Complex Numbers

Problem 3

(a) Find the real and imaginary parts of $(\sqrt{3}-i)^{10}$ and $(\sqrt{3}-i)^{-7}$. For which values of n is $(\sqrt{3}-i)^n$ real?

(b) What is \sqrt{i} ?

(a)

PART ONE: We can write $\sqrt{3} - i$ in the polar form: $2(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6})$. Then by De Moivre's Theorem, we can write $(\sqrt{3} - i)^{10}$ as $2^{10}(\cos\frac{5\pi}{3} - i\sin\frac{5\pi}{3})$ and simplifies to $2^9 + 2^9\sqrt{3}i$ in which the real part is 2^9 and the imaginary part is $2^9\sqrt{3}i$.

PART TWO: By De Moivre's Theorem, we can write $(\sqrt{3}-i)^{-7}$ as $2^{-7}(\cos\frac{-7\pi}{6}-i\sin\frac{-7\pi}{6})$ and simplifies to $-2^{-8}-2^{-8}\sqrt{3}i$ in which the real part is 2^{-8} and the imaginary part is $2^{-8}\sqrt{3}i$.

PART THREE: To rewrite $(\sqrt{3}-i)^n$ we have $2^n(\cos\frac{n\pi}{6}+i\sin\frac{n\pi}{6})$. If we want to the imaginary part to be gone, $\sin\frac{n\pi}{6}$ must be 0, and subsequently $\frac{n\pi}{6}$ must be a multiple of π , Therefore, n must be a multiple of 6.

(b) To rewrite the statement of the questions, we get to solve the following equation, in which the second root of unity are the solution to this question:

$$z^2 = i$$
$$z^2 = e^{\frac{\pi}{2}i}$$

Apparently $\alpha=e^{\frac{\pi}{4}i}$ is a second root of unity, and we have $(\alpha w)^2=\alpha^2=i$, so αw is also a second root of unity. In this case, $w=e^{\frac{2k\pi}{n}i}=e^{k\pi i}$ in which k=0,1. Now we plug in value of w and find the second root of unity $\alpha w=e^{\frac{\pi}{4}i}$ or $e^{\frac{5\pi}{4}i}$.

Problem 5 Let z be a non-zero complex number. Prove that the three cube roots of z are the corners of an equilateral triangle in the Argand diagram.

We can write the problem as following:

$$x^3 = z$$
$$x^3 = re^{i\theta}$$

In which we let $re^{i\theta}$ denote an arbitrary complex number. Now we can solve this. First find *alpha*, which is an apparent third root of unity to this equation, and then we will find w, which will serve to encapsulate all third root of unity:

$$\begin{split} \alpha &= r^{\frac{1}{3}}e^{\frac{1}{3}i\theta} \\ w &= e^{\frac{2k\pi}{n}i} = e^{\frac{2}{3}\pi i} \\ \alpha w^0 &= r^{\frac{1}{3}}e^{\frac{1}{3}\theta i} = r^{\frac{1}{3}}(\cos\frac{1}{3}\theta + i\sin\frac{1}{3}\theta) \\ \alpha w^1 &= r^{\frac{1}{3}}e^{(\frac{1}{3}\theta + \frac{2}{3}\pi)i} = r^{\frac{1}{3}}(\cos(\frac{1}{3}\theta + \frac{2}{3}\pi) + i\sin(\frac{1}{3}\theta + \frac{2}{3}\pi) \\ \alpha w^2 &= r^{\frac{1}{3}}e^{(\frac{1}{3}\theta + \frac{4}{3}\pi)i} = r^{\frac{1}{3}}(\cos(\frac{1}{3}\theta + \frac{4}{3}\pi) + i\sin(\frac{1}{3}\theta + \frac{4}{3}\pi)) \end{split}$$

Now we have all three points. Do a distance check between all pairs of two. And for sanity's sake, we will compare the square of their distances:

$$\begin{split} &d^2_{\alpha w^0 - \alpha w^2} = r^{\frac{2}{3}} (-2cos\frac{1}{3}\theta cos(\frac{1}{3}\theta + \frac{4}{3}\pi)) = -2r^{\frac{2}{3}}cos(\frac{4\pi}{3}) \\ &d^2_{\alpha w^1 - \alpha w^2} = r^{\frac{2}{3}} (-2cos(\frac{1}{3}\theta + \frac{2}{3}\pi)cos(\frac{1}{3}\theta + \frac{4}{3}\pi)) = -2r^{\frac{2}{3}}cos(-\frac{2\pi}{3}) \\ &d^2_{\alpha w^0 - \alpha w^1} = r^{\frac{2}{3}} (-2cos\frac{1}{3}\theta cos(\frac{1}{3}\theta + \frac{2}{3}\pi)) = -2r^{\frac{2}{3}}cos(\frac{2\pi}{3}) \end{split}$$

Since we know that $cos(\frac{2\pi}{3}) = cos(\frac{-2\pi}{3}) = cos(\frac{4\pi}{3})$, we verify that the distances between three points are the same. Therefore, the three cube roots of z are the corners of an equilateral triangle in the Argand diagram.

