5

10

15

WHAT IS CLAIMED IS:

- 1. A method for preventing constrictive vascular remodeling comprising a controlled delivery, by release from a stent, of a compound having anti-proliferative and anti-inflammatory properties in therapeutic dosage amounts in the range from about thirty-five micrograms per fifteen to eighteen millimeters of stent to about four hundred thirty micrograms per fifteen to eighteen millimeters of stent, the compound substantially reducing in-lesion lumen loss both proximate and distal to the stent, the compound being incorporated in a polymeric matrix comprising first and second layers wherein the compound is substantially in the first layer and the second layer acts as a diffusion barrier for the controlled release of the compound, and having a thickness in the range from about one micron to about 20 microns with the first layer having a thickness in the range from about 12 microns and the second layer having a thickness in the range from about 1 micron to about 2 microns.
- The method for preventing constrictive remodeling according to Claim 1, further includes utilizing the compound to block a proliferation of fibroblasts in a vascular wall in response to injury, thereby reducing a formation of vascular scar tissue.
 - 3. The method for preventing constrictive remodeling according to Claim 2, wherein the compound comprises rapamycin.

25

4. The method for preventing constrictive remodeling according to Claim 2, wherein the compound comprises analogs and congeners that bind a high-affinity cytosolic protein, FKBP12, and possesses pharmacologic properties equivalent to rapamycin.

30

5. The method for preventing constrictive remodeling according to Claim 1, further includes utilizing the compound to affect a translation of certain proteins involved in a collagen formation or metabolism.

- 6. The method for preventing constrictive remodeling according to Claim 5, wherein the compound comprises rapamycin.
- 7. The method for preventing constrictive remodeling according to Claim 5, wherein the compound comprises analogs and congeners that bind a high-affinity cytosolic protein, FKBP12, and possesses pharmacologic properties equivalent to rapamycin.
- 8. A drug delivery device for treating constrictive vascular remodeling comprising:

a stent; and

15

20

30

a therapeutic dosage, in the range from about thirty-five micrograms per fifteen to eighteen millimeters of stent to about four hundred thirty micrograms per fifteen to eighteen millimeters of stent, of an agent having anti-proliferative and anti-inflammatory properties releasably affixed to the stent for treatment of constrictive vascular remodeling, the agent substantially reducing in-lesion lumen loss both proximal and distal to the intraluminal medical device, the agent being incorporated in a polymeric matrix comprising first and second layers, the agent is substantially in the first layer and the second layer acts as a diffusion barrier for the controlled release of the agent, the polymeric matrix having a thickness in the range from about one micron to about 20 microns.

- 9. The drug delivery device according to Claim 8, wherein the agent blocks a proliferation of fibroblasts in a vascular wall in response to injury, thereby reducing a formation of vascular scar tissue.
 - 10. The drug delivery device according to Claim 9, wherein the agent comprises rapamycin.
 - 11. The drug delivery device according to Claim 9, wherein the agent comprises analogs and congeners that bind a high-affinity cytosolic protein, FKBP12, and possesses pharmacologic properties equivalent to rapamycin.

12. The drug delivery device according to Claim 8, wherein the agent affects the translation of certain proteins involved in collagen formation or metabolism.

5

- 13. The drug delivery device according to Claim 12, wherein the agent comprises rapamycin.
- 14. The drug delivery device according to Claim 12, wherein the agent comprises analogs and congeners that bind a high-affinity cytosolic protein, FKBP12, and possesses pharmacologic properties equivalent to rapamycin.

15