

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 15 April 2003		2. REPORT TYPE Viewgraphs		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE SK1bf Unielement TCA for Film Cooling Model				5a. CONTRACT NUMBER F04611-00-C-0009	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Jeffrey Muss				5d. PROJECT NUMBER 3005	
				5e. TASK NUMBER 00TU	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Sierra Engineering 603 E. Robinson St., Suite 7 Carson City, NV				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PR 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2003-090	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
20030529 076					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Sheila Benner
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A		19b. TELEPHONE NUMBER (include area code) (661) 275-5963

FILE

MEMORANDUM FOR PRS (Contractor Publication)

FROM: PROI (STINFO)

15 Apr 2003

S740
SUBJECT: Authorization for Release of Technical Information, Control Number: **AFRL-PR-ED-VG-2003-090**
Muss, Jeffrey (Sierra Engineering), "5Klbf Unielement TCA for Film Cooling Model "

NASA Fluids Workshop (U.S. Citizens Only)
(Birmingham, AL, 22-24 Apr 2003) (Deadline: 21 Apr 2003 - RUSH, per PAK)

(Statement A)

5Klbf UniElement TCA for Film Cooling Model Validation

Jeffrey Muss

Sierra Engineering

24 April 2003

DISTRIBUTION STATEMENT A:
Approved for Public Release
Distribution Unlimited

Overview

1. Problem Statement & Applicability
2. Hardware Characteristics
3. Test Program
4. Data Reduction Approach
5. Summary

Problem Statement:

- Very limited test data available to validating the potential of liquid RP-1 film cooling at high pressures

Applications:

- Northrop-Grumman's TR107 hydrocarbon engine relies extensively on film cooling for MCC thermal management
- Liquid / gaseous film cooling model refinement applicable for design and analysis of target applications

5K Test Objectives

- Collect film cooling performance data
 - Hot gas recovery temperature
 - Convective heat transfer coefficient (Hg)
 - Single versus dual film cooling data
 - Wall compatibility / spatial uniformity
 - Operability
- Demonstrate “full size” element
 - Performance
 - Data for “scalability” of elements
 - Currently elements tested at 400 lbf level
 - Chamber pressure 1/2 (<1200 psia)
 - Data with “hot” gO₂

5K Hardware Characteristics

- Operating conditions tied to full-sized TR107
 - Ox-rich staged combustion oxidizer
 - Main element operation characteristics matched
 - Predicted maximum material temperatures bracketed
 - Wall-to-element dimensions matched
 - Chamber characteristic lengths and accelerations matched
 - Passage dimensions matched
- Heavily instrumented for model validation
- Workhorse hardware with some flight-type characteristics

Result is Modular Design

Modular Test Hardware Design

- Main Injector Assembly
- Ablative Hardware
 - Main Injector
 - Igniter Flange
 - Ablative Chamber
- Work Horse Hardware
 - Film Coolant Injection Rings (2)
 - Instrumented Barrel
 - Instrumented Nozzle
- Flight Type Sleeve Hardware
 - Flight Type Sleeve
 - Flight Type Sleeve Backup Chamber

Ablative Chamber Assembly No Film Cooling

Objectives:

1. Demonstrate ability to run ORPB with TCA downstream
2. Demonstrate ignition of TCA main injector
3. Demonstrate TCA injector element performance

Ablative Chamber Assembly with Fwd FFC Assembly

Objectives:

1. Demonstrate ability to run ORPB with TCA downstream, with film cooling
2. Demonstrate ignition of TCA main injector, with film cooling
3. Demonstrate TCA injector element performance, with film cooling

Work Horse Assembly

Objectives:

1. Demonstrate ability to run ORPB with TCA downstream, with dual injection film cooling
2. Demonstrate TCA injector element performance, with dual point film cooling
3. Collect film cooling performance data as a function of film and geometric parameters

Flight Type Sleeve Testing Assembly

Objectives:

