Лабораторная работа №5

Написание простейших функций

Цель работы: научиться создавать функции в языке Си. Изучить принципы и основные алгоритмы передачи параметров в функции и принимать возвращаемое значение.

Задания на лабораторную работу 4

Задание 1.

	T
$N_{\underline{0}}$	Задача
вар.	оиди Ти
1	Рассчитать значение х определив и использовав необходимую
	функцию
	$x = \frac{\sqrt{5} + 5}{5} + \frac{\sqrt{19} + 19}{5} + \frac{\sqrt{19} + 19}{5}$
	$x = {5} + {5} + {5}$
	Рассчитать значение у определив и использовав необходимую
2	функцию
	$y = \frac{1+\sin 3}{3} + \frac{3+\sin 3}{3} + \frac{5+\sin 5}{3}$
3	Рассчитать значение $z = max(a, 2b) + max(2a - b, b)$ определив и
	использовав функцию $max(x,y)$ — максимальное из двух чисел.
	Рассчитать значение х определив и использовав необходимую
4	функцию
4	$\sqrt{5} + 5 \sqrt{12} + 12 \sqrt{19} + 19$
	$x = \frac{\sqrt{5} + 5}{\sqrt{7} + 7} + \frac{\sqrt{12} + 12}{\sqrt{8} + 8} + \frac{\sqrt{19} + 19}{\sqrt{2} + 2}$
	Рассчитать значение у определив и использовав необходимую
5	функцию
3	$y = \frac{2 + \sin 2}{\sin 5 + 5} + \frac{6 + \sin 6}{\sin 3 + 3} + \frac{1 + \sin 1}{\sin 4 + 4}$
	$y - \frac{1}{\sin 5 + 5} + \frac{1}{\sin 3 + 3} + \frac{1}{\sin 4 + 4}$
6	Рассчитать значение $z = min(2a, b + a) + min(2a - b, b)$ определив
U	и использовав функцию $min(x, y)$ – минимальное из двух чисел.
	Рассчитать значение х определив и использовав необходимую
7	функцию
7	$\sqrt{8} + 15 \sqrt{6} + 12 \sqrt{7} + 21$
	$x = \frac{\sqrt{8} + 15}{\sqrt{15} + 8} + \frac{\sqrt{6} + 12}{\sqrt{12} + 6} + \frac{\sqrt{7} + 21}{\sqrt{21} + 7}$
8	Задан треугольник АВС длинами своих сторон а, b, c. Найти его
	медианы, написав функцию вычисления медианы
	$0.5\sqrt{2b^2+2c^2-a^2}$ (для стороны a).
	Стороны а, b, с ввести с экрана.
	Croponibi a, b, c biccri c skpana.

№	Запана
вар.	Задача
9	Рассчитать значение $z = sing(x) + sing(y)$ определив и использовав
	функцию $sing(a)$ равную $sing(a) = -1$ при $a < 0$, $sing(a) =$
	0 при $a = 0$, $sing(a) = 1$ при $a > 0$.
	Даны основание и высота двух равнобедренны трапеций. Найти
10	сумму их периметров. (Определить функцию для расчета периметра
	равнобедренной трапеции по ее основанию и высоте).
	Написать программу определения периметра треугольника,
11	заданного координатами его вершин. Длину стороны определять с
	помощью функции.
	Написать программу определения площади пятиугольника с
	заданными координатами его вершин
12	$(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5)$ как сумму площадей трех
	треугольников. Площадь треугольника, определенную по
	координатам вершин, рассчитать с помощью функции.
13	Даны 8 различных чисел. Определить максимальное из них,
	используя функцию определения максимального из двух чисел.

Задание 2.

№ вар.	Задача
1	Найти все двухзначные простые числа, определив функцию для вычисления простых чисел.
2	Найти значения выражения $\frac{2\cdot 5!+3\cdot 8!}{6!\cdot 4!}$, где n! означает факториал, определив функцию для расчета факториала.
3	Найти площадь прямоугольного треугольника АВС, заданного координатами вершин. Длину стороны определять с помощью функции.
4	Написать программу определения площади шестиугольника с заданными координатами его вершин $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5), (x_6, y_6)$ как сумму площадей четырех треугольников Площадь треугольника, определенную по координатам вершин, рассчитать с помощью функции.
5	Найти сумму цифр двух целых двухзначных чисел а и b, написав функцию определения цифр в числе.
6	Найти значения выражения $sh(x)tg(x+1) - ctg^2(2 + sh(x-1))$, определив функцию $sh(x) = \frac{(e^x - e^{-x})}{2}$. Значение x ввести с экрана.
7	Дан массив <i>т</i> целых чисел. Написать программу определения среднеарифметического этих чисел используя функцию.

