HORVÁTH MILÁN DIPLOMAMUNKA

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

INFORMATIKAI KAR SAVARIA MŰSZAKI INTÉZET

DIPLOMAMUNKÁK

EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR SAVARIA MŰSZAKI INTÉZET

Horváth Milán DIPLOMAMUNKA

Diplomamunka

Konzulens: Témavezető:

Bátorfi János György Prof. Dr.Sidor Jurij

egyetemi tanársegéd, okleveles gépészmérn $\ddot{\mathbf{e}}$ gyetemi tanár, professzor a műszaki tudományok te

ZÁRADÉK

Ez a diplomamunka elzártan kezelendő és őrzendő, a hozzáférése a vonatkozó szabályok szerint korlátozott, a diplomamunka tartalmát csak az arra feljogosított személyek ismerhetik.

A korlátozott hozzáférés időtartamának lejártáig az arra feljogosítottakon kívül csak a korlátozást kérelmező személy vagy gazdálkodó szervezet írásos engedélyéjével rendelkező személy nyerhet betekintést a diplomamunka tartalmába.

A hozzáférés korlátozása és a zárt kezelés 2034 január 31. napján ér véget.

Szombathely, 2024. 01. 31.

 ${\bf Placeholder\ for\ feladatkiir as.pdf}$

NYILATKOZATOK

Nyilatkozat az önálló munkáról

Alulírott, *Horváth Milán* (MYQGQ0), az Eötvös Loránd Tudományegyetem hallgatója, büntetőjogi és fegyelmi felelősségem tudatában kijelentem és sajátkezű aláírásommal igazolom, hogy ezt a diplomamunkát meg nem engedett segítség nélkül, saját magam készítettem, és diplomamunkámban csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a hatályos előírásoknak megfelelően, a forrás megadásával megjelöltem.

Ennek a diplomamunkának önálló, eredeti szerzője vagyok, ez az önálló szellemi alkotás jogtisztaság szempontjából megfelel az "Eötvös Loránd Tudományegyetem Szervezeti és Működési Szabályzata, II. kötet, Hallgatói Követelményrendszer. Módosításokkal egybeszerkesztett változat [2017. szeptember 1.]" c. szabályzat 74/A–74/C. §-aiban foglalt rendelkezéseknek.

Szombathely, 2025. október 6.	
	hallgató

Tartalomjegyzék

Előszó		viii		
Je	lölése	k jegyzo	éke	ix
1.	Beve	ezetés		1
2.	Irod	almi átt	tekintés	3
	2.1.	Képlék	keny alakítás elméleti alapjai	. 4
		2.1.1.	Rugalmas és képlékeny alakváltozás	. 4
		2.1.2.	Feszültség-alakváltozás kapcsolata, szakítódiagram	. 4
	2.2.	Mikros	szerkezettől a tervezésig	. 4
	2.3.	Lemez	zek képlékeny anizotrópiája	. 4
		2.3.1.	Az anizotrópia	. 4
		2.3.2.	Lankford-tényező	. 4
		2.3.3.	Csúcsosodás, az anizotrópia közvetlen hatása	. 4
		2.3.4.	Ideális mélyhúzható lemez	. 4
	2.4.	A mély	yhúzás technológiája	. 4
		2.4.1.	A mélyhúzás alapelvei, fázisai	. 4
		2.4.2.	Meghatározó technológiai paraméterek	. 4
		2.4.3.	A mélyhúzás tipikus hibái és azok okai	. 4
		2.4.4.	A mélyhúzás, mint egyensúlyi folyamat	. 4
	2.5.	Mélyh	úzó szerszámok tervezése	. 4
		2.5.1.	A szerszám felépítése	. 4
		2.5.2.	A szerszámgeometria szerepe	. 4
		2.5.3.	Technológiai erők számítása	. 4

	2.6.	Végese	elem módszer	4
		2.6.1.	Végeselem módszer alapelvei	4
		2.6.2.	Mélyhúzási folyamat szimulációja VEM-mel	4
		2.6.3.	Anyagmodellek	4
3.	Any	agok és	módszerek	5
4.	4. Szerszámkialakítás		6	
5.	Mér	ési ered	mények értékelése	7
6.	Össz	zefoglala	ás	8

Előszó

Már a középiskolás éveim során érdeklődtem a 3D tervezés, a CAD-CAM világa felé. Gépi forgácsoló szakmámból kifolyólag elég régóta kürölvesz engem a gépészeti világ és akkor jött a gondolat, mi lenne ha jelentkeznék egyetemre. Életem egyik legjobb döntése volt a gépészmérnöki képzés elkezdése. Rengeteg új információval gazdagodtam, sokkal jobban el tudtam mélyülni a CAD-CAM rendszerekben, valamint megismerkedtem számomra addig teljesen ismeretlen módszerekkel. Az egyik ilyen volt a végeselem analízis. Ez a terület tetszett meg a legjobban a képzés során, rengeteg lehetőség rejlik benne. A diplomamunka téma kiválasztásánál számomra fontos volt, hogy a CAD-CAM, valamint a végeselem analízis szerepet kapjanak az elkészítés során.

 $\sim \sim \sim$

Köszönetnyilvánítás

Elsőként szeretném megköszönni a TDK Hungary Components Kft.-nek, hogy a gépészmérnöki képzésem alatt biztosítottak számomra duális gyakorlati helyet, valamint hogy támogatták a diplomamunkám minőségi elkészültét. Szeretném megköszönni az Eurosolid Zrt.-nek, hogy biztosították számomra a Soldiworks 2022 Student Edition CAD szoftvert, amellyel a modelleket készítettem el.

Szombathely, 2025. október 6.

Horváth Milán

Jelölések

A táblázatban a többször előforduló jelölések magyar és angol nyelvű elnevezése, valamint a fizikai mennyiségek esetén annak mértékegysége található. Az egyes mennyiségek jelölése – ahol lehetséges – megegyezik hazai és a nemzetközi szakirodalomban elfogadott jelölésekkel. A ritkán alkalmazott jelölések magyarázata első előfordulási helyüknél található.

Latin betűk

Jelölés	Megnevezés, megjegyzés, érték	Mértékegység
E	Rugalmassági modulusz	GPa
F	erő	N
S	keresztmetszet	mm ²

Görög betűk

Jelölés	Megnevezés, megjegyzés, érték	Mértékegység
ε	alakváltozás	1
σ	feszültség	MPa

Indexek, kitevők

Jelölés	Megnevezés, értelmezés	
e	elem	
max	maximális érték	

Bevezetés

A mélyhúzás a lemezalakítás egyik legösszetettebb és legszélesebb körben alkalmazott technológiája, amelynek során síklemezből háromdimenziós, üreges alkatrészeket állítanak elő. A folyamat sikerességét döntően befolyásolja a lemezanyag anizotróp viselkedése, amely a gyártási folyamat során – különösen a hengerelés következtében – kialakuló preferált kristályorientációból (textúra) ered. Az anyag irányított mechanikai tulajdonságai közvetlenül hatnak az alakíthatóságra, a fülképződésre és a végtermék minőségére.

Az anizotrópia mértékét a Lankford-paraméterrel (r-érték) jellemezzük, amely a vastagságirányú és szélességirányú alakváltozás arányát fejezi ki egytengelyű húzás során. Wu et al. (2023) kísérleti vizsgálatai rozsdamentes acél hengermélyhúzása során kimutatták, hogy az r_{90} értéke 29-48%-kal járul hozzá az aljzati visszarugózáshoz, míg az r_{45} és r_0 értékek másodlagos jelentőségűek. A síkanizotrópia (Δr), amely a különböző irányokban mért r-értékek közötti eltéréseket számszerűsíti, közvetlenül felelős a fülképződés mértékéért és mintázatáért.

A képlékeny alakítás során fellépő anizotróp viselkedés pontos modellezése kritikus fontosságú a szerszámtervezésben és a folyamatoptimalizálásban. A hagyományos izotróp folyási kritériumok (von Mises, Tresca) nem képesek megfelelően leírni a lemezanyagok irányított tulajdonságait. Az elmúlt évtizedekben számos anizotróp folyási kritérium került kifejlesztésre – a klasszikus Hill'48 modellről (Hill, 1948) a fejlett Barlat-család kritériumaiig (Yld2000-2d, Yld2004-18p) –, amelyek fokozatosan javuló pontossággal írják le a valós anyagviselkedést (Chen et al., 2023).

Jelen irodalmi áttekintés célja, hogy átfogó képet nyújtson a mélyhúzás folyamatáról, a lemezanyagok anizotróp viselkedésének fizikai hátteréről, a szerszámtervezés alapelveiről, valamint a modern végeselem-módszer (VEM) alkalmazásáról. Külön hangsúlyt helyezünk az anyagfüggő viselkedésre és a kristályszerkezet szerepére, mivel

ezek az alapvető tényezők határozzák meg a mélyhúzhatóságot és az ipari folyamatok megbízhatóságát.

Irodalmi áttekintés

2.1. Képlékeny alakítás elméleti alapjai

- 2.1.1. Rugalmas és képlékeny alakváltozás
- 2.1.2. Feszültség-alakváltozás kapcsolata, szakítódiagram

2.2. Mikroszerkezettől a tervezésig

2.3. Lemezek képlékeny anizotrópiája

- 2.3.1. Az anizotrópia
- 2.3.2. Lankford-tényező
- 2.3.3. Csúcsosodás, az anizotrópia közvetlen hatása
- 2.3.4. Ideális mélyhúzható lemez

2.4. A mélyhúzás technológiája

- 2.4.1. A mélyhúzás alapelvei, fázisai
- 2.4.2. Meghatározó technológiai paraméterek
- 2.4.3. A mélyhúzás tipikus hibái és azok okai
- 2.4.4. A mélyhúzás, mint egyensúlyi folyamat

2.5. Mélyhúzó szerszámok tervezése

- 2.5.1. A szerszám felépítése
- 2.5.2. A szerszámgeometria szerepe

Anyagok és módszerek

Szerszámkialakítás

Mérési eredmények értékelése

Összefoglalás

Melléklet A

Melléklet B