Oefeningen Wiskunde II 2013, 1e Bach Informtica

Syd Kerckhove

March 2, 2013

Hoofdstuk 1

1.1

a)

$$\begin{pmatrix} 1 & 1 & -2 & 10 \\ 4 & 2 & 2 & 1 \\ 6 & 2 & 3 & 4 \end{pmatrix} \xrightarrow{R2 = R2 - 4R1} \xrightarrow{R3 = R3 - 6R1} \begin{pmatrix} 1 & 1 & -2 & 10 \\ 0 & -2 & 10 & -39 \\ 0 & -4 & 15 & -56 \end{pmatrix} \xrightarrow{R2 = -\frac{1}{2}R2} \xrightarrow{R3 = -\frac{3}{4}R3} \begin{pmatrix} 1 & 1 & -2 & 10 \\ 0 & 1 & -5 & \frac{39}{2} \\ 0 & 1 & -\frac{15}{4} & 14 \end{pmatrix}$$

$$\begin{array}{c} R1 = R1 - R2 \\ R3 = R3 - R2 \\ \rightarrow \end{array} \begin{pmatrix} 1 & 0 & 3 & -\frac{19}{2} \\ 0 & 1 & 3 & \frac{39}{2} \\ 0 & 0 & \frac{5}{4} & -\frac{11}{2} \end{pmatrix} \quad R3 = \frac{4}{5}R3 \\ \begin{pmatrix} 1 & 0 & 3 & -\frac{19}{2} \\ 0 & 1 & 3 & \frac{39}{2} \\ 0 & 0 & 1 & -\frac{22}{5} \end{pmatrix} \quad \begin{array}{c} R1 = R1 - 3R3 \\ R2 = R2 - 3R3 \\ \rightarrow \end{array} \begin{pmatrix} 1 & 0 & 0 & \frac{37}{10} \\ 0 & 1 & 0 & -\frac{5}{2} \\ 0 & 0 & 1 & -\frac{22}{5} \\ \end{array}$$

Antwoord:
$$x = \frac{37}{10}, y = -\frac{5}{2}, z = -\frac{22}{5}$$
 Correcter is:
$$V = \left\{ \left(\frac{37}{10}, -\frac{5}{2}, -\frac{22}{5} \right) \right\}$$

b)

$$\begin{pmatrix} 1 & 2 & -3 & | & -1 \\ 3 & -1 & 2 & | & 7 \\ 5 & 3 & -4 & | & 2 \end{pmatrix} \stackrel{R2 = R2 - 3R1}{R3 = R3 - 5R1} \begin{pmatrix} 1 & 2 & -3 & | & -1 \\ 0 & -7 & 11 & | & 10 \\ 0 & -7 & 11 & | & 7 \end{pmatrix}$$

Antwoord:

Het stelsel is strijdig.

Correcter:

$$V = \emptyset$$

$$(Ax + B)(x^{2} - 1) + C(x^{2} + 4)(x + 1) + D(x^{2} + 4)(x - 1)$$

= $Ax^{3} - Ax + Bx^{2} - B + cx^{3} + cx^{2} + 4Cx + 4C + Dx^{3} - Dx^{2} + 4Dx - 4D$

$$\left\{ \begin{array}{l} A+C+D=0 \\ B+C-D=0 \\ -A+4C+4D=0 \\ -B+4C-4D=1 \end{array} \right. \longrightarrow \left(\begin{array}{ccc|cccc} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ -1 & 0 & 4 & 4 & 0 \\ 0 & -1 & 4 & -4 & 1 \end{array} \right) \xrightarrow{GRM} \left(\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & 0 & \frac{1}{10} \\ 0 & 0 & 0 & 1 & -\frac{1}{10} \end{array} \right)$$

Antwoord:

$$\begin{cases}
A = 0 \\
B = -\frac{1}{5} \\
C = \frac{1}{10} \\
D = -\frac{1}{10}
\end{cases}$$

1.6

a)

$$\begin{pmatrix} 1 & 2 & -3 & 6 \\ 2 & -1 & 4 & 2 \\ 4 & 3 & -2 & a \end{pmatrix} \xrightarrow{R2 = R2 - 2R1} \begin{pmatrix} R2 = R2 - 2R1 \\ R3 = R3 - 4R1 \\ 0 & -5 & 10 & (a - 24) \end{pmatrix} \xrightarrow{R2 = -\frac{1}{5}R2} \begin{pmatrix} 1 & 2 & -3 & 6 \\ 0 & 1 & -2 & 2 \\ 0 & 1 & -2 & -\frac{(a - 24)}{5} \end{pmatrix}$$

Antwoord:

Voor $a \neq 14$ zal het stelsel geen oplossingen hebben. Voor a = 14 zal het stelsel oneindig veel oplossingen hebben.

