Sampling Alignment Structure under a Bayesian Translation Model

John DeNero Alexandre Bouchard-Côté Dan Klein

Input:

Gracias, lo haré de muy buen grado. Thank you, I shall do so gladly.

Input:

Gracias, lo haré de muy buen grado. Thank you, I shall do so gladly.

First, we learn word alignments,

Thank you, I shall do so gladly.

Gloss

Gracias Thanks

that

haré do [fir

do [first; future]

of

very

good

degree

Input:

Gracias, lo haré de muy buen grado. Thank you, I shall do so gladly.

First, we learn word alignments,

then we infer aligned phrases.

Thank you , I shall do so gladly .

Gloss

Gracias **Thanks**

that

do [first; future]

of

very

good

degree

Input:

Gracias, lo haré de muy buen grado. Thank you, I shall do so gladly.

First, we learn word alignments,

then we infer aligned phrases.

Thank you, I shall do so gladly.

Gloss

Gracias Thanks

that

do [first; future]

of

very

good

degree

E: Thank you , I shall do so gladly .

F: Gracias , lo haré de muy buen grado .

1 2 3 4 5 6 7 8 9

E: Thank you , I shall do so gladly .

Model Parameters

Emissions: $P(F_1 = Gracias \mid E_{A_1} = Thank)$ Transitions: $P(A_2 = 3 \mid A_1 = 1)$

Model Parameters

Emissions: $P(F_1 = Gracias \mid E_{A_1} = Thank)$ Transitions: $P(A_2 = 3 \mid A_1 = 1)$

Model Parameters

Emissions: $P(F_1 = Gracias \mid E_{A_1} = Thank)$ Transitions: $P(A_2 = 3 \mid A_1 = 1)$

Model Parameters

Emissions: $P(F_1 = Gracias | E_{A_1} = Thank)$ Transitions: $P(A_2 = 3 | A_1 = 1)$

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

Thank you, I shall do so gladly.

Gloss

Gracias Thanks

lo that

haré do [first; future]

of

very

good

grado degree

.

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

Thank you, I shall do so gladly.

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

Thank you, I shall do so gladly.

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

Thank you , I shall do so gladly .

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

A sampled phrase alignment (our system)

Thank you, I shall do so gladly.

Thank you , I shall do so gladly .

A real word alignment (GIZA++ Model 4 with grow-diag-final combination)

A sampled phrase alignment (our system)

I shall do so gladly . Thank you

Thank you

, I shall do so gladly .

Gracias

The Challenge:

Train models that explicitly align phrases, not just words

The Challenge:

Train models that explicitly align phrases, not just words

The Challenge:

Train models that explicitly align phrases, not just words

A statistical phrase alignment model

Statistical word alignment

The Challenge:

Train models that explicitly align phrases, not just words

A statistical phrase alignment model

Statistical word alignment

Phrases from word alignments are better than learned phrases

The Challenge:

Train models that explicitly align phrases, not just words

A statistical phrase alignment model

Statistical word alignment

Phrases from word alignments are better than learned phrases

Constrain phrase alignment inference with word alignments

The Challenge:

Train models that explicitly align phrases, not just words

A statistical phrase alignment model

Our goal today: Correct inference & a better model

Statistical word alignment

Phrases from word alignments are better than learned phrases

Constrain phrase alignment inference with word alignments

Process for generating a sentence pair:

Process for generating a sentence pair:

Choose number of phrase pairs

Process for generating a sentence pair:

日本 冻结 Japan to freeze 提供 援助 aid 向 俄 to Russia

Choose number of phrase pairs

Generate each phrase pair

Process for generating a sentence pair:

日本 冻结 Japan to freeze 提供 援助 aid 向 俄 to Russia

Choose number of phrase pairs

Generate each phrase pair

Keep the English order

Japan to freeze aid to Russia

Process for generating a sentence pair:

日本 冻结 Japan to freeze 提供 援助 aid 向 俄 to Russia

Choose number of phrase pairs

Generate each phrase pair

Keep the English order

Reorder the Chinese phrases

Japan to freeze aid to Russia

Process for generating a sentence pair:

Choose number of phrase pairs

Generate each phrase pair

Keep the English order

Reorder the Chinese phrases

日本 冻结 Japan to freeze 提供 援助 aid

向 俄 to Russia

日本 冻结 向 俄 提供 援助

Japan to freeze aid to Russia

Process for generating a sentence pair:

Choose number of phrase pairs

Generate each phrase pair

Keep the English order

Reorder the Chinese phrases

日本 冻结 Japan to freeze 提供 援助 aid

向 俄 to Russia

日本 冻结 向 俄 提供 援助

A phrase-aligned sentence pair (a list of phrase pairs and a permutation)

Estimating Model Parameters

A phrase-aligned sentence pair a is a list of phrase pairs $\langle e,f \rangle$ and a permutation σ_a .

