Chapitre 2 – Orthogonalité

Dans tout le chapitre, E désigne un espace préhilbertien (réel ou complexe) de dimension quelconque, dont on notera \langle , \rangle le produit scalaire et $\| \cdot \|$ la norme associée.

I) Vecteurs orthogonaux

1) Orthogonalité de 2 vecteurs

<u>Définition</u>: Soient $x, y \in E$. On dit que x et y sont <u>orthogonaux</u> si $\langle x, y \rangle = 0$. On note alors $x \perp y$.

Remarque : Le seul vecteur orthogonal à tous les éléments de E est 0_E .

Remarque : Si $x \perp y$, alors $\forall \lambda \in \mathbb{K}, x \perp \lambda y$

Exemple: Dans \mathbb{R}^2 muni du produit scalaire usuel, soit $x=(a,b)\in\mathbb{R}^2$ alors y=(-b,a) vérifie

$$x \perp y \operatorname{car} \langle x, y \rangle = -ab + ab = 0$$

Dans $E = \mathcal{C}([0; 2\pi]; \mathbb{C})$ munie du produit scalaire usuel, considérons $f : x \mapsto i$, $g : x \mapsto \sin x$

Alors
$$\langle f, g \rangle = \int_0^{2\pi} \overline{f(x)} g(x) dx = [i \times \cos x]_0^{2\pi} = 0$$
, donc $f \perp g$.

Attention: la notion d'orthogonalité dépend du p.s. utilisé.

Propriété: Identité de Pythagore

1) Soient E un espace préhilbertien réel et $x, y \in E$. On a :

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$$

2) Soient E un espace préhilbertien complexe et $x, y \in E$. On a :

$$x \perp y \Longrightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$

<u>Démonstration</u>: **★**

- 1) On sait que $||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2\langle x, y \rangle + ||y||^2$ Ainsi $||x + y||^2 = ||x||^2 + ||y||^2 \Leftrightarrow 2\langle x, y \rangle = 0 \Leftrightarrow x \perp y$
- 2) On sait que $||x+y||^2 = \langle x+y, x+y \rangle = ||x||^2 + 2Re(\langle x,y \rangle)$ Ainsi $\langle x,y \rangle = 0 \Rightarrow Re(\langle x,y \rangle) = 0 \Rightarrow ||x+y||^2 = ||x||^2 + ||y||^2$

Attention : la réciproque est fausse dans le cas E préhilbertien complexe.

II) Familles orthogonales

<u>Définition</u>: On dit qu'une famille d'éléments $(e_i)_{i \in I} \in E$ est orthogonale si tous ses éléments sont orthogonaux 2 à 2 ie si :

$$\forall i, j \in I, i \neq j \Longrightarrow \langle e_i, e_j \rangle = 0$$

On dit que la famille $(e_i)_{i \in I}$ est <u>orthonormée</u> si elle est orthogonale et que tous ses éléments ont pour norme 1, ce qui est équivalent à :

$$\forall (i,j) \in I^2, \left\langle e_i, e_j \right\rangle = \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases} = \delta_{i,j} \text{ (symbole de Kronecker)}$$

<u>Propriété</u>: Toute famille <u>orthogonale</u> ne comportant pas le vecteur nul est libre. En particulier, une famille <u>orthonormée</u> est libre.

<u>Démonstration</u>: ★

Une famille ne comportant aucun élément est par définition libre. Soit $n \in \mathbb{N}^*$, soit $(e_1, ..., e_n)$ une famille orthogonale d'éléments de E tq $\forall i \in [\![1,n]\!], e_i \neq 0_E$. Soient $\lambda_1, ... \lambda_n \in \mathbb{K}^n$ tq $\sum_{k=1}^n \lambda_k e_k = 0_E$

D'une part
$$\langle e_i, \sum_{k=1}^n \lambda_k e_k \rangle = \langle e_i, 0_E \rangle$$

D'autre part, par linéarité à droite de
$$\langle , \rangle$$
, $\langle e_j, \sum_{k=1}^n \lambda_k e_k \rangle = \sum_{k=1}^n \lambda_k \underbrace{\langle e_j, e_k \rangle}_{0 \text{ si } k \neq j} = \lambda_j \|e_j\|^2$

Ainsi,
$$\lambda_i \|e_i\|^2 = 0$$
, d'où $\lambda_i = 0$ car $\|e_i\| \neq 0$ car $e_i \neq 0_E$

Ainsi $(e_1, ..., e_n)$.