(voor a = 14)

$$\begin{pmatrix}
1 & 2 & -3 & 6 \\
0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Wat we nog kunnen rijreduceren tot:

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

We constateren dat z hier een vrije variabele is en wijzen haar de waarde λ toe. Dan is onze oplossingsverzameling de volgende:

$$V = \{(2 - \lambda, 2 + 2\lambda, \lambda) \mid \lambda \in \mathbb{R}\}\$$

$$\begin{pmatrix} 1 & a & (a+1) \\ a & 1 & 2 \end{pmatrix} \stackrel{R2 = R2 - aR1}{\rightarrow} \begin{pmatrix} 1 & a & (a+1) \\ 0 & (1-a^2) & (a^2 - a + 2) \end{pmatrix}$$

Antwoord:

Voor a = 1: oneindig veel oplossingen, $\begin{cases} x = 2\lambda \\ y = \lambda \end{cases}$

Voor a = -1: geen oplossingen.

Voor $a \neq 1 \land a \neq -1$: precies 1 oplossing, $\begin{cases} x = \frac{1}{a+1} \\ y = \frac{a+2}{a+1} \end{cases}$

c)

$$\begin{pmatrix} a & (a+1) & 1 & 0 \\ a & 1 & (a+1) & 0 \\ 2a & 1 & 1 & (a+1) \end{pmatrix} \xrightarrow{R2 = R2 - R1} \begin{pmatrix} a & (a+1) & 1 & 0 \\ 0 & -a & a & 0 \\ 0 & -(2a+1) & -1 & (a+1) \end{pmatrix}$$

$$R2 = -\frac{1}{a}R2 \begin{pmatrix} a & (a+1) & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -(2a+1) & -1 & (a+1) \end{pmatrix} R1 = R1 - (a+1)R2 \begin{pmatrix} a & 0 & (a+2) & 0 \\ R3 = R3 + (2a+1)R2 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -2(a+1) & (a+1) \end{pmatrix}$$

$$R3 = -\frac{2}{\stackrel{(a+1)}{\rightarrow}} R3 \left(\begin{array}{ccc|c} a & 0 & (a+2) & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & | -\frac{1}{2} \end{array} \right) \begin{array}{c} R1 = R1 - (a+2)R3 \\ R2 = R2 + R3 \\ \rightarrow \end{array} \left(\begin{array}{ccc|c} a & 0 & 0 & \frac{a+2}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & | -\frac{1}{2} \end{array} \right)$$

$$R1 = \frac{1}{a}R1 \begin{pmatrix} 1 & 0 & 0 & \frac{a+2}{2a} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} \end{pmatrix}$$

Antwoord:

Voor a = 0: geen oplossingen.

Voor
$$a=-1$$
: one
indig veel oplossingen:
$$\begin{cases} x=\lambda\\ y=\lambda\\ z=\lambda \end{cases}$$
 Voor $a\neq -1 \land a\neq 0$: precies 1 oplossing:
$$\begin{cases} x=\frac{a+2}{2a}\\ y=-\frac{1}{2}\\ z=-\frac{1}{2} \end{cases}$$

$$\begin{pmatrix} k & 5 & 3 \\ 5 & 1 & -1 \\ k & 2 & 1 \end{pmatrix} R1 = R1 - \frac{k}{5}R2 R3 = R3 - \frac{k}{5}R2 0 & 5 - \frac{k}{5} & 3 + \frac{k}{5} 5 & 1 & -1 0 & 2 - \frac{k}{5} & 1 + \frac{k}{5} \end{pmatrix}$$

Antwoord:

Enkel als k=1 zullen R1 en R3 lineair afhankelijk zijn en zullen er niettriviale oplossingen zijn, anders is er enkel de triviale nuloplossing.

