PAPER-III COMPUTER SCIENCE

	COMPU	TER SCIENCE
Si	gnature and Name of Invigilator	
1.	(Signature)	OMR Sheet No.:
	(Name)	(To be filled by the Candidate)

(Name) ______ **D 8 7 1 4**

2. (Signature) _

Time: 2 ½ hours] [Maximum Marks: 150

Roll No.

Roll No._

Number of Pages in this Booklet: 16

Instructions for the Candidates

- Write your roll number in the space provided on the top of this page.
- This paper consists of seventy five multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - (i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be
 - (iii) After this verification is over, the OMR Sheet Number should be entered on this Test Booklet.
- Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the circle as indicated below on the correct response against each item.

Example: (A) (B) (D)

where (C) is the correct response.

- Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the test question booklet and Original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are, however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There is no negative marks for incorrect answers.

Number of Questions in this Booklet: 75

(In figures as per admission card)

परीक्षार्थियों के लिए निर्देश

(In words)

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए ।
- 2. इस प्रश्न-पत्र में पचहत्तर बहुविकल्पीय प्रश्न हैं।
- परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी । पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्निलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है :
 - (i) प्रश्न-पुस्तिका खोलने के लिए उसके कवर पेज पर लगी कागज की सील को फाड़ लें । खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें ।
 - (ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं । दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात् किसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें । इसके लिए आपको पाँच मिनट दिये जायेंगे । उसके बाद न तो आपकी प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा ।
 - (iii) इस जाँच के बाद OMR पत्रक की क्रम संख्या इस प्रश्न-पुस्तिका पर अंकित कर दें ।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (A), (B), (C) तथा (D) दिये गये हैं । आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है ।

उदाहरण :(A) (B) ■ (1 जबिक (C) सही उत्तर है।

- 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं । यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा ।
- अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें ।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ट पर करें ।
- उ. यिंद आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं ।
- 9. आपको परीक्षा समाप्त होने पर प्रश्न-पुस्तिका एवं मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें । हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं ।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें ।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है ।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

D-87-14 | P.T.O.

COMPUTER SCIENCE PAPER – III

Note: This paper contains **seventy five (75)** objective type questions of **two (2)** marks each. **All** questions are compulsory.

	-							
1.	sec rea	onds, d, hit avera	main ratio	mem of 0.3 cess t	ory acc 8 for re	ess time of 3 ad access and	00 nad the oth for	ne memory has cache access time of 50 nano no seconds, 75% of memory requests are for write-through scheme is used. What will be read and write requests? 110 n.sec.
	(\mathbf{C})		n.sec.				(B) (D)	
2.	Foi	switc	ching	from ate		user mode to	, ,	upervisor mode following type of interrupt is External interrupts
	(C)	Sof	tware	inter	rupts		(D)	None of the above
 4. 	cha of t giv (A) (B) (C) (D)	the do en by 125 250 166 250	s is 2 t mate which 5 char 6 char 6 char 9 char	m.se rix pr h of the rs/secons	inter in the following and	the number of characters powing options 10.8 seconds 10.8 seconds 10.4 seconds 10.4 seconds 10.4 seconds	of cha er sec ?	aracter is 6 m.sec., time to space in between aracters in a line are 200. The printing speed ond and the time to print a character line are the flags:
		List – XCH(i.	only or	List – II arry flag is af	factod	ı
	a. b.	SUB	U	ii.	•	gs are affected		
		STC				,		flag are affected.
		DCR		iv.	_	gs are affected	•	mag are arrected.
		des:			WII 1100	,5 010 0110000		
		a	b	c	d			
	(A)	iv	i	iii	ii			
	(B)		ii	i	iv			
	(C)		iii	i	iv			
	(D)	ii	iv	i	iii			

5.	How	many times will the following loop LXI B, 0007 H	p be ex	xecuted?						
	LOP	: DCX B								
		MOV A, B								
		ORA C								
		JNZ LOP								
	(A)	05	(B)	07						
	(C)	09	(D)	00						
6.	Spec	ify the contents of the accumulator	and tl	ne status of the S, Z and CY flags when 8085						
	micr	oprocessor performs addition of 87	H and	179 H.						
	(A)	11, 1, 1, 1	(B)	10, 0, 1, 0						
	(C)	01, 1, 0, 0	(D)	00, 0, 1, 1						
7.	Loca	tion transparency allows:								
	I.	Users to treat the data as if it is do	ne at	one location.						
	II.	Programmers to treat the data as is	f it is a	at one location.						
	III. Managers to treat the data as if it is at one location.									
	Whi	ch one of the following is correct?								
	(A)	I, II and III	(B)	I and II only						
	(C)	II and III only	(D)	II only						
8.	Whi	ch of the following is correct?								
	I. Two phase locking is an optimistic protocol.									
	II.	Two phase locking is pessimistic	protoc	eol						
	III. Time stamping is an optimistic protocol.									
	IV.	Time stamping is pessimistic prot	ocol.							
	(A)	I and III	(B)	II and IV						
	(C)	I and IV	(D)	II and III						
9.		rules used to limit the vol	ume o	f log information that has to be handled and						
	proc	essed in the event of system failure	invol	ving the loss of volatile information.						
	(A)	Write-ahead log	(B)	Check-pointing						
	(C)	Log buffer	(D)	Thomas						
10.	Let F	R = ABCDE is a relational scheme v	vith fu	nctional dependency set $F = \{A \rightarrow B, B \rightarrow C,$						
	AC -	\rightarrow D}. The attribute closures of A a	ınd E a	are						
	(A)	ABCD, φ	(B)	ABCD, E						
	(C)	Φ,ϕ	(D)	ABC, E						
D-87	7-14		3	Paper-III						

11.	Cons	sider	the fo	llowir	ng staten	nents	:			
	I. Re-construction operation used in mixed fragmentation satisfies commutativ							d fragmentation satisfies commutative rule.		
	II.	Re-	Re-construction operation used in vertical fragmentation satisfies commutative rule							
	Whi	ch of	h of the following is correct?							
	(A)	I								
	(B)	II								
	(C)	Bot	h are	correc	t					
	(D)	Nor	ne of t	he sta	tements	are c	orrect.			
12.	Whi	ch of	the fo	ollowi	ng is fals	se?				
	(A)	Eve	ry bir	ary re	lation is	neve	er be in BC	NF.		
	(B)	Eve	ry BC	CNF re	elation is	in 31	NF.			
	(C)	1 N	F, 2 N	VF, 3 1	NF and E	CNF	are based	on functional dependencies.		
	(D)	Mu	ltivalı	ied De	ependenc	y (M	IVD) is a sp	pecial case of Join Dependency (JD).		
13.	Whi	ch of	the fo	Mowi	na categ	ories	of language	es do not refer to animation languages?		
13.	(A)			l langı	-	orics	(B)	General-purpose languages		
	(C)		-	st nota	•		(D)	None of the above		
	(C)	Lin	cai iii	st mota	.tions		(D)	Trone of the above		
14.	Mato	ch the	e follo	wing	:					
			List	– I			List	– II		
	а. Т	Tablet	t, Joys	stick		i.	Continuo	us devices		
	b. L	Light	Pen,	Γouch	Screen	ii.	Direct de	vices		
	c. L	Locate	or, Ke	yboar	d	iii. Logical devices				
	d. I	Data (Globe	, Soni	c Pen	iv.	3D intera	ction devices		
	Cod	es:								
		a	b	c	d					
	(A)	ii	i	iv	iii					
	(B)	i	iv	iii	ii					
	(C)	i	ii	iii	iv					
	(D)	iv	iii	ii	i					
15.	Δ tea	chnia	nie nic	ed to s	nnroxim	nate h	nalftones w	ithout reducing spatial resolution is known as		
10.		ciniiq	·	ca to t	фриоли	iate i	idittolles w	amout reducing spatial resolution is known as		
	(A)	Hal	ftonin	ıg			(B)	Dithering		
	(C)	Erro	or diff	usion			(D)	None of the above		
Pap	er-III						4	D-87-14		

