L'usage de calculatrices est autorisé.

Cahier réponses

Épreuve de Sciences Industrielles PSI

Etude du téléphérique Vanoise Express

Cahier réponses

Toutes les réponses seront portées sur ce cahier à l'exclusion de toute autre copie. Les résultats sont à reporter dans les cadres prévus en bas à droite.

Sauf indication particulière, toutes les valeurs numériques sont à donner avec 3 chiffres significatifs et leurs unités. Si un résultat numérique est demandé, une expression littérale ne sera pas acceptée, et réciproquement.

3- Vérification du critère « Durée d'un trajet	
Respect du critère « Distance » de la	fonction FT21
Question 1.: Pour cette question, on demande des résulta significatifs à exprimer en secondes ou mètres (unités SI). 1-	ats numériques avec 4 chiffres
	$t_4-t_3 =$
2-	
	$t_1 =$
	11 -
	$d_a =$

3-	
	$t_3-t_2 =$
	$d_d =$
4-	
	t. t.—
	t_2 - t_1 =
5-	
	$t_t =$
Vérifiez le critère: « Durée d'un trajet (de <u>l'ordre de départ</u> jusque fonction FP1	<i>l'a <u>l'ouverture des portes)</u> »</i> de la
IONGLIOTTE	

4- Vérification des critères de la fonction FT132

Question 2. :

1. Montrez que $T_I = T'_I$. Précisez le solide isolé, et le principe ou théorème utilisé.

2. Montrez que $T_I = \frac{Mc.g}{2}$. Précisez le solide isolé, et le principe ou théorème utilisé.

Question 3. :

Calculez $\underline{\text{numériquement}}$ la tension T_2 du câble tracteur côté Les Arcs. Précisez le ou les solides isolés, et le principe ou théorème utilisé.

 $T_2 =$

Question 4.:

1. Isolez la poulie motrice. En explicitant le principe ou théorème utilisé, donnez l'expression de la tension $T_{ress\ mini}$ de chaque ressort en fonction de T_1 , T_2 , r, D et $\tan \varphi$.

 $T_{ress\ mini} =$

2. Calculez <u>numériquement</u> $T_{ress\ mini}$.	
	$T_{ress\ mini} =$
Vérifiez si le niveau du critère « Tansian du ressert de	es froins à natin nour immobilisor la
Vérifiez si le niveau du critère « Tension du ressort de téléphérique en gare, sans énergie extérieure » est suff	
grand	
Question 5. :	que deit evereer l'huile eur le pieten
1. Calculez <u>numériquement</u> la pression minimum P_m mobile pour comprimer le ressort.	in que doit exercer mulle sur le piston
mobile pear comprimer to recent.	
	P_{min} =
2 Várifioz ei la pivoqu du critàre « Proceion de decear	tage des freins à patie » est sufficent
2. Vérifiez si le niveau du critère « Pression de desserr	age des freiris à patiff / est sumsant.
Question 6. :	
1. Ecrire l'équation du théorème de la résultante statique	e linéarisée à l'ordre 1 appliquée au bout
de câble isolé, en projection sur $ec{n}$.	
Γ	

2. Ecrire l'équation du théorème de la résultante station de câble isolé, en projection sur \vec{t} .	que linéarisée à l'ordre 1 appliquée au bout
3. En déduire une équation différentielle liant F , dF , de	Θ et v_{mini} .
Question 7. : Après avoir intégré cette équation différence	entielle, en déduire l'expression littérale de
v_{mini} en fonction du rapport $rac{T_2}{T_1}$ et de β.	
	$V_{mini} =$
	<i>T</i> -
Question 8. : Indépendamment de ce qui a été fait pré	cédemment, on donne $\frac{T_2}{T_1}$ =1.5
1. Calculez <u>numériquement</u> V_{mini} .	
	$v_{mini} =$
2. Vérifiez si le niveau du critère « Coefficient d'adh	
tracteur pour immobiliser le téléphérique en gare »	est suffisant.

