Algoritmos e Estruturas de Dados II Grafos – tipo abstrato de dados

Thiago A. S. Pardo Profa. M. Cristina Material de aula da Profa. Josiane M. Bueno

Grafos Estruturas de Dados

Como vimos na última aula...

- Há duas representações usuais:
 - Matriz de Adjacências
 - Listas de Adjacências

Grafos Matriz de Adjacências

Exemplo

	1	2	3	4	5
M =	0	1	0	0	1
	1	0	1	1	1
	0	1	0	1	0
	0	1	1	0	1
	1	1	0	1	0

- Dado um grafo G = (V, E), as listas de adjacências A é um conjunto de |V| listas A(v), uma para cada vértice v pertencente a V
- Cada lista A(v) é denominada lista de adjacências do vértice v e contém os vértices w adjacentes a v em G
- Ou seja, as listas de adjacências consistem um vetor de |V| elementos que são capazes de apontar, cada um, para uma lista linear
 - O i-ésimo elemento do vetor aponta para a lista linear das arestas que são adjacentes ao vértice i

 Como são as listas de adjacências do grafo a seguir?

Possível resposta:

 Em grafos não direcionados, cada aresta é representada 2 vezes

Como representar o dígrafo abaixo?

Possível resposta:

Vértice i aponta para vértices adjacentes

→ Outras opções?

Como representar o grafo direcionado e valorado abaixo?

Possível resposta:

Maior complexidade na representação

- Propriedades
 - Armazenamento: ?
 - Teste se aresta (i,j) está no grafo: ?

Maior complexidade na representação

- Propriedades
 - Armazenamento: O(|V| + |E|)
 - Teste se aresta (i,j) está no grafo: O(d_i),
 com d_i sendo o grau do vértice i

- Boa representação para grafos esparsos, em que |E| é muito menor do que |V|²
- Representação compacta e usualmente utilizada na maioria das aplicações
- Desvantagem: tempo O(|V|) para determinar se existe uma aresta entre i e j, pois podem haver |V| elementos na lista de adjacências de i

Atenção

- Os vértices adjacentes a um vértice i podem ser armazenados na lista de adjacências de i em ordem arbitrária ou não
- Não é incomum a lista de adjacências não ser organizada por "<u>adjacências arbitrárias</u>", mas por divergências ou convergências das arestas
- Como em qualquer lista, há liberdade para haver <u>variações</u> na representação (nós cabeça, sentinelas, etc.)

Grafos Exercício de Fixação

 Represente os grafos acima utilizando listas de adjacências

Representação com nós cabeça

Representação com nós cabeça

- Implementação de algumas das operações mais comuns
 - Criar grafo vazio
 - Inserir aresta
 - Retirar aresta
 - Existe aresta?
 - Obter lista de vértices adjacentes a um determinado vértice
 - Lista está vazia?
 - Retornar primeiro vértice da lista
 - Retornar próximo vértice adjacente da lista
 - Liberar memória utilizada pelo grafo
 - Imprimir grafo

Exercício

 Implementar sub-rotina que encontre o vértice adjacente a x com aresta de menor peso em um grafo valorado e direcionado

Grafos Comparação

Comparação	Vencedor
Rapidez para saber se(x,y) está no grafo	Matriz de adjacências
Rapidez para determinar o grau de um vértice	Listas de adjacências
Menor memória em grafos pequenos	Listas: (V + E) Matriz: V ²

Grafos Comparação

Comparação	Vencedor
Menor memória em grafos grandes	Matriz de adjacências
Inserção/remoção de arestas	Matriz: O(1) Listas: O(d)
Melhor na maioria dos problemas	Listas de adjacências
Rapidez para percorrer o grafo	Listas: $O(V + E)$ Matriz: $O(V ^2)$

Grafos Estruturas de Dados

- Outra possibilidade consiste implementar grafos simulando listas de adjacências em arranjos
 - Como seria a estrutura?
 - E as operações?