JP2000063682

Title: RESIN COMPOSITION CONTAINING RARE EARTH COMPLEX, AND MOLDED ITEM

Abstract:

PROBLEM TO BE SOLVED: To obtain a resin compsn. excellent in luminous characteristics by incorporating a rare earth complex into a polymer matrix. SOLUTION: This compsn. comprises 0.001-20 wt.% rare earth complex and 99. 999-80 wt.% polymer (e.g. a polymethacrylate). This compsn. in an amt. of 100 pts.wt. can be mixed with 0-2,000 pts.wt. polar solvent (e.g. dimethyl sulfoxide). The rare earth complexes represented by formulas I, II, and III are prepd. by mixing the corresponding ligands with at least one rare earth metal compd. selected from rare earth metal oxides, rare earth metal hydroxides, rare earth metal alkoxides, rare earth metal amides, and rare earth metal salts, In the formulas, M is a rare earth atom; Rf1 to Rf3 are each a hydrogen-free 1-22C aliph. group, an arom. group or the like; X1 and X2 are each a group-IVA atom, a group-VA atom (except nitrogen) or the like; Y is C-Z1 (wherein Z1 is dertorium, halogen or the like), N, P or the like; n1 is 2 or 3; n2 is 2-4; and n5 is 0, 1 or the like.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-63682

(P2000-63682A)

(43)公開日 平成12年2月29日(2000.2.29)

(51) Int.Cl. ⁷	職別記号	FI	.		テーマコート*(参考)
C08L 101/00		CO8L 101/	/00		4J002
C08K 5/00		C08K 5	/00		
C08L 23/00		CO8L 23/	/00		
25/00	•	25,	/00		
33/00		33,	/00		
	審査請求	未請求 請求項(の数10 OL	(全 17 頁)	最終頁に続く
(21) 出願番号	特顏平10-238973	(71)出廣人	000191250		
			新日本理化株式	会社	
(22) 出顧日	平成10年8月25日(1998.8.25)		京都府京都市伏	見区葭島矢	倉町13番地
		(72)発明者	長谷川 靖哉		
			京都府京都市伏	見区葭島矢	倉町13番地 新
			日本理化株式会	社内	
		(72)発明者	曽我部 健作		
			京都府京都市伏	見区葭島矢	合町13番地 新
			日本理化株式会	社内	
		(74)代理人	100065215		
			弁理士 三枝	英二 (外	10名)
					最終質に舒

(54) 【発明の名称】 希土頻錯体を含む樹脂組成物及び成形体

(57)【要約】

【課題】希土類錯体をポリマーマトリックス中に含む組成物及び光機能材料を提供する。

【解決手段】一般式(I):

【化1】

〔式中、M、n1、n2、R f 1 、R f 2 、X 1 、X 2 、n3 n4 及びYは、明細書で定義された通りである。〕で表される希土類錯体をポリマーマトリクス中に含む組成物。

【特許請求の範囲】

【請求項1】 一般式([):

[化1]

$$M^{nl+} \begin{cases} O - X & O \\ O - X^2 & O \\ O - X^2 & O \end{cases} = \begin{pmatrix} O \\ O \\ Rf^2 \end{pmatrix} = \begin{pmatrix} O \\ O \\ Sf^2 \end{pmatrix}$$

1

【式中、Mは希土類原子を示し、n1は2または3を示す。n2は2、3または4を示す。Rf¹およびRf²は、同一又は異なって水素原子を含まない $C_1 \sim C_{22}$ の脂肪族基、水素原子を含まない芳香族基または水素原子を含まない方香族基または水素原子を含まない方香族基または水素原子を含まないってIVA族原子、窒素を除くVA族原子、酸素を除くVIA族原子のいずれかを示し、n3及びn4は、V1を示す。V1は、V2 は重水素、V1 は重水素、V1 に V3 に V4 に V5 に V5 に V6 に V7 に V6 に V7 に V7 に V7 に V8 に V9 に

[12]

$$M^{nl^{+}} \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ R^{3} \end{array} \right\}_{n5} (II)$$

[式中、M、 n_1 及び n_2 は前記に定義された通りである。R f 3 は水素原子を含まない $C_1 \sim C_{12}$ の脂肪族基、水素原子を含まない芳香族基または水素原子を含まないヘテロ環基を示し;X 3 は、炭素を除くVA族原子、窒素を除くVA族原子、酸素を除くVA族原子、の5は0又は1を示す。1 で表される希土類錯体をポリマーマトリクス中に含む組成物。

【請求項2】極性溶媒をさらにポリマーマトリクス中に 含む請求項1に記載の組成物。

【請求項3】希土類錯体が一般式(III): 【化3】

$$M^{nl+} \begin{cases} O & R^{l} \\ O & R^{2} \end{cases}$$
 (III)

〔式中、M、R f 1 、R f 2 、n1及びn2は前記に定義された通りである。〕で表される錯体である請求項1 または 50

2 に記載の組成物。

【請求項4】希土類錯体が一般式(IV):

[化4]

$$M^{nl+} \begin{cases} O & R^{l} \\ O & S & O \\ O & S & O \\ R^{2} & D & n2 \end{cases}$$
 (IV)

〔式中、M、R f 1 、R f 1 、n1及Un2は前記に定義された通りである。〕で表される錯体である請求項1 または2 に記載の組成物。

【請求項5】希土類錯体が一般式(V):

[化5]

$$M^{nl+} \left\{ \begin{array}{c} & \\ & \\ \\ & \\ \end{array} \right\}_{n2} (V)$$

〔式中、M、R f 1 、R f 2 、n1、n2及びZ 2 は前記に定義された通りである。〕で表される錯体である請求項1 または2 に記載の組成物。

【請求項6】一般式(VI)

[1L6]

30

$$M^{al^{+}} \left\{ \begin{array}{c} & \\ & \\ \\ & \\ \end{array} \right\}_{n2}^{(VI)}$$

40 【請求項7】極性溶媒がDMSO-d。である請求項2 ~6のいずれかに記載の組成物。

【請求項8】ボリマーマトリクスが、ボリメチルメタクリレート、含フッ素ボリメタクリレート、ボリアクリレート、含フッ素ボリアクリレート、ボリスチレン、ボリエチレン、ボリプロピレン、ボリブテン等のボリオレフィン、ボリビニルエーテル、含フッ素ボリビニルエーテル及びそれらの共重合体、エボキシ樹脂、ナフィオンからなる群から選ばれる請求項1~7のいずれかに記載の組成物。

【請求項9】請求項1~8のいずれかに記載の組成物を

含む光機能材料。

【請求項10】請求項 $1\sim8$ のいずれかに記載の組成物を含んでなる成形体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、希土類錯体をポリマーマトリクス中に含む組成物に関する。本発明の組成物は、光ファイバー、発光材料、レンズなどの光機能材料として、さらには発光性形成材料として好適である。 【0002】

【従来の技術およびその課題】電子材料の開発は目覚ましく、オブトエレクトロニクスの分野で、光機能材料の開発が多数行われている。例えば、レーザー光線用電子デバイスとして、ネオジムを含むガラスが実用化されているが、その製造及び加工が難しく、製造費が高いため用途が限られている。

【0003】特開昭64-26583号には、発光性を有するポリマー組成物として、チオフェンおよびCF,を置換基として有する β -ジケトン/Eu錯体のアンモニウム塩を含有する樹脂組成物を開示する。

[0004] しかしながら、該樹脂組成物は、発光特性 が満足できるレベルに達していなかった。

【0005】本発明は、発光特性がさらに優れた組成物を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明は、下記の組成物、光機能材料及び成形体に関する。

【0007】項1. 一般式(I):

[0008]

【化7】

$$M^{n1+} \begin{cases} O \longrightarrow X & \text{Rf}^1 \\ O \longrightarrow X & \text{To } 1_{n3} \\ O \longrightarrow X^2 & \text{To } 1_{n4} \\ Rf^2 & \text{Rf}^2 \end{cases}$$
(I)

【0009】〔式中、Mは希土類原子を示し、n1は2または3を示す。n2は2、3または4を示す。Rf¹ およびRf¹は、同一又は異なって水素原子を含まない C_1 ~ 40 C_2 、の脂肪族基、水素原子を含まない芳香族基または水素原子を含まないヘテロ環基を示し: X^1 および X^1 は、同一又は異なってIVA 族原子、窒素を除くVA 族原子、酸素を除くVA 族原子のいずれかを示し、n3及びn4は、0または1を示す。Yは、C-Z'(Z' は重水素、ハロゲン原子または水素原子を含まない C_1 ~ C_2 、の脂肪族基を示す)、N、P、As、Sb 又はBi を示す。但し、 X^1 が炭素原子のときn3は0であり、 X^2 が炭素原子のときn4は0である。

【0010】但し、X'とX'とが同時に炭素原子の場

合、R f¹、R f¹の少なくとも一方は水素原子を含まない芳香族基である。〕;または一般式(II)

[0011]

[1L8]

$$M^{nl^+} \left\{ \begin{array}{c} O \\ O \\ Rf^3 \end{array} \right\}_{n2} (II)$$

