

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 1998

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

прикладные задачи

НЕУПРЕЖДАЮЩИЕ СЕЛЕКТОРЫ МНОГОЗНАЧНЫХ ОТОБРАЖЕНИЙ

А.Г.ЧЕНЦОВ

Аннотация.

Рассматривается абстрактная версия метода программных итераций, применяемого в теории дифференциальных игр (ДИ) для определения стабильных мостов и функции цены игры. Исследуется проблема существования неупреждающих многозначных селекторов (МС) "произвольного"многозначного отображения (МО), заданного априори. Построен оператор, степени которого реализуют, при естественных условиях, перевод априорного МО в наибольший неупреждающий МС данного МО. Установлено представление неупреждающих МС в терминах неподвижных точек, универсальных в заданном классе операторов. Построены локализации основных свойств неупреждающих МО в терминах естественного фактор-пространства, связанного с ростками отображений, имеющих смысл реализаций помех в теории ДИ.

1

 $^{^{1}}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (97-01-00458).

1. Введение.

При проведении исследований в области построения метода программных итераций (МПИ) [1-8] в теории дифференциальных игр (ДИ) [9-11] и аналогов этого метода наметилось сближение подходов, заложенных в конструкциях МПИ и в теории неподвижной точки в упорядоченных пространствах (см.[12],[13],[14,с.237,238]). Процедуры МПИ стали все в большей степени оснащаться положениями (о структуре предельных элементов), характерными для теорем о неподвижной точке и их следствий. Использовалась, в частности, интерпретация пределов итерационных последовательностей в терминах порядка (представления в виде наибольших элементов); такого рода утверждения см., в частности, в [4-8], хотя их элементы имеются и в более ранних работах [1-3].

В ряду других работ по МПИ здесь имеет смысл отметить [15-17]. Особенностью конструкций [1-8],[15-17] и многих других исследований является, с точки зрения построения управляющих процедур (УП) в различных классах ДИ, "непрямой" характер этих конструкций (на основе МПИ): сначала определяется стабильный мост или функция цены игры (см. соответствующие понятия в [9-11]), а уже на этой основе строится затем соответствующая УП (позиционная стратегия, квазистратегия). Особенно простым является при этом переход к решению в классе квазистратегий (см. определения [1-7], являющиеся многозначными и "компактифицированными"аналогами конструкций [18]). Все же и в таких задачах представляет интерес построение "прямых" версий МПИ, непосредственно доставляющих нужную УП в виде предела; в качестве УП здесь логично рассматривать именно квазистратегию, как процедуру в достаточной мере идеализированную и, в то же время, естественную для абстрактных задач динамики. В конкретных ДИ реализация квазистратегий может осуществляться на основе соответствующим образом организованного управления с поводырем (w-моделью) по схеме, подобной [10],[11].

В настоящей статье аналог МПИ используется для непосредственного построения идеализированных УП, либо аналогов УП; иными словами, речь идет как раз о "прямых" версиях МПИ, если иметь в виду традиционные приложения, связанные с построением УП (а именно, квазистратегий) для решения ДИ. Получающиеся при этом аналоги УП объективно имеют смысл квазистратегий [18], но реализуются в многозначной форме, подобно [1-7,19,20]. Мы рассматриваем здесь также и другие задачи, динамические

по смыслу и, по ряду причин, требующие построения неупреждающих реакций (откликов) на развитие непредсказуемых факторов. Однако, сами эти реакции (в упомянутых задачах) уже не связаны с преобразованием функций времени; роль последнего играют совсем другие параметры. К числу таких постановок можно отнести задачу о неупреждающем развитии конечно-аддитивной (к.-а.) меры в ответ на развитие другой к.-а. меры, включающееся элемент непредсказуемости. В этой связи мы рассматриваем абстрактную постановку задачи о неупреждающем отклике; подобные в идейном отношении конструкции см., например, в [21].

2. Простейшие примеры.

Рассмотрим естественную с точки зрения конструкций [1-7,18-20] простейшую модель общей постановки, фиксируя промежуток времени [0, 1[и непустые подмножества \mathbb{C}_1 и \mathbb{C}_2 множества \mathbb{C} всех кусочно-постоянных и непрерывных справа функций из [0,1[в отрезок [-1,1]. Подобно [18] полагаем, что выбором $V=v(\cdot)\in\mathbb{C}_2$ ведает один из участников — игрок II, которому "отвечает" игрок I посредством выбора $U=u(\cdot)\in\mathbb{C}_1$. Цель игрока I формулируется при этом в виде требования

$$\left(\int_{0}^{1} U(t)dt, \int_{0}^{1} V(t)dt\right) \in \mathbb{M},\tag{1}$$

где М — плоское множество. Реализация (2.1) накладывает на выбор $U \in \mathbb{C}_1$ весьма жесткое условие. На этой основе формируется многозначное отображение (МО) α на \mathbb{C}_2 ; значениями α являются подмножества \mathbb{C}_1 , определяемые каждое (при $V \in \mathbb{C}_2$) в виде множества всех $U \in \mathbb{C}_1$ со свойством (2.1). Если β — МО на \mathbb{C}_2 со значениями в виде подмножеств соответствующих значений α , т.е. $\beta(V) \subset \alpha(V)$, $V \in \mathbb{C}_2$, то называем β многозначным селектором (МС) отображения α . Если, к тому же, при $V_1 \in \mathbb{C}_2$, $V_2 \in \mathbb{C}_2$ и $t \in]0,1[$ всякий раз совпадение сужений [22,с.13] ($V_1 \mid [0,t[)=(V_2 \mid [0,t[)$ функций V_i приводит к совпадению

$$\{(U \mid [0, t]) : U \in \beta(V_1)\} = \{(U \mid [0, t]) : U \in \beta(V_2)\},\tag{2}$$

то назовем β неупреждающим МС (имеется в виду, что в (2.2) триплет (V_1, V_2, t) может быть произвольным). В этом случае цель (2.1) может быть достигнута игроком I по мере поступления информации о "случившейся" части $V \in \mathbb{C}_2$. Отметим один весьма распространенный вариант (2.1):

U и V — суть управляющие программы, реализуемые в системе

$$\dot{x} = u + v, \mid u \mid \le 1, \mid v \mid \le 1$$
 (3)

(можно рассматривать и более сложные управляемые системы) с заданным начальным условием в виде скаляра $x_0 = x(0) \in \mathbb{R}$ и заданным конечным условием $x(1) = x^0$, в соблюдении которого заинтересован игрок I; получаем ДИ, где $V \in \mathbb{C}_2$ играет роль помехи, выбор которой может осуществляться противником.

В общем случае (2.1) даже при выполнении условия (совместности)

$$\alpha(V) \neq \emptyset \quad (V \in \mathbb{C}_2)$$
 (4)

могут не только отсутствовать неупреждающие MC α с непустыми значениями, но и MC такого типа, имеющие непустые значения в отдельных точках области определения, т.е. "частичные", в известной мере, неупреждающие MC.

В самом деле, пусть \mathbb{M} есть "антидиагональ": \mathbb{M} — множество всех векторов $x=(x_1,x_2)\in\mathbb{R}\times\mathbb{R}$ (здесь и ниже \mathbb{R} — вещественная прямая) со свойством $x_1=-x_2,\,\mathbb{C}_1$ — множество всех функций $U\in\mathbb{C}$, постоянных на [0,1[(т.е. функций со свойством $U(t)\equiv u$, где $u\in[-1,1]$), $\mathbb{C}_2=\mathbb{C}$. Тогда $\alpha(V)\neq\emptyset$, т.к. в качестве "парирующего" постоянного управления $u\in[-1,1]$ можно выбрать число, противоположное (по знаку) "полному" интегралу $V\in\mathbb{C}_2$. Допустим, что удалось построить неупреждающий MC β отображения α со свойством: при некотором $V_0\in\mathbb{C}_2$ выполняется $\beta(V_0)\neq\emptyset$. Зафиксируем такое V_0 и введем в рассмотрение число

$$v_0 \stackrel{\triangle}{=} \int_{1/2}^1 V_0(t)dt \in [-1/2, 1/2].$$

Тогда выберем $v^0 \in [-1/2,1/2] \setminus \{v_0\}$, а $V^0 \in \mathbb{C}_2$ определим так: $V^0(t) \stackrel{\triangle}{=} V_0(t)$ при $t \in [0,1/2[,\ V^0(t) \stackrel{\triangle}{=} 2v^0$ при $t \in [1/2,1[$. Тогда

$$\int_0^1 V^0(t)dt = \int_0^{1/2} V_0(t)dt + v^0 \neq \int_0^{1/2} V_0(t)dt + v_0 = \int_0^1 V_0(t)dt.$$
 (5)

Если $u_0 \in [-1,1]$ формирует $U_0 \in \beta(V_0)$ по правилу $U_0(t) \equiv u_0$, то, в силу неупреждаемости β , должна существовать функция (см.(2.2)) $U^0 \in \beta(V^0)$ со свойством

$$(U_0 \mid [0, 1/2]) = (U^0 \mid [0, 1/2]).$$
 (6)

Но $U_0 \in \alpha(V_0)$ и, стало быть, u_0 есть величина, обратная (по сложению) "полному" интегралу V_0 и не равная, следовательно (см.(2.5)), аналогичному интегралу V^0 , взятому с обратным знаком. Вместе с тем $U^0(t) \equiv u^0$ для числа $u^0 \in [-1,1]$ такого, что

$$u^0 = -\int_0^1 V^0(t)dt,$$

т.к. $U^0 \in \mathbb{C}_1$. Стало быть, $u_0 \neq u^0$ и свойство (2.6) невозможно. Наше предположение относительно свойств β ошибочно и, следовательно, $\beta(V) \equiv \emptyset$ в условиях неупреждаемости β и подчиненности (отображения β) априорному MO α (условие (2.4) между тем имеет место в нашем случае). Данный пример может рассматриваться, как паталогия; обычно нашей целью является поиск в классе MC α (со свойством (2.4)) таких неупреждающих отображений β , для которых всякий раз $\beta(V) \neq \emptyset$. Однако, в ряде случаев лучшее, чего можно достичь в упомянутом классе неупреждающих МС α , выражается свойством $\beta(V) \not\equiv \emptyset$. Рассмотрим следующую постановку. Пусть \mathbb{M} — множество всех векторов $y=(y_1,y_2)\in\mathbb{R}\times\mathbb{R}$ со свойством $|y_1 + y_2| \ge 1$; это отвечает случаю управления системой (2.3) при нулевых начальных условиях и "целевой установке" игрока I на достижение неравенства $|x(1)| \ge 1$. Пусть фиксированы три точки -1, 0, 1. Для каждой из этих трех точек естественно определены соседние. Именно, для каждой из точек -1 и 1 соседняя точка одна, а именно, — точка 0; для точки 0 соседних точек две: 1 и -1. Сохраняем пока прежним определение \mathbb{C}_1 . Определим \mathbb{C}_2 как множество всех таких функций $V \in \mathbb{C}$, для каждой из которых можно указать триплет $(v_1, v_2, t) \in \{-1; 0; 1\} \times \{-1; 0; 1\} \times [0, 1]$ такой, что: 1) v_2 соседняя точка по отношению к v_1 ; 2) на [0,t[имеет место $V(\xi)=v_1$; 3) на [t,1[выполняется $V(\xi)=v_2$. Итак, в нашей модели \mathbb{C}_2 допускается, самое большее, одно переключение управления игрока II (напомним, что область определения всех управлений-программ в данном примере — промежуток [0, 1]). В этом случае \mathbb{C}_2 разбивается в сумму трех множеств:

Через U^+ и U^- обозначаем управления-константы, для которых $U^+(t) \equiv 1$ и $U^-(t) \equiv -1$ соответственно. Легко видеть, что $\alpha(V) \neq \emptyset$ при любом $V \in \mathbb{C}_2$ (более того, свойство непустоты $\alpha(V)$ сохраняется, если расширить \mathbb{C}_2 до \mathbb{C} ; достаточно реагировать на $V \in \mathbb{C}$ управлением U^+ или U^- в зависимости от знака "полного" интеграла V). Определяем отображение β на \mathbb{C}_2 по следующему правилу:

$$(\forall V \in \mathbb{C}_2^+: \ \beta(V) \stackrel{\triangle}{=} \{U^+\}) \& (\forall V \in \mathbb{C}_2^0: \ \beta(V) \stackrel{\triangle}{=} \emptyset) \& (\forall V \in \mathbb{C}_2^-: \beta(V) \stackrel{\triangle}{=} \{U^-\}).$$

Здесь неупреждающий МС β отображения α определен фактически как однозначное отображение там, где "разумное" определение реакции возможно (легко видеть, что $\beta(V) \subset \alpha(V)$, $V \in \mathbb{C}_2$). Последний тезис можно развить следующим образом. Именно, если поставить своей целью построение неупреждающего МС α со свойством непустоты множества реакций на каждое управление $V \in \mathbb{C}_2$, то данная задача неразрешима, причем среди "паталогических" управлений V непременно оказываются элементы \mathbb{C}^0_2 . Более того, это суждение справедливо относительно любого $V \in \mathbb{C}_2^0$ и при расширении множества \mathbb{C}_1 до \mathbb{C} . В самом деле, допустим, что $\mathbb{C}_1 = \mathbb{C}$, а β^0 — неупреждающий МС отображения α , для которого $\beta^0(V^0) \neq \emptyset$ при некотором $V^0 \in \mathbb{C}^0_2$ (итак, β^0 сопоставляет каждой точке $V' \in \mathbb{C}_2$ подмножество $\alpha(V')$ и при этом множество $\beta^0(V^0)$ непусто). Если $V_0 \in \mathbb{C}_2^0$, то можно подобрать $t_* \in]0,1]$ так, что $(V_0 \mid [0,t_*[) = (V^0 \mid [0,t_*[)])$. Последнее означает в силу неупреждаемости β^0 равенство $\{(U \mid [0, t_*]) : U \in$ $eta^0(V_0)\} = \{(U \mid [0,t_*[): \ U \in eta^0(V^0)\} \ \text{и, как следствие, } eta^0(V_0)
eq \emptyset.$ Итак, $\beta^0(V) \neq \emptyset$ при $V \in \mathbb{C}_2^0$; в частности, для управления $\mathbf{O} \in \mathbb{C}_2^0$ со свойством $\mathbf{O}(t) \equiv 0$ имеем $\beta^0(\mathbf{O}) \neq \emptyset$. Выберем $\hat{U} \in \beta^0(\mathbf{O})$. Тогда $\hat{U} \in \alpha(\mathbf{O})$; это означает, что $\hat{U} \in \mathbb{C}$ таково, что "полный"
интеграл \hat{U} либо равен -1, либо равен 1. В первом случае $\hat{U}(t) \equiv -1$, а во втором — имеет место $\hat{U}(t) \equiv 1$. Рассмотрим эти случаи отдельно. Пусть $\hat{U}(t) \equiv -1$. Рассмотрим $\hat{V}_1 \in \mathbb{C}^0_2$ такое, что $\hat{V}_1(t) \stackrel{\triangle}{=} 0$ при $t \in [0, 1/2[, \hat{V}_1(t) \stackrel{\triangle}{=} 1$ при $t \in [1/2, 1[$. Поскольку $(\hat{V}_1 \mid [0, 1/2]) = (\mathbf{O} \mid [0, 1/2])$ и $\hat{U} \in \beta^0(\mathbf{O})$, имеем для некоторого $\hat{U}_1 \in \beta^0(\hat{V}_1)$ свойство: $(\hat{U} \mid [0, 1/2]) = (\hat{U}_1 \mid [0, 1/2])$. Это свойство следует из неупреждаемости β^0 . При этом модуль суммы "полных" интегралов \hat{U}_1 и \hat{V}_1 есть число, не меньшее 1, т.к. $\hat{U}_1 \in \alpha(\hat{V}_1)$. Вместе с тем

$$-1/2 \leq \int_0^1 \hat{U}_1(t)dt + \int_0^1 \hat{V}_1(t)dt = \int_0^1 \hat{U}_1(t)dt + \int_{1/2}^1 \hat{V}_1dt = \int_0^1 \hat{U}_1(t)dt + 1/2 = \int_0^{1/2} \hat{U}_1(t)dt + \int_{1/2}^1 \hat{U}_1(t)dt + 1/2 = -1/2 + \int_{1/2}^1 \hat{U}_1(t)dt + 1/2 = \int_{1/2}^1 \hat{U}_1(t)dt \leq 1/2,$$

что абсурдно. Стало быть, $\hat{U}(t) \equiv 1$. Пусть $\hat{V}_2 \in \mathbb{C}_2^0$ таково, что: $\hat{V}_2(t) \stackrel{\triangle}{=} 0$ при $t \in [0,1/2[,\,\hat{V}_2(t) \stackrel{\triangle}{=} -1$ при $t \in [1/2,1[$. Тогда $(\hat{V}_2 \mid [0,1/2[) = (\mathbf{O} \mid [0,1/2[)$ и при некотором $\hat{U}_2 \in \beta^0(\hat{V}_2)$ имеем $(\hat{U} \mid [0,1/2[) = (\hat{U}_2 \mid [0,1/2[)$. Этот факт — следствие неупреждаемости β^0 . Напомним, что $\hat{U}_2 \in \alpha(\hat{V}_2)$, так что модуль суммы "полных" интегралов \hat{U}_2 и \hat{V}_2 есть число, не меньшее 1. Однако,

$$-1/2 \le \int_0^1 \hat{U}_2(t)dt + \int_0^1 \hat{V}_2(t)dt = \int_0^{1/2} \hat{U}(t)dt + \int_{1/2}^1 \hat{U}_2(t)dt + \int_{1/2}^1 \hat{V}_2(t)dt = 1/2 + \int_{1/2}^1 \hat{U}_2(t)dt - 1/2 = \int_{1/2}^1 \hat{U}_2(t)dt \le 1/2.$$

Вновь имеем противоречие со свойством $\hat{U}_2 \in \alpha(\hat{V}_2)$, которое показывает, что в действительности $\forall V \in \mathbb{C}^0_2: \ \beta^0(V) = \emptyset.$ Итак, свойство, которого мы добились для β в классе управлений-констант игрока I, является по сути дела исчерпывающим, поскольку в данном примере возможно организовать лишь "частичный" неупреждающий MC оператора α . Оба примера играют роль мотивирующих с точки зрения целесообразности последующих исследований. Они относятся к случаю "совместного" (непустозначного) оператора α . В принципе возможна ситуация, когда это свойство (см.2.4)) отсутствует. Так, например, пусть в (2.1) М есть множество всех векторов $(x_1, x_2) \in \mathbb{R} \times \mathbb{R}$ таких, что $x_2 = x_1/2$. Тогда, в частности, имеем $\alpha(V^+) = \emptyset$ при $V^+(t) \equiv 1$, хотя имеются "точки" $V \in \mathbb{C}_2$, для которых $\alpha(V) \neq \emptyset$, и сохраняет смысл исследование "частичных" неупреждающих MC α (с формальной точки зрения MC оператора α , у которого некоторые значения совпадают с \emptyset , есть "обычный" МС, так что термин "частичный "связан с содержательной стороной дела; впрочем, этот тезис становится точным утверждением, если говорить об аналогах однозначных квазистратегий [18]).

