NEC

PNP SILICON TRANSISTOR 2SA1459

DESCRIPTION

The 2SA1459 is designed for general purpose amplifier and high speed switching applications.

FEATURES

- High Frequency Current Gain.
- High Speed Switching.
- Small Output Capacitance.
- Low Collector Saturation Voltage.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

Maximum Temperatures
Storage Temperature55 to +150 °C
Junction Temperature 150 °C Maximum
Maximum Power Dissipation (T _a = 25 °C)
Total Power Dissipation
Maximum Voltages and Currents (T _a = 25 °C)
V _{CBO} Collector to Base Voltage15 V
V _{CEO} Collector to Emitter Voltage −15 V
V _{EBO} Emitter to Base Voltage4.5 V
I _C Collector Current (DC)50 mA
I _C Collector Current (Pulse)*100mA
* PW ≤ 2 ms, Duty Cycle ≤ 50 %

ELECTRICAL CHARACTERISTICS (Ta=25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
ton	Turn-on Time		9.0	20	ns	See Test Circuit.
toff	Turn-off Time		19	40	ns	See Test Circuit.
t _{stg}	Storage Time		16	40	ns	See Test Circuit.
fτ	Gain Bandwidth Product	800	1800		MHz	$V_{CE} = -10 \text{ V}, I_{E} = 10 \text{ mA}, f = 100 \text{ MHz}$
Cob	Output Capacitance		2.0	3.0	pF	V _{CB} =-5.0 V, I _E =0, f=1 MHz
hFE1**	DC Current Gain	50	80	150	_	V _{CE} =-1.0 V, I _C =-10 mA
hFE2**	DC Current Gain	30	70		_	$V_{CE} = -1.0 \text{ V, } I_{C} = -1.0 \text{ mA}$
V _{CE(sat)} **	Collector Saturation Voltage		-0.09	-0.20	V	$I_{C} = -10 \text{ mA}, I_{B} = -1.0 \text{ mA}$
VBE(sat)**	Base Saturation Voltage		-0.80	-0.95	V	I _C =-10 mA, I _B =-1.0 mA
ICBO	Collector Cutoff Current			-0.1	μА	V _{CB} =-8.0 V, 1 _E =0
IEBO	Emitter Cutoff Current			-0.1	μΑ	$V_{EB} = -3.0 \text{ V, I}_{C} = 0$

^{**} Pulsed PW \leq 350 μ s, Duty Cycle \leq 2 %

Classification of h_{FE1}

Rank	L	К	
Range	50 to 100	75 to 150	

 h_{FE2} Test Conditions: $V_{CE} = -1.0 \text{ V}$, $I_{C} = -10 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME TEST CIRCUIT

ton, toff Test Circuit

ton Test Waveforms (VBB=GROUND)

 t_{off} Test Waveforms (VBB=-8.0 V)

tstg Test Waveforms