1 Parameter Fits

1.1 Alpha

1.1.1 Linear Fit

 $\begin{array}{l} y = mx + c \\ m = -0.0146437 + /- 0.012 \ (81.92\%) \\ c = -1.66423 + /- 0.06781 \ (4.074\%) \end{array}$

Mean Coord: 5.3964, -1.7432

1.1.2 Linear Fit Pivot

y = mxm = -0.0146437 +/- 0.01152 (78.7%)

Mean Coord: 5.3964, -1.7432

1.1.3 Logarithmic Fit

Not using this fit

1.2 ϕ^*

1.2.1 Exponential Fit

$$\begin{split} \phi^* &= m \times e^{cx} + d \\ m &= 0.0521538 \text{ +/- } 0.09597 \text{ (184\%)} \\ c &= 1.48655 \text{ +/- } 0.7866 \text{ (52.92\%)} \\ d &= 0.00105869 \text{ +/- } 0.0001342 \text{ (12.68\%)} \end{split}$$

Mean Coord: 5.3577, -0.0013

1.2.2 Linear Fit

 $\begin{array}{l} y = mx + c \\ \mathrm{m} = \text{-}0.00018463 + \text{/-} 7.933\text{e-}05 \text{ (}42.97\%\text{)} \\ \mathrm{c} = 0.00225921 + \text{/-} 0.0004469 \text{ (}19.78\%\text{)} \end{array}$

Mean Coord: 5.3577, -0.0013

1.3 M^*

1.3.1 Logarithmic Fit

1.3.2 Linear Fit

y = mx + cm = 0.22116 + /-0.03555 (16.07%)c = -21.642 + /-0.201 (0.9286%)

Mean Coord: 5.3964, -20.4486