Topologie et calcul différentiel

Table des matières

1.	Topologie des espaces vectoriels normés.	1
	1.1. Espaces vectoriels normés.	1
	1.2. Topologie des espaces vectoriels normés · · · · · · · · · · · · · · · · · · ·	1
	1.3. Continuité. · · · · · · · · · · · · · · · · · · ·	3
	1.4. Suites dans un espace vectoriel normé.	4
	1.5. Compacité. · · · · · · · · · · · · · · · · · · ·	4
	1.6. Comparaison de normes.	
	1.7. Cas de la dimensions finie.	5
2.	Calcul différentiel.	6
	2.1. Différentielle, propriétés élémentaires. · · · · · · · · · · · · · · · · · · ·	6
	2.2. Dérivée directionnelle et différentielle.	

1. Topologie des espaces vectoriels normés.

1.1. Espaces vectoriels normés.

Définition 1.1 (Norme). Soit E un espace vectoriel. On appelle norme sur E une fonction $\|\cdot\|: E \to \mathbb{R}$ vérifiant:

- (1) $\forall \lambda \in \mathbb{R}, \forall x \in E, ||\lambda x|| = |\lambda|||x||,$
- (2) $\forall x \in E, ||x|| = 0 \Rightarrow x = 0$,
- (3) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||.$

Définition 1.2. Soit E un espace vectoriel et $\|\cdot\|$ une norme sur E. On appelle espace vectoriel normé un couple $(E, \|\cdot\|)$.

Proposition 1.3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, alors :

- $(1) \|0\| = 0,$
- (2) $\forall x \in E, ||x|| \ge 0$,
- (3) $\forall x, y \in E, ||x|| ||y|| \le ||x y|||.$

Démonstration.

- $(1) \|0_E\| = \|0_{\mathbb{R}} * 0_E\| = 0_{\mathbb{R}} * \|0_E\| = 0_{\mathbb{R}}.$
- (2) Soit $x \in E$, $||0|| = ||x x|| \le ||x|| + ||-x|| = 2||x||$ d'où $\forall x \in E$, $||x|| \ge 0$.
- (3) Soit $x, y \in E$. $||x|| = ||x + y y|| \le ||x y|| + ||y|| \Leftrightarrow ||x|| ||y|| \le ||x y||$ et $||y|| = ||y + x x|| \le ||y x|| + ||x|| \Leftrightarrow ||y|| ||x|| \le ||x y||$. Ainsi, $||x - y|| \ge \max(||y|| - ||x||, ||x|| - ||y||) = |||x - y||$.

Proposition 1.4. Soit $(E, \|\cdot\|)$, $F \subset E$ un sous-espace vectoriel. La restriction de $\|\cdot\|$ à F est une norme appelée norme induite.

1.2. Topologie des espaces vectoriels normés

Définition 1.5 (boule ouverte/fermée). Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $a \in E, r > 0$. On appelle boule ouverte centrée en a de rayon r la partie $B(a, r) := \{x \in E \mid \|x - a\| < r\}$, et boule fermée centrée en a de rayon r la partie $B_f(a, r) := \{x \in E \mid \|x - a\| \le r\}$.

Définition 1.6 (Ouvert/fermé). Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Soit $U \subset E$, on dit que U est:

- (1) un ouvert de E si $\forall x \in U, \exists r > 0, B(x, r) \subset U$.
- (2) un fermé de E si U^c est un ouvert de E.

Proposition 1.7. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, alors

- (1) \emptyset et E sont ouverts et fermés.
- (2) Une union quelconque d'ouverts est un ouvert.
- (3) Une intersection finie d'ouverts est un ouvert.
- (4) Une union finie de fermés est un fermé.
- (5) Une intersection quelconque de fermés est un fermé.

Démonstration.

