Algoritmos em Sequências Notas de aula da disciplina TE: Técnicas de Construção de Algoritmos

Fabiano de Souza Oliveira

fabiano.oliveira@ime.uerj.br

Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br)

setembro/2020

TE: Técnicas de Construção de Algoritmos Algoritmos em Sequências

2020 URI Online Judge

Desempenho da semana passada

TE: Técnicas de Construção de Algoritmos Algoritmos em Sequências

Problemas de 05/09/2020:

```
1027 - Onda Crítica
```

1310 - Lucro

2919 - Melhor Ordem

2665 - Hipercampo

1092 - Maior Subsequência Crescente

1027 - Onda Crítica

Contexto: Determinar o maior número de pontos que forma uma "onda crítica": supondo uma linha imaginária y = a, para alguma constante a, todos os pontos na onda crítica deverão ter diferentes coordenadas x, e suas coordenadas y devem, alternadamente, ser na forma a-1 ou a+1.

Entrada: Haverá vários casos de testes. Cada caso inicia com o número de pontos $N \le 1000$, seguido de N linhas com as coordenadas inteiras x e y de cada ponto.

Saída: Para cada caso de teste, imprima o número máximo de pontos que podem ser incluídos em uma única "onda crítica" Exemplo de saída:

p1 p5 p8

p2 y = a

p3 p6 p9 p10

1027 - Onda Crítica

Dicas:

- 1. A solução é aplicar o algoritmo de Sequência Crescente Máxima, adaptada para o problema:
- a. Ordenar os pontos por suas coordenadas (x,y), lexicograficamente
- b. Guardar, para cada ponto p_i, o tamanho das maiores subsequências C(i) e B(i) de pontos em uma "onda crítica" que terminam em p_i, nos seguintes casos:
 - i. p_i está no eixo de cima da curva (C(i))
 - ii. p está no eixo de baixo da curva (B(i))

1027 - Onda Crítica

Dicas:

2. Empregar a versão O(n²) do algoritmo:

- b. Note que pelo fato de que nem todo ponto pi < pi deve ser considerado para determinar C(i), B(i), a versão mais eficiente que emprega busca binária é inadequada 3. Solução: máx { B(i), C(i) | 1 ≤ i ≤ N }

1310 - Lucro

Contexto: George tem um circo e quer avaliar se leva o circo para certa cidade para um período de N dias. Ele tem um custo fixo diário D e tem as previsões de receitas para o período $R_1 \dots R_N$. Ele quer saber qual o lucro máximo que ele pode ter nesse período.

Entrada: Vários casos de teste, terminados por fim de arquivo. A primeira linha contém um inteiro N (1 \le N \le 50), o número de dias que George pode ficar na cidade. A segunda linha contém um inteiro D (0 \le D < 1000), o custo diário. A seguir vêm N linhas contendo um inteiro cada, $R_1 \dots R_N$ (0 \le R_i < 1000), as receitas diárias previstas.

Saída: Para cada teste imprimir o lucro máximo que George pode ter.

61

Exemplo de entrada:

Exemplo de saída:

6 20

18

35

6

80

15

1310 - Lucro

Dicas:

1. O lucro diário é expresso pela sequência:

$$(R_1-D) (R_2-D)...(R_N-D).$$

2. A solução é aplicar o algoritmo de Sequência Consecutiva de Soma Máxima.

2919 - Melhor Ordem

Contexto: É descrita uma brincadeira que consiste em determinar o tamanho da Susequência Crescente Máxima a partir de uma sequência de inteiros com N números.

Entrada: Vários casos de teste terminados por fim de arquivo. Cada caso é descrito em 3 linhas. A primeira contém um inteiro N ($1 \le N \le 5.10^5$), o tamanho da sequência dada. Na segunda linha vem N inteiros com valores limitados a 10^9 .

Saída: Para cada teste, imprimir T, o tamanho da subsequência crescente máxima.

Exemplo de entrada: Exemplo de saída: 4 2 5 3 45 67 8

2919 - Melhor Ordem

Dicas:

- 1. Problema clássico de SCM (subsequência crescente máxima)
- 2. Observação sobre a implementação do algoritmo dado:

```
j ← BuscaBinária (T, 1, k, S[i])
```

A busca binária deve retornar o índice j do menor elemento de T, tal que $T[j] \ge S[i]$

3. Em C++ pode-se usar a função lower_bound

Observar que se (S[i] > T[k]) a função retorna k. Isso não é problema para nosso algoritmo.

