1. Describe the working principle of a very simple CPU that can execute the following instructions.

Instruction	Instruction code	Operation
ADD	00AAAAA	AC←AC+M[AAAAA]
AND	01AAAAAA	AC←AC^M[AAAAAA]
JMP	10AAAAA	GO TO AAAAAA
INC	11XXXXXX	AC←AC+1

Draw the state diagram and explain how each instruction is executed.

- 2. Design the ALU that performs AC← AC+DR and AC← AC^DR
- 3. What is a microsequencer? Explain the control signals of a very simple CPU.
- 4. Explain the process of generating horizontal and vertical microcodes.
- 5. The instruction set of a very simple CPU is given as:

Instruction	Instruction code	Operation
COMP	00XXXXXX	AC←AC'
JREL	01AAAAAA	PC←PC+AAAAAA
OR	10AAAAAA	AC←AC V M[AAAAAA]
SUB	11AAAAAA	AC←AC-M[AAAAAA]-1

- a. Design and implement state diagram
- b. Design and implement register section and ALU
- c. Design and implement Hardwired control unit
- d. Design and implement microsequencer and control unit
- 6. Compare Hardwired control unit design and Microprogrammed control unit design.
- 7. Explain the shift add multiplication algorithm with an example. Also write down the RTL.
- 8. Trace the shift add algorithm for 10 X 6.
- 9. Trace the RTL code for shift add multiplication of 5 X 5.
- 10. Explain Booth's algorithm for multiplication of unsigned two's complement numbers with example.
- 11. Trace the RTL code of Booth's algorithm for the operations -5 X 4
- 12. Explain the Booth's algorithm for division with an example.