

Steps of the Day

Let's Start

Definition of Array

AND MANUAL WARREST TO THE WARREST TO

All About Array

I need a program to process students data but i want it to keep all data temporary in memory

so i can use it until the program is shut down.

Data structure that saves a group of

variables which have same type.

An Array was named bil, has integer type,

and consists of five elemens.

- One Dimension Array
- Two Dimensions Array
- Many Dimensions Array (i will not explain THIS!!!)

One Dimension Array

Markey Wall Markey Mark

Definition and Structures of One Dimension Array

Array that only has one subscript / index.

Array

As variable

- As user-defined data type
- Define size of array as constant

Declaration As Variable (Algorithm)

Kamus:

```
NamaArray : <a href="mailto:array">array</a> [1..MaxSize] of <a href="mailto:TipeData">TipeData</a>
```

Contoh:

Kamus:

```
bil : array [1..5] of integer
```

NamaDosen: array [1..20] of string

Pecahan: array [1..100] of real

Declaration As Variable (Pascal)

```
var
   NamaArray : array [1..MaxSize] of TipeData;
Contoh:
var
  bil : array [1..5] of integer;
   NamaDosen : array [1..20] of string[30];
   Pecahan: array [1..100] of real;
```

Declaration As User-Defined Data Type (Algorithm)

```
Kamus:
 type
   NamaArray = array [1..MaxSize] of TipeData
 NamaVariabel 1:NamaArray
 NamaVariabel 2:NamaArray
```

Declaration As User-Defined Data Type (Algorithm)

```
Contoh:
Kamus:
 type
    bil = array [1..5] of integer
  bilbulat:bil
 bilpositif:bil
```

Declaration As User-Defined Data Type (Pascal)

```
type
   NamaArray = array [1..MaxSize] of TipeData;
var
   NamaVariabel 1:NamaArray;
   NamaVariabel 2:NamaArray;
```

Declaration As User-Defined Data Type (Pascal)

```
Contoh:
type
   bil = array [1..5] of integer;
var
   bilbulat:bil;
   bilpositif:bil;
```

Define Size of Array As Constant (Algorithm)

```
Kamus:
  const
   MaxSize = VALUE
 type
   NamaArray = array [1..MaxSize] of TipeData
 NamaVariabel 1:NamaArray
 NamaVariabel 2:NamaArray
```

Define Size of Array As Constant (Algorithm)

```
Contoh:
Kamus:
  const
    maks = 5
  type
    bil = array [1..maks] of integer
  bilbulat:bil
```

Define Size of Array As Constant (Pascal)

```
const
  MaxSize = VALUE;
type
   NamaArray : array [1..MaxSize] of TipeData;
var
   NamaVariabel:NamaArray;
```

Define Size of Array As Constant (Pascal)

```
Contoh:
const
  maks = 5;
type
  bil = array [1..maks] of integer;
var
   bilbulat:bil;
```

To fill and access the value in array, call the name

of array and its subscript that you want to access

bil[1]=5 \rightarrow it means fill 5 in [1]

 $a=bil[2] \rightarrow$ a will be filled by 1

Format of Accessing Array (Algorithm)

```
namaarray[indeks] ← nilai
```

```
input (namaarray[indeks])
```

output (namaarray[indeks])

Format of Accessing Array (Algorithm)

```
namaarray[indeks] := nilai;
        readln(namaarray[indeks]);
namaarray[indeks] := namaarray[indeks] + 1;
        writeln(namaarray[indeks]);
```

- Creation
- Traversal
- Searching
- Sorting
- Destroy

- Prepare array to be accessed/processed.
 - Array will be filled with default value.
- For numeric array will be filled with 0 and
 - for alphanumeric array will be filled with "

(Null Character)

Array Creation (Algorithm)

```
Procedure create (output NamaVarArray: NamaArray)
{I.S: elemen array diberi harga awal agar siap digunakan}
{F.S: menghasilkan array yang siap digunakan}
Kamus:
   indeks:integer
Algoritma:
   for indeks ← 1 to make array do
      nama var array[indeks] ← 0 {sesuaikan dengan tipe array}
   endfor
EndProcedure
```

Array Creation (Pascal)

```
procedure create (var NamaVarArray:NamaArray);
var
   indeks:integer;
begin
   for indeks := 1 to maks do
      NamaVarArray[indeks] := 0;
end;
```

The process of visiting all elements of

array one by one, from the first

element until last element.

- Fill elements array with data
- Output all elements of array
- Adding data to array
- Insert data in particular index
- Delete data in particular index
- Determine maximum and minimum data in array
- Count mean value in array

General Form for Array Traversal (Algorithm)

```
Procedure traversal (I/O NamaVarArray:NamaArray)
{I.S: maksimum array sudah terdefinisi}
{F.S: menghasilkan array yang sudah diproses}
Kamus:
Algoritma:
   for indeks \leftarrow 1 to make do
      {proses traversal}
   endfor
   Terminasi {sifatnya optional}
EndProcedure
```

General Form for Array Traversal (Pascal)

```
procedure traversal(var NamaVarArray:NamaArray);

begin
  for indeks := 1 to maks do
     {proses traversal yang dipilih}
  terminasi {sifatnya optional}
end;
```

The process to return value of array

into default value that was given in

array creation.

Example of One Dimension Array (Algorithm)

```
1
   Algoritma ArrayDasar
2
    {I.S.: Dideklarasikan dua buah array satu dimensi}
3
    {F.S.: Menampilkan array beserta hasil perhitungan}
4
5
   Kamus:
6
    const
7
         maks=5
8
    type
9
         bil=array[1..maks] of integer
10
11
   bil1,bil2:bil
12
    i:integer
13
    jumlah, jumlah2:integer
```

Example of One Dimension Array (Algorithm)

```
14
    Algoritma:
15
          {input elemen array}
          for i ← 1 to maks do
16
17
             input(bil1[i])
18
          endfor
19
20
          for i \leftarrow 1 to make do
21
             input(bil2[i])
22
          endfor
23
24
          {output elemen array}
25
          for i \leftarrow 1 to make do
26
             output(bil1[i])
27
          endfor
```

Example of One Dimension Array (Algorithm)

```
28
          for i \leftarrow 1 to make do
29
              output(bil2[i])
30
          endfor
31
32
           {proses perhitungan array}
33
          jumlah \leftarrow 0;
34
          for i ← 1 to maks do
35
              jumlah←jumlah+bil1[i]
37
          endfor
38
          output(jumlah)
39
          jumlah2 \leftarrow 0;
40
```

Example of One Dimension Array (Algorithm)

```
1
    program ArrayDasar;
2
    uses crt;
3
4
    const
5
         maks=5;
6
    type
8
         bil=array[1..maks] of integer;
9
10
    var
11
         bil1,bil2:bil;
12
         i:integer;
13
         jumlah, jumlah2:integer;
```

```
14
    begin
         {input elemen array}
15
16
         for i:=1 to make do
17
         begin
18
            write('Masukkan nilai ke bil 1 [',i,'] : ');
19
            readln(bil1[i]);
20
         end;
21
22
         writeln();
23
         for i:=1 to make do
24
         begin
            write('Masukkan nilai ke bil 2 [',i,'] : ');
25
26
            readln(bil2[i]);
27
         end;
```

```
28
         {output elemen array}
         for i:=1 to maks do
29
30
         begin
31
            writeln('Bil 1[',i,'] = ',bil1[i]);
32
         end;
33
34
         writeln();
35
         for i:=1 to maks do
37
         begin
38
            writeln('Bil 2[',i,'] = ',bil2[i]);
39
         end;
40
```

```
41
         {proses perhitungan array}
42
         writeln():
43
         jumlah:=0;
         for i:=1 to maks do
44
45
         begin
46
              jumlah:=jumlah+bil1[i];
47
         end;
48
         writeln('Jumlah elemen array bil 1 = ',jumlah);
49
50
         writeln();
51
         jumlah2:=0;
         for i:=1 to maks do
52
53
         begin
```

```
54
             jumlah2:=jumlah2+bil2[i];
55
         end;
56
         writeln('Jumlah elemen array bil 2 = ',jumlah2);
57
58
         writeln();
59
         write('Tekan sembarang tombol untuk menutup...');
60
         readkey();
61
    end.
```


Two Dimensions Array

Markey Wall Markey Wall and Ma

Definition and Structures of Two Dimensions Array

Array that has two subscripts in its

declaration. It often was called matrix.

