Numerics!

CS2 RECITATION SERIES FRIDAY, FEBRUARY 28, 2014

Administrivia

- The Othello Project starts soon
 - Sign up for your groups!
 - Even if you're soloing, sign up with a group name
- The Othello Project will <u>require</u> submission via Git
 - Details will be provided in the assignment instructions on Moodle
- The Othello Project will require Java to test
 - You can write your player in your choice of language (Python, C, C++, or Java)
 - Support code is provided for C++ only

This week's assignment

- Numerical integration
 - Simulating motion of things
 - Three variants of Euler's method: forward, backward, symplectic
 - We ask you to implement them
- Root finding
 - Finding x_0 so that $f(x_0) = 0$
 - Bisection method and Newton-Raphson method
- Discrete and fast Fourier transforms

Numerical Integration

- •Suppose we have x(t), $v(t) = \frac{dx}{dt}$, $a(t) = \frac{dv}{dt} = f(x, t)$
 - We want to simulate the evolution of x over time
 - If there's no analytic solution, we need to simulate x numerically (with timestep δ)

Euler methods

- Forward Euler
 - $v(t + \delta) = v(t) + \delta \cdot f(t, x(t))$
 - $x(t + \delta) = x(t) + \delta \cdot v(t)$
- Backward Euler
 - $v(t + \delta) = v(t) + \delta \cdot f(t + \delta, x(t + \delta))$
 - $x(t + \delta) = x(t) + \delta \cdot v(t + \delta)$
 - Next x and v depend and next x and v ... ???
 - Do some algebra:) (there are hints in the assignment)
- Symplectic Euler
 - $v(t + \delta) = v(t) + \delta \cdot f(t, x(t))$
 - $x(t + \delta) = x(t) + \delta \cdot v(t + \delta)$
 - Next x depends on next v

Forward Euler

Image source: http://alexkr.com/source-code/127/intuitive-understanding-of-ode-solvers/

Backward Euler

Image source: http://alexkr.com/source-code/127/intuitive-understanding-of-ode-solvers/

Euler methods in assignment

- •You are given a parameter h in each of the functions as well as the current x, y, vx, vy values as pointers
 - h represents the timestep δ in the previous slide
- Update position and velocity through the pointers you are given, function does not return anything

Root Finding

- This is exactly what it sounds like
- Some analytic functions do not have closed form solutions
- •We have some numerical methods to find roots for these functions

The bisection method

- If we have a continuous function f(x) and x_1, x_2 such that $f(x_1)$ and $f(x_2)$ have opposite signs, the intermediate value theorem tells us that there is a root between x_1 and x_2 . Assume $x_1 < x_2$ and start with the range $[x_1, x_2]$.
- Guess the root: $x_0 = \frac{x_1 + x_2}{2}$
- If $f(x_0)$ has the same sign as $f(x_1)$, change our range to $[x_0, x_2]$
- Otherwise change our range to $[x_1, x_0]$
- Repeat until the length of the range is smaller than some given parameter
- In the assignment you are given x_1, x_2 and a parameter PRECISION. The function is passed as a function pointer, don't be scared of this
 - Calling the function is easy this way, f(a) is simply f(a) in the code

Picture example (photo from Wikipedia)

Newton-Raphson Method

- General ideal is to continue tracing tangent lines until we get to our root
- Start with an initial guess x_1
- Linearize the function around x_1 by taking the first two terms of its Taylor expansion
 - $f(x) \approx f(x_1) + f'(x_1)(x x_1)$
 - Set f(x) = 0 and solve the above equation to find
 - $x_2 = x_1 \frac{f(x_1)}{f'(x_1)}$
- If x_2 is close enough to zero (TOLERANCE in the assignment) then we found the root!
 - Evaluate the derivative the same way you evaluated functions in the bisection method

Newton-Raphson (animation)

Source: Wikipedia

Discrete and Fast Fourier Transforms

- This was covered very thoroughly in class, see lecture 11 slides (they will be posted soon) for details
- We provide you a complex number class
 - You will probably find the getRootOfUnity function useful
 - Returns the primitive n^{th} root of unity of z in $z^n = 1$
- What to do with the roots?
 - See lecture 11 slide 7
- FFT pseudocode is given on slide 9 should be easy to follow