Säuren und Basen nach Brønstedt

Inhaltsverzeichnis

ln	haltsverzeichnis 1		9. Übung	12
			10. Übung	12
1	Die Basis	1	11. Übung	12
	1.1 Worum es geht	1	12. Übung	12
	1.1.1 Säuren	1	13. Übung	12
	1.1.2 Basen	2	14. Übung	12
	1.2 Die Theorie	3	15. Übung	12
2	Quantitative Betrachtung	4	Lösungen	14
	2.1 Starke und schwache Säuren .	4	1. Lösung	14
	2.2 Der pH-Wert	5	2. Lösung	14
	2.3 pH-Werte berechnen	7	3. Lösung	14
			4. Lösung	14
3	Beispiele für Rechenaufgaben	8	5. Lösung	14
			6. Lösung	14
4	Aufgaben	11	7. Lösung	15
	ı. Übung	11	8. Lösung	15
	2. Übung	11	9. Lösung	15
	3. Übung	11	10. Lösung	15
	4. Übung	11	11. Lösung	15
	5. Übung	11	12. Lösung	15
	6. Übung	11	13. Lösung	16
	7. Übung	12	14. Lösung	16
	8. Übung	12	15. Lösung	16

1 Die Basis

1.1 Worum es geht

1.1.1 Säuren

Die Basis für die Säure-Theorie nach Brønstedt ist die sogenannte $Protolyse^1$ -Gleichung $\{1\}$. Hierbei wird ein Proton (H^+) von einem Stoff, der $S\"{a}ure$, auf einen anderen Stoff, Wasser, übertragen.

$$HA + H_2O \Longrightarrow A^- + H_3O^+$$
 {1}

Dabei ist A ein (beinahe) beliebiger Rest. Jeder Stoff, der mit Wasser diese Gleichgewichtsreaktion² eingehen kann, ist eine Säure. Genauer wäre: eine wässrige Lösung eines solchen Stoffes ist

^{1.} Proton: H⁺, griech. λύσις (lýsis): Auflösung

^{2.} Siehe dazu Thema chemisches Gleichgewicht

eine Säure. Einige Möglichkeiten für solche Stoffe sind in Tabelle 1 aufgelistet.

TABELLE 1: wichtige Säuren

Säure		Säurerest	
Name	Formel	Formel	Name
Salzsäure	HCl	Cl ⁻	Chlorid
Bromwasserstoffsäure	HBr	Br^-	Bromid
Schwefelwasserstoffsäure	H_2S	HS ⁻	Hyrdogensulfid
	HS^-	S^{2-}	Sulfid
Schwefelsäure	H_2SO_4	HSO_4^-	Hydrogensufat
	HSO_4^-	SO_4^{2-}	Sulfat
schweflige Säure	H_2SO_3	HSO_3^-	Hydrogensulfit
	HSO_3^-	SO_3^{2-}	Sulfit
Salpetersäure	HNO_3	NO_3^-	Nitrat
salpetrige Säure	HNO_2	NO_2^-	Nitrit
Kohlensäure	H_2CO_3	HCO_3^-	Hydrogencarbonat
	HCO_3^-	CO_3^{2-}	Carbonat
Phosphorsäure	H_3PO_4	$\mathrm{H_2PO_4}^-$	Dihydrogenphosphat
	$H_2PO_4^-$	$\mathrm{HPO_4^{\;2-}}$	Hydrogenphosphat
	$\mathrm{HPO_4^{\ 2-}}$	PO_4^{3-}	Phosphat
Blausäure	HCN	CN ⁻	Cyanid

DEFINITION

Einen Stoff, der Protonen (H^+) abgeben kann, einen sogenannten *Protonendonatoren*, nennt man Säure.

Das, was die saure Wirkung einer Säure ausmacht, kann offensichtlich nicht das Säuremolekül selbst sein: es reagiert schließlich (je nach Gleichgewichtslage kaum bis nahezu vollständig). Auch der Säurerest kann nicht verantwortlich sein: er ist bei jeder Säure anders. Übrig bleibt die Gemeinsamkeit aller Protolyse-Reaktionen: das Oxonium- oder Hydronium-Ion H_3O^+ .

1.1.2 Basen

Auch für Basen gibt eine Reaktionsgleichung, die ihre Rolle festlegt:

$$B + H_2O \Longrightarrow HB^+ + OH^-$$
 {2}

Hier gilt also das umgekehrte: eine Base gibt kein Proton ab, sondern nimmt eines auf. Ein paar wichtige Basen sind in Tabelle 2 aufgelistet.

DEFINITION

Einen Stoff, der Protonen (H⁺) aufnehmen kann, einen sogenannten *Protonenak- zeptoren*, nennt man Base.

1.2 Die Theorie

Überträgt man obige Definitionen nochmals auf die Reaktionen {1} und {2},

$$HA + H_2O \Longrightarrow A^- + H_3O^+$$

 $B + H_2O \Longrightarrow HB^+ + OH^-$

dann stellen wir folgendes fest: in Reaktion $\{1\}$ sind HA und H_3O^+ Säuren, denn sie können ein H^+ abgeben. H_2O und A^- sind Basen, denn sie können ein H^+ aufnehmen. In Reaktion $\{2\}$ sind H_2O und HB^+ Säuren und B und OH^- Basen.

Wir entdecken ein Prinzip:

Offenbar wird aus einer Säure eine Base und umgekehrt. Man spricht daher von korrespondierenden oder auch konjugierten Säure/Base-Paaren. Und offenbar ist Wasser selbst auch sowohl eine Säure als auch eine Base, je nachdem womit es reagiert.

DEFINITION

Ein Stoff, der sowohl Säure als auch Base ist, nennt man *Ampholyt*. Ein solcher Stoff ist *amphoter*.

TABELLE 2: wichtige Basen

Base Name	Formel	Basenrest Formel	Name		
	TOTILLE	TOTTICI			
Natronlauge	NaOH				
Kalilauge	KOH				
Ammoniak	NH_3	NH_4^+	Ammonium		
Hydrazin	N_2H_4	$N_2H_5^+$	Hydrazinium		
Methylamin	CH_3NH_2	$CH_3NH_3^+$	Methylammonium		
Anilin	$C_6H_5NH_2$	$C_6H_5NH_3^+$	Anilinium		
Pyridin	C_5H_5N	$C_5H_5NH^+$	Pyridinium		

Wenn nun Wasser ein Ampholyt ist, also Säure und Base, bedeutet das, es kann mit sich selbst eine Protolyse-Reaktion machen:

$$H_2O + H_2O \implies H_3O^+ + OH^-$$
 {3}

Diese Gleichung, eine sogenannte Autoprotolyse,3 wird bei der Definition des pH-Werts noch eine Rolle spielen.

2 Quantitative Betrachtung

2.1 Starke und schwache Säuren

Wie sauer eine Lösung nun ist, hängt von der Stoffmengenkonzentration4 des Oxonium-Ions ab. Diese wiederum hängt über Reaktion {1} von der eingesetzten Konzentration der Säure sowie von der Lage des Gleichgewichts ab. Zur Beschreibung der Säurestärke benötigen wir also das Massenwirkungsgesetz für Reaktion {1}. Zur Minimierung der Schreibarbeit werden wir ab hier [A] schreiben, wenn wir c(A), also die Stoffmengenkonzentration des Stoffes A, meinen.

$$K = \frac{[A^{-}] \cdot [H_3 O^{+}]}{[HA] \cdot [H_2 O]} \tag{1}$$

$$K = \frac{[A^{-}] \cdot [H_3 O^{+}]}{[HA] \cdot [H_2 O]}$$

$$[H_3 O^{+}] = K \cdot \frac{[HA] \cdot [H_2 O]}{[A^{-}]}$$

$$(2)$$

Nennen wir nun das Produkt aus $K \cdot [H_2O] = K_S$, erhalten wir eine relativ einfache Gleichung zur Berechnung der H₃O⁺-Konzentration, vorausgesetzt wir kennen K_S und die im Gleichgewicht vorliegenden Konzentrationen:

$$[H3O+] = KS \cdot \frac{[HA]}{[A-]}$$
(3)

Aus mehreren Gründen verwendet man diese Gleichung jedoch nicht.

- zum einen ist die Konzentration im Gleichgewicht unbekannt und müsste vorher berechnet werden.
- zum zweiten können die Werte von $[H_3O^+]$ zwischen ca. 0,000 000 000 000 001 mol/L = $1 \cdot 10^{-14}$ mol/L und 1 mol/L schwanken.
- zum dritten benötigt man den Wert von K_S , der noch mehr schwanken kann.

Gleichung (3) ist – nach K_S umgestellt – aber die Definition der *Säurekonstanten*:

$$K_S = \frac{[\mathrm{H_3O}^+] \cdot [\mathrm{A}^-]}{[\mathrm{HA}]} \tag{4}$$

^{3.} griech. αὐτό: selbst

^{4.} Stoffmengenkonzentration: $c = \frac{n}{V}$, [c] = mol/L.

Der Wert von K_S gibt auf eine Weise an, wieviel einer Säure dissoziert⁵ ist, wie weit also das Gleichgewicht auf Seite der Produkte liegt. Man legt fest:

$$K_S > 1$$
 starke Säure $K_S < 1$ schwache Säure

Da dieser Wert *sehr* groß oder *sehr* klein sein kann, verwendet man lieber den sogenannten pK_S -Wert (mit log soll immer der dekadische Logarithmus gemeint sein):

$$pK_S = -\log K_S \tag{5}$$

Damit gilt jetzt:

$$pK_S < 0$$
 starke Säure $pK_S > 0$ schwache Säure

Völlig analoge Überlegungen führen auf die Basenkonstante

$$K_B = \frac{[\mathrm{OH}^-] \cdot [\mathrm{HB}^+]}{[\mathrm{B}]} \tag{6}$$

und die Festlegung:

$$K_B > 1$$
 starke Base $K_B < 1$ schwache Base

Aus analogen Gründen führt man den p K_B -Wert ein:

$$pK_B = -\log K_B \tag{7}$$

$$pK_B < 0$$
 starke Base $pK_B > 0$ schwache Base

Sowohl p K_S - als auch p K_B -Werte sind charakteristische Werte für Säuren bzw. Basen. Viele davon wurden sehr gründlich bestiommt und können jederzeit nachgeschlagen werden. Tabelle 4 listet einige davon auf.

2.2 Der pH-Wert

Knüpfen wir uns noch einmal Reaktion{3} vor:.

$$H_2O + H_2O \implies H_3O^+ + OH^-$$

Das Massenwirkungsgesetz für diese Reaktion lautet:

$$K = \frac{[\mathrm{H}_3\mathrm{O}^+] \cdot [\mathrm{OH}^-]}{[\mathrm{H}_2\mathrm{O}]^2} \tag{8}$$

^{5.} zerfallen

Wir stellen diese Gleichung um

$$K \cdot [\mathrm{H}_2\mathrm{O}]^2 = [\mathrm{H}_3\mathrm{O}^+] \cdot [\mathrm{OH}^-] \tag{9}$$

und taufen das Produkt $K \cdot [H_2O]^2 = K_W$

$$K_W = [H_3O^+] \cdot [OH^-] \tag{10}$$

Gleichung (10) nennt man auch das Ionenprodukt des Wassers. Bei 25 °C beträgt

$$K_W = 1 \cdot 10^{-14} \,\mathrm{mol}^2/\mathrm{L}^2 = 0,000\,000\,000\,000\,010\,\mathrm{mol}^2/\mathrm{L}^2$$
.

Das bedeutet, dass in neutralem Wasser die Konzentration von H₃O⁺

$$[H_3O^+] = [OH^-] = 1 \cdot 10^{-7} \text{ mol/L}$$
 (11)

beträgt.

Sauer wird es erst, wenn die Konzentration mehr als $1 \cdot 10^{-7}$ mol/L beträgt. Liegt sie darunter, so ist die Lösung basisch. Um die Angabe einfacher zu machen, macht man nun folgendes:

$$[H_3O^+] = 1 \cdot 10^{-7} \text{ mol/L}$$
 (12)

$$\log[H_3O^+] = -7 \tag{13}$$

$$-\log[H_3O^+] = 7 (14)$$

Jetzt definiert man den pH:

$$pH \equiv -\log[H_3O^+] \tag{15}$$

Für neutrales Wasser gilt also bei $25\,^{\circ}$ C pH = 7. Eine höhere Konzentration würde einen niedrigeren pH bedeuten. Also ist es sauer, wenn man einen pH < 7 vorliegen hat, basisch bei pH > 7 und neutral bei pH = 7. Das alles gilt streng genommen nur für die schon erwähnten $25\,^{\circ}$ C, darum werden wir uns aber nicht mehr weiter kümmern.

DEFINITION

Der pH (von *potentia hydrogenii*^a) ist definiert als der negative dekadische Logarithmus der Konzentration der Oxonium-Ionen (in mol/L). Analog dazu ist der pOH definiert als der negative dekadische Logarithmus der Konzentration der Hydroxid-Ionen.

$$pH \equiv -\log[H_3O^+] \tag{15}$$

$$pOH \equiv -\log[OH^{-}] \tag{16}$$

a. Das ist nicht völlig richtig, soll uns aber auch nicht weiter beschäftigen.