2919 - Melhor Ordem

Algoritmo em C para BuscaBinária:

```
j ← BuscaBinária (T, 1, k, S[i])
int low_bound(int low, int high, int e){
    if (low < 0) return 0;
    if (low >= high ){
       if (e <= T[low]) return low;
       return low+1:
    int mid=(low+high)/2;
    if (e > T[mid])
        return low_bound(mid+1,high,e);
    return low_bound(low,mid,e);
```

Tal como no caso anterior, a função retorna o menor índice j de T tal que T[j] ≥ S[i]. entretanto, se (S[i] > T[k]) a função retorna k+1. Isso não é problema no atual algoritmo. Té global.

2665 - Hipercampo

Contexto: Dadas duas âncoras A e B e N pontos, determinar o número máximo de triângulos que podem estar encaixados em sequência, cada um só interceptando com AB.

Entrada: Um caso de teste descrito em várias linhas. A primeira linha contém 3 inteiros N (1 \le N \le 100), A e B (0 < A < B \le 10⁴), os pontos âncora. A seguir vêm N linhas com 2 inteiros X_i Y_i , (0 < X_i , Y_i \le 10⁴), as coordenadas dos pontos.

Saída: O número máximo de triângulos que podem ser formados.

Exemplo de entrada: Exemplo de saída:

- 4 1 10
- 2 4
- 5 1
- 6 5
- 7 8

2665 - Hipercampo

Condição para um triângulo estar interior ao outro

Para que o triângulo AC_1B seja interior ao triângulo AC_2B , é necessário que tenhamos: ângulo ABC_1 < ângulo ABC_2 e ângulo BAC_1 < ângulo BAC_2 . O ângulo pode ser representado por seu arcocosseno

2665 - Hipercampo

Modelagem como Sequência Crescente Máxima:

Se ordenarmos os pontos pelo arcocosseno do ângulo no ponto A do triângulo BAC_i de cada ponto p_i , basta agora aplicar o algoritmo de SCM usando como critério de comparação o arcocosseno do ângulo ABC_i .

Contexto: É dada uma matriz de inteiros. Quer-se saber a submatriz com mais elementos tal que, se linearizada, é uma

sequência crescente.

1	2	5
4	6	7
10	8	3

1	2	1	2
9	6	7	3
8	7	2	8

22	2	14	22	23
16	21	22	31	31
57	33	43	45	50
46	51	66	83	93

Entrada: Vários casos de teste, terminados por 0 0, que não deve ser processado. Para cada teste, a primeira linha contém N e M, (1 ≤ M,N ≤ 600), as dimensões da matriz. A seguir vêm N linhas com M inteiros em cada uma, os elementos da matriz.

Saída: Um inteiro o número da matriz máxima encontrada.

Exemplo de entrada:

Exemplo de saída:

3 5 1 4 2 15 1 8 8 7 10 4 20 12 11 15 6

Dica: Problema com solução ad-hoc (específica).

1	4	2	15	1
8	8	7	10	4
20	12	11	15	6

1. Inicialmente, obter as soluções em uma linha ou coluna

2	1	2	1	1
1	1	2	1	1
1	1	2	1	1

3	3	3	1	3
2	2	2	2	2
1	1	1	1	1

2. Processar as matrizes H horizontal e V vertical auxiliares

1	4	2	15	1
8	8	7	10	4
20	12	11	15	6

2	1	2	1	1
1	1	2	1	1
1	1	2	1	1

3	3	3	1	3
2	2	2	2	2
1	1	1	1	1

2. Processar as matrizes H horizontal e V vertical auxiliares

O processamento consiste em varrer a matriz horizontal H. Para cada (i,j), desce-se na coluna j até i+V[i,j]-1, checando o máximo retângulo possível.

2	1	2	1	1
1	1	2	1	1
1	1	2	1	1

Max. retângulo = 2×1

Max. retângulo = 1×2

Max. retângulo = 1×3

1	4	2	15	1
8	8	7	10	4
20	12	11	15	6

2	1	2	1	1
1	1	2	1	1
1	1	2	1	1

3	3	3	1	3
2	2	2	2	2
1	1	1	1	1

2. Processar as matrizes H horizontal e V vertical auxiliares

O processamento consiste em varrer a matriz horizontal H. Para cada (i,j), desce-se na coluna j até i+V[i,j]-1, checando o máximo retângulo possível.

2	1	2	1	1
1	1	2	1	1
1	1	2	1	1

Max. retângulo = 2×1

Max. retângulo = 2×2

FIM