Answer any four questions

- Write down the microbial factors and environmental factors which can affect the biodegradation.
 Write down the mechanism of biodegradation of benzene/phenol. Briefly describe phytoremediation and its advantages
- 2. Design a conventional activated sludge plant to treat 20000 kl/d of settled solid of BOD is 200 mg/l. The effluent BOD is 30 mg/l. F/M ratio is 0.22,MLSS is 3000 mg/l. Adopt diffusion aeration system SVI = 90. Air required is 100 m³/d/kg of BOD removed. Standard diffusion plates of 0.3 m x 0.3 m x 25 mm and pore size is 0.3 mm.
 Define F/M ratio and sludge volume index
 15+5+5
- 3. Assuming suitable criteria, design a facultative waste stabilization pond to treat 4 MLD flow of sewage having 300 mg/L BOD₅. Desired effluent BOD₅ is 30 mg/L. Assume BOD removal rate constant as 0.1 d⁻¹ at 20 °C. The ponds are to operate at an altitude of 1000 m and 30° latitude in India. The wastewater temperature is 15 °C. Individual pond area and depth should not be more than 3 hectares and 1.5 m respectively. Organic loading rate is 182 kg BOD/ha/d. Hydraullic retention time 60 days on the basis of summer and winter conditions. Determine pond area, volume of pond, pond surface area and number of ponds.
- 4. Write down the difference between aerobic and anaerobic process.
 1st stage of BOD of a sample is 50 ppm. 5 day BOD at 20C is 41 ppm. What will be the reaction rate constant if the sample temperature is at 30C?
 Briefly describe activated sludge process and its application
 4+12+9
- Determine the values of bio-kinetic constant using the data given in table derived from the laboratory experiments carried out on the CFSTR model of an activated sludge process without recycle.

Table:

Sl No	Influent	Reactor substrate	Detention time,	Reactor biomass
	substrate conc,	concentration,	Days	concentration
	(mg/L)	(mg/L)		(mg/L)
1	350	12	3.8	132
2	350	20	2.6	130
3	350	34	1.8	132
4	350	60	1.3	123
5	350	70	1.2	119