Metody przybliżania funkcji podsumowanie

Dane techniczne

Obliczenia zostały wykonane na 64 bitowej wersji systemu Windows 10 Pro, z procesorem Ryzen7 3750H
oraz z 16 GB pamięci RAM. Do obliczeń wykorzystałem programy napisane w języku python z
wykorzystaniem bibliotek takich jak: numpy oraz pandas. Wykresy rysowane były za pomocą modułu pyplot
z biblioteki matplotlib.

Co badałem

- Badana funkcja $f(x) = e^4\cos(2x)$
- Przedział: $[-\pi, 3\pi]$

Interpolacja Lagrange'a wzorem Lagrange'a. Tabela błędów.

	Węzły ró	wnoodległe	Węzły Czebyszewa		
Liczba węzłów	Maksymalna różnica wartości	Błąd średniokwadratowy	Maksymalna różnica wartości	Błąd średniokwadratowy	
2	54,58	0,21	54,57	0,09	
4	61,27	0,11	54,90	0,09	
5	54,58	0,21	50,40	0,12	
7	77,55	0,18	49,44	0,12	
8	57,27	0,07	64,95	0,08	
10	50,67	0,09	64,08	0,08	
13	338.02	0,40	35,52	0,07	
15	2612.56	2,88	40,77	0,07	
17	12323,28	12,57	32,07	0,06	
20	8422,62	7,85	50,05	0,05	
50	77773483737,49	41356858,54	4,67	0,005	

- Prosty algorytm
- Dla węzłów Czebyszewa stabilność obliczeń.
- Najlepsze dopasowanie: Wielomian Interpolujący 50 węzłami Czebyszewa.

- Efekt Rungego zauważalny dla niektórych przypadków użycia węzłów równoodległych.
- Problemy numeryczne dla dużej liczby węzłów równoodległych.
- Ponowne obliczenia przy dodaniu nowego węzła interpolacji
- Przykładowe złe dopasowanie:
- Wielomian Interpolujący 50 węzłami równoodległymi.

Interpolacja Lagrange'a wzorem Newtona. Tabela błędów.

Licebo woeków	Węzły rów	vnoodległe	Węzły związane z zerami wielomianu Czebyszewa		
Liczba węzłów	Maksymalna	Błąd	Maksymalna	Błąd	
	różnica wartości	średniokwadratowy	różnica wartości	średniokwadratowy	
2	54,58	0,21	54,57	0,09	
4	61,27	0,11	54,90	0,09	
5	54,58	0,21	50,40	0,12	
7	77,55	0,18	49,44	0,12	
8	57,27	0,07	64,95	0,08	
10	50,67	0,09	64,08	0,08	
13	338.01	0,40	35,52	0,07	
15	2612.56	2,88	40,77	0,07	
17	12323,25	12,57	32,07	0,06	
20	8422,62	7,85	50,05	0,05	
50	77773483737,48	41356848,69	290467.48	66,66	

- Prosty algorytm
- Szybszy od wzorów Lagrange'a przez możliwość dodania węzła, bez ponownych wyliczeń wszystkich węzłów
- Najlepsze dopasowanie : Wielomian Interpolujący 20 węzłami Czebyszewa.

- Efekt Rungego zauważalny dla niektórych przypadków użycia węzłów równoodległych.
- Problemy numeryczne dla dużej liczby węzłów równoodległych.
- Katastrofalne błędy numeryczne dla dużej liczby węzłów Czebyszewa.
- Przykładowe złe dopasowania (od góry):
- Wielomian interpolujący 50 węzłami równoodległymi
- Wielomian interpolujący 50 węzłami Czebyszewa

Interpolacja Hermite'a wzorem Lagrange'a. Tabela błędów.

Lianha wankiwa	Węzły rów	vnoodległe	Węzły związane z zerami wielomianu Czebyszewa		
Liczba węzłów	Maksymalna	Błąd	Maksymalna	Błąd	
	różnica wartości	średniokwadratowy	różnica wartości	średniokwadratowy	
2	54,58	0,21	54,86	0,09	
4	52,94	0,11	80,54	0,10	
5	54,58	0,21	57 <i>,</i> 15	0,16	
7	77,52	0,14	52,74	0,11	
8	361,73	0,52	63,27	0,11	
10	1662,85	2,04	77,36	0,11	
12	5429,19	5,92	50,54	0,07	
15	206399,45	192,99	31,65	0,04	
17	860583,89	741,96	27,49	0,04	
20	32341938,50	25212,94	18,35	0,02	

- W miarę prosty algorytm
- Większa dokładność niż w zagadnieniu Lagrange'a poprzez dodanie warunku zgodności pochodnych.
- Najlepsze dopasowanie: Wielomian Interpolujący 20 węzłami Czebyszewa.

- Efekt Rungego zauważalny dla niektórych przypadków użycia węzłów równoodległych.
- Problemy numeryczne dla dużej liczby węzłów równoodległych.
- Przykładowe złe dopasowanie: Wielomian Interpolujący 20 węzłami równoodległymi.

Interpolacja Hermite'a wzorem Newtona. Tabela błędów.

Parks and	Węzły rów	vnoodległe	Węzły związane z zerami wielomianu Czebyszewa		
Liczba węzłów	Maksymalna	Błąd	Maksymalna	Błąd	
	różnica wartości	średniokwadratowy	różnica wartości	średniokwadratowy	
2	54,58	0,21	54,86	0,09	
4	52,94	0,11	80,54	0,10	
5	54,58	0,21	57,15	0,16	
7	77,52	0,14	52,74	0,11	
8	361,73	0,52	63,27	0,11	
10	1662,85	2,04	77,36	0,11	
12	5429,19	5,92	50,54	0,07	
15	50312,18	46,96	31,65	0,04	
17	612499,62	528,72	27,49	0,04	
20	18820831,85	14667,50	20,72	0,02	

- W miarę prosty algorytm
- Większa dokładność niż w zagadnieniu Lagrange'a poprzez dodanie warunku zgodności pochodnych.
- Najlepsze dopasowanie: Wielomian Interpolujący 17 węzłami Czebyszewa.

- Efekt Rungego zauważalny dla niektórych przypadków użycia węzłów równoodległych.
- Problemy numeryczne dla dużej liczby węzłów równoodległych.
- Błędy numeryczne dla węzłów Czebyszewa pojawiające się wcześniej niż w zagadnieniu Lagrange'a.
- Przykładowe złe dopasowania (od góry):
- Wielomian Interpolujący 20 węzłami równoodległymi,
- Wielomian interpolujący 20 węzłami Czebyszewa

Interpolacja funkcjami sklejanymi 2 stopnia.

		'natura	l spline'		Pierwsza funkcja liniowa			
Liczba	Węzły równoodległe		Węzły Czebyszewa		Węzły równoodległe		Węzły Czebyszewa	
węzłó w	Błąd maximum	Błąd średniokwa dratowy	Błąd maximum	Błąd średniokwa dratowy	Błąd maximum	Błąd średniokwa dratowy	Błąd maximum	Błąd średniokwa dratowy
3	54,58	0,66	91,23	0,61	54,58	0,66	91,23	0,63
4	81,69	0,49	59,18	0,33	81,69	0,46	59,18	0,33
5	54,58	0,66	85,81	0,46	54,58	0,66	85,81	0,45
6	70,80	0,44	87,31	0,42	70,80	0,42	87,31	0,41
7	81,69	0,51	86,25	0,45	81,69	0,49	86,25	0,44
8	93,36	0,53	144,5	0,64	93,36	0,52	144,5	0,64
9	204,3	1,30	165,4	0,82	204,3	1,29	165,4	0,82
10	48,05	0,36	64,15	0,39	48,05	0,34	64,15	0,38
11	38,06	0,29	68,71	0,40	38,06	0,28	68,71	0,40
12	45,58	0,24	125,9	0,67	45,58	0,22	125,9	0,67
13	33,59	0,31	172,2	1,04	33,59	0,30	172,2	1,04
14	45,87	0,26	94,43	0,54	45,87	0,25	94,43	0,54
15	63,35	0,35	49,70	0,21	63,35	0,34	49,70	0,21
16	94,55	0,55	33,97	0,18	94,55	0,55	33,97	0,18
17	186,4	1,25	48,66	0,22	186,4	1,24	48,66	0,22
18	61,31	0,44	45,69	0,15	61,31	0,43	45,69	0,15
19	25,34	0,22	52,49	0,24	25,34	0,22	52,49	0,24
20	24,66	0,17	87,45	0,30	24,66	0,16	87,45	0,30
100	0,11	0	0,89	0	1,58	0	0,89	0

- Duża dokładność
- Brak błędów numerycznych przy dużej liczbie węzłów
- Dosyć wydajny algorytm
- Dobrze działa dla węzłów równoodległych
- Najlepsze przybliżenie:

Wielomian interpolujący dla 100 węzłów równoodległych przy warunku ,natural spline'

- W porównaniu do poprzednich skomplikowany matematycznie algorytm
- Problemy z oscylacją (przykładowy wykres dla 18 węzłów równoodległych)

Interpolacja funkcjami sklejanymi 3 stopnia.

