```
In [1]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
 In [2]:
          %matplotlib inline
 In [3]:
          from sklearn.ensemble import RandomForestClassifier
          from sklearn import preprocessing
          from sklearn.preprocessing import StandardScaler
          from sklearn import svm
          from sklearn.model selection import cross val score
          from sklearn.pipeline import make pipeline
 In [4]:
          import datetime
In [59]:
          ##Importing data
          train = pd.read csv('train.csv', nrows = 100000).dropna()
          train = train.sample(frac=0.01, random state=99)
          train.head()
                 date_time site_name posa_continent user_location_country user_location_region user_
Out[59]:
                 2013-02-
                                  2
          54146
                       27
                                                3
                                                                  66
                                                                                    288
                  11:09:47
                 2014-04-
          73939
                                                3
                                                                  66
                                                                                    442
                  18:36:32
                  2014-12-
          41988
                                  2
                                                3
                                                                  66
                                                                                    462
                       25
                  22:02:39
                  2013-12-
                                                                                    442
          29834
                                  2
                                                3
                                                                  66
                      16
                  19:47:34
```

3

205

5 rows × 24 columns

67723

2014-04-

17 18:53:37 34

354

```
In [6]:
    destinations = pd.read_csv('destinations.csv')
    destinations.head()
```

Out[6]:		srch_destination_id	d1	d2	d3	d4	d5	d6	
	0	0	-2.198657	-2.198657	-2.198657	-2.198657	-2.198657	-1.897627	-2.19
	1	1	-2.181690	-2.181690	-2.181690	-2.082564	-2.181690	-2.165028	-2.18
	2	2	-2.183490	-2.224164	-2.224164	-2.189562	-2.105819	-2.075407	-2.22
	3	3	-2.177409	-2.177409	-2.177409	-2.177409	-2.177409	-2.115485	-2.17
	4	4	-2.189562	-2.187783	-2.194008	-2.171153	-2.152303	-2.056618	-2.19

5 rows × 150 columns

```
In [8]: test = pd.read_csv('test.csv', nrows=100000)
    test
```

Out[8]:		id	date_time	site_name	posa_continent	user_location_country	user_location_regic
	0	0	2015-09- 03 17:09:54	2	3	66	17
	1	1	2015-09- 24 17:38:35	2	3	66	17
	2	2	2015-06- 07 15:53:02	2	3	66	14
	3	3	2015-09- 14 14:49:10	2	3	66	25
	4	4	2015-07- 17 09:32:04	2	3	66	46
		•••					
Ş	9995	99995	2015-07- 15 05:16:04	2	3	66	44
ę	9996	99996	2015-09- 08 00:31:42	2	3	66	42
Ş	99997	99997	2015-09- 15 02:20:39	2	3	0	27
9	9998	99998	2015-09- 22 21:36:29	2	3	66	44
9	9999	99999	2015-05- 11 09:32:58	2	3	66	18

100000 rows × 22 columns

```
plt.figure(figsize=(12, 6))
sns.distplot(train['hotel_cluster'])
##Creating histogram of hotel clusters range
```

/Users/aarondrexler/opt/anaconda3/lib/python3.8/site-packages/seaborn/distribu tions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level f unction for histograms).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='hotel_cluster', ylabel='Density'>


```
def month(i):
    if i is not None and type(i) is not float:
        try:
            return datetime.strptime(i, '%Y-%m-%d').month
        except:
            return datetime.strptime(i, '%Y-%m-%d %H:%M:%S').month
    else:
        return 1
    pass
##Gets month of the date
```

```
In [13]:
          ##Gets year and month from date time in train df
          train['date_time_year'] = pd.Series(train.date_time, index = train.index)
          train['date time month'] = pd.Series(train.date time, index = train.index)
In [15]:
          train.date time year = train.date time year.apply(lambda i: year(i))
          train.date time month = train.date time month.apply(lambda i: month(i))
          del train['date time']
In [16]:
          ##Gets year and month from check in in train df
          train['srch ci year'] = pd.Series(train.srch ci, index = train.index)
          train['srch ci month'] = pd.Series(train.srch ci, index = train.index)
In [18]:
          train.srch ci year = train.srch ci year.apply(lambda i: year(i))
          train.srch_ci_month = train.srch_ci_month.apply(lambda i: month(i))
          del train['srch_ci']
In [19]:
          ##Gets year and month from check out in train df
          train['srch_co_year'] = pd.Series(train.srch_co, index = train.index)
          train['srch co month'] = pd.Series(train.srch co, index = train.index)
In [20]:
          train.srch co year = train.srch co year.apply(lambda i: year(i))
          train.srch co month = train.srch co month.apply(lambda i: month(i))
          del train['srch_co']
In [21]:
          train
```

