

TEMA 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

Aula 13- ALGORITMOS E COMPLEXIDADE Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

O que é um GRAFO e como é construído?

Grafos são estruturas matemáticas que permitem codificar relacionamentos entre pares de objetos.

Elementos básicos de um GRAFO:

OBJETOS: São os vértices (ou nós) do grafo.

A LIGAÇÃO DESTES OBJETOS: Através dos relacionamentos que são as suas ARESTAS.

Aula 13- ALGORITMOS E COMPLEXIDADE Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

São representados como um conjunto de nós (VÉRTICES) conectados par a par por linhas (ARESTAS).

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Então começa aparecer as primeiras DÚVIDAS em relação ao GRAFO?

No GRAFO necessariamente as **ARESTAS** tem fazer a ligação com todos os vértices (nós), ou todos os vértices (nós) tem que ter **ARESTAS**?

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Então começa aparecer as primeiras DÚVIDAS em relação ao GRAFO?

No GRAFO necessariamente as **ARESTAS** tem fazer a ligação com todos os vértices (nós), ou todos os vértices (nós) tem que ter **ARESTAS**?

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Então começa aparecer as primeiras DÚVIDAS em relação ao GRAFO?

No GRAFO necessariamente as **ARESTAS** tem fazer a ligação com todos os vértices (nós), ou todos os vértices (nós) tem que ter **ARESTAS**?

NÃO. SÓ QUANDO HOUVER O RELACIONAMENTO QUE VOCÊ QUEIRA DENTRO DOS SEUS PROPÓSITOS DE MODELAGEM !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

De uma maneira PRÁTICA para quer serve esse RELACIONAMENTOS no GRAFO?

EXEMPLO 1: PODE-SE MODELAR CONEXÕES EM REDES SOCIAIS !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

De uma maneira PRÁTICA para quer serve esse RELACIONAMENTOS no GRAFO?

EXEMPLO 1: PODE-SE MODELAR CONEXÕES EM REDES SOCIAIS !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

De uma maneira PRÁTICA para quer serve esse RELACIONAMENTOS no GRAFO?

EXEMPLO 2: PODE-SE MODELAR UMA BUSCA EM UM LABIRINTO !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

De uma maneira PRÁTICA para quer serve esse RELACIONAMENTOS no GRAFO?

EXEMPLO 2: PODE-SE MODELAR UMA BUSCA EM UM LABIRINTO !!!

(ATRAVÉS DE UMA BUSCA NO GRAFO)

Alguns caminhos possíveis

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

De uma maneira PRÁTICA para quer serve esse RELACIONAMENTOS no GRAFO?

EXEMPLO 3: PODE-SE MODELAR AS ROTAS DO METRÔ.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

De uma maneira PRÁTICA para quer serve esse RELACIONAMENTOS no GRAFO?

EXEMPLO 3: PODE-SE MODELAR AS ROTAS DO METRÔ.

COMO FAÇO ISSO ???

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

De uma maneira PRÁTICA para quer serve esse RELACIONAMENTOS no GRAFO?

EXEMPLO 3: PODE-SE MODELAR AS ROTAS DO METRÔ.

CADA ESTAÇÃO SERÁ O (NÓ) !!! 4

E AS LINHAS FÉRREAS SÃO AS (ARESTAS) !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As relações representadas pelas arestas têm sentido definido.

As arestas só podem ser seguidas em uma única direção.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As relações representadas pelas arestas têm sentido definido.

As arestas só podem ser seguidas em uma única direção.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As relações representadas pelas arestas têm sentido definido.

As arestas só podem ser seguidas em uma única direção.

NOTE QUE POR EXEMPLO:

Tem-se a relação que vai de V₁ para V₂.

Mas nesse relação $N\tilde{A}O$ é possível ir $de\ V_2$ para V_1 .

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As relações representadas pelas arestas têm sentido definido.

As arestas só podem ser seguidas em uma única direção.

NOTE QUE POR EXEMPLO:

Tem-se a relação que vai de V₁ para V₂.

Mas nesse relação $N\tilde{A}O$ é possível ir $de\ V_2$ para V_1 .

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As relações representadas pelas arestas têm sentido definido.

As arestas só podem ser seguidas em uma única direção.

NOTE QUE POR EXEMPLO:

Tem-se a relação que vai de V₁ para V₂.

Mas nesse relação $N\tilde{A}O$ é possível ir $de\ V_2$ para V_1 .

