Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. M. Maurer

Prof. Dr.-Ing. W. Schumacher

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3840

Klausuraufgaben		Grundlagen der Elektrotechr			chnik	Seite 1/11
Name:		Vorname:				
MatrNr.:		Studiengang:				
E-Mail (optional):			Datum:		23. Februar 2017	
1:	2:	3:		4:		5:
ID:		Summe: _	Summe:		Note:	

Alle Lösungen müssen **nachvollziehbar** bzw. **begründet** sein, **Einheiten sind** bei den Ergebnissen **anzugeben**.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine Blei- oder Rotstifte verwenden.

Lösungen auf Aufgabenblättern werden nicht gewertet (Ausnahme: Aufgabe 1a).

Zugelassene Hilfsmittel:

- Geodreieck
- Zirkel

Die Ergebnisse sind nur online über das QIS-Portal einsehbar.

Diese Klausur besteht aus **5 Aufgaben** auf insgesamt **11 Blättern** (inklusive diesem Deckblatt).

1 Elektrisches Feld

Punkte: 20

Gegeben seien die folgenden vier Kondensatoranordnungen 1) bis 4).

a) Zeichnen Sie in Abbildung 1) bis 4) die resultierenden Feldlinien ein. (4 Punkte) *Hinweis*: Wenn Sie auf dem Aufgabenblatt zeichnen, muss dieses mit abgegeben werden.

Im Folgenden werde ein idealer Plattenkondensator betrachtet. Die Platten befinden sich im Vakuum und haben einen Abstand von $d=1\,\mathrm{cm}$. An den Platten liege außerdem eine Spannung von $U=10\,\mathrm{V}$ an.

- b) Berechnen Sie die elektrische Feldstärke im Kondensator allgemein und in Zahlenwerten. (1,5 Punkte)
- c) Berechnen Sie allgemein und in Zahlenwerten die Ladung auf einer Kondensatorplatte für den Fall, dass die Platten quadratisch sind und eine Kantenlänge $a=2\,\mathrm{cm}$ haben. (2,5 Punkte)

Hinweis: $\varepsilon_0 \approx 9 \cdot 10^{-12} \, \mathrm{As/Vm}$

Eine positiv geladene Ladung $q=e\approx 1.5\cdot 10^{-19}\,\mathrm{A\,s}$ mit der Masse $m=1\cdot 10^{-30}\,\mathrm{kg}$ wird mittig zwischen den Kondensatorplatten platziert und bewege sich mit einer Anfangsgeschwindigkeit $v_0=1.5\cdot 10^5\,\mathrm{m/s}$ in positive y-Richtung:

- d) Fertigen Sie eine Skizze mit den wirkenden Kräften an, benennen Sie diese und stellen Sie das zugehörige Kräftegleichgewicht auf. (3 Punkte)

 Hinweis: Vernachlässigen Sie Gravitationseffekte.
- e) Zeigen Sie, dass sich die Ladung bei $t_s = 1$ ns im Stillstand befindet. (3 Punkte) Hinweis: Verwenden Sie, falls benötigt, den Zusammenhang $1 \text{ V} = 1 \text{ kg} \cdot \text{m}^2/\text{As}^3$.
- f) Bestimmen Sie allgemein und in Zahlenwerten die Distanz, die die Ladung in dieser Zeit zurückgelegt hat. (3 Punkte)
- g) Nennen Sie eine mechanische Analogie, die sich nutzen lässt, um die Bewegung der Ladung zu beschreiben. (1 Punkt)
- h) Berechnen Sie allgemein und in Zahlenwerten die Arbeit, die in der gegebenen Zeit an der Ladung verrichtet wird. (2 Punkte)

Punkte: 18

2 Gleichstromnetzwerk

Das gegebene Netzwerk besteht aus zwei idealen Gleichstromquellen I_1 und I_2 , einer idealen Gleichspannungsquelle U_1 , sowie sieben Widerständen R_1 bis R_7 mit bekannten Werten.

a) Bestimmen Sie mit Hilfe des Superpositionsverfahrens den Strom I_{R5} . Fertigen Sie für jeden Fall, den Sie betrachten, eine gesonderte Skizze an, in der Sie relevante Größen eintragen. Stellen Sie die Teilergebnisse in Abhängigkeit der Quellen I_1 , I_2 und U_1 dar. Fassen Sie Teilnetzwerke zu einer selbst gewählten Variable für den Ersatzwiderstand zusammen. Stellen Sie einmalig die Gleichung des Ersatzwiderstandes auf und rechnen Sie mit dieser Variablen weiter. (18 Punkte)

Hinweis 1: Nutzen Sie wenn möglich Strom- oder Spannungsteiler und Quellentransformationen.