1. Demonstrate "flight" type dump sleeve

10

Workhorse Chamber Assembly

- 6 Testable Configurations
 - Allows for parametric study of film cooling
 - Dual Point FFC, Test Matrix (Test Series 7)
 - Single Point FFC (Test Series 8 and 9)

Wall Temperature Measurement Locations Established to Capture Critical Film Cooling Factors

Factors influencing film cooling performance & instrumentation placement:

1. Core gas condition, i.e. un-accelerated, accelerating, diverging nozzle
 - Instrumentation placed to measure these effects
2. Decomposition length of supercritical coolant
 - Predicted decomposition lengths used to select near injection locations
3. Hardware design / cost
 - Flange size / location, bolt access
 - Limited budget for instrumentation

Instrumented Throat Design Features

Instrumented Barrel Design Features

TC's at 7 axial planes
along 2 circumferential
angles

Allowance for
accurate placement of
thermocouple face

TC Port, seals on TC's
outer covering (Stainless
Steel, Viton O-Ring)

Test Planning Overview

1. Testing Objectives
2. Phases of Test Program
3. Basic Approach for each Phase of Test Program

Three Phase Test Program Mitigates Risk, Obtains Needed Data

WorkHorse
ORPB
(NG IR&D)

5k TCA Hot Fire Test Sequence

ORPB Test Series Successfully Completed

Yellow Box –
Green Box –
Cyan Box –

Ablative Configurations
Work Horse Configurations
Flight Type Sleeve Configuration

17

Top Level Test Plan

Test Series	Objective	TCA Config.	TCA MR	Element MR	Chamber Pressure	Film Cooling Config	No. of Tests
1	• Integration / Checkout with ORPB	Ablative chamber w/o FFC	-60	-60	190 to 385	None	4
2	• Main Inj. Ignition • Chamber Wall Compatibility • Element Performance	Ablative chamber w/o FFC	3.147	3.147	740 To 1485	None	4
3	• Main Inj. Ignition • Chamber Wall Compatibility • Element Performance	Ablative chamber w/o FFC	2.7	2.7	740 To 1485	None	4
4	• Main Inj. Ignition • Chamber Wall Compatibility • Element Performance	Ablative chamber w/o FFC	3.2	3.2	740 To 1485	None	4
5	• Integration/Timing Fwd FFC • Chamber Wall Compatibility • Element Performance	Ablative chamber w/ FWD FFC	0.94 To 1.22	3.147	1760 To 1875	High FWD	3
6	• Integration/Timing Fwd FFC • Chamber Wall Compatibility • Element Performance	Ablative chamber w/ FWD FFC	1.22 To 1.62	3.147	1750 To 1800	Low FWD	3
7	• Integration/Timing with both Fwd & Aft FFC • Chamber Wall Compatibility	Work Horse w/ Fwd & Aft FFC	0.72 To 1.34	3.147	890 To 2045	Multiple Combinations	40
8	• Chamber Wall Compatibility	Fwd FFC only – Work Horse Hardware	0.94 To 1.22	3.147	1760 To 1875	High FWD	6
9	• Chamber Wall Compatibility	Fwd FFC only – Work Horse Hardware	1.22 To 1.62	3.147	1750 To 1800	Low FWD	6
10	• Integration with Flight Hardware • Chamber Wall Compatibility	Flight-Type Sleeve w/ Fwd FFC	-1.04	3.147	1835 & -1100	High FWD	6

Test Plan Details

- Detailed Hot Fire Test Plan & Instrumentation
 - Ablative Configurations
 - Work Horse Configurations
 - Flight Type Sleeve Configuration
- Data Reduction

5k TCA Hot Fire Test Plan

To Date:

- The test plan has not been optimized / prioritized for the NGLT test duration (~6 wks testing, +2 wks setup).

