

AMA546 Statistical Data Mining Assignment 1

- 1. Which of the following statements about overfitting and underfitting is correct? ().
 - A. Overfitting is generally characterized by high bias
 - B. Underfitting is generally characterized by high variance
 - C. Overfitting can be mitigated by reducing the number of variables
 - D. Underfitting can be solved by regularization

Solution: C

- A. Overfitting is generally characterized by low bias and high variance.
- B. Underfitting is generally characterized by high bias and low variance.
- D. Underfitting can be detected but not solved by regularization.
- 2. The minimum and the maximum values of attribute income are 12000 yuan and 98000 yuan, respectively. Using the method of maximum/minimum normalization, mapping the values of the attribute to the range of [0,1]. For the income attribute, 73600 yuan will be transformed into ().
 - A. 0.821
 - B. 1.224
 - C. 1.458
 - D. 0.716

Solution: D

$$\frac{73600 - 12000}{98000 - 12000} = 0.716$$

- 3. Which distance below focuses on the direction of the vector?()
 - A. Euclidean distance
 - B. Hamming distance
 - C. Jaccard distance
 - D. Cosine distance

Solution: D

See page 157. The cosine similarity does not take the length of the two data objects into account when computing similarity.

- 4. In the ID3 algorithm, information gain refers to ().
 - A. The degree of information overflow
 - B. The degree of information increase
 - C. The degree of entropy increase
 - D. The degree of entropy decrease

Solution: D

The information gain is defined as the entropy of the parent node minus the weighted average of the entropy of children nodes, which is the degree of entropy decrease.

- 5. Which of the following statements about SVM is incorrect?()
 - A. The process of using kernel functions in SVM is essentially a process of feature transformation (feature engineering).
 - B. SVM has good classification performance for linearly non-separable data.
 - C. Because SVM uses kernel functions, there is no risk of overfitting.
 - D. The support vectors in SVM are a few data points.

Solution: C

The SVM uses kernel functions, but it can still overfitting.

- 6. What is the effect if both L1 and L2 norms are introduced to punish large parameters in the losisic regression? ()
 - A. It can performs variable selection and prevent overfitting to a certain extent
 - B. It can solve the problem of dimensionality curse
 - C. It can speed up the calculation
 - D. It can obtain more accurate results

Solution: A

L1 norm, also refer to the lasso penalty, can performs variable selection. Both L1 and L2 norm can punish large parameters and prevent overfitting to a certain extent.

- 7. Which two evaluation criteria for classification algorithms do the following two descriptions correspond to, respectively? ()
 - (1) When a police officer catches a thief, it measures how many of the people caught by the police are thieves.
 - (2) It measures what proportion of thieves have been caught by the police in total.
 - A. Precision, Recall
 - B. Recall, Precision
 - C. Precision, ROC
 - D. Recall, ROC

Solution: A

 $Precision = \frac{TP}{TP+FP}$ measures the fraction of the people caught by the police are thieves. $Recall = \frac{TP}{TP+FN}$ measures proportion of thieves have been caught by the police in total.

- 8. (Multiple Choice) Suppose a student accidentally duplicated a feature in the training data while using the Naive Bayesian model. Which of the following statements about NB is correct? ()
 - A. The assumption of the Naive Bayesian model has not been violated
 - B. The accuracy of the model will decrease compared to the case without duplicate features
 - C. The Naive Bayesian model can be used for least squares regression
 - D. In this case, the conclusion obtained by the student may be incorrect

Solution: B, D.

- A: The assumption of the Naive Bayesian model refers to the conditional independent of the attributes. The duplicated attribute violates the assumption.
- C: The Naive Bayesian model has nothing to do with the least squares regression.
- 9. Analysis Question: Tom is using SVM to build a spam email classifier. If an email is a spam, its label is y=1, otherwise y=0.

- (a) List at least three characteristics that Tom can extract from the Email for classification.
- (b) In Tom's training set, 99% of the emails are legitimate, and 1% are spam. Suppose this label imbalance causes the trained model to classify all emails as legitimate. What is the accuracy and recall in this case?
- (c) If Tom wants to avoid the problem in (2) and train a model that can identify as many spam emails as possible, what should Tom do?

