

线性空间的定义与性质

维数、基与坐标

线性变换

线性空间的定义与性质

- 一、线性空间的定义
- 二、线性空间的性质
- 三、线性空间的子空间

设 V是一个非空集合, \mathbf{R} 为实数域。对于任意两个元素 $\alpha,\beta\in V$, 在 V中总有唯一确定的一个元素 γ 与之对应, 称为 α 与 β 的和,记作 $\gamma=\alpha+\beta$.对于 \mathbf{R} 中任一数 λ 与 V中任一元素 α ,在 V中总有唯一确定的一个元素 δ 与之对应, 称为 λ 与 α 的数量乘积, 记作 $\delta=\lambda\alpha$ 。如果这两种运算满足以下八条运算规律 (设 $\alpha,\beta,\gamma\in V$; $\lambda,\mu\in\mathbf{R}$):

- (i) 加法交换律: $\alpha + \beta = \beta + \alpha$;
- (ii) 加法结合律: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$;
- (iii) 在 V 中存在零元素 0; 对于任何 $\alpha \in V$, 都有是 $\alpha + 0 = \alpha$;
- (iv) 负元素:对于任何 $\alpha \in V$,都有是 α 的负元素 $\beta \in V$,使 $\alpha + \beta = 0$;
- (v) $1\alpha = \alpha$:
- (vi) $\lambda (\mu \alpha) = (\lambda \mu) \alpha$;
- (vii) $(\lambda + \mu)\alpha = \lambda\alpha + \mu\alpha$;
- (viii) $\lambda (\alpha + \beta) = \lambda \alpha + \lambda \beta$.

那么, V 就称为实数域 **R** 上的线性空间.

线性空间有时也被称为向量空间, 线性空间中的元素不论其本来的性质如何,统称为向 量. 线性空间中满足上述八条规律的加法及数乘运算, 统称为线性运算.

次数不超过 n 的多项式的全体,记作 P[x], 即

$$P\left[x\right]_{n} = \left\{p\left(x\right) = a_{n}x^{n} + \dots + a_{1}x + a_{0} \middle| a_{n}, \dots, a_{1}, a_{0} \in \mathbb{R}\right\},$$

对于通常的多项式加法、数乘多项式的乘法构成线性空间.

这是因为:通常的多项式加法、数乘多项式的乘法两种运算显然满足线性运算规律, 故只要验证 $P \left[x \mid$ 对运算封闭.

一、线性空间的定义

对 P[x] 中任意两个多项式 $p(x) = a_n x^n + \dots + a_1 x + a_0$, $q(x) = b_n x^n + \dots + b_1 x + b_0$, 及 任意的实数 λ , 有

$$p(x) + q(x) = (a_n x^n + \dots + a_1 x + a_0) + (b_n x^n + \dots + b_1 x + b_0) = (a_n + b_n) x^n + \dots + (a_1 + b_1) x + (a_0 + b_0) \in P[x]_n,$$

$$\lambda p\left(x\right) = \lambda \left(a_{n}x^{n} + \dots + a_{1}x + a_{0}\right) = \left(\lambda a_{n}\right)x^{n} + \dots + \left(\lambda a_{1}\right)x + \left(\lambda a_{0}\right) \in P\left[x\right]_{n},$$

所以 $P[x]_n$ 是一个线性空间.

设集合

 $C[a,b] = \{f(x)|f(x)\rangle[a,b]$ 上的连续函数 $\}$

是定义在区间[a,b]上的连续实函数全体所成的集合,关于通常的函数加法和数乘函 数的乘法构成线性空间.

这是因为:通常的函数加法及乘数运算显然满足线性运算规律,并且根据连续函数的 运算性质可知, C[a,b]对通常的函数加法和数乘函数的乘法封闭.

设
$$M_{m \times n}(\mathbf{R}) = \begin{cases} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{cases}$$
 $a_{ij} (1 \le i \le m; 1 \le j \le n) \in \mathbf{R}$

是实数域上的矩阵全体所成的集合. 显然 $M_{m\times n}(\mathbf{R})$ 是非空的, $M_{m\times n}(\mathbf{R})$ 对通常的矩阵 加法和数乘构成线性空间. 这是因为: 通常的矩阵加法和数乘运算显然满足线性运算规 律,并且 $M_{m\times n}(\mathbf{R})$ 对通常的矩阵加法和数乘运算封闭.

>>> 一、线性空间的定义

特别地, 当 m=n 时, m=n 的方阵的全体所成的集合

$$M_{n}(\mathbf{R}) = \begin{cases} A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{m2} & \cdots & a_{nn} \end{pmatrix} | a_{ij} (1 \le i, j \le n) \in \mathbf{R} \end{cases}$$
 也是实数域上的线性空间.

n 次多项式的全体

$$Q[x]_{n} = \{p = a_{n}x^{n} + \dots + a_{1}x + a_{0} | a_{n}, \dots, a_{1}, a_{0} \in \mathbf{R}, \exists a_{n} \neq 0\},\$$

对于通常的多项式加法和乘数运算不构成线性空间. 这是因为

$$0p = 0x^n + \dots + 0x + 0 \notin Q[x]_n$$
, 即 $Q[x]_n$ 对运算不封闭.

n 个有序实数组成的数组的全体

$$S^n = \left\{ \boldsymbol{x} = \left(x_1, x_1, \dots, x_n \right)^T \middle| x_1, x_1, \dots, x_n \in \mathbf{R} \right\}$$

对于通常的有序数组的加法及如下定义的乘法

$$\lambda \circ (x_1, \dots, x_n)^T = (0, \dots, 0)^T$$
 不构成线性空间.

可以验证 S^n 对运算封闭,但是 $1 \circ x = 0$,不满足第五条运算规律,即所定义的运算 不是线性运算,所以不是线性空间.

例 6

正实数的全体,记作 \mathbf{R}^+ ,在其中定义加法及乘数运算为

$$a \oplus b = ab(a, b \in \mathbf{R}^+), \lambda \circ a = a^{\lambda}(\lambda \in \mathbf{R}, a \in \mathbf{R}^+),$$

验证对上述加法与乘数运算构成线性空间.

证明

首先验证对定义的加法和数乘运算封闭.

对加法封闭: 对任意的 $a,b \in \mathbb{R}^+$, 有 $a \oplus b = ab \in \mathbb{R}^+$;

对数乘封闭: 对任意的 $\lambda \in \mathbf{R}, a \in \mathbf{R}^+$, 有 $\lambda \circ a = a^{\lambda} \in \mathbf{R}^+$.

一、线性空间的定义

下面验证定义的运算是线性运算.

$$a \oplus b = ab = ba = b \oplus a$$
;

在 \mathbb{R}^+ 中存在零元素 1, 对于任何 $a \in \mathbb{R}^+$ 都有是 $a \oplus 1 = a \cdot 1 = a$;

对于任何 $a \in \mathbb{R}^+$, 都有是 a的负元素 $a^{-1} \in \mathbb{R}^+$ 使 $a \oplus a^{-1} = a \cdot a^{-1} = 1$.

一、线性空间的定义

$$05 \quad 1 \circ a = a^1 = a \; ;$$

$$(\lambda + \mu) \circ a = a^{\lambda + \mu} = a^{\lambda} a^{\mu} = a^{\lambda} \oplus a^{\mu} = \lambda \circ a + \mu \circ a ;$$

因此, \mathbf{R}^+ 对于所定义的运算构成线性空间.

二、线性空间的性质

性质 1 零元素是唯一的.

证明 设 $\mathbf{0}_1, \mathbf{0}_2$ 是线性空间V 中的两个零元素,即对任何 $\alpha \in V$,有 $\alpha + \mathbf{0}_1 = \alpha, \alpha + \mathbf{0}_2 = \alpha$,

于是有

$$\mathbf{0}_{2} + \mathbf{0}_{1} = \mathbf{0}_{2}, \, \mathbf{0}_{1} + \mathbf{0}_{2} = \mathbf{0}_{1}$$

所以

$$\mathbf{0}_{1} = \mathbf{0}_{1} + \mathbf{0}_{2} = \mathbf{0}_{2} + \mathbf{0}_{1} = \mathbf{0}_{2}$$
.

性质 2 任一元素的负元素是唯一的(以后将 lpha 的负元素记作 -lpha).

证明 设 α 有两个负元素 β,γ ,即 $\alpha+\beta=0,\alpha+\gamma=0$. 于是

$$\beta = \beta + 0 = \beta + (\alpha + \gamma) = (\beta + \alpha) + \gamma = 0 + \gamma = \gamma$$
.

>>> 二、线性空间的性质

性质 3 $0\alpha = 0$; $(-1)\alpha = -\alpha$; $\lambda 0 = 0$.

$$\text{iff} \quad \boldsymbol{\alpha} + 0\boldsymbol{\alpha} = 1\boldsymbol{\alpha} + 0\boldsymbol{\alpha} = \left(1 + 0\right)\boldsymbol{\alpha} = 1\boldsymbol{\alpha} = \boldsymbol{\alpha} \text{, fill } 0\boldsymbol{\alpha} = \boldsymbol{0} \text{, } \boldsymbol{\alpha} + \left(-1\right)\boldsymbol{\alpha} = 1\boldsymbol{\alpha} + \left(-1\right)\boldsymbol{\alpha} = \left[1 + \left(-1\right)\right]\boldsymbol{\alpha} = 0\boldsymbol{\alpha} = \boldsymbol{0},$$

$$(-1)\alpha = -\alpha$$
;

$$\lambda \mathbf{0} = \lambda [\alpha + (-1)\alpha] = \lambda \alpha + (-\lambda)\alpha = [\lambda + (-\lambda)]\alpha = 0\alpha = \mathbf{0}$$
.

性质 4 如果 $\lambda \alpha = 0$, 则 $\lambda = 0$ 或 $\alpha = 0$.

证明 若 $\lambda \neq 0$, 在 $\lambda \alpha = 0$ 两边乘 $\frac{1}{2}$, 得

$$\frac{1}{\lambda}(\lambda\alpha) = \frac{1}{\lambda}\mathbf{0} = \mathbf{0},$$

而

$$\frac{1}{\lambda}(\lambda \boldsymbol{\alpha}) = \left(\frac{1}{\lambda}\lambda\right)\boldsymbol{\alpha} = 1\boldsymbol{\alpha} = \boldsymbol{\alpha}$$

所以 $\alpha = 0$.

三、线性空间的子空间

设V 是实数域R上线性空间,W 是V 的一个非空子集. 如果W 关于V 的加法和数乘运算也 构成线性空间,则称W = V的一个子空间.

例如, n 元齐次线性方程组Ax=0的解空间

$$S = \{ \mathbf{x} \in R^n | \mathbf{A}\mathbf{x} = 0 \}$$

就是线性空间 R^n 的子空间.

实数域R上线性空间V的非空子集W成为 R 的一个子空间的充分必要条件是 W关于V的加法和数乘是封闭的.

>>> 三、线性空间的子空间

例7

在实数域R上线性空间

$$M_{n}(\mathbf{R}) = \left\{ \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{m2} & \cdots & a_{nn} \end{pmatrix} \middle| a_{ij} (1 \le i, j \le n) \in \mathbf{R} \right\}$$

中,对角矩阵所成的集合

$$D_n(\mathbf{R}) = \left\{ \mathbf{A} = \begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix} \middle| a_{ii} (1 \le i \le n) \in \mathbf{R} \right\}$$

是 $M_n(\mathbf{R})$ 的非空子集,且 $D_n(\mathbf{R})$ 关于 $M_n(\mathbf{R})$ 的加法和数乘是封闭的,所以 $D_n(\mathbf{R})$ 是

 $M_n(\mathbf{R})$ 的一个子空间.

目录/Contents

5.1 线性空间的定义与性质

维数、基与坐标

线性变换

维数、基与坐标

- 一、线性空间的基、维数与坐标
- 二、基变换与坐标变换

定义 1 在线性空间V 中,如果存在n 个元素 $\alpha_1, \alpha_2, \dots, \alpha_n$ 满足

(i) $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关; (ii) V 中任一元素。总可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示,

那么, $\alpha_1, \alpha_2, \dots, \alpha_n$ 就称为线性空间V 的一个基, n 称为线性空间V 的维数, 记作 $\dim V = n$.

只含一个零元素的线性空间称为零空间,零空间没有基,规定它的维数为 0.~n 维线性空 间V 也记作 V_n .

对于n 维线性空间 V_n , 如果已知 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V_n 的一个基,则 V_n 是由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 所生成的线 性空间,即

$$V_n = \{ \alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n | x_1, x_2, \dots, x_n \in R \},$$

这就较清楚地显示出线性空间4,的构造.

如果 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 V_n 的一个基,则对任何 $\alpha \in V_n$,都有唯一的一组有序数组 x_1, x_2, \dots, x_n ,使

$$\boldsymbol{\alpha} = x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \dots + x_n \boldsymbol{\alpha}_n$$

反之,任给一组有序数组 x_1, x_2, \dots, x_n ,总有唯一的元素

$$\boldsymbol{\alpha} = x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \dots + x_n \boldsymbol{\alpha}_n \in V_n$$

这样 V_n 的元素 α 与有序数组 $(x_1, x_2, \dots, x_n)^1$ 之间存在着一种——对应的关系,因此可以用 这组有序数组来表示元素 α .