1.10

a)

$$\begin{pmatrix} 3 & 1 & 1 & 0 \\ 1 & 3 & 1 & 0 \\ 1 & 1 & 3 & 0 \end{pmatrix} \xrightarrow{R1 = R1 - 3R2} \xrightarrow{R3 - R2} \begin{pmatrix} 0 & -8 & -2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & -2 & 2 & 0 \end{pmatrix} \xrightarrow{R3 = -\frac{1}{2}R1} \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 4 & 1 & 0 \end{pmatrix}$$

$$R1 = R1 - 3R2 \xrightarrow{R3 = R3 - 4R2} \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 5 & 0 \end{pmatrix} \xrightarrow{R3 = \frac{1}{5}R3} \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R2 = R2 + R3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R2 = R2 + R3}$$

Antwoord:

Enkel de tiriviale oplossing $\vec{x} = \vec{0}$, want Rang(A) = n

Antwoord:

$$\begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

1.12

a)

Antwoord:

Lineair afhankelijk. Een zo groot mogelijke lineair onafhankelijke deelverzamelijk wordt bv. gegeven door de eerste 2 vectoren.

 $\lambda_3 = pmetp$ willekeurig en $\lambda_4 = t$ met t willekeurig.

$$\begin{array}{l} 2\lambda_2 = -p - 2t \Rightarrow \lambda_2 = \frac{1}{2}p - t \\ \lambda_1 = -5(-\frac{1}{2}p - t) - 2p - 3t = \frac{5}{2}p + 5t - 2p = \frac{1}{2}p - 2t \end{array}$$

$$\left(\frac{1}{2} - 2t\right) \begin{pmatrix} 1\\4\\-5 \end{pmatrix} + \left(\frac{1}{2}p - t\right) \begin{pmatrix} 5\\2\\1 \end{pmatrix} + p \begin{pmatrix} 2\\-1\\3 \end{pmatrix} + t \begin{pmatrix} 3\\-6\\11 \end{pmatrix} = \vec{0}$$

1.13

a)

$$\begin{pmatrix} 1 & -4 & 2 \\ -4 & 1 & -2 \\ 2 & -2 & -2 \end{pmatrix} \xrightarrow{R2} = R2 + 4R1 R3 = R3 - 2R1 0 -15 & 6 0 & 6 & -6 R3 = \frac{6}{15}R2 0 -15 & 6 0 & 0 & -\frac{36}{10} R3 = \frac{6}{15}R2 0 -15 & 6 0 & 0 & -\frac{36}{10} 0 & 0 & -\frac{3$$

Antwoord:

Deze drie vectoren zijn lineair onafhankelijk.

b)

$$R2 = R2 - 2R1$$

$$\begin{pmatrix} 1 & 1 & -1 \\ 2 & -1 & -5 \\ -5 & 4 & 14 \\ 3 & -1 & -17 \end{pmatrix} R3 = R3 + 5R1 \begin{pmatrix} 1 & 1 & -1 \\ 0 & -3 & -3 \\ 0 & 9 & 9 \\ 0 & -4 & 14 \end{pmatrix}$$

Antwoord:

Lineair afhankelijk, een zo groot mogelijk lineair onafhakelijke deelverzameling wordt bv. gegeven door de eerste 3 vectoren.

c)

$$\begin{pmatrix} 1 & -1 & 1 & 2 \\ -2 & 5 & 0 & -15 \\ 3 & 3 & 2 & 1 \end{pmatrix} \stackrel{R2 = R2 + 2R1}{R3 = R3 - 3R1} \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 3 & 2 & -11 \\ 0 & 6 & -1 & -5 \end{pmatrix} \stackrel{R3 = R3 - 2R2}{\to} \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 3 & 2 & -11 \\ 0 & 0 & -5 & 17 \end{pmatrix}$$

Antwoord:

Lineair onafhankelijk?

