In [1]: !pip show astropy Name: astropy Version: 7.0.1 Summary: Astronomy and astrophysics core library Home-page: Author: Author-email: The Astropy Developers <astropy.team@gmail.com> License: BSD-3-Clause Location: C:\Users\btcya\Desktop\astronomy-course-programming\astrocourse\Lib\sit e-packages Requires: astropy-iers-data, numpy, packaging, pyerfa, PyYAML Required-by: In [2]: # Import the package

```
In [2]: # Import the package
import astropy

# Check the installed version
print(astropy.__version__)
```

7.0.1

Explanation of the Code

1. Import Required Libraries:

- numpy: For numerical operations.
- matplotlib.pyplot : For plotting data.
- astropy.io.fits: For reading FITS (Flexible Image Transport System) files.
- astropy.wcs: For handling World Coordinate System (WCS) information.
- astropy.table : For working with tabular data.
- astropy.visualization.make_lupton_rgb : For creating RGB images (not used in this code).
- plt.ion(): Enables interactive mode for Matplotlib, allowing plots to update dynamically.

2. Open and Read FITS File:

- The FITS file hst_results_nd.fits is opened using fits.open.
- The header (hdr) is extracted from the first HDU (Header Data Unit) to access metadata.
- A WCS object (wcs) is created from the header for celestial coordinate transformations.
- The data (data) is extracted from the first HDU.

3. Read the Table from FITS File:

• The FITS file is read as an Astropy table (t), which contains tabular data such as star positions and magnitudes.

4. Access and Print Table Information:

- The Right Ascension (RA) and Declination (DEC) of the first row in the table are extracted.
- The column names of the table are retrieved and printed.

5. Plot All Stars in the Table:

- A scatter plot is created using the RA and DEC values of all stars in the table.
- The x-axis is labeled as "RA", and the y-axis is labeled as "DEC".
- The plot is titled "All stars in the table".

6. Plot Stars with Smaller Red Markers:

- Another scatter plot is created with red circular markers ('ro') and a smaller marker size (markersize=1) for better distinction.
- The x-axis is labeled as "RA", and the y-axis is labeled as "DEC".
- The plot is titled "All stars in the table".

Summary:

- The code reads a FITS file containing astronomical data.
- It extracts the RA and DEC of stars from the table and plots them in two ways:
 - 1. A default scatter plot.
 - 2. A scatter plot with smaller red markers for better distinction.
- The WCS object (wcs) is initialized but not used in this code. It could be used for coordinate transformations if needed.

```
In [3]: import numpy as np
        import matplotlib.pyplot as plt
        from astropy.io import fits
        from astropy.wcs import WCS
        from astropy.table import Table
        from astropy.visualization import make_lupton_rgb
        plt.ion()
        hdul = fits.open('hst_results_nd.fits')
        hdr = hdul[0].header
        wcs = WCS(hdr)
        data = hdul[0].data
        t = Table.read('hst_results_nd.fits')
        # check all stars in the table which are the first row of the table
        ra = t[0]['RA']
        dec = t[0]['DEC']
        columns = t[0].colnames
        print(columns)
        # plot the table of all stars
        plt.figure()
        plt.plot(t['RA'], t['DEC'], 'o')
        plt.xlabel('RA')
        plt.ylabel('DEC')
        plt.title('All stars in the table')
        plt.show()
        # plot the start with smaller red spots so that they can be distinguished
        plt.figure()
        plt.plot(t['RA'], t['DEC'], 'ro', ls= 'None', markersize = 1)
        plt.xlabel('RA')
        plt.ylabel('DEC')
        plt.title('All stars in the table')
        plt.show()
```