Ce résultat s'étend à une famille infinie. En effet, une famille infinie est libre si et seulement si toutes ses sous-familles finies sont libres.

De plus, si $(e_i)_{i \in I}$ est une famille orthonormée d'éléments de E, alors $(e_i)_{i \in I}$ est orthogonale et $\forall i \in I$, $||e_i|| = 1 \neq 0$ donc $e_i \neq 0_E$

3) Base orthonormée et calculs dans une telle base

<u>Définition</u>: Soit E un espace préhilbertien ou hermitien. On appelle base orthonormée de E toute famille de vecteurs de E qui est à la fois orthonormée et une base de E.

<u>Propriété</u>: Soient E un espace euclidien ou hermitien et $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E. Soit $x\in E$. Les coordonnées x_1,\ldots,x_n dans la base \mathcal{B} sont données par $\forall k\in [\![1,n]\!], x_k=\langle e_k,x\rangle$.

De sorte que
$$x = \sum_{k=1}^{n} \underbrace{\langle e_k, x \rangle}_{\in \mathbb{K}} e_k$$

<u>Propriété</u>: Soient E un espace euclidien ou hermitien et $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E Soient $x,y\in E$ de coordonnées respectives x_1,\ldots,x_n et $y_1,\ldots y_n$ dans la base E. Alors

$$\langle x, y \rangle = \sum_{k=1}^{n} \overline{x_k} y_k = {}^t \overline{X} Y \text{ et } ||x||^2 = \langle x, x \rangle = \sum_{k=1}^{n} |x_k|^2 = {}^t \overline{X} X$$

Où
$$X = Mat_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 et $Y = Mat_{\mathcal{B}}(y) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

4) Procédé d'orthonormalisation et de Gram-Schmidt

<u>Théorème</u>: Soit E un espace préhilbertien réel ou complexe. Pour toute famille <u>libre</u> $(u_1, ..., u_n)$ d'éléments de E, il existe une famille <u>orthonormée</u> $(e_1, ..., e_n)$ tq

$$\forall k \in [\![1,n]\!], Vect\{u_1,\ldots,u_n\} = Vect\{e_1,\ldots,e_n\}$$

Remarque : Pour construire ce genre de famille, on pose $v_1=u_1$, $e_1=\frac{v_1}{\|e_1\|}$ puis

$$\forall k \in [1, n-1], v_{k+1} = u_{k+1} - \sum_{j=1}^{n} \langle e_j, u_{k+1} \rangle e_j \text{ et } e_{k+1} = \frac{v_{k+1}}{\|v_{k+1}\|}$$

Exemple : Dans \mathbb{R}^3 muni de son p.s. usuel considérons la famille $\mathcal{F}=(u_1,u_2,u_3)$ où

$$u_1 = (0,1,1), u_2 = (1,0,1), u_3 = (1,1,0)$$

Notons \mathcal{B}_c la base canonique de \mathbb{R}^3

$$\det(\mathcal{F}) = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 2 \neq 0$$

Donc \mathcal{F} est libre (c'est même une base de \mathbb{R}^3) donc on peut lui appliquer le procédé d'orthormalisation de Gram-Schmidt.

