Part 1

Examples of FEM

Finite Element in *Engineering*

Finite Element in Bioengineering

Finite Element in Bones

High

Low

Part 2

FEM in bones

Timeline of FE in bone studies

¹http://en.wikipedia.org/wiki/Olgierd_Zienkiewicz ²Brekelmans W. et al. Acta orthop scand. 43 (5), 301–17. 1972.

Geometry (1/2)

Geometry (2/2)

Triangular surface mesh [Brekelmans , 1972]

Eight-node volumetric mesh [Villiappan, 1977]

Voxel-based mesh
[Keyak, 1990]

Tetrahedric mesh
[Viceconti, 1990]

Material properties (1/4)

Dependence on age, sex, ethnicity

Material properties (2/4)

- Density Young's modulus
 - Power laws: $E = a \rho^b$

Material properties (3/4)

- Density Young's modulus
 - Dependence on anatomical site

2. Material properties (4/4)

- Density Young's modulus
 - Dependence on experimental setup

Boundary conditions

Gait analysis [Heller,2001]

Instrumented hip implants [Bergmann, 2008]

Simulation of interaction between bones and muscles [Heller, 2001]

Validation - FE

Experiment

[Keyak, 1998]

Validation - μFE

Conclusive summary

- FEM is a tool for the investigation of mechanical behavior of bone
 - Simulations of reality
 - Repeatability with different boundary conditions
- Applications of FEM
 - Bone mechanical behavior
 - Fracture dynamics and fracture risk
 - Monitor effect of treatments / drug study design