Correlation and Regression

Variables – Income, Price, and Demand

Analysis 1

a) Predictors: Price

b) Dependent variable: Demand

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.933ª	.870	.853	7.50000

a. Predictors: (Constant), Price

b. Dependent Variable: Demand

ANOVA^a

Mod	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	3000.000	1	3000.000	53.333	.000b
	Residual	450.000	8	56.250		
	Total	3450.000	9			

a. Dependent Variable: Demand

b. Predictors: (Constant), Price

Coefficients

			ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	140.000	8.551		16.372	.000
	Price	-10.000	1.369	933	-7.303	.000

a. Dependent Variable: Demand

Histogram

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Inferences:

- 1. From the **model summary table**, R square value = 0.870. Thus, the explanatory power of the model is 87%.
 - Or in other words, Price can explain 87% of the variation in Demand.
- 2. From the **coefficients table**, the regression equation is:

Demand =
$$-0.933$$
Price + 140.00 + residual

3. Hypothesis:

- Ho: There is no significant relationship between the explanatory and dependent variables. (Beta = 0)
- H1: There is a significant relationship between the explanatory and dependent variables. (Beta is not equal to 0)
- 4. From the **ANOVA table**, the significance table is less than 0.05. Hence, we reject Ho. This implies that there is a significant relationship between explanatory and dependent variables.
- 5. From the **Coefficients table**, the significance of the t-test is less than 0.05. Hence the alternative hypothesis is accepted. There is a significant relationship between the explanatory and dependent variables.
- 6. From the **Histogram chart**, we can see that the histogram is not much skewed. Hence, the residual terms are not exactly normal.
- 7. From the **Normal Probability Plot**, it is clear that the distribution of residuals is not much far away from the line. It agrees with the Histogram.
- 8. **Scatter Plot** infers that the variance of the error term is normal. Hence, there is Homoscedasticity.

Analysis 2

a) Predictors: Income

b) Dependent variable: Demand

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.880ª	.775	.747	9.84854

a. Predictors: (Constant), Incomeb. Dependent Variable: Demand

ANOVA^a

Mode	I	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2674.051	1	2674.051	27.569	.001 ^b
	Residual	775.949	8	96.994		
	Total	3450.000	9			

a. Dependent Variable: Demandb. Predictors: (Constant), Income

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	47.089	6.999		6.728	.000
	Income	.041	.008	.880	5.251	.001

a. Dependent Variable: Demand

Histogram

Dependent Variable: Demand

Normal P-P Plot of Regression Standardized Residual

Scatterplot

0.0 Regression Standardized Predicted Value

Inferences:

-1.5

-1.0

-0.5

Regression Standardized Residual

1. From the **model summary table**, R square value = 0.775. Thus, the explanatory power of the model is 77.5%. Or in other words, Income can explain 77.5% of the variation in Demand.

0.5

1.0

1.5

2. From the **coefficients table**, the regression equation is:

Demand = 0.88Income + 47.089 + residual

3. Hypothesis:

- o Ho: There is no significant relationship between the explanatory and dependent variables. (Beta = 0)
- o H1: There is a significant relationship between the explanatory and dependent variables. (Beta is not equal to 0)
- 4. From the **ANOVA table**, the significance table is less than 0.05. Hence, we reject Ho. This implies that there is a significant relationship between explanatory and dependent variables.
- 5. From the **Coefficients table**, the significance of the t-test is less than 0.05. Hence the alternative hypothesis is accepted. There is a significant relationship between the explanatory and dependent variables.
- 6. From the **Histogram chart**, we can see that the histogram is not much skewed. Hence, the residual terms are not exactly normal.
- 7. From the Normal Probability Plot, it is clear that the distribution of residuals is not much far away from the line. It agrees with the Histogram.
- 8. Scatter Plot infers that the variance of the error term is normal. Hence, there is Homoscedasticity.

Analysis 3

Correlation

Variables: Demand, Price, and Income

Correlations

		Demand	Price	Income
Demand	Pearson Correlation	1	933**	.880**
	Sig. (2-tailed)		.000	.001
	N	10	10	10
Price	Pearson Correlation	933**	1	857**
	Sig. (2-tailed)	.000		.002
	N	10	10	10
Income	Pearson Correlation	.880**	857**	1
	Sig. (2-tailed)	.001	.002	
	N	10	10	10

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Inferences:

- 1. Hypothesis:
 - o Ho: There is no association between the variables.
 - o H1: There is an association between the variables.
- 2. From the **Correlations table**, for all the variables, the significance value is less than 0.05. Hence, we accept H1.
- 3. Between variables:
 - Demand and Price: Pearson Correlation Coefficient is -0.933. Thus, they are negatively correlated meaning as demand increases, price decreases, and vice-versa.
 - Demand and Income: Pearson Correlation Coefficient is 0.880. Thus, they are positively correlated meaning as income increases, demand also increases, and vice-versa.

Correlation and Regression - 2

Analysis 1

Regression

a) Predictors: No. of years of Experience

b) Dependent variable: Starting Salary of a Lecturer

Model Summary^b

			Adjusted R	Std. Error of
Model	R	R Square	Square	the Estimate
1	.877ª	.769	.750	1.82808

a. Predictors: (Constant), No. of Years of Experience

b. Dependent Variable: Starting Salary of a Lecturer (in Rs. thousand per month)

ANOVA^a

Γ		Sum of		Mean		
I	Model	Squares	df	Square	F	Sig.
Γ	1 Regression	133.612	1	133.612	39.981	.000b
	Residual	40.103	12	3.342		
	Total	173.714	13			

a. Dependent Variable: Starting Salary of a Lecturer (in Rs. thousand per month)

b. Predictors: (Constant), No. of Years of Experience

Coefficients^a

				-		
Γ				Standardize		
			Unstandardized			
ı	Coeffici		cients	Coefficients		
Ν	Model	В	Std. Error	Beta	t	Sig.
	(Constant)	18.964	1.092		17.359	.000
	No. of Years of Experience	1.545	.244	.877	6.323	.000

a. Dependent Variable: Starting Salary of a Lecturer (in Rs. thousand per month)

Histogram

Dependent Variable: Starting Salary of a Lecturer (in Rs. thousand per month)

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: Starting Salary of a Lecturer (in Rs. thousand per month)

Scatterplot

Inferences:

- From the model summary table, R square value = 0.769. Thus, the explanatory power of the model is 76.9%.
 Or in other words, Income can explain 76.9% of the variation in Demand.
- 2. From the **coefficients table**, the regression equation is:

Starting Salary of a lecturer = 0.877(no. of years of experience) + 18.964 + residual

3. Hypothesis:

- Ho: There is no significant relationship between the explanatory and dependent variable. (Beta = 0)
- H1: There is a significant relationship between the explanatory and dependent variable. (Beta is not equal to 0)
- 4. From the **ANOVA table**, the significance table is less than 0.05. Hence, we reject Ho. This implies that there is a significant relationship between explanatory and dependent variables.
- 5. From the **Coefficients table**, the significance of the t-test is less than 0.05. Hence the alternative hypothesis is accepted. There is a significant relationship between the explanatory and dependent variables.
- 6. From the **Histogram chart**, we can see that the histogram is not much skewed. Hence, the residual terms are not exactly normal.
- 7. From the **Normal Probability Plot**, it is clear that the distribution of residuals is not much far away from the line. It agrees with the Histogram.
- 8. **Scatter Plot** infers that the variance of the error term is normal. Hence, there is Homoscedasticity.

Analysis 2

Correlation

Correlations

		Starting Salary of a Lecturer (in Rs. thousand per month)	No. of Years of Experienc e
Starting Salary of a Lecturer (in Rs.	Pearson Correlation	1	.877**
thousand per	Sig. (2-tailed)		.000
month)	N	14	14
No. of Years of Experience	Pearson Correlation	.877**	1
	Sig. (2-tailed)	.000	
	N	14	14

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Inferences:

- 1. Hypothesis:
 - o Ho: There is no association between the variables.
 - o H1: There is an association between the variables.
- 2. From the **Correlations table**, for all the variables, the significance value is less than 0.05. Hence, we accept H1.
- 3. Between variables:
 - Number of years of experience and Starting Salary of a Lecturer:
 Pearson Correlation Coefficient is 0.877. Thus, they are positively correlated meaning as number of years of experience increases, starting salary of a lecturer also increases, and vice-versa.

Correlation and Regression - 3

Analysis 1

Multiple Regression

a) Predictors: Taste, Nutrition Value, Preference

b) Dependent variable: Preservation Quality

Model Summary^b

				Std. Error
			Adjusted R	of the
Model	R	R Square	Square	Estimate
1	.899ª	.807	.791	.78233

a. Predictors: (Constant), Taste, Nutrition Value, Preference

b. Dependent Variable: Preservation Quality

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	92.341	3	30.780	50.291	.000b
	Residual	22.034	36	.612		
	Total	114.375	39			

a. Dependent Variable: Preservation Quality

b. Predictors: (Constant), Taste, Nutrition Value, Preference

Coefficients

Model		Unstandardized Coefficients B Std. Error		Standardized Coefficients Beta	t	Sig.
1	(Constant)	.026	.363		.070	.944
	Preference	.686	.147	.720	4.660	.000
	Nutrition Value	059	.127	060	466	.644
	Taste	.211	.114	.258	1.850	.073

a. Dependent Variable: Preservation Quality

Histogram

Regression Standardized Residual

Normal P-P Plot of Regression Standardized Residual

Scatterplot

Regression Standardized Predicted Value

Inferences:

- From the model summary table, R square value = 0.807. Thus, the explanatory power of the model is 80.7%.
 Or in other words, Income can explain 80.7% of the variation in Demand.
- 2. From the **coefficients table**, the regression equation is:

Preservation Quality = 0.686(Preference) -0.59(Nutrition Value) +0.211(Taste) + residual

3. Hypothesis:

- Ho: There is no significant relationship between the explanatory and dependent variable. (Beta = 0)
- H1: There is a significant relationship between the explanatory and dependent variable. (Beta is not equal to 0)
- 4. From the **ANOVA table**, the significance table is less than 0.05. Hence, we reject Ho. This implies that there is a significant relationship between explanatory and dependent variables.
- 5. From the **Coefficients table**, we can infer that each explanatory variable has different significance in the relationship with the dependent variable.
- 6. From the **Histogram chart**, we can see that the histogram is not much skewed. Hence, the residual terms are almost normal.
- 7. From the **Normal Probability Plot**, it is clear that the distribution of residuals is not much far away from the line. It agrees with the Histogram.
- 8. **Scatter Plot** infers that the variance of the error term is normal. Hence, there is Homoscedasticity.

