

Algorithm Analysis
School of CSEE



### The string matching problem

Find all valid shifts with which a given pattern P occurs in a given text T.





### Notation and terminology

- *T*[1..*n*]: the text
- P[1..m]: the pattern
- Poccurs with shift s in T if T[s+j]=p[j] for  $1 \le j \le m$ .
- If P occurs with shift s in T, then we call s a valid shift; otherwise, an invalid shift.





### The naïve string-matching algorithm







Algorithm Analysis Chapter 32 4



Naïve-String-Matching(T,P)

- $n \leftarrow |T|$
- $2 \text{ m} \leftarrow |P|$
- 3 for  $s \leftarrow 0$  to n-m
- do if P[1..m]=T[s+1..s+m]
- then print "Patter occurs with shift" s 5



# Problem in the naïve algorithm

• O((n-m+1)m) time

- The naïve string matching is inefficient because information gained about the text for one value of s is entirely ignored in considering other values of s.
  - If P=aaab and we find s=0 is valid, then none of the shifts 1, 2, or 3 are valid.



### [2] Rabin-Karp algorithm



#### Main Idea

: length *m* string is regarded as *m* digits radix-*d* number.

- P[1..m]: Convert it into m-digit number p
- Substring T[s+1..s+m]: Convert it into m-digit number  $t_s$

Ex) 
$$\Sigma = \{0, 1, 2, ..., 9\}, P[1..m] = 31425,$$

$$\rightarrow p = 31,425$$

- If  $p = t_s$ , then string matching!
- String matching problem
  - → is converted into number comparison problem.



#### **Example**



8



Pattern P 3 5 1 4

 $\rightarrow$  Then p is 31415



Use Horner's rule (from Section 30.1, page 824)

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + .... + 10(P[2] + 10P[1])...))$$

Ex) When 
$$P[1..m]=31425$$
,

$$p=5+10*(2+10*(4+10*(1+10*3)))=31,425$$

Is there faster way to calculate ts?

Algorithm Analysis Chapter 32 9



Calculate  $t_0$  similarly.

Then, we can calculate  $t_{s+1}$  from  $t_s$ 

$$-t_{s+1} = 10(t_s-10^{m-1}T[s+1])+T[s+m+1]$$

 i.e., remove high order digit T[s+1] and bring low order digit.

Ex) When 
$$t_s = 31415$$
 and  $T[s+5+1]= 2$ ,  $t_{s+1} = 10(31415 - 10000*3) + 2 = 14152$ 

Computing  $p \& t_0$  $: \Theta(m)$ 

Computing  $t_1, \dots t_{n-m}$  $: \Theta(n-m) \text{ or } \Theta(n)$ 



# Comparing p with $t_s$



- How long will it take to compare p with t<sub>s</sub>?
  - Constant time if *m* is very small.
  - Otherwise ...
- Cure for the problem : Use 'modulo' operation. When comparing two numbers, we do not compare the numbers directly. Instead, take 'modulo q' operation and compare.



# Comparing p with $t_s$



- However, the solution of working 'modulo q' is not perfect, since  $ts \equiv p \pmod{q}$  does not imply  $t_s = p$ .
  - Valid:  $t_s \equiv p \pmod{q}$  and  $t_s = p$
  - Spurious hit :  $t_s \equiv p \pmod{q}$  but  $t_s \neq p$
  - However, if  $t_s \neq p \pmod{q}$ , there is no chance that  $t_s = p$ .

Ex) 67399! = 31415 but, 67399 = 31415 (mod 13)



# The Rabin-Karp algorithm



Step 1: Construct the array t<sub>s</sub>.



 $t_s$ =the decimal value of  $T[s+1..s+m] \mod q$ 



# The Rabin-Karp algorithm



Step 2: Find s such that  $t_s=p$ .



Step 3: Check if s is really valid.

1. s=7: T[7..11]=P → valid match

2. s=13: T[13..17] $\neq P \rightarrow invalid (spurious hit)$ 



### **Modulo operation**



- q: The modulus q is typically chosen as a prime number such that d\*q just fits within one computer word in d-ary alphabet.
- Recalculation of p and t
  - $p = original p \pmod{q}$
  - $-t_{s+1}=(d(t_s-T[s+1]h)+T[s+m+1]) \pmod{q}$



Algorithm Analysis Chapter 32



### The Rabin-Karp algorithm



- $\Theta(m)$  preprocessing time --- calculation of p and  $t_0$
- $\Theta((n-m+1)m)$  worst-case running time
  - $-\Theta(n-m+1)$  times to find all s such that  $p=t_s$ .
  - $-\Theta(m)$  time to check if each s is really valid.
  - However we expect few valid shifts.



### 대학구3] String matching with finite automata.





Algorithm Analysis Chapter 32 17



 Consider the operation of the naïve string matcher.



When 6<sup>th</sup> pattern character fails to match the corresponding text character, where can we resume the match again?



# **Knuth-Morris-Pratt Algorithm**

 We don't have to resume the match from the character right next to it!



Algorithm Analysis Chapter 32 19



# **Knuth-Morris-Pratt Algorithm**

 In general, it is useful to know the answer to the following question:

Given that pattern characters *P*[1..*q*] match text characters T[s+1..s+q], what is the least shift s' > s such that

$$P[1..k] = T[s'+1..s'+k],$$

where 
$$s'+k=s+q$$
?



# Knuth-Morris-Pratt Algorithm





 The necessary information can be precomputed by comparing the pattern against itself.











 $\pi(10)=1$ 

 $\pi(9)=0$ 





24





 $\pi(8)=6$ 

2 3 5 6 8 10  $P_7$ а b а b a b b а С а b b b b С а а а а

 $\pi(7)=5$ 









 $\pi(6)=4$ 

 $P_5$ 



 $\pi(5)=3$ 









 $\pi(4)=2$ 

5 6 9 10  $P_3$ b b а b а а b С а b b b а а а а а

 $\pi(3)=1$ 









 $\pi(2)=0$ 

 $\pi(1)=0$ 



### **Example**



P ABABABCB 0 0 1 2 3 4 0 ABCBABABABCB

match is found!



#### Case 1



First character of the pattern does not match character of the text. ( $P[1] \neq T[i]$ )

- → Shift pattern by 1
  - == increment text index by 1 (no change of pattern index)

T ABCBABABABCB

ABABABCB

ABABABCB



#### Case 2



Character (other than first) of the pattern does not match character of the text. ( $P[q+1] \neq T[i]$ )

Shift pattern by value π value (Prefix of P has already been compared.)



Algorithm Analysis Chapter 32 30



#### Case 3



Character of the pattern matches character of the text. (P[q+1] = T[i])

→ Increment text index and pattern index by 1.

And if all patterns are matched

→ match is found.



# **KMP Algorithm**

```
Case 1: When pattern does not match the text
                                  1) first character of pattern is compared with
KMP-MATCHER(T, P)
                                 the character of text again and fail
 n = length[T], m = length[P],
                                 2) then increase text here -> increase text
 \pi = \text{COMPUTE-PREFIX-FUNCTION}(P)
                                                               index only
 q = 0
                                 % number of characters matched
                                  % scan the text from left to right
 for i = 1 to n
      while q > 0 and P[q+1] \neq T[i]
          do q = \pi[q]
                                 % next character does not match
                                                                       Case 2
      if P[q+1] = T[i]
                                                                       Case 3
          then q = q+1
                                 % next character matches
      if q = m
                                  % is all of P matched?
                print "Pattern occurs with shift" i-m
                                 % look for the next match
                 q = \pi[q]
```

Algorithm Analysis Chapter 32 32



### **Running-time**



Using the amortized analysis (Sec 17.3)

COMPUTE-PREFIX-FUNCTION:  $\Theta(m)$ ,

KMP-MATCHER :  $\Theta(n)$ 



#### **Exercise**



Apply the 'KMP-Matcher(T, P)' for previous example.

| q | i |
|---|---|
| 0 | 1 |
| 1 | 1 |
| 1 | 2 |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |

Algorithm Analysis Chapter 32 34