STUDY for lea 1, Phases A & B library Banch Mohave County, AZ

Prepared for:

Rhodes Homes Arizona, LLC.

2215 Hualapai Mountain Rd., Suite H

Kingman, Arizona 86401

A Stanley Group Company Engineering, Environmental and Construction Services - Worldwide

Technical Drainage Study

For

Area 1, Phases A & B Golden Valley Ranch Mohave County, AZ

March 2006 SCI Project # 18449.00.00

Prepared for:

Rhodes Homes Arizona, LLC. 2215 Hualapai Mountain Road, Suite H Kingman, Arizona 86401

Prepared By:

STANLEY CONSULTANTS, INC. 5820 South Eastern Avenue, Suite 200 Las Vegas, Nevada 89119 (702)369-9396 Fax (702)369-9793

TABLE OF CONTENTS

1.	GENERAL LOCATION AND DEVELOPMENT DESCRIPTION	I
1.1.	Introduction	1
1.2.	Location	1
1.3.	FEMA Flood Hazard Zone	1
2.	SITE DESCRIPTION	1
2.1.	Description of Property	1
2.2.	Drainage Descriptions	4
3.	METHODS AND CRITERIA	4
3.1.	Methodology	4
3.2.	Drainage Shed and Modeling Convention	6
3.3.	Design Storm and Precipitation.	6
3.4.	Soils	7
3.5.	Model Data and Results	7
4.	Drainage Improvements within the Public Right-of-Way	9
5.	Comparison of Flows	9
6.	FEMA Base Flood Elevations 1	2
7.	SUMMARY 1	2
8.	REFERENCES1	2

LIST OF TABLES

Table 1 - Precipitation	.7
Table 2 -Flow Summary	. 8
Table 3 – Flow Comparison	. 9
<u>LIST OF FIGURES</u>	
Figure 1 – Vicinity Map and Regional Drainage Scheme	. 2
Figure 2 - Flood Insurance Rate Map, Mohave County, Arizona	. 3
Figure 3 – Area 1 Drainage Shed Map	. 5
Figure 4 – Drainage Improvements within Public Right-of-Way	10
Figure 5 – Existing Runoff - Flow Comparison	11
Figure 6 – Base Flood Elevation (BFE)	13

APPENDICES

Appendix A Area 1 - Results and Data

- HEC-HMS 100-yr, 6-hr Simulation
- HEC-HMS 10-yr, 6-hr Simulation
- NOAA Atlas 14 Precipitation
- STANDARD FORM 4 Time of Concentration

Appendix B Drainage Infrastructure Calculations

- COMMON LOT O (P1-83)
- COMMON LOT F (J-C14)
- COMMON LOT E (J-C17)
- H STREET (J-C21)
- COMMON LOT D (J-C25)

Appendix C Street Capacity (Local Streets)

Appendix D Public Right-of-Way Drainage Improvements

- INLET CALCULATIONS
- HYDRAULIC CALCULATIONS -- WEST LOOP ROAD
- CULVERT CAPACITY (J-C26, J-N5, J-N25, J-H, & J-N2)

Appendix E Base Flood Elevations (BFE) - HecRAS output

Appendix F Plans - Not Included with this Study (See Grading Plans this Project)

1. GENERAL LOCATION AND DEVELOPMENT DESCRIPTION

1.1. Introduction

This study is submitted as the technical drainage study for the proposed improvement plans of Area 1, Phases A & B of the Golden Valley Ranch residential development located in the Sacramento Valley of Mohave County, Arizona, more specifically on the south side of the Golden Valley Community, near Kingman. Area 1 comprises of approximately 187 acres of the total 5,800 acres of land located in the Golden Valley Ranch.

The purpose of this study is to evaluate the storm drainage infrastructure of the proposed development for Area 1, Phase A only. Phase B improvements will be submitted at a later date. Documentation for Phase B is included to provide continuity in the infrastructure improvements.

This study is divided into four separate areas of consideration. They are as follows:

- · A general overview of site drainage
- A detailed analysis of the proposed storm drainage infrastructure.
- An analysis of the drainage improvements in the Public Right-of-Way.
- An evaluation of interim facilities serving the site

1.2. Location

The Golden Valley Ranch project site consists of Taxpin Numbers 215-01-048, 215-01-075, 215-01-078, 215-01-079, 215-01-080, 215-01-084, 215-01-085, 215-01-092, & 215-15-005 within Township 20 North, Range 18 West and Township 21 North, and Range 18 West, G&SRM, Mohave County, Arizona (Figure 1 - Vicinity Map and Regional Drainage Scheme).

1.3. FEMA Flood Hazard Zone

Figure 2 is a representation of the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for Mohave County, AZ, map number 040058 2325C, dated October 20, 2000. Of the 187 acres of Area 1, 25 acres lies in Special Flood Hazard Zone A.

Zone A is the flood insurance rate zone that corresponds to the 100-year floodplains that are determined in the Flood Insurance Study (FIS) by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no Base Flood Elevations (BFE's) or depths are shown within this zone. Mandatory flood insurance purchase requirements apply.

2. SITE DESCRIPTION

2.1. Description of Property

The property is semiarid rangeland with a covering of desert shrub in poor condition. Area 1, Phases A & B is located generally in the southwest quadrant of Section 4, Township 20 North, Range 18 West, G&SRM, with minor portions in Sections 3 and 9. The project will be

FIGURE 2 AREA 1

components. Each component models an aspect of the rainfall-runoff process within a portion of the whole basin. This basin portion is referred to as a sub-basin. The runoff hydrographs of each sub-basin are then combined and a final discharge hydrograph is obtained. It was chosen as the hydrology model since it is the model used in a Preliminary Federal Insurance Study prepared for Mohave County Flood Control District, October 2005 for various watersheds in the Golden Valley and Kingman, AZ area. This adds consistency and reliability in the methodology. Modified-Puls routing in the HEC-HMS model allows for retardation of peak flows within the broad flood way of the golf course.

HEC-RAS, another program from the COE, provides a steady state flow analysis to determine water surface elevations within a defined channel or flood plain. Volume computations within the HEC-RAS program were utilized in developing flow routing by Modified-Puls methods.

Water Surface Pressure Gradient (WSPG) program developed by the Los Angeles County Flood Control District. WSPG is a similar program to HEC-RAS in that it develops the water surface elevations and other channel parameters, but is better adapted to closed (pressure) conduit flow and is therefore used in the evaluation of the stormwater infrastructure system.

Calculations for street capacity are produced using the FlowMaster by Haestad Methods, Inc. Inlet calculations are performed using Federal Highway Administration's Visual Urban program for pavement drainage.

3.2. Drainage Shed and Modeling Convention

The basic naming convention of the basins for the exhibits and model are based around the individual drainage shed of the development. Sheds are labeled as P1-34, identifying Area 1, Shed 34. Junction points or points of runoff confluence are identified as J-C12, identifying that it is a junction point and a label. An R designates a routing of a shed or junction, therefore R-JN15 represents routing of junction JN15 to another point.

3.3. Design Storm and Precipitation

Local jurisdiction requires that water sheds less than 20 square miles be evaluated for the 6-hour local storm. Drainage sheds of 20 to 100 square miles are to be evaluated for both the 6-hour and 24-hour rainfall events. Areas from 20 square miles to 500 square miles are considered general storms and are evaluated for the 24-hour precipitation.

Maricopa County Flood Control District has developed storm distribution curves associated with drainage shed size. Since the total area of Area 1, Phases A & B is less than 1 square mile, Pattern 1 of the Maricopa County 6-Hour Mass Curve was utilized for the storm distribution. Precipitation values of 3.00-inches and 1.76-inches were taken from the National Oceanographic and Atmospheric Administration National Weather Service's Atlas 14. Table 4 provides the precipitation values from NOAA Atlas 14. Since the total area of Area 1 is 0.29 square miles (187 acres) the depth-area reduction factor was not applied.

Table 1 - Precipitation

Recurrence	5 min	10-min	15-min	30-min	1-hr	2-hr	3-hr	6-hr
Interval (yrs)								
10-yr	0.40	0.61	0.75	1.01	1.25	1.44	1.53	1.76
100-yr	0.65	0.98	1.22	1.64	2.03	2.44	2.67	3.00

3.4. Soils

Soils information is taken from the statewide coverage for Arizona, 2005, Natural Resources Conservation Service, Soil Data Mart. Soils within Area 1, Phases A & B consist of CACIQUE-BUCKLEBAR-ALKO (AZ039) type. These soils have a hydrologic soil type designation of "C".

3.5. Model Data and Results

Table 2 summarizes runoff at junction points and drainage sheds within Area 1, Phases A & B. Runoff values are rounded to the nearest 1 cfs.

Table 2 - Flow Summary

Element	Area	Peak	Peak	Element	Area	Peak	Peak
	(sq mi)	Discharge	Discharge		(sq mi)	Discharge	Discharge
		100-yr (cfs)	10-yr (cfs)			100-yr (cfs)	10-yr (cfs)
J-C01	0.0268	57	21	P1-67	0.0107	24	9
J-C02	0.0341	71	25	P1-68	0.0085	19	7
J-C03	0.0523	111	38	P1-69	0.0021	5	2
J-C04	0.0589	126	43	P1-70	0.0117	26	9
J-C05	0.0954	202	70	P1-71	0.0044	10	4
J-C06	0.1036	218	77	P1-72	0.0044	10	4
J-C07	0.1173	240	87	P1-73	0.003	7	3
J-C08	0.1311	266	97	P1-74	0.0105	24	9
J-C09	0.0065	15	6	P1-75	0.0067	7	11
J-C10	0.0365	76	28	P1-76	0.0089	20	7
J-C11	0.0087	20	7	P1-77	0.0087	20	7
J-C12	0.0131	30	11	P1-78	0.0087	20	7
J-C13	0.0172	39	14	P1-79	0.01	22	8
J-C14	0.021	47	17	P1-80	0.0165	37	13
J-C15	0.0213	48	18	P1-81	0.0018	4	2
J-C16	0.03	66	23	P1-82	0.008	18	7
J-C17	0.0548	120	42	P1-83	0.0174	39	14
J-C18	0.0112	25	9	P1-84	0.0115	26	10
J-C19	0.0187	42	15	P1-85	0.0066	15	6
J-C20	0.0231	50	17	P1-86	0.0143	31	11
J-C21	0.0263	54	19	P1-87	0.0082	18	7
J-C22	0.0104	23	9	P1-88	0.0137	30	11
J-C23	0.0154	33	12	P1-89	0.0138	27	10
J-C24	0.0184	37	12	P1-90	0.0038	9	3
J-C25	0.0363	73	23	P1-91	0.0017	4	1
J-C26	0.1378	242	90	P1-92	0.0044	10	4
J-C27	0.0222	49	18	P1-93	0.0041	10	4
				P1-94	0.0044	10	4
				P1-95	0.0043	10	4
				P1-96	0.0179	38	14
				P1-97	0.005	11	4
				P1-98	0.0124	28	10
				P1-99	0.0024	6	2
				P1-100	0.0046	11	4
				P1-101	0.0066	15	6
		× · · · · ·		P1-102	0.0031	7	3
				P1-103	0.0032	7	3
				P1-105	0.0073	17	6

It should be noted that the precipitation depths of the 100-yr, 6-hr event is 3-inches and that the precipitation depth of the 10-yr, 6-hr storm is 1.53-inches. The 100-yr precipitation is nearly twice for the 10-yr event. For the same events the amount of excess precipitation available for runoff is dependent on the runoff curve number, which is a function of soil type, land use, and antecedent moisture conditions. For this reason a larger portion of the 100-yr precipitation is available for runoff than for the smaller 10-yr storm and the ratio of peak runoff for the 100-yr precipitation to 10-yr precipitations is nearly 3.

All model results and input data are found in the Appendices of this study. They consist of the following:

- Appendix A Model Results and Data provides the input parameters and results for Area 1, Phases A & B sheds.
- Appendix B Drainage Infrastructure provides the storm drain inlet calculations open channel flow calculations through utility easements.
- Appendix C Street Capacity Calculations
- Appendix D Public Right-of-Way Drainage Improvements

4. Drainage Improvements within the Public Right-of-Way

Access to the project site is via Shinarump Road from the north to the new Aztec Road alignment and West Loop Road. Aztec Road will receive a culvert crossing at the Power line Easement to convey runoff from off-site areas to the Thirteen Mile Wash. The West Loop Road will have a pipe crossing from the Open Space area of Area 1, Phase 1 and convey this and other Area 1, Phases 1 & 2 runoff south, crossing a future portion of the West Loop Road and discharging into the golf course (See Figure 4). Discharge from Area 1, Phases A & B drainage sheds are discussed in Section 2.2.

Appendix D contains street capacity calculations for the arterial roads and inlet capacity calculations.

5. Comparison of Flows

The drainage shed characteristics change with development of existing lands. The pervious soils that formerly existed become less pervious with the addition of houses, streets, and sidewalks and the time for runoff to reach its release point shortens. From a drainage point of view, one of the major advantages to the adjacent golf course is that drainage runoff is routed through its fairway system. This not only allows for runoff of the major storm events, but also allows for the golf course to absorb some for the runoff volume, therefore reducing the peak flow. Figure 5 shows existing drainage as it relates to the Area 1-3 development and outside areas that will drain through the proposed system. Table 3 provides a comparison of existing flows to developed flow at major junction points. Note that while runoff from the northern release point J-N5 exceeds its existing flow into the Thirteen Mile Wash, the collective flows from J-N5 and J-S26 is less than existing due to detention provided within the golf course.

Table 3 - Flow Comparison

Shed	Area (acres)	Indirect Methods (cfs)	HEC- HMS (cfs)
J-H	73.26	191	211
J3-44	18.12	73	38
J-S5	69.79	184	187
J-S9	439.35	657	456
J-N5	369.78	582	621
J-S26	713.82	916	798

6. FEMA Base Flood Elevations

The Holy Moses Diversion Wash #1 leaves the main channel east of the site. It travels in a westerly direction along the westerly sloping alluvial fan. The runoff generally remains within the washes banks, but as it reaches the channel edge it spills over into the surrounding dessert plain. Overtime the cresting and release of flow along with its sediment load has formed a channel with overbanks sloping away from the channel.

A HEC-RAS analysis provides the Base Flood Elevations (BFE) for this diversion wash. The base flood flow within Holy Moses Diversion Wash # 1 is based on derived flow from the Technical Drainage Study for Golden Valley Ranch, Mohave, Arizona, dated October 2005. Finish building grades are developed to remain 1 foot to 1.5 feet above the BFE. Figure 6 shows the BFE's for development in Areas 1-3.

7. SUMMARY

This study develops specific criteria and flow for the development of Area 1, Phases A & B.

- The majority of the development runoff can be maintained and conveyed within the street right-of-way. Where street flow capacity is reached, a storm drainage system is required.
- The drainage infrastructure is capable of conveying the 10-yr, 6-hr storm event (minimum).
- The adjacent golf course services as runoff conveyance and storage.
- Total discharge from the collective Areas 1-3 to the Thirteen Mile Wash is less because of the use of runoff volume storage provided in the golf course.
- Conveyance of stormwater runoff within the golf course fairways allows for some ground water recharge.

8. REFERENCES

- 1) Flood Insurance Rate Map, Community Panel Number 040058 2325 C, Mohave County, Arizona, effective October 20, 2002.
- 2) Highway Drainage Design Manual, Arizona Department of Transportation, Report Number FHWA-AZ93-281, Final Report, March, 1993
- 3) Drainage Design Manual for Maricopa County, Arizona, Hydrology: Rainfall, Flood Control District of Maricopa County, November 2003

APPENDIX A

AREA 1 – RESULTS AND DATA

- HEC-HMS 100-YR, 6-HR SIMULATION
- HEC-HMS 10-YR, 6-HR SIMULATION
- NOAA ATLAS 14 PRECIPITATION
- STANDARD FORM 4

Project: Pod1_S_curve Simulation Run: Pod1-100yr

Start of Run: 01Jan3000, 01:00 Basin Model: POD 1

End of Run: 02Jan3000, 01:55 Meteorologic Model: S-Pattern 1(3.00IN)

Execution Time: 15Mar2006, 11:16:57 Control Specifications: Control 1

Volume Units: AC-FT

I	1	1	1	1
J-C1	0.0268	56.80	01Jan3000, 05:10	2.70
J-C10	0.0365	76.41	01Jan3000, 05:10	3.67
J-C11	0.0087	19.96	01Jan3000, 05:10	0.88
J-C12	0.0131	29.74	01Jan3000, 05:10	1.32
J-C13	0.0172	38.87	01Jan3000, 05:10	1.74
J-C14	0.0210	47.29	01Jan3000, 05:10	2.13
J-C15	0.0213	47.74	01Jan3000, 05:10	2.15
J-C16	0.0300	65.79	01Jan3000, 05:10	3.02
J-C17	0.0548	120.12	01Jan3000, 05:10	5.53
J-C18	0.0112	25.05	01Jan3000, 05:10	1.13
J-C19	0.0187	41.77	01Jan3000, 05:10	1.89
J-C2	0.0341	71.23	01Jan3000, 05:10	3.44
J-C20	0.0231	49.86	01Jan3000, 05:10	2.33
J-C21	0.0263	54.45	01Jan3000, 05:10	2.65
J-C22	0.0104	23.48	01Jan3000, 05:10	1.05
J-C23	0.0154	33.04	01Jan3000, 05:10	1.56
J-C24	0.0184	37.18	01Jan3000, 05:15	1.86
J-C25	0.0363	73.15	01Jan3000, 05:10	3.67
J-C26	0.1378	241.70	01Jan3000, 05:20	13.54
J-C27	0.0222	49.42	01Jan3000, 05:10	2.24
J-C3	0.0523	111.40	01Jan3000, 05:10	5.28
J-C4	0.0589	125.94	01Jan3000, 05:10	5.95
J-C5	0.0954	202.09	01Jan3000, 05:10	9.62
J-C6	0.1036	217.95	01Jan3000, 05:10	10.45
J-C7	0.1173	240.25	01Jan3000, 05:10	11.83

Page 1

J-C8	0.1311	266.40	01Jan3000, 05:15	13.22
J-C9	0.0065	14.88	01Jan3000, 05:10	0.66
P1-100	0.0046	10.53	01Jan3000, 05:10	0.46
P1-101	0.0066	14.88	01Jan3000, 05:10	0.67
P1-102	0.0031	7.30	01Jan3000, 05:05	0.31
P1-103	0.0032	7.49	01Jan3000, 05:05	0.32
P1-105	0.0073	16.51	01Jan3000, 05:10	0.74
P1-67	0.0107	24.16	01Jan3000, 05:10	1.08
P1-68	0.0085	18.57	01Jan3000, 05:10	0.86
P1-69	0.0021	4.86	01Jan3000, 05:05	0.21
P1-70	0.0117	25.64	01Jan3000, 05:10	1.18
P1-71	0.0044	10.43	01Jan3000, 05:05	0.44
P1-72	0.0044	9.97	01Jan3000, 05:10	0.44
P1-73	0.0030	6.87	01Jan3000, 05:10	0.30
P1-74	0.0105	23.50	01Jan3000, 05:10	1.06
P1-75	0.0067	6.54	01Jan3000, 05:15	0.32
P1-76	0.0089	20.03	01Jan3000, 05:10	0.90
P1-77	0.0087	19.90	01Jan3000, 05:10	0.88
P1-78	0.0087	19.58	01Jan3000, 05:10	0.88
P1-79	0.0100	22.46	01Jan3000, 05:10	1.01
P1-80	0.0165	36.62	01Jan3000, 05:10	1.66
P1-81	0.0018	4.31	01Jan3000, 05:05	0.18
P1-82	0.0080	18.00	01Jan3000, 05:10	0.81
P1-83	0.0174	38.50	01Jan3000, 05:10	1.75
P1-84	0.0115	26.06	01Jan3000, 05:10	1.16
P1-85	0.0066	15.05	01Jan3000, 05:10	0.67
P1-86	0.0143	30.58	01Jan3000, 05:10	1.44
P1-87	0.0082	17.92	01Jan3000, 05:10	0.83
P1-88	0.0137	30.41	01Jan3000, 05:10	1.38
P1-89	0.0138	26.96	01Jan3000, 05:10	1.39
P1-90	0.0038	9.11	01Jan3000, 05:05	0.38
P1-91	0.0017	4.12	01Jan3000, 05:05	0.17

Page 2

P1-92	0.0044	10.24	01Jan3000, 05:05	0.44
P1-93	0.0041	9.60	01Jan3000, 05:05	0.41
P1-94	0.0044	9.85	01Jan3000, 05:10	0.44
P1-95	0.0043	10.01	01Jan3000, 05:05	0.43
P1-96	0.0179	38.28	01Jan3000, 05:10	1.80
P1-97	0.0050	11.14	01Jan3000, 05:10	0.50
P1-98	0.0124	27.71	01Jan3000, 05:10	1.25
P1-99	0.0024	5.72	01Jan3000, 05:05	0.24
R-C-11	0.0087	19.89	01Jan3000, 05:10	0.88
R-JC1	0.0268	54.71	01Jan3000, 05:10	2.71
R-JC10	0.0365	76.14	01Jan3000, 05:10	3.68
R-JC12	0.0131	29.49	01Jan3000, 05:10	1.33
R-JC13	0.0172	38.63	01Jan3000, 05:10	1.75
R-JC15	0.0213	45.89	01Jan3000, 05:10	2.15
R-JC16	0.0300	64.39	01Jan3000, 05:10	3.03
R-JC19	0.0187	39.89	01Jan3000, 05:10	1.88
R-JC2	0.0341	70.98	01Jan3000, 05:10	3.44
R-JC20	0.0231	47.13	01Jan3000, 05:10	2.33
R-JC22	0.0104	22.94	01Jan3000, 05:15	1.05
R-JC23	0.0154	32.30	01Jan3000, 05:15	1.56
R-JC24	0.0184	37.14	01Jan3000, 05:15	1.87
R-JC27	0.0222	46.16	01Jan3000, 05:15	2.23
R-JC3	0.0523	110.89	01Jan3000, 05:10	5.28
R-JC4	0.0589	125.94	01Jan3000, 05:10	5.95
R-JC5	0.0954	200.03	01Jan3000, 05:10	9.62
R-JC6	0.1036	212.89	01Jan3000, 05:15	10.45
R-JC7	0.1173	240.28	01Jan3000, 05:15	11.83
R-JC8	0.1311	236.05	01Jan3000, 05:20	13.22
R-JC9	0.0065	14.85	01Jan3000, 05:10	0.66
R-P167	0.0107	23.35	01Jan3000, 05:10	1.08
R-P169	0.0004	4.83	01Jan3000, 05:10	0.21
711 100	0.0021	4.03	0 10a110000, 00.10	0.21

Page 3

Project: Pod1_S_curve Simulation Run: Pod1-10yr

Start of Run: 01Jan3000, 01:00 Basin Model: POD 1

End of Run: 02Jan3000, 01:55 Meteorologic Model: S-Pattern 1(1.53in)

Execution Time: 15Mar2006, 11:17:04 Control Specifications: Control 1

Volume Units: AC-FT

<u> </u>				
Hydrologic Element	Drainage Area (Ml2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
J-C1	0.0268	20.66	01Jan3000, 05:15	0.94
J-C10	0.0365	27.56	01Jan3000, 05:15	1.27
J-C11	0.0087	7.45	01Jan3000, 05:10	0.30
J-C12	0.0131	10.89	01Jan3000, 05:10	0.46
J-C13	0.0172	14.15	01Jan3000, 05:10	0.60
J-C14	0.0210	17.15	01Jan3000, 05:10	0.74
J-C15	0.0213	17.58	01Jan3000, 05:10	0.74
J-C16	0.0300	23.39	01Jan3000, 05:10	1.04
J-C17	0.0548	42.48	01Jan3000, 05:10	1.91
J-C18	0.0112	9.11	01Jan3000, 05:10	0.39
J-C19	0.0187	15.28	01Jan3000, 05:10	0.65
J-C2	0.0341	25.08	01Jan3000, 05:15	1.19
J-C20	0.0231	17.44	01Jan3000, 05:15	0.80
J-C21	0.0263	19.28	01Jan3000, 05:15	0.91
J-C22	0.0104	8.72	01Jan3000, 05:10	0.36
J-C23	0.0154	11.68	01Jan3000, 05:15	0.54
J-C24	0.0184	12.18	01Jan3000, 05:20	0.64
J-C25	0.0363	23.28	01Jan3000, 05:15	1.26
J-C26	0.1378	90.05	01Jan3000, 05:20	4.63
J-C27	0.0222	17.81	01Jan3000, 05:10	0.77
J-C3	0.0523	37.66	01Jan3000, 05:15	1.83
J-C4	0.0589	42.59	01Jan3000, 05:10	2.06
J-C5	0.0954	69.83	01Jan3000, 05:15	3.33
J-C6	0.1036	76.88	01Jan3000, 05:15	3.62
J-C7	0.1173	86.58	01Jan3000, 05:15	4.10

Page 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
J-C8	0.1311	96.50	01Jan3000, 05:15	4.58
J-C9	0.0065	5.55	01Jan3000, 05:10	0.23
P1-100	0.0046	3.95	01Jan3000, 05:10	0.16
P1-101	0.0066	5.50	01Jan3000, 05:10	0.23
P1-102	0.0031	2.68	01Jan3000, 05:10	0.11
P1-103	0.0032	2.76	01Jan3000, 05:10	0.11
P1-105	0.0073	6.12	01Jan3000, 05:10	0.25
P1-67	0.0107	8.95	01Jan3000, 05:10	0.37
P1-68	0.0085	6.76	01Jan3000, 05:10	0.30
P1-69	0.0021	1.81	01Jan3000, 05:10	0.07
P1-70	0.0117	9.35	01Jan3000, 05:10	0.41
P1-71	0.0044	3.80	01Jan3000, 05:10	0.15
P1-72	0.0044	3.70	01Jan3000, 05:10	0.15
P1-73	0.0030	2.58	01Jan3000, 05:10	0.10
P1-74	0.0105	8.65	01Jan3000, 05:10	0.37
P1-75	0.0067	1.04	01Jan3000, 05:15	0.06
P1-76	0.0089	7.40	01Jan3000, 05:10	0.31
P1-77	0.0087	7.46	01Jan3000, 05:10	0.30
P1-78	0.0087	7.23	01Jan3000, 05:10	0.30
P1-79	0.0100	8.29	01Jan3000, 05:10	0.35
P1-80	0.0165	13.42	01Jan3000, 05:10	0.57
P1-81	0.0018	1.55	01Jan3000, 05:10	0.06
P1-82	0.0080	6.65	01Jan3000, 05:10	0.28
P1-83	0.0174	14.09	01Jan3000, 05:10	0.61
P1-84	0.0115	9.67	01Jan3000, 05:10	0.40
P1-85	0.0066	5.61	01Jan3000, 05:10	0.23
P1-86	0.0143	11.05	01Jan3000, 05:10	0.50
P1-87	0.0082	6.52	01Jan3000, 05:10	0.29
P1-88	0.0137	11.15	01Jan3000, 05:10	0.48
P1-89	0.0138	9.61	01Jan3000, 05:15	0.48
P1-90	0.0038	3.28	01Jan3000, 05:10	0.13
P1-91	0.0017	1.48	01Jan3000, 05:05	0.06

