

Constraint Relationships in MiniZinc Case Studies

Preferences in Constraint Solving

Constraint problem (X, D, C)

• Variables X, Domains $D = (D_x)_{x \in X}$, Constraints C

How to deal with over-constrained problems?

$$\begin{aligned} & \big(\big(\{x,y,z\}, D_x = D_y = D_z = \{1,2,3\} \big), \{c_1,c_2,c_3\} \big) \text{ mit } \\ & c_1: x+1 = y \\ & c_2: z = y+2 \\ & c_3: x+y \leq 3 \end{aligned}$$

Not all constraints can be satisfied simultaneously

Preferences in Constraint Solving

Constraint problem (X, D, C)

• Variables X, Domains $D = (D_x)_{x \in X}$, Constraints C

How to deal with over-constrained problems?

$$\begin{aligned} & \text{((\{x,y,z\},D_x=D_y=D_z=\{1,2,3\}),\{c_1,c_2,c_3\}) mit} \\ & c_1:x+1=y \\ & c_2:z=y+2 \\ & c_3:x+y\leq 3 \end{aligned}$$

- Not all constraints can be satisfied simultaneously
 - ullet e.g., c_2 forces z=3 and y=1, conflicting c_1
- We can choose between assignments satisfying $\{c_1,c_3\}$ or $\{c_2,c_3\}$.

Which assignments $v \in [X \to D]$ should be preferred by an agent/several agents?

Constraint Relationships

Approach (?)

- Define relation *R* over constraints *C* to denote which constraints are more important than others, e. g.
 - c_1 is more important than c_2
 - ullet c_1 is more important than c_3

Benefits

- Qualitative formalism easy to specify
- Graphical interpretation
 - Semantics (how much more important is a constraint) regulated by
 - dominance properties that are either "hierarchical" or "egalitarian"
 - Single-Predecessors-Dominance (SPD) vs. Transitive-Predecessors-Dominance (TPD)

SoftConstraints in MiniZinc


```
% X: \{x,y,z\} D_i = \{1,2,3\}, i in X
% * c1: x + 1 = y * c2: z = y + 2 * c3: x + y <= 3
% (c) ISSE
% isse.uni-augsburg.de/en/software/constraint-relationships/
include "soft_constraints/minizinc_bundle.mzn";
var 1..3: x; var 1..3: y; var 1..3: z;
% read as "soft constraint c1 is satisfied iff x + 1 = y"
constraint x + 1 = y <-> satisfied[1];
constraint z = y + 2 <-> satisfied[2];
constraint x + y <= 3 <-> satisfied[3];
% soft constraint specific for this model
nScs = 3; nCrEdges = 2;
crEdges = [| 2, 1 | 3, 1 |]; % read c2 is less important than c1
solve minimize penSum; % minimize the sum of penalties
```

Case Studies

Applied to domains where

- Certain properties should really capture preferences, not constraints
- at design time, it is unclear whether an instance is actually solvable
- Solution space is combinatorial
 - Discrete choices
 - Additional hard constraints

Illustrative case studies

- Mentor Matching
- Exam Scheduling
- Power Plant Scheduling

Mentor Matching: Model


```
int: n; set of int: STUDENT = 1..n;
int: m; set of int: COMPANY = 1..m;
% assign students to companies
array[STUDENT] of var COMPANY: worksAt;
% insert relationships of students and companies here
int: minPerCompany = 2; int: maxPerCompany = 3;
constraint global_cardinality_low_up (
          worksAt, [c | c in COMPANY],
          [minPerCompany | c in COMPANY],
          [maxPerCompany | c in COMPANY]);
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],
 input_order, indomain_max, complete)
minimize penSum;
```

Mentor Matching: Preferences


```
n = 3: m = 3:
int: brenner = 1;
int: teufel = 2;
int: fennek = 3;
int: cupgainini = 1;
int: gsm = 2;
int: junedied = 3;
% specify soft constraints, order by relationship
constraint worksAt[teufel] = junedied <-> satisfied[teufJune];
constraint worksAt[teufel] = cupgainini <-> satisfied[teufCap];
constraint worksAt[teufel] = gsm <-> satisfied[teufGsm];
constraint worksAt[fennek] in {cupgainini, gsm} <-> satisfied[fenFavs];
constraint worksAt[fennek ] in {junedied} <-> satisfied[fenOK];
crEdges = [| teufGsm, teufCap | teufGsm, teufJune
           | fenOK, fenFavs |];
```

Mentor Matching: Refinements

Split company and student preferences:

```
% first, our students' preferences
var int: penStud = sum(sc in 1..lastStudentPref)
        (bool2int(not satisfied[sc]) * penalties[sc]);
% now companies' preferences
var int: penComp = sum(sc in lastStudentPref+1..nScs)
        (bool2int(not satisfied[sc]) * penalties[sc]);
```

Optimize lexicographically

```
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],%...
%search minimize_lex([penStud, penComp]) /\ if % ...
search minimize_lex([penComp, penStud]) /\ if % ...
```

Mentor Matching: Priority Example

Taken from example: student-company-matching.mzn

```
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],%...
search minimize_lex([penStud, penComp]) /\ if %...
```

```
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],%...
search minimize_lex([penStud, penComp]) /\ if %...
```

Here, company 1 (cupgainini) wanted to have student 3, and company 2 (APS) did not have any preferences whatsoever (so accepted student 4 instead of 3). Student 4 would have liked company 3 (junedied) better, though.

