CORRIGÉ DM N°8 : EIVP 1992

Partie I:

a) • Si (x_n) est bornée, il existe un réel $M \in \mathbb{R}$ tel que $\forall k \in \mathbb{N}$, $|x_k| \leq M$.

On a alors :
$$|y_n| = \frac{1}{n+1} \left| \sum_{k=0}^n x_k \right| \le \frac{1}{n+1} \sum_{k=0}^n |x_k| \le M \frac{n+1}{n+1} = M$$
. ce qui prouve que (y_n) est bornée.

• La réciproque est fausse comme le prouve le contre-exemple suivant :

Soit
$$(x_n)$$
 définie par $x_n = (-1)^n n$. On a alors :
— Si n est pair $(n = 2p)$: $\sum_{k=0}^n x_k = (-1+2)+(-3+4)+...+((-2p+1)+2p) = p = \frac{n}{2}$, d'où $y_n = \frac{n}{2(n+1)}$.
— et si n est impair $(n = 2p+1)$, on a $\sum_{k=0}^n x_k = p - (2p+1) = -p - 1$, d'où $y_n = \frac{-(n+1)}{2(n+1)} = \frac{-1}{2}$.
On a donc : $\lim_{n \to +\infty} |y_n| = \frac{1}{2}$, donc (y_n) est bornée, alors que (x_n) ne l'est pas.

- b) Si (x_n) tend vers l, alors (y_n) tend vers l: il s'agit du célèbre théorème de Césaro, vu en cours, et dont je ne reproduis pas ici la démonstration.
 - La réciproque est fausse, comme le montre l'exemple de la suite (x_n) définie par $x_n = (-1)^n$: on a alors $\lim y_n = 0$, alors que (x_n) diverge.

<u>Rem</u>: Un exercice intéressant consiste à démontrer que, si $\lim y_n = l$ ET si (x_n) est monotone, alors on a $\lim x_n = l \dots$

a) Si *m* était strictement positif, on aurait, par définition de la limite, $\frac{u_{n+1} - u_n}{(u_n)^{\alpha}} > 0$ à partir d'un certain rang N, 2. donc (u_n) serait strictement croissante à partir du rang N d'où $u_n \ge u_N > 0$ pour $n \ge N$, ce qui est contradictoire avec l'hypothèse $u_n \to 0$.

Ainsi,
$$m < 0$$

b) On a : $\frac{u_{n+1} - u_n}{u_n^{\alpha}} \rightarrow m$, soit $\frac{u_{n+1} - u_n}{u_n^{\alpha}} = m + o(1)$ et $u_{n+1} - u_n = mu_n^{\alpha} + o(u_n^{\alpha})$, d'où l'on tire : $u_{n+1}^{-\beta} = (u_n + mu_n^{\alpha} + o(u_n^{\alpha})^{-\beta} = u_n^{-\beta} (1 + mu_n^{\alpha-1} + o(u_n^{\alpha-1}))^{-\beta}.$

Or, $u_n^{\alpha-1}$ tend vers 0 quand $n \to \infty$ (car $\alpha > 1$), et l'on sait que $(1+x)^{-\beta} = 1 - \beta x + o(x)$ au voisinage de 0, d'où $u_{n+1}^{-\beta} - u_n^{-\beta} = -m\beta u_n^{\alpha-1-\beta} + o(u_n^{\alpha-1-\beta})$.

Ainsi, $u_{n+1}^{-\beta} - u_n^{-\beta}$ a une limite finie non nulle pour : $\beta = \alpha - 1$

c) • On a donc, pour $\beta = \alpha - 1$, en posant $v_n = u_{n+1}^{1-\alpha} - u_n^{1-\alpha}$, $\lim_{n \to \infty} v_n = -m(\alpha - 1)$. D'après, 1.a, on a donc aussi $\lim_{n\to\infty} w_n = -m(\alpha-1)$. Or :

$$w_n = \frac{1}{n+1} \sum_{k=0}^{n} \left(u_{k+1}^{-\beta} - u_k^{-\beta} \right) = \frac{1}{n+1} \left(u_{n+1}^{-\beta} - u_0^{-\beta} \right)$$

