

Ashima Garg

Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

TOPICWISE: THEORY OF COMPUTATION-1 (GATE-2019) - REPORTS

SKIPPED(1)

OVERALL ANALYSIS COMPARISON REPORT SOLUTION REPORT INCORRECT(5)

Q. 1

ALL(17)

Consider the following DFA:

CORRECT(11)

Which of the following string is not accepted by above DFA?

FAQ Solution Video Have any Doubt?

011001110

В

11011011001

1010101011

Your answer is Correct

Solution:

- (c)
- (a) Accepted
- (b) Accepted
- (c) Not accepted
- (d) Accepted

D

1001110

QUESTION ANALYTICS

Q. 2

Which of the following language is regular?

FAQ Solution Video Have any Doubt?

 $\{wxw^{\mathbb{R}} | w \in (a + b)^*, x \in \{a, b\}\}$

Your answer is Wrong

 $\{wxw^{R} | w, x \in (a + b)^{+}\}$

Correct Option

Solution:

(b)

- Option (a) represents DCFL since string matching is done i.e. before 'x' and after 'x'.
- Option (b) represents regular for which regular expression $a(a + b)^+a + b(a + b)^+b$.
- Option (c) represents CFL since ww^R is done first, hence needs a comparison, which cannot be dor finite automata.
- Option (d) represents CFL since ww^R contains string matching, which can not be done via finite autor

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES $\{ww^R \mid w \in (a + b)^*\}$ QUESTION ANALYTICS

Q. 3

Let w be any string of length n in $\{a, b\}^*$. Consider L be the set of all strings ending with atleast n b's. What is the minimum number of states in a non-deterministic finite automata that accept L?

FAQ Solution Video Have any Doubt?

A n

В

n + 1

Your answer is Correct

Solution:

(b)

The number of states for minimum NFA for end with atleast 2b's is 2 + 1 i.e. regular express a + b + b + b.

So, number of states needed will be n + 1.

С

n + 2

2ⁿ

D

Q. 4

Consider the following statements:

QUESTION ANALYTICS

 S_1 : DFA for language which contain $' \in '$ must have initial state as final state.

S₂: For any language either a language L or its complement L' must be finite.

 S_3 : If L is set of all string ending with atleast n b's then minimum number of states in non deterministic finite automata that accept L is n + 2.

S₄: Non deterministic finite automata is more powerful than deterministic finite automata.

Which of the above statement is true?

FAQ Solution Video Have any Doubt?

A S₁ only

Your answer is Correct

Solution:

(a)

- If DFA accept a null, then initial state must be final state.
- Consider a language L = {aⁿ} on alphabet {a, b} and its complement ∑* {aⁿ} both are inf
 Hence false.
- If L is set of all string ending with atleast n b's then minimum number of states in deterministic finite automata that accept L is n + 1. Hence false.
- Since every language accepted by a NFA is also accepted by some DFA, hence non determine finite automata has same power as deterministic finite automata. Hence false.

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

С

 S_2 , S_3 , S_4 only

S₁, S₃ only

QUESTION ANALYTICS

Q. 5

Which one of the following regular expression describes the language over {a, b} consist of no pair of consecutive a's?

FAQ Solution Video Have any Doubt?

 $(b*abb*)(a + \in)$

Your answer is **Correct**

Solution:

Option 'a' does not contain 'b' or '∈'.

Option 'c' does not contain 'ba' or 'bba'.

Option 'b' contain ∈, b, a, ab, ba i.e. no string of pair of consecutive a's.

Option 'd' contain 'aa' i.e. not allowed.

$$(b^*abb^*)^* (a + \in) + b^*$$

$$(b*ab*)*(a + \in) + b*(a + \in)$$

QUESTION ANALYTICS

Q. 6

The minimum number of states required for DFA that accept the language $L = \{a^n \mid n \text{ is multiple of 3 but not } \}$ multiple of 5} are _

FAQ Solution Video Have any Doubt?

15

Your answer is Correct15

Solution:

15

 $L = \{a^n \mid n \text{ is multiple of 3 but not multiple of 5}\}$ will contain all strings of a which are divisi 3 bit not a multiple of 15.

