Artificial Intelligence (AI) for Engineering

COS40007

Dr. Afzal Azeem Chowdhary

Lecturer, SoCET, Swinburne University of Technology

Seminar 2: 11th March 2025

Overview

- ☐ Steps of Machine Learning
- □ Data collection
- □ Data cleaning and Feature Engineering
- ☐ Model Training
- ☐ Testing and Evaluation
- ☐ Model Improvement

.

.

Required Reading

- -Chapter 1 and Chapter 4 of "Machine Learning with Pytorch and Scikit-Learn"
- A Reference Guide to Feature Engineering Methods

• • • • • • • •

.

At the end of this you should be able to

- Understand the steps you need to complete to develop machine learning models
- Understand how to perform data pre-processing
- Understand model training and development process

Steps of Machine Learning

How to use Machine Learning in applications?

Workflow for predictive modelling

Data collection

Raw data

- Database tables
- Data file dumps from machine, processes
- Continuous time series data from sensors
- Images
- Videos
- Text

Raw data rarely comes in the form and shape that is necessary for the optimal performance of a learning algorithm. Thus, the preprocessing of the data is one of the most crucial steps in any machine learning application

Data preparation

- It is essential to have quality data that you can use to train your models
- If the data has minor discrepancies or missing information, it can greatly impact your model's accuracy.
- Data preparation takes 80% of the total data engineering effort
- Real-world data may be noisy or impure. Data preparation produces a narrower dataset than the source, which can boost data collection performance dramatically.

Given the strength of sonar, the prediction of whether or not an object is a mine or a rock returns at different angles.

```
1 0.0200,0.0371,0.0428,0.0207,0.0954,0.0986,0.1539,0.1601,0.3109,0.2111,0.1609,0.1582,0.2238,0.0645,0.0660,0.227
2 3,0.3100,0.2999,0.5078,0.4797,0.5783,0.5071,0.4328,0.5550,0.6711,0.6415,0.7104,0.8080,0.6791,0.3857,0.1307,0.2
3 604,0.5121,0.7547,0.8537,0.8507,0.6692,0.6097,0.4943,0.2744,0.0510,0.2834,0.2825,0.4256,0.2641,0.1386,0.1051,0
4 .1343,0.0383,0.0324,0.0232,0.0027,0.0065,0.0159,0.0072,0.0167,0.0180,0.0084,0.0090,0.0032,R
 0.0453,0.0523,0.0843,0.0689,0.1183,0.2583,0.2156,0.3481,0.3337,0.2872,0.4918,0.6552,0.6919,0.7797,0.7464,0.944
  4.1.0000.0.8874.0.8024.0.7818.0.5212.0.4052.0.3957.0.3914.0.3250.0.3200.0.3271.0.2767.0.4423.0.2028.0.3788.0.2
  947,0.1984,0.2341,0.1306,0.4182,0.3835,0.1057,0.1840,0.1970,0.1674,0.0583,0.1401,0.1628,0.0621,0.0203,0.0530,0
  .0742,0.0409,0.0061,0.0125,0.0084,0.0089,0.0048,0.0094,0.0191,0.0140,0.0049,0.0052,0.0044,R
 0.0262,0.0582,0.1099,0.1083,0.0974,0.2280,0.2431,0.3771,0.5598,0.6194,0.6333,0.7060,0.5544,0.5320,0.6479,0.693
  1,0.6759,0.7551,0.8929,0.8619,0.7974,0.6737,0.4293,0.3648,0.5331,0.2413,0.5070,0.8533,0.6036,0.8514,0.8512,0.5
 045,0.1862,0.2709,0.4232,0.3043,0.6116,0.6756,0.5375,0.4719,0.4647,0.2587,0.2129,0.2222,0.2111,0.0176,0.1348,0
  .0744,0.0130,0.0106,0.0033,0.0232,0.0166,0.0095,0.0180,0.0244,0.0316,0.0164,0.0095,0.0078,M
  0.0100,0.0171,0.0623,0.0205,0.0205,0.0368,0.1098,0.1276,0.0598,0.1264,0.0881,0.1992,0.0184,0.2261,0.1729,0.213
  1,0.0693,0.2281,0.4060,0.3973,0.2741,0.3690,0.5556,0.4846,0.3140,0.5334,0.5256,0.2520,0.2090,0.3559,0.6260,0.7
  340,0.6120,0.3497,0.3953,0.3012,0.5408,0.8814,0.9857,0.9167,0.6121,0.5006,0.3210,0.3202,0.4295,0.3654,0.2655,0
  .1576,0.0681,0.0294,0.0241,0.0121,0.0036,0.0150,0.0085,0.0073,0.0050,0.0044,0.0040,0.0117,R
  0.0762,0.0666,0.0481,0.0394,0.0590,0.0649,0.1209,0.2467,0.3564,0.4459,0.4152,0.3952,0.4256,0.4135,0.4528,0.532
  6,0.7306,0.6193,0.2032,0.4636,0.4148,0.4292,0.5730,0.5399,0.3161,0.2285,0.6995,1.0000,0.7262,0.4724,0.5103,0.5
  459,0.2881,0.0981,0.1951,0.4181,0.4604,0.3217,0.2828,0.2430,0.1979,0.2444,0.1847,0.0841,0.0692,0.0528,0.0357,0
  .0085,0.0230,0.0046,0.0156,0.0031,0.0054,0.0105,0.0110,0.0015,0.0072,0.0048,0.0107,0.0094,R
```