【0012】 〔式中、M、n,及びn,は前記に定義された通りである。Rf'は水素原子を含まないC,~C,2の脂肪族基、水素原子を含まない芳香族基または水素原子を含まないヘテロ環基を示し; X'は、炭素を除くIVA族原子、窒素を除くVA族原子、酸素を除くVIA族原子のいずれかを示す。nsは0又は1を示す。〕で表される希土類錯体をボリマーマトリクス中に含む組成物。

【0013】項2. 極性溶媒をさらにポリマーマトリクス中に含む項1に記載の組成物。

【0014】項3. 希土類錯体が一般式(III):

20 [0015]

【化9】

$$M^{n,l+} \left\{ \begin{array}{c} & & \\ & \\ & \\ & \\ \end{array} \right\}_{n,2} (III)$$

【0016】〔式中、M、Rf¹、Rf²、n1及びn2は前 30 記に定義された通りである。〕で表される錯体である項 1または2に記載の組成物。

【0017】項4. 希土類錯体が一般式 (IV):

[0018]

[化10]

$$M^{nl+} \begin{cases} O & Rf^{3} \\ O & S & O \\ O & S & O \\ Rf^{2} & D & n2 \end{cases}$$
 (IV)

【 0 0 1 9 】 〔式中、M、R f ¹、R f ²、n1及びn2は前 記に定義された通りである。〕で表される錯体である項 1または2に記載の組成物。

【0020】項5. 希土類錯体が一般式(V):

[0021]

【化11】

[0022] 〔式中、M、Rf¹、Rf²、n1、n2及び Z'は前記に定義された通りである。〕で表される錯体 である項1または2に記載の組成物。

[0023]項6. 一般式 (VI)

[0024]

[化12]

$$M^{nl+}$$

$$\begin{pmatrix}
0 & R^{nl} \\
0 & Z^{n}
\end{pmatrix}$$
(VI)

【0025】〔式中、M、n,及びn,は前記に定義され 20 た通りである。 Z ''は、水素原子又は Z' (Z' は前記 に同じ)を示す。Rf'及びRf'は、同一又は異なって 水素原子を含まないC,~C,,の脂肪族基、水素原子を 含まない芳香族基または水素原子を含まないヘテロ環基 を示す。〕で表される錯体と極性溶媒との分散ないし懸 濁混合物をポリマーマトリクス中に含む組成物。

【0026】項7. 極性溶媒がDMSO-d。である 項2~6のいずれかに記載の組成物。

【0027】項8. ポリマーマトリクスが、ポリメチ ルメタクリレート、含フッ素ポリメタクリレート、ポリ アクリレート、含フッ素ポリアクリレート、ポリスチレ ン、ポリエチレン、ポリプロピレン、ポリブテン等のポ リオレフィン、ポリビニルエーテル、含フッ素ポリビニ ルエーテル及びそれらの共重合体、エポキシ樹脂、ナフ ィオンからなる群から選ばれる項1~7のいずれかに記 載の組成物。

【0028】項9. 項1~8のいずれかに記載の組成 物を含む光機能材料。

【0029】項10. 項1~8のいずれかに記載の組 成物を含んでなる成形体。

[0030]

【発明の実施の形態】本発明において、RP、RP、R ピ、Rf 及びRf は、同一又は異なって水素原子を含まな いC1~C11の脂肪族基、水素原子を含まない芳香族基 または水素原子を含まないヘテロ環基を示す。

【0031】水素原子を含まないC,~C,,の脂肪族基 としては:

* パーフルオロアルキル基 ($C_n F_{2n+1}$; n=1~2

2)、パークロロアルキル基(C_nCl_{n+1} ; n=1~2

ル基、具体的には、トリクロロメチル、トリフルオロメ チル、ペンタクロロエチル、ペンタフルオロエチル、ヘ プタクロロプロピル、ヘプタフルオロプロピル、ヘプタ クロロイソプロビル、ヘブタフルオロイソプロビル、ノ ナクロロブチル、ノナフルオロブチル、ノナクロロイソ ブチル、ノナフルオロイソブチル、ウンデカクロロペン チル、ウンデカフルオロペンチル、ウンデカクロロイソ ベンチル、ウンデカフルオロイソベンチル、トリデカク ロロヘキシル、トリデカフルオロヘキシル、トリデカク 10 ロロイソヘキシル、トリデカフルオロイソヘキシル、ペ ンタデカクロロヘプチル、ペンタデカフルオロヘプチ ル、ペンタデカクロロイソヘプチル、ペンタデカフルオ ロイソヘプチル、ヘプタデカクロロオクチル、ヘプタデ カフルオロオクチル、ヘブタデカクロロイソオクチル、 ヘプタデカフルオロイソオクチル、ノナデカクロロノニ ル、ノナデカフルオロノニル、ノナデカクロロイソノニ ル、ノナデカフルオロイソノニル、ヘンイコサクロロデ シル、ヘンイコサフルオロデシル、ヘンイコサクロロイ ソデシル、ヘンイコサフルオロイソデシル、トリコサク ロロウンデシル、トリコサフルオロウンデシル、トリコ サクロロイソウンデシル、トリコサフルオロイソウンデ シル、ペンタコサクロロドデシル、ペンタコサフルオロ ドデシル、ペンタコサクロロイソドデシル、ペンタコサ フルオロイソドデシル、ヘプタコサクロロトリデシル、 ヘプタコサフルオロトリデシル、ヘプタコサクロロイソ トリデシル、ヘプタコサフルオロイソトリデシルなど; * パーフルオロアルケニル基 (パーフルオロピニル 基、パーフルオロアリル基、パーフルオロブテニル基 等)、パークロロアルケニル基などの直鎖又は分枝を有 するC、~C、、パーハロゲン化アルケニル基、好ましく は、トリフルオロエチニル、トリクロロエチニル、ペン タフルオロプロペニル、ペンタクロロブロペニル、ヘブ タフルオロブテニル、ヘブタクロロブテニルなど; * パーフルオロアルキニル基、パークロロアルキニル 基などの直鎖又は分枝を有するC、~C、、パーハロゲン 化アルキニル基;

3~22、好ましくは3~8、より好ましくは3~ 6)、パークロロシクロアルキル基(C₀Cl₂₀₋₁; n= 40 3~22、好ましくは3~8、より好ましくは3~6) などのC₃~C₂₂パーハロゲン化シクロアルキル基、好 ましくは、ペンタクロロシクロプロピル、ペンタフルオ ロシクロプロピル、ヘプタクロロシクロブチル、ヘプタ フルオロシクロブチル、ノナクロロシクロペンチル、ノ ナフルオロシクロペンチル、ウンデカクロロシクロヘキ シル、ウンデカフルオロシクロヘキシル、トリデカクロ ロシクロヘプチル、トリデカフルオロシクロヘプチル、 ペンタデカクロロシクロオクチル、ペンタデカフルオロ シクロオクチルなど:

2)などの直鎖又は分枝を有するパーハロゲン化アルキ 50 * パーフルオロシクロアルケニル基 (パーフルオロシ

クロベンテニル基、パーフルオロシクロヘキセニル基な ど)、パークロロシクロアルケニル基などのC,~ Czz、好ましくはC,~C。、より好ましくはC,~C。の パーハロゲン化シクロアルケニル基:及び

* パーフルオロベンジル基、パーフルオロフェネチル 基などのパーハロゲン化アラルキル基が挙げられる。

【0032】「水素原子を含まない芳香族基」の芳香族 基としては、フェニル、ナフチル、アントラニル、フェ ナントリル、ピレニル等を;「水素原子を含まないヘテ ロ環基」のヘテロ環基としてはピリジル、チエニル、ピ 10 ロリル、ピリミジニル、キノリル、イソキノリル、ベン ズイミダゾリル、ベンゾピラニル、インドリル、ベンゾ フラニル、イミダゾリル、ピラゾリル、ピフェニルなど が挙げられ、これら芳香族基及びヘテロ環基の全ての水 素原子は、フッ素原子、塩素原子、臭素原子などのハロ ゲン原子、ニトロ基、C1~C1のパーハロゲン化アルキ ル基 (トリフルオロメチル等)、C₁~C₄のパーハロゲ ン化アルコキシ基(トリフルオロメトキシ等)、C2~ C,のパーハロゲン化アルキルカルボニル基(トリフル オロアセチル等)、C₁~C₄のパーハロゲン化アルキレ 20 ンジオキシ基(ジフルオロメチレンジオキシ等)、C2 ~C。のパーハロゲン化アルケニル基(パーハロゲン化 ビニル等)、パーハロゲン化フェノキシ基、C2~C22 パーハロゲン化アルキルカルボニルオキシなどの水素原 子を含まない置換基で置換されている。水素原子を含ま ない芳香族基の具体例としては、パーフルオロフェニル 基、パークロロフェニル基、パーフルオロナフチル基、 パークロロナフチル基、パーフルオロアントラニル基、 パークロロアントラニル基、パーフルオロフェナントリ ル基、パークロロフェナントリル基が挙げられ、水素原 30 子を含まないヘテロ環基としては、パーハロゲン化2-ピリジル基などが挙げられる。

【0033】前記パーハロゲン化芳香族基、パーハロゲ ン化へテロ環基、パーハロゲン化アラルキル基の芳香環 又はヘテロ環に結合したハロゲン原子の1または2以上 は、シアノ、ニトロ、ニトロソ、C,~C,パーハロゲン 化アルコキシ、C₂~C₃パーハロゲン化アルコキシカル ボニル、C₂~C₂₂パーハロゲン化アルキルカルボニル オキシ等の水素原子を含まない置換基で置換されていて もよい。

