

# الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي دورة: 2023

الشعبة: رياضيات

الحتبار في مادة: الرياضيات المدة: 40 سا و30 د

#### على المترشح أن يختار أحد الموضوعين الآتيين:

#### الموضوع الأول

يحتوي الموضوع على (03) صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5)

التمرين الأول: (04 نقاط)

-3 ، 2 : كريات متماثلة ولا نفرّق بينها باللّمس، منها كريتان حمراوان مرقمتان بـ 2 ، 1 ، 1 ، 2 ، 1 ، 2 ، 1 ، 1 ، 2 ، 1 ، 1 ، 2 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ، 1 ،

" الحصول على 3 كريات مجموع أرقامها معدوم  $^{\prime\prime}$ 

 $P(C) = \frac{3}{20}$  ثمّ بيّن أنّ: P(B) و P(A) احسب (أ (1

 $P_C(A)$  ثم استنتج  $P(A \cap C)$  احسب (ب

2) نعتبر المتغيّر العشوائي X الذي يرفق بكلّ عملية سحب لثلاث كريات عدد الألوان المتحصّل عليها. عيّن قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب أمله الرياضياتي E(X)

3) نسحب الآن عشوائيا من الكيس ثلاث كريات على التوالي وبإرجاع.

احسب احتمال الحصول على ثلاث كريات جُداء أرقامها معدوم.



### التمرين الثاني: (04 نقاط)

$$f(x) = \frac{x+4}{x+1}$$
: الدّالة المعرّفة على  $f(x) = \frac{0}{x+1}$  بـ الدّالة المعرّفة على  $f(x)$ 

المتعامد المتعامد المتعامد وي المستوي المنسوب إلى المعلم المتعامد y=x والمتجانس D ، D ، D ، D ، D المتتالية العددية المعرّفة بـ:

 $u_{n+1} = f\left(u_{n}\right)$  ، n ومن أجل كلّ عدد طبيعي  $u_{0} = 0$  ومن أجل كلّ عدد طبيعي أ) أعد رسم الشكل على ورقة الإجابة ثمّ مثّل على حامل محور الفواصل الحدود  $u_{1}$  ،  $u_{1}$  ،  $u_{2}$  ،  $u_{3}$  و  $u_{3}$ 

( دون حسابها مبرزا خطوط التمثيل )

- $(u_n)$  ضع تخمينا حول اتجاه تغيّر المتتالية ضع تخمينا حول اتجاه تغيّر
- $v_n = \frac{u_n 2}{u_n + 2}$  :ب  $\mathbb{N}$  بندية العددية المعرّفة على المتتالية العددية المعرّفة على ( $v_n$ ) (2
- $u_0$  أنّ المتتالية  $(v_n)$  هندسية أساسها أ $-rac{1}{3}$  يُطلب تعيين حدّها الأول أ
- $u_n = -2 + rac{4}{1 + \left(-rac{1}{3}
  ight)^n}$  ، n عيّن عبارة الحدّ العام  $v_n$  بدلالة  $v_n$  احسب  $v_n$  احسب  $v_n$  احسب  $v_n$  احسب  $v_n$  بدلالة  $v_n$  بدلالة

## التمرين الثالث: (05 نقاط)

- y و x نعتبر المعادلة (E) نعتبر المعادلة (x + 361 و x + 361 نعتبر المعادلة (x + 361
  - أ) تحقّق أنّ الثنائية (6;2) حلّ للمعادلة (E) ثمّ استنتج مجموعة حلولها.
  - $|x+23y| \le 4$  : التي تحقّق (E) المعادلة (x; y) حلول المعادلة (x) التي تحقّق الثنائيات
- 9 عدد طبیعي یُکتب  $\overline{\delta \alpha \beta 0}$  في نظام التعداد الذي أساسه  $\overline{\delta \alpha \beta 0}$  في نظام التعداد الذي أساسه و P (2 حیث  $\alpha$  و  $\beta$  عددان طبیعیان.
  - عيّن lpha و eta ثمّ اكتب P في النظام العشري.
  - 3) أ) حلّل العدد 2023 إلى جُداء عوامل أوّلية ثمّ عيّن الأعداد الطبيعية التي مربع كلّ منها يقسم 2023
    - m = PPCM(a;b) و d = PGCD(a;b) نضع:
    - $m^2+3d^2=2023$  : عين كل الثنائيات  $(a\,;b)$  من الأعداد الطبيعية التي تحقّق

