Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

TG: Proposta e planejamento

Autor: Orientador:

Henrique de Abreu Amitay André Ricardo Fioravanti

11 de Setembro de 2017

Indíce

1	Objetivo	2			
2	Método	2			
3	Cronograma	3			
4	Escopo do Engenheiro de Controle e Automação				
	4.1 Definição de Engenharia de Controle e Automação	4			
	4.2 Levantamento das competências de um Engenheiro	5			
5	Análise do currículo atual	6			

1 Objetivo

O trabalho aqui descrito tem como objetivo propor uma reformulação do curso de Engenharia de Controle e Automação da Universidade Estadual de Campinas, de forma a se ter um curso mais alinhado com as competências esperadas de um engenheiro pleno. Este trabalho foi motivado pela observação do autor de que um número considerável de alunos, ao se aproximar do fim de seus cursos, não demonstravam conhecimento prático básico esperados de um engenheiro, além de terem tido pouquíssimas experiências com desenvolvimento e gerenciamento de projetos.

Planeja-se que esta reformulação, inicialmente se dê pela criação de disciplinas de projeto, onde os alunos deverão desenvolver projetos práticos a partir de conhecimento adquirido no curso, periodicamente.

2 Método

Inicialmente, antes de qualquer proposta, espera-se fazer estudos preliminares de forma a se definir exatamente o que será proposto, logo em um momento inicial planeja-se:

- Definir exatamente o escopo e as competências esperadas de um engenheiro recém formado.
- Analisar a grade do curso de Engenharia de Controle e Automação da Unicamp e apontar as competências desenvolvidas em cada uma das disciplinas.
- Estudar outras instituições de ensino, tanto no Brasil quanto no exterior, que desenvolveram projetos parecidos de ensino.

Tendo definido estes pontos, a segunda etapa do trabalho consistirá em propor diferentes projetos, ou modelos de projetos que explorem todas as competências apontadas. Além disso será necessário analisar a viabilidade destes projetos, tendo como base a infraestrutura da universidade e o impacto que isto pode causar no currículo academico. Em suma, planeja-se:

- Agrupar as competências apontadas nos estudos preliminares em grupos, baseados em qual período o aluno estará.
- Propor projetos ou modelos de projetos que englobem estas competencias.
- Analisar a viabilidade destes projetos
- Caso não seja viável, propor alguma alternativa.

3 Cronograma

Espera-se que este trabalho seja feito durante o periodo de um ano, entre julho de 2017 até junho de 2018. A primeira etapa do trabalho será feita durante o segundo semestre de 2017 e a segunda etapa será feita no primeiro semestre de 2018. Estipulou-se o seguinte cronograma:

Período	Etapa		
Julho/2017	Finalização do planejamento do trabalho		
Agosto/2017	Definição do escopo e competências de um engenheiro		
Setembro/2017	Analisar a grade do curso de Engenharia de Controle e Automação		
	e apontar competências		
Outubro/2017 Estudar outras instuições de ensino			
Novembro/2017 Compilação e escrita das informações apontadas nas e			
	sadas e revisão bibliográfica		
Dezembro/2017 Revisão do trabalho desenvolvido até então			
Janeiro/2018	Agrupar as competências apontadas em grupos		
Fevereiro/2018	Propor projetos ou modelos de projetos		
Março/2018	Compilação e escrita dos projetos propostos		
Abril/2018	Analisar a viabilidade destes projetos e caso não sejá viavel propor		
	alguma alternativa.		
Maio/2018	Revisão do trabalho desenvolvido até então		
Junho/2018	Finalização da escrita do trabalho.		

4 Escopo do Engenheiro de Controle e Automação

4.1 Definição de Engenharia de Controle e Automação

Engenharia de Controle e Automação, ou Mecatrônica, é um campo relativamente jovem da engenharia. O avanço nas áreas de computação, semicondutores, sistemas embarcados e controle no último século criaram solo fértil para um campo novo e cheio de possibilidades. Porém, como é uma área nova ainda não existe consenso no escopo esperado de um engenheiro de Controle e Automação.

A definição de Mecatrônica vem sendo alterada com os anos. Sua definição original foi feita pela Yasakawa Electric Company, que a definiu como:

"A palavra, mecatrônica, é composta de "meca" de mecanismo e "trônica" de eletrônica. Em outras palavras, tecnologias e produtos desenvolvidos irão incorporar sistemas eletrônicos em mecanismos cada vez mais, de maneira orgânica e intima, fazendo com que seja impossível dizer onde um começa e outro termina."

Está definição vem evoluindo conforme mais estudos são desenvolvidos na área. Uma das definições mais atuais foi definida por W.Bolton:

"Um sistema mecatrônico não é apenas o casamento de sistemas elétricos e mecânicos e é mais que apenas um sistema de controle; é a integração completa de todos eles."

As muitas definições existentes mostram o quanto o campo de Controle e Automação é novo e o quanto ele tem evoluído com os avanços tecnológicos, porém o que fica mais evidenciado é que independente da definição o campo exige que o engenheiro tenha um rol vasto e variado de competências.

É necessário então que estas competências sejam levantadas e analisadas de forma a entender melhor como o curso oferecido pela UNICAMP desenvolve tais habilidades.

4.2 Levantamento das competências de um Engenheiro

Para este estudo, a Engenharia de Controle e Automação pode ser dividida nos seguintes pontos chave": [CITAÇÃO]:

• Modelagem de sistemas físicos

Para este estudo, este item será dividido em Sistemas Mecânicos e Sistemas Elétricos.

- Sensores e Atuadores
- Sinais e Sistemas
- Computadores e Sistemas Lógicos
- Software e Aquisição de Dados

Os itens acima descrevem os campos que, teoricamente, definem o campo de Engenharia de Controle e Automação, porém, é preciso também apontar as competências esperadas de um engenheiro, seja ele de Controle e Automação ou não.

O estudo feito por [CITAÇÃO, MALE, 2012] aponta as seguintes competências esperadas de um engenheiro:

- Comunicação
- Trabalho em Equipe
- Profissionalismo
- Autonomia
- Ingenuidade
- Liderança e Gestão
- Engenharia voltada à negócios
- Empreendedorismo
- Engenharia prática
- Responsabilidades profissionais
- Aplicação de teoria técnica

Por questões de simplicidade estas competências serão agrupadas e referidas como: *Competências não técnicas*, já que se referem à competências voltadas mais à postura do que conhecimentos acadêmicos.

OBS: Alguns desses pontos podem parecer mais alinhados com o mercado e indústria e divergente da realidade acadêmica. É importante frisar que este estudo busca um perfil de engenheiro pleno, que possa atuar tanto em ambientes acadêmicos quanto ambientes da indústria.

Por fim, as competências que serão usadas como base neste estudo são:

- Modelagem de Sistemas Mecânicos
- Modelagem de Sistemas Elétricos
- Sensores e Atuadores
- Sinais e Sistemas
- Computação e Sistemas Lógicos
- Software e Aquisição de Dados
- Competências não técnicas

5 Análise do currículo atual

O catálogo atual do curso de Engenharia de Controle e Automação apresenta, na sua versão mais recente, 246 hora-aula/semana (créditos), divididos em uma grade de 12 semestres. As disciplinas oferecidas podem ser cursadas em qualquer ordem, dado que respeitem uma sequência de pré-requisitos estabelecidos, porém para esta

O currículo pleno, com seus respectivos semestres indicados:

Semestre	Disciplina	Créditos
	Cálculo I	6
	Química	4
10	Introdução à Engenharia de Controle e Automação	2
	Geometria Analítica e Vetores	4
	Física Geral I	4
	Cálculo II	6
	Física Geral III	4
2o	Desenho Técnico Assistido por Computador	4
	Oficinas - Mecatrônica	4
	Algoritmos e Programação de Computadores	6
	Cálculo III	6
	Estruturas de Dados	6
30	Física Experimental I	2
	Circuitos Elétricos	4
	Materiais de Engenharia	2
	Cálculo Numérico	4
	Álgebra Linear	4
40	Programação Orientada a Objetos	4
	Termodinâmica I	4
	Estática	4
	Mecânica dos Fluidos I	4
	Organização Básica de Computadores e Linguagem de Montagem	4
5o	Dinâmica	4
	Eletrônica Aplicada	4
	Estatística para Experimentalistas	4
	Laboratório de Eletrônica Aplicada	2
	Circuitos II	4
6.0	Análise Linear de Sistemas	4
60	Engenharia de Fabricação	2
	Transferência de Calor I	4
	Circuitos Lógicos	4
	Fabricação Mecânica e Metalúrgica	2
	Laboratório de Circuitos Lógicos	2
7-	Sistemas Fluidotérmicos I	4
70	Resistência dos Materiais I ⁷	4
	Projeto de Sistemas Computacionais	4
	Vibrações de Sistemas Mecânicos	4