Gleichung (10) führt auf einen Zusammenhang zwischen pH und pOH:

$$K_W = [\mathrm{H_3O}^+] \cdot [\mathrm{OH}^-] \tag{10}$$

$$1 \cdot 10^{-14} = [H_3O^+] \cdot [OH^-] \tag{17}$$

$$14 = -\log[H_3O^+] - \log[OH^-]$$
 (18)

$$14 = pH + pOH \tag{19}$$

Eine ähnliche Vereinfachung kann man bei Gleichung (3) vornehmen:

$$[H_3O^+] = K_S \cdot \frac{[HA]}{[A^-]} \tag{3}$$

$$\log[H_3O^+] = \log K_S + \log\left(\frac{[HA]}{[A^-]}\right)$$
 (20)

$$-\log[\mathrm{H}_3\mathrm{O}^+] = -\log K_S - \log\left(\frac{[\mathrm{HA}]}{[\mathrm{A}^-]}\right) \tag{21}$$

$$pH = pK_S - \log\left(\frac{[HA]}{[A^-]}\right)$$
 (22)

Gleichung (22) nennt man die *Henderson-Hasselbalch-Gleichung*. Sie ist allgemein gültig und vor allem für die hier nicht besprochenen Pufferlösungen nützlich.

2.3 pH-Werte berechnen

Stellen wir uns vor, wir hätten eine 2,0 M Essigsäure-Lösung, deren $K_S = 1,8 \cdot 10^{-5}$ beträgt, und wollten nun wissen, welche H_3O^+ -Konzentration in dieser Lösung vorliegt, welchen pH die Lösung also hat.

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$

Essigsäure Acetat {4}

Die Gleichgewichtskonzentration der Essigsäure beträgt nun 2,0 mol/L -x, da ein gewisser Teil zerfallen ist. Dafür betragen die Acetat-Konzentration und die Oxonium-Konzentration beide x, entsprechen also beide dem zefallenen Teil der Essigsäure.

$$[H_3O^+] = K_S \cdot \frac{[HA]}{[A^-]}$$

$$x = 1.8 \cdot 10^{-5} \cdot \frac{2.0 - x}{x}$$

$$0 = x^2 + 1.8 \cdot 10^{-5} x - 3.6 \cdot 10^{-5}$$

$$x_1 = 0.006 \text{ mol/L}$$

$$x_2 = -0.006 \text{ mol/L}$$

 x_2 kann offensichtlich nicht die Lösung sein. Schließlich gibt es keine negativen Konzentrationen. Also beträgt die Oxonium-Konzentration 0,006 mol/L. Damit ist der pH-Wert der Lösung

$$pH = -\log(0,006 \text{ mol/L})$$

 $pH = 2,2$

Der pOH beträgt damit pOH = 11.8.

Bedeutet das nun, dass wir jedesmal, wenn wir den pH wissen wollen, eine quadratische Gleichung lösen müssen? Nun, obwohl das auch nicht dramatisch wäre, lautet die Antwort: Nein.

Bei einer starken Säure darf man dafür ausgehen, dass sie nahezu vollständig dissoziert ist. Das bedeutet, dass die Oxonium-Konzentration in etwa der der ursprunglich vorhandenen Säure [HA]₀ entpsricht.

$$pH = -\log[HA]_0$$
 starke Säure (23)

Auch bei einer schwachen Säure gibt es eine näherungsweise Bestimmung:

$$[H_3O^+] = K_S \cdot \frac{[HA]}{[A^-]} \qquad x = K_S \cdot \frac{[HA]_0 - x}{x}$$
 (24)

$$0 = x^2 + K_S \cdot x - K_S \cdot [HA]_0$$
 (25)

Da bei einer schwachen Säure K_S sehr klein ist und auch x eher ein kleiner Wert ist, vereinfachen wir die quadratische Gleichung weiter:

$$0 = x^2 - K_S \cdot [HA]_0 \qquad x^2 = K_S \cdot [HA]_0$$
 (26)

$$x = \sqrt{K_S \cdot [\text{HA}]_0} \tag{27}$$

$$pH = -\log\left(K_S \cdot [HA]_0\right)^{\frac{1}{2}} \tag{28}$$

$$pH = \frac{1}{2} \left(-\log(K_S) - \log[HA]_0 \right)$$
 (29)

$$pH = \frac{1}{2} \left(pK_S - \log[HA]_0 \right) \qquad \text{schwache Säure}$$
 (30)

Wieder führen völlig analoge Überlegungen zu den entsprechenden Gleichungen für Basen:

$$pOH = -\log[B]_0$$
 starke Base (31)

$$pOH = \frac{1}{2} \left(pK_B - \log[B]_0 \right) \quad \text{schwache Base}$$
 (32)

Zuletzt gilt dann auch noch diese praktische Beziehung zwischen pK_S und pK_B korrespondierender Säure/Base-Paare

$$14 = pK_S + pK_B, \tag{33}$$

die wir unbewiesen hinnehmen wollen.⁶ Tabelle 3 fasst alle Formeln, die Sie kennen sollten, noch einmal zusammen.