- **16.** Consider a triangle represented by A(0, 0), B(1, 1), C(5, 2). The triangle is rotated by 45 degrees about a point P(-1, -1). The co-ordinates of the new triangle obtained after rotation shall be _____
 - (A) A' $\left(-1, \sqrt{2} 1\right)$, B' $\left(-1, 2\sqrt{2} 1\right)$, C' $\left(\frac{3}{2}\sqrt{2} 1, \frac{9}{2}\sqrt{2} 1\right)$
 - (B) A' $(\sqrt{2}-1,-1)$, B' $(2\sqrt{2}-1,-1)$, C' $(\frac{3}{2}\sqrt{2}-1,\frac{9}{2}\sqrt{2}-1)$
 - (C) A' $\left(-1, \sqrt{2} 1\right)$, B' $\left(2\sqrt{2} 1, -1\right)$, C' $\left(\frac{3}{2}\sqrt{2} 1, \frac{9}{2}\sqrt{2} 1\right)$
 - (D) A' $\left(-1, \sqrt{2} 1\right)$, B' $\left(2\sqrt{2} 1, -1\right)$, C' $\left(\frac{9}{2}\sqrt{2} 1, \frac{3}{2}\sqrt{2} 1\right)$
- **17.** In Cyrus-Beck algorithm for line clipping the value of t parameter is computed by the relation :

(Here P_1 and P_2 are the two end points of the line, f is a point on the boundary, n_1 is inner normal)

(A)
$$\frac{(P_1 - f_i) \cdot n_i}{(P_2 - P_1) \cdot n_i}$$

(B)
$$\frac{(f_i - P_1) \cdot n_i}{(P_2 - P_1) \cdot n_i}$$

$$(C) \quad \frac{(P_2-f_i)\cdot n_i}{(P_1-P_2)\cdot n_i}$$

(D)
$$\frac{(f_i - P_2) \cdot n_i}{(P_1 - P_2) \cdot n_i}$$

- **18.** Match the following:
 - a. Cavalier Projection
- i. The direction of projection is chosen so that there is no foreshortening of lines perpendicular to the *xy* plane.
- b. Cabinet Projection
- ii. The direction of projection is chosen so that lines perpendicular to the *xy* planes are foreshortened by half their lengths.
- c. Isometric Projection
- iii. The direction of projection makes equal angles with all of the principal axis.
- d. Orthographic Projection
- iv. Projections are characterized by the fact that the direction of projection is perpendicular to the view plane.

Codes:

- (A) i iii iv ii
- (B) ii iii i iv
- (C) iv ii iii i
- (D) i ii iii iv

19.	Consider	the 1	following	statements	S1,	S2	and S	33	:

- S1: In call-by-value, anything that is passed into a function call is unchanged in the caller's scope when the function returns.
- S2: In call-by-reference, a function receives implicit reference to a variable used as argument.
- S3: In call-by-reference, caller is unable to see the modified variable used as argument.
- (A) S3 and S2 are true.
- (B) S3 and S1 are true.
- (C) S2 and S1 are true.
- (D) S1, S2, S3 are true.
- **20.** How many tokens will be generated by the scanner for the following statement?

$$x = x * (a + b) - 5;$$

(A) 12

(B) 11

(C) 10

- (D) 07
- **21.** Which of the following statements is not true?
 - (A) MPI_Isend and MPI_Irecv are non-blocking message passing routines of MPI.
 - (B) MPI_Issend and MPI_Ibsend are non-blocking message passing routines of MPI.
 - (C) MPI_Send and MPI_Recv are non-blocking message passing routines of MPI.
 - (D) MPI_Ssend and MPI_Bsend are blocking message passing routines of MPI.
- **22.** The pushdown automation $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, 1\}, \delta, q_0, 0, \{q_0\})$ with

$$\delta(q_0, a, 0) = \{(q_1, 10)\}\$$

$$\delta(q_1, a, 1) = \{(q_1, 11)\}$$

$$\delta(q_1, b, 1) = \{(q_2, \lambda)\}$$

$$\delta(q_2, b, 1) = \{(q_2, \lambda)\}$$

$$\delta(q_2, \lambda, 0) = \{(q_0, \lambda)\}$$

Accepts the language

(A)
$$L = \{a^n b^m \mid n, m \ge 0\}$$

(B)
$$L = \{a^n b^n \mid n \ge 0\}$$

(C)
$$L = \{a^n b^m \mid n, m > 0\}$$

(D)
$$L = \{a^n b^n \mid n > 0\}$$

23. Given two languages:

$$L_1 = \{(ab)^n \ a^k \mid n > k, \ k \ge 0\}$$

$$L_2 = \{a^n b^m \mid n \neq m\}$$

Using pumping lemma for regular language, it can be shown that

- (A) L_1 is regular and L_2 is not regular.
- (B) L_1 is not regular and L_2 is regular.
- (C) L_1 is regular and L_2 is regular.
- (D) L_1 is not regular and L_2 is not regular.
- **24.** Regular expression for the complement of language $L = \{a^n b^m \mid n \ge 4, m \le 3\}$ is
 - (A) $(a + b)^* ba(a + b)^*$
 - (B) a* bbbbb*
 - (C) $(\lambda + a + aa + aaa)b^* + (a + b)^* ba(a + b)^*$
 - (D) None of the above

25.	For n devices in a network, mesh topology.	_ numl	per of duplex-mode links are required for a
	(A) n(n+1)	, ,	n(n-1)
	(C) $n(n+1)/2$	(D)	n(n-1)/2
26.	line if the transfer is asynchronous? (A	ssumii	
	(A) 300 (C) 3(0)	(B)	320
	(C) 360	(D)	400
27.	Which of the following is not a field in	TCP h	neader?
	(A) Sequence number	(B)	Fragment offset
	(C) Checksum	(D)	Window size
28.	What is the propagation time if the distance the propagation speed to be 2.4×10^8 m		between the two points is 48,000? Assume econd in cable.
	(A) 0.5 ms	(B)	20 ms
	(C) 50 ms	(D)	200 ms
29.	<u>*</u>	col fo	r communication over point-to-point and
	multipoint links.	(D)	LIDL C
	(A) Stop-and-wait	(B)	HDLC Go book N
	(C) Sliding window	(D)	Go-back-N
30.	Which one of the following is true for a	symm	etric-key cryptography?
	· · · · · · · · · · · · · · · · · · ·	_	public key is announced to the public.
			rivate key is announced to the public.
	(C) Both private key and public key a		
	(D) Both private key and public key a	re ann	ounced to the public.
31.	Any decision tree that sorts n elements l	has he	ight
	(A) $\Omega(n)$	(B)	```
	(C) $\Omega(nlgn)$	(D)	$\Omega(n^2)$
32.	Match the following:		
		List –	II
	a. Bucket sort i. ($O(n^3 lg)$	n)
	b. Matrix chain multiplication ii. ($O(n^3)$	
		O(nlgn	1)
		O(n)	,
	Codes:	` /	
	a b c d		
	(A) iv ii i iii		
	(B) ii iv i iii		
	(C) iv ii iii i		
	(D) iii ii iv i		

- 33. We can show that the clique problem is NP-hard by proving that
 - (A) $CLIQUE \le P 3-CNF_SAT$
 - (B) CLIQUE ≤ P VERTEX COVER
 - (C) CLIQUE ≤ P SUBSET_SUM
 - (D) None of the above
- **34.** Dijkstra algorithm, which solves the single-source shortest--paths problem, is a ______, and the Floyd-Warshall algorithm, which finds shortest paths between all pairs of vertices, is a ______
 - (A) Greedy algorithm, Divide-conquer algorithm
 - (B) Divide-conquer algorithm, Greedy algorithm
 - (C) Greedy algorithm, Dynamic programming algorithm
 - (D) Dynamic programming algorithm, Greedy algorithm
- 35. Consider the problem of a chain $<A_1$, A_2 , $A_3>$ of three matrices. Suppose that the dimensions of the matrices are 10×100 , 100×5 and 5×50 respectively. There are two different ways of parenthesization : (i) $((A_1 \ A_2)A_3)$ and (ii) $(A_1(A_2 \ A_3))$. Computing the product according to the first parenthesization is ______ times faster in comparison to the second parenthesization.
 - (A) 5

(B) 10

(C) 20

- (D) 100
- **36.** Suppose that we have numbers between 1 and 1000 in a binary search tree and we want to search for the number 365. Which of the following sequences could not be the sequence of nodes examined?
 - (A) 4, 254, 403, 400, 332, 346, 399, 365
 - (B) 926, 222, 913, 246, 900, 260, 364, 365
 - (C) 927, 204,913, 242, 914, 247, 365
 - (D) 4, 401, 389, 221, 268, 384, 383, 280, 365
- **37.** Which methods are utilized to control the access to an object in multi-threaded programming?
 - (A) Asynchronized methods
- (B) Synchronized methods
- (C) Serialized methods
- (D) None of the above
- **38.** How to express that some person keeps animals as pets?