3. Общие определения и обозначения.

В настоящем разделе приведена краткая сводка общих обозначений и положений (преимущественно из топологии [22,23]). Используем кванторы, связки и прочие общеупотребительные символы (например: def — по определению, $\stackrel{\triangle}{=}$ — равно по определению). Через B^A обозначаем, следуя [24], множество всех операторов, действующих из множества A в множество B (в качестве A, B могут использоваться семейства множеств); для оператора $f \in B^A$ и множества C, $C \subset A$, через $(f \mid C)$ обозначаем сужение (см. [22], [25,c.13]) или след f на множество C (являющийся отображением из

C в B); символ \circ используем при обозначении суперпозиций отображений. Мы используем понятие подпространства (п/п) топологического пространства (ТП), следуя традиционным определениям [22,23], а также понятия компактных, счетно-компактных и секвенциально компактных множеств в произвольном ТП, придерживаясь определений [23], [25, с. 239] и оперируя с этими множествами, как с п/п исходного ТП. Будем использовать сходимость по Мору-Смиту [22,23], обозначая направленности посредством триплетов, у каждого из которых два первых элемента составляют в своей совокупности непустое направленное множество (НМ) [22,с.95], а третий — является оператором на упомянутом НМ. Если (D, \preceq, h) — направленность [22,с.95,96], причем h действует из D в множество H (т.е. $h \in H^D$), то именуем (D, \prec, h) направленностью в H; если, к тому же, H оснащено топологией, то называем (D, \leq, h) направленностью в соответствующем $T\Pi$, следуя традиции [22,23]. Сходимость направленности (D, \leq, h) в ТП (H, \mathcal{T}) к точке $x \in H$ обозначаем посредством выражения $(D, \preceq, h) \xrightarrow{\mathcal{T}} x$. В частности, в качестве (D, \preceq) можно рассматривать натуральный ряд $\mathcal N$ с направлением, определяемым обычной упорядоченностью множества \mathcal{N} , т.е. в терминах \leq . В этих условиях получаем, как частный случай сходимости (по Мору-Смиту), "обычную" сходимость последовательностей. Для сходимости последовательности $(x_i)_{i\in\mathcal{N}}$ в ТП (H,\mathcal{T}) к точке $x\in H$ используем более традиционное обозначение $(x_i)_{i\in\mathcal{N}} \xrightarrow{\mathcal{T}} x$; разумеется, здесь речь идет о частном случае сходимости $(D, \preceq, h) \xrightarrow{\mathcal{T}} x$, где (D, \preceq) есть \mathcal{N} в обычной упорядоченности, а $h(i) \stackrel{\triangle}{=} x_i$ при $i \in \mathcal{N}$. В дальнейшем широко используется изотонное "прореживание" направленностей (и, в частности, последовательностей) в ТП до сходящихся поднаправленностей (см. [22,с.102,103]). Если (Δ, \ll) и (D, \preceq) — два непустых НМ, то через $(Isot)[\Delta; \ll; D; \preceq]$ обозначаем множество всех операторов $l \in D^{\Delta}$ таких, что

$$(\forall d \in D \; \exists \delta \in \Delta : \; d \leq l(\delta)) \& (\forall \delta_1 \in \Delta \; \forall \delta_2 \in \Delta : \\ (\delta_1 \ll \delta_2) \Longrightarrow (l(\delta_1) \leq l(\delta_2))).$$

Всюду в дальнейшем \leq используем только для обозначения обычной упорядоченности \mathcal{N} , так что (\mathcal{N}, \leq) — непустое НМ в последующих определениях. Если (D, \preceq) — произвольное непустое НМ, то полагаем

$$(isot)[D; \preceq] \stackrel{\triangle}{=} (Isot)[D; \preceq; \mathcal{N}; \leq]. \tag{7}$$

Последняя конструкция полезна при рассмотрении счетно-компактных множеств в ТП, поскольку в терминах (3.1) реализуется возможность изотон-

ного "прореживания" последовательности в счетно-компактном подмножестве ТП до сходящейся (к точке из того же подмножества) поднаправленности. Эта возможность легко извлекается из утверждений [23,c.304]. В дальнейшем полагаем $\mathcal{N}_0 \stackrel{\triangle}{=} \mathcal{N} \cup \{0\}$, т.е. $\mathcal{N}_0 = \{0;1;2;...\}$.

4. Неупреждающие многозначные селекторы и специальные операторы на пространстве многозначных отображений.

В настоящем разделе рассматривается оператор на пространстве многозначных отображений (МО), неподвижные точки которого интерпретируются затем, как аналоги квазистратегий [1-7,19,20]. Точнее, эти неподвижные точки имеют смысл неупреждающих многозначных отображений (НМО) и, в условиях подчиненности этих НМО тому или иному априорному МО, они являются МС этого МО, подлежащими определению. Мы допускаем возможность того, что наши МС могут, в качестве своих значений, принимать Ø. В связи с этим обстоятельством возникает отдельный вопрос о конструировании "частичных"МС, являющихся НМО, посредством сужения области определения. Мы рассматриваем при этом весьма общий случай, не ограничиваясь преобразованием функций времени. Свойство неупреждаемости принимает в этом общем случае смысл своеобразной наследственности (см. в этой связи [21]). Конструкции [1-7,18-20] и примеры раздела 2 относятся к наиболее известной и весьма естественной конкретизации. Упоминавшаяся в разделе 1 задача о неупреждающем продолжении к.-а. меры определяет другую конкретизацию; в этой же связи полезно отметить и более традиционную схему определения НМО [25] на пространстве к.-а. мер с использованием версии МПИ, ориентированной на решение задач управления с интегральными ограничениями.

Пусть: X и Υ — непустые множества; \mathcal{X} — непустое семейство непустых подмножеств X; (Y,τ) — $T\Pi$, $Y \neq \emptyset$; $\otimes^X(\tau)$ — топология множества Y^X (всех операторов из X в Y), соответствующая тихоновскому произведению экземпляров (Y,τ) с индексным множеством X, или топология поточечной сходимости в Y^X при оснащении Y топологией τ (см. в этой связи [22,c.283-284]); Z — непустое подмножество Y^X , оснащаемое топологией θ п/п $T\Pi$ ($Y^X,\otimes^X(\tau)$), т.е. топологией, индуцированной [22,c.77] в Z из $(Y^X,\otimes^X(\tau))$; \mathbb{Z} — семейство всех подмножеств Z; Ω — непустое

подмножество множества Υ^X (всех операторов из X в Υ). Через Σ (через Σ_0) обозначаем семейство всех (всех непустых) подмножеств Ω ; итак, $\Sigma_0 = \Sigma \setminus \{\emptyset\}$. Мы рассматриваем операторы из множеств \mathbb{Z}^T , где $T \in \Sigma_0$; особый интерес для нас представляют операторы $\mathcal{C} \in \mathbb{Z}^\Omega$, так что случай $T = \Omega$ далее будет основным. Упомянутые операторы именуем МО, следуя сложившейся традиции. Особую роль в дальнейшем играют НМО такого типа. Итак, мы интересуемся в основном построением НМО из \mathbb{Z}^Ω ; обращение к НМО из \mathbb{Z}^T при $T \in \Sigma_0$, $T \neq \Omega$, вызвано соображениями исследования полноты решения основной задачи (примеры раздела 2 иллюстрируют это обстоятельство). Свойство неупреждаемости МО формулируется при этом в терминах \mathcal{X} .

Итак, ниже рассматриваются непустые множества Ω и Z, элементами которых являются функции на X. Семейство \mathcal{X} составлено из "особых"подмножеств X; совпадение сужений функций из Ω и Z на множества $A \in \mathcal{X}$ мы используем для строгого определения принципа неупреждаемости МО в общем виде (в разделе 2 X можно отождествить с [0,1[, а \mathcal{X} — с семейством всех полуинтервалов [0,t[, $t\in]0,1[$; существо конкретного определения неупреждаемости раздела 2 и [1-7,18-20] сохраняется в общем случае). Введем некоторые обозначения. Если $T\in \Sigma_0$, $\omega\in \Omega$ и A — непустое подмножество X, то полагаем

$$(Ge)[T;\omega\mid A] \stackrel{\triangle}{=} \{\tilde{\omega}\in T\mid (\omega\mid A) = (\tilde{\omega}\mid A)\},\tag{8}$$

получая (в виде (4.1)) при $\omega \in T$ непустое множество: $\omega \in (Ge)[T;\omega \mid A]$. Кроме того, полагаем в случае, когда $\omega \in \Omega$ и A — непустое подмножество X, что

$$\Omega_0(\omega \mid A) \stackrel{\triangle}{=} (Ge)[\Omega; \omega \mid A]. \tag{9}$$

Посредством (4.1),(4.2) введены ростки элементов Ω , отвечающие "началу" ($\omega \mid A$) реализации непредсказуемых факторов. Ориентируясь на случай, определяющий (4.2), как на основной, оснащаем \mathbb{Z}^{Ω} "поточечным" порядком, полагая def $\forall H_1 \in \mathbb{Z}^{\Omega} \ \forall H_2 \in \mathbb{Z}^{\Omega}$:

$$(H_1 \sqsubseteq H_2) \iff (\forall \omega \in \Omega : H_1(\omega) \subset H_2(\omega)). \tag{10}$$

Мы получили в виде (\mathbb{Z}^{Ω} , \sqsubseteq) частично упорядоченное множество. Если не оговорено противное, термин монотонность для преобразований в \mathbb{Z}^{Ω} будем понимать в согласии с порядком (4.3). Помимо порядка, \mathbb{Z}^{Ω} оснащается поточечной сходимостью. Для этого введем сначала в рассмотрение обычную

монотонную сходимость [26,гл.І]: если H — множество, $(A_i)_{i\in\mathcal{N}}$ — последовательность подмножеств H и, кроме того, A — подмножество H, то выражение $(A_i)_{i\in\mathcal{N}}\downarrow A$ означает, что: 1) A есть пересечение всех множеств $A_i,\ i\in\mathcal{N};\ 2)\forall k\in\mathcal{N}:\ A_{k+1}\subset A_k$. Если же $(\mathcal{C}_i)_{i\in\mathcal{N}}$ —последовательность в \mathbb{Z}^Ω и $\mathcal{C}\in\mathbb{Z}^\Omega$, то def:

$$((\mathcal{C}_i)_{i\in\mathcal{N}} \Downarrow \mathcal{C}) \iff (\forall \omega \in \Omega : (\mathcal{C}_i(\omega))_{i\in\mathcal{N}} \downarrow \mathcal{C}(\omega)). \tag{11}$$

В (4.3),(4.4) определено требуемое оснащение пространства \mathbb{Z}^{Ω} , элементами которого являются МО на Ω , так что в дальнейшем пространство $(\mathbb{Z}^{\Omega},\sqsubseteq,\downarrow)$ является основным предметом нашего рассмотрения.

Если $T \in \Sigma_0$, то полагаем, что отображение

$$\gamma[T]: \ \mathbb{Z}^T \longrightarrow \mathbb{Z}^T \tag{12}$$

определяется тем условием, что $\forall \mathcal{C} \in \mathbb{Z}^T \ \forall \omega \in T$:

$$\gamma[T](\mathcal{C})(\omega) \stackrel{\triangle}{=} \{ f \in \mathcal{C}(\omega) \mid \forall A \in \mathcal{X} \ \forall \tilde{\omega} \in (Ge)[T; \omega \mid A] \\ \exists \tilde{f} \in \mathcal{C}(\tilde{\omega}) : (f \mid A) = (\tilde{f} \mid A) \}.$$

$$(13)$$

В терминах (4.5),(4.6) могут быть введены "частичные" МО со свойством неупреждаемости. Именно, в качестве таковых используем ниже неподвижные точки упомянутых операторов. Пусть $\forall T \in \Sigma_0$:

$$\mathfrak{N}[T] \stackrel{\triangle}{=} \{ \mathcal{C} \in \mathbb{Z}^T \mid \mathcal{C} = \gamma[T](\mathcal{C}) \}. \tag{14}$$

Если же иметь в виду основную цель — неупреждающую селекцию МО, то естественно дополнить (4.7) следующим определением; именно, $\forall T \in \Sigma_0 \ \forall \alpha \in \mathbb{Z}^T$:

$$\mathfrak{N}_0[T;\alpha] \stackrel{\triangle}{=} \{ \mathcal{C} \in \mathfrak{N}[T] \mid \forall \omega \in T : \ \mathcal{C}(\omega) \subset \alpha(\omega) \}. \tag{15}$$

В определениях (4.5)-(4.8) целесообразно выделить случай $T=\Omega$ для отдельного рассмотрения. Тогда

$$\Gamma \stackrel{\triangle}{=} \gamma[\Omega] \tag{16}$$

есть элемент множества \mathcal{Z} всех операторов, действующих в \mathbb{Z}^{Ω} . С учетом (4.2) имеем, что $\Gamma \in \mathcal{Z}$ есть такое отображение \mathbb{Z}^{Ω} в \mathbb{Z}^{Ω} , что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall \omega \in \Omega$:

$$\Gamma(\mathcal{C})(\omega) = \gamma[\Omega](\mathcal{C})(\omega) = \{ f \in \mathcal{C}(\omega) \mid \forall A \in \mathcal{X} \ \forall \tilde{\omega} \in \Omega_0(\omega \mid A) \ \exists \tilde{f} \in \mathcal{C}(\tilde{\omega}) :$$

$$(f \mid A) = (\tilde{f} \mid A) \} = \{ f \in \mathcal{C}(\omega) \mid \forall A \in \mathcal{X} :$$

$$(f \mid A) \in \bigcap_{\tilde{\omega} \in \Omega_0(\omega \mid A)} \{ (\tilde{f} \mid A) : \ \tilde{f} \in \mathcal{C}(\tilde{\omega}) \} \}.$$

$$(17)$$

С оператором (4.9),(4.10) мы связываем понятие неупреждаемости "полных", т.е. определенных на Ω , МО. Имеем $\mathbb{N} \stackrel{\triangle}{=} \mathfrak{N}[\Omega] = \{ \mathcal{C} \in \mathbb{Z}^{\Omega} \mid \mathcal{C} = \Gamma(\mathcal{C}) \}$ и, как следствие, $\forall \alpha \in \mathbb{Z}^{\Omega}$:

$$\mathbb{N}_0[\alpha] \stackrel{\triangle}{=} \mathfrak{N}_0[\Omega; \alpha] = \{ \mathcal{C} \in \mathbb{N} \mid \mathcal{C} \sqsubseteq \alpha \}. \tag{18}$$