3 Beispiele für Rechenaufgaben

^{6.} Alle Interessierten können den Beweis gerne versuchen, er ist nicht schwer.

TABELLE 3: Übersicht über alle Formeln

Anwendung	Formel
pH und pOH	pH + pOH = 14
pK_S und pK_B	$pK_S + pK_B = 14$
starke Säure	$pH = -\log[S\"{a}ure]$
schwache Säure	$pH = \frac{1}{2}(pK_S - \log[S\"{a}ure])$
starke Base	$pOH = -\log[Base]$
schwache Base	$pOH = \frac{1}{2}(pK_B - \log[Base])$
Henderson-Hasselbalch	$pH = pK_S - \log\left(\frac{[HA]}{[A^-]}\right)$

Beispiel 1.

Berechnen Sie den pH-Wert einer 2,4 M Ammoniak-Lösung (p K_B = 4,7) auf exaktem Weg. Lösung:

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$

Die exakte Berechnung erfolgt über das Gleichgewicht, also über des Massenwirkungsgesetz:

$$K_B = \frac{[NH_4^+] \cdot [OH^-]}{[NH_3]}$$
 $K_B = \frac{x^2}{2.4 - x}$

Damit ergibt sich eine quadratische Gleichung:

$$0 = x^{2} + K_{B} \cdot x - 2.4 \cdot K_{B}$$

$$0 = x^{2} + 10^{-pK_{B}} \cdot x - 2.4 \cdot 10^{-pK_{B}}$$

$$0 = x^{2} + 2.0 \cdot 10^{-5} \cdot x - 4.8 \cdot 10^{-5}$$

Wir erhalten die folgende Lösung:

$$x = [OH^{-}] = 0,0069 \text{ mol/L}$$

 $\Rightarrow pOH = 2,2 \text{ und } pH = 11,8$

Beispiel 2.

Berechnen Sie den pH-Wert einen Salzsäure (p $K_S = -6,2$) Lösung mit c = 0,5 mmol/L. Lösung:

$$HCl + H_2O \rightleftharpoons Cl^- + H_3O^+$$

Salzsäure ist *die* klassische starke Säure, p $K_S = -6.2$ ist deutlich unter Null. Achten Sie darauf, die richtige Einheit für die Konzentration zu verwenden!

$$pH = -\log[HCl]$$

$$pH = -\log 0.5 \cdot 10^{-3} \text{ mol/L}$$

$$pH = 3.3$$

Die Lösung hat pH = 3,3.

Beispiel 3.

Berechnen Sie den pH-Wert einer Blausäure (p $K_S = 9,4$) mit c = 0,25 mol/L. Lösung:

$$HCN + H_2O \rightleftharpoons CN^- + H_3O^+$$

Blausäure ist eine recht schwache wenn auch eine äußerst giftige Säure, p $K_S = 9,4$ ist klar über Null.

$$pH = \frac{1}{2} \cdot (pK_S - \log[HCN])$$

$$pH = \frac{1}{2} \cdot (9.4 - \log 0.25 \text{ mol/L})$$

$$pH = 5.0$$

Die Lösung hat pH = 5,0.

4 Aufgaben

1. Übung

Welche ist die korrespondierende Base von:

a) H_3PO_4 b) $H_2PO_4^-$ c) NH_3 d) HS^- e) H_2SO_4 f) HCO_3^-

2. Übung

Welche ist die korrespondierende Säure von:

a) H₂O

b) HS⁻

c) NH_3 d) $H_2AsO_4^-$ e) F^- f) NO_2^-

3. Übung

Identifizieren Sie alle Brønstedt-Säuren und -Basen:

a) $NH_3 + HCl \longrightarrow NH_4^+ + Cl^-$

b) $HSO_4^- + CN^- \Longrightarrow HCN + SO_4^{2-}$

c) $H_2PO_4^- + CO_3^{2-} \Longrightarrow HPO_4^{2-} + HCO_3^-$ d) $H_3O^+ + HS^- \Longrightarrow H_2S + H_2O$

e) $N_2H_4 + HSO_4^- \longrightarrow N_2H_5^+ + SO_4^{2-}$ f) $H_2O + NH_4^+ \longrightarrow NH_3 + H_3O^+$