Out[21]:		site_name	posa_continent	user_location_country	user_location_region	user_location_ci
	54146	2	3	66	288	1920
	73939	2	3	66	442	2862
	41988	2	3	66	462	1148
	29834	2	3	66	442	4916
	67723	34	3	205	354	4149
	•••					
	27897	13	1	46	172	5472
	92954	2	3	66	333	2319
	20135	2	3	66	220	208
	10848	2	3	66	314	486
	40849	2	3	66	258	468

630 rows × 27 columns

```
fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
sns.heatmap(train.corr())
##Correlation heat map
```

Out[23]: <AxesSubplot:>

In [24]:

train.corr()["hotel_cluster"].sort_values()
##Sorted correlation values in comparison to hotel cluster

```
Out[24]: date_time_year
                                      -0.091839
         srch ci year
                                      -0.082198
         srch co year
                                     -0.080500
         hotel country
                                      -0.056714
         srch rm cnt
                                     -0.049394
         srch adults cnt
                                     -0.046789
         orig_destination_distance
                                      -0.029632
         srch_destination id
                                      -0.025882
         user location country
                                      -0.008373
         srch children cnt
                                      -0.006115
         srch destination type id
                                      -0.004883
         hotel market
                                      -0.003073
         is booking
                                      -0.001563
         site_name
                                       0.000731
         cnt
                                       0.010512
         date time month
                                       0.014342
         user id
                                       0.015190
         posa_continent
                                       0.021725
         is mobile
                                       0.022681
         channel
                                       0.023892
         user_location_city
                                       0.024813
         hotel continent
                                       0.040043
         srch_ci_month
                                       0.050803
         srch co month
                                       0.054467
         user_location_region
                                       0.056181
         is package
                                       0.091786
         hotel cluster
                                       1.000000
         Name: hotel_cluster, dtype: float64
In [40]:
          group = [train.groupby(['srch_destination_id','hotel country','hotel market',
          a = pd.concat(group).groupby(level=[0,1,2,3]).sum()
          a.dropna(inplace=True)
In [41]:
          a['sum and cnt'] = 0.80*a['sum'] + 0.20*a['count']
          a = a.groupby(level=[0,1,2]).apply(lambda i: i.astype(float)/i.sum())
          a.reset index(inplace=True)
In [42]:
          pivot = a.pivot table(index=['srch destination id','hotel country','hotel mar
          pivot.head(10)
          ## Creates group by in order to organize, sort, prioritize data to creat pivo
```

Out[42]:	hotel_cluster	srch_destination_id	hotel_country	hotel_market	2	7	10	15	16	18
	0	486	50	726	NaN	NaN	NaN	NaN	1.0	NaN
	1	3628	50	689	NaN	NaN	NaN	NaN	NaN	NaN
	2	3637	50	366	NaN	NaN	NaN	NaN	NaN	NaN
	3	3744	50	1630	NaN	NaN	NaN	NaN	NaN	NaN
	4	3754	50	350	NaN	NaN	NaN	NaN	NaN	NaN
	5	3935	50	661	NaN	NaN	NaN	NaN	NaN	NaN
	6	4348	50	1101	NaN	1.0	NaN	NaN	NaN	NaN
	7	5405	8	126	NaN	NaN	NaN	NaN	NaN	NaN
	8	5736	50	365	NaN	NaN	NaN	NaN	NaN	NaN
	9	8239	50	407	NaN	NaN	NaN	NaN	NaN	NaN

10 rows × 37 columns

```
In [44]:
          train = pd.merge(train, destinations, on='srch destination id')
          train = pd.merge(train, pivot, on=['srch destination id', 'hotel country', 'hot
          train.fillna(0, inplace=True)
          ##Merge destinations and pivot tables
In [45]:
          train = train.loc[train['is booking'] == 1]
          ##Only want to include events that are for booking
In [50]:
          X = train.drop(['user_id', 'hotel_cluster', 'is_booking'], axis=1)
          y = train.hotel cluster
          X.shape, y.shape
          ##Pulls and creates x and y to be used in models
Out[50]: ((54, 390), (54,))
In [56]:
          from sklearn.linear_model import LogisticRegression
          classifier = make pipeline(preprocessing.StandardScaler(), LogisticRegression
          np.mean(cross val score(classifier, X, y))
          ##Logistic Regression of data
         /Users/aarondrexler/opt/anaconda3/lib/python3.8/site-packages/sklearn/model se
```

lection/_split.py:676: UserWarning: The least populated class in y has only 1 members, which is less than n_splits=5.
warnings.warn(

Out[56]: 0.33272727272727

In [57]:
 from sklearn.neighbors import KNeighborsClassifier
 classifier = make_pipeline(preprocessing.StandardScaler(), KNeighborsClassifier
 np.mean(cross_val_score(classifier, X, y, scoring='accuracy'))
 ##K-nearest neighbors of data

/Users/aarondrexler/opt/anaconda3/lib/python3.8/site-packages/sklearn/model_se
lection/_split.py:676: UserWarning: The least populated class in y has only 1
 members, which is less than n_splits=5.
 warnings.warn(
Out[57]: 0.149090909090908
In []: