```
Copyright 1985-2017 StataCorp LLC
                                15.1
  Statistics/Data Analysis
                                       StataCorp
                                     4905 Lakeway Drive
                                     College Station, Texas 77845 USA
                                     800-STATA-PC
                                                            http://www.stata.com
                                     979-696-4600
                                                            stata@stata.com
                                     979-696-4601 (fax)
Single-user Stata perpetual license:
      Serial number: 301506228769
        Licensed to: Luca Tiberti
                      PEP
Notes:
     1. Unicode is supported; see help unicode_advice .
running c:\ado\personal\profile.do ...
. doedit "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_sem
> aines 10-11\versions\BLOC4_COPY1.do"
. do "C:\Users\lutib\AppData\Local\Temp\STD1f60_000000.tmp"
. // EXERCICE 1
. // Q1
. clear
. input w_1 w_2 w_3
                    w_2
                               w_3
           w_1
 1.153
  2.230
  3.446
 4.334
  5.754
  6.643
  7. end
. gen poor_union = (w_1<3.5) \mid (w_2<3.5) \mid (w_3<3.5)
. mean poor_union
Mean estimation
                                 Number of obs
                     Mean
                            Std. Err.
                                          [95% Conf. Interval]
                 .6666667
                             .2108185
                                            .1247404
                                                        1.208593
 poor_union
```

. imdp_uhi w_1 w_2 w_3, pl1(3.5) pl2(3.5) pl3(3.5)

M.D. Poverty index : Union headcount index

	Estimate		LB	UB
Population	0.667	0.211	0.242	1.091

```
. // Q2
```

- . gen poor_inter = $(w_1<3.5)$ & $(w_2<3.5)$ & $(w_3<3.5)$
- . mean poor_inter

Mean estimation

Number of obs =

6

	Mean	Std. Err.	[95% Conf.	Interval]
poor_inter	.1666667	.1666667	2617636	.595097

. imdp_ihi w_1 w_2 w_3, pl1(3.5) pl2(3.5) pl3(3.5)

M.D. Poverty index : Intersection headcount index

	Estimate	STE	LB	UB
Population	0.167	0.167	-0.169	0.503

```
. // Q3
```

> The intersection headcount index is more sensitive, since we count only those with full m > ultiple deprivation.

> */

. // Q4

. gen dep_1 = $(w_1<3.5)$

. gen dep_2 = $(w_2<3.5)$

. gen dep_3 = $(w_3<3.5)$

= rowtotal(dep_*) . egen sum_dep

.gen af_poor = (sum_dep>=2)

. gen $w_af_poor = (sum_dep /3)* af_poor$

. /* Alkire and Foster HO and MO */
. mean af_poor w_af_poor

Mean estimation Number of obs =

	Mean	Std. Err.	[95% Conf.	Interval]
af_poor	.5	.2236068	0747996	1.0748
w_af_poor	.3888889	.1808758	0760671	.8538449

. // Q5

. imdp_afi w_1 w_2 w_3, dcut(2) w1(1) pl1(3.5) w2(1) pl2(3.5) w3(1) pl3(3.5)

Alkire and Foster (2007) MDP indices

The relative contribution of dimensions to the Alkire and Foster (2007) MDP indices estimated at population level (results in %).

Dimensions	МО	M1	M2
w_1	42.86 5.48	47.37 17.81	40.23 26.07
w_2	28.57	10.53	2.30
w_3	11.40 28.57	5.90 42.11	1.49 57.47
	11.40	16.96	25.91

•

. // Q6

```
. gen poor_union_targ1 = (w_1+1<3.5) | (w_2<3.5) | (w_3<3.5)
. gen poor_union_targ2 = (w_1<3.5) | (w_2+1<3.5) | (w_3<3.5)</pre>
```

. gen poor_union_targ3 = $(w_1<3.5)$ | $(w_2<3.5)$ | $(w_3+1<3.5)$

. gen poor_inter_targ1 = (w_1+1<3.5) & (w_2<3.5) & (w_3<3.5)

. gen poor_inter_targ2 = $(w_1<3.5)$ & $(w_2+1<3.5)$ & $(w_3<3.5)$

. gen poor_inter_targ3 = $(w_1<3.5)$ & $(w_2<3.5)$ & $(w_3+1<3.5)$

. mean poor_union*

Mean estimation Number of obs =

td.	Err.	[95%	Conf.	Interval]

	Mean	Sta. Err.	[95% Conf.	Interval
poor_union poor_union_targ1 poor_union_targ2 poor_union_targ3	.6666667 .6666667 .6666667	.2108185 .2108185 .2108185 .2236068	.1247404 .1247404 .1247404 0747996	1.208593 1.208593 1.208593 1.0748
F				

. mean poor_inter*

Mean estimation Number of obs =

	Mean	Std. Err.	[95% Conf.	Interval]
poor_inter poor_inter_targ1 poor_inter_targ2 poor inter targ3	.1666667 .1666667 0	.1666667 .1666667 (omitted) .1666667	2617636 2617636 2617636	.595097 .595097

. /* With the union approach, we focus in less deprived individuals (the case of individua > 1 number 6, the is only deprived in dimension 3) */

. /* With the intersection approach, we focus in $% \left(1\right) =1$ we focus in most deprived individuals (th > e case of individual number 3, and we target the dimension 2) */

. // EXERCICE 2

. // Q1

.

```
. clear
. input w_1 w_2 w_3
          w_1
                    w_2
                               w_3
 1. 1 5 3
2. 2 3 0
 3.446
 4.334
 5.754
 6.643
 7. end
. cap drop ngap*
. gen ngap1 = (3.5-w_1)/3.5*(3.5>w_1)
. gen ngap2 = (3.5-w_2)/3.5*(3.5>w_2)
. gen ngap3 = (3.5-w_3)/3.5*(3.5>w_3)
. gen pi = ((1/3)*ngap1^1 + (1/3)*ngap2^1 + (1/3)*ngap3^1)^(1/1)
. if ngap1==0 \& ngap2==0 \& ngap3==0 replace pi=0
. qui sum pi
. scalar BC_0 = r(mean)'
. dis "The B&C index = " \%6.3f BC_0
The B&C index = 0.159
. // Q2
. imdp_bci w_1 w_2 w_3, alpha(1) gamma(1) b1(0.3333333) p11(3.5) b2(0.3333333) p12(3.5) b3(
> 0.3333333) pl3(3.5)
   M.D. Poverty index : Bourguignon and Chakravarty (2003)
                  Estimate
                                        STE
                                                        T.R
                                                                        IIR
```

	Escillacc	SIE	шь	ОБ
Population	0.159	0.085	-0.012	0.330

```
. // Q3
. gen nw_1 = (w_1+ w_2+w_3)/3
. gen nw_2 = (w_1+ w_2+w_3)/3
```

```
. gen nw_3 = (w_1 + w_2 + w_3)/3

. imdp_bci nw_1 nw_2 nw_3, alpha(1) gamma(1) b1(0.3333333) pl1(3.5) b2(0.3333333) pl2(3.5)

> b3(0.3333333) pl3(3.5)
```

M.D. Poverty index : Bourguignon and Chakravarty (2003)

	Estimate	STE	LB	UB
Population	0.119	0.084	-0.050	0.288

```
. /*
> The BC index decreases because the expenditure share of each dimension of each individua
> 1 (1/3)
> matches with the normative imposed expenditure shares (the parameter beta = 1/3).
  Thus, the generated utility is high and gap is low.
. // Q4
. gen b1=w_1/(w_1+w_2+w_3)
. gen b2=w_2/(w_1+w_2+w_3)
. gen b3=w_3/(w_1+w_2+w_3)
. replace pi = (b1*ngap1^1 + b2*ngap2^1 + b3*ngap3^1)^(1/1)
(4 real changes made)
. qui sum pi
. scalar BC_0 = r(mean)'
. dis "The B&C index = " %6.3f BC_0
The B&C index = 0.084
. /*
> The BC index decreases because now the beta parameters of each individual matches with t
> heir observed expenditure shares
> and this optimizes the utility.
> */
end of do-file
. do "C:\Users\lutib\AppData\Local\Temp\STD1f60_000000.tmp"
. // EXERCICE 3
. // Q1
end of do-file
```

- . use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weeks_semaines 1 > 0-11\versions\Canada_Incomes&Taxes_1996_2005_random_sample_1.dta", clear (Enquete sur la dynamique du travail et du revenu, 1996: FAMILLES ECONOMIQUES (FE) . do "C:\Users\lutib\AppData\Local\Temp\STD1f60_000000.tmp" . preserve . keep if year==2005 (91,617 observations deleted) . #delimit ; delimiter now; . cnpe T B N, xvar(X) hsize(hhsize) type(dnp) min(1000) max(31000) > title(Marginal rates of taxes and benefits) > subtitle(Canada 2005) > xtitle(Gross income) > ytitle(Estimated marginal rates) . #delimit cr delimiter now cr . restore . // Q2 . preserve . keep if year==1999
- . digini X N, hs(hhsize)

(90,760 observations deleted)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
GINI_Dis1 GINI_Dis2	.4459691 .3395268	.0049569	89.9694 77.6026	0.0000	.4362525 .3309504	.4556857 .3481032
diff.	1064423	.0034237	-31.0898	0.0000	1131535	0997311

