Rebuttal Responses

Figure 1: Loss function of two tasks. $f_1(\theta)$ and $f_2(\theta)$ have different minimums and $f_2(\theta)$ is dominant across most values of θ_1 .

Figure 2: Synthetic experiment for the counterexample. We add Gaussian random noise to simulate the stochastic gradient descent. STREAM can find the optimal $\theta^{(1)}$ and achieve minimal forgetting and loss on the new task.

Table 1: Results on Multiple Dataset, Split CIFAR100, and Split Tiny Imagenet. Split Tiny-Imagenet Multiple Dataset Split CIFAR100 Methods $ACC(\uparrow)$ $FGT(\downarrow)$ $ACC (\uparrow)$ $FGT(\downarrow)$ $ACC(\uparrow)$ $FGT(\downarrow)$ 20.43 ± 0.64 NCL 46.64 ± 2.32 $0.334{\pm}0.035$ $44.42{\pm}1.35$ 0.325 ± 0.024 0.301 ± 0.009 SGP $55.68{\pm}1.23$ $0.305 {\pm} 0.153$ $56.55{\pm}1.64$ 0.100 ± 0.001 $26.86 {\pm} 0.90$ $0.122 {\pm} 0.008$ $64.06{\pm}0.86$ STREAM $72.08{\pm}1.40$ $0.152 {\pm} 0.035$ 0.132 ± 0.010 31.36 ± 0.71 0.121 ± 0.008

Figure 3: Class-incremental learning comparison with different sampling methods.

Table 2: Continual learning process (retain two decimal places for the numerical values).

Task	$ heta^{(1)}$		$\theta^{(2)}$		$\mathrm{FGT}\!\!\downarrow$		Loss↓	
10011	ER	STREAM	ER	STREAM	ER	STREAM	ER	STREAM
f_1	0.00	0.00	0.00	0.00	0.00	0.00	10.00	10.00
f_2	1.09	2.00	0.00	0.00	-9.20	0.00	0.83	0.00
f_3	-0.67	2.00	0.00	0.00	8.62	0.00	0.00	0.00

- (a) $\theta^{(1)}$ value vs. iterations.
- (b) The forgetting on task 1 and task 2 vs. iterations.
- (c) Loss on task 3 vs. iterations.

Figure 4: Synthetic experiment on task 3 for the counterexample. Each algorithm starts from their points at the end of the task2.

Table 3: Results on Multiple Dataset, Split CIFAR100, and Split Tiny Imagenet.

	Multiple Dataset		Split CIFAR100		Split Tiny-Imagenet	
Methods	$ACC (\uparrow)$	$FGT(\downarrow)$	$ACC (\uparrow)$	$FGT(\downarrow)$	$ACC (\uparrow)$	$FGT(\downarrow)$
ER	59.03±0.90	0.244 ± 0.024	48.56±1.74	0.342 ± 0.025	17.54±0.83	0.230 ± 0.019
"vanilla" ER	61.33 ± 0.94	0.329 ± 0.043	60.92 ± 0.93	0.142 ± 0.009	$23.38 {\pm} 0.56$	0.170 ± 0.011
STREAM	$72.08{\pm}1.40$	$0.152{\pm}0.035$	$64.06{\pm}0.86$	$0.132{\pm}0.010$	$31.36{\pm}0.71$	$0.121{\pm}0.008$

Table 4: Running time/memory on Multiple Dataset and Split CIFAR-100.

	0 / 0 1	-
Methods	Multiple Dataset (hours/MB)	Split CIFAR-100 (hours/MB)
EWC	0.16/552	1.31/930
MAS	0.17/562	1.31/963
AGEM	0.16/570	1.30/1102
OGD	0.47/558	3.01/926
DER	0.18/778	1.27/1146
GDumb	0.13/572	0.92/1034
MEGA	0.15/560	1.05/1032
STREAM	0.11/572	0.79/1046

Table 5: Results on Multiple Dataset (p denotes the noise rate).

	p =	= 0.0	p = 0.3	
Methods	$ACC (\uparrow)$	$FGT(\downarrow)$	$ACC (\uparrow)$	$FGT(\downarrow)$
DER STREAM	51.70 ± 2.04 72.08 ± 1.40	0.224 ± 0.024 0.152 ± 0.035	42.09±3.32 41.32±0.41	0.164±0.019 0.100±0.005

Table 6: Results on Split CIFAR100 (p denotes the noise rate).

36.1.1	p =	= 0.0	p = 0.3	
Methods	$ACC (\uparrow)$	$FGT(\downarrow)$	$ACC (\uparrow)$	$FGT(\downarrow)$
DER	63.14 ± 0.99	$0.100{\pm}0.051$	35.78 ± 1.54	$0.237 {\pm} 0.053$
STREAM	$64.06{\pm}0.86$	$0.132 {\pm} 0.010$	$52.39{\pm}1.51$	$0.234{\pm}0.013$

Table 7: Results on Split Tiny-ImageNet (p denotes the noise rate).

Methods	$p = 0.0$ ACC (\(\epsilon\)) FGT (\(\psi\))		$p = 0.3$ ACC (\(\epsilon\)) FGT (\(\psi\))	
DER	30.85 ± 0.79	0.078±0.015	16.73 ± 1.04	0.053±0.023
STREAM	31.36 ± 0.71	0.121±0.008	28.89\pm0.41	0.202±0.004