['Name', 'RA', 'DEC', 'HST_WFC3_F225W', 'HST_WFC3_F275W', 'HST_WFC3_F336W', 'HST_ WFC3_F475W', 'HST_WFC3_F814W', 'HST_WFC3_F110W', 'HST_WFC3_F160W', 'Av_Best', 'Av _Exp', 'Av_p16', 'Av_p50', 'Av_p84', 'Rv_Best', 'Rv_Exp', 'Rv_p16', 'Rv_p50', 'Rv _p84', 'Rv_A_Best', 'Rv_A_Exp', 'Rv_A_p16', 'Rv_A_p50', 'Rv_A_p84', 'f_A_Best', 'f_A_Exp', 'f_A_p16', 'f_A_p50', 'f_A_p84', 'distance_Best', 'distance_Exp', 'dis tance_p16', 'distance_p50', 'distance_p84', 'radius_Best', 'radius_Exp', 'radius_p16', 'radius_p50', 'radius_p84', 'logL_Best', 'logL_Exp', 'logL_p16', 'logL_p5 0', 'logL_p84', 'logg_Best', 'logg_Exp', 'logg_p16', 'logg_p50', 'logg_p84', 'mbo lmag_Best', 'mbolmag_Exp', 'mbolmag_p16', 'mbolmag_p50', 'mbolmag_p84', 'logA_Bes
t', 'logA_Exp', 'logA_p16', 'logA_p50', 'logA_p84', 'logT_Best', 'logT_Exp', 'log T_p16', 'logT_p50', 'logT_p84', 'M_ini_Best', 'M_ini_Exp', 'M_ini_p16', 'M_ini_p5 0', 'M_ini_p84', 'M_act_Best', 'M_act_Exp', 'M_act_p16', 'M_act_p50', 'M_act_p8 4', 'Z_Best', 'Z_Exp', 'Z_p16', 'Z_p50', 'Z_p84', 'logHST_WFC3_F225W_nd_Best', 'l ogHST_WFC3_F225W_nd_Exp', 'logHST_WFC3_F225W_nd_p16', 'logHST_WFC3_F225W_nd_p50', 'logHST_WFC3_F225W_nd_p84', 'logHST_WFC3_F275W_nd_Best', 'logHST_WFC3_F275W nd Ex p', 'logHST_WFC3_F275W_nd_p16', 'logHST_WFC3_F275W_nd_p50', 'logHST_WFC3_F275W_nd _p84', 'logHST_WFC3_F336W_nd_Best', 'logHST_WFC3_F336W_nd_Exp', 'logHST_WFC3_F336 W_nd_p16', 'logHST_WFC3_F336W_nd_p50', 'logHST_WFC3_F336W_nd_p84', 'logHST_WFC3_F 475W_nd_Best', 'logHST_WFC3_F475W_nd_Exp', 'logHST_WFC3_F475W_nd_p16', 'logHST_WF C3_F475W_nd_p50', 'logHST_WFC3_F475W_nd_p84', 'logHST_WFC3_F814W_nd_Best', 'logHS $\label{total_wfc3_f814W_nd_exp', 'logHST_WFC3_f814W_nd_p16', 'logHST_WFC3_f814W_nd_p50', 'logHST_WFC3_f814W_nd_p$ gHST_WFC3_F814W_nd_p84', 'logHST_WFC3_F110W_nd_Best', 'logHST_WFC3_F110W_nd_Exp', 'logHST_WFC3_F110W_nd_p16', 'logHST_WFC3_F110W_nd_p50', 'logHST_WFC3_F110W_nd_p8 4', 'logHST_WFC3_F160W_nd_Best', 'logHST_WFC3_F160W_nd_Exp', 'logHST_WFC3_F160W_n d_p16', 'logHST_WFC3_F160W_nd_p50', 'logHST_WFC3_F160W_nd_p84', 'logGALEX_FUV_nd_ Best', 'logGALEX_FUV_nd_Exp', 'logGALEX_FUV_nd_p16', 'logGALEX_FUV_nd_p50', 'logG ALEX_FUV_nd_p84', 'logF_QION228_nd_Best', 'logF_QION228_nd_Exp', 'logF_QION228_nd _p16', 'logF_QION228_nd_p50', 'logF_QION228_nd_p84', 'logHST_WFC3_F225W_wd_Best', 'logHST_WFC3_F225W_wd_Exp', 'logHST_WFC3_F225W_wd_p16', 'logHST_WFC3_F225W_wd_p5 0', 'logHST_WFC3_F225W_wd_p84', 'logHST_WFC3_F275W_wd_Best', 'logHST_WFC3_F275W_w d_Exp', 'logHST_WFC3_F275W_wd_p16', 'logHST_WFC3_F275W_wd_p50', 'logHST_WFC3_F275 W_wd_p84', 'logHST_WFC3_F336W_wd_Best', 'logHST_WFC3_F336W_wd_Exp', 'logHST_WFC3_ F336W_wd_p16', 'logHST_WFC3_F336W_wd_p50', 'logHST_WFC3_F336W_wd_p84', 'logHST_WF C3_F475W_wd_Best', 'logHST_WFC3_F475W_wd_Exp', 'logHST_WFC3_F475W_wd_p16', 'logHS T_WFC3_F475W_wd_p50', 'logHST_WFC3_F475W_wd_p84', 'logHST_WFC3_F814W_wd_Best', 'l ogHST_WFC3_F814W_wd_Exp', 'logHST_WFC3_F814W_wd_p16', 'logHST_WFC3_F814W_wd_p50', 'logHST_WFC3_F814W_wd_p84', 'logHST_WFC3_F110W_wd_Best', 'logHST_WFC3_F110W_wd_Ex p', 'logHST_WFC3_F110W_wd_p16', 'logHST_WFC3_F110W_wd_p50', 'logHST_WFC3_F110W_wd _p84', 'logHST_WFC3_F160W_wd_Best', 'logHST_WFC3_F160W_wd_Exp', 'logHST_WFC3_F160 W_wd_p16', 'logHST_WFC3_F160W_wd_p50', 'logHST_WFC3_F160W_wd_p84', 'logGALEX_FUV_ wd Best', 'logGALEX FUV wd Exp', 'logGALEX FUV wd p16', 'logGALEX FUV wd p50', 'l ogGALEX_FUV_wd_p84', 'logF_QION228_wd_Best', 'logF_QION228_wd_Exp', 'logF_QION228 _wd_p16', 'logF_QION228_wd_p50', 'logF_QION228_wd_p84', 'symlogHST_WFC3_F225W_wd_ bias_Best', 'symlogHST_WFC3_F225W_wd_bias_Exp', 'symlogHST_WFC3_F225W_wd_bias_p1 6', 'symlogHST_WFC3_F225W_wd_bias_p50', 'symlogHST_WFC3_F225W_wd_bias_p84', 'syml ogHST_WFC3_F275W_wd_bias_Best', 'symlogHST_WFC3_F275W_wd_bias_Exp', 'symlogHST_WF C3_F275W_wd_bias_p16', 'symlogHST_WFC3_F275W_wd_bias_p50', 'symlogHST_WFC3_F275W_ wd bias p84', 'symlogHST WFC3 F336W wd bias Best', 'symlogHST WFC3 F336W wd bias Exp', 'symlogHST_WFC3_F336W_wd_bias_p16', 'symlogHST_WFC3_F336W_wd_bias_p50', 'sy mlogHST_WFC3_F336W_wd_bias_p84', 'symlogHST_WFC3_F475W_wd_bias_Best', 'symlogHST_ WFC3_F475W_wd_bias_Exp', 'symlogHST_WFC3_F475W_wd_bias_p16', 'symlogHST_WFC3_F475 W_wd_bias_p50', 'symlogHST_WFC3_F475W_wd_bias_p84', 'symlogHST_WFC3_F814W_wd_bias _Best', 'symlogHST_WFC3_F814W_wd_bias_Exp', 'symlogHST_WFC3_F814W_wd_bias_p16', 'symlogHST_WFC3_F814W_wd_bias_p50', 'symlogHST_WFC3_F814W_wd_bias_p84', 'symlogHS T_WFC3_F110W_wd_bias_Best', 'symlogHST_WFC3_F110W_wd_bias_Exp', 'symlogHST_WFC3_F 110W_wd_bias_p16', 'symlogHST_WFC3_F110W_wd_bias_p50', 'symlogHST_WFC3_F110W_wd_b ias_p84', 'symlogHST_WFC3_F160W_wd_bias_Best', 'symlogHST_WFC3_F160W_wd_bias_Ex p', 'symlogHST_WFC3_F160W_wd_bias_p16', 'symlogHST_WFC3_F160W_wd_bias_p50', 'syml ogHST_WFC3_F160W_wd_bias_p84', 'chi2min', 'Pmax', 'Pmax_indx', 'total_log_norm', 'best_gridsub_tag', 'reorder_tag', 'X', 'Y', 'F110W_RATE', 'F110W_RATERR', 'F110W