1.14

$$\begin{pmatrix} \cos(\theta) & 1 \\ 1 & 2\cos(\theta) \end{pmatrix} \overset{R1}{\longrightarrow} \overset{R1 - \cos(\theta)R2}{\longrightarrow} \begin{pmatrix} 0 & 1 - 2\cos^2(\theta) \\ 1 & 2\cos(\theta) \end{pmatrix}$$

Lineair afhankelijk asa

$$1 - 2\cos^{2}(\theta) = 0$$
$$\cos^{2}(\theta) = \frac{1}{2}$$
$$\cos(\theta) = \pm \frac{\sqrt{2}}{2}$$
$$\theta = \pm \frac{\pi}{4} \lor \theta = \pm \frac{3\pi}{4}$$

Hoofdstuk 2

2.1

$$A + B = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 1 & -4 \\ 2 & -3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 2 & 0 & 4 \end{pmatrix}$$

$$2P - Q = 2\begin{pmatrix} 1 & -2 \\ 0 & 4 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -4 \\ 0 & 7 \end{pmatrix}$$

$$P.C = \begin{pmatrix} 1 & -2 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} -5 & 3 \\ 4 & -1 \\ 2 & -1 \end{pmatrix} Onmogelijk$$

$\mathbf{p})$

$$\vec{b}.C = \begin{pmatrix} 2 & 5 & -2 \end{pmatrix}.\begin{pmatrix} -5 & 3 \\ 4 & -1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} (-10 + 20 - 4) & (6 - 5 + 2) \end{pmatrix} = \begin{pmatrix} 6 & 3 \end{pmatrix}$$

2.3

$$A.B = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 3 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} -5 & 4 \\ 4 & -1 \end{pmatrix} = A.B \ (toevallig)$$

$$A.B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

$$A.B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} . \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$

2.4

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 0 & 0 & 3 \\ 3 & 2 & 0 & 0 & 2 \\ 0 & 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 & 4 \end{pmatrix} \xrightarrow{GRM} \begin{cases} a = 0 \\ b = 1 \\ c = -10 \\ d = 7 \end{cases}$$

b)

$$\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} 2c = 2b \\ b + 2d = 2a \\ 2a = c + 2d \\ 2b = 2c \end{cases} \leftrightarrow \begin{cases} a = d \\ b = 2a - 2d \\ c = 2d - 2a \\ d = a \end{cases}$$

2.8

a)

Neen, want 2AB komt van AB + BA en $AB \neq BA$.

b)

Ja.

2.9

a)

$$\begin{pmatrix} 2 & -3 & 1 & 0 \\ 4 & 1 & 0 & 1 \end{pmatrix} \stackrel{R2 = R2 - 2R1}{\rightarrow} \begin{pmatrix} 2 & 1 & 0 & 0 & 3 \\ 3 & 2 & 0 & 0 & 2 \\ 0 & 0 & 2 & 3 & 1 \\ 0 & 0 & 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 2 & -3 & 1 & 0 \\ 0 & 7 & -2 & 1 \end{pmatrix} \stackrel{R1 = R1 + \frac{3}{7}R2}{\rightarrow} \begin{pmatrix} 2 & 0 & \frac{1}{7} & \frac{3}{7} \\ 0 & 7 & -2 & 1 \end{pmatrix}$$

2.10

$$\left(\begin{array}{ccc|ccc|c} 2 & 5 & 1 & 1 & 0 & 0 \\ 3 & 1 & 2 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 0 & 1 \end{array}\right) \stackrel{GRM}{\rightarrow} \left(\begin{array}{ccc|ccc|c} 19 & 0 & 0 & 2 & -1 & -9 \\ 0 & 19 & 0 & 5 & -2 & 1 \\ 0 & 0 & 19 & -5 & 12 & 13 \end{array}\right)$$

Antwoord:

$$\frac{1}{19} \begin{pmatrix} 2 & -1 & -9\\ 4 & -2 & 1\\ -5 & 12 & 13 \end{pmatrix}$$

a)

$$\begin{pmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{pmatrix} \cdot \begin{pmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) & -(\cos(\theta_1)\sin(\theta_2) + \cos(\theta_2)\sin(\theta_1)) \\ \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1)\cos(\theta_2) - -\sin(\theta_1)\sin(\theta_2) \end{pmatrix}$$

$$= \begin{pmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{pmatrix}$$

2.17

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad want \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} . \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} (1*1-1*0) & (1*1-1*0) \\ (0*1-0*0) & (0*1-0*0) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Hoofdstuk 3

