{j}(\boldsymbol{r},t) = 0$$
 für $|\boldsymbol{r}| > R_0$

$$\begin{split} \frac{\partial}{\partial t} \boldsymbol{E}(\boldsymbol{r},t) &= c^2 \boldsymbol{\nabla} \times \boldsymbol{B} = c^2 \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r},t)) \\ &= e^{-i\omega t} c^2 \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})) \end{split}$$

$$\Rightarrow$$
 $\boldsymbol{E}(\boldsymbol{r},t) = \frac{i}{\omega} e^{-i\omega t} c^2 \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})) + \boldsymbol{f}(\boldsymbol{r})$

$$\omega \neq 0 \quad \boldsymbol{f} \equiv 0$$

ii) Wellenlänge $\lambda \gg$ Ausdehnung R_0 (Langwellennäherung)

$$\lambda = \frac{2\pi}{k} = \frac{2\pi c}{\omega} \gg R_0$$

i) & ii) $R_0 \ll \lambda, r$ Wir integrieren über

$$\frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|}$$

$$|\mathbf{r} - \mathbf{r}'| = \sqrt{r^2 - 2\mathbf{r} \cdot \mathbf{r}' + r'^2}$$

$$= r\sqrt{1 - e\mathbf{e}_{\mathbf{r}} \cdot \frac{\mathbf{r}'}{r} + \left(\frac{r'}{r}\right)^2}$$

$$\approx r(1 - \mathbf{e}_{\mathbf{r}} \cdot \frac{\mathbf{r}'}{r}) \qquad \mathbf{r}' \ll r$$

$$e^{ik|\mathbf{r}-\mathbf{r}'|} pprox e^{ikr} \underbrace{e^{-ik\mathbf{e_r}\cdot\mathbf{r}'}}_{pprox 1-ik\mathbf{e_r}\cdot\mathbf{r}'}$$

mit $kr' = 2\pi \frac{r'}{\lambda} \ll 1$, da $kR_0 \ll 2\pi$

$$\frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|}\approx\frac{1}{r}(1+\boldsymbol{e}_{\boldsymbol{r}\cdot\frac{\boldsymbol{r}'}{r}})$$

(aus der Multipolentwicklung)

$$\frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|} \approx e^{ikr} (1-ik\boldsymbol{e_r} \cdot \frac{\boldsymbol{r}'}{r}) (1+\boldsymbol{e_r} \cdot \frac{\boldsymbol{r}'}{r})$$

$$= e^{ikr} \left[\frac{1}{r} - ik\boldsymbol{e_r} \cdot \frac{\boldsymbol{r}'}{r} + \frac{1}{r}\boldsymbol{e_r} \cdot \frac{\boldsymbol{r}'}{r} - ik \underbrace{(\boldsymbol{e_r} \cdot \frac{\boldsymbol{r}'}{r})^2}_{r} \right]$$

$$\approx \frac{e^{ikr}}{r} \left[1 + \boldsymbol{e_r} \cdot \boldsymbol{r}' \left(\frac{1}{r} - ik \right) \right]$$

$$A(\boldsymbol{r}) = \frac{\mu_0}{4\pi} \int \mathrm{d}^3 r' \boldsymbol{j}(\boldsymbol{r}') \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|}$$

$$= \underbrace{\frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} \int \mathrm{d}^3 r' \boldsymbol{j}(\boldsymbol{r}') + \underbrace{\frac{\mu_0}{4\pi} \frac{e^{ikr}}{r} \left(\frac{1}{r} - ik \right) \int \mathrm{d}^3 r' \boldsymbol{j}(\boldsymbol{r}') (\boldsymbol{e_r} \cdot \boldsymbol{r}')}_{\text{elektrischer Dipolanteil}}$$
el. Quadrupolanteil und magnetischer Dipolanteil (E2,M1)

Wir betrachten nun den elektrischen Dipolterm, um zu erklären wie eine bewegte Ladung und die damit verbundene Stromdichte einen elektrischen Dipol Darstellen.

