Al1110 Assignment 8

Bandaru Naresh Kumar Al21BTECH11006

Outline

- Question
- Solution

Answer

Exercise 9.34

Show that the power spectrum of an SSS process X(t) equals $S(\omega) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 G(x_1, x_2; \omega) dx_1 dx_2$

Solution

We have,

$$G(x_1, x_2; \omega) = \int_{-\infty}^{\infty} f(x_1, x_2; \tau) e^{-j\omega\tau} d\tau$$
 (1)

Also,

$$R(\tau) = E\{X(t+\tau)X(t)\}\tag{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f(x_1, x_2; \tau) dx_1 dx_2$$
 (3)

Answer

Hence,

$$S(\omega) = \int_{-\infty}^{\infty} R(\tau)e^{-j\omega\tau} d\tau \tag{4}$$

$$= \int_{-\infty}^{\infty} e^{-j\omega\tau} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f(x_1, x_2; \tau) dx_1 dx_2 d\tau$$
 (5)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 \int_{-\infty}^{\infty} e^{-j\omega\tau} f(x_1, x_2; \tau) d\tau dx_1 dx_2$$
 (6)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 G(x_1, x_2; \omega) dx_1 dx_2$$
 (7)