Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Теория расписаний» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 2 мая 2018 г.

Содержание

1	Техническое задание	3
2	Исходные данные	3
3	Задача сетевого планирования	4
3.1	Матрица смежности	4
3.2	Наиболее ранние и поздние моменты наступления событий	4
3.3	Матрица резервов	5
3.4	Критический путь	5
4	Время выполнения всего комплекса работ	6
5	Распределение работ по ресурсам	6
5.1	Критерий наименьшей длительности работы	6
5.2	Критерий наибольшей длительности работы	8
5.3	Критерий наименьшего резерва работы	10
5.4	Критерий наибольшего резерва работы	
Спис	ок таблиц	
3.1	Матрица смежности	4
3.2	Матрица резервов	5
5.1	Решение задачи по шагам (критерий наименьшей длительности	
	работы)	6
5.2	Решение задачи по шагам (критерий наибольшей длительности	
	работы)	8
5.3	Решение задачи по шагам (критерий наименьшего резерва ра-	
	боты)	10
5.4	Решение задачи по шагам (критерий наибольшего резерва ра-	
	боты)	12
Спис	ок иллюстраций	
2.1	Исходный граф (вариант 32)	3
3.1	Наиболее ранние и поздние моменты наступления событий	4
3.2	Критический путь	5
5.1	Распределение работ по ресурсам (критерий наименьшей дли-	
	тельности работы)	7
5.2	Распределение работ по ресурсам (критерий наибольшей дли-	
	тельности работы)	9
5.3	Распределение работ по ресурсам (критерий наименьшего ре-	
	зерва работы)	11
5.4	Распределение работ по ресурсам (критерий наибольшего ре-	
	зерва работы)	13

1. Техническое задание

- Задача сетевого планирования, метод динамического программирования. На основе графа, приведенного на рис. 2.1:
 - 1. написать матрицу смежности;
 - 2. определить наиболее ранние моменты наступления событий;
 - 3. определить наиболее поздние моменты наступления событий;
 - 4. определить резервы времени, написать матрицу резервов;
 - 5. найти критический путь (пути);
 - 6. определить минимально возможное время выполнения всего комплекса работ.
- Для n=1 определить время выполнения всего комплекса работ;
- Для n=3 найти распределение работ по ресурсам, рассмотреть 4 критерия выбора работ для выполнения, указанные ниже; для каждого критерия привести решение задачи по шагам, построить график, найти общее время работы, найти времена простоя каждого ресурса:
 - 1. работа наименьшей длительности;
 - 2. работа наибольшей длительности;
 - 3. работа с наименьшим резервом;
 - 4. работа с наибольшим резервом.

2. Исходные данные

Рис. 2.1: Исходный граф (вариант 32)

3. Задача сетевого планирования

3.1. Матрица смежности

№	1	2	3	4	5	6	7	8	9
1	_	6	7	4	_	_	-	_	-
2	-	_	6	4	-	-	-	_	-
3	_	_	_	_	5	-	-	5	_
4	_	_	-	-	6	4	6	_	-
5	-	_	-	-	-	4	-	3	-
6	-	_	-	-	-	-	-	5	-
7	_	_	_	_	-	-	-	7	-
8	_	_	_	_	_	_	-	_	4
9	_	_	_	_	_	-	-	_	_

Таблица 3.1: Матрица смежности

3.2. Наиболее ранние и поздние моменты наступления событий

На рис. 3.1 приведен исходный граф с обозначенными в нем наиболее ранними t'_i и наиболее поздними моментами t''_i наступления событий, указанными внутри событий как t'_i/t''_i . На ребрах графа после веса в скобках указан резерв выполнения работы r_{ij} .

Рис. 3.1: Наиболее ранние и поздние моменты наступления событий

3.3. Матрица резервов

В таблице 3.2 приведена полученная матрица резервов.

