15949 U.S. PTO

1/19

BEST AVAILABLE COPY

F/G. 1.

LXR agonist: Cpd B, C FXR agonist: Cpd E, F

FIG. 2.

F16. 3.

+

F/G. 5.

COMPOUND C

COMPOUND B

COMPOUND A

O	190	285	380	475	6/ 19	665	760	855	950	1045
	ACAGAGGGTCTCTGAGCTCCCTGGAGCAAGGTTCGGTCACGGGCACAGGCTCGGCACAGCTTAGGTGTCCTGCATGTGTCCTACAGCGTCTCAAAGCTTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAGCGTCTACAAAAAAAA	:AACCGTGTCGGGCCTTGGTGGAACATCAAATCATGCCAGCAGAGGCGAAATCCTCAAAGATGTCTCCTTGTACATCGAGAGTGG	GATTATGTGCATCTTAGGCAGCTCAGGGAAGACCACGTGCTGGACGCCATCTCCGGGAGGCTGCGGCGCACTGGGACCCTGGAAG	AGGTGTTTGTGAATGGCTGCGAGGCAGGGACCAGTTCCAAGACTGCTTCTCCTACGTCCTGCAGAGCGACGTTTTTCTGAGCAGCCTC EVFVNGCONG	'GTGCGCGAGACGTTGCGATACACAGCGATGCTGGCCCTCTGCCGCGGACTTCTACAACAAGAAGGTÄGAGGCAGTCATGACAGA V R E T L R Y T A M L A L C R S S A D F Y N K K V E A V M T E	'GAGCCTGAGCCACGTGGCGAATGATTGGGGGGAATTTCCAGTGGCGAGCGGCGCCGAGTTTCCATCGCAGCCC	TCCTTCAGGACCCCAAGGTCATGATGAGCCAACCACAGGACTGGACTGCATGACTGCAAATCAAATTGTCCTTCTTTGGCTGAG L L Q D P K V M M L D E P T T G L D C M T A N Q I V L L L A E	GCTCGCAGGGACCGAATTGTGATTGTCACCATCCACCAGCTCTGAGCTCTTCCAACACTTCGACAAAATTGCCATCCTGACTTACGG A R R D R I V I V T I H Q P R S E L F Q H F D K I A I L T Y G	GITGGTGTTCTGTGGCACCCCCAGAGGAGGAGTGCTTGTTCTAATAACTGTGGTTACCCCTGTCCTGAACATTCCAATCCCTTTGATTTTT.	TGGACTTGACATCAGTGGACACCCAAAGCAGAGGGGAAATAGAAACGTACAAGCGAGTACAGATGCTGGAATGTGCCTTCAAGGAATCT M D L T S V D T Q S R E R E I E T Y K R V O M L E C A F K F S

1140 TTCAAAACAAAAGATCCT Ω۰ \Box Е \times لتبا 'ATCTATCACAAAATTCTGGAGAACATTGAAAGAGCACGATACCTGAAAACCTTACCCATGGTTCCT' Д Σ Д Н EH \times Ы 公 Ø 2 ſΞÌ Z

1235 GATCA CAGAATCT Ø CTCGTT Н α Σ >K Ø \propto \mathbf{z} α Σ \mathbf{z} \propto \propto α G

1330 CAGCTTGTG \gt Ø AT(GGGGCT G CTTCTCCGCGTCCAGAACAACACGCTTAAAGGGCGCTGTGCAGGACCGCGT α \bigcirc >K Ü \times ᆈ Ez Z Ø α \vdash Н 'AC(\succ ہتا G

S 1425 GTGAATCTGTTTCCCATGCTGAGAGCCGTCAGCGACCAGGAGTCAGGATGGCCTGTATCA G \Box Ø S ы Ø S >K 召 Н Σ Дι بتا \mathbf{z} \gt CCT(K 'CAAT \mathbf{z} GCCACCCATACACCGGCATGCT K