elektrischen Dipolterm:

lokalisierte Stromverteilung j_q :

$$\int d^3r' \boldsymbol{j}(\boldsymbol{r}') = -\int d^3r' \boldsymbol{r}' \boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{r}')$$

$$\boldsymbol{\nabla} \cdot (x \boldsymbol{j}(\boldsymbol{r}')) = x \boldsymbol{\nabla} \boldsymbol{j} + \boldsymbol{j} \cdot \underbrace{\boldsymbol{\nabla} x}_{\boldsymbol{e}_x} = x \boldsymbol{\nabla} \boldsymbol{j} + j_x$$

$$\Rightarrow \int_{\mathbb{R}^3} d^3r' \boldsymbol{j}_x(\boldsymbol{r}') = \underbrace{\int_{\mathbb{R}^3} d^3r' \boldsymbol{\nabla} \cdot (x' \boldsymbol{j}(\boldsymbol{r}))}_{\hat{\boldsymbol{e}}_x} - \int_{\mathbb{R}^3} d^3r' x' \boldsymbol{\nabla} \cdot \boldsymbol{j}$$

Kontinuitätsgleichung:

$$0 = \frac{\partial}{\partial t} \rho(\mathbf{r}, t) + \nabla \cdot \mathbf{j}(\mathbf{r}, t)$$

$$= \frac{\partial}{\partial t} e^{-i\omega t} \rho(\mathbf{r}) + \nabla e^{-i\omega t} \mathbf{j}(\mathbf{r})$$

$$= -i\omega t \rho(\mathbf{r}, t) + e^{-i\omega t} \nabla \cdot \mathbf{j}(\mathbf{r})$$

$$\nabla \mathbf{j}(\mathbf{r}) = i\omega t e^{i\omega t} \rho(\mathbf{r}, t) = i\omega \rho(\mathbf{r})$$

$$\Rightarrow \int d^{3}r' \mathbf{j}(\mathbf{r}') = -i\omega \int_{\mathbf{r}} d^{3}r' \mathbf{r}' \rho(\mathbf{r}) = -i\omega \mathbf{p}$$

$$= \mathbf{p} \quad \text{Dipolmoment}$$

$$\Rightarrow \mathbf{A}_{E1}(\mathbf{r}) = -i\omega \frac{\mu_{0}}{4\pi} \frac{e^{ikr}}{r} \mathbf{p}$$

$$\mathbf{A}_{E1}(\mathbf{r}, t) = e^{-i\omega t} \mathbf{A}_{E_{1}}(\mathbf{r}) = -i\omega \frac{\mu_{0}}{4\pi} \frac{e^{ikr}}{r} \mathbf{p}$$

3.9.1 Elektrische Dipolstrahlung

$$m{A}(m{r},t) = e^{-i\omega t} m{A}(m{r})$$

 $m{A}(m{r}) = -i\omega rac{\mu_0}{4\pi} rac{e^{ikr}}{r} m{p}$

Wir wollen nun hieraus die elektrischen und magnetischen Felder berechnen.

$$\boldsymbol{B}(\boldsymbol{r},t) = \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r},t) = e^{-i\omega t} \boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})$$

$$\nabla \times \boldsymbol{A} = -i\omega \frac{\mu_0}{4\pi} \underbrace{\nabla \times \left(\frac{e^{ikr}}{r}\boldsymbol{p}\right)}_{=-\boldsymbol{p} \times \boldsymbol{\nabla} \frac{e^{ikr}}{r}} \underbrace{-\frac{e^{ikr}}{r}}_{=e_r \frac{\partial}{\partial t} \frac{e^{ikr}}{r} - ik \frac{e^{ikr}}{r}} (1 - \frac{1}{ikr})}_{=e_r \frac{\partial}{\partial t} \frac{e^{ikr}}{r} - ik \frac{e^{ikr}}{r}} \left(1 - \frac{1}{ikr}\right) (\boldsymbol{p} \times \boldsymbol{e_r})$$

$$= \frac{\mu_0}{4\pi} ck^2 \frac{e^{ikr}}{r} \left(1 - \frac{1}{ikr}\right) (\boldsymbol{e_r} \times \boldsymbol{p})$$

$$\Rightarrow \boldsymbol{B}(\boldsymbol{r}, t) = \frac{\mu_0}{4\pi} ck^2 \frac{e^{i(kr - \omega t)}}{r} \left(1 - \frac{1}{ikr}\right) \boldsymbol{e_r} \times \boldsymbol{p} \qquad \boldsymbol{B} \perp \boldsymbol{e_r}, \boldsymbol{r}$$