Page 2

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
P1-92	0.0044	3.80	01Jan3000, 05:10	0.15
P1-93	0.0041	3.54	01Jan3000, 05:10	0.14
P1-94	0.0044	3.62	01Jan3000, 05:10	0.15
P1-95	0.0043	3.71	01Jan3000, 05:10	0.15
P1-96	0.0179	13.84	01Jan3000, 05:10	0.62
P1-97	0.0050	4.09	01Jan3000, 05:10	0.17
P1-98	0.0124	10.19	01Jan3000, 05:10	0.43
P1-99	0.0024	2.07	01Jan3000, 05:10	0.08
R-C-11	0.0087	7.27	01Jan3000, 05:10	0.30
R-JC1	0.0268	20.24	01Jan3000, 05:15	0.94
R-JC10	0.0365	27.50	01Jan3000, 05:15	1.27
R-JC12	0.0131	10.61	01Jan3000, 05:10	0.46
R-JC13	0.0172	13.87	01Jan3000, 05:10	0.60
R-JC15	0.0213	16.46	01Jan3000, 05:15	0.74
R-JC16	0.0300	22.28	01Jan3000, 05:15	1.05
R-JC19	0.0187	14.53	01Jan3000, 05:15	0.65
R-JC2	0.0341	25.01	01Jan3000, 05:15	1.19
R-JC20	0.0231	17.35	01Jan3000, 05:15	0.80
R-JC22	0.0104	8.26	01Jan3000, 05:15	0.36
R-JC23	0.0154	10.95	01Jan3000, 05:20	0.54
R-JC24	0.0184	12.12	01Jan3000, 05:20	0.64
R-JC27	0.0222	17.52	01Jan3000, 05:15	0.78
R-JC3	0.0523	38.03	01Jan3000, 05:15	1.83
R-JC4	0.0589	42.56	01Jan3000, 05:10	2.06
R-JC5	0.0954	71.17	01Jan3000, 05:15	3.33
R-JC6	0.1036	77.18	01Jan3000, 05:15	3.62
R-JC7	0.1173	86.89	01Jan3000, 05:15	4.10
R-JC8	0.1311	89.04	01Jan3000, 05:20	4.58
R-JC9	0.0065	5.46	01Jan3000, 05:10	0.23
R-P167	0.0107	8.46	01Jan3000, 05:15	0.37
R-P169	0.0021	1.75	01Jan3000, 05:10	0.07
R-P170	0.0117	9.30	01Jan3000, 05:10	0.41

Page 3

Precipitation

Time	100-yr, 6-hr	10-yr, 6-hr
01Jan3000, 01:05	0	0
01Jan3000, 01:20	0.024	0.012
01Jan3000, 01:35	0.048	0.024
01Jan3000, 01:50	0.075	0.038
01Jan3000, 02:05	0.099	0.05
01Jan3000, 02:20	0.123	0.063
01Jan3000, 02:35	0.15	0.077
01Jan3000, 02:50	0.174	0.089
01Jan3000, 03:05	0.198	0.101
01Jan3000, 03:20	0.222	0.113
01Jan3000, 03:35	0.261	0.133
01Jan3000, 03:50	0.297	0.151
01Jan3000, 04:05	0.354	0.181
01Jan3000, 04:20	0.414	0.211
01Jan3000, 04:35	0.648	0.33
01Jan3000, 04:50	1.131	0.577
01Jan3000, 05:05	2.502	1.276
01Jan3000, 05:20	2.733	1.394
01Jan3000, 05:35	2.793	1.424
01Jan3000, 05:50	2.85	1.454
01Jan3000, 06:05	2.886	1.472
01Jan3000, 06:20	2.916	1.487
01Jan3000, 06:35	2.949	1.504
01Jan3000, 06:50	2.973	1.516
01Jan3000, 07:05	3	1.53

P1- 100	P1- 99	P1-98	P1- 97	Pi- 96	P. 85	P1- 94	P1-93	P1- 92	P1- 91	P1- 90	P1- 89	P1- 88	P1- 87	P1-86	P1- 85	P1-84	P1-83	P 82	P1-85	P: 80	P1- 79	P1- 78	P1-77	P1-76	P1-75	P1-74	P1-73	P1-72	P1-71	P1-70	P1-69	P1-68	P1-67	DEVELOPED	Name	Basin	Drainage			•			<u></u>		
H	Н	H	\vdash	⊢	┝	⊢	┝	┢	╁	H	╁	+	╁	\vdash	┢	⊢	\vdash	H		H	⊢	Н	┝		\vdash	H	Н				Н	Н		വ									6-Hour Design Storm Distribution		
2.9614	1.5301	7.9597	3.2162	11.4480	2.7271	L	2.6487	١.	╀	┡	╀	-	╀	<u> </u>	┡	⊢	Н	5.1252	1.1797	┡	6.4257	5.5774	5.5474	5.7100	4.2818	6.7233	Ш	Н	2.7841		Н			윘	_		Drainage D						iom Distr		
0.0046	0.0024	0.0124	0.0050	0.0179	0.0043	0.0044	0.0041	0.0044	0.0017	0.0038	0.0138	0.0137	0.0082	0.0143	0.0066	0.0115	0.0174	0.0080	0.0018	0.0165	0.0100	0.0087	0.0087	0.0089	0.0067	0.0105	0.0030	0.0044	0.0044	0.0117	0.0021	0.0085	0.0107		(50. Mi)	Area	Drainage		,		l-v -		outon		
7,000 +/- resudebtuak kits	7,000 +/- resudebtuak ktts	7,000 +/- resudebtuak kits	Open space/parks - good	7,000 +/- resudebtuak kits		Cover Type and Hydrologic Condition				Curve Numbers	SCS Curve Numbers	702.369.9396	5820 S. Eastern Ave. Suite 200	Stanley Consultants INC																															
76 84		76 84	76 84	76 84	76 84	76 84	76 84	76 84		76 84		-			76 84	76 84		76 84			76 84	76 84	76 84	76 84	39 61	76 84	76 84						78 84	- 1	۸	9	ĹΩ			ers			₹ 		
		89 91	89 91	89 91	89 91	89 91	89 91	89 91	88		89	89	88			89 91	8			89 91	89 91	89 91	89 91	89 91	74 80		89		89	68		89	16 68	- 1	. 1	Group	Curve # for								
89	-	1 89	89		_			-	89	-	_	_	_	89	_	_	89		-	_	89	89	88	89	74	-					-	\vdash	88	- 1	o <u>2</u>		odwo	ာ							
100	99	98	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70	69	68	67	EVELOPED CONDI	(1)	Designation			Sub-B				Modified STANDARD FORM 4 from the Clark County Regional Flood Control District's Hydrologic Criteria and Drainage Design Manual		
0.78	0.78	0.78	0,78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0,78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.58	0.59	0.78	0.78	0.78	0.78	0.78	0.78	0.78	SNOLLI	2	CN)	į		Sub-Basin Data				FORM 41		•
2.96	1.53	7.96	3.22	11.45	2.73	2,81	2.65	2.81	1.09	2.41	8.80	8.76	5.25	9.13	4.23	7.39	11.15	5,13	1.18	10.56	6,43	5.58	5,55	5.71	4.28	6.72	1.95	2.83	2.78	7.47	1.33	5.44	6.82			(Acres)		†	ų.				from the Ca		
120	150	160	130	140	130	120	130	140	120	140	130	120	120	190	120	135	100	130	130	120	110	150	120	160		120	120	140	160	130	130	170	130			(feet)	•	-	Initia	.L			ark County		
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	:.8	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				•••••	-	/Overland				/Regional		
6.22	6.95	7.18	6.47	6.71	6.47	6.22	6,47	6.71	6.22	6.71	6.47	6.22	6.22	6.47	6.22	6.59	5.67		6,47		5,95	6.95	6.22	7.18	0.00	10.12	6.22	6.71	7.18	6.47	6.47	7.40	6.47	1	6	TI (Mis)	•••		Initial/Overland Time (Ti)				Flood Con		
550	304	1054	1103	1459	430	1054	400	436	231	290	2026	1147	1294	1474	726	82	1186	952	286	1144	990	941	602	925	2240	1038	569	817	318	1240	468	1232	887			(feet)	 }						itral District		င္မ
0.01	0.02	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	-	••••••	(%)			- Internation				r's Hydrolo		Date: 0 Calculated by: 0
0.21	0.28	0.46	0.20	0.23	0.18	0.15	0.15	0.17	0.27	0.21	0.21	0,19	0.21	0.21	0.20	0.19	0.18	0.23	0.24	0.18	0.18	0.16	0.21	0.15	0.23	0.20	0.19	0.17	0.21	0.20	0.21	0.17	0.17	***************************************		(Manning)			Travel Time (Tt)				gic Criteria		• •
0.32	0.43	0.69	0.31	0.35	0.27	0.23	0.23	0.26	0.41	0.31	0.32	0.29	0.32	0.32	0.30	0.28	0.27	0.35	0.36	0.28	0.28	0.24	0.32	0,22	0.34	0.30	0.29	0.25	0.32	0.30	0.31	0.26	0.25) (Manning)			ma (Tt)				and Drainag		
41.76	17.8	31.62	73.2	82.80	40.50	96.20	44.50	42.66	14.13	23,53	119.90	81.92	80.94	88.86	53.79	64.03	89.7	56.8	202	84.2	74.20	84.61	44.7	88.49	121.23	71.18	47.09	71.3	25.01	82.58	37.74	96.54	75,79		*****	9) * 7(Min)	: 	-					je Design N		
H	H	┢	H	┢┈	┢	H	H	t	t	\vdash	0 2156	t	t	1604	H	Г	Н	┢	┢	┢	┢	┢	┢		┢	1158					Н		1017	7		(feet)	7 7	1	ŝ				lanual		
Н			┝		-	┝	┞		╁		ł			H	-	H		┝	┢	-	-	_	-		-	Н		_			_	\dashv	\forall						(Urbanized Basins)	Tc Check					
H		16.7	-	18.9	L	_	┞	13.2	╁	+	22.0	┝	╁	18.9	├-	<u> </u>	17.1	L	┞	H	6.1	L	L	H	H	L	_		12.7	\dashv	Н	17.8	\dashv	\dashv		(Min)			╀-		70	- 5 <u>5</u>	v	2	
\vdash	-	16.7	┝	18,9	┝	-	-	\vdash	12.0	╁	+-	╁	╁┈	18.9	┝	┝	17.1	┝	┝	┝	-	┢	H	H	┝	H	H	15.3			Н		15.7	\dashv		X	; ;;		Final To 1		702.369.9396	20 S.E.	Carrie		M
L	7.5 89	┡	10,1 89	ـ	7.9 89	9.9 89	L.	7.9 8	L	7.4 8	13.2 89	1	10.7 8	4_	┺	_	10.3	<u> </u>	╙	ㄴ	╙	辶	8.4 89	9.6	╙	ш	8.3 8		7.6 8		Ш	10.7 89	9.4 8	4		(g.0.2)	odwo	מ	TLAG 1		196	stern A	بر ا		I
-		9 0.0124	0.0050	-	_	_	_	+	9 0.0017	-	_	1	+	89 0.0143	$\overline{}$	$\overline{}$	0.0174			7	_	0.0087	-	1	_	1	_	89 0,0044			_	_	9 0.0107	7	Ζ_	(Sq. ML)			HEC-INPUT		9 09 1 19	5820 S. Eastern Ave. Suite 200	usno	8	V
8	4	-	0	9	3						. 8	7	122			5	•		68	5		7	7	9	7	6	0	4	4	7 [1	5	7		-	Urban			T Remarks			200	startiey Consultants INC	i nata	

4	20	7.	75.	8	74	7		5	Ω	Ω.	9	P	ņ	7	Q	. 0	Notes: D		0.2953	P1- 105 4.67 0.0073	P1- 103 2.07 0.0032	P1- 102 2.01 0.0031	P1- 101 4.2020 0.0066	Name (Acres) (Sq. Mi.)	Basin Area Area	Drainage Drainage Drainage				
40,000 sq. ft. lots	20,000 sq. ft. lots	14,000 sq. ft. lots	10,000 sq. ft. lots	8000 sq. ft. lots	7000 sq. ft. lots	Townhouses/<= 6000 sq. ft.	Apartments/Condos	ndustrial	Commercial & Business	Dirt (includes R/W)	Gravel (includes RW)	Paved: open ditches (includes R/W)	Paved: curbs and storm drains	Paved (excludes right-of-way)	Open space/parks - good	Open space - fair	Open space - poor			7,000 +/- resudebtuak kits	Cover Type and Hydrologic Condition					Curve Numbers	SCS Curve Numbers			
5	çı 4	57	62	73	76	8	81	82	89	72	76	8	98	98	အ္ဗ	49	68		H	76	76	76	76	>	ı	Į			8	bers
- 6	7	72	75	82	84	87	88	88	88	83	8	89	8	8	<u>a</u>	69	79		L	8	84	22	2		ଦ୍ର	Hydrologic Solls	Curve # for			
79	8	5	ස	88	89	90	91	9	9	87	8	ន	98	88	74	79	86		L	89	89	88	89	ဂ	Graup	gic Soi	#			
48	8	86	87	8	91	92	83	8	8	89	91	93	8	88	8	2	88		L	91 8	91 8	91 8	91 8	0	eji 		woo	,		
																			0	89 105	89 103	89 102	89 101	CN (1)	Designation					
																		K=0.01		0.78	0.78	0,78	0.78			(Default by	.		Sub-Basin Data	
																		K = 0.0132*Cn-0.39		4.67	2.07	2,01	4.20		ᆫ	t by Area	******		Ø	
																		Ti = 1.8*(1.		130	140	140	130			Length			Intial/Overland Time (Ti)	L
																		충		1.00	1.00	. <u>.</u>	1.00	(5)	(%)	Slope			eriand	
																		$Ti = 1.8^{\circ}(1.1-K)^{\circ}L^{\circ}(1/2)/(S^{\circ}(1/3))$		6.47	6.71	6.71	6,47	(6)	Ti (Min)				Time (Ti)	-11-11
																				863	412	356	918	3	·}~~	Length : S				
													V2=		۵ ۲۱		Exist	aneralized M		0.01 0	0.01 0	0.01 0	_	8	(%) (Ma	Slope V1		L.		
													V2 = 29,4*(S/100)^0.5		V1 = 14.8*(S/100)*0.5		Existing Conditions	Generalized Manning's Equations		0.17 0	0.22 0	0.23 0	0.18 0		(Manning) (Mai			-	Travel Time (Tt)	
													å,5		ð.5		5)	ations	-	0.26 72.59	0.34 30.86	_	0.27 71.41	(10)	(Manning) Tt (Min)	FPS)		<u> </u> 		
													V2 = 3		V1 = 2		Devek			.59 993	.86 552	.84 496	.41 1049	(11) (12)	•	Length			┪	
													V2 = 30.6"(\$/100)^0.5		V1 = 20.2*(S/100)^0.5		Developed Conditions			15.5	13.1	12.8	49 15.8	,		gth (L/180)+10			(Urbanized Basins)	To Check
																				15.5	13.1	12.8	15.8	(14)	(Min)	10 71+71	č II) Final Tc	
																				9.3	7.8	7.7	┝	(Min)			шос		i TLAG	
																				89	8	89	88	S			шос	5	$\overline{}$	
																			0.2953	0.0073	0.0032	0.0031	0.0066		(Sq. Mi.)	_	Drainage		HEC-INPUT	
																								Tc>=5 for Urban	Urban	Tc>=10 for Non			Remarks	

