Решения задач

$M165 - M169, \Phi 183 - \Phi 187$

М165. На окружности расположено множество F точек, состоящее из 100 дуг. Известно, что при любом повороте R окружности множество R (F) имеет общую точку c F. (Другими словами, для любого α от 0° до 180° в множестве F можно указать две точки, отстоящие друг от друга на α .) Какую наименьшую сумму длин могут иметь 100 дуг, образующих множество F? Каков будет ответ, если дуг не 100, а n?

Решим задачу для п дуг.

Обозначим сумму длин n дуг, образующих множество F через S *)

S может быть сколь угодно близко к $\frac{180^\circ}{n}$. Достаточно привести пример: распологаем (n-1) дугу, длина каждой из которых равна $\frac{a^\circ}{n}$ так, чтобы центры любых дву соседних остояли на $\frac{180^\circ}{n}$, а за (n-1)й помещаем n-ую дугу с длиной $\frac{180^\circ}{n}$ так, чтобы расстояние между их ближайшими концами равнялось $\frac{180^\circ}{n}$. Легко проверяется, что указанная система

^{*)} Поскольку нас интересует только относительная длина дуг, мы будем измерять ее в градусах.

Рис. 1

дуг удовлетворяет условию задачи. При соответствующем выборе α° сумма длин дуг будет как угодно близка к $\frac{180^{\circ}}{n}$.

Если же точку на окружности считать дугой нулевой длины, то, заменив в примере все дуги, кроме последней, на точки, получаем множество F с суммой длин дуг, равной $\frac{180^{\circ}}{n}$ (рис. 1).

Докажем, что сумма S длин дуг не может быть меньше этого числа. Представим себе, что мы имеем два экземпляра нашей окружности, на которых размещены те же самые п дуг. Повернем одну из окружностей на угол ϕ , $0<\phi<360^\circ.U_{ij}$, всех таких значений ϕ , для которых при таком повороте і-ая дуга повернутой окружности пересекается в ј-й дугой неподвижной окружности. Нарисуем отдель «контрольную» окружность (с выбранной на ней начальной точкой $\phi=0$ (рис. 2)) и отметим на ней множества U_{ij} для всех i, j от 1 до п. Ясно, что U_{ij} является дугой с длинной, равной сумме длин і-й и j-й дуг.

Рис.2

Отмеченные множества U_{ij} должны заполнять всю «контрольную» окружность, так как при любом повороте какие-то две дуги нашего множества должны пересекаться, поэтому ссума длин всех U_{ij} не меньше 360° . С другой стороны, эта сумма равна 2n. S так как каждая дуга множествавходит в сумму 2n раз.

дуга множествавходит в сумму 2n раз. Отсюда получаем, что $S \geq \frac{360^\circ}{2n} = \frac{180^\circ}{n}$. Нетрудно заметить, что неравенство должно быть строгим (если отдельные точки не считать дугами), так как любые две области U_{ii} и U_{ij} имеют общий участок, содержащий начало отсчета.

Ю. П. Лысов

М166. а) Школьники одного класса в сентябре ходили в два турестических похода. В первом походе мальчиков было меньше 2/5. Докажите, что в этом классе мальчики составляют меньше 4/7 общего числа учеников, если изве-

Таблица 1

№ Бутылки	Время наполнения в секундых	Время закупоривания в секундах
1	7	10
2	9	8
3	3	1
4	2	4
5	11	6
6	5	12

$$f(x) = \frac{1}{x^2} \sum_{i=0}^{i=\infty} \sqrt[5]{\frac{dx}{(dx-1)^2}}$$

1	2	3	4	5
6	7	8	9	10