Boston Airbnb Listings Analysis

For details on how to run the file refer the Project Report, particularly the How to Run section

Let's Start by analyzing the boston neighbourhoods that are present in the Airbnb website

In [3]: boston_neighbourhoods_df = spark.read.csv("data/Boston/2020/June/neighbourh
boston_neighbourhoods_df.toPandas()

Out[3]:

	neighbourhood_group	neighbourhood
0	None	Allston
1	None	Back Bay
2	None	Bay Village
3	None	Beacon Hill
4	None	Brighton
5	None	Charlestown
6	None	Chinatown
7	None	Dorchester
8	None	Downtown
9	None	East Boston
10	None	Fenway
11	None	Harbor Islands
12	None	Hyde Park
13	None	Jamaica Plain
14	None	Leather District
15	None	Longwood Medical Area
16	None	Mattapan
17	None	Mission Hill
18	None	North End
19	None	Roslindale
20	None	Roxbury
21	None	South Boston
22	None	South Boston Waterfront
23	None	South End
24	None	West End
25	None	West Roxbury

We can see that for Boston atleast, there are no neighbourhood_groups, so lets drop the column

In [4]: boston_neighbourhoods_df = boston_neighbourhoods_df.drop('neighbourhood_gro
boston_neighbourhoods_df.toPandas()

l		
Out[4]:		neighbourhood
	0	Allston
	1	Back Bay
	2	Bay Village
	3	Beacon Hill
	4	Brighton
	5	Charlestown
	6	Chinatown
	7	Dorchester
	8	Downtown
	9	East Boston
	10	Fenway
	11	Harbor Islands
	12	Hyde Park
	13	Jamaica Plain
	14	Leather District
	15	Longwood Medical Area
	16	Mattapan
	17	Mission Hill
	18	North End
	19	Roslindale
	20	Roxbury
	21	South Boston
	22	South Boston Waterfront
	23	South End
	24	West End
	0.5	\\/a=+ D=::!=:::::

25

We will be running the analysis only on the top neighbourhoods that we selected from

"http://insideairbnb.com/get-the-data.html" (http://insideairbnb.com/get-the-data.html") ,which had the highest YoY percent change.

West Roxbury

```
In [5]: neighbourhoods_list = ["Back Bay", 'South Boston', 'South End', 'Fenway', '
    boston_neighbourhoods_df = spark.createDataFrame(neighbourhoods_list, Strin
    boston_neighbourhoods_df = boston_neighbourhoods_df.selectExpr("value as ne
    boston_neighbourhoods_df.createOrReplaceTempView('boston_neighbourhoods')
    boston_neighbourhoods_df.toPandas()
```

Out[5]:		neighbourhood
	0	Back Bay
	1	South Boston
	2	South End
	3	Fenway
	4	Allston
	5	Dorchester
	6	Downtown

Let's create a function to read in listings data, and provide neighbourhood data such as number of listings for a particular year and average price for a year

2020:

In [7]: neighbourhood_data_2020 = neighbourhood_data_analysis_summary("data/Boston/
neighbourhood_data_2020.toPandas()

Out[7]:

		neighbourhood	number_of_listings	average_price	year
•	0	Dorchester	420	159.15	2020
	1	Downtown	277	304.44	2020
	2	Back Bay	224	259.63	2020
	3	South End	214	171.21	2020
	4	Allston	197	107.50	2020
	5	South Boston	168	191.32	2020
	6	Fenway	167	224.37	2020

2019:

In [8]: neighbourhood_data_2019 = neighbourhood_data_analysis_summary("data/Boston/
neighbourhood_data_2019.toPandas()

Out[8]:

 neighbourhood	number_of_listings	average_price	year
0 Dorchester	558	107.04	2019
1 Downtown	498	264.05	2019
2 Back Bay	471	332.59	2019
3 South End	404	227.28	2019
4 Fenway	400	235.58	2019
5 Allston	338	181.63	2019
6 South Boston	333	225.68	2019

2018:

In [9]: neighbourhood_data_2018 = neighbourhood_data_analysis_summary("data/Boston/
neighbourhood_data_2018.toPandas()

