CATEGORY THEORY BOOK BY STEVE AWODEY

.

Contents

1	Categories	3
2	Abstract Structures	13

Chapter 1

Categories

Exercise 1.1. The object of **Rel** are sets, and an arrow $A \to B$ is a relation from A to B, that is, a subset $R \subseteq A \times B$. The equality relation $\{\langle a, a \rangle \in A \times A : a \in A\}$ is the identity arrow on a set A. Composition in **Rel** is to be given by

$$S \circ R = \{ \langle a, c \rangle \in A \times C : \exists b (\langle a, b \rangle \in R \ and \ \langle b, c \rangle \in S) \}$$

for $R \subseteq A \times B$ and $S \subseteq B \times C$.

- (a) Show that **Rel** is a category.
- (b) Show also that there is a functor $G: \mathbf{Sets} \to \mathbf{Rel}$ taking objects to themselves and each function $f: A \to B$ to its graph,

$$G(f) = \{ \langle a, f(a) \rangle \in A \times B : a \in A \}.$$

(c) Finally, show that there is a functor $C: \mathbf{Rel}^{op} \to \mathbf{Rel}$ taking each relation $R \subseteq A \times B$ to its converse $R^c \subseteq B \times A$, where

$$\langle a, b \rangle \in \mathbb{R}^c \leftrightarrow \langle b, a \rangle \in \mathbb{R}.$$

Proof.

- (a) First we prove that each object have identity arrow on it. Consider some set A. Let 1_A be the equality relationship on A. Let B be a set such that there is relation $R \subseteq A \times B$. Then if $(x,y) \in R \circ 1_A$, we must have $(x,y) \in R$ and if $(x,y) \in R$ then $(x,y) \in R \circ 1_A$. Therefore, $R \circ 1_A = R$. Similarly, we can prove that $1_A \circ B = B$ for some relation $B \subseteq C \times A$. Since we already know that composition of relationship is associative, it follows composition in **Rel** is associative.
- (b) Since $1_A(x) = x$ for any set A, we have $G(1_A) = \{(x, 1_A(x)) : x \in A\} = \{(x, x) : x \in A\} = 1_{G(A)}$. Thus, identity is mapped to identity. Next we prove composition is preserved. Consider functions $f : A \to B$ and $g : B \to C$. We are going to prove that $G(g \circ f) = G(g) \circ G(f)$. Let $(x, g(f(x))) \in G(g \circ f)$. Then clearly $(x, f(x)) \in G(f)$ and since $f(x) \in B$, we have $(f(x), g(f(x))) \in G(g)$. Thus, $(x, g(f(x))) \in G(g) \circ G(f)$. Consider some $(x, g(f(x))) \in G(g \circ f)$. Now consider some $(x, y) \in G(g) \circ G(f)$. It follows that there exists some $z \in B$ such that $(x, z) \in G(f)$ and $(z, y) \in G(g)$. But then by the definition of the functor, it means z = f(x) and y = g(f(x)). Thus, $(x, y) = (x, g(f(x))) \in G(g \circ f)$. Therefore, $G(g \circ f) = G(g) \circ G(f)$.
- (c) Define functor $\mathcal{F}: \mathbf{Rel} \to \mathbf{Rel}^{\mathrm{op}}$ so that $\mathcal{F}(A) = A$ for any set A and $\mathcal{F}(R) = R^c$ for any relationship (ie arrow). Since $1_A = 1_A^c$, we must have $\mathcal{F}(1_A) = 1_A = 1_{\mathcal{F}(A)}$. Now we prove composition is preserved. Clearly $\mathcal{F}(S \circ R) = (S \circ R)^c = S^c \circ R^c = \mathcal{F}(S) \circ \mathcal{F}(R)$.

Exercise 1.2. Consider the following isomorphisms of categories and determine which hold.

- (a) $\mathbf{Rel} \cong \mathbf{Rel}^{op}$.
- (b) Sets \cong Sets^{op}.
- (c) For a fixed sets X with powerset P(X), as poset categories $P(X) \cong P(X)^{op}$.

Proof.

(a) Define $\mathcal{F}_1 : \mathbf{Rel} \to \mathbf{Rel}^{\mathrm{op}}$ so that $\mathcal{F}_1(A) = A$ for any set A and $\mathcal{F}_1(R) = R^c$ for any arrow $R \in \mathbf{Rel}$. Define $F_2 : \mathbf{Rel}^{\mathrm{op}} \to \mathbf{Rel}$ same way. We already proved it is a functor in last exercise. Then, since $(R^c)^c = R$,

we have $\mathcal{F}_1(\mathcal{F}_2(R)) = R$ and $F_2(\mathcal{F}_1(R)) = R$. Hence, $\mathbf{Rel} \cong \mathbf{Rel}^{\mathrm{op}}$.

- (b) In **Sets**, there is an unique initial object i.e. emptyset. However, in **Sets**^{op}, any singleton act as initial object ie it is only unique upto isomorphism. Therefore, **Sets** is not isomorphic to **Sets**^{op}.
- (c) Define functor $\mathcal{F}_1: P(X) \to P(X)^{\text{op}}$ so that $\mathcal{F}(A) = X/A$ and $\mathcal{F}(A \subseteq B) = F(A) \supseteq F(B)$. Define $F_2: P(X)^{\text{op}} \to P(X)$ same way. Since X/(X/A) = A, we have $\mathcal{F}_1(\mathcal{F}_2(A)) = A$ and $\mathcal{F}_2(\mathcal{F}_1(A)) = A$. For arrows, we have

$$\mathcal{F}_1(F_2(A \subseteq B)) = \mathcal{F}_1(\mathcal{F}_2(A) \supseteq F(B))$$
$$= F_1(F_2(A)) \subseteq F_1(F_2(B))$$
$$= A \subseteq B.$$

Similarly, $\mathcal{F}_2(F_1(A \subseteq B)) = A \subseteq B$.

Exercise 1.3.

- (a) Show that in **Sets**, the isomorphisms are exactly the bijections.
- (b) Show that in Monoids, the isomorphism are exactly the bijective homomorphisms.
- (c) Show that in **Posets**, the isomorphisms are not the same as the bijective homomorphisms.

Proof.

- (a) First we prove the forward implication. Consider some isomorphic sets A and B. By the definition, we know that there exists $f:A\to B$ and $g:B\to A$ satisfying $g\circ f=1_A$ and $f\circ g=1_B$. Our goal is to prove f is bijection. Let $a_1,a_2\in A$ and suppose $f(a_1)=f(a_2)$. Taking g both sides we have $a_1=g(f(a_1))=g(f(a_2))=a_2$. Hence f is injective. Let $b\in B$. Then it follows $g(b)\in A$ but since f(g(b))=b, we have f to be surjective. The converse implication is trivial.
- (b) Since **Monoids** are concrete, we know objects are sets with structure and arrows are structure preserving function between the sets. It follows immediately, from previous exercises, that if M_1 and M_2 are isomorphic, we must have a bijective homomorphism $M_1 \to M_2$. Thus, we only need to prove converse implication. Suppose M_1 and M_2 are monoids such that there exists bijective homomorphism $f: M_1 \to M_2$. Note that our goal is to prove f^{-1} is a homomorphism since we already know from the previous exercise that $f \circ f^{-1} = 1_{M_2}$ and $f^{-1} \circ f = 1_{M_1}$. Consider some $a_1, a_2 \in M_2$. Since f is bijective, we know there are $b_1, b_2 \in M_1$ such that $f(b_1) = a_1$ and $f(b_2) = a_2$. We also must have $f(b_1b_2) = f(b_1)f(b_2) = a_1a_2$ because f is homomorphism. But that means $f^{-1}(a_1)f^{-1}(a_2) = f^{-1}(f(b_1))f^{-1}(f(b_2)) = b_1b_2 = f^{-1}(a_1a_2)$.
- (c) Consider posets, $P_1 = (\mathbb{Z}, ||)$ and $P_2 = (\mathbb{Z}, \leq)$. It is easy to see that $id_{\mathbb{Z}}$ is order preserving bijective map since a|b implies $a \leq b$. However the converse is not true, notice $2 \leq 3$ but 2 does not divide 3.

Exercise 1.4.

Let X be a topological space and preorder the points by specialization: $x \leq y$ iff y is contained in every open set that contains x. Show that this is a preorder, and that it is a poset if X is T_0 . Show that the ordering is trivial if X is T_1 .

Proof. First we prove that specialization relationship is preorder. It is easy to see why it is reflexive. For transitivity, consider $x \leq y$ and $y \leq z$ and Let A be arbitrary open set containing z. Since $y \leq z$, we have $y \in A$ but then since A is open set containing y, it must be the case that $x \in A$. Hence, $x \leq z$. As desired.

Since we already showed any topological space is preorder under specialization, we merely need to demonstrate antisymmetry in T_0 and T_1 to show they are poset. For the former, suppose $x \leq y$ in T_0 . It follows that there must exists an open set which contains y but not x, since y is contained in every open set containing x. That means T_0 has antisymmetry. In the case of T_1 , the ordering is trivial since no two distinct elements are related.

Exercise 1.5. For any category \mathbb{C} , define a functor $\mathcal{U}: \mathbb{C}/C \to C$ from the slice category over an object C that "forgets about C". Find a functor $F: \mathbb{C}/C \to \mathbb{C}^{\to}$ to the arrow category such that $\operatorname{\mathbf{dom}} \circ F = U$

Proof. Recall that in slice category \mathbb{C}/C , an object is simply an arrow $\mathrm{dom}(f) \xrightarrow{f} C$ and morphism $f \xrightarrow{f'} g$ is a morphism $\mathrm{dom}(f) \xrightarrow{n} \mathrm{dom}(g)$, in category \mathbb{C} , making

commutes. We define functor $\mathcal{U}: \mathbf{C}/C \to C$ so that $\mathcal{U}(f) = \mathrm{dom}(f)$ for any object $f \in \mathrm{obj}(\mathbf{C}/C)$ and $\mathcal{U}(f \xrightarrow{f'} g) = \mathrm{dom}(f) \xrightarrow{n} \mathrm{dom}(g)$ where n is the morphism $\mathrm{dom}(f) \to \mathrm{dom}(g)$ satisfying the above commutative diagram. We first check that identity is mapped to identity. Notice that $f \xrightarrow{1'_f} f$ is an arrow such that

commutes i.e. $1'_f = \operatorname{Id}_{\operatorname{dom}(f)}$. Thus, $\mathcal{U}(f \xrightarrow{1'_f} f) = 1_{\operatorname{dom}(f)}$ as desired. Next we prove that \mathcal{U} preserves the composition. Consider objects $\operatorname{dom}(f) \xrightarrow{f} C$, $\operatorname{dom}(g) \xrightarrow{g} C$, and $\operatorname{dom}(h) \xrightarrow{h} C$ in $\operatorname{obj}(\mathbf{C}/C)$ such that there is morphism $f': f \to g$ and $g': g \to h$. Let $n: \operatorname{dom}(f) \to \operatorname{dom}(g)$ and $m: \operatorname{dom}(g) \to \operatorname{dom}(h)$ making

commute. As apparent from diagram, $\mathcal{U}(g' \circ f') = m \circ n = \mathcal{U}(g') \circ \mathcal{U}(f')$.

We will now talk about constructing functor $\mathcal{F}: \mathbf{C}/C \to \mathbf{C}^{\to}$ and $\mathbf{dom}: \mathbf{C}^{\to} \to \mathbf{C}$. Before we get into it, let us first discuss about \mathbf{C}^{\to} . In \mathbf{C}^{\to} , objects are morphisms of \mathbf{C} and morphism between $f, g \in \text{hom}(\mathbf{C})$ is $(n, k) \in \text{hom}(\mathbf{C})^2$ such that

commutes. Define $\mathcal{F}: \mathbf{C}/C \to \mathbf{C}^{\to}$ such that for any $f \in \operatorname{obj}(\mathcal{C}/C)$, we have $\mathcal{F}(f) = f$ and $\mathcal{F}(f \xrightarrow{f'} g) = f \xrightarrow{(n,1_C)} g$. It is easy to see it is a functor. Define $\operatorname{\mathbf{dom}}: \mathbf{C}^{\to} \to C$ as $\operatorname{\mathbf{dom}}(f) = \operatorname{dom}(f)$ for any $f \in \operatorname{obj}(\mathbf{C}^{\to})$ and $\operatorname{\mathbf{dom}}(f \xrightarrow{(n,k)} g) = \operatorname{dom}(f) \xrightarrow{n} \operatorname{dom}(g)$. Again, it's easy to verify that it is a functor.

Finally, we prove that $\operatorname{\mathbf{dom}} \circ \mathcal{F} = \mathcal{U}$. For any $f \in \operatorname{obj}(\mathbf{C}/C)$, we have $\operatorname{\mathbf{dom}} \circ \mathcal{F}(f) = \operatorname{\mathbf{dom}}(\mathcal{F}(f)) = \operatorname{\mathbf{dom}}(f) = \operatorname{dom}(f) = \operatorname{\mathbf{dom}}(f)$ and for any $f \xrightarrow{f'} g$ in \mathbf{C}/C , clearly $\operatorname{\mathbf{dom}} \circ \mathcal{F}(f \xrightarrow{f'} g) = \operatorname{\mathbf{dom}}(\mathcal{F}(f \xrightarrow{f'} g)) = \operatorname{\mathbf{dom}}(f \xrightarrow{(n,1_C)} g) = \operatorname{\mathbf{dom}}(f) \xrightarrow{n} \operatorname{\mathbf{dom}}(g) = \mathcal{U}(f \xrightarrow{f'} g)$.

Exercise 1.6. Construct the coslice category C/C of a category C from the dual category operation.

Proof.

Notation. In what follows, we refer morphisms of \mathbf{C} by f and corresponding arrow of \mathbf{C}^{op} by $f_{C^{op}}$. Let $f: C \to A$ and $g: C \to B$. Consider the slice of C in \mathbf{C}^{op} . The objects are $A \xrightarrow{f_{C^{op}}} C$ and morphism $f_{C^{op}} \xrightarrow{f'_{C^{op}}} g_{C^{op}}$ are $A \xrightarrow{k_{C^{op}}} B$ of \mathbf{C}^{op} so that

commutes. Rewriting it in terms of \mathbb{C} , we see that \mathbb{C}^{op}/C has $C \xrightarrow{f} A$ as objects and $\operatorname{cod}(g) \xrightarrow{k} \operatorname{cod}(f)$ as morphism making

commute. This is exactly the notion of coslice of \mathbf{C} with C. Define functor $\mathcal{W}: C/\mathbf{C} \to C$ so that $\mathcal{W}(f) = \operatorname{cod}(f)$ and $\mathcal{W}(g \xrightarrow{f'} f) = \operatorname{cod}(g) \xrightarrow{k} \operatorname{cod}(f)$ where k is the morphism making

