Cognoms	Nom	DNI
Examen Final EDA	Duració: 3h	12/06/2023

• L'enunciat té 4 fulls, 8 cares, i 4 problemes.

- Poseu el vostre nom complet i número de DNI a cada full.
- Contesteu tots els problemes en el propi full de l'enunciat a l'espai reservat.
- Llevat que es digui el contrari, sempre que parlem de cost ens referim a cost asimptòtic en temps.
- Llevat que es digui el contrari, cal justificar les respostes.

Problema 1 (2 pts.)

Responeu les preguntes següents utilitzant, quan calgui, els teoremes mestre adi-

(a) (1 pt.) Considereu la funció següent:

```
int f(\text{const } vector < \text{int} > \& v, \text{ int } e, \text{ int } d) {
  if (d \le e) return 1;
  return f(v, (A), (B)) + f(v, (C), (D));
```

Ompliu les caixes A, B, C, D per tal que, donat un vector v de mida n, una crida f(v, 0, v.size() - 1) tingui cost $\Theta(\log n)$. Feu el mateix per a cost $\Theta(n)$.

```
(b) (1 pt.) Considereu el codi següent:
        bool cerca2 (int x, const vector < int>& v, int e, int d) {
          for (int i = e; i \le d; ++i)
            if (v[i] == x) return true;
          return false; }
        bool cerca3 (int x, const vector < int> & v, int e, int d) {
          if (e > d) return false;
          int m = (e+d)/2;
          if (v[m] == x) return true;
          else if (v[m] < x) return cerca3(x,v,m+1,d);
          else return cerca3(x,v,e,m-1); }
        bool cerca (int x, const vector < int>& v, int e, int d) {
          if (d - e < 2) {
            for (int i = e; i \le d; ++i)
              if (v[i] == x) return true;
            return false;
          int n = d - e + 1, p1 = e + n/3, p2 = d - n/3;
          if (cerca2(x, v, e, p1 - 1)) return true;
          if (cerca3(x, v, p1, p2)) return true;
          return cerca(x, v, p2 + 1, d);
   Si v és un vector de mida n, quin és el cost en cas pitjor, en funció d'n, d'una
   crida a cerca(x, v, 0, v.size() - 1)?
```

Cognoms	Nom	DNI
Problema 2		(2 pts.)
Considerem una implementació d'art tructura següent:	ores binaris de cerc	ca on el nodes tenen l'es-
<pre>struct Node { int key; Node* left; // Punter al fill esq Node* right; // Punter al fill draw; };</pre>		
Us demanem que, a partir d'un arbre max-heap que contingui totes les claus max-heap possible, escolliu el que vulg tar com un vector. Heu d'implementat vector < int > to heap (Node* n);	de l'arbre en temp ueu. Recordeu que	s $\Theta(n)$. Si hi ha més d'un
on n és un punter a l'arrel de l'arbre bi liars. Us demanem codi en C++. Descr		

Aquesta cara estaria en blanc intencionadament si no fos per aquesta nota.

Cognoms	Nom	DNI
Problema 3		(3 pts.)
En aquest problema representaren una matriu d'adjacència $n \times n$, on la	0	
typedef vector <vector<bool></vector<bool>	> Graf;	
Un graf <i>torneig</i> és un graf dirigit exactament un arc, i sense arcs des		
(a) (1 pt.) Escriviu una funció que torneig en temps $\Theta(n^2)$ en el c		onat d' <i>n</i> vèrtexs és un graf
bool es_torneig (const G	raf& G) {	
}		
(b) (1 pt.) Demostreu per inducci té un camí Hamiltonià, és a di una vegada (pista: mostreu qu vèrtexs per obtenir un camí d'a	r, un camí que visita t e un nou vèrtex es pot	ots els vèrtexs exactament

a re	pt.) Valent-vos de la demostració anterior, doneu un algorisme de cost com molt $\Theta(n^2)$ que retorni un camí Hamiltonià d'un graf torneig. Us pot ser útil epresentar el camí com una llista de nodes (enters). No és necessari que doneu odi, una descripció a alt nivell serà suficient. Justifiqueu el cost, en cas pitjor, el vostre algorisme.

Cognoms	Nom	DNI
Problema 4		(3 pts.)
Per a cadascuna de les preguntes segu falses o no ho sabem. En cas de ser ce <i>B</i> que compleixin la propietat mencior implicaria que fos certa i què implicaria	rtes, indiqueu dos pos nada. En cas de no sab	sibles problemes A i
a) (1 pt.) Existeixen dos problemes dif	erents A i B tals que:	
 A ∈ P B ∈ NP-difícil B es pot reduir polinòmicamen 	t cap a A	

- b) (1 pt.) **Existeixen** dos problemes diferents *A* i *B* tals que:
 - $A \in P$
 - $B \in NP$ -complet
 - A es pot reduir polinòmicament cap a B

1 nt)	Existeixen dos problemes diferents A i B tals que:
1 pt.)	Existers and problemes unclears 71 1 b tais que.
4	- ND 1.
• A	$n \in NP$ -complet
• B	\in NP-difícil
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a B i B cap a A .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a <i>B</i> i <i>B</i> cap a <i>A</i> .
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.
• A	es pot reduir polinòmicament cap a B i B cap a A.