

1 Définition, sous-espaces

Exercice 1

Déterminer lesquels des ensembles E_1 , E_2 , E_3 et E_4 sont des sous-espaces vectoriels de \mathbb{R}^3 . Calculer leurs dimensions.

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 ; x + y - z = x + y + z = 0\}.$$

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 ; x^2 - z^2 = 0\}.$$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3 ; e^x e^y = 0\}.$$

$$E_4 = \{(x, y, z) \in \mathbb{R}^3 ; z(x^2 + y^2) = 0\}.$$

Indication ▼ Correction V

[000886]

Exercice 2

Parmi les ensembles suivants reconnaître ceux qui sont des sous-espaces vectoriels.

$$\begin{split} E_1 &= \left\{ (x,y,z) \in \mathbb{R}^3; x+y+a=0, \text{ et } x+3az=0 \right\} \\ E_2 &= \left\{ f \in \mathscr{F}(\mathbb{R},\mathbb{R}); f(1)=0 \right\}, \qquad E_3 = \left\{ f \in \mathscr{F}(\mathbb{R},\mathbb{R}); f(0)=1 \right\} \\ E_4 &= \left\{ P \in \mathbb{R}_n[X]; P'=3 \right\}, \qquad E_5 = \left\{ (x,y) \in \mathbb{R}^2; x+\alpha y+1 \geqslant 0 \right\}. \end{split}$$

Indication ▼

Correction ▼

[888000]

Exercice 3

Soit *E* un espace vectoriel (sur \mathbb{R} ou \mathbb{C}).

1. Soient F et G deux sous-espaces de E. Montrer que

 $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.

2. Soient H un troisième sous-espace vectoriel de E. Prouver que

$$G \subset F \Longrightarrow F \cap (G+H) = G + (F \cap H).$$

Indication ▼

Correction ▼

[000893]

2 Systèmes de vecteurs

Exercice 4

Soient dans \mathbb{R}^4 les vecteurs $\vec{e_1}(1,2,3,4)$ et $\vec{e_2}(1,-2,3,-4)$. Peut-on déterminer x et y pour que $(x,1,y,1) \in Vect\{\vec{e_1},\vec{e_2}\}$? Et pour que $(x,1,1,y) \in Vect\{\vec{e_1},\vec{e_2}\}$?

Indication \blacktriangledown

 $\texttt{Correction} \; \blacktriangledown$

[000900]

Exercice 5

Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$. L'ensemble E est-il un sous espace vectoriel de \mathbb{R}^4 ? Si oui, en donner une base.

Indication ▼

Correction ▼

[000901]

Exercice 6

Soient E et F les sous-espaces vectoriels de \mathbb{R}^3 engendrés respectivement par les vecteurs $\left\{\begin{pmatrix} 2\\3\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-2 \end{pmatrix}\right\}$

et
$$\left\{ \begin{pmatrix} 3 \\ 7 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ -7 \end{pmatrix} \right\}$$
. Montrer que E et F sont égaux.

Indication ▼

Correction '

[000908]

Exercice 7

Peut-on déterminer des réels x, y pour que le vecteur v = (-2, x, y, 3) appartienne au s.e.v. engendré dans \mathbb{R}^4 par le système (e_1, e_2) où $e_1 = (1, -1, 1, 2)$ et $e_2 = (-1, 2, 3, 1)$?

Correction ▼ [000914]

Exercice 8

Soit
$$\alpha \in \mathbb{R}$$
 et $f_{\alpha} : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 1 \text{ si } x = \alpha \text{ ,} 0 \text{ sinon} \end{cases}$. Montrer que la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre.

3 Somme directe

Exercice 9

Soient $\vec{e_1}(0,1,-2,1)$, $\vec{e_2}(1,0,2,-1)$, $\vec{e_3}(3,2,2,-1)$, $\vec{e_4}(0,0,1,0)$ et $\vec{e_5}(0,0,0,1)$ des vecteurs de \mathbb{R}^4 . Les propositions suivantes sont-elles vraies ou fausses ? Justifier votre réponse.

