

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Обзор существующих алгоритмов поиска дубликатов в наборе данных

Студент: Коротыч Михаил Дмитриевич

Руководитель: Шикуть А. В.

Цель и задачи

Цель работы – обзор существующих методов поиска дубликатов в наборе данных и определение оптимального среди них.

Задачи работы:

- 1) рассмотреть проблему дубликации данных;
- 2) описать существующие алгоритмы поиска дубликатов;
- 3) провести всесторонний анализ таких алгоритмов;
- 4) определить оптимальный среди рассмотренных.

Определение дубликата. Проблема дубликации

Дубликат - объект, который

содержится в наборе данных два и более раз.

Проблема дубликатов – дубликация данных

зачастую нарушает

целостность самих данных

и отношений между ними.

	and department	ABC fio	odt TI	ADC status TI
1	ИТ	Иванов Иван Иванович	2020-01-15	Больничный
2	TN	Иванов Иван Иванович	2020-01-16	На работе
3	ИТ	Иванов Иван Иванович	2020-01-18	На работе
4	ит	Иванов Иван Иванович	2020-01-19	Оплачиваемый отпуск
5	ит	Иванов Иван Иванович	2020-01-20	Оплачиваемый отпуск
6	Бухгалтерия	Петрова Ирина Ивановна	2020-01-15	Оплачиваемый отпуск
7	Бухгалтерия	Петрова Ирина Ивановна	2020-01-16	На работе
8	Бухгалтерия	Петрова Ирина Ивановна	2020-01-17	На работе
9	Бухгалтерия	Петрова Ирина Ивановна	2020-01-18	На работе
10	Бухгалтерия	Петрова Ирина Ивановна	2020-01-19	Оплачиваемый отпуск
11	Бухгалтерия	Петрова Ирина Ивановна	2020-01-20	Оплачиваемый отпуск
12	ит	Иванов Иван Иванович	2020-01-16	На работе

Нотация «О большое»

Нотация «О большое» — это математическая нотация, которая описывает ограничивающее поведение функции, когда аргумент стремится к определенному значению или бесконечности.

Критерии оптимальности

Алгоритм является оптимальным, если:

- любой другой алгоритм, решающий поставленную задачу, работает не быстрее рассматриваемого;
- он не изменяет каким-либо образом входные данные;

Brute force

- Решение «в лоб»
- Простое сравнение пар элементов
- Вычислительная сложность: $O(n^2)$
- Пространственная
 сложность: *O*(1)

Подсчёт итераций

- Метод заключается в подсчёте итераций каждого целочисленного элемента
- Хорошо подходит для хеш-таблиц
- Временная сложность: O(n)
- Пространственная сложность: O(n)

Метод предварительной сортровки

- Использует метод предварительной сортировки Timsort
- Временная сложность: $O(n * \log n)$
- Пространственная
 сложность: *O*(1)

Метод подсчёта суммы элементов

- Результатом работы алгоритмы будет значение дублированного элемента
- Корректно работает только с одним дубликатом
- Рекурсия препятствует реализации
- Временная сложность: O(n)
- Пространственная сложность: O(1)

Метод маркера

- Использует концепцию массива как связного списка
- Можно искать несколько дубликатов одного и того же значения элемента или несколько дубликатов разных значений
- Временная сложность: O(n)
- Пространственная сложность: O(1)

Метод «бегуна»

- Также как и метод маркера использует связный список
- За основу реализации можно взять алгоритм Флойда
- Временная сложность: O(n)
- Пространственная
 сложность: *O*(1)

Сравнение характеристик

- Самый оптимальный метод бегуна.
- Имеет O(n) и O(1) сложности.
- Не изменяет входной набор данных
- Позволяет найти несколько дубликатов

Алгоритм	Пространственная	Временная
	сложность	сложность
Brute Force	0(1)	$O(n^2)$
Метод подсчёта	O(n)	O(n)
итераций		
Метод с	0(1)	$O(n * \log n)$
предварительной		
сортировкой		
Метод подсчёта	0(1)	O(n)
суммы элементов		
Метод маркера	0(1)	O(n)
Метод бегуна	0(1)	O(n)

Заключение

- 1. Проведён анализ предметной области.
- 2. Рассмотрена проблема дубликации данных.
- 3. Описаны существующие алгоритмы поиска дубликатов.
- 4. Проведён всесторонний анализ таких алгоритмов.
- 5. Определён оптимальный алгоритм среди представленных алгоритм бегуна. Он обладает O(1) пространственной сложностью и O(n) временной сложностью и не изменяет входные данные.