Time-series data for x,y,z acceleration from accelerometer sensor

timestamp	х	у		Z
	1502851906	0.371338	0.575684	0.69751
	1502851906	0.21875	0.470215	0.672607
	1502851906	0.161377	0.360107	0.707764
	1502851906	0.164307	0.302734	0.666504
	1502851906	0.243652	0.258545	0.632813
	1502851906	0.326172	0.226074	0.577637
	1502851906	0.358643	0.196045	0.577393
	1502851906	0.428223	0.176025	0.656738
	1502851906	0.460205	0.172363	0.603516
	1502851906	0.47876	0.134521	0.559326
	1502851906	0.411865	0.112793	0.531738
	1502851906	0.384033	0.085938	0.487061
	1502851906	0.404053	0.042236	0.435059
	1502851906	0.428955	-0.01685	0.387207
	1502851906	0.175293	-0.08179	0.121094
	1502851906	-0.12915	-0.03638	-0.00732
	1502851906	-0.39819	-0.02417	-0.04663

				Samp						•	•	
C	Laurkau kiusa	Dafaa alaka	D = f = + i = =	Measured temper		taint Dant	Caala					
Server time	Laptop time	Refrac date				tainty Part	Scale			•	•	
27/08/2019 3:4	6 27/08/2019 3:46	27/08/2011	. 00:53:30	65.5	20	26 brd	bx	no				
27/08/2019 4:1	.1 27/08/2019 4:11	27/08/2011	01:18:10	65	20	25 brd	bx	no				
27/08/2019 4:4	0 27/08/2019 4:40	27/08/2011	01:46:55	66.2	20	25 brd	bx	no		•	•	
27/08/2019 5:0	0 27/08/2019 5:00	27/08/2011	02:07:46	69	20	28 brd	bx	no				
27/08/2019 5:0	1 27/08/2019 5:01	27/08/2011	02:08:47	68.6	20	27 brd	bx	no		•	•	
27/08/2019 5:0	4 27/08/2019 5:04	27/08/2011	02:11:37	68.1	20	25 brd	bx	no				
27/08/2019 5:2	1 27/08/2019 5:21	27/08/2011	02:27:58	67.4	20	22 brd	bx	no		•	•	
27/08/2019 5:4	7 27/08/2019 5:47	27/08/2011	02:54:07	67.2	20	21 brd	bx	no				
27/08/2019 5:5	1 27/08/2019 5:51	27/08/2011	02:58:20	41.3	20	28 vegmite	bx	no				
27/08/2019 6:0	8 27/08/2019 6:08	27/08/2011	03:15:44	62.6	20	21 vegmite	bx	no				
27/08/2019 6:1	.2 27/08/2019 6:12	27/08/2011	03:19:41	62.3	20	21 vegmite	bx	no				
27/08/2019 8:0	6 27/08/2019 8:06	27/08/2011	05:13:21	0	20	101 vegmite	bx	no				
27/08/2019 8:4	5 27/08/2019 8:45	27/08/2011	05:51:53	66.3	20	22 vegmite	bx	no				
27/08/2019 8:4	9 27/08/2019 8:49	27/08/2011	05:56:39	65.1	20	21 vegmite	bx	no				
27/08/2019 9:4	2 27/08/2019 9:42	27/08/2011	. 06:49:34	63.9	20	23 vegmite	bx	no				

