Cyclistic Case Study 2021 All Trips

Hezar K

2022-11-29

This analysis is for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for the year of 2021.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
library(dplyr)
```

Import data from local drive.

```
Jan21 <- read_csv("202101-divvy-tripdata.csv")
Feb21 <- read_csv("202102-divvy-tripdata.csv")
Mar21 <- read_csv("202103-divvy-tripdata.csv")
Apr21 <- read_csv("202104-divvy-tripdata.csv")
May21 <- read_csv("202105-divvy-tripdata.csv")
Jun21 <- read_csv("202106-divvy-tripdata.csv")
Jul21 <- read_csv("202107-divvy-tripdata.csv")
Aug21 <- read_csv("202108-divvy-tripdata.csv")
Sep21 <- read_csv("202109-divvy-tripdata.csv")
Oct21 <- read_csv("202110-divvy-tripdata.csv")
Nov21 <- read_csv("202111-divvy-tripdata.csv")
Dec21 <- read_csv("202112-divvy-tripdata.csv")
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**. I have removed the output for colnames(Mar21) through colnames(Dec21) as they are all the same.

```
colnames(Feb21)
```

```
colnames(Mar21)
colnames(Apr21)
colnames(May21)
colnames(Jun21)
colnames(Jul21)
colnames(Sep21)
colnames(Sep21)
colnames(Oct21)
colnames(Nov21)
colnames(Dec21)
```

Since all column names are the same. We can combine the data for each month into quarters.

```
all_trips <- bind_rows(Jan21, Feb21, Mar21, Apr21, May21, Jun21, Jul21, Aug21, Sep21, Oct21, Nov21, Dec21)

View(all_trips)

nrow(all_trips)
```

```
## [1] 5595063
```

```
dim(all_trips)
```

```
## [1] 5595063 13
```

```
head(all trips)
```

```
## # A tibble: 6 × 13
##
    ride id
                    ridea…¹ started_at
                                                   ended at
                                                                        start...² start...³
                    <chr> <dttm>
                                                                        <chr> <chr>
##
    <chr>
                                                   <dttm>
## 1 E19E6F1B8D4C4... electr... 2021-01-23 16:14:19 2021-01-23 16:24:44 Califo... 17660
## 2 DC88F20C2C55F... electr... 2021-01-27 18:43:08 2021-01-27 18:47:12 Califo... 17660
## 3 EC45C94683FE3... electr... 2021-01-21 22:35:54 2021-01-21 22:37:14 Califo... 17660
## 4 4FA453A75AE37... electr... 2021-01-07 13:31:13 2021-01-07 13:42:55 Califo... 17660
## 5 BE5E8EB4E7263... electr... 2021-01-23 02:24:02 2021-01-23 02:24:45 Califo... 17660
## 6 5D8969F88C773... electr... 2021-01-09 14:24:07 2021-01-09 15:17:54 Califo... 17660
## # ... with 7 more variables: end_station_name <chr>, end_station_id <chr>,
## # start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
## # member_casual <chr>, and abbreviated variable names ¹rideable_type,
      <sup>2</sup>start_station_name, <sup>3</sup>start_station_id
## #
```

tail(all_trips)

```
## # A tibble: 6 × 13
    ride_id ridea…¹ started_at
##
                                                   ended at
                                                                        start...2 start...3
     <chr>
                     <chr> <dttm>
                                                   <dttm>
                                                                        <chr>
## 1 92BBAB97D1683... electr... 2021-12-24 15:42:09 2021-12-24 19:29:35 Canal ... 13341
## 2 847431F3D5353... electr... 2021-12-12 13:36:55 2021-12-12 13:56:08 Canal ... 13341
## 3 CF407BBC3B9FA... electr... 2021-12-06 19:37:50 2021-12-06 19:44:51 Canal ... 13341
## 4 60BB69EBF5440... electr... 2021-12-02 08:57:04 2021-12-02 09:05:21 Canal ... 13341
## 5 C414F654A2863... electr... 2021-12-13 09:00:26 2021-12-13 09:14:39 Lawnda... 362.0
## 6 37AC57E34B2E7... classi... 2021-12-13 08:45:32 2021-12-13 08:49:09 Michig... TA1309...
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
## #
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
## #
       member casual <chr>, and abbreviated variable names ¹rideable type,
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

summary(all_trips)

