QuarkOS: Pushing the operating limits of micro-powered sensors

Pengyu Zhang, Deepak Ganesan, Boyan Lu School of Computer Science University of Massachusetts Amherst

Frontier of wireless sensing

Glucose sensor in bloodstream

Long-term drug delivery

Epidermal electronics

In-ear molecular sensor

Vital signs bandaid

EEG acquisition

How to power these devices?

Glucose sensor in bloodstream

In-ear molecular sensor

How to power these devices?

Long-term drug delivery

Epidermal electronics

Vital signs bandaid

EEG acquisition

Energy harvesting sources

Micro-solar cells

Vibration energy harvester

Thermal gradient

Wireless power

Nanogenerator

Biofuel cells

Power regime

	buffer size (Ah)	power (mW)
mote-class sensor	0.2	5.4
mm-cube sensor	0.6*10^-6	10*10^-6

micro-powered devices have 6 order of magnitude smaller buffer as well as harvested power

Existing OS for micro-powered sensors

When we scale down by so many orders of magnitude, assumptions made by existing sensor systems break down

Natural light harvesting Tiny capacitor buffer

Existing OS for micro-powered sensors

When we scale down by so many orders of magnitude, assumptions made by existing sensor systems break down

Natural light harvesting Tiny capacitor buffer

Energy harvesting system

Energy harvesting system

University of Massachusetts Amherst - School of Computer Science

Energy harvesting system

University of Massachusetts Amherst - School of Computer Science

Energy harvesting system

University of Massachusetts Amherst - School of Computer Science

Energy harvesting system

QuarkOS

QuarkOS is designed to fragment data transfer, sensing, processing, and storage into the finest granularity possible.

QuarkOS: Bit-by-bit communication

We show that a bit-by-bit communication stack can operate at 3x lower harvesting regimes

QuarkOS: Pixel-by-pixel image sensing

We show that pixel-by-pixel image sensing can enable operation with a small solar panel under natural indoor light.

Challenges: Network stack design

Network stack design challenges

backscatter radio

passive devices

transport layer

How to deal with channel losses vs energy losses?

MAC layer

How to optimize throughput despite variable sleep gaps?

physical layer

How to decode variable sized fragments?

Challenges: Sensing stack

pixel sleep pixel sleep pixel sleep

non-deterministic sleep gaps

Application

What is the impact on application fidelity?

Image processing

How to deal with motion blur due to variable sleep gaps?

Physical layer

How to reduce the power consumption of single pixel sensing?

Conclusion

 As wireless sensor devices scale down, so too should the software system running on these devices.

 Fragment every piece of the system to minimize the energy required for any fragment.

 We demonstrate the power of QuarkOS by fragmenting two components of an OS: passive communication and image sensing.

Thank you!