(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2003-245544

(P2003-245544A) (43)公開日 平成15年9月2日(2003.9.2)

(51) Int. Cl. ⁷	識別記号	FΙ					i	i-72-1'	(参考)
B01J 20/26		B01J	20/26			В	4C00	3	
A61F 13/00	301	A61F	13/00		301	M	4C08	1	
13/15		В01Ј	20/28			Z	4G06	6	
13/53		C08F	2/32				4J01	1	
A61L 15/16		2	290/04				4J02	7	
	審査請求	未請求	請求項	の数 5	ΟL	(全12	頁)	最終頁	に続く
(21)出願番号	特願2002-44587(P2002-44587)	(71) 出	上願人	0000028	86				
				大日本	インキ化	学工業树	朱式会	社	
(22)出願日	平成14年2月21日(2002.2.21)			東京都根	反橋区坂	下3丁目	135番	58号	
		(72) 発	門者	田中 美	导計				
				大阪府県	表大津市	二田町3	3 – 3	- 32	02
	•	(72) 発	門者	井手口	茂樹				
				大阪府界	表大津市	東雲町1	1-23	-102	
		(72) 発	色明者	長谷川	義起				
				兵庫県西	西宮市結	善町2-	-26-	503	
		(74)代	代理人	1000887	64				
				弁理士	高橋	勝利			
								最終頁	に続く

(54) 【発明の名称】吸水性材料

(57)【要約】

【課題】 血液に対する吸収特性が著しく低下すること のない吸水性材料を提供する。

【解決手段】 特定のリン酸エステル系界面活性剤の存在下で、分子内に少なくとも1つのエチレン製不飽和二重結合を有する非イオン性マクロモノマー(A-1)とエチレン製不飽和化合物とを反応して得られる、非イオン性吸水成分を含み、一次粒子が融着した構造を有し、平均粒子径が100~1000μm、かさ密度が0.1~0.6g/mlである吸水性樹脂粒子からなることを特徴とする吸水性材料に関する。

【特許請求の範囲】

【請求項1】非イオン性吸水成分を含み、一次粒子が融 着した構造を有し、平均粒子径が100~1000μ m、かさ密度が 0. 1~0. 6 g/ml である吸水性樹 脂粒子からなることを特徴とする吸水性材料。

1

【請求項2】非イオン性吸水成分が、非イオン性マクロ モノマー (A-1) 及び/又は非イオン性ポリマー (A -2)である請求項1記載の吸水性材料。

【請求項3】吸水性樹脂粒子が、下記一般式(1)で表 されるリン酸エステル系界面活性剤の存在下で、分子内 10 に少なくとも1つのエチレン性不飽和二重結合を有する 非イオン性マクロモノマー (A-1) と、エチレン性不 飽和化合物(B)とを反応させることにより得られるも のである請求項1記載の吸水性材料。

【化1】

$$\begin{array}{c}
O \\
\parallel \\
R'O - (CH_2CH_2O) & -P - OH \\
\downarrow \\
OR^2
\end{array}$$
(1)

[式中、R'は、炭素原子数が8~30のアルキル基、 又はアルキルアリール基を示し、nは1~30の整数を 示し、R² は水酸基又はR¹ O- (CH₂ CH₂ O)。 - (R¹及びnは前記と同様のものを示す)を示す。] 【請求項4】吸水性樹脂粒子が、下記一般式(1)で表 されるリン酸エステル系界面活性剤及び非イオン性ポリ マー(A-2)の存在下で、エチレン性不飽和化合物 (B) を反応させることにより得られるものである請求

【化2】

項1記載の吸水性材料。

$$\begin{array}{c}
O \\
\parallel \\
R^{1}O - (CH_{2}CH_{2}O) \\
0 - P - OH \\
\mid \\
OR^{2}
\end{array}$$
(1)

[式中、R¹は、炭素原子数が8~30のアルキル基、 又はアルキルアリール基を示し、nは1~30の整数を 示し、R² は水酸基又はR¹ O- (CH₂ CH₂ O)。 - (R¹ 及びnは前記と同様のものを示す)を示す。] 【請求項5】吸水性樹脂粒子が、下記一般式(1)で表 されるリン酸エステル系界面活性剤を含む不活性溶媒中 に、上記リン酸エステル系界面活性剤を含み、分子内に 40 少なくとも1つのエチレン性不飽和二重結合を有する非 イオン性マクロモノマー(A-1)及び/又は非イオン 性ポリマー(A-2)、エチレン性不飽和化合物(B) および架橋剤を含む水溶液と、ラジカル開始剤とを供給 して、油中水滴型逆相懸濁重合させて得た重合体粒子 に、表面架橋処理を施すことにより得られるものである 請求項1~4のいずれか1項に記載の吸水性材料。

【化3】

$$\begin{array}{c}
2 \\
O \\
\parallel \\
R'O-(CH_2CH_2O) & -P-OH \\
\downarrow \\
OR^2
\end{array}$$
(1)

[式中、R'は、炭素原子数が8~30のアルキル基、 又はアルキルアリール基を示し、nは1~30の整数を 示し、R² は水酸基又はR¹ O- (CH₂ CH₂ O) _n - (R¹及びnは前記と同様のものを示す)を示す。] 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規にして有用な る吸水性材料に関する。

[0002]

【従来の技術】従来、パンティライナーや生理用ナプキ ン等の血液吸収用物品としては、不織布等からなる液体 透過性の表面材と、ポリエチレンシート又はポリエチレ ンシートラミネート不織布等からなる液体不透過性の防 漏材との間に、物理的に血液を吸収し保持する親水性の 吸収紙や綿状パルプからなる吸収体を介在したものが知 られていた。この中で、吸収体の素材に関しては、吸収 紙やパルプ等に替えて、吸水性樹脂を用いることによる 血液の吸収容量の向上と、吸収後の血液の保持による漏 れ防止が提案されてきた。

【0003】この種の吸水性樹脂としては、これまで、 澱粉-アクリロニトリルグラフト共重合体の加水分解物 やカルボキシメチルセルロース架橋体、ポリアクリル酸 (塩) 架橋体、アクリル酸(塩) -ビニルアルコール共 重合体、ポリエチレンオキサイド架橋体等が知られてい る。しかし、これら従来からある吸水性樹脂は、血液で 30 はなく尿を吸収するために開発されたものであるため、 血液中のタンパク質や血球成分、組織分解物の高吸水性 樹脂表面における吸着によって粒子間の粘着が高めら れ、ゲルブロッキングが促進されるため、吸収特性が著 しく低下する問題点があった。

