Esercizi per il Corso di ALGEBRA LINEARE

Scheda 2

1. Sia A_k la seguente matrice reale:

$$A_k = \begin{pmatrix} 2 & 2 & 2k \\ k-1 & k & k^2 \\ -k & -k & 0 \end{pmatrix}.$$

- (a) Si determini per quali valori di $k \in \mathbb{R}$ la matrice A_k ammette inversa.
- (b) Sia $k \in \mathbb{R}$ tale che A_k ammette inversa. Si calcoli A_k^{-1} usando la formula $A_k^{-1} = \frac{1}{\det(A_k)} A_k^*$.
- 2. Nello spazio vettoriale $\mathbb{R}^{\mathbb{R}}$ definito in Esempio 5.2(2), si consideri il seguente sottoinsieme per ogni $t \in \mathbb{R}$:

$$\mathscr{S}_t = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = t \}.$$

- (a) Si trovino i valori di t per cui l'insieme \mathscr{S}_t è un sottospazio di $\mathbb{R}^{\mathbb{R}}$.
- (b) Sia \mathscr{U} il sottospazio di $\mathbb{R}^{\mathbb{R}}$ generato da f e g dove $f(x) = \sin(x)$ e $g(x) = \cos(x)$ per ogni $x \in \mathbb{R}$. Si trovi una base dell'intersezione $\mathscr{U} \cap \mathscr{S}_0$.
- 3. Sia $f: \mathbb{C}^3 \to \mathbb{C}^2$ l'applicazione data da

$$f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - y + z \\ 3x - 3y + 3z \end{pmatrix}$$

per ogni
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{C}^3$$
.

- (a) Si verifichi che f è lineare.
- (b) Si determini la matrice A associata a f rispetto alla base canonica e si dica se f è un isomorfismo.
- (c) Si calcolino le dimensioni degli spazi vettoriali $\mathrm{Im}(f)\subseteq\mathbb{C}^2$ e $\mathrm{N}(f)\subseteq\mathbb{C}^3$.
- (d) Si verifichi che l'insieme $\mathscr{C} = \{v_1, v_2, v_3\}$ con $v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ è una base di \mathbb{C}^3 .
- (e) Si verifichi che l'insieme $\mathscr{B} = \{w_1, w_2\}$ con $w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $w_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ è una base di \mathbb{C}^2 .
- (f) Si determini la matrice associata a f rispetto alla base $\mathscr C$ di $\mathbb C^3$ e alla base $\mathscr B$ di $\mathbb C^2$.
- 4. Sia \mathscr{C} la base di \mathbb{C}^3 dell'esercizio 3(d) e sia $\mathscr{D} = \{u_1, u_2, u_3\}$ dove $u_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 6 \\ -1 \\ 8 \end{pmatrix}$,

$$v_3 = \begin{pmatrix} -8 \\ -8 \\ 1 \end{pmatrix}$$
. Si verifichi che \mathscr{D} è una base di \mathbb{C}^3 e si calcoli la matrice del cambio di base $\mathscr{C} \to \mathscr{D}$.