Computer Network

Chapter 2: Reference Models

Standards: What It is?

- Creates Open and Competitive Market for Manufacturers.
- Provides guidelines to Manufactures for Interoperability.
- Data Communication Standards Fall into Two Categories
 - □ De facto
 - □ De jure
- □ De facto Standards have not been approved by an Organization.
- Standards through Wide Spread Use are De facto Standards.
- De jure Standards have been legalized by an Organization.

Protocol Analogy: Sending a Letter

The parcel is carried from the source to the destination.

Protocol Analogy: Organization of Air Travel

Ticket (purchase) Ticket (complain)

Baggage (check) Baggage (claim)

Gates (load) Gates (unload)

Runway Takeoff Runway Landing

Airplane Routing Airplane Routing

Airplane routing

Interfaces and Services

- There is an <u>interface</u> between each pair of adjacent layers.
- This interface defines what information and services a layer must provide for the layer above it.
- Interface will pass the Information between the Layers

Network Software: Protocol Hierarchies

- □ Stack of Layers => Protocol Stack OR Protocol Suite.
- □ Each Layer Provides Service to Layer Above It.

- □ No Direct Data Transfers from layer n on one Machine to Other.
- □ Through Physical Medium actual Communication Occurs.

Network Software: Design Issues of Layers

- Addressing
- Segmentation and Reassembly
- Encapsulation
- Connection Control
 - Connection Oriented Service
 - Connectionless Service
- □ Flow Control
- Error Control
- Multiplexing and De-multiplexing
- Routing

Network Software: Relationships of Services to Protocols

- □ Service is a set of Primitives (Operations) that a Layer Provides.
- \Box Layer K Provides Service to Layer K+1.
- □ *Layer K* is the Service Provider.
- \Box Layer K+1 is the Service Taker.
- □ A Service is a Type of Abstract Data Type in OOP.
- □ ADT Defines Operations but Not How They are Implemented.

Why Layering ??

- □ To Separate Specific Functions in Each Layer.
- Each Layer Should Define a Unique Function.
- □ To make their Implementation Transparent to Other Components.
- Allows Independent Design and Testing of Each Components.
- Modularization Eases Maintenance and Updating of System.

OSI Model

- Open System Interconnection
- Developed by International Organization for Standardization.
- □ It Consists of Seven Layers.
- Considered as a Reference Model.
- □ A Theoretical System Delivered Too Late.

The OSI Reference Model

What Each Layer Does

Application Network Processes to Applications Presentation Data Representation 5 Session Interhost Communication **Transport** End-to-end Connections 3 Network Address and Best Path Data Link 2 Access to Media **Physical** Binary Transmission · Wires, connectors, voltages, data rates

OSI Layers

Application

Provides access to the OSI environment for users and also provides distributed information services.

Presentation

Provides independence to the application processes from differences in data representation (syntax).

Session

Provides the control structure for communication between applications; establishes, manages, and terminates connections (sessions) between cooperating applications.

Transport

Provides reliable, transparent transfer of data between end points; provides end-to-end error recovery and flow control.

Network

Provides upper layers with independence from the data transmission and switching technologies used to connect systems; responsible for establishing, maintaining, and terminating connections.

Data Link

Provides for the reliable transfer of information across the physical link; sends blocks (frames) with the necessary synchronization, error control, and flow control.

Physical

Concerned with transmission of unstructured bit stream over physical medium; deals with the mechanical, electrical, functional, and procedural characteristics to access the physical medium.

Figure 2.6 The OSI Layers

OSI layers

OSI Layers: Functions

Physical Layer

- Responsible for Transmitting Individual Bits.
- Deals with Physical Characteristics of Interfaces and Medias.
 [Electrical and Mechanical]

Data Link Layer

- Enables Node to Node Communication.
- Responsible for Transmitting Frames From One Node to Next.
- Framing
- Physical Addressing
- Error Control
- Access Control [E.g CSMA/CD]

OSI Layers: Physical Layer

Data Link Sub Layers: LLC and MAC

Data Link Layer: Node to Node Delivery

Sub-layers of the Data Link Layer

- MAC (Media Access Control)
 - Gives data to the NIC
 - Controls access to the media through
 - CSMA/CD Carrier Sense Multiple Access/Collision Detection
 - Token passing
- LLC (Logical Link Layer)
 - Can detect some transmission errors using a Cyclic Redundancy Check (CRC). If the packet is bad the LLC will request the sender to resend that particular packet.
 - Multiplexing protocols transmitted over the MAC layer
 - IEEE 802.2 Protocol

OSI Layers: Functions

Network Layer

- Enables Host to Host Communication
- □ Responsible for Delivery of Packets
- Logical Addressing
- Routing

Transport Layer

- Enables Process to Process Communication.
- Port Addressing
 - Well Known Ports
 - Registered Ports (1024 49151)
 - Dynamic / Private Ports (49152 65535)
- Segmentation and Reassembly.
- Connection Control
- □ Flow Control
- Error Control

Network layer Communication

Transport Layer: Process to Process Delivery

OSI Layers: Functions

Session Layer

- Control of Dialogues Between Applications.
- □ Whose Turn is To Transmit ??
- □ Dialogue Discipline => Half Duplex/ Full Duplex

Presentation Layer

- Data Formats and Coding.
- Data Compression
- Encryption

Application Layer

- Responsible for Providing Service to End Users.
- Mail Transfer Service.
- □ File Transfer Service.

