MÉTODOS PARA LA VALIDACIÓN DE CLUSTERING

Introducción

- Características de las técnicas de clustering
 - Operan de manera no supervisada.
 - Son sensibles a los parámetros de entrada

 Para evaluar el resultado del clustering se utilizan métricas de validación

Métricas de validación

- Como el objetivo del clustering es agrupar objetos similares en el mismo cluster y objetos diferentes en distintos clusters, las métricas de validación están basadas usualmente en los siguientes criterios:
 - Cohesión
 - Separación

Criterios de las métricas de validación

■ Cohesión

 Se busca que los miembros de un mismo grupo se encuentren lo más cerca que sea posible unos de otros.

Separación

Los clusters deben estar ampliamente separados entre ellos.
Existen varios enfoques para medir esta distancia entre clusters:
 distancia entre los miembros más cercanos, distancia entre los
 miembros más distantes o la distancia entre los centroides.

Métrica SSW (sum-of-squares within)

Se usa para evaluar la Cohesión (distancia intra-cluster) de los clusters generados por el algoritmo de agrupamiento.

$$SSW = \sum_{i=1}^{k} \sum_{x \in C_i} dist^2(m_i, x)$$

■ Siendo k el número de clusters, x un elemento del cluster C_i y m_i el centroide del cluster C_i

Métrica SSB (sum-of-squares between)

 Es una medida de separación utilizada para evaluar la distancia inter-cluster (Separación)

$$SSB = \sum_{j=1}^{k} n_j \ dist^2(m_j - \bar{x})$$

Siendo k el número de clusters, n_j el número de elementos en el cluster C_j , m_j el centroide del cluster C_j y \bar{x} es la media del conjunto de datos completo.

Indice Silhouette

Dado un ejemplo x del conjunto de datos :

■ Cohesión a(x): distancia promedio de x a todos los demás ejemplos en el mismo cluster.

■ Separación b(x): distancia promedio de x a todos los demás ejemplos en el cluster más cercano.

Indice Silhouette de un elemento

■ El índice silhouette para el ejemplo x está definido como

$$s(x) = \frac{b(x) - a(x)}{\max\{b(x), a(x)\}}$$

■ El valor de s(x) puede variar entre -1 y 1.

-1 = mal agrupamiento

0 = indiferente

1 = bueno

Indice Silhouette del agrupamiento

■ El índice Silhouette para todo el agrupamiento es

$$SC = \frac{1}{N} \sum_{i=1}^{N} s(x_i)$$

Será mejor cuanto mayor sea el valor del índice.

Instale el operador Silhouette copiando el archivo

CPPlugin-0.3.jar

en el directorio **lib/plugins** dentro del directorio de instalación de Rapidminer

o en el directorio

C:\Users\Alumnos\.AltairRapidMiner\Al_Studio\shared\extensions

El agrupamiento se realizará sólo el atributo X2

Cantidad de grupos (Valor de k)	Indice Silhouette	
2	0.5472	
3	0.6219	
4	0.5068	
5	0.3873	

Operador Loop Parameters

 Este Operador itera sobre sus subprocesos para todas las combinaciones de parámetros definidos

Operador Loop Parameters

Indice Davies-Bouldin

- Este índice compara a cada cluster con su vecino más cercano.
- Para medir la calidad del agrupamiento tiene en cuenta los siguientes dos conceptos
 - dispersión de cada cluster.
 - distancia entre clusters.

Indice Davies-Bouldin - Dispersión

La dispersión S_i del cluster C_i se define como la distancia promedio entre los ejemplos que pertenecen al cluster y el centro del mismo.

$$S_i = \frac{1}{|C_i|} \sum_{x \in C_i} dist(x, m_i)$$

donde $|C_i|$ es la cantidad de elementos que pertenecen al cluster C_i , x es un elemento y m_i es el centroide de dicho cluster.

 Cuanto más cerca del centro estén los ejemplos, menor será la dispersión del cluster.

Indice Davies-Bouldin - Distancia

■ La distancia entre los centros de los clusters C_i y C_j se calcula de la siguiente forma

$$D_{ij} = dist(m_i, m_j)$$

donde m_i y m_j son los centroides de los clusters C_i y C_j respectivamente.

Indice Davies-Bouldin - Comparación

■ Dados dos clusters C_i y C_j , para calificar la manera en que los elementos quedan distribuidos se define la siguiente expresión

$$R_{ij} = \frac{S_i + S_j}{D_{ij}}$$

- Mientras más compactos sean los clusters C_i y C_j menores serán S_i y S_j , y mientras más separados estén, mayor será D_{ij} .
- Por lo tanto, cuanto más compactos sean los grupos y más separados se encuentren, **menor** será el valor de R_{ij}

Indice Davies-Bouldin

■ El índice Davies-Bouldin se define como

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{i \neq j} (R_{ij})$$

donde

- k es el número de clusters
- $\max_{i \neq j} (R_{ij})$ es el "peor caso" para el cluster C_i
- Será mejor cuanto menor sea el valor del índice Davies-Bouldin.
- El valor del índice no está acotado. Puede tomar un valor arbitrario.

Davies-Bouldin en RapidMiner

Operador Cluster Distance Performance

Cantidad de grupos (Valor de k)	Indice Davies-Bouldin
2	0.6544
3	0.5312
4	0.7961
5	1.0648

- Se busca agrupar los ejemplos del archivo IRIS.CSV
- Utilice los índices Silhouette y Davies-Bouldin para analizar los agrupamientos obtenidos con k-medias para K=2, k=3, k=4 y k=5.
- Realice un gráfico de coordenadas paralelas y analice los grupos obtenidos.

- El archivo **SEMILLAS.csv** contiene información de granos que pertenecen a tres variedades diferentes de trigo: Kama, Rosa y Canadiense.
- Para cada grano se midieron las siguientes características:
 - área A,
 - perímetro P,
 - compacidad $C = 4 * pi * A / P ^ 2$,
 - longitud del núcleo,
 - ancho del núcleo,
 - coeficiente de asimetría
 - longitud del surco del núcleo
- Describa los tipos de semillas inspeccionados utilizando una técnica de clustering.