Continuous Optimization

Spring 2025

Exercise 5: Proximal Gradient Descent

Lecturer: Aurelien Lucchi

Problem 1 (Proximal operator for quadratics):

Consider the quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x} + \mathbf{c}$ where $\mathbf{A} \geq 0$.

Prove that

$$\operatorname{prox}_{nf}(\mathbf{x}) = (\mathbf{I} + \eta \mathbf{A})^{-1}(\mathbf{x} - \eta \mathbf{b})$$
(1)

Problem 2 (Projected Gradient Descent):

We want to minimize a function f over a convex set \mathcal{X} . To do so, we use projected gradient descent that, starting from $\mathbf{x}_0 \in \mathcal{X}$, performs the following updates:

$$\mathbf{y}_{k+1} = \mathbf{x}_k - \eta \nabla f(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \Pi_{\mathcal{X}}(\mathbf{y}_{k+1}).$$

1. Prove that for all $\mathbf{x} \in \mathcal{X}, \mathbf{z} \in \mathbb{R}^d$:

$$(\mathbf{x} - \Pi_{\mathcal{X}}(\mathbf{z}))^{\top} (\mathbf{z} - \Pi_{\mathcal{X}}(\mathbf{z})) \leq 0.$$

2. If $\mathbf{x}_{k+1} = \mathbf{x}_k$ after the projected gradient descent update, then \mathbf{x}_k is a minimizer of f over \mathcal{X} .

Problem 3 (Proximal Gradient Descent: Convergence analysis):

Prove the following result by adapting the proof for the convex case discussed in class.

Theorem 1 (Smooth, strongly-convex). Assume that f is β -smooth and μ strongly-convex, then

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le (1 - \eta \mu)^k \|\mathbf{x}_1 - \mathbf{x}^*\|^2.$$