		'Natural cu	ıbic spline'		Pierwsza pochodna znana				
Liczba	Węzły rów	/noodległe	Węzły Czebyszewa		Węzły rów	Węzły równoodległe		Węzły Czebyszewa	
węzłó w	Błąd maximum	Błąd średniokwa dratowy	Błąd maximum	Błąd średniokwa dratowy	Błąd maximum	Błąd średniokwa dratowy	Błąd maximum	Błąd średniokwa dratowy	
3	54,58	0,66	66,38	0,52	54,58	0,66	76,77	0,60	
4	63,40	0,36	55,33	0,32	63,40	0,35	55,33	0,32	
5	54,58	0,66	49,20	0,32	54,58	0,66	49,20	0,30	
6	56,17	0,32	65,65	0,28	56,17	0,31	65,65	0,27	
7	66,09	0,38	54,36	0,32	66,09	0,37	54,36	0,32	
8	57,36	0,26	61,69	0,20	57,36	0,25	61,69	0,19	
9	36,08	0,25	60,61	0,27	36,08	0,25	60,61	0,27	
10	50,74	0,20	62,80	0,21	50,74	0,19	62,80	0,21	
11	48,66	0,23	37,93	0,18	48,66	0,22	37,93	0,19	
12	46,34	0,19	53,84	0,20	46,34	0,18	53,84	0,21	
13	27,42	0,20	33,59	0,15	27,42	0,19	33,59	0,16	
14	43,47	0,17	48,89	0,15	43,47	0,17	48,89	0,15	
15	40,82	0,17	47,00	0,18	40,82	0,17	47,00	0,18	
16	37,83	0,14	46,56	0,15	37,83	0,14	46,56	0,15	
17	16,58	0,10	29,85	0,14	16,58	0,10	29,85	0,14	
18	31,44	0,12	46,60	0,16	31,44	0,12	46,60	0,16	
19	28,81	0,11	29,16	0,13	28,81	0,11	29,16	0,13	
20	26,25	0,10	44,60	0,12	26,25	0,10	44,60	0,12	
100	0,82	0	0,39	0	0,36	0	0,39	0	

- Duża dokładność
- Brak błędów numerycznych
- Dosyć wydajny algorytm
- Dobrze działa dla węzłów równoodległych
- Najlepsze przybliżenie:

Wielomian interpolujący dla 100 węzłów równoodległych przy warunku "natural spline"

 W porównaniu do poprzednich skomplikowany matematycznie algorytm Aproksymacja średniokwadratowa wielomianami algebraicznymi

		Węzły rów	noodległe	Węzły Czebyszewa		
Liczba węzłów	Stopień wielomianu	Błąd maksimum	Błąd średniokwadratowy	Błąd maksimum	Błąd średniokwadratowy	
4	2	61,27	0,25	54,90	0,19	
4	3	61,27	0,25	54,90	0,19	
15	2	49,35	0,18	49,94	0,18	
15	3	49,35	0,18	49,94	0,18	
15	4	53,24	0,18	54,93	0,19	
15	5	53,24	0,18	54,93	0,19	
15	6	46,53	0,16	50,55	0,17	
15	7	46,53	0,16	50,55	0,17	
15	8	48,94	0,16	55,73	0,18	
15	9	48,94	0,16	55,73	0,18	
15	10	40,33	0,16	51,89	0,17	
30	2	46,36	0,18	51,05	0,19	
30	3	46,36	0,18	51,05	0,19	
30	4	48,88	0,17	51,96	0,17	
30	5	48,88	0,17	51,96	0,17	
30	6	48,58	0,15	50,47	0,15	
30	7	48,58	0,15	50,47	0,15	
30	8	44,35	0,14	46,94	0,14	
30	9	44,35	0,14	46,94	0,14	
30	10	37,29	0,13	40,98	0,13	
30	15	23,37	0,09	26,87	0,09	
30	20	592,78	1,02	31,02	0,09	
30	25	8014,52	13,12	24,92	0,06	
100	2	45,02	0,17	50,02	0,18	
100	3	45,02	0,17	50,02	0,18	
100	4	47,83	0,17	51,33	0,17	
100	5	47,83	0,17	51,33	0,17	
100	6	48,43	0,15	49,27	0,15	
100	7	48,43	0,15	49,27	0,15	
100	8	44,12	0,14	45,51	0,14	
100	9	44,12	0,14	45,51	0,14	
100	10	36,91	0,13	38,67	0,13	
100	15	23,39	0,09	23,31	0,09	
100	20	25,24	0,08	26,18	0,09	
100	25	13,96	0,05	15,06	0,05	
100	30	12,47	0,04	11,52	0,04	

