MD070SD 7寸总线型 TFT 模块应用手册

目录

1.	特	点介绍	2
2.	接	口定义与安装尺寸	3
3.	工	作寄存器描述	5
4.	工	作寄存器配置说明	7
	4. 1	背光控制	7
	4.2	行列地址写入	7
	4.3	行列地址增量方向	7
	4.4	读写数据通道	7
	4. 5	复位和初始化	7
5.	颜	色配置说明	8
6.	读	写时序说明	9
	6. 1	写行地址的时序	9
	6. 2	写列地址的时序	9
	6.3	写显示数据的时序	9
	6. 4	读显示数据的时序	9
	6. 5	写其他命令寄存器时序	. 10
7.	单	片机驱动程序应用示例	. 11
	7 1	添例代码 (8051)	11

1. 特点介绍

适用 CPU: 51, AVR, STM32, PIC, MSP430, DSP, ARM 等。

MD070SD 采用 8080 时序 16bit 并行总线接口,分辨率 800×480,显示面板 16M 色彩,集成 8 页显寸(显存用不完可当扩展内存使用)。模块内部采用 CPLD+SDRAM 方式驱动 RGB 接口显示屏,在总线接口与 RGB 接口之间实现转换的同时还提供了一系列实用功能,具体请参考后面的寄存器说明和 Demo 程序.

在工作稳定性方面本模块具备超强抗干扰能力,远远超越市场上的 SSD1963 驱动方案,SSD1963 抗干扰差,有死机白屏的风险。

功能方面,本模块提供 8 页显存可以实现后台写数据,一个命令瞬间切换满屏显示数据,远远超越市场上的 RA8875 驱动方案。

控制方面 MD070SD 省去了一般的 TFT 控制器所需要的烦琐的初始化代码,MD070SD 无需初始化,仅仅需要做一次复位操作就可以开始工作。最少只需要使用 5 个积存器指令就可以正常操作。大大简化了程序的代码量,降低了程序的调试难度和出错机率。

本控制板的响应速度很快,能达到 200ns 的读写周期。最快实现 13 桢的满屏刷新速度,集成的 8MB SDRAM 对应 8 页显示缓冲。显示页寄存器和读写页寄存器独立设置,当前显示页和读写页可以是不同的页,方便实现后台写入后,整页快速切换。

TFT 的驱动时序和电路都经过优化设计,保证色彩准确还原,显示稳定,杜绝闪烁或窜色,并提供 LED 背光驱动,亮度可从 0(关闭)~16(全开)间调节。

2. 接口定义与安装尺寸

接口定义说明:

<u> </u>	40074.	
序号	名称	说明
1	GND	电源地
2	3. 3V	电源正, 3. 3V
3	NC	空
4	RS	数据/命令切换
5	WR	写数据时钟
6	RD	读数据时钟
7-14	DB8-DB15	高 8 位数据总线
15	CS	片选
16	F_CS	FLASH 片选(模块预留 FLASH 芯片 W25X16, 默认不贴件,做预留用途)
17	REST	复位(复位操作过程: 拉低电平, 持续 20ms; 再拉高电平, 持续 20ms)
18	5V	背光电源, 5V 输入
19	LED_A	背光控制(出厂默认背光由程序控制,0-16 级可调背光亮度,不受
		LED_A 控制,如果需要由 LED_A 手动控制,在模块上的 Backlight
		Control 处修改电阻焊盘跳线可以更改为 LED_A 手动控制,手动控制
		的时候,LED_A 接高背光亮,接低背光灭,给 PWM 信号可调亮度)。
20	NC	空
21-28	DBO-DB7	低 8 位数据总线
29	T_CLK	触摸控制器 (XPT2046) 时钟
30	T_CS	触摸控制器 (XPT2046) 片选
31	T_DIN	触摸控制器(XPT2046)的数据入(即 MOSI)
32	NC	空

33	T_DO	触摸控制器(XPT2046)的数据出(即 MISO)
34	T_IRQ	触摸控制器(XPT2046)数据中断(平时为高,触摸时为低)
35	SD_DO	SD 卡接口的 MISO
36	SD_CLK	SD卡接口时钟
37	SD_DIN	SD 卡接口的 MOSI
38	SD_CS	SD卡接口片选
39	NC	空
40	NC	空

电气特性

项目	最小电压(V)	最大电压(V)	电流(MA)	备注
VCC (3. 3V)	3. 2	3.6	150	驱动 IC 电源
VCC2 (5V)	4.5	7. 0	500	背光驱动电源
I0(数据接口)	3. 2	3. 6		数据口

警告: 所有数据口电压不能超过 3.6V.

3. 工作寄存器描述

表 2: 寄存器列表

	衣	: 可仔品列表			
CS	RS	DATA[15:0]	WR	RD	功能
0	0	0x0001	0	X	地址指向背光亮度寄存器
0	1	0 - 16	0	×	背光亮度值(默认: 0)
0	0	0x0002	0	X	地址指向起始行地址寄存器
0	1	0 - 479	0	X	写入9位的起始行地址
0	0	0x0003	0	X	地址指向起始列地址寄存器
0	1	0 - 799	0	X	写入 10 位的起始列地址
0	0	0x0006	0	X	地址指向结束行地址寄存器
0	1	0 - 479	0	×	写入9位的结束行地址
0	0	0x0007		×	地址指向结束列地址寄存器
0	0	0 - 799	0	×	写入 10 位的结束列地址
U	1	0 - 799	0	^	与八10位的结果列地址
0	0	0x0004	0	×	显示页寄存器
0	1	0 - 7	0	X	写入(设置)被显示页的页地址(上电
ŭ					默认为第 0 页)
0	0	0x0005	0	X	读写页寄存器
0	1	0 - 7	0	X	写入(设置)当前读写页的页地址(上
					电默认为第0页)
0	0	0x000B	0	X	休眠状态寄存器
0	1	0x0000 - 0x0001	0	X	0x0001-进入休眠
					(进入休眠后只要任意发一条读写命
					令,即可退出休眠状态。)
0	0	00000	0		显示状态选择寄存器
0	0	0x000C 0x0000 - 0x000F	0	×	7 7 1 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
U	1	0x0000 - 0x000F	0		Bit0:U/D(屏幕上下翻转显示) Bit1:L/R(屏幕左右翻转显示)
					Bit[3:2]:0(正常显示)
					Bit[3:2]:2(液晶屏自检模式)
0	0	0x000D	0	×	地址指向地址增量方向寄存器
0	1	0x0000 - 0x0001	0	×	0x0000-行方向地址自动增量(默认)
					0x0001-列方向地址自动增量
0	0	0x000F	0	X	地址指向数据通道

0	1	0x0000 - 0xFFFF	0	×	向控制板写入数据
0	1	0xXXXX	1	0	读出控制板 RAM 数据
1	×	×	×	×	不选通

4. 工作寄存器配置说明

5.1 背光控制

背光由 300Hz PWM 信号驱动,能量转换效率高,无闪烁效应。当背光寄存器设置为 0 时,背光关闭。背光寄存器上电复位值为 0,为避免上电时显示花屏,可在上电时先清屏,再打开背光。背光值最大为 16 (0x10),写入值大于 16 时会被忽略。

5.2 行列地址写入

行列地址所对应的 RAM 地址由控制板内部运算得到,用户程序不需要计算行列与 RAM 地址的对应关系,直接输入坐标地址即可。

5.3 行列地址增量方向

行列地址增量方向可通过配置"地址增量方向寄存器(0x0D)"来实现。连续写入时,地址自动加1。本控制板可以设定为行方向地址自动增量或列方向地址自动增量。如遇到行末将循环到行开头。

5.4 读写数据通道

在读写显示数据时,要保证工作寄存器的值设为 0x0F,选择指向数据通道;读写显示数据时工作寄存器不能被修改为其他值,否则读写入不会成功。

5.5 复位和初始化

REST 引脚控制复位。复位操作过程: 拉低电平, 持续 5ms 以上(推荐 20ms); 再拉高电平, 持续 5ms 以上(推荐 20ms), 之后方可接受数据写入。

5. 颜色配置说明

表 3: 颜色对应表

65k 色	R4	R3	R2	R1	R0	G5	G4	G3
	D15	D14	D13	D12	D11	D10	D9	D8
	G2	G1	G0	B4	В3	B2	B1	В0
	D7	D6	D5	D4	D3	D2	D1	DO

表 4: 颜色对应表续

	颜色灰度	R4、R3、R2	G5、G4、G3	B4、B3、B2
	最黑	000	000	000
	亮蓝	000	000	111
基	亮绿	000	111	000
本	亮青	000	111	111
颜	亮红	111	000	000
色	亮紫	111	000	111
	亮黄	111	111	000
	亮白	111	111	111
蓝	最黑	000	000	000
色	较暗	000	000	001
灰	•••	•••	•••	•••
度	较亮	000	000	110
	最亮	000	000	111
绿	最黑	000	000	000
色	较暗	000	001	000
灰	•••	•••	•••	•••
度	较亮	000	110	000
	最亮	000	111	000
红	最黑	000	000	000
色	较暗	001	000	000
灰	•••	•••	•••	•••
度	较亮	110	000	000
	最亮	111	000	000

6. 读写时序说明

7.1 写行地址的时序

7.2 写列地址的时序

7.3 写显示数据的时序

7.4 读显示数据的时序

7.5 写其他命令寄存器时序

方法和写行列地址相同

7 单片机驱动程序应用示例

7.1 示例代码(8051)

```
//设置起始地址与结束地址
   void Address set (unsigned int x1, unsigned int y1, unsigned int
x2, unsigned int y2)
      LCD WR REG(0x02);//开始y
      LCD_WR_DATA(y1);
      LCD_WR_REG(0x03);//开始 x
      LCD_WR_DATA(x1);
      LCD WR REG(0x06);//结束 y
      LCD_WR_DATA(y2);
      LCD WR REG(0x07);//结束 x
      LCD_WR_DATA(x2);
      LCD_WR_REG(0x0f);
   }
   void Lcd_Init(void)
      LCD RD=1;
      LCD_WR=1;
      LCD REST=0;
      delayms (20); //此处保证要有 5ms 以上才能保证复位稳定, 推荐 20ms
      LCD REST=1;
      delayms (20); //此处保证要有 5ms 以上才能保证复位稳定, 推荐 20ms
      LCD CS =0; //打开片选使能
      LCD_WR_REG(0x01); //打开背光
      LCD WR DATA (16);
   }
   //清屏函数
   //Color:要清屏的填充色
   void LCD Clear (u16 Color)
      u8 VH, VL;
      u16 i, j;
      VH=Color>>8;
      VL=Color:
      Address_set (0, 0, LCD_W-1, LCD_H-1);
       for (i=0; i < LCD_W; i++)
```

```
{
    for (j=0; j<LCD_H; j++)
    {
        LCD_WR_DATA8(VH, VL);
    }
}</pre>
```

如果不使用多页显存功能,可以像使用一般的 TFT 控制器一样不用理会操作显存页相关的 积存器,上电默认是操作页为第 0 页,显示页也为第 0 页。如果要使用多页显存,增加以下 2 个函数来设置页即可:

```
void WritePage(unsigned char index)//设置当前操作页,上电默认为 0 {
    LCD_WR_REG(0x05);
    LCD_WR_DATA(index);
}
void ShowPage(unsigned char index)//设置当前显示页,上电默认为 0 {
    LCD_WR_REG(0x04);
    LCD_WR_DATA(index);
}
```