Aufgabe 1

Wir fixieren das Alphabet $\Sigma = \{a, b\}$ und definieren $L \subseteq \Sigma$ durch

 $L = \{w \mid \text{in } w \text{ kommt das Teilwort bab vor}\}$

z. B. ist babaabb $\in L$, aber baabaabb $\notin L$. Der folgende nichtdeterministische Automat A erkennt L:

(a) Wenden Sie die Potenzmengenkonstruktion auf den Automaten an und geben Sie den resultierenden deterministischen Automaten an. Nicht erreichbare Zustände sollen nicht dargestellt werden.

Zustandsmenge	Eingabe a	Eingabe b
$Z_0 \{z_0\}$	$Z_0 \{z_0\}$	Z_1 $\{z_0, z_1\}$
$Z_1 \{z_0, z_1\}$ $Z_2 \{z_0, z_2\}$	$Z_2 \{z_0, z_2\}$ $Z_0 \{z_0\}$	
$Z_{2} \{z_{0}, z_{2}\}\$ $Z_{3} \{z_{0}, z_{1}, z_{3}\}$		$Z_3 \{z_0, z_1, z_3\}$ $Z_3 \{z_0, z_1, z_3\}$
$Z_4 \{z_0, z_2, z_3\}$		$Z_3 \{z_0, z_1, z_3\}$
$Z_5 \{z_0, z_3\}$	$Z_5 \{z_0, z_3\}$	$Z_3 \{z_0, z_1, z_3\}$
star	$t \longrightarrow Z_0$ Z_4 Z_5	Z_1 A

(b) Konstruieren Sie aus dem so erhaltenen deterministischen Automaten den Minimalautomaten für L. Beschreiben Sie dabei die Arbeitsschritte des verwendeten Algorithmus in nachvollziehbarer Weise.