Out[9]:

	neighbourhood	number_of_listings	average_price	year
0	Dorchester	519	99.11	2018
1	Fenway	498	237.59	2018
2	Back Bay	464	248.84	2018
3	South End	406	212.26	2018
4	Allston	393	156.82	2018
5	Downtown	361	252.73	2018
6	South Boston	312	211.29	2018

2017

Out[10]:

	neighbourhood	number_of_listings	average_price	year
0	Back Bay	410	239.88	2017
1	Dorchester	398	98.26	2017
2	Fenway	357	210.86	2017
3	South End	354	214.52	2017
4	Allston	297	99.63	2017
5	Downtown	295	252.32	2017
6	South Boston	264	197.83	2017

2016

In [11]: neighbourhood_data_2016 = neighbourhood_data_analysis_summary("data/Boston/
neighbourhood_data_2016.toPandas()

Out[11]:

	neighbourhood	number_of_listings	average_price	year
0	South End	326	204.35	2016
1	Back Bay	302	240.95	2016
2	Fenway	290	220.39	2016
3	Dorchester	269	91.64	2016
4	Allston	260	112.31	2016
5	South Boston	174	187.61	2016
6	Downtown	172	236.46	2016

2015

In [12]: neighbourhood_data_2015 = neighbourhood_data_analysis_summary("data/Boston/
neighbourhood_data_2015.toPandas()

Out[12]:

	neighbourhood	number_of_listings	average_price	year
0	South End	251	216.96	2015
1	Allston	223	128.91	2015
2	Back Bay	206	248.80	2015
3	Fenway	185	249.91	2015
4	Dorchester	166	104.14	2015
5	South Boston	114	191.62	2015
6	Downtown	103	243.82	2015

Let's combine all the dataframes

```
In [13]: neighbourhood_data = neighbourhood_data_2020.union(neighbourhood_data_2019)
    neighbourhood_data = neighbourhood_data.union(neighbourhood_data_2018)
    neighbourhood_data = neighbourhood_data.union(neighbourhood_data_2017)
    neighbourhood_data = neighbourhood_data.union(neighbourhood_data_2016)
    neighbourhood_data = neighbourhood_data.union(neighbourhood_data_2015)
```

Out[14]:

	neighbourhood	number_of_listings	average_price	year
0	Dorchester	420	159.15	2020
1	Downtown	277	304.44	2020
2	Back Bay	224	259.63	2020
3	South End	214	171.21	2020
4	Allston	197	107.50	2020
5	South Boston	168	191.32	2020
6	Fenway	167	224.37	2020
7	Dorchester	558	107.04	2019
8	Downtown	498	264.05	2019
9	Back Bay	471	332.59	2019
10	South End	404	227.28	2019
11	Fenway	400	235.58	2019
12	Allston	338	181.63	2019
13	South Boston	333	225.68	2019
14	Dorchester	519	99.11	2018
15	Fenway	498	237.59	2018
16	Back Bay	464	248.84	2018
17	South End	406	212.26	2018
18	Allston	393	156.82	2018
19	Downtown	361	252.73	2018
20	South Boston	312	211.29	2018
21	Back Bay	410	239.88	2017
22	Dorchester	398	98.26	2017
23	Fenway	357	210.86	2017
24	South End	354	214.52	2017
25	Allston	297	99.63	2017
26	Downtown	295	252.32	2017
27	South Boston	264	197.83	2017
28	South End	326	204.35	2016
29	Back Bay	302	240.95	2016
30	Fenway	290	220.39	2016
31	Dorchester	269	91.64	2016
32	Allston	260	112.31	2016

	neighbourhood	number_of_listings	average_price	year
33	South Boston	174	187.61	2016
34	Downtown	172	236.46	2016
35	South End	251	216.96	2015
36	Allston	223	128.91	2015
37	Back Bay	206	248.80	2015
38	Fenway	185	249.91	2015
39	Dorchester	166	104.14	2015
40	South Boston	114	191.62	2015
41	Downtown	103	243.82	2015