So, DFA will be:

So, 15 states are required.

Ashima Garg
Course: GATE

Computer Science Engineering(CS)

⇔ HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

The length of the shortest string not in the language (over $\Sigma = \{0, 1\}$) for regular expression 1*(0 + 10)*1* is

FAQ Solution Video Have any Doubt?

4

Correct Option

Solution:

4

Check the string one by one starting from \in , 0, 1, 00, 01,... until we reach the first string that is not generated by the given regular expression. In this case, smallest string not generated by the given regular expression is '0110' whose length is 4.

Your Answer is 3

QUESTION ANALYTICS

Q. 8

The number of states in minimal deterministic finite automata for strings starting with ab^2 and ending with b over the alphabet $\{a, b\}$ is _____.

Solution Video | Have any Doubt ?

6

Your answer is Correct6

Solution:

6

Minimum length string accepted by DFA will be $ab^2 b$

Now fill up the left cases, i.e.

QUESTION ANALYTICS

Q. 9

The number of DFA's with four states which can be constructed over the alphabet $\Sigma = \{a, b\}$ with designated initial state are 2^n , then the value of n is ______.

FAQ Solution Video Have any Doubt?

20

Correct Option

Solution:

20

	а	b
q_0	(1 of 4) (1 of 4) (1 of 4)	(1 of 4)
q_1	(1 of 4)	(1 of 4)
q_2	(1 of 4)	(1 of 4)
q_3	(1 of 4)	(1 of 4)

The number of DFA's without any final state are $4^8 \Rightarrow 2^{16}$

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

 $= 2^{20}$

QUESTION ANALYTICS

So, n will be 20.

Q. 10

Consider L_{DF} set of all languages accepted by DPDA by final state and L_{DE} be set of all languages accepted by DPDA by empty stack. Which of the following is true?

FAQ Solution Video Have any Doubt?

 $L_{DF} \subset L_{DE}$

 $L_{DF} = L_{DE}$

Your answer is Wrong

С

 $L_{DF} \supset L_{DE}$

Correct Option

Solution:

The set of languages accepted by final state DPDA is proper super set of languages accepte empty stack DPDA i.e. regular language a*b* is accepted by final state but not empty stack. So, $L_{DF} \supset L_{DE}$.

None of these

QUESTION ANALYTICS

Q. 11

Consider P and Q be language over $\Sigma = \{0, 1\}$ represented by the regular expression 0* (10*)* and (0* + 1*)*respectively. Which of the following is true?

FAQ Solution Video Have any Doubt?

Α

 $P \subset Q$

 $Q \subset P$

C P = Q

Your answer is **Correct**

Solution:

(c)

$$L(P) = 0^* (10^*)^*$$

$$= \{ \in, 0, 1, 10, 01, 00, 11, \}$$

$$L(Q) = (0^* + 1^*)^*$$

= {\in 0, 1, 10, 01, 00, 11,}

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

```
P \cap Q = 0*1*
```

QUESTION ANALYTICS

Q. 12

Consider the following statements:

```
S_1 : \{(a^n)^m \mid n \le m \ge 0\}
```

 $S_2: \{a^n b^n \mid n \ge 1\} \cup \{a^n b^m \mid n \ge 1, m \ge 1\}$

Which of the following is regular?

FAQ Solution Video Have any Doubt?

A Only S₁

B Only S₂

Your answer is Wrong

С

Both S₁ and S₂

Correct Option

Solution:

(c)

Put n = 1 in S_1 we get $\{(a^1)^m \mid 1 \le m\} \cup \{\in\}$ = $\{a^m \mid m \ge 0\} = a^*$

- Therefore S₁ is regular.
- S_2 represents $a^nb^n \cup a^+b^+ = a^+b^+$ which is regular. Hence regular.

