NOTES ANABÉLIENNES

A. GROTHENDIECK

Notes Anabéliennes

La "Longue Marche" à Travers la Théorie de Galois

https://grothendieck.umontpellier.fr/archives-grothendieck/

Ce texte a été déchiffré et transcrit par Mateo Carmona avec la collaboration de Matthias Künzer

https://agrothendieck.github.io/

SOMMAIRE

I. Résultats de fidélité	4
I. Résultats de fidélité	17
I. Résultats de fidélité	22
I. Résultats de fidélité	35

À tout corps K, associons son topos étale B_K , qui est un topos (profini) galoisien. Le groupoïde des points de B_K est noté Π_K , il est anti-équivalent canoniquement à la catégorie des clôtures algébriques séparables de K. Si \overline{K} est un telle clôture, son groupe des K-automorphismes $\operatorname{Gal}(\overline{K}/K)$ on $E_{\overline{K}/K}$ s'identifie au groupe des automorphismes des points de B_K associé à \overline{K}/K (il vaut peut-être mieux de dire : à l'opposé de ce groupe - le [] des clôtures algébriques de K est comme celle des foncteurs fibres, à l'opposée de celles des points ...) Bien entendue, B_K se reconstitue à partir de Π_K , comme le topos des systèmes locaux (continues) sur Π_K - et en termes de $E_{\overline{K}/K}$, comme le topos des ensembles discrets à actions continues de $E_{\overline{K}/K}$.

Pour un homomorphisme de corps $K \longrightarrow K'$, i.e. un homomorphisme de schémas $\operatorname{Spec} K' \longrightarrow \operatorname{Spec} K$, on a un morphisme de topos correspondant

$$\mathbf{B}_{K'} \longrightarrow \mathbf{B}_{K}$$

associé à un homomorphisme de groupoïdes fondamentaux

$$(2) \Pi_{K'} \longrightarrow \Pi_{K}.$$

Ceci s'exploitait en disant qu'un objet [] $\Pi_{K'}$ (i.e. point de $B_{K'}$, ou revêtement universel de $B_{K'}$, ou clôture $\overline{K'}$ de K') en définit un des Π_K (ainsi, on prend \overline{K} = clôture algébrique de K' dans $\overline{K'}$) et pour deux points correspondants, on a un homomorphisme de groupes fondamentaux correspondants, qui s'interprète par exemple comme

$$(3) E_{\overline{K'}/K'} \longrightarrow E_{\overline{K}/K}$$

et qui peuvent de reconstitue l'homomorphisme de topos comme une "restriction des scalaires".

L'image de (3) est le sous-groupe fermé de $E_{\overline{K}/K}$ qui correspond à la sous-extension K_1 de \overline{K}/K , clôture algébrique de K dans K', i.e. $K_1 = \overline{K} \cap K'$.

$$\begin{array}{c} K \longrightarrow K' \\ \downarrow \\ \hline \\ \overline{K} \longrightarrow \overline{K'} \end{array}$$

Quand K' est une extension de type fini de K, K_1 est une extension finie de K, et on es conduit que l'image de (3) est alors un sous-groupe d'indice fini, égale à $E_{\overline{K},K}$ si et seule si $K_1 = K$ i.e. K est séparablement algébrique clos dans K'. D'ailleurs, on montre sans mal que (si K est extension de type fini)l'homomorphisme (3) est injectif si et seule si K' est une extension algébrique de K. Donc il est bijectif si et seule si K' est une extension de K. Dans le suite nous nous bornons (précisément) aux corps de caractéristique 0, et la condition précédente signifie alors que $K \longrightarrow K'$ est un isomorphisme.

Ainsi, le foncteur $K \longrightarrow B_K$ ou $K \longrightarrow \Pi_K$, ou $(K, \overline{K}) \longrightarrow E_{\overline{K}/K}$, est *conservatif* quand on se limite comme morphismes de corps $K \longrightarrow K'$ (de caractéristique 0) à ceux que fait de K' une extension de type fini de K.

P. ex. Il suffit de se limiter aux extensions de type fini des corps fermées \mathbb{Q} - on trouve un foncteur conservatif de la catégorie de ces corps dans celles de groupoïdes (ou de topos), au sens: un (1) morphisme de corps qui donne une équivalence de groupoïdes (ou de topos) est un *isomorphisme*.

Quand on prend des corps quelconques, le 2-foncteur $K \longrightarrow B_K$ ou $K \longrightarrow \Pi_K$ ou $(K,\overline{K}) \longrightarrow E_{\overline{K}/K}$ est cependant loin d'être fidèle. Ainsi, si K est séparablement clos, B_K est le "topos ponctuel", Π_K le groupoïde ponctuel, $E_{\overline{K}/K} \simeq 1$ - il est donc que les morphismes entre corps séparablement clos ne sont pas décrits par les morphismes entre leurs topos étales, ou groupoïdes fondamentaux! Pour cette raison, il y a lieu d'associer à un corps K un objet plus fin que B_K ou Π_K , à savoir le système projectif des B_{K_i} , ou des Π_{K_i} , pour K_i sous-corps de K de type fini sur le corps [], et à un système (K,\overline{K}) le système projectif des $E_{\overline{K}_i/K_i}$, où \overline{K}_i est le

1

clôture algébrique séparablement clos K_i dans \overline{K} . On []

$$\begin{cases} \Pi_{K} \simeq \varprojlim \Pi_{K_{i}} \\ B_{K} \simeq \varprojlim B_{K_{i}} \\ E_{\overline{K}/K} \simeq \varprojlim E_{\overline{K_{i}}/K} \end{cases}$$

i.e. on reconstitue les objets B_K , Π_K , $E_{\overline{K},K}$ à partir des systèmes projectifs correspondant mais l'inverse n'est pas vrai. En fait, comme le foncteur Ind(Corps type fini) \longrightarrow corps de la catégorie des systèmes inductifs de corps de type fini, vers celle des corps, est une équivalence de catégories (pour des raisons triviales), il s'ensuit que les foncteurs $K \longrightarrow B_K$, ou $K \longrightarrow \Pi_K$, ou $(K,\overline{K}) \longrightarrow E_{\overline{K},K}$, étant des corps vers les propriétés idoines, avoir [] les propriétés de fidélité des foncteurs $K \longrightarrow B_K$, ou $K \longrightarrow \Pi_K$, ou $(K,\overline{K} \longrightarrow \Gamma_{\overline{K},K})$ [] aux corps de type fini, auxquels nous allons pour la suite nous [], [] des temps. Mais il sera nécessaire au cours de travail, de donner une description algébrique, par exemple, de pro-groupes finis associé par exemple à $\mathbb C$ (plus précisément, à $(\mathbb C,\mathbb C)$!).

Le rôle dominant sous joué par le corps premier de caractéristique 0, $\mathbb Q$ donc pour $B_\mathbb Q$ et $\Pi_\mathbb Q$, qui a un objet canonique, noté $\overline{\mathbb Q}_0$ - la clôture algébrique de $\mathbb Q$ dans $\mathbb C$. On posera (2)

$$\Gamma_{\mathbb{Q}} = E_{\overline{\mathbb{Q}}_{0}/\mathbb{Q}}$$

Pour tout corps K de caractéristique $\mathbb O$ - en particulière pour ces corps K de type fini sur $\mathbb Q$, lequel nous allons nous [] par le suite - on a donc des homomorphismes canoniques

$$(6) B_K \longrightarrow B_{\mathbb{Q}} \Pi_K \longrightarrow \Pi_{\mathbb{Q}}$$

qui l'explicitait, quand on a choisi un objet de Π_K i.e. un \overline{K}/K , d'où un $\overline{\mathbb{Q}}/\mathbb{Q}$, pour un homomorphisme de groupes profinis

$$(7) E_{\overline{K}/K} \longrightarrow \Gamma_{\overline{\mathbb{Q}}/\mathbb{Q}}.$$

Par le suit, on regardes toujours B_K , Π_K ou $E_{\overline{K},K}$ comme muni de cette structure supplémentaire - ce sont les morphismes (de topos, de groupoïdes, ou de groupes profinis) "arithmétiques" dominant la situation.

 $^{^2}$ et on écrit souvent $\Gamma_{\overline{\mathbb{Q}}_0/\mathbb{Q}}$ au limite des $E_{\overline{\mathbb{Q}}/\mathbb{Q}}$, pour une clôture algébrique [] $\overline{\mathbb{Q}}$ de \mathbb{Q}

Un intérêt particulier s'attende un noyau de (7), que je note $\pi_{\overline{K},K}$ - on (3) l'appelle "partie géométrique" de groupe de Galois $E_{\overline{K},K}$ par opposition au quotient $E_{\overline{K},K}/\pi_{\overline{K},K} = \Gamma_{\overline{K},K} \hookrightarrow \Gamma_{\overline{\mathbb{Q}},\mathbb{Q}}$, que j'appelle se partie "arithmétique"- celle-ci est un sous-groupe ouvert de $\Gamma_{\overline{\mathbb{Q}},\mathbb{Q}}$, qui son [], correspond au sous-corps \widehat{K} de $\overline{\mathbb{Q}}/\mathbb{Q}$, extension finie $/\mathbb{Q}$ de $\overline{\mathbb{Q}}/\mathbb{Q}$, clôture algébrique de \mathbb{Q} dans K, de sorte qu'on a une suite exacte

On va donner une interprétation de ce noyau, et de la suite exacte (8), en écrivant

$$(9) K = \lim_{\substack{\longrightarrow \\ i}} A_i$$

où les A_i sont les sous- \mathbb{Q} -algèbres de type fini de K, correspondant au système projectif des "modèles affines" $U_i = \operatorname{Spec}(A_i)$ de K/\mathbb{Q} . Parmi les A_i , il y a d'ailleurs un système [] fermé des A_i réguliers, i.e. des U_i lisses/ \mathbb{Q} , [] comme morphismes de transition des morphismes de localisation []. On peut même, d'après Mike Artin, prendre comme U_i des schémas "élémentaires" sur K_0 , se dévissant en fibrations successives de courbes. Notons que $\operatorname{Spec} K = \eta$ est le point générique [] des U_i , qui sont [] sur k (clôture algébrique de \mathbb{Q} dans K).

Le choix de \overline{K} définit un point géométrique $\overline{\eta}$ sur les U_i , d'où des groupes $\pi_1(U_i, \overline{\eta}) = \Gamma_i$, et $\lceil \rceil$ bien connus

$$\operatorname{Spec} K = \lim_{i \to \infty} U_i$$

(10)
$$E_{\overline{K}/K} = \pi_1(\eta, \overline{\eta}) \xrightarrow{\sim} \lim_{\stackrel{\longleftarrow}{i}} [] \quad (\Gamma_i = \pi_1(U_i, \overline{\eta}))$$

D'autre parte, si on pose

$$\overline{U_i} = U_i \otimes_K \overline{\mathbb{Q}}$$

on a pour tout i une suite exacte d'homotopie

 $^{^3}$ on va noter $\Gamma = \Gamma_{\overline{K}/K}$ cette "partie arithmetique"

qui forment un système projectif de suite exactes, ou d'extensions ayant toutes même quotient Γ' , et dont les noyaux

$$\pi_i = \pi_1(\overline{U_i}, \overline{\eta})$$

sont des groupes fondamentaux "géométriques" - que []] d'ailleurs [], en utilisant un plongement de [] dans $\mathbb C$ (d'où un isomorphisme $\overline{\mathbb Q} \simeq \overline{\mathbb Q_0}$), comme les [] profinis de $\pi_1(U_i(\mathbb C), \overline{\eta})$, ou maintenant $\overline{\eta}$ est interprète comme un point [] aux variétés complexes $U_i(\mathbb C)$.

