第1章 质点运动学

1-1 一质点在平面上运动,已知质点位置矢量的表示式为 $r = at^2 i + bt^2 j$ (其中 $a \setminus b$ 为常

(B) 变速直线运动

量),则该质点作().

(A) 匀速直线运动

	(C) 抛物线运动	(D) 一般曲线运动
1 – 2	质点做半径为 R 的变速圆周运动时的加	□速度大小为()(v表示任一时刻质点
	的速率).	
	(A) $\frac{\mathrm{d}v}{\mathrm{d}t}$	$(B)\frac{v^2}{R}$
	(C) $\frac{dv}{dt} + \frac{v^2}{R}$	(D) $\left[\left(\frac{\mathrm{d}v}{\mathrm{d}t} \right)^2 + \left(\frac{v^4}{R^2} \right) \right]^{1/2}$
	di I	
1 - 3	一质点在平面上做一般曲线运动,其瞬间	付速度为 v, 瞬时速率为 v, 某一时间内的平
	均速度为 v,平均速率为 v,它们之间的美	关系必定有().
	(A) $ v = v$, $ \bar{v} = \bar{v}$	(B) $ v \neq v$, $ \bar{v} = \bar{v}$
	$(C) v \neq v, \bar{v} \neq \bar{v}$	(D) $ \mathbf{v} = v, \bar{\mathbf{v}} \neq \bar{v}$
1 – 4		为 $x = 6t^2 - 2t^3$, x 单位为 m, t 单位为 s. 则:
	(1) 第 2s 内的平均速度为	
	(2) 第 3s 末的速度为m/	
	(3) 第 1s 末的加速度为r	
	(4) 这物体所做运动的类型为	·

- 1-5 一质点在 xOy 平面内运动,其运动方程为以下 5 种可能:
 - (1) x=t, y=19-2/t;
 - (2) x=2t, y=19-3t;
 - (3) $x = 3t, y = 17 4t^2$;
 - (4) $x = 4\sin 5t, y = 4\cos 5t$;
 - (5) $x = 5\cos 6t, y = 6\sin 6t$.

那么表示质点做直线运动的方程是______,做圆周运动的方程是______,做椭圆运动的方程是_____,做抛物线运动的方程是_____,做双曲线运动的方程是_____.

- **1-6** 两辆车 A、B 在同一公路上做直线运动,方程分别为 $x_A = 4t + t^2$, $x_B = 2t^2 + 2t^3$,若同时发车,则刚离开出发点时,行驶在前面的车是_____,出发后两车行驶距离相同的时刻是_____,B 车相对 A 车速度为零的时刻是_____.
- 1-7 一质点沿x 轴做匀加速直线运动,加速度为定值a,试导出:
 - (1) 速度与时间的关系;
 - (2) 路程与时间的关系;
 - (3) 速度与路程的关系.

- **1-8** 质点在 xOy 平面内运动,其运动方程为 $x=10-2t^2$, y=2t.
 - (1) 计算什么时刻其速度与位矢正好垂直?
 - (2) 什么时刻加速度与速度间夹角为 45°?

CUGP

1-9 在与速率成正比的阻力影响下,一个质点具有加速度 a = -0.2v,求需多长时间才能使质点的速率减小到原来速率的一半?

- **1-10** 质点做半径为 R 的圆周运动,速率与时间的关系为 $v=ct^2$ (式中 c 为常数,t 以秒 计),求:
 - (1) 0 到 t 时刻质点走过的路程;
 - (2) t 时刻质点加速度的大小.

CUGP

1-11 离水面高为 h 的岸边,有人用绳拉船靠岸,船在离岸 s 处,如图所示,当人以 v_0 恒定的速率收绳时,试求船的速度和加速度的大小.

- **1-12** 质点沿半径为 0.10m 的圆做圆周运动,其角位置 θ 随时间 t 的变化规律是 $\theta = 2 + 4t^2$ (SI),求:
 - (1)什么时刻切向加速度与法向加速度的大小相等?
 - (2)从 t=0 到上述时刻内,质点行驶的路程为多少?

CUGP

- 1-13 一气球以匀速率 v_0 从地面上升,由于风的影响,它获得了一个水平速度 $v_x = by(b)$ 为常量,y 为上升高度),以气球出发点为坐标系原点,向上为 y 轴正向,水平沿风向为 x 轴正向,求:
 - (1)气球的运动方程;
 - (2)气球的轨迹方程.

1-14 当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为 30°;当火车以 35m/s 的速度沿水平直路行驶时,发现雨滴下落方向偏向车尾,偏角为 45°. 假设雨滴相对于地的速度保持不变,试计算雨滴相对地的速度大小.

CUGP

*1-15 一人骑车以 10km/h 的速率自东向西运动时,看见雨滴垂直落下,当他的速率增加到 20km/h 时,看见雨滴与他行进的方向成 135°角下落,求雨滴对地的速度.