Math 335, Fall 2014 Exam 2

NAME: _	
	PLEASE PRINT

You have 75 minutes to complete this exam. No notes or calculators are allowed. Show all work. Unsupported or illegible answers will receive no credit. There are a total of 50 points on this exam.

PAGE	SCORE	POINTS
1		10
2		10
3		10
4		20
TOTAL		50

1.) [10 points] Combine the series below into one series. Clearly indicate and simplify any extra terms you pulled out of the series.

$$\sum_{k=0}^{\infty} a_k x^k - 4 \sum_{k=0}^{\infty} a_{k+1} x^{k+1}$$

$$(x+3)\sum_{k=2}^{\infty} a_{k-1}x^k + 2\sum_{k=0}^{\infty} a_k x^k$$

2.) [10 points] On the homework, you showed that the power series solution about x = -2 to they Airy equation y'' - xy = 0 is given by

$$y = a_0 + a_1(x+2) - a_0(x+2)^2 + \left(\frac{1}{6}a_0 - \frac{1}{3}a_1\right)(x+2)^3 + \cdots$$

where a_0 and a_1 are unknown constants. Use this information to find the first 4 terms of the specific power series solution about x = -2 to the initial value problem

$$y'' - xy = 0$$
, $y(-2) = 3$, $y'(-2) = 9$ Write your answer in the blanks below.

$$y =$$
______+___(x + 2) +_____(x + 2)² +_____(x + 2)³ + ...

3.) [10 points]	Find the first 5 terms	(through x^4)	of the power	series solution	about x=0 of	f the
ODE						

$$y'' + xy' - 3y = 0$$

y'' + xy' - 3y = 0Write your coefficients in the blanks below in terms of a_0 and a_1 .

$$y = a_0 + a_1 x + \underline{\qquad \qquad } x^2 + \underline{\qquad \qquad } x^3 + \underline{\qquad \qquad } x^4 + \cdots$$

4.) [20 points] Note x=0 is a regular singular point of the ODE $2xy^{\prime\prime}-y^{\prime}+2y=0$

$$2xy'' - y' + 2y = 0$$

Using the Method of Frobenius about x=0, find the indicial roots of the ODE and the general recurrence relation in terms of n and r. (You do not need to find the Frobenius series solutions. The back of this page is blank if you need more room.)