МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №2 по курсу «Параллельная обработка данных»

Технология MPI и технология CUDA. MPI-IO

Выполнил: Д.В. Коростелев

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы:

Совместное использование технологии MPI и технологии CUDA. Применение библиотеки алгоритмов для параллельных расчетов Thrust. Реализация метода Якоби. Решение задачи Дирихле для уравнения Лапласа в трехмерной области с граничными условиями первого рода. Использование механизмов MPI-IO и производных типов данных.

Требуется решить задачу описанную в лабораторной работе No7, используя возможности графических ускорителей установленных на машинах вычислительного кластера. Учесть возможность наличия нескольких GPU в рамках одной машины. На GPU необходимо реализовать основной расчет. Требуется использовать объединение запросов к глобальной памяти. На каждой итерации допустимо копировать только граничные элементы с GPU на CPU для последующей отправки их другим процессам. Библиотеку Thrust использовать только для вычисления погрешности в рамках одного процесса.

Bapuaht 1: MPI_Type_create_subarray

Программное и аппаратное обеспечение

• Графический процессор NVIDA GeForce GTX 1050

Графическая память	2 Gb
Разделяемая память на блок	48 Mb
Константная память	64 Mb
Количество регистров на блок	65536
Максимальное количество блоков на процессор	32
Максимальное количество потоков на блок	1024
Количество мультипроцессоров	5

• Процессор Intel Core i7-7700HQ 4x 2.808ГГц

Количество ядер	4
Количество потоков	8
Базовая тактовая частота	2.8 GHz
Максимальная тактовая частота	3.8 GHz
Кеш-память	6 Mb

• Оперативная память DDR4-SODIMM

Объем памяти	8 Gb
Частота	2400 MHz
Форм-фактор	SODIMM
Количество плашек	2

• SSD и HDD накопители

Объем SSD накопителя	128 Gb
Объем HDD накопителя	1 Tb

• Программное обеспечение

Операционная система	Windows 10 Pro
Средство разработки на CUDA (IDE)	Microsoft Visual
	Studio 2019
Компиляторы	MSVC 2019
Версия CUDA Toolkit	11.4.2
Дополнительный текстовый редактор	Notepad++

Метод решения

Метод решения аналогичен методу решения в предыдущей работе

Описание программы

Описание программы аналогичной предыдущей работе. Отличие заключается только в том, что передача граничных условий будет осуществляться при помощи функции MPI_Type_create_subarray а расчет значений будет проводится на видеокартах при помощи технологии CUDA

Результаты

Сетка Задача	1x1x1	2x2x2	3x3x3	4x4x4
32 x 32 x 32	3.316	2.059	2.555	2.781
42 x 42 x 42	17.22	4.651	8.43	7.456
54 x 54 x 54	64.12	22.78	13.34	17.65
64 x 64 x 64	230.1	33.23	19.34	13.36

Выводы

Лабораторная работа оказалась довольно простой и легкой. Распараллеливание вычисления значений сетки заняло буквально 15 минут, а реализовать передачу граничных значений при помощи MPI_Type_create_subarray было довольно легко, однако пришлось относительно долго искать ошибку, которая приводила к неправильному ответу.