Answer A:

I. According to the Cost matrix the best classifier is A

Explanation:

In Cost matrix the high value is 80, which comes when an actual NO predicted as YES. The chances of getting that error higher in **Classifier B (30).**

Negative value in a Cost matrix interrupted as benefits and positive values are benefits. Hence in the diagonal elements are the correct prediction, which gives the real benefits.

II. Cohen's kappa is defined as:

$$\kappa = \frac{p_o - p_e}{1 - p_e} = 1 - \frac{1 - p_o}{1 - p_e},$$

Kappa Value of Classifier A

	Α	В	Total
Α	50	10	60
В	5	100	105
Total	55	110	165

Number of observed agreements: 150 (90.91% of the observations)

Number of agreements expected by chance: 90.0 (54.55% of the observations)

Kappa= 0.800

SE of kappa = 0.049

95% confidence interval: From 0.704 to 0.896

"One way to interpret kappa is with this scale (1):

Kappa < 0: No agreement

Kappa between 0.00 and 0.20: Slight agreement

Kappa between 0.21 and 0.40: Fair agreement

Kappa between 0.41 and 0.60: Moderate agreement

Kappa between 0.61 and 0.80: Substantial agreement

Kappa between 0.81 and 1.00: Almost perfect agreement."

Kappa Value of Classifier B

	Α	В	Total
Α	30	30	60
В	20	85	105
Total	50	115	165

Number of observed agreements: 115 (69.70% of the observations)

Number of agreements expected by chance: 91.4 (55.37% of the observations)

Kappa= 0.321

SE of kappa = 0.077

95% confidence interval: From 0.171 to 0.471

"One way to interpret kappa is with this scale (1):

Kappa < 0: No agreement

Kappa between 0.00 and 0.20: Slight agreement

Kappa between 0.21 and 0.40: Fair agreement

Kappa between 0.41 and 0.60: Moderate agreement

Kappa between 0.61 and 0.80: Substantial agreement

Kappa between 0.81 and 1.00: Almost perfect agreement."

According to Kappa Value Classifier A is the best classifier.

III. Classifier A

Matrix for predicting cancer

	PREDICTED CLASS			
		Class = Yes	Class = No	
ACTUAL CLASS	Class = Yes	a (TP)	b (FN)	١
	Class = No	c (FP)	d (TN)	
·			·	٠,

a = TP (true positive)

b = FN (false negative)

c = FP (false positive)

d = TN (true negative)

Precision = a/ (a+c)

I

= 50 / (50+5)

=0.9090

Recall = (a)/(a+b)

=50 / (60)

=0.8333

Classifier B

IV. Accuracy

Classifier A

$$ACC = (a + d) / (P + N)$$

Accuracy= 0.90

Classifier B

Accuracy = 0.69

Answer B:

I. Size of instances for the below attached data is 4

Sr.	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Marked in **RED** is called instance.

Marked **BLUE** is called Feature.

- II. Size of hypothesis size is 2
- III. S algorithm

i

h0 = {sunny,warm,normal,stron,warm,same}

h1 = {sunny,warm,high,strong,warm,same} - > {?,warm,?,strong,,warm,same}

h2 = {?,warm,?,Strong,?,?}

h3 = {?,?,?,Strong,?,?} - > Final Hypothesis

IV. When adding an attribute (row) Waterflow, which is having 3 different values that will affect hypothesis spaces only. Number of instances will be changed once the column size changed.

Size of hypothesis will be 3