Experimenting with Classifying News from BBC News using the Text Analytics Process

1. บทน้ำ

ข้อมูลที่ได้มาจากการรายงานข่าวของ BBC โดย BBC เป็นสำนักข่าวแห่งหนึ่งที่มีความน่าเชื่อถือ และ ได้รับการรับรองจากทั่วโลก

รายงานนี้จัดทำขึ้นโดยมีวัตถุประสงค์ เพื่อทำการทดลองและการเลือกใช้เทคนิคต่างๆเพื่อสร้าง แบบจำลองทำนายการแยกประเภทของข่าวได้อย่างอัตโนมัติที่มีประสิทธิภาพ โดยใช้ข้อมูลจากข่าวแต่ละ ประเภท รวมถึงการทดสอบประสิทธิภาพของวิธีการทำ Text Clustering ในการแยกกลุ่ม เมื่อเปรียบเทียบกับ กลุ่ม (Categories) ที่เราได้เตรียมไว้อยู่แล้ว

การวิเคราะห์จะใช้กระบวนการ Text Analytics ในการวิเคราะห์ผ่านการทำ Classification และ Clustering ของข้อมูล ผ่านโปรแกรม RapidMiner Studio

2. รายละเอียดชุดข้อมูล

ชุดข้อมูลเริ่มต้นมีทั้งหมด 2,225 ไฟล์ นามสกุลไฟล์ .txt แบ่ง Categories ออกเป็น 5 กลุ่ม 1. Business 2. Entertainment 3. Politics 4. Sport 5. Tech ซึ่งทำการดาวน์โหลดชุดข้อมูลมาจาก https://www.kaggle.com/datasets/shivamkushwaha/bbc-full-text-document-classification/data

มีการแบ่งชุดข้อมูลสำหรับการประมวลผลออกเป็น ชุดข้อมูลสำหรับการให้โปรแกรมเรียนรู้ (Training Data) 9 ส่วน และชุดข้อมูลสำหรับทดสอบ (Test Data) 1 ส่วน และใช้ Classification Algorithms ได้แก่ Naïve Bayes, Decision Tree และ k-NN รวมถึงใช้ Clustering Algorithm ได้แก่ k-Means ในการ ประมวลผล และทดสอบประสิทธิภาพของการทำนายการแยกประเภทของเอกสาร

3. การกระจายตัวของข้อมูล

รูปภาพที่ 1 : แสดง Bar Chart แจกแจงข้อมูลการนับ (Count) ของข้อมูลภายในแต่ละเอกสาร

4. กระบวนการทำ Text Analytics ผ่านโปรแกรม RapidMiner Studio

4.1 Text Preprocessing

เป็นกระบวนเตรียมข้อมูลให้พร้อมก่อนนำเข้าโมเดลเพื่อประมวลผลข้อมูลอย่างมี ประสิทธิภาพ โดยมีกระบวนการดังนี้

4.1.1 การแบ่งคำ (Tokinization)

แสดงจำนวนคำหรือจำนวน Attributes ทั้งหมด 32,082 Attributes

รูปภาพที่ 2 : แสดงกระบวนการทำการแบ่งคำ (Tokinization)

4.1.2 การตัดคำโดยใช้ Stopwords

แสดงจำนวน Attributes ลดลงเหลือ 31,463 Attributes

รูปภาพที่ 3 : แสดงกระบวนการทำการตัดคำโดยใช้ Stopwords

4.1.3 การรวมคำที่มีความหมายเดียวกัน (Stemming)

รูปแบบ Lovins แสดงจำนวน Attributes ลดลงเหลือ 16,955 Attribute

รูปภาพที่ 4 : แสดงกระบวนการรวมคำในรูปแบบ Lovins

รูปแบบ Snowball แสดงจำนวน Attributes ลดลงเหลือ 18,764 Attributes

รูปภาพที่ 5 : แสดงกระบวนการรวมคำในรูปแบบ Snowball

รูปแบบ Porter แสดงจำนวน Attributes ลดลงเหลือ 18,912 Attributes

รูปภาพที่ 6 : แสดงกระบวนการรวมคำในรูปแบบ Porter

ผลสรุปจากกระบวนการรวมคำนั้น จะใช้รูปแบบ Lovins เนื่องจากมีประสิทธิภาพ ในการลดจำนวน Attributes ลงได้ดีที่สุด

4.2 การวิเคราะห์โดยใช้ Text Classification

กระบวนการทำ Text Classification

รูปภาพที่ 7 : แสดงกระบวนการทำ Text Classification

4.2.1 การทดสอบที่ 1 : กำหนดรูปแบบ Vector Creation คือ TF-IDF โดยยังไม่ทำการใช้ กระบวนการ Pruning Method

accuracy: 93.03% +/-	1.63% (micro	average: 93.03%)
----------------------	--------------	------------------

	true business	true entertain	true politics	true sport	true tech	class precision
pred. business	442	3	14	6	5	94.04%
pred. entertain	3	352	4	1	4	96.70%
pred. politics	36	11	391	3	6	87.47%
pred. sport	8	3	5	501	2	96.53%
pred. tech	21	17	3	0	384	90.35%
class recall	86.67%	91.19%	93.76%	98.04%	95.76%	

รูปภาพที่ 8 : แสดงกระบวนการทำ Text Classification โดยวิธี k-NN โดยกำหนดค่า k=5

accuracy: 93.26% +/- 1.67% (micro average: 93.26%)

accuracy. 33.20%	5 +/- 1.07% (IIICIO	uverage. 33.20/0/				
	true business	true entertain	true politics	true sport	true tech	class precision
pred. business	445	5	9	4	5	95.09%
pred. entertai	4	351	4	1	6	95.90%
pred. politics	34	13	394	2	8	87.36%
pred. sport	7	3	4	504	1	97.11%
pred. tech	20	14	6	0	381	90.50%
class recall	87.25%	90.93%	94.48%	98.63%	95.01%	

รูปภาพที่ 9 : แสดงกระบวนการทำ Text Classification โดยวิธี k-NN โดยกำหนดค่า k=10

	true business	true entertain	true politics	true sport	true tech	class precisio
ored. business	451	6	11	4	6	94.35%
ored. entertain	3	356	1	1	5	97.27%
ored. politics	29	8	395	1	4	90.39%
ored. sport	10	3	5	505	0	96.56%
ored. tech	17	13	5	0	386	91.69%
lass recall	88.43%	92.23%	94.72%	98.83%	96.26%	

รูปภาพที่ 10 : แสดงกระบวนการทำ Text Classification โดยวิธี k-NN โดยกำหนดค่า k=15

accuracy: 93.80%	6 +/- 0.96% (micro	average: 93.80%)				
	true business	true entertain	true politics	true sport	true tech	class precision
pred. business	447	5	8	3	5	95.51%
pred. entertai	4	353	1	1	5	96.98%
pred. politics	32	9	396	1	6	89.19%
pred. sport	12	4	3	506	0	96.38%
pred. tech	15	15	9	0	385	90.80%
class recall	87.65%	91.45%	94.96%	99.02%	96.01%	

รูปภาพที่ 11 : แสดงกระบวนการทำ Text Classification โดยวิธี k-NN โดยกำหนดค่า k=20

accuracy: 90.74% +/- 2.00% (micro average: 90.74%)

	true business	true entertain	true politics	true sport	true tech	class precision
pred. business	429	5	23	8	6	91.08%
pred. entertai	16	355	13	8	10	88.31%
pred. politics	27	8	370	4	10	88.31%
pred. sport	7	0	4	490	0	97.80%
pred. tech	31	18	7	1	375	86.81%
class recall	84.12%	91.97%	88.73%	95.89%	93.52%	

