Алгебра. ИИИ. Контрольная работа «Основные алгебраические системы» Вариант I

- 1. Найдите перестановку σ : $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 4 & 1 & 7 & 2 & 6 & 5 \end{pmatrix}^{1004} \cdot \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 8 & 1 & 3 & 2 & 6 & 4 & 5 \end{pmatrix}$, её декремент и чётность.
 - 2. Найдите остаток от деления а) 9^{1000} на 11; б) 33^{222} на 484; в) 164!! на 83.
 - 3. Вычислите $\left((1-\frac{\sqrt{3}}{2})i+\frac{1}{2}\right)^{192}$, ответ дайте в алгебраической форме. 4. Разложите многочлен $x^3-5x^2+11x-15$ на неприводимые сомножители над
- 4. Разложите многочлен $x^3 5x^2 + 11x 15$ на неприводимые сомножители над полями $\mathbb R$ и $\mathbb C$.
 - 5. Найдите НОД(240, 112) и его линейное представление.

6. Найдите
$$X$$
, если $egin{pmatrix} -2 & 3 & 4 & 0 \ 1 & -1 & 3 & 0 \ 2 & -2 & 3 & 0 \ 0 & 0 & 0 & -3 \end{pmatrix} \cdot X = egin{pmatrix} 3 & 2 & -5 & 1 \ -1 & 2 & 2 & -1 \end{pmatrix}^{\mathrm{T}}.$

7. Является ли эндоморфизмом кольца $\mathbb{Z}[x]$ отображение $\varphi\colon \mathbb{Z}[x] o \mathbb{Z}[x]$, если $\varphi(f) = f'(0)$?

Алгебра. ИИИ. Контрольная работа «Основные алгебраические системы». Вариант II

- 1. Найдите перестановку σ : $\sigma \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 7 & 8 & 6 & 2 & 4 & 1 & 3 \end{pmatrix}^{1003} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 3 & 7 & 2 & 4 & 6 & 1 \end{pmatrix}$, её декремент и чётность.
 - 2. Найдите остаток от деления а) 8^{1000} на 13; б) 37^{254} на 441; в) 176!! на 89.
 - 3. Вычислите $\left((1+\frac{\sqrt{3}}{2})i-\frac{1}{2}\right)^{120}$, ответ дайте в алгебраической форме. 4. Разложите многочлен $x^3-4x^2+14x-20$ на неприводимые сомножители над
- 4. Разложите многочлен $x^3-4x^2+14x-20$ на неприводимые сомножители над полями $\mathbb R$ и $\mathbb C.$
 - 5. Найдите НОД(75, 210) и его линейное представление.

6. Найдите
$$X$$
, если $X \cdot \left(egin{array}{cccc} 1 & 3 & -1 & 0 \\ 2 & 3 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right) = \left(egin{array}{cccc} 1 & -2 \\ 5 & 2 \\ 1 & -3 \\ 2 & 1 \end{array} \right)^{\! \mathrm{T}}.$

7. Является ли гомоморфизмом колец $\mathbb{R}[x]$ и \mathbb{R} отображение $\varphi\colon \mathbb{R}[x] o \mathbb{R}$, если $\varphi(f) = f(1)$?

Алгебра. ИИИ. Контрольная работа «Основные алгебраические системы». Вариант III

- 1. Найдите перестановку σ : $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 6 & 8 & 7 & 4 & 5 \end{pmatrix} \cdot \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 3 & 7 & 2 & 4 & 6 & 1 \end{pmatrix}^{1002}$, её декремент и чётность.
 - 2. Найдите остаток от деления а) 7^{1000} на 17; б) 73^{122} на 225; в) 144!! на 73.
 - 3. Вычислите $\left((-1-\frac{\sqrt{3}}{2})i+\frac{1}{2}\right)^{144}$, ответ дайте в алгебраической форме. 4. Разложите многочлен $x^3-7x^2+12x-10$ на неприводимые сомножители над
- полями $\mathbb R$ и $\mathbb C$.
 - 5. Найдите НОД(84, 126) и его линейное представление.
- 7. Является ли гомоморфизмом групп $\mathbb Z$ и $\mathbb T=\{z\in\mathbb C\mid |z|=1\}$ отображение $arphi\colon \mathbb{Z} o \mathbb{T}$, если $arphi(x)=e^{rac{i\pi x}{3}}$?

Алгебра. ИИИ. Контрольная работа «Основные алгебраические системы». Вариант IV

- 1. Найдите перестановку σ : $\sigma \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 7 & 2 & 8 & 6 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 3 & 7 & 2 & 4 & 6 & 1 \end{pmatrix}^{1001}$, её декремент и чётность.

 - 2. Найдите остаток от деления а) 11^{1000} на 7; б) 93^{86} на 196; в) 132!! на 67. 3. Вычислите $\left((1-\frac{\sqrt{3}}{2})i-\frac{1}{2}\right)^{168}$, ответ дайте в алгебраической форме. 4. Разложите многочлен $x^3-8x^2+22x-20$ на неприводимые сомножители над
- полями $\mathbb R$ и $\mathbb C$.
 - 5. Найдите НОД(490, 42) и его линейное представление.
 - 6. Найдите X, если $X \cdot \left[\begin{array}{ccccc} 1 & 3 & 3 & 0 \\ 6 & -3 & 3 & 0 \\ -5 & 4 & 1 & 0 \end{array} \right] = \left[\begin{array}{ccccc} -3 & 1 \\ -1 & 2 \end{array} \right].$
- 7. Является ли эндоморфизмом кольца $\mathbb{R}[x]$ отображение $\varphi\colon \mathbb{R}[x] o \mathbb{R}[x]$, если $\varphi(f)$ равно остатку от деления f на x^2+x+1 ?