$$\boldsymbol{E}(\boldsymbol{r}, t) = \frac{i}{\omega} e^{-i\omega t} c^2 \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r}))$$

$$\Rightarrow \boldsymbol{E}(\boldsymbol{r}, t) = \frac{1}{4\pi\varepsilon_0} \frac{e^{i(kr - \omega t)}}{r} \left\{ k^2 \underbrace{(\boldsymbol{e_r} \times \boldsymbol{p}) \times \boldsymbol{e_r} + \left(\frac{1}{r^2} - \frac{ik}{r}\right)}_{\text{cuch Komponenten}} \underbrace{[3\boldsymbol{e_r}(\boldsymbol{e_r} \cdot \boldsymbol{p}) - \boldsymbol{p}]}_{\text{auch Komponenten}} \right\}$$

Grenzfall:

statischer Dipol $\omega \to 0$ $k \to 0$

$$m{E}(m{r},t)
ightarrow rac{1}{4\piarepsilon_0} rac{3m{e}_r(m{e}_r\cdotm{p}) - m{p}}{r^3} \ m{B}(m{r},t)
ightarrow 0$$

Fernbereich (Strahlungszone)

$$\begin{split} kr \gg 1 \quad r \gg \lambda \, \, \frac{1}{kr} \ll 1 & \quad \frac{k^2}{r} = \frac{k^2 r^2}{r^3} \gg \frac{1}{r^3} & \quad \frac{k}{r^2} = \frac{k^2}{krr} \ll \frac{k^2}{r} \\ \\ \Rightarrow \quad \boldsymbol{E}(\boldsymbol{r},t) = \frac{1}{4\pi\varepsilon_0} e^{i(kr-\omega t)} \bigg\{ \frac{k^2}{r} (\boldsymbol{e}_r \times \boldsymbol{p}) \times \boldsymbol{e}_r + \left(\frac{1}{r^3} - \frac{ik!}{r^2}\right) \left[3\boldsymbol{e}_r (\boldsymbol{e}_r \cdot \boldsymbol{p}) - \boldsymbol{p} \right] \bigg\} \end{split}$$

da, wie oben gezeigt, diese Terme $\frac{1}{r^3}$, $\frac{ik}{r^2}$ vernachlässigbar klein im Vergleich zu $\frac{k^2}{r}$ sind.

$$egin{align*} m{B}(m{r},t) &pprox rac{\mu_0}{4\pi} ck^2 rac{e^{i(kr-\omega t)}}{r} m{e}_r imes m{p} \ &m{E}(m{r},t) pprox rac{1}{4\piarepsilon_0} k^2 rac{e^{i(kr-\omega t)}}{r} (m{e}_r imes m{p}) imes m{e}_r \ &= cm{B}(m{r},t) imes m{e}_r \ &m{E} \perp m{B}, m{e}_r \end{aligned}$$

wir erhalten also sich transversal ausbreitende Kugelwellen.

Bemerkungen:

i) E, B, e_r orthogonal

ii) $|{m E}| \sim {1 \over r} \quad |{m B}| \sim {1 \over r}$ Strahlungsfelder

[Folie: Strahlungsfelder]

Widerholung

$$R_0 \ll \lambda \ll r$$

$$egin{aligned} m{B}(m{r},t) &pprox rac{\mu_0}{4\pi} ck^2 rac{e^{i(kr-\omega t)}}{r} m{e}_r imes m{p} \ m{E}(m{r},t) &pprox rac{1}{4\piarepsilon_0} k^2 rac{e^{i(kr-\omega t)}}{r} (m{e}_r imes m{p}) imes m{e}_r \ &= cm{B}(m{r},t) imes m{e}_r \end{aligned}$$

mit $\boldsymbol{p} = \int \mathrm{d}^3 r' \boldsymbol{r}' \rho(\boldsymbol{r}')$