•	•	•
•		

ProductType BatchSize Note

							TTOUGUCU	all roddotoot	ac i roddouranic	rroddotrype	Butterioize 110					
								1	1 Assembly Stock	Manufactured	1000					
								2 Water	Water	Raw Material				•		
Runld	RunDateTime WorkOrderlo	d ProductId RunType QtyPlanned	Ç	QtyActual QtyUofm UserId	Notes	IsCompleted IsCurrent		3 PC0041	Pearl Caustic	Raw Material						
425		2	725.4	726 KG	1	1 0		4 PN0045	Sodim Tripol	Raw Material						
426		3	6.25	7.5 KG	1	1 0	_	5 PD0011	Fluorsceine	Raw Material						
427	50:39.4 WO451		81.25	81.5 KG	1	1 0		5 PD0032	Tartrazine Yel	Raw Material				•	• •	•
428		24	600	600 KG	1	1 0		7 LC0040				LogId	WorkOrdo	LogDateTime Senso	orld LagDonorintian	LogData
429		16	18	18 KG	1	1 0	_		Product description	Raw Material				-		LogData
430	08:54.7 WO451 14:30.8 WO451	24	600 100	240 KG 101.5 KG	1	1 0		3 LN0114	Product description	Raw Material			WO451	09:33.8	2 Current Value	0
431 432	25:35.1 WO451	24	600	600 KG	1	1 0		9 LF0019	Lemon Fragrance	Raw Material		19583	WO451	09:33.9	1 Weight Value	1
432		19	1	2.5 KG	1	1 0	_ 1	PC0042	Sodium Meta	Raw Material		19584	WO451	09:39.6	1 Weight Value	0.5
434	31:41.6 WO451	24	600	16 KG	1	1 0	1	1 PC0002	Product description	Raw Material		19585	WO451	09:40.9	1 Weight Value	0
435		24	600	8 KG	1	1 0	1	2 LN0010	Butyl Glycoether	Raw Material		19586	WO451	09:41.3	1 Weight Value	0.5
436			0.12	2.5 KG	1	1 0	_	3 LN0070	SLES 70%	Raw Material			WO451	09:42.0	1 Weight Value	0
437	39:57.6 WO451	24	600	7 KG	1	1 0		1 LF0019	Lemon Fragrance	Raw Material			WO451	09:42.4		0.5
438	40:01.5 WO451	20	1	0 KG	1	1 0	_								1 Weight Value	
439	40:05.7 WO451	24	600	5 KG	1	1 0		5 LN0120	Surfactant	Raw Material			WO451	09:43.6	1 Weight Value	8.5
440	43:30.5 WO451	21	40	40.5 KG	1	1 0	_	6 LC0057	Triethanolamine	Raw Material		19590	WO451	09:44.0	1 Weight Value	25
441	46:46.9 WO451	24	600	195 KG	1	1 0	1	7 LC0021	Labs Acid	Raw Material		19591	WO451	09:44.4	1 Weight Value	24
442	49:21.0 WO451		80.6	84 KG	1	1 0	1	3 LD0163	Product description	Raw Material		19592	WO451	09:44.8	1 Weight Value	23.5
443			805.5	KG	1	0 0	1	LC0013	Acticide	Raw Material		19593	WO451	09:45.2	1 Weight Value	0.5
444	WO461	24	600	KG	1	0 0	2	LF0099	Toasted Coconut	Raw Material			WO451	09:46.8	1 Weight Value	0.0
445		3	11	KG	1 Increase stirrer	0 0		1 LN0005	CDE 80	Raw Material						
446		24	600	KG	1	0 0	2		2 T2000	Manufactured	1000		WO451	09:47.2	1 Weight Value	5.5
447		4	25 600	KG	1	0 0	_						WO451	09:47.6	1 Weight Value	26.5
448		24	23.2	KG KG	1 Reduce stirrer	0 0	2		3 Bulldog Blue	Manufactured		19597	WO451	09:48.0	1 Weight Value	28
449 450		24	600	KG	1 Reduce Stirrer	0 0	_	4 Mixing	Manual Action	Recipe Action		19598	WO451	09:48.4	1 Weight Value	27
450		7	90	KG	1	0 0	2	5	4 Wash & Shine	Manufactured	1000	19599	WO451	09:49.2	1 Weight Value	27.5
401	W0401	,	50	NO	1	0 0	2	6 PD0067	CARMOISINE	Raw Material		22300				
							2	7 LN0088	Silicone Emul	Raw Material						
							_									

