Unit Conversions

Convert the units in the following cases, or note that the conversion is impossible. First, show the procedure without using Quantity, then use the .to converter to convert the quantities.

```
In [1]: from thermostate import units, Q_
   0.76 N to lb<sub>f</sub>
In [2]: newtons = Q_{0.76}, 'N')
         lbf = newtons.to('lbf')
         print(round(lbf, 2))
0.17 force_pound
   Answer: 0.76 \text{ N} = 0.17 \text{ lb}_{\text{f}}
   1398.41 BTU/day to W
In [3]: BTU_day = Q_(1398.41, 'BTU/day')
         watts = BTU_day.to('W')
         print(round(watts, 2))
17.08 watt
   Answer: 1398.41 BTU/day = 17.08 W
   108.28 ft<sup>3</sup> to L
In [4]: ft_3 = Q_(108.28, 'ft**3')
         liters = ft_3.to('L')
         print(round(liters, 2))
3066.15 liter
   Answer: 108.28 ft3 = 3066.15 L
   67 kW to ft ⋅ lb<sub>f</sub>
In [5]: kw = Q_{(67.0, 'kW')}
         ft_lbf = kw.to('ft*lbf')
         {\tt DimensionalityError}
                                                         Traceback (most recent call last)
         <ipython-input-5-553828a2917d> in <module>()
           1 \text{ kw} = Q_{(67.0, 'kW')}
    ----> 2 ft_lbf = kw.to('ft*lbf')
         DimensionalityError: Cannot convert from 'kilowatt' ([length] ** 2 * [mass] / [time] *
```

Note that this conversion is impossible. We can see the reason is because the **dimensions** of the two quantities don't match, as shown at the bottom of the error message:

Answer: 11591.43 mph = 5181.83 m/s