112 學年度學科能力測驗數學 B 考科 非選擇題滿分參考答案與評分原則

112 年學科能力測驗數學 B 考科的非選擇題共有 2 題,其中第 19 題每題為 6 分;第 20 題每題為 6 分,總計 12 分。

本文謹提供非選擇題各題滿分參考答案與評分原則供各界參考,詳細評分原則說明與部分學生作答情形,請參閱本中心將於 4 月 17 日出刊的第 336 期《選才電子報》。以下提供 112 年學科能力測驗數學 B 考科中,非選擇題各題的滿分參考答案及評分原則:

第 19 題

一、滿分參考答案:

解聯立方程式 $\begin{cases} 2x-3y+9=0 \\ x+3y=0 \end{cases} , 得 P(-3,1) \circ$

【法一】

因為 $\overrightarrow{PA_3} = 2\overrightarrow{PA_1}$,所以 A_1 為 P 與 A_3 的中點。由 P(-3,1) 得 A_3 的坐標為 (3,-1)。因為 $\overline{A_3B_3} = 2\overline{A_1B_1} = 6$,故 B_3 的坐標為 (3,5)。

【法二】

因為 $\Delta PA_1B_1 \sim \Delta PA_3B_3$ 、 $\overline{PA_3} = 2\overline{PA_1}$,所以 $\overline{PB_3} = 2\overline{PB_1}$ 。

因為 P(-3,1) 得 B₃的坐標為 (3,5)。

【法三】

因 $\overline{A_1B_1}=3$,得 $\overline{A_3B_3}=2\overline{A_1B_1}=6$ 。

設 $B_3(x,y)$, 所以 $A_3(x,y-6)$, 將 A_3 代入 L方程式 , 得 x+3(y-6)=0 ,

解聯立方程式 $\begin{cases} 2x-3y+9=0\\ x+3(y-6)=0 \end{cases}, 得 B_3 的坐標為 (3,5)。$

二、評分原則:

- 1.根據題意,能求解聯立方程式得 P。
- 2.利用平行線截比例線段得 $\overline{PB_3}=2\overline{PB_1}$,進而求出 B_3 ;或由 A_1 為P與 A_3 的中點,先求出 A_3 ,再利用 $\overline{A_3B_3}=2\overline{A_1B_1}=6$ 求得 B_3 。

第 20 題

一、滿分參考答案:

策略一:先求 $\overline{A_2B_2}$ 上的點

【法一】

設 $\overline{A_1B_3}$ 和 $\overline{A_3B_1}$ 的交點為R,由題意知 $\overline{A_1B_1}$ 平行於 $\overline{A_3B_3}$,

故 $\Delta RA_1B_1 \sim \Delta RB_3A_3$ 。

因為 $\overline{A_3B_3}=2\overline{A_1B_1}$,所以 $\overline{A_1R}:\overline{RB_3}=1:2$ 。

由題意知 R位於 $\overline{A_2B_2}$,且 $\overline{A_2B_2}$ 平行於 $\overline{A_3B_3}$,得 $\Delta A_1A_2R\sim\Delta A_1A_3B_3$,

故 $\overline{A_1A_2}:\overline{A_2A_3}=1:2$ 。由分點公式得 $A_2(1,\frac{-1}{3})$ 。

同理可得 $\overline{B_1B_2}$: $\overline{B_2B_3}$ = 1:2 ,由分點公式得 $B_2(1,\frac{11}{3})$ 。

因為 $\overline{A_2Q}$: $\overline{QB_2}$ = 1:2,由分點公式,計算 $\frac{2}{3}(1,\frac{-1}{3})+\frac{1}{3}(1,\frac{11}{3})$,得 Q(1,1)。

【法二】

設 $\overline{A_1B_3}$ 和 $\overline{A_3B_1}$ 的交點為R,由 $\overline{A_1B_3}$ 和 $\overline{A_3B_1}$ 的直線方程式,

解聯立方程式 $\begin{cases} 5x-3y=0\\ 4x+3y=9 \end{cases}$,得 $R(1,\frac{5}{3})$ 。

因為 R位於 $\overline{A_2B_2}$,且 $\overline{A_2B_2}$ 平行於 y軸,以 x=1代入 L:x+3y=0,

得 $A_2(1,\frac{-1}{3})$ 。

因為R為 $\overline{A_2B_2}$ 中點,故 $\overline{A_2Q}:\overline{QR}=2:1$,

由分點公式,計算 $\frac{2}{3}(1,\frac{5}{3})+\frac{1}{3}(1,\frac{-1}{3})$,得Q(1,1)。

【法三】

設 $\overline{A_1B_3}$ 和 $\overline{A_3B_1}$ 的交點為R,由 $\overline{A_1B_3}$ 和 $\overline{A_3B_1}$ 的直線方程式,

解聯立方程式
$$\begin{cases} 5x - 3y = 0 \\ 4x + 3y = 9 \end{cases}$$
, 得 $R(1, \frac{5}{3})$ °

