Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Answer: The optimal value of alpha for Ridge is 2 and for Lasso it is 0.01.

Doubling alpha using **Lasso Regression** - doubling the value of alpha penalises the model, so more coefficients become 0, which increases the r-squared error.

Ridge Regression - doubling the value of alpha will cause the model to apply a penalty to the curve and allow it to become more generalised and simple, producing more errors in test and train data.

Ridge Regression Model

	Ridge Co-Efficient		Ridge Doubled Alpha Co-Efficient
Total_sqr_footage	0.169122	Total_sqr_footage	0.149028
GarageArea	0.101585	GarageArea	0.091803
TotRmsAbvGrd	0.067348	TotRmsAbvGrd	0.068283
OverallCond	0.047652	OverallCond	0.043303
LotArea	0.043941	LotArea	0.038824
CentralAir_Y	0.032034	Total_porch_sf	0.033870
LotFrontage	0.031772	CentralAir_Y	0.031832
Total_porch_sf	0.031639	LotFrontage	0.027526
Neighborhood_StoneBr	0.029093	Neighborhood_StoneBr	0.026581
Alley_Pave	0.024270	OpenPorchSF	0.022713
OpenPorch SF	0.023148	MSSubClass_70	0.022189
MSSubClass_70	0.022995	Alley_Pave	0.021672
RoofMatl_WdShngl	0.022586	Neighborhood_Veenker	0.020098
Neighborhood_Veenker	0.022410	BsmtQual_Ex	0.019949
SaleType_Con	0.022293	KitchenQual_Ex	0.019787
HouseStyle_2.5Unf	0.021873	HouseStyle_2.5Unf	0.018952
PavedDrive_P	0.020160	MasVnrType_Stone	0.018388
KitchenQual_Ex	0.019378	PavedDrive_P	0.017973
LandContour_HLS	0.018595	RoofMatl_WdShngl	0.017856
SaleType_Oth	0.018123	PavedDrive_Y	0.016840

Lasso Regression Model

	Lasso Co-Efficient		Lasso Doubled Alpha Co-Efficient
Total_sqr_footage	0.202244	Total_sqr_footage	0.204642
GarageArea	0.110863	GarageArea	0.103822
TotRmsAbvGrd	0.063161	TotRmsAbvGrd	0.064902
OverallCond	0.046686	OverallCond	0.042168
LotArea	0.044597	CentralAir_Y	0.033113
CentralAir_Y	0.033294	Total_porch_sf	0.030659
Total_porch_sf	0.028923	LotArea	0.025909
Neighborhood_StoneBr	0.023370	BsmtQual_Ex	0.018128
Alley_Pave	0.020848	Neighborhood_StoneBr	0.017152
OpenPorch SF	0.020776	Alley_Pave	0.016628
MSSubClass_70	0.018898	OpenPorchSF	0.016490
LandContour_HLS	0.017279	KitchenQual_Ex	0.016359
KitchenQual_Ex	0.016795	LandContour_HLS	0.014793
BsmtQual_Ex	0.016710	MSSubClass_70	0.014495
Condition1_Norm	0.015551	MasVnrType_Stone	0.013292
Neighborhood_Veenker	0.014707	Condition1_Norm	0.012674
MasVnrType_Stone	0.014389	BsmtCond_TA	0.011677
PavedDrive_P	0.013578	SaleCondition_Partial	0.011236
LotFrontage	0.013377	LotConfig_CulDSac	0.008776
PavedDrive_Y	0.012363	PavedDrive_Y	0.008685

Overall since the alpha values are small, we do not see a huge change in the model after doubling the alpha.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer:

- The optimum lambda value in case of Ridge and Lasso is as follows:-
 - Ridge 2
 - Lasso 0.001
- Lasso helps in feature reduction (as the coefficient value of some of the features become zero), Lasso has a better edge over Ridge and should be used as the final model.

Lasso Regression : Penalty is the absolute value of the magnitude of coefficients which is identified by cross-validation. As the lambda value increases Lasso shrinks the coefficients towards 0. Hence, Lasso also helps in the feature selections.

In Ridge Regression : It uses the hyper-parameter called lambda as a penalty multiplied by the square of the magnitude of the coefficients which is identified as the cross-validation. The penalty is lambda times the sum of squares of the coefficients.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer: The five most important predictor variables in the current lasso model is:-

- Total_sqr_footage
- 2. GarageArea
- 3. TotRmsAbvGrd
- 4. OverallCond
- 5. LotArea

The new Top 5 predictors are:-

	Lasso Co-Efficient
LotFrontage	0.146535
Total_porch_sf	0.072445
HouseStyle_2.5Unf	0.062900
HouseStyle_2.5Fin	0.050487
Neighborhood_Veenker	0.042532

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer:

As Per, Occam's Razor— given two models that show similar 'performance' in the finite training or test data, we should pick the one that makes fewer on the test data due to following reasons:-

- Simpler models are usually more 'generic' and are more widely applicable
- Simpler models require fewer training samples for effective training than the more complex ones and hence are easier to train.

Regularisation can be used to make the model simpler. Regularisation helps to strike the delicate balance between keeping the model simple and not making it too naive to be of any use. For regression, regularisation involves adding a regularisation term to the cost that adds up the absolute values or the squares of the parameters of the model.

Bias quantifies how accurate is the model likely to be on test data. A complex model can do an accurate job prediction provided there is enough training data. Models that are too naïve, for e.g., one that gives same answer to all test inputs and makes no discrimination whatsoever has a very large bias as its expected error across all test inputs are very high.

Variance refers to the degree of changes in the model itself with respect to changes in the training data.

Thus accuracy of the model can be maintained by keeping the balance between **Bias and Variance** as it minimises the total error as shown in the below graph:

