OPERAÇÕES ARITMÉTICAS DO SISTEMA BINÁRIO

ADIÇÃO

Esta operação efetua-se no sistema binário como uma adição convencional no sistema decimal, lembrando que no sistema binário tem-se apenas dois algarismos.

(0 e 1).

Caso obtém-se soma da coluna um número de dois algarismos realiza-se o transporte mais significativo para a próxima coluna.

Ex.: $1100_2 + 1111_2 = ?_2$

SUBTRAÇÃO

A operação de subtração efetua-se de modo análogo e da subtração no sistema decimal.

Ex.: $100010_2 - 1011_2 = ?_2$

Realiza-se a operação por coluna da seguinte forma:

(1ª Linha – Emprestado) – 2ª Linha = Linha Resultado

$$0-1 = 1 \text{ (empresta 1)}$$
 $1-1=0-1=1 \text{ (empresta 1)}$
 $0-1=1 \text{ (empresta 1)}$
 $1-0=1$
 $0-1=1 \text{ (empresta 1)}$
 $1-0=1$
 $1-1=0$
 $0-0=0$

Resultado: 100010 -001011 010111

MULTIPLICAÇÃO

Procede-se como no sistema decimal, assim temos:

Ex.:			1	1	0	1	0
			X		1	1	0
			0	0	0	0	0
	0	1	1	0	1	0	-
	1	1	0	1	0	-	-
1	0	0	1	1	1	0	0

COMPLEMENTO DE DOIS

Cálculos envolvendo operação de subtração de números binários podem ser facilmente resolvidos utilizando o método de complemento de 2. O método consiste em uma troca de operação (transforma-se matematicamente a operação de subtração em adição) para facilitar a resolução do problema. Primeiramente,

$$0 = 1$$
 (Complemento de 0 é igual a 1)
 $1 = 0$ (Complemento de 1 é igual a 0)

Exemplo 1 (Subtração com resultado negativo) $100_2 - 1101_2 = ?_2$

Para realizar a troca da operação, deve-se barrar o segundo termo e adicionar 1:

$$0100 - 1101 \rightarrow 0100 + \overline{1101} + 1$$

Note que $\overline{1101}$ = 0010, conforme segue a seguir:

$$0100 + \overline{1101} + 1 = 0100 + 0010 + 1$$

$$0100 \\ +0010 \\ \underline{1} \\ [0]0111$$

Atenção!

O valor excedente (entre colchetes) comumente chamado de bit de estouro (carry), no caso, indica qual será o sinal do resultado,

- [0] indica que o resultado é negativo
- [1] indica que o sinal é positivo

No caso do exemplo, tem-se [0], o que indica um resultado negativo. A resposta final é obtida barrando o resultado obtido (desprezando o bit excedente) e adicionando 1.

$$-(\overline{0111} + 1) = -(1000 + 1) = -1001$$

Resposta:
$$100_2 - 1101_2 = -1001_2$$
 Prova real: $4_{10} - 13_{10} = -9_{10}$

Exemplo 2 (Subtração com resultado positivo)
$$1110_2 - 101_2 = ?_2$$

Para realizar a troca da operação, deve-se barrar o segundo termo e adicionar 1:

$$1110 - 0101 \rightarrow 1110 + \overline{0101} + 1 = 1110 + \overline{0101} + 1 = 1110 + 1010 + 1$$

O [1] indica que o sinal é positivo, e nesse caso, os outros números já indicam o resultado final.

Resposta:
$$1110_2 - 101_2 = +1001_2$$
 Prova real: $14_{10} - 5_{10} = 9_{10}$

Exercícios II

1. Resolva as subtrações a seguir utilizando o método de complemento de 2.

Revisão

Resolva as operações a seguir.

<u>+ 1101</u>

<u>+ 10101</u>

+10011

+ 100111

9)
$$1001001$$
 10) 1101001 11) 11101 12) 10101 11101101 11101 10011 $+10011010$ $+10000101$ $+1001101$ $+1111$

13)
$$10110$$
 14) 1011 15) 1010 16) 1001 -101 -11001 -111

17)
$$100001$$
 18) 11101 19) 10110 20) 101011 -1011 -1000 -11001

25)	11110 <u>x 1100</u>	26)	1011001 <i>x</i> 11011	27)	1110 <u>x 110</u>	28)	11101 <u>x 101</u>
29)	101 <u>x 100</u>	30)	10101 <u>x 111</u>	31)	1001 <u>x 11</u>	32)	10110 <u>x 1101</u>
33)	1010 1101 <i>x</i> 100	34)	110011 111 <i>x</i> 11001	35)	11101 101011 <i>x</i> 11101	36)	101101 110011 <i>x</i> 11111