Recommender Systems

Lecture 6

Previous lecture: latent factors models

$$A_{full} = R + E$$

known entries

unknown entries

Task: find utility (relevance) function f_R :

 f_R : Users \times Items \rightarrow Relevance score

Components of the model:

- Utility function $R = PQ^{\mathsf{T}}$, $r_{ij} \approx \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j$
- Optimization objective defined by $\mathcal{L}(A, R) \to \min$
- Optimization method (algorithm), e.g. SVD

For top-*n* recommendations, PureSVD is very efficient and is a strong baseline. 2

Practical considerations for PureSVD

- SVD for CF is:
 - NOT pure matrix completion
 - NOT pure dimensionality reduction
- rating prediction quality is not important
- scalability
 - folding-in / incremental updates
 - randomized SVD / streaming methods / out-of-memory SVD

Today's lecture

- PureSVD and popularity bias
- Weighted Matrix Factorization
- Netflix Prize Competition
 - Funk SVD
- Optimization methods
 - Stochastic gradient descent
 - Alternating minimization

Mitigating popularity bias in PureSVD

Top singular vector and popularity bias

 Recall, for a simple rank-1 approximation, top-singular value is driven by the common row of ratings

$$A = \boldsymbol{e} \cdot \boldsymbol{a}^{\mathsf{T}} + \epsilon B$$

 More generally, top singular triplet is likely to capture signal mostly from popular items and active users

• Idea: remove it ©

Image source: Khawar, Farhan, and Nevin L. Zhang. "Matrix Factorization Equals ⁶ Efficient Co-occurrence Representation." *arXiv preprint arXiv:1808.09371* (2018).

The effect of removing top singular component

Method	NDCG@50	Recall@50	D@50	Time(min.)
(a)SVD(k = 20)	0.60597	0.40434	1574	34.8
(b) SVD($k = 19$)	0.60168	0.40088	2139	35.4
(c)SVD(k=1)	0.42106	0.19704	290	20.8
SVD(k = 100)	0.59912	0.37539	2368	88
WRMF($k = 20, \lambda = 10^{-3}$)	0.60678	0.40904	1861.6	214

Figure 3: Removing v_H increases diversity by including non-popular items.

Data normalization in PureSVD

- Common observation:
 - interactions data approximately follows power-law or zipf-like distributions

- What effect does it have on covariance matrix?
 - $a_i^{\mathsf{T}}a_j$
- Idea: normalization inversely proportional to popularity

$$\tilde{A} = AD^{f-1}, \qquad [D]_{ii} = ||\overline{\boldsymbol{a}}_i||$$

Weighted Matrix Factorization

Netflix Prize competition

Contest:

Given a database of movies rated by users, beat Netflix's recsys **by at least 10%.**

Dates: October 2, 2006 - June 26, 2009

Award: **\$1,000,000**

Key to success: ensemble of models.

But latent factors models based on **matrix factorization** gained popularity.

Netflix Prize heritage

Impact:

- fueled active research in the field
- signified practical importance for industry
- great organization of the competition

Image source: Takács, Gábor, István Pilászy, Bottyán Németh, and Domonkos Tikk. "Scalable collaborative filtering approaches for large recommender systems." *The Journal of Machine Learning Research* 10 (2009): 623-656.

Issues:

- treated the problem as a pure matrix completion
- evaluation metric: RMSE
 - high influence on subsequent research echoing to these days
- Actual solution was never implemented*!
- Users were deanonimized

*https://www.techdirt.com/blog/innovation/articles/20120 409/03412518422/why-netflix-never-implementedalgorithm-that-won-netflix-1-million-challenge.shtml

Weighted Matrix Factorization

Previously:

- How to handle incomplete data?
- PureSVD: just put 0

Is there a better way?

Weighted Matrix Factorization

Loss function:

$$\mathcal{L}(\mathbf{A}, \Theta) = \frac{1}{2} \sum_{i,j \in \mathcal{O}} (a_{ij} - \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j)^2$$

$$\mathcal{O} = \{(i, j): a_{ij} \text{ is known}\}$$

Matrix form:

$$\mathcal{L}(A,\Theta) = \|W \odot (A - R)\|_F^2$$
$$R = PQ^{\mathsf{T}}$$

⊙ - Hadamard product

simplest case - binary weights:

$$\begin{cases} w_{ij} = 1, & \text{if } a_{ij} \text{ is known,} \\ w_{ij} = 0, & \text{otherwise.} \end{cases}$$

MF optimization objective

Optimization objective:

$$\mathcal{J}(\Theta) = \mathcal{L}(A, \Theta) + \Omega(\Theta)$$

Model parameters: $\Theta = \{P, Q\}$

 $\Omega(\Theta)$ - additional constraints, e.g. L_2 regularization

Typical optimization algorithms:

stochastic gradient descent (SGD)

alternating least squares (ALS)