On pose
$$v_1=u_1$$
, alors $\|v_1\|^2=\langle v_1,v_1\rangle=2$, on pose $e_1=\frac{v_1}{\|v_1\|}=\frac{1}{\sqrt{2}}(0.1.1)$

Puis on pose
$$v_2 = u_2 - \langle e_1, u_2 \rangle e_1 = (1,0,1) - \left(\frac{1}{\sqrt{2}}(0,1,1), (1,0,1)\right) \frac{1}{\sqrt{2}}(0,1,1) = \frac{1}{2}(2,-1,1)$$

Alors
$$||v_2|| = \left\|\frac{1}{2}(2, -1, 1)\right\| = \frac{1}{2}||2, -1, 1|| = \frac{\sqrt{6}}{2}$$
. Ainsi on pose $e_2 = \frac{v_2}{||v_2||} = \frac{1}{\sqrt{6}}(2, -1, 1)$

Enfin on pose
$$v_3 = u_3 - \langle e_1, u_3 \rangle e_1 - \langle e_2, u_3 \rangle e_2 = \frac{1}{6}(4, 4, -4) = \frac{2}{3}(1, 1, -1)$$

De plus,
$$||v_3|| = \frac{2}{\sqrt{3}}$$
, et on pose $e_3 = \frac{v_3}{||v_3||} = \frac{1}{\sqrt{3}}(1,1,-1)$

Corollaire: Tout espace euclidien ou hermitien admet une base orthonormée.

<u>Corollaire</u>: Toute famille <u>orthonormée</u> d'un espace E euclidien ou hermitien peut être complétée en une base orthonormée de E.

III) Sous-espaces vectoriels orthogonaux

1) Orthogonal d'une partie

<u>Définition</u>: soit $A \subset E$. On appelle orthogonal de A l'ensemble noté A^{\perp} , constitué des éléments de E orthogonaux à tous les éléments de A, ie

$$A^{\perp} = \{ x \in E \mid \forall \alpha \in A, \langle \alpha, x \rangle = 0 \}$$

Exemples

- 2) $* E^{\perp} = \{0_E\}$ car 0_E est le seul élément de E orthogonal à tous les autres. (savoir redémontrer)

<u>Propriété</u>: Soit $A \subset E$, alors A^{\perp} est un sev de E.

<u>Propriété</u> : Soit A, B ⊂ E

- (1) On a $A \subset (A^{\perp})^{\perp}$
- (2) Si $A \subset B$, alors $B^{\perp} \subset A^{\perp}$
- (3) $A^{\perp} = (Vect(A))^{\perp}$

<u>Propriété</u>: Soit $F = Vect(e_i)_{i \in I}$ un sev de E. Alors $F^{\perp} = \{x \in E \mid \forall i \in I, \langle x, e_i \rangle = 0\}$

<u>Démonstration</u>: * Soit $x \in F^{\perp}$, alors $\forall y \in F, \langle x, y \rangle = 0$. Or $\forall i \in I, e_i \in F$, donc $\langle x, e_i \rangle = 0$

Ainsi $F^{\perp} \subset \{ x \in E \mid \forall i \in I, \langle x, e_i \rangle = 0 \}$

Réciproquement, soit $x \in E$ tel que $\forall i \in I, \langle x, e_i \rangle = 0$. Soit $y \in F = Vect(e_i)_{i \in I}$

Donc $\exists n \in \mathbb{N}^*, \exists \lambda_1, ..., \lambda_n \in \mathbb{K} \text{ et } \exists i_1, ..., i_n \in I \text{ tq } y = \sum_{k=1}^n \lambda_k e_{i_k}$

D'où
$$\langle x, y \rangle = \sum_{k=1}^{n} \lambda_k \left(\underbrace{x, e_{i_k}}_{=0} \right) = 0$$

Donc $x \in F^{\perp}$ d'où l'inégalité voulue.

<u>Définition</u>: Soient F, G 2 sev de E. On dit que F et G sont <u>orthogonaux</u> si $\forall x \in F, \forall y \in G, \langle x, y \rangle = 0$

3) Supplémentaires orthogonaux d'un sev de dimension finie

<u>Théorème</u>: Soit F un sev de E avec F de dimension <u>finie</u>. Alors $E = F \oplus F^{\perp}$. On appelle F^{\perp} le supplémentaire orthogonal de F dans E.

En particulier, si E est euclidien ou hermitien, alors pour tout sev F de E,

$$E = F \oplus F^{\perp}$$

Attention : ce résultat est faux si F n'est pas de dimension finie.