รูปภาพที่ 12 : แสดงกระบวนการทำ Text Classification โดยวิธี Naive Bayes

accuracy: 47.41% +/- 5.19% (micro average: 47.42%)

	true business	true entertain	true politics	true sport	true tech	class precision
pred. business	4	0	1	0	0	80.00%
pred. entertai	2	174	3	0	11	91.58%
pred. politics	1	5	126	4	1	91.97%
pred. sport	494	206	285	507	145	30.97%
pred. tech	9	1	2	0	244	95.31%
class recall	0.78%	45.08%	30.22%	99.22%	60.85%	

รูปภาพที่ 13 : แสดงกระบวนการทำ Text Classification โดยวิธี Decision Tree

4.2.2 การทดสอบที่ 2 : กำหนดรูปแบบ Vector Creation คือ TF-IDF โดยทำการใช้กระบวนการ Pruning Method แบบ Percental กำหนดค่า 10% - 80%

	true business	true entertain	true politics	true sport	true tech	class precisio
ored. business	463	9	24	5	17	89.38%
pred. entertain	4	338	2	4	15	93.11%
pred. politics	19	8	370	6	8	90.02%
pred. sport	10	16	10	486	3	92.57%
ored. tech	14	15	11	10	358	87.75%
class recall	90.78%	87.56%	88.73%	95.11%	89.28%	

รูปภาพที่ 14 : แสดงกระบวนการทำ Text Classification โดยวิธี k-NN

	true business	true entertain	true politics	true sport	true tech	class precision
ored. business	464	8	25	0	17	90.27%
pred. entertain	2	343	6	10	13	91.71%
pred. politics	22	2	377	14	7	89.34%
pred. sport	0	3 2	2	477	4	98.15%
pred. tech	22	30	7	10	360	83.92%
class recall	90.98%	88.86%	90.41%	93.35%	89.78%	

รูปภาพที่ 15 : แสดงกระบวนการทำ Text Classification โดยวิธี Naive Bayes

4.2.3 การทดสอบที่ 3 : กำหนดรูปแบบ Vector Creation คือ Term of Frequency โดยทำการใช้ กระบวนการ Pruning Method แบบ Percental กำหนดค่า 10% - 80%

accuracy: 89.35% +/- 1.53% (micro average: 89.35%)							
	true business	true entertain	true politics	true sport	true tech	class precision	
pred. business	462	12	17	3	16	90.59%	
pred. entertain	6	325	2	6	18	91.04%	
pred. politics	25	10	370	2	14	87.89%	
pred. sport	4	28	16	491	13	88.95%	
pred. tech	13	11	12	9	340	88.31%	
class recall	90.59%	84.20%	88.73%	96.09%	84.79%		

รูปภาพที่ 16 : แสดงกระบวนการทำ Text Classification โดยวิธี k-NN

accuracy: 90.16%	+/- 1.49% (micro	average: 90.16%)				
	true business	true entertain	true politics	true sport	true tech	class precision
pred. business	464	7	23	2	18	90.27%
pred. entertain	4	339	4	15	14	90.16%
pred. politics	20	1	378	13	6	90.43%
pred. sport	0	3	3	468	6	97.50%
pred. tech	22	36	9	13	357	81.69%
class recall	90.98%	87.82%	90.65%	91.59%	89.03%	

รูปภาพที่ 17 : แสดงกระบวนการทำ Text Classification โดยวิธี Naive Bayes

4.2.4 การทดสอบที่ 4 : กำหนดรูปแบบ Vector Creation คือ Term Occurrences โดยทำการใช้ กระบวนการ Pruning Method แบบ Absolute

> accuracy: 55.73% +/- 5.30% (micro average: 55.73%) true entertain... true politics class precision true business true sport pred. business 73.99% pred. entertain... 0 92.22% 253 72.29% pred. politics 26 23 253 173 257 137 1 0 0 0 pred. tech 98.95% 60.78% 21.50%

