Mathematics GU4044 Representations of Finite Groups Assignment # 4

Benjamin Church

May 9, 2018

Problem 1.

(a). Let V_1 and V_2 be G-representations. Consider the vectorspace $(V_1 \oplus V_2)^G$ and take any $(v_1, v_2) \in (V_1 \oplus V_2)^G$. Then,

$$(\rho_1 \oplus \rho_2)(v_1, v_2) = (\rho_1(v_1), \rho_2(v_2)) = (v_1, v_2) \iff \rho_1(v_1) = v_1 \text{ and } \rho_2(v_2) = v_2$$

Thus, $(v_1, v_2) \in (V_1 \oplus V_2)^G \iff (v_1, v_2) \in V_1^G \oplus V_2^G$. Therefore, $(V_1 \oplus V_2)^G = V_1^G \oplus V_2^G$. In particular, since $(\operatorname{Hom}(V, W))^G = \operatorname{Hom}^G(V, W)$ and $\operatorname{Hom}(W, V_1 \oplus V_2) \cong \operatorname{Hom}(W, V_1) \oplus \operatorname{Hom}(W, V_2)$, we have the relationship,

$$\operatorname{Hom}^{G}(W, V_{1} \oplus V_{2}) \cong \operatorname{Hom}^{G}(W, V_{1}) \oplus \operatorname{Hom}^{G}(W, V_{2})$$

(b). Let W be an irreducible G-representation of a finite group G and let V be another G-representation which is totally reducible. Thus, we can write, $V \cong V_1 \oplus \cdots V_l$ where each V_i is an irreducible G-representation. Applying the lemma above inductively,

$$\operatorname{Hom}^{G}(W, V) \cong \operatorname{Hom}^{G}(W, V_{1}) \oplus \cdots \oplus \operatorname{Hom}^{G}(W, V_{k})$$

and therefore,

$$\dim \operatorname{Hom}^{G}(W, V) = \dim \operatorname{Hom}^{G}(W, V_{1}) + \cdots + \dim \operatorname{Hom}^{G}(W, V_{k})$$

However, by Schur's lemma, since W and V_i are both irreducible G-representations, dim $\operatorname{Hom}^G(W, V_i) = 1$ if $W \cong V_i$ and zero otherwise. Therefore,

dim Hom^G
$$(W, V) = \sum_{i=1}^{k} \mathbf{1}(W \cong V_i) = \#\{V_i \text{ isomorphic to } W\}$$

Problem 2.

(i) Let $G = D_3$ with a two-dimensional representation given by,

$$\rho(r) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix} \quad \rho(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Thus, $\chi_2(e) = 2$ and $\chi_2(r) = -1$ and $\chi_2(s) = 0$. The group D_3 has three conjugacy classes, $[e] = \{e\}, [r] = \{r, r^{-1}\}, [s] = \{s, rs, r^2s\}$. Since the character χ_2 is a class function,

$$\frac{1}{6} \sum_{g \in D_2} |\chi_2(g)|^2 = \frac{1}{6} \left(|\chi_2(e)|^2 + 2|\chi_2(r)|^2 + 3|\chi_2(s)|^2 \right) = \frac{1}{6} \left(2^2 + 2 \right) = 1$$

(ii) Now, consider the standard representation of S_3 on \mathbb{C}^3 . The group S_3 is similarly generated by $\sigma = (1\ 2\ 3)$ and $\tau = (1\ 2)$. These are represented by the matrices.

$$\rho_{st}(\sigma) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \rho_{st}(\tau) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Since χ_{st} is a class function, we need only to compute it on representatives of the three conjugacy classes, $[e] = \{e\}$, $[\sigma] = \{\sigma, \sigma^{-1}\}$, $[\tau] = \{\tau, \sigma\tau, \sigma^2\tau\}$. Now, $\chi_{st}(e) = \dim \mathbb{C}^3 = 3 = \chi_2(e) + 1$. Likewise, $\chi_{st}(\sigma) = 0 = \chi_2(r) + 1$ and $\chi_{st}(\tau) = 1 = \chi_2(s) + 1$. Therefore, because they are both class functions which agree on each conjugacy class, $\chi_{st} = \chi_2 + 1$.