【0004】本問題点を解決し、血液に対する吸水性樹 脂の吸収性を改良する処方の1つとして、吸水性樹脂の 表面積を大きくする改質方法が知られている。そのよう な表面積の大きい吸水性樹脂凝集体を調製する1つの方 法として、リン酸エステル系界面活性剤を含む疎水性有 機溶媒中に、リン酸エステル系界面活性剤を含む水溶性 重合性モノマーの水溶液を供給して懸濁重合させる手法 が特開2001-2712号公報に開示されているが、 本方法も主に尿に対する加圧下吸収特性を改良等するた めに開発されたものであるため、血液の吸収特性を改善 するまでには至らなかった。

【0005】また界面活性剤の存在下に非イオン性マク ロモノマーを含む水溶性エチレン性不飽和単量体水溶液 を逆相懸濁重合することにより吸水性樹脂を得る方法が 特開平9-143210号公報に開示されているが、こ 50 の方法は塩類を含む水に対する吸水性を高めるものであ り、血液に対する吸水性は低いものである。

【0006】このようなことから、血液成分により、吸 収特性が著しく低下することのない吸水性材料の開発が 切望されていた。

[0007]

【発明が解決しようとする課題】従って、本発明の目的 は、特に血液に対する吸収特性を改善した吸水性材料を 提供することにある。

[0008]

【課題を解決するための手段】本発明者等は、上記課題 10 を解決すべく鋭意検討を重ねた結果、非イオン性吸水成 分を含み、特定の平均粒子径を有し、一次粒子が融着し た構造を有する吸水性樹脂粒子を用いることにより、吸 水性樹脂粒子の表面積を大きくして、血液に対するぬれ 性を改善することが可能になり、血液の吸収特性を改善 出来ることを見出し、本発明を完成するに至った。

【0009】即ち、本発明は、非イオン性吸水成分を含 み、一次粒子が融着した構造を有し、平均粒子径が10 0~1000μm、かさ密度が0.1~0.6g/ml である吸水性樹脂粒子からなることを特徴とする吸水性 20 材料を提供するものである。

[0010]

【発明の実施の形態】本発明を実施するにあたり、必要 な事項を具体的かつ詳細に以下に説明する。本発明の吸 水性材料は、非イオン性吸水成分を含む吸水性樹脂粒子 であって、該粒子は一次粒子が融着した構造を有し、平 均粒子径が100~1000μm、かさ密度が0.1~ 0.6g/m1、形状が非球形の吸水性樹脂粒子からな る吸水性材料である。

【0011】本発明に使用する吸水性樹脂粒子は、一次 30 粒子が融着した構造を有することが特徴である。この吸 水性樹脂粒子は、最初に形成される一次粒子が製造工程 中徐々に融着することにより形成されるものである。一 次粒子が融着した構造を有することにより、吸水性樹脂 粒子の表面積が大きくなり、血液に対するぬれ性を高め ることができる。

【0012】吸水性樹脂粒子の平均粒子径は、血液のぬ れ性を高めかつままこを形成しにくくするためには、該 粒子の平均粒子径が100~1000μmであることが 必要であり、100~500μmであることが好まし い。ここで本発明における平均粒子径は、後記実施例に おける平均粒子径の測定方法にしたがって求められた数 値に基づくものである。

【0013】吸水性樹脂粒子のかさ密度は、血液のぬれ 性を高くするためには、 $0.1\sim0.6g/m1$ である ことが必要であり、0.2~0.5g/m1であること が好ましい。かさ密度とは、気泡、空隙等を含む材料の 見掛け密度をいう。本発明におけるかさ密度 (ρ_k) の 数値は、材料の真の密度をρとし、空間率をεとし、材 計算される値に基づくものである。

【式1】

 $\rho_k = \rho \ (1 - \epsilon) \ (1 - p)$ 空間率 ε の値は、材料への物質のつめ方により変わりう る数値である。

【0014】本発明に使用する吸水性樹脂粒子を得るに は、特に制限されるものではないが、例えば一般式

(1) で表されるリン酸系界面活性剤の存在下に、分子 内に少なくとも1つのエチレン性不飽和二重結合を有す る非イオン性マクロモノマー(A-1)と、エチレン性 不飽和化合物(B)とを反応させる方法が挙げられる。 かかる反応の際、上記リン酸エステル系界面活性剤の存 在下で行うと、一次粒子が融着して、粒子の表面積を大 きくなり、血液のぬれ性を大きくすることができるの で、好ましい。

【化4】

[式中、R¹は炭素原子数が8~30のアルキル基又は

アルキルアリール基を示し、nは1~30の整数を示 し、R² は水酸基又はR¹ O- (CH₂ CH₂ O)。-(R¹及びnは前記と同様のものを示す)を示す。] 【0015】また本発明に使用する吸水性樹脂粒子が、 上記一般式(1)で表されるリン酸エステル系界面活性 剤及び非イオン性ポリマー(A-2)の存在下で、エチ レン性不飽和化合物(B)を反応させる方法も、上記と 同様の効果を得ることができるので好ましい方法であ る。これらの方法いずれでもよいが、一旦吸血した吸水 性樹脂に再度血液を添加した場合の繰り返し吸血性を比 較すると、分子内に少なくとも1つのエチレン性不飽和 二重結合を有する非イオン性マクロモノマー (A-1)

と、エチレン性不飽和化合物(B)とを反応させる方法

を用いた場合、得られる吸水性樹脂の繰り返し吸血性を

大きくすることができる点で、好ましい。

【0016】本発明で使用されるリン酸エステル系界面 活性剤は、上記一般式(1)で表される構造を有する。 上記式中、R'は炭素原子数が8~30のアルキル基又 はアルキルアリール基を示すが、工業的な入手し易さの 点で炭素原子数が8~23のアルキル基又はモノアルキ ルフェニル基であることが好ましい。これらの好ましい R' の例としては、ノニルフェニル基、オクチルフェニ ル基、トリデシル基、ラウリル基、2-エチルヘキシル 基、オクタデシル基、及びドデシルフェニル基等が挙げ られる。

【0017】上記式中、nは1~30の整数を示すが、 2~15であるのが好ましい。またR2は水酸基又はR ¹O-(CH2CH2O)。-(R¹及びnは前記と同 料固有の孔隙率を p とすることにより式 (A) によって 50 様のものを示す) を示すが、R¹ O - (CH2 CH