【0034】また、C₁~C₂₂パーハロゲン化アルキル 基、C、~C、、パーハロゲン化アルケニル基、C、~C、、 パーハロゲン化アルキニル基の任意の位置のC-C単結 合の間に-〇-、-C〇〇-、-C〇-、を1個または 複数個介在させて、エーテル、エステルまたはケトン構 造としてもよい。

【0035】Mで表される希土類元素としては、La、 Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D y、Ho、Er、Tm、Yb、Luなどのランタン系列 元素が挙げられ、好ましくはNd、Eu、TbおよびY 50 【0049】スキーム1

bが挙げられる。

[0036] X'およびX'は、C、Si、Ge、Sn、 PbなどのIVA族原子、P、As、Sb、Biなどの窒 素を除くVA族原子、S、Se、Te、Poなどの酸素 を除くVIA族原子のいずれかを示し、好ましくはC、 S、PまたはSe、より好ましくはCまたはSを示す。 【0037】X'は、Si、Ge、Sn、PbなどのIV A族原子、P、As、Sb、Biなどの窒素を除くVA 族原子、S、Se、Te、Poなどの酸素を除くVIA族 原子のいずれかを示し、好ましくはSを示す。

8

【0038】YはC-Z'(Z'は前記に同じ)、N、 P、As、SbまたはBi、好ましくはC-Z'(Z' は前記に同じ)、NまたはPを示す。

【0039】Z'は重水素、ハロゲン原子または水素原 子を含まないC、~C、、の脂肪族基、好ましくは重水素 または直鎖又は分枝を有するC₁~C₁₁のパーハロゲン 化アルキル基を示す。

【0040】Z''は、H又はZ'を示す。

【0041】n1は2または3、好ましくは3を示す。

【0042】n2は2~4、好ましくは2または3、特に 3を示す。

【0043】n3、n4、n5は0または1である。特に X¹、X²またはX³がSの時、n3、n4またはn5は1が好 ましく、X'またはX'がCのとき、n3またはn4は0であ

【0044】本発明の錯体には、配位子が2分子、3分 子又は4分子配位可能であるが、4分子配位した錯体 は、少量成分であり、2分子又は3分子の配位子、特に 3分子の配位子が配位した錯体が主要な成分である。

【0045】本発明の配位子は、一般式(I)で示され るように、配位子の2位の水素又は重水素が脱離した1 価アニオンの配位子として通常希土類イオンに配位する が、2位の水素又は重水素が脱離していない中性のジケ トン配位子として配位することもできる。このような中 性のジケトン配位子が配位した錯体も本発明の錯体に包 含される。

【0046】一般式(Ⅰ)で表される希土類錯体のう ち、より好ましい希土類錯体としては、一般式(III)で 表される希土類錯体、一般式(IV)で表される希土類錯 体、一般式(V)で表される希土類錯体、一般式(VI) で表される希土類錯体が挙げられる。

【0047】本発明の組成物に配合される錯体の配位子 は、公知の化合物であるか、公知の化合物から容易に合 成することができ、例えばJournal of Chemical and En gineering Data, Vol.16, No.3, (1971)、および、The Journal of Organic Chemistry, Vol.35, No.4, (1970) などの文献に記載の方法に従い合成できる。

【0048】X¹=X¹=Cである化合物の合成法を、ス キーム1に示す。

【0051】 〔式中、R作及びR代は前記に同じ。Z化水素原子を含まない $C_1 \sim C_2$ 0 の脂肪族基を示す。Xは臭素原子又はヨウ素原子を示し、Z化ハロゲン原子を示す。〕

ケトン化合物(1)をエステル化合物(2)と、溶媒中 塩基の存在下に反応させて一般式(3)の化合物を得 る。反応は、ケトン化合物(1)1モルに対し、エステ ル化合物(2)1~2モル程度、塩基を1モル~過剰量 用い、-78℃から溶媒の還流する温度下に1~24時 間反応させることにより、有利に進行する。塩基として は、ナトリウムアルコキシド、NaH、ブチルリチウ ム、リチウムジイソブロビルアミド(LDA)などが用 いられ、溶媒としては、THF、エーテル等のエーテル の系溶媒、DMF、DMSO、ホルムアミドなどが挙げられる。 【0054】一般式(4)またれる。

【0052】一般式(3)の化合物を溶媒中塩基の存在下にR-Z¹と反応させて、一般式(4)の化合物を得る。反応は、一般式(3)の化合物1モルに対し、R-Z¹を1モル程度、塩基を1モル~過剰量用い、-78℃から溶媒の還流する温度下に1~24時間反応させることにより、有利に進行する。塩基としては、ナトリウムアルコキシド、NaH、ブチルリチウム、LDAなど

が用いられ、溶媒としては、THF、エーテル等のエー テル系溶媒、DMF、DMSO、ホルムアミドなどが挙 20 げられる。

【0053】一般式(3)の化合物を溶媒中塩基の存在下にハロゲン化剤と反応させて、一般式(5)の化合物を得る。反応は、一般式(3)の化合物1モルに対し、ハロゲン化剤を1モル程度用い、氷冷下~室温程度の温度下に30分~5時間反応させることにより、有利に進行する。ハロゲン化剤としては、臭素、塩素などの分子状ハロゲン、Nーブロムコハク酸イミド、Nークロロコハク酸イミドなどが用いられ、溶媒としては、クロロホルム、四塩化炭素、塩化メチレン、アセトン、エーテル THFなどが挙げられる。

【0054】一般式(4)または(5)の化合物は、重水素化メタノール等で処理することにより容易にジケトンの間の水素原子を重水素に置換できる。

【0055】本発明の化合物はまた、以下のスキーム2 に従い合成することもできる。

[0056] <u>Z+-42</u>

[0057]

【化14】

(O)n3 (O)n4 (O)n3 (O)n4
|| || || || || || ||

$$Rf^{1}-X^{3}-F + Rf^{2}-X^{2}-YHNa \rightarrow Rf^{1}-X^{1}-YH-X^{2}-Rf^{2}$$

|| || || || ||
O O O O
(6) (7a) (8)

【0058】〔式中、Rf、Rf、X1、X1、Y及びn3は 前記に同じ。〕

化合物(7)をヘキサメチルジシラザンと反応させてトリメチルシリル(TMS)化(7a)した後、化合物(6)と反応させて目的の一般式(8)の化合物を得る。化合物(7)1モルに対しヘキサメチルジシラザンを1~1.1モル程度、化合物(6)を1モル程度使用し、室温から溶媒の還流する程度の温度下に1~5時間程度反 30応させることにより、反応は有利に進行する。

【0059】一般式(I)~(VI)で表される錯体は、対応する配位子と、希土類金属酸化物、希土類金属水酸化物、希土類金属アルコキシド、希土類金属アミド及び希土類金属塩からなる群から選ばれる少なくとも1種の希土類金属化合物を、例えば溶媒中で混合して製造することができる。

【0060】本発明にかかる希土類錯体は、1種もしくは2種以上の配位子を用いて作成することが可能であり、さらに、錯体を形成する希土類原子は1種もしくは 402種以上の化合物を用いて差し支えない。

【0061】一般式(I)~(VI)で表される希土類錯体の具体的な製造方法は以下の通りである。

【0062】即ち、対応する配位子を溶媒に溶かし、さらに希土類金属化合物(粉末状、顆粒状等の形態を問わない)を加え、室温~100℃の温度下、1時間~100時間程度撹拌する。次いで生成物を晶析或いは液−液抽出等の精製手段を行うことにより希土類錯体を得ることができる。更に、クロロホルム、メタノール等の溶媒を用いて再結晶を行っても差し支えない。

【0063】希土類金属化合物中、希土類金属酸化物と しては、3価であるM,O,(Mは希土類元子を示す。) が挙げられるが、MO、M、O、等の他の形態の酸化物を 使用してもよい。同様に希土類金属水酸化物としてはM (OH) n, が例示され: 希土類金属アルコキシドとして は、M(OR¹) n_a(R¹は、アルキル基)が例示され; 希土類金属アミドとしては、M(NR®R®)、(R®及び R^bは同一又は異なって水素、アルキル、フェニル)が 例示され;希土類金属塩としてはM'*(Z)n,(Zは塩 素イオン、臭素イオン、ヨウ素イオン、フッ素イオン、 1/2硫酸イオン、硝酸イオン、酢酸イオン等のモノカル ボン酸イオン、1/2(シュウ酸イオン、コハク酸イオ ン、マロン酸イオンなどのジカルボン酸イオン)、1/3 (クエン酸などのトリカルボン酸イオン)、1/3リン酸 イオン等の陰イオン)が例示される(n」は前記に定義 された通りである)。

重量部程度が例示され、好ましくは1~20重量部程度 である。

[0065] 一般式(II)の錯体は、上記の希土類金属化合物と公知物質であるR f^3 — X^3 (= O) n5+1 (OH) の当量又は過剰量とを水中で反応させることにより得ることができる。一般式(II)の錯体は、 H_2 Oが配位しやすく、 H_2 Oが配位すると光機能材料としての性質を失うため、一般式(I)の錯体に比べて H_2 Oに対しより不安定である。