Shed Parameters - Pod 1

DEVELOPED CON	DITIONS				
Drainage Shed	Area (ac)	Elev dn	Elev up	Length (ft)	Slope
P1- 67	6.82056208	2528.9	2522.9	887	0.6764%
P1- 68	5.43982051	2525.4	2516.7	1232	0.7062%
P1- 69	1.33282528	2525.3	2520.4	468	1.0470%
P1- 70	7.47393562	2525.4	2513.3	1240	0.9758%
P1- 71	2.78410071	2520.9	2517.4	318	1.1006%
P1- 72	2.82990899	2503.1	2497.6	817	0.6732%
P1- 73	1.94640098	2497.6	2492.4	569	0.9139%
P1- 74	6.72332983	2498.9	2488.7	1038	0.9827%
P1- 75	4.28184465	2517.4	2489.2	2240	1.2589%
P1- 76	5.70996719	2502.2	2497.3	925	0.5297%
P1- 77	5.54738366	2499.8	2493.2	602	1.0963%
P1- 78	5.57736688	2509.5	2503.9	941	0.5951%
P1- 79	6.42571205	2512.2	2503.9	990	0.8384%
P1- 80	10.5553556	2530.2	2520.8	1144	0.8217%
P1- 81	1.17969603	2518.9	2515	286	1.3636%
P1- 82	5.12524784	2518.9	2506.1	952	1.3445%
P1- 83	11.151259	2519.5	2510.4	1186	0.7673%
P1- 84	7.38699887	2524.7	2517.8	821	0.8404%
P1- 85	4.23359978	2518.1	2510.9	726	0.9917%
P1- 86	9.13315676	2524.1	2507.5	1474	1.1262%
P1- 87	5.24655358	2519.5	2505.4	1294	1.0896%
P1- 88	8.75517188	2512.4	2502.4	1147	0.8718%
P1- 89	8.803328	2518.7	2496.9	2026	1.0760%
P1- 90	2.41032003	2502.3	2499.3	290	1.0345%
P1- 91	1.08501801	2514.2	2510	231	1.8182%
P1- 92	2.80949645	2508.4	2505.3	436	0.7110%
P1- 93	2.64865483	2502.7	2500.5	400	0.5500%
P1- 94	2.81184315	2503.1	2497.3	1054	0.5503%
P1- 95	2.72709787	2506.4	2503.1	430	0.7674%
P1- 96	1	2508.2	2489.6	1459	1.2748%
P1- 97	3.21621621	2508.9	2497.6	1103	1.0245%
P1- 98		2551.1	2497.3	1054	5.1044%
P1- 99	1.53009463	2513.9	2507.9	304	1.9737%
P1- 100	2.96143496	1	2488.7	550	1.1091%
P1- 101	4.20201393		2490.7	919	0.8052%
P1- 102	2.01486774	2495.7	2491.1	356	1.2921%
P1- 103	2.06835346	2495.6	2490.6	412	1.2136%
P1- 105	4.66530826	2519.1	2513	863	0.7068%

Routing

Kinematic F	Routing
-------------	---------

			Manning				Side Slope
Reach	Length (ft)	slope	"n"	Sub reaches	Shape	Width	(xH:V)
R-C-11	250	0.007	0.016	5	Trapezoid	60	0.5
R-JC1	530	0.01	0.016	5	Trapezoid	20	0.5
R-JC10	50	0.01	0.016	5	Trapezoid	20	0.5
R-JC12	170	0.007	0.016	5	Trapezoid	60	0.5
R-JC13	150	0.007	0.016	5	Trapezoid	60	0.5
R-JC15	820	0.007	0.016	5	Trapezoid	60	0.5
R-JC16	330	0.007	0.016	5	Trapezoid	60	0.5
R-JC19	830	0.007	0.016	5	Trapezoid	60	0.5
R-JC2	50	0.01	0.016	5	Trapezoid	20	0.5
R-JC20	680	0.0109	0.016	5	Trapezoid	60	0.5
R-JC22	1000	0.01	0.025	5	Trapezoid	100	0
R-JC23	550	0.008	0.016	5	Trapezoid	60	0.5
R-JC24	390	0.009	0.016	5	Trapezoid	60	0.5
R-JC27	1130	0.007	0.016	5	Trapezoid	60	0.5
R-JC9	200	0.01	0.023	5	Trapezoid	20	0.5
RP1101	400	0.007	0.016	5	Trapezoid	60	0.5
RP1102	380	0.007	0.016	5	Trapezoid	60	0.5
R-P167	650	0.005	0.016	5	Trapezoid	60	0.5
R-P169	330	0.01	0.025	5	Trapezoid	50	0.5
R-P170	50	0.01	0.016	5	Trapezoid	20	0.5
R-P179	200	0.007	0.016	5	Trapezoid	60	0.5
R-P180	1140	0.007	0.016	5	Trapezoid	60	0.5
R-P181	730	0.007	0.016	5	Trapezoid	60	0.5
R-P192	250	0.007	0.016	5	Trapezoid	60	0.5

Modified Puls Routing

Paired Data
Reach Table*
R-JC3 R-JC3
R-JC4 R-JC5
R-JC5 R-JC6
R-JC7 R-JC7
R-JC8 R-JC8

^{*} See OpenSpace_upper-Mod Puls worksheet for data

Case 09-14814-gwz Doc 1261-21 Entered 08/13/10 22:45:33 Page 31 of 104

OpenSpace_upper-Mod Puls

	F-JC8		R-J7	R-J6	R-J5	R-J4	R-J3
Flow	sta450-0	Flow	sta250-0	sta600-250	sta900-600	sta1200-900	1350-1200
(cfs)	Storage (ac-ft)	(cfs)	Storage (ac-ft)				
25	0.0851	25	0.0360	0.0547	0.0509	0.0008	0.0259
50	0.1633	50	0.0603	0.0897	0.0867	0.0014	0.0437
75	0.2662	75	0.0817	0.1219	0.1177	0.0019	0.0592
100	0.4082	100	0.1013	0.1520	0.1422	0.0025	0.0733
125	0.5713	125	0.1199	0.1804	0.1721	0.0030	0.0861
150	0.7372	150	0.1378	0.2073	0.1958	0.0034	0.0978
200	1.1608	175	0.1546	0.2336	0.2182	0.0039	0.1088
250	1.6430	200	0.1712	0.2704	0.2402	0.0043	0.1195
300	2.2029	250	0.2020	0.3228	0.2825	0.0051	0.1392

POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14

Arizona 35.14 N 114.18 W 2703 feet

from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 3 G.M. Bonnin, D. Todd, B. Lin, T. Parzybok, M. Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2003

Coi	nfiden	ce Lir	nits		Seas	onality		environmental and	ted: Tue ation:	*****************	andaran d aran	Othe	r Info		GIS da	ita (Maps	Help
					Prec	ipita	tion	Frequ	uency	y Est	imate	es (in	ches))				
ARI* (years)	5 min	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
2	0.23	0.35	0.43	0.58	0.72	0.82	0.89	1.04	1.22	1.51	1.75	1.91	2.18	2.36	2.87	3.40	3.95	4.46
5	0.33	0.50	0.62	0.83	1.03	1.17	1.25	1.44	1.68	2.08	2.40	2.60	2.96	3.23	3.96	4.69	5.51	6.24
10	0.40	0.61	0.75	1.01	1.25	1.44	1.53	1.76	2.05	2.53	2.90	3.13	3.55	3.90	4.77	5.64	6.64	7.53
25	0.49	0.75	0.93	1.26	1.55	1.82	1.95	2.22	2.56	3.15	3.61	3.85	4.36	4.81	5.85	6.89	8.14	9.25
50	0.57	0.86	1.07	1.44	1.78	2.12	2.29	2.59	2.97	3.66	4.17	4.42	4.98	5.53	6.70	7.83	9.29	10.54
100	0.65	0.98	1.22	1.64	2.03	2.44	2.67	3.00	3.42	4.19	4.76	5.01	5.62	6.26	7.56	8.78	10.45	11.86
200	0.73	1.10	1.37	1.84	2.28	2.79	3.07	3.44	3.88	4.75	5.39	5.64	6.29	7.03	8.44	9.73	11.62	13.19
500	0.84	1.27	1.58	2.12	2.63	3.27	3.67	4.08	4.55	5.55	6.26	6.50	7.21	8.12	9.64	10.99	13.18	14.96
1000	0.93	1.41	1.75	2.36	2.92	3.68	4.17	4.62	5.10	6.20	6.97	7.19	7.95	8.98	10.56	11.95	14.37	16.33

Text version of table

* These precipitation frequency estimates are based on a <u>partial duration series</u>. ARI is the Average Recurrence Interval. Please refer to the <u>documentation</u> for more information. NOTE: Formatting forces estimates near zero to appear as zero.

Tue Mar 14 11:47:55 2006

Duration			
5-min	120-m 	48-hr -x-	30-day →-
10-min 	3-hr -*-	4-dau -	45-day —∸—
15-min →	6−hr →	7∽day 	60-daų -≭-
30-min 	12-hr -	10-day 	
60-min -×	24-hr -=-	20-day -□-	

Confidence Limits -

				*							nfide imat						-	
ARI** (years)	5 min	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
2	0.27	0.42	0.52	0.70	0.86	1.00	1.06	1.23	1.40	1.72	1.97	2.15	2.46	2.65	3.22	3.83	4.49	5.12
5	0.39	0.60	0.74	0.99	1.23	1.42	1.48	1.69	1.93	2.36	2.70	2.92	3.33	3.62	4.43	5.29	6.26	7.16
10	0.48	0.73	0.90	1.21	1.50	1.75	1.83	2.07	2.35	2.86	3.27	3.52	4.00	4.37	5.34	6.35	7.56	8.65
25	0.59	0.90	1.11	1.50	1.85	2.20	2.31	2.60	2.94	3.57	4.07	4.33	4.90	5.40	6.57	7.75	9.28	10.64
_50	0.68	1.03	1.28	1.72	2.13	2.58	2.72	3.05	3.43	4.15	4.72	4.98	5.61	6.21	7.53	8.84	10.61	12.13
100	0.77	1.18	1.46	1.96	2.43	2.98	3.18	3.57	3.98	4.79	5.41	5.68	6.36	7.08	8.54	9.96	11.97	13.71
200	0.87	1.33	1.65	2.22	2.75	3.42	3.73	4.13	4.58	5.46	6.15	6.43	7.17	8.01	9.57	11.09	13.36	15.33
500	1.02	1.56	1.93	2.60	3.22	4.09	4.53	4.99	5.52	6.46	7.22	7.49	8.30	9.33	10.99	12.61	15.24	17.51
1000	1.15	1.75	2.17	2.93	3.62	4.67	5.22	5.73	6.32	7.30	8.10	8.35	9.21	10.40	12.13	13.82	16.75	19.23

^{*}The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are greater than.

^{**} These precipitation frequency estimates are based on a <u>partial duration series.</u> ARI is the Average Recurrence Interval.

Please refer to the <u>documentation</u> for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

1	
1	* Lower bound of the 90% confidence interval
Ì	Precipitation Frequency Estimates (inches)
ı	

ARI**		10						6				4	7	10	20	30	45	60
(years)													day			_	day	day
2	0.19	0.29	0.36	0.49	0.60	0.69	0.76	0.91	1.06	1.34	1.55	1.71	1.95	2.10	2.56	3.01	3.45	3.87
_ 5	0.28	0.42	0.52	0.70	0.87	0.98	1.06	1.25	1.45	1.84	2.12	2.31	2.64	2.87	3.52	4.15	4.80	5.40
10	0.33	0.51	0.63	0.85	1.05	1.19	1.29	1.51	1.77	2.23	2.56	2.79	3.16	3.46	4.22	4.98	5.78	6.50
25	0.41	0.62	0.78	1.04	1.29	1.47	1.60	1.86	2.16	2.74	3.16	3.40	3.85	4.25	5.14	6.07	7.05	7.96
50	0.46	0.70	0.87	1.18	1.46	1.70	1.86	2.13	2.46	3.14	3.62	3.88	4.37	4.85	5.86	6.85	7.99	9.02
100	0.52	0.79	0.98	1.32	1.63	1.92	2.12	2.41	2.77	3.55	4.10	4.37	4.91	5.46	6.58	7.64	8.92	10.07
200	0.57	0.87	1.08	1.46	1.80	2.14	2.37	2.70	3.08	3.96	4.58	4.86	5.43	6.07	7.29	8.41	9.86	11.13
500	0.65	0.98	1.22	1.64	2.03	2.46	2.74	3.08	3.48	4.52	5.25	5.52	6.14	6.91	8.23	9.40	11.06	12.46
1000	0.70	1.06	1.32	1.78	2.20	2.68	3.03	3.38	3.80	4.94	5.76	6.03	6.69	7.57	8.92	10.12	11.96	13.46

^{*}The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.

Please refer to the documentation for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

Maps -

^{**} These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.

Other Maps/Photographs -

<u>View USGS digital orthophoto quadrangle (DOQ)</u> covering this location from TerraServer; USGS Aerial Photograph may also be available

from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the National Digital Orthophoto Program (NDOP) for more information.

Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information

about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study,

please refer to our documentation.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

#/-30 minutes ...OR... +/-1 degree of this location (35.14/-114.18). Digital ASCII data can be obtained directly from NCDC.

Find <u>Natural Resources Conservation Service (NRCS)</u> SNOTEL (SNOwpack TELemetry) stations by visiting the <u>Western Regional Climate Center's state-specific SNOTEL station maps</u>.

Hydrometeorological Design Studies Center DOC/NOAA/National Weather Service 1325 East-West Highway Silver Spring, MD 20910 (301) 713-1669

Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

GOLDEN VALLEY RANCH

APPENDIX B

DRAINAGE INFRASTRUCTURE CALCULATIONS

- COMMON LOT O (P1-83)
- COMMON LOT F (J-C14)
- COMMON LOT E (J-C17)
- H STREET (J-C21)
- COMMON LOT D (J-C25)

ST-RH036341

Case 09-14814-gwz Doc 1261-21 Entered 08/13/10 22:45:33 Page 39 of 104

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS

MODIFIED "C" L-17.5 SHEO PI-83 INLET A

Common Lot. 6

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope	Composite/Dep
$\mathbf{s}\mathbf{x}$	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1,50
a	Gutter Depression (inch)	2.00

Inlet Interception

	<u></u>	
	Inlet Type *Sag*	Curb-Opening
L		(ft) 8.75
H	Curb-Opening Height	(in) 6.00
m	Inlet Type *Sag*	Parallel Bar P-1-7/8
T	Width of Spread (ft)	39.00
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	7.38
_	Inlet Type *Sag*	Sweeper Combination
d_ave	Depth of Flow (ft)	0.521
	Depth at Curb (ft)	0.667
Qi	Intercepted Flow (cfs	15.000

Note: The curb opening length in the input screen is the total of the curb opening including its length along the grate.

