Assignment: Implementing Linear Regression using Gradient Descent

1. Dataset & Preprocessing

- Dataset: California Housing (housing.csv).
- Missing values in **total_bedrooms** were imputed with the column mean.
- ocean_proximity categorical feature encoded using One-Hot Encoding.
- Features were standardized (mean=0, variance=1).
- Dataset split: 80% training, 20% testing.

2. Methodology

- Implemented a custom LinearRegressionGD class:
 - Gradient Descent update rule with learning rate α =0.01.
 - 1000 iterations used for convergence.
 - Ridge Regularization (λ) parameter included for extension.

3. Results

3.1 Model Evaluation

Metric	Value
Mean Squared Error (MSE)	4970832510.2708
R ² Score	0.6207

3.2 Plots

(a) Learning Curve

- Cost (MSE) vs Iterations shows gradual decrease.
- Model converged successfully.

(b) Actual vs Predicted

• Scatter plot shows predictions aligning with the 45° line.

Indicates decen

here from Colab output)*

4. Observations

- The model converged with α =0.01 and 1000 iterations.
- Larger α caused divergence, while smaller α slowed training.
- R² indicates that the model explains a moderate proportion of variance.
- Predictions align reasonably with actual values, though noise exists.
- Regularization ($\lambda > 0$) reduces overfitting slightly at the cost of bias.

5. Deliverables

- Google Colab Link: https://colab.research.google.com/drive/1whW5ZnK8UlOVNarcLbUP85GlF5sZ2qS?usp=sharing
- Code: Implemented entirely from scratch (Gradient Descent).