

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

DEPT. of APPLIED MECHANICS.

LIVE-LOAD STRESSES

IN

RAILWAY BRIDGES

WITH

FORMULAS AND TABLES

BY

GEORGE E. BEGGS, A.B., C.E.

Assistant Professor of Civil Engineering in Princeton University;
Associate Member of the American Society of Civil Engineers;
Member of the Society for the Promotion of Engineering Education

PLEASE RETURN TO DEPT. of APPLIED MECHANICS.

FIRST EDITION FIRST THOUSAND

NEW YORK

JOHN WILEY & SONS, INC.

LONDON: CHAPMAN & HALL, LIMITED

1916

Copyright, 1916, by GEORGE E. BEGGS

> LIBRARY 757564

UNIVERSITY OF TORONTO

PREFACE

Stresses caused by moving concentrated loads are treated in this book by the combined use of influence lines and algebraic methods. The influence line is connected by this treatment with tables of moment sums and load sums in a new and entirely practical manner.

The heart of the text is contained in equations (7) and (8). These give an easy and exact solution of the maximum live-load stresses in any structure whose influence lines can be drawn, replacing, for the more complicated structures, such as cantilever and swing bridges, arches, etc., the old method of placing the wheel loading by trial and scaling the influence-line ordinates under the loads.

A second feature of the text is the application of equations (7) and (8) to the simpler structures, such as girder bridges (with and without panels), pier reactions, and Pratt trusses (with inclined and horizontal chords), in which these equations are transformed and simplified to meet the requirements of these ordinary cases. This leads to a series of simple formulas to meet the needs of every-day designing. To illustrate the application of these formulas, fully worked-out examples are given.

The text is supplemented by a very complete set of tables, the usefulness of which is at once apparent. The greater part of the matter in these tables is new. A table similar to Table 3 was made by Mr. Josiah Gibson, C.E., and published in the Engineering News, June 21, 1906; and a table similar to Table 11 is given by Mr. J. P. J. Williams in the Engineering News of Oct. 1, 1914. Tables similar to Tables 6, 8, and 9 are found in the "Structural Engineers' Handbook" by Dean Milo S. Ketchum and in the "Design of Steel Bridges" by Mr. F. C. Kunz.

The author wishes to acknowledge his indebtedness to the American Bridge Company for material assistance, and in particular to Mr. O. E. Hovey, Assistant Chief Engineer of this company, for his encouragement and help. The author also desires to acknowledge the valuable suggestions made in the revision of the original text by Professor F. H. Constant, of the Civil Engineering Department of Princeton. To Professor William H. Burr of Columbia University, the writer is permanently indebted for the logical and thorough instruction received from him as a student.

G. E. B.

Princeton University December, 1915.

CONTENTS

			BAAR
Anticia	L	Influence Lines. Definition and Use	1
ARTICLE	11.	Sum and Rate of Variation of Ordinate-land Preducts between Two Diverging Lines	2.
ARTICLE	111_	Sum and Rate of Variation of Ordinate-lossi Preducts for any Influence Line. Position of Lessding for Maximum Live-lossi Stress	7
ARTICLE	IV.	Girder Bridge without Panels General Formulas for Reactions, Shears, and Bending Moment with its Rate of Variation	13
ARTICLE	V.	General Formulas for Pier Reaction and its Rate of Variation. Illustrative Problem	23
ARTICLE	VI.	Girder Bridge with Panels. General Formulas for Live-load Stresses and their Rate of Variation. Illustrative Problem	27
Auricia	VII.	Through Pratt Truss. General Formulas for Live- load Stresses and their Rate of Variation. Illus- trative Problems	31
ARTICLE	VIII.	Three-hinged Arch. Application of the General Method to the Calculation of Live-load Streams	45
AUTICLE	IX.	Equivalent Uniform Loads	34
Aurean	N.	Method of Calculating Table of Lead Soms and Moment Sums for any Standard Leading. Illus- trative Example	57
ARTICLE	XI.	Summary of Formulas	500
		Tables 1 to 21	67

LIVE-LOAD STRESSES

ARTICLE L

INFLUENCE LINES. DEFINITION AND USES.

INFLUENCE lines are useful in determining the position of live load on a bridge to produce maximum effect. They offer also a convenient method of deriving general algebraic formulas for stresses and rules for maximum when the general relations between influence lines and algebraic formulas are once understood; and in the case of the more complex problems of skew bridges, arches, cantilever bridges etc., the influence lines themselves serve as a most direct method for the determination of the maximum live-load stresses.

An influence line may be defined as a line showing the variation in any function caused by a single unit lead as it moves across the bridge. Vertical loads only will be considered. The function may be a reaction, bending moment, shear, stress, deflection, or any quantity whatsoever at a given part of a bridge, provided that its value is a function of the position of the unit load on the bridge.

Refer to Fig. 1a. Consider the span AB, and let Z be any function at the fixed position C on the span L. If the load unity moves across the span AB and the value of Z be calculated for each position of the unit load and its value z plotted below the corresponding position of this load as an ordinate from a horizontal base line, the locus of the plotted points will be the influence line for Z. For example, if Z be the bending moment at the fixed section C in a beam of span L, the influence line will be as shown in Fig. 1b. In plotting influence lines, ordinates repre-

senting positive quantities are plotted above the base line; and negative, below. In case the influence line consists of several straight segments, it is necessary to determine the value of the ordinates only where the influence line has a change of direction; i.e., at the salient points. For example,

the points A, C, and B are the salient points of the influence line in Fig. 1b.

The value of Z caused by a single load w is equal to wz, if z is the influence ordinate below w. The value of Z caused by a series of loads w_1 , w_2 , w_3 , etc., is

$$Z = w_1 z_1 + w_2 z_2 + w_3 z_3 + \ldots = \Sigma wz . . . (1)$$

where z_1 , z_2 , z_3 , etc., are the influence ordinates below the corresponding loads. It will be convenient to speak of such a quantity as we as an ordinate-load product.

Formula (1) therefore may be expressed thus:

Z = Sum of ordinate-load products.

The area between the influence line and the base line is called the *influence area*. It may be shown that the value of Z caused by a uniform load on the bridge is proportional to the area A_z of the influence line between the ordinates at the extremities of the uniform load. If the uniform load in Fig. Ia has an intensity of q per unit of length, the load in the length dx equals q dx, and the influence of this elementary load on the value of Z is zq dx, where z is the influence ordinate below q dx. Summing up for the length of the uniform load,

$$Z = q \sum_{a_1}^{a_2} z dx = q A_s \quad . \quad . \quad . \quad . \quad (2)$$

If a series of equal loads w is on the span, the value of Z is

If a series of unequal loads, w_1 , w_2 , etc., is multiplied by the corresponding ordinates of an influence line or a portion of an influence line which has a constant ordinate z_1 as in Fig. 1c, the value of Z is

$$Z = z(w_1 + w_2 + \ldots) = z\Sigma w = zW$$
 (4)

where W equals the sum of these loads.

If a series of unequal loads is multiplied by the corresponding ordinates of an influence line or a portion of an influence line consisting of two diverging lines, as shown in Fig. 1d, the value of Z, or the sum of the ordinate lead products, and the rate at which Z varies as the loading advances, are given by the two theorems that follow. The slope of a line is defined at the beginning of Art. 2.

Theorem I.

The sum of the ordinate-load products between two diverging lines equals the difference between the slopes of the two lines multiplied by the sum of the moments of the loads about the intersection of these lines.

In symbols, this is stated as

Theorem II.

The rate at which the sum of the ordinate-load products between the two diverging lines increases as the loading moves away from the intersection of these lines equals the difference between the *slopes* of the two lines multiplied by the sum of the loads.

In symbols, this is stated as

$$\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = C_a \frac{dM_a}{dx} \quad . \tag{5a}$$

The proofs of these theorems follow in the next article.

ARTICLE II.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS
BETWEEN THE TWO DIVERGING LINES.

Consider the diverging lines DAB and AC in Fig. 2. Use the following notation:

w =any vertical load.

z = ordinate below w in the angle BAC.

 $Z = \sum w_n z_n = \text{sum of ordinate-load products.}$

Fru. 2.

 $M_a = \sum w_n x_n = \text{moment sum of all loads to left of } Aa \text{ about } A.$

 $W_a = \Sigma w_n = \text{load sum of all loads to left of } Aa.$

 s_R = slope of line DA = tangent of angle which DA makes with the horizontal

 s_L = slope of line AC = tangent of angle which AC makes with the horizontal.

$$C_a = \frac{z_n}{x_n} = (s_L - s_R) = \text{length of ordinate unit distance}$$
 from A .

Slopes are counted numerically positive when upward to the left. The sign of C_a (called the coefficient at salient point A) is, accordingly, negative when AC diverges below DA produced to the left of A. The value of C_a may be

determined graphically as $\frac{z_n}{x_n}$ or it may be figured algebraically as $(s_L - s_R)$.

Proof of Theorem I, or that $Z = C_a M_a$.

Consider the load w_n distant x_n from the salient point a. By the similar triangles AEF and AGH,

$$\frac{C_a}{1.00} = \frac{z_n}{x_n}, \text{ or } z_n = C_a x_n.$$

Therefore,

Summing up all of the ordinate-load products,

$$Z = \Sigma w_n z_n = C_a \Sigma w_n x_n = C_a M_a. \quad . \quad . \quad (5)$$

Proof of Theorem II, or that
$$\frac{dZ}{dx} = C_a W_a$$
.

From equation (A) above, the increase in the ordinateload product $w_n z_n$ for an advance dx_n of the load is

$$w_n dz_n = C_a \cdot w_n \cdot dx_n.$$

Summing up the increases of all the ordinate-load products and noting that dx is the same for all loads,

$$dZ = \Sigma w_n dz_n = C_a dx \cdot \Sigma w_n = C_a \cdot W_a \cdot dx.$$

Dividing by
$$dx$$
, $\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = \frac{C_a dM_a}{dx}$. (5a)

ARTICLE III.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS
FOR ANY INFLUENCE LINE. POSITION OF LOADING FOR
MAXIMUM LIVE-LOAD STRESS.

An influence line of a general type is shown in Fig. 3, this one in particular being for the member U_3L_4 of the

arch shown in Fig. 15. It is assumed that the ordinates at all salient points and the intervals between these points are known. Ordinates and slopes are counted positive or negative as already defined. The slope of any segment of the

influence line equals the ordinate at the left minus the ordinate at the right end of this segment divided by the corresponding interval. The coefficient C at any salient point equals the slope of the segment at the left minus the slope of the segment at the right of this point. The subtractions in each case are made algebraically.

It should be remembered, as has already been pointed out in Art. 2, that the value of any coefficient C may also be measured graphically from an influence line which has been drawn to scale. For example, in Fig. 3 the value of

the coefficient
$$C_2 = \frac{h_2}{x_2}$$
 and $C_4 = \frac{h_4}{x_4}$.

The algebraic calculation of the coefficients at all salient points of the influence line in Fig. 3 is given below. If it be assumed that this influence line has been drawn to scale, the signs of the numerical values of the slopes and coefficients will be as given in the parentheses.

$$s_{1} = \frac{0 - z_{2}}{l_{1}} (+) \qquad C_{1} = 0 - s_{1} (-)$$

$$s_{2} = \frac{z_{2} - z_{3}}{l_{2}} (-) \qquad C_{2} = s_{1} - s_{2} (+)$$

$$s_{3} = \frac{z_{3} - z_{4}}{l_{3}} (+) \qquad C_{3} = s_{2} - s_{3} (-)$$

$$s_{4} = \frac{z_{4} - 0}{l_{4}} (+) \qquad C_{4} = s_{3} - s_{4} (+)$$

$$C_{5} = s_{4} - 0 (+)$$

A numerical evaluation of the slopes and coefficients for this influence line is given in Fig. 15 of Art. 8, which the reader should check in order to understand completely the method of procedure. These coefficients should also be checked by the graphical method as already explained.

For example, in Fig. 15 the value of
$$C_2 = \frac{2.59}{30} = .0863$$
.

It will be noted in the algebraic calculation of the coefficients C at all salient points that each slope enters once

as positive and once as negative. Therefore the sum of all coefficients equals zero.

This formula serves as a check on the values of the coefficients which have been determined either by calculation or by graphical measurement.

The general formulas for the sum of the ordinate-load products for any influence line (viz., with several sahent points such as the one shown in Fig. 3) may be arrived at by considering the two contiguous sloping sides of the influence line meeting at each salient point as two diverging lines. The entire influence line is thus made up of pairs of diverging lines (see Fig. 3) to each pair of which formula (5) may be directly applied. Thus in Fig. 3,

Ordinate-load products in
$$dfc = C_1M_1$$
 (-)

... $cge = C_2M_2$ (+)

... $eha = C_1M_4$ (-)

... ... $akb = C_1M_4$ (+)

... ... $bmd = C_1M_4$ (+)

The signs of the CM's are + or - according to the signs of the coefficients, for the M's are always positive. Summing up the above equations and observing that the ordinate-load products cancel one another except between the influence line fghkm and its base line fom, it follows that the sum of the ordinate-load products for the influence line, or the live-load stress, is

$$S = C_1 M_1 + C_2 M_2 + \dots = \Sigma C M_1 - \dots = (7)$$

The letter S represents in general any stress or sum of ordinate-load products for any influence line, while Z stands for the sum of ordinate-load products for any geometrical figure.

The rate at which S varies as the load advances a distance dx equals

$$\frac{dS}{dx} = \frac{d(C_1M_1)}{dx} + \frac{d(C_2M_2)}{dx} + \text{Etc.}$$

But by formula (5a) this becomes

$$\frac{dS}{dx} = C_1 W_1 + C_2 W_2 + \ldots = \Sigma C W. \qquad (8)$$

 W_1 , W_2 , etc., = sum of all of the loads to the left of points 1, 2, etc., respectively, whether on the span or not.

 M_1 , M_2 , etc., = moment of the same loads about points 1, 2, etc., respectively, whether on the span or not.

The above formulas (6), (7), and (8) apply equally well when the loading is headed from left to right instead of from right to left, the latter being the more usual way. In applying these formulas, however, it will save confusion not to reverse the loading, but to turn the influence line end for end, for this operation changes neither the values nor the signs of the coefficients C.

The stress $S = \Sigma CM$ is related to its derivative $\frac{dS}{dx} = \Sigma CW$ in the same way that any function is related to its derivative. Thus, if the value of $\frac{dS}{dx}$ passes through zero as the loading advances, the stress itself may have reached

- 1. Numerically maximum positive value.
- 2. " minimum " "

any one of four conditions; namely,

- 3. " maximum negative "
- 4. " minimum " "

In practice it is desirable to find the positions of loading to satisfy the first and third conditions. This may be done by proceeding as directed below. It is assumed in stating the following rules that the live load is advancing from right to left. In case the live load advances from left to right, the wheel will be tried first to the left and

then to the right of a salient point. In other words, dx is always an increment in the same direction as the loading advances.

Rule 1.—To determine the position of loading to give a maximum positive stress, place the live load on the part of the bridge corresponding to the positive portion of the influence line. Try a wheel first immediately to the right of a salient point that has a negative coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} = \Sigma CW$ for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from + to -, a position of loading for maximum positive stress is determined.

Rule 2.—To determine the position of loading to give a numerically maximum negative stress, place the live load on that part of the bridge corresponding to the negative portion of the influence line. Try a wheel first immediately to the right of a salient point that has a positive coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} = \Sigma CW$ for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from - to +, a position of loading for numerically maximum negative stress is determined.

It will be noted that the negative coefficients C occur at those salient points where the angles of the influence line point upward, while the positive coefficients C occur at those salient points where the angles point downward.

It is unnecessary to seek a position of loading for maximum positive stress by placing a wheel successively to the right and to the left of any salient point which has a positive coefficient; for if $\frac{dS}{dx} = \Sigma CW$ be + when the wheel is to the right of this point, it would have a still larger +

value when the wheel is to the left of the point. A change, therefore, of $\frac{dS}{dx}$ from + to - would not result. Similarly,

it may be shown to be unnecessary to seek a numerically maximum negative stress by trying wheels at any salient point which has a negative coefficient.

Formulas (7) and (8) are the general formulas for the solution of the sum of the ordinate-load products of an influence line and the rate of change of this sum, and are applicable to any form of influence line. They give at once a definite solution of the position of a set of loads producing maximum positive and negative stresses in any member of any truss or girder for which an influence line can be drawn and the values of such stresses. The method is particularly advantageous in the case of statically indeterminate structures, such as two-hinged and no-hinged arches, swing bridges, continuous girders, etc., where general analytical criteria for the positions of loads producing maximum stresses cannot readily be expressed and where such maximum stresses have had to be found by assuming positions of loadings and scaling the influence-line ordinates under all the loads, a laborious process and one open to much liability of mechanical inaccuracy.

In applying the present method to the simple forms of girders and trusses (viz., the statically determinate structures where the ordinates of the influence lines are readily expressible algebraically) it will generally be more convenient to transform formulas (7) and (8) in each case whereby the coefficients C may be expressed in terms of the geometric proportions of the truss or girder. This, in the following articles (4 to 7 inclusive), we shall proceed to do for the case of girder bridges (with and without panels), pier reactions, and through Pratt trusses with curved or horizontal chords. The general method will, however, be applied directly to the case of the three-hinged arch in Art. 8, which will serve as a typical example of the application of the method to any influence line.

ARTICLE IV.

GIRDER BRIDGE WITHOUT PANELS.

In Fig. 4 is shown a girder bridge without panels. The live load has advanced beyond the span, this being the

Fig. 4.

most general case. Formulas for the end reactions and for the bending moment and shear at any section will be developed.

13

The influence line for R_1 is shown in Fig. 4a. The sum of the ordinate-load products within the shaded area *rst* equals the end reaction R_1 , which at the same time is the end shear at R_1 .

From Fig. 4a,

Ordinate-load products in |rst =

By using formulas (4) and (5), this equation becomes

$$R_1 = \frac{1}{L} M_3 - \frac{1}{L} M_1 - W_1 = \frac{M_3 - M_1}{L} - W_1 . . (9)$$

Any value of M or W may be read directly from Table 2 for the standard loadings given in Table 1. For example, in Fig. 4, if $l_1 = 10'$, $l_2 = 30'$, and w_1 of Cooper's E50 has advanced 14' beyond the left end of the span, we have from Table 2,

At 1, 14' from
$$w_1$$
, $M_1 = 350.0^{K_1}$ $W_1 = 62.50^{K}$
At 2, 24' from w_1 , $M_2 = 1150.0$ $W_2 = 112.50$
At 3, 54' from w_1 , $M_3 = 5435.0$ $W_3 = 177.50$

The formula for R_2 is developed as for R_1 , the method of writing the second member of the first equation being abbreviated in a way readily understood. From the influence line in Fig. 4b, and the formulas (4) and (5),

 $R_2 = \text{Ordinate-load products in } (dvxe - | dvf + | fue)$ Or

$$R_2 = W_3 - \frac{1}{L}M_3 + \frac{1}{L}M_1 = W_3 - \frac{M_3 - M_1}{L}$$
 (9a)

The sum of the reactions R_1 and R_2 as given by (9) and (9a) equals $W_3 - W_1$, or the sum of the loads on the bridge.

From the influence line in Fig. 4c and formulas (5) or (7), the equation for bending moment may be written:

M = Ordinate-load products in (|gbh - |gak + |kzh).

Or

$$M = \frac{l_1}{L}M_s + \frac{l_2}{L}M_1 - M_2$$
 (10)

Formula (10) readily follows, likewise, from the general formula (7), $S = C_1M_1 + C_2M_2 + C_3M_4 = 2CM_4$

For example, in the case of the bending moment at point 2 in Fig. 4,

$$C_1 = 0 + \frac{l_1}{L}$$

 $C_2 = -\frac{l_2}{L} - \frac{l_3}{L} = -1$
 $C_3 = \frac{l_1}{L} - 0$
 $M = \frac{l_2}{L}M_1 - M_2 + \frac{l_1}{L}M_2 - ...$ (10a)

Whence

Taking the derivative of M with respect to the advance dx of the loading toward the left or using formula (8) directly, the rate of variation of the bending moment is

$$\frac{dM}{dx} = \frac{l_1}{L} W_1 + \frac{l_2}{L} W_1 - W_1 \tag{11}$$

All positions for maximum M may be found by trying wheels at point 2 as directed by Rule 1 of Art. 3. In applying this rule the simultaneous shifting of other wheels of the rigid loading from right to left of points 1 and 3 as a wheel is shifted from right to left of point 2, must be taken into account by substituting in formula (11) the corresponding changed values of W_i and W_s . It is to be remembered, as stated in Art 3, that it is entirely unnecessary to try wheels at points 1 and 3.

From the influence line in Fig. 4d, the formula for the intermediate shear S follows by applying formulas (4) and (5):

S = Ordinate-load products in

$$(mfq - mden - neq)$$

Or

$$S = \frac{1}{L}M_3 - W_2 - \frac{1}{L}M_1 = \frac{M_3 - M_1}{L} - W_2 \quad . \quad (12)$$

There is one more thing to be borne in mind in calculating maximum bending moments in a girder bridge without panels: it is the rule for finding the section where the absolute maximum bending moment occurs. The rule is often spoken of as the "centre of gravity rule," and may be stated as follows:

The bending moment under any given wheel becomes maximum when the centre of the span bisects the distance from the wheel in question to the centre of gravity of the loading on the span.

In the practical application of this rule, the procedure is first to find the wheel which gives maximum bending moment at the centre of the span and then to shift this wheel so that the bending moment beneath it becomes an absolute maximum according to the centre of gravity rule. For the usual standard loadings the maximum centre moment closely approximates the absolute maximum bending moment for the spans greater than 70 feet.

The proof of the centre of gravity rule follows. Refer to Fig. 5. Assume that it has been found by trial that the wheel w_n gives the maximum centre moment. The general case where load has advanced beyond the span is taken. In order to get an absolute maximum bending moment under w_n , this wheel must be shifted a certain distance from the centre. Let such position be distance y from R_1 . The sum of the loads on the span is called P_2 and equals $(W_3 - W_1)$. The centre of gravity of the loads P_2 is distance x from x. The sum of the loads on the span to the left of y is called y, and their centre of gravity is at the fixed distance y from y.

Taking moments about R_2 ,

$$R_1 = \frac{P_2 \bar{x}}{L}$$

Therefore,

$$M = R_1 y - P_1 b = \frac{P_1 x}{L} y - P_2 b.$$

In this equation for M, the only variables are x and y. Therefore, M will be a maximum when the preduct xy is maximum. Note, however, that the sum

$$x + y = (L - a) = constant.$$

If two variables have a constant sum, their product is maximum when the two variables are equal. Therefore, M is maximum when x = y. But when x = y, the distance from w_n to the centre of gravity of the loading is bisected

by the centre of the span. This proves the centre of gravity rule.

In order to apply this rule, a general expression for z is needed.

Since $R_1 = \frac{P_s \bar{x}}{L}$ it follows that $\bar{x} = \frac{R_s L}{P_s}$. Substitute the value of R_1 from formula (9), and the value $(W_k - W_1)$ for P_2 .

$$\overline{x} = \frac{M_3 - M_1 - LW_1}{W_4 - W_1} - \dots$$
 (13)

In the special case where the loading has not advanced beyond the left end of the span, M_1 and W_1 equal zero and \bar{x} becomes

$$\bar{x} = \frac{M_3}{W_3} \qquad (13a)$$

Problems relating to a girder bridge without panels will now be given to illustrate the application of the above formulas and the use of some of the tables following the text.

Problem.—Given a 40-foot deck-girder bridge consisting of one girder per rail. Use Cooper's E50 loading. Find the maximum shear at the end, quarter point, and centre. Determine also the maximum bending moment at the quarter point and at the centre, and the absolute maximum bending moment. All values are to be given per rail.

Solution.—Table 5 following the text gives the position of Cooper's loadings for maximum end shear. This table is the result of the solution of end shears for a large number of spans. As a general rule, however, it is safe to assume that w_2 of Cooper's and similar loadings will always give the maximum end or intermediate shear when placed immediately to the right of the given section, the live load being headed toward the left. The exceptions in Table 5 to this general rule are not of prime importance, for the actual value of the shear when w_2 is used is sufficiently close to the maximum even in the exceptional cases. There is no satisfactory criterion for determining the position of loading for maximum shear in girder bridges without panels, for it is as easy to calculate the actual values of the shears for the successive positions of loading as it is to apply any criterion. In the case of bending moment, however, time is saved by using the criterion.

Maximum End Shear.

Use formula (9),
$$R_1 = \frac{M_3 - M_1}{L} - W_1$$
. Place wheel 2

of Cooper's E50 immediately to right of R_{\star} . Take the values of moment and load sums for Cooper's E50 from Table 2.

Maximum end shear =
$$\frac{4370 - 100}{40} - 12.5 = 94.3^{\circ}$$
.

Maximum Shear at Quarter Point.

Use formula (12) with w_z at quarter point.

$$S = \frac{M_1 - M_1}{L} - W_2$$

$$S \text{ at } \frac{1}{4} \text{ point} = \frac{2838.75 - 0}{40} - 12.5 = 58.5^{8}.$$

Maximum Shear at Centre.

Using formula (12) with w, at centre.

S at centre =
$$\frac{1600 - 0}{40} - 12.5 = 27.5^4$$
.

The values for the shears are given in Kips, or thousand of pounds. A comparison of the above shears with those in Table 7 shows agreement of results.

Maximum Bending Moment at the One-Quarter Point.

First compute successive pairs of values for $\frac{dM}{dx}$ for different wheels, first placed to the right and then to the left of the quarter point. A change of sign from + to - indi-

cates a wheel that gives a maximum. Use formula (11),

$$\frac{dM}{dx} = \frac{l_1}{L}W_1 + \frac{l_2}{L}W_1 - W_2 \qquad (11)$$

w, at 14 point.

$$\frac{dM}{dr} = \frac{1}{4} (112.5) + \frac{3}{4} (0) - 0 = 4$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4} (112.5) + \frac{3}{4} (0) - 12.5 = +$$

w2 at 1/4 point.

$$\frac{dM}{dx} = \frac{1}{4}(145) + \frac{3}{4}(0) - 12.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (0) - 37.5 = -$$

wa at 1/4 point.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (12.5) - 37.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

w, at 1/4 point.

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4} (177.5) + \frac{3}{4} (37.5) - 87.5 = -$$

Accordingly, compute the value of M by formula (10) for w_2 and w_3 at quarter point.

$$M = \frac{l_1}{L} M_2 + \frac{l_2}{L} M_1 - M_2 \quad . \quad . \quad . \quad . \quad . \quad (10)$$

M for w2 at quarter point,

$$M = \frac{1}{4}(2838.75) + \frac{3}{4}(0) - 100 = 609.7$$
 Kip feet.

M for w_3 at quarter point,

$$M = \frac{1}{4}(3563.75) + \frac{3}{4}(37.5) - 287.5 = 631.6$$
 Kip feet.

The latter value, 631.6, is the maximum bending moment at the quarter point. A comparison of this value

with Table 11 shows agreement of results. Reference to Table 3 indicates that the correct wheel for maximum has been chosen.

Maximum Bending Moment at the Centre.

$$\frac{dM}{dx} = \frac{W_s + W_s}{2} - W_s, (10a), \text{ and}$$

$$M = \frac{M_s + M_s}{2} - M_s, (11a), \text{ when } \frac{I_s}{L} = \frac{1}{2}$$

w, at centre,

$$\frac{dM}{dx} = \frac{128.75}{2} - 37.5 = +$$
No maximum
$$\frac{dM}{dx} = \frac{128.75}{2} - 62.5 = +$$

w, at centre,

$$\frac{dM}{dx} = \frac{145}{2} - 62.5 = +$$

$$\frac{dM}{dx} = \frac{145}{2} - 87.5 = -$$
Maximum.

ws at centre,

$$\frac{dM}{dx} = \frac{145 + 12.5}{2} - 87.5 = -\frac{161.25 + 12.5}{2} - 112.5 = -\frac{161.25 + 12.5}{2} - 112.5 = -\frac{161.25 + 12.5}{2} - 112.5 = -\frac{161.25 + 12.5}{2} - \frac{161.25 + 12.5}{2} = -\frac{161.25 + 12.5}{2} = -\frac{16$$

Therefore, maximum centre moment occurs with m, at centre.

$$M = \frac{2838.75}{2} - 600 = 819.37$$
 Kip feet.