### التمرين الرابع: (07 نقاط)

- $g(x) = 1 + (6x 3)e^{-2x}$  بـ:  $\mathbb{R}$  بـن والدّالة المعرّفة على  $g(x) = 1 + (6x 3)e^{-2x}$ 
  - $\lim_{x \to +\infty} g(x) \quad e \quad \lim_{x \to -\infty} g(x) \quad \text{lim} \quad g(x) \quad \text{lim} \quad \text{(1)}$
  - ب) ادرس اتجاه تغیّر الدّالة g ثمّ شکّل جدول تغیّراتها.
- $0.2 < \alpha < 0.3$  حيث g(x) = 0 تقبل حلا وحيدا g(x) = 0 أثبت أنّ المعادلة
  - g(x) استنتج حسب قیم x اشارة (ب

$$f(x) = x + 1 - 3x e^{2x}$$
 بـ بـ  $\mathbb{R}$  بـ الدّالة المعرّفة على  $f$ 

( 2cm وحدة الطول ) ( $O; ec{i}, ec{j}$  ) تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $C_f$ )

$$\lim_{x \to +\infty} f(x) \quad e \quad \lim_{x \to -\infty} f(x) \quad e \quad \text{(1)}$$

$$-\infty$$
 عند  $(C_f)$  عند مقارب مائل لـ  $y=x+1$  عند عند المعادلة المعادلة  $y=x+1$ 

$$\left(\Delta\right)$$
ادرس وضعية ( $C_{f}$ ) بالنسبة إلى ( $\Delta$ 

$$f'(x) = g(-x)$$
، بیّن أنّه: من أجل كلّ عدد حقیقي (2) أ

ب) استنتج أنّ f متزایدة تماما علی  $]-\infty;-lpha ;$  ومتناقصة تماما علی  $[-lpha;+\infty[$  ثمّ شكّل جدول تغیّراتها.

له. عيين معادلة له.  $(C_f)$  يُطلب تعيين معادلة له. أثبت أنّ  $(C_f)$  يُطلب تعيين معادلة له.

$$(f(-lpha)\simeq 1,2)$$
 و  $f(-1,3)\simeq 0$  ،  $f(0,25)\simeq 0$  : نأخذ  $f(0,25)\simeq 0$  ، و  $f(-1,3)\simeq 0$  و  $f(-1,3)\simeq 0$  و  $f(-1,3)\simeq 0$  .

ج) عيّن بيانيا قيم الوسيط الحقيقي m التي من أجلها تقبل المعادلة f(x)=x+m حلّين بالضبط.

$$\int_{-\alpha}^{0} xe^{2x} dx$$
 ياستعمال المكاملة بالتجزئة، احسب العدد الحقيقي (أ (4

ب) استنتج بالسنتيمتر المربّع المساحة  ${\mathcal A}$  للحيّز المستوي المحدّد بـ  $(C_f)$  والمستقيمات التي معادلاتها

$$x=0$$
  $y=x+1$ 

$$\mathcal{A} = 2\left(\frac{4\alpha - 1}{2\alpha - 1}\right)cm^2$$
 تحقّق أنّ (ج

#### الموضوع الثانى

يحتوي الموضوع على صفحتين (02) ( من الصفحة 4 من 5 إلى الصفحة 5 من 5 )

التمرين الأول: (04 نقاط)

يحتوي صندوق V على كريتين حمراوين وكريتين خضراوين، ويحتوي صندوق V على كريتين حمراوين وثلاث كريات خضراء ( كل الكريات متماثلة V نفرّق بينها عند اللمس)

نسحب عشوائيا كريتين في آن واحد من أحد الصندوقين بالكيفية الآتية:

10 نقوم بسحب بطاقة واحدة عشوائيا من كيس به 10 بطاقات متماثلة ومرقمة من 1 إلى

V وفي باقي الحالات نسحب الكريتين من U وفي باقي الحالات نسحب الكريتين من

نعتبر الحوادث A ، A و C الآتية:

" سحب كريتين حمراوين " B ، " سحب كريتين خضراوين " و C " سحب كريتين من لونين مختلفين " A أنجز شجرة الاحتمالات التي تُنمذج هذه التجربة.

$$P(C)$$
 بيّن أنّ  $P(B) = \frac{37}{150}$  و  $P(A) = \frac{19}{150}$  ثمّ استنتج  $P(A) = \frac{19}{150}$ 