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As ARESTAS são pares ordenados de vértices.

Lembrando que: **SAINDO DE UM EM DIREÇÃO AO OUTRO.**

Mesmo que ambos sejam o mesmo vértice, no qual são chamados de **SELF-LOOP**.

(E temos situações em que as ARESTAS podem ter vértices que saem em direção de si mesmo conforme pode-se observar na figura ao lado no V_4).

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As **ARESTAS** são pares ordenados de vértices.

Lembrando que: **SAINDO DE UM EM DIREÇÃO AO OUTRO.**

Mesmo que ambos sejam o mesmo vértice, no qual são chamados de **SELF-LOOP**.

(E temos situações em que as ARESTAS podem ter vértices que saem em direção de si mesmo conforme pode-se observar na figura ao lado no V_4).

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como DIRIGIDOS (ou direcionados).

As ARESTAS são pares ordenados de vértices.

Lembrando que: **SAINDO DE UM EM DIREÇÃO AO OUTRO.**

Mesmo que ambos sejam o mesmo vértice, no qual são chamados de **SELF-LOOP**.

(E temos situações em que as ARESTAS podem ter vértices que saem em direção de si mesmo conforme pode-se observar na figura ao lado no V_4).

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como NÃO DIRIGIDOS (ou não direcionados).

As relações representadas pelas ARESTAS não tem sentido definido.

As ARESTAS podem ser seguidas em qualquer direção.

POR EXEMPLO:

Há uma relação entre os vértices (nós) V_1 e V_3 . Nesse caso dos NÃO DIRIGIDOS, eu posso ir de V_1 para V_3 e de V_3 para V_1 (Pode-se ir em qualquer direção).

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Algoritmos GRAFOS caracterizados como NÃO DIRIGIDOS (ou não direcionados).

Pode-se pensar num GRAFO não dirigido como um GRAFO dirigido com ARESTAS de sentido duplo.

As ARESTAS são pares não ordenados de vértices.

IMPORTANTÍSSIMO:

SELF-LOOPS não são permitidos em GRAFOS NÃO DIRIGIDOS.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Se (u, v) é uma aresta no GRAFO, então dizemos que v é **adjacente** a u.

Falando de outra forma, v é vizinho de u.

(u, v) significa que a aresta sai

IMPORTANTÍSSIMO:

ESSA ANÁLISE É RESTRITO A "GRAFOS DIRIGIDOS".

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Em GRAFOS não dirigidos, a relação de adjacência é SIMÉTRICA.

$$(u, v) \Leftrightarrow (v, u)$$

OU SEJA,

Você ter uma relação de adjacência de v em relação u (uma aresta de u a v) implica na relação no sentido contrário.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Já em dirigidos, conforme já foi dito, não necessariamente há tal simetria.

OU SEJA,

Há (V_1, V_2) , mas não (V_2, V_1) .

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Em GRAFOS não dirigidos, o grau de um vértice é o número de arestas que incidem nele.

$$gr = GRAU$$

$$gr(V_1) = gr(V_2) = gr(v_5) = 2$$

$$gr(V_3) = 3$$

$$gr(v_4) = 1$$

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Já em GRAFOS dirigidos, o GRAU de um vértice é o número de arestas que saem do vértice mais o número de arestas que chegam nele.

$$gr = GRAU$$

$$gr(V_1) = gr(V_2) = gr(v_5) = 2$$

$$gr(V_3) = gr(v_4) = 3$$

LEMBRANDO QUE SELF-LOOP NÃO É PERMITIDO EM GRAFOS NÃO DIRIGIDOS !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Há uma particularidade no caso de GRAFOS dirigidos, onde existem dois tipos de graus de vértice:

Grau de saída: número de arestas que saem do vértice.

Grau de entrada: número de arestas que chegam no vértice.

LEMBRANDO QUE SELF-LOOP NÃO É PERMITIDO EM GRAFOS NÃO DIRIGIDOS !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Há uma particularidade no caso de GRAFOS dirigidos, onde existem dois tipos de graus de vértice:

Grau de saída: número de arestas que saem do vértice.

Grau de entrada: número de arestas que chegam no vértice.

LEMBRANDO QUE SELF-LOOP NÃO É PERMITIDO EM GRAFOS NÃO DIRIGIDOS !!!

Grau de saída:

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Há uma particularidade no caso de GRAFOS dirigidos, onde existem dois tipos de graus de vértice:

Grau de saída: número de arestas que saem do vértice.

Grau de entrada: número de arestas que chegam no vértice.

LEMBRANDO QUE SELF-LOOP NÃO É PERMITIDO EM GRAFOS NÃO DIRIGIDOS !!!

Grau de entrada:

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Um caminho de um vértice X a um vértice Y é uma sequência de vértices em que, para cada vértice em que, para cada vértice, do primeiro ao penúltimo, há uma aresta ligando esse vértice ao próximo na sequência.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

No caso ao lado, alguns caminhos são:

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

O comprimento de um caminho é o número de arestas nele:

compr = COMPRIMENTO

compr(
$$V_1$$
, V_2 , V_3 , V_5) = 3
compr(V_4 , V_5) = 1
compr(V_1 , V_2 , V_3) = 2
compr(V_4 , V_4 , V_5) = 2

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Um **CICLO** acontece quando, a partir de um determinado vértice, pudermos percorrer algum caminho que nos leve a esse mesmo vértice.

Em grafos dirigidos, o caminho deve conter pelo menos uma aresta.

POR EXEMPLO:

$$V_1 ----> V_2 ----> V_3 ----> V_1$$

$$V_4 - - > V_4$$

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Em GRAFOS não dirigidos, um **CICLO** deve conter pelo menos **3 arestas**.

GRAFOS em que há ao menos um **CICLO** são chamados de cíclicos.

GRAFOS em que não há ciclos são chamados de acíclicos.

LEMBRANDO:

NÃO É VÁLIDO um CICLO em GRAFOS NÃO DIRIGIDOS com 1 aresta somente.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Um grafo *não direcionado* é CONEXO (ou conectado) se cada par de vértices nele estiver conectado por um caminho.

EM LINHAS GERAIS, QUER DIZER QUE O GRAFO NÃO ESTÁ QUEBRADO EM NENHUM PONTO!!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Em relação a um grafo *não direcionado...*

Agora ao lado temos um GRAFO DESCONEXO.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Em relação a um grafo *não direcionado...*

Agora ao lado temos um GRAFO DESCONEXO.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Um grafo dirigido é fortemente conexo se existir um caminho entre qualquer par de vértices no GRAFO.

Contém um caminho direto de u para v e um caminho direto de v para u para cada par de vértices (u, v).

OU SEJA, HAVERÁ UM CAMINHO DE VOLTA AO PONTO ORIGINAL !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Um grafo dirigido é conexo se possuir um caminho de u para v, ou um caminho de v para u, para cada par de vértices (u, v).

OU SEJA, VOCÊ PODE SAIR DE UM DETERMINADO VÉRTICE E NÃO CONSEGUIR VOLTAR !!!

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Um grafo dirigido é fracamente conexo se a substituição de todas as suas arestas por arestas não-direcionadas produz um grafo conexo.

NESSE CASO, AS VEZES NEM TEM O CAMINHO DE IDA E NEM O CAMINHO DE VOLTA. ELE NÃO ESTÁ QUEBRADO (DESCONEXO).

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Um grafo dirigido é fracamente conexo se a substituição de todas as suas arestas por arestas não-direcionadas produz um grafo conexo.

EX: NÃO HÁ CAMINHO DE:

 $V_4 ----> V_3 E NEM DE V_3 ----> V_4$

(LEMBRANDO QUE O GRAFO NÃO ESTÁ QUEBRADO (DESCONEXO)

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

GRAFOS também podem ser ponderados.

Caso em que possuem pesos associados às suas arestas.

Esses pesos podem representar custos, distâncias e dentre outros.

VAI DEPENDER DO QUE VOCÊ PRETENDE NA SUA MODELAGEM.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

ALGORITMOS EM GRAFOS

Por fim, temos um tipo já conhecido de GRAFO...

ÁRVORE É UM...

GRAFO ACÍCLICO CONEXO NÃO DIRIGIDO

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem exatamente de uma unidade.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Se é uma árvore binária do tipo AVL qual a sua primeira característica principal: É BALANCEADA OU NÃO BALANCEADA ?

- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem exatamente de uma unidade.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Se é uma árvore binária do tipo AVL qual a sua primeira característic<mark>a princ</mark>ipal: É BALANCEADA OU NÃO BALANCEADA ? É BALANCEADA !!!!!!!!!

- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem exatamente de uma unidade.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Se é uma árvore binária do tipo AVL qual a sua segunda característica: As alturas das subárvores são iguais ou diferem de 1 ?

- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem exatamente de uma unidade.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Se é uma árvore binária do tipo AVL qual a sua segunda característica: As alturas das subárvores são iguais ou diferem de 1 ? DIFEREM DE 1 !!!!!.

- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem exatamente de uma unidade.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

LOGO A ALTERNATIVA CORRETA É A PRIMEIRA !!!

- Questão 01) Considere uma estrutura de dados T como sendo uma árvore binária do tipo AVL. Como característica, essa estrutura de dados é uma árvore binária.
- (X) balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem de até uma unidade.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) são sempre idênticas.
- () não balanceada, em que, para qualquer nó de T, as alturas de suas duas subárvores (esquerda e direita) diferem exatamente de uma unidade.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 02) Dada a árvore a seguir, assinale a alternativa que apresenta o passeio em ordem para essa árvore.

- ()1243567
- ()1234567
- () 4 2 1 7 5 6 3
- ()4215376
- ()7456231

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 02) Dada a árvore a seguir, assinale a alternativa que apresenta o passeio em ordem para essa árvore.

O que é <mark>em ordem</mark>?

- ()1243567
- ()1234567
- () 4 2 1 7 5 6 3
- ()4215376
- ()7456231

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Questão 02) Dada a árvore a seguir, assinale a alternativa que apresenta o passeio em ordem para essa árvore.

)1243567

)1234567

) 4 2 1 7 5 6 3

) 4 2 1 5 3 7 6

7456231

O que é em ordem?

Árvores Binárias

Atravessamento em ordem (infixa)

- caminhar na subárvore à esquerda, segundo este caminhamento;
- visitar a raiz;
- caminhar na subárvore à direita, segundo este caminhamento

1 2 3 4 5 6 7

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 02) Dada a árvore a seguir, assinale a alternativa que apresenta o passeio em ordem para essa árvore.

)1243567

)1234567

)4217563

) 4 2 1 5 3 7 6

7456231

O que é em ordem?

Aula 10- ALGORITMOS AVANÇADOS
UNIDADE V - Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento em ordem (infixa)

- o caminhar na subárvore à esquerda, segundo este caminhamento;
- visitar a raiz;
- o caminhar na subárvore à direita, segundo este caminhamento

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 02) Dada a árvore a seguir, assinale a alternativa que apresenta o passeio em ordem para essa árvore.

)1243567

)1234567

) 4 2 1 7 5 6 3

7456231

(X)4215376

O que é em ordem?

Aula 10- ALGORITMOS AVANÇADOS
UNIDADE V - Estruturas de dados dos tipos Árvore Binária e Árvore AVL

Árvores Binárias

Atravessamento em ordem (infixa)

- o caminhar na subárvore à esquerda, segundo este caminhamento;
- visitar a raiz;
- o caminhar na subárvore à direita, segundo este caminhamento

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 03) Uma estrutura de dados apresenta a seguinte estrutura, com três campos, para representar cada uma de suas células: conteúdo (valor, por exemplo, 1234), esquerdo (ponteiro) e direito (ponteiro).

Assinale a alternativa que apresenta o tipo de estrutura de dados na qual cada célula tem, de uma maneira geral, essa forma de representação.

- () Árvore binária.
- () Grafo direcionado.
- () Grafo não direcionado.
-) Lista com encadeamento simples.
- () Pilha.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 03) Uma estrutura de dados apresenta a seguinte estrutura, com três campos, para representar cada uma de suas células: conteúdo (valor, por exemplo, 1234), esquerdo (ponteiro) e direito (ponteiro).

Assinale a alternativa que apresenta o tipo de estrutura de dados na qual cada célula tem, de uma maneira geral, essa forma de representação.

- () Árvore binária.
- () Grafo direcionado.
- () Grafo não direcionado.
-) Lista com encadeamento simples.
- () Pilha.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 03) Uma estrutura de dados apresenta a seguinte estrutura, com três campos, para representar cada uma de suas células: conteúdo (valor, por exemplo, 1234), esquerdo (ponteiro) e direito (ponteiro).

Assinale a alternativa que apresenta o tipo de estrutura de dados na qual cada célula tem, de uma maneira geral, essa forma de representação.

- (X) Árvore binária.
- () Grafo direcionado.
- () Grafo não direcionado.
- () Lista com encadeamento simples.
- () Pilha.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 04)

Considerando o grafo precedente, assinale a opção correta.

- () Os nós 1 e 4 são adjacentes.
- () O nó 5 é adjacente a si mesmo.
- Os arcos a1 e a2 são arcos irmãos.
- () Os nós 2 e 3 têm grau 3.
- () O grafo não pode ser classificado como conexo.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 04)

VAMOS ANALISAR !!!

.

Considerando o grafo precedente, assinale a opção correta.

- () Os nós 1 e 4 são adjacentes.
- () O nó 5 é adjacente a si mesmo.
- () Os arcos a1 e a2 são arcos irmãos.
- () Os nós 2 e 3 têm grau 3.
- () O grafo não pode ser classificado como conexo.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Questão 04)

Considerando o grafo precedente, assinale a opção correta.

- () Os nós 1 e 4 são adjacentes.
- () O nó 5 é adjacente a si mesmo.
- () Os arcos a1 e a2 são arcos irmãos.
- () Os nós 2 e 3 têm grau 3.
- (X) O grafo não pode ser classificado como conexo.

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL)

EXERCÍCIOS (REVISÃO)

Questão 05) Considere a estrutura abaixo que representa um problema de rotas em pequena escala.

Considere, por hipótese, que solicitou-se a um Agente de Fiscalização à Regulação de Transporte do Rio de Janeiro a utilizar alguma estratégia lógica para, partindo do ponto 1, chegar ao ponto 6 usando a menor rota. De um mesmo ponto pode haver mais de uma rota, com distâncias diferentes. Qual a lógica correta utilizada pelo Agente, em função dos pontos a serem percorridos, utilizando a menor ROTA?

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Questão 05) Considere a estrutura abaixo que representa um problema de rotas em pequena escala.

VAMOS ANALISAR !!!

Considere, por hipótese, que solicitou-se a um Agente de Fiscalização à Regulação de Transporte do Rio de Janeiro a utilizar alguma estratégia lógica para, partindo do ponto 1, chegar ao ponto 6 usando a menor rota. De um mesmo ponto pode haver mais de uma rota, com distâncias diferentes. Qual a lógica correta utilizada pelo Agente, em função dos pontos a serem percorridos, utilizando a menor ROTA?

Tema 5 - Algoritmos em GRAFOS (CRÉDITO DIGITAL) EXERCÍCIOS (REVISÃO)

Questão 05) Considere a estrutura abaixo que representa um problema de rotas em pequena escala.

VAMOS ANALISAR !!!

Considere, por hipótese, que solicitou-se a um Agente de Fiscalização à Regulação de Transporte do Rio de Janeiro a utilizar alguma estratégia lógica para, partindo do ponto 1, chegar ao ponto 6 usando a menor rota. De um mesmo ponto pode haver mais de uma rota, com distâncias diferentes. Qual a lógica correta utilizada pelo Agente, em função dos pontos a serem percorridos, utilizando a menor ROTA?

Avaliando a estrutura a menor ROTA (a soma das arestas que terá o menor valor) é por 1-3-4-6 => Total = 1+ 2+ 7 = 10 (dez é o menor valor, caminho mais curto).

ALGORITMOS E COMPLEXIDADE PROVA AV2

ESTUDAR TODOS OS MATERIAIS (DO MATERIAL 1 ATÉ O MATERIAL 13).

- 1 VARIÁVEIS LOCAIS E GLOBAIS.
- 2 FUNÇÃO E PROCEDIMENTO.
- 3 PONTEIROS.
- 4 NOTAÇÃO O.
- 5 RECURSIVIDADE.
- 6 ALGORITMOS DE ORDENAÇÃO: ORDENAÇÃO BOLHA, ORDENAÇÃO POR SELEÇÃO E ORDENAÇÃO POR INSERÇÃO (SABER COMO REALIZA O PROCESSO MANUALMENTE DESSAS ORDENAÇÕES CLÁSSICAS).
- 7 ALGORITMO MERGESORT E QUICKSORT.
- 8 SABER A DINÂMICA E O FUNCIONAMENTO DA ÁRVORE BINÁRIA. TREINAR O PROCESSO:

Diferentes formas de percorrer os nós de uma árvore:

- · Pré-ordem ou prefixa (busca em profundidade);
- Em ordem ou infixa (ordem central);
- Pós-ordem ou posfixa;
- Em nível.
- 9 PARTE CONCEITUAL DA ÁRVORE BALANCEADA/AVL.
- 10 ALGORITMOS EM GRAFOS.