Problem Set 13

Partial Solutions: We Assume you will never share these!

Apologies for typos! Let me know if you catch any! (Gotta catch-em all!)

1.) Using the new existential intro and elimination rules, we show that $\sim(\forall x) P \vdash_{QND^*} (\exists x) \sim P$:

1	$\sim (\forall x) P$:PR
2	$(\forall x) \sim \sim P$:AS for \sim I
3	$\sim (\forall x) \sim P$:AS for \sim E
4	$ (\exists x) \sim P$:3 ∃I
5	$\sim (\forall x) \sim P$:4 ∃E
6	$(\forall x) \sim P$ $(\forall x) \sim P$:2 R
7	$(\forall x) \sim P$:3–6 ~E
8	$\sim P[a/x]$:7 ∀E
9	$ \begin{array}{c c} \sim P[a/x] \\ \sim P[a/x] \end{array} $	$:2 \forall E$
10	$\sim (\forall x) \sim \sim P$:2−9 ~I
11	$(\exists x) \sim P$:10 ∃I

- 4. In the cases of soundness for SND and QND, we were able to define derivability for infinitely-many premises as follows: Θ is SND-derivable from Γ provided there is an SND derivation:
 - 1.) whose starting premises Δ are a finite subset of Γ
 - 2.) in which Θ appears on its own in the final line
 - 3.) where Θ is directly next to the main scope line, i.e. only in the scope of the Δ -premises

In this case, we write $\Gamma \vdash_{SND} \Theta$ (also: $\Delta \vdash_{SND} \Theta$)

If no such derivation exists, then we say that Θ is NOT SND-derivable from Γ , and we write $\Gamma \nvdash_{SND} \Theta$. Notice how "not-SND-derivable" is the negation of "SND-derivable."

Now, going back to trees, recall that in this case, "tree-invalid" was not the negation of "tree-valid."

Tree-valid: $\Gamma \cup \{\sim \Theta\}$ is *tree-inconsistent*: There is at least one tree with this set as the root such that *all branches close*

Tree-invalid: $\Gamma \cup \{\sim \Theta\}$ is *tree-consistent*: There is at least one tree with this set as the root such that there is a complete open branch (i.e. all wffs have been resolved and no contradictory pairs appear on this branch)

Our proofs of soundness proceeded by proving the contrapositive:

Soundness: If $\Gamma \nvDash \Theta$, then $\Gamma \nvDash_{STD} \Theta$. Where here, " $\Gamma \nvDash_{STD} \Theta$ " means that it is not the case that the argument from Γ to Θ is **tree-valid**.

- \triangleright i.e., it is not the case that there exists a tree with root $\Gamma \cup \{\sim \Theta\}$ that possesses all closed branches
- \triangleright Equivalently: ANY tree with root $\Gamma \cup \{\sim \Theta\}$ possesses at least one complete open branch
- ▶ (Aside: this is NOT the same as saying that the argument is **tree-invalid**, since that only requires the existence of a single tree with a complete open branch)

So it seems like the obvious way to modify these definitions for infinite premise sets would be the following:

Tree-valid: for infinite Γ , $\Gamma \cup \{\sim \Theta\}$ is *tree-inconsistent* provided there is at least one finite subset $\Delta \subset \Gamma$ such that there is at least one tree with this set Δ as the root such that *all branches close*.

Tree-invalid: for infinite Γ , $\Gamma \cup \{\sim \Theta\}$ is *tree-consistent* provided there is at least one finite subset $\Delta \subset \Gamma$ such that there is at least one tree with this set Δ as the root such that there is a complete open branch.

At least one issue we run into: with these definitions, many arguments with infinite premise sets will be both tree-valid and tree-invalid: we can choose different finite subsets Δ that respectively have the properties above.

Following the above idea, for infinite Γ , **not-tree-valid**, i.e. $\Gamma \nvdash_{STD} \Theta$ amounts to the following: there exists at least one finite subset $\Delta \subset \Gamma$ such that it is not the case that there exists a tree with root $\Delta \cup \{\sim\Theta\}$ that possesses all closed branches. Equivalently, this means that for some finite $\Delta \subset \Gamma$, ANY tree with root $\Delta \cup \{\sim\Theta\}$ possesses at least one complete open branch.

So then for infinite Γ , it would suffice to find a single finite subset Δ such that any tree with root $\Delta \cup \{\sim\Theta\}$ possesses a complete open branch. However, it will often be trivial to find such a Δ , simply by taking Δ small enough. Provided there is at least one wff in Γ that is not logically equivalent to the conclusion Θ , we can take that one wff as our Δ and the resulting tree with root $\Delta \cup \{\sim\Theta\}$ will possess a complete open branch.

Hence, we would be led to say that an infinite premise set containing $\{P, P \supset Q\}$ is not-tree-valid for conclusion Q, since we can take finite subset Δ to simply be $\{P \supset Q\}$ and note that all trees with root $\{P \supset Q\} \cup \{\sim Q\}$ have a complete open branch.

Of course, an infinite premise set containing $\{P, P \supset Q\}$ would ALSO count as tree-valid, since the finite subset $\Delta' := \{P, P \supset Q\}$ leads to a root $\Delta \cup \{\sim \Theta\}$ such that all branches close on this tree.

Alternative idea that actually could work: for infinite Γ , define **not-tree-valid**, i.e. $\Gamma \nvdash_{STD} \Theta$ as follows: for ALL finite subsets $\Delta \subset \Gamma$, ANY tree with root $\Delta \cup \{\sim \Theta\}$ possesses a complete open branch.