This value agrees with Table 11; and the position of loading, with Table 3.

Absolute Maximum Bending Moment.

Shift w_4 according to centre of gravity rule, and then recompute the value of M under this wheel by formula (10). Note that new values for l_1 , l_2 , and M_3 must be determined.

By formula (13a), when w_4 is at the centre,

$$\overline{x} = \frac{M_3}{W_3} = \frac{2838.75}{145} = 19'.58$$

Therefore for absolute maximum bending moment under

$$w_4$$
, shift loading to left $\frac{20'.00 - 19'.58}{2} = 0'.21$.

The new values of
$$l_1$$
, l_2 , and M_3 are
$$l_1 = 20.00 - 0.21 = 19.79$$
$$l_2 = 20.00 + 0.21 = 20.21$$
$$M_3 = 2838.75 + .21(145) = 2869.2$$

The absolute maximum bending moment =

$$\begin{split} M &= \frac{l_1}{L} \, M_3 + \frac{l_2}{L} \, M_1 - M_2 \\ &= \frac{19.79}{40} \, (2869.2) \, + \, 0 \, - \, 600 \, = \, 819.54 \text{ Kip feet.} \end{split}$$

It appears, therefore, that the absolute maximum bending moment is .17 Kip feet greater than the maximum centre moment. The difference is not great in this particular case, as the required shift of the loading is comparatively small. The position of loading for absolute maximum bending moment agrees with Table 4, and its value agrees with Table 7.

ARTICLE V.

PIER REACTION.

In Fig. 4e is given the influence line for the pier reaction R between two non-continuous beam spans l_i and l_s . From this influence line, the formulas (5) and (7) give

R = Ordinate-load products in (|gbh - |gak + |kzh)

Or,

$$R = \frac{M_s}{l_s} + \frac{M_s}{l_s} - \frac{L}{l_s l_s} M_s = \frac{L}{l_s l_s} \left(\frac{l_s}{L} M_s + \frac{l_s}{L} M_s - M_s \right)$$
(14)

Formula (14) may also be derived from formula (10) since the ordinates of the influence line for R bear the constant ratio $\frac{L}{l_1 \, l_2}$ to the corresponding influence ordinates for M, the position of the live load and the values of l_1 and l_2 remaining fixed.

Therefore,

$$R = \frac{L}{l_1 l_2} M \qquad (16)$$

Substituting the value $M = \frac{l_1}{L}M_1 + \frac{l_2}{L}M_1 - M_2$ from formula (10) in formula (16), the result is again formula (14).

For equal spans,

$$l_1 = l_2 = l$$
 so that $R = \frac{M_1 + M_1 - 2M_2}{l}$ (14a)

The rate of change of R for a movement dx of the loading to the left is

$$\frac{dR}{dx} = \frac{W_3}{l_1} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_2}{L} W_3 + \frac{l_1}{L} W_1 - W_1 \right) \quad (15)$$

For equal spans, $l_1 = l_2 = l$, so that

$$\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l} \dots \dots (15a)$$

In the last member of formula (15) the quantity within the parentheses is the same as the expression for $\frac{dM}{dx}$ in formula (11). It follows, therefore, that the same position of loading gives maximum R and maximum M for any given values of l_1 and l_2 .

Problem.—(a) Find the maximum pier reaction per rail between two simple beam spans $l_1 = 10$ ft. and $l_2 = 30$ ft. (b) Find the maximum pier reaction between two simple beam spans, each having a length of 20 feet. Use Cooper's E50 loading.

Solution of Problem (a).

Use formula (15) to find position of loading for maximum R.

$$\frac{dR}{dx} = \frac{L}{l_1 l_2} \left(\frac{l}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right) \quad . \tag{15}$$

 w_2 at pier.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (0) - 12.5 \right) = +$$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (0) - 37.5 \right) = -$$

w₃ at pier.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (12.5) - 37.5 \right) = +$$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} \left(161.25 \right) + \frac{30}{40} \left(12.5 \right) - 62.5 \right) = -$$

Use formula (14) to compute the value of R.

$$R = \frac{M_s}{l_s} + \frac{M_s}{l_t} - \frac{L}{l_t l_s} M_s$$

w, at pier.

$$R = \frac{2838,75}{30} + \frac{0}{10} - \frac{40}{10 \times 30} (100) = 81^{\circ}.$$

w, at pier.

$$R = \frac{3563.75}{30} + \frac{37.5}{10} - \frac{40}{10 \times 30} (287.5) = 84^{k}.$$

The latter value of 84 is the maximum pier reaction. Its value agrees with Table 14 and the position of leading agrees with Table 3.

Solution of Problem (b).

Use formulas (14a) and (15a),

$$R = \frac{M_1 + M_1 - 2M_2}{l}, \text{ and } \frac{dR}{dx} = \frac{W_2 + W_1 - 2W_2}{l}$$

w, at pier.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 37.5}{20} = \pm \frac{128.75 + 0}{120}$$
No maximum.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 62.5}{20} = +$$

w, at pier.

$$\frac{dR}{dx} = \frac{145 + 0 - 2 \times 62.5}{20} = +$$

$$\frac{dR}{dx} = \frac{145 + 0 - 2 \times 87.5}{20} = -$$

w at pier.

$$\frac{dR}{dx} = \frac{145 + 12.5 - 2 \times 87.5}{20} = -$$

No maximum

$$\frac{dR}{dx} = \frac{161.25 + 12.5 - 2 \times 112.5}{20} = -\frac{161.25 + 12.5}{20} = -\frac{16$$

Therefore, maximum pier reaction occurs when ic, is at the pier.

$$R = \frac{2838.75 - 0 - 2 \times 600}{20} = 81.9^{k}.$$

This maximum pier reaction of 81.9^k agrees with value in Table 7 and Table 14, while the position of loading agrees with that given by Table 3.

ARTICLE VL

GIRDER BRIDGE WITH PANELS.

In Fig. 6 is shown a girder bridge with panels. It is as-

Fig. 6.

sumed that the live load has advanced beyond the left end of the span, this being the most general case.

The formulas for R_1 and R_2 are the same as formulas (9) and (9a) for the girder without panels, if the girder bridge with panels has end floor-beams; but if this bridge has end struts with the end stringers resting on separate pedestals, the value of R_1 beneath the end of the main girder is the same as S_a , the shear in the end panel, as given by formula (17) to follow.

Inasmuch as the maximum bending moment in a beam carrying concentrated loads always occurs beneath a concentration, the maximum bending moments in the main girder of a girder bridge with panels will occur at the floor-beams. The influence line for the bending moment at the floor-beams is the same as for the bending moment in a girder bridge without panels; accordingly, formulas (10) and (11) are to be used in finding maximum bending moments at the floor-beams.

It remains to derive formulas for the maximum shears S_a in the end panel and S_b in any intermediate panel. In Fig. 6 are given the influence lines for S_a and S_b . The correctness of the ordinates is at once evident. The slopes and coefficients are calculated as explained in Arts. 2 and 3. The general formulas for S_a and S_b and their rates of variation may be written at once by use of formulas (7) and (8).

$$S_a = \frac{1}{L}M_3 + \frac{l_2}{l_1L}M_1 - \frac{1}{l_1}M_2 = \frac{1}{l_1}\left(\frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2\right)$$
(17)

$$\frac{dS_a}{dx} = \frac{1}{L}W_3 + \frac{l_2}{l_1L}W_1 - \frac{1}{l_1}W_2 = \frac{1}{l_1}\left(\frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2\right)$$
(18)

$$S_b = \frac{1}{L}M_4 - \frac{1}{p}M_3 + \frac{1}{p}M_2 - \frac{1}{L}M_1 \quad . \quad . \quad . \quad (19)$$

$$\frac{dS_b}{dx} = \frac{1}{L} W_4 - \frac{1}{p} W_3 + \frac{1}{p} W_2 - \frac{1}{L} W_1 \quad . \quad . \quad (20)$$

Formula (17) when compared with formula (10) shows that S_a is equal to the bending moment at the first intermediate floor-beam divided by the length of the first panel. Formula (18) when compared with formula (11) shows that

the same position of loading that gives maximum bending moment at the first intermediate floor-beam will also give maximum shear in the end panel.

Formulas (19) and (20) are perfectly general and will serve for any assumed series of vertical loads in any position. For the usual standard loadings and panel lengths, however, it is not necessary to advance any loads beyond an intermediate panel for maximum shear in this panel. Therefore, for practical purposes formulas (19a) and (20a)

$$S_{\delta} = \frac{M_{\star}}{L} - \frac{M_{\star}}{p} = \frac{1}{p} \left(\frac{p}{L} M_{\star} - M_{\star} \right) . \quad (19a)$$

$$\frac{dS_{\delta}}{dx} = \frac{W_{\star}}{L} - \frac{W_{\star}}{p} = \frac{1}{p} \left(\frac{p}{L} W_{\star} - W_{\star} \right) \quad (20a)$$

Illustrative Problem.—A single track through girder bridge with a floor system consisting of stringers and floor-beams, both end and intermediate, has six panels of 20 feet each. Find the maximum end reaction and the shear in panels 0-1, 1-2, and 2-3, using Cooper's E50 loading.

Solution.—For maximum end reaction place wheel 2 at left end. Use formula

$$R_1 = \frac{M_4 - M_1}{L} - W_1$$

$$R_1 = \frac{27651 - 100}{120} - 12.5 = 217.1^6$$
(9)

Note that the above value agrees with Table 7. For maximum shear in panel 0 - 1, find critical wheel by formula (18) and then compute shear by formula (17). Try wheel 3 at panel point 1.

$$\frac{dS_*}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) + 0 - 37.5 \right) = \pm \frac{dS_*}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) - 0 - 62.5 \right) = -$$
Maximum.

Note that the position of loading agrees with Table 3. For this position of loading formula (17) gives

$$S_a = \frac{1}{20} \left(\frac{1}{6} (21895) + 0 - 287.5 \right) = 168.1^k.$$

For maximum shears in the intermediate panels, determine the position of loading by formula (20a) and the shear by formula (19a).

$$\frac{dS_b}{dx} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \qquad (20a)$$

$$S_b = \frac{1}{p} \left(\frac{p}{L} M_4 - M_3 \right) \quad . \quad . \quad . \quad (19a)$$

Panel 1-2. Try wheel 3 at panel point 2.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (306.25) - 37.5 \right) = +$$

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (322.50) - 62.5 \right) = -$$
Maximum.

$$S_b = \frac{1}{20} \left(\frac{1}{6} (15051.25) - 287.5 \right) = 111.0^k.$$

Panel 2-3. Try wheel 3 at panel point 3.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 37.5 \right) = +
Maximum.$$

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 62.5 \right) = -
S_b = \frac{1}{20} \left(\frac{1}{6} (9345) - 287.5 \right) = 63.5^k.$$

The above values for shears agree with the values given by Table 9. The wheel for maximum shear in panels of girder and truss bridges is given in Table 6.

DEPT. OF APPLIED MECHANICS.

ARTICLE VII.

THROUGH PRATT THUSS. GENERAL FORMULAS FOR LIVE-LOAD STRESSES AND THEIR RATE OF VARIATION. ILLUSTRATIVE PROBLEMS.

The general formulas $S = \Sigma CM$ and $\frac{dS}{dx} = \Sigma CW$ may

be used to write the equations for the live-load stresses in any member of a framed structure as soon as its influence

line has been drawn and the ordinates at the salient points determined.

In Figs. 7, 8, 9, and 10 are shown all the influence lines

needed in writing the formulas for the live-load stresses in a through Pratt truss with non-parallel or parallel chords. The influence ordinate at any salient point is the calculated stress due to a one-pound load on the bridge at the panel point above this salient point. By easily discovered relations between similar triangles, the algebraic value of each stress, or influence ordinate, is expressed in terms that are most readily evaluated in any numerical problem.

The derivation of any one formula for a live-load stress is typical. Refer to Fig. 7. The stress in the lower chord member S_5 is found by taking moments about C. The influence line for S_5 is straight over each of the two intervals kp and mp. The ordinates at the salient points 1 and 4 are zero. The ordinate at salient point 3 must be found by placing a one-pound load at the lower panel point of the truss above this salient point and calculating the value of S_5 . For the unit load so placed,

Reaction at
$$A = \frac{kp}{np} = \frac{k}{n}$$

By moments about C,

$$\frac{k}{n}(mp) = S_5(v)$$

Therefore,

$$S_{\delta} = + \frac{mkp}{nv}$$
 = Influence ordinate at 3.

The slopes of the segments of this influence line follow.

Slope of
$$ab = -\frac{mkp}{nv} \div mp = -\frac{k}{nv}$$

Slope of $bc = +\frac{mkp}{nv} \div kp = +\frac{m}{nv}$

The coefficients C for use in the general formula $S = \Sigma CM$ are now found.

$$C_1 = 0 + \frac{k}{nv} = + \frac{k}{nv}$$

$$C_{i} \simeq -\frac{k}{nv} - \frac{m}{nv} = -\frac{1}{v}$$

$$C_{i} \simeq \frac{m}{nv} - 0 = +\frac{m}{nv}$$

Therefore, for the position of the live load advanced beyond the limits of the span, the general formula for S_s is

$$S_i = \left(\frac{m}{nv}\right)M_i - \left(\frac{1}{v}\right)M_i + \left(\frac{k}{nv}\right)M_i$$

However, in actual practice it is usually not necessary to advance the loading beyond the left end of the span in order to get a maximum value of S_p . The usual formula will therefore not contain the term M_1 , since this will be zero; thus,

$$S_i = \left(\frac{m}{nv}\right)M_i - \left(\frac{1}{v}\right)M_i \qquad (21)$$

Inasmuch as the horizontal component of the stress S_{\bullet} in an inclined top chord member or end post equals the stress S_{\bullet} in a corresponding lower chord member, the stress S_{\bullet} in any top chord member or end post may be found by

$$S_4 = \frac{i}{p} \cdot S_4 \cdot \ldots \cdot (22)$$

In Fig. 8 is shown the influence line for the stress S_t in any vertical post. The influence ordinates are determined by taking moments about the intersection of the upper and lower chord members which are cut by the section. The algebraic values of these ordinates are transformed by use of easily discovered relations between similar triangles. The slopes and coefficients are then calculated in the usual way. The influence line indicates that the live load should advance into but not beyond the panel p for a maximum compression, and for this reason M_1 and M_2 equal zero for the usual case. The numerical value of

the maximum compression S4 in a vertical post is, therefore,

$$S_4 = \left(\frac{a}{bL}\right)M_4 - \left(\frac{1}{p}\right)M_2 \quad . \quad . \quad (23)$$

The coefficients for the stress in any inclined web member are given by Fig. 9. The quantities for S_1 and S_2 are

as shown, and the quantities for S_3 are of the same algebraic form except that they are of opposite sign throughout. For the usual position of the live load advanced from the right into but not beyond the panel p for maximum stress, the moment sums M_1 and M_2 equal zero, and the numerical values of the maximum tension S_1 and S_2 and of the maximum compression S_3 are given by the following formula:

$$S_1$$
, S_2 , or $S_3 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3$. . . (24)

In a special case where the loading must be advanced beyond the panel p until the tension in the inclined compression web member S_1 is balanced by the dead-load compression

Fra. 9.

in this same member, the value of M_0 is not zero, and the formula for S_0 becomes

$$S_{z} = \left(\frac{ta}{cbL}\right)M_{z} - \left(\frac{t}{bp}\right)M_{z} + \left(\frac{t}{cp}\right)M_{z}$$
Or, letting $M_{e} = \left(M_{z} - \frac{b}{c}M_{z}\right)$,
$$S_{z} = \left(\frac{ta}{cbL}\right)M_{z} - \frac{t}{bp}\left(M_{z} - \frac{b}{c}M_{z}\right) = \left(\frac{ta}{cbL}\right)M_{z} - \left(\frac{t}{bp}\right)M_{z}$$

$$S_{z} = \left(\frac{ta}{cbL}\right)M_{z} - \frac{t}{bp}\left(M_{z} - \frac{b}{c}M_{z}\right) = \left(\frac{ta}{cbL}\right)M_{z} - \left(\frac{t}{bp}\right)M_{z}$$

$$S_{z} = \left(\frac{ta}{cbL}\right)M_{z} - \frac{t}{bp}\left(M_{z} - \frac{b}{c}M_{z}\right) = \left(\frac{ta}{cbL}\right)M_{z} - \left(\frac{t}{bp}\right)M_{z}$$

$$S_{z} = \left(\frac{ta}{cbL}\right)M_{z} - \frac{t}{bp}\left(M_{z} - \frac{b}{c}M_{z}\right) = \left(\frac{ta}{cbL}\right)M_{z} - \left(\frac{t}{bp}\right)M_{z}$$

Note that the coefficients of M_4 and M_c in this formula are the same as the coefficients for M_4 and M_5 in formula (24).

The influence line for the counter-tension in a vertical post is shown in Fig. 10. For the usual case, the loading advances beyond the panel but not beyond the end of the span. Therefore M_1 is equal to zero, so that

Fig. 10.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_o . . (26)$$

where K and M_o stand for the corresponding terms in the parentheses. In order that T be a maximum the live load must advance beyond the position for the maximum tension S_2 until the tension as computed by formula (25) becomes equal to the dead-load compression in this same member. For this position of the live load, the value of T is then computed by using formula (26). It may be noted that

some specifications state that only 34 of the dead-load compression is to be counted as effective in counteracting the live-load tension in an inclined counter-web member. This specification has been observed in the problem to follow.

A review of the preceding formulas shows that all the live-load stresses may be computed by formulas (21), (22), (23), and (24), except the counter-tension in a vertical post and the tension in a floor-beam hanger. Formula (25) makes it possible to find readily by trial the position of leading for maximum counter-tension in a vertical post, and formula (26) gives the value of this tension. The maximum tension in the floor-beam hanger may be found by the use of formulas (14a) and (15a) for pier reaction between equal spans.

If the chords of the Pratt truss are parallel, there will be no counter-tension in any vertical post. Formula (21) for the stress in a horizontal chord member and formula (22) for the stress in the inclined end post remain unchanged. Formulas (23) and (24) for web stresses are simplified because a = b = depth of truss.

The formulas, therefore, for the Pratt truss with parallel chords are:

Stress in horizontal chord members =

$$S_{i} = \left(\frac{m}{nv}\right)M_{i} - \left(\frac{1}{v}\right)M_{i} \qquad (21)$$

Stress in inclined end post =
$$S_{\epsilon} = \frac{i}{p} S_{\epsilon}$$
 (22)

Stress in vertical post =
$$S_i = \left(\frac{1}{L}\right)M_i - \left(\frac{1}{p}\right)M_i$$
, - (29)

Stress in inclined web member =

$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_4 = \frac{t}{c}S_4 \qquad (30)$$

One general formula will suffice for finding the position of loading for maximum chord and web stresses of a Pratt truss with either inclined or parallel chords. The formulas (21), (23), (24), (29), and (30) for these stresses are of one general form

 $S = (G) M_4 - (H) M_3 \dots (27)$

where G and H are the corresponding coefficients of M_*

Fig. 11.

and M_3 in the preceding formulas. The rate of variation of S as the load advances is

$$\frac{dS}{dx} = GW_4 - HW_3 = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad (28)$$

When any one of the above stresses is a maximum, the value of $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero as a wheel is shifted from right to left of the salient point 3 in Figs. 7, 8, or 9.

The preceding formulas for the live-load stresses are summarized for convenient reference in Art. 11 preceding the Tables. The important dimensions and quantities in Figs. 7, 8, and 9 are summarized in Fig. 11. If a uniform live load is used, the shaded areas in Fig. 11a, b and c multiplied by the intensity of the uniform load will give the maximum live-load stresses. The algebraic value of any one of these triangular areas is conveniently expressed as the base of the triangle times ½ of the given algebraic ordinate. The lengths of the bases of the shaded areas in Figs. 11a and b may be readily determined by one of the constructions shown in Figs. 12a and 12b, which give the position of the unit load for zero stress in the members indicated. The proofs that these constructions locate neutral points are not given, for they are generally known, and are proved in numerous texts on bridges. (See Marburg's "Framed Structures and Girders," Vol. I, page 392.)

The application of the preceding formulas will now be made to the calculation of the live-load stresses in the two single track through Pratt trusses shown in Figs. 13 and

14. A convenient procedure is as follows:

 Determine the lengths of all inclined members and write their values on the truss outline.

2. Determine the values of the intercepts a as defined by Fig. 11 and write their values on the truss outline.

Write on the truss outline the distances of the several panel points from the right end of the span.

4. Write down the reciprocals of the span, panel length, and lengths of vertical members.

5. Make a form for tabulating calculations and list members in some convenient form as is done in Figs. 13 and 14.

6. Calculate the numerical values of the coefficients G and H for the several members by use of the formulas already derived.

7. Determine the position of the loading for maximum

stress by finding the position of loading causing $\left(\frac{G}{H}W_s-W_s\right)$

to pass through zero, and for this position of loading select from Table 2 the corresponding values of M_4 and M_3 . At

the same time tabulate the length L_1 of loading causing maximum stress as this value is used in the impact formula

$$I = S \cdot \frac{300}{L_1 + 300}.$$

8. Calculate values of $S = GM_4 - HM_1$ and combine with impact and dead-load stresses. When the dead- and live-load stresses are of opposite sign, the combination is usually not algebraic but according to the particular specification that is used.

Fig. 13.

Mem.	G	н	Wheel	Me	Ma	GM.	HM.	S	L	200 L ₄ +300	1	DL	Total R
EF			3 (4) 3				11	-116	143	677		- 40	- 234
ED			3 (4 2				13	- 210			- 134	_	- 400
GH			2 (0.4				4	- K3			- 60	- 15	
GF			3 (11) 1				13	+157					*911
IJ			2 (0. 5				4	- 58	St		- 45		-
IH			3 (11 4				13	+123			- 54 - 54		- 22
ML			2 (a) 5	10000			5 5	- 70 - 46			· 35	E 64	****
NO			2 (0 7			-	5	- 19		_	17	. 53	
.10	ORANG	, treat	2 600 1	2001	Year		9	- 12	31	1000		1 100	the name
AC-AD	(1)(390)	(312	4 (a. 1	63111	GOVE	947	19	. 23	311	600	- 137	4-3002	-
BC								-362	99		-217	- 1600	
AF			7 (0. 2				75	. 335	193	res.	+26	+154	. (11)
BE							W	- 570	100		-34	-156	-701
AH			11(0)3				192	. 74	194	017	+ 230	+151	- 515
BG	-	14556	ritter				300	-20.	-		+ 201	-161	_
BI	01315	(1747)	13 (a. 4	S(FHI)	0383	670	137.13	-418	178		- 7.	= 2.54	
CD	11385	0770	4 (0 1	3725	fax)	144	46	+ 25	44	872	0.50	+ 25	- 30
			-				-						
Post at	Mem.	M.	Me	S	į D	K	M	т	l.	300 L + 50	1	D.E.	Total
5	JK	22301	2390					+21			+17		+ 43
6.	MI.	1302	687	-35	-34	107214	1000	+13	71	8	+10	4.1	+ 24

9. Find positions of loading for maximum counter-tensions in posts and compute values by use of formulas (25) and (26).

PROBLEM 1.

Calculation of Live-load Stresses in a Pratt Truss with Inclined Chord.

The complete data for this problem are given in Fig. 13. Items 1 to 5 of the above method of procedure need no explanation. The values of the coefficients G and H, the position of the loading for maximum stress, and the value of the maximum stress will be determined for several typical members; for example, vertical post, inclined web members, horizontal chords, end post, and inclined chords.

Vertical Post EF.

Formula

$$S_4 = \left(\frac{a}{bL}\right) M_4 - \left(\frac{1}{p}\right) M_3 \dots \dots (23)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{a}{bL} = \frac{28}{36} (.00480) = .00373$$

 $H = \frac{1}{p} = .0385$

Try w_3 at panel point 3. Use Table 2. $L_1 = 143'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00373}{.03850} (440.0) - \frac{37.5}{000} = 0$$

Therefore w_3 at 3 gives a maximum.

$$S = GM_4 - HM_3 = .00373(33970) - .0385(287.5)$$

$$= 126.7 - 11.0 = 115.7^k$$
Impact factor = $\frac{300}{L_1 + 300} = \frac{300}{443} = .677$
Impact stress = $.677 \times 115.7 = 78.3^k$.

Inclined Web Member ED

Formula

$$S_i = \left(\frac{ba}{cbL}\right)M_s - \left(\frac{t}{bp}\right)M_s$$
 (24)

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{41.23 \times 28}{32 \times 36} (.00480) = .00481$$

 $H = \frac{t}{bp} = \frac{41.23}{36} (.0385) = .0442$

Try w, at panel point 2. Use Table 2. L, = 169'.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00481}{.0442}(505.0) - \frac{37.5}{62.5} = \frac{+}{67}$$

Therefore w, at 2 gives a maximum.

$$S = GM_4 - HM_4 = .00481(46255) - .0442(287.5)$$

= $.223 - 13 = 210^4$.

Impact factor =
$$\frac{300}{469}$$
 = .640

Impact stress = $.640 \times 210 = 134^{k}$.

Inclined Web Member ML.

Formula

$$S_{\gamma} = \left(\frac{la}{cbL}\right)M_4 - \left(\frac{l}{bp}\right)M_4$$
 (24)

Refer to Fig. 9 or Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{46.04 \times 48}{38 \times 36} (.00480) = .00777$$

 $H = \frac{t}{bn} = \frac{46.04}{36} (.0385) = .0493$

Try w; at panel point 6. Use Table 2. L. = 60'.

$$\left(\frac{G}{H} W_4 - W_3\right) = \frac{.00777}{.0493} (190) = \frac{12.5}{.07} + \frac{1}{.0493} = \frac{12.5}{.0493} + \frac{1}{.0493} = \frac{1$$

Therefore w, at 6 gives a maximum.

$$S = GM_4 - HM_3 = .00777(6550) - .0493(100)$$

= $51 - 5 = 46^k$.
Impact factor = $\frac{300}{360} = .833$
Impact stress = $.833 \times 46 = 38^k$.

Lower Chord Member AC = AD.

Formula
$$S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_5 \dots (21)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{m}{nv} = \frac{1}{8} (.03125) = .00390$$

 $H = \frac{1}{v} = .0312$

Try w_4 at panel point 1. Use Table 2. $L_1 = 200'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00390}{.0312} (582.5) - \frac{62.5}{000} + \frac{1}{87.5} - \frac{1}{100}$$

Therefore w_4 at 1 gives a maximum.

$$S = GM_4 - HM_3 = .00390(63111) - .0312(600)$$

= $247 - 19 = 228^k$.
Impact factor = $\frac{300}{500} = .600$

Impact stress = $.600 \times 228 = 137^k$.

End of Post BC.

Formula
$$S_6 = \frac{i}{p} S_5 \dots (22)$$

$$S_6 = \frac{41.23}{26} (228) = 362^k$$
, and impact $= \frac{41.23}{26} (137) = 217^k$.

Lower Chord Member AH.

Formula
$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \dots (21)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{m}{nv} = \frac{1}{4} (.02632) = .00985$$

 $H = \frac{1}{v} = .0263$

Try w_{11} at panel point 3. Use Table 2. $L_1 = 194'$.

$$\left(\frac{G}{H} W_4 - W_2\right) = \frac{.00985}{.0263} (567.5) - \frac{190}{or} = \frac{+}{or}$$

Therefore wn at 3 gives a maximum.

$$S = GM_4 - HM_4 = .00985(59661) - .0263(7310)$$

= $587 - 192 = 395^k$.
Impact stress = $\frac{300}{494}S = .607 \times 395 = 239^k$.

