1. Treść zadania

Dla tablicy o wymiarze n i elementach będących liczbami całkowitymi proszę napisać algorytm:

- 9.1 wyznaczającą liczbę wystąpień minimalnego elementu w tablicy.
- 9.2 wyznaczającą maksymalną odległość między elementami o minimalnej wartości (uwaga: minimalna wartość w tablicy jest jedna ale może wystąpić kilkakrotnie).

Np. dla tablicy {1, 4, 1, 1, 7, 2, 3} minimalna wartość wynosi 1 i występuje 3 razy.

Maksymalna odległość między nimi wynosi 3 (różnica między indeksami ostatniego i pierwszego wystąpienia wartości 1). Jeśli wartość minimalna występuje jednokrotnie to maksymalna odległość wynosi 0.

2. Opis słowny algorytmu

Algorytm tworzy tablice 'N' elementowej długości następnie przypisuje wartości 'x' największą wartość po czym porównuje ją z każdym z elementów tablicy w poszukiwaniu wartości najmniejszej po jej znalezieniu przechodzi do następnego kroku którym jest zliczenie ile razy dana wartość w tabeli występuje. Ostatnim działaniem jest sprawdzenie najbliższego indeksu z najmniejsza wartością do strony lewej (L) i prawej (P) po czym odjęcie większego indeksu od mniejszego w celu wyliczenia najdalszej odległości między nimi.

Kod napisany w C++ jest dodatkowo urozmaicony o polecenia i opisy wyników w celu uporządkowania wprowadzanych i wyświetlanych danych oraz umożliwia wybór największej wartości do wylosowania.

3. Schemat blokowy

Schemat blokowy algorytmu

4. Symulacja działania algorytmu dla przykładowych danych WE

Т	Ν	Х	i	i <n< th=""><th>Tab(i)<x< th=""><th>Х</th><th>i</th></x<></th></n<>	Tab(i) <x< th=""><th>Х</th><th>i</th></x<>	Х	i
2, 4, 6, 8, 2, 9, 3, 3, 4, 5	10	11	0	TAK	2<11 TAK	2	1
		2	1	TAK	4<2 NIE	2	2
		2	2	TAK	6<2 NIE	2	3
			3	TAK	6<2 NIE	2	4
			4	TAK	2<2 NIE	2	5
			5	TAK	9<2 NIE	2	6
			6	TAK	3<2 NIE	2	7
			7	TAK	3<2 NIE	2	8
			8	TAK	4<2 NIE	2	9
			9	TAK	5<2 NIE	2	10
			10	NIE			

Т	N	Х	i	i <n< th=""><th>Tab(i)=x</th><th>ile</th><th>i</th></n<>	Tab(i)=x	ile	i
2, 4, 6, 8, 2, 9, 3, 3, 4, 5	10	2	0	TAK	TAK	1	1
			1	TAK	NIE		2
			2	TAK	NIE		3
			3	TAK	NIE		4
			4	TAK	TAK	2	5
			5	TAK	NIE		6
			6	TAK	NIE		7
			7	TAK	NIE		8
			8	TAK	NIE		9
			9	TAK	NIE		10
			10	NIE			

T	N	Х	i	i <n< th=""><th>L</th><th>Tab(L)=x</th><th>gdzie1</th><th>Р</th><th>Tab(P)=x</th><th>gdzie2</th><th>i</th></n<>	L	Tab(L)=x	gdzie1	Р	Tab(P)=x	gdzie2	i
2, 4, 6, 8, 2, 9, 3, 3, 4, 5	10	2	0	TAK	0	2=2 TAK	0	9	5=2 NIE		1
			1	TAK				8	4=2 NIE		2
			2	TAK				7	3=2 NIE		3
			3	TAK				6	3=2 NIE		4
			4	TAK				5	9=2 NIE		5
			5	TAK				4	2=2 TAK	4	6
			6	TAK							7
			7	TAK							8
			8	TAK						·	9
			9	TAK				_			10
			10	NIE							

5. Zapis algorytmu w języku SCILAB

```
1 N -= -10
2 TAB = int (N*rand(1,N))
3 disp(TAB)
4 L -= -1
5 P -= N
6 x -= -N+1
7 | ile -= -0
8 gdzie1 -= -0
9 gdzie2 -= -0
10
11 for · i=1 · : · N
12 - · · · if · TAB(i) < x · then
13 ---- x -= TAB(i)
14 ----end
15 end
16
17 for - i=1 -: - N
18 · · · · if · TAB(i) == x · then
19 -----ile=ile+1
20 ----end
21 end
22
23 for · i=1 · : · N
24 - · · · if · TAB (L) · == · x · then
25 -----gdzie1=L
26 ····else
27 ---------L=L+1
28 ----end
29 · · · · if · TAB (P) ·== · x · then
30 ----gdzie2=P
31 ····else
33 ----end
34 end
35
36 disp(ile)
37 disp (gdzie2-gdzie1)
38 disp(timer())
39
```

6. Kod C++

```
#include<iostream>
1
 2
      #include<ctime>
 3
      #include<random>
 4
 5
      using namespace std;
 6
 7
      int n;
 8
      int t[1000];
 9
10 - int main() {
          cout<<"Podaj ilosc liczb w tablicy: ";
11
12
           cin >> n;
           srand(time(NULL));
13
14
           int L = 0;
           int P = n-1;
15
16
17
           cout<< "Podaj do jakiej liczby beda losowane wartosci: ";
18
           cin >> a;
           int x = a+1;
19
20
           int ile = 0;
           int gdzie1 = 0;
21
           int gdzie2 = 0;
22
23
24
           for (int i = 0; i < n; i++)
25
               t[i] = rand() % a + 1;
26
27
28
29
           for (int i = 0; i < n; i++)
30
31
                   if (t[i]<x){
32
                   x = t[i];
33
               cout << t[i] << " ";
34
35
36
           for (int i = 0; i < n; i++){
37
38
39
               if (t[i]==x){
                   ile++;
40
41
42
43
44
           for(int i = 0;i < n-1; i++){
45
               if(t[L]==x){
46
                   gdzie1=L;
47
               }else{
48
                   L++;
49
50
               if(t[P]==x){
51
                   gdzie2=P;
52
               }else{
53
                   P--;
54
55
56
57
           cout << endl <<"Najmniejsza wartosc: "<< x << endl;
           cout <<"Ile powtorzen: "<< ile << endl;</pre>
58
           cout <<"Najdalsza odleglosc: "<<gdzie2-gdzie1<<endl;</pre>
59
60
61
           system("pause");
62
```

7. Oszacowanie złożoności czasowej

Operacja dominująca:

i < N

Funkcja złożoności (w najgorszym wypadku):

$$F(N) = N + N + N = N$$

Rząd złożoności w najgorszym przypadku:

F(N) = O(N) - złożoność liniowa

8. Wykres zależności czasu sortowania od rozmiaru zadania

Wniosek:

Wykres zależności czasu trwania algorytmu od liczby elementów tablicy potwierdza złożoność liniowa algorytmu (za wyjątkiem paru odchyleń)