No॒	1	2	3	4	5	6	7	8	9
1	_	0	5	7	_	_	_	_	_
2	-	_	0	1	-	-	_	_	_
3	-	_	_	_	0	-	_	9	_
4	-	_	_	-	1	7	3	-	-
5	_	_	_	_	_	0	_	6	_
6	-	_	_	_	_	-	_	0	_
7	-	_	_	_	_	-	_	3	-
8	_	_	_	_	_	_	_	_	0
9	_	_	_	_	_	_	_	_	_

Таблица 3.2: Матрица резервов

3.4. Критический путь

На рис. 3.2 изображен критический путь $1 \xrightarrow{6} 2 \xrightarrow{6} 3 \xrightarrow{5} 5 \xrightarrow{4} 6 \xrightarrow{5} 8 \xrightarrow{4} 9$, составленный из работ с резервом $r_{ij}=0$. Длина пути оказалась равна 30.

Рис. 3.2: Критический путь

4. Время выполнения всего комплекса работ

Для числа рабочих n=1 общее время выполнения равно сумме времени выполнения всех работ, т.е. $T=\sum_i t_i=76$.

5. Распределение работ по ресурсам

Найдем распределения работ по ресурсам для n=3 используя разные критерии.

5.1. Критерий наименьшей длительности работы

В таблице 5.1 приведено пошаговое решение, полученное с использованием критерия наименьшей длительности работы. Здесь и далее используются следующие обозначения для столбцов: t – текущее время, D – выполненные работы, E – наступившие события, W – доступные работы, A – длительности работ, B – выполняемые работы, L – время, через которое ресурс освободится.

Таблица 5.1: Решение задачи по шагам (критерий наименьшей длительности работы)

t	D	E	W	A	В	L
0	[]	[0]	[0 1] [0 2] [0 3]	[6 7 4]	[0 2] [0 1] [0 3]	[7 6 4]
4	[0 3]	[0]	[]	[]	[0 2] [0 1]	[3 2]
6	[0 1]	[0 1]	[1 2] [1 3]	[6 4]	[0 2] [1 2] [1 3]	[1 6 4]
7	[0 2]	[0 1]	[]	[]	[1 2] [1 3]	[5 3]
10	[1 3]	[0 1 3]	[3 4] [3 5] [3 6]	[6 4 6]	[1 2] [3 4] [3 6]	[2 6 6]
12	[1 2]	[0 1 2 3]	[2 4] [2 7] [3 5]	$[5\ 5\ 4]$	[3 4] [3 6] [2 4]	$[4\ 4\ 5]$
16	[3 4] [3 6]	[0 1 2 3 6]	[2 7] [3 5] [6 7]	$[5\ 4\ 7]$	[2 4] [6 7] [2 7]	[1 7 5]
17	[2 4]	[0 1 2 3 4 6]	[3 5] [4 5] [4 7]	$[4\ 4\ 3]$	[6 7] [2 7] [3 5]	$\boxed{[6\ 4\ 4]}$
21	[2 7] [3 5]	[0 1 2 3 4 6]	[4 5] [4 7]	$[4 \ 3]$	[6 7] [4 5] [4 7]	[2 4 3]
23	[6 7]	[0 1 2 3 4 6]	[]	[]	[4 5] [4 7]	[2 1]
24	[4 7]	[0 1 2 3 4 6]	[]	[]	[4 5]	[1]
25	[4 5]	[0 1 2 3 4 5 6]	[5 7]	[5]	[5 7]	[5]
30	[5 7]	[0 1 2 3 4 5 6 7]	[7 8]	[4]	[7 8]	[4]
34	[7 8]	[0 1 2 3 4 5 6 7 8]	[]	[]		[]

На рис. 5.1 изображено распределение работ по ресурсам, полученное с использованием критерия наименьшей длительности работы.

Рис. 5.1: Распределение работ по ресурсам (критерий наименьшей длительности работы)

Общее время при данном критерии оказалось равно T=34 часам, при этом первый исполнитель простаивал 3+2=5 часов, второй 9 часов, третий 2+10=12 часов.

5.2. Критерий наибольшей длительности работы

В таблице 5.2 приведено пошаговое решение, полученное с использованием критерия наибольшей длительности работы.