4. Übung

Formulieren Sie das Protolyse-Gleichgewicht folgender Brønstedt-Säuren:

a) H₂O

b) HF

c) HSO_3^- d) NH_4^+

e) HOCl

5. Übung

Formulieren Sie das Protolyse-Gleichgewicht folgender Brønstedt-Basen:

a) OH-

b) N^{3-} c) H_2O d) HCO_3^- e) O^{2-} f) SO_4^{2-}

6. Übung

Bestimmen Sie die Konzentration [H⁺] und [OH⁻] in folgenden Lösungen:

a) 0,015 mol/L HNO₃

b) 0,0025 mol/L Ba(OH)₂

c) 0,000 30 mol/L HCl

d) $0.016 \text{ mol/L Ca(OH)}_2$

7. Übung

Welchen pH-Wert haben folgende Lösungen:

a)
$$[H^+] = 7.3 \cdot 10^{-5} \text{ mol/L}$$

b)
$$[H^+] = 0.084 \,\text{mol/L}$$

c)
$$[H^+] = 3.9 \cdot 10^{-8} \text{ mol/L}$$

d)
$$[OH^{-}] = 3.3 \cdot 10^{-4} \text{ mol/L}$$

e)
$$[OH^{-}] = 0.042 \text{ mol/L}$$

8. Übung

Wie groß sind [H⁺] und [OH⁻] wenn folgende Werte gemessen wurden:

a)
$$pH = 1,23$$

b)
$$pH = 10.92$$

c)
$$pOH = 4.32$$

d)
$$pOH = 12,34$$
 e) $pOH = 0,16$

e)
$$pOH = 0.16$$

9. Übung

Welchen pH-Wert hat eine Lösung von 0,30 mol/L NH₃?

10. Übung

Wieviel Mol Flusssäure benötigt man, um 500 mL einer Lösung mit pH = 2,60 herzustellen?

11. Übung

Welchen pH-Wert hat eine Lösung von 0,12 mol Cyansäure (HOCN, p $K_S = 3,9$) pro Liter?

12. Übung

Dichloressigsäure (Cl₂HCCOOH), eine einprotonige Säure, ist bei einer Konzentration von 0,20 mol/L zu 33 % dissoziiert. Wie groß sind K_S , p K_S , pH und pOH?

13. Übung

In einer Lösung von Benzylamin (C₆H₅CH₂NH₂) mit einer Konzentration von 250 mmol/L ist $[OH^-] = 2.4 \cdot 10^{-3} \text{ mol/L}$. Wie groß sind p K_B und pH?

14. Übung

Für Milchsäure ist $K_S = 1.5 \cdot 10^{-4} \, \text{mol/L}$. Wie groß ist der pH, wenn 0,16 mol/L Milchsäure in Lösung sind?

15. Übung

Wie groß sind die Konzentrationen von N₂H₅⁺, OH⁻ und N₂H₄ (Hydrazin), in einer Lösung von 0,15 mol/L Hydrazin?

Tabelle 4: pK_S - und pK_B -Werte einiger Säuren und Basen.