ALS: GD:

$$\begin{cases}
P^* = \arg\min_{P} \mathcal{J}(\Theta) & \{ \boldsymbol{p}_i \leftarrow \boldsymbol{p}_i - \eta \nabla_{\boldsymbol{p}_i} \mathcal{J} \\
Q^* = \arg\min_{Q} \mathcal{J}(\Theta) & \{ \boldsymbol{q}_j \leftarrow \boldsymbol{q}_j - \eta \nabla_{\boldsymbol{q}_j} \mathcal{J} \\
\end{cases}$$

MF via gradient descent

$$\mathcal{J}(P,Q) = \frac{1}{2} \sum_{i,j \in \mathcal{O}} \left(a_{ij} - \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j \right)^2 + \lambda \left(\|\boldsymbol{p}_i\|^2 + \|\boldsymbol{q}_j\|^2 \right)$$

Gradient Descent:

$$\begin{cases} \boldsymbol{p}_{i} \leftarrow \boldsymbol{p}_{i} - \eta \nabla_{\boldsymbol{p}_{i}} \mathcal{J} \\ \boldsymbol{q}_{j} \leftarrow \boldsymbol{q}_{j} - \eta \nabla_{\boldsymbol{q}_{j}} \mathcal{J} \end{cases}$$

https://twitter.com/chaosprime/status/1472385765317521408

Full gradient:

$$\nabla_{\boldsymbol{p}_{i}} \mathcal{J} = -\sum_{j \in I_{i}} (a_{ij} - \boldsymbol{p}_{i}^{\mathsf{T}} \boldsymbol{q}_{j}) \boldsymbol{q}_{j} + \lambda \boldsymbol{p}_{i}$$

can be inefficient with large data

Optimization with SGD

$$\mathcal{J}(P,Q) = \frac{1}{2} \sum_{i,j \in \mathcal{O}} \left(a_{ij} - \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j \right)^2 + \lambda \left(\|\boldsymbol{p}_i\|^2 + \|\boldsymbol{q}_j\|^2 \right)$$

Gradient Descent:

$$\begin{cases} \boldsymbol{p}_{i} \leftarrow \boldsymbol{p}_{i} - \eta \nabla_{\boldsymbol{p}_{i}} \mathcal{J} \\ \boldsymbol{q}_{j} \leftarrow \boldsymbol{q}_{j} - \eta \nabla_{\boldsymbol{q}_{j}} \mathcal{J} \end{cases}$$

Idea:

- approximate gradient with its stochastic counterpart
- iterate

Stochastic Gradient Descent:

$$\begin{cases} \boldsymbol{p}_{i} \leftarrow \boldsymbol{p}_{i} - \eta \frac{\partial l_{ij}}{\partial \boldsymbol{p}_{i}} \\ \boldsymbol{q}_{j} \leftarrow \boldsymbol{q}_{j} - \eta \frac{\partial l_{ij}}{\partial \boldsymbol{q}_{i}} \end{cases}$$

$$\frac{\partial l_{ij}}{\partial \boldsymbol{p}_i} = -(a_{ij} - \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j) \boldsymbol{q}_j + \lambda \boldsymbol{p}_i$$

Optimization with SGD

$$\frac{\partial l_{ij}}{\partial \boldsymbol{p}_i} = -(\boldsymbol{a}_{ij} - \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j) \boldsymbol{q}_j + \lambda \boldsymbol{p}_i$$

$$\frac{\partial l_{ij}}{\partial \boldsymbol{q}_i} = -(\boldsymbol{a}_{ij} - \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j) \boldsymbol{p}_i + \lambda \boldsymbol{q}_j$$

Algorithm

Initialize P and Q. Iterate until stopping criteria met: for each pair $i, j \in \mathcal{O}(\text{shuffled})$: compute e_{ij} $\begin{cases} \boldsymbol{p}_i \leftarrow \boldsymbol{p}_i + \eta(e_{ij}\boldsymbol{q}_j - \lambda\boldsymbol{p}_i) \\ \boldsymbol{q}_j \leftarrow \boldsymbol{q}_j + \eta(e_{ij}\boldsymbol{p}_i - \lambda\boldsymbol{q}_j) \end{cases}$

Complexity =

Optimization with SGD

$$\mathcal{J}(P,Q) = \frac{1}{2} \sum_{i,j \in \mathcal{O}} \left(a_{ij} - \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j \right)^2 + \lambda \left(\|\boldsymbol{p}_i\|^2 + \|\boldsymbol{q}_j\|^2 \right)$$

• What predictions of such model will look like in the case of **binary** a_{ij} ?

Incremental updates

What are the key differences between SGD-based and SVD-based folding-in?

Folding-in

in SVD:
$$\boldsymbol{u} = \Sigma^{-1} V^{\mathsf{T}} \boldsymbol{a}_0$$

via SGD:

Initialize p

Iterate until stopping criteria met:

For all known ratings in *a*:

$$e_{aj} = a_j - \boldsymbol{p}^{\mathsf{T}} \boldsymbol{q}_j$$

 $\boldsymbol{p} \leftarrow \boldsymbol{p} + \eta (e_{aj} \boldsymbol{q}_j - \lambda \boldsymbol{p})$

of non-zero elements of a

Recall - baseline predictors

5

Ċ

3

$$a_{ij} \approx b_{ij} = g_i + f_j + \mu$$

 g_i – **g**enerosity of user i, i.e. tendency to assign higher or lower rating

 f_j – **f**avoredness of item j, i.e. how likely it's to be praised or critiqued

 μ – global average

tends to capture much of the observed signal

Funk SVD: including bias terms into MF

popularized by "Simon Funk" during the Netflix Prize competition

- critical users tend to rate movies lower than average user
- popular movies on average receive higher ratings

$$\underset{p_{i},q_{j},b_{i},b_{j}}{\text{minimize}} \sum_{i,j \in \mathcal{O}} e_{ij}^{2} + \lambda \left(\|\boldsymbol{p}_{i}\|^{2} + \|\boldsymbol{q}_{j}\|^{2} + g_{i}^{2} + f_{j}^{2} \right)$$

Iterating over:
$$\begin{cases} \boldsymbol{p}_{i} \leftarrow \boldsymbol{p}_{i} + \eta(e_{ij}\boldsymbol{q}_{j} - \lambda\boldsymbol{p}_{i}) \\ \boldsymbol{q}_{j} \leftarrow \boldsymbol{q}_{j} + \eta(e_{ij}\boldsymbol{p}_{i} - \lambda\boldsymbol{q}_{j}) \\ g_{i} \leftarrow t_{i} + \eta(e_{ij} - \lambda g_{i}) \\ f_{j} \leftarrow f_{j} + \eta(e_{ij} - \lambda f_{j}) \end{cases}$$

Matrix form

How to incorporate bias terms into a matrix form?

$$[P e_M t][Q f e_N]^{\mathsf{T}} = PQ^{\mathsf{T}} + e_M f^{\mathsf{T}} + t e_N^{\mathsf{T}}$$

Matrix Factorization as unsupervised learning

- Simon Funk first public solution, Funk SVD.
- Interesting connection to the first attempts to model synaptic connections between neurons (D. Hebb, 1949)

Generalized Hebbian Algorithm

• For multiple input – multiple outputs:

$$\nabla w_{ij} = \eta(y_i x_j - y_i \sum_{k \le i} w_{kj} y_k)$$

- Can be used to find singular components [Sangers 1989]
 - utilizes Gram-Schmidt process for orthogonalization
- Can be further expanded (omitting orthogonalization) into the form used in FunkSVD

About Simon Funk

Real name:

Brandyn Webb (https://sifter.org/~brandyn)

Employment:

President of Maui Institute of Cybernetic Epistemology

PureSVD vs Weighted MF

Performance on Netflix data: complete dataset (left) and "long-tail" (right).

Images from: P. Cremonesi, Y.Koren, R.Turrin, "Performance of Recommender Algorithms on Top-N Recommendation Tasks", Proceedings of the 4th ACM conference on Recommender systems, 2011.

Note: Funk SVD, SVD++, TimeSVD++, Asymmetric SVD ... are not the SVD!

Optimization with Alternating Least Squares

ALS:

$$\begin{cases} P = \arg\min_{P} \mathcal{J}(\Theta) \\ Q = \arg\min_{O} \mathcal{J}(\Theta) \end{cases}$$

$$\mathcal{J}(\Theta) = \mathcal{L}(\Theta) + \Omega(\Theta)$$

$$\mathcal{L}(\Theta) = \frac{1}{2} \| W \odot (A - PQ^{\mathsf{T}}) \|_F^2$$

$$\Omega(\Theta) = \frac{1}{2} \lambda (\|P\|_F^2 + \|Q\|_F^2)$$

The optimization problem is bi-convex:

"user-oriented" form:

$$\mathcal{J}(\Theta) = \frac{1}{2} \sum_{i} \|\boldsymbol{a}_{i} - Q\boldsymbol{p}_{i}\|_{W^{(i)}}^{2} + \frac{1}{2} \lambda \sum_{i} \|\boldsymbol{p}_{i}\|_{2}^{2} + \frac{1}{2} \lambda \|Q\|_{F}^{2}$$

notation: $||x||_W^2 = x^T W x$

$$W^{(i)} = \text{diag}\{w_{i1}, w_{i2}, ..., w_{iN}\}$$

Optimization with ALS

$$\mathcal{J}(\Theta) = \frac{1}{2} \sum_{i} \|\boldsymbol{a}_{i} - Q\boldsymbol{p}_{i}\|_{W^{(i)}}^{2} + \frac{1}{2} \lambda \sum_{i} \|\boldsymbol{p}_{i}\|_{2}^{2} + \frac{1}{2} \lambda \|Q\|_{F}^{2}$$

$$\|x\|_{W}^{2} = x^{T}Wx$$
 $W^{(i)} = \text{diag}\{w_{i1}, w_{i2}, ..., w_{iN}\}$

$$\frac{\partial \mathcal{J}(\Theta)}{\partial P} = 0$$

$$(Q^{\mathsf{T}}W^{(i)}Q + \lambda I) \boldsymbol{p}_i = Q^{\mathsf{T}}W^{(i)}\boldsymbol{a}_i$$

Optimization with ALS

$$\mathcal{J}(\Theta) = \frac{1}{2} \sum_{i} \|\boldsymbol{a}_{i} - Q\boldsymbol{p}_{i}\|_{W^{(i)}}^{2} + \frac{1}{2} \lambda \sum_{i} \|\boldsymbol{p}_{i}\|_{2}^{2} + \frac{1}{2} \lambda \|Q\|_{F}^{2}$$

$$\|x\|_{W}^{2} = x^{T}Wx$$

$$W^{(i)} = \text{diag}\{w_{i1}, w_{i2}, ..., w_{iN}\}$$

$$\overline{W}^{(j)} = \text{diag}\{w_{1j}, w_{2j}, ..., w_{Mj}\}$$

$$\frac{\partial \mathcal{J}(\Theta)}{\partial P} = 0$$
 entity-wise updates

Block-coordinate descent:

$$(Q^{\mathsf{T}}W^{(i)}Q + \lambda I) \, \boldsymbol{p}_i = Q^{\mathsf{T}}W^{(i)}\boldsymbol{a}_i$$
 system of linear equations: $(P^{\mathsf{T}}\overline{W}^{(j)}P + \lambda I) \, \boldsymbol{q}_j = P^{\mathsf{T}}\overline{W}^{(j)}\overline{\boldsymbol{a}}_j$ $A\boldsymbol{x} = \boldsymbol{b}$

$$Ax = b$$

"Embarrassingly parallel" algorithm

Initialize *P* and *Q*.

Iterate until stopping criteria met:

$$P \leftarrow \arg\min_{P} \mathcal{J}(\Theta)$$

$$Q \leftarrow \arg\min_{Q} \mathcal{J}(\Theta)$$

ALS performance

Complexity:

$$0($$
) + $0($

$$(Q^{\mathsf{T}}W^{(i)}Q + \lambda I) \boldsymbol{p}_i = Q^{\mathsf{T}}W^{(i)}\boldsymbol{a}_i$$

ALS performance

Complexity:

$$O(nnz_A \cdot d^2) + O((M+N) \cdot d^3)$$

- can be improved with approximate solvers (e.g. conjugate gradient)
- or switch to coordinate descent method

ALS folding-in

Folding-in and timepoint splits

consider scenario:

- warm-start users for evaluation
- test users are the most recently active ones
- most-recent-item holdout

Will there be a data leakage?

Case study: Yandex Zen (old times)

Company manages many different types of media content (news, search, etc.).

Goal: have a unified user representation across all domains.

Solution:

- A neural network embeds onto a latent space all unstructured content
- Users are updated through the "half"-ALS scheme

Algorithm:

- Get *Q* from external source (ANN)
- Update P based on most recent Q

Case study: Yandex Zen (recent times)

- fully MF-based solution, no neural networks
- solution beats more complex approaches
- SGD-based approach with additional tricks
 - pre-training on larger datasets (prior history)
 - downweight embeddings of "cold" users and items at initialization
 - fp16 calculations

Talk (in Russian)

• Peнeccaнc факторизации в рекомендациях https://www.youtube.com/watch?v=3Inl0iE41NU&list=PLfaEB90j-8KVBZNFcrESLBGOc5joIxCzK&index=2

Предобучение

- Логи за 3 месяца (миллиарды взаимодействий)
- + Hogwild! 5 эпох по часу
- + 60 Gb RAM, 50 ядер

Онлайн дообучение

- Логи за 5 минут (миллионы взаимодействий)
- 3 последовательных эпохи за 4 минуты
- + 30Gb RAM, 5 ядер

Practice time

Implement basic MF using SGD for optimization.