Tabela 1: Catálogo atual do curso - Parte 1

Semestre	Disciplina	Créditos
	Controle de Sistemas Mecânicos	4
	Resistência dos Materiais II	4
80	Princípios de Conversão de Energia	4
00	Instrumentação Básica	2
	Laboratório de Ensaio dos Materiais	2
	Sistemas de Aquisição de Dados	4
	Projeto de Sistemas Embarcados	4
	Eletrônica para Automação Industrial	4
90	Laboratório de Dispositivos Eletromecânicos	2
90	Planejamento e Controle da Produção I	4
	Modelagem de Dispositivos Eletromecânicos	2
	Robótica Industrial	4
	Sistemas Mecânicos	4
	Laboratório de Eletrônica para Automação Industrial	2
10o	Automação Industrial	4
	Controle Avançado de Sistemas	4
	Laboratório de Sistemas Embarcados	2
	Ciências do Ambiente	2
11o	Laboratório de Controle de Sistemas	2
110	Laboratório de Automação Industrial	2
	Trabalho de Graduação I	2
	Direito	2
	Economia para Engenharia	4
12o	Estágio Supervisionado	12
	Trabalho de Graduação II	4
	Projeto de Sistemas Mecatrônicos	4

Tabela 2: Catálogo atual do curso - Parte 2

Para este estudo é necessário destacar as disciplinas que tem como ementa o desenvolvimento de conhecimentos práticos e de projeto. As experiências do autor com o curso puderam mostrar que muitas disciplinas que não possuem este escopo na ementa também trouxeram experiências práticas pela iniciativa do próprio docente, porém estes casos não serão analisados pois não há maneira de quantifica-los dado que dependem de um fator subjetivo. São elas:

• Laboratórios e Oficinas:

Laboratório de Eletrônica Aplicada

Laboratório de Circuitos Lógicos

Laboratório de Dispositivos Eletromecânicos

Laboratório de Eletrônica para Automação Industrial

Laboratório de Sistemas Embarcados

Laboratório de Controle de Sistemas

Laboratório de Automação Industrial

Laboratório de Ensaio dos Materiais

Oficinas - Mecatrônica

• Computação:

Algoritmos e Programação de Computadores

Estruturas de Dados

Programação Orientada a Objetos

Organização Básica de Computadores e Linguagem de Montagem

• Projetos e Sistemas:

Projeto de Sistemas Embarcados

Projeto de Sistemas Mecatrônicos

Sistemas de Aquisição de Dados

• Trabalhos de Graduação:

Trabalho de Graduação I

Trabalho de Graduação II

As disciplinas desta lista correspondem à 58 créditos, ou seja, uma parcela de 23,6% da totalidade do curso. Porém, é necessário avaliar com quais competências estes 58 créditos se relacionam e em qual momento do curso serão cursados pelos alunos.

Para esta análise, todas as disciplinas foram mapeadas em grupos. Estes grupos visam condensar as disciplinas em competências desenvolvidas e serão a base das análises subsequentes. São eles:

- Matemática e Ciências Básicas: noções básicas de matemática, física e química que servirão como base de outras disciplinas.
- Mecânica: consiste no estudo de mecânica dos sólidos e fluidos, estudo de calor e energia e materiais.
- Elétrica: consiste no estudo de circuitos elétricos e magnéticos e sistemas de conversão de energia.
- Fabricação: consiste no projeto de sistemas mecânicos e sua produção.
- Automação: consiste no estudo de sensores e atuadores usados na automação de processos, assim como o projeto de sistemas automatizados e modelagem de dispositivos.
- Sinais e Sistemas: consiste no estudo de sinais de tempo contínuo e discreto e em aquisição de dados.
- Controle: estudo de técnicas de controle de sistemas dinâmicos.
- Sistemas Embarcados: estudo de arquitetura e projetos de sistemas embarcados bem como suas aplicações.
- Computação: noções básicas de algoritmos, estrutura de dados, paradigmas de programação, linguagem de montagem e arquitetura de computadores.
- Projetos de Engenharia: desenvolvimento de projetos que consistem na integração de uma ou mais áreas estudadas em engenharia.
- Estudos complementares: se refere a campos que não competem necessariamente ao escopo de um Engenheiro de Controle e Automação porém se adequam à realidade de um profissional no ambiente brasileiro.

