

교과서 변형문제 기본

2-2-2.이차함수의 최대, 최소_신사고(고성은)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2020-03-05
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[이차함수의 최대, 최소]

- •모든 함숫값 중에서 가장 큰 값을 그 함수의 최댓값이라 하고, 가장 작은 값을 그 함수의 최솟값이라 한다.
- $y = a(x-m)^2 + n$ 의 최댓값과 최솟값
- ① a>0이면 $y=a(x-m)^2+n$ 은 x=m일 때 최솟값 n을 갖고 최댓값은 없다.
- ② a < 0이면 $y = a(x-m)^2 + n$ 은 x = m일 때 최댓값 n을 갖고 최솟값은 없다.

- 제한된 범위 $\alpha \leq x \leq \beta$ 에서 이차함수 $f(x) = a(x-m)^2 + n$ 의 최댓값, 최솟값은 다음과 같다.
- ① $\alpha \leq m \leq \beta$ 이면 $f(\alpha), \ f(m), \ f(\beta)$ 중에서 가장 큰 값이 최댓값이고 가장 작은 값이 최솟값이다.
- ② $m<\alpha$ 또는 $\beta< m$ 이면 $f(\alpha),\ f(\beta)$ 중에서 가장 큰 값이 최댓값이고 가장 작은 값이 최솟값이다.

기본문제

[문제]

- **1.** $f(x) = x^2 + 2(a+1)x + a^2 + 3a + 2$ 에서 f(x)가 x = 3에서 최솟값을 가질 때, f(x)의 최솟값은?
 - $\bigcirc -1$
- $\bigcirc -2$
- (3) 3
- (4) -4
- (5) 5

[예제]

- **2.** $1 \le x \le 3$ 일 때, $y = x^2 + 4x + a$ 의 최솟값이 6이다. a의 값은?
 - 1 1

- ② 2
- ③ 3
- **4** 4

⑤ 5

- **3.** $3 \le x \le 7$ 에서 f(x) = x(10-x) + a의 최댓값과 최솟값의 차이는?
 - 1 1

2 2

③ 3

4 4

⑤ 5

[문제]

[문제]

- **4.** $1 \le x \le a$ 일 때, 이차함수 $y = -x^2 + 4x$ 의 최댓값이 4이고 최솟값이 -5이다. 이때, a의 값을 구하면?
 - 1 1

② 2

- 3 3
- 4

⑤ 5

[예제]

5. 다음 그림과 같이 가로의 길이가 $20 \, \mathrm{cm}$, 세로의 길이가 $30 \, \mathrm{cm}$ 인 직사각형에서 가로의 길이는 $x \, \mathrm{cm}$ 만큼 늘리고 세로의 길이는 $x \, \mathrm{cm}$ 만큼 줄여서 새로운 직사각형을 만들려고 한다. 이때 새로운 직사각형의 넓이의 최댓값을 구하면?

- ① 225
- ③ 361
- **4** 625
- (5) 810

[문제]

6. 다음 그림의 색칠된 직사각형에서 점 P는 이차함 수 $y=x^2-6$ 의 그래프 위의 점이다. 이때 색칠된 직사각형의 둘레의 길이의 최댓값을 구하면?

- ① $\frac{21}{2}$
- 2 11
- $3 \frac{23}{2}$
- 4) 12

[문제]

- 7. 어느 과일 가게에서 사과 한 개의 가격이 300원일 때 하루에 1000개씩 팔린다고 한다. 이 사과 한 개의 가격을 x원 올리면 하루 판매량은 2x개 감소한다고 할 때, 사과의 하루 판매액이 최대가 되게하려면 사과 한 개의 가격은?
 - ① 100(원)
- ② 200(원)
- ③ 300(원)
- ④ 400(원)
- ⑤ 500(원)

평가문제

[중단원 마무리]

- **8.** $f(x) = x^2 + 2(k+3)x + k^2 + 8k + 12$ 는 x = a에서 최솟값 9를 가질 때, a의 값은?
 - ① -3
- $\bigcirc -4$
- (3) 5
- (4) 6
- (5) 7

[중단원 마무리]

- **9.** $f(x) = x^2 2(a+2)x + a^2$ 가 x = -1에서 최솟값을 가질 때, f(x)의 최솟값은?
 - ① 2

② 4

③ 6

- **(4)** 8
- **⑤** 10

[중단원 마무리]

- 10. 스프링보드 다이빙은 수면으로부터 b m 높이에 있는 스프링보드에서 뛰어올랐다가 다이빙하는 수상 경기 종목이다. 어떤 선수가 스프링보드에서 뛰어오른 지 t 초 후의 수면으로부터의 높이 b m가 $b=-t^2+at+b$ 이라고 할 때, 이 선수가 2 초 후에 가장 높이 올라갔고, 5 초 후에 수면으로 들어갔다. 이때, a+b의 값은?
 - 1 5
- ② 7
- 3 9
- 4 11
- ⑤ 13

[중단원 마무리]

- **11.** $-2 \le x \le 2$ 일 때, 이차함수 y = (x-3)(x+1) + k의 최솟값이 2일 때, 최댓값은?
 - ① 3

② 5

3 7

- **4** 9
- ⑤ 11

[중단원 마무리]

- **12.** 어느 상점에서 의자판매가격을 x만 원, 한 달 동 안의 이익금을 y만 원이라고 하면 x와 y 사이에는 $y=-2x^2+ax+b$ 인 관계가 성립한다고 한다. 의자가 2만원 일 때, 이익금이 최대수익 50만원이 된다. a+b의 값은?
 - ① 10
- ② 20
- 3 30
- **4**0
- **⑤** 50

[중단원 마무리]

13. 다음 그림과 같이 $\overline{AB} = 25$, $\overline{BC} = 10$ 인 직각삼각 형 ABC의 빗변 AC 위의 점 D에서 두 변 AB, BC에 내린 수선의 발을 각각 E, F라고 하자. 이때 직사각형 DEBF의 넓이가 최대일 때의 둘레길이를 구하면?

- ① 30
- ② 35
- 3 40
- **4** 45
- (5) 50

[대단원 마무리]

- **14.** $1 \le x \le 5$ 에서 이차함수 $y = -x^2 + 4x + a$ 의 최솟 값이 5일 때, 실수 a의 값은?
 - ① 2
- 2 4
- ③ 6
- **4** 8
- (5) 10

[대단원 마무리]

15. 다음 그림과 같이 이등변삼각형의 둘레의 길이가 m이다. 이때, 이등변삼각형의 각 변을 한 변으로 하는 정사각형들의 넓이의 합의 최솟값이 48일 때, **m의 값은?**

- 1) 8
- ② 10
- ③ 12
- 4) 14
- (5) 16

- 유사문제
- **16.** $-3 \le x \le 0$ 의 범위에서 이차함수 $y = x^2 + 4x - 1$ 의 최댓값과 최솟값의 곱은?
 - ① 1

② 2

③ 3

(4) 4

- (5) 5
- 17. 주어진 x의 값의 범위에서 이차함수 $y = x^2 - 4x + 6 \quad (-2 \le x \le 4)$ 의 최댓값과 최솟값의 합을 구하면?
 - ① 16
- 2 17
- ③ 18
- **4**) 19
- **⑤** 20
- **18.** $a+1 \le x \le a+3$ 에서 이차함수 $y = x^2 - 6x + 2a + 5$ 의 최솟값이 -1일 때, 모든 상수 a의 값의 합은?
- 30
- $4\frac{1}{2}$
- **19.** $-1 \le x \le 2$ 에서 이차함수 $y = -5x^2 + 10x + k$ 의 최솟값이 -1일 때, 이 함수의 최댓값은? (단, k는 실수이다.)
 - ① 19
- ② 20
- ③ 21
- 4) 22
- ⑤ 23

20. 그림과 같이 밑변의 길이가 20cm, 높이가 30cm 인 직각삼각형 모양의 색종이에서 직사각형 모양을 잘라내려고 한다. 잘라낼 수 있는 직사각형의 최대 넓이는?

- ① 100cm^2
- ② 120cm²
- 3150cm^2
- 4 180cm²
- ⑤ 200cm²

정답 및 해설

1) [정답] ③

[해설]
$$f(x) = x^2 + 2(a+1)x + a^2 + 3a + 2$$

 $= (x + (a+1))^2 + a + 1$ 이므로
 $x = -a - 1$ 에서 최솟값을 가진다.
그러므로 $-a - 1 = 3$ 이고 $a = -4$
따라서 최솟값은 $a + 1 = -3$

2) [정답] ①

[해설]
$$y=x^2+4x+a=(x+2)^2+a-4$$
이므로 $1 \le x \le 3$ 에서 $x=1$ 일 때 최솟값을 갖는다. 따라서 $x=1$ 을 대입하면 $5+a=6$ 에서 $a=1$

3) [정답] ④

[해설]
$$f(x) = x(10-x) + a$$
에서 $f(x) = x(10-x) + a$ $= -x^2 + 10x + a = -(x-5)^2 + a + 25$ 이므로 주어진 함수의 그래프는 꼭짓점의 좌표가 $(5, a+25)$ 이다. $3 \le x \le 7$ 에서 $x = 3$ 일 때, $y = a + 21$ $x = 5$ 일 때, $y = a + 25$ $x = 7$ 일 때, $y = a + 21$ 이므로 최댓값 $M = a + 25$, 최솟값 $m = a + 21$ 이고 $M - m = (a + 25) - (a + 21) = 4$

4) [정답] ⑤

[해설] 이차함수
$$y=-x^2+4x$$
에서
$$y=-x^2+4x=-(x-2)^2+4$$
 이므로 주어진 함수의 그래프는 꼭짓점의 좌표가 $(2,4)$ 이다. 한편 최댓값이 4이므로 $2\leq a$ 가 된다. $1\leq x\leq a$ 에서 $x=1$ 일 때, $y=3$ $x=2$ 일 때, $y=4$ $x=a$ 일 때, $-(a-2)^2+4$ 이므로 최솟값 $m=-(a-2)^2+4=-5$ 따라서 $a^2-4a-5=(a-5)(a+1)=0$ 이고 $2\leq a$ 이므로 $a=5$

5) [정답] ④

[해설] 새로운 직사각형의 가로의 길이:
$$(20+x)$$
 cm 새로운 직사각형의 세로의 길이: $(30-x)$ cm 이때 새로운 직사각형의 넓이를 y cm 2 라고 하면 $y=(20+x)(30-x)=-x^2+10x+600$ $=-(x-5)^2+625$ 따라서 y 는 $x=5$ 일 때 최댓값 625 을 갖는다.

6) [정답] ⑤

[해설] 점
$$P(a,b)$$
에 대해서 $b=a^2-6<0$ 이므로
직사각형의 세로의 길이: $6-a^2$ cm

직사각형의 가로의 길이:
$$a$$
 cm 직사각형의 둘레의 길이를 y cm 라고 하면 $y=2 imes\{(6-a^2)+a\}$ $=-2a^2+2a+12=-2\Big(a-\frac{1}{2}\Big)^2+\frac{25}{2}$ 따라서 $a=\frac{1}{2}$ 일 때, 최댓값 $\frac{25}{2}$ 를 갖는다.

7) [정답] ④

[해설] 사과의 가격:
$$300+x$$

판매량: $1000-2x$
판매액을 y 라고 하면
$$y=(300+x)(1000-2x)=-2x^2+400x+300000$$
$$=-2(x-100)^2+320000$$
따라서 $x=100$ 일 때, 판매량이 최대가 된다.
이때 사과의 가격은 $400(원)$ 이다.

8) [정답] ④

[해설]
$$f(x) = x^2 + 2(k+3)x + k^2 + 8k + 12$$

= $(x+k+3)^2 + 2k + 3$ 이므로
 $x = -k-3$ 일 때, 최솟값 $2k+3$ 을 가진다.
그러므로 $2k+3=9$, $k=3$
따라서 $-k-3=-6$ 이므로 $a=-6$

9) [정답] ④

[해설]
$$f(x) = x^2 - 2(a+2)x + a^2$$

 $= (x-a-2)^2 + a^2 - (a+2)^2$
 $= (x-a-2)^2 - 4a - 4$ 이므로
 $x = a+2 = -1$ 일 때, 최솟값을 가지므로 $a = -3$
 $f(x)$ 는 $x = -1$ 일 때, 최솟값 8을 가진다.

10) [정답] ③

[해설]
$$2$$
초 후에 높이가 최대이므로 $h=-t^2+at+b=-(t-2)^2+b+4=-t^2+4t+b$ 그러므로 $a=4$ 한편 5 초 후에 수면에 닿으므로 $t=5$ 일 때, $h=-5^2+4\times5+b=-5+b=0$ 그러므로 $b=5$ 따라서 $a+b=9$

11) [정답] ⑤

[해설] 이차함수
$$y=(x-3)(x+1)+k$$
에서 $y=(x-3)(x+1)+k=x^2-2x+k-3$ $=(x-1)^2+k-4$ 이므로 주어진 함수의 그래프는 꼭짓점의 좌표가 $(1,k-4)$ 이다. 한편 최솟값이 2이므로 $k-4=2$ 이고 $k=6$ $-2 \le x \le 2$ 에서 $x=-2$ 일 때, $y=11$ $x=1$ 일 때, $y=2$ $x=2$ 일 때, $y=3$ 이므로 최댓값 $M=11$

12) [정답] ⑤

[해설]
$$y = -2x^2 + ax + b$$
에서
$$y = -2(x-2)^2 + 50 = -2x^2 + 8x + 42$$
이므로 따라서 $a = 8$, $b = 42$ 이고 $a + b = 50$

13) [정답] ②

[해설]
$$\triangle ABC \hookrightarrow \triangle DFC(AA$$
 닮음)이므로 $\overline{CF} = 2m$ 이라고 하면
$$\overline{DF} = 5m$$
이고 $\overline{BF} = 10 - 2m$ 이때 $\square DEBF$ 의 넓이를 y 라고 하면
$$y = 5m(10 - 2m) = -10\left(m - \frac{5}{2}\right)^2 + \frac{125}{2}$$

그러므로
$$m=\frac{5}{2}$$
일 때, \Box DEBF의 넓이가 최대

따라서
$$m=\frac{5}{2}$$
일 때, \square DEBF의 둘레의 길이는 $2\{5m+(10-2m)\}=2\times(3m+10)=35$

14) [정답] ⑤

[해설]
$$y=-x^2+4x+a=-(x-2)^2+a+4$$
 $1 \le x \le 5$ 에서 $x=1$ 일 때, $y=a+3$ $x=2$ 일 때, $y=a+4$ $x=5$ 일 때, $y=a-5$ 이므로 최솟값 $m=a-5=5$ 따라서 $a=10$

15) [정답] ③

[해설] 이등변삼각형의 길이를
$$a$$
, a , $m-2a$ 이라 하면
$$(색칠된 부분의 넓이)=a^2+a^2+(m-2a)^2 = 6a^2-4ma+m^2 = 6\Big(a^2-\frac{2}{3}ma\Big)+m^2=6\Big(a-\frac{1}{3}m\Big)^2+\frac{1}{3}m^2$$
 그러므로 $\frac{1}{3}m^2=48$, $m^2=144$ 따라서 $m=12$

16) [정답] ⑤

[해설]
$$y=(x+2)^2-5$$
 $(-3 \le x \le 0)$ $x=-2$ 에서 최솟값 -5 , $x=0$ 에서 최댓값 -1 를 가진다.

따라서 최댓값과 최솟값의 곱은 $-5 \times (-1) = 5$ 이다.

17) [정답] ⑤

[해설]
$$f(x) = x^2 - 4x + 6 = (x - 2)^2 + 2$$
라 하면 $f(2) = 2$, $f(-2) = 18$, $f(4) = 6$
∴ $-2 \le x \le 4$ 의 범위에서 최솟값은 2,
최댓값은 18 이므로 그 합은 20 이다.

18) [정답] ①

[해설]
$$f(x) = x^2 - 6x + 2a + 5 = (x-3)^2 + 2a - 4$$
라

하자.

- (i) $a+3 \le 3$ 즉, $a \le 0$ 일 때 x = a+3에서 최소이므로 최솟값 $f(a+3) = a^2+2a-4=-1$, $a^2+2a-3=0$, (a+3)(a-1)=0∴ a=-3
- (ii) a+1 < 3 < a+3 즉, 0 < a < 2일 때 x = 3에서 최소이므로 최솟값 f(3) = 2a-4 = -1 $\therefore a = \frac{3}{2}$
- (iii) a+1≥3 즉, a≥2일 때
 x=a+1에서 최소이므로
 최솟값 f(a+1)=(a-2)²+2a-4=-1,
 a²-2a+1=0, (a-1)²=0
 ∴ 해가 없다.

따라서 모든 a의 값의 합은 $-3 + \frac{3}{2} = -\frac{3}{2}$ 이다.

19) [정답] ①

[해설] $y=-5x^2+10x+k=-5(x-1)^2+k+5$ 이므로 이차함수의 그래프는 직선 x=1에 대하여 대칭이다. x=-1에서 최솟값을 갖고 k-15=-1이므로 k=14이다. 따라서 최댓값은 대칭축인 x=1에서 x=1에서 x=1이다.

20) [정답] ③

[해설] 직사각형의 가로의 길이를 a, 세로의 길이를 b라 하자. (20-a):b=20:30이므로 $b=\frac{3(20-a)}{2}$

직사각형의 넓이를
$$S$$
라 하면
$$S = ab = a \cdot \frac{3(20-a)}{2} = -\frac{3}{2}(a^2 - 20a)$$
$$= -\frac{3}{2}(x-10)^2 + 150$$

따라서 S의 최대 넓이는 150이다.