Interro MT - mardi 24 février 2015

Décidabilité du langage $\{0^n1^n \mid n \in \mathbb{N}\}$ (20 pt)

On considère l'alphabet $\Sigma = \{0, 1, \#, \$, \square\}.$

Q1. (3 pt) Donnez les transitions d'une MT M_{swap} qui échange la position du symbole # courant avec le symbole binaire suivant.

Indication : Vous pouvez utiliser des multi-transitions notées $\xrightarrow{s/\ldots:\ldots}$

SOLUTION

$$\rightarrow \bigcirc \xrightarrow{\#:R} \mathbf{q} \xrightarrow{s/\#:L} \mathbf{q}_s \xrightarrow{\#/s:R} \bigcirc$$

$$\mathbf{q} \xrightarrow{\square} \bigotimes$$

Q2. (3 pt) Donnez pour chaque multi-transitions de la question précédente, les transitions de bases correspondantes.

SOLUTION

$$\mathbf{q} \xrightarrow{s/\# : L} \mathbf{q}_s \quad donne \quad \mathbf{q} \xrightarrow{0/\# : L} \mathbf{q}_0 \qquad \mathbf{q} \xrightarrow{1/\# : L} \mathbf{q}_1$$

$$\mathbf{q}_s \xrightarrow{\#/s : R} \bigcirc \quad donne \quad \mathbf{q}_0 \xrightarrow{\#/0 : R} \bigcirc \qquad \mathbf{q}_1 \xrightarrow{\#/1 : R} \bigcirc$$

Q3. (3 pt) Donnez une MT $M_{\overrightarrow{dec}}$ qui à partir d'une configuration où la tête pointe sur le symbole #, décale les symboles suivants d'une case vers la gauche et amène le symbole # en dernière position avant les \square^{∞} .

Indication : Vous pouvez utilisez la MT M_{swap} de la question 1 en notant la transition $\xrightarrow{M_{swap}}$

_ SOLUTION _

On itère l'action suivante d'échanger le symbole #avec le symbole s suivant par swap. La MT M_{swap} effectue l'échange uniquement si le symbole s n'est pas un \square et s'arrête sur un \square lorsqu'elle en rencontre un.

$$\rightarrow \mathbf{q}_1 \xrightarrow{\#} \mathbf{q}_2 \xrightarrow{M_{swap}} \mathbf{q}_2 \xrightarrow{\Box : L} \bigcirc$$

Notre objectif est de concevoir une MT M_L qui décide le langage $L \stackrel{\text{def}}{=} \{0^n 1^n \mid n \in \mathbb{N}\}$ constitué des mots binaires formés de n symboles 0 suivis de n symboles 1.

Q4. (2pt) Que signifie que la MT M_L décide le langage $L \subseteq \{0,1\}^*$?

_ SOLUTION _

La MT M_L décide le langage L si et seulement si elle s'arrête pour tout mot ω de $\{0,1\}^*$, sur un état \otimes si $\omega \in L$, sur un état \otimes si $\omega \notin L$.

Q5. (a,b,c,d)(2 pt)

(a) Donnez le ruban initial correspondant à l'appel de $M_L(0011)$:

(b) À quel appel correspond le ruban initial $\frac{1}{1}$?

SOLUTION

___ SOLUTION _

Ce ruban réprésente le mot ϵ et correspond donc à $M_L(\epsilon)$.

(c) Que doit donner l'exécution de M_L sur le ruban?

SOLUTION

Le mot ϵ , qui correspond au cas n=0. Donc la MT M_L doit accepter le mot, ie. qu'elle s'arrête dans un état accepteru \odot .

(d) Que se passe t'il si on appelle $M_L(0101)$?

___ SOLUTION _

La MT s'arrête dans un état rejet \otimes .

Q6. (4 pt) Donnez les transitions de la MT M_L .

_ SOLUTION _

$$\rightarrow \mathbf{q}_{0} \xrightarrow{\$: R} \mathbf{q}_{1} \xrightarrow{0 : R} \mathbf{q}_{1} \xrightarrow{1 : L} \mathbf{q}_{2} \xrightarrow{0/\#} \mathbf{q}_{3} \xrightarrow{M_{\overrightarrow{dec}}} \mathbf{q}_{4} \xrightarrow{\#/\square : L} \mathbf{q}_{5} \xrightarrow{1/\square : L} \mathbf{q}_{6} \xrightarrow{1 : L} \mathbf{q}_{6} \xrightarrow{0} \mathbf{q}_{2}$$

$$\mathbf{q}_{1} \xrightarrow{\square} \bigcirc \mathbf{q}_{2} \xrightarrow{\$} \bigotimes \qquad \mathbf{q}_{5} \xrightarrow{\$} \bigcirc$$

$$\mathbf{q}_{5} \xrightarrow{0} \bigotimes$$

Q7. (3 pt) Supposons que votre MT démarre dans la configuration suivante :

Donnez l'état du ruban la première fois que l'exécution de votre MT passe dans chaque état.

SOLUTION _

\mathbf{q}_0 :	∞	\$	0	 0	0	1		1	1	\square^{∞}
		1								
\mathbf{q}_1 :	∞	\$	0	 0	0	1		1	1	\square^{∞}
			1							
\mathbf{q}_2 :	∞	\$	0	 0	0	1		1	1	\square^{∞}
					<u></u>					
Go.	∞	\$	0	0	#	1		1	1	\square^{∞}
\mathbf{q}_3 :		Ψ	U	 U		1		1	1	
					1					
\mathbf{q}_4 :	∞	\$	0	 0	1		. 1	1	#	\square^{∞}
									↑	
${f q}_5$:	∞	\$	0	 0	1		. 1	1		\square^{∞}
								1		
	∞	Φ	0	0	1		1			$\square \infty$
\mathbf{q}_6 :		\$	0	 U	1		. 1	ш		
								1		
\mathbf{q}_2 :	∞	\$	0	 0	1		. 1			\square^{∞}