CSS 434 Lab Work 2a: MPI Java Setup

Professor: Munehiro Fukuda Lab work date: See the syllabus

1. Purpose

This laboratory work intens to set up your MPI Java execution environment. Follow the professor's explanation about how to use MPI Java and demonstrates an execution of ~css434/hw2/MatrixMult.java.

2. Statement of Work

cssmpi2h

1. Set up your execution enviornment:

```
The process for setting it up to run the first time for each user is
cumbersome. After the initial user set-up it works well without much
fuss.
# login as self
# Need to be able to ssh without a password to other machines in
# order to use MPICH.
# run setup mpi cluster.sh. this creates ssh-keygen under ./.shh
./setup_mpi_cluster.sh
# The first time a new host is added to the first "ring"; it needs to be
# established by a "yes" response to "continue connecting". Every time the
# output hangs, type "yes".
# Note that setup_mpi_cluster.sh must have created this ring but just
# in case login each remote machine to check if you no longer need to type
# anythings to get there.
ssh cssmpi1h
ssh cssmpi2h
ssh cssmpi3h
ssh cssmpi4h
ssh cssmpi5h
ssh cssmpi6h
ssh cssmpi7h
ssh cssmpi8h
# make file .mpd.conf
vi/emacs/pico .mpd.conf
# in it write one line:
secretword=
# where is a secure key you create but not your normal password
# save the file
# set the correct permissions on this file (other permissions won't work)
chmod 600 .mpd.conf
# create the mpd.hosts file in your home directory. The file should
include a list of cssmpi machines as seen in /home/NETID/css434/lab2/mpd.hosts:
```

```
cssmpi3h
  cssmpi4h
  Note that you should not include cssmpi1h where you are logging in.
  # edit .bash profile file as follows:
  export PATH=/usr/apps/mpich121-`uname -p`/bin:$PATH
  export JAVAPATH=/usr/java/latest
  export CLASSPATH=$CLASSPATH:/usr/apps/mpiJava-`uname -p`/lib/classes:.
  export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/apps/mpiJava-`uname -p`/lib
  export PATH=/usr/apps/mpiJava-`uname -p`/src/scripts:$JAVAPATH/bin:$PATH
  # either relogin or type at the command line:
  source .bash profile
  # test that your set-up works on the current host
  mpiexec -n 1 /bin/hostname
  mpdallexit
  # if you get an error or warning this is a problem.
  # You should get the hostname of your current host
  CSSmpdboot -n 4 -v
  mpdallexit
  # Note that, if you want to use all 8 machines, you have to list 7
  # machine names in your ~/mpd.hosts file. Then, type
  CSSmpdboot -n 8 -v
  mpdallexit
  # Now, you are ready to run a mpiJava program.
  To compile:
  javac *.java
  # to run
  CSSmpdboot -n #cpus -v
  mpirun -n #cpus java Hello
  mpirun -n #cpus java MatrixMult size
  mpirun -n #cpus java MyProgram
  # for your convenience, java_mpirun.sh is provided, but HW2 should be
  # executed directly with mpirun, (because of too many arguments.)
  ./java mpirun #cpus Hello
  ./java mpirun #cpus MatrixMult size
  ./java_mpirun #cpus MyProgram
  # To stop
  mpdallexit
2. Evaluate a performance improvement of MatrixMult.java, using 1, 2, and 4 computing nodes.
  mpdboot -n 4 -v
  mpirun -n 1 MatrixMult 3000
  mpirun -n 2 MatrixMult 3000
  mpirun -n 4 MatrixMult 3000
```

3. Related Materials

mpdallexit

- To make a quick review for MPI Java, see the slides: p18-21 of MPI.ppt
- For detilas of MPI Java, refer to the following tutorial and specificatioin.

- 1. http://www.hpjava.org/courses/arl/lectures/mpi.ppt
 2. http://www.hpjava.org/reports/mpiJava-spec/mpiJava-spec.pdf

4. What to Turn in

Turn in your execution output of MatrixMult with 1, 2, and 4 computing nodes.

1. Your execution output, (i.e., output.txt)