[0066] 一般式 (I) ~ (VI) で表される希土類錯 10体を製造するに際し用いられる希土類金属化合物の量としては、相当する配位子 1 当量に対し 1 ~ 1 0 当量であり、好ましくは 1 . 0 5 ~ 3 当量である。また、一般式(II)の希土類錯体も上記と同様の混合比にて製造可能である。

【0067】一般式(1)~(VI)で表される希土類錯体が配位水を含む場合、例えば該錯体のサンブルにMeODまたはD,O等の重水素化溶媒を加え、サンブル/重水素化溶媒を凍結させて真空状態にした後、室温で24時間程度放置し、次いで重水素化溶媒を留去して配位20しているH,OをD,Oに変換することができる。

【0068】本発明の組成物は、希土類錯体をポリマーマトリクスに分散ないし懸濁し、必要に応じてDMSOなどの極性溶媒を添加して製造することができる。

【0069】希土類錯体を分散させるポリマーマトリク スとしては、希土類錯体をブレンドしたときに半透明な いし透明な組成物となるものが好ましく、例えばポリメ タクリレート(PMA)、ポリメチルメタクリレート (PMMA)、ポリ(ヘキサフルオロイソプロピルメタ クリレート) (P-iFPMA)、ポリ(ヘキサフルオ 30 ローnープロピルメタクリレート)(P-nFPMA) 等の含フッ素ポリメタクリレート、ポリアクリレート、 ポリフルオロイソプロビルアクリレートを代表とする含 フッ素ポリアクリレート、ポリスチレン、ポリエチレ ン、ポリプロピレン、ポリブテン等のポリオレフィン、 含フッ素ポリオレフィン、ポリピニルアルコール、ポリ ビニルエーテル、ポリ (ベルフルオロプロポキシ) ビニ ルエーテルを代表とする含フッ素ポリビニルエーテル、 ボリ酢酸ビニル、ボリ塩化ビニルあるいはそれらの共重 合体、セルロース、ポリアセタール、ポリエステル、ポ 40 リカーボネート、エポキシ樹脂、ポリアミド樹脂、ボリ イミド樹脂、ポリウレタン、ナフィオン、石油樹脂、ロ ジン、ケイ素樹脂等が例示され、好ましくは、ポリメチ ルメタクリレート、含フッ素ポリメタクリレート、ポリ アクリレート、含フッ素ポリアクリレート、ポリスチレ ン、ポリエチレン、ポリプロピレン、ポリブテンなどの ポリオレフィン、ポリビニルエーテル、含フッ素ポリビ ニルエーテル及びそれらの共重合体、エポキシ樹脂、ナ フィオンである。これらのポリマーは、目的、用途に応 じて適宜選択すればよい。

【0070】希土類錯体をポリマーへ分散ないし懸濁させる方法としては、特に限定されず、(1)溶融樹脂中に希土類錯体を混合する方法、(2) ポリマー微粉末に希土類錯体を分散させた後、溶融させる方法、(3) モノマーと希土類錯体とをAIBN、過酸化ラウロイル等の重合開始剤を用いて共重合させる方法、(4) 高分子膜作成に有用な、高分子溶液に希土類錯体を混合した後溶媒を除去することによるキャスト法、(5) スピンコート法、(6) 共蒸着法等のいずれも可能である。

14

【0071】本発明の組成物100重量部には、希土類 錯体を0.001~20重量部程度、好ましくは0.1~10重量部程度;ポリマーを99.999~80重量 部程度、好ましくは99.9~90重量部程度を含む。 【0072】希土類錯体をポリマーマトリクス中に含む組成物100重量部に対し、極性溶媒を0~2000重量部、好ましくは0~1000重量部を添加することができる。

【0073】極性溶媒を含有することが可能なポリマーマトリックスとしては一般式(I)~(V)で表される希土類錯体の他に、一般式(VI)で表される希土類錯体が挙げられる。一般式(VI)で表される希土類錯体含有ポリマーは公知のものを含むが、ポリマーマトリクス中に希土類錯体の極性溶媒分散液又は懸濁液を添加することによりその発光強度、量子収率等を大幅に増加させることが可能となる。

【0074】極性溶媒を加える方法としては、特に限定されない。具体的な方法としては、(1)希土類錯体の極性溶媒溶液、懸濁液、或いは分散液をあらかじめ調製し、このものをポリマーマトリックスに混合させる方法、(2)希土類錯体、極性溶媒、ポリマーマトリックスを同時に混合する方法、(3)希土類錯体をポリマーマトリックスと極性溶媒との混合物に加える方法等が挙げられる。

【0075】中でも、希土類錯体の極性溶媒溶液、懸濁液、或いは分散液をあらかじめ調製し(好ましくは極性溶媒の溶液、分散液ないし懸濁液の状態で、0.01~48時間、より好ましくは0.1~6時間放置)、このものをポリマーマトリクス中に混合させる方法が好ましい

【0076】極性溶媒としては、DMSO(ジメチルスルホキシド)、DMF(ジメチルホルムアミド)、ホルムアミド、アセトアミド、HMPA(ヘキサメチルリン酸トリアミド)、ニトロメタンなどの水より誘電率の高い非プロトン性極性溶媒が挙げられ、好ましくはDMSOである。更には、重水素置換された極性溶媒、例えばDMSO-d。がより好ましい。

【0077】本発明の組成物には、その機能を損なわない限り、樹脂の特性を改善する目的で添加剤を添加しても差し支えない。具体的な添加剤としては、ジブチルフ 50 タレート、ジオクチルフタレート等のフタル酸ジエステ

ル、アジピン酸ジオクチル等の二塩基酸ジエステル、ペ ンタエリスリトールテトラベンゾエート等のポリオール エステル、ロジン酸石鹸、ステアリン酸石鹸、オレイン 酸石鹸、ラウリル硫酸ナトリウム、ナトリウムジエチル ヘキシルスルフォサクシネート、ナトリウムジオクチル スルフォサクシネート等の界面活性剤を成分とする分散 剤或いはアルキルスルフォネート、アルキルエーテルカ ルボン酸等のアニオン性帯電防止剤、ポリエチレングリ コール誘導体、ソルビタン誘導体等のノニオン性帯電防 止剤、四級アンモニウム塩、アルキルビリジウム等のカ 10 チオン性帯電防止剤、タルク、脂肪酸金属塩、ソルビト ール系の結晶化核剤、ブチルヒドロキシフェノール等の フェノール系酸化防止剤、チオエーテル系酸化防止剤、 リン系酸化防止剤、顔料、光安定剤、架橋剤、架橋促進 剤、難燃剤、加工助剤等が挙げられる。これらは樹脂1 00重量部に対して0.01重量部~10重量部添加さ れる。

【0078】本発明に係る希土類錯体含有樹脂組成物を 成形するに際しては、一旦調製した希土類錯体含有樹脂 組成物を再度溶融させて成形する方法、希土類錯体含有 20 樹脂組成物を調製する時点で同時に成形する方法があ る。また、その成形手段としては、射出成形、押出成 形、ブロー成形、圧空成形、回転成形、フィルム成形等 の従来公知の成形方法のいずれをも採用可能である。

【0079】また、希土類錯体をポリマーマトリクス中 に髙濃度に配合して押出成形してマスターバッチとする ことができる。

【0080】成形体の形状としては特に限定されず、ロ ッド状、フィルム状、板状、円筒状、円形、楕円形等あ るいは玩具、装飾品等特殊な形状のもの、例えば星形、 多角形形状が例示される。

【0081】上記いずれの成形方法、成形体において も、本発明に係る樹脂組成物を含んでなる成形体は、発 光特性を有する。

[0082]

【発明の効果】本発明の組成物は、光の発光強度および 変換効率が高く、発光材料、光ファイバー、レンズなど の用途に有用であり、CDプレーヤー、光ディスク、フ ァクシミリ、リモコン、コピー機器、レーザープリンタ ー、大型ディスプレイ、医療用レーザー、レーザー加工 40 計測、印刷関連などの光機器に使用でき、具体的には、 レーザー素子、発光ダイオード、液晶、光ファイバー、 光検知器、太陽電池などへの応用が可能である。

【0083】更には、各種プラスチック製品に適用する ことにより、内容物、或いは内容構造が透視可能な、発 光性を有する形成材料として用いることが可能である。 又、信号機又は自動車のライト反射板、各種交通標識の 素材として、発光性の装飾品用素材としても有用であ る。

【0084】以下、本発明を実施例に基づきより詳細に 50 ¹゚F - NMR(アセトン- d。,標準物質C。F。;pp

説明する。

[0085]

【実施例】参考例1

C,F₁,SO,NHSO,C,F₁,(POS)の合成 窒素雰囲気下、18mmolのC,F,,SO,NHNaに ((CH₁),Si),NH(18ml, 86.5mmo 1)を滴下した。ジオキサン2m7を添加し、120℃で 8時間還流を行った後、〔(CH,),Si),NHを留 去し、12時間真空乾燥を行った。乾燥アセトニトリル 30ml及びC。F₁₇SO₂F(21mmol)を添加し、 100℃で48時間還流した。その後アセトニトリルを 留去し、硫酸を用いてプロトン化を行った後、エーテル 抽出及び昇華法により、目的物(白色固体、収率12 %)を得た。

16

[0.086] IR(cm⁻¹): 1373 (S=Ost.), 1237 (C-Fst.), 1206 (C-Fst.), 1 151 (S=Ost)

1°F-NMR(アセトン-d。, 標準物質C。F。; pp m): -79.51(3F), -111.59(2F), -118.43(2F), -120.10(6F), -121. 06 (2F), -124. 59 (2F).

