EECS 738 – Machine Learning

Lab 3

Linear and Logistic Regression

Announcements

- Everything related to the submission requirements is included in the comments in the code
- These slides are a review of the linear and logistic regression and the functions needed for completing the code

Simple linear Regression

Simple linear Regression

linear Regression with Multiple Features

In original version we had:

X = house size, use this to predict

y = house price

Now we have more variables (such as number of bedrooms, number floors, age of the home)

Now we have multiple features

$$\bullet \ h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

For example

$$h_{\theta}(x) = 80 + 0.1x_1 + 0.01x_2 + 3x_3 - 2x_4$$

- An example of a hypothesis which is trying to predict the price of a house
- Parameters are still determined through a cost function

Cost Function (squared error)

- Fitting parameters for the hypothesis with gradient descent
 - \circ Parameters are θ_o to θ_n
 - \circ Instead of thinking about this as n separate values, think about the parameters as a single vector (θ)
 - Where θ is n+1 dimensional
- Our cost function is

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Gradient Descent

 We apply Gradient descent to find the minimum of the squared error cost function.

- "Gradient descent is a first-order iterative optimization algorithm. To find a local minimum of a function using gradient descent, one takes steps proportional to the *negative* of the gradient (or of the approximate gradient) of the function at the current point." (Wikipedia)
- This must have been be covered in class...

Gradient descent to Linear Regression

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Linear Regression Model

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient Descent

Repeat $\left\{ \begin{array}{l} \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ \text{(simultaneously update } \theta_j \text{ for } \\ j = 0, \dots, n) \, \right\} \end{array}$

- What's going on here?
 - We're doing this for each j (o until n) as a simultaneous update (like when n = 1)
 - \circ So, we re-set θ_i to
 - θ_i minus the learning rate (α) times the partial derivative of the θ vector with respect to θ_i
 - In non-calculus words, this means that we do
 - Learning rate
 - Times 1/m (makes the maths easier)
 - Times the sum of
 - The hypothesis taking in the variable vector, minus the actual value, times the j-th value in that variable vector for EACH example

Linear Regression #Iterations

Number of iterations:

Number of iterations varies a lot 30 iterations

3000 iterations

3000 000 iterations

Very hard to tell in advance how many iterations will be needed

Can often make a guess based a plot like this after the first 100 or so iterations

Learning Rate

alpha:

Rule a thumb regarding acceptable ranges

- -3 to +3 is generally fine any bigger bad
- -1/3 to +1/3 is ok any smaller bad

If you plot $J(\theta)$ vs iterations and see the value is increasing - means you probably need a smaller α

Generally:

Try a range of alpha values Plot $J(\theta)$ vs number of iterations for each version of alpha Go for roughly threefold increases 0.001, 0.003, 0.01, 0.03. 0.1, 0.3

Normalization

- Can do mean normalization
 - Take a feature x_i
 - Replace it by (x_i mean)/max
 - So your values all have an average of about 0
- Can also use standard deviation for normalization (please apply this one!)
 - Take a feature x_i
 - Replace it by (x_i mean)/sd
 - So your values all have an average of about 0

- Where y is a discrete value
 - Develop the logistic regression algorithm to determine what class a new input should fall into
- Classification problems
 - Email -> spam/not spam?
 - Online transactions -> fraudulent?
 - Tumor -> Malignant/benign
- Variable in these problems is Y
 - Y is either 0 or 1
 - 0 = negative class (absence of something)
 - 1 = positive class (presence of something)
- Logistic regression is a classification algorithm don't be confused

Hypothesis Representation

- What function is used to represent our hypothesis in classification
- We want our classifier to output values between 0 and 1
 - When using linear regression we did $h_{\theta}(x) = (\theta^T x)$
 - For classification hypothesis representation we do $h_{\theta}(x) = g((\theta^T x))$
 - Where we define g(z)
 - z is a real number
 - $g(z) = 1/(1 + e^{-z})$

Decision Boundary

- One way of using the sigmoid function is;
 When the probability of y being 1 is greater than 0.5 then we can predict y = 1
- Else we predict y = 0

Redefined Cost Function

- Linear Regression: $cost(h_{\theta}(x^i), y) = 1/2(h_{\theta}(x^i) y^i)^2$
- We can also re-write this:

- $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x), y)$
- This is the cost you want the learning algorithm to pay if the outcome is $h_{\theta}(x)$ and the actual outcome is y
- If we use this function for logistic regression this is a non-convex function for parameter optimization
 - Could work....
- What do we mean by non convex?
 - We have some function $J(\theta)$ for determining the parameters
 - Our hypothesis function has a non-linearity (sigmoid function of h_θ(x))
 - This is a complicated non-linear function
 - If you take $h_{\theta}(x)$ and plug it into the Cost() function, and them plug the Cost() function into $J(\theta)$ and plot $J(\theta)$ we find many local optimum \rightarrow non convex function
 - Why is this a problem
 - Lots of local minima mean gradient descent may not find the global optimum may get stuck in a global minimum
 - We would like a convex function so if you run gradient descent you converge to a global minimum

What does this actually mean?

 To get around this we need a different, convex Cost() function which means we can apply gradient descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

References

- https://www.coursera.org/learn/machinelearning/lecture/kCvQc/gradient-descent-for-linear-regression
- http://www.holehouse.org/mlclass/06 Logistic Regression.html
- http://www.holehouse.org/mlclass/04 Linear Regression with mult iple variables.html
- https://en.wikipedia.org/wiki/Gradient_descent