Abdellatorn del Hatetallah Sheet 4 17012296 NOTES Derformance of Convolution; · CPU with a single core at 2.5 GHz that can perform eight single precises floating-point operations per Clack cycle. . CPU is connected to a DRAM with a park memory transfor rate at 25.6 GB/s · Cache size of 256 KB as fast as registers · Convolution of 20 image I of NXM size in main memory.

with a most M of size (2k+1) x (2k+1) - Compale an image Cof nxn $C[x][y] = \underbrace{\sum_{i=-k}^{k}}_{i=-k} \underbrace{\sum_{j=-k}^{k}}_{i=-k} \underbrace{\sum_{j=-k}$ for dl 05x, 9 ≤ n-1 I[x+i][y+j]=o if x+i<0 or x+i>n 9+ico or yrjan for 2 to ton for y = o ton for i=-k to K for j=-K to K if (x+i) > n or (x+i) < n or (y+jko or (y+j)>n I-cell = 0 I_cell = J[x+i][y+j] C[x][y]+= I-Cellx M[K-i] K-j/

	Share S	NOTE
· CPU: 3/6/1/2 2.5	GHZ	
. CPU: 3/6Hz 2.5 8 single	Dat Person Po	at po gde
+10P> = 8x	1 x 2.5 GHZ =	20×10°FLOB
· CPU => 20 GFLOP/	/_	The second second
· CFU => 20 GFL017	5)	
DRAM => 25.6 GB	1-1	
· PINT 2200 OD	3	
. Cache => 256 KB		
		B. Silve M. Fr.
· Size of C nxn =>	88x 25/ x25/ -	612 40
	00 206 A 276 -	DIZKB Size of C
2 % Flor per loop	* loos = NXN	V16 V16
	$= 4k^2$	N2 /
	74	11 100/5
A 1172		
(i) loops = 4 Kn2		
$= 4 \times 1 \times 256$	= 256 K Loo	Ps
		1-
· Total Flogos = 256	K x 2 = 512 KA	-Lops
	10/1/=	
· CPU tromputation = 5	A pun,	24.4×10-6 Beauty
14 1	OFLOPS =	24.4 MS
 Storage = n×n×8 + k = 524296 	Bullon Bullon	
~512KB	Dyres	
- B cache cycles =	2 x 9.54-M	54
-2 cache cycles =	119.08 45	
Nile	/	

fexer > 24.4 Mg+ 19.1 Ms = 43.5 Ms 512k = 11.226Flogs, Performance = 56.124%. (ii) loops = 4 12 n2 = 6.25 Mhoops Flops = 12.5 MFLops Storage = 512.2 KB 3 cache gde = 9.54 x 3 = 28.62 Ms t computer = 12.5 M = 620.35 M5 texa > 610.35+28.62 = 639 us 12.5 M = 30 19.10336 = 19.1 6FLOP(5 Performance = 95% (iii) using both spacial & Temporal Locality

(2) Cade line L = Site of (float) * 16	NOTES,
A,B, NXN, N= 1024	
	7 _ 3
Cij = A ; + Bij for wel is;	
a) Calculate misses of cache	-
	77.0
1 miss each new your	
Total Misses (1024)	100000000000000000000000000000000000000
b) 1 miss each cell	N Marie
Total misses (1024 × 1024)	The Man
= 1,048,576 misses	
how wise would be faster less	cooks
(Des)	coone nuises
0.000	
NILE	

```
#include <math.h>
#include <pthread.h>
#define N 1024
uint64_t A[N][N];
uint64_t B[N][N];
uint64_t C[N][N];
uint64 t n = 1024:
uint64_t X[1024];
using namespace std;
double Riemann_Zeta(double s, uint64_t k){
   double result = 0.0;
   for (uint64_t i = 1; i < k; i++){
        for (uint64_t j = 1; j < k; j++){
            result += (2 *(i&1)-1/pow(i+j, s));
   return result*pow(2, s);
void *worker_thread_example(void *arg){
   uint64_t k = (uint64_t)arg;
   X[k] = Riemann_Zeta(2,k);
   pthread_exit(NULL);
void example(){
   pthread_t threads[n];
   uint64_t Y[1024];
    for(uint64_t k = 0; k < n; k++){
        int ret = pthread_create(&threads[k], NULL, &worker_thread_example, (void*)k);
        if(ret != 0){
            printf("Error: pthread_create() failed\n");
            exit(EXIT_FAILURE);
   for (int i =0; i < n; i++){
        pthread_join(threads[i], NULL);
   for(uint64_t k = 0; k < n; k++){
        Y[k] = Riemann_Zeta(2, k);
   for(uint64_t k = 0; k < n; k++){
        cout << X[k] << "-" << Y[k] << "=" << X[k]-Y[k] << endl;
void row_sum(uint64_t row){
    for(uint64_t i = 0; i < N; i++){
        C[row][i] = A[row][i] + B[row][i];
void *worker_thread(void *arg){
   uint64 t row = (uint64 t)arg;
   row_sum(row);
   pthread_exit(NULL);
main.cpp
                                                                                                                                                                                                      Top
                                                                                                                                                                                        49,1
```

#include <stdio.h> #include <iostream>

```
for(uint64 t i = 0: i < N: i++){
       C[row][i] = A[row][i] + B[row][i]:
void *worker thread(void *arg){
  uint64 t row = (uint64 t)arg:
   row sum(row);
   pthread exit(NULL);
void matrix addition(){
   pthread t threads[N]:
// Init A and B
   for (int i = 0: i < N: i++) {
       for(int i = 0: i < N: i++){
           A[i][i] = i*N + i:
           B[i][i] = i*N + i:
   for(uint64 t i = 0: i < N: i++){}
       int ret = pthread create(&threads[i], NULL, &worker thread, (void *)i):
       if(ret != 0){
           printf("Error: pthread create() failed\n"):
           exit(EXIT FAILURE):
   for (int i =0; i < N; i++){
       pthread_join(threads[i], NULL);
int main(){
   matrix addition():
   return 0;
```

void row sum(uint64 t row){

main.cpp