Задача об оптимальном расписании (Scheduling Problem)

Зотов Алексей, 497

28 ноября 2016 г.

Формулировка задачи

Имеется множество работ J и множество машин M. Также задана функция $p: J \times M \to \mathbb{R}_+$. Значение $p(i,j) = p_{ij}$ означает время выполнения i-ой работы на j-ой машине.

Требуется найти распределние работ по машинам, так чтобы время выполнения всех работ было минимально. Формально, требуется построить функцию $x: J \times M \to \{1,0\}$ такую, что:

$$\sum_{j \in M} x_{ij} = 1, \quad \forall i \tag{1}$$

$$\max_{j \in M} \sum_{i} x_{ij} p_{ij} \to \min \tag{2}$$

NP - полнота

Теорема. Задача об оптимальном расписании является **NP** - полной. Здесь рассматривается измененный вариант задачи:

$$\max_{j \in M} \sum_{i} x_{ij} p_{ij} \le k \tag{3}$$

Доказательство.

1. SCHEDULING $\in NP$

Действительно, сертификатом будет являться значения функции x на множестве J. Полиномиально вычисляется искомый функционал.

2. Рассмотрим задачу SUBSETSUM.

Дано множество A, определена весовая функция $s:A\to\mathbb{N}$ на элементах множества. Необходимо найти подмножество $A'\subseteq A$, такое что $\sum_{a\in A'}s(a)=\sum_{a\in A\setminus A'}s(a)$. Легко свести данную задачу к задаче о расписании, взяв J=A - множество элементов как множе-

Легко свести данную задачу к задаче о расписании, взяв J=A - множество элементов как множество работ, $M=\{1,2\}$ - два подмножества в задаче о разбиении как две машины, $p_{ij}=s(a_i)$ - вес элемента как сложность выполнения работы и k=0, так как нам нужно точное разбиение. Тогда, решив задачу о расписании, мы получим решение задачи о разбиении.

Покажем теперь, что SUBSETSUM NP - трудна, что завершит доказательство теоремы.

Утверждение. $SUBSETSUM \in NPH$.

Доказательство утверждения. Сведем **NP** полную задачу о покрытии ребрами 3-дольного 3-однородного гиперграфаграфа (**3-dimensional matching , 3DM**) к задаче **SUBSETSUM**.

Пусть $W = \{w_1, \dots w_q\}, X = \{x_1, \dots x_q\}, Y = \{y_1, \dots y_q\}$, $V = W \cup X \cup Y$ - вершины и $M \subseteq W \times X \times Y$, |M| = k - ребра гиперграфа из задачи **3DM**.

Будем считать, что $\forall v \in V \exists e \in M : v \in e$, то есть для каждой вершины существует ребро, которое

ее содержит. Если это не так, то ответ на задачу отрицательный, и это можно вычислить за полиномиальное время.

Требуется построить множество A и размеры s(a) всех его элементов так, чтобы было выполнено:

$$\exists A' \in A \sum_{a \in A'} s(a) = \sum_{a \in A' \setminus A} s(a) \iff \exists J \subseteq \{1 \dots k\}, m_j \in M, j \in J : \bigsqcup_{J} m_j = V$$
 (4)

то есть, что в A можно найти подмножество, равное по весу своему дополнению, тогда и только тогда, когда M содержит искомое покрытие.

Множество A будет состоять из k+2 элементов. Первые k элементов множества A будут $\{a_i: 1 \leq i \leq k\}$, вес элемента $s(a_i)$ будет определеяться по m_i . Построим двоичную запись числа $s(a_i)$ по $m_i = (w_{f(i)}, x_{g(i)}, y_{h(i)})$. Для записи $s(a_i)$ будем использовать ровно 3qp бит, где $p = \lceil \log_2{(k+1)} \rceil$. Каждой из трех компонент m_i соответствует один подотрезок длины qp в двоичной записи числа $s(a_i)$, который состоит из q блоков длины p, каждый блок соответствует своему $1 \leq i \leq q$. В числе $s(a_i)$ правые концы зон, соответствующих $w_{f(i)}, x_{g(i)}, y_{h(i)}$ равны 1, остальные биты равны 0:

$$s(a_i) = 2^{p(3q - f(i))} + 2^{p(2q - g(i))} + 2^{p(q - h(i))}$$
(5)

 $s(a_i)$ имеет длину не больше 3pq, и может быть построено за полиномиальное время.

Заметим, что если просуммировать содержимое одной зоны всех элементов множества $\{a_i: 1 \le i \le k\}$, то результат не будет превосходить $2^p - 1$. Следовательно, при суммировании по любому подмножеству, никогда не придется переносить единицы из одной зоны(p) бит) в соседнюю. Положим:

$$B = \sum_{j=0}^{3q-1} 2^{pj} \tag{6}$$

B - число, в двоичной записи которого в правом конце каждой зоны стоит 1. Тогда для любого подмножества $A' \subseteq \{a_i : 1 \le i \le k\}$, соотношение:

$$\sum_{a \in A'} s(a) = B \tag{7}$$

выполняется тогда и только тогда $M' = \{m_i : a_i \in A'\}$ - решение **3DM**. Последние два элемента b_1 и b_2 множества A такие, что выполнено:

$$s(b_1) = 2\left(\sum_{i=1}^k s(a_i)\right) - B$$
 (8)

$$s(b_2) = \left(\sum_{i=1}^k s(a_i)\right) + B \tag{9}$$

Двоичные записи $s(b_1)$ и $s(b_2)$ имеют длину не более 3pq+1 и могут быть построены за полиномиальное время.

