# Geschichte der Betriebssysteme

Ein Streifzug durch die Entstehung moderner Betriebssysteme

© 2006 Bernd Onasch

### Übersicht

### Einführung Historischer Streifzug Betriebssystemvoraussetzungen

Mathematische Grundlagen

Entwicklungsstufen der Hardware

Entwicklung von Eingabesystemen

### Betriebssystembestandteile

System- / Ressourcenverwaltung

Dateiverwaltung

Visualisierung

Vernetzung

Programmierung

#### **Betriebssysteme**

Großrechnersysteme

Betriebssysteme System V Unix

Betriebssysteme BSD Unix

Experimentalsysteme

Microcomputer Systeme

### Betriebssystem

### **Betriebssystem (Operating System)**

Grundlegende Software eines Rechners. Das Betriebssystem organisiert die Interaktion mit der Hardware, die Prozessverwaltung, die Speicherverwaltung und bietet eine Schnittstelle für den Benutzer und die Applikationen an. Die Architektur des Betriebssystems und deren zugrundeliegende Philosophie wirkt sich sehr stark auf die Programmierung, den Programmierstil und die Implementierung der technischen Interaktion zusätzlicher Komponenten aus.

(frei zitiert aus dem sog. Jargon File)

# Voraussetzungen für ein Betriebssystem

- Mathematische Grundlagen
- Entwicklungsstufen der Hardware
  - Architektur
  - Rechenwerk (CPU)
  - Datenspeicher
- Entwicklung von Eingabesystemen
  - Interaktion
  - Visualisierung

### Bestandteile von Betriebssystemen

- System- und Ressourcenverwaltung
- Dateiverwaltung
- Visualisierung
- Vernetzung
- Programmierung
- Applikationen

# **Historischer Streifzug**



Von mechanischen Rechenmaschinen zu modernen Computern

### Mechanische Rechenmaschinen (I)

1623 Wilhelm Schickard Rechenmaschine für Multiplikationen

1666 Sir Samuel Morland Rechenmaschinen je für Multiplikation und Addition

1642 Blaise Pascal Rechenmaschine für Additionen

1673 Gottfried Leibnitz
Rechenmaschine für die vier Grundrechenarten
Wartung: Feinmechanische Herausforderung

### Mechanische Rechenmaschinen (II)

1770 Philip Matthäus Hahn Rechenmaschine mit Staffelwalzenprinzip Wartungsfreundliche Mechanik

1820 Charles Xavier Thomas
Rechenmaschine "Arithmometre"
Werkstattmäßige Herstellung

1822 Charles Babbage
Differenzenrechenmaschine für Tabellenberechnungen

### Was war der "erste" Computer?

Definitionsabhängig existieren verschiedene Kandidaten:

1822 Differenzenrechenmaschine (Charles Babbage)

1936 Mechanischer Rechner Z1 (Konrad Zuse)

1941 Relaisrechner Z3 (Konrad Zuse)

1944 Relaisrechner MARK I (Howard Aiken)

1946 Elektronischer Rechner ENIAC (J. Eckert)

1951 Kommerzieller Rechner UNIVAC (J. Eckert)

1953 Kommerzieller Rechner IBM 701 EDPM

1959 Transistorrechner IBM 1401

# Entwicklungsstufen der Computer

- 1. Generation (ca. 1940-1958) Relaisrechner
- 2. Generation (1959-1964)
  Basierend auf Transistoren und gedruckten
  Schaltkreisen
- 3. Generation (1964-1972)
  Basierend auf ersten Integrierten Schaltkreisen (IC)
  IBM System/360 und DEC PDP-Serie
- 4. Generation (1972-)
  Basierend auf hochintegrierten Schaltungen (LSI)
  Xerox Alto, Cray-1, Altair, Apple, etc.

# Klassifizierung der Computertypen

Großrechner (Mainframe)
 Timesharing/BATCH-Systeme, hohe I/O-Leistung
Supercomputer
 Komplexe Rechenoperationen im RAM-Speicher
Minicomputer (Workstation)
 Mehrbenutzerrechner, heutige UNIX-Systeme
Microcomputer (Personal Computer)
 Arbeitsplatzrechner, heutige Windows-Systeme
Appliances
 Dedizierte Systeme für spezielle Aufgaben

#### Voraussetzungen für Betriebssysteme (I)

### Mathematische Grundlagen

Einfluss der Mathematik auf die aktuelle Architektur der Hardware und Betriebssysteme

### Von Neumann Architektur

1679 Gottfried Leibnitz
Beschreibung des binären Zahlensystems
(Basis für alle Logikbausteine)

1936 Alan Turing
Beschreibung der sog. Turing-Maschine
(Berechenbarkeit, Statusübergänge)
Beweis der Nicht-Entscheidbarkeit des Halte-Problems

1945 John von Neumann Beschreibung der sog. Von-Neumann-Architektur (Rechenwerk, Steuereinheit, Speicher, I/O)

# **Quantum Computing**

#### Basierend auf Quantenmechanik

- Informationsbasis sind anstelle des Bit (0,1) die Qubits mit beliebigen Superpositionen zwischen 0 und 1
- Optionale Verschränkung mehrerer Qubits

1976 Roman Ingarden

Erste Versuche der Definition der Quanteninformatik

1994 Peter Shor

Definition eines probabilistischen Algorithmus zur Faktorisierung

1998 Stanford University, MIT

Erste minimale Prototypen von Quantum Computern

### Voraussetzungen für Betriebssysteme (II)

### Entwicklungsstufen der Hardware



Nutzung der Materialen ihren Zeit Kein Holz oder Eisen, aber Silizium

### Logikbausteine

```
1938 Erster Einsatz elektrischer Relais in Rechenanlagen
Zuse Z3 als erster vollständiger Relaisrechner
1947 Erfindung des Transistors
1958 Entwicklung der Integrierten Schaltkreise (IC)
Konzentration von Transistoren
1970 Erfindung der Speicherbausteine (RAM)
"Intel 1103" mit 1kBit Dynamischem RAM
1971 Erfindung des Mikroprozessors (CPU)
"Intel 4004" als 4 Bit CPU
```

# Integrationsdichte

Stetige Miniaturisierung der Integrierte Schaltkreise (IC)



Höhere Dichte von Verarbeitung und Datenspeicher

# Rechenwerk (CPU)

Rechenwerke mit größerem Adressraum

1971 4-Bit Prozessor (Intel) bis

1992 64-Bit Prozessor (DEC)

Entwicklung von verschiedenen Arten von Rechenwerken

Hauptprozessor (CPU)

Multicore-Prozessor

Co-Prozessoren (z.B. FPU oder GPU)

Digitale Signalprozessoren (DSP)

spezialisierte I/O-Prozessoren (z.B. SCSI)

Rechenwerke mit zusehends beschleunigter Taktrate Befehlszyklus (Fetch-Decode-Execute-Cycle)

### **Datenspeicher**

### Klassen von Speichermedien

Flüchtige Speicher (DRAM, SRAM)

Permanente Speicher (ROM, PROM)

Mechanische Speicher (Lochkarten, 1890)

"Ältere" Magnetische Speicher (Kern, Band, 1935)

"Moderne" Magnetische Speicher (Diskette, Festplatte, 1956)

Optische Speicher (CD, DVD, 1982)

### Zunehmende Integrationsdichte der Speichermedien

→ Erlaubt größere Datenmengen und Programme

Zunehmende Haltbarkeit der Speichermedien

→ Erlaubt Archivierung von Langzeitdaten

# Modularisierung

bis ca. 1975 Integration der Rechnerarchitektur Konzentration der Verarbeitungslogik Rechenwerk (CPU) als einziges Steuerelement

ab ca. 1975 Modularisierung (S-100-Bus im Altair 8800)
Dezentralisierung der Aufgaben
Interaktion mehrerer Steuerelemente
Dedizierte Grafikprozessoren
Dedizierte Hardware für Datenspeicherung

### Voraussetzungen für Betriebssysteme (III)

### Entwicklung von Eingabesystemen



Eingabe über Schalter, Text-Terminals bis zu graphischen Systemen

### Lochkarten und Schalter

- 1805 Lochstreifen zur Steuerung von mechanischen Webstühlen (Joseph-Marie Jaquard)
- 1833 Analytische Rechenmaschine mit Lochkartensteuerung (Charles Babbage)
- 1890 Lochkartenmaschinen zur US Volkszählung (Herman Hollerith)
- 1928 Standardisierung des Lochkartenformats
- 1941 Kippschalter und Verkabelung zur "Programmierung" bei allen frühen Rechnern (Z3)

Schalter sind bis heute gebräuchlich zur Konfiguration der Hardware

### Tastaturen zur Eingabe

Einzelne mechanische Tasten zur Eingabe (ab 1940)
Fernschreiber (ab ca. 1955)
mit mechanischen Schreibmaschinentastaturen
Elektronische Tasten
Tastaturen mit elektronischen Tasten
Fernschreiber mit Lochstreifen (ab ca. 1970)
Tastaturen als Bestandteil von Konsolen (ab ca. 1975)
Heimcomputer-Tastaturen (um 1980)
Standard-Tastaturen (IBM PC, ab 1980)

Ausgabe (Kontrolle und Ergebnis)
über Leuchten, Segmentanzeigen bis zu Röhren
über Lochstreifen oder Magnetstreifen

# **Terminalsysteme**

Eingabesysteme mit Tastatur und Bildschirm:

Fernschreiber

1965 Teletype ASR33 (ursprünglich für Telex)

**Textterminals** 

1970 DEC VT05 Terminals (Zeichensatz ASCII)

1972 IBM 3270 Terminals (Zeichensatz EBCDIC)

1975 Hewlett-Packard 2640A (inkl. Bandlaufwerk)

Terminals (und Terminalserver) etablierten sich als dedizierte Rechner für Supercomputer im Mehrbenutzerbetrieb

Terminal-Emulationen sind bis heute gebräuchlich als Eingabefenster und Systemkonsolen

### **Grafikterminals**

Grafikterminals

1975 Tektronix TEK 4015 (Vektorgrafiken)

Grafiksysteme

1973 Xerox Alto Minicomputer

1983 Apple Lisa Desktopcomputer

1984 X-Windows (MIT Project Athena) Software

1990 (ca.) Dedizierte X-Server (Langsame CPU)

Die Grafiksoftware X11 wird heutzutage auf nahezu allen Workstations und Desktops eingesetzt, die Ausnahme bildet Microsoft Windows.