- 1. $Vect\{\vec{e_1}, \vec{e_2}, \vec{e_3}\} = Vect\{(1, 1, 0, 0), (-1, 1, -4, 2)\}.$
- 2. $(1,1,0,0) \in Vect\{\vec{e_1},\vec{e_2}\} \cap Vect\{\vec{e_2},\vec{e_3},\vec{e_4}\}.$
- 3. $dim(Vect\{\vec{e}_1,\vec{e}_2\} \cap Vect\{\vec{e}_2,\vec{e}_3,\vec{e}_4\}) = 1.$
- 4. $Vect\{\vec{e_1},\vec{e_2}\}+Vect\{\vec{e_2},\vec{e_3},\vec{e_4}\}=\mathbb{R}^4$.
- 5. $Vect\{\vec{e}_4,\vec{e}_5\}$ est un sous-espace vectoriel de supplémentaire $Vect\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ dans \mathbb{R}^4 .

Indication ▼ Correction ▼

[000919]

Exercice 10

On considère les vecteurs $v_1 = (1,0,0,1)$, $v_2 = (0,0,1,0)$, $v_3 = (0,1,0,0)$, $v_4 = (0,0,0,1)$, $v_5 = (0,1,0,1)$ dans \mathbb{R}^4 .

- 1. Vect $\{v_1, v_2\}$ et Vect $\{v_3\}$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 2. Même question pour $Vect\{v_1, v_3, v_4\}$ et $Vect\{v_2, v_5\}$.

Indication ▼ Correction ▼

[000920]

Exercice 11

Soit $E = \Delta^1(\mathbb{R}, \mathbb{R})$ et $F = \{f \in E/f(0) = f'(0) = 0\}$. Montrer que F est un sous-espace vectoriel de E et déterminer un supplémentaire de F dans E.

Indication \blacktriangledown

Correction ▼

[000923]

Exercice 12

Soit

$$E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_n \text{ converge } \}.$$

Montrer que l'ensemble des suites constantes et l'ensemble des suites convergeant vers 0 sont des sous-espaces supplémentaires de E.

Indication ▼ Correction ▼ [000926]

Indication pour l'exercice 1 ▲

- 1. E_1 est un espace vectoriel, sa dimension est 1.
- 2. E_2 n'est pas un espace vectoriel.
- 3. E_3 n'est pas un espace vectoriel.
- 4. E_4 n'est pas un espace vectoriel.

Indication pour l'exercice 2 A

- 1. E_1 est un sous-espace vectoriel de \mathbb{R}^3 si et seulement si a = 0.
- 2. E_2 est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- 3. E_3 n'est pas un espace vectoriel.
- 4. E_4 n'est pas un espace vectoriel.
- 5. E_5 n'est pas un espace vectoriel.

Indication pour l'exercice 3 ▲

- 1. Pour le sens \Rightarrow : raisonner par l'absurde et prendre un vecteur de $F \setminus G$ et un de $G \setminus F$. Regarder la somme de ces deux vecteurs.
- 2. Raisonner par double inclusion.

Indication pour l'exercice 4 A

On ne peut pas pour le premier, mais on peut pour le second.

Indication pour l'exercice 5 ▲

E est un sous-espace vectoriel de \mathbb{R}^4 . Un base comporte trois vecteurs.

Indication pour l'exercice 6 ▲

Soit montrer la double inclusion. Soit montrer une seule inclusion et faire un petit raisonnement sur les dimensions. Utiliser le fait que de manière générale pour $E = \text{Vect}(e_1, \dots, e_n)$ alors :

$$E \subset F \Leftrightarrow \forall i = 1, \dots, n \quad e_i \in F.$$

Indication pour l'exercice 8 ▲

Supposer qu'il existe des réels $\lambda_1, \ldots, \lambda_n$, et des indices $\alpha_1, \ldots, \alpha_n$ (tout cela en nombre fini!) telsque

$$\lambda_1 f_{\alpha_1} + \cdots + \lambda_n f_{\alpha_n} = 0.$$

Ici le 0 est la fonction constante égale à 0. Évaluer cette expression est des valeurs bien choisies.

Indication pour l'exercice 9

- 1. Vrai.
- 2. Vrai.
- 3. Faux.
- 4. Faux.

5. Vrai.

Indication pour l'exercice 10 ▲

- 1. Non.
- 2. Non.

Indication pour l'exercice 11 ▲

Soit

$$G = \left\{ x \mapsto ax + b; (a, b) \in \mathbb{R}^2 \right\}.$$

Montrer que G est un supplémentaire de F dans E.

Indication pour l'exercice 12 ▲

Pour une suite (u_n) qui converge vers ℓ regarder la suite $(u_n - \ell)$.