Declaration As Variable (Algorithm)

```
Kamus:
   NamaArray : array [1..MaxBaris,1..MaxKolom] of TipeData

Contoh:
   Kamus:
   matriks : array [1..5,1..5] of integer
```

Declaration As Variable (Pascal)

```
var
NamaArray : array [1..MaxBaris,1..MaxKolom] of TipeData;
Contoh:
var
  matriks: array [1..5,1..5] of integer;
```

Declaration As User-Defined Data Type (Algorithm)

```
Kamus:
    type
    NamaArray = array [1..MaxBaris,1..MaxKolom] of TipeData
    NamaVariabel_1:NamaArray
    NamaVariabel_2:NamaArray
```

Declaration As User-Defined Data Type (Algorithm)

```
Contoh:
Kamus:
  type
    matriks = array [1..5,1..5] of integer
  matriks1:matriks
```

Declaration As User-Defined Data Type (Pascal)

```
type
    NamaArray = array [1..MaxBaris,1..MaxKolom] of TipeData;

var
    NamaVariabel_1:NamaArray;
    NamaVariabel_2:NamaArray;
```

Declaration As User-Defined Data Type (Pascal)

```
Contoh:
type
   matriks = array [1..5,1..5] of integer;
var
   matriks1:bil;
   matriks2:bil;
```

Define Size of Array As Constant (Algorithm)

```
Kamus:
  const
    MaxBaris = VALUE1
    MaxKolom = VALUE2
  type
    NamaArray = array [1..MaxBaris,1..MaxKolom] of TipeData
  NamaVariabel 1:NamaArray
  NamaVariabel 2:NamaArray
```

Define Size of Array As Constant (Algorithm)

```
Contoh:
Kamus:
  const
    MaksBaris = 5
    MaksKolom = 5
  type
    matriks = array [1..MaksBaris,1..MaksKolom] of integer
  matriks1,matriks2:bil
```

Define Size of Array As Constant (Pascal)

```
const
  MaxBaris = VALUE1;
   MaxKolom = VALUE2;
type
   NamaArray : array [1..MaxBaris, 1..MaxKolom] of TipeData;
var
  NamaVariabel:NamaArray;
```

Define Size of Array As Constant (Pascal)

```
Contoh:
const
  MaksBaris = 5;
  MaksKolom = 5;
type
  matriks = array [1..MaksBaris,1..MaksKolom] of integer;
var
  bilbulat:bil;
```

Operation in two dimensions array is same

as operation in one dimensions array.

- Creation
- Traversal
- Searching
- Sorting
- Destroy

- Prepare array to be accessed/processed.
 - Array will be filled with default value.
- For numeric array will be filled with 0 and
 - for alphanumeric array will be filled with "

(Null Character)

Array Creation (Algorithm)

```
Procedure create (output NamaVarArray: NamaArray)
{I.S: elemen array diberi harga awal agar siap digunakan}
{F.S: menghasilkan array yang siap digunakan}
Kamus:
  i,j:integer
Algoritma:
  for i 

1 to MaksBaris do
    for j← 1 to MaksKolom do
     endfor
  endfor
EndProcedure
```

Array Creation (Pascal)

```
procedure create (var NamaVarArray:NamaArray);
var
   i,j:integer;
begin
   for i := 1 to MaksBaris do
   begin
     for j := 1 to MaksKolom do
        NamaVarArray[i,j] := 0;
   end;
end;
```

The process of visiting all elements of

array one by one, from the first

element until last element.

- Fill elements array with data
- Output all elements of array
- Adding data to array
- Insert data in particular index
- Delete data in particular index
- Determine maximum and minimum data in array
- Count mean value in array

General Form for Array Traversal (Algorithm)

```
Procedure traversal (I/O NamaVarArray:NamaArray)
{I.S: maksimum array sudah terdefinisi}
{F.S: menghasilkan array yang sudah diproses}
Kamus:
Algoritma:
   for i 

1 to MaksBaris do
     for j ← 1 to MaksKolom do
      {proses traversal}
     endfor
   endfor
   Terminasi {sifatnya optional}
EndProcedure
```

General Form for Array Traversal (Pascal)

```
procedure traversal(var NamaVarArray:NamaArray);
begin
   for i := 1 to MaksBaris do
   begin
     for j := 1 to MaksKolom do
      {proses traversal yang dipilih}
   end;
   terminasi {sifatnya optional}
end;
```

The process to return value of array

into default value that was given in

array creation.

Example of Two Dimensions Array (Algorithm)

```
1
   Algoritma ArrayDasar
2
    {I.S.: Dideklarasikan dua buah array dua dimensi}
3
    {F.S.: Menampilkan isi array}
4
5
   Kamus:
6
    const
7
         MaksBaris=5
8
         MaksKolom=5
9
10
    type
         bil=array[1..MaksBaris,1..MaksKolom] of integer
11
12
13
   matriks1, matriks2:bil
14
   i,j:integer
```

Example of Two Dimensions Array (Algorithm)

```
15
    Algoritma:
16
         {input elemen array}
17
         for i ← 1 to MaksBaris do
18
            for j ← 1 to MaksKolom do
19
                input(bil1[i,j])
            endfor
20
21
         endfor
22
23
         for i ← 1 to MaksBaris do
24
            for j ← 1 to MaksKolom do
25
                input(bil2[i,j])
26
            endfor
27
         endfor
28
```

Example of Two Dimensions Array (Algorithm)

```
29
         {output elemen array}
30
         for i 

1 to MaksBaris do
31
            for j ← 1 to MaksKolom do
32
                output(bil1[i,j])
33
            endfor
34
         endfor
35
37
         for i ← 1 to MaksBaris do
38
            for j ← 1 to MaksKolom do
39
                output(bil1[i,j])
40
            endfor
41
         endfor
```

```
1
   program ArrayDuaDimensiDasar;
2
   uses crt;
3
4
    const
5
         MaksBaris=3;
6
         MaksKolom=3;
7
    type
8
         matriks = array[1..MaksBaris,1..MaksKolom] of
9
    integer;
10
11
   var
12
         matriks1,matriks2:matriks;
13
         baris,kolom:integer;
```

```
14
    begin
15
         {input matriks}
16
         writeln('Input Matriks Pertama');
         for baris:=1 to MaksBaris do
17
18
         begin
19
            for kolom:=1 to MaksKolom do
20
            begin
21
                  gotoxy(kolom*5+1,baris+3);
22
                  readln(matriks1[baris,kolom]);
23
            end;
24
          end;
25
26
         writeln();
27
         writeln('Input Matriks Kedua');
```

```
28
         for baris:=1 to MaksBaris do
29
         begin
30
            for kolom:=1 to MaksKolom do
31
            begin
32
                  gotoxy(kolom*5+1,baris+9);
33
                  readln(matriks2[baris,kolom]);
34
            end;
35
         end;
37
38
         {output matriks}
39
         clrscr();
         writeln('Output Matriks Pertama');
40
```

```
41
         for baris:=1 to MaksBaris do
42
         begin
43
            for kolom:=1 to MaksKolom do
44
            begin
45
                 gotoxy(kolom*5+1,baris+3);
46
                  write(matriks1[baris,kolom]);
47
            end;
48
         end:
49
50
         writeln();writeln();
51
         writeln('Output Matriks Kedua');
52
         for baris:=1 to MaksBaris do
53
         begin
```

```
54
            for kolom:=1 to MaksKolom do
55
            begin
56
                 gotoxy(kolom*5+1,baris+9);
57
                 write(matriks2[baris,kolom]);
58
            end;
59
         end;
60
61
         writeln();
62
         write('Tekan sembarang tombol untuk menutup...');
63
         readkey();
64
    end.
```

THANK YOU

GRACIAS

Contact Person:

Adam Mukharil Bachtiar Informatics Engineering UNIKOM Jalan Dipati Ukur Nomor. 112-114 Bandung 40132

Email: adfbipotter@gmail.com

Blog: http://adfbipotter.wordpress.com

Copyright © Adam Mukharil Bachtiar 2011