donc $\lim_{n\to\infty}\frac{u_n^{-\beta}}{n}=\lim_{n\to+\infty}w_{n-1}=-m(\alpha-1)$, soit $u_n^{-\beta}\underset{n\to\infty}{\sim}-mn(\alpha-1)$ et, finalement : $u_n\underset{n\to\infty}{\sim}(mn(1-\alpha))^{\frac{1}{1-\alpha}}$

$$u_n \underset{n \to \infty}{\sim} (mn(1-\alpha))^{\frac{1}{1-\alpha}}$$

- D'après les règles de comparaison sur les séries à termes réels positifs, $\sum u_n$ converge ssi $\sum n^{\frac{1}{1-\alpha}}$ converge, soit (séries de Riemann) $\frac{1}{1-\alpha} < -1$ c'est-à-dire : $\alpha < 2$ (avec toujours $\alpha > 1$).
- a) On considère ici la suite u définie par : $u_{n+1} = u_n u_n^2$. Il est clair que (u_n) est décroissante.

- $\frac{\sin u_0 < 0}{l = 0$, alors (u_n) ne peut être minorée, car sinon elle convergerait vers un réel l tel que l = f(l), soit $\overline{l = 0}$, ce qui est impossible car $u_n \le u_0 < 0$ pour tout n. Ainsi, (u_n) est décroissante non minorée, d'où : $\lim_{n \to \infty} u_n = -\infty$.
- si $u_0 > 1$, alors $u_1 < 0$, et on est ramené au cas précédent.
- Enfin, $\underline{\text{si } u_0 \in [0,1]}$, puisque $f([0,1]) = [0,\frac{1}{4}] \subset [0,1]$, on a $u_n \in [0,1]$ pour tout n. (u_n) étant décroissante minorée, converge; sa limite l vérifie l = f(l), d'où $\lim_{n \to \infty} u_n = 0$.

Conclusion :
$$E = [0, 1]$$

- — Si $u_0 \notin [0,1]$, u_n ne tend pas vers 0, donc $\sum u_n$ diverge.
 - Si $u_0 = 0$ ou $u_0 = 1$, on a $u_n = 0$ pour $n \ge 1$, donc $\sum u_n$ converge.
 - Si $u_0 \in]0,1[:(u_n)$ est à termes strictement positifs et converge vers 0; on a : $\frac{u_{n+1}-u_n}{u_n^2}=-1$; on peut donc appliquer ce qui précède avec $\alpha=2$, et on en déduit que $\sum u_n$ diverge.

Conclusion :
$$F = \{0, 1\}$$

- **b)** Ici, $f(x) = \frac{x}{1 + \sqrt{|x|}}$.
 - Si $u_0 \ge 0$, on a $u_n \ge 0$ pour tout n (récurrence facile), d'où $u_{n+1} = \frac{u_n}{1 + \sqrt{u_n}} \le u_n$. La suite (u_n) est donc décroissante, minorée par 0, donc converge vers un réel l tel que f(l)=l, soit l=0.
 - Si $u_0 \le 0$, on trouve de la même façon que (u_n) est croissante majorée, et qu'elle converge vers 0.

Conclusion :
$$E = \mathbb{R}$$

- — Si $u_0 = 0$, on a $u_n = 0$ pour tout n, donc $\overline{\sum u_n}$ converge.
 - Si $u_0 > 0$, alors (u_n) est à termes strictement positifs et converge vers 0, et on peut appliquer les résultats précédents. On a, puisque $u_n \to 0$, $u_{n+1} u_n = \frac{u_n}{1 + \sqrt{u_n}} u_n = u_n(1 \sqrt{u_n} + o(\sqrt{u_n})) u_n$, d'où $\lim_{n \to +\infty} \frac{u_{n+1} u_n}{(u_n)^{\frac{3}{2}}} = -1$. D'après les résultats de la question 2) (ici, $\alpha = \frac{3}{2}$), la série $\sum u_n$ converge.
 - Si $u_0 < 0$, on applique les résultats précédents à la suite $(-u_n)$, et on aboutit au même résultat.