المتغيّر العشوائي الذي يرفق بكلّ عملية سحب لكريتين عدد الكريات الحمراء المتحصل عليها. X

$$E(X)$$
 عيّن قانون الاحتمال للمتغيّر العشوائي  $X$  ثمّ احسب أمله الرياضياتي (أ

"  $\ln X \le 1$ " :حسب احتمال الحدث

# التمرين الثاني: (04 نقاط)

$$(\overline{z} - 1 + i\sqrt{3})(z^2 - 2\sqrt{2}z + 4) = 0$$
:  $z$  المعادلة ذات المجهول (1 المركبة  $\mathbb{C}$  المعادلة ذات المجهول (1 المركبة  $\mathbb{C}$ 

$$C$$
 و  $B$  ،  $A$  نعتبر النقط ،  $\left(O;\overline{u},\overline{v}\right)$  نعتبر النقط المتعامد والمتجامد والمتجانس  $\left(O;\overline{u},\overline{v}\right)$  ، نعتبر النقط  $z_{C}=1+i\sqrt{3}$  و  $z_{B}=\overline{z_{A}}$  ،  $z_{A}=\sqrt{2}\left(1+i\right)$  التي لاحقاتها  $z_{C}$  و  $z_{C}$  على الشكل المثلثي.

ب) استنتج أنّ النقط B ، A و B تنتمى إلى نفس الدائرة يُطلب تعيين مركزها ونصف قطرها.

$$K = \frac{z_C}{2z_A}$$
 نضع: (3

أ) احسب طويلة العدد المركب K وعمدة له ثمّ اكتبه على الشكل الجبري.

$$\sin\frac{\pi}{12}$$
 و  $\cos\frac{\pi}{12}$  استنتج القيمة المضبوطة لكل من

$$L_n = z_A^n + z_B^n$$
 عدد طبیعي، نضع:  $n$  (4

بيّن أنّه: من أجل كلّ عدد طبيعي n، العدد المركب  $L_n$  حقيقي.

#### التمرين الثالث: (05 نقاط)

القسمة الإقليدية للعدد  $9^n$  عين حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد  $9^n$  على 11 ، ثم استنتج باقي القسمة الإقليدية للعدد  $1945^{2023}$  على 11

$$n = 2023[5]$$
  $= 3n + 9^n = 1444[11]$  : التي تحقّق الجملة  $n = 1444[11]$ 

$$u_{n+1} = 9u_n - 16n + 6$$
 ،  $n$  ومن أجل كلّ عدد طبيعي  $u_0 = \frac{3}{2}$  : المتتالية العددية المعرّفة ب

$$v_n = 4 u_n - 8n + 2$$
 :ب المتتالية العددية المعرّفة على المتالية العددية المعرّفة المعرّفة على المتتالية العددية المعرّفة على المعرّفة على المتتالية العددية المعرّفة على المتتالية المعرّفة المعرّفة على المتتالية المعرّفة المعرفة المعرّفة المعرّفة المعرّفة المعرّفة المعرّفة المعرّفة المع

$$v_0$$
 أَبِين أَنّ المتتالية  $(v_n)$  هندسية أساسها 9 يُطلب تعيين حدّها الأول أ

$$u_n=2 imes 9^n+2n-rac{1}{2}$$
 ،  $n$  عيّن عبارة  $v_n$  بدلالة  $n$  ثمّ استنتج أنّه: من أجل كلّ عدد طبيعي  $v_n$  عيّن عبارة  $v_n$ 

$$T_n=u_0+u_1+\cdots+u_n$$
 و  $S_n=v_0+v_1+\cdots+v_n$  ،  $n$  نضع: من أجل كلّ عدد طبيعي (3

$$T_n=rac{1}{4}ig(9^{n+1}+4n^2+2n-3ig)$$
، دلالة  $n$  ثمّ استنتج أنّه: من أجل كلّ عدد طبيعي  $S_n$  بدلالة الم

$$4T_{5n}-n^2+n+5\equiv 0$$
بیّن أنّه: من أجل کلّ عدد طبیعي ، ،  $n$  عدد طبیعي (4

