VACACIONES DIVERTIÚTILES

ASOCIACIÓN EDUCATIVA SACO OLIVEROS

PHYSICS

Chapter 4

3rd SECONDARY

PRESIÓN HIDROSTÁTICA Y FUERZA DE EMPUJE

PHYSICS

índice

01. MotivatingStrategy 🕥

02. HelicoTheory

(>)

03. HelicoPractice

04. HelicoWorKshop

 \bigcirc

¿Dónde nació Arquímedes y que significaba "EUREKA"?

MOTIVATING STRATEGY

Siracusa

"Lo logré, lo conseguí"

Se demuestra: P₁ P₂ P₃

Una serie de experimentos nos demuestra que un líquido a una determinada profundidad ejerce una presión denominada presión hidrostática, que aumenta con la profundidad.

 $P_1 \leftarrow P_2 \leftarrow P_3$

La mayor presión es P₃ porque tiene la mayor profundidad.

Presión hidrostática y fuerza de Empuje

Hidrostática

Densidad (ρ)

$$\rho = \frac{m}{V}$$

Presión (P)

$$P=\frac{F}{A}$$

Presión Hidrostática

Es aquella presión que ejerce todo líquido en reposo sobre un elemento de superficie como las paredes o fondo del recipiente que lo contiene.

$$P_{H} = = \rho_{liquido} (g) h_{(A)}$$

$$\downarrow$$

$$Liquido$$

$$A$$

Fuerza de Empuje

El principio de Arquímedes sostiene que cuando un objeto esta parcial o totalmente sumergido en un fluido en reposo, sobre el actúa una fuerza de empuje. La fuerza es vertical, su sentido es hacia arriba.

Resolución de Problemas

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Una esfera de 9 m³ está sumergido en agua hasta los 2/5 partes del total. Determine el módulo de la fuerza que experimenta dicha esfera. (g=10m/s²)

$$V_{sumergido}$$
= 9(2/5) m³

- A. 32 kN
- B. 300 kN
- C. 90 kN
- D. 18 kN
- E. 36 kN

RECORDEMOS

Principio de Arquímedes

$$\mathsf{E} = \rho_{liquido}\left(g\right) V_{sumergido}$$

$$\rho_{agua}$$
= 1000 kg/m³

Reemplazando:

 $E = 1000 \text{ kg/m}^3 (10 \text{m/s}^2) 9(2/5) \text{m}^3$

E = 36000 N

E = 36 kN

Respuesta:

36 kN

Del grafico se observa que un bloque se sumerge en un recipiente totalmente lleno de agua, derramando 0,5 m³ de agua. Determine el módulo de la fuerza de empuje sobre el bloque. (g=10m/s²)

- A. 5 kN
- B. 25 N
- C. 15 kN
- D. 3 kN
- E. 500 N

RECORDEMOS

Principio de Arquímedes

$$\mathsf{E} = \rho_{liquido}\left(g\right) V_{sumergido}$$

$$\rho_{agua}$$
= 1000 kg/m³

Reemplazando:

 $E = 1000 \text{ kg/m}^3 (10 \text{m/s}^2) 0.5 \text{ m}^3$

E = 5000 N

E = 5 kN

Respuesta:

5 kN

Una persona que presenta un volumen de 60 litros se sumerge totalmente en el agua. Determine el módulo de la fuerza de empuje sobre la persona. (1L = 10⁻³ m⁻³; g=10m/s²)

$$V_{sumergido}$$
= 60 L = 60. 10⁻³ m³

- A. 800 N
- B. 4800 N
- C. 600 N
- D. 6 kN
- E. 6 N

RECORDEMOS

Principio de Arquímedes

$$\mathsf{E} = \rho_{liquido}\left(g\right) V_{sumergido}$$

$$\rho_{agua}$$
= 1000 kg/m³

Reemplazando:

 $E = 1000 \text{ kg/m}^3 (10 \text{m/s}^2) 60. 10^{-3} \text{ m}^3$

E = 600 N

Respuesta:

600 N

Jhon y Luhana se sumergen en una piscina olímpica con agua, de 6 m de profundidad, donde Jhon se encuentra a 2 m sobre el fondo y Luhana a 3,5 m de profundidad. Determine la diferencia de presiones hidrostáticas entre Jhon y Luhana, considere que el agua esta en reposo. (g=10m/s²)

