EXAM 2. 1. (1) Write down the equation of the unique plane it in 123 containing P, (0,-1,1), P2 (1,-1,0), P3 (1,0,-1). (2) Show the subset Win of R3 consisting of position vedors of all points in The is a vedor subspace of R3 (3) Show $\mathcal{B} := \left\{ \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} 07 \\ -1 \end{bmatrix} \right\}$ is a basis for $W_{\mathcal{R}}$. $\overrightarrow{PR} + \overrightarrow{PR} = \det \begin{pmatrix} \overrightarrow{z} & \overrightarrow{J} & \overrightarrow{k} \\ 1 & 0 & -1 \end{pmatrix}$ P. P. = (1,0,-1) P.R = (1,1,-2) =(1,1,1). This is the normal vector. So the plane is given by x+y+Z=d. Plug in any point to compake d: eg for (0,-1,1), 0+1-0+10=d => d=0 So the equation is [x+y+2=0]

(2) Let
$$\vec{V}_{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$
, $\vec{V}_{2} = \begin{pmatrix} x_{2} \\ y_{2} \\ z_{2} \end{pmatrix}$ so that \vec{V}_{1} , $\vec{V}_{2} \in W_{TL}$;

that is, $\underbrace{x_{1} + y_{1} + z_{1}}_{X_{1} + Y_{1} + z_{1}} = 0$ and $x_{2} + y_{2} + z_{2} = 0$.

Closed unclar+;

$$V_1' + V_2' = \begin{pmatrix} X_1 + X_2 \\ Y_1 + Y_2 \end{pmatrix}$$

Mode $(X_1 + X_2) + (Y_1 + Y_2) + (Z_1 + Z_2)$
 $= (X_1 + Y_1 + Z_1) + (X_2 + Y_2 + Z_2)$
 $= 0$

So $V_1 + V_2 \in U_{2L}$.

Closed under :

For
$$c \in \mathbb{R}$$
, $c \vec{y} = \begin{pmatrix} c \vec{x}_1 \\ c \vec{y}_1 \end{pmatrix}$. Note $(c \vec{x}_1) + (c \vec{y}_1) + (c \vec{z}_1) = c(\vec{x}_1 + \vec{y}_1 + \vec{z}_1)$

$$= 0$$
So $c \vec{y}_1 \in \mathcal{W}_{n}$

(3) It's easy to see
$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
 are linearly independent;
e.g. If $q\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + b\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = 0$, then $\begin{pmatrix} -q \\ b = 0 \\ q - b = 0 \end{pmatrix}$

Since This a place, it's 2 dimensional. Any two lin.
independent vectors in We form a basis, so it suffices
to show these vectors are in With

Box this is clear, since (-1) + (0) + (1) = 0and (0) + (1) + (-1) = 0 If Let V be n-dimensional vector space over R, let $B = \{\vec{b}_1, \dots, \vec{b}_n\}$ be a basis for V and let $C = \{\vec{c}_1, \dots, \vec{c}_n\}$ be a set of n vectors in V.

Let $A := [\vec{c}_1, \dots, \vec{c}_n]_B$.

Show if A is invertible, then C is a basis for V.

Front:

If A is invertible, then its columns [c] B, --, [c] g

are linearly independent.

We can view taking coordinates with respect to &" as a linear transformation V-> R"

This [1]

So if [ci]B, -, [cin]B are linearly independent, so are ci, -, en.

Since any collection of n linearly independent vectors in an n-dimensimal vector space form a basis, we conclude that e is a basis.

III. (40 points)

Let $\mathcal{P}_2(\mathbb{R})$ be the \mathbb{R} -vector space of polynomials in variable X, of degree at most 2, with coefficients in the field \mathbb{R} of real numbers.

- (1) Show that $\mathcal{B} := \{1 + X, 1 + 2X, 1 + X + X^2\}$ is a basis for $\mathcal{P}_2(\mathbb{R})$.
- (2) Write down a linear transformation

$$T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}$$

such that T(1+X) = 1, T(1+2X) = 2, $T(1+X+X^2) = 0$.

- (3) Is there more than one linear transformation T satisfying the above equalities? Justify your answer.
- (4) If T is the linear transformation you wrote down in (2) above, then calculate $T(1-X+X^2)$.
- (5) Show that $C := \{1 X, 1 2X, 1 X X^2\}$ is also a basis for $\mathcal{P}_2(\mathbb{R})$ and compute the transition matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$.

(1) Show linearly independent:

Suppose
$$C_1$$
 (1+x) + C_2 (1+2x) + C_3 (1+x+x²) = 0

 C_1 + C_2 + C_3 = 0 \Longrightarrow 0 C_1 + C_2 + 0 = 0

 C_1 + C_2 + C_3 = 0 \Longrightarrow 0 C_1 + C_2 + 0 = 0

 C_3 = 0 \Longrightarrow subtract 0 from C_2 = 0

 C_2 = 0

 C_3 = 0 \Longrightarrow linearly independent

Since C_1 = C_2 = C_3 = 0 \Longrightarrow linearly independent

Vectors and dim C_2 = 3, C_3 is a basis for C_2

(2)
$$T(x) = T((2x+1)-(x+1))$$

 $= T(2x+1)-T(x+1)=2-1=1$
 $T(x^2) = T((1+x+x^2)-(1+x))$
 $= T((1+x+x^2)-T((1+x))=0-1=-1$
 $T((1) = T((1+x)-x)=$
 $T((1+x)-T(x)=1-1=0$
Hence, $T((1+x)+(x^2))=1=0$
 $T((1+x)+(x^2))=1=0$
 $T((1+x)+(x^2))=1=0$

(3) No, the linear transformation with the above properties is unique; since B is a basis for P2, once we know what T does to the basis, what T does to all of P2 is uniquely detarmined

(4)
$$T(1-x+x^{2}) = T(1) - T(x) + T(x^{2})$$

= $-1-1=-2$

(5) $C = \{1-x, 1-2x, 1-x-x^{2}\}$

Linear independence:

Suppose $C_{1}(1+-x) + C_{2}(1-2x) + C_{3}(1-x-x^{2}) = C$

then $C_{1} + C_{2} + C_{3} = 0$
 $-C_{1} - 2C_{2} - C_{3} = 0$
 $-C_{3} = 0$
 $C_{1} + C_{2} = 0$

Adding $C_{1} + C_{2} = 0$
 $C_{2} = 0$

Then $C_{1} + C = 0$

Adding $C_{2} + C_{3} = 0$
 $C_{2} = 0$

Then $C_{1} + C = 0$
 $C_{3} = 0$
 C_{3}