<u>Corollaire</u>: Si *E* est un espace **euclidien** ou **hermitien**, alors pour tout sev *F* de *E* on a :

$$\overline{\dim(F^{\perp}) = \dim E - \dim F} \text{ et } (F^{\perp})^{\perp} = F$$

Attention : si E est de dimension infinie, on peut avoir $F \subseteq (F^{\perp})^{\perp}$

Projection orthogonale

Rappels sur les projecteurs et les symétries

E est un \mathbb{K} -ev de dimension quelconque (pas forcément finie), F et G sont deux sev de E supplémentaires dans E, ie $E=F \oplus G$

<u>Définition</u>: On appelle projection sur F parallèlement à G l'endomorphisme de E défini par :

$$\forall x \in E, \exists! (x_F, x_G) \in F \times G \text{ tq } x = x_F + x_G, p(x) = x_F$$

<u>Définition</u>: On appelle symétrie par rapport à F parallèlement à G l'endomorphisme S de E tel que :

$$\forall x \in E, \exists! (x_F, x_G) \in F \times G \text{ tq } x = x_F + x_G, s(x) = x_F - x_G$$

On a alors $s = 2p - Id_E$

Propriété : Soit $p \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $p^2 = p$
- (ii) p est la projection sur Im(p) parallèlement à $\ker p$. Dans ce cas, $Im(p) = \ker(p Id_E)$.

Remarque : Avec les notations F = Im(p), $G = \ker(p)$, on a :

Soit
$$x \in E$$
, $\begin{cases} p(x) = x \Leftrightarrow x \in F \\ p(x) = 0_E \Leftrightarrow x \in G \end{cases}$

<u>Propriété</u>: Soit $s \in \mathcal{L}(E)$. On a équivalence entre :

- (i) $s^2 = Id_E$
- (ii) s est la symétrie par rapport à $ker(s Id_E)$ parallèlement à $ker(s + Id_E)$

Remarque: Avec les notations $F = \ker(s - Id_E)$, $G = \ker(s + Id_E)$, on a :

Soit
$$x \in E$$
, $\begin{cases} s(x) = x \Leftrightarrow x \in F \\ s(x) = -x \Leftrightarrow x \in G \end{cases}$

Remarque : Supposons $\dim E < +\infty$. Notons p la projection sur F parallèlement à G et S la symétrie par rapport à F parallèlement à G.

En prenant la concaténation $B=B_F\cup B_G$, B est une base adaptée à la décomposition :

Projection orthogonale:

On revient au cadre où E est un espace préhilbertien réel ou complexe. Si F est un sev de E de dimension finie, on a vu que $E=F \oplus F^{\perp}$

Définition : Soit F un sev de E tq $E = F \oplus F^{\perp}$ (c'est vrai en particulier si dim $F < +\infty$)

On appelle projection orthogonale sur F la projection, notée p_F , sur F parallèlement à F^{\perp} . On appelle symétrie orthogonale par rapport à F la symétrie, notée s_F , sur à F parallèlement à F^{\perp} .

 $\underline{\mathsf{Remarque}} : \forall x \in E, p_F(x) \text{ est l'unique \'el\'ement de } F \text{ tel que } x - p_F(x) \in F^\perp. \text{ Ainsi pour } y \in E, \text{ on a :}$

$$y = p_F(x) \Longleftrightarrow \begin{cases} y \in F \\ \forall z \in F, \langle x - y, z \rangle = 0 \end{cases}$$

Exemple : dans \mathbb{R}^3 muni du p.s. usuel, déterminons-le projeté orthogonal $p_F(e_1)$ du vecteur

$$e_1 = (1,0,0) \operatorname{sur} F = \operatorname{Vect}\{e_2,e_3\} \operatorname{où} \begin{cases} e_2 = (0,1,1) \\ e_3 = (1,0,-1) \end{cases}$$

On sait que $p_F(e_1) \in F = \mathrm{Vect}(e_2,e_3)$. Donc $\exists \alpha,\beta \in \mathbb{R}$ tel que $p_F(e_1) = \alpha e_1 + \beta e_2 = (\beta,\alpha,\alpha-\beta)$