Conclusion :
$$F = \mathbb{R}$$

Partie II:

- 1. Si $F \neq \emptyset$, il existe u_0 tel que la série $\sum u_n$ converge, ce qui implique $\lim_{n \to \infty} u_n = 0$. Puisque $\lim_{n \to \infty} u_n$ est une solution de l'équation f(x) = x (f est continue en 0), on a : f(0) = 0.
- **2.** a) f étant dérivable en 0, et puisque l'on a f(0) = 0, on a : $\lim_{x \to 0} \frac{f(x)}{x} = f'(0)$, ce qui s'écrit aussi :

$$\forall \varepsilon > 0 , \exists \eta > 0 \text{ tq } \forall x \in]-\eta, \eta[, \left|\frac{f(x)}{x} - f'(0)\right| < \varepsilon \text{ d'où } |f(x)| < (\varepsilon + |f'(0)|)|x|$$

En choisissant ε tel que $M = \varepsilon + |f'(0)| < 1$ (ce qui est possible), on aura :

$$\forall x \in]-\eta, \eta[, |f(x)| \leq M|x|$$

Cela prouve que l'intervalle $]-\eta,\eta[$ est stable par f. De plus, si $u_0\in]-\eta,\eta[$, on aura $u_n\in]-\eta,\eta[$ pour tout n et $|u_{n+1}|\leq M|u_n|$, d'où, par récurrence, $|u_n|\leq M^n|u_0|$. D'après les règles de comparaison sur les séries à termes positifs, puisque $\sum M^n$ converge (M<1), la série $\sum u_n$ est absolument convergente, donc convergente.

Conclusion :] –
$$\eta$$
, η [\subset F

b) On a ici $f(x) = \frac{x + x^3}{3}$. On trouve facilement : $f(x) = x \Leftrightarrow x \in \{-\sqrt{2}, 0, \sqrt{2}\}$.

- Si $u_0 > \sqrt{2}$: on vérifie facilement que l'intervalle $]\sqrt{2}, +\infty[$ est stable par f, et que, pour tout $x \in]\sqrt{2}, +\infty[$, f(x) > x. La suite (u_n) est donc croissante; si elle était majorée, elle convergerait vers une limite l telle que f(l) = l et $l \ge u_0 > \sqrt{2}$, ce qui est impossible. Par conséquent, $\lim_{n \to \infty} u_n = +\infty$.
- Si $u_0 < -\sqrt{2}$: on montre de la même façon que $\lim_{n \to \infty} u_n = -\infty$ (ou on se ramène au cas précédent en changeant u_0 en $-u_0$, puisque f est impaire).
- Si $u_0 \in \{-\sqrt{2}, 0, \sqrt{2}\}$, la suite (u_n) est constante, donc converge!
- Si $u_0 \in]0, \sqrt{2}[$, on vérifie facilement que l'intervalle $]0, \sqrt{2}[$ est stable par f, et que, pour tout $x \in]0, \sqrt{2}[$, $\overline{f(x)} < x$. La suite (u_n) est donc décroissante; étant minorée par 0, elle converge vers un réel l tel que $l \in [0, u_0]$ et f(l) = l, soit : l = 0.
- Enfin, on obtient le même résultat pour $u_0 \in]-\sqrt{2},0[$

Conclusion :
$$E = [-\sqrt{2}, \sqrt{2}]$$

• Pour que $\sum u_n$ converge, il faut déjà avoir $u_n \to 0$, soit $u_0 \in]-\sqrt{2},\sqrt{2}[$.

Dans ce cas : on a ici $f'(0) = \frac{1}{3}$, d'où |f'(0)| < 1. η étant défini comme dans la question précédente, on a, puisque $\lim u_n = 0$: $\exists \mathbb{N} \in \mathbb{N}$ tq $\forall n \geqslant \mathbb{N}$, $u_n \in]-\eta, \eta[$. Puisque $]-\eta, \eta[\subset \mathbb{F}$, la série $\sum_{n \geq \mathbb{N}} u_n$ converge, et, par conséquent, la série $\sum_{n \in \mathbb{N}} u_n$ aussi.