_VEGA', 'F110W_STD', 'F110W_ERR', 'F110W_CHI', 'F110W_SNR', 'F110W_SHARP', 'F110W_ROUND', 'F110W_CROWD', 'F110W_FLAG', 'F160W_RATE', 'F160W_RATERR', 'F160W_VEGA', 'F160W_STD', 'F160W_ERR', 'F160W_CHI', 'F160W_SNR', 'F160W_SHARP', 'F160W_ROUND', 'F160W_CROWD', 'F160W_FLAG', 'F225W_RATE', 'F225W_RATERR', 'F225W_VEGA', 'F225W_STD', 'F225W_ERR', 'F225W_CHI', 'F225W_SNR', 'F225W_SHARP', 'F225W_ROUND', 'F225W_CROWD', 'F225W_ERR', 'F275W_RATE', 'F275W_RATERR', 'F275W_VEGA', 'F275W_STD', 'F275W_ERR', 'F275W_CHI', 'F275W_SNR', 'F275W_SHARP', 'F275W_ROUND', 'F275W_CROWD', 'F275W_FLAG', 'F336W_RATE', 'F336W_RATERR', 'F336W_VEGA', 'F336W_STD', 'F336W_ERR', 'F336W_CHI', 'F336W_SNR', 'F336W_SHARP', 'F336W_ROUND', 'F336W_CROWD', 'F336W_FLAG', 'F475W_RATE', 'F475W_RATERR', 'F475W_VEGA', 'F475W_STD', 'F475W_ERR', 'F475W_CHI', 'F475W_SNR', 'F475W_SHARP', 'F475W_ROUND', 'F475W_CROWD', 'F475W_FLAG', 'F814W_RATE', 'F814W_RATERR', 'F814W_STD', 'F814W_ERR', 'F814W_CHI', 'F814W_SNR', 'F814W_SHARP', 'F814W_CROWD', 'F814W_FLAG', 'HST_WFC3_F336W_MD', 'reliable']

