Digital Logic Design + Computer Architecture

Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Do You Want to Design Some Day?

Design with Gates

- Logic gates: perform logical operations on input signals
- **Positive (negative) logic polarity**: constant 1 (0) denotes a high voltage and constant 0 a low (high) voltage
- Combinational circuits: No memorization
- Synchronous sequential circuits: have memory; driven by a clock that produces a train of equally spaced pulses
- Propagation delay: time to propagate a signal through a gate
- **Asynchronous circuits**: are almost free-running and do not depend on a initiation and completion signals

Combinational Circuits

Circuit analysis: determine the Boolean function that describes the circuit

• Done by tracing the output of each gate, starting from circuit inputs and continuing towards each circuit output

Example: a multi-level realization of a full binary adder

Combinational Circuits: Parity-bit Generator

Parity-bit generator: produces output value 1 if and only if an odd number of its inputs have value 1

(a) Map.

(b) Implementation.

$$P = x'y'z + x'yz' + xy'z' + xyz = x. + y + z$$

Combinational Circuits: Serial to Parallel

Serial-to-parallel converter: distributes a sequence of binary digits on a serial input to a set of different outputs, as specified by external control signals

Control		(Dutpu	t line	Logic equations	
C_1	C_2	L_1	L_2	L_3	L_4	
0	0	x	0	0	0	$L_1 = xC_1'C_2'$
0	1	0	x	0	0	$L_2 = xC_1'C_2$
1	0	0	0	x	0	$L_3 = xC_1C_2'$
1	1	0	0	0	\boldsymbol{x}	$L_4 = xC_1C_2$

Combinational Circuits: Comparators

n-bit comparator: compares the magnitude of two numbers X and Y, and has three outputs f_1, f_2 , and f_3

- $f_1 = 1 \text{ iff } X > Y$
- $f_2 = 1 \text{ iff } X = Y$
- $f_3 = 1 \text{ iff } X < Y$

<i>X</i> -	1 X ₂ ↓	<i>y</i> ₁	<i>y</i> ₂ ↓
2-b	it cor	npar	ator
	▼	f_2	7

(a) Block diagram.

X_1X_2							
<i>y</i> ₁ <i>y</i> ₂	00	01	11	10			
00	2	1	1	1			
01	3	2	1	1			
11	3	3	2	3			
10	3	3	1	2			

(b) Map for f_1 , f_2 , and f_3 .

$$f_1 = ?$$

$$f_2 = ?$$

$$f_3 = ?$$

Combinational Circuits: Comparators

n-bit comparator: compares the magnitude of two numbers X and Y, and has three outputs f_1, f_2 , and f_3

- $f_1 = 1 \text{ iff } X > Y$
- $f_2 = 1 \text{ iff } X = Y$
- $f_3 = 1 \text{ iff } X < Y$

(a) Block diagram.

X_1X_2								
<i>y</i> ₁ <i>y</i> ₂	00	01	11	10				
00	2	1	1	1				
01	3	2	1	1				
11	3	3	2	3				
10	3	3	1	2				

(b) Map for f_1 , f_2 , and f_3 .

(c) Circuit for f_1 .

$$f_1 = x_1 x_2 y_2' + x_2 y_1' y_2' + x_1 y_1'$$

= $(x_1 + y_1')x_2 y_2' + x_1 y_1'$

$$f_2 = x_1 'x_2 'y_1 'y_2 ' + x_1 'x_2 y_1 'y_2 + x_1 x_2 'y_1 y_2 ' + x_1 x_2 y_1 y_2$$

$$= x_1 'y_1 '(x_2 'y_2 ' + x_2 y_2) + x_1 y_1 (x_2 'y_2 ' + x_2 y_2)$$

$$= (x_1 'y_1 ' + x_1 y_1)(x_2 'y_2 ' + x_2 y_2)$$

$$f_3 = x_2 'y_1y_2 + x_1 'x_2 'y_2 + x_1 'y_1$$

= $x_2 'y_2(y_1 + x_1 ') + x_1 'y_1$

Combinational Circuits: Comparators

Four-bit comparator: 8 inputs (four for A, four for B, and three outputs A > B, A < B and A = B

$$x_i = A_i B_i + A_i' B_i'$$
 $i = 0, 1, 2, 3$

$$(A = B) = x_3 x_2 x_1 x_0$$

$$(A > B) = A_3 B_3' + x_3 A_2 B_2' + x_3 x_2 A_1 B_1' + x_3 x_2 x_1 A_0 B_0'$$

$$(A < B) = A_3' B_3 + x_3 A_2' B_2 + x_3 x_2 A_1' B_1 + x_3 x_2 x_1 A_0' B_0$$

Combinational Circuits: Multiplexers

Multiplexer: electronic switch that connects one of *n* inputs to the output

Data selector: application of multiplexer

- n data input lines, $D_0, D_1, ..., D_{n-1}$
- m select digit inputs $s_0, s_1, ..., s_{m-1}$
- 1 output
- Can you design a simple data selectors with 2 input data lines?

