Lecture Summaries

Alex White July 29, 2025

1 Lecture 1: Introduction to Probability and Data Analysis

1.1 Descriptive Statistics

Types of Variables and Data:

- Quantitative Variables: Represent numerical data and include:
 - Continuous Data that can take any value within a range (e.g., height, weight).
 - Discrete Data that takes fixed values, often counts (e.g., number of students).
- Categorical Variables: Represent categories or groups, including:
 - **Binary** Two categories (e.g., yes/no).
 - **Nominal** Categories without a natural order (e.g., gender, race).
 - Ordinal Categories with a meaningful order (e.g., ratings: poor, average, good).

1.2 Summarizing Data

Five-Number Summary:

- Components: Minimum, Q1 (First Quartile), Median, Q3 (Third Quartile), and Maximum.
- Provides a summary of the distribution's range and center.

Mean and Standard Deviation:

- Mean: The average of the data, a measure of central tendency.
- Standard Deviation: Describes the dispersion or spread of the data around the mean.

1.3 Visualizing Data

Common Plot Types:

- Boxplot: Represents the five-number summary; useful for identifying outliers.
- Histogram: Displays the frequency distribution of a single variable; helpful for understanding the shape of the data.
- Scatter Plot: Shows the relationship between two quantitative variables; useful for identifying correlation

1.4 Data Analysis and Probability Models

Case Study - Eruption Times:

- Analysis of eruption times for a geyser with a five-number summary and interpretation of the distribution.
- Identified potential patterns and discussed variability in data.

Survey Data - Handedness and Eye Color:

- Calculated proportions of certain combinations (e.g., blue-eyed left-handers, brown-eyed right-handers).
- Discussed how data grouping reveals insights into variable distributions.

1.5 Review and Example Questions

Key Questions from the Lecture:

- Classify variables (e.g., age, response type, sleep time) as either categorical or quantitative.
- Identifying study types:
 - Observational Study: Observes individuals without intervention.
 - **Designed Experiment:** Applies specific treatments to study effects.

2 Lecture 2: Understanding Randomness, Counting, and Probability Laws

Random Experiments and Probability

• Random Experiments:

- Experiments with uncertain outcomes, like tossing coins or rolling dice.
- Examples include coin tosses, dice rolls, and random tweets.

• Probability vs. Statistics:

- Probability is theoretical and model-based; it deals with calculating likelihoods based on assumptions.
- Statistics is empirical, analyzing data to make conclusions (e.g., checking if a coin is fair based on observed results).

• Probability Model Components:

- Sample Space (Ω) : The set of all possible outcomes.
- Event: A subset of the sample space, either simple (one outcome) or compound (multiple outcomes).
- Probability Measure: Assigns likelihoods to events based on three main rules:
 - 1. Probability of an event is between 0 and 1.
 - 2. Probability of the whole sample space is 1.
 - 3. For disjoint events, the probability of their union is the sum of individual probabilities.

• Properties of Probability Measures:

- Complements: $P(A^c) = 1 P(A)$.
- Subsets: If $A \subset B$, then $P(A) \leq P(B)$.
- Union of Events: $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Counting Techniques

• Equally Likely Outcomes:

- When outcomes are equally likely, the probability of an event A is $P(A) = \frac{|A|}{|\Omega|}$.
- Examples include rolling dice and determining probabilities based on counting outcomes.

• Fundamental Principle of Counting:

- Stages: If an experiment has multiple stages, the total outcomes are the product of possibilities at each stage.
- **Example**: Completing a 20-question exam with 4 answer choices each has 4^{20} possible completions.

• Counting with Replacement:

- For ordered arrangements (permutations), all choices are available in each stage.
- Example: Arranging 9 players from a team of 9, without re-selection, has 9! possibilities.

• Counting without Replacement:

- Selections where order doesn't matter (combinations) divide out the repetitive arrangements.
- **Example**: Choosing 9 players from a pool of 30, order doesn't matter: $\frac{30!}{(30-9)!\times 9!}$.

Laws of Probability

• Law of Total Probability: Given a partition $\{B_1, B_2, \dots, B_n\}$ of the sample space Ω , the probability of any event A can be expressed as:

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

• Bayes' Rule: For events B_1, B_2, \ldots, B_n that partition Ω .

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

This rule is fundamental in updating probabilities based on new information.