#### **Bestandteile von Betriebssystemen (I)**

# System-/ Ressourcenverwaltung



Die Hauptaufgabe eines Betriebssystems Verwaltung der Ressourcen und deren Verteilung

# **Hardware-Interaktion (BIOS)**

Aufgrund der Modularisierung entstand frühzeitig eine breite Palette an verschiedenen Peripherie-Geräten.

Betriebssysteme benötigen daher

- Hilfsmittel zum initialen Laden des Betriebssystems
- Allgemeine Schnittstelle zur Interaktion mit der Hardware
- Hilfsmittel zur Lokalisierung und zum Aufruf weiterer Hardware
- Hilfsmittel zur Initialisierung der Hardware

Manche Betriebssysteme laden die Software zur Ansteuerung der Hardware als spezifische "Treiber" selbst nach.

# Speicherverwaltung

Verschiedene Modelle der Speicherverwaltung sind bis heute im Einsatz:

- Direkte Speicherverwaltung
   Prozess hat exklusiven Zugriff auf den Speicher
   Prozess kann den physikalischen Speicher direkt adressieren
- Segmentierung (später Paged Segmentation)
   Aufteilung des Speichers in feste Segmente
   Zuteilung ganzer Segmente zum Prozess
- Virtuelle Speicherverwaltung
  Abbildung von virtuellem auf physikalischen Speicher → MMU
  Arbeitsspeicher ist nicht auf physikalischen Speicher beschränkt
  Speicherbereiche der Prozesse können geschützt werden
  Auslagerung (Paging) ungenutzter Speicherbereiche

### **Prozesse und Multitasking**

Verschiedene Modelle der Abarbeitung von Programmen sind möglich:

- Single Tasking
   Das Betriebssystem verarbeitet im genau ein einzelnes Programm
- Kooperatives Multitasking
   Das Betriebssystem erlaubt die Abarbeitung mehrerer Programme die "kooperativ" die Ablaufkontrolle zurückgeben
- Präemptives Multitasking
   Das Betriebssystem erlaubt mehrere Prozesse und verwaltet die Ablaufkontrolle selbst (→ Scheduler)
- Threads
   Eine Erweiterung des Prozessmodells, das mehrere Threads pro Prozess mit gleichem Speicher (d.h. Programm) erlaubt

### **Benutzer und Rechte**

Bereits im Single Tasking Betrieb auf Großrechnern (BATCH) musste zwischen unterschiedliche Benutzern unterschieden werden:

- Benutzer zur Systemverwaltung
   Vollständiger Zugriff auf die Systemressourcen
- Normale Benutzer
   Zugriff nur auf die Programme und Daten des Benutzers
- Benutzergruppen Gemeinsame Nutzung von Programmen und Daten

Benutzerrechte umfassen u.a. Mechanismen des Dateischutzes, des Speicherschutzes, aber auch der Abgrenzung von speziellen Ressourcen gegenüber anderen Benutzern.

### Bestandteile von Betriebssystemen (II)

### **Dateiverwaltung**



Speicherung von Daten
Handhabung von Dateien und Dateisystemen

# Dateisysteme (I)

Datenorganisation von Massenspeichern (Festplatten, CD-ROM, ...)

- Blockorientiert in Größen von 2<sup>n</sup> Byte (z.B. 512, 2048, 4096)
- Datenzuordnung
  - Referenz auf Start und Länge einer Datei Dateien sind physikalisch sequentiell abgelegt
  - Referenz auf Start einer Datei, Verkettung der Folgeblöcke Dateien sind als verkettete Liste von Blöcken abgelegt
  - Freie Zuordnung der Blöcke zu einer Datei Dateiorganisation wird in einer zentralen Tabelle verwaltet
- Zusatzattribute (Dateiname, Zugriffsrechte, ...)
- Dateistrukturattribute (RMS)

# **Dateisysteme (II)**

#### Verschiedene grundlegende Typen von Dateisystemen

- Lineare Dateisysteme
   Früher auf Lochbändern, heute auf Magnetband (BACKUP)
- Hierarchische Dateisysteme
  - Ohne Unterverzeichnisse (z.B. CP/M)
  - Mit Unterverzeichnissen (z.B. DOS, Unix)
- Netzwerkdateisysteme
   Nutzung von Netzwerkprotokollen zur Zentralisierung von Daten
- Virtuelle Dateisysteme
   Vereinheitlichung von Zugriffen (z.B. Speicher, Prozesse)

### **Moderne Dateisysteme**

#### Zusätzliche Funktionen moderner Dateisysteme

- Hard Links und Symbolic Links
- Journaling (Metadaten- bzw. Full-Journaling)
   XFS (SGI), reiserFS, ext3 (Linux), FFS (BSD), NTFS, ODS-2
- File system encryption NTFS (Microsoft)
- Änderungsprotokollierung (File Change Log) ODS-2 (DEC), NTFS
- Atomare Transaktionen reiserFS, NTFS, ODS-2

### Bestandteile von Betriebssystemen (III)

### Visualisierung



Interaktion mit dem Benutzer Optische Aufbereitung von Informationen

# **Textbasierte Systeme**

Die Ausgabe von Operationen und Ergebnissen war stets durch die technischen Möglichkeiten der Ausgabegeräte geprägt:

Großrechner und Supercomputer (bis ca. 1985)

- Systeme ausschließlich mit Textterminals (TN3270, VT52, o.ä.)
- Blockorientierte I/O-Masken (IBM Großrechner)
- Zeilenorientierte Eingaben (Unix und VMS)
- Bildschirmmasken und Layout in Abhängigkeit der Terminals

