Agenda

PROBLEM DOMAIN: NUMBER THEORY:

APPLICATION DOMAIN: CRYPTOGRAPHY

- BASICS OF CRYPTOGRAPHY
 - SECRECY OR CONFIDENTIALITY
 - SHARED KEY AND PUBLIC KEY SYSTEMS

Cryptography - Secrecy

- Communication from **A(lice)** to **B(ob)**:
 - A sends a message M to B on <u>a public channel</u>
 - i.e. any one can read the channel
- (*Desired*) Property of said communication:
 - Secrecy or Confidentiality:
 - No one other than A and B can "get" the message!

(StrawMan) Protocol for Secrecy

StrawMan Protocol:

- 1. A applies a function f on message M i.e. computes M' = f(M)
- 2. A sends M' to B on a public channel
- B receives M' and <u>inverts</u>i.e. B applies f¹ on M' to get M

Secrecy Requirement:

• f^{-1} cannot be computed by any one other than **A** and **B**.

(StrawMan) Protocol for Secrecy

[contd.]

StrawMan Protocol:

- **1.** A applies a function f on message M i.e. computes M' = f(M)
- 2. A sends M' to B on a public channel
- 3. **B** receives M' and $\underline{inverts}$ i.e. **B** applies f^1 on M' to get M

Secrecy Requirement:

- f^{1} cannot be computed by any one other than **A** and **B**.
- Solution: Keep f and f^{-1} secret!
- Pragmatics:
 - Obscurity is not security!
 - Complexity weakens security:
 - Every pair of communicators will require their own functions
 - i.e. **O(N*N)** functions for a group of **N** communicators
 - i.e. this is not suitable for mass usage!

Secrecy and Encryption

TinMan Protocol:

- A applies a function E on message M and a key K_A
 i.e. computes M' = E(M,K_A)
- A sends M' to B
- B receives M' and inverts it
 - i.e. **B** applies a function **E**⁻¹ on **M'** and a key **K**_B to get **M**
 - i.e. B computes $M = E^{-1}(M', K_B)$

Note:

• **E** is referred to as an *encryption* function and **E**⁻¹ is referred to as a *decryption* function. They are public.

End of Note.

Secrecy: TinMan Protocol: Requirements

TinMan Protocol:

- A applies a function E on message M and a key K_A i.e. computes $M' = E(M, K_A)$
- A sends M' to B
- B receives M' and inverts it by applying a function E^{-1} on M' and a key K_B to get M i.e. $M = E^{-1}(M', K_B)$

Secrecy Requirement:

- K_B must not be known to any one other than A and B.
- Without K_B, E⁻¹ (M', K_B) cannot be computed.

Shared Key Encryption

- TinMan Protocol:
 - A sends M' = E(M,K_A) to B
 - B receives M' and computes $M = E^{-1}(M', K_B)$
- Solution 1 : Shared Key encryption:
 - A and B share a secret (K_A, K_B)
 - K_A and K_B can be computed easily from each other
 - simplest case: K_A == K_B
- **Pragmatics:**
 - Every pair of communicators A and B will require a pair of keys (K_A, K_B)
 - i.e. O(N*N) keys (rather, key-pairs) are required for a group of N communicators

Public Key Encryption

- TinMan Protocol:
 - A sends M' = E(M,K_A) to B
 - B receives M' and computes $M = E^{-1}(M', K_B)$
- Solution 2 : *Public Key encryption*:
 - K_B is private to B: denote it K_{Bv},
 - K_A is public (but associated with B): denote it K_{Bu}
 - K_{Bv} cannot be computed easily from K_{Bv}

Pragmatics:

- Every receiver **B** will require a pair of keys (K_{Bv}, K_{Bu})
- All public keys can be published (say, in a directory)!
 - i.e. N key-pairs are required for a group of N communicators

Public Key Encryption: IronMan Protcol

- IronMan Protocol:
 - A sends M' = E(M, K_{Bu}) to B
 - B receives M' and computes $M = E^{-1} (M', K_{Bv})$
- **Secrecy Requirement:**
 - E and E⁻¹ are computable in polynomial time with keys
 K_{Bu} and K_{Bv} respectively but
 - they are not computable in polynomial time without!
- Public Key encryption:
 - Pragmatics: K_{Bv} should not be computable in polynomial time from K_{Bv}