Rem: On pouvait aussi utiliser la règle de d'Alembert, en remarquant que, si $u_0 \neq 0$, $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to +\infty} \left| \frac{1+u_n^2}{3} \right| = \frac{1}{3} \dots$

Conclusion :
$$F =]-\sqrt{2}, \sqrt{2}[$$

- c) Remarquons d'abord que, s'il existe N tel que $u_N = 1$, alors la suite est stationnaire et vaut 0 pour $n \ge N+1$, donc converge, ainsi que la série $\sum u_n$.
 - Si $u_0 = \frac{1}{2}$, alors la suite (u_n) est constante égale à $\frac{1}{2}$; elle converge donc, et $\sum u_n$ diverge.
 - f étant injective (c'est une fonction homographique), si $u_0 \neq \frac{1}{2}$, on aura $u_n \neq \frac{1}{2}$ pour tout n. On peut alors poser: $v_n = \frac{u_n}{u_n - \frac{1}{2}}$, et on a, en supposant $u_n \neq 1$:

$$v_{n+1} = \frac{u_{n+1}}{u_{n+1} - \frac{1}{2}} = \frac{u_n}{2u_n - 1} = \frac{1}{2}v_n$$

Ainsi, (v_n) est une suite géométrique de raison $\frac{1}{2}$, soit $v_n = \frac{1}{2^n}v_0$, d'où l'on tire, puisque $u_n = \frac{1}{2}\frac{v_n}{v_n-1}$,

$$u_n = \frac{1}{2} \frac{v_0}{v_0 - 2^n}$$
, avec $v_0 = \frac{u_0}{u_0 - \frac{1}{2}}$.

Finalement, deux cas se présentent :

- S'il existe N tel que $u_N = 1$, c'est-à-dire $\frac{v_0}{v_0 2^N} = 2$ soit $v_0 = 2^{N+1}$ soit $u_0 = \frac{2^N}{2^{N+1} 1}$, alors la suite (u_n) converge, ainsi que la série $\sum u_n$ (cf. remarque précédente).
- Sinon, on a $u_n = \frac{1}{2} \frac{v_0}{v_0 2^n}$ pour tout entier n, avec $v_0 = \frac{u_0}{u_0 \frac{1}{2}}$, donc:
 - si $v_0 = 0$, soit $u_0 = 0$, la suite (u_n) est constante égale à 0.
 - sinon, $u_n \sim \frac{-v_0}{2^{n+1}}$; on a donc $\lim u_n = 0$, et $\sum u_n$ convergente (comparaison à une série géométrique).

Conclusion:
$$E = \mathbb{R}$$
 et $F = \mathbb{R} - \left\{\frac{1}{2}\right\}$

<u>Remarque</u>: on pouvait aussi démontrer que, sauf dans le cas $u_0 = \frac{1}{2}$, (u_n) tend vers 0, puis conclure comme dans l'exemple précédent en remarquant que $f'(0) = \frac{1}{2}$; c'est peut-être plus rapide, mais j'ai tenu à vous rappeler ci-dessus comment on étudie, en général, une suite homographique ...

- a) S'il existe p tel que $u_p = 0$, alors, puisque f(0) = 0, on a $u_n = 0$ pour tout $n \ge p$, et la série $\sum u_n$ converge.
 - Réciproquement, supposons que la série $\sum u_n$ converge.