```
##
      ride id
                       rideable_type
                                           started at
##
   Length:5595063
                      Length:5595063
                                         Min. :2021-01-01 00:02:05.00
                      Class :character
                                         1st Qu.:2021-06-06 23:52:40.00
##
   Class :character
##
   Mode :character
                      Mode :character
                                         Median :2021-08-01 01:52:11.00
                                         Mean :2021-07-29 07:41:02.63
##
##
                                         3rd Qu.:2021-09-24 16:36:16.00
##
                                         Max. :2021-12-31 23:59:48.00
##
##
      ended at
                                    start station name start station id
##
         :2021-01-01 00:08:39.00
                                    Length:5595063
                                                       Length:5595063
                                                       Class :character
   1st Ou.:2021-06-07 00:44:21.00
                                    Class :character
##
##
   Median :2021-08-01 02:21:55.00
                                    Mode :character
                                                       Mode :character
##
         :2021-07-29 08:02:58.75
   3rd Qu.:2021-09-24 16:54:05.50
##
##
   Max. :2022-01-03 17:32:18.00
##
##
   end station name
                      end station id
                                           start_lat
                                                           start_lng
                                         Min. :41.64
##
   Length:5595063
                      Length:5595063
                                                         Min. :-87.84
##
    Class :character
                       Class :character
                                         1st Qu.:41.88
                                                         1st Qu.:-87.66
##
   Mode :character
                      Mode :character
                                         Median :41.90
                                                         Median :-87.64
##
                                         Mean :41.90
                                                         Mean :-87.65
##
                                         3rd Qu.:41.93
                                                         3rd Qu.:-87.63
##
                                         Max. :42.07
                                                         Max. :-87.52
##
##
                      end lng
      end lat
                                    member casual
##
   Min. :41.39
                   Min. :-88.97
                                    Length: 5595063
                   1st Qu.:-87.66
##
   1st Qu.:41.88
                                    Class :character
   Median :41.90
                   Median :-87.64
                                    Mode :character
##
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max.
         :42.17
                   Max. :-87.49
##
   NA's
          :4771
                   NA's
                          :4771
```

str(all_trips)

```
## spc tbl [5,595,063 \times 13] (S3: spec tbl df/tbl df/tbl/data.frame)
                       : chr [1:5595063] "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE37
## $ ride_id
7DB" ...
## $ rideable_type
                        : chr [1:5595063] "electric bike" "electric bike" "electric bike" ...
                        : POSIXct[1:5595063], format: "2021-01-23 16:14:19" "2021-01-27 18:43:08" ...
   $ started at
                        : POSIXct[1:5595063], format: "2021-01-23 16:24:44" "2021-01-27 18:47:12" .
##
   $ ended at
## $ start_station_name: chr [1:5595063] "California Ave & Cortez St" "California Ave & Cortez St" "California A
ve & Cortez St" "California Ave & Cortez St" ...
    $ start_station_id : chr [1:5595063] "17660" "17660" "17660" "17660" ...
    $ end_station_name : chr [1:5595063] NA NA NA NA ...
##
##
   $ end station id
                       : chr [1:5595063] NA NA NA NA ...
                       : num [1:5595063] 41.9 41.9 41.9 41.9 ...
##
   $ start lat
##
   $ start_lng
                       : num [1:5595063] -87.7 -87.7 -87.7 -87.7 ...
##
    $ end lat
                       : num [1:5595063] 41.9 41.9 41.9 41.9 ...
                       : num [1:5595063] -87.7 -87.7 -87.7 -87.7 ...
##
    $ end lng
                        : chr [1:5595063] "member" "member" "member" ...
##
    $ member casual
    - attr(*, "spec")=
##
##
     .. cols(
##
          ride_id = col_character(),
          rideable_type = col_character(),
##
     . .
##
          started at = col datetime(format = ""),
     . .
##
          ended_at = col_datetime(format = ""),
     . .
##
          start_station_name = col_character(),
     . .
##
          start station id = col character(),
     . .
##
          end_station_name = col_character(),
     . .
##
          end_station_id = col_character(),
##
          start_lat = col_double(),
     . .
##
          start lng = col double(),
     . .
##
          end lat = col double(),
     . .
##
          end lng = col double(),
     . .
##
          member casual = col character()
     . .
##
     ..)
    - attr(*, "problems")=<externalptr>
##
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
all_trips$date <- as.Date(all_trips$started_at)
all_trips$month <- format(as.Date(all_trips$date), "%m")
all_trips$month <- month.name[as.numeric(all_trips$month)]
all_trips$day <- format(as.Date(all_trips$date), "%d")
all_trips$year <- format(as.Date(all_trips$date), "%Y")
all_trips$day_of_week <- format(as.Date(all_trips$date), "%A")
all_trips$ride_length <- difftime(all_trips$ended_at,all_trips$started_at)</pre>
```

Convert ride_length column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(all_trips$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
all_trips$ride_length <- as.numeric(as.character(all_trips$ride_length))
is.numeric(all_trips$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
all_trips <- na.omit(all_trips)
```

Remove rows with the ride id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
all_trips <- subset(all_trips, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the *ride_length* less than 60 seconds or 1 minute.

```
all_trips <- subset (all_trips, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(all_trips$ride_length)
```

```
## [1] 1325.488
```

median(all_trips\$ride_length)

[1] 743

max(all_trips\$ride_length)

[1] 3356649

min(all_trips\$ride_length)

[1] 60

Run a statistical summary of the ride_length.

```
summary(all trips$ride length)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 60 427 743 1325 1339 3356649
```

Compare the members and casual users

```
aggregate(all_trips$ride_length ~ all_trips$member_casual, FUN = mean)
```

```
aggregate(all_trips$ride_length ~ all_trips$member_casual, FUN = median)
```

```
## all_trips$member_casual all_trips$ride_length
## 1 casual 1010
## 2 member 592
```

```
aggregate(all_trips$ride_length ~ all_trips$member_casual, FUN = max)
```

```
aggregate(all_trips$ride_length ~ all_trips$member_casual, FUN = min)
```

Aggregate the average ride length by each day of the week for members and users.

```
aggregate(all_trips$ride_length ~ all_trips$member_casual + all_trips$day_of_week, FUN = mean)
```

```
##
      all_trips$member_casual all_trips$day_of_week all_trips$ride_length
## 1
                                                                   1873.1726
                        casual
                                               Friday
## 2
                        member
                                               Friday
                                                                    779.0209
## 3
                        casual
                                               Monday
                                                                   1977.9630
## 4
                        member
                                               Monday
                                                                    775.0524
## 5
                                             Saturday
                                                                    2112.9526
                        casual
## 6
                                                                    903.7597
                        member
                                             Saturday
## 7
                        casual
                                               Sunday
                                                                    2279.5782
## 8
                        member
                                               Sunday
                                                                    927.1590
## 9
                        casual
                                             Thursday
                                                                   1696.6570
## 10
                        member
                                             Thursday
                                                                    751.7400
## 11
                                                                    1745.1609
                                              Tuesday
                        casual
## 12
                        member
                                              Tuesday
                                                                    753.8290
## 13
                        casual
                                            Wednesday
                                                                    1712.6618
## 14
                        member
                                                                    757.9740
                                            Wednesday
```

Sort the days of the week in order.

```
all_trips$day_of_week <- ordered(all_trips$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thu
rsday", "Friday", "Saturday"))</pre>
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
x <- aggregate(all\_trips$ride\_length ~ all\_trips$member\_casual + all\_trips$day\_of\_week, FUN = mean) head(x)
```

```
all_trips$member_casual all_trips$day_of_week all_trips$ride_length
## 1
                       casual
                                              Sunday
                                                                  2279.5782
## 2
                                              Sunday
                                                                   927.1590
                       member
## 3
                       casual
                                              Monday
                                                                  1977.9630
## 4
                       member
                                              Monday
                                                                   775.0524
## 5
                                                                  1745.1609
                       casual
                                             Tuesday
## 6
                                                                   753.8290
                       member
                                             Tuesday
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member_casual weekday number_of_rides average_duration
##
                      <int>
## 1 casual
                                     399565
                          1
                                                         2280.
## 2 casual
                          2
                                     226616
                                                         1978.
## 3 casual
                          3
                                     212811
                                                         1745.
## 4 casual
                          4
                                     215996
                                                         1713.
## 5 casual
                          5
                                     222057
                                                         1697.
## 6 casual
                                      287202
                                                         1873.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(all_trips$member_casual)
```

```
##
## casual member
## 2027937 2500996
```

```
table(all_trips$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 3200257 310099 1018577
```

```
table(all_trips$day_of_week)
```

```
## Sunday Monday Tuesday Wednesday Thursday Friday Saturday
## 705442 567770 595320 607999 590131 647425 814846
```

```
table(all_trips$month)
```

```
##
##
       April
                August December February
                                              January
                                                            July
                                                                      June
                                                                                March
##
      294623
                666084
                          174005
                                      42301
                                                82622
                                                          683203
                                                                    600512
                                                                               203408
##
              November
                          October September
         May
##
      445157
                252189
                           471464
                                     613365
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(all_trips$day_of_week,all_trips$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual
                        casual 399565
## 1
          Sunday
## 2
          Monday
                        casual 226616
## 3
         Tuesday
                        casual 212811
## 4
       Wednesday
                        casual 215996
## 5
        Thursday
                         casual 222057
                         casual 287202
## 6
          Friday
```

Weekday trends (Monday through Friday).

Weekdays Trends

Weekend trends (Sunday and Saturday).

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(all_trips$rideable_type,all_trips$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

Plot for bike user vs bike type.

Create vector of month names for all trips

```
all_trips_months <- c("January", "February", "March","April", "May", "June","July", "August", "September","Octobe r", "November", "December")
```

Subset month.name to include only all trips

```
all_trips_month_names <- month.name[match(all_trips_months, month.name)]
```

Create trips_by_month dataframe with only all trips

```
trips_by_month <- data.frame(month = all_trips_month_names, count = table(all_trips$month))</pre>
```

Set the levels of the month variable in the trips_by_month dataframe

```
trips_by_month$month <- factor(trips_by_month$month, levels = c("January", "February", "March","April", "May", "J
une","July", "August", "September","October", "November", "December"))
ggplot(trips_by_month, aes(x = month, y = count.Freq)) +
geom_bar(stat = "identity", fill = "#F8766D") +
labs(x = "Month", y = "Number of Rides", title = "Number of Rides by Month in All Trips")</pre>
```

Number of Rides by Month in All Trips

STEP SIX: EXPORT ANALYZED DATA