All stars in the table

All stars in the table

Explanation of the Code

1. Extract Relevant Data:

- age = t['logA_p50']: Extracts the logarithmic age of stars (logarithm of age in years).
- mass = t['M_ini_p50']: Extracts the initial mass of stars.
- f475w = t['F475W_VEGA'] : Extracts the F475W magnitude in the Vega system.
- f814w = t['F814W_VEGA']: Extracts the F814W magnitude in the Vega system.

2. Filter Stars by Age:

- young_stars = t[age < 8.5] : Filters stars with log(age) < 8.5, representing young stars.
- old_stars = t[age > 10]: Filters stars with log(age) > 10, representing old stars.

3. Create a Color-Magnitude Diagram (CMD):

- plt.figure(): Creates a new figure for the plot.
- plt.plot(f475w f814w, f814w, '.', markersize=1, label='All stars', color='gray'):
 - Plots all stars in gray, using the color index (F475W F814W) on the x-axis and the F814W magnitude on the y-axis.
- plt.ylim(26.5, 17.5): Sets the y-axis limits, inverted to show brighter stars at the top.

4. Plot Young and Old Stars:

- plt.plot(young_stars['F475W_VEGA'] young_stars['F814W_VEGA'],
 young_stars['F814W_VEGA'], 'bo', markersize=1, label='Young
 stars'):
 - Plots young stars in blue, using their color index and magnitude.
- plt.plot(old_stars['F475W_VEGA'] old_stars['F814W_VEGA'],old_stars['F814W_VEGA'], 'ro', markersize=1, label='Old stars'):
 - Plots old stars in red, using their color index and magnitude.

5. Add Labels and Legend:

- plt.xlabel('F475W-F814W'): Labels the x-axis as "F475W-F814W" (color index).
- plt.ylabel('F814W'): Labels the y-axis as "F814W" (magnitude).
- plt.legend(): Adds a legend to distinguish between all stars, young stars, and old stars.

6. Display and Save the Plot:

- plt.show(): Displays the plot.
- plt.savefig('cmd_by_age.png'): Saves the plot as an image file named cmd_by_age.png.

Output:

- A color-magnitude diagram (CMD) is generated:
 - **Gray points**: Represent all stars in the dataset.
 - **Blue points**: Represent young stars (log(age) < 8.5).
 - **Red points**: Represent old stars (log(age) > 10).
- The x-axis represents the color index (F475W F814W), and the y-axis represents the F814W magnitude (inverted for brighter stars).
- The plot is saved as cmd_by_age.png .\

Use Case:

This CMD is useful for analyzing the stellar population based on age:

- Young stars (blue) and old stars (red) are highlighted for comparison.
- The diagram helps identify trends in color and brightness for different age groups.

```
In [9]: # Extract relevant columns from the table
        age = t['logA_p50'] # Logarithmic age of stars (logarithm of age in years)
        mass = t['M_ini_p50'] # Initial mass of stars
        f475w = t['F475W_VEGA'] # F475W magnitude in the Vega system
        f814w = t['F814W VEGA'] # F814W magnitude in the Vega system
        # Filter stars based on age
        young_stars = t[age < 8.5] # Stars with log(age) < 8.5 (young stars)</pre>
        old_stars = t[age > 10] # Stars with Log(age) > 10 (old stars)
        # Create a color-magnitude diagram (CMD)
        plt.figure()
        # Plot all stars in gray
        plt.plot(f475w - f814w, f814w, '.', markersize=1, label='All stars', color='gray
        # Set y-axis limits (inverted for brighter stars)
        plt.ylim(26.5, 17.5)
        # Plot young stars in blue
        plt.plot(
            young_stars['F475W_VEGA'] - young_stars['F814W_VEGA'], # Color (F475W - F81
            young_stars['F814W_VEGA'], # Magnitude (F814W)
            'bo', markersize=1, label='Young stars'
```

```
# Plot old stars in red
plt.plot(
    old_stars['F475W_VEGA'] - old_stars['F814W_VEGA'], # Color (F475W - F814W)
    old_stars['F814W_VEGA'], # Magnitude (F814W)
    'ro', markersize=1, label='Old stars'
)

# Label the axes
plt.xlabel('F475W-F814W') # X-axis: Color index
plt.ylabel('F814W') # Y-axis: Magnitude

# Add a legend to distinguish between all stars, young stars, and old stars
plt.legend()
# Save the plot as an image file
plt.savefig('cmd_by_age.png')
# Display the plot
plt.show()
```


In []: