

Silicon Schottky Diode

- For mixer applications in VHF/UHF range
- For high-speed switching application
- Pb-free (RoHS compliant) package 1)
- Qualified according AEC Q101

BAT17-04 BAT17-05 BAT17-06W BAT17-07 BAT17-04W BAT17-05W

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Package	Configuration	L _S (nH)	Marking
BAT17	SOT23	single	1.8	53s
BAT17-04	SOT23	series	1.8	54s
BAT17-04W	SOT323	series	1.4	54s
BAT17-05	SOT23	common cathode	1.8	55s
BAT17-05W	SOT323	common cathode	1.4	55s
BAT17-06W	SOT323	common anode	1.4	56s
BAT17-07	SOT143	parallel pair	2	57s

1

¹Pb-containing package may be available upon special request

Maximum Ratings at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	4	V
Forward current	I _F	130	mA
Total power dissipation	P _{tot}		mW
BAT17, <i>T</i> _S ≤ 77°C		150	
BAT17-04, <i>T</i> _S ≤ 61°C		150	
BAT17-05, <i>T</i> _S ≤ 46°C		150	
BAT17-04W, -05W, -6W, $T_{S} \le 92 \text{ °C}$		150	
BAT17-07, <i>T</i> _S ≤ 60 °C		150	
Junction temperature	$T_{\rm j}$	150	°C
Operating temperature range	T_{op}	-55 125	
Storage temperature	$T_{\rm stg}$	-55 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}		K/W
BAT17		≤ 490	
BAT17-04, BAT17-07		≤ 590	
BAT17-05		≤ 690	
BAT17-04W, BAT17-05W, BAT17-06W		≤ 390	

 $^{^{\}rm 1} \rm For\ calculation\ of\ \it R_{\rm thJA}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Breakdown voltage	$V_{(BR)}$	4	-	-	V
$I_{(BR)} = 10 \ \mu A$					
Reverse current	I _R				μΑ
$V_{R} = 3 \; V$		-	-	0.25	
$V_{R} = 4 \text{ V}$		-	-	10	
$V_{R} = 3 \text{ V}, T_{A} = 60 ^{\circ}\text{C}$		-	-	1.25	
Forward voltage	V_{F}				mV
$I_{\rm F} = 0.1 \text{mA}$		200	275	350	
$I_{F} = 1 \; mA$		250	340	450	
$I_{\rm F} = 10 {\rm mA}$		350	425	600	
Forward voltage matching ¹⁾	ΔV_{F}	-	-	20	
$I_{F} = 1 \; mA$					
AC Characteristics					
Diode capacitance	C _T	0.4	0.55	0.75	pF
$V_{R} = 0$, $f = 1$ MHz					
Differential forward resistance	R _F	-	8	15	Ω
$I_{\rm F} = 5 \text{ mA}, f = 10 \text{ kHz}$					

 $^{^{1}\}Delta V_{\mathrm{F}}$ is the difference between lowest and highest V_{F} in multiple diode component.

Diode capacitance $C_T = f(V_R)$

f = 1MHz

Reverse current $I_R = f(V_R)$

 T_A = Parameter

Forward resistance $r_f = f(I_F)$

f = 10kHz

Forward current $I_F = f(V_F)$

 T_A = Parameter

Forward current $I_F = f(T_S)$

BAT17

Forward current $I_F = f(T_S)$

BAT17-04, BAT17-07

Forward current $I_F = f(T_S)$

BAT17-05

5 2007-04-19

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

7

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

8

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

9

2007-04-19

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

BAT1704E6327HTSA1