39.	Conv		ts cor	responding wrapper class object instance is
		Boxing Instantiation	(B) (D)	Wrapping Autoboxing
40.	(A) (B) (C)	behaviour of the document elements Using document object Registering appropriate event hand Using element object All of the above		ML can be defined by
41.	Wha (A) (B) (C) (D)	t is true about UML stereotypes? Stereotype is used for extending the Stereotyped class must be abstract. The stereotype indicates that the UML profiles can be stereotyped for the stereotype for the stereo	JML e	element cannot be changed
42.	Which (A) (C)	ch method is called first by an apple start() init()	et prog (B) (D)	run() begin()
43.		ch one of the following is not a sour Halstead metric Complexity metric		de metric ? Function point metric Length metric
44.	FP =	ors (VAF) based on n questions. The	$E(F_i)$	where F_i (i = 1 to n) are value adjustment
45.	of ris Only appli reusa softv	sk in the following manner: 70 percent of the software componication and the remaining functionable components were planned w	ents s nality vith a	cheduled for reuse will be integrated into the will have to be custom developed. If 60 verage component size as 100 LOC and 4, then the risk exposure would be \$20,160 \$15,120
46.	Max (A) (C)	imum possible value of reliability is 100 1	(B) (D)	10 0
47.	'FAN (A) (B) (C) (D)	N IN' of a component A is defined a Count of the number of component Number of components related to Number of components dependent None of the above	ts that	
D-87	-14		9	Paper-III

49.		•	perat	ing system can be arranged as follows in					
	incre	easing order of accessing speed:							
	(A)		$cs \rightarrow$	optical disks \rightarrow electronic disks \rightarrow main					
		memory \rightarrow cache \rightarrow registers							
	(B)	Magnetic tapes → magnetic disk	$cs \rightarrow$	electronic disks \rightarrow optical disks \rightarrow main					
		memory \rightarrow cache \rightarrow registers							
	(C)	Magnetic tapes \rightarrow electronic disks \rightarrow magnetic disks \rightarrow optical disks \rightarrow main							
		memory \rightarrow cache \rightarrow registers							
	(D)	D) Magnetic tapes → optical disks → magnetic disks → electronic disks → main memory → cache → registers							
50.	Ном	many disk blocks are required to b	zeen 1	list of free disk blocks in a 16 GB hard disk					
20.			_	e disk blocks? Assume that the disk block					
		ber is stored in 32 bits.							
	(A)	1024 blocks	(B)	16794 blocks					
	(C)	20000 blocks	(D)	1048576 blocks					
51.				. A request come to read a block on cylinder					
		•	_	ss, new requests come in for cylinders 1, 36,					
			umbe	er of arm motions using shortest seek first					
	(A)	rithm is 111	(B)	112					
	(\mathbf{C})		(D)	61					
	(0)		(D)						
52.	An c	operating system has 13 tape drives.	There	e are three processes P1, P2 & P3. Maximum					
				ape drives and P3 is 8 tape drives. Currently,					
				tape drives and P3 is allocated 2 tape drives.					
		ch of the following sequences repres							
	(A)		(B)	P2 P3 P1					
	(C)	P1 P2 P3	(D)	P1 P3 P2					
53.	Man	itor is an Interprocess Communicati	on (II	PC) technique which can be described as					
33.		<u>*</u>		imitive and is a collection of procedures,					
	(11)	variables, and data structures group	-						
	(B)	-	-	from initialization can be acted upon by wait					
	(2)	and signal operations.	ap ar c	man of word upon of war					
	(C)		ceive	which are system calls rather than language					
	(D)	It consists of the IPC primitives i	mple	mented as system calls to block the process					
		when they are not allowed to enter	critic	cal region to save CPU time.					
Pape	er-III		10	D-87-14					
1			-	**					

Temporal cohesion means

(A) Coincidental cohesion

(B) Cohesion between temporary variables(C) Cohesion between local variables(D) Cohesion with respect to time

48.