Minicomputer (Workstations) und Microcomputer (bis ca. 1985)

- CP/M emuliert ein VT100 Textterminal für die Darstellung
- DOS und Heimcomputer arbeiten textbasiert

## **Grafikbasierte Systeme**

Bearbeitung mehrerer paralleler Prozesse in einer grafischen Umgebung in Anlehnung an den physikalischen Schreibtisch:

Seit 1984 bis heute – Modulares System X11 mit getrennter Visualisierung, Präsentation und grafischen Anwendungen

→ Auf nahezu allen Unix-Systemen im Einsatz

Ab 1985 – Verschiedene "GUI" Systeme auf Microcomputern mit teilweise modularem, teilweise monolithischem Aufbau

- → GEOS, GEM, Amiga Workbench, OS/2
- → Microsoft Windows

#### Bestandteile von Betriebssystemen (IV)

### Vernetzung



Interaktion mit anderen Systemen Vernetzung von Rechnern und Aufgaben

### **Netzwerk Architekturen**

#### Netzwerk Architekturen:

- Standalone Rechner
- Peer-to-Peer Netze
- Broadcast Netze
- Routing Netze

### Diverse Netzwerk Topologien:

- u.a. Bus, Baum, Netz

#### Physikalische Schichten:

- Ethernet
- Token Ring
- FDDI
- X.25 bzw. X.29

## **Netzwerk Protokolle (I)**

1974 Systems Network Architecture SNA Proprietäres Protokoll entwickelt von IBM Netzwerk mit Routing und "NCP"-Knoten

1980 Internetwork Packet Exchange IPX/SPX Entwickelt für Novell NetWare Netzwerk mit Routing ähnlich TCP/IP

1983 Network Basic Input/Output System NetBIOS Entwickelt für IBM Microcomputer (PC) Netzwerke NetBEUI mit Broadcast, genutzt für Microsoft Windows

## **Netzwerk Protokolle (II)**

1972 Transmission Control Protocol / Internet Protocol TCP/IP Protokoll ging aus dem ARPAnet hervor Breite Palette von Implementierungen und Anwendungen

1975 DIGITAL Network Architecture (DNA) DECnet Proprietäres Protokoll entwickelt von DIGITAL DECnet mit Broadcast, hauptsächlich von VMS genutzt

1984 AppleTalk Proprietäres Protokoll entwickelt von Apple Computer

1994 IPv6 bzw. IPng Nachfolger der TCP/IP Protokollwelt

#### Bestandteile von Betriebssystemen (V)

## **Programmierung**

```
Source Lines Disassembly PCs Timeline LeakList Statistics
       Source File: jsynprog.java
       Object File: jsymprog
Load Object: <JAVA CLASSES>
(sec.)
                    recTime();
                    Double nd = new Double((new Routine()).add double());
                    printValue("Routine.add double",nd);
                    /* call method in derived class */
                    recTime():
                    ni = new Integer ((new Sub Routine()).add int());
                    printValue("Sub Routine.add int",ni);
                    /* call method that defines an inner class */
                    Integer[] na = (new Routine()).has inner class();
                    printValue("Routine.has inner class",na[1]);
                    /* recursion */
                    recTime();
1.721
                    (new Routine()).recurse(0,80);
0.010
                    printValue("Routine.recurse", null);
```

Entwicklung und Programmierung Programmiersprachen und Werkzeuge

# **Historische Entwicklung (I)**

```
Programmiersprachen entstehen parallel zur ersten Computer-Generation:
```

1942 Plankalkül von Konrad Zuse (theoretischer Ansatz)

1954 FORTRAN (prozedural)

1958 ALGOL (prozedural, erste blockstrukturierte Sprache)

1959 LISP (regelbasiert)

1960 COBOL (prozedural)

1964 PL/1 (prozedural)

1965 BASIC (prozedural)

1971 PASCAL (prozedural)

1972 Smalltalk (erste vollständig objektorientierte Sprache)

1972 C (prozedural)

1975 Prolog (regelbasiert)

1983 C++ (objektorientiert)

1987 SQL (erste spezialisierte Datenbanksprache)

1995 Java (objektorientiert)

# Historische Entwicklung (II)



## Systemprogrammiersprachen

#### Assemblersprachen

- Lesbare Form der Maschinensprache eines Prozessors
- Die ersten Betriebssysteme geschrieben wurden in Assembler geschrieben
- Systemtreiber und Hardware-Unterstützung wird bis heute teilweise in Assembler realisiert

#### Programmiersprache C

- Sprachabstraktion zur Assemblersprache (Sprachkonstrukte ähneln dem Assembler der PDP-Serie)
- Sprachkonzepte orientieren sich an ALGOL, BCPL und B
- Entworfen für die Programmierung des Systemkerns von UNIX
- Zahlreiche spätere Sprachen orientieren sich an der Syntax von C

## Anwendungsprogrammierung

#### Programmiersprache FORTRAN

- Erste tatsächlich umgesetzte höhere Programmiersprache
- Bevorzugt im Einsatz für numerische Berechnungen
- Optimiert für mathematische Berechnungen

#### Programmiersprache COBOL

- Bevorzugt im Einsatz für betriebswirtschaftliche Programme
- Optimiert für die Behandlung großer Datenmengen

