

ENSAYO CURVAS CARACTERISTICAS DE UNA BOMBA CENTRIFUGA

Alumno: Carlos Aguilar Pinto

Asignatura: ICM557-3

Fecha: 11/12/2020

Profesores: Cristóbal Galleguillos Ketterer

Tomas Herrera Muñoz

Contenido

INTRODUCCIÓN	II
OBJETIVOS	
FORMULAS Y DATOS	IV
TABLA VALORES MEDIDOS	VI
TABLA VALORES CALCULADOS.	VIII
DESARROLLO.	IX
GRAFICO DE ISORENDIMIENTO Y POTENCIA VS CAUDAL	ıx
¿CUÁLES SON LAS CONDICIONES ÓPTIMAS DE OPERACIÓN DE ESTA BOMBA?	X
¿LAS CURVAS TIENEN LA FORMA ESPERADA?	X
¿Cuál es la potencia máxima consumida?	X
¿Qué tipo de curvas son?	X
Gráfico de curva $\Psi vs \Phi$.	XI
¿LA NUBE DE PUNTOS QUE CONFORMAN ESTA CURVA SON MUY DISPERSOS?	XII
AL OBSERVAR LAS CURVAS ANTERIORES, ¿QUÉ TIPO DE BOMBA CENTRIFUGA ES? JUSTIFICAR.	XII
CALCULAR LA VELOCIDAD ESPECIFICA Y DETERMINAR SI LAS CARACTERÍSTICAS CONSTRUCTIVAS Y OPERACIONALES SON	
CONCORDANTES CON ESA VELOCIDAD ESPECÍFICA Y SU RESPUESTA	XII
CONCLUSIÓN	
I\LI LI\LIYUMJ:	V

Introducción.

En el presente informe se evaluará y analizará una bomba centrifuga marca $Leader\ modelo\ M18$, con el fin de obtener sus curvas características operando a distintos parámetros.

Objetivos.

Analizar el comportamiento de una bomba centrifuga mediante sus curvas características.

Formulas y datos.

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left[\frac{m^3}{h}\right]$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \left[m_{ca}\right]$$

cpdx=165 [mm]

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \left[m_{ca}\right]$$

Potencia en el eje de la bomba:

$$Nex = 0,0007355 Fxnx [kW]$$

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

 γ peso específico del agua en $[{
m N/m^3}]$

Rendimiento global:

$$\eta_{\rm gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D2 diámetro exterior del rodete

B2 ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2} \quad [-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

MARCA - MODELO	DN/DA	DN/D D	Dı	D_2	Dc	Bı	B ₂	b 1	b ₂	Z
	in	in	mm	mm	mm	mm	mm	0	0	-
Leader - M18	4	4	71	135	30	37	24.3	16	20	5
Leader - M19	5	5	100	165	47		24			7

Ilustración 1: Características de bombas

Tabla valores medidos.

					VALORES	MEDIDOS	I			
					3070	[rpm]				
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	T	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7

Ilustración 2: Valores medidos a 3070 [rpm]

	VALORES MEDIDOS												
					2900	[rpm]							
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}			
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]			
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7			
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7			
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7			
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7			
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7			
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7			
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7			
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7			
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7			
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7			
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7			
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7			

Ilustración 3: Valores medidos a 2900 [rpm]

	VALORES MEDIDOS											
					2700	[rpm]						
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	Т	P _{atm}		
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]		
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7		
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7		
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7		
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7		
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7		
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7		
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7		
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7		
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7		
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7		
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7		
12	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7		

Ilustración 4: Valores medidos a 2700 [rpm]

Tabla valores calculados.