3.2

a)

$$\begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} = 6$$

b)

$$\begin{vmatrix} 0 & 1 \\ -2 & 3 \end{vmatrix} = 2$$

c)

$$\begin{vmatrix} cos(n\theta) & -sin(n\theta) \\ sin(n\theta) & cos(n\theta) \end{vmatrix} = cos^{2}(n\theta) + sin^{2}(n\theta) = 1$$

3.3

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = 2$$

$$D_{1} = \begin{vmatrix} 6 & 1 & 1 \\ 14 & 2 & 3 \\ 36 & 4 & 9 \end{vmatrix} = 2, \ D_{2} = \begin{vmatrix} 1 & 6 & 1 \\ 1 & 14 & 3 \\ 1 & 36 & 9 \end{vmatrix} = 4, \ D_{3} = \begin{vmatrix} 1 & 1 & 6 \\ 1 & 2 & 14 \\ 1 & 4 & 36 \end{vmatrix} = 6$$
$$x_{1} = \frac{D_{1}}{D}, \ x_{2} = \frac{D_{2}}{D}, \ x_{3} = \frac{D_{3}}{D}$$

Antwoord:

$$\begin{cases} x_1 = 1 \\ x_2 = 2 \\ x_3 = 3 \end{cases}$$

3.4

a)

$$\begin{vmatrix} 2 & -1 & 3 \\ 4 & 1 & -2 \\ -3 & 2 & 1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 4 & -2 \\ -3 & 1 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 1 \\ -3 & 2 \end{vmatrix} = 10 - 2 + 33 = 41$$

$$\begin{vmatrix} 2 & -1 & 3 \\ 4 & 1 & -2 \\ -3 & 2 & 1 \end{vmatrix} = -(-1) \cdot \begin{vmatrix} 4 & -2 \\ 3 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 3 \\ -3 & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 3 \\ 4 & -2 \end{vmatrix} = -2 + 11 + 32 = 41$$

e)

$$\begin{vmatrix} 0 & 3 & 2 \\ 2 & 0 & 1 \\ 2 & 6 & 0 \end{vmatrix} = 0. \begin{vmatrix} 0 & 1 \\ 6 & 0 \end{vmatrix} - 3. \begin{vmatrix} 2 & 1 \\ 2 & 0 \end{vmatrix} + 2. \begin{vmatrix} 2 & 0 \\ 2 & 6 \end{vmatrix} = 18$$
$$\begin{vmatrix} 0 & 3 & 2 \\ 2 & 0 & 1 \\ 2 & 6 & 0 \end{vmatrix} = -3. \begin{vmatrix} 2 & 1 \\ 2 & 0 \end{vmatrix} + 0. \begin{vmatrix} 0 & 2 \\ 2 & 0 \end{vmatrix} - 6. \begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} = 18$$

3.6

c)

$$\begin{vmatrix}
-2 & 6 & 17 & -5 \\
0 & 3 & 22 & -12 \\
0 & 0 & 4 & -12 \\
0 & 0 & 0 & -6
\end{vmatrix} = (-2).3.4.(-6) = 144$$

d)

$$\begin{vmatrix} 0 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{vmatrix} = -2 \begin{vmatrix} 2 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{vmatrix} = -2.2 \begin{vmatrix} 0 & 2 \\ 2 & 0 \end{vmatrix} = 16$$

3.8

b)

$$\begin{vmatrix} 1 & 2x & 3x^{2} \\ 2x^{3} & 3x^{4} & 4x^{5} \\ 3x^{6} & 4x^{7} & 6x^{8} \end{vmatrix} R2 = R2 - 2x^{3}R1 \begin{vmatrix} 1 & 2x & 3x^{2} \\ R3 = R3 - 3x^{6}R1 \begin{vmatrix} 1 & 2x & 3x^{2} \\ 0 & -x^{4} & -x^{5} \\ 0 & -2x^{7} & -3x^{8} \end{vmatrix} = 0 \Leftrightarrow \begin{vmatrix} -x^{4} & -x^{5} \\ -2x^{7} & -3x^{8} \end{vmatrix} = 0$$
$$\Leftrightarrow 3x^{1}2 - 2x^{1}2 = x^{1}2 = 0 \Leftrightarrow x = 0$$

