Predict the **Best Team** for Fantasy remier eague 2018-2019

WQD7011 Numerical Optimization

- 1. Aswadi Abdul Rahman (WQD180082)
- 2. Lee Kwan Li (WQD180019)
- 3. Chai Kun Ting (WQD180040)
- 4. Zulkanain Hasan (WQD180031)

Contents

- 1. Introduction
- 2. Problem Statement
- 3. Dataset
- 4. Objective Function
- 5. Constraints
- 6. Results
- 7. Discussion
- 8. Conclusion

Introduction

- Team managers spend lots of time in constructing what he perceive to be the winning formula.
- Everybody has their way, their approach towards the game and it requires strategic and analytical thinking, along with a huge chunk of luck.

Problem Statement

- Ideally, as a team manager, he/she can select whichever player should be playing for any games.
- In reality, a team manager has a problem to select only 15 players for every game due to normally total team consists of 20 to 30 players.
- As a consequence, team board management normally set the budget for the team manager to set their best team in order to win the games.
- Thus, as a proposal Linear Optimization to be used to help the team manager to select their best teams will conditions to fulfill all the requirements/ constraints.

Objective Functions

Maximize the point => $56*x_0 + 72*x_1 + 169*x_2 + 102*x_3 + ...$ Points*x_n

To maximize the point earn by using Constraint Optimization (Linear Optimization) algorithm with given a budget (total cost) 1200 and 15 players (2GKP, 5DEF, 5FWD, 3FWD)

Constraints

- 1. Cash constrain: $45*x_0 + 45*x_1 + 110*x_2 + 50*x_3 + ...$ Cost* $x_n \le 1200$ 2. GKP Player Position: $x_1 + x_{30} + x_{38} + x_{48} + ...$ x_n (GKP position ONLY) = 2 • *Saves > 40
- 3. DEF Player Position: $x_0 + x_3 + x_5 + x_6 + \dots + x_n$ (DEF position ONLY) = 5
- 4. MID Player Position: $x_4 + x_8 + x_{10} + x_{11} + \dots + x_n$ (MID position ONLY) = 5
- 5. FWD Player Position: $x_2 + x_{12} + x_{15} + x_{18} + \dots + x_n$ (FWD position ONLY) = 3
- 6. Assists ≥ 90
- 7. Yellow Cards ≤ 20
- 8. Goals Scored ≥ 150
- 9. Minutes ≥ 44100

Results

Total Cost : 1190

Total Points : 2577

Total Goals : 152

Total Assists : 92

Total Yellow Cards: 20

Total Minutes : 44186

Discussion

Results:

Achieved objective function.

Constraint	Plan	Actual	Status
Cost	≤ 1200	1190	OK
GKP	2	2	OK
DEF	5	5	OK
MID	5	5	OK
FWD	3	3	OK
Goals	≥ 150	152	OK
Assists	≥ 90	92	OK
Yellow Cards	≤ 20	20	OK
Minutes	≥ 44100	44186	OK
Points		2577	GOOD

Conclusion

Linear Optimization can be used as a tool to solve for any constraint problem.

Question: Linear Optimization can be used in Football or other sports for reality?

Answer: Yes, but in reality another constraint should be consider i.e. Players Fitness. Thus, this additional data must be recorded and monitored by Team Management.