#### التمرين الرابع: (07 نقاط)

$$g(x) = (x-3) \ln x + x$$
 بالدّالة المعرّفة على المجال  $g(x) = (x-3) \ln x + x$  بالدّالة المعرّفة على المجال  $g(x) = (x-3) \ln x + x$ 

$$g''(x)$$
 و  $g'(x): ]0; +\infty[$  من المجال  $x$  من أجل كل  $x$  من أجل كل أ (1

$$]0\;;\;+\infty$$
بيّن أنّ الدّالة  $g'$  متزايدة تماما على المجال الدّالة و  $+\infty$ 

$$g(x)>0$$
 ،  $]0$  ;  $+\infty[$  من أجل كلّ  $x$  من أجل أنّه: من أبت ،  $g(\alpha)\simeq 0.85$  ب علما أنّ

$$f(x) = \left(x - \frac{3}{2} \ln x\right) \ln x$$
 :ب ]0; +\infty[ الدّالة المعرّفة على المجال  $f(x) = \left(x - \frac{3}{2} \ln x\right) \ln x$  الدّالة المعرّفة على المجال

(  $2\,cm$  وحدة الطول ) ( $O; ec{i}, ec{j}$  تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $C_f$ )

المناب النتيجة هندسيا.  $\lim_{x \to 0} f(x)$  احسب (أ (1

$$\lim_{x \to +\infty} f(x) = +\infty$$
 بیّن أنّ:  $(-1)$ 

$$f$$
 الدّالة  $f'(x) = \frac{g(x)}{x}$  ،  $g(x) = \frac{g(x)}{x}$  ،  $g(x) = \frac{g(x)}{x}$  بيّن أنّه: من أجل كلّ عدد حقيقي  $g(x) = \frac{g(x)}{x}$  ،  $g(x) = \frac{g(x)}{x}$  بيّن أنّه: من أجل كلّ عدد حقيقي  $g(x) = \frac{g(x)}{x}$ 

3) بيّن أنّ 
$$(C_f)$$
 يقبل مماسين  $(T')$  و  $(T')$  معامل توجيه كل منهما يساوي  $(C_f)$  ، يُطلب تعيين معادلة لكل منهما.

$$(f(6) = 5.9 :$$
اُل ارسم  $(T')$  ،  $(T)$  و  $(T')$ 

ب عيّن بيانيا قيم الوسيط الحقيقي 
$$m$$
 التي من أجلها تقبل المعادلة  $f(x)=x+m$  ثلاثة حلول بالضبط.

$$F(x) = \left(\frac{1}{2}x^2 + 3x\right) \ln x - \frac{3}{2}x(\ln x)^2 - \frac{1}{4}x^2 - 3x : 0; +\infty \left[0; +\infty\right] + \infty \left[0; +\infty\right]$$

$$\frac{1}{2}x^2 + 3x + 3x + \infty \left[0; +\infty\right] + \infty \left[0; +\infty\right] = 0; +\infty$$

 $]0;+\infty$  أصلية للدّالة f على المجال F أن تحقّق أنّ

ب) استنتج بالسنتيمتر المربّع مساحة الحيّز المستوي المحدّد بالمنحنى  $(C_f)$  والمستقيمات التي معادلاتها

