Self Assessment Questions & Answers

Linear Regression

• How closely is the height (in inches) of an individual related to the weight? Partial regression output for a sample of 92 individuals is shown below. Based on the output, what is the predicted average weight for people who are 5'6" (66 inches) tall from the model?

weight	Coef.	Std. Err.	t	P> t]	
height _cons	5.09108 -204.740	0.4237 29.1600	12.020 -7.020	0.0000	

- a. 131.32 pounds
- b. (127.49, 135.14)
- c. (101.68, 160.95)
- d. 145 pounds

• How closely is the height (in inches) of an individual related to the weight? Partial regression output for a sample of 92 individuals is shown below. Based on the output, what is the predicted average weight for people who are 5'6" (66 inches) tall from the model?

weight	Coef.	Std. Err.	t	P> t]	
height _cons	5.09108 -204.740	0.4237 29.1600	12.020 -7.020	0.0000	

- a. 131.32 pounds (equation: weight = -204.74 + 5.0918*(66 inches)
- b. (127.49, 135.14)
- c. (101.68, 160.95)
- d. 145 pounds

• How closely is the height of an individual related to the weight? Partial regression output for a sample of 92 individuals is shown below. Based on the output, what is the 95% confidence interval for β_1 , the slope of the regression line?

weight	Coef.	Std. Err.	t	P> t]	
height _cons	5.09108 -204.740	0.4237 29.1600	12.020 -7.020	0.0000	

- a. $-204.74\pm(1.96)*29.16$
- b. $5.0918 \pm (1.96) * 0.4237$
- c. (101.68, 160.95)
- d. (127.49, 135.14)

• How closely is the height of an individual related to the weight? Partial regression output for a sample of 92 individuals is shown below. Based on the output, what is the 95% confidence interval for β_1 , the slope of the regression line?

weight	Coef.	Std. Err.	t	P> t]	
height _cons	5.09108 -204.740	0.4237 29.1600	12.020 -7.020	0.0000	

- a. $-204.74\pm(1.96)*29.16$
- b. 5.0918 ±(1.96)*0.4237
- c. (101.68, 160.95)
- d. (127.49, 135.14)

 The following is output from a regression analysis. The predictor variable is a mathematics placement test score, and the outcome variable is a student's final grade in a statistics course. Is the slope of the regression equation statistically significant?

Course Grade = 29.9 + 2.46 Placement Score

Course Grade	Coef.	Std. Err.	t	P> t]
Constant Placement Score	29.882 2.456	7.304 0.417	4.09 5.88	0.001 0.000
s = 7.12074	 R-Sq = 0.727	R-Sq(adj) =	0.706	

- a. Yes, it is highly significant
- b. It is approaching statistical significance
- c. It is not statistically significant
- d. We can't tell from the output

 The following is output from a regression analysis. The predictor variable is a mathematics placement test score, and the outcome variable is a student's final grade in a statistics course. Is the slope of the regression equation statistically significant?

Course Grade = 29.9 + 2.46 Placement Score

Course Grade	Coef.	Std. Err.	t	P> t]
Constant Placement Score	29.882	7.304 0.417	4.09 5.88	0.001 0.000
s = 7.12074 R		 R-Sq(adj) =	0.706	

- a. Yes, it is highly significant
- b. It is approaching statistical significance
- c. It is not statistically significant
- d. We can't tell from the output

 The following is output from a regression analysis. The predictor variable is a mathematics placement test score, and the outcome variable is a student's final grade in a statistics course. What is the value of the coefficient of determination?

Course Grade	Coef.	Std. Err.	t	P> t]
Constant Placement Score	29.882 2.456	7.304 0.417	4.09 5.88	0.001 0.000
s = 7.12074 R-S	Sq = 0.727	 R-Sq(adj) = (.706	

- a. 29.882
- b. 7.304
- c. 2.4558
- d. 0.727

 The following is output from a regression analysis. The predictor variable is a mathematics placement test score, and the outcome variable is a student's final grade in a statistics course. What is the value of the coefficient of determination?

Course Grade	Coef.	Std. Err.	t	P> t]
Constant Placement Score	29.882 2.456	7.304 0.417	4.09 5.88	0.001 0.000
s = 7.12074 R-S	Sq = 0.727	 R-Sq(adj) = (.706	

- a. 29.882
- b. 7.304
- c. 2.4558
- d. 0.727

The following is output from a regression analysis. The predictor variable is a mathematics
placement test score, and the outcome variable is a student's final grade in a statistics course. What
is the interpretation of the coefficient of the placement score?

Course Grade		Std. Err.		· · -
Constant Placement Score	29.882	7.304 0.417		0.001 0.000
s = 7.12074 R-S	Sq = 0.727	R-Sq(adj) =	 0.706	

- a. A unit increase in placement score increases student's final grade by 29.882 units, on average
- b. A unit increase in placement score increases student's final grade by 2.456 units, on average
- c. A unit increase in placement score increases student's final grade by 0.706 units, on average
- d. The model is not significant, so we can't interpret the results

• The following is output from a regression analysis. The predictor variable is a mathematics placement test score, and the outcome variable is a student's final grade in a statistics course. What is the interpretation of the coefficient of the placement score

Course Grade				· · -
Constant Placement Score	29.882	7.304 0.417	4.09	0.001 0.000
s = 7.12074 R-S	Sq = 0.727	 R-Sq(adj) =	0.706	

- a. A unit increase in placement score increases student's final grade by 29.882 units, on average
- A unit increase in placement score increases student's final grade by
 2.456 units, on average
- c. A unit increase in placement score increases student's final grade by 0.706 units, on average
- d. The model is not significant, so we can't interpret the results

 The following is output from a regression analysis. The only predictor variable is a mathematics placement test score, and the outcome variable is a student's final grade in a statistics course. How would you interpret the coefficient of

determination?

Course Grade	•	Std. Err.	t	P> t]
Constant Placement Score	29.882	7.304 0.417	4.09 5.88	0.001 0.000
s = 7.12074 R-	Sq = 0.727	R-Sq(adj) = (0 . 706	

- a. 2.4% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade
- b. 72.7% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade
- c. .727% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade
- d. 70.7% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade

 The following is output from a regression analysis. The only predictor variable is a mathematics placement test score, and the outcome variable is a student's final grade in a statistics course. How would you interpret the coefficient of

determination?

Course Grade	Coef.	Std. Err.	t	P> t]
Constant Placement Score	29.882 2.456	7.304 0.417	4.09 5.88	0.001 0.000
s = 7.12074 R-Sq	r = 0.727	 R-Sq(adj) = (.706	

- a. 2.4% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade
- b. 72.7% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade
- c. .727% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade
- d. 70.7% of the variation in the student's final grade is accounted for the linear relationship between placement score and course grade