0 52(CTGG TGGACT 3 GTGTTAT \mathcal{O} E U > GCAGT ഗ CCTCCCCTTCAGCGTCATCGCCACGGTCATTTTCA ₽ K \triangleright S [I Д \Box GTGCTACACGT Ξ Н 'AC CGC K Σ Ø 3

رم **7/19** 61 $\overline{}$ GCTTGGT G Н TTTCTAACACTTGT Н Н ш CTGCTGCTCTTTTGGCCCCTCACTTAATTGGAGAA 国 G П 工 Ω Ø Ы \vdash ⋖ ď S GGATATTTCT Ŀı 54 G CCAGATTT 'AT(

0 171(ATACAAGA GAAAC α TTTAT ш GCATCTCTGGGCTGCTTATTGGATCTGGA' Ü S G 口 Н G ഗ S GCTCA ႕ 'GGCT Ø GTCAACAGTATAGT S \mathbf{z} \mathbf{z} Ø

 \mathbf{z}

805 CTGAACTTCA Ŀ Z TTTACATTCCAAAAATACTGTTGTGAGATTCTCGTGGTCAATGAGTTTTACGGC G ш ы \mathbf{z} 됴 \mathcal{O} \circ \succ \times Ø GGGTTAT G \simeq Д

900 'ACA BCCC \mathcal{O} H GAAAAC \times GCGCCATCACCCAAGGGGTCCAGTTCATCGA ш Ŀı O \gt G Ø Н K \mathcal{O} CCGATGT Σ Д AAATCAC 二 \mathbf{z} щ Σ EH \mathbf{z} GTGGTGGA G G

1995 CTGAT L I GGGTTTATCCCAGCTCTGGTCATCCTAGGAATAGTGATTTTTAAAGTCAGGGACTAC \succ \Box α \gt 凶 ш Н \triangleright Н G Щ >Н ø Д Ĺц CATCTTATAT \mathbf{z}

2090 α

01	
AGGTGGAGCAGGCAGGCAGTCTGCCACGGGCTCCCCAACTGAAGCCACTCTGGGGAGGGTCCGGCCACCAGAAATTTGCCCAGCTTTGCT	TGTTGGCCATGGGTGACCTCTCTTTGACCCCCGGAGGGTCCATGGGTCTCCAAGTAAACAGAGGCTCCCAGAGCTCCCTGGAGGGGGCT

Ŋ

0

285	
IG	_
${ m TCT}$	က
ACA	E
ATC.	Н
GAC	Ω
TGG	Ø
TGG	ß
CCC	Ф.
AGG	民
GTG.	>
CGC	α
CAC	王
AGC	ഗ
GTC	>
AGC	ഗ
TAC	\succ
TCC	ഗ
CCC	Ø
CAT	H
CIC	니
ATC	Н
299	ტ
CIG	H
CAGCCTGGG	Ø
TCAC	田
CC	Д
GAG	ы
SCC	വ
CGCCC	A
AC	₽
SSS	Ø

380	8/19	475	
GA		AG	ш
SGS		999;	~
CTC	S	225	公
AGG		TGC	П
CTC	- 01	CGC	Ø
BAAG	(D	3666	ĸ
AGG	. 7	3600	G
	Н	AACC	z
3CA1	7.)	3TG?	>
[GT(<u>.</u>	PAT	>-1
[CA]	<u>~</u>	CGCGCGGGGACCTTCCTGGGGGGGGGTGTATGTGAACGGCCGGGCGCTGCGCCGGGAG	RAGTFLGEVYVNGRALRRE
3GA.	~ .	3AG0	ഥ
3GC/	(1)	3660	ტ
3000	ິທ	CTG(Н
AGA(団	TTC	ш
TGG	>	ACC	⊟
ACG	∀	GGG.	U
IGI	니	929	Ø
CCL	ഗ	CGC	ĸ
ICI	\triangleright	ω,	ഗ
ATG	Ω	CTG	Н
AAG	\bowtie	AGG	ĸ
TCA	ப	999	U
CCL	Н	TCC	ഗ
AGA	O ⁱ	ATG	Σ
0001	α	CCC	Ø
CCA	€⊣	GAC	Ω
GGP	M	CTG	J
JOCABOAGIIGGACCAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGAGAGCGGGCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGGA	Q Q W T R Q I L K D V S L Y V E S G Q I M C I L G S S G S G	CCACGCTGCTGGACGCCATGTCCGGGAGGCTGGGGC	T'T L L D A M S G R L (
AG	Q	CACC	₽
<u>ر</u>	~~	ñ I	∺