3.9

a)

$$\begin{vmatrix} 3 & 2 & -2 \\ 6 & 1 & 5 \\ -9 & 3 & 4 \end{vmatrix} \begin{vmatrix} R2 = R2 - 2R \\ R3 = R3 + 3R1 \\ = \begin{vmatrix} 3 & 2 & -2 \\ 0 & -3 & 9 \\ 0 & 9 & -2 \end{vmatrix} R3 = -\frac{1}{3}R3 - 3 \cdot \begin{vmatrix} 3 & 2 & -2 \\ 0 & 1 & -3 \\ 0 & 9 & -2 \end{vmatrix} R3 = R3 - 9R2 - 3 \cdot \begin{vmatrix} 3 & 2 & -2 \\ 0 & 1 & -3 \\ 0 & 0 & 25 \end{vmatrix} = (-3) * 3 * 25 = -225$$

b)

$$\begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix} R3 = R3 - R1 \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{vmatrix} R4 = R4 - R2$$

$$\begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & -1 \end{vmatrix} R4 = R4 - R3 \begin{vmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix} = 1$$

$$A^{\tau} = A^{-1} \qquad (1. \text{ Definitie orthogonale matrix})$$

$$A.A^{\tau} = I = A^{\tau}.A \qquad (2. \text{ Direct gevolg van definitie})$$

$$\det(A^{\tau}) = \det(A^{-1}) \qquad (3. \text{ (uit 1.)})$$

$$\frac{\det(A^{-1})}{\det(A)} = 1 \qquad (4. \text{ (uit 3.)})$$

$$\det(A.A^{-1}) = \det(I) = 1 \qquad (5. \text{ (uit 2.)})$$

$$\det(A.A^{-1}) = \det(A).\det(A^{-1}) \qquad (6. \text{ eigenschap determinant})$$

$$\frac{\det(A^{-1})}{\det(A)} = \det(A).\det(A^{-1}) \qquad (7. \text{ (uit 4. en 5.)})$$

$$\frac{1}{\det(A)} = \det(A) \qquad (8.)$$

$$\det(A) = 1 \lor \det(A) = -1 \qquad (9.)$$

Hoofdstuk 4

4.1

$$\vec{x} = \vec{p} + t(\vec{q} - \vec{p})$$

b)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

d)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 0 - 1 \\ 1 - 2 \\ 2 - 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

4.2

$$V: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + t1 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + t2 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

a)

We berekenen een normaalvector:

$$\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ 5 \\ -3 \end{pmatrix}$$

Er bestaat een a zodat dit een eenheidsnormaal is:

$$a. \begin{pmatrix} -4\\5\\-3 \end{pmatrix}$$

$$\sqrt{(-4a)^2 + (5a)^2 + (-3a)^2} = \sqrt{50a^2} = 1$$

Antwoord:

$$\begin{pmatrix} \frac{-4}{\sqrt{50}} \\ \frac{5}{\sqrt{50}} \\ \frac{-3}{\sqrt{50}} \end{pmatrix}$$

4.5

Stel:

Normaal:
$$\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, Positievector: $\vec{p} = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$, en $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Carthesische vergelijking van een vlak:

$$V: a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

Parametervergelijking van een vlak:

$$V: \vec{x} = \vec{p} + t_1 \vec{r_1} + t_2 \vec{r_2}$$

waarbij:

$$\vec{r_1} = \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix}, \ en \ \vec{r_2} = \begin{pmatrix} -c \\ 0 \\ a \end{pmatrix}$$

$$V: 2(x-1) + 1(y-1) + 3(z-2) = 0$$

$$\Leftrightarrow 2x + y + 3z = 9$$

$$V: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + t1 \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + t2 \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}$$

b)

$$V: -1(x-2) + 4(y+1) + 5(z-3) = 0$$

$$\Leftrightarrow -x + 4y + 5z = 9$$

$$V: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + t1 \begin{pmatrix} -4 \\ -1 \\ 0 \end{pmatrix} + t2 \begin{pmatrix} -5 \\ 0 \\ -1 \end{pmatrix}$$