Example: Monty Hall Problem

- **Problem Setup**: A contestant picks one of three doors. Behind one door is a prize; the other two contain nothing. Monty Hall opens one of the remaining doors without a prize and offers the contestant a choice: stick with the initial door or switch to the other unopened door.
- Probability Calculation:
 - Let A_i be the event that the prize is behind door i.
 - Let B_i be the event that Monty opens door j.
 - The initial probabilities are $P(A_1) = P(A_2) = P(A_3) = \frac{1}{3}$.
 - Using Bayes' Rule:

$$P(A_1|B_3) = \frac{P(B_3|A_1)P(A_1)}{P(B_3|A_1)P(A_1) + P(B_3|A_2)P(A_2)}$$

- After calculations, it is determined that switching doors gives the contestant a $\frac{2}{3}$ chance of winning, compared to a $\frac{1}{3}$ chance if they stick with the original choice.

Probability Calculations Using Counting

- Permutations and Combinations:
 - Permutations (Ordered Selection): $P(n,r) = \frac{n!}{(n-r)!}$.
 - Combinations (Unordered Selection): $C(n,r) = \frac{n!}{r!(n-r)!}$.
- Example Calculations:
 - Examples include calculating lineups for teams, both ordered (permutations) and unordered (combinations).

Lecture 3: Random Variables and Their Distribution

3.1 Introduction to Random Variables

- **Definition**: A random variable X is a function that assigns a real number to each outcome ω in the sample space Ω . This provides a numeric representation of experimental outcomes for analysis.
 - **Example**: Rolling a die and recording the face value, or counting heads in coin tosses.
- Events and Random Variables: Events involving random variables can be defined with conditions on X. For example, the event that $X \ge 1$ in a coin toss corresponds to a set of outcomes.
- Cumulative Distribution Function (CDF): The CDF $F(x) = P(X \le x)$ represents the probability of X being less than or equal to x. Key properties of the CDF include being increasing, right-continuous, and bounded by 0 and 1.
- Discrete vs. Continuous Random Variables:
 - **Discrete**: Takes on countable values, represented by a probability mass function (pmf).
 - Continuous: Takes on an uncountable range, represented by a probability density function (pdf), with a continuous CDF.
- Probability Density Function (PDF): For a continuous variable X, the pdf f(x) allows for calculating probabilities over intervals. The pdf integrates to 1 over the domain of X.

3.2 Expectation and Variance

- Expectation:
 - Discrete: $E(X) = \sum x P(X = x)$.
 - Continuous: $E(X) = \int x f(x) dx$.
 - **Example**: Rolling two dice and calculating the expectation of the highest face value.
- Functions of Random Variables: The expected value of a function g(X) can be calculated as E(g(X)).

4

- Law of the Unconscious Statistician (LOTUS):
 - * **Discrete**: $E(g(X)) = \sum g(x)f(x)$.
 - * Continuous: $E(g(X)) = \int g(x)f(x) dx$.
- Linearity of Expectation: For any constants a and b, $E(a \cdot g(X) + b \cdot h(X)) = a \cdot E(g(X)) + b \cdot E(h(X))$.
 - **Example**: Converting temperature from Fahrenheit to Celsius by applying the linearity property.
- Variance:
 - Defined as $Var(X) = E((X \mu)^2) = E(X^2) \mu^2$.
 - **Nonlinearity**: The variance of aX + b is $a^2 Var(X)$.
- **Applications**: Expectation and variance help quantify average values and variability in data, such as temperature measurements or dice rolls, enabling probabilistic interpretations.

3.3 Moment Generating Functions (MGFs)

Definition

The moment generating function (MGF) of a random variable X, denoted as $M_X(s)$, is defined by:

$$M_X(s) = E(e^{sX})$$

where s is within an interval containing zero, ensuring that $M_X(s)$ is finite.

Properties

- Uniqueness: MGFs uniquely determine distributions. If two random variables have the same MGF, their distributions are identical.
- Moment Calculation: For a random variable X with an MGF $M_X(s)$ finite around s = 0, the n-th moment $E(X^n)$ can be derived as:

$$E(X^n) = \frac{d^n M_X(s)}{ds^n} \Big|_{s=0}$$

• Transformation Property: For constants a and b, the MGF of aX + b is:

$$M_{aX+b}(s) = e^{bs} M_X(as)$$

Example

For a random variable X with MGF $M(s) = \frac{p}{1 - e^{s(1-p)}}$ (valid for $s < -\ln(1-p)$), the expectation E(X) can be found by differentiating M(s) with respect to s and evaluating at s = 0:

$$E(X) = \frac{dM(s)}{ds}\Big|_{s=0}$$

Lecture 4: Common Probability Distributions

4.1 Types of Probability Distributions

- **Discrete Distributions**: Defined by a probability mass function (pmf) and suitable for variables that take on countable values.
- Continuous Distributions: Defined by a probability density function (pdf) for variables with an uncountable range of values.