$$x = e$$
  $y = 1$   $x = 1$ 

| العلامة |                         | (total socional) AutoN volis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |
|---------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| مجموع   | مجزأة                   | عناصر الإجابة ( الموضوع الأول)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |  |  |
|         | التمرين الأول (04 نقاط) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |  |  |
|         | 2 × 0.5                 | $P(B) = \frac{C_5^1 \times C_3^1 \times C_2^1}{C_{10}^3} = \frac{1}{4}$ ' $P(A) = \frac{C_5^3 + C_3^3}{C_{10}^3} = \frac{11}{120}$ (أ $= \{-3;1;2\}$ ' $= \{1;1;-2\}$ ' $= \{0;2;-2\}$ نعدوما: $= \{0;2;-2\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |  |
| 2.25    | 0.5                     | $P(C) = \frac{C_2^1 \times C_3^1 \times C_1^1 + C_3^2 \times C_1^1 + C_3^1 \times C_3^1 \times C_1^1}{C_{10}^3} = \frac{3}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 |  |  |
|         | 0.25+0.5                | $\{0;2;-2\}$ ' $\{1;1;-2\}$ : ب) الكريات من نفس اللون ومجموع أرقامها معدوم $P_C(A) = \frac{P(A \cap C)}{P(C)} = \frac{1}{9}$ ' $P(A \cap C) = \frac{C_2^2 \times C_1^1 + C_1^1 \times C_1^1 \times C_1^1}{C_{10}^3} = \frac{1}{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |  |  |
|         | 0.25                    | مجموعة قيم المتغير العشوائي هي { 1;2;3}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |  |  |
| 1.25    | 0.25<br>0.25            | $P(X=3) = \frac{30}{120} \cdot P(X=1) = \frac{11}{120}$ $P(X=2) = 1 - P(X=1) - P(X=3) = \frac{79}{120}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 |  |  |
|         | 0.25<br>0.25            | $E(X) = 1 \times \frac{11}{120} + 2 \times \frac{79}{120} + 3 \times \frac{30}{120} = \frac{259}{120}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |  |  |
| 0.5     | 0.5                     | حساب احتمال الحصول على ثلاث كريات جُداء أرقامها معدوم. $P = 1 - P' = 1 - \frac{8^3}{10^3} = \frac{61}{125}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 |  |  |
|         | 1                       | التمرين الثاني (04 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |  |
| 1       | 0.5                     | راً تمثيل الحدود (أ) تمثيل الحدود (أ) المثيل المثيل الحدود (أ) المثيل المثيل المثيل المثيل المثيل المثيل الحدود (أ) المثيل المثي | 1 |  |  |
|         | 2 × 0.25                | ب) التخمين: المتتالية $(u_n)$ ليست رتيبة ومتقاربة.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |

|          | 1                        |                                                                                                                                                                                                                        | 1 |  |
|----------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 2        | 0.25+0.5                 | $v_0 = -1$ و $v_{n+1} = -\frac{1}{3}v_n$ (أ                                                                                                                                                                            |   |  |
|          | 0.5                      | $V_n = -\left(-\frac{1}{3}\right)^n$ ، $n$ عدد طبیعي $n$ ، $n$ من أجل كلّ عدد طبیعي                                                                                                                                    |   |  |
|          | 2 × 0.25                 | $u_n = \frac{4}{1 - v_n} - 2 = -2 + \frac{4}{1 + \left(-\frac{1}{3}\right)^n}$ ، $n$ من أجل كلّ عدد طبيعي                                                                                                              | 2 |  |
|          | 0.25                     | $\lim_{n \to +\infty} \left( -\frac{1}{3} \right)^n = 0  \forall  \lim_{n \to +\infty} u_n = 2  (\Rightarrow$                                                                                                          |   |  |
| 1        | 0.75                     | $\lim_{n \to +\infty} \left( -\frac{1}{3} \right)^n = 0  \forall \lim_{n \to +\infty} u_n = 2  (\Rightarrow$ $S_n = v_0 \frac{1 - q^{n+1}}{1 - q} = -\frac{3}{4} \left[ 1 - \left( -\frac{1}{3} \right)^{n+1} \right]$ | 3 |  |
| _        | 0.25                     | $T_n = \frac{1}{4} [n+1-S_n] = \frac{1}{16} [4n+7+\left(-\frac{1}{3}\right)^n]$ ، $n$ عند طبیعی من أجل كلّ عدد طبیعي                                                                                                   |   |  |
|          | التمرين الثالث (05 نقاط) |                                                                                                                                                                                                                        |   |  |
|          | 0.25                     | 16 	imes 6 + 361 	imes 2 = 818 : (E) التحقّق أنّ الثنائية $(6;2)$ حلّ للمعادلة ( $(6;2)$                                                                                                                               |   |  |
|          | 0.25                     | $16(x-6) = 361(2-y)$ نجد $\begin{cases} 16x + 361y = 818 \\ 16 \times 6 + 361 \times 2 = 818 \end{cases}$ من الجملة                                                                                                    |   |  |
|          | 0.25                     | تبيان أنّ PGCD (16 ; 361) = 1                                                                                                                                                                                          |   |  |
| 1.75     | 0.25                     | $\left\{\left(361k+6;-16k+2 ight)/k\in\mathbb{Z} ight\}$ مجموعة الحلول هي                                                                                                                                              | 1 |  |
|          |                          | $ x+23y  \le 4$ التنائيات $(x;y)$ حلول المعادلة $(E)$ التي تحقّق                                                                                                                                                       |   |  |
|          | 0.25                     | $6,85 \le k \le 8$ و $ x + 23y  \le 4$ نجد $ x + 23y  \le 4$ و $\begin{cases} x = 361k + 6 \\ y = -16k + 2 \end{cases}$                                                                                                |   |  |
|          | 2 × 0.25                 | الثنائيتان هما (2533; -110) ، (2894; -126)                                                                                                                                                                             |   |  |
|          |                          | :etaو $lpha$                                                                                                                                                                                                           |   |  |
|          | 0.25                     | $\overline{5\alpha\beta0} = 1715 + 7\beta + 49\alpha$                                                                                                                                                                  |   |  |
|          | 0.25                     | $\overline{\beta\alpha87} = 79 + 81\alpha + 729\beta$                                                                                                                                                                  |   |  |
| 2        |                          | $0 < \beta \le 6$ و $0 \le \alpha \le 6$                                                                                                                                                                               | 2 |  |
| <u> </u> | 0.25                     | $16\alpha + 361\beta = 818$ تكافئ $\overline{5\alpha\beta0} = \overline{\beta\alpha87}$                                                                                                                                |   |  |
|          | 0.25                     | $\beta = -16 k + 2 \qquad \varrho \qquad \alpha = 361k + 6$                                                                                                                                                            |   |  |
|          | 0.5                      | eta من أجل $k=0$ نجد $lpha=6$ و $lpha=6$                                                                                                                                                                               |   |  |
|          | 0.5                      | P=2023 فيكون                                                                                                                                                                                                           |   |  |

