Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica III Ciclo 2022

Laboratorio # 1
 Dado, GPIOs y flujo de desarrollo

Adrián Montero Bonilla, B85092

Grupo 901 Profesor: Marco Villalta

13 de enero, 2023

$\mathbf{\acute{I}ndice}$

1.	Resumen	3
	Nota teórica 2.1. Microcontrolador PIC12F675 2.2. Periféricos utilizados 2.3. Diseño del circuito	5 5
3.	2.4. Conceptos adicionales	7
4.	Conclusiones y recomendaciones	10 11
5.	Anexos	13

1. Resumen

Se ideó un diseño de un circuito con LEDs, un microcontrolador PIC12F675, resistores de protección y un botón; cuando se presiona el botón el microcontrolador debe de "lanzar el dado", generando un número de 1 a 6 y según este prender los LEDs correspondientes. Se encuentra, por análisis circuital, que las resistencias deben ser de 35Ω (para las ramas con LEDs duales) y de 118Ω (para el LED individual). El funcionamiento del programa, o mejor conocido como firmware, es el adecuado y se concluye que el laboratorio se elaboró con éxito.

2. Nota teórica

2.1. Microcontrolador PIC12F675

El microcontrolador PIC12F675 posee un CPU con estructura RISC y se puede operar a una frecuencia de reloj de hasta 20 MHz. Asimismo, puede operar en modo de baja potencia, configurar un Watchdog Timer y posee 6 pines GPIO para el control de dispositivos externos. Las figuras 1 a 3 muestran algunas de las características funcionales y/o eléctricas más importantes de este dispositivo (ver Anexos para más detalle).

Figura 1: Diagrama de pines del microcontrolador PIC12F675 [1].

Figura 2: Diagrama de bloques del microcontrolador PIC12F675 [1].

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings† Ambient temperature under bias.....-40 to +125°C Storage temperature-65°C to +150°C Voltage on VDD with respect to Vss-0.3 to +6.5V Voltage on MCLR with respect to Vss-0.3 to +13.5V Voltage on all other pins with respect to Vss-0.3V to (VDD + 0.3V) Total power dissipation⁽¹⁾ 800 mW Input clamp current, IIK (VI < 0 or VI > VDD)..± 20 mA

Figura 3: Especificaciones eléctricas del microcontrolador PIC12F675 [1].

2.2. Periféricos utilizados

Los únicos periféricos utilizados de este microcontrolador fueron 5 puertos GPIO, en donde el puerto GP3 fue configurado como una entrada (para "rodar" el dado al presionar el botón) y el resto como salidas (para encender los LEDs y formar una cara aleatoria del dado).

Para configurar los puertos se modificaron dos registros internos llamados TRISIO y GPIO de la siguiente manera:

```
void main(void)
{
    TRISIO = 0b000000000; //Poner todos los pines como salidas
    GPIO = 0x00; //Poner pines en bajo
    ...
```

El registro *TRISIO* permite indicar el modo de funcionamiento de los puertos GPIO; 0 si es una entrada y un 1 si corresponde a una salida. Por otro lado, el registro *GPIO* sirve para modificar el valor de la tensión de salida de los pines y al inicio se quiere que todos estén en bajo. Además, existen múltiples registros de configuración más, pero en este trabajo no se emplearon en la solución. Algunos de estos registros son:

- ANSEL: Se configura la conversión y selección analógica. Se le debe de indicar al programa cuál pin a utilizar como entrada.
- CMCON: Se configura el comparador analógico.
- CONFIG: Se habilitan/deshabilitan múltiples funcionalidades presentes en el microcontrolador; encender y/o apagar el WatchDog Timer, Power-up Timer, entre otros.

2.3. Diseño del circuito

El circuito del dado simulado presenta un comportamiento muy sencillo el cual se resume en lo siguiente; se presiona el botón y esta acción genera un número aleatorio entre 1 a 6 y, dependiendo del mismo, se prenden la misma cantidad de LEDs en el circuito. El funcionamiento es explicado de forma más algorítmica y clara en la figura 4.

El diseño de los resistores escogidos vienen de un análisis circuital con las leyes de Kirchhoff. Para los ramales con dos LEDs (se escogieron LEDs con umbrales de 1.65V) se aplicó un LTK y, para una corriente de 20 mA (valor típico especificado en la hoja del fabricante de los LEDs escogidos) y con una tensión de pin de 4V (se le resta un Volt para considerar pérdidas internas), se tiene la siguiente ecuación:

$$-4 + V_{Rext} + 1.65 \cdot 2 = 0 \tag{1}$$

Al cambiar V_{Rext} con ley de Ohm y despejar para encontrar el valor de R_{ext} se consigue lo siguiente:

$$R_{ext} = \frac{4 - 1,65 \cdot 2}{20 \cdot 10^{-3}}$$

$$= 35\Omega$$
(2)

Se realiza lo mismo para el caso del ramal con un solo LED y se obtiene una resistencia de 118Ω ; dichos valores de resistencias son los encontrados en el circuito simulado en las figuras 5 a 10.