Предположим, что имеется подмножество $A' \subseteq A$, такое, что:

$$\sum_{a \in A'} s(a) = \sum_{a \in A' \setminus A} s(a) \tag{10}$$

Тогда каждая из этиъ сумм должна быть равна $\frac{1}{2}\sum_{a\in A}s(a)=2\sum_{i=1}^ks(a_i)$. Также $s(b_1)+s(b_2)=3\left(\sum_{i=1}^ks(a)\right)$, значит одно из множеств A' или $A'\backslash A$ содержит b_1 и не содержит b_2 . Значит остальные

элементы этого подмножества из $\{a_i: 1 \leq i \leq k\}$ и сумма их весов в точности равна B. Тогда, по сделанному ранее замечанию, этому подмножеству соответствует $M' \subseteq M$ являющееся решением задачи 3DМ.

Обратно, если задано покрытие $M' \subseteq M$, являющееся решением задачи **3DM**, то $b_1 \cup a_i : m_i \in M'$ искомое множество A'.

Утверждение даказано, и тем самым даказана теорема об NP - полноте задачи о расписании.

Полиномиальное приближение

Найдем полиномиальное приближенное решение для частного случая задачи об оптимальном рассписании, когда мощности всех машин одинаковы, то есть $p_{ij} = p_i$.

Рассмотрим алгоритм LPTR (Longest Processing Time Rule):

- 1. Отсортируем работы в порядке невозрастания сложности работы p_i , то есть так, что $p_i \ge p_{i+1} \quad \forall i$.
- 2. Пройдем все работы в данном порядке, назначая на i-м шаге данную работу той машине, которая завершит обработку уже назначенных ей задач раньше всех остальных машин.

Теорема. LPTR - имеет коэффициент аппроксимации $\frac{4}{3}$ для задачи об оптимальном расписании, то есть LPTR $(x) \leq \frac{4}{3}$ OPT $(x) \forall x$ - входные данные, OPT(x) - оптимальное решение.

 \triangleleft Пусть S - расписание, результат работы **LPTR** алгоритма, w(S) - время окончания работ. Пусть l - работа, которая завершится последней. Можно считать, что l - это номер последней работы. Если это не так, то докажем для $J' = \{1 \cdots l\}$. Тогда для новой и исходной задачи алгоритм выдаст расписание с одним и тем же временем окончания работы, то есть w(S') = w(S), в то время как оптимальное время в исходной задаче может быть только больше либо равно оптимальному времени в новой задаче $(OPT \ge OPT')$. Значит, доказав аппроксимацию для работы на J', автоматически докажем и для работы

Пусть t_l - время начала выполнения работы l. Тогда в этот момент времени все машины заняты (одна или несколько могли освободиться в данный момент), иначе если какая-то машина была свободна, то t_l было бы меньше (в момент времени t=0 все машины считаются занятыми). Значит все время t_l все mмашин работали непрерывно:

$$t_l \le (\sum_{j \in M} p_j - p_l)/m \le OPT - \frac{p_l}{m}$$
(11)

$$w(S) = t_l + p_l \le \text{OPT} + p_l(1 - \frac{1}{m})$$
 (12)

Лемма. Если $p_{\min}>\frac{\text{OPT}}{3}, \text{ то } w(S)=OPT.$ Доказательство леммы. В условиях леммы в оптимальном расписании будет не более двух задач на одной машине. Покажем что LPTR алгоритм также не назначит более двух задач на одну машину. Всего работ не более чем 2m. Предположим в S на какой-то машине не менее 3x работ. Пусть k - первая работа которая стала 3-ей на какой-то машине. Тогда есть и работа i, которая единственна на своей машине в Sи не единственна в оптимальном. Заметим, что в LPTR j будет рассмотрена раньше k, иначе k была бы распределена на свободную машину. Тогда $p_j < 2$ OPT/3. С другой стороны, $p_j > 2p_{\min} > 2$ OPT/3, иначе работа k могла бы быть распределена на машину к работе j. Значит LPTR назначает не более двух работ на машину. Можно найти такое оптимальное расписание S_2 , что $a_i \geq a_j$ $i \leq j$ и $b_i \leq b_j$ $i \leq j$, где a_i и b_i - время обработки первой и второй работ соответственно на i-ой машине. Именно такое расписание и выдаст LPTR алгоритм.

Завершим доказательство теоремы.

Если $p_{\min} > \frac{\text{OPT}}{3}$, то S - оптимальное расписание. Иначе $p_l \leq \frac{\text{OPT}}{3}$ и по (12) получаем :

$$w(S) \le \text{OPT} + \frac{\text{OPT}}{3} (1 - \frac{1}{m}) \le \frac{4}{3} \text{OPT}$$
(13)

Что завершает доказательство. ⊳

Список литературы

- $\bullet~[1]~http://research.microsoft.com/en-us/um/people/dechakr/Courses/CO454/Lectures/lecture12.pdf$
- [2] М.Гэри, Д.Джонсон "Вычислительные машины и труднорешаемые задачи". М.: Мир, 1982.