--- 定义2

设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是线性空间 V_n 的一个基,对于任一元素 $\alpha \in V_n$,总有且仅有一组有序数组

$$x_1, x_2, \cdots, x_n$$
, 使

$$\boldsymbol{\alpha} = x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \dots + x_n \boldsymbol{\alpha}_n$$

 X_1, X_2, \dots, X_n 这组有序数就称为元素 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标,并记作

$$\boldsymbol{\alpha} = \left(x_1, x_2, \dots, x_n\right)^{\mathrm{T}}.$$

例 1

在线性空间 $P \mid x \mid_{A}$ 中, $p_0 = 1, p_1 = x, p_2 = x^2, p_3 = x^3, p_4 = x^4$ 就是它的一个基,任一不超过 4次的多项式

$$p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

都可表示为

$$p = a_0 p_0 + a_1 p_1 + a_2 p_2 + a_3 p_3 + a_4 p_4,$$

因此p 在这个基下的坐标为 $\left(a_0, a_1, a_2, a_3, a_4\right)^1$.

>>> 一、线性空间的基、维数与坐标

例2 在线性空间

$$M_{2}(\mathbf{R}) = \left\{ \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \middle| a_{ij} (1 \le i, j \le 2) \in \mathbf{R} \right\}$$

中,由于对任一向量
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(\mathbf{R})$$
有

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

且容易证明

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

线性无关,所以 $E_{11}, E_{12}, E_{21}, E_{22}$ 是 $M_2(\mathbf{R})$ 的一个基,向量 $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ 在这个基下的

坐标就是 $(a_{11},a_{12},a_{21},a_{22})^{\mathrm{T}}$.

设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 与 $\beta_1, \beta_2, \cdots, \beta_n$ 是线性空间 V_n 中的两个基,且

$$\begin{cases} \beta_{1} = p_{11}\alpha_{1} + p_{12}\alpha_{2} + \dots + p_{1n}\alpha_{n}, \\ \beta_{2} = p_{21}\alpha_{1} + p_{22}\alpha_{2} + \dots + p_{2n}\alpha_{n}, \\ \vdots \\ \beta_{n} = p_{n1}\alpha_{1} + p_{n2}\alpha_{2} + \dots + p_{nn}\alpha_{n}, \end{cases}$$

$$(2-1)$$

将式(2-1)写成矩阵形式为

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_n) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n) \boldsymbol{P}.$$
 (2-2)

式(2-1)和(2-2)称为从基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 到基 $\beta_1, \beta_2, \cdots, \beta_n$ 的基变换公式,矩阵P称为由基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 到基 $\beta_1, \beta_2, \cdots, \beta_n$ 的过渡矩阵,由于 $\beta_1, \beta_2, \cdots, \beta_n$ 线性无关,故过渡矩阵P 可逆.

>>> 二、基变换与坐标变换

设 V_n 中的元素 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标为 $(x_1, x_2, \dots, x_n)^T$, 在基 $\beta_1, \beta_2, \dots, \beta_n$ 下的坐标为

$$(y_1, y_2, \dots, y_n)^T$$
.

若两个基满足关系式(2-2),于是有

$$(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}) \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \boldsymbol{\alpha} = (\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{n}) \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = (\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}) \boldsymbol{P} \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} ,$$

由于 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关,而且过渡矩阵P可逆,所以有坐标变换公式

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \mathbf{P} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 (2-3)

例3 在 $P[x]_4$ 中取两个基为 $p_0 = 1, p_1 = x, p_2 = x^2, p_3 = x^3, p_4 = x^4$,及 $q_0 = 1, q_1 = 1 + x, q_2 = (1 + x)^2, q_3 = (1 + x)^3, q_4 = (1 + x)^4$,

求从基 p_0, p_1, p_2, p_3, p_4 到基 q_0, q_1, q_2, q_3, q_4 的过渡矩阵,以及任一不超过 4 次的多项式

 $p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$ 在这两组基下的坐标和坐标变换公式.

