Nerozhodnutelnost

ZPRACUJE: Mystik

Obsah

- 1 Základní pojmy
 - 1.1 Jazyky mimo třídu 0
 - 1.2 (Cantorova) diagonalizace
 - 1.3 Rozhodovací problémy
- 2 Problém zastavení TS (HP Halting problem)
- 3 Nerozhodnutelnost problémů
 - 3.1 Důkaz nerozhodnutelnosti redukcí
 - 3.2 Příklady problémů
- 4 Postův korespondenční problém

Základní pojmy

Jazyky mimo třídu 0

Existují jazyky ležící mimo typ 0 Chomského hierarchie

množina všech TS je spočetná (TS lze zakódovat jako binární řetězce a ty počítat dle pořadí)

množina všech jazyků je nespočetná (vid diagonalizace)

množiny tedy mají rozdílnou mohutnost

Existují jazyky, které jsou nevyčíslitelné žádným TS a problémy, které žádný TS není schopen rozhodnout

(Cantorova) diagonalizace

- používá se pro důkaz nespočetnosti množiny
- poprvé použita pro důkaz rozdílné mohutnosti přirozených a reálných čísel

Diagonalizace pro množinu jazyků

- ullet předpokládejme, že 2^{Σ^*} je spočetná (tj. každému jazyku lze přiřadit nějaké přirozené číslo bijektivní zobrazení)
- lacktriangle uspořádáme řetezce Σ * do nějaké posloupnosti (podle libovolného klíče)
- bijektivní zobrazení jazyků na přirozená čísla lze nyní zobrazit jako nekonečnou matici:

kde a_{ij} je 1 pokud $w_j \in L_i$ jinak je 0

- uvažme jazyk \(\overline{L} \), který sestavíme tak, že vezmeme diagonálu matice (tj. prvky se stejnými indexy) a provedeme jejich inverzi
- tento jazyk se liší od každého jazyka v matici (minimálně prvkem, kde se diagonála protíná s řádkem jazyka), zároveň ale
 patří do 2^{∑*}
- ullet to je spor a předpoklad, že 2^{Σ^*} je spočetná tedy neplatí

Rozhodovací problémy

Rozhodovací problém

funkce s oborem hodnot (true, false)

obvykle je specifikován množinou všech možných instancí problému a podmnožinou pro které je výsledek roven true

1 z 3 29.5.2011 17:27

v teorii formálních jazyků používáme k zakódování problémů řetězce nad abecedou - jazyky pak představují podmnožiny pro které je výsledek roven true

Rozhodnutelný problém

vždy je možné rozhodnout zda je výsledek true nebo false

rozhodnutelné jsou problémy reprezentované rekurzivními jazyky

Nerozhodnutelný problém

není možná vždy rozhodnout zda je výsledek true nebo false

Částečně rozhodnutelný problém

pro výsledek true vždy (po konečné době) rozhodne, ale pro výsledek false buď rozhodne nebo donekonečna cyklí (rozhodnutí trvá nekonečnou dobu)

Problém zastavení TS (HP - Halting problem)

Problém zda daný TS pro daný vstupní řetězec zastaví není rozhodnutelný, ale je částečně rozhodnutelný

Důkaz

Částečná rozhodnutelnost

Sestavíme univerzální TS, který simuluje běh původního TS tak, aby zastavil právě když by zastavil původní TS

Nerozhodnutelnost

- provádí se diagonalizací
- všechny možné (binární) řetězce kódující TS sestavíme do posloupnosti
- vytvoříme matici, kde sloupce jsou řetězce kódující TS a řádky jsou samotné TS. Každá buňka pak označuje zda daný TS pro daný řetězec cyklí nebo zastaví
- předpokládáme, že existuje TS K přijímající jazyk HP (tj. na vstup dostane zakódovaný TS M a řetězec a zastaví právě tehdy pokud M zastaví pro vstup w a odmítne pokud M cyklí pro vstup w)
- Sestavím TS N, který pro vstup x provede simulaci TS X zakódovaného v x na vstup x (TS provádějící svoje vlastní zakódování) a přijme pokud simulovaný TS odmítne a cyklí pokud simulovaný TS přijme (v podstatě komplement diagonály matice)o
- TS N se liší od jakéhokoliv zakódovatelného TS v posloupnosti to je spor, protože posloupnost obsahuje všechny TS

z toho plyne, že předpoklad, že existuje TS K je chybný

Nerozhodnutelnost problémů

Důkaz nerozhodnutelnosti redukcí

Redukce

převod jednoho jazyka na jiný úplným TS značíme A < B (A je redukovatelný na B)

Důkaz redukcí

- víme, že jazyk A není rekurzivní (rekurzivně vyčíslitelný)
- zkoumáme jazyk B
- ukážeme, že A lze úplným TS převést (redukovat) na B
- to znamená, že B je také rekurzivní/rekurzivně vyčíslitelný

tj. pokud lze jazyky navzájem redukovat tak platí, že:

- oba jsou rekurzivní
- oba nejsou rekurzivní
- oba jsou rekurzivně vyčíslitelné
- oba nejosu rekurzivně vyčíslitelné

2 z 3 29.5.2011 17:27

Příklady problémů

Rozhodnutelná problémy

- TS má alespoň x stavů
- TS učiní alespoň x kroků pro vstup w

Částečně rozhodnutelné problémy

- TS má neprázdný jazyk
- Jazyka TS má alespoň x slov

Nerozhodnutelné

- jazyka TS je prázdný
- jazyk TS má maximálně x slov
- jazyk TS je konečný

Postův korespondenční problém

Postův systém (nad abecedou Σ)

neprázdný seznam S dvojic neprázdných řetězců abecedy

$$S = \langle (\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots \rangle$$

Řešení Postova systému

každá neprázdná posloupnost přirozených čísel (indexů) $I=\langle i_1,i_2,\ldots
angle$ taková, že

$$\alpha_{i_1}\alpha_{i_2}\alpha_{i_3}\ldots = \beta_{i_1}\beta_{i_2}\beta_{i_3}\ldots$$

pozn.: indexy se v posloupnosti mohou opakovat

Postův problém

existuje pro daný systém řešení?

Postův problém je nerozhodnutelný (dokazuje se redukcí z problému náležitosti)

Kategorie: Státnice 2011 | Teoretická informatika

Stránka byla naposledy editována 29. 5. 2011 v 13:10.

3 z 3 29.5.2011 17:27