Lecture 9

Sequence Tagging

Part 1: Sequence Tagging

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Outline:

1 Sequence Tagging

Definition and examples

Evaluation

2 Different Scoring Models

A Simple Scoring Function

A Better Scoring Model

3 Sequence Tagging Algorithms

Dynamic Programming For Sequence Tagging

Putting It All Together

Given a sequence of *n* items $x = (x_1, ..., x_n)$, assign to each of them one of *K* tags:

$$\mathbf{y} = (y_1, \dots, y_n)$$
 where each $y_i \in \{1, \dots, K\}$.

Given a sequence of *n* items $x = (x_1, ..., x_n)$, assign to each of them one of *K* tags:

$$\mathbf{y} = (y_1, \dots, y_n)$$
 where each $y_i \in \{1, \dots, K\}$.

Example 1: Part-of-speech (POS) tagging in NLP

the old man the boat
$$y_a$$
 det adj noun det noun y_b det noun verb det noun

Given a sequence of *n* items $\mathbf{x} = (x_1, \dots, x_n)$, assign to each of them one of *K* tags:

$$\mathbf{y} = (y_1, \dots, y_n)$$
 where each $y_i \in \{1, \dots, K\}$.

Example 2: Frame-level phoneme classification (may be part of speech recognition)

Given a sequence of *n* items $\mathbf{x} = (x_1, \dots, x_n)$, assign to each of them one of *K* tags:

$$\mathbf{y} = (y_1, \dots, y_n)$$
 where each $y_i \in \{1, \dots, K\}$.

Example 3: Optical character recognition

Characterizing The Output Space

Given a sequence of *n* items $\mathbf{x} = (x_1, \dots, x_n)$, assign to each of them one of *K* tags:

$$\mathbf{y} = (y_1, \dots, y_n)$$
 where each $y_i \in \{1, \dots, K\}$.

Input $\mathbf{x} = (x_1, \dots, x_n)$, e.g., a sequence of words.

Output $y = (y_1, ..., y_n)$, e.g., a sequence of part-of-speech tags.

For each data point (sentence), |y| = |x|; different data points have different lengths.

Characterizing The Output Space

Given a sequence of *n* items $\mathbf{x} = (x_1, \dots, x_n)$, assign to each of them one of *K* tags:

$$\mathbf{y} = (y_1, \dots, y_n)$$
 where each $y_i \in \{1, \dots, K\}$.

Input $\mathbf{x} = (x_1, \dots, x_n)$, e.g., a sequence of words.

Output $\mathbf{y} = (y_1, \dots, y_n)$, e.g., a sequence of part-of-speech tags.

For each data point (sentence), |y| = |x|; different data points have different lengths.

For fixed length n, some possible outputs:

- $(1, 1, \ldots, 1, 1) \in \mathcal{Y}$
- $(1, 1, ..., 1, 2) \in \mathcal{Y}$
- $(K, K, \ldots, K, K) \in \mathcal{Y}$

How many in terms of n?

Part-Of-Speech Tags

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Open Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
C	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Sen	VERB	words for actions and processes	draw, provide, go
O	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by, under
S		spacial, temporal, or other relation	
Closed Class Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
ass	DET	Determiner: marks noun phrase properties	a, an, the, this
D C	NUM	Numeral	one, two, first, second
sed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
12	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Figure 8.1 The 17 parts of speech in the Universal Dependencies tagset (Nivre et al., 2016a). Features can be added to make finer-grained distinctions (with properties like number, case, definiteness, and so on).

POS Tagging Evaluation

Evaluation: sequence-level accuracy

$$\frac{\sum_{i=1}^{N_{\text{valid}}} \mathbf{y}^{(i)} = \hat{\mathbf{y}}^{(i)}}{N_{\text{valid}}}$$

or micro-averaged tag accuracy (writing $n^{(i)} = |\mathbf{y}^{(i)}|$):

$$\frac{\sum_{i=1}^{N_{\text{valid}}} \sum_{j=1}^{n^{(i)}} y_j^{(i)} = \hat{y}_j^{(i)}}{\sum_{i=1}^{N_{\text{valid}}} n^{(i)}}$$

Example:

PRO **VERB** NUM NOUN **ADV** true: pred: PRO **VERB** NUM NOUN PRO words: there 70 children there are

true: INTJ pred: X words: eeeeek

Lecture 9

Sequence Tagging

Part 2: Different Scoring Models

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Outline:

1 Sequence Tagging
Definition and examples
Evaluation

2 Different Scoring Models
A Simple Scoring Function

A Better Scoring Model

3 Sequence Tagging Algorithms

Dynamic Programming For Sequence Tagging

Putting It All Together

Writing
$$\mathbf{y} = (y_1, \dots, y_n)$$
, take $score(\mathbf{y}) = \sum_j a_{j,y_j}$.

		det	noun	adj	verb
A =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

Writing
$$\mathbf{y} = (y_1, \dots, y_n)$$
, take $score(\mathbf{y}) = \sum_j a_{j,y_j}$.

	the	old	man	the	boat
\boldsymbol{y}_a	det	adj	noun	det	noun
y _b	det	noun	verb	det	noun

		det	noun	adj	verb
A =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

Writing
$$\mathbf{y} = (y_1, \dots, y_n)$$
, take $score(\mathbf{y}) = \sum_j a_{j,y_j}$.

the old man the boat
$$y_a$$
 det adj noun det noun y_b det noun verb det noun

$$score(y_a) =$$

Writing
$$\mathbf{y} = (y_1, \dots, y_n)$$
, take $score(\mathbf{y}) = \sum_j a_{j,y_j}$.

the old man the boat
$$y_a$$
 det adj noun det noun y_b det noun verb det noun

$$score(y_a) = 21$$

Writing
$$\mathbf{y} = (y_1, \dots, y_n)$$
, take $score(\mathbf{y}) = \sum_j a_{j,y_j}$.

the old man the boat
$$y_a$$
 det adj noun det noun y_b det noun verb det noun

$$score(\boldsymbol{y}_a) = 21$$

 $score(\boldsymbol{y}_b) =$

Writing
$$\mathbf{y} = (y_1, \dots, y_n)$$
, take $score(\mathbf{y}) = \sum_j a_{j,y_j}$.

the old man the boat
$$y_a$$
 det adj noun det noun y_b det noun verb det noun

$$score(\boldsymbol{y}_a) = 21$$

$$score(\boldsymbol{y}_b) = 17$$

A first attempt: separate classifier for each position.

1. embed and encode x, eg, with a CNN.

$$(x_1,\ldots,x_n)\to(z_1,\ldots,z_n)$$

2. For each position *j*, apply a classification head with *K* outputs. E.g.,

$$\boldsymbol{a}_j = \boldsymbol{W}^\top \boldsymbol{z}_j + \boldsymbol{b}$$

Think of **A** as a matrix with n rows and K columns, where $a_{j,c}$ is the score of assigning tag c at position j.

3. Writing $\mathbf{y} = (y_1, \dots, y_n)$, take score $(\mathbf{y}) = \sum_j a_{j,y_j}$.

```
words = [21, 79, 14] # indices
emb = Embedding(vocab_sz, dim)
clf = Linear(dim, n_tags)
# optionally add RNN, CNN, whatever
Z = emb(words) # (3 × dim)
A = clf(Z)  # (3 × n_tags)
# computing the score of a given tag sequence:
v = \begin{bmatrix} 2 & 0 & 2 \end{bmatrix}
v_score = sum(A[i, vi]
               for y, yi in enumerate(y))
# or. if you want to be fancy/fast:
y_score = A[torch.arange(len(y)), y].sum()
```

$$\max_{\boldsymbol{y} \in \mathcal{Y}} \operatorname{score}(\boldsymbol{y})$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A =	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

