

LOW-NOISE DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM5532 is a high performance dual low noise operational amplifier. Compared to the standard dual operational amplifiers, such as the NJM1458, it shows better noise performance, improved output drive capability, and considerably higher small-signal and power bandwidths. it is compensated internally for voltage follower circuit. This makes the device especially suitable for application in high quality and professional audio equipment, instrumentation, control circuits, and telephone channel amplifiers.

If very low noise characteristic is of prime importance, it is recommended D-Rank type products(NJM5532DD/LD/MD). These have specified maximum limits for equivalent input noise voltage.

■ PACKAGE OUTLINE

NJM5532E (DIP8)

NJM5532M (DMP8)

■ FEATURES

Operating Voltage ±3V~±22V
 Small Signal Bandwidth 10MHz typ.
 Output Drive Capability 600Ω,10Vrms typ.
 Input Noise Voltage 5nV/√Hz typ.
 Power Bandwidth 140kHz typ.
 Slew Rate 8V/µs typ.

• Bipolar Technology

Package Outline
 DIP8,DMP8,SIP8

■ PIN CONFIGURATION

PIN FUNCTION
1.A OUTPUT
2.A -INPUT
3.A +INPUT
4.V
5.B +INPUT
6.B -INPUT
7.B OUTPUT
8.V

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V [†] √	±22	V
Common Mode Input Voltage Range	V_{ICM}	V ⁺ /\rangle	V
Differential Input Voltage Range	V_{ID}	±0.5	V
Power Dissipation	P _D	DIP8 : 500 DMP8 : 600(Note1) SIP8 : 800	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

(Note1) On the cermic PCB (10x20x0.635mm)

■ **RECOMMENDED OPERATING VOLTAGE** (Ta=25°C)

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V ⁺ /V	±3~±22	V

■ ELECTRICAL CHARACTERISTICS (V⁺/V⁻=±15V,Ta=25°C, unless otherwise noted.)

• DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	0.5	4	mV
Input Offset Current	I _{IO}		-	10	150	nA
Input Bias Current	lΒ		-	200	800	nA
Supply Current	Icc	R∟=∞	-	9	16	mA
Common Mode Input Voltage Range	V_{ICM}		± 12	± 13	-	V
Common Mode Rejection Ratio	CMR	R _S ≤10kΩ	70	100	-	dB
Supply Voltage Rejection Ratio	SVR	R _S ≤10kΩ	80	100	-	dB
Voltage Gain1	A _{V1}	R _L ≥2kΩ, V _O =±10V	88	100	-	dB
Voltage Gain2	A_{V2}	R _L ≥600Ω, V _O =±10V	83.5	94	-	dB
Maximum Output Voltage1	V _{OM1}	R∟≥600Ω	± 12	± 13	-	V
Maximum Output Voltage2	V_{OM2}	R _L ≥600Ω, V ⁺ /√=±18V	± 15	± 16	-	V
Input Resistance	R_{IN}		30	300	-	kΩ
Short Circuit Output Current	los		-	38	-	mA

• AC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Resistance	Ro	A_V =30dB,f=10kHz, R_L =600 Ω	-	0.3	-	Ω
Overshoot		$A_V=1$, $V_{IN}=100$ m V_{PP} , $R_L=100$ pF, $R_L=600$ Ω	-	10	-	%
Voltage Gain	A _V	f=10kHz	-	67	-	dB
Slew Rate	SR		-	8	-	V/µs
Gain Bandwidth Product	GB	C_L =100pF, R_L =600 Ω	-	10	-	MHz
Power Bandwidth	W_{PG}	V _O =±10V	-	140	-	kHz
	W_{PG}	$V_0 = \pm 14V, R_L = 600\Omega, V^{\dagger}/V = \pm 18V$	-	100	-	kHz
Equivalent Input Noise Voltage	e n	f _o =30Hz	-	8	-	nV/√Hz
	e _n	f _O =1kHz	-	5	-	nV/√Hz
Equivalent Input Noise Current	i _n	f _o =30Hz	-	2.7	-	pA/√Hz
	i _n	f _o =1kHz	-	0.7	-	pA/√Hz
Channel Separation	CS	f=1kHz, R _S =5kΩ	-	110	-	dB

■ ELECTRICAL CHARACTERISTICS (D-ranktype(Note2), V⁺/V⁻=±15V, Ta=25°C, unless otherwise noted.)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Equivalent Input Noise Voltage	V_{NI}	RIAA, R _S =2.2kΩ	-	-	1.4	μVrms

(Note2)D-rank type is a Equivalent Input Noise Voltage selected product.

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS

■ TEST CIRCUIT

Noise Voltage (RIAA) measurement circuit +15V ♀ φ -15V ± 100µ 40dB Amp 30kHz LPF Rs 3.3μ 2.2k 0.47µ 2.2μ o Vout 56k **≷** 220k ≶ 330k 30k -WV- 0.0024μ 0.0082μ 47µ 🕁

■ NOTICE

When used in voltage follower circuit, put a current limit resistor into non-inverting input terminal in order to avoid inside input diode destruction when the power supply is turned on. (ref.Fig.1)

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NJR:

<u>NJM#5532M-TE1</u> <u>NJM#5532MD-TE2</u> <u>NJM#5532MD-TE3</u> <u>NJM#5532M-TE3</u> <u>NJM#5532D</u> <u>NJM#5532D</u>