57.0	
S	
5 L	<u>_</u>
)DL;	<u>_</u>
SCG	Ø
CACCGCGCTGCTGGC	E
Ä	>-
CACT	I
CAGCCTCACCGTGCGCGAGACGCTGC	H
ACG(۲
GAG?	ГI
CGC	公
GTG(>
ACC	₽
CTC	니
AGC	ഗ
AGC	ഗ
Ę	Ц
CCCIGC	П
ACACCCI	⊢
GAC	Ω
AGC	ഗ
CAG	Ø
CTG	П
GTC	>
TAC	×
TCC	ഗ
TTC	Гтı
TGC	U
GAC	Ω
CAG	Ø
TIC	ᅜ

665)
C A	
TGGCA	G
ΑT	Н
CTG	
CGA	2
AC	Ω
Ă	A
GTGGC	>
CATO	耳
5	ഗ
CTGA	ᆔ
GI	ß
TGA	ᆸ
AGC	ы
CAG	A
ATGG	Σ
TCA	>
SSS	Æ
AGG	団
GG	>
99	
GAA	X
AGAA	Σ.,
$\frac{0}{2}$	Ø
CTT	Ĺτι
CTC	ഗ
CGG	ტ
$\bar{\mathcal{C}}$	Д
CAAT	Z
Ü	G
CGC	ĸ
೧೮೮೮	ĸ

760	
GAG	ഥ
AT	Ω
TITG	ഥ
CTG	H
٩TG	Σ
GTC/	>
AAG	云
CCTA	ہم
GAT	Ω
3AG	Q
CICC	ᆸ
AGCTG	-
CAG	Ø
GCCC	А
GCAG	Ø
ATC	Н
TCTCC	ഗ
GTC	>
CGGG	ፚ
CGC	%
CGG	ĸ
GAG	Ŀ
GGT	G
ACG	ΕH
TCC	ഗ
ATT	Н
299	U
GGG	U
$_{ m TTG}$	П
AGC	ഗ
AC.	> ⊣

855	,
Ą	Þ
ATTCA	-
ACCA	E
S E	_
TTC	Λ
TGG	Λ
AATTGTGGTTC	I -
N	Ω
CC	
GAA	~
CAG	Ω
rcg(Υ
TGGCTCGCAG	Ø
CTG	<u> </u>
GAAC	[±]
GTG	\triangleright
CCTGGTGG	, _
CICC	Ц
STCCT	>
GTCGT	>
ATTG	Н
CAG	0
AAT(z
U	Ø
GACTG	⊱
ATG	Σ
TGC!	U
AC	Ω
CCTGG	П
Q	മ
ACAG	ĘI
CCA	₽
Ā	

 \gt

Ø

K

Щ

Σ

Σ

O

≥

丷

O

Ç

Ø

ഗ

Ø

S

ď

凶

لتا

1140 104 GAACATTCAAACCCTTTTGACTTCTATATGGACCTGACGTCAGTGGATACCCAAAGCAAGGAA ATTGAAAGAAT α CATAAAACTTTGAAGAAT \bowtie \vdash ₽ S \simeq ₽ 工 CTACAAGAAATCAGCAATTTGT \mathcal{O} \Box Н Σ Ø ഗ L 区 \Box ш Д Ø GAAATAGAAACCTCCAAGAGAGTCCAGATGATAGAATCTGC S ഗ Ш 工 $\mathbf{\Sigma}$ Ø CCTTGT \mathcal{O} Д α \searrow

