Abschnitt 4

Zwei-Ebenen-Morphologie

Wiederholung: Endlicher Automat

Wiederholung: Endlicher Automat (Definition)

Ein nicht-deterministischer **endlicher Automat** ist ein 5-Tupel $(Q, \Sigma, \delta, q_0, F)$ mit

- einer **endlichen** Menge von Zuständen Q,
- einem endlichen Eingabealphabet Σ,
- einer Zustandsübergangsfunktion $\delta: Q \times \Sigma \to \mathcal{D}(Q)$, die das Steuerungsverhalten des Automaten bestimmt
- einem Startzustand $q_0 \in Q$
- einer Menge von Endzuständen F ⊆ Q

Endlicher Transduktor (I)

Ein nicht-deterministischer endlicher **Transduktor** ist ein 5-Tupel $(Q, \Sigma, \delta, q_0, F)$ mit

- einer endlichen Menge von Zuständen Q,
- einem **endlichen** Eingabealphabet $\Sigma \subseteq I \times O$ bestehend aus komplexen Symbolen, die aus Eingabe-Ausgabe-Paaeren i : o bestehen, mit $i \in I$ (Eingabealphabet) und $o \in O$ (Ausgabealphabet),
- einer Zustandsübergangsfunktion $\delta: Q \times \Sigma \to \mathscr{D}(Q)$, die das Steuerungsverhalten des Automaten bestimmt,
- einem Startzustand $q_0 \in Q$
- einer Menge von Endzuständen $F \subseteq Q$

Endlicher Transduktor (II)

Ein nicht-deterministischer endlicher **Transduktor** ist ein 6-Tupel $(Q, \Sigma, \Delta, \delta, q_0, F)$ mit

- einer endlichen Menge von Zuständen Q,
- einem endlichen Eingabealphabet Σ,
- einem endlichen Ausgabealphabet Δ,
- einer Zustandsübergangsfunktion $\delta: Q \times \Sigma \to \wp(Q \times \Delta^*)$, die das Steuerungsverhalten des Automaten bestimmt
- einem Startzustand $q_0 \in Q$
- ullet einer Menge von Endzuständen $F \subseteq Q$

Konzeptioneller Vergleich von 5- und 6-Tupel-Definition

5-Tupel

Anwendung

- Morphologisches Parsing (†)
- Flexionsformgenerierung (↓)

Transduktor zur Flexionsformgenerierung

Beispiellauf mit Konfigurationen des Transduktors

- 1. $(0, cat + N:\varepsilon + PL:s)$
- 2. (1, at +N: ε +PL:s)
- 3. $(2, t + N:\varepsilon + PL:s)$
- 4. $(3, +N:\varepsilon +PL:s)$
- 5. (4, +PL:s)
- 6. $(5, \varepsilon)$

Trie

- Wird "am Anfang" eines Transduktors verwendet, damit dieser beliebige Wörter erkennen/umwandeln kann (Lexikon)
- Ein Trie (sprich wie engl. try) ist (im Kontext dieses Moduls) ein Automat zum Abspeichern von Wörtern natürlicher Sprachen
- Wesentliche Merkmale:
 - Bei jedem Ubergang wird nur ein Zeichen gelesen
 - Mehrfach vorkommende Prä- und Suffixe teilen sich die jeweiligen Zustände

Trie

- Wird "am Anfang" eines Transduktors verwendet, damit dieser beliebige Wörter erkennen/umwandeln kann (Lexikon)
- Ein Trie (sprich wie engl. try) ist (im Kontext dieses Moduls) ein Automat zum Abspeichern von Wörtern natürlicher Sprachen
- Wesentliche Merkmale:
 - Bei iedem Übergang wird nur ein Zeichen gelesen
 - Mehrfach vorkommende Prä- und Suffixe teilen sich die jeweiligen Zustände.
 - Zustände

Trie

- Wird "am Anfang" eines Transduktors verwendet, damit dieser beliebige Wörter erkennen/umwandeln kann (Lexikon)
- Ein Trie (sprich wie engl. try) ist (im Kontext dieses Moduls) ein Automat zum Abspeichern von Wörtern natürlicher Sprachen
- Wesentliche Merkmale:
 - Bei jedem Übergang wird nur ein Zeichen gelesen
 - Mehrfach vorkommende Prä- und Suffixe teilen sich die jeweiligen Zustände

Trie (Beispiele)

Aufgabe zu Tries

Geben Sie einen Trie an, der die Wörter "Pappe", "Papier" und "Papa" kodiert.

Flexionsformgenenerierung mit Transduktor und Trie

- Transduktor zur Pluralbildung mit eingebautem Trie
- Aber: Problematische Phonologie-/Orthographie-Regeln
 - fox +N +PL ist foxes, nicht *foxs
 - city +N +PL ist cities, nicht *citys
- Lösung: Zwei-Ebenen-Morphologie

Flexionsformgenenerierung mit Transduktor und Trie

- Transduktor zur Pluralbildung mit eingebautem Trie
- Aber: Problematische Phonologie-/Orthographie-Regeln
 - fox +N +PL ist foxes, nicht *foxs
 - city +N +PL ist cities, nicht *citys
- Lösung: Zwei-Ebenen-Morphologie

Flexionsformgenenerierung mit Transduktor und Trie

- Transduktor zur Pluralbildung mit eingebautem Trie
- Aber: Problematische Phonologie-/Orthographie-Regeln
 - fox +N +PL ist foxes, nicht *foxs
 - city +N +PL ist cities, nicht *citys
- Lösung: Zwei-Ebenen-Morphologie

Schema der Zwei-Ebenen-Morphologie

 Intermediäres Band: Zwischenrepräsentation, die Morphem- und Wortgrenzen explizit markiert

Schreibkonventionen für Zwei-Ebenen-Morphologie

```
\alpha: \gamma Paare, sodass \alpha von Eingabe und \gamma von Ausgabealphabet ist
```

- α Identische (default) Paare der Form $\alpha : \alpha$
- ^ Morphemgrenze
- # Wortgrenze
- other Ein beliebiges, sonst nicht benutztes Zeichen
- @ beliebiges Symbol

Zwei-Ebenen-Morphologie für e-Insertion: Lexikon-Intermediär-Transduktor

Zwei-Ebenen-Morphologie für e-Insertion: Intermediär-Oberflächen-Transduktor

Zwei-Ebenen-Morphologie für e-Insertion: Beispiellauf

Übung: ZEM für k-Insertion

```
panic +V +G \mapsto panicking
panic +V +P \mapsto panicked
traffic +V +P \mapsto trafficked
Aber auch: flicker +V +P\mapsto flickered
```