Haroldo Fernando Fritsch

UTILIZAÇÃO DE REDES NEURAIS ARTIFICIAIS PARA CONTROLAR UM AGENTE EM UM JOGO DE ESTRATÉGIA EM TEMPO REAL

Trabalho de Conclusão de Curso (TCC) elaborado e apresentado como requisito parcial para obtenção do título de bacharel em Sistemas de Informação pelo Centro Universitário Luterano de Palmas (CEULP/ULBRA).

Orientador: Prof. M.e M.Sc. Jackson Gomes de Souza.

Aprovado em:	/
	BANCA EXAMINADORA
	Prof. M.e M.Sc. Jackson Gomes de Souza Orientador Centro Universitário Luterano de Palmas – CEULP
	Prof. M.Sc Parcilene Fernandes de Brito Centro Universitário Luterano de Palmas – CEULP
	Prof. D.r. Edeílson Milhomem da Silva

Palmas - TO

Centro Universitário Luterano de Palmas - CEULP

RESUMO

Atualmente os jogos de computadores são muito populares e deram origem a uma indústria bilionária. Um dos marcos que permitiu esse avanço foi o emprego da Inteligência Artificial, que forneceu mais realismo e imersão aos jogos. No contexto acadêmico, os jogos eletrônicos se apresentam como uma excelente plataforma de testes e validação de novos métodos e algoritmos de Inteligência Artificial, em especial o gênero de jogos de estratégia em tempo real, que fornece inúmeros desafios como estratégia de coleta e alocação de recursos. Este trabalho apresenta um método de aprendizagem supervisionada através de uma Rede Neural Artificial com utilização do algoritmo *backpropagation* para um NPC sobre o ambiente do jogo *Starcraft*.

Palavras-chave: Inteligência Artificial, Jogos de Estratégia em Tempo Real, Redes Neurais Artificiais, Jogo *Starcraft* e Algoritmo *Backpropagation*.