Worksheet **Worksheet for Triangular Channel**

Project Description	-	
Worksheet	COM	MMON LOT G - Drainage Easement - Triangu
Flow Element	Triar	ngular Channel
Method	Man	nning's Formula
Solve For	Char	annel Depth
Input Data		
Mannings Coefficient	0.020	0
Channel Slope	0.005000	0 ft/ft
Left Side Slope	28.80	0 H:V
Right Side Slope	28.80	0 H:V
Discharge	24.00	0 cfs
Results	·	
Depth	0.60) ft
Flow Area	10.2	! ft²
Wetted Perimeter	34.36	i ft
Top Width	34.34	ft
Critical Depth	0.53	l ft
Critical Slope	0.009063	ft/ft
Velocity	2.34	ft/s
Velocity Head	0.09) ft
Specific Energy	0.68	s ft
Froude Number	0.76	3
Flow Type	Subcritical	l

VELOCITY & DEPTH.

Cross Section Cross Section for Triangular Channel

Project Description						
Worksheet	COMMON LOT G - Drainage Easement - Triangula					
Flow Element	Triangular Channel					
Method	Manning's Formula					
Solve For	Channel Depth					
Mannings Coefficient	0.020					
Section Data	0.000					
Channel Slope	0.005000 ft/ft					
Depth	0.60 ft					
Left Side Slope	28.80 H:V					
Right Side Slope	28.80 H:V					
Discharge	24.00 cfs					

Page 1 of 1

F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

EASEMENT DETAIL J STREET TO GOLF COURSE - 15CFS - P183

DATE: 3/14/2006 TIME: 13:45

F051

F0515P WATER SURPACE PROFILE - CHANNEL DEFINITION LISTING

CARD SECT CHN NO OF AVE FIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH

D 24 4 2.00

F 0 5 1 5 P PAGE NO 2

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV

ELEMENT NO 2 IS A REACH

100.00 2500.00 2504.20

N 0.013 RADIUS ANGLE ANG PT MAN H 0.00 0.00 0.00

ELEMENT NO 3 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT W S ELEV

265.00 2505.91 24 0.00

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING
** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HOWKDS, W.S.ELEV = INV + DC

F0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH
GOLDEN VALLEY
EASEMENT DETAIL Y J STREET TO GOLF COURSE

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so	01 125				SF AVE	HF			ORM DEPTI		15	ZR	1101	
*****		******	*******	*******	*****			*****	********			*****		****	****
100.00	2500.00	4.200	2504.200	15.0	4.77	0.354	2504.554	0.00	1.396		2.00	0.00	0.00	0	0.00
63.12	0.03582					.004396	0.28			0.820			0.00		
163.12	2502.26	2.220	2504.481	15.0	4.77	0.354	2504.835	0.00	1.396		2.00	0.00	0.00	0	0.00
HYDRAULIC	JUMP												0.00		
163.12	2502.26	0.843	2503.104	15.0	11.92	2.208	2505.312	0.00	1.396		2.00	0.00	0.00	0	0.00
18.65	0.03582					.031962	0.60			0.820			0.00		
181.77	2502.93	0.843	2503.772	15.0	11.91	2.204	2505.976	0.00	1.396		2.00	0.00	0.00	0	0.00
28.97	0.03582					.029974	0.87			0.820			0.00		
210.74	2503.97	0.874	2504.840	15.0	11.36	2.002	2506.842	0.00	1.396		2.00	0.00	0.00	0	0.00
15.73	0.03582					.026343	0.41			0.820			0.00		
226.47	2504.53	0.907	2505.437	15.0	10.83	1.821	2507.258	0.00	1.396		2.00	0.00	0.00	0	0.00
10.47	0.03582					.023157	0.24			0.820			0.00		
236.94	2504.91	0.940	2505.845	15.0	10.32	1.655	2507.500	0.00	1.396		2.00	0.00	0.00	0	0.00
7.41	0.03582					.020366	0.15			0.820			0.00		
244.35	2505.17	0.976	2506.146	15.0	9.84	1.504	2507.650	0.00	1.396		2.00	0.00	0.00	0	0.00
5.58	0.03582					.017930	0.10			0.820			0.00		
249.93	2505.37	1.013	2506.383	15.0	9.39	1.368	2507.751	0.00	1.396		2.00	0.00	0.00	0	0.00
4.26	0.03582					.015793	0.07			0.820			0.00		
254.19	2505.52	1.052	2506.575	15.0	8.95	1.244	2507.819	0.00	1.396		2.00	0.00	0.00	0	0.00
3.29	0.03582					.013924	0.05			0.820			0.00		
257.48	2505.64	1.093	2506.734	15.0	8.53	1.130	2507.864	0.00	1.396		2.00	0.00	0.00	0	0.00
2.54	0.03582					.012286	0.03			0.820			0.00		

PAGE

F0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH
GOLDEN VALLEY
EASEMENT DETAIL Y J STREET TO GOLF COURSE

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so	******	******			SF AVE	HF	*****		NORM DEPTH		******	ZR		
260.02	2505.73	1.136	2506.868	15.0	8.13	1.027	2507.895	0.00	1.396		2.00	0.00	0.00	0	0.00
1.90	0.03582					.010856	0.02			0.820			0.00		
261.92	2505.80	1.182	2506.982	15.0	7.76	0.934	2507.916	0.00	1.396		2.00	0.00	0.00	0	0.00
1.41	0.03582					.009604	0.01			0.820			0.00		
263.33	2505.85	1.230	2507.080	15.0	7.40	0.849	2507.929	0.00	1.396		2.00	0.00	0.00	0	0.00
0.96	0.03582					.008507	0.01			0.820			0.00		
264.29	2505.89	1.281	2507.166	15.0	7.05	0.772	2507.938	0.00	1.396		2.00	0.00	0.00	0	0.00
0.54	0.03582					.007550	0.00			0.820			0.00		
264.83	2505.90	1.336	2507.240	15.0	6.72	0.702	2507.942	0.00	1.396		2.00	0.00	0.00	0	0.00
0.17	0.03582					.006712	0.00			0.820			0.00		
265.00	2505.91	1.396	2507.306	15.0	6.40	0.637	2507.943	0.00	1.396		2.00	0.00	0.00	0	0.00

PAGE 2

GOLDEN VALLEY RANCH GOLDEN VALLEY EASEMENT DETAIL Y J STREET TO GOLF COURSE

NOTES 1. GLOSSARY

4....

GLOSSARI

I = INVERT ELEVATION

C = CRITICAL DEPTH

W = WATER SURFACE ELEVATION

H = HEIGHT OF CHANNEL E = ENERGY GRADE LINE

X = CURVES CROSSING OVER

B = BRIDGE ENTRANCE OR EXIT Y = WALL ENTRANCE OR EXIT

^{2.} STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036352

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1

Project Name.: Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

COMMON LOT F NODE J-C14 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0063
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	19.000
T	Width of Spread (ft)	23.45

Gutter Flow

		0.100
EO	Gutter Flow Ratio	0.186
d	Depth of Flow (ft)	0.56
V	Average Velocity (ft/sec)	3.41

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)
Curb Opening	31.70	4.25	0.08	1.453	17.547
Parallel Bar P-1-7/8	1.50	2.88	0.31	5.456	12.092
Combination			0.36	6.908	12.092

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Inlets on Grade Date: 03/15/2006

Project No. :18476 - Pod 1

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

LOT F NODE J-C14 INLET B

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0051
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	20.000
T	Width of Spread (ft)	25.00

Gutter Flow

	· ·	
Eo	Gutter Flow Ratio	0.174
đ	Depth of Flow (ft)	0.59
v	Average Velocity (ft/sec)	3.17

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	31.15 1.50	5.75 4.38	0.08 0.46 0.50	1.555 8.482 10.037	18.445 9.963 9.963	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS
MODIFIED "C" L-11.5
NODE J. C.Y INLET C

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

·	Cross Slope	Composite/Dep
Sx	Pavement Cross Slope (1	ft/ft) 0.0100
Sw	Gutter Cross Slope (1	ft/ft) 0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (incl	h) 2.00

Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L	Curb-Opening Length	(ft) 5.75
H	Curb-Opening Height	(in) 6.00
	Inlet Type *Sag*	Parallel Bar P-1-7/8
${f T}$	Width of Spread (ft)	39.48
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	4.38
	Inlet Type *Sag*	Sweeper Combination
d_ave	Depth of Flow (ft)	0.526
d_curb	Depth at Curb (ft)	0.671
Qī	Intercepted Flow (cfs) 11.000

Note: The curb opening length in the input screen is the total of the curb opening including its length along the grate.

Worksheet **Worksheet for Triangular Channel**

Worksheet	COMMON LOT F - Drainage Easement - Triange
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Input Data	
Mannings Coefficient	0.020
Channel Slope	0.005000 ft/ft
Left Side Slope	28.80 H:V
Right Side Slope	28.80 H:V
Discharge	19.00 cfs
Results	
Depth	0.55 ft
Flow Area	8.6 ft ²
Wetted Perimeter	31.49 ft
Top Width	31.47 ft
Critical Depth	0.49 ft
Critical Slope	0.009350 ft/ft
Velocity	2.21 ft/s
Velocity Head	0.08 ft
Specific Energy	0.62 ft
Froude Number	0.75
Flow Type	Subcritical

الأراب

Cross Section Cross Section for Triangular Channel

Project Description	
Worksheet	COMMON LOT F - Drainage Easement - Triangular
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth

Section Data		
Mannings Coefficient	0.020	
Channel Slope	0.005000	ft/ft
Depth	0.55	ft
Left Side Slope	28.80	H : V
Right Side Slope	28.80	H : V
Discharge	19.00	cfs

Entered 08/13/10 22:45:33

Page 55 of 104

Case 09-14814-gwz

Doc 1261-21

F 0 5 1 5 P

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL WITH JC14 - 28 CFS

ST-RH036359

PAGE NO 3

F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL WITH JC14 - 28 CFS AT STA 105 + ON WLPR

F 0 5 1 5 P PAGE NO 2

WATER	SURFACE	PROFILE	-	ELEMENT	CARD	LISTING

. 3

3

ELEMENT NO	1 IS A SYSTEM OUT U/S DATA	STATION INVERT 100.00 2482.64			W S ELEV 2490.18	
ELEMENT NO	2 IS A REACH					
	U/S DATA	STATION INVERT		N 0.013	RADIUS 0.00	ANGLE ANG PT MAN H 0.00 0.00 0
		240.00 2483.34	30	0.013	0.00	0.00 0.00 0
ELEMENT NO	3 IS A JUNCTION	* *	* *	*	*	*
	U/S DATA	STATION INVERT	SECT LAT-1 LAT-2	N Q3 Q4	INVERT-3 INVERT-4	PHI 3 PHI 4
		245.00 2483.36	30 0 0	0.014 0.0 0	.0 0.00 0.00	0.00 0.00
ELEMENT NO	4 IS A REACH	* * STATION INVERT		N	RADIUS	ANGLE ANG PT MAN H
	U/S DATA	372.00 2484.00		0.013	0.00	0.00 5.00 0
		3/2.00 2404.00	30	0.023	5111	
ELEMENT NO	5 IS A JUNCTION	* *	* *	*	*	*
	U/S DATA	STATION INVERT	SECT LAT-1 LAT-2		INVERT-3 INVERT-4	
		377.00 2484.02	30 0 0	0.014 0.0 0	.0 0.00 0.00	0.00 0.00
			*			
ELEMENT NO	6 IS A REACH U/S DATA	STATION INVERT		N	RADIUS	ANGLE ANG PT MAN H
	U/S DATA	502.00 2484.65		0.013	0.00	0.00 5.00 0
		J02.00 2404.0J	30	0.023	5.22	
ELEMENT NO	7 IS A JUNCTION	* *	* *	*	*	*
	U/S DATA	STATION INVERT			INVERT-3 INVERT-4	
		507.00 2484.67	30 0 0	0.014 0.0 0	.0 0.00 0.00	0.00 0.00
ELEMENT NO	8 IS A REACH	* *	*			
ELEMENT NO	U/S DATA	STATION INVERT		N	RADIUS	ANGLE ANG PT MAN H
	O, G DAIA	715.00 2494.47		0.013 .	0.00	
ELEMENT NO		ADWORKS		*		
	U/S DATA	STATION INVERT			W S ELEV 0.00	
NO EDIT EDDOE	C BUCCHMERSON COM	715.00 2494.47			0.00	

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING
** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

