IFT1015 Programmation 1 Expressions et variables numériques

Marc Feeley
(avec ajouts de Aaron Courville et Pascal Vincent)

Syntaxe

- Syntaxe d'un langage : forme textuelle que peuvent prendre les programmes valides
- Tout comme pour les langages naturels (français, anglais, ...), la syntaxe est normalement définie par une grammaire
- **Grammaire** : ensemble de règles pour former des programmes valides syntaxiquement à partir de **fragments** de programme valides

Expressions

- Tous les langages de programmation offrent la possibilité de faire des calculs numériques
- Ces calculs s'expriment par des expressions
- Exemple en JS:
 - 5
 - · 2+3*5
 - (2+3)*5

Expressions

- Toute expression a une valeur, qui est le résultat du calcul exprimé par l'expression
- En JS, 25 est la valeur de l'expression (2+3) *5
- Dans presque tous les langages, un nombre décimal non-négatif est une expression simple (une constante littérale), dont la valeur est le nombre en question
- En JS, 123 est la valeur de l'expression 123

Expressions

- Des expressions plus complexes sont bâties à l'aide d'opérateurs et d'expressions plus simples (les opérandes)
- Les opérateurs de base en JS:
 - + addition
 - soustraction
 - * multiplication
 - / division

Opérateurs binaires

- "Binaire" pour 2 opérandes
- Syntaxe: <expression> <op> <expression>
- Exemple : 3 + 7
 - valeur: 10
- Exemple: 2 * 5 1
 - valeur:9
- Exemple: 2 * 5 3 * 3
 - valeur: 1

Opérateurs unaires

 Les opérateurs de signe (+ et -) peuvent être utilisés comme préfixe d'une expression

• Syntaxe: \(\sigme\) \(\sigma\) (expression)

• Exemple : – 5

valeur: -5

• Exemple : + 13

valeur: 13

• Exemple : - - 5

valeur: 5

codeBoot

- Pour développer des programmes JS nous allons utiliser l'environnement codeBoot
- codeBoot est un interprète de JS conçu à l'UdeM qui est interactif et pédagogique

Exécution pas-à-pas

Exécution pas-à-pas

 À chaque pas codeBoot affiche en jaune l'expression qui vient juste d'être calculée, et, dans une boite jaune en dessous ou au dessus, sa valeur

Ordre d'exécution

- Généralement, l'exécution est de gauche à droite
- Comment expliquer que la multiplication se fait avant l'addition?

Préséance des opérateurs

- Chaque opérateur a un niveau de préséance
 - +,-: les opér. binaires additifs (niveau 1)
 - *,/: les opér. binaires multiplicatifs (niveau 2)
- Pour déterminer comment les sous-expressions se regroupent, il faut regrouper les sousexpressions aux côtés des opérateurs de niveau 2 avant de le faire pour les opérateurs de niveau 1
- Pour forcer un groupement spécifique, on peut se servir de parenthèses
- 1+2*3 est égal à 1+(2*3) mais pas à (1+2)*3

Préséance des opérateurs

- Les opérateurs unaires + et -
 - -5 a la valeur -5
 - +5 a la valeur 5
- Ces opérateurs sont de niveau 3
 - -+-5 est égal à − (+ (-5))
 - <u>-8*-5-3</u> est égal à <u>((-8)*(-5))-3</u>
- JS a plusieurs autres opérateurs et un total de 17 niveaux de préséance!

Associativité des opérateurs

- Pour des opérateurs de même niveau de préséance, pour déterminer comment les sousexpressions se regroupent, il faut tenir compte de l'associativité des opérateurs
- Les opérateurs +,-,*,/ sont associatifs à gauche
- 1-2+3 est égal à (1-2)+3 mais pas à 1-(2+3)
- 1-2-3-4-5-6-7-8-9 est égal à (((((((1-2)-3)-4)-5)-6)-7)-8)-9

Parenthèses redondantes

- Certaines paires de parenthèses dans une expression peuvent être redondantes (c'est-àdire qu'on obtient le même regroupement lorsqu'on les retirent)
- Exemple: (8*9)/(7-1) est égal à 8*9/(7-1)
- Si ça aide à comprendre la logique du calcul, il est bon de garder des parenthèses redondantes
- Exemple: <u>(-8)+(-5)</u> au lieu de <u>-8+-5</u>

Erreurs de syntaxe

- L'interprète fait l'analyse syntaxique du code avant de l'exécuter
- Si le code ne correspond pas à la grammaire de JS un message d'erreur sera affiché

```
> 1+2*3
7
> 1+2x3
syntax error -- unexpected token
```

 L'éditeur fait le balancement de parenthèses automatiquement pour aider le programmeur

Balancement de parenthèses

balancées

balancées

pas balancée

Les nombres

Notation positionnelle

- Dans cette notation un nombre est encodé par une séquence de symboles (chiffres)
- Si la base est *k*, il y a *k* symboles distincts pour représenter les valeurs 0, 1, 2, ..., *k*-1
- Par exemple en base k=10:0,1,2,3,4,5,6,7,8,9
- Chaque chiffre de la séquence a un poids qui est k fois plus grand que le poids du chiffre à sa droite

Notation positionnelle

- Donc le *poids* des chiffres dépend de la position dans la séquence et le *poids* progresse suivant les puissances de k
- Par ex. avec la base k=10, **2087** a la valeur

Notation positionnelle

- Donc le *poids* des chiffres dépend de la position dans la séquence et le *poids* progresse suivant les puissances de k
- Par ex. avec la base k=10, **2087** a la valeur

$$10^{3} 10^{2} 10^{1} 10^{0}$$
2 0 8 7 $= 2 \times 10^{3} + 0 \times 10^{2} + 8 \times 10^{1} + 7 \times 10^{0} = 2087$

Encodage des nombres

- Il y a 3 façons principales de stocker les nombres en mémoire à l'aide d'un groupe de bits :
 - Encodage binaire non signé
 - Encodage complément à 2
 - Encodage point flottant (norme IEEE 754)
- L'encodage se fait avec un **nombre fixe de bits** (n=32, 64, ...)

Encodage binaire non signé

- Notation positionnelle avec base 2 pour le stockage des nombres entiers ≥ 0
- 0, 1, 2, 3, 4, 5, ... 2^n -1 avec n bits
- Les bits ont un index de 0 à *n*-1 (l'index 0 est le plus à droite)
- Le *poids* du bit *i* est 2^{*i*} (c'est-à-dire sa contribution si ce bit est égal à 1)

Encodage binaire non signé

• Exemples avec 4 bits (i.e. n=4):

$$2^{3} 2^{2} 2^{1} 2^{0}$$
0 1 0 1 $= 2^{2} + 2^{0} = 4 + 1 = 5$

$$2^{3} 2^{2} 2^{1} 2^{0}$$
1 0 0 0 $= 2^{3} = 8$

$$2^{3}$$
 2^{2} 2^{1} 2^{0}
1 1 1 1 = $2^{3} + 2^{2} + 2^{1} + 2^{0} = 15$

Encodage binaire non signé

• Plus petit nombre avec 4 bits :

$$2^3 2^2 2^1 2^0$$
0 0 0 0 = 0

• Plus grand nombre avec 4 bits:

$$2^{3}$$
 2^{2} 2^{1} 2^{0}

1 1 1 1 = $2^{3} + 2^{2} + 2^{1} + 2^{0} = 15 = 2^{4}-1$

- Pour le stockage des nombres entiers avec signe positif ou négatif
- -2^{n-1} ..., -3, -2, -1, 0, 1, 2, 3, ... 2^{n-1} -1 avec *n* bits
- Les bits ont un index de 0 à *n*-1 (l'index 0 est le plus à droite)
- Le poids du bit i est 2^i , sauf le bit n-1 qui a un poids de -2^{n-1}