Элементы (4.11) именуем неупреждающими МС отображения α ; эти элементы являются одновременно и НМО, и МС "априорного" МО. Отметим, что $\forall T \in \Sigma_0 \ \forall \omega \in \Omega \ \forall A \in \mathcal{X} : (Ge)[T; \omega \mid A] \subset \Omega_0(\omega \mid A)$. Как следствие, мы получаем утверждение: если $\mathcal{C} \in \mathbb{Z}^{\Omega}$, $T \in \Sigma_0$, $\mathcal{C}_T \stackrel{\triangle}{=} (\mathcal{C} \mid T)$ и $\omega \in T$, то

$$\Gamma(\mathcal{C})(\omega) \subset \gamma[T](\mathcal{C}_T)(\omega) \subset \mathcal{C}_T(\omega) = \mathcal{C}(\omega).$$
 (19)

Из (4.12) легко следует $\forall \mathcal{C} \in \mathbb{N} \ \forall T \in \Sigma_0 : (\mathcal{C} \mid T) \in \mathfrak{N}[T]$. С учетом (4.8),(4.11) имеем теперь $\forall \alpha \in \mathbb{Z}^{\Omega} \ \forall \mathcal{C} \in \mathbb{N}_0[\alpha] \ \forall T \in \Sigma_0$:

$$(\mathcal{C} \mid T) \in \mathfrak{N}_0[T; (\alpha \mid T)]. \tag{20}$$

В связи с (4.12),(4.13) полезно отметить, что при $\alpha \in \mathbb{Z}^\Omega$ и $T \in \Sigma_0$ в множестве $\mathfrak{N}_0[T;(\alpha \mid T)]$ могут содержаться элементы, не являющиеся операторами вида ($\mathcal{C} \mid T$), где $\mathcal{C} \in \mathbb{N}_0[\alpha]$. В самом деле, рассмотрим первый пример раздела 2. Точнее, здесь имеется в виду случай, когда, в обозначениях раздела 2, $\beta(V) \equiv \emptyset$ при всяком выборе неупреждающего МС отображения α . В этом примере следует полагать: $X = [0,1[,Y=\Upsilon=[-1,1]]$ (τ можно полагать топологией отрезка [-1,1], рассматриваемого, как п/п \mathbb{R} в обычной $|\cdot|$ -топологии); $Z = \mathbb{C}_1$, где \mathbb{C}_1 — множество всех управлений-констант со значениями в Y = [-1,1]; $\Omega = \mathbb{C}_2 = \mathbb{C}$; $\mathcal{X} = \{[0,t[:\ t\in]0,1[\}\ (\text{см. в})\}$ этой связи (2.2)). Тогда, как установлено в упомянутом примере, операторы из $\mathbb{N}_0[\alpha]$, где α соответствует условиям примера (при этом $\alpha(V) \neq \emptyset$ при $V \in \mathbb{C}_2$), есть неупреждающие МС α и, следовательно, все их значения совпадает с \emptyset , что наследуется сужениями этих операторов на $T \in \Sigma_0$. Однако, если $V \in \mathbb{C}_2$, то одноэлементное множество $\{V\}$, содержащее V, таково, что $\{V\} \in \Sigma_0$, а

$$(\alpha \mid \{V\}) \in \mathfrak{N}_0[\{V\}; (\alpha \mid \{V\})] \tag{21}$$

есть непустозначный оператор. Разумеется, (4.14) может служить основой для конструирования подобных эффектов и в общем случае условий, определяющих (4.13). Дело в том, что (уже в общем случае) след произвольного оператора $\alpha \in \mathbb{Z}^{\Omega}$ на одноэлементное подмножество Ω всегда является неупреждающим отображением в смысле реакций на реализации

из этого подмножества. Более того, имеется и еще одна интересная (связанная с предыдущей) возможность: сужая Ω до $T \in \Sigma_0$, $T \neq \Omega$, можно в ряде случаев расширить "фактическую" эффективную область неупреждающих МС априорного МО α . В этой связи рассмотрим второй пример раздела 2, изменяя в нем множество \mathbb{C}_2 . Именно, мы сокращаем множество $\mathbb{C}_2 = \mathbb{C}_2^+ \cup \mathbb{C}_2^- \cup \mathbb{C}_2^0$ данного примера (аналог Ω) до $\mathbb{C}_2^+ \cup \mathbb{C}_2^- \cup \{\mathbf{O}\}$ (аналог $T \in \Sigma_0$). Мы знаем уже, что для МО α с непустыми значениями

$$\alpha(V) = \{ U \in \mathbb{C}_1 \mid 1 \le | \int_0^1 U(t)dt + \int_0^1 V(t)dt \mid \} \quad (V \in \mathbb{C}_2)$$
 (22)

всякий неупреждающий МС α (со свойством (2.4)), определенный на \mathbb{C}_2 , обязательно принимает на \mathbb{C}_2^0 (и, в частности, в точке \mathbf{O}), в виде значения, \emptyset . Если же мы определим отображение β_* на $\mathbb{C}_2^+ \cup \mathbb{C}_2^0 \cup \{\mathbf{O}\}$ со значениями в пространстве всех подмножеств \mathbb{C}_1 по правилу

$$(\forall V \in \mathbb{C}_2^+ : \beta_*(V) \stackrel{\triangle}{=} \{U^+\}) \& (\forall V \in \mathbb{C}_2^- : \beta_*(V) \stackrel{\triangle}{=} \{U^-\}) \& (\beta_*(\mathbf{O}) \stackrel{\triangle}{=} \{U^+; U^-\}),$$

где U^+, U^- — управления-константы, определенные в примере раздела 2, то получим (в виде β_*) неупреждающий МС отображения, являющегося сужением α . Можно себе представить и менее "абсурдную" редукцию \mathbb{C}_2 , когда расширение эффективной области за счет сужения Ω до $T \in \Sigma_0$ будет более ощутимым (в случае, рассмотренном выше, к эффективной области неупреждающих МС α раздела 2 удалось "добавить" точку $\mathbf{O} \in \mathbb{C}_2$). Итак, введем, в обозначениях упомянутого примера,

$$\mathbb{C}_2^{0+} \stackrel{\triangle}{=} \{ V \in \mathbb{C} \mid \exists t \in]0,1] : \ (\forall \xi \in [0,t[:\ V(\xi)=0) \& (\forall \xi \in [t,1[:\ V(\xi)=1)], t \in [t,1]) \}$$

после чего изменим $\mathbb{C}_2 = \mathbb{C}_2^+ \cup \mathbb{C}_2^- \cup \mathbb{C}_2^0$ до множества $\tilde{\mathbb{C}}_2 \stackrel{\triangle}{=} \mathbb{C}_2^+ \cup \mathbb{C}_2^- \cup \mathbb{C}_2^0$ \mathbb{C}_2^{0+} , $\tilde{\mathbb{C}}_2 \subset \mathbb{C}_2$. Определим отображение $\beta^* : \tilde{\mathbb{C}}_2 \longrightarrow \mathbb{C}_1$ (\mathbb{C}_1 — множество всех управлений-констант со значениями в [-1,1]) правилом

$$(\forall V \in \mathbb{C}_2^+ \cup \mathbb{C}_2^{0+} : \beta^*(V) \stackrel{\triangle}{=} U^+) \& (\forall V \in \mathbb{C}_2^- : \beta^*(V) = U^-).$$

Тогда β^* есть, по сути дела, квазистратегия, подобная [18], причем $\beta^*(V) \in \alpha(V)$, где МО α определено в (4.15). Разумеется, по β^* можно построить "частичный" неупреждающий МС нашего МО α (4.15) так, что областью определения данного МС будет $\tilde{\mathbb{C}}_2$, а все его значения — непустыми множествами. Мы вновь получили фактическое расширение (в сравнении

со вторым примером раздела 2) эффективной области в классе "частичных" неупреждающих МС α : здесь удалось "добавить" множество \mathbb{C}_2^{0+} , имеющее мощность континуума, к (прежней) типичной эффективной области, соответствующей случаю МС на \mathbb{C}_2 .

5. Топологические свойства основного оператора.

В настоящем разделе рассматриваются некоторые свойства оператора (4.9), связанные так или иначе с топологическим оснащением Z; эти свойства существенны, с одной стороны, для иссследования инвариантных п/п оператора Γ (4.9), а, с другой, — они включают версию секвенциальной непрерывности в ($\mathbb{Z}^{\Omega}, \downarrow$), что важно в последующих конструкциях итерационного определения НМО. Нам потребуются некоторые новые обозначения. Напомним, что (Z, θ) есть п/п ТП ($Y^X, \otimes^X(\tau)$); последнее есть, в свою очередь, тихоновское произведение экземпляров (Y, τ) с индексным множеством X (см. раздел 4).

Пусть в дальнейшем: \mathbb{F} — семейство всех замкнутых в ТП (Z,θ) подмножеств Z (при этом, конечно, $\mathbb{F} \subset \mathbb{Z}$); \mathcal{F} — семейство всех секвенциально замкнутых [21,27] в (Z,θ) подмножеств Z; \mathbb{K} — семейство всех компактных [23,c.196] в (Z,θ) подмножеств Z; \mathcal{K} — семейство всех секвенциально компактных в (Z,θ) подмножеств Z (см.[27,c.239]); \mathbb{C} — семейство всех счетно-компактных в (Z,θ) подмножеств Z (см.[27,c.239]); $\mathbb{T} \stackrel{\triangle}{=} \mathbb{C} \cap \mathbb{F}$. Напомним, что [22,23,27] $\mathbb{K} \subset \mathbb{C}$, $\mathcal{K} \subset \mathbb{C}$. Будем рассматривать МО из множеств \mathbb{K}^{Ω} , \mathcal{K}^{Ω} и \mathbb{T}^{Ω} ; каждое из этих множеств содержится в \mathbb{Z}^{Ω} . Иногда рассматриваем в качестве априорных МО и произвольные отображения из \mathbb{Z}^{Ω} . Легко видеть (см. (4.10)), что Γ — монотонный (в $(\mathbb{Z}^{\Omega}, \sqsubseteq)$) оператор, т.е. $\forall U \in \mathbb{Z}^{\Omega} \ \forall V \in \mathbb{Z}^{\Omega}$:

$$(U \sqsubseteq V) \Longrightarrow (\Gamma(U) \sqsubseteq \Gamma(V)). \tag{23}$$

Предложение 5.1. Пусть (Y, τ) — хаусдорфово ТП. Тогда каждое из множеств \mathbb{K}^{Ω} , \mathcal{K}^{Ω} есть инвариантное n/n оператора Γ :

$$(\forall \mathcal{C} \in \mathbb{K}^{\Omega} : \Gamma(\mathcal{C}) \in \mathbb{K}^{\Omega}) \& (\forall \tilde{\mathcal{C}} \in \mathcal{K}^{\Omega} : \Gamma(\tilde{\mathcal{C}}) \in \mathcal{K}^{\Omega}). \tag{24}$$

Схема доказательства. Ограничимся обсуждением первого утверждения в (5.2), фиксируя $U \in \mathbb{K}^{\Omega}$ и $\omega \in \Omega$. Достаточно (см.(4.10),(5.1)) проверить свойство $\Gamma(U)(\omega) \in \mathbb{F}$. Пусть (D, \preceq, φ) — направленность в $\Gamma(U)(\omega)$,

 $f \in Z$ и $(D, \preceq, \varphi) \xrightarrow{\theta} f$. В силу отделимости (Z, θ) имеем $U(\omega) \in \mathbb{F}$, так что $f \in U(\omega)$. Пусть $A \in \mathcal{X}$ и $\tilde{\omega} \in \Omega_0(\omega \mid A)$, а оператор $\tilde{\varphi} : D \longrightarrow U(\tilde{\omega})$ обладает свойством

$$\forall d \in D : (\varphi(d) \mid A) = (\tilde{\varphi}(d) \mid A). \tag{25}$$

Существование оператора $\tilde{\varphi}$ со свойством (5.3) следует из (4.10) и аксиомы выбора. Поскольку $U(\tilde{\omega}) \in \mathbb{K}$, то [22,гл.2] можно указать $f_* \in U(\tilde{\omega})$, непустое НМ (Δ, \ll) и $l \in (Isot)[\Delta; \ll; D; \preceq]$ так, что $(\Delta, \ll, \tilde{\varphi} \circ l) \xrightarrow{\theta} f_*$. Тогда при $x \in X$ имеем сходимость

$$(\Delta, \ll, (\tilde{\varphi} \circ l)(\cdot)(x)) \xrightarrow{\tau} f_*(x), \tag{26}$$

где оператор $\delta \longmapsto (\tilde{\varphi} \circ l)(\delta)(x): \Delta \longrightarrow Y$ обозначен через $(\tilde{\varphi} \circ l)(\cdot)(x).$ Вместе с тем

$$(\Delta, \ll, (\varphi \circ l)(\cdot)(x)) \xrightarrow{\tau} f(x) \tag{27}$$

при $x \in X$. Из (5.3)-(5.5) следует в силу отделимости (Y,τ) (см.[23,с.91]) совпадение $(f \mid A) = (f_* \mid A)$, чем фактически завершается обоснование свойства $f \in \Gamma(U)(\omega)$. Стало быть, $\Gamma(U)(\omega) \in \mathbb{F}$, чем и завершается доказательство первого утверждения (5.2). Обоснование второго является "секвенциальным" аналогом вышеупомянутого рассуждения, отвечающим естественным для секвенциально компактных $T\Pi$, конструкциям прореживания произвольных последовательностей (в $T\Pi$) до сходящихся подпоследовательностей; кроме того, основной этап обоснования сводится здесь к установлению свойства $\Gamma(\tilde{U})(\omega) \in \mathcal{F}$, где $\tilde{U} \in \mathcal{K}^{\Omega}$.

Если $(C_i)_{i\in\mathcal{N}}$ — последовательность в \mathbb{T}^{Ω} , $C \in \mathbb{Z}^{\Omega}$ и $(C_i)_{i\in\mathcal{N}} \Downarrow C$, то $C \in \mathbb{T}^{\Omega}$ (см.(4.4)), так что \mathbb{T}^{Ω} (секвенциально) замкнуто в $(\mathbb{Z}^{\Omega}, \Downarrow)$. Последнее есть пространство, в котором определена сходимость последовательностей; см. в этой связи [27].

Теорема 5.1. Пусть (Y, τ) есть T_1 -пространство $(cм.[23, c.69], [28, c.191]), <math>(C_i)_{i \in \mathcal{N}}$ — последовательность в \mathbb{T}^{Ω} и $C \in \mathbb{Z}^{\Omega}$. Тогда

$$((\mathcal{C}_i)_{i\in\mathcal{N}} \Downarrow \mathcal{C}) \Longrightarrow ((\Gamma(\mathcal{C}_i))_{i\in\mathcal{N}} \Downarrow \Gamma(\mathcal{C})). \tag{28}$$

Схема доказательства. Пусть истинна посылка (5.6). Для доказательства следствия (5.6) достаточно (см.(4.4),(5.1)) показать, что, при $\omega \in \Omega$, пересечение всех множеств $\Gamma(C_i)(\omega)$, $i \in \mathcal{N}$, содержится в $\Gamma(C)(\omega)$. Фиксируем $\omega \in \Omega$ и точку φ упомянутого пересечения (всех множеств

 $\Gamma(C_i)(\omega), i \in \mathcal{N}$). В силу (4.10) $\varphi \in \mathcal{C}(\omega)$ (см. посылку (5.6)). Пусть $A^* \in \mathcal{X}, \ \omega^* \in \Omega_0(\omega \mid A^*), \ a \ (\varphi_i^*)_{i \in \mathcal{N}}$ — элемент декартова произведения всех множеств $C_i(\omega^*), \ i \in \mathcal{N}$, обладающий следующим свойством; именно, $\forall j \in \mathcal{N}: \ (\varphi \mid A^*) = (\varphi_j^* \mid A^*)$. Существование $(\varphi_i^*)_{i \in \mathcal{N}}$ следует из (4.10) и аксиомы выбора. Вместе с тем, $(C_i(\omega^*))_{i \in \mathcal{N}} \downarrow \mathcal{C}(\omega^*)$. Тогда, в частности, $(\varphi_i^*)_{i \in \mathcal{N}}$ — последовательность в $C_1(\omega^*) \in \mathbb{C}$. Подбираем $\varphi^* \in C_1(\omega^*)$, непустое НМ (D_0, \preceq) и оператор $l \in (isot)[D_0; \preceq]$ со свойством

$$(D_0, \preceq, (\varphi_{l(d)}^*)_{d \in D_0}) \xrightarrow{\theta} \varphi^*. \tag{29}$$

Разумеется, последнее утверждение означает, что $\forall x \in X$:

$$(D_0, \preceq, (\varphi_{l(d)}^*(x))_{d \in D_0}) \xrightarrow{\tau} \varphi^*(x). \tag{30}$$

По основному свойству T_1 -пространств имеем из (5.8) совпадение ($\varphi \mid A^*$) = ($\varphi^* \mid A^*$). Для $n \in \mathcal{N}$ с некоторого момента [22,c.96] имеем $\varphi_{l(d)}^* \in \mathcal{C}_n(\omega^*)$, что означает (см.(5.7)), в силу $\mathcal{C}_n(\omega^*) \in \mathbb{F}$, свойство $\varphi^* \in \mathcal{C}_n(\omega^*)$. Поэтому $\varphi^* \in \mathcal{C}(\omega^*)$, чем фактически завершается проверка свойства $\varphi \in \Gamma(\mathcal{C})(\omega)$, ч.т.д.

