25SG Structure of Groups

Qiu Caiyong

August 11, 2025

Preface

Later Version = Better Version.

Contents

1 Abelian Groups		3	
	1.1	Fundamentals	3
	1.2	Free Abelian Groups	4
	1.3	Structure of FF Abelian Groups	6
	1.4	Subgroups of FF Abelian Groups	8
	1.5	Categorical Constructions	9
		1.5.1 External Sum of Abelian Groups	9
		1.5.2 Internal Sum of Abelian Groups	10
	1.6	Finitely Generated Abelian Groups	11
		1.6.1 Chinese Remainder Theorem	11
		1.6.2 Classical Constructions and Uniqueness Theorems	12
	1.7	Splitting Lemma	16
	1.8	Miscellanea Abelian	16
2	Gro	oup Actions	17
_	Group Actions		Τ,
3	S Small Groups		18
4	4 Permutation Groups		19
5	Line	ear Groups	20

Abelian Groups

Throughout this chapter, we use the additive notation.

abelian groups = \mathbb{Z} modules

We will pretend that we're doing linear algebra.

1.1 Fundamentals

Proposition 1.1.1 (subgroup generated by a finite subset)

Let G be an abelian group and $X \subseteq G$ be a finite subset, then the intersection of all subgroups containing X is given by

$$\langle X \rangle = \left\{ \sum_{g \in X} n_g g \middle| n_g \in \mathbb{Z} \right\}$$

We call it the subgroup generated by X. We define $\langle \varnothing \rangle = \{0\}$ to be the trivial subgroup.

Proposition 1.1.2 (subgroup generated by a subset)

Let G be an abelian group and $X \subseteq G$ be a subset, denote the set of all finite subsets of X by $\operatorname{Sub}_{\operatorname{fin}}(X)$, then the intersection of all subgroups containing X is given by

$$\langle X \rangle = \bigcup_{X_0 \in \mathrm{Sub}_{\mathrm{fin}}(X)} \langle X_0 \rangle$$

We call it the subgroup generated by X. (You should verify that this is a subgroup of G, and this definition is an extension of the previous one.)

Definition 1.1.3 (generating subset)

Let G be an abelian group and $X \subseteq G$ be a subset. If $G = \langle X \rangle$, then we say that the subset X is a generating subset of the group G.

For example, G is a generating subset of G.

Definition 1.1.4 (finite independent subset)

Let G be an abelian group and $X \subseteq G$ be a finite subset. If the mapping

$$\mathbb{Z}^{\operatorname{Card}(X)} \xrightarrow{\kappa_X^G} \langle X \rangle, \quad (n_g)_{g \in X} \mapsto \sum_{g \in X} n_g g$$

is injective, then we say that the subset X is an independent subset of G.

Definition 1.1.5 (independent subset)

Let G be an abelian group and $X \subseteq G$ be a subset. If every finite subset X_0 of X is an independent subset of G, then we say that the subset X is an independent subset of G. (You should verify that this definition is an extension of the previous one.)

Remark 1.1.6

The mapping κ_X^G is always surjective by definition.

Example 1.1.7

The empty subset \emptyset is an independent subset.

Example 1.1.8

The subset $\{g\}$ consists of only one element is an independent subset if and only if $\operatorname{ord}(g) = \infty$.

Definition 1.1.9 (basis)

Let G be an abelian group and $X \subseteq G$ be a subset. We say that X is a basis of the group G if X is a generating subset and an independent subset.

1.2 Free Abelian Groups

Definition 1.2.1 (free abelian group)

If G is an abelian group and $X \subseteq G$ is a basis of G, then we say that G is free on X. If G is an abelian group which is free on some subset $X \subseteq G$, then we say that G is a free abelian group.

Example 1.2.2

 $(\mathbb{Q}_{>0},\times)$ is free on the set of primes \mathbb{P} , but \mathbb{Q} is not free.

Exercise 1.2.3 (Baer–Specker group)

Show that the group Map (\mathbb{Z}, \mathbb{Z}) is not free.

Definition 1.2.4 (free abelian group generated by a set)

Let X be a set, we define $\mathbb{Z}X$ to be the set of all **formal** expressions of the form

$$\sum_{i=1}^{n} a_i x_i, \text{ where all } x_i \in X, a_i \in \mathbb{Z}$$

And the set X embed into the group $\mathbb{Z}X$ in a natural way with $\mathbb{Z}X$ free on X.

Proposition 1.2.5 ($\mathbb{Z}X$ as a free object)

For every abelian group G, the restriction

$$\operatorname{Hom}\left(\mathbb{Z}X,G\right) \xrightarrow{\bullet|_{X}} \operatorname{Map}\left(X,G\right)$$

is bijective. Given a mapping $f: X \to G$, we will write $f^{\sharp}: \mathbb{Z}X \to G$ to be the (unique) group homomorphism such that $f^{\sharp}|_{X} = f$.