Recall that in \mathbb{C}^{\to} , objects are morphisms of \mathbb{C} and morphism between $f, g \in \text{hom}(\mathbb{C})$ is $(n, k) \in \text{hom}(\mathbb{C})^2$ such that

commutes. Define functor $\mathbf{cod}: \mathbf{C}^{\to} \to \mathbf{C}$ so that $\mathbf{cod}(f) = \operatorname{cod}(f)$ and $\mathbf{cod}(g \xrightarrow{(n,k)} f) = \operatorname{cod}(g) \xrightarrow{k} \operatorname{cod}(f)$ where k is the morphism between codomains making the last diagram commute. Define functor $\mathcal{G}: C/\mathbf{C} \to \mathbf{C}^{\to}$ so that $\mathcal{G}(g) = g$ for any $g \in \operatorname{obj}(C/\mathbf{C})$ and $\mathcal{G}(g \xrightarrow{g'} f) = g \xrightarrow{(1_C,k)} f$. It is easy to verify all of them are functors.

We will now prove that $\mathbf{cod} \circ \mathcal{G} = \mathcal{W}$. For any $g \in C/\mathbf{C}$, we have $\mathbf{cod} \circ \mathcal{G}(g) = \mathbf{cod}(\mathcal{G}(g)) = \mathbf{cod}(g) = \mathbf{cod}(g)$

Exercise 1.7. Let $2 = \{a, b\}$ be any set with exactly 2 elements a and b. Define a functor $F : \mathbf{Sets}/2 \to \mathbf{Sets} \times \mathbf{Sets}$ with $F(f : X \to 2) = (f^{-1}(a), f^{-1}(b))$. Is this an isomorphism of categories? What about the analogous situation with a one element set $1 = \{a\}$ instead of 2.

Proof. First we will discuss about **Sets**/2. Here we have arrows $X \xrightarrow{f} 2$ as objects, whereas morphism $f \xrightarrow{f'} g$ is a morphism $dom(f) \xrightarrow{k} dom(g)$ making

commute. Define $F: \mathbf{Sets}/2 \to \mathbf{Sets} \times \mathbf{Sets}$ so that $F(X \xrightarrow{f} 2) = (f^{-1}(a), f^{-1}(b))$ and $F(f \xrightarrow{f'} g) = (k_{f^{-1}(a)}, k_{f^{-1}(b)})$ where $k_{f^{-1}(a)}$ and $k_{f^{-1}(b)}$ are restriction of morphism k which makes the last diagram commute. The identity in $\mathbf{Sets}/2$ for any object f is simply the identity on the domain of f. Therefore, we have $F(1_f) = (1_{f^{-1}(a)}, 1_{f^{-1}(b)})$ which is indeed identity on the object $(f^{-1}(a), f^{-1}(b))$. Thus, $F(1_f) = (1_{f^{-1}(a)}, 1_{f^{-1}(b)})$. Now we will prove that composition is preserved. Consider $f \xrightarrow{f'} g$ and $g \xrightarrow{g'} h$ such that

commutes. Then we have

$$F(g') \circ F(f') = (n_{g^{-1}(a)}, n_{g^{-1}(b)}) \circ (k_{f^{-1}(a)}, k_{f^{-1}(b)})$$

$$= (n_{g^{-1}(a)} \circ k_{f^{-1}(a)}, n_{g^{-1}(b)} \circ k_{f^{-1}(b)})$$

$$= ((n \circ k)_{f^{-1}(a)}, (n \circ k)_{f^{-1}(b)}) \qquad (\operatorname{ran}(k_{f^{-1}(a)}) \subseteq g^{-1}(a) \text{ and } \operatorname{ran}(k_{f^{-1}(b)}) \subseteq g^{-1}(b))$$

$$= F(g' \circ f')$$

Functor $F : \mathbf{Sets/2} \to \mathbf{Sets^2}$ is not an isomorphism of category. Consider $A = \{c, d\}$ and $B = \{c, d, e\}$. There is no $f \in \text{obj}\mathbf{Sets/2}$ mapping to $(A, B) \in \text{obj}(\mathbf{Sets^2})$ because if there was it would mean for any $x \in f^{-1}(a) = A \subseteq B = f^{-1}(b)$, we have f(x) = a and f(x) = b which is clearly not possible.