De plus,
$$e_1 - p_F(e_1) \in F^\perp \iff \forall y \in F, \langle e_1 - p_F(e_1), y \rangle = 0$$

$$\Longleftrightarrow \begin{cases} \langle e_1 - p_F(e_1), e_2 \rangle = 0 \\ \langle e_1 - p_F(e_1), e_3 \rangle = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \beta = \frac{2}{3} \\ \alpha = \frac{1}{3} \end{cases}$$

Donc
$$p_F(e_1) = \frac{1}{3}(0,1,1) + \frac{2}{3}(1,0,-1) = \frac{1}{3}(2,1,-1)$$

Propriété: Avec les notations de la définition ci-dessus:

$$p_F + p_{F^{\perp}} = Id_E$$

$$p_F \circ p_{F^{\perp}} = p_{F^{\perp}} \circ p_F = 0$$

$$s_F = 2p_F - Id_E = Id_E - 2p_{F^{\perp}}$$

Expression du projeté orthogonal

<u>Théorème</u>: Soit F un sev de E de dimension finie. Soit $B=(e_1,\ldots,e_r)$ une base <u>orthonormée</u> de F. Alors pour tout $x\in E$, le projeté orthogonal $p_F(x)$ de x sur F vérifie :

$$p_F(x) = \sum_{k=1}^r \langle e_k, x \rangle e_k$$

<u>Démonstration</u>: **★**

Soit $x \in E$, comme $p_F(x) \in F$, et puisque B est une base orthonormée de F,

$$p_F(x) = \sum_{k=1}^r \langle e_k, p_F(x) \rangle e_k$$

Soit $k \in [1; r]$,

$$\langle e_k, x \rangle - \langle e_k, p_F(x) \rangle = \langle e_k, x - p_F(x) \rangle = \left\langle \underbrace{e_k}_{\in F}, \underbrace{p_{F^{\perp}}(x)}_{\in F^{\perp}} \right\rangle = 0$$

Où $p_{E^{\perp}}$ désigne la projection orthogonale sur F^{\perp}

Ainsi $\langle e_k, x \rangle = \langle e_k, p_F(x) \rangle$

D'où $p_F(x) = \sum_{k=1}^{r} \langle e_k, x \rangle e_k$

Remarque : En reprenant le procédé d'orthonormalisation de Gram-Schmidt :

Soit $(u_1, ..., u_n)$ une famille libre, alors on peut construire une famille $(v_1, ..., v_n)$ une famille orthogonale et $(e_1, ..., e_n)$ une famille orthonormée telle que $\forall k \in [\![1, n]\!]$,

$$Vect\{u_1, ..., u_n\} = Vect\{v_1, ..., v_n\} = Vect\{e_1, ..., e_n\}$$

En posant $v_1=u_1$, $e_1=rac{v_1}{\|v_1\|}$, et $\forall k\in \llbracket 1,n-1
rbracket$,

$$v_{k+1} = u_{k+1} - p_{\text{Vect}\{e_1, \dots, e_n\}}(u_{k+1})$$

Car la famille $(e_1, ..., e_k)$ est une base orthonormée de $Vect\{e_1, ..., e_n\}$

Remarque:

On a vu que dans un espace euclidien ou hermitien, pour tout sev F de E, on a $E = F \oplus F^{\perp}$

Ainsi si F est de « grande » dimension, alors F^{\perp} est de « petite » dimension, donc il peut être intéressant de d'appliquer la formule $p_F(x) = x - p_{F^{\perp}}(x)$

Exemple : Dans $M_2(\mathbb{R})$ muni de son produit scalaire usuel.

