1 Linear Regression, Projections and Pseudoinverses

(a) $|y-w|^2=|y-P_X(y)+P_X(y)-w|^2=|y-P_X(y)|^2+|P_X(y)-w|^2+2(y-P_X(y))^\top(P_X(y)-w)$. Since $y-P_X(y)$ is orthogonal to any vector in $\mathrm{range}(X)$, we have $|y-w|^2=|y-P_X(y)|^2+|P_X(y)-w|^2$. It minimizes when $w=P_X(y)$. QED.

(b)

 $\Leftarrow \text{ If } P = UU^\top \text{, then } P = P^T \text{ trivially holds. } P^2 = U(U^\top U)U^\top = UU^\top = P. \text{ Since, } P = UU^\top \text{, we have } \text{rank}(P) \leq \text{rank}(U) \leq d. \text{ rank}(P) \geq \text{rank}(U^\top PU) = \text{rank}(I) = d.$ Therefore, we have rank(P) = d.

 \Rightarrow Since P is symmetric, we have $P=Q\Lambda Q^{\top}$, where $Q\in\mathbb{R}^{n\times n}$ is orthogonal and $\Lambda\in\mathbb{R}^{n\times n}$ is diagonal and real. Let λ be a eigenvalue of P and v be its corresponding eigenvector. Then we have $\lambda^2 v=P^2v=Pv=\lambda v$. So the eigenvalues must be 0 or 1. Let U be the matrix of subset of columns of Q whose corresponding eigenvalues are 1. Since $\mathrm{rank}(P)=d$, there are d such columns. Since $P=\sum_{i=1}^n \lambda_i q_i q^{\top}$, we have $P=UU^{\top}$ with $U\in\mathbb{R}^{n\times d}$. Since U is orthogonal, we have $U^{\top}U=I$. **QED.**

(c) tr(P) is the sum of all the eigenvalues of P. we have proved in part (b) that all the eigenvalues are either 0 or 1, and since rank(P) = d, we have tr(P) = d.

(d) Let $X=U\Sigma V^{ op}$ be the SVD of X, where $U\in\mathbb{R}^{n\times d},\Sigma\in\mathbb{R}^{d\times d},V\in\mathbb{R}^{d\times d}$.

$$X(X^\top X)^{-1}X^\top = U\Sigma V^\top (V\Sigma U^\top U\Sigma V^\top)^{-1}V\Sigma U^\top = U\Sigma V^\top V(\Sigma^{-1})^2 V^\top V\Sigma U^\top = UU^\top$$

This proves that $X(X^{\top}X)^{-1}X^{\top}$ is a rand-d orthogonal projection matrix. The corresponding matrix U is the matrix of the left singular vectors of X. **QED.**

(e)

Because the row space of X is the orthogonal complement of the null space of X. It is sufficient to show for any $v \in \mathbb{R}^n$, we have $Xv = 0 \Leftrightarrow \forall i, v_i^\top v = 0$.

$$Xv = \sum_{i:\sigma_i>0} \sigma_i u_i(v_i^ op v)$$

Since $\sigma_i u_i$'s are independent vectors, $Xv=0 \Leftrightarrow \forall i, v_i^ op v=0$. **QED.**

We can write X as the reduced form of the SVD: $X=U_r\Sigma_rV_r^T$. Then by definition of the Moore-Penrose pseudoinverse of X is $X^+=V_r\Sigma_r^{-1}U_r^\top$. Then we have $X^+X=V_rV_r^T$, which is the orthogonal projection matrix onto the row space of X. If $\mathrm{rank}(X)=d$. Then $X^+X=I$. If $\mathrm{rank}(X)=d$ and n=d, then $XX^+=U_rU_r^\top=I$. So X^+ is the inverse of X, i.e. $X^+=X^{-1}$.

2 The Least Norm Solution

(a)

If θ is a minimizer of $|X\theta-y|^2$, then θ satisfies $X^\top X\theta=X^\top y$. θ can be written as $\theta_0+\delta$ where θ_0 is in the row space of X and δ is in the null space. Note that δ has no impact on $||y-X\theta||$, since $X\delta=0$. However, it affects $||\theta||^2=||\theta_0||^2+||\delta||^2$. So the minimus norm solution of $X^\top X\theta=X^\top y$ is θ_0 which lies in the rowspace of X, i.e., it has a zero-component in the nullspace of X.

(b)

$$\hat{ heta}_{LS,LN} = \sum_{i:\delta_i>0} rac{1}{\delta_i} v_i(u_i^ op y) = V_r \Sigma_r^{-1} U_r^ op y$$

It is obvious that $\hat{\theta}_{LS,LN}$ is in the rowspace of X, since $\hat{\theta}_{LS,LN}$ is in the column space of V_r and the columns of V_r are an orthonormal basis for the rowspace of X. To show that $\hat{\theta}_{LS,LN}$ satisfies the normal equation, note that $X^\top X \hat{\theta}_{LS,LN} = V_r \Sigma_r (U_r^\top U_r) \Sigma_r (V_r^\top V_r) \Sigma_r^{-1} U_r^\top y = X^\top y$. **QED.**

(c)

- 1. $(X^{\top}X)^+(X^{\top}X)$ is the orthogonal projection onto the rowspace of X.
- 2. $(X^TX)^+X^T=V_r\Sigma_r^{-2}V_r^ op V_r\Sigma_r U_r^ op=X^+$
- 3. $P_X \theta = (X^{ op} X)^+ (X^{ op} X) \theta = (X^{ op} X)^+ X^{ op} y = X^+ y$
- 4. From (a) we know $\hat{ heta}_{LS,LN}$ lies in the rowspace of X, so $P_X\hat{ heta}_{LS,LN}=\hat{ heta}_{LS,LN}=X^+y$

3 SGD Convergence for Logistic Regression

(a)

By the definition of gradient descent,

$$G(w) = w - \epsilon \cdot \Delta_w J$$

Let $z=s(x\circ w)$, then $\Delta_w z=z(1-z)x$, and $\Delta_w J=-(y-z)x$. So $G(w)=w+\epsilon(y-z)x$.

(b)

 $\Delta_w^2 J = \Delta_w z x = z(1-z)xx^{ op}$, which positive definite. Because for any $v \in \mathbb{R}^d$ and $v \neq 0$, $v^{ op} \Delta_w^2 J v = z(1-z)|x^{ op}v|^2 > 0$, since 0 < z < 1 and $x \neq 0$. This proves that J is strictly convex.

(c)

$$\Delta_w G(w) = I - \epsilon z (1-z) x x^\top$$

Since 0 < z(1-z) < 1. Setting $\epsilon < \frac{1}{|x|^2}$ gives us $||\Delta_w G(w)|| < \rho$ for some $0 < \rho < 1$.

(d)

From (c), $|G(w^*)-G(w^t)|<\rho|w^*-w^t|$. Then we have $|w^*-w^{t+1}|<\rho|w^*-w^t|$. By telescoping, we have $|w^*-w^t|<\rho^t|w^*-w^0|$.