# Phase 2 Project Presentation

Linear Regression Modeling of Real Estate Sale Prices



**Title Slide** 

# Name of the Project

**Phase 2: Machine Learning Project** 

#### **Outline**

#### Business Problem

- Key Takeaways
  - Key 1 (visualization)
  - Keý 2 (visualization)
  - Key 3 (visualization)
- Model Performance
  - RMSE, R<sup>2</sup>, MAE
- Summary
  - Recommendation, Next Steps, Future Analyses
- Appendix

# **Overview**

### **Background / Business Problem**

#### Audience

Brief description of the business problem, the stakeholder, the environment, etc.

# **Business Question**

Describe the problem being solved and the analytical approach used to find a solution

## Executive Summary / Key Takeaways

# Approach & Solution

Summarize the modeling approach and key findings (*The key points your audience needs to walk away*)

- First Key Finding (predictor #1)
- Second Key Finding (predictor #2)
- Third Key Finding (predictor #3)

Repeat main takeaway / recommendation in one sentence.

# **Key Results**

## Finding 1

Eg. # of Bedrooms

 Variable with highest coefficient/predictive power for outcome



# Findings # 2

 Variable with second highest coefficient power for outcome



# Data Analysis & Data Insights

 Variable with third highest coefficient power for outcome



# Results & Recommendations

## **Analysis Results**

#### Describe the key results of the Analysis

- List and strength of the key predictors
- Performance of the model

Result #1

The regression model explained \_\_\_\_% of the variance....

Result #2

The strongest predictor of sale price was \_\_\_\_

Result #3

For every unit increase X in \_\_\_\_ the average sale price increased by \_\_\_\_

## **Analysis Results**

#### Multiple Linear Regression Model Feature Importance



# **Analysis Results**

#### Multiple Linear Regression Performance

|    | MAE  | RMSE  | R2   |
|----|------|-------|------|
| ML | 2.40 | 5.17  | 0.99 |
| MC | 7.59 | 10.57 | 0.96 |
| RR | 8.59 | 11.22 | 0.95 |
| PD | 5.18 | 8.22  | 0.98 |



## Next Steps, Recommendations & Improvements

#### Lessons learned; possible project improvements; next steps time permitting

- Source other data sets
- Research another data science technique/model
- Additional data, new features, other ideas

1. Recommendation

2. Recommendations

# **Appendix**

(Not required for Flatiron Presentation)

## **Example Visualizations**

#### **Model selection process:**

- Regression
- Benchmark Model
- Other models
- Hyper parameter tuning
- Cross validation

#### Visualization of the evaluation metrics

- Bar chart of error terms
- Pie chart of the coefficients
- Line chart of the

#### **Model Performance Results**

- Final MAE, RMSE, Accuracy, F1 Score, AUC, ROC
- Confusion matrix
- MAE, RMSE
- Accuracy, F1 Score
- AUC, ROC



## **Assumptions**

# State any assumptions used for the analysis and obtaining results or the results of the tests of the assumptions of a linear regression

- 1.Results of the test of linearity
- 2. Results of the test of multicollinearity
- 3. Results of the test of heteroscedasticity
- 4. Results of the test of normality



#### **MODEL PREDICTIONS**





# Model 8 performed best with 74% of variance explained

- 0.745 Adjusted R-squared
- \$108K Mean Absolute Error
- \$182K Root Mean Sq. Error
- 0.00 P-Value

#### Variables in Model 8

- Target: Price
- Predictors (10):
  - o Sq. Ft. Living Space
  - o Sq. Ft. Per Bedroom
  - o View
  - o Grade
  - o Condition
  - Waterfront
  - o Basement Indicator
  - Renovation Indicator
  - Miles From Seattle
  - Zip code Median Price-Per-Sq. Ft.

Reference