

# COMP810 - Data Warehousing and Big Data

Lab 5: SQL DDL commands

After completing this lesson, you should be able to do the following:

- Promote understanding of table creation.
- Promote understanding of table relationships and referential integrity.

#### Task 1:

1- Create a table name **student** with the following attributes

| Name            | Null     | Туре          |
|-----------------|----------|---------------|
| Student_no (PK) |          | Number (4)    |
| Student_name    | Not null | Varchar2 (20) |
| Student_address |          | Varchar2 (50) |

### 2- Create a table name *course* with the following attributes

| Name           | Null     | Туре          |  |
|----------------|----------|---------------|--|
| Course_no (PK) |          | Number (2)    |  |
| Course_name    | Not Null | Varchar2 (20) |  |
| Course_details |          | Varchar2 (50) |  |

### 3- Create a table name *grade* with the following attributes

| Name                 | Null     | Туре       |  |
|----------------------|----------|------------|--|
| Student_no (PK) (FK) |          | Number (4) |  |
| Course_no (PK) (FK)  |          | Number (2) |  |
| Grade                | Not null | Number (3) |  |

Note that "grade" table contain a composite primary key of (student\_no, course\_no). However, each of these attributes "individually" is a foreign key.

4- Identify the relationship type (1:1, 1:M, M:N) among the three tables above and create the necessary constraints to join them.



# COMP810 - Data Warehousing and Big Data

### Lab 5: SQL DDL commands

Task 2: Map the given conceptual model into internal model using CREATE and ALTER commands. Apply all foreign keys using ALTER command.



- \* → Not Null Constraint
- P → Primary key
- F → Foreign key