$$\max_{\mathbf{y} \in \mathcal{Y}} \operatorname{score}(\mathbf{y})$$

$$= \max_{y_1 \in [K], \dots, y_n \in [K]} \operatorname{score}([y_1, \dots, y_n])$$

		det	noun	adj	verb
4 =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

$$\max_{\mathbf{y} \in \mathcal{Y}} \operatorname{score}(\mathbf{y})$$

$$= \max_{y_1 \in [K], \dots, y_n \in [K]} \operatorname{score}([y_1, \dots, y_n])$$

$$= \max_{y_1 \in [K], \dots, y_n \in [K]} \sum_{j} a_{j, y_j}$$

		det	noun	adj	verb
A =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

$$\max_{\mathbf{y} \in \mathcal{Y}} \operatorname{score}(\mathbf{y})$$

$$= \max_{y_{1} \in [K], \dots, y_{n} \in [K]} \operatorname{score}([y_{1}, \dots, y_{n}])$$

$$= \max_{y_{1} \in [K], \dots, y_{n} \in [K]} \sum_{j} a_{j, y_{j}}$$

$$= \sum_{j} \max_{y_{j} \in [K]} a_{j, y_{j}}$$

	det	noun	adj	verb
the	5	0	0	0
old	0	1	3	0
man	0	3	0	1
the	5	0	0	0
boat	0	5	0	0
	old man the	the 5 old 0 man 0 the 5	the 5 0 old 0 1 man 0 3 the 5 0	old 0 1 3 man 0 3 0 the 5 0 0

With our score(\mathbf{y}) = $\sum_{i} a_{j,y_i}$, can we compute:

$$\max_{\mathbf{y} \in \mathcal{Y}} \operatorname{score}(\mathbf{y})$$

$$= \max_{\mathbf{y} \in [K], \dots, y_n \in [K]} \operatorname{score}([y_1, \dots, y_n])$$

$$= \max_{\mathbf{y} \in [K], \dots, y_n \in [K]} \sum_{j} a_{j, y_j}$$

$$= \sum_{i} \max_{y_j \in [K]} a_{j, y_j}$$

So, $\arg \max_{y} \operatorname{score}(y)$ is made up of the tags selected independently at each position.

erb
0
0
1
0
0

$$\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp\left(\mathsf{score}(\mathbf{y})\right)$$

		det	noun	adj	verb
A =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

$$\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp (\operatorname{score}(\mathbf{y}))$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \exp \sum_{j=1}^n a_{j,y_j}$$

		det	noun	adj	verb
	the	5	0	0	0
4 =	old	0	1	3	0
A =	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

$$\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp(\operatorname{score}(\mathbf{y}))$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \exp \sum_{j=1}^n a_{j,y_j}$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \prod_{j=1}^n \exp a_{j,y_j}$$

		det	noun	adj	verb
A =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

$$\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp(\operatorname{score}(\mathbf{y}))$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \exp \sum_{j=1}^n a_{j,y_j}$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \prod_{j=1}^n \exp a_{j,y_j}$$

$$= \log \prod_{j=1}^n \sum_{y_j=1}^K \exp a_{j,y_j}$$

		det	noun	adj	verb
A =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

$$\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp (\operatorname{score}(\mathbf{y}))$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \exp \sum_{j=1}^n a_{j,y_j}$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \prod_{j=1}^n \exp a_{j,y_j}$$

$$= \log \prod_{j=1}^n \sum_{y_j=1}^K \exp a_{j,y_j}$$

$$= \sum_{i=1}^n \log \sum_{y_i=1}^K \exp a_{j,y_j}$$

		det	noun	adj	verb
A =	the	5	0	0	0
	old	0	1	3	0
	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0

