

Olló és ragasztó (scissors)

Day 2

Language Hungarian Time limit: 1 second

Memory limit: 1024 megabytes

Adott egy S poligon alakú papírlap. Az a feladatod, hogy alakítsd át egy olyan előre megadott T poligonná, amelynek területe megegyezik S területével.

Ehhez két eszközt használhatsz: ollót és ragasztót. Az ollóval bármely poligont kisebb poligondarabokra vághatsz. A ragasztóval kisebb poligondarabokat nagyobb poligonokká rakhatsz össze. Mindkét eszközt akárhányszor akármilyen sorrendben használhatod.

Minden bemeneti poligon koordinátái egész számok, azonban a kimeneten lehetnek **nem egész koordinátájú** alakzatok is.

A feladat formális definíciója a következő.

Egy $Q = (Q_0, \dots, Q_{n-1})$ alakzat három vagy több síkbeli pont sorozata az alábbiak szerint:

- A $Q_0Q_1Q_2\dots Q_{n-1}Q_0$ zárt törtvonal soha nem érinti vagy metszi saját magát, és ezért egy egyszerű poligon körvonalát adja.
- A törtvonal az óramutató járásával ellentétes irányban járja be a poligon körvonalát.

A poligont, amelynek körvonalát a Q alakzat írja le, P(Q)-val jelöljük.

Két alakzatot ekvivalensnek nevezünk, ha egyiket a másikba át tudjuk vinni eltolással és/vagy forgatással.

Megjegyzendő, hogy az alakzat tükrözése nem megengedett. Szintén fontos, hogy a pontok sorrendje számít: a $(Q_1, \ldots, Q_{n-1}, Q_0)$ alakzat nem feltétlenül ekvivalens a (Q_0, \ldots, Q_{n-1}) alakzattal.

A baloldali ábrán: Az U és V alakzat ekvivalens. A W alakzat nem ekvivalens egyikkel sem, mert pontjai más sorrendben adottak. A pontok sorrendjétől függetlenül a negyedik alakzat nem ekvivalens az előzőek egyikével sem, mivel az alakzat tükrözése nem megengedett.

Mind a bemeneten és kimeneten egy n pontú alakzatot egy olyan sorban írunk le, amely 2n+1 darab számot tartalmaz. Ezek közül az első az n, és ezt követik a pontok koordinátái: $Q_{0,x}, Q_{0,y}, Q_{1,x}, \dots$

Az alakzatokat **azonosító számokkal** látjuk el (ID). A bemeneti S alakzat azonosító száma 0, megoldásodban a többit az 1, 2, 3, ... azonosító számokkal kell azonosítani, abban a sorrendben, ahogyan keletkeznek.

A B_1, \ldots, B_k alakzatok az A alakzat **felbontása**, ha:

- Az összes $P(B_i)$ egyesítése pontosan P(A).
- Minden $i \neq j$ esetén $P(B_i)$ és $P(B_j)$ metszetének területe 0.

Az **olló** művelet megszüntet egy létező A alakzatot, és egy vagy több B_1, \ldots, B_k alakzatot eredményez, amely A-nak a felbontása.

A baloldali ábrán: Az A alakzat (négyzet) a B_1 , B_2 , B_3 alakzatokra bontódik fel (három háromszög). Egy helyes leírása az egyik B_i háromszögnek a következő: "3 3 1 6 1 5.1 4".

* (\langle \langle \langle \rangle \rangle \langle \rangle \langle \langle \langle \rangle \rangle \rangle \langle \rangle \r

A ragasztó művelet megszüntet egy vagy több létező A_1, \ldots, A_k alakzatot, és egy új B alakzatot eredményez. A művelet végbeviteléhez először meg kell adni a C_1, \ldots, C_k alakzatokat, és csak utána a végső B alakzatot. Ezekre a következőknek kell teljesülni:

- Minden i-re, a C_i alakzat ekvivalens az A_i alakzattal.
- A C_1, \ldots, C_k alakzatok a B alakzat felbontása.

