# 0.0.1 Secondo esercizio



La struttura in figura è soggetta al solo carico verticale F. Si chiede di calcolare:

- 1. Le reazioni vincolari in A e C.
- 2. Le azioni interne nell'asta AB (disegnare i corrispondenti diagrammi).

# 0.0.2 Soluzione secondo esercizio

# Osservazioni

- 1. La struttura è composta da 2 aste e 3 vincoli: un carrello, una cerniera esterna ed un incastro.
- 2. Il punto A **NON** si trova ad un'ascissa  $x = \frac{L}{2}$  ma  $x = L(1 \frac{\sqrt{2}}{2})$

# Analisi preliminare di isostaticità

Verifico che  $gdl_{tot} = gdv_{tot}$ :

$$gdv: \begin{cases} gdv_{cerniera_{esterna}} = 2\\ gdv_{incastro} = 3\\ gdv_{carrello} = 1 \end{cases}$$

$$gdl: \begin{cases} gdl_{aste} = 6 \end{cases}$$

- (a) Gradi di vincolo del sistema.
- (b) Gradi di libertà del sistema.

Figure 1: Verifica preliminare di isostaticità.

#### Vincoli esterni

Considerando il sistema come un corpo rigido, andiamo a sostituire le reazioni vincolari dei soli vincoli esterni (Figura 2):

$$\begin{cases} H_A = -H_C \\ V_A + V_C = F \\ M_C + L\frac{\sqrt{2}}{2}H_A - L(1 - \frac{\sqrt{2}}{2})V_A + L(1 + \frac{\sqrt{2}}{2})F = 0 \end{cases}$$



Figure 2: Analisi dei vincoli esterni

# Reazioni vincolari nell'asta CD



Figure 3: Reazioni vincolari nell'asta CD

$$\begin{cases} R_{D_x} = H_C \\ R_{D_y} = V_C \\ M_C = -LR_{D_y} = -LV_C \end{cases}$$

Siccome la rezione vincolare del carrello agisce ad un angolo di 45 deg, è possibile affermare che:  $R_{D_x}=R_{D_y}$ .

Ne segue che:

$$\begin{cases} R_{D_x} = R_{D_y} \\ H_C = V_C \\ M_C = -LR_{D_y} = -LV_C \end{cases}$$

Risolvo il sistema dei vincoli esterni sostituendo:

$$M_C = -LV_C; \quad V_A = F - V_C; \quad H_A = -H_C = -V_C;$$

$$M_C + L\frac{\sqrt{2}}{2}H_A - L(1 - \frac{\sqrt{2}}{2})V_A + L(1 + \frac{\sqrt{2}}{2})F = 0$$
 (1)

$$-LV_C - L\frac{\sqrt{2}}{2}V_C - L(1 - \frac{\sqrt{2}}{2})(F - V_C) + L(1 + \frac{\sqrt{2}}{2})F = 0$$
 (2)

$$-LV_C - L\frac{\sqrt{2}}{2}V_C + L(1 - \frac{\sqrt{2}}{2})V_C - L(1 - \frac{\sqrt{2}}{2})F + L(1 + \frac{\sqrt{2}}{2})F = 0 \tag{3}$$

$$-\sqrt{2}V_C + \sqrt{2}F = 0 \tag{4}$$

$$V_C = F \tag{5}$$

# Ricapitolo soluzione primo punto

$$A: \begin{cases} H_A = -F \\ V_A = 0 \end{cases} \qquad C: \begin{cases} H_C = F \\ V_C = F \\ M_C = -LF \end{cases}$$

(a) Reazioni vincolari in A.

(b) Reazioni vincolari in C.

# Secondo punto

Per meglio visualizzare le componenti di taglio e sforzo normale, ridisegno l'asta AB con i vettori secondo i versi corretti:



Figure 5: Reazioni vincolari nell'asta AB con modulo e verso corretto

La forza  $R_D$  impone solo un taglio, mentre le rimanenti impongono sia una componente di taglio che una di sforzo.

$$R_D = \sqrt{2}F$$

**Sforzo normale** Le forze  $H_A$  ed F impongono uno sforzo normale di **trazione**, quindi positivo.

$$N = \frac{\sqrt{2}}{2}F$$



Figure 6: Sforzo normale nell'asta AB

**Taglio** Le forze  $H_A$  ed  $R_D$  impongono una rotazione **anti-oraria**, quindi negativa, mentre le forze  $R_D$  e F una **oraria**, quindi, sempre seguendo la convenzione, positiva.

$$T = \frac{\sqrt{2}}{2}F$$



Figure 7: Taglio nell'asta AB

**Momento flettente** Il momento flettente raggiunge il valore massimo nel punto di taglio massimo, cioè D, in cui  $M_{max} = \frac{\sqrt{2}}{2} LF$ . Le fibre tese, in questo caso, si trovano sul lato di destra.



Figure 8: Momento flettente nell'asta AB