COMP 3711 Final, Spring 2022, Wednesday May 25

Part 1: 4:30-5:45 pm

P1, Complexity	4%	P2, D&C	10%	P3, Sorting	10%	P4, Greedy	10%	P5, Mate	Stable	P6, DFS	6%	BFS,

Problem 1, Complexity, 4%

Let $T_A(n)$ and $T_B(n)$ denote the time complexities of two algorithms A and B respectively, with respect to the input size n. Below are 4 different cases of time complexities for each algorithm. For each of the following 4 cases, write "A", "B", or "U", where:

- "A" means that algorithm A is faster;
- "B" means that algorithm B is faster;
- "U" means that we do not know which algorithm is faster.

Ca	se	$T_A(n)$	$T_{\rm B}(n)$
1		$\Theta(n^{2.1})$	$\Theta(n^2 \log^3 n)$
2		$\Theta(n^9)$	$\Theta(2^{\sqrt{n}})$
3		$\Omega(n^3)$	$O(n^{2.1}\log^3 n)$
4		$O(n^3)$	$O(n^{2.1}\log^3 n)$

Case 1:

Case 2:

Case 3:

Case 4:

Problem 2, Divide and Conquer, 10%

You are given an array A[1..n], where A[1]=0, A[n]=0, and all the other elements are distinct positive numbers, i.e., A[i]>0, $\forall i 1 \le i \le n$.

A[i] is a *peak element*, if it is larger than both its neighbors, i.e., A[i] > A[i-1] and A[i] > A[i+1]. For example, if A=[0, 8, 9, 2, 1, 3, 0], the peak elements are A[3]=9 and A[6]=3.

Describe a $O(\log n)$ Divide and Conquer algorithm for returning the position of a peak element in A (no need to find all peak elements). Include the pseudo-code and briefly describe the recurrence for the running time T(n).

Problem 3, Sorting, 10%

You are given an array A[1..n], where all elements are distinct positive numbers (not necessarily integers). Describe an $O(n\log n)$ algorithm that re-arranges the elements of A, so that (i) every element at an even position is a *peak element*, and (ii) the peak elements are in increasing order.

For example, if A=[7, 1, 3, 4, 5, 6, 2], valid outputs include $[1,\underline{3},2,\underline{5},4,\underline{7},6]$ or $[1,\underline{5},2,\underline{6},3,\underline{7},4]$ (the peak elements are underlined). Recall from the previous exercise that A[i] is a *peak element*, if A[i] > A[i-1] and A[i] > A[i+1]). Discuss the overall complexity of your approach.

Hint: You can use any sorting algorithm as a black box.

Problem 4, Greedy, 10%

Let two sequences $X = (x_1, \dots, x_m)$ and $Y = (y_1, \dots, y_n)$, where $m \le n$. Write the pseudocode for a greedy algorithm that determines if X is a subsequence of Y. For example, if X = ACDA and Y = ADCBDAB, then the output should be "yes", whereas if X = CDBB, it should be "no". For full credits your algorithm should run in O(n) time.

Problem 5, Stable Matching, 10%

Consider three men M1, M2, M3 and three women W1, W2, W3 with the following preferences:

For men

M1: W1, W2, W3 M2: W1, W2, W3 M3: W2, W1, W3

For women

W1: M1, M2, M3 W2: M2, M1, M3 W3: M2, M3, M1

Question 1, 5%: Show that the assignment (M1, W1), (M2, W3), (M3, W2) is unstable.

Question 2, 5%: Find a stable matching and explain whether it is optimal for the men, the women or both.

Problem 6, BFS, DFS, 6%

Consider the following adjacency lists representing a directed graph G:

adj(s) = $[v_1, v_3, v_4]$, adj(v_1) = [], adj(v_2) = $[v_4]$, adj(v_3) = $[v_2, v_5]$, adj(v_4) = $[v_3]$, adj(v_5) = [s].

Question 1, 3% What is the order of nodes visited by Breadth First Search (BFS) starting from node *s* in *G*. Nodes in the same list are visited according to their lexicographic order.

Question 2, 3% What is the order of nodes visited by Depth First Search (DFS) starting from node s in G. Nodes in the same list are visited according to their lexicographic order.