Correction de l'exercice 1 A

- 1. E_1 est un sous-espace vectoriel de \mathbb{R}^3 . En effet :
 - (a) $(0 \ 0 \ 0) \in E_1$.
 - (b) Soient $(x \ y \ z)$ et $(x' \ y' \ z')$ deux éléments de E_1 . On a donc x+y-z=x+y+z=0 et x'+y'-z'=x'+y'+z'=0. Donc (x+x')+(y+y')-(z+z')=(x+x')+(y+y')+(z+z')=0 et $(x \ y \ z)+(x' \ y' \ z')=((x+x') \ (y+y') \ (z+z'))$ appartient à E_1 .
 - (c) Soient $\lambda \in \mathbb{R}$ et $\begin{pmatrix} x & y & z \end{pmatrix} \in E_1$. Alors la relation x + y z = x + y + z = 0 implique que $\lambda x + \lambda y \lambda z = \lambda x + \lambda y + \lambda z = 0$ donc que $\lambda \begin{pmatrix} x & y & z \end{pmatrix} = \begin{pmatrix} \lambda x & \lambda y & \lambda z \end{pmatrix}$ appartient à E_1 .

Posons $F_1 = \{(x, y, z) \in \mathbb{R}^3; x + y + z = 0\}$. F_1 est un plan passant par l'origine donc F_1 est un sous-espace vectoriel de \mathbb{R}^3 . On a les inclusions *strictes* : $\{0\} \subset E_1$ et $E_1 \subset F_1 \subset \mathbb{R}^3$. Par la première on obtient $0 < \dim(E_1)$, par la seconde dim $(F_1) < 3$ puis dim $(E_1) < 2$ c'est à dire dim $(E_1) = 1$.

- 2. $E_2 = \{(x, y, z) \in \mathbb{R}^3; x^2 z^2 = 0\}$ c'est à dire $E_2 = \{(x, y, z) \in \mathbb{R}^3; x = z \text{ ou } x = -z\}$. Donc $\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ appartiennent à E_2 mais $\begin{pmatrix} 1 & 0 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$ n'appartient pas à E_2 qui n'est en conséquence pas un sous-espace vectoriel de \mathbb{R}^3 .
- 3. $(0 \ 0 \ 0) \notin E_3$ donc E_3 n'est pas un sous-espace vectoriel de \mathbb{R}^3 .
- 4. Les vecteurs $(1 \ 0 \ 0)$ et $(0 \ 0 \ 1)$ appartiennent à E_4 mais leur somme $(1 \ 0 \ 0) + (0 \ 0 \ 1) = (1 \ 0 \ 1)$ ne lui appartient pas donc E_4 n'est pas un sous-espace vectoriel de \mathbb{R}^3 .

Correction de l'exercice 2

- 1. E_1 : non si $a \neq 0$ car alors $0 \notin E_1$; oui, si a = 0 car alors E_1 est l'intersection des sous-espaces vectoriels $\{(x, y, z) \in \mathbb{R}^3; x + y = 0\}$ et $\{(x, y, z) \in \mathbb{R}^3; x = 0\}$.
- 2. E_2 est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- 3. E_3 : non, car la fonction nulle n'appartient pas à E_3 .
- 4. E_4 : non car le polynôme nul n'appartient pas à E_4 .
- 5. E_5 : non, en fait E_5 n'est même pas un sous-groupe de $(\mathbb{R}^2, +)$ car $(2,0) \in E_5$ mais $-(2,0) = (-2,0) \notin E_5$.

Correction de l'exercice 3

- 1. Sens \Leftarrow . Si $F \subset G$ alors $F \cup G = G$ donc $F \cup G$ est un sous-espace vectoriel. De même si $G \subset F$.
 - Sens \Rightarrow . On suppose que $F \cup G$ est un sous-espace vectoriel. Par l'absurde supposons que F n'est pas inclus dans G et que G n'est pas inclus dans F. Alors il existe $x \in F \setminus G$ et $y \in G \setminus F$. Mais alors $x \in F \cup G$, $y \in F \cup G$ donc $x + y \in F \cup G$ (car $F \cup G$ est un sous-espace vectoriel). Comme $x + y \in F \cup G$ alors $x + y \in F$ ou $x + y \in G$.
 - Si $x + y \in F$ alors, comme $x \in F$, $(x + y) + (-x) \in F$ donc $y \in F$, ce qui est absurde.
 - Si $x + y \in G$ alors, comme $y \in G$, $(x + y) + (-y) \in G$ donc $x \in G$, ce qui est absurde.

