In [1]: import networkx as nx	
<pre>import networkx as nx import matplotlib.pyplot as plt import networkx.algorithms as nxa import networkx.algorithms.approximation as nxaa import numpy as np import get_adj_mx</pre>	
<pre>In [2]: data = get_adj_mx.get_adj_matrix("graph_mx.txt") adj_matrix = np.matrix(data['edges'])</pre>	
<pre>plt.title('Просто граф') G = nx.Graph(adj_matrix) for i in range(len(data['weights'])): G.nodes[i]['weight'] = data['weights'][i] pos = nx.spring_layout(G) nx.draw(G, pos, with_labels=True) labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos, edge_labels=labels) plt.show()</pre>	
Просто граф 4 5 6	
3 5	
2 1 1	
In [3]: # TODO: Draw all of this nx.draw(G, pos, with_labels=True)	
<pre>max_w_match = nx.max_weight_matching(G, maxcardinality=False, weight='weight') print("Максимальне зважене паросполучення (реберне пакування)", max_w_match) plt.title('Максимальне зважене паросполучення (реберне пакування)') Gr = nx.Graph() Gr.add_edges_from(max_w_match) nx.draw_networkx_nodes(Gr, pos, node_color='r') nx.draw_networkx_edges(Gr, pos, edge_color='r',</pre>	
Максимальне зважене паросполучення (реберне пакування) {(0, 7), (1, 2), (3, 6)} Максимальне зважене паросполучення (реберне пакування)	
3	
5	
7	
In [4]: plt.title('Максимальна зважена незалежна множина вершин (вершинне пакування)') nx.draw(G, pos, with_labels=True) max_independent_set = nx.maximal_independent_set(G) print("Максимальна зважена незалежна множина вершин (вершинне пакування)",	
<pre>max_independent_set) Gr = nx.Graph() Gr.add_nodes_from(max_independent_set) nx.draw_networkx_nodes(Gr, pos, node_color='r') plt.show()</pre>	
Максимальна зважена незалежна множина вершин (вершинне пакування) [2, 0, 5, 6] Максимальна зважена незалежна множина вершин (вершинне пакування)	
3	
2	
In [5]: plt.title('Мінімальне зважене реберне покриття') min_edge_cover = nx.min_edge_cover(G) nx.draw(G, pos, with_labels=True) print("Мінімальне зважене реберне покриття", min_edge_cover) Gr = nx.Graph()	
Gr.add_edges_from(min_edge_cover) nx.draw_networkx_edges(Gr, pos, edge_color='r',	
Мінімальне зважене реберне покриття Мінімальне зважене реберне покриття	
5	
2	
In [6]: plt.title('Мінімальне зважене вершинне покриття') min_node_cover = nxaa.min_weighted_vertex_cover(G)	
<pre>print("Мінімальне зважене вершинне покриття", min_node_cover) nx.draw(G, pos, with_labels=True) Gr = nx.Graph() Gr.add_nodes_from(min_node_cover) nx.draw_networkx_nodes(Gr, pos, node_color='r') plt.show()</pre>	
Мінімальне зважене вершинне покриття {0, 1, 2, 3, 4, 7} Мінімальне зважене вершинне покриття	
5	
2	
In [7]: cliques = nxa.max_weight_clique(G)	
nx.draw(G, pos, with_labels=True) print("Максимальний зважений повний підграф (кліка) зважене вершинне покриття", cliques) plt.title('Максимальний зважений повний підграф (кліка) зважене вершинне покриття') Gr = G.subgraph(cliques[0]) nx.draw_networkx_nodes(Gr, pos, node_color='r') nx.draw_networkx_edges(Gr, pos, edge_color='r',	
Максимальний зважений повний підграф (кліка) зважене вершинне покриття ([6, 4, 3], 11) Максимальний зважений повний підграф (кліка) зважене вершинне покриття	
3	
1	
2	
<pre>In [8]: plt.title('Мінімальна правильна розфарбовка вершин') min_color = nx.greedy_color(G) print("Мінімальна правильна розфарбовка вершин", min_color) color_map = [0]*len(G.nodes) for i, c in min_color.items(): color_map[i] = c nx.draw(G, pos, with_labels=True, node_color=color_map)</pre>	
Gr = nx.Graph() plt.show() Мінімальна правильна розфарбовка вершин {3: 0, 1: 1, 7: 0, 0: 2, 2: 2, 4: 1, 5: 1, 6: 2} Мінімальна правильна розфарбовка вершин	
4	
2	
0	
In [9]: plt.title('Мінімальне зважене остовне дерево') minimum_spanning_tree = nx.minimum_spanning_tree(G) nx.draw(G, pos, with_labels=True) print("Мінімальне зважене остовне дерево", minimum_spanning_tree) nx.draw_networkx_edges(minimum_spanning_tree, pos, edge_color='r',	
nx.draw_networkx_edges(miniming_tree, pos, edge_color=17, connectionstyle='arc3, rad = 0.3') plt.show() Мінімальне зважене остовне дерево Мінімальне зважене остовне дерево	
4 6	
0	
In [10]: cycles = nx.cycle_basis(G) plt.title('Фундаментальна система циклів') nx.draw(G, pos, with_labels=True) print("Фундаментальна система циклів", cycles) Gr = nx.Graph() Gr.add_nodes_from(G) for it is presented by cycles));	
<pre>for i in range(len(cycles)): 1 = len(cycles[i]) c = cycles[i] for j in range(l): Gr.add_edge(c[j], c[(j + 1) % l], color=get_adj_mx.colors[i])</pre>	
edges = Gr.edges() colors = [Gr[u][v]['color'] for u,v in edges] nx.draw_networkx_nodes(Gr, pos) nx.draw(Gr, pos, edge_color=colors) plt.show() Фундаментальна система циклів [[1, 3, 5, 7, 0], [4, 6, 3], [1, 2, 7, 0]]	
Фундаментальна система циклів [[1, 3, 5, 7, 0], [4, 6, 3], [1, 2, 7, 0]] Фундаментальна система циклів Фундаментальна система циклів	
3	
2	
<pre>In [11]: e = nx.eccentricity(G) r = nx.radius(G)</pre>	
r = nx.radius(G) d = nx.diameter(G) print(f"Ексцентриситет {e} \nPaдiyc {r}\nДiaметр {d}\n") Ексцентриситет {0: 3, 1: 2, 2: 3, 3: 2, 4: 3, 5: 2, 6: 3, 7: 3} Радiyc 2 Дiaметр 3	
, ,— P =	