La suite exacte (8) est donc le limite projectif des suites exactes d'homotopie (12) (7), ce qui donne en particulière

(13)
$$\pi_{\overline{K}/K} \simeq \lim_{\stackrel{\longleftarrow}{i}}$$

Utilisant les fibrations des U_i (dans le cas où on s'astreint prendre de variétés élémentaires d'Artin), on trouve que tout π_i est un groupe extension successive des groupes profinis *fibres* (où []). Ceci redonnes p. ex. que le dimension cohomologique de π_i est [], celle de E_i est $\leq n+2$ (pour des coefficients de m-torsion, []) - et par passage à la limite, des [] correspondantes pour les dimension cohomologiques de $\pi_{\overline{K}/K}$ et $E_{\overline{K}/K}$

(14)
$$\dim \operatorname{coh} + \pi_{\overline{K}/K} \le n, \quad \dim \operatorname{coh} \Gamma_{\overline{K}/K} \le n + 2$$

qui sont en fait même des égalités (sauf erreur), et donnant donc une description cohomologique simple de degré d [] absolu de K.

Théorème (1). — Soit K un corps extension de type fini de \mathbb{Q} , \overline{K} une clôture algébrique de K. Alors pour tout sous-groupe ouvert E de $E_{\overline{K}/K}$, son centralisateur dans $E_{\overline{K}/K}$ est réduit au groupe unité. Itou pour $\pi_{\overline{K}/K}$.

Démonstration. — Soit $\Gamma' \subset \Gamma \subset \Gamma_{\overline{\mathbb{Q}}/\mathbb{Q}}$ l'image de E dans $\Gamma = \Gamma_{\overline{K}/K}$ qui est donc un sous-groupe ouvert. L'image dans Γ des centralisateurs de E' dans E [] centralisateur de Γ' dans Γ . Je dis qu'il est égale à 1, ce qui équivaut donc au

Corollaire. — Dans $\Pi_{\mathbb{Q}} = \Gamma_{\overline{\mathbb{Q}_0}/\mathbb{Q}}$, le centralisateur de tout sous-groupe ouvert est réduit a (1).

OPS Ce sous-groupe ouvert Γ' invariant, il est bien connue (8) qui son centre est réduit à 1 donc si Z est son centralisateur dans $\Gamma_{\mathbb{Q}}$, l'homomorphisme $Z \longrightarrow \Gamma_{\mathbb{Q}}/\Gamma'$ est injectif donc

⁷cette interprétation

⁸à vérifier

Z est fini. Mais on sait que les seules éléments $\neq 1$ de $\Gamma_{\mathbb{Q}}$ d'ordre fini sont les conjugués de τ , conjugaison complexe. Mais le centralisateur de τ dans $\Gamma_{\mathbb{Q}}$ est réduit à [] donc on peut contenir Γ' , donc $\tau \notin z$, donc z = (1).

[] à $E \subset E_{\overline{K}/K}$, on voit donc que son centralisateur Z dans $E_{\overline{K}/K}$ est une image dans Γ réduite à $\{1\}$ donc $z \subset \pi_{\overline{K}/K}$. Soit $\pi' \subset \pi = \pi_{\overline{K}/K}$ le [] de z' sur π , c'est un sous-groupe ouvert de π , et on est ramené à voir que $\operatorname{Centr}_{\pi}(\pi') = \{1\}$, i.e. le

Corollaire. — Soit π un groupe profini, extension successives de groupes profinis libres. Alors le centralisateur z dans π de tout sous-groupe ouvert π' de π est réduit à $\{1\}$.

Par dévissage on est ramené au cas d'un groupe profini *libre*. On sait que π' est donc libre. OPS π' invariant, (°) et on admet que le centre d'un groupe profini libre est réduit à 1.

Donc $Z \longrightarrow \pi/\pi'$ est injectif, donc Z est fini, et on admet que dans un groupe profini libre, il n'y a pas d'élément (10) d'ordre fini $\neq 1$ - ce qui [] la démonstration.

Scholie. — Le fait que $E_{\overline{K}/K}$ soit à centre trivial peut s'exploiter en disant que le groupoïde Π_K (ou le topos B_K) [] à équivalence près, définie a isomorphisme unique près, quand on connaît le groupe extérieure associé à $E_{\overline{K}/K}$.

Les homomorphismes $E_{\overline{K'}/K'} \longrightarrow E_{\overline{K}/K}$ associés à des homomorphismes $K \longrightarrow K'$ d'extensions de type fini de \mathbb{Q} , ayant une image ouvert dans un centralisateur réduit à 1, on voit de même que l'homomorphisme de topos $B_{K'} \longrightarrow B_K$ ou de groupoïdes $\Pi_{K'} \longrightarrow \Pi_K$, sont détermines à équivalence près (définie a isomorphisme unique près) par l'homomorphisme correspondant de groupes extérieures. Il [] en particulière ainsi de morphisme structurel $B_K \longrightarrow B_{\mathbb{Q}}$ ou $\Pi_K \longrightarrow \Pi_{\mathbb{Q}}$ qu'on peut interpréter intrinsèquement comme un homomorphisme de groupes profinis extérieures $E_K \longrightarrow E_{\mathbb{Q}}$. Mais nous [] suivre [], en exploitant le fait que $\pi_{\overline{K}/K}$ est lui associé à centre trivial. Cela signifie que l'extension de $\Gamma = \Gamma_{\overline{K}/K}$ par $\pi_{\overline{K}/K}$ est entièrement connue, à isomorphisme près, pour $\pi_{\overline{K}/K}$ et Γ fixés, en termes de *l'action extérieure* correspondant de Γ sur π , comme l'image inverse de l'extension universelle

$$1 \longrightarrow Aut(\pi) \longrightarrow Autext(\pi) \longrightarrow 1$$

Pour K fixé, donc k fixé, [] qu'on fixe un $\Gamma = \Gamma_{\mathbb{Q}/k}$ revient à dire qu'on fixe une clôture

⁹à vérifier

¹⁰à vérifier

algébrique de k, [] qu'on fixe un $\pi_{\overline{K}/K} = \pi_1(K \otimes_K \overline{k})$ signifie [] qu'on fixe une revêtement universel de $\operatorname{Spec}(K \otimes_k \overline{k}) = \eta \otimes_k \overline{k}$, les deux ensembles reviennent à se donner le revêtement universel $\overline{\eta} = \operatorname{Spec}(\overline{K})$ de K. Par le suite, nous décrivons (avec une fidélité qui reste à []) les couples (K, \overline{K}) d'une extension K de $\mathbb Q$ de type fini, et d'une clôture algébrique \overline{K} de K, par les triples (π, Γ, φ) , où $\pi = \pi_{\overline{K},K}$ et $\Gamma = \Gamma_{\overline{K},K}$ sont des groupes profini, et $\varphi : \Gamma \longrightarrow [](\pi)$ une action extérieur de Γ sur π - ce qui peuvent de reconstituer l'extension $\mathbb E_{\overline{K},K}$ de $\Gamma_{\overline{K},K}$ par $\pi_{\overline{K},K}$. J'ai oublie [] qu'il faut $\det Plus$ se donner Γ comme sous-groupe d'un $\Gamma_{\overline{\mathbb Q}/\mathbb Q}$ bien déterminé, i.e. qu'il faut se donner un objet de $\Pi_{\mathbb Q}$ et une [] fidèle de Γ dessus - pour reconstruire [] cas données un homomorphisme de groupoïdes profinis $\Pi_K \longrightarrow \Pi_{\mathbb Q}$, plus un objet de Π_K - ou encore, un morphisme de topos progaloisiens $\Pi_K \longrightarrow \Pi_{\mathbb Q}$, plus un point de Π_K . On peut ainsi fixer un objet de $\Pi_{\mathbb Q}$, i.e. un point de $\Pi_{\mathbb Q}$, i.e. un $\Pi_{\mathbb Q}$, et étudier les $\Pi_{\mathbb Q}$, avec un plongement de $\Pi_{\mathbb Q}$ (clôture algébrique de $\mathbb Q$ dans $\Pi_{\mathbb Q}$) dans $\mathbb Q$ - mais $\mathbb Q$ donner une clôture algébrique $\mathbb Z$ de $\mathbb Z$ de

On a ainsi plusieurs [] essentiellement équivalentes, pour décrire par voie profinie une extension K de type fini de \mathbb{Q} :

- 1) Pour le topos étale B_K , en tant que topos progaloisien sur $B_{\mathbb{Q}}$;
- 2) Pour le groupoïde fondamental Π_K de ce topos (groupoïde de ces points, ou de ses revêtement universel) en tant que groupoïde au dessus de $\Pi_{\mathbb{Q}}$;
- 3) Pour le groupe extérieur E_K , au dessus de groupe extérieur $E_{\mathbb{Q}}$ ou $\Gamma_{\mathbb{Q}}$ ([]);
- 4) En termes d'une clôture algébrique \overline{K}/K (i.e. en décrivant le couple (K,\overline{K}) plutôt que K), par un objet $\overline{\mathbb{Q}} \in (\Pi_{\mathbb{Q}})$ et un homomorphisme de groupes profinis $E \longrightarrow \Gamma_{\overline{\mathbb{Q}},\mathbb{Q}}$;
- 5) En termes d'une clôture algébrique fixe $\overline{\mathbb{Q}}$ de \mathbb{Q} , et où $\Gamma = \Gamma_{\overline{\mathbb{Q}},\mathbb{Q}}$ [] les couples (K,i) où $i:k \longrightarrow \overline{\mathbb{Q}}$ est un plongement de la clôture algébrique k de \mathbb{Q} dans \mathbb{Q} des $\overline{\mathbb{Q}}$: pour le groupes extérieur $\pi_K = \pi_1(K)$, sur lequel un sous-groupe ouvert $\Gamma_K \subset \Gamma$ opère extérieurement par des groupes profinis extérieures $\pi_1(K) = \Gamma_K$, sur lesquels un sous-groupe ouvert Γ (non précisé []) de $\Gamma_{\overline{\mathbb{Q}},\mathbb{Q}}$ opère extérieurement;
- 6) En termes d'une $\overline{\mathbb{Q}}/\mathbb{Q}$: pour le groupoïde $\Pi_{K\otimes_{\mathbb{Q}}\overline{\mathbb{Q}}}$ [].

Un homomorphisme de corps $K \longrightarrow K'$ donne (11) [] à un homomorphisme de groupes extérieures, $\pi' \longrightarrow \pi$, où l'image de π' dans π est ouvert [] de centralisateur réduit à (1), ce qui implique [] que le morphisme de topos $B_{K'\otimes_K\overline{\mathbb Q}} \longrightarrow B_{K\otimes_K\overline{\mathbb Q}}$ es déterminé (a isomorphisme unique près) par [] homomorphisme extérieur. De plus on a des actions extérieures de $\Gamma = \Gamma_K \subset \Gamma_{K'}$ sur π' et π , de façon que $\pi' \longrightarrow \pi$ [] et ceci suffit pour reconstitue, d'une part les groupes extérieures E, E' extensions ("extérieures") de Γ [] π , π' (et , a équivalence rigide près, les $B_K, B_{K'}$ et $B_K \longrightarrow B_{\mathbb Q}, B_{K'} \longrightarrow B_{\mathbb Q}$) et de plus l'homomorphisme d'extensions extérieures $E \longrightarrow E'$ de Γ .

Remarque. — Quand $\pi \neq (1)$, i.e. K pas fini sur \mathbb{Q} , le théorème 1 peut se renforcer, sauf erreur, en écrivant que pour tout sous-groupe $\pi' \subset \pi$ ouvert dans π , Centr $_E(\pi') = \{1\}$.

Si z est se centralisateur, on a $z \cap \pi = (1)$ d'après le théorème 1, prouvons que l'image de z dans $\Gamma_{\overline{K},K} \subset \Gamma_{\overline{\mathbb{Q}},\mathbb{Q}}$ est finie (ce qui [] alors, que z est d'ordre 1 ou 2, et dans le [] cas que son image des $\Gamma_{\overline{\mathbb{Q}},\mathbb{Q}}$ est [] pour un τ de conjugaison complexe).

[] E pour un sous-groupe ouvert assez petit (ce qui revient a poser à une extension finie de K) [] $\pi' = \pi$, alors l'image z' de z dans Γ est contenue dans le noyau de l'homomorphisme $\varphi : \Gamma \longrightarrow [](\pi)$. [] je sais prouver que cet homomorphisme est injectif (ou est ramené aussitôt ou cas où K est de degré de [] 1, et on est ramené ou cas des π_1 d'une courbe algébrique ...)

Théorème (2). (12) — Le foncteur $K \longrightarrow \Pi_K/\Pi_{\mathbb{Q}}$ des extensions de type fini de \mathbb{Q} vers les groupoïdes profinis sur $\Pi_{\mathbb{Q}}$ est fidèle i.e. si deux homomorphismes f, $g:K \longrightarrow K'$ définissent des homomorphismes de groupoïdes sur $\Pi_{\mathbb{Q}}$ isomorphes

(i.e. il existe un isomorphisme de foncteurs $\alpha:f^*\longrightarrow g^*$ tel que pour tout objet $\overline{\eta'}$ de $\Pi_{K'}$, le

¹¹on suppose pour simplifier qui c'est

¹²En fait, ce théorème n'est pas spécial à ℚ - il [] avait sur un corps de [] quelconque est en fait

carré

$$pf^{*}(\overline{\eta'}) \xrightarrow{\sim} pg^{*}(\overline{\eta'})$$

$$\downarrow \qquad \qquad \downarrow$$

$$p(\overline{\eta'}) \xrightarrow{\sim} p'(\overline{\eta'})$$

est commutatif) alors f = g.

L'hypothèse sur f, g signifie aussi, en termes d'une clôture algébrique choisie $\overline{K'}$ de K', donnent via f [] g deux clôtures algébriques de [] l'on peut trouver un isomorphisme [] celui-ci (13) ([] d'identifier $E_{\overline{K}/K}$ et $E_{\widetilde{K}/K}$) de telle façon que les deux homomorphismes

$$f^*, g^* : E_{\overline{K'},K'} \longrightarrow E_{\overline{K},K}$$

sont égaux. C'est sans doute plus claire en termes d'une clôture algébrique $\overline{\mathbb{Q}}$ fixée de \mathbb{Q} , en disant que les deux homomorphismes $f^*, g^*: E_{K'} \longrightarrow E_K$ de groupes profinis extérieures (avec opérateurs $\Gamma_{\overline{Q},Q}$) sont égaux.

Écrivons comme [] $K = \varinjlim_i A_i$, donc $\eta = \operatorname{Spec}(K) = \varinjlim_i U_i$, on a (en termes d'un point géométrique quelconque $\overline{\eta}$ de $\operatorname{Spec} K$ i.e. en termes d'un \overline{K})

$$\pi_K = \varprojlim_i \pi_1(\overline{U}_i, \overline{\eta}), \quad \text{où} \quad \overline{U}_i = U_i \otimes_K \overline{\mathbb{Q}}$$

et il suffit de voir que pour tout $i, f | A_i = g | A_i$ [] le fait que $\pi_1(f_i^*) = \pi_1(g_i^*) : \pi_{K'} \longrightarrow \pi_1(U_i)$ (comme homomorphisme de groupes extérieures. On [] fixé, on a $K' = \varinjlim_j A_j$, où les A_j contient $f_i(A_i)$ et $g_i(A_i)$, donc

$$\pi_{K'} = \lim_{\stackrel{\longleftarrow}{j}} \pi_1(\overline{V}_j, \overline{\eta'}), \quad \text{avec} \quad \overline{V}_j = \operatorname{Spec}(A_j) \otimes_K \overline{\mathbb{Q}}.$$

Notons (prenant les V_j réguliers) que les homomorphismes de transition des le système projectif de $\pi_1(\overline{V}_j,\overline{\eta'})$ sont surjectifs - donc $\pi_{K'} \longrightarrow \pi_1(\overline{V}_j,\overline{\eta'})$ est surjectif, ce qui implique que l'égalité de f^* et $g^*:\pi_{K'}[\,]\pi_1(\overline{U}_i)$ (comme homomorphismes extérieures) implique celle de $\pi_1(\overline{V}_j) \longrightarrow \pi_1(\overline{U}_j)$.

Donc l'égalité $f_i=g_i$ (d'où f=g) est conséquence de résultat plus général). "[] géométrique"

¹³induisant "l'identité" sur [] clôtures algébriques []

Corollaire (1). — Soient X, Y des schémas de type fini réduits 0-connexes sur un corps algébriquement close k, et $f,g:X\longrightarrow Y$ deux morphismes, on suppose que $\pi_1(f),\pi_1(g):\pi_1(X)\longrightarrow \pi_1(Y)$ sont égaux (en fait [] extérieurs) Alors

- a) Si Y se plongue par un $i: Y \longrightarrow G$ un groupe algébrique commutatif extension d'une V.A par un tore, il existe un $u \in Y$ (unique) tel que g(x) = f(x) + u et pour tout $x \in X(h)$, i.e. $(i \circ g) = \tau_u \circ (i \circ f)$ (τ_u [])
- b) Si Y est une variété élémentaire d'Artin, avec fibres successives des courbes anbéliennes, et $X \cap f$ ou g est dominant, alors f = g.

Démonstration. — a) L'unicité de [] est [] - i.e. il suffit (14) d'examiner les actions de $\pi(f)$, $\pi(g)$ sur les groupes abelianisés dans π_1 , et même sur leurs composantes l-adiques. Prenant le Jacobienne généralisée de type "extension d'une V.A par une tore" de X, on sait que

- 1°) Les morphismes $f: X \longrightarrow G$ tel que $f(\alpha) = 0$ se factorisent de façon unique par $X \xrightarrow{can} J \xrightarrow{\varphi} G$ avec φ un homomorphisme de groupes algébriques;
- 2°) Un tel homomorphisme φ est connu quand on connaît ses actions sur les $H_1(\cdot, \mathbb{Z})$ ce qui $[\cdot]$ à la connaissance sur les points d'ordre $[\cdot]$ que soit v on ceux-ci sont denses ...
- $3^{\circ}) H_1(X,\mathbb{Z}_l) \xrightarrow{\sim} H_1(J,\mathbb{Z}_l).$

De ceci, on conclut (par 3°)) que $H_1(f) = H_1(g)$ implique (si $f = \varphi \circ can$, $g = \psi \circ can$) $H_1(\varphi) = H_1(\psi)$, donc par 2°) que $\varphi = \psi$, donc f = g []

Notons que l'on

- b) on va pourtant prouvons l'égalité sans l'hypothèse anabéliennes
- [] L'hypothèse que $\pi_1(f) = \pi_1(g)$ signifie donc qu'il existe $\alpha \in \pi_1(Y)$, tel que

$$\pi(f')(\gamma) = [\,]\pi(j)(\gamma)$$

pour tout $\gamma \in Im(\pi_1(X) \xrightarrow{\pi_1(f)} \pi_1(U))$. [] cette image est un sous-groupe *ouvert* de $\pi_1(U)$ ([] dominant!). Donc on est ramené à ceci: Soit U ouvert $\neq \varphi$ de Y, $u \in G$, tels que $\tau_u U \subset Y$ [et tels que (désignant par f, f' les morphismes $y \longrightarrow y$ et $y \mapsto y$ en de U dans Y) $\pi_1(f)$ et $\pi_1(f')$ [] extérieurement en un sous-groupe ouvert de $\pi_1(U)$] alors f = f' voie u = f'

¹⁴En fait, dans a) il suffit de supposer que

Finalement, je [] que [] pas à la prouve par voie géométrique [] arithmétique.

Corollaire (2). — Le condition f = g de corollaire précédent, est valable si on suppose que K est de caractéristique 0, X [] est dans l'une des hypothèses suivantes

- c) l'image de $\pi_1(F)$ est un sous-groupe ouvert de $\pi_1(Y)$, Y est une variété élémentaire d'Artin anabélienne ;
- d) l'image de $\pi_1(X)$ par $\pi_1(f)$ a un centralisateur dans $\pi_1(Y)$ réduit à (1), et Y se plonge dans un groupe algébrique extension d'une VA par un tore.

Comme le centralisateur [] de un sous-groupe ouvert de $\pi_1(Y)$ ($\pi_1(Y)$ étant extension successive de groupes profinis *fibres* anabéliennes) est réduit à (1), comme un a un¹⁵ plus haut, le cas c) est un cas particulier de d), [] dans le cas d), [] X pour un ouvert d'Artin []

La situation X, Y, f, g provient, par extension de corps de [] d'une situation analogue sur un corps K extension de type fini de \mathbb{Q} . Soit \overline{K} la clôture algébrique de K dans k [] de K à \overline{K} . On a donc [] satisfaisant la condition d) avec [] trivial.

Mais ces hypothèses impliquent que les extensions $E(X/K)=\pi_1(X)$, $E(Y/K)=\pi_1(Y)$ de $E_{\overline{K},K}$ [], ainsi que les homomorphismes [] induits, sont reconstruite à partir de [] et de l'action extérieure de $E_{\overline{K},K}$ sur ces groupes. On va montrer maintenant le

Corollaire (3). — Soient X, Y deux schémas de type fini sur un corps K extension de type fini de \mathbb{Q} , On suppose que Y se plongue dans une extension d'une V.A. par un tore, X réduit, X, Y []0-connexe. Soit \overline{K} une clôture algébrique de K, d'où des extensions "extérieures" $E_{X,K}$, $E_{Y,K}$ de $E_{\overline{K},K} = \operatorname{Gal}(\overline{K},K)$ [] $\pi_1(\overline{X})$, $\pi_1(\overline{Y})$, et pour tout morphisme $f: X \longrightarrow Y$, un morphisme [] de $E_{X,K}$ [] $E_{Y,K}$.

Soient $f,g:X\rightrightarrows Y$ tels que [] - i.e. [] soient conjugués pour un élément de $\pi_1(Y)$ [] alors f=g.

En fait, il suffit même que ls homomorphismes d'extensions [] soient égaux, [] f = g. (C'est à dire, [] des hypothèses anabéliennes, des hypothèses [] géométriques sue les actions de [], [] on peut laisser tomber les aspects anabéliens [] sur les aspects abéliens []) [].

¹⁵il faut

Il suffit de voir que [] à noyau abélien associée - l'hypothèse implique que f(x) et g(x) définissent le même donne de conjugaison de scindages. Donc il suffit maintenant de prouver le

Théorème (3). — Soit X un schéma de type fini sur un corps K, extension de type fini de \mathbb{Q} , on suppose que X est géométriquement 0-connexe et se plongue dans une extension d'une V. A. par un tore (p. ex. X est une variété élémentaire d'Artin, à fibres []).

Considérons une clôture algébrique \overline{K}/K et l'extension extérieure correspondant $E_{X/K}$ dans $E_{\overline{K}/K} = \operatorname{Gal}(\overline{K}/K)$ par $\pi_1(\overline{X})$ ($\overline{X} = X \otimes_K \overline{K}$) et l'extension déduite de $\widetilde{E}_{X/K}$ de $E_{\overline{K}/K}$ par $\pi_1(\overline{X})_{ab}$. Considérons les applications

$$(*) \hspace{1cm} X(K) \longrightarrow \text{Classes de } \pi(\overline{X}) - \text{conjugaison de scindages de } E_{X/K} \text{ sur } E_{\overline{K}/K}$$

$$(**)$$
 $X(K) \longrightarrow \text{Classes de conjugaison de scindages}$

Ces applications sont injectives.

Démonstration. — Il suffit de le [] pour le seconde application, et on est ramené au cas où X est lui-même un groupe algébrique G, extension d'une V. A. par une tore. Alors l'application est un homomorphisme de groupes

$$(16) G(K)$$

obtenue ainsi. On considère pour tout [] la suite exacte []

$$0 \longrightarrow [] \longrightarrow G[] \longrightarrow G \longrightarrow 1$$

[] suite exacte de cohomologie

[] et passant à la limite, on trouve

 $0 \longrightarrow$

le composé de (16) avec l'homomorphisme canonique

compte tenu de

[] que l'homomorphisme induite par
dont le noyau [] est fermé des éléments de $G(K)$ infiniment divisibles dans $\mathbb{Q}.$ [] ici K
étant un corps [] de type fini le théorème de Mordell-Weil [] que $G(K)$ est un \mathbb{Z} -module de
type fini - donc $G(K) \longrightarrow \varprojlim G(K)_n$ est injectif. Donc []
Remarque. —
[] x dans le "revêtement universel abélien" \widetilde{G} de G construit comme \varprojlim des revêtements
$G(n) \simeq G$ de G , donnée, []. L'énonce dit que si [] est trivial - i.e. si [] mais dans ce cas [] soit
[] étales.
est cependant possible que []
[] aux conditions de de Corollaire 1, b), [] avec les groupes fondamentaux [], on trouve
que
Complément. — Retour sur une démonstration géométrique du Théorème 2, Corollaire 1
b). On peut supposer que ce est le Jacobienne généralisée de Y, et il suffit de montrer le
Lemme. — Soit Y une variété élémentaire d'Artin anabélienne (sur K algébriquement clos),
$Y \hookrightarrow J_Y^1$ son plongement dans sa Jacobienne généralisée, $u \in J_Y^0(k)$ et U un ouvert non [] de Y ,
tels que $U + u \subset Y$. Alors $u = 1$, ou encore: l'application $x \mapsto x$ [] de U dans Y est l'identité.
Par dévissage, on es ramené au cas où Y est une courbe. Supposons le d'abord complète,
de suite que $U + u \subset Y$ implique $Y + u \subset Y$ - alors la [] est bien connu (et résulte par
exemple de la formation des points fixes, qui implique que $[]$ ce qui $[]$ $J_Y^0(k)$ est nulle. Pour

 $H_1(\alpha): H_1(Y) \longrightarrow H_1(J_Y')$, que Si le genre est 0, on en concluait (puisque []. Dans le cas de genre 1, on en concluait maintenant que l'image de un des $J_{\widehat{y}}^0$ est égale à 1, et on [] comme précédemment. []

que x+u soit de la forme y $(y \in Y)$ il faut [] que $u \in \alpha$ et y aient même image dans $J^1_{\widehat{y}}$, ce qui [] Je veut mieux, dans le cas général, présenter les choses sous forme homologique. Considérons les deux morphismes $U \hookrightarrow iY$ induisant et $J: U \longrightarrow Y$ induit par lui, je dis que $H_1(i) = H_1(j)$, ou ce qui revient au même, puisque $Y \xrightarrow{\alpha} J'_Y$ induit un isomorphisme

§ IX. – NOTES ANABÉLIENNES

Soient K, K' deux extensions de type fini de - est-il vrai que tout Π -homomorphisme $\Pi_{K'} \longrightarrow \Pi_K$ provient d'un homomorphisme de corps $K' \longrightarrow K$? On est ramené aussitôt au cas où une clôture algébrique de étant choisie, d'où un Γ_I – K et K' ont des sous-corps k, k' (clôture algébrique de dans K resp. K') isomorphes, avec des plongements $k, k' \longrightarrow K$ de même image, que E_K et $E_{K'}$ peuvent être considérés comme des extensions d'un même groupe $\Gamma = \Gamma_{I/k}$ par π_K resp. $\pi_{K'}$. La question est alors si *tout* homomorphisme de $\pi_{K'}$ dans π_K qui commute à l'action de Γ , est induit par un homomorphisme $K \hookrightarrow K'$. Pour construire ce dernier, il faudrait donc avoir une idée comment reconstruire K, K' à partir des extensions $E_K, E_{K'}$, ou encore à partir des groupes profinis extérieurs avec opération de Γ dessus. Et on pressent que le Théorème 3 du paragraphe précédent (appliqué notamment à \mathbb{P}^1_K convenablement troué ...) pourrait donner la clef d'une telle construction.

Bien sûr, des homomorphismes extérieurs quelconques $\pi_{K'} \longrightarrow \pi_K$ n'auront pas de sens géométrique - l'idée est que les opérations du groupe $\Gamma = \Gamma_{/k}$ dessus soit si draconienne, qu'il n'est possible de trouver un homomorphisme extérieure qui y commute que par voie géométrique – par des plongements de corps. Donc il est essentiel ici que le corps de base ne soit pas quelconque, mais un corps tel que (ou, ce qui revient manifestement au même, une extension de type fini de). Encore faut-il se borner aux homomorphismes $\pi_{K'} \longrightarrow \pi_K$ dont on décrète d'avance que l'image soit ouverte – sinon, prenant pour $\pi_{K'}$ le groupe unité (i.e. K' = k), on trouverait un homomorphisme $K \longrightarrow k$ correspondant! Il faut pour le moins, pour travailler à l'aise à partir d'homomorphismes $\pi_{K'} \longrightarrow \pi_K$ (au lieu de $E_{K'} \longrightarrow E_K$) supposer que le centralisateur dans π_K de l'image de tout sous-groupe ouvert de $\pi_{K'}$

soit réduit à $\{1\}$ – on dira que l'homomorphisme en question est *anabélien* alors – de telle façon qu'à partir de cet homomorphisme (commutant à Γ) on reconstitue l'homomorphisme d'extensions E_K et $E_{K'}$, qui est l'objet vraiment essentiel. Par exemple, si justement K'=k, donc $E_{K'}=\Gamma$, ce qui nous intéressera, ce ne seront pas le Γ -homomorphismes de $\pi_{K'}=\{1\}$ (!) dans π_K , mais bien les *sections* de E_K sur Γ .

Question-conjecture. — Soient K, K' deux corps, extensions de type fini de , et un morphisme $B_{K'} \longrightarrow B_K$ de topos sur B.

Les conditions suivantes sont-elles bien équivalentes [?]

- (a) L'homomorphisme provient d'un plongement de corps $K \hookrightarrow K'$.
- (b) L'image de l'homomorphisme extérieur $E_{K'} \longrightarrow E_K$ a une image ouverte.
- (c) L'homomorphisme extérieure $E_{K'} \longrightarrow E_K$ est anabélien. (1)

NB. On sait que (a) \Rightarrow (b) \Rightarrow (c) et que (b) équivaut à $\pi_K \longrightarrow \pi_{K'}$ a une image ouverte.

Une réponse affirmative impliquerait que si $\operatorname{degtr} K'/<\operatorname{degtr} K/$, alors il n'y a pas de de tel homomorphisme $E_{K'}\longrightarrow E_K$, compatible avec les projections dans $E_=\Gamma$, en particulier, il en résulterait que toute section de E_K sur $\Gamma=\operatorname{Im}(E_K\longrightarrow\Gamma)$, ou sur un sous-groupe ouvert Γ' de Γ , a un centralisateur non-trivial dans E_K – et comme son centralisateur dans Γ est réduit à $\{1\}$, cela impliquerait que pour toute telle section, on aurait (si $\pi_K\neq 1$) $\pi_K^{\Gamma'}\neq \{1\}$. Or je m'aperçois que ceci est sans doute faux (cf. plus bas, numéro 3) - il faudrait renforcer (c) ci-dessus en Γ

(c') L'homomorphisme $E_{K'}^{\circ} \longrightarrow E_{K}$ induit par $E_{K'} \longrightarrow E_{K}$ est anabélien (où $E_{K'}^{\circ}$ est le noyau de l'homomorphisme composé

$$E_{K'} \longrightarrow \Gamma_{/} \xrightarrow{\chi \text{ caractère cyclotomique}} ^*$$
).

Mais pour voir que cette condition est *nécessaire* pour que l'homomorphisme soit géométrique, il faudrait vérifier que pour tout sous-groupe ouvert E' d'un E_K , le centralisateur dans E_K (non seulement de E' lui-même, mais même de E') est réduit à 1 – ce qui

¹(c) n'est pas assez fort, cf. plus bas...

résulte de la démonstration du Théorème 1, et du fait (²) que pour tout sous-groupe ouvert Γ' de $\Gamma = \Gamma$, le centralisateur (non seulement de Γ' , mais même) de Γ'° dans Γ est réduit à {1}. Donc, la conjecture initiale revue et corrigée donné la

Conséquence (conjecturale). — Pour tout section de E_K sur un sous-groupe ouvert Γ' de Γ , de sorte que Γ' opère (effectivement) sur π_K , on a (si K pas algébrique sur, i.e. $\pi_K \neq \{1\}$) $\pi_K^{\Gamma'^\circ} \neq \{1\}$.

à vrai dire, à certains égards les Γ_K sont des groupes trop gros pour pouvoir travailler directement avec, il y a lieu de regarder Γ_K comme un \varprojlim de groupes $\Gamma_{U/}$ associés à des modèles affines de K – et on s'intéressera plus particulièrement à des modèles affines qui sont des variétés élémentaires – plus généralement, qui sont des $K(\pi,1)$ (au sens profini . . .). Il est possible qu'il faille d'ailleurs, dans l'énonce de la conjecture de départ, prendre un homomorphisme extérieur $E_{K'} \longrightarrow E_K$ dont on suppose d'avance (en plus de l'hypothèse anabélienne et de la compatibilité avec les homomorphismes dans Γ) qu'elle est compatible avec les filtrations de ces groupes, associés à ces modèles ("filtration modélique" (grossière)).

Nous allons alors, au même temps que des extension de type fini de , les homomorphismes entre tels, et homomorphismes de groupes profinis associés, étudier la situation analogue pour des "modèles" élémentaires anabéliens, voire des modèles $K(\pi,1)$ généraux (On peut aussi regarder de tels modèles sur un corps K, extension de type fini de – mais passons pour le moment sur cette situation mixte, un peu bâtarde ...) Si U, V sont des tels modèles, tout morphisme $V \longrightarrow U$ définit un morphismes de topos galoisiens sur B, $B_U \longrightarrow B_V$, et si U est élémentaire anabélien, ce morphisme et connu quand on connaît seulement $H_1(B_{\overline{U}},\ell) \longrightarrow H_1(B_{\overline{V}},\ell)$ – ce qui est beaucoup moins que la classe d'isomorphie d'homomorphismes de B-topos. (En fait, sans hypothèse anabélienne sur V, dès que V se plonge dans une variété anabélienne, f est connu quand on connaît son action sur les topos étales ...). Mais quels sont les homomorphismes $B_U \longrightarrow B_V$, ou $E_U \longrightarrow E_V$, qui correspondent à des morphismes de modèles? Avec un peu de culot, on dirait [:]

Conjecture fondamentale. — Soient U, V deux schémas de type fini sur, V séparé régulier, U une variété élémentaire anabélienne sur une extension finie de . Considérons un morphisme

²à vérifier!

 $B_V \longrightarrow B_U$ des topos étales sur – ou, ce qui revient au même, un homomorphisme de groupes extérieurs

$$f: E_V = \pi_1(V) \longrightarrow E_U = \pi_1(U)$$
,

compatible avec les homomorphismes extérieurs dans $\Gamma_{=}\pi_{1}()$. (3)

Conditions équivalentes [:]

- (a) Cet homomorphisme provient (à isomorphisme près) d'un morphisme $V \longrightarrow U$ sur les modèles (qui est donc uniquement déterminé)
- (b) $f|E_V^{\circ}$ est anabélien, i.e. l'image par f de tout sous-groupe ouvert de E_V° a un centralisateur réduit à 1.

Pour la nécessité de (b), on est ramené aussitôt au cas où V est réduit à un point, où cela se réduit à la

Conséquence conjecturale. — Soit $\Gamma' \subset \operatorname{Im}(E_U \longrightarrow \Gamma)$ un sous-groupe ouvert, correspondant à un corps k fini sur, considérons un k-point de U, d'où un relèvement $\Gamma' \longrightarrow E_U$, de sorte que Γ' opère sur π_U . Ceci posé, on a $\pi_U^{\Gamma'\circ} = \{1\}$.

On étudiera par la suite les relations entre cette "conséquence conjecturale", et la précédente (d'apparence opposée!) concernant les E.

La conjecture fondamentale sur les modèles implique la conjecture fondamentale sur les corps, à condition de prendre soin, dans cette dernière, de se limiter aux homomorphismes compatibles aux filtrations modéliques. (4)

Plus généralement, prenant maintenant pour U des schémas qui sont des <u>lim</u> des modèles élémentaires anabéliens, avec morphismes de transition des immersions ouvertes affines (pour pouvoir passer à la <u>lim</u> dans la catégorie des schémas), pour V un schéma <u>lim</u> de schémas séparés réguliers de type fini sur (morphismes de transition immersions ouvertes affines sans plus). Alors les morphismes dominants de schémas $V \longrightarrow U$ doivent correspondre aux homomorphismes extérieurs $E_V \longrightarrow E_U$ compatibles avec les projections dans $E_{\pm}\Gamma$, et telle

 $^{^{3}}$ NB Pour l'unicité, on est ramené aussitôt au cas où V lui-même est un modèle élémentaire anabélien, si ça nous chante.

⁴Et il vaut mieux se borner à l'équivalence de (a) et (b) – la condition (c) avec les centralisateurs risque de passer mal à la <u>lim</u>.

que l'image soit ouverte. Par exemple, on pourrait prendre pour U, V les spectres d'anneaux locaux réguliers essentiellement [?] de type fini sur .

_

Cette conjecture fondamentale (éventuellement revue et corrigée en cours de route?) étant admise, la question qui se pose ensuite est de déterminer les topos (pro)galoisiens sur B qui proviennent de modèles élémentaires anabéliens – ou encore, les $\pi_U=\pi_1(\overline{U})$ de tels modèles étant connus, de déterminer quelles sont [les] actions extérieures possibles de sousgroupes ouverts Γ de Γ sur de tels groupes fondamentaux – et éventuellement question analogue pour d'autres types de groupes profinis, correspondant à des $K(\pi,1)$ qui se réaliseraient par des variétés algébriques (sur C, disons), mais pas par des variétés élémentaires. (J'ai en vue autant des variétés modulaires, tels que, notamment, des variétés modulaires pour les courbes algébriques ...) à partir de là, on reconstruirait par recollement, en termes profinis, tous les schémas lisses sur un corps de type fini sur (ou plutôt la catégorie de ceux-là), ou plus généralement, sur un corps quelconque – puis, sans doute, par "recollement", la catégorie des schémas localement de type fini sur un K – tant [?] des [varier?] la catégorie des fractions qui s'en déduit en rendant inversibles les homéomorphismes universels ...

Les réflexions précédentes suggèrent aussi des énoncés comme le suivant : Pour un schéma de base S localement noethérien donné (5), les foncteurs $X \longrightarrow X_{\text{\'et}}$, allant de la catégorie des schémas réduits localement de présentation finis sur S, vers la 2-catégorie des topos audessus de $X_{\text{\'et}}$, est 1-fidèle (deux homomorphismes $f,g:X \rightrightarrows Y$ tels que les morphismes de topos $f_{\text{\'et}}, g_{\text{\'et}}: X_{\text{\'et}} \rightrightarrows Y_{\text{\'et}}$ au-dessus de Set soient isomorphes, sont égaux) et même peut-être pleinement fidèle, quand on passe à la catégorie des fractions de ($\text{Sch}_{\text{l.t.f.}}$)/S obtenue en rendant inversibles les homéomorphismes universels ... Exprimant ceci par exemple pour les automorphismes d'une courbe algébrique propre sur une extension fini de , on retrouverait le "fait" que tout automorphisme extérieur de E_K (K le corps des fonctions de K) qui respecte la structure à lacets [?] et qui commute à l'action de K, provient d'un automorphisme de K.

⁵S de caractéristique 0 ?

§ IX. – NOTES ANABÉLIENNES

III. Étude des sections de E_{II} sur Γ

Soit U un schéma connexe lisse de type fini géométriquement 0-connexe sur le corps K, d'où $E_U \longrightarrow E_K$, et (¹) on se propose d'étudier les sections mod $\pi_{U,K}$ -conjugaison - plus généralement, on [] un même topos [] les sections $E_K' \longrightarrow E_U$, où E_K' est un sous-groupe ouvert de E_K (ce qui signifie que [] fait une extension de base finie sur K). Si K de type fini sur le corps et si U se plonge dans une schéma sur un groupe commutatif rigide l'application

 $U(K) \longrightarrow []$ d'isomorphisme section de B_U sur $B_K[]\pi_{U_K}$ —conjugaison de sections de E_U sur E_K est injectif. On va examiner d'entre façons "géométriques" de trouver des sections.

Supposons d'abord que U soit une courbe algébrique, que ne soit pas de type (0,0) ou (0,1), i.e. $\pi_1(\overline{U}) = \pi_{U,K} \neq \{0\}$. On a que pour tout $i \in \widehat{\overline{U}} \setminus \overline{U}$ (point à l'infini) le groupe de lacets L_i fournit un scindage (des [] i.e. []) en prenant son centralisateur $Z(L_i)$ dans E, d'où

$$1 \longrightarrow L_i \longrightarrow Z(L_i) \longrightarrow \Gamma \longrightarrow 1$$

et en prenant les scindages de cette extension. Il ne existe, p. ex. définis par une [] de $\overline{O}_{\widehat{U},i}$. L'un des donnes de conjugaison des scindages de (2) est un []

(3)

et [] injectivement de l'un des donnes de π -conjugaison de scindages.

¹On a choisie un revêtement universel \widetilde{U} de U pour définir X, et E_U , E_K , et $E_U \longrightarrow E_K$.

Proposition. $-(^2)$ On suppose $(g,v) \neq (0,0), (0,1)$ i.e. $\pi_{\overline{U}} = \pi_{U,K} \neq (1)$. Alors les classes de π -conjugaison scindage de (1) définis pour les scindages de (2) sont distinctes de celles associés aux points de U(K). Si de plus $(g,v) \neq (0,2)$, i.e. si [] est dans le cas anabélien, alors les classes de π -conjugaison de scindages de (1), associés à des scindages de (2) pour deux indices $i=i_1$ et $i=i_2$ distincts, soient distincts.

La première assertion s'obtient en "bordant" le trous i, alors la section envisagé devient la section de $U \cup \{i\} = U'$ associée au point i, et celle est donc distincte de celle associée aux [] points de U', i.e. aux points de U - a fortiori [] pour le sous-groupe [] par L_i . On [] de même pour [] que les [] de scindages associées a un L_{i_1} et un L_{i_2} , $i_1 \neq i_2$, sont distinctes, [] sauf le cas de type (0,3) [] on tombe sur le type (0,1), où [] de résultat d'injectivité. Mais on peut [], à condition d'admettre que pour un scindage de (2), faisant opérer Γ sur π , on a

$$\pi^{\Gamma^{\circ}} = L_i$$

(donc $\pi^{\Gamma} = (1)$, d'ailleurs) - résultat que on [] plausible. [] que le [] de conjugaison de sections détermine le [] de conjugaison de L_i , donc i.

Conjecture (A). — Soit U courbe algébrique anabélienne géométrique 0-connexe sur corps K de type fini sur . Alors toute section de (1) est d'une des deux types précédents, i.e. soit définie par un point de $U(K)^3$, Sont pas une section d'une extension (2), avec $i \in I(\pi)^\Gamma$ i.e. [] un point de $\widehat{U}\setminus U$, rationnel sur K.

Si on obtient cette conjecture, alors on va conclurait, pour passage à la limite, en considérait le corps de fonctions L de U et $E_L \longrightarrow E_K$ (E_L peut être considéré comme un groupe à lacets "infini" (avec une infinité des classes de sous-groupes lacets L_i ...) que tout scindage de cette extension provient d'une scindage d'une extension de type (2), avec $i \in I$ $\Gamma = X(K)$ ($X = \hat{U}$). Les classes conjugués de tels scindages se grouperaient donc pour paquets (en regardent les centralisateurs des sous-groupes image de Γ° par ses sections,) et un [] ensemble des scindages qui est donc [](Γ^0) conjugués (même s'il ne sont eux-mêmes conjugués). Donc on retrouve [] une description de X(K) (donc ainsi de X(K') pour toute extension finie K' de K) en termes de l'extension E_L de E_K par $\pi_{L,K}$, au même temps qu'une [] de reconstitue les $U = X \setminus I$ []

 $^{^{2}}$ C'est démontré sauf pour le type (0,3) []

 $^{^{3}}$ Il y a [] plus []

Donc en fait c'est la structure $E_L \longrightarrow E_K$ qui est le plus riche a priori, et de loin plus commode pour le genre 0 et 1, où le considération des U de type (g,v) $(2g+v\geq 3)$ [] le groupe "continue" d'automorphismes... La forme "modélique" de la conjecture précédente revient à la forme "birationalle", quand on y précise cette [] en disant que tout scindage de $E_U \longrightarrow E_K$ se revient au un scindage de $E_L \longrightarrow E_K$ (on ainsi, [] un scindage de $E_V \longrightarrow E_K$, si V est un modèle [] U).

On ne [] les conjectures précédentes (sous forme modèlique, disons) sous une forme plus géométrique, en introduisant, un même topos qu'un revêtement universel \widetilde{U} de U, [] X' de X [] \widetilde{U} (où $X=\hat{U}$). (NB je m'abstient de le noter \widetilde{X} , [] il n'est pas [] sur X). Notons que pour $i\in I=\overline{X}-\overline{U}$, l'un des L_i des $\overline{\pi}=\pi(\overline{U})$ [] en correspondance 1-1 avec [] fibre X_i' de X' au dessus de i.

$$X \longrightarrow \overline{X} \longrightarrow X'$$

Donc X' peut être considéré comme le [] de \widetilde{U} , et de $X'\backslash I=$ ensemble des sous-groupes lacets de $\overline{\pi}$, qui apparaissent ainsi comme des "points à l'infini" des revêtements universel \widetilde{U} . D'ailleurs E_U s'interprète comme le groupe de [] schéma \widetilde{U} [], et $E_U\longrightarrow E_K$ comme l'homomorphisme de passage au quotient [] (NB. \overline{K} s'identifie a la clôture algébrique de K dans [], donc E_U opère sur Spec \overline{K} de façon []) Une section de E_U sur E_K est donc une action de E_K sur \widetilde{U} , compatible avec son action sur \widetilde{U} [] convenable (sans doute [] \overline{U}_i finis sur \overline{U} entre \overline{U} et \overline{U} ...). Considérons alors la

Conjecture (B). (4) — Toute telle action de Γ sur \widetilde{U} admet dans $X'=\widehat{\widetilde{U}}$ un point fixe et un seul.

Ceci signifie alors

- a) S'il y a un point fixe à distance finie i.e. $\widetilde{X} \in \widetilde{U}^T$, alors
- 1°) L'image de \widetilde{X} dans U est uniquement déterminée c'est essentiellement le Théorème 3 dans $\S 1$ (des α points distincts de U(K) définissent des classes de conjugaison des scindages distinctes) et
- 2°) ⁵ $\pi^{\Gamma} = (1)$ (i.e. il n'y a pas d'autre point fixe dans \widetilde{U} sur ce même $x \in U(K)$), et []

⁴et même l'action induit de Γ° doit avoir un point fixe [] plus bas

⁵C'est un cas particulier []

3°) il n'y a pas au même temps ce point fixe à l'infini - i.e. il n'existe pas de L_i normalisé par Γ , i.e. une scindage des [] type n'est pas au même temps des deuxièmes (fait que nous avons et oubli directement, précédemment).

D'autre part, dans le cas de points fixes à l'infini, l'unicité de l'image dans X signifie qu'une même action effective [] à la fois un L_i et $[](v \neq J)$ - Fait [] établi sauf dans le cas (g,v)=(0,3) - et l'unicité au dessus d'une $i \in I$ fixé signifie que le L_i (i fixé) normalisé par Γ est unique, ce qui est un affaiblissement de la relation

$$L_i = \operatorname{Cen} \pi^{\Gamma^{\circ}}$$

pour ces opérations, conjecture plus haut.

En fait, je conjecture que dans la conjecture B, il est même vrai que Γ° agissant sur $X' = \widehat{U}$ a un point fixe et un seul (ce qui est plus haut, [] point fixe [] nécessairement fixe pour Γ). Ceci implique dans le cas des points fixes à distance finie, qu'est alors $\pi^{\Gamma^{\circ}} = (1)$, comme il se devrait en général [] et dans le cas de points fixes à l'infini, que

$$\pi^{\Gamma^{\circ}} \subset \operatorname{Norm}_{\pi}(L_i) = L_i$$

donc le [] $\pi^{\Gamma^{\circ}} = L_i$ []!

[] tous nos beaux énoncés devraient être valables, [] un corps de base K de type fini de , mais [] que K est extension de type fini d'un corps cyclotomique (pas [] fini sur).

Nous pourrons définir les courbes de Poincaré sur un corps algébriquement clos de \overline{K} de caractéristique 0, comme étant les courbes isomorphes à des revêtements universels de courbes algébriques anabéliennes sur K (donc courbes anabéliennes \overline{U} , \overline{V} sur \overline{K} définissent des revêtements de Poincaré isomorphes, si et seule si existe un revêtement fini étale de l'un, isomorphes à un revêtement fini étale de l'autre). Étant donné une courbe de Poincaré $\widehat{\overline{U}}$ sur \overline{K} , on définit canoniquement sa complétion \widehat{U} [] \widehat{U} . Ceci posé :

Conjecture (**B**'). — Soient K un corps de type fini sur (ou sur un corps cyclotomique suffise peut-être), \overline{K} une clôture algébrique de K, U une courbe de Poincaré sur \overline{K} , de complétion $\widehat{U} = X$. Considérons une action de $\Gamma = \Gamma_{\overline{K},K}$ sur U, compatible avec sous-action sur \overline{K} , d'où une action de Γ sur X. Ceci posé : Il existe un point fixé et un seul de Γ° agissent sur X (Γ° , noyau de caractère cyclotomique $\Gamma \xrightarrow{\chi} \widehat{\mathbf{Z}}^*$).

La différence avec la conjecture B, pour celle-ci [], [] d'un groupe profini π , [] librement sur U de façon que $U_{/\pi}$ soit une courbe algébrique anabélienne sur \overline{K} .

Que donneraient les conjecture précédentes, quand on les applique à une situation ou K est [] pour un modèle S de K (disons, élémentaire anabélienne), quand U_K provient d'une courbe relative U_S sur S - de sorte qu'on a un homomorphisme de groupes

$$(4) E_{U_S} \longrightarrow E_S$$

de noyau $\pi_{\overline{U}}$, dont $E_{U_K} \longrightarrow E_K$ est déduit pour changement de base i.e. par produit fibre

$$(5) E_{U_K} \longrightarrow E_{U_S}[]$$

Ainsi, les sections de E_{U_K} sur E_K correspondant aux relèvement continus $E_K \longrightarrow E_{U_S}$ de l'homomorphisme surjectif $E_K \longrightarrow E_S$ et parmi ce relèvement, ceux qui sont triviaux sur le noyau de $E_K \longrightarrow E_S$ correspondants existent aux sections de E_{U_S} sur U_S . Nos conjectures impliquent donc qu'il y a existent deux sortes telles sections : 1°) celles qui correspondent à des points de U_K/K i.e à des sections rationnelles des U_S sur S - mais on va vérifier sans mal, sans doute, qu'une telle section rationnelle ne correspond effectivement à une section de l'extension (4), que si c'est une section régulière (à vérifier tantôt). 2°) Celles correspondant à des $i \in I(U_K)$ rationnels sur K, i.e. à une section de $\widehat{U}_S \setminus U_S = S'$ (étale fini sur S) sur S. Et il faudrait étudier encore à quelle conditions une telle section définit un paquet non vide de scindages de (4) - et comment déterminer exactement tous ces scindages.

Avant d'élucider ces deux points, un peu technique, je voudrais voir dans quelle manière la conjecture ${\bf A}$ (ou ${\bf B}$) faite des ces \S , permet de reconstruire la catégorie des modèles élémentaires anabéliennes sur , et celle des extensions de type fini de et des modèles élémentaires anabéliennes sur ceux-ci, en termes des groupes extérieurs (ou topos galoisiens) associés à partir bien sûr de la donnée fondamentale de $\Gamma = \Gamma$, opérant extérieurement sur $\widehat{\pi}_{0,3}$, d'où déjà l'extension $E_{0,3} = E_{U_{0,3}/}$, où $U_{0,3} = \mathbb{P}^1 - \{0,1,\infty\}$.

Prenons les donne de $\widehat{\pi_{0,3}}$ -conjugaison de [] sections de $E_{0,3}$ sur $\Gamma = \Gamma$ i.e. les "points" telles que le centralisateur de Γ^0 soit trivial (sections "admissibles") [] des topos $B_{\widehat{\pi_{0,3}},\Gamma}$ [] sur B_{Γ} [] - on trouve un ensemble sur lequel Γ opère (qui n'est autre que $U_{0,3}(\bar{0})$, à isomorphisme canonique près). Pour tout ensemble fini I des sections, stable par [] la formation "forage de trous" doit nous fournir un groupe extérieur $\pi_{0,3}(I)$, de type [] sur lequel Γ opère (il voit mieux peut-être utiliser le yoga introduit par ailleurs des groupoïdes rigides - donc on peut

[] ainsi [] de trous 0, 1, ∞ - on trouve donc l'équivalent groupoidel de la droit projective \mathbb{P}^1 , on l'appelle [] - qui correspond à un groupe extérieure à lacets infini sur lequel Γ opère - en fait, ce n'est autre que E_{K_i} , où

$$(6) K_1 = (T_1)$$

est l'extension transcendantal pour type de degré 1 de .

Partant de (6), on construit de même l'équivalent groupoïdal de $U_{0,3}$ et on reconstruit comme précédent, pour avoir, sont des courbes de type $(0, v_2)$ sur K_1 (ou sur une extension finie de K_1) sont des courbes relatives de tipe $(0, v_2)$ sur une courbe sur (ou une extension finie de , ou une revêtement étale fini d'une telle U_{0v_1}).

On procède [] pour construire finalement tous les E_K sur E ([] tout corps extension de typew fini de , est extension finie d'une extension transcendantal []) et tous les modèles élémentaires, où [] chaque avec la fibration [] sont une courbe de genre 0, suite un revêtement étale fini d'une telle fibration particulière. Sauf erreur, ça fait assez pour avoir un système fondamental de voisinages de tout point d'une X lisse sur un K et de reconstituer en principe les schémas lisses sur des K, pour recollements de tels morceaux avec des "immersions ouvertes". Mais [] que pour faire un telle description, il en faudrait développer un langage géométrique qui celle mieux à l'intuition géométrique, que les sempiternelles extensions de groupes profinis ... ou actions extérieures, et où les points rigides (à [] alors des clôtures algébriques de corps) jouent un rôle prépondérant. Je me faudra Y revenir dessus - et en même temps, expliciter les topos étales (pas seulement le "morceau $K(\pi,1)$ ") [] entiers des schémas décrits ici par des extensions.

Reprenons le cas de $U=U_S$ schéma relatif sur S, "élémentaire" sur S - à fibres successives anabéliennes (s'il le faut) ou de moins à π_1 non nul, S étant lui-même (pour fixer les idées) lisse sur , irréductible, corps de fonctions K, et reprenons la digression 5. Considérons une section rationnelle f de U sur S, définissant une section de E_{U_K} sur E_K - ou, ce qui revient au même, un relèvement de l'homomorphisme surjectif, $E_K \longrightarrow E_S$ en $E_K \longrightarrow E_{U_S}$ (composé de la section $E_U \longrightarrow E_{U_K}$ [] $E_{U_K} \longrightarrow E_{U_S}$). Je veux montrer que f est pourtant définie i.e. une section de U_S sur S, si et seule si le section de E_{U_K} sur E_K provient d'une section de E_{U_S} sur E_S , i.e. si et seule si le relèvement $E_K \longrightarrow E_{U_S}$ [] sur le noyau de $E_K \longrightarrow E_S$.

Notons que cette dernière condition est une condition "de codimension 1 sur S" - de façon plus précis, si Z est un sous-schéma fermé de S de codimension ≥ 2 , alors, posant $S' = S \setminus Z$,

on a $\pi_1(S') \xrightarrow{\sim} \pi_1(S) = E_S$ pour le "théorème de pureté" - donc le noyau de $E_K \longrightarrow E_S$ est le même que celui de $E_K \longrightarrow E_{S'}$, ou, si [] (comme S' n'est pas un "modèle") que le sous-groupe fermé engendré pour les noyaux des $E_K \longrightarrow E_{S'_i}$, où les S'_i sont des ouvert "modèles" qui recouvrent S'. Si donc le conditions envisagés sont [] relativement aux S'_i (qui pourtant un recouvrement par S, [] S') - ce qui est [] signifie que ce section rationnelle envisagé est [] sur les S'_i , i.e. sur S' - alors celle est vérifié relativement à S - ce qui est [] signifie que le section est [] sur S. Donc, [], il faudrait [] a priori qu'une section de $U_{S'}$ sur S' [] une section de U_S sur S, [] d'une courbe relative $U_S = X_S - T$, X lisse sur S de dimension relative 1, T fini [] sur S, [] T décomposé sur S. Si X [] relatif ≥ 1 , on sait ([] Weil) que le section [] une section de X, soit D l'image inverse de T, c'est un diviseur sur S, dont le [] sur $S' = S \setminus Z$ est nul, donc (comme codim $(Z,S) \geq 1$) il est nul, OK.

(9)

(10)

avec des carrés cartésiens, et des flèches horizontales surjectives. L'homomorphisme $E_{U_S} \longrightarrow E_K$ est composé d'un relèvement $E_K \longrightarrow E_{U_{D_n}}$ de $E_K \longrightarrow E_{D_n}$ avec l'homomorphisme canonique $E_{U_{D_n}} \longrightarrow E_{U_S}$. (relèvement $E_K \longrightarrow E_{U_{D_n}}$ correspondant biunivoquement aux sections de E_{U_n} sur E_K , ou aux relèvements de $E_K \longrightarrow E_S$ ou $E_K \longrightarrow E_{U_S}$...).

Ceci dit ⁶, j'ai envie de prouver que $\varphi_n: E_K \longrightarrow E_{D_n}$ [] i.e. provient d'une section de E_{O_n} sur O_n si et seule si la section rationnelle correspondant de U_S/S est définie en n. Ceci impliquera l'assertion précédent (que la section phi de E_{U_K} sur E_K provient d'une section de E_{U_S} sur E_S , si t seule si la section rationnelle correspondant isomorphique).

Mais il s'agit ici d'un énoncé en fait [] géométrique, que j'ai envie de reformuler sous forme plus générale :

Théorème. — Soit T un trait ([]), U un schéma relatif "élémentaire" sur T, anabélienne 7 , K le corps des fonctions de T, On [] un revêtement universel \widetilde{U} de U, d'où une clôture algébriquement \overline{K} de K, et on considère l'extension $E_U = \pi_1(U;\widetilde{U})$ de $E_K = \pi_1(K,\overline{K}) \simeq \operatorname{Gal}(\overline{K}/K)$ par

⁶N.B.

⁷anabélienne [] - il suffit que les fibres de ordre 1 de la fibration élémentaire de U ne soient que de type (0,0) ou (0,1) - i.e. à π_1 nul

 $\pi=\pi_1(U_{\overline{K}},\widetilde{U})$. On a donc un carre cartésien des groupes profinis

où E_S s'identifie au quotient de E_K par le sous-groupe [] engendré par un groupe d'inertie $I_{K'} \simeq T_{\infty}(\overline{K})$, cf plus haut. Soit f_K , K un point de U_K rel/K, d'où une section $\Psi = \Psi_{f_K}$ de E_K sur E_{U_K} . Ceci posé les conditionnes suivantes sont équivalentes

- (a) f_K se prolonge en une section de U sur S;
- (b) Ψ provient d'une section de E_U sur E_S ;
- (b') le compose $E_K \xrightarrow{\Psi} E_{U_K} \longrightarrow E_U$ s'annule sur $I_{K'}$.

L'équivalence de (b) et (b'), et qu'elles soient impliques par (a), est clair. C'est l'implication (b) \Rightarrow (a) qui demande une démonstration. On est [] au cas où T est strictement local (donc $E_K = \operatorname{Gal}(\overline{K}/K)$ est réduit à son sous-groupes d'inertie, et $E_S = (1)$). On est ramené de prendre un [] au cas où $U_{/S}$ est une courbe relative élémentaire, $U = X \setminus T$, X lisse et propre. Alors f se prolonge en une section f au X sur S, et la conclusion [] que $f(S) \subset U$. Donc on est ramené [] au

Lemme. — Soit X schéma projectif lisse de donne relation 1 connexe sur S trait strictement local, soit $T \subset X$ sous-schéma, fini étale sur S, donc $T \simeq I_S$, I ensemble fini, et soit $U = X \setminus T$ (donc T est défini par une $[](g_i)_{i \in I}$ des sections disjointes de X sur S) si g est de genre relatif, v = []I, on suppose $(g,v) \neq (0,1)$. Soit $i_0 \in I$, f une section de X/S distinctes des disjoints g_i , et telle que f et g_{i_0} coïncident en S (point fermé de S). Si $g = S \setminus S$, on a donc un morphisme $g_i \to G$ 0, d'où $g_i \to G$ 1. Je dis que cet homomorphisme n'est pas trivial, et même, si $g_i \to G$ 2, que pour la donné $g_i \to G$ 3 pas trivial (pour $g_i \to G$ 4 gistinct de la caractéristique résiduelle).

Comme la section rationnelle de $J_{X/S}^1$ défini par f est régulière, on voit que le composé de l'homomorphisme envisagé avec $H_n(J_{X/S}^1, \mathbf{Z}_\ell)$ est nul - i.e. le $H_1(\eta, \mathbf{Z}_\ell)$ s'envoie dans la partie torique de $H_1(U, \mathbf{Z}_\ell)$ [], qu'est canoniquement isomorphe à T_ℓ^I/T_ℓ . (N. B cette partie est nulle si card I=i, et dans ce cas le critère homologique [] insuffisant...) Il faudrait donc calculer cet homomorphisme

$$T_{\ell}(\simeq H_1(\eta, \mathbf{Z}_{\ell})) \longrightarrow T_{\ell}^I/T_{\ell}$$

pour constater qu'il n'est pas nul dans le cas envisage, $v \ge 2$ (et traiter [] le cas v = 1). Je vais dériver le résultat : soit $x = g_{i_0}(s)$, $A = \underline{O}_{X,n}$, V l'anneau de S, J_{i_0} l'idéal de l'homomorphisme $A \xrightarrow{g_{i_0}^*} V$ associé à [], c'est donc une idéal inversible de A -soit de même J_f l'idéal associé à $f^* = A \longrightarrow V$, et considérons $g_{i_0}^*(J_f)$, c'est une idéal de V engendré par un générateur, et comme $g_{i_0} \ne f$, on voit que cet idéal n'est pas nul. Soit $H = []v/g_{i_0}^*(J_f)$, cet entier [] de g_{i_0} et f, ces [] comme une multiplicité d'intersection. Ceci posé, je [] que l'homomorphisme

$$T_{\ell} \longrightarrow T_{\ell}^{I}/T_{\ell}$$

est le produit [] des l'injections canoniques $T_\ell \longrightarrow T_\ell^I$, correspondant à l'indice i_0 . Il faudrait que [].

Reste le cas $\nu=1$, qui semble demander un traitement séparé 8 . [] à vérifier (pour les groupes fondamentaux premiers à p) c'est que l'homomorphisme extérieur $\pi_1(U_s) \simeq \pi_1(\eta) \longrightarrow \pi_1(U)$ est égal à $K_{i_0} \circ (\mu Id_T)$, où K_{i_0} est l'homomorphisme "local"

associé à l'indice i_0 . Je vais admettre à priori, qui une ne peut guère être difficile.

Pour terminer ce numéro, je veux encore étudier, dans la situation d'une U courbe relation sur une S avec $U = X \setminus T$, X lisse et propre sur S, T fini étale, avec sections g_i donnée de T sur S, les "sections de 2^{eme} espèce" de l'extension

$$1 \longrightarrow \pi \longrightarrow E_U \longrightarrow E_S \longrightarrow 1$$

associées 9 à $i=i_0$ - que définit une classe de π -conjugaison de sous-groupes ouverts lacets L_i dans π . (On suppose qu'on a bien une telle suite exact i.e. que $\pi_2(S) \longrightarrow \pi_1(\text{fibre})$ est nul, ce qui [] le cas si $\pi_2(S)=0$, p. ex []) si on est dans le cas d'une modèle élémentaire au dessus d'un corps de caractéristique 0 (la réconstruction de ces [] étant sans doute [], si on [] aux groupes fondamentaux premiers aux cas résiduelles...) [] L_i dans E_U s'envoie sur E_S , on trouve donc des scindages pour cette extension, qu'on peut regarder comme une extension

$$1 \longrightarrow T \longrightarrow N(L_i) \longrightarrow E_S \longrightarrow 1$$

⁸Ceci doit être indépendant de la [] de v!

⁹en tous cas, même sous []

La classe d'isomorphisme est un élément

(14)

que je ne propos d'étudier. On [] si S est un $K(\pi, 1)$

(15)

d'ailleurs on a une suite exacte de Kummer (ou Pic(S) = [])

$$(16) 0 \longrightarrow Pic(S)[]$$

d'où par passage à la limite

(17)

Dans le cas où S est un schéma élémentaire sur un corps de type fini sur , Pic(S) est un Zmodèle de type fini (par Mordell-Weil-Néron), donc l'homomorphisme

(18)
$$\operatorname{Pic}(S) \longrightarrow \operatorname{Pic}(S) \longrightarrow \operatorname{H}^{2}(S, T)$$

est injectif.

Sous nous [] de cette condition, considérons le cas général - je dis que la classe c (14) est donc l'image de (18), de façon précise que c'est l'image de l'élément

$$g_i \in Pic(S)$$

classe des faisceaux [] (on []) de X le [] de g_i . Principe d'une vérification : [] la complété formel de X [] de $g_{\nu}(S)$, [] ou interpréter la suite exacte (13) comme la suite exacte d'homotopie de ce topos [], au dessus de S. On a donc à prouver une historie d'ombres...

Dans le cas "arithmétique", on voit donc que l'extension (13) est scindée si et seule si $g_i = 0$ i.e. [], globalement sur S, []

Quand $g_i = 0$, parmi les scindages, il y a [] provenant [] d'une base de J_i/J_i^2 qui soit []. L'indétermination des choix d'une telle base [] celle des choix d'une section de (13) est donc

(20)

On a ici des suites exactes de Kummer

d'où par passage à la limite

(21)

Dans le "cas arithmetique" [] on trouve donc

Si le genre est zéro, prenant une de ces sections de T sur S comme section à l'infini, OPS ([] à se localiser) $U_S = \mathbb{E}'_S \setminus T'$, donc f s'identifie à une section de \mathbb{E}^1_S sur S', i.e. de O_S sur S, donc (comme codim $(2,S) \geq 2$ []) elle se prolonge en une section de O_S . Et on [] comme précédemment, OK. Considérons donc les diviseurs irréductibles O_I sur S, ou ce qui revient au même, les points O_S de O_S de

Soit $I_{\overline{x}}$ le noyau de l'homomorphisme obtenue ([] "géométriques" de []), donc on a une suite exacte

(7)
$$1 \longrightarrow []\operatorname{Gal}(\overline{k(x)}/k(x)) \longrightarrow 1$$

et par Kummer une isomorphisme canonique¹⁰

(8)

On notera que si x est le [] du diviseurs D, alors k(x) est le corps des fonctions de D. C'est un corps de type fini sur .

Il est immédiat (sans supposer que le corps de base pour S soit) que le noyau de $E_K \longrightarrow E_S$ est le sous-groupe [] engendré par les $I_{\widetilde{n}}$. Donc l'hypothèse que $E_K \longrightarrow E_{U_S}$ [] sur le dit noyau, signifie aussi qu'il [] sur [] des $I_{\widetilde{n}}$. Soit alors $U_{\underline{O}_x}$ induit par U sur Spec_x , on a donc des factorisations d'ailleurs $\mathbb{G}_n(S)$ n'a pas [], donc

22)

est injectif¹¹. Ainsi, quand $g_i = 0$ i.e. quand (13) admet des scindages "géométriques" (et

¹⁰à corps de [] de car 0!

¹¹(cas "[]")

il suffit []) ceux-ci forment un torseur sous $\mathbb{G}_m(S)$, qui s'identifie à une sous-torseur des [] de tous les scindages de (13). Pour que la "description profinie de la géométrie algébrique absolu sur soit complète, il y faudrait également caractériser (en termes de cette description profinie) le sous-ensemble remarquable.

Je voudrais enfin comprendre encore comment une section d'extensions des type (1) peut se "spécialiser" en une section de type (2), donc le cas des courbes relatives. Pour ceci, je reprends la [] situation

Dans la cas [] où f n'est pas définie sur S, on trouve une action de 2^{nde} espèce, [] L_i dans π .

À vrai dire

(31)

J'ai l'action extérieure de T sur π n'est souvent pas triviale (je conjecture qu'elle l'est si et seule si il y a "bonne réduction") - donc le groupe E_K n'opère pas lui même extérieurement sur π . Mais tout scindage de (30) définit une extension de E_K par π , donc une action extérieure [] "admissible", définie par une courbe algébrique ? - Sans doute pas [], si ce n'est la courbe "réduit" de type (g,v) ([]) ? [] ce pourrait être celle ci :

Conjecture-à-[]. — Les conditions suivantes sont équivalentes :

- (a) U_n a bonne réduction sur S;
- (b) L'action extérieure de T sur π est triviale (ce qui signifie ainsi que tout [] scindage de (31) p. ex défini par un point de U_n [] induit un homomorphisme $T \longrightarrow \pi$);
- (c) L'action de T sur $\pi_{ab} = H_1(U_{\overline{n}})$ est triviale ;
- (d) Itou pour
- (e) En termes de une section de (30)
- (f) En termes de une section de (30)

On a []

J'ai donc [] un [] général (qui je pourrais à la occasion [] avec la généralité qui lui revient) pour construire des actions extérieures [] de groupes E_k (K extension de type fini de) sur des π à lacets, qui (sans doute)] géométriques, par la considération de courbes de type (g,v) "se réduisent []". Mais je [] pas pour cette vrai à faire des actions effectives, associées à actions extérieures [] géométriques [] - i.e. d'une des deux types 1°, 1° [] de ce n°.

