NUMERICKÉ METÓDY LINEÁRNEJ ALGEBRY

03. Ortogonálne vektory a matice, rozklad matice

Ing. Marek Macák, PhD.

Konzultácie: podľa potreby/dohody online

20. Február 2024

Ortogonálne matice a vektory

- Nech $x,y\in\mathbb{C}^n$ sú dva nenulové vektory a nech je na \mathbb{C}^n definovaný skalárny súčin $(x,y)=y*x=\sum_{i=1}^n \bar{y}_ix_i$. Potom vektor x je ortogonálny na vektor y, ak (x,y)=0. Hovoríme, že x je kolmý na $y:x\perp y$.
- Ak je k vektorov $x_1, x_2, ..., x_k$ navzájom ortogonálnych (t.j., každá dvojica je ortogonálna), potom sú lineárne nezávislé. Naopak to neplatí!
- Ak $x_1 \perp x_2$ a zároveň $||x_1|| = ||x_2|| = 1$, potom sa takéto vektory nazývajú ortonormálne.
- Matica $Q \in \mathbb{C}^{n \times n}$ je unitárna, ak $Q^*Q = QQ^* = I$, $Q^* = (\bar{Q})^T$. Unitárna reálna matica sa nazýva ortogonálna. Ortogonálna matica, ktorej všetky stlpce majú jednotkovú normu, sa nazýva ortonormálna.
- Unitárne matice sú regulárne a ich inverzia je jednoduchá: $Q^{-1} = Q^*$. Súčin dvoch unitárnych matíc je unitárna matica.

Klasická Grammova-Schmidtova ortogonalizácia (KGS)

• Nech je daných k lineárne nezávislých (LN) vektorov $x_1, x_2, ..., x_k \in \mathbb{R}^n$. Potom KGS je algoritmus, ktorý z týchto k LN vektorov vypočíta k vzájomne ortonormálnych vektorov $q_1, q_2, ..., q_k$.

for
$$j = 1, 2, ..., k$$

for $i = 1, 2, ..., j - 1$
 $\alpha_{ij} = q_i^T x_j$
 $q_j = x_j - \sum_{i=1}^{j-1} \alpha_{ij} q_i$
 $\beta = ||q_j||$
 $q_j = q_j/\beta$
end
end

• KGS je numericky nestabilný: vypočítané vektory q_j nemusia byť presne ortonormálne.

Klasická Grammova-Schmidtova ortogonalizácia (KGS)

- Zoberme iba dva vektory $x_1, x_2 \in \mathbb{R}^n$ a nech $||x_1|| = 1$, takže $q_1 = x_1$ (t.j. q_1 sa nevypočíta). Potom KGS sa redukuje na: $\tilde{\alpha}_{12} = fl(q_1^T x_2); \quad \tilde{q}_2 = fl(x_2 fl(\tilde{\alpha}_{12}q_1))$ (neuvažujeme normalizáciu \tilde{q}_2).
- Dá sa ukázať, (Bjorck 1994) že:

$$||q_1^T \tilde{q}_2|| < 1.06(2n+3)||x_2||\mu.$$
 (1)

- Takže pri KGS nemusí byť vypočítaný vektor $ilde{q}_2 \perp q_1$ ak je napr. $||x_2|| \gg 1$.
- Z tohto príkladu je vidieť, že pre KGS môže byť kritickou prekážkou pre presný výpočet veľký rozdiel v normách vstupných vektorov.

Modifikovaná Grammova-Schmidtova ortogonalizácia (MGS)

• Nech je daných k LN vektorov $x_1, x_2, ..., x_k \in \mathbb{R}^n$. Potom MGS je algoritmus, ktorý z týchto k LN vektorov vypočíta k vzájomne ortonormálnych vektorov $q_1, q_2, ..., q_k$.

$$\begin{aligned} &\text{for } j = 1, 2, ..., k \\ &q_j = x_j \\ &\text{for } i = 1, 2, ..., j - 1 \\ &\alpha_{ij} = q_i^T q_j \\ &q_j = q_j - \alpha_{ij} q_i \\ &\text{end} \\ &\beta = ||q_j|| \\ &q_j = q_j/\beta \\ &\text{end} \end{aligned}$$

• Táto modifikácia (použitie α_{ij} okamžite po výpočte) vedie k lepším numerickým vlastnostiam MGS oproti KGS.