O mapeamento das disciplinas, além de facilitar as análises subsequentes também servirão para relacionar os grupos às competências levantadas na sessão anterior. A tabela a seguir visa então:

- Relacionar disciplinas à grandes grupos.
- Relacionar o número de créditos investidos em cada grupo.
- Relacionar o número de créditos práticos investidos em cada grupo.

Grupo	Disciplinas	Créditos	Créditos	Porcentagem	Porcentagem
			Práticos	do Curso	dentro da parte
					prática
Matemática e	Física Geral I, Física Experimental I,	52	0	21.1%	0%
Ciências Básicas	Física Geral III, Química, Cálculo I,				
	Geometria Analítica e Vetores, Cálculo				
	II, Cálculo III, Álgebra Linear, Esta-				
	tística para Experimentalistas, Cálculo				
	Numérico				
Mecânica	Estática, Termodinâmica I, Dinâmica,	40	2	16.3%	3.4%
	Resistência dos Materiais I, Mecânica				
	dos Fluidos I, Resistência dos Materiais				
	II, Transferência de Calor I, Vibrações				
	de Sistemas Mecânicos, Materiais de				
	Engenharia, Laboratório de Ensaio dos				
	Materiais, Sistemas Fluidotérmicos I				
Elétrica	Circuitos Elétricos, Circuitos II, Eletrô-	16	2	6.5%	3.4%
	nica Aplicada, Laboratório de Eletrô-				
	nica Aplicada, Princípios de Conversão				
	de Energia				
Fabricação	Desenho Técnico Assistido por Compu-	15	0	6.5%	0%
	tador, Engenharia de Fabricação, Fa-				
	bricação Mecânica e Metalúrgica, Sis-				
	temas Mecânicos, Planejamento e Con-				
	trole da Produção I				
Automação	Eletrônica para Automação Industrial,	20	6	8.13%	10.3%
	Laboratório de Eletrônica para Auto-				
	mação Industrial, Robótica Industrial,				
	Instrumentação Básica, Laboratório de				
	Automação Industrial, Automação In-				
	dustrial, Modelagem de Dispositivos				
	Eletromecânicos, Laboratório de Dis-				
	positivos Eletromecânicos				

Tabela 3: Divisão das disciplinas em grandes grupos - Parte 1

Grupo	Disciplinas	Créditos	Créditos	Porcentagem	Porcentagem
			Práticos	do Curso	dentro da parte
					prática
Sinais e Sistemas	Análise Linear de Sistemas, Sistemas	8	4	3.25%	6.9%
	de Aquisição de Dados				
Controle	Controle de Sistemas Mecânicos, Con-	10	2	4.1%	3.4%
	trole Avançado de Sistemas, Laborató-				
	rio de Controle de Sistemas				
Sistemas Em-	Circuitos Lógicos, Laboratório de Cir-	12	8	4.9%	13.8%
barcados	cuitos Lógicos, Projeto de Sistemas				
	Embarcados, Laboratório de Sistemas				
	Embarcados				
Computação	Algoritmos e Programação de Compu-	24	20	9.76%	34.4%
	tadores, Estruturas de Dados, Progra-				
	mação Orientada a Objetos, Organiza-				
	ção Básica de Computadores e Lingua-				
	gem de Montagem, Projeto de Sistemas				
	Computacionais				
Projetos de En-	Introdução à Engenharia de Controle e	16	14	6.5%	24.1%
genharia	Automação, Projeto de Sistemas Me-				
	catrônicos, Trabalho de Graduação I,				
	Trabalho de Graduação II, Oficinas -				
	Mecatrônica				
Estudos Com-	Ciências do Ambiente, Direito, Econo-	20	0	8.13%	0%
plementares	mia para Engenharia, Estágio Supervi-				
	sionado				

Tabela 4: Divisão das disciplinas em grandes grupos - Parte 2