BOOST

Practical:

Ideal:

Case 1:

-Switch is ON, Short circuit though the switch so To = O. Inductor is being charged on will hold a voltage

Case 2:

- Switch is OFF, Diode is conducting $V_0 = V_i + V_1$

Case 3:

- Switch is ON, But diode is reverse biased Inductor is beige changed and we have a RC Capacitor discharge circuit ort the output

$$-T_{off} = (1-0)T$$

$$V; DT = V_0(1-D)T - V_1(1-D)T$$

$$ViT = VoT - VoDT$$

$$Vi = Vo - VoD$$

$$Vi = Vo(1-D)$$

$$\frac{Vo}{Vi} = \frac{1}{(1-D)}$$

Discontinuous Conduction Mode:

Occurs when $\langle iL \rangle = \frac{\Delta iL}{2}$

BUCK

BUCK-BOOST

Gain Equation:

$$V_i DT = V_o (I-D)T$$

$$\frac{A^{i}}{\Lambda^{0}} = \frac{A^{i}}{\Lambda^{0}}$$