Empirical project 1 of 17

Microeconometrics, Empirical project, Group 8

Atanasov Georgi* Fitter Jonathan[†] Geyer Niklas[‡] Hochholzer Matthias[§] Woharcik Verena[¶]

7th February 2021

Importing data

from Wooldridge, his source: J. Grogger (1991), "Certainty vs. Severity of Punishment," Economic Inquiry 29, 297-309.

```
df<-read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge/crime1.dta")
attach(df)
head(df)</pre>
```

##		narr86	nfarr86	nparr	36 pcnv	avgsen	tottime	ptime86	qemp86	inc86	durat	black	
##	1	0	C)	0 0.38	17.6	35.2	12	0	0.0	0	0	
##	2	2	2	2	0 0.44	0.0	0.0	0	1	0.8	0	0	
##	3	1	1	-	0 0.33	22.8	22.8	0	0	0.0	11	1	
##	4	2	2	2	1 0.25	0.0	0.0	5	2	8.8	0	0	
##	5	1	1	-	0 0.00	0.0	0.0	0	2	8.1	1	0	
##	6	0	C)	0 1.00	0.0	0.0	0	4	97.6	0	0	
##		${\tt hispan}$	born60	pcnvsq	pt86sq	inc	36sq						
##	1	0	1	0.1444	144	0.00	0000						
##	2	1	0	0.1936	0	0.64	4000						
##	3	0	1	0.1089	0	0.00	0000						
##	4	1	1	0.0625	25	77.44	4000						
##	5	0	0	0.0000	0	65.6	1001						
##	6	0	1	1.0000	0	9525.7	5977						
sti	((df)											

```
## 'data.frame':
                   2725 obs. of 16 variables:
   $ narr86 : num  0 2 1 2 1 0 2 5 0 0 ...
  $ nfarr86: num 0 2 1 2 1 0 2 3 0 0 ...
  $ nparr86: num 0 0 0 1 0 0 1 5 0 0 ...
   $ pcnv
            : num 0.38 0.44 0.33 0.25 0 ...
##
  $ avgsen : num 17.6 0 22.8 0 0 ...
  $ tottime: num 35.2 0 22.8 0 0 ...
   $ ptime86: num 12 0 0 5 0 0 0 0 9 0 ...
   $ qemp86 : num 0 1 0 2 2 4 0 0 0 3 ...
   $ inc86 : num 0 0.8 0 8.8 8.1 ...
   $ durat
                   0 0 11 0 1 ...
            : num
```


