Solar Irradiance Forecasting using INSAT-3DS Satellite Data

Abhay Chaudhary

Overview

This project forecasts surface-level Global Horizontal Irradiance (GHI) using spatio-temporal features from INSAT-3DS satellite imagery. The goal is to generate accurate 15-minute interval predictions for September 1–7, 2024, based solely on satellite data and past GHI values.

Dataset

• Input: NetCDF (.nc) files from INSAT-3DS

• Channels used: IMG_MIR, IMG_SWIR, IMG_TIR1, Sun_Elevation, Sat_Elevation

• Target: Observed GHI values from CSV

• Temporal Resolution: 15-minute intervals

• Spatial Resolution: 5×5 grid centered on observation point

Model Evolution

Stage	What I Tried	Result	Next Step
XGBoost (Tabular)	Statistical features (mean, std, min, max)	RMSE \approx 210; MAPE exploded due to GHI=0	Moved to spatio- temporal model
ConvLSTM (1 sample/day)	Treated each day as 1 sample	Too few samples; overfit	Used sliding windows
Sliding ConvLSTM (Win=6) Lag Analysis	Many samples with stride=1 Found 3-step (90 min) lag	SMAPE stuck at 54% Applied SHIFT=3 to label	Discovered lag in prediction SMAPE dropped to 13%, RMSE to 80

Final Model Details

• Architecture: 2-layer ConvLSTM \rightarrow Flatten \rightarrow Dense

• Window Size: 6 time steps (1.5 hrs)

• SHIFT: 3 (model predicts GHI at last timestep of window)

• Loss: Huber

• Scaler: Satellite inputs normalized by 1023, GHI by 1100

- Training Samples: ~150+
- Validation Metrics:

- RMSE: 80.5 W/m^2 - MAE: 51.9 W/m^2

- Daylight SMAPE: 12.9%

Inference Strategy

- Ran stride=1 prediction on each day from Sept 1–7
- Each window predicted the GHI for its last timestep
- Model outputs de-normalized using MAX_GHI = 1100
- Final CSV:
 - $-672 \text{ rows } (7 \text{ days} \times 96 \text{ time steps})$
 - 15-min cadence, no gaps, values clipped [0, 1100]

File Structure

```
model.ipynb  # Full pipeline
convLSTM_shift3_best.h5  # Trained weights
sept_forecast.csv  # Final predictions
Sample Dataset - ML Assignment - Sheet1.csv
README.md / this LaTeX file
dataset/
    Jun_Output/
    Jul_Output/
    Aug_Output/
    Sept_Output/
```

Challenges and Fixes

- Exploding MAPE: GHI=0 at night \rightarrow
- Small dataset: Solved with sliding window (stride=1) over 24-hour sequence
- Lag issue: Predictions were late by 90 minutes \rightarrow fixed with SHIFT=3
- Gaps in inference: Interpolated missing timestamps to get 672 total

Conclusion

Through progressive experimentation—starting with XGBoost and converging on ConvLSTM with aligned labels—I was able to build a robust spatio-temporal model for GHI forecasting. The final pipeline is accurate, generalizable, and passes all consistency checks for deployment.