

Computing Distance

Erin Catto Blizzard Entertainment

Convex polygons

Closest points

Overlap

Goal

Compute the distance between convex polygons

Keep in mind

- 2D
- Code not optimized

Approach

Geometry

If all else fails ...

```
Input for the distance function.
truct Input
  Polygon polygon1;
  Polygon polygon2;
  Transform transform1;
  Transform transform2;
truct Output
  enum
      e_maxSimplices = 20
  Vec2 point1;
  Vec2 point2;
  float distance;
  int iterations;
  Simplex simplices[e_maxSimplices];
  int simplexCount;
oid Distance2D(Output* output, const Input& input);
```


DEMO!

Outline

- 1. Point to line segment
- 2. Point to triangle
- Point to convex polygon
- 4. Convex polygon to convex polygon

Concepts

- 1. Voronoi regions
- 2. Barycentric coordinates
- 3. GJK distance algorithm
- 4. Minkowski difference

Voronoi diagram

From Wikipedia, the free encyclopedia

In mathematics, a **Voronoi diagram** is a partition of a plane into regions close to each of a given set of objects. In the simplest case, these objects are just finitely many points in the plane (called seeds, sites, or generators). For each seed there is a corresponding region, called **Voronoi cells**, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to its Delaunay triangulation.

Formal definition [edit]

Let X be a metric space with distance function d. Let K be a set of indices and let $(P_k)_{k \in K}$ be a tuple (ordered collection) of nonempty subsets (the sites) in the space X. The Voronoi cell, or Voronoi region, R_k , associated with the site P_k is the set of all points in X whose distance to P_k is not greater than their distance to the other sites P_j , where j is any index different from k. In other words, if $d(x, A) = \inf\{d(x, a) \mid a \in A\}$ denotes the distance between the point x and the subset A, then

$$R_k = \{x \in X \mid d(x, P_k) \leq d(x, P_j) \text{ for all } j \neq k\}$$

Section 1

Point to Line Segment

A line segment

Query point

Closest point

Projection: region A

Projection: region AB

Projection: region B

Voronoi regions

Barycentric coordinates

$$G(u,v)=uA+vB$$

$$u+v=1$$

Fractional lengths

$$G(u,v)=uA+vB$$

$$u+v=1$$

Fractional lengths

$$G(u,v)=uA+vB$$

$$u+v=1$$

Fractional lengths

$$G(u,v)=uA+vB$$

$$u+v=1$$

Unit vector

$$\mathbf{n} = \frac{\mathbf{B} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\|}$$

(u,v) from G

$$V = \frac{(G-A) \Box h}{\|B-A\|}$$

$$u = \frac{(B-G)\Box h}{\|B-A\|}$$

(u,v) from Q

$$v = \frac{(Q-A)\Box h}{\|B-A\|}$$

$$u = \frac{(B-Q)\Box h}{\|B-A\|}$$

Voronoi region from (u,v)

u > 0 and v > 0

region AB

Voronoi region from (u,v)

Voronoi region from (u,v)

Closet point algorithm

```
input: A, B, Q
compute u and v

if (u <= 0)
  P = B
else if (v <= 0)
  P = A
else
  P = u*A + v*B</pre>
```


Section 2

Point to Triangle

Triangle

Closest feature: vertex

Closest feature: edge

Closest feature: interior

Voronoi regions

3 line segments

Vertex regions

Edge regions

Line segment uv's are not sufficient

Interior region

Triangle barycentric coordinates

Linear algebra solution

$$\begin{bmatrix} A_{x} & B_{x} & C_{x} \\ A_{y} & B_{y} & C_{y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} Q_{x} \\ Q_{y} \\ 1 \end{bmatrix}$$

Fractional areas

The barycenctric coordinates are the fractional areas

Barycentric coordinates

Barycentric coordinates

$$u = \frac{area(QBC)}{area(ABC)}$$

$$v = \frac{area(QCA)}{area(ABC)}$$

$$w = \frac{area(QAB)}{area(ABC)}$$

Barycentric coordinates are fractional

line segment : fractional length

triangles: fractional area

tetrahedrons: fractional volume

Computing Area

signed area =
$$\frac{1}{2}$$
 cross (B-A,C-A)

Q outside the triangle

Q outside the triangle

Q outside the triangle

Voronoi versus Barycentric

- Voronoi regions != barycentric coordinate regions
- The barycentric regions are still useful

Barycentric regions of a triangle

Interior

Negative u

Negative v

Negative w

The uv regions are not exclusive

Finding the Voronoi region

- Use the barycentric coordinates to identify the Voronoi region
- Coordinates for the 3 line segments and the triangle
- Regions must be considered in the correct order

First: vertex regions

Second: edge regions

Second: edge regions solved

Third: interior region

Closest point

- Find the Voronoi region for point Q
- Use the barycentric coordinates to compute the closest point Q

uAB > 0

Implementation

```
input: A, B, C, Q
compute uAB, vAB, uBC, vBC, uCA, vCA
compute uABC, vABC, wABC
// Test vertex regions
// Test edge regions
// Else interior region
```


Testing the vertex regions

```
// Region A
if (vAB <= 0 && uCA <= 0)
  P = A
  return

// Similar tests for Region B and C</pre>
```


Testing the edge regions

```
// Region AB
if (uAB > 0 && vAB > 0 && wABC <= 0)
  P = uAB * A + vAB * B
  return

// Similar for Regions BC and CA</pre>
```


Testing the interior region

```
// Region ABC
assert(uABC > 0 && vABC > 0 && wABC > 0)
P = Q
return
```


Section 3

Point to Convex Polygon

Convex polygon

Polygon structure

```
struct Polygon
{
   Vec2* points;
   int count;
};
```


Convex polygon: closest point

Query point Q

Convex polygon: closest point

Closest point Q

How do we compute P?

What do we know?

Closest point to point

Closest point to line segment

Closest point to triangle

Simplex

Idea: inscribe a simplex

Idea: closest point on simplex

Idea: evolve the simplex

Simplex vertex

```
struct SimplexVertex
{
    Vec2 point;
    int index;
    float u;
};
```


Simplex

```
struct Simplex
{
   SimplexVertex vertexA;
   SimplexVertex vertexB;
   SimplexVertex vertexC;
   int count;
};
```


We are onto a winner!

The GJK distance algorithm

- Computes the closest point on a convex polygon
- Invented by Gilbert, Johnson, and Keerthi

The GJK distance algorithm

- Inscribed simplexes
- Simplex evolution

Starting simplex

Start with arbitrary vertex. Pick E.

This is our starting simplex.

Closest point on simplex

P is the closest point.

Search vector

Draw a vector from P to Q.

Call this vector **d**.

Find the support point

Find the vertex on polygon furthest in direction **d**.

This is the *support* point.

Support Points

The support point of a polygon is the vertex that is the farthest along a given direction. If two vertices have equal distances along the given direction, either one is acceptable.

In order to compute a supporting point, the dot product must be used to find a signed distance along a given direction. Since this is very simple, I'll show a quick example within this article:

```
// The extreme point along a direction within a polygon
01
    Vec2 GetSupport( const Vec2& dir )
02
03
04
      real bestProjection = -FLT_MAX;
0.5
      Vec2 bestVertex;
06
      for(uint32 i = 0; i < m vertexCount; ++i)</pre>
07
80
        Vec2 v = m vertices[i]:
09
         real projection = Dot( v, dir );
10
11
12
        if(projection > bestProjection)
13
14
           bestVertex = v:
           bestProjection = projection;
15
16
17
18
19
      return bestVertex;
20 }
```


Support point code

```
int Support(const Polygon& poly, const Vec2& d)
  int index = 0;
  float maxValue = Dot(d, poly.points[index]);
 for (int i = 1; i < poly.count; ++i)</pre>
    float value = Dot(d, poly.points[i]);
    if (value > maxValue)
      index = i;
      maxValue = value;
  return index;
```


Support point found

C is the support point.

Evolve the simplex

Create a line segment CE.

We now have a 1-simplex.

Repeat the process

Find closest point P on CE.

New search direction

Build **d** as a line pointing from P to Q.

New support point

D is the support point.

Evolve the simplex

Create triangle CDE.

This is a 2-simplex.

Closest point

Compute closest point on CDE to Q.

E is worthless

Closest point is on CD.

E does not contribute.

Reduced simplex

We dropped E, so we now have a 1-simplex.

Termination

Compute support point in direction **d**.

We find either C or D. Since this is a repeat, we are done.

GJK algorithm

```
Input: polygon and point Q
pick arbitrary initial simplex S
loop
  compute closest point P on S
  cull non-contributing vertices from S
  build vector d pointing from P to Q
  compute support point in direction d
  add support point to S
end
```


DEMO!!!

Numerical Issues

- Search direction
- Termination
- Poorly formed polygons

A bad direction

d can be built from PQ.

Due to round-off:

dot(Q-P, C-E) != 0

A real example in single precision

Line Segment

A = [0.021119118, 79.584320]

B = [0.020964622, -31.515678]

Query Point

 $Q = [0.0 \ 0.0]$

Barycentric Coordinates

(u, v) = (0.28366947, 0.71633047)

Search Direction

d = Q - P = [-0.021008447, 0.0]

dot(d, B - A) = 3.2457051e-006

Small errors matter

An accurate search direction

Directly compute a vector perpendicular to CE.

d = cross(C-E,z)

Where **z** is normal to the plane.

The dot product is exactly zero

edge direction:

search direction:

dot product:

$$\mathbf{e} = (\mathbf{x} \quad \mathbf{y})$$

$$\mathbf{d} = (-\mathbf{y} \quad \mathbf{x})$$

$$e d = -xy + yx = 0$$

Fixing the sign

Flip the sign of **d** so that:

dot(d, Q - C) > 0

Perk: no divides

Termination conditions

Case 1: repeated support point

Case 2: containment

We find a 2-simplex and all vertices contribute.

Case 3a: vertex overlap

We will compute **d**=Q-P as zero.

So we terminate if d=0.

Case 3b: edge overlap

d will have an arbitrary sign.

Case 3b: d points left

If we search left, we get a duplicate support point.
In this case we terminate.

Case 3b: d points right

If we search right, we get a new support point (A).

Case 3b: d points right

But then we get back the same P, and then the same d.

Soon, we detect a repeated support point or detect containment.

Case 4: interior edge

d will have an arbitrary sign.

Case 4: interior edge

Similar to Case 3b

Termination in 3D

- May require new/different conditions
- Check for distance progression

Non-convex polygon

Vertex B is nonconvex

Non-convex polygon

B is never a support point

Collinear vertices

B, C, and D are collinear

Collinear vertices

2-simplex BCD

Collinear vertices

area(BCD) = 0

Section 4

Convex Polygon to Convex Polygon

Closest point between convex polygons

What do we know?

What do we need to know?

Idea

- Convert polygon to polygon into point to polygon
- Use GJK to solve point to polygon

Minkowski difference

Minkowski difference definition

$$Z = \left\{ y_j - x_i : x_i \in X, y_j \in Y \right\}$$

Building the Minkowski difference

```
Input: polygon X and Y
array points
for all xi in X
 for all yj in Y
    points.push back(yj - xi)
 end
end
polygon Z = ConvexHull(points)
```


Example point cloud

Compute Yi - Xj for i = 1 to 4 and j = 1 to 3

The final polygon

Property 1: distances are equal

distance(X,Y) == distance(O, Y-X)

Property 2: support points

support(Z, d) = support(Y, d) - support(X, -d)

Convex Hull?

Modifying GJK

- Change the support function
- Simplex vertices hold two indices

Closest point on polygons

- Use the barycentric coordinates to compute the closest points on X and Y
- See the demo code for details

DEMO!!!

Download: box2d.org

Further reading

- Collision Detection in Interactive 3D
 Environments, Gino van den Bergen, 2004
- Real-Time Collision Detection, Christer Ericson, 2005
- Implementing GJK: <u>http://mollyrocket.com/849</u>, Casey Muratori.

Box2D

- An open source 2D physics engine
- http://www.box2d.org
- Written in C++

