2024 年春季《高等微积分 2》期末试卷

2024年6月16日9:00-11:00

本试卷分两页, 共七道试题, 其中第 1 题 12 分, 第 5 题 13 分, 其余每题各 15 分。

- 1 (1) 叙述函数序列 $\{f_n(x)\}_{n=1}^{\infty}$ 在区间 D 上一致收敛到函数 f 的定义。
 - (2) 叙述斯托克斯公式。
 - (3) 设 S 是 \mathbb{R}^3 中封闭的光滑曲面,它围成的有界区域为 Ω 。设 $F,G:\mathbb{R}^3\to\mathbb{R}$ 是光滑函数,且都在 S 上恒等于零。利用高斯公式证明:

$$\iiint_{\Omega} F_x G dx dy dz = -\iiint_{\Omega} F G_x dx dy dz,$$

其中 F_x , G_x 分别表示 F, G 对 x 的偏导函数。

2 设数列 $\{a_n\}$ 满足

$$a_1 = 1$$
, $(n+1)a_{n+1} = (n+\frac{1}{2})a_n$.

- (1) 证明: 当 |x| < 1 时,幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 收敛。
- (2) 利用课程中证明过的结论:

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n, \quad \forall |x| < 1,$$

求幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 在区间 (-1,1) 中的和函数。

- 3 (1) 设 α 是给定的正数,求函数极限 $\lim_{x\to +\infty} \frac{\sqrt[x]{x-1}}{(\frac{1}{x})^{\alpha}}$ 的值。
 - (2) 设 p 是给定的正数, 利用 (1) 的结果判断正项级数 $\sum_{n=1}^{\infty} (\sqrt[n]{n} 1)^p$ 的收敛发散性。

- 4 (1) 计算第二型曲面积分 $I = \iint_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$, 其中曲面 Σ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, 取指向外面的定向。
 - (2) 令 $V = \{(x, y, z) | \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$ 。求三重积分 $\iiint_V (x^2 + y^2 + z^2) dx dy dz$ 的值。
- 5 设 x_1, x_2, x_3, x_4 都是非负实数,满足 $x_1 + x_2 + x_3 + x_4 = 1$ 。求函数

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 + x_2 x_3 x_4 + x_3 x_4 x_1 + x_4 x_1 x_2$$

的最大值。

- 6 令 $S = \{(x,y,z): x^2 + y^2 + z^2 = 1\}$ 为 Oxyz 坐标系中的单位球面,记其面积微元为 dS。令 $L = \{(u,v): u^2 + v^2 = 1, v \ge 0\}$ 为 Ouv 坐标系中的上半单位圆周,记其弧长微元为 $d\ell$ 。设 f 是三元的连续函数。
 - (1) 对 S 赋予参数化 $x=t,y=\sqrt{1-t^2}\cos\theta,z=\sqrt{1-t^2}\sin\theta$,其中 $-1\leqslant t\leqslant 1,0\leqslant\theta\leqslant 2\pi$ 。请将第一型曲面积分 $\iint_S f(x,y,z)dS$ 用此参数化表示。
 - (2) 求第一型曲面积分 $\iint_S z^4 dS$ 的值。
 - (3) 证明:

$$\iint_{S} f(x, y, z) dS = \int_{0}^{2\pi} \left(\int_{L} f(u, v \cos \theta, v \sin \theta) v d\ell \right) d\theta.$$

7 设 $S \in \mathbb{R}^3$ 中光滑的带边的定向曲面,其定向由各点处的单位法向量

$$\mathbf{n}(x, y, z) = (n_1(x, y, z), n_2(x, y, z), n_3(x, y, z))$$

描述。假设 $\mathbf{n}(x,y,z)$ 在 S 的某个邻域中处处有定义,是单位长度的,且关于 (x,y,z) 是光滑变化的。把 \mathbf{n} 的分量函数简记为 n_1,n_2,n_3 。

- (1) 利用 **n** 是单位长度的,证明: $n_1\partial_z n_1 + n_2\partial_z n_2 + n_3\partial_z n_3$ 在 S 上恒等于零。
- (2) 证明:

$$\int_{\partial S} (yn_2 + zn_3)dx - yn_1dy - zn_1dz = -\iint_S (yn_3 - zn_2)(\operatorname{div} \mathbf{n})dS,$$

其中用 div \mathbf{n} 表示 \mathbf{n} 的散度,用 dS 表示面积微元,对 S 的边界 ∂S 赋予边界正定 向。