don't model things. just build robots

Dr. Sawyer B. Fuller
Assistant Professor
Department of Mechanical Engineering

#1 aircraft design technique

iterating on previous successful designs

design for evolvability

fast iteration like nature does

small is different

scaling laws:

characteristic	strength per mass	remarks
viscous friction	l^{-1}	unfavorable glide ratio: favors hover
coulomb friction	<i>l</i> -1	inefficient pin joints: favors flexures

unfavorable to gliding flight, propellers

characteristic	varies with	remarks
Glob. Pos. System error	l^{-1}	denied indoors
battery power	l^3	suggests non-emissive sensing

eliminates many sensors

characteristic	varies with	remarks
rotation speed	l^{-1}	requires fast feedback loop
computation power	l^3	constrained processing

faster dynamics × slower computation

manufacturing at insect scale

controlled flight (real time)

fast rotational motions

torque $\sim l^4$, moment of inertia $\sim l^5$ \rightarrow angular acceleration $\sim l^{-1}$

Fuller et al, ICRA 2015

Perching

open challenges

visual flight control, computation autonomy, and power autonomy