5

4.2 Discrete Distributions

• Bernoulli Distribution

- A random variable X is Bernoulli distributed with probability p of "success" and 1-p of "failure."
- Notation: $X \sim \text{Ber}(p)$
- Properties:
 - * Expectation E(X) = p
 - * Variance Var(X) = p(1-p)
 - * Moment Generating Function $M(s) = 1 p + pe^{s}$

• Binomial Distribution

- The sum of n independent Bernoulli trials with success probability p.
- Notation: $X \sim \text{Bin}(n, p)$
- Probability mass function: $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$
- Properties:
 - * Expectation E(X) = np
 - * Variance Var(X) = np(1-p)
 - * Moment Generating Function $M(s) = (1 p + pe^s)^n$

• Poisson Distribution

- Used for modeling the number of events in a fixed interval with a constant mean rate λ .
- Notation: $X \sim \text{Poisson}(\lambda)$
- Probability mass function: $P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$
- Properties:
 - * Expectation $E(X) = \lambda$
 - * Variance $Var(X) = \lambda$
 - * Moment Generating Function $M(s) = e^{\lambda(e^s 1)}$
- Binomial Approximation: When n is large and p is small, $Bin(n, p) \approx Poisson(np)$.

4.3 Continuous Distributions

• Uniform Distribution

- Continuous random variable X on [a,b] with equal probability density over the interval.
- Notation: $X \sim U[a, b]$
- Probability density function: $f(x) = \frac{1}{b-a}$
- Cumulative distribution function: $F_X(x) = \frac{x-a}{b-a}$
- Properties:
 - * Expectation $E(X) = \frac{a+b}{2}$
 - * Variance $Var(X) = \frac{(b-a)^2}{12}$

• Exponential Distribution

- Models the time until the occurrence of an event with a rate λ .
- Notation: $X \sim \text{Exp}(\lambda)$
- Probability density function: $f(x) = \lambda e^{-\lambda x}$, for $x \ge 0$
- Cumulative distribution function: $F_X(x) = 1 e^{-\lambda x}$
- Properties:
 - * Expectation $E(X) = \frac{1}{\lambda}$
 - * Variance $Var(X) = \frac{1}{\lambda^2}$
 - * Moment Generating Function $M(s) = \frac{\lambda}{\lambda s}$
- Memoryless Property: P(X > x + y | X > x) = P(X > y) for $x, y \ge 0$

Lecture 5: Multiple Random Variables

5.1 Joint Distributions

- Multiple Random Variables: Many scenarios involve more than one random variable:
 - Example: Rolling two dice with outcomes X and Y.
 - Example: Twitter activity where X is the number of people followed, and Y is the followers.

• Joint Cumulative Distribution Function (CDF):

- For two random variables X_1 and X_2 , the joint CDF $F(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$.
- More generally, the joint CDF for X_1, \ldots, X_n is $F(x_1, \ldots, x_n) = P(X_1 \le x_1, \ldots, X_n \le x_n)$.

• Joint Probability Mass Function (PMF) for Discrete Variables:

- For discrete variables X_1 and X_2 , the joint PMF $f(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$.
- Example calculation: For events $(X_1, X_2) \in B$, $P((X_1, X_2) \in B) = \sum_{(x_1, x_2) \in B} f(x_1, x_2)$.

• Marginal PMF:

- The marginal PMF of X is obtained by summing out Y: $f_X(x) = \sum_y f_{X,Y}(x,y)$.
- Marginals cannot determine the joint PMF without additional information.

• Joint Probability Density Function (PDF) for Continuous Variables:

- For continuous variables X and Y, $f(x,y) \ge 0$ with total integral one.
- The probability over region B is calculated as $P((X,Y) \in B) = \int_{(x,y) \in B} f(x,y) dx dy$.
- Marginal PDFs are calculated by integrating out other variables, e.g., $f_X(x) = \int f(x,y) dy$.