On a, exactement comme dans 2.a : $\exists \eta > 0$ tq $\forall x \in]-\eta, \eta[$, $|f(x)| \geqslant m|x|$, avec m > 1. On a supposé que $\sum u_n$ converge; donc $u_n \to 0$ et, par définition de la limite, on a :

$$\exists N \in \mathbb{N} \text{ tq } \forall n \geqslant N, u_n \in]-\eta, \eta[$$

On aura donc : $\forall n \geqslant N$, $|u_{n+1}| \geqslant m|u_n|$ puis, par récurrence, $|u_n| \geqslant m^{n-N}|u_N|$. On a donc nécessairement $u_{\rm N}=0$ (sinon, puisque m>1, on aurait $\lim_{n}|u_n|=+\infty$!).

b) $u_0 \in \mathbb{F} \iff \sum u_n \text{ converge } \iff \exists p \in \mathbb{N} \text{ tq } u_p = 0.$

Pour $p \ge 1$, $u_p = 0 \iff f(u_{p-1}) = 0 \iff u_{p-1} = 0$, puisque f est injective.

On en déduit facilement par récurrence que, s'il existe p tel que $u_p = 0$, alors $u_0 = 0$.

Conclusion :
$$F = \{0\}$$

c) Solution rapide, car le principe a été détaillé dans la question 2.b2:

On considère cette fois-ci la suite auxiliaire $v_n = \frac{u_n}{u_n - 1}$ (pour $u_0 \neq 1$) (car les points fixes de f sont 0 et 1).

On a alors, si
$$u_n \neq -1$$
, $v_{n+1} = 2v_n$, puis $u_n = \frac{2^n v_0}{2^n v_0 - 1}$, avec $v_0 = \frac{u_0}{u_0 - 1}$.

On en déduit :

- S'il existe N tel que $u_N = -1$, alors la suite est stationnaire, donc converge.
- Sinon, si $u_0 = 0$, la suite (u_n) est constante égale à 0, donc converge, et si $u_0 \neq 0$, $\lim u_n = 1$ et (u_n)

Conclusion :
$$E = \mathbb{R}$$

• Puis, d'après la question précédente, $\sum u_n$ converge ssi $u_0=0$ ou il existe $p\in\mathbb{N}$ tel que $u_{p+1}=0$, soit $u_p \in \{0, -1\}.$

Cela revient à dire : $u_0 = 0$ ou il existe p tel que $u_p = -1$, soit $\frac{2^p v_0}{2^p v_0 - 1} = -1$, ou encore $v_0 = \frac{1}{2^{p+1}}$, soit :

$$u_0 = \frac{1}{1 - 2^{p+1}}.$$

Conclusion:
$$F = \{0\} \cup \{\frac{1}{1 - 2^{p+1}}, p \in \mathbb{N}\}$$

a) • D'après l'inégalité des accroissements finis, on a : $\forall x \in \mathbb{R}, |f(x)| \leq |x|, d$ 'où $|u_{n+1}| \leq |u_n|$. La suite $(|u_n|)$ est donc décroissante, minorée par 0, donc converge.

De plus, en dérivant, on vérifie que les fonctions $x \mapsto f(x) - x$ et $x \mapsto f(x) + x$ sont strictement monotones sur \mathbb{R} , donc la seule solution de l'équation |f(x)|=|x| est x=0. Ainsi : $\lim_{n\to+\infty}u_n=0$ et $E=\mathbb{R}$

Ainsi :
$$\lim_{n \to +\infty} u_n = 0$$
 et $E = \mathbb{R}$

• De plus, d'après le théorème des accroissements finis, pour tout $x \in \mathbb{R}^*$, il existe $c \in]0, x[$ (ou]x,0[) tel que : f(x) = f(0) + xf'(c) = xf'(c).

Donc f(x) et x sont de signes contraires, de même pour u_{n+1} et u_n : ainsi, la suite (u_n) est alternée.

La même inégalité donne $|f(x)| \le |x|$, donc $(|u_n|)$ est décroissante, vers 0.

La série de terme général u_n vérifie donc le "critère spécial sur les séries alternées", donc converge.

Conclusion :
$$F = \mathbb{R}$$

- b) C'est une application immédiate de ce qui précède.
- c) On a ici : f'(x) = -ch x, où f'(0) = -1 et $\forall x \in \mathbb{R}^*$, |f'(x)| > 1.