ProductId ProductCode ProductName


```
. . . . . . . . . .
```

Data Pre-processing

Data cleaning

- Remove constant feature does not have an impact on the outcome
- Remove irrelevant feature id values
- Remove duplicate features (across columns) and samples (across rows)
 - -because this causes data imbalance and over-fitting during training
- Identify and remove outliers as they fall well outside decision boundary and can skew your data
- Identify and remove highly correlated features Some features may be highly correlated and therefore redundant to a certain degree (because they same information about the target variable)

Data Imputation

- Detect missing features / incorrect or missing values
- Detecting missing features can be done by plotting the histogram of each feature
- unusual outlier spikes indicate the use of special values,
- a spike in the middle of the distribution is a sign that mean/median imputation has already been performed.
- To fix missing features
- Sometimes, use the entire feature's mean/median/mode for imputation.
- For time-series data, impute using value repetition or interpolation is good.

Data Imputation

- Categorical Imputation: Missing categorical variables are generally replaced by the most commonly occurring value in other records
- Numerical Imputation: Missing numerical values are generally replaced by the mean of the corresponding value in other records

Discretization

- Discretization involves taking a set of data values and grouping sets of them together logically into bins
- Binning can apply to numerical values as well as to categorical data values.
- Grouping of equal intervals (e.g., from seconds to minute)
- Grouping based on equal frequencies
- Grouping based on sorting

Feature Encoding

- Ordinal features (such as age) may have integer values, but they differ from numeric features
- Tree-based models can use label-encoding (i.e. fixed strings or integers denoting class membership) and don't need further preprocessing.
- Non-tree methods require that categorical features be one-hot encoded (each category is converted to variable with value 0/1)

Normalisation

- Scaling or normalisation is suitable for achieving low training loss particularly for non-tree-based methods.
- Numerical features can often benefit from transformations. Log transformation, np.log(1 + x), is a powerful transformation that is particularly helpful when a feature observes a power-law relationship.

Dimensionality Reduction

- Dimensionality Reduction techniques are useful for compressing the features onto a lower-dimensional subspace.
- Reducing the Dimensionality of our feature space has the advantage of requiring less storage space, and the learning algorithm can run much faster.
- Improve the predictive performance of a model if the dataset contains a large number of irrelevant features (or noise).

Data Shuffling

- During preprocessing, it's important to shuffle your dataset before splitting it into train/validation/test subsets.
- Utilize the stratify feature of sklearn.model_selection.train_test_split() to ensure a consistent distribution of your minority targets across all your subsets.
- Help our machine learning algorithm not only perform well on the training dataset but also generalise well to new data.

Feature Generation

- Mapping existing features into a new space, for example, the date -> day of the week.
- Combining multiple features into a composite. Example: sum of 2 columns.
- Aggregating data to find patterns: Example: mean values of each minute per second time-series data.
- Merging auxiliary data.

Train Model

- It is essential to compare at least a handful of different learning algorithms to train and select the best-performing model
- Different techniques summarised as "cross-validation" can be used for validation during the training process
- In cross-validation, the dataset is further divided into training and validation subsets to estimate the model's generalisation performance.

Train Model: Parameter Tuning

- We cannot expect that the default parameters of the different learning algorithms provided by software libraries are optimal for our specific problem task
- Frequent use of hyperparameter optimisation techniques that help us to fine-tune the performance of our model
- We can think of those hyperparameters as parameters that are not learned from the data but represent the knobs of a model that we can turn to improve its performance

Train Model: Parameter Tuning

- We cannot expect that the default parameters of the different learning algorithms provided by software libraries are optimal for our specific problem task.
- Frequent use of hyperparameter optimisation techniques that help us to fine-tune the performance of our model.
- We can think of those hyperparameters as parameters that are not learned from the data but represent the knobs of a model that we can turn to improve its performance.

Evaluating models

- After we have selected a model that has been fitted on the training dataset, we can use the test dataset to estimate how well it performs on this unseen data
- If we are satisfied with its performance, we can now use this model to predict new, future data.
- Data must also be in a pre-processed format for the test dataset.
- One commonly used metric for evaluation is accuracy, which is defined as the proportion of correctly classified instances

Learn, Practice and Enjoy the AI journey