• Exemples avec 4 bits (i.e. n=4):

$$-2^{3}$$
 2^{2} 2^{1} 2^{0}
0 1 0 1 $=2^{2}+2^{0}=4+1=5$

$$-2^{3} 2^{2} 2^{1} 2^{0}$$
1 0 0 0 $= -2^{3} = -8$

$$-2^{3} 2^{2} 2^{1} 2^{0}$$
 $1 1 1 1 1 = -2^{3} + 2^{2} + 2^{1} + 2^{0} = -1$

• Exemples avec 4 bits (i.e. n=4):

$$\begin{bmatrix} -2^3 & 2^2 & 2^1 & 2^0 \\ 0 & 1 & 0 & 1 \\ \end{bmatrix} = 2^2 + 2^0 = 4 + 1 = 5$$

$$\begin{bmatrix} -2^3 & 2^2 & 2^1 & 2^0 \\ 1 & 0 & 0 & 0 & = -2^3 = -8 \end{bmatrix}$$

$$\begin{bmatrix} -2^3 & 2^2 & 2^1 & 2^0 \\ 1 & 1 & 1 & 1 \end{bmatrix} = -2^3 + 2^2 + 2^1 + 2^0 = -1$$

• Plus petit nombre avec 4 bits:

$$2^{3} 2^{2} 2^{1} 2^{0}$$
1 0 0 0 $= -2^{3} = -8$

• Plus grand nombre avec 4 bits :

$$2^{3}$$
 2^{2} 2^{1} 2^{0}
0 1 1 1 $= 2^{2} + 2^{1} + 2^{0} = 7 = 2^{3} - 1$

- La syntaxe des nombres permet de préciser des décimales et une puissance de 10
- Voici quelques exemples :

$$= 1.25$$

$$=42 \times 10^3 = 42000$$

$$= 0.2 \times 10^{-1} = 0.2 \div 10^{1} = 0.02$$

• 1.030E+10
$$= 1.03 \times 10^{10} = 103000000000$$

- La syntaxe des nombres permet de préciser des décimales et une puissance de 10
- Voici quelques exemples:

notation scientifique

$$=42 \times 10^3 = 42000$$

$$=0.2 \times 10^{-1} = 0.2 \div 10^{1} = 0.02$$

$$= 1.03 \times 10^{10} = 10300000000$$

- L'affichage d'un nombre qui n'a pas de partie fractionnaire ne contient pas de décimales
- Pour les nombres $\geq 10^{21}$, l'affichage se fait avec la **notation scientifique**
- Exemple :

```
> 3.25-1.25
2
```

- > 100000000000 1000000000000

- On peut également exprimer des nombres entier, sans partie fractionnaire, en base 16 (hexadécimal), à l'aide du préfixe 0x
- Cela revient à la notation **binaire** où les groupes de 4 bits sont encodés par **0...9**, **A**(=10)...**F**(=15)
- Par exemple :

Encodage point flottant

- Pour le stockage des nombres réels
- 3 groupes de bits (signe, exposant, fraction)
- Avec *n*=64 (précision double):

valeur =
$$(-1)^s \times (1 + f \times 2^{-52}) \times 2^{e-1023}$$
, $1 \le e \le 2046$
valeur = $(-1)^s \times f \times 2^{-1074}$, $e = 0$

Encodage point flottant

• Nombre positif le plus petit
$$\approx 5 \times 10^{-324}$$

$$s=0$$
 $e=0$ $f=00000000...000000012$

Encodage point flottant

• Nombre positif le plus grand $\approx 1.8 \times 10^{308}$ 2016 £ 1111111 1111111 Pourquoi 0? La norme IEEE 754 réserve e = 11111111111 pour représenter Nombre pos $\pm \infty$ (lorsque f = 0) et NaN (lorsque $f \neq 0$)

$$s=0$$
 $e=0$ $f=00000000...000000012$

Encodage point flottant

 L'encodage de certains nombres donne approximativement l'idéal mathématique :

•
$$0.1 = 0.0001\overline{1001}_2 = 1.\overline{1001}_2 \times 2^{-4}$$

• La valeur de 0.1 sera légèrement différente de l'idéal car l'encodage contient les 53 bits les plus significatifs seulement (arrondis)

