Progress Report

Kuei-Yueh Ko

Goal

In short, it is a supervised learning problem

Image -> Convolutional Neural Network (CNN)

Sample of cats & dogs images from Kaggle Dataset

Image -> Convolutional Neural Network (CNN)

Image -> Convolutional Neural Network (CNN)

Idea 01: Markers (Genes) as channels

What will be the images?

Idea 02: Generate the plot using t-SNE

Idea 03: Generate an image from t-SNE plot

Idea 01 + Idea 02

What does a flow data look like?

Modeling a flow data

Mean vector (Mu)
Variance-Covariance matrix (Sig2)

Modeling a flow data

Modeling a flow data

Group 01 (ex: Control)

Mean vector (mu_01)

Cov Matrix (sig2_01)

Proportion vector (pi_01)

Many samples from group 01

Group 02 (ex: Disease)

Mean vector (mu_02)

Cov Matrix (sig2_02)

Proportion vector (pi_02)

Many samples from group 02

Discussion

- Does the tsne-cnn method detect groups with different mu or sig2?
- Does the tsne-cnn method detect groups in real data?
- Could the filter capture meaningful information?

Notes & Discussion

Notes 180320:

- the markers do not have order -> tsne for image
- Goal: giving your blood sample, can we predict you clinical outcome
- It can be applied to different technique such as the single cell RNA sequencing
- Data augmentation
 - Problem: there are not much samples in a study, therefore, to create more images to train the model, the data augmentation is needed
 - Methods for augmentation
 - Subsetting
 - Different seed of tSNE (similar to rotation a image)
 - Bootstrapping the existing tSNE plot
- Novel here: using tSNE to create image
- Different CNN methods can be applied to the tSNE image
- Discussion: The feature may not be easy to explain
 - Question: how many features do people usually use?
 - DC gain paper
 - Depend on your dataset
- Discussion: t-SNE is slow
 - Semi-supervised model to gain ????? (what does this mean?)
 - Feed forward gain ?????
 - Transfer learning ????
 - Try other dim reduction methods (Ex: PCA)
- Discussion: when Subsetting, what if there is only a little different?
- Discussion: when interpolation, what if there is only a little different?