4.7

$$r_{1} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \ richtvector: \ r_{2} = \begin{pmatrix} 2-1 \\ 4-2 \\ 2-3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$normaal: \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$$

$$V: \ -(x-1) - (z-3) = 0$$

$$\Leftrightarrow x+z=4$$

4.8

Stel:

 $Positievectoren: \vec{p}, \ en \ \vec{q} \ , \ \ Richtvector: (\vec{q}-\vec{p}), \ en \ Normalen: \ n_1 = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix}, \ en \ n_2 = \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix}$

Carthesische vergelijking van een rechte:

$$L: \begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \end{cases}$$

Parametervergelijking van een rechte:

$$L: \vec{x} = \vec{p} + t(\vec{q} - \vec{p})$$

a)

$$L: \vec{x} = \begin{pmatrix} 1\\2\\8 \end{pmatrix} + t \begin{pmatrix} 3\\-1\\-4 \end{pmatrix}$$

$$\begin{pmatrix} a \\ 3 \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 8 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \\ -4 \end{pmatrix} \Leftrightarrow \begin{cases} a = 1 + 3t \\ 3 = 2 + (-1)t \\ b = 8 - 4t \end{cases} \Leftrightarrow \begin{cases} a = 1 + 3(-\frac{1}{3}) \\ t = -\frac{1}{3} \\ b = 8 - 4(-\frac{1}{3}) \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3} \\ t = -\frac{1}{3} \\ b = 12 \end{cases}$$

b)

$$V: \ 3(x+4) - 2(y+0) + 6(z-3) = 0$$

$$\Leftrightarrow 3x - 2y + 6z = 6$$

$$\Leftrightarrow 3(1+3t) - 2(2-t) + 6(8-4t) = 6$$

$$\Leftrightarrow 9t + 2t - 24t + 3 - 4 + 48 = 6 \Leftrightarrow 9t + 2t - 24t + 3 - 4 + 48 = 6$$

$$\Leftrightarrow t = \frac{41}{13}$$

Antwoord:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 8 \end{pmatrix} + \frac{41}{13} \begin{pmatrix} 3 \\ -1 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{136}{13} \\ -\frac{15}{13} \\ -\frac{60}{13} \end{pmatrix}$$

4.18

$$\begin{pmatrix} 1\\3\\-2 \end{pmatrix} \times \begin{pmatrix} 0\\3\\1 \end{pmatrix} = \begin{pmatrix} 9\\-1\\3 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -9 \\ 1 \\ -3 \end{pmatrix}$$

$$\left(\begin{pmatrix} 1\\3\\-2 \end{pmatrix} \times \begin{pmatrix} 0\\-1\\2 \end{pmatrix} \right) \cdot \begin{pmatrix} 0\\3\\1 \end{pmatrix} = \begin{pmatrix} 8\\-2\\1 \end{pmatrix} \cdot \begin{pmatrix} 0\\3\\1 \end{pmatrix} = -7$$

e)

$$\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \times \begin{pmatrix} \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \times \begin{pmatrix} 7 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 14 \\ -21 \end{pmatrix}$$

4.22

a)

$$d(\vec{p}, \vec{v})) = \frac{|10 - 2.1 - 3.1 - (-1).2|}{\sqrt{2^2 + 3^3 + 1^2}} = \frac{7}{\sqrt{14}}$$

b)

$$\vec{r_1} = \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \quad \vec{r_2} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad \vec{p} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
$$\vec{r_1} \times \vec{r_2} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \times \begin{pmatrix} -1\\1\\0 \end{pmatrix} = \begin{pmatrix} -1\\-1\\-1 \end{pmatrix}$$
$$-(x-1) - y - z = 0$$
$$x + y + z = 1$$

afstand tot $(2,1,1)^{\tau}$:

$$d(\vec{p}, v) = \frac{|1 - 2 - 1 - 1|}{\sqrt{3}} = \sqrt{3}$$

4.30

$$\begin{vmatrix} \det \begin{pmatrix} 1 & -1 & 2 \\ 1 & 4 & 2 \\ 0 & 0 & 2 \end{pmatrix} \end{vmatrix}$$