^{*}student ID

 $^{^\}dagger student$ ID 11709902

 $^{^{\}ddagger}$ student ID

[§]student ID 11724853

[¶]student ID

Empirical project 2 of 17

```
0 0 1 0 0 0 1 0 1 0 ...
    $ black : num
##
                   0 1 0 1 0 0 0 0 0 1 ...
   $ hispan : num
##
   $ born60 : num
                   1 0 1 1 0 1 1 1 1 1 ...
##
   $ pcnvsq : num
                   0.1444 0.1936 0.1089 0.0625 0 ...
##
   $ pt86sq : num
                   144 0 0 25 0 0 0 0 81 0 ...
##
   $ inc86sq: num 0 0.64 0 77.44 65.61 ...
   - attr(*, "datalabel")= chr ""
##
   - attr(*, "time.stamp")= chr "10 Jan 2000 16:54"
##
##
   - attr(*, "formats") = chr "%9.0g" "%9.0g" "%9.0g" "%9.0g" ...
##
   - attr(*, "types")= int 102 102 102 102 102 102 102 102 102 ...
   - attr(*, "val.labels")= chr
                                 ... ... ... ...
                                 ...
   - attr(*, "var.labels")= chr
##
   - attr(*, "version")= int 6
summary(df)
```

```
##
        narr86
                          nfarr86
                                             nparr86
                                                                 pcnv
##
           : 0.0000
                                                 :0.0000
                                                                   :0.0000
    Min.
                       Min.
                               :0.0000
                                         Min.
                                                            Min.
##
    1st Qu.: 0.0000
                       1st Qu.:0.0000
                                         1st Qu.:0.0000
                                                            1st Qu.:0.0000
##
    Median : 0.0000
                       Median :0.0000
                                         Median :0.0000
                                                            Median :0.2500
##
           : 0.4044
                               :0.2334
                                                 :0.1255
                                                                   :0.3578
    Mean
                       Mean
                                         Mean
                                                            Mean
##
    3rd Qu.: 1.0000
                       3rd Qu.:0.0000
                                         3rd Qu.:0.0000
                                                            3rd Qu.:0.6700
##
    Max.
           :12.0000
                       Max.
                               :6.0000
                                                 :8.0000
                                                            Max.
                                                                   :1.0000
                                         Max.
##
        avgsen
                          tottime
                                              ptime86
                                                                  qemp86
##
           : 0.0000
                               : 0.0000
                                                  : 0.0000
    Min.
                       Min.
                                          Min.
                                                                     :0.000
                                                              Min.
##
    1st Qu.: 0.0000
                       1st Qu.: 0.0000
                                          1st Qu.: 0.0000
                                                              1st Qu.:1.000
    Median : 0.0000
                       Median : 0.0000
##
                                          Median : 0.0000
                                                              Median :3.000
##
           : 0.6323
                               : 0.8387
                                                  : 0.3872
                                                                     :2.309
    Mean
                       Mean
                                           Mean
                                                              Mean
##
    3rd Qu.: 0.0000
                       3rd Qu.: 0.0000
                                           3rd Qu.: 0.0000
                                                              3rd Qu.:4.000
##
            :59.2000
                               :63.4000
                                                  :12.0000
                                                                      :4.000
                       Max.
                                           Max.
                                                              Max.
##
        inc86
                          durat
                                             black
                                                               hispan
           : 0.00
                              : 0.000
                                                :0.0000
##
    Min.
                      Min.
                                        Min.
                                                           Min.
                                                                  :0.0000
##
    1st Qu.:
              0.40
                      1st Qu.: 0.000
                                        1st Qu.:0.0000
                                                           1st Qu.:0.0000
    Median : 29.00
##
                      Median : 0.000
                                        Median :0.0000
                                                           Median : 0.0000
##
                              : 2.251
    Mean
           : 54.97
                      Mean
                                        Mean
                                                :0.1611
                                                           Mean
                                                                  :0.2176
##
    3rd Qu.: 90.10
                      3rd Qu.: 2.000
                                         3rd Qu.:0.0000
                                                           3rd Qu.:0.0000
##
    Max.
            :541.00
                      Max.
                              :25.000
                                        Max.
                                                :1.0000
                                                           Max.
                                                                  :1.0000
                                             pt86sq
                                                               inc86sq
##
        born60
                          pcnvsq
##
                                                : 0.000
    Min.
            :0.0000
                      Min.
                              :0.0000
                                        Min.
                                                            Min.
                                                                          0.00
    1st Qu.:0.0000
                      1st Qu.:0.0000
                                        1st Qu.:
                                                   0.000
                                                            1st Qu.:
                                                                          0.16
##
    Median :0.0000
                      Median : 0.0625
                                        Median :
                                                   0.000
                                                            Median:
                                                                        841.00
                              :0.2841
##
                                                   3.951
                                                                      7458.93
    Mean
            :0.3626
                      Mean
                                        Mean
                                                            Mean
##
    3rd Qu.:1.0000
                      3rd Qu.:0.4489
                                         3rd Qu.:
                                                   0.000
                                                            3rd Qu.:
                                                                       8118.01
##
    Max.
            :1.0000
                      Max.
                              :1.0000
                                        Max.
                                                :144.000
                                                            Max.
                                                                    :292681.00
```

A data frame with 2725 observations on 16 variables: - narr86: times arrested, 1986 - nfarr86: felony arrests, 1986 - nparr86: property crme arr., 1986 - pcnv: proportion of prior convictions - avgsen: avg sentence length, mos. - tottime: time in prison since 18 (mos.) - ptime86: mos. in prison during 1986 - qemp86: quarters employed, 1986 - inc86: legal income, 1986, \$100s - durat: recent unemp duration - black: =1 if black - hispan: =1 if Hispanic - born60: =1 if born in 1960 - pcnvsq: pcnv^2 - pt86sq: ptime86^2 - inc86sq: inc86^2

Correlation Plots

```
plot(df[,c("narr86", "avgsen", "inc86", "durat")])
```


Empirical project 3 of 17

narr86 avgsen inc86 durat
narr86 1.00000000 0.02929780 -0.18997653 0.08232769
avgsen 0.02929780 1.00000000 -0.09580596 0.02843162
inc86 -0.18997653 -0.09580596 1.00000000 -0.34292954
durat 0.08232769 0.02843162 -0.34292954 1.00000000

Empirical project 4 of 17

Specific Plots:

Correlation, crime 1986

Correlation, crime 1986

Empirical project 5 of 17

Working on "avgsen"

The idea is to build a model estimating expected severity of conviction when arrested in 1986 using level of income, employment, total time spend in prison and color (black ad non-black) of the arrested. Hypothesis, which are to be tested, are that the coefficient of every single variable is equal to 0.

Linear Model

The average severity is regressed on the above mentioned variables.

```
lm_sev2<-lm(avgsen~ tottime+ black+ qemp86+ inc86, data = df)</pre>
```

An output of an OLS-Estimation is given:

```
summary((lm_sev2))
```

```
##
## Call:
## lm(formula = avgsen ~ tottime + black + qemp86 + inc86, data = df)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
##
   -14.2801
            -0.0774
                      -0.0329
                                 0.0213
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0374053
                          0.0476873
                                      -0.784
                                                0.4329
## tottime
                0.7064354
                           0.0054793 128.928
                                                <2e-16 ***
## black
                0.1402641
                           0.0690914
                                        2.030
                                                0.0424 *
## qemp86
                0.0425101
                           0.0221607
                                        1.918
                                                0.0552 .
```


Empirical project 6 of 17

Interpretation of the OLS output

We see a high R-squared. The significant variables for 0.05 significance level are the total time spend in prison and the color. No significance of the other variables is proven.

