

EML'24 – Lecture 5 Classification II

ISLR 4, ESL 4

Prof. Isabel Valera 14 November 2024

Fitting Classification Models

Recall that the multivariate logistic regression model is defined as

$$\log \left(\frac{p(\mathbf{Y}=1|X)}{1-p(\mathbf{Y}=1|X)} \right) = \beta_0 + \beta_1 X + \cdots \beta_p X_p \text{ with } p(\mathbf{Y}=1|X) = \frac{e^{\beta_0 + \beta_1 X + \cdots + \beta_p X_p}}{1+e^{\beta_0 + \beta_1 X + \cdots + \beta_p X_p}}$$

We usually fit a logistic regression model by maximum likelihood

- log-likelihood function $\ell(\theta) = \sum_{i=1}^{n} \log p_{g_i}(x_i; \theta)$ and density function $p_k(x_i, \theta) = \Pr(G = k \mid X = x_i; \theta)$
- for a binary problem, class coding $y_i = \begin{cases} 1 \mid g_i = 1 \\ 0 \mid g_i = 0 \end{cases}$ gives us $p_1(x; \theta) = p(x; \theta)$ and $p_0(x; \theta) = 1 p(x; \theta)$

The log-likelihood then becomes

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \{ y_i \log p(x_i; \boldsymbol{\beta}) + (1 - y_i) \log (1 - p(x_i; \boldsymbol{\beta})) \} = \sum_{i=1}^{n} \{ y_i \boldsymbol{\beta}^T x_i - \log (1 + e^{\boldsymbol{\beta}^T x_i}) \}$$

• where $\beta = \{\beta_0, \beta_1, ...\}$ and x_i a vector of the input values padded with a constant term $X_0 = 1$

Side calculation

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \{ y_i \log p(x_i; \boldsymbol{\beta}) + (1 - y_i) \log (1 - p(x_i; \boldsymbol{\beta})) \}$$

$$= \sum_{i=1}^{n} \left\{ y_i \log \frac{e^{\beta_0 + \beta_1^T x_i}}{1 + e^{\beta_0 + \beta_1^T x_i}} + (1 - y_i) \log \frac{1}{1 + e^{\beta_0 + \beta_1^T x_i}} \right\}$$
 (definition of $p(x_i; \beta)$)

$$= \sum_{i=1}^{n} \left\{ y_i \left[(\beta_0 + \beta_1^T x_i) - \log \left(1 + e^{\beta_0 + \beta_1^T x_i} \right) \right] - (1 - y_i) \log (1 + e^{\beta_0 + \beta_1^T x_i}) \right\} \qquad (\log a/b = \log a - \log b)$$

$$= \sum_{i=1}^{n} \left\{ y_i \boldsymbol{\beta}^T x_i - \log \left(1 + e^{\boldsymbol{\beta}^T x_i} \right) \right\}$$
 (simplify)

We find the β that achieves maximum likelihood by setting the derivative to zero

this yields the score equations

$$\frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \sum_{i=1}^{n} x_i (y_i - p(x_i; \boldsymbol{\beta})) = 0$$

- these can be broken down to p+1 equations that are nonlinear in β
- because the first value of x_i is 1, the first equation takes the shape

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} p(x_i; \boldsymbol{\beta})$$

the expected number of class-1 assignments is the number class-1 we observed

We can solve the score equations numerically using Newton-Raphson

$$\boldsymbol{\beta}^{new} = \boldsymbol{\beta}^{old} - \left(\frac{\partial^2 \ell(\boldsymbol{\beta}^{old})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T}\right)^{-1} \frac{\partial \ell(\boldsymbol{\beta}^{old})}{\partial \boldsymbol{\beta}}$$

- i.e. adjust coefficients proportionally to second derivative in the opposite direction of first derivative
- repeat until convergence
- note that $\frac{\partial^2 \ell(\beta^{old})}{\partial \beta \partial \beta^T} = -\sum_{i=1}^n x_i x_i^T p(x_i; \beta) (1 p(x_i; \beta))$ is our old friend, the Hessian matrix!

Log-likelihood is concave

- single starting point suffices, $\beta = 0$ is fine
- typically converges, but overshooting can occur
- diagonal of the Hessian matrix contains the squared standard deviations of outputs in the training set

In matrix notation we have

$$\frac{\partial \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{X}^T (\mathbf{y} - \mathbf{p}) \qquad \qquad \frac{\partial^2 \ell(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} = -\mathbf{X}^T \mathbf{W} \mathbf{X}$$

where **W** is a diagonal matrix with elements $w_{ii} = -p(x_i; \boldsymbol{\beta}^{old}) \left(1 - p(x_i; \boldsymbol{\beta}^{old})\right)$

