Unité d'Enseignement
MCR – Compléments et
Outils de Recherche
Opérationnelle

Méthodes arborescentes et PLNE

ENSIIE

Définition PLNE

- Programmation linéaire en nombres entiers (PLNE): Programmation linéaire où certaines variables ne peuvent prendre que des valeurs entières
 - □ Programmation pure (resp. mixte) en NE : la totalité (resp. un sous-ensemble) des variables sont entières
 - □ Programmation 0-1 ou binaire : les variables entières ne peuvent être que 0 ou 1

Exemple 1

$$\begin{cases} \max x_1 + 0.64x_2 \\ \text{s.c.:} \\ 50x_1 + 31x_2 \le 250 \\ 3x_1 - 2x_2 \ge -4 \\ x_1, x_2 \ge 0 \text{ et entiers} \end{cases}$$

Exemple 1 - Suite

MCR - Cours 3 - PLNE et Méthodes arborescentes

Définition PLNE

- □ PL et PLNE sont TRÉS différentes
- Optimisation continue convexe / Optimisation discrète

Suite de ce cours :

- □ Utilité de la PLNE
- □ Résolution des PLNE

Application 1 : choix d'usines et d'entrepôts

- But : choisir de nouveaux emplacements pour construire des usines et des entrepôts
- Deux emplacements : Lyon et Toulouse
- On ne peut construire plus d'un entrepôt
- On ne peut construire un entrepôt que dans une ville où l'on a aussi une usine
- □ On connaît, pour chaque ville :
 - Coefficient de rentabilité usine ou entrepôt
 - □ Coût de construction usine ou entrepôt
- □ Le coût total de construction ne peut pas dépasser 10
- Objectif : maximiser la rentabilité

Application 1 : données

	Rentabilité	Coût
Usine à L	9	6
Usine à T	5	3
Entrepôt à L	6	5
Entrepôt à T	4	2

Application 1 : modèle

□ Variables de décision :

- $\mathbf{L} x_1 = 1$ si une **usine** est construite à **Lyon** et 0 sinon
- $\mathbf{z}_2 = 1$ si une **usine** est construite à **Toulouse** et 0 sinon
- $\mathbf{v}_1 = 1$ si un **entrepôt** est construit à **Lyon** et 0 sinon
- $\mathbf{v}_2 = 1$ si un **entrepôt** est construit à **Toulouse** et 0 sinon

Application 1 : modèle

Contraintes

1- On ne peut construire plus d'un entrepôt

$$y_1 + y_2 \le 1$$

2- On ne peut construire un entrepôt que dans une ville où l'on a aussi une usine

$$y_1 \le x_1$$

$$y_2 \le x_2$$

3- Le coût total de construction ne peut pas dépasser 10

$$6x_1 + 3x_2 + 5y_1 + 2y_2 \le 10$$

Objectif

max
$$9x_1 + 5x_2 + 6y_1 + 4y_2$$

Application 1 : résumé du modèle

$$\begin{cases} \max Z = 9 \ x_1 + 5x_2 + 6y_1 + 4y_2 \\ y_1 + y_2 \le 1 \\ y_1 \le x_1 \\ y_2 \le x_2 \\ 6x_1 + 3x_2 + 5y_1 + 2y_2 \le 10 \\ 0 \le x_1, x_2, y_1, y_2 \le 1 \text{ et entiers} \end{cases}$$

C'est notre exemple de base

Exemple de base: résolution par un solveur/modeleur (glpk)

```
#Exemple du cours
#variables
var x1 binary;
var x2 binary;
var y1 binary;
var y2 binary;
#fonction objectif
maximize Z : 9*x1 + 5*x2 + 6*y1 + 4*y2;
#contraintes
subject to
c1: y1 + y2 \le 1;
c2: y1 \le x1;
c3: y2 \le x2;
c4: 6*x1 + 3*x2 + 5*y1 + 2*y2 \le 10;
```

```
printf "-----Début de la résolution ----\n";
solve;

printf "-----Fin de la résolution ----\n";
display Z;
display x1;
display x2;
display y1;
display y2;
end;
```

Exemple de base: résolution par un solveur/modeleur (Glpk)

```
Valeur optimale : Z^* = 14
```

valeur de x1:1

valeur de x2 : 1

valeur de y1 :0

valeur de y2 : 0

Langage de modélisation et solveur : Glpk

Résolution des PLNE

Nous allons voir comment résoudre les PLNE

- Dans le cas particulier des problèmes purement binaires PLO1
- 2. Dans le cas général des PLNE

Résolution des PLO1- Exemple de base

$$\begin{cases} \max Z = 9 \ x_1 + 5x_2 + 6y_1 + 4y_2 \\ y_1 + y_2 \le 1 \\ y_1 \le x_1 \\ y_2 \le x_2 \\ 6x_1 + 3x_2 + 5y_1 + 2y_2 \le 10 \\ 0 \le x_1, x_2, y_1, y_2 \le 1 \text{ et entiers} \end{cases}$$

Résolution des PLO1

1ère idée : énumération

Résolution des PLO1- Énumération

Idée : il existe un nombre fini de solutions. Enumérons-les!

Résolution des PLO1- Enumération

- \square Pour *n* variables binaires, 2^n cas possibles
- □ Pour n=20, plus d'un million
- \square Pour n=30, plus d'un milliard ...
- Idée d'énumération de tous les cas possibles impraticable en Optimisation Discrète en général

Résolution des PLO1

2ème idée : encadrement de la valeur optimale

Relaxation continue - exemple de base

- Relaxation continue = on « oublie » le caractère entier des variables
- On obtient un programme linéaire (continu) qu'on sait résoudre, par exemple par la méthode du simplexe :
 - □ Solution $(x_1, x_2, y_1, y_2) = (\frac{5}{6}, 1, 0, 1)$
 - Valeur optimale : $Z = \frac{33}{2} = 16.5$

Relaxation continue: interprétation

MCR - Cours 3 - PLNE et Méthodes arborescentes

Relaxation continue: interprétation

Conclusion: la valeur optimale (en entier) ≤ 16.5

Propriété générale

• Pour un problème de maximisation :

la valeur optimale en entier \leq la valeur optimale en continu

• Pour un problème de minimisation :

la valeur optimale en entier \geq la valeur optimale en continu

On dit que la valeur optimale de la relaxation continue est

- une borne supérieure (si objectif de maximisation) ou
- une borne inférieure (si objectif de minimisation)

de la valeur optimale en entier

Exemple 1- Rappel (max)

MCR - Cours 3 - PLNE et Méthodes arborescentes

Connaissance d'une solution admissible

Question: quelle information a-t-on si l'on dispose d'une solution admissible?

Connaissance d'une solution admissibleexemple de base

□ Admettons que l'on connaisse la solution

$$(x_1, x_2, y_1, y_2) = (1,0,0,0)$$

de valeur Z = 9

Connaissance d'une solution admissibleexemple de base

MCR - Cours 3 - PLNE et Méthodes arborescentes

Connaissance d'une solution admissibleexemple de base

Conclusion: la valeur d'une solution optimale est comprise entre9 et 16.5

Propriété générale :

• Pour un problème de maximisation,

val. d'une solution admissible \leq val. optimale en entier \leq val. optimale en continu

borne inférieure

borne supérieure

Pour un problème de minimisation,
 val. optimale en continu ≤ val. optimale en entier ≤ val. d'une solution admissible

Algorithme Branch-and-Bound (Séparation et évaluation) pour résoudre un PLNE

- □ Ingrédients de base :
 - encadrement de la valeur optimale (borne inférieure, borne supérieure)
 - énumération limitée dans le but d'obtenir un encadrement de plus en plus fin

Dans la solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = \left(\frac{5}{6}, 1, 0, 1\right),$$

 x_1 n'est pas entier.

□ On va « brancher » selon les deux valeurs possibles de x_1 : 0 et 1

Solution courante: 9

S: toutes les solutions entières

 $\mathsf{opt} \leq \mathsf{16.5}$

$$x_1 = 0$$

\$1: toutes les solutions entières telles que $x_1 = 0$

$$x_1 = 1$$

\$2: toutes les solutions entières telles que $x_1 = 1$

Sous-ensemble **S1** : $x_1 = 0$

$$\begin{cases} \max Z = 5x_2 + 6y_1 + 4y_2 \\ y_1 + y_2 \le 1 \\ y_1 \le 0 \\ \text{s.c.} \end{cases}$$
s.c.
$$\begin{cases} y_2 \le x_2 \\ 3x_2 + 5y_1 + 2y_2 \le 10 \\ 0 \le x_2, y_1, y_2 \le 1 \text{ et entiers} \end{cases}$$

Solution de la relaxation continue : $(x_2, y_1, y_2) = (1,0,1)$, Z=9,

et c'est une solution entière!

Solution courante: 9

S: toutes les solutions entières

 $\mathsf{opt} \leq \mathsf{16.5}$

$$x_1 = 0$$

 $\mathbf{S1}$: toutes les solutions entières telles que $x_1=0$

$$x_1 = 1$$

\$2: toutes les solutions entières telles que $x_1 = 1$

Sous-ensemble $\mathbf{S2}: x1=1$

$$\begin{cases} \max Z = 9 + 5x_2 + 6y_1 + 4y_2 \\ y_1 + y_2 \le 1 \\ y_1 \le 1 \\ y_2 \le x_2 \\ 3x_2 + 5y_1 + 2y_2 \le 4 \\ 0 \le x_2, y_1, y_2 \le 1 \text{ et entiers} \end{cases}$$

Solution de la relaxation continue :
$$(x_2, y_1, y_2) = \left(\frac{4}{5}, 0, \frac{4}{5}\right)$$
 et $Z = 16.2$

Solution courante: 9

S : toutes les solutions entières

 $\mathsf{opt} \leq \mathsf{16.5}$

$$x_1 = 0$$

 $\mathbf{S1}$: toutes les solutions entières telles que $x_1=0$

$$x_1 = 1$$

\$2: toutes les solutions entières telles que $x_1 = 1$

- Conclusion actuelle :
 - Meilleure solution admissible connue (solution courante)
 de valeur 9
 - Meilleure borne supérieure connue : 16.2
 - La valeur optimale est donc comprise entre 9 et 16.2
- □ Comment continuer ?

Le nœud **\$1** peut être **élagué** car on connaît la valeur d'une solution entière optimale dans cet ensemble.

Critère d'élagage :

La relaxation continue a une solution optimale entière

Pour le nœud **\$2**, on applique le même traitement que pour **\$**

\$2: toutes les solutions entières telles que $x_1 = 1$

 $opt \ge (16.2)$

Solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = (1, \frac{4}{5}, 0, \frac{4}{5})$$
. Et $Z = 16.2$.

On va brancher sur x_2 .

- Sous-ensemble $\mathbf{S3}: x_1=1$ et $x_2=0$. Solution de la relaxation continue : $(x_1,x_2,y_1,y_2)=\left(1,0,\frac{4}{5},0\right)$ et Z=13.8
- Sous-ensemble $\mathbf{S4}: x_1=1$ et $x_2=1$. Solution de la relaxation continue $:(x_1,x_2,y_1,y_2)=\left(1,1,0,\frac{1}{2}\right)$ et Z=16

- □ Conclusion actuelle :
 - □ Valeur meilleure solution connue: 9
 - Meilleure borne supérieure connue :16
- □ On ne peut élaguer ni \$3 ni \$4

□ Sous-ensemble **S5** : $x_1 = 1$, $x_2 = 1$ et $y_2 = 0$ Solution de la relaxation continue :

$$(x_1, x_2, y_1, y_2) = (1, 1, \frac{1}{5}, 0)$$
 et $Z = 15.2$

□ Sous-ensemble **S6** : $x_1 = 1$, $x_2 = 1$ et $y_2 = 1$ impossible. **S6** peut donc être élagué

- □ Conclusion actuelle :
 - □ Valeur meilleure solution connue: 9
 - Meilleure borne supérieure connue : 15.2
- \square On peut repartir soit avec \$3 soit avec \$5, on repart avec \$5, on branche sur y_1 .

□ Sous-ensemble **\$7**:

 $x_1 = 1, x_2 = 1, y_2 = 0$ et $y_1 = 0$. Solution unique entière et Z = 14 (>9 donc nouvelle solution courante)

□ Sous-ensemble **\$8**:

 $x_1=1, x_2=1, y_2=0$ et $y_1=1$ impossible. S8 peut donc être élagué

MCR - Cours 3 - PLNE et Méthodes arborescentes

 Conclusion : on peut s'arrêter car tous les nœuds ont été élagués. On prouve ainsi que la solution de valeur 14 est optimale!