Problems with the OLS

Some of the variables may be ednogenuos. => Testing this way may not be correct.

IV Regression

The idea is to use instrumental variables in the estimation of the expected severity. Define: endogenuos var: income86, qemp86, tottime exogenuos var: black instruments: durat, nparr, nfarr, narr, ptime86

The regression code is given by:

```
IV_sev1<-ivreg(avgsen~ tottime+ black+ qemp86+ inc86 | black+ durat+ narr86+ nfarr86+ nparr86+ ptime86</pre>
```

Check if Instuments are adequate

1. Check if regressors and instruments are correlated

```
illm_sev1<- lm(tottime~ black+ durat+ narr86+ nfarr86+ nparr86+ ptime86, data=df)
summary(i1lm_sev1)
##
## Call:
## lm(formula = tottime ~ black + durat + narr86 + nfarr86 + nparr86 +
##
      ptime86, data = df)
##
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -9.254 -0.662 -0.306 -0.281 55.743
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.28080
                        0.10601 2.649 0.00812 **
                                    4.701 2.72e-06 ***
## black
               1.09852
                          0.23369
## durat
               0.02531
                          0.01845
                                    1.372 0.17013
                          0.17599
                                    2.167 0.03031 *
## narr86
               0.38140
## nfarr86
              -0.11213
                          0.25363 -0.442 0.65845
## nparr86
              -0.46308
                          0.23883
                                   -1.939 0.05261
## ptime86
               0.65619
                          0.04338 15.127 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.397 on 2718 degrees of freedom
## Multiple R-squared: 0.09124,
                                   Adjusted R-squared: 0.08923
## F-statistic: 45.48 on 6 and 2718 DF, p-value: < 2.2e-16
```


Empirical project 7 of 17

```
i2lm_sev1<- lm(qemp86~ black+ durat+ narr86+ nfarr86+ nparr86+ ptime86, data=df)
summary(i2lm_sev1)
##
## Call:
## lm(formula = qemp86 ~ black + durat + narr86 + nfarr86 + nparr86 +
##
      ptime86, data = df)
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -2.7583 -0.9233 0.2340 1.0767 4.6960
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.923252 0.031584 92.554 < 2e-16 ***
## black
             -0.328207
                         0.069629 -4.714 2.56e-06 ***
## durat
              -0.164969 0.005496 -30.016 < 2e-16 ***
## narr86
              -0.157216 0.052437
                                  -2.998 0.00274 **
             ## nfarr86
## nparr86
             -0.009608
                         0.071160 -0.135 0.89260
                         0.012925 -17.558 < 2e-16 ***
## ptime86
              -0.226935
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.31 on 2718 degrees of freedom
## Multiple R-squared: 0.3398, Adjusted R-squared: 0.3383
## F-statistic: 233.1 on 6 and 2718 DF, p-value: < 2.2e-16
i3lm sev1<- lm(inc86~ black+ durat+ narr86+ nfarr86+ nparr86+ ptime86, data=df)
summary(i3lm_sev1)
##
## Call:
## lm(formula = inc86 ~ black + durat + narr86 + nfarr86 + nparr86 +
##
      ptime86, data = df)
##
## Residuals:
     Min
             1Q Median
                          3Q
                                Max
## -74.93 -44.37 -16.33 30.17 465.97
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 75.0256 1.4557 51.539 < 2e-16 ***
## black
             -14.8285
                         3.2092 -4.621 4.00e-06 ***
## durat
              -4.7147
                        0.2533 -18.612 < 2e-16 ***
             -10.3329
                          2.4168 -4.275 1.97e-05 ***
## narr86
## nfarr86
              -1.7791
                          3.4829 -0.511
                                           0.610
## nparr86
              -2.1158
                          3.2797 -0.645
                                           0.519
              -5.6714
                          0.5957 -9.520 < 2e-16 ***
## ptime86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 60.38 on 2718 degrees of freedom
## Multiple R-squared: 0.1806, Adjusted R-squared: 0.1788
```


Empirical project 8 of 17

```
## F-statistic: 99.86 on 6 and 2718 DF, p-value: < 2.2e-16
```

Multiple r-squared > 0 is observed in every regression => first criterion is met.

2. Check if errors and instruments are uncorrelated.

```
resid_sev1<-resid(IV_sev1)</pre>
lm_resid_sev1<-lm(resid_sev1~black+ durat+ narr86+ nfarr86+ nparr86+ ptime86, data=df)</pre>
summary(lm_resid_sev1)
##
## Call:
## lm(formula = resid_sev1 ~ black + durat + narr86 + nfarr86 +
       nparr86 + ptime86, data = df)
##
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -11.7167 -0.1842 -0.0872
                                 0.0257
                                         21.8264
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.003974
                           0.032882 -0.121
                                                0.904
## black
                0.001268
                           0.072489
                                      0.017
                                                0.986
## durat
                0.001107
                           0.005722
                                       0.193
                                                0.847
## narr86
                0.047213
                           0.054592
                                      0.865
                                                0.387
## nfarr86
               -0.017087
                           0.078673
                                     -0.217
                                                0.828
## nparr86
               -0.102002
                           0.074083
                                     -1.377
                                                0.169
               -0.002650
                           0.013456
                                     -0.197
                                                0.844
## ptime86
##
## Residual standard error: 1.364 on 2718 degrees of freedom
## Multiple R-squared: 0.0008356, Adjusted R-squared:
## F-statistic: 0.3789 on 6 and 2718 DF, p-value: 0.8929
```