Near-term Activity:

- Prioritize the test points using design-of-experiments
 - maximize data for model validation
 - work within the allocated resources

Test Series 1

ORPB Integration - Ablative Configuration

Objectives:

1. Demonstrate ability to run ORPB with TCA downstream
2. 4 tests

Success Criteria:

1. ORPB performance (P_c , T uniformity) not impacted by attachment of TCA
2. Igniter Spool temperature with acceptable limits

Test Series 2-4

Ablative Configuration

TCA Injector Ignition, Element Performance (No FFC)

Objectives:

1. Demonstrate ignition of TCA main injector without forward film cooling
2. Demonstrate TCA injector element performance (over Pc and MR box)
3. 12 tests

Success Criteria:

1. ORPB performance (Pc, T uniformity) not impacted by attachment of TCA
2. Ignition achieved with no adverse “popping”
3. Igniter Spool temperature with acceptable limits
4. Element performance within expected level

Test Series 1 thru 4

Ablative Configuration Instrumentation

- Provided instrumentation allows evaluation of:
- Ignition characteristics
 - Element performance
 - Face compatibility
 - Igniter wall condition

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
TCA Main Injector GOX Supply	PGOXI	180	100 Hz	Yes	
GOX Supply Pressure	TGOXI	0	20 Hz		
GOX Supply Temperature	PGOXIHF	90	5K Hz		
HiFreq Manifold Pressure					
TCA Fuel Supply System					
Fuel Supply Pressure	PFI		100 Hz	Yes	
Fuel Supply Temperature	TFI		10 Hz		
Fuel Supply Flowrate	WFI		20 Hz		
Main Injector Fuel System					
Main Fuel Venturi Inlet Pressure	PFVIMI		100 hz	Yes	
Main Fuel Venturi Downstream Pressure	PFVDMI		50 hz		
Injector Manifold Fuel Pressure	PFJ	180	50 hz		
HiFreq Manifold Pressure	PFJHFF	210	10K Hz		
Fuel Supply Temperature	TFJ	270	20 Hz		
Injector Face					
Injector Face Temperature	TINJ1	90	0	1K hz	Yes
Injector Face Temperature	TINJ2	330	0	1K hz	Yes
Chamber Conditions - Igniter section					
Steady State Pc (0-300 psia)	PCL	90	1.5	1K Hz	Yes
Steady State Pc (0-3000 psia) (same port as above)	PCH	90	1.5	1K Hz	Yes
Axial Accel	AAX			10 kHz	
Radial Accel	ARAD			10 kHz	
Wall Temperature (igniter spool)	TIGN1	60	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN3	60	1.5	50 Hz	
Wall Temperature (igniter spool)	TIGN4	180	1.5	50 Hz	Yes
Wall Temperature (igniter spool)	TIGN2	330	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN5	330	1.5	50 Hz	

Test Series 5 & 6

Ablative Configuration

TCA Injector Ignition, Element Performance (w/ FFC)

Objectives:

1. Demonstrate ability to run ORPB with TCA downstream, with film cooling
2. Demonstrate ignition of TCA main injector, with film cooling
3. Demonstrate TCA performance with varying film cooling percentage
4. 6 tests

Success Criteria:

1. ORPB performance (P_c , T uniformity) not impacted by attachment of TCA
2. Ignition achieved with no adverse "popping"
3. Igniter Spool temperature with acceptable limits
4. Element performance within expected level

Test Series 5 and 6

Ablative Configuration Instrumentation

Instrumentation for Test

**Series 5 & 6 increased to
allow measurement of
forward film coolant
operating conditions**

Provided instrumentation

allows evaluation of:

- Ignition characteristics
- Element performance
- Face compatibility
- Igniter wall condition