3.9.2 Energiestromdichte

$$egin{aligned} oldsymbol{S} &= oldsymbol{E} imes oldsymbol{H} &= rac{c}{\mu_0} \underbrace{oldsymbol{(B imes oldsymbol{e}_r) imes oldsymbol{B}}_{oldsymbol{e}_r oldsymbol{B}^2 + oldsymbol{B}(oldsymbol{e} \cdot oldsymbol{B})} &= rac{c}{\mu_0} \underbrace{oldsymbol{(B imes oldsymbol{e}_r) imes oldsymbol{B}}_{oldsymbol{e}_r oldsymbol{B}^2 + oldsymbol{B}(oldsymbol{e} \cdot oldsymbol{B})} &= rac{c}{\mu_0} \underbrace{oldsymbol{(B imes oldsymbol{e}_r) imes oldsymbol{B}}_{oldsymbol{e}_r oldsymbol{B}^2 + oldsymbol{B}(oldsymbol{e} \cdot oldsymbol{B})} &= \underbrace{oldsymbol{c}_r oldsymbol{B}_r oldsymbol{B}_r oldsymbol{B}_r oldsymbol{e}_r oldsymbol{B}_r oldsymbol{B}_r oldsymbol{e}_r oldsymbol{B}_r oldsymbol{B}_$$

 $m{E}\perp m{B}, m{e}_r$

$$\Rightarrow$$
 $S = \frac{c}{\mu_0} B^2 e_r$

$$\boldsymbol{B} = \Re \left\{ \frac{\mu_0}{4\pi} ck^2 \frac{e^{i(kr - \omega t)}}{r} \boldsymbol{e}_r \times \boldsymbol{p} \right\}$$
$$= \frac{\mu_0}{4\pi} ck^2 \boldsymbol{e}_r \times \boldsymbol{p} \frac{\cos(kr - \omega t)}{r}$$

$$\Rightarrow \quad \boldsymbol{S}(\boldsymbol{r},t) = \frac{c}{\mu_0} \left(\frac{\mu_0}{4\pi} c k^2 \right)^2 (\boldsymbol{e}_r \times \boldsymbol{p})^2 \boldsymbol{e}_r \frac{\cos^2(kr - \omega t)}{r}$$

$$\Rightarrow \quad \mathbf{S} = \frac{c}{16\pi^2 \varepsilon_0} \frac{k^4 p^2}{r^2} \sin^2 \theta \cos^2(kt - \omega t) \mathbf{e}_r$$

gemittelt über Periode $T = \frac{2\pi}{\omega}$

$$\langle \mathbf{S} \rangle = \frac{1}{T} \int_0^T dt \mathbf{S}(\mathbf{r}, t)$$

$$= \frac{c}{32\pi^2 \varepsilon_0} \frac{k^4 p^2}{r^2} \sin^2 \theta \mathbf{e}_r \qquad k = \frac{\omega}{c}$$

$$\langle m{S}
angle = rac{1}{32\pi^2 arepsilon_0} rac{\omega^4 p^2}{c^3 r^2} \sin^2 \theta m{e}_r$$

- i) Abstrahlung $\propto \boldsymbol{e}_r$
- ii) Energieflussdichte
 $\propto \frac{1}{r^2}$
- iii) in Raumwinkelelementen d Ω abgestrahlte Leistung

$$dP = \langle \boldsymbol{S} \rangle \cdot d\boldsymbol{f}$$

$$\operatorname{mit} d\boldsymbol{f} = \boldsymbol{e}_r r^2 d\Omega$$

$$\Rightarrow dP = \frac{\omega^4 p^2}{32\pi^2 \varepsilon_0 c^3 r^2} r^2 \sin^2 \theta d\Omega$$
$$\frac{\partial P}{\partial \Omega} = \frac{\omega^4 p^2}{32\pi^2 \varepsilon_0 c^3} \sin^2 \theta$$

- iv) Winkelabhängigkeit: $\propto \sin^2\theta$
- v) gesamte abgestrahlte Leistung

$$P = \int_{4\pi} \mathrm{d}\Omega \frac{\mathrm{d}P}{\mathrm{d}\Omega} \ = \ \frac{1}{12\pi\varepsilon_0 c^3} \omega^4 p^2$$

$$P = \int_{4\pi} d\Omega \frac{dP}{d\Omega} = \frac{1}{12\pi\varepsilon_0 c^3} \omega^4 p^2$$

Der rest der Vorlesung ist nicht mehr Klausurrelevant.

