Clase 8 y 9. Correlación

Simoneta Negrete Yankelevich

R.1

Vamos a ver una serie de datos para ver si existe una relación lineal entre ellos.

```
data<-read.table("twosample.txt", header=T)
attach(data)
data</pre>
```

```
##
              Х
                              а
                                     b
## 1
       5.366516
                 26.76595
                                  male
                            one
       6.435778 46.89376
                                  male
## 2
                            one
## 3
       7.831232 34.11415
                            one female
## 4
       7.587142
                 45.49667
                            one female
       5.380939
                 33.22162
## 5
                                  male
                            one
## 6
       8.254098 39.98920
                            one female
## 7
      10.556489
                 24.43327
                            one female
      12.336669
                 49.61092
## 8
                            one
                                  male
## 9 10.487217
                 39.29021
                                  male
                            one
## 10 12.014185
                 39.63691
                                  male
                            one
## 11 13.369883 44.54903
                                  male
                            two
```

##	12	12.677217	46.51998	two	male
##	13	15.004940	43.16512	two	male
##	14	15.571449	55.06652	two	male
##	15	19.254838	58.70913	two	female
##	16	18.822350	72.85045	two	male
##	17	21.358761	74.71627	two	male
##	18	21.449881	78.92278	two	male
##	19	21.341156	71.08121	two	male
##	20	23.551192	58.97132	two	female
##	21	23.315863	87.74729	three	male
##	22	22.142836	56.59044	three	female
##	23	26.848780	65.14307	three	male
##	24	28.921049	60.52122	three	female
##	25	25.680903	69.39125	three	male
##	26	29.209522	61.89014	three	female
##	27	28.770843	73.52917	three	male
##	28	30.500931	100.41251	three	female
##	29	31.698786	81.69903	three	male
##	30	30.832011	96.59936	three	female
##	31	33.237294	72.77412	four	male
##	32	35.523952	85.07512	four	male
##	33	37.792353	93.20267	four	male
##	34	35.752220	113.91521	four	female
##	35	39.607470	91.69301	four	female
##	36	37.018701	87.49319	four	female
##	37	37.721269	81.07711	four	female
##	38	42.640823	108.79472	four	female

```
## 39 42.582064 123.38632
                           four female
## 40 40.510316 107.51459
                           four
                                  male
## 41 43.873717 111.28685
                           five
                                  male
## 42 45.831377 118.60641
                           five female
## 43 47.009356 124.04675
                           five female
## 44 45.938572 113.53865
                           five female
## 45 49.770829 113.56021
                           five female
## 46 46.372772 125.22990
                           five female
## 47 49.054437 133.30422
                           five female
## 48 50.682444 111.15864
                           five female
## 49 49.341443 139.45162
                           five
```

plot(x,y)

Se acuerdan que necesitamos primero para calcular el coeficiente de correlación de pearson? Las varianzas individuales

```
var(x)
## [1] 199.9837
var(y)
## [1] 977.0153
¿y que más? La covarianza y estamos hechos
var(x,y)
## [1] 414.9603
Ahora calculamos r
var(x,y)/sqrt(var(x)*var(y))
## [1] 0.9387684
Ahora hagamoslo en automático
cor(x,y)
## [1] 0.9387684
Y ahora hagamos la prueba de hipótesis
```

Calculamos EE de r

```
EEr < -((1-(cor(x,y)^2))/(length(x)-2))^0.5
EEr
## [1] 0.05025759
Calculo t de la muestra
te<-cor(x,y)/EEr
te
## [1] 18.67914
Calculo t de tablas
qt(0.975,47)
## [1] 2.011741
Calculo la p
2*(1-pt(18.67914,47))
## [1] 0
Ahora hagamoslo de manera automática
pearson<-cor.test(x,y)</pre>
pearson
```

```
##
## Pearson's product-moment correlation
##
## data: x and y
## t = 18.679, df = 47, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8934139 0.9651786
## sample estimates:
## cor
## 0.9387684</pre>
```

¿Que nos falta?. Pues no sabemos si cumplimos con los supuestos. Veamos el de normalidad

```
par(mfrow=c(1,2))
qqnorm(x, main="Q-Q plot x"); qqline(x, col = 2, lty = 2)
qqnorm(y, main="Q-Q plot y"); qqline(y, col = 2, lty = 2)
```


¿Que opciones tengo?.

- 1. Hacer una prueba de sesgo y kurtosis para ver si estas desviaciones son significativas
- 2. Si son significativas, puedo intentar transformaciones o puedo utilizar muchas de las otras pruebas de correlación que son robustas a la violación de este supuesto. *Vean Q y k p.76 y Crawley p.97-102.*

Fin