2 O) " - である場合、2 つの R' O - (CH₂ CH₂ O)。- は同一であるのが好ましい。

【0018】このリン酸エステル系界面活性剤の市販品 は、通常はリン酸モノエステルとリン酸ジエステルとの 混合物である。

【0019】本発明で使用する分子内に少なくとも1つ のエチレン性不飽和結合を有する非イオン性マクロモノ マー (A-1) としては、特に制限されるものではない が、例えばポリメチルメタクリレート、ポリスチレン、 リレート等の疎水基を有する疎水性マクロモノマー、シ リコーン系マクロモノマー、ポリアルキレングリコール 誘導体等が挙げられる。これらのうち、吸水性を有する 点でポリアルキレングリコール誘導体が好ましい。かか るポリアルキレングリコールとしては、例えば2-ヒド ロキシエチル (メタ) アクリレート、ヒドロキシプロピ ル (メタ) アクリレート、ポリエチレングリコールモノ (メタ) アクリレート、ポリ (エチレングリコーループ ロピレングリコール)モノ (メタ)アクリレート、ポリ エチレングリコールーポリプロピレングリコールモノ (メタ) アクリレート、ポリ (エチレングリコールーテ トラメチレングリコール)モノ(メタ)アクリレート、 ポリ(プロピレングリコールーテトラメチレングリコー ル) モノ(メタ) アクリレート、プロピレングリコール ポリブチレングリコールモノ (メタ) アクリレート等の 水酸基末端ポリアルキレングリコールモノ (メタ) アク リレート:メトキシポリエチレングリコールモノ(メ タ) アクリレート、オクトキシポリエチレングリコール ポリプロピレングリコールモノ (メタ) アクリレート、 ラウロキシポリエチレングリコールモノ (メタ) アクリ 30 レート、ステアロキシポリエチレングリコールモノ (メ タ) アクリレート、ステアロキシポリエチレングリコー ルーポリプロピレングリコールモノ (メタ) アクリレー ト、アリロキシポリエチレングリコールーポリプロピレ ングリコールモノ (メタ) アクリレート、ノニルフェノ キシポリエチレングリコールモノ (メタ) アクリレー ト、ノニルフェノキシポリエチレングリコールポリプロ ピレングリコールモノ (メタ) アクリレート、ノニルフ エノキシポリ(エチレングリコーループロピレングリコ ール)モノ(メタ)アクリレート等のアルキル基末端ポ 40 リアルキレングリコールモノ (メタ) アクリレート:ポ リエチレングリコールジ (メタ) アクリレート、ポリプ ロピレングリコールジ (メタ) アクリレート、ポリテト ラメチレングリコールジ (メタ) アクリレート、ポリ (エチレングリコールーテトラメチレングリコール) ジ (メタ) アクリレート、ポリ (プロピレングリコールー テトラメチレングリコール)ジ(メタ)アクリレート、 ポリエチレングリコールーポリプロピレングリコールー ポリエチレングリコールジ (メタ) アクリレート、エチ

レート、プロピレンオキサイド変性ビスフェノールAジ (メタ) アクリレート、エチレンオキサイドープロピレ ンオキサイド変性ビスフェノールAジ(メタ)アクリレ ート、プロピレンオキサイドテトラメチレンオキサイド 変性ビスフェノールAジ(メタ)アクリレート等のポリ アルキレングリコールジ (メタ) アクリレート;メトキ シポリ (エチレンオキシープロピレンオキシ) エチル・ イソプロペニルー α , α – ジメチルベンジルカルバミル エステル、エトキシポリ (エチレンオキシープロピレン スチレン-アクリロニトリル共重合体、ポリブチルアク 10 オキシ) エチル・イソプロペニルーα, αージメチルベ ンジルカルバミルエステル、n-ブトキシポリ (エチレ ンオキシープロピレンオキシ) エチル・イソプロペニル $-\alpha$, α -ジメチルベンジルカルバミルエステル等のカ ルバミルエステル類:ポリエチレングリコールアリルエ ーテル、メトキシポリエチレングリコールアリルエーテ ル、ポリエチレングリコールーポリプロピレングリコー ルアリルエーテル、ポリプロピレングリコールアリルエ ーテル、ブトキシポリエチレングリコールーポリプロピ レングリコールアリルエーテル、イソプロポキシポリエ 20 チレンオキシエチルアリルエーテル、ポリプロピレング リコールジアリルエーテル等のアルキレングリコール (メタ) アリルエーテル;等が挙げられる。

> 【0020】ここで「(メタ)アクリル」という用語 は、「アクリル」及び「メタクリル」を意味するものと する。また、本発明で使用する非イオン性ポリマー(A -2)としては、特に制限されるものではないが、吸水 性を有するものとして、例えばポリビニルアルコール、 ポリアクリルアミド、ポリアルキレンオキサイド誘導 体、デンプン等の多糖類等が挙げられる。

> 【0021】ポリアルキレンオキサイド誘導体として は、例えばポリエチレングリコール、ポリ(エチレング リコール) モノメチルエーテル、ポリ (エチレングリコ ール) グリセリルエーテル、ポリ(エチレングリコー ル) ジメチルエーテル、ポリプロピレングリコールジオ ール、ポリプロピレングリコールトリオール、ポリエチ レングリコールビスフェノールAエーテル、ポリプロピ レングリコールビスフェノールAエーテル、ポリエチレ ングリコールーポリプロピレングリコールビスフェノー ルAエーテル等が挙げられる。

【0022】また、多糖類としては例えば、馬鈴薯澱 粉、玉蜀黍澱粉、小麦澱粉、タピオカ澱粉、米澱粉、甘 **藷澱粉、サゴ澱粉、ワキシーコンス、ハイアミロースコ** ンス、小麦粉、米粉等のデンプン; 澱粉にモノマー、例 えば、アクリル酸エステル、メタクリル酸エステル、オ レフィン、スチレン等をグラフト共重合されたものや、 脂肪酸を反応させたもの、これらをデキストリン化、酸 化、酸処理、アルファー化処理、エーテル化、エステル 化、架橋化した変性デンプン;グーアガム、キチン、キ トサン、セルロース、アルギン酸、寒天等の多糖類;木 レンオキサイド変性ビスフェノールAジ(メタ)アクリ 50 材、葉、茎、ジン皮、種子毛などから得られるセルロー

キサ (メタ) アクリレート等を挙げることができる。

ス;アルキルエーテル化セルロース、有機酸エステル化 セルロース、カルボキシメチル化セルロース、酸化セル ロース、ヒドロキシアルキルエーテル化セルロースなど の加工セルロースが挙げられる。

【0023】また、ポリビニルアルコールとしては部分 ケン化型ポリビニルアルコール、完全ケン化型ポリビニ ルアルコール、さらには例えば末端をカルボキシル基変 性させたり、あるいはチオール基変性させたポリビニル アルコール誘導体が挙げられる。

【0024】本発明で使用するエチレン性不飽和化合物 10 (B) としては、分子内にエチレン性不飽和二重結合を 有し、かつ水溶性又は水混和性を有する化合物であれ ば、何れのものも使用できる。かかる化合物の具体例と しては、例えば(メタ)アクリル酸及び/又はそのアル カリ金属塩、アンモニウム塩、2- (メタ) アクリルア ミドー2-メチルスルホン酸及び/又はそのアルカリ金 属塩等のイオン性モノマー; (メタ) アクリルアミド、 N, N-ジメチルアクリルアミド、2-ヒドロキシエチ ル (メタ) アクリレート、N-メチロール (メタ) アク リルアミド等の非イオン性モノマー;ジエチルアミノエ 20 チル (メタ) アクリレート、ジメチルアミノプロピル (メタ) アクリレート等のアミノ基含有不飽和モノマー やそれらの四級化物等を挙げることができる。これらの うち一種又は二種以上を混合して用いることができる。 【0025】これらの中で、(メタ)アクリル酸及び/ 又はそのアルカリ金属塩、アルカリ土類金属塩、アンモ ニウム塩、(メタ) アクリルアミドが好ましい。アルカ リ金属塩としてはナトリウム塩、カリウム塩、リチウム 塩、ルビジウム塩等が挙げられ、またアルカリ土類金属 塩としては、カルシウム塩、マグネシウム塩等が挙げら 30 れる。ここで「(メタ)アクリル」という用語は、「ア クリル」及び「メタクリル」を意味するものとする。

【0026】またエチレン性不飽和化合物(B)は、2 個以上のエチレン性不飽和基を有する多官能エチレン性 不飽和化合物もしくは2個以上の反応性基を有する化合 物を架橋剤として併用することにより、吸水特性を発現 することが出来る。

【0027】かかる多官能エチレン性不飽和化合物とし ては、エチレン性不飽和基を2個以上有するエチレン性 不飽和化合物であれば基本的にはすべての化合物を用い 40 ることが可能である。具体的には、例えばN, N'ーメ チレンビス (メタ) アクリルアミド、(ポリ) エチレン グリコールジ (メタ) アクリレート、(ポリ) プロピレ ングリコールジ (メタ) アクリレート、トリメチロール プロパントリ(メタ)アクリレート、トリメチロールプ ロパンジ (メタ) アクリレート、グリセリントリ (メ タ) アクリレート、グリセリンアクリレートメタアクリ レート、エチレンオキサイド変性トリメチロールプロパ ントリ (メタ) アクリレート、ペンタエリスリトールテ

【0028】また2個以上の反応性基を有する化合物と しては、例えば、エチレングリコール、ジエチレングリ コール、トリエチレングリコール、ポリエチレングリコ ール、グリセリン、ポリグリセリン、プロピレングルコ ール、1,4ーブタンジオール、1,5ーペンタンジオ

ール、1、6-ヘキサンジオール、ネオペンチルアルコ ール、ジエタノールアミン、トリジエタノールアミン、 ポリプロピレングリコール、ポリビニルアルコール、ペ ンタエリスリトール等の多価アルコール、ソルビット、 ソルビタン等の糖アルコール、グルコース、マンニッ ト、マンニタン、ショ糖、ブドウ糖等の糖類;エチレン グリコールジグリシジルエーテル、ポリエチレングリコ ールジグリシジルエーテル、グリセリントリグリシジル エーテル等のポリグリシジルエーテル; エピクロロヒド リン、α-メチルクロルヒドリン等のハロエポキシ化合 物;グルタールアルデヒド、グリオキザール等のポリア ルデヒド;エチレンジアミン等のポリアミン類;水酸化 カルシウム、塩化カルシウム、炭酸カルシウム、酸化カ ルシウム、塩化硼砂マグネシウム、酸化マグネシウム、 塩化アルミニウム、塩化亜鉛および塩化ニッケル等の周 期律表2A族、3B族、8族の金属の水酸化物、ハロゲ ン化物、炭酸塩、酸化物、硼砂等の硼酸塩、アルミニウ ムイソプロピラート等の多価金属化合物等が挙げられ

【0029】これらの、2個以上のエチレン性不飽和基 を有する多官能エチレン性不飽和化合物、もしくは2個 以上の反応性基を有する化合物の1種又は2種以上を、 反応性を考慮した上で用いることができる。

【0030】さらに本発明に使用する吸水性樹脂粒子の 製造方法を具体的に説明する。すなわち、上記一般式 (1) で表されるリン酸エステル系界面活性剤を含む不

活性溶媒中に、上記リン酸エステル系界面活性剤を含

み、分子内に少なくとも1つのエチレン性不飽和二重結 合を有する非イオン性マクロモノマー(A-1)又は非 イオン性ポリマー (A-2)、エチレン性不飽和化合物 (B) および架橋剤を含む水溶液 [以下エチレン性不飽 和化合物(B)の水溶液という]と、ラジカル開始剤と を供給して、油中水滴型逆相懸濁重合させて得た重合体 粒子に、表面架橋処理を施すことにより、吸水性樹脂粒 子を製造することができる。本発明の吸水性樹脂粒子を 得るためには、上記の方法が好ましい。

【0031】本発明で使用する不活性溶媒とは、水に溶 け難い疎水性溶媒を意味し、本発明の樹脂粒子を製造す る際の重合反応において不活性であれば如何なるものも 使用可能であり、特に限定されない。かかる不活性溶媒 としては、例えばn-ペンタン、n-ヘキサン、n-ヘ プタン、n-オクタン等の脂肪族炭化水素;シクロヘキ サン、メチルシクロヘキサン等の脂環状炭化水素;ベン トラ (メタ) アクリレート、ジペンタエリスリトールへ 50 ゼン、トルエン、キシレン等の芳香族炭化水素等が挙げ

られる。これらのうち、さらさらとしたべと付きのない 吸水性樹脂が得られる点で、nーヘキサン、nーヘプタ ン、シクロヘキサンなどの脂肪族炭化水素、または環状 式炭化水素が好ましい。

【0032】不活性溶媒中のリン酸エステル系界面活性 剤の使用量は、通常0.01~5重量%であるのが好ま しい。本範囲での使用量であれば、本発明の吸水性樹脂 粒子の吸血特性を低下させることなく、また所望の分散 効果が得られる。

【0033】上記不活性溶媒の使用量は、反応に使用さ 10 れるエチレン性不飽和化合物 (B) の水溶液に対して、0.5~10重量倍の範囲が好ましい。

【0034】エチレン性不飽和化合物(B)水溶液中のリン酸エステル系界面活性剤の使用量は、不活性溶媒中のリン酸エステル系界面活性剤の濃度(X)と、エチレン性不飽和化合物(B)の水溶液中のリン酸エステル系界面活性剤剤の濃度(Y)との比(X/Y)が

【式2】0<X/Y≤10

となるように添加されるのが好ましい。エチレン性不飽和化合物(B)の水溶液中のリン酸エステル系界面活性20剤の量が上記範囲であれば、得られる吸水性樹脂粒子の平均粒子径を $100\sim1000$ μ mに制御することができ、吸血特性を向上することが可能になる。

