VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HO CHI MINH UNIVERSITY OF TECHNOLOGY

ASSIGNMENT REPORT IC DESIGN – EE3165

LAB 2: DIGITAL LOGIC CIRCUIT

CLASS L04 – GROUP 14

TUTOR: NGUYỄN PHAN THIÊN PHÚC

STUDENTS	ID	EMAIL	CONTRIBUTION
Bùi Khánh Hoàng	2113392	hoang.bui060703@hcmut.edu.vn	100%
Lê Đức Lân	2111634	lan.le050203@hcmut.edu.vn	100%
Lê Duy Thức	2110184	hoang.nguyen16032003@hcmut.edu.vn	100%

Ho Chi Minh City, May 2024

OBJECTIVES

No.	Objective	Requirement
1	Implement logic gates using CMOS technology: NAND2 and NOR2. EX-OR2.	 Complete the truth table, schematic, and symbol for each component.
2	Implement basic combinational component: > 2-to-1 channel multiplexer.	 Run DC analysis and transient simulation. Create layouts for each logic gate, then show DRC confirmation and corresponding schematic with proof of LVS.
3	Implement simple storage elements: ➤ Single-positive-edge-triggered Modified TSPC D flip-flop.	 Demonstrate latch and flip-flop by studying a D latch and a D flip-flop using transmission gates. Complete the truth table, schematic, and symbol for each component then run transient simulation. Known definitions, and how to measure setup time, propagation, and hold time. Find the clock frequency of this element.
4	[OPTIONAL] Review the operation of pass transistor, transmission gate, and tristate inverter.	 Analyze the charge and discharge period of MOS transistors, then prove by simulation. Analyze operations of a transmission gate, then prove by simulation. Analyze operations and topologies of a tristate inverter, then prove by simulation.

EXPERIMENT 1: Know how to design CMOS gate using CMOS technology.

Requirements:

- Completet truth table, schematic, and symbol for NAND2, NOR2, and EX-OR2
- Run DC simulation and transient analysis
- Create layout and show DRC and LVS check screen

1. NAND2

The truth table of NAND2 gate and its symbol

2 - input NAND gate

Α	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Firstly, I create NAND2 symbol but my symbol is lack of circle.

NAND2 schematic

My testbench is designed as

Transient simulation with 20n s 2.

NOR2

Here is my schematic and testbench for NOR2 the symbol is created as the figure below. And the testbench included 2 pulse source and a Vdc source.

The simulation is showed with the transient of 20n s.

The plot is not perfectly the pulse source because of the setting is as the figure below:

CDF Parameter	Value	Display
Frequency name for 1/period		off
Noise file name		off
Number of noise/freq pairs	0	off
DC voltage		off
AC magnitude		off
AC phase		off
XF magnitude		off
PAC magnitude		off
PAC phase		off
√oltage 1	0 V	off
Voltage 2	1 V	off
Period	4n s	off
Delay time	1.8n s	off
Rise time	1p s	off
Fall time	1p s	off
Pulse width	1.75n s	off
Temperature coefficient 1		off
Temperature coefficient 2		off
Nominal temperature		off

This is the vpulse of the input B

PAC magnitude		off 🔽
PAC phase		off
Voltage 1	1 V	off 🔽
Voltage 2	0 V	off 🔽
Period	4n s	off 🔽
Delay time	1.8n s	off 🔽
Rise time	1p s	off 🔽
Fall time	1p s	off 🔽
Pulse width	1.75n s	off 🔽
Temperature coefficient 1		off
Temperature coefficient 2		off
Nominal temperature		off 🔽
		C

This is the vpulse of the input A

3. EX-OR

The figure below shows the EX-OR truth table and its symbol. As the theory, EXOR is created by 2 input A and B. And a AND gate and NOR gate.

For creating EX-OR, I simulate by schematic of CMOS gate with an inverter of each inputs. By the way, we can create by using NAND2 and NOR2 gate before.

Truth Table

A (Input 1)	B (Input 2)	X = A'B + AB'
0	0	0
0	1	1
1	0	1
1	1	0

The schematic of EX-OR gate

I used compound gate theory to create this schematic with 4 inputs. But we need an inverter for creating this gate. So that the symbol I create for simulation included 4 inputs.

The result of the simulation is showed as below.

I deleted the current state of the simulation tools, the result shows that the edge rising directively affected to the wave.

V _{in1} (V	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
V _{in2} (V	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
V _{out}	999m V	996.3m V	971.2m V	398.2m V	29m V	999m V	999m V	999 V	999 V	999 V

EXPERIMENT 2: Implement basic combinational component.

Requirements:

- > Complete the truth table, schematic, and symbol for a 2-to-1 channel multiplexer using compound gate.
 - > Run DC analysis and transient simulation.
- ➤ Create layouts for each logic gate, then show DRC confirmation and corresponding schematic with proof of LVS.

My multiplexers

I used MUX2 to 1 as the schematic above with the testbench My schematic is

DC simulation

	S	D0	D1	
V1	0	0	0	
V2	1	1	1	
Period	4n	3n	2n	
Delay time	0	0	0	
Rise time	1p	1p	1p	
Fall time	1p	1p	1p	
Pulse width	2n	1.5n	1n	

DRC check

EXPERIMENT 3: Implementing simple storage elements- single-positive – edge triggered Modified TSPC D flip-flop.

Latch D demonstration

Е	D	Q	Q
0	0	latch	latch
0	1	latch	latch
1	0	0	1
1	1	1	0

D-latch truth table

D-Latch simulation in trans 20n

Testbench schematic

D – FLIP FLOP

Truth table and symbol

SET	RESET	D	СК	Ø	α
0	1	-	ı	1	0
1	0	-	-	0	1
0	0	-	-	1	1
1	1	1		1	0
1	1	0		0	1

Transient response

SCHEMATIC

TESTBENCH

Clock configuration

Parameters	Results
t _{pd}	0.0644(ns)
t _{cd}	0.029(ns)
$t_{ m pcq}$	0.0306(ns)
t _{ccq}	0.0219(ns)
$t_{ m setup}$	0.05312(ns)
t _{hold}	14.521pW