Dans les deux cas nous obtenons une contradiction. Donc F est inclus dans G ou G est inclus dans F.

- 2. Supposons $G \subset F$.
 - Inclusion ⊃. Soit $x \in G + (F \cap H)$. Alors il existe $a \in G$, $b \in F \cap H$ tels que x = a + b. Comme $G \subset F$ alors $a \in F$, de plus $b \in F$ donc $x = a + b \in F$. D'autre part $a \in G$, $b \in H$, donc $x = a + b \in G + H$. Donc $x \in F \cap (G + H)$.
 - Inclusion ⊂. Soit $x \in F \cap (G+H)$. $x \in G+H$ alors il existe $a \in G$, $b \in H$ tel que x = a+b. Maintenant b = x a avec $x \in F$ et $a \in G \subset F$, donc $b \in F$, donc $b \in F \cap H$. Donc $x = a+b \in G+(F \cap H)$.

Correction de l'exercice 4 A

1.

$$\begin{aligned} &(x,1,y,1) \in \textit{Vect}\{e_1,e_2\} \\ &\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} \qquad (x,1,y,1) = \lambda(1,2,3,4) + \mu(1,-2,3,-4) \\ &\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} \qquad (x,1,y,1) = (\lambda,2\lambda,3\lambda,4\lambda) + (\mu,-2\mu,3\mu,-4\mu) \\ &\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} \qquad (x,1,y,1) = (\lambda+\mu,2\lambda-2\mu,3\lambda+3\mu,4\lambda-4\mu) \\ &\Rightarrow \exists \lambda, \mu \in \mathbb{R} \qquad 1 = 2(\lambda-\mu) \text{ et } 1 = 4(\lambda-\mu) \\ &\Rightarrow \exists \lambda, \mu \in \mathbb{R} \qquad \lambda-\mu = \frac{1}{2} \text{ et } \lambda-\mu = \frac{1}{4} \end{aligned}$$

Ce qui est impossible (quelque soient x, y). Donc on ne peut pas trouver de tels x, y.

2. On fait le même raisonnement :

$$(x, 1, 1, y) \in Vect\{e_1, e_2\}$$

$$\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} \qquad (x, 1, 1, y) = (\lambda + \mu, 2\lambda - 2\mu, 3\lambda + 3\mu, 4\lambda - 4\mu)$$

$$\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} \qquad \begin{cases} x = \lambda + \mu \\ 1 = 2\lambda - 2\mu \\ 1 = 3\lambda + 3\mu \\ y = 4\lambda - 4\mu \end{cases}$$

$$\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} \qquad \begin{cases} \lambda = \frac{5}{12} \\ \mu = -\frac{1}{12} \\ x = \frac{1}{3} \\ y = 2 \end{cases}$$

Donc le seul vecteur (x, 1, 1, y) qui convient est (1/3, 1, 1, 2).

Correction de l'exercice 5 ▲

- 1. On vérifie les propriétés qui font de E un sous-espace vectoriel de \mathbb{R}^4 (l'origine est dans E, la somme de deux vecteurs de E est dans E, la multiplication d'un vecteur de E par un réel reste dans E).
- 2. Il faut trouver une famille libre de vecteurs qui engendrent E. Comme E est dans \mathbb{R}^4 , il y aura moins de 4 vecteurs dans cette famille. On prend un vecteur de E (au hasard), par exemple $V_1 = (1, -1, 0, 0)$. Il est bien clair que V_1 n'engendre pas tout E, on cherche donc un vecteur V_2 linéairement indépendant de V_1 , prenons $V_2 = (1, 0, -1, 0)$. Alors V_1, V_2 n'engendrent pas tout E; par exemple $V_3 = (1, 0, 0, -1)$ est dans E mais n'est pas engendré par V_1 et V_2 . Montrons que (V_1, V_2, V_3) est une base de E.
 - (a) (V_1, V_2, V_3) est une famille libre. En effet soient $\alpha, \beta, \gamma \in \mathbb{R}$ tels que $\alpha V_1 + \beta V_2 + \gamma V_3 = 0$. Nous

obtenons donc:

$$\alpha V_1 + \beta V_2 + \gamma V_3 = 0$$

$$\Rightarrow \alpha \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma &= 0 \\ -\alpha &= 0 \\ -\beta &= 0 \\ -\gamma &= 0 \end{cases}$$

$$\Rightarrow \alpha = 0, \beta = 0, \gamma = 0.$$

Donc la famille est libre.

