Total No. of Questions: 6

Total No. of Printed Pages:3

Faculty of Engineering End Sem Examination May-2023

EC3CO06 Digital Signal Processing
Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

necess	sary. N	Notations and symbols have their us	sual meaning.			
Q.1	i.	Which transform has only real values?				
ii.		(a) Discrete Fourier Transform	(b) Z-Transform			
		(c) Discrete Cosine Transform	(d) None of these			
	ii.	The value of twiddle factor W _N is	-	1		
		(a) $e^{-j2\pi N}$ (b) $e^{-j2\frac{\pi}{N}}$	(c) $e^{-j2\pi}$ (d) $e^{j2\frac{\pi}{N}}$			
	iii.	Which of the following is not an l	an IIR digital filter design method?			
		(a) Bilinear Transform	(b) Impulse invariant			
		(c) Approximation of Derivative	(d) Windowing			
	iv.	In the bilinear transformation, rela	ationship between ω and Ω is-	1		
		(a) $\Omega = 2\tan\frac{\omega}{2}$	(b) $\Omega = \frac{2}{T} \tan \frac{\omega}{2}$			
		(c) $\Omega = \frac{1}{T} \tan \frac{\omega}{2}$	(d) $\Omega = tan \frac{\omega T}{2}$			
	v.	The structure which uses less number of delay elements is-				
		(a) Direct form-I	(b) Direct form-II			
		(c) Cascade form	(d) Parallel form			
	vi.	The number of multipliers required for the realization of FIR systems				
		is reduced if we choose-				
		(a) Direct form	(b) Cascade form			
		(c) Parallel form	(d) Linear Phase realization			
	vii.	The problem of losing accuracy representation of numbers on digi	because of limited number of bits in tal hardware is-	1		
		•	w (c) Round off (d) None of these			

P.T.O.

	ix.	The pipelining refers to-	1
		(a) Prefetching instructions and storing in a FIFO queue	
		(b) Fetching instructions and data simultaneously	
		(c) Executing different phases of two or more instructions in parallel	
		(d) None of these	
	х.	Which is the architectural feature of DSP Processor?	1
		(a) Separate memory for program and data	
		(b) Specialized instruction set	
		(c) Pipelining	
		(d) All of these	
Q.2	i.	State and prove Periodicity Property of DFT.	2
	ii.	The first five points of the 8-point DFT of a real – valued sequence are	3
		$\{0.05, 0.1 - j, 0.3, 0.1 + j, 0.05\}.$	
		Determine the remaining three points.	
	iii.	If $x_1(n)$ and $x_2(n)$ are N point sequences with $X_1(k)$ and $X_2(k)$ are DFTs	5
		show that	
		N-1 $N-1$	
		$\sum_{n=0}^{N-1} x_1(n) x_2^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X_1(k) X_2^*(k)$	
		n=0 $k=0$	
OR	iv.	Compute the 4-points circular convolution of-	5
		$x_1(n) = \{1, 1, 0, 0\}$ and	
		$x_2(n) = Sin (3\pi n/8), 0 \le n \le 3$	
Ω^2	•	Evaloin Cibb's Phonomenon	4
Q.3	i. 	Explain Gibb's Phenomenon.	2
	ii.	Design a normalized Butterworth digital low-pass filter using bilinear	8
		transformation. The specifications of the desired filter are- π	
		$0.9 \le H(\omega) \le 1; 0 \le \omega \le \frac{n}{2}$	
		$ H(\omega) \le 0.2; \frac{3\pi}{4} \le \omega \le \pi$	
		4	
		with $T = 1$ sec.	

OR iii. By using frequency sampling approach determine the impulse response 8

cut off frequency $\omega_c = \pi/2$.

h(n) of an FIR filter. It is given that the length of the filter is M=7 and

viii. Which Probability distribution function is not for discrete?

(a) Binomial Distribution

(c) Poisson Distribution

(b) Normal Distribution

(d) All of these

1

Q.6

Attempt any two:

Write any 5 properties of DSP processor.

Define Quantization, round-off and overflow error in digital filters. Q.4 i. 3 Realize and draw the structure for the following transfer function using 7 parallel form. H(z)=(3+1.25z-1)/(1+0.75z-1+0.125z-2)OR iii. Realize the following system with linear phase realization-7 $H(z) = \frac{1}{3} + \frac{z^{-1}}{5} + \frac{2z^{-2}}{3} + \frac{z^{-3}}{5} + \frac{z^{-4}}{3}$ Define central limit theorem for random process. Q.5 i. If X and Y are two random variables then prove the following 6 properties of covariance: (a) Cov(X, X) = Var(X)(b) Cov(aX, bY) = abCov(X, Y)(c) Cov(X+a, Y+b) = Cov(X, Y)OR iii. If the probability that an individual suffer a bad reaction from a certain 6 injection is 0.001 then by using Poisson distribution determine the probability that out of 2000 individuals (a) exact 3 and (b) more than 2 individuals will suffer a bad reaction.

Compare fixed-point and floating-point processor.

What is instruction pipelining? Briefly explain the pipeline operation.

5

5

Marking Scheme

EC3CO06 [T] Digital Signal Processing

Q.1	i)	С	1
	ii)	В	1
	iii)	D	1
	iv)	В	1
	v)	В	1
	vi)	D	1
	vii)	В	1
	viii)	В	1
	ix)	С	1
	x)	D	1
0.2	i.	Definition and proof	1Mark
Q.2	1.	Definition and proof	each
	ii.	Write derivation	3
	111.	write derivation	Marks
	iii.	Correct derivation	5
			1
OR	iv.	Each write steps	Marks
			each
Q.3	i.	Write Explanation	2 marks
Q. 5	1.	Witte Explanation	
			2
	ii.	Correct Steps and answer	Marks
			each
			2
OR	iii.	Correct Steps and answer	Marks
			each
0 1			1
Q.4	i.	Correct definitions	Mark
			each

	ii.	Correct Steps and answer	2 Marks each and 1 Mark
OR	iii.	Correct Steps and answer	2 Marks each and 1 Mark
Q.5	i.	Correct definitions and explanation	2 marks
	ii.	Each property	each 2 Marks
OR	iii.	Correct solution of each part	each 3 Marks each
Q.6			
	i.	Correct properties	1 Mark each
	ii.	Correct definitions and explanation	2.5 Marks each
	iii.	Correct comparison	Each 1 mark
