Swapnil Pandey Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

Let f: R → R and g: R → R be two non-constant differentiable functions.

If $f'(x) = (e^{(f(x))-g(x)})g'(x)$ for all $x \in R$, and f(1) = g(2) = 1, then which of the following statement(s) is (are) TRUE? [JEE Ad. 2018]

(A) $f(2) < 1 - \log_e 2$

(B) $f(2) > 1 - \log_e 2$

(C) $g(1) > 1 - \log_e 2$

(D) $g(1) < 1 - \log_e 2$

6. If $x = \frac{41}{1+l^2}$ and $y = \frac{2-21}{1+l^2}$ where 'l' is a parameter and range of $f(x, y) = x^2 - xy + y^2$ is [a, b] then (a + b) is equal to

then (a + b) is equa

(A) 4

(B) 6

(C) 8

(D) 12

Solve the following problems from (a) to (e) on functional equation.

- (a) The function f(x) defined on the real numbers has the property that f(f(x)) · (1 + f(x)) = −f(x) for all x in the domain of f. If the number 3 is in the domain and range of f, compute the value of f(3).
- (b) Suppose f is a real function satisfying f(x + f(x)) = 4 f(x) and f(1) = 4. Find the value of f(21).
- (c) Let 'f' be a function defined from R⁺ → R⁺. If [f(xy)]² = x(f(y))² for all positive numbers x and y and f(2) = 6, find the value of f(50).
- (d) Let f be a function such that f(3) = 1 and f(3x) = x + f(3x − 3) for all x. Then find the value of f(300).

10. If $h(x) = Ax^5 + B\sin x + C\ln\left(\frac{1+x}{1-x}\right) + 7$, where A, B, C are non-zero real constants and $h\left(\frac{-1}{2}\right) = 6$, then find the vale of $h\left(\frac{\operatorname{sgn}(e^{-x})}{2}\right)$.

Daily Work Sheet-4

SINGLE CORRECTTYPE

(-4) (4) 4x

_	
r2 + v v > 0	
(C) $(-\infty, -1) \cup (1, \infty)$	(D) (-e, e)
(A) (-e,-1)	(B) $(-e, -1) \cup (1, e)$
If $f(x)$ is defined on $(0,1)$, th	nen the domain of definition of $f(e^x) + f(\ln x)$ is
	(A) $(-e, -1)$ (C) $(-\infty, -1) \cup (1, \infty)$

- 10. If the three points with position vectors (1, a, b); (a, 2, b) and (a, b, 3) are collinear in space, then the value of a + b is
 - (A) 3
- (B) 4
- (C) 5
- (D) none
- 5. Four points A(+1, -1, 1); B(1, 3, 1); C(4, 3, 1) and D(4, -1, 1) taken in order are the vertices of
 - (A) a parallelogram which is neither a rectangle nor a rhombus
 - (B) rhombus
 - (C) an isosceles trapezium
 - (D) a cyclic quadrilateral.
- 26. The magnitude of the vector $(\vec{p}\cdot\vec{s})(\vec{q}\times\vec{r}) + (\vec{q}\cdot\vec{s})(\vec{r}\times\vec{p}) + (\vec{r}\cdot\vec{s})(\vec{p}\times\vec{q})$ is
 - (A) 4
- (B) 8
- (C) 18
- (D) 2

MATRIX MATCH TYPE

- (a) Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be three vectors. A vector \vec{v} in the plane of 7. \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by

 - (A) $\hat{i} 3\hat{j} + 3\hat{k}$ (B) $-3\hat{i} 3\hat{j} \hat{k}$ (C) $3\hat{i} \hat{j} + 3\hat{k}$ (D) $\hat{i} + 3\hat{j} 3\hat{k}$
- (b) The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is/are

 - (A) $\hat{j} \hat{k}$ (B) $-\hat{i} + \hat{j}$ (C) $\hat{i} \hat{j}$ (D) $-\hat{j} + \hat{k}$
- (c) Let $\vec{a} = -\hat{i} \hat{k}$, $\hat{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is [JEE 2011, 3+4+4]

5. Let O be an interior point of $\triangle ABC$ such that $2\overline{OA} + 5\overline{OB} + 10\overline{OC} = \overline{0}$. If the ratio of the area of $\triangle ABC$ to the area of $\triangle AOC$ is t, where 'O' is the origin. Find [t]. (where [] denotes greatest integer function)