

Machine Learning

Abdelhak Mahmoudi <u>abdelhak.mahmoudi@um5.ac.ma</u>

2020

Content

- 1. The Big Picture
- 2. Supervised Learning
 - Linear Regression, Logistic Regression, Support Vector
 Machines, Trees, Random Forests, Boosting, Artificial Neural Networks

3. Unsupervised Learning

• Principal Component Analysis, K-means, Mean Shift

Abdelhak Mahmoudi

Unsupervised Learning

- Dimensionality Reduction
 - Principal Component Analysis (PCA)
- Clustering
 - K-Means
 - Mean-Shift

Dimensionality Reduction

- Curse of dimensionality (n >> m)
 - Data are at risk of being very sparse in high dimensional space
 - High risk of overfitting

Dimensionality Reduction

- Transforms feature space from n to k (k<n)
 - Some features are probably corelated (dependent)
 - Some features are almost constant
 - Transform but preserve the maximum of variance

Dimensionality Reduction

- Often
 - Not necessarily lead to better performance
 - Not the better way to address overfitting!
- **Always**
 - Speed up training
 - Allow data compression
 - Allow data exploration
 - Allow data visualization (DataViz)

 x_3

Maximum loss Less variance Minimum loss More variance

- Singular Value Decomposition (SVD) (very costly)
 - Parallelization: Incremental PCA (fast), Randomized PCA (faster)
- PCA assumes that the dataset is centered around the origin
- How many dimensions to preserve?
 - Reduce dimensions that add up to a sufficiently large portion of the explained variance (e.g., 99%)
- Kernel PCA (kPCA): use the kernel trick like SVM
- In practice, use kPCA to transform the feature space, then perform classification or regression or clustering.

- Hyper-Parameters Tuning
 - d: polynomial Kernel
 - γ : RBF kernel
 - k: Number of retained principal components
 - Etc.

Unsupervised Learning

- Dimensionality Reduction
 - Principal Component Analysis (PCA)
- Clustering
 - K-Means
 - Mean-Shift

K-Means

- Pick a number of clusters k
- Initialize centroids randomly
- Problem of local optima
 - Run K-means a lot of times
- Sensible to initial conditions
- Have to specify k!

Repeat until convergence:

Assign each example to the cluster of the nearest centroid Compute the mean in each cluster

Put the mean as the new centroid

Mean Shift

- Chose a radius r of the clusters
- Initialize centroids at each example
- No need to specify the number of clusters

For each example:

Repeat until convergence:

Compute the mean in its cluster with radius r Shift the cluster to the new mean centroid

Other Clustering methods

- Expectation Maximization (EM)
- Hierarchical Clustering
- Affinity Propagation (AP)
- Etc.