Professor: Raimes Moraes

EMENTA:

- ☐ Arquiteturas de microprocessador e microcontroladores;
- □ Programação de microcontroladores: linguagem

Assembly; modos de endereçamento; portas de

entrada/saída; dispositivos periféricos; interrupções.

☐ Ferramentas para desenvolvimento e depuração;

OBJETIVOS:

- Parte teórica:
 - explorar a arquitetura e a programação de microprocessador e microcontroladores com ênfase em conceitos;
- Parte prática:
 - realizar atividades de laboratório voltadas à utilização e fixação dos conhecimentos teóricos.

Programa:

Noções gerais sobre Microprocessadores e Microcontroladores

1^a Parte - Microcontrolador 8051

2ª Parte - Microcontroladores 8051 e ARM7: LPC2378

Avaliação:

A média do semestre (MS) é a média aritmética :

$$MS = (MT + ML)/2$$

Referências Básicas:

Moraes R (2012), "Introdução aos Microcontroladores: 8051", apostila.

Atmel (2004), "Atmel 8051 Microcontrollers Hardware Manual".

Keil (2011), "Cx51 User's Guide", http://www.keil.com/support/man/docs/c51/

Material das aulas: Moodle

Introdução

William Stallings Computer Organization and Architecture 8th Edition (2010)

Chapter 2

Computer Evolution and Performance

ENIAC - Primeiro computador de Propósito Geral

- Electronic Numerical Integrator And Computer
- Eckert e Mauchly Universidade de Pensilvânia
- Desenvolvido entre 1943 e 1946; Utilizado até 1955
- Objetivo inicial: calcular trajetória de projéteis para armas recém desenvolvidas

ENIAC - Características

- 18.000 válvulas; 30 toneladas; 140 m²
- Consumo: 140 kW
- 5.000 adições por segundo
- Decimal (não binário)
- 20 acumuladores de 10 dígitos
- Programado manualmente por chaves e conexão de cabos

Foi utilizado em cálculos para avaliar a viabilidade da bomba de hidrogênio.

von Neumann/Turing

 Computador desenvolvido com o conceito de armazenar o programa e dados em memória:

Princeton Institute for Advanced Studies – IAS

- Desenvolvido entre 1946 e 1952.
- Unidade de controle (UC):
 - interpreta e executa instruções;
 - opera equipamentos de entrada e saída (I/O)
- Unidade Lógica e Aritimética (ULA) processa dados em formato binário.

Estrutura da Máquina de von Neumann - 1945

IAS - Características

- Memória 1000 palavras de 40 bits contendo:
 - Dados: Valores binários com sinal (bit mais significativo)
 - Instruções: 2 x 20 bits
 (8 bits de opcode; 12 bits com endereço de memória)

IAS - Características

- Registradores da UC e ULA:
 - Memory Buffer Register (MBR)
 - Memory Address Register (MAR)
 - Instruction Register (IR)
 - Instruction Buffer Register (IBR)
 - Program Counter (PC)
 - Accumulator (AC)
 - Multiplier Quotient (MQ)

Estrutura do IAS Características

Computadores Comerciais

- 1947 Fundação da Eckert-Mauchly Computer Corporation para produção de computadores comerciais
- Foi incorporada pela Sperry-Rand Corporation
 - UNIVAC I (Universal Automatic Computer)
 - Desenvolvido para censo de 1950 (USA)
- No final da década de 1950 UNIVAC II
 - Mais rápido
 - Mais memória

 Iniciou atividades produzindo equipamento para perfuração de cartões (usado até início da década de 1980)

IBM 026

 Iniciou atividades produzindo equipamento para perfuração de cartões (usado até início da década de 1980)

 Cartão perfurado com linha de programa em Fortran

- Lança em 1953 o IBM 701
 - Aplicações Científicas
- Em 1955 o IBM 702
 - Aplicações Comerciais
- Origem às séries 700 / 7000(transistorizado)
 - Transistor (1947); em computadores, final dos anos 50
- Em 1964: série 360 (família planejada)

IBM (Séries 700/7000)

Table 2.3 Example members of the IBM 700/7000 Series

Model Number	First Delivery	CPU Tech- nology	Memory Tech- nology	Cycle Time (µs)	Memory Size (K)	Number of Opcodes
701	1952	Vacuum tubes	Electrostatic tubes	30	2–4	24
704	1955	Vacuum tubes	Core	12	4–32	80
709	1958	Vacuum tubes	Core	12	32	140
7090	1960	Transistor	Core	2.18	32	169
7094 I	1962	Transistor	Core	2	32	185
7094 II	1964	Transistor	Core	1.4	32	185

IBM (Série 360)

Table 2.4 Key Characteristics of the System/360 Family

Characteristic	Model 30	Model 40	Model 50	Model 65	Model 75
Maximum memory size (bytes)	64K	256K	256K	512K	512K
Data rate from memory (Mbytes/sec)	0.5	0.8	2.0	8.0	16.0
Processor cycle time μ s)	1.0	0.625	0.5	0.25	0.2
Relative speed	1	3.5	10	21	50
Maximum number of data channels	3	3	4	6	6
Maximum data rate on one channel (Kbytes/s)	250	400	800	1250	1250

Memória Ferromagnética

(1950 - 1970)

Memória Ferromganética (1950 – 1970)

http://www.diycalculator.com/popup-m-hrrgcomp.shtml

Transistor

- Inventado em 1947, substituiu as válvulas.
- Menor em tamanho, custo e geração de calor
- Maior durabilidade.
- As empresas NCR e RCA foram as primeiras a lançar computadores transistorizados no final da década de 50.

