5 Int · Cl -

131日本分類

⑩日本国特許庁

の特許出願公告 昭48—6925

С 03 Ъ C 03 c B 60 v 21 B 7 21 B 3 74 K 297

許 公 報 特

40公告 昭和48年(1973)3月1日

発明の数 2

(全4頁)

1

匈研磨ガラス製品の強度増大方法

願 昭41-56944 印特

昭41(1966)8月31日 御出

判 昭45-5530

者 原守久 彻発 明

東京都大田区田園調布 3の29の

切出 顧 人 旭硝子株式会社

個代 理 人 弁理士 元橋賢治

図面の簡単な説明

第1図は荒摺工程の後艶出工程を行なつて得ら 摺工程、艶出工程を経た後に腐蝕工程を行なつて 得られたガラス表面の状態を説明する図。第3図 は荒摺工程の後に腐蝕工程を行ない更に艶出工程 を行なつて得られたガラス表面の状態を説明する

発明の詳細な説明

本発明はガラスの強度増大方法更に詳しくは研 磨されて表面を平滑されたガラス製品の強度を増 大せしめる方法に関する。

配される。特に表面を研磨されたガラス製品に於 いては、その表面には荒摺工程(grinding)で発 生した多数の凹凸及び多数の深いキズが存在し、 これらは艶出工程(Polishing)で完全に除かれ ない。この状態を第1図について説明すれば、荒 30 学的品質の秀れた且つ機械的強度の秀れたガラス 摺工程で得られたガラス表面(荒摺表面) Gには、 多数の凹凸1及び多数の深いキズ2が存在してい る。これらのうち特に深いキズ2は艶出工程を経 て得られたガラス表面(艶出表面)Pに於いても 殆んと除去されずに残存する。従つて研磨された 35 を示す。これは通常の研磨工程を経たガラス板を ガラス製品は、フアイヤ・ポリツシユされて成形 されたままのガラス製品に比較して、一般にその

強度が著しく低い。

かかるガラス表面のキズを除去するため、弗酸 又はこれと同効の腐蝕性溶液でガラス表面層を溶 出除去せしめると 強 度 が 著 し く 増 大すること 5 が知られているが、この方法を研磨仕上されたガ ラス製品に応用すると、第2図に示す如く、腐蝕 処理後のガラス表面 Eにはキズ2を中心に侵蝕が 活盤に行なわれる結果、多数の侵蝕孔3が生じ、 最終的に得られる表面はすり硝子状になつてしま 東京都千代田区丸の内2の1の2 10 う。即ちこのような方法ではガラス表面の光学的 特性が極度に劣化し、精密研磨又は光学的研磨さ れたガラス製品を得ることは不可能である。

2

本発明は、前述の如く、強度的に難点を有する。 研磨されたガラス製品の強度を増大せしめて、表 れたガラス表面の状態を説明する図。第2図は荒 15 面の光学的品質の秀れ且つ機械的強度の秀れたガ ラス製品を得るための新規な提案である。

> 即ち本発明は、ガラス製品の研磨工程に於いて、 荒摺工程で得られたガラス表面を弗酸又はこれと 同効の腐蝕性溶液で処理してキズの多い表面層を 20 除去し、次いで該ガラス表面を艶出工程に於いて 艶出し仕上げを行なうことを特徴とするものであ

とのような研磨工程を行なうことによつて、第 3 図に示す如く、荒摺工程で得られたガラス表面 ガラスの強度は表面に存在するキメによつて支 25 Gに存在する多数のキメ2は、腐蝕処理を経てキ メの多い表面層を除去することにより侵蝕孔 3を 有する腐蝕面配に於いては実質的に除かれ、更に 艶出工程を経た後の表面 Pでは前記侵蝕孔 3 が除 かれ、最終的にはキズ2、侵蝕3の存在しない光 表面が得られる。

> 本発明に係る研磨工程を経たガラス製品の機械 的強度例えば曲げ強度或は衝撃強度は、通常の研 爵工程を経たガラス製品に比して約2~3倍の値 風冷強化した場合の強度にほぼ相当する。従つて、 通常は本発明の研磨工程を経ただけで実用上問題