54.	(A) Logical combination(B) Logical combination	of virtual of physica	memorio al memo		which is
55.	Equivalent logical expression $\sim (\forall x) F[x]$ is	on for the	Well Fo	rmed Formula (WFF),	
	(A) $\forall x (\sim F[x])$		(B)	$\sim (\exists x) F[x]$	
	(C) $\exists x (\neg F[x])$		(D)		
56.	(B) generates all successor node to a goal node with shortest cost.	arch when or nodes a through e	re most pand compeach of t	ne which romising child is selected for utes an estimate of distance (ne successors. It then choose rt node to all generated node	cost) from start s the successor
57.	The resolvent of the set of C $(A \lor B, \sim A \lor D, C \lor \sim B)$ is $(A) A \lor B$		(B)	$C \vee D$	
	(C) A \vee C		(D)	$A \lor D$	
58.	Match the following:				
	a. Script	i.		l graph with labelled nodes al representation of knowledge	
	b. Conceptual Dependenci	es ii.	stored i	dge about objects and event record-like structures consis and slot values.	
	c. Frames	iii.		e concepts and rules to repre- anguage statements	sent
	d. Associative Network	iv.	stereoty occurrin	ike structures used to repre- pical patterns for common ag events in terms of actors, road scenes	only
	Codes:		-		
	a b c d				
	(A) iv ii i iii				
	• •				

(B) iv

(C) ii

i

(D)

iii

iii

iii

ii

iv

iv

i

i

ii

- **59.** Match the following components of an expert system :
 - a. I/O interface
- i. Accepts user's queries and responds to question through I/O interface
- b. Explanation module
- ii. Contains facts and rules about the domain
- c. Inference engine
- iii. Gives the user, the ability to follow inferencing steps at any time during consultation
- d. Knowledge base
- iv. Permits the user to communicate with the system in a natural way

Codes:

- a b c d
- (A) i iii iv ii
- (B) iv iii i ii
- (C) i iii ii iv
- (D) iv i iii ii
- **60.** A computer based information system is needed:
 - I. as it is difficult for administrative staff to process data.
 - II. due to rapid growth of information and communication technology.
 - III. due to growing size of organizations which need to process large volume of data.
 - IV. as timely and accurate decisions are to be taken.

Which of the above statement(s) is/are true?

- (A) I and II
- (B) III and IV
- (C) II and III
- (D) II and IV
- **61.** Given the recursively enumerable language (L_{RE}) , the context sensitive language (L_{CS}) , the recursive language (L_{REC}) , the context free language (L_{CF}) and deterministic context free language (L_{DCF}) . The relationship between these families is given by
 - (A) $L_{CF} \subseteq L_{DCF} \subseteq L_{CS} \subseteq L_{RE} \subseteq L_{REC}$
 - (B) $L_{CF} \subseteq L_{DCF} \subseteq L_{CS} \subseteq L_{REC} \subseteq L_{RE}$
 - (C) $L_{DCF} \subseteq L_{CF} \subseteq L_{CS} \subseteq L_{RE} \subseteq L_{REC}$
 - (D) $L_{DCF} \subseteq L_{CF} \subseteq L_{CS} \subseteq L_{REC} \subseteq L_{RE}$

62. Match the following:

c. Context sensitive grammar

Context free grammar

b. Regular grammar

d. Unrestricted grammar

List - II

i. Linear bounded automaton

ii. Pushdown automaton

iii. Turing machine

iv. Deterministic finite automaton

Codes:

63. According to pumping lemma for context free languages:

Let L be an infinite context free language, then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as $w = u \vee x \vee z$

(A) with
$$|vxy| \le m$$
 such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2$

(B) with
$$|vxy| \le m$$
, and $|vy| \ge 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$

(C) with
$$|vxy| \ge m$$
, and $|vy| \le 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$

(D) with
$$|vxy| \ge m$$
, and $|vy| \ge 1$, such that $uv^i xy^i z \in L$ for all $i = 0, 1, 2, \ldots$

Given two spatial masks 64.

$$\mathbf{S}_1 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & -4 & 0 \\ 0 & 1 & 0 \end{array} \right] \text{ and } \mathbf{S}_2 = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

The Laplacian of an image at all points (x, y) can be implemented by convolving the image with spatial mask. Which of the following can be used as the spatial mask?