On considère $H = \{ M \in M_2(\mathbb{R}) \mid Tr(M) = 0 \}$

Déterminer pour $M \in M_2(\mathbb{R})$, l'expression de $p_H(M)$

- Tout d'abord, $H = \ker(\operatorname{Tr})$ (avec Tr linéaire) de H est bien un sev de $M_2(\mathbb{R})$
- Comme dim $(M_2(\mathbb{R})) = 2^2 < +\infty$, $M_2(\mathbb{R}) = H \oplus H^{\perp}$
- Déterminons dim H

Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, on a $M \in H \Leftrightarrow \operatorname{Tr}(M) = 0 \Leftrightarrow d = -a$

Ainsi
$$H = \text{Vect}\left\{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right\}$$

Notons
$$U_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $U_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $U_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

Alors $B = (U_1, U_2, U_3)$ est génératrice de H et libre (démo easy)

Ainsi B est une base de H, donc dim H=3

Méthode 1:

On remarque que $(U_i, U_j) = 0$ pour tous $i, j \in [1, n], i \neq j$ donc B est une base orthogonale de H.

Ainsi, si on pose
$$\forall i \in [1,3], E_i = \frac{U_i}{\|U_i\|}$$

Ainsi
$$B' = (E_1, E_2, E_3)$$

Donc
$$p_H(M) = \sum_{i=1}^{3} \langle E_i, M \rangle E_i$$
 et on remplace

Méthode 2

Comme $\dim H^{\perp} = \dim E - \dim H = 1$ car $M_2(\mathbb{R})$ est euclidien, on cherche une base orthonormée de H^{\perp} .

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $A \in H^{\perp} \Leftrightarrow \begin{cases} a - d = 0 \\ b = 0 \\ c = 0 \end{cases}$

 $\mathsf{Donc}\,H^\perp=\mathsf{Vect}\{I_2\}$

Comme $||I_2|| = \sqrt{1^2 + 1^2} = \sqrt{2}$, alors $\mathcal{F} = \left(\frac{I_2}{||I_2||}\right)$ est une base orthonormée de H^{\perp}

Donc
$$\forall M \in M_2(\mathbb{R}), p_{H^{\perp}} = \left\langle \frac{1}{\sqrt{2}} I_2, M \right\rangle \frac{1}{\sqrt{2}} I_2 = \frac{1}{2} \operatorname{Tr}(M) I_2$$

Donc
$$p_H(M) = M - \frac{1}{2} \operatorname{Tr}(M) I_2$$

Distance à un sev

Définition : Soit $A \subset E$ non vide et $x \in E$. On définit la distance de x à A par

$$d(x, A) = \inf\{ \|x - a\| \mid a \in A \} \in \mathbb{R}_+$$

<u>Théorème</u>: Soit F un sev de E tel que $E = F \oplus F^{\perp}$ (ceci est vrai en particulier quand dim $F < +\infty$) Alors $\forall x \in E$,

$$d(x,F) = ||x - p_F(x)|| = ||p_{F^{\perp}}(x)||$$

Ainsi la distance de x à F est un minimum. De plus, cette distance est uniquement atteinte en $p_F(x)$. C'est-à-dire $\exists ! y \in F$ tel que d(x,F) = ||x-y||, et $y = p_F(x)$

<u>Démonstration</u>: **★**

Soit $y \in F$,

$$||x - y||^2 = \left| \underbrace{x - p_F(x)}_{\in F^{\perp}} + \underbrace{p_F(x) - y}_{\in F} \right|^2$$

Ainsi $x - p_F(x)$ et $p_F(x) - y$ sont orthogonaux donc par l'identité de Pythagore :

$$||x - y||^2 = ||x - p_F(x)||^2 + ||p_F(x) - y||^2 \ge ||x - p_F(x)||^2$$

Alors par croissance de $t \mapsto \sqrt{t}$ sur \mathbb{R}_+ ,

$$\forall y \in F, ||x - y|| \ge ||x - p_F(x)||$$

Ainsi $||x - p_F(x)||$ est un minorant de $\{ ||x - y|| \mid y \in F \}$, et comme $p_F(x) \in F$, il appartient à cet ensemble.

Ainsi c'est un minimum.

De plus, par les calculs ci-dessus,

$$||x - y|| = ||x - p_F(x)|| \iff ||x - p_F(x)||^2 + ||p_F(x) - y||^2 = ||x - p_F(x)||^2$$

$$\iff ||p_F(x) - y|| = 0$$

$$\iff p_F(x) - y = 0_E$$

$$\iff y = p_F(x)$$