Por otro lado, dentro del firmware creado para el microcontrolador se añade un pequeño delay al registrar un accionamiento del botón, de forma que le damos suficiente tiempo para evitar el infame efecto rebote de los switches mecánicos. En otras palabras, se revisa siempre dos veces si el botón fue presionado o no pero en tiempos distintos (el segundo checkeo se utiliza para confirmar que sí se presionó).

Figura 4: Diagrama de flujo del firmware construido para el microcontrolador PIC12F675.

Por último, se empleó una comfiguración de tipo pull-down para el pin GP3, en el cual el pin está en bajo hasta que se presiona el actuador y el pin transiciona a un estado alto. Se utiliza una

fuente de alimentación de 5V y una resistencia de protección de $1k\Omega$ para poder operar y proteger el botón.

2.4. Conceptos adicionales

- Configuración pull-up: Utilizado para poner el estado del pin en bajo una vez se registra un evento en el circuito. Antes del evento el pin está en alto.
- Configuración pull-down: Utilizado para poner el estado del pin en alto una vez se registra un evento en el circuito. Antes del evento el pin está en bajo.

3. Análisis de resultados

Figura 5: Dado simulado al obtener el número 1.

Figura 6: Dado simulado al obtener el número 2.

Figura 7: Dado simulado al obtener el número 3.

Figura 8: Dado simulado al obtener el número 4.

Figura 9: Dado simulado al obtener el número 5.

Figura 10: Dado simulado al obtener el número 6.

Las figuras 5 a 10 despliegan todos los resultados posibles para el dado simulado y se puede ver a simple vista que el circuito cumple con el propósito para el cual fue creado. Al evaluar el funcionamiento lógico del circuito expuesto en la figura 4, se concluye que el mismo es el deseado y no hubo problemas al desarrollarlo.

Nótese como se agregaron voltímetros y amperímetros para ambos tipos de ramales (uno o dos LEDs) y los valores de corriente y tensión son muy cercanos a los valores teóricos calculados en el diseño original del circuito y es por esta razón que los mismos mantienen un nivel de luminiscencia alto (circula suficiente corriente a través de estos). Asimismo, según las especificaciones del PIC12F675 expuestas en la figura 3, la máxima corriente que puede trasegar de forma simultánea a través de todos los pines GPIO es de 125 mA y si tomamos en cuenta la suma de todas las corrientes que se están suministrando a los puertos, se tiene que se respeta dicho límite.

3.1. Costo por componente

Componente	Fabricante	Costo (por unidad)
LED	NTE Electronics	\$0.76
PIC12F675	MicroChip	\$1.54
Botón	Mouser	\$0.27
Resistores	Vishay	\$0.49

4. Conclusiones y recomendaciones

- El desarrollo del algoritmo fue exitoso.
- Se pudo aprender a manipular los puertos de entrada y salida de los microcontroladores.
- Se recomienda emplear valores de tensión y/o corriente dentro del rango normal de operación, ya que en este laboratorio el diseño al principio se ideó a partir de las características eléctricas máximas y esto causó muchos fenómenos no deseados dentro de las simulaciones confeccionadas.

Referencias

[1] MicroChip. $PIC12F629/675\ Data\ Sheet.\ 2003.\ URL: https://ww1.microchip.com/downloads/en/devicedoc/41190c.pdf.$

5. Anexos

PIC12F629/675

8-Pin FLASH-Based 8-Bit CMOS Microcontroller

High Performance RISC CPU:

- · Only 35 instructions to learn
 - All single cycle instructions except branches
- · Operating speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- · Interrupt capability
- · 8-level deep hardware stack
- · Direct, Indirect, and Relative Addressing modes

Special Microcontroller Features:

- · Internal and external oscillator options
 - Precision Internal 4 MHz oscillator factory calibrated to ±1%
 - External Oscillator support for crystals and resonators
 - 5 μs wake-up from SLEEP, 3.0V, typical
- · Power saving SLEEP mode
- Wide operating voltage range 2.0V to 5.5V
- · Industrial and Extended temperature range
- · Low power Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- · Brown-out Detect (BOD)
- Watchdog Timer (WDT) with independent oscillator for reliable operation
- Multiplexed MCLR/Input-pin
- · Interrupt-on-pin change
- · Individual programmable weak pull-ups
- · Programmable code protection
- High Endurance FLASH/EEPROM Cell
 - 100,000 write FLASH endurance
 - 1,000,000 write EEPROM endurance
 - FLASH/Data EEPROM Retention: > 40 years