A really small multiple R-squared is observed. The p-values of variables are considerably higher than 0.05 significance level. What can be done in addition is a test on n^*R^{2} , where R^{2} is the non-centered R^{2}

0.0008356*2725

[1] 2.27701

Which is smaller than the Chi-square value on 2 df and 0.05 significanse level=> also the second criterion is met.

#####Summary of the IV-Model

```
summary(IV_sev1)
```

```
##
## Call:
## ivreg(formula = avgsen ~ tottime + black + qemp86 + inc86 | black +
##
       durat + narr86 + nfarr86 + nparr86 + ptime86, data = df)
##
## Residuals:
##
                    1Q
                           Median
                                         3Q
         Min
                                                   Max
##
  -11.72068 -0.17947
                        -0.09283
                                    0.02787
                                             21.82055
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
```


Empirical project 9 of 17

```
0.132308
                                   0.929 0.35288
## (Intercept) 0.122938
                          0.026174 23.958 < 2e-16 ***
## tottime
               0.627074
               0.258763
                                    2.862 0.00424 **
## black
                          0.090411
## qemp86
              -0.099968
                          0.185116
                                   -0.540
                                          0.58922
## inc86
               0.003139
                          0.006011
                                    0.522 0.60157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.364 on 2720 degrees of freedom
## Multiple R-Squared: 0.8491, Adjusted R-squared: 0.8488
## Wald test:
               309 on 4 and 2720 DF, p-value: < 2.2e-16
```

Here a high R-squared is observed. Tottime and Black are the only significant variables.

Simple OLS Regression, LPM

OLS estimation

```
##
## Call:
  lm(formula = narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 +
##
       inc86 + durat + black + hispan + born60 + pcnvsq + pt86sq +
##
      inc86sq, data = df)
##
## Residuals:
               10 Median
      Min
                               3Q
                                      Max
## -1.5542 -0.4622 -0.2097 0.2374 11.3955
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.618e-01 4.481e-02 12.537 < 2e-16 ***
               5.710e-01 1.544e-01
## pcnv
                                     3.697 0.000222 ***
## avgsen
              -1.708e-02 1.205e-02 -1.418 0.156417
## tottime
              1.203e-02 9.277e-03
                                     1.297 0.194806
## ptime86
               2.936e-01 4.432e-02
                                     6.624 4.19e-11 ***
              -2.706e-02 1.840e-02 -1.471 0.141512
## qemp86
## inc86
              -3.348e-03 8.048e-04 -4.160 3.28e-05 ***
## durat
              -7.652e-03 3.962e-03 -1.931 0.053535 .
## black
               2.936e-01
                         4.481e-02
                                     6.551 6.80e-11 ***
## hispan
              1.616e-01 3.944e-02
                                     4.098 4.29e-05 ***
              -3.767e-02 3.278e-02 -1.149 0.250623
## born60
              -7.488e-01
                                    -4.792 1.74e-06 ***
                         1.563e-01
## pcnvsq
              -3.044e-02 3.879e-03 -7.846 6.12e-15 ***
## pt86sq
## inc86sq
               7.148e-06 2.555e-06
                                     2.798 0.005178 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8146 on 2711 degrees of freedom
## Multiple R-squared: 0.1051, Adjusted R-squared: 0.1008
## F-statistic: 24.5 on 13 and 2711 DF, p-value: < 2.2e-16
```

Model:

 $narr86 = \beta_0 + \beta_1 \ pcnv + \beta_2 \ ptime86 + \beta_3 \ inc86 + \beta_4 \ black + \beta_5 \ hispan + \beta_6 \ pcnvsq + \beta_7 \ pt86sq + \beta_8 \ inc86sq$

Empirical project 10 of 17

```
##
## Call:
## lm(formula = narr86 ~ pcnv + ptime86 + inc86 + black + hispan +
      pcnvsq + pt86sq + inc86sq, data = df)
##
## Residuals:
      Min
               10 Median
                               30
                                     Max
## -1.5498 -0.4692 -0.2159 0.2309 11.4326
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.896e-01 3.227e-02 15.173 < 2e-16 ***
              5.500e-01 1.533e-01
                                    3.587 0.00034 ***
## pcnv
## ptime86
              2.880e-01 4.388e-02 6.563 6.30e-11 ***
## inc86
              -3.906e-03 5.257e-04 -7.430 1.45e-13 ***
## black
              2.908e-01 4.464e-02
                                     6.514 8.71e-11 ***
              1.623e-01 3.938e-02
                                    4.120 3.89e-05 ***
## hispan
              -7.286e-01 1.552e-01 -4.695 2.80e-06 ***
## pcnvsq
              -2.946e-02 3.850e-03 -7.652 2.72e-14 ***
## pt86sq
## inc86sq
              8.377e-06 2.096e-06
                                     3.996 6.60e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.815 on 2716 degrees of freedom
## Multiple R-squared: 0.1026, Adjusted R-squared: 0.09991
## F-statistic: 38.8 on 8 and 2716 DF, p-value: < 2.2e-16
```

IV Regression

Model:

##

Generalized IV estimation

2SLS estimation

LOGIT model

creating a binary variable arr86, when a person gets arrested at least once.

```
df$arr86 <- ifelse(df$narr86>0 ,1 ,0)
log_all <- glm(arr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 + inc86 + durat + black + hispan + box
summary(log_all)
##
## Call:
## glm(formula = arr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 +
       inc86 + durat + black + hispan + born60 + pcnvsq + pt86sq +
##
##
       inc86sq, family = binomial(link = "logit"), data = df)
##
## Deviance Residuals:
##
       Min
                1Q
                      Median
                                   3Q
                                           Max
## -2.1656 -0.8658 -0.5644
                             1.1201
                                        2.6271
##
## Coefficients:
```

Estimate Std. Error z value Pr(>|z|)

Empirical project 11 of 17

```
## (Intercept) -7.302e-01 1.225e-01 -5.960 2.53e-09 ***
## pcnv
              4.390e-01 4.348e-01
                                    1.010 0.312619
## avgsen
              2.614e-02 4.384e-02
                                    0.596 0.550956
              -3.245e-02 3.562e-02 -0.911 0.362387
## tottime
## ptime86
               1.263e+00 2.523e-01
                                    5.007 5.52e-07 ***
              1.373e-01 5.144e-02 2.669 0.007607 **
## qemp86
## inc86
              -1.448e-02 2.471e-03 -5.860 4.63e-09 ***
## durat
              1.235e-02 1.039e-02
                                    1.189 0.234550
## black
              7.322e-01 1.209e-01 6.058 1.38e-09 ***
## hispan
              4.386e-01 1.129e-01 3.886 0.000102 ***
## born60
              -1.587e-02 9.635e-02 -0.165 0.869192
## pcnvsq
              -1.552e+00 4.618e-01 -3.361 0.000776 ***
              -1.742e-01 3.911e-02 -4.453 8.48e-06 ***
## pt86sq
              2.468e-05 8.186e-06
## inc86sq
                                    3.015 0.002570 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 3216.4 on 2724 degrees of freedom
## Residual deviance: 2871.9 on 2711 degrees of freedom
## AIC: 2899.9
##
## Number of Fisher Scoring iterations: 8
log <- glm(arr86 ~
                   ptime86 + qemp86 + inc86 + black + hispan + pcnvsq + pt86sq + inc86sq , data = df
summary(log)
##
## Call:
  glm(formula = arr86 ~ ptime86 + qemp86 + inc86 + black + hispan +
##
      pcnvsq + pt86sq + inc86sq, family = binomial(link = "logit"),
      data = df
##
##
## Deviance Residuals:
##
      Min
                1Q
                     Median
                                  3Q
                                         Max
## -2.1653 -0.8654 -0.5673
                            1.1359
                                      2.6267
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.312e-01 9.372e-02 -6.735 1.64e-11 ***
## ptime86
              1.251e+00 2.467e-01 5.070 3.97e-07 ***
## qemp86
              1.175e-01 4.857e-02
                                    2.420
                                             0.0155 *
## inc86
              -1.458e-02 2.459e-03 -5.929 3.05e-09 ***
## black
              7.297e-01 1.202e-01 6.073 1.26e-09 ***
              4.471e-01 1.116e-01
                                     4.008 6.13e-05 ***
## hispan
              -1.114e+00 1.379e-01 -8.079 6.55e-16 ***
## pcnvsq
## pt86sq
              -1.733e-01 3.847e-02 -4.504 6.67e-06 ***
              2.480e-05 8.170e-06
                                    3.036
                                             0.0024 **
## inc86sq
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
```