【0087】参考例2

C.F.SO,NHSO,C.F. (PBS)の合成 C₆F₁,SO₂NHNa及びC₆F₁,SO₂Fに代えて、各 々C,F,SO,NHNa及びC,F,SO,Fを用いた他は 参考例1と同様にしてC、F、SO、NHSO、C、F、(白 色固体、収率26%)を得た。

[0.088] IR(cm⁻¹): 1373 (S=Ost.), 30 1237 (C-Fst.), 1206 (C-Fst.), 1 151 (S = Ost.)

¹ F-NMR (アセトン-d₆, 標準物質C₆F₆:pp m): -79.31(6F), -111.47(4 F), -119, 18(4F), -124, 19(4F)F).

【0089】参考例3

Nd (POS) a錯体の合成

参考例1で得たC₈F₁₇SO₂NHSO₂C₈F₁₇(0.8 g、0.82mmo1)を30m7の蒸留水に溶かし、N d,O,(46mg、0.14mmol)を加え、室温で 3日間撹拌した。沈殿した固体を濾過、水洗後、メタノ ールに溶解させて遠心分離し、濾過を行って未反応のN d₂O₃を除去した。メタノールを留去して目的の錯体 (Nd(POS),;赤紫色固体)を得た。得られた錯 体は、示差熱分析(DSC)により、水を有していない ことを確認した。

[0090] IR(cm⁻¹): 3449 (O-Hst.), 1368 (S=Ost.), 1237 (C-Fst.), 1150 (S = Ost.)

m): -79.33(3F), -111.24(2F), -118.07(2F), -119.81(6F), -120. 78(2F), -124. 29(2

【0091】POSの代わりにPBSを用いて同様の操 作を行うことによりNd(PBS)。の赤紫色固体を得

【0092】参考例4

Eu (POS), 錯体の合成

参考例1で得たC。F,,SO,NHSO,C。F,,(0.8) g、0.82mmo1)を30mlの蒸留水に溶かし、E u₂O₃(50mg、0.14mmol)を加え、室温で 3日間撹拌した。沈殿した固体を濾過、水洗後、メタノ ールに溶解させて遠心分離し、濾過を行って未反応のE u₂O₃を除去した。メタノールを留去して目的の錯体 (Eu(POS),:白色固体)を得た。得られた錯体 は、示差熱分析(DSC)により、水を有していないこ とを確認した。

[0093] IR(cm⁻¹): 1354 (S=Ost.), 0.56 (S = Ost.)

1°F-NMR(アセトン-d。,標準物質C。F。:pp m) : -79.2(3F), -111.33(2F),-118.15(2F), -119.87(4F), -120.8(2F), -124.29(2F). [0094]参考例5

Tb(POS)、錯体の合成

希土類金属化合物として、Tb,O,(60mg、0.8 2mmo1)を用いた他は参考例4と同様の方法により 目的の錯体(Tb(POS),;白色結晶)を得た。得 られた錯体は、示差熱分析(DSC)により、水を有し ていないことを確認した。

[0095] IR(cm⁻¹): 1353 (S=Ost.), 1243 (C-Fst.), 1208 (C-Fst.), 1 056 (S = Ost.)

1°F-NMR(アセトン-d。, 標準物質C。F。; pp m): -79.3(3F), -111.1(2F), -118. 0 (2F), -119. 9 (4F), -12 0.9(2F), -124.4(2F),

【0096】参考例6

Nd(O,SCF,),の合成

CF,SO,H(2モル)の水溶液にNd,O,(1モル) を加え、室温で放置して結晶を析出させた。得られた赤 紫色の針状晶を濾取し、2日間真空乾燥して目的とする Nd(O,SCF,),を得た。得られた結晶は、TG-DTA測定の結果から、6水和物であることが確認され

[0097]

18

元素分析 (NdC, H, 2O1, F, S,)

С H

5. 15 1.73 計算值 1.82 実測值 5. 01

IR (cm^{-1}) : 3449 (O-Hst.), 1638 (O $-H\delta$), 1263 (C-Fst.), 1180 (S-O st.),

1°F-NMR(アセトン-d。、標準物質C。F。:pp m):-77.03

10 Nd,O,の代わりにEu,O,を用いて同様の操作を行う ことにより、Eu(O,SCF,),を得た。

【0098】参考例7

Nd (O, SC, F₁₇), · 6 D₂Oの合成

0.34 Mのペンタフルオロオクタンスルホン酸水溶液 30mlを0.56g(1.72mmol)のNdzO,に 添加した後、24時間室温で撹拌し、紫色固体を得た。 これを濾過、水洗しクロロホルム、メタノールの混合溶 媒で再結晶を行い、紫色針状結晶を得た。得られた結晶 を5mmHgで2日間乾燥した。収率30%。得られた 1237 (C-Fst.), 1209 (S-Fst.)、1 20 結晶は、TG-DTA測定の結果から、6水和物である ことが確認された。

> [0099] IR(cm⁻¹): 3432 (O-Hst.), $1637 (O-H\delta)$, 1241 (C-Fst.), 1204 (C-Fst.), 1152 (S-Ost.) 19F-NMR (アセトン-d。, 標準物質C。F。: pp m): -79.61(3F), -112.85(2F), -119, 16(2F), -120, 30(6F), -121. 19 (2F), -124. 67 (2F)

30 得られたNd(O,SC,F,,),・6H,O(80mg)を CD,OD(2.0ml) に溶解し、-78℃で脱気 し、更に室温で24時間放置した。次いでCD,ODを 留去することにより、Nd (O,SC,F1,),・6D,O を得た。本化合物をH-NMRで測定することにより、 H,OがD,Oに置換されていることを確認した。

【0100】参考例8

Nd(PDDH)」の合成

Journal of Chemical and Engineering Data, Vol.16, No.3 (1971) の記載に従い、4,4,5,5,6,6,7,7,8,8,9,9, 40 10,10,10-ペンクテ゚ カフルオロ-1-ペンタフルオロフュニル-1,3-テ゚ カンシ゚オン (以下、"PDDH"と略す)を製造した。PDDH (0.52g)をエーテルに溶かし、硝酸ネオジム六水 和物(880mg)の水溶液を加え、室温で3日間激し く撹拌した。沈殿した固体を濾過、水洗後、メタノール に溶解させて遠心分離し、濾過を行って未反応の硝酸ネ オジムを除去した。メタノールを留去して目的の錯体 (Nd(PDDH),;赤紫色固体)を得た。得られた 錯体は、示差熱分析(DSC)により、水を有していな いことを確認した。

50 [0101] IR(cm⁻¹): 3410 (O-H), 16

23 (C=O), 1513 (C-H), 1243, 12 11 (C-F), 1148 (C-O).

[0102]¹⁹F-NMR (アセトン-d₆, 標準物質 C₆F₆; ppm):-161 (d, 2F, m-F)、-153 (d, 1F, p-F)、-140 (d, 2F, o -F)、-124~-114 (m, 12F, CF₂)、 -79. 4 (d, 3F, CF₃)。

 $[0103]^{1}H-NMR \delta 6.00ppm$ (1 H, S, C-H).

【0104】参考例9

TBSAの合成

冷却管付きの3つ口フラスコ(100m1)中に、窒素 気流下で、THF30mlを加え、引き続き、CF,C ONH₂(6.44g、57mmol)(和光純葉社 製)、及びトリエチルアミン(11.5g、114mm o 1)を溶解し、65℃にて1時間撹拌した。引き続 き、C,F,SO,F(17.2g、57mmol)(東 京化成社製)を滴下し、常圧下、30時間還流を行っ た。続いて、減圧下、THFを留去したのち、残渣をエ ーテルに溶解し、イオン交換水にてエーテル層を洗浄し た。更に、硫酸マグネシウム上でエーテルを乾燥した 後、エーテルを減圧下で留去した。引き続き、減圧蒸留 (220℃、3mmHg) することにより、淡黄色液体 状の [C,F,SO,NCOCF,] - Et,NH'(以下、 TBSAと略す)を24.6g、87%の収率で得た。 【0105】IR(塗りつけ):3110、2822、 1668, 1326, 1236, 1197, 1141c

**F-NMR (アセトン-d。、標準化合物 ヘキサフルオロベンゼン、δ、ppm)-74.20(3F)、-79.37(3F)、-112.42(2F)、-119.23(2F)、-124.19(2F)。
[0106]*H-NMR (アセトン-d。、δ、ppm):1.4(3H×3)、3.5(2H×3)、8.0(NH)。

[0107] ''C-NMR (アセトン-d。、δ、ppm):108~124 (C3F8)、141.26 (CF2)、137.46 (CF2)、162.78 (CO)。

[0108]元素分析値 C,,H,,O,N,F,,S: 理論値(%)C:29.03、H:3.26、N:5.