37

Erreurs d'arrondi

- Valeur exacte de l'encodage de 0 . 1 = 0.1000000000000000055511151231257827021181583404541015625
- Valeur exacte de l'encodage de 0.2 = 0.20000000000000011102230246251565404236316680908203125
- Valeur exacte de l'encodage de 0 . 3 = 0.299999999999999988897769753748434595763683319091796875
- Valeur exacte de l'encodage de 0.1+0.2 = 0.300000000000000000444089209850062616169452667236328125

Des valeurs spéciales

- Zéro négatif
- ± Infini
- Not-a-Number (NaN)
 - > 1/0 Infinity
 - > 1/(-0) -Infinity
 - > 0/0 NaN

Précision limitée

- JS stocke tous les nombres, incluant les entiers, avec l'encodage point flottant
- Donc, 100 et 100.0 et 1e2 et 0.1e+3 représentent le même nombre
- Vu le nombre limité de bits pour f, les grands entiers ne sont pas représentés exactement (c'est le nombre encodable le plus proche):

Utilisation des nombres

- Il est conseillé d'utiliser les nombres nonentiers pour les calculs scientifiques seulement car une petite erreur de calcul est tolérable
- Pour les calculs monétaires, il est mieux de s'en tenir aux entiers qui sont représentés exactement (par exemple, calculer en nombre de cents plutôt qu'en nombre de dollars)

Abstraction

Un texte lourd

- Examinons le texte suivant :
 - «Le fils de Rose-Anne Monna et de Legrand Feeley qui réside à Montréal a acheté un télescope au troisième mois de 2012. Le fils de Rose-Anne Monna et de Legrand Feeley qui réside à Montréal a observé la quatrième planète en orbite autour du Soleil.»
- Ce texte est plutôt lourd... Que peut-on faire pour l'alléger?

Abstraire en nommant

- Utilisons des noms propres pour abstraire :
 - «Marc a acheté un télescope en Mars 2012.
 Marc a observé Mars.»
- Le texte est beaucoup plus court, agréable à lire et compréhensible
- Les noms prennent le sens de leur définition (p.ex. Marc = «Le fils de Rose-Anne Monna et de Legrand Feeley qui réside à Montréal»)

Abstraire en nommant

- En programmation, les noms sont des identificateurs, et on en donne la définition dans une déclaration
- Lorsqu'on réfère à un identificateur, c'est une déclaration spécifique à laquelle on fait référence
- Les ambiguïtés possibles, comme pour Mars, sont réglées par le contexte de la référence c'est à dire où et comment la référence est faite (p.ex. grâce aux règles de portée)

- En JS, les identificateurs sont des symboles composés de lettres (majuscules/minuscules), des chiffres (0-9), et les caractères \$ et _____
- Les chiffres sont interdits au début d'un ident.
- La casse (majuscule/minuscule) est significative
- Exemples: n x2 prix Point été temp max tempMax \$\$ Δ
- Incorrect: 3amis temp-max

 Certains identificateurs ne peuvent être déclarés par le programmeur car ils sont réservés par la grammaire :

break	do	if	package	throw
case	else	implements	private	true
catch	enum	import	protected	try
class	export	in	public	typeof
const	extends	instanceof	return	var
continue	false	interface	static	void
debugger	finally	let	super	while
default	for	new	switch	with
delete	function	null	this	yield

 Pour des raisons de portabilité, il est mieux de s'en tenir aux caractères ASCII (pas d'accents, pas de lettres Grècques, symboles Unicode, ...)

- Pour les identificateurs composés de plusieurs mots, nous favoriserons la notation CamelCase qui est populaire
- Les mots sont collés les uns aux autres, avec la première lettre de chaque mot en majuscule, à l'exception du premier mot qui est seulement en majuscule si c'est l'identificateur d'un constructeur (nous verrons plus tard):
 - kilogrammesParLivre
 - DateGregorienne

- Un bon identificateur clarifie ce à quoi il réfère (il évite les ambiguïtés)
- Si la déclaration peut être référée de partout dans un gros programme, il est mieux d'utiliser un identificateur le plus descriptif possible :
 - temperatureCongelationHydrogene
 - tempCongHydrogene
- Si la portée est locale, il est mieux d'utiliser un identificateur court pour alléger le code :
 - tch
 - t

