Отчёт по лабораторной работе №2

Задача о Погоне, вариант №11

Саргсян Арам Грачьяевич

Содержание

1	Цель работы	5													
2	Задание	6													
3	Выполнение лабораторной работы														
	3.1 Решение	7													
	3.2 Код программы на языке julia	8													
	3.3 Результаты	11													
4	Выводы	13													

Список иллюстраций

3.1	траектории для случая 1												11
3.2	траектории для случая 2												12

Список таблиц

1 Цель работы

Приведем один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска. Например, рассмотрим задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 6.9 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 2.9 раза больше скорости браконьерской лодки 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев. 2. Постройте траекторию движения катера и лодки для двух случаев. 3. Найдите точку пересечения траектории катера и лодки.

3 Выполнение лабораторной работы

3.1 Решение

Принимаем за $t_0=0, X_0=0$ - место нахождения лодки браконьеров в момент обнаружения, $X_0=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров $x_0=0(\theta=x_0=0)$, а полярная ось r проходит через точку нахождения катера береговой охраны.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x-k (или x+k, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{x+k}{nv}$ (для второго случая $\frac{x-k}{nv}$), где n=2.9. Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние можно найти из следующего уравнения: $\frac{x}{v} = \frac{x+k}{nv}$ - в первом случае, $\frac{x}{v} = \frac{x-k}{nv}$ во втором случае.

Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев. $x_1=\frac{k}{n+1}$,при $\theta=0$ или $x_2=\frac{k}{n-1}$,при $\theta=-\pi$

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки υ . Для этого ско-

рость катера раскладываем на две составляющие: v_r - радиальная скорость и v_t -тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса $v_r=\frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v=\frac{dr}{dt}$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус $r,vr=r\frac{d\theta}{dt}$ Найдем тангенциальную скорость для нашей задачи $v_t=r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t=\sqrt{n^2v_r^2-v^2}$. Поскольку, радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t=\sqrt{n^2v^2-v^2}$. Следовательно, $v_\tau=v\sqrt{n^2-1}$.

Тогда получаем $r rac{d heta}{d t} = \upsilon \sqrt{n^2 - 1}$

using Plots

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

3.2 Код программы на языке julia

```
using DifferentialEquations

n = 2.9 #разница в скорости

s = 6.9 #начальное расстояние от лодки до катера

fi = 3/4*pi

#функция, описывающая движение катера береговой охраны

function f1(r, p, t)

    dr = r/sqrt(n^2-1)

    return dr

end
```

```
#функция, описывающая движение лодки браконьеров
function f2(t)
    xt = tan(fi+pi)*t
    return xt
end
#начальные условия в 1 случае
r0 = s/(n+1)
theta0 = collect(LinRange(0, 2*pi, 10000))
prob = ODEProblem(f1, r0, (0, 2*pi))
sol = solve(prob, saveat=theta0)
t = collect(LinRange(0.0001, 25, 1000))
r1=[]
tetha1=[]
for i in t
    push!(r1, sqrt(i^2 + f2(i)^2))
    push!(tetha1, atan(f2(i)/i))
end
#график в первом случае
plot(
        sol,
        proj=:polar,
    color=:red,
    label="катер")
plot!(
    tetha1,
    r1,
    proj=:polar,
```

```
color=:black,
    label="лодка")
#вывод картинки
savefig("D:\\julia\\lab2jl01.png")
#начальные условия в случае 2
r0 = s/(n-1)
theta0 = collect(LinRange(0, 2*pi, 10000))
prob = ODEProblem(f1, r0, (0, 2*pi))
sol = solve(prob, saveat=theta0)
t = collect(LinRange(0.0001, 25, 1000))
r1=[]
tetha1=[]
for i in t
    push!(r1, sqrt(i^2 + f2(i)^2))
    push!(tetha1, atan(f2(i)/i))
end
#график во втором случае
plot(
    sol,
    proj=:polar,
    color=:red,
    label="катер")
plot!(
    tetha1,
    r1,
    proj=:polar,
    color=:black,
```

```
label="лодка")
#вывод картинки
savefig("D:\\julia\\lab2jl02.png")
```

3.3 Результаты

Рис. 3.1: траектории для случая 1

Мы видим, что точка пересечения катера и лодки, исходя из графика, имеет приблизительные координаты

$$\begin{cases} \theta = 315 \\ r = 13 \end{cases}$$

Рис. 3.2: траектории для случая 2

Мы видим, что точка пересечения катера и лодки, исходя из графика, имеет приблизительные координаты

$$\begin{cases} \theta = 315 \\ r = 27 \end{cases}$$

4 Выводы

Я рассмотрел задачу о погоне, провели анализ и вывод дифференциальных уравнений, смоделировали ситуацию, нашел точки пересечения катера и лодки.