D

Neither S_1 nor S_2

QUESTION ANALYTICS

Q. 13

Consider a push down automata (PDA) below which runs over the input alphabet (a, b). It has the stack alphabet $\{z_0, X\}$ where z_0 is the bottom of stack marker. The set of states of PDA is $\{q_0, q_1\}$ where q_0 is the start state.

$$\delta\{q_0, b, z_0\} = \{(q_0, Xz_0)\}$$

$$\delta\{q_{0'}, b, X\} = \{(q_{0'}, XX)\}\$$

$$\delta\{q_0, a, X\} = \{(q_1, X)\}$$

$$\delta\{{\bf q}_{0'}\in,\,z_0\}=\{({\bf q}_{0'}\in)\}$$

$$\delta\{q_1,\;b,\;X\}=\{(q_1,\;\epsilon)\}$$

$$\delta\{q_1, a, z_0\} = \{(q_0, z_0)\}$$

The language accepted by PDA is

FAQ Solution Video Have any Doubt?

1. V c

 $L = \{(b^n ab^n a)^m \mid m, n \ge 0\}$

Correct Option

Solution:

(a)

The PDA for given transition function is:

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

i i

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

- - BUY PACKAGE

ASK AN EXPERT

- Ø OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

```
a, z<sub>0</sub>, z<sub>0</sub>
```

 $L = \{(b^n ab^n a)^m \mid m, n \ge 0\}$

For clearer understanding, kindly refer the solution video of this question.

B $L = \{ (b^n a b^n a)^m \mid n, m \ge 0 \} \cup \{ b^n \mid n \ge 0 \}$

Your answer is Wrong

С

 $L = \{(b^n ab^n)^m a \mid n, m \ge 0\}$

D

None of the above

QUESTION ANALYTICS

Q. 14

Consider the following three languages:

- $L_1 = \{w \mid w \in \{a, b\}^* \text{ and } w = w^R\}$
- $L_2 = \{ww^R | w \in \{a, b\}^*\}$
- $L_3 = \{ w (a + b) w^R | w \in \{a, b\}^* \}$

What is the relation between L_1 , L_2 and L_3 ?

FAQ Solution Video Have any Doubt?

. .

 $L_2 \subset L_1$ and $L_3 \subset L_1$ and $L_1 = L_2 \cup L_3$

Your answer is Correct

Solution:

(a)

 L_2 is even palindrome on $\{a, b\}^*$

L₃ is odd palindrome on {a, b}*

L₁ is any palindrome on {a, b}*

Clearly, $L_2 \subset L_1$ and $L_3 \subset L_1$ and $L_1 = L_2 \cup L_3$

 $(L_2 = L_3) \subset L_1$

 $C \\ L_2 \cap L_1 = L_3$

D

 $L_2 \subset L_1$ and $L_3 \subset L_1$ but $L_1 \neq L_2 \cup L_3$

QUESTION ANALYTICS

Q. 15

The number of states in the minimal deterministic finite automata corresponding to the regular expression (0 + 1)*(000 + 001) is _____.

FAQ Solution Video Have any Doubt?

5

Your answer is Correct5

Ashima Garg (Enroll User)

Sign out

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

Now fill the rest of transition:

QUESTION ANALYTICS

Q. 16

The number of states in minimal NFA, which accepts all strings in which the 3^{rd} last bit is b is _____. [Assume $\Sigma = \{a, b\}$]

FAQ Solution Video Have any Doubt?

4

Your answer is Correct4

Solution:

4

Minimal NFA:

QUESTION ANALYTICS

Q. 17

Consider the following DFA:

The number of states in the minimal DFA obtained by applying minimization algorithm on the above DFA is equal to _____.

FAQ Solution Video Have any Doubt?

Your answer is Correct4

Solution:

4

4

Partition-1: $\{q_1, q_2\}, \{q_0, q_3, q_4, q_5\}$

Partition-2: $\{q_1, q_2\}, \{q_0, q_3, q_4\}, \{q_5\}$

Partition-3: $\{q_1, q_2\}, \{q_0, q_4\}, \{q_3\} \{q_5\}$

Partition-4: $\{q_1, q_2\}, \{q_0, q_4\}, \{q_3\} \{q_5\}$

Therefore 4 states will be required.

Ashima Garg Course: GATE Computer Science Engineering(CS)

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**