[0109] 実測値(%) C:28.89、H:3.35、N:5.81。

[0110] UV (λmax) : 334nm (アセトン)。

【0111】参考例10

HBSBの合成

冷却管付きの3つ□フラスコ(100m1)中に、窒素 気流下で、THF (30m1)を加え、引き続き、C. F,SO,F(17.2g、57mmol)(東京化成社製)、及びトリエチルアミン(11.5g、114mmol)を溶解し、室温にて1時間撹拌した。引き続き、C,F,CONH,(11.86g、57mmol)(東京化成社製)を滴下し、常圧下、30時間室温にて撹拌を行った。続いて、減圧下、THFを留去したのち、残渣をエーテルに溶解し、イオン交換水にてエーテル層を洗浄した。更に、硫酸マグネシウム上でエーテルを乾燥した後、エーテルを減圧下で留去した。引き続き、減圧10蒸留(260℃、3mmHg)することにより、淡黄色液体状の[C,F,SO,NCOC,F,] Et,NH・(以下、HBSBと略す)を22.75g、81%の収率で得た。

[0112] IR (塗りつけ): 3102、2821、1667、1325、1217、1139cm⁻¹.

1*F-NMR (アセトンーd₆、δ、ppm)-79.
29 (3F、3F)、-112.50(2F)、-11
5.75(2F)、-119.10(2F)、-12
4.15(2F)、-124.73(2F)。
[0113] H-NMR (アセトンーd₆、δ、pp

m):1.4(3H×3),3.4(2H×3),7.8(NH).

[0114] UV (λ max):334 n m (アセトン)。

【0115】参考例11

Nd (PMS),の製造

市販のCF,SO,NHSO,CF,(g、1.12mmo 1)(fluka社製)を30mlの蒸留水に溶かしNd,O,(46mg、0.14mmol)を加え、室温で3日間 30 撹拌した。水を留去の後、沈殿した固体を塩化メチレンで洗浄し、得られた固体を更にメタノールに溶解、濾過を行って未反応のNd,O,を除去した。メタノールを留去して目的とするNd(PMS),・nH,O:赤紫固体を得た。

[0116]

¹⁹F-NMR:-77.53 (m, 6F, CF₃)

¹H-NMR: none (結晶水として2.06ppm)

UV (MeOH):352、522、576、744、801、865nm

40 参考例12

同様の方法により Eu (PMS),: 白色固体を得た。 【0117】

1°F-NMR:-77.51 (m, 6F, CF,)
1H-NMR:none (結晶水として2.06ppm)
UV (MeOH):362、376、394、465、527nm

参考例13

Nd(PES)」の製造例

原料としてC,F,SO,NHSO,C,F,を用い上記と同 50 様の方法によりEu (PES),:白色固体、Nd (P

20

ES),:赤紫固体を得た。

【0118】参考例14

Nd (TBSA)」の合成

参考例9で得られたTBSA(10.2g、25.6m mol)を、硝酸ネオジム六水和物(2.8g、6.4 mmol) のアセトン溶液 (20ml) に加え、室温で 3日間激しく撹拌した。続いて、減圧下アセトンを留去 した後に、残渣をエーテルに溶解し、イオン交換水にて エーテル層を洗浄した。エーテルを減圧下で留去した せることにより目的の錯体(Nd(TBSA),:青紫 色固体、180mg、0.14mmo1、収率2.2 %)を得た。

[0119] IR (KBr): 1626 (C=O), 1 317 (S=O), 1234 (C-F), 1202 (C-F) 1166 (C-F) cm⁻¹.

[0120] 19F-NMR (アセトンーd₆、δ、pp m) -73.67 (t, 3F, CF,), -79.40 $(t, 3F, CF_3), -112.86(t, 2F, C$ F_z), -119. 49 (br, 2F, CF_z), -12 4. 35 (br, 2F, CF₂).

 $[0.121]^{13}C-NMR$ ($rthv-d_{6}$, δ , ppm):108~127 (C3F8), 141.15 (C F2), 137, 21 (CF2), 167, 67 (C 0).

【0122】参考例15

Nd (HBSB)」の合成

参考例10で得られたHBSB(2.92g、4.9m mo1)を、硝酸ネオジム六水和物(0.80g、1. 8 m m o 1) のアセトン溶液 (8 m 1) に加え、室温で 30 3日間激しく撹拌した。続いて、減圧下アセトンを留去 した後に、残渣をエーテルに溶解し、イオン交換水にて エーテル層を洗浄した。エーテルを減圧下で留去した 後、残渣にクロロホルム・ヘキサン溶液を加えて沈殿さ せることにより目的の錯体 (Nd (HBSB),: 青紫 色固体、60mg、0.04mmol、収率2.3%) を得た。

【0123】19F-NMR (アセトン-d₆、δ、pp m) -79.13 (t, 3F, CF₃), -79.42(t, 3F, CF₃), -112.88 (br, 2F, CF_{1}), -115. 58 (br, 2F, CF_{2}), -1 19. 93 (br. 2F, CF₂), -124. 39 $(t, 2F, CF_2), -124.62(t, 2F, C$ F₂).

【0124】参考例16

Eu (TBSA),の合成

参考例9で得られたTBSA(6.9g、13.9mm o 1)を、硝酸ユーロピウム六水和物 (2.1g、4. 6 m m o 1) のアセトン溶液 (10 m l) に加え、室温 で3日間激しく撹拌した。続いて、減圧下アセトンを留 50

去した後に、残渣をエーテルに溶解し、イオン交換水に てエーテル層を洗浄した。エーテルを減圧下で留去した 後、残渣にクロロホルム・ヘキサン溶液を加えて沈殿さ せることにより目的の錯体 (Eu (TBSA),: 白色 固体、240mg、0.18mmol、収率10.2 %)を得た。

[0125] 19F-NMR (アセトンーd₆、δ、pp m): -74.20 (t, 3F, CF,), -79.31 (t, 3F, CF₃), -112. 21 (t, 2F, 後、残渣にクロロホルム・ヘキサン溶液を加えて沈殿さ 10 CF₂)、-118.92(br、2F、CF₂)、-1 24. 11 (br, 2F, CF₂).

【0126】試験例1

参考例で得られたNd(POS)』、Eu(POS)』、Nd(PBS)』、Nd(O $_{3}$ SCF $_{3}$) $_{3}$ 、Nd(O $_{3}$ SC $_{6}$ F $_{17}$) $_{3}$ 、Nd(PMS) $_{3}$ 、Nd(PES) $_{3}$ 、Nd(TBS A), Nd(HBSB), Eu(TBSA), 文献公知のNd(HFA-H), E u(HFA-D),及びNd(HFA-D),の各種溶液中での量子収率、 発光寿命を表1に示す。溶液の濃度は、0.05モル/ リットルである。なお、各錯体の励起波長(nm)及び発光 波長 (μm) は、それぞれNc錯体が585rm及び1.06μ m、Eu錯体が394nm及び0.618μmである。検出は、Nd錯 体がGeフォトダイオード、Eu錯体がフォトマルチプラ イヤーを用いて行った。

[0127]

【表1】

錯体	溶媒	量子収率	発光寿命
		(%)	(µs)
Nd (POS)s	アセトン-ds	3. 2	13
Eu (POS) ₈	DMSO-ds	56.8	1500
Nd (PBS)a	アセトンー仏	2. 5	1
$Nd(O_3SCP_3)_a$	DMSO-d	3.4	15.4
Nd (0 ₈ SC ₈ F ₁₇) ₈	DMSO-d	4. 1	15.3
Nd (PMS) ₈	DMSO-ds	3. 3	
Nd (PES) ₈	DMSO- d ₃	3.3	_
Nd (TBSA) 3	DMSO-d	2.8	_
Nd (HBSB) 3	DMSO-ds	3. 3	_
Eu (TBSA) ₃	DMSO-ds	7 2	_
Nd (HFA-H) ₃	アセトンー仏	0.3	_
Eu (HFA-D) s	DMSO-ds	6 0	_
Nd (HFA-D)	DMSO-ds	1. 1	6. 3
_	-		

40 以下において、ポリマーの量子収率、発光強度は以下の 方法にて評価した。即ち、各ポリマーをフォトマルチブ ライヤー (Eu錯体の場合) またはGeフォトダイオード (Nc錯体の場合)を用いてスペクトルを測定し、量子収 率を得た。また、スペクトルの強度から発光性のないも のを"△"、発光するものを"○"、よく発光するもの を"◎"、非常によく発光するものを"◎◎"とした。

【0128】実施例1

下記式

[0129]

【化15】

 $Eu^{2+} \left\{ \begin{array}{c} CF^3 \\ CF^3 \end{array} \right\}_{3}^{23}$

X=H: Eu(HFA-H)₃ X=D: Eu(HFA-D)₃

【0130】で表される公知の希土類錯体Eu(HFA-H),を文献(Hasegawa Y.; Murakoshi K.; Wada, Y.; Yanaqid a S.; Kim J.; Nakashima N.; Yamanaka T. Chem. Phy s. Lett. 1996, 248, 8)に記載の方法により製造した。該錯体Eu(HFA-H),・2H,O(0.05mmo1)をDMSO-D。(66μ1)中に懸濁させ、室温にて2時間放置した。次いで、精製した無水メチルメタクリレート(MMA)(1.0m1)、AIBN(0.5mg)及びEu(HFA-H),・2H,O(0.05mmo1)のDMSO-d。懸濁液をPyrexチューブ(内径4mm、長さ15cm)に移し、脱気後該Pyrexチューブを密閉した。60℃で5時間反応させてMMAの重合を行った。得られたEu(HFA-H),及びDMSO-d。を含むPMMAチューブをPyrexチューブから取り出し、ロッド状のポリマー組成物を得た。

