Constraint Satisfaction Problems

CPSC 470 – Artificial Intelligence Brian Scassellati

Alpha-Beta Pruning Example

Sudoku

4						8		5
	3							
			7					
	2						6	
				8		4		
	4			1				
			6		3		7	
5		3	2		1			
1		4						

4	1	7	3	6	9	8	2	5
6	3	2	1	5	8	9	4	7
9	5	8	7	2	4	3	1	6
8	2	5	4	3	7	1	6	9
7	9	1	5	8	6	4	3	2
3	4	6	9	1	2	7	5	8
2	8	9	6	4	3	5	7	1
5	7	3	2	9	1	6	8	4
1	6	4	8	7	5	2	9	3

Example puzzle with a unique solution

No duplicates in row, column, or 3x3 box

Solving Sudoku via Search

4	A2	A3				8		5
	3							
			7					
	2						6	
				8		4		
	4			1				
			6		3		7	
5		3	2		1			
1		4						

- 61 depth, max 8 branching factor
- 4.6 x 10³⁸ possibilities
- Even on 1 million 10GHz, 1024 core machines, this is 1300 billion years!

- 20 squares fixed and
 61 need to be solved
- Find possible entries

- A2: 1**2345**67**8**9

- A3: 1 2 **3 4 5** 6 7 **8** 9

Build a tree:

A Smarter Way

4	A2	A3				8		5
	3							
			7					
	2						6	
				8		4		
	4			1				
			6		3		7	
5		3	2		1			
1		4						

Find possible entries

- A2: 1 **2 3 4 5** 6 7 **8** 9

- A3: 12**345**67**8**9

 Once we choose A2, that further limits our choices

Constraint Satisfaction Problems

- In a typical search problem
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test
- In a constraint satisfaction problem (CSP):
 - state is an assignment of values from a domain D_i to a set of variables X_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- A solution to a CSP is one that is complete (all variables are assigned) and consistent (no constraints are violated)
- Simple example of a formal representation language

Sudoku as a CSP

- Domain = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Variables = { A1, A2, ... A9, B1, B2, ... B9, ...

I1, I2, ... I9 }

- Constraints from row, column, and 3x3 cell restrictions
- Constraints =
 {A1≠A2, A1≠A3, A1≠A4, ...
 A1≠B1, A1≠C1, A1≠D1, ...
 A1≠B2, A1≠B3, A1≠C1, ...}

Simpler Example: Map Coloring

- Variables V_i = {WA, NT, Q, NSW, V, SA, T}
- Domain D_i = {red, green, blue}
- Constraints: adjacent regions must have different colors
 - e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),
 (blue,red), (blue,green)}

Simpler Example: Map Coloring

- Solutions are complete and consistent assignments
- One solution is shown above

```
WA = red, NT = green, Q = red, NSW = green,
```

V = red, SA = blue, T = green

Constraint Graph

- Constraint graph:
 - nodes are variables
 - arcs are constraints
- CSP benefits
 - Standard representation pattern: variables with values
 - Generic goal, successor functions
 - Generic heuristics (no domain specific expertise)
 - Graph can simplify search.
 - e.g. Tasmania is an independent subproblem.

Tasmania

Another Example: Cryptarithmetic

Another Example: Cryptarithmetic

Variables: F, O, U, R, T, W, X_1 , X_2 , X_3 Domain: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Constraints: Alldiff (F, O, U, R, T, W)

$$O + O = R + 10 \cdot X_1$$

 $X_1 + W + W = U + 10 \cdot X_2$
 $X_2 + T + T = O + 10 \cdot X_3$
 $X_3 = F, T \neq 0, F \neq 0$

Varieties of CSPs

Discrete variables

- finite domains:
 - *n* variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
- infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., StartJob₁ + 5 ≤ StartJob₃

Continuous variables

- e.g., start/end times for Hubble Space Telescope observations
- linear constraints solvable in polynomial time by linear programming

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - -e.g., SA \neq WA
- Higher-order constraints involve 3 or more variables,
 - e.g., cryptarithmetic column constraints

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Notice that many real-world problems involve real-valued variables

Solving CSPs

- Let's start with a straightforward approach, then fix it.
- Just like we did with Sudoku, let's treat this as a search problem.
 - Initial state: the empty assignment { }
 - Successor function: assign a value to an unassigned variable that does not conflict with current assignment
 - → fail if no legal assignments
 - Goal test: the current assignment is complete

Backtracking search

- Variable assignments are commutative, i.e.,
 [WA = red] followed by [NT = green] is the same as [NT = green] followed by [WA = red]
- Only need to consider assignments to a single variable at each depth of the tree
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve *n*-queens for *n* ≈ 25

Backtracking search

```
function Backtracking-Search(csp) returns a solution, or failure return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var \leftarrow Select-Unassigned-Variable(variables[csp], assignment, csp)

for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment according to Constraints[csp] then

add { var = value } to assignment

result \leftarrow Recursive-Backtracking(assignment, csp)

if result \neq failue then return result

remove { var = value } from assignment

return failure
```


Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?

Heuristics:

- 1. Most constrained variable
- 2. Most constraining variable
- 3. Least constraining value
- 4. Forward checking

H1: Most constrained variable

- Most constrained variable:
 choose the variable with the fewest legal values
- a.k.a. minimum remaining values (MRV) heuristic

H2: Most constraining variable

- Tie-breaker among most constrained variables
- Most constraining variable:
 - choose the variable with the most constraints on remaining variables

H3: Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables
- Combining these heuristics makes 1000 queens feasible

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

Constraint propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:
 - NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y
- If X loses a value, neighbors of X need to be rechecked

- Simplest form of propagation makes each arc consistent
- X → Y is consistent iff
 for every value x of X there is some allowed y
- If X loses a value, neighbors of X need to be rechecked
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
      if RM-Inconsistent-Values (X_i, X_i) then
         for each X_k in Neighbors [X_i] do
            add (X_k, X_i) to queue
function RM-Inconsistent-Values (X_i, X_j) returns true iff remove a value
   removed \leftarrow false
   for each x in Domain[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy constraint(X_i, X_i)
         then delete x from Domain[X<sub>i</sub>]; removed \leftarrow true
   return removed
```

Time complexity: O(n²d³)

Picking up a little later after two steps of backtracking....

Example: n-queens

- States: n queens in n columns (nⁿ states)
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

 Given random initial state, AC-3 can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies