Моделирование памятника архитектуры "Спасская башня"

Студент: Искакова К.М. группа ИУ7-52Б Руководитель: Куров А.В.

Целью курсового проекта является разработка программы, моделирующей памятник архитектуры «Спасская башня» и создания собственных сооружений, состоящих из сфер, цилиндров, конусов, параллелепипедов, треугольных и четырехугольных пирамид.

Задачи работы

В рамках реализации проекта должны быть решены следующие задачи:

- Разработка программного обеспечения, которое позволит отобразить трехмерную сцену и визуализировать памятник архитектуры.
- Проектирование архитектуры программного обеспечения.
- Изучение и анализ алгоритмов компьютерной графики, использующихся для создания реалистичной модели взаимно перекрывающихся объектов, и выбор наиболее подходящего для решения поставленной задачи.
- Проведение исследования зависимости времени рендеринга программы от количества объектов на сцене.

Формализация объектов сцены

Сцена состоит из следующих объектов:

- Сооружения, состоящие из сфер, цилиндров, конусов, параллелепипедов, треугольных и четырехугольных пирамид.
- Точечных источников света.
- Направленный источник света, который является аппроксимацией солнца.
- Плоскости основания.

Алгоритмы удаления невидимых линий и поверхностей

Алгоритмы удаления невидимых линий и поверхностей	Критерии оценивания	
	Работа с телами вращений	Демонстрация отражения
Алгоритм трассировки лучей		✓
Алгоритм Робертса	×	×
Алгоритм Варнока	×	×
Алгоритм, использующий z - буфер		×

Алгоритм трассировки лучей

Пересечение луча с объектами сцены

Пусть O — начало луча, \overrightarrow{D} — вектор, показывающий направление луча. Любую точку P луча можно представить как $P = O + t\overrightarrow{D}$, где t — произвольное действительное число.

Пересечение луча со сферой

$$dot(P - C, P - C) = r^{2}$$

$$P = O + t\overrightarrow{D}$$

Чтобы найти точки пересечения луча со сферой необходимо решить уравнение:

$$t^{2}dot(\overrightarrow{D},\overrightarrow{D}) + 2 * t * dot(\overrightarrow{CO},\overrightarrow{D}) + dot(\overrightarrow{CO},\overrightarrow{CO}) - r^{2} = 0$$

Пересечение луча с плоскостью

$$dot\left(\vec{V}, O + t\vec{D}\right) = 0$$

Чтобы найти точку пересечения луча с плоскостью необходимо решить уравнение:

$$t = dot(\vec{V}, \vec{C}) - dot(\vec{V}, O) / dot(\vec{V}, \vec{D})$$

Пересечение луча с объектами сцены

Пересечение луча с конусом

$$A = C + m\vec{V}$$
$$dot(P - A, \vec{V}) = 0$$
$$len(P - A)/m = k$$

Чтобы найти точки пересечения луча с боковой поверхностью конуса необходимо решить уравнение:

$$t^{2}\left(dot\left(\overrightarrow{D},\overrightarrow{D}\right)-(1+k+k)*dot\left(\overrightarrow{D},\overrightarrow{V}\right)^{2}\right)+2*t$$

$$*\left(dot\left(\overrightarrow{D},\overrightarrow{CO}\right)-(1+k+k)*dot\left(\overrightarrow{D},\overrightarrow{V}\right)*dot\left(\overrightarrow{CO},\overrightarrow{V}\right)\right)$$

$$+dot\left(\overrightarrow{CO},\overrightarrow{CO}\right)-(1+k+k)*dot\left(\overrightarrow{CO},\overrightarrow{V}\right)^{2}-r^{2}=0$$

Пересечение луча с цилиндром

$$A = C + m\vec{V}$$

$$dot(P - A, \vec{V}) = 0$$

$$len(P - A) = r$$

Чтобы найти точки пересечения луча с боковой поверхностью цилиндра необходимо решить уравнение:

$$t^{2}\left(dot\left(\overrightarrow{D},\overrightarrow{D}\right) - dot\left(\overrightarrow{D},\overrightarrow{V}\right)^{2}\right) + 2 * t$$

$$*\left(dot\left(\overrightarrow{D},\overrightarrow{CO}\right) - dot\left(\overrightarrow{D},\overrightarrow{V}\right) * dot\left(\overrightarrow{CO},\overrightarrow{V}\right)\right) + dot\left(\overrightarrow{CO},\overrightarrow{CO}\right)$$

$$- dot\left(\overrightarrow{CO},\overrightarrow{V}\right)^{2} - r^{2} = 0$$

Пересечение луча с объектами сцены

Пересечение луча с параллелепипедом

Возьмем пару плоскостей, параллельных плоскости уz: x = x1 и x = x2. Пусть \overrightarrow{D} – вектор направления луча.

Если координата х вектора \overrightarrow{D} равна 0, то заданный луч параллелен этим плоскостям и, если x0 < x1 или x0 > x1, то он не пересекает рассматриваемый прямоугольный параллелепипед. Если же D.х не равно 0, то вычисляем отношения:

$$t1x = (x1 - x0)/D.x$$

 $t2x = (x2 - x0)/D.x$

Пересечение луча с треугольником

$$z(u,v) = (1 - u - v) * v1 + u * v2 + v * v0$$

$$z(t) = p + t * d$$

$$p + t * d = (1 - u - v) * v1 + u * v2 + v * v0$$

$$E1 = v1 - v0$$

$$E2 = v2 - v0$$

$$t = p - v0$$

$$P = cross(D, E2)$$

$$Q = cross(T, E1)$$

$$D = v$$

$$\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{dot(P, E1)} * \begin{bmatrix} dot(Q, E2) \\ dot(P, T) \\ dot(Q, D) \end{bmatrix}$$

Модель освещения Фонга

 $I = K_a I_a + K_d \left(\overrightarrow{N}, \overrightarrow{L} \right) + K_s \left(\overrightarrow{R}, \overrightarrow{V} \right)^p$, где

 \vec{N} – вектор нормали к поверхности в точке,

 \vec{L} — падающий луч (направление на источник света),

 \vec{R} — отраженный луч,

 \vec{V} — вектор, направленный к наблюдателю,

 K_a – коэффициент фонового освещения,

 K_d – коэффициент диффузного освещения,

 K_s – коэффициент зеркального освещения.

p- степень, аппроксимирующая пространственное распределение зеркально отраженного света.

Схема алгоритма трассировки лучей

Схема алгоритма расчета освещенности в соответствии с моделью Фонга

🗘 Диаграмма классов

Интерфейс программы

Постановка эксперимента по замеру времени

При исследовании временных характеристик разработанной программы использовался компьютер на базе 4-х ядерного процессора Intel Core i5.

Сравнительный анализ времени рендеринга сцены от количества объектов.

Спасибо за внимание!