

2.1: Algebraic Expressions

- *Algebra uses letters, called variables, such as x and y, to represent numbers.
- *Algebraic expressions are combinations of variables and numbers using the operations of addition, subtraction, multiplication, or division as well as exponents or radicals.
- Examples of algebraic expressions:

$$c + 6 6y$$

$$x^2 - 6 \sqrt{z} + 12$$

order of Operations Agreement = PEMDAS

- 1. Perform operations from within innermost grouping symbols to include [{ () }] Horizontal Division bars are also considered grouping symbols separating a numerator group from a denominator group
- 2. Evaluate all exponential expressions
- 3. Perform multiplications and divisions as they occur, working from <u>left to right</u>
- 4. Perform additions and subtractions as they occur, working from <u>left to right</u>

Valuating an Algebraic Expression

Evaluate:
$$7 + 5(x-4)^3$$
 for $x = 6$

Substitute the value of x in the algebraic expression and simplify.

Solution:

$$7 + 5(x-4)^3 = 7 + 5(6-4)^3$$
 Replace x with 6
= $7 + 5(2)^3$ Solve inside parentheses
= $7 + 5(8)$ Evaluate exponent
= $7 + 40$ Multiply
= 47 Add

Example: Modeling Caloric Needs

The bar graph shows the estimated number of calories per day needed to maintain energy balance for various gender and age groups for moderately active lifestyles.

The mathematical model $C = -66x^2 + 526x + 1030$ describes the number of calories needed per day by women in age group x with moderately active lifestyles.

According to the model, how many calories per day are needed by women between the ages of 19 and 30, inclusive, with this lifestyle?

Example Solution

* Because 19 through 30 is designated as group 4, we substitute 4 for x in the given model.

$$C = -66x^{2} + 526x + 1030$$

$$= -66 \cdot 4^{2} + 526 \cdot 4 + 1030$$

$$= -66 \cdot 16 + 2104 + 1030$$

$$= -1056 + 2104 + 1030$$

$$= 1048 + 1030$$

$$= 2078$$

The formula indicates that 2078 calories are needed per day by women in the 19 through 30 age range with moderately active lifestyle.

2.2: Simplifying Algebraic Expressions

Use the Real Number Properties to simplify expressions

Commutative Property of Addition

$$a + b = b + a$$

$$13x^2 + 7x = 7x + 13x^2$$

Commutative Property of Multiplication

$$ab = ba$$

$$x \cdot 6 = 6 \cdot x$$

Associative Property of Addition

$$(a+b)+c=a+(b+c)$$

$$(a+b)+c = a+(b+c)$$
 3 + (8 + x) = (3 + 8) + x = 11 + x

Associative Property of Multiplication

$$(ab)c = a(bc)$$

$$(ab)c = a(bc)$$
 $-2(3x) = (-2\cdot3)x = -6x$

Distributive Property

$$a(b + c) = ab + ac$$

$$a(b-c)=ab-ac$$

$$a(b+c) = ab + ac$$
 $5(3x+7) = 5\cdot 3x + 5\cdot 7 = 15x + 35$

$$4(2x-5) = 4\cdot 2x - 4\cdot 5 = 8x - 20$$

Algebraic Expressions Terminology

$$\rightarrow$$
 9x - 6y + 8

Simplifying Algebraic Expressions

Simplify: 5(3x - 7) - 6x

Solution:

$$5(3x - 7) - 6x$$

$$= 5.3x - 5.7 - 6x$$
 distributive property

$$= 15x - 35 - 6x$$
 multiply

$$= (15x - 6x) - 35$$
 group like terms

$$= 9x - 35$$
 combine like terms

Simplifying Algebraic Expressions

$$12x^2y - 3xy^2 - 15x^2y + 10xy^2$$

Prob 2.2.29

$$15x - 12 - (4x + 9) - 8$$
 Prob 2.2.39

$$(5x^2 - 3x - 9) - (x^2 - 5x - 9)$$
 Prob 2.2.47

$$4-5[2(5x-4^2)-(12x-3^2)]$$
 Prob 2.2.55

2.3 Solving Linear Equations

- Equation is formed when an equal sign is placed between two algebraic expressions
- A Linear Equation in one variable x is an equation that can be written in the form

$$ax + b = 0$$

where a and b are real numbers, and $a \neq 0$

- Solving an equation in x involves determining all values of x that result in a true statement when substituted into the equation. Such values are solutions.
- Equivalent equations have the same solution set.

