Mobile Communications

Principles of Cellular Networks

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

This set of slides is based on the book

G. Miao et al. - Fundamentals of Mobile Data Networks

Wireless Network Models and Capacity

Wireless Cellular Network

◆ Infrastructure

- » Base stations (APs)
- » Fixed

Terminals

- » Coverage requirements
- » Service requirements

Wireless Network Analysis

- Multiple transmitters and receivers
 - » Complex propagation scenario
 - » Interference from neighbor transmitters

- Two step analysis
 - » Characterize interference
 - Compute Carrier to Inference ratio (C/I ~ SNIR) in individual links
 - » Characterize received quality for the given interference
 - Map C/I into Quality (Q)

Services

- Let's assume 2 types of service provided by the wireless network
 - » Guaranteed blocking
 - » Best effort non-blocking
- Guaranteed service blocking
 - » Guaranteed bitrate (bit/s) provided to a terminal
 - » If terminal requests service and network is unable to provide it
 - → request is blocked (not admitted)
 - » Example: voice call
 - » Measure of service quality: call blocking probability
- Best effort non blocking
 - » The network provides service to all the terminals
 - » No terminal is blocked
 - » Example: mobile data
 - » Measure of service quality: average bitrate received by the terminal

User's Perceived Quality of service (QoS)

For simplicity, let's assume Link Quality = SINR

Mobile Scenario - Problem

- Assign to each active terminal
 - » Base station
 - » Channel
 - » Transmitter power

such that Link Quality is satisfied for as many terminals as possible

Interference Model

- Collection of wireless links
- $g_{i,j}$: instantaneous gain of link (i, j)
- $P_{rx,j} = P_{tx,i} * g_{i,j}$

where

- » G: link gain matrix
- » B: number of base stations
- » M: number of terminals

$$G = \begin{pmatrix} g_{11} & g_{12} & \cdots & g_{1M} \\ g_{21} & g_{22} & \cdots & g_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ g_{B1} & g_{B2} & \cdots & g_{BM} \end{pmatrix}$$

Traffic Model

- $M = \omega A$ active terminals deployed
 - » uniformly distributed by space
 - $\sim \omega$ active terminals per area unit (terminal/m²)
 - \rightarrow A is the deployment area (m²)

Downlink and Uplink!

Interference and Quality Model

• SINR in downlink (d) $\Gamma_{i0,j}^d = \frac{P_{i0} g_{i0,j}}{\sum_{b \neq i0, b \in B} P_b g_{b,j} + N_j}$

• SINR in uplink (u)
$$\Gamma_{i0,j}^{u} = \frac{P_{j} g_{i0,j}}{\sum_{m \neq j, m \in M} P_{m} g_{i0,m} + N_{i0}}$$

(assuming gain is equal in both directions, $g_{i0,j} = g_{j,i0}$)

Guaranteed Service Quality − Blocking: Wireless Network Capacity → max ω

• Terminal is admitted (not blocked) if

$$\Gamma_{i0,j}^{u} = \frac{P_{j}g_{i0,j}}{\sum_{m \neq i, m \in M} P_{m}g_{i0,m} + N_{i0}} \ge \gamma_{j}^{u} \quad \text{and} \quad \Gamma_{i0,j}^{d} = \frac{P_{i0}g_{i0,j}}{\sum_{b \neq i0, b \in B} P_{b}g_{b,j} + N_{j}} \ge \gamma_{j}^{d}$$

Assume

(Y, Z, M are random variables)

- » Y active terminals are admitted: $Y = \#\{j \in M : \Gamma_{i0,j}^u \ge \gamma_j^u \text{ and } \Gamma_{i0,j}^d \ge \gamma_j^d\}$
- » Z=M-Y terminals not admitted
- » Admission failure ratio $\nu = \frac{E[Z]}{E[M]} = \frac{E[Z]}{\omega A} \rightarrow \nu \leq \nu_0$
- Wireless network Capacity [active terminal/m²]: $\max \omega$: $\frac{E[Z]}{\omega A} \leq \nu_0$ the maximum density of active terminals $\max \omega$ in order to keep the admission failure ratio below the threshold level ν_0

Best effort – non-blocking: Wireless Network Capacity $\rightarrow \bar{R}$

- R_i : data rate of each terminal
- $R_i = f(\Gamma_i) = \min[R_{max}, cWlog_2(1 + \Gamma_i)]$ Shannon limit;

 max bitrate of the hardware constant c < 1 represents an implementable % of it
- Wireless network capacity [bit/s]
 - » The rate (bit/s) that can be served by the network in the service area A

$$\overline{R} = E \left[\sum_{i=1}^{M} R_i \right]$$

Wireless cellular systems

Multiple Access Cellular Systems

- Design cellular networks made in 2 steps:
 - » Coverage planning
 - » Frequency allocation