Ez azt jelenti, hogy megadod a B alakzatot és megmutatod, hogy a létező A_i alakzatokat hogyan kell a B-beli C_i alakzatok helyére mozgatni. Megjegyzendő, hogy csak a B alakzat kap új azonosító számot, a C_i alakzatok nem.

Input

Az első sor a kiindulási S alakzatot tartalmazza.

A második sor a T célalakzatot tartalmazza.

Mindegyik alakzatnak legalább 3 és legfeljebb 10 pontja van. Mindkét alakzatot a fent definiált formátumban adják meg.

A bemeneten szereplő összes koordináta -10^6 és 10^6 közé eső egész szám.

Mindegyik alakzatban nincs olyan három pont, amelyek által alkotott szög 3 foknál kisebb lenne. (Ez a nem egymást követő pontokra is igaz, ami azt jelenti, hogy bármely három pont nem esik egy egyenesre.)

A P(S) és T(S) poligonok területe megegyezik.

Output

Az olló műveletet az alábbiak szerint kell megadni:

```
scissors
id(A) k
B_1
B_2
...
B_k
```

ahol id(A) a felbontandó (megszüntetendő) alakzat azonosító száma, k a keletkező új alakzatok száma, és B_1, \ldots, B_k a keletkező alakzatok.

A ragasztó művelet az alábbiak szerint kell megadni:

```
tape
k id(A_1) ... id(A_k)
C_1
C_2
...
C_k
R
```

ahol k a ragasztandó alakzatok száma, $id(A_1), \ldots, id(A_k)$ ezek azonosító számai, C_1, \ldots, C_k ezek B-beli ekvivalens alakzatai, és B az ezek összeragasztásából keletkező végső alakzat.

A pontok koordinátáit ajánlott legalább 10 decimális jegy pontossággal kiírni.

A kimenetnek az alábbiakat kell teljesítenie:

- A pontok koordinátáinak értéke -10^7 és 10^7 közé essen.
- Minden alakzat legfeljebb 100 pontból állhat.
- Minden műveletben a k értéke legalább 1 és legfeljebb 100 lehet.
- A műveletek száma nem haladhatja meg a 2000-et.
- A kimeneten kiírt összes pontok száma legfeljebb 20000 lehet.

- A végén pontosan egy alakzatnak kell maradnia (amely nem lett törölve), és ez az alakzat ekvivalensnek kell lennie T-vel.
- Minden művelet helyességét az ellenőrző dönti el. A kis kerekítési hibák megengedettek. (Az ellenőrzőben minden összehasonlítás 10⁻³ abszolút vagy relatív hibahatárral történik minden feltétel ellenőrzésekor.)

Segédanyagok

- A lebegőpontos számok kiíratásával kapcsolatos információkat megtalálod az adott programozási nyelv megjegyzései között.
- Letöltheted az ellenőrző bináris változatát scissors-checker néven, amit a chmod a+x scissors-checker paranccsal kell futtathatóvá tenni. Ezt arra tudod használni, hogy lokálisan ellenőrizd a kimeneteid helyességét a következőképpen: ./scissors-checker input your_output.

Scoring

Egy alakzatot szép téglalapnak hívunk, ha az x és y pozitív egész számokkal a $((0,0),\ (x,0),\ (x,y),\ (0,y))$ formában adható meg.

Egy alakzatot szép négyzetnek hívunk, ha olyan szép téglalap, hogy x = y.

Egy A alakzatot szigorúan konvexnek hívunk, ha a P(A) poligon összes belső szögének értéke kisebb, mint 180 fok.