되

950

Ø

Д

H

Ü

 \circ

口

ī

G

S

Ы

Ø

 \simeq

Q

딥

GCCCCGTTCTGAGCTTTTCAGCTCTTTGACAAATTGCCATCCTGAGCTTCGGAGAGCTGATTTTCTGTGGCACGCCAGCGGAAAT

1235 1330 CCTGAGGAGAGTGACAA GCGGGTCCGA ₽ α TITCTICGITCI Ы ACACCTGAAAACGTTACCAATGGTTCCTTTCAAAACCAAAGATTCTCCTGGAGTTTTCTCTAAACTGGGTGTTCT П TTGGTGAGAAATAAGCTGGCAGTGATTACGCGTCTCCTTCAGAATCTGATCATGGGTTTGTTCCTCCT G ᅱ \times S G ഗ \simeq \simeq μ Σ Д 工

CCTTTACCAGTTTGTGGGCGCCACCCCGTACACAGGCATGCTGAACGCTGTGAA ш Гц G Σ Н Н Z Ø \dashv GTAGGTCT α E-CCCC \gt Ø \vdash \mathbf{z}

△9/19 1520 GCACGICC \gt Ø \Box CTACCAGAAGTGGCAGATGATGCTGGCCTAT Σ G Е \succ Д Ø Ø \circ GTCAGCGACCAGGAGAGTCAGGACGGC G α

S 161 CAGCAGTGTGTGCTACTGGACGCTGGGCTTACATCCTGAGGTTGCCCGATTTGGATATTTTTCT S ø ы Д 工 G \vdash Ę S ſΞι Σ

GTAGTGGC S Z CTTGTGCTACTTGGTATCGTCCAAAATCCAAATATA Н z Д \mathbf{z} Ø \vdash G П CACTTAATTGGTGAATTTCTAACT ഥ G 二 A Ø

180 TATTTTACAT Н CAGAAACATACAAGAAATGCCCATTCCTTTTAAAATCATCAGT \simeq Д Д Σ ы O Z ĸ GGATCTGGATTCCT G S Ü Ø GCTGT

GAGTTCTACGGACTGAATTTCACTTGTGGCAGCTCAAATGTTTCTGTGACAA ഗ ഗ ഗ G \mathcal{O} ഥ GTAGTCAAT Z >GCAGT ഗ 又

2340

2090 2280 2185 'TCCAGCTĊTTGTCATCCTAGGAATAGTTGTTTTCAAAATAAGGGATCATCTCATTAGCAGGTAGTGAAAGCCATGGCTGGGAAAATGGAAGT GCTGCCGACTGTGCATGACTGCTCTGAACGTCTGAAATGAGAGTGCCATGTATTTCTTTGACAGGACATCTCAAGTCTTTTAACCATTA CTCCATTTGTGCCTCTTGGATCCAAGCAGGCCTTGAATGCAATGGAAGTGGTTTATAGTCCCTTGCTCTTACAACTTGCAGGGACATGTGGT Σ ĸ K G വ α ГL] Ü

TGTGCCTTCACTCAAGGAATTCAATTCATTGAGAAACCTGCCCAGGTGCAACATCTAGATTCACAATGAACTTTCTGATTTTGTATTCATT

1995

FIG. 8C.