Kapitel 4

Relativitätstheorie und Elektrodynamik

Ziel dieses Kapitels ist es, die Maxwellgleichungen relativistisch-kovariant darstellen zu können. Hierzu benötigen wir aber zunächst eine kurze Wiederholung der Formalismen der Relativitätstheorie.

4.1 Spezielle Relativitätstheorie (Wiederholung)

Inertialsysteme:

Bezugssysteme, in denen sich ein Kräftefreier Körper geradlinig und gleichförmig bewegt.

4.1.1 Newtonsche Mechanik und Galileitransformation (Exkurs)

Newtonsche Mechanik

in der **Newtonschen Mechanik** gilt das Galileische Relativitätsprinzip: Alle IS sind gleichwertig, d.h. physikalische Gesetze haben in allen IS die gleiche Form.

Der Übergang zwischen IS verläuft mittels der Galileitransformation: $v = ve_x$ r' = r - vtTransformationskoordinaten:

$$x' = x - vt$$
 $y' = y$ $z' = z$ $t' = t$

Transformation von Geschwindigkeiten

$$u' := \frac{x'}{t'} = \frac{x - vt}{t} = \frac{x}{t} - v = u - v$$
$$u = u' + v$$

Geschwindigkeitsaddition ist also linear.

Exp: Lichtgeschwindigkeit c ist in allen Systemen gleich \checkmark

Einsteinsches Relativitätsprinzip

Grundlagen:

- 1) Alle IS sind gleichwertig
- 2) Die Lichtgeschwindigkeit c ist in allen IS gleich

4.1.2 Lorentztransformation und relativistische Notation

Ereignis in S bei t, x, y, z hat in S' die Koordinaten t', x', y', z'Der Zusammenhang ist gegeben durch die Lorentztransformation.

Lorentransformation

$$t' = \gamma \left(-\frac{\beta}{c}x + t \right)$$
 $x' = \gamma (x - vt)$ $y' = y$ $z' = z$
$$\beta = \frac{v}{c}$$
 $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$

Grenzfall:
$$\left|\frac{v}{c}\right| \ll 1$$
: $\beta \to 0, \gamma \to 1$
 $\Rightarrow t' = t \quad x' = c - vt \quad y' = y \quad z' = z$

relativistische Notation

t, x, y, z: Ereignis im **Minkoswki-Raum**

Vierervektor

$$(x^{\mu}): x^{\mu} \quad \mu = 0, 1, 2, 3$$

$$x^0 = ct$$
 $x^1 = x$ $x^2 = y$ $x^3 = z$ $(x^{\mu}) = \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$

Darstellung: Raum-Zeit-Diagramme oder auch Minkowski-Diagramme: Abstand zweier Ereignisse

$$(x_A^{\mu}) = (x_A^0, x_A^1, x_A^2, x_A^3) = (ct_A, x_A, y_A, z_A)$$
$$(x_B^{\mu}) = (x_B^0, x_B^1, x_B^2, x_B^3) = (ct_B, x_B, y_B, z_B)$$

Abstand:

$$(\Delta s)^2 := (x_A^0 - a_B^0)^2 - (x_A^1 - x_B^1)^2 - (x_A^2 - x_B^2)^2 - (x_A^3 - x_B^3)^2$$
$$= c^2 (t_A - t_B)^2 - (x_A - x_B)^2 - (y_A - y_B)^2 - (z_A - z_B)^2$$

Wegelement ds:

$$(ds)^{2} = c^{2}dt^{2} - dx^{2} - dy^{2} - dz^{2}$$

$$= (dx^{0})^{2} - (dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2}$$

$$= \sum_{\mu\nu} g_{\mu\nu} dx^{\mu} dx^{\nu}$$

mit $g_{\mu\nu}$ dem metrischen Tensor: $g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ Lorentztransformation: $S \to S'$

$$x^{\mu} \to x'^{\mu} \to \begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \overbrace{\begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}^{=:\Lambda^{\mu}_{\nu}} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$

Einsteinsche Summen-Konvention

$$x'^\mu = \sum_\nu \Lambda^\mu_{\ \nu} x^\nu := \Lambda^\mu_{\ \nu} x^\nu$$

Bei gleichen Indices, einer oben, einer unten, wird die Summe weggelassen es wird dann über diesen Index aufsummiert.