Top Chord Member BG.

Formula

$$S_4 = \frac{i}{p} S_4$$
 (22)
 $S_4 = \frac{26.08}{26} (395) = 396^k$.
Impact = $\frac{26.08}{26} (239) = 240^k$.

Counter-Tension in Post at Panel Point 5.

Formulas

$$S_{z} = \text{Stress } JK = \left(\frac{ta}{cbL}\right)M_{z} - \left(\frac{t}{bp}\right)\left(M_{z} - \frac{b}{c}M_{z}\right)$$
$$= \left(\frac{ta}{cbL}\right)M_{z} - \left(\frac{t}{bp}\right)M_{c} \qquad (25)$$

T = tension in post.= $\left(\frac{d_7 - d_4}{bp}\right) \left(\frac{m}{n}M_4 - M_4\right) = K \cdot M_{\phi}$ (26)

Refer to Fig. 10 for definition of dimensions, The calculation of the dead-load compression in JK is not given, but the value is 21^k . Two-thirds of this compression, or 14^k , will be considered effective in counterbalancing the live-load tension in JK. The live load must be advanced beyond the position of maximum live-load tension in JK (i.e., w_2 at panel point 5) until S_2 , or the stress in JK, equals 14^k . This must be done by trial, S_2 being figured each time by formula (25). It is found that when 114' of loading has advanced upon the bridge, this condition is approximately satisfied. For this position of loading

$$M_4 = 22261$$
 $M_c = \left(M_3 - \frac{b}{c}M_2\right) = (2565 - 175) = 2390$
 $G = \left(\frac{ta}{cbL}\right) = \frac{46.04 \times 38}{38 \times 38} (.00480) = .00580$
 $H = \left(\frac{t}{bp}\right) = \frac{46.04}{38} (.0385) = .0466$

Therefore,

$$S_2 = .00580(22261) - .0466(2390) = 16^k$$

This value of $S_2 = 16^k$ balances $\frac{2}{3}$ $D = -14^k$, nearly enough for practical purposes. Therefore, compute T for this position of the live load.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_o$$

$$K = \frac{2 - 0}{38 \times 26} = .00203$$

$$M_o = \frac{5}{8} (22261) - 2565 = 11340$$

$$T = .00203(11340) = 23^k$$
Impact factor = $\frac{300}{414} = .725$
Impact stress for $T = .725 \times 23 = 17^k$.

PROBLEM 2.

Live-load Stresses in a Pratt Truss with Parallel Chords.

The complete data for this problem are given in Fig. 14. Formulas (21), (29), and (30) give the values of the

coefficients G and H, which are identical for several members of any Pratt truss with parallel chords. The procedure for finding the positions of the loading and maximum stresses is exactly as in Problem 1. It should be noted that

Stress
$$FG = Stress EF \times \frac{37.54}{28}$$

"
 $HI =$ "
 $GH \times \frac{37.54}{28}$

"
 $BC =$ "
 $AC \times \frac{37.54}{25}$

Mem.	G	H	Wheel	Mx	Ma	8
CD	.0400	.0800	4 (a) 1	3564	600	9.5
EF	-00667	0400	3 3	13520	287	79
FG GH	00667	0400	2 4	6170	100	106
HI	******			17111	1000	50
JK	.00894	. 0536	2 " 5	2179	100	14
DE	00894	0536	3 " 2	21893	287	181
AC = AD	00595	0357	1 " 1	33970	600	272 151
AF = BE	-01100	OUS7	7 = 9	31373	2004	778
BG	.01785	0.157	12 - 3	34411	irie	314

The stresses in all of the chord members may be checked by use of Table 8, and the stresses in the end post and web members may be checked by Table 9. The stress in CD agrees with the maximum pier reaction in Table 7. Table 3 may be used to find the position of loading for maximum chord stresses, and Table 6 gives position of loading for maximum web stresses.

ARTICLE VIII.

THREE-HINGED ARCH. APPLICATION OF THE GENERAL METHOD
TO THE CALCULATION OF LIVE-LOAD STRESSES.

The general formulas $\frac{dS}{dx} = \Sigma CW$ and $S = \Sigma CM$ may be used directly to find the position of loading and the

value of the maximum live-load stress in any member of a framed structure as soon as the influence line for this member and the ordinates at all salient points have been determined. This method is applied to the calculation of maximum live-load stresses for the three-hinged arch shown in Fig. 15. Cooper's E40 loading is used.

First are drawn the influence lines for the horizontal and vertical components of the reaction at the left hinge. The vertical component V_1 is the same as for a simple span L. The horizontal component H_1 equals the bending moment at the centre of the span L divided by the depth L. The influence-line ordinates for all members are now found by drawing five Maxwell diagrams, one of which is reproduced in Fig. 16. From the influence lines for V_1 and H_1 , the value of V_1 is .8889 and H_1 is .2187 for a one-pound load at U_1 . The external loads acting on the left half of the arch are then as shown in Fig. 16a. The load line axbcya in Fig. 16b is drawn to a scale of $10^{\prime\prime\prime} = 1$ pound, and the Maxwell diagram completed in the usual way. The scaled

TABLE A
INPLUENCE-LINE ORDINATES FOR THREE-HINGED ASER

Members	Outenates												
	1 lb. at Ui	I lb. at Uz	I the at Us	I lb. at Us	1 lb. at U's								
$U_{0}U_{1} =$ $U_{1}U_{1} =$ $U_{1}U_{2} =$ $U_{1}U_{4} =$ $U_{L}U_{4} =$ $U_{L}U_{4} =$ $U_{L}U_{5} $	- 403 - 417 - 378 - 171 - 295 + 221 + 217 + 164 - 048 - 602 - 1 014 + 022 + 075 + 114 + 800 + 019 - 044 - 221 - 206 0 2187 0 8889 14*	- 223 - 333 - 756 - 342 - 500 - 264 + 434 + 328 - 096 - 384 - 632 - 955 + 150 + 226 + 441 + 878 - 088 - 442 - 412 0 4375 0 7777 29°	- 045 - 286 -1 135 - 513 - 885 - 740 - 408 + 691 - 145 - 675 - 253 - 400 - 775 + 342 + 685 - 662 - 617 0 6862 0 6926 44*	* 130 + 262 * 189 - 685 -1 150 -1 245 -1 246 -1 193 + 234 + 139 - 063 - 317 - 545 - 270 - 180 + 086 * 928 - 823 0 8750 0 5535 58°	+ 201 + 477 + 548 -1 182 -1 202 -1 654 -1 674 -1 420 + 345 - 287 + 165 - 266 - 308 - 208 + 224 + 657 0 8730 0 4444 65*								

values of these stresses are the influence ordinates for a one pound load at U_1 . In an exactly similar way the influence ordinates for a unit load at U_2 , U_3 , U_4 , and U'_4 are determined. The influence lines are straight from U'_0 to

 U'_4 . Table A gives the influence ordinates for all members and also for the horizontal and vertical components of the reaction at the left hinge. The angle θ is the inclination of this reaction with the vertical.

The calculation of the live-load stresses in any one member is typical. The member U_3L_4 is taken. The influence line for this member is drawn to scale in Fig. 15 by use of the influence ordinates from Table A. The salient points occur below panel points U_3 , U_4 , and U'_4 . The distance

from U_1 to the neutral point 0 equals $\frac{.662}{.662 + .928}$ (21) = 8' %

Calculation of Slopes.

Slope of
$$df = 0$$

$$fg = \frac{0 - (-0.662)}{68} = +0.0105$$

$$gh = \frac{-0.662 - (0.928)}{21} = -0.0758$$

$$hk = \frac{0.928 - (0.224)}{21} = +0.0336$$

$$km = \frac{0.224 - 0}{84} = +0.0027$$

$$mn = 0$$

Calculation of Coefficients.

$$C_1 = 0 - (.0105) = -.0105$$

 $C_2 = .0105 - (-.0758) = +.0863$
 $C_4 = -.0758 - (.0336) = -.1094$
 $C_4 = .0336 - (.0027) = +.0309$
 $C_5 = .0027 - 0 = +.0027$

The sum of these coefficients equals zero. This agrees with formula (6) of Art. 3.

It should be remembered, as is pointed out in Art. 3, that the value of these coefficients may be measured graphically. For example, in Fig. 15 the value of C_1 is $\frac{2.59}{30}$ = .0863.

By use of the formula $\frac{dS}{dx} = \Sigma CW$ and Rule 1 of Art.

3, the position of loading for maximum tension in U_*L_* may now be determined. Try wheel 3 at U_* with the loading advancing toward the left. Take the values of the load sums and moment sums for E40 from Table 2.

$$\frac{dS}{dx} = \Sigma CW = -.1094(30) +.309(103) +.0027(302) = +.7$$

$$\frac{dS}{dx} = \Sigma CW = -.1094(50) +.309(103) +.0027(302) = -.7$$

Therefore w_3 at U_4 gives a maximum tension in U_3L_4 , and its value is

$$S = \Sigma CM = -.1094(230) + .309(1846) + .0027(19001) = 83^{k}.$$

By use of the formula
$$\frac{dS}{dx} = \Sigma CW$$
 and Rule 2 of Art. 3,

the position of loading for maximum compression in U_3L_4 is now determined. Try wheel 2 at U_3 with the loading advancing toward the right. Note that the signs of the coefficients remain unchanged. Take the values of the load sums and moment sums for E40 from Table 2.

$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(10) = -1.3$$

$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(30) = +0.6$$

Therefore w_2 at U_3 gives a maximum negative stress, or compression, in U_3L_4 , and its value is

$$S = \Sigma CM = -.0105(7092) + .0863(80) = -67^{k}.$$

The above values of 83^k and 67^k for maximum tension and compression in U_3L_4 may be checked by use of formula $S = qA_z$ (2), the values of q being taken from Table 16.

Tension U₃L₄ by Equivalent Uniform Load.

The area of the tension part of the influence line equals

$$A_z = 27.2$$

The influence line *ohkm* is not triangular, but a triangular influence line with intervals $l_1 = 10$ ft. and $l_2 = 45$ ft. approximates its shape closely enough for the selection of an equivalent uniform load. For $l_1 = 10'$ and $l_2 = 45'$, Table 16 gives 3.080^k as the equivalent uniform load.

Therefore,

$$S = qA_a = (3.080) (27.2) = 84^b$$
.

This value checks very closely that obtained by the exact method.

Compression U.L. by Equivalent Uniform Land

Choose from Table 16 the equivalent uniform load for $l_1 = 10$ ft. and $l_2 = 65$ ft. From the influence line $A_s = 23.7$.

Therefore,

$$S = qA_s = (2.870)(23.7) = 68^{\delta}$$
.

This checks closely the value obtained by the exact method.

Calculation of other members of this arch and of some more complicated framed structures shows a close agreement between the two preceding methods. The latter method is the simpler when a table of equivalent uniform loads has been made, especially in the case of the more complex influence lines for members of swing bridges, two-hinged arches, arch ribs, etc. The method of calculating a table of equivalent uniform loads will be explained in the following article.

PLEASE RETURN TO DEPT. of APPLIED MECHANICS.

ARTICLE IX.

EQUIVALENT UNIFORM LOADS.

An equivalent uniform load is one which gives the same stress as does a loading which is not uniform. For any given standard loading, the equivalent uniform load is different for stresses whose influence lines differ. Since the forms of influence lines are innumerable, a table of exact equivalent uniform loads for all stresses is impracticable. A table of equivalent uniform loads, however, for stresses whose influence lines are triangular may be used with little error in selecting equivalent uniform loads for stresses whose influence lines are not triangular. It is, therefore, sufficient for practical purposes to make tables of equivalent uniform loads for a series of triangular influence lines. It may be shown that the equivalent uniform load for any triangular influence line is dependent entirely upon the intervals l_1 and l_2 , and is independent of the ordinate h at the apex of the influence line. Consider the triangular influence line in Fig. 1b to be for any stress S. Let the ordinate below C be any value h. If q equals the equivalent uniform load covering l_1 and l_2 ,

$$S = qA_z$$
, or $q = \frac{S}{A_z}$ (A)

The area of this influence line is

$$A_z = \frac{h}{2}(l_1 + l_2) = \frac{h}{2}L \dots (B)$$

Furthermore, if the concentrated live loads have been placed so as to give the maximum pier reaction between two spans l_1 and l_2 , this same position of loading will give maximum S, if the influence line for S is a triangle with the

same intervals l_i and l_i . Since the influence ordinates for S are related to the influence ordinates for R as h is to unity,

$$\frac{S}{R} = \frac{h}{1.00}$$

Or

$$S = hR$$
 ... (C)

Substituting the values of A_s and S from equations (B) and (C) in equation (A),

$$q = hR \div \frac{h}{2}L = \frac{2R}{L} \qquad (D)$$

It appears, therefore, that q is independent of h. From formula (16) of Art. 5,

$$R = \frac{L}{l_c l_c} M$$
 , (16)

Substituting for R in equation (D),

$$q = \frac{2R}{L} = \frac{2M}{l_1 l_1}$$
 (31)

The term M is the bending moment in the span $L = l_1 + l_2$ at the point where the intervals are l_1 and l_2 .

Tables (10) to (18) inclusive have been calculated for the positions of the live load given by Table 3. The values of M were first found, then the values of R, and finally the values of the equivalent uniform loads. The three formulas that were used in succession are

$$M = \frac{l_1}{L}M_4 + \frac{l_2}{L}M_1 - M_1$$
 (10)

$$R = \frac{L}{l_1 l_2} M$$
 (16)

$$q = \frac{2M}{l_1 l_1} = \frac{2R}{L}$$
 (31)

An example of the use of equivalent uniform loads has already been given in Art. 8. The general formula S = qA, may be used in any case. For the special cases of bending moment in a beam and pier reaction between two simple spans, formula (31) gives

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_1 + l_2}{2}\right). \quad (33)$$

The quantities in the parentheses are the areas of the influence lines for M and R respectively.

ARTICLE X.

METHOD OF CALCULATING TABLE OF LOAD SUMS FOR ANY STANDARD LOADING. ILLUSTRATIVE EXAMPLE.

The definitions of moment sum and load sum are give, at the beginning of Art. 2. It is at once evident that a table of load sums may be computed by adding the successive loads. It may be shown that the table of moment sums may also be calculated by the process of addition.

From formula (5a) of Art. 2,

$$C_a W_a = C_a \frac{dM_a}{dx}$$

Or

$$dM_a = W_a \cdot dx$$
.

Expressed in words, the increase in the moment sum for an increase dx in the distance of the centre of moments from wheel 1 equals the load sum times dx. If the load sum is constant for an interval dx = 1 foot, as between concentrated loads, the increase of the moment sum for dx = 1 foot equals the corresponding load sum. If the load sum is not constant, but uniformly increasing, as when the centre of moments lies within the uniform load, the increase of the moment sum for dx = 1 foot equals the average value of the load sum for this one foot interval. The application of the foregoing principles is made clear by the following example.

Example.—Give explicit directions for the calculation of a table of load sums and moment sums at intervals of 1 foot from 0' to 400' for Cooper's E40 loading.

Solution.-Calculate the table of load sums by adding

the loads one by one, taking a sub-total for each addition. Thus, the following numbers are added:

If the final total checks $284 + 391 \times 2 = 866$, the table of load sums is correct.

Assume now that the table of load sums for E40 has been completed. The table of moment sums may now be found as directed below. The following numbers are to be added one by one, taking a sub-total for each addition:

8-10's 5-30's 5-50's 5-70's 9-90's 5-103's -116's -129's -142's 8-152's 5-172's 5-192's 5-212's 9-232's 5-245's 6 - 258's 5-271's 5-284's 1 - 2851 - 2871 - 289

and all odd numbers up to 865.

If the final total checks up 183,689, which is figured independently, the table of moment sums is correct.

The preceding additions may be made most satisfactorily on a recording adding machine. Table 2 was calculated in this way.

It will be noted that the table of load sums serves as a table of differences for the table of moment sums.

ARTICLE XI.

SUMMARY OF FORMULAS.

Art. 1.

Z	255	Zu:					y.	r			ě.						(1)
Z	-	qA_n			-			9			-				Ģ.		(2)
2	_	$w \Sigma z$ $z \Sigma w$		H	٥	•	9	0	۰	0	0	•	0	0	6	0	(3)
E3	_					0			0		n	•			-		LAU

Art. 2.

$$Z = \Sigma w_n z_n = C_a \Sigma w_n x_n = C_a M_a$$
 (5)
 $\frac{dZ}{dx} = C_a W_a = \frac{d (C_s M_s)}{dx} = \frac{C_s dM_s}{dx}$ (5a)

Art. 3.

Art. 4. Girder Bridge without Panels.

End reactions.

$$R_1 = \frac{M_2 - M_1}{L} - W_1 \tag{9}$$

$$R_2 = W_3 - \frac{M_3 - M_1}{L}$$
 (9a)

Bending moment for unequal segments l_i and l_i .

$$M = \frac{l_1}{L}M_1 + \frac{l_2}{L}M_1 - M_2 - \dots - (10)$$

$$\frac{dM}{dx} = \frac{l_1}{L}W_s + \frac{l_2}{L}W_1 - W_2 \qquad (11)$$

Bending moment at centre. $l_1 = l_2 = \frac{L}{2}$

$$M = \frac{M_3 + M_1}{2} - M_2 \qquad (10a)$$

$$\frac{dM}{dx} = \frac{W_{\mathfrak{d}} + W_{\mathfrak{d}}}{2} - W_{\mathfrak{d}} \qquad (11a)$$

Shear at any section.

$$S = \frac{M_3 - M_1}{L} - W_2 (12)$$

Location of centre of gravity of loading on span.

$$\bar{x} = \frac{M_3 - M_1 - LW_1}{W_3 - W_1} \tag{13}$$

When $M_1 = 0$,

$$\overline{x} = \frac{M_3}{W_3} \qquad (13a)$$

Art. 5. Pier Reaction.

For unequal spans l_1 and l_2 .

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right) (14)$$

$$\frac{dR}{dx} = \frac{W_3}{l_2} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right)$$
(15)

For equal spans l_1 and l_2 equal to l.

$$R = \frac{M_3 + M_1 - 2M_2}{l} \quad . \quad . \quad . \quad (14a)$$

$$\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l} \quad . \quad . \quad (15a)$$

Relation between R and M,

$$R = \frac{L}{l_1 l_2} M \qquad (16)$$

Art. 6. Girder Bridge with Panels.

Shear in end panel; general case.

$$S_a = \frac{1}{L} M_3 + \frac{l_2}{l_1 L} M_1 - \frac{1}{l_1} M_2 = \frac{1}{l_1} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right) (17)$$

$$\frac{dS_{s}}{dx} = \frac{1}{L}W_{s} + \frac{I_{t}}{I_{t}L}W_{s} - \frac{1}{I_{t}}W_{s} = \frac{1}{I_{t}}\left(\frac{I_{t}}{L}W_{s} + \frac{I_{t}}{L}W_{t} - W_{t}\right)(18)$$

Shear in intermediate panel; general case.

$$S_b = \frac{M_4}{L} - \frac{M_4}{p} + \frac{M_2}{p} - \frac{M_1}{L}$$
 (19)

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_4}{p} + \frac{W_4}{p} - \frac{W_4}{L} \quad . \quad - \quad (20)$$

Shear in intermediate panel; usual case.

$$S = \frac{M_i}{L} - \frac{M_i}{p} = \frac{1}{p} \left(\frac{p}{L} M_i - M_i \right)$$
 (19a)

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \quad (20a)$$

Art. 7. Through Pratt Truss with Inclined Chord.

Stress in hanger. Use formulas (14a) and (15a). Stress in any horizontal chord member; usual case,

$$S_4 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_2 \qquad (21)$$

Compression in any inclined top chord member or end post; usual case.

$$S_4 = \left(\frac{i}{p}\right)S_4 \qquad (22)$$

Compression in vertical post; usual case.

$$S_{i} = \left(\frac{a}{bL}\right) M_{i} - \left(\frac{1}{p}\right) M_{s} \tag{23}$$

Stresses in inclined web members including countery usual case.

$$S_1$$
, S_2 , $S_4 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_4$. (24)

Stress in inclined counter; special case of loading advanced beyond panel.

$$S_{z} = \left(\frac{ta}{cbL}\right)M_{4} - \frac{t}{bp}\left(M_{3} - \frac{b}{c}M_{2}\right) = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{c}$$
 (25)

Counter-tension in vertical post; usual case.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_o \quad . \quad . \quad (26)$$

Formulas (21), (23), and (24) are of the general form

$$S = GM_4 - HM_3 \qquad . \qquad . \qquad . \qquad (27)$$

where the coefficients G and H may be tabulated thus:

$$Type \ of \ member \dots G$$
 H

Horizontal chord $\dots \frac{m}{nv}$ $\frac{1}{v}$

Vertical post $\dots \frac{a}{bL}$ $\frac{1}{p}$

Inclined web member $\dots \frac{ta}{cbL}$ $\frac{t}{bp}$

The rate of variation of S in formula (27) is

$$\frac{dS}{dx} = GW_4 - HW_3 = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad (28)$$

When S in formulas (21), (23), or (24) is a maximum

$$\left(\frac{G}{H}W_4 - W_3\right)$$
 passes through zero.

Through Pratt Truss—Parallel Chords.

Stress in hanger,—use formulas (14a) and (15a)

Stress in horizontal chord =
$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3$$
. (21)

" vertical post =
$$S_4 = \left(\frac{1}{L}\right)M_4 - \left(\frac{1}{p}\right)M_3$$
 (29)

" inclined web =
$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_3 = \frac{t}{c}S_4$$
 (30)

Stress in end post
$$= S_i = -S_i$$
. (22)

Formulas (21), (29), and (30) are of the general form

$$S = G \cdot M_4 - H \cdot M_4 \qquad (27)$$

and their rate of variation is

$$\frac{dS}{dx} = H\left(\frac{G}{H}W_s - W_s\right) \tag{28}$$

G and H are the coefficients of M_4 and M_4 in equations (21), 29), and (30), respectively.

When S in formulas (21), (29), or (30) is a maximum, $\left(\frac{G}{H}W_4 - W_4\right)$ passes through zero.

Art. 9. Equivalent Uniform Loads.

$$q = \frac{2M}{l_1 l_2} = \frac{2R}{L}$$
 (31)

$$M = q\left(\frac{l_i l_l}{2}\right) \tag{32}$$

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_i + l_i}{2}\right) \qquad (33)$$

INDEX TO TABLES

NO		PALLE
1	Five standard loadings	66
2	Lengths, loads, knd sums, and moment eams from 1 to 600 ft.	
	for five standard loadings	6?
3	Position of Cooper's londings for maximum per reaction between	
	equal and unequal beam spans	80
4	Position of Cooper's loadings for absolute maximum bending mo-	
	ment in beam spans .	849
5	Position of Cooper's loadings for maximum end shear in beam	
	spans	369
6	Position of Cooper's loadings for maximum panel shear in bridge	
	with equal panels	(H)
7	Maximum moments, shears, and pier reactions for beam spans-	
	Cooper's E40 and E50 loadings	91
8	Maximum moments at panel points of truss bridges Compar's	
	E50 loading	94
	Maximum shears in panels of truss bridges. Cooper's E50 leading	97
10	Maximum bending moments at 3-foot intervals of beams Conquer's	
	E40 loading	100
11	Maximum bending moments at 3-foot intervals of beams—Conquer's	
	E50 loading	103
12	Maximum bending moments at 3-foot intervals of beams - Cooper's	
	E60 loading	104
13	Maximum pier reactions for equal and unequal beam spans-	
	Cooper's E40 loading	106
14	Maximum pier reactions for equal and unequal beam spans-	
	Cooper's E50 loading	105
15	Maximum pier reactions for equal and unequal beam spans	
	Cooper's E60 loading	110
	Equivalent uniform loads—Cooper's E40 loading	112
	Equivalent uniform loads—Cooper's E30 loading	114
	Equivalent uniform loads—Cooper's E60 loading	116
19	Influence-line ordinates for bending moments at 3-foot intervals of	
	beam spans	118
20	Reciprocals of influence-line ordinates for bending moments at 5-feat	
	intervals of beam spans	130
21	Bending moments at 5-foot intervals of beam spans due to a unit	
	uniform load	123

TABLE 1

STANDARD LOADINGS Loads given are for one rail.

COOPER'S E 40:

COOPER'S E 50:

COOPER'S E 60:

COMMON STANDARD-1904-PACIFIC SYSTEM

D. L. & W. R. R.:

TABLE 2

LOAD SUMS AND MOMENT SUMS FOR COOPER'S AND OTHER STANDARD LOADINGS

Note.—Load Sums and Moment Sums are given per rail in thousands of pounds and foot-pounds respectively.