"TTGGAAATTGTGACTGAGCGGACCCAAGAATGTAAATAATATTCATAAACCTATGGG

79	159 160	239	319 [.] 320	399 400	479	1/19 622 220	639 540	551 552
MGDLSSITPG GSMGLQVNRG SQSSLEGAPA TAPEP-HSLG ILHASYSVSH RVRPWWDTTS CROOMTROIL KDVSLYVESG 79 MGELPFLSEE GARGPHINRG SLSSLEQGSV TGTEARHSLG VLHVSYSVSN RVGPWWNJKG COOKWDRQIL KDVSLYIESG 80	SGKTTLLDAM SGRIGRAGTF LGEVYVNGRA LRREQFQDCF SYVLQSDTLL SSLTVRETIH YTALLAIRRG SGKTTLLDAI SGRIRRTGTL FGEVFVNGCE LRRDQFQDCF SYVLQSDVFL SSLTVRETIR YTAMLALORS	7	HQPRSELFQL FDKIAILSFG ELIFCGTFAE MIDFFWDCGY PCPEHSNPFD FYMDLTSVDT QSKEREIETS 31 HQPRSELFQH FDKIAILTYG ELVECGTFAE MIGFFWNCGY PCPEHSNPFD FYMDLTSVDT QSREREIETY 32	RKSATCHKIL KNIERMKHLK TLPMVPFKTK DSPGVESKLG VLLRRVTRNI VRNKLAVITR ILQNLIMGLF 39 KESDIYHKIL ENIERARYLK TLPMVPFKTK DRPGMEGKLG VLLRRVTRNI MRNKQAVIMR LVQNLIMGLF 40	ILFFVERVRS NVEKGALODR VGLLYOFVGA TPYTGMLNAV NLFPVERAVS DOESODGLYO KWOMMEAYAE HVLPFSVVAT 479 ITFYLERVON NTEKGAVODR VGLLYOFVGA TPYTGMLNAV NLFFMERAVS DOESODGLYH KWOMILAYVE HVLPFSVIAT 480	LGIHPEVARF GYFSAALLAP HLIGEFLTLV LLGIVQNPNI VNSWVALLSI AGVIVGSGFL RNIQEMPIPF 55 LGIMPEVARF GYFSAALLAP HLIGEFLTLV LLGIVQNPNI VNSWVALLSI SGULIGSGFI RNIQEMPIPL 56		SR SR
MGDLSSI MGELPFL	QIMCILGSSG QIMCILGSSG	NPGSFOK SADFYNK	RRNRIVVLTI RRDRIVIVTI	KRVQMLESAY KRVQMLECAF	THEFVER THEYLLR	MI FSSVCYWT VI FSSVCYWT	KIIISYFT KILGYFT	VVEKIRDHLI VIEKVRDYLI
G.pro	G.pro	G.pro	G.pro	G.pro	G.pro	G.pro G.pro	G.pro	G.pro G.pro

F/G. 9.

12/19

Reference Number: 6711 Stanford RH Panel: TNG4 Lowest LDD Reported: 5 Chromosome Value: 0

Results for HT

Submitted

SHGCNAME CHROM# LOD_SCORE DIST.(cRs)

1 SHGC-36672 2 7.52 35

2 SHGC-8189 2 6.53 44

3 SHGC-699 2 6.03 48

The number of markers searched was 32440

FIG. 10.

F1G. //.

Small Intestine

Ileum

Cecum

Ascending

Colon

Transverse

Colon

Colon

Rectum

F1G. 12

FIG. 13.

F16 14A.

					.17.	/19				
AGGTGGAGCAGGCAGGCCACTCCCCACGGGCTCCCCAACTGAAGCCACTCTGGGGAGGGTCCGGCCACCAGAAATTTGCCCAGCTTTGCTGCCT	GGCCATGGGTGACCTCTCATCTTTGACCCCCGGAGGGTCCATGGGTCTCCAAGTAAACAGAGGCTCCCAGAGCTCCCTGGAGGGGGCTCCTGCCAG	CCCGGAGCCTCACAGCCTGGGCATCCTCCATGCCTCCTACAGCGTCAGCCACGCGTGAGGCCCTGGTGGGACATCACATCTTGCCGGCAGCAGTG	CAGGCAGATCCTCAAAGATGTCTCCTTGTACGTGGAGAGCGGGCAGATCATGTGCATCCTAGGAAGCTCAGGCTCCGGGAAAACCACGCTGCTGGA	CATGTCCGGGAGGCTGGGGCGCGCGGGGACCTTCCTGGGGGGGG	CGTCCTGCAGAGCGACACCCTGCTGAGCAGCCTCACCGTGCGCGAGACGCTGCACTACACCGCGCTGCTGGCCATCCGCCGCGCGAATCCCGGCTC XON 3	CCAGAAGAAGGTGGAGGCCGTCATGGCAGAGCTGAGTCTGAGCCATGTGGCAGACCGACTGATTGGCAACTACAGCTTGGGGGGGG	GCGGCGCCGGGTCTCCATCGCAGCCCAGCTGCTCCAGGATCCTAAGGTCATGCTGTTTGATGAGCCAACCACGGCCTGGACTGCATGACTGCTAA	GATTGTCGTCCTCCTGGTGGAACTGGCTCGCAGGAACCCGAATTGTGGTTCTCACCATTCACCAGCCCCGTTCTGAGCTTTTTCAGCTCTTTGACA	TIGCCATCCTGAGCTTCGGAGAGCTGATTTTCTGTGGCACGCCAGCGGAAATGCTTGATTTCTTCAATGACTGCGGTTACCCTTGTCCTGAACATT	ACCCTTTGACTTCTATATGGACCTGACGTGGATACCCAAAGCAAGGAACGGGAAATAGAAACCTCCAAGAGAGTCCAGATGATAGAATCTGEXON 7