(b) Montrons que la famille est génératrice : soit $V = (x_1, x_2, x_3, x_4) \in E$. Il faut écrire V comme combinaison linéaire de V_1, V_2, V_3 . On peut résoudre un système comme ci-dessus (mais avec second membre) en cherchant α, β, γ tels que $\alpha V_1 + \beta V_2 + \gamma V_3 = V$. On obtient que $V = -x_2V_1 - x_3V_2 - x_4V_4$ (on utilise $x_1 + x_2 + x_3 + x_4 = 0$).

Bien sûr vous pouvez choisir d'autres vecteurs de base (la seule chose qui reste indépendante des choix est le nombre de vecteurs dans une base : ici 3).

Correction de l'exercice 6 ▲

Pour que deux ensembles X et Y soient égaux, il faut et il suffit que $X \subset Y$ et $Y \subset X$. Dans le cas des espaces vectoriels de dimension finie, la situation est un peu plus simple : pour que E = F il faut et il suffit que $F \subset E$ et dim $(E) = \dim(F)$. Appliquons ce critère : E est engendré par deux vecteurs donc dim $(E) \le 2$.

Les deux vecteurs $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ sont linéairement indépendants donc dim $(E) \ge 2$ c'est à dire dim (E) = 2.

Un raisonnement identique montre dim (F) = 2. Enfin, les égalités $\begin{pmatrix} 3 \\ 7 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ et $\begin{pmatrix} 5 \\ 0 \\ -7 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ -7 \end{pmatrix}$

$$\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \text{ montrent que } F \subset E \text{ c'est à dire } E = F.$$

Correction de l'exercice 7 ▲

 $v \in \mathrm{Vect}(e_1,e_2)$ est équivalent à l'existence de deux réels λ,μ tels que $v=\lambda e_1+\mu e_2$. Alors $(-2,x,y,3)=\lambda(1,-1,1,2)+\mu(-1,2,3,1)$ est équivalent à

$$\begin{cases}
-2 = \lambda - \mu \\
x = -\lambda + 2\mu \\
y = \lambda + 3\mu \\
3 = 2\lambda + \mu
\end{cases} \Leftrightarrow \begin{cases}
\lambda = 1/3 \\
\mu = 7/3 \\
x = 13/3 \\
y = 22/3
\end{cases}$$

Le couple qui convient est donc (x,y) = (13/3,22/3).

Correction de l'exercice 8 A

À partir de la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ nous considérons une combinaison linéaire (qui ne correspond qu'à un nombre *fini* de termes).

Soit $\alpha_1, \ldots, \alpha_n$ des réels distincts, considérons La famille (finie): $(f_{\alpha_i})_{i=1,\ldots,n}$. Supposons qu'il existe des réels $\lambda_1, \ldots, \lambda_n$ tels que $\sum_{i=1}^n \lambda_i f_{\alpha_i} = 0$. Cela signifie que, quelque soit $x \in \mathbb{R}$, alors $\sum_{i=1}^n \lambda_i f_{\alpha_i}(x) = 0$; en particulier pour $x = \alpha_j$ l'égalité devient $\lambda_j = 0$ car $f_{\alpha_i}(\alpha_j)$ vaut 0 si $i \neq j$ et 1 si i = j. En appliquant le raisonnement ci-dessus pour j = 1 jusqu'à j = n on obtient : $\lambda_j = 0$, $j = 1, \ldots, n$. Donc la famille $(f_{\alpha_j})_{\alpha_j}$ est une famille libre.

Correction de l'exercice 9 A

Faisons d'abord une remarque qui va simplifier les calculs :

$$e_3 = 2e_1 + 3e_2$$
.

Donc en fait nous avons $Vect(e_1, e_2, e_3) = Vect(e_1, e_2)$ et c'est un espace de dimension 2. Par la même relation on trouve que $Vect(e_1, e_2, e_3) = Vect(e_2, e_3)$

- 1. Vrai. $Vect\{(1,1,0,0),(-1,1,-4,2)\}$ est inclus dans $Vect(e_1,e_2,e_3)$, car $(1,1,0,0)=e_1+e_2$ et $(-1,1,-4,2)=-e_1+e_2$. Comme il sont de même dimension ils sont égaux.
- 2. Vrai. On a $(1,1,0,0) = e_1 + e_2$ donc $(1,1,0,0) \in Vect(e_1,e_2)$, or $Vect(e_1,e_2) = Vect(e_2,e_3) \subset Vect(e_2,e_3,e_4)$. Donc $(1,1,0,0) \in Vect(e_1,e_2) \cap Vect(e_2,e_3,e_4)$.
- 3. Faux. Toujours la même relation nous donne que $Vect(e_1,e_2) \cap Vect(e_2,e_3,e_4) = Vect(e_1,e_2)$ donc est de dimension 2.
- 4. Faux. Encore une fois la relation donne que $Vect(e_1, e_2) + Vect(e_2, e_3, e_4) = Vect(e_1, e_2, e_4)$, or 3 vecteurs ne peuvent engendré \mathbb{R}^4 qui est de dimension 4.
- 5. Vrai. Faire le calcul : l'intersection est $\{0\}$ et la somme est \mathbb{R}^4 .

Correction de l'exercice 10 ▲

- 1. Non. Ces deux espaces ne peuvent engendrés tout \mathbb{R}^4 car il n'y pas assez de vecteurs. Premier type de raisonnement, on montre que $Vect(v_1, v_2) + Vect(v_3) = Vect(v_1, v_2, v_3)$, mais 3 vecteurs ne peuvent engendrer l'espace \mathbb{R}^4 de dimension 4. Autre type de raisonnoment : trouver un vecteur de \mathbb{R}^4 qui n'est pas dans $Vect(v_1, v_2) + Vect(v_3)$: par exemple faire le calcul avec (0,0,0,1).
- 2. Non. Ces deux espaces ne sont pas supplémentaires car il y a trop de vecteurs! Il engendrent tout, mais l'intersection n'est pas triviale. En effet on remarque assez vite que $v_5 = v_3 + v_4$ est dans l'intersection. On peut aussi obtenir ce résultat en resolvant un système.

Correction de l'exercice 11 ▲

Les fonctions de E qui ne sont pas dans F sont Les fonctions h qui vérifient $h(0) \neq 0$ ou $h'(0) \neq 0$. Par exemple les fonctions constantes $x \mapsto b$, $(b \in \mathbb{R})$, ou les homothéties $x \mapsto ax$, $(a \in \mathbb{R})$ n'appartiennent pas à F. Posons

$$G = \left\{ x \mapsto ax + b; (a, b) \in \mathbb{R}^2 \right\}.$$

Montrons que G est un supplémentaire de F dans E.

Soit $f \in F \cap G$ alors f(x) = ax + b (car $f \in G$) et f(0) = b et f'(0) = a; mais $f \in F$ donc f(0) = 0 donc b = 0 et f'(0) = 0 donc a = 0. Maintenant f est la fonction nulle : $F \cap G = \{0\}$.

Soit $h \in E$, alors remarquons que pour f(x) = h(x) - h(0) - h'(0)x la fonction f vérifie f(0) = 0 et f'(0) = 0 donc $f \in F$. Si nous écrivons l'égalité différemment nous obtenons

$$h(x) = f(x) + h(0) + h'(0)x.$$

Posons g(x) = h(0) + h'(0)x, alors la fonction $g \in G$ et

$$h = f + g$$
,

ce qui prouve que toute fonction de E s'écrit comme somme d'une fonction de F et d'une fonction de G : E=F+G.

Correction de l'exercice 12 ▲

On note F l'espace vectoriel des suites constantes et G l'espace vectoriel des suites convergeant vers 0.

- 1. $F \cap G = \{0\}$. En effet une suite constante qui converge vers 0 est la suite nulle.
- 2. F + G = E. Soit (u_n) un élément de E. Notons ℓ la limite de (u_n) . Soit (v_n) la suite définie par $v_n = u_n \ell$, alors (v_n) converge vers 0. Donc $(v_n) \in G$. Notons (w_n) la suite constante égale à ℓ . Alors nous avons $u_n = \ell + u_n \ell$, ou encore $u_n = w_n + v_n$, ceci pour tout $n \in \mathbb{N}$. En terme de suite cela donne $(u_n) = (w_n) + (u_n)$. Ce qui donne la décomposition cherchée.

Bilan : F et G sont en somme directe dans E : $E = F \oplus G$.