F0515P

WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL WITH JC14 - 28 CFS

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	AEP	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF		N	ORM DEPTH			ZR		
*******	******	*****	*****		*****	*******	******								
100.00	2482.64	7.540	2490.180	28.0	5.70	0.505	2490.685	0.00	1.804		2.50	0.00	0.00	0	0.00
140.00	0.00500					.004660	0.65			1.973			0.00		
240.00	2483.34	7.492	2490.832	28.0	5.70	0.505	2491.337	0.00	1.804		2.50	0.00	0.00	0	0.00
JUNCT STR	0.00400					.005404	0.03						0.00		
245.00	2483.36	7.499	2490.859	28.0	5.70	0.505	2491.364	0.00	1.804		2.50	0.00	0.00	0	0.00
127.00	0.00504					.004660	0.59			1.970			0.00		
372.00	2484.00	7.460	2491.460	28.0	5.70	0.505	2491.965	0.00	1.804		2.50	0.00	0.00	0	0.00
JUNCT STR	0.00400					.005404	0.03						0.00		
377.00	2484.02	7.467	2491.487	28.0	5.70	0.505	2491.992	0.00	1.804		2.50	0.00	0.00	0	0.00
125.00	0.00504					.004660	0.58			1.970			0.00		
502-00	2484.65	7.427	2492.077	28.0	5.70	0.505	2492.582	0.00	1.804		2.50	0.00	0.00	0	0.00
JUNCT STR	0.00400					.005404	0.03		•				0.00		
507.00	2484.67	7.434	2492.104	28.0	5.70	0.505	2492.609	0.00	1.804		2.50	0.00	0.00	0	0.00
104.95	0.04711					.004660	0.49			0.961			0.00		
611.95	2489.61	3.082	2492.697	28.0	5.70	0.505	2493.202	0.00	1.804		2.50	0.00	0.00	0	0.00
HYDRAULIC	JUMP												0.00		
611.95	2489.61	1.008	2490.623	28.0	15.11	3.546	2494.169	0.00	1.804		2.50	0.00	0.00	0	0.00
4.09	0.04711					.039811	0.16			0.961			0.00		
616.04	2489.81	1.008	2490.815	28.0	15.09	3.538	2494.353	0.00	1.804		2.50	0.00	0.00	0	0.00
29.13	0.04711					.037340	1.09			0.961			0.00		
645.17	2491.18	1.045	2492.225	28.0	14.40	3.218	2495.443	0.00	1.804		2.50	0.00	0.00	0	0.00
17.77	0.04711					.032787	0.58			0.961			0.00		

ST-RH036362

PAGE

713.38 2494.39

0.92 0.04711

3

: 3

الأربة

F0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH

28.0

1.586 2495.980

8.52

LATERAL WITH JC14 - 28 CFS CRITICAL HGT/ BASE/ NO AVBPR VEL ENERGY SUPER INVERT DEPTH W.S. STATION PIER OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. SF AVE NORM DEPTH L/ELEM ******* so 0.00 0.00 662.94 2492.02 1.083 2493.100 13.73 2.925 2496.025 0.00 1.804 2.50 12.33 0.04711 .028800 0.36 0.961 0.00 2.658 2496.379 0.00 1.804 2.50 0.00 0.00 0.00 1.123 2493.721 28.0 13.08 675.27 2492.60 .025315 0.23 0.961 0.00 9.17 0.04711 0.00 2.50 0.00 2,418 2496,613 1.804 684.44 2493.03 1.165 2494.195 28.0 12.48 0.00 .022267 0.961 0.00 7.07 0.04711 0.16 691.51 2493.36 11.89 2.197 2496.769 0.00 1.804 2.50 0.00 0.00 0.00 5.59 0.04711 .019599 0.11 0.961 0.00 2496.881 2,50 0.00 0.00 0.00 11.35 697.10 2493.63 1.255 2494.882 28.0 .017261 0.961 0.00 4 48 0 04711 0.00 2.50 0.00 1.816 2496.957 1,804 0.00 701.58 2493.84 1.303 2495,141 28.0 10.81 015215 0.05 0.961 0.00 3.57 0.04711 0.00 0.00 0.00 705.15 2494.01 1.354 2495.360 10.31 1.652 2497.012 0.00 1.804 2.50 .013424 0.04 0.961 0.00 2.89 0.04711 28.0 9.83 1.501 2497.050 0.00 1.804 2.50 0.00 0.00 0.00 708.04 2494.14 1,407 2495.549 .011855 0.03 0.961 0.00 2.28 0.04711 2.50 0.00 0.00 0.00 1.364 2497.076 0.00 1.804 710.32 2494.25 1.463 2495.712 28.0 9.37 0.961 0.00 1.75 0.04711 010484 0.02 0.00 0.00 1.240 2497.095 0.00 1.804 2.50 0.00 712.07 2494.33 .009286 0.01 0.961 0.00 1.31 0.04711

1.128 2497.108

0.01

.008237

0.00

1.804

ST-RH036363

PAGE

2.50

0.961

0.00 0.00

0.00

0.00

F0515P

WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL WITH JC14 - 28 CFS

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	Super Elev	CRITICA: DEPTH	L	HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so	*******	********	*****	*****	SF AVE	HF	******	******	NORM DEPTH		******	ZR ****	****	****
714.30	2494.44	1.653	2496.090	28.0	8.13	1.025	2497.115	0.00	1.804		2.50	0.00	0.00	0	0.00
0.53	0.04711					.007323	0.00			0.961			0.00		
714.83	2494.46	1.725	2496.187	28.0	7.75	0.932	2497.119	0.00	1.804		2.50	0.00	0.00	0	0.00
0.17	0.04711					.006524	0.00			0.961			0.00		
715.00	2494.47	1.804	2496.274	28.0	7.38	0.846	2497.120	0.00	1.804		2.50	0.00	0.00	0	0.00

PAGE 3

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL WITH JC14 - 28 CFS

							_	_		_		_		_						
100.00	.I	•	C I	н -		•	•	·W	E	•		•		•		-				R
112.55																				
125.10																				
137.65																				
150.20	-																		_	
162.76	:																			
175.31	•																			
187.86	•																			
200.41	•																		•	
212.96	•																		•	
225.51	-																		•	
238.06	•																		•	
250.61				с н					W	Е									•	JX
263.16	. 1			Сн					W	E									•	R
275.71	- 1			C n					-	E.									•	
288.27	•																			
	•																			
300.82	•																		•	
313.37	•																		•	
325.92	•																		٠	
338.47	•																		٠	
351.02	•																		•	
363.57	•	_		_							_								•	JХ
376.12	-	I		C	H					W	E								•	
388.67	•	I		C	H					W	E								•	R
401.22	•																			
413.78	•																		•	
426.33	•																		•	
438.88	•																		•	
451.43																			•	
463.98	-																		•	
476.53	-																		•	
489.08	•																			
501.63	-				_							_								
514.18	-		I		C	н					W	E							•	JX
526.73			ĭ		С	H					W	E							•	R
539.29	•																			
551.84	-																			
564.39																				
576.94	•																		•	
589.49																			•	
602.04																				
614.59								I		C	H	WI	C							R
627.14								I	W	C	H			E					٠	R
639.69								I	₩	C	H			E					•	R
652.24									1	[W		H			E				R
664.80											I	¥					E			R
677.35												I	W	C	H		Е		•	R
689.90												I		W	C	H		E		R
702.45													Ι	W		H		E	-	R
715.00													I		W	С	Н	E		R
	2482.64	2484	1.09	2485.5	4	2486.98	2488.43	2489.	88 2	2491.	.33	2492	.78	2494.	22	2495	-67	249	7.12	

\ §

N O T E S
1. GLOSSARY
I = INVERT ELEVATION
C = CRITICAL DEPTH
W = WATER SURFACE ELEVATION
H = HEIGHT OF CHANNEL
E = ENERGY GRADE LINE
X = CURVES CROSSING OVER
B = BRIDGE ENTRANCE OR EXIT
Y = WALL ENTRANCE OR EXIT
Y = WALL ENTRANCE OR EXIT
STATIONS FOR DOLUMES AT A JUNE

^{2.} STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036366

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1

Project Name.: Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

COMMON LOT E NODE J-C17 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0119
$\mathbf{S}\mathbf{x}$	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	15.000
T	Width of Spread (ft)	18.94

Gutter Flow

Eo	Gutter Flow Ratio	0.233
đ	Depth of Flow (ft)	0.47
V	Average Velocity (ft/sec)	4.10

Inlet Interception

;	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
, —	Curb Opening	31.84	4.25	0.08	1.142	13.858	
•	Parallel Bar P-1-7/8	1.50	2.88	0.32	4.491	9.368	
	Combination			0.38	5.632	9.368	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

> Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1 Project Name.:Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

COMMON LOT E NODE J-C17 INLET B

į

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0119
\mathbf{s}	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	16.000
${f T}$	Width of Spread (ft)	19.42

Gutter Flow

Eo	Gutter Flow Ratio	0.227
đ	Depth of Flow (ft)	0.48
v	Average Velocity (ft/sec)	4.16

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening Parallel Bar P-1-7/8 Combination	33.06 1.50	5.75 4.38	0.07 0.42 0.46	1.174 6.193 7.366	14.826 8.634 8.634	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1

Project Name.: Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

COMMON LOT E NODE J-C17 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
s	Longitudinal Slope (ft/ft)	0.0050
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
\mathbf{n}	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	33.000
$\widetilde{\mathbf{T}}$	Width of Spread (ft)	30.33

Gutter Flow

Eo	Gutter Flow Ratio	0.142
đ	Depth of Flow (ft)	0.70
V	Average Velocity (ft/sec)	3.56

Inlet Interception

	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
_	Curb Opening	41.02	5,75	0.06	1.957	31.043	
	Parallel Bar P-1-7/8	1.50	4.38	0.40	12.308	18.734	
	Combination			0.43	14.266	18.734	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1

Project Name.:Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

COMMON LOT E NODE J-C17 INLET D

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0062
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
а	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	33.000
$\widetilde{\mathbf{T}}$	Width of Spread (ft)	29.12

Gutter Flow

	Εo	Gutter Flow Ratio	0.148
	d	Depth of Flow (ft)	0.68
-	V	Average Velocity (ft/sec)	3.86

Inlet Interception

INLET	LT or WGR	L	E	Qi	Qb
INTERCEPTION	(ft)	(ft)		(cfs)	(cfs)
Curb Opening Parallel Bar P-1-7/8 Combination	43.13 1.50	5.75 4.38	0.06 0.38 0.41	1.863 11.702 13.565	31.137 19.435 19.435

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

> Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1 Project Name.:Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

COMMON LOT E NODE J-C17 INLET E

> Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
s	Longitudinal Slope (ft/ft)	0.0050
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
M	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	12.000
$\widetilde{\mathbf{T}}$	Width of Spread (ft)	20.55

Gutter Flow

Eo	Gutter Flow Ratio	0.214
d	Depth of Flow (ft)	0.51
V	Average Velocity (ft/sec)	2.79

Inlet Interception

	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
- (Curb Opening	23.12	4.25	0.10	1.249	10.751	
*	Parallel Bar P-1-7/8	1.50	2.88	0.38	4.073	6.678	
	Combination			0.44	5.322	6.678	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1

Project Name.: Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

COMMON LOT E NODE J-C17 INLET F

. j

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
s	Longitudinal Slope (ft/ft)	0.0057
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	13.000
T	Width of Spread (ft)	20.66

Gutter Flow

EO	Gutter Flow Ratio	0.212
d	Depth of Flow (ft)	0.51
V	Average Velocity (ft/sec)	2.99

Inlet Interception

J	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
1 —	Curb Opening	24.93	5.75	0.10	1.258	11.742	
•	Parallel Bar P-1-7/8	1.50	4.38	0.51	5.948	5.795	
	Combination			0.55	7.205	5.795	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

į

j

Project Description

SAG INLETS - ALL PODS

MODIFIED "C" L-11.5

NOOE J-GIT INLET G

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope	Composite/Dep
sx	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
а	Gutter Depression (inch)	2.00

Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L	Curb-Opening Length	(ft) 5.75
H	Curb-Opening Height	(in) 6.00
T WGR	Inlet Type *Sag* Width of Spread (ft) Grate Width (ft)	Parallel Bar P-1-7/8 39.48 1.50
L	Grate Length (ft)	4.38
_	Inlet Type *Sag* Depth of Flow (ft) Depth at Curb (ft) Intercepted Flow (cfs	Sweeper Combination 0.526 0.671 11.000

Note: The curb opening length in the input screen is the total of the curb opening including its length along the grate.

Worksheet

Worksheet for Triangular Channel

Worksheet	COMMON LOT E - Drainage Easement - Triang	gular
Flow Element	Triangular Channel	
Method	Manning's Formula	
Solve For	Channel Depth	
nput Data		
Mannings Coefficient	0.020	
Channel Slope	0.005000 ft/ft	
Left Side Slope	28.80 H:V	
Right Side Slope	28.80 H:V	
Discharge	56.00 cfs	
Results		
Depth	0.82 ft	
Flow Area	19.3 ft²	
Wetted Perimeter	47.22 ft	
Top Width	47.19 ft	
Critical Depth	0.75 ft	
Critical Slope	0.008092 ft/ft	
Velocity	2.90 ft/s	
Velocity Head	0.13 ft	
Specific Energy	0.95 ft	
Froude Number	0.80	
	Subcritical	

Project Engineer: Information Services FlowMaster v7.0 [7.0005] Page 1 of 1

J

Cross Section Cross Section for Triangular Channel

Project Description	
Worksheet	COMMON LOT E - Drainage Easement - Triangu
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Section Data	0.020
Mannings Coefficient	0.020
	0.020
Channel Slope	0.005000 ft/ft
Channel Slope Depth	
•	0.005000 ft/ft

56.00 cfs

Discharge

Q:\18449\dwg\design\SD_PRO\POD1\WLR_STA93+90.dwg, 3/16/2006 5:50:46 PM, \\lvg-ps1\hp5100-eng, 1:1

..1

F 0 S 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL WITH 28 CFS IN POD 2 - J-C17 STA 93 + ON WLPR

DATE: 3/15/2006

TIME:	13:11																		
								1	F0515P										
					WATER	SURFACE	PROF:	ILE -	CHANNE	L DEFI	NITIO	V LIST	ING					PAGE	1
CARD CODE		CHN TYPE	NO OF PIERS	AVE PIER WIDTH	HEIGHT 1 DIAMETER	BASE WIDTH	ZL	ZR	INV DROP	Y(1)	Y(2)	Y(3)	Y(4)	Y (5)	Y(6)	Y(7)	Y(8)	Y(9)	Y(10)
CD CD CD	48 18 36 30	4 4 4			4.00 1.50 3.00 2.50														
CD	24	4			2.00														