№ вар.	Задача
8	Дан массив целых чисел <i>А</i> . Найти суммы положительных и отрицательных элементов массива, используя функцию определения суммы.
9	Рассчитать значение $z = modd(x) - modd(y)$ определив и использовав функцию $modd(a)$ равную $modd(a) = a$ при $a > = 0$, $modd(a) = -a$ при $a < 0$.
10	Треугольник задан координатами его вершин. Определить вид треугольника (равнобедренный, равносторонний, прямоугольный или обычный). Длину стороны определять с помощью функции.
11	В ЭВМ вводятся по очереди данные о росте N учащихся класса. Определить средний рост учащихся в классе, используя функции расчета среднего.
12	Даны два натуральных числа. Найти в каком из них больше цифр, используя функцию определения количества цифр в числе.
13	Написать программу определения площади четырехугольника с заданными координатами его вершин $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$ как сумму площадей двух треугольников. Площадь треугольника, определенную по координатам вершин, рассчитать с помощью функции.
14	Написать программу определения проводника с максимальным сопротивлением, если даны три проводника с удельным сопротивлением r_1, r_2, r_3 и площадью сечения s_1, s_2, s_3 , используя функцию расчета сопротивления проводника.

Задание 3.

№ вар.	Задача
1	Даны основания и высоты двух равнобедренных трапеций. Найти сумму их периметров. (Определить функцию для расчета периметра равнобедренной трапеции по ее основаниям и высоте.)
2	Даны три квадратных уравнения: $ax^2 + bx + c$, $bx^2 + ax + c$, $cx^2 + bx + a$. Сколько из них имеют вещественные корни? (Определить функцию, позволяющую распознавать наличие вещественных корней в квадратном уравнении.)
3	Найти периметр треугольника, заданного координатами своих вершин. (Определить функцию для расчета длины отрезка по координатам его вершин.)
4	Даны две последовательности целых чисел: $a_1, a_2, a_3, \dots, a_8$ и $b_1, b_2, b_3, \dots, b_8$. Найти количество четных чисел в первой из них и количество нечетных во второй. (Определить функцию, позволяющую распознавать четные числа.)

№	
вар.	Задача
5	Даны натуральное число n и целые числа $a_1, a_2, a_3, \dots, a_n$. Найти количество чисел a_i ($i=1,2,\dots,n$), являющихся полными квадратами. (Определить функцию, позволяющую распознавать полные квадраты.)
6	Даны натуральное число n и целые числа $a_1, a_2, a_3,, a_n$. Найти количество чисел a_i ($i=1,2,,n$), являющихся степенями пятерки. (Определить функцию, позволяющую распознавать степени пятерки.)
7	Найти все трехзначные простые числа. (Определить функцию, позволяющую распознавать простые числа.)
8	Два простых числа называются "близнецами", если они отличаются друг от друга на 2 (таковы, например, числа 41 и 43). Напечатать все пары чисел-"близнецов", не превышающих число 200. (Определить функцию, позволяющую распознавать простые числа.)
9	Даны шесть различных чисел. Определить максимальное из них. (Определить функцию, находящую максимум из двух различных чисел.)
10	Даны натуральные числа а и b. Найти их наименьшее общее кратное. (Определить функцию для расчета наибольшего общего делителя двух натуральных чисел, используя алгоритм Евклида.)
11	Даны два натуральных числа. Выяснить, в каком из них сумма цифр больше. (Определить функцию для расчета суммы цифр натурального числа.)
12	Даны два натуральных числа. Выяснить, в каком из них больше цифр. (Определить функцию для расчета количества цифр натурального числа.)
13	Получить все шестизначные счастливые номера. Счастливым называют такое шестизначное число, в котором сумма его первых трех цифр равна сумме его последних трех цифр. (Определить функцию для расчета суммы цифр трехзначного числа.)
14	Даны два натуральных числа. Выяснить, является ли хоть одно из них палиндромом ("перевертышем"), т. е. таким числом, десятичная запись которого читается одинаково слева направо и справа налево. (Определить функцию, позволяющую распознавать числапалиндромы.)