A single Newton-Raphson step is

$$\boldsymbol{\beta}^{new} = \boldsymbol{\beta}^{old} - (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{y} - \mathbf{p}) = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \left(\mathbf{X} \boldsymbol{\beta}^{old} - \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p}) \right) = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} \mathbf{z}$$
$$\mathbf{z} = \mathbf{X} \boldsymbol{\beta}^{old} - \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p})$$

ullet a linear least-squares problem with output ${f z}$ weighted by diagonal matrix ${f W}$

$$\boldsymbol{\beta}^{new} = \arg\min_{\boldsymbol{\beta}} \ (\mathbf{z} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{W} (\mathbf{z} - \mathbf{X}\boldsymbol{\beta})$$

Linear Discriminant Analysis

The Bayes-optimal choice is to classify x to the class with the largest discriminant

• the discriminant of a class k is the log-probability that cancels in the log-odds

$$\log\left(\frac{p_k(x)}{p_l(x)}\right) = \delta_k(x) - \delta_l(x)$$

Where we assume the class-conditional densities to be Gaussian, yielding:

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$$

is the log-numerator from previous slide with the class-independent terms removed

Fitting Univariate LDA Models

In general, we do not know the underlying class densities but assume they are Gaussians, so that

we estimate these using the finite training sample

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

$$\pi = n_k/n$$

• we assign x to the class with the largest fitted discriminant

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log \hat{\pi}_k$$

note that the discriminants are linear (!)

LDA fit over 20 samples per class, fitted decision boundary in dashed black. Bayes error 10.6%, LDA test error 11.1%

(ESL 4.4.1)

Again, we use sample estimates

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_i=k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T$$

$$\widehat{\boldsymbol{\Sigma}}_k = \frac{1}{n_k - K} \sum_{i: y_i = k} (x_i - \widehat{\mu}_k) (x_i - \widehat{\mu}_k)^T$$

$$\bullet \quad \pi_k = n_k/n$$

To simplify calculation we use the eigenvalue decomposition of the covariance matrices

$$\widehat{\boldsymbol{\Sigma}}_k = \boldsymbol{U}_k \boldsymbol{D}_k \boldsymbol{U}_k^T$$

- \mathbf{u}_k is a $p \times p$ orthonormal matrix
- \mathbf{p}_k is a diagonal matrix of decreasing positive eigenvalues d_{kl}

The main terms in the discriminants,

$$\delta_k(x) = -\frac{1}{2}\log|\widehat{\boldsymbol{\Sigma}}_k| - \frac{1}{2}(x - \mu_k)^T\widehat{\boldsymbol{\Sigma}}_k^{-1}(x - \mu_k) + \log \pi_k$$

then turn into

$$\log \left| \widehat{\boldsymbol{\Sigma}}_{k} \right| = \sum_{l} \log d_{kl}$$
$$(x - \hat{\mu}_{k})^{T} \widehat{\boldsymbol{\Sigma}}_{k}^{-1} (x - \hat{\mu}_{k}) = \left[\boldsymbol{U}_{k}^{T} (x - \hat{\mu}_{k}) \right]^{T} D_{k}^{-1} \left[\boldsymbol{U}_{k}^{T} (x - \hat{\mu}_{k}) \right]$$

The LDA estimator

- Step 1: Normalize X to spherical covariance $X^* \leftarrow D^{-1/2}U^TX$
- Step 2: Classify to the closest class centroid in the transformed space, where distance is weighted by the class prior probabilities π_k

Types of Errors – a handy guide

Type I error (false positive)

Type II error (false negative)

 \checkmark 11

Example on Multivariate LDA

Example default with balance and student as inputs

- training error for LDA is 2.75%
- data is highly unbalanced, we have only 3,33% positives
- the No-only classifier has an error of already only 3,33%

Sensitivity Sens = $TP/(TP + FN) = TP/P^*$

fraction of correctly predicted positives

Specificity Spec = $TN/(TN + FP) = TN/N^*$

- fraction of correctly predicted negatives
- No-only Sens = $\frac{0}{333}$ = 0%, Spec= $\frac{9,667}{9,667}$ = 100%
- LDA Sens= $\frac{81}{333}$ = 24.3%, Spec= $\frac{9,644}{9,667}$ = 99.8%
- LDA approximates the Bayes classifier, it minimizes error on all observations

LDA Model Results

	True Default Status		
Prediction	No (—)	Yes (+)	Total
No (—)	9,644	252	9,896
Yes (+)	23	81	104
Total	9,667	333	10,000

		True Default Status		
	Prediction	No (—)	Yes (+)	Total
	No (—)	TN	FN	N
	Yes (+)	₹P	TP	P
	Total	N*	P^*	n
Гуре alse	e-1 error positive	Confusion	7	Type-2 error alse negative

Example on Multivariate LDA

Biasing the classifier trades sensitivity for specificity

$$\log((p_k(x))/(p_l(x))) = \delta_k(x) - \delta_l(x)$$

move the decision threshold between class no or yes away from

$$Pr(default = yes | X = x) = P(Y = 1 | X) = 0.5$$

- we can increase sensitivity by choosing
 threhold < 0.5
 as this assigns more points to positive class yes
- for Pr(default = yes | X = x) > 0.2
 - Sens = 195/333 = 58.6%
 - Spec = 9,432/9,667 = 97.6%
 - Error = 373/10,000 = 3.73%