$$4x + 12 = 0$$
 and $x = -3$ are equivalent equations.

Solving Using Properties of Equality

The Addition Property of Equality

The same real number or algebraic expression may be added to both sides of an equation without changing the equation's solution set.

a = b and a + c = b + c are equivalent a = b and a - c = b - c are equivalent

The Multiplication Property of Equality

The same nonzero real number may multiply both sides of equation without changing the equation's solution set. a = b and $a \cdot c = b \cdot c$ are equivalent

$$a = b$$
 and $\frac{a}{c} = \frac{b}{c}$ are equivalent

Using Properties of Equality to Solve Equations

Equation	How to Isolate x	Solving the Equation	The Equation's Solution Set
x - 3 = 8	Add 3 to both sides.	x - 3 + 3 = 8 + 3 x = 11	{11}
x + 7 = -15	Subtract 7 from both sides.	x + 7 - 7 = -15 - 7 x = -22	{-22}
6x = 30	Divide both sides by 6 (or multiply both sides by $\frac{1}{6}$).	$\frac{6x}{6} = \frac{30}{6}$ $x = 5$	{5}
$\frac{x}{5} = 9$	Multiply both sides by 5.	$5 \cdot \frac{x}{5} = 5 \cdot 9$ $x = 45$	{45}

Solving a Linear Equation

- Simplify the algebraic expression on each side by removing grouping symbols (apply distributive property) and combining like terms.
- 2. Collect all the variable terms on one side and all the constants, or numerical terms, on the other side.
- 3. Isolate the variable and solve.
- 4. Check the proposed solution in the original equation.

Example: 2(x - 4) - 5x = -5

Step 1. Simplify the algebraic expression on each side

$$2(x - 4) - 5x = -5$$
 This is the given equation

$$2x - 8 - 5x = -5$$
 Use the distributive property

$$-3x - 8 = -5$$
 Combine like terms: $2x - 5x = -3x$

Step 2. Collect variable terms on one side and constants on other side

$$-3x - 8 + 8 = -5 + 8$$
 Add 8 to both sides and Simplify

$$-3x = 3$$

Step 3. Isolate the variable and solve

$$\frac{-3x}{-3} = \frac{3}{-3}$$
 Divide both sides by 3 and Simplify

x = -1 Solution

Step 4. Check the proposed solution in the original equation by substituting -1 for x

$$2(x - 4) - 5x = -5$$

$$2(-1-4)-5(-1)=-5$$

$$-10 - (-5) = -5$$

$$-5 = -5$$

-5 = -5 This statement is true

plication: Responding to Negative Life Events

Sense of Humor and Depression

Low

Average

High

10

Intensity of Negative Life Event

These graphs indicate that persons with a low sense of humor have higher levels of depression. These graphs can

be modeled by the following formulas:

Low Humor Group

$$D = \frac{10}{9}x + \frac{53}{9}$$

High Humor Group

$$D = \frac{1}{9}x + \frac{26}{9}$$

Alternate Solution: Clear fractions first

We are interested in the intensity of a negative life event with an average level of depression of 3 1/2 for the high humor

group.
$$D = \frac{1}{9}x + \frac{26}{9}$$

Clear Fractions by multiplying boths sides by LCD = 9

$$9 \cdot D = 9\left(\frac{1}{9}x + \frac{26}{9}\right)$$

$$D = x + 26$$
Substitute $\frac{7}{2}$ for D

$$\frac{7}{2} = x + 26$$

$$7 = 2(x + 26)$$

Clear Fractions by multiplying both sides by of above by LCD = 2

$$7 = 2x + 52$$

$$63 - 52 = 2x + 52 - 52$$

$$11 = 2x$$

$$\frac{11}{2} = \frac{2x}{2}$$

$$\frac{11}{2} = x$$

$$x = \frac{11}{2}$$

Linear Equations with No Solution

- Solve: 2x + 6 = 2(x + 4)
- **Solution:**

$$2x + 6 = 2(x + 4)$$

 $2x + 6 = 2x + 8$
 $2x + 6 - 2x = 2x + 8 - 2x$
 $6 = 8$

The original equation 2x + 6 = 2(x + 4) is equivalent to 6 = 8, which is false for every value of x. The equation has no solution.

The solution set is \emptyset , the empty set.

ar Equations with Infinitely Many Solutions

- Solve: 4x + 6 = 6(x + 1) 2x
- **Solution:**

$$4x + 6 = 6(x + 1) - 2x$$

 $4x + 6 = 6x + 6 - 2x$
 $4x + 6 = 4x + 6$

❖The original statement is equivalent to the statement 6 = 6, which is true for every value of x. The solution set is the set of all real numbers, expressed as {x|x is a real number}

Solving Linear Equations

$$4x - 3 = 13$$
 Prob 2.3.19

$$7 - 2x = 3$$
 Prob 2.3.23

$$-3(x-5) = 6 - 4(2x-1)$$
 Prob 2.3.31

$$27 - 3(x + 4) = 4x - (2x - 20)$$
 Prob 2.3.35

2.4: Formulas = Literal Equations

- Formula is an equation that uses letters to express a relationship between two or more quantities represented by variables
- Mathematical modeling is the process of finding formulas to describe real-world phenomena

$$C = \pi \cdot d = \pi \cdot (2 \cdot r) = 2 \cdot \pi \cdot r$$

Let's determine value of Pi experimentally.

$$\pi = \frac{C}{d}$$

Solving a Formula for One of its Variables

The total price of an article purchased on a monthly deferred payment plan is described by the following formula:

$$T = D + pm$$

T is the total price, *D* is the down payment, *p* is the monthly payment, and *m* is the number of months one pays.

Solve the formula for p.

Isolate
$$p$$

$$T = D + pm$$

$$T - D = D - D + pm$$

$$T - D = pm$$

$$T - D = pm$$

$$m$$

$$T - D = p$$

$$m$$

A C

Algorithm Design - Mathematical

Mathematical Description

◆Boiling point

$$F = 212$$

$$C = 100$$

Freezing point

$$F = 32$$

$$C = 0$$

$$y = mx + b$$

$$F = (180 / 100) C + 32$$
$$= (9/5) C + 32$$
$$= 1.8 C + 32$$

lve the Formula for desired Variable

$$P = 2L + 2W$$
, Solve for W Similar Prob 2.4.3

$$F = C \cdot \frac{9}{5} + 32$$
, **Solve for C**

Prob 2.4.13

$$R_{\rm a} = R_{\rm f} \sqrt{1 - \left(\frac{\rm v}{\rm c}\right)^2}$$
, Solve for $\frac{\rm v}{\rm c}$

A CONTRACTOR OF THE PARTY OF TH

Www.long.does.it.take.to.earn \$1000

Source Time Magazine: Who makes the highest wage? (Not self employed)

Radio host 24 sec.

Dr. Phil McGraw Television host 2 min. 24 sec.

Actor 4 min. 48 sec.

Kobe Bryant Basketball player 5 min. 30 sec.

U.S. average 2 hr. 55 min.

U.S. average 13 hr. 5 min.

High school teacher U.S. average 43 hours

Janitor U.S. average 103 hours