Introduction to modalities
Notivation:
• modal logic \(\): "possibility" \(\): "he cessity"
4 DA > DA Comonad A > A Monad multiplication
$\frac{A}{\Diamond A} \Rightarrow \Diamond A$ $\frac{A}{\Diamond A} \Rightarrow \Diamond A$ $\frac{A}{\Diamond A} \Rightarrow \Diamond A$
· Maggi's monaclic &-calculus P+S:TA Pix:A+t:TB P+Calculus P+S:TA Pix:A+t:TB
-model side effects -model side empodent

Po: U - > Prop be a poedicate on a whiverse U. We can form a subuniverse Uo= {A:U| Po(A)} ≥ P_o (A) Def: We call a subhuniverse 4,554 reslective, it for all A: L1 there exist (Z) a type OAin Vo togetherwith a function (MR:U0)(f: A ->B)(J: (A ->B), Jon-f. Jus My Jun Sul 0A --->>S

Terminology e O: U > U - modal operator e MA: A - > OA - modal unit we call A: Ma O-modul type if Ma is an equivalence - we call A O-connected if OA = 1. Lenna: The map (A Ma) is determined up to unique equivalence by the UP. MA MA OA = --- --- 30'A

Ex: truncation levels: for h3-2 istrunch: U > Prop h-type > U Lemma: Given A: U, B: Uo fig:OA ->B we have $(f=g) \sim (fon=gon)$ A form Lemmy: Atyperis modal iff $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) \exists I (f:OA \rightarrow B) fon=f$ $\forall (A:U) (f:A \rightarrow B) fon=f$ \forall OB -- 37 B (=> noidory = m

Theorem: TFAE for rest subunivs

Ducis Z-closed, i.e. forall A: Mo B: A -> Uc, the type ZAB(a) is modal.

2) Vo'admits unique dependent elimination, i.e. gruen A: U B: OA > Vo, f: TT B(mA) there ex a unique (F: TT B(a) such that for = f

T(G;A) $f(mg c_1) = fc_1$

 $\begin{array}{c}
(M, f) \\
(M, f) \\
(M, f)
\end{array}$ $\begin{array}{c}
(M, f) \\
(M, f)
\end{array}$

Proof: If Uis Z-closed than & $A: U B: OA \longrightarrow U_6$ f: TIB(MA)9= < m, 1) = 2 a B q . - g o y = 9 $A \longrightarrow OA$ pr, 0 g = 1 Pr.0907 = Pr.09 = M Conversely - - . . Del: A modality is 4 refl sub-universe satisfying the Conditions of the theorem.

Examples 1 Tru contion h-Type -> U Proof of reflectivity: We have to show that 1-14 44pe (All - - - > B Roof by multion: 11A11_z=1 o (-2) istriwial = (-1) is prop touncation

 $\|A\|_{-1} = \forall (Q : Rop)_{\bullet}(A \rightarrow Q) \rightarrow Q$ Impredicative or John con Struction 15: ASSUM C h-Trunc () M is reflective tet A. (h+1)-Irunc Defme $R_{n}: A \longrightarrow M$ $S_{n}: A \longrightarrow M$ S_{n (a) = 16. (h=61) ~ Z | | f:b Ru f | - 1

Open and closed modalities Lot Q: Prop Opa, Cla: U > U $Opa(A) = A^Q$ John Suspension AxQ Pr.J AAQ CLa(A) = AAQ lex modalifies TIL: Prop Localization & hullification.

If $f:B \rightarrow A$, call X:U f-local,

If $(XA \xrightarrow{X^{\dagger}} XB)$ is an equival $(XA \xrightarrow{X^{\dagger}} XB)$ ence.

2 f-Local -types > - > U is always reflective
 ∑-closed whenever A = 1 Cohesive Hott purely topological and ITM (Declekin dreads)

Shape modality

Shape modality In Cohesive toposes

E topos

j: 52 > 52

sh; (E) C Sep; (E) yuasi - topos

 $\xi \longrightarrow topes \quad 0: \xi \longrightarrow \xi$ $Sep_{i}(\xi)$