Example

- Consider R(A, B, C) with FDs $F = \{ B \rightarrow C, AC \rightarrow B \}$.
- Decomposition {R₁(A, B), R₂(B,C)} is not dependency preserving
 - Non-trivial FDs in $F_{R1} = \phi$
 - Non-trivial FDs in $F_{R2} = \{B \rightarrow C\}$
 - AC \rightarrow B is not preserved because it is not in ($F_{R1} \cup F_{R2}$)+

<u>r</u>				<u>r1</u>			<i>r</i> 2		
A	В	C		A	В		В	С	
a1	b1	c1	 →	a1	b1		b1	c1	
a2	b2	c1		a2	b2		b2	c1	

- Inserting a new tuple (a1, b2, c1) into r will violate AC → B
- But inserting (a1, b2) into r1 and (b2, c1) into r2 does not violate any FDs in F_{R1} and F_{R2} respectively
- Need to compute r1 ⊗ r2 to detect violation of AC → B