Modifikovaná Grammova-Schmidtova ortogonalizácia (MGS)

- Podobnú analýzu chyb je možné vyponať aj v pripade MGS.
- Nech $\tilde{Q} = (\tilde{q}_1, \tilde{q}_2, ..., \tilde{q}_k)$ sú vypočítané vektory. Potom sa dá ukázať, že strata ortogonality závisí od čísla podmienenosti matice $X = (x_1, x_2, ..., x_k)$:

$$||I - \tilde{Q}^T \tilde{Q}|| \le \frac{c_1 \kappa(X) \mu}{1 - c_2 \kappa(X) \mu}.$$
 (2)

kde c_1 a c_2 sú malé konštanty.

- Takže pre $\kappa(X)\gg 1$ môže byť strata ortogonality neprijateľná.
- Inými slovami, MGS môže tiež zlyhať (napr. ak vstupné vektory su takmer kolineárne (vtedy je $\kappa(X) \gg 1$).
- V praxi je tento prípad menej pravdepodobný ako výskyt vstupných vektorov s výrazne rozdielnymi normami.

Rozklad matice A

- Môžeme si ho predstaviť ako postupné nulovanie stľpcov matice pod jej hlavnou diagonálou.
- To znamená, že potrebujeme nástroj, ktorý 'vyrobý' nuly na miestach nenulových prvkom matice *A*.
- Takýmto nástrojom sú napr. Householderová rotácia, Givensová rotácia,

• Nech je daný vektor $u \in \mathbb{R}^n$, $u \neq 0$. Potom matica

$$H = I - \frac{2uu^T}{u^T u} \tag{3}$$

sa nazýva Householderova matica (tiež elementárna reflexia). Pomenovaná podľa amerického numerika Alstona Householdera (1904 - 1993).

- Je to symetrická a ortogonálna matica: $H^T = H$, $H^T H = HH^T = I$.
- Aplikácia H na vektor $x \in \mathbb{R}^n$:

$$y = Hx = x - \frac{2u^T x}{u^T u} u \tag{4}$$

je reflexia vektora x v rovine kolmej na u a prechádzajúcej bodom 0. Pritom $||Hx||_2 = ||x||_2$ (nemení dĺžku vekt.).

- Nech sú dané dva nenulové vektory $x, y \in \mathbb{R}^n$ s rovnakou Euklidovou normou: $||x||_2 = ||y||_2$. Nech $u = (x y)/||x y||_2$. Potom $H = I 2uu^T$ je reflexia x na y a naopak: Hx = y, Hy = x.
- Pre nás bude dôležitá aplikácia HT na vektor x tak, aby nastala reflexia 'spravnym smerov', t.j. aby došlo k vynulovaniu požadovaných zložiek x.
- Nech je daných vektor $x = (x_1, x_2, ..., x_k)^T$. Potom hľadáme vektor u tak, aby Hx bol násobok vektora $e_1 = (1, 0, ..., 0)^T$.

$$u = x + sign(x_1)||x||_2 e_1; Hx = (-sign(x_1)||x||, 0, 0, ..., 0)^T.$$
 (5)

• Nech je daných vektor $x=(x_1,x_2,...,x_k)^T$. Potom hľadáme vektor u taký, že $Hx=x-\frac{2u^Txu}{u^Tu}=(\omega,0,...,0)^T$.

$$m = max(|x_i|), \quad i = 1, 2, ..., n$$
 for $i = 1, 2, ..., n$ $u_i = x_i/m$ end $\omega = sign(u_1)\sqrt{\sum_{i=1}^n u_i^2}$ $u_1 = u_1 + \omega$ $\omega = -m\omega$

 Všimnime si, že H nieje explicitne formulovaná. Algoritmus počíta iba jej pôsobenie na x.

- Pri násobení B = HA, kde $H \in \mathbb{R}^{m \times m}$ a $A \in \mathbb{R}^{m \times n}$, $m \ge n$, netreba sformovať H explicitne stačí poznať vektor u.
- Označme matice po stĺpcoch: $A = (a_1, a_2, ..., a_k)$, $B = HA = (b_1, b_2, ..., b_n)$. Potom B vypočítame v cykle po stĺpcoch:

$$b_i = \left(I - \frac{2uu^T}{||u||^2}\right) a_i = a_i - \frac{2u^Ta_i}{||u||^2} u, \quad i \leq i \leq n.$$

(6)

Takže v cykle stačí počítať skalárne súčiny $u^T a_i$.

