Tema 2: Entrenamiento del perceptrón

- 1. Perceptrón, función de activación step().
- 2. Cálculo de los pesos del perceptrón, entrenamiento.
- 3. Diseño de un perceptrón que aprende la función OR lógica.
- 4. Patrones no separables linealmente: función lógica XOR.

Perceptrón con función step():

• <u>Devuelve 1</u> si la suma ponderada de las entradas es mayor que un umbral.

•
$$y = 1 \Rightarrow \sum_{i=0}^{n} w_i x_i > t$$
.

• <u>Devuelve 0</u> si la suma ponderada de las entradas es menor o igual que un umbral.

•
$$y = 0 \Rightarrow \sum_{i=0}^{n} w_i x_i \le t$$
.

- ¿Cómo calculamos los pesos del perceptrón?
 - Entrenándolo con un conjunto de datos de los que conocemos sus clasificaciones.

	x_0	x_1		x_n	y_d
Ejemplo1	3	5	•••	7	1
Ejemplo2	0	3	•••	4	0
***	• • •	• • •	***	***	***
EjemploN	-4	2	•••	0	1

- ¿Cómo calculamos los pesos del perceptrón?
 - Entrenándolo con un conjunto de datos de los que conocemos sus clasificaciones.

	x_0	x_1	•••	x_n	Y_d
Ejemplo1	3	5	•••	7	1
Ejemplo2	0	3	•••	4	0
•••	•••		•••	•••	•••
EjemploN	-4	2	•••	0	1

- ¿Cómo calculamos los pesos del perceptrón?
 - Entrenándolo con un conjunto de datos de los que conocemos sus clasificaciones.

	x_0	x_1		x_n	Y_d
Ejemplo1	3	5	•••	7	1
Ejemplo2	0	3	•••	4	0
•••	•••		•••	•••	•••
EjemploN	-4	2	•••	0	1

- ¿Cómo calculamos los pesos del perceptrón?
 - Entrenándolo con un conjunto de datos de los que conocemos sus clasificaciones.

- ¿Cómo calculamos los pesos del perceptrón?
 - Entrenándolo con un conjunto de datos de los que conocemos sus clasificaciones.

- ¿Cómo calculamos los pesos del perceptrón?
 - Entrenándolo con un conjunto de datos de los que conocemos sus clasificaciones.

	x_0	x_1	•••	x_n	Y_d
Ejemplo1	3	5	•••	7	1
Ejemplo2	0	3	•••	4	0
•••	***	•••	•••	•••	•••
EjemploN	-4	2	•••	0	1
					v_0 v_0 v_0 v_n

- Los pesos se calculan entrenando al perceptron datos conocidos de entrenamiento.
 - Proceso de aprendizaje:
 - 1. Se asignan pesos aleatorios a las entradas, típicamente $w_i \in (-0.5, 0.5)$.

- Los pesos se calculan entrenando al perceptron datos conocidos de entrenamiento.
 - Proceso de aprendizaje:
 - 1. Se asignan pesos aleatorios a las entradas, típicamente $w_i \in (-0.5, 0.5)$.
 - 2. Se presenta el siguiente conjunto de datos de entrenamiento en las entradas y se calcula la salida.

- Los pesos se calculan entrenando al perceptron datos conocidos de entrenamiento.
 - Proceso de aprendizaje:
 - 1. Se asignan pesos aleatorios a las entradas, típicamente $w_i \in (-0.5, 0.5)$.
 - 2. Se presenta el siguiente conjunto de datos de entrenamiento en las entradas y se calcula la salida.
 - 3. Si la salida es incorrecta se cambian los valores de los pesos con el fin de conseguir una salida correcta.

- Los pesos se calculan entrenando al perceptron datos conocidos de entrenamiento.
 - Proceso de aprendizaje:
 - 4. Regla de entrenamiento del perceptron:
 - $w_i \leftarrow w_i + (\alpha \times (y_d y) \times x_i)$, α es el ritmo de aprendizaje, con valor entre 0 y 1.

- Los pesos se calculan entrenando al perceptron datos conocidos de entrenamiento.
 - Proceso de aprendizaje:
 - 4. Regla de entrenamiento del perceptron:
 - $w_i \leftarrow w_i + (\alpha \times (y_d y) \times x_i)$, α es el ritmo de aprendizaje, con valor entre 0 y 1.
 - 5. Una vez se actualizan los pesos analizamos los siguientes datos de entrenamiento y procedemos de la misma manera.

- Los pesos se calculan entrenando al perceptron datos conocidos de entrenamiento.
 - Proceso de aprendizaje:
 - 4. Regla de entrenamiento del perceptron:
 - $w_i \leftarrow w_i + (\alpha \times (y_d y) \times x_i)$, α es el ritmo de aprendizaje, con valor entre 0 y 1.
 - 5. Una vez se actualizan los pesos analizamos los siguientes datos de entrenamiento y procedemos de la misma manera.
 - 6. A cada iteración completa del conjunto de datos se le llama época (época).

• Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y a=0.2.

• Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y a=0.2.

	x_0	x_1	y_d
Ejemplo1	0	0	0
Ejemplo2	0	1	1
Ejemplo3	1	0	1
Ejemplo4	1	1	1

- Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y a=0.2.
 - 1. Inicializamos los pesos $w_0 = -0.2$ y $w_1 = 0.4$.

- Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y a=0.2.
 - 1. Inicializamos los pesos $w_0 = -0.2$ y $w_1 = 0.4$.
 - 2. 1er ejemplo: $x_0 = 0$ y $x_1 = 0 \Rightarrow Valor esperado: <math>(y_d = x_0 OR x_1 = 0)$.
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 0 + 0.4 \cdot 0) = 0.$
 - Los coeficientes no cambian , ya que $(y_d y) = 0 0 = 0$.

- Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y a=0.2.
 - 1. Inicializamos los pesos $w_0 = -0.2$ y $w_1 = 0.4$.
 - 2. 1er ejemplo: $x_0 = 0$ y $x_1 = 0 \Rightarrow Valor esperado: <math>(y_d = x_0 OR x_1 = 0)$.
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 0 + 0.4 \cdot 0) = 0.$
 - Los coeficientes no cambian , ya que $(y_d y) = 0 0 = 0$.
 - 3. 2º ejemplo: $x_0 = 0$ y $x_1 = 1 \Rightarrow Valor esperado: <math>(y_d = x_0 OR x_1 = 1)$.
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 0 + 0.4 \cdot 1) = 1.$
 - Los coeficientes no cambian , ya que $(y_d y) = 1 1 = 0$.

- Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y a=0.2.
 - 1. Inicializamos los pesos $w_0 = -0.2$ y $w_1 = 0.4$.
 - 2. 1er ejemplo: $x_0 = 0$ y $x_1 = 0 \Rightarrow Valor esperado: <math>y_d = (x_0 OR x_1) = 0$.
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 0 + 0.4 \cdot 0) = 0.$
 - Los coeficientes no cambian , ya que $(y_d y) = 0 0 = 0$.
 - 3. 2° ejemplo: $x_0 = 0$ y $x_1 = 1 \Rightarrow \text{Valor esperado: } y_d = (x_0 \text{ OR } x_1) = 1.$
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 0 + 0.4 \cdot 1) = 1.$
 - Los coeficientes no cambian , ya que $(y_d y) = 1 1 = 0$.

- Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y $\alpha=0.2$.
 - 4. 3° ejemplo: $x_0 = 1$ y $x_1 = 0 \Rightarrow \text{Valor esperado: } y_d = (x_0 \text{ OR } x_1) = 1.$
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 1 + 0.4 \cdot 0) = 0.$
 - Hay que recalcular los coeficientes, ya que $(y_d y) = 1 0 = 1$.

- Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y $\alpha=0.2$.
 - 4. 3° ejemplo: $x_0 = 1$ y $x_1 = 0 \Rightarrow \text{Valor esperado}$: $y_d = (x_0 \text{ OR } x_1) = 1$.
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 1 + 0.4 \cdot 0) = 0.$
 - Hay que recalcular los coeficientes, ya que $(y_d y) = 1 0 = 1$.
 - $w_i \leftarrow w_i + \alpha \times (y_d y) \times x_i$.
 - $w_0 \leftarrow -0.2 + (0.2 \times 1 \times 1) = 0.$
 - $w_1 \leftarrow 0.4 + (0.2 \times 0 \times 1) = 0.4$. w_1 no ha contribuido a este error por eso no se ajusta.

- Ejemplo: utilizar un perceptron para representar la función lógica OR con dos entradas, t=0 y $\alpha=0.2$.
 - 4. 3° ejemplo: $x_0 = 1$ y $x_1 = 0 \Rightarrow \text{Valor esperado: } y_d = (x_0 \text{ OR } x_1) = 1.$
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 1 + 0.4 \cdot 0) = 0.$
 - Hay que recalcular los coeficientes, ya que $(y_d y) = 1 1 = 0$.
 - $w_i \leftarrow w_i + \alpha \times (y_d y) \times x_i$.
 - $w_0 \leftarrow -0.2 + (0.2 \times 1 \times 1) = 0.$
 - $w_1 \leftarrow 0.4 + (0.2 \times 0 \times 1) = 0.4$. w_1 no ha contribuido a este error por eso no se ajusta.
 - 5. 4° ejemplo : $x_0 = 1$ y $x_1 = 1 \Rightarrow \text{Valor esperado}$: $y_d = (x_0 \text{ OR } x_1) = 1$
 - Obtenemos: $y = Step(\sum_{i=0}^{n} w_i x_i) = Step(-0.2 \cdot 1 + 0.4 \cdot 1) = 1.$
 - Los coeficientes no cambian , ya que $(y_d y) = 1 1 = 0$.

3

1

	Época	x_0	x_1	y_d	y	$y_d - y$	w_0	w_1
,	1	0	0	0	0	0	-0.2	0.4
1ª Época	1	0	1	1	1	0	-0.2	0.4
	1	1	0	1	0	1	0	0.4
	1	1	1	1	1	0	0	0.4
	2	0	0	0	0	0	0	0.4
	2	0	1	1	1	0	0	0.4
	2	1	0	1	0	1	0.2	0.4
	2	1	1	1	1	0	0.2	0.4
	3	0	0	0	0	0	0.2	0.4
	3	0	1	1	1	0	0.2	0.4
	3	1	0	1	1	0	0.2	0.4

1

0.2

0.4

0

	Época	x_0	x_1	y_d	y	$y_d - y$	w_0	w_1
	1	0	0	0	0	0	-0.2	0.4
	1	0	1	1	1	0	-0.2	0.4
	1	1	0	1	0	1	0	0.4
	1	1	1	1	1	0	0	0.4
•	2	0	0	0	0	0	0	0.4
2ª Época	2	0	1	1	1	0	0	0.4
	2	1	0	1	0	1	0.2	0.4
	2	1	1	1	1	0	0.2	0.4
	3	0	0	0	0	0	0.2	0.4
	3	0	1	1	1	0	0.2	0.4
	3	1	0	1	1	0	0.2	0.4
	3	1	1	1	1	0	0.2	0.4

	Época	x_0	x_1	y_d	y	$y_d - y$	w_0	w_1
	1	0	0	0	0	0	-0.2	0.4
	1	0	1	1	1	0	-0.2	0.4
	1	1	0	1	0	1	0	0.4
	1	1	1	1	1	0	0	0.4
	2	0	0	0	0	0	0	0.4
	2	0	1	1	1	0	0	0.4
	2	1	0	1	0	1	0.2	0.4
	2	1	1	1	1	0	0.2	0.4
	3	0	0	0	0	0	0.2	0.4
1	3	0	1	1	1	0	0.2	0.4
	3	1	0	1	1	0	0.2	0.4
	3	1	1	1	1	0	0.2	0.4

3ª Época

• Un perceptron se podría utilizar también para aprender una función AND pero no una XOR, la razón es que la función AND es separable linealmente y la XOR no.

Bibliografía:

- <u>Artificial Intelligence A Modern Approach</u>. Stuart Russell and Peter Norvig. Third Edition.
- Artificial Intelligence Illuminated. Ben Coppin. First Edition.