Problem 6 Express $\frac{1+i}{\sqrt{3}+i}$ in the form x+iy, where $x,y \in \mathbb{R}$. By writing each of 1+i and $\sqrt{3}+i$ in polar form, deduce that

$$cos\frac{\pi}{12} = \frac{\sqrt{3}+1}{2\sqrt{2}}, \ sin\frac{\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$$

PART ONE:

$$\frac{1+i}{\sqrt{3}+i} = \frac{(1+i)(\sqrt{3}-i)}{4}$$
$$= \frac{1+\sqrt{3}}{4} - i\frac{1-\sqrt{3}}{4}$$

PART TWO: We express the $\frac{1+i}{\sqrt{3}+i}$ in polar form:

$$\begin{split} 1+i &= \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}) \\ \sqrt{3}+i &= 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) \\ \frac{1+i}{\sqrt{3}+i} &= \frac{\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})}{2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})} \\ &= \frac{\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6})}{2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6})} \\ &= \frac{\sqrt{2}}{2}(\cos\frac{\pi}{4}\cos\frac{\pi}{6} + \sin\frac{\pi}{4}\sin\frac{\pi}{6} + i(\sin\frac{\pi}{4}\cos\frac{\pi}{6} - \cos\frac{\pi}{4}\sin\frac{\pi}{6})) \\ &= \frac{\sqrt{2}}{2}(\cos(\frac{\pi}{4} - \frac{\pi}{6}) + i\sin(\frac{\pi}{4} - \frac{\pi}{6})) \\ &= \frac{\sqrt{2}}{2}\cos\frac{\pi}{12} + \frac{\sqrt{2}}{2}i\sin\frac{\pi}{12} \end{split}$$

Now we equate this to the form we obtained in PART ONE:

$$\frac{\sqrt{2}}{2}cos\frac{\pi}{12} + \frac{\sqrt{2}}{2}isin\frac{\pi}{12} = \frac{1+\sqrt{3}}{4} - i\frac{1-\sqrt{3}}{4}$$

We can now separately equate the real and imaginary parts:

$$\frac{\sqrt{2}}{2}\cos\frac{\pi}{12} = \frac{1+\sqrt{3}}{4}$$

$$\cos\frac{\pi}{12} = \frac{1+\sqrt{3}}{2\sqrt{2}}$$

$$\frac{\sqrt{2}}{2}\sin\frac{\pi}{12} = -\frac{1-\sqrt{3}}{4}$$

$$\sin\frac{\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$$

Problem 8 Find a formula for $cos4\theta$ in terms of $cos\theta$. Hence write down a quartic equation (i.e., an equation of degree 4) that has $cos\frac{\pi}{12}$ as a root. What are the other roots of your equation?

First we express $cos4\theta$ in terms of $cos\theta$, and we denote $cos\theta$ as c, $sin\theta$ as s:

$$(\cos\theta + i\sin\theta)^4 = (c^2 + 2ics - s^2)^2$$

$$\cos 4\theta + i\sin 4\theta = c^4 - 6c^2s^2 + 4ic^3s - 4ics^3 + s^4$$

$$\cos 4\theta = c^4 - 6c^2s^2 + s^4$$

$$\frac{1}{2} = x^4 - 6x^2(1 - x^2) + (1 - x^2)^2$$

$$\frac{1}{2} = 8x^4 - 8x^2 + 1$$

We know that $cos 4\theta$ with $\theta = \pm \frac{\pi}{12} + \frac{2\pi k}{4}$ will yield the same result. So after eliminating the redundant ones, we are left with four distinct solutions:

$$\theta = \boxed{\frac{\pi}{12}}, \boxed{-\frac{\pi}{12}}, \frac{\pi}{\frac{1}{12}} + \frac{2\pi}{4} = \boxed{\frac{7\pi}{12}}, -\frac{\pi}{\frac{1}{12}} + \frac{2\pi}{4} = \boxed{\frac{5\pi}{12}}$$