제작한 포트폴리오의 일부 코드 모음입니다.

[마지막 페이지에 포트폴리오 영상 URL이 있습니다.]

1.1 텔레포트 스킬

```
void TelePortCheck()
    if (Input.GetMouseButtonDown(0))
        Vector3 buildingPos;
        if (isTeleportOnOff)
            Ray ray = cam.ScreenPointToRay(Input.mousePosition);
            float enter;
           Vector3 meetPoint:
            float dist = 30f;
           plane = new Plane(-cam.transform.forward, cam.transform.position + cam.transform.forward * dist);
            RaycastHit hit;
            if (Physics.Raycast(ray, out hit, dist, buildingLayer))
                    buildingPos = hit.point;
            else
                    buildingPos = Vector3.zero;
            if (plane.Raycast(ray, out enter))
                meetPoint = ray.GetPoint(enter);
                if (buildingPos != Vector3.zero)
                Vector3 pos = buildingPos - transform.position;
                float moveDist = Vector3.Distance(buildingPos, transform.position);
                 pos.Normalize();
                 animationActionPlay.Teleport += () => rigidbody.MovePosition(transform.position + (pos * (moveDist - 1f)));
                 curCastingSkill.GetComponent<SKillTeleport>().SkillAnimSetp1();
                 curCastingSkill.GetComponent<SKillTeleport>().SkillAnimSetp2();
                else
                    Vector3 pos = meetPoint - transform.position;
                    pos.Normalize();
                    _animationActionPlay.Teleport += () => rigidbody.MovePosition(transform.position + (pos * dist));
                    curCastingSkill.GetComponent<SKillTeleport>().SkillAnimSetp1();
                    curCastingSkill.GetComponent<SKillTeleport>().SkillAnimSetp2();
```

플레이어가 바라보는 방향으로 일정 거리 앞에 보이지 않는 Plane을 생성시키고 해당 지점으로 플레이어 캐릭터를 이동시키는 방식입니다.

만약 Plane과 캐릭터 사이에 건물이 있는 경우 캐릭터가 건물을 통과하지 못하도록 텔레포트 사용 시 RayCast로 건물과 플레이어의 거리를 확인 하여 건물 바로 앞에서 텔레포트 이동이 멈추도록 했습니다.

2.1 몬스터 타겟팅

```
void Update()
   if (Input.GetMouseButtonDown(0))
       Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
       RaycastHit hit;
      Transform headTr;
       Transform leftHandTr;
       Transform rightHandTr;
      Transform leftFootTr;
       Transform rightFootTr;
       //Rav가 몬스터 레이어를 통과하면
       if (Physics.Raycast(ray, out hit, 100.0f, Monster))
           //직전에 선택된 몬스터는 타겟팅 테두리 효과 적용 해제
           if(prevSelectTarget != null && prevSelectTarget != hit.transform)
              prevSelectTarget.GetComponentInChildren<GetMaterial>().GetmyMaterial[1].SetFloat("Boolean AB71AB7D", 0.0f);
              Destroy(prevSelectTarget.GetComponentInChildren<MonsterState>().hpbarObj);
              prevSelectTarget = hit.transform;
           else
              prevSelectTarget = hit.transform;
         GetIsSelect = true;
         GetselectTarget = hit.transform;
         headTr = hit.transform.GetComponentInChildren<GetHeadPosition>().tr;
         leftHandTr = hit.transform.GetComponentInChildren<GetLeftHandPosition>().tr;
         rightHandTr = hit.transform.GetComponentInChildren<GetRightHandPosition>().tr;
         leftFootTr = hit.transform.GetComponentInChildren<GetLeftFootPosition>().tr;
         rightFootTr = hit.transform.GetComponentInChildren<GetRightFootPosition>().tr;
          //몬스터 타겟팅 이미지 출력 코루틴
          if (isTargetingFollow != null) StopCoroutine(isTargetingFollow);
         isTargetingFollow = StartCoroutine(TargetingFollow(hit.transform, targetImage, headTr, leftHandTr, rightHandTr, leftFootTr, rightFootTr));
```

예시 이미지

몬스터 타켓팅 인지방식은 몬스터 모델링 외곽 부분을 Material 로 붉게 변화를 주는 것과 따로 제작한 이미지로 마치 몬스터가 락온(Lock on)된 것처럼 보이는 것. 총 2가지로 적용했습니다.

Ray가 몬스터를 통과 후 첫번째 조건문은 현재 선택된 몬스터가 직전에 선택된 몬스터와 동일 몬스터인지를 판단하여 동일하다 면 타겟 표시가 유지되도록 아니라면 직전에 선택된 몬스터는 타겟 표시가 해제되도록 했습니다.

그 다음 락온에 사용할 이미지들을 몬스터에 위치시키기 위해 현재 선택된 몬스터의 머리, 양 손,양 발 끝의 위치를 가져오고 이후 락온 이미지들이 몬스터의 움직임에 맞게 실시간으로 위치 가 변할 수 있도록 코루틴을 이용했습니다.

2.2 몬스터 타겟팅

```
Vector3 setPos = Vector3.zero;
target.GetComponentInChildren<GetMaterial>().GetmyMaterial[1].SetFloat("Boolean AB71AB7D", 1.0f);
target.GetComponentInChildren<MonsterState>().InstantiateHPbar();
hpbar = target.GetComponentInChildren<MonsterState>().myhpbar;
targetUIGroup.SetActive(true);
MonsterData targetData = target.GetComponent<MonsterData>();
hpbar.maxValue = targetData.MaxHp;
hpbar.value = targetData.CurHp;
nameText.text = targetData.MonsterName;
nameText.outlineColor = new Color(255,0,0);
float targetingMaxDistance = 70.0f;
float targetDistance = 0.0f;
List<float> screenPosX = new List<float>();
List<float> screenPosY = new List<float>();
Vector3 headPos:
Vector3 leftHandPos:
Vector3 rightHandPos;
Vector3 leftFootPos:
Vector3 rightFootPos;
Vector3 headScreenPos:
Vector3 leftHandScreenPos:
Vector3 rightHandScreenPos:
Vector3 leftFootScreenPos:
Vector3 rightFootScreenPos;
float getMinX;
float getMinY;
float getMaxX;
float getMaxY;
float outRange = 15.0f;
//몬스터의 모델링 움직임에 따라 락온 이미지의 위치도 이에 맞춰서 함께 조절
while (target != null && GetIsSelect)
   hpbar.value = targetData.CurHp;
   float dist = (transform.position - target.position).magnitude;
    if (dist >= outRange)
        //몬스터와 플레이어의 거리가 멀어지면 타켓 해제
       GetIsSelect = false:
       target.GetComponentInChildren<GetMaterial>().GetmyMaterial[1].SetFloat("Boolean AB71AB7D", 0.0f);
       Destroy(hpbar.gameObject);
       targetUIGroup.SetActive(false);
       target = null;
```

```
headScreenPos = Camera.main.WorldToScreenPoint(headPos);
leftHandScreenPos = Camera.main.WorldToScreenPoint(leftHandPos);
rightHandScreenPos = Camera.main.WorldToScreenPoint(rightHandPos);
leftFootScreenPos = Camera.main.WorldToScreenPoint(leftFootPos);
rightFootScreenPos = Camera.main.WorldToScreenPoint(rightFootPos);
headScreenPos.x -= halfsize.x;
headScreenPos.y -= halfsize.y;
leftHandScreenPos.x -= halfsize.x;
leftHandScreenPos.y -= halfsize.y;
rightHandScreenPos.x -= halfsize.x;
rightHandScreenPos.y -= halfsize.y;
leftFootScreenPos.x -= halfsize.x;
leftFootScreenPos.y -= halfsize.y;
rightFootScreenPos.x -= halfsize.x;
rightFootScreenPos.y -= halfsize.y;
screenPosX.Add(headScreenPos.x);
screenPosX.Add(leftHandScreenPos.x);
screenPosX.Add(rightHandScreenPos.x);
screenPosX.Add(leftFootScreenPos.x);
screenPosX.Add(rightFootScreenPos.x);
screenPosY.Add(headScreenPos.y);
screenPosY.Add(leftHandScreenPos.y);
screenPosY.Add(rightHandScreenPos.y);
screenPosY.Add(leftFootScreenPos.y);
screenPosY.Add(rightFootScreenPos.y);
screenPosX.Sort();
screenPosY.Sort();
getMinX = screenPosX[0];
getMinY = screenPosY[0];
getMaxX = screenPosX[4];
getMaxY = screenPosY[4];
targetDistance = Mathf.Abs(screenPosX[4] - screenPosX[0]);
//각 방향의 최대,최소값을 확인해서 타겟 이미지의 포지션에 적용
if (targetDistance < targetingMaxDistance)</pre>
    images[0].transform.localPosition = new Vector3(getMinX - 20.0f, getMaxY, 0);
    images[1].transform.localPosition = new Vector3(getMaxX + 20.0f, getMaxY, 0);
    images[2].transform.localPosition = new Vector3(getMaxX + 20.0f, getMinY, 0);
    images[3].transform.localPosition = new Vector3(getMinX - 20.0f, getMinY, 0);
```

코루틴 내부 반복문입니다.

플레이어와 선택된 몬스터 사이의 거리가 일정 간격 이내라면 락온이 유지되도록 했습니다.

선택된 몬스터의 머리, 양 발,손 끝 위치를 월드 좌표에서 스크린 좌표 로 변환해주고 락온을 위해 만든 4 개의 이미지를 해당 좌표로 대입해 줬습니다.

마지막으로 락온 이미지가 몬스터의 각 사이드에서 너무 멀어지거나 좁 혀지지 않도록 최소, 최대값을 지정 해줬습니다.

3.1 방위 표시

```
public Transform playerTr;
public Image cardinalPoints;
public Image selectPoint;
Material myMaterial;
float algle;
float setoffSet;
float targetsetoffSet;
public bool isSelect = false;
void Start()
    myMaterial = cardinalPoints.materialForRendering;
// Update is called once per frame
void Update()
    algle = playerTr.eulerAngles.y;
    setoffSet = (algle / 360.0f)+0.94f;
    if(setoffSet > 1)
        setoffSet -= 1.0f;
    myMaterial.SetTextureOffset("_MainTex", new Vector2(setoffSet,0));
public void SelectPoint(Transform selectTarget)
    StartCoroutine(PointCheck(selectTarget));
IEnumerator PointCheck(Transform selectTarget)
    while(isSelect)
       Vector3 dir = (selectTarget.position - playerTr.position).normalized;
       float rot = Vector3.Dot(dir, playerTr.forward);
       rot = Mathf.Acos(rot);
       rot = (rot * 180.0f) / Mathf.PI;
        if (Vector3.Dot(playerTr.right, dir) < 0.0f)</pre>
            rot *= -1.0f;
        targetsetoffSet = (400f * rot) / 180f + 0.94f;
        selectPoint.rectTransform.localPosition = new Vector2(targetsetoffSet, 0);
        yield return null;
```

예시 이미지

화면 상단에 현재 플레이어가 바라보고 있는 방향과 미니맵에서 선택한 NPC의 위치를 확인 할 수 있도록 방위를 적용했습니다.

Material의 Offset을 이용하여 플레이어의 Y축 회전에 따라 값이 변하도록 했습니다.

또한 내적을 통해 플레이어를 기준으로 선택한 NPC의 방향을 파악하여 방위 이미지 위에 함께 표시되도록 했습니다.

4.1 회복 아이템

```
public abstract class Item : ScriptableObject
{
    public int ItemID = 0;
    public string ItemName = "";
    public Sprite ItemIcon = null;

    public abstract void Remove();
    public abstract void Use();
}
```

```
[CreateAssetMenu(fileName = "PotionItem", menuName = "Item / Potion Data", order = int.MaxValue)]
□public class PotionItem : Item
     public float Health = 0;
     public override void Use()
        float maxHp = PlayerData.GetInstance().maxHp;
         if (PlayerData.GetInstance().curHp + Health >= maxHp)
            PlayerData.GetInstance().curHp = maxHp;
            PlayerData.GetInstance().hpBar.value = maxHp;
            PlayerData.GetInstance().mainHpbar.value = maxHp;
        else
            PlayerData.GetInstance().curHp += Health;
            PlayerData.GetInstance().hpBar.value += Health;
            PlayerData.GetInstance().mainHpbar.value += Health;
         Remove();
    public override void Remove()
        SelectSlot.GetInstance().curSelectSlot.RemoveItem();
```

베리에이션을 고려하여 상속을 통해 각각 특징별로 오버라이드 하여 활용할 수 있도록 적용했습니다.

회복아이템 사용시 인스턴스를 통해 해당 아이템을 사용하는 플레이어의 데이터에 바로 접근하여 사용되도록 했습니다.

감사합니다.

https://www.youtube.com/watch?v=TEgRdujNk8w 포트폴리오 영상 URL