Givensova transformácia (GT)

- Nech sú dané dve reálne čísla c, s, kde $c^2 + s^2 = 1$.
- Na základe tohoto vzťahu môžeme tieto čísla interpretovať ako $c = \cos \theta$, $s = \sin \theta$ pre nejaký uhol θ . Potom Givensova matica (podľa Wallacea Givensa (1910 1993)) $G(i,j,\theta) = (g_{kl})$ pre i < j rádu n je matica, ktorá sa od identity l líši iba v prvkoch $g_{ii} = g_{jj} = c$, $g_{ij} = s$, $g_{ji} = -s$.
- Givensova matica nie je symetrická, ale je ortogonálna: $G(i, j, \theta)G(i, j, \theta)^T = G(i, j, \theta)^TG(i, j, \theta) = I$
- Operácia $G(i,j,\theta)$ x má vplyv iba na zložky x_i a x_j vektora x. Ostatné zložky zostanú nezmenené. Preto výsledný vektor $y = G(i,j,\theta)x$ má tvar: $y_i = cx_i + sx_j, \quad y_j = -sx_i + cx_j, \quad y_k = x_k$ pre $k \neq i, i$.

Givensova transformácia (GT)

• Nech $x = (x_1, x_2)^T$, $x_2 \neq 0$. Potom $G(1, 2, \theta)$ nuluje druhú zložku vektora x:

$$G(1,2,\theta)x = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \star \\ 0 \end{pmatrix}, \tag{7}$$

kde
$$c = x_1/\sqrt{x_1^2 + x_2^2}, s = x_2/\sqrt{x_1^2 + x_2^2}.$$

Stabilný výpočet parametrov c a s

pre premennú t platí |t| < 1.

Givensova transformácia (GT)

• Násobenie $G(i,j,\theta)A$ mení iba riadky i a j matice $A=(a_{ij})$:

for
$$k = 1, 2, ..., n$$

 $a = a_{ik}, b = a_{jk}$
 $a_{ik} = ac + bs, a_{jk} = -as + bc$
end

Matica $G(i, j, \theta)$ opäť nie je sformovaná explicitne!

Čiastočné zhrnutie

- Odlišnosť HT od GT vzhľadom na efektívnosť nulovania zložiek:
 - o HT dokaze naraz vynulovat n-1 zložiek vektora resp. maticového stĺpca,
 - o GT nuluje iba jednu zložku vektora resp. maticového stĺpca.
- HT sa prednostne používa v aplikáciach a GT sa skôr využíva na cielené nulovanie prvkov ktoré nieje velkoplošné.

QR rozklad A

• **Veta**: Nech $A \in \mathbb{R}^{m \times n}$, $m \ge n$, má lineárne nezávislé stĺpce (t.j. hodnosť A je n). Potom existuje práve jedna matica $Q \in \mathbb{R}^{m \times n}$ s n ortonormálnymi stĺpcami a práve jedna horná trojuholníková matica s kladnými diagonálnymi prvkami tak, že

$$A = QR. (8)$$

 To znamená, že dve QR faktorizácie takejto matice A, vypočítané dvomi rôznymi spôsobmi (napr. HT a GT), sa môžu líšiť v znamienkach riadkov R a príslušných stĺpcov Q.

QR rozklad A

• **Veta**: Nech $A \in \mathbb{R}^{m \times n}$, $m \ge n$. Potom existuje ortogonálna matica $Q \in \mathbb{R}^{m \times m}$ a jedna horná trojuholníková matica $R \in \mathbb{R}^{n \times n}$ tak, že

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix} = (Q_1, Q_2) \begin{pmatrix} R \\ 0 \end{pmatrix} = Q_1 R, \tag{9}$$

kde $0 \in \mathbb{R}^{(m-n) \times n}$ je nulový blok a Q_1 má iba n ON stĺpcov.

• Výpočet QR pomocou HT: Nech s = min(m-1, n). Potom algoritmus počíta s vnorenými Householderovými maticami $\tilde{H}_1, \tilde{H}_2, ... \tilde{H}_s$ tak, aby:

$$\tilde{H}_s \tilde{H}_{s-1} ... \tilde{H}_2 \tilde{H}_1 A = Q^T A = (R^T, 0^T)^T.$$
 (10)

QR rozklad A

• Matica \tilde{H}_k , $1 \le k \le s$, je vnorená HT:

$$\tilde{H}_k = \begin{pmatrix} I_{k-1} & 0 \\ 0 & H_k \end{pmatrix}, \tag{11}$$

kde $H_k = I_{m-k+1} - 2u_{m-k+1}u_{m-k+1}^T/||u_{m-k+1}||^2$.