For a threshold of 0.5 we get Sens = 24.3%, Spec = 99.8%, Error=2.75%

	True Default Status		
Prediction	No (—)	Yes (+)	Total
No (—)	9,644	252	9,896
Yes (+)	23	81	104
Total	9,667	333	10,000

	True Default Status		
Prediction	No (—)	Yes (+)	Total
No (—)	9,432	138	9,570
Yes (+)	235	195	430
Total	9,667	333	10,000

While for a threshold of 0.2 we have Sens = 58.6%, Spec = 97.6%, Error=3.73%

Example on Multivariate LDA

Biasing the classifier trades sensitivity for specificity

$$\log((p_k(x))/(p_l(x))) = \delta_k(x) - \delta_l(x)$$

move the decision threshold between class **no** or **yes** away from

$$Pr(default = yes | X = x) = P(Y = 1 | X) = 0.5$$

- we can increase sensitivity by choosing threhold < 0.5as this assigns more points to positive class yes
- for Pr(default = yes | X = x) > 0.2
 - Sens = 195/333 = 58.6%
 - \bullet Spec = 9,432/9,667 = 97.6%
 - Error = 373/10,000 = 3.73%
- error rates change smoothly when we move the threshold

false-positive rate (1 - Spec)

ROC Curves

Receiver-Operating Characteristic (ROC) curves plot Sens against 1 - Spec for all thresholds

- Area Under the ROC-Curve (AUC) measures the quality of a classifier independent of the choice of that threshold
- optimally Spec = Sens = 1 for any threshold (AUC = 1)
- random classifier performs on the diagonal (AUC = 0.5)
- if the ROC curve goes below the diagonal, we can improve accuracy by inverting the classifier

ROC curves are **not influenced by imbalance** of the data

balance only affects locations of a threshold along the curve

Comparing Different Classifiers

We now know four classifiers: k-NN (L01), LDA, QDA and logistic regression

• when should we use which?

Logistic regression and LDA are surprisingly closely related

univariate binary setting

$$p_2(x) = 1 - p_1(x)$$

log-odds for LDA are

$$\log \frac{p_1(x)}{1 - p_1(x)} = c_0 + c_1 x$$

(difference of two linear discriminants)

• while for logistic regression

$$\log \frac{p_1(x)}{1 - p_1(x)} = \beta_0 + \beta_1 x$$

Similar, but different

- β_0 and β_1 are maximum likelihood estimates
- c_0 and c_1 are estimated from sample mean and variance of Gaussian distribution
- relationship extends to multivariate data: LR and LDA often give similar results but not always!
- LDA makes stronger assumptions (i.e., Gaussian class-conditional density)

We now know four classifiers: k-NN, LDA, QDA and logistic regression

• when should we use which?

k-NN is nonparametric and tends to work better for strongly nonlinear settings

it does not allow for inference, i.e. we do not get a model that we can learn from

QDA is a compromise between LDA and k-NN

Logistic regression very often works great in practice, and one can transform the features to have non-linear classification with respect to original features. Often used as baseline!

18

Scenario 1

- 100 random training data sets, p = 2 predictors, K = 2 classes
- 20 observations per class
- observations in different classes uncorrelated normal variables. with different means and the same variance (spherical Gaussian)
- this matches the LDA assumptions of LDA

Observations

- LDA works very well
- logistic regression assumes a linear decision boundary, performs only slightly worse than LDA
- k-NN overfits, as does QDA

Scenario 2

- 100 random training data sets, p = 2 predictors, K = 2 classes
- like scenario 1, but predictors in each class now have a correlation of -0.5 (elliptical multivariate Gaussian)

Observations

relative performances are similar to scenario 1 but with QDA competing as we match its assumptions.

Scenario 3

- 100 random training data sets, p = 2 predictors, K = 2 classes
- X_1 and X_2 are generated using a **t**-distribution
- more extreme points than with a Gaussian
- decision boundary is linear, but, setup violates LDA assumption

Observations

- logistic regression performs best
- QDA deteriorates because of non-normality of the data

cenario 5

Scenario 4

- 100 random training data sets, p = 2 predictors, K = 2 classes
- class 1: normal distribution with correlation 0.5 to predictors
- class 2: normal distribution with correlation -0.5 to predictors
- assumptions of QDA are met (but not LDA!)

Observations

QDA outperforms all other methods

Scenario 5

- 100 random training data sets, p = 2 predictors, K = 2 classes
- two normal distributions with uncorrelated predictors
- inputs X_1^2 , X_2^2 and X_1X_2 , not X_1 and X_2
- the decision boundary is quadratic

Observations

- QDA performs best
- kNN (CV) follows closely
- the linear methods all perform poorly

Scenario 6

- 100 random training data sets, p = 2 predictors, K = 2 classes
- like scenario 5, but responses sampled from a complicated linear function

Observations

- even QDA cannot model data well
- k-NN-1 overfits
- k-NN (cross-validated) outperforms all parametric approaches
- smoothness must be chosen carefully