#### Programmiersprache JAVA

- Ubersetzte Programme (Bytecode) lauffähig auf verschiedenen Plattformen
- Objektorientiert mit Optimierung auf Vernetzung und "Web"

## Betriebssysteme



Überblick über historische und aktuelle Betriebssysteme und ihren alltäglichen Einsatz

# Historische Entwicklung (I)

Die Betriebssysteme entwickelten sich in mehreren Zyklen, die sich grob klassifizieren lassen:

- Großrechnersysteme
   Betriebssysteme von IBM, DIGITAL, CDC, Siemens
- Minicomputer und der Aufstieg von UNIX Entwicklung einer Vielzahl von UNIX Derivaten
- Microcomputer und 8-Bit-Heimcomputer
   Entwicklung einer Vielzahl von Spielkonsolen
- Microcomputer als Desktopsysteme (PC)
   Betriebssysteme wie Apple MacOS und MS-DOS

# Historische Entwicklung (II)

Grafische Übersicht der Abhängigkeiten und zeitlichen Verläufe der Vielzahl von UNIX Derivaten.

Grafik:
BSD Familie in ROT
System V Familie in BLAU



# Gruppe der Betriebssysteme für Großrechner (Mainframes)

Erste Betriebssysteme wurden auf Mainframes entwickelt, u.a.:

```
International Business Machines Corp. (IBM)
OS/360
VM/CMS
MVS
Siemens AG und Fujitsu Corp.
BS 1000, BS 2000
Digital Equipment Corp. (DEC)
TOPS-10, TOPS-20
RSX-11M
VAX/VMS
```

# Großrechnersystem OS/360

| Entwicklung    | 1965 bis 1972 (IBM)                                                                                   |
|----------------|-------------------------------------------------------------------------------------------------------|
| Vorgänger      | _                                                                                                     |
| Plattformen    | IBM S/360 und Nachfolger                                                                              |
| Dateisysteme   | DASD (proprietär)                                                                                     |
| Visualisierung | Fernschreiber und Textterminals                                                                       |
| Netzwerke      | (keine)                                                                                               |
| Besonderheiten | -Erstes System mit Festplatten-Voraussetzung<br>-Adressierung mit 24 Bit<br>-Anfangs "Single Tasking" |

# **Großrechnersystem VM/CMS**

| Entwicklung    | 1966 bis ca. 2000 (IBM)                  |
|----------------|------------------------------------------|
| Vorgänger      | OS/360                                   |
| Plattformen    | IBM S/360 und Nachfolger                 |
| Dateisysteme   | NSS (proprietär)                         |
| Visualisierung | Textterminals 3270                       |
| Netzwerke      | SNA (BITNET), später auch TCP/IP         |
| Besonderheiten | -Erste Umgebung als "Virtuelle Maschine" |

# **Großrechnersystem MVS**

| Entwicklung    | 1975 bis ca. 2000 (IBM)                                  |
|----------------|----------------------------------------------------------|
| Vorgänger      | OS/360                                                   |
| Plattformen    | IBM S/370, S/390 und Nachfolger                          |
| Dateisysteme   | RACF (proprietär)                                        |
| Visualisierung | Textterminals 3270                                       |
| Netzwerke      | SNA (BITNET), später auch TCP/IP                         |
| Besonderheiten | -Zeichenkodierung EBCDIC -Adressierung in 24-/31-/64-Bit |

# **Großrechnersystem BS 2000**

| Entwicklung    | 1974 bis heute (Fujitsu Siemens)                                                                                             |
|----------------|------------------------------------------------------------------------------------------------------------------------------|
| Vorgänger      | BS 1000                                                                                                                      |
| Plattformen    | IBM S/390, SPARC, Intel Itanium (geplant)                                                                                    |
| Dateisysteme   | RACF, später auch diverse UNIX Dateisysteme                                                                                  |
| Visualisierung | Textterminals                                                                                                                |
| Netzwerke      | SNA (BITNET), später auch TCP/IP                                                                                             |
| Besonderheiten | -Zeichenkodierung EBCDIC<br>-Systematische Integration von UNIX Befehlen<br>-Dateisystem erlaubte Per-File-Authentifizierung |

# **Großrechnersystem TOPS-10/-20**

| Entwicklung    | 1969 bis ca. 1975 (DIGITAL)                                                            |
|----------------|----------------------------------------------------------------------------------------|
| Vorgänger      | _                                                                                      |
| Plattformen    | PDP-10 Systeme                                                                         |
| Dateisysteme   | Files-11 (proprietär)                                                                  |
| Visualisierung | Textterminals VT                                                                       |
| Netzwerke      | TCP/IP (ARPA)                                                                          |
| Besonderheiten | -Adressierung auf 18 Bit<br>-Virtueller Adressraum<br>-Trennung von Programm und Daten |

# **Großrechnersystem VMS**

| Entwicklung    | 1975 bis heute (DIGITAL, Hewlett-Packard)                         |
|----------------|-------------------------------------------------------------------|
| Vorgänger      | RSX-11M, TOPS-20                                                  |
| Plattformen    | PDP, VAX, Alpha AXP, Intel Itanium                                |
| Dateisysteme   | Files-11, ODS-2                                                   |
| Visualisierung | Textterminals VT, Grafikbetrieb X11                               |
| Netzwerke      | DECnet, TCP/IP, diverse weitere Emulationen                       |
| Besonderheiten | -Enges Clustering -Integrales Security Konzept -Echtzeitfähigkeit |

# Betriebssystemfamilie System V UNIX

Die Familie der Betriebssysteme, die auf der Basis des UNIX Timesharing System III und System V entwickelt wurden, u.a.:

```
Silicon Graphics Inc. (SGI)
IRIX
Hewlett-Packard (HP)
HP-UX
International Business Machines Corp. (IBM)
AIX
```

Berkeley Software Distribution (BSD) greift auf System III zurück.