Proof. Suppose $\varphi|_X = \psi|_X$, then $\varphi(x) = \psi(x)$ for all $x \in X$ so φ and ψ agrees on the generating subset X of $\mathbb{Z}X$. Hence $\varphi = \psi$.

To show that $\bullet|_X$ is surjective, we construct f^{\sharp} explicitly by:

$$f^{\sharp}\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i f(x_i)$$

which can be easily verified to be a group homomorphism.

Exercise 1.2.6

Let G be an abelian group and $X \subseteq G$ be a subset. Let $j = j_X^G : X \to G$ be the inclusion mapping. Show that:

- X is a generating subset of G if and only if j^{\sharp} is surjective.
- X is an independent subset of G if and only if j^{\sharp} is injective.
- X is a basis of G if and only if j^{\sharp} is bijective.

Corollary 1.2.7 (every object is a quotient of a free object)

Let G be an abelian group and X be a generating subset of G (which always exists since we can take X = G), then $(j_X^G)^{\sharp} : \mathbb{Z}X \to G$ is surjective and G is isomorphic to a quotient group of $\mathbb{Z}X$.

Example 1.2.8

Let X be a finite set with $\operatorname{Card}(X) = n$, then there are $m^n = \operatorname{Card}(\operatorname{Map}(X, \mathbb{Z}/m\mathbb{Z}))$ homomorphisms in total from $\mathbb{Z}X$ to $\mathbb{Z}/m\mathbb{Z}$.

Proposition 1.2.9

If G is an abelian group which is free on $X \subset G$, denote the inclusion $X \to G$ by j, then $j^{\sharp} : \mathbb{Z}X \to G$ is an isomorphism.

Conversely, if $\varphi : \mathbb{Z}X \to G$ is an isomorphism, then G is free on $\varphi(X)$.

Proof. Everything follows easily from the construction of j^{\sharp} .

We can speak of the "dimension" of a free abelian group:

Theorem 1.2.10

Let X, Y be two finite set such that $\mathbb{Z}X \simeq \mathbb{Z}Y$, then $\operatorname{Card}(X) = \operatorname{Card}(Y)$.

Proof. Since $\mathbb{Z}X \simeq \mathbb{Z}Y$ we have $\operatorname{Card}(\operatorname{Map}(X,\mathbb{Z}/2\mathbb{Z})) = \operatorname{Card}(\operatorname{Map}(Y,\mathbb{Z}/2\mathbb{Z}))$, which implies $\operatorname{Card}(X) = \operatorname{Card}(Y)$.

Remark 1.2.11

By Zorn's lemma, $\mathbb{Z}X \simeq \mathbb{Z}Y$ always imply $\operatorname{Card}(X) = \operatorname{Card}(Y)$ as cardinals.

Corollary 1.2.12 (dimension of a free abelian group)

Suppose G an abelian group which is free on some finite subset $X \subseteq G$, then every basis of G has the same cardinality.

Thus for abelian groups free on some finite subset (=FF abelian groups), a non-negative integer called the **dimension** is defined. For two FF abelian groups G, H, they are isomorphic if and only if $\dim G = \dim H$.

1.3 Structure of FF Abelian Groups

Recall that an abelian group G is FF if G is free on some finite subset $X \subseteq G$, if and only if G is isomorphic to $\mathbb{Z}Y$ for some finite set Y. And every FF abelian group has a uniquely determined dimension, which is a non-negative integer.

We start by explicitly describe all basis transformations:

Lemma 1.3.1 (base change lemma, version 1)

If $\mathbf{a}_1 = (a_{11}, a_{12}, \dots, a_{1n}), \dots, \mathbf{a}_n = (a_{n1}, a_{n2}, \dots, a_{nn})$ is a basis of the group \mathbb{Z}^n , then the matrix $A = (a_{ij})$ has determinant $\det(A) = \pm 1$.

Proof. This is because we can write
$$\mathbf{e}_i = \sum_{j=1}^n b_{ij} \mathbf{a}_j$$
.

Lemma 1.3.2 (base change lemma, version 2)

Let G be a FF abelian group of dimension dim G = n and $(e_1, \ldots, e_n), (\epsilon_1, \ldots, \epsilon_n)$ be two basis of G. Then there exists a matrix $A = (a_{ij}) \in GL_n(\mathbb{Z})$ such that

$$e_i = \sum_{j=1}^n a_{ij} \epsilon_j$$

Proof. Left as an exercise.

The next result explains why $\{2\} \subseteq \mathbb{Z}$ is not a basis:

Proposition 1.3.3 (height lemma)

Let G be a FF abelian group of dimension dim G = n and $0 \neq g \in G$. Then under every basis $\mathcal{B} = (b_1, \ldots, b_n)$ we can write

$$g = \sum_{i=1}^{n} \Gamma_{i}^{\mathcal{B}}(g) b_{i}$$
, and we define $\operatorname{ht}_{\mathcal{B}}(g) = \gcd_{1 \leq i \leq n} (\Gamma_{i}^{\mathcal{B}}(g))$

Then $\operatorname{ht}_{\mathcal{B}}(g) \in \mathbb{N}_+$ is independent of the choice of basis \mathcal{B} . We call this number the height of g and denote it by $\operatorname{ht}_G(g)$.

In particular, $ht_G(b_i) = 1$ for all $b_i \in \mathcal{B}$.

Proof. Left as an exercise.

Proposition 1.3.4

Let G be a FF abelian group of dimension dim G = n and $0 \neq g \in G$. Then there exists a basis (e_1, \ldots, e_n) of G such that $g = \operatorname{ht}_G(g)e_1$.

Proof. Consider the following set:

$$B^+(g) = \{ \mathcal{B} \text{ is a basis of } G | \Gamma_i^{\mathcal{B}}(g) \ge 0 \text{ for all } i \}$$

This set is non-empty since if we have $g = a_1b_1 + \cdots + a_nb_n$, then

$$g = \sum_{i=1}^{n} |a_i| \left(\operatorname{sgn}(a_i) b_i \right)$$

where $(\operatorname{sgn}(a_1)b_1, \ldots, \operatorname{sgn}(a_n)b_n)$ is still a basis of G. Now for $\mathcal{B} \in B^+(g)$ define

$$|g|_{\mathcal{B}} = \sum_{i=1}^{n} \Gamma_i^{\mathcal{B}}(g) \in \mathbb{N}_+$$

Then there exists a basis $\mathcal{B}_0 = (e_1, \dots, e_n) \in B^+(g)$ such that $|g|_{\mathcal{B}}$ is minimal. We claim that $\Gamma_i^{\mathcal{B}_0}(g) = 0$ for all but one *i*.

In fact, if for $i \neq j$ we have $\Gamma_i^{\mathcal{B}_0}(g) > 0$ and $\Gamma_j^{\mathcal{B}_0}(g) > 0$. WLOG we assume $\Gamma_i^{\mathcal{B}_0}(g) \leq \Gamma_j^{\mathcal{B}_0}(g)$, then we write

$$g = \left(\sum_{k \neq i, k \neq j} \Gamma_k^{\mathcal{B}_0}(g) e_k\right) + \left(\Gamma_j^{\mathcal{B}_0}(g) - \Gamma_i^{\mathcal{B}_0}(g)\right) e_j + \Gamma_i^{\mathcal{B}_0}(g) \left(e_i + e_j\right)$$

This tells us that after a basis transformation $(\ldots, e_i \mapsto e_i + e_j, \ldots)$, $|g|_{\mathcal{B}}$ decrease by a positive amount $\Gamma_i^{\mathcal{B}_0}(g) > 0$, which is contradictory to our choice of \mathcal{B}_0 . So only one term of $\Gamma_i^{\mathcal{B}_0}(g)$ is nonzero.

Easy permutation of \mathcal{B}_0 makes $g = \operatorname{ht}_G(g)e_1$.

Recall that an element $g \in G$ is called a torsion element if the order $\operatorname{ord}(g)$ is finite.

Definition 1.3.5 (torsion-free abelian group)

Let G be an abelian group. We say that G is torsion-free if the only torsion element of G is 0. Equivalently, if G has no non-trivial finite subgroup.

Theorem 1.3.6 (finitely generated+torsion free = free on some finite set) Let G be a finitely generated abelian group, that is, it has at least one generating subset of finite cardinality. If G is torsion-free, then G is free on some finite subset.

Proof. Choose a generating subset $X \subset G$ with minimal cardinality, we now show that $(j_X^G)^{\sharp}: \mathbb{Z}X \to G$ is injective. Suppose the kernel $K = \ker(j_X^G)^{\sharp}$ is nontrivial, we choose a non-zero element $k \in K$ with minimal height.

Then under some basis $Y = (e_1, \ldots, e_n)$ of $\mathbb{Z}X$, we can write $k = \operatorname{ht}(k)e_1$. The inclusion $i_V^{\mathbb{Z}X} : Y \to \mathbb{Z}X$ gives us an isomorphism $(i_V^{\mathbb{Z}X})^{\sharp} : \mathbb{Z}Y \to \mathbb{Z}X$.

The inclusion $j_Y^{\mathbb{Z}X}: Y \to \mathbb{Z}X$ gives us an isomorphism $(j_Y^{\mathbb{Z}X})^{\sharp}: \mathbb{Z}Y \to \mathbb{Z}X$. If $\operatorname{ht}(k) = 1$, then $e_1 \in K$, so $\mathbb{Z}(Y \setminus \{e_1\}) \to \mathbb{Z}X \to G$ is surjective, contradictory to our choice of X. If $\operatorname{ht}(k) > 1$, then $e_1 \notin K$ by our choice of k, but then $(j_X^G)^{\sharp}(e_1) \in G$ is a non-zero torsion element, another contradiction. \square

This theorem tells us that $\mathbb Q$ is not finitely generated.

1.4 Subgroups of FF Abelian Groups

We consider the following proposition:

SubFF(n): If G is a FF abelian groups of dimension dim G = n and $H \leq G$ be a nontrivial subgroup. Then the following set

$$\operatorname{SubInfo}(G, H) = \left\{ \begin{pmatrix} (e_1, \dots, e_n) \\ r \\ (d_1, \dots, d_r) \end{pmatrix} \middle| \begin{array}{l} (e_1, \dots, e_n) \text{ is a basis of } G \\ 1 \leq r \leq n \text{ is an integer} \\ d_i \in \mathbb{N}_+ \text{ with } d_i | d_{i+1}, \text{ and} \\ (d_1 e_1, \dots, d_r e_r) \text{ is a basis of } H \end{array} \right\}$$

is non-empty, and d_1 is the minimum height of all nonzero elements of H.

Proposition 1.4.1 (subgroups of \mathbb{Z}) SubFF(1) is true.

Proof. A FF abelian group of dimension 1 is isomorphic to \mathbb{Z} .

Theorem 1.4.2 (subgroup of FF group) If SubFF(n-1) is true, then SubFF(n) is true.

Proof. Choose $0 \neq h \in H$ with minimal height, and choose a basis (e_1, \ldots, e_n) of G such that $h = \operatorname{ht}_G(h)e_1$. We claim that: for any $h' \in H$, if we write $h' = a_1e_1 + \cdots + a_ne_n$, then $\operatorname{ht}_G(h)$ divides a_1 : if $a_1 = \operatorname{qht}(h) + r$ with $0 < r < \operatorname{ht}(h)$, then the element $h' - \operatorname{qh} = re_1 + a_2e_2 + \cdots + a_ne_n$ has height strictly less than h, contradict to our choice of h. We claim also that $\operatorname{ht}_G(h)$ divides all a_i , for we can further modify h' to

$$h'' = h' - \frac{a_1}{\operatorname{ht}_G(h)}h + h = \operatorname{ht}_G(h)e_1 + a_2e_2 + \dots + a_ne_n \in H$$

Then $\operatorname{ht}_G(h'')$ divides $\operatorname{ht}_G(h)$ so they must be equal by our choice of h.

We define $G_0 = \langle e_2, \dots, e_n \rangle$ and $H_0 = H \cap G_0$, then G_0 is free with dimension $\dim(G_0) = n-1$. Only consider the case where H_0 is nontrivial, we show that if $0 \neq h_0 \in H_0$ has minimal height $\operatorname{ht}_{G_0}(h_0)$, then $\operatorname{ht}_{G}(h)$ divides $\operatorname{ht}_{G_0}(h_0)$. Write $h_0 = a_2 e_2 + \dots + e_n e_n$, then we've already proved that $\operatorname{ht}_{G}(h)$ divides all a_i , so it also divides $\operatorname{gcd} \{a_i | i = 2, \dots, n\} = \operatorname{ht}_{G}(h_0) = \operatorname{ht}_{G_0}(h_0)$.

We now apply $\operatorname{SubFF}(n-1)$ to $H_0 \leq G_0$, and get a basis $(\epsilon_2, \ldots, \epsilon_n)$ of G_0 , and some $d_2|d_3|\ldots|d_r$ where $d_2=\operatorname{ht}_{G_0}(h_0)$ and $(d_2\epsilon_2,\ldots,d_r\epsilon_r)$ is a basis of H_0 . We claim that $(e_1,\epsilon_2,\ldots,\epsilon_n)$ is a basis of G and $(d_1e_1,d_2\epsilon_2,\ldots,d_n\epsilon_n)$ is a basis of G where $G_1=\operatorname{ht}_{G}(h)$ and $G_1|G_2$. The proof of this claim is trivial. \square

Remark 1.4.3

The number d_1 divides $\operatorname{ht}_G(h)$ for all $0 \neq h \in H$.

Up to now, we know that the number d_1, D and $r = \dim(H)$ can be read from the inclusion $H \subseteq G$. We will show in next section that all d_i are unique. (A quick dirty proof is by using the Smith normal form of some $r \times n$ matrix.)

Recall that an abelian group G is finitely-generated if it has at least one generating subset with finite cardinality. Obviously every quotient of a finitely-generated (abelian) group is again finitely-generated.

Theorem 1.4.4 (subgroup of finitely-generated abelian group)

Let G be an abelian group and $X \subseteq G$ be a generating subset with n elements. Then every subgroup $H \leq G$ can be generated by at most n elements.

Proof. Consider the kernel K of the following homomorphism

$$\mathbb{Z}X \xrightarrow{j^{\sharp}} G \xrightarrow{\pi} G/H$$

Then $K \leq \mathbb{Z}X$ is free with dimension $\dim(K) \leq \operatorname{Card}(X)$. And $j^{\sharp}(K) = H$, as you should verify.

1.5 Categorical Constructions

We will take the most concrete and the most naïve approach to every categorial constructions.

1.5.1 External Sum of Abelian Groups

Definition 1.5.1 (external sum of **finitely many** abelian groups) Let A_1, \ldots, A_n be abelian groups, the external direct sum of A_1, \ldots, A_n is

$$\coprod_{i=1}^{n} A_i = \{(a_1, \dots, a_n) | a_i \in A_i\}$$

The following canonical homomorphisms will be useful:

• The canonical inclusion homomorphism

$$\iota_i:A_i\to \coprod_{i=1}^n A_i,\quad a\mapsto (0,\ldots,a,\ldots,0)$$
 placed in the *i*-th entry

• The canonical projection homomorphism

$$\pi_i : \coprod_{i=1}^n A_i \to A_i, \quad (a_1, \dots, a_n) \mapsto a_i$$

Theorem 1.5.2 (universal property of \boxplus)

The following mappings

$$\operatorname{Hom}\left(\bigoplus_{i=1}^{n} A_{i}, B\right) \to \bigoplus_{i=1}^{n} \operatorname{Hom}\left(A_{i}, B\right), \quad \varphi \mapsto \left(A_{i} \xrightarrow{\iota_{i}} \bigoplus_{i=1}^{n} A_{i} \xrightarrow{\varphi} B\right)_{i=1}^{n}$$

$$\operatorname{Hom}\left(B, \coprod_{i=1}^{n} A_{i}\right) \to \coprod_{i=1}^{n} \operatorname{Hom}\left(B, A_{i}\right), \quad \varphi \mapsto \left(B \xrightarrow{\varphi} \coprod_{i=1}^{n} A_{i} \xrightarrow{\pi_{i}} A_{i}\right)_{i=1}^{n}$$

are isomorphisms of groups.

Proof. Omitted.

Isomorphisms of the other direction is also easy to write down:

$$\bigoplus_{i=1}^{n} \operatorname{Hom}(A_{i}, B) \xrightarrow{\sqcup} \operatorname{Hom}\left(\bigoplus_{i=1}^{n} A_{i}, B\right), \quad (\varphi_{i})_{i=1}^{n} \mapsto \sum_{i=1}^{n} \left(\bigoplus_{i=1}^{n} A_{i} \xrightarrow{\pi_{i}} A_{i} \xrightarrow{\varphi_{i}} B\right)$$

$$\coprod_{i=1}^n \operatorname{Hom} \left(B, A_i \right) \xrightarrow{\sqcap} \operatorname{Hom} \left(B, \coprod_{i=1}^n A_i \right), \quad (\varphi_i)_{i=1}^n \mapsto \sum_{i=1}^n \left(B \xrightarrow{\varphi_i} A_i \xrightarrow{\iota_i} \coprod_{i=1}^n A_i \right)$$

1.5.2 Internal Sum of Abelian Groups

Definition 1.5.3 (direct position)

Let G be an abelian group and H_1, \ldots, H_n be **finitely many** subgroups of G. Consider all inclusion mappings $j_i: H_i \to H = \sum_{i=1}^n H_i$ as one element

$$(j_i: H_i \to H)_{i=1}^n \in \coprod_{i=1}^n \operatorname{Hom}(H_i, H)$$

Apply \sqcup to it, we get

$$J = \bigsqcup_{i=1}^{n} \left(H_i \xrightarrow{j_i} H \right) \in \operatorname{Hom} \left(\bigoplus_{i=1}^{n} H_i, \sum_{i=1}^{n} H_i \right)$$

If J is a group isomorphism, then we say the family of subgroups $\{H_i\}_{i=1}^n$ is of direct position.

Example 1.5.4

Let $H_i \leq G_i$, then the family $(\iota_i(H_i) \leq \coprod_{i=1}^n G_i)_{i=1}^n$ is of direct position.

Definition 1.5.5 (internal direct sum)

Let G be an abelian group and H_1, \ldots, H_n be **finitely many** subgroups of G. If the family $\{H_i\}_{i=1}^n$ is of direct position, we say that G is the (internal) direct sum of H_1, \ldots, H_n . We also write the following as an abbreviation

$$G = H_1 \oplus \cdots \oplus H_n = \bigoplus_{i=1}^n H_i$$

By definition, if G is the internal direct sum of finitely many subgroups H_1, \ldots, H_n , then G is isomorphic to the external sum of H_1, \ldots, H_n .

Theorem 1.5.6 (criterion for internal direct sum)

Let G be an abelian group and H_1, \ldots, H_n be **finitely many** subgroups of G. Then G is the internal direct sum of H_1, \ldots, H_n if and only if:

- (1) the union $\bigcup_{i=1}^{n} H_i$ is a generating subset of G, and
- (2) for each i, the intersection of H_i and $\langle \bigcup_{j\neq i} H_i \rangle$ is the trivial group.

Proof. Left as an exercise.

1.6 Finitely Generated Abelian Groups

Theorem 1.6.1 (structure theorem of finitely generated abelian groups, 1) Let G be an abelian group which can be generated by n elements, then there exists $m_1|m_2|\cdots|m_n$ with $m_i \in \mathbb{N}_{>0}$ such that

$$G \simeq \coprod_{i=1}^{n} \mathbb{Z}/m_i \mathbb{Z}$$

Proof. Say $X \subset G$ is a generating subset of cardinality n, the inclusion $X \xrightarrow{j} G$ gives us a surjective homomorphism

$$\mathbb{Z}X \xrightarrow{j^{\sharp}} G$$

Let K be the kernel of j^{\sharp} , and choose a datum from SubInfo($\mathbb{Z}X, K$). Then we have a basis (e_1, \ldots, e_n) of $\mathbb{Z}X$ and a sequence $d_1|d_2|\cdots|d_r$ such that (d_1e_1, \ldots, d_re_r) is a basis of K.

Now we define

$$m_i = \begin{cases} d_i, & i \le r \\ 0, & i > r \end{cases}$$

Recall that 0 is most elegant number, divisible by everything. We now claim that G is isomorphic to $\bigoplus_{i=1}^n \mathbb{Z}/m_i\mathbb{Z}$.

We now know that every finitely generated abelian group is isomorphic to a finite direct sum of cyclic groups. In particular, we have:

Corollary 1.6.2 (structure theorem of finite abelian groups, 1) Every finite abelian group is isomorphic to a direct sum of finite cyclic groups.

As an application, we give the:

Corollary 1.6.3 (inverse Lagrange's theorem for finite abelian groups) Let G be a finite abelian group and m divides the cardinality of G, then there exists a subgroup $H \leq G$ with cardinality $\operatorname{Card}(H) = m$, and there exists a subgroup $K \leq G$ such that $\operatorname{Card}(G/K) = m$.

Proof. It suffices to prove the theorem for finite cyclic groups. \Box

1.6.1 Chinese Remainder Theorem

Lemma 1.6.4

Let $m \in \mathbb{N}_{>1}$ be a positive integer with its unique factorization

$$m = \prod_{i=1}^{n} p_i^{v_i}$$

Consider the canonical homomorphism

$$\mathbb{Z} \xrightarrow{\varphi} \coprod_{i=1}^n \mathbb{Z}/p_i^{v_i} \mathbb{Z}, \quad \varphi(x) = (x + p_i^{v_i} \mathbb{Z})_{i=1}^n = \left([x]_{p_i^{v_i}} \mathbb{Z} \right)_{i=1}^n$$

Then $\ker(\varphi) = m\mathbb{Z}$ and φ is surjective. In particular, we have

$$\mathbb{Z}/m\mathbb{Z} \simeq \coprod_{i=1}^n \mathbb{Z}/p_i^{v_i}\mathbb{Z}$$

Proof. Omitted. This is elementary number theory.

Corollary 1.6.5 (structure theorem of finitely generated abelian groups, 2) Every finitely generated abelian group is isomorphic to a finite direct sum of cyclic p-groups $\mathbb{Z}/p^n\mathbb{Z}$ and \mathbb{Z} 's.

Proof. Use the Chinese Remainder Theorem to break $\mathbb{Z}/m_i\mathbb{Z}$.

Corollary 1.6.6 (structure theorem of finite abelian groups, 2) Every finite abelian group is isomorphic to a direct sum of cyclic p-groups.

1.6.2 Classical Constructions and Uniqueness Theorems

Definition 1.6.7 (torsion subgroup)

Let G be an abelian group, then we define G^{tor} to be the subgroup (Explain why it's a subgroup) consisting of elements of finite order.

Corollary 1.6.8 (rank of a finitely generated abelian group)

Let G be a finitely generated abelian group, then G^{tor} is a finite abelian group, G/G^{tor} is a FF abelian group, and G is isomorphic to $G^{\text{tor}} \boxplus (G/G^{\text{tor}})$.

We define the **rank** of G to be $\operatorname{rank}(G) = \dim(G/G^{\operatorname{tor}})$. This is an invariant of finitely generated abelian groups.

Proof. By the structure theorem, we can assume $G = G_0 \oplus G_1$ where

$$G_0 \simeq \coprod_{i=1}^n \mathbb{Z}/m_i\mathbb{Z}, \quad G_1 \simeq \coprod_{i=1}^r \mathbb{Z}$$

So $g \in G$ is of finite order if and only if $g \in G_0$, thus G^{tor} is a finite abelian group. The quotient group G/G^{tor} is obviously finitely generated, we now show that it is torsion-free. Suppose $g + G^{\text{tor}} \in G/G^{\text{tor}}$ is of finite order l, then element $lg \in G^{\text{tor}} \leq G$ is of finite order, so $g \in G^{\text{tor}}$. Being finitely generated and torsion-free, G/G^{tor} is a FF abelian group.

Our decomposition $G = G_0 \oplus G_1$, together with the fact that $G^{\text{tor}} = G_0$ gives us $G/G^{\text{tor}} \simeq G_1$, so G is isomorphic to $G^{\text{tor}} \boxplus (G/G^{\text{tor}})$.

Corollary 1.6.9 (First uniqueness theorem)

Let G_1, G_2 be finite abelian groups and F_1, F_2 be FF abelian groups, such that $G_1 \boxplus F_1 \simeq G_2 \boxplus F_2$, then $G_1 \simeq G_2$ and $F_1 \simeq F_2$.

For an abelian group G, "Multiply by n" is a group homomorphism for all $n \in \mathbb{Z}$:

$$\times_G^n:G\to G$$

Definition 1.6.10 (classical constructions)

Let G be an abelian group, we define

$$nG = \operatorname{im}(\times_G^n), \quad G[n] = \ker(\times_G^n)$$

These are subgroups of G. We have tautologically the following qualities

$$G = G[0], \quad G^{\mathrm{tor}} = \bigcup_{n \in \mathbb{N}_+} G[n]$$

For prime p, we define the p-primary subgroup G(p) to be

$$G(p) = \bigcup_{n \in \mathbb{N}_+} G[p^n] \le G^{\text{tor}}$$

If G = G(p), then we say that G is a p-primary abelian group. We define the support of an abelian group G to be

$$\operatorname{Supp}(G) = \{ p \in \mathbb{P} | G(p) \neq 0 \}$$

Lemma 1.6.11

Let $x, y \in G$ be two elements commute to each other, then

$$\frac{\operatorname{lcm}(\operatorname{ord}(x),\operatorname{ord}(y))}{\operatorname{gcd}(\operatorname{ord}(x),\operatorname{ord}(y))}\bigg|\operatorname{ord}(xy)\bigg|\operatorname{lcm}(\operatorname{ord}(x),\operatorname{ord}(y))$$

Theorem 1.6.12 (decomposition of the torsion subgroup)

Let G be an abelian group with $\operatorname{Supp}(G)$ begin a finite set, then G^{tor} is the internal direct sum of these non-trivial G(p).

Proof. We need to show that the following homomorphism J is an isomorphism

$$\coprod_{p \in \operatorname{Supp}(G)} G(p) \xrightarrow{J} G^{\operatorname{tor}}, \quad (g_p)_{p \in \operatorname{Supp}(G)} \mapsto \sum_{p \in \operatorname{Supp}(G)} g_p$$

where J is given by the fusion of inclusions $j_p: G(p) \to G^{tor}$. First we show that J is injective. By our lemma, we have

ord
$$\left(\sum_{p \in \text{Supp}(G)} g_p\right) = \text{lcm}\left\{\text{ord}(g_p) | p \in \text{Supp}(G)\right\}$$

So if $J((g_p)_{p \in \text{Supp}(G)}) = 0$, then every element g_p has order 1 and hence trivial.

Next we show that J is surjective. If $g \in G^{\text{tor}}$ with order $\operatorname{ord}(g) = m$. Write the unique factorization of m as

$$m = \prod_{i=1}^{n} p_i^{v_i}$$

The Bezout's theorem gives us some integers t_1, \ldots, t_n with

$$\sum_{i=1}^{n} t_i \frac{m}{p_i^{v_i}} = 1$$

We now define $g_i = \frac{m}{p_i^{v_i}}g$, then $g_i \in G(p_i)$ and $g = \sum_{i=1}^n g_i$.

Corollary 1.6.13 (decomposition of finite abelian group) Let G be a finite abelian group, then Supp(G) is finite, and

$$G = \bigoplus_{p \in \operatorname{Supp}(G)} G(p)$$

In particular, if G_1, G_2 are two finite abelian groups. Then $G_1 \simeq G_2$ if and only if $G_1(p) \simeq G_2(p)$ for all prime p.

Lemma 1.6.14

Let $G = \mathbb{Z}/m\mathbb{Z}$, and $n \in \mathbb{N}_+$. Let $n_0 = \gcd(n, m)$ and $m_0 = \frac{m}{n_0}$

$$nG \simeq \mathbb{Z}/m_0\mathbb{Z}, \quad G[n] \simeq \mathbb{Z}/n_0\mathbb{Z}$$

Proof. The subgroup nG is the image of

$$\varphi: \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/m\mathbb{Z} \xrightarrow{\times n} \mathbb{Z}/m\mathbb{Z}, \quad \varphi(1) = [n]_m$$

Easy calculation show that $Card(nG) = m_0$ and hence $Card(G[n]) = n_0$.

Theorem 1.6.15 (second uniqueness theorem)

Let (n_1, \ldots, n_s) and (m_1, \ldots, m_t) be two list of positive integers with $n_1, m_1 > 1$ and $n_i | n_{i+1}, m_i | m_{i+1}$ for all i. If

$$G = \coprod_{i=1}^{s} \mathbb{Z}/n_i \mathbb{Z} \simeq \coprod_{i=1}^{t} \mathbb{Z}/m_i \mathbb{Z} = H$$

Then we have s = t and $n_i = m_i$ for all i.

Proof. Consider the function

$$f(k) = \operatorname{Card}(G[k]) = \operatorname{Card}(H[k])$$

which can be explicitly calculated by the lemma and gives us

$$\prod_{i=1}^{s} \gcd(k, n_i) = \prod_{i=1}^{t} \gcd(k, m_i)$$

But we have $n_i|n_{i+1}, m_i|m_{i+1}$ for all i, so the equality above is actually

$$gcd(k, n_1) = gcd(k, m_1)$$
, for all k

which implies $n_1 = m_1$. Now consider $G(n_1)$ and $H(m_1)$, they are also isomorphic, and we have

$$G(n_1) \simeq \coprod_{i=2}^{s} \mathbb{Z}/n_i\mathbb{Z}, \quad H(m_1) \simeq \coprod_{i=2}^{t} \mathbb{Z}/m_i\mathbb{Z}$$

Apply the same method to induction.

Corollary 1.6.16 (structure theorem of finitely generated abelian groups, 3) Let G be a finitely generated abelian group, then there exists uniquely two non-negative integers r, s and uniquely a list of positive integers n_1, \ldots, n_s with $n_1 > 1$ and $n_i | n_{i+1}$ for all i, such that

$$G \simeq \left(\coprod_{i=1}^{s} \mathbb{Z}/n_i \mathbb{Z} \right) \boxplus \mathbb{Z}^r$$

These numbers n_i 's are called the **invariant factors** of G.

Corollary 1.6.17

Let p be a prime number and (n_1, \ldots, n_s) and (m_1, \ldots, m_t) be two list of positive integers with $n_i \leq n_{i+1}, m_i \leq m_{i+1}$ for all i. If

$$G = \coprod_{i=1}^{s} \mathbb{Z}/p^{n_i}\mathbb{Z} \simeq \coprod_{i=1}^{t} \mathbb{Z}/p^{m_i}\mathbb{Z} = H$$

Then we have s = t and $n_i = m_i$ for all i.

Proposition 1.6.18 (p-primary part of a finite abelian group is a p group) Let G be a finite abelian group and p a prime. Then G(p) is a finite p-group.

Proof. Use the inverse Lagrange theorem. (Suppose $q \neq p$ is a prime such that $q|\operatorname{Card}(G(p))$, then there exists a subgroup of G(p) with cardinality q.)

Corollary 1.6.19 (third uniqueness theorem)

Let G be a finitely generated abelian group, then there exists **uniquely**:

- ullet a non-negative integer r
- for each prime $p \in \text{Supp}(G)$, a non-negative integer s_p
- a list of positive integers $(n_{p,1},\ldots,n_{p,s_p})$ with $n_{p,i} \leq n_{p,i+1}$ for all i such that $G/G^{\text{tor}} \simeq \mathbb{Z}^r$, $G \simeq G^{\text{tor}} \boxplus (G/G^{\text{tor}})$ and

$$G^{\mathrm{tor}} \simeq \bigoplus_{p \in \mathrm{Supp}(G)} \bigoplus_{i=1}^{s_p} \mathbb{Z}/p^{n_{p,i}}\mathbb{Z}$$

These numbers $n_{p,i}$'s are called the **elementary divisors** of G.

Proof. The torsion subgroup G^{tor} has the same support set as G. And the p-primary part $G^{\text{tor}}(p) = G(p)$ are equal for all $p \in \text{Supp}(G)$.

We thus complete the classification of all finitely generated abelian groups.

1.7 Splitting Lemma

Definition 1.7.1 (short exact sequence)

A short exact sequence consists of three groups and two group homomorphisms, written as

$$0 \to A \xrightarrow{\alpha} G \xrightarrow{\beta} B \to 0$$

where α is injective, β is surjective, $\operatorname{im}(\alpha) = \ker(\beta)$.

Theorem 1.7.2 (splitting lemma)

Let

$$0 \to A \xrightarrow{\alpha} G \xrightarrow{\beta} B \to 0$$

be a short exact sequence of **abelian** groups. Then the following are equivalent:

- 1. There exists a homomorphism $\gamma: G \to A$ such that $\gamma \alpha = 1_A$
- 2. There exists a homomorphism $\delta: B \to G$ such that $\beta \delta = 1_B$
- 3. There exists an isomorphism $\varphi:G\to A\boxplus B$ such that $\varphi\alpha$ is the canonical inclusion $A\to A\boxplus B$ and $\beta\varphi^{-1}$ is the canonical projection $A\boxplus B\to B$

And we call this sequence a split exact sequence.

Proof. \Box

1.8 Miscellanea Abelian

Group Actions

Small Groups

Permutation Groups

Linear Groups