$$\frac{1}{2} \frac{1}{2} \frac{1}$$

Obtain linear du eyes ~(t) dy. (9) all equis — (s) LAPLACE TRANSFORM To find the response of the system, y(t), to an imput u(t) (3a) LT m(t) into U(s) (34) Compute Y(s) algebraically Invan LT Y(s) int. y(t)

f(t)	F(s)	f(t)	F(s)
IMPULSE (SA)	1	A_e-at sinut	ω
STEP 1 HW)	$\frac{1}{s}$		(Sta) = + w?
e -at	1	e-at cos w t	Stu 2 (Stu) 2 + w2
sin wt	S+a _w	101 - Ent	
Gs wt	S ² + w ²	$\frac{\omega_n}{\sqrt{1-\xi^2}} = \frac{\xi \omega_n t}{\sin \left(\sqrt{1-\xi^2} \omega_n t\right)}$	52 + 25 Nn 5 + Wn
	52+ w2	5<1	

(2) TRANSLATION in t
$$2 + (t-z) = e^{-zs} = (s)$$

in s $2 + e^{\alpha t} = (t) = (s-\alpha)$

3) DIFFERENTIATION in t
$$2 \frac{d}{dt} f(t) = 5 F(s) - f(o^{-})$$

in S $2 \frac{d}{dt} f(t) = - \frac{dF(s)}{ds}$

(4) INTEGRATION
$$2\sqrt{\int_{0}^{L} \int_{0}^{L} f(z) dz} = \frac{1}{S} F(s)$$

(5) CONVOLUTION
$$\mathcal{L}\left\{f_1(t) * f_2(t)\right\} = F_1(s) F_2(s)$$

$$\int_{-\infty}^{\infty} f_1(z) f_1(t-\tau) dz$$

$$f(o^{+}) = \lim_{S \to \infty} s F(s)$$

$$f(\infty) = \lim_{S \to \infty} s F(s)$$

$$\int down - Term Between Relation Rela$$

DESCRIBING THE SXSTEM

The transfer function (TF) of an LTI system is

the vatio
$$\frac{Y(s)}{V(s)}$$
, where the LT is taken assuming zero initial conditions.

NO STATE

 $\frac{Y(s)}{V(s)} = 0$

EXAMPLE

$$m \stackrel{?}{z} + \sigma \stackrel{?}{z} + k = f$$
 $m \stackrel{?}{y} + \sigma \stackrel{?}{y} + k = n$

$$\longrightarrow m \stackrel{?}{S}^2 \times (s) + \sigma s \times (s) + k \times (s)$$

$$m S^{2} \chi(s) + \sigma S \chi(s) + \chi(s)$$

$$= U(s)$$

$$\frac{\chi(s)}{U(s)} = \frac{1}{m s^2 + \sigma s + k}$$

T.F. G(s) is (real) rational of $G(s) = \frac{b_{m} s^{m} + ... + b_{1} s + b_{0}}{s^{h} + a_{n-1} s^{n-1} + ... + a_{1} s + a_{0}}$ G(s) is proper exists in f(s) exists in f(s) f(s) is eational: f(s) f(s) f(s) is eational: f(s) f(s)G(s) is stictly popul l'nn G(s) = 0

(if G(s) is extiand: n > m)

, ai, bi EIR

$$p \in K$$
 is a pole of $G(s)$ if $\lim_{s \to p} |G(s)| = \infty$
 $Z \in K$ is a zer of $G(s)$ if $\lim_{s \to z} |G(s)| = 0$

G(s) Estioned & numerator and denominator are Opine poles of G(s) are roots of denomination 2 Lus of G(s) -- -

Factoritation in Zere-pele-gain form: $G(s) = K \underbrace{\left(s - z_{1}\right) \dots \left(s - z_{m}\right)}_{\left(s - p_{1}\right) \dots \left(s - p_{n}\right)}$ GAIN $(s - p_{1}) \dots \left(s - p_{n}\right)$

EXAMPLE

$$G(s) = \frac{\gamma(s)}{U(s)} = \frac{1}{ms^2 + dt + k}$$

$$=\frac{1}{s^2+3s+2}$$

$$m = 1$$

$$0 = 3$$

$$| = 2$$

strictly proper
$$m = 2$$
 /

$$G(s) = \underbrace{1}_{(s+1)(s+2)}$$

$$N0 = 2005$$
 $-2-1$
 $p_1 = -1$, $p_2 = -2$

$$\frac{U(s)}{S^2+3s+2} \xrightarrow{Y(s)}$$

Compute the response, $n_{g}(t)$, of the mass-sping-clamber system to a step force import

$$C$$
 LT $m(t) \rightarrow U(s)$ $C(s)$

$$C$$
 Inverse LT $Y(s) \longrightarrow Y(t)$