Empirical project 12 of 17

```
Null deviance: 3216.4 on 2724 degrees of freedom
## Residual deviance: 2875.7 on 2716 degrees of freedom
## AIC: 2893.7
##
## Number of Fisher Scoring iterations: 8
For comparison
prob <- glm(arr86 ~
                     ptime86 + qemp86 + inc86 + black + hispan + pcnvsq + pt86sq + inc86sq , data = d
summary(prob)
##
## Call:
## glm(formula = arr86 ~ ptime86 + qemp86 + inc86 + black + hispan +
      pcnvsq + pt86sq + inc86sq, family = binomial(link = "probit"),
##
      data = df
##
## Deviance Residuals:
      Min
##
                1Q
                     Median
                                  3Q
                                          Max
## -2.1724 -0.8682 -0.5697 1.1467
                                       2.7138
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.917e-01 5.648e-02 -6.936 4.04e-12 ***
## ptime86
              7.387e-01 1.400e-01 5.278 1.31e-07 ***
## qemp86
              6.771e-02 2.898e-02
                                    2.337 0.01944 *
              -8.503e-03 1.417e-03 -6.001 1.96e-09 ***
## inc86
## black
              4.373e-01 7.299e-02 5.992 2.08e-09 ***
              2.615e-01 6.643e-02
## hispan
                                     3.936 8.28e-05 ***
## pcnvsq
              -6.503e-01 7.687e-02 -8.461 < 2e-16 ***
              -1.021e-01 2.183e-02 -4.676 2.93e-06 ***
## pt86sq
## inc86sq
              1.520e-05 4.623e-06 3.287 0.00101 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 3216.4 on 2724 degrees of freedom
## Residual deviance: 2876.2 on 2716 degrees of freedom
## AIC: 2894.2
##
## Number of Fisher Scoring iterations: 8
Calculation of MC Faddens pseudo R<sup>2</sup>
1-(prob$deviance/prob$null.deviance)
## [1] 0.105748
```

parameter logit probit check

prob/log slide 21 ... factor 1.6

##Average marginal effect

wien wien

Empirical project 13 of 17

```
# for logit
fav <- mean(dnorm(predict(log,type="link")))</pre>
fav*coef(log)
##
     (Intercept)
                        ptime86
                                        qemp86
                                                                       black
## -1.391845e-01 2.758107e-01 2.591507e-02 -3.214709e-03 1.608863e-01
##
          hispan
                         pcnvsq
                                        pt86sq
                                                      inc86sq
## 9.857880e-02 -2.456187e-01 -3.820432e-02 5.468947e-06
Predicition of cutoff
tab <- table(true= df$arr86, pred= round(fitted(log)))</pre>
tab
##
       pred
## true
           0
                 1
##
      0 1883
               87
      1 625 130
##
tabp \leftarrow c(tab[1,1] + tab[2,2], tab[2,1] + tab[1,2] / sum(tab)), digits = 2)
tabp
## [1] 201300.00 62503.19
ROC
pred <- prediction(fitted(log),df$arr86)</pre>
plot(performance(pred, "acc"))
     0.7
     9.0
Accuracy
     0.5
     0.4
     ന
            0.0
                            0.2
                                           0.4
                                                           0.6
                                                                           8.0
                                              Cutoff
```

plot(performance(pred, "tpr", "fpr"))

abline(0,1,lty=2)

Empirical project 14 of 17

Ordered Logit Model

```
library("oglmx")
## Loading required package: maxLik
## Loading required package: miscTools
##
## Please cite the 'maxLik' package as:
## Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. C
## If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum of
## https://r-forge.r-project.org/projects/maxlik/
results.oprob<-oglmx(narr86 ~ ptime86 + qemp86 + inc86 + black + hispan + pcnvsq + pt86sq + inc86sq,
                     constantMEAN = FALSE, constantSD = FALSE,
                     delta=0,threshparam = NULL)
summary(results.oprob)
## Ordered Probit Regression
## Log-Likelihood: -2080.282
## No. Iterations: 10
## McFadden's R2: 0.8733637
## AIC: 4196.564
             Estimate Std. error t value Pr(>|t|)
## ptime86 7.1443e-01 1.1098e-01 6.4374 1.216e-10 ***
## qemp86
           3.5043e-02 2.7477e-02 1.2753 0.202185
## inc86
           -8.2362e-03 1.3779e-03 -5.9773 2.268e-09 ***
## black
           4.4770e-01 6.7263e-02 6.6560 2.814e-11 ***
## hispan
           3.0238e-01 6.2454e-02 4.8416 1.288e-06 ***
## pcnvsq -5.5297e-01 7.3526e-02 -7.5208 5.444e-14 ***
```