- Dosyć duża dokładność
- Wygładzanie przebiegu funkcji
- Możliwość znalezienia wielomianu dosyć niskiego stopnia dobrze oddającej przebieg funkcji
- Najlepsze przybliżenie:

Wielomian aproksymujący 30 stopnia dla 100 węzłów Czebyszewa

- Możliwe błędy numeryczne przy dużej liczbie węzłów
- Skomplikowane obliczeniowo
- Mało wydajny algorytm
- Przykładowy wykres z błędami numerycznymi:

Wielomian aproksymujący 20 stopnia dla 30 węzłów równoodległych.

Aproksymacja średniokwadratowa wielomianami trygonometrycznym

Liczba węzłów	Stopień wielomianu	Błąd maksimum	Błąd średniokwadratowy
5	2	89,86	1,63
15	2	56,49	0,68
15	3	56,52	0,70
15	4	46,08	0,57
15	5	48,76	0,59
15	6	56,05	0,74
15	7	59,11	0,76
30	2	45,49	0,56
30	3	45,57	0,57
30	4	26,00	0,37
30	5	27,01	0,38
30	6	27,24	0,39
30	7	27,01	0,40
30	8	27,46	0,28
30	9	28,59	0,30
30	10	29,78	0,31
50	2	44,61	0,55
50	3	44,60	0,56
50	4	23,29	0,34
50	5	25,47	0,35
50	6	25,49	0,35
50	7	25,49	0,35
50	8	19,00	0,21
50	9	19,01	0,22
50	10	18,88	0,22
50	15	28,59	0,20
50	20	43,29	0,22
100	2	43,95	0,55
100	3	43,95	0,55
100	4	23,53	0,33
100	5	24,62	0,34
100	6	24,63	0,34
100	7	24,62	0,34
100	8	13,47	0,18
100	9	13,27	0,18
100	10	12,93	0,18
100	15	12,18	0,12
100	20	21,43	0,11
100	25	27,19	0,12
100	30	32,73	0,14

- Dosyć duża dokładność
- Wygładzanie przebiegu funkcji
- Możliwość znalezienia wielomianu dosyć niskiego stopnia dobrze oddającej przebieg funkcji
- Brak znalezionych błędów numerycznych
- Najlepsze przybliżenie:

Wielomian aproksymujący 20 funkcjami bazowymi dla 100 węzłów

- Skomplikowane obliczeniowo, jeżeli mamy przedział inny niż 2pi.
- Brzegi funkcji uciekają do nieskończoności przy wzrastającej liczbie funkcji bazowych
- Przykładowy wykres ilustrujący problem z brzegami

Wielomian aproksymujący na podstawie 15 funkcji bazowych, dla 50 węzłów

Podsumowanie

- Najlepsze metody wyznaczanie przybliżonego przebiegu funkcji:
- Interpolacja funkcjami sklejanymi 2 oraz 3 stopnia.
- Aproksymacja średniokwadratowa wielomianami trygonometrycznymi

Przy wykorzystaniu znacznej mocy obliczeniowej do tych metod zaliczył bym również interpolację Lagrange'a oraz zagadnienie Hermite'a,, ale tylko dla węzłów Chebyshewa.

Podsumowanie

Pozostałe metody są warunkowo dobre, przy niewielkich wymaganiach odnośnie przybliżenia funkcji, lub małej ilości węzłów wszystkie powinny sprawić się dobrze, jednak mają one ograniczenia, jeżeli chodzi o dokładność, której nie można zwiększyć dodając kolejne węzły, ponieważ może wywołać to efekt Rungego lub inne efekty błędów numerycznych.