. restore

. preserve

. keep if year==2002
(91,270 observations deleted)

. digini X N, hs(hhsize)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
GINI_Dis1 GINI_Dis2	.4381697 .3278514	.0051025 .0038126	85.8735 85.9916	0.0000	.4281676 .3203778	.4481718
diff.	1103183	.0033076	-33.353	0.0000	116802	1038346

. restore

. preserve

. keep if year==2005
(91,617 observations deleted)

. digini X N, hs(hhsize)

Index	Estimate	Std. Err.	t	P> t	[95% Conf. In	nterval]
GINI_Dis1 GINI_Dis2		.0053113	82.6602 82.5721	0.0000	.4286217 .3257848	.4494447
diff.	1053264	.0033609	-31.3387	0.0000	1119146	0987382

. restore

. // Q3

. iprog T, ginc(X) hsize(hhsize) gobs(year) type(t) index(ka)

Index : Kakwani progressivity index

Gross income variable : X Household size : hhsize Sampling weight : sweight : year gobs variable

	gobs	Estimate	STE	LB	UB
1993		0.065444	0.004368	0.056882	0.074006
1994		0.076990	0.003748	0.069643	0.084338
1996		0.098275	0.003735	0.090953	0.105597
1997		0.096034	0.003697	0.088787	0.103280
1998		0.100705	0.004885	0.091129	0.110281
1999		0.111523	0.003091	0.105464	0.117582
2000		0.107969	0.003774	0.100570	0.115367
2002		0.104482	0.003799	0.097036	0.111928
2003		0.108929	0.003454	0.102158	0.115700
2004		0.105856	0.003128	0.099725	0.111987
2005		0.111418	0.003713	0.104140	0.118696

. // Q4

. preserve

. keep if year==2005 (91,617 observations deleted) . cprog T, rank(X) hsize(X) type(t) appr(tr)
(8,383 real changes made)

(7,841 real changes made)

. restore

. ,

. // Q5

. preserve

. keep if year==2005

(91,617 observations deleted)

. iprog T, ginc(X) hsize(hhsize) gobs(province) type(t) index(ka)

Index : Kakwani progressivity index

Gross income variable : X

Household size : hhsize
Sampling weight : sweight
gobs variable : province

> —		GTP.		
gobs >	Estimate	STE	LB	UB
Newfoundland	0.091477	0.010065	0.071676	0.1112
> 77				
Prince_Edward_Island	0.050100	0.013058	0.024367	0.0758
> 33				
Nova_Scotia	0.106620	0.010190	0.086604	0.1266
> 37				
New_Brunswick	0.112049	0.010531	0.091355	0.1327
> 43	0.116628	0.006875	0.103142	0.1301
Quebec	0.116628	0.006875	0.103142	0.1301
Ontario	0.114726	0.005618	0.103709	0.1257
> 43	0.111,20	0.003010	0.103703	0.125
Manitoba	0.137435	0.012351	0.113178	0.1616
> 91				
Saskatchewan	0.106193	0.008148	0.090191	0.1221
> 95				
Alberta	0.092402	0.017235	0.058567	0.1262
> 36				
British_Columbia	0.135435	0.010437	0.114947	0.1559
> 22				

> —

. igini X, hs(hhsize) hg(province)

Index : Gini index
Household size : hhsize
Sampling weight : sweight
Group variable : province

> —— > B	Group	Estimate	STE	LB	U
>					
<pre>1: Newfoundland > 5515 2: Prince_Edward_Island</pre>		0.497669	0.019307	0.459823	0.9

> 4430				
3: Nova_Scotia	0.4270	0.015906	0.395855	0.4
> 8215				
4: New_Brunswick	0.453	745 0.016566	0.421272	0.4
> 6218				
5: Quebec	0.446	514 0.010774	0.425395	0.4
> 7634				
6: Ontario	0.4268	839 0.009171	0.408861	0.4
> 4816				_
7: Manitoba	0.435	761 0.016678	0.403069	0.4
> 8453	0.441	416 0014410	0 412160	•
8: Saskatchewan	0.4414	416 0.014410	0.413169	0.4
> 9662 9: Alberta	0.4096	617 0.013939	0.382293	0.4
> 6941	0.4096	317 0.013939	0.302293	0.4
10: British Columbia	0.4560	0.015703	0.425279	0.4
> 6844	1 0.130	0.013703	0.123273	••
> ——	ı			
Population	0.4390	33 0.005311	0.428622	0.44
> 9445	•			

. restore

. /*

> The highest inequality in Gross incomes in 2005 was in Newfoundland.
> The highest progressivity in Taxes in 2005 was in British_Columbia.
> */

end of do-file