Punkte: 16

3 Magnetfeld

In den beiden unendlich langen, unendlich dünnen, geraden Leitern fließen die Wechselströme $i_1(t)$ bzw. $i_2(t)$. Zwischen den beiden Drähten befindet sich entsprechend der obigen Anordnung eine quadratische Leiterschleife (Spule mit Windungszahl N=1) mit der Seitenlänge l. Im Folgenden soll die in der Leiterschleife induzierte Spannung $u_{ind}(t)$ berechnet werden.

Hinweis: Die Rückwirkungen der durch den induzierten Strom verursachten Magnetfelder sind zu vernachlässigen!

- a) Bestimmen Sie allgemein das von einem unendlich dünnen, stromdurchflossenen Leiter erzeugte Magnetfeld. Gehen Sie von der vektoriellen Form des Durchflutungssatzes aus. Begründen Sie vorgenommene Vereinfachungen. Geben Sie $\vec{H}(r)$ in Zylinderkoordinaten an. (4 Punkte)
- b) Bestimmen Sie den magnetischen Fluss $\Phi_1(t)$ durch die Leiterschleife, der durch den Strom $i_1(t)$ verursacht wird. Geben Sie dazu zunächst die magnetische Flussdichte $\vec{B}_1(t,x)$ für z=0 in kartesischen Koordinaten an. (3 Punkte)

- c) Bestimmen Sie den magnetischen Fluss $\Phi_2(t)$ durch die Leiterschleife, der durch den Strom $i_2(t)$ verursacht wird. Geben Sie dazu zunächst die magnetische Flussdichte $\vec{B}_2(t,x)$ für z=0 in kartesischen Koordinaten an. (2 Punkte) $Hinweis: \int \frac{1}{n-x} \, \mathrm{d}x = -\ln(n-x)$
- d) Erläutern Sie kurz die Lenz'sche Regel und skizzieren Sie die Richtung des in der Leiterschleife induzierten Stroms. (2 Punkte)
- e) Bestimmen Sie die in der Leiterschleife induzierte Spannung $u_{ind}(t)$. (2 Punkte)
- f) Wie verändert sich die am Widerstand umgesetzte Leistung in Abhängigkeit zur Windungszahl N der Spule? Begründen Sie Ihre Antwort. (1 Punkt)

Nachfolgend gelte a = b.

g) Wie müssen die Verhältnisse zwischen \hat{i}_1 und \hat{i}_2 sowie ω_1 und ω_2 gewählt werden, damit die induzierte Spannung null wird $(u_{ind}(t) = 0)$? Begründen Sie Ihre Antwort. (2 Punkte)

Punkte: 30

4 Komplexe Wechselstromrechnung

Gegeben: $\underline{U}_0 = 100 \text{ V} \cdot e^{j0^{\circ}}$, $R_1 = 30 \Omega$, $L_2 = 0.4 \text{ H}$, $L_3 = \frac{1}{3} \text{ H}$, $C_4 = 100 \,\mu\text{F}$, $f = \frac{100}{2\pi} \,\text{Hz}$.

Eine Wechselspannungsquelle \underline{U}_0 speist die dargestellte Schaltung bestehend aus zwei zueinander parallelen Reihenschaltung, die sich aus den Bauelementen R_1 und L_2 beziehungsweise L_3 und C_4 zusammensetzen. Für die Schaltung soll ein Zeigerdiagramm mit dem Bezugszeiger \underline{U}_0 gezeichnet werden.

