$\mathbf{A}\mathsf{T}\mathsf{T}\mathsf{E}\mathsf{M}\mathsf{P}\mathsf{T}\mathsf{E}\mathsf{D}$

1 Question 1

 $a \in \mathbb{R}, b \in \mathbb{R}$ then by the mapping g, $g(a) \in \mathbb{R}$ and $g(b) \in \mathbb{R}$. Suppose $a, b \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{R}$, then by the principle of recursive definition there exists a function ϕ such that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$. If a = b, then $g(a)^2 \equiv g(a)g(a) \equiv g(a^2)$ and $g(a^2 + a + g(a)) \equiv g(a^2) + g(a) + g(g(a))$. Then proceeding with contradiction taking from the problem we have

$$g(a^{2} + b + g(b)) = 2b + g(a)^{2}$$
taking $b = a, \forall a, b \in \mathbb{N} \subset \mathbb{R}$
by the principle of recursive definition
$$g(a)g(a) + g(a) + g(g(a)) = 2a + g(a)g(a)$$

$$g(a) + g(g(a)) = 2a$$

but since $a \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{R}$ implies $a \in \mathbb{R}$, but $g(a) \in \mathbb{R}$ and the function compositon of $g(g(a)) \in \mathbb{R}$ implies $g(a) + g(g(a)) \neq 2a$ since the scaling a by 2 where 2, $a \in \mathbb{N}$ does not imply equality despite $\mathbb{N} \subset \mathbb{R}$ this contradiction it makes the function $g: \mathbb{R} \longrightarrow \mathbb{R}$ undefined in the ordered field \mathbb{R} and this completes the proof.

2 Question 2

3 Question 3