Instrument Callout	Nomenclature	Clocking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
TCA Main Injector GOX Supply	PGOXI	180		100 Hz	Yes
GOX Supply Pressure	TGOXI	0		20 Hz	
GOX Supply Temperature	PGOXIHF	90		5K Hz	
HiFreq Manifold Pressure					
TCA Fuel Supply System	PFI			100 Hz	Yes
Fuel Supply Pressure	TFI			10 Hz	
Fuel Supply Temperature	WFI			20 Hz	
Fuel Supply Flowrate					
Main Injector Fuel System	PFVIMI			100 hz	Yes
Main Fuel Venturi Inlet Pressure	PFVDMI			50 hz	
Main Fuel Venturi Downstream Pressure	PFJ	180		50 hz	
Injector Manifold Fuel Pressure	PFJHFP	210		10K Hz	
HiFreq Manifold Pressure	TFJ	270		20 Hz	
Fuel Supply Temperature					
Injector Face	TINU1	90	0	1k hz	Yes
Injector Face Temperature	TINU2	330	0	1k hz	Yes
Injector Face Temperature					
Chamber Conditions - Igniter section					
Steady State Pc (0-300 psia)	PCL	90	1.5	1k Hz	Yes
Steady State Pc (0-3000 psia) (same port as above)	PCH	90	1.5	1k Hz	Yes
Axial Accel	AAX			10 kHz	
Radial Accel	ARAD			10 kHz	
Wall Temperature (igniter spool)	TIGN1	60	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN3	60	1.5	50 Hz	
Wall Temperature (igniter spool)	TIGN4	180	1.5	50 Hz	Yes
Wall Temperature (igniter spool)	TIGN2	330	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN5	330	1.5	50 Hz	
Forward Film Cooling Ring				10 Hz	
Fwd FFC Fuel Supply Temperature	TFFFCI			10 Hz	Yes
Fwd FFC Fuel Venturi Inlet Pressure	PVIFFFC			10 Hz	
Fwd FFC Fuel Venturi Downstream Pressure	PVDFFFFC			10 Hz	
Fwd FFC Fuel Manifold Pressure	PMFFFCC			10 Hz	

Test Series 7 & 8

Workhorse Configuration

Element Performance, Film Cooling Performance

Test Series 7

Workhorse Configuration Dual Point Film Cooling Testing

Objectives:

1. Demonstrate ability to run ORPB with TCA downstream and dual injection film cooling
2. Demonstrate TCA injector element performance with dual point film cooling
3. Collect film cooling performance data as a function of film and geometric parameters

Outline for Dual Point Film Cooling Study

- Independent forward and aft FFC flow fractions
- Cover range of equivalent film flows for 40K and 1M engines
- Nominal and 1/2 main injector flow
- 40 tests to fully characterize operating box

Instrumentation for Test Series 7 Measures Element Performance, Wall Compatibility as Function of Film Cooling

Instrument Callout	Nomenclature	Axial Position from Injector Face	Clocking Looking Downstream	Sampling Rate	Red Line
TCA Main Injector GOX Supply	PGOXI	180	100 Hz	Yes	
GOX Supply Pressure	TGOXI	0	20 Hz		
GOX Supply Temperature	PGOXIHF	90	5K Hz		
HIFreq Manifold Pressure					
TCA Fuel Supply System					
Fuel Supply Pressure	PF1		100 Hz	Yes	
Fuel Supply Temperature	TF1		10 Hz		
Fuel Supply Flowrate	WF1		20 Hz		
Main Injector Fuel System					
Main Fuel Venturi Inlet Pressure	PFVIMI		100 Hz	Yes	
Main Fuel Venturi Downstream Pressure	PFVDIMI		50 Hz		
Injector Manifold Fuel Pressure	PFJHF	180	10K Hz		
HIFreq Manifold Pressure	PFJHF	210	20 Hz		
Fuel Supply Temperature	TFJ	270			
Injector Face					
Injector Face Temperature	TINJ1	90	0	1K Hz	Yes
Injector Face Temperature	TINJ2	330	0	1K Hz	Yes
Chamber Conditions - Ignitor section					
Steady State Pc (0-300 psia)	PCL	90	1.5	1K Hz	Yes
Steady State Pc (0-3000 psia) (same port as above)	PCH	90	1.5	1K Hz	Yes
Axial Accel	AAX		10 kHz		
Radial Accel	ARAD		10 kHz		
Wall Temperature (igniter spool)	TIGN1	60	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN3	60	1.5	50 Hz	
Wall Temperature (igniter spool)	TIGN4	180	1.5	50 Hz	
Wall Temperature (igniter spool)	TIGN2	330	0.5	50 Hz	
Wall Temperature (igniter spool)	TIGN5	330	1.5	50 Hz	
Forward Film Cooling Ring					
Fwd FFC Fuel Supply Temperature	TEFFC1		10 Hz		
Fwd FFC Fuel Venturi Inlet Pressure	PVIFFFC		10 Hz	Yes	
Fwd FFC Fuel Venturi Downstream Pressure	PVIDFFC		10 Hz		
Fwd FFC Fuel Manifold Pressure	PMFFFC		10 Hz		
Aft Film Cooling Ring					
Aft Film Fuel Supply Temperature	TAFFC1		10 Hz		
Aft Film Venturi Inlet Pressure	PVIAFFC		10 Hz	Yes	
Aft Film Venturi Downstream Pressure	PVIDAFFC		10 Hz		
Aft Film Fuel Manifold Pressure	PMIAFFC		10 Hz		