- a) Berechnen Sie im ersten Schritt den Betrag der Impedanz $|\underline{Z}_1|$ der Reihenschaltung aus R_1 und L_2 . (1 Punkt)
- b) Berechnen Sie den Betrag des Stroms $|\underline{I}_1|$, der R_1 und L_2 durchfließt, sowie darauf aufbauend die Beträge der Spannungen $|\underline{U}_1|$ und $|\underline{U}_2|$. (3 Punkte)
- c) Berechnen Sie im zweiten Schritt komplex in kartesischer Schreibweise (a = b + jc) den Strom \underline{I}_2 , der die Reihenschaltung aus L_3 und C_4 durchfließt. (1 Punkt)
- d) Berechnen Sie ebenfalls komplex in kartesischer Schreibweise mit Hilfe von \underline{I}_2 die Spannungen \underline{U}_3 und \underline{U}_4 . (2 Punkte)
- e) Konstruieren Sie das Zeigerdiagramm mit allen Strömen und Spannungen auf Basis der eben bestimmten Werte ($Ma\beta stab$: $10 \text{ V} \, \widehat{=} \, 1 \text{ cm}$, $0.25 \text{ A} \, \widehat{=} \, 1 \text{ cm}$). Geben Sie aus dem Zeigerdiagramm den Betrag des Phasenwinkels φ zwischen \underline{U}_0 und \underline{I}_0 sowie den Betrag des Stroms $|\underline{I}_0|$ an. (5 Punkte)

 $\it Hinweis:$ Zeichnen Sie das Zeigerdiagramm auf einer separaten Seite im Querformat. Der Thaleskreis kann ein sehr probates Hilfsmittel zur Bestimmung der Lage von \underline{U}_1 und \underline{U}_2 sein.

Die Schaltung soll im Folgenden mit unterschiedlichen Frequenzen betrieben werden.

- f) In der Schaltung sind zwei Schwingkreise enthalten. Identifizieren Sie für jeden der Schwingkreise die beteiligten Bauelemente und geben Sie jeweils an, ob es sich um einen Reihen- oder Parallelschwingkreis handelt. (2 Punkte)
- g) Welchen Betrag der Impedanz $|\underline{Z}_{AB}|$ zwischen den Klemmen A und B hat die Schaltung bei $\omega=0, \,\omega\to\infty$ sowie bei den Resonanzfrequenzen $\omega=\omega_{01}$ bzw. $\omega=\omega_{02}$ der beiden Schwingkreise. Für die Betrachtungen bei $\omega=\omega_{01}$ und $\omega=\omega_{02}$ sollen die ohmschen Einflüsse vernachlässigt werden. Begründen Sie jeweils kurz. (4 Punkte)

Im Folgenden soll der Amplitudengang $\frac{|\underline{U}_2|}{|\underline{U}_0|}(\omega)$ hergeleitet werden.

- h) Bestimmen Sie den komplexen Frequenzgang $\frac{U_2}{U_0}(\omega)$ unter Zuhilfenahme des komplexen Spannungsteilers. Verwenden Sie die Beziehung $\frac{R_1}{L_2} = \omega_g$. (2 Punkte) Hinweis: Nachdem Sie den Spannungsteiler aufgestellt haben, erweitern Sie den entstandenen Bruch mit dem Kehrwert des Zählers als ersten Schritt.
- i) Bestimmen Sie im zweiten Schritt den Amplitudengang als Betrag des berechneten Frequenzgangs. (2 Punkte)
- j) Welchen Betrag nimmt der Amplitudengang bei $\omega = \omega_g$ ein? (1 Punkt)

Die Schaltung soll nun wieder bei der Ausgangsfrequenz aus Aufgabenteilen a) bis e) betrieben werden. Der Betrag der Spannung \underline{U}_0 wird verdoppelt.

k) Welche Auswirkungen hat das auf die Phasenlage sowie auf Schein-, Blind- und Wirkleistung? Begründen Sie jeweils kurz. (2 Punkte)

Durch ein zur Spannungsquelle \underline{U}_0 parallel geschaltetes Bauelement soll der Phasenwinkel zwischen \underline{U}_0 und \underline{I}_0 zu $\varphi=0^\circ$ kompensiert werden. Verwenden Sie unabhängig von den vorhergegangenen Aufgabenteilen für die Aufgabenteile l) bis n) die folgenden Werte: $\underline{I}_0=3\,\mathrm{A}+j\cdot4\,\mathrm{A}$ und $\underline{U}_0=100\,\mathrm{V}$.

- l) Zeichnen Sie das resultierende Zeigerdiagramm mit den Zeigern \underline{U}_0 und \underline{I}_0 ($Ma\beta stab$: $10\,\mathrm{V}\,\widehat{=}\,1\,\mathrm{cm}$, $1\,\mathrm{A}\,\widehat{=}\,1\,\mathrm{cm}$). Zeigt die Schaltung induktives oder kapazitives Verhalten? (2 Punkte)
- m) Welches Bauteil zur Kompensation des Phasenwinkels zwischen \underline{U}_0 und \underline{I}_0 verwenden Sie? Begründen Sie dies in einem Satz. (1 Punkt)
- n) Bestimmen Sie anhand des Zeigerdiagramms die Größe des Bauteils. (2 Punkte) *Hinweis*: An dieser Stelle kann ein einfaches Ersatzschaltbild die Überlegungen unterstützen

5 Schaltvorgänge bei Kondensatoren Punkte: 16

In dieser Aufgabe wird das Laden beziehungsweise das Entladen eines Kondensators betrachtet. Die Teilaufgaben a), c), e) und k) können unabhängig von den anderen Teilaufgaben gelöst werden.

Der Schalter S_2 in dem oben dargestellten Netzwerk ist zum Zeitpunkt $t=t_0$ seit sehr langer Zeit geschlossen und der Schalter S_1 seit sehr langer Zeit geöffnet.

- a) Skizzieren Sie die Schaltung zum Zeitpunkt $t = t_0$. (1 Punkt)
- b) Bestimmen Sie die Spannung über dem Kondensator und die Spannung über dem Widerstand zum Zeitpunkt $t=t_0$. Begründen Sie kurz Ihr Vorgehen. Ergänzen Sie, falls noch nicht vorhanden, alle für diese Teilaufgabe relevanten Größen in der Skizze aus Teilaufgabe a). (2 Punkte)

Der Schalter S_2 wird zum Zeitpunkt $t_1 > t_0$ geöffnet (S_1 bleibt offen). Anschließend wird der Schalter S_1 zum Zeitpunkt $t_2 > t_1$ geschlossen (S_2 bleibt offen). Gehen Sie ohne Einschränkung der Allgemeinheit davon aus, dass $t_2 = 0$ s gilt.

- c) Skizzieren Sie die Schaltung zum Zeitpunkt $t=t_2$. Zeichnen Sie alle relevanten Größen ein. (0.5 Punkte)
- d) Bestimmen Sie die Spannung über dem Kondensator und die Spannung über dem Widerstand zum Zeitpunkt $t=t_2$ direkt nach dem Schließen des Schalters S_1 . (1 Punkt)
- e) Leiten Sie allgemein den Zusammenhang von Strom $i_c(t)$ und Spannung $u_c(t)$ während des Ladens beziehungsweise Entladens ausgehend von der allgemeinen Ladungsgleichung eines Kondensators her. (1,5 Punkte)

- f) Stellen Sie die homogene Differentialgleichung (DGL) erster Ordnung für die Spannung $u_c(t)$ über dem Kondensator für $t \geq 0$ s auf. (2 Punkte)
- Hinweis 1: Stellen Sie die Maschen- und Knotengleichung auf.
- Hinweis 2: Nutzen Sie das Ergebnis aus Teilaufgabe e).
- g) Lösen Sie die Differentialgleichung (DGL). (3,5 Punkte)
- Hinweis: $\int \frac{1}{x} dx = \ln(x) + K$
- h) Bestimmen Sie den Entladestrom des Kondensators im gegebenen Netzwerk. (1 Punkt)
- i) Bestimmen Sie den (betragsmäßig) maximalen Entladestrom und geben Sie dessen Zeitpunkt an. (1 Punkt)
- j) Skizzieren Sie den Spannungs- und den Stromverlauf während des Entladevorgangs ($t \ge 0\,\mathrm{s}$). (1,5 Punkte)
- k) Wann geht man in der Praxis davon aus, dass ein Kondensator vollständig entladen ist. Begründen Sie Ihre Antwort mathematisch. (1 Punkt)