EMBEDDED SUBMANIFOLDS

We show that each embedded submanifold has a unique smooth structure, which is induced by the slice charts.

In what follows, let M and N be smooth manifolds of dimension m and n, respectively.

We say a smooth map $F: M \to N$ is a smooth embedding if

- (i) the restriction $F: M \to F(M)$ is a homeomorphism, where F(M) is equipped with the subspace topology.
- (ii) The differential dF_p is injective at each $p \in M$.

It is straightforward to check that the composition of smooth embeddings is again a smooth embedding.

Definition. Let $S \subseteq M$, and suppose S is a smooth manifold. We say that S is an embedded submanifold of M if the inclusion map $\iota : S \hookrightarrow M$ is a smooth embedding.

An immediate consequence of this definition is that the topology on S must be the subspace topology induced from M.

The following proposition shows that embedded submanifolds are precisely the images of embeddings.

Proposition. Let $F: M \to N$ be a smooth embedding, and let S := F(M). Then S is a topological manifold when equipped with the subspace topology. Further, there is a unique smooth structure which makes S into an embedded submanifold and the following map into a diffeomorphism:

$$\widetilde{F}: M \to S, \quad p \mapsto F(p).$$

Proof. Since \widetilde{F} is a homeomorphism, we know S is a topological manifold.

Next, let \mathcal{A} be the smooth structure for M. Given $(U, \varphi) \in \mathcal{A}$, define $\widetilde{U} := F(U)$, and define $\widetilde{\varphi} : \widetilde{U} \to \varphi(U)$. by the following diagram:

$$U \xrightarrow{\widetilde{F}} \widetilde{U}$$

$$\varphi \downarrow \widetilde{\varphi}$$

$$\varphi(U)$$

It is straightforward to show that $\widetilde{\mathcal{A}} := \{(\widetilde{U}, \widetilde{\varphi}) \mid (U, \varphi) \in \mathcal{A}\}$ is a smooth atlas for S. Furthermore, \widetilde{F} is a diffeomorphism, because $\widetilde{\varphi} \circ \widetilde{F} \circ \varphi^{-1}$ and $\varphi \circ \widetilde{F}^{-1} \circ \widetilde{\varphi}$ are identity maps.

Finally, the following diagram tells us that S is an embedded submanifold, because the inclusion map is a composition of smooth embeddings:

$$M \xrightarrow{\widetilde{F}} S$$

$$\downarrow^{\iota}$$

$$N$$

Uniqueness is straightforward to verify.

Let (U, φ) be a smooth chart for M. Let A be a subset of U. We say that A is a k-slice of (U, φ) if we can write

$$\varphi(A) = \Big\{ (x^1, \dots, x^k, 0, \dots, 0) \in \varphi(U) \Big\}.$$

Let S be a subset of M. We say that a chart (U, φ) for M is a k-slice chart for S in M if $S \cap U$ is a k-slice of (U, φ) . We say S satisfies the k-slice condition if every point in S is contained in a slice chart.

The following two propositions show that embedded submanifolds are precisely the subsets which satisfy the slice condition.

Proposition. Let $S \subseteq M$ be an embedded submanifold of dimension k. Then S satisfies the k-slice condition.

Proof. Fix $p \in S$. Since $\iota : S \to M$ is an embedding, the Rank Theorem tells us that there exist charts (V, ψ) in S centred at p and (U_0, φ) in M centred at p with $V \subseteq U_0$ such that $\hat{\iota}$ is given by

$$(x^1, \dots, x^k) \mapsto (x^1, \dots, x^k, 0, \dots, 0),$$

where $\hat{\iota}$ is defined by the following diagram:

$$V \stackrel{\iota}{\hookrightarrow} U_0$$

$$\downarrow \psi$$

$$\psi(V) \xrightarrow{\widehat{\iota}} \varphi(U_0)$$

Without loss of generality, assume that there exists $\varepsilon > 0$ such that $\psi(V)$ and $\varphi(U_0)$ are balls of radius ε centred at the origin in their respective spaces. (If not, we can restrict the charts so that these conditions are met.)

We can write $V = S \cap W$, where W is open in M. Define $U := W \cap U_0$. It is straighforward to check that $S \cap U = V$ is a k-slice of $(U, \varphi|_U)$.

Proposition. Let S be a subset of M satisfying the k-slice condition. Then S is a topological manifold of dimension k when equipped with the subspace topology. Furthermore, there exists a smooth structure which makes S into an embedded submanifold.

Proof. We know that S is Hausdorff and second-countable.

Let (U, φ) be a slice chart for S. Let $\widetilde{U} := S \cap U$, which is a slice of (U, φ) . Let $\pi : \mathbb{R}^m \to \mathbb{R}^k$ denote the projection onto the first k coordinates. Let $\widetilde{\varphi}(\widetilde{U}) := \pi(\varphi(U))$, and define $\widetilde{\varphi}$ by the following diagram:

$$\begin{array}{ccc} \widetilde{U} & & \\ \varphi & & \widetilde{\varphi} \\ \varphi(\widetilde{U}) & \xrightarrow{\pi} \widetilde{\varphi}(\widetilde{U}) \end{array}$$

We know that \widetilde{U} is open in S by definition, and $\widetilde{\varphi}(\widetilde{U})$ is open because φ and π are open maps. Observe that

$$i: (x^1, \dots, x^k) \mapsto (x^1, \dots, x^k, 0, \dots, 0)$$

is the inverse of π . Therefore, $\widetilde{\varphi}$ and its inverse are compositions of continuous maps. This shows that S is locally Euclidean.

Let us show that

$$\left\{ (\widetilde{U},\widetilde{\varphi}) \;\middle|\; (U,\varphi) \text{ is a slice chart for } S \right\}$$

is a smooth at las for S. Let $(\widetilde{U},\widetilde{\varphi})$ and $(\widetilde{V},\widetilde{\psi})$ be two such charts. Then the following diagram commutes:

Thus, $\widetilde{\psi} \circ \widetilde{\varphi}^{-1}$ is a composition of smooth maps.

Finally, let us show that $\iota: S \hookrightarrow M$ is a smooth embedding. Because S is equipped with the subspace topology, we know $\iota: S \to S$ is a homeomorphism. Now, let (U,φ) be a slice chart, and let $(\widetilde{U},\widetilde{\varphi})$ be the corresponding chart for S. We find the following diagram commutes:

$$\begin{split} \widetilde{U} & \stackrel{\iota}{\longrightarrow} U \\ \widetilde{\varphi} \Big| & & \Big| \varphi \\ \widetilde{\varphi}(\widetilde{U}) & \stackrel{\iota}{\longrightarrow} \varphi(U) \end{split}$$

Thus, ι is smooth, and its differential is injective at each point.

If $S \subseteq M$ is an embedded submanifold, then the set S satisfies the slice condition. The slice charts generate a smooth structure. The following proposition shows that this generated smooth structure is the same as the original smooth structure on S.

Proposition. Let $S \subseteq M$ be an embedded submanifold with smooth structure \mathcal{A} . Let $\widetilde{\mathcal{A}}$ be the smooth structure generated by charts of the form $(\widetilde{U}, \widetilde{\varphi})$ defined in the proof of the previous proposition. Then $\mathcal{A} = \widetilde{\mathcal{A}}$.

Proof. Fix $(\widetilde{U}, \widetilde{\varphi}) \in \widetilde{\mathcal{A}}$. It suffices to show that $(\widetilde{U}, \widetilde{\varphi})$ is smoothly compatible with \mathcal{A} . We can do this by showing that $\widetilde{\varphi}$ is diffeomorphism with respect to \mathcal{A} . First, $\widetilde{\varphi}$ is smooth respect to \mathcal{A} , because it is the composition of the following smooth maps:

$$\widetilde{U} \xrightarrow{\iota} U \xrightarrow{\varphi} \mathbb{R}^m \xrightarrow{\pi} \mathbb{R}^k$$
.

Now, fix $p \in \widetilde{U}$. Let i be the map given in the previous proposition. Observe that the following diagram commutes:

$$T_{p}S \xrightarrow{d\iota_{p}} T_{p}M$$

$$d\widetilde{\varphi}_{p} \downarrow \qquad \qquad \downarrow d\varphi_{p}$$

$$T_{\widetilde{\varphi}(p)}\mathbb{R}^{k} \xrightarrow{di_{\widetilde{\varphi}(p)}} T_{\varphi(p)}\mathbb{R}^{m}$$

Now, $d\varphi_p \circ d\iota_p$ is injective, since ι is an embedding. It follows that $d\widetilde{\varphi}_p$ must also be injective, so it is an isomorphism. It follows by the Inverse Function Theorem that $\widetilde{\varphi}$ is a diffeomorphism with respect to \mathcal{A} .

Thus, the smooth structure of each embedded submanifold is unique, and is induced by the slice charts.