

Memoria Robson: Evolución de la Tecnología de Almacenamiento

Una mirada a la tecnología Turbo Memory de Intel y su evolución hacia los SSDs modernos

¿Qué es la Memoria Robson?

Origen

Tecnología introducida por Intel (2007) como parte de plataforma Centrino 2

También conocida como

"Turbo Memory" - Aceleradora del rendimiento del sistema

Tecnología base

Memoria **flash de tipo NAND** para mejorar rendimiento en portátiles

Función principal

Caché de disco duro y ampliación de memoria RAM

intel

Tecnología NAND: Base de la Memoria Robson

© Características principales

- Velocidad superior a discos duros tradicionales
- **Consumo energético reducido** en comparación con HDD
- Ausencia de partes móviles, mayor resistencia
- Menor latencia en operaciones de acceso aleatorio

★ Ventajas según documento original

- Más rápida que el disco duro
- Conserva información al apagar el equipo
- Aumenta autonomía de baterías en portátiles
- Utilizada como caché de disco o ampliación de RAM

Estructura de transistor de puerta flotante en memoria NAND

- ¿Qué es la memoria NAND?
- Memoria no volátil (mantiene datos sin alimentación)
- Almacena datos en celdas organizadas en bloques
- Menor costo por bit que otras tecnologías

Limitaciones de la Memoria Robson

Capacidad reducida

Generalmente 1-4 GB, muy limitada frente a los discos duros

\$ Costo elevado

Precio por GB muy superior al de los discos duros tradicionales

Integración limitada

Solo **Windows Vista** ofrecía soporte nativo mediante ReadyBoost

Rendimiento inconsistente

Mejoras variables según el uso específico del sistema

Panel de control de Intel Turbo Memory mostrando su integración con el sistema operativo

1 Consecuencia

Estas limitaciones llevaron a su **rápida obsolescencia** y reemplazo por tecnologías más avanzadas

De la Memoria Robson a los SSDs

Evolución natural de la tecnología NAND

Capacidad

Memoria Robson: 1-4 GB

SSDs: 120 GB - varios TB

Rendimiento

Velocidades de lectura/escritura **significativamente superiores** (220 MB/s vs 50 MB/s)

Integración

SSDs **reemplazan completamente** al disco duro en lugar de funcionar como complemento

"La evolución de esta memoria son las unidades SSD. Actualmente, la tecnología predominante en memorias Flash es la NAND."

Comparativa entre discos duros tradicionales (HDD) y unidades de estado sólido (SSD)

Ventajas clave de los SSDs

Menor consumo

Mayor durabilidad

Amplia compatibilidad

Estado Actual

Memoria Robson abandonada por Intel (2010) debido a su limitado éxito comercial y la rápida evolución de los SSDs.

NVMe SSDs

Utilizan bus **PCIe** para alcanzar velocidades de hasta 7 GB/s

M.2 SSDs

Formato compacto que elimina necesidad de cables SATA

PCIe 4.0/5.0

Velocidades teóricas de hasta 15,750 MB/s

3D NAND

Apilamiento vertical de celdas para aumentar capacidad

Tecnologías Emergentes

3D XPoint (Optane)

MRAM

ReRAM

PCM

SSD M.2 moderno con interfaz NVMe

SSD NVMe con formato PCI-Express

Importancia de la tecnología NAND

Aunque la Memoria Robson desapareció, la tecnología NAND sigue siendo fundamental en los sistemas de almacenamiento modernos, con evoluciones como:

Celdas SLC, MLC, TLC, QLC

3D NAND vertical

Mayor densidad

intel 🔅

Evolución de las Tecnologías de Almacenamiento

- Legado de la Memoria Robson
- Intento pionero de integrar almacenamiento flash NAND
- Sentó bases para adopción masiva de tecnologías flash
- Demostró el potencial de aceleración mediante caché
- **©** Evolución Tecnológica
- De 1-4 GB (Robson) a varios TB (SSDs modernos)
- ♦ Velocidades de 50 MB/s (HDD) a 7,000+ MB/s (NVMe)
- De caché auxiliar a almacenamiento principal

Evolución de las tecnologías de almacenamiento a lo largo del tiempo

Impacto Actual y Futuro

Tecnología NAND

Base fundamental de almacenamiento moderno

3D NAND

Mayor densidad y capacidad vertical

NVMe/M.2

Rendimiento ultra-rápido actual

Tecnologías Emergentes

Optane, MRAM, ReRAM, PCM