Problemas de Aproximación de funciones. Interpolación trigonométrica. Transformada rápida de Fourier.

- (1) Calcula la aproximación trigonométrica continua por el método de mínimos cuadrados $S_n(x)$ para las funciones siguientes en el intervalo $[-\pi,\pi]$. Hallar los errores cometidos.
 - a) f(x) = x.
 - b) $f(x) = e^x$.

c)
$$f(x) = \begin{cases} -1, & \text{si } -\pi < x \le 0, \\ 1, & \text{si } 0 < x \le \pi. \end{cases}$$

- (2) Calcula la aproximación trigonométrica discreta por el método de mínimos cuadrados $S_n(x)$ para las funciones siguientes en el intervalo $[-\pi,\pi]$. Hallar los errores cometidos.
 - a) $f(x) = \cos(3x)$, usando n = 2, es decir, hallar $S_2(x)$ con m = 4, es decir, usando 2m = 8 puntos
 - de la forma $x_j = -\pi + \frac{j\pi}{4}$, $j = 0, 1, \dots, 7$. b) $f(x) = x^2 \cos(x)$, usando n = 3, es decir, hallar $S_3(x)$ con m = 6, es decir, usando 2m = 12 puntos de la forma $x_j = -\pi + \frac{j\pi}{6}$, $j = 0, 1, \dots, 11$.
- (3) Calcular el polinomio de interpolación trigonométrico de grado 4 de las funciones siguientes en el intervalo $[-\pi,\pi]$ usando la transformada rápida de Fourier.
 - a) $f(x) = x(\pi x)$.
 - b) f(x) = |x|.
 - c) $f(x) = x \cos(x^2) + e^x \cos(e^x)$.
- (4) Calcular el polinomio de interpolación trigonométrico de grado 16 de la función $f(x) = x^2 \cos(x)$ en el intervalo $[-\pi, \pi]$ usando la transformada rápida de Fourier.