On ne peut donc pas appliquer le résultat précédent. On a ici, en fait, $|u_{n+1}| = |\operatorname{sh}(u_n)| = \operatorname{sh}(|u_n|)$. Or, pour x > 0, sh(x) > x, donc, si $u_0 \neq 0$, la suite ($|u_n|$) est strictement croissante, et tend vers $+\infty$ (car sinon, elle serait majorée, etc...).

Conclusion :
$$E = F = \{0\}$$

Partie III:

1. a) En étudiant les fonctions $x \mapsto f(x)$ et $x \mapsto f(x) - x$, on vérifie facilement que :

$$\forall x > 0, \ 0 < f(x) < x \ \text{ et } \ \forall x < 0, \ x < f(x) < 0$$

Ainsi, si $u_0 \ge 0$, on a $u_n \ge 0$ pour tout n, et la suite (u_n) est décroissante, minorée par 0, donc converge vers une solution de l'équation f(x) = x, donc vers 0.

On obtient le même résultat pour $u_0 \le 0$.

Conclusion :
$$E = \mathbb{R}$$

- b) Si $u_0 = 0$, la suite est constante, égale à 0, donc la série entière $\sum u_n x^n$ converge pour tout x, soit : $R = +\infty$.
 - Sinon, u_n ne s'annule pas $(u_n > 0 \text{ si } u_0 > 0 \text{ et } u_n < 0 \text{ si } u_0 < 0)$. Puisque $u_n \to 0$, on a :

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{f(u_n) - f(0)}{u_n - 0} = f'(0) = 1$$

D'après la règle de d'Alembert, R = 1.

- **2.** a) On suppose ici $u_0 > 0$. Donc (u_n) est strictement décroissante, de limite nulle.
 - D'après la formule de Taylor-Lagrange appliquée à f' (en rappeler les hypothèses), on a : $\forall x \in \mathbb{R}^*, \exists c_x \in]0, x[(\text{ ou }]x, 0[)\text{ tq}$

$$f'(x) = f'(0) + \sum_{l=1}^{k-2} \frac{x^l f^{(l+1)}(0)}{l!} + \frac{x^{k-1} f^{(k)}(c_x)}{(k-1)!}$$

soit:

$$f'(x) = 1 + \frac{x^{k-1}f^{(k)}(c_x)}{(k-1)!}$$
 ou $f^{(k)}(c_x) = \frac{(k-1)!}{x^{k-1}}(f'(x)-1)$

L'expression de droite étant négative pour tout x, on obtient, lorsque x tend vers 0 (et alors, c_x tend aussi vers 0), puisque $f^{(k)}$ est continue : $f^{(k)} < 0$ (et donc $f^{(k)} < 0$, puisque on l'a supposé $\neq 0$).

ullet D'après la formule de Taylor-Lagrange appliquée à f , on a alors :

$$\forall x \in \mathbb{R}^*, \ \exists c_x \in]0, x[\ (\text{ ou }]x, 0[) \ \text{tq} \ f(x) = x + \frac{x^k f^{(k)}(c_x)}{k!}$$

d'où
$$f(x) - x \sim \frac{x^k f^{(k)}(0)}{k!}$$

Or, on a vu que, pour x < 0, f(x) - x > 0 et $f^{(k)}(0) < 0$.

 \underline{k} est donc nécessairement impair (car il faut $x^k < 0$ pour x < 0).

b) D'après la formule de Taylor-Young : $f(x) = x + \frac{x^k f^{(k)}(0)}{k!} + o(x^k)$, d'où :

$$u_{n+1} = u_n + \frac{u_n^k}{k!} f^{(k)}(0) + o(u_n^k) = u_n \left(1 + \frac{u_n^{k-1}}{k!} f^{(k)}(0) + o(u_n^{k-1}) \right)$$

et:
$$u_{n+1}^{-\beta} = u_n^{-\beta} \left(1 - \beta \frac{u_n^{k-1}}{k!} f^{(k)}(0) + o(u_n^{k-1}) \right)$$
 (on a bien $u_n^{k-1} \to 0$, car $k > 1$)

d'où enfin :
$$u_{n+1}^{-\beta} - u_n^{-\beta} \sim \frac{-\beta u_n^{k-1-\beta}}{k!} f^{(k)}(0)$$
.