5- Vérification du critère « Vitesse maximum de la cabine » de la fonction FT121

Vérification du critère «	Durée d'arrêt par freinage de la fonction FT22	e mécanique de la cabine »
Question 9. :		
		extérieures au système matériel E
dans son mouvement par ra	pport au référentiel R ₀ .	
	$P_{Ext} =$	
	- Ext	
2- Donnez l'expression de P_{Int} ,	la somme des puissances intéri	ieures au système matériel E.
	, , , , , , , , , , , , , , , , , , ,	
		P_{Int} =
		$Q_{\!m}\!(t)$ d'un moteur en fonction de la
vitesse $V(t)$ de la cabine, du rap	port k et du diamètre D de la po	ulie motrice.
·	·	
		$\omega_m(t) =$
		•

Question 11. : 1- Appliquez le théorème de l'energie cinétique. Donnez l'expression de la puissance P_m délivrée par chaque moteur en fonction de k , V_0 , D , M , g , f , γ et F_{Vent} .		
pan energies meteas and an energies and an ene	eni ·	
$P_m =$		
2- Faire l'application numérique de P_m		
	$P_m =$	
Les moteurs choisis ont une puissance maximum $P_{m,maxi}$ =53 niveau du critère « Vitesse maximum de la cabine da défavorable » de la fonction FT121 ?		
Question 12. :		
1- Calculez en fonction de $\omega_m(t)$ l'expression littérale de l'énsystème matériel E dans son mouvement par rapport au r		
Pour la poulie motrice de diamètre D et de moment d'inertie J	I_{pm} :	
$T(Poulie motrice/R_0)=$		
Pour les 5 poulies de déviation de diamètre d et de moment d	l'inertie respectifs J_d :	
$T(5 \text{ poulies déviation/R}_0)=$		

Pour les 50 poulies de guidage de diamètre $d_{\it g}$ et de moment d'inertie respectifs $J_{\it g}$:
T/50 poulies quidage/P _
$T(50 \text{ poulies guidage/R}_0)=$
Pour le câble de masse m :
$T(c\hat{a}ble/R_0)=$
(Cable/N ₀)=
Pour la cabine de masse M :
T/ochino/D _
$T(\text{cabine/R}_0)=$
Pour les deux moteurs, de moment d'inertie respectifs J_m :
$T(2 \text{ moteurs/R}_0)=$
2- En déduire l'expression littérale du moment d'inertie équivalent J de tout le système matériel
(E) ramené sur l'axe des moteurs.
J =

Question 13. :		
1- Appliquez le théorème de l'énergie cinétique au système matériel (E) dans son mouvement par rapport au référentiel R_0 . Déterminez l'expression de $\dot{\omega}_m(t)$, la dérivée temporelle de $\omega_m(t)$.		
$\dot{\omega}_m(t) =$		
2- Donnez l'expression de la décélération notée a de la cabine en foi	nction de k , D et $\dot{\omega}_{\cdots}(t)$.	
a =		
3- Donnez en fonction de a et de V_0 l'expression de la durée τ du fre	inage.	
	τ =	
4- Faire l'application numérique de τ si le téléphérique est lancé à la descente de pente γ =-10°.	a vitesse V_0 =12 m/s dans une	
	τ =	
Vérifiez le critère « Durée d'arrêt par freinage mécanique de la cab	l line lancée à $V_{\it 0}$ =12 m/s dans	
une descente à 10° sans vent. » de la fonction FT22.		

6- Vérification des critères « Ecart statique », « Ecart de traînage », « Marge de phase » et « <i>Pulsation de coupure en boucle ouverte » de la fonction FT121</i>			
Question 14. : Le	schéma bloc de la do	puble motorisation étant	fourni déterminez les
fonctions de transfert G	$G_1(p), G_2(p), G_3(p) \text{ et } G_4(p)$	ecrites dans le domaine	ае Lapiace.
		σ	
$G_l(p)=$	$G_2(p)=$	$G_3(p)=$	$G_4(p)=$
Question 15. : Ω_r	$_n(p)$ peut se mettre sous la	a forme : $\Omega_m(p) = F_1(p)$	$\langle U(p) - F_2(p) \times C_r(p) \rangle$
Evorimez les fonctions	$F_1(p)$ et $F_2(p)$ en fonction	on de $G_i(n)$, $G_2(n)$, $G_2(n)$	$\operatorname{et} G_{\ell}(n)$
	$I_1(p)$ of $I_2(p)$ of foliation	of de $O_1(p)$, $O_2(p)$, $O_3(p)$	$\operatorname{Ct} G_4(p)$.
$F_1(p) =$		$F_2(p) =$	

Question 16. : Choisissez et justifiez un modèle d'identification de ces fonctions (premier ordre, second ordre etc).				
D'		Ditamaka		
Déterminez <u>numériquem</u>	ent $F_1(p)$	Determine	ez <u>num</u>	<u>ériquement</u> $F_2(p)$
$F_1(p) =$		$F_2(p)=$		
Question 17. : Donnez la	valeur numérique	e des trois consta	antes B	P, D et T.
B =	D =		T=	
Question 18. :				
1- Déterminez l'expression du g	ain « <i>E</i> ».			E=
Faire une application numérique			E=	
2- Déterminez l'expression du g	oin # F » nour du		(t)-	
2- Determinez rexpression du 9	alli « I [.] " poui qu	e ε(<i>ι)=</i> υ επιαπιο	V _C (1)-	
Faire une application numérique.		F=		
Taile and application namenque.				F=

Question 19. : Justifiez en quelques mots que le système est stable avec ce correcteur.		
Question 20. : On suppose $C_r(p)=0$. Calculez en fonction	n de C_0 , A' , B , G , $et V_0$ l'expression	
de l'écart statique en suivi de consigne \mathcal{E}'_s engendré par une	e consigne en échelon d'amplitude	
V_0 =12 m/s.		
	$\varepsilon'_{s} =$	
Faire l'application numérique		
Faire l'application numérique.		
	ا ا	
	$\varepsilon'_s =$	
Question 21. : On suppose $Vc(p)=0$.		
1- Calculez en fonction de C_0 , A ', B , G , et C_{r0} l'expression d		
engendré par une perturbation échelon d'amplitude C_r	$_{0}$ =-7270 <i>N.m</i> qui modéliserait la	
descente des « Arcs ».		
Г		
	,,	
	ε" _s =	
Faire l'application numérique.		
	ε" _s =	
2- Faire également une application numérique si C_{r0} =+7460	0 N.m pour la modélisation de la	
montée vers « La Plagne ».		
	ε" _s =	
	C s -	

Question 22. : Donnez numériquement l'écart statique total ε_s dans les deux cas suivants :			
1- Descente des « Arcs ».			
	$arepsilon_{\mathbb{S}}$ =		
2- Montée vers « La Plagne ».			
	$arepsilon_{ extsf{S}}=$		
3- Existe-t-il une valeur de C_0 réaliste pour laquelle le critère « Ecart statique en vitesse en présence d'une perturbation échelon » serait vérifié ? Justifiez.			
	tion de transfert en boucle ouverte du		
système, notée $FTBO(p)$.	FTBO(p) =		
Faire l'application numérique pour $C_i=1$.			
	FTBO(p) =		
Question 24. : Tracez sur la feuille page suivant $FTBO(p)$. Tracez également l'allure des courbes.	te le diagramme asymptotique de Bode de		

Question 25. :

1. Quelles valeurs <u>numériques</u> de C_i permettent de respecter le critère de « **Marge de phase** » du cahier des charges ?

 C_i

2. Ces valeurs de C_i permettent-elles de respecter le critère de « $\textbf{\textit{P}}$ boucle ouverte » du cahier des charges ? Justifiez.	Pulsation de coupure en	
Question 26. : 1. On suppose $C_r(p)=0$. Calculez numériquement l'écart statique en suivi de consigne \mathcal{E}'_s engendré par une consigne en échelon d'amplitude V_0 =12 m/s.		
	$oldsymbol{arepsilon_{\!\scriptscriptstyle S}}$ ' $=$	
2. On suppose $Vc(p)=0$. Calculez <u>numériquement</u> l'écart statique en par une perturbation échelon d'amplitude C_{r0} =-7270 N.m qui mod « Arcs ».	_	
	\mathcal{E}_{s} '' =	
3. Donnez <u>numériquement</u> l'écart statique total $\mathcal{E}_s = \mathcal{E}'_s + \mathcal{E}''_s$.	$\mathcal{E}_{s} =$	
Le critère « Ecart statique en vitesse en présence d'une perturbations échelon » est-il vérifié ? Justifiez.		
Question 27. : On suppose $C_r(p)=0$. Calculez l'expression de l'écart de traînage ε_v engendré par une consigne en rampe unitaire.		
	$\mathcal{E}_{v} =$	
Existe-t-il une valeur de C_i réaliste qui permette de vérifier le critère « Ecart de traînage (ou écart dynamique) en vitesse en l'absence de perturbations » ? Justifiez.		
Question 28. : Montrez que le système n'est pas stable sans la for	nction $C_a(p)$?	

