Teoremas y resultados de Cálculo I

Alejandro Villanueva Prados

Funciones

Teorema de los ceros de Bolzano.

Toda función continua en un intervalo que toma valores positivos y negativos se anula en algún punto del intervalo

Demostración

- 1. Objetivo: probar que si $f : [a, b] \to \mathbb{R}$ es continua y f(a) < 0 < f(b), entonces f se anula en algún punto del intervalo [a, b[. Buscamos $c \in]a, b[$ tal que f(c) = 0.
- 2. A la izquierda de c la función es negativa, y a la derecha positiva. Se define:

$$E = \{x \in [a.b] : f(t) < 0, \forall t \in [a, x]\}$$

- Nota: $E \subset [a, b]$ y $a \in E$
- 3. Usando el principio del supremo, llamamos c = sup(E), y $a \le c \le b$. Vamos a probar que la desigualdad es estricta.
- 4. Para ello, usamos la propiedad local de conservación del signo (porque f es continua): se tiene que para $\delta > 0$, $f(a+\delta) < 0$ y $f(b-\delta) > 0$. Ahora suponemos que a=c, si eso fuese cierto, $a+\delta > c$ y $a+\delta \in E$, lo cual es imposible porque c=sup(E) y por tanto se prueba que a < c. Análogamente c < b, por lo tanto nos queda: a < c < b
- 5. Ahora vamos a probar que $f(t) < 0, \forall t \in [a, c[$, equivalente a $[a, c[\subset E.$ Esto se hace usando que c es supremo de E, tomamos un $x : a < x_0 < c$ dado que c es supremo de E, entonces existe un $z_0 \in E$ tal que $x_0 < z_0 \le c$. Así que cualquier elemento de $[a, x_0]$ pertenence también a $[a, z_0]$, y como $z_0 \in E$, probamos que $f(t) < 0, \forall t \in [a, c[$.
 - Aclaración: como los números que escogemos $(x_0 \ y \ z_0)$ son arbitrarios, eso significa que el intervalo $[a,c]\subset E$.
- 6. Paso final: f(c) = 0. A la izquierda de c, la función toma valores negativos, así que por la continuidad de f y la conservación local del signo, no puede ser f(c) > 0, con lo cual $f(c) \le 0$, pero como a la derecha es positiva, no puede ser f(c) < 0, así que $f(c) \ge 0$ y **también** $f(c) \le 0$. Por tanto, f(c) = 0, con $c \in]a, b[$

Consecuencias

- 1. Existencia de raíces: Dados a>0 y $k\in\mathbb{N}$ hay un único número c>0 tal que $c^k=a$, en otras palabras, $\log_c a=k$ es único.
 - Demostración: La función $f: \mathbb{R}_0^+ \to \mathbb{R}$ tal que $f(x) = x^k a$ es continua y con distinto signo entre 0 y 1+a, con lo cual $\exists c>0: f(c)=0$. Este número es único porque f es estrictamente creciente. (sea $\varepsilon>0$, $f(n)< f(n+\varepsilon)$)