Instrument Callout	Nomenclature	Axial Position from Injector Face	Clocking Looking Downstream	Sampling Rate	Red Line
Barrel Section - Heat Sink					
HIFreq PC					
Wall Temperature (Barrel Flange - upstream)	TBAR1	60	2.625	50 Hz	
Wall Temperature	TBAR3	60	4.625	50 Hz	
Wall Temperature	TBAR5	60	6.125	50 Hz	
Wall Temperature	TBAR7	60	7.625	50 Hz	
Wall Temperature	TBAR9	60	9.125	50 Hz	
Wall Temperature	TBAR11	60	10.625	50 Hz	
Wall Temperature (Barrel Flange - downstream)	TBAR13	60	12.526	50 Hz	Yes
Wall Temperature	TBAR2	330	2.625	50 Hz	
Wall Temperature	TBAR4	330	4.625	50 Hz	
Wall Temperature	TBAR6	330	6.125	50 Hz	
Wall Temperature	TBAR8	330	7.625	50 Hz	
Wall Temperature	TBAR10	330	9.125	50 Hz	
Wall Temperature	TBAR12	330	10.625	50 Hz	
Wall Temperature (Barrel Flange - downstream)	TBAR14	330	12.526	50 Hz	Yes
Throat Suction - Heat Sink					
Wall Temperature (Throat Flange - upstream)	TNOZ1	60	14.77	50 Hz	
Wall Temperature	TNOZ3	60	16.264	50 Hz	
Wall Temperature	TNOZ5	60	17.763	50 Hz	
Wall Temperature	TNOZ7	60	19.261	50 Hz	
Wall Temperature	TNOZ9	60	20.761	50 Hz	
Wall Temperature	TNOZ11	60	23	50 Hz	Yes
Wall Temperature	TNOZ13	60	24.747	50 Hz	
Wall Temperature	TNOZ15	60	26.247	50 Hz	
Wall Temperature (Throat Flange - upstream)	TNOZ22	330	14.77	50 Hz	
Wall Temperature	TNOZ24	330	16.264	50 Hz	
Wall Temperature	TNOZ26	330	17.763	50 Hz	
Wall Temperature	TNOZ28	330	19.261	50 Hz	
Wall Temperature	TNOZ30	330	20.761	50 Hz	
Wall Temperature	TNOZ32	330	23	50 Hz	Yes
Wall Temperature	TNOZ34	330	24.747	50 Hz	
Wall Temperature	TNOZ36	330	26.247	50 Hz	
Wall Static Pressure	PNOZ	345	19.261	1 kHz	

Test Series 8 & 9 – Work Horse Configuration Single Point Film Cooling Testing Outline

- Thermal analysis indicates hardware will survive single point (forward injection only) film cooling tests
 - Without forward film coolant flow the front end hardware overheats
- Demonstrate forward film effectiveness at two chamber pressures
- 12 tests identified

Instrumentation for Test Series 8 & 9 Measures Element Performance, Wall Compatibility as Function of Film Cooling

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line	Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line					
Barrel Section - Heat Sink																
TCA Main Injector GOX Supply	PGOXI	180	100 Hz	Yes		PC/HF		75	8.925	10 kHz	Yes					
GOX Supply Pressure	TGOXI	0	20 Hz			TBAI1		60	2.625	50 Hz						
GOX Supply Temperature	PGOXIHF	90	5k Hz			TBAI3		60	4.625	50 Hz						
Hi/req Manifold Pressure						TBAI6		60	6.125	50 Hz						
TCA Fuel Supply System	PFI			100 Hz	Yes	TBAI7		60	7.625	50 Hz						
Fuel Supply Pressure						TBAI9		60	9.125	50 Hz						
Fuel Supply Temperature	TFI		10 Hz			TBAI11		60	10.625	50 Hz						
Fuel Supply Flowrate	WWFI		20 Hz			TBAI13		60	12.525	50 Hz	Yes					
Main Injector Fuel System	PFVIMI			100 Hz	Yes	TBAI2		330	2.625	50 Hz						
Main Fuel Venturi Inlet Pressure	PFVDMI			50 Hz		TBAI4		330	4.625	50 Hz						
Main Fuel Venturi Downstream Pressure	PFVJ	180	50 Hz			TBAI6		330	6.125	50 Hz						
Injector Manifold Fuel Pressure	PFUHF	210	10k Hz			TBAI8		330	7.625	50 Hz						
Hi/req Manifold Pressure						TBAI10		330	9.125	50 Hz						
Fuel Supply Temperature	TFJ	270	20 Hz			TBAI12		330	10.625	50 Hz						
Injector Face						TBAI14		330	12.525	50 Hz	Yes					
Injector Face Temperature	TINJ1	90	0	1k Hz	Yes	Throat Section - Heat Sink										
Injector Face Temperature	TINJ2	330	0	1k Hz	Yes	Wall Temperature (Barrel Flange - downstream)										
Chamber Conditions - Igniter section						TNOZ1		60	14.77	50 Hz						
Steady State PC (0-3000 psia) (same port as above)	PCL	90	1.5	1k Hz	Yes	TNOZ23		60	16.264	50 Hz						
Steady State PC (0-3000 psia) (same port as above)	PCH	90	1.5	1k Hz	Yes	TNOZ25		60	17.763	50 Hz						
Radial Accel.	AAX		10 kHz			TNOZ27		60	19.261	50 Hz						
Radial Accel.	AFAD		10 kHz			TNOZ29		60	20.761	50 Hz						
Wall Temperature (igniter spool)	TIGN1	60	0.5	50 Hz		TNOZ11		60	23	50 Hz	Yes					
Wall Temperature (igniter spool)	TIGN3	60	1.5	50 Hz		TNOZ13		60	24.747	50 Hz						
Wall Temperature (igniter spool)	TIGN4	180	1.5	50 Hz	Yes	TNOZ15		60	26.247	50 Hz						
Wall Temperature (igniter spool)	TIGN2	330	0.5	50 Hz		TNOZ22		330	14.77	50 Hz						
Wall Temperature (igniter spool)	TIGN5	330	1.5	50 Hz		TNOZ24		330	16.264	50 Hz						
Forward Film Cooling Ring						TNOZ26		330	17.763	50 Hz						
Fwd FFC Fuel Supply Temperature	FFFCl			10 Hz		TNOZ28		330	19.261	50 Hz						
Fwd FFC Fuel Venturi Inlet Pressure	PV1FFFCl			10 Hz	Yes	TNOZ10		330	20.761	50 Hz						
Fwd FFC Fuel Venturi Downstream Pressure	PV1DEFFC			10 Hz		TNOZ12		330	23	50 Hz	Yes					
Fwd FFC Fuel Manifold Pressure	PMFFFCl					TNOZ14		330	24.747	50 Hz						
Fwd FFC Fuel Manifold Pressure						TNOZ16		330	26.247	50 Hz						
						PNOZ		345	19.261	1 kHz						

