Lecture 2 Forward contracts

David Sovich
University of Kentucky
January 12, 2020

Chocolate and cocoa

- ▶ The price of a Hershey chocolate bar is stable.
- ▶ But have you seen the price of cocoa?
- How does Hershey avoid passing on volatility to consumers?

Cocoa price

► INSERT

Roadmap: the basics of forward contracts

- 1. Definitions
- 2. Payoffs
- 3. Application of forwards
- 4. Interest rates

Forward contracts

- ▶ A forward contract is an agreement to buy or sell an asset at a future date at a price specified today and called the forward price.
- A forward contract has two counterpaties:
 - The buyer (long) is obligated to pay the forward price.
 - The seller (short) is obligated to sell at the forward price.
- ► Typically, no money is exchanged when the contract is initiated. Contracts are usually cash-settled on the expiration date.

Forward contract timeline

► INSERT FIGURE. Communicate definitions of origination date (= today), expiration date (= tomorrow), price date agreed upon, etc.

Roadmap: the basics of forward contracts

1. Definitions

2. Payoffs

3. Application of forwards

4. Interest rates

Contract payoffs

- The payoff to a derivative security is the cash flow at expiration.
- ▶ The payoff X_T to a long forward contract is:

$$X_T = S_T - F_{0,T}$$

where:

T =expiration date in years.

0 = origination date (i.e., today).

 S_T = price of the underlying at date T.

 $F_{0,T}$ = forward price agreed upon at date 0 for date T.

Forward contract timeline

▶ INSERT FIGURE. ADD IN LABELS WITH THE NOTATION.

Practice problem #1

The spot price of cocoa today is $S_0 = \$2,500$ per metric ton. The one-year forward price for cocoa is $F_{0,1} = \$2,750$. A buyer and seller agree to enter a forward for one ton of cocoa.

- 1. If the spot price of cocoa in one year is $S_1 = \$2,600$, then what is the payoff to the long party? The short party? How much money is exchanged on the origination date?
- 2. Plot the payoff to the long forward as a function of S_1 . What is the minimum and maximum payoff?
- 3. Plot the payoff to the short forward as a function of S_1 . What is the minimum and maximum payoff?

Practice problem #1 solutions

1. The payoff to the long party is:

$$X_1 = S_1 - F_{0,1}$$

= 2,600 - 2,750
= -150

The payoff to the short party is:

$$-X_1 = F_{0,1} - S_1$$

= 150

No money is exchanged hands on the origination date.

Practice problem #1 solutions

Practice problem #1 solutions

Practice problem #1 solutions

Roadmap: the basics of forward contracts

- 1. Definitions
- 2. Payoffs
- 3. Applications of forwards
- 4. Interest rates

Application of forwards

- ► Two applications: Risk management and speculation.
- ▶ Risk management give the example.
- Speculation is because of the Ivereage.
- ▶ In our previous example, Hershey uses cocoa as an input in production. Hence, it has a natural short position in cocoa.
- On the other hand, farmers output cocoa and have natural long positions.
- ▶ A forward contract can be used to transfer risks between Hershey and cocoa farmers and capture certain surplus.

Roadmap: the basics of forward contracts

- 1. Definitions
- 2. Payoffs
- 3. Application of forwards
- 4. Interest rates

An aside on risk-free interest rates

- Throughout the semester, we will assume there is a single risk-free interest rate of $r \ge 0$.
- ▶ Risk-free cash flows should be discounted at the risk-free rate.
- ▶ The date 0 price of a risk-free payment of $B_T \ge 0$ at date T is:
 - Discretely compounded interest rate = $\frac{B_T}{(1+r)^{(T-t)}}$.
 - Continuously compounded interest rate = $B_T \cdot e^{-r(T-t)}$.

Practice problem #3

Suppose r = 0.05 and today is date t = 0. Compute the prices of the following securities assuming discrete compounding:

- 1. A risk-free security that pays \$1 at date T = 1.
- 2. A risk-free zero-coupon bond with a face value of \$100 and maturity of $\mathcal{T}=5$.
- A T = 3 year risk-free coupon bond with annual coupons of \$5 and face value of \$100.

Practice problem #3 solutions

- 1. The price is $1 \cdot (1+0.05)^{-1} = 0.952$.
- 2. The price is $100 \cdot (1+0.05)^{-5} = 78.353$.
- 3. The price is $\sum_{i=1}^{3} 5 \cdot (1+0.05)^{-i} + \$100 \cdot (1+0.05)^{-3} = \100 .

Practice problem #4

Suppose r = 0.05 and today is date t = 0. Compute the prices of the following securities assuming continuous compounding:

- 1. A risk-free security that pays \$1 at date T = 1.
- 2. A risk-free zero-coupon bond with a face value of \$100 and maturity of $\mathcal{T}=5$.
- A T = 3 year risk-free coupon bond with annual coupons of \$5 and face value of \$100.

Practice problem #3 solutions

- 1. The price is $1 \cdot e^{-0.05} = 0.951$.
- 2. The price is $$100 \cdot e^{-0.05 \cdot 5} = 77.88 .
- 3. The price is $\sum_{i=1}^{3} 5 \cdot e^{-0.05 \cdot i} + \$100 \cdot e^{-0.05 \cdot 3} = \99.43 .

Summary

- ▶ A forward contract is an agreement to buy or sell an asset at a future date at the forward price.
- ▶ Date T payoff of long forward originated at date 0:

$$X_T = S_T - F_{0,T}$$
.

- Forwards can be used to hedge input and output price risk.
- ▶ Date 0 price of date T risk-free \$1 payoff is $(1+r)^{-T}$ or e^{-rT} .

References

- ► Textbook chapters XXX, XXX, and XXX.
- Hershey chocolate article is in the Wall Street Journal.
- ► Cocoa prices are from Bloomberg screen XXX.
- Graphs are created using code on my Github.