 $\left(0\,;1
ight)$  يقطع  $\left(\Delta
ight)$  في النقطة ذات الإحداثيات  $\left(C_{f}
ight)$ 

| Г    | T        | 7                                                                                                                                                       | ı |
|------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | 0.25     | f'(x) = g(-x)، من أجل كلّ عدد حقيقي $f'(x) = g(-x)$                                                                                                     |   |
|      | 0.25     | g(-x) من نفس إشارة $f'(x)$ من نفس إشارة                                                                                                                 |   |
|      | 0.25     | $[-lpha\;;+\infty[$ متزایدة تماما علی $]-\infty\;;-lpha$ ومتناقصة تماما علی $f$                                                                         |   |
| 1    | 0.25     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                  | 2 |
|      | 0.25     | $x=-rac{1}{2}$ ومنه $g\left(-x ight)=1$ یکافئ $f'\left(x ight)=1$ (أ                                                                                   |   |
|      | 0.25     | $y = x + 1 + \frac{3}{2}e^{-1} : (T)$ معادلة المماس                                                                                                     |   |
|      | 2 × 0.25 | $(T)$ رسم $(\Delta)$ و $(T)$                                                                                                                            |   |
| 1.75 | 0.5      | $(C_f)$ رسم $(C_f)$                                                                                                                                     | 3 |
|      |          | $f\left(x ight)=x+m$ مجموعة قيم الوسيط الحقيقي $m$ التي من أجلها تقبل المعادلة                                                                          |   |
|      | 0.25     | $\left]1;1+rac{3}{2}e^{-1} ight[$ حلين بالضبط هي                                                                                                       |   |
| 1    | 0.25     | $\int_{-\alpha}^{0} x e^{2x} dx = \left[ \frac{1}{4} (2x - 1) e^{2x} \right]_{-\alpha}^{0} = \frac{1}{4} (2\alpha + 1) e^{-2\alpha} - \frac{1}{4}  (1)$ | 4 |
|      | 0.25     | $\mathcal{A} = \int_{0}^{0} (f(x) - (x+1)) dx = -3 \int_{0}^{0} xe^{2x} dx = \left[ -3(2\alpha + 1)e^{-2\alpha} + 3 \right] cm^{2} $                    | 4 |
|      | 0.25     | $\begin{bmatrix} -\alpha & -\alpha & -\alpha \end{bmatrix}$                                                                                             |   |
|      | 0.25     | $\mathcal{A} = 2\left(\frac{4\alpha - 1}{2\alpha - 1}\right)cm^2(\Rightarrow$                                                                           |   |