Cooper's E40. 0'-50' Cooper's E40. 50'-100'

	OOPER	8 640.	0 -50	1		OOPER	8 E40.	50 -1	00.
Longth	Wheel	Load	Load	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0 1 2 3 4 5 6 7 8	w. 1	10	10	0 10 20 30 40 50 60 70 80	50 51 52 53 54 55 56 57 58	w. 10	10	152	3780 3922 4064 4206 4348 4490 4632 4784 4936
10 11 12 13 14 15 16 17 18	w. 3	20	50	110 140 170 200 230 280 330 380 480 550	59 60 61 62 63 64 65 66 67 68 69	w. 11	20	172	5088 5240 5392 5544 5696 5848 6020 6192 6364 6536 6708
20 21 22 23 24 25 26 27 28 29	w. 5	20	90	620 690 760 830 920 1010 1100 1190 1280 1370	70 71 72 73 74 75 76 77 78 79	w. 13	20	212	6900 7092 7284 7476 7668 7880 8092 8304 8516 8728
30 31 32 33 34 35 36 37 38 39	w. 6	13	103	1460 1550 1640 1743 1846 1949 2052 2155 2271 2387	80 81 82 83 84 85 86 87 88 89	w. 15	13	245	8960 9192 9424 9656 9888 10120 10352 10584 10816 11061
40 41 42 43 44 45 46 47 48 49 50	w. 8	13	129	2503 2619 2735 2851 2980 3109 3238 3367 3496 3638 3780	90 91 92 93 94 95 96 97 98 99 100	w. 16	13 	258	11306 11551 11796 12041 12299 12557 12815 13073 13331 13589 13860

Coopen's E40. 100'-150' Compan's E40. 150-200

		part of the	-					
Length	Wheel	Load	Lond	Moment Sums	Length	Lond	Lead	M cesses of Processor
100 101 102 103 104 105 106 107 108 109	w. 18	13	254	1.0860 14131 14402 14673 14944 15228 15512 16500 16364	150 151 152 153 154 154 155 157 158 159		365 335 510 5114 515 515 517 517 517 517 517	20,609 20,403 20,503 21,102 21,544 21,544 21,544 31,544 31,544 31,544 31,544 31,544 31,544
110 111 112 113 114 115 116 117 118 119			286 288 290 292 294 296 298 300 302 304	16649 16336 17225 17516 17809 18104 18401 18700 19001	160 161 162 163 164 165 166 167 168 169		286 358 200 392 394 396 308 400 402 604	33449 34.35 34016 3400 3400 3400 3400 3500 36001 3700
120 121 122 123 124 125 126 127 128 129		= 2,000 pounds per foot	306 308 310 312 314 316 318 320 322 324	19600 19016 20225 20336 20849 21164 21481 21800 22121 22144	170 171 172 173 174 175 176 177 178 179	- 2,000 pounds per foot	606 608 610 612 614 616 618 620 622 624	17 500) 27816 38,235 38,245 28,645 28,645 28,851 40,000 60,000 61,164
130 131 132 133 134 135 136 137 138		Uniform Load	326 328 330 332 334 336 338 340 342 344	22769 23006 23425 23736 24089 24424 24761 25100 25441 25784	32227725572	Uniform Load	425 420 432 434 436 436 440 442 442	41,500 41,006 62,625 62,626 62,724 641,61 64,001 65,484
140 141 142 143 144 145 146 147 148 149 150			346 348 350 352 354 356 358 360 362 364 366	26129 26476 26825 27176 27826 27826 27826 28061 28061 28061 28024 20089	190 191 192 193 194 195 195 197 198 199 200		646 645 650 652 454 656 456 460 662 464 666	45029 46076 40525 47276 47276 47729 48181 48641 49100 40561 50024 30480

Cooper's E40. 200'-250' Cooper's E40. 250'-300'

Length	Load	Lond Sums	Moment Sums	Length	Load	Lond Sums	Momen Sums
200		466	50489	250		566	76289
201		468	50956	251		568	76856
		470	51425	252		570	7742
202							
203		472	51896	253		572	77990
204		474	52369	254		574	78569
205		476	52844	255		576	7914
206		478	53321	256		578	7972
207		480	53800	257		580	8030
208		482	54281	258		582	8088
209		484	54764	259		584	8146
210		486	55249	260		586	8204
211		488	55736	261		588	8263
212		490	56225	262		590	8322.
213		492	56716	263		592	83810
214		494	57209	264		594	8440
215		496	57704	265	1	596	8500
216		498	58201	266		598	8560
217	-	500	58700	267	ب	600	86200
218	8	502	59201	268	8	602	8680
219	- Lu	504	59704	269	- L	604	8740
	2,000 pounds per foot			1	2,000 pounds per foot		
220	00	506	60209	270	30	606	8800
221	n	508	60716	271	li i	608	8861
222	no	510	61225	272	100	610	8922
223	2	512	61736	273	2	612	8983
224	8	514	62249	274	8	614	9044
225	ا ي	516	62764	275	O.	616	9106
226		518	63281	276		618	9168
227	B	520	63800	277	10 11	620	9230
228	2	522	64321	278	=	622	9292
229	Uniform Load	524	64844	279	Uniform Load	624	9354
230	=	526	65369	280	Ε	626 '	9416
231	or	528	65896	281	10	628	9479
232	19	530	66425	282	-	630	9542
233	5	532	66956	283	5	632	9605
234	_	534	67489	284		634	9668
235		536	68024	285		636	9732
236		538	68561	286		638	9796
237		540	69100	287		640	9860
238		542	69641	288		642	9924
239		544	70184	289		644	9988
240		546	70729	290	1	646	10052
		548		291		648	10117
241			71276	291		650	10182
242	1	550	71825				10182
243		552	72376	293		652	10247
244		554	72929	294		654	
245		556	73484	295		656	10378
246		558	74041	296		658	10444
247		560	74600	297		660	10510
248		562	75161	298		662	10576
249		564	75724	299		664	10642
250		566	76289	300		666	10708

Coc	PER'S E	40000	()	Ces	erra » E	813 201	- 4: # s
Length	Lond	Land	Moment	Longth	Loud	Lond	M ensures Numer
300 301 302 303 304 305 306 307 308 309		666 668 670 672 674 676 678 680 682 684	107089 107756 108425 109096 109769 110444 111121 111800 112481 113164	350 331 352 353 354 355 355 355 257 358 359		700 708 270 772 774 776 778 780 782 784	1 6 70 cc 1 6 1 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
310 311 312 313 314 315 316 317 318 319	er foot	686 688 690 692 694 696 698 700 702 704	113849 114536 117225 115916 116009 117304 118001 118700 119401 120104	360 361 362 363 364 365 367 368 369	or fant	786 788 790 792 794 796 798 800 802 804	1,500,40 1,51,400 1,52,201 1,52,201 1,52,201 1,52,400 1,52,400 1,52,400 1,52,800 1,5
320 321 322 323 324 325 326 327 328 329	Lond = 2,000 pounds per foot	706 708 710 712 714 716 718 720 722 724	120809 121516 122225 122936 123649 124364 125081 125800 126521 127244	370 371 372 373 374 375 376 377 378 378	and = 2,000 jeamels per foot	\$16 \$10 \$12 \$14 \$16 \$18 \$20 \$22 \$24	150000 150000 160000 161000 161000 16000 16000 16000 16000
330 331 332 333 334 335 336 337 338 339	Uniform Load	726 728 730 732 734 735 738 740 742 744	127969 128096 129425 130156 130889 131624 132361 133100 133841 134584	380 381 382 383 384 386 386 387 388	Uniform Lond	\$26 \$28 \$20 \$20 \$24 \$36 \$36 \$40 \$42 \$44	1882768 187768 18842 170880 170880 17476 17304 17344 17628
340 341 342 343 344 345 346 347 348 349 350		748 748 750 752 754 756 758 760 762 764 766	135329 136076 136825 137576 138329 139084 139841 140600 141361 142124 142859	390 391 392 393 394 394 395 396 397 398 399 400		\$46 \$15 \$50 \$54 \$56 \$55 \$60 \$60 \$60 \$60	17513 17200 17982 17982 17982 17862 17882 18024 18110 18282 18282

Coopen's E50. 0'-50' Cooper's E50. 50'-100' Load Moment Load Moment Length Wheel Lond Length Wheel Load Sums Sums Sums Sums 0 w. 1 12.50 12.50 00.00 50 4725.00 12.50 51 4902.50 2 25.00 52 5080.00 3 37.50 53 5257.50 50.00 4 54 5435.00 5 62.50 5612.50 6 75.00 56 w. 10 12.50 190.00 5790.00 87.50 5980.00 37.50 25.00 8 w. 2 100,00 58 6170.00 9 137.50 59 6360.00 10 175.00 60 6550.00 212.50 11 61 6740.00 12 250.00 62 6930.00 13 25.00 62.50 287.50 63 w. 3 7120.00 14 350.00 64 w. 11 25.00 215.00 7310.00 15 412.50 65 7525.00 16 475.00 66 7740.00 7955.00 537.50 87.50 25.00 600.00 18 W. 4 68 8170.00 687.50 69 w. 12 25.00 240.00 19 8385.00 20 775.00 70 8625.00 21 862.50 71 8865.00 22 950.00 72 9105.00 112.50 23 w. 5 25.00 1037.50 73 9345.00 w. 13 25.00 24 1150.00 74 265.00 9585.00 1262.50 9850.00 26 1375.00 76 10115.00 27 1487.50 77 10380.00 28 1600.00 78 10645.00 79 25.00 290.00 29 1712.50 w. 14 10910.00 80 30 1825.00 11200.00 1937.50 81 31 11490 00 32 16.25 128.75 2050.00 82 11780.00 w. 6 33 2178.75 83 12070.00 34 2307.50 84 12360.00 2436.25 85 35 12650.00 2565.00 86 12940.00 36 w. 7 2693.75 16.25 145.00 87 13230.00 37 2838.75 306.25 38 88 w. 15 16.25 13520.00 39 2983.75 89 13826.25 40 3128.75 90 14132.50 41 3273.75 91 14438.75 42 3418.75 92 14745.00 161.25 16.25 322.50 43 W. 8 3563.75 93 w. 16 16.25 15051.25 44 3725.00 94 15373.75 3886.25 95 15696.25 45 96 16018.75 46 4047,50 47 4208.75 97 16341.25 177.50 16.25 16663.75 18 w. 9 4370,00 98 338.75 49 99 16.25 16986.25 4547.50 w. 17 50 4725.00 100 17325.00 Coopen's E50. 100'-150' Coopen's E50. 150'-200'

				100000			130	200
Length	Wheel	Load	Lond	Mumont	Longth	Load	Land frame	Manuarit Stutton
100				177105 100	100			
		STATE !	MARKEL	17325.00	150		457,50	22111 77
101		2000		17663 78	151		460.00	211170 .00
102	10-1-4	SHIER.	BELLEVI	18002 50	152		462 (4)	28031 25
103	1000	::011	212111	18341 25	153		465.00	38495,00
104	w. 15	16.25	355.00	18680.00	154		407 (0)	31001.25
105		Trink	anno c	19035.00	155		420 00	20430 (0)
106	April 200	PUBL	10000	19390 00	156		472.50	30001.25
107		Jane 1	ALCOHOL:	19745.00	157		475 (8)	40075.00
108		CHARLE	ETIPLE.	20100,00	1.68		477 20	60911 25
109	*****		355.00	20455 00	159		450 (8)	41,230 00
110			357 50	20811.25	160		400 AG	widow over
111	*****		360.00	The second second			452 (4)	61811 25
				21170.00	161		485.00	42296,441
	******		362.50	21531 25	162		487,50	62781.25
			365.00	21895.00	163		\$50,00	42270.00
114	disti		367,50	22261.25	164		492.50	43761.25
			370.00	22630 00	165		495:00	44255.00
		2	372.50	23001.25	166	-	497, 50	44751 25
117	141611	foot	375 00	23375.00	107	foot	500.00	45250.00
118		L	377.50	23751.25	168		502,50	45751.25
119	11110	ber	380,00	24130.00	109	2	505.00	46255,00
120		pound	382.50	24511.25	170		507,50	46761 25
	44111	Š	385.00	24895.00	171	pounds	510.00	47270.00
		5	387.50	25281.25	172	2	512 50	47781 25
A 1000			390.00	25670.00	173	X	515.00	48295.00
		2,500	392.50	26061.25	174	200	317.50	48811.25
125		100	395.00	20455.00	175	22	520.00	49330.00
126			397.50	26851.25	176	04	522.50	49551.25
127		L	400.00	27250 00	177	2	525.00	50073 OO
128		3	402.50	27651.25	178	3	527.50	50001.25
A CONTRACTOR		Lond	405.00	28055 00	179	Load	530.00	51430 (8)
100		2		SINAN IN			1000,000	31001 101
		niform	407.50	28461 25	180	niform	532.50	511411 25
		ij.	410.00	28870.00	181	- Ja	535,00	52695,00
132		5	412.50	29281 25	182	2	537.50	53031.25
			415.00	29695,00	183	_	540,00	53/170-00
134			417.50	30111.25	154		542.50	54111.25
			420.00	30530.00	185		545,00	54655.00
			422.50	30051.25	186		547.50	55001.25
137			425.00	31375.00	187		550.00	55750.00
138			427.50	31801 25	188		552.50	56301.25
139			430.00	32230.00	189		555.00	36835 (0)
2 842		1	120 10	19-342411 13-5	2003		557_50	57411.25
140	THE LE		432 50	32661 25	190		560.00	57070.00
	****		435.00	33095,00	191		Andrew Colonia	
	****		437.50	33531 25	192		562,50	58531.25
	MANY AV	i	440.00	33970.00	193		565.00	50005.00
	*****		442.50	34411.00	194		567.50	1001 25
	Sant Long		445,00	34855,00	195		570.00	60230.00
0.00	*****		447,50	35301.25	196		572.50	(4801 25
	XXXX Fee		450.00	35750.00	197		575.00	61375.00
	100000		452 50	36201 25	198		577.50	61901.25
	*****		455.00	36655.00	199		580 00	62530.60
150			457 50	37111 25	200		582.50	63111 25
							- 1	

250

707.50

Cooper's E50. 200'-250' Cooper's E50. 250'-300 Load Moment Load Moment Length Load Lond Length Sums Sums Sums Sums 582.50 63111.25 250 707.50 95361.25 200 63695.00 251 201 585.00 710.0096070.00 587.50 64281.25 252 712.50 202 96781.25 253 64870.00 715.00 590.00 97495.00 203 65461.25 254 717.50 204 592.50 98211.25 98930.00 66055.00 255 720.00 205 595.00 256 722.50 206 597.50 66651.25 99651.25 207 600.00 67250.00 257 725.00 100375.00 602.50 67851.25 258 727.50 101101.25 208 605.00 68455.00 259 730.00 101830.00 209 607.50 69061.25 260 732.50 102561.25 210 261 735.00 211 69670.00 103295.00 610.00 262 212 70281.25 737.50 612.50104031 25 740.00 70895.00 263 104770.00 213 615.00 105511.25 617.50 71511.25 264 742.50 214 72130.00 265 745.00 106255.00 215 620.00 216 622.50 72751.25 266 747.50 107001.25 217 625.00 73375.00 267 750.00 107750.00 218 627.5074001.25 268 752.50 108501.25 219 630.00 74630.00 269 755.00 109255.00 220 75261.25 270 757.50 110011.25 632.50 pound pounds 110770.00 221 635.00 75895.00 271 760.00 222 637.50 76531.25 272 762.50 111531.25 640.00 273 112295.00 223 77170.00 765.00 77811.25 274 767.50 113061 25 224 642.50 500 200 225 645.00 78455.00 275 770.00 113830.00 226 647.50 79101.25 276 oi 772.50114601.25 ci 277 227 650.00 79750.00 11 775.00 115375.00 -116151.25 228 652.50 80401.25 278 777.50 Load 655.00 279 116930.00 229 81055.00 780.00 117711.25 230 657.50 81711.25 280 782.50 281 118495.00 231 660.00 82370.00 785.00 83031.25 119281.25 282 787.50 232 662.50 233 83695.00 283 790.00 120070.00 665.00 234 667.50 84361.25 284 792.50 120861.25 235 670.00 85030.00 285 795.00 121655.00 286 797.50 122451.25 236 672.50 85701.25 287 123250.00 675.00 86375.00 800.00 237 124051.25 802.50 238 677.50 87051.25 288 805.00 124855.00 87730.00 289 239 680.00682.50 88411.25 290 807.50 125661.25 240 291 810.00 126470.00 241 685.00 89095 00 242 89781 25 292 812.50 127281.25 687.50 128095.00 243 690.00 90470_00 293 815.00 128911.25 244 692.50 91161.25 294 817.50 295 820.00 129730.00 245 695.00 91855.00 130551.25 92551.25 296 822 50 246 697.50 297 825,00 131375.00 93250.00 247 700.00 132201.25 702.50 93951.25 298 827.50 248 299 830.00 133030.00 94655.00 249 705.00

300

95361.25

832.50

133861.25

	Coors	M's E50.	300'-350'	- 0	OCPP II	ESS 25	3 - 4161
Langth	Lond	Linat	Munic C	Length	Lond	Lond Suma	M comment Dissess
300 301 302 303 304 305 306 307 308 309		832 50 835 00 837 50 840 00 842 50 845 00 847 50 850 00 852 30 855 00	133861 25 134095.00 135331 25 136370.00 137211 25 138055.00 138901 25 130750.00 140001 25 141455.00	350 351 352 353 354 455 455 356 357 358 359		957, 50 960, 60 962, 20 965, 00 967, 20 970, 00 975, 50 975, 00 977, 50 980, 00	178011 25 179579 89 180531 25 181695 00 182481 25 183420 69 184491 25 183475 00 184651 25 147839 00
310 311 312 313 314 315 316 317 318 319	r foot	857,50 860 00 862,50 865,00 867,50 870,00 872,50 875,00 877,50 880 00	142311 25 143170 00 144031 25 144895 00 145761 25 146630 00 147501 25 148375 00 149251 25 150130 00	360 361 362 363 364 365 366 367 368 369	r foot	982 50 985 00 987 50 980 00 902 50 905 00 907 50 1000 00 1002 50	188311 25 188295 00 180381 25 191270 00 192561 25 194251 25 196250 25 196251 25 196251 25 196251 25
320 321 322 323 324 325 326 327 328 329	ond = 2,500 pounds pe	882 50 885 00 887 50 890 00 892 50 895 00 897 50 900 00 902 50 905 00	151011 25 151895 00 152781 25 153670 00 154561 25 155455 00 156351 25 157250 00 158151 25 159055 00	370 371 372 373 374 375 376 377 378 379	and = 2,500 panieds per	1007 - 50 1010 - 00 1012 - 50 1015 - 00 1017 - 50 1020 - 00 10225 - 00 1027 - 50 1030 - 00	198261, 25 199270, 00 200281, 25 201295, 00 202311, 25 205230, 00 204351, 25 205275, 00 204401, 25 207 630, 00
330 331 332 333 334 335 336 337 338 339	Uniform Load	907.50 910.00 912.50 915.00 917.50 920.00 922.50 925.00 927.50 930.00	150961 25 160870 00 161781 25 162695 00 163611 25 164530 00 165451 25 164375 00 167301 25 168230 00	380 381 382 383 384 383 386 387 388 389	Uniform Load	1032 50 1035 00 1037 50 1040 00 1042 50 1045 00 1047 50 1050 00 1032 20 1055 00	208461 25 200405 00 210531 25 311570 00 212611 25 213655 00 224701 25 213750 00 216801 25 217855 00
340 341 342 343 344 345 346 347 348 349 350		932 50 935 00 937 50 940 00 942 50 945 00 947 50 950 00 952 50 955 00 957 50	169161 25 170095 00 171081 25 171970 00 172911 25 173855 00 174801 25 175750 00 176701 25 177055 00 178011 25	390 391 392 393 394 395 396 397 398 399 400		1057, 50 1000, 00 1002, 20 1005, 00 1007, 50 1070, 00 1072, 30 1075, 00 1077, 50 1082, 50	218011 25 219970 00 221001 25 223005 00 223161 25 224290 00 223301 25 226375 00 227431 25 228530 00 228611 25

Cooper's E60. 0'-50' Cooper's E60. 50'-100'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	15.0	15.0	00.00	50				5670.00
1				15.00	51				5883.00
2				30.00	52				6096.00
3				45.00	53				6309.00
4				60.00	54				6522.00
5				75.00	55				6735.00
6				90.00	56	w. 10	15.0	228.0	6948.00
7				105.00	57				7176.00
8	w. 2	30.0	45.0	120.00	58				7404.00
9				165.00	59				7632.00
10				210.00	60				7860.00
11			*****	255.00	61				8088.00
12				300.00	62				8316.00
13	w. 3	30.0	75.0	345.00	63				8544.00
14				420.00	64	w. 11	30.0	258.0	8772.00
15				495.00	65			200.0	9030.00
16				570.00	66				9288.00
17				645.00	67				9546.00
18	w. 4	30.0	105.0	720.00	68				9804.00
19				825.00	69	w. 12	30.0	288.0	10062.00
20				930.00	70				10350.00
21				1035.00	71				10638.00
22				1140.00	72				10926.00
23	w. 5	30.0	135.0	1245.00	73				11214.00
24				1380.00	74	w. 13	30.0	318.0	11502.00
25				1515.00	75				11820.00
26				1650.00	76				12138.00
27				1785.00	77				12456.00
28				1920.00	78				12774.00
29				2055.00	79	w. 14	30.0	348.0	13092.00
30				2190.00	80				13440.00
31			:::::	2325.00	81				13788.00
32	w. 6	19.5	154.5	2460.00	82				14136.00
33				2614.50	83				14484.00
34				2769.00	84				14832.00
35				2923.50	85				15180.00
36			1740	3078.00	86				15528.00
37	w. 7	19.5	174.0	3232.50	87		10 5	0.000 8	15876.00
38				3406.50	88	w. 15	19.5	367.5	16224.00
39	7			3580.50	89				16591.00
40				3754.50	90				16959.00
41				3928.50	91				17326.50
42		::::		4102.50	92				17694.00
43	w. 8	19.5	193.5	4276.50	93	w. 16	19.5	387.0	18061.50
44				4470.00	94				18448.00
45				4663.50	95				18835.50
46				4857.00	96	'			19222.50
47		::::		5050.50	97	[19609.50
48	w. 9	19.5	213.0	5244.00	98		10 5	100 5	19996.50
49				5457.00 5670.00	99	w. 17	19.5	406.5	20383.50
50					100				

Coopen's E60. 100'-150' Coopen's E60. 150'-700'

	COOPER 8 Z00		1001	302	Centrale Ett. 150'-350'				
Length	Wheel	Load	Lend	Moment Same	Longth	Load	Lond Nume	M-occupied Scarce	
100 101 102 103 104 105 106 107 108 109	w. 18	19.5	426.0 426.0	20790 00 21196 50 21603 00 22009 50 22416 00 22842 00 23268 00 2368 00 24120 00 24120 00 24546 00	150 151 152 153 154 155 156 157 158 159		549 0 552 0 555 0 556 0 501 0 564 0 507 0 570 0 573 0 576 0	44531 20 45084 00 45087 50 46104 60 46783 20 47316 00 47316 00 48450 00 49021 50 40026 00	
110 111 112 113 114 115 116 117 118 119	76		429.0 432.0 435.0 435.0 441.0 444.0 450.0 453.0 456.0	24973 .50 25404 00 25837 .50 26274 00 267713 .50 277156 .00 27601 .50 28050 .00 28301 .50 28956 .00	160 161 162 163 164 165 166 167 168 169	ry food	579 0: 582 0 585 0 588 0 591 0 594 0 597 0 600 0 603 0 006 0	50173 50 50754 00 51337 50 51924 00 52513 50 53106 00 53701 50 54300 00 54501 50 55506 00	
120 121 122 123 124 125 126 127 128 129	= 3,000 pounds per foot	-	459 0 462.0 465.0 468.0 471.0 474 0 477.0 480.0 483.0 486.0	29413 50 29874 00 30337 50 30804 00 31273 50 31746 00 32221 50 32700 00 33181 30 33666 00	170 171 172 173 174 175 176 177 178 179	ond = 3,000 pounds per	609.0 612.0 615.0 618.0 621.0 624.0 627.0 630.0 633.0 638.0	56113 50 56734 00 57347 50 57347 50 57054 00 58573 50 55821 50 60450 00 61081 50 61716 00	
130 131 132 133 134 135 136 137 138 139	Uniform Load		489.0 492.0 495.0 498.0 501.0 504.0 507.0 510.0 513.0 516.0	34153 .50 34644 .00 35137 .50 35634 .00 36133 .50 30638 .00 37141 .50 37650 .00 38161 .50 38676 .00	180 181 182 183 184 185 186 187 188	Uniform Load	639.0 642.0 645.0 648.0 651.0 654.0 657.0 660.0 663.0	02353 50 03994 00 63637 50 64284 00 64586 00 64586 00 64586 00 67141 50 68528 00	
140 141 142 143 144 145 146 147 148 149 150			519 0 522 0 525 0 528 0 531 0 534 0 537 0 540 0 543 0 540 0 540 0	39193 .50 39714 .00 40237 .50 40764 .00 41293 .50 41826 .00 42361 .50 42900 .00 43441 .50 43986 .00 44533 .50	190 191 192 193 194 195 196 197 198 199 200		669 0 672 0 673 0 678 0 681 0 684 0 687 0 690 0	GNSSCI SO CHECA (NO TOURT SO TOURT SO TOURT SO TREAS T	

Cooper's E60. 200'-250' Cooper's E60. 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200		699.0	75733.50	250		849.0	114433.50
201		702.0	76434.00	251		852.0	115284.00
202		705.0	77137.50	252		855.0	116137.50
203		708.0	77844.00	253		858.0	116994.00
204		711.0	78553.50	254		861.0	117853.50
205		714.0	79266.00	255		864.0	118716.00
206		717.0	79981.50	256		867.0	119581.50
207		720.0	80700.00	257		870.0	120450.00
208		723.0	81421.50	258		873.0	121321.50
209		726.0	82146.00	259		876.0	122196.00
210		729.0	82873.50	260		879.0	123073.50
211		732.0	83604.00	261		882.0	123954.00
212		735.0	84337.50	262		885.0	124837.50
213		738.0	85074.00	263		888.0	125724.00
214		741.0	85813.50	264		891.0	126613.50
215		744.0	86556.00	265		894.0	127506.00
216		747.0	87301.50	266	43	897.0	128401.50
217	foot	750.0	88050.00	267 268	foot	900.0	129300.00
218	2	753.0 756.0	88801.50	269	2	903.0	130201.50
219	pounds per		89556.00		3,000 pounds per	906.0	131106.00
220	30	759.0	90313.50	270	30	909.0	132013.50
221	Ĕ	762.0	91074.00	271	ĕ	912.0	132924.00
222	0	765.0	91837.50	272	100	915.0	133837.50
223	-	768.0	92604.00	273		918.0	134754.00
224	000	771.0	93373.50	274	ğ	921.0	135673.50
225	3,0	774.0	94146.00	275	3,0	924.0	136596.00
226 227	11	777.0	94921.50	276	11	927.0	137521.50
228		780.0 783.0	95700.00 96481.50	277 278		930.0	138450.00 139381.50
229	Uniform Load	786.0	97266.00	279	Uniform Load	936.0	140316.00
230	a I	789.0	98053.50	280	m I	939.0	141253.50
231	- Lo	792.0	98844.00	281	OLI	942.0	142194.00
232	i.	795.0	99637.50	282	ii.	945.0	143137.50
233	5	798.0	100434.00	283	5	948.0	144084.00
234		801.0	101233.50	284		951.0	145033.50
235		804.0	102036.00	285		954.0	145986.00
236		807.0	102841.50	286		957.0	146941.50
237		810.0	103650.00	287		960.0	147900.00
238		813.0	104461.50	288		963.0	148861.50
239		816.0	105276.00	289		966.0	149826.00
240		819.0	106093.50	290		969.0	150793.50
241		822.0	106914.00	291		972.0	151764 . OC
242		825.0	107737.50	292		975.0	152737.50
243		828.0	108564.00	293		978.0	153714.00
244		831.0	109393.50	294		981.0	154693 50
245		834.0	110226.00	295		984.0	155676 .00
246		837.0	111061 50	296		987.0	156661 50
247		840.0	111900.00	297		990.0	157650.00
248		843 0	112741.50	298		993_0	158641.50
249		846.0	113586.00	299		996.0	159636.00
250		849.0	114433,50	300		999.0	160633.50

(100PLR	's E60.	3001-3501	Con	PERS.	Liai Tai	-6:9:
Length	Load	Land Sums	Moment Sums	Longth	Load	Load	M setuend Summe
300 301 302 303 304 305 306 307 308 309		990 0 1002 0 1005 0 1008 0 1011 0 1014 0 1017 0 1020 0 1023 0 1026 0	160833 50 161634 00 162837 50 163644 00 164653 50 165669 00 166681 50 167700 00 168721 50 169746 00	350 351 352 353 354 355 356 357 358 359		1149 0 1152 0 1155 0 1158 0 1161 0 1164 0 1167 0 1170 0 1173 0 1176 0	214333 50 215484 76 215637 50 217794 60 218651 50 231114 60 231281 50 22340 60 224795 60
310 311 312 313 314 315 316 317 318 319 320 321	ids per foot	1029 0 1032 0 1035 0 1038 0 1041 0 1044 0 1047 0 1050 0 1053 0 1056 0	170773 50 171804 00 172837 50 173874 00 174913 50 175956 00 177001 50 178050 00 179101 50 180156 00 181213 50 182274 00	360 361 362 363 364 365 365 367 368 369 370 371	pounds per foot	1179 0 1182 0 1185 0 1188 0 1191 0 1194 0 1197 0 1200 0 1206 0 1209 0 1212 0	225671 50 277134 00 228377 50 229424 00 230713 50 231905 00 231101 50 234309 00 234301 50 236705 00 237913 50 239124 00
322 323 324 325 326 327 328 329 330	niform Load = 3,000 pounds per	1065.0 1038.0 1071.0 1074.0 1077.0 1080.0 1083.0 1086.0	183337 .50 184404 00 185473 .50 186546 .00 187621 .50 188700 .00 189781 .50 190866 .00	372 373 374 375 376 377 378 379 380 381	ntform Load = 3,000 poun	1213 0 1218 0 1221 0 1224 0 1224 0 1227 0 1230 0 1233 0 1236 0	240537 50 241554 00 242773 50 243996 00 245221 50 246450 00 247681 50 248916 00 250453 50 251204 00
331 332 333 334 335 336 337 338 339	Unifor	1092 0 1095 0 1098 0 1101 0 1104 0 1107 0 1110 0 1113 0 1116 0	193044,00 194137,50 195234,00 196333,50 197436,00 198541,50 199650,00 200761,50 201876,00	382 383 384 385 386 387 388 380	Lufor	1245.0 1248.0 1251.0 1254.0 1257.0 1260.0 1263.0 1266.0	252884 00 253884 00 255133 50 256386 00 257641 50 258000 00 260161 50 261426 00
340 341 342 343 344 345 346 347 348 349 350		1119 0 1122 0 1125 0 1128 0 1131 0 1131 0 1134 0 1140 0 1143 0 1146 0 1149 0	202903 50 204114 00 205237 50 206364 00 207493 50 208626 00 209761 50 210900 00 212041 50 213186 00 214333 50	390 391 392 393 394 395 396 397 398 399 400		1260 0 1272 0 1273 0 1278 0 1281 0 1281 0 1287 0 1280 0 1280 0 1290 0	20120003 50 2010004 00 201237 50 200714 00 2017003 50 270001 50 271650 00 2712941 50 274230 00 273533 50

COMMON STANDARD 0'-50' COMMON STANDARD 50'-100'

	COMM	on Cra	NDARD	0 -00		OMMON	DIAME	ARD OC	7-100
Length	Wheel	Load	Load	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	12.5	12.5	00.00	50				5120 00
1					51				5120.00
2		1111	*****	12.50	1				5312.50
_				25.00	52				5505.00
3				37.50	53				5697.50
4				50.00	54				5890.00
5				62.50	55				6082.50
6				75.00	56	w. 10	12.5	205.0	6275.00
7				87.50	57				6480.00
8	w. 2	27.5	40.0	100.00	58				6685.00
9				140.00	59				6890.00
10				180.00	60				7095.00
11				220.00	61				7300.00
12				260.00	62				7505.00
13	w. 3	27.5	67.5	300.00	63				7710.00
14				367.50	64	w. 11	27.5	232.5	7915.00
15				435.00	65				8147.50
16				502.50	66				8380.00
17				570.00	67	/			8612.50
18	w. 4	27.5	95.0	637.50	68				8845.00
19				732.50	69	w. 12	27.5	260.0	9077.50
20				827.50	70				9337.50
21				922.50	71				9597.50
22				1017.50	72				9857.50
23	w. 5	27.5	122.5	1112.50	73				10117.50
24				1235.00	74	w. 13	27.5	287.5	10377.50
25				1357.50	75				10665.00
26				1480.00	76				10952.50
27				1602.50	77				11240.00
28				1725.00	78				11527.50
29				1847.50	79	w. 14	27.5	315.0	11815.00
30				1970.00	80				12130.00
31				2092.50	81				12445.00
32	w. 6	17.5	140.0	2215.00	82				12760.00
33				2355.00	83				13075.00
34				2495.00	84				13390.00
35				2635.00	85				13705.00
36				2775.00	86				14020.00
37	w. 7	17.5	157.5	2915.00	87				14335.00
38				3072.50	88	w. 15	17.5	332.5	14650.00
39				3230.00	89				14982.50
40				3387.50	90				15315.00
41				3545.00	91				15647.50
42				3702.50	92				15980.00
43	w. 8	17.5	175.0	3860.00	93	w. 16	17.5	350.0	16312.50
44				4035.00	94				16662.50
45				4210.00	95				17012.50
46				4385.00	96				17362.50
47				4560.00	97				17712.50
48	w. 9	17.5	192.5	4735.00	98				18062.50
49				4927.50	99	w. 17	17.5	367.5	18412.50
50				5120 00	100				18780.00
• (1)				0120 00	100				10100.00

COMMON STANDARD 100'-150' COMMON STANDARD 150 280'

Length	Wheel	Load	Lond	Moment Sumo	Length	Lond	Lond	M resource Drugges
100 101 102 103 104 105 106 107 108 100	w. 18	17.5	385.0	18780.00 19147.50 19515.00 19882.50 20250.00 20635.00 21020.00 21405.00 21790.00 22175.00	150 151 152 153 154 155 156 157 158 159		487 8 490 0 492 5 495 0 497 5 500 0 502 5 505 0 507 8 510 0	\$0001 25 \$0050 00 \$1041 25 \$1150 00 \$2001 25 \$2500 00 \$500 25 \$4001 25 \$4001 25 \$4001 25
110 111 112 113 114 115 116 117 118 119		per foo:	387 5 390 0 392 5 395 0 397 5 400 0 402 5 405 0 407 5 410 0	22561 25 22950,00 23341 25 23735 00 24131 25 24530 00 24931 25 25335 00 25741 25 26150 00	160 161 162 163 164 165 166 167 168	per foot	\$12 \$ \$15 0 \$17 \$ \$20 0 \$22 \$ \$25 0 \$27 \$ \$530 0 \$332 \$ \$535 0	45961 25 45573 00 60991 25 60610 00 47131 25 47655 00 68181 25 48710 00 69241 25 49775 00
120 121 122 123 124 125 126 127 128 129		= 2,500 pounds	412 .5 415 .0 417 .5 420 .0 422 .5 425 .0 427 .5 430 .0 432 .5 435 .0	26561 25 26975 00 27391 25 27810 00 28231 25 28655 00 29081 25 29510 00 29941 25 30375 00	170 171 172 173 174 175 176 177 178 179	Load = 2,500 pounds	537 .5 540 0 542 5 545 0 547 5 550 0 552 5 555 0 557 8 560 0	\$0311.25 \$0820.00 \$1291.25 \$1965.00 \$2481.25 \$2000.00 \$3381.25 \$4125.00 \$4001.25 \$4001.25
130 131 132 133 134 135 136 137 138 139		Uniform Load	437.5 440.0 442.5 445.0 447.5 450.0 452.5 455.0 457.5 460.0	30811 25 31250 00 31691 25 32135 00 32581 25 33030 00 33481 25 33935 00 34391 25 34850 00	180 181 182 183 184 185 186 187 188	Uniform	562 5 565 0 567 5 570 0 572 5 573 0 577 5 580 0 582 5 585 0	55811 25 56375 00 56041 25 57510 00 58081 25 58053 00 59211 25 58810 00 60091 25 600975 00
140 141 142 143 144 145 146 147 148 149 150			462,5 465,0 467,5 470,0 472,5 475,0 477,5 480,0 482,5 485,0 487,5	35311 25 35775 00 36241 25 36710 00 37181 25 37655 00 38131 25 38610 00 39091 25 39575 00 40061 25	190 191 192 193 194 195 196 197 198 199 200		\$87.5 \$90.0 \$92.5 \$95.0 \$97.5 600.0 602.5 605.0 607.5 610.0 612.5	61561 25 62150 00 92761 25 61515 00 64510 00 64151 25 64765 00 66361 25 66361 25

Common Standard 200'-250' Common Standard 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200		612.5	67561.25	250		737.5	101311.2
201		615.0	68175.00	251		740.0	102050.0
202		617.5	68791.25	252		742.5	102791.2
203		620.0	69410.00	253		745.0	103535.0
204		622.5	70031.25	254		747.5	104281.2
205		625.0	70655.00	255		750.0	105030.0
206		627.5	71281.25	256		752.5	105781.2
207		630.0	71910.00	257		755.0	106535.0
208		632.5	72541.25	258		757.5	107291.2
209		635.0	73175.00	259		760.0	108050.0
210		637.5	73811.25	260		762.5	108811.2
211		640.0	74450.00	261		765.0	109575.0
212		642.5	75091.25	262		767.5	110341.2
213		645.0	75735.00	263		770.0	111110.0
214		647.5	76381.25	264		772.5	111881.2
215		650.0	77030.00	265		775.0	112655.0
216	ot	652.5	77681.25	266	ot	777.5	113431.2
217	foot	655.0	78335.00	267	foot	780.0	114210.0
218		657.5	78991.25	268	per	782.5	114991.2
219	ber ber	660.0	79650.00	269		785.0	115775.0
220	spunod	662.5	80311.25	270	spunod	787.5	116561.2
221	3	665.0	80975.00	271	3	790.0	117350.0
222	od	667.5	81641.25	272	od o	792.5	118141.2
223	0	670.0	82310.00	273	0	795.0	118935.0
224	53	672.5	82981.25	274	23	797.5	119731.2
225	લ	675.0	83655.00	275	ci	800.0	120530.0
226	1	677.5	84331.25	276	1	802.5	121331.2
227	ad	680.0	85010.00	277	ad	805.0	122135.0
228	3	682.5	85691.25	278	3	807.5	122941.2
229	Uniform Load = 2,500	685.0	86375.00	279	Uniform Load = 2,500	810.0	123750.0
230	for	687.5	87061.25	280	for	812.5	124561.2
231	.E	690.0	87750.00	281	=	815.0	125375.0
232		692.5	88441.25	282	P	817.5	126191.2
233		695.0	89135.00	283		820.0	127010.0
234		697.5	89831.25	284		822.5	127831.2
235		700.0	90530.00	285		825.0	128655.0
236		702.5	91231.25	286		827.5	129481.2
237		705.0	91935.00	287		830.0	130310.0
238		707.5	92641.25	288		832.5	131141.2
239		710.0	93350.00	289		835.0	131975.0
240 241		712.5	94061.25	290 291		837.5	132811.2 133650.0
		715.0	94775.00				134491.2
242 243		717.5	95491.25	292		842.5	135335.0
243		720.0	96210.00	293		845.0 847.5	136181.2
244		722.5	96931.25	294		850.0	137030.0
		725.0	97655.00	295		850.0	137881.2
246 247		727.5	98381.25	296		855.0	138735.0
248		730.0	99110.00	297			139591.2
		732.5	99841.25	298		857.5	140450.0
249 250		735.0	100575.00	299		860.0	141311.2
7.754 3		737.5	101311.25	300		862.5	121011.4

Co	ums.	STANDAR	ab 300 -350	Cor	MMON !	orannemi.	501-6080
Longth	Load	Lond	Moment Sumo	Length	Load	Long	Sif-unitement Silvatore
300 301 302 303 304 305 306 307 308 309		862.5 865.0 867.5 870.0 872.5 875.0 877.5 880.0 882.5 885.0	141311 25 142175 00 143041 25 143910 00 144781 25 145655 00 140531 25 147410 00 148291 25 149175 00	350 351 352 353 354 355 356 357 358 359		987 50 980 00 982 50 995 00 997 50 1093 00 1005 00 1007 50 1010 00	187561 25 188550 09 188641 25 198641 25 199651 25 192550 00 19651 25 195541 25 196550 00
310 311 312 313 314 315 316 317 318 319	per foot	\$\$7.5 \$00.0 \$92.5 \$95.0 \$97.5 900.0 902.5 905.0 907.5 910.0	150061,25 150950 00 151841 25 152735,00 153631 25 154530,00 155431,25 156335 00 157241,25 158150 00	360 361 362 363 364 365 366 367 368 369	ber freet	1012, 80 1015, 00 1017, 50 1020, 00 1022, 50 1022, 50 1027, 50 1030, 00 1032, 50 1035, 00	197561, 25 198225, 00 198091, 25 200810, 00 201681, 25 202855, 00 202881, 25 204710, 00 200741, 25 206775, 00
320 321 322 323 324 325 326 327 328 329	Uniform Load = 2,500 pounds p	912.5 915.0 917.5 920.0 922.5 925.0 927.5 930.0 932.5 965.0	159061 25 159975 00 160891 25 161810 00 162731 25 163655 00 164581 25 165510 00 166441 25 167375 00	370 371 372 373 374 375 376 377 378 379	Uniform Load ~ 2,000 pounds p	1037 - 50 1040 - 00 1042 - 50 1045 - 00 1047 - 50 1050 - 00 1052 - 50 1057 - 50 1060 - 00	207811 25 208820 00 200891 25 210035 25 211003 25 215030 00 214081 25 215135 00 216191 25 217230 00
330 331 332 333 334 335 336 337 338 339	Uniform	937 .5 940 .0 942 .5 945 .0 947 .5 950 .0 952 .5 955 .0 957 .5 960 .0	168311 25 169250.00 170191 25 171135 00 172081 25 173030 00 173081 25 174935.00 175891 25 176850.00	380 381 382 383 384 385 386 387 388 389	Uniform	1062 50 1065 00 1067 50 1070 00 1072 50 1073 00 1077 50 1080 00 1082 50 1085 00	218211 25 219075 00 230441 25 221510 00 222081 25 222081 25 22081 25 225810 00 226731 25 225810 00 226891 25 227975 00
340 341 342 343 344 345 346 347 348 349 350		962 5 965 0 967 5 970 0 972 5 975 0 977 5 980 0 982 5 985 0 987 5	177811 25 178775 00 179741 25 180710 00 181681 25 182655 00 183631 25 184610 00 185591 25 186575 00 187561 25	390 391 392 393 394 395 396 397 398 399 400		1087 50 1090 00 1082 50 1085 00 1097 50 1100 00 1102 50 1105 00 1107 50 1110 00 1112 50	239061 25 230150 00 231241 25 232335 00 233431 25 234530 00 234631 25 236735 00 237841 25 238950 00 240061 25

Lackawanna 0'-50' Lackawanna 50'-100'

	43750	-KAWA.	1212 0	00	DACKAWANNA OO 100						
Length	Wheel	Load	Lond Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums		
0	1		11 03	00 000	20				4744 000		
0	w. 1	11	11.00	00.000	50				4744.000		
1				11.000	51		11		4911.000		
2				22.000	52				5078.000		
3				33.000	53				5245.000		
4		114		44.000	54	w. 10	11	178.00	5412.000		
5				55.000	55				5590.000		
6				66.000	56				5768.000		
7	w. 2	25	36.00	77.000	57				5946.000		
8				113.000	58				6124.000		
9				149.000	59				6302.000		
10				185.000	60				6480.000		
11		0.0		221.000	61	w. 11	25	203.00	6658.000		
12	w. 3	25	61.00	257.000	62				6861.000		
13				318.000	63				7064.000		
14				379.000	64				7267.000		
15				440.000	65				7470.000		
16				501.000	66	w. 12	25	228.00	7673.000		
17	w. 4	25	86.00	562.000	67				7901.000		
18				648.000	68				8129.000		
19				734.000	69				8357.000		
-									00011000		
20	,			820.000	70				8585.000		
21				906.000	71	w. 13	25	253.00	8813.000		
22	w. 5	25	111.00	992.000	72				9066.000		
23				1103.000	73				9319.000		
24				1214.000	74				9572.000		
25				1325.000	75				9825.000		
26			1	1436.000	76	w. 14	25	278.00	10078.000		
27				1547.000	77				10356.000		
28	1			1658.000	78				10634.000		
29				1769.000	79				10912.000		
								1111111			
30				1880.000	80				11190.000		
31	w. 6	14	125.00	1991.000	81				11468.000		
32				2116.000	82				11746.000		
33				2241.000	83				12024.000		
34				2366.000	84				12302 000		
35				2491.000	85	w. 15	14	292.00	12580 000		
36	w. 7	14	139.00	2616.000	86				12872.000		
37				2755.000	87				13146.000		
38				2894.000	88				13456.000		
39				3033.000	89				13748.000		
40				3172.000	90	w. 16	14	306.00	14040.000		
41	w. 8	14	153.00		91				14346.000		
42				3464.000	92				14652.000		
43				3617.000	93				14958.000		
44				3770.000	94				15264.000		
45				3923.000	95	w. 17	14	320.00	15570.000		
46	w. 9	14	167.00	4076.000	96				15890.000		
47				4243.000	97				16210.000		
48				4410.000	98		1		16530.000		
49				4577.000	99				16850.000		
50				4744.000	100	w. 18	14	334.00	17170.000		
		1	1		100		-				
-											

LACKAWANNA 100'-150' LACKAWANNA 1'07-307'

-					-	participated in		
Length	Wheel	Losd	Lond	Moment Sums	Length	Lord	Load	Effective
100	w. 18	134	334.00	17170.000	150		437.50	De Park Bank
101	V-12-11		111111	17504.000	151		4.30 7.5	20.00
102		100	TATALL	17838 000	152		442.00	27120 000
103				18172.000	153		444 25	3757h 124
104			334.00	18505,000	154		440 50	28018 200
105			336.25	18841 125	155		445 75	34460 123
106			338.50	19178.500	156.		451.00	28076.1881
107			340.73	19518 125	187		453.25	STEEDER (T21)
108			343.00	19860,000	158		451 (2)	39822 NA
100			345.25	20204,125	159		457.75	40010 101
110			347.50	20550.500	160		460.00	40738 (10)
111			349,75	20899 125	161		462,25	41199.121
112			352.00	21250.000	162		164 50	416KG 5/KH
113			354 25	21603, 125	10.5		466 73	62128.125
114			356.50	21958 500	164		469,00	42504 (111)
115			358.75	22316_125	165		171 25	43000 125
117			361,00 363,25	23676 000 23038 125	166		473,30 473,75	63536.000
118		foot	365.50	23402 500	168	8	478.00	44450 000
119			367.75	23769 125	100	-	180.35	840000 125
000	1	per				1	0.00	
120		3	370.00	24138 000	170	4	482 50	Trens non
121		ğ	372.25	24509 125	171	100	484.75	450034.125
122 123		spunod	374.50	24882 500 25258 125	172 173	pentinds	459.25	46420.000
124		2	376.75	25636 000	174	-	491.50	47398 A00
125		2,250	381.25	26016 125	173	230	193.75	47891.123
120		2	383.50	26398.500	176	21	196 (83	45 No 1993
127		1	385.75	26783 125	177	1	498.25	48881 125
128			388.00	27170.000	178		500.50	\$100KJ 5000
129		Load	390.25	27559 125	179	Uniform Load	502.75	40554 125
130		1	392,50	27950,500	150	-	505,00	50018-000
131		Uniform	394.75	28344 . 125	181	Ē	307.23	50904 123
132		igo	397.00	28740.000	182	-	500.50	514/32 500
133		in in	399,25	29138, 125	183	5	511.75	51913 125
134		_	401.50	29538 500	184	-	514,00	52426 000
135			403 75	20041_125	185		516.25	32941.125
136			406.00	30346 000	186		518,50	EMS 500
137			408 25	30753 125	187		520.75	53078.125
138 139			410.50	31162.500	189		533,00 535,25	54500 000 55004 125
			412.75	31574 125	100		Cuedan	1107.100
140			415,00	31988 000	190		527,50	35550 500
141			417,25	32404 125	191		529.75	20079.123
142			419.50	32882 500	192		532 00	57143 125
143			421.75 424.00	33243 . 125 33666 . 000	193 194		534.25	57678 300
145			426 .25	34091_125	195		338.73	58216 125
146			428.50	34518.500	196		541.00	18756.000
147			430.75	34948, 125	197		543 25	30208 125
148			433 00	35380 000	198		545.50	30842.500
149			435 25	35814 125	190		547.78	60088 125
150			437 50	36250 500	200		220.00	1394 (100)

Lackawanna 200'-250'

Lackawanna 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200 201 202 203 204 205 206 207		550.00 552.25 554.50 556.75 559.00 561.25 563.50 565.75	60938.000 61489.125 62042.500 62598.125 63156.000 63716.125 64278.500 64843.125	250 251 252 253 254 255 256 257		662.50 664.75 667.00 669.25 671.50 673.75 676.00 678.25	91250,500 91914,125 92580,000 93248,125 93918,500 94591,125 95266,000 95943,125
208 209 210 211 212		568.00 570.25 572.50 574.75 577.00	65410.000 65979.125 66550.500 67124.125 67700.000	258 259 260 261 262		680.50 682.75 685.00 687.25 689.50	96622.500 97304.123 97988.000 98674.123 99362.500
213 214 215 216 217 218 219	r foot	579.25 581.50 583.75 586.00 588.25 590.50 592.75	68278.125 68858.500 69441.125 70026.000 70613.125 71202.500 71794.125	263 264 265 266 267 268 269	r foot	691.75 694.00 696.25 698.50 700.75 703.00 705.25	100053 . 12; 100746 . 000 101441 . 12; 102138 . 500 102838 . 12; 103540 . 000 104244 . 12;
220 221 222 223 224 225 226	2,250 pounds per foot	595.00 597.25 599.50 601.75 604.00 606.25 608.50	72388.000 72984.125 73582.500 74183.125 74786.000 75391.125 75998.500	270 271 272 273 274 275 276	2,250 pounds per foot	707.50 709.75 712.00 714.25 716.50 718.75 721.00	105950.50 105659.12 106370.00 107083.12 107798.50 108516.12 109236.00
227 228 229 230 231	iniform Load =	610.75 613.00 615.25 617.50 619.75	76608.125 77220.000 77834.125 78450.500 79069.125	277 278 279 280 281	Uniform Load =	723.25 725.50 727.75 730.00 732.25	109958.12 110682.50 111409.12 112138.00 112869.12
232 233 234 235 236 237 238 239	Unif	622.00 624.25 626.50 628.75 631.00 633.25 635.50 637.75	79690.000 80313.125 80938.500 81566.125 82196.000 82828.125 83462.500 84099.125	282 283 284 285 286 287 288 289	Unif	734.50 736.75 739.00 741.25 743.50 745.75 748.00 750.25	113602 .50 114338 .12 115076 .00 115816 .12 116558 .50 117303 .12 118050 .00 118799 .12
240 241 242 243 244 245 246 247 248		640.00 642.25 644.50 646.75 649.00 651.25 653.50 655.75 658.00	84738.000 85379.125 86022.500 86668.125 87316.000 87966.125 88618.500 89273.125 89930.000	290 291 292 293 294 295 296 297 298		752.50 754.75 757.00 759.25 761.50 763.75 766.00 768.25 770.50	119550 50 120304 12 121060 00 121818 12 122578 50 123341 12 124106 00 124873 12 125642 50
249 250		660.25 662.50	90589.125 91250.500	299 300		772.75 775.00	126414 . 12 127188 . 00

Lackawanna 300'-350' Lackawana 220'-427

TABLE 3 Position of Cooper's Loadings for Maximum Stress Shorter Segment l_1

-		_		-				_	_			_	_	_	_			-							_
Seg	ments	10	10	15	20	25	30	35	40	45	20	55	09	65	70	75	80	85	90	98	100	110	120	130	140
300)-260	2	2	3	3	4	4	5	5	6	7	7	8	9	10	10	11	11	12	12	13	14	15	17	18
250	-200	2	2	3	3	4	4	5	5	6	7	8	8	9	10	11	11	12	12	12	13	14	15	17	18
190	-150	2	2	3	3	4	4	5	5	6	7	8	9	9	11	11	12	12	12	12	13	14	15	17	18
	140	2	3	3	3	4	4	5	5	6	7	8	9	10	11	12	12	12	12	12	13	14	15	17	18
	130	2	3	3	3	4	4	5	5	6	7	8	9	10	11	12	12	12	12	12	13	14	15	17	
	120	2	3	3	3	4	4	5	5	6	7	8	9	10	11	12	12	12	13	13	13	14	15		
	110	2	3	3	3	4	4	5	6	7	7	8	9	10	11	12	12	12	13	13	13	14			
	100	2	3	3	3	4	5	5	6	14	14	14	13	13	11	12	12	12	13	13	13				
	95	2	3	3	4	4	5	13	13	13	13	13	13	13	13	12	12	12	13	13					
	90	2	3	3	4	4	5	13	13	13	13	13	13	13	13	12	12	12	13						
	85	2	3	3	4	4	5	13	13	12	13	13	12	13	13	12	12	12							
	80	2	3	3	4	4	13	13	13	12	12	12	12	12	12	12	12								
Segment la	75	2	3	3	4	4	13	13	12	12	12	12	12	12	12	12	10								
len.	70	2	3	3	4	4	13	13	12	12	12	12	11	11	11		٧.								
E	65	2	3	3	4	4	12	12	12	12	12	11	11	11							4 .				
	60	11	3	3	4	4	5	13	12	11	11	11	11								8.3				
Ker	55	11	12	12	12	4	12	13	12	12	13	11		. ,											
Longer	50	11	12	12	12	12	12	13	13	13	12		. ,												
7	45	2	3	12	12	12	12	13	13	13			11												
	40	2	3	3	3	12	12	13	13	١.	٠.					10	2 00								
	35	2	3	3	4	4	13	13																	١.
	30	2	3	3	4	4	13																į.,		
	25	2	3	3	4	4					, .		1.								11				. 1
	20	2	4	3	4						, ,										¥ 0				
	15	2	3	3									V I		11	11		. (٠.		¥ .				
	10	2	3		00					٠.	1.					1 1									
	5	2						11													× 1	. ,			
			1			L.		-00																	

GENERAL NOTES.—The table gives wheel for maximum for any stress which has a triangular influence line.

In case of two unequal segments, the live load approaches on the longer segment except where wheel is overlined, when live load approaches on shorter segment.

When both segments are each greater than 142 ft., advance load on longer segment first, and upon next segment until wheel No. 1 is within 33 feet of the far end of the latter.

TABLE 4

POSITION OF COOPER'S LOADINGS FOR ASSOLUTE MAXIMUM BENDING MOMENY IN GIRDER BRIDGES WITHOUT PANELS

S = Span in feet.

o = Distance in feet that wheel No. 1 has moved to left beyond centre of span.

w = wheel under which absolute maximum bending moment occurs.

a = distance that w is to left from centre of span.

b = " " " right " " " "

8	c			6.
0' to 8'.5	8'.00	2	0'.00	
8.5 " 11.1	9.25	2	1.25	****
11.1 " 18.7	13.00	3	0.00	4410
18.7 " 27.6	14.25	3	1.25	
27.6 " 34.9	13.39	3	0.39	Territ.
34.9 " 38.7	17.06	4	Section 1	0.94
38.7 " 48.6	18.21	4	0.21	
48.6 " 53.7	19.45	14	1.45	-
53.7 " 58.4	74.13	13	0.13	1 80-0-1
58.4 " 63.2	75.37	13	1.37	1600
63.2 " 70.00	74.07	13	0.07	

NOTE. For spans greater than 70 feet, the maximum centre moment equals the absolute maximum bending moment with an error of less than one per cent.

TABLE 5

POSITION OF COOPER'S LOADINGS FOR MAXIMUM END SHEAR IN GIRBLE BRIDGES WITHOUT PANELS

Span	Direction Lond	Position of	Location of
	Moves	Lond	Maximum Shear
0' to 23'	Right to left	tr ₂ at left end to, at right end to; at left end tr ₂₁ at left end tr ₂ at left end	Left end
23 ° 27	Right to left		Right end
27 ° 46	Right to left		Left end
46 ° 62	Right to left		Left end
62 ° 400	Right to left		Left end

TABLE 6

Position of Cooper's Loadings for Maximum Shear in Panels of Girden and Truss Bridges

Number of						PA	NEL	LEN	GTH I	IN F	EET				
Panels	Panel	22	23	24	25	26	27	28	29	30	31	82	33	34	35
6	0-1 1-2 2-3 3-4	4 3 3 2	4 3 3 2	4 3 3 2	4 3 3 2	4 4 3 2	4 4 3 2	4 4 3 2	4 3 2	4 4 3 2	4 4 3 3	5 4 3 3	5 4 3 3	5 4 3 3	5 4 4 3
7	4-5 0-1 1-2 2-3 3-4 4-5	2 4 3 3 3 2	2 4 3 3 3 2	2 4 3 3 3 2	2 4 3 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 5 4 3 2	2 5 4 4 3 3	254433
8	5-6 0-1 1-2 2-3 3-4 4-5 5-6	2 3 3 3 2 2 2	2 4 3 3 3 2 2	2 4 3 3 3 2 2	2 4 3 3 2 2	2 4 4 3 3 2 2 2	2 4 4 3 3 3 2	2 4 4 3 3 3 2	2 4 4 3 3 3 2	2 4 4 3 3 3 2	2 4 4 3 3 2	2 4 4 3 3 2	2 5 4 4 3 3 2	2 5 4 4 3 3 2	2 5 4 4 3 3 2
9	6-7 0-1 1-2 2-3 3-4 4-5 5-6 6-7	2 3 3 3 2 2 2 2	2 4 3 3 3 2 2	2 4 3 3 3 2 2	24333322	4 4 3 3 3 2 2	2 4 4 3 3 3 2 2	2 4 4 3 3 2 2	2 4 4 3 3 2 2 2	2 4 4 3 3 2 2	2 4 4 4 3 3 3 2 2	2 4 4 4 3 3 3 2	2 4 4 4 3 3 3 2 2	2 5 4 4 3 3 3 2	2 2 5 4 4 3 3 3 2 2
0	7-8 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9	2 3 3 3 3 2 2 2 1	2 4 3 3 3 2 2 2 1	2 4 3 3 3 2 2 2 1	2 4 3 3 3 2 2 2	2 4 4 3 3 2 2 2 1	2 4 4 3 3 3 2 2 2 1	2 4 4 3 3 3 3 2 2 1	2 4 4 3 3 3 3 2 2 1	2 4 4 4 3 3 3 2 2 2 2	2 4 4 4 3 3 3 2 2 2	2 4 4 4 3 3 3 2 2 2 2	2 4 4 3 3 3 2 2 2 2	2 5 4 4 3 3 3 2 2	2 5 4 4 4 3 3 2 2 2

NOTE.—Place tabulated wheel at right end of corresponding panel with locomotive advancing toward left.