Problem 3.

Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group with $\rho: Q \to \mathrm{GL}(2,\mathbb{C})$ given by,

$$\rho(\pm 1) = \pm \mathrm{id} \quad \rho(\pm i) = \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad \rho(\pm j) = \pm \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \rho(\pm k) = \pm \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$$

Therefore, $\chi(\pm 1) = \pm 2$ and $\chi(\pm i) = \chi(\pm j) = \chi(\pm k) = 0$. Then,

$$\frac{1}{8} \sum_{g \in Q} \chi(g) \overline{\chi(g)} = \frac{1}{8} \left(|\chi(1)|^2 + |\chi(2)|^2 + 0 \right) = \frac{1}{8} \left(2^2 + 2^2 \right) = 1$$

Problem 4.

(i) Let V_1 and V_2 be two one-dimensional representations of G corresponding to homomorphisms $\lambda_1, \lambda_2 : G \to \mathbb{C}^{\times}$. Clearly, if $\lambda_1 = \lambda_2$ then $V_1 \cong V_2$ because they correspond to equal representations. Conversely, if $V_1 \cong V_2$ then there exists a G-isomorphism $F: V_1 \to V_2$ such that, $F \circ \lambda_1(g) = \lambda_2(g) \circ F$ for all $g \in G$. Then, because F is linear,

$$F \circ \lambda_1(g)(v) = F(\lambda_1(g)v) = \lambda_1(g)F(v) = \lambda_2(g) \circ F(v)$$

for all $g \in G$. Since F is an isomorphism and the representations are nontrivial, there must be a nonzero vector in the image of F. Therefore, $\lambda_1(g) = \lambda_2(g)$ for all $g \in G$.

- (ii) Let V be a one-dimensional G-representation with corresponding homomorphism $\lambda: G \to \mathbb{C}^{\times}$. Consider the dual representation (V^*, ρ_{V^*}) such that $\rho_{V^*}(g) \cdot f = f \circ \rho_V(g)^{-1} = f \circ \rho_V(g^{-1})$. Consider a linear functional $f \in V^*$ and a vector $v \in V$ then, $\rho_{V^*}(g) \cdot f(v) = f \circ \rho_V(g^{-1})(v) = f(\lambda(g^{-1}v) = \lambda(g^{-1})f(v)$. Therefore, ρ_{V^*} acts on V^* by multiplication by $\lambda(g^{-1})$. Thus, the G-representation ρ_{V^*} corresponds to the homomorphism $\lambda^{-1}: G \to \mathbb{C}^{\times}$ where $\lambda^{-1}(g) = \lambda(g^{-1})$.
- (iii) Let V_1 denote the one-dimensional representation of $\mathbb{Z}/n\mathbb{Z}$ corresponding to the homomorphism $\lambda_1(k) = e^{2\pi i k/n}$. Suppose that n > 2 then, the corresponding representation on the dual space $(V_1)^*$ is given by the homomorphism $\lambda_1^{-1}(k) = e^{2\pi i (-k)/n} = e^{-2\pi i k/n}$. For n > 2 we have that $\lambda_1^{-1}(1) = e^{-2\pi/n} \neq e^{2\pi i/n}$ else $4\pi/n \in 2\pi\mathbb{Z}$ which it cannot be for n > 2. Therefore, by part (i), we have that $V_1 \ncong (V_1)^*$ because the corresponding complex homomorphisms are not equal. For the case n = 2, inversion is the identity automorphism on $\mathbb{Z}/2\mathbb{Z}$ so $\lambda_1 = \lambda_1^{-1}$ and thus $V_1 \cong (V_1)^*$ because they correspond to equal homomorphisms into \mathbb{C}^\times .

Problem 5.

