Similarity Measurement

Distance Measures

- Heuristic
 - Minkowski-form
 - Weighted-Mean-Variance (WMV)
- Nonparametric test statistics
 - $-\chi^2$
 - Kolmogorov-Smirnov (KS)
 - Cramer/von Mises (CvM)
- Information-theory divergences
 - Kullback-Liebler (KL)
 - Jeffrey-divergence (JD)
- Ground distance measures
 - Histogram intersection
 - Quadratic form (QF)
 - Earth Movers Distance (EMD)
- Mahalanobis distance
- Hausdoff distance

Heuristic Distances

Minkowski-form distance L_p

$$D(I,J) = \left(\sum_{i} \left| f(i,I) - f(i,J) \right|^{p} \right)^{1/p}$$

- Special cases:
 - L₁: absolute, cityblock, or
 Manhattan distance
 - L₂: Euclidian distance —

Heuristic Distances

- Weighted-Mean-Variance
 - Only includes minimal information about the distribution

$$D^{r}(I,J) = \frac{\left|\mu_{r}(I) - \mu_{r}(J)\right|}{\left|\sigma(\mu_{r})\right|} + \frac{\left|\sigma_{r}(I) - \sigma_{r}(J)\right|}{\left|\sigma(\sigma_{r})\right|}$$

Nonparametric Test Statistics

- χ^2
 - Measures the underlying similarity of two samples

$$D(I,J) = \sum_{i} \frac{\left(f(i;I) - \hat{f}(i)\right)^{2}}{\hat{f}(i)},$$
where $\hat{f}(i) = \left[f(i;I) + f(i;J)\right]/2$

Nonparametric Test Statistics

- Kolmogorov-Smirnov distance
 - Measures the underlying similarity of two samples

$$D^{r}(X, Y) = \max_{i} |F^{r}(i; X) - F^{r}(i; Y)|$$

Kramer/von Mises

$$D^{r}(X, Y) = \sum_{i} (F^{r}(i; X) - F^{r}(i; Y))^{2}.$$

Information Theory

- Kullback-Liebler
 - Cost of encoding one distribution as another

$$D(X, Y) = \sum_{i} f(i; X) \log \frac{f(i; X)}{f(i; Y)},$$

Information Theory

- Jeffrey divergence
 - -Just like KL, but more numerically

$$D(X,Y) = \sum_{i} f(i;X) \log \frac{f(i;X)}{\hat{f}(i)} + f(i;Y) \log \frac{f(i;Y)}{\hat{f}(i)}.$$

Ground Distance

- Histogram intersection
 - Good for partial matches

$$d_{\cap}(H, K) = 1 - \frac{\sum_{\mathbf{i}} \min(h_{\mathbf{i}}, k_{\mathbf{i}})}{\sum_{\mathbf{i}} k_{\mathbf{i}}}$$

Ground Distance

Quadratic form

- Let A denote a positive matrix (A \geq 0) such as the correlation matrix of I and J.
- f₁ and f₂ are two vectors of I and J.

$$D(I,J) = \sqrt{(\mathbf{f}_I - \mathbf{f}_J)^t \mathbf{A}(\mathbf{f}_I - \mathbf{f}_J)}$$

Ground Distance

Earth Mover Distance

Let
$$P = \{(p_1, w_1), ..., (p_n, w_n)\}\$$

$$Q = \{(q_1, w_1), ..., (q_m, w_m)\}\$$

$$D(i, j) = dist(p_i, q_j)$$

$$\min_{f_{ij}} \sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} d_{ij}$$

$$\text{s.t} \quad f_{ij} \ge 0$$

$$\sum_{j=1}^{m} f_{ij} \le w_{p_i}$$

$$\sum_{i=1}^{m} f_{ij} \le w_{q_j}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min(\sum_{i=1}^{m} w_{p_i}, \sum_{j=1}^{n} w_{p_j})$$

Ground Distance - Earth Mover Distance

(distance moved) * (amount moved)

Ground Distance - Earth Mover Distance

$$\sum_{i=1}^{m} \sum_{j=1}^{n}$$
 (distance moved) * (amount moved)

Earth Mover Distance

$$\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} * (amount moved)$$

Linear programming

$$\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij} = \text{WORK}$$

1. Move "earth" only from P to Q

2. Cannot send more "earth" than there is

3. Q cannot receive more "earth" than it can hold

$$\sum_{i=1}^{m} f_{ij} \leq w_{q_j}$$

4. As much "earth" as possible must be moved

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min(\sum_{i=1}^{m} w_{p_i}, \sum_{j=1}^{n} w_{q_j})$$

Mahalanobis Distance

 Euclidian distance weights all dimensions (variables) equally, however, statistically they may not be the same:

Euclidian distance $\Delta x = \Delta y$ However statistically $\Delta x < \Delta y$

Mahalanobis Distance

- It is easy to see that for low (or zero) covariance we can can normalise the distances by dividing by the variance:
- Δ 'x = (x_2-x_1) / sqrt(σ_{xx}) Δ 'y = (y_2-y_1) / sqrt(σ_{yy})
- Dist = sqrt(Δ 'x² + Δ 'y²)
- In this case the covariance matrix is diagonal and the distance between two points can be written:
- sqrt[$(x_2-x_1,y_2-y_1)^T \Sigma^{-1} (x_2-x_1,y_2-y_1)$] = the Mahalanobis distance

Mahalanobis Distance

- The Mahalanobis distance = $\operatorname{sqrt}[(x_2-x_1,y_2-y_1)^T \Sigma^{-1}(x_2-x_1,y_2-y_1)]$ also works for high co-variance.
- Notice how the measure changes as co-variance increases
- \sum is a covariance matrix

Mahalanobis and Multivariate Outliers

- Mahalanobis is a multidimensional version of a z-score. It measures the distance of a case from the centroid (multidimensional mean) of a distribution, given the covariance (multidimensional variance) of the distribution.
- A case is a multivariate outlier if the probability associated with its value is 0.001 or less. This value follows a chi-square distribution with degrees of freedom equal to the number of variables included in the calculation.
- Mahalanobis requires that the variables be metric, i.e. interval level or ordinal level variables that are treated as metric.

Allow for arbitrary embedding space $(\mathbb{X},d_{\mathbb{X}})$

$$d_{\mathsf{GH}}(\mathcal{Q}, \mathcal{S}) = \inf_{\mathbb{X}} d_{\mathsf{H}}^{\mathbb{X}}(\varphi(\mathcal{S}), \psi(\mathcal{Q}))$$
$$\varphi: \mathcal{S} \to \mathbb{X}$$
$$\psi: \mathcal{Q} \to \mathbb{X}$$

where $arphi,\psi$ are isometric embeddings.

- lacksquare Satisfies the metric axioms with $\,c=2\,$
- lacksquare Consistent to sampling: if \mathcal{S}^r is an r -covering of \mathcal{S} , then

$$|d_{\mathsf{GH}}(\mathcal{Q}, \mathcal{S}) - d_{\mathsf{GH}}(\mathcal{Q}, \mathcal{S}^r)| \le r$$

Computation: intractable

For compact surfaces, there exists an equivalent definition in terms of metric distortions:

$$d_{\mathsf{GH}}(\mathcal{Q},\mathcal{S}) = \inf_{\substack{\varphi: \mathcal{S} \to \mathcal{Q} \\ \psi: \mathcal{Q} \to \mathcal{S}}} \max \left\{ \mathsf{dis}\, \varphi, \, \mathsf{dis}\, \psi, \mathsf{dis}\, (\varphi, \psi) \right\}$$

where:
$$\operatorname{dis} \varphi = \sup_{s,s' \in \mathcal{S}} \left| d_{\mathcal{S}}(s,s') - d_{\mathcal{Q}}(\varphi(s),\varphi(s')) \right|$$

$$\operatorname{dis} \psi = \sup_{q,q' \in \mathcal{Q}} \left| d_{\mathcal{Q}}(q,q') - d_{\mathcal{S}}(\psi(q),\psi(q')) \right|$$

$$\operatorname{dis} (\varphi,\psi) = \sup_{s \in \mathcal{S}, \, q \in \mathcal{Q}} \left| d_{\mathcal{S}}(s,\psi(q)) - d_{\mathcal{Q}}(q,\varphi(s)) \right|$$

 $\mathsf{dis}\,arphi$ measures how isometrically can $\mathcal S$ be embedded into $\mathcal Q$

$$\operatorname{dis} \varphi = \sup_{s,s' \in \mathcal{S}} \left| d_{\mathcal{S}}(s,s') - d_{\mathcal{Q}}(\varphi(s),\varphi(s')) \right|$$

 $\mathsf{dis}\,\psi$ measures how isometrically can $\mathcal Q$ be embedded into $\mathcal S$

$$\operatorname{dis} \psi = \sup_{q,q' \in \mathcal{Q}} \left| d_{\mathcal{Q}}(q,q') - d_{\mathcal{S}}(\psi(q),\psi(q')) \right|$$

 $\mathsf{dis}\left(arphi,\psi
ight)$ measures how far arphi and ψ are from being one the inverse of the other

$$\operatorname{dis}(\varphi,\psi) = \sup_{s \in \mathcal{S}, \, q \in \mathcal{Q}} |d_{\mathcal{S}}(s,\psi(q)) - d_{\mathcal{Q}}(q,\varphi(s))|$$

References

- [1] Chapter 2, Shape Analysis and Classification: Theory and Practice, L.D.F. Costa, R.M. Cesar Jr, CRC. Press, 2000.
- [2] Hausdorff distance, Wikipedia encyclopedia, http://en.wikipedia.org/wiki/Hausdorff distance