【0131】本ロッド状ポリマー組成物の量子収率及び 発光特性を表2に示す。

【0132】実施例2

下記式

[0133]

【化16】

X=H: Eu(HFA-H)₃ X=D: Eu(HFA-D)₃

【0134】で表される公知の希土類錯体Eu(HFA-H),を文献(Hasegawa Y.; Murakoshi K.; Wada, Y.; Yanagida S.; Kim J.; Nakashima N.; Yamanaka T. Chem. Phys. Lett. 1996, 248, 8)に記載の方法により製造した。該錯体Eu(HFA-H),・2 H,OをCD,OD(2 m l)に溶解した。該溶液を脱気した後、減圧*

*下に6時間CD,OD中で撹拌して、ケトーエノール互変異性による重水素置換反応を行った。減圧下に溶媒を留去し、得られたEu(HFA-D),・2D,O(0.05mM)をDMSO-d。(66μ1)中に懸濁させ、室温にて2時間放置した。次いで、精製した無水メチルメタクリレート(MMA)(1m1)、AIBN(0.5mg)及び希土類錯体のDMSO-d。懸濁液を混合し、Pyrexチューブに移し、脱気後該Pyrexチューブを密閉した。60℃で5時間反応させてMMAの重合を行った。得られたEu(HFA-D),及びDMSO-d。を含むPMMAチューブをPyrexチューブから取り出し、ロッド状のポリマー組成物を得た。

【0135】本ロッド状ポリマー組成物をフォトマルチプライヤーにより量子収率を測定した。結果を表2に示す。

【0136】さらに、ポリマーの発光強度を表2に示す。

【0137】実施例3~9

0 表2に示す錯体、ポリマーマトリックスを用い実施例1 と同様にしてロッド状ポリマー組成物を得た。各々のポリマーの量子収率及び発光強度を表2に示す。

【0138】なお、実施例3のポリマー組成物の発光スペクトルを図1に、実施例4及び5のポリマーの発光スペクトルを図2に示す。

【0139】比較例1

DMSO-d。を加えない他は実施例4と同様の方法によりロッド状ポリマー組成物を得た。そのものの量子収率及び発光強度を表2に示す。

30 【0140】実施例4と比較例1を比較すると、実施例 4は量子収率が5倍に増加し、また、発光強度も向上し ているのがわかる。

【0141】比較例2

DMSO-4。を加えない他は、実施例2と同様の方法によりロッド状ポリマー組成物を得た。そのものの量子収率及び発光強度を表2に示す。実施例2と比較例2を比較すると、実施例2はDMSO-4。を加えることにより量子収率が2倍増加し、また、発光強度も向上しているのがわかる。

o 【0142】 【表2】

	希土類錯体	ポリマー	DMSO-d。 の有無	* リマーの量子 収率(%)	発光強度
実施例1	Eu(HFA-H),	PMMA	有	1 1	0
実施例2	Eu(HFA-D),	PMMA	有	4 4	0
実施例3	Eu (HFA-D) ₃	i FPMA	有	7 2	00
実施例4	Nd(HFA-D),	PMMA	有	0.5	0
実施例5	Nd(HFA-D),	PMMA	有	0.7	0
実施例6	Eu(PMS),	PMMA	有	2 6	00

			(+.)		14 50 ==
25					26
実施例7	Nd(PMS),	PMMA	有	1. 3	00
実施例8	Eu(PMS),	PMMA	有	40以上	00
実施例9	Nd(PMS),	PMMA	有	1. 5	00
比較例1	Nd(HFA-D)3	PMMA	無	0.1	Δ
比較例2	Eu (HFA-D)	PMMA	無	2 1	Δ

実施例10~21

表3に記載の希土類錯体あるいは希土類錯体のDMSO

-d,懸濁液を用い実施例1と同様にしてロッド状ポリ *

*マー組成物を得た。発光強度を表3に示す。

[0143]

【表3】

	希土類錯体	ポリマー	DMSO-ds	発光強度
			の有無	
実施例10	Eu(PES) ₃	PMMA	有	00
実施例11	Eu(PES) ₃	PMMA	無	0
実施例12	Nd(PES);	iFPMA	有	00
実施例13	Nd(POS) ₃	PMMA	無	00
実施例14	Eu(POS),	PMMA	有	00
実施例15	Tb(POS),	PMMA	有	00
実施例16	Eu(Œ, SO;);	PMMA	無	0
実施例17	$Nd(C_8F_1,SO_3)_3$	PMMA	無	0
実施例18	Nd(PDDD);	PMMA	無	0
実施例19	Nd(TBSA),	PMMA	無	0
実施例20	Nd(HBSA),	PMMA	無	0
実施例2 1	Eu(TBSA),	PMMA	有	<u> </u>

実施例22

Pyrexチューブ中に、DMSO-d。(60 μ 1) で懸濁したEu (HFA-D)。(190 m g)、エポキシ樹脂YD-128(2.5 g、「東都化成社製」)、リカシッドMH-700G(2.36 g、新日本理化社製)と硬化促進剤TPP-PB(0.04 g、北興化学社製)を混合し、150℃で8時間加熱することにより透明のエポキシ樹脂を得た。このポリマーの発光強度を実施例1と同様に評価したところ"○"で 30 あった。

【0144】実施例23

Eu(HFA-D),の代わりにEu(PMS),(190mg)を用いた他は実施例22と同様にポリマーを作成した。このポリマーの発光強度を実施例1と同様に評価したところ"※

※◎"であった。

【0145】実施例24

DMSO-d。($60\mu1$)で懸濁したEu(HFA-D)。(40mg)を5%ナフィオン溶液(2.0m1、「和光純薬社製」)に溶解し、キャスト法により溶媒(水、イソプロパノール)を留去することによりフィルム状のポリマーを得た。このものの発光強度を表4に示す。

【0146】実施例25~28

表3に示す希土類錯体、ポリマー、溶媒を用いた他は実施例24と同様の方法によりフィルム状のポリマーを得た。このものの発光強度を表4に示す。

[0147]

【表4】

	希土類錯体	ポリマー	DMSO	溶媒/m l	発光
			-d₅		強度
実施例24	Eu(HFA-D) ₃	ナフィオン	有	水/イソプロパノール/5.0ml	00
実施例25	Nd(HBSB),	ナフィオン	無	水/イソプロパノール/5.0ml	00
実施例26	Eu(PMS),	ナフィオン	有	水/イソプロパノール/5.0ml	00
実施例27	Eu(HFA-D) ₃	ポリオレフィン米	有	CHC1, /4.0ml	0
実施例28	Eu(PMS) ₃	ポリオレフィン*	有	CHC13 /4.0m1	<u> </u>
		_			

*:ポリエチレンーポリプロピレンラバーEPO2P(日本合成ゴム社製)

実施例29

Pyrexチューブ中に、DMSO-d。($60\mu1$)で懸濁したEu (HFA-D)。(40mg)を、ベルフルオロ、 $4-x+\mu-3$ 、 $6-x+\mu-1$ 、40mg)を、ベルフルオリド(0.8m1、「東京化成社製」)、MMA(0.1m1)、i FPrMA(0.1m1)、過酸化ラウロイル(0.5mg、「ナカライテスク社製」)を加え溶解させ、真空

脱気を行い封かんした後、80℃の恒温槽中で5時間加熱重合反応を行った。その後、チューブ中からロッド状の半透明ポリマーを取り出した。このポリマーの発光強度を表5に示す。

【0148】実施例30~38

F P r M A (0.1 m l)、過酸化ラウロイル (0.5 表5 に示す希土類錯体 (40 m g)、各記載量のモノマm g、「ナカライテスク社製」)を加え溶解させ、真空 50 ー、重合開始剤 0.5 m g を用い、実施例 2 9 と同様に

ロッド状ポリマーを得た。各々のポリマーの発光強度を * 【0149】 表5に示す。 * 【表5】

	希土類錯体	モノ	マー(ロ	ıl)	重合	発光強度
		MMA	i FPMA	X1~5	開始剤	
実施例29	Eu(HFA-D) ₃	0.1	0.1	0.8	а	0
実施例30	Eu(PMS),	0.1	0.1	0.8	а	00
実施例31	Eu(HFA-D),	0.1	0.9	_	b	00
実施例32	Nd(PMS),	0.1	0.9	_	b	00
実施例33	Nd(PES);	0.1	0.9	_	b	00
実施例34	Nd(HFA-D),	0.1	_	0.9	b	©
実施例35	Eu(PMS),	0.1	_	0.9	b	00
実施例36	Eu(HFA-D),	0.1	_	0.9	b	00
実施例37	Nd(PBS),	0.93	_	0.07	b	00
実施例38	Nd(HBSB) ₃	0.6		0.4	b	<u> </u>

