

C	Deference	ctrl;	Bcl2	Suv39h1-;Bcl2			
Gene set	Reference	NES	P	NES	P		
Cell cycle process	GO:0022402	-2.235	< 0.001	-1.827	< 0.001		
Proliferation cluster	Ref. 58	-2.931	< 0.001	-1.858	< 0.001		
Cycling genes	Ref. 59	-2.680	< 0.001	-1.692	< 0.001		
ATSC	Ref. 17	2.511	< 0.001	0.915	0.790		
core ESC	Ref. 49	1.012	0.435	1.105	0.284		
HSC signature	Ref. 56	1.618	0.001	0.988	0.503		
LT-HSC signature	Ref. 60	1.513	0.001	0.788	0.922		

С	Haematological malignancies				Colorectal cancers				Melanomas						B-CLL
	RCK8	Eheb	K562	Mec1	SW480	LS174T	DLD-1	Caco-2	WM266.4	SKMe	128	MeWo	Om	m2.3	Patient1
ut	9.7% ± 2.1	6.7% ± 1.5	14.7% ± 1.5	4.7% ± 1.2	4.3% ± 0.6	8.7% ± 0.6	4.7% ± 1.5	0.0% ± 1.0	4.0% ± 1.0	2.7% ± 0	0.6 8.	3% ± 1.	5 9.0%	± 2.0	18.4% ± 3.4
ADR	2000	60.7% ± 1.5	84.3% ± 4.2	7.7% ± 1.5	95.7% ± 2.1	77.0% ± 3.5	11.3% ± 1.5	5.7% ± 2.5	97.3% ± 2.1	91.7% ±	3.1 89	0.7% ± 2	.1 10.7%	5 ± 0.6	57.3% ± 8.7
d	C	ontrol; <i>Bcl2</i>		Suv	89h1 ⁻ ;Bcl2		е	15. RC	CK8 cells			B-cell	Leukei	mia	
Count	- ut +Verapamiii +Verapamiii +Verapamiii = 30														
f						g		licative	Aging	Agii	ng	20020	isis,		escence,
-	RCK8 cells ut + Verapamil	<i>A.</i> [B-Cell Leukemia ut ADR + Verapan			stressor		Mesenchyma	BJ - skin		Mammary		telomere shortening Mammary		
				amiii	Cell type		stem cells fibroblasts						elial cells		
	ADIN			, , , , , , , , , , , , , , , , , , ,			Gene set	Reference		NES	P	NES	P	NES	P
Count						Cell Cycle	GO:0022402	-4.154 <0.00	1 -1.282	0.032	-2.308	<0.001	-1.778	<0.001	
ပ	- All All All All All All All All All Al			The state of the s		Maria	ATSC	Ref.17	1.889 0.014	1.215	0.024	1.294	< 0.001	1.847	<0.001

b

Extended Data Figure 1 \mid Senescent cells of mouse and human origin present with enhanced stem-cell markers and functionalities.

Intracellular efflux substrate

a, 5,401 probe sets (corresponding to 3,867 genes) differentially expressed in TIS were determined from the transcriptome data comparing untreated and ADR-senescent primary control; Bcl2 lymphomas by two-way ANOVA adjusted for multiple testing (cut-off q < 0.05, n = 12 biologically independent samples). 181 out of 737 genes belonging to an ATSC1 or 43 out of 337 genes of core embryonic stem-cell (ESC) signature⁴⁹ were detected and marked orange and blue, respectively, in the foldchange-ranked gene list. Whereas the expression of core embryonic stem-cell genes was not correlated with senescence, ATSC transcripts exhibit a strong association with TIS. b, Senescence-selective gene set enrichment pattern of proliferation- and stem-cell-related gene modules (including haematopoietic stem cell (HSC) and long-term HSC (LT-HSC) signatures)^{56,58-60} in control; Bcl2 and Suv39h⁻; Bcl2 lymphoma cells as in Fig. 1a. GSEA based on the Kolmogorov-Smirnov test, with negative NES indicating enrichment in untreated lymphomas, and positive NES reflecting enrichment in TIS. n = 12 biologically independent control; Bcl2samples and $n = 5 Suv39h^-$; Bcl2 samples. NES of P < 0.05 are considered statistically significant and are shown in red. c, Senescence induction by ADR treatment in various human cell lines consisting of haematological malignancies, colorectal cancers, melanomas, or in primary samples from patients with B-CLL as determined by SA-β-gal staining (mean percentage of positive cells \pm s.d., n = 3 independent experiments for cell lines; n = 4individual B-CLL samples). TIS-competent cells are defined by a greater

than fourfold induction of SA- β -gal-positive cells (with the exception of B-CLL samples, in which SA-β-gal-positive cells were at least threefold induced), and depicted as a blue box symbol in Fig. 1c. d, ABC transporter activity in cells as in Fig. 1a, measured by the efflux of a fluorescent substrate with and without the ABC transporter inhibitor verapamil. Representative plots of four independent lymphomas tested per genotype. e, Enhanced expression of the stem-cell marker CD34 in the RCK8 cell line or primary human B-cell leukaemia samples exposed to ADR treatment *in vitro*. Mean fluorescence intensity \pm s.d. from three independent experiments (RCK8 cells) and five individual leukaemia cases determined by flow cytometry. Two-tailed, unpaired t-test with Welch's correction, *P < 0.05. f, TIS-mediated increase and verapamil-dependent blockage of ABC transporter activity in ADR-senescent RCK8 cells and primary human B-cell leukaemia samples as in e. One representative out of three independent experiments shown. g, SAS occurring in non-malignant senescence scenarios: GSEA of proliferation- or stem-cell-related gene sets (as in b) in publicly available transcriptome data representing different models of replicative senescence: primary human mammary epithelial cells in stasis or agonescence (GSE16058, 12 prestasis, 9 stasis and 4 agonescence individual biological samples), high-passage BJ human skin fibroblasts (GSE13330, n = 6 pairs of proliferating/senescent cells from individual donors) or high-passage primary human mesenchymal stem cells (GSE9593, n = 3 pairs of proliferating/senescent cells from individual donors).