PROBLEMS FOR ALGEBRA SECTION

1. Team test

Problem 1. Let A be a finitely generated \mathbb{Z} -algebra and let \mathfrak{m} be a maximal ideal of A. Show that A/\mathfrak{m} is a finite field.

Problem 2. Let C be a category. Denote by $1_C: C \to C$ the identity functor on C. A natural transform from 1_C to 1_C consists of a collection $\{\eta_X\}_{X\in Ob(C)}$ such that

- for any $X \in Ob(C)$, η_X is a morphism from X to X;
- for any morphism $f: X \to Y$ in C, the following square is commutative:

$$\begin{array}{ccc} X & \xrightarrow{\eta_X} & X \\ f \downarrow & & \downarrow f \\ Y & \xrightarrow{\eta_Y} & Y. \end{array}$$

We call the set of all natural transforms from 1_C to 1_C the center of C.

- (1) Determine the center of the category of abelian groups.
 - (2) Determine the center of the category of groups.

Problem 3. Let W be the Weyl algebra over a field k, which is the associative algebra generated by $x_1, ..., x_n, y_1, ..., y_n$ such that $[x_i, x_j] = [y_i, y_j] = 0$ and $[x_i, y_j] = \delta_j^i$ for all $1 \le i, j \le n$. ($\delta_j^i = 0$ or 1 is the Kronecker symbol.)

- (1) In case char(k) = 0, show that W does not have finite dimensional representation.
- (2) In case char(k) > 0, find all finite dimensional representations of W.