CROUP PROJECT CIVIN

Presented by Ankita and Bruno

OUR TEAM

- Ankita Kalangutkar
- Bruno Augusto

INTRODUCTION

IS IT A BIRD?

IS IT A PLANE?

NO! IT'S SUPER CNN

DATA SET CIFAR 10

It consists of 60,000 small 32x32 color images, divided into 10 different classes: airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

DATA PREPROCESSING

- Normalization: Scaled pixel values to [0, 1] for faster model convergence.
- **No Resizing:** Images already at required size (32x32).
 - Data Augmentation:
 Applied techniques like
 - flipping and rotation to increase dataset variety and prevent overfitting.
 - Random rotation by 15 degrees
 - Random shift images horizontally by 10%
 - Random shift images vertically by 10%
 - Random flip images horizontally Random zoom by 10%

DESIGN CININ

 Design CNN suitable for image classification. Include convolutional layers, pooling layers, and fully connected layers.

COMPILE AND TRAIN

OPTIMIZATION TECHNIQUES

• Dropout:

To Prevent
Overfitting Dropout
was applied to all
layers

TRANSFER LEARNING

VGG16 Pre
 Trained Model

TRANSFER LEARNING

VGG16 Pre
 Trained Model

• CIFAR 10

VGG16

EVALUATION - CNN

EVALUATION - TRANSFER LEARNING

Used a pre-trained model VGG16 to leverage learned features, followed by fine-tuning to adapt the model to the CIFAR-10 dataset.

MODEL DEPLOYMENT

The best model was deployed locally by building an app using Flask.

RECAP

WHO BUILD THIS MODEL?

We did - That is a great motivation

GUESTIONS

THANK YOU