TABLE 7

MAXIMUM MOMENTS, SHEEDS, AND PIER REACTIONS FOR CROSSES & STANDARD LOADSNOOTH

(Figures for One Rail)

			E 10			£30						
Span	Max.	Ma	st Shee	irə	Man. Pior	Mas.	Ma	A Dhea	/3	Man.		
	Moment	End	4 PL	Cent.	Heart.	Momont	End	is Pt.	Cont.	Beart		
10	56.3	3000	20.0	10.0	40.0	70.4	37.5	25.0	12.5	50 0		
Distance	05.7	32.7	20 9	10.9	43.7	82.1	40.9	26.1	13.6	327		
13	80.0 95.0	35.0 36.9	$\frac{21}{22}$, 3	11 7 12 3	46,7	100.0	43 S 46 2	27.1	15.4			
14	110.0	38.6	23.6	12 9	52 2	137.5	45 2	29.5	16.2	65.2		
15	125.0	40.0	25.0	13.3	54.7	156.3	20.0	31 3	16.6	68.3		
16	140 0	42 5	26 3	13.7	56.9	175.0	53.1	32.9	17_1	71.1		
17	155.0	44.7	27.4	13.8	58.8	193.8	33 9	34.3	17.3	73.5		
18	170.0	16.7	28.3	13.9	60.7	212.5	58.3	35.4	17.4	75.9		
19	186.6 206.3	48:4 50:0	29 2 30.0	H 0		233 3 257.9	60.5	36.5	17.5	75.6		
20	226.0	51.4	31.4	14.0 14.5	65 6	282.5	64 3	37 5	17 5	51 9		
22	245.7	52 7	32 7	15.0	70 3	307 1	65.9	40.9	18 8	67.6		
23	265.4	53.9	33.9	15:4	72.2	331 8	67.4	42.4	19 3	90.2		
24	285 2	55.4	35 0	15.8	74.0	356.5	69.3	43.8	19.5	92.4		
25	305 0	56 S	33.0	16.2	75.7	381 3	71.0	45.0	20 2	94 6		
26	324.8	58.1	36 9	16:5	77.7	406,0	72.6	46.1	20.6	97 1		
28	344_6 365.5	59.2 60.4	37.8 38.6	16.9 17.1	80.2 52.3	430.8 456.9	74.0 75.5	47.2 45.3	21_1	100 I		
29	388.0	61.6	39.3	17.4	84.4	485.0	76.9	49.1		105.4		
30	410.5	63.0	40.0	17 7	86.3	313 0	78.8	50.0	22.1	107 9		
31	432.9	64.4	40.7	18.2	88.5	541 1	80.5	50.9		110 6		
32	455.4	65.7	41 3	18.8	91.0	569 3	82.1	51 5		113 7		
33	477.9	66 9	42.0	19.2	93 3	597.4	83.7	52.5		116.7		
34	500.6	68.1	42.8	19.7	95.5	625 8	85.1	53.5		119.4		
35	523.0 548.6	69 2 70.6	43.5	20.1	97.5 99.6	685.8	86 3 88 2	54 4		122.0		
37	574.3	71.9	44.8		101.5	717 9	80 8	56.0		125 9		
38	600.0	73 1	45.4		103.7	750.0	91.4	56.7		129.7		
39	626.6	74.3	46.0		105.9	783.3	92.9	57.5	27_1	132.3		
40	655,6	75 4	45.8		108.0	819 3	94 3	38,5		135 0		
41	654.6	76.8	47.5		110.0	855,8	96.0	59.4	-	137 6		
43	713.6	78.4	48.2		112.1	892.0 928.3	97.6 99.2	60.2		140 2		
43	742 6 771 6	79 4 80 6	48.9		114,3 116.5	2000	100.7	61.9	-	145 6		
45	800.6	81.7	50.1		118.6		102.1	62.6		145.3		
46	829.8	82.8	50.7		120.7		103.5	63.4	-	1/41.9		
47	858.6	83.8	51.4	23.9	122.7		104.9	64.2		153.4		
48	887 6	85.0	52 1		124 8		106.3	65.1		156 0		
49	918.8	86.1	52 8	-	126.8		107.7	66.0		158.5		
50	950.9	87.2	53.5		125.7		109,0	66.8		161 0		
51	983 1	88 4 89 3	54 1 54 8		131.0 133.3	1228. 9 1269. 0	110.4	67.6		163 6		
52	1015 2 1047 4	90 5	54 S 55 4		135 6		111 5	69.2	33.3			
	100	(11)	307.4	-								

TABLE 7.—Continued

MAXIMUM MOMENTS, SHEARS, AND PIER REACTIONS FOR COOPER'S STANDARD LOADINGS

(Figures for One Rail)

			E40			E50						
Span	Max.	Mi	ax. Sher	LFIS	Max. Pier	Max.	Ma	Max.				
-	Moment	End	34 Pt.	Cent.	React.	Moment	End	1/4 Pt.	Cent.	Pier React.		
54	1081.4	91.5	56.1		138.0	1351.8		70.1		172.5		
55	1116.9 1152.4	$92.6 \\ 93.7$	56.8		$140.3 \\ 142.7$	1396.1 1440.5		$71.0 \\ 71.8$		$175.4 \\ 178.5$		
56 57	1187.9	94.8	57.5 58.2		145.4	1484.9		72.7	33.6			
58	1223.4	95.9	58.8		148.1	1529.2		73.5	34.0			
59	1261.0	97.0	59.5		150.6	1576.2		74.4	34.4			
60	1299.6	98.0	60.1		153.2	1624.5		75.2	34.9			
61	1338.3	99.2	60.7	28.2		1672.9		76.0	35.2	194.7		
62	1377.0		61.3		158.2		125.2	76.6	35.6			
63	1415.6		61.8		160.4	1769.5		77.4	36.0			
64	1455.5		62.4		162.6	1819.4		78.0	36.4			
65	1497.5		$63.0 \\ 63.6$		165.2	1871.9 1924.4		78.8 79.5	$\frac{36.8}{37.1}$			
66	1539.5 1581.5		64.2	29.7	$167.8 \\ 170.1$	1976.9		80.3	37.5			
68	1623.5		64.8	30.2		2029.4		81.0	37.8			
69	1665.5		65.4		174.8	2081.9		81.7	38.1	218.5		
70	1707.5		65.9	30.7		2134.4		82.4	38.4	221.3		
71	1749.3		66.5		179.3	2186.6		83.1	38.8			
72	1793.0	113.3	67.0	31.4	181.5		141.7	83.8	39.2	226.9		
73	1833.9		67.5	31.7	183.7	2292.4		84.4		229.6		
74	1879.2		68.0		186.0	2349.0		85.0	40.0			
75	1925.8		68.6		188.2	2407.3		85.7	40.4			
76	1972.0 2019.1		$69.2 \\ 69.9$	32.0	190.4	2465.0 2523.9		86.5 87.4	40.8			
77 78	2065.0		70.5		192.5 194.7	2525.9		88.2	41.5	240.7 243.3		
79	2112.3		71.1		196.8	2640.4		88.9		245.9		
80	2160.5		71.7		198.9	2700.6		89.6	42.1	248.6		
81	2207.7	125.6	72.3		200.9	2759.6		90.4	42.5			
82	2256.7	126.9	73.0	34.4	203.0	2820.9	158.6	91.2	43.0	253.6		
83	2306.5		73.7	34.7	205.0	28831		92.1				
84	2356.3		74.4		206.9	2945.4	1	93.0	43.7			
85	2406.9		75.1		208.9	3008.6		93.9	44.1	260.8		
86	2459.6		75.8		210.8	3074.5		94.3		263.0		
87	2510.6		76.5	35.9 36.2		3138.3 3205.3		95.7 96.5		$\frac{265.6}{268.3}$		
88	2564.2 2615.9		77.1	36.5	214.7 216.7	3269.9		97.4	45.2 45.6			
90	2670.5		78.7	36.7	218.6	3338.1	171.5	98.4	45.9			
91	2723.0		79.5		220.6	3403.7	173.1	99.4	46.2	275.6		
92	2776.7		80.3		222 5	3470.9		100.4	46.6			
93		141.1	81.0		224.4	3539.3	176.4	101.2	46.9			
94			81.7		$226 \ 3$			102.1	47.3			
95		143.6	82.5		228 1			103 1	47.5			
96	2994,5		83 3		230 0			104.1	47.9			
97	3049 0	146.2	84.2	38 5	231 8	3811 2	182.7	105 1	48.1	289.7		

TABLE ? Continued

MAXIMUM MOMENTS, SHEARS AND PINE REACTIONS FOR COSCIENCES

(Figures for One Itail)

		_	-				_		_	_		
			E40			Lto						
Span	Max.	М	an. Shee	Man.		Mas	Ma	Man				
	Moment	End	Si Pt.	Cont.	React.	Moment	End	N Pt	Cent.	Past Beast.		
98	3106.5	147.5	85.0	35.8	233.6	1 1222	154.3	106 2	48.3	272.0		
99	3162 3		85,8	39.1	235.4		186.0			294.2		
100	3219.9			39.4	237, 2	4021.9	187 A	108 Z	45 2	30 5		
101	3277.6		87.3	39.6			189.0	100.1	49.5	248 G		
102	3335 9		88 1	39.9				110.1	49.9	200 8		
103	3410.6		88.8	40.1			192,1	111 0	50 1	-		
104		154.9	89.5	40.4	-	4344.0			200 10	C 2000		
105	3537 6		90 3	40.6		10000	195.1	112.7	50.7			
106	3600,3		90.9		247.8		195,6	NE GENERAL PROPERTY AND ADDRESS OF THE PARTY A	51 1	303.5		
107	3666.6		91.7		249.6			114.5	51.5	0 511		
108	3745.3 3818.4		92,4 93.2	41 3	251 4	100000000000000000000000000000000000000		115.5	51 7	1114.2		
109	3886 8		93.9			4773.0 4858.5	202.5	5 to 20 to 10	62.0 62.8	116 3		
110	3958.2		94.6	200	256.5		204.0		52.5	218.5 220.7		
112		164.4	95.3			5033.6		100000	53.7			
113		165 5	96.0	12.5			207 0		53 1	124.9		
114	4172.0		96.8	42.8			308 4	121 0		327 0		
115	4245.0		97.5	43 1	263.3		200.9	121.9	53.9	129.0		
116		169 0	95.3	43.4	264.9		211 3	122.9	51.2	I REE		
117		170 2	99.0	43.7	266 7	5486.9	212 8	133.7	54 6	223.3		
118	4463.8	171.4	99.7	43.9	268.5	5579.7	214.2	124 6	54.9	333.6		
119	4538.8	172 8	100 4	41.2	270.2	3673 5	215 7	125 A	55,3	C337 8		
120	4614 1	173.7	101_1	44.5	272 0	5767.6	217.1	126.4	55.X	140.0		
121	4686.5	174.8	101 8	44.7	273 8	5858.1	218,6	127 2	33.9	942.2		
122	4762.7	176_0	102 5	45.0		5933 4	220,0	128.1	56.2			
123	4836 2		103.2	45.3			221.4	129.0		146.7		
124	200001	1000000	104.0		279 2		222 8			0.349		
125			104 7		281 0	1	224 2			351.2		
150	7002.3	200.00	121.8	51.4		8827.9	259.2	152 2		14b. 7		
175	9352 5		138_3		371 7	11690 6	2343 1	172 9		164 6		
200	11873 0		153 4			To sell the last	372 3	191 8		8523 S		
250	17592 5	313.2	183 7	85.0	515 2	21990.6	-3041 6	220 6	106.1	0 1120		

NOTES. Momenta are given in thousand foot-pounds.

Shears are given in thousand pounds.

Pier reactions are given in thousand pounds and are for piers between two space each equal to the tabulated span.

TABLE 8

MAXIMUM MOMENTS FOR TRUSS BRIDGES—Cooper's E50 FOR ONE RAIL,
Moments Given in Thousands of Foot-Pounds

							DAME	L LEN	e Tu e			-	
Panels in Truss	Panel Points	01.011		9' 0"	9' 6"	101011			11'6"	12' 0"	10/0//	13' 0"	101.01
AE	44	8' 0"	8′ 6′′	9.0	9. 6.	10.0	10.6	11.0	11. 6.	12.0	12' 6"	13.0	13' 6'
3	1	325	359	392	425	464	503	541	580	619	661	707	755
H	1 2	433 569	483 625	533 683	582 747	632 819	688 892	743 964	799 1037	859 1110	918 1189	982 1269	1046
Б	1 2	540 790	599 877	662 964	728 1051	794 1149	861 1255	930 1361	1001 1468	1071 1574	1140 1675	1217 1792	1298 1910
6	1 2 3	641 1008 1109	710 1115 1221	784 1228 1351	859 1347 1484	937 1466 1618	1017 1587 1767	1100 1719 1925	1186 1857 2070	1280 1997 2240	1375 2135 2407	1485 2289 2581	1600 2451 2760
7	1 2 3	731 1215 1425	812 1344 1577	896 1477 1739	984 1615 1910	1080 1758 2086	1184 1904 2269	1293 2070 2465		1530 2441 2879	1645 2642 3100	1775 2849 3332	1906 3050 3560
8	1 2 3	819 1402 1716 1819	915 1553 1899 2030	1021 1709 2100 2240	1133 1872 2311 2465	1254 2061 2529 2700	1375 2273 2752 2946	1501 2490 2991 3205	1631 2708 3241 3471	1776 2933 3498 3743	1900 3165 3775 4025	2047 3405 4078 4344	2200 3649 4383 4681
9	1 2 3 4	621 1583 1997 2208	1039 1764 2215 2459	1162 1960 2451 2719	1287 2179 2700 2997	1418 2405 2986 3291	1556 2642 3276 3592	1697 2888 3570 3899		1997 3400 4194 4588	2145 3670 4532 4970	2309 3946 4887 5370	2478 4224 5242 5770
Uses	-5						PANE	L LEN	GTHS				
Panels in Truss	Panel Points	14'0"	14' 6"	15'0''	15' 6"	16' 0"	16' 6"	17' 0"	17' 6"	18' 0"	18' 6"	19'0"	
3	1	803	850	900	952	1008	1060	1115	1170	1228	1285	1347	
4	1 2	1115	1183 1529	1255 1624	1325 1721	1402 1820		1553 2030		1709 2240	1776 2349	1872 2465	
5	1 2	1389 2047		1581 2310	1680 2440		1896 2725		2123 3030	2242 3190	2355 3350	2477 3518	
6	1 2 3	1724 2616 2946	2792	2986	3175	3372		3775	3978	2769 4194 4681	2910 4415 4948	3062 4650 5215	
7	1 2 3	2047 3263 3802	3485	3723	3958	4202	4450		4958	3268 5218 6135	3434 5480 6460	3605 5748 6800	
8	1 2 3 4	2358 8900 4710 5034	4165 5040	4436 5380	5720	4994 6072	5280 6430	5576 6806	5873	3741 6180 7573 8163	3930 6487 7985 8595	4125 6805 8369 9043	
9	1 2 3	2651 4512 5617	4804	5107	5420	5747	6074	6414		4198 7108 8959	4410 7463 9415	4629 7830 9892	

TABLE 5 Continued

MAXIMUM MOMESTS FOR TRUSS Baileons Course's E50 FOR Gas Ban.

Moments Given in Thousands of Foot-Pounds

Passel	Polst	0	1	1	1			1	1	I	-1				
dis rues	73		Panel, Lancing												
Panels in Trues	Parsel Points	19' 6"	30, 0,,	20' 6"	21' 0"	31. e.,	22. 0	22 5	23 '9"	21 6"	0.0 M.	24" 6"			
3	1	1404	1466	1627	1587	1653	1719	1700	1657	1927	1991	Dones			
4	1 2	1958 2581	2061 2700	2166	2278	23.60 3014		2597	3471	2019	3. 42 2.0172	3003			
8	1 2	2600 3685	2731 3943	2M64 4144	3001 4347	31/3n 4555		3410	3563	3 7 65 S	3013	87999 5065			
6	1 2 3	0210 4885 5487	33.62 52.56 57.46	3516 5501 6028	5750			4175 6501 7228	4349 6764 7530		6700 72 0 8166	40°4 1427 8491			
7	2 3	3778 6025 7140	3955 6326 7646	4130 6613 7990	4817 6914 8347	7215	7530	4897 7845 9446		Allera	5512 8842 10609	8/721 0/AU 21017			
8	1 2 3 4	4320 7125 8780 94 0	7458 9434	4727 7505 9 530 10396		8520 10516	Select		11076	IDATE	6500 1 200 1 200 1 3 7 9 5	65-60 14-60 04-90 43-09			
9	3	4850 8195 10372 11605	5 179 8578 10880 12172	\$808 8970 11375 12735	\$545 9078 11900 13310	9760 12425	12978	10610	11002			10000			
-						Pass	ni. Luon	C Phin			=	-			
Panele in Truss	Panel	25' 0"	25' 6"	26' 0"	26' 6"	27' 0"		2A' 0"	28' 6"	29'0"	29 6	20.0.			
3	1	2135	2215	2289	2370	2451	2534	2616	2700	2792	20.00	2005			
4	1 2	3163 4025	3282 4170	3405 4344	8526 4501	3649 4681	3774 4858	39110 5034	4031 5215	4165 5370	4300 5500	4434 5750			
8	1 2	4150 6093	4301 6371	4456 6552	4611 6783	4770 7017	4929 7250	509/2 749/2	5255 7736	5422 7964	5549 6533	51 co 54%			
6	1 2 3	5061 7794 8821	5245 8068 9153	5483 8352 9490	5622 8854 9828	5816 8960 10170	6010 9268 10514	6200 9400 10862	64m 9897 11208		6011 10047 11905	140% 16666 12274			
7	2 3	5936 9330 11444	6151 8675 11870	6373 10236 12312	6595 10600 12752	6823 10060 13203	7051 11357 13653	T256 11742 14112	7521 10106 14971	7742 1252 1500 1	20000 120 (a 15001	1230 1230 16064			
8	2 3 4	6787 11244 14010 14820	7035 11655 14628 16310	7289 12080 15063 15873	15905	7806 10950 16161 16965	8069 13392 16718 17514			0,001 1470- 1404 19210	9163 INCH 19010 19795	Sig Sid Sid Sid Secured Secured			
9	4 2010	7602 12925 16528 18205	7900 13400 17145 18850	17778	8477 14380 18414 20180	8774 14888 19970 20670	9010 14400 19130 21557	20405	9654 16260 21080 22955	70000 170000 27170 23079	10010 17607 20461 24400				

TABLE S .- Continued

MAXIMUM MOMENTS FOR TRUSS BRIDGES—COOPER'S E50 FOR ONE RAIL

Moments Given in Thousands of Foot-Pounds

Panel	Points	0	1	2	3			}	6	- 1				
92	7.3	PANEL LENGTHS												
Panels in Truss	Panel	30′ 6′′	31' 0"	31′ 6″	32' 0''	32′ 6′′	33′ 0′′	33′ 6″	34′ 0″	34' 6"	35' 0"	35′ 6″		
8	1	3080	3175	3276	3372	3471	3570	3672	3775	3877	3978	4080		
4	1 2	4573 5957	4710 6147	4852 6332	4994 6516	5137 6715	5280 6915	5428 7123	5576 7331	5725 7535	5873 7740	5923 7950		
5	1 2	5937 8734	6113 8986	6295 9241	6477 9496	6678 9749	6849 10012	7039 10291	7228 10590	7423 10891	7617 11192	7814 11495		
6	1 2 3	7238 11219 12668	7450 11558 13040	7671 11903 13418	7892 12248 13796	8120 12684 14180	8347 12979 14563	8581 13854 14952	8812 13729 15341	9050 14120 15745	9288 14510 16148	9628 14902 16654		
7	1 2 3	8501 13748 16474	8752 14165 16964	9009 14590 17466	9266 15015 17968	9536 15460 18475	9806 15885 18981	10081 16358 19508	10355 16810 20015	10637 17284 20545	10919 17758 21024	11203 18234 21606		
8	1 2 3 4	9740 16225 20206 21022	10030 16720 20812 21638	10326 17227 21432 22268	10622 17733 22051 22898	10931 18252 22685 23549	11239 18770 23318 24200	11557 19311 23960 24860	11874 19852 24601 25531	12200 20407 25261 26216	12526 20961 25920 26901	12856 21518 26585 27590		
9	1 2 3 4	10961 18672 23886 25943	11288 19244 24608 26715	11625 19832 25343 27498	11961 20419 26083 28281	12310 21019 26839 29096	12658 21618 27595 29910	13018 22239 28365 30741	13378 22860 29135 31572	13747 23503 29923 32431	14116 24146 30710 33290	14490 24795 31500 34155		

TABLE 9

MAXIMUM SHEARS FOR THUSE BRIDGES—Contra's 250 ress Ove Rate. Shears Given in Thousands of Posteds

mela		1	. 1		1 .		, 5	-		1_			9
Parsels in Trus	-					3'	ANEL I	ALSO FEE	10.				
P. C.	Panel	B. O.,	B' 6 "	9, 0,,	9' 6'1	10' 0	10 6	11' 0	11 6	12 0	17 6	19 W	12 4
3	1 20 -	40.6	42.1 8.0 56.7	43.5 8.8	44.8 9.5	46.4 10.6	47.9	49,1	56 4 12.5	51.4 13.4	55.8 10.7	54.5 14.0	34.0 14.0
	20 20 25 20	54.I 23,5 2,4 67.5	25.4 3.1 70.4	59.1 27.4 3.9 73.6	61.3 28.6 4.5	63-1 30,0 5.0	31.3	67.4 82.4 6.5	23.4	71.6 54.4 1.5	35.6	34.7	25.5
8	2 3	38.8	41.0	43.0 19.6	76.6 44.9 20.8	79.4 46.7 22.0	82.3 45.7 21.1	56.5 50.3 24.0	81 9 28.0	85.2 55.5 25.7	91.4 64.6 36.8	100	991-4 640 7 301-7
6	2 3	80,1 52,7 30,2	83.5 55.8 33.5	86,9 57,9 34.0	90.1 60.5 35.6	93.6 62.9 37.4	96.9 65.5 39.0	100.1 67.8 40.8	100.1 00.1 41.5	100.1	74.7	75.0	Thi
7	1 2 3	11.6 91.1 68.5 43.4	13.0 94.6 69.1	14.4 99.2 72.4 48.0	15.6 103.4 76.8 50.4	16.6 108.0 78.4 52.1	17.8 172.8 80.9 54.8	15.8 117.5 83.9 56.5	19.4 122.9 86.1	20.2 127.5 88.6	21.1 182.0 92.0	134.0 264.0	22.0 141.4 90.0 -61.0
8	4 5	24.1 8.5 101.9	45.6 26.0 9.6 107.6	27.6 10.7 113.6	29.0 11.7 119.3	30-5 12-8 125-4	32.1 18.8 131.0	38.4 14.9 136.4	84.7 19.5 141.9	55.4 56.1 14.1 147.5	07.4 14.5 140.0	64.3 56.6 17.7 16T-4	19.4
	234	78.2 33.8 36.4	81.7 59.0 BA_5	85.2 61.9 40.6	89.1 64.5 42.8	92.5 67.4 44.6	96.0 69.6 46.8	99.4 72.3 48.6	104.1 74.4 80.4	168.4 76.6 52.0	111.0 79.5 55.7	116.7 #2.5 56.5	121.0 00.0 00.7
9	5 6 1	19.5 7.4 115.2	21.3 7,9 122.3	22.8 8.4 129.2	24.1 9.2 135.6	25.5 10.0 141.9	26.9 10.9 148.4	28.0 11.9 154.5	29.1 12.6 160.8	30.5 10.1 160.4	31.7 14.8 175.0	14.6 117.6	15.5 15.1 180.5
	234	89.0 68.1 48.2	98.6 71.4 51.1	98.3 74.5 53.8	183.3 77.6 56.5	108.3 81.2 58.5	113.6 84.3 60.8	118 6 87.8 83.1	123 4 91.6 65.1	104.0 95.4 97.4	102.0 25.2 45.4	180.8 180.8 72.3	140.4 100.4
	5	31.0 16.6	32.9 17.5	34.9 19.1	36.9 20.3	38.5 21.5	40.5	23.9	43.5 25.0	45.5 26.5	44.A 27.5	28.3	49.A 29.3
Panela in Trum	- 10					F	ANDI. I	KNUTT	m				
Pan In 1	Panel	14' 0"	14' 6"	15' 0"	15' 6"	16' 0"	16' 6"	17. 0.	17" 6"	18' 0"	18' 8"	18, 0-	
3	1 2 1	57.4 15.5	59.7 16.0	60.0 16.4	61 5 17,1 85.5	63.0 17.8 87.3	64.3 15.3	65.6 15.5	66.9	18.5	86.5 29.4	10.8	
4	2	79.6 38.6 9.8	81.6 39.6 10.3	83.6 40.6 10.7	11.2	11.7	89.0 43.9 12.2	90.6 45.0 12.7	92.6 46.1 13.1	94.5 47.2 13.5	56.4 40.5 13.9 107.5	96,3 49,8 14,3 139,4	
6	2 3	99.2 60.3 29.5 123.1	102.3 61.9 30.4 127.1	105.4 63.4 31.2	108.6 64.8 32.0 134.9	111_8 66.2 32.6 138.8	115.1 67.7 01.6 142.7	118.6 69.1 34.6 146.5	121,5 70.8 35.1 150.2	104.6 72.4 84.8 110.8	74.0 36.6 187.5	75.4 37.3 161.1	
	233	79.8 4931 28.3	82.2 50.4 24.1	131.5 84.6 51.7 24.8	85.9 52.9 25.6	99.1 54.0 26.3	93.0 55.3 21.0	98LA 561 /4 27.6	98.5 97.6 98.3	101.1 54.6 26.9	\$108.6 59.7 29.6	506.1 60.7 50.7	
7	4-23	146.2 102.6 67.4	150.9 106.1 69.3	155.5 1091.6 71.1	160 I 113.0 73.1	164.6 116.4 75.0	169,0 119.7 77.4	173.3 134.1 TA.T	171.3 126.4 80.1	181.4	184.5 181.5 86.6	155.7 135.9 88.6	
8	4 5 1	41.0 19.0 168.4	42.2 19,7 173.6	43.4 20.3 178.8	44.4 21.0 183.8	45.4 21.6 186.7	46.5 23.3 195.6	87.5 202.6 1765.4	45.5 23.4 206.1	45.4 24.6 24.6	56.4 54.6 212.5	2111	
0	2034	125.3 87.8 58.1	129-5 90.9 \$9.8	133.7 91.9 61.4	137.8	141.5	143.7 102.6 66.7	149.5	168.5 168.5 76.4	111.4 72.5	114.0 114.0 14.0	194.1 1/120 16.0	
9	5	35.0 15.7 189.4	36.1 16.4 195.1	37.1 17.0 200.8	38.0 17.6 206.3	38.9 18.1 211.8	16.7 211.3	19.5	41.T 19.6 228 0	62.5 29.3 290.2	20.6 20.6 208.4	21.0 21.0	
	1 22 33 4	147.4 109.8 77.3	162 1 112 9 80 1	166.8 116.7 82.7	161 3 120 4 8 2	165.7 124.1 87.6	179.I 125.6 99.1	174.5 114.0 60.1	175.0 194.4 94.9	180.8 181.7 187.5	141.0	144.2	
	5 6	50.8	52.4 31.4	51.5 32.3	ML1	11.9	31.6	10.0 35.7	36.5	80.5 97.2	65.3 05.0	67.4	