ATGGAAGTGAAGCTGCCGACTGTGCATGACTGCTCTGAACGTCTGAAATGAGAGTGCCATGTATTTCTTTC
TTTGTATTCATTTATTCCAGCTCTTGTCATCCTAGGAATAGTTGTTTTCAAAATAAGGGATCATCTCATTAGCAGGTAGTGAAAGCCATGGCTGG
G
GATTCTTGTAGTCAATGAGTTCTACGGACTGAATTTCACTTGTGGCAGCTCAAATG
ANTITION OF THE TRANSPORT OF THE TRANSPO
()
-EAON 9
SCGCCACCCCGTACACAGGCATGCTGAACGCTGTGAATCTGTTTCCCGTGCTGCGAGCTGTCAGCGACCAGGAGAGTCAGGACGGCCTCTACCAGA
PCATGGGTTTGTTCCTCCTTTTCTTCGTTCTGCGGTCCGAAGCAATGTGCTAAAGGGTGTTATTCAAGGAAGG
CTGGAGTTTTCTCTAAACTGGGTGTTCTCCTGAGAGAGTGACAAGAAACTTGGTGAGAAATAAGCTGGCAGTGATTACGCGTCTCCTTCAGAATC

FIG. 14B. (2 OF 3)

_			
ın	1	۱	O
13	,	ı	э

ATG		19/19
AGGCCTTGAATGCAATGGAAGTGGTTTATAGTCCCTTGCTCTTACAACTTGCAGGGACATG		INTRON SIZE -600bp ~6kb 74bp ~4kb ~2kb ~2.5kb ~0.5kb 100bp ~1.7kb ~1.9kb ~1.9kb ~1.9kb ~1.2kb
GCAATGGAAGTGGTTTATAGTCCC' EXON 13	ATAAACCTATGGG 	3' SPLICING SITE GCGTCAGGtaaggcag AGCTCAGGtaagcttg CCTGCAGGtggaggcggagGGGGGGGGGGGGGGGGGGGGGGGGGGG
'GGATCCAAGCAGGCCTTGAATGC	ACCCAAGAATGTAATATTCATAAACCTATGGG	5' SPLICING SITE cctttaaagCCACCGC gcccgcagGCTCCGG ctcctgcagAGCGACA tgcaggtggAGGCGACA tgctggcagAGGCCGT tgctggtcagCTCTTTG aactttagTGGACCT tgtttcagGAGGCCGT cttttctagGACGCTG ctttctagGACGCTC tttctagGACGCTC tttcttagGACGCTC cttttctagGACGCTC tttcttagGACGCTC
CATTAAGACTCCATTTGTGCCTCTTGGATCCAAGC	STTATTTGGAAATTGTGACTGAGCGGACCCAAGAAT	EXON SIZE 5 124
CATTAAGACTC	3TTATTTGGAAA 	(ON NUMBER 1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 12 13 TOTAL INIC SEQUENCES

FIG. 14B.(30F3)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.