Estimating Model Parameters

A phrase-aligned sentence pair a is a list of phrase pairs $\langle e,f \rangle$ and a permutation σ_a .

$$P(a) = \prod_{\langle e, f \rangle \in a} \phi(\langle e, f \rangle) \cdot \delta(\sigma_a)$$

Estimating Model Parameters

A phrase-aligned sentence pair a is a list of phrase pairs $\langle e,f \rangle$ and a permutation σ_a .

$$P(a) = \prod_{\langle e, f \rangle \in a} \phi(\langle e, f \rangle) \cdot \delta(\sigma_a)$$

Maximum likelihood: choose ϕ to maximize the probability of the training corpus:

$$\max_{\phi} \prod_{(\mathbf{e},\mathbf{f})} \left[\sum_{a \text{ for } (\mathbf{e},\mathbf{f})} \prod_{\langle e,f \rangle \in a} \phi(\langle e,f \rangle) \cdot \delta(\sigma_a) \right]$$

Japan	to freeze	aid	to	Russia	. •		Gloss
						日本	Japan
						冻结	freeze
						向	to
						俄	Russia
						提供	supply
						援助	assistance
						0	0

Japan to freeze aid to Russia .		<u>Gloss</u>
	日本	Japan
	冻结	freeze
	向	to
	俄	Russia
	提供	supply
	援助	assistance
	0	0

Japan to freeze aid to Russia . <u>Gloss</u> 日本 Japan freeze 向 to Russia supply 援助 assistance

$$\max_{\phi} \prod_{(\mathbf{e},\mathbf{f})} \left[\sum_{a \text{ for } (\mathbf{e},\mathbf{f})} \prod_{\langle e,f \rangle \in a} \phi(\langle e,f \rangle) \cdot \delta(\sigma_a) \right]$$

0

Japan to freeze aid to Russia .

日本 Japan 东结 freeze
向 to
俄 Russia
提供 supply
援助 assistance

$$\max_{\phi} \prod_{(\mathbf{e},\mathbf{f})} \left[\sum_{a \text{ for } (\mathbf{e},\mathbf{f})} \prod_{\langle e,f \rangle \in a} \phi(\langle e,f \rangle) \right] \cdot \delta(\sigma_a)$$

0

We Need a Prior over Phrase Pairs

Japan to freeze aid to Russia . <u>Gloss</u> 日本 Japan freeze 向 to 俄 Russia supply 援助 assistance 0

$$\max_{\phi} \left[\mathbf{P}(\phi) \cdot \prod_{(\mathbf{e}, \mathbf{f})} \left[\sum_{a \text{ for } (\mathbf{e}, \mathbf{f})} \prod_{\langle e, f \rangle \in a} \phi(\langle e, f \rangle) \cdot \delta(\sigma_a) \right] \right]$$

Our Prior, in Brief

A Dirichlet Process Prior that

- Strongly prefers shorter phrases (base distribution)
- Strongly prefers to reuse phrases (concentration)
- Plays nicely with our sampler (collapsed Gibbs)

Observed phrase pair sizes

Initial phrase alignment

Initial phrase alignment

Stochastically apply local edit operators

Initial phrase alignment

Stochastically apply local edit operators

Initial phrase alignment

Stochastically apply local edit operators

As samples are generated:

- Track phrase pair counts for current sample
- Average phrase alignment counts over all samples

Procedure:

Choose a position

- Choose a position
- List all outcomes

- Choose a position
- List all outcomes

- Choose a position
- List all outcomes

Procedure:

- Choose a position
- List all outcomes
- Compute posteriors

$$P(boys, -) \cdot P(the, ellos)$$

 $P(the\ boys, ellos)$

- Choose a position
- List all outcomes
- Compute posteriors
- Choose an outcome

 $P(boys, ellos) \cdot P(the, -)$

 $P(boys, -) \cdot P(the, ellos)$

 $P(the\ boys, ellos)$

Procedure:

- Choose a position
- List all outcomes
- Compute posteriors
- Choose an outcome
- Update statistics

 $P(\cdot|state) \propto egin{array}{c} P(boys,ellos) \\ P(the,-) \end{array}$

 $P(boys, -) \cdot P(the, ellos)$

 $P(the\ boys, ellos)$

The Flip Operator Configurations

Translation performance in a phrase-based system (Moses) for English-Spanish parliamentary proceedings (Europarl)

^{*} Includes additional lexical features to discourage undesirable phrase pairs

Translation performance in a phrase-based system (Moses) for English-Spanish parliamentary proceedings (Europarl)

5 4 3 2 I 0 28 29 30 3I

Millions of phrase pairs

BLEU score

^{*} Includes additional lexical features to discourage undesirable phrase pairs

Translation performance in a phrase-based system (Moses) for English-Spanish parliamentary proceedings (Europarl)

^{*} Includes additional lexical features to discourage undesirable phrase pairs

Translation performance in a phrase-based system (Moses) for English-Spanish parliamentary proceedings (Europarl)

Millions of phrase pairs

BLEU score

^{*} Includes additional lexical features to discourage undesirable phrase pairs