TALLER 4

Elaborar en Python la regresión múltiple para el ejercicio propuesto en clase.

VAR RESPUESTA		
cantidad vendida	price	advertiseing
8500	\$2.00	2800
4700	\$5.00	200
5800	\$3.00	400
7400	\$2.00	500
6200	\$5.00	3200
7300	\$3.00	1800
5600	\$4.00	900

Solución

Creamos nuestro código para agregar los datos en 3 columnas y crear el modelo de regresión multivariada.

```
import pandas as pd
import numpy as np
import sklearn.linear_model as LinearRegression
import matplotlib.pyplot as plt
from sklearn import datasets, linear_model
import statsmodels.api as sm
import statsmodels.stats.diagnostic as smd

Q = np.array([8500,4700,5800,7400,6200,7300,5600])
P = np.array([2,5,3,2,5,3,4])
A = np.array([2800,200,400,500,3200,1800,900])

X_multiple = pd.DataFrame({"P":P,"A": A})
```

```
print(X multiple.describe())
y multiple = Q
from sklearn.model selection import train test split
#Separo los datos de "train" en entrenamiento y prueba para probar los
algoritmos
X_train, X_test, y_train, y_test = train_test_split(X_multiple, y_multiple,
test size=\overline{0.2})
#Defino el algoritmo a utilizar
lr multiple = linear model.LinearRegression()
#Entreno el modelo
lr_multiple.fit(X_train, y_train)
#Realizo una predicción
Y_pred_multiple = lr_multiple.predict(X_test)
print('DATOS DEL MODELO REGRESIÓN LINEAL MULTIPLE')
print()
print('Valor de las pendientes o coeficientes "a":')
print(lr multiple.coef )
print('Valor de la intersección o coeficiente "b":')
print(lr multiple.intercept )
print('Precisión del modelo:')
print(lr multiple.score(X train, y train))
X train = sm.add constant(X train, prepend=True)
modelo = sm.OLS(endog=y train, exog=X train,)
modelo = modelo.fit()
```

Resultados

	Р		A	
count	7.000000	7.00000	00	
mean	3.428571	1400.00000	00	
std	1.272418	1215.18174	12	
min	2.000000	200.00000	00	
25%	2.500000	450.00000	00	
50%	3.000000	900.00000	00	
75%	4.500000	2300.00000	00	
max	5.000000	3200.00000	00	
DATOS	DEL MODELO	REGRESIÓN	LINEAL	MULTIPLE

Valor de las pendientes o coeficientes "a":

[-484.36271108 0.94957206]

Valor de la intersección o coeficiente "b":

6868.355308813325

Precisión del modelo:

0.9920185674341906

OLS Regression Results

Dep. Variable:	У	R-squared:	0.992
Model:	OLS	Adj. R-squared:	0.984
Method:	Least Squares	F-statistic:	124.3
Date:	Thu, 03 Dec 2020	Prob (F-statistic):	0.00798
Time:	20:37:00	Log-Likelihood:	-31.056
No. Observations:	5	AIC:	68.11
Df Residuals:	2	BIC:	66.94
Df Model:	2		
Covariance Type:	nonrobust		
	:========		
Co	pef std err	t P> t	[0.025 0.975]

const	6868.3553	634.902	10.818	0.008	4136.591	9600.120
Р	-484.3627	139.786	-3.465	0.074	-1085.812	117.086
A	0.9496	0.148	6.422	0.023	0.313	1.586
========						
Omnibus:		nan	Durbi	n-Watson:		2.669
Prob(Omnibu	ıs):	nan	Jarqu	e-Bera (JB)	:	0.199
Skew:		-0.105	Prob(JB):		0.905
Kurtosis:		2.045	Cond.	No.		1.18e+04

Si lo comparamos con la regresión hecha en Excel, podemos ver algunos cambios en los coeficientes y en el valor de la intersección que son en su mayoría debido a que en Python se entrena y se ajusta el modelo lr_multiple.fit(X_train, y_train) y esto se demuestra en que la precisión del modelo en Python es de 0.9920185674341906 y en Excel de 0.961736068.

Así mismo al hacer el análisis de residuales se ve la diferencia en grados de libertad y suma de cuadrados.