

IoT Engineering (iot)

09. Januar 2023

thomas. amberg@fhnw.ch

Assessment

Vorname:	Punkte:	/ 90,	Note:
Name:	Frei lasser	ı für Korre	ktur.
Klasse: 5ibb1			
Hilfsmittel:			
- Ein A4 Blatt handgeschriebene Notizen.			
- Lösen Sie die Aufgaben direkt auf den Prüfungsblät	ttern.		
- Zusatzblätter, falls nötig, mit Ihrem Namen und Fr	agen-Nr. auf jed	lem Blatt.	
Nicht erlaubt:			
- Unterlagen (Slides, Bücher,).			
- Computer (Laptop, Smartphone,).			
- Kommunikation mit anderen Personen.			
Bewertung:			
- Multiple Response: \square <i>Ja</i> oder \square <i>Nein</i> ankreuzen,	+1/-1 Punkt pro	richtige/fa	alsche Antwort,
beide nicht ankreuzen ergibt +0 Punkte; Total pro	Frage gibt es nic	e weniger a	ls 0 Punkte.
- Offene Fragen: Bewertet wird Korrektheit, Vollstän	digkeit und Kü	rze der Ant	wort.
Antworten Sie in ganzen Sätzen, das ist oft klarer a	ls nur einzelne	Stichworte	,
Fragen zur Prüfung:			

- Während der Prüfung werden vom Dozent keine Fragen zur Prüfung beantwortet.

- Ist etwas unklar, machen Sie eine Annahme und notieren Sie diese auf der Prüfung.

Seite 1 / 9

Internet of Things

1) Nennen Sie zwei wes	sentliche Unterschiede v	on IoT zu P	hysical Computing.	Punkte: _ / 4
Unterschiede hier eint	ragen, jeweils beide Sei	ten ausform	nulieren:	
IoT		Physical	Computing	
2) Welche der Anwend	lungen unten sind typiso	cherweise Io	T Use Cases, d.h. sie	sind nur dank
Sensoren/Aktuatoren	und einer Verbindung ir	ns Internet r	nöglich?	Punkte: _ / 4
Zutreffendes ankreuze	en:			
□ Ja □ Nein C	Car Sharing (z.B. Mobilit	y)		
□ Ja □ Nein K	Küchenwecker (physisch	es Gerät)		
□ Ja □ Nein C	Citizen Sensing (mit Con	nmunity Ma	p)	
□ Ja □ Nein T	V-Fernsteuerung (für L	autstärke, K	Kanal)	
3) Welche physischen	Eigenschaften spielen fü	ir die jeweil	ige Anwendung eine	wesentliche
Rolle, und wozu werde	n (lokal oder via Interno	et) Daten üb	ertragen?	Punkte: _ / 8
Anwendung	Physische Eigensch	aften	Datenübertragung	
Car Sharing				
Küchenwecker				
Citizen Sensing				
TV-Fernsteuerung				

Mikrocontroller

4) Nennen Sie drei wesentliche Schritte, um Mikrocontroller zu programmieren.	Punkte: _ / 6
Ergänzen Sie die Sätze und erklären Sie jeweils kurz, wieso das relevant ist:	

Zuerst, den Mikrocontroller
Dann, auf dem Laptop
Resultat:
Resultat

5) Nennen Sie drei wesentliche Schritte, um in Arduino *GPIO-Pins* zu verwenden. P.kte: _ / 6

Ergänzen Sie die Sätze und erklären Sie jeweils kurz, wieso das relevant ist:

Ir	n globalen Variablen,
Ir	n der setup() Funktion,
Ir	n der <i>loop()</i> Funktion,

6) Gegeben den folgenden Code: Wie sieht die State-Machine des Geräts aus? Punkte: _ / 10

```
01 ... // ignore includes, defines
02
03 int state = 0;
04 long t0; // ms
05 TM1637 tm1637(CLK_PIN, DIO_PIN);
06
07 void setup() { ... } // ignore setup details
08 void display(long sec) { ... } // 4-digit, ignore details
09
10 void loop() {
11
     int 1 = digitalRead(BTN_L_PIN); // active high, labeled L
12
     int r = digitalRead(BTN_R_PIN); // active high, labeled R
13
     long t = millis();
     if (state == 0 \&\& !r) { display(0); }
14
15
     else if (state == 0 && r) { t0 = t; state = 1; }
     else if (state == 1 && !r) { state = 2; }
16
     else if (state == 2 && !1 && !r) {
17
18
       long dt = (t - t0) / 1000;
19
       display(dt); }
20
     else if (state == 2 && 1) { state = 3; }
     else if (state == 3 && !1) { state = 0; }
21
     else if (state == 2 && r) { state = 4; }
22
     else if (state == 4 && !r) { state = 5; }
23
     else if (state == 5 && 1) { state = 3; }
24
25 }
```

Zeichnen Sie die State-Machine, mit Übergängen der Form [S1]—condition|action—>[S2].

