CS 2601 Linear and Convex Optimization 7. Newton's method

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Newton's method and properties

Analysis of Newton's method

Damped Newton's method

Better descent direction

Gradient descent uses first-order information (i.e. gradient),

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - t_k \nabla f(\boldsymbol{x}_k)$$

Locally $-\nabla f(x_k)$ is the max-rate descending direction, but globally it may not be the "right" direction.

Example. For $f(x) = \frac{1}{2}x^T Qx$ with $Q = \text{diag}\{0.01, 1\}$, minimum is $x^* = 0$.

The negative gradient is

$$-\nabla f(\mathbf{x}) = -\mathbf{Q}\mathbf{x} = -(0.01x_1, x_2)^T$$

quite different from the "right" descent direction d = -x. Note

$$d = -Q^{-1}\nabla f(x) = -[\nabla^2 f(x)]^{-1}\nabla f(x)$$
 加入二阶信息

With second-order information (i.e. Hessian), we hope to do better.

Newton's method

Gradient step $x_{k+1}=x_k-t_k\nabla f(x_k)$ can be interpreted as minimizing a quadratic approximation of f at x_k , 具体内容写在黑板上

$$f(\mathbf{x}) \approx \hat{f}_{gd}(\mathbf{x}) \triangleq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2t_k} ||\mathbf{x} - \mathbf{x}_k||^2$$

Newton's method minimizes the second-order Taylor approximation,

$$f(\mathbf{x}) \approx \hat{f}_{\mathsf{nt}}(\mathbf{x}) \triangleq f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_k)^T \nabla^2 f(\mathbf{x}_k) (\mathbf{x} - \mathbf{x}_k)$$

Newton step. Assuming $\nabla^2 f(x_k) \succ \mathbf{O}$, 需要可逆

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - [\nabla^2 f(\boldsymbol{x}_k)]^{-1} \nabla f(\boldsymbol{x}_k)$$

Note. If f is quadratic, then $f = \hat{f}_{nt}$, and Newton's method gets to the minimum in a single step starting from any x_0 .

Newton's method (cont'd)

- 1: initialization $x \leftarrow x_0 \in \mathbb{R}^n$
- 2: while $\|\nabla f(x)\| > \delta$ do
- 3: $\mathbf{x} \leftarrow \mathbf{x} [\nabla^2 f(\mathbf{x})]^{-1} \nabla f(\mathbf{x})$
- 4: end while
- 5: return x

Note. As in the case of gradient descent, other stopping criteria can be used. [BV] uses $\nabla f(x)[\nabla^2 f(x)]^{-1}\nabla f(x) > \delta$.

The Newton step is a special case of $x_{k+1} = x_k + t_k d_k$ with

- Newton direction $d_k = -[\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$
- constant step size $t_k = 1$

For $\nabla^2 f(\mathbf{x}_k) \succ \mathbf{O}$, the Newton direction is a descent direction

$$\nabla f(\mathbf{x}_k)^T \mathbf{d}_k = -\nabla f(\mathbf{x}_k)^T [\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k) < 0 \quad \text{if } \nabla f(\mathbf{x}_k) \neq \mathbf{0}$$

ı

Newton's method (cont'd)

洋红色

The magenta curves are the level curves of the quadratic approximation of f at x_0

The brown curves are the level curves of the quadratic approximation of f at x_1 .

Affine invariance

Given f, and invertible $A \in \mathbb{R}^{n \times n}$, let g(y) = f(Ay). By the chain rule,

$$\nabla g(\mathbf{y}) = \mathbf{A}^T \nabla f(\mathbf{A}\mathbf{y}), \qquad \nabla^2 g(\mathbf{y}) = \mathbf{A}^T \nabla^2 f(\mathbf{A}\mathbf{y}) \mathbf{A}$$

If we run Newton's method on f and g with $x_0 = Ay_0$, then

$$y_{1} = y_{0} - [\nabla^{2} g(y_{0})]^{-1} \nabla g(y_{0})$$

$$= y_{0} - [A^{T} \nabla^{2} f(x_{0}) A]^{-1} A^{T} \nabla f(x_{0})$$

$$= y_{0} - A^{-1} [\nabla^{2} f(x_{0})]^{-1} \nabla f(x_{0})$$

$$= A^{-1} [x_{0} - [\nabla^{2} f(x_{0})]^{-1} \nabla f(x_{0})]$$

$$= A^{-1} x_{1}$$

By induction $x_k = Ay_k$. Same progress independent of scaling by A.