pt86sq -1.0195e-01 1.8300e-02 -5.5710 2.532e-08 ***

Empirical project 15 of 17

```
## inc86sq 1.5006e-05 4.5761e-06 3.2792 0.001041 **
## ---- Threshold Parameters ----
##
                   Estimate Std. error t value Pr(>|t|)
## Threshold (0->1)
                  0.361356
                              0.054279 6.6575 2.786e-11 ***
## Threshold (1->2)
                  1.338313
                             0.060388 22.1620 < 2.2e-16 ***
## Threshold (2->3) 1.851261 0.070803 26.1468 < 2.2e-16 ***
## Threshold (3->4) 2.227259 0.086089 25.8717 < 2.2e-16 ***
## Threshold (4->5)
                    ## Threshold (5->6)
                    2.774494
                              0.131885 21.0373 < 2.2e-16 ***
## Threshold (6->7)
                    3.001412
                              0.167156 17.9557 < 2.2e-16 ***
## Threshold (7->9)
                    3.092331
                              0.186322 16.5967 < 2.2e-16 ***
## Threshold (9->10)
                              0.218835 14.7064 < 2.2e-16 ***
                    3.218277
## Threshold (10->12) 3.416592
                              0.285862 11.9519 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
"marginal effects"
## [1] "marginal effects"
margins.oglmx(results.oprob,ascontinuous = TRUE)
## Marginal Effects on Pr(Outcome==0)
           Marg. Eff Std. error t value Pr(>|t|)
## ptime86 -2.1244e-01 2.8908e-02 -7.3490 1.998e-13 ***
## qemp86 -1.0420e-02 8.1619e-03 -1.2767 0.201705
## inc86
          2.4491e-03 4.1310e-04 5.9285 3.056e-09 ***
## black
        -1.3313e-01 2.0307e-02 -6.5558 5.533e-11 ***
## hispan -8.9915e-02 1.8699e-02 -4.8085 1.521e-06 ***
         1.6443e-01 2.1998e-02 7.4750 7.721e-14 ***
## pcnvsq
## pt86sq 3.0316e-02 4.7373e-03 6.3994 1.560e-10 ***
## inc86sq -4.4621e-06 1.3655e-06 -3.2678 0.001084 **
## -----
## Marginal Effects on Pr(Outcome==1)
##
           Marg. Eff Std. error t value Pr(>|t|)
## ptime86 1.5011e-01 2.2600e-02 6.6420 3.094e-11 ***
          7.3630e-03 5.7731e-03 1.2754 0.202164
## qemp86
## inc86 -1.7305e-03 2.9564e-04 -5.8535 4.813e-09 ***
          9.4068e-02 1.4567e-02 6.4575 1.064e-10 ***
## black
## hispan 6.3533e-02 1.3330e-02 4.7663 1.876e-06 ***
## pcnvsq -1.1619e-01 1.5868e-02 -7.3219 2.445e-13 ***
## pt86sq -2.1421e-02 3.6933e-03 -5.7999 6.634e-09 ***
## inc86sq 3.1529e-06 9.6822e-07 3.2564 0.001128 **
## -----
## Marginal Effects on Pr(Outcome==2)
           Marg. Eff Std. error t value Pr(>|t|)
## ptime86 3.9988e-02 5.8018e-03 6.8923 5.491e-12 ***
           1.9614e-03 1.5431e-03 1.2711 0.203690
## qemp86
## inc86
          -4.6100e-04 8.7744e-05 -5.2538 1.490e-07 ***
## black
          2.5059e-02 4.4312e-03 5.6550 1.558e-08 ***
## hispan
         1.6925e-02 3.8379e-03 4.4098 1.034e-05 ***
## pcnvsq -3.0951e-02 4.9188e-03 -6.2924 3.127e-10 ***
## pt86sq -5.7063e-03 9.0245e-04 -6.3231 2.563e-10 ***
## inc86sq 8.3990e-07 2.6776e-07 3.1368 0.001708 **
```


Empirical project 16 of 17

```
## Marginal Effects on Pr(Outcome==3)
##
           Marg. Eff Std. error t value Pr(>|t|)
## ptime86 1.3431e-02 2.4802e-03 5.4154 6.113e-08 ***
## qemp86 6.5881e-04 5.2618e-04 1.2521 0.2105464
## inc86 -1.5484e-04 3.6121e-05 -4.2868 1.813e-05 ***
          8.4168e-03 1.8693e-03 4.5026 6.714e-06 ***
## black
## hispan 5.6847e-03 1.4941e-03 3.8049 0.0001419 ***
## pcnvsq -1.0396e-02 2.1838e-03 -4.7605 1.931e-06 ***
## pt86sq -1.9167e-03 3.6574e-04 -5.2406 1.601e-07 ***
## inc86sq 2.8211e-07 9.7644e-08 2.8892 0.0038625 **
## -----
## Marginal Effects on Pr(Outcome==4)
           Marg. Eff Std. error t value Pr(>|t|)
## ptime86 3.5933e-03 1.1010e-03 3.2637 0.001100 **
         1.7625e-04 1.4786e-04 1.1920 0.233255
## qemp86
## inc86
          -4.1425e-05 1.4253e-05 -2.9064 0.003656 **
## black
          2.2518e-03 7.5692e-04 2.9749 0.002931 **
## hispan 1.5208e-03 5.5202e-04 2.7550 0.005868 **
## pcnvsq -2.7812e-03 9.1744e-04 -3.0315 0.002433 **
## pt86sq -5.1277e-04 1.5825e-04 -3.2403 0.001194 **
## inc86sq 7.5474e-08 3.2351e-08 2.3330 0.019651 *
## -----
## Marginal Effects on Pr(Outcome==5)
           Marg. Eff Std. error t value Pr(>|t|)
## ptime86 3.5017e-03 1.0569e-03 3.3133 0.0009222 ***
## qemp86 1.7176e-04 1.4465e-04 1.1875 0.2350452
## inc86
         -4.0369e-05 1.3993e-05 -2.8851 0.0039132 **
## black
          2.1944e-03 7.4258e-04 2.9551 0.0031257 **
## hispan 1.4821e-03 5.3946e-04 2.7473 0.0060081 **
## pcnvsq -2.7104e-03 9.0105e-04 -3.0080 0.0026295 **
## pt86sq -4.9970e-04 1.5130e-04 -3.3028 0.0009574 ***
## inc86sq 7.3551e-08 3.1676e-08 2.3220 0.0202336 *
## -----
## Marginal Effects on Pr(Outcome==6)
          Marg. Eff Std. error t value Pr(>|t|)
## ptime86 9.5621e-04 5.0382e-04 1.8979 0.05771 .
## qemp86 4.6903e-05 4.4592e-05 1.0518 0.29289
## inc86 -1.1024e-05 6.1462e-06 -1.7936 0.07288 .
## black
          5.9922e-04 3.3051e-04 1.8130 0.06983 .
## hispan 4.0471e-04 2.3006e-04 1.7592 0.07855 .
## pcnvsq -7.4012e-04 4.0640e-04 -1.8211 0.06858 .
## pt86sq -1.3645e-04 7.1834e-05 -1.8996 0.05749 .
## inc86sq 2.0084e-08 1.2316e-08 1.6307 0.10295
## -----
## Marginal Effects on Pr(Outcome==7)
##
           Marg. Eff Std. error t value Pr(>|t|)
## ptime86 2.3179e-04 2.3609e-04 0.9818
                                        0.3262
## qemp86 1.1370e-05 1.4692e-05 0.7739
                                        0.4390
## inc86
         -2.6722e-06 2.7667e-06 -0.9658
                                        0.3341
## black
          1.4526e-04 1.4983e-04 0.9695
                                        0.3323
## hispan 9.8106e-05 1.0212e-04 0.9607
                                        0.3367
## pcnvsq -1.7941e-04 1.8500e-04 -0.9698
                                       0.3322
## pt86sq -3.3078e-05 3.3673e-05 -0.9823
                                        0.3259
## inc86sq 4.8686e-09 5.1918e-09 0.9378
                                        0.3484
```