Let $V = \mathbb{C}^n$ be the standard representation of S_n with a homomorphism $\rho_{st}: S_n \to \operatorname{Aut}(\mathbb{C}^n)$. We have S_n -invariant projection maps, $p: V \to \mathbb{C}$ and $p': V \to V^G = \operatorname{span}\{e_1 + \cdots + e_n\}$ given by,

$$p(t_1, \dots, t_n) = \frac{1}{n} \sum_{i=1}^n t_i$$
 and $p'(v) = \frac{1}{\#(S_n)} \sum_{\sigma \in S_n} \rho_{st}(v) = \frac{1}{n!} \sum_{\sigma \in S_n} \rho_{st}(v)$

These maps are, in fact, equal under the identification $\mathbb{C} \cong \text{span}\{e_1 + \dots + e_n\}$. This holds because there are exactly (n-1)! permutations in S_n taking e_i to e_j for any $1 \leq i, j \leq n$. Now, write $v = t_1 e_1 + \dots + t_n e_n$ and consider,

$$p'(v) = \frac{1}{n!} \sum_{\sigma \in S_n} \rho_{st}(t_1 e_1 + \dots + t_n e_n) = \frac{1}{n!} \sum_{i=1}^n \sum_{\sigma \in S_n} t_i \, \rho_{st}(e_i)$$

$$= \frac{1}{n!} \sum_{i=1}^n t_i \sum_{j=1}^n (n-1)! \, e_j = \frac{1}{n} \sum_{i=1}^n t_i \, (e_1 + \dots + e_n) = p(t_1, \dots, t_n)(e_1 + \dots + e_n)$$

Problem 6.

Let V be a representation of a finite group G. Let $\mathbb{C}[G] \cdot v = \operatorname{span}\{\rho(g) \cdot v \mid g \in G\}$

(a). Take $w \in \mathbb{C}[G] \cdot v$ then $w = \sum_{g \in G} t_g \rho(g) v$ with coefficients $t_g \in \mathbb{C}$. Then, for any $h \in G$ consider,

$$\rho(h)w = \sum_{g \in G} \rho(h)(t_g \, \rho(g)v) = \sum_{g \in G} t_g \, \rho(hg)v) = \sum_{g' \in G} t_{h^{-1}g'} \, \rho(g')v) \in \mathbb{C}[G] \cdot v$$

Therefore $\mathbb{C}[G] \cdot v$ is a G-invariant subspace of V.

- (b). Let V be irreducible and take $v \neq 0$. Then, $v \in \mathbb{C}[G] \cdot v$ so $\mathbb{C}[G] \cdot v$ is a nonempty G-invariant subspace of V. However, since V is irreducible, there is exactly one such subspace, namely $\mathbb{C}[G] \cdot v = V$.
- (c). Since $\mathbb{C}[G] \cdot v = \operatorname{span}\{\rho(g) \cdot v \mid g \in G\} = V$ the set $\{\rho(g) \cdot v \mid g \in G\} = G \cdot v$ spans V and therefore must be at least a large as the dimension of the space. Thus, $\#(G \cdot v) \geq \dim V$.
- (d). Suppose that V is irreducible and $H \leq G$ is an abelian subgroup. Since H is abelian, the restricted representation has a common eigenvector v for all $h \in H$. Suppose that $g_1, g_2 \in G$ lie in the same coset G/H then $g_2-1g_1=h$ so $\rho_{g_2^{-1}g_1}v=\rho_hv=\lambda(h)v$ and thus $\rho_{g_1}v=\lambda(h)\rho_{g_2}v$. Thus, span $\{\rho_{g_1}v\}=\sup\{\rho_{g_2}v\}$. Thus, each coset produces a one-dimensional span. Since for purposes of calculating spans, each coset can be replaced by a single element, $\mathbb{C}[G] \cdot v = \sup\{\rho(g)v \mid g \in G\} = \sup\{\rho(h)v \mid hH \in G/H\}$ and thus, $\dim \mathbb{C}[G] \cdot v \leq \#(G/H)$. However, $\mathbb{C}[G] \cdot v = V$ so $\dim V \leq \#(G/H)$.