TABLE 9.—Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES—COOPER'S E50 FOR ONE RAIL Shears Given in Thousands of Pounds

Panels		1	2	-	3 +	4	5	6	7	-	8	9
	-						EL LEN					
Panels in Trus	Panel	19' 6"	20' 0"	20′ 6′′	21' 0"	21' 6"	22' 0''	22' 6"	23' 0"	23′ 6″	24' 0"	24' 6"
3 4 5 6	1212312341234512	72.0 21.5 100.7 50.3 14.7 133.5 777.4 38.1 164.6 62.1 30.8 193.9 91.9 91.0 52.4 25.7 221.7	73 .3 22 .0 103 .0 51 .3 15 .0 136 .6 79 .1 38 .8 168 .1 111 .0 63 .5 31 .4 26 .3 226 .3 226 .3 171 .3	74.3 22.4 105.6 52.2 15.3 139.8 80.9 39.6 171.7 113.6 65.1 32.1 201.7 145.0 95.4 54.5 26.9 230.8 174.8	75.3 22.9 108.2 53.1 15.6 142.9 82.6 40.3 175.2 116.0 66.6 32.8 205.5 147.9 97.5 55.5 27.4 235.2	76.6 23.6 1110.7 54.0 15.9 146.0 84.4 40.9 178.8 118.5 68.2 33.4 209.6 150.9 99.6 66.7 28.0 239.8 181.7	78.0 24.0 113.2 54.9 16.2 149.0 86.1 41.6 182.3 120.8 69.6 34.0 213.7 153.7 101.6 57.8 28.5 244.3 185.0	79 . 5 . 24 . 3 . 115 . 5 . 5 . 8 . 16 . 5 . 152 . 0 . 42 . 3 . 185 . 8 . 123 . 2 . 71 . 3 . 34 . 5 . 217 . 8 . 156 . 1 . 103 . 8 . 59 . 3 . 29 . 0 . 248 . 9 . 188 . 4	81.0 24.6 117.7 56.8 16.7 154.9 9.9 42.9 189.2 125.4 72.9 35.0 221.8 159.3 105.8 60.6 29.4 253.4 191.7	82 . 1 25 . 1 120 . 0 57 . 4 17 . 0 157 . 8 91 . 7 43 . 7 192 . 6 127 . 9 74 . 5 35 . 5 225 . 8 162 . 1 107 . 9 62 . 1 29 . 9 258 . 0 195 . 0	83 · 2 25 · 5 122 · 2 58 · 2 17 · 2 160 · 5 93 · 5 44 · 3 195 · 9 36 · 0 229 · 7 164 · 8 109 · 8 63 · 4 30 · 3 262 · 5 198 · 3	84 .6 25 .9 124 .4 59 .0 17 .5 163 .3 95 .1 45 .0 199 .2 132 .4 77 .4 36 .6 233 .6 167 .6 111 .8 64 .7 30 .8 267 .1 201 .7
Panels of in Truss	23456 123456 leurd	167.7 119.8 77.8 45.2 21.9 248.8 195.4 147.4 104.9 68.6 39.6	122.5 79.8 46.1 22.4 253.9 199.5 150.6 107.3 70.1 40.4	174.8 125.1 81.7 47.1 22.9 259.0 203.5 103.8 109.7 71.7 41.3	127.6 83.6 48.0 23.4 264.0 207.5 156.9 112.0 73.3 42.1	130.5 85.5 49.0 23.9 269.2 211.5 160.0 114.3 74.9 43.0	132.8 87.3 49.4 24.4 274.2 215.5 163.0 116.6 76.4 43.9	135.4 89.2 51.0 24.9 279.4 219.4 166.0 118.9 78.0 44.9	137.8 91.0 52.1 25.3 284.5 223.3 169.0 121.1 79.5 45.8	140.3 92.8 53.1 25.7 289.7 227.2 172.0 123.4 81.2 46.7	142.7 94.5 54.1 26.0 294.8 231.0 175.0 125.5 82.8 47.6	145.2 96.3 55.3 26.5 299.9 177.9 127.8 84.3 48.6
-	-	-										
14	1 2 1 2 3 1 2	86.0 26.4 126.5 59.7 17.8 166.0	87.0 26.8 128.7 60.5 18.1 168.8	88.0 27.2 130.9 61.3 18.4 171.4	89.5 27.6 133.1 62.1 18.6 174.1	91.0 28.0 135.2 62.9 18.9 176.7	92.2 28.3 137.3 63.8 19.1 179.4	93.5 28.6 139.3 64.6 19.3 181.9	94.7 29.0 141.5 65.6 19.6 184.5	96.0 29.4 143.6 66.5 19.8 187.0	97.8 29.7 145.8 67.4 20.1 189.6	99.7 30.0 147.9 68.3 20.3 192.0
6	2 3 1 2 3	96.6 45.5 202.5 134.5 78.6	98.3 46.3 205.8 136.8 80.2	100.1 46.9 209.0 139.0 81.5	101.9 47.7 212.2 141.3 83.0	103.6 48.3 215.4 143.5 84.3	105.4 49.0 218.6 145.8 85.7	107.1 49.6 221.8 148.0 87.0	108.9 50.5 224.9 150.3 88.4	110.6 51.3 228.0 152.4 89.6	112.3 52.1 231.1 154.6	114 0 52.8 234.2 156.7 92.4
7	1 2 3	37.1 237.4 170.3 113.6	37.6 241.4 173.2 115.6	38.1 245.2 175.9 117.4	38.6 249.1 178.8 119.3	39.1 252.8 181.5 121.1	39.6 256.6 184.3 123.0	40.0 260.3 187.0 124.8	40.5 264.1 189.8 126.6	41.0 267.7 192.5 128.3	91.1 41.7 271.4 195.3 130.2	42.4 275.0 197.9 131.9
8	4 5 1 2 3 4 5	65.8 31.3 271.5 204.9 147.5 98.0 56.4	67.1 31.8 276.0 208.3 150.0 99.8 57.4	68.3 32.1 280.4 211.6 152.3 101.4 58.4	69.6 32.6 284.9 215.1 154.7 103.1 59.5	70.8 33.0 289.2 218.4 157.0 104.6 60.5	72.0 33.5 293.6 221.8 159.4 106.3 61.6	73.1 33.8 297.9 225.0 161.7 107.9 62.6	74.3 34.3 302.3 228.4 164.0 109.5	75.4 34.6 306.5 281.7 166.1 111.0 64.8	76.7 35.1 810.8 235.0 168.5 112.6 65.9	77.8 35.6 315.0 238.2 170.2 114.1 66.9
5	6 1 2 3 4 5 6	26.9 304.9 238.8 180.8 129.9 85.8 49.6	27.3 310.0 242.8 183.8 182.0 87.4 50.6	27.6 315.0 246.7 186.7 134.1 88.9 51.5	28 0 320 1 250 6 189 6 136 3 90 4 52 4	28.4 325.0 254.5 192.4 138.4 91.8 53.3	28 8 330.0 258.5 195.3 140.5 93.3 54.2	29 1 334 9 262 4 198 0 142 5 94 8 55 0	63 .7 29 .5 339 .9 266 .3 200 .9 144 .6 96 .2 55 .9	64.8 29.9 344.7 270.2 203.8 146.6 97.6 56.8	30.4 349.7 274.0 206.7 148.6 99.0 57.6	30.8 354.5 277.8 209.5 150.6 100.4 58.4

TABLE 9 Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES—COUPER'S E50 FOR ORR RAM-Shears Given in Thousands of Pounds

l'ass in		,_1_	-, 2		9 .	ŧ .	0-	. 6	. 1			2
Pands in Trus	7					PAN	ni, Law	- T100				
15	Panel	30' 6"	31' 0"	31, 6,,	32, 0,,	75, 6.,	23. 0.,	23, 6,	54 0	34 6	20, 60,	10 A
3	1 2	101 1	102.6	104.6	106,6	E68, 1	109.8	111 5	115 4	114.0	116.2	217.4
4	1 3	149.9	30 8 152 0 70 0	31 3 154.0 71.7	156 1 70 0	155.0 74.4	32 2 160.0 75.4	161.9	161 6	165.0	30.4 167.9 75.4	249 A
\$	3 1 2	20.6 194 6 115 6	20.9 197.1 117.3	71.7 21.1 199.8 118.9	21 .3 202 4 120 4	21.6 205.0 122.0	22 0 207 5 123 5	22 2 210 1 125.0	212 4 124 5	213.1 213.1 128.6	25.0 217.4 129.4	03.5 029.3 131.8
6	3 1 2	58 6 237 3 158 8	54 3 240 3 160 9	55 1 243,5 163,0	246,6 165 1	54 7 249 8 167 2	55 4 252,9 169,8	256.0 ITI 4	219 1 173 4	202 3 175 4	200 A	244 T 244 L 179 4
7	3 4 1 2 3	93 7 43 0 278 7 200 6	95.0 43.6 282.3 203.3	96.3 44.4 286.0 205.9	97.5 45.1 289.6 208.5	98.8 45.8 293.4 211.2 140.7	100.0 46.4 297.1 213.8 142.5	101 3 47 2 900 9 216 4	102 5 67.9 884.7 218.9	100 8 48 4 908 4 921 4	100.1 49.0 913.0 203.0	200 A 80 A 815 T 800 A
8	4 5 1 2	183.6 79.0 36.1 319.3 241.4	135,3 80,1 36,5 821,5 244,6	137 1 81 3 37 0 327 8 247 8	138.9 82.4 87.5 332.0 234.0	140 7 83 5 88 0 337 0 254 2	142,5 84.5 38.5 341.9 257.4	144 6 85 6 89 2 345 6 geo 6	146 0 86,6 39,9 849,3	147 9 87 7 49 5 353 3 766 9	41.0 41.0 301.0	40 A 41 A 360 O
	3456	172 8 115 7 67 9 31 2	175.4 117.3 68.9 31.5	177 8 118 7 69 9 32 0	180,1 120 3 70,9 32 5	152 5 121 9 71 9 32 9	184.8 123.4 72.9 31.3	187 1 194 9 73 9 33 a	189.4 126.5 74.8 34.3	191 T 107 T 75 T 84 T	195.9 109.1 76.4 85.1	100
9	1 22 33 4	359.4 281.6 212.4 152.7	364,2 285 4 215,3 154.8	369 1 289 2 218 2 156 8	373,9 293,0 221,0 158,8	378.7 296.8 223.9 160.7	883,5 300,5 226,8 162,6	388 5 364 3 229 6 164 6	395 .5 366 0 232 5 166 6	959.4 311.8 235.0 168.4	400 5 515 6 238 1 370 6	406 5 819 2 230 4 172 5
	5	101.8 59.4	103,1	104.5 61.2	105 9 62 0	107 3	61.8	110 0	1111.4	64.3	114 W 67 1	115 A

TABLE 10

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E40 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT I

encomment.				-		SHORT	ER SE	SMENT (1		-	-	-
		Б	10	15	20	25	30	35	40	45	50	55	60
	250							10203					
	225		2769						10515				
	200		2505					8364		10560	-		
	175		2236					7430	8391		10339		
	160		2073					6862	7742	8638		10424	
	150		1962					6480	7304	8150			10664
	140		1851					6093	6862	7658			10016
	130		1738					5703	6417	7161	7901	8635	
	120		1625					5307	5964	6658			
	110		1509					4905	5514	6148			
12	100		1390					4494	5053			6813	
	95		1329					4290	4864	5431	5991	6546	
Segment	90		1264					4114	4661	5202			6786
E	85	617			2314			3923	4442	4936			6449
90	80		1134					3715	4205	4690		5646	6117
	75		1070					3489	3964	4422	4874	5320	5761
50	70		1003					3254	3706	4132	4553		5378
onger	65	482			1792			3019	3437	3831	4221	4608	
1	60	453			1649			2770		3519			
	55	425			1518			2546		3214			
	50	397			1398			2336		2928			
	45	367			1290			2136		2669			
	40	335					1669	1921	2160				
	35	302			10000	10000	1490						
	30	270				1109				1			
	25	235				946							
	20	200											
	15	150					1	11111					
	10	100	-	1		1	V						
	5	50			1.11	1	1000) ,					
		1	1						1		1		

For l_1 and l_2 each > 142 ft. $M=l_1\ l_2+3800\ \frac{l_2}{L}$

TABLE 10 -Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT PLANS, COOPER'S E40 LOADING

Values in Thousands of Foot-Pounds per Ital

-					SHORT	EN PRI	MEET L					
	6.5	70	75	HO	85	90	95	1.00	110	120	130	160
230	18327	19675	21062	22421	23766	25084	20304	27600	30152	3,1591	لتعذذ	32 655
225						22757						
200						20418						
175						18017						
						16636						
						15681						
						14722						
130						13756						
120		A 4 4 4 4				13787						
110	_	-										
100	2.000	8567	9150			10829	-	,				
95			8737	9296		10334						
90			8321	8851			acros	0 0 1 2 3 3				
85			7917	8404								131311
80				7954								113.631
75		6629	7057	1,000	****	11000			11111		2-1-1-1	
70		6197	11111	(201)								
65	5374						4000	Secret			1111	2005

For l_1 and l_2 each > 142 ft. $M = l_1 l_2 + 3800 \frac{l_2}{L}$

TABLE 11

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S, E50 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT L

	-	-		_	DEININ	TER SEX	THE REAL PROPERTY OF			_	_	-
	5	10	15	20	25	30	35	40	45	50	55	60
250								14452				
225								13144				
200	The second		4659		10 00000			11825				
175			4158			8048		10489				
160			3852			7437	8578	9677	10798			
150			3646			7025	8100		10187			
140			3438			6609	7617	8578			11545	
130			3227			6189	7129	8021	8951	0.000	10794	
120			3012			5760	6634	7455	8322		10035	No. of Street, or other Persons
110			2793			5325	6131	6892	7685			1004
100			2569			4887	5618	6316	7063			
			2454			4663	5363	6080	6789			-
90.			2333			4437	5143	5826	6502			
90 85 80 75			2213			4206	4904	5552	6170			
80	-		2089			4000	4644	5256	5862	6464	7058	
	The state of		1966			3760	4361	4955	5528			
70 65 60			1843			3506	4068	4632	5165		6209	1000
65			1709			3253	3774	4296	4789			
1			1582			2986	3463	3943	4399			
55			1465			2744	3182	3605	4017	4392		
50			1364			2529	2920					
45			1256			2309	2670		3336			
40			1147			2086	2401	2700				
35			1024		1	1862	2134	1				
30		632		1148		1617						
25	1	550		820	1182				-			
20	1	$\frac{466}{375}$		020				1				
10			1					10000				
5	-											
9	02		1:::	1								

For l_1 and l_2 each > 142 ft. $M=1.25\ l_1\ l_2+4750\ \frac{l_2}{L}$

TABLE 11. Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEARS, COOPER'S E.50 LOADING

Values in Thousands of Foot-Pounds per Rad

		-	20	SA.MI		
(2) (8)	CASS X	100		SEAL MEDI	LOW Y	164

	65	70	75	80	85	90	9.5	100	110	120	136	540
250	22909	24594	26327	25026	29707	31355	325033	34575	37000	807.00	63791	MAL!
		22327										
		20045										
		17756 16371										
		15443										
		14510										
		13571										
120		12625										
110		11672										
100		10709										
90		10227 9771		11064								
85		9285	9896	10505	11095	Lazini	1	0-11			25	
80		8804	9375	9943								
75	2 (4) (4)	8286	-	XXXXX	OWN							
70		7746	11111		incres.							
65	6718									1,500,0	127.6	

or l_1 and l_2 each > 142 ft. $M = 1.25 l_1 l_2 + 4750 \frac{l}{L}$

TABLE 12

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E60 LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT I B 250 | 2302 | 4547 | 6772 | 8969 | 11117 | 13230 | 15305 | 17342 | 19374 | 21418 | 23442 | 25474 | 23442 | 25474 | 23442 | 239658 11146 12587 14046 15509 16958 18400 175 1709 3354 4990 6584 8924 10294 11612 12958 14303 15636 16950 160 1579 3109 4622 6095 150 1505 2944 4375 5765 8430 9720 10956 12224 13492 14749 15996 140 1421 2777 4126 5430 9140 10294 11486 12674 13854 15024 130 1337 2608 3872 5090 9625 10741 11851 12953 14045 120 1250 2437 3614 4746 9986 11017 12042 13056 110 1162 2263 3352 4394 9222 10174 11122 12058 100 1070 2084 3083 4034 8476 9352 10219 11081 95 1024 1993 2945 3850 8987 9820 10644 90 974 1896 2800 3666 7802 8602 9395 10178 85 925 1800 2656 3472 7404 8188 8938 9673 80 876 1702 2507 3280 75 827 1604 2359 3082 8470 9175 7980 8641 521 1004 2559 3050 774 1505 2212 2885 722 1397 2051 2688 679 1296 1898 2473 637 1207 1758 2276 595 1124 1637 2096 551 1038 1507 1936 5789 4829 953 1376 1757 856 1229 1574 758 1081 1378 660 934 1181 776 984

For l_1 and l_2 each > 142 ft. $M = 1.5 l_1 l_2 + 5700 \frac{l_2}{L}$

TABLE 12 .- Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT PLOOF-BEAMS, COOPER'S E00 LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT &

	63	70	75	80	8.3	90	95	100	110	1.20	130	245
					35648							
					32353							
					29040							
					25700							
					23683							
					22331							
					20970							
					19603							
					18110							
					16840							
00					15440							
95					14736							
					14028							
-	IP TO DOC				13314							
80					A 10.00							
75			10585		2.121							
70												
(%)	8062			SHARY	1,1111	110.00	TARRE	1000	11111		1000	

For l_1 and l_2 each >142 ft. $M = 1.5 l_1 l_2 + 5700 \frac{l_0}{L}$

Values in Thousands of Pounds per Rail Shorter Segment h

-	-				01111111			**					-
		0	5	10	15	20	25	30	35	40	435	50	53
	250	314	314	315	318	322	326	329	332	336	338	342	346
	225	287	287	290	294	298	301	304	306	309	312	317	321
	200	261	261	263	268	271	275	278	281	284	287	292	296
	175	234	234	236	241	244	248	251	254	258	262	266	269
	160	218	218	220	225	228	232	236	238	242	246	250	254
	150	207	207	210	214	218	222	225	229	231	234	239	244
	140	196	196	198	203	206	210	214	218	220	224	229	234
	130	185	185	187	192	196	201	203	208	210	214	219	224
	120	174	174	176	181	184	189	192	196	198	204	208	213
~	110	162	162	165	170	173	178	181	185	188	193	198	202
-	100	150	150	153	158	162	166	170	174	177	182	187	192
Segment	95	144	144	146	151	155	160	163	168	173	178	182	188
E	90	137	137	140	146	150	154	158	163	168	174	178	183
-50	85	131	131	134	139	142	148	152	158	163	168	174	178
	80	124	124	127	133	137	142	146	153	158	163	168	174
96	75	118	118	122	126	130	135	140	146	152	158	162	167
Longer	70	110	110	114	120	124	128	134	139	146	150	156	162
1	65	104	104	107	112	118	122	126	133	139	144	149	155
	60	98	98	101	106	110	115	119	125	131	137	142	148
	55	93	93	95	99	103	108	113	118	125	130	134	141
	50	87	87	90	94	98	102	108	114	118	124	129	
	45	82	82	85	90	93	98	102	109	114	118		
	40	75	75	79	84	88	92	98	102	108			
	35	69	69	74	78	82	87	92	98				
	30	63	63	67	72	77	82	86					
	25	57	57	62	66	71	76						
	20	50	50	56	60	66							
	15	40	40	50	55								
	10,	30	30	40									
	5	20	20									. 7.	
												-	

For l_1 and l_2 each >142 ft. $R=L+\frac{3800}{l_1}$

TABLE 13 .- Continued

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, CONTES'S

E40 LOADING

Values in Thousands of Pounds per Rail

SHORTER SEGMENT &

250 350 356 359 365 370 374 379 382 387 395 402 410 411 225 326 330 334 340 345 350 354 358 362 370 377 345 37 200 300 305 309 314 320 324 329 333 337 345 352 356 27 274 279 284 290 294 300 303 308 312 319 234 34 35 352 356 264 269 274 280 284 289 283 287 305 312 319 32 344 35 352 356	-		-			_						-	-	-	-
225 326 330 334 340 345 350 354 358 362 370 377 284 220 300 300 305 309 314 320 324 329 333 337 345 352 359 36 175 274 279 284 290 294 300 303 308 312 310 327 234 36 160 258 264 269 274 280 284 289 293 297 310 327 234 36 160 288 242 249 253 250 264 270 273 277 284 292 293 30 140 238 242 249 253 259 264 270 273 277 284 292 299 30 130 229 233 239 243 250 254 258 262 267 274 282 299 30 120 218 222 228 233 239 242 248 253 257 265 272 256 362 267 274 282 299 30 29 120 218 222 228 233 230 234 238 242 249 253 250 254 258 262 267 274 282 299 30 29 120 218 222 228 233 230 234 238 243 247 255 272 256 362 267 274 282 299 363 295 192 198 203 208 214 219 224 229 233 238 299 188 194 198 203 209 214 218 223 229 36 178 184 188 194 199			60	6.5	70	78	80	8.5	90	0.5	100	110	120	136	100
00 100	ger Segment	225 200 175 160 150 140 130 120 110 100 95 80 75 70 65	350 326 300 274 258 248 229 218 207 197 197 198 183 178 173 166 160	356 330 305 279 264 254 242 233 222 212 202 198 194 189 184 178	359 334 309 284 269 239 239 228 218 208 203 198 194 188 183 178	365 340 314 290 274 264 253 243 223 223 214 208 203 198 194 188	370 345 320 294 280 269 259 250 239 230 219 214 209 204 199	374 350 324 300 284 274 264 254 242 234 219 214 209	379 354 329 303 289 278 270 258 248 229 223 218	382 358 333 308 293 282 273 262 253 243 233 229	387 362 337 312 297 287 277 267 257 247 238	395 370 345 319 305 294 274 265 255	402 377 352 352 312 302 292 292 272	410 385 359 334 320 310 222 250	417 = 22 = 67 = 42 = 25 = 15 = 26 = 15

For l_1 and l_2 each > 142 ft. $R = L + \frac{3800}{l_2}$

Values in Thousands of Pounds per Rail

SHORTER SEGMENT II

-				131	TORTER	OBGIN	INDIAT O					-	-
		ō	5	10	15	20	25	30	85	40	45	50	55
	250	392	392	394	398	403	407	411	415	420	423	428	432
	225	359	359	362	367	372	376	380	383	386	390	396	401
	200	326	326	329	335	339	344	347	351	355	359	365	370
	175	293	293	295	301	305	310	314	318	323	327	332	336
	160	273	273	275	281	285	290	295	298	302	307	313	318
	150	259	259	262	267	272	277	281	286	289	293	299	305
	140	245	245	248	254	258	263	268	273	275	280	286	293
	130	231	231	234	240	245	251	254	260	262	268	274	280
	120	217	217	220	226	230	236	240	245	248	255	260	266
~"	110	202	202	206	212	216	222	226	231	235	241	247	253
	100	187	187	191	197	202	208	212	218	221	227	234	240
Segment	95	180	180	183	189	194	200	204	210	216	222	228	235
E	90	171	171	175	182	187	192	197	204	210	218	223	229
6	85	164	164	168	174	178	185	190	198	204	210	217	223
002	80	155	155	159	166	171	177	183	191	197	204	210	217
Longer	75	147	147	152	158	163	169	175	183	190	197	203	209
n	70	138	138	143	150	155	160	167	174	182	188	195	202
2	65	130	130	134	140	147	152	158	166	174	180	186	194
	60	123	123	126	132	137	144	149	156	164	171	178	185
	55	116	116	119	124	129	135 128	141	148	156	162	168 161	176
	50	$\frac{109}{102}$	109	112 106	118	122 116	128	135 128	142 136	148	155 148		
	45	94	94	99	105	110	115	128	128	135			
	40	86	86	92	98	103	109	115	122	-			
	35 30	79	79	84	90	96	109	108					
	25	71	71	77	83	89	95						0
	20	63	63	70	75	82	-						
	15	50	50	62	69								
	10	38	38	50									
	5	25	25	-									0
	0	20	20										
										4750			

For l_1 and l_2 each >142 ft. R=1.25 $L+\frac{4750}{l_1}$

TABLE 14 - Continued

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COUPER'S

Values in Thousands of Pounds per Rail

SHORTER SEGMENT I.