Ainsi, $u_{n+1}^{-\beta} - u_n^{-\beta}$ a une limite finie non nulle ssi $\underline{\beta = k-1}$, et cette limite est alors égale à : $\frac{-\beta}{k!} f^{(k)}(0) = \frac{1-k}{k!} f^{(k)}(0)$.

c) Comme dans la partie I, on en déduit : $u_n^{-\beta} \sim \frac{-n\beta}{k!} f^{(k)}(0)$, soit :

$$u_n \underset{n \to \infty}{\sim} \left(\frac{1-k}{k!} f^{(k)}(0)n\right)^{\frac{1}{1-k}}$$

d) On a alors : $\frac{u_{n+1}}{u_n} \sim \frac{(n+1)^{\frac{1}{1-k}}}{n^{\frac{1}{1-k}}}$, d'où $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$. D'après la règle de d'Alembert, le rayon de convergence de la série entière $\sum u_n x^n$ est égal à 1. De plus :

- Pour x=1, $\sum u_n$ diverge, car $u_n \sim \frac{1}{n^{\frac{1}{k-1}}}$, et, ici, $\frac{1}{k-1} \leq 1$ (comparaison à une série de Riemann).
- Pour x=-1, $\sum (-1)^n u_n$ converge, d'après le critère sur les séries alternées (les hypothèses en sont bien vérifiées, voir ci-dessus).

Conclusion :
$$G = [-1, 1[$$

e) Pour $x \le 0$, la série de terme général $u_n x^n$ est alternée, et $|u_n x^n| \le |u_n|$, donc le terme général tend vers 0, et enfin $\left| \frac{u_{n+1}x^{n+1}}{u_nx^n} \right| \le \left| \frac{u_{n+1}}{u_n} \right| \le 1$, donc la suite $(|u_nx^n|)$ décroît.

La série $\sum u_n x^n$ vérifie donc le critère sur les séries alternées. Si l'on note $R_n(x) = \sum_{k=n+1}^{\infty} u_k x^k$, on sait alors que

l'on a : $|\mathbf{R}_n(x)| \le |u_{n+1}x^{n+1}|$, d'où $|\mathbf{R}_n(x)| \le |u_{n+1}|$ et $\sup_{x \in [-1,0]} |\mathbf{R}_n(x)| \le |u_{n+1}|.$ Ainsi, $\lim_{n \to +\infty} ||\mathbf{R}_n||_{\infty} = 0$, ce qui veut dire que la suite (\mathbf{R}_n) converge uniformément vers 0 sur [-1,0], $\underline{\mathrm{CQFD}}$.

- a) Pour f(x) = th x, les hypothèses de la partie précédente sont vérifiées $(\text{th}(0) = 0, \text{th}''(0) = 1, \text{th}''(0) = 0, \text{th}'''(0) = -2 \neq 0$ En appliquant directement les résultats (ici, k = 3), on obtient : $u_n \sim \sqrt{\frac{3}{2n}}$.
 - **b)** $Z(x) = \sum_{n=0}^{\infty} u_n x^n$. Pour $x \in [0,1[$, la fonction $x \mapsto Z(x)$ est croissante (si $x \le y$, $Z(x) \le Z(y)$ puisque (u_n) est à termes positifs); elle admet donc une limite, finie ou $+\infty$, quand $x \to 1^-$ ("théorème de la limite monotone"). Si il s'agissait d'une limite finie l, on aurait : $\forall x \in [0,1[, Z(x) \le l, d'où :$

$$\forall n \in \mathbb{N}, \ \forall x \in [0,1[,\sum_{k=0}^{n} u_k x^k \le l]$$

En faisant $x \to 1^-$, on obtient :

$$\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} u_k \leqslant l$$

Ayant donc ses sommes partielles majorées, la série $\sum u_n$ serait convergente, ce qui n'est pas le cas compte tenu de l'équivalent trouvé ci-dessus.