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط

| العلامة |                         |                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
|---------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| مجموع   | مجزأة                   | عناصر الإجابة ( الموضوع الثاني)                                                                                                                                                                                                                                                                                                                                     |   |  |  |
|         | التمرين الأول (04 نقاط) |                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |
| 2.25    | 0.75                    | راً شجرة الاحتمالات $U = \frac{1}{6} \longrightarrow B$                                                                                                                                                                                                                                                                                                             | 1 |  |  |
|         | 2 × 0.25<br>2 × 0.25    | $P(A) = P(U) \times P_{U}(A) + P(V) \times P_{V}(A) = \frac{2}{5} \times \frac{C_{2}^{2}}{C_{4}^{2}} + \frac{3}{5} \times \frac{C_{2}^{2}}{C_{5}^{2}} = \frac{19}{150}  ( \rightarrow P(B) = P(U) \times P_{U}(B) + P(V) \times P_{V}(B) = P(B) = \frac{2}{5} \times \frac{C_{2}^{2}}{C_{4}^{2}} + \frac{3}{5} \times \frac{C_{3}^{2}}{C_{5}^{2}} = \frac{37}{150}$ |   |  |  |
|         | 2 × 0.25                | $P(C) = 1 - P(\overline{C}) = 1 - \frac{19}{150} - \frac{37}{150} = \frac{47}{75}$                                                                                                                                                                                                                                                                                  |   |  |  |
|         | 0.25                    | أ) مجموعة قيم المتغير العشوائي هي $\{0;1;2\}$                                                                                                                                                                                                                                                                                                                       |   |  |  |
| 1.75    | 3 × 0.25                | $P(X=2) = \frac{19}{150} \cdot P(X=1) = \frac{94}{150} \cdot P(X=0) = \frac{37}{150}$                                                                                                                                                                                                                                                                               | 2 |  |  |
|         | 0.5                     | $E(X) = \frac{22}{25}$                                                                                                                                                                                                                                                                                                                                              |   |  |  |
|         | 0.25                    | $P(\ln X \le 1) = P(X = 1) + P(X = 2) = \frac{113}{150}$ ومنه $0 < X \le e$ نكافئ $\ln X \le 1$ (ب                                                                                                                                                                                                                                                                  |   |  |  |
|         |                         | التمرين الثاني (04 نقاط)                                                                                                                                                                                                                                                                                                                                            |   |  |  |
| 1       | 4 × 0.25                | $z_3 = \sqrt{2}(1-i)$ , $z_2 = \sqrt{2}(1+i)$ , $\Delta = -8$ , $z_1 = 1 + i\sqrt{3}$                                                                                                                                                                                                                                                                               | 1 |  |  |
| 1.5     | 3 × 0.25                | $z_{B} = 2\left(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})\right)  z_{A} = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)  (1)$ $z_{C} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$                                                                                                                                                              | 2 |  |  |
|         | 0.25                    | OA = OB = OC = 2: ب) النقط $A$ و $C$ تنتمي إلى نفس الدائرة لأنّ                                                                                                                                                                                                                                                                                                     |   |  |  |
|         | $2 \times 0.25$         | مركز الدائرة هو المبدأ ونصف قطرها 2                                                                                                                                                                                                                                                                                                                                 |   |  |  |