With our score(\mathbf{y}) = $\sum_{i} a_{i,v_i}$, can we compute:

$$\log \sum_{\mathbf{y} \in \mathcal{Y}} \exp(\operatorname{score}(\mathbf{y}))$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \exp \sum_{j=1}^n a_{j,y_j}$$

$$= \log \sum_{y_1=1}^K \dots \sum_{y_n=1}^K \prod_{j=1}^n \exp a_{j,y_j}$$

$$= \log \prod_{j=1}^n \sum_{y_j=1}^K \exp a_{j,y_j}$$

$$= \sum_{j=1}^n \log \sum_{y_j=1}^K \exp a_{j,y_j}$$

Probabilistic interpretation: independence

$$\log \Pr(\mathbf{y}) = \operatorname{score}(\mathbf{y}) - \log \sum_{\mathbf{y}' \in \mathcal{Y}} \exp \operatorname{score}(\mathbf{y}')$$
$$= \sum_{j} \underbrace{\left(a_{j,y_{j}} - \log \sum_{k \in [K]} \exp a_{j,k}\right)}_{\log \Pr(y_{j})}$$

For sequence tagging, the separable (fully-local) score

$$\mathsf{score}(\boldsymbol{y}) = \sum_{j} a_{j,y_j}$$

amounts to applying a probabilistic classifier to each of the n positions separately! (any "magic" comes from the feature representation / neural net encoder.)

Can we design a richer score(y) taking into account the sequential structure of y?

Entirely global model: like classification, where each possible sequence is a class.

As expressive as possible: score is any function of the sequence.

Entirely global model: like classification, where each possible sequence is a class.

As expressive as possible: score is any function of the sequence.

But completely intractable: $O(K^n)$ time and space.

Entirely global model: like classification, where each possible sequence is a class.

As expressive as possible: score is any function of the sequence.

But completely intractable: $O(K^n)$ time and space.

Structure output prediction is about the space in between these two extremes.

Idea: scoring transitions between adjacent tags

score(
$$\mathbf{y}$$
) = $\sum_{j=1}^{n} a_{j,y_j} + \sum_{j=2}^{n} t_{y_{j-1},y_j}$

For example, score([NOUN, DET, VERB]) = $+a_{2,DET}a_{1,NOUN} + a_{3,VERB} + t_{NOUN,DET} + t_{DET,VERB}$

Scoring Transitions Between Tags

A rich scorer that takes into account the sequential nature of y while still allowing efficient computation:

scoring transitions between adjacent tags

score(
$$\mathbf{y}$$
) = $\sum_{j=1}^{n} a_{j,y_j} + \sum_{j=2}^{n} t_{y_{j-1},y_j}$

For example, score([NOUN, DET, VERB]) = $a_{1,NOUN} + a_{2,DET} + a_{3,VERB} + t_{NOUN,DET} + t_{DET,VERB}$

Sequence Modeling With Transition Scores

score(
$$\mathbf{y}$$
) = $\sum_{j=1}^{n} a_{j,y_j} + \sum_{j=2}^{n} t_{y_{j-1},y_j}$

The tag scores $\mathbf{A} \in \mathbb{R}^{n \times K}$ can be computed as before (e.g., with a convnet.)

The transition scores $T \in \mathbb{R}^{K \times K}$:

- could be a learned parameter. (size does not depend on *n*)
- could be predicted by the neural net as a function of x.

Unlike in the separable case, with transition scores, we no longer get n parallel classifiers: the different tags impact one another. (This makes the model more expressive and more interesting.)

Lecture 9

Sequence Tagging

Part 3: Sequence Tagging Algorithms

Machine Learning for Structured Data Vlad Niculae · LTL, UvA · https://vene.ro/mlsd

Outline:

Sequence Tagging

Definition and examples

2 Different Scoring Models

A Simple Scoring Function

A Better Scoring Model

3 Sequence Tagging Algorithms

Dynamic Programming For Sequence Tagging

Putting It All Together

Sequence Tagging As A DAG

$$score(y) = \sum_{j=1}^{n} a_{j,y_j} + \sum_{j=2}^{n} t_{y_{j-1},y_j}$$

$$G = (V, E, w) \text{ where:}$$

$$V = \{(j, c) : j \in [n], c \in [K]\}$$

$$\cup \{s, t\}$$

$$E = \{(j - 1, c') \rightarrow (j, c) : j \in [2, n], c, c' \in [K]\}$$

$$\cup \{s \rightarrow (1, c) : c \in [K]\}$$

$$\cup \{(n, c) \rightarrow t : c \in [K]\}$$

$$w((j - 1, c') \rightarrow (j, c)) = a_{j,c} + t_{c',c}$$

$$w(s \rightarrow (1, c)) = a_{1,c}$$

$$w((n, c) \rightarrow t) = 0$$

$$|V| \in \Theta(nK); \quad |E| \in \Theta(nK^2)$$

Topological ordering?

Viterbi For Sequence Tagging

General Viterbi (reminder sketch)

initialize
$$m_1 \leftarrow 0$$

for $i = 2, ..., n$ do
 $m_i \leftarrow \max_{j \in P_i} (m_j + w(ji))$
 $\pi_i \leftarrow \arg\max_{j \in P_i} (m_j + w(ji))$
follow backpointers to get best path

Viterbi for sequence tagging

input: Unary scores \boldsymbol{A} ($n \times K$ array) Transition scores \boldsymbol{T} ($K \times K$ array)

Forward: compute scores recursively $m_{1c} = a_{1c}$ for all $c \in [K]$ for j = 2 to n do for c = 1 to K do $m_{j,c} \leftarrow \max_{c' \in [K]} \left(m_{j-1,c'} + a_{j,c} + t_{c',c} \right)$ $\pi_{j,c} \leftarrow \arg\max_{c' \in [K]} \left(m_{j-1,c'} + a_{j,c} + t_{c',c} \right)$ $f^* = \max_{c' \in [K]} m_{n,c'}$

Backward: follow backpointers

$$y_n = \arg \max_{c'} m_n(c')$$

for $j = n - 1$ down to 1 do
 $y_j = \pi_{j+1,y_{j+1}}$

output: f^* and $y^* = [y_1, \dots, y_n]$

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply
$$m_{1,c} = a_{1,c}$$
 to get the first row: (copied from **A**)

Then iteratively:
$$m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$$

At the end, take the maximum over the last row.

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A =	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply
$$m_{1,c} = a_{1,c}$$
 to get the first row: (copied from **A**)

Then iteratively:
$$m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$$

At the end, take the maximum over the last row.

$$\mathbf{M} = \begin{array}{ccccc} & \text{det noun adj verb} \\ & \text{the} & 5 & 0 & 0 & 0 \\ & \text{old} & & & \\ & \text{man} & & & \\ & & \text{the} & & \\ & & \text{boat} & & & \end{array}$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A =	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

 $m_{i,c}$ is stored as a matrix M, same shape as A.

Apply $m_{1,c} = a_{1,c}$ to get the first row: (copied from **A**)

Then iteratively: $m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$

At the end, take the maximum over the last row.

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A -	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply
$$m_{1,c} = a_{1,c}$$
 to get the first row: (copied from **A**)

Then iteratively:
$$m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$$

At the end, take the maximum over the last row.

$$\mathbf{M} = \begin{array}{ccccc} & \operatorname{det} & \operatorname{noun} & \operatorname{adj} & \operatorname{verb} \\ & \operatorname{the} & 5 & 0 & 0 & 0 \\ & \operatorname{old} & \mathbf{1} & & & \\ & \operatorname{man} & & & \\ & \operatorname{the} & & & & \\ & \operatorname{boat} & & & & \end{array}$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A -	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

 $m_{i,c}$ is stored as a matrix M, same shape as A.

Apply $m_{1,c} = a_{1,c}$ to get the first row: (copied from **A**)

Then iteratively: $m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$

At the end, take the maximum over the last row.

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A =	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	$^{-1}$	0	0

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply
$$m_{1,c} = a_{1,c}$$
 to get the first row: (copied from **A**)

Then iteratively:
$$m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$$

At the end, take the maximum over the last row.

$$\mathbf{M} = \begin{array}{ccccc} & \text{det noun adj verb} \\ & \text{the} & 5 & 0 & 0 & 0 \\ & \text{old} & \mathbf{1} & \mathbf{9} \\ & \text{man} \\ & \text{the} \\ & \text{boat} \end{array}$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A -	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply $m_{1,c} = a_{1,c}$ to get the first row: (copied from **A**)

Then iteratively: $m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$

At the end, take the maximum over the last row.

$$\mathbf{M} = \begin{array}{cccccc} \operatorname{det} & \operatorname{noun} & \operatorname{adj} & \operatorname{verb} \\ \operatorname{the} & 5 & 0 & 0 & 0 \\ \operatorname{old} & 1 & 9 & 10 & 4 \\ \operatorname{man} & & & \\ \operatorname{the} & & & \\ \operatorname{boat} & & & \end{array}$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A –	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply $m_{1,c} = a_{1,c}$ to get the first row: (copied from **A**)

Then iteratively: $m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$

At the end, take the maximum over the last row.

		det	noun	adj	verb	
M =	the	5	0	0	0	
	old	1	9	10	4	
	man	8	15	11	12	
	the	18	13	14	17	
	boat	18	26	20	17	

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A -	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply $m_{1,c} = a_{1,c}$ to get the first row: (copied from **A**)

Then iteratively: $m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$

At the end, take the maximum over the last row.

To find the best tag sequence y^* , keep track of the path.

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A =	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	$^{-1}$	0	0

 $m_{j,c}$ is stored as a matrix M, same shape as A.

Apply $m_{1,c} = a_{1,c}$ to get the first row: (copied from **A**)

Then iteratively: $m_{j,c} = \max_{c' \in [K]} m_{j-1,c'} + a_{j,c} + t_{c',c}$

At the end, take the maximum over the last row.

To find the best tag sequence y^* , keep track of the path.

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A -	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

The Two Main Recurrences Of Sequence Tagging:

(Dynamic programming applied to the sequence tagging DAG)

$$\begin{split} m_{j,c} &= \max_{c' \in [K]} & \left(m_{j-1,c'} + a_{jc} + t_{c'c} \right), \\ q_{j,c} &= \log \sum_{c' \in [K]} \exp \left(q_{j-1,c'} + a_{jc} + t_{c'c} \right). \end{split}$$

The Forward Algorithm

Forward algorithm for sequence tagging

```
input: Unary scores A (n \times K array)

Transition scores T (K \times K array)

Forward: compute scores recursively

q_{1,c} = a_{1,c} for all c \in [K]

for j = 2 to n do

for c = 1 to K do

q_{j,c} = \log \sum_{c' \in [K]} \exp \left(q_{j-1,c'} + a_{j,c} + t_{c',c}\right)

return \log Z = \log \sum_{c' \in [K]} \exp \left(q_{n,c'}\right)
```

$re(\boldsymbol{y}_a) = 25$
$re(\boldsymbol{y}_b) = 26$
$ore(y_c) = 1$
Ì

	det	noun	adj	verb
the	5	0	0	0
old	0	1	3	0
man	0	3	0	1
the	5	0	0	0
boat	0	5	0	0
	det	noun	adj	verb
det	det -4	noun 3	adj 2	verb -1
det noun				
	-4	3	2	-1
	old man the	the 5 old 0 man 0 the 5	the 5 0 old 0 1 man 0 3 the 5 0	the 5 0 0 old 0 1 3 man 0 3 0 the 5 0 0

	boat	the	man	old	the	
$e(\boldsymbol{y}_a) = 25$	noun so	det	noun	adj	det	\mathbf{y}_a
$e(\mathbf{y}_b) = 26$	noun so	det	verb	noun	det	y _b
$re(y_c) = 1$	noun	noun	noun	noun	noun	\boldsymbol{y}_{c}
						- 2

