Instructions:

Q.1

Subject Code: 2110015

Time: 02:30 pm - 05:30 pm

Subject Name: Vector Calculus and Linear Algebra

2. Make suitable assumptions wherever necessary.

Date: 16-06-2014

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1st / 2nd • EXAMINATION – SUMMER • 2014

1. Question No. 1 is compulsory. Attempt any four out of remaining six questions.

3.	Figures to the right indicate full marks.				
(a)	Objective Question				07
(a) 1.	The number of solutions of the system of equations $AX = 0$ where A is a singular matrix is				U7
	(a) 0	(b) 1	(c) 2	(d) infinite	
2.	Let A be a unitary matrix then A^{-1} is				
	(a) A	(b) \overline{A}	(c) A^T	(d) $(\overline{A})^T$	
3.	Let $W = span\{\cos^2 x, \sin^2 x, \cos 2x\}$ then the dimension of W is				
	(a) 0	(b) 1	(c) 2	(d) 3	
4.	Let P_2 be the vector space of all polynomials with degree less than or equal to two				
	then the dimension of P_2 is				
	(a) 1	(b) 2	(c) 3	(d) 4	
5.	The column vectors of an orthogonal matrix are (a) orthogonal (b) orthogonal (c) dependent (d) none of these				
6.	(a) orthogonal (b) orthonormal (c) dependent (d) none of these				
••	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x, y) = (y, x)$ then it is (a) one to one (b) onto (c) both (d) neither				
7.	1 /				
. •	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (y, z, 0)$ then the dimension of $R(T)$ is				
	(a) 0	(b) 1	(c) 2	(d) 3	
(b)	(u) 0	(0) 1	(6) 2	(u) 3	07
1.	If $ u + v ^2 = u ^2 + v ^2$ then u and v are				
_		(b) perpendicular	(c) dependent	(d) none of these	
2.	$ u+v ^2 - u-v ^2$	is			
		(b) $2 < u, v >$			
3.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a one to one linear transformation then the dimension of				
	Ker(T) is				
			(c) 2	(d) 3	
		nen the eigen values of			
	(a) 1, 2	(b) 1, 4	(c) 1, 6	(d) 1, 16	
5.	(a) 1, 2 (b) 1, 4 (c) 1, 6 (d) 1, 16 Let $A = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ then the eigen values of $A + 3I$ are				
	(a) 1, 2	(b) 2, 5	(c) 3, 6	(d) 4, 7	
					1

- div r is
- (a) 0 (b) 1 (c) 2 (d) 3 If the value of line integral $\iint_C \overline{F} \cdot d\overline{r}$ does not depend on path C then \overline{F} is (a) solenoidal (d) none of these (b) incompressible (c) irrotational
- O.2 (a) Solve the following system of equations using Gauss Elimination method 05 $2x_1 + x_2 + 2x_3 + x_4 = 6$, $6x_1 - x_2 + 6x_3 + 12x_4 = 36$ $4x_1 + 3x_2 + 3x_3 - 3x_4 = 1$, $2x_1 + 2x_2 - x_3 + x_4 = 10$
 - (b) Find the inverse of $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 3 & 2 \\ 2 & 4 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ using Gauss Jordan method

 (c) Express $\begin{bmatrix} 4+2i & 7 & 3-i \\ 0 & 3i & -2 \\ 5+3i & -7+i & 9+6i \end{bmatrix}$ as the sum of a hermitian and a skew– hermitian 05
 - 04 matrix
- Let V be the set of all ordered pairs of real numbers with vector addition defined as 05 Q.3 (a) $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$. Show that the first five axioms for vector addition are satisfied. Clearly mention the zero vector and additive inverse.
 - Find a basis for the subspace of P_2 spanned by the vectors 1 + x, x^2 , $-2 + 2x^2$, -3x05
 - (c) Express the matrix $\begin{bmatrix} 5 & 1 \\ -1 & 9 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$ 04
- (a) Consider the basis $S = \{v_1, v_2\}$ for R^2 where $v_1 = (1, 1)$ and $v_2 = (2, 3)$. Let 05 **Q.4** $T: \mathbb{R}^2 \to \mathbb{P}_2$ be the linear transformation such that $T(v_1) = 2 - 3x + x^2$ and $T(v_2)=1-x^2$ then find the formula of T(a,b)
 - (b) Verify Rank-Nullity theorem for the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by 05 $T(x_1, x_2, x_3, x_4) = (4x_1 + x_2 - 2x_3 - 3x_4, 2x_1 + x_2 + x_3 - 4x_4, 6x_1 - 9x_3 + 9x_4)$
 - (c) Find the algebraic and geometric multiplicity of each of the eigen value of $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ 04
- **Q.5** (a) For $A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$ and $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$ let the inner product on M_{22} be defined as $\langle A, B \rangle = a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2$. Let $A = \begin{bmatrix} 2 & 6 \\ 1 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$ then verify Cauchy-Schwarz inequality and find the angle between A and B
 - 05 **(b)** Let R^3 have the inner product defined by $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1y_1 + 2x_2y_2 + 3x_3y_3$. Apply the Gram-Schmidt process to transform the vectors (1, 1, 1), (1, 1, 0) and (1, 0, 0) into orthonormal

vectors

- (c) Find a basis for the orthogonal complement of the subspace spanned by the vectors (2, -1, 1, 3, 0), (1, 2, 0, 1, -2), (4, 3, 1, 5, -4), (3, 1, 2, -1, 1) and (2, -1, 2, -2, 3)
- **Q.6** (a) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 6 & -1 & 1 \\ -2 & 5 & -1 \\ 2 & 1 & 7 \end{bmatrix}$ and hence find A^4
 - (b) Show that the vector field $\overline{F} = (y \sin z \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k$ is conservative and find the corresponding scalar potential
 - (c) Find the directional derivative of $x^2y^2z^2$ at (1, 1, -1) along a direction equally of inclined with coordinate axes
- Q.7 (a) Verify Green's Theorem for $\iint_C (3x 8y^2) dx + (4y 6xy) dy$ where C is the boundary of the triangle with vertices (0, 0), (1, 0) and (0, 1)
 - (b) Verify Stoke's Theorem for $\overline{F} = (x + y)i + (y + z)j xk$ and S is the surface of the plane 2x + y + z = 2 which is in the first octant