F 0 5 1 5 P PAGE NO 2

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO	1 IS A	SYSTEM OUT U/S DATA	STATION	* INVERT 2482.05	SECT 36	·					W S ELEV 2485.11				
ELEMENT NO	2 IS F	REACH U/S DATA	STATION 302.00	* INVERT 2483.24	SECT 36	•		N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT 45.00	MAN H O
ELEMENT NO	3 IS #	JUNCTION U/S DATA	STATION 307.00	INVERT 2483.36	SECT 36	LAT-1 24	* LAT-2 0	N 0.013	Q3 11.0		INVERT-3 2483.36	INVERT-4 0.00	* PHI 3 90.00	PHI 4 0.00	
ELEMENT NO	4 IS 2	REACH U/S DATA	STATION 332.00	* INVERT 2483.74	SECT 36	,		N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT 10.00	MAN H O
ELEMENT NO		JUNCTION U/S DATA		INVERT 2483.78	36	18	* . LAT-2 18	N 0.013	Q3 13.0		2483.78	INVERT-4 2483.78	PHI 3 90.00	PH1 4	
WARNING - AD		ECTIONS ARE A REACH	E NOT IDENT	CAL - SE	E SECI		UMBERS	AND CA	ANNEL DE	FINITIONS					
EDEMBRI NO	0 13 2	U/S DATA	STATION 375.00	INVERT 2484.29	SECT 30			N 0.013				RADIUS 0.00	ANGLE 0.00	ANG PT 0.00	MAN H 0
ELEMENT NO	7 IS 1	A SYSTEM HEA U/S DATA	STATION	INVERT	SECT 30	•			*		W S ELEV				
NO EDIT ERROR ** WARNING N		INTERED-COME - WATER SUF				LESS I	THAN OR	EQUALS	INVERT	ELEVATION	IN HDWKD	s, W.S.ELI	V = INV	+ DC	

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P

WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH
GOLDEN VALLEY
LATERAL WITH 96 CFS IN POD 2 - J-C17

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	SO	*******	*******	*****	*****	SF AVE	HF *******	*****		NORM DEPTH		******	ZR	****	****
100.00	2482.05	3.060	2485.110	64.0	9.05	1.273	2486.383	0.00	2.570		3.00	0.00	0.00	0	0.00
202.00	0.00589					.009207	1.86			3.000			0.00		
302.00	2483.24	3.919	2487.159	64.0	9.05	1.273	2488.432	0.00	2.570		3.00	0.00	0.00	0	0.00
JUNCT STR	0.02400					.007761	0.04						0.00		
307.00	2483.36	4.638	2487.998	53.0	7.50	0.873	2488.871	0.00	2.366		3.00	0.00	0.00	0	0.00
25.00	0.01520					.006314	0.16			1.751			0.00		
332.00	2483.74	4.444	2488.184	53.0	7.50	0.873	2489.057	0.00	2.366		3.00	0.00	0.00	0	0.00
JUNCT STR	0.00800					.004038	0.02						0.00		
337.00	2483.78	5.683	2489.463	28.0	5.70	0.505	2489.968	0.00	1.804		2.50	0.00	0.00	0	0.00
38.00	0.01342					.004660	0.18			1.380			0.00		
375.00	2484.29	5.350	2489.640	28.0	5.70	0.505	2490.145	0.00	1.804		2.50	0.00	0.00	0	0.00

PAGE

GOLDEN VALLEY RANCH GOLDEN VALLEY LATERAL WITH 96 CFS IN POD 2 - J-C17

			•	•	•		•	-	•		•	•	R
100.00	.I			С	X	E						•	ĸ
105.61	-											•	
111.22	•											•	
116.84												•	
122.45	•											•	
128.06	•												
133.67	-											•	
139.29	•											•	
144.90	•											•	
150.51	•											•	
156.12	•											•	
161.73	•											•	
167.35	•											•	
172.96	-											•	
178.57	•												
184.18	-												
189.80	-												
195.41													
201.02 206.63	•												
212.24	•												
217.86	•												
223.47	•												
229.08	•												
234.69	•												
240.31	-												
245.92	-												
251.53	•												
257.14	•												
262.76	•												
268.37	•												
273.98	•												
279.59	-												
285.20	•												
290.82	•												
296.43	-												
302.04	-	I				С Н	W		E				JX
307.65	_	_ ;	I.		c	H		W		E			R
313.27	- 1												
318.88													
324.49													
330.10	_												
335.71			I			C	H	W		E			JX
341.33			I		С	H					W	Е.	R
346.94													
352.55	-												
358.16													
363.78	-												
369.39	-											-	
375.00	-			I		C	H				W	Ε.	R
	2482.05	2482.86	2483.67	2484.48	2485.29	2486.10	2486.91	2487.72	2488.	53 2	2489.34	2490.	15

N O T E S

1. GLOSSARY
I = INVERT ELEVATION
C = CRITICAL DEPTH
W = WATER SURFACE ELEVATION
H = HEIGHT OF CHANNEL
E = ENERGY GRADE LINE
X = CURVES CROSSING OVER
B = BRIDGE ENTRANCE OR EXIT
Y = WALL ENTRANCE OR EXIT
2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036382

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1

Project Name.: Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

H STREET NODE J-C21 INLET A

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

·	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0074
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
M	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	27.000
\mathbf{T}	Width of Spread (ft)	26.10

Gutter Flow

Eo	Gutter Flow Ratio	0.166
đ	Depth of Flow (ft)	0.62
V	Average Velocity (ft/sec)	3.92

Inlet Interception

,	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
, —	Curb Opening	40.16	4.25	0.06	1.635	25.365	_
	Parallel Bar P-1-7/8	1.50	2.88	0.27	6.793	18.572	
	Combination			0.31	8.428	18.572	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1 Project Name.:Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

H STREET NODE J-C21 INLET B

> Opening, Grate Inlet Inlets on Grade: Curb

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0074
Şx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	27.000
$\tilde{\mathbf{T}}$	Width of Spread (ft)	26.10

Gutter Flow

Eo	Gutter Flow Ratio	0.166
đ	Depth of Flow (ft)	0.62
V	Average Velocity (ft/sec)	3.92

Inlet Interception

INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
Curb Opening	40.16	5.75	0.06	1.635	25.365	_
Parallel Bar P-1-7/8	1.50	4.38	0.39	9.772	15.592	
Combination			0.42	11.408	15.592	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1

Project Name.: Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

H STREET NODE J-C21 INLET C

Inlets on Grade: Curb Opening, Grate Inlet

Roadway and Discharge Data

	Cross Slope	Composite
S	Longitudinal Slope (ft/ft)	0.0164
Şx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	19.000
$\widetilde{\mathbf{T}}$	Width of Spread (ft)	19.51

Gutter Flow

Eo	Gutter Flow Ratio	0.226
đ	Depth of Flow (ft)	0.49
v	Average Velocity (ft/sec)	4.90

Inlet Interception

,	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
, —	Curb Opening	39.20	5.75	0.06	1.179	17.821	
	Parallel Bar P-1-7/8	1.50	4.38	0.38	6.725	11.096	
	Combination			0.42	7.904	11.096	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Grade Date: 03/15/2006

Project No. :18476-Pod1 Project Name.:Golden Valley Ranch - Pod 1

Computed by :rjm

Project Description

H STREET NODE J-C21 INLET D

Inlets on Grade: Curb Opening, Grate Inlet

Roadway	and	Discharge	Data
r.Oauwa v	and	ウェウヘロロエベー	Daca

	Cross Slope	Composite
s	Longitudinal Slope (ft/ft)	0.0164
sx	Pavement Cross Slope (ft/ft)	0.0200
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00
Q	Discharge (cfs)	16.000
Ť	Width of Spread (ft)	18.25

Gutter Flow

Eo	Gutter Flow Ratio	0.242
đ	Depth of Flow (ft)	0.46
V	Average Velocity (ft/sec)	4.70

Inlet Interception

	INLET INTERCEPTION	LT or WGR (ft)	L (ft)	E	Qi (cfs)	Qb (cfs)	
_	Curb Opening	35.45	5.75	0.07	1.096	14.904	
,	Parallel Bar P-1-7/8	1.50	4.38	0.40	5.971	8.933	
	Combination			0.44	7.067	8.933	

Note: The curb opening length in the input screen is the total length of the curb opening including its length along the grate.

Q:\18449\dwg\design\SD_PRO\POD1\WLR_STA85+08.dwg, 3/16/2006 5:47:11 PM, \\lvg-ps1\hp5100-eng, 1:1

F 0 5 1 5 P

PAGE NO 3

WATER SURFACE PROFILE - TITLE CARD LISTING

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

LATERAL WITH FLOW 19 CFS J-C21 STA 85 + WLPR

DATE: 3/20/2006 TIME: 8:18

F0515P WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH

2.00 2.50 1.50 24 30 18

F 0 5 1 5 P PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING U/S DATA STATION ELEMENT NO 1 IS A SYSTEM OUTLET INVERT SECT W S ELEV 100.00 2474.18 24 2481.88 ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT RADIUS ANGLE ANG PT MAN H 193.00 2486.25 24 0.013 0.00 0.00 ELEMENT NO 3 IS A JUNCTION STATION INVERT SECT LAT-1 LAT-2 N U/S DATA Q3 INVERT-3 INVERT-4 PHI 3 04 PHI 4 198.00 2486.90 24 18 18 0.013 7.0 2486.90 2486.90 90.00 90.00 ELEMENT NO 4 IS A REACH STATION N 0.013 U/S DATA INVERT SECT RADIUS ANGLE ANG PT MAN H 350.00 2488.93 24 0.00 0.00 0.00

W S ELEV

0.00

350.00 2488.93 24 NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING ** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HOWKDS, W.S.ELEV = INV + DC

INVERT SECT

ELEMENT NO 5 IS A SYSTEM HEADWORKS

U/S DATA STATION

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P

WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH
GOLDEN VALLEY
LATERAL WITH FLOW 35CFS J-C21

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	AET	NEAD VEL	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM SO SF AVE HF NORM DEPTH ZR													****		
100 00	2474.18	7 700	2481.880	34.0	10.82	1.818	2483,698	0.00	1.911		2,00	0.00	0.00	0	0.00
	0.12979	,,,,,,	21021000	51.0	10.02	.022588	0.59	0.00	1,711	0.900	2100	0.00	0.00	٧	0.00
	2477.57	4 007	2482-478	24.0	10.82			0.00	1.911	0.300	2.00	0.00		0	0.00
		4.907	2482-478	34.0	10.82	1.818	2484.296	0.00	1.911		2.00	0.00		U	0.00
HYDRAULIC	JUMP												0.00		
126.12	2477.57	0.996	2478.567	34.0	21.75	7.348	2485.915	0.00	1.911		2.00	0.00	0.00	0	0.00
6.27	0.12979					.089790	0.56			0.900			0.00		
132.39	2478.38	1.007	2479.390	34.0	21.44	7.136	2486.526	0.00	1.911		2.00	0.00	0.00	0	0.00
12.95	0.12979					.082740	1.07			0.900			0.00		
145.34	2480.07	1.046	2481.111	34.0	20.43	6.483	2487.594	0.00	1.911		2.00	0.00	0.00	0	0.00
9.65	0.12979					.072956	0.70			0.900			0.00		
154.99	2481.32	1.087	2482.404	34.0	19.48	5.895	2488.299	0.00	1.911		2.00	0.00	0.00	0	0.00
7.54	0.12979					.064385	0.49			0.900			0.00		
162.53	2482.30	1.130	2483.425	34.0	18.58	5.360	2488.785	0.00	1.911		2.00	0.00	0.00	0	0.00
6.06	0.12979					.056871	0.34			0.900			0.00		
168.59	2483.08	1.175	2484.258	34.0	17.72	4.874	2489.132	0.00	1.911		2.00	0.00	0.00	0	0.00
4.97	0.12979					.050296	0.25			0.900			0.00		
173.56	2483.73	1.223	2484.950	34.0	16.89	4.430	2489.380	0.00	1.911		2.00	0.00	0.00	0	0.00
4.14	0.12979					.044540	0.18			0.900			0.00		
177.70	2484.26	1.273	2485.537	34.0	16.11	4.028	2489.565	0.00	1.911		2.00	0.00	0.00	0	0.00
3.46	0.12979					.039507	0.14			0.900			0.00		
181.16	2484.71	1.327	2486.040	34.0	15.35	3.659	2489.699	0.00	1.911		2.00	0.00	0.00	0	0.00
	0.12979	_,••		3		.035130	0.10			0.900			0.00	·	
2.50	0.22575					.055220	0.10			0.500			5.00		

ST-RH036391

PAGE

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P WATER SURPACE PROFILE LISTING

GOLDEN VALLEY RANCH
GOLDEN VALLEY
LATERAL WITH FLOW 35CFS J-C21

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	SO	*******	*******	*****	******	SF AVE	HF	******		ORM DEPTH		******	ZR		****
184.06	2485.09	1 385	2486.475	34.0	14.64	3.326	2489.801	0.00	1.911		2.00	0.00	0.00	0	0.00
	0.12979	1.505	2400.475	34.0	17.04	.031331	0.08	0.00	1.511	0.900	2.00	0.00	0.00	v	0.00
										0.300					
186.49	2485.41	1.448	2486.853	34.0	13.96	3.025	2489.878	0.00	1.911		2.00	0.00	0.00	0	0.00
2.05	0.12979					.028033	0.06			0.900			0.00		
188.54	2485.67	1.515	2487.186	34.0	13.31	2.750	2489.936	0.00	1.911		2.00	0.00	0.00	0	0.00
1-67	0.12979					.025198	0.04			0.900			0.00		
190.21	2485.89	1.590	2487.478	34.0	12.69	2.499	2489.977	0.00	1.911		2.00	0.00	0.00	C	0.00
1.33	0.12979					.022829	0.03			0.900			0.00		
191.54	2486.06	1.675	2487.735	34.0	12.10	2.273	2490.008	0.00	1.911		2.00	0.00	0.00	О	0.00
0.98	0.12979					.020949	0.02			0.900			0.00		
192.52	2486.19	1.775	2487.962	34.0	11.53	2.065	2490.027	0.00	1.911		2.00	0.00	0.00	0	0.00
0.48	0.12979					.019878	0.01			0.900			0.00		
193.00	2486.25	1.911	2488.161	34.0	11.00	1.878	2490.039	0.00	1.911		2.00	0.00	0.00	0	0.00
JUNCT STR	0.13000					.013336	0.07						0.00		
198.00	2486.90	3.908	2490.808	19.0	6.05	0.568	2491.376	0.00	1.568		2.00	0.00	0.00	0	0.00
152.00	0.01336					-007054	1.07			1.262			0.00		
350.00	2488.93	2.950	2491.880	19.0	6.05	0.568	2492.448	0.00	1.568		2.00	0.00	0.00	0	0.00

ST-RH036392

PAGE

GOLDEN VALLEY RANCH LATERAL WITH FLOW 35CFS J-C21

NOTES

. 3

1.4

- 1. GLOSSARY
 - I = INVERT ELEVATION
 C = CRITICAL DEPTH
 - W = WATER SURFACE ELEVATION H = HEIGHT OF CHANNEL

 - E = ENERGY GRADE LINE
 X = CURVES CROSSING OVER

 - B = BRIDGE ENTRANCE OR EXIT
- Y = WALL ENTRANCE OR EXIT
 2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

ST-RH036394

Case 09-14814-gwz Doc 1261-21 Entered 08/13/10 22:45:33 Page 92 of 104

FHWA Urban Drainage Design Program, HY-22 Drainage of Highway Pavements

> Inlets on Sag Date: 03/10/2006

Project No. :18449

Project Name.: GOLDEN VALLEY RANCH

Computed by :rjm

Project Description

SAG INLETS - ALL PODS MODIFIED "C" L-14.5

DODE J-C25 INLETA Common Lot "D"

Inlets on Sag: Sweeper Combination Inlet

Roadway and Discharge Data

	Cross Slope	Composite/Dep
\mathbf{s}	Pavement Cross Slope (ft/ft)	0.0100
Sw	Gutter Cross Slope (ft/ft)	0.0833
n	Manning's Coefficient	0.016
W	Gutter Width (ft)	1.50
a	Gutter Depression (inch)	2.00

Inlet Interception

	Inlet Type *Sag*	Curb-Opening
L	Curb-Opening Length	(ft) 5.75
H	Curb-Opening Height	(in) 6.00
	Inlet Type *Sag*	Parallel Bar P-1-7/8
T	Width of Spread (ft)	39.39
WGR	Grate Width (ft)	1.50
L	Grate Length (ft)	5.88
	Inlet Type *Sag*	Sweeper Combination
d ave	Depth of Flow (ft)	0.525
	Depth at Curb (ft)	0.671
Qī	Intercepted Flow (cfs	

Note: The curb opening length in the input screen is the total of the curb opening including its length along the grate.

