Q1.	Consider the following code running in two cores. For this question we will use the ori	iginal
MSI	I protocol.	

- (1) LW x1, 0(x5)
- (2) LW x2, 0(x6)
- (3) SW x3, 0(x6)
- (4) SW x2, 0(x5)
- (5) LW x1, 0(x6)

Do not optimize or re-order the code. The addresses in x5 and x6 map to different cache lines. Assume the following execution sequence:

A.1, A.2, B.1, B.2, A.3, B.3, B.4, B.5 (A and B are the two cores).

- A.1 means Core A executes instruction 1, A.3 means Core A executes instruction 3 and so on
- a. Write a table such as the one shown below, with the states of the cache lines at every step. Assume they start with an invalid states initially.
- b. Which of these load/store requests cause cache to cache transfers of data?

Core and instruction	State of x5 cache line in Core A	State of x5 cache line in Core B	State of x6 cache line in Core A	State of x6 cache line in Core B
A.1 means Core A executes instruction 1				
A.2				
Etc. Add more rows here in your answer script				

Solution 1:

Core and instruction	State of x5 cache line in Core A	State of x5 cache line in Core B	State of x6 cache line in Core A	State of x6 cache line in Core B
A.1 means Core A executes LW x5	S	I	I	I
A.2 Lw x6	S	I	S	I
B1 Lw x5	S	S	S	1
B2 Lw x6	S	S	S	S
A3 Sw x6	S	S	М	I
B3 Sw x6	S	S	I	M
B4 Sw x5	I	М	I	M
B5 Lw x6	I	М	I	M

B1 and B2 – the highlighted ones cause cache to cache transfers

Q2: Repeat the same with MESI and MOESI. Which of these protocols reduce the number of bus accesses?