1. Guía de ejercicios

1.1. Guía 1

Ejercicio 1.1. Una pequeña empresa de productos químicos debe consumir más de $40 M^3/\text{mes}$ de un determinado alcohol, debido a que ha firmado un contrato con la municipalidad de la zona (este alcohol es producido allí mismo). En compensación recibe beneficios impositivos.

Produce dos tipos de fertilizantes: A y B. En la tabla siguiente se da la información básica:

	Producto A	Producto B
Consumo de alcohol	3 M ³ /unidad	$2/3 \text{ M}^3/\text{unidad}$
Consumo de ciclohexano	1 tn/unidad	$2 { m tn/unidad}$

Cuadro 1: Tabla de datos

Disponibilidad de ciclohexano: 20 tn. por mes.

Con estas restricciones, y sabiendo que la contribución marginal es 1.200 \$/u para el producto A y 400 \$/u para el producto B, ¿cuál es el plan óptimo de producción?.

Solución:

- 1. Objetivo del problema: Maximizar la contribución marginal total.
- 2. Definir variables de decisión:

$$x_1 = \text{unidades producidas de fertilizante A [unidad/mes]}$$

 $x_2 = \text{unidades producidas de fertilizante B [unidad/mes]}$
(1)

3. Función objetivo (maximizar contribución marginal):

$$\max Z = 1200 \cdot x_1 + 400 \cdot x_2 \tag{2}$$

4. Restricciones:

$$3 \cdot x_1 + \frac{2}{3} \cdot x_2 \ge 40$$
 (Restricción de consumo de alcohol)
$$x_1 + 2 \cdot x_2 \le 20$$
 (Restricción de consumo de ciclohexano) (3)
$$x_1, x_2 \ge 0$$
 (No se pueden producir cantidades negativas de productos)

Ejercicio 1.2. Hay tres máquinas disponibles para la producción de dos productos. Cada uno de ellos requiere los tiempos de proceso que se indican en la tabla siguiente (expresados en horas/unidad).

Producto	Máq. A	Máq. B	Máq. C
1	2	3	4
2	4	2	2
Disponibilidad (hs/mes)	80	60	100

Cuadro 2: Tabla de datos

El esquema del proceso productivo es el siguiente:

- Ambos productos deben pasar sucesivamente por las tres máquinas (en el orden "A→B→C") para quedar totalmente terminados. Una máquina puede procesar un solo producto por vez.
- El precio de venta de 1 es de 60 \$/u y el de 2 es de 50 \$/u. Se planea la operación para el mes que viene.

¿Cuál es el uso óptimo de estos recursos frente al objetivo de maximizar las ganancias?.

Solución:

- 1. Objetivo del problema: Maximizar las ganancias.
- 2. Definir variables:

$$x_1 = \text{unidades producidas de producto 1 [unidad/mes]}$$

 $x_2 = \text{unidades producidas de producto 2 [unidad/mes]}$
(4)

3. Función objetivo (maximizar ganancias):

$$\max Z = 60 \cdot x_1 + 50 \cdot x_2 \tag{5}$$

4. Restricciones:

$$\begin{aligned} 2 \cdot x_1 + 4 \cdot x_2 &\leq 80 & \text{(Restricción de disponibilidad de máquina A)} \\ 3 \cdot x_1 + 2 \cdot x_2 &\leq 60 & \text{(Restricción de disponibilidad de máquina B)} \\ 4 \cdot x_1 + 2 \cdot x_2 &\leq 100 & \text{(Restricción de disponibilidad de máquina C)} \\ x_1, x_2 &\geq 0 & \text{(No se pueden producir cantidades negativas de productos)} \end{aligned} \tag{6}$$

5. Representación gráfica:

Figura 1: Representación gráfica del problema

Observando el gráfico, se puede ver que el punto óptimo es el punto C(10,15), con un valor de Z=1350.

6. Obtención algebraicamente de la solución: Tenemos que usar variables de holgura o slack variables para poder expresar las restricciones de igualdad como restricciones de desigualdad. Para ello, definimos las variables de holgura s_1 , s_2 y s_3 :

$$s_1=$$
 variable de holgura de la restricción de disponibilidad de máquina A $s_2=$ variable de holgura de la restricción de disponibilidad de máquina B $s_3=$ variable de holgura de la restricción de disponibilidad de máquina C (7)

Con estas variables, podemos expresar las restricciones de igualdad como restricciones de desigualdad:

$$\begin{aligned} 2 \cdot x_1 + 4 \cdot x_2 + s_1 &= 80 & \text{(Restricción de disponibilidad de máquina A)} \\ 3 \cdot x_1 + 2 \cdot x_2 + s_2 &= 60 & \text{(Restricción de disponibilidad de máquina B)} \\ 4 \cdot x_1 + 2 \cdot x_2 + s_3 &= 100 & \text{(Restricción de disponibilidad de máquina C)} \\ x_1, x_2, s_1, s_2, s_3 &\geq 0 & \text{(No se pueden producir cantidades negativas de productos)} \end{aligned} \tag{8}$$

Ejercicio 1.3. Se desea definir las cantidades a fabricar de dos productos, A y B cuyo procesamiento se realiza en dos centros de máquinas, conociéndose los datos referentes a los tiempos de proceso y disponibilidades en los centros. Se sabe además que debe cumplirse con un pedido mínimo de 50 unidades de A. Al mismo tiempo, la producción de B debe ser por lo menos cuatro veces superior a la producción de A.

Se conocen los márgenes brutos de beneficio de cada producto.

		Producto		Disponibilidad	
		A	В	Disponibilidad	
Tiempos	Máquina I	1	0,4	200	
unitarios	Máquina II	0,5	1	200	
Margen bruto unitario		12	8		

Cuadro 3: Tabla de datos

Solución:

- 1. Objetivo del problema: Dado que se quiere maximizar el beneficio, el objetivo es producir la cantidad adecuada de cada producto para maximizar los ingresos.
- 2. Definimos variables de decisión:

$$x_A = \text{Cantidad}$$
 de unidades del Producto A a fabricar.
 $x_B = \text{Cantidad}$ de unidades del Producto B a fabricar. (9)

3. Función objetivo (maximizar beneficio):

$$\max Z = 12 \cdot x_A + 8 \cdot x_B \tag{10}$$

4. Restricciones:

Nota:

En este caso x_A y x_B [unidades].

La Disponibilidad en cada máquina: 200 [unidades].

Ejercicio 1.4. La empresa Seventeen SRL se dedica a la fabricación de manteles de mesa. Fabrica dos modelos que se adaptan al 90% de las mesas argentinas: el redondo y el rectangular. Cada uno de estos modelos consume 2 y 3 m^2 de tela, respectivamente. Además deben ser cortados y cosidos a mano, tarea que lleva una hora para los manteles rectangulares y dos para los redondos (es más complejo el corte). Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo.

Semanalmente se pueden conseguir $600 \ m^2$ de tela, 600 esquineros y 500 horas de corte y costura. Los márgenes de ganancias son de \$8 para los manteles redondos y \$10 para los rectangulares.

¿Qué es lo mejor que puede hacer Seventeen con esta información?

Solución:

- 1. Objetivo del problema: Maximizar el beneficio total.
- 2. Definir variables de decisión:

$$x_C$$
 = Cantidad de manteles redondos (circular) a fabricar.
 x_R = Cantidad de manteles rectangulares a fabricar. (12)

Podemos construir una tabla con los datos de la tabla del enunciado:

	Producto		Disponibilidad	
	Redondo	Rectangular	Disponibilidad	Unidades
	x_C	x_R		Offidades
Consumo de tela	2	3	600	$[m^2]$
Tiempo de corte y costura	2	1	500	hs
Esquineros	-	4	600	
Ganancia	8	10		\$

Cuadro 4: Tabla de datos

3. Función objetivo (maximizar beneficio):

$$\max Z = 8 \cdot x_C + 10 \cdot x_R \tag{13}$$

4. Restricciones:

$$\begin{aligned} 2 \cdot x_C + 3 \cdot x_R &\leq 600 & \text{(Restricción de disponibilidad de tela)} \\ 2 \cdot x_C + x_R &\leq 500 & \text{(Restricción de disponibilidad de corte y costura)} \\ 4 \cdot x_R &\leq 600 & \text{(Restricción de disponibilidad de esquineros)} \\ x_C, x_R &\geq 0 & \text{(No se pueden producir cantidades negativas de productos)} \end{aligned} \tag{14}$$

Ejercicio 1.5. Es necesario alimentar racionalmente un rebaño de cabezas de ganado.

Los alimentos deben contener imprescindiblemente, cuatro componentes nutritivos: A, B, C y D. Se encuentran disponibles en el mercado dos alimentos M y N cuyas propiedades son:

- Un kilogramo de alimento M contiene 100 gr. de nutriente A, 100 gr. de C, y 200 gr. de D.
- \blacksquare Un kilogramo de alimento N contiene 100 gr. de nutriente B, 200 gr. de C y 100 gr. de D.

Cada animal debe consumir como mínimo, por día, $400~\rm gr.$ de nutriente A, $600~\rm gr.$ de B, $2.000~\rm gr.$ de C y $1.700~\rm gr.$ de D.

El alimento M cuesta 10 \$/kg, y el N cuesta 4 \$/kg.

¿Qué cantidad de alimentos M y N debe suministrarse a cada animal diariamente para que la ración sea la más económica?.

Solución:

- 1. Objetivo del problema: Minimizar el costo total de la ración.
- 2. Definir variables de decisión:

$$x_M = \text{Cantidad de alimento M a suministrar [kg/día]}$$

 $x_N = \text{Cantidad de alimento N a suministrar [kg/día]}$ (15)

Podemos construir una tabla con los datos de la tabla del enunciado:

	Producto		Consumo
Nutrientes	M	N	mínimo
A	100	-	400
В	-	100	600
C	100	200	2000
D	200	100	1700
Ganancia	10	4	

Cuadro 5: Tabla de datos

3. Función objetivo (minimizar costo total):

$$\min Z = 10 \cdot x_M + 4 \cdot x_N \tag{16}$$

4. Restricciones:

Ejercicio 1.6. Dado el siguiente sistema de inecuaciones:

$$4 \cdot x_1 - 2 \cdot x_2 \le 4$$

$$4 \cdot x_1 + 2 \cdot x_2 \le 8$$

$$x_1 + x_2 \ge 0$$
(18)

Y el funcional:

$$\max Z = 8 \cdot x_1 + 4 \cdot x_2 \tag{19}$$

Se pide:

- a) Encontrar un enunciado compatible con el mismo.
- b) Resolverlo gráficamente.
- c) Indicar la o las soluciones del problema que optimicen el funcional.
- d) Dar el valor de las variables débiles o slacks, sus unidades y significado en cada uno de los vértices del poliedro.

Solución:

- a)
- b) Simulado con la página [2].
- c) Observando la Figura 2, se puede ver que el punto óptimo es el punto B(1,5,1) y C(0,4), con un valor de Z=16.

Figura 2: Representación gráfica del problema

1.2. Guía 2

Ejercicio 1.7. Un taller de tejido elabora varios modelos de pullóver. Estos modelos de pullóver se pueden agrupar, desde un punto de vista técnico-económico, en tres tipos diferentes de prendas, a los cuales llamaremos A, B y C.

El taller posee dos máquinas (I y II). Los pullóveres A sólo pueden hacerse en la máquina I, los C sólo pueden hacerse en la máquina II y los B pueden hacerse tanto en la máquina I como en la II. Las dos máquinas trabajan dos turnos por día, 8 horas en cada turno, de lunes a viernes.

La materia prima utilizada es lana de dos calidades distintas (Mejorada y Normal). La lana Mejorada se utiliza para los pullóveres de tipo A y C. Los pullóveres de tipo B se hacen con lana Normal. De la lana Mejorada se pueden conseguir hasta 20 kg./semana y de la lana Normal hasta 36 kg./semana.

Existe un compromiso de entregar 10 pullóveres B por semana a un importante distribuidor.

No es necesario que las prendas que comienzan a fabricarse en una semana se terminen durante la misma, es decir que pueden quedar pullóveres a medio hacer de una semana para la próxima.

Los estándares de producción y materia prima y los beneficios unitarios para cada tipo de pullóver, se indican en el siguiente cuadro:

Tipo de			Beneficio unitario		
pullóver	Máquina I	Máquina II	Mejorada	Normal	\$/pullover
A	5	-	1,6	-	10
В	6	4	-	1,8	15
C	-	4	1,2	-	18

Cuadro 6: Tabla de datos

Solución: