Thread

Introdução

Thread

- Sub-rotina que pode ser executada assincronamente
- Programador especifica os threads
- SO garante o ambiente de execução
- Técnica utilizada a partir da década de 1980
- Programas concorrentes
- Maioria dos SO's atuais suportam

-- --

Ambiente Monothread

- Processos com apenas um programa por espaço de endereçamento
- Concorrência
 - Processos independentes e Subprocessos
- Para cada processo Usado
 - Sobrecarga de criação e destruição
 - Comunicação lenta
- Exemplos:
 - MS-DOS; Versões iniciais do MS-Windows

-- --

Ambiente Monothread

Ambiente Multithread

- Programas associados a threads
- Compartilhamento do espaço de endereçamento
 - Comunicação rápida
 - Necessidade de manter integridade dos dados
 - Mecanismos de sincronização

Processo e Threads

 Mesmo espaço de endereçamento

 Mesmo contexto de software
 Contexto de

 Contexto de Hardware diferente

-- --

6

Aplicação Multithread

- O Programador especifica;
- O Ambiente de programação especifica

-- --

Aplicações de Threads

- Melhor utilização de recursos
 - Cada solicitação de tratamento de hardware é realizado por um thread
 - Algumas tarefas podem ser realizadas em background enquanto operações E/S são realizadas.

-- {

Aplicações de Threads

 Servidores precisam tratar as solicitações de clientes

 Cada solicitação é tratada por uma thread.

 Assim, diversas solicitações são tratadas "simultaneamente"

Processo cliente

Processo cliente Processo cliente

9

Threads – Implementação

- Pacote de Threads
 - Conjunto de rotinas usadas para manipular threads.
- Diferentes Abordagens
 - Modo Usuário
 - Modo Kernel
 - Modo Híbrido
 - Modo Scheduler Activations

Threads – Modo Usuário

- Gerenciados pela aplicação
 - S.O. não conhece
 - Limitados ao processo pai
 - Mudança de Estado
 - Sinais

Threads – Modo Usuário (N:1)

Vantagens:

- Fácil implementação
- Pouca sobrecarga ao núcleo.
- Útil para aplicações com milhares de threads
 - Simulação de cidades, jogos, etc.

-- 12

Threads – Modo Usuário (N:1)

- Desvantagens:
 - Interação com hardware depende do núcleo
 - Todo o processo é suspenso.
 - Concorrência é prejudicada.

- Escalonamento de threads ineficiente.
 - Depende de escalonamento do processo.

Threads – Modo Kernel (1:1)

- Gerenciados pelo Kernel do S.O.
 - Disponibilizados por Chamadas de Sistemas.
 - Thread é a unidade de escalonamento

Threads – Modo Kernel (1:1)

Vantagens:

- Alocação em diversos processadores.
- Escalonamento controlado pelo SO.
- E/S não causa
 suspensão de todas os threads do processo.

Threads – Modo Kernel (1:1)

- Desvantagens
 - Pouco escalável
 - Overhead de gerenciamento para o Sistema Operacional.
 - Mudanças de nível usuário para nível supervisor
 - Maior overhead de mudança de modo de acesso

Threads – Modo Híbrido (N:M)

- Reúne características de TMU e TMK
- Utiliza duas camadas de Threads
 - Uma do Kernel
 - Uma da aplicação

Threads – Modo Híbrido (N:M)

Vantagens:

 Tenta unir o melhor dos dois mundos.

Desvantagens:

- Complexa implementação
- Overhead de gerenciamento do SO

-- 18

Threads: Resumo Implementação

Modelo	N:1	1:1	N:M
Resumo	Todos os N threads do pro-	Cada thread do processo	Os N threads do processo
	cesso são mapeados em	tem um thread correspon-	são mapeados em um
	um único thread de nú-	dente no núcleo	conjunto de M threads de
	cleo		núcleo
Local da imple-	bibliotecas no nível usuá-	dentro do núcleo	em ambos
mentação	rio		
Complexidade	baixa	média	alta
Custo de gerên-	nulo	médio	alto
cia para o núcleo			
Escalabilidade	alta	baixa	alta
Suporte a vários	não	sim	sim
processadores			
Velocidade das	rápida	lenta	rápida entre threads no
trocas de con-			mesmo processo, lenta
texto entre thre-			entre <i>threads</i> de processos
ads			distintos
Divisão de recur-	injusta	justa	variável, pois o mapea-
sos entre tarefas			mento <i>thread</i> \rightarrow processa-
			dor é dinâmico
Exemplos	GNU Portable Threads	Windows XP, Linux	Solaris, FreeBSD KSE

Exercícios

- 1. Explique a diferença entre unidade de alocação de recursos e unidade de escalonamento?
- 2. Quais as vantagens e desvantagens do compartilhamento do espaço de endereçamento entre threads de um mesmo processo?
- 3. Como o uso de threads pode melhorar o desempenho de aplicações paralelas em ambientes com múltiplos processadores?