THE MACRODYNAMICS OF SORTING BETWEEN WORKERS AND FIRMS LISE AND ROBIN (2017)

Presented by: Hong Ngoc Nguyen

March 27, 2019

Introduction

This paper:

- develops an equilibrium model of on-the-job search with heterogeneous workers and firms and aggregate uncertainty.
- proves that the model is very tractable.
- illustrates the quantitative implications of the model by fitting to US aggregate labor market data from 1951-2012.
- has rich implications for the cyclical dynamics of the distribution of vacancies, unemployed workers, and sorting between heterogeneous workers and firms.

Advantages

- w.r.t. existing equilibrium search models with heterogeneity: stochastic model is developed.
- w.r.t. the directed search model:
 - two-sided heterogeneity is easily introduced;
 - search frictions generate mismatch at the equilibrium;
 - workers search on the job and employers counter outside offers;
 - decisions about wages and matching are separated.
- w.r.t. wage-posting models: how different workers match with different firms and the interaction between heterogeneity and aggregate shocks are described.

Model

- Heterogeneous workers x and firms y; aggregate state z_t
- ▶ B_t(x): value of unemployment to worker x at t
- \blacktriangleright $b(x, z_t)$: how much an unemployed worker x earns at t
- ▶ $W_{0,t}(x,y)$: value to worker x hired from unemployment by firm y; $W_{0,t}(x,y) = B_t(x)$

(1)
$$B_t(x) = b(x, z_t)$$

 $+ \frac{1}{1+r} E_t \left[(1 - \lambda_{t+1}) B_{t+1}(x) + \lambda_{t+1} \int W_{0,t+1}(x,y) \frac{v_{t+1}(y)}{V_{t+1}} dy \right]$
 $= b(x, z_t) + \frac{1}{1+r} E_t B_{t+1}(x),$

- \triangleright λ_t : probability an unemployed searcher contacts a vacancy
- \triangleright $v_t(y)$: number of job opportunities chosen by firm y; $V_t = \int v_t(y) dy$

Model

▶ $P_t(x, y)$: continuation *value of a match* (x, y); $p(x, y, z_t)$ at t

(2)
$$P_{t}(x, y) = p(x, y, z_{t})$$

$$+ \frac{1}{1+r} E_{t} \left[\left(1 - (1-\delta) \mathbf{1} \{ P_{t+1}(x, y) \geq B_{t+1}(x) \} \right) B_{t+1}(x) + (1-\delta) \mathbf{1} \{ P_{t+1}(x, y) \geq B_{t+1}(x) \} \left((1-s \lambda_{t+1}) P_{t+1}(x, y) + s \lambda_{t+1} \int \max \{ P_{t+1}(x, y), W_{1,t+1}(x, y', y) \} \frac{v_{t+1}(y')}{V_{t+1}} dy' \right) \right]$$

- ► Incumbent and poaching firms engage in Bertrand competition which grants the worker the second highest bid.
 - If $P_{t+1}(x, y') > P_{t+1}(x, y)$: x moves to firm y' and receives $W_{1,t+1}(x, y', y) = P_{t+1}(x, y)$;
 - ▶ If $P_{t+1}(x, y') \le P_{t+1}(x, y)$: x stays with firm y and receives $W_{1,t+1}(x, y, y') = P_{t+1}(x, y')$

Model

▶ Match surplus: $S_t(x, y) = P_t(x, y) - B_t(x)$

$$S_t(x,y) = p(x,y,z_t) - b(x,z_t) + \frac{1-\delta}{1+r} E_t \max\{S_{t+1}(x,y),0\}.$$

- The surplus depends on time only through z_t and does not depend on the distributions of vacancies, unemployed workers, or worker-firm matches.
- Outside offers do not change the size of the match surplus.
- The surplus function fully characterizes the mobility decision of workers.
 - For an unemployed worker: A match is formed if S(x, y, z) > 0
 - For an employed worker: Poaching is successful if S(x, y, z) > S(x, y', z)

Fit

Fit the model to moments of US time series data from 1951: I to 2012:IV

Job Creation and Job Separation

FIGURE 3. EQUILIBRIUM VACANCY CREATION AND HOME, RELATIVE TO MARKET PRODUCTIVITY

 $\textit{Note:} \ Low\ (high)\ refers\ to\ periods\ when\ the\ aggregate\ state\ is\ in\ the\ bottom\ (top)\ decile\ of\ the\ simulation.$

- Moving from a boom to a recession, the number of vacancies contracts everywhere, esp in low-type vacancies
- Overall, market production is substantially higher than home production, esp in high state => more posted vacancies
- ► When home production is very close to market production, more in the low state, mismatched workers are at risk of endogenous separation

Feasible Matches and Sorting

FIGURE 4. CYCLICALITY OF FEASIBLE MATCHES

- The matching set is cone-shaped and sorting is strongly positive.
- ▶ Lower-type workers have fewer employment opportunities, and workers with shorter employment tenure are more cyclically sensitive.
- ► The firms' minimum worker type fluctuates substantially less than the workers' lowest firm type => matches between low-type firms and high-type workers are most at risk of endogenous separations.

Equilibrium Distribution of Matches

Panel B. High aggregate shock

FIGURE 5. JOINT DISTRIBUTION OF WORKER-FIRM MATCHES BY AGGREGATE STATE

- Substantial mass along the boundary relating to the firms' minimum worker type.
- Fewer matches at the boundary in the good states: workers move more quickly to their preferred matches through on-the-job search.
- On-the-job search results in the second ridge, the center of which corresponds to the optimal job for each worker.

Business-Cycle Dynamics of Matches

Business-Cycle Dynamics of Matches

- Employment share: Expansion is largely the result of low-/medium-type worker, low-type firm pairs.
- Job separation rate: Low-type workers are the most susceptible in recession, esp those matched with high-type firms; High-type workers are completely shielded.
- Share of hires: In recession, low-type firms hire less and medium-/high-type firms hire relatively more medium-/high-type unemployed workers.

Extension

- This model does not make any predictions about wages
- > => Is this model able to also match wage data?
- => incorporate more direct empirical measures of worker and firm heterogeneity, such as measures based on education, occupation, wages, value added, and other conditional measures available in matched employer-employee data.