Таблица 5.2: Решение задачи по шагам (критерий наибольшей длительности работы)

t	D	E	W	A	В	L
0	[]	[0]	[0 1] [0 2] [0 3]	[6 7 4]	[0 3] [0 1] [0 2]	[4 6 7]
4	[0 3]	[0]	[]	[]	[0 1] [0 2]	[2 3]
6	$[0\ 1]$	[0 1]	[1 2] [1 3]	[6 4]	[0 2] [1 3] [1 2]	[1 4 6]
7	$[0\ 2]$	[0 1]	[]	[]	[1 3] [1 2]	[3 5]
10	[1 3]	[0 1 3]	[3 4] [3 5] [3 6]	[6 4 6]	[1 2] [3 5] [3 4]	[2 4 6]
12	[1 2]	[0 1 2 3]	[2 4] [2 7] [3 6]	[5 5 6]	[3 5] [3 4] [2 4]	$[2 \ 4 \ 5]$
14	$[3\ 5]$	[0 1 2 3]	[2 7] [3 6]	[5 6]	[3 4] [2 4] [2 7]	[2 3 5]
16	$[3 \ 4]$	[0 1 2 3]	[3 6]	[6]	[2 4] [2 7] [3 6]	[1 3 6]
17	$[2 \ 4]$	[0 1 2 3 4]	[4 5] [4 7]	[4 3]	[2 7] [3 6] [4 7]	[2 5 3]
19	[2 7]	[0 1 2 3 4]	[4 5]	[4]	[3 6] [4 7] [4 5]	[3 1 4]
20	$[4 \ 7]$	[0 1 2 3 4]	[]	[]	[3 6] [4 5]	[2 3]
22	[3 6]	[0 1 2 3 4 6]	[6 7]	[7]	[4 5] [6 7]	[1 7]
23	$[4\ 5]$	[0 1 2 3 4 5 6]	[5 7]	[5]	[6 7] [5 7]	[6 5]
28	[5 7]	[0 1 2 3 4 5 6]	[]	[]	[6 7]	[1]
29	[6 7]	[0 1 2 3 4 5 6 7]	[7 8]	[4]	[7 8]	[4]
33	[7 8]	[0 1 2 3 4 5 6 7 8]	[]	[]	[]	

На рис. 5.2 изображено распределение работ по ресурсам, полученное с использованием критерия наибольшей длительности работы.

Рис. 5.2: Распределение работ по ресурсам (критерий наибольшей длительности работы)

Общее время при данном критерии оказалось равно T=33 часам, при этом первый исполнитель простаивал 2+1=3 часа, второй 2+4=6 часов, третий 3+11=14 часов.

5.3. Критерий наименьшего резерва работы

В таблице 5.3 приведено пошаговое решение, полученное с использованием критерия наименьшего резерва работы.

Таблица 5.3: Решение задачи по шагам (критерий наименьшего резерва работы)

t	D	E	W	A	В	L
0	[]	[0]	[0 1] [0 2] [0 3]	[6 7 4]	[0 3] [0 2] [0 1]	[4 7 6]
4	[0 3]	[0]	[]	[]	[0 2] [0 1]	[3 2]
6	[0 1]	[0 1]	[1 2] [1 3]	[6 4]	[0 2] [1 3] [1 2]	[1 4 6]
7	[0 2]	[0 1]	[]	[]	[1 3] [1 2]	$[3\ 5]$
10	[1 3]	[0 1 3]	[3 4] [3 5] [3 6]	[6 4 6]	[1 2] [3 5] [3 6]	[2 4 6]
12	[1 2]	[0 1 2 3]	[2 4] [2 7] [3 4]	[5 5 6]	[3 5] [3 6] [2 7]	$[2\ 4\ 5]$
14	$[3\ 5]$	[0 1 2 3]	[2 4] [3 4]	[5 6]	[3 6] [2 7] [3 4]	[2 3 6]
16	[3 6]	[0 1 2 3 6]	$[2\ 4]\ [6\ 7]$	[5 7]	[2 7] [3 4] [6 7]	$[1 \ 4 \ 7]$
17	[2 7]	[0 1 2 3 6]	[2 4]	[5]	[3 4] [6 7] [2 4]	[3 6 5]
20	[3 4]	[0 1 2 3 6]	[]	[]	[6 7] [2 4]	[3 2]
22	[2 4]	[0 1 2 3 4 6]	[4 5] [4 7]	[4 3]	[6 7] [4 7] [4 5]	[1 3 4]
23	[6 7]	[0 1 2 3 4 6]	[]		[4 7] [4 5]	[2 3]
25	[4 7]	[0 1 2 3 4 6]	[]		[4 5]	[1]
26	[4 5]	[0 1 2 3 4 5 6]	[5 7]	[5]	[5 7]	[5]
31	[5 7]	[0 1 2 3 4 5 6 7]	[7 8]	[4]	[7 8]	[4]
35	[7 8]	[0 1 2 3 4 5 6 7 8]	[]	[]	[]	