Application Layer

Summary of layers

To allow access to network Application resources To translate, encrypt, and Presentation compress data To establish, manage, and Session terminate sessions To provide reliable process-toprocess message delivery and Transport To move packets from source error recovery Network to destination; to provide internetworking To organize bits into frames; Data link to provide hop-to-hop delivery To transmit bits over a medium: to provide mechanical and Physical electrical specifications

TCP/IP model development

In late-60s The Defense Advance Research Projects Agency (DARPA) originally developed

Transmission Control Protocol/Internet Protocol (TCP/IP) to interconnect various defense department computer networks.

The Internet, an International Wide Area Network, uses TCP/IP to connect networks across the world.

4 layers of the TCP/IP model

Layer 4: Application

Layer 3: Transport

Layer 2: Internet

Layer 1: Network access

It is important to note that some of the layers in the TCP/IP model have the same name as layers in the OSI model.

Do not confuse the layers of the two models.

OSI Model Compared to TCP/IP

The network access layer

- Concerned with all of the issues that an IP packet requires to actually make the physical link.
- All the details in the OSI physical and data link layers.
- Electrical, mechanical, procedural and functional specifications
- Data rate, Distances, Physical connector.
- Frames, physical addressing.
- Synchronization, flow control, error control.

The Internet Layer

- Concerned with Packet Addressing
- Send source packets from any network on the internetwork and have them arrive at the destination independent of the path and networks they took to get there.
- Functions Includes
 - Packets, Logical addressing.
 - Internet Protocol (IP).
 - Route , routing table, routing protocol.

The transport layer

- The transport layer deals with the quality-of-service issues of reliability, flow control, and error correction.
- Segments, data stream, datagram.
- Connection oriented and connectionless.
- Transmission control protocol (TCP).
- User datagram protocol (UDP).
- End-to-end flow control.
- Error detection and recovery.

Transport Layer (cont)

- Allows end-to-end communication
- Connection establishment, error control, flow control
- Two main protocols at this level
- Transmission control protocol (TCP)
 - Connection oriented
 - Connection established before sending data
 - Reliable
- User datagram protocol (UDP)Connectionless

 - Sending data without establishing connection
 - Fast but unreliable

The application layer

- Handles high-level protocols, issues of representation, encoding, and dialog control.
- The TCP/IP combines all application-related issues into one layer, and assures this data is properly packaged for the next layer.
- Applications(Software) that works at Application Layer
 - FTP, HTTP, SMNP, DNS ...
 - Format of data, data structure, encode ...
 - Dialog control, session management ...

TCP/IP Reference Model

Protocols at the application layer

- HTTP:
 - Browser and web server Communication
- FTP :
 - file transfer protocol
- TELNET:
 - remote login protocol
- POP3: Retrieve email
 - POP3 is designed to delete mail on the server as soon as the user has downloaded it
- IMAP (Internet Message Access Protocol)
 Retrieve emails,

 - retaining e-mail on the server and for organizing it in folders on the serve

Protocols at the transport layer

- Transmission control protocol (TCP)
 - Connection oriented
 - Connection established before sending data
 - Reliable
- user datagram protocol (UDP)
 - Connectionless
 - Sending data without establishing connection
 - Fast but unreliable

Protocol at the network layer

- IP (Internet Protocol)
 - Path selection
 - routing and addressing
- ICMP (Internet Control Message Protocol)
 - sends error messages relying on IP
 - IF requested service is not available
 - IF host or router could not be reached
- ARP (Address Resolution Protocol)
 - Map IP to Mac Address

Protocols at the link layer

- Ethernet
 - Uses CSMA/CD
- Token Ring

PDU (Protocol Data Encapsulation) Method

Packet Encapsulation (TCP/IP)

- The data is sent down the protocol stack
- Each layer adds to the data by prepending headers

Networking Hardware

- NIC
- HUB
- Repeater
- Switches
- Bridge
- Router

NIC

- Network Interface Controller
 - Also called Network Interface Card
- Computer Hardware
 - Connect Computer to Computer Network
- WNIC for wireless Communication

HUB

- Also called An Ethernet hub, active hub, network hub, repeater hub, multiport repeater or hub
- Device which Connect multiple Ethernet devices together
 - making them act as a single network segment.
- Has multiple input/output (I/O) ports
- Also called Multi-port Repeater
- In which a signal introduced at the input of any port appears at the output of every port except the original incoming.
- A HUB works at the physical layer (layer 1) of the OSI model
- Hubs are now largely obsolete, having been replaced by network switches except in very old installations or specialized applications.

All PCS are Communicating with HUB in Half DUPLEX MODE

Repeater

- Electronic Device, that receives signal and Retransmit it at a higher level or higher power
 - So, signal can Cover the Large distance
- A broadcast relay station performs an analogous role in broadcast radio and television.

- Repeater Can be defined as:
 - Analog device that amplifies an input signal regardless of its nature (analog or digital).
- A digital device that amplifies, reshapes, retimes, or performs a combination of any of these functions on a digital input signal for retransmission.
- A repeater that includes the retiming (synchronization) function is also known as a regenerator
- Works at Layer 1 of OSI model

Switches

- switch will only forward a message to one or multiple devices that need to receive
- Doesn't broadcast message to all ports
- Network switch is a multi-port network bridge
- Works data link layer (layer 2) of the OSI model
- Filter and Process Frames

Router

- Layer 3 Devices
- Network Layer in OSI and Internet layer in TCP/IP protocol stack
- Main Function
 - Routing of Packets (Based on Routing Table)
 - Path Selection(Best Path) to forward the packets
 - Internetwork Communications

Bridge

- Bridge is the Layer 2 Devices
- Process frames
- Switch can often called as multi port Bridge
- Bridge process Frames using software
 - Switches used ASIC chips to process the frames
 - ASIC: Application Specific Integrated Chips

Bridge operate slower than Switch

Thank You