Lets visualize how the number of listings and average price has changed over the years in each of these neighbourhoods.

```
In [17]: df = pd.DataFrame(listings_neighbourhood, index=years)
    lines = df.plot.line(figsize=(8,6), title="YoY change in number of listings
    lines.set_xlabel("year")
    lines.set_ylabel("number_of_listings")
```

Out[17]: Text(0, 0.5, 'number_of_listings')

- 1) We can notice in the above graph how the number of listings have increased over the years in each of these neighbourhoods
- 2) The dip in numbers from 2019 to 2020 is also highly noticeable, we are chalking this down to COVID-19 reasons

```
In [18]: listings_neighbourhood={}
    years=[2020,2019,2018,2017,2016,2015]

for neighbourhood in neighbourhoods_list:
    format_data(neighbourhood,'average_price')
```

```
In [19]: df = pd.DataFrame(listings_neighbourhood, index=years)
    lines = df.plot.line(figsize=(8,6), title="YoY change in average_price")
    lines.set_xlabel("year")
    lines.set_ylabel("average_price")
```

```
Out[19]: Text(0, 0.5, 'average_price')
```


- 1) Similar to number of listings in each of the neighbourhoods, the average price. of each of the neighbourhoods has also gone up over the years.
- 2) And similar to number of listings, we can see a sharp decline in price from 2019 to 2020, due to COVID-19 reasons

Now, we have seen how each of the neighbourhoods have grown throughout the years

But these neighbourhoods weren't thriving back in 2014, Fenway, Allston and Dorchester were considered to be the poorest neighbourhoods in Boston, according to a research done by Boston Redevelopment Authority, http://www.bostonplans.org/getattachment/f1ecaf8a-d529-40b6-a9bc-8b4419587b86)

Let's take a deeper dive into these neighbourhoods and

see how Airbnb has helped gentrify these neighbourhoods

We have carried out few analysis on the above neighbourhoods here, but a deeper dive into the Airbnb reviews on these neighbourhoods can be found in **Boston_Aibnb_Analysis_Detailed.ipynb** notebook

For deeper dive into the neighbourhoods, let's create a neighbourhood_data_analysis_detailed function, that tweaks the summary function to include room_type analysis as well for each neighbourhood

```
In [84]: def neighbourhood_data_analysis_detailed(file_path, neighbourhood, year):
    boston_listings_df = spark.read.csv(file_path, header=True)
    filter_cond = f"neighbourhood == '{neighbourhood}'".format(neighbourhood neighbourhood_data = boston_listings_df.where(filter_cond)
    neighbourhood_data.createOrReplaceTempView("neighbourhood")
    return spark.sql("""
        SELECT room_type, COUNT(room_type) as number_of_listings, ROUND(avg FROM neighbourhood
        GROUP BY room_type
        ORDER BY number_of_listings desc
""").withColumn("year", F.lit(year))
```

Lets use the above function to see how each room_type has been perceived and used by Airbnb hosts and its customers over the years

Allston

In [85]: neighbourhood = "Allston"
 allston_neighbourhood_2015 = neighbourhood_data_analysis_detailed("data/Bos allston_neighbourhood_2016 = neighbourhood_data_analysis_detailed("data/Bos allston_neighbourhood_2017 = neighbourhood_data_analysis_detailed("data/Bos allston_neighbourhood_2018 = neighbourhood_data_analysis_detailed("data/Bos allston_neighbourhood_2019 = neighbourhood_data_analysis_detailed("data/Bos allston_neighbourhood_2020 = neighbourhood_data_analysis_detailed("data/Bos allston_neighbourhood = allston_neighbourhood.union(allston_neighbourh allston_neighbourhood = allston_neighbourhood.union(allston_neighbourhood_2 allston_neighbourhood = allston_neighbourhood.union(allston_neighbourhood_2 allston_neighbourhood = allston_neighbourhood.union(allston_neighbourhood_2 allston_neighbourhood = allston_neighbourhood.union(allston_neighbourhood_2 allston_neighbourhood.toPandas()