Worksheet

Worksheet for Triangular Channel

Project Description											
Worksheet	COMMON LOT D - Drainage Easement - Triange	ılar									
Flow Element	Triangular Channel										
Method	Manning's Formula	Manning's Formula									
Solve For	Channel Depth										
Input Data											
Mannings Coefficient	0.020										
Channel Slope	0.005000 ft/ft										
Left Side Slope	28.80 H:V										
Right Side Slope	28.80 H:V										
Discharge	61.00 cfs										
Results											
Depth	0.85 ft										
Flow Area	20.6 ft²										
Wetted Perimeter	48.76 ft										
Top Width	48.73 ft										
Critical Depth	0.77 ft										
Critical Slope	0.008000 ft/ft										
Velocity	2.96 ft/s										
Velocity Head	0.14 ft										
Specific Energy	0.98 ft										
Froude Number	0.80										
	Subcritical										

VELOCITY & DEPTH.

3.0 × 0.9 = 2.7 66.0

Page 1 of 1

Cross Section Cross Section for Triangular Channel

Project Description	
Worksheet	COMMON LOT D - Drainage Easement - Triangula
Flow Element	Triangular Channel
Method	Manning's Formula
Solve For	Channel Depth
Solve For	Channel Depth
Section Data	
Mannings Coefficient	0.020
Channel Slope	0.005000 ft/ft

0.85 ft

28.80 H:V

28.80 H:V

61.00 cfs

Depth

Discharge

Left Side Slope

Right Side Slope

Page 1 of 1

Q:\18449\dwg\design\SD_PRO\POD1\POD1_6str_CULDESAC.dwg, 3/16/2006 5:44:03 PM, \\\vg-ps1\hp5100-eng, 1:1

F 0 5 1 5 P

PAGE NO 3

HEADING LINE NO 1 IS -

GOLDEN VALLEY RANCH

HEADING LINE NO 2 IS -

GOLDEN VALLEY

HEADING LINE NO 3 IS -

6 STREET TO GOLF COURSE J-C25 IN POD1 12CFS

WATER SURFACE PROFILE - TITLE CARD LISTING

DATE: 3/14/2006 TIME: 13:23

FOS

F0515P
WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING

PAGE

CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIERS WIDTH DIAMETER WIDTH DROP

2D 30 4 2.50

F 0 5 1 5 P

PAGE NO 2

ELEMENT NO 1 IS A SYSTEM OUTLET

 SYSTEM OUTLET
 *
 *
 *
 *

 U/S DATA
 STATION
 INVERT
 SECT

 100.00
 2479.50
 30
 W S ELEV 2484.20

WATER SURFACE PROFILE - ELEMENT CARD LISTING

ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT RADIUS ANGLE ANG PT MAN H 0.013 420.00 2484.56 30 0.00 0.00 0.00

ELEMENT NO 3 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT WS ELEV

420.00 2484.56 30 0.00

NO EDIT ERRORS ENCOUNTERED-COMPUTATION IS NOW BEGINNING

** WARNING NO. 2 ** - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV = INV + DC

ST-RH036401

LICENSEE: STANLEY CONSULTANTS, INC.

HYDRAULIC JUMP

E0515P WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH GOLDEN VALLEY

6 STREET TO GOLF COURSE J-C25

BASE/ ENERGY SUPER CRITICAL STATION INVERT DEPTH o OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER SF AVE NORM DEPTH zR L/ELEM 0.00 100.00 2479.50 4.700 2484.200 12.0 2.44 0.093 2484.293 0.00 1 162 2.50 0.00 0.00 .000848 0.12 0.820 0.00 0.093 2484.419 1.162 2.50 0.00 0.00 0.00 247.10 2481.83 2.500 2484.326 12.0 .000795 0.01 0.820 14.76 0.01581 0.00 0.102 2484.429 2.50 0.00 0.00 261.86 2482.06 2.268 2484.327 12.0 2,56 0.00 1,162 0.00 8.29 0.01581 .000775 0.01 0.820 270.15 2482.19 2.133 2484.323 12.0 2.69 0.112 2484.435 0.00 1.162 2.50 0.00 0.00 0.00 6.67 0.01581 .000839 0.01 0.820 0.00 0.00 0.00 0.00 276.82 2482.30 2.022 2484.318 12.0 0.00 .000923 0.820 5.68 0.01581 0.01 0.00 0.00 0.136 2484.447 1.162 2.50 0.00 282.50 2482.39 2.96 0.00 1.925 2484.311 12.0 001024 0.01 0.820 0.00 5.03 0.01581 287.53 2482.47 1.837 2484.302 12.0 3.10 0.149 2484.451 0.00 1.162 2.50 0.00 0.00 0.00 4.44 0.01581 .001143 0.01 0.820 0.00 291.97 2482.53 1.757 2484.292 12.0 0.164 2484.456 0.00 2.50 0.00 0.00 0.00 .001280 0.01 0.820 0.00 3.96 0.01581 0.00 0.00 0.181 2484.462 1.162 2.50 0.00 295.93 2482.60 0.00 1.683 2484,281 12.0 3.41 3.54 0.01581 .001439 0.01 0.820 0.00 299.47 2482.65 0.199 2484.467 0.00 1.162 2.50 0.00 0.00 0.00 .001551 0.00 0.820 0.00 1.14 0.01581 0.00 0.00 300.61 2482.67 1.594 2484.266 12.0 3.63 0.205 2484.471 0.00 1.162 2.50 0.00

PAGE

7

LICENSEE: STANLEY CONSULTANTS, INC.

F0515P

WATER SURFACE PROFILE LISTING

GOLDEN VALLEY RANCH
GOLDEN VALLEY
6 STREET TO GOLF COURSE J-C25

STATION	INVERT ELEV	DEPTH OF FLOW	W.S. ELEV	Q	VEL	VEL HEAD	ENERGY GRD.EL.	SUPER ELEV	CRITICAL DEPTH		HGT/ DIA	BASE/ ID NO.	ZL	NO PIER	AVBPR
L/ELEM	so					SF AVE	HF	******	N *******	ORM DEPT		******	ZR	****	
300.61	2482.67	0.820	2483.492	12.0	8.57	1.139	2484.631	0.00	1.162		2.50	0.00	0.00	0	0.00
54.32	0.01581					.015065	0.82			0.820			0.00		
354.93	2483.53	0.842	2484.373	12.0	8.25	1.058	2485.431	0.00	1.162		2.50	0.00	0.00	0	0.00
27.57	0.01581					.013410	0.37			0.820			0.00		
382.50	2483.97	0.872	2484.839	12.0	7.87	0.961	2485.800	0.00	1.162		2.50	0.00	0.00	0	0.00
13.91	0.01581					.011754	0.16			0.820			0.00		
396.41	2484.19	0.903	2485.090	12.0	7.50	0.875	2485.965	0.00	1.162		2.50	0.00	0.00	0	0.00
8.63	0.01581					.010304	0.09			0.820			0.00		
405.04	2484.32	0.935	2485.258	12.0	7.16	0.795	2486.053	0.00	1.162		2.50	0.00	0.00	0	0.00
5.65	0.01581					.009036	0.05			0.820			0.00		
410.69	2484.41	0.969	2485.382	12.0	6.82	0.723	2486.105	0.00	1.162		2.50	0.00	0.00	0	0.00
3.89	0.01581					.007928	0.03			0.820			0.00		
414.58	2484.47	1.004	2485.478	12.0	6.50	0.657	2486.135	0.00	1.162		2.50	0.00	0.00	0	0.00
2.57	0.01581					.006960	0.02			0.820			0.00		
417.15	2484.51	1.041	2485.556	12.0	6.20	0.597	2486.153	0.00	1.162		2.50	0.00	0.00	0	0.00
1.68	0.01581					.006111	0.01			0.820			0.00		
418.83	2484.54	1.079	2485.621	12.0	5.91	0.543	2486.164	0.00	1.162		2.50	0.00	0.00	0	0.00
0.90	0.01581					.005369	0.00			0.820			0.00		
419.73	2484.56	1.119	2485.675	12.0	5.64	0.494	2486.169	0.00	1.162		2.50	0.00	0.00	0	0.00
0.27	0.01581					.004712	0.00			0.820			0.00		
420-00	2484-56	1.162	2485.722	12.0	5.37	0.448	2486.170	0.00	1.162		2.50	0.00	0.00	0	0.00

PAGE

GOLDEN VALLEY RANCH GOLDEN VALLEY 6 STREET TO GOLF COURSE J-C25

NOTES

- 1. GLOSARY
 I = INVERT ELEVATION
 C = CRITICAL DEPTH
 W = WATER SURFACE ELEVATION
 - H = HEIGHT OF CHANNEL E = ENERGY GRADE LINE
 - X = CURVES CROSSING OVER

 - B = BRIDGE ENTRANCE OR EXIT Y = WALL ENTRANCE OR EXIT
- 2. STATIONS FOR POINTS AT A JUMP MAY NOT BE PLOTTED EXACTLY

Case 09-14814-gwz Doc 1261-21 Entered 08/13/10 22:45:33 Page 102 of 104

GOLDEN VALLEY RANCH

APPENDIX C

STREET CAPACITY (LOCAL STREETS)

Cross Section
Cross Section for Irregular Channel

Project Description	
Worksheet	Local Str 50'Pt
Flow Element	irregular Chani
Method	Manning's Forr
Solve For	Discharge
Section Data	1
Mannings Coefficier	0.014
Channel Slope	0.005000 ft/ft
Water Surface Elev.	100.67 ft
Elevation Range)).00 to 100.67
Discharge	68.88 cfs

Project Engineer: Information Services FlowMaster v7.0 [7.0005] 708 USA +1-203-755-1666

Stanley Consultants, Inc Stanley Stanley Consultants, Inc 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666

q:\18449\drainage calcs\street flow.fm2 12/30/05 11:35:56 AM

Table

Rating Table for Irregular Channel

Project Description	
Worksheet	Local Str 50'Pl
Flow Element	Irregular Chanı
Method	Manning's Foπ
Solve For	Discharge

Input Data

Water Surface Elev. 00.67 ft

Options

Current Roughness Methoved Lotter's Method Open Channel Weighting)ved Lotter's Method Closed Channel Weighting Horton's Method

Attribute	Minimum	Maximum	Increment	
Channel Slope (ft/ft)	0.005000	0.020000	0.000100	

Channel Slope (ft/ft)	Discharge (cfs)	Velocity (ft/s)	Flow Area (ft²)	Wetted Perimeter (ft)	Top Width (ft)
0.005000	68.88	3.73	18.5	50.12	50.00
0.005100	69.57	3.76	18.5	50.12	50.00
0.005200	70.25	3.80	18.5	50.12	50.00
0.005300	70.92	3.84	18.5	50.12	50.00
0.005400	71.59	3.87	18.5	50.12	50.00
0.005500	72.25	3.91	18.5	50.12	50.00
0.005600	72.90	3.94	18.5	50.12	50.00
0.005700	73.55	3.98	18.5	50.12	50.00
0.005800	74.19	4.01	18.5	50.12	50.00
0.005900	74.83	4.05	18.5	50.12	50.00
0.006000	75.46	4.08	18.5	50.12	50.00
0.006100	76.09	4.12	18.5	50.12	50.00
0.006200	76.71	4.15	18.5	50.12	50.00
0.006300	77.32	4.18	18.5	50.12	50.00
0.006400	77.93	4.22	18.5	50.12	50.00
0.006500	78.54	4.25	18.5	50.12	50.00
0.006600	79.14	4.28	18.5	50.12	50.00
0.006700	79.74	4.31	18.5	50.12	50.00
0.006800	80.33	4.35	18.5	50.12	50.00
0.006900	80.92	4.38	18.5	50.12	50.00
0.007000	81.51	4.41	18.5	50.12	50.00
0.007100	82.09	4.44	18.5	50.12	50.00
0.007200	82.66	4.47	18.5	50.12	50.00
0.007300	83.23	4.50	18.5	50.12	50.00
0.007400	83.80	4.53	18.5	50.12	50.00
0.007500	84.37	4.56	18.5	50.12	50.00
0.007600	84.93	4.60	18.5	50.12	50.00
0.007700	85.48	4.63	18.5	50.12	50.00
0.007800	86.04	4.66	18.5	50.12	50.00
0.007900	86.59	4.69	18.5	50.12	50.00
0.008000	87.13	4.71	18.5	50.12	50.00
0.008100	87.68	4.74	18.5	50.12	50.00
0.008200	1	4.77	18.5	50.12	50.00
0.008300	88.75	4.80	18.5	50.12	50.00

Project Engineer: Information Services