Analysis 2

Correlation

Correlations

		Preference	Nutrition Value	Taste
Preference	Pearson Correlation	1	.810 ^{**}	.841**
	Sig. (2-tailed)		.000	.000
	N	40	40	40
Nutrition Value	Pearson Correlation	.810**	1	.759**
	Sig. (2-tailed)	.000		.000
	N	40	40	40
Taste	Pearson Correlation	.841**	.759 ^{**}	1
	Sig. (2-tailed)	.000	.000	
	N	40	40	40

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Inferences:

1. Hypothesis:

- o Ho: There is no association between the variables.
- o H1: There is an association between the variables.
- 2. From the **Correlations table**, for all the variables, the significance value is less than 0.05. Hence, we accept H1.

3. Between variables:

- Preference and Nutrition Value: Pearson Correlation Coefficient is
 -0.810. Thus, they are positively correlated meaning as nutrition value increases, preference also increases, and vice-versa.
- Preference and Taste: Pearson Correlation Coefficient is 0.841. Thus, they are positively correlated meaning as taste increases, preference also increases, and vice-versa.
- Taste and Nutrition Value: Pearson Correlation Coefficient is 0.759.
 Thus, they are positively correlated meaning as nutrition value increases, taste also increases, and vice-versa.

Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin	Measure of Sampling	.591
Adequacy.	.591	
Bartlett's Test of	Approx. Chi-Square	80.004
Sphericity	df	21
	Sig.	.000

Communalities

	Initial	Extraction
Score on Risk Averseness	1.000	.598
Score on Returns	1.000	.304
Score on Insurance Covers	1.000	.612
Score on Tax Rebate	1.000	.111
Score on Maturity Time	1.000	.624
Score on Credibility of Financial Institution	1.000	.725
Score on Easy Accessibility	1.000	.631

Extraction Method: Principal Component Analysis.

Total Variance Explained

Total Validito Explained											
				Extraction Sums of Squared							
	ı	Initial Eigenva	alues	Loadings			Rotation Sums of Squared Loadings				
		% of	Cumulative		% of	Cumulative		% of	Cumulative		
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%		
1	2.054	29.346	29.346	2.054	29.346	29.346	2.010	28.708	28.708		
2	1.551	22.160	51.506	1.551	22.160	51.506	1.596	22.798	51.506		
3	.970	13.857	65.363								
4	.848	12.109	77.472								
5	.711	10.151	87.622								
6	.490	7.003	94.626								
7	.376	5.374	100.000								

Extraction Method: Principal Component Analysis.

Com	ponen	t Matrixª	
		Comp	onent
		1	2
Score on Ris Averseness	k	176	.753
Score on Re	turns	.527	.160
Score on Insurance Co	overs	.335	707
Score on Tax Rebate	(.309	.125
Score on Ma Time	turity	.765	198
Score on Credibility of Financial Institution		.570	.633
Score on Ear Accessibility	sy	.793	.047
Extraction Me Component A a. 2 component	Analysis	· ·	

Rotated Component Matrix^a

	Comp	onent
	1	2
Score on Risk Averseness	.057	771
Score on Returns	.551	.004
Score on Insurance Covers	.109	.775
Score on Tax Rebate	.332	027
Score on Maturity Time	.671	.417
Score on Credibility of Financial Institution	.732	435
Score on Easy Accessibility	.771	.192

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.^a

a. Rotation converged in 3 iterations.

Component Transformation Matrix

Component	1	2
1	.955	.298
2	.298	955

Extraction Method: Principal

Component Analysis.

Rotation Method: Varimax with

Kaiser Normalization.

Inferences:

- 1. The value of **KMO statistics** is greater than 0.5, indicating that factor analysis could be used for the given set of data.
- 2. **Bartlett's test of sphericity** testing for the significance of the correlation matrix of the variables indicates that the correlation coefficient matrix is significant as indicated by the p value corresponding to the chi-square statistic. P value is less than 0.05.
- 3. The correlation coefficient between the factor score and the variables is presented in table called factor matrix or component matrix. The correlation coefficient between the first variable, risk awareness and factor 1 is -0.176.
- 4. From the **Total Variance Explained** table, there are 2 factors with Eigen value more than 1. As there are 7 variables, the total variance equals seven. The percentage of variance explained by each factor can be computed using eigenvalues.

Percentage of variance explained by factor 1 = (Eigenvalue of factor 1 / sum total of Eigen values) *100 = <math>(2.054 / 7)*100 = 29.346 percent

Percentage of variance explained by factor 2 = (Eigenvalue of factor 2 / sum total of Eigen values) *100 = (1.551 / 7)*100 = 22.16 percent

Total variance explained by both factors = 29.346 + 22.16 = 51.506 percent.

- 5. The **Communalities Table** indicates how much of each variable is accounted for by the underlying factors taken together. It is a measure of the percentage of variable's variation that is explained by the factors.

 Communality for risk averseness = (0.176)2 + (0.753)2 = 0.598
- 6. In order to interpret the **Rotated Component Matrix**, a cut-off point is decided. Using 0.7 as cut-off point, the two variables corresponding to factor 1 having a factor loading above 0.7 are credibility of the financial institutions and ease of accessibility.
 - The variables corresponding to factor 2 for which the factor loadings are greater than 0.7 are risk averseness and insurance cover.
- Factor 1 comprising of the credibility of the financial institutions and ease of accessibility could be named as perceived value of service.
 Factor 2 could be named as security factor.

Factor Analysis - 2

KMO and Bartlett's Test

Kaiser-Meyer-Olkin	.664	
Adequacy.	.004	
Bartlett's Test of	Approx. Chi-Square	342.005
Sphericity	df	55
	Sig.	.000

Communalities

	Initial	Extraction
Aerated soft drinks are refreshing	1.000	.699
Aerated soft drinks are bad for health	1.000	.567
Aerated soft drinks are very convenient to serve	1.000	.476
Aerated soft drinks should be avoided with age	1.000	.612
Aerated soft drinks are very tasty	1.000	.635
Aerated soft drinks are not good for children	1.000	.752
Aerated soft drinks should be consumed occasionally	1.000	.576
Aerated soft drinks should not be taken in large quantity	1.000	.239
Aerated soft drinks are not as good as energy drinks	1.000	.158
Aerated soft drinks are better than fruit juices	1.000	.886
Recommending aerated drinks to others	1.000	.867

Extraction Method: Principal Component Analysis.

Total Variance Explained

							Rotation	Sums of Squa	ared
	Initial Eigenvalues			Extraction Sums of Squared Loadings			Loadings		
									Cumul
		% of	Cumulative		% of	Cumulative		% of	ative
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	3.086	28.058	28.058	3.086	28.058	28.058	2.859	25.992	25.992
2	2.127	19.334	47.393	2.127	19.334	47.393	1.875	17.047	43.039
3	1.254	11.396	58.789	1.254	11.396	58.789	1.732	15.749	58.789
4	.991	9.008	67.796						
5	.844	7.675	75.472						
6	.701	6.371	81.842						
7	.555	5.050	86.892						
8	.549	4.992	91.885						
9	.482	4.386	96.271						
10	.271	2.462	98.732						
11	.139	1.268	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix^a

Compe	Component					
	1					
Aerated soft drinks are refreshing	267	.291	.737			
Aerated soft drinks are bad for health	.702	.248	115			
Aerated soft drinks are very convenient to serve	.124	.630	.252			
Aerated soft drinks should be avoided	.714	.267	177			
with age Aerated soft drinks are very tasty	110	.722	.319			
Aerated soft drinks are not good for children	.841	.198	.079			
Aerated soft drinks should be consumed occasionally	.677	.296	172			
Aerated soft drinks should not be taken in large quantity	.484	.023	066			
Aerated soft drinks are not as good as energy drinks	.011	346	196			
Aerated soft drinks are better than fruit juices	579	.611	422			
Recommending aerated drinks to others	.501	610	.493			

Extraction Method: Principal Component Analysis.

a. 3 components extracted.

Rotated Component Matrix^a

	Component				
	1	2	3		
Aerated soft drinks are refreshing	344	.224	.728		
Aerated soft drinks are bad for health	.748	.062	.060		
Aerated soft drinks are very convenient to serve	.249	151	.625		
Aerated soft drinks should be avoided with age	.782	.012	.031		
Aerated soft drinks are very tasty	.047	257	.753		
Aerated soft drinks are not good for children	.807	.282	.146		
Aerated soft drinks should be consumed occasionally	.756	017	.059		
Aerated soft drinks should not be taken in large quantity	.465	.140	059		
Aerated soft drinks are not as good as energy drinks	050	.076	387		
Aerated soft drinks are better than fruit juices	218	894	.201		
Recommending aerated drinks to others	.129	.910	147		

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser

Normalization.a

a. Rotation converged in 5 iterations.

Component Transformation Matrix

Component	1	2	3
1	.909	.411	063
2	.321	597	.735
3	264	.689	.675

Extraction Method: Principal Component

Analysis.

Rotation Method: Varimax with Kaiser

Normalization.

Inferences:

- 1. The value of **KMO statistics** is greater than 0.5, indicating that factor analysis could be used for the given set of data.
- 2. **Bartlett's test of sphericity** testing for the significance of the correlation matrix of the variables indicates that the correlation coefficient matrix is

- significant as indicated by the p value corresponding to the chi-square statistic. P value is less than 0.05.
- 3. The correlation coefficient between the factor score and the variables is presented in table called factor matrix or **component matrix**. The correlation coefficient between the first variable, Aerated soft drinks are refreshing and factor 1 is -0.267.
- 4. From the **Total Variance Explained** table, there are 3 factors with Eigen value more than 1. As there are 11 variables, the total variance equals eleven. The percentage of variance explained by each factor can be computed using eigenvalues.

Percentage of variance explained by factor 1 = (Eigenvalue of factor 1 / sum total of Eigen values) *100 = <math>(3.086 / 11)*100 = 28.054 percent

Percentage of variance explained by factor 2 = (Eigenvalue of factor 2 / sum total of Eigen values) *100 = <math>(2.127 / 11)*100 = 19.336 percent

Percentage of variance explained by factor 3 = (Eigenvalue of factor 3 / sum total of Eigen values) *100 = <math>(1.254 / 11)*100 = 11.4 percent

Total variance explained by 3 factors = 28.054 + 19.336 + 11.4 = 58.79 percent.

- 5. The Communalities Table indicates how much of each variable is accounted for by the underlying factors taken together. It is a measure of the percentage of variable's variation that is explained by the factors.
 Communality for Aerated soft drinks are refreshing = (-0.267)² + (0.291)² + (0.737)² = 0.699
- 6. In order to interpret the Rotated Component Matrix, a cut-off point is decided. Using 0.7 as cut-off point, the variables corresponding to factor 1 having a factor loading above 0.7 are Aerated soft drinks are bad for health, Aerated soft drinks should be avoided with age, Aerated soft drinks are not good for children and Aerated soft drinks should be consumed occasionally. The variables corresponding to factor 2 for which the factor loadings are greater than 0.7 are Recommending aerated drinks to others. The variables corresponding to factor 3 for which the factor loadings are greater than 0.7 are Aerated soft drinks are refreshing and Aerated soft drinks are very tasty.
- Factor 1 could be named as perceived avoiding factors for aerated soft drinks.
 Factor 2 could be named as recommending factor.
 Factor 3 could be named as perceived supporting factors for aerated soft drinks.

Factor Analysis - 3

KMO and Bartlett's Test

Kaiser-Meyer-Olkin	.613	
Adequacy.	.013	
Bartlett's Test of	Approx. Chi-Square	355.669
Sphericity	df	153
	Sig.	.000

Communalities

	Initial	Extraction
Price on Road	1.000	.743
Brand Name	1.000	.773
Engine Capacity	1.000	.650
Looks & Design	1.000	.763
Fuel Efficiency	1.000	.710
Discount Scheme	1.000	.582
Resale Value	1.000	.671
After Sale Services	1.000	.554
Running and	1.000	.686
Maintaining Cost	1.000	.000
Convenience	1.000	.493
Features		. 100
Purpose of Purchase	1.000	.697
Performance	1.000	.587
Information Available		
Driving Pleasure	1.000	.635
Car Image &	1.000	.579
Positioning	4 000	700
Economical	1.000	.738
Colours Available	1.000	.595
Advertising &	1.000	.463
Marketing	4 000	7.40
Safety	1.000	.740

Extraction Method: Principal Component

Analysis.

Total Variance Explained

	Total Variance Explained								
		Initial Eigenvalues			Extraction Sums of Squared Loadings			ion Sums of Loadings	•
Compone		% of	Cumulative		'	Cumulative		% of	Cumulative
nt	Total	Variance	%	Total	% of Variance	%	Total	Variance	%
1	3.860	21.447	21.447	3.860	21.447	21.447	2.621	14.558	14.558
2	2.275	12.640	34.087	2.275	12.640	34.087	2.303	12.794	27.353
3	1.738	9.658	43.745	1.738	9.658	43.745	1.748	9.711	37.063
4	1.436	7.975	51.720	1.436	7.975	51.720	1.696	9.420	46.483
5	1.244	6.910	58.630	1.244	6.910	58.630	1.682	9.343	55.826

6	1.104	6.131	64.761	1.104	6.131	64.761	1.608	8.936	64.761
7	.952	5.289	70.050						
8	.847	4.703	74.753						
9	.777	4.316	79.069						
10	.668	3.714	82.783						
11	.620	3.442	86.225						
12	.532	2.953	89.178						
13	.491	2.727	91.904						
14	.412	2.287	94.191						
15	.312	1.735	95.926						
16	.295	1.637	97.563						
17	.259	1.439	99.002						
18	.180	.998	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix^a

			Comp	onent		
	1	2	3	4	5	6
Price on Road	.110	.464	.309	.349	.120	.533
Brand Name	.199	151	.783	.133	222	.175
Engine Capacity	.339	.267	.533	332	.260	.043
Looks & Design	.161	396	.567	.105	.339	364
Fuel Efficiency	.442	.549	.173	369	002	216
Discount Schme	.435	.268	163	.531	028	.107
Resale Value	.442	.408	.047	.462	.306	.015
After Sale Services	.506	026	375	.110	.326	195
Running and Maintaining Cost	.657	.409	078	277	.047	.043
Convenience Features	.471	460	023	109	.168	.136
Purpose of Purchase	.276	.236	.287	.060	429	543
Performance Information Available	.544	029	147	122	.489	120
Driving Pleasure	.652	428	014	027	153	047
Car Image & Positioning	.551	194	207	.361	155	201
Economical	.513	.458	250	197	397	.080
Colours Available	.496	530	003	034	017	.258
Advertising & Marketing	.447	202	.085	.335	318	036
Safety	.606	284	034	375	193	.335

Extraction Method: Principal Component Analysis.

a. 6 components extracted.

Rotated Component Matrix^a

			Comp	onent		
	1	2	3	4	5	6
Price on Road	063	.143	229	149	.802	026
Brand Name	.278	.156	587	.216	.264	.459
Engine Capacity	.116	.668	082	182	.173	.346
Looks & Design	.137	.030	.060	.138	059	.847
Fuel Efficiency	081	.822	.106	.109	.037	049
Discount Schme	.046	001	.250	.369	.588	188
Resale Value	084	.203	.359	.191	.670	.095
After Sale Services	.201	.081	.687	.157	.103	018
Running and Maintaining Cost	.230	.677	.277	.074	.195	232
Convenience Features	.645	.000	.221	007	025	.163
Purpose of Purchase	195	.403	128	.675	108	.113
Performance Information Available	.296	.291	.614	062	.082	.165
Driving Pleasure	.662	.088	.161	.389	072	.081
Car Image & Positioning	.309	084	.333	.591	.127	033
Economical	.141	.527	.054	.287	.114	585
Colours Available	.754	083	.068	.088	.026	.082
Advertising & Marketing	.337	057	041	.557	.181	.038
Safety	.788	.280	036	.029	063	186

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.^a

a. Rotation converged in 19 iterations.

Component Transformation Matrix

Component	1	2	3	4	5	6
1	.621	.485	.362	.413	.279	001
2	613	.572	.012	042	.413	354
3	002	.318	600	.033	.186	.709
4	206	561	.091	.460	.635	.140
5	067	.009	.607	590	.222	.479
6	.439	148	363	517	.514	350

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

Inferences:

- 1. The value of **KMO statistics** is greater than 0.5, indicating that factor analysis could be used for the given set of data.
- 2. **Bartlett's test of sphericity** testing for the significance of the correlation matrix of the variables indicates that the correlation coefficient matrix is significant as indicated by the p value corresponding to the chi-square statistic. P value is less than 0.05.
- 3. The correlation coefficient between the factor score and the variables is presented in table called factor matrix or **component matrix**. The correlation coefficient between the first variable, Price on Road and factor 1 is 0.110.

4. From the **Total Variance Explained** table, there are 6 factors with Eigen value more than 1. As there are 18 variables, the total variance equals eighteen. The percentage of variance explained by each factor can be computed using eigenvalues.

Percentage of variance explained by factor 1 = (Eigenvalue of factor 1 / sum total of Eigen values) *100 = <math>(3.860 / 18)*100 = 21.444 percent

Percentage of variance explained by factor 2 = (Eigenvalue of factor 2 / sum total of Eigen values) *100 = <math>(2.275 / 18)*100 = 12.638 percent

Percentage of variance explained by factor 3 = (Eigenvalue of factor 3 / sum total of Eigen values) *100 = <math>(1.738 / 18)*100 = 9.656 percent

Percentage of variance explained by factor 4 = (Eigenvalue of factor 4 / sum total of Eigen values) *100 = <math>(1.436 / 18)*100 = 7.978 percent

Percentage of variance explained by factor 5 = (Eigenvalue of factor 5 / sum total of Eigen values) *100 = <math>(1.244 / 18)*100 = 6.911 percent

Percentage of variance explained by factor 6 = (Eigenvalue of factor 6 / sum total of Eigen values) *100 = <math>(1.104 / 18)*100 = 6.133 percent

Total variance explained by both factors = 21.444 + 12.638 + 9.656 + 7.978 + 6.911 + 6.133 = 64.76 percent.

- 5. The **Communalities Table** indicates how much of each variable is accounted for by the underlying factors taken together. It is a measure of the percentage of variable's variation that is explained by the factors.

 Communality for Price on Road = $(0.110)^2 + (0.464)^2 + (0.309)^2 + (0.349)^2 + (0.120)^2 + (0.533)^2 = 0.743$
- 6. In order to interpret the **Rotated Component Matrix**, a cut-off point is decided.

Using 0.7 as cut-off point, the **variables corresponding to factor 1** having a factor loading above 0.7 are Aerated soft drinks are bad for health, Aerated soft drinks should be avoided with age, Aerated soft drinks are not good for children and Aerated soft drinks should be consumed occasionally.

The **variables corresponding to factor 2** for which the factor loadings are greater than 0.7 are Recommending aerated drinks to others.

The **variables corresponding to factor 3** for which the factor loadings are greater than 0.7 are Aerated soft drinks are refreshing and Aerated soft drinks are very tasty.

7. Factor 1 could be named as perceived avoiding factors for aerated soft drinks. Factor 2 could be named as recommending factor. Factor 3 could be named as perceived supporting factors for aerated soft drinks.

Discriminant Analysis

Group Statistics

			Std.	Valid N (l	list wise)
Buyer / Non-Buyer		Mean	Deviation	Unweighted	Weighted
Non-Buyer	Durability	4.00	2.000	9	9.000
	Light Weight	4.33	1.803	9	9.000
	Low Investment	4.33	1.414	9	9.000
	Rot Resistance	3.67	1.936	9	9.000
Buyer	Durability	7.44	1.944	9	9.000
	Light Weight	5.78	1.986	9	9.000
	Low Investment	5.22	2.108	9	9.000
	Rot Resistance	3.44	1.424	9	9.000
Total	Durability	5.72	2.608	18	18.000
	Light Weight	5.06	1.984	18	18.000
	Low Investment	4.78	1.801	18	18.000
	Rot Resistance	3.56	1.653	18	18.000

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Durability	.538	13.729	1	16	.002
Light Weight	.860	2.610	1	16	.126
Low Investment	.935	1.103	1	16	.309
Rot Resistance	.995	.077	1	16	.785

Pooled Within-Groups Matrices

		Durability	Light Weight	Low Investment	Rot Resistance
Correlation	Durability	1.000	.633	.549	.209
	Light Weight	.633	1.000	.541	.327
	Low Investment	.549	.541	1.000	.064
	Rot Resistance	.209	.327	.064	1.000

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	1.033ª	100.0	100.0	.713

a. First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

	Wilks'			
Test of Function(s)	Lambda	Chi-square	df	Sig.
1	.492	9.936	4	.042

Standardized Canonical Discriminant Function Coefficients

	Function
	1
Durability	1.219
Light Weight	104
Low Investment	338
Rot Resistance	268

Structure Matrix

	Function
	1
Durability	.911
Light Weight	.397
Low Investment	.258
Rot Resistance	068

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions

Variables ordered by absolute size of correlation within function.

Canonical Discriminant Function Coefficients

	Function
	1
Durability	.618
Light Weight	055
Low Investment	188
Rot Resistance	157
(Constant)	-1.800

Unstandardized coefficients

Classification Results^{a,c}

				ed Group ership	
		Buyer / Non-Buyer	Non-Buyer	Buyer	Total
Original	Count	Non-Buyer	7	2	9
		Buyer	1	8	9
	%	Non-Buyer	77.8	22.2	100.0
		Buyer	11.1	88.9	100.0
Cross-validated ^b	Count	Non-Buyer	6	3	9
		Buyer	2	7	9
	%	Non-Buyer	66.7	33.3	100.0
		Buyer	22.2	77.8	100.0

a. 83.3% of original grouped cases correctly classified.

Inferences:

- 1. The **Group Statistics** table computes the mean values to get an idea of the differences in the mean score of variables for buyer and non-buyer. The mean score for durability for the buyer group is 7.44, whereas for the non-buyer group it is 4.0. For other characteristics the mean values are closer for buyer and non-buyer. Therefore we can expect that durability could be useful in discriminating between prospective buyers and non-buyers. However, in terms of variability, the standard deviations of variables like low investment and rot resistance seem to vary a lot.
- 2. From the table of **Tests of Equality of Group Means** table, it is observed that the significant difference in the mean exists for the durability, for which the p value is less than 0.05, the assumed level of significance. There does not seem to be any significant difference in the means of the remaining three characteristics as the p value in each of these cases is greater than 0.05.
- **3.** From the table of **Pooled within-Groups Matrices** table, the correlation between any pair of predictor variables does not exceed 0.75. So, there is no problem of multicollinearity.
- **4.** From the table of **Canonical Discriminant Function Coefficients,** the discriminant function is

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.

c. 72.2% of cross-validated grouped cases correctly classified.

Y = -1.800 + 0.618 Durability - 0.055 Light Weight - 0.188 Low Investment -0.157 Rot resistance

- 5. From the Eigenvalues table, the last column, canonical correlation, is the simple correlation coefficient between the discriminant score and their corresponding group membership (buyer / non buyer).
 The square of the canonical correlation (0.713) is 0.508. This means 50.8 percent of the variance in the discriminating model between a prospective buyer and a non-buyer is due to the changes in the four predictor variables.
- 6. From the **Wilk's Lambda** table, the value of Wilks' Lambda is 0.492. This parameter takes a value between 0 and 1. Lower the value of Wilks' Lambda, the higher is the significance of the discriminant function. Therefore 0 would be the most preferred one. The statistical significance of Wilks' Lambda is carried out with the chi-square statistic (9.936) and its p value. Since p value is less than 0.05, the discriminant function is significant.
- 7. From the **Group Centroids** table, we can compute the mean discriminant scores of the buyer and non-buyer groups separately. This is called group centroids. This is -0,958 for a non- buyer and 0.958 for a buyer. This is used for designing a decision rule to classify a customer into a buyer / non-buyer category. Take the average of the two group centroids. It is 0 here. Any respondent whose discriminant score is greater than zero would be classified as a prospective buyer, whereas the one with less than zero would be classified as a non-buyer.
- 8. The Standardized Canonical Discriminant Function Coefficients table indicates that durability is the most important characteristic, which discriminates between the buyer and non-buyer group, followed by low investment, rot resistance and light weight.
- 9. From the **Structure Matrix**, the structural coefficients are obtained by computing the correlation between the discriminant score and each of the independent variables. These are also called discriminant loadings.
- 10. From the Classification Results table, Hit ratio = No. of correct predictions / Total number of cases
 Here, there are 15 correct predictions out of a sample of 18. 7 non buyers predicted as non-buyers, 8 buyers predicted as buyers from a TOTAL OF 15.
 Hit ratio = 15/18 = 83.33 percent.

Cluster Analysis

Case Processing Summary^{a,b}

Cases						
٧	alid/	Missing Total				
N	Percent	N	Percent	N	Percent	
25	100.0	0	.0	25	100.0	

- a. Squared Euclidean Distance used
- b. Average Linkage (Between Groups)

Agglomeration Schedule

			Joineration C			Ì
				Stage Clu		
	Cluster C			App		
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage
1	23	25	.000	0	0	8
2	21	24	.000	0	0	4
3	19	22	.000	0	0	8
4	18	21	.000	0	2	10
5	17	20	.000	0	0	20
6	3	10	1.000	0	0	7
7	1	3	1.500	0	6	13
8	19	23	2.000	3	1	10
9	15	16	2.000	0	0	11
10	18	19	4.000	4	8	20
11	14	15	4.000	0	9	18
12	6	8	4.000	0	0	16
13	1	9	4.667	7	0	19
14	12	13	5.000	0	0	21
15	4	7	5.000	0	0	16
16	4	6	6.000	15	12	17
17	4	5	6.250	16	0	22
18	11	14	6.667	0	11	21
19	1	2	7.000	13	0	22
20	17	18	7.857	5	10	24
21	11	12	8.500	18	14	23
22	1	4	11.800	19	17	23
23	1	11	40.667	22	21	24
24	1	17	59.222	23	20	0

Dendrogram using Average Linkage (Between Groups)

Cluster Membership

		-
Case Number	Cluster	Distance
1	3	1.706
2	3	2.304
3	3	1.873
4	3	1.646
5	3	2.124
6	3	2.472
7	3	1.453
8	3	2.390
9	3	2.076
10	3	1.646
11	2	1.908
12	2	1.280

13 2 2.375 14 2 1.404 15 2 1.624 16 2 1.280 17 1 2.015 18 1 .916 19 1 1.652 20 1 2.015 21 1 .916 22 1 1.652 23 1 1.083			
15 2 1.624 16 2 1.280 17 1 2.015 18 1 .916 19 1 1.652 20 1 2.015 21 1 .916 22 1 1.652 23 1 1.083	13	2	2.375
16 2 1.280 17 1 2.015 18 1 .916 19 1 1.652 20 1 2.015 21 1 .916 22 1 1.652 23 1 1.083	14	2	1.404
17 1 2.015 18 1 .916 19 1 1.652 20 1 2.015 21 1 .916 22 1 1.652 23 1 1.083	15	2	1.624
18 1 .916 19 1 1.652 20 1 2.015 21 1 .916 22 1 1.652 23 1 1.083	16	2	1.280
19 1 1.652 20 1 2.015 21 1 .916 22 1 1.652 23 1 1.083	17	1	2.015
20 1 2.015 21 1 .916 22 1 1.652 23 1 1.083	18	1	.916
21 1 .916 22 1 1.652 23 1 1.083	19	1	1.652
22 1 1.652 23 1 1.083	20	1	2.015
23 1 1.083	21	1	.916
	22	1	1.652
	23	1	1.083
24 1 .916	24	1	.916
25 1 1.083	25	1	1.083

Final Cluster Centers

	Cluster		
	1	2	3
Indian Technology high order	2	2	4
Buy Made in India	2	2	5
Value for money	1	5	3
Convenience over style	2	5	2
Don't do waste full expenditure	1	4	3
No compromise on safety	1	5	3
saver not spender	1	4	3
try new things	5	2	1
be part of a changing world	4	1	1

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
Indian Technology high order	16.383	2	.420	22	39.036	.000
Buy Made in India	22.426	2	.499	22	44.896	.000
Value for money	18.692	2	.348	22	53.716	.000
Convenience over style	17.106	2	.263	22	65.008	.000
Don't do waste full	20.653	2	.224	22	92.103	.000
expenditure						
No compromise on safety	21.356	2	.422	22	50.579	.000
saver not spender	18.383	2	.783	22	23.468	.000
try new things	34.752	2	.212	22	164.223	.000
be part of a changing world	25.213	2	.261	22	96.749	.000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	9.000
	2	6.000
	3	10.000
Valid		25.000
Missing		.000

Inferences:

- 1. There are 25 respondents. No missing cases
- 2. From the **Agglomeration Schedule** table, we can see that 23 and 25 are most similar pair in stage 1. They are joined by 19 in stage 8th stage. 21 and 24 are the next similar pair; they are joined by 18, in the 4th stage. In total 24 clustering stages occur. This agglomeration schedule can be used to see, how many distinct clusters exist. We start with the last coefficient when all objects group into a single cluster value (stage 24.) next we subtract the coefficient from the 2 cluster (stage 23) as follows: 59.222 40.667 = 18.55

Then, we look at the difference between 2 clusters (stage 23) and 3 cluster (stage 22):

40.667 - 11.800 = 28.867

The next difference is 11.8 - 8.5 = 3.5

Thus we can see from the data above that the maximum variation happens when we move from a two cluster solution to a three-cluster solution. So, three clusters are adequate and distinct enough for analysis or 25 respondents who took the survey can be grouped into three distinct clusters.

- 3. The **Dendogram** clearly gives three clusters that are distinctly different from each other.
- 4. Examine F values from the ANOVA tables to establish the discriminating power of each clustering variable. As observed from the table, all the variables are significant at the 5 percent level of significance and may be used for the interpretation.
- 5. From the **Final Cluster Centers** table, we can infer:

Cluster 1 is high on variables 'try new things' and 'be part of a changing world'.

Cluster 2 is high on variables 'Value for money', 'Convenience over style', 'Don't do waste full expenditure', 'No compromise on safety' and 'saver not spender'.

Cluster 3 is high on variables 'Indian Technology high order' and 'Buy Made in India'.

6. Naming clusters:

Cluster 1 can be innovative consumer Cluster 2 can be cautious customer Cluster 3 can be patriotic customer

Cluster Analysis - 2

Case Processing Summary^{b,c}

Cases							
		Rejected					
		Out of Range Binary					
V	'alid	Missing Value		Value ^a		Total	
N	Percent	N	Percent	N	Percent	N	Percent
40	100.0	0	.0	0	.0	40	100.0

- a. Value different from both 1 and 0.
- b. Simple matching Measure used
- c. Average Linkage (Between Groups)

Agglomeration Schedule

Ctogo	Cluster Combined Cluster 1 Cluster 2		Coefficients	Stage Cluster First Appears Cluster 1 Cluster 2		Novt Stage
Stage 1	Cluster 1					Next Stage
	26	40	1.000	0	0	15
2	27	39	1.000	0	0	14
3	37	38	1.000	0	0	4
4	3	37	1.000	0	3	11
5	22	36	1.000	0	0	19
6	34	35	1.000	0	0	7
7	1	34	1.000	0	6	12
8	30	33	1.000	0	0	11
9	19	32	1.000	0	0	22
10	29	31	1.000	0	0	12
11	3	30	1.000	4	8	18
12	1	29	1.000	7	10	21
13	9	28	1.000	0	0	35
14	2	27	1.000	0	2	31
15	7	26	1.000	0	1	23
16	8	25	1.000	0	0	31
17	23	24	1.000	0	0	18
18	3	23	1.000	11	17	27
19	12	22	1.000	0	5	34
20	20	21	1.000	0	0	21
21	1	20	1.000	12	20	26
22	5	19	1.000	0	9	34
23	7	18	1.000	15	0	35

24	15	17	1.000	0	0	26
25	14	16	1.000	0	0	27
26	1	15	1.000	21	24	30
27	3	14	1.000	18	25	32
28	6	13	1.000	0	0	32
29	10	11	1.000	0	0	30
30	1	10	1.000	26	29	33
31	2	8	1.000	14	16	36
32	3	6	1.000	27	28	38
33	1	4	1.000	30	0	37
34	5	12	.889	22	19	37
35	7	9	.889	23	13	36
36	2	7	.852	31	35	39
37	1	5	.833	33	34	38
38	1	3	.611	37	32	39
39	1	2	.258	38	36	0

Dendrogram using Average Linkage (Between Groups)

Cluster Membership

	children	ersnip	
Case Number	below 18	Cluster	Distance
1	1	1	.930
2	0	2	.575
3	1	1	1.100
4	0	1	.930
5	1	1	.832
6	0	1	1.100
7	0	2	.490
8	0	2	.575
9	0	2	.936
10	2	1	.930
11	1	1	.930
12	2	1	.852
13	1	1	1.100
14	0	1	1.100
15	1	1	.930
16	1	1	1.100
17	0	1	.930
18	0	2	.490
19	1	1	.832
20	2	1	.930
21	1	1	.930
22	2	1	.852
23	1	1	1.100
24	0	1	1.100
25	0	2	.575
26	0	2	.490
27	0	2	.575
28	0	2	.936
29	1	1	.930
30	1	1	1.100
31	0	1	.930
32	1	1	.832
33	0	1	1.100
34	2	1	.930
35	1	1	.930
36	2	1	.852
37	1	1	1.100
38	0	1	1.100
39	0	2	.575
40	0	2	.490

Final Cluster Centers

1		
	Clu	ster
	1	2
bournvita	1	0
milo	1	0
zanduchyawanprash	0	1
dabur red	0	1
dabur blue	0	1
protinex	0	0
horlicks	1	0
baidyanath	0	1

complan	1	0
---------	---	---

ANOVA

	Cluste	er	Erro	ſ		
	Mean		Mean			
	Square	df	Square	df	F	Sig.
bournvita	3.072	1	.180	38	17.100	.000
milo	3.072	1	.180	38	17.100	.000
zanduchyawanprash	5.339	1	.043	38	123.975	.000
dabur red	2.373	1	.072	38	33.060	.000
dabur blue	7.975	1	.000	38		
protinex	1.859	1	.191	38	9.753	.003
horlicks	7.975	1	.000	38		
baidyanath	7.975	1	.000	38		
complan	2.741	1	.185	38	14.804	.000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	29.000
	2	11.000
Valid		40.000
Missing		.000

- 1. There are 40 respondents. No missing cases
- 2. From the Agglomeration Schedule table, we can see that 26 and 40 are most similar pair in stage 1. They are joined with 7 in 15th stage. 27 and 39 are the next similar pair; they are joined with 2, in the 14th stage. In total 39 clustering stages occur. We can see from the data above that the maximum variation happens when we move from a one cluster solution to a two-cluster solution. Two clusters are adequate and distinct enough for analysis. Or 40 respondents who took the survey can be grouped into two distinct clusters.
- 3. The **Dendogram** clearly gives two clusters that are distinctly different from each other.
- 4. Examine F values from the ANOVA tables to establish the discriminating power of each clustering variable. As observed from the table, all the variables are significant at the 5 percent level of significance and may be used for the interpretation.

- 5. From the **Final Cluster Centers** table, we can infer:
 - Cluster 1 is Bournvita, Milo, Horlicks and Complan.

Cluster 2 is Zandu Chyawanprash, Dabur red, Dabur Blue and Baidyanath.

6. Naming clusters:

- Cluster 1: Non-Ayurvedic Milk based drinks
- Cluster 2: Ayurvedic health drinks

Multidimensionality Scaling

Configuration derived in 2 dimensions

Stimulus Coordinates

Dimension

Stimulus Number	Stimulus Name	1	2
1	FL	1735	-1.4487
2	SOCIETY	1.6737	4389
3	IT	.9264	.6538
4	OUT	1.1472	.0258
5	BUSWRLD	6590	.3820
6	OPEN	8459	-1.0233
7	INVESTOR	-1.6313	.0970
8	BINDIA	4375	1.7522

Derived Stimulus Configuration

Euclidean distance model

- 1. R Square value
 - If the R square value is more than 0.6 for the number of dimensions, the solution is acceptable. In this example, for dimension 2, the RSQ value is 0.62649. Hence we accept a two dimensional solution.
- 2. The output gives the coordinates of the eight magazines on 2 dimensions. We consider the placement of the magazines and the corresponding coordinates to name the dimensions.
 - If we examine the first dimension, we find the society is the highest here, with India today and outlook close together and the last on this dimension is Investor. This seems to be "magazine content" ranging from general interest to specific interest.
 - The second dimension has business india at the top and open at the bottom and looking at the placement of the other six magazines, this seems to be "subscription base", ranging from corporate readership to general readership.

3. Manager's decision

Thus, based on the similarity analysis, the management can conclude that "society "is a magazine that was of general interest and seemed to be enjoying an uncluttered space. Thus rather than looking at a specialized and a corporate base, the new magazine would be a general interest magazine that will cover on everyday issues. It would not be high on political content like India today or outlook but would focus on lifestyle issues. The name of the monthly magazine would be life & Times.

Multidimensionality Scaling - 2

```
For matrix
Stress = .07677 RSQ = .95947
```

ш

Configuration derived in 2 dimensions

Stimulus Coordinates

Dimension

Stimulus Number	Stimulus Name	1	2
1	it	1.4473	1.3989
2	out	.3202	.4932
3	bwor	2705	.5955
4	open	1.9368	6654
5	inv	-1.2852	0525
6	bind	7182	1.2562
7	soc	8504	8599
8	fl	-1.0337	8097
9	landt	.4536	-1.3564

Inferences:

1. R Square value

If the R square value is more than 0.6 for the number of dimensions, the solution is acceptable. In this example, for dimension 2, the RSQ value is 0.95947. Hence we accept a two dimensional solution.

2. The output gives the coordinates of the eight magazines on 2 dimensions. We consider the placement of the magazines and the corresponding coordinates to name the dimensions.

If we examine the first dimension, we find the India today and outlook are found and the last on this dimension is Investor. This seems to be "magazine content" ranging from general interest to specific interest.

The second dimension has business india at the top and open at the bottom and looking at the placement of the other six magazines, this seems to be "subscription base", ranging from corporate readership to general readership.

3. Manager's decision

Thus, based on the similarity analysis, the management can conclude that "society "is a magazine that was of general interest and seemed to be enjoying an uncluttered space. Thus rather than looking at a specialized and a corporate base, the new magazine would be a general interest magazine that will cover on everyday issues. It would not be high on political content like India today or outlook but would focus on lifestyle issues. The name of the monthly magazine would be life & Times.

Cluster Analysis - 3

Case Processing Summary^{a,b}

	Cases					
Valid		Mis	sing	Total		
	N	Percent	N	Percent	N	Percent
	40	100.0	0	.0	40	100.0

a. Squared Euclidean Distance used

Agglomeration Schedule

	Cluster C	ombined		Stage Cluster	First Appears	
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage
1	23	40	.000	0	0	31
2	22	39	.000	0	0	31
3	21	38	.000	0	0	29
4	20	37	.000	0	0	37
5	19	36	.000	0	0	23
6	18	35	.000	0	0	32
7	17	34	.000	0	0	28
8	6	33	.000	0	0	24
9	5	32	.000	0	0	21
10	4	31	.000	0	0	21
11	10	30	.000	0	0	26
12	9	29	.000	0	0	27
13	8	28	.000	0	0	39
14	7	27	.000	0	0	23
15	3	26	.000	0	0	25
16	2	25	.000	0	0	22
17	1	24	.000	0	0	27
18	13	16	.000	0	0	22
19	12	15	.000	0	0	37
20	11	14	.000	0	0	26
21	4	5	8.000	10	9	25
22	2	13	9.000	16	18	24
23	7	19	11.000	14	5	30
24	2	6	11.500	22	8	30
25	3	4	14.000	15	21	28
26	10	11	15.000	11	20	33
27	1	9	15.000	17	12	29
28	3	17	16.667	25	7	32

b. Average Linkage (Between Groups)

29	1	21	19.500	27	3	36
30	2	7	20.167	24	23	34
31	22	23	21.000	2	1	33
32	3	18	22.000	28	6	34
33	10	22	23.500	26	31	35
34	2	3	25.880	30	32	35
35	2	10	30.450	34	33	36
36	1	2	33.833	29	35	38
37	12	20	34.000	19	4	38
38	1	12	41.294	36	37	39
39	1	8	49.000	38	13	0

Cluster Membership

Case Number	Cluster	Distance
1	1	3.459
2	2	3.241
3	2	4.104
4	1	3.749
5	1	3.550
6	1	2.933
7	2	3.392
8	2	2.839
9	2	3.675
10	1	3.973
11	1	4.271
12	2	3.441
13	1	2.839
14	1	2.587
15	1	3.459
16	2	4.353
17	2	3.392
18	2	2.839
19	2	3.675
20	1	3.973
21	1	4.141
22	1	4.196
23	1	3.406
24	1	4.141
25	1	4.196
26	1	3.406
27	2	4.022
28	2	4.131
29	2	4.022
30	2	4.131
31	2	4.353
32	1	4.271
33	2	3.441
34	1	2.839
35	1	2.587
36	2	3.241
37	2	4.104
38	1	3.749
39	1	3.550
40	1	2.933

Final Cluster Centers

Cluste	r

	1	2	
skip breakfast	2.09	2.67	
keep ready to eat	2.18	3.67	
watch familysoap	2.55	2.78	

breakfastbestmeal	2.45	2.56
skillbasededucation	2.36	3.33
buypackedmilk	2.00	3.78
friendsonfacebook	2.09	2.00
wifeworkstosupport	2.55	3.22
womenempowerment	2.45	3.11
sundayevenings	2.09	2.78
qualityconscious	2.09	4.33
dontmakeweekendmeals	2.09	2.67
mobilephones	1.64	2.22
india is a force	2.27	2.22
quality improvement	2.00	4.00

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
skip breakfast	3.282	1	.995	38	3.298	.077
keep ready to eat	21.827	1	.612	38	35.640	.000
watch familysoap	.534	1	1.278	38	.418	.522
breakfastbestmeal	.101	1	1.313	38	.077	.783
skillbasededucation	9.309	1	1.292	38	7.206	.011
buypackedmilk	31.289	1	.608	38	51.446	.000
friendsonfacebook	.082	1	.785	38	.104	.749
wifeworkstosupport	4.534	1	1.383	38	3.278	.078
womenempowerment	4.268	1	.927	38	4.603	.038
sundayevenings	4.671	1	1.077	38	4.336	.044
qualityconscious	49.782	1	.995	38	50.021	.000
dontmakeweekendmeals	3.282	1	.890	38	3.688	.062
mobilephones	3.398	1	.426	38	7.970	.008
india is a force	.025	1	.723	38	.035	.853
quality improvement	39.600	1	.737	38	53.743	.000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	22.000
	2	18.000
Valid		40.000
Missing		.000

- 1. There are 40 respondents. No missing cases.
- 2. From the **Agglomeration Schedule** table, we can see that 23 and 40 are most similar pair in stage 1. They are joined with 22 in 31st stage. 22 and 39 are the next similar pair; they are joined with 23, in the 31st stage. In total 39 clustering stages occur. We can see from the data above that the maximum variation happens when we move from a one cluster solution to a two-cluster solution. Two clusters are adequate and distinct enough for analysis. Or 40 respondents who took the survey can be grouped into two distinct clusters.
- 3. The **Dendogram** clearly gives two clusters that are distinctly different from each other.
- 4. Examine F values from the **ANOVA table** to establish the discriminating power of each clustering variable. As observed from the table, not all the variables are significant at the 5 percent level of significance and only 4 variables can be used for the interpretation.
- 5. From the **Final Cluster Centers** table, we cannot infer anything clearly.
- 6. Even though the **Cluster Membership table**, groups the variables into Cluster 1 & Cluster 2, the Final Cluster Centers table is not so clear on the classifying the variables into clusters.

Cluster Analysis - 4

Case Processing Summary^{a,b}

Cases

Va	Valid		Missing		otal
N	Percent	N	Percent	N	Percent
40	100.0	0	.0	40	100.0

- a. Squared Euclidean Distance used
- b. Average Linkage (Between Groups)

Agglomeration Schedule

	Cluster C		ggioineration	Stage Cluster	First Appears	
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage
1	6	40	.000	0	0	24
2	5	39	.000	0	0	28
3	4	38	.000	0	0	30
4	3	37	.000	0	0	37
5	2	36	.000	0	0	27
6	14	35	.000	0	0	22
7	13	34	.000	0	0	21
8	12	33	.000	0	0	25
9	11	32	.000	0	0	29
10	16	31	.000	0	0	29
11	28	30	.000	0	0	26
12	27	29	.000	0	0	25
13	23	26	.000	0	0	28
14	22	25	.000	0	0	30
15	21	24	.000	0	0	22
16	10	20	.000	0	0	24
17	9	19	.000	0	0	23
18	8	18	.000	0	0	23
19	7	17	.000	0	0	26
20	1	15	.000	0	0	21
21	1	13	11.000	20	7	31
22	14	21	15.000	6	15	32
23	8	9	15.000	18	17	27
24	6	10	17.000	1	16	32
25	12	27	19.000	8	12	34
26	7	28	20.000	19	11	34
27	2	8	20.500	5	23	35
28	5	23	21.000	2	13	31
29	11	16	22.000	9	10	35
30	4	22	23.000	3	14	36
31	1	5	23.500	21	28	33
32	6	14	24.000	24	22	33
33	1	6	26.375	31	32	36
34	7	12	28.000	26	25	38
35	2	11	28.000	27	29	37
36	1	4	32.750	33	30	39
37	2	3	32.800	35	4	38
38	2	7	36.250	37	34	39
39	1	2	44.420	36	38	0

Cluster Membership

Case Number	Cluster	Distance
1	1	3.230
2	2	2.419
3	1	2.709
4	1	3.011
5	1	2.251
6	2	2.253
7	2	4.264
8	2	4.342
9	1	4.240
10	1	3.500
11	1	4.109
12	2	4.051
13	2	1.934
14	1	4.109
15	2	4.051
16	2	1.934
17	1	3.870
18	1	3.640
19	2	2.762
20	2	4.443
21	2	4.456
22	1	3.665
23	1	3.258
24	1	3.230
25	2	2.419
26	1	2.709
27	2	4.264
28	2	4.342
29	1	4.240
30	1	3.500
31	1	3.011
32	1	2.251
33	2	2.253
34	1	3.870
35	1	3.640
36	2	2.762
37	2	4.443
38	2	4.456
39	1	3.665
40	1	3.258

Final Cluster Centers

Cluster

	1	2
dont buy product not from an	3.55	2.00
established brand		
buy only new products tried &	3.09	2.33
tested as safe		
I know most cosmetic brands	2.91	3.78
one company cannot provide	2.45	3.00
complete personalcare		
solution		
plan shopping trips carefully	2.64	3.11

personal care companies need to do a lot of research	3.73	2.33
important to look good and presentable in todays times	2.36	3.11
like experimenting with new trends and style	2.73	3.78
go by what filmstars endorse	4.36	3.11
what i wear reflects who I am	2.00	3.78

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
dont buy product not from an	23.645	1	1.301	38	18.169	.000
established brand						
buy only new products tried &	5.682	1	1.627	38	3.493	.069
tested as safe						
I know most cosmetic brands	7.471	1	1.288	38	5.802	.021
one company cannot provide	2.945	1	1.512	38	1.948	.171
complete personalcare						
solution						
plan shopping trips carefully	2.231	1	1.233	38	1.809	.187
personal care companies need	19.236	1	1.273	38	15.114	.000
to do a lot of research						
important to look good and	5.531	1	1.128	38	4.903	.033
presentable in todays times						
like experimenting with new	10.925	1	1.460	38	7.484	.009
trends and style						
go by what filmstars endorse	15.531	1	1.128	38	13.767	.001
what i wear reflects who I am	31.289	1	1.029	38	30.400	.000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	22.000
	2	18.000
Valid		40.000
Missing		.000

- 1. There are 40 respondents. No missing cases.
- 2. From the **Agglomeration Schedule** table, we can see that 6 and 40 are most similar pair in stage 1. They are joined with 10 in 24th stage. 5 and 39 are the next similar pair; they are joined with 23, in the 28th stage. In total 39 clustering stages occur. We can see from the data above that the maximum variation happens when we move from a one cluster solution to a two-cluster solution. Two clusters are

- adequate and distinct enough for analysis. Or 40 respondents who took the survey can be grouped into two distinct clusters.
- 3. The **Dendogram** clearly gives two clusters that are distinctly different from each other.
- 4. Examine F values from the **ANOVA table** to establish the discriminating power of each clustering variable. As observed from the table, not all the variables are significant at the 5 percent level of significance and only 4 variables can be used for the interpretation.
- 5. From the **Final Cluster Centers** table, we cannot infer anything clearly.
- 6. Even though the **Cluster Membership table**, groups the variables into Cluster 1 & Cluster 2, the Final Cluster Centers table is not so clear on the classifying the variables into clusters.

Discriminant Analysis

Group Statistics

				Valid N (lis	stwise)
Time spent on week da	ays	Mean	Std. Deviation	Unweighted	Weighted
Less than 1 hour	Linking with Professional	2.6875	1.46876	32	32.000
	Messaging	3.2188	1.31332	32	32.000
	Networking	3.6875	1.22967	32	32.000
	Make new friends	3.3438	1.35859	32	32.000
	Promote events	2.8438	1.19432	32	32.000
	Blogging	2.6875	1.11984	32	32.000
	News Updates	2.8438	1.11034	32	32.000
	Games	3.0313	1.33161	32	32.000
	Education	3.0000	1.21814	32	32.000
	Photo sharing	4.0625	.91361	32	32.000
	Job seeking	2.8125	1.25563	32	32.000
	Online dating	3.0625	1.47970	32	32.000
1- less than 3 hours	Linking with Professional	2.6667	1.32842	18	18.000
	Messaging	3.3333	1.08465	18	18.000
	Networking	3.7778	.73208	18	18.000
	Make new friends	3.1667	1.15045	18	18.000
	Promote events	3.3333	1.08465	18	18.000
	Blogging	3.3889	1.03690	18	18.000
	News Updates	3.1667	.92355	18	18.000
	Games	3.2778	1.27443	18	18.000
	Education	3.2778	1.12749	18	18.000
	Photo sharing	3.8889	1.02262	18	18.000
	Job seeking	2.6667	.76696	18	18.000
	Online dating	2.6111	1.46082	18	18.000
3-less than 5 hours	Linking with Professional	3.6667	.57735	3	3.000

Messaging						
Make new friends		Messaging	4.3333	.57735	3	3.000
Promote events		Networking	4.6667	.57735	3	3.000
Blogging		Make new friends	4.3333	.57735	3	3.000
News Updates 3.3333 5.7735 3 3.000		Promote events	4.0000	.00000	3	3.000
Games 3.3333 5.7735 3 3.000		Blogging	4.0000	.00000	3	3.000
Education 3.0000 1.00000 3 3.000		News Updates	3.3333	.57735	3	3.000
Photo sharing 3.6667 1.52753 3 3.000 Job seeking 3.6667 .57735 3 3.000 Online dating 2.6667 1.52753 3 3.000 More than 5 hours Linking with Professional 3.1250 1.35620 8 8.000 Messaging 3.5000 1.19523 8 8.000 Networking 3.5000 1.41421 8 8.000 Make new friends 2.8750 9.99103 8 8.000 Promote events 2.8750 9.99103 8 8.000 News Updates 2.3750 1.06066 8 8.000 Games 3.2500 1.28174 8 8.000 Photo sharing 3.8750 3.83452 8 8.000 Job seeking 3.1250 1.35620 8 8.000 Total Linking with Professional 2.7869 1.37979 61 61.000 Messaging 3.3443 1.20948 61 61.000 Networking 3.7377 1.10908 61 61.000 Make new friends 3.2787 1.25341 61 61.000 Make new friends 3.2787 1.25341 61 61.000 News Updates 2.9016 1.04411 61 61.000 Rows Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Games	3.3333	.57735	3	3.000
Job seeking 3.6667 .57735 3 3.000 Online dating 2.6667 1.52753 3 3.000 More than 5 hours		Education	3.0000	1.00000	3	3.000
Online dating 2.6667 1.52753 3 3.000		Photo sharing	3.6667	1.52753	3	3.000
More than 5 hours		Job seeking	3.6667	.57735	3	3.000
Messaging 3.5000 1.19523 8 8.000 Networking 3.5000 1.41421 8 8.000 Make new friends 2.8750 1.12599 8 8.000 Promote events 2.8750 .99103 8 8.000 Blogging 2.7500 1.03510 8 8.000 News Updates 2.3750 1.06066 8 8.000 Games 3.2500 1.28174 8 8.000 Education 2.7500 1.28174 8 8.000 Photo sharing 3.8750 .83452 8 8.000 Job seeking 3.1250 1.35620 8 8.000 Online dating 2.8750 1.64208 8 8.000 Messaging 3.3443 1.20948 61 61.000 Networking 3.7377 1.10908 61 61.000 Networking 3.2787 1.25341 61 61.000 Promote events 3.0492 1.13176 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Ophoto sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Online dating	2.6667	1.52753	3	3.000
Networking 3.5000 1.41421 8 8.000	More than 5 hours	Linking with Professional	3.1250	1.35620	8	8.000
Make new friends 2.8750 1.12599 8 8.000 Promote events 2.8750 .99103 8 8.000 Blogging 2.7500 1.03510 8 8.000 News Updates 2.3750 1.06066 8 8.000 Games 3.2500 1.28174 8 8.000 Education 2.7500 1.28174 8 8.000 Photo sharing 3.8750 83452 8 8.000 Job seeking 3.1250 1.35620 8 8.000 Online dating 2.8750 1.64208 8 8.000 Messaging 3.3443 1.20948 61 61.000 Messaging 3.3443 1.20948 61 61.000 Make new friends 3.2787 1.19008 61 61.000 Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411		Messaging	3.5000	1.19523	8	8.000
Promote events		Networking	3.5000	1.41421	8	8.000
Blogging 2.7500 1.03510 8 8.000		Make new friends	2.8750	1.12599	8	8.000
News Updates 2.3750 1.06066 8 8.000		Promote events	2.8750	.99103	8	8.000
Games 3.2500 1.28174 8 8.000 Education 2.7500 1.28174 8 8.000 Photo sharing 3.8750 .83452 8 8.000 Job seeking 3.1250 1.35620 8 8.000 Online dating 2.8750 1.64208 8 8.000 Inking with Professional 2.7869 1.37979 61 61.000 Messaging 3.3443 1.20948 61 61.000 Networking 3.7377 1.10908 61 61.000 Make new friends 3.2787 1.25341 61 61.000 Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .		Blogging	2.7500	1.03510	8	8.000
Education 2.7500 1.28174 8 8.000 Photo sharing 3.8750 .83452 8 8.000 Job seeking 3.1250 1.35620 8 8.000 Online dating 2.8750 1.64208 8 8.000 Total		News Updates	2.3750	1.06066	8	8.000
Photo sharing 3.8750 .83452 8 8.000 Job seeking 3.1250 1.35620 8 8.000 Online dating 2.8750 1.64208 8 8.000 Total		Games	3.2500	1.28174	8	8.000
Job seeking 3.1250 1.35620 8 8.000 Online dating 2.8750 1.64208 8 8.000 Total		Education	2.7500	1.28174	8	8.000
Online dating 2.8750 1.64208 8 8.000 Total Linking with Professional 2.7869 1.37979 61 61.000 Messaging 3.3443 1.20948 61 61.000 Networking 3.7377 1.10908 61 61.000 Make new friends 3.2787 1.25341 61 61.000 Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Photo sharing	3.8750	.83452	8	8.000
Total Linking with Professional 2.7869 1.37979 61 61.000 Messaging 3.3443 1.20948 61 61.000 Networking 3.7377 1.10908 61 61.000 Make new friends 3.2787 1.25341 61 61.000 Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Job seeking	3.1250	1.35620	8	8.000
Messaging 3.3443 1.20948 61 61.000 Networking 3.7377 1.10908 61 61.000 Make new friends 3.2787 1.25341 61 61.000 Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Online dating	2.8750	1.64208	8	8.000
Networking 3.7377 1.10908 61 61.000 Make new friends 3.2787 1.25341 61 61.000 Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000	Total	Linking with Professional	2.7869	1.37979	61	61.000
Make new friends 3.2787 1.25341 61 61.000 Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Messaging	3.3443	1.20948	61	61.000
Promote events 3.0492 1.13176 61 61.000 Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Networking	3.7377	1.10908	61	61.000
Blogging 2.9672 1.11006 61 61.000 News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Make new friends	3.2787	1.25341	61	61.000
News Updates 2.9016 1.04411 61 61.000 Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Promote events	3.0492	1.13176	61	61.000
Games 3.1475 1.26275 61 61.000 Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Blogging	2.9672	1.11006	61	61.000
Education 3.0492 1.17511 61 61.000 Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		News Updates	2.9016	1.04411	61	61.000
Photo sharing 3.9672 .94811 61 61.000 Job seeking 2.8525 1.12303 61 61.000		Games	3.1475	1.26275	61	61.000
Job seeking 2.8525 1.12303 61 61.000		Education	3.0492	1.17511	61	61.000
		Photo sharing	3.9672	.94811	61	61.000
Online dating 2,8852 1,47307 61 61,000		Job seeking	2.8525	1.12303	61	61.000
2.0032 1.47307 01 01.000		Online dating	2.8852	1.47307	61	61.000

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Linking with Professional	.967	.656	3	57	.582
Messaging	.959	.821	3	57	.488
Networking	.957	.847	3	57	.474
Make new friends	.947	1.065	3	57	.371
Promote events	.925	1.539	3	57	.214
Blogging	.874	2.728	3	57	.052
News Updates	.937	1.287	3	57	.288
Games	.990	.186	3	57	.906
Education	.979	.408	3	57	.748
Photo sharing	.986	.264	3	57	.851
Job seeking	.957	.854	3	57	.470
Online dating	.981	.372	3	57	.773

Pooled Within-Groups Matrices

		Linking with			Make	Promo		News				Job	
		Profes	Messa	Netwo	new	te	Blog	Upda		Educat	Photo	seeki	Online
		sional	ging	rking	friends	events	ging	tes	Games	ion	sharing	ng	dating
Correl	Linking with	1.000	114	128	192	.277	.159	.187	097	.390	003	.455	025
ation	Professional												
	Messaging	114	1.000	.815	.136	109	.025	080	182	105	.449	280	167
	Networking	128	.815	1.00	.024	109	05	.075	076	117	.413	280	229
							3						
	Make new	192	.136	.024	1.000	.108	.171	078	.367	.023	.056	.069	.484
	friends												
	Promote	.277	109	109	.108	1.000	.676	.418	.375	.343	.177	.226	.226
	events												
	Blogging	.159	.025	053	.171	.676	1.00	.525	.420	.298	.190	.186	.265
							0						
	News	.187	080	.075	078	.418	.525	1.000	.476	.339	.286	.271	.013
	Updates												
	Games	097	182	076	.367	.375	.420	.476	1.000	.298	.226	.265	.441
	Education	.390	105	117	.023	.343	.298	.339	.298	1.000	.096	.299	.174
	Photo	003	.449	.413	.056	.177	.190	.286	.226	.096	1.000	.137	.117
	sharing												
	Job seeking	.455	280	280	.069	.226	.186	.271	.265	.299	.137	1.00	.279
												0	
	Online	025	167	229	.484	.226	.265	.013	.441	.174	.117	.279	1.000
	dating												

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	.351ª	48.4	48.4	.510
2	.254ª	35.0	83.3	.450
3	.121ª	16.7	100.0	.329

a. First 3 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1 through 3	.526	33.367	36	.594
2 through 3	.711	17.705	22	.723
3	.892	5.938	10	.820

Standardized Canonical Discriminant Function Coefficients

	1	2	3			
Linking with Professional	.078	363	.308			
Messaging	.450	-1.147	109			
Networking	.326	.844	.391			

Make new friends	.154	.674	.616
Promote events	.280	.015	.105
Blogging	.528	.231	619
News Updates	130	.605	.265
Games	.173	923	414
Education	173	.397	352
Photo sharing	685	.172	.013
Job seeking	.481	263	.405
Online dating	388	046	.334

Structure Matrix

	Function					
	1	2	3			
Blogging	.559 [*]	.246	391			
Promote events	.441*	.181	189			
Messaging	.330 [*]	085	.159			
Networking	.296*	.183	.207			
Linking with Professional	.238 [*]	190	.211			
Photo sharing	184 [*]	.052	.103			
News Updates	.207	.441*	167			
Make new friends	.205	.242	.466*			
Job seeking	.227	202	.369*			
Online dating	163	032	.287 [*]			
Education	.046	.226	254 [*]			
Games	.129	039	170 [*]			

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions

Variables ordered by absolute size of correlation within function.

Canonical Discriminant Function Coefficients

Function 3 Linking with Professional .221 .056 -.261 .371 -.944 -.089 Messaging .293 .758 .351 Networking Make new friends .123 .538 .492 Promote events .250 .094 .014 Blogging .496 .217 -.582 News Updates -.126 .584 .255 Games -.716 -.321 .134 Education -.145 .332 -.295 Photo sharing -.709 .178 .013 Job seeking .426 -.233 .359 Online dating -.259 -.031 .223 (Constant) -2.396 -1.808 -2.357

Unstandardized coefficients

^{*.} Largest absolute correlation between each variable and any discriminant function

Classification Results^{a,c}

		Time spent on week days	Pre	dicted Group N	/Jemhershin		Total
Original	Count	Less than 1 hour	15	7	3	7	32
3		1- less than 3 hours	4	9	2	3	18
		3-less than 5 hours	0	0	3	0	3
		More than 5 hours	0	0	2	6	8
	%	Less than 1 hour	46.9	21.9	9.4	21.9	100.0
		1- less than 3 hours	22.2	50.0	11.1	16.7	100.0
		3-less than 5 hours	.0	.0	100.0	.0	100.0
		More than 5 hours	.0	.0	25.0	75.0	100.0
Cross-valida	Count	Less than 1 hour	14	7	4	7	32
ted ^b		1- less than 3 hours	7	4	2	5	18
		3-less than 5 hours	0	2	1	0	3
		More than 5 hours	2	2	3	1	8
%	%	Less than 1 hour	43.8	21.9	12.5	21.9	100.0
		1- less than 3 hours	38.9	22.2	11.1	27.8	100.0
		3-less than 5 hours	.0	66.7	33.3	.0	100.0
		More than 5 hours	25.0	25.0	37.5	12.5	100.0

a. 54.1% of original grouped cases correctly classified.

- 1. The Group Statistics table computes the mean values to get an idea of the differences in the mean score of variables for each classifier in Time spent on week days. The mean score for messaging for the less than 1 hour group is 2.6875, whereas for the less than 3 hours group it is 3.333. Therefore we can expect that messaging could be useful in discriminating between prospective buyers and non-buyers.
- 2. From the table of **Tests of Equality of Group Means** table, there does not seem to be any significant difference in the means of the variables as the p value in each of these cases is greater than 0.05.
- **3.** From the table of **Pooled within-Groups Matrices** table, the correlation between any pair of predictor variables does exceed 0.75. So, there is problem of multicollinearity.
- **4.** From the table of **Canonical Discriminant Function Coefficients**, the discriminant function can be determined as Y which will be the function of all the variables.

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.

c. 32.8% of cross-validated grouped cases correctly classified.

- 5. From the **Eigenvalues** table, the last column, canonical correlation, is the simple correlation coefficient between the discriminant score and their corresponding group membership.
- 6. From the **Wilk's Lambda** table, the value of Wilks' Lambda is 0.594. This parameter takes a value between 0 and 1. Lower the value of Wilks' Lambda, the higher is the significance of the discriminant function. Therefore 0 would be the most preferred one. The statistical significance of Wilks' Lambda is carried out with the chi-square statistic (33.367) and its p value. Since p value is not less than 0.05, the discriminant function is not significant.
- 7. From the **Group Centroids** table, we can compute the mean discriminant scores of the three groups separately. This is called group centroids.
- 8. The Standardized Canonical Discriminant Function Coefficients table indicates that messaging is the most important characteristic, which discriminates between the groups.
- From the Structure Matrix, the structural coefficients are obtained by computing the correlation between the discriminant score and each of the independent variables. These are also called discriminant loadings.
- 10. From the Classification Results table,

Hit ratio = No. of correct predictions / Total number of cases

Hit ratio = 54.1 %

Discriminant Analysis

Group Statistics

				Valid N (lis	stwise)
Frequency of eating RTE food		Mean	Std. Deviation	Unweighted	Weighted
Rarely	Convenience of use	4.19	.624	36	36.000
	Makes work easy	4.03	.609	36	36.000
	Time saving	4.11	.667	36	36.000
	Ease of availability	3.47	1.183	36	36.000
	Price reasonability	2.83	1.056	36	36.000
	Have adequate amount of nutrition/calories	2.50	.971	36	36.000
	Taste as compared to freshly cooked food	2.03	.910	36	36.000

	Manufacturing according to acceptable quality standards	3.42	.692	36	36.000
	Option while travelling	4.11	.667	36	36.000
	Whether making chapatti takes a significant time while eating RTE curry	2.83	.971	36	36.000
Weekly	Convenience of use	4.38	1.025	16	16.000
	Makes work easy	4.19	.750	16	16.000
	Time saving	4.31	.704	16	16.000
	Ease of availability	3.50	.816	16	16.000
	Price reasonability	3.50	.816	16	16.000
	Have adequate amount of nutrition/calories	2.63	.619	16	16.000
	Taste as compared to freshly cooked food	3.06	1.124	16	16.000
	Manufacturing according to acceptable quality standards	3.19	.981	16	16.000
	Option while travelling	3.69	.873	16	16.000
	Whether making chapatti takes a significant time while eating RTE curry	2.63	.806	16	16.000
Regularly	Convenience of use	3.83	1.169	6	6.000
	Makes work easy	4.17	1.169	6	6.000
	Time saving	4.17	1.169	6	6.000
	Ease of availability	4.00	1.095	6	6.000
	Price reasonability	3.67	.516	6	6.000
	Have adequate amount of nutrition/calories	2.83	1.169	6	6.000
	Taste as compared to freshly cooked food	2.67	1.033	6	6.000
	Manufacturing according to acceptable quality standards	3.17	.753	6	6.000
	Option while travelling	3.50	1.378	6	6.000
	Whether making chapatti takes a significant time while eating RTE curry	3.00	.894	6	6.000
Total	Convenience of use	4.21	.811	58	58.000
	Makes work easy	4.09	.708	58	58.000
	Time saving	4.17	.729	58	58.000
	Ease of availability	3.53	1.080	58	58.000
	Price reasonability	3.10	1.003	58	58.000
	Have adequate amount of nutrition/calories	2.57	.901	58	58.000
	Taste as compared to freshly cooked food	2.38	1.073	58	58.000
	Manufacturing according to acceptable quality standards	3.33	.781	58	58.000
	Option while travelling	3.93	.835	58	58.000
	Whether making chapatti takes a significant time while eating RTE curry	2.79	.913	58	58.000

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Convenience of use	.965	.983	2	55	.381
Makes work easy	.989	.317	2	55	.729
Time saving	.985	.414	2	55	.663
Ease of availability	.978	.617	2	55	.543
Price reasonability	.877	3.850	2	55	.027
Have adequate amount of	.986	.387	2	55	.681
nutrition/calories					
Taste as compared to freshly	.811	6.411	2	55	.003
cooked food					
Manufacturing according to	.978	.610	2	55	.547
acceptable quality standards					
Option while travelling	.919	2.435	2	55	.097
Whether making chapatti	.984	.451	2	55	.639
takes a significant time while					
eating RTE curry					

Pooled Within-Groups Matrices

		Convenien ce of use	Makes work easy	Time saving	Ease of availa bility	Price reasona bility	Have adequat e amount of nutrition/ calories	Taste as compare d to freshly cooked food	Manuf acturin g accord ing to accept able quality standa rds	Option while travelli ng	Whether making chapatti takes a significa nt time while eating RTE curry
Correlati	Convenien	1.000	.589	.350	.035	.066	010	.162	082	.071	.059
on	ce of use										
	Makes work easy	.589	1.000	.475	.234	.159	.050	.029	.189	.010	185
	Time saving	.350	.475	1.000	.423	.245	.164	.048	.164	.261	039
	Ease of availability	.035	.234	.423	1.000	.592	.101	289	.115	.013	.051
	Price reasonabil ity	.066	.159	.245	.592	1.000	.452	097	.129	.051	103
	Have adequate amount of nutrition/c alories	010	.050	.164	.101	.452	1.000	.173	.223	009	287
	Taste as compared to freshly cooked food	.162	.029	.048	289	097	.173	1.000	218	.095	029
	Manufactu ring according to acceptabl	082	.189	.164	.115	.129	.223	218	1.000	.221	335

e qua										
Optio		.010	.261	.013	.051	009	.095	.221	1.000	150
while										
travel	ling									
Whet	her .059	185	039	.051	103	287	029	335	150	1.000
makir	ng									
chapa	atti									
takes	а									
signif	icant									
time	vhile									
eating	3									
RTE	curry									

Eigenvalues

				Canonical
Function	Eigenvalue	% of Variance	Cumulative %	Correlation
1	.641ª	85.4	85.4	.625
2	.110 ^a	14.6	100.0	.315

a. First 2 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1 through 2	.549	30.274	20	.066
2	.901	5.263	9	.811

Standardized Canonical Discriminant Function Coefficients

Function

	1	2	
Convenience of use	183	921	
Makes work easy	.011	.741	
Time saving	.281	327	
Ease of availability	259	.385	
Price reasonability	.847	082	
Have adequate amount of	471	.435	
nutrition/calories			
Taste as compared to freshly	.753	072	
cooked food			
Manufacturing according to	.014	190	
acceptable quality standards			
Option while travelling	556	.005	
Whether making chapatti	152	.539	
takes a significant time while			
eating RTE curry			

Structure Matrix

Function

	1	2
Taste as compared to freshly	.596 [*]	216
cooked food		

Price reasonability	.456 [*]	.246
Option while travelling	354 [*]	272
Manufacturing according to	184 [*]	062
acceptable quality standards		
Time saving	.142 [*]	139
Makes work easy	.134 [*]	.004
Convenience of use	.046	560 [*]
Ease of availability	.079	.409 [*]
Whether making chapatti	084	.329 [*]
takes a significant time while		
eating RTE curry		
Have adequate amount of	.117	.220 [*]
nutrition/calories		

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions

Variables ordered by absolute size of correlation within function.

Canonical Discriminant Function Coefficients

Function 1 Convenience of use -1.135 -.226 Makes work easy .016 1.034 Time saving .381 -.444 Ease of availability -.238 .354 Price reasonability .886 -.086 Have adequate amount of -.517 .478 nutrition/calories Taste as compared to freshly .765 -.073 cooked food Manufacturing according to .018 -.242 acceptable quality standards -.683 .006 Option while travelling Whether making chapatti -.164 .584 takes a significant time while eating RTE curry (Constant) -.020 -.484

Unstandardized coefficients

Classification Results^{a,c}

		Frequency of eating RTE	ed Group Mer			
		food	Rarely	Weekly	Regularly	Total
Original	Count	Rarely	26	6	4	36

^{*.} Largest absolute correlation between each variable and any discriminant function

		Weekly	1	12	3	16
		Regularly	2	1	3	6
	%	Rarely	72.2	16.7	11.1	100.0
		Weekly	6.3	75.0	18.8	100.0
		Regularly	33.3	16.7	50.0	100.0
Cross-validated ^b	Count	Rarely	23	7	6	36
		Weekly	3	5	8	16
		Regularly	3	2	1	6
	%	Rarely	63.9	19.4	16.7	100.0
		Weekly	18.8	31.3	50.0	100.0
		Regularly	50.0	33.3	16.7	100.0

a.70.7% of original grouped cases correctly classified.

- 1. The Group Statistics table computes the mean values to get an idea of the differences in the mean score of variables for rarely, weekly and regularly. The mean score for convenience of use for the rarely group is 4.19, whereas for the weekly group it is 4.38. For other characteristics the mean values are closer for buyer and non-buyer. Therefore we can expect that convenience of use could be useful in discriminating between rarely, weekly and regularly.
- 2. From the table of **Tests of Equality of Group Means** table, it is observed that the significant difference in the mean exists for the Taste as compared to freshly cooked food only, for which the p value is less than 0.05, the assumed level of significance. There does not seem to be any significant difference in the means of the remaining characteristics as the p value in each of these cases is greater than 0.05.
- **3.** From the table of **Pooled within-Groups Matrices** table, the correlation between any pair of predictor variables does not exceed 0.75. So, there is no problem of multicollinearity.
- **11.** From the table of **Canonical Discriminant Function Coefficients**, the discriminant function can be determined as Y which will be the function of all the variables.
- 4. From the **Eigenvalues** table, the last column, canonical correlation, is the simple correlation coefficient between the discriminant score and their corresponding group membership

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.

c.50.0% of cross-validated grouped cases correctly classified.

- 5. From the **Wilk's Lambda** table, the value of Wilks' Lambda is 0.549. This parameter takes a value between 0 and 1. Lower the value of Wilks' Lambda, the higher is the significance of the discriminant function. Therefore 0 would be the most preferred one. The statistical significance of Wilks' Lambda is carried out with the chi-square statistic (30.274) and its p value. Since p value is not less than 0.05, the discriminant function is not significant.
- 6. From the **Group Centroids** table, we can compute the mean discriminant scores of the rarely, weekly and regularly groups separately. This is called group centroids. This is used for designing a decision rule to classify the variables into groups.
- 7. The Standardized Canonical Discriminant Function Coefficients table indicates that Taste as compared to freshly cooked food is the most important characteristic, which discriminates between rarely, weekly and regularly groups.
- 8. From the **Structure Matrix**, the structural coefficients are obtained by computing the correlation between the discriminant score and each of the independent variables. These are also called discriminant loadings.
- From the Classification Results table,
 Hit ratio = No. of correct predictions / Total number of cases
 Hit ratio = 70.7 percent.