

6

Continuity and Differentiability, Methods of Differentiation

Properties of Continuous Functions

Here we present two extremely useful properties of continuous functions;

Let y = f(x) be a continuous function $\forall x \in [a, b]$, then following results hold true.

- (i) f is bounded between a and b. This simply means that we can find real numbers m_1 and m_2 such $m_1 \le f(x) \le m_2 \ \forall \ x \in [a, b]$.
- (ii) Every value between f(a) and f(b) will be assumed by the function at least once. This property is called intermediate value theorem of continuous function.

In particular if $f(a) \cdot f(b) < 0$, then f(x) will become zero at least once in (a, b). It also means that if f(a) and f(b) have opposite signs then the equation f(x) = 0 will have at least one real root in (a, b).

Types of Discontinuities

Type-1: (Removable type of discontinuities)

- (a) Missing point discontinuity: Where $\lim_{x\to a} f(x)$ exists finitely but f(a) is not defined.
- (b) Isolated point discontinuity: Where $\lim_{x\to a} f(x)$ exists & f(a) also exists but; $\lim_{x\to a} f(x) \neq f(a)$.

Type-2: (Non-Removable type of discontinuities)

- (a) Finite type discontinuity: In such type of discontinuity left hand limit and right hand limit at a point exists but are not equal.
- **(b) Infinite type discontinuity:** In such type of discontinuity atleast one of the limit viz. LHL and RHL is tending to infinity.
- (c) Oscillatory type discontinuity: Limits oscillate between two finite quantities.

Derivability of Function at a Point

If $f'(a^+) = f'(a^-) =$ finite quantity, then f(x) is said to be **derivable** or differentiable at x = a. In such case $f'(a^+) = f'(a^-) = f'(a)$ and it is called derivative or differential coefficient of f(x) at x = a.

Note:

- (i) All polynomial, trigonometric, inverse trigonometric, logarithmic and exponential function are continuous and differentiable in their domains, except at end points.
- (ii) If f(x) and g(x) are derivable at x = a then the functions f(x) + g(x), f(x) g(x), f(x). g(x) will also be derivable at x = a and if $g(a) \neq 0$ then the function f(x)/g(x) will also be derivable at x = a.

In short, for a function 'f':

Differentiable ⇒ Continuous;

Not Differentiable ⇒ **Not Continuous**

But Not Continuous ⇒ **Not Differentiable**

Continuous ⇒ May or may not be Differentiable

Derivability Over an Interval

- (a) f(x) is said to be derivable over an open interval (a, b) if it is derivable at each and every point of the open interval (a, b).
- (b) f(x) is said to be derivable over the closed interval [a, b] if:
 - (i) f(x) is derivable in (a, b) and
 - (ii) for the points a and b, $f'(a^+) & f'(b^-)$ exist.

Note:

- (i) If f(x) is differentiable at x = a and g(x) is not differentiable at x = a, then the product function $F(x) = f(x) \cdot g(x)$ can still be differentiable at x = a.
- (ii) If f(x) & g(x) both are not differentiable at x = a then the product function; $F(x) = f(x) \cdot g(x)$ can still be differentiable at x = a.
- (iii) If f(x) & g(x) both are non-derivable at x = a then the sum function F(x) = f(x) + g(x) may be a differentiable function.
- (iv) If f(x) is derivable at $x = a \implies f'(x)$ is continuous at x = a.

Differentiation of Some Elementary Functions

1.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$2. \frac{d}{dx}(a^x) = a^x \ln a$$

3.
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$

4.
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

5.
$$\frac{d}{dx}(\sin x) = \cos x$$

$$6. \frac{d}{dx}(\cos x) = -\sin x$$

7.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

7.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
 8. $\frac{d}{dx}(\csc x) = -\csc x \cot x$

9.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

9.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$
 10. $\frac{d}{dx}(\cot x) = -\csc^2 x$

Basic Theorems

1.
$$\frac{d}{dx}(f \pm g)(x) = f'(x) \pm g'(x)$$

$$2. \frac{d}{dx}(k f(x)) = k \frac{d}{dx} f(x)$$

3.
$$\frac{d}{dx}(f(x)\cdot g(x)) = f(x)g'(x) + g(x)f'(x)$$

4.
$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

5.
$$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$$

Derivative of inverse Trigonometric Functions

$$\frac{d\sin^{-1} x}{dx} = \frac{1}{\sqrt{1 - x^2}}, \frac{d\cos^{-1} x}{dx} = -\frac{1}{\sqrt{1 - x^2}}, \text{ for } -1 < x < 1.$$

$$\frac{d \tan^{-1} x}{dx} = \frac{1}{1+x^2}, \frac{d \cot^{-1} x}{dx} = -\frac{1}{1+x^2} \quad (x \in R)$$

$$\frac{d \sec^{-1} x}{dx} = \frac{1}{|x|\sqrt{x^2 - 1}}, \frac{d \csc^{-1} x}{dx}$$
$$= -\frac{1}{|x|\sqrt{x^2 - 1}}, \text{ for } x \in (-\infty, -1) \cup (1, \infty)$$

Differentiation Using Substitution

Following substitutions are normally used to simplify these expression.

1.
$$\sqrt{x^2 + a^2}$$
 by substituting $x = a \tan \theta$, where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$

2.
$$\sqrt{a^2 - x^2}$$
 by substituting $x = a \sin \theta$, where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

3.
$$\sqrt{x^2 - a^2}$$
 by substituting $x = a \sec \theta$, where $\theta \in [0, \pi], \ \theta \neq \frac{\pi}{2}$

4.
$$\sqrt{\frac{x+a}{a-x}}$$
 by substituting $x = a \cos \theta$, where $\theta \in [0, \pi]$.

Parametric Differentiation

If $y = f(\theta)$ and $x = g(\theta)$ where θ is a parameter, then $\frac{dy}{dx} = \frac{dy}{dx} / d\theta$

Derivative of one Function with Respect to Another

Let
$$y = f(x)$$
; $z = g(x)$ then $\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{f'(x)}{g'(x)}$

are differentiable functions of x then

$$F'(x) = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ l'(x) & m'(x) & n'(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ l(x) & w(x) & w(x) \\ l(x) & m(x) & n(x) \\ u'(x) & v'(x) & w'(x) \end{vmatrix}$$