Machine Learning Course - CS-433

K-Means Clustering

Nov 22, 2023

 $\begin{array}{c} {\rm Martin\ Jaggi} \\ {\rm Last\ updated\ on:\ November\ 20,\ 2023} \end{array}$ credits to Mohammad Emtiyaz Khan & Rüdiger Urbanke

Clustering

Clusters are groups of points whose inter-point distances are small compared to the distances outside the cluster.

The goal is to find "prototype" points $\mu_1, \mu_2, \ldots, \mu_K$ and cluster assignments $z_n \in \{1, 2, \ldots, K\}$ for all $n = 1, 2, \ldots, N$ data vectors $\mathbf{x}_n \in \mathbb{R}^D$.

K-means clustering

Assume K is known.

$$\min_{\mathbf{z},\boldsymbol{\mu}} \mathcal{L}(\mathbf{z},\boldsymbol{\mu}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|_2^2$$
s.t. $\boldsymbol{\mu}_k \in \mathbb{R}^D, z_{nk} \in \{0,1\}, \sum_{k=1}^{K} z_{nk} = 1,$
where $\mathbf{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]^{\top}$

$$\mathbf{z} = [\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_N]^{\top}$$

$$\boldsymbol{\mu} = [\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_K]^{\top}$$

Is this optimization problem easy?

Algorithm: Initialize $\mu_k \forall k$, then iterate:

- 1. For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$.
- 2. For all k, compute μ_k given \mathbf{z} .

Step 1: For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$.

$$z_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j=1,2,\dots K} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|_2^2 \\ 0 & \text{otherwise} \end{cases}$$

Step 2: For all k, compute μ_k given \mathbf{z} . Take derivative w.r.t. μ_k to get:

$$\boldsymbol{\mu}_k = \frac{\sum_{n=1}^N z_{nk} \mathbf{x}_n}{\sum_{n=1}^N z_{nk}}$$

Hence, the name 'K-means'.

Summary of K-means

Initialize $\mu_k \, \forall k$, then iterate:

1. For all n, compute \mathbf{z}_n given $\boldsymbol{\mu}$.

$$z_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|_2^2 \\ 0 & \text{otherwise} \end{cases}$$

2. For all k, compute μ_k given \mathbf{z} .

$$oldsymbol{\mu}_k = rac{\sum_{n=1}^N z_{nk} \mathbf{x}_n}{\sum_{n=1}^N z_{nk}}$$

Convergence to a local optimum is assured since each step decreases the cost (see Bishop, Exercise 9.1).

Coordinate descent

K-means is a coordinate descent algorithm, where, to find $\min_{\mathbf{z},\boldsymbol{\mu}} \mathcal{L}(\mathbf{z},\boldsymbol{\mu})$, we start with some $\boldsymbol{\mu}^{(0)}$ and repeat the following:

$$\mathbf{z}^{(t+1)} := \underset{\boldsymbol{z}}{\operatorname{arg \, min}} \ \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}^{(t)})$$
 $\boldsymbol{\mu}^{(t+1)} := \underset{\boldsymbol{\mu}}{\operatorname{arg \, min}} \ \mathcal{L}(\mathbf{z}^{(t+1)}, \boldsymbol{\mu})$

Examples

K-means for the "old-faithful" dataset (Bishop's Figure 9.1)

Data compression for images (this is also known as vector quantization).

Probabilistic model for K-means

K-means as a Matrix Factorization

Recall the objective

$$\begin{aligned} \min_{\mathbf{z}, \boldsymbol{\mu}} \ \mathcal{L}(\mathbf{z}, \boldsymbol{\mu}) &= \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|_2^2 \\ &= \|\mathbf{X}^\top - \mathbf{M} \mathbf{Z}^\top\|_{\mathsf{Frob}}^2 \end{aligned}$$

s.t.
$$\mu_k \in \mathbb{R}^D$$
, $z_{nk} \in \{0, 1\}, \sum_{k=1}^K z_{nk} = 1$.

Issues with K-means

- 1. Computation can be heavy for large N, D and K.
- 2. Clusters are forced to be spherical (e.g. cannot be elliptical).
- 3. Each example can belong to only one cluster ("hard" cluster assignments).