Out[85]:

	room_type	number_of_listings	average_price	year
0	Private room	104	69.92	2020
1	Entire home/apt	92	150.82	2020
2	Shared room	1	30.00	2020
3	Private room	185	125.95	2019
4	Entire home/apt	150	253.15	2019
5	Shared room	3	39.33	2019
6	Private room	224	65.62	2018
7	Entire home/apt	161	289.35	2018
8	Shared room	8	43.38	2018
9	Private room	186	68.02	2017
10	Entire home/apt	103	160.49	2017
11	Shared room	8	51.13	2017
12	Private room	156	73.76	2016
13	Entire home/apt	98	175.51	2016
14	Shared room	6	82.33	2016
15	Private room	140	88.69	2015
16	Entire home/apt	76	208.61	2015
17	Shared room	7	67.86	2015

```
In [86]: def format_data_allston(room_type, column_name):
    filter_cond = f"room_type == '{room_type}'".format(room_type = room_type
    room_type_data[room_type]= allston_neighbourhood.where(filter_cond).sel
```

```
In [87]: room_type_data={}
    years=[2020,2019,2018,2017,2016,2015]
    room_types = ["Entire home/apt", "Private room", "Shared room"]
    for room_type in room_types:
        format_data_allston(room_type,'number_of_listings')
```

```
In [89]: df = pd.DataFrame(room_type_data, index=years)
lines = df.plot.line(figsize=(8,6), title="Allston: Number of listings for
lines.set_xlabel("year")
lines.set_ylabel("number_of_listings")
```

```
Out[89]: Text(0, 0.5, 'number_of_listings')
```


We can see from the graph how the number of listings has increased over the years, contributing to the neighbourhoods economy

```
In [90]: room_type_data={}
    years=[2020,2019,2018,2017,2016,2015]
    room_types = ["Entire home/apt", "Private room", "Shared room"]
    for room_type in room_types:
        format_data_allston(room_type,'average_price')
```

```
In [91]: df = pd.DataFrame(room_type_data, index=years)
    lines = df.plot.line(figsize=(8,6), title="Allston: Average Price for each
    lines.set_xlabel("year")
    lines.set_ylabel("average_price")
```

Out[91]: Text(0, 0.5, 'average_price')

Fenway

In [93]: neighbourhood = "Fenway"
fenway_neighbourhood_2015 = neighbourhood_data_analysis_detailed("data/Bost
fenway_neighbourhood_2016 = neighbourhood_data_analysis_detailed("data/Bost
fenway_neighbourhood_2017 = neighbourhood_data_analysis_detailed("data/Bost
fenway_neighbourhood_2018 = neighbourhood_data_analysis_detailed("data/Bost
fenway_neighbourhood_2019 = neighbourhood_data_analysis_detailed("data/Bost
fenway_neighbourhood_2020 = neighbourhood_data_analysis_detailed("data/Bost
fenway_neighbourhood = fenway_neighbourhood_2020.union(fenway_neighbourhood
fenway_neighbourhood = fenway_neighbourhood.union(fenway_neighbourhood_2018
fenway_neighbourhood = fenway_neighbourhood.union(fenway_neighbourhood_2017
fenway_neighbourhood = fenway_neighbourhood.union(fenway_neighbourhood_2016
fenway_neighbourhood = fenway_neighbourhood.union(fenway_neighbourhood_2015
fenway_neighbourhood.toPandas()

Out[93]:

