Examen final de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 19 de diciembre de 2024

Grupo, apellidos y nombre: 2,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/9)$.

1 Dada la siguiente tabla de probabilidades condicionales de las 3 variables de interés:

A	0	0	0	0	1	1	1	1
В	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
$P(A, B \mid C)$	0.125	0.188	0.375	0.312	0.408	0.190	0.092	0.310

Si P(C=0)=0.72, ¿cuál es el valor de $P(A=0\mid B=0,C=1)$?

A)
$$P(A=0 \mid B=0, C=1) \le 0.25$$

B)
$$0.25 < P(A=0 \mid B=0, C=1) \le 0.50$$

C)
$$0.50 < P(A=0 \mid B=0, C=1) \le 0.75$$

D)
$$0.75 < P(A=0 \mid B=0, C=1) \le 1.00$$

Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos (en notación homogénea) define un clasificador equivalente al dado?

 $P(c \mid \mathbf{x})$

 $c = 1 \ c = 2$

0.1

0.2

0.9

0.4

0.9

0.8

0.1

0.6

 $P(\mathbf{x})$

0

0.1

0.5

0.4

 \mathbf{x}

 $x_1 x_2$

0 1

1 0

1

0 0

A)
$$\mathbf{w}_1 = (-0.5, 0, 0)^t$$
 y $\mathbf{w}_2 = (0, -1, 0)^t$.

B)
$$\mathbf{w}_1 = (0.5, 0, 0)^t$$
 y $\mathbf{w}_2 = (0, 1, 0)^t$.

C)
$$\mathbf{w}_1 = (0, 1, 0)^t$$
 y $\mathbf{w}_2 = (0.5, 0, 0)^t$.

D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.

Sea un problema de clasificación en dos clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla la probabilidad de error ε del clasificador $c(\mathbf{x})$ basado en la función discriminante $g(\mathbf{x}) = 1.0 - x_1 + 0.5x_2$ definido como

$$c(\mathbf{x}) = \begin{cases} 1 & \text{si } g(\mathbf{x}) < 0 \\ 2 & \text{en caso contrario} \end{cases}$$

$c(\mathbf{x}) - \mathbf{z}^{-}$	~- J ()	
$c(\mathbf{x}) = \begin{cases} -1 \\ 2 \end{cases}$	en caso	conti

A)	ء (/	0.25
Λ	1 2	_	0.40

B)
$$0.25 \le \varepsilon < 0.50$$
.

C)
$$0.50 \le \varepsilon < 0.75$$
.

D)
$$0.75 \le \varepsilon$$
.

4 La figura siguiente muestra una partición de 4 puntos bidimensionales en dos clústers, \bullet y \circ :

Si transferimos de clúster el punto $(10,1)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

- A) $\Delta J < -7$.
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.
- 5 Sea $g(\mathbf{x})$ un clasificador. Indica cuál de las siguientes funciones no define un clasificador equivalente (o escoge la última opción si todas definen un clasificador equivalente):
 - A) $f(g(\mathbf{x})) = ag(\mathbf{x}) + b$ a > 0
 - B) $f(g(\mathbf{x})) = a^{g(\mathbf{x})}$ a > 1
 - C) $f(g(\mathbf{x})) = ag(\mathbf{x})^3$ a > 0
 - D) Las tres funciones anteriores definen un clasificador equivalente.
- $6 \, \boxed{}$ La figura siguiente muestra una partición de 4 puntos bidimensionales en dos clústers, \bullet y \circ :

Indica cuál de los siguientes puntos se transfiere de clúster cuando aplicamos el algoritmo K-medias de Duda y Hart, pero no cuando aplicamos la versión convencional del algoritmo K-medias:

- A) $(6,1)^t$
- B) $(4,0)^t$
- C) $(8,0)^t$
- D) $(5,0)^t$

_	
7	Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha = 1$ y margen $b = 0.1$,
	a un conjunto de 3 muestras bidimensionales de aprendizaje para un problema de 2 clases. Tras procesar las
	primeras 2 muestras se han obtenido los vectores de pesos $\mathbf{w}_1 = (0, 1, -2)^t$, $\mathbf{w}_2 = (0, -1, 2)^t$. A continuación,
	se procesa la última muestra (\mathbf{x}_3, c_3) y se obtienen los mismos vectores de pesos, ¿cuál de las siguientes es
	esa última muestra?

- A) $((5,4)^t,1)$
- B) $((1,1)^t,2)$
- C) $((2,1)^t,1)$
- D) $((1,4)^t,1)$
- 8 Supóngase que tenemos una caja con 10 naranjas que contiene 4 naranjas Powell (P) y 6 Valencia (V) de la que extraemos dos naranjas, una detrás de otra sin reposición. Dadas las variables aleatorias:
 - N1: variedad de la primera naranja extraída.
 - N2: variedad de la segunda naranja extraída.

¿Cuál de las siguientes condiciones no es cierta?

A)
$$P(N2 = P) < P(N2 = P \mid N1 = V)$$

B)
$$P(N1 = P, N2 = V) = P(N1 = V, N2 = P)$$

C)
$$P(N1 = V) = P(N1 = V \mid N2 = P)$$

D)
$$P(N2 = P) > P(N2 = P \mid N1 = P)$$

- 9 Sea \mathbf{x} un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si ninguno de los tres es de error mínimo):
 - A) $c(\mathbf{x}) = \underset{c=1,\dots,C}{\operatorname{arg\,min}} e^{p(\mathbf{x},c)}$
 - B) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(\mathbf{x}, c)$
 - C) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg\,min}} \log p(\mathbf{x}, c)$
 - D) Ninguno de los tres clasificadores anteriores es de error mínimo.

Examen final de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 19 de diciembre de 2024

Grupo, apellidos y nombre: 2,

Problema sobre regresión logística

La siguiente tabla presenta por fila una muestra de entrenamiento de 2 dimensiones procedente de una clase:

Adicionalmente, la siguiente tabla representa una matriz de pesos iniciales con los pesos de cada clase dispuestos por columnas:

\mathbf{w}_1	\mathbf{w}_2
-0.5	0.5
-0.5	0.5
-0.5	0.5

Se pide:

- 1. (0.25 puntos) Calcula el vector de logits asociado a la muestra de entrenamiento.
- 2. (0.25 puntos) Aplica la función softmax al vector de logits de la muestra de entrenamiento.
- 3. (0.25 puntos) Calcula la neg-log-verosimilitud del conjunto de entrenamiento respecto a la matriz de pesos iniciales.
- 4. (0.25 puntos) Clasifica la muestra de entrenamiento. En caso de empate, elige cualquier clase.
- 5. (0.5 puntos) Calcula el gradiente de la función NLL en el punto de la matriz de pesos iniciales.
- 6. (0.5 puntos) Actualiza la matriz de pesos iniciales aplicando descenso por gradiente con factor de aprendizaje $\eta = 1.0$.