รูปภาพที่ 18 : แสดงกระบวนการทำ Text Classification โดยวิธี k-NN

	true business	true entertain	true politics	true sport	true tech	class precision
ored. business	435	2	22	8	8	91.58%
ored. entertain	11	352	11	10	15	88.22%
pred. politics	21	9	368	2	9	89.98%
pred. sport	5	2	7	489	1	97.02%
pred. tech	38	21	9	2	368	84.02%
class recall	85.29%	91.19%	88.25%	95.69%	91.77%	

รูปภาพที่ 19 : แสดงกระบวนการทำ Text Classification โดยวิธี Naive Bayes

สรุปผลการทำ Text Classification ได้ว่า การประมวลผลข้อมูลที่ดีที่สุดจากการทดสอบค่า Accuracy คือการใช้ k-NN Algorithm ในเงื่อนไขค่า k=15 (รูปภาพที่ 10) โดยกำหนดรูปแบบ Vector Creation ในรูปแบบ TF-IDF

4.3 แสดงผลคำที่มีความสำคัญในการแยกประเภทเอกสาร

รูปภาพที่ 20 : แสดงกราฟแจกแจงค่า TF-IDF ของแต่ละคำ

ความสำคัญของคำนั้น เป็นคำที่ใช้แยกเอกสารในแต่ละ Categories ออกจากกัน โดยเราวัด ความสำคัญจากค่า TF-IDF (รูปภาพที่ 20) ซึ่งคำที่มีความสำคัญที่สุด (วงกลมสีเหลือง) หรือคำที่มีค่า TF-IDF สูงที่สุด คือคำว่า blog และมีค่า TF-IDF เท่ากับ 0.851

Word	Attribu	Tota ↓	Docum	busine	enterta	politics	sport	tech
win	win	1013	526	55	194	109	609	46
film	film	1178	288	12	999	10	1	156
part	part	1492	694	183	112	901	87	209
bank	bank	545	187	459	18	12	3	53
computer	computer	444	181	11	7	5	0	421

รูปภาพที่ 21 : แสดงตาราง Total Occurrences และแจกแจงจำนวนคำในแต่ละเอกสาร

นอกจากข้อมูลในรูปภาพที่ 20 ยังมีอีกหลายคำที่สามารถนำมาใช้เป็นตัวแยกประเภทเอกสาร หรือเรียกว่าเป็นคำที่มีความสำคัญ ตามรูปภาพที่ 21 ซึ่งสามารถวิเคราะห์จากการพิจารณาดูว่ามีคำ ไหนบ้างที่เอกสารอื่นนั้นมีน้อย

4.4 การวิเคราะห์โดยใช้ Text Clustering

กระบวนการทำ Text Clustering

รูปภาพที่ 22 : แสดงกระบวนการทำ Text Clustering

รูปภาพที่ 23 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=2 และวัดระยะห่างรูปแบบ Euclidian Distances

รูปภาพที่ 24 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=2 และวัตระยะห่างรูปแบบ Manhattan Distances

รูปภาพที่ 25 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=3 และวัดระยะห่างรูปแบบ Euclidian Distances

รูปภาพที่ 26 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=3 และวัดระยะห่างรูปแบบ Manhattan Distances

รูปภาพที่ 27 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=5 และวัดระยะห่างรูปแบบ Euclidian Distances

รูปภาพที่ 28 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=5 และวัดระยะห่างรูปแบบ Manhattan Distance

รูปภาพที่ 29 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=7 และวัดระยะห่างรูปแบบ Euclidian Distances

รูปภาพที่ 30 : แสดงกราฟจำนวน Categories ในแต่ละ Cluster โดยมี Parameter ค่า k=7 และวัดระยะห่างรูปแบบ Manhattan Distance

การอธิบายผลลัพธ์จากการทำ Bar Chart เพื่อดูประสิทธิภาพของการทำ Clustering เมื่อ เปรียบเทียบกับ Categories ที่เราทราบอยู่แล้ว โดยมี Parameter คือค่า k และรูปแบบการวัด ระยะห่าง ซึ่งผลลัพธ์ค่อนข้างชัดเจนในเรื่องของการแยก Categories ตามแต่ละ Cluster