	room_type	number_of_listings	average_price	year
0	Entire home/apt	142	240.65	2020
1	Private room	23	110.70	2020
2	Shared room	1	750.00	2020
3	Hotel room	1	0.00	2020
4	Entire home/apt	328	258.68	2019
5	Private room	67	124.52	2019
6	Shared room	5	208.00	2019
7	Entire home/apt	399	268.74	2018
8	Private room	90	108.11	2018
9	Shared room	9	151.22	2018
10	Entire home/apt	274	239.86	2017
11	Private room	72	112.76	2017
12	Shared room	11	130.55	2017
13	Entire home/apt	208	253.55	2016
14	Private room	73	134.68	2016
15	Shared room	9	149.22	2016
16	Entire home/apt	140	292.80	2015
17	Private room	41	120.66	2015
18	Shared room	4	73.50	2015

```
In [94]: def format_data_fenway(room_type, column_name):
    filter_cond = f"room_type == '{room_type}'".format(room_type = room_type
    room_type_data[room_type]= fenway_neighbourhood.where(filter_cond).sele
```

```
In [95]: room_type_data={}
years=[2020,2019,2018,2017,2016,2015]
room_types = ["Entire home/apt", "Private room", "Shared room"]
for room_type in room_types:
    format_data_fenway(room_type,'number_of_listings')
```

```
In [96]: df = pd.DataFrame(room_type_data, index=years)
    lines = df.plot.line(figsize=(8,6), title="Fenway: Number of listings for e
    lines.set_xlabel("year")
    lines.set_ylabel("number_of_listings")
```

```
Out[96]: Text(0, 0.5, 'number_of_listings')
```



```
In [97]: room_type_data={}
    years=[2020,2019,2018,2017,2016,2015]
    room_types = ["Entire home/apt", "Private room", "Shared room"]
    for room_type in room_types:
        format_data_fenway(room_type,'average_price')
```

```
In [98]: df = pd.DataFrame(room_type_data, index=years)
    lines = df.plot.line(figsize=(8,6), title="Fenway: Average price for each r
    lines.set_xlabel("year")
    lines.set_ylabel("average_price")
```

Out[98]: Text(0, 0.5, 'average_price')

Dorchester

In [99]: neighbourhood = "Dorchester"

dorchester_neighbourhood_2015 = neighbourhood_data_analysis_detailed("data/dorchester_neighbourhood_2016 = neighbourhood_data_analysis_detailed("data/dorchester_neighbourhood_2017 = neighbourhood_data_analysis_detailed("data/dorchester_neighbourhood_2018 = neighbourhood_data_analysis_detailed("data/dorchester_neighbourhood_2019 = neighbourhood_data_analysis_detailed("data/dorchester_neighbourhood_2020 = neighbourhood_data_analysis_detailed("data/dorchester_neighbourhood = dorchester_neighbourhood_2020.union(dorchester_neighbourhood = dorchester_neighbourhood.union(dorchester_neighbourhood = dorchester_neighbourhood.union(dorchester_neighbourhood = dorchester_neighbourhood.union(dorchester_neighbourhood = dorchester_neighbourhood.union(dorchester_neighbourhood = dorchester_neighbourhood.union(dorchester_neighbourhood = neighbourhood.union(dorchester_neighbourhood = neighbourhood.union(dorchester_neighbourhood.

Out[99]:

	room_type	number_of_listings	average_price	year
0	Private room	300	133.87	2020
1	Entire home/apt	118	223.54	2020
2	Hotel room	2	152.00	2020
3	Private room	415	73.57	2019
4	Entire home/apt	137	209.98	2019
5	Shared room	6	71.50	2019
6	Private room	385	69.30	2018
7	Entire home/apt	129	188.72	2018
8	Shared room	5	82.00	2018
9	Private room	290	68.61	2017
10	Entire home/apt	104	181.87	2017
11	Shared room	4	73.50	2017
12	Private room	195	70.15	2016
13	Entire home/apt	66	160.27	2016
14	Shared room	8	49.25	2016
15	Private room	123	79.11	2015
16	Entire home/apt	38	188.87	2015
17	Shared room	5	76.00	2015

```
In [100]: def format_data_dorchester(room_type, column_name):
    filter_cond = f"room_type == '{room_type}'".format(room_type = room_type room_type_data[room_type]= dorchester_neighbourhood.where(filter_cond).
```

```
In [101]: room_type_data={}
    years=[2020,2019,2018,2017,2016,2015]
    room_types = ["Entire home/apt", "Private room", "Shared room"]
    for room_type in room_types:
        format_data_dorchester(room_type,'number_of_listings')
    room_type_data['Shared room'].append(0)
```

```
Out[102]: Text(0, 0.5, 'number_of_listings')
```



```
In [103]: room_type_data={}
    years=[2020,2019,2018,2017,2016,2015]
    room_types = ["Entire home/apt", "Private room", "Shared room"]
    for room_type in room_types:
        format_data_dorchester(room_type,'average_price')
    room_type_data['Shared room'].append(0)
```

Out[104]: Text(0, 0.5, 'average_price')

