Optimization with more than one variable

Dr. Priyanka Sharma

November 30, 2020

Exam Time

What is your most preferred time for taking the final exam for this course

Pace of the class

Class Project

How would you rate the level of difficulty of class project?

18 responses

Important Dates

- 2 December 2020: Project Evaluations Due
- 5 December 2020: Final Exam
- 9 December 2020: Final Project Due after incorporating peer feedback
- 14 December 2020: Bonus Homework Due

Winter Break Plans

- Thoroughly review materials covered in class.
- Additionally, read following chapters of your textbook:
 - Chapter 10 : Exponential and Logarithmic Functions
 - Chapter 14: Integral Calculus

Multivariable Functions

- So far, we focused on cases where dependent variable is a function of only one independent variable.
- But in reality dependent variables are functions of more than one independent variables.

$$y = f(x_1, x_2, x_3,, x_n)$$

- where the variables $x_i (i = 1, 2, ..n)$ are all *independent* of one another \Rightarrow changes in one do not affect the others.
- In analytical works, we are often interested in identifying the effects of change in *one* of the independent variables on the dependent variable (a.k.a *ceteris paribus*)
- The difference quotient can be expressed as:

$$\frac{\Delta y}{\Delta x_1} = \frac{f(x_1 + \Delta, x_2, x_3,, x_n) - f(x_1, x_2, x_3,, x_n)}{\Delta x_1}$$

Partial Differentiation

• Taking limits of the difference quotient as $\Delta x_1 \rightarrow 0$, we get the partial derivative of y with respect to x_1 .

$$f_1 \equiv \frac{\partial f}{\partial x_1} \equiv \lim_{\Delta x_1 \to 0} \frac{\Delta y}{\Delta x_1}$$

- \bullet The symbol $\frac{\partial f}{\partial x_1}$ is read as "partial dee-eff-by-dee- x_1 "
- The process of finding partial derivatives is known as partial differentiation.
- Mechanics of partial differentiation:
 - When differentiating with respect to x_i , all other independent variables $(x_i, j \neq i)$ are regarded as *constants*.
 - ⇒ x_{-i}s will drop out if they are additive constants but retained if they are multiplicative constants.
 - Use the rules of simple differentiation for x_i .
- Question: What is the interpretation of a partial derivative?

Practice Problems

Find the partial derivatives of the following functions and calculate their values at the point (x, y) = (1, 3).

$$f(x, y) = x^2y + y^5$$

②
$$f(x,y) = (x+4)(3x+2y)$$

$$(x, y) = \frac{3x - 2y}{x^2 + 3y}$$

Gradient Vector

All the partial derivatives of a function $y = f(x_1, x_2, ..., x_n)$ can be collected under a single mathematical entity called the *gradient vector*, or simply the *gradient*, of function f.

Gradient Vector

$$gradf(x_1, x_2, ...x_n) = (f_1, f_2, ...f_n) = \nabla f(x_1, x_2, ...x_n)$$

where $f_i = \frac{\partial f}{\partial x_i}$.

• The mathematical symbol ∇ is the inverted version of the Greek letter Δ and is read as: "del".

Derivatives and Differentials

• Recall that, by definition, the derivative $\frac{dy}{dx} = f'(x)$ is the limit of the difference quotient:

$$\frac{dy}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

• What if $\Delta x \rightarrow 0$? Then

$$\frac{dy}{dx} = f'(x) \neq \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

• Define $\delta = \frac{\Delta y}{\Delta x} - \frac{dy}{dx}$. Then

$$\frac{\Delta y}{\Delta x} = \frac{dy}{dx} + \delta$$

$$\Rightarrow \Delta y = \frac{dy}{dx} \Delta x + \delta \Delta x$$

$$\Rightarrow \Delta y = f'(x) \Delta x + \delta \Delta x$$

Differentials

• Replacing Δx and Δy by dx and dy, we get:

$$dy = f'(x)dx$$

- Written this way, the derivative f'(x) can be used to approximate Δy .
- Given a specific value of $dx(\Delta x)$, we can get dy as an approximation of Δy , with the understanding that the smaller the Δx , the better the approximation.
- The quantities dx and dy are called the *differentials* of x and y, respectively.
- dy now depends of x as well as dx.
- Written this way, the derivative f'(x) can be reinterpreted as the factor of proportionality between two finite changes dy and dx.

Total Differentials

- The concept of differentials when extended to functions of more than one variable gives rise to *total differentials* and *partial differentials*.
- For functions of more than one variable, the differential is given by:

$$dy = \frac{\partial y}{\partial x_1} dx_1 + \frac{\partial y}{\partial x_2} dx_2 + \dots + \frac{\partial y}{\partial x_n} dx_n$$

where

- dy is the total differential of y.
- $\frac{\partial y}{\partial x_i} dx_i$ are the partial differentials of y.

Practice Problems

Find the total differential for each of the following functions:

$$y = ax_1 + bx_2.$$

$$y = x_1^2 + x_2^3 + x_1 x_2.$$

$$z = x^a y^b.$$

24 = [221 + 2] 021 [321 + 2

Total Derivatives

• Dividing the total differentials with respect to dx_i gives total derivative of y with respect to x_i .

$$\frac{dy}{dx_i} = \frac{\partial y}{\partial x_1} \frac{dx_1}{dx_i} + \frac{\partial y}{\partial x_2} \frac{dx_2}{dx_i} + \dots + \frac{\partial y}{\partial x_n} \frac{dx_n}{dx_i}$$

• When $x_1, x_2, ..., x_n$ are all independent of one another, then

$$\frac{dy}{dx_i} = \frac{\partial y}{\partial x_i}$$

• Question:What if $x_1, x_2, ..., x_n$ are no longer independent of x_i ?

Practice Problem

Find the total derivative $\frac{dy}{dw}$ given the function

$$y = f(x, w) = 3x - w^2$$

where $x = g(w) = 2w^2 + w + 4$.

Generalization of the Chain Rule for Multivariate Functions

• For simplicity, assume that $y = f(x_1, x_2, ..., x_n)$ where $x_1, x_2, ...x_n$ are continuous and differentiable functions of a variable t.

The Chain Rule

If the first, second and mixed partial derivative of function f exist and are continuous functions of $x_1, x_2, ..., x_n$, and $x_1, x_2, ...x_n$ are differentiable functions of a variable t, then

$$\frac{df}{dt} = \frac{\partial f}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \frac{dx_2}{dt} + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{dt}$$

Practice Problem

lf

$$z = xy^4 + x^3y^2$$
$$x = 2 - 3t$$
$$y = 4 + 5t$$

use the chain rule to find $\frac{dz}{dt}$.

 $z = xy^4 + x^3y^2$ x = 2 - 3t y = 4 + 5t y = 4 + 5

Higher order partial derivatives

Second partial derivatives

$$\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right)$$

Mixed partial derivatives

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$$

for $i \neq j$.

Practice Problems

Find the second and mixed partial derivatives of the following functions.

②
$$f(x,y) = (x+4)(3x+2y)$$

Mixed derivative theorem

Mixed Derivative Theorem aka Young's Theorem

If the first, second and mixed partial derivative of function f exist and are continuous functions of $x_1, x_2, ..., x_n$, then

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$$

for all $i \neq j$.

Differential Version of Optimization Conditions

Differential Version of Optimization Conditions

- First order condition: f' = 0.
- ② Second order condition for maximum: $f'' \le 0$.
- **Second order condition for minimum:** $f'' \ge 0$.
- These conditions can equivalently be expressed as differentials
 - First order condition: #= 0.
 - ② Second order condition for maximum: $d^2z \le 0$ for arbitrary non-zero values of dx.
 - Second order condition for minimum: $d^2z \not \!\!\!\!\!/ = 0$ for arbitrary non-zero values of dx.

Dr. Privanka Sharma (SSR)

Finding extreme values of functions of two variables

Consider z = f(x, y).

• The first order optimization condition requires

 $dz = f_x dx + f_y dy = 0$ for arbitrary value of dx and dy, not both zero

Then the first order optimization condition can be expressed as:

$$f_x = f_y = 0$$

- Through some additional work, it can be shown that
 - $d^2z < 0$ iff $f_{xx} < 0$; $f_{yy} < 0$; and $f_{xx}f_{yy} > f_{xy}^2$.
 - $d^2z > 0$ iff $f_{xx} > 0$; $f_{yy} > 0$; and $f_{xx}f_{yy} > f_{xy}^2$.

Practice Problem

Find and classify the extreme values of $z = 8x^3 + 2xy - 3x^2 + y^2 + 1$.

Optimization with Equality Constraints

- In most economic applications, the objective function z = f(x, y) needs to be maximized subject to a constraint g(x, y) = c.
- The Lagrange-Multiplier method is to convert a constrained-extremum problem into an "unconstrained" extremum problem.
- The Lagrangian Function incorporates the constraint by writing the objection function as follows:

$$Z(x,y,\lambda)$$
 $f(x,y)$ $\lambda[c-g(x,y)]$

The stationary values can be identified by simultaneously solving

$$Z_{x} = 0; Z_{y} = 0; Z_{\lambda} = 0$$

Practice Problem

Find the extremum of z = xy subject to x + y = 6.