Если (Y, τ) — хаусдорфово ТП, то \mathbb{K}^{Ω} замкнуто в $(\mathbb{Z}^{\Omega}, \Downarrow)$, т.е. при любом выборе последовательности $(\mathcal{C}_i)_{i \in \mathcal{N}}$ в \mathbb{K}^{Ω} и $\mathcal{C} \in \mathbb{Z}^{\Omega}$ верно: $((\mathcal{C}_i)_{i \in \mathcal{N}} \Downarrow \mathcal{C}) \Longrightarrow (\mathcal{C} \in \mathbb{K}^{\Omega})$. Из теоремы 5.1 вытекает очевидное теперь

Предложение 5.2. Пусть: (Y, τ) — хаусдорфово $T\Pi$, $(C_i)_{i \in \mathcal{N}}$ последовательность в \mathbb{K}^{Ω} , $C \in \mathbb{Z}^{\Omega}$. Тогда

$$((\mathcal{C}_i)_{i\in\mathcal{N}} \Downarrow \mathcal{C}) \Longrightarrow ((\Gamma(\mathcal{C}_i))_{i\in\mathcal{N}} \Downarrow \Gamma(\mathcal{C})). \tag{31}$$

Если (Y,τ) — хаусдорфово ТП, то $\mathcal{K} \subset \mathcal{F}$ и \mathcal{K}^{Ω} замкнуто в $(\mathbb{Z}^{\Omega}, \downarrow)$: для всяких последовательности $(\mathcal{C}_i)_{i\in\mathcal{N}}$ в \mathcal{K}^{Ω} и МО $\mathcal{C} \in \mathbb{Z}^{\Omega}$ из того, что $(\mathcal{C}_i)_{i\in\mathcal{N}} \downarrow \mathcal{C}$, следует $\mathcal{C} \in \mathcal{K}^{\Omega}$.

Предложение 5.3. Пусть (Y,τ) — хаусдорфово $T\Pi$, $(C_i)_{i\in\mathcal{N}}$ — последовательность в \mathcal{K}^{Ω} , $C \in \mathbb{Z}^{\Omega}$. Тогда истинна импликация (5.9).

Доказательство является очевидной "секвенциальной" версией обоснования теоремы 5.1 и, по этой причине, опущено. В заключении раздела отметим свойство (секвенциальной) замкнутости в ($\mathbb{Z}^{\Omega}, \downarrow$) некоторых п/п \mathbb{N} .

Предложение 5.4. Пусть $T\Pi(Y,\tau)$ есть T_1 -пространство, $(C_i)_{i\in\mathcal{N}}$ — последовательность в $\mathbb{N}\cap\mathbb{T}^\Omega$ и $C\in\mathbb{Z}^\Omega$. Тогда

$$((\mathcal{C}_i)_{i\in\mathcal{N}} \Downarrow \mathcal{C}) \Longrightarrow (\mathcal{C} \in \mathbb{N} \cap \mathbb{T}^{\Omega}). \tag{32}$$

Схема доказательства. При $j \in \mathcal{N}$ имеем равенство $\mathcal{C}_j = \Gamma(\mathcal{C}_j)$. С другой стороны, $(\mathcal{C}_i)_{i \in \mathcal{N}}$ — последовательность в \mathbb{T}^{Ω} . Пусть истинна посылка импликации (5.10). Тогда $\mathcal{C} \in \mathbb{T}^{\Omega}$ и (см. теорему 5.1) имеет место $(\Gamma(\mathcal{C}_i))_{i \in \mathcal{N}} \Downarrow \Gamma(\mathcal{C})$, так что $(\mathcal{C}_i)_{i \in \mathcal{N}} \Downarrow \Gamma(\mathcal{C})$. Снова используя утверждение посылки (5.10), получаем, что $\mathcal{C} = \Gamma(\mathcal{C})$, ч.т.д.

Следствие. Пусть (Y, τ) — хаусдорфово $T\Pi$, $(C_i)_{i \in \mathcal{N}}$ — последовательность в $\mathbb{N} \cap \mathbb{K}^{\Omega}$, $C \in \mathbb{Z}^{\Omega}$. Тогда: $((C_i)_{i \in \mathcal{N}} \Downarrow C) \Longrightarrow (C \in \mathbb{N} \cap \mathbb{K}^{\Omega})$.

Предложение 5.5. Пусть (Y,τ) — $xayc \partial op \phi oso T\Pi$, $(C_i)_{i \in \mathcal{N}}$ — $noc \Lambda e-\partial osame \Lambda b h oc m b <math>\mathcal{N} \cap \mathcal{K}^{\Omega}$, $C \in \mathbb{Z}^{\Omega}$. $Tor \partial a: ((C_i)_{i \in \mathcal{N}} \Downarrow \mathcal{C}) \Longrightarrow (C \in \mathbb{N} \cap \mathcal{K}^{\Omega})$.

Доказательство вытекает из предложения 5.3 по схеме, аналогичной обоснованию предложения 5.4. Итак, мы установили замкнутость $\mathbb{N} \cap \mathbb{T}^{\Omega}$ в $(\mathbb{Z}^{\Omega}, \psi)$ при весьма общем предположении относительно (Y, τ) . В случае отделимости последнего в $(\mathbb{Z}^{\Omega}, \psi)$ замкнуты множества $\mathbb{N} \cap \mathbb{K}^{\Omega}$ и $\mathbb{N} \cap \mathcal{K}^{\Omega}$.

6. Метод итераций.

В этом разделе исследуются некоторые свойства множества \mathcal{Z} раздела 4. Пусть \mathbb{J} есть def такой оператор из \mathcal{Z} , что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} : \mathbb{J}(\mathcal{C}) \stackrel{\triangle}{=} \mathcal{C}$. Оператор (4.9) порождает последовательность своих степеней $(\Gamma^k)_{k \in \mathcal{N}_0} \in \mathcal{Z}^{\mathcal{N}_0}$, причем

$$(\Gamma^0 \stackrel{\triangle}{=} \mathbb{J}) \& (\forall k \in \mathcal{N} : \Gamma^k = \Gamma \circ \Gamma^{k-1}). \tag{33}$$

Если $\mathcal{C} \in \mathbb{Z}^{\Omega}$, то $\Gamma^{0}(\mathcal{C}) = \mathcal{C}$ и, при $k \in \mathcal{N}$, имеет место $\Gamma^{k}(\mathcal{C}) = \Gamma(\Gamma^{k-1}(\mathcal{C}))$; если при этом $m \in \mathcal{N}_{0}$, $n \in \mathcal{N}_{0}$ и $m \leq n$, то $\Gamma^{n}(\mathcal{C}) \sqsubseteq \Gamma^{m}(\mathcal{C})$. Из предложения 5.1 имеем в случае, когда (Y, τ) — хаусдорфово $T\Pi$, что $\forall n \in \mathcal{N}_{0}$:

$$(\forall \mathcal{U} \in \mathbb{K}^{\Omega} : \Gamma^{n}(\mathcal{U}) \in \mathbb{K}^{\Omega}) \& (\forall \mathcal{V} \in \mathcal{K}^{\Omega} : \Gamma^{n}(\mathcal{V}) \in \mathcal{K}^{\Omega}). \tag{34}$$

При проверке (6.2) используется индукция на основе (6.1). Пусть $\Gamma^{\infty} \in \mathcal{Z}$ есть def такой оператор, что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall \omega \in \Omega$:

$$\Gamma^{\infty}(\mathcal{C})(\omega) \stackrel{\triangle}{=} \bigcap_{k \in \mathcal{N}_0} \Gamma^k(\mathcal{C})(\omega). \tag{35}$$

Разумеется, в правой части (6.3) можно без нарушения равенства использовать пересечение по всевозможным $k \in \mathcal{N}_0$, $m \leq k$, где $m \in \mathcal{N}_0$ задано априори. В частности, (6.3) справедливо при замене в правой части множества \mathcal{N}_0 на \mathcal{N} . Заметим, что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega}$:

$$(\Gamma^k(\mathcal{C}))_{k\in\mathcal{N}} \Downarrow \Gamma^{\infty}(\mathcal{C}). \tag{36}$$

Легко видеть, что (см.(6.2)) в случае, когда (Y, τ) — хаусдорфово ТП, множества \mathbb{K}^{Ω} и \mathcal{K}^{Ω} являются каждое инвариантным п/п оператора Γ^{∞} :

$$(\forall \mathcal{C} \in \mathbb{K}^{\Omega} : \Gamma^{\infty}(\mathcal{C}) \in \mathbb{K}^{\Omega}) \& (\forall \tilde{\mathcal{C}} \in \mathcal{K}^{\Omega} : \Gamma^{\infty}(\tilde{\mathcal{C}}) \in \mathcal{K}^{\Omega}). \tag{37}$$

Полезным дополнением (6.5) является следующее важное

Предложение 6.1. Пусть (Y, τ) есть хаусдорфово $T\Pi$. Тогда

$$(\forall \mathcal{C} \in \mathbb{K}^{\Omega}: (\Gamma \circ \Gamma^{\infty})(\mathcal{C}) = \Gamma^{\infty}(\mathcal{C})) \& (\forall \tilde{\mathcal{C}} \in \mathcal{K}^{\Omega}: (\Gamma \circ \Gamma^{\infty})(\tilde{\mathcal{C}}) = \Gamma^{\infty}(\tilde{\mathcal{C}})).$$

Для доказательства достаточно использовать комбинацию предложений 5.2, 5.3 и (6.4); следует учесть также определение (6.1).

В ряду свойств, не связанных с топологическим оснащением Y отметим два обстоятельства. Прежде всего $\forall \alpha \in \mathbb{Z}^{\Omega} \ \forall \mathcal{H} \in \mathbb{N}_0[\alpha]$:

$$\mathcal{H} \sqsubseteq \Gamma^{\infty}(\alpha). \tag{38}$$

Проверка (6.6) осуществляется по индукции; (6.6) доставляет полезные оценки НМО, являющихся МС априорного МО. Второе очевидное свойство — монотонность: если $\mathcal{C} \in \mathbb{Z}^{\Omega}$ и $\mathcal{D} \in \mathbb{Z}^{\Omega}$, то

$$(\mathcal{C} \sqsubseteq \mathcal{D}) \Longrightarrow (\Gamma^{\infty}(\mathcal{C}) \sqsubseteq \Gamma^{\infty}(\mathcal{D})). \tag{39}$$

Для доказательства (6.7) достаточно сравнить (5.1) и (6.1). Заметим, кстати, что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} : \Gamma^{\infty}(\mathcal{C}) \sqsubseteq \mathcal{C}$.

Теорема 6.1. Пусть (Y,τ) — хаусдорфово ТП. Если $M \in \mathbb{K}^{\Omega}$, то $\Gamma^{\infty}(M) \in \mathbb{K}^{\Omega}$ — наибольший в $(\mathbb{Z}^{\Omega},\sqsubseteq)$ элемент $\mathbb{N}_0[M]$, т.е.

$$(\Gamma^{\infty}(M) \in \mathbb{N}_0[M]) \& (\forall \mathcal{H} \in \mathbb{N}_0[M] : \mathcal{H} \sqsubseteq \Gamma^{\infty}(M)); \tag{40}$$

если же $M \in \mathcal{K}^{\Omega}$, то $\Gamma^{\infty}(M) \in \mathcal{K}^{\Omega}$ — наибольший в $(\mathbb{Z}^{\Omega}, \sqsubseteq)$ элемент $\mathbb{N}_0[M]$: для $\Gamma^{\infty}(M) \in \mathcal{K}^{\Omega}$ выполняется (6.8).

Доказательство сводится к комбинации (6.6) и предложения 6.1. Полезно подчеркнуть, что в случае, когда априорное МО — элемент \mathbb{K}^{Ω} или \mathcal{K}^{Ω} , предел (6.3),(6.5) итерационной процедуры, к которой сводится (6.1), оценивает, сохраняясь в упомянутых п/п \mathbb{Z}^{Ω} , любые НМО, являющиеся МС априорного МО.

Отметим, что $\mathbb{N} = \{ \mathcal{C} \in \mathbb{Z}^{\Omega} \mid \mathcal{C} = \Gamma^{\infty}(\mathcal{C}) \}$. Полагаем $\forall T \in \Sigma_0 \ \forall \mathcal{C} \in \mathbb{Z}^T$:

$$(DOM)[\mathcal{C}] \stackrel{\triangle}{=} \{ \omega \in T \mid \mathcal{C}(\omega) \neq \emptyset \}. \tag{41}$$

В частности, (6.9) можно использовать при $T = \Omega$. В разделе 4 мы рассматривали уже (на примерах) некоторые эффекты, характерные для множеств (6.9) при замене Ω на $T \in \Sigma_0$, $T \neq \Omega$; см. обсуждение после (4.13). Сейчас мы сосредоточимся на исследовании случая $T = \Omega$, имея в виду совсем общие свойства. Позднее (см. раздел 8) мы вернемся к рассмотрению (6.9) для множеств T специального вида.

Теорема 6.2. Если (Y, τ) — хаусдорфово $T\Pi$, то $\forall C \in \mathbb{K}^{\Omega} \cup \mathcal{K}^{\Omega}$:

$$((DOM)[\Gamma^k(\mathcal{C})])_{k \in \mathcal{N}} \downarrow (DOM)[\Gamma^{\infty}(\mathcal{C})]. \tag{42}$$

Схема доказательства. Пусть (Y,τ) — хаусдорфово ТП. Для случая $\mathcal{C} \in$ \mathbb{K}^{Ω} утверждение (6.10) вытекает из (6.4) с учетом известного свойства центрированных систем замкнутых множеств в компактном ТП (см.[22,23]). Пусть $\mathcal{C} \in \mathcal{K}^{\Omega}$, так что $\Gamma^k(\mathcal{C}) \in \mathcal{K}^{\Omega}$ при $k \in \mathcal{N}_0$ (см.(6.2)). Тогда, в частности, $(\Gamma^k(\mathcal{C}))_{k\in\mathcal{N}}$ — последовательность в \mathcal{F}^{Ω} . Пусть ω^0 — элемент пересечения всех множеств $(DOM)[\Gamma^k(\mathcal{C})], k \in \mathcal{N}$. Имеем, следовательно, для $\omega^0 \in \Omega$ свойство $\Gamma^k(\mathcal{C})(\omega^0) \neq \emptyset$ при $k \in \mathcal{N}$. Пусть $(f_k)_{k \in \mathcal{N}}$ — элемент произведения всех множеств $\Gamma^k(\mathcal{C})(\omega^0)$, $k \in \mathcal{N}$. Мы использовали здесь секвенциальный вариант аксиомы выбора. Поскольку $(f_k)_{k\in\mathcal{N}}$ — последовательность в $\mathcal{C}(\omega^0) \in \mathcal{K}$, подберем строго возрастающую последовательность $\eta: \mathcal{N} \longrightarrow \mathcal{N}$, а также $f \in \mathcal{C}(\omega^0)$, для которых $(f_{\eta(s)})_{s \in \mathcal{N}} \stackrel{\theta}{\longrightarrow} f$. Если $n \in \mathcal{N}$, то $\Gamma^n(\mathcal{C})(\omega^0) \in \mathcal{F}$ содержит почти всю последовательность $(f_{\eta(s)})_{s \in \mathcal{N}}$ (всю с некоторого номера) и, стало быть, $f \in \Gamma^n(\mathcal{C})(\omega^0)$. Имеем, следовательно, $f \in \Gamma^{\infty}(\mathcal{C})(\omega^0)$ и, как результат, $\omega^0 \in (DOM)[\Gamma^{\infty}(\mathcal{C})]$. Поскольку выбор ω^0 был произвольным, установлено, что пересечение всех множеств $(DOM)[\Gamma^k(\mathcal{C})], k \in \mathcal{N}$, есть подмножество $(DOM)[\Gamma^\infty(\mathcal{C})]$. Прочие рассуждения по обоснованию (6.10) очевидны (cm.(5.1),(6.4)).

