Introduction to Probability Distributions

Distribution – The possible values a variable can take and how frequently the occur.

Probability is the likelihood of an outcome.

Types of Probability Distributions:

- Discrete finite number of outcomes
- Continuous infinitely many outcomes

Discrete Distributions:

Uniform Distribution (U) – equiprobable; all outcomes are equally likely. **Bernoulli Distribution (Bern)** – events with only 2 possible outcomes; true or false.

Binomial Distribution (B) – carrying out a similar experiment several times in a row.

- 2 outcomes per iteration
- Many iterations

Poisson Distribution (Po) – test out how unusual an event frequency is for a given interval.

Continuous Distributions:

Normal Distribution (N) - often observed in nature

Student's-T Distribution (t) – a small sample approximation of a Normal Distribution; when limited data. It accommodates extreme values significantly better.

Chi-Squared Distribution - asymmetric and only consists of non-negative values.

Exponential Distribution – events that are rapidly changing early on.

Logistic Distribution – useful in forecast analysis, determining a cut-off point for a successful outcome.

Transformation – a way in which we alter every element of a distribution to get a new distribution. For normal distributions we can add, subtract, multiply, or divide every element of a distribution and get a new distribution with similar characteristics.

Standardizing – a special kind of transformation where we make the expected value; E(X) = 0, and the variance; Var(X) = 1.

ALADID net

Statistics Probability 1 Binomial Distribution - B(n,p) L) a sequence of Bernoulli events # Probability Function: p(y) = (7) x py x (1-p)n-y # Expected Values: E(X) = xo.p(xo) +x, p(x,)+ - xn.p(xn) $Y \sim B(n, p) \Rightarrow E(Y) = n \cdot p$ (Y) # Variance: = E (y2) - E(y)2 = n.p. (1-p) 2 Bernoulli Distribution - Bern (p) → 1 trial, 2 possible outcomes # Expected Values : E(X)=1.p + O. * (1-p) = P # Variance : 02 = p(1-p) Poisson Distribution - Po (λ) 4 frequency with which an event occurs # Probability Function: P(Y) = 2 · e-2 · e > = 2.72 · e-> = = # Expected Values: Ely) = yo. P(yo) + y. ply,)+ -= = > # Variance: 02 = 140-4)2+(y,-4)2+ ... = 2 · N= 0 = y 4 Normal Distribution - N(H, 0') - appearing in nature # Expected Value = E(X)= µ # Variance: Var (x) = 52 cs Scanned with CamScanned vith CamScanned with CamScanned with CamScanned (x)

(5) Students-T Distribution - L(k)
Ly small sample size approximation of a
Normal Distribution
→ Certain + Sufficit = Normal Characteristics duta Oistrobution
-> Certain , Insufficient = StudentsT Characteristics data Distribution
Characteristics data Distribution → k → digrees of freedom
if 1k >2
$\mapsto E(Y) = \mu$
L> Var (Y) = S2·k
K-2
$\bigcirc C \cap C $
6 Chi-Squared Distribution - X2 (k)
bypothesis testing & computing confidence intervals
Expected Values: E(X)= k
Vanance: Var (X) = 2k
, A - 1
<u> </u>
· · · · · · · · · · · · · · · · · · ·
CS Scanned with CamScanner

Conditional Probability

Conditional probability is the probability of an event occurring given that another event has already occurred. It is denoted as **P(A | B)**, meaning the probability of event **A** happening given that event **B** has happened. It is calculated using the formula: **P(A | B)** = **P(A and B) / P(B)**

Independent events are events where the occurrence of one does not affect the probability of the other. For example, rolling a die and flipping a coin are independent because the result of one does not influence the other. $P(A \mid B) = P(A)$

Baye's Theorem

Baye's Theorem describes how to update probabilities based on new evidence.

$$P(A|B) = P(B|A) * P(A) / P(B)$$

Where:

- P(A|B) probability of event A given B has occurred (posterior probability).
- P(B|A) probability of event B given A (likelihood).
- P(A) prior probability of A.
- P(B) probability of B.