Il teorema di Cauchy

di Gabriel Antonio Videtta

Nota. Nel corso del documento per (G,\cdot) si intenderà un qualsiasi gruppo.

Si dimostra in questo documento, per ben due volte, un inverso parziale del teorema di Lagrange, il celebre teorema di Cauchy. Tale teorema asserisce che se p è un numero primo che divide l'ordine di G, allora esiste un sottogruppo H di G di ordine p.

Si mostra innanzitutto che il teorema vale per gruppi abeliani.

Teorema (di Cauchy per gruppi abeliani). Sia G un gruppo abeliano finito. Se p divide |G|, allora esiste $H \leq G$ tale per cui |H| = p.

Dimostrazione. Sia |G| = pn con $n \in \mathbb{N}^+$. Si dimostra per induzione su n la validità della tesi. Se n = 1, allora G stesso è un sottogruppo di ordine p, completando il passo base.

Sia allora n>1 e si ipotizzi allora che tutti i gruppi tali che |G|=pk con $k< n, k\in \mathbb{N}^+$ ammettano un sottogruppo di ordine p. Sia $h\in G, h\neq e$ (questo h sicuramente esiste, dal momento che p>1). Se $p\mid o(h)$, allora $\left\langle h^{o(h)/p}\right\rangle$ è un sottogruppo di G di ordine p. Altrimenti, si consideri $H=\langle h\rangle$.

Dal momento che G è abeliano, H è normale, e dunque si può considerare il gruppo quoziente G/H. Poiché $p \nmid o(h) = |H|$ e p divide |G|, p divide anche |G/H| per il teorema di Lagrange. Inoltre, poiché o(h) > 1 (infatti $h \neq e$), |G/H| < |G|. Per l'ipotesi induttiva, allora, esiste un sottogruppo T di ordine p di G/H. Poiché T è di ordine p, T è ciclico, e quindi esiste $t \in G$, $t \neq e$ tale per cui $T = \langle tH \rangle$.

Si mostra adesso che $p\mid o(t).$ Si consideri la proiezione al quoziente $\pi:G\to G/H$ tale per cui:

$$g \stackrel{\pi}{\mapsto} gH$$
.

Allora $p = o(tH) \mid o(t)$, dal momento che $eH = \pi(t^{o(t)}) = (tH)^{o(t)}$. Pertanto, come prima, si può estrarre da $\langle t \rangle$ un sottogruppo di G di ordine p, concludendo il passo induttivo.

Di seguito si dimostra il teorema di Cauchy in generale.

Teorema (di Cauchy). Sia G un gruppo finito. Se $p \mid |G|$, allora esiste $H \leq G$ tale per cui |H| = p.

Dimostrazione. Sia |G| = pn con $n \in \mathbb{N}^+$. Si dimostra la tesi per induzione. Se n = 1, G stesso è sottogruppo di ordine p, completando il passo base. Sia ora n > 1 e si assuma che ogni sottogruppo di ordine pk con k < n ammetta un sottogruppo di ordine p.

Se esiste $H \leq G$ tale per cui p divide |H|, allora H, e quindi anche G, ammette un sottogruppo di ordine p per l'ipotesi induttiva. Si assuma dunque che non esiste alcun sottogruppo proprio H < G tale per cui p divide |H|. Si consideri la formula delle classi di coniugio:

$$|G| = |Z(G)| + \sum_{g \in \mathcal{R} \setminus Z(G)} \frac{|G|}{|Z_G(g)|},$$

dove \mathcal{R} è un insieme dei rappresentanti delle classi di coniugio di G. Se $g \in \mathcal{R} \setminus Z(G)$, allora $Z_G(g)$ è un sottogruppo proprio di G, e quindi, per ipotesi, p non divide $|Z_G(g)|$; e quindi p divide ancora $|G|/|Z_G(g)|$ (e quindi il secondo termine del secondo membro). Allora, prendendo l'identità modulo p, si deduce che:

$$|Z(G)| \equiv 0 \quad (p).$$

Poiché Z(G) è un sottogruppo di G, se valesse Z(G) < G, si violerebbero le ipotesi iniziali. Pertanto deve necessariamente valere Z(G) = G, e quindi G è abeliano. Pertanto G ammette un sottogruppo di ordine p per il Teorema di Cauchy per i gruppi abeliani; completando il passo induttivo.

Si mostra inoltre una dimostrazione alternativa del teorema di Cauchy (più immediata e facile da ricordare), basata su una particolare costruzione.

Dimostrazione alternativa. Si consideri l'insieme S, dove:

$$S = \{(a_1, \dots, a_p) \in G^p \mid a_1 \dots a_p = e\}.$$

Dimostrando che esiste un elemento $h \in G$ diverso dall'identità tale per cui $(h, \ldots, h) \in S$, si mostra che $h^p = e$, e dunque che o(h) = p (infatti $h \neq e$). Allora, in tal caso, $\langle h \rangle$ è un sottogruppo di G di ordine p, e si dimostra la tesi.

Si ipotizzi che tale elemento h non esisti. Si consideri l'azione φ di $\mathbb{Z}/p\mathbb{Z}$ su S univocamente determinata¹ dalla relazione:

$$1 \stackrel{\varphi}{\mapsto} \left[(a_1, a_2, \dots, a_p) \mapsto (a_2, \dots, a_p, a_1) \right].$$

In particolare $m \cdot (a_1, \ldots, a_p)$ restituisce una p-upla ottenuta "ciclando a sinistra" la p-upla iniziale di m posizioni. Si consideri la somma data dal teorema orbita-stabilizzatore:

$$|S| = \sum_{x \in S} \frac{p}{|\operatorname{Stab}(x)|} = 1 + \sum_{x \in S \setminus \{(e,\dots,e)\}} \frac{p}{|\operatorname{Stab}(x)|}.$$

Poiché $\operatorname{Stab}(x) \leq \mathbb{Z}/p\mathbb{Z}$, gli unici ordini di $\operatorname{Stab}(x)$ possono essere 1 e p. Se tuttavia, per $x \in S \setminus \{(e, \dots, e)\}$, valesse $\operatorname{Stab}(x) = \mathbb{Z}/p\mathbb{Z}$, x avrebbe coordinate tutte uguali, e

 $^{^{1}\}mathbb{Z}/p\mathbb{Z}$ è infatti generato da 1.

quindi, per ipotesi, $x=(e,\ldots,e)$, $\boldsymbol{\ell}$. Quindi il secondo termine del secondo membro vale esattamente pk, dove $k=|S\setminus\{(e,\ldots,e)\}|$.

Si osserva adesso che $|S|=n^{p-1}$, dove n=|G|. Infatti è sufficiente determinare le prime p-1 coordinate, per le quali vi sono n scelte, per determinare anche l'ultima coordinata tramite la relazione $a_1\cdots a_n=e$. Prendendo allora la precedente identità modulo p, si ottiene:

$$1 \equiv 0 \quad (p),$$

da cui l'assurdo ricercato, £.