5.2 Conditional Distributions

- Discrete Case: The conditional PMF of Y given X = x is $P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$.
- Continuous Case: The conditional PDF of Y given X = x is $f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$

• Conditional Expectation:

- For discrete variables, $E(Y|X=x) = \sum_{y} y \cdot P(Y=y|X=x)$.
- For continuous variables, $E(Y|X=x) = \int y \cdot f_{Y|X}(y|x) dy$.

5.3 Independence of Random Variables

- **Definition**: Two random variables X and Y are independent if $P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y)$.
- Discrete Independence: For discrete variables, X and Y are independent if $f(x,y) = f_X(x) \cdot f_Y(y)$.
- Continuous Independence: For continuous variables, independence is shown by $f(x,y) = f_X(x) \cdot f_Y(y)$.
- **Example**: For random variables X and Y with joint PMF or PDF, check if the product of marginal probabilities equals the joint probability.
- Functions of Independent Variables: If X and Y are independent, any functions g(X) and h(Y) are also independent.

Lecture 6: Multiple Random Variables

6.1 Joint Distributions and Expectations

- Law of the Unconscious Statistician (LOTUS):
 - For a discrete random vector (X_1, \ldots, X_n) with pmf f:

$$E[h(X_1, \dots, X_n)] = \sum_{x_1, \dots, x_n} h(x_1, \dots, x_n) f(x_1, \dots, x_n)$$

- For a continuous random vector (X_1, \ldots, X_n) with joint pdf f:

$$E[h(X_1,\ldots,X_n)] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(x_1,\ldots,x_n) f(x_1,\ldots,x_n) dx_1 \cdots dx_n$$

• Expectation of Linear Combinations: For constants a, b_1, \ldots, b_n :

$$E[a + b_1X_1 + \dots + b_nX_n] = a + b_1\mu_1 + \dots + b_n\mu_n$$

6.2 Covariance and Correlation

 \bullet Covariance: Measures how two random variables X and Y vary together:

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - \mu_X \mu_Y$$

- Properties of Covariance:
 - Symmetry: Cov(X, Y) = Cov(Y, X)
 - Variance of Sum: Var(X + Y) = Var(X) + 2Cov(X, Y) + Var(Y)
- Correlation Coefficient $\rho(X,Y)$: Scaled covariance:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

with $\rho \in [-1, 1]$.

6.3 Conditional Distributions and Expectations

• Conditional Probability: For discrete random variables X and Y:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

• Conditional Probability Mass Function (pmf):

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• Law of Total Probability for Expectations (Tower Property):

$$E(E(X|Y)) = E(X)$$

6.4 Example Problems

• Conditional Expectation Example: Given $f_Y(y) = 3y^2$ for $y \in [0,1]$, and $X|Y = y \sim \text{Uniform}(0,y)$, calculate:

$$E(X|Y=y) = \int_0^y x \cdot \frac{1}{y} dx = \frac{y}{2}$$

and

$$E(X) = \int_0^1 \frac{y}{2} \cdot 3y^2 \, dy = \frac{3}{8}$$

Lecture 7: Estimators and Confidence Intervals

7.1 Estimators and Point Estimates

• Estimators and Estimates:

- Given a sample X_1, X_2, \ldots, X_n from a population, the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ is an estimator for the population mean μ .
- An estimate is a specific value from a realisation of the estimator.

• Uncertainty in Point Estimates:

- Different samples yield different estimates due to sampling variability.
- Larger sample sizes generally reduce variability in the estimator, providing more accurate point estimates.

7.2 Confidence Intervals (CI)

• Definition of Confidence Interval:

- A CI is an interval estimate that reflects the uncertainty in a point estimate. It indicates the range
 within which the population parameter lies with a specified level of confidence.
- The length of the CI depends on sample size and variability of the data.

• Example with Normal Distribution:

– For a normally distributed sample $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$, the CI for μ (assuming known variance) is:

$$\left[\bar{X} - z^* \frac{\sigma}{\sqrt{n}}, \bar{X} + z^* \frac{\sigma}{\sqrt{n}}\right]$$

where z^* is the critical value from the standard normal distribution for a given confidence level.

• Interpreting Confidence Intervals:

- A 95% CI means that if we repeated the sampling process many times, approximately 95% of the CIs would contain the true mean μ .
- Common misunderstandings include mistaking the CI for a probability interval of a specific sample.

• Effect of Sample Size and Confidence Level:

- Increasing sample size reduces the width of the CI.
- Increasing the confidence level (e.g., from 95% to 99%) increases the CI width due to a higher critical value z^* .

7.3 Student's t-Distribution for Unknown Variance

• Confidence Interval with Unknown Variance:

– When population variance σ^2 is unknown, use the sample standard deviation S and the t-distribution:

$$\left[\bar{X} - t^* \frac{S}{\sqrt{n}}, \bar{X} + t^* \frac{S}{\sqrt{n}}\right]$$

where t^* is the critical value from the t-distribution with n-1 degrees of freedom.

• Properties of Student's t-Distribution:

- Symmetric and bell-shaped, like the normal distribution, but with heavier tails.
- As n increases, the t-distribution approaches the standard normal distribution.

• Example Calculation:

– For a sample of 25 students with mean video game time of 6.96 hours and S=7.42, the 95% CI for the population mean is:

$$\left[6.96 - 1.96 \times \frac{7.42}{\sqrt{25}}, 6.96 + 1.96 \times \frac{7.42}{\sqrt{25}}\right] = [4.05, 9.87]$$

7.4 Confidence Interval for Proportions

- Confidence Interval for a Population Proportion:
 - For a sample proportion $\hat{p} = X/n$, the approximate CI for a population proportion p is:

$$\left[\hat{p} - z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$

provided $n\hat{p} \geq 5$ and $n(1-\hat{p}) \geq 5$.

• Example Calculation for Proportion:

- For 103 female students, 22 responded they did not play video games. The proportion is $\hat{p} = 22/103$.
- Using $z^* = 1.96$ for 95% confidence, the CI is:

$$\left[\hat{p} - 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{103}}, \hat{p} + 1.96\sqrt{\frac{\hat{p}(1-\hat{p})}{103}}\right]$$

Lecture 8: Hypothesis Testing for One and Two Populations

8.1 Introduction to Hypothesis Testing

- **Hypothesis Testing** is a statistical approach used to make inferences or decisions about a population parameter based on sample data.
- Involves two competing hypotheses:
 - Null Hypothesis (H_0) : Represents the status quo or no effect.
 - Alternative Hypothesis (H_1) : Contradicts H_0 and represents the effect we want to support.
- The objective is to assess the evidence in the sample data to decide between H₀ and H₁.
- **p-value**: The probability of obtaining a test statistic as extreme or more extreme than the one observed, assuming H_0 is true.

• Decision Rules:

- Reject H_0 if the p-value is smaller than a chosen significance level α .
- Fail to reject H_0 if the p-value is greater than or equal to α .

8.2 Test Statistic and Types of Tests

• **Test Statistic** is computed to measure the degree of consistency between the sample data and H_0 . For hypothesis tests, the test statistic is often:

$$\label{eq:Test Statistic} Test \; Statistic = \frac{Estimator - Hypothesized \; Value}{Standard \; Error \; of \; Estimator}$$

- Types of Hypothesis Tests:
 - One-Sided Test: Tests whether the parameter is greater or less than a hypothesized value.
 - Two-Sided Test: Tests whether the parameter is different from a hypothesized value.

8.3 Hypothesis Testing for Two Populations

• Extends single-population hypothesis testing methods to compare parameters across two population distributions.

• Assumptions:

- 1. X_1, \ldots, X_{n_X} are i.i.d., representing one population.
- 2. Y_1, \ldots, Y_{n_Y} are i.i.d., representing a second population.
- 3. All X and Y samples are independent of one another.

• Test Statistic for Comparing Two Means: For testing $H_0: \mu_X = \mu_Y$,

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{S_X^2/n_X + S_Y^2/n_Y}}$$

where S_X^2 and S_Y^2 are sample variances. The test can be adjusted based on equal or unequal variances.

Example: Two-Sample Hypothesis Test

- A study investigated whether Minecraft improves spatial reasoning. Thirty-four participants were randomly allocated to Group A (Minecraft training) or Group B (no training).
- Hypotheses:

$$H_0: \mu_A = \mu_B$$
 vs. $H_1: \mu_A > \mu_B$

- Calculate the test statistic using pooled variance if variances are equal or Welch's correction if variances are unequal.
- Conclusion: Based on the p-value, determine if Minecraft training significantly improves spatial reasoning.