Degrés de phase :

Question 30. : Tracez en fonction de a, τ et K les diagrammes **asymptotiques** de Bode (amplitude et phase) du correcteur $C_a(p) = K \frac{1 + a.\tau.p}{1 + \tau.p}$ avec a>1. Précisez clairement les amplitudes ou les phases de **toutes les asymptotes horizontales** en fonction des différents paramètres. Précisez de même les pulsations des points particuliers.

Question 31.: La phase maximum φ_{\max} ajoutée par $C_a(p)$ peut être calculée par la formule : $\sin \varphi_{\max} = \frac{a-1}{a+1}$. Calculez **numériquement** a pour obtenir la remontée de phase déterminée sur le diagramme de Bode à la question 29.

a =

 Question 32. : 1. Donnez l'expression en fonction de <i>a</i> et τ de la pulsation ω pour laquelle la courbe de phase atteint son maximum. 		
	ω =	
2. En déduire la valeur numérique de $ au$ pour que $arphi_{ m max}$ soit ajoutée à la pulsation 1 rad/s.		
	$\tau =$	
Question 33. : Calculez <u>numériquement</u> la valeur à donner à <i>K</i> pour respecter les critères de « Marge de phase » et de « <i>Pulsation de coupure en boucle ouverte</i> » du cahier des charges ? Précisez la démarche utilisée.		
	K =	
 Question 34. : 1. Les critères « Ecart statique en vitesse en présence d'une perturba de traînage (ou écart dynamique) en vitesse en l'absence de perturba Justifiez. 	ation échelon » et « Ecart	
 Les critères « Ecart statique en vitesse en présence d'une perturba de traînage (ou écart dynamique) en vitesse en l'absence de perturba 	ation échelon » et « Ecart	
 Les critères « Ecart statique en vitesse en présence d'une perturba de traînage (ou écart dynamique) en vitesse en l'absence de perturba 	ation échelon » et « Ecart	
 Les critères « Ecart statique en vitesse en présence d'une perturba de traînage (ou écart dynamique) en vitesse en l'absence de perturba 	ation échelon » et « Ecart	
 Les critères « Ecart statique en vitesse en présence d'une perturba de traînage (ou écart dynamique) en vitesse en l'absence de perturba 	ation échelon » et « Ecart pations » sont-ils vérifiés ?	
Les critères « Ecart statique en vitesse en présence d'une perturba de traînage (ou écart dynamique) en vitesse en l'absence de perturba Justifiez.	ation échelon » et « Ecart pations » sont-ils vérifiés ?	

7- Vérification du critère « Energie consommée » de la fonction FP3			
 Question 35. : 1. Pour chacune des 6 phases, calculez numériquement en Joules l'énergie Wi (i variant de 1 à 6) produite ou consommée par le téléphérique, c'est-à-dire par l'ensemble des 2 moteurs. 			
0 <t<30 s<="" td=""><td>30<t<71 s<="" td=""><td>71<t<127 s<="" td=""></t<127></td></t<71></td></t<30>	30 <t<71 s<="" td=""><td>71<t<127 s<="" td=""></t<127></td></t<71>	71 <t<127 s<="" td=""></t<127>	
$W_I =$	$W_2 =$	$W_3 =$	
127 <t<149 s<="" td=""><td>149<t<177 s<="" td=""><td>177<t<235 s<="" td=""></t<235></td></t<177></td></t<149>	149 <t<177 s<="" td=""><td>177<t<235 s<="" td=""></t<235></td></t<177>	177 <t<235 s<="" td=""></t<235>	
		1	
$W_4 =$	$W_5 =$	$W_6 =$	
2. En déduire numériquement l'énergie W consommée pour le trajet entre « Les Arcs » et « La			
Plagne ».			
	Г	1	
		W =	
Calculez en euros le coût d'un trajet sur une base de 12 centimes le kilowattheure.			
	Г		
		Coût =	
Le critère « Energie consommée pour un trajet sans vent contraire. » est-il vérifié ? Justifiez.			
3. Quelle énergie W_{Max} aurait-on consommée sans le système de récupération ?			
3. Quelle ellergie w_{Max} aurait-on consommee sans le systeme de recuperation :			
	=		
		$W_{Max} =$	
		··· max —	
Conclure sur l'intérêt de ce dispo	ositif de récupération d'énergie.		

8- Conception partielle de la fonction FP2 : « Assurer la sécurité des passagers ». Questions 36. 1&2 : Pression Pression Frein à patin de service Moteur de Réducteur secours