Section 16.5: Integration in Cylindrical and Spherical Coordinates

Integration in Cylindrical Coordinates

The cylindrical coordinates of a point (x, y, z) in \mathbb{R}^3 are obtained by representing the x and y coordinates using polar coordinates (or potentially the y and z coordinates or x and z coordinates) and letting the third coordinate remain unchanged.

RELATION BETWEEN CARTESIAN AND CYLINDRICAL COORDINATES: Each point in \mathbb{R}^3 is represented using $0 \le r < \infty$, $0 \le \theta \le 2\pi$, $-\infty < z < \infty$.

$$x = r \cos \theta,$$

$$y = r \sin \theta,$$

$$z = z.$$

As with polar coordinates in the plane, note that $x^2 + y^2 = r^2$.

Notice that we can now interpret r as the distance from the point (x, y, z) to the z axis, while the interpretation of θ and z remain unchanged.

Question: What are the surfaces obtained by setting r, θ , and z equal to a constant?

Example 1 Describe in cylindrical coordinates a wedge of cheese cut from a cylinder 4 cm high and 6 cm in radius; this wedge subtends an angle of $\pi/6$ at the center. (See Figure 16.41.)

Figure 16.41: A wedge of cheese

2

What is dV in Cylindrical Coordinates?

Recall that when integrating in polar coordinates, we set $dA = r dr d\theta$. When viewing a small piece of volume, ΔV , in cylindrical coordinates, we will see that the correct form for dV is rather intuitive based on this.

It is clear from this image that we should have $\Delta V \approx r \Delta r \Delta \theta \Delta z$. This leads us to the following conclusion:

When computing integrals in cylindrical coordinates, put $dV = r dr d\theta dz$. Other orders of integration are possible.

integration are possible.

Examples:

1. Evaluate the triple integral in cylindrical coordinates: $f(x, y, z) = \sin(x^2 + y^2)$, W is the solid cylinder with height 4 with base of radius 1 centered on the z-axis at z = -1.

Example 2 Find the mass of the wedge of cheese in Example 1, if its density is 1.2 grams/cm³.

3

Spherical Coordinates

The spherical coordinates of a point (x,y,z) in \mathbb{R}^3 are the analog of polar coordinates in \mathbb{R}^2 . We define $\rho = \sqrt{x^2 + y^2 + z^2}$ to be the distance from the origin to (x,y,z), θ is defined as it was in polar coordinates, and ϕ is defined as the angle between the positive z-axis and the line connecting the origin to the point (x,y,z).

$$P = (x, y, z)$$

Spherical Coordinates

The spherical coordinates of a point (x, y, z) in \mathbb{R}^3 are the analog of polar coordinates in \mathbb{R}^2 . We define $\rho = \sqrt{x^2 + y^2 + z^2}$ to be the distance from the origin to (x, y, z), θ is defined as it was in polar coordinates, and ϕ is defined as the angle between the positive z-axis and the line connecting the origin to the point (x, y, z).

From the above figure, we can see that $r = \rho \sin \phi$, and $z = \rho \cos \phi$, so using the relationship between Cartesian coordinates (x, y, z) and cylindrical coordinates, $x = r \cos \theta$, $y = r \sin \theta$, z = z, we arrive at the following:

RELATIONSHIP BETWEEN CARTESIAN AND SPHERICAL COORDINATES: Each point in \mathbb{R}^3 is represented using $0 \le \rho < \infty, \ 0 \le \phi \le \pi, \ 0 \le \theta \le 2\pi$.

 $x = \rho \sin \phi \cos \theta,$ $y = \rho \sin \phi \sin \theta,$ $z = \rho \cos \phi.$

Also, $x^2 + y^2 + z^2 = \rho^2$.

Figure 16.45: The surfaces $\rho=1$ and $\rho=2$

Figure 16.46: The surfaces $\theta=\pi/4$ and $\theta=3\pi/4$

Figure 16.47: The surfaces $\phi=\pi/6$ and $\phi=2\pi/3$

4

Question: What surfaces are obtained by setting ρ , θ , and ϕ equal to a constant?

What is dV is Spherical Coordinates?

Consider the following diagram:

We can see that the small volume ΔV is approximated by $\Delta V \approx \rho^2 \sin \phi \, \Delta \rho \, \Delta \phi \, \Delta \theta$. This brings us to the conclusion about the volume element dV in spherical coordinates:

When computing integrals in spherical coordinates, put $dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$. Other orders of integration are possible.

Examples:

2. Evaluate the triple integral in spherical coordinates. $f(x, y, z) = 1/(x^2 + y^2 + z^2)^{1/2}$ over the bottom half of a sphere of radius 5 centered at the origin.

3. For the following, choose coordinates and set up a triple integral, inlcluding limits of integration, for a density function f over the region.

(a)

-

(b) A piece of a sphere; angle at the center is $\pi/3$.

(c)

4. Write a triple	integral in spherical coordinates giving the volume of a sphere of radius K centered
at the origin.	Use the order $d\theta d\rho d\phi$.

Example 4 Use spherical coordinates to derive the formula for the volume of a ball of radius a.

For Exercises 12-18, choose coordinates and set up a triple integral, including limits of integration, for a density function f over the region.

13.

14.

15.

1. Match the equations in (a)–(f) with one of the surfaces in (I)-(VII).

- (a) x = 5 (b) $x^2 + z^2 = 7$ (c) $\rho = 5$ (d) z = 1 (e) r = 3 (f) $\theta = 2\pi$

- (I) Cylinder, centered on x-axis.
- (II) Cylinder, centered on y-axis.
- (III) Cylinder, centered on z-axis.
- (IV) Plane, perpendicular to the x-axis.
- (V) Plane, perpendicular to the y-axis.
- (VI) Plane, perpendicular to the z-axis.
- (VII) Sphere.

Screen clipping taken: 01/04/2024 8:38 pm

In Exercises 2–7, find an equation for the surface.

- 2. The vertical plane y = x in cylindrical coordinates.
- 3. The top half of the sphere $x^2 + y^2 + z^2 = 1$ in cylindrical coordinates.

Screen clipping taken: 01/04/2024 8:40 pm

- 4. The cone $z = \sqrt{x^2 + y^2}$ in cylindrical coordinates.
- 5. The cone $z = \sqrt{x^2 + y^2}$ in spherical coordinates.
- **6.** The plane z = 10 in spherical coordinates.
- 7. The plane z=4 in spherical coordinates.