- A. 2 kPa
- B. 4 kPa
- C. 5 kPa
- D. 12 kPa
- E. 6 kPa

RECORDEMOS

Diferencia de presiones

$$P_{H1} - P_{H2} = \rho_{liquido} (g) (h_1 - h_2)$$

$$\rho_{agua}$$
= 1000 kg/m³

Reemplazando:

$$P_{H1} - P_{H2} = 1000 \text{ kg/m}^3 (10 \text{ m/s}^2)(4 \text{ m} - 3.5 \text{ m})$$

$$P_{H1} - P_{H2} = 1000 \text{ kg/m}^3 (10 \text{ m/s}^2)(0.5 \text{ m})$$

$$P_{H1} - P_{H2} = 5000 Pa$$

$$P_{H1} - P_{H2} = 5 \text{ kPa}$$

Respuesta:

5 kPa

El Principio de Arquímedes es un principio físico que afirma que "un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba equivalente al peso del volumen del fluido desalojado". Si del recipiente un cuerpo desplaza o desaloja 0,06 m³ de un cierto fluido desconocido, indique que es lo correcto afirmar. (g=10m/s²)

- A. Si el fluido es aceite, donde su densidad es 800 kg/m³, para ese desalojo del fluido producido por el cuerpo, se produce una fuerza de empuje de módulo igual a 600N.
- B. Siendo agua el fluido mencionado, el módulo de la fuerza de empuje que se produce para el cuerpo es igual a 600N.
- C. Si el cuerpo desaloja la mitad del fluido que se menciona y el fluido es aceite con densidad de 800 kg/m³, el modulo de la fuerza de empuje es 300N.
- D. Siendo glicerina el fluido, con densidad de 1260 kg/m³, el modulo del empuje es igual a 780 N .
- E. Del principio de Arquímedes podemos indicar que si mayor es el volumen desalojado o mayor es el volumen del cuerpo sumergido, el módulo de la fuerza de empuje que se produce es menor.

RECORDEMOS

Principio de Arquímedes

$$\mathsf{E} = \rho_{liquido}\left(g\right) V_{sumergido}$$

$$\rho_{agua}$$
= 1000 kg/m³

Reemplazando datos de la alternativa B, tenemos:

$$E = 1000 \text{ kg/m}^3 (10 \text{m/s}^2) 0.06 \text{ m}^3$$

$$E = 600 N$$

Respuesta:

CLAVE B

Problemas Propuestos

Problema 06 (

Problema 07

 \bigcirc

Problema 08

 $\langle \rangle$

Problema 09

 \bigcirc

Problema 10

(>)

HELICO WORKSHOP

Un cilindro de 15 m³ se encuentra en equilibrio flotando en agua de tal manera que la quinta parte de su volumen emerge del agua. Determine el módulo de la fuerza empuje sobre el cilindro. $(g=10m/s^2)$

- 100 kN
- 30 kN
- C. 80 kN
- D. 120 kN
- E. 90 kN

Determine la profundidad h si en el recipiente con petróleo soporta una presión hidrostática de 32 kPa en el punto P. (g=10m/s², $\rho_{petr\'oleo}$ =800kg/m³)

 \bigcirc

- 5 m
- 4 m
- 8 m
- D. 6 m
- 10 m

El bloque sumergido totalmente en el recipiente tiene un volumen de 0,15 m³. Determine el módulo de la fuerza de empuje sobre dicho bloque. $(g=10m/s^2)$

- A. 30 N
- 300 N
- 1500 N
- D. 150 N
- E. 15 N

Problema 09

Si dos buceadores profesionales seumergen en una piscina olímpica con agua, de 8 m de profundidad, donde desean lograr una diferencia de presión hidrostática de 12 kPa, determine la diferencia de profundidades de los buzos profesionales (h₁- h₂). (g=10m/s²)

- A. 2 kPa
- B. 4 kPa
- C. 5 kPa
- D. 12 kPa
- E. 6 kPa

Problema 10

El Principio de Arquímedes es un principio físico que afirma que: "un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba equivalente al peso del volumen del fluido desalojado". Si en el recipiente un cuerpo desplaza o desaloja 0,02 m³ de un cierto fluido en reposo que tiene una densidad de 950 kg/m³, indique el modulo de la fuerza de empuje que se produce sobre el cuerpo. (g=10 m/s2)

- A. 290 N
- B. 500 N
- C. 190 N
- D. 95 N
- E. 650 N

MUCHAS GRACIAS

POR SU ATENCIÓN

FORMATO

PALETA DE COLORES.

FUENTE DE TEXTO ES

ARIAL