 $\log Z \approx 26.885$

Applying the Forward algorithm yields

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A -	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	det -4	noun 3	adj 2	verb -1
T =	det noun				
T =		-4	3	2	-1
T =	noun	-4 -3	3 -2	2 -1	-1 2

	the	old	man	the	boat	
\mathbf{y}_a	det	adj	noun	det	noun	$score(y_a) = 25$
\mathbf{y}_b	det	noun	verb	det	noun	$score(y_b) = 26$
\boldsymbol{y}_{c}	noun	noun	noun	noun	noun	$score(y_c) = 1$

$$\log Z \approx 26.885$$

$$\log P(y_a) = \text{score}(y_a) - \log Z = 25 - 26.885 = -1.885$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A –	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	det -4	noun 3	adj 2	verb
T =	det noun				
T =		-4	3	2	-1
T =	noun	-4 -3	3 -2	2 -1	-1 2

	boat	the	man	old	the	
$score(y_a) = 25$	noun	det	noun	adj	det	\mathbf{y}_a
$score(y_b) = 26$	noun	det	verb	noun	det	y _b
$score(y_c) = 1$	noun	noun	noun	noun	noun	\boldsymbol{y}_c

$$\log Z \approx 26.885$$

$$\log P(y_a) = \operatorname{score}(y_a) - \log Z = 25 - 26.885 = -1.885$$
$$\log P(y_b) = \operatorname{score}(y_b) - \log Z = 26 - 26.885 = -0.885$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A –	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	-1
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	(

	boat	the	man	old	the	
$score(y_a) = 25$	noun	det	noun	adj	det	\mathbf{y}_a
$score(y_b) = 26$	noun	det	verb	noun	det	\mathbf{y}_b
$score(y_c) = 1$	noun	noun	noun	noun	noun	\boldsymbol{y}_{c}

$$Q = \begin{array}{c} \text{det} \quad \text{noun} \quad \text{adj} \quad \text{verb} \\ \text{the} \quad 5.00 \quad 0.00 \quad 0.00 \quad 0.00 \\ \text{old} \quad 1.73 \quad 9.00 \quad 10.00 \quad 4.19 \\ \text{man} \quad 8.18 \quad 15.01 \quad 11.05 \quad 12.70 \\ \text{the} \quad 18.88 \quad 13.92 \quad 14.37 \quad 17.03 \\ \text{boat} \quad 18.08 \quad 26.88 \quad 20.90 \quad 18.38 \\ \\ \text{log $Z \approx 26.885$} \end{array}$$

$$\log P(y_a) = \operatorname{score}(y_a) - \log Z = 25 - 26.885 = -1.885$$

$$\log P(y_b) = \operatorname{score}(y_b) - \log Z = 26 - 26.885 = -0.885$$

$$\log P(y_c) = \operatorname{score}(y_c) - \log Z = 1 - 26.885 = -25.885$$

		det	noun	adj	verb
	the	5	0	0	0
A =	old	0	1	3	0
A =	man	0	3	0	1
	the	5	0	0	0
	boat	0	5	0	0
		det	noun	adj	verb
	det	-4	3	2	$^{-1}$
T =	noun	-3	-2	-1	2
	adj	-2	2	1	1
	verb	1	-1	0	0

Putting It All Together

At this point, we have all the ingredients needed to train a probabilistic sequence tagger with transition scores!

- Receiving an input sequence x, the model returns unary and transition scores A and T.
- **2.** If we're at test time: run Viterbi to get predicted sequence; compute accuracies etc.
- 3. If training time: run Forward algorithm to compute the training objective $-\log P(y \mid x) = -\operatorname{score}(y) + \log \sum_{v' \in \mathcal{Y}} \exp \operatorname{score}(y')$.

This probabilistic model is often known as a Linear-Chain Conditional Random Field.

(Historically, Linear-Chain CRFs didn't use neural net scorers, but the math doesn't change. Today I prefer to teach it this way.)