- Vnorenie zaručuje, že pri násobení $\tilde{H}_k A^{k-1}$ zostane prvých k-1 riadkov a prvých k-1 stĺpcov matice A bez zmeny.
- ullet V praxi sa nikdy neformujú $ilde{H}_k$ ani H_k explicitne pracuje sa iba s vektormi u_{m-k+1} .
- Výpočtová zložitosť pre maticu $A \in \mathbb{R}^{m \times n}$, $m \ge n$ je $n^2(m n/3)$ flops (floating point operations) bez explicitnej formácie Q.

Elementárne matice

- Elementárna matica je dolná trojuholníková matica E rádu n s jednotkami na diagonále, ktorej všetky nenulové mimodiagonálne prvky ležia práve v jednom stĺpci pod diagonálou.
- Ak je to napr. k-ty stĺpec, potom má tvar: $e_k + (0,0,...,0,0,m_{k+1,k},m_{k+2,k},...,m_{n,k})^T = e_k + m_k$ kde e_k ma k-tu zložku 1, ostatné sú nuly.
- Nech $x=(x_1,x_2,...,x_n)^T$, $x_1\neq 0$. Potom existuje elementárna matica E taká, že Ex je násobok e_1 (t.j. Ex má nenulovú jedine prvú zložku, ostatné zložky sú nulové). E je daná prvým stlpcom $(1,-x_2/x_1,...,-x_n/x_1)^T$. Čísla $-x_i/x_1,2\leq i\leq n$, sa nazývajú činitele.
- Elementárne matice nie sú ani symetrické ani ortogonálne.

LU rozklad A

- **Postup**: Nech je daná $A \in \mathbb{R}^{n \times n}$. Potom konštruujeme elementárne matice $E_1, E_2, ..., E_{n-1}$ tak, aby: $E_{n-1}E_{n-2}...E_1A = U$ bola horná trojuholníková matica.
 - E_1 nuluje prvý stĺpec matice A pod a_{11} , vznikne $A^{(1)}$. Činitele sú: $m_{i1} = -a_{i1}/a_{11}$, $2 \le n$.
 - E_2 nuluje prvý stĺpec matice $A^{(1)}$ pod $a_{22}^{(1)}$, vznikne $A^{(2)}$. Činitele sú: $m_{i2} = -a_{i2}^{(1)}/a_{22}^{(1)}$, 3 << n.
 - o ...
 - o v kroku E_{n-1} nuluje prvý stĺpec matice $A^{(n-2)}$ pod $a_{n-1,n-1}^{(n-2)}$, vznikne $A^{(n-1)}$. Činitel je : $m_{m,n-1} = -a_{n,n-1}^{(n-2)}/a_{n-1,n-1}^{(n-2)}$, $2 \le n$.

LU rozklad A

- Matica $L_1 = E_{n-1}E_{n-2}...E_1$ je dolná trojuholníková s jednotkami na diagonále. Pritom platí: $L_1A = U$, takže $A = L_1^{-1}U = LU$, pričom L_1^{-1} je opäť dolná trojuholníková matica.
- Kedže $E_i = I + m_i e_i^T$, kde $m_i = (0, ..., 0, m_{i+1,i}, ..., m_{n,i})^T$. Inverzia elementárnej matice ma tvar $E_i^{-1} = I m_i e_i^T$.
- **Veta**: Nech $A \in \mathbb{R}^{n \times n}$ má všetky vedúce hlavné minory nenulové. Potom A má jedinú LU faktorizáciu: A = LU, kde L je dolná trojuholníková matica s jednotkami na diagonále a U je horná trojuholníková matica.

LU rozklad A

• Algorithus rozkladu môžeme napísať: nech sú dané matice $U=A,\ L=I.$ Potom:

for
$$k = 0, 1, ..., n - 1$$

for $j = k + 1, ..., n$
 $l_{jk} = u_{jk}/u_{kk}$
 $u_{j,k:n} = u_{j,k:n} - l_{jk} * u_{k,k:n}$
end
end

- Maticu E_k sa neformuluje explicitne. Nenulové zložky vektra m_k za zapisujú s opačnym znamienkom pod diagonálu k-teho stĺpca L.
- Matice *U* a *L* (bez jednotiek na diagonále) možno ukladať do horného a dolného trojuholníka matice *A*. Teda maticu *A* nakoniec prepíšeme.
- Výpočtová zložitosť: $2n^3/3 + O(n^2)$ flops

Problém Gausovej eliminácie (GE) bez pivotizácie

- Algoritnus rozkladu môžeme zlyhat, t.j U, L budú nepresné.
- Majme maticu

$$A = \begin{pmatrix} 0.1 \times 10^{-3} & 1 \\ 1 & 1 \end{pmatrix}, \tag{12}$$

v aritmetike s 3 číslicami v mantise bez ochrannej číslice spočítajte jej LU rozkad.