Flight Type Sleeve Tests Planned to Simulate TR107 Thermal Boundary Conditions

- Demonstrate operation at nominal and 1/2 PC
- Two series of 3 tests - increasing duration

Instrumentation for Test Series 10 Measures Element Performance, Wall Compatibility as Function of Film Cooling

Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line	Instrument Callout	Nomenclature	Clocking Looking Downstream	Axial Position from Injector Face	Sampling Rate	Red Line
TCA Main Injector GOX Supply	PGOXI	180	100 Hz	Yes		Throat Section - Heat Sink	TNOZ1	60	14.77	50 Hz	
GOX Supply Pressure	TG0XI	0	20 Hz			Wall Temperature (Throat Flange - upstream)	TNOZ3	60	16,264	50 Hz	
GOX Supply Temperature	PGOXHF	90	5k Hz			Wall Temperature	TNOZ5	60	17,763	50 Hz	
HiFreq Manifold Pressure	PGOXHF					Wall Temperature	TNOZ7	60	19,261	50 Hz	
TCA Fuel Supply System						Wall Temperature	TNOZ9	60	20,761	50 Hz	
Fuel Supply Pressure	PFI		100 Hz	Yes		Wall Temperature	TNOZ11	60	23	50 Hz	Yes
Fuel Supply Temperature	TFI		10 Hz			Wall Temperature	TNOZ13	60	24,747	50 Hz	
Fuel Supply Flowrate	WFI		20 Hz			Wall Temperature	TNOZ15	60	26,247	50 Hz	
Main Injector Fuel System						Wall Temperature (Throat Flange - upstream)	TNOZ2	330	14.77	50 Hz	
Main Fuel Venturi Inlet Pressure	PFVIMI		100 Hz	Yes		Wall Temperature	TNOZ4	330	16,264	50 Hz	
Main Fuel Venturi Downstream Pressure	PFVIMI		50 Hz			Wall Temperature	TNOZ6	330	17,763	50 Hz	
Injector Manifold Fuel Pressure	PFJFJ	180	50 Hz			Wall Temperature	TNOZ8	330	19,261	50 Hz	
HiFreq Manifold Pressure	PFJHF	210	10k Hz			Wall Temperature	TNOZ10	330	20,761	50 Hz	
Fuel Supply Temperature	TFJ	270	20 Hz			Wall Temperature	TNOZ12	330	23	50 Hz	Yes
Injector Face						Wall Temperature	TNOZ14	330	24,747	50 Hz	
Injector Face Temperature	TINJ1	90	0	1k Hz	Yes	Wall Temperature	TNOZ16	330	26,247	50 Hz	
Injector Face Temperature	TINJ2	330	0	1k Hz	Yes	Wall Static Pressure	PN0Z	345	19,261	1 kHz	
Chamber Conditions - Igniter section											
Steady State P _c (0-3000 psia) (same port as above)	PCL	90	1.5	1k Hz	Yes						
Steady State P _c (0-3000 psia) (same port as above)	PCH	90	1.5	1k Hz	Yes						
Axial Accel	AAX		10 kHz								
Radial Accel	ARAD		10 kHz								
Wall Temperature (igniter spool)	TIGN1	60	0.5	50 Hz							
Wall Temperature (igniter spool)	TIGN3	60	1.5	50 Hz	Yes						
Wall Temperature (igniter spool)	TIGN4	180	1.5	50 Hz							
Wall Temperature (igniter spool)	TIGN2	330	0.5	50 Hz							
Wall Temperature (igniter spool)	TIGN5	330	1.5	50 Hz							
Forward Film Cooling Ring											
Fwd FFC Fuel Supply Temperature	TFFFCI			10 Hz							
Fwd FFC Fuel Venturi Inlet Pressure	PVFFFIC			10 Hz	Yes						
Fwd FFC Fuel Venturi Downstream Pressure	PVDFFFC			10 Hz							
Fwd FFC Fuel Manifold Pressure	PMFFFCC			10 Hz							
Flight Dump Sleeve											
Dump Sleeve Fuel Supply Temperature	TDSI			10 Hz							
Dump Sleeve Fuel Venturi Inlet Pressure	PVIDS			10 Hz	Yes						
Dump Sleeve Fuel Venturi Downstream Pressure	PVDDS			10 Hz							
Dump Sleeve FFC Fuel Manifold Pressure	PMDS			10 Hz							

Throat section measurements allow direct comparison to previous work horse test results.