Из теоремы 6.2 следует в случае, когда (Y,τ) — хаусдорфово ТП, тот очевидный теперь факт, что $\forall \mathcal{C} \in \mathbb{K}^{\Omega} \cup \mathcal{K}^{\Omega} \ \forall \omega \in \Omega$:

$$(\Gamma^{\infty}(\mathcal{C})(\omega) = \emptyset) \Longleftrightarrow (\exists n \in \mathcal{N} : \Gamma^{n}(\mathcal{C})(\omega) = \emptyset).$$

Рассмотрим вопрос об итерационной реализации нетривиальных НМО, являющихся МС априорного МО (см. в этой связи примеры раздела 2). Пусть $\forall M \in \mathbb{Z}^{\Omega}$:

$$\mathbb{N}^0[M] \stackrel{\triangle}{=} \{ \mathcal{C} \in \mathbb{N}_0[M] \mid (DOM)[\mathcal{C}] = \Omega \}. \tag{43}$$

Заметим, что элементы (6.11) могут рассматриваться в виде абстрактных аналогов многозначных квазистратегий [1-7,19,20]. Отображения из (6.11)

— нетривиальные НМО, подчиненные M. Из (6.6) вытекает $\forall M \in \mathbb{Z}^{\Omega}$:

$$(\mathbb{N}^0[M] \neq \emptyset) \Longrightarrow ((DOM)[\Gamma^{\infty}(M)] = \Omega). \tag{44}$$

Если же (Y,τ) — хаусдорфово ТП и $M\in\mathbb{K}^\Omega\cup\mathcal{K}^\Omega$, то

$$(\mathbb{N}^0[M] \neq \emptyset) \iff ((DOM)[\Gamma^\infty(M)] = \Omega). \tag{45}$$

Здесь, наряду с (6.12), следует учитывать теорему 6.1. Из (6.12),(6.13) следует целесообразность построения итерационной процедуры для исследования исходной задачи определения и изучения структуры НМО, являющихся МС априорного МО. С (6.12),(6.13) можно естественным образом связать свойства, формулируемые в терминах абстрактных аналогов квазистратегий [18]. Эти аналоги определяются посредством введения следующего типа множеств в пространстве Z^{Ω} (функций из Ω в Z). Именно, $\forall \mathcal{C} \in \mathbb{Z}^{\Omega}$:

$$\mathbf{n}^{0}[\mathcal{C}] \stackrel{\triangle}{=} \{ h \in \prod_{\omega \in \Omega} \mathcal{C}(\omega) \mid \forall \omega \in \Omega \ \forall A \in \mathcal{X} \ \forall \tilde{\omega} \in \Omega_{0}(\omega \mid A) : \\ (h(\omega) \mid A) = (h(\tilde{\omega}) \mid A) \}.$$

$$(46)$$

Элементы множества (6.14) — неупреждающие селекторы МО \mathcal{C} . Легко видеть, что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall h \in \mathbf{n}^0[\mathcal{C}] : (\{h(\omega)\})_{\omega \in \Omega} \in \mathbb{N}^0[\mathcal{C}]$. Поэтому согласно (6.12) имеем, что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega}$:

$$(\mathbf{n}^0[\mathcal{C}] \neq \emptyset) \Longrightarrow ((DOM)[\Gamma^{\infty}(\mathcal{C})] = \Omega).$$

Мы получили необходимое условие существования "квазистратегий— селекторов априорного МО. В связи с проблемой существования (однозначных) неупреждающих селекторов НМО в конкретизации, соответствующей конструкциям ДИ, см. [29]. Вновь возвращаясь к примерам раздела 2 и к их обсуждению в связи с (4.13), отметим целесообразность следующего понятия. Именно, $\forall \mathcal{C} \in \mathbb{Z}^{\Omega}$:

$$\mathbb{N}_{\neq\emptyset}^{0}[\mathcal{C}] \stackrel{\triangle}{=} \{ \mathcal{H} \in \mathbb{N}_{0}[\mathcal{C}] \mid (DOM)[\mathcal{C}] \neq \emptyset \}. \tag{47}$$

Элементы (6.15) имеют смысл "частичных"неупреждающих МС априорного МО \mathcal{C} . Легко видеть с учетом (6.6) и (6.15), что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega}$:

$$(\mathbb{N}^0_{\neq\emptyset}[\mathcal{C}] \neq \emptyset) \Longrightarrow ((DOM)[\Gamma^{\infty}(\mathcal{C})] \neq \emptyset). \tag{48}$$

Если (Y,τ) — хаусдорфово ТП и $\mathcal{C} \in \mathbb{K}^{\Omega} \cup \mathcal{K}^{\Omega}$, то

$$(\mathbb{N}^{0}_{\neq\emptyset}[\mathcal{C}] \neq \emptyset) \iff ((DOM)[\Gamma^{\infty}(\mathcal{C})] \neq \emptyset). \tag{49}$$

Эквивалентность, устанавливаемая в (6.17), следует из сопоставления теоремы 6.1 и (6.16); заметим, что в разделе 2 на примере проиллюстрирована возможность ситуации $\mathbb{N}^0_{\neq\emptyset}[\mathcal{C}] = \emptyset$ при $\mathcal{C} \in \mathbb{Z}^{\Omega}$ со свойством $\forall \omega \in \Omega : \mathcal{C}(\omega) \neq \emptyset$.

Предложение 6.2. Пусть (Y,τ) —хаусдорфово $T\Pi$, $C \in \mathbb{Z}^{\Omega}$, $(C_i)_{i \in \mathcal{N}}$ — последовательность в \mathbb{Z}^{Ω} , причем выполнено одно из следующих двух условий: $1)(C_i)_{i \in \mathcal{N}}$ — последовательность в \mathbb{K}^{Ω} , $2)(C_i)_{i \in \mathcal{N}}$ — последовательность в \mathcal{K}^{Ω} . Тогда

$$((\mathcal{C}_i)_{i\in\mathcal{N}} \Downarrow \mathcal{C}) \Longrightarrow ((\Gamma^{\infty}(\mathcal{C}_i))_{i\in\mathcal{N}} \Downarrow \Gamma^{\infty}(\mathcal{C})). \tag{50}$$

Доказательство. Пусть истинна посылка импликации (6.18). Отметим тогда, что в случае 1) верно $\mathcal{C} \in \mathbb{K}^{\Omega}$, а в случае 2) непременно $\mathcal{C} \in \mathcal{K}^{\Omega}$. Далее, согласно теореме 6.1 мы в виде $(\Gamma^{\infty}(\mathcal{C}_i))_{i\in\mathcal{N}}$ имеем последовательность в \mathbb{N} . Заметим здесь же, что $\Gamma^{\infty}(\mathcal{C}_i) \sqsubseteq \mathcal{C}_i$ при $i \in \mathcal{N}$. Кроме того, $\Gamma^{\infty}(\mathcal{C}) \in \mathbb{N}_0[\mathcal{C}]$ (см. теорему 6.1). Введем в рассмотрение $\beta \in \mathbb{Z}^{\Omega}$, полагая, при $\omega \in \Omega$, что $\beta(\omega)$ есть def пересечение всех множеств $\Gamma^{\infty}(\mathcal{C}_i)(\omega)$, $i \in \mathcal{N}$. Легко видеть, что

$$(\Gamma^{\infty}(\mathcal{C}_i))_{i\in\mathcal{N}} \Downarrow \beta. \tag{51}$$

Из следствия предложения 5.4, предложения 5.5 и (6.5) следует, что $\beta \in \mathbb{N}$. Поскольку $\beta \sqsubseteq \mathcal{C}$, то $\beta \in \mathbb{N}_0[\mathcal{C}]$ и по теореме 6.1 $\beta \sqsubseteq \Gamma^{\infty}(\mathcal{C})$. Вместе с тем, $\mathcal{C} \sqsubseteq \mathcal{C}_i$ при $i \in \mathcal{N}$. Это означает, что $\Gamma^{\infty}(\mathcal{C}) \sqsubseteq \Gamma^{\infty}(\mathcal{C}_i)$ при $i \in \mathcal{N}$ (см.(6.7)). В итоге $\Gamma^{\infty}(\mathcal{C}) \sqsubseteq \beta$, так что $\Gamma^{\infty}(\mathcal{C}) = \beta$ и в силу (6.19) имеем доказываемое утверждение следствия (6.18).

7. Неупреждающие многозначные селекторы и универсальные неподвижные точки.

В разделе 6 намечен подход к исследованию НМО в терминах неподвижных точек оператора (4.9),(4.10); для определения последних предлагается использовать итерационные процедуры. Возможен, однако, иной взгляд на НМО. Именно, ориентируясь на свойство неподвижной точки, можно организовать своеобразное "расслоение" оператора Γ (4.9); последний можно, оказывается, представить в виде поточечного пересечения идемпотентных операторов (проекторов).

Через \mathfrak{X} условимся обозначать семейство всех непустых подмножеств X, так что $\mathcal{X} \subset \mathfrak{X}$. Если $A \in \mathfrak{X}$, то полагаем отображение $\Gamma_A \in \mathcal{Z}$ таким,

что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall \omega \in \Omega$:

$$\Gamma_A(\mathcal{C})(\omega) \stackrel{\triangle}{=} \{ f \in \mathcal{C}(\omega) \mid \forall \tilde{\omega} \in \Omega_0(\omega \mid A) \ \exists \tilde{f} \in \mathcal{C}(\tilde{\omega}) : \ (f \mid A) = (\tilde{f} \mid A) \}.$$
 (52)

Из (4.10) и (7.1) легко следует, что справедливо $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall \omega \in \Omega$:

$$\Gamma(\mathcal{C})(\omega) = \bigcap_{A \in \mathcal{X}} \Gamma_A(\mathcal{C})(\omega). \tag{53}$$

Из (7.2) вытекает равенство $\mathbb{N} = \{ \mathcal{C} \in \mathbb{Z}^{\Omega} \mid \forall A \in \mathcal{X} : \mathcal{C} = \Gamma_A(\mathcal{C}) \}.$

Предложение 7.1. $Ecnu\ A \in \mathfrak{X},\ mo\ \Gamma_A \circ \Gamma_A = \Gamma_A.$

Доказательство. Фиксируем $A \in \mathfrak{X}, \ \alpha \in \mathbb{Z}^{\Omega}, \ \omega \in \Omega \ \text{и} \ \varphi \in \Gamma_{A}(\alpha)(\omega).$ Пусть $\tilde{\omega} \in \Omega_{0}(\omega \mid A)$. Следуя (7.1), подберем $\tilde{\varphi} \in \alpha(\tilde{\omega})$ со свойством $(\varphi \mid A) = (\tilde{\varphi} \mid A)$. Если $\hat{\omega} \in \Omega_{0}(\tilde{\omega} \mid A)$, то (см. (4.1),(4.2)) $\hat{\omega} \in \Omega_{0}(\omega \mid A)$ и, в силу (7.1), при некотором выборе $\hat{\varphi} \in \alpha(\hat{\omega})$ имеем равенство $(\varphi \mid A) = (\hat{\varphi} \mid A)$, а тогда $(\tilde{\varphi} \mid A) = (\hat{\varphi} \mid A)$. Из этого рассуждения легко следует, что $\tilde{\varphi} \in \Gamma_{A}(\alpha)(\tilde{\omega})$. Поскольку выбор $\tilde{\omega}$ был произвольным, установлено (см.(7.1)), что $\varphi \in (\Gamma_{A} \circ \Gamma_{A})(\alpha)(\omega)$. Итак, $\Gamma_{A}(\alpha)(\omega) \subset (\Gamma_{A} \circ \Gamma_{A})(\alpha)(\omega)$. Противоположное вложение следует из (7.1).

Мы установили, что Γ_A , $A \in \mathfrak{X}$, — суть идемпотентные операторы [30,c.49]. Это обстоятельство доставляет целый ряд полезных следствий. Их весьма несложные доказательства (следующие из предложения 7.1) мы, как правило, будем опускать по соображениям объема. Имеем, в частности, $\forall A \in \mathfrak{X}$:

$$(f.p.)[A] \stackrel{\triangle}{=} \{ \mathcal{C} \in \mathbb{Z}^{\Omega} \mid \Gamma_A(\mathcal{C}) = \mathcal{C} \} = \{ \Gamma_A(\mathcal{H}) : \mathcal{H} \in \mathbb{Z}^{\Omega} \}.$$
 (54)

С другой стороны, в виде следствия (7.2) имеем равенство

$$\mathbb{N} = \bigcap_{A \in \mathcal{X}} (f.p.)[A], \tag{55}$$

что в комбинации с (7.3) характеризует НМО, как универсальные неподвижные точки (УНТ) или элементы пересечения достаточно просто устроенных (см.(7.3)) семейств множеств. Эту идею можно развить с целью доведения до представления пределов итерационных процедур раздела 6. Удобно осуществить такое развитие в несколько этапов. Пусть $\forall M \in \mathbb{Z}^{\Omega} \ \forall A \in \mathfrak{X} : (f.p.-M)[A] \stackrel{\triangle}{=} \{\mathcal{C} \in (f.p.)[A] \mid \mathcal{C} \sqsubseteq M\}$. Из (7.4) легко следует, что $\forall M \in \mathbb{Z}^{\Omega}$:

$$\mathbb{N}_0[M] = \bigcap_{A \in \mathcal{X}} (f.p. - M)[A]. \tag{56}$$

Равенство (7.5) полезно дополнить аналогом (7.3), полагая $\forall M \in \mathbb{Z}^{\Omega}$: $\mathbf{S}[M] \stackrel{\triangle}{=} \{ \mathcal{H} \in \mathbb{Z}^{\Omega} \mid \mathcal{H} \sqsubseteq M \}$. В этих обозначениях имеем $\forall M \in \mathbb{Z}^{\Omega} \ \forall A \in \mathfrak{X} : (f.p. - M)[A] = \{ \Gamma_A(\mathcal{C}) : \mathcal{C} \in \mathbf{S}[M] \}$. Это представление можно использовать в (7.5) при определении УНТ, являющихся МС заданного МО. Полагаем до конца настоящего раздела выполненным следующее

Условие 7.1: (Y, τ) есть хаусдорфово $T\Pi$.

По аналогии с предложением 5.1 проверяется теперь (при условии 7.1) следующее

Предложение 7.2. Пусть $A \in \mathfrak{X}$. Тогда: $(\forall \mathcal{C} \in \mathbb{K}^{\Omega} : \Gamma_{A}(\mathcal{C}) \in \mathbb{K}^{\Omega}) \& (\forall \mathcal{D} \in \mathcal{K}^{\Omega} : \Gamma_{A}(\mathcal{D}) \in \mathcal{K}^{\Omega})$.

В развитие (7.4) отметим очевидное равенство

$$\mathbb{N} \cap \mathbb{K}^{\Omega} = \bigcap_{A \in \mathcal{X}} \{ \mathcal{C} \in \mathbb{K}^{\Omega} \mid \Gamma_A(\mathcal{C}) = \mathcal{C} \}.$$
 (57)

В свою очередь, (7.6) полезно дополнить представлением, использующим (7.3) и предложение 7.2: если $A \in \mathfrak{X}$, то $\{\mathcal{C} \in \mathbb{K}^{\Omega} \mid \Gamma_A(\mathcal{C}) = \mathcal{C}\} = (f.p.)[A] \cap \mathbb{K}^{\Omega} = \{\Gamma_A(\mathcal{H}) : \mathcal{H} \in \mathbb{K}^{\Omega}\}$. Точно так же равенство

$$\mathbb{N} \cap \mathcal{K}^{\Omega} = \bigcap_{A \in \mathcal{X}} \{ \mathcal{C} \in \mathcal{K}^{\Omega} \mid \Gamma_A(\mathcal{C}) = \mathcal{C} \}, \tag{58}$$

следующее из (7.4), дополняется представлением, связанным с (7.3). Именно, $\forall A \in \mathfrak{X}: \{\mathcal{C} \in \mathcal{K}^{\Omega} \mid \Gamma_A(\mathcal{C}) = \mathcal{C}\} = (f.p.)[A] \cap \mathcal{K}^{\Omega} = \{\Gamma_A(\mathcal{H}): \mathcal{H} \in \mathcal{K}^{\Omega}\}.$ Логическим завершением представлений (7.6),(7.7) являются утверждения, дополняющие (7.5) и использующие топологическое оснащение Z.