Combinational Circuits: Multiplexers

Data selectors: can implement arbitrary switching functions

Example: implementing two-variable functions

Implementing Switching Function with Mux

To implement an *n*-variable function: a data selector with n-1 select inputs and 2^{n-1} data inputs

Implementing three-variable functions:

$$z = s_2 \dot{s}_1 \dot{D}_0 + s_2 \dot{s}_1 D_1 + s_2 s_1 \dot{D}_2 + s_2 s_1 D_3$$

Example:
$$s_1 = A$$
, $s_2 = B$, $D_0 = C$, $D_1 = 1$, $D_2 = 0$, $D_3 = C$ '
$$z = A'B'C + AB' + ABC'$$

$$= AC' + B'C$$

General case: Assign *n*-1 variables to the select inputs and last variable and constants 0 and 1 to the data inputs such that desired function results

Implementing Switching Function with Mux

•
$$Y = AC' + B'C$$

• Make A, B as select lines.

$$- A,B=0,0 => Y=C$$

$$- A,B=0,1 => Y=0$$

$$- A,B=1,0 => Y=C'+C=1$$

$$- A,B=1,1 => Y=C'$$

Implementing Switching Function with Mux

$$F(A, B, C) = \sum (1,3,5,6)$$

Minterm	A	В	С	F
0	0	0	0	0
1	0	0	1	1
2	0	t	0	0
3	0	1	1	1
4	l	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	l	1	0

Adders: Half Adder

Add two variables and generate the sum and carry

x	у	C	<u></u>
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x \oplus y$$

$$C = xy$$

Adders: Full Adder

Add two variables and an input carry..

X	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
			1	

Try it yourself...!!!

Adders: Full Adder

Add two variables and an input carry..

x	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x \oplus y \oplus z$$

$$C = xy + yz + zx$$

Adders: Full Adder with Half Adders

Use two half adder and something else to generate a full adder

Try it yourself...!!!

Priority Encoders

Priority encoder: n input lines and log_2n output lines

- Input lines represent units that may request service
- When inputs p_i and p_j , such that i > j, request service simultaneously, line p_i has priority over line p_j
- Encoder produces a binary output code indicating which of the input lines requesting service has the highest priority

Example: Eight-input, three-output priority encoder

(a) Block diagram.

	Input lines									ıts
p_0	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	p_6	<i>p</i> ₇	Z 4	Z ₂	Z ₁
1	0	0	0	0	0	0	0	0	0	0
ϕ	1	0	0	0	0	0	0	0	0	1
φ	ϕ	1	0	0	0	0	0	0	1	0
φ	ϕ	ϕ	1	0	0	0	0	0	1	1
φ	φ	ϕ	ϕ	1	0	0	0	1	0	0
φ	ϕ	ϕ	ϕ	ϕ	1	0	0	1	0	1
φ	ϕ	ϕ	ϕ	ϕ	φ	1	0	1	1	0
φ	φ	φ	ϕ	ϕ	φ	φ	1	1	1	1

(b) Truth table.

$$z_4 = p_4 p_5 ' p_6 ' p_7 ' + p_5 p_6 ' p_7 ' + p_6 p_7 ' + p_7 = p_4 + p_5 + p_6 + p_7$$

$$z_2 = p_2 p_3 ' p_4 ' p_5 ' p_6 ' p_7 ' + p_3 p_4 ' p_5 ' p_6 ' p_7 ' + p_6 p_7 ' + p_7 = p_2 p_4 ' p_5 ' + p_3 p_4 ' p_5 ' + p_6 + p_7$$

$$z_1 = p_1 p_2 ' p_3 ' p_4 ' p_5 ' p_6 ' p_7 ' + p_3 p_4 ' p_5 ' p_6 ' p_7 ' + p_5 p_6 ' p_7 ' + p_7 = p_1 p_2 ' p_4 ' p_6 ' + p_3 p_4 ' p_6 ' + p_5 p_6 ' + p_7$$

Priority Encoders

(c) Logic diagram.

Decoders

Decoders with n inputs and 2^n outputs: for any input combination, only one output is 1

Useful for:

- Routing input data to a specified output line, e.g., in addressing memory
- Basic building blocks for implementing arbitrary switching functions
- Code conversion
- Data distribution

Example: 2-to-4- decoder

Decoders with Enable

4-16 decoder using 3-8 decoder

Realizing Arbitrary Functions

Idea: Realize a distinct minterm at each output

Demultiplexer

Demultiplexers: decoder with 1 data input and *n* address inputs

• Directs input to any one of the 2^n outputs

Adders Again

Full adder: performs binary addition of three binary digits

- Inputs: arguments A and B and carry-in C
- Outputs: sum S and carry-out C_0

Α	В	С	S	C_0	
0	0	0	0	0	
0	0	1	1	0	
0	1	1	0	1	$A \rightarrow \Box$
0	1	0	1	0	$B \rightarrow FA$
1	1	0	0	1	$C \rightarrow \Box$
1	1	1	1	1	(b) Block diagram.
1	0	1	0	1	
1	0	0	1	0	

- C_0

(a) Truth table for S and C_0 .

$$S = A \oplus B \oplus C$$
$$C_0 = AB + BC + CA$$

Ripple Carry Adder

Ripple-carry adder: Stages of full adders

- C_f : forced carry
- $C_{0(n-1)}$: overflow carry

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{0i} = A_i B_i + B_i C_{0i} + C_{0i} A_i$$

Time required:

- Carry propagation takes longest time in the worst case, the carry propagates through all the stages
- •Time per full adder: 2 units (assuming each gate takes one unit of time)
 - Time for carry generation
 - Assumption: two level circuit realisation with 2 input gates
- Time for ripple-carry adder: 2n units