CS61B Lecture #33

Today's Readings: Graph Structures: DSIJ, Chapter 12

Why Graphs?

- For expressing non-hierarchically related items
- Examples:
 - Networks: pipelines, roads, assignment problems
 - Representing processes: flow charts, Markov models
 - Representing partial orderings: PERT charts, makefiles

Some Terminology

- A graph consists of
 - A set of nodes (aka vertices)
 - A set of edges: pairs of nodes.
 - Nodes with an edge between are adjacent.
 - Depending on problem, nodes or edges may have labels (or
- ullet Typically call node set $V = \{v_0, \ldots\}$, and edge set E.
- If the edges have an order (first, second), they are directed and we have a directed graph (digraph), otherwise an una graph.
- Edges are incident to their nodes.
- Directed edges exit one node and enter the next.
- A cycle is a path without repeated edges leading from a no to itself (following arrows if directed).
- A graph is cyclic if it has a cycle, else acyclic. Abbreviat rected Acyclic Graph—DAG.

Some Pictures

Trees are Graphs

- A graph is connected if there is a (possibly directed) path levery pair of nodes.
- That is, if one node of the pair is reachable from the other
- A DAG is a (rooted) tree iff connected, and every node but that exactly one parent.
- A connected, acyclic, undirected graph is also called a free: we're free to pick the root; e.g.,

Examples of Use

• Edge = Connecting road, with length.

• Edge = Must be completed before; Node label = time to com

• Edge = Begat

More Examples

Edge = some relationship

Edge = next state might be (with probability)

 Edge = next state in state machine, label is triggering input at s. Being in state 4 means "there is a substring '001' somewhere input".)

Representation

- Often useful to number the nodes, and use the numbers in e
- Edge list representation: each node contains some kind of linked list or array) of its successors (and possibly predeces

• Edge sets: Collection of all edges. For graph above:

$$\{(1,2),(1,3),(2,3)\}$$

Adjacency matrix: Represent connection with matrix entry:

$$\begin{array}{c|cccc}
 & 1 & 2 & 3 \\
1 & 0 & 1 & 1 \\
2 & 0 & 0 & 1 \\
3 & 0 & 0 & 0
\end{array}$$

Traversing a Graph

- Many algorithms on graphs depend on traversing all or some
- Can't quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:

Treat 0 as the root and do recursive traversal down the two out of each node: $\Theta(2^N)$ operations!

So typically try to visit each node constant # of times (e.g.,

Recursive Depth-First Traversal of a Graph

- Can fix looping and combinatorial problems using the "bread method used in earlier lectures for a maze.
- That is, mark nodes as we traverse them and don't travers ously marked nodes.
- Makes sense to talk about preorder and postorder, as for to

```
void preorderTraverse(Graph G, Node v)
{
   if (v is unmarked) {
      mark(v);
      visit v;
      for (Edge(v, w) ∈ G)
            traverse(G, w);
   }
}
```

```
void postorderTraverse
{
   if (v is unmarked)
      mark(v);
   for (Edge(v, w) e
      traverse(G, w)
   visit v;
   }
}
```

Recursive Depth-First Traversal of a Graph (1

- We are often interested in traversing all nodes of a graph, those reachable from one node.
- So we can repeat the procedure as long as there are un nodes.

```
void preorderTraverse(Graph G) {
   for (v ∈ nodes of G) {
      preorderTraverse(G, v);
   }
}

void postorderTraverse(Graph G) {
   for (v ∈ nodes of G) {
      postorderTraverse(G, v);
   }
}
```

Topological Sorting

Given a DAG, find a linear order of nodes consiste the edges.

- ullet That is, order the nodes $v_0,\ v_1,\ \dots$ such that v_k is never re from $v_{k'}$ if k' > k.
- Gmake does this. Also PERT charts.

EG H

H

Sorting and Depth First Search

- Observation: Suppose we reverse the links on our graph.
- If we do a recursive DFS on the reverse graph, starting from H, for example, we will find all nodes that must come before
- When the search reaches a node in the reversed graph an are no successors, we know that it is safe to put that node:
- In general, a postorder traversal of the reversed graph visit only after all predecessors have been visited.

Numbers slowers order trave starting from thing that is before G.

General Graph Traversal Algorithm

Replace COLLECTION_OF_VERTICES, INITIAL_COLLECTION with various types, expressions, or methods to different grantithms.

Example: Depth-First Traversal

Problem: Visit every node reachable from v once, visiting not ther from start first.

Depth-First Traversal Illustrated

Fringe:

[a]

[b,d]

[c,e,d]

[f,e,d]

[e,e,d]

Topological Sort in Action

Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-redge weights, compute shortest paths from given source not all nodes.

- "Shortest" = sum of weights along path is smallest.
- \bullet For each node, keep estimated distance from s, \dots
- ullet ...and of preceding node in shortest path from s.

Example

Final result:

processed node at dist

node in fringe at dista