- 1. tesztcsoport (5 pont): S és T szép téglalapok. Minden pont minden koordinátája legalább 0 és legfeljebb 10 közötti egészek.
- 2. tesztcsoport (13 pont): S egy szép téglalap, ahol x > y, és T egy szép négyzet.
- 3. tesztcsoport (12 pont): S és T is szép téglalap.
- 4. tesztcsoport (14 pont): S egy háromszög és T egy szép négyzet.
- 5. tesztcsoport (10 pont): S és T is háromszög.
- 6. tesztcsoport (16 pont): S egy szigorúan konvex poligon és T egy szép téglalap.
- 7. tesztcsoport (11 pont): T egy szép téglalap.
- 8. tesztcsoport (19 pont): nincs további megszorítás.

Examples

standard input	standard output
6 0 0 6 0 6 4 5 4 5 9 0 9	scissors
4 0 0 7 0 7 7 0 7	0 5
	3 0 0 3 0 3 4
	3 3 4 0 4 0 0
	3 3 0 6 0 6 4
	3 6 4 3 4 3 0
	404545909
	tape
	5 1 2 5 3 4
	3 0 3 0 0 4 0
	3 4 0 7 0 7 4
	403407437
	3 7 4 7 7 3 7
	3 3 7 0 7 0 3
	400707707
4 0 0 3 0 3 3 0 3	scissors
4 7 -1 10 -1 11 2 8 2	0 2
	3 0 0 1 3 0 3
	4 1 3 0 0 3 0 3 3
	tape
	2 1 2
	3 110 -1 111 2 110 2
	4 108 2 107 -1 110 -1 110 2
	4 107 -1 110 -1 111 2 108 2

׫€♦॥♦>>׫€♦॥ \$L\$V&|«1A 2\$19׫€\$॥♦>>׫€\$॥\$>>×

standard input	standard output
4 0 0 9 0 9 1 0 1	scissors
4 0 0 3 0 3 3 0 3	0 2
	4 1.47000000000 0 9 0 9 1 1.470000000 1
	4 0 0 1.470000000 0 1.470000000 1 0 1
	scissors
	1 2
	4 1.470000000 0 6 0 6 1 1.470000000 1
	490916160
	tape
	2 4 3
	4 3 2 3 1 6 1 6 2
	4 6 1 1.470000000 1 1.470000000 0 6 0
	6 1.470000000 0 6 0 6 2 3 2 3 1 1.47 1
	scissors
	5 4
	4 1.470000000 0 3 0 3 1 1.470000000 1
	4 3 0 4 0 4 2 3 2
	4 4 2 4 0 5 0 5 2
	4 5 0 6 0 6 2 5 2
	tape
	5 2 6 7 8 9
	4 0 0 1.470000000 0 1.470000000 1 0 1
	4 1.470000000 0 3 0 3 1 1.470000000 1
	402012122
	4 0 2 2 2 2 3 0 3
	4 3 3 2 3 2 1 3 1
	4 0 0 3 0 3 3 0 3

Note

A baloldali ábra az első példa kimenetét magyarázza. A bal oldalon a kiindulási ábrát láthatjuk a vágások után, a jobb oldalon a nekik megfelelő C_i alakzatok a ragasztás után.

A második példa kimenetén figyeld meg, hogy elegendő az elvárt T alakzattal ekvivalens alakzatot megadni, nem kell, hogy azonosak legyenek.

Az alábbi a harmadik példa kimenetének három fázisát mutatja. Először, felvágjuk a bemeneti téglalapot két kisebb téglalapra, majd ezek közül a nagyobbat további két téglalapra vágjuk fel. A vágások utáni állapot az ábra bal felső részén látható.

Ezt követően, összeragasztjuk a két új téglalapot, hogy egy hatoldalú poligont adjanak, majd felvágjuk ezt a poligont három 2x1-es téglalappá és egy kisebb téglalappá. Ezt az ábra bal alsó része mutatja.

Végül vesszük az első lépésből megmaradt kis téglalapot és a négy új téglalapot, és ezeket egy 3x3-as négyzetté ragasztjuk össze.