4.1.3 Skalare, Vektoren, Matrizen, Tensoren in der vierdimansionalen Raum-Zeit

Skalare

Größen, die invariant sind unter Lorentztransformation (LT)

Beispiele:

i) Abstand: Δs , ds

ii) Eigenzeit:
$$d\tau = \sqrt{1 - \left(\frac{\boldsymbol{v}(t)}{c}\right)^2} dt$$

iii) c, m_0, q

Vierervektoren

Ortsvektor: $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$

Ein Vierervektor b ist eine vierkomponentige Größe (b^{μ}) , welche sich bei LT wie die Komponenten des Ortsvektors transformiert:

$$b'^{\mu} = \Lambda^{\mu}_{\ \nu} b^{\nu}$$

Beispiele:

i) Ortsvektor

ii) Vierergeschwindigkeit $u=(u^{\mu})$ Wurde eingeführt, da sich die normale Geschwindigkeit nicht wie der Ortsvektor transformiert.

$$u^{\mu} := \frac{\partial x^{\mu}}{\partial \tau}$$
$$dx^{\mu} = (dx^{0}, dx^{1}, dx^{2}, dx^{3})$$
$$= (cdt, dx, dy, dz)$$

$$d\tau' = d\tau$$

$$\begin{split} \mathrm{d}x'^{\mu} &= \Lambda^{\mu}_{\nu} \mathrm{d}x^{\nu} \qquad u'^{\mu} = \frac{\partial x'^{\mu}}{\partial \tau'} = \Lambda^{\mu}_{\nu} u^{\nu} \\ u^{0} &= \frac{\mathrm{d}x^{0}}{\mathrm{d}\tau} = \gamma \frac{\mathrm{d}}{\mathrm{d}t} ct = \gamma c \\ u^{1} &= \frac{\mathrm{d}x^{1}}{\mathrm{d}\tau} = \gamma \frac{\mathrm{d}x}{\mathrm{d}t} = \gamma v_{x} \\ (u^{\mu}) &= \gamma \begin{pmatrix} c \\ v \end{pmatrix} \\ x'^{\mu} &= \Lambda^{\mu}_{\ \nu} x^{\nu} \qquad x'_{\mu} = \overline{\Lambda}^{\ \nu}_{\mu} x_{\nu} \end{split}$$

"Skalarprodukt" zweier Vierervektoren

$$(a^{\mu}), (b^{\mu}): \quad a \cdot b := a^{0}b^{0} - a^{1}b^{1} - a^{2}b^{2} - a^{3}b^{3}$$

 $\rightarrow \quad (\Delta s)^{2} = (x_{A} - x_{B}) \cdot (x_{A} - x_{B})$

Kovariante und Kontravariante Vektorkomponenten

$$(a^{\mu}) = (a^0, a^1, a^2, a^3)$$
$$(a_{\mu}) := (a^0, -a^1, -a^2, -a^3)$$

 a^{μ} : Kontravariante Komponenten

 $a_{\mu}:$ Kovariante Komponenten

$$a \cdot b = \sum_{\mu} a^{\mu} b_{\mu} = a^{\mu} b_{\mu}$$

$$g_{\mu\nu}: \qquad x_{\mu} = g_{\mu\nu}x^{\nu} \qquad x^{\mu} = g^{\mu\nu}x_{\nu}$$

Dies nennt man auch das Herauf- oder Herunterziehen der Indizes.

$$x_1 = g_{1\nu}x^{\nu}$$

= $g_{10}x^0 + g_{11}x^2 + g_{12}x^2 + g_{13}x^3$
= $-x^1$

Tensoren

Größe mit oberen und/oder unteren Indizes, wobei sich jeder obere Index Kontravariant und jeder untere Index Kovariant transformiert.

Beispiel: Tensor 3. Stufe

$$T^{\alpha\beta}_{\ \gamma}: \quad T'^{\alpha\beta}_{\ \gamma} = \Lambda^{\alpha}_{\mu} \Lambda^{\beta}_{\nu} \overline{\Lambda}^{\ \sigma}_{\gamma} T^{\mu\nu}_{\ \ \sigma}$$

metrischer Tensor: $g_{\mu\nu}$, Feldstärketensor $F^{\mu\nu}$