Lei de Moore (Gordon Moore/Co-fundador da Intel)

- 1958: Surgem os circuitos integrados (CIs) => Terceira geração de computadores
- Nro de transistores em um Cl dobrará a cada ano (1965)
- Após 1970's: Nro. de transistores dobra a cada 18 meses
- Preço do CI quase não se altera.
- Higher density => conexões curtas => maior velocidade
- Menor nro, conexões => maior confiabilidade
- Computadores menores, menor consumo e aquecimento.

Gerações de Computadores

G	Data	Tecnologia	Escala de Integração
1	1946 -1957	Válvula	
2	1958 -1964	Transistor	
3	1965 - 1971	SSI e MSI	Até 3k Transistores
4	1972 - 1977	LSI	3k a 100k Transistores
5	1978-1991	VLSI	100k a 100M
6	1991	ULSI	Acima 100M

Crescimento do Nro. deTransistores nas CPUs

Primeiro Microcomputador

- DEC (Digital Equipment Corporation) PDP-8
- 1965-1975
- U\$16.000,00
- Cerca de 50.000 máquinas vendidas em 12 anos

Memória Semicondutora (1970)

- Fairchild;
- Tamanho de um núcleo de ferrite
- 256 bits
- Leitura n\u00e3o destrutiva de dados
- Acesso muito mais rápido que núcleo de ferrite
- Custo caiu abaixo do core em 1974
- Capacidade dobra aproximadamente a cada ano

Intel

- 1971 4004
 - Primeiro microprocessador
 - Todos os componentes da CPU em um único CI
 - 4 bits; projetado para aplicação específica
- 1972 8008
 - 8 bits
 - Projetado para aplicação específica
- 1974 **8080 (2 MHz)**
 - Primeiro microprocessador de propósito geral

Arquiteturas de CPUs: CISC x RISC

- Complex instruction set computer (CISC): Instrução pode executar diversas tarefas: ler da memória, executar operação aritmética e armazenar resultado na memória.
- Reduced instruction set computing (RISC):
 Possui conjunto restrito de instruções que executam tarefas simples com formato fixo e alto desempenho (execução em um ciclo de clock)

Evolução dos processadores x86 CISC (Complex Instruction Set Computers)

- 8080 (1974)
 - primeiro microprocessador de propósito geral
 - barramento de 8 bits
 - utilizado no primeiro computador pessoal Altair
- 8086 (1978) (10 MHz)
 - —16 bits
 - versão (8088 barramento externo de 8 bits) usada no primeiro IBM PC
 - endereça 1 MBytes
- 80286 (1982) (12,5 MHz)
 - endereça até 16 Mbytes de memória

Evolução dos processadores x86 (2)

- 80386 (1985) (33 MHz)
 - **—32** bits
 - —Suporte para multi-tarefas
- 80486 (1989) (50 MHz)
 - melhor gerenciamento da cache e instruções em *pipeline*
 - possui co-processador matemático
- Pentium (1993) (166 MHz)
- **Ssuperscalar:** múltiplos pipelines no processador tal que instruções que não dependem de outras possam ser executadas em paralelo.
- Pentium Pro (1995) (200 MHz)
 - 64 bits
 - aperfeiçoamento da arquitetura "superscalar"

Evolução dos processadores x86(3)

- Pentium II (1997) (300 MHz)
 - Tecnologia MMX
 - Processa gráfico, vídeo e audio de forma eficiente
- Pentium III (1999) (660 MHz)
 - Instruções de ponto flutuante para gráfico 3D
- Pentium 4 (2000) (1,8 GHz)
 - Instruções adicionais de ponto flutuante e aperfeiçoamento para arquivos multimídia
- Core (2006) (1,2 GHz)
 - Primeiro processador da família com dois núcleos
- Core 2 Solo e Duo (1 ou 2 cores) (2006)
 - emprega arquitetura de 64 bits
- Core 2 Quad (2008) (3 GHz) 820 milhões de transistores
 - Quatro processadores em um CI

Evolução dos processadores x86(4)

- Core i3 (2010): low-level performance
 - 2,50 GHz
 - Dois núcleos com capacidade de executar 4 tarefas simultaneamente
- Core i5 (2010): mid-range performance
 - 2,66 GHz
 - Quatro núcleos com capacidade de executar 4 tarefas simultaneamente
 - Hyper-threading: tecnologia para melhorar processamento paralelo.
- Core i7 (2009): high-end performance
 - 3,40 GHz
 - Quatro núcleos com capacidade de executar 8 tarefas simultaneamente

15 e i7 2nd Generation => Núcleo gráfico integrado e menor consumo de energia.

FIGURE 1.2 Sales of microprocessors between 1998 and 2002 by instruction set architecture combining all uses. The "other" category refers to processors that are either application-specific or customized architectures. In the case of ARM, roughly 80% of the sales are for cell phones, where an ARM core is used in conjunction with application-specific logic on a chip.

Fontes na Internet

- http://www.intel.com/
 - —Search for the Intel Museum
- http://www.ibm.com
- http://www.dec.com
- Charles Babbage Institute
- PowerPC
- Intel Developer Home