A Minimax Lower Bound for EEG Source Localization

Praveen Venkatesh
Pulkit Grover

(vpraveen@cmu.edu)

This work was supported in part by the **Dowd fellowship** from the College of Engineering at CMU, and in part by **SONIC**, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA. The authors would like to thank Phillip and Marsha Dowd for their support and encouragement.

What is Electroencephalography (EEG)?

Measures brain activity (scalp potentials)

"Sources": modeled as dipoles

Source Localization

Estimate locations & dipole moments from sensor values

"Forward" problem:

Sensor
$$\rightarrow \underline{y} = \sum_{i=1}^{K} \underline{L}(\underline{\theta}_i) \cdot \underline{q}_i$$
 values

Location

Dipole moment

Source localization is the "inverse" problem, e.g.:

$$\left(\underline{\hat{q}},\underline{\hat{\theta}}\right) = \arg\min_{\underline{\theta},\underline{q}} \|\underline{y} - \sum_{i=1}^{K} \underline{L}(\underline{\theta}_i) \cdot \underline{q}_i\|^2$$

 $\frac{\hat{q}_i}{\hat{\theta}_i}$

"Equivalent dipole fitting"

Simplifying the brain model

- 1. Spherical head model
 - * Shifts are rotations
 - Spherical Harmonics
 - Uniform sampling

- 2. Linear head model
 - "Circular" domain
 - Known transfer function

Problem setup

Previous work on fundamental limits

- Source localization literature
 - Mosher et. al. (1993): Cramer Rao lower bounds
 - Groventhod

Did not address:

- Minin
 How does error scale
 with number of sensors?
 - Efromovich, '97
 - Cavalier and Tsybakov, '02

blems

Minimax Lower Bound: Le Cam's method

$$\theta \longrightarrow p_{\theta} \longrightarrow \underline{y} \longrightarrow \widehat{\theta}$$
Dipole Data-generating Observed Location location distribution sensor values estimate

Loss function:

$$\Phi\left(\rho(\widehat{\theta},\theta)\right) = \|\widehat{\theta} - \theta\|_{2}^{2}$$

Minimax risk:

$$\inf_{\underline{\widehat{\theta}}} \sup_{\underline{\theta} \in \Theta} \mathbb{E}_{\underline{y}} \left[\Phi \left(\rho(\widehat{\theta}(\underline{y}), \theta) \right) \right]$$

Best possible estimator

Worst-case parameters

Choose the estimator with the best worst-case performance

Le Cam's method

$$\Phi\left(\rho(\hat{\theta},\theta)\right) = \|\hat{\theta} - \theta\|_{2}^{2}$$

$$x(s; \theta_0)$$

$$x(s; \theta_1)$$

$$2\delta$$
Scalp
Brain
$$0 \quad \theta_0 \quad \theta_1 \quad S$$

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\underline{y}} \left[\Phi \left(\rho (\widehat{\theta}(\underline{y}), \theta) \right) \right]$$

$$\geq \Phi(\delta) \inf_{\widehat{V}} \mathbb{P}[\theta_{\widehat{V}} \neq \theta_{V}]$$

$$= \frac{\delta^2}{2} [1 - \|P_1^n - P_0^n\|_{TV}]$$

$$\geq \frac{\delta^2}{2} \left[1 - \sqrt{\frac{n}{2} D_{KL}(P_0 \parallel P_1)} \right]$$

$$\geq \frac{\delta^2}{2} \left[1 - \sqrt{\frac{n}{4\sigma^2} \left\| \underline{x}(\theta_0) - \underline{x}(\theta_1) \right\|^2} \right]$$

Le Cam's method

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\underline{y}} \left[\left\| \widehat{\theta}(\underline{y}) - \theta \right\|^{2} \right] \\
\geq \frac{\delta^{2}}{2} \left[1 - \sqrt{\frac{n}{4\sigma^{2}}} \left\| \underline{x}(\theta_{0}) - \underline{x}(\theta_{1}) \right\|^{2} \right] \\
\geq \frac{\delta^{2}}{2} \left[1 - \sqrt{\frac{n}{4\sigma^{2}}} \kappa^{2} 4 \delta^{2} \cdot m \right] \\
\approx \frac{1}{32} \frac{\sigma^{2}/n}{m \kappa^{2}} \frac{S}{w} \xrightarrow{m \to \infty} 0$$

So what's wrong with this?

This bound is loose!

Number of sensors, m

*Pulkit Grover, ISIT '16

Sensor model!

Noise $\sim iid \mathcal{N}(0, \sigma^2)$, independent of m

SNR *decreases* as # of sensors increases

$$y_k = \int_{\text{width}} (x(s; \theta) + \epsilon(s)) ds$$

width $\propto 1$ / #sensors

Noise var. \propto #sensors

SNR $\propto 1$ / #sensors

Noise var. $\propto 1$ / width

More averaging Less averaging

Bounds for the "integrator sensor" model

$$\inf_{\widehat{\theta}} \sup_{\theta \in \Theta} \mathbb{E}_{\underline{y}} \left[\left\| \hat{\theta}(\underline{y}) - \theta \right\|^2 \right]$$

$$\geq \Phi(\delta) \inf_{\widehat{V}} \mathbb{P} \left[\widehat{V} \neq V \right]$$

$$\geq \delta^2 Q \left(\frac{\left\| \underline{x}(\theta_0) - \underline{x}(\theta_1) \right\|}{\sigma(m)} \right)$$
(For gaussian noise)

Bounds for the "integrator sensor" model

Number of sensors, m

Numerically computed lower bound vs. number of sensors

Shortcomings of the info-theory bound

$$\mathbb{E}\left\|\underline{\hat{\theta}} - \underline{\theta}\right\|^2 \sim I(\underline{\theta}; \underline{\hat{\theta}}) \leq I(\underline{X}; \underline{Y}) \leq C \text{ (channel capacity)}$$

 \underline{X} and \underline{Y} are "continuous-space" signals

⇒ Assumes an infinite number of sensors

Can severely underestimate the lower bound!

e.g. imagine if you had only 10 sensors

Lower bounding estimation error with hypothesis testing error

• Assume
$$\underline{\theta} \in \{\underline{\theta}_v\}_{v=1}^{V}$$

- V = unknown index
- \hat{V} = Estimator of V

$$\widehat{V}(Y) = \arg\min_{v \in \mathcal{V}} \rho(\widehat{\underline{\theta}}(Y), \underline{\theta}_v)$$

Construct a " 2δ -packing" of Θ

Relating error in estimation and hypothesis testing

From estimation to testing

Need to bound:
$$\inf \sup_{\underline{\widehat{\theta}}} \mathbb{E} \left[\Phi \left(\rho(\underline{\widehat{\theta}}, \underline{\theta}) \right) \right]$$

$$\sup_{\underline{\theta} \in \Theta} \mathbb{E} \left[\Phi \left(\rho \left(\underline{\hat{\theta}}, \underline{\theta} \right) \right) \right] \geq \mathbb{E} \left[\Phi \left(\rho \left(\underline{\hat{\theta}}, \underline{\theta}_{\nu} \right) \right) \right]$$

$$\mathcal{V} \cdot \sup_{\underline{\theta} \in \Theta} \mathbb{E} \left[\Phi \left(\rho(\underline{\hat{\theta}}, \underline{\theta}) \right) \right] \ge \sum_{\nu=1}^{\mathcal{V}} \mathbb{E} \left[\Phi \left(\rho(\underline{\hat{\theta}}, \underline{\theta}_{\nu}) \right) \right]$$

$$\sup_{\underline{\theta} \in \Theta} \mathbb{E} \left[\Phi \left(\rho(\underline{\hat{\theta}}, \underline{\theta}) \right) \right] \ge \frac{1}{\mathcal{V}} \sum_{\nu=1}^{\mathcal{V}} \mathbb{E} \left[\Phi \left(\rho(\underline{\hat{\theta}}, \underline{\theta}_{\nu}) \right) \right]$$

Putting it together

$$\begin{split} &\inf\sup_{\widehat{\underline{\theta}}}\sup_{\underline{\theta}\in\Theta}\mathbb{E}\left[\Phi\left(\rho(\underline{\hat{\theta}},\underline{\theta})\right)\right] \\ &\geq \inf_{\widehat{\underline{\theta}}}\frac{1}{\mathcal{V}}\sum_{v=1}^{\mathcal{V}}\mathbb{E}\left[\Phi\left(\rho(\underline{\hat{\theta}},\underline{\theta}_{v})\right)\right] & \stackrel{\sup_{\underline{\theta}\in\Theta}\mathbb{E}\left[\Phi\left(\rho(\underline{\hat{\theta}},\underline{\theta})\right)\right]}{\geq \frac{1}{\mathcal{V}}\sum_{v=1}^{\mathcal{V}}\mathbb{E}\left[\Phi\left(\rho(\underline{\hat{\theta}},\underline{\theta}_{v})\right)\right]} \\ &\geq \inf_{\underline{\hat{V}}}\frac{1}{\mathcal{V}}\sum_{v=1}^{\mathcal{V}}\Phi(\delta)\;\mathbb{P}\big[\widehat{V}\neq v\mid V=v\big] & \stackrel{\mathbb{E}\left[\Phi\left(\rho(\underline{\hat{\theta}},\underline{\theta}_{v})\right)\right]}{\geq \Phi(\delta)\;\mathbb{P}\big[\widehat{V}\neq v\mid V=v\big]} \\ &= \Phi(\delta)\left(\inf_{\widehat{V}}\mathbb{P}\big[\widehat{V}\neq V\big]\right) & \text{Need to bound this next} \end{split}$$

V takes values $\{1, \dots, \mathcal{V}\}$ uniformly

Le Cam's method

Binary hypothesis: $V \in \{0, 1\}$ (uniformly)

$$\mathbb{P}[\hat{V} \neq V] = \frac{1}{2} P_{V=0} (\hat{V} \neq 0) + \frac{1}{2} P_{V=1} (\hat{V} \neq 1)$$

Define $A = \{\underline{Y} : \hat{V}(\underline{Y}) = 1\}$, "acceptance region"

$$\frac{1}{2} [P_0(\hat{V} \neq 0) + P_1(\hat{V} \neq 1)] = \frac{1}{2} [P_0(A) + P_1(A^c)]$$
$$= \frac{1}{2} [P_0(A) + 1 - P_1(A)]$$

Taking infimum:

$$\inf_{\widehat{V}} \mathbb{P}[\widehat{V} \neq V] = \frac{1}{2} \inf_{A} \left\{ 1 - \left(P_1(A) - P_0(A) \right) \right\}$$

$$= \frac{1}{2} \left[1 - \sup_{A} \left\{ P_1(A) - P_0(A) \right\} \right]$$

$$= \frac{1}{2} \left[1 - \|P_1 - P_0\|_{TV} \right]$$

Le Cam's method for source localization

$$||P_1^n - P_0^n||_{TV}^2 \le \frac{1}{2} D_{KL}(P_1^n || P_0^n) = \frac{n}{2} D_{KL}(P_1 || P_0)$$

For normal distributions of equal variance,

$$D_{KL}(P_1||P_0) = \frac{1}{2\sigma^2} \left\| \boldsymbol{L}(\underline{\theta}_0) \underline{q} - \boldsymbol{L}(\underline{\theta}_1) \underline{q} \right\|^2 = \frac{1}{2\sigma^2} d(\underline{\theta}_0, \underline{\theta}_1)$$

$$\inf_{\underline{\widehat{\theta}}} \sup_{\underline{\theta} \in \Theta} \mathbb{E} \left[\Phi \left(\rho(\underline{\widehat{\theta}}, \underline{\theta}) \right) \right] \ge \sup_{\underline{\theta}_0, \underline{\theta}_1} \frac{\delta^2}{2} \left[1 - \sqrt{\frac{n}{4\sigma^2} d(\underline{\theta}_0, \underline{\theta}_1)} \right]$$