

Mathematical Tools of Quantum Mechanics: Introduction to Hilbert Spaces

Dr. M.Eugenia Celorrio Ramirez

Notation

Preliminaries: Cardinality of a set

Recap from last session

Orthogonality and orthonormality

Basis of a Hilbert space

Dimension of a Hilbert space

A small detour: Separability in a wider context.

Dual spaces

Dual spaces. Functionals

Riesz-representation Theorem and Dirac notation

Tensor products of vector spaces. A brief introduction

Notation

- the closure of $Y: \overline{Y}$;
- the linear span of a set Y: lin Y;
- H always denotes a Hilbert space;

Preliminaries: Cardinality of a set

Loose definition

The cardinality of a set A, denoted by |A|, is the number of elements of the set.

- $|\emptyset| = 0$;
- |N| is countable infinite;
- we say that a set A is countable when A is finite or |A| is countable infinite;
- a set A is uncountable (infinite) if $|A| > |\mathbb{N}|$.

Recap

A Hilbert space \mathcal{H} :

- is a vector space over a field $\mathbb{F}(=\mathbb{C})$;
- it has an inner product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \mapsto \mathbb{C}$;
- it is a normed space with the norm induced by the inner product $\|x\| = \sqrt{\langle x, x \rangle}$;
- it is a Banach space (i.e. is complete).

Orthogonality and orthonormality

Definition

Let E be an inner product space and $x, y \in E$. We say that x, y are orthogonal when $\langle x, y \rangle = 0$. We write $x \perp y$.

A family $(e_{\alpha})_{\alpha \in A}$ is called an orthogonal system if $e_{\alpha} \perp e_{\beta}$ when $\alpha \neq \beta$. When we also have that $||e_{\alpha}|| = 1$ for each α , then we say that $(e_{\alpha})_{\alpha \in A}$ is an orthonormal system.

Note

When we can index by \mathbb{N} an orthogonal (respectively orthonormal) system, in some literature they call it an orthogonal (respectively orthonormal) sequence.

Basis of a Hilbert space

Definition

Let \mathcal{H} a Hilbert space. An orthogonal (orthonormal) system $B=(e_{\alpha})$ such that $\overline{\lim B}=E$ is called an orthogonal (orthonormal) basis.

Remark

Orthogonality implies linear independence.

If
$$x = \alpha y \neq 0$$
, $\langle y, x \rangle = \langle \alpha y, y \rangle = \alpha \langle y, y \rangle \neq 0$.

Theorem:Base

Let $\mathcal H$ be a Hilbert space. Then $\mathcal H$ has an orthonormal basis. In particular, every orthonormal system can be expanded until we obtain a basis for $\mathcal H$.

(The proof depends on Zorn's lemma.)

Corollary

Let B_1 and B_2 be bases for \mathcal{H} . Then $|B_1| = |B_2|$.

Dimension of a Hilbert space

Definition

The dimension of a Hilbert space is the cardinality of its basis.

Remark

- Finite Dimension: \mathcal{H} has a finite basis. For example \mathbb{C}^n .
- Countably Infinite Dimension: \mathcal{H} has a countable infinite basis. For example, ℓ^2 .
- Uncountably Infinite Dimension: The cardinality of the basis is strictly bigger than $|\mathbb{N}|$. For example, $L^2(\mathbb{R})$.

Definition:

A Hilbert space $\mathcal H$ is separable if it has a countable orthonormal basis (i.e. an orthonormal basis indexed by $\mathbb N$ or finite).

A small detour: Separability in a wider context.

Dense Subspace of a Normed Space:

Let E be a normed space and D be a subspace of E. D is said to be dense in E if

$$\overline{D} = E$$

I.E., for x in E, there exists a sequence (x_n) in D such that $x_n \to x$.

Separable Normed Space:

A normed space E is said to be separable if there exists a countable dense subset $D \subset E$.

Theorem

Let \mathcal{H} be a Hilbert space and (e_n) and orthonormal basis of \mathcal{H} . Then, for every $x \in \mathcal{H}$,

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$$
 and $\|x\|^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|$.

Proof: N.Young. An introduction to Hilbert Space, P.37

Gram-Schmidt Orthonormalization Process:

Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Suppose (v_n) is a set of linearly independent vectors in \mathcal{H} . Then the following is an orthonormal system

$$u_{1} = \frac{v_{1}}{\|v_{1}\|}$$

$$u_{2} = \frac{v_{2} - \langle v_{2}, u_{1} \rangle u_{1}}{\|v_{2} - \langle v_{2}, u_{1} \rangle u_{1}\|}$$

$$\vdots$$

$$u_{k} = \frac{v_{k} - \sum_{i=1}^{k-1} \langle v_{k}, u_{i} \rangle u_{i}}{\|v_{k} - \sum_{i=1}^{k-1} \langle v_{k}, u_{i} \rangle u_{i}\|} \quad \text{for } k = 1, 2, \dots$$

Functionals

Definition

Let V be a vector space over a field \mathbb{C} . A functional on V is a mapping $F:V\to\mathbb{C}$.

