

Automatic Detection of Seasonality Using Wavelets

Rebecca Killick and Ben Norwood ONS Workshop 2018/03

Contents

- Motivation
- Periodic Series
- Wavelet Approach
- Results

MOTIVATION

Motivation

- As data collection is growing with the rise of big data, larger seasonal periods are expected.
- Data shows daily, monthly, yearly patterns.
- Automatic Detection of such periods would aid adjustment of them substantially.

EXISTING METHODS

Fourier Methods

- Most common way to determine periodicity
- Compute the (smoothed) Fourier periodogram
- Identify spectral peaks as periodicities

This requires human intervention or peak-detection systems.

Fourier Methods

 For longer periodicities the cycle is often too close to the origin to detect.

Detection

- · Manually, i.e. by eye or guessing
- Seasonal F test (Friedman Test)
- Automatically with visual significance (Soukup & Findley 1999, McElroy & Roy 2017)
- Automatically with findFrequency (first peak of smoothed periodogram)

There are other ways to determine seasonality using autocorrelations at various lags.

A NEW APPROACH

Wavelets

Discrete Non-Decimated Approach

- The discrete transform can be seen as a filtering operation over different bands.
- Given a time series Y_t we calculate the wavelet coefficients as

$$d_{j,k} = \frac{1}{\sqrt{2}^{j}} \left[\left\{ \sum_{i=0}^{2^{j-1}} Y_{k+i} \right\} - \left\{ \sum_{i=2^{j-1}+1}^{2^{j}-1} Y_{k+i} \right\} \right],$$

for

$$t = 1, 2, ..., n = 2^{J},$$

 $j = 1, 2, ..., J - 1,$
 $k = 1, ..., 2^{J} - 2^{j} + 1.$

Periodic Series

Mathematics & Lancaster & University

Length of period

 Throughout we now assume the series we are dealing with can be expressed as a sinusoid with noise:

$$Y_t \sim \sin\left(rac{2\pi t}{p}
ight) + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_\epsilon^2), \quad p \in \mathbb{R}$$

Figure: p = 12, $\sigma_{\epsilon} = 0.1$

Figure: p = 64, $\sigma_{\epsilon} = 0.1$

Wavelet Representation

Square of the $d_{i,k}$ coefficients

Wavelet Energy Definition

- To monitor the variance of each scale, we analyse the squares of the coefficients.
- This is such that we are monitoring the 'energy' of each scale.
- We can normalize this energy at each scale to give Relative Wavelet Energy:

$$RWE_{j} = \frac{\sum_{k=1}^{n} d_{j,k}^{2}}{\sum_{j=1}^{J} \sum_{k=1}^{n} d_{j,k}^{2}}.$$

Wavelet Energy A Beautiful Relationship

If we look at how the variance for each periodicity across the scales we get an interesting relationship.

Variance Profiles

Mathematics & Lancaster University

A Representation of a Series

For each series we can now take a wavelet transform, and monitor the variance of the coefficients on each scale:

(a)
$$p = 12$$
, $\sigma_{\epsilon} = 0.1$

(b) p = 36,
$$\sigma_{\epsilon} = 0.1$$

(b) p = 36,
$$\sigma_{\epsilon} = 1$$

Theoretical Results

Theorem

Using the variance profile, on a sample of size T, we have proved that:

$$\mathbb{E}\left(\hat{d}_{j,k}^2 - d_{j,k}^2\right)^2 \to 0 \quad \text{as } T \to \infty$$

$$\hat{p} \to p \quad \text{as } T \to \infty.$$

SIMULATIONS

Results

A Comparison

- Compare to the *findFrequency* function in *forecast* R package.
- We measure how close the predicted periodicity is to the truth.
- Also record computing time taken.

Simulation Constants:

N = 1000 Amount of realisations

T = 1024 Length of each series

 $p \in [3,365]$ periodicity simulated

Weighted by number of coefficients in scale.

Results

Mathematics & Statistics | Lancaster University

Average Distance

(a)
$$\sigma_{\epsilon} = 0.7$$

(b)
$$\sigma_{\epsilon} = 1$$

Results Computing Time

APPLICATION

Cardiovascular Deaths

- Daily cardiovascular deaths from 1987-2000 (seasonal R)
- findFrequency function returns 1 = no seasonality
- wavelet method returns 373

Cardiovascular Deaths

- findFrequency function returns 1 = no seasonality
- wavelet method returns 373

Mixed Frequencies

Quarterly + Monthly + Weekly + Noise

Mixed Frequencies

Conclusion

- Provided an alternative approach to detecting low frequency cycles.
- Resistant to noise.
- Computationally efficient.
- Seek to apply periodic boundary conditions to improve.
- Need to add confidence interval to estimate.
- Encouraging for further development.

Detecting Periodicity Approaching an Algorithm

In detecting periodic behaviour we have to find the variance profile that fits correctly. This leads to a number of considerations:

- What region should we search?
- How should we weight the differences?
- How certain are we?

Detecting Periodicity

Search Regions

Suppose we are given the following variance profile for a series, how could we narrow down our search?

Detecting Periodicity

Weighting Functions

When considering any distance it is useful to consider a variety of weighting functions:

- According to the true variance profile.
- According to the observed profile.
- According to the amount of coefficients considered in each scale.
- Choose a cut-off scale.

Different Wavelets