На рис. 5.3 изображено распределение работ по ресурсам, полученное с использованием критерия наименьшего резерва работы.

Рис. 5.3: Распределение работ по ресурсам (критерий наименьшего резерва работы)

Общее время при данном критерии оказалось равно T=35 часам, при этом первый исполнитель простаивал 2+2+1=5 часов, второй 3+12=15 часов, третий 9 часов.

5.4. Критерий наибольшего резерва работы

В таблице 5.4 приведено пошаговое решение, полученное с использованием критерия наибольшего резерва работы.

Таблица 5.4: Решение задачи по шагам (критерий наибольшего резерва работы)

t	D	E	W	A	В	L
0	[]	[0]	[0 1] [0 2] [0 3]	[6 7 4]	[0 1] [0 2] [0 3]	[6 7 4]
4	[0 3]	[0]	[]	[]	[0 1] [0 2]	[2 3]
6	[0 1]	[0 1]	[1 2] [1 3]	[6 4]	[0 2] [1 2] [1 3]	[1 6 4]
7	[0 2]	[0 1]	[]	[]	[1 2] [1 3]	[5 3]
10	[1 3]	[0 1 3]	[3 4] [3 5] [3 6]	$[6\ 4\ 6]$	[1 2] [3 4] [3 6]	[2 6 6]
12	[1 2]	[0 1 2 3]	[2 4] [2 7] [3 5]	$[5\ 5\ 4]$	[3 4] [3 6] [2 4]	$[4 \ 4 \ 5]$
16	[3 4] [3 6]	[0 1 2 3 6]	[2 7] [3 5] [6 7]	$[5\ 4\ 7]$	[2 4] [6 7] [3 5]	[1 7 4]
17	[2 4]	[0 1 2 3 4 6]	[2 7] [4 5] [4 7]	[5 4 3]	[6 7] [3 5] [4 5]	[6 3 4]
20	$[3\ 5]$	[0 1 2 3 4 6]	[2 7] [4 7]	[5 3]	[6 7] [4 5] [4 7]	[3 1 3]
21	$[4\ 5]$	$[0\ 1\ 2\ 3\ 4\ 5\ 6]$	[2 7] [5 7]	$[5\ 5]$	[6 7] [4 7] [5 7]	[2 2 5]
23	[6 7] [4 7]	[0 1 2 3 4 5 6]	[2 7]	[5]	[5 7] [2 7]	[3 5]
26	[5 7]	[0 1 2 3 4 5 6]	[]	[]	[2 7]	[2]
28	[2 7]	[0 1 2 3 4 5 6 7]	[7 8]	[4]	[7 8]	[4]
32	[7 8]	[0 1 2 3 4 5 6 7 8]	[]	[]	[]	[]

На рис. 5.4 изображено распределение работ по ресурсам, полученное с использованием критерия наибольшего резерва работы.

Рис. 5.4: Распределение работ по ресурсам (критерий наибольшего резерва работы)

Общее время при данном критерии оказалось равно T=32 часам, при этом первый исполнитель простаивал 2 часа, второй 3+4=7 часов, третий 2+9=11 часов. Таким образом, оптимальными в данном случае оказался критерий наибольшего резерва работы.