1. [4/20] In the graph, data representing the percentage of hamster ovary cells surviving Ultra violet exposure is shown, for different lasers .

Fig. 3.38. Surviving fraction of Chinese hamster ovary (CHO) cells after UV irradiation. Light sources: AFF laser (193 nm), Hg lamp (254 nm), and XeCl laser (308 nm). Data according to Rasmussen et al. (1989)

[Niemz]

- a) what is the reason for such a different impact in surviving cells percentage for the 3 tested lasers?
- b) describe the photoablation process and refer its relevance in medical applications.
- c) how to chose a UV laser for photoablation minimizing colateral effects?
- [2] A collimated laser beam at 632.8 nm, 3 mm beam waist and 1 mW optical power, addresses the cornea.
 - a) Estimate the power of red radiation incident on the retina;
 - b) Calculate the irradiance at the retina, assuming a diffraction limited spot at fully dilated pupil (aperture of 7 mm).

Group II

- 1. [4] An Ho:YAG laser (10 mJ pulse energy, 2.1 μ m emission, pulse duration 350 μ s) is delivered to myocardium tissue (absorption coefficient of $\mu_a = 165$ cm⁻¹). The laser beam section is 1 mm². The myocardium is initially at 37°C. For a total laser exposure of 0.742 s:
 - a) what is the maximum final myocardium temperature?
 - b) what is the physical process involved?
 - c) what histopathological effect is expected to be seen in the exposed myocardium?
 - d) Estimate the ratio of surviving cells for this exposure, considering that the death activation energy is 5×10^5 J/mol, and the frequency factor is 10^{76} s⁻¹.
- [2] Describe the LITT procedure, identifying the relevant physical light-tissue interaction mechanism.

- 1. Em aplicações ópticas em biociências:
 - (a) o que se entende por Janela Terapêutica?
 - (b) que parâmetros definem a localização dessa janela?
- 2. Descreva, indicando em que situações físicas se tornam mais relevantes, os dois processos de espalhamento de radiação conhecidos como
 - (a) Espalhamento de Rayleigh;
 - (b) Espalhamento de Mie;
- 2. Descreva o processo físico de fotoablacção, e contraponha com o processo de ablação térmica, enumerando as principais características dos dois processos.