Data Reduction Approach

Testing objectives for film cooling:

- Determine the local (axially varying) recovery temperature and heat transfer coefficient. These data will be used to:
 - Discern the fluid “latent heating & cracking” length
 - Forward
 - Aft
 - Discern the single point film cooling effectiveness
 - Forward
 - Discern the two point film cooling effectiveness
 - Superposition principal

TCA Hot Wall Instrumentation Utilizes Dual Junction Coaxial Thermocouples

- Rugged
- Fast response
- Matched to wall material and response
- Simple to use (no water cooling circuits)
- Relatively inexpensive
- Successfully demonstrated numerous times for measurement of local wall heat fluxes

- Kidd, C.T., "Coaxial Surface Thermocouples - Analytical & Experimental Considerations for Aerothermal Heat Flux Measurement Applications", ISA, 1990, Paper 90-126
- Hollis,B.R., "Users Manual for the One-Dimensional Hypersonic Aero-thermodynamic (1DHEAT) Data Reduction Code", NASA CR-4691
- Helllund, E.R., et.al. "Heat Transfer Testing in the NSWC Hypervelocity Wind Tunnel Utilizing Co-axial Surface Thermocouples", NSWC MP80-151, March 19, 1980
- Philippart, K.D."Diagnostic Developments for Velocity & Temperature Measurements in Uni-Element Rocket Environments", AFIT/CI/CIA 95-72, Aug 1995
- Schieb, D.J. "Effects of Liquid Transpiration Cooling on Heat Transfer to the Diverging Region of a Porous-Walled Nozzle", AIAA/ENY/97D-04, Dec, 1997
- Cahoon, N.T. "Heating Parameter Estimation Using Coaxial Thermocouple Gages in Wind Tunnel Test Articles", AFIT/GAE/AA/84D-3, Dec. 1984

TCA Hot Wall Instrumentation Utilizes Co-axial Thermocouples

- Planned sampling rate is 50 Hz. Each thermocouple will provide a “hot wall” and in-depth transient thermal response to the applied heat load.

- Iron/nickel type closely matches the thermal characteristics of the brass

- Type E closely matches the thermal characteristics of the Igniter/barrel/nozzle TC's

NOTES: 1. The TGS-861-N-1--MY-10324 is a coaxial surface thermocouple which will provide microsecond response time. It has a thin metal foil surface temperature measurement when properly installed flush in metal surfaces. In many cases the fast response heat transfer rates can include buckling thermocouple

12. The coaxial surface thermocouple may be press fit, slip fit, soldered, or cemented into place. Press fit tool must press may be used for steady state heat transfer rate computations.

ESTRUTURA DA INDUSTRIA DE TECNOLOGIA DA INFORMACAO NO BRASIL

Other characters and configurations are available with the SST stretch high temperature leadline.

4. The standard lead wire construction is stainless steel sheathed RG19 insulated thermocouple cable.

...and the last time I saw him he was sitting in a chair, holding a cigarette, looking very pale and thin.

letter for the designed them couple few changes.

MATERIAL, SE FOR CHERPEN/CHERPEN, J. FOR PROYECTO VARIANZA, I. FOR

6. Replace η in P/N by probe length in inches, 0.200" standard.

If other than 36 inches standard length standard, replace carry-in P/N by length in inches.

Summary

- Hardware design enables incremental study of film cooling and injector performance characteristics
 - Component and assembly designs have been established for all necessary test hardware
 - Instrumentation specified
- Preliminary test plan has been proposed
 - Test plan needs to be prioritized for NGLT funding
- A data reduction approach for the film cooling data has been developed
- Data supports validation of both analytical and CFD models