由題意知 $\overline{A_1B_1}$ 平行於 $\overline{A_3B_3}$,故 $\Delta RA_1B_1\sim \Delta RB_3A_3$ 。

因為 $\overline{A_3B_3}=2\overline{A_1B_1}$,所以 $\overline{A_1R}:\overline{RB_3}=1:2$ 。

又 $\overline{A_1B_1}$ 、 $\overline{A_2B_2}$ 和 $\overline{A_3B_3}$ 均 為 平 行 線 , 且 $\overline{A_1B_1}=3$ 和 $\overline{A_3B_3}=6$

得
$$\overline{A_2B_2} = 3 \times \frac{2}{3} + 6 \times \frac{1}{3} = 4$$
 。

因為R為 $\overline{A_2B_2}$ 的中點,且 $\overline{A_2Q}:\overline{QB_2}=1:2$,得 $\overline{QR}=\frac{2}{3}$ 。故Q(1,1)。

【法四】

由題意知 $\overline{A_1B_1}$ 平行於 $\overline{A_3B_3}$, 故 $\Delta RA_1B_1 \sim \Delta RB_3A_3$ 。

因為 $\overline{A_3B_3} = 2\overline{A_1B_1}$,所以 $\overline{A_1R} : \overline{RB_3} = 1:2$ 。

又 $\overline{A_1B_1}$ 、 $\overline{A_2B_2}$ 和 $\overline{A_3B_3}$ 均為平行線,且 $\overline{A_1B_1}=3$ 和 $\overline{A_3B_3}=6$

得 $\overline{A_2B_2} = 3 \times \frac{2}{3} + 6 \times \frac{1}{3} = 4$ 。

設Q(x,y),因為 $\overline{A_2Q}$: $\overline{QB_2}=1:2$,所以 $A_2(x,y-\frac{4}{3})$ 、 $B_2(x,y+\frac{8}{3})$,

分別代入
$$L$$
 、 M 的方程式,解
$$\begin{cases} x+3(y-\frac{4}{3})=0\\ 2x-3(y+\frac{8}{3})+9=0 \end{cases}$$
 ,因此 $Q(1,1)$ 。

策略二:先求 \overrightarrow{PQ} 上的點

【法五】

設 \overline{PQ} 和 $\overline{A_1B_1}$ 的交點為C,因為 $\overline{A_2Q}:\overline{QB_2}=1:2$,所以 $\overline{A_1C}:\overline{CB_1}=1:2$ 。

由分點公式,計算 $\frac{2}{3}(0,0) + \frac{1}{3}(0,3)$,得C(0,1)。

設 $\overline{A_1B_3}$ 和 $\overline{A_3B_1}$ 的交點為R,由題意知 $\overline{A_1B_1}$ 平行於 $\overline{A_3B_3}$,

故 $\Delta RA_1B_1 \sim \Delta RB_3A_3$ 。

因為 $\overline{A_3B_3}=2\overline{A_1B_1}$,所以 $\overline{A_1R}:\overline{RB_3}=1:2$ 。

由題意知 R位於 $\overline{A_2B_2}$,且 $\overline{A_2B_2}$ 平行於 $\overline{A_3B_3}$,得 $\Delta A_1A_2R\sim\Delta A_1A_3B_3$,

故 $\overline{A_1A_2}:\overline{A_2A_3}=1:2$ 。 又 $\overline{PA_1}=\overline{A_1A_3}$, 因此 $\overline{PA_2}:\overline{PA_1}=4:3$ 。

因為 $\Delta PA_1C \sim \Delta PA_2Q$,得 $\overline{PQ}:\overline{PC}=4:3$ 。

所以 $\overrightarrow{PQ} = \frac{4}{3}[(0,1)-(-3,1)]=(4,0)$,得 Q(1,1)。

【法六】

設 \overrightarrow{PQ} 與 $\overline{A_1B_1}$ 、 $\overline{A_3B_3}$ 的交點分別為C、D。因為 $A_3(3,-1),B_3(3,5)$,

且 $\overline{A_1C}:\overline{CB_1}=\overline{A_3D}:\overline{DB_3}=1:2$,得 C(0,1) 、 D(3,1)

因為 $\overline{A_1A_2}:\overline{A_2A_3}=1:2$,所以 $\overline{CQ}:\overline{QD}=1:2$,得Q(1,1)。

二、評分原則:

- 1.可採策略一「先求 $\overline{A_2B_2}$ 上的點」利用平行線截比例線段推得出 A_2 、 B_2 、R、 $\overline{A_2B_2}$ = 4 等四個訊息中的兩個,進而求出Q。
- 2.可採策略二「先求 \overrightarrow{PQ} 上的點」利用平行線截比例線段推得出C,再利用線段比例 \overrightarrow{PQ} : \overrightarrow{PC} =4:3,進而求出Q;亦或先求出C、D 兩點,再用線段比例 \overrightarrow{CQ} : \overrightarrow{QD} =1:2,進而求出Q。