We now are going to prove that $\mathbf{Sets}/1 \simeq \mathbf{Sets}$ where $1 = \{a\}$ is any singleton set. Define functor $\mathcal{F}: \mathbf{Sets}/1 \to \mathbf{Sets}$ so that $\mathcal{F}(X \xrightarrow{f} 1) = f^{-1}(a)$ for any $f \in \mathrm{obj}(\mathbf{Sets}/2)$, and $\mathcal{F}(f \xrightarrow{f'} g) = f^{-1}a \xrightarrow{k} g^{-1}(a)$ where k is an arrow making

commute. Define functor $\mathcal{G}: \mathbf{Sets} \to \mathbf{Sets}/1$ so that $\mathcal{G}(A) = A \xrightarrow{f} 1$ for any $A \in \mathrm{obj}(\mathbf{Sets})$ and $\mathcal{G}(A \xrightarrow{k} B) = f \xrightarrow{f'} g$ such that $f: A \to 1$ and $g: B \to 1$. It is easy to verify these are functor. Let $X \xrightarrow{f} 1 \in \mathrm{obj}(\mathbf{Sets}/1)$. Then we have $\mathcal{G} \circ \mathcal{F}(f) = \mathcal{G}(\mathcal{F}(f)) = \mathcal{G}(f^{-1}(a)) = \mathcal{G}(X) = X \xrightarrow{f} 1$. Now consider some $f': f \to g$ for some $X \xrightarrow{f} 1$ and $Y \xrightarrow{g} 1$, it follows $\mathcal{G} \circ \mathcal{F}(f') = \mathcal{G}(\mathcal{F}(f')) = \mathcal{G}(X \xrightarrow{k} Y) = f \xrightarrow{f'} g$. We know that X gets mapped to f under \mathcal{G} necessarily because it's an unique arrow $X \to 1$. Thus, $\mathcal{G} \circ \mathcal{F} = 1_{\mathbf{Sets}/1}$. Simillarly, we can show $\mathcal{F} \circ \mathcal{G} = 1_{\mathbf{Sets}}$.

Remarks. In general, we have the following result.

Theorem. For any category C having a terminal object, A, we must have $C/A \simeq C$.

Proof. Define functor $\mathcal{M}: \mathbf{C}/A \to \mathbf{C}$ so that $\mathcal{M}(f) = \mathrm{dom}(f)$ for any $f \in \mathrm{obj}(\mathbf{C}/A)$ and $\mathcal{M}(f \xrightarrow{f'} g) = \mathrm{dom}(f) \xrightarrow{k} \mathrm{dom}(g)$ such that

commutes. Define functor $\mathcal{N}: \mathbf{C} \to \mathbf{C}/A$ so that $\mathcal{N}(X) = X \xrightarrow{f} A$, we know such a f exists because A is terminal, and $\mathcal{N}(X \xrightarrow{k} Y) = f \xrightarrow{f'} g$ where $f: X \to A$ and $g: Y \to A$. Again, since A is terminal object, we know that such f and g are necessarily unique. Therefore, we have $\mathcal{N} \circ \mathcal{M}(f) = \mathcal{N}(\mathcal{M}(f)) = \mathcal{N}(\mathrm{dom}(f)) = \mathrm{dom}(f) \xrightarrow{f} A = f$ and $\mathcal{N}(\mathcal{M}(f \xrightarrow{f'} g)) = \mathcal{N}(\mathrm{dom}(f) \xrightarrow{k} \mathrm{dom}(g)) = f \xrightarrow{f'} g$. Thus, $\mathcal{N} \circ \mathcal{M} = 1_{\mathbf{C}/A}$. Simillarly, we can show $\mathcal{M} \circ \mathcal{N} = 1_C$. Hence, $\mathbf{C}/A \simeq \mathbf{C}$.

We now have the following result as the corollary of the theorem we just proved.

Corollary. For any singleton set $\{*\}$, $\mathbf{Sets} \simeq \mathbf{Sets}/\{*\}$.

Exercise 1.8. Any category C determines a preorder P(C) by defining a binary relation \leq on the objects by

$$A \leq B$$
 if and only if there is an arrow $A \rightarrow B$

Show that P determines a functor from categories to preoders. Also show that P is a (one-sided) inverse to the evident inclusion functor of preorder into categories (Note that in this problem, we are working in category of small categories).

Proof. Define functor $P: \mathbf{Cats} \to \mathbf{Preord}$ so that $P(\mathbf{C}) = (\mathrm{obj}(\mathbf{C}), \leq)$, where $A \leq B$ if and only if $\mathrm{hom}(A,B) \neq \emptyset$, and $P(\mathbf{C} \xrightarrow{\mathcal{F}} D) = P(\mathbf{C}) \xrightarrow{k} P(D)$ where k is a function induced by \mathcal{F} i.e. $k(A) = \mathcal{F}(A) \in \mathrm{obj}(D)$ for all $A \in \mathrm{obj}(\mathbf{C})$. Notice that if $A \leq B$ then there is some $f \in \mathrm{hom}(A,B)$ but then it means $\mathcal{F}(f) \in \mathrm{hom}(\mathcal{F}(A),\mathcal{F}(B))$ which implies $\mathcal{F}(A) \leq \mathcal{F}(B)$. Thus, k is a montone function. We now prove that P is a functor. Clearly, $P(\mathbf{C} \xrightarrow{1} \mathbf{C}) = P(\mathbf{C}) \xrightarrow{k} P(\mathbf{C}) = 1_{P(C)}$ because k is identity on $\mathrm{obj}(C)$. Consider some categories C, D, and E such that $C \xrightarrow{F} D \xrightarrow{G} E$. Let P(F) = k and P(G) = m. Then we have $P(G) \circ P(F) = m \circ k = P(G \circ F)$ because $m \circ k$ is function induced by $G \circ F$. Therefore, P is a functor. Since we already know that any preorder is a category, there must exists an inclusion functor, $I: \mathbf{Preord} \to \mathbf{cats}$, so that I(A) = A and $I(f: A \to B) = A \xrightarrow{f} B$.