Comparing Two Proportions

- Suppose X_1, \ldots, X_{n_X} is a sample from a Bernoulli distribution with success probability p_X , and Y_1, \ldots, Y_{n_Y} is a sample from a Bernoulli distribution with success probability p_Y .
- Test Statistic:

$$T = \frac{\hat{p}_X - \hat{p}_Y}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}}$$

where $\hat{p} = \frac{\sum X + \sum Y}{n_X + n_Y}$ is the pooled proportion under $H_0: p_X = p_Y$.

Example: Comparing Proportions for Ear Infections

- A study tested xylitol's effectiveness in preventing ear infections. Two groups received either xylitol or a placebo, and infection rates were compared.
- Hypotheses:

$$H_0: p_{\text{Xylitol}} = p_{\text{Placebo}}$$
 vs. $H_1: p_{\text{Xylitol}} < p_{\text{Placebo}}$

• Conclusion: Based on the calculated p-value, determine if xylitol significantly reduces ear infection risk.

Lecture 9: Linear Regression and Inference

9.1 Introduction to Regression Analysis

- Regression analysis explores relationships between variables, enabling inference about one variable using the values of another. Example: predicting college GPA based on high school GPA.
- Key Terms:
 - Y: Response variable.
 - X: Predictor or explanatory variable.

9.2 Simple Linear Regression Model

- The simplest relationship between variables y and x is linear: $y = \beta_0 + \beta_1 x$.
- For random variables, this relationship becomes probabilistic:

$$Y = \beta_0 + \beta_1 x + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$ represents random deviation.

• Estimation of Parameters: β_0 and β_1 minimize the sum of squared errors, $\sum (y_i - (\beta_0 + \beta_1 x_i))^2$.

• Least Squares Estimates:

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

• Mean Squared Error (MSE) estimates σ^2 :

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

9.3 Inference for Linear Regression

- Assumptions:
 - Independence: Y_i 's are independent.
 - Normality: Y_i 's follow a normal distribution.
 - Linearity: Mean of Y is a linear function of X.
 - Homoscedasticity: Constant variance σ^2 for Y_i across all x.
- With assumptions met, the estimators have distributions:

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\bar{x}^2}{\sum(x_i - \bar{x})^2}\right)\right), \quad \hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum(x_i - \bar{x})^2}\right)$$

• Hypothesis Testing:

$$t = \frac{\hat{\beta}_i - \beta_i}{\operatorname{se}(\hat{\beta}_i)} \sim t_{n-2}, \quad i = 0, 1$$

• Confidence Interval for β_i :

$$\hat{\beta}_i \pm t^* \cdot \operatorname{se}(\hat{\beta}_i)$$

• **Prediction** of Y given x:

$$\hat{\mu}_x = \hat{\beta}_0 + \hat{\beta}_1 x$$

with variance

$$Var(\hat{\mu}_x) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right)$$

Lecture 10: Multiple Regression and Case Study

10.1 Introduction to Multiple Regression

• **Definition**: A multiple linear regression model includes more than one explanatory variable. The general form of the model is:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$.

• Interpretation of Coefficients: Each coefficient β_i represents the expected change in Y associated with a 1-unit increase in x_i , holding all other variables constant.

10.2 Models with Interaction Terms

- Interaction Terms: Used to model relationships where the effect of one predictor variable on Y depends on another predictor. Common forms include:
 - First-order with interaction: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon$
 - Second-order with interaction: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \epsilon$

10.3 Multiple Regression with Categorical Variables

• Incorporating Categorical Variables: Use dummy variables to include categorical predictors in regression models. For example:

$$x = \begin{cases} 1 & \text{if category A} \\ 0 & \text{otherwise} \end{cases}$$

12

• Categorical variables with more than two categories require c-1 dummy variables.

10.4 Estimation for Multiple Linear Regression

- **Objective**: Find coefficients β that minimize the sum of squared errors (SSE).
- Normal Equation: The estimates are given by solving:

$$X^T X \beta = X^T y$$

where X is the matrix of predictor values and y is the response vector.