Если $M \in \mathbb{Z}^{\Omega}$, то введем в рассмотрение семейство $\mathbf{S}_{\mathbb{K}}[M] \stackrel{\triangle}{=} \mathbf{S}[M] \cap \mathbb{K}^{\Omega} = \{\mathcal{C} \in \mathbb{K}^{\Omega} \mid \mathcal{C} \sqsubseteq M\}$ и семейство $\mathbf{S}_{\mathcal{K}}[M] \stackrel{\triangle}{=} \mathbf{S}[M] \cap \mathcal{K}^{\Omega} = \{\mathcal{C} \in \mathcal{K}^{\Omega} \mid \mathcal{C} \sqsubseteq M\}$. Кроме того, пусть $\forall A \in \mathfrak{X} \ \forall M \in \mathbb{Z}^{\Omega}$:

$$((\mathbb{K} - f.p. - M)[A] \stackrel{\triangle}{=} (f.p. - M)[A] \cap \mathbb{K}^{\Omega}) \&$$

$$((\mathcal{K} - f.p. - M)[A] \stackrel{\triangle}{=} (f.p. - M)[A] \cap \mathcal{K}^{\Omega}).$$
(59)

Предложение 7.3. $EcAU A \in \mathfrak{X} \ u \ M \in \mathbb{Z}^{\Omega}, \ mo \ (\mathbb{K} - f.p. - M)[A] = \{\Gamma_A(\mathcal{C}) : \ \mathcal{C} \in \mathbf{S}_{\mathbb{K}}[M]\} \ u \ (\mathcal{K} - f.p. - M)[A] = \{\Gamma_A(\mathcal{C}) : \ \mathcal{C} \in \mathbf{S}_{\mathcal{K}}[M]\}.$

Доказательство представляет собой очевидную комбинацию ранее упомянутых свойств и (7.8): достаточно учесть следствия (7.3) и предложение 7.2. Все эти рассуждения практически очевидным образом вытекают из предложения 7.1. С другой стороны, вновь привлекая представление в терминах УНТ, мы получаем $\forall M \in \mathbb{Z}^{\Omega}$:

$$(\mathbb{N}_0[M] \cap \mathbb{K}^{\Omega} = \bigcap_{A \in \mathcal{X}} (\mathbb{K} - f.p. - M)[A]) \& (\mathbb{N}_0[M] \cap \mathcal{K}^{\Omega} = \bigcap_{A \in \mathcal{X}} (\mathcal{K} - f.p. - M)[A]).$$
(60)

Для наших целей наиболее интересны в силу теоремы 6.1 случаи $M \in \mathbb{K}^{\Omega}$ и $M \in \mathcal{K}^{\Omega}$. Это связано с тем, что согласно теореме 6.1, $\Gamma^{\infty}(M) \in \mathbb{N}_0[M] \cap \mathbb{K}^{\Omega}$ в случае $M \in \mathbb{K}^{\Omega}$. Кроме того, $\Gamma^{\infty}(M) \in \mathbb{N}_0[M] \cap \mathcal{K}^{\Omega}$ при $M \in \mathcal{K}^{\Omega}$. Эти два случая как раз и соответствуют (7.9). Поэтому теорему 6.1 в существенной ее части можно переформулировать в терминах (7.9). Именно, в случае $M \in \mathbb{K}^{\Omega}$ оператор $\Gamma^{\infty}(M)$ есть наибольший в ($\mathbb{Z}^{\Omega}, \sqsubseteq$) элемент пересечения $\mathfrak{M}_{\mathbb{K}}$ всех множеств ($\mathbb{K} - f.p. - M$)[A], $A \in \mathcal{X}$, т.е. $\Gamma^{\infty}(M) \in \mathfrak{M}_{\mathbb{K}}$ обладает свойством $\forall \mathcal{H} \in \mathfrak{M}_{\mathbb{K}}$: $\mathcal{H} \sqsubseteq \Gamma^{\infty}(M)$. С учетом предложения 7.3 мы получаем следующую схему для поиска $\Gamma^{\infty}(M)$. Именно, в случае $M \in \mathbb{K}^{\Omega}$ при каждом $A \in \mathcal{X}$ следует построить множество { $\Gamma_A(\mathcal{C})$: $\mathcal{C} \in \mathbf{S}_{\mathbb{K}}[M]$ } (образ $\mathbf{S}_{\mathbb{K}}[M]$ при действии оператора Γ_A), т.е. ($\mathbb{K} - f.p. - M$)[A], после чего следует определить все общие элементы упомянутых множеств

$$\{\Gamma_A(\mathcal{C}): \mathcal{C} \in \mathbf{S}_{\mathbb{K}}[M]\}, A \in \mathcal{X},$$
 (61)

получая тем самым семейство $\mathfrak{M}_{\mathbb{K}}$; наибольший среди упомянутых общих элементов множеств (а, точнее, семейств) (7.10) есть искомое НМО $\Gamma^{\infty}(M)$, т.е. наибольший элемент всего семейства $\mathbb{N}_0[M]$. Построение семейств (7.10) можно рассматривать, как сравнительно несложную операцию (это — следствие предложения 7.1). Данная схема имеет "секвенциальную" версию. Именно, для $M \in \mathcal{K}^{\Omega}$ оператор $\Gamma^{\infty}(M)$ есть наибольший в ($\mathbb{Z}^{\Omega}, \sqsubseteq$) элемент пересечения $\mathfrak{M}_{\mathcal{K}}$ всех множеств ($\mathcal{K} - f.p. - M$)[A], $A \in \mathcal{X}$, т.е. $\Gamma^{\infty}(M) \in \mathfrak{M}_{\mathcal{K}}$ и, кроме того, $\forall \mathcal{H} \in \mathfrak{M}_{\mathcal{K}}$: $\mathcal{H} \sqsubseteq \Gamma^{\infty}(M)$.

8. Локальный анализ неупреждающих многозначных отображений.

Примеры раздела 2 и их обсуждение в связи с (4.13) показывают, что итерационные процедуры разделов 6,7 могут приводить к неудовлетворительным результатам, если априорное МО является "плохим". В этой связи возникает естественный вопрос о том, для каких априорных МО все же существуют неупреждающие МС с "хорошими" свойствами. Исследованию

некоторых конструкций такого рода посвящен настоящий раздел. Сначала мы сделаем несколько совсем простых наблюдений. Если $\mathcal{C} \in \mathbb{N}$, то, как легко проверить,

$$(\forall \omega \in \Omega \setminus (DOM)[\mathcal{C}]: \bigcup_{A \in \mathcal{X}} \Omega_0(\omega \mid A) \subset \Omega \setminus (DOM)[\mathcal{C}]) \& (\forall \omega \in (DOM)[\mathcal{C}]: \bigcup_{A \in \mathcal{X}} \Omega_0(\omega \mid A) \subset (DOM)[\mathcal{C}]).$$

$$(62)$$

Свойство (8.1) определяет полезную особенность эффективных множеств для НМО. По сути дела эта особенность подсказывает путь исследования, на котором были бы исключены "паталогии", отмеченные при обсуждении (4.13) в связи с сужением Ω до $T \in \Sigma_0$, $T \neq \Omega$. Удобно ввести в дополнение к (4.11) множество

$$\mathbf{N}_0 \stackrel{\triangle}{=} \{ \mathcal{C} \in \mathbb{N} \mid (DOM)[\mathcal{C}] \neq \emptyset \}. \tag{63}$$

Кроме того, в связи с (8.2) оказывается полезным также следующее (двойственное в некоторой степени) определение. Именно, $\forall T \in \Sigma_0$:

$$\mathfrak{N}_T^0 \stackrel{\triangle}{=} \{ \mathcal{C} \in \mathfrak{N}[T] \mid (DOM)[\mathcal{C}] = T \}. \tag{64}$$

В (8.3) введены в рассмотрение "частичные" (теперь уже этот термин используется по существу) нетривиальные НМО.

Предложение 8.1.
$$Ecлu\ \mathcal{C} \in \mathbf{N}_0,\ mo\ (\mathcal{C}\mid (DOM)[\mathcal{C}]) \in \mathfrak{N}^0_{(DOM)[\mathcal{C}]}.$$

Доказательство очевидным образом следует из (4.6),(4.7) и (8.1). Отметим, кстати, что в согласии с (6.15) имеет место $\forall M \in \mathbb{Z}^{\Omega}: \mathbb{N}_{\neq \emptyset}^{0}[M] = \{\mathcal{H} \in \mathbb{N}_{0} \mid \mathcal{H} \sqsubseteq M\}$. В этой же связи полезно отметить и (4.13). Из последнего следует, что предложение 8.1 допускает естественные обобщения; мы их не рассматриваем. Отметим только простое следствие, учитывающее (6.9) и (6.15). Пусть $\forall T \in \Sigma_{0} \ \forall \alpha \in \mathbb{Z}^{T}$:

$$\tilde{\mathfrak{N}}_{T}^{0}[\alpha] \stackrel{\triangle}{=} \{ \mathcal{C} \in \mathfrak{N}_{0}[T; \alpha] \mid (DOM)[\mathcal{C}] = T \}.$$

Итак, имеем $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall \mathcal{H} \in \mathbb{N}^{0}_{\neq \emptyset}[\mathcal{C}] : (\mathcal{H} \mid (DOM)[\mathcal{H}]) \in \tilde{\mathfrak{N}}^{0}_{T}[(\mathcal{C} \mid T)] \mid_{T=(DOM)[\mathcal{H}]}.$ В связи с вопросом о сравнении эффективных областей НМО отметим с учетом (6.6), что $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall \mathcal{H} \in \mathbb{N}_{0}[\mathcal{C}]:$

$$(DOM)[\mathcal{H}] \subset (DOM)[\Gamma^{\infty}(\mathcal{C})]. \tag{65}$$

На основе (8.4) можно получить еще одно естественное представление, связанное с итерационной процедурой раздела 6 и понятием наибольшего элемента. На этот раз соответствующее представление относится к эффективным областям НМО, а экстремальность определяется в терминах "обычных" вложений. Однако, предварительно заметим, что множества вида (4.11) являются всякий раз непустыми, поскольку содержат (каждое) такое НМО, все значения которого совпадают с \emptyset . В этой связи отметим, что при всяком выборе $\mathcal{C} \in \mathbb{Z}^{\Omega}$ семейство

$$(\mathcal{DOM})[\mathcal{C}] \stackrel{\triangle}{=} \{ (DOM)[\mathcal{H}] : \mathcal{H} \in \mathbb{N}_0[\mathcal{C}] \}$$
 (66)

есть непустое семейство подмножеств Ω , т.к. $\emptyset \in (\mathcal{DOM})[\mathcal{C}]$. Отметим очевидное, но полезное

Предложение 8.2. $Ecлu\ (Y,\tau)$ — $xaycdop \phi o T\Pi\ u\ C \in \mathbb{K}^{\Omega} \cup \mathcal{K}^{\Omega},\ mo\ \mathbf{D} \stackrel{\triangle}{=} (DOM)[\Gamma^{\infty}(\mathcal{C})]\ ecmb\ наибольший\ no\ вложению\ элемент\ семейства\ (8.5),\ m.e.\ \mathbf{D} \in (\mathcal{DOM})[\mathcal{C}]\ u\ npu\ этом\ \forall H \in (\mathcal{DOM})[\mathcal{C}]:\ H \subset \mathbf{D}.$

Доказательство получается комбинацией (8.4),(8.5) и теоремы 6.1. Это предложение дополняет (6.6).

Если $T \in \Sigma_0$ и $\mathcal{C} \in \mathbb{Z}^T$, то $(\emptyset - ext)[\mathcal{C}] \in \mathbb{Z}^\Omega$ есть def такое отображение, что

$$(\forall \omega \in T : (\emptyset - ext)[\mathcal{C}](\omega) \stackrel{\triangle}{=} \mathcal{C}(\omega)) \& (\forall \omega \in \Omega \setminus T : (\emptyset - ext)[\mathcal{C}](\omega) \stackrel{\triangle}{=} \emptyset).$$
 (67)

В (8.6) определена очевидная конструкция продолжения "частичных" МО. В частности, процедуру (8.6) можно применять к "частичным" НМО. В этой связи введем

$$\mathbb{H} \stackrel{\triangle}{=} \{ H \in \Sigma \mid \forall \omega \in H : \bigcup_{A \in \mathcal{X}} \Omega_0(\omega \mid A) \subset H \}.$$
 (68)

Примеры множеств — элементов \mathbb{H} (8.7) — можно извлечь из (8.1); $\emptyset \in \mathbb{H}$ и $\Omega \in \mathbb{H}$. Кроме того, из (4.1),(4.2) вытекает, что

$$\forall T \in \mathbb{H} : \Omega \setminus T \in \mathbb{H}. \tag{69}$$

С учетом (8.8) имеем, как легко проверить, полезное свойство: \mathbb{H} — (булева) алгебра подмножеств Ω [26,c.21,22]; с другой стороны \mathbb{H} — топология [22,23] множества Ω (при этом семейство всех множеств, замкнутых в ТП (Ω,\mathbb{H}) , совпадает с \mathbb{H}). Отметим также, что $\forall \omega \in \Omega \ \forall A \in \mathfrak{X} \ \forall \tilde{\omega} \in \Omega_0(\omega \mid A)$: $\Omega_0(\omega \mid A) = \Omega_0(\tilde{\omega} \mid A)$; см. в этой связи (4.1),(4.2). Возвращаясь к (8.6), отметим одно свойство (непустых) множеств из $\mathbb{H}_0 \stackrel{\triangle}{=} \mathbb{H} \setminus \{\emptyset\}$, $\mathbb{H}_0 \subset \Sigma_0$. Именно, $\forall T \in \mathbb{H}_0 \ \forall \mathcal{H} \in \mathfrak{N}[T]$: $(\emptyset - ext)[\mathcal{H}] \in \mathbb{N}$. Разумеется, из последнего свойства вытекает, что $\forall \mathcal{C} \in \mathbb{Z}^\Omega \ \forall T \in \mathbb{H}_0 \ \forall \mathcal{H} \in \mathfrak{N}_0[T; (\mathcal{C} \mid T)]$: $(\emptyset - ext)[\mathcal{H}] \in \mathbb{N}_0[\mathcal{C}]$. Это свойство позволяет воспользоваться утверждением (6.6) для следующей оценки: если $\mathcal{C} \in \mathbb{Z}^\Omega$, $H \in \mathbb{H}_0$ и $\alpha \in \mathfrak{N}_0[H; (\mathcal{C} \mid H)]$,

то $\forall h \in H: \alpha(h) \subset \Gamma^{\infty}(\mathcal{C})(h)$. Вышеупомянутые простые свойства допускают существенное развитие при одном дополнительном (и естественном для теории HMO) предположении. Именно, всюду до конца настоящего раздела полагаем (если не оговорено противное) выполненным следующее

Условие 8.1. Семейство \mathcal{X} раздела 4 является базисом фильтра (cм.[23,c.91],[31,c.81]) множества $X,\ m.e.\ \forall A\in\mathcal{X}\ \forall B\in\mathcal{X}\ \exists C\in\mathcal{X}: C\subset A\cap B.$

Отметим, что для задач управления, рассматриваемых в [1-7,18-20] семейство \mathcal{X} всегда можно ввести с соблюдением данного условия (см. в этой связи примеры в разделах 2,4). Оно естественно и в других достаточно общих случаях, когда рассматриваются развивающиеся системы. Мы принимаем условие 8.1, получая частный случай (более общей) постановки разделов 4-8.

Предложение 8.3.
$$\forall \omega \in \Omega: \bigcup_{E \in \mathcal{X}} \Omega_0(\omega \mid E) \in \mathbb{H}.$$

Доказательство. Фиксируем $\omega \in \Omega$ и обозначим через **M** объединение всех множеств $\Omega_0(\omega \mid E), E \in \mathcal{X}$. Выберем произвольно $\rho \in \mathbf{M}$, после чего выберем

$$\eta \in \bigcup_{E \in \mathcal{X}} \Omega_0(\rho \mid E). \tag{70}$$

Подберем, наконец, $\Xi_1 \in \mathcal{X}$ со свойством $\eta \in \Omega_0(\rho \mid \Xi_1)$, так что (см.(4.1),(4.2)) $\eta \in \Omega$ и $(\rho \mid \Xi_1) = (\eta \mid \Xi_1)$. По выбору ρ имеем свойство: $\rho \in \Omega_0(\omega \mid \Xi_2)$ при некотором $\Xi_2 \in \mathcal{X}$. Тогда $\rho \in \Omega$ и $(\rho \mid \Xi_2) = (\omega \mid \Xi_2)$. Используя условие 8.1, подберем $\Xi \in \mathcal{X}$ такое, что $\Xi \subset \Xi_1 \cap \Xi_2$. Тогда $(\eta \mid \Xi) = (\omega \mid \Xi)$. При этом $\Omega_0(\omega \mid \Xi) \subset \mathbf{M}$ и $\eta \in \Omega_0(\omega \mid \Xi)$. Поскольку выбор η (8.9) был произвольным, установлено, что множество — объединение в правой части (8.9) — подмножество \mathbf{M} . Но и выбор ρ был произвольным, так что (см.(8.7)) имеет место $\mathbf{M} \in \mathbb{H}$, ч.т.д.