Notice that $P \circ I(A) = P(I(A)) = P(A) = (\text{obj}(A), \leq) = A$ and $P \circ I(A \xrightarrow{f} B) = P(I(A \xrightarrow{f} B)) = P(A \xrightarrow{f} B) = A \xrightarrow{f} B$. Hence, $P \circ I(A) = 1_{\mathbf{Preord}}$. However, P is not an isomorphism. To see why consider a small category C defined as

In this case, $P(C) = (\{a, b\}, \{(a, b)\})$. Applying I on it, we get the following category

$$a \longrightarrow b$$

Thus, $I(P(C)) \neq C$.

Remarks. The failure of isomorphism is primarily based on the fact that P(C) identifies all morphism of hom(A, B) as one morphism, for any object A and B. Therefore, we must have the following theorem to be true.

Theorem. Define \mathbf{Cats}_1 as the category of all categories such that $\mathrm{hom}(A,B)$ is at most singleton for any object A and B. Then $\mathbf{Cats}_1 \simeq \mathbf{Posets}$.

Proof. Defining $P: \mathbf{Cats}_1 \to \mathbf{Preord}$ and $I: \mathbf{Preord} \to \mathbf{cats}$ same as the above proof, it's easy to see $P \circ I = 1_{\mathbf{Preord}}$. Now consider $I \circ P$. Clearly, $I \circ P(C) = I(P(C)) = C$. Notice that $P(C \xrightarrow{F} D) = C \xrightarrow{F} D$ because F is equal to the monotone function induced on C and D. Therefore, $I \circ P(C \xrightarrow{F} D) = I(P(C \xrightarrow{F} D)) = I(C \xrightarrow{F} D) = C \xrightarrow{F} D$. Hence, $\mathbf{Cats}_1 \simeq \mathbf{Posets}$.

Exercise 1.9. Show that the free monoid functor

$$M:\mathbf{Sets} \to \mathbf{Mon}$$

exists, in two different ways:

(a) Assuming the particular choice $M(X) = X^*$ and define its effect

$$M(f): M(A) \to M(B)$$

on a function $f: A \to B$ to be

$$M(f)(a_1 \cdots a_k) = f(a_1) \cdots f(a_k), a_1, \cdots, a_k \in A.$$

(b) Assume only the UMP of the free monoid and use it to determine M on functions, showing the result to be a functor.

Proof.

(a) First we prove identity is preserved. Consider some set A and let $w \in M(A) = A^*$ ie $w = a_1 a_2 \cdots a_k$ for $a_i \in A$. Then clearly,

$$M(1_A)(w) = 1_A(a_1) \cdots 1_A(a_k)$$
$$= a_1 \cdots a_k$$
$$= w$$

Next we prove that composition is preserved. Consider $f:A\to B$ and $g:B\to C$. Then for any $w\in M(A)$, we have

$$(M(g) \circ M(f))(w) = M(g)(f(a_1) \cdots f(a_k))$$
$$= (g \circ f)(a_1) \cdots (g \circ f)(a_k)$$
$$= M(g \circ f)(w)$$

(b) Consider $f:A\to B$ for some sets A and B. By proposition 1.9, we know free monoids has UMP. Applying UMP on free monoid of A and B, we see that there exists an unique monoidal homomorphism $\bar{f}:M(A)\to M(B)$ making

commute in **Sets**, where $i_A: A \to |M(A)|$ and $i_B: B \to |M(B)|$ are inclusion functions. Thus, $|\bar{f}| \circ i_A = i_B \circ f$, that is to say, for all $a \in A$, $\bar{f}(a) = f(a)$ but since \bar{f} is monoidal homomorphism, it would mean for any $a_1 \cdots a_n \in M(A)$, we must have

$$\bar{f}(a_1 \cdots a_n) = \bar{f}(a_1) \cdots \bar{f}(a_n)$$

= $f(a_1) \cdots f(a_n)$

Define $M(f) = \bar{f}$. Since $M : \mathbf{Sets} \to \mathbf{Mon}$ so that $M(A) = A^*$ and $M(f)(a_1 \cdots a_n) = f(a_1) \cdots f(a_n)$, we can directly apply part (a) to see M is functor.

Exercise 1.10. Verify the UMP for free categories on graphs, defined as above with arrows being sequences of edges. Specifically, let $\mathbf{C}(G)$ be the free category on the graph G, so defined, and $i: G \to U(\mathbf{C}(G))$ the graph homomorphism taking vertices and edges to themselves, regarded as objects and arrows in $\mathbf{C}(G)$. Show that for any category \mathbf{D} and graph homomorphism $h: G \to U(\mathbf{D})$, there is a unique functor

$$\bar{h}: \mathbf{C}(G) \to \mathbf{D}$$

with

$$U(\bar{h}) \circ i = h$$

where $U: \mathbf{Cat} \to \mathbf{Graph}$ is the underlying forgetful functor.

Proof. Define $\bar{h}: \mathbf{C}(G) \to \mathbf{D}$ so that $\bar{h}(e_1 \cdots e_n) = h(e_1) \cdots h(e_n)$ for any path $e_1 \cdots e_n \in \mathbf{C}(G)$, $\bar{h}(1_a) = 1_{h(a)}$, and $\bar{h}(a) = h(a)$ for any object $a \in \text{obj}(\mathbf{C}(G))$. It is easy to see

commutes, by the way we defined \bar{h} . We now prove it is unique. Consider some functor $F: \mathbf{C}(G) \to D$ satisfying $U(F) \circ i = h$. Then clearly

$$F(e_1 \cdots e_n) = F(e_1) \cdots F(e_n)$$

$$= h(e_1) \cdots h(e_n)$$

$$= \bar{h}(e_1) \cdots \bar{h}(e_n)$$

$$= \bar{h}(e_n \cdots e_n)$$

Thus, $F = \bar{h}$.

Remarks. We construct functor N: **Graphs** \to **Cats**. Consider some graphs G and H with $G \xrightarrow{h} H$. Applying UMP on $\mathbf{C}(G)$ and $\mathbf{C}(H)$, we see that there exists an unique functor $\bar{h}: \mathbf{C}(G) \to \mathbf{C}(H)$ such that

$$U(\mathbf{C}(G)) \xrightarrow{U(\bar{h})} U(\mathbf{C}(H))$$

$$\downarrow i_{G} \qquad \qquad \downarrow i_{H}$$

$$\downarrow i_{G} \qquad \qquad \downarrow i_{H}$$

commutes in **Graphs**. But that means for any edge e and vertex v in G, we must have $\bar{h}(v) = h(v)$ and $\bar{h}(e) = h(e)$. However, since \bar{h} is a functor, we have

$$\bar{h}(e_1 \cdots e_n) = \bar{h}(e_1) \cdots \bar{h}(e_n)$$

= $h(e_1) \cdots h(e_n)$

Now define functor $N: \mathbf{Graphs} \to \mathbf{Cats}$ so that $N(G) = \mathbf{C}(G)$ and $N(G \xrightarrow{h} H) = \mathbf{C}(G) \xrightarrow{h} \mathbf{C}(H)$. First we prove identity is preserved. Consider some $e_1 \cdots e_n \in \mathbf{C}(G)$, then we have

$$N(1_G)(e_1 \cdots e_n) = 1_G(e_1) \cdots 1_G(e_n)$$

 $e_1 \cdots e_n$.

where $e_i \in G$ is an edge. Next we prove composition is preserved. Consider the graph homomorphism $h: G \to H$ and $k: H \to K$. Then

$$(N(k) \circ N(h))(e_1 \cdots e_n) = N(k)(N(h)(e_1) \cdots N(h)(e_n))$$

$$= N(k)(N(h)(e_1)) \cdots N(k)(N(h)(e_n))$$

$$= (N(k) \circ N(h))(e_1) \cdots (N(k) \circ N(h))(e_n)$$

$$= N(k \circ h)(e_1 \cdots e_n).$$

Exercise 1.11. Use the cayley representation to show that every small category is isomorphic to a "concrete" one, that is, one in which objects are sets and the arrows are functions between them.

Proof. Recall that cayley representation, $\bar{\mathbf{C}}$ of \mathbf{C} is a category with collection of objects as $\{\mathbf{C}/C : C \in \text{obj}(C)\}$ and and arrows $\bar{g} : \mathbf{C}/C \to \mathbf{C}/D$, for some $g : C \to D$ in \mathbf{C} and any $f : X \to C$ in \bar{C} as $g \circ f$ making

commute in \mathbf{C} . It is easy to see that all objects are sets and arrows are thus set functions. We now prove $\bar{\mathbf{C}}$ is isomorphic to \mathbf{C} . Define functor $\mathcal{F}: \mathbf{C} \to \bar{\mathbf{C}}$ so that $F(C) = \mathbf{C}/C$ and $F(C \xrightarrow{f} D) = \mathbf{C}/C \xrightarrow{\bar{f}} \mathbf{C}/D$. It is easy to see that \mathcal{F} is bijective on objects and arrows.

Chapter 2

Abstract Structures

Exercise 2.1. Show that a function between sets is an epimorphism if and only if it is surjective. Conclude that the isos in Sets are exactly epi-monos.

Proof. The converse implication is trivial, so we only prove the forward direction. Let $f:A \to B$. Suppose f is not surjective. Then there is some $b \in B$ which is not a f-image. Define $i,j:B \to \{x,y\}$ such that

$$i(c) = x$$
 for all $c \in B$ and $j(c) = \begin{cases} x & \text{if } c \in f(A) \\ y & \text{if } c \notin f(A) \end{cases}$. This contradicts that f was epic. \square

Exercise 2.2. Show that in a poset category, all arrows are epi-monos.

$$Proof.$$
 Trivial.

Exercise 2.3. (Inverses are unique) If an arrow $f: A \to B$ has inverses $g, g': B \to A$ (i.e., $g \circ f = 1_A$ and $f \circ g = 1_B$ and similarly for g'), then g = g'.

Proof. Consider the following commutative diagram.

But then since f is mono, g = g'.

Exercise 2.4. With regard to a commutative triangle,

- (a) if f and g are isos (resp. monos, resp. epis), so is h.
- (b) if h is monic then so is f.
- (c) iif h is epic, so is g.

Proof.

(a) If f and g are isos, then clearly $h^{-1} = f^{-1} \circ g^{-1}$. If f and g are both monos and $h \circ m = h \circ n$ then we have $g \circ (f \circ m) = g \circ (f \circ n)$ implies $f \circ m = f \circ n$ which in turns implies m = n since f and g are monos. Similarly, if f and g are both epis then so is h.

(b) Consider the following commutative diagram. Consider the following commutative diagram.

Suppose fm = fn. Taking g both side, we see hm = gfm = gfn = hn, however, since h is mono, we have m = n.

(c) Consider the following commutative diagram.

Suppose mg = ng. That implies mh = (mg)f = (ng)f = nh but since h is epic, we have m = n.

(d) Consider $f:\{1,2\} \to \{3,4,5\}$ defined as $f=\{(1,3),(2,4)\}$ and $g:\{3,4,5\} \to \{6,7\}$ as $g=\{(3,6),(4,7),(5,7)\}$. Clearly, $g \circ f$ is injective while g is not. However, since in **Sets** mono is equivalent to injectivity, we are done.

Exercise 2.5. Show that the following are equivalent for an arrow

$$f:A\to B$$

in any category:

- (a) f is an iso.
- (b) f is both a mono and split epi.
- (c) f is both a split mono and an epi.
- (d) f is both a split mono and a split epi.

Proof. We are going to prove (b), (c), (d) are equivalent to (a). The forward implication for all of them is trivial, so we only prove the converse.

(b) Let f_R be the right inverse of f. Consider

$$f(f_R f) = (f f_R) f$$

$$= 1 \circ f$$

$$= f$$

$$= f \circ 1$$

Thus, $f(f_R f) = f \circ 1$, however since f is mono, we have $f_R f = 1$. As desired.

(c) Let f_L be the left inverse of f. Consider

$$(ff_L)f = f(f_L f)$$

$$= f \circ 1$$

$$= f$$

$$= 1 \circ f.$$

However, since f is epi, we have $ff_L = 1$.

(d) Clearly since split mono implies mono, by applying part (b), we have f to be iso.

Exercise 2.6. Show that a homomorphism $h: G \to H$ of graph is monic just if it is injective on both edges and vertices.

Proof. Recall that a directed graph is a structure $G = (G_0, G_1, s, t)$ where G_1 (edges) and G_0 (vertices) are sets, and $s: E \to V$ (source) and $t: E \to V$ (target) are set theoretic functions. Furthermore, graph homomorphism $h: G \to H$ is the ordered pair (h_0, h_1) making

commute.

Suppose h_1 and h_0 are injective and consider morphisms $g, k : K \to G$ such that hg = hk. It means that $(h_1g_1, h_0g_0) = (h_1k_1, h_1k_0)$ which implies $h_1g_1 = h_1k_1$. However, since h_1 is mono (injective), we have $g_1 = k_1$. Similarly, $g_0 = k_0$. Hence, $(g_1, g_0) = (k_1, k_0)$.

Conversely, suppose $h: G \to H$ is monic. Consider the graph $K = (\{x\}, \{\})$. Define $g, k: K \to G$ so that $g_0(x) \neq k_0(x)$. Thus, $g = (g_0, g_1) \neq (k_0, k_1) = k$. Since h is monic, it follows $(h_0g_0, h_1g_1) = hg \neq hk = (h_0k_0, h_1k_1)$, however because $g_1 = k_1$ vacously, we must have $h_0g_0 \neq h_0k_0$. This proves that h_0 is monic and hence injective. For proving h_1 is injective, consider the following cases;

Case-1. There is no pair of vertices, in G, having more than one edge between them. In this case, clearly injectivity of h_0 implies injectivity of h_1 .

Case-2. There is at least one pair of vertices, in G, with more than one edge between them. Let $e_2, e_3 : c \to d$ be such edges in G. Consider the graph $M = (\{x, y\}, \{e\})$. Define $g, h : M \to G$ so that $g_0(x) = c = k_0(x)$ and $g_0(y) = d = k_0(y)$, and $g_1(e) = e_2$ and $k_1(e) = e_3$. Clearly, $g \neq k$. Since h is monic we have $(h_0g_0, h_1g_1) = hg \neq hk = (h_0k_0, h_1k_1)$, however because $g_0 = k_0$, it follows $h_1g_1 \neq h_1k_1$. This proves h_1 is monic and so injective.