Отчет по лабораторной работе №3

Дисциплина: Математическое моделирование

Выполнила: Афтаева Ксения Васильевна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	19
Список литературы		20

Список иллюстраций

4.1	Жесткая модель войны	10
	Фазовые раектории системы для второго случая	
	Модель боевых действий между регулярными войсками (Julia)	
	Модель боевых действий между регулярными войсками	
	(OpenModelica)	17
4.5	Модель боевых действий с участием регулярных войск и партизан-	
	ских отрядов (Julia)	18
4.6	Модель боевых действий с участием регулярных войск и партизан-	
	ских отрядов (OpenModelica)	18

Список таблиц

1 Цель работы

Рассмотреть некоторые простейшие модели боевых действий – модели Ланчестера. Выполнить задание согласно варианту: построить графики изменения численности войск армии X и армии У для двух случаев.

2 Задание

Между страной X и страной У идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t). В начальный момент времени страна X имеет армию численностью 21 200 человек, а в распоряжении страны Y армия численностью в 9 800 человек. Для упрощения модели считаем, что коэффициенты a, b, c, h постоянны. Также считаем P(t) и Q(t) непрерывные функции.

Построить графики изменения численности войск армии **X** и армии **Y** для следующих случаев: 1. Модель боевых действий между регулярными войсками

$$\begin{cases} \frac{dx}{dt} = -0.45x(t) - 0.86y(t) + \sin(t+1) \\ \frac{dy}{dt} = -0.49x(t) - 0.73y(t) + \cos(t+2) \end{cases}$$

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$\begin{cases} \frac{dx}{dt} = -0.44x(t) - 0.7y(t) + \sin(2t) \\ \frac{dy}{dt} = -0.33x(t)y(t) - 0.61y(t) + \cos(t) + 1 \end{cases} \label{eq:delta_t}$$

3 Теоретическое введение

Уравнение Ланчестера - это система дифференциальных уравнений, которая описывает отношения между силами двух сторон во время битвы. Главной характеристикой соперников являются численности сторон, изменяющиеся в зависимости от различных факторов, как обусловленных действиями соперников, так и не связанных напрямую с военными действиями.

В лабораторной работе мы будем рассматривать два случая ведения боевых действий: 1. Боевые действия между регулярными войсками 2. Боевые действия с участием регулярных войск и партизанских отрядов

В первом случае численность регулярных войск определяется тремя факторами: - скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями; - скорость потерь, обусловленных боевыми действиями противоборствующих сторон; - скорость поступления подкрепления

В этом случае модель боевых действий между регулярными войсками описывается следующим образом:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t) \end{cases}$$

Здесь члены -a(t)x(t) и -h(t)y(t) - потери, не связанные с боевыми действиями, -b(t)y(t) и -c(t)x(t) - потери на поле боя. Коэффициенты b(t) и c(t) указывают на эффективность боевых действий со стороны y и x соответственно, a(t), h(t) - величины, характеризующие степень влияния различных факторов на потери. Функции P(t), Q(t) учитывают возможность подхода подкрепления

к войскам x и y в течение одного дня.

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что тем потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид:

$$\begin{cases} \frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t) \end{cases}$$

В этой системе все величины имеют тот же смысл, что и в системе первого случая [1].

4 Выполнение лабораторной работы

- 1. Задание в лабораторной работе выполняется по вариантам. Вариант расчитывается как номер остаток от деления номера студенческого билета на число заданий + 1. Таким образом, мой вариант **10**: 1032201739 % 70 + 1.
- 2. Разберем теоретичскую часть для первого случая. Мы будем рассматривать модель с упрощениями, поэтому она неприменима для реальной ситуации, но может использоваться для начального анализа.

В простейшей модели борьбы двух противников коэффициенты b(t) и c(t) являются постоянными. Попросту говоря, предполагается, что каждый солдат армии x убивает за единицу времени c солдат армии y (и, соответственно, каждый солдат армии y убивает b солдат армии x). Также не учитываются потери, не связанные с боевыми действиями, и возможность подхода подкрепления. Состояние системы описывается точкой (x,y) положительного квадранта плоскости. Координаты этой точки, x и y - это численности противостоящих армий. Тогда модель принимает вид

$$\begin{cases} \dot{x} = -by \\ \dot{y} = -cx \end{cases}$$

Это жесткая модель, которая допускает точное решение:

$$\left\{ \frac{dx}{dy} = \frac{by}{cx} \right\}$$

Продлелав нетрудные преобразования, получим $cx^2 - by^2 = C$.

Эволюция численностей армий х и у происходит вдоль гиперболы, заданной этим уравнением (рис. 4.1). По какой именно гиперболе пойдет война, зависит от начальной точки.

Рис. 4.1: Жесткая модель войны

Эти гиперболы разделены прямой $\sqrt{c}x=\sqrt{b}y$. Если начальная точка лежит выше этой прямой, то гипербола выходит на ось у. Это значит, что в ходе войны численность армии х уменьшается до нуля (за конечное время). Армия у выигрывает, противник уничтожен. Если начальная точка лежит ниже, то выигрывает армия х. В разделяющем эти случаи состоянии (на прямой) война заканчивается истреблением обеих армий.

3. Разберем теоретичскую часть для второго случая. Здесь будем учитывать те же упрощения, что и в первом случае. Так модель второго случая принимает следующий вид:

$$\begin{cases} \frac{dx}{dt} = -by(t) \\ \frac{dy}{dt} = -cx(t)y(t) \end{cases}$$

Эта система приводится к уравнению

$$\frac{d}{dt}\left(\frac{b}{2}x^2(t) - cy(t)\right) = 0$$

которое при заданных начальных условиях имеет единственное решение:

$$\frac{b}{2}x^2(t)-cy(t)=\frac{b}{2}x^2(0)-cy(0)=C_1$$

Из рис. 4.2 видно, что при $C_1>0$ побеждает регулярная армия, при $C_1<0$ побеждают партизаны. Аналогично противоборству регулярных войск, победа обеспечивается не только начальной численностью, но и боевой выучкой и качеством вооружения. При $C_1>0$ получаем соотношение $\frac{b}{2}x^2(0)>cy(0)$. Чтобы одержать победу партизанам необходимо увеличить коэффициент c и повысить свою начальную численность на соответствующую величину. Причем это увеличение, с ростом начальной численности регулярных войск (x(0)), должно расти не линейно, а пропорционально второй степени x(0).

Рис. 4.2: Фазовые раектории системы для второго случая

4. Написала код на Julia для первого и второго случая:

```
#подключаем модули
using Plots
using DifferentialEquations
#задаем численность армий
const x0 = 21200
const y0 = 9800
#состояние системы (описывается точкой с численностями армий)
point0 = [x0, y0]
#отслеживаемый промежуток времени
time = [0.0, 5.0]
#задаем константы согласно варианту
#первая модель
a1 = 0.45
b1 = 0.86
c1 = 0.49
h1 = 0.73
#вторая модель
a2 = 0.44
b2 = 0.7
c2 = 0.33
h2 = 0.61
#функции (возможность подкрепления)
#первая модель
function P1(t)
    return sin(t+1)
```

```
end
```

```
function Q1(t)
    return cos(t+2)
end
#вторая модель
function P2(t)
    return sin(2t)
end
function Q2(t)
    return cos(t)+1
end
#сама система
#для первой модели
function F_M!(dp, point, p, t)
    dp[1] = -a1*point[1] - b1*point[2] + P1(t)
    dp[2] = -c1*point[1] - h1*point[2] + Q1(t)
end
#для второй модели
function S_M!(dp, point, p, t)
    dp[1] = -a2*point[1] - b2*point[2] + P2(t)
    dp[2] = -c2*point[1]*point[2] - h2*point[2] + Q2(t)
end
t=collect(LinRange(0, 1, 100))
```

```
prob1 = ODEProblem(F_M!, point0, time)
solv1 = solve(prob1, saveat=t)
prob2 = ODEProblem(S_M!, point0, time)
solv2 = solve(prob2, saveat=t)
#постреоние графиков
#первая модель
plt1 = plot(
    solv1,
    vars = (0, 1),
    color =:red,
    label ="Численость войска армии X",
    title ="Модель боевых действий 1",
    xlabel ="Время",
    ylabel ="Численность войск"
)
plot!(
    solv1,
    vars = (0, 2),
    color =:blue,
    label ="Численость войска страны Y"
)
savefig(plt1, "first_j.png")
#вторая модель
plt2 = plot(
```

```
solv2,
    vars = (0, 1),
    color =:red,
    label ="Численость войска страны X",
    title ="Модель боевых действий 2",
    xlabel ="Время",
    ylabel ="Численность войск"
)
plot!(
    solv2,
    vars = (0, 2),
    color =:blue,
    label ="Численость войска страны Y"
)
savefig(plt2, "second_j.png")
  5. Написала код на OpenModelica для первого случая:
model lab3model1
constant Real a = 0.45;
constant Real b = 0.86;
constant Real c = 0.49;
constant Real h = 0.73;
Real P;
Real Q;
Real x(start=21200);
```

```
Real y(start=9800);
equation
P = sin(time+1);
Q = cos(time+2);
der(x) = - a * x - b * y + P;
der(y) = -c * x - h * y + Q;
end lab3model1;
  6. Написала код на OpenModelica для второго случая (в один не получилось):
model lab3model1
constant Real a = 0.44;
constant Real b = 0.7;
constant Real c = 0.33;
constant Real h = 0.61;
Real P;
Real Q;
Real x(start=21200);
Real y(start=9800);
equation
P = \sin(2*time);
Q = cos(time)+1;
der(x) = - a * x - b * y + P;
der(y) = -c * x * y - h * y + Q;
```

end lab3model1;

7. Посмотрим на график численности для первого случая, полученный с помощью Julia (рис. 4.3) и OpenModelica (рис. 4.4). Видим, что победа досталась стране **X** (так как численность армии страны **Y** стала равной 0, при том что численность армии противника положительна).

Рис. 4.3: Модель боевых действий между регулярными войсками (Julia)

Рис. 4.4: Модель боевых действий между регулярными войсками (OpenModelica)

8. Посмотрим на график численности для второго случая, полученный с помо-

щью Julia (рис. 4.5) и OpenModelica (рис. 4.6). Видим, что победа досталась стране **X** (так как численность армии страны **Y** стала равной 0, при том что численность армии противника положительна).

Рис. 4.5: Модель боевых действий с участием регулярных войск и партизанских отрядов (Julia)

Рис. 4.6: Модель боевых действий с участием регулярных войск и партизанских отрядов (OpenModelica)

5 Выводы

Я рассмотрела некоторые простейшие модели боевых действий – модели Ланчестера. Выполнила задание согласно варианту: построила графики изменения численности войск армии X и армии У для двух случаев, определила победителей.

Список литературы

1. Лабораторная работа №3 [Электронный ресурс]. Российский университет дружбы народов, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971725 /mod_resource/content/2/Лабораторная%20работа%20№%202.pdf.