Coverage Planning

- Cell defined as hexagonal-shaped area
- Cell radius D_0
- Cell area $A_{cell} = 1.5 D_0^2 \sqrt{3}$

Area Coverage Planning

- Received $SNR = \frac{P_r}{N} = \frac{c_t P_t}{r^{\alpha} N}$
 - » P_t transmitted power
 - » c_t antenna gain
 - \rightarrow r distance from receiver to base station
 - α attenuation constant
 - \sim N noise power

- If minimum SNR γ_0 is required in all the cell, then $\frac{c_t P_t}{D_0^{\alpha} N} \ge \gamma_0$
- And the radius of the cell $D_0 \le \left(\frac{c_t P_t}{\gamma_0 N}\right)^{1/\alpha} \to A_{cell} = 1.5 \ D_0^2 \sqrt{3}$
- Number of cells = $\frac{total\ area}{cell\ area} = \frac{A}{A_{cell}}$

Frequency Planning – Frequency Reuse

• Reuse the same frequency as often as possible

• D_{12} is the reuse distance

Frequency Reuse: 2 Base Stations

- Define $\gamma_0 = \frac{c_t P_t}{D_0^{\alpha} N}$
- The worst SNIR is for a terminal located at cell edge

• If a minimum SNIR is required $\Gamma_1 \ge \gamma_t$, assuming $\gamma_0 > \gamma_t$

$$D_{12} \ge D_0 \left[1 + \left(\frac{\gamma_0 \gamma_t}{\gamma_0 - \gamma_t} \right)^{1/\alpha} \right]$$

Frequency Reuse: B Base Stations

- ◆ The same frequency can be used at B different cells
- The SINR at any receiver k (located in cell k)

 $-D_{i,k}$: the distance from receiver k to base station i

-r: the distance from receiver k to base station k

 $-\gamma_t$: the minimum required threshold of SNIR

− *N* : noise power

- With a good choice of $D_{i,k}$,
 - » the minimum desired link quality γ_t can be obtained in all the links

Channel Allocation for Frequency Reuse

- Objective: design a network with the maximum possible capacity
 - » Hexagonal cells grouped in clusters of K cells (K = reuse factor)

»
$$K = \frac{1}{3} \left(\frac{D}{D_0} \right)^2 \to \mathbf{D} = \mathbf{D_0} \sqrt{3K}, \quad K = (i+j)^2 - ij, \quad i,j = 0,1,2,3...$$

» D: distance between 2 Base Stations using same channel | D_0 : radius of the cell

- Let C be the total number of channels available $C = \{ch_1, ch_2, ..., ch_C\}$
 - » Divide C into K disjoint groups $\{C_1, C_2, \dots C_K\}$
 - » Assign each group C_i to a different cell of the cluster
 - » Repeat the same distribution in the other clusters

Channel Allocation for Frequency Reuse: K=7

Examples

• Example

- » Deployment of 32 cells, cell radius $D_0 = 1.6 \text{ km}$
- » Total frequency bandwidth equivalent to 336 traffic channels
- » Reuse factor, K=7
- » What geographic area is covered?
- » Total number of channels available?

Solution

- » Cell area, $A_{cell} = 1.5 D_0^2 \sqrt{3} = 6.65 km^2$
- » Covered area, Covered area, $A = 32 * 6.65 \text{ km}^2 = 213 \text{ km}^2$
- \sim Channels/cell = 336/7 = 48
- **»** Total channel capacity: 32 cells*48 channel/cell=1536 channels

Same example, but

- » Deployment of 128 cells, cell radius $D_0 = 0.8 \text{ km}$
- » 336 traffic channels
- » Reuse factor, K=7
- » Same questions

Solution

- $A_{cell} = 1.66 \, km^2$
- » Covered area, $A = 128 * 1,66 \text{ km}^2 = 213 \text{ km}^2$
- **»** Total channel capacity: 128 * 48 = 6144 channels

(a) Cell radius = 1.6 km

(b) Cell radius = 0.8 km

Capacity of a Wireless Network

Maximum number of simultaneous calls supported by network

•
$$\eta = \left\lfloor \frac{c}{K} \right\rfloor$$
 calls/cell

» η : maximum number of calls in each cell

» C: total number of channels available

» K : reuse factor

• Area capacity = $\frac{\eta}{A_{cell}}$ calls/ m^2

Quality (SINR) versus Capacity (η)

- Ideal case: High SINR, High η
- ◆ But Interference caused by frequency reuse
 depends on reuse distance D (distance between cells using same channel)

◆ Large K (reuse factor)

→ Large D → High SNR → Low η

→ High Quality, Low Capacity

- ◆ Small K
 - \rightarrow Small D \rightarrow Low SNR \rightarrow High η
 - → Low Quality, High Capacity

Co-channel Interference

- If transmit power of base stations and α are constant
- SIR is point A, $\Gamma_A \sim \frac{D_0^{-\alpha}}{\sum_{i=1}^{i_0} D_i^{-\alpha}} \approx \frac{D_0^{-\alpha}}{2(D-D_0)^{-\alpha} + 2D^{-\alpha} + 2(D+D_0)^{-\alpha}}$

 i_0 - number of co-channel interfering cells

 D_i - distance from corner A to center of the interfering co-channel cell i

 D_0 - radius of a cell

Co-channel cells for a cluster K=7
Indicated distances are approximated

Best effort – non-blocking

- Assume: cellular system with
 - » total bandwidth: W_S Hz | cluster size: K | Bandwidth for each cell: $W = \frac{W_S}{K}$
 - » $\Gamma_{DL}(D) = \frac{\frac{c_t P_t}{D^{\alpha}}}{\sum_{k} \frac{c_t P_t}{D_k^{\alpha}} + N}$, D: distance between terminal to Base Station
- For the normalized distance $d = D/D_0$, 0 < d < 1

»
$$\Gamma_{DL}(d) = \frac{1}{d^{\alpha}} \frac{\frac{c_t P_t}{D_0^{\alpha}}}{\sum_{k} \frac{c_t P_t}{D_k^{\alpha}} + N} = \frac{\Gamma_{DL}(D_0)}{d^{\alpha}},$$

- \bullet Bitrate R(d) of an active terminal within the cell
 - » $R(d) = min\{R_{max}, c \ W \ log_2(1 + \Gamma_{DL}(d))\} = min\{R_{max}, c \ W \ log_2(1 + \frac{\Gamma_{DL}(D_0)}{d^{\alpha}})\}$

0 < c < 1: constant representing implementable % of Shannon capacity

Best effort – non-blocking

- Assuming circular cell
- Bitrate at the center of the cell, $R(d = 0) = R_{\text{max}}$
- Bitrate at the edge of de cell $R(d=1) = R_{min} = c W \log_2(1 + \Gamma_{DL}(D_0))$

•
$$R(d) = min \left\{ R_{max}, c W log_2 \left(1 + \frac{2^{R_{min}/cW} - 1}{d^{\alpha}} \right) \right\}$$

Best Effort Data Service - Example

- Terminals uniformly distributed over the cell
- K = 3, $W_s = 15 MHz$, $\alpha = 4$, c = 0.5
- Average terminal rate $\bar{R} = E[R] = \int_0^{D_0} R(r) \frac{2\pi r \, dr}{\pi D_0^2} = \int_0^1 R(x) \, 2x \, dx$, $x = r/D_0$

Guaranteed Service Quality – Blocking

- ◆ Assume calls arrive according to a Poisson process → $Pr\{M_c = k\} = \frac{(\omega A_c)^k}{k!} e^{-\omega A_c}$
 - » M_c : number of offered calls (active terminals)
 - » ω : average number of offered call/ m^2 | A_c : cell area
 - » Call inter-arrival time A becomes exponentially distributed with pdf $f_A(t) = \lambda e^{-\lambda t}$ (RCOM)
 - » With call arrival rate λ call/s where $\lambda \Delta t = \omega A_c$
- If call duration is also exponentially distributed \Rightarrow E[call duration] = $\frac{1}{\mu}$ [s]
- Traffic load $\rho = \frac{\lambda}{\mu}$ [Erlangs]
- Example
 - » Call arrival rate $\lambda = 360 \, call/hour = 0.1 \, call/s$
 - » Average call duration $\frac{1}{\mu} = 20 s$
 - » Traffic load $\rho = 0.1 * 20 = 2$ Erlang
 - » In average we need 2 circuits (2 channels) to support the offered traffic

Guaranteed Service Quality — Blocking: Queueing Theory (Erlang-B)

- A cellular network has η channel/cell
 - » May be modeled as a birth-death process
 - » Queue $M/M/\eta$ $\rightarrow \eta$ servers , no waiting space
- ◆ The blocking probability given by *Erlang-B* formula

»
$$P_{block} = \frac{\rho^{\eta}/\eta!}{\sum_{k=0}^{\eta} \rho^{\eta}/k!}$$
 , where $\rho = \frac{\lambda}{\mu}$

- $Capacity = \rho_{max} = \max \{ \rho \mid P_{block} < p_0 \}$ [Erlang] p_0 : the required blocking probability
- The area capacity is obtained as $\rho_A = \frac{\rho_{max}}{A_c}$, $(Erlang/m^2)$ A_c : the cell area

Directional Antennas in Wireless Networks

Directional antennas (sectors) reduce the number of sites

120 degree site patterns for 1/3 reuse

120 degree site patterns for 3/9 reuse

Homework

- 1. Review slides
 - » use them to guide you through the recommended book
- 2. Read from G. Miao Fundamentals of Mobile Data Networks
 - » Chap. 2 Wireless network models
 - » Chap. 5 Principles of cellular systems
- 3. Answer questions at moodle