B&B- Exemple de base, gain par rapport à l'énumération complète

Algorithme B&B (max)- Résumé

- Initialisation
 - □ Calculer une solution admissible de valeur Z^* ou poser $Z^{*=-\infty}$
 - Résoudre la relaxation continue et mettre à jour éventuellement Z* (évaluation)
 - □ Appliquer les tests d'élagage
- Tant qu'il reste des nœuds non élagués
 - □ Choisir un nœud non élaqué
 - □ Brancher sur une des variables (séparation)
 - Pour chacun des 2 nouveaux nœuds, résoudre la relaxation continue et mettre à jour éventuellement Z*
 - □ Appliquer les tests d'élagage
- □ Fin tant que
- □ La solution courante Z* est optimale

Algorithme B&B (max)- Résumé- suite

- □ Un nœud est élagué si :
 - La relaxation continue n'a pas de solution
 - \blacksquare La valeur optimale de la relaxation continue $\le Z^*$
 - Solution entière de la relaxation continue
 - Pas de solution admissible entière : très difficile à tester en général
- □ La mise en place de l'algorithme nécessite de préciser :
 - □ La règle de sélection : quel nœud non élagué choisir ?
 - La règle de branchement : sur quelle variable brancher ?

Algorithme B&B (max)- Résumé- suite

Dans le cas général des variables entières (non seulement 0-1), on choisit une variable de valeur fractionnaire dans la solution optimale de la relaxation continue et on branche sur l'arrondi supérieur et inférieur de cette valeur

Exemple : $x_5 = 132.48$

Détermination des solutions admissibles

- Ce n'est pas toujours facile (pb général NP-complet)
- Il n'existe pas de méthode générale rapide
- On peut se contenter de celles qu'on trouve lors de la résolution des relaxations continues
- Il existe des algorithmes qui fonctionnent bien dans des cas particuliers, par exemple l'arrondi

Problème d'efficacité

- C'est le nombre de nœuds explorés qui déterminera le temps de calcul. À chaque nœud, on résout un programme linéaire (continu)
- On ne peut pas prévoir à l'avance le nombre maximal de nœuds qu'il faudra explorer
- En règle générale, un programme linéaire continu se résout ((vite))
- □ Un PLNE nécessite du temps ...

Efficacité- Exemple

$$\min Z = \sum_{j=1}^{n} c_j x_j$$

s.c.:

$$\sum_{j=1}^{n} a_{1j} x_j \le b_1$$

$$\sum_{j=1}^{n} a_{2j} x_j \le b_2$$

 x_i variables binaires

- Problème avec n=1000 variables données générées aléatoirement
- Relaxation continue: 0.03 secondes
- Résolution en entier : 43 secondes (251 402 nœuds)

Quelques implémentations classiques des B&B

□ Méthode de Balas pour les PLO1 (minimisation) :

- Ré-écrire z (à minimiser) de sorte que z n'ait pas de coefficients négatifs et les variables soient triées en ordre croissant de ces coefficients (tout programme peut être exprimé de cette façon)
- Séparation : fixer une variable soit à 0 soit à 1
- Si un sous-problème a un second-membre positif ou nul, on a déjà une solution réalisable (en fixant toutes les variables restant à 0) et c'est la solution optimale de ce (sous-)problème
- Parcourir l'arbre en profondeur
- Plusieurs règles d'élagage permettent de savoir qu'un problème donné est infaisable ou ne peut donner une solution meilleure d'une solution déjà trouvée.

Quelques implémentations classiques des B&B

■ Méthode de Dakin pour les PLNE :

- Choisir à chaque itération le nœud possédant la meilleure solution de son programme relaxé
- Séparer sur une nouvelle variable dont la valeur (dans la solution optimale du programme relaxé) est la plus proche d'un entier k. Cette variable a une fourchette de valeurs possibles, disons [min,max]. On construit deux nouveaux problèmes, un avec [min,k], et l'autre avec [k+1,max]