© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°08

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Produit de convolution de suites

On note $E = \mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles. Un élément de E sera noté u plutôt que (u_n) bien qu'il s'agisse d'une suite.

Pour $(u, v) \in E^2$, on définit la suite u + v en posant $(u + v)_n = u_n + v_n$ pour tout $n \in \mathbb{N}$.

On définit également la suite $u \star v$ en posant $(u \star v)_n = \sum_{k} u_k v_{n-k}$ pour tout $n \in \mathbb{N}$.

On rappelle que pour montrer que deux suites u et v de E sont égales, il suffit de montrer que $u_n = v_n$ pour tout $n \in \mathbb{N}$.

Partie I – Structure d'anneau de $(E, +, \star)$

- **I.1** On admet que (E, +) est un groupe commutatif. Préciser son élément neutre.
- **I.2** Montrer que la loi \star est commutative.
- **I.3** Montrer que la loi \star est associative.
- **I.4** On définit la suite ε en posant $\varepsilon_0 = 1$ et $\varepsilon_n = 0$ pour $n \in \mathbb{N}^*$. Vérifier que ε est neutre pour la loi \star .
- **I.5** Montrer que la loi ★ est distributive sur la loi +.

Les questions précédentes permettent alors d'affirmer que (E, +, ★) est un anneau commutatif.

- **I.6** On dit qu'une suite $u \in E$ est nulle à partir du rang $N \in \mathbb{N}$ si $u_n = 0$ pour tout entier $n \ge N$. Montrer que si $u \in E$ est nulle à partir du rang N_1 et $v \in E$ est nulle à partir du rang N_2 , alors $u \star v$ est nulle à partir du rang $N_1 + N_2$.
- **I.7** On note F l'ensemble des suites de E nulles à partir d'un certain rang. Montrer que F est un sous-anneau de $(E, +, \star)$.

Partie II – Suites géométriques et calculs de puissances

Pour $q \in \mathbb{R}$, on note [q] la suite géométrique définie par $[q]_n = q^n$ pour tout $n \in \mathbb{N}$. Pour $u \in \mathbb{E}$, on pose $u^0 = \varepsilon$ et $u^p = \underbrace{u \star u \star \cdots \star u}_{p \text{ fois}}$ pour $p \in \mathbb{N}^*$.

II.8 On se donne deux réels q et r distincts. Montrer que pour tout $n \in \mathbb{N}$,

$$([q] \star [r])_n = \frac{q^{n+1} - r^{n+1}}{q - r}$$

II.9 On se donne $q \in \mathbb{R}$. Déterminer le terme général de la suite $[q]^2 = [q] \star [q]$.

© Laurent Garcin MP Dumont d'Urville

II.10 On note a la suite constante égale à 1, autrement dit a = [1]. Déterminer le terme général des suites $a^2 = a \star a$ et $a^3 = a \star a \star a$ sous forme factorisée.

II.11 Montrer que de manière générale, pour tout entier $p \in \mathbb{N}^*$,

$$\forall n \in \mathbb{N}, \ (a^p)_n = \binom{n+p-1}{p-1}$$

II.12 On fixe $p \in \mathbb{N}^*$. Montrer que

$$(a^p)_n \sim \frac{n^{p-1}}{(p-1)!}$$

Partie III – Inversibles de l'anneau $(E, +, \star)$

On rappelle qu'un élément de l'anneau $(E, +, \star)$ est dit inversible s'il est inversible pour la loi \star . Si $u \in E$ est inversible, on notera u^{-1} son inverse.

- **III.13** Montrer que $u \in E$ est inversible si et seulement si $u_0 \neq 0$.
- **III.14** On se donne $q \in \mathbb{R}$ et on rappelle que [q] est la suite géométrique définie dans la partie 2. Justifier que [q] est inversible. On note y l'inverse de [q]. Calculer les termes y_0 , y_1 , y_2 et y_3 .
- **III.15** Déterminer y_n pour tout $n \in \mathbb{N}$.

Partie IV – Intégrité de l'anneau $(E, +, \star)$

- **IV.16** On se donne u et v deux suites non constamment nulles. Justifier que les ensembles $\{n \in \mathbb{N}, u_n \neq 0\}$ et $\{n \in \mathbb{N}, v_n \neq 0\}$ admettent tous deux un minimum que l'on note respectivement p et q.
- **IV.17** Montrer que $(u \star v)_{p+q} \neq 0$.
- **IV.18** En déduire que l'anneau $(E, +, \star)$ est intègre.

Partie V – Résolution d'une équation dans E

On note u la suite de E telle que $u_0 = 1$, $u_1 = -5$, $u_2 = 6$ et $u_n = 0$ pour tout entier $n \ge 3$. On note également v la suite de E telle que $v_0 = v_1 = 1$ et $v_n = 0$ pour tout entier $n \ge 2$.

- **V.19** Justifier qu'il existe une unique suite $x \in E$ telle que $u \star x = v$.
- **V.20** Déterminer x_0 et x_1 .
- **V.21** Montrer que la suite x vérifie une relation de récurrence homogène d'ordre 2 à coefficients constants.
- **V.22** En déduire le terme général de la suite x.
- **V.23** Pour $a \in \mathbb{R}$, on note $\{a\}$ la suite de E telle que $\{a\}_0 = 1$, $\{a\}_1 = -a$ et $\{a\}_n = 0$ pour tout entier $n \ge 2$. Justifier que $\{a\}$ est inversible et donner son inverse en utilisant la partie 3
- **V.24** Déterminer des réels a et b tels que $u = \{a\} \star \{b\}$.
- **V.25** Retrouver alors le terme général de la suite x à l'aide de la question **II.8**.

Partie VI - Un peu de Python

© Laurent Garcin MP Dumont d'Urville

VI.26 Écrire une fonction Python nommée convol

• prenant en arguments deux listes U et V de même taille contenant respectivement les N+1 premiers termes de deux suites u et v, c'est-à-dire

$$U = [u_0, u_1, ..., u_N]$$
 et $V = [v_0, v_1, ..., v_N]$

• et renvoyant la liste des N + 1 premiers termes de la suite $u \star v$, c'est-à-dire la liste

$$[(u \star v)_0, (u \star v)_1, \dots, (u \star v)_N]$$