Samobójstwa na świecie - analiza statystyczna Projekt z rachunku prawdopodobieństwa i statystyki 2022/2023

Jakub Szaredko

24 stycznia 2023

Spis treści

1	Wprowadzenie	2							
2	Opis danych statystycznych 2.1 Źródło 2.2 Wczytanie bazy danych 2.3 Czyszczenie zbioru danych 2.4 Opis bazy danych								
3	Analiza eksploracyjna								
	1 Semi-globalna liczba samobójstw dokonanych w latach 1990-2015								
	3.2 10 największych państw pod względem dokonanych samobójstw w latach 1990-2015 .								
	3.3 10 najmniejszych państw pod względem dokonanych samobójstw w latach 1990-2015								
	3.4~ Liczba dokonanych samobójstw w Polsce między 1990-2015 (z podziałem na płci)	10							
	3.5~ Liczba dokonanych samobójstw w latach 1990-2015 z podziałem na generacje $$	13							
4	Opracowanie modelu statystycznego								
	4.1 Związek liczby samobójstw z PKB (poziomem rozwoju gospodarczego państwa)	17							
	4.2 Związek liczby samobójstw z rokiem	18							
5	5 Podsumowanie								

1 Wprowadzenie

Celem projektu jest analiza samobójstw oraz zapoznanie się ze statystycznymi sposobami analizy danych. Powodem powstania tego projektu jest chęć dokładniejszego zrozumienia tego zjawiska, które staje się z roku na rok coraz bardziej popularne, a także moja osobista ciekawość. W dalszej części zostanie przeprowadzone badanie wybranych danych i opracowanie modelu statystycznego.

2 Opis danych statystycznych

2.1 Źródło

Projekt został opracowany, dzięki danym z portalu Kaggle: Suicide rates overview.

2.2 Wczytanie bazy danych

```
[1]: import sqlite3
conn = sqlite3.connect("../data/suicides.db")
cur = conn.cursor()
```

2.3 Czyszczenie zbioru danych

Wykorzystane dane są w dobrym stanie, kolumna hdi_per_year, jedna z 12 kolumn, posiadała tylko braki danych w ponad 19 tys. wierszy, co jest bardzo olbrzymim ubytkiem i budzi niepewność przy analizie. Sposobów na poradzenie sobie z tym było kilka: - wstawieniem jakieś stałej, np. 0; - wstawieniem średniej arytmetycznej lub mediany z pozostałych znanych wartości; - wytworzenie pewnego modelu, który pozwoliłby na korelację tej kolumny z pozostałymi danymi, dzięki temu umożliwiłby relatywnie pewne przybliżenie; - usunięcie niepełnych wierszy; - usunięcie kolumny hdi_per_year.

Ostatecznie usunięta została po prostu kolumna, ponieważ zbyt duży odsetek nieznanych wartości uniemożliwiłby na dobre wykorzystanie jakiegoś wskaźnika położenia jako zamiennika, a także kolumna ta nie była kluczowa do dalszej analizy - mimo tego, że jest ciekawą zmienną. Dodatkowo została usunięta kolumna country_year, która była połączeniem 2 kolumn.

Dane zostały także wyczyszczone o państwa, które nie posiadały przynajmniej 20 zapisanych danych statystycznych z okresu 1990-2015.

print("3,068 rows affected")

3,068 rows affected

Usuniętych zostało 24 krajów: - Albania - Aruba - Azerbejdżan - Bahrajn - Bośnia i Hercegowina - Cypr - Czarnogóra - Fidżi - Filipiny - Jamajka - Katar - Kiribati - Makau - Malediwy - Nikaragua - Oman - Republika Zielonego Przylądka - Saint Kitts i Nevis - San Marino - Serbia - Seszele - Sri Lanka - Turcja - Zjednoczone Emiraty Arabskie

W dalszej części analizy będę stosować się do informacji głównie między 1990 a 2015 rokiem, ponieważ pozostałe lata nie są aż tak dobrze opisane dla każdego z wylistowanych państw.

[3]: years_range = "year BETWEEN 1990 AND 2015"

2.4 Opis bazy danych

Początkowo baza danych zawierała 27800 wierszy, po czyszczeniu danych ta liczba uległa redukcji do 24752, dodatkowo znaczna część analizy przeprowadzona jest na latach 1990-2015, ze względu na zmniejszony zbiór danych na krańcach pierwotnego zakresu. Dane działają w oparciu o lokalnę bazę danych SQLite 3.40.1. W bazie znajduje się tylko 1 tabela suicides, która opisuje zależność samobójstw dokonanych globalnie z podziałem na poszczególne państwa.

suicides

- country- nazwa państwa (TEXT)
- year rok (INTEGER)
- sex płeć (TEXT)
- female kobieta male mężczyzna
- age grupa wiekowa osób (TEXT)
 - 5-14 years
 - 15-24 years
 - 25-34 years
 - 35-54 years
 - 55-74 years
 - 75+ years
- suicides_no liczba dokonanych samobójstw (INTEGER)
- population populacja (INTEGER)
- suicides_per_100k liczba samobójstw na 100 tys. osób (REAL)
- gdp_per_year roczne PKB (REAL)
- gdp_per_capita roczne PKB na osobę (REAL)
- generation nazwa generacji społecznej (TEXT)
 - Boomers
 - G.I. Generation
 - Generation X
 - Generation Z
 - Millenials
 - Silent

3 Analiza eksploracyjna

```
[4]: import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.colors as cl
```

3.1 Semi-globalna liczba samobójstw dokonanych w latach 1990-2015

```
[5]: res = cur.execute(f"""
         SELECT year, SUM(suicides_no)
         FROM suicides
         WHERE {years_range}
         GROUP BY year
         ORDER BY year DESC
     """)
     x, y = zip(*res.fetchall())
     y_{min}, y_{max} = min(y), max(y)
     fig, ax = plt.subplots(figsize=(12, 6))
     ax.bar(x, y, color=[cl.hsv_to_rgb((.48, 1 - (x - y_min) / (y_max - y_min) * .6, ]
     \rightarrow 1 - (x - y_min) / (y_max - y_min) * .4)) for x in y])
     ax.set_title("Liczba dokonanych samobójstw na świecie między 1990-2015")
     ax.set_xlabel("Rok")
     ax.set_ylabel("Liczba samobójstw")
     plt.minorticks_on()
     plt.grid(which="major")
     plt.grid(which="minor", linestyle="--", color="#000000", alpha=.1)
     plt.show()
```


Wskaźniki i położenia rozproszenia

[6]:

Wartość średnia	229950.7		
Mediana	232243.5		
Oddchylenie standardowe	15259.0		
Oddchylenie przeciętne	11872.3		

Na powyższym wykresie można zaobserować spadki na początku lat 90. jak i także po 2011 roku. Główną przyczyną mniejszej liczby śmierci jest najprawdopodobniej zmniejszona ilość zebranych danych na poziomie ok. 10-15%.

$3.2\,$ 10największych państw pod względem dokonanych samobójstw w latach 1990-2015

Wskaźniki położenia i rozproszenia (roczne)

```
SELECT country
             FROM suicides
             WHERE {years_range}
             GROUP BY country
             ORDER BY SUM(suicides_no) DESC
             LIMIT 10
         ) AND {years_range}
         GROUP BY country, year
         ORDER BY country, year
     """)
     res = res.fetchall()
     suicides_by_country = [[y for x, y in res if x == c] for c in countries]
     data = [
         [
             С,
             round(np.mean(suicides_by_country[i]), 1),
             np.median(suicides_by_country[i]),
             round(np.std(suicides_by_country[i]), 1),
             round(np.mean(np.absolute(suicides_by_country[i] - np.
      →mean(suicides_by_country[i]))), 1)
         ] for i, c in enumerate(countries)
     pd.DataFrame(data, columns=["Państwo", "Wartość średnia", "Mediana", u
      →"Oddchylenie standardowe", "Oddchylenie przeciętne"], index=range(1, 11))
[8]:
                    Państwo Wartość średnia Mediana Oddchylenie standardowe \
         Russian Federation
                                     45070.0 45862.5
     1
                                                                        11185.8
     2
              United States
                                     33934.1 31561.0
                                                                         4389.2
     3
                      Japan
                                     26569.6 28949.0
                                                                         4244.8
     4
                    Germany
                                     11202.4 11114.0
                                                                         1383.3
     5
                    Ukraine
                                     11570.5 11256.0
                                                                         2303.7
     6
                                                                          761.4
                     France
                                     10744.9 10643.0
     7
          Republic of Korea
                                      9435.0
                                               9632.0
                                                                         4251.5
     8
                     Brazil
                                      7865.9
                                               7774.5
                                                                         1807.5
     9
                     Poland
                                      5795.8
                                               5820.5
                                                                          366.2
     10
             United Kingdom
                                      4343.7
                                               4302.5
                                                                          256.6
         Oddchylenie przeciętne
                         9880.7
     1
     2
                         3745.1
     3
                         3917.4
     4
                         1154.0
     5
                         2025.5
                          592.7
     6
     7
                         3863.5
```