LU rozklad A, čiastočná pivotizácia

- Princíp čiastočnej pivotizácie: Pred výpočtom činiteľov v každom kroku nájsť v
 práve redukovanom stĺpci maximálny prvok (v absolútnej hodnote) a ten použiť ako
 pivot.
- V kroku k treba pivot dostať do pozície (k,k) treba zameniť riadky k a r_k , kde r_k je taký index, pre ktorý

$$|a_{r_k,k}^{(k-1)}| = \max(|a_{i,k}^{(k-1)}|)$$
(13)

kde $k \le i \le n$. Výmena riadkov k a r_k je ekvivalentná násobeniu $P_k A^{(k-1)}$, kde P_k je permutačná matica, ktorá vznikne z identity I zámenou riadkov k a r_k .

• Permutačné matice P_k netreba explicitne počítať. Stačí do pomocného vektora ukladať za sebou indexy r_k , ktoré identifikujú výmenu riakov k a r_k v k-tom kroku algoritmu.

LU rozklad A, čiastočná pivotizácia

• Nech sú dané matice U = A, L = I a pomocny vektor p. Potom:

```
\begin{array}{l} \text{for } k=0,1,...,n-1 \\ \text{ Vyber } i,k\leq i\leq n \text{ tak aby } |u_{ik}| \text{ bolo maximálne} \\ u_{k,k:n} \leftrightarrow u_{i,k:n} \\ p[k]=\mathrm{i}; \\ \text{for } j=k+1,...,n \\ l_{jk}=u_{jk}/u_{kk} \\ u_{j,k:n}=u_{j,k:n}-l_{jk}*u_{k,k:n} \\ \text{end} \end{array}
```

- Matice U a L (bez jednotiek na diagonále) možno ukladať do horného a dolného trojuholníka matice A. Teda maticu A nakoniec prepíšeme.
- Výpočtová zložitosť: $2n^3/3 + O(n^2)$ flops $+ O(n^2)$.

LU rozklad A, uplná pivotizácia

- Princíp uplnej pivotizácie: V kroku k sa pivot (t.j. prvok s najväčšou abs. hodnotou) hľadá v celej podmatici matice $A^{(k-1)}$ pod prvými k-1 riadkami. Ak je tento pivot $a_{rs}^{(k-1)}$, potom sa do pozície (k,k) dostane zámenou riadkov k a r a zámenou stlpcov k a s.
- Prechod $(k-1) \to k$: $A^{(k)} = E_k(P_kA^{(k-1)}Q_k)$, kde P_k je permutácia riadkov, Q_k je permutácia stĺpcov a E_k je elementárna matica, ktorá nuluje prvky v stĺpci k pod diagonálou.
- Výpočtová zložitosť: $2n^3/3 + O(n^2)$ flops $+ O(n^3)$.

LU rozklad A, stabilita

- Stabilita sa v tomto prípade 'meria' rastom prvkov v redukovaných maticiach $A^{(k)}$. Faktor rastu ρ je pomer najväčšieho prvku (v abs. hodnote) matíc $A, A^{(1)}, ..., A^{(n-1)}$ k najväčšiemu prvku (v abs. hodnote) matice A.
- Pre Gaussovu elimunáciu s úplnou pivotizáciou platí: $\rho \leq (n*2^1*3^{1/2}*4^{1/4}*...*n^{1/(n-1)})^{1/2}$ a pre čiastočnú pivotizáciu je $\rho \leq 2^{n-1}$.
- V praxi sa GE s úplnou i čiastočnou pivotizáciou považuje za stabilný algoritmus.
- Pre Gaussovu elimináciu bez pivotizácie môže byť faktor rastu ľubovoľne veľký okrem špeciálnych prípadov.
- GE bez pivotizácie je pre všeobecnú maticu A nestabilný algoritmus. Používa sa napr. pre symetrické pozitívne definitné matice.