KERNEL METHODS FOR MOLECULAR MACHINE LEARNING

Logan Ward Asst. Computational Scientist Argonne National Laboratory

24 January 2022

What are kernel methods?

The "kernel trick" is to change data from low to high dimension space using a pairwise similarity "kernel" function.

Difficult Learning

Key terms:

- Kernel function: $k(x_i, x_j)$
- Kernel matrix: $K_{ij} = k(x_i, x_j)$
- Kernel Ridge Regression: $f(x_i) = K\alpha = \sum_i \alpha_i k(x_i, x_i)$

Easy Learning

Main Concept: "Make learning simple with a kernel function"

Kernel Methods have great properties

• Instance based learning: Complexity grows with data

Good uncertainty methods (GPR)

Ref: Rupp. Int. J. Quant. Chem., (2015)

• Flexibility in kernels: different kinds of non-linearity

• Multi-resolution methods

Ref: Zhang et al. AIAA 2013. (2013)

How do I make similarity functions for molecules?

This question has been studied for 10+ years

What kind of physics do we put into the kernel

- Interpolation between changes of atom type
- Sensitivity to small changes in environments
- Invariance to rotation, translation, permutation

• ...

There are a half dozen (or more*) ways to do this

Ref: Faber et al. JCP. (2018)

^{*}Follow Anatole von Lilienfeld's group

Case Study: Coulomb Matrix

Simple formula:

$$M_{ij} = \begin{cases} 0.5Z_i^{2.4} & i = j \\ \frac{Z_i Z_j}{\|R_i - R_j\|_2} & i \neq j \end{cases}$$

Captures atomic positions and types

Problem: *M* not permutation invariant

Solution: Use eigenvalues of $M(\epsilon)$

$$d_{ij} = \|\epsilon_i - \epsilon_j\|_2$$
$$k(x_i, x_j) = e^{\frac{-d_{ij}}{\sigma}}$$

Ref: Rupp et al. PRL (2012)

Case Study: FCHL

Describes atoms using...

"alchemical" - difference based on period, group

"many body" - Capture bond distances and angles

"distributions" - As gaussian functions

Similarity between atoms are computed with overlap integrals

$$A_{1}(x, y; I) = e^{-\frac{(P_{I} - x)^{2}}{2\sigma_{P}^{2}} - \frac{(G_{I} - y)^{2}}{2\sigma_{G}^{2}}}$$

$$\Delta(A_{1}(I), A_{1}(J)) = \iint (A_{1}(I) - A_{1}(J))^{2} dxdy$$

$$= \frac{1}{2} \exp\left(-\frac{(P_{I} - P_{J})^{2}}{4\sigma_{P}^{2}} - \frac{(G_{I} - G_{J})^{2}}{4\sigma_{G}^{2}}\right)$$

Ref: Faber et al. JCP (2018)

Scalable Kernels: What and Why

Problem: FCHL has <u>atomic similarity</u> but we want <u>molecular properties</u>

Solution: Make a "scalable" kernel that encodes <u>atomic -> molecular relationship</u>

Example: Energy is often a sum over atoms.

$$K_{mol}(x,y) = \sum_{i} \sum_{j} k_{atom}(x_i, y_j)$$

Full explanation: <u>"FCHL in one notebook"</u>

Key issue: Adjusting hyperparameter is very important

You cannot be sure if a kernel method works until after investing significant time

Effort must be replicated as training set changes

(d) Training points x and weights α

Ref: Rupp. Int J. Quat. Chem. (2015)

Dark side of kernel methods: Scaling

Fitting KRR models is expensive...

Reframing: "Dial in performance vs accuracy tradeoff"

Some routes for addressing scaling issue

Pick "high value points"

Adjust basis points

Deploy on GPUs

Ref: Browning et al. JPCL. (2017)

Ref: Snelson, Ghahramani. NuerIPS (2005)

You can use GPR with large datasets, its just more work

Codes

DScribe

Conclusions and Outlook

Key bits to understand:

- Kernel methods simplify learning through similarity functions
- 2. There are many made for molecules
- 3. Learning curve to using them and other tradeoffs (e.g., scaling)

Not just "historical methods"

- Extremely good predictive accuracy
- Active area of research