WHERE country IN (

```
8 1537.6
9 291.8
10 210.2
```

$3.3\,$ 10najmniejszych państw pod względem dokonanych samobójstw w latach 1990-2015

```
[9]: res = cur.execute(f"""
         SELECT country, SUM(suicides_no)
         FROM suicides
         WHERE {years_range}
         GROUP BY country
         ORDER BY SUM(suicides_no)
     """)
     countries, y = zip(*res.fetchall()[:10])
     fig, ax = plt.subplots(figsize=(12, 6))
     ax.ticklabel_format(useOffset=False, style="plain")
     ax.bar(countries, y, color="#35ee97")
     ax.set_title("Najmniejsze państwa pod względem dokonanych samobójstw w latach⊔
     →1990-2015")
     ax.set_xlabel("Państwo")
     ax.set_ylabel("Liczba samobójstw")
     plt.xticks(rotation=45)
     plt.minorticks_on()
     plt.grid(which="major")
     plt.grid(which="minor", linestyle="--", color="#000000", alpha=.1)
     plt.show()
```


Wskaźniki położenia i rozproszenia (roczne)

```
[10]: res = cur.execute(f"""
          SELECT country, SUM(suicides_no)
          FROM suicides
          WHERE country IN (
              SELECT country
              FROM suicides
              WHERE {years_range}
              GROUP BY country
              ORDER BY SUM(suicides_no)
              LIMIT 10
          ) AND {years_range}
          GROUP BY country, year
          ORDER BY country, year
      """)
      res = res.fetchall()
      suicides_by_country = [[y for x, y in res if x == c] for c in countries]
      data = [[
              С,
              round(np.mean(suicides_by_country[i]), 1),
              np.median(suicides_by_country[i]),
```

```
round(np.std(suicides_by_country[i]), 1),
              round(np.mean(np.absolute(suicides_by_country[i] - np.
       →mean(suicides_by_country[i]))), 1)
          ] for i, c in enumerate(countries)
      pd.DataFrame(data, columns=["Państwo", "Wartość średnia", "Mediana", "
       →"Oddchylenie standardowe", "Oddchylenie przeciętne"], index=range(1, 11))
[10]:
                               Państwo Wartość średnia Mediana \
      1
                   Antigua and Barbuda
                                                     0.5
                                                              0.0
      2
                               Grenada
                                                     1.3
                                                              1.0
      3
                               Bahamas
                                                     4.2
                                                              4.0
```

```
4
    Saint Vincent and Grenadines
                                                 5.5
                                                           5.0
                         Barbados
5
                                                 6.4
                                                           3.0
6
                      Saint Lucia
                                                 8.2
                                                           8.0
7
                           Belize
                                                13.6
                                                          14.0
8
                             Malta
                                                21.1
                                                          20.0
9
                           Iceland
                                                34.8
                                                          34.0
                           Kuwait
10
                                                41.7
                                                          42.5
    Oddchylenie standardowe Oddchylenie przeciętne
1
                         0.7
                                                   0.6
2
                         1.7
                                                   1.3
3
                         2.6
                                                   2.0
                                                   2.3
4
                         2.8
5
                         6.7
                                                   6.2
                                                   2.9
6
                         3.7
7
                         7.6
                                                   5.9
                         7.6
                                                   6.4
8
9
                         6.9
                                                   5.5
```

11.6

10

3.4~ Liczba dokonanych samobójstw w Polsce między 1990-2015 (z podziałem na płci)

9.2

```
suicides_male = [x for s, x in res if s == "male"]
x = np.arange(len(years)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots(figsize=(12, 15))
rects1 = ax.barh(x - width/2, suicides_female, width, label="Kobiety", __
rects2 = ax.barh(x + width/2, suicides_male, width, label="Meżczyźni", u

color="#f0922d")
# Axis formatting
ax.ticklabel_format(useOffset=False, style="plain")
ax.set_title("Liczba dokonanych samobójstw w Polsce między 1990-2015")
ax.set_ylabel("Rok")
ax.set_xlabel("Liczba samobójstw")
ax.invert_yaxis()
ax.set_yticks(x, years)
ax.tick_params(axis="y", which="minor", left=False)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
# Grid formatting
plt.minorticks_on()
plt.grid(which="major", color="#7a7784")
plt.grid(which="minor", axis="x", linestyle="--", color="#000000", alpha=.1)
plt.show()
```


Wskaźniki położenia i rozproszenia

[12]: Kobiety Mężczyźni Wartość średnia 877.6 4918.1 Mediana 881.5 4914.0 Oddchylenie standardowe 69.1 372.5 Oddchylenie przeciętne 55.8 298.0

Dysproporcja między samobójstwami dokonanych przez kobiety a mężczyzn jest zaskakująca, zarówno w Polsce jak i na świecie. Średni udział kobiet do wszystkich dokonanych samobójstw w Polsce wynosi ok. 15%, natomiast na świecie ok. 23% - zatem w Polsce statystycznie więcej mężczyzn decyduje się na drastyczne kroki w postaci skrócenia swego życia.

3.5 Liczba dokonanych samobójstw w latach 1990-2015 z podziałem na generacje

```
[13]: res = cur.execute(f"""
         SELECT generation, year, SUM(suicides_no)
         FROM suicides
         WHERE {years_range}
         GROUP BY generation, year
     """).fetchall()
     generations = [x[0]] for x in cur.execute("SELECT DISTINCT generation FROM<sub>L</sub>)
      →suicides ORDER by generation").fetchall()]
     years = [x[0] for x in cur.execute(f"SELECT DISTINCT year FROM suicides WHERE_
      suicides = np.empty((len(years), len(generations)))
     for i, gen in enumerate(generations):
         for j, yr in enumerate(years):
             filtered_res = [no for g, y, no in res if g == gen and y == yr]
             no = filtered_res[0] if filtered_res else 0
             suicides[j, i] = round(no / 1000) / 10
```

```
fig, ax = plt.subplots(figsize=(12, 12))
im = ax.imshow(suicides, cmap="plasma")
# Axis formatting
ax.set_xticks(np.arange(len(generations)), labels=generations)
ax.set_yticks(np.arange(len(years)), labels=years)
ax.set_ylabel("Rok")
ax.set_xlabel("Generacja")
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
         rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
for i in range(len(years)):
   for j in range(len(generations)):
        text = ax.text(j, i, suicides[i, j],
                       ha="center", va="center", color="w")
ax.set_title("Liczba dokonanych samobójstw (w 10 tysiącach)\nw latach 1990-2015_
→z podziałem na generacje")
fig.tight_layout()
plt.show()
```

Liczba dokonanych samobójstw (w 10 tysiącach) w latach 1990-2015 z podziałem na generacje

	1990 -	3.5	6.8	2.5	0.0	0.0	6.5			
	1991 -	10.4	2.1	2.3	0.0	0.2	4.8			
	1992 -	11.3	2.1	2.5	0.0	0.2	5.1			
	1993 -	11.9	2.0	2.5	0.0	0.2	5.4			
	1994 -	12.6	2.0	2.7	0.0	0.2	5.7			
	1995 -	9.0	2.1	7.2	0.0	0.2	5.9			
	1996 -	9.0	2.0	7.0	0.0	0.2	5.9			
	1997 -	8.6	2.1	6.8	0.0	0.2	5.8			
	1998 -	8.9	2.1	6.9	0.0	0.2	6.0			
	1999 -	9.4	2.1	7.0	0.0	0.2	6.1			
	2000 -	9.5	2.1	7.0	0.0	0.2	5.9			
	2001 -	9.4	0.0	3.9	0.0	3.1	7.8			
¥	2002 -	9.6	0.0	4.0	0.0	3.2	8.1			
Rok	2003 -	9.6	0.0	4.0	0.0	3.1	8.2			
	2004 -	9.2	0.0	3.8	0.0	3.0	7.9			
	2005 -	8.8	0.0	3.7	0.0	2.9	7.8			
	2006 -	8.5	0.0	3.6	0.0	2.8	7.7			
	2007 -	8.5	0.0	3.7	0.2	2.7	7.9			
	2008 -	8.6	0.0	3.7	0.2	2.7	8.0			
	2009 -	8.9	0.0	3.8	0.2	2.7	8.2			
	2010 -	0.0	0.0	12.3	0.2	2.6	8.2			
	2011 -	5.8	0.0	8.4	0.2	6.4	2.4			
	2012 -	5.8	0.0	8.2	0.2	6.2	2.4			
	2013 -	5.7	0.0	7.9	0.2	5.8	2.4			
	2014 -	5.7	0.0	7.8	0.2	5.8	2.4			
	2015 -	5.3	0.0	7.0	0.2	5.3	2.3			
Booners ation ton ton the milerials silent										

Generacja

Wskaźniki położenia i rozproszenia

```
[14]: data = []
for i, gen in enumerate(generations):
    filtered_res = [no for g, y, no in res if g == gen]
    data.append((
        gen,
        round(np.mean(filtered_res), 1),
        np.median(filtered_res),
        round(np.std(filtered_res), 1),
        round(np.mean(np.absolute(filtered_res - np.mean(filtered_res))), 1)
    ))

pd.DataFrame(data, columns=["Generacja", "Wartość średnia", "Mediana",
        →"Oddchylenie standardowe", "Oddchylenie przeciętne"], index=range(1,
        →len(generations) + 1))
```

```
「14]:
                                                     Oddchylenie standardowe
               Generacja Wartość średnia Mediana
      1
                 Boomers
                                   85302.6
                                            89062.0
                                                                      21122.4
         G.I. Generation
                                   25094.5 20862.0
                                                                      13601.3
      3
            Generation X
                                   53920.7 39907.5
                                                                      24754.3
      4
            Generation Z
                                    1693.6
                                             1700.0
                                                                         74.3
      5
              Millenials
                                   24113.7 27403.0
                                                                      21344.0
      6
                  Silent
                                   59619.0 59726.5
                                                                      20407.3
         Oddchylenie przeciętne
      1
                         15630.9
      2
                          7818.8
      3
                         22138.0
      4
                            65.4
      5
                         17841.4
      6
                         16173.2
```

Najwięcej osób w latach 1990-2015, którzy popełnili samobójstwo to ludzie z generacji $Baby\ bo-omers$ (lata 1946-1964), Silent (lata 1928-1945) oraz $Generation\ X$ (lata 1965-1980). Nie jest to wielkim zaskoczeniem, ponieważ te osoby w tych latach dorastały lub były dorosłe. Na powyższym zestawieniu widać wymianę pokoleń i zmianę generacji, w latach 2010-2015 coraz więcej osób z generacji X popełniło samobójstw na rzecz generacji Boomers i Silent. Można także zaobserować pewne anomalie w danych w postaci skoków między poszczególnymi latami, a także zmniejszonej lub zerowej liczbie zgonów.

4 Opracowanie modelu statystycznego

4.1 Związek liczby samobójstw z PKB (poziomem rozwoju gospodarczego państwa)

Pierwszym pomysłem jaki przyszedł mi do głowy była korelacja samobójstw z PKB, ponieważ mogłoby się wydawać, że są to silnie zależne od siebie zmienne - teoretycznie im większe PKB na osobę, tym populacja jest bardziej szczęśliwa. Zakładam, że PKB na osobę jest odwrotnie proporcjonalne do liczby popełnionych samobójstw. Na początku tworzę odpowiedni wykres i określam jakąś zależność między punktami.

```
[15]: res = cur.execute(f"""
          SELECT AVG(gdp_per_capita), SUM(suicides_no)
          FROM suicides
          WHERE {years_range} AND country = 'Norway'
          GROUP BY year
      """).fetchall()
      x, y = zip(*res)
      a, b, r, p, std_err = stats.linregress(x, y)
      fig, ax = plt.subplots()
      ax.set_title("Zależność samobójstw od PKB na osobę Norwegii")
      ax.set_xlabel("PKB na osobe [$]")
      ax.set_ylabel("Liczba samobójstw")
      plt.scatter(x, y, color="#9940f2")
      plt.plot(x, list(map(lambda x: a*x + b, x)), linestyle="--", linewidth=1,__
       plt.show()
      print(f''f(x) = \{round(a, 5)\}x + \{round(b, 2)\}")
```


f(x) = -0.00048x + 583.78

Do wykresu dopasowałem model liniowy, który można powiedzieć, że relatywnie dobrze pokrywa się z punktami. Współczynnik kierunkowy prostej jest ujemny, a więc wygląda na to, że hipoteza została potwierdzona. Sprawdzę dodatkowo korelacje między zmiennymi za pomocą testu Spearmana.

[16]: SpearmanrResult(correlation=-0.31860293410948787, pvalue=0.11266597331346244)

Wartość wskaźnika p jest równa 0.11, zatem zmienne zależne są zależne od siebie. Hipoteza wydaje się być potwierdzona, nie mniej trzeba dodać, że test został poprowadzony tylko dla 1 państwa, co może być tylko i wyłącznie (nie)szczęśliwym wyborem. Hipotezę należałoby wykonać też dla przynajmniej kilkunastu innych państw z innym rozkładem PKB.

4.2 Związek liczby samobójstw z rokiem

Dość ciekawą, i wydawałoby się słuszną, hipotezą jest relacja liczby samobójstw z rokiem, to jest im młodszy rok tym bardziej zwiększa się liczba popełnionych samobójstw. Patrząc na wykres słupkowy z poprzedniej sekcji jest to raczej hipoteza nietrafiona, ponieważ widać, że przybliżone równanie liniowe posiada współczynnik kierunkowy bliski 1. W ramach pewności oszacuję funkcję liniową tego związku.

```
[17]: res = cur.execute(f"""
          SELECT year, SUM(suicides_no)
          FROM suicides
          WHERE year BETWEEN 1995 AND 2011
          GROUP BY year
      """).fetchall()
      x, y = zip(*res)
      a, b, r, p, std_err = stats.linregress(x, y)
      fig, ax = plt.subplots()
      plt.scatter(x, y, color="#9940f2")
      plt.plot(x, list(map(lambda x: a*x + b, x)), linestyle="--", linewidth=1,__
       ⇔color="#7a7784")
      ax.set_title("Liczba dokonanych samobójstw na świecie między 1995-2011")
      ax.set_xlabel("Rok")
      ax.set_ylabel("Łączna liczba samobójstw")
      plt.show()
      print(f''f(x) = \{round(a, 2)\}x + \{round(b, 2)\}")
```


f(x) = -844.55x + 1930304.48

Współczynnik kierunkowy prostej jest mniejszy od zera, zatem według dostępnych danych statystycznych tendencja jest odwrotna niż stawiana hipoteza. Niekoniecznie musi tak być faktycznie, może być to spowodowane brakach w danych, patrząc np. dla zestawienia liczby samobójstw dla Polski tendencja jest lekko wzrostowa.

5 Podsumowanie

Projekt okazał się być niełatwy a zarazem ciekawy, podczas jego pisania napotkałem na kilka problemów, nauczyłem się pracy z nowymi narzędziami i środowiskami. Wnioski, które zostały zaprezentowane w modelu statystycznym były, w mojej opinii, wartościowe. W ramach rozwinięcia relacji liczby samobójstw a rokiem wybrałbym kilka innych zestawów danych (w tym te nowsze, które obejmują już rok 2022) i próbował je bardziej dogłębnie przeanalizować, ponieważ uważam, że co rok wzrasta liczba samobójców w Polsce jak i na świecie.

W procesie tworzenia projektu nauczyłem się lub rozwinąłem swoje umiejętności w: lokalnym środowisku bazodanowym SQLite, bardziej analitycznym podejściu w Pythonie, obsłudze bibliotek NumPy, SciPy oraz Matplotlib, obsłudze JupyterLab, a także statystycznej analizy problemów.