| 1.25 | 3 × 0.25 | $K = \frac{\sqrt{6} + \sqrt{2}}{8} + i\frac{\sqrt{6} - \sqrt{2}}{8}$ $\operatorname{arg}(K) = \frac{\pi}{12}$ $ K  = \left \frac{z_C}{2z_A}\right  = \frac{1}{2}$ (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 |
|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | 2 × 0.25 | $ \sin\frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}  \text{(}  \cos\frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}  \text{(}  \text{)} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| 0.25 | 0.25     | $\overline{L_n}=\overline{z_A^{\ n}+z_B^{\ n}}=z_B^{\ n}+z_A^{\ n}=L_n$ ، $n$ من أجل كلّ عدد طبيعي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 |
|      |          | التمرين الثالث (05 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|      | 0.7      | أ) بواقي القسمة الإقليدية لـ $9^n$ على $11$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      | 0.5      | $9^4 \equiv 5[11]$ , $9^3 \equiv 3[11]$ , $9^2 \equiv 4[11]$ , $9^1 \equiv 9[11]$ , $9^0 \equiv 1[11]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | 0.5      | n   5k   5k+1   5k+2   5k+3   5k+4    التعميم : التعميم التعميم : التعمي | 1 |
| 1.75 | 0.25     | $(2023 = 5k + 3)$ القسمة الإقليدية للعدد $1945^{2023}$ على 11 هو 3 (لاحظ أنّ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 |
|      |          | n = 2023[5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      |          | n = 2023[3] (ب) مجموعة قيم العدد الطبيعي $n$ التي تحقّق الجملة $n = 1444[11]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      | 0.25     | معناه $n=5k+3$ حیث $k$ عدد طبیعی $n=5k+3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|      | 0.25     | ومنه: $n = 55\alpha + 3$ مع $\alpha$ عدد طبیعي $n = 55\alpha + 33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|      | 0.25+0.5 | $v_0=8$ و $v_{n+1}=9$ کلّ عدد طبیعي $v_{n+1}=9$ و $v_{n+1}=9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| 1.75 | 0.5      | $v_n = 8 \times 9^n$ ، من أجل كلّ عدد طبيعي $v_n = 8 \times 9^n$ ، من أجل كلّ عدد طبيعي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 |
| 1.75 | 0.5      | $u_n = \frac{v_n + 8n - 2}{4} = 2 \times 9^n + 2n - \frac{1}{2}$ من أجل كلّ عدد طبيعي $n = \frac{v_n + 8n - 2}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 1    | 0.5      | $S_n = v_0 \frac{1-q^{n+1}}{1-q} = 9^{n+1} - 1$ من أجل كلّ عدد طبيعي $n$ ، $n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 |
| 1    | 0.5      | $T_n = \frac{1}{4}S_n + \frac{1}{2}(n+1)(2n-1) = \frac{1}{4}(9^{n+1} + 4n^2 + 2n - 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | 0.25     | $4T_{5n} = 9^{5n+1} + 100n^2 + 10n - 3$ ، من أجل كلّ عدد طبيعي م                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|      |          | $4T_{5n} - n^2 + n + 5 = 9^{5n+1} + 99n^2 + 11n + 2$ إذن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 |
| 0.5  |          | $4T_{5n} - n^2 + n + 5 \equiv 0$ فيكون $0[11]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | 0.25     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |

|      |            | التمرين الرابع (07 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.25 | 2×0.5      | $g''(x) = \frac{x+3}{x^2}$ و $g'(x) = \ln x + \frac{2x-3}{x}$ () ; +∞ من أجل كلّ $g''(x) = \frac{x+3}{x}$ و $g''(x) = \frac{x+3}{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (I<br>1  |
|      | 0.25       | g''(x) > 0 ب) الدّالة $g''(x) > 0$ متزايدة تماما على المجال $g''(x) > 0$ لأن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |
| 0.75 | 0.5        | $g'(1,3) \times g'(1,4) < 0$ و $g'(1,3) \times g'(1,4) \times g'(1,3)$ و $g'(1,3) \times g'(1,3) \times g'(1,3) = 0$ الدّالة $g'(x) = 0$ الذن $g'(1,3) = 0$ , $g'(1,3) = -0$ ,05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2        |
|      | 0.25       | $g(x)>0$ ومنه $g(x)\geq g(\alpha)$ ، $g(x)\geq g(\alpha)$ ، $g(x)>0$ ومنه $g(x)>0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 1    | 2×0.25     | المنحني يقبل المستقيم ذا المعادلة $x=0$ مقارب له المنحني ألمنحني يقبل المستقيم ألم المختوب المخارب المحادلة المخارب المخارب المختوب | (II<br>1 |
| 1    | 0.5        | $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 - \frac{3\ln x}{2x}\right) x \ln x = +\infty  (\neg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |
| 1    | 0.5<br>0.5 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2        |
| 0.75 | 0.25       | x=3 يكافئ $g(x)=x$ ومنه $x=1$ أو $g(x)=x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3        |
|      | 2×0.25     | $(T')$ : $y = x - 3 + (3 - \frac{3}{2} \ln 3) \ln 3$ $(T)$ : $y = x - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      | 2×0.25     | أ) رسم (T) و (T') و (T')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| 1.25 | 0.5        | رسم $(C_f)$ رسم | 4        |
|      | 0.25       | $-3 + (3 - \frac{3}{2} \ln 3) \ln 3$ ; $-1$ [ هي $m$ هي ) مجموعة قيم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |

| 1 | 0.5    | $]0;+\infty$ قبل الاشتقاق على $]0;+\infty$ ومن أجل كلّ عدد حقيقي $x$ من $]0;+\infty$ من أجل كلّ عدد حقيقي $x$ | 5 |
|---|--------|---------------------------------------------------------------------------------------------------------------|---|
|   | 2×0.25 | $\int_{1}^{e} f(x) dx = [F(e) - F(1)] = (e^{2} - 6e + 13) cm^{2} (-1)$                                        |   |

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيد التام بسلم التنقيط