表5中、

X¹: ペルフルオロ,4-メチル-3,6-シ゚オキサクト-7-エンスルホニルフルオリト゚(東京化成社製;実施例29)

X²: ペルフルオロブ ロホ キシヒ ニルエーテル (東京化成社製;実施例30)

X³:アクリル酸イソフルオロプロピルエステル(東京化成社製:実施例34)

X': n F PMA (実施例35、36) X': スチレン (実施例37、38) 重合開始剤 a:過酸化ラウロイル

b:AIBN

本発明の好ましい態様としては、以下のものが例示される。

【0150】項A. Rf'、Rf'、Rf'、Rf'、Rf' Nf' Nf

【0151】項B. Rf'、Rf'、Rf'、Rf'、Rf'が C_1 ~ C_{22} のパーフルオロアルキル基又は C_1 ~ C_{22} のパークロロアルキル基である項1に記載の組成物。

【0152】項C. Rf'、Rf'、Rf'、Rf'、Rf'、Rf'がC1~C1。のパーフルオロアルキルまたはC1~C1。のパークロロアルキルである項1に記載の組成物。

【0153】項D. Rf、Rf、Rf、Rf、Rfがによいな。 C1~C4のパーハロゲン化アルキル基(トリフルオロメチル等)、C1~C4のパーハロゲン化アルコキシ基(トリフルオロメトキシ等)、C2~C5のパーハロゲン化アルキルカルボニル基(トリフルオロアセチル等)、C1~C4のパーハロゲン化アルキレンジオキシ基(ジフルオロメチレンジオキシ等)、C2~C5のパーハロゲン化アルケニル基(パーハロゲン化ビニル等)、パーハロゲン化フェノキシ基、C2~C10パーハロゲン化アルケニルオーシからなる群から選ばれる1又は2の置換基で置換されていてもよいパーハロゲン化芳香族基である項A~項Cのいずれかに記載の組成物。

【0154】項E. Rf、Rf、Rf、Rf、Rf、Rfがニトロ基、C、C、のパーハロゲン化アルキル基(トリフルオロメチル等)、C、C、のパーハロゲン化アルコキシ基(トリフルオロメトキシ等)、C、C、のパーハロゲン化アルキルカルボニル基(トリフルオロアセチル

等)、C₁~C₁のパーハロゲン化アルキレンジオキシ基(ジフルオロメチレンジオキシ等)、C₂~C₅のパーハロゲン化アルケニル基(パーハロゲン化ビニル等)、パーハロゲン化フェノキシ基、C₂~C₂。パーハロゲン化アルキルカルボニルオキシからなる群から選ばれる1又は2の置換基で置換されていてもよいパーハロゲン化フェニル基である項A~項Cのいずれかに記載の組成物。 30 【0155】項F. Z が重水素、ハロゲン原子、C

【0155】項F. Z が重水素、ハロゲン原子、C 、~C、、のバーフルオロ化アルキル基またはC、~C、、のバーフルオロアルケニル基である項A~項Eのいずれかに記載の組成物。

【0156】項G. Z' が重水素、ハロゲン原子、 C_1 ~ C_1 のパーフルオロ化アルキル基または C_1 ~ C_1 のパーフルオロアルケニル基である項下に記載の組成物。

【0157】項H. Z'が重水素又はハロゲン原子である項Gに記載の組成物。

【0158】項I. MがLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる少なくとも1種である項1に記載の組成物。

【0159】項J. MがNd、Eu、TbおよびYbからなる群から選ばれる少なくとも1種である項Iに記載の組成物。

【 0 1 6 0 】項 K. Rf'、Rf'、Rf'、Rf'が任意 の位置のC-C単結合の間に-O-、-COO-、-O CO-、-CO-を1個または複数個介在させて、エー テル、エステルまたはケトン構造としたパーハロゲン化 50 アルキル基またはパーハロゲン化アルケニル基である項

30

1に記載の組成物。

【0161】項L. Rf'、Rf'、Rf'、Rf' Rf' Rf' Nf' Nf

29

[0162]項M. X^1 及び X^2 がS、n,が $1; X^1$ が S、 X^2 がC、n,が1;或いは、 X^1 及び X^2 がC、n,が1である項1に記載の組成物。

【0163】項N. MがNd、Yb、TbまたはEuである、項1に記載の組成物。

[0164]項O. YがC-D、C-C1、C-F、C-Br、C-1、NまたはPである、項1に記載の組成物。

【0165】・Rピが C_1 ~ C_{22} のパーハロゲン化脂肪族基を示し、Rピがパーハロゲン化芳香族基を示し、Zは重水素、ハロゲン原子、 C_1 ~ C_{22} のパーハロゲン化脂肪族基を示し、MはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる少なくとも1種を示し、 n_1 は2または3を示し、 n_2 は2、3又は4を示す組成物、

・R宀がC₁~C₂、のパーハロゲン化脂肪族基を示し、Rf²がパーハロゲン化芳香族基を示し、Z²が重水素、ハロゲン原子、C₁~C₄のパーフルオロ化アルキル基またはパーフルオロアルケニル基を示し、MはNd、EuおよびYbからなる群から選ばれる少なくとも1種を示し、n₁は2または3を示し、n₂は3を示す組成物。【0166】・R宀がC₁~C₂、のパーハロゲン化脂肪族基を示し、R宀がパーハロゲン化芳香族基を示し、Z²が重水素又はハロゲン原子を示し、MはNdを示し、n₂は3を示し、n₂は3を示す組成物。

【0167】・Rピが $C_1 \sim C_{22}$ のパーフルオロ脂肪族基かつRピがパーフルオロ芳香族基;Rピが $C_1 \sim C_{22}$ のパーフルオロ脂肪族基かつRピがパークロロ芳香族基;Rピが $C_1 \sim C_{22}$ のパークロロ脂肪族基かつRピがパーフルオロ芳香族基;またはRピが $C_1 \sim C_{22}$ のパークロロ脂肪族基かつRピがパークロロ芳香族基を示し、Z は重水素、ハロゲン原子、 $C_1 \sim C_{22}$ のパーフルオロ脂肪族基又は $C_1 \sim C_{22}$ のパークロロ脂肪族基を示し、MはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群かも分選ばれる少なくとも1種を示し、 n_1 は2または3を示し、 n_2 は2、3又は4を示す組成物。

【0.168】・Rピが $C_1 \sim C_{12}$ のパーフルオロ脂肪族基かつRピがパーフルオロ芳香族基;Rピが $C_1 \sim C_{12}$ のパーフルオロ脂肪族基かつRピがパークロロ芳香族基;Rピが $C_1 \sim C_{12}$ のパークロロ脂肪族基かつRピがパーフルオ

ロ芳香族基:またはRfが $C_1 \sim C_1$ のパークロロ脂肪族基かつRfがパークロロ芳香族基を示し、Zが重水素、ハロゲン原子、 $C_1 \sim C_4$ のパーフルオロ化アルキル基またはパーフルオロアルケニル基を示し、MはN d、E u およびY b からなる群から選ばれる少なくとも1種を示し、 n_1 は2 または3 を示し、 n_2 は3 を示す組成物。

【0170】・RfがC、 \sim C1。のパーフルオロアルキルまたはC、 \sim C1。のパークロロアルキルを示し、Rfがペンタフルオロフェニル、ペンタクロロフェニルまたはその誘導体を示し、Z'が重水素、ハロゲン原子、C1 \sim C1のパーフルオロ化アルキル基またはパーフルオロアルケニル基を示し、MはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luからなる群から選ばれる少なくとも1種を示し、 n_1 は2または3を示し、 n_2 は2、3又は4を示す組成物。

【0171】・RfがC、 \sim C10のパーフルオロアルキルまたはC、 \sim C10のパークロロアルキルを示し、Rfがペンタフルオロフェニル、ペンタクロロフェニルまたはその誘導体を示し、Z が重水素、ハロゲン原子、C1 \sim 30 C4のパーフルオロ化アルキル基を示し、MはNd、EuおよびYbからなる群から選ばれる少なくとも1種を示し、11は2または3を示し、11は3を示す組成物。【0172】・RfがC、 \sim C10のパーフルオロアルキルまたはC、 \sim C10のパークロロアルキルを示し、Rfがペンタフルオロフェニル、ペンタクロロフェニルまたはその誘導体を示し、12が重水素又はハロゲン原子を示し、MはNdを示し、11は3を示し、11は3を示す組成物。

【図面の簡単な説明】

【図1】Eu(HFA-D),+DMSO-d,のiFP MA中での発光スペクトルを示す。

【図2】Nd(HFA-D),+DMSO-d。のPMMA中での発光スペクトル(点線)及びNd(HFA-D),+DMSO-d。のiFPMA中での発光スペクトル(実線)を示す。

フロントページの続き

(51)Int.Cl.⁷

識別記号

CO8L 63/00

C09K 11/06

(72)発明者 和田 雄二

大阪府豊中市西緑丘2-2-3豊中東合同

宿舎344

FΙ

CO8L 63/00

C09K 11/06

С

テーマコード(参考)

(72)発明者 柳田 祥三

兵庫県川西市鴬台2-10-13

Fターム(参考) 4J002 BB031 BB121 BB171 BC021

BE041 BG031 BG061 BG081

CD001 EP017 EV207 EZ006