Digital Systems Design and Laboratory [12. Registers and Counters]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Sequential Logic Design

- □ Unit 11: Latches and Flip-Flops 差別: flip-flop 只有在 active edge 才會改變相同: 都有記憶功能
 - OTHC II. Lateries and The Trops 相同:都有記憶切削
 - > Basic unit
- ☐ Unit 12: Registers and Counters
 - > Simple sequential circuit
- ☐ Units 13--15: Finite State Machines
 - > Complex sequential circuit
- ☐ Unit 16: Summary
 - Put it all together

Outline

- **☐** Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- Counters for Other Sequences
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

Registers (1/2)

可以想成一對 flip-flop 會接在一起同時運作

- ☐ Register: a group of D flip-flops with a common clock
- Example
 - ➤ 4-bit D flip-flop registers with Data, Load, Clear (ClrN), Clock (Clk)
- ☐ First Implementation: gated clock
 - When Load = 1, load data at D to Q at Clk falling

Registers (2/2)

- ☐ Register: a group of D flip-flops with a common clock
- Example
 - ➤ 4-bit D flip-flop registers with Data, Load, Clear (ClrN), Clock (Clk)
- ☐ Second implementation: clock enable
 - ➤ When Load = 1, load data at D to Q at Clk falling

Data Transfer between Registers

8-Bit Register with Tri-State Output (1/2)

■ Symbol

☐ Logic diagram

8-Bit Register with Tri-State Output (2/2)

Data transfer

Outline

- ☐ Registers and Register Transfers
- **☐** Shift Registers
- ☐ Design of Binary Counters
- ☐ Counters for Other Sequences
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

Shift Registers (1/2)

也是 group of flip-flops ,前面的 flip-flop 的 output 會傳給下個 flip-flop

- Shift register: a group of flip-flops where binary data can be stored and shifted left or right when a shift signal is applied
- ☐ Example: 4-bit right-shift register

Shift Registers (2/2)

☐ Timing diagram of a 4-bit right-shift register

N-bit Serial-In Serial-Out Shift Registers

Take (n-1) cycles to output data > SI: Serial In > SO: Serial Out S SO Q' CLK 在第二個 rising edge 前把 SI 拉高了,所以第二個 rising edge 時第一個 S >> Q 第三個 rising edge 時反映在第二個 S >> Q 1. 2 1, 3 CLK SI 7 Clock Periods SO

SI

Parallel-In Parallel-Out Right Shift Register (1/2)

☐ Parallel-in parallel-out (PIPO)

Sh (Shift)	L (Load)	Q ₃ +	Q ₂ +	Q ₁ +	Q_0^+	Action
0	0	Q_3	Q_2	Q_1	Q_0	No Change
0	1	D_3	D_2	D_1	D_0	Load
1	X	SI	Q_3	Q_2	Q_1	Right Shift

Parallel-In Parallel-Out Right Shift Register (2/2)

☐ Implement using flip-flops and MUXes

Sh (Shift)	L (Load)	Q ₃ +	Q ₂ +	Q ₁ +	Q_0^+	Action
multiplexer {} 0	從 00 過,Q_3 ~ Q_ 0	0 接回去 Q ₃	Q_2	Q_1	Q_0	No Change
0	1	D_3	D_2	D_{1}	D_0	Load
1	Х	SI	Q_3	Q_2	Q_1	Right Shift

Shift Register with Inverted Feedback

- ☐ Johnson counter: a shift register with inverted feedback
 - Counter: a circuit that cycles through a fixed sequence of states

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- Design of Binary Counters
- Counters for Other Sequences
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

T flip-flop:決定翻轉或不翻轉 7= : unchanged 用 K-map 做 minimization 來決 D flip-flop:直接給值 Counting 0--7 (1/2) 定 T_B, T_C Q+>D (when edge is triggered) 所有 flip-flop 受同個 clock 控制 **Synchronous** counter: flip-flops $\mathbf{0}$ are synchronized by a clock ☐ First implementation: T flip-flops

T = 1 : 翻轉, T = 0 : 不變 Flip-Flop Inputs **Present Next State** (By Observation) State C^+ B⁺ A^+ В Α T_C T_{R} T_{A} TB=A Tc=BB B' В $T_{\underline{B}}$ 因為每次 A 都會改變 binary counter: 我們想從 0 數到 7, 到 7 以後再回到 0

Counting 0--7 (2/2)

D 的值給多少,就會在 active edge 時把 D 的值給多少

☐ Second implementation: D flip-flops

$$\triangleright$$
 D_A = A⁺ = A[']

$$\triangleright$$
 D_B = B⁺ = BA' + B'A = B \bigoplus A

- B changes when A = 1
- \triangleright D_C = C⁺ = C'BA + CB' + CA' = C \bigoplus BA
 - C changes when A = B = 1

١	Presen State	t	Next State			
С	В	Α	C+	B ⁺	A ⁺	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	0	

Up-Down Counter

☐ U and D control "up" and "down"

- \triangleright Do not allow U = D = 1
- \triangleright D_A = A⁺ = A \oplus (U + D)
- \triangleright D_B = B⁺ = B \oplus (UA + DA') \cancel{A} : BOY
- $\triangleright D_C = C^+ = C \oplus (UBA + DB'A') / A: U \oplus BA$

СВА	C ⁺ B ⁺ A ⁺				
	U	D			
000	001	111			
001	010	000			
010	011	001			
011	100	010			
100	101	011			
101	110	100			
110	111	101			
111	000	110			

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- **☐** Counters for Other Sequences
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

State Diagram of Counter

☐ What if the sequence is not in straight binary order?

ı	Present State	t	Ne	ext Sta	te
С	В	Α	C ⁺	B ⁺	A ⁺
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

K-Map Derivation

■ Next states

BAC	0	1
00	0	1
01	X	х
11	0	0
10	1	х
	Δ	\

記得注意 midterm 順序

С	В	Α	C ⁺	B ⁺	A ⁺
0	0	0	1	0	0
0	0	1	J -	-	-
0	1		0	1	1
0	1	1	³ 0	0	0
1	0	0	⁹ 1	1	1
1	0		-	-	-
1	1	0	6 -	-	-
1	1	1	0	1	0

Implementation: T Flip-Flops (1/2)

灰底的地方:值改變 白底的地方:值不變

Implementation: T Flip-Flops (2/2)

Don't Care States

如果 initial state 是 don't care

- ☐ If flip-flops are initially set to CBA = 001
 - > Tracking signals through the network shows that $T_C = T_B = 1$ and $T_A = 0$, so the state changes to 111

- When the power is turned on, the initial states of all flip-flops are unpredictable!! 在設計時要考慮這些 don't care state 會不會回到 cycle 中
 - ➤ Don't care states should be checked to make sure that they eventually lead into the main counting sequence
 - ► Or use power-up reset 強迫回到這五個 state 的某個 state

Implementation: D Flip-Flops (1/2)

next state >> 看 D 送什麼值就是什麼值

■ Next states

С	В	Α	C+	B ⁺	A ⁺
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

Implementation: D Flip-Flops (2/2)

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- ☐ Counters for Other Sequences
- ☐ Counter Design Using S-R and J-K Flip-Flops
- ☐ Derivation of Flip-Flop Input Equations

Recap: S-R Flip-Flops

- ☐ What is the relation between S, R and Q, Q⁺?
 - ➤ We do it reversely from Q and Q⁺ to S and R · 因為有兩個 cases 是 not allowed ,所以只有 六個 cases ,

Using S-R Flip-Flops (1/2)

C 從 0 變成 C^+ = 1

☐ Derive S-R flip-flop inputs from the excitation table

Q	Q ⁺	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Х	0

excitation table

>>		citation	table	, QQ^+	· = 01 •	因此 S	SR = 10	,所以	這邊的	S_C =	1, S_R =
С	В	Α	C ⁺	B ⁺	A ⁺	S _C	R_{C}	S _B	R_B	S _A	R _A
0	0	0	1	0	0	1	0	0	X	0	Χ
0	0	1	-	-	-	X	X	Χ	Χ	Χ	Χ
0	1	0	0	1	1	0	X	Χ	0	1	0
0	1	1	0	0	0	0	X	0	1	0	1
1	0	0	1	1	1	Х	0	1	0	1	0
1	0	1	-	-	-	Х	X	Χ	Χ	Χ	X
1	1	0	-	-	-	Х	X	Χ	Χ	Χ	Χ
1	1	1	0	1	0	0	1	Χ	0	0	1

By Karnaugh maps

$$S_C = B', R_C = A, S_B = C, R_B = C'A, S_A = CA' + BA', R_A = A$$

0

Using S-R Flip-Flops (2/2)

• truth table 和 K-map 其實是同一件事情

☐ Alternative: derive S-R flip-flop inputs with K-maps (faster?)

Recap: J-K Flip-Flops

☐ What is the relation between J, K and Q, Q⁺?

如果 Q 要從 0 變成 1, 代表 J 必為 1 (無論是要用 set to 1 還是 toggle 的方式來變, J 都是 1)

➤ We do it reversely from Q and Q⁺ to J and K

			_	(所能到三人民)
J	K	Q	Q ⁺	J J
0	0	0	0	Jk="
0	0	1	1	- Unchanged
0	1	0	0	JK=01
0	1	1	0	FReset to 0
1	0	0	1	JK=10
1	0	1	1	Set to 1
1	1	0	1	Jk=11 Toggle (好援)
1	1	1	0	loggle (%\dagger)

				Λ	_			
Q	Q ⁺	J	K	,	Q	Q ⁺	J	K
0	0	0	hanzed 0 1 see		0	0	0	X
0	1	Т	بال 0 1 اعام		0	1	1	X
1	0	0 1 to	iset 1 1 gle	-	1	0	Х	1
1	1	ևԻն 0 1	harged 0 0		1	1	X	0

如果 Q, Q^+ 是什麼值, J, K 是什麼值

Using J-K Flip-Flops

☐ Derive J-K flip-flop inputs from the excitation table

Q	Q ⁺	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Х	1
1	1	Х	0

С	В	Α	C+	B ⁺	A ⁺	J _C	K _C	J _B	K _B	J _A	K _A
0	0	0	1	0	0	1	X	0	X	0	X
0	0	1	-	-	-	Х	Χ	Χ	Χ	Χ	Χ
0	1	0	0	1	1	0	Χ	Χ	0	1	Χ
0	1	1	0	0	0	0	Χ	Χ	1	Χ	1
1	0	0	1	1	1	Х	0	1	Χ	1	X
1	0	1	-	-	-	Х	Χ	Χ	Χ	Χ	X
1	1	0	-	-	-	Х	Χ	Χ	Χ	Χ	Χ
1	1	1	0	1	0	Х	1	X	0	Χ	1

By Karnaugh maps

$$J_{C} = B', K_{C} = A, J_{B} = C, K_{B} = C'A, J_{A} = C + B, K_{A} = 1$$

Implementation

☐ S-R flip-flops

☐ J-K flip-flops

Outline

- ☐ Registers and Register Transfers
- ☐ Shift Registers
- ☐ Design of Binary Counters
- Counters for Other Sequences
- ☐ Counter Design Using S-R and J-K Flip-Flops
- **□** Derivation of Flip-Flop Input Equations

Derivation of Flip-Flop Input Equations

□ Determine the flip flop input equations from the <u>next-state</u>
 <u>equations</u> using K-maps

➤ Always copy X's from next state maps onto input maps first 要帶這個表!

open book 考試記得必定 要帶這個表!!!

Туре	Innut	Q :	= 0	Q:	= 1	Rules for forming input map from next state map		
of FF	Input	$Q^{+} = 0$	Q+ = 1.	$Q^{+} = 0$	Q+ = 1	Q = 0 Half of Map	Q = 1 Half of Map	
D D	D	0	1	0	1	No change ^{兩邊 K-ma}	^{)都不動} No change	
T決定 T	T	0	07] 1	1	0	No change	Complement	
	S	0	1	0	Х	No change	Replace 1's with X's	
S-R	R	X	0	1	0	Replace 0's with X's Replace 1's with 0's	Complement	
J-K	J	0	1	Х	Х	No change	Fill in with X's	
J-I/	К	Х	Х	1	0	Fill in with X's	Complement	

SR, JK 不確定的話可以回去看 excitation table

Important Tables

Q	Q ⁺	D
0	0	0
0	1	1
1	0	0
1	1	1

D	۔: ا			_	
1)	Ηr	1-	-	n	n
\boldsymbol{L}	 116	,		\mathbf{U}	\sim

Q	Q ⁺	Т
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-Flop

Q	Q ⁺	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Х	0

S-R Flip-Flop

Q	Q ⁺	J	K
0	0	0	X
0	1	1	X
1	0	Χ	1
1	1	Х	0

J-K Flip-Flop

3-Variable Example (1/3)

3-Variable Example (2/3)

>> 原本用 D flip-flop 或 T flip-flop 都只要一個)

39

3-Variable Example (3/3)

4-Variable Example (1/3)

灰底處反轉(don't care 仍為 don't care)

Q&A