Práctica 4: Separabilidad y Completitud

"Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso es el deseo de la vida por escapar de él hacia la libertad."

HEGEL.

A. Separabilidad

Ejercicio 1. Probar que \mathbb{R}^n (con la distancia euclídea) es separable.

Ejercicio 2. Sea $\mathbb{R}^{(\mathbb{N})} = \{(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : \exists n_0 : a_n = 0 \ \forall n \geq n_0\}$. Se considera la aplicación $d_{\infty} : \mathbb{R}^{(\mathbb{N})} \times \mathbb{R}^{(\mathbb{N})} \longrightarrow \mathbb{R}$ definida por $d_{\infty}((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |a_n - b_n|$. Probar que $(\mathbb{R}^{(\mathbb{N})}, d_{\infty})$ es un espacio métrico separable.

Ejercicio 3. Sea (X, d) un espacio métrico. Se dice que una familia $\mathcal{A} = (U_j)_{j \in J}$ de abiertos de X es una base de abiertos de X si todo abierto de X se puede escribir como unión de miembros de \mathcal{A} . Probar que \mathcal{A} es una base de abiertos de X si y sólo si verifica la siguiente condición: "Para todo abierto G de X y para todo $x \in G$ existe $j \in J$ tal que $x \in U_j \subseteq G$ ".

Ejercicio 4. Sea (X, d) un espacio métrico que verifica que cada cubrimiento abierto de X tiene un subcubrimiento numerable. Probar que X es separable.

Ejercicio 5. Probar que todo subespacio de un espacio métrico separable es separable.

Ejercicio 6. Sea (X, d) un espacio métrico separable. Probar que toda familia de subconjuntos de X no vacíos, abiertos y disjuntos dos a dos es a lo sumo numerable. Deducir que el conjunto de puntos aislados de X es a lo sumo numerable.

Ejercicio 7. Sean (X, d) e (Y, d') espacios métricos. Probar que $(X \times Y, d_{\infty})$ es separable si y sólo si (X, d) e (Y, d') son separables.

Ejercicio 8. ¿Es el espacio $(\ell^{\infty}, d_{\infty})$ separable?

Ejercicio 9. Sean X, Y espacios métricos. Sea $f: X \longrightarrow Y$ una función continua y survectiva. Probar que si X es separable, entonces Y es separable.

B. Completitud

Ejercicio 10. Sea (X,d) un espacio métrico y sea $(x_n)_{n\in\mathbb{N}}\subseteq X$. Probar que:

- i) $\lim_{n\to\infty} x_n = x$ si y sólo si para toda subsucesión $(x_{n_k})_{k\in\mathbb{N}}$, $\lim_{k\to\infty} x_{n_k} = x$.
- ii) Si existe $x \in X$ para el cual toda subsucesión $(x_{n_k})_{k \in \mathbb{N}}$ de $(x_n)_{n \in \mathbb{N}}$ tiene una subsucesión $(x_{n_{k_j}})_{j \in \mathbb{N}}$ tal que $\lim_{j \to \infty} x_{n_{k_j}} = x$, entonces $(x_n)_{n \in \mathbb{N}}$ converge y $\lim_{n \to \infty} x_n = x$.
- iii) Si $(x_n)_{n\in\mathbb{N}}$ es convergente, entonces $(x_n)_{n\in\mathbb{N}}$ es de Cauchy. ¿Vale la recíproca?
- iv) Si $(x_n)_{n\in\mathbb{N}}$ es de Cauchy, entonces es acotada.
- v) Si $(x_n)_{n\in\mathbb{N}}$ es de Cauchy y tiene una subsucesión $(x_{n_k})_{k\in\mathbb{N}}$ tal que $\lim_{k\to\infty} x_{n_k} = x\in X$, entonces $(x_n)_{n\in\mathbb{N}}$ converge y $\lim_{n\to\infty} x_n = x$.

Ejercicio 11. Probar que si toda bola cerrada de un espacio métrico X es un subespacio completo de X, entonces X es completo.

Ejercicio 12. Sea (X, d) un espacio métrico.

- i) Probar que todo subespacio completo de (X, d) es un subconjunto cerrado de X.
- ii) Probar que si X es completo, entonces todo subconjunto $F\subseteq X$ cerrado, es un subespacio completo de X.

Ejercicio 13. (Teorema de Cantor) Probar que un espacio métrico (X, d) es completo si y sólo si toda familia $(F_n)_{n\in\mathbb{N}}$ de subconjuntos de X cerrados, no vacíos tales que $F_{n+1}\subseteq F_n$ para todo $n\in\mathbb{N}$ y diam $(F_n)\longrightarrow 0$ tiene un único punto en la intersección.

Ejercicio 14. Sean (X, d) e (Y, d') espacios métricos. Probar que $(X \times Y, d_{\infty})$ es completo si y sólo si (X, d) e (Y, d') son completos.

Ejercicio 15.

- i) Sea X un espacio métrico y sea $B(X) = \{f : X \to \mathbb{R} : f \text{ es acotada } \}$. Probar que $(B(X), d_{\infty})$ es un espacio métrico completo, donde $d_{\infty}(f, g) = \sup_{x \in X} |f(x) g(x)|$.
- ii) Sean $a, b \in \mathbb{R}$, a < b. Probar que $(C[a, b], d_{\infty})$ es un espacio métrico completo, donde $d_{\infty}(f, g) = \sup_{x \in [a, b]} |f(x) g(x)|$.
- iii) Probar que $C_0 := \{(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \mid a_n \to 0\}$ es un espacio métrico completo con la distancia $d_{\infty}((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}) = \sup_{x \in \mathbb{N}} |a_n b_n|$.

Ejercicio 16. Sea (X,d) un espacio métrico y sea $\mathcal{D} \subseteq X$ un subconjunto denso con la propiedad que toda sucesión de Cauchy $(a_n)_{n\in\mathbb{N}}\subseteq\mathcal{D}$ converge en X. Probar que X es completo.

Ejercicio 17. Consideramos en $\mathbb R$ la métrica

$$d'(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|.$$

Recodar que (ejercio 5 práctica 3) d' es topológicamente equivalente a la métrica usual d(x, y) = |x - y|. Probar que (\mathbb{R}, d') no es completo.

Ejercicio 18. Sea $f:(X,d)\longrightarrow (Y,d')$ un homeomorfismo uniforme. Probar que (X,d) es completo si y sólo si (Y,d') es completo.

En particular, si un espacio métrico X es completo para una métrica lo es para cualquier otra métrica uniformemente equivalente.

Ejercicio 19. Sean X e Y espacios métricos, Y completo. Sea $D \subseteq X$ denso y sea $f: D \longrightarrow Y$ una función uniformemente continua. Probar que f tiene una única extensión continua a todo X, es decir, existe una única función $F: X \longrightarrow Y$ continua tal que $F|_D = f$. (Más aún, F es uniformemente continua).