Finding the influential users in the Twitter network

HUSSAIN JAGIRDAR (17CS60R83)
NIKHIL AGARWAL (17CS60R70)
SHAH SMIT KETANKUMAR (17CS60R72)

MENTOR AYAN KUMAR BHOWMICK DR BIVAS MITRA

Content

- Problem Description
- Objective
- Progress Made
 - Data Collection
 - Methods Implemented
 - Evaluation Metrics
- Plan of action

Problem Description

Identifying Influential users

Need – identifying Influential users

- The viral marketing to maximize ROI (Return of Investment).
- Targeting the influential nodes to transfer information during epidemics and natural calamities.
- Search expertise/tweets recommendation
- Trust/information propagation.

Influence in Social Media

- Online communication is the new way to receive information
- Influence: the power or capacity of causing an effect in indirect or intangible ways.

- Can share messages of length up to 280 characters
- People can retweet too (a reposted or forwarded message)
- Causes information diffusion over the global follower network
- The final reach may depend on tweets posted by certain influential users

Objective

Finding the top influential users in a twitter network based on the static as well as temporal methodologies.

Comparative study of performance between these methods.

Data Collected

- Two publicly available tweet datasets
- Algeria and Egypt datasets connected to the Arab-Spring Movement
 - collection of tweets (tweet-ids) and users who posted them.

Dataset	#Tweets	#Retweets	#Cascades	#ActiveUsers	Maximum size of cascade
Algeria	65268	17269	5730	8814	980
Egypt	671417	188090	67539	13882	432

Dataset

```
tweet-id : user1 user2 user3 .. usern tweet-id : time1 time2 time3 .. timen

ABC : Smit Hussain Nikhil ABC : 10 21 41 ABC : 10 11 20 (Time interval)
```

Methods used to find static influential nodes

Degree Centrality

Page-rank Centrality

MCDWE score

Borda Count

K-truss decomposition

Degree Centrality

 Degree is a simple centrality measure that counts how many neighbors a node has.

 If the network is directed, we have two versions of the measure: in-degree is the number of in-coming links, or the number of predecessor nodes; out-degree is the number of out-going links, or the number of successor nodes.

Finding score for influential users through degree centrality

= number of edges directly connected to n

Page-rank Centrality

 PageRank works by counting the number and quality of connection to a user to determine a rough estimate of how important/influential the user is.

• The underlying assumption is that more important/influential users are likely to receive more links from other users.

MCDWE ranking

- A hybrid method which takes 3 factors into consideration:
 - Core Number of a node (i.e. diversity in different shells)
 - Degree of a node
 - Entropy (to calculate the dispersion of node v's friends in different cores.)

$$MCDWE(v) = \alpha Core(v) + \beta Degree(v) + \gamma Weighted _Entropy(v)$$

Entropy(v) =
$$-\sum_{i=0}^{Core_{max}} (p_i * \log_2 p_i)$$

$$p_i = \frac{\text{Count}(v' \text{s friends in core } i)}{\text{Degree}(v)}$$

Weighted
$$_Entropy(v) = -\sum_{i=0}^{Core_{max}} \frac{1}{(Core_{max} - Core_i + 1)} (p_i * log_2 p_i)$$

Borda Count

• Single score by considering multiple ranking lists.

- Different ranked list considered:
 - Page-Rank
 - Degree Centrality
 - MCDWE rank

Position	RankingList1	RankingList2	RankingList3
1 st Choice	Α	С	D
2 nd Choice	В	В	С
3 rd Choice	С	D	В
4 th Choice	D	Α	Α

Items	Borda Score
Α	(1/1)+(1/4)+(1/4)=1.5
В	(1/2)+(1/2)+(1/3)=1.33
С	(1/3)+(1/1)+(1/2) = 1.83
D	(1/4)+(1/3)+(1/1)=1.58

K-truss Decomposition

- Triangle based extension of a k-core decomposition.
- K-truss subgraph is the maximal subgraph where all edges belong to at least k-2 triangles

```
support(e) in H: #triangles e is in.k-truss of G: largest subgraph H, each edge in H has support > k-2 in H.
```

```
Algo: k-truss decompositon
while (edges != 0)
Loop: Number of edges reduced
Loop: Edge
If support(edge) < k-2
Remove edge
Edge score ← k - 1
k ← k + 1
```

Node(v) = max(edge_score(e))

Figure 2: A graph G and the k-classes of G $(2 \le k \le 5)$

Methods used to evaluate ranking methods.

Overlap between ranked lists

Average relative gain

Average gain based on exposure

Single/Multi Seed Simulation

Overlap between ranked lists

• Given the set of top-k static influencers in two lists T and S.

$$O = \frac{|\mathcal{T} \cap \mathcal{S}|}{k}$$

k=100	Degree Centrality	Page Rank	K-truss	Broda Count	MCDWE Score
Degree Centrality	1	0.9	0.34	0.76	0.74
Page Rank	0.9	1	0.29	0.73	0.54
K-truss	0.34	0.29	1	0.4	0.27
Broda Count	0.76	0.73	0.4	1	0.58
MCDWE Score	0.74	0.54	0.27	0.58	1

k=200	Degree Centrality	Page Rank	K-truss	Broda Count	MCDWE Score
Degree Centrality	1	0.895	0.505	0.72	0.455
Page Rank	0.895	1	0.435	0.68	0.43
K-truss	0.505	0.435	1	0.525	0.445
Broda Count	0.72	0.706667	0.525	1	0.555
MCDWE Score	0.455	0.43	0.445	0.555	1

k=300	Degree Centrality	Page Rank	K-truss	Broda Count	MCDWE Score
Degree Centrality	1	0.893333333	0.52	0.73	0.436666667
Page Rank	0.89333	1	0.46	0.68	0.41
K-truss	0.52	0.46	1	0.543333333	0.5
Broda Count	0.73	0.68	0.5433	1	0.593333333
MCDWE Score	0.43667	0.41	0.5	0.593333	1

Average Relative Gain

 Impact of the retweet of a specific user on the final size of a cascade.

$$\mathcal{R}_u = \frac{1}{N_u} \sum_{i=1}^{N_u} \frac{n_i - k_i}{k_i}$$

Toy Network

```
twt1 : B A D E G C F
twt2 : A B E
txt3 : C E A B
for node A
I(A)
      = ((7-2)/2 + (3-1)/1 + (4-3)/3) / 3
        = 1.61
       = ((7-1)/1 + (4-4)/4) / 2
I(B)
       = 3
I(E)
       = ((7-4)/4 + (3-3)/3 + (4-2)/2) / 3
        = 0.583
```

Average Relative Gain

 Impact of the retweet of a specific user on the final size of a cascade.

$$\mathcal{R}_u = \frac{1}{N_u} \sum_{i=1}^{N_u} \frac{n_i - k_i}{k_i}$$

Average Gain Based on Exposure.

 For a user u in a cascade C of size n, this metric measures the number of re-tweeters after u that were newly exposed to C due to retweet by u if C is the ith cascade in which u retweeted.

$$\mathcal{E}_u = \frac{1}{N_u} \sum_{i=1}^{N_u} \frac{a_i}{n_i}$$

Single-seed/ Multi-seed Simulation

Single Seed Simulation:

- Computes theoretical number of infected nodes in network
- Seed set contains only one node

Multiple seed simulation:

- Seed set consists multiple nodes
- For each node simulate single cascade acting as a seed node

Single-seed Simulation

Multi-seed Simulation

Temporal & Analysis (Part-2)

- Influential nodes discovery using temporal Data.
- Performance evaluation of temporal based method with structural based methods.

Why K-truss was not performing well for simulation

Degree Centrality 0.256 0.253 0.218 0.217 0.194 0.185 0.157 0.151 0.137	K-truss 0.012 0.065 0.037 0.017 0.023 0.019 0.018 0.016 0.021 0.068	Page-Rank 0.218 0.253 0.256 0.217 0.194 0.135 0.185 0.151 0.157 0.157	MCDWE 0.256 0.253 0.217 0.218 0.185 0.194 0.157 0.121 0.131
--	---	---	--

Why K-truss not in borda

Why K-truss not in borda

Temporal Influencer

Finding Influential nodes using the cascade information only. Study evolution of inter retweet intervals of cascade. Exploration pattern

$$T^{C} = (T_{0}^{C}, T_{1}^{C}, T_{2}^{\bar{C}}, ..., T_{n-1}^{C})$$

$$T_i^C = t_{i+1}^C - t_i^C$$

Peak Interval

```
Time interval cascade
XYZ : 10 11 20 15 19 5
mean = 13.33
std = 5.24
peak interval >= mean + (n * std)
               >= 13.33 + 5.24
               >= 18.58
peak intervals = {20,19} -> {3,5}
```

Potential Temporal Influencers

How to Rank these influencers?

Method A - Frequency of Retweets.

Method B - Frequency of Retweets at peak time.

Method C - Random selection of potential influencers.

Method A vs B

```
Retweets Cascades
A : u1 u2 u3 u4 u5
B : u3 u5 u2 u8 u10
C : u3 u6 u7 u1
D: u6 u4 u1 u2
E: u1 u2 u8
For user u2:
Frequency of Retweets
Frequency of Retweets at peak time
```

Results

- Comparison between different temporal methods.
- Comparison between different structural methods.
- Comparison between temporal and structural methods.
- Combining temporal and structural methods.

Best Structural Method: K-truss

Best Temporal Method: (mean + 3 * std)

Average Relative gain Temporal

Method A

Average Relative gain Temporal

Method B

Average Gain based on exposure Temporal

Method A

Average Gain based on exposure Temporal

Method B

Average Relative Gain

S - T => Only structural

T - S => Only temporal

Average Gain based on exposure

Single Seed Simulation

Correlation between

Ground truth - Average relative gain

Y - value - Value of method A and B

Correlation 0.011

Conclusion

- Temporal retweet pattern of cascades are cheaply and readily available.
- Provides a very fast method to detect influencers.
- Find a better quality of influencers in terms of defined metrics, etc.

References

- Madotto, A and Liu, J. Super-Spreader Identification Using Meta-Centrality. Sci. Rep. 6,38994; doi: 10.1038/srep38994 (2016).
- Amir Sheikhahmadi et al. Identification of multi-spreader users in social networks for viral marketing.
- Malliaros, F. D. et al. Locating influential nodes in complex networks. Sci. Rep. 6, 19307; doi: 10.1038/srep19307 (2016).
- Bhowmick A. [Identification of influential users in the network using temporal patterns of (re) tweet cascades combined with network topology] [Paper January 2018]
- Image references (Google Images)

Thank You!