# Workstationsystem UNIX (IRIX)

| Entwicklung    | 1982 bis heute (Silicon Graphics SGI)                                 |
|----------------|-----------------------------------------------------------------------|
| Vorgänger      | System V                                                              |
| Plattformen    | MIPS (32 und 64 Bit)                                                  |
| Dateisysteme   | XFS                                                                   |
| Visualisierung | Grafikbetrieb X11, X-Server                                           |
| Netzwerke      | TCP/IP                                                                |
| Besonderheiten | -Starke Unterstützung von Journaling<br>-Visualisierung mit 3D Grafik |

# Workstationsystem UNIX (HP-UX)

| Entwicklung    | 1983 bis heute (Hewlett-Packard)                                                   |
|----------------|------------------------------------------------------------------------------------|
| Vorgänger      | System V                                                                           |
| Plattformen    | HPA RISC, Intel Itanium                                                            |
| Dateisysteme   | VXFS, HFS, diverse Unix Dateisysteme                                               |
| Visualisierung | Textterminals, Grafikbetrieb X11, X-Server                                         |
| Netzwerke      | TCP/IP                                                                             |
| Besonderheiten | -Anfangs lief der HP-UX Kern in einer Emulation<br>-Initial auf System V basierend |

# Workstationsystem UNIX (AIX)

| Entwicklung    | 1986 bis 2004 (IBM)                                                  |
|----------------|----------------------------------------------------------------------|
| Vorgänger      | System V                                                             |
| Plattformen    | Diverse (von i386 bis IBM S/390)                                     |
| Dateisysteme   | JFS, JFS2, diverse Unix Dateisysteme                                 |
| Visualisierung | Grafikbetrieb X11, X-Server                                          |
| Netzwerke      | TCP/IP                                                               |
| Besonderheiten | -Breite Auswahl and Plattformen -Erstes Dateisystem bis 16 Tetrabyte |

# Betriebssystemfamilie BSD UNIX

Die Familie der Betriebssysteme, die auf der Basis der Berkeley Software Distribution (BSD) UNIX entwickelt wurden, u.a.:

```
Sun Microsystems Inc. (SUN)
SunOS bzw. Sun Solaris
Digital Equipment Corp. (DEC)
ULTRIX
OSF/1
Public Domain Entwicklungen
NetBSD, openBSD und FreeBSD
```

# Workstationsystem UNIX (Sun)

| Entwicklung    | 1982 bis heute (Sun Microsystems)                                                  |
|----------------|------------------------------------------------------------------------------------|
| Vorgänger      | BSD                                                                                |
| Plattformen    | 68000, SPARC, i386, Intel Itanium                                                  |
| Dateisysteme   | UFS, ZFS, EXT2, diverse Unix Dateisysteme                                          |
| Visualisierung | Grafikbetrieb X11, X-Server, OpenWindows                                           |
| Netzwerke      | TCP/IP                                                                             |
| Besonderheiten | -SunOS bis 4.1.4, ab dann Sun Solaris<br>-Basis für UNIX System V Release 4 (SVR4) |

# **Workstationsystem ULTRIX**

| Entwicklung    | 1984 bis 1995 (DIGITAL)                                                |
|----------------|------------------------------------------------------------------------|
| Vorgänger      | BSD                                                                    |
| Plattformen    | PDP, VAX, MIPS                                                         |
| Dateisysteme   | UFS, diverse Unix Dateisysteme                                         |
| Visualisierung | Textterminals, Grafikbetrieb X11, X-Server                             |
| Netzwerke      | TCP/IP, DECnet                                                         |
| Besonderheiten | -Basierend auf BSD und System V<br>-Frühe Multiprozessor Unterstützung |

# Workstationsystem UNIX (OSF/1)

| Entwicklung    | 1991 bis 2005 (DIGITAL, IBM, Hewlett-Packard)                                             |
|----------------|-------------------------------------------------------------------------------------------|
| Vorgänger      | BSD, MACH, ULTRIX                                                                         |
| Plattformen    | MIPS, Alpha AXP, HPA RISC                                                                 |
| Dateisysteme   | UFS, EXT2, diverse Unix Dateisysteme                                                      |
| Visualisierung | Textterminals, Grafikbetrieb X11, X-Server                                                |
| Netzwerke      | TCP/IP, diverse weitere Emulationen                                                       |
| Besonderheiten | -Erste Microkernel Implementierung (MACH) -Erste Implementierung verteilter Systeme (DCE) |

# Workstationsystem "BSD"

| Entwicklung    | 1993 bis heute (Public Domain Entwickler)                                                                |
|----------------|----------------------------------------------------------------------------------------------------------|
| Vorgänger      | BSD                                                                                                      |
| Plattformen    | Diverse (von i386 bis Intel Itanium)                                                                     |
| Dateisysteme   | UFS2, EXT2, diverse Unix Dateisysteme                                                                    |
| Visualisierung | Textterminals, Grafikbetrieb X11, X-Server                                                               |
| Netzwerke      | TCP/IP                                                                                                   |
| Besonderheiten | -Sammlung von NetBSD, openBSD, FreeBSD -Netzwerkschicht ist TCP/IP Referenz -Große Zahl an Applikationen |

# Gruppe der experimentellen Betriebssysteme

Experimentelle Betriebssysteme sind als Testumgebung für neue Architekturen und Methoden meist im Forschungsumfeld entwickelt.