- En JS, on peut nommer une valeur à l'aide d'une déclaration de variable
- Syntaxe: var <identificateur> = <expression>
- *(identificateur)* est le nom de la variable créée
- La valeur de *(expression)* est **liée** à la variable
- Une référence subséquente à «identificateur»
 s'évaluera à la valeur liée à la variable

• Exemple:

```
> var n = 1+2*3
> n*n
49
```

• Visualisation de la variable n :

La variable correspond à une cellule mémoire

- Une déclaration n'est pas une expression
- Une déclaration n'a donc pas de valeur
- On dit plutôt que la déclaration de variable a un effet (celui de créer une variable et la lier)
- C'est pour son effet que la déclaration est exécutée
- La boucle d'interaction (Read-Eval-Print-Loop =
 REPL) de la console n'affiche pas de valeur

• Exemple :

```
> var n = 1+2*3
> var c = n*n
> c
49
```

Visualisation des variables :

Chaque variable correspond à une cellule mémoire

• Exemple :

```
> var n = 1+2*3, c = n*n
> c
49
```

- Syntaxe: $\operatorname{var} \langle id. \rangle_1 = \langle exp. \rangle_1$, $\langle id. \rangle_2 = \langle exp. \rangle_2$,...
- Cette syntaxe est utile lorsqu'il y a plusieurs variables à déclarer
- Une expression peut référer aux variables précédentes

Déclaration de var. : exemple

- Problème : calcul de la circonférence et de la surface d'un cercle de rayon 5
- Rappel : circonférence = $2\pi r$ surface = πr^2
 - > 2*3.141592653589793*5 31.41592653589793
 - > 3.141592653598793*5*5 78.53981633996982

Déclaration de var. : exemple

Solution avec variables :

```
> var r = 5
> var pi = 3.141592653589793
> 2*pi*r
    31.41592653589793
> pi*r*r
    78.53981633974483
```

```
r 5
pi 3.141592653589793
```

Déclaration de var. : exemple

sans variables: > 2*3.141592653589793*5 31.41592653589793 > 3.141592653598793*5*5

- Cette solution est:
 - Plus lisible
 - Plus facile à comprendre
- avec variables: > var r = 5
 - > var pi = 3.141592653589793

78.53981633996982

- > 2*pi*r 31.41592653589793
- > pi*r*r 78.53981633974483
- Plus facile à maintenir (changer le rayon ou la précision de π)
- Correcte (la première solution a un bogue à cause de la duplication de la constante π)
- Principe : éviter la duplication de code

Calculs numériques

Calculs numériques

- Outre +, -, * et /, JS offre plusieurs opérations sur les nombres
- Les opérateurs bit-à-bit (~, &, |, ^, <<, >>, >>)
- L'opérateur modulo (%)
- Les fonctions mathématiques (racine carrée, sinus, cosinus, puissance, ...)

- JS possède des opérateurs binaires et unaires pour faire des calculs sur l'encodage complément à 2 des entiers 32 bits
- Ces opérateurs ont une correspondance directe avec les opérations bit-à-bit (bitwise) de la machine :
 - ~ (complément), & (et), | (ou), ^ (ou-exclusif)
 - << et >> (décalages à gauche et à droite)
 - >>> (décalage à droite, encodage non signé)

- Pour l'opérateur unaire ~ (complément):
 - il y aura un 1 dans l'encodage de la valeur résultante si et seulement si il y a un 0 à la position correspondante de l'encodage de l'opérande

- Pour l'opérateur unaire ~ (complément):
 - il y aura un 1 dans l'encodage de la valeur résultante si et seulement si il y a un 0 à la position correspondante de l'encodage de l'opérande

 Pour l'opérateur binaire & il y aura un 1 dans l'encodage de la valeur résultante si et seulement si il y a un 1 à la position correspondante des encodages des 2 opérandes

 Pour l'opérateur binaire & il y aura un 1 dans l'encodage de la valeur résultante si et seulement si il y a un 1 à la position correspondante des encodages des 2 opérandes

 Pour l'opérateur binaire | il y aura un 0 dans l'encodage de la valeur résultante si et seulement si il y a un 0 à la position correspondante des encodages des 2 opérandes

 Pour l'opérateur binaire | il y aura un 0 dans l'encodage de la valeur résultante si et seulement si il y a un 0 à la position correspondante des encodages des 2 opérandes

 Pour l'opérateur binaire ^ il y aura un 0 dans l'encodage de la valeur résultante si et seulement si il y a la même valeur à la position correspondante des encodages des 2 opérandes

$$\begin{bmatrix} 0 & 1 & 0 & 1 & = 5 \\ 0 & 1 & 1 & 0 & = 6 \end{bmatrix}$$

 Pour l'opérateur binaire ^ il y aura un 0 dans l'encodage de la valeur résultante si et seulement si il y a la même valeur à la position correspondante des encodages des 2 opérandes

 Pour l'opérateur binaire <<, l'encodage de l'opérande de gauche se fait décaler vers la gauche d'un nombre de bits égal à l'opérande de droite (bits entrants = 0)

 Pour l'opérateur binaire <<, l'encodage de l'opérande de gauche se fait décaler vers la gauche d'un nombre de bits égal à l'opérande de droite (bits entrants = 0)

 Pour l'opérateur binaire >>, l'encodage de l'opérande de gauche se fait décaler vers la droite d'un nombre de bits égal à l'opérande de droite (bits entrants = même que signe)

 Pour l'opérateur binaire >>, l'encodage de l'opérande de gauche se fait décaler vers la droite d'un nombre de bits égal à l'opérande de droite (bits entrants = même que signe)

 Pour l'opérateur binaire >>>, l'encodage de l'opérande de gauche se fait décaler vers la droite d'un nombre de bits égal à l'opérande de droite (bits entrants = 0)

 Pour l'opérateur binaire >>>, l'encodage de l'opérande de gauche se fait décaler vers la droite d'un nombre de bits égal à l'opérande de droite (bits entrants = 0)

- JS possède des fonctions prédéfinies qui correspondent à des fonctions mathématiques bien connues
- On accède à ces fonctions par l'objet Math
- Par exemple Math.sqrt(9) calcule $\sqrt{9}$
- Pour l'instant on considèrera simplement que Math.sqrt est un identificateur (comme si le caractère «... pouvait faire partie d'un ident.)

- Math.abs (x): valeur absolue de x
- Math. sin(x): sinus de x
- Math.cos (x): cosinus de x
- Math. tan (x): tangente de x
- Math.asin(x): arc sinus de x
- Math.acos (x): arc cosinus de x
- Math.atan (x): arc tangente de x
- Math.atan2 (y,x): arc tangente de y/x
- Math.exp(x): e à la puissance x
- Math.log(x): logarithme de x en base e

- Math.ceil (x): plus petit nb. entier $\geq x$
- Math.floor (x): plus grand nb. entier $\leq x$
- Math.round(x): nb. entier plus proche de x
- Math.min (x, y, ...): minimum de x, y, ...
- Math.max (x, y, ...): maximum de x, y, ...
- Math.pow (x,y):x à la puissance y
- Math.sqrt(x): racine carrée de x
- Math.random(): nombre aléatoire ≥ 0 et < 1

```
> 4*Math.atan(1)
  3.141592653589793
> Math.pow(2,5)
  32
> Math.floor(13.75)
  13
> Math.floor(6*Math.random())+1
> Math.floor(6*Math.random())+1
> Math.floor(6*Math.random())+1
```

Opérateur modulo

- L'opérateur binaire % calcule le modulo (ou reste après division)
- Par exemple 7.25 % 2 = 1.25 car

$$3 \times 2 + 1.25 = 7.25$$

• Pour deux nombres positifs x et y on a que :

$$x \approx y = x - y * Math.floor(x/y)$$

Opérateur modulo

```
> 1 % 3
> 2 % 3
2
> 3 % 3
0
> 4 % 3
> 5 % 3
```