Введем теперь в рассмотрение непустое семейство

$$\mathcal{G} \stackrel{\triangle}{=} \{ \bigcup_{E \in \mathcal{X}} \Omega_0(\omega \mid E) : \ \omega \in \Omega \}.$$
 (71)

Из (8.8) и предложения 8.3 вытекает, что \mathcal{G} (8.10) есть непустое разбиение Ω в сумму непустых множеств, т.е. $\mathcal{G} \neq \emptyset$ и, кроме того,

$$(\mathcal{G} \subset \mathbb{H}_0)\&(\Omega = \bigcup_{G \in \mathcal{G}} G)\&(\forall G_1 \in \mathcal{G} \ \forall G_2 \in \mathcal{G}: \ (G_1 \cap G_2 \neq \emptyset) \Longrightarrow (G_1 = G_2)).$$

$$(72)$$

Разбиение \mathcal{G} определяет на Ω естественное отношение эквивалентности. Элементы \mathcal{G} именуем при этом клетками. В примере раздела 2, для которого $\mathbb{C}_2 = \mathbb{C}_2^+ \cup \mathbb{C}_2^0 \cup \mathbb{C}_2^-$, при условии $\Omega = \mathbb{C}_2$ и $\mathcal{X} = \{[0,t[:\ t\in]0,1[\}$ имеем в виде \mathcal{G} трехэлементное семейство: клетками являются множества \mathbb{C}_2^+ , \mathbb{C}_2^0 , \mathbb{C}_2^- и только они. Заметим, что в данном примере объединение всех множеств $\Omega_0(\omega \mid E)$, $E \in \mathcal{X}$, совпадает с \mathbb{C}_2^+ , \mathbb{C}_2^0 , \mathbb{C}_2^- при выборе в качестве ω управлений-констант $\omega(t) \equiv 1$, $\omega(t) \equiv 0$, $\omega(t) \equiv -1$ соответственно.

Вернемся к общему случаю условия 8.1. Если $(\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \mathbb{Z}^G$, то определяем оператор

$$\square_{G\in\mathcal{G}} \mathcal{U}_G: \Omega \longrightarrow \mathbb{Z},$$

полагая $\forall P \in \mathcal{G} \ \forall \omega \in P$:

$$(\Box_{G \in \mathcal{G}} \mathcal{U}_G)(\omega) \stackrel{\triangle}{=} \mathcal{U}_P(\omega). \tag{73}$$

В (8.11),(8.12) имеем типичную операцию склеивания (локальных) отображений, заданных на клетках Ω . Для нас особенно важно склеивать НМО. Легко видеть, что в силу (8.11) имеет место $\forall (\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \mathfrak{N}[G]$:

$$\square_{G \in \mathcal{G}} \ \mathcal{U}_G \in \mathbb{N}. \tag{74}$$

Однако, еще более интересным является склеивание НМО, являющихся МС сужений (на клетки Ω) априорного МО. Дополняя (8.13) соотношениями (4.8),(4.11), мы легко получаем $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall (\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \mathfrak{N}_0[G; (\mathcal{C} \mid G)]$:

$$\square_{G \in \mathcal{G}} \ \mathcal{U}_G \in \mathbb{N}_0[\mathcal{C}]. \tag{75}$$

Наконец, в части построения нетривиальных НМО на Ω полезно отметить в виде очевидного следствия (8.12), что (см. (6.11),(8.3)) $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall (\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \tilde{\mathfrak{N}}_G^0[(\mathcal{C} \mid G)]$:

$$\square_{G \in \mathcal{G}} \ \mathcal{U}_G \in \mathbb{N}^0[\mathcal{C}]. \tag{76}$$

Соотношения (8.13)-(8.15) — суть прямые следствия предложения 8.3. В дополнение к (6.15) полагаем, что $\forall T \in \Sigma_0 \ \forall \alpha \in \mathbb{Z}^T$:

$$\mathfrak{N}_{\neq\emptyset}^{0}[T;\alpha] \stackrel{\triangle}{=} \{ \mathcal{H} \in \mathfrak{N}_{0}[T;\alpha] \mid (DOM)[\mathcal{H}] \neq \emptyset \}. \tag{77}$$

Непосредственная комбинация (6.15),(8.12) и (8.16) приводит к следующему свойству. Именно, $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall (\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \mathfrak{N}_0[G;(\mathcal{C} \mid G)]$:

$$(\Box_{G \in \mathcal{G}} \mathcal{U}_G \in \mathbb{N}^0_{\neq \emptyset}[\mathcal{C}]) \iff (\exists P \in \mathcal{G} : \mathcal{U}_P \in \mathfrak{N}^0_{\neq \emptyset}[P; (\mathcal{C} \mid P)]). \tag{78}$$

На основе (8.13)-(8.17) мы получаем естественные локализации свойств, рассматриваемых в разделе 6 и связанных с нетривиальностью НМО, являющихся МС соответствующего априорного МО. Эти локализации связаны с разбиением (8.11) и формулируются для МО на клетках Ω в виде соответствующих аналогов "глобальных" свойств. В связи с этими положениями полезно иметь в виду (4.13). Кроме того, заметим, что каждое из множеств (4.8) непусто (т.к. содержит отображение, все значения которого совпадают с \emptyset) и, как следствие, непустым является (в предположении о справедливости аксиомы выбора) при $\mathcal{C} \in \mathbb{Z}^{\Omega}$ произведение всех множеств $\mathfrak{N}_0[G; (\mathcal{C} \mid G)], G \in \mathcal{G}$. Вполне очевидно следующее

Предложение 8.4. Пусть $C \in \mathbb{Z}^{\Omega}$. Тогда оператор

$$(\mathcal{U}_G)_{G \in \mathcal{G}} \longmapsto \square_{G \in \mathcal{G}} \mathcal{U}_G : \prod_{G \in \mathcal{G}} \mathfrak{N}_0[G; (\mathcal{C} \mid G)] \longrightarrow \mathbb{N}_0[\mathcal{C}]$$
 (79)

является биективным [28, с. 319].

Доказательство. Через φ обозначим оператор (8.18). Пусть Φ есть def образ произведения всех множеств $\mathfrak{N}_0[G;(\mathcal{C}\mid G)],\ G\in\mathcal{G},$ при действии оператора $\varphi;\ \Phi\subset\mathbb{N}_0[\mathcal{C}]$ в силу (8.14). Пусть $\tilde{\mathcal{D}}\in\mathbb{N}_0[\mathcal{C}]$. Используя (4.13), формируем

$$(\mathcal{D}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \mathfrak{N}_0[G; (\mathcal{C} \mid G)]$$

по следующему правилу: при $P \in \mathcal{G}$ полагаем $\mathcal{D}_P \stackrel{\triangle}{=} (\tilde{\mathcal{D}} \mid P)$. Тогда $\varphi((\mathcal{D}_G)_{G \in \mathcal{G}}) = \tilde{\mathcal{D}}$ в силу (8.11), (8.12). Итак, $\mathbb{N}_0[\mathcal{C}] = \Phi$. Пусть $\mathbb{U} \stackrel{\triangle}{=} (\mathcal{U}_G)_{G \in \mathcal{G}}$ и $\mathbb{V} \stackrel{\triangle}{=} (\mathcal{V}_G)_{G \in \mathcal{G}}$ — два элемента области определения оператора φ (8.18), для которых $\varphi(\mathbb{U}) = \varphi(\mathbb{V})$. Пусть $Q \in \mathcal{G}$. Тогда $\mathcal{U}_Q = (\varphi(\mathbb{U}) \mid Q) = (\varphi(\mathbb{V}) \mid Q) = \mathcal{V}_Q$; см.(8.12). Поскольку выбор Q был произвольным, имеем равенство $\mathbb{U} = \mathbb{V}$, чем и завершается доказательство.

Заметим, что из предложения 8.4 следует, в частности, что $\forall C \in \mathbb{Z}^{\Omega}$:

$$\mathbb{N}_0[\mathcal{C}] = \{ \Box_{G \in \mathcal{G}} \ \mathcal{U}_G : \ (\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \ \mathfrak{N}_0[G; (\mathcal{C} \mid G)] \}.$$

Предложение 8.5. Пусть $\mathcal{C} \in \mathbb{Z}^{\Omega}$. Тогда справедливо равенство

$$\mathbb{N}^{0}[\mathcal{C}] = \{ \Box_{G \in \mathcal{G}} \, \mathcal{U}_{G} : \, (\mathcal{U}_{G})_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \, \tilde{\mathfrak{N}}_{G}^{0}[(\mathcal{C} \mid G)] \}.$$
 (80)

Доказательство вытекает из (8.15). В самом деле, из (8.15) следует, что множество в правой части (8.19) есть подмножество $\mathbb{N}^0[\mathcal{C}]$. Обозначаем

через **U** упомянутое множество в правой части (8.19); $\mathbf{U} \subset \mathbb{N}^0[\mathcal{C}]$. Пусть $\tilde{\mathcal{D}} \in \mathbb{N}^0[\mathcal{C}]$. Тогда $\tilde{\mathcal{D}} \in \mathbb{N}_0[\mathcal{C}]$ и при этом $(DOM)[\tilde{\mathcal{D}}] = \Omega$. Это означает, что $\forall \omega \in \Omega : \tilde{\mathcal{D}}(\omega) \neq \emptyset$. При этом, согласно (4.13), $\forall G \in \mathcal{G} : \mathcal{D}_G \stackrel{\triangle}{=} (\tilde{\mathcal{D}} \mid G) \in \mathfrak{N}_0[G; (\mathcal{C} \mid G)]$. Кроме того, $\forall G \in \mathcal{G} \ \forall \omega \in G : \mathcal{D}_G(\omega) = \tilde{\mathcal{D}}(\omega) \neq \emptyset$. Имеем, стало быть, $(DOM)[\mathcal{D}_G] = G$ при $G \in \mathcal{G}$. Мы установили, что

$$(\mathcal{D}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \tilde{\mathfrak{N}}_G^0[(\mathcal{C} \mid G)].$$

Как следствие, получаем (см. (8.12)), что справедливо

$$\tilde{\mathcal{D}} = \square_{G \in \mathcal{G}} \ \mathcal{D}_G \in \mathbf{U}.$$

Итак, $\mathbb{N}^0[\mathcal{C}] \subset \mathbf{U}$, т.е. $\mathbb{N}^0[\mathcal{C}] = \mathbf{U}$. Предложение доказано.

Теорема 8.1. Пусть $\mathcal{C} \in \mathbb{Z}^{\Omega}$. Тогда эквивалентны следующие два условия: 1) $\mathbb{N}^0[\mathcal{C}] \neq \emptyset$; 2) $\forall G \in \mathcal{G}: \ \tilde{\mathfrak{N}}^0_G[(\mathcal{C} \mid G)] \neq \emptyset$.

Доказательство следует из предлложения 8.5 (см. (8.19)) с использованием аксиомы выбора: если $\tilde{\mathfrak{N}}_{P}^{0}[(\mathcal{C}\mid P)]\neq\emptyset$ при $P\in\mathcal{G}$, то декартово произведение всех множеств $\tilde{\mathfrak{N}}_{G}^{0}[(\mathcal{C}\mid G)],\ G\in\mathcal{G}$, непусто.

Предложение 8.6. Пусть $M \in \mathbb{Z}^{\Omega}$. Тогда эквивалентны следующие два условия: $1)\mathbb{N}^0_{\neq\emptyset}[M] \neq \emptyset$; $2)\exists G \in \mathcal{G}: \mathfrak{N}^0_{\neq\emptyset}[G;(M\mid G)] \neq \emptyset$.

Доказательство. Пусть выполнено 1). Выберем $\alpha \in \mathbb{N}^0_{\neq \emptyset}[M]$. Тогда $\alpha \in \mathbb{N}_0[M]$ обладает свойством $(DOM)[\alpha] \neq \emptyset$. Из (4.11) имеем теперь свойства $\alpha \in \mathbb{N}$ и $\alpha \sqsubseteq M$. Из (6.9) вытекает, что для некоторого $m \in \Omega$ имеет место $\alpha(m) \neq \emptyset$. Заметим, что (см. предложение 8.3) для некоторого отображения

$$(\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \mathfrak{N}_0[G; (M \mid G)]$$

имеет место следующее равенство

$$\alpha = \square_{G \in \mathcal{G}} \, \mathcal{U}_G.$$

Согласно (8.12) получаем, в частности, что $\forall G \in \mathcal{G} \ \forall \omega \in G : \ \alpha(\omega) = \mathcal{U}_G(\omega).$ Пусть $P \in \mathcal{G} : m \in P$. Здесь мы учли (8.11). При этом $\mathcal{U}_P \in \mathfrak{N}_0[P; (M \mid P)].$ Из (8.12) вытекает, что справедливо $\alpha(m) = \mathcal{U}_P(m).$ Тогда $\mathcal{U}_P(m) \neq \emptyset$. Это означает, что $m \in (DOM)[\mathcal{U}_P]$ (см.(6.9)), т.е. $(DOM)[\mathcal{U}_P] \neq \emptyset$. Согласно (8.16) $\mathcal{U}_P \in \mathfrak{N}_{\neq \emptyset}^0[P; (M \mid P)].$ Стало быть, $P \in \mathcal{G} : \mathfrak{N}_{\neq \emptyset}^0[P; (M \mid P)] \neq \emptyset$. Мы установили импликацию 1) \Longrightarrow 2). Пусть имеет место 2). Выберем $\Lambda \in \mathcal{G}$ со свойством $\mathfrak{N}_{\neq \emptyset}^0[\Lambda; (M \mid \Lambda)] \neq \emptyset$. Выберем далее оператор $\beta \in \mathfrak{N}_{\neq \emptyset}^0[\Lambda; (M \mid \Lambda)].$ Тогда, согласно (8.16), $\beta \in \mathfrak{N}_0[\Lambda; (M \mid \Lambda)]$ и при этом $(DOM)[\beta] \neq \emptyset$. В

силу (8.11) $\Lambda \in \mathbb{H}_0$, так что $(\emptyset - ext)[\beta] \in \mathbb{N}_0[M]$, причем согласно (8.6) $(\emptyset - ext)[\beta](\omega) = \beta(\omega)$ для $\omega \in \Lambda$. В итоге $(DOM)[(\emptyset - ext)[\beta]] \neq \emptyset$ согласно (6.9). Стало быть, $(\emptyset - ext)[\beta] \in \mathbb{N}^0_{\neq \emptyset}[M]$. Мы установили импликацию 2) \Longrightarrow 1),ч.т.д.

Теорема 8.1 и предложение 8.6 определяют простой, но полезный принцип: проверку основных свойств "глобальных"НМО, являющихся МС априорного МО, можно исчерпывающим, в известной мере, образом проводить на клетках Ω . Это обстоятельство полезно сравнить с эффектами, обсуждавшимися в связи с (4.13) и примерами раздела 2.

Предложение 8.7. $\forall \mathbb{G} \in \mathcal{G} \ \forall \alpha \in \mathbb{Z}^{\mathbb{G}} : \ \tilde{\mathfrak{N}}^0_{\mathbb{G}}[\alpha] = \mathfrak{N}^0_{\neq \emptyset}[\mathbb{G};\alpha].$

Доказательство. Фиксируем $\mathbb{G} \in \mathcal{G}$ и $\alpha \in \mathbb{Z}^{\mathbb{G}}$. Тогда $\mathbb{G} \in \mathbb{H}_0$ и, в частности, $\mathbb{G} \in \Sigma_0$. Имеем $\mathbb{G} \neq \emptyset$ и (см.(8.16)) $\tilde{\mathfrak{N}}^0_{\mathbb{G}}[\alpha] \subset \mathfrak{N}^0_{\neq \emptyset}[\mathbb{G}; \alpha]$. Пусть $\beta \in \mathfrak{N}^0_{\neq \emptyset}[\mathbb{G}; \alpha]$. Тогда $\beta \in \mathfrak{N}_0[\mathbb{G}; \alpha]$ и $(DOM)[\beta] \neq \emptyset$. Пусть $\omega \in (DOM)[\beta]$. Тогда $\beta(\omega) \in \mathbb{Z} \setminus \{\emptyset\}$. Пусть $\varphi \in \beta(\omega)$. По выбору \mathbb{G} имеем для некоторого $\eta \in \Omega$ свойство: \mathbb{G} — объединение всех множеств $\Omega_0(\eta \mid E), E \in \mathcal{X}$. При этом $\omega \in \mathbb{G}$. Подберем $\Sigma_1 \in \mathcal{X}$ так, что $\omega \in \Omega_0(\eta \mid \Sigma_1)$. Пусть $\rho \in \mathbb{G}$. Рассмотрим множество $\beta(\rho)$. Пусть $\Sigma_2 \in \mathcal{X}$ таково, что $\rho \in \Omega_0(\eta \mid \Sigma_2)$. С учетом условия 8.1 выберем $\Sigma \in \mathcal{X}$, для которого $\Sigma \subset \Sigma_1 \cap \Sigma_2$. Тогда по свойствам $\Sigma_1, \ \Sigma_2, \ \Sigma$ имеем в силу (4.1),(4.2) для отображений $\omega \in \Omega, \ \eta \in \Omega$ и $\rho \in \Omega$ свойства: $(\omega \mid \Sigma_1) = (\eta \mid \Sigma_1), (\rho \mid \Sigma_2) = (\eta \mid \Sigma_2)$ и, как следствие, $(\omega \mid \Sigma) = (\eta \mid \Sigma) = (\rho \mid \Sigma)$. Стало быть, $\rho \in \Omega_0(\omega \mid \Sigma)$ согласно (4.1),(4.2). На самом же деле $\omega \in \mathbb{G}$ и, согласно (4.1), $\rho \in (Ge)[\mathbb{G}; \omega \mid \Sigma]$. С другой стороны, $\beta = \gamma[\mathbb{G}](\beta)$, а потому (см.(4.7)) $\varphi \in \gamma[\mathbb{G}](\beta)(\omega)$ и в силу (4.6) можно указать $\tilde{f} \in \beta(\rho)$: $(\varphi \mid \Sigma) = (\tilde{f} \mid \Sigma)$. Итак, $\beta(\rho) \neq \emptyset$, т.е. $\rho \in$ $(DOM)[\beta]$. Поскольку выбор ρ был произвольным, установлено вложение $\mathbb{G} \subset (DOM)[\beta]$, что в силу (6.9) означает равенство $(DOM)[\beta] = \mathbb{G}$. Итак, $\beta \in \mathfrak{N}_0[\mathbb{G}; \alpha] : (DOM)[\beta] = \mathbb{G}$. Это означает, что $\beta \in \tilde{\mathfrak{N}}^0_{\mathbb{G}}[\alpha]$. Вложение $\mathfrak{N}^0_{\neq\emptyset}[\mathbb{G};\alpha]\subset \tilde{\mathfrak{N}}^0_{\mathbb{G}}[\alpha]$ установлено, чем и завершается доказательство.