【0035】上記ラジカル重合開始剤としては、例えば無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等)、有機過酸化物(過酸化ベンゾイル、ジーtーブチルパーオキサイド、クメンヒドロキシパーオキサイド、コハク酸パーオキサイド、ジ(2-エトキシエチル)パーオキシジカーボネート等)、アゾ化合物(アゾビスイソブチルニトリル、ア30ゾビスシアノ吉草酸、2,2'ーアゾビス(2-アミノプロパン)ハイドロクロライド等)及びレドックス触媒(アルカリ金属の亜硫酸塩若しくは重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム、アスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化物等の酸化剤の組み合わせよりなるもの)が挙げられる。

【0036】なお、不活性溶媒中のリン酸エステル系界面活性剤と、エチレン性不飽和化合物(B)の水溶液中のリン酸エステル系界面活性剤とは同一であっても、異 40っていてもよい。

【0037】本発明に使用する油中水滴型逆相懸濁重合は、リン酸エステル系界面活性剤を含む不活性溶媒中に、リン酸エステル系界面活性剤を含むエチレン性不飽和化合物(B)の水溶液を供給して、油中に水溶液を液滴状に分散させて重合させることにより行うものである

【0038】上記重合反応はエチレン性不飽和化合物 (B)の水溶液を全量不活性溶媒中に供給してから開始 させても、重合中にエチレン性不飽和化合物(B)の水 50

溶液を分割して逐次供給してもよいが、後者の方法が好ましい。エチレン性不飽和化合物(B)の水溶液の全量を供給してから重合反応を開始する前者の方法では、所望の吸水性樹脂粒子を製造し得る操作範囲が狭くなり、また重合による発熱の除去が困難となる。

【0039】これに対し、後者の方法ではエチレン性不飽和化合物(B)の水溶液の一部、通常は1~25%を先ず不活性溶媒中に供給して重合を開始し、この化合物の重合がある程度進行してから残りのエチレン性不飽和化合物(B)の水溶液を逐次供給しつつ重合を行わせるものである。

【0040】また上記の方法以外の方法として、予め重合条件下に設定した不活性溶媒中に最初からエチレン性不飽和化合物(B)の水溶液を逐次供給しながら、同時に重合を進行させるようにしてもよい。

【0041】これらの方法を実施するに際し、エチレン性不飽和化合物(B)の水溶液として、エチレン性不飽和化合物(B)の水溶液と不活性溶媒の一部との混合物を用い、この混合物を残りの不活性溶媒中に供給するようにしてもよい。エチレン性不飽和化合物(B)の水溶液の供給は、通常は全重合時間の20%以上の時間、好ましくは40%以上の時間に亘って行う。

【0042】エチレン性不飽和化合物(B)の水溶液の供給は、通常、定速度で行うが、所望ならば途中で供給速度を変化させてもよく、更に途中で供給を一時的に中断することもできる。例えば重合条件下の疎水性有機溶媒中にエチレン性不飽和化合物(B)の水溶液を連続的に供給することにより重合を開始させ、エチレン性不飽和化合物(B)の水溶液の1~25%を供給した時点で3~60分間、好ましくは5~30分間エチレン性不飽和化合物(B)の水溶液の供給を停止して重合だけを進行させ、次いで再び以前と同一速度でエチレン性不飽和化合物(B)の水溶液を供給することができる。この方法は、本発明の吸水性樹脂粒子を製造するための好ましい態様の一つである。

【0043】重合温度は、重合開始剤にもよるが、通常は40~150℃で行われる。高温に過ぎると自己架橋が進行し生成する樹脂粒子の吸水能が低下する。逆に低温に過ぎると重合に長時間を要するばかりでなく、突発的な重合を引き起して塊状物を生成する恐れがある。好適な重合温度は60~90℃であり、特に不活性溶媒の還流条件下で重合を行うのが好ましい。

【0044】分子内に少なくとも1つのエチレン性不飽和二重結合を有する非イオン性マクロモノマー(A-1)または非イオン性ポリマー(A-2)を不活性溶媒中に添加する方法としては、特に制限はないが、①予め加水分解した分子内に少なくとも1つのエチレン性不飽和二重結合を有する非イオン性マクロモノマー(A-1)または非イオン性ポリマー(A-2)の水溶液をエ

チレン性不飽和化合物(B)の水溶液と予め混合した後

に、添加する方法;②エチレン性不飽和化合物(B)の 水溶液と同時に、添加する方法;③エチレン性不飽和化 合物(B)の水溶液を添加した後、添加する方法等が挙 げられる。

【0045】これらのいずれの方法でもよいが、系の安 定性がより保持できる点で、3の方法が好ましい。エチ レン性不飽和化合物(B)の水溶液を添加した後、分子 内に少なくとも1つのエチレン性不飽和二重結合を有す る非イオン性マクロモノマー(A-1)及び非イオン性 ポリマー (A-2) の水溶液を添加する場合は、この水 10 溶液をそのまま添加するか、又はこれらの分子内に少な くとも1つのエチレン性不飽和二重結合を有する非イオ ン性マクロモノマー(A-1)または非イオン性ポリマ - (A-2) の水溶液に界面活性剤を溶解させた不活性 溶媒を加え、攪拌分散させた後、添加する。後者の添加 方法であれば、樹脂粒子同士が凝集を起こすこともな く、重合安定性が良好になることからより好ましい。こ の時分子内に少なくとも1つのエチレン性不飽和二重結 合を有する非イオン性マクロモノマー(A-1)または 非イオン性ポリマー (A-2) の水溶液に溶解させる界 20 面活性剤は、特に制限されず、前記の逆相懸濁重合法に 使用するリン酸エステル系界面活性剤の1種又は2種以 上を混合して用いることができる。

【0046】逆相懸濁重合における撹拌条件のうち、撹拌回転数は、用いる撹拌翼の種類、重合反応槽のスケールによってその絶対値は異なってくるので一義的には示すことが出来ないが、攪拌速度が重合体粒子の平均粒子径に影響すること、及び本発明の目的を達成するためには、その平均粒子径が100μm~1000μmの範囲であることが好ましいことから、通常100~1000 30rpmの範囲の撹拌回転数であることが好ましく、200~1000rpmの範囲であることがより好ましい。この範囲の撹拌回転数で、撹拌翼の種類、攪拌動力を適宜選択することにより、血液に対するぬれ面積の大きい、一次粒子が融着した構造を有する吸水性樹脂粒子を得ることができる。

【0047】上記の逆相懸濁重合法により、含水ゲル、過剰の界面活性剤及び不活性溶媒からなるスラリー状の混合物が生成される。このスラリー状混合物は、公知の方法、例えば直接脱水或いは不活性溶媒との共沸脱水を 40経て、乾燥、篩等を経る方法により、ゲル状の吸水性樹脂粒子を得ることができる。