IoT Plattformen

Zutreffendes ankreuzen:

□ Ja | □ Nein

_		nit einem Zeitstempel zu verse	hen. P.kte: _ / 4
Vor- und Nachteile hie	er eintragen, jeweils beid	e Seiten ausformulieren:	
Ansatz	Vorteil	Nachteil	
Auf dem Device mit Zeitstempel versehen			
Im Cloud-Backend mit Zeitstempel versehen			
	se Ansätze, einen Web-Se er eintragen, jeweils beid	rver mit TLS zu verifizieren. e Seiten ausformulieren:	Punkte: _ / 4
Ansatz	Vorteil	Nachteil	
Ansatz Zertifikat verifizieren	Vorteil	Nachteil	
Zertifikat	Vorteil	Nachteil	
Zertifikat verifizieren Fingerprint		Nachteil	

Bei Basic Authentication senden die Clients Passworte Base64-kodiert.

Das TCP/IP Protokoll basiert auf HTTP, es nutzt dieses als Transport.

HTTP kann statt Text-basierten auch binären Content übertragen.

CoAP nutzt binär codierte "HTTP Headers", um Bytes zu sparen.

Seite 5 / 9

Bluetooth Low Energy (BLE)

10) Gegeben diese GATT Services für ein Blutzucker-Messgerät und eine Insulinpumpe, sowie ein Drittgerät, welches die beiden verbindet: Ergänzen Sie die Geräte-Namen, ihre BLE Rolle, Operationen und relevant UUIDs im Sequenzdiagramm unten.

Punkte: _ / 10

```
0x181F Continuous Glucose Monitoring (CGM) Service
   0x2AA7 CGM Measurement [N] // <- 0x00000 - 0xffff, mg/dL

0x0D44 Insulin Pump (Patch) Service
   0x11DD Set Bolus (...) [W] // -> 0x000 - 0xff, units
```

Ergänzen Sie Namen, Rollen (Central, Peripheral), Operationen (Write, Notify), und UUIDs:

Lokale IoT Gateways

11) Erklären Sie drei wesentliche Aufgaben eines lokalen Gateways im IoT Kontext. P.kte: _ /6
Ergänzen Sie die Sätze, indem Sie je ein Beispiel ausformulieren:

```
Connectivity überbrücken, z.B. ...

Identitäten abbilden, z.B. ...

Payloads umfüllen, z.B. ...
```


Messaging Protokolle

12) Welche dieser A	ussagen zu MQTT Topics, Clients und Brokern sind korrekt? Punkte: $_/4$
Zutreffendes ankreı	ızen:
□ Ja □ Nein	Ein Client kann mit einer Subscription mehrere Topics abonnieren.
□ Ja □ Nein	Der Broker kann beim Client eine "Last Will" Message hinterlegen.
□ Ja □ Nein	Die Topic Wildcard $a/b/\#$ matched auf Topics $a/b/d$ und $a/b/c/d$
□ Ja □ Nein	Broker können spontan eigene Messages publizieren, ohne Client.
Long Range C	Connectivity
13) Welche dieser In	tegrationen erlauben es einer App, LoRa-Devices zu steuern? P.kte: $_/$ 4
Zutreffendes ankreı	$uzen$, $Semantik$ des $Pfeils$ ist A $-Request$ \to B $(nicht$ $immer$ $=$ $Datenfluss)$:
□ Ja □ Nein	[TTN LoRa Backend] \leftarrow SUB $-$ [Glue Code] $-$ POST \rightarrow [App Backend]
□ Ja □ Nein	[TTN LoRa Backend] \leftarrow PUB $-$ [Glue Code] \leftarrow POST $-$ [App Backend]
□ Ja □ Nein	[TTN LoRa Backend] \leftarrow POST $-$ [Glue Code] $-$ GET \rightarrow [App Backend]
□ Ja □ Nein	[TTN LoRa Backend] −POST→ [Glue Code] −PUT→ [App Backend]
Dashboards u	and Apps
14) Erklären Sie, wa	s Glue Code ist und wo dieser Code gehostet werden kann. Punkte: _/4
Ergänzen Sie die Sä	tze, und geben Sie je ein Beispiel:
Glue Code ist .	
Gehostet werden	kann Glue Code

Regelbasierte Integration

15) Erklären Sie je einen wesentlichen Vor- und Nachteil von Tools wie Node-RED. P. k te: $_/4$		
Ergänzen Sie die Sä	itze, und geben Sie je ein Beispiel:	
Ein Vorteil ist		
Ein Nachteil is	t	
Sprachsteuer	ung	
16) Welche dieser A	ussagen zu Sprachassistenten wie Amazon Alexa sind korrekt? P.kte: $_/\ 4$	
Zutreffendes ankrei	ızen:	
□ Ja □ Nein	Die Spracherkennung erfolgt mittels JSON-Files im (AWS-) Backend.	
□ Ja □ Nein	Der Intent (Absicht) wird aus dem Wake-Word (Weck-Wort) erkannt.	
\square Ja \square Nein	Die Antwort eines Skills (Sprach-App) heisst Utterance (Äusserung).	
□ Ja □ Nein	"Voice-Hardware" kann in eigene IoT Produkte eingebaut werden.	
Edge Comput	ting	
17) Erklären Sie, wie	eso es Kosten spart und die Privatsphäre schützt, ein Kamera-basiertes	
IoT System zur Erke	ennung von Waldbränden mit Edge-Computing umzusetzen. Punkte: $_/$ 4	
Ergänzen Sie die Sä	itze mit je einer, möglichst schlüssigen Begründung:	
Edge-Computing	spart Connectivity-Kosten,	
Edge-Computing	schützt die Privatsphäre,	

Zusatzblatt zu Aufgabe Nr	von (Name)	