10.5 Inference on Predictors

- Each coefficient β_i has an associated standard error, allowing us to test hypotheses (e.g., $H_0: \beta_i = 0$).
- For testing groups of predictors, fit both full and reduced models and use an F-test:

$$F = \frac{(SSE_{reduced} - SSE_{full})/(p - l)}{SSE_{full}/(n - p)}$$

10.6 Case Study: Fish Catch Data

- A regression analysis was conducted on fish caught in Lake Längelmävesi, Finland.
- Multiple predictors (size, type, etc.) were used to explain variability in the catch quantity.

Lecture 11: Analysis of Variance (ANOVA)

Introduction to ANOVA

- **Definition of ANOVA**: A statistical method used to compare the means of three or more populations, assuming all are normally distributed with the same standard deviation.
- Connection to Regression: ANOVA is a specific case of multiple regression models with categorical explanatory variables and a continuous response variable.
- **Application**: Often applied in factorial experiments to assess how a response variable is influenced by one or more factors tested at several levels.

Single-Factor ANOVA Example: Stem Cell Survival Study

- Experiment Details: Mouse embryonic stem cells were cultured in 16 wells with fibrin scaffolds, counting live and dead cells after three days.
- Total Variability: Total variability in data is quantified by the sample variance and sum of squares (SST = 4237.8) with 15 degrees of freedom.

Survival and NT3 Concentration: Hypothesis Testing

- **Hypothesis**: Testing if different levels of NT3 concentration impact survival rates. Defined treatment levels for NT3 concentrations are 0, 10, 20, and 30 ng/mL.
- ANOVA Table Construction:
 - Calculate sums of squared errors (SSE) across groups and compare to total sum of squares (SST).
 - Example ANOVA table summarizing results:

Source	df	SS	MS	F
NT3-factor	3	2779.2	926.4	7.62
Residuals	12	1458.6	121.6	
Total	15	4237.8		

ANOVA Model as Multiple Linear Regression

• ANOVA Model Formulation:

$$Y = \mu_1 x_1 + \mu_2 x_2 + \mu_3 x_3 + \mu_4 x_4 + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

where each x_i is an indicator variable for NT3 concentration.

• Full and Reduced Models:

- Full Model: $Y = \mu_1 + (\mu_2 - \mu_1)x_2 + (\mu_3 - \mu_1)x_3 + (\mu_4 - \mu_1)x_4 + \epsilon$.

- Reduced Model: $Y = \mu_1 + \epsilon$.

F-Statistic and Hypothesis Testing

• Calculation of F-Statistic:

$$F = \frac{(SST - SSE)/(d-1)}{SSE/(n-d)}$$

where SST is the total sum of squares and SSE is the sum of squared errors.

• **P-Value Interpretation**: Using the calculated F-statistic and the associated degrees of freedom, the p-value determines if the null hypothesis (no effect) is rejected.

Assumptions and Diagnostics for ANOVA

- Assumptions: Assumes normality, independence, and equal variances across groups.
- **Diagnostics**: Residual plots, normal Q-Q plots, and checking homoscedasticity are essential to validate model assumptions.

Multiple Comparisons and Pairwise Comparisons

- When H_0 is Rejected: If ANOVA detects differences among means, further analysis identifies which means differ.
- Bonferroni Method: Adjusts for multiple hypothesis tests by setting each test's significance level to α/k to control overall error rate.

Lecture 12: Two-Factor ANOVA and Goodness of Fit Tests

12.1 Two-Factor ANOVA

- Two-Factor ANOVA: Extends single-factor ANOVA to test effects from two factors (categorical variables) simultaneously, each with multiple levels. Useful when both main effects and their interaction are of interest.
- Example NT3 and PDGF on Cell Survival: NT3 (four levels) and PDGF (two levels) were tested to observe cell survival. Observations suggested an interaction between NT3 and PDGF in cell survival.
- Model Representation:

$$Y = \sum_{j=1}^{d_1} \sum_{k=1}^{d_2} \mu_{jk} x_{jk} + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$

where x_{jk} indicates factor levels and μ_{jk} the mean response.

• Sums of Squares:

– SST = $\sum_{i,j,k} (Y_{ijk} - \bar{Y})^2$ - Total variability.

- SSF1, SSF2 - Variability between levels of each factor.

- SSF12 - Variability due to interaction between factors.

-SST = SSE + SSF1 + SSF2 + SSF12.

• Hypothesis Testing in Two-Way ANOVA:

 $H_0^{(1)}:$ No effect of Factor 1, $H_0^{(2)}:$ No effect of Factor 2, $H_0^{(12)}:$ No interaction effect

14

• Example ANOVA Table:

Source	df	SS	MS	F
NT3	3	2779.23	926.41	9.60
PDGF	1	43.23	43.23	0.45
Interaction	3	643.21	214.40	2.22
Error	8	772.13	96.52	
Total	15	4238		

12.2 Goodness of Fit for Categorical Data

- Goodness of Fit Concept: Assesses how well a model explains observed data; discrepancies between observed and expected values indicate the model's accuracy.
- Example Blood Types:
 - Tested theoretical probabilities for blood types A, B, AB, and O in a sample of Californians.
 - Null Hypothesis H_0 : Theoretical probabilities are correct.
 - Chi-Square Test Statistic:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}, \quad \chi^2 \sim \chi_{k-1}^2$$

• Chi-Square Test - Example Results:

$$p$$
-value = $P(\chi_3^2 \ge 20.37) \approx 1.42 \times 10^{-4}$

- Making Babies by the Flip of a Coin?:
 - Tested a binomial model $(X \sim \text{Binomial}(2, 0.5))$ for two-child families.
 - Chi-square test used to compare observed and expected counts, yielding:

$$\chi^2 = 57.28$$
, p-value $\approx 3.64 \times 10^{-13}$

- Test of Independence: For contingency tables, tests association between rows and columns.
- Example Green Roof Survey:
 - Tested association between age groups and interest in green roof systems using a chi-square test.
 - Resulted in strong evidence of association.

Lecture 13: Frequentist vs. Bayesian Inference

Frequentist vs. Bayesian Inference

- Frequentist inference focuses on confidence intervals and hypothesis testing. This approach defines probabilities in terms of relative frequency over repeated trials.
- Bayesian inference provides an alternative by interpreting probability as a subjective degree of belief, incorporating prior beliefs with observed data.

Frequentist vs. Bayesian Hypothesis Testing

- Frequentist Hypothesis Testing: Calculates the p-value as $P(\text{observed results} \mid H_0 \text{ is true})$. This does not give $P(H_0 \text{ is true} \mid \text{observed results})$.
- Bayesian Hypothesis Testing: Uses Bayes' Theorem to calculate $P(H_0 \mid \text{observed results})$, updating the prior probability of H_0 based on evidence:

$$P(H_0 \mid \text{observed results}) = \frac{P(\text{observed results} \mid H_0)P(H_0)}{P(\text{observed results})}$$

Mental Experiments in Hypothesis Testing

- Example 1: Neighbor's Newborn (Boy or Girl)
 - Hypothesis: H_0 (Newborn is a girl) with prior $P(H_0) = \frac{1}{2}$.
 - If 60% of girls and 10% of boys have pink rooms:

$$P(\text{girl} \mid \text{pink room}) = \frac{P(\text{pink room} \mid \text{girl})P(\text{girl})}{P(\text{pink room})} = \frac{0.6 \times 0.5}{0.6 \times 0.5 + 0.1 \times 0.5} \approx 0.86$$

- Example 2: Neighbor's Newborn (Puppy or Not)
 - Hypothesis: H_0 (Newborn is a puppy) with prior $P(H_0) = 10^{-10}$.
 - If 80% of households with a puppy have a kennel while 5% without a puppy have one:

$$P(\text{puppy} \mid \text{kennel}) = \frac{P(\text{kennel} \mid \text{puppy})P(\text{puppy})}{P(\text{kennel})} \approx 1.6 \times 10^{-9}$$

Life and Death Example: Sally Clark Case

- Sally Clark was wrongfully convicted in 1996 based on a misinterpretation of probability, which led to an incorrect frequentist calculation.
- Frequentist approach: $P(\text{Two SIDS} \mid \text{Innocence}) = 1 \text{ in 73 million.}$
- Bayesian approach: $P(\text{Innocence} \mid \text{Two SIDS}) \ge 0.66$, highlighting the importance of prior beliefs in the interpretation.

Differences in Interpretation of Probability

- Frequentist Interpretation: Probability as the relative frequency over many trials.
- Bayesian Interpretation: Probability as the subjective degree of belief, incorporating prior information and observed evidence.

Philosophical Debate and Conclusion

- Frequentist View: Probability is objective and does not assign probabilities to hypotheses.
- Bayesian View: Allows for subjective priors, acknowledging the role of belief in science.