For gradient descent, if $AA^T \neq I$, then in general,

$$\mathbf{x}_1 = \mathbf{x}_0 - t\nabla f(\mathbf{x}_0) \neq A\mathbf{y}_1 = A(\mathbf{y}_0 - t\mathbf{A}^T\nabla f(\mathbf{y}_0)) = \mathbf{x}_0 - t\mathbf{A}\mathbf{A}^T\nabla f(\mathbf{x}_0)$$

Connection to root finding

Newton's method is originally an algorithm for solving g(x) = 0.

By the first-order Taylor expansion,

$$g(x) \approx \hat{g}(x) \triangleq g(x_k) + g'(x_k)(x - x_k)$$

Use the root of $\hat{g}(x)$ as the next approximation

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$

Example (computing \sqrt{C}). \sqrt{C} is a root of $g(x) = x^2 - C$. Newton's method yields

$$x_{k+1} = x_k - \frac{x_k^2 - C}{2x_k} = \frac{1}{2} \left(x_k + \frac{C}{x_k} \right)$$

For $x_0 > 0$, x_k converges to \sqrt{C} .

Connection to root finding (cont'd)

Back to the optimization problem,

$$x^* = \underset{x}{\operatorname{argmin}} f(x) \iff f'(x^*) = 0$$

Letting g = f' in Newton's root finding algorithm,

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} = x_k - [f''(x_k)]^{-1} f'(x_k)$$

In *n*-dimension, $f' \to \nabla f, f'' \to \nabla^2 f$.

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}) \iff \nabla f(\mathbf{x}^*) = \mathbf{0}$$

Newton's algorithm becomes

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

Example

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Newton step at $x_0 = (-2, 1)^T$.

gradient

$$\nabla f(\mathbf{x}_0) = e^{-0.1} \begin{pmatrix} e^{x_1 + 3x_2} + e^{x_1 - 3x_2} - e^{-x_1} \\ 3e^{x_1 + 3x_2} - 3e^{x_1 - 3x_2} \end{pmatrix} \Big|_{\mathbf{x} = \mathbf{x}_0} = \begin{pmatrix} -4.22019458 \\ 7.36051909 \end{pmatrix}$$

Hessian

$$\nabla^{2} f(\mathbf{x}_{0}) = e^{-0.1} \begin{pmatrix} e^{x_{1} + 3x_{2}} + e^{x_{1} - 3x_{2}} + e^{-x_{1}} & 3e^{x_{1} + 3x_{2}} - 3e^{x_{1} - 3x_{2}} \\ 3e^{x_{1} + 3x_{2}} - 3e^{x_{1} - 3x_{2}} & 9e^{x_{1} + 3x_{2}} + 9e^{x_{1} - 3x_{2}} \end{pmatrix} \Big|_{\mathbf{x} = \mathbf{x}_{0}}$$

$$= \begin{pmatrix} 9.1515943 & 7.36051909 \\ 7.36051909 & 22.19129872 \end{pmatrix}$$

Newton direction

$$\nabla^2 f(\mathbf{x}_0) \mathbf{d} = -\nabla f(\mathbf{x}_0) \implies \mathbf{d} = (0.99274936, -0.66096491)^T$$

Newton step

$$\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{d} = (-1.00725064, 0.33903509)^T$$

Example (cont'd)

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

Solution using Newton's method and gradient descent with constant step size 0.1. Initial point $x_0 = (-2, 1)^T$.

- Newton's method takes a more "direct" path
- Newton's method requires much fewer iterations, but each iteration is more expensive

Outline

Newton's method and properties

Analysis of Newton's method

Damped Newton's method

Convergence of Newton's method

Example. Consider the minimization of $f(x) = \sqrt{1 + x^2}$.

$$f'(x) = \frac{x}{\sqrt{1+x^2}}, \quad f''(x) = \frac{1}{(1+x^2)^{3/2}}$$

The Newton direction is

$$d_k = -\frac{f'(x_k)}{f''(x_k)} = -x_k - x_k^3$$

The Newton step is

$$x_{k+1} = x_k + d_k = -x_k^3$$

Note $x_k \to x^* = 0$ iff $|x_0| < 1$.

When $|x_0| > 1$, x_k diverges, and

$$f(x_{k+1}) > f(x_k)$$

Convergence of Newton's method (cont'd)

In general, Newton's method does <u>not guarantee global convergence</u>. When it does converge, the convergence is usually very fast.

Convergence analysis: 1D case

Theorem. If f is m-strongly convex, f'' is M-Lipschitz continuous, and x^* is a minimum of f, then the sequence $\{x_k\}$ produced by Newton's method satisfies

 $|x_{k+1} - x^*| \le \frac{M}{2m} |x_k - x^*|^2$

Notes. Let $\xi_k = \frac{M}{2m}|x_k - x^*|$. The above inequality becomes $\xi_{k+1} \leq \xi_k^2$.

- If $\xi_k = 10^{-p}$, then $\xi_{k+1} \le 10^{-2p}$, the number of significant digits doubles in each iteration!
- If $\xi_0 < 1$ i.e. $|x_0 x^*| < \frac{2m}{M}$, then $\xi_k \le \xi_0^{2^k}$ converges to 0 extremely fast. The number of iterations to ensure $\xi_k \le \epsilon$ is $k \ge \log_2 \log_{\frac{1}{\xi_0}} \frac{1}{\epsilon}$. For $\epsilon = 10^{-p}$, $k \ge \log_2 p + \log_2 \log_{\frac{1}{\xi_0}} 10$, only logarithmic in the number of digits. Very few iterations are required!
- This theorem is a local convergence result. Fast convergence if x_0 is close enough to x^* , i.e. $|x_0 x^*| < \frac{2m}{\underline{M}}$. No guarantee if $|x_0 x^*|$ is large.

和初始点选取很有关系! 否则可能不会收敛

Proof: 1D case

f " is M-Lipschitz continuous

Newton step

$$f'(x^*) = 0$$

Newton-Leibniz

$$\left| \int f \right| \leq \int |f|$$

M-Lipschitz of f''

m-strong convexity

Matrix norm Any function satisfies following conditions can be called matrix norm

The set of $m \times n$ matrices $\mathbb{R}^{m \times n}$ is a mn-dimensional vector space

A matrix norm on $\mathbb{R}^{m \times n}$ is a function $\|\cdot\| : \mathbb{R}^{m \times n} \to \mathbb{R}$ s.t.

- 1. $||A|| \geq 0, \forall A \in \mathbb{R}^{m \times n}$
- **2.** ||A|| = 0 iff A = 0
- 3. $||cA|| = |c| \cdot ||A||, \forall c \in \mathbb{R}, A \in \mathbb{R}^{m \times n}$ (positive homogeneity)
- 4. $||A + B|| \le ||A|| + ||B||$, $\forall A, B \in \mathbb{R}^{m \times n}$ (triangle inequality)

Example. The Frobenius norm on $\mathbb{R}^{m \times n}$ is the 2-norm on \mathbb{R}^{mn} .

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} \quad \text{for } A = (a_{ij}) \in \mathbb{R}^{m \times n}$$

Operator norm

A matrix $A \in \mathbb{R}^{m \times n}$ defines a linear transformation from \mathbb{R}^n to \mathbb{R}^m

$$A: \mathbb{R}^n \to \mathbb{R}^m$$
$$x \mapsto Ax$$

Given two vector norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on \mathbb{R}^n and \mathbb{R}^m , respectively, the operator norm or induced norm of A is defined by

$$\|A\|_{a,b} = \max_{x:x \neq 0} \frac{\|Ax\|_b}{\|x\|_a} = \max_{x:\|x\|_a = 1} \|Ax\|_b = \max_{x:\|x\|_a \leq 1} \|Ax\|_b$$
可以被证明

Exercise. Show the three definitions are equivalent.

The induced norm has the following important property.

Proposition (compatibility of norms).

$$||Ax||_b \le ||A||_{a,b} ||x||_a$$

Spectral norm

When the norms on \mathbb{R}^n and \mathbb{R}^m are both 2-norms, the induced norm on $\mathbb{R}^{n \times m}$ is simply called the 2-norm or spectral norm, denoted by $\|\cdot\|_2$.

Proposition.

$$\|\mathbf{A}\|_2 = \sqrt{\lambda_{\max}(\mathbf{A}^T \mathbf{A})},$$

where $\lambda_{\max}(A^TA)$ is the maximum eigenvalue of A^TA .

Proof. Let $||x||_2 = 1$. By slide 32 of §2,

$$\|\mathbf{A}\mathbf{x}\|_{2}^{2} = \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} \leq \lambda_{\max}(\mathbf{A}^{T}\mathbf{A})\|\mathbf{x}\|_{2}^{2} = \lambda_{\max}(\mathbf{A}^{T}\mathbf{A}), \quad \forall \mathbf{x} \in \mathbb{R}^{n}$$

with equality iff x is an eigenvector of A^TA associated with $\lambda_{\max}(A^TA)$.

Corollary. If *A* is symmetric,

$$||\mathbf{A}||_2 = \max\{|\lambda_{\max}(\mathbf{A})|, |\lambda_{\min}(\mathbf{A})|\}$$

If
$$A \succeq \mathbf{0}$$
, then $||A||_2 = \lambda_{\max}(A)$.

Examples

Example.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

To find the 2-norm,

$$A^{T}A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 14 \\ 14 & 20 \end{pmatrix}$$

 $\|A\|_{2} = \sqrt{\lambda_{\max}(A^{T}A)} = \sqrt{15 + \sqrt{221}} \approx 5.465$

Example.

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \succeq O$$
$$\|A\|_2 = \sqrt{\lambda_{\max}(A^T A)} = \sqrt{\lambda_{\max}(A^2)} = \sqrt{\lambda_{\max}^2(A)} = \lambda_{\max}(A) = 5$$

Convergence analysis

 $\nabla^2 f$ is *M*-Lipschitz continuous if

$$\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\|_2 \le M \|\mathbf{x} - \mathbf{y}\|_2, \quad \forall \mathbf{x}, \mathbf{y}$$

Theorem. If f is m-strongly convex, $\nabla^2 f$ is M-Lipschitz continuous, and x^* is a minimum of f, then the sequence $\{x_k\}$ produced by Newton's method satisfies

$$\|x_{k+1} - x^*\| \le \frac{M}{2m} \|x_k - x^*\|^2$$

Note. The same remarks on slide 14 apply here with $|x_k-x^*|$ replaced by $||x_k-x^*||$. In particular, if $||x_0-x^*||<\frac{2m}{M}$, then

$$\|x_k - x^*\| \le \frac{2m}{M} \left(\frac{M}{2m} \|x_0 - x^*\|\right)^{2^{\kappa}}$$

The proof is also very similar with only minor modifications.

Proof

 $||x_{k+1} - x^*||$

$$= \|\mathbf{x}_{k} - \mathbf{x}^{*} - [\nabla^{2} f(\mathbf{x}_{k})]^{-1} [\nabla f(\mathbf{x}_{k}) - \nabla f(\mathbf{x}^{*})] \|$$

$$\leq \|[\nabla^{2} f(\mathbf{x}_{k})]^{-1}\| \cdot \|\nabla f(\mathbf{x}^{*}) - \nabla f(\mathbf{x}_{k}) - \nabla^{2} f(\mathbf{x}_{k})(\mathbf{x}^{*} - \mathbf{x}_{k}) \|$$

$$= \|[\nabla^{2} f(\mathbf{x}_{k})]^{-1}\| \cdot \left\| \int_{0}^{1} [\nabla^{2} f(\mathbf{x}_{k} + t(\mathbf{x}^{*} - \mathbf{x}_{k})) - \nabla^{2} f(\mathbf{x}_{k})](\mathbf{x}^{*} - \mathbf{x}_{k}) dt \right\|$$

$$\leq \|[\nabla^{2} f(\mathbf{x}_{k})]^{-1}\| \int_{0}^{1} \|[\nabla^{2} f(\mathbf{x}_{k} + t(\mathbf{x}^{*} - \mathbf{x}_{k})) - \nabla^{2} f(\mathbf{x}_{k})](\mathbf{x}^{*} - \mathbf{x}_{k}) \| dt$$

$$\leq \|[\nabla^{2} f(\mathbf{x}_{k})]^{-1}\| \int_{0}^{1} \|[\nabla^{2} f(\mathbf{x}_{k} + t(\mathbf{x}^{*} - \mathbf{x}_{k})) - \nabla^{2} f(\mathbf{x}_{k})](\mathbf{x}^{*} - \mathbf{x}_{k}) \| dt$$

$$\leq \|[\nabla^{2} f(\mathbf{x}_{k})]^{-1}\| \int_{0}^{1} \|[\nabla^{2} f(\mathbf{x}_{k} + t(\mathbf{x}^{*} - \mathbf{x}_{k})) - \nabla^{2} f(\mathbf{x}_{k})](\mathbf{x}^{*} - \mathbf{x}_{k}) \| dt$$

$$\leq \|[\nabla^{2} f(\mathbf{x}_{k})]^{-1}\| \int_{0}^{1} \|[\nabla^{2} f(\mathbf{x}_{k} + t(\mathbf{x}^{*} - \mathbf{x}_{k})) - \nabla^{2} f(\mathbf{x}_{k})](\mathbf{x}^{*} - \mathbf{x}_{k}) \| dt$$

$$\leq \|[\nabla^{2} f(\mathbf{x}_{k})]^{-1}\| \int_{0}^{1} \|[\nabla^{2} f(\mathbf{x}_{k} + t(\mathbf{x}^{*} - \mathbf{x}_{k})) - \nabla^{2} f(\mathbf{x}_{k})](\mathbf{x}^{*} - \mathbf{x}_{k}) \| dt$$

 $\leq \| [\nabla^2 f(\mathbf{x}_k)]^{-1} \| \int_0^1 \| \nabla^2 f(\mathbf{x}_k + t(\mathbf{x}^* - \mathbf{x}_k)) - \nabla^2 f(\mathbf{x}_k) \| \cdot \| \mathbf{x}^* - \mathbf{x}_k \| dt$

(5)

 $\leq \|[\nabla^2 f(\mathbf{x}_k)]^{-1}\| \int_0^1 Mt \|\mathbf{x}^* - \mathbf{x}_k\|^2 dt$

(6)

(7)

 $= \| [\nabla^2 f(\mathbf{x}_k)]^{-1} \| \cdot \frac{M}{2} \| \mathbf{x}^* - \mathbf{x}_k \|^2$

 $\leq \frac{M}{2m} \|x_k - x^*\|^2$

Proof (cont'd)

1. Step (1) uses the Newton updating rule

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\nabla^2 f(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

and the optimality condition $\nabla f(x^*) = \mathbf{0}$.

2. Step (2) applies the compatibility of norms on slide 17 to

$$[\nabla^2 f(\mathbf{x}_k)]^{-1} [\nabla f(\mathbf{x}^*) - \nabla f(\mathbf{x}_k) - \nabla^2 f(\mathbf{x}_k)(\mathbf{x}^* - \mathbf{x}_k)]$$

3. Step (3) applies the Newton-Leibniz formula to the function $h(t) = \nabla f(x_k + t(x^* - x_k)),$

$$\nabla f(\mathbf{x}^*) - \nabla f(\mathbf{x}_k) = \mathbf{h}(1) - \mathbf{h}(0) = \int_0^1 \mathbf{h}'(t) dt$$

where h'(t) is given by the chain rule,

$$\mathbf{h}'(t) = \nabla^2 f(\mathbf{x}_k + t(\mathbf{x}^* - \mathbf{x}_k))(\mathbf{x}^* - \mathbf{x}_k)$$

Proof (cont'd)

4. Step (4) uses the following inequality

$$\left\| \int f(t)dt \right\| \leq \int \|f(t)\|dt$$

Proof. Let $z = \int f(t)dt$.

$$||z||^2 = z^T \int f(t)dt \stackrel{(a)}{=} \int z^T f(t)dt \stackrel{(b)}{\leq} \int ||z|| \cdot ||f(t)|| dt = ||z|| \int ||f(t)|| dt,$$

where (a) uses linearity of integration and (b) Cauchy-Schwarz.

- 5. Step (5) again applies the compatibility of norms on slide 17
- 6. Step (6) uses the Lipschitz continuity of $\nabla^2 f$
- 7. Step (7) performs the integration over *t*
- 8. Step (8) uses the m-strong convexity of f

$$\|[\nabla^2 f(\mathbf{x}_k)]^{-1}\| = \lambda_{\max}([\nabla^2 f(\mathbf{x}_k)]^{-1}) = \frac{1}{\lambda_{\min}(\nabla^2 f(\mathbf{x}_k))} \le \frac{1}{m}$$

Outline

Newton's method and properties

Analysis of Newton's method

Damped Newton's method

Damped Newton's method

Damped Newton's method

8:

9: end while 10: **return** *x*

where $\alpha, \beta \in (0,1)$

The Newton direction $-[\nabla^2 f(x)]^{-1}\nabla f(x)$ is a descent direction, but with step size 1, Newton's method does not guarantee $f(x_{k+1}) < f(x_k)$.

converge globally

To ensure $f(x_{k+1}) < f(x_k)$, damped Newton's method does backtracking line search along the Newton direction.

```
1: initialization x \leftarrow x_0 \in \mathbb{R}^n
2: while \|\nabla f(\mathbf{x})\| > \delta do
    d \leftarrow -[\nabla^2 f(x)]^{-1} \nabla f(x)
3:
                                                                     \triangleright solve \nabla^2 f(x)d = -\nabla f(x)
4:
   t \leftarrow 1
5: while f(x + td) > f(x) + \alpha t \nabla f(x)^T d do
6:
               t \leftarrow \beta t
7: end while
     x \leftarrow x + td
```

25

Example

$$f(x) = \sqrt{1 + x^2}$$

Recall pure Newton's method converges iff $|x_0| < 1$.

Damped Newton's method converges globally, e.g. for $x_0 = 1.5$.

一旦到了下一个阶段,就会进入 纯牛顿法,会很快,第一阶段比较慢

这里stepsize变为1了,其实 基本分为two phaze

Convergence analysis

Theorem. Assume f is m-strongly convex and L-smooth, $\nabla^2 f$ is M-Lipschitz, and x^* is a minimum of f. Damped Newton's method satisfies the following error bounds

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \begin{cases} f(\mathbf{x}_0) - f(\mathbf{x}^*) - \gamma k, & \text{if } k \le k_0 \\ \frac{2m^3}{M^2} \left(\frac{1}{2}\right)^{2^{k-k_0+1}}, & \text{if } k > k_0 \end{cases}$$

where $\gamma=2\alpha\bar{\alpha}\beta\eta^2m/L^2,\,\eta=\min\{1,3(1-2\alpha)\}m^2/M,$ and k_0 is the number of steps until $\|\nabla f(\mathbf{x}_{k_0+1})\|\leq\eta.$ 其实这就告诉我们此时离optima还很远

Notes.

- Damped Newton's method guarantees global convergence.
- To get $f(x_k) f(x^*) \le \epsilon$, we need at most

第一阶段
$$\frac{f(\mathbf{x}_0) - f(\mathbf{x}^*)}{\gamma} + \log_2 \log_2 \frac{\epsilon_0}{\epsilon}$$

where $\epsilon_0 = \frac{2m^3}{M^2}$. It can be slow if γ is small.

Convergence analysis (cont'd)

Detailed analysis shows that the convergence follows two stages

• Damped Newton phase. When $\|\nabla f(x_k)\| > \eta$, backtracking selects a step size $t_k \leq 1$, and

$$f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}_k) \le -\gamma$$

Summing over k from 0 to $k_0 - 1$,

$$f(\mathbf{x}^*) - f(\mathbf{x}_0) \le f(\mathbf{x}_{k_0}) - f(\mathbf{x}_0) \le -k_0 \gamma \implies k_0 \le \frac{f(\mathbf{x}_0) - f(\mathbf{x}^*)}{\gamma}$$

• Pure Newton phase. When $\|\nabla f(\mathbf{x}_k)\| \leq \eta$, backtracking selects step size $t_k = 1$, and

$$\|\nabla f(\mathbf{x}_{k+1})\| \le \frac{M}{2m^2} \|\nabla f(\mathbf{x}_k)\|^2 \le \frac{1}{2} \|\nabla f(\mathbf{x}_k)\| \le \eta$$

By induction, $\|\nabla f(x_k)\| \le \eta$ for all $k \ge k_0$, so we will stay in the pure Newton phase with $t_k = 1$.