(A) only
$$S_1$$

(C) Both
$$S_1$$
 and S_2

65. Given a simple image of size 10×10 whose histogram models the symbol probabilities and is given by

p_1	p_2	p_3	p_4
a	b	С	d

The first order estimate of image entropy is maximum when

(A)
$$a = 0, b = 0, c = 0, d = 1$$

(B)
$$a = \frac{1}{2}$$
, $b = \frac{1}{2}$, $c = 0$, $d = 0$

(C)
$$a = \frac{1}{3}, b = \frac{1}{3}, c = \frac{1}{3}, d = 0$$

(C)
$$a = \frac{1}{3}, b = \frac{1}{3}, c = \frac{1}{3}, d = 0$$
 (D) $a = \frac{1}{4}, b = \frac{1}{4}, c = \frac{1}{4}, d = \frac{1}{4}$

$$(A) \quad \frac{1}{1 + \left[\frac{D(u, v)}{D_0}\right]^{2n}}$$

(B)
$$\frac{1}{1 + \left[\frac{D(u, v)}{D_0}\right]^n}$$

(C)
$$\frac{1}{1 + \left[\frac{D_0}{D(u, v)}\right]^{2n}}$$

(D)
$$\frac{1}{1 + \left[\frac{D_0}{D(u, v)}\right]^n}$$

- **67.** If an artificial variable is present in the 'basic variable' column of optimal simplex table, then the solution is
 - (A) Optimum

(B) Infeasible

(C) Unbounded

- (D) Degenerate
- **68.** The occurrence of degeneracy while solving a transportation problem means that
 - (A) total supply equals total demand
 - (B) total supply does not equal total demand
 - (C) the solution so obtained is not feasible
 - (D) none of these
- **69.** Five men are available to do five different jobs. From past records, the time (in hours) that each man takes to do each job is known and is given in the following table :

				Jobs	3	
		I	II	III	IV	V
	P	2	9	2 7 5 7	7	1
	Q	6	8	7	6	1
Men	R	4	6	5	3	1
	S	4	2	7	3	1
	T	5	3	9	5	1

Find out the minimum time required to complete all the jobs.

(A) 5

(B) 11

(C) 13

- (D) 15
- **70.** Consider the following statements about a perception :
 - I. Feature detector can be any function of the input parameters.
 - II. Learning procedure only adjusts the connection weights to the output layer.

Identify the correct statement out of the following:

- (A) I is false and II is false.
- (B) I is true and II is false.
- (C) I is false and II is true.
- (D) I is true and II is true.

71.	A _		p	oint o	of a f	azzy set A is a point $x \in X$ at which $\mu_A(x) = 0.5$					
	(A)	core	e			(B) support					
	(C)	cro	ssovei	ſ		(D) α-cut					
72.		tch th ning:		owing	g lea	rning modes w.r.t. characteristics of available information for					
	a. Supervised				i.	Instructive information on desired responses, explicitly specified by a teacher.					
	b.	Recor	ding		ii.	A priori design information for memory storing					
	c.	Reinf	orcem	ent	iii.	Partial information about desired responses, or only "right" or "wrong" evaluative information					
	d.	Unsuj	pervis	ed	iv.	No information about desired responses					
	Coc	les :									
		a	b	c	d						
	(A)	i	ii	iii	iv						
	(B)	i	iii	ii	iv						
	(C)	ii	iv	iii	i						
	(D)	ii	iii	iv	i						
73.					_	versions of Windows O.S. contain built-in partition manager and expand pre-defined drives ?					
	(A)	Wi	ndows	S Vista	a	(B) Windows 2000					
	(C)	Wi	ndows	NT		(D) Windows 98					
74.	АТ	`rojan	horse	is							
	(A)	or i	ts use	r and	also	forms a legitimate function that is known to an operating system has a hidden component that can be used for nefarious purposes age security or impersonation.					
	(B)	like attacks on message security or impersonation. (B) A piece of code that can attach itself to other programs in the system and spread to other systems when programs are copied or transferred.									
	(C)										
	(D)	All	of the	abov	ve .						
75.		ich of		follov	ving	computing models is not an example of distributed computing					
	(A)	Clo	ud co	mputi	ing	(B) Parallel computing					
	(C)	Clu	ster c	ompu	ting	(D) Peer-to-peer computing					
D-87	7-14					 15					

Space For Rough Work