解 将 q_0,q_1,q_2,q_3,q_4 用 p_0,p_1,p_2,p_3,p_4 表示,有

$$\left(1,1+x,\left(1+x\right)^{2},\left(1+x\right)^{3},\left(1+x\right)^{4}\right) = \left(1,x,x^{2},x^{3},x^{4}\right) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

因此, 从基 p_0, p_1, p_2, p_3, p_4 到基 q_0, q_1, q_2, q_3, q_4 的过渡矩阵为

$$\boldsymbol{P} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

设任一不超过 4 次的多项式 $p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$ 在基 q_0, q_1, q_2, q_3, q_4 下的坐标为

$$(y_1, y_2, y_3, y_4, y_5)^T$$

由例 1 知,这个多项式在基 p_0, p_1, p_2, p_3, p_4 下的坐标是 $(y_1, y_2, y_3, y_4, y_5)^1$, 从而有坐标变换公式

$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \mathbf{P} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix} \quad \boxed{\mathbf{P}} \mathbf{\vec{y}} \quad \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}.$$

用矩阵的初等行变换求 P^{-1} , 把矩阵(P,E)中的P变成E, 则E 即变成 P^{-1} . 计算如下

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 3 \\ 0 & 1 & 2 & 0 & 0 & 0 & 1 & 0 & -3 & 8 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -3 & 6 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 & -1 & 2 & -3 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & -2 & 3 & -4 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -3 & 6 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & -2 & 3 & -4 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -3 & 6 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

多项式 $p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$ 在基 q_0, q_1, q_2, q_3, q_4 下的坐标为

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 \\ 0 & 1 & -2 & 3 & -4 \\ 0 & 0 & 1 & -3 & 6 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_0 - a_1 + a_2 - a_3 + a_4 \\ a_1 - 2a_2 + 3a_3 - 4a_4 \\ a_2 - 3a_3 + 6a_4 \\ a_3 - 4a_4 \\ a_4 \end{pmatrix}.$$

目录/Contents

5.1 线性空间的定义与性质

维数、基与坐标

线性变换

线性变换

- 一、线性变换的定义
- 二、线性变换的性质
- 三、线性变换的矩阵表示式

--- 定义1 ---

设 V_n, U_m 分别是n 维和m 维线性空间,如果映射 $T: V_n \to U_m$ 满足

(i) 任给 $\alpha_1, \alpha_2 \in V_n$, 有

$$T\left(\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right)=T\left(\boldsymbol{\alpha}_{1}\right)+T\left(\boldsymbol{\alpha}_{2}\right);$$

(ii)任给 $\alpha \in V_n$, $\lambda \in R$ (从而 $\lambda \alpha \in V_n$), 有

$$T\left(\lambda\boldsymbol{lpha}\right)=\lambda T\left(\boldsymbol{lpha}\right)$$

那么,T 就称为从 V_n 到 U_m 的线性映射,或称为线性变换.

简言之, 线性映射就是保持线性组合的对应的映射.

一、线性变换的定义

例如,

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 , $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \to \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$,

其中

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

就确定了一个从 R^n 到 R^m 的映射,并且是个线性映射.

特别地,如果在定义 1 中取 $V_n = U_m$,那么T 是一个从线性空间 V_n 到其自身的线性映 射,称为线性空间 V_n 中的线性变换.

例 1 设V 是实数域 R 上的一个线性空间,对任意的 $\alpha \in V$,分别定义如下三个 $V \to V$ 的映射:

- $(1) I(\alpha) = \alpha;$
- (2) $O(\alpha) = 0$, 其中 $\mathbf{0}$ 是V 中的零向量;
- (3) $T(\alpha) = k\alpha$, 其中 $k \in \mathbb{R}$ 是固定的数.

则这三个映射都是线性空间V 上的线性变换,分别称为V 的恒等变换、零变换和数乘变换.

(1) 微分运算 D 是一个线性变换.这是因为任取

$$p = a_3 x^3 + a_2 x^2 + a_1 x + a_0 \in P \left[x \right]_3, \quad q = b_3 x^3 + b_2 x^2 + b_1 x + b_0 \in P \left[x \right]_3,$$

则有

$$Dp = 3a_3x^2 + 2a_2x + a_1$$
, $Dq = 3b_3x^2 + 2b_2x + b_1$.

一、线性变换的定义

于是

$$D(p+q) = D[(a_3+b_3)x^3 + (a_2+b_2)x^2 + (a_1+b_1)x + (a_0+b_0)] = 3(a_3+b_3)x^2 + 2(a_2+b_2)x + (a_1+b_1)$$

$$= 3a_3x^2 + 2a_2x + a_1 + 3b_3x^2 + 2b_2x + b_1 = Dp + Dq$$

$$D\left(\lambda p\right) = D\left(\lambda a_{_{3}}x^{_{3}} + \lambda a_{_{2}}x^{_{2}} + \lambda a_{_{1}}x + \lambda a_{_{0}}\right) = \lambda 3a_{_{3}}x^{_{2}} + \lambda 2a_{_{2}}x + \lambda a_{_{1}} = \lambda \left(3a_{_{3}}x^{_{2}} + 2a_{_{2}}x + a_{_{1}}\right) = \lambda Dp.$$

(2) 如果T(p)=1, 那么T 是个变换, 但不是线性变换.这是因为

$$T(p+q) = 1$$
, $T(p) + T(q) = 1 + 1 = 2$,

故

$$T(p+q) \neq T(p) + T(q)$$
.

一、线性变换的定义

例3
$$\mathbf{E}\mathbf{R}^2 = \left\{ \boldsymbol{\alpha} = \begin{pmatrix} x \\ y \end{pmatrix} \middle| x, y \in \mathbf{R} \right\}$$
中定义映射 $T : \mathbf{R}^2 \to \mathbf{R}^2$ 为: $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$,

对任意的
$$\alpha = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \beta = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$$
及任意实数 $\lambda \in \mathbb{R}$,有

$$T\left(\boldsymbol{\alpha}+\boldsymbol{\beta}\right) = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = T\left(\boldsymbol{\alpha}\right) + T\left(\boldsymbol{\beta}\right),$$

$$T\left(\lambda\boldsymbol{\alpha}\right) = T\begin{pmatrix} \lambda x_1 \\ \lambda y_1 \end{pmatrix} = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} \lambda x_1 \\ \lambda y_1 \end{pmatrix} = \lambda \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \lambda T\left(\boldsymbol{\alpha}\right),$$

所以T 是 \mathbf{R}^2 上的线性变换.

这个线性变换的几何意义是: T 将xoy 平面上任一向量绕原点按逆时针方向旋转 φ 角.

一、线性变换的定义

例 4 设有n 阶矩阵 $A = (a_{ij}) = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 其中 $\alpha_i = \begin{vmatrix} a_{2i} \\ \vdots \end{vmatrix}$

定义 \mathbb{R}^n 中的变换 y = T(x)为 $T(x) = Ax(x \in \mathbb{R}^n)$,对任意的 $\alpha, \beta \in \mathbb{R}^n$ 及任意常数 $\lambda \in \mathbb{R}$,有 $T(\alpha + \beta) = A(\alpha + \beta) = A\alpha + A\beta = T(\alpha) + T(\beta),$ $T(\lambda \alpha) = A(\lambda \alpha) = \lambda A \alpha = \lambda T(\alpha),$

因此T 为 \mathbb{R}^n 上的线性变换.

>>> 二、线性变换的性质

性质 1 T 0 = 0,T $(-\alpha)$ = -T α ;

性质 2 若 $\beta = k_1 \alpha_1 + k_2 \alpha_2 + \cdots + k_m \alpha_m$, 则 $T\beta = k_1 T\alpha_1 + k_2 T\alpha_2 + \cdots + k_m T\alpha_m$;

性质 3 若 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关,则 $T\alpha_1, T\alpha_2, \dots, T\alpha_m$ 亦线性相关.

注意: 性质 3 的逆命题是不成立的,即若 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,则

 $T\alpha_1, T\alpha_2, \cdots, T\alpha_m$ 不一定线性无关.

例如,当线性变换是零变换时, $T\alpha_i = \mathbf{0}(i = 1, 2, \dots, m)$,从而尽管 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关,

但是 $T\alpha_1, T\alpha_2, \dots, T\alpha_m$ 却线性相关.

二、线性变换的性质

性质 4

线性变换T 的像集 $T(V_n)$ 是一个线性空间,称为线性变换T 的像空间.

证明 设 $\beta_1, \beta_2 \in T(V_n)$,则有 $\alpha_1, \alpha_2 \in V_n$,使 $T(\alpha_1 = \beta_1, T(\alpha_2 = \beta_2)$,从而

$$\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}=T\boldsymbol{\alpha}_{1}+T\boldsymbol{\alpha}_{2}=T\left(\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right)\in T\left(\boldsymbol{V}_{n}\right)\quad\left(\boldsymbol{\Xi}\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\in\boldsymbol{V}_{n}\right),$$

$$\lambda \boldsymbol{\beta}_{1} = \lambda T \, \boldsymbol{\alpha}_{1} = T \, \left(\lambda \boldsymbol{\alpha}_{1} \right) \in T \, \left(V_{n} \right) \, \left(\, \boldsymbol{\Xi} \, \lambda \boldsymbol{\alpha}_{1} \, \in V_{n} \, \right) \, ,$$

 $T(V_n)$ 对 V_n 中的线性运算封闭,故它是 V_n 的一个线性子空间.

性质 5 使 $T\alpha = \mathbf{0}$ 的 α 的全体 $S_T = \{\alpha | \alpha \in V_n, T\alpha = \mathbf{0}\}$ 也是 V_n 的一个线性子空间, $\Re S_T$ 为线性变换T 的核.

证明 $S_T \subset V_n$, 且对任意 $\alpha_1, \alpha_2 \in S_T$, 有 $T\alpha_1 = 0, T\alpha_2 = 0$, 于是

$$T\left(\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right)=T\;\boldsymbol{\alpha}_{1}+T\;\boldsymbol{\alpha}_{2}=\mathbf{0}\;,\qquad T\left(\lambda\boldsymbol{\alpha}_{1}\right)=\;\boldsymbol{\mathcal{X}}\;\boldsymbol{\alpha}_{1}\;=\;\mathbf{\Omega}\;\;\mathbf{-0}\;,$$

所以 $\alpha_1 + \alpha_2 \in S_T$, $\lambda \alpha_1 \in S_T$. 这说明 S_T 对 V_n 中的线性运算封闭,所以 S_T 是 V_n 的一个

线性子空间.

例如,例 4 中所给的线性变换T 的像空间就是 $\alpha_1, \alpha_2, \dots, \alpha_n$ 所生成的线性空间

$$T\left(\mathbf{R}^{n}\right) = \left\{ \mathbf{y} = x_{1}\boldsymbol{\alpha}_{1} + x_{2}\boldsymbol{\alpha}_{2} + \dots + x_{n}\boldsymbol{\alpha}_{n} \middle| x_{1}, x_{2}, \dots, x_{n} \in \mathbf{R} \right\},$$

而T 的核 S_T 就是齐次线性方程组Ax = 0的解空间.

线性变换是一个很抽象的概念,如何将它具体化呢?我们发现,如果给定线性空间 $V_{_{n}}$ 的 一个基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 则对 V_n 中任意向量 α 有

$$\boldsymbol{\alpha} = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \cdots + k_n \boldsymbol{\alpha}_n,$$

由线性变换的性质得:

$$T\left(\boldsymbol{\alpha}\right) = k_1 T\left(\boldsymbol{\alpha}_1\right) + k_2 T\left(\boldsymbol{\alpha}_2\right) + \cdots + k_n T\left(\boldsymbol{\alpha}_n\right).$$

于是 α 在 T 下的像就由基的像 $T\left(\alpha_{1}\right)$, $T\left(\alpha_{2}\right)$, \cdots , $T\left(\alpha_{n}\right)$ 所唯一确定. 而 $T\left(\alpha_{i}\right) \in V\left(i=1,2,\cdots,n\right)$, 所以 $T(\alpha_i) \in V(i = 1, 2, \dots, n)$ 也可由基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 来线性表示,即有

由上式得: $T\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}\right) = \left(T\left(\boldsymbol{\alpha}_{1}\right), T\left(\boldsymbol{\alpha}_{2}\right), \cdots, T\left(\boldsymbol{\alpha}_{n}\right)\right) = \left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{n}\right) A$

其中
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

矩阵 \mathbf{A} 称为线性变换 T 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的矩阵.

显然, 矩阵 \mathbf{A} 由基的像 $T\left(\boldsymbol{\alpha}_{1}\right), T\left(\boldsymbol{\alpha}_{2}\right), \cdots, T\left(\boldsymbol{\alpha}_{n}\right)$ 唯一确定.

反之,如果给定一个矩阵 \mathbf{A} 作为某个线性变换 T 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵,也就是给出了 这个基在变换下的像,根据变换T保持线性关系的特性,我们来推导变换T必须满足的关系式。

$$V_n$$
 中的任意向量记为 $\alpha = \sum_{i=1}^n x_i \alpha_i$ 有

$$T \boldsymbol{\alpha} = T \left(\sum_{i=1}^{n} x_{i} \boldsymbol{\alpha}_{i} \right) = \sum_{i=1}^{n} x_{i} T \left(\boldsymbol{\alpha}_{i} \right) = \left(T \left(\boldsymbol{\alpha}_{1} \right), T \left(\boldsymbol{\alpha}_{2} \right), \dots, T \left(\boldsymbol{\alpha}_{n} \right) \right) \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \dots, \boldsymbol{\alpha}_{n} \right) A \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix},$$

即
$$T\left(\left(\boldsymbol{lpha}_{1}, \boldsymbol{lpha}_{2}, \cdots, \boldsymbol{lpha}_{n}\right) \begin{vmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}\right) = \left(\boldsymbol{lpha}_{1}, \boldsymbol{lpha}_{2}, \cdots, \boldsymbol{lpha}_{n}\right) A \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}.$$

定理 1 设线性变换T 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的矩阵是A, 向量 α 与 $T(\alpha)$ 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下

的坐标分别为
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
和 $\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$,

则有

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

按坐标表示,有

$$T(\alpha) = A\alpha.$$

>>> 三、线性变换的矩阵表示式

例 5

在
$$P[x]$$
 中取基 $p_1 = 1, p_2 = x, p_3 = x^2, p_4 = x^3$ 求微分运算D 的矩阵.

$$\begin{cases} Dp_1 = 0 = 0p_1 + 0p_2 + 0p_3 + 0p_4, \\ Dp_2 = 1 = 1p_1 + 0p_2 + 0p_3 + 0p_4, \\ Dp_3 = 2x = 0p_1 + 2p_2 + 0p_3 + 0p_4, \\ Dp_4 = 3x^2 = 0p_1 + 0p_2 + 3p_3 + 0p_4, \end{cases}$$

$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

所以 D 在这组基下的矩阵为

例 6

设
$$\mathbb{R}^3$$
上线性变换 T 定义为 $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 \\ x_2 + x_3 \\ 2x_1 \end{pmatrix}$, 分别求 T 在基

$$\boldsymbol{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
与基 $\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 下的矩阵.

$$T\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 1\\1\\2 \end{pmatrix} = 0\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3 = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 0\\-1\\2 \end{pmatrix},$$

$$T\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\2\\2 \end{pmatrix} = -\boldsymbol{\alpha}_1 + 0\boldsymbol{\alpha}_2 + 2\boldsymbol{\alpha}_3 = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} -1\\0\\2 \end{pmatrix},$$

可得
$$T\left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3}\right) = \left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\boldsymbol{\alpha}_{3}\right) \begin{pmatrix} 2 & 0 & -1 \\ -2 & -1 & 0 \\ 2 & 2 & 2 \end{pmatrix}$$

T 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$\mathbf{B} = \begin{pmatrix} 2 & 0 & -1 \\ -2 & -1 & 0 \\ 2 & 2 & 2 \end{pmatrix}.$$

可见,同一个线性变换在不同的基下有不同的矩阵.

定理1

设线性空间 V_n 中取定两个基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 与 $\beta_1, \beta_2, \cdots, \beta_n$,由基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 到基 $\beta_1, \beta_2, \cdots, \beta_n$ 的过渡矩阵 为P, V_n 中的线性变换T 在这两个基下的矩阵依次为A 和B, 那么 $B = P^{-1}AP$.

证明 按定理的假设,有

$$(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n) \boldsymbol{P}$$

P 可逆,及

$$T\left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\right)=\left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\right)\boldsymbol{A}, \quad T\left(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n}\right)=\left(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n}\right)\boldsymbol{B},$$

于是

$$\left(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n}\right)\boldsymbol{B} = T\left(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n}\right) = T\left[\left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\right)\boldsymbol{P}\right] = \left[T\left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\right)\right]\boldsymbol{P} = \left(\boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{n}\right)\boldsymbol{A}\boldsymbol{P} = \left(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{n}\right)\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}.$$

因为 $\beta_1, \beta_2, \dots, \beta_n$ 线性无关,所以 $B = P^{-1}AP$.

这定理表明B = A相似,且两个基之间的过渡矩阵P就是相似变换矩阵.

例 7 设
$$R^3$$
上线性变换 T 在基 $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 下的矩阵为 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$, 求 T 在基

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
下的矩阵.

为了求出T 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵,必须先求出从基 e_1, e_2, e_3 到基 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵P.

曲
$$(\alpha_1, \alpha_2, \alpha_3) = (e_1, e_2, e_3)$$
P 易知
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 2 & -1 \\ -1 & 1 & -1 \end{pmatrix}.$$

$$T$$
 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $B = P^{-1}AP = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 2 & -1 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 7 & 8 & -4 \\ -4 & -5 & 2 \\ -4 & -4 & 1 \end{pmatrix}.$

定义 2

线性变换的像空间 $T(V_n)$ 的维数, 称为线性变换T的秩.

显然, 若 $A \in T$ 的矩阵, 则T 的秩就是R(A). 若T 的秩为T , 则T 的核 S_T 的维 数为n-r.