Задание 4* (не обязательное).

№ вар.	Задача
1	Описать рекурсивные функции Fact(N) и Fact2(N) вещественного
1	типа, вычисляющие значения факториала N! и двойного
	факториала $N!!$ соответственно ($N > 0$ — параметр целого типа). С

	помощью этих функций вы числить факториалы и двойные
	факториалы пяти данных чисел. Описать рекурсивную функцию $PowerN(x,n)$ вещественного типа,
	находящую значение п-й степени числа х по формуле:
2	$x_0 = 1$; $x_n = x \cdot x_{n-1}$ при $n > 0$; $x_n = \frac{1}{x_{n-1}}$, при $n < 0$.
	С помощью этой функции найти значения x_n при 5 различных значениях n для данного x .
3	Описать рекурсивную функцию $\operatorname{Sqrt} K(x,k,n)$ вещественного типа, находящую приближенное значение корня k-й степени из числа х по формуле: $y_0 = 1; \ y_{n+1} = y_n - \frac{y_n - \frac{x}{y_n} k - 1}{k}, \text{ где } y_n \text{ обозначает } \operatorname{Sqrt} K(x,k,n) \ (x-1)$ вещественный параметр, k и $n-1$ целые; $x>0, k>1, n>0$. С помощью этой функции найти приближенные значения корня K -й степени из X при K различных значениях K для данных K и K .
4	Описать рекурсивную функцию FibRec(N) целого типа, вычисляющую N -е число Фибоначчи $F(N)$ по формуле: $F(1) = F(2) = 1$, $F(k) = F(k-2) + F(k-1)$, $k = 3, 4,$ С помощью этой функции найти пять чисел Фибоначчи с указанными номерами и вывести эти числа вместе с количеством рекурсивных вызовов функции FibRec, потребовавшихся для их нахождения.
5	Описать рекурсивную функцию $C(m,n)$ целого типа, находящую число сочетаний из п элементов по m, используя формулу: $C(0,n) = C(n,n) = 1$, $C(m,n) = C(m,n-1) + C(m-1,n-1)$ при $0 < m < n$ (m и n — целые параметры; $n > 0$, $0 <= m <= n$). Дано число N и пять различных значений M . Вывести числа $C(M,N)$ вместе с количеством рекурсивных вызовов функции C , потребовавшихся для их нахождения.
6	Описать рекурсивную функцию $NOD(A,B)$ целого типа, находящую наибольший общий делитель двух натуральных чисел A и B, используя алгоритм Евклида: $NOD(A,B) = NOD(B \text{ mod } A,A)$, если $A \Leftrightarrow 0$; $NOD(0,B) = B$. С помощью этой функции найти наибольшие общие делители пар A и B, A и C, A и D, если даны числа A, B, C, D.
7	Описать рекурсивную функцию MinRec(A,N) вещественного типа, которая находит минимальный элемент вещественного массива A размера N, не используя оператор цикла. С помощью функции MinRec1 найти минимальные элементы массивов A, B, C размера NA, NB, NC соответственно.
8	Описать рекурсивную функцию Digits(S) целого типа, находящую количество цифр в строке S без использования оператора цикла. С помощью этой функции найти количество цифр в данных пяти строках.

9	Описать рекурсивную функцию Simm(S) логического типа,
	проверяющую, является ли симметричной строка S, без
	использования оператора цикла. С помощью этой функции
	проверить данные пяти строк.
12	Описать рекурсивную функцию Root (a, b, ε), которая методом
	деления отрезка пополам находит с точностью є корень уравнения
12	$f(x) = 0$ на отрезке [a, b] (считать, что $\varepsilon > 0$, a < b, f(a) - f(b) < 0 и
	f(x) — непрерывная и монотонная на отрезке [a, b] функция).
	Описать функцию min(X) для определения минимального
13	элемента линей ного массива X, введя вспомогательную
13	рекурсивную функцию minl(k), находящую минимум среди
	последних элементов массива X, начиная с k-го.
14	Составить программу для нахождения числа, которое образуется
	из данного натурального числа при записи его цифр в обратном
	порядке. Например, для числа 1234 получаем результат 4321.