Conclusion:
$$\lim_{x \to 1^{-}} Z(x) = +\infty$$

c) Soit $A \in \mathbb{R}_+$. Puisque $u_n \sim \sqrt{\frac{3}{2n}}$, on a $\lim_{n \to \infty} nu_n = +\infty$, donc, par définition de la limite : $\exists N \in \mathbb{N}$ tq $n \ge N \Rightarrow u_n > \frac{A}{n}$. On sait que, pour $x \in [0,1[, |\ln(1-x)| = \sum_{n=1}^{\infty} \frac{x^n}{n}, d$ 'où

$$\frac{Z(x)}{|\ln(1-x)|} = \frac{\sum_{n=0}^{\infty} u_n x^n}{\sum_{n=1}^{+\infty} \frac{x^n}{n}} \geqslant \frac{\sum_{n=N+1}^{\infty} u_n x^n}{\sum_{n=1}^{+\infty} \frac{x^n}{n}} \geqslant A \frac{\sum_{n=N+1}^{\infty} \frac{x^n}{n}}{\sum_{n=1}^{+\infty} \frac{x^n}{n}} = A \left(1 - \frac{\sum_{n=0}^{N} \frac{x^n}{n}}{\sum_{n=1}^{+\infty} \frac{x^n}{n}}\right)$$

- N étant ainsi fixé, on a, puisque $\lim_{x \to 1^-} \sum_{n=1}^{+\infty} \frac{x^n}{n} = \lim_{x \to 1^-} |\ln(1-x)| = +\infty$, $\lim_{x \to 1^-} \left(\frac{\sum_{n=0}^{\infty} \frac{x^{n}}{n}}{\sum_{n=0}^{+\infty} \frac{x^n}{n}} \right) = 0$, donc il existe
- $\alpha > 0 \text{ tel que}: \forall x \in]1-\alpha, 1[, 0 \leqslant \left(\frac{\sum_{n=0}^{\infty} \frac{x^n}{n}}{\sum_{n=0}^{\infty} \frac{x^n}{n}} \right) \leqslant \frac{A}{2}, \text{ d'où } \frac{Z(x)}{|\ln(1-x)|} \geqslant \frac{A}{2}.$

Par définition, on a donc :
$$\lim_{x \to 1^-} \left(\frac{Z(x)}{|\ln(1-x)|} \right) = +\infty$$
 et $\lim_{x \to 1^-} \left(\frac{Z(x)}{\ln(1-x)} \right) = -\infty$

BONUS : On peut en fait obtenir des résultats plus précis (exercice à faire!)

• On montre déjà le résultat suivant : si (a_n) et (b_n) sont deux suites à termes réels > 0 telles que $a_n \underset{+\infty}{\sim} b_n$ et telle que la série entière $\sum b_n x^n$ ait pour rayon de convergence 1 et diverge pour x=1, alors : $\sum_{n=0}^{\infty} a_n x^n \underset{x\to 1^-}{\sim} \sum_{n=0}^{\infty} b_n x^n$ (la démonstration est analogue à celle du théorème de Césaro).

Cela nous donne ici : $\sum_{n=0}^{+\infty} u_n x^n \underset{x \to 1^-}{\sim} \sqrt{\frac{3}{2}} \sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}}$

• Par une méthode de comparaison série-intégrale, en écrivant $\frac{x^n}{\sqrt{n}} = \frac{e^{n \ln x}}{\sqrt{n}} = \frac{e^{-(-n \ln x)}}{\sqrt{n}}$, on obtient :

$$\sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}} \underset{x \to 1^-}{\sim} \frac{1}{\sqrt{-\ln x}} \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du \underset{x \to 1^-}{\sim} \frac{\sqrt{\pi}}{\sqrt{1-x}}$$

soit finalement:

$$Z(x) \underset{x \to 1^{-}}{\sim} \sqrt{\frac{3}{2}} \frac{\sqrt{\pi}}{\sqrt{1-x}}$$