A linear functional on V is a mapping $F: V \to \mathbb{C}$ that satisfies:

$$F(\alpha v + \beta w) = \alpha F(v) + \beta F(w) \quad (v, w \in V, \alpha, \beta \in \mathbb{C}).$$

The space of all linear functionals on V is written by $V^{\#}$ and it is known as the algebraic dual of V.

Let E be a normed space. A functional $F: E \to \mathbb{C}$ is continuous on $x \in E$ if, for every sequence in $E(x_n) \to x$ in $(E, \|\cdot\|)$,

$$F(x_n) \to F(x)$$
 in $(\mathbb{C}, |\cdot|)$.

We say that F is continuous on E if F is continuous on every $x \in E$. We write E^* for the set of all continuous linear functionals on the space E.

Characterization of continuity for linear functionals

Theorem

Let $(E, \|\cdot\|)$ be a normed space over $\mathbb C$ and F a linear functional on E. TFAE:

- F is continuous:
- F is continuous at 0;
- $\sup\{|F(x)|: x \in E, \|x\| \le 1\} < \infty$. I.E. if it is bounded in the unit ball of E.

Dual spaces

Theorem

Given a normed space E, E^* is always a Banach space with respect to the pointwise operations and the norm $\|F\| = \sup\{|F(x)| : x \in E, \|x\| \le 1\}$. (Proof: N.Young. Introduction to Hilbert Space, P.61)

Definition

We call $(E^*, \|\cdot\|)$ the dual space of E or the Banach dual of E.

Remark

Given a normed space E, E^{**} is a Banach space. When E is a Banach space E can be embedded in E^{**} .

Example

For Banach spaces in general E does not need to be the same as E^* .

Example

 $E=\ell^1$ the space of all sequences $x=(x_1,x_2,\ldots)$ such that $\sum_{i=1}^\infty |x_i|$ is finite. The dual is $E^*=\ell^\infty$, which is the space of all sequences $x=(x_1,x_2,\ldots)$ such that $\sup |x_i|$ is finite.

Riesz-representation Theorem and Dirac notation

Riesz-representation Theorem or Riesz-Fréchet theorem

Let $\mathcal H$ be a Hilbert space and let F be a continuous linear functional on $\mathcal H$. There exists a unique $y\in \mathcal H$ such that

$$F(x) = \langle x, y \rangle \quad (x \in \mathcal{H}).$$

Moreover ||y|| = ||F||.

Dirac Notation

- Ket $|y\rangle$ it is denoting that we are in \mathcal{H} .
- Bra $\langle x|$ it is denoting that we are in \mathcal{H}^* .

When you write: $\langle x|y\rangle = \langle x,y\rangle$.

Tensor products of vector spaces. A brief introduction: Bilinear forms

Definition

Let X, Y, Z be vector spaces. A mapping $A: X \times Y \rightarrow Z$ is bilinear if

$$A(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1 A(x_1, y) + \alpha_2 A(x_2, y);$$

$$A(x, \beta_1 y_1 + \beta_2 y_2) = \beta_1 A(x, y_1) + \beta_2 A(x, y_1),$$

for $x, x_1, x_2 \in X$ and $y, y_1, y_2 \in Y$ and $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{C}$. We write $B(X \times Y, Z)$ for the vector space of bilinear mappings from $X \times Y$ to Z.

Tensor products of vector spaces

Let $x \in X$ and $y \in Y$. We define $x \otimes y$ as:

$$x \otimes y : B(X \times Y) \longrightarrow \mathbb{C}$$

 $(x \otimes y)(A) = \langle A, x \otimes y \rangle = A(x, y)$

We define $X \otimes Y := lin\{x \otimes y : x \in X, y \in Y\} \subset B(X \times Y)^{\#}$. For $u \in X \otimes Y$, then $u = \sum_{i=1}^{n} \lambda_i x_i \otimes y_i$ for $n \in \mathbb{N}$, $x_i \in X$, $y_i \in Y$, Then

$$u(A) = \left\langle A, \sum_{i=1}^n \lambda_i x_i \otimes y_i \right\rangle = \sum_{i=1}^n \lambda_i A(x_i, y_i).$$

The representation of u might not be unique.

Definition

We define rank u as the smallest number n for which there is a representation of u that contains n terms. Tensors of rank 1 are elementary tensors.

Some properties of tensor products

Some properties of tensor products

- $(x_1+x_2)\otimes y=x_1\otimes y+x_2\otimes y$;
- $x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2$;
- $\lambda(x \otimes y) = (\lambda x) \otimes y = x \otimes (\lambda y);$
- $\bullet \ \ 0 \otimes y = y \otimes 0 = 0.$

Some properties of tensor products

L.I. subspaces and basis of tensor products

Let X, Y vector spaces:

- E, F linearly independent subspaces of X, Y respectively. Then $\{x \otimes y : x \in E, y \in F\}$ is a linearly independent subset of $X \otimes Y$.
- E, F basis for X, Y respectively. Then $\{x \otimes y : x \in E, y \in F\}$ is a basis for $X \otimes Y$.

Dr M.Eugenia Celorrio Ramirez Quantum Formalism

Thank you for your attention

Recommended Bibliography: Megginson, R.E., An introduction to Banach space theory Young, N., An introduction to Hilbert space Ryan, R.A., Introduction to Tensor Products of Banach space