WEEK 2 QUIZ

Natural Language Processing & Word Embeddings

TOTAL POINTS 10

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.	1 point
	O True	
2.	What is t-SNE?	1 point
	A linear transformation that allows us to solve analogies on word vectors	
	A non-linear dimensionality reduction technique	
	A supervised learning algorithm for learning word embeddings	
	An open-source sequence modeling library	

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You
then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a
short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	ī

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

False

- 4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)
 - $igspace e_{boy} e_{girl} pprox e_{brother} e_{sister}$
 - $e_{boy} e_{girl} \approx e_{sister} e_{brother}$
 - $ightharpoonup e_{boy} e_{brother} pprox e_{girl} e_{sister}$
 - \square $e_{boy} e_{brother} pprox e_{sister} e_{girl}$
- 5. Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?
 - It is computationally wasteful.
 - O The correct formula is $E^T * o_{1234}$.
 - This doesn't handle unknown words (<UNK>).
 - None of the above: calling the Python snippet as described above is fine.

6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	
	● True	
	○ False	
7.	In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.	
	igorup c and t are chosen to be nearby words.	
	$\bigcirc \ c$ is the one word that comes immediately before $t.$	
	$\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$	
	$\bigcirc \ c$ is a sequence of several words immediately before $t.$	

8. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

- $ightharpoonup heta_t$ and e_c are both 500 dimensional vectors.
- $ightharpoonup heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
- After training, we should expect θ_t to be very close to e_c when t and c are the same word.

9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

- $\ensuremath{ igspace{1.5em} } \theta_i$ and e_i should be initialized randomly at the beginning of training.
- X_{ij} is the number of times word j appears in the context of word i.
- \checkmark The weighting function f(.) must satisfy f(0) = 0.
- 10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

 - \bigcap $m_1 << m_2$