§2 二维离散随机变量

第三章 联合分布

- § 1 引言:联合累积分布函数 § 2 (二维) 离散随机变量
- §3 (二维) 连续随机变量
- §4 独立随机变量
- §5 条件分布
- §6 联合分布随机变量函数
- § 7 极值和顺序统计量

二维离散型随机变量

设r.v(X,Y)的所有可能的取值为

$$(x_i, y_i) \qquad (i, j = 1, 2, \cdots)$$

取值的概率为

$$P\{X = x_i, Y = y_j\} = p(x_i, y_j) \triangleq p_{ij} \quad (i, j = 1, 2, \cdots)$$

称上式为二维离散型 r.v(X,Y) 的频率 函数, 或称为 r.v X,Y 的联合频率函数 (joint frequency function).

$$X =$$
 $\begin{cases} 1, \ \hat{\mathbf{x}} - \hat{\mathbf{x}} \\ 0, \ \hat{\mathbf{x}} - \hat{\mathbf{x}} \end{cases}$ $\begin{cases} 1, \ \hat{\mathbf{x}} - \hat{\mathbf{x}} \\ 0, \ \hat{\mathbf{x}} - \hat{\mathbf{x}} \end{cases}$ $\begin{cases} 1, \ \hat{\mathbf{x}} - \hat{\mathbf{x}} \\ 0, \ \hat{\mathbf{x}} - \hat{\mathbf{x}} \end{cases}$

求(X,Y)的频率函数?

解

$$P\{X = 0, Y = 0\} = P\{Y = 0 \mid X = 0\} \cdot P\{X = 0\} = (2/4) \cdot (3/5)$$

 $P\{X = 0, Y = 1\} = P\{Y = 1 \mid X = 0\} \cdot P\{X = 0\} = (2/4) \cdot (3/5)$
 $P\{X = 1, Y = 0\} = P\{Y = 0 \mid X = 1\} \cdot P\{X = 1\} = (3/4) \cdot (2/5)$
 $P\{X = 1, Y = 1\} = P\{Y = 1 \mid X = 1\} \cdot P\{X = 1\} = (1/4) \cdot (2/5)$

有一个射击游戏,参加游戏的人先掷一次骰子,若出现点数为X,则射击X次.设某人击中目标概率为p=0.9,记击中目标的次数为Y.求(X,Y)的频率函数.

 \mathbf{R} X的取值为1,2,...,6,Y的取值为0,1,2,...,X.

当X = i时, $Y \sim b(i, p)$ (i = 1, 2, 3, 4, 5, 6)

由乘法公式求得

$$P{X = i, Y = j} = P{Y = j | X = i} \cdot P{X = i}$$

$$= \begin{cases} \frac{1}{6} C_i^j p^j (1-p)^{i-j}, 0 \le j \le i, i = 1, 2, \dots, 6 \\ 0, & \sharp \dot{\mathbf{r}} \end{cases}$$

代入 p = 0.9, 求得 (X,Y) 的频率函数为

YX	1	2	3	4	5	6
0	0.017	0.0017	0.00017	0.000017	0.0000017	0.00000017
1	0.15	0.03	0.0045	0.0006	0.000075	0.000009
2	0	0.14	0.0405	0.0081	0.00135	0.000203
3	0	0	0.1215	0.0486	0.01215	0.002430
4	0	0	0	0.1094	0.05468	0.016403
5	0	0	0	0	0.09842	0.059049
6	0	0	0	0	0	0.088573

如果不掷骰子,直接射击一次,则 $P\{Y=0\}=0.1,\ P\{Y=1\}=0.9$

为什么概率不一样?

频率函数的基本性质

设r.v(X,Y)的频率函数为

$$P\{X = x_i, Y = y_j\} = p_{ij}$$
 $(i, j = 1, 2, \cdots)$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$$

$p_{ij} \geq 0$ $(i, j = 1, 2, \cdots)$ 离散型r.v频率函数的本质特征

频率函数的表格表示法

YX	x_1	\mathcal{X}_2	x_i
$\overline{y_1}$	p ₁₁	p ₂₁	p_{i1}
y_2	p_{12}	p_{22}	\cdots p_{i2} \cdots
•			: :
y_j	p_{1j}	p_{2j}	\cdots p_{ij} \cdots
	•		•

二维 r.v 的整体概率特性: $(X,Y) \sim F(x,y)$ 两个一维 r.v 的概率特性: $X \sim F_X(x)$, $Y \sim F_Y(y)$

定义 称 $F_X(x)$ 为 (X,Y) 关于 X 的边际分布(函数) 称 $F_Y(y)$ 为 (X,Y) 关于 Y 的边际分布(函数)

 \bigcirc 问。 $F(x,y), F_X(x), F_Y(y)$ 之间有什么关系?

分析

$$F_X(x) = P\{X \le x\}$$

$$= P\{X \le x, Y < +\infty\}$$

$$= P\{X < +\infty, Y \le y\}$$

$$= F(x, +\infty)$$

$$= F(+\infty, y)$$

结论

随机变量的边际分布完全由它们的联合分布确定

二维离散型随机变量的边际频率函数

设(X,Y)的频率函数为

$$P\{X = x_i, Y = y_j\} = p_{ij} \quad (i, j = 1, 2, \cdots)$$

则r.v X的频率函数是

$$P\{X = x_{i}\} = P(\{X = x_{i}\} \cap \Omega)$$

$$= P(\{X = x_{i}\} \cap (\bigcup_{j=1}^{\infty} \{Y = y_{j}\}))$$

$$= P(\bigcup_{j=1}^{\infty} (\{X = x_{i}\} \cap \{Y = y_{j}\}))$$

$$= P(\bigcup_{j=1}^{\infty} \{X = x_{i}, Y = y_{j}\})$$

$$= \sum_{j=1}^{\infty} P\{X = x_{i}, Y = y_{j}\}$$

$$= \sum_{i=1}^{\infty} p_{ij} \triangle p_{i}. \quad (i = 1, 2, \cdots)$$

§2 二维离散随机变量

二维离散型随机变量的边际频率函数

设(X,Y)的频率函数为

$$P\{X = x_i, Y = y_j\} = p_{ij} \quad (i, j = 1, 2, \cdots)$$

则r.v X的频率函数是

$$P\{X=x_i\}=\sum_{i=1}^{\infty}p_{ij} \triangleq p_i. \qquad (i=1,2,\cdots)$$

同理 Y 的频率函数是

$$P\{Y = y_j\} = \sum_{i=1}^{\infty} p_{ij} \triangleq p_{.j}$$
 $(j = 1, 2, \cdots)$

定义 称数列 $\{p_{i.}\}$ 为(X,Y)关于X的边际频率函数 称数列 $\{p_{.i}\}$ 为(X,Y)关于Y的边际频率函数

(marginal frequency function).

①它是一维r. v的频率函数

②它可通过二维r. v的频率函数计算得到

沙 设 r.v X从 1,2,3,4中等可能取值, 又设 r.v Y从 $1 \sim X$ 中等可能取值. 求 X,Y的联合频率函数及边际频率函数.

解 X 取值为1,2,3,4,而当X = i (i = 1,2,3,4)时,Y的取值为1~i.由乘法公式有

 $P\{X=i,Y=j\}=P\{Y=j\,|\,X=i\}\cdot P\{X=i\}=\frac{1}{i}\cdot\frac{1}{4}\;(1\leq j\leq i)$ 故 X,Y的联合频率函数为

Y	1	2	3	4	$\mathbf{p}_{\bullet j} = \sum_{i=1}^{4} \mathbf{p}_{ij}$
1	1/4	1/8	1/12		
2	0	1/8	1/12	1/16	13/48
3	0	0	1/12	1/16	7/48
4	0	0	0	1/16	3/48/
$p_{i} = \sum_{j=1}^4 p_{ij}$	1 / 4	1/4	<u>1</u>	$\frac{1}{4}$	

故边际频率函数为

\overline{X}	1	2	3	4
$p_{i\cdot}$	1/4	1/4	1 / 4	1 / 4

Y	1	2	3	4
$p_{\cdot j}$	25 / 48	13 / 48	7 / 48	3 / 48

n维离散型随机变量的边际频率函数

设 $X_1,...,X_n$ 的联合频率函数为

$$P{X_1 = x_1,...,X_n = x_n} = p(x_1,...,x_n)$$

则 $r.vX_1$ 的边际频率函数是

$$p_{X_1}(x_1) = \sum_{x_2...x_n} p(x_1, x_2, ..., x_n)$$

 $r.v X_1$ 和 X_2 的二维边际频率函数是

$$p_{X_1X_2}(x_1,x_2) = \sum_{x_3...x_n} p(x_1,x_2,...,x_n)$$

刻 多项(multinomial)分布:二项分布的推广

假设进行 n 次独立试验,每次试验有 r 种可能的结果,各自出现的概率分别为 $p_1, p_2, ..., p_r$.

令 N_i 是n次试验出现第i 种试验结果的所有次数,其中 i = 1, ..., r.

 $N_1, N_2, ..., N_r$ 的联合频率函数是

$$p(n_1,...,n_r) = {n \choose n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

 N_i 的边际频率函数的计算 【两种理解】:

- ② N_i 可解释为n次试验中成功的次数,故 $N_i \sim \mathbf{b}(n, p_i)$.

$$p_{N_i}(n_i) = \binom{n}{n_i} p_i^{n_i} (1 - p_i)^{n - n_i}$$

P76: 3, 补充题

补充题1. 把一枚均匀硬币抛掷三次,设X为三次抛掷中正面出现的次数,而Y为正面出现次数与反面出现次数之差的绝对值,求(X,Y)的频率函数.

- 2. 设 X 的分布为 P(X = -1)= P(X=0)=P(X=1)=1/3. 令 Y=X², 求(X,Y)的联合频率函数及边缘频率函数。
- 3.设随机变量 Y 服从参数为 1 的指数分布, 随机变量

$$X_k = \begin{cases} 0, & \text{ if } Y \le k, \\ 1, & \text{ if } Y > k, \end{cases}$$
 $k = 1, 2$

求二维随机变量(X₁,X₂)的联合频率函数及边缘频率函数。