Заметим, что в качестве α в предложении 8.7 можно использовать отображение вида ($\tilde{\alpha} \mid \mathbb{G}$), где $\tilde{\alpha} \in \mathbb{Z}^{\Omega}$. Это позволяет по новому взглянуть на (8.17) и предложение 8.6. Именно, из (8.17) и предложения 8.7 получаем $\forall \mathcal{C} \in \mathbb{Z}^{\Omega} \ \forall (\mathcal{U}_G)_{G \in \mathcal{G}} \in \prod_{G \in \mathcal{G}} \mathfrak{N}_0[G; (\mathcal{C} \mid G)]$:

$$(\square_{G \in \mathcal{G}} \mathcal{U}_G \in \mathbb{N}^0_{\neq \emptyset}[\mathcal{C}]) \Longleftrightarrow (\exists P \in \mathcal{G} : \mathcal{U}_P \in \tilde{\mathfrak{N}}^0_P[(\mathcal{C} \mid P)]).$$

В свою очередь, из предложений 8.6 и 8.7 вытекает следующая

Теорема 8.2. $\Pi ycmb \ M \in \mathbb{Z}^{\Omega}$. Тогда эквивалентны следующие условия:

$$1)\mathbb{N}^0_{\neq\emptyset}[M] \neq \emptyset ; 2)\exists G \in \mathcal{G} : \tilde{\mathfrak{N}}^0_G[(M \mid G)] \neq \emptyset.$$

Заметим, что аналогичным образом комбинируются теорема 8.1 и предложение 8.7. Это позволяет при проверке факта существования "полноценного" селектора МО ограничиваться проверкой существования локальных МС, у которых удается обнаружить непустое значение хотя бы в одной точке соответствующей клетки.

9. Процедуры неупреждающего распространения конечно - аддитивной меры.

В настоящем разделе приведена краткая схема одной естественной конкретизации общей задачи определения неупреждающего МС априорного МО. Речь идет о процессе распространения к.-а. меры на соответствующем семействе измеримых множеств в виде отклика на реализацию другой к.-а. меры. Итак, речь пойдет о взимодействующих процессах развития функций множества.

Пусть E — непустое множество, \mathcal{L} — полуалгебра подмножеств E, $\mathbb{A}(\mathcal{L})$ — множество всех вещественнозначных (в/з) к.-а. мер ограниченной вариации, определенных на \mathcal{L} . Сопоставляя к.-а. мере $\mu \in \mathbb{A}(\mathcal{L})$ ее полную вариацию $v_{\mu}(E) \in [0, \infty[$ на E (см.[32,с.62] и [33,с.39] в конкретизированном виде; общие определения см. в [30,гл.III]), мы нормируем линейное пространство $\mathbb{A}(\mathcal{L}),\ \mathbb{A}(\mathcal{L})\subset\mathbb{R}^{\mathcal{L}},$ и получаем при этом банахово пространство (БП). Норма-вариация, определяемая, как $\mu \longmapsto v_{\mu}(E) : \mathbb{A}(\mathcal{L}) \longrightarrow [0, \infty[$, именуется сильной. В БП $\mathbb{B}(E)$ (всех) ограниченных функционалов на Eс традиционной sup-нормой || · || [30,c.261] рассматриваем линейную оболочку $B_0(E,\mathcal{L})$ множества всех индикаторов [26,с.56] множеств из \mathcal{L} , а также замыкание множества $B_0(E,\mathcal{L})$ в БП ($\mathbb{B}(E), \|\cdot\|$), обозначаемое через $B(E,\mathcal{L})$, что согласуется с [30,гл.IV],[32,гл.III],[33,гл.3]. Мы получаем в виде $B(E,\mathcal{L})$ БП, а, точнее, — π/π БП ($\mathbb{B}(E), \|\cdot\|$). При этом пространство $B^*(E,\mathcal{L})$, топологически сопряженное к БП $B(E,\mathcal{L})$, изометрически изоморфно $\mathbb{A}(\mathcal{L})$ в сильной норме. Простейшая операция интегрирования [32,с.69],[33,с.41] (и более общая процедура [30,гл.III]) устанавливает конкретный изометрический изоморфизм $\mathbb{A}(\mathcal{L})$ (в сильной норме) на $B^*(E,\mathcal{L})$; см. в этой связи [30,с.280],[32,с.70]. Оснащаем, как и в [32,с.71], $\mathbb{A}(\mathcal{L})$ *-слабой топологией $\tau_*(\mathcal{L})$, отвечающую упомянутой двойственности $(B(E,\mathcal{L}), \mathbb{A}(\mathcal{L}))$ (следуем здесь [32,c.70,71]), получая локально выпуклый σ - компакт

$$(\mathbb{A}(\mathcal{L}), \tau_*(\mathcal{L})); \tag{81}$$

условия компактности в (9.1) определяются теоремой Алаоглу [30,с.459], являющейся простым следствием известной теоремы Тихонова [22,23]. Пусть $\mathbf{K}_*(\mathcal{L})$ есть def семейство всех множеств $K, K \subset \mathbb{A}(\mathcal{L})$, компактных в ТП (9.1). Оснащаем $\mathbb{A}(\mathcal{L})$ также топологией $\tau_{\otimes}(\mathcal{L})$ [32,с.80],[33,с.44] поточечной сходимости (топология $\tau_{\otimes}(\mathcal{L})$ индуцирована из тихоновского произведения экземпляров \mathbb{R} в обычной $|\cdot|$ -топологии $\tau_{\mathbb{R}}$; в качестве индексного множества используем \mathcal{L}). Отметим, что

$$(\mathbb{A}(\mathcal{L}), \tau_{\otimes}(\mathcal{L})) \tag{82}$$

аналогично по смыслу ТП (Z,θ) , что используется в дальнейшем. Разумеется, (9.2) — хаусдорфово ТП, причем $\tau_{\otimes}(\mathcal{L}) \subset \tau_{*}(\mathcal{L})$. Как следствие, имеем, что любое множество $K \in \mathbf{K}_{*}(\mathcal{L})$ компактно и в ТП (9.2), причем относительные топологии множества K, индуцированные из ТП (9.1) и (9.2), совпадают. Этот простой, но полезный, факт позволяет рассматривать последующую конструкцию, как конкретизацию разделов 4-7. Пусть Ξ — непустое подмножество $\mathbb{A}(\mathcal{L})$; кроме того, пусть

$$\zeta^0: \Xi \longrightarrow \mathbf{K}_*(\mathcal{L}).$$
 (83)

Наконец, зафиксируем непустое множество $\mathbb X$ в пространстве всех непустых подсемейств $\mathcal L\colon \mathbb X\neq\emptyset$, элементами $\mathbb X$ являются (некоторые) непустые подсемейства полуалгебры $\mathcal L$. Называем семейства $\mathcal H\in \mathbb X$ стадиями развития к.-а. мер из $\mathbb A(\mathcal L)$. Полагаем, что в данном процессе развития участвует две к.-а. меры: одна из этих мер реализуется непредсказуемо, а вторая формируется, как и в [25], в ответ на развитие первой к.-а. меры. Своей целью мы считаем построение неупреждающего МС отображения (9.3). Иными словами, рассматривается следующая конкретизация определений раздела 4. Полагаем далее: $X \stackrel{\triangle}{=} \mathcal L$, $\Upsilon \stackrel{\triangle}{=} \mathbb R$, $\mathcal X \stackrel{\triangle}{=} \mathbb X$, $Y \stackrel{\triangle}{=} \mathbb R$, $\tau \stackrel{\triangle}{=} \tau_{\mathbb R}$, $Z \stackrel{\triangle}{=} \mathbb A(\mathcal L)$, $\Omega \stackrel{\triangle}{=} \Xi$. В этих условиях $\theta \stackrel{\triangle}{=} \tau_{\otimes}(\mathcal L)$, $\mathbb Z$ — семейство всех подмножеств $\mathbb A(\mathcal L)$. Полагаем, что ζ^0 есть априорное МО. В связи с определениями раздела 5 и вышеупомянутыми соотношениями для ТП (9.1),(9.1) полезно отметить, что $\mathbf K_*(\mathcal L) \subset \mathbb K$, т.е. (9.3) — компактнозначное в смысле $(Z,\theta) = (\mathbb A(\mathcal L), \tau_{\otimes}(\mathcal L))$ (9.2) МО. В этой связи полезен следующий

Частный случай. Пусть $\mathbb{Q} \in \mathbf{K}_*(\mathcal{L})$, $\mathbb{Q} \neq \emptyset$; в качестве \mathbb{Q} может, например, использоваться компакт (в смысле ТП (9.1)) всех к.-а. вероятностей на \mathcal{L} или компакт всех двузначных к.-а. вероятностей на \mathcal{L} (т.е.

всех к.-а. (0,1)-мер μ на \mathcal{L} со свойством $\mu(E)=1)$. Пусть \mathbb{Y} — замкнутое в топологии покоординатной сходимости подмножество плоскости $\mathbb{R} \times \mathbb{R}$, $f \in B(E, \mathcal{L}), g \in B(E, \mathcal{L})$ и $\forall \omega \in \Xi$:

$$\zeta^{0}(\omega) \stackrel{\triangle}{=} \{ \mu \in \mathbb{Q} \mid (\int_{E} f d\mu, \int_{E} g d\omega) \in \mathbb{Y} \}.$$
 (84)

Легко видеть, что \mathbb{Y} -ограничение, т.е. условие на реализацию пары интегралов в (9.4), подобно условию (2.1); \mathbb{Y} исполняет здесь роль целевого множества. К осуществлению этого условия стремится игрок І. Легко видеть, что (9.4) — замкнутое в ТП (9.1) подмножество \mathbb{Q} . Как следствие (теоремы Алаоглу) имеем в данном конкретном примере свойство (9.3), т.е. компактнозначность ζ^0 . Определение (9.3) в терминах \mathbb{Y} -ограничения (см.(9.4)) естественно для приложений.

Возвращаясь к общему случаю задачи определения неупреждающих МС отображения (9.3), заметим, что как уже отмечалось, в нашем случае имеет место $\zeta^0 \in \mathbb{K}^{\Omega}$. Это обстоятельство позволяет использовать теорему 6.1, реализуя требуемое решение в виде $\Gamma^{\infty}(\zeta^0)$. В нашем случае можно воспользоваться и конструкцией определения $\Gamma^{\infty}(\zeta^0)$, как УНТ (см. раздел 7); здесь удобно использовать представление $\Gamma^{\infty}(M)$, где $M = \zeta^0$, в виде наибольшего в ($\mathbb{Z}^{\Omega}, \sqsubseteq$) элемента $\mathfrak{M}_{\mathbb{K}}$.

Список литературы

- [1] Ченцов А.Г. О структуре одной игровой задачи сближения. // Доклады АН СССР.— 1975. Т.224, N6. С. 1272-1275.
- [2] Ченцов А.Г. К игровой задаче наведения // Доклады АН СССР. 1976. T.226, N1. C.73-76.
- [3] Ченцов А.Г. К игровой задаче наведения с информационной памятью // Доклады АН СССР. 1976. Т.227, N2. С.306-308.
- [4] Ченцов А.Г. Об игровой задаче сближения в заданный момент времени // Математический сборник. 1976. Т.99, N3. С. 394-420.
- [5] Ченцов А.Г. Об игровой задаче наведения к заданному моменту времени // Известия АН СССР, Серия математическая. 1978. Т.42, N2. С. 455-467.

- [6] Ченцов А.Г. Метод программных итераций для дифференциальной игры сближения-уклонения // Рукопись деп. в ВИНИТИ. 1979. N1933 79 Деп. 102 с.
- [7] Субботин А.И., Ченцов А.Г. Оптимизация гарантии в задачах управления.— М.:Наука, 1981.— 287 с.
- [8] Дятлов В.П., Ченцов А.Г. Монотонные итерации множеств и их приложения к игровым задачам управления // Кибернетика. — 1987. — N2. — C.92-99.
- [9] Красовский Н.Н. Игровые задачи о встрече движений. М.:Наука,1970. 420 с.
- [10] Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука,1974. 456 с.
- [11] Красовский Н.Н. Управление динамической системой. Задача о минимуме гарантированного результата. М.: Наука, 1985. 518 с.
- [12] Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1977. 741 с.
- [13] Kantorovič The method of successive approximations for functional equations // Acta Math. 1939. 71. P.63-97.
- [14] Эдвардс Р. Функциональный анализ. М.: Мир, 1969. 1071 с.
- [15] Чистяков С.В. К решению игровых задач преследования // Прикладная математика и механика. 1977. Т.41. N5. С.825-832.
- [16] Ченцов А.Г. О задаче управления с ограниченным числом переключений // Рукопись деп. в ВИНИТИ. 1987. N4942 В87. 43 с.
- [17] Субботин А.И., Ченцов А.Г. Итерационная процедура для построения минимаксных и вязкостных решений уравнений Гамильтона-Якоби // Доклады Академии Наук. 1996. Т.348, N6. С.736-739.
- [18] Roxin E. Axiomatic approach in differential games// J. Optimiz.Theory and Appl. 1969. V.3, N3. p. 153-163.
- [19] Krasovskii N.N., Chentsov A.G. On the design of differential games, I // Probl. Control and Inform. Theory. 1977. V.6, N. 5-6. p. 381-395.

- [20] Krasovskii N.N., Chentsov A.G. On the design of differential games, II // Probl. Control and Inform. Theory. 1979. V.9, N 1. p. 3-11.
- [21] Варга Дж. Оптимальное управление дифференциальными и функциональными уравнениями.— М.:Наука,1977.— 624с.
- [22] Келли Дж.Л. Общая топология.— М.:Наука,1981— 431с.
- [23] Энгелькинг Р. Общая топология.— М.: Мир,1986.— 751с.
- [24] Куратовский К., Мостовский А. Теория множеств. М.: Мир,1970. 415 с.
- [25] Ченцов А.Г. Метод программных итераций в классе конечноаддитивных управлений-мер // Дифференциальные уравнения. — 1997. — N11. — C.1528-1536.
- [26] Неве Ж. Математические основы теории вероятностей. М.: Мир, 1969. 309с.
- [27] Куратовский К. Топология, т.І. М.:Мир,1966. 786с.
- [28] Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа,1979. 336с.
- [29] Ченцов А.Г. Селекторы многозначных квазистратегий в дифференциальных играх // Рукопись деп. в ВИНИТИ. 1978. N3101 78 Деп. 32 с.
- [30] Данфорд Н.,Шварц Дж.Т. Линейные операторы.Общая теория.— М.:Изд-во иностр.лит-ры,1962.— 895с.
- [31] Бурбаки Н. Общая топология. Основные структуры. М.: Наука, 1968. 272 с.
- [32] Ченцов А.Г. Конечно-аддитивные меры и релаксации экстремальных задач.— Екатеринбург: Наука,1993.— 232с.
- [33] Chentsov A.G. Asymptotic attainability. Dordrecht Boston London: Kluwer Academic Publishers, 1997. 322p.