- (1) $\forall x \in \emptyset, \exists \varepsilon, B(x, \varepsilon) \subset \emptyset$ donc \emptyset est un ouvert et $\emptyset^c = E$ donc E est un fermé. De plus, $\forall x \in \emptyset$ $E, B(x, 1) \subset E$ donc E est un ouvert et $\emptyset = E^c$ est un fermé.
- (2) Soit (O_i)_{i∈I} une famille d'ouverts. Soit x ∈ ∪_{i∈{1,...,n}} O_i, alors ∃j ∈ I, x ∈ O_j. Or O_j est un ouvert donc ∃r_j > 0 tel que B(x, r_j) ⊂ O_j ⊂ ∪_{i∈I} O_i donc ∪_{i∈I} O_i est un ouvert.
 (3) Soit (O_i)_{i∈{1,...,n}} une famille d'ouverts. Soit x ∈ ∩_{i∈{1,...,n}} alors x ∈ O₁, ..., x ∈ O_n. Or (O₁, ..., O_n) sont des ouverts de E donc ∃(r_i)_{i∈I} tels que B(x, (r_i)_{i∈{1,...,n}}) ⊂ (O_i)_{i∈I}. Posons ε := min(r₁, ..., r_n) > 0. Alors B(x, ε) ⊂ O₁ ∩ ... ∩ O_n donc ∪_{i∈{1,...,n}} C_i est un ouvert.
 (4) Soit (C₁, ..., C_n) une famille de fermés. Alors (∪_{i∈{1,...,n}} C_i) = ∩_{i∈{1,...,n}} (C_i)^c qui est un ouvert.
- ouvert. Ainsi $\bigcup_{i\in\{1,...,n\}} C_i$ est un fermé.
- (5) Soit $(C_i)_{i \in I}$ une famille de fermés. Alors $\left(\bigcap_{i \in I} C_i\right)^c = \bigcup_{i \in I} C_i^c$ qui est un ouvert. Ainsi, $\bigcap_{i \in I} C_i$ est un fermé.

Définition 1.8 (Intérieur). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle intérieur de *S* l'ensemble $\mathring{S} := \{x \in E \mid \exists \varepsilon > 0, B(x, \varepsilon) \subset S\}.$

Définition 1.9 (Adhérence). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle *adhérence* de S l'ensemble $\overline{S} := \{x \in E \mid \forall \varepsilon > 0, B(x, \varepsilon) \cap S \neq \emptyset.\}.$

Définition 1.10 (Dense). Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $S \subset E$. On dit que S est *dense* dans $E \operatorname{si} \overline{S} = E$.

Proposition 1.11. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $S \subset E$.

- $(1) \ \overline{S^c} = \left(\underline{\mathring{S}} \right)_c^c,$
- $(2) \quad \mathring{S}^c = \left(\overline{S}\right)^c,$
- (3) $\mathring{S} \subset S \subset \overline{S}$,
- (4) \mathring{S} est le plus grand ouvert contenu dans S,
- (5) *S* est le plus petit ouvert contenant *S*.

Proposition 1.12. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$.

- (1) S est un ouvert si et seulement si $S = \mathring{S}$.
- (2) S est un fermé si et seulement si $S = \overline{S}$.

Démonstration. A FAIRE

Proposition 1.13. Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- (1) $\forall S, T \subset E, \overline{S \cup T} = \overline{S} \cup \overline{T}.$
- (2) $\forall S, T \subset E, \overline{S \cap T} \subset \overline{S} \cap \overline{T}$.
- (3) $\forall S, T \subset E, S \cap T = \mathring{S} \cap \mathring{T}$.
- (4) $\forall S, T \subset E, S \mathring{\cup} T \supset \mathring{S} \cup \mathring{T}$.

Définition 1.14 (Frontière). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On appelle *frontière* de S par $\partial S := \overline{S} \setminus \mathring{S}$.

Proposition 1.15. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$, alors

- (1) $\partial S = \{x \in E, \forall \varepsilon > 0, B(x, \varepsilon) \cap S \neq \emptyset \land B(x, \varepsilon) \cap S^c \neq \emptyset\}.$
- (2) $\overline{S} = S \cup \partial S$.

S est fermé si et seulement si $\partial S \subset S$.

- (1) S est ouverte si et seulement si $\partial S \cap S = \emptyset$.
- (2) ∂S est un fermé.

Démonstration. TO DO

1.3. Continuité.

Définition 1.16 (continue). Soit $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ deux espaces vectoriels normés. Soit $S \subset E$. On dit que $f: S \to F$ est *continue* si :

$$\forall x \in S, \forall \varepsilon > 0, \exists \eta > 0, \forall y \in F, \|x - y\|_{F} \le \eta \Rightarrow \|f(x) - f(y)\|_{F} \le \varepsilon.$$

Proposition 1.17. Soit $\left(E,\left\|\cdot\right\|_{E}\right)$, $\left(F,\left\|\cdot\right\|_{F}\right)$ deux espaces vectoriels normés, $S\subset E,\ f:S\to F$ alors les points suivants sont équivalents :

- (1) f est continue.
- (2) Pour tout ouvert U de F, il existe un ouvert V de E tel que $f^{-1}(U) = V \cap S$,
- (3) Pour tout fermé C de F, il existe un fermé D de E tel que $f^{-1}(C) = D \cap S$.

Démonstration. TO DO

Remarque 1.18. Formellement la proposition revient à dire que l'image reciproque d'un ouvert par une fonction continue est un ouvert.

Proposition 1.19. Soit $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ deux espaces vectoriels normés, $f: E \to F$ une application linéaire. Les points suivants sont équivalents:

- (1) f est continue.
- (2) f est continue en 0.
- $(3) \ \exists M \geq 0, \forall x \in E, \left\| f(x) \right\|_F \leq M \|x\|_E.$

Démonstration.

- (1) $1 \Rightarrow 2$: f est continue sur E alors elle est continue en 0.
- (2) $2 \Rightarrow 1$: Supposons f continue en 0. Alors il existe $\eta > 0$ tel que $\forall x \in E, \|x\|_E \Rightarrow \|f(x)\|_F \leq 1$. Soit $x \in E \setminus \{0\}$ alors $\left\|f\left(\frac{\eta}{\|x\|_E}x\right)\right\| \leq 1$ d'où $f(x)_F \leq \frac{1}{\eta}\|x\|_E$. Si x = 0 alors $\|f(0)\|_F = 0 \leq \frac{1}{\eta}\|0\|_E$. Donc $M := \frac{1}{\eta}$ convient.
- (3) A faire.

Notation 1.20. On note $\mathcal{L}_c(E, F)$ l'espace vectoriel des fonctions linéaires continues de E dans F.

Corollaire 1.21. Soit $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux espaces vectoriels normés. Pour tout $L \in \mathcal{L}_c(E, F)$ on pose $\|\|L\|\| := \sup_{\|x\|_E \le 1} \|L(x)\|_F$. Alors,

- (1) $\forall L \in \mathcal{L}_c(E, F), |||L||| < \infty,$
- (2) Si $E \neq \{0\}, \forall L \in \mathcal{L}_c(E, F)$:

$$|||L||| = \sup_{x \neq 0} \frac{||L(x)||_F}{||x||_E} = \sup_{||x||_E \in]0,1[} \frac{||L(x)||_F}{||x||_E} = \sup_{||x||_E = 1} ||L(x)||_F,$$

- (3) $\|\cdot\|$ est une norme sur $\mathcal{L}_c(E,F)$ appelée norme d'opératuer ou norme subordonnée,
- $(4) \ \forall L \in \mathcal{L}_c(E, F), \forall x \in E, \|L(x)\|_F \le \|\|L\| \ \|x\|_E,$
- (5) Si $(G, \|\cdot\|_G)$ est un espace vectoriel normé, alors $\forall L \in \mathcal{L}_c(E, F), \forall K \in \mathcal{L}_c(F, G)$,

$$|||K \circ L||| \le |||K||| |||L|||$$
.

1.4. Suites dans un espace vectoriel normé.

Définition 1.22 (Convergente). Soit $(E, \|\cdot\|_E)$, un espace vectoriel normé, $(x_n)_{n \in \mathbb{N}}$ une suité d'éléments de E et $l \in E$. On dit que $(x_n)_n$ tend vers l si $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq n_0, n \geq N \Rightarrow \|x_n - l\| \leq \varepsilon$. On dit qu'une suite est *convergente* si elle admet une limite.

Proposition 1.23. Il y a unicité de la limite.

 $\begin{array}{l} \textit{D\'{e}monstration}. \ \text{Supposons} \ x_n \underset{n \to +\infty}{\longrightarrow} l_1, \ \text{et} \ x_n \underset{n \to +\infty}{\longrightarrow} l_2. \\ \text{Soit} \ \varepsilon > 0 \ \text{alors il existe} \ N_1, N_2 \in \mathbb{N} \ \text{tels que} \ n \geq N_1 \Rightarrow \|l_1 - x_n\| \leq \frac{\varepsilon}{2} \ \text{et} \ n \geq N_2 \Rightarrow \|l_2 - x_n\| \leq \frac{\varepsilon}{2} \\ \text{Posons} \ \ n \coloneqq \max(N_1, N_2). \ \ \text{Alors} \ \ \|l_1 - l_2\| \leq \|l_1 + x_n + l_2 - x_n\| \leq \|x_n - l_1\| + \|x_n - l_2\| \leq \varepsilon. \ \ \text{D'où} \\ \|l_1 - l_2\| = 0 \Leftrightarrow l_1 = l_2. \end{array}$

Lemme 1.24. Soit $(E, \|\cdot\|_E)$, un espace vectoriel normé, $(x_n)_{n \in \mathbb{N}}$ une suite dans E convergente. Alors $(x_n)_n$ est bornée.

Proposition 1.25. Soit $(E, \|\cdot\|_E)$, un espace vectoriel normé, et $S \subset E$. Si une suite d'éléments converge alors sa limite est dans \overline{S} .

Corollaire 1.26. Soit $(E, \|\cdot\|_E)$, un espace vectoriel normé, $S \subset E$. S est fermé si et seulement si pour toute suite convergente d'éléments de S, sa limite est dans S.

Proposition 1.27. Soit $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux espaces vectoriels normés, $S \subset E$, $a \in S$, et $f: S \to F$. Alors f est continue en a si et seulement si pour toute suite $(x_n)_n \in S^{\mathbb{N}}$ convergeant vers $a, (f(x_n))_n$ converge vers f(a).

1.5. Compacité.

Définition 1.28 (Compacte). Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $S \subset E$. On dit que S est *compacte* si de toute suite d'éléments de S on peut extraire une sous-suite convergeant dans S.

Proposition 1.29. Soit $(E, \|\cdot\|)$ un espace vectoriel normé $K \subset E$ un compact, et $S \subset K$. Si S est fermée alors S est compacte.

Démonstration. Soit K un compact, $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de S, alors $(x_n)\in K$ alors il existe une sous-suite de (x_n) qui converge dans K vers un élément $l\in \overline{S}$. Or $\overline{S}=S$ car S est fermé.

Définition 1.30 (bornée). Soit $(E, \|\cdot\|)$ un espace vectoriel normé. On dit qu'une partie $S \subset E$ est bornée s'il existe M > 0 tel que pour tout $x \in S, \|S\| \le M$.

Proposition 1.31. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Toute partie compacte de E est fermée et bornée.

Démonstration.

Montrons $K \subset E$ compacte $\Rightarrow K$ fermée. Soit $\left(x_{\varphi(n)}\right)_{n \in \mathbb{N}}$ une suite d'élements de K convergeant vers $l \in E$. Montrons $l \in K$. Comme K est compacte, on peut extraire une sous-suite telle que $x_{\varphi(n)}$ converge vers $\bar{l} \in K$. Or, $x_{\varphi(n)}$ converge aussi vers l comme suite extraite d'une suite convergeante. Ainsi, par unicité de la limite, $l = \bar{l}$.

Montrons par contraposition K compact $\Rightarrow K$ borné. Supposons que K soit une partie non-bornée de E. Alors pour $n \in \mathbb{N}$, il existe $x_n \in K$ tel que $\|x_n\| > n$. Montrons que la suite $(x_n)_{n \in \mathbb{N}}$ ainsi construite n'admet pas de sous-suite convergeant dans K. Soit $\varphi : \mathbb{N} \to \mathbb{N}$ une fonction strictement croissante. Alors $\|x_{\varphi(n)}\| > \varphi(n) = n \xrightarrow[n \to +\infty]{} +\infty$. Donc $x_{\varphi(n)}$ n'est pas convergente. Ainsi, K n'est pas compact.

Corollaire 1.32. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $K \subset E$ un compact non-vide. Alors $\min_{x \in K} \|x\|$ et $\max_{x \in K} \|x\|$ sont bien définis.

Proposition 1.33. Soit $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ deux espaces vectoriels normés, $S \subset E$ et $f: S \to F$ une fonction continue. Si K est un compact de E inclus dans S alors f(K) est compacte.

Démonstration. Soit $(y_n)_{n\in\mathbb{N}}$ une suite d'éléments de f(K). Alors pour $n\in\mathbb{N}$, il existe $x_n\in K$ tel que $y_n=f(x_n)$. Puisque $(x_n)_n$ est une suite d'éléments de K, il existe une sous suite $(x_{\varphi(n)})_n$ qui converge vers un $l\in K$. Par continuité de f, il vient que $y_{\varphi(n)}=f(x_{\varphi(n)})\longrightarrow f(l)\in f(K)$. Donc f(K) est compacte.

1.6. Comparaison de normes.

Définition 1.34 (Equivalente). Soit E un espace vectoriel, N et N' deux normes sur E. On dit que N et N' sont *équivalentes* si

$$\exists \alpha, \beta > 0, \forall x \in E, \alpha N(x) \le N'(x) \le \beta N(x)$$

Proposition 1.35. L'équivalence de normes est une relation d'équivalence.

Proposition 1.36. Soit E un espace vectoriel, deux normes N, N' sur E sont équivalentes si et seulement si elles définissent la même topologie sur E.

1.7. Cas de la dimensions finie.

Proposition 1.37. Soit $(E, \|\cdot\|)$ un espace vectoriel normé de dimension fnie. Alors,

- Toutes les normes sur E sont équivalentes.
- Les parties compactes de E sont les parties fermées bornées

Lemme 1.38. Soit E un espace vectoriel de **dimension finie** et $\beta = (e_1, ..., e_d)$ une base de E. On définit $\|\cdot\|_{\infty} : E \to \mathbb{R}$ par $\left\|\sum_{i=1}^d \lambda_i e_i\right\|_{\infty} = \max_i |\lambda_i|$ alors on a : (1) $\|\cdot\|_{\infty}$ est une norme sur E.

- (2) Pour tout a > 0, $B_f(0, a)$ est un compact de $(E, \|\cdot\|_{\infty})$,
- (3) Les compacts de $(E, \|\cdot\|_{\infty})$ sont les fermés bornés.

Proposition 1.39. Soit $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ deux espaces normés avec E de dimension finie. Alors toute application linéaire $E \longrightarrow F$ est continue.

2. Calcul différentiel.

2.1. Différentielle, propriétés élémentaires.

Définition 2.1 (Différentiable). Soit E, F deux espaces vectoriels normés, $U \subset E f : U \to F, a \in U$.

- On dit que f est différentiable au point a s'il existe une application linéaire continue $g: E \to F$ telle que $f(a + h) - f(a) - g(h) = o_{h\to 0}(h)$.
- On dit que f est différentiable dans U si f est différentiable en tout point de U.
- On appelle g la différentielle de f en a.

Proposition 2.2. Si la différentielle existe, elle est unique.

Démonstration. Soit g, \tilde{g} deux différentielles de f en a. Montrons $g = \tilde{g}$. En soustrayant on a $g - \tilde{g} = o_{h \to 0}(h)$ i.e $\forall \varepsilon > 0, \exists \eta > 0, \forall h \in E, ||h||_E \le \eta \Rightarrow ||\tilde{g}(h) - g(h)||_E \le \varepsilon ||h||.$

Soit $h \in E \setminus \{0\}$. On a:

$$\left\|\frac{\eta}{2} \cdot \frac{h}{\left\|h\right\|_{E}}\right\| < \eta \Rightarrow \left\|\tilde{g}\left(\frac{\eta}{2} \cdot \frac{h}{\left\|h\right\|_{E}}\right) - g\left(\frac{\eta}{2} \cdot \frac{h}{\left\|h\right\|_{E}}\right)\right\| \le \varepsilon \left\|\frac{\eta}{2} \frac{h}{\left\|h\right\|_{E}}\right\| \Leftrightarrow \frac{\eta}{2\left\|h\right\|_{E}} \left\|\tilde{g}(h) - g(h)\right\| \le \varepsilon \frac{\eta}{2\left\|h\right\|_{E}} \left\|h\right\|_{E} \\ \Leftrightarrow \left\|\tilde{g}(h) - g(h)\right\| \le \varepsilon \left\|h\right\|_{E}$$

donc on a bien $\|\tilde{g} - g\| \le 0$ d'où $\tilde{g} = g$.

Définition 2.3. On appelle aussi g l'application linéaire tangente.

Proposition 2.4. Soit $U \subset \mathbb{R}$ un intervalle ouvert, $a \in U$ et $f: U \to \mathbb{R}$. Alors f est différentiable en a si et seulement si f est dérivable en a. Dans ce cas, pour tout $h \in \mathbb{R}$, d $f_a(h) = f'(a)h$.

Démonstration.

 \Rightarrow Supposons que f est différentiable en a.

Par définition, $f(a+h) - f(a) = df_a(h) + |h|\epsilon(h)$, $df_a \in \mathcal{L}_{c(\mathbb{R},\mathbb{R})}$. On peut donc écrire pour un certain $c \in \mathbb{R}$, $\forall h \in \mathbb{R}$, $\mathrm{d} f_a(h) = ch$. D'où

$$f(a+h) - f(a) = ch + |h|\varepsilon(h).$$

Donc pour $h \neq 0$,

$$\frac{f(a+h)-f(a)}{h}=c+\frac{|h|}{h}\varepsilon(h).$$

f est bien dérivable en a et f'(a) = c. En particulier pour tout $h \in \mathbb{R}$, $\mathrm{d} f_a(h) = f'(a)h$.

 \Leftarrow Supposons f dérivable en a. Il existe $c \in \mathbb{R}$, $\frac{f(a+h)-f(a)}{h} = c + o(1)$. Alors

$$f(a+h) - f(a) = ch + o(h).$$

L'application : $\mathbb{R} \to \mathbb{R}$; $h \mapsto ch$ est linéaire continue. Par définition, f est donc différentiable. \square

Proposition 2.5. Soit $f:U\to F$ une application. Si f est différentiable en a alors f est continue en a.

Démonstration. On a $f(a+h) \underset{h\to 0}{=} f(a) + \mathrm{d} f_a(h) + \|h\| \varepsilon(h)$. Puisque $\mathrm{d} f_a$ est continue et linéaire, $\mathrm{d} f_a(h) \underset{h\to 0}{\longrightarrow} 0$, de plus $\|h\| \varepsilon(h) \underset{h\to 0}{\longrightarrow} 0$. Ainsi, on a bien f continue.

Définition 2.6 (Différentielle). Soit E, F deux espaces vectoriels normés, $U \subset E$ $f: U \to F$. L'application $df: U \to \mathcal{L}_c(E, F)$; $x \mapsto df_x$ est appellée différentielle de f.

Définition 2.7 (Continuement différentiable). Soit E, F deux espaces vectoriels normés, $U \subset E f$: $U \to F, a \in \mathbb{R}$. On dit que f est continuement différentiable ou de classe C^1 en a si f est différentiable en tout point d'un voisinage ouvert V de a dans U et si d $f: V \to \mathcal{L}_c(E, F)$ est continue en a.

2.2. Dérivée directionnelle et différentielle.

Définition 2.8. Soit E, F deux espaces vectoriels normés, $U \subset E \ f : U \to F$. On dit que f est différentiable en a dans la direction $h \in E$ s'il existe $l \in \mathbb{R}$ telle que

$$\lim_{t \to 0} \frac{f(a+th) - f(a)}{t} = l.$$

Dans ce cas on la note $\partial_h f(a) \in F$.

Proposition 2.9. Si f est différentiable en a alors elle est différentiable dans toutes les directions et $\forall h \in E, df_a(h) = \partial_h f(a)$.

Démonstration. On peut écrire $f(a+k)-f(a)=\mathrm{d} f_a(k)+\|k\|\varepsilon(k)$. Soit $h\in E$. Pour $t\neq 0$ suffisamment petit, $th\longrightarrow 0$. On a $f(a+th)-f(a)=\mathrm{d} f_a(th)+|t|\|h\|\varepsilon(h)$. D'où $\frac{f(a+th)-f(a)}{t}=\mathrm{d} f_a(h)\Big(\frac{|t|}{t}\|h\|\Big)_{\mathrm{born\acute{e}}}\varepsilon(th)_{\stackrel{\longrightarrow}{t\to 0}}0$. Par définition, on a bien $\mathrm{d} f_a(h)=\partial_h f(a)$.