Empirical project 17 of 17

```
## Marginal Effects on Pr(Outcome==9)
     Marg. Eff Std. error t value Pr(>|t|)
## ptime86 2.2718e-04 2.3201e-04 0.9792 0.3275
## qemp86 1.1143e-05 1.4437e-05 0.7719 0.4402
## inc86 -2.6191e-06 2.7195e-06 -0.9631 0.3355
## black 1.4237e-04 1.4722e-04 0.9670 0.3335
## hispan 9.6154e-05 1.0033e-04 0.9584 0.3379
## pcnvsq -1.7584e-04 1.8191e-04 -0.9666 0.3337
## pt86sq -3.2419e-05 3.3084e-05 -0.9799 0.3271
## inc86sq 4.7718e-09 5.1022e-09 0.9352 0.3497
## -----
## Marginal Effects on Pr(Outcome==10)
##
          Marg. Eff Std. error t value Pr(>|t|)
## ptime86 2.0960e-04 2.1802e-04 0.9614
                                         0.3364
## qemp86 1.0281e-05 1.3490e-05 0.7621
                                         0.4460
## inc86 -2.4163e-06 2.5551e-06 -0.9457
                                         0.3443
## black 1.3135e-04 1.3821e-04 0.9503 0.3419
## hispan 8.8711e-05 9.4251e-05 0.9412 0.3466
## pcnvsq -1.6223e-04 1.7092e-04 -0.9492 0.3425
## pt86sq -2.9910e-05 3.1081e-05 -0.9623 0.3359
## inc86sq 4.4024e-09 4.7887e-09 0.9193 0.3579
## -----
## Marginal Effects on Pr(Outcome==12)
##
          Marg. Eff Std. error t value Pr(>|t|)
## ptime86 1.9188e-04 2.0799e-04 0.9225 0.3563
## qemp86 9.4119e-06 1.2707e-05 0.7407
                                         0.4589
## inc86 -2.2121e-06 2.4364e-06 -0.9079 0.3639
## black 1.2024e-04 1.3188e-04 0.9118 0.3619
## hispan 8.1213e-05 8.9931e-05 0.9031
                                         0.3665
## pcnvsq -1.4852e-04 1.6298e-04 -0.9113
                                         0.3622
## pt86sq -2.7382e-05 2.9638e-05 -0.9239
                                         0.3556
## inc86sq 4.0303e-09 4.5559e-09 0.8846
                                         0.3764
##WORK IN PROGRESS: Alternative model with fixed thresholds (restrictions)
\#results.oprob1 < -oglmx(y \sim x1 + x2, \sim x1 + x2, data=df,
#
                       constantMEAN = FALSE, constantSD = FALSE)
"Alternative model with fixed thresholds"
## [1] "Alternative model with fixed thresholds"
\#results.oprob1alt < -oglmx(y \sim x1 + x2, \sim x1 + x2, data=df,
#
                       constantMEAN = TRUE, constantSD = TRUE,
#
                       threshparam=c(-0.5,NA,1.5))
#summary(results.oprob1)
#summary(results.oprob1alt)
##WORK IN PROGRESS:Some Testing
library("lmtest")
#lrtest(results.oprob, results.oprobalt)
```

Truncated model, let's see