Solution:

(a) Like the email address, the length of the email and the title of the email.

(b)
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} = \frac{0.99}{1} = 0.99$$
 $Recall = \frac{TP}{TP + FN} = \frac{0}{0.01} = 0$

- (c) Performing over sampling before building the model.
- 10. Calculation Question (Naive Bayes Classification): Consider the following training set, where the last column, "Purchase," is the label. Please use the Naive Bayes method to determine whether a **young**, low-income, non-student, and medium-credit customer has a tendency to purchase a computer.

ID	Age	Income	Student	Credit	Purchase
1	young	high	no	middle	no
2	young	high	no	good	no
3	mid-age	high	no	middle	yes
4	old	middle	no	middle	yes
5	old	low	yes	middle	yes
6	old	low	yes	good	no
7	$\operatorname{mid-age}$	low	yes	good	yes
8	young	middle	no	middle	no
9	young	low	yes	middle	yes
10	old	middle	yes	middle	yes
11	young	middle	yes	good	yes
12	$\operatorname{mid-age}$	middle	no	good	yes
13	$\operatorname{mid-age}$	high	yes	middle	yes
14	old	middle	no	good	no

Solution:

- (a) $P(young, low \subseteq income, non \subseteq student, medium \subseteq credit|no)P(no)$
 - $= P(young|no)P(low \subseteq income|no)P(non \subseteq student|no)P(medium \subseteq credit|no)P(no)$

$$=\frac{4}{8}\frac{2}{8}\frac{5}{7}\frac{3}{7}\frac{6}{16}=0.014$$

 $P(young, low \subseteq income, non \subseteq student, medium \subseteq credit|yes)P(yes)$

- $=P(young|yes)P(low\subseteq income|yes)P(non\subseteq student|yes)P(medium\subseteq credit|yes)P(yes)$
- $= \frac{3}{12} \frac{2}{6} \frac{4}{11} \frac{7}{11} \frac{10}{16} = 0.012$

Since 0.014 > 0.012, the predictive label will be "no".

11. Calculation (Classification, AUC): Bob just labeled a set of 14 emails as legitimate or spam. Alice uses this set of emails to test her score-based classifier f. Alice sets a threshold θ , and for any email x, if $f(x) > \theta$, x will be marked as spam, and if $f(x) \le \theta$, x will be marked as legitimate.

Let 1 refer to the a spam email, 0 refer to the a legitimate email.

- (a) Set $\theta = 20$, calculate the true positive rate and false positive rate of f based on Bob's labels.
- (b) Calculate the sample AUC of f based on Bob's labels.

Email ID	Bob's label	f-score of the email
1	spam	77.2
2	spam	69
3	spam	65
4	legitimate	30
5	spam	22
6	legitimate	21.11
7	legitimate	10
8	legitimate	7
9	legitimate	3
10	spam	0.33
11	legitimate	-3
12	legitimate	-6
13	legitimate	-15
14	legitimate	-77

Solution:

(a) Let 1 refer to the a spam Email, 0 refer to the a legitimate Email.

		Actual		
		1	0	Total
a	1	4	2	6
Spam	0	1	7	8
	Total	5	9	

Thus:

$$TPR = \frac{TP}{AP}$$
$$= \frac{4}{5}$$
$$= \boxed{.8000}$$

$$FPR = \frac{FP}{AN}$$
$$= \frac{2}{9}$$
$$= \boxed{.2222}$$

					AP		
		<	77.2	69	65	22	0.33
		30	1	1	1	0	0
(b)	AN	21.11	1	1	1	1	0
		10	1	1	1	1	0
		7	1	1	1	1	0
		3	1	1	1	1	0
		-3	1	1	1	1	1
		-6	1	1	1	1	1
		-15	1	1	1	1	1
		-77	1	1	1	1	1
		-11	1	1	1	1	1

$$AUC = \frac{\sum_{y \in AP} \sum_{x \in AN} \mathbb{I}_{f(y) < f(x)}}{\#of AP \cdot \#of AN}$$
$$= \frac{5 * 9 - 6}{5 * 9}$$
$$= .8667$$