【0048】本発明に使用する吸水性樹脂粒子は、上記で得られる吸水性樹脂粒子に、表面架橋剤を用いて、その粒子の表面近傍を架橋反応させることにより、血液に対する浸透圧を一層高めることができる。この粒子の表面架橋により、血液に対する吸収特性を一層高めることが可能となる。

【0049】かかる表面架橋剤としては、吸水性樹脂粒 子の表面近傍の官能基と反応可能な2個以上の官能基を 50

有する化合物が挙げられる。また血液吸収用物品等に使 用した場合、粒子の表面に残存するため、人体に対して 安全性の高いものが好ましい。

【0050】そのような化合物としては、例えば、ポリアミンやポリグリシジルエーテル等の2個以上のカルボキシル基(カルボキシレート基)と反応し得る反応性基を有する化合物、及びγーグリシドキシプロピルトリメトキシシラン、γーグリシドキシプロピルメチルジエトキシシラン、Nーβー(アミノエチル)ーγーアミノプロピルトリメトキシシラン、γーメルカプトプロピルトリメトキシシランといったシランカプリング剤、シラノール縮合触媒であるジブチル錫ジラウリレート、ジブチル錫ジアセテート、ジブチル錫ジオクトエート等、グリシジルメタクリレート等の反応性基を有するエチレン性不飽和化合物が挙げられ、これらを1種または2種以上用いることができる。

【0051】上記の吸水性樹脂粒子の表面架橋は、逆相 懸濁重合後に膨潤したビーズ状の粒子から、共沸脱水又 は加熱等の適当な方法により直接脱水することにより、 所定の含水率まで乾燥せしめた粉末状の樹脂と表面架橋 剤とを混合することにより行うことができる。この時、 樹脂と表面架橋剤とを均一に混合させるために、水及び 親水性溶媒を使用することが好ましい。水及び親水性溶 媒は、樹脂100重量部に対して、水を50重量部以下 で、親水性溶媒を60重量部以下混合して用いてもよ い。

【0052】上記親水性溶媒としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、およびイソブタノールのような低級アルコール類、アセトン、およびメチルエチルケトンのようなケトン類、ジオキサン、テトラヒドロフラン、およびジエチルエーテルのようなエーテル類、N, N-ジメチルホルムアミドおよびN, N-ジエチルホルムアミドのようなアミド類およびジメチルスルホキシドのようなスルホキシド類等が挙げられる。

【0053】樹脂と表面架橋剤との混合方法は、特に制限されず、例えば公知の混合装置を用いることができる。公知の混合装置としては、例えば円筒型混合機、二重壁円錐型混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型炉ロータリーデスク型混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機等の混合装置等を挙げることができる。これらの混合装置で混合するには、樹脂を攪拌しながら表面架橋剤を添加することが好ましく、さらに表面架橋剤を噴霧しながら添加することがより好ましい。

【0054】表面架橋の際の加熱時間は、加熱温度により適宜選択されるが、熱劣化を起こさずに吸水性能の高い吸水性樹脂粒子を得るためには、60℃~300℃の温度で、5分から100時間以下であることが好まし

い。

【0055】加熱装置としては、特に限定はしないが、通常、乾燥機又は加熱炉を用いることができる。具体的には、例えば、溝型混合乾燥機、ロータリー乾燥機、ディスク乾燥機、流動層乾燥機、気流型乾燥機、赤外線乾燥機、減圧乾燥機等が挙げられる。

【0056】本発明の吸水性材料は、上記の操作を行うことにより得られる特定の吸水性樹脂粒子からなるものであり、特に血液に対して優れた吸収特性を示すものである。血液吸収量は特に制限されないが、6g/g以上 10のものであることが好ましい

【0057】本発明の吸水性材料を用いることにより、 血液吸収用物品を作成することができる。上記血液吸収 用物品は、通常液体透過性シートと液体不透過性シート との間に、吸収性材料と繊維材料とを含む吸収体を配置 してなるものであり、吸収体が内部に保持された構造を している。

【0058】上記血液吸収性物品の具体的な製法としては、上記吸収体を液体透過性シートと液体不透過性シートとの間にサンドイッチ状に挟み、該液体透過性シート 20と該液体不透過性シートとの外縁部をホットメルト系接着剤等の接着剤やヒートシール等の接着手段により接合する方法が挙げられる。

【0059】吸水性材料と繊維材料とを含む吸収体の製法としては、特に限定されないが、1)繊維材料をシート状に成形し、このシートで吸水性材料を包む方法、2)多層の繊維シートに吸水性材料を散布し、この多層シートを成形する方法、3)繊維材料と吸水性材料とを混合し、これをシート状に成形する方法等が挙げられる。

【0060】上記血液吸収性物品は、例えば、生理用ナ 30 プキン、タンポン、医療用血液吸収シート、ドリップ吸収剤、創傷保護材、創傷治癒材、手術用廃液処理剤等々の血液吸収特性が要求される物品が挙げられる。また、血液と同様にタンパク質を含む水、例えば、牛乳、母乳、おりもの等に対しても優れた吸収特性を示す他、従来の吸水性材料と同様の尿、海水、セメント水、土壌水、肥料含有水、雨水、排水等に対しても優れた吸収特性を有するため、その適用分野は広範囲である。

[0061]

【実施例】以下、本発明を実施例と比較例により、一層、具体的に説明する。以下において、%は、特にことわりのない限り、全て重量基準であるものとする。尚、材料の諸性質は以下に概略を示した方法で測定した。尚、実施例1~3及び比較例1、比較例2の仕込組成を表1にまとめた。

【0062】[血液吸引量の測定方法] 内径95mmのシャーレ中の馬脱繊血(株式会社日本生物材料センターより入手)20mlに浸した15枚重ねのトイレットペーパー(55mm×75mm)上に、後記実施例で得られた吸水性樹脂粒子約1gを加え、5分間吸液させた

後、樹脂の膨潤ゲルを採取してその重量を測定した。吸液後の膨潤ゲルの重量を、吸液前の樹脂粒子の重量で除して、血液吸引量(g/g)を算出した。

【0063】 [平均粒子径の測定方法]後記実施例で得られた吸水性樹脂粒子を、目開き16メッシュ(1000 μ m)、30メッシュ(500 μ m)、100メッシュ(150 μ m)、140メッシュ(106 μ m)、235メッシュ(63 μ m)のふるい(JIS-Z8801)、受け皿の順に組み合わせ、最上の篩に樹脂粒子を約20g入れ、充分振とうさせた。各ふるいに残った樹脂粒子の重量を秤量し、全重量を100%として、重量分率より粒径分布を求め、重量基準の50%粒子径を平均粒子径とした。

【0064】 [かさ密度の測定方法] JIS・K-67 21に準拠して行った。測定は3回実施し、それらの平 均値を求めた。

【0065】《実施例1》500mlの三角フラスコにアクリル酸30gを加え、外部より冷却しつつ水酸化リチウム・1水和物8.74gを溶解した水酸化リチウム水溶液81.5gを滴下してアクリル酸の50モル%を中和した。この液に、プライサーフA210G(リン酸エステル系界面活性剤 ポリオキシエチレンオクチルフェニルエーテルリン酸 第一工業製薬株式会社製)1.12gを添加し溶解した。更に、この液にN,N'ーメチレンビスアクリルアミド93.6mg、過硫酸アンモニウム0.05gを加えて溶解した。

【0066】これとは別に、攪拌装置、温度計、還流装置、窒素ガス吹き込み装置を装着した500mlの4ツロフラスコに、シクロヘキサン164gを加え、これにプライサーフA210G 0.82gを添加して500rpmで撹拌しながら分散させた。次に、フラスコを窒素置換した後、75℃に昇温し、上記で調製したアクリル酸水溶液を60分間で滴下した。滴下後、メトキシポリエチレングリコール1000水溶液(第一工業製薬株式会社製NWバイソマー10W)7.8gを一括添加した。次いで70~75℃で3時間保持した後、シクロヘキサンとの共沸によって生成した樹脂の含水率が10%になるまで脱水を行った。尚、攪拌は500rpmの回転数で一定して行った。反応終了後、デカンテーションでシクロヘキサン相を分離し、続いて得られた含水樹脂粒子から減圧乾燥により水を除去し、重合体粉末を得

【0067】500m1フラスコに得られた重合体粒子30gを秤量し、そこへアセトン1.2g、イオン交換水2.1g、グリシジルメタクリレート0.09g、過硫酸アンモニウム0.09gからなる混合溶液と、親水性シリカ(日本アエロジル株式会社製、200CF)0.3gを均一散布した。含水樹脂粒子を108℃で1時間減圧乾燥することにより樹脂粒子の表面架橋を行った。得られた吸水性樹脂粒子の顕微鏡観察を行ったとこ

ろ、図1に示すように一次粒子が融着した構造を有して いた。また上記の平均粒子径の測定方法に従って測定し た平均粒子径、及びかさ密度の測定方法に従って測定し たかさ密度は表-1のとおりであった。

【0068】上記の吸水性樹脂粒子からなる本発明の吸 水性材料の特性評価結果を、表1-1に示す。実施例1 で得られた吸水性材料は、表-1に示すように血液吸収 力に優れ、血液に対して親和性を有することが判る。

【0069】《実施例2》メトキシポリエチレングリコ ール1000水溶液に変えて、メトキシポリエチレング 10 リコール2000水溶液(第一工業製薬株式会社製NW バイソマー20W)にした以外は実施例1と同様の操作 により吸水性樹脂粒子を得た。得られた吸水性樹脂粒子 の顕微鏡観察を行ったところ、一次粒子が融着した構造 を有していた。また上記の平均粒子径の測定方法に従っ て測定した平均粒子径、及びかさ密度の測定方法に従っ て測定したかさ密度は表-1のとおりであった。本発明 の吸水性材料の特性評価結果を表-1に示す。実施例2 で得た吸水性材料は、表-1に示すように血液吸収能力 に優れ、血液に対して親和性を有することが判る。

【0070】《実施例3》メトキシポリエチレングリコ ール1000水溶液に変えて、イオン交換水4.5gと ポリプロピレングリコールモノアクリレート3g(日本 油脂株式会社製ブレンマーAP800)を混合した水溶 液を添加した以外は実施例1と同様の操作により吸水性 樹脂粒子を得た。得られた吸水性樹脂粒子の顕微鏡観察 を行ったところ、一次粒子が融着した構造を有してい た。また上記の平均粒子径の測定方法に従って測定した 平均粒子径、及びかさ密度の測定方法に従って測定した かさ密度は表-1のとおりであった。本発明の吸水性材 30 料の特性評価結果を表-1に示す。実施例2で得た吸水 性材料は、表-1に示すように血液吸収能力に優れ、血 液に対して親和性を有することが判る。

【0071】《実施例4》メトキシポリエチレングリコ ール1000水溶液に変えて、イオン交換水4.5gと ポリエチレングリコール1000、3g(日本油脂株式 会社製PEG1000)を混合した水溶液を添加した以 外は実施例1と同様の操作により吸水性樹脂粒子を得 た。得られた吸水性樹脂粒子の顕微鏡観察を行ったとこ ろ、一次粒子が融着した構造を有していた。また上記の 40 平均粒子径の測定方法に従って測定した平均粒子径、及 びかさ密度の測定方法に従って測定したかさ密度は表ー 1のとおりであった。本発明の吸水性材料の特性評価結 果を表-1に示す。実施例2で得た吸水性材料は、表-1に示すように血液吸収能力に優れ、血液に対して親和 性を有することが判る。

《比較例1》500mlの三角フラスコにアクリル酸3 0gを加え、外部より冷却しつつ水酸化リチウム・1水 和物8.74gを溶解した水酸化リチウム水溶液81.

の液にN, N'ーメチレンビスアクリルアミド93. 6 mgを添加し、更に過硫酸アンモニウム 0.05gを加 えて溶解した。

【0072】これとは別に、攪拌装置、温度計、還流装 置、窒素ガス吹き込み装置を装着した500mlの4ツ ロフラスコに、シクロヘキサン164gを加え、プライ サーフA210G 0.82gを添加して500гpm の回転数で撹拌しながら分散させた。次に、フラスコを 窒素置換した後、75℃に昇温し、上記で調製したアク リル酸水溶液を60分間で滴下した。

【0073】次いで70~75℃で3時間保持した後、 シクロヘキサンとの共沸によって生成した樹脂粒子の含 水率が10%になるまで脱水を行った。尚、攪拌は50 0 r p mの回転数で一定のまま行った。反応終了後、デ カンテーションでシクロヘキサン相を分離し、続いて含 水樹脂粒子有から減圧乾燥により水を除去し、重合体粉

【0074】500mlフラスコに得られた重合体粒子 30gを秤量し、実施例1と同様の操作により表面架橋 20 処理を行った。得られた吸水性樹脂粒子の顕微鏡観察を 行ったところ一次粒子が融着した構造を有していたが、 表-1に示すように優れた血液吸収能力を得ることは出 来なかった。また上記の平均粒子径の測定方法に従って 測定した平均粒子径、及びかさ密度の測定方法に従って 測定したかさ密度は表ー1のとおりであった。

【0075】《比較例2》攪拌装置、温度計、還流装 置、窒素ガス吹き込み装置を装着した500mlの4ツ ロフラスコに、シクロヘキサン164gを加え、これに DKエステルF-90 (界面活性剤 HLB=9のショ 糖エステル 第一工業製薬株式会社製) 0. 75gを添 加して撹拌しながら50℃に昇温して溶解した。その 後、フラスコの内容物を30℃に冷却した。一方、50 Omlの三角フラスコにアクリル酸30gを加え、外部 より冷却しつつ水酸化ナトリウム8.3gを溶解した水 酸化ナトリウム水溶液86.5gを滴下してアクリル酸 の50モル%を中和した。この液にN, N'ーメチレン ビスアクリルアミド23.4mgを添加し、更に過硫酸 アンモニウム0.05gを加えて溶解した。

【0076】次に、上述のようにして得られた、重合開 始剤および架橋剤を含有するアクリル酸塩の水溶液を上 述の円筒型丸底フラスコの内容物中に加え、界面活性剤 を含むシクロヘキサン溶液に分散させると共に系内を窒 素で充分に置換した。その後、加熱昇温し、重合反応を 開始した。以後60~65℃で3時間保持した。尚、攪 拌は300rpmで行った。 反応終了後、デカンテーシ ョンでシクロヘキサン相を分離し、続いて湿潤ポリマー から減圧乾燥により水を除去し、重合体粉末を得た。

【0077】500mlフラスコに得られた重合体粒子 30gを秤量し、実施例1と同様の操作により表面架橋 5gを滴下してアクリル酸の50モル%を中和した。こ 50 処理を行った。得られた吸水性樹脂粒子の顕微鏡観察を

行ったところ、一次粒子が融着した構造を有していなかった。また上記の平均粒子径の測定方法に従って測定した平均粒子径、及びかさ密度の測定方法に従って測定したかさ密度は表-1のとおりであった。得られた吸水性材料の特性評価結果を表-1に示す。

《比較例3》攪拌装置、温度計、還流装置、窒素ガス吹き込み装置を装着した500mlの4ツロフラスコに、シクロヘキサン164gを加え、これにDKエステルF-90(界面活性剤 HLB=9のショ糖エステル 第一工業製薬株式会社製)0.75gを添加して撹拌しな10がら50℃に昇温して溶解した。その後、フラスコの内容物を30℃に冷却した。一方、500mlの三角フラスコにアクリル酸30gを加え、外部より冷却しつつ水・酸化ナトリウム8.3gを溶解した水酸化ナトリウム水溶液86.5gを滴下してアクリル酸の50モル%を中和した。この液にN,N'ーメチレンビスアクリルアミド23.4mgを添加し、更に過硫酸アンモニウム0.05gを加えて溶解した。

【0078】次に、上述のようにして得られた、重合開始剤および架橋剤を含有するアクリル酸塩の水溶液を上 20

	非イオン性吸 水成分の有無		かさ密度 (g/ml)	血液吸収量 (8/8)		
実施例1	有	310	0.38	10. 2		
実施例 2	有	330	0.34	8. 2		
実施例3	有	360	0.36	9. 5		
実施例 4	有	320	0.33	8. 6		
比較例1	無	330	0.33	4. 2		
比較例2	無	220	0.69	3. 4		
比較例3	有	230	0.65	4. 6		

【発明の効果】本発明の吸水性材料は、血液の吸収特性 に優れ、さらにタンパク質を含む水等の吸収性にも優れ 30 るので、生理用ナプキン、タンポン、医療用血液吸収性 シート、ドリップ吸収剤等の血液、血液吸収特性等が要 述の円筒型丸底フラスコの内容物中に加え、界面活性剤を含むシクロヘキサン溶液に分散させると共に系内を窒素で充分に置換した。その後、加熱昇温し、重合反応を開始し、重合反応開始5分後メトキシポリエチレングリコール1000水溶液(第一工業製薬株式会社製NWバイソマー10W)7.8gを一括添加した。以後60~65℃で3時間保持した。尚、攪拌は300rpmで行った。反応終了後、デカンテーションでシクロヘキサン相を分離し、続いて湿潤ポリマーから減圧乾燥により水を除去し、重合体粉末を得た。

【0079】500mlフラスコに得られた重合体粒子30gを秤量し、実施例1と同様の操作により表面架橋処理を行った。得られた吸水性樹脂粒子の顕微鏡観察を行ったところ、一次粒子が融着した構造を有していなかった。また上記の平均粒子径の測定方法に従って測定した平均粒子径、及びかさ密度の測定方法に従って測定したかさ密度は表-1のとおりであった。得られた吸水性材料の特性評価結果を表-1に示す。

[0080]

【表1】表-1

かさ密度	為密度
(g/m1)	(g/m1)
0. 54	有り
0.32	有り
0.33	有り
0. 33	無し
0. 69	無し

求される種々の用途に応用できる。

【図面の簡単な説明】

【図1】実施例1で得られた吸水性樹脂粒子の電子顕微 鏡写真である。

【図1】

【手続補正書】

【提出日】平成14年2月27日(2002.2.2.2

7)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0080

【補正方法】変更

【補正内容】

[0080]

【表1】

表-1

	非イオン性吸 水成分の有無	平均粒子径 (μm)	かさ密度 (g/ml)	血液吸収量 (g/g)
実施例1	有	310	0.38	10.2
実施例 2	有	330	0.34	8. 2
実施例3	有	360	0.36	9. 5
実施例 4	有	3 2 0	0.33	8. 6
比較例1	無	3 3 0	0.33	4. 2
比較例 2	無	220	0.69	3. 4
比較例3	有	230	0.65	4. 6

【発明の効果】本発明の吸水性材料は、血液の吸収特性 に優れ、さらにタンパク質を含む水等の吸収性にも優れ るので、生理用ナプキン、タンポン、医療用血液吸収性 シート、ドリップ吸収剤等の血液、血液吸収特性等が要 求される種々の用途に応用できる。

【図面の簡単な説明】

【図1】実施例1で得られた吸水性樹脂粒子の電子顕微 鏡写真である。

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FΙ			テーマコード(参考)
A 6 1 L	15/60		C 0 8 F 2	290/06		
B 0 1 J	20/28		A 6 1 F	13/18	307	
C 0 8 F	2/32			13/20	3 2 2	
	290/04		A 6 1 L	15/01		
	290/06					

F ターム(参考) 4C003 AA16 EA01

4C081 AA02 AA12 BB01 CA081 CA101 DA04 DA05 EA05 4G066 AC12B AE06B BA20 BA38 CA43 DA12 DA13 EA05

4J011 AA05 LA04 LA06 LA08 LA10

LB07 LB09

4J027 AC03 AC04 AC06 AC07 AJ06 BA06 BA07 BA08 BA09 BA13

BA14 BA17 BA20 BA21 BA24 BA26 BA28 CB02 CC02 CD07

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.