3.1 Pochodne funkcji, ekstrema

Definicja 3.1. Mówimy, że funkcja y = f(x) jest *różniczkowalna w punkcie x*₀, jeżeli istnieje granica właściwa ilorazu różnicowego

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

gdzie $\Delta x = x_0 - x$, granicę taką oznaczamy $f'(x_0)$ i nazywamy pochodną funkcji f w punkcie x_0 . Jeżeli funkcja posiada pochodną w każdym punkcie przedziału (a,b) to funkcję nazywamy różniczkowalną w przedziale (a,b). Dla oznaczenia pochodnej w przedziale (a,b) używamy następujących symboli

$$\frac{df}{dx}$$
, $\frac{dy}{dx}$, $f'(x)$.

Jeżeli pochodna istnieje to możemy ją wyznaczyć obliczając dla każdego \boldsymbol{x} granicę

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

W praktyce pochodne obliczamy znając pochodne funkcji elementarnych oraz korzystając z reguł różniczkowania.

Reguły różniczkowania

Jeżeli istnieje pochodna funkcji f(x) oraz g(x) w przedziale (a,b) to

- 1) $(C \cdot f(x))' = C \cdot f'(x)$, C stała,
- 2) $(f(x) \pm g(x))' = f'(x) \pm g'(x)$,
- 3) $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x),$
- 4) $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g^2(x)}$, gdzie $g(x) \neq 0$,
- 5) $(f(g(x)))' = f'(g(x)) \cdot g'(x)$.

Podstawowe wzory pochodnych funkcji elementarnych

- 1) $(x^n)' = nx^{n-1}, \quad n \in \mathbb{R},$
- $2) \ (a^x)' = a^x \ln a,$
- 3) $(\ln x)' = \frac{1}{x}$,
- $4) (\sin x)' = \cos x,$
- $5) (\cos x)' = -\sin x,$

6)
$$(\operatorname{arctg} x)' = \frac{1}{1+x^2},$$

7)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}},$$

8)
$$(\sinh x)' = \cosh x$$
,

9)
$$(\cosh x)' = \sinh x$$
,

$$10) (tgh)' = \frac{1}{\cosh^2 x},$$

11)
$$(\text{ctgh})' = -\frac{1}{\sinh^2 x},$$

Ze wzorów podstawowych oraz reguł różniczkowania możemy wyprowadzić następujące wzory

$$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}, \quad (\sqrt{x})' = \frac{1}{2\sqrt{x}}, \quad (e^x)' = e^x,$$
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}, \quad (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}, \quad (\operatorname{const})' = 0,$$
$$(x^x)' = \left(e^{x \ln x}\right)' = x^x(\ln x + 1).$$

Interpretacja geometryczna i fizyczna pochodnej

Jeżeli funkcja f(x) jest różniczkowalna w punkcie x_0 , to jej pochodna wyraża się wzorem

$$f'(x_0) = \operatorname{tg} \alpha,$$

gdzie α jest kątem jaki tworzy styczna do krzywej y=f(x) w punkcie $x=x_0$ z dodatnim kierunkiem osi Ox.

Rysunek 3.1: Interpretacja geometryczna pochodnej funkcji

Jeżeli ruch punktu materialnego odbywa się po krzywej y = f(x), to pochodna f'(x) wzdłuż krzywej wyznacza chwilową szybkość ruchu tego punktu materialnego.

Pochodne wyższych rzędów

Pochodne wyższych rzędów liczymy ze wzoru rekurencyjnego

$$\frac{d^n f(x)}{dx^n} = \frac{d}{dx} \left[\frac{d^{n-1}}{dx^{n-1}} f(x) \right].$$

Pochodną rzędu n oznaczamy $f^{(n)}(x)$. Mamy zatem

$$f''(x) = \frac{d}{dx} [f'(x)], \qquad f'''(x) = \frac{d}{dx} [f''(x)].$$

Przykład 3.2. Podamy przykłady obliczania pochodnych z użyciem wspomnianych wcześniej reguł

1)
$$f(x) = 2x^3 \sin x$$
 $f'(x) = 2[3x^2 \sin x + x^3 \cos x] = 6x^2 \sin x + 2x^3 \cos x$

2)
$$f(x) = \frac{1+x^2}{2-x}$$
 $f'(x) = \left(\frac{1+x^2}{2-x}\right)' = \frac{2x(2-x)-(1+x^2)(-1)}{(2-x)^2} = \frac{-x^2+4x+1}{(2-x)^2}$

3)
$$f(x) = \sin^2 x$$
 $f'(x) = 2\sin x \cos x = \sin 2x$

4)
$$f(x) = \sin x^2$$
 $f'(x) = 2x \cos x^2$

5)
$$f(x) = 4x\sqrt{x^2 - 1}$$
 $f'(x) = 4\sqrt{x^2 - 1} + \frac{4x}{2\sqrt{x^2 - 1}}2x = \frac{8x^2 - 4}{\sqrt{x^2 - 1}}$

Monotoniczność, ekstrema lokalne funkcji różniczkowalnych

Jeżeli dla $x \in (a,b), f'(x) > 0$ to w przedziale (a,b) funkcja jest rosnąca. Jeżeli dla $x \in (a,b), f'(x) < 0$ to w przedziale (a,b) funkcja jest malejąca. Jeżeli w pewnym przedziale f'(x) > 0 lub f'(x) < 0 to funkcja w tym przedziale jest monotoniczna.

Funkcja może osiągać dla $x=x_0$ ekstremum lokalne (minimum lub maksimum). Warunkiem koniecznym na to aby funkcja osiągała w punkcie x_0 ekstremum jest aby $f'(x_0)=0$. Warunkiem wystarczającym na to aby funkcja osiągała w punkcie x_0 ekstremum, jest aby w otoczeniu x_0 pochodna zmieniała znak. Jeżeli znak pochodnej zmienia się z+na-to funkcja w x_0 osiąga maksimum. W przeciwnym przypadku gdy pochodna zmienia znak z-na+to funkcja w x_0 osiąga minimum. Zaznaczamy to w następującej tabeli

x		x_0		x_1	
f'(x)	+	0	_	0	+
f(x)	7	max	>	min	7

tzn. dla x_0 mamy maximum natomiast dla x_1 minimum. Istnieje równoważny warunek wystarczający istnienia ekstremum. Funkcja f(x) posiada w x_0 ekstremu jeżeli $f'(x_0) = 0$ oraz $f''(x_0) \neq 0$ przy czym jeśli $f''(x_0) < 0$ to w x_0 mamy maximum natomiast jeśli $f''(x_0) > 0$ to w x_0 mamy minimum.

Przykład 3.3. Wyznaczyć przedziały monotoniczności oraz ekstrema funkcji

$$f(x) = \frac{5x}{1+x^2}. (3.1)$$

Rozwiązanie. Obliczamy f'(x)

$$f'(x) = \frac{5(1+x^2) - 5x2x}{(1+x^2)^2} = \frac{5+5x^2 - 10x^2}{(1+x^2)^2} = \frac{5(1-x^2)}{(1+x^2)^2}.$$

Znak pochodnej zależy od znaku wyrażenia $1-x^2$. Funkcja kwadratowa $y=1-x^2$ jest dodatnia w przedziale (-1,1) oraz ujemna w przedziałach $(-\infty,-1)$ oraz $(1,\infty)$. Oznacza to, że f'(x)>0 gdy $x\in (-1,1)$, f'(x)<0 gdy $x\in (-\infty,-1)\cup (1,\infty)$ oraz f'(x)=0 gdy x=-1 lub x=1. Mamy zatem minimum w punkcie x=-1 oraz maximum w punkcie x=1.