§ IX. — NOTES ANABÉLIENNES

IV. Sections d'extensions et anneaux de valuations généraux

D'abord une révision de notations. Si X est une schéma connexe, je note

$$(1) E_X = \Pi_1(X)$$

son groupe fondamental profini en tant que groupe extérieur, et si \widetilde{X} est un revêtement universel profini de E_X , par

(2)
$$E_X^{(\widetilde{X})} = \pi_1(X; \widetilde{X}) = \operatorname{Aut}_X(\widetilde{X})$$

son groupe fondamental précisé - qu'est un groupe profini. Si $X=\operatorname{Spec}(A)$, où A est un anneau (le plus souvent une corps) je note E_A , et $E_A^{\widetilde{A}=E_X^{(\widetilde{X})}}$. Si A est une A-algèbre telle que $\operatorname{Spec}(\widetilde{A})=\widetilde{Y}$ soit une revêtement universel de X (ce qui le détermine à isomorphisme non unique près). Bien entendu, si ξ est une "point géométrique" de X, on note

(3)
$$E_X^{\xi} = \Pi_1(X_1 \xi) = E_X^{\tilde{X}(\xi)},$$

où $\widetilde{X}(\xi)$ est le revêtement universel de X [] en ξ . Le choix de ξ correspond d'une [] [] et d'une extension séparablement close Ω de k(x) ([] clôture algébrique de k(x)) et on note alors ainsi E_X^{Ω} au lieu de E_X^{ξ} (Ω sous entendu [] extension de k(x) donc avec sa structure de k(x) algèbre) []

$$(4) E_X^{\Omega} = E_X^{\overline{k(x)}},$$

où $\overline{k(\alpha)}$ est la clôture algébrique de $k(\alpha)$ dans Ω . Bien sur, si $X = \operatorname{Spec}(A)$, on note aussi E_A^Ω – notation [] utilisée [] $E_K^{\overline{K}}$, K un corps, \overline{K} une clôture algébrique [] séparable de K.

Si X est un Y-schéma, 1-connexe, on []

(5)
$$E(f): E_X \longrightarrow E_Y$$
, où $f: X \longrightarrow Y$

 E_X est un foncteur en X

$$(Sch conn) \longrightarrow Group ext$$

qui se précise pour l'homomorphisme injectif des groupes profinis

$$(6) E_X^{\widetilde{X}} \longrightarrow E_Y^{\widetilde{Y}}$$

où \widetilde{Y} est le revêtement universel de Y défini par $\widetilde{X} \longrightarrow Y$ (\widetilde{X} [] pouvoir écrire en fait $E_Y^{\widetilde{X}}$, plus géométriquement E_Y^Z chaque fois qu'on a un Y-schéma Z 1-connexe, jouent le rôle de "foncteur fibre" pour le topos $B_{\pi(X)}$ des revêtements étales de Y.)

On peut désir que

$$(7) (X, \widetilde{X}) \mapsto E_X^{\widetilde{X}}$$

est un foncteur, de la catégorie des schémas 0-connexes X munis une revêtement universel (on [] d'un Z 1-connexe s'envoyant dans X) vers celle des groupes profinis. Ceci s'applique en particulier en regardons la sous-catégorie des (X, ξ) munis d'un point géométrique - on a donc

$$(8) E_{\scriptscriptstyle Y}^{\xi} \longrightarrow E_{\scriptscriptstyle Y}^{\eta}$$

si on a un homomorphisme de schémas "géométriques profinis" $(X,\xi) \longrightarrow (Y,\eta)$. On note que tout [] géométrique de X en un $x \in X$ - i.e. une extension [] Ω de $k(\alpha)$ [] - et l'homomorphisme (8) s'identifie ainsi a

$$(9) E_X^{\overline{k(\alpha)}} \longrightarrow E_Y^{\overline{k(\gamma)}}$$

où $\overline{k(\alpha)}$, $\overline{k(\eta)}$ sont les clôtures séparables dans Ω .

On poserons

(10)
$$E_{X/Y}^{\widetilde{X}} = \operatorname{Ker}(E_X^{\widetilde{X}} \longrightarrow E_Y^{\widetilde{X}} = E_Y^{\widetilde{Y}})$$

C'est un foncteur par un triple $\widetilde{X} \longrightarrow X \longrightarrow Y$ avec X, Y 0-connexe, \widetilde{X} un revêtement universel, plus généralement, si $T \longrightarrow X$ avec 1-connexe, on pose

(11)
$$E_{X/Y}^T = \operatorname{Ker}(E_X^T \longrightarrow E_Y^T)$$

(1) on a un foncteur []. Cas particuliere $E_{X/Y}^{\xi}$, ξ un point géométrique de X, $E_{X/Y}^{\Omega}$, $E_{X/A}^{\widetilde{X}}$ (si $Y=\operatorname{Spec} A$), $E_{B/A}^{\widetilde{B}}$...

[] on dispose d'une "suite exacte d'homotopie universel" (en dim 2) (²) pour $X \longrightarrow Y$, alors le donnée (pour $X \longrightarrow Y$ donné) de $T \longrightarrow X$, (avec T 1-connexe) peut s'interpréter par la donnée d'un composé

$$T \longrightarrow Y$$

et d'un relèvement en $T \longrightarrow X$, ou ce qui revient au même, d'une section de $X_T = X \times_Y T$ sur T. Ceci posé,

X

on avoir un isomorphisme [] (avec l'hypothèse de "suite exacte d'homotopie" faut)

(12)
$$E_{X/Y}^T \simeq \pi_1(X_T; T) \simeq E_{X_T}^T$$

et on []

$$1 \longrightarrow E_{X/Y}^T \longrightarrow E_X^T \longrightarrow E_Y^T \longrightarrow 1$$

(Cette hypothèse [] satisfait si $Y = \operatorname{Spec} K$, K un corps, Si X est géométriquement 0-connexe sur K).

Plus généralement, si on a une suite exacte d'homotopie universel, mais pour [] avec $E_X^T \longrightarrow E_Y^T$ surjectif,

On $(^3)$ [] une factorisation de $X \longrightarrow Y$ en

$$(14) X \longrightarrow Y' \longrightarrow Y$$

avec Y' étale fini ou pro-étalefini sur Y et $E'_X \longrightarrow E_Y$, était maintenant [un] épimorphisme, [] suite exacte universel d'homotopie bien sûr. On avoir donc isomorphismes []

$$(15) E_{X/Y}^T \xrightarrow{\sim} E_{X/Y'}^T$$

 $^{{}^{1}}$ **NB**. $E_{X/T}^{T}$ []

²Cas où $E_X^T \longrightarrow E_Y^T$ est [un] épimorphisme

³Sous l'hypothèse "suite exacte d'homotopie" mais avec fibres []

qui peut donc se [] comme

$$(16) E_{X\times_{Y}/T}^{T} \simeq E_{X/Y}^{T}$$

qu'on peut noter $E_{X_T}^T$, mais en faisant attention que $[]X_T[]$ non plus $X \times_Y T$ (qui va être disconnexe si $Y' \longrightarrow Y$ pas isomorphisme) mais $X \times_Y T$.

Bien sur, à isomorphisme []

s'identifie bel et bien au groupe de Galois $\operatorname{Gal}(\overline{K},K)$ de \overline{K}/K , \overline{K} est la clôture séparable de K telle que $\operatorname{Spec}\overline{K} \simeq \widetilde{Y}$. Souvent, on notons Γ , ou Γ_K , $\Gamma_K^{\overline{K}}$, au lieu de E_Y - surtout si K est algébrique sur le corps premier, et [] donc plus de "partie géométrique" à distingue d'une "partie arithmétique"...

Soit K un corps (qui pourrait être algébriquement clos), L une extension de type fini de K, X un "modèle" propre régulière de L. Alors $E_X^{\overline{L}}$ s'identifie a un quotient de $E_L^{\overline{L}}$, qui ne dépend pas de modèle X défini, comme il est [] c'est la partie "universelle géométrique" [] qui classifie les schémas (finis) étales sur L qui sont "non isomorphes" sur tout modèle régulière (propre ou non) de L/K.

Si U est un modèle quelconque, il se plonge dans un X, et on a des homomorphismes surjectifs $[\]Z$ partie ferme de X

$$E_X^{\overline{L}} = E_L^{\overline{L}} \simeq E_U^{\overline{L}} / \text{ sous-groupe fermé []}$$

Notons que $E_L^{\overline{L}}$ es e imite projective de $E_U^{\overline{L}}$, pour des modèles réguliers ([]) variables

$$E_L^{\overline{L}} \simeq []E_U^{\overline{L}}$$

et de même, bien sûr

$$\pi_{L/K}^{\overline{L}} \simeq [] \pi_{U/K}^{\overline{L}}.$$

[]

dont le choix "effectif" dépend de celui d'un revêtement universel ou encore d'une point géométrique [] de \widetilde{K}_n - i.e. d'une clôture algébrique de \widetilde{K}_n []

.]

est que $a \in U$.

Ceci posé, $E_U^{\overline{L}}$ se récupère à partir de $E_L^{\overline{L}}$, comme quotient de ce dernier, en prenant *tous* les V de L [] un centre sur U (il suffit même de prendre les $V = \underline{O}_{U,n}$, où se est [] de codim 1 des U), et [] correspondants.

On peut regarder

[]

Mais il en est [] ainsi comme on voit en considérant $V_1 = V \cap L_1$, qu'est un anneau de valuations de L_1 , (4) dont le corps [] fini sur K si celui de V l'est (donc $V_1 \neq L1$) - donc V_1 correspond à une "place" des corps de fonctions d'une variable L_1 sur K. [] E_K° centralise T_{V_1}

Conjecture. — Soient K, L des extensions de type fini de \mathbb{Q} , $K \subset L$. Alors

- a) Toute section de E_L sur E_K (au guère de tel, se revient au même...) normalise sur T_V associée à un anneau de valuations V de L contenant K, à corps résiduel algébrique sur K et V est uniquement f) [] cette condition [] au dessus de E_K .
- b) Soit U un modèle "élémentaire" de L sur K, anabélien. Alors tout section de $E_U^{\overline{L}}$ sur $E_K^{\overline{K}}$ se relient [] une section de $E_L^{\overline{L}}$ sur $E_K^{\overline{K}}$.

À noter que ce question 2° est[] locale [] elle doit être essentiellement "triviale", que [] vraie un [] - par contre 1° , est une question de [] globale sur U, et sans doute [] façons triviale.

La validité des ces énonces, impliquant donc, pour les sections de $E_U^{\overline{L}}$ sur $E_K^{\overline{L}}$ associes a un anneau de valuations de L/K de corps résiduel K, que l'image de $E_K^{\overline{L}}$ doit normaliser un sous-groupe [] de $\pi_{L/K}^{\overline{L}}$, qui est non trivial si le valuation [] centre sur U, i.e. si le section n'est pas associé à un point K-rationnel de U, ce qui est justifiant [] des conjectures (qui prouvent d'abord [] !) de §2.

Avant de [] vers l'étude des questions 1°) et 2°) et ainsi des questions de normalisation et de centralisations [] précédemment a propos de N_V , I_V , ...),

⁴Il faut []

⁵[]