DIAGRAMME DE

L'EQUILIBRE HYGROSCOPIQUE DES BOIS

REPRESENTATION GRAPHIQUE DE L'EAU DANS LE BOIS

Observation visuelle d'une section transversale d'un bois

UTILISATION DU DIAGRAMME SUR L'EQUILIBRE HYGROSCOPIQUE DES BOIS

Un bois dans une ambiance à 20°C et 55% d'humidité relative se trouve avec Un degré d'équilibre hygroscopique de 10%

Un bois dans une ambiance à $25^{\circ}C$ et 60% d'humidité relative se trouve avec Un degré d'équilibre hygroscopique de 11%

Un bois dans une ambiance à $13^{\circ}C$ et 80% d'humidité relative se trouve avec Un degré d'équilibre hygroscopique de 17%

LOCALISATION DE L'EAU DANS LE BOIS

• A l'intérieur des vaisseaux et des espaces inter- cellulaires
On la nomme : eau libre ; c'est la première a

disparaître lorsque le bois sèche, elle est liée à la vie de l'arbre sur pied.

• A l'intérieur des parois des cellules.

On la nomme : eau d'imprégnation ; c'est elle qui en fonction de sa présence liée à l'humidité de l'air va provoquer le gonflement ou le retrait du bois dans un ouvrage

<u>Dans la structure chimique et moléculaire de la matière ligneuse</u>
 On la nomme : <u>eau de constitution</u> ; sa présence conditionne le maintient des qualité du bois, elle peut disparaître lorsque le bois brûle et se transforme en charbon de bois

Nota: un bois atteint son <u>point de saturation</u> lorsqu'il <u>perd toute son eau libre</u> et qu'il ne conserve que l'eau d'imprégnation un bois à l'état <u>anhydre</u> a perdu toute son eau d'imprégnation; il correspond à 0% d'humidité.

Degré d'humidité	Qualification du bois	Emploi des bois
Au dessus de 30%	Vert, sur pied	Construction hydraulique
30 à 23%	mi-sec	Construction exposée A la pluie
22 à 18%	Commercialement Sec	Construction dans un Local ouvert
17 à 13%	Sec à l'air	Construction dans un Local chauffé
En dessous de 13%	Sec séchoir Artificiellement	Construction dans un Local très chauffé
0%	Etat anhydre	Pas utilisé

Un bois placé dans une ambiance hygrométrique donnée, présente au bout d'un temps plus ou moins long, un taux d'humidité stabilisé.

Si on diminue la température : l'air va se saturer plus vite d'eau, donc H% du bois augmente

Si on <u>augmente la température</u> : l'humidité de l'air diminue , donc <u>H% du bois</u> diminue

Mesure du taux d'humidité des bois

Par pesée

C'est la méthode la plus précise, mais la plus longue à mettre en œuvre. Elle consiste à peser un échantillon humide, puis le sécher dans une étuve entre 100 et 110°C, jusqu'à ce qu'il atteigne un poids constant, puis le peser à nouveau.

On applique la formule

H% = humidité du bois en % Mh = masse de l'échantillon humide

Ms = masse de l'échantillon anhydre exemple:

Mh= 25gr et Ms= 15gr

H% =
$$\frac{25-15}{15}$$
 = 66%

Par mesure électrique

Avec un appareil le xylo-hygromètre Dont le fonctionnement est basé sur les propriétés que possède le matériau à laisser plus ou moins passer le courant électrique

- .Précision ±1%
- . Lecture instantanée

DIAGRAMME DE L'AIR HUMIDE

EQUILIBRE HYGROSCOPIQUE

Le bois, matériau hygroscopique, varie en degré d'humidité lorsqu'il est soumis d'une façon constante aux conditions atmosphériques dans lequel il se trouve (température et humidité relative de l'air).

1 EQUILIBRE HYGROSCOPIQUE DE L'AIR

L'air est un mélange gazeux qui se compose d'oxygène (21%), d'azote (79%), de gaz carbonique, de poussières, de germes et de vapeur d'eau (invisible).

Pour une température donnée, l'air peut contenir une quantité maximum de vapeur d'eau ; il y a alors <u>saturation</u>, lorsque la quantité de vapeur d'eau est supérieure à la quantité que l'air peut contenir, il y a formation de <u>brouillard</u> et quand cette quantité est inférieure , il y a un <u>air humide</u>

Ces trois états de l'air sont représentés sur le diagramme de MOLLIER qui a été élaboré par expérimentation et calculs.

Exemple: 1 KG d'air ne peut contenir que 14,70 gr de vapeur d'eau.

Tout apport supplémentaire de vapeur d'eau abouti à une condensation de celle-ci, il y a formation de brouillard et de buée.

UTILISATION DU DIAGRAMME DE MOLLIER

Soit un air à 20° contenant 14,7gr d'eau ; il y a saturation HR= 100%

Soit un air à 18° contenant 11 gr d'eau ; il y a air humide HR= 85%

Soit un air à 15° contenant 12 gr d'eau ; il y a Brouillard HR= >100%

Questions: soit un air à 0° et saturé d'humidité; quelle est son poids d'eau contenu dans 1 KG d'air: 3,8 gr si on chauffe cet air à 20°, quelle est sa nouvelle humidité relative HR= environ 28%