	1° Medición												
Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	Ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	%	[m/s]	[m/s]	-	-
118,8	118,607	-1,165	2,765	3,93		3,48296	3,466	1,26563	36,5156	21,7006	3,19681	0,14731	0,16321
108	107,789	-0,915	5,605	6,52		3,80083	3,77863	1,90698	· ·		2,90525		
100,8	100,603	-0,635	7,925	8,56	8,52664		4,02604	2,33673			2,71157	0,12495	
97,2	97,0104	-0,415	9,965	10,38	10,3395	4,18544	4,16099	2,73236			2,61472	-	0,43078
90	89,7953	-0,175	11,805	11,98	11,9256		4,2482	2,91709		_	2,42025		0,49686
79,2	78,9942	0,055	13,925	13,87	13,798	4,32399	4,29036	2,96913	69,2046		2,12913		0,57488
72	71,8129	0,405	16,685	16,28	16,1955	4,34663	4,31282	3,16821	73,4603	21,7006	1,93557	0,08919	0,67476
64,8	64,6316	0,645	18,645	18	17,9066	4,27871	4,24544	3,15264	74,2596	21,7006	1,74202	0,08028	0,74605
57,6	57,4503	0,885	19,845	18,96	18,8616	4,14288	4,11066	2,95181	71,8086		1,54846	0,07136	0,78584
36	35,9181	1,135	21,925	20,79	20,6955	3,8247	<u> </u>	2,02492	· ·	21,7006	0,9681	0,04461	0,86225
28,8	28,7251	1,315	22,925	21,61	21,4978	3,509	3,48171	1,68219	48,3151	21,7006	0,77423	0,03568	0,89568
0	0	1,935	25,005	23,07	22,9502	2,55817	2,53828	0	0	21,7006	0	0	0,95619
						2° Me	dición				,	ı	
Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	Ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	%	[m/s]	[m/s]	-	-
108	107,888	-0,965	2,645	3,61		2,92516		1,05877	36,3077		2,90792	0,14186	0,16821
104,4	104,292	-0,725	5,245	5,97	<u> </u>	3,13868	3,71211	1,89682	· ·		2,81099	0,12954	-
97,2	97,0996	-0,485	6,725	7,21	8,0634	3,30949	3,91413	2,13282			2,61713	0,1206	0,33595
93,6	93,5033	-0,245	8,725	8,97		3,45895	4,0909	2,55517		21,7006	2,5202	0,11614	
86,4	86,3107	-0,065	10,605	10,67		3,52301	4,16666	2,80563		-	2,32634	0,1072	0,49717
75,6	75,5479	0,225	12,365	12,14		3,58583	4,24534	2,79603			2,03624		0,56605
68,4	68,3058	0,445	14,365	13,92	-	-	,	2,89467	67,8746	21,7006	-	0,08484	
64,8	64,7553	0,695	16,245	15,55	17,4025	3,58583	4,24534	3,06977	72,3092		1,74535	0,08043	0,72505
54	53,9442	0,885	17,885	17	19,0122	3,41625	4,04039	2,79379	69,1466	21,7006	1,45396	0,067	0,79212
36	35,9628	1,115	19,405	18,29	20,4549	3,18138		2,00386			0,96931	0,04467	0,85222
28,8	28,7603	1,345	20,645	19,3	21,5695	2,92617	3,45721	1,68987	48,8796	21,7006	0,77518	0,03572	0,89867
0	0	1,835	22,605	20,77	23,2124	2,00774	2,3721	0	0	21,7006	0	0	0,96711
		,			,								
						3° Me	dición						
Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	ηgl	U2	cm2	ф	Ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	%	[m/s]	[m/s]	-	-
100,8	100,725	-0,685	2,485	3,17	3,16531	-	2,30018	0,86851	37,7583	19,0852		0,14225	0,1705
97,2	97,0921	-0,435	4,365	4,8	4,78935		2,45699	1,26671		19,0852		0,13712	
93,6	93,4961	-0,265	5,965	6,23		2,58447	2,57588	1,5832	61,4625	19,0852	2,52		0,33483
90	89,9001	-0,115	7,405	7,52	7,50332	2,664	2,65514	1,83752	69,2062	19,0852		0,12696	
79,2	79,1414	0,125	9,205	9,08	9,06656	2,7425	2,73642	1,95463		19,0852	2,1331	0,11177	
72	71,9201	0,365	10,925	10,56	10,5366	2,78328	2,77402	2,06428		19,0852	1,93846	0,10157	0,56755
68,4	68,3241	0,595	13,005	12,41	12,3825	2,78328	2,77402	2,30462	83,0786	19,0852	1,84154	0,09649	0,66698
61,2	61,1547	0,795	14,605	13,81	13,7896		2,73642	2,2972	83,9491	19,0852	1,6483	0,08637	
46,8	46,7654	1,015	16,125	15,11	15,0876			1,92205	74,5619	19,0852		0,06604	
32,4	32,364	1,245	17,565	16,32	16,2838		2,3381	1,43561		19,0852		0,04571	0,87713
25,2	25,172	1,375	18,285	16,91	-	2,08746	2,08052	1,15695	· ·	19,0852	0,67846		
0	0	1,845	19,805	17,96		1,55068	-	0	0	19,0852	0	0	0,96527

Desarrollo.

Grafico de isorendimiento y potencia vs caudal.

Ilustración 5: grafico isorendimiento vs caudal.

Ilustración 6: grafico de potencia vs caudal.

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las condiciones optimas se estima para los mejores valores de rendimiento, correspondiente a los datos obtenidos a 2700~rpm con una eficiencia del 83.95%

¿Las curvas tienen la forma esperada?

Si, cada curva hecha tiene las formas esperadas para esta experiencia. Esto corresponde a que la ejecución del ensayo, así como el análisis de datos fue correcto.

¿Cuál es la potencia máxima consumida?

La máxima potencia consumida se obtiene cuando tenemos el máximo valor calculado para la potencia en el eje. Ese valor se obtiene en el segundo dato medido a $2900 \ rpm$ correspondiente a $4.265 \ kW$.

¿Qué tipo de curvas son?

La curva rendimiento vs Q nos muestra la curva parabólica del rendimiento según el caudal que se tiene, se puede observar que tiene un peak de rendimiento óptimo.

La curva Potencia vs Q presenta una curva creciente y decreciente tipo parabólica, que nos muestra un peak de potencia en un rango del caudal.

Gráfico de curva $\Psi vs \Phi$.

Ilustración 7: Curva de Ψ vs Φ.

¿La nube de puntos que conforman esta curva son muy dispersos?

Este grafico nos permite la comparación entre bombas geométrica y dinámicamente similares. En el ensayo se trabajo con la misma maquina por los que, aunque se cambiaban las condiciones iniciales del ensayo sigue describiendo el mismo comportamiento.

Al observar las curvas anteriores, ¿Qué tipo de bomba centrifuga es? Justificar.

Es una bomba centrifuga de velocidad media. Esto se puede explicar gracias al grafico de la curva H vs Q del tipo descendente, es decir a bajos regímenes de caudal mayor valores de altura.

Calcular la velocidad especifica y determinar si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta.

$$n_{SQ} = \frac{n * \sqrt{Q}}{H^{3/4}}$$

$$n = 2900 [rpm]$$

 $Q = 75.6 [m_3/h] = 332.8578 [gpm]$
 $H = 13.59 [m. ca] = 44.5866 [ft]$
 $nSQ = 3066.36677173$

Ilustración 8: grafico eficiencia vs velocidad especifica.

De lo que podemos observar, vemos una concordancia con el grafico puesto de una bomba centrifuga por lo que podemos decir que lo dicho anteriormente es verídico.

Conclusión.

Los objetivos buscados se cumplieron en su cabalidad sin inconvenientes, se pudo observar el comportamiento de la bomba bajo distintas condiciones de funcionamiento mediante el análisis de gráficos.

Referencias.

Apuntes profesor Ramiro Mege Turbomáquinas.