การรายงานผลลัพธ์ที่หนึ่ง ที่ค่า k=2 จะแสดงแบ่ง Categories ในแต่ละ Cluster ค่อนข้าง ชัดเจน ได้มากกว่าค่า k อื่นๆ (รูปภาพที่ 23, รูปภาพที่ 24)

ผลลัพธ์ที่สอง รูปแบบการวัดระยะห่างแบบ Euclidian Distances ทำการจัดกลุ่มได้ชัดเจน กว่า แบบ Manhattan ในทุกๆการเปลี่ยนค่า k

ผลลัพธ์ที่สาม หากเปรียบเทียบค่า k ตามจำนวน Categories ตามที่เราทราบอยู่แล้ว พบว่า ในค่า k=5 ที่ Euclidian Distances มีการแยก Clusters ที่เกือบชัดเจน แต่จะมี Cluster_1 ที่จะทำ การแยกตาม Categories ได้ไม่ชัดเจนเหมือนกัน Clusters อื่นๆ (รูปภาพที่ 27)

	Euclidian Distances	Manhatthan Distances
k = 2	-11.118	-11.185
k = 3	-8.764	-8.962
k = 5	-8.419	-6.667
k=7	-8.089	-6.564

รูปภาพที่ 31 : แสดงค่า Davies Bouldin จากการเลือกค่า k และการเปลี่ยนการคำนวณระยะห่าง โดยกรอบสีแดงแสดงค่า Davies Boudin ที่ต่ำที่สุด

เพื่อเพิ่มความน่าเชื่อถือของข้อมูลจากการสังเกตจากกราฟ โดยการคำนวณหาค่า Davies Bouldin (รูปภาพที่ 31) โดยอ้างอิงจาก Parameter คือค่า k กับการเปลี่ยนวิธีการคำนวณหา ระยะห่างระหว่างข้อมูลกับจุดศูนย์กลาง โดยค่า Davies Boudin เป็นตัวประเมินประสิทธิภาพของ การทำ Clustering โดยยิ่งค่าน้อยแสดงถึงการจัดกลุ่มได้ดี นั่นทำให้สรุปได้ว่า Parameter ที่ควร กำหนดเพื่อได้โมเดลที่มีประสิทธิภาพ คือที่ค่า k=2 ตามผลลัพธ์ที่ได้จากการสังเกตกราฟ

5. สรุปผล

จากวัตถุประสงค์ที่กล่าวมาข้างต้น รายงานนี้ได้ทำการทดลองและสร้างแบบจำลอง โดยการเปลี่ยน
Parameter อย่างเป็นระบบ เพื่อให้สามารถเปรียบเทียบผลลัพธ์ของการประมวลผลได้อย่างมีประสิทธิภาพ
ผลลัพธ์ที่ได้จากการสร้างโมเดล Text Classification และทดสอบประสิทธิภาพพบว่า โมเดลมี
ประสิทธิภาพสูงในการแบ่งกลุ่มตาม Categories ที่ได้เตรียมไว้อย่างอัตโนมัติ ผ่านตัวชี้วัด ค่า Accuracy และ
ได้ทำการหาคำที่สำคัญที่สุดที่ใช้ในการแยกประเภทเอกสารจากค่า TF-IDF

รวมถึงการทำ Text Clustering เพื่อทดสอบประสิทธิภาพในการจัดกลุ่ม ที่อ้างอิงจาก Categories ที่ มีอยู่แล้วนั้น พบว่ามีประสิทธิภาพในการจัดกลุ่มอย่างชัดเจนจากผลลัพธ์ที่ได้แสดง ผ่านตัวชี้วัดในรูปแบบของ กราฟ และการคำนวณหาค่า Davies Bouldin

6. อ้างอิง

ขอบคุณชุดข้อมูลจากเว็บไซต์

https://www.kaggle.com/datasets/shivamkushwaha/bbc-full-text-document-classification/data