

Aula 6.3

Realce no Domínio da Frequência

Frequency domain filtering operation

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Filtragem no domínio do Espaço x Filtragem no Domínio da Frequência

No domínio do espaço, usa-se as máscaras de convolução

Cada pixel da imagem de saída é obtido a partir da multiplicação dos 1.089 valores da máscara pelos pixels correspondentes na imagem de entrada (muito processamento)

Filtragem no domínio do Espaço x Filtragem no Domínio da Frequência

No domínio da frequência, a imagem de frequência é multiplicada pela máscara (filtro)

Cada valor da saída é obtido a partir da multiplicação de cada valor da entrada (pouco processamento)

Para grandes dimensões N, a operação de levar para o domínio de frequência (Fourier), multiplicar pelo filtro e depois trazer de volta para o domínio do espaço (Inversa de Fourier) acaba gerando menos processamento, por causa do uso da transformada rápida de Fourier

Filtragem no domínio da freqüência

Utiliza frequências de corte

Filtro ideal

Um filtro passa-baixas ideal bidimensional (FPBI) é aquele cuja função de transferência satisfaz a relação

$$H(u,v) = \begin{cases} 1 & \text{se } D(u,v) \le D_0 \\ 0 & \text{se } D(u,v) > D_0 \end{cases}$$
 (4.4-2)

Figura 4.30 — (a) Gráfico em perspectiva da função de transferência de um filtro passa-baixas ideal; (b) seção transversal do filtro.

a) Imagem 500x500; b) Espectro de Fourier. os círculos indicam raios 5, 15, 30 80 e 230, os quais possuem 92, 94.6, 96.4, 98 e 99.5% do poder da imagem

Digital Image Pr

Realce no Domínio da Frequência

Passa-baixas ideal

- a) Imagem original;
- b) Filtragem usando corte em 5
- c) corte em 15
- d) corte em 30
- e) corte em 80
- f) corte em 230

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

Filtro de Butterworth

A função de transferência do <u>filtro passa-baixas</u> de Butterworth (FPBB) de ordem n e com posição da frequência de corte a uma distância D_0 da origem é definida pela relação

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$$
(4.4-4)

Figura 4.34 — (a) Filtro passa-baixas de Butterworth; (b) seção transversal radial para n = 1.

Digital Image I

Realce no Domínio da Frequência

Butterworth Lowpass Filters

- a) Imagem original;
- b) Filtragem usando corte em 5
- c) corte em 15
- d) corte em 30
- e) corte em 80
- f) corete em 230

Gaussian Lowpass Filters $H(u, v) = e^{-D^2(u, v)/2\sigma^2}$

abc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter radial cross sections for various values of D_0 .

Digital Image P

Realce no Domínio da Frequência

Passa-baixo Gaussiano

- a) Imagem original;
- b) Filtragem usando corte em 5
- c) corte em 15
- d) corte em 30
- e) corte em 80
- f) corete em 230

Filtro ideal

Um filtro passa-altas ideal (FPAI) bidimensional é aquele cuja função de transferência satisfaz a relação

$$H(u,v) = \begin{cases} 0 & \text{se } D(u,v) \le D_0 \\ 1 & \text{se } D(u,v) > D_0 \end{cases}$$
 (4.4-6)

Figura 4.37 — Gráfico em perspectiva e seção transversal radial de um filtro passa-altas ideal.

Filtro de Butterworth

A função de transferência do *filtro passa-altas de Butterworth* (FPAB) de ordem n e com frequência de corte posicionada a uma distância D_0 da origem é definida pela relação

$$H(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2n}}$$
(4.4-7)

Figura 4.38 — Gráfico em perspectiva e seção transversal radial do filtro passa-altas de Butterworth para n = 1.

Digital Image Processing, 2nd ed.

Realce no Domínio da

Frequência

Passa-alta

em 15 e 30 ainda preserva algumas baixas Em 80, apenas as altas (bordas)

Resultado da filtragem ideal na imagem, com o corte em 15, 30 e 80

Butterworth Highpass Filters

$$H(u, v) = \frac{1}{1 + \left[D_0/D(u, v)\right]^{2n}}$$

Resultado da filtragem ideal na imagem, com o corte em 15, 30 e 80

Gaussian Highpass Filters

$$H(u, v) = 1 - e^{-D^2(u, v)/2D_0^2}$$

Resultado da filtragem ideal na imagem, com o corte em 15, 30 e 80

www.imageprocessingbook.com

Realce no Domínio da Frequência

Realce no Domínio da Frequência Passa Baixa x Passa Alta

$\mathsf{Passa-Baixa}_{_{H(u,\,v)}}$ **Imagem Original** H(u, v)Passa-Alta Origin © 2002 R. C. Gonzalez & R. E. Woods

Realce Somando Alta Frequência na Imagem

imagem realçada =
original + alta-frequencia

- a b c d
- a) Imagem original
- b) Passa-alta
 Butterworth
- c) Incremento com a alta-frequencia
- d) EqualizaçãodoHistogramade (c)

High-Boost Filtering

 $f_{hp}(x, y) = f(x, y) - f_{lp}(x, y).$

No domínio do Espaço

$$f_{\rm hb} = Af(x, y) - f_{\rm lp}(x, y)$$

$$f_{hb}(x, y) = (A - 1)f(x, y) + f(x, y) - f_{lp}(x, y)$$

$$f_{hb}(x, y) = (A - 1)f(x, y) + f_{hp}(x, y)$$

Fortalece a imagem original (altas e baixas) e subtrai a baixa

No domínio da Frequência

Sharpening Frequency Domain Filters

Obtém a alta-frequência, subtraindo a baixa frequência da imagem

Homomorphic Filtering

Trata a imagem como uma combinação de iluminação e reflectância

$$f(x,y) = i(x,y).r(x,y)$$

O filtro H(u,v) opera de maneira diferente nestas componentes

A vantagem é que se obtém um controle sobre as componentes de iluminação e reflectância, fazendo uma compressão da escala dinâmica e realce de contraste simultâneos

Imagem original

Resultado da filtragem homomorfica

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Fim do Primeiro Bimestre