

Sistema de Aislamiento Limitado/Total Ferroviario

Autor:

Ing. Nahuel Espinosa

Director:

Dr. Ing. Pablo Gomez (CONICET-GICSAFe)

Jurados:

Nombre y Apellido (1) (pertenencia (1))

Nombre y Apellido (2) (pertenencia (2))

Nombre y Apellido (3) (pertenencia (3))

${\bf \acute{I}ndice}$

${\bf Registros\ de\ cambios\ } \ldots \ldots \ldots \ldots \ldots \ldots 3$
Acta de Constitución del Proyecto
Descripción técnica-conceptual del Proyecto a realizar
Identificación y análisis de los interesados
1. Propósito del proyecto
2. Alcance del proyecto
3. Supuestos del proyecto
4. Requerimientos
5. Entregables principales del proyecto
6. Desglose del trabajo en tareas
7. Diagrama de Activity On Node
8. Diagrama de Gantt
9. Matriz de uso de recursos de materiales
10. Presupuesto detallado del proyecto
11. Matriz de asignación de responsabilidades
12. Gestión de riesgos
13. Gestión de la calidad
14. Comunicación del proyecto
15. Gestión de Compras
16. Seguimiento y control
17 Procesos de cierro

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
1.0	Creación del documento	22/06/2020
1.1	Ejemplo de un texto muy largo que debiera ocupar más de una	dd/mm/aaaa
	línea para que tengan de ejemplo	
1.2	Otro ejemplo	dd/mm/aaaa
	Con texto partido	
	En varias líneas	
	A propósito	

Acta de Constitución del Proyecto

Buenos Aires, 22 de junio de 2020

Por medio de la presente se acuerda con el Ing. Nahuel Espinosa que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Sistema de Aislamiento Limitado/Total Ferroviario", consistirá esencialmente en el prototipo de un equipo que permita inhabilitar las señales de corte de tracción y frenado de emergencia en el caso de una falla en uno de los subsistemas de seguridad de una formación ferroviaria, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$XXX, con fecha de inicio 22 de junio de 2020 y fecha de presentación pública 22 de diciembre de 2020.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA

> Dr. Ing. Pablo Gomez Director del Trabajo Final

Nombre y Apellido (1) Nombre y Apellido (2) Jurado del Trabajo Final Jurado del Trabajo Final

> Nombre y Apellido (3) Jurado del Trabajo Final

Descripción técnica-conceptual del Proyecto a realizar

Las formaciones ferroviarias cuentan con diferentes sistemas de seguridad a bordo. Los mismos son equipos que se encargan de supervisar el correcto funcionamiento de los subsistemas críticos. Ejemplos de los mismos son la seguridad de puertas, el sistema de hombre vivo y la protección de coche a la deriva.

Ante una falla en uno de estos subsistemas, una formación ferroviaria se detiene inmediatamente por la activación automática de las señales de corte de tracción y frenado de emergencia. En esta situación el conductor debe llevar a la formación a un lugar seguro para que los pasajeros puedan descender y posteriormente a un taller para que pueda ser reparada.

En el año 2017, la empresa estatal Trenes Argentinos Operaciones (SOFSE) encargó al CONICET-GICSAFe el desarrollo de un equipo que le permita al conductor inhabilitar las señales de corte de tracción (CT) y frenado de emergencia (FE) sin comprometer la seguridad de la formación y sus pasajeros. Este equipo se conoce en el ámbito local como Sistema de Aislamiento Limitado/Total (SAL/T) y se considera un sistema crítico debido a que, en caso de fallar, puede ocasionar daños afectando negativamente la salud de las personas, al medio ambiente y/o generar grandes pérdidas materiales.

En el año 2019 se concluyó el desarrollo de un prototipo funcional del SAL/T en el marco del trabajo de tesis del Ing. Ivan Di Vito. En la Figura 1 se puede ver como interactúa con las señales CT y FE. En modo de funcionamiento normal los subsistemas de seguridad tienen conexión directa con el control central. Ante la activación por parte del conductor del modo aislado limitado (AL) el SAL/T toma el control de dichas señales.

Figura 1: Diagrama conceptual de la interacción del SAL/T con los sistemas de seguridad en una formación.

El SAL/T monitorea la velocidad de la formación e informa su estado interno al registrador de eventos Hasler Teloc 1500 y a una central operativa, a través de un enlace de comunicación redundado, de la cual también puede recibir comandos remotos que modifiquen su comportamiento.

En la Figura 2 se resaltan las cinco primeras fases completadas del ciclo de vida propuesto por la norma UNE-EN 50126 para aplicaciones ferroviarias. La documentación de la sexta fase, que corresponde al diseño e implementación del sistema, y las fases posteriores quedaron fuera del alcance del trabajo original.

Figura 2: Ciclo de vida de un sistema propuesto por la norma UNE-EN 50126.

Este proyecto continuará con el desarrollo del SAL/T revisando los requisitos de seguridad RAMS establecidos en la cuarta fase del trabajo original, diseñando subsistemas que se ajusten a los requisitos y verificando el nivel de integridad de seguridad (SIL).

Para el caso específico de los sistemas eléctrico-programables (EP) la fase de diseño y desarrollo se divide en dos partes relacionadas con el desarrollo del hardware y del software.

- El diseño del software buscará seguir una metodología acorde a la norma UNE-EN 50128 centrada en la calidad de los aspectos de software de los sistemas de ferrocarriles.
- En el nuevo diseño de la placa principal se reemplazará la plataforma EDU-CIAA-NXP, utilizada como base en la primera versión, por un módulo ad-hoc de procesamiento.

Identificación y análisis de los interesados

Nota: (borrar esto y todas las consignas en color rojo antes de entregar este documento).

Es inusual que una misma persona esté en más de un rol, incluso en proyectos chicos.

Si se considera que una persona cumple dos o más roles, entonces sólo dejarla en el rol más importante. Por ejemplo:

- Si una persona es Cliente pero también colabora u orienta, dejarla solo como Cliente.
- Si una persona es el Responsable, no debe ser colocado también como Miembro del equipo.

Pero en cambio sí es usual que el Cliente y el Auspiciante sean el mismo, por ejemplo.

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante			
Cliente			
Impulsor			
Responsable	Ing. Nahuel Espinosa	FIUBA	Alumno
Colaboradores			
Orientador	Dr. Ing. Pablo Gomez	CONICET-GICSAFe	Director Trabajo final
Equipo	miembro1		
	miembro2		
Opositores			
Usuario final			

El Director suele ser uno de los Orientadores.

No dejar celdas vacías; si no hay nada que poner en una celda colocar un signo "-".

No dejar filas vacías; si no hay nada que poner en una fila entonces eliminarla.

Sería deseable listar a continuación de la tabla las principales características de cada interesado.

Por ejemplo:

- Auspiciante: es riguroso y exigente con la rendición de gastos. Tener mucho cuidado con esto.
- Equipo: Juan Perez, suele pedir licencia porque tiene un familiar con una enfermedad. Planificar considerando esto.
- Orientador: María Gómez, nos va a poder ayudar mucho con la gestión de impuestos.

1. Propósito del proyecto

El propósito de este proyecto es continuar con el desarrollo de un sistema de supervisión de seguridad de formaciones ferroviarias denominado SAL/T (Sistema de Aislamiento Limitado/Total) que alcance niveles RAMS adecuados para su uso a criterio de las autoridades SOFSE y CNRT.

2. Alcance del proyecto

El desarrollo del presente proyecto incluye:

- Revisión y actualización de la documentación generada en las primeras cinco fases del ciclo de vida del proyecto original.
- Diseño del firmware del sistema utilizando herramientas y metodologías vistas en la Carrera de Especialización en Sistemas Embebidos.
- Documentación del proceso de diseño y desarrollo del firmware como propone la norma UNE-EN 50128.
- Diseño de la placa principal del hardware reemplazando la EDU-CIAA-NXP por un procesador ad-hoc.
- Verificación del nivel de integridad de seguridad (SIL) del sistema.

El presente proyecto NO incluye:

- Desarrollo de la séptima fase y posteriores del ciclo de vida del proyecto (producción, instalación, validación, etc.).
- Desarrollo del software necesario para la central operativa.

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- El análisis, la definición de subsistemas, interacciones y uso de patrones de diseño en el trabajo original seguirán siendo válidos para la segunda iteración del proyecto.
- Se tendrá acceso al prototipo actual para hacer pruebas de integridad con el nuevo firmware.
- Una vez finalizado el diseño del PCB, se podrá fabricar el mismo en un tiempo razonable.
- No habrá dificultades para conseguir los componentes electrónicos necesarios.
- Se adquirirán los conocimientos necesarios sobre la normativa aplicable.
- El tiempo estipulado será suficiente para alcanzar los objetivos definidos.

4. Requerimientos

Los requerimientos deben numerarse y de ser posible agruparlos por afinidad:

- 1. Grupo de requerimientos asociados con...
 - 1.1. Requerimiento 1
 - 1.2. Requerimiento 2
 - 1.3. Requerimiento 3 (prioridad menor)
- 2. Grupo de requerimientos asociados con...
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

De ser posible indicar cómo se obtuvieron cada uno de los requerimientos

Indicar claramente cuál es la prioridad entre los distintos requerimientos.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

5. Entregables principales del proyecto

Cosas como:

- Manual de uso
- Diagrama esquemático
- Código fuente
- Diagrama de instalación
- Informe final

6. Desglose del trabajo en tareas

Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

7. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Figura 3: Diagrama en Activity on Node

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

8. Diagrama de Gantt

Utilizar el software Gantter for Google Drive o alguno similar para dibujar el diagrama de Gantt.

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre las cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 4, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

9. Matriz de uso de recursos de materiales

	Nombre	Recursos requeridos (horas)					
WBS	tarea	Material 1	Material 2	Material 3	Material 4		

Figura 4: Diagrama de gantt de ejemplo

10. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS									
Descripción	Cantidad	Valor unitario	Valor total						
SUBTOTAL	SUBTOTAL								
COSTOS INDIRECTOS									
Descripción	Cantidad	Valor unitario	Valor total						
SUBTOTAL									
TOTAL									

11. Matriz de asignación de responsabilidades

Establecer la matriz de asignación de responsabilidades y el manejo de la autoridad completando la siguiente tabla:

Referencias:

Cádima		Listar todos los nombres y roles del proyecto						
Código WBS	Nombre de la tarea	Responsable	Orientador	Equipo	Cliente			
WDS		Ing. Nahuel Espinosa	Dr. Ing. Pablo Gomez	Nombre de alguien				

- P = Responsabilidad Primaria
- S = Responsabilidad Secundaria
- A = Aprobación
- I = Informado
- $\mathbf{C} = \mathbf{Consultado}$

Una de las columnas debe ser para el Director, ya que se supone que participará en el proyecto. A su vez se debe cuidar que no queden muchas tareas seguidas sin "A" o "I".

Importante: es redundante poner "I/A" o "I/C", porque para aprobarlo o responder consultas primero la persona debe ser informada.

12. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

- Severidad (S):
- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a

Riesgo	S	О	RPN	S*	O*	RPN*

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: Plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: Plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: Plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación)

13. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: Copiar acá el requerimiento.
 Verificación y validación:
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente:

Detallar

• Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido:

Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, etc.

14. Comunicación del proyecto

El plan de comunicación del proyecto es el siguiente:

PLAN DE COMUNICACIÓN DEL PROYECTO								
¿Qué comunicar? Audiencia Propósito Frecuencia Método de comunicac. Responsab								

15. Gestión de Compras

En caso de tener que comprar elementos o contratar servicios: a) Explique con qué criterios elegiría a un proveedor. b) Redacte el Statement of Work correspondiente.

16. Seguimiento y control

Para cada tarea del proyecto establecer la frecuencia y los indicadores con los se seguirá su avance y quién será el responsable de hacer dicho seguimiento y a quién debe comunicarse la situación (en concordancia con el Plan de Comunicación del proyecto).

El indicador de avance tiene que ser algo medible, mejor incluso si se puede medir en % de avance. Por ejemplo, se pueden indicar en esta columna cosas como "cantidad de conexiones ruteadeas" o "cantidad de funciones implementadas", pero no algo genérico y ambiguo como "%", porque el lector no sabe porcentaje de qué cosa.

SEGUIMIENTO DE AVANCE								
Tarea	del	Indicador de	Frecuencia	Resp. de se-	Persona a ser	Método	de	
WBS		avance	de reporte	guimiento	informada	comunic.		

17. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron: - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.