Low Power Features:

- · Standby Current:
 - 1 nA @ 2.0V, typical
- · Operating Current:
 - 8.5 μA @ 32 kHz, 2.0V, typical
 - 100 μA @ 1 MHz, 2.0V, typical
- · Watchdog Timer Current
 - 300 nA @ 2.0V, typical
- · Timer1 oscillator current:
 - 4 μA @ 32 kHz, 2.0V, typical

Peripheral Features:

- · 6 I/O pins with individual direction control
- · High current sink/source for direct LED drive
- · Analog comparator module with:
 - One analog comparator
 - Programmable on-chip comparator voltage reference (CVREF) module
 - Programmable input multiplexing from device inputs
 - Comparator output is externally accessible
- Analog-to-Digital Converter module (PIC12F675):
 - 10-bit resolution
 - Programmable 4-channel input
 - Voltage reference input
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- · Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 in LP mode as Timer1 oscillator, if INTOSC mode selected
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Device	Program Memory	Data N	lemory	I/O	10-bit A/D	Comparators	Timers	
Device	FLASH (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	Comparators	8/16-bit	
PIC12F629	1024	64	128	6	_	1	1/1	
PIC12F675	1024	64	128	6	4	1	1/1	

^{* 8-}bit, 8-pin devices protected by Microchip's Low Pin Count Patent: U.S. Patent No. 5,847,450. Additional U.S. and foreign patents and applications may be issued or pending.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 2-1). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

FIGURE 2-2: DATA MEMORY MAP OF THE PIC12F629/675

	File Address	A	File ddress
	Ī		
Indirect addr. (1)	00h	Indirect addr. (1)	80h
TMR0	01h	OPTION_REG	81h
PCL	02h	PCL	82h
STATUS	03h	STATUS	83h
FSR	04h	FSR	84h
GPIO	05h	TRISIO	85h
	06h		86h
	07h		87h
	08h		88h
DOLATII	09h	DOLATII	89h
PCLATH	0Ah	PCLATH	8Ah
INTCON	0Bh	INTCON	8Bh
PIR1	0Ch	PIE1	8Ch
TMD41	0Dh	DCON	8Dh
TMR1L	0Eh	PCON	8Eh
TMR1H	0Fh	000041	8Fh
T1CON	10h	OSCCAL	90h
	11h		91h
	12h		92h
	13h		93h
	14h	14/011	94h
	15h	WPU	95h
	16h	IOC	96h
	17h		97h
2112211	18h	1/2001	98h
CMCON	19h	VRCON	99h
	1Ah	EEDATA	9Ah
	1Bh	EEADR	9Bh
	1Ch	EECON1 EECON2 ⁽¹⁾	9Ch
ADRESH ⁽²⁾	1Dh	ADRESL ⁽²⁾	9Dh
ADRESH(-)	1Eh	ANSEL ⁽²⁾	9Eh
ADCON0(-)	1Fh 20h	ANSEL**	9Fh A0h
General Purpose Registers 64 Bytes	2011	accesses 20h-5Fh	7.611
	5Fh 60h		DFh E0h
Bank 0	7Fh	Bank 1	FFh
Unimplemented 1: Not a physical 2: PIC12F675 onl	register.	mory locations, rea	d as '0'.

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 0											
00h	INDF ⁽¹⁾	Addressing	this Location	uses Conter	nts of FSR to	Address Dat	a Memory			0000 0000	18,59
01h	TMR0	Timer0 Mod	ule's Registe	er						xxxx xxxx	27
02h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	17
03h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	11
04h	FSR	Indirect Data	a Memory Ad	Idress Pointe	er	•	•			xxxx xxxx	18
05h	GPIO	_	_	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	xx xxxx	19
06h	_	Unimplemen	nted							_	_
07h	_	Unimplemen	nted							_	_
08h	_	Unimplemen	nted							_	_
09h	_	Unimplemen	nted							_	_
0Ah	PCLATH	_	I	_	Write Buffer	for Upper 5 l	bits of Progra	am Counter		0 0000	17
0Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	TOIF	INTF	GPIF	0000 0000	13
0Ch	PIR1	EEIF	ADIF	_	_	CMIF	_	_	TMR1IF	00 00	15
0Dh	_	Unimplemen	nted							_	-
0Eh	TMR1L	Holding Reg	ister for the	Least Signific	cant Byte of t	he 16-bit Tim	ier1			xxxx xxxx	30
0Fh	TMR1H	Holding Reg	ister for the	Most Signific	ant Byte of the	ne 16-bit Time	er1			xxxx xxxx	30
10h	T1CON	_	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	-000 0000	32
11h	_	Unimplemen	nted							_	_
12h	_	Unimplemen	nted							_	_
13h	_	Unimplemen	nted							_	_
14h	_	Unimplemen	nted							_	_
15h	_	Unimplemen	nted							_	_
16h	_	Unimplemen	nted							_	_
17h	_	Unimplemen	nted							_	_
18h	_	Unimplemen	nted							_	_
19h	CMCON	-	COUT	_	CINV	CIS	CM2	CM1	CM0	-0-0 0000	35
1Ah	_	Unimplemen	nted							_	_
1Bh	_	Unimplemen	nted							_	_
1Ch	_	Unimplemen	nted								_
1Dh		Unimplemen	nted							_	_
1Eh	ADRESH ⁽³⁾	Most Signific	cant 8 bits of	the Left Shif	ted A/D Resi	ult or 2 bits of	the Right SI	hifted Result		xxxx xxxx	42
1Fh	ADCON0 ⁽³⁾	ADFM	VCFG	_	_	CHS1	CHS0	GO/DONE	ADON	00 0000	43,59

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

3: PIC12F675 only.

PIC12F629/675

TABLE 2-1: SPECIAL FUNCTION REGISTERS SUMMARY (CONTINUED)

INDLL	2 1. 01 1	-01/12	11011011	INCOID	<u> </u>	1411417-41-4-1	(0011111	1020			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOD	Page
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this Location	uses Conte	nts of FSR to	Address Dat	ta Memory			0000 0000	18,59
81h	OPTION_REG	GPPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	12,28
82h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	17
83h	STATUS	IRP ⁽²⁾	RP1 ⁽²⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	11
84h	FSR	Indirect Data	a Memory Ad	dress Pointe	er					xxxx xxxx	18
85h	TRISIO	_	_	TRISIO5	TRISIO4	TRISIO3	TRISIO2	TRISIO1	TRISIO0	11 1111	19
86h	_	Unimpleme	nted							_	_
87h	_	Unimpleme	nted							_	_
88h	_	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	_
8Ah	PCLATH	_	_	_	Write Buffer	for Upper 5	bits of Progra	am Counter		0 0000	17
8Bh	INTCON	GIE	PEIE	T0IE	INTE	GPIE	T0IF	INTF	GPIF	0000 0000	13
8Ch	PIE1	EEIE	ADIE	_	_	CMIE	_	_	TMR1IE	00 00	14
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	_	_	_	_	_	_	POR	BOD	0x	16
8Fh	_	Unimpleme	nted							_	_
90h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	1000 00	16
91h	_	Unimpleme	nted							_	_
92h	_	Unimpleme	nted							_	_
93h	_	Unimpleme	nted							_	_
94h	_	Unimpleme	nted							_	_
95h	WPU	_	_	WPU5	WPU4	_	WPU2	WPU1	WPU0	11 -111	20
96h	IOC	_	_	IOC5	IOC4	IOC3	IOC2	IOC1	IOC0	00 0000	21
97h	_	Unimpleme	nted							_	_
98h	_	Unimpleme	nted							_	_
99h	VRCON	VREN	_	VRR	_	VR3	VR2	VR1	VR0	0-0- 0000	40
9Ah	EEDATA	Data EEPR	OM Data Re	gister						0000 0000	47
9Bh	EEADR	_	Data EEPR	OM Address	Register					-000 0000	47
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	48
9Dh	EECON2 ⁽¹⁾	EEPROM C	ontrol Regist	ter 2							48
9Eh	ADRESL ⁽³⁾	Least Signif	icant 2 bits o	f the Left Shi	fted A/D Res	ult of 8 bits o	r the Right S	hifted Result		xxxx xxxx	42
9Fh	ANSEL ⁽³⁾	_	ADCS2	ADCS1	ADCS0	ANS3	ANS2	ANS1	ANS0	-000 1111	44,59

Legend: — = unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: This is not a physical register.

2: These bits are reserved and should always be maintained as '0'.

3: PIC12F675 only.

12.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR with respect to Vss	0.3 to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	± 20 mA
Output clamp current, Iok (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all GPIO	125 mA
Maximum current sourced all GPIO	125 mA

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL).

† NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latchup. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

NTE3019 Light Emitting Diode (LED) Red Diffused, 5mm

Features:

- Tapered Barrel T-1 3/4 Package
- High Intensity Red light source with various lens colors and effects
- Versatile Mounting on PC Board or Panel
- T-1 3/4 with Stand-off

Absolute Maximum Ratings: (T _A = +25°C unless otherwise specified)	
Reverse Voltage, V _R	,
Peak Forward Current (Note 1, I _F	١.
$\label{eq:power_power_power} $	
Operating Temperature Range, T _{opr} –55° to +100°C	;
Storage Temperature Range, T _{stg} 55° to +100°C	,
Lead Temperature (During Soldering, 1/16" (1.6mm) from case, 5sec max), T _L +260°C	;

Note 1. Pulse Width = 1μ s, 0.3% duty cycle.

<u>Electrical Characteristics:</u> $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Luminous Intensity	Ι _V	I _F = 20 mA	0.9	3.0	_	mcd
Peak Wavelength	λ_{p}	I _F = 20 mA	_	_	660	nm
Spectral Line Half Width	Δλ	I _F = 20 mA	_	20	_	nm
Forward Voltage	V _F	I _F = 20 mA	_	1.65	2.0	V
Reverse Current	I _n	V _R = 5.0V	_	_	100	λΑ
Reverse Voltage	λΑ	I _R = 100 λA	_	5.0	_	V
Capacitance	С	V = 0	_	35	_	pF
Viewing Angle	201/2	Between 50% Points	-	60	_	degree
Rise Time	t _r	10% – 90% 50Ω	-	50	_	ns
Fall Time	t _f	90% – 10% 50Ω	-	50	_	ns

Last Update: 12/27/05 Ref. #: MS-100630

Dimensions: mm (In.)

4.30 (.169) 4.50 (.177)

P.C.B. LAYOUT

Mechanical Specifications:

- Operating Life: 300,000 cycles min.
- Operating Temperature: -25°C to +70°C

Note:

 RoHS Compliant and process compatible with 260° solder

Electrical Specifications:

- Rating: 50mA / 12VDC
- Contact Resistance: 100mΩ max.
- Insulation Resistance: 100MΩ min.
- Dielectric Strength: 250VAC for 1 minute

Mouser	Dimension	s: mm (In)
Stock No.	A Max.	В
101-TS6111T1601-EV	0.5 (.02)	4.3 (.169)
101-TS6111T1602-EV	0.6 (.024)	5.0 (.197)
101-TS6111T1603-EV	0.6 (.024)	7.0 (.275)
101-TS6111T1606-EV	0.6 (.024)	9.5 (.374)
101-TS6111T1607-EV	0.6 (.024)	13.0 (.512)

Tactile Switches

101-TS6111T1601-EV, 101-TS6111T1602-EV, 101-TS6111T1603-EV, 101-TS6111T1606-EV, 101-TS6111T1607-EV

Available from Mouser Electronics

www.mouser.com

1-800-346-6873

Vishay BCcomponents

Standard Metal Film Leaded Resistors

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic

The resistors are coated with a colored lacquer (light-blue for type SFR16S; light-green for type SFR25 and red-brown for type SFR25H) which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with IEC 60068-2-45.

copper are welded to the end-caps.

• General purpose resistors

www.vishay.com/doc?99912

• Material categorization:

- Small size (SFR16S: 0204, SFR25 / SFR25H: 0207)
- Low noise (max. 1.5 μ V/V for R > 1 M Ω)
- Compatible to both lead (Pb)-free and lead containing soldering processes

for definitions of compliance please see

APPLICATIONS

TECHNICAL SPECIFICATIONS								
DESCRIPTION	SFR16S	SFR25	SFR25H					
DIN size	0204	0207	0207					
Resistance range	1 Ω to 3 M Ω ; jumper (0 Ω)	$0.22~\Omega$ to $10~\text{M}\Omega$; jumper (0 Ω)	0.22 Ω to 10 M Ω					
Resistance tolerance		± 5 %; ± 1 %						
Temperature coefficient		± 250 ppm/K; ± 100 ppm/K						
Rated dissipation, P ₇₀	0.5 W	0.4 W	0.5 W					
Thermal resistance	170 K/W	200 K/W	150 K/W					
Operating voltage, U _{max.} AC/DC	200 V	250 V	350 V					
Operating temperature range		-55 °C to 155 °C						
Permissible film temperature		155 °C						
Max. resistance change at rated dissipation ΔR/R max. , after 1000 h		± (2 % R + 0.05 Ω)						

Note

• R value is measured with probe distance of 24 mm \pm 1 mm using 4-terminal method.