	60	6.5	70	75	80	8.5	90	95	100	110	120	1 260	2 60
250	437	445	449	456	463	465	474	478	484	494	Jarg	512	521
225	407	413	418	425	431	437	442	165	452	462	471	481	510.1
200	375	381	386	393	400	405	411	416	421	631	440	445	4.756
175	343	349	355	362	368	375	379	121:	3500	3100	400	418	427
160	323	330	336	343	350	355	361	3005	371	381	2593	4(8)	410
150	310	317	324	330	336	343	348	353	359	36,54	378	387	3007
F40	298	303	311	316	324	330	337	341	346	355	MAG	374	303
130	256	291	299	304	312	317	323	325	334	.54.5	352	.50 1.2	
120	272	278	285	291	299	303	310	316	321	331	340		
110	259	265	273	279	287	292	208	304	300	1110			
100	246	253	260	267	274	280	241	291	PRES		500		600
95	240	247	254	260	267	274	279	286	101				
90	235	242	248	254	261	268	273			0.00			
85	229	236	242	248	255	261							
80.	223	230	235	242	249			-0		100		200	
75	216	222	229	235	0.0								
70.	208	214	222	900									777
65.	200	206	-				-		400		-11	900	
60	191				1000					600	200	200	-

For l_1 and l_2 each >142 ft. R=1.25 $L+\frac{4750}{h}$

TABLE 15

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E60 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT I

	250	0	5	10									
	250	_			15	20	25	30	35	40	45	50	55
	2.50	470	170	470	450	40.4	400	400	400	201	500		240
		470	470	473	478	484	488	493	498	504	508	514	518
	225	431	431	434	440	446	451	456	460	463	468	475	481
1	200	391	391	395	402	407	413	417	421	426	431	438	444
- 1	175	352	352	354	361	366	372	377	382	388	392	398	403
	160	328	328	330	337	342	348	354	358	362	368	376	382
	150	311	311	314	320	326	332	337	343	347	352	359	366
	140	294	294	298	305	310	316	322	328	330	336	343	352
	130	277	277	281	288	294	301	305	312	314	322	329	336
1	120	260	260	264	271	276	283	288	294	298	306	312	319
1	110	242	242	247	254	259	266	271	277	282	289	296	304
2	100	224	224	229	236	242	250	254	262	265	272	281	288
	95	216	216	220	227	233	240	245	252	259	266	274	282
3	90	205	205	210	218	224	230	236	245	252	262	268	275
Ě	85	197	197	202	209	214	222	228	238	245	252	260	268
Segment	80	186	186	191	199	205	212	220	229	236	245	252	260
	75	176	176	182	190	196	203	210	220	228	236	244	251
Longer	70	166	166	172	180	186	192	200	209	218	226	234	242
50	65	156	156	161	168	176	182	190	199	209	216	223	233
9	60	148	148	151	158	164	173	179	187	197	205	214	222
-	55	139	139	143	149	155	162	169	178	187	194	202	211
	50	131	131	134	142	146	154	162	170	178	186	193	
	45	122	122	127	134	139	146	154	163	170	178		
	40	113	113	119	126	132	138	146	154	162			
į	35	103	103	110	118	124	131	138	146				
	30	95	95	101	108	115	122	130					
į	25	85	85	92	100	107	114						
	20.,	76	76	84	90	98							
	15	60	60	74	83								
	10	46	46	60									
	5	30	30									11.	100
		30	30					1					

For l_1 and l_2 each >142 ft. $R = 1.5 L + \frac{5760}{l_1}$

TABLE 15 - Continued

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COMPEN'S

Values in Thousands of Pounds per Rail

SHORTER SHUMBERT L

-					SHOW	THE DE	DIVERSITY OF	7 (0)		-	-		P 8381
	60	65	70	75	80	n5	510	95	100	110	130	139	1.00
250 225 200 175 160 130 120 110 95 90 85 75	524 488 450 412 388 372 358 343 326 311 295 288 282 275 268 259	534 496 457 419 396 380 364 349 334 318 304 296 290 283 276 266	539 502 463 426 403 389 373 359 342 328 312 305 298 290 282 275	547 510 472 434 412 396 379 365 349 335 320 312 305 298 290 282	556 517 480 442 420 403 380 374 359 344 329 320 313 306 299	562 524 486 450 426 412 396 380 364 356 336 329 322 313	569 530 493 455 433 418 404 388 372 358 343 335 328	574 538 499 462 424 409 394 379 365 349 343	581 542 505 468 445 431 415 401 585 371 356	5003 554 554 517 479 457 443 426 412 397 383	602 565 528 491 668 454 678 422 408	614 577 529 562 480 464 849 434	605 588 551 512 492 476 863
70 65	250 240 229	257 247	266	0		30		100					-
toke.	000			1345	2.0	*3.5	***	- 1.4	>++			-11	

For l_1 and l_2 each >142 ft. R=1.5 $L+\frac{5700}{l_1}$

TABLE 16

EQUIVALENT UNIFORM LOADS FOR COOPER'S E40 LOADING

Values in Pounds per Lineal Foot per Rail

			3	HORIE	in one	MI ISON I	41					
	0	5	10	15	20	25	30	35	40	45	50	55
250												
225												
200	2610	2540	2500	2490	2460	2440	2420	2390	2370	2350	2340	2320
100	3000	2850	2780	2740	2690	2660	2610	2570	2530	2510	2500	2480
95	3020	2880	2800	2760	2700	2670	2620	2580	2560	2540	2520	2500
90	3050	2890	2810	2770	2720	2680	2630	2620	2590	2570	2550	2540
85	3080	2920	2820	2780	2730	2700	2640	2640	2620	2580	2570	2550
80	3110	2920	2840	2790	2740	2710	2670	2660	2620	2610	2580	2570
75	3140	2940	2860	2800	2740	2700	2670	2660	2640	2620	2600	2580
70	3160	2940	2870	2810	2750	2700	2670	2660	2650	2620	2600	2580
65	3190	2960	2870	2810	2760	2700	2670	2660	2650	2620	2600	2580
60	3270	3020	2880	2820	2750	2700	2660	2640	2630	2610	2590	2580
55	3370	3090	2930	2840	2760	2700	2660	2650	2620	2600	2560	2550
50	3490	3180	3000	2910	2800	2740	2700	2670	2630	2600	2580	
45	3630	3260	3080	2980	2870	2780	2740	2710	2670	2640		
40	3770	3350	3180	3060	2930	2840	2780	2740	2700			
35	3960	3450	3260	3120	3010	2900	2840	2790				
30	4200	3610	3380	3200	3060	2960	2880					
25												
20												
15												
10												
5												
		1		1		1						
	225 200 175 160 140 130 120 110 100 95 90 85 80 75 70 65 60 55 50 44 40 35 30 25 20 15 10 10 10 10 10 10 10 10 10 10	250. 2500 225. 2550 200. 2610 175. 2680 160. 2730 180. 2850 140. 2800 130. 2850 120. 2900 110. 2940 100. 3000 95. 3020 90. 3050 85. 3080 80. 3110 75. 3140 70. 3160 65. 3190 665. 3190 65. 3020 90. 3050 85 3080 80 3110 75 3140 70 3160 65 3190 60 3270 55 3370 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630 40 3770 50 3490 45 3630	250. 2500 2450 225. 2550 2500 200. 2610 2540 175. 2680 2610 160. 2730 2630 150. 2760 2670 140. 2800 2700 130. 2850 2740 120. 2900 2770 110. 2940 2810 100. 3000 2850 95. 3020 2880 90. 3050 2890 85. 3080 2920 85. 3080 2920 86. 3110 2940 70. 3160 2940 70. 3160 2940 65. 3190 2960 60. 3270 3020 55. 3370 3090 50. 3490 3180 45. 3630 3260 40. 3770 3350 35. 3960 3450 30. 4200 3610 25. 4540 3770 20. 5000 4000 15. 5336 4000 10. 6000 4000	250. 2500 2450 2430	0 5 10 15	250. 2500 2450 2430 2410 2380 2255 2550 2500 2460 2450 2430 200 2610 2540 2500 2490 2460 1755 2680 2610 2550 2540 2510 160 2730 2630 2590 2570 2540 150 2760 2670 2620 2590 2570 140 2800 2700 2650 2620 2580 130 2850 2740 2670 2650 2610 120 2900 2770 2710 2680 2640 110 2940 2810 2740 2710 2660 110 3000 2850 2780 2740 2690 95 3020 2880 2800 2760 2700 90 3050 2890 2810 2770 2720 85 3080 2920 2820 2780 2730 80 3110 2920 2840 2790 2740 75 3140 2940 2860 2840 2770 2750 65 3190 2960 2870 2810 2750 65 3190 2960 2870 2810 2750 65 3190 2960 2870 2810 2750 55 3370 3090 2930 2840 2760 250 50 3490 3180 3000 2910 2800 45 3630 3260 3800 2910 2800 45 3630 3260 3800 2910 2800 25 45 3630 3260 3800 3210 3010 30 4200 3610 3380 3200 3060 25 4540 3770 3520 3320 3150 20 5000 4000 3730 3450 3280 15 5 5336 4000 4000 4000 4000 155	250. 2500 2450 2430 2410 2380 2370 225 2550 2500 2460 2450 2430 2400 200 2610 2540 2500 2490 2460 2440 175. 2680 2610 2550 2540 2510 2490 160 2730 2630 2590 2570 2540 2510 150 2760 2670 2620 2590 2570 2540 140 2800 2700 2650 2620 2580 2560 130 2850 2740 2670 2650 2610 2580 120 2900 2770 2710 2680 2640 2610 110 2940 2810 2740 2710 2660 2630 100 3000 2850 2780 2740 2690 2660 95 3020 2880 2800 2770 2720 2680 85 3080 2920 2820 2780 2730 2700 85 3020 2880 2800 2760 2700 2670 80 3110 2920 2840 2790 2700 2670 2670 2670 3650 3610 2580 3110 2920 2840 2790 2740 2710 2680 85 3080 2920 2820 2780 2730 2700 80 3110 2920 2840 2790 2740 2710 75 3140 2940 2870 2810 2750 2700 65 3190 2960 2870 2810 2750 2700 65 3190 2960 2870 2810 2760 2700 55 3370 3090 2930 2840 2760 2700 55 3370 3090 2930 2840 2760 2700 55 3370 3090 2930 2840 2760 2700 55 3370 3090 2930 2840 2760 2700 55 3370 3090 2930 2840 2760 2700 55 3370 3090 2930 2840 2760 2700 55 3490 3180 3000 2910 2800 2740 45 3630 3260 3080 2980 2870 2840 35 3960 3450 3260 3120 3010 2900 30 4200 3610 3380 3200 3060 2930 2840 25 4540 3770 3520 3320 3150 3020 25 5000 4000 3730 3450 3280 15 5 5336 4000 4000 3650 10 6000 4000 4000	250	250. 2500 2450 2430 2410 2380 2370 2350 2330 225 2550 2500 2460 2450 2430 2400 2380 2360 2300 2610 2540 2500 2490 2460 2440 2420 2390 175. 2680 2610 2550 2540 2510 2490 2460 2440 2420 2390 150. 2760 2670 2620 2590 2570 2540 2510 2480 2450 150. 2760 2670 2620 2590 2570 2540 2510 2480 2450 140. 2800 2700 2650 2620 2580 2560 2520 2490 130. 2850 2740 2670 2650 2610 2580 2560 2520 2490 130. 2850 2740 2670 2650 2610 2580 2540 2510 2490 2400 2400 2400 2400 2400 2400 240	250. 2500 2450 2430 2410 2380 2370 2350 2330 2310 225 2550 2500 2460 2450 2430 2400 2380 2360 2340 200 2610 2540 2500 2490 2460 2440 2420 2390 2370 175. 2680 2610 2550 2540 2510 2490 2460 2420 2400 160 2730 2630 2590 2570 2540 2510 2480 2450 2420 2400 150 2760 2670 2620 2590 2570 2540 2500 2460 2440 2420 2490 160 2730 2630 2590 2570 2540 2510 2480 2450 2420 150 2500 2490 2460 2420 2400 160 2730 2630 2650 2620 2580 2560 2520 2460 2430 140 2800 2700 2650 2620 2580 2560 2520 2490 2450 130 2850 2740 2670 2650 2610 2580 2540 2510 2470 120 2900 2770 2710 2680 2640 2610 2580 2540 2510 2470 120 2900 2770 2710 2680 2640 2610 2560 2530 2490 110 2940 2810 2740 2710 2660 2630 2580 2550 2500 100 3000 2850 2780 2740 2690 2660 2610 2570 2530 95 3020 2880 2800 2760 2700 2670 2620 2580 2560 90 3050 2890 2810 2770 2720 2680 2630 2620 2590 85 3080 2920 2820 2780 2740 2700 2670 2620 2580 2590 85 3100 2920 2820 2780 2740 2700 2670 2660 2640 2650 2650 3110 2920 2840 2790 2740 2700 2670 2660 2660 2650 2550 2590 85 3190 2960 2870 2810 2770 2700 2670 2660 2660 2650 2550 2590 2500 2500 2500 2500 2500 25	250. 2500 2450 2430 2410 2380 2370 2350 2330 2310 2300 2255 2550 2500 2460 2450 2430 2400 2380 2360 2340 2320 200 2610 2540 2500 2490 2460 2440 2420 2390 2370 2350 175. 2680 2610 2550 2540 2510 2490 2460 2440 2420 2390 2370 2350 160 2730 2630 2590 2570 2540 2510 2490 2460 2420 2400 2430 2400 150. 2760 2670 2620 2590 2570 2540 2510 2480 2450 2420 2400 2430 150. 2760 2670 2620 2590 2570 2540 2500 2460 2430 2420 2400 150. 2760 2670 2620 2590 2570 2540 2500 2460 2430 2420 140. 2800 2770 2650 2650 2610 2580 2560 2510 2490 2450 2430 130. 2850 2740 2670 2650 2610 2580 2540 2510 2470 2450 120. 2900 2770 2710 2680 2640 2610 2560 2530 2490 2450 100. 3000 2850 2780 2740 2600 2660 2610 2570 2530 2490 100. 3000 2850 2780 2740 2600 2600 2610 2570 2530 2540 90. 3050 2890 2810 2770 2720 2680 2630 2620 2580 2560 2540 90. 3050 2890 2810 2770 2720 2680 2630 2620 2580 2560 2570 85. 3080 2920 2820 2780 2740 2710 2680 2630 2620 2580 2560 2570 85. 3140 2940 2860 2800 2760 2700 2640 2640 2640 2620 2580 80. 3110 2920 2840 2790 2740 2710 2670 2660 2620 2580 2600 2570 2550 2590 2990 2570 85. 3190 2960 2870 2810 2760 2700 2670 2660 2640 2640 2620 2580 80. 3110 2920 2840 2790 2740 2710 2670 2660 2620 2580 2560 2540 2550 2590 2570 2500 2490 2570 2570 2570 2570 2570 2570 2570 257	250. 2500 2450 2430 2410 2380 2370 2350 2330 2310 2300 2290 2255 2550 2500 2460 2450 2430 2440 2380 2360 2340 2320 2310 200 2610 2540 2500 2490 2460 2440 2420 2390 2370 2350 2340 175 2680 2610 2550 2540 2510 2490 2460 2440 2420 2400 2380 2360 160 2730 2630 2590 2570 2540 2510 2490 2460 2420 2400 2380 2360 160 2730 2630 2590 2570 2540 2510 2480 2450 2420 2400 2380 150 2760 2670 2620 2590 2570 2540 2500 2460 2430 2420 2400 2380 150 2500 2460 2420 2400 2380 150 2500 2460 2450 2420 2400 2380 150 2500 2500 2740 2670 2650 2650 2650 2650 2580 2500 2460 2430 2420 2400 130 2850 2740 2670 2650 2610 2580 2540 2510 2470 2450 2430 120 2900 2770 2710 2680 2640 2610 2580 2540 2510 2470 2450 2430 120 2940 2810 2740 2710 2660 2630 2580 2550 2500 2490 2460 2450 110 2940 2810 2740 2710 2660 2630 2580 2550 2500 2490 2460 2450 110 3000 2850 2880 2740 2700 2670 2670 2650 2580 2560 2510 2570 2500 2490 2460 100 3000 2850 2880 2740 2700 2670 2670 2620 2580 2560 2510 2500 95 3020 2880 2800 2760 2700 2670 2620 2580 2560 2540 2520 90 3050 2890 2810 2770 2720 2680 2630 2620 2580 2560 2540 2520 90 310 2900 2840 2790 2740 2710 2670 2660 2650 2650 2570 2530 2510 2500 2500 2500 2500 2500 2500 250

For l_1 and l_2 each >142 ft. $q=\left(2.0+\frac{7600}{l_1L}\right)1000$

TABLE 16. - Continued

EQUIVALENT UNIFORM LOADS FOR COUPER'S E40 LOADING

Values in Pounds per Lineal Feet per Rail

SHORTER SECREST I

	(%)	€, "	70	1.3	60	85	fjills	7.5	100	110	120	1 200	100
250	2260												
225	2200	3341	2270	2270	2200	2200	22541	2240	2220	2220	2180	2170	715
200	2310	23(11)	2250	2290	2280	2280	2270	2200	2200	2230	22(4)	2180	214
175												7200	
160												2210	
150	2370	2350	2360	2350	2340	2340	2330	2300	231.63	2270	2240	2230	219
140	2380	2380	2370	2360	2360	2350	2340	2330	2310	2280	2250	2230	231
130	2400	2.500	2390	2380	2380	2370	2350	2340	2330	250	2200	ILBS	
120												22.20	
110	2140	2420	2420	2420	2420	2400	2390	2380	2350	23(20)	VX 14	110	
100												(LLL)	vill
95	2500	2180	2460	2460	2450	2440	2420	2400				ores.	
90													
85	2530	2510	2500	2490	2470	2460						0.00	
80	2350	2540	2520	2500	2490	he La	nere			177.5			
75	2560	2540	2530	2510	1000		con		1000			4000	100
70	2560	2540	2530			1122	1242		415.	1000	000	ri Line	
65	2560	2540				diam'r.	1000				-		4.3.1
60	2550				Sed.	See		4000					

For
$$l_1$$
 and l_2 each >142 ft. $q = \left(2.0 + \frac{7600}{lL}\right) 1000$

TABLE 17

Equivalent Uniform Loads for Cooper's E50 Loading

Values in Pounds per Lineal Foot per Rail

		0	5	10	15	20	25	30	35	40	45	50	55
	250						2960						
	225						3000						
	200						3050						
	175						3110						
	150						$\frac{3140}{3170}$						
	140						3195						
	130						3225						
	120						3255						
	110						3285						
200	100	3750	3560	3470	3425	3360	3320	3260	3210	3158	3140	3117	309
Segment	95	3780	3600	3500	3445	3375	3340	3275	3225	3200	3175	3153	3130
	90						3350						
28	85	3850	3650	3530	3470	3405	3370	3300	3295	3266	3225	3210	318.
	80	3885	3650	3545	3480	3415	3385	3335	3315	3284	3255	3232	321
3	75						3380						
Louige	70						3380						
1	65						3375						
	60 55						3375 3380						
	50						3425						
	45						3480						
	40						3550						
	35						3630						
	30	5255	4510	4215	4000	3825	3695	3595					
	25	5680	4710	4400	4150	3935	3780						
	20	6250	5000	4660	4315	4100						,	
	15	6670	5000	5000	4560								
	10												
	5	10000	5000										

For l_1 and l_2 each >142 ft. $q = \left(2.5 + \frac{9500}{l_1 L}\right) 1000$

TABLE 17 Condensed

EQUIVALENT UNION LOADS FOR COMPLES EM LOADERS

Values in Pounds per Lineal Foot per Rad

	20 4 3 GG	9	0.00		Sec.	0.0	Dec.		0	-
	101-00		Decide .	-	0.74		Bic	-		-

		100	-			977				-			
	60	65	70	25	503	22	703	25	1/00	110	120	1.300	10
250	1920	-25-H)	2810	2810	2500	217(10)	2780	2770	077(0)	27/63	27.30	22104	9.7
25			2840										
00			2860										
75			2900										
50	2010	2930	289/260	2020	2910	2000	2800	2870	2850	28/00	27101	2700	97
50	-	1	2950		eree.c	10000			_	-		~	_
40	2950	2965	2960	2950	2950	2940	2020	22000	1750.01	2850	2510	2776	27
30			2985										
20			3005										
10			3030										
00			3060										
95	100		3075									1000	
90			3100										
85			3120										
80													
75			3155										
70			3160										
65													
60													
	100		1000	12.00	1000								

For
$$l_i$$
 and l_i each >142 ft, $q = \left(2.5 + \frac{9500}{l_i L}\right) 1000$

PLEASE RETURN TO DEPT. of APPLIED MECHANICS.

TABLE 18

Equivalent Uniform Loads for Cooper's E60 Loading

Values in Pounds per Lineal Foot per Rail
SHORTER SEGMENT 4

											_	-	-
7		0	5	17	15	20	25	30	35	40	45	50	55
	250	25 C 25 C	Acres 2 100	20.00.00	The street of	the re-	The same of		3490	2 M. A. St.	THE R. P. LEWIS	10. 8 . 10. 17	20.00
	225	1910119109		The second	Charles at the	A STATE OF	Towns course	Paracratic Contract C	3540	Service on	the second	THE R. P. LEWIS CO., LANSING, MICH.	
	200								3590				
	175								3640				
	160								3670				
	150								3700 3730				
	140								3770				
	130								3790				
	110								3830				
	100								3850				
2	95								3880				
Segment	90	B 40 B 40	Section 1	(a) mm (% (%)	man many	A STATE OF	A 100 M 05	the same of the	3920	the last of the		the second	200
ne	85								3960				
5	80								3980				
7.	75								4000				
2	70								3980				
50	65		W. W. W. C.	A . W. P. C.	Same Water	a Walter	B		4000	COLUMN TO SERVICE		the street of	
Longer	60								3960				
-	55								3970				
	50	5230	4760	4500	4370	4200	4120	4040	4010	3950	3900	3860	
	45	5450	4900	4620	4460	4310	4180	4100	4070	4010	3960		
	40	5660	5030	4780	4600	4390	4260	4180	4120	4060			
	35	5930	5170	4900	4680	4510	4360	4260	4190				
	30	6310	5410	5060	4800	4600	4440	4320					
	25						4540						
	20			5590									
	15												
	10	0000	2000	6000									
	5	12000	6000										

For l_1 and l_2 each >142 ft. $q = \left(3.0 + \frac{11400}{l_1 L}\right)$ 1000

TABLE 18. Continued

EQUIVALENT UNIFORM LOADS FOR COOPER'S EGO LEADERS

Values in Pounds per Lineal Foot per Rail

SHIRTER SECRET L

	60	6.5	70	75	260	85	500	95	100	110	120	156	1.65
250	_	_	3370					_		_	_		
225.	100	-	3410		1007001		December 2010		-			_	_
175	100,000		3430 3480	-	-			_			_	_	
160			3500										
150			3540										
140			3550										
120			3580 3600										
110			3640										
100			3670										
95			3690										
90 85			3720 3740										
80			3770										
75	3840	3820	3780	3770		mi			One	600	6000	660	100
			3790										
60													
00	(AND)			1,2.4.1	****					100			

For l_1 and l_2 each >142 ft. $q = \left(3.0 + \frac{11400}{l_2 L}\right) 1000$

TABLE 19

Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{l_1 l_2}{L}$

SHORTER SEGMENT !

TABLE 19 -Continued

INFLUENCE-LINE ORDINATES FOR M FOR GIRDER BRIDGES WITHOUT FLOOR-BRAMS

Values of $\frac{l_i l_i}{L}$

SHORTER NEUMENT &

	65	70	78	80	85	99	95	100	110	120	1.50	1 60
250	51 5	54.6	57 5	60.6	63 3	66.2	69.0	71.4	76.3	81.3	85.5	SD 3
>25	50 5	53.2	56.2	58.8	61.7	64.1	66.7	60.4	73.5	78.1	82.0	80.5
200	49.0	51 8	54.6	57.1	59.5	62 1	64 3	60. 5	70.9	75.2	78.7	RD. (
175	47 2	50.0	52 4	54.9	57 1	59 5	61 7	63.7	E. C.	71.4	74 6	78.
160	16 1	48.5	51.0	53.2	55.6	57.5	59 5	61 7	634.59	1,5	71.4	74
150	45.2	47.6	50.0	52.1	54.3	56.2	58 1	30.9	63.3	10, 7	020 6	72
				51 0								
130	43 3	45 5	47.6	49 5	51 6	53 2	55 0	00.5	59 5	62.5	15.0	
120												
110	10.8	42 7	44.6	46 3	45 1	49.5	31 0	152.4	55.0	600	Same	
100	39 4	41 2	42.9	14 4	46 1	47 4	45 5	50.0			1	
	35.6	40.3	42.0	43.5	44.5	46 3	47.5	direct new	More		diam'r.	
90	37 7	39.4	41.0	42 4	43 7	45 0		1000	300			1,01
85	36.8	38.3	39.8	41 2	42 .	en.						
80	35 8	37.3	38 7	40.0		dia.	1000				beren	
	34 8	36 2	37 5	-110			1000	Stews.		100	Stani	011
65	32 5	Cons		diam'r.		10000					Second	

TABLE 20

Reciprocals of Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{L}{l_1 l_2}$

SHORTER SEGMENT I

SHORTER SEGMENT ()													
		5	10	15	20	25	30	35	40	45	50	55	60
2.					.0540								
2:					.0544								
-					.0550								
100					.0558								
100					.0562								
12					.0567								
1170					.0571								
150	30 .:	208	. 108	.0744	.0577	.0477	.0410	. 0363	.0327	.0299	. 0277	.0259	.024
					.0583								
					.0591								
Segment	00 . :				.0600								
ă :	95 .				.0805								
50					.0611								
					.0618								
5					. 0625								
50					.0633								
4					.0643								
,					.0654								
1					.0666								
					0.0682								
					.0722								
					.0750								
					.0786								
1.3					.0833								
1					. 0900								
					.1000								
					. 1000								
			.200										
	-												
1	9	21717				,							

TABLE 20 Continued

RECIPROCALS OF INFLUENCE-LINE ORDINATES FOR M FOR CLEDER RADE IN WITHOUT FLOOR-BRAMS

			,	1.
,	mlin	m 4a	1	1.

	SHORTER SECRECAT IN											
	65	70	75	80	MS	90	95	109	110	120	136	1.60
-	.0194	0183 0188				.0151						
175		.0200	.0191	.0182	.0175		0162	.0157	.0148	0140	0134	0128
150	0221	.0206 .0210 .0214	0200	0192	0184	.0178	0172	.0167	01/48	(0150)	0144	0138
130		0220	.0210	.0202	0194		.0182	.0177	.0168	0160	0134	
100	0254		0233	.0225	0217	0202	0205	.0200	1111			
- 90	0259 0265 0272	. 0254	0244	0236	0229	0216	Some			-2-2-	and a	
7.5	0279 0287	0268 0276	0258 0256	0250	110		0.00		0.00		****	THE REAL PROPERTY.
2.00	0296					1000						

TABLE 21

BENDING MOMENTS IN BEAMS DUE TO UNIFORM LOAD OF 1 POUND PER LINEAL FOOT

Values in Foot-pounds

Values equal $\frac{l_1 l_2}{2}$ = Area of Influence Line for M

CHARME	SEGMENT	2.
SHURTER	SEGMENT	61

		5	10	15	20	25	30	35	40	46	50	55	60
	250	625	1250	1875	2500	3125	3750	4375	5000	5625	6250	6875	7500
	225	562.5	1125	1687.5	2250	2812.5	3375	3937.5	4500	5062.5	5625	6187.5	6750
	200	500	1000	1500		2500		3500		4500		5500	6000
	175	437.5	875	1312.5			2625	3062.5	3500	3937.5	4375	4812.5	5250
	160	400	800	1200	1600	2000		2800	3200	3600	4000	4400	4800
		375		1125	1500	1875		2625	3000			4125	4500
		350		1050		1750		2450		3150		3850	4200
		325	650			1625		2275		2925		3575	3900
		300	600	900	m m	1500		2100	2400			3300	3600
2		275	550	825		1375		1925	2200			3025	3300
+1		250	500	750		1250		1750	2000			2750	3000
6		237.5	475	712.5		1187.5		1662.5		2137.5			
Segment		225	450	675		1125		1575	1800			2475	2700
.0		212.5	425	637.5		1062.5		1487.5				2337.5	
	20.00	200	400	600	~~~	1000		1400				2200	2400
Se		187.5	375	562.5	750					1687.5			
Longer		175	350	525	700			1225		1575		1925	2100
7		162.5	325	487.5	-					1462.5		1787.5	
	00.00	150	300	450	600			1050	1200			1650	1800
		137.5	275	412.5	550					1237.5			
		125	250	375	500	625	750			1125	1250		
		112.5	225	337.5	-	562.5		2 - 2		1012.5			
		100	200	300	400		600	700	800				
	35		175	262.5	350								
	30		150	225	300		450				1		
	25	62.5	125		250						1000		. 11
	20		100	150	200								
	15		75		1100		1		1818				
	10	12.5	50				10.0						
	5	12.0											

TABLE 21. Continued

BENDING MOMENTS IN BEAMS DUE TO UNIFORM LOAD OF 1 POUND TER.

LINEAL POOT

Values in Foot-pounds

Values equal $\frac{ld_2}{2}$ = Area of Influence Line for M

CALCUM STORES	SECHENT &
CONTRACT THE	Charles and the Control of the

	65	70	75	NO.	85	90	95	100	110	120	130	1 60
225 200 175 160 150 140 130 120 110	\$125 7312.5 6500 5687.5 5200 4875 4550 4225 3900 3575 3250	8750 7875 7000 6125 5600 5250 4900 4550 4200 3850 3500	9375 8437.5 7500 6562.5 6000 5625 5250 4875 4500 41125 3750 3562.5	10000 9000 8000 7000 6400 6000 5600 5200 4800 4400 3800	10025. 9562.5 8500 7437.5 6800 637.5 5950 5525 5100 467.5 4250 4037.5	10125 9000 7875 7200 6750 6300 5850 5400 4950 4275	9500 \$312.5 7000 7125 6650 6173 5700 5225 4750 4512.5	12500 11250 10000 8750 8000 7500 7000 6500 6500 5500 5000	13750 12375 11000 9625 8800 8250 7700 7150 6600 6000	15000 13500 12000 10500 9600 9600 8400 7800 7200	16272 1902 1308 11373 1049 9732 910 8430	175400 15750 14600 12275 11200 1(1220 9800
90 85 80 75 70	2925 2762.5 2600 2437.5	3150 2975 2800 2625 2450	3375 3187.5 3000	3600 3400 3200	3825 3612.5	4050						

PLEASE DO NOT REMOVE
CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

S&M A 454

