

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

Disciplina: INFERÊNCIA ESTATÍSTICA

Curso: Graduação em Estatística

Código: EST0035 Semestre: 2025.1

Professor: Frederico Machado Almeida

LISTA DE EXERCÍCIOS #03

Observações:

• Questões para entregar: 3, 8, 10(b, d), 12 e 13

• Demais questões são apenas para estudar.

• Prazo de entrega: $\frac{27}{05}/\frac{2025}{2025}$

- Q1. Seja $\bar{x}=81,2$ a média observada de uma amostra aleatória simples de tamanho 20, proveniente de uma distribuição normal de média μ e variância $\sigma^2=80$. Encontre: (i) o intervalo de 90% de confiança para μ ; (ii) o intervalo de 96% de confiança para θ , e compare a amplitude dos dois intervalos.
- **Q2.** Suponha que uma amostra aleatória de tamanho 17 tenha sido extraída da distribuição $X \sim \mathcal{N}(\mu, \sigma^2)$ tenha fornecido uma média de $\bar{x} = 4,7$ e variância $s^2 = 5,76$. Construa os intervalos de 95 e 99% de confiança para μ .
- **Q3.** Assuma que X_1, X_2, \dots, X_n denotam cópias iid's de uma variável aleatória X com distribuição Poisson (θ) . Assuma que uma amostra aleatória de tamanho 200 tenha fornecido uma estimativa de 3,4 para θ . Pede-se para construir um intervalo de confiança assintótico de 96% para θ .
- Q4. Com respeito às últimas eleições municipais foi efetuada uma sondagem sobre as intenções de voto dos eleitores de uma certa cidade Brasileira, recolhendo-se 500 respostas. Nestas, 200 estabeleciam a intenção de votar no atual Prefeito, 150 pronunciavam-se favoráveis ao candidato do outro partido e as restantes tem preferência por outros candidatos ou não expressam a sua preferencia. O estudo destinase a avaliar as hipóteses de exito do atual Prefeito. Pergunta-se:
 - (a) Qual a população em causa? Justifique a escolha especificando quais os parâmetros da distribuição.
 - (b) Indique, justificando, qual o melhor estimador para a proporção de eleitores da cidade em questão, que não votam no atual Prefeito. Com base na amostra recolhida indique uma estimativa para essa proporção.
 - (c) Construa um intervalo de 90% para a proporção de eleitores que preferem votar no candidato do outro partido. Interprete o resultado.

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

Paciente	1	2	3	4	5	6	7	8	9	10
Indutor A	5	6	5	5	4	3	5	5	6	6
Indutor B	2	4	5	4	4	4	3	4	4	6

Q5. Uma farmacêutica pretende avaliar a eficácia de duas marcas de indutores do sono, A e B que detêm no mercado. Os ensaios clínicos efetuados em 10 doentes permitiram obter os tempos (em minutos) que os mesmos doentes levaram a adormecer com cada um dos indutores.

Construa um intervalo de confiança a 95% para a diferença entre os tempos médios que os doentes levam a adormecer para os dois indutores do sono, supondo que, os dados foram extraídos de duas distribuições normal com médias μ_1 e μ_2 (desconhecidas):

- (a) Com $\sigma_1^2 \neq \sigma_2^2$, sendo ambas desconhecidas.
- (b) Com $\sigma_1^2 = \sigma_2^2 = \sigma^2$, sendo σ^2 desconhecidas.
- (c) Com $\sigma_1^2 = \sigma_2^2 = \sigma^2$, sendo σ^2 conhecidas.
- (d) Com base nos resultados dos itens anteriores, explique qual dos indutores é o mais eficaz.
- **Q6.** Seja \bar{X}_n a média de uma amostra aleatória X_1, X_2, \dots, X_n proveniente de uma distribuição normal de média μ e variância $\sigma^2 = 9$. Encontre o tamanho de amostra n, tal que, $\mathbb{P}\left(\bar{X}_n 1 < \mu < \bar{X}_n + 1\right) = 0,90$.
- **Q7.** Seja \bar{x} a média observada de uma amostra aleatória de tamanho n proveniente de uma distribuição com média μ desconhecida, e variância σ^2 conhecida. Encontre o tamanho de amostra n tal que, $[\bar{x} \sigma/4; \bar{x} + \sigma/4]$ seja um intervalo de 95% de confiança para μ .
- **Q8.** Seja Y uma variável aleatória, cuja sua fdp é dada por: $f(y|\theta) = \frac{2(\theta-y)}{\theta^2}$, com $y \in (0, \theta)$ e zero, caso contrário.
 - (a) Encontre a função de distribuição da variável aleatória Y.
 - (b) Mostre que $\frac{Y}{\theta}$ é uma quantidade pivotal.
 - (c) Use a quantidade pivotal do item (b) para obter os limites inferior e superior de θ , supondo $1 \alpha = 0,90$.
- **Q9.** Seja X_1, X_2, \dots, X_n uma amostra aleatória proveniente da distribuição $\mathcal{N}(\mu, \sigma^2)$, com ambos os parâmetros sendo desconhecidos. O intervalo de confiança para σ^2 pode ser obtido usando a distribuição amostral de S^2 . Isto é, $\mathbb{P}\left(\frac{(n-1)S^2}{\sigma^2} < b\right) = 1 \alpha/2$ e $\mathbb{P}\left(a < \frac{(n-1)S^2}{\sigma^2} < b\right) = 1 \alpha$.
 - (a) Obtenha o intervalo de 95% de confiança para σ^2 .
 - (b) Se n = 9 e $s^2 = 7,93$ obtenha o intervalo de 90% de confiança para σ^2 .
 - (c) Supondo μ conhecido, explique o quão esse fato pode modificar o processo de construção de um intervalo de confiança para σ^2 .
- **Q10.** Seja $X_{11}, X_{12}, \cdots, X_{1n_1}$ e $X_{21}, X_{22}, \cdots, X_{2n_2}$ duas amostras independentes, provenientes das seguintes distribuições, $X_{1i} \stackrel{iid}{\sim} \mathcal{N}(\mu_1, \sigma_1^2)$ e $X_{2i} \stackrel{iid}{\sim} \mathcal{N}(\mu_2, \sigma_2^2)$.

UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ESTATÍSTICA

- (a) Discuta o processo de obtenção de um intervalo de 92% de confiança $\Delta = \mu_1 \mu_2$, supondo que $\sigma_1^2 \neq \sigma_2^2$, e que ambos são conhecidos, e com $n_1 = 15$ e $n_2 = 12$.
- (b) Assuma agora que, $\sigma_1^2 = 3\sigma_2^2$, com σ_2^2 sendo desconhecidos. Com base nessa informação, obtenha a quantidade pivotal correspondente, e o respectivo intervalo de 95% de confiança para $\Delta = \mu_1 \mu_2$.
- (c) Assuma que uma amostra de tamanho $n_1=n_2=10$ forneceu as seguintes estimativas, $\bar{x}_1=4,80;\ s_1^2=8,64;\ \bar{x}_2=5,60$ e $s_2^2=7,88$. Construa o intervalo de 98% de confiança para o parâmetro $\Delta=\mu_1-\mu_2$.
- (d) Supondo que $\sigma_1^2 = \sigma_2^2 = \sigma^2$, com σ^2 sendo uma quantidade desconhecida, construa o intervalo de 94% de confiança para σ^2 .
- **Q11.** Seja X_1, \dots, X_{100} e Y_1, \dots, Y_{100} duas amostras aleatórias independentes, cada uma com distribuição Binomial de parâmetros θ_1 e θ_2 , respectivamente. Assuma que nas duas populações tenham sido observados o número de sucessos, $S_x = 50$ e $S_y = 40$. Construa o intervalo de confiança aproximada de 90% de confiança para $\theta_1 \theta_2$.
- Q12. Seja \bar{X}_n e \bar{Y}_n as médias de duas amostras aleatórias independentes de mesmo tamanho n, provenientes das distribuições $\mathcal{N}(\mu_1, \sigma^2)$ e $\mathcal{N}(\mu_2, \sigma^2)$, respectivamente. Ou seja, pressupõem-se que as duas populações tem a mesma variância σ^2 conhecido. Pede-se para encontrar o valor de n, tal que

$$\mathbb{P}\left(\bar{X}_n - \bar{Y}_n - \sigma/5 < \mu_1 - \mu_2 < \bar{X}_n - \bar{Y}_n + \sigma/5\right) = 0,90.$$

- **Q13.** Seja $X_1, X_2 \cdots, X_n$ e Y_1, Y_2, \cdots, Y_m duas amostras independentes, tais que, $X_i \stackrel{iid}{\sim} \mathcal{N}(\mu_1, \sigma_1^2)$ e $Y_i \stackrel{iid}{\sim} \mathcal{N}(\mu_2, \sigma_2^2)$, com os 4 parâmetros sendo desconhecidos. Pede-se para:
 - (a) Explicar o tipo de distribuição associada variável aleatória R.
 - (b) Obter, usando a tabela apropriada, o valor dos quantis q_1 e q_2 tais que, $\mathbb{P}(R < q_2) = 0,975$ e $\mathbb{P}(q_1 < R < q_2) = 0,95$
 - (c) Construir o intervalo de $(1-\alpha)$ 100% de confiança para a razão de variâncias $R=\sigma_1^2/\sigma_2^2$, supondo que $\frac{(n-1)S_1^2}{\sigma_1^2}\sim\chi_{n-1}^2$ e $\frac{(m-1)S_2^2}{\sigma_2^2}\sim\chi_{m-1}^2$. Sendo S_1^2 e S_2^2 os estimadores pontuais para σ_1^2 e σ_2^2 , respectivamente.