Lab assignment #1: the forklift and the carts

Consider a box factory, where a robotic forklift waits for motorized carts to bring boxes that the forklift then has to place. Motorized carts can unload their boxes to the floor in a narrow alley near the forklift. However, the narrow alley can only accommodate 5 boxes at a time.

Assume that the alley is initially empty (so, there's room for 5 boxes). The forklift's behavior is simple: as soon as there's a box to place, the fork lift takes a box and goes to place it; after placing the box, the fork lift returns to the alley.

A motorized cart's behavior is slightly more complicated, because the cart will have to decide whether the box can be unloaded on the alley floor, or should be returned:

- 1. find a box to pick up and bring the box to the alley;
- 2. if there is room on the floor, unload the box, otherwise bring back the box to its initial location:
- 3. repeat

Use pthreads to activate one forklift thread and 10 cart threads. Ensure a proper synchronization using **semaphores**.

To simulate actions such as taking a box, placing a box, etc, use sleep(n) where n is the number of seconds the action takes. To spice things up, you can use a function such as rand() to generate a random number of seconds an action should take.

Simulate for a length of time, say a couple of minutes. In the end, take note of how many boxes have been placed and how many have been returned.

Provide **working code** (meaning, code that compiles) **and a text file** commenting your solution (and reporting on the numbers of boxes that have been placed or returned).

You can start from this template (but are not obliged to).

Bear in mind that:

- 1. even if your solution is not perfect, anything is better than nothing at all;
- 2. if any aspects of this assignment are unclear, you are more than welcome to ask for clarifications to the teaching staff;
- 3. you can use the wiki to discuss or share interesting things you discover, but not to share your solution;
- 4. you can either work individually, or, if you prefer, you can work in a group of 2/3 people, as long as you contribute with your share of work;
- 5. if your solution is the result of team work, for grading purposes, you should indicate the names of all the members of the team;
- 6. the point of this exercise is to give you a reason to think about synchronization problems and semaphores, as well as practice with threads and with looking for useful functions in the online manual. If you take this as a challenge, you will ultimately benefit, and chances are you will join the exam with good confidence. If you wish to master semaphore-based synchronization, there's nothing like making your hands dirty with some coding!