AMOEBA ist ein verteiltes Betriebssystem

MACH ist der Prototyp des Microkernel

MINIX ist eine Architektur entworfen für Lehrzwecke

RTOS-UH ist ein Vertreter der Echtzeitbetriebssysteme

# **Experimentalsystem AMOEBA**

| Entwicklung    | 1984 bis 2001 (Andrew S. Tanenbaum)                                                                          |
|----------------|--------------------------------------------------------------------------------------------------------------|
| Vorgänger      | _                                                                                                            |
| Plattformen    | Diverse (u.a. i386, SPARC)                                                                                   |
| Dateisysteme   | Bullet Server, NFS                                                                                           |
| Visualisierung | Grafikbetrieb X11, X-Server                                                                                  |
| Netzwerke      | TCP/IP                                                                                                       |
| Besonderheiten | -Verteiltes Betriebssystem (Netzwerk) -Objektorientierter Ressourcen-Ansatz -Ressourcenzuteilung "On Demand" |

## **Echtzeitbetriebssystem RTOS-UH**

| Entwicklung    | 1984 bis heute (Universität Hannover)                                                                                                 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Vorgänger      | _                                                                                                                                     |
| Plattformen    | PowerPC, 68000                                                                                                                        |
| Dateisysteme   | FAT, FAT32, NFS                                                                                                                       |
| Visualisierung | Textterminals                                                                                                                         |
| Netzwerke      | TCP/IP                                                                                                                                |
| Besonderheiten | -Prioritäten und präemptives Multitasking<br>-Garantierte Reaktionszeiten auf Ereignisse<br>-Diverse Bussysteme (VME, CAN, Profibus,) |

# **Experimentalsystem MACH**

| Entwicklung    | 1985 bis 1994 (Carnegie Mellon Univ.)                         |
|----------------|---------------------------------------------------------------|
| Vorgänger      | CMU Accent Kernel                                             |
| Plattformen    | Diverse (u.a. VAX, SPARC, i386)                               |
| Dateisysteme   | (keine, Dateisystem außerhalb des Kernel)                     |
| Visualisierung | (keine, Kernel nicht abhängig von Visualisierung)             |
| Netzwerke      | TCP/IP                                                        |
| Besonderheiten | -Erste Microkernel Architektur<br>-Abstraktion von Ressourcen |

# **Experimentalsystem MINIX**

| Entwicklung    | 1987 bis heute (Andrew S. Tanenbaum)                                              |
|----------------|-----------------------------------------------------------------------------------|
| Vorgänger      | _                                                                                 |
| Plattformen    | Diverse (u.a. 68000, i386, SPARC)                                                 |
| Dateisysteme   | MINIX Dateisystem                                                                 |
| Visualisierung | Textterminals, Grafikbetrieb X11, X-Server                                        |
| Netzwerke      | TCP/IP                                                                            |
| Besonderheiten | -Design "from scratch" -Microkernel Architektur -Systemarchitektur für Lehrzwecke |

# Gruppe der Betriebssysteme für Desktoprechner (Microcomputer)

Die Entwicklung der Desktoprechner umfasst die beiden Entwicklungsstufen:

Textbasierte Systeme
 CP/M
 "BASIC" als Sammelbegriff für Heimcomputer MS-DOS

 Grafikbasierte Systeme "GEM" und "GEOS" als Sammelbegriff für Heimcomputer OS/2 MS Windows bis Windows NT/XP Linux

Heimcomputersysteme werden inzwischen oft als Virtuelle Maschine emuliert.

# **Desktopsystem CP/M**

| Entwicklung    | 1974 bis 1988 (Digital Research Inc.)                                                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------|
| Vorgänger      | _                                                                                                                  |
| Plattformen    | u.a. Intel 8080, Z80, 68000                                                                                        |
| Dateisysteme   | (kein einheitliches Dateisystem)                                                                                   |
| Visualisierung | Fernschreiber, Textterminals                                                                                       |
| Netzwerke      | (keine)                                                                                                            |
| Besonderheiten | -Plattform-unabhängiges Betriebssystem -Modularer hierarchischer Aufbau -Nachfolger DR-DOS in Konkurrenz zu MS-DOS |

# Desktopsystem "BASIC"

| Entwicklung    | 1977 bis ca. 1990 (Acorn, Apple, Atari, Commodore, Amstrad, Sinclair, TRS, etc.)                                         |
|----------------|--------------------------------------------------------------------------------------------------------------------------|
| Vorgänger      | _                                                                                                                        |
| Plattformen    | 6502, Z80, 6809 (8 und 16 Bit)                                                                                           |
| Dateisysteme   | (Abhängig vom Heimcomputer)                                                                                              |
| Visualisierung | Textkonsole, vereinzelt Grafikkonsole                                                                                    |
| Netzwerke      | (keine)                                                                                                                  |
| Besonderheiten | -Erste Vertreter Apple II und Commodore PET -Vielzahl von individuellen Konsolen -Hauptsächlich als Spielkonsole genutzt |

# **Desktopsystem MS-DOS**

| Entwicklung    | 1980 bis 1999 (Microsoft)                                                                |
|----------------|------------------------------------------------------------------------------------------|
| Vorgänger      | -                                                                                        |
| Plattformen    | Intel 80x86, i386                                                                        |
| Dateisysteme   | FAT, später FAT32                                                                        |
| Visualisierung | Textterminals, Microsoft Windows                                                         |
| Netzwerke      | IPX/SPX, NetBIOS, u.a.                                                                   |
| Besonderheiten | -Abwärtskompatibilität der Intel Prozessoren<br>-Begrenzung von Speicher und Massendaten |

## **Desktopsystem MS Windows**

| Entwicklung    | 1985 bis 2004 (Microsoft)                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Vorgänger      | MS-DOS                                                                                                                          |
| Plattformen    | i386                                                                                                                            |
| Dateisysteme   | FAT, später FAT32                                                                                                               |
| Visualisierung | Microsoft Windows                                                                                                               |
| Netzwerke      | NetBIOS, TCP/IP, u.a.                                                                                                           |
| Besonderheiten | -Zusammenfassung Windows 3.x, 95, 98, ME<br>-Anfangs nur kooperatives Multitasking<br>-Eingeschränktes präemptives Multitasking |

# Desktopsystem "GEM"

| Entwicklung    | 1985 bis 1989 (Digital Research Inc.)                          |
|----------------|----------------------------------------------------------------|
| Vorgänger      | CP/M                                                           |
| Plattformen    | Intel 8088, Motorola 68000                                     |
| Dateisysteme   | (abhängig von der Implementierung)                             |
| Visualisierung | GEM Desktop                                                    |
| Netzwerke      | (keine)                                                        |
| Besonderheiten | -Atari ST TOS basiert auf GEM -ViewMax erweitert DR-DOS um GEM |

# Desktopsystem "GEOS"

| Entwicklung    | 1986 bis 2004 (Berkeley Softworks)                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Vorgänger      | keine (8 Bit) bzw. MS-DOS (16 Bit)                                                                                                        |
| Plattformen    | 6502 (8 Bit) bzw. Intel 80x86 (16 Bit)                                                                                                    |
| Dateisysteme   | (Abhängig vom Heimcomputer) bzw. FAT                                                                                                      |
| Visualisierung | GEOS User Interface                                                                                                                       |
| Netzwerke      | (keine)                                                                                                                                   |
| Besonderheiten | -GEOS (8 Bit) für Heimcomputer C64, Apple, etc.<br>-PC/GEOS (16 Bit) Version für IBM / MS-DOS<br>-Ausnutzung extrem begrenzter Ressourcen |

# **Desktopsystem OS/2**

| Entwicklung    | 1987 bis 2005 (IBM, Microsoft)                                                                                                        |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Vorgänger      | MS-DOS                                                                                                                                |
| Plattformen    | i386                                                                                                                                  |
| Dateisysteme   | HPFS (proprietär), JFS                                                                                                                |
| Visualisierung | Textterminal, Presentation Manager PM                                                                                                 |
| Netzwerke      | TCP/IP                                                                                                                                |
| Besonderheiten | -Erstes System mit präemptivem Multitasking<br>-Speicherschutz zwischen Prozessen<br>-Benutzeroberfläche vollständig objektorientiert |

# Desktopsystem "Linux"

| Entwicklung    | 1991 bis heute (u.a. GNU, Linus Torvalds)                   |
|----------------|-------------------------------------------------------------|
| Vorgänger      | MINIX                                                       |
| Plattformen    | Diverse (von i386 bis Intel Itanium)                        |
| Dateisysteme   | EXT2, reiserFS, diverse Unix Dateisysteme                   |
| Visualisierung | Textterminals, Grafikbetrieb X11, X-Server                  |
| Netzwerke      | TCP/IP                                                      |
| Besonderheiten | -Vielzahl an Distributionen<br>-Große Zahl an Applikationen |

## **Desktopsystem Windows NT/XP**

| Entwicklung    | 1994 bis heute (Microsoft)                                                        |
|----------------|-----------------------------------------------------------------------------------|
| Vorgänger      | Microsoft Windows, VMS                                                            |
| Plattformen    | I386, Alpha AXP                                                                   |
| Dateisysteme   | FAT32, NTFS, vereinzelte Unix Dateisysteme                                        |
| Visualisierung | Microsoft Windows                                                                 |
| Netzwerke      | TCP/IP                                                                            |
| Besonderheiten | -Quasi Monopol der Desktopsysteme<br>-Ebenfalls präemptives Multitasking (→ OS/2) |

## Nicht erwähnte Betriebssysteme

Aufgrund der Menge blieben u.a. folgende Systeme unerwähnt:

- XENIX / SCO Unix (System V UNIX)
- NeXTstep (BSD UNIX mit MACH Kernel)
- AmigaOS (Grafisches Heimsystem, ähnlich GEM)
- MacOS (Grafisches Heimsystem, inzwischen BSD)
- GNU Hurd (Experimentalsystem)
- CORBA (Experimentalsystem)
- MASPAR (Verteiltes System für Mehrprozessorrechner)