<u>·</u>	TABELLE 4. pkg und pkg werte einiger Sauren und Basen.					
Säure	Formel	K _S in mol/L	pK_S			
Oxonium	H_3O^+	5,5	-1,7			
Wasser	H_2O	$2,0\cdot 10^{-16}$	15,7			
Salzsäure	HCl	$1,3 \cdot 10^{6}$	-6,1			
Bromwasserstoff	HBr	$7,9 \cdot 10^{8}$	-8,9			
Flusssäure	HF	$6,6 \cdot 10^{-4}$	3,2			
Schwefelsäure	H_2SO_4	$1,0 \cdot 10^{3}$	-3,0			
	HSO_4^-	$1,2\cdot 10^{-2}$	1,9			
Salpetersäure	HNO_3	20,9	-1,3			
Phosphorsäure	H_3PO_4	$7.4 \cdot 10^{-3}$	2,1			
	$\mathrm{H_2PO_4}^-$	$6.3 \cdot 10^{-8}$	7,2			
	HPO_4^{2-}	$4,4 \cdot 10^{-13}$	12,4			
Kohlensäure	H_2CO_3	$3.0 \cdot 10^{-7}$	6,5			
	HCO_3^-	$4,0\cdot 10^{-11}$	10,4			
Blausäure	HCN	$4,0\cdot 10^{-10}$	9,4			
Essigsäure	CH ₃ COOH	$1.8 \cdot 10^{-5}$	4,7			
Ameisensäure	HCOOH	$1.8 \cdot 10^{-4}$	3,7			
Schwefel was serst off	H_2S	$1,2 \cdot 10^{-7}$	6,9			
	HS ⁻	$1,0\cdot 10^{-13}$	13,0			
Base	Formel	K_B	pK_B			
Hydroxid	OH ⁻	5,5	-1,7			
Wasser	H_2O	$2,0\cdot 10^{-16}$	15,7			
Ammoniak	NH_3	$1.8 \cdot 10^{-5}$	4,7			
Hydrazin	N_2H_4	$9.8 \cdot 10^{-7}$	6,0			
Methylamin	CH_3NH_2	$5,4 \cdot 10^{-4}$	3,3			
Anilin	$C_6H_5NH_2$	$4.3 \cdot 10^{-10}$	9,3			
Pyridin	C_5H_5N	$1,5 \cdot 10^{-9}$	8,8			

Lösungen

1. Lösung

- a) $H_2PO_4^-$
- b) HPO_4^{2-} c) HH_2^{-} d) S^{2-} e) HSO_4^{-} f) CO_3^{2-}

2. Lösung

- a) H_3O^+
- b) H₂S
- c) NH_4^+ d) H_3AsO_4 e) HF
- f) HNO₂

3. Lösung

- a) $NH_3 + HC1 \longrightarrow NH_4^+ + C1^-$ Säure Base
- c) $H_2PO_4^- + CO_3^{2-} \Longrightarrow HPO_4^{2-} + HCO_3^-$ Säure Base Säure
- e) $N_2H_4 + HSO_4^- \iff N_2H_5^+ + SO_4^{2-}$ Säure Säure Base
- b) $HSO_4^- + CN^- \Longrightarrow HCN + SO_4^{2-}$ Säure Säure Base
- d) $H_3O^+ + HS^- \Longrightarrow H_2S + H_2O$ Säure Säure Base
- f) $H_2O + NH_4^+ \longrightarrow NH_3 + H_3O^+$ Base Base Säure

4. Lösung

- a) $H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$
- b) HF + $H_2O \Longrightarrow H_3O^+ + F^-$
- c) $HSO_3^- + H_2O \implies H_3O^+ + SO_3^{2-}$
- d) $NH_4^+ + H_2O \Longrightarrow H_3O^+ + NH_3$
- e) $HOCl + H_2O \Longrightarrow H_3O^+ + {}^-OCl$

5. Lösung

- a) $OH^- + H_2O \Longrightarrow OH^- + H_2O$
- b) $N^{3-} + H_2O \implies OH^- + HN^{2-}$
- c) $H_2O + H_2O \Longrightarrow OH^- + H_3O^+$
- d) $HCO_3^- + H_2O \Longrightarrow OH^- + H_2CO_3$
- e) $O^{2-} + H_2O \Longrightarrow OH^- + OH^-$
- f) $SO_4^{2-} + H_2O \Longrightarrow OH^- + HSO_4^-$

6. Lösung

- a) $[H^+] = 0.015 \text{ mol/L}, [OH^-] = 6.67 \cdot 10^{-13} \text{ mol/L}$
- b) $[H^+] = 2.0 \cdot 10^{-12} \text{ mol/L}, [OH^-] = 0.005 \text{ mol/L}$
- c) $[H^+] = 0,000 30 \text{ mol/L}, [OH^-] = 3,3 \cdot 10^{-11} \text{ mol/L}$
- d) $[H^+] = 3.1 \cdot 10^{-13} \text{ mol/L}, [OH^-] = 0.032 \text{ mol/L}$

7. Lösung

a)
$$pH = 4.1$$

b)
$$pH = 1.1$$

c)
$$pH = 7.4$$

d)
$$pH = 10.5$$
 e) $pH = 12.6$

e)
$$pH = 12.6$$

8. Lösung

a)
$$[H^+] = 0.0589 \text{ mol/L}, [OH^-] = 1.70 \cdot 10^{-13} \text{ mol/L}$$

b)
$$[H^+] = 1.20 \cdot 10^{-11} \text{ mol/L}, [OH^-] = 8.32 \cdot 10^{-4} \text{ mol/L}$$

c)
$$[H^+] = 2.09 \cdot 10^{-10} \text{ mol/L}, [OH^-] = 4.79 \cdot 10^{-5} \text{ mol/L}$$

d)
$$[H^+] = 0.02188 \text{ mol/L}, [OH^-] = 5.571 \cdot 10^{-13} \text{ mol/L}$$

e)
$$[H^+] = 1.4 \cdot 10^{-14} \text{ mol/L}, [OH^-] = 0.69 \text{ mol/L}$$

9. Lösung

$$pH = 14 - \frac{1}{2}(4.7 - \log(0.30)) = 11.4$$

10. Lösung

$$pH = \frac{1}{2}(pK_S - \log[HF])$$

$$\log[HF] = pK_S - 2 \cdot pH$$

$$[HF] = 10^{pK_S - 2 \cdot pH} = 0.02 \text{ mol/L}$$

$$n(HF) = 0.01 \text{ mol}$$

11. Lösung

$$pH = \frac{1}{2} \left(pK_S - \log \left(\frac{n(HOCN)}{V} \right) \right) = 2.41$$

12. Lösung

Es gilt die Reaktionsgleichung

$$Cl_2CHCOOH + H_2O \Longrightarrow Cl_2HCOO^- + H_3O^+$$

und das Massenwirkungsgesetz

$$K_S = \frac{[\text{Cl}_2\text{HCOO}^-][\text{H}_3\text{O}^+]}{[\text{Cl}_2\text{HCOOH}]}.$$

Dass die Säure zu 33 % disoziiert ist, bedeutet, dass im Gleichgewicht gilt [Cl₂HCOOH] ≈ 2 · [Cl₂HCOO⁻] und dass 67 % der eingesetzten Säure im Gleichgewicht noch vorhanden sind. Damit ergeben sich die Gleichgewichts-Konzentrationen [Cl₂HCOOH] = 0,134 mol/L und $[Cl_2HCOO^-] = [H_3O^+] = 0,066 \text{ mol/L}$. Daraus errechnet sich die Säurekonstante zu $K_S =$ 0,033 mol/L und p $K_S=1.5$. Dichloressigsäure ist also eine vergleichsweise starke Säure. Aus der Gleichgewichts-Konzentration ergeben sich pH = 1.2 und pOH = 12.8.

13. Lösung

Für die Reaktion

$$C_6H_5CH_2NH_2 + H_2O \Longrightarrow C_6H_5CH_2NH_3^+ + OH^-$$

gilt das Massenwirkungsgesetz

$$K_B = \frac{[C_6 H_5 C H_2 N H_3^+][O H^-]}{[C_6 H_5 C H_2 N H_2]}.$$

Da im Gleichgewicht $[C_6H_5CH_2NH_3^+] = [OH^-]$ gilt und außerdem die Beziehung $[C_6H_5CH_2NH_2] + [C_6H_5CH_2NH_3^+] = 0,250$ mol/L erfüllt sein muss, ergeben sich $K_B = 2,3 \cdot 10^{-5}$ mol/L und p $K_B = 4.6$. Die Lösung hat damit den pH = 11.4.

14. Lösung

Mit Gleichung (30) gilt pH = $\frac{1}{2}$ (- log K_S - log[Milchsäure]), woraus sich pH = 2.3 errechnet.

15. Lösung

Es gilt die Reaktionsgleichung

$$N_2H_4 + H_2O \Longrightarrow N_2H_5^+ + OH^-$$

mit dem Massenwirkungsgesetz

$$K_B = \frac{[N_2 H_5^+][OH^-]}{[N_2 H_4]}$$
.

Für eine exakte Berechnung ergibt sich also die quadratische Gleichung

$$9.8 \cdot 10^{-7} = \frac{x \cdot x}{0.15 - x}$$

mit den Lösungen $x_1 = -3.8 \cdot 10^{-4}$ und $x_2 = 3.8 \cdot 10^{-4}$. Da es keine negativen Konzentrationen geben kann, ist die zweite Lösung die richtige und die Gleichgewichtskonzentrationen betragen $[N_2H_5^+] = [OH^-] = 3.8 \cdot 10^{-4}$ mol/L und $[N_2H_4] = 0.15$ mol/L. (Beachten Sie die Rechen- und Messgenauigkeit. Selbst wenn sich rechnerisch $[N_2H_4] = 0.1496$ mol/L ergeben, erlauben die gegebenen Zahlenwerte nur eine Genauigkeit von zwei signifikanten Stellen.)