Mentor Matching: Real Instance

Collected data from winter term

Example

"the favorites":

1. JuneDied-Lynx- HumanIT

2. Cupgainini

"I could live with that":

3. Seamless-German

4. gsm systems

5. Yiehlke

"I think, we won't be happy":

6. APS

7. Delphi Databases

Mentor Matching: Real Instance

- Gave precedence to students
 - After all, what should companies do with unhappy students?
- Search space: 7 companies for 16 students \rightarrow $7^{16} = 3.3233 \cdot 10^{13}$
- Led to a constraint problem with
 - 77 student preferences (soft constraints) from 16 students
 - of a total of 114 soft constraints (37 company preferences)
- Proved optimal solution
 - 4 minutes compilation
 - another 2m 12s solving time

Exam Scheduling

Goal: Assign exam dates to students such that

- Each student likes their appoints (approves of it)
- The number of distinct dates is minimized (to reduce time investment of teachers)

Illustrates some core ideas of constraint relationships:

- No preference of any student should be weighted higher than another one's
- Solution (exam schedule) is a shared decision

Exam Scheduling: Core Model

See exam-scheduling-approval.mzn:

```
% Exam scheduling example with just a set of
% approved dates and *impossible* ones
include "globals.mzn";
include "soft_constraints/soft_constraints.mzn";
int: n; set of int: STUDENT = 1..n;
int: m; set of int: DATE = 1..m;
array[STUDENT] of set of DATE: possibles;
array[STUDENT] of set of DATE: impossibles;
% the actual decisions
array[STUDENT] of var DATE: scheduled;
int: minPerSlot = 0; int: maxPerSlot = 4;
constraint global_cardinality_low_up(scheduled % minPerSlot, maxPerSlot
constraint forall(s in STUDENT) (not (scheduled[s] in impossibles[s]));
```

Exam Scheduling: Preferences

See exam-scheduling-approval.mzn:

```
% have a soft constraint for every student
nScs = n:
penalties = [ 1 | n in STUDENT]; % equally important in this case
constraint forall(s in STUDENT) (
    (scheduled[s] in possibles[s]) <-> satisfied[s] );
var DATE: scheduledDates;
% constrains that "scheduledDates" different
% values (appointments) appear in "scheduled"
constraint nvalue(scheduledDates, scheduled);
% search variants
solve
:: int_search(satisfied, input_order, indomain_max, complete)
search minimize_lex([scheduledDates, violateds]); % pro teachers
%search minimize_lex([violateds, scheduledDates]); % pro students
```

Exam Scheduling: Real Instance

- Collected preferences of 33 students
- over 12 possible dates (6 days, morning and afternoon)
 - Approval set
 - Impossible set
- Aggregated via approval voting (has nice voting-theoretical properties!)
- At most 4 per appointment
- Immediately (61 msec) found an optimal solution that
 - Is approved by every student
 - Is achieved with the minimal number of 9 dates
- Used Strategy:

search minimize_lex([violateds, scheduledDates]); % pro students

Power Plant Scheduling: Core Model


```
include "soft_constraints/soft_constraints_noset.mzn";
include "soft_constraints/cr_types.mzn";
include "soft_constraints/cr_weighting.mzn";
% ground penalties using the appropriate weighting
penalties = [weighting(s, SOFTCONSTRAINTS, crEdges, true)
               | s in SOFTCONSTRAINTS]:
int: T = 5; set of int: WINDOW = 1..T;
array[WINDOW] of float: demand = [10.0, 11.3, 15.2, 20.7, 19.2];
int: P = 3; set of int: PLANTS = 1..P;
array[PLANTS] of float: pMin = [12.0, 5.0, 7.3];
array[PLANTS] of float: pMax = [15.0, 11.3, 9.7];
array[WINDOW, PLANTS] of var 0.0..15.0: supply;
var float: obj;
constraint obj = sum(w in WINDOW) ( abs( sum(p in PLANTS)
          (supply[w, p]) - demand[w]));
```

Power Plant Scheduling: Soft Constraints


```
% ground penalties using the appropriate weighting
penalties = [weighting(s, SOFTCONSTRAINTS, crEdges, true)
               | s in SOFTCONSTRAINTS]:
[...]
% some soft constraints
constraint supply[1, 2] >= 6.0 <-> satisfied[1];
constraint supply[2, 2] >= 6.0 <-> satisfied[2];
% constraint time step 1 seems more urgent
nCrEdges = 1;
crEdges = [| 2, 1 |];
% could do something more sophisticated here
solve minimize obj + penSum;
```

→ Library works with MIP (*Mixed Integer Programming*) as well!

Quellen I