Rysunek 3.2: Wykres funkcji (3.1)

Za pomocą drugiej pochodnej funkcji f klasy C^2 można dokładniej określić kształt badanej funkcji.

Łuk krzywej nazywa się wypukłym w punkcie x_0 , jeżeli punkty tego łuku w otoczeniu punktu x_0 znajdują się ponad styczną do łuku w punkcie x_0 , wklęsłym, jeżeli punkty z otocznia x_0 znajdują się pod styczną do łuku w punkcie x_0 . Punkt w którym łuk przechodzi z wklęsłego na wypukły, lub odwrotnie nazywa się $punktem\ przegięcia\ krzywej$.

Słuszne sa następujące twierdzenia

Twierdzenie 3.4. 1. Jeżeli w przedziale (a,b) f''(x) < 0, to w tym przedziale funkcja f jest wklęsła.

40WYKŁAD 3. POCHODNA FUNKCJI JEDNEJ ZMIENNEJ I JEJ ZASTOSOWANIA

- 2. Jeżeli w przedziale (a,b) f''(x) > 0, to w tym przedziale funkcja f jest wypukła.
- 3. Warunkiem koniecznym istnienia punktu przegięcia w x_0 jest $f''(x_0) = 0$.
- 4. Warunkiem wystarczającym istnienia punktu przegięcia w x_0 jest zmiana znaku f''(x) w otoczeniu tego punktu.

Co można przedstawić

Czasami zachodzi konieczność wyznaczenia największej lub najmniejszej wartości funkcji w przedziale domkniętym. Funkcja f(x) różniczkowalna w tym przedziale może mieć wartość największą lub najmniejsza tylko w takim punkcie w którym ma ekstremum (lokalne) lub na krańcach tego przedział

Przykład 3.5. Wyznaczymy największą oraz najmniejszą wartość funkcji

$$f(x) = x^3 - 3x + 2 (3.2)$$

na przedziałe $\langle 0,3 \rangle$. Wyznaczamy wartości funkcji na krańcach przedziału. Mamy f(0)=2, f(3)=20. Wyznaczamy ekstrema, $f'(x)=3x^2-3=0$. Stąd f'(x)=0 dla x=-1 lub x=1. Ponieważ punkt -1 nie należy do przedziału $\langle 0,3 \rangle$ to nie jest dla nas istotny. Zauważmy, że f''(x)=6x oraz f''(1)=6>0. Oznacza to, że dla x=1 mamy minimum. Ponadto f(1)=0. Porównujemy wartości f(0)=2, f(1)=0, f(3)=20. Wynika stąd, że dla x=1 funkcja f posiada wartość najmniejszą, natomiast dla x=3 wartość największą.

Rysunek 3.3: Wykres funkcji (3.2)

W przypadku gdy funkcja nie jest różniczkowalna korzystamy z następującej definicji ekstremum funkcji.

Mówimy, że funkcja f(x) posiada w punkcie x_0 minimum (maximum) lokalne właściwe jeśli istnieje otoczenie $(x_0 - h, x_0 + h)$ punktu x_0 takie, że $f(x) > f(x_0), (f(x) < f(x_0))$ dla dowolnego punktu $x \in (x_0 - h, x_0) \cup (x_0, x_0 + h)$. W przypadku gdy znaki >, < zastąpimy znakami \geq, \leq to mówimy o ekstremach niewłaściwych.

Przykład 3.6. Rozpatrzmy funkcję

$$f(x) = |x|, (3.3)$$

która nie jest różniczkowalna w punkcie x=0. Widać, że f(x)=0 oraz f(x)>0 dla $x\neq 0$. Oznacza to, że funkcja posiada minimum lokalne właściwe w punkcie x=0.

Rysunek 3.4: Wykres funkcji (3.3)

Wyrażenia nieoznaczone, reguła de l'Hospitala

Rozpatrujemy następujące wyrażenia które nazywamy wyrażeniami nieoznaczonymi

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 0^0 , ∞^0 , ∞^0 .

Wyrażenia takie występują przy obliczaniu granic funkcji. Rozpatrzmy funkcję f(x) = g(x)/h(x) w którym funkcje g(x), h(x) są różniczkowalne w otoczeniu punktu x_0 . Jeżeli przy $x \to x_0$ wyrażenie g(x)/h(x) jest typu

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$

oraz istnieje granica

$$\lim_{x \to x_0} \frac{g'(x)}{h'(x)} = a,$$

to

$$\lim_{x \to x_0} \frac{g(x)}{h(x)} = \lim_{x \to x_0} \frac{g'(x)}{h'(x)} = a.$$

Fakt ten nazywamy regułą de l'Hospitala. Dla podkreślenia tego, że korzystamy z reguły de l'Hospitala używamy następującego oznaczenia $\stackrel{\mathrm{H}}{=}$. Niektóre wyrażenia nieoznaczone możemy przekształcić do postaci ∞/∞ lub 0/0 a następnie korzystać z reguły de l'Hospitala.

Przykład 3.7. 1)
$$\lim_{x \to 3} \frac{x-3}{2-\sqrt{x+1}} \frac{H}{\left[\frac{0}{0}\right]} \lim_{x \to 3} \frac{(x-3)'}{(2-\sqrt{x+1})'} = \lim_{x \to 3} \frac{1}{-1/(2\sqrt{x+1})} = -4$$

$$2) \lim_{x \to 0} \frac{x - \sin x}{3x^2} \stackrel{\underline{H}}{=} \lim_{x \to 0} \frac{(x - \sin x)'}{(3x^2)'} = \lim_{x \to 0} \frac{1 - \cos x}{6x} \stackrel{\underline{H}}{=} \lim_{x \to 0} \frac{\sin x}{6} = 0$$

3)
$$\lim_{x \to 0^+} x \ln x = |0 \cdot \infty| = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{(\ln x)'}{(1/x)'} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$

4)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) = |\infty - \infty| = \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)} \stackrel{\underline{\underline{H}}}{=} \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x} \stackrel{\underline{\underline{H}}}{=} \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x} = \frac{1}{2}$$

Wzór Taylora i Maclaurina

Rozpatrzmy funkcję f której wszystkie pochodne do rzędu (n-1) włącznie są ciągłe w przedziale domkniętym $\langle x_0, x \rangle$ oraz istnieje pochodna rzędu n w przedziale otwartym (x_0, x) . Wówczas istnieje takie $C \in (x_0, x)$, że wartość funkcji f(x) możemy przedstawić wzorem zwanym wzorem Taylora

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''}{2!}(x_0)(x - x_0)^2 + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!}(x - x_0)^{n-1} + R_n(x),$$

gdzie wyrażenie

$$R_n(x) = \frac{f^n(C)}{n!}(x - x_0)^n$$

nazywa się resztą wzoru Taylora. Wzór Taylora możemy zapisać w postaci

$$f(x) = \sum_{k=0}^{n-1} \frac{f^k(x_0)}{k!} (x - x_0)^k + R_n(x).$$

W szczególnym przypadku gdy $x_0=0$ otrzymujemy wzór który nazywamy wzorem Maclaurina

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + R_n(x),$$

gdzie

$$R_n(x) = \frac{f^n(C)}{n!} x^n.$$

Jeżeli funkcja f(x) ma wszystkie pochodne w pewnym otoczeniu punktu x_0 oraz reszta szeregu dąży do zera przy $n \to \infty$, to wzory Taylora oraz Maclaurina będą wykorzystywane do rozwijania funkcji f(x) w otoczeniu punktu x_0 w szereg funkcyjny zwany szeregiem potęgowym.

Można korzystać z następującego wzoru przybliżonego

$$e^x \approx 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!},$$

skąd dla x = 1 mamy

$$e = e^1 \approx 2 + \frac{1}{2!} + \frac{1}{3!}.$$