At Tutorial 1 – Marked Question (1st March 2019)

Chapter 3, Ex 58: Equivalent resistance

Find the equivalent resistance, R_{eq} , for each of the three resistive networks shown.

a) Each resistor is 100 Ω .

Chapter 3, Ex 58 cont.

b)

Chapter 3, Ex 58 cont.

c)

At Tutorial 1 – Unmarked Questions (1st March 2019)

Chapter 2, Ex 42: Ohm's Law

Determine the magnitude of the current flowing through a 4.7 $k\Omega$ resistor if the voltage across it is:

- a) 1 mV
- b) 10 V
- c) 4e^{-t} V
- d) 100 cos(5t) V
- e) -7 V

KS Question 1: Parallel Components, Open Circuits, Short Circuits, Ohm's Law

For the circuit above, determine the following:

- a) what (if anything) in in parallel
- b) the voltage across the open circuit
- c) the current through the short circuit

Chapter 3 Ex 20: Ohm's and Kirchoff's laws

Use Ohm's and Kirchoff's laws on the circuit below to find v_x , l_s , i_{in} , and the power supplied/ provided by the dependent source.

Tuts: 6 of 16

Extra Questions for Tutorial 1 (no worked solutions just final answer given)

Ch 2 ex 23 [Ans: $v_S = -1 \ mV$]

For the circuit below, determine v_s if $v_2 = 1000i_2$ and $i_2 = 5$ mA.

Ch 2, Ex 27 [Ans: a) 4.545 mA – 5.556 mA. b) 22.73 mW – 27.78 mW]

A $1k\Omega$ resistor with a 10% tolerance may have a value anywhere within the range $900-1100~\Omega$. Answer the following questions assuming 5.0 V is applied across the resistor.

- a) What is the range of currents that might be measured?
- b) What is the range of power that might be measured?

Ch 3 ex 36 [Ans: $i_x = 571.4 \, \mu A$]

Find the current i_x in the circuit below.