3

はない場合が多いが、更に強度の増大したガラス 製品が必要とされるときには、一般の風冷強化特 急冷法による強化処理或はイオン交換強化(化学 強化)処理を前記研磨工程を経たガラス製品に与 え表面層に圧縮応力を生成せしめ機械的強度の大 5 幅な増大を計ることができる。この場合レンズ、 時計ガラス等の比較的小さい或は複雑な形状のガ ラス製品に対して前記強化処理を行なう際には、 イオン交換強化処理を行なうのが適当である。

工程、及び艶出工程の順序で実施される。

荒摺工程に於いては、一般の場合と同様に、珪 砂、カーボランダム、金剛砂等の研磨砂を用いて 或は砥石摺りによつて所定の曲面、平面、角度又 は形状等のガラス面を形成する。この工程に於い 15 ては一般に仕上げのため次いでより細かい研磨砂 によつて更に研磨を行なうが、この際艶出研磨剤 により艶出を行なつて寸法精度を高めてもよい。 尚、この荒摺工程では、寸法を正確にするため次 の腐蝕工程に於ける厚味減少量を予め考慮して荒 20 摺りを適当に調整する必要がある。

腐蝕処理工程に於いては、荒摺工程を経たガラ ス表面を弗酸又はこれと同効の腐蝕性溶液で処理 してキズの多い表面層を例えば10~50μ程度 HF-H2SO4(又はHC1,HNO3,CH3COOH)-H₂O系、NH₄F - H₂SO₄ - H₂O 系等の各種溶液 が用いられ、その組成に関しては特に限定はない が、本発明の実施の一例に於いて3~10%程度 の弗酸及び硫酸を含む水溶液は特に有効なもので、30 ~4倍程度増大せしめることができた。 腐蝕処理の際ガラス表面を均一に腐蝕することが できる。

艶出工程に於いては、最も細かい等級の砂一般 にはペンガラ(Fe2Os)、酸化セリウム、酸化ジ ルコニウム等の研磨剤によつてガラス表面を研磨 35 して平滑透明な且つ精密な曲面、平面及び角度な どに仕上げていわゆる艶出面を形成する。この艶 出仕上の際艶出研磨剤と共に腐蝕性溶液を添加し て艶出を行なうこともでき、又艶出工程の一部を

以上の如くして得られた研磨面を有するガラス 製品の機械的強度を更に向上せしめるため、本発 明の好ましい実施の態様として、本発明に係る研 磨工程を経たガラス製品に対してイオン交換強化

処理を与える。本発明に於いて適用されるイオン 交換強化処理としては一般に下記の如き態様が実 施される。即ち、

- (1) ガラスの歪温度以上軟化温度以下の温度に於 いて、ガラス中にあるイオン(例えばNa ^十, K⁺)をそれより小さなイオン半径のイオン (例えばLi⁺,H⁺)を含む溶融塩と接触せし め、ガラス中のイオンを溶融塩中のより小さい イオン半径のイオンで置換する。
- 本発明に係る研磨工程は、荒摺工程、腐蝕処理 10(2) ガラスの歪温度以下の温度(例えば約400 ℃)でガラス中にイオン(例えばLi⁺,Na⁺) をそれよりも大きなイオン半径のイオン(例え ばNa +,K+)を含む溶融塩と接触せしめて、 ガラス中のイオンを溶融塩中のより大きなイオ ン半径のイオンで置換する。
 - 500℃)で、一旦ガラス中のイオン(例えば Na⁺)をそれよりイオン半径の小さなイオン (例えばLi⁺,H⁺)で置換した後、歪温度以 下でガラス中に置換含有されたイオンをより大 きなイオン半径のイオン(例えばNa⁺,K⁺) で再び置換する。

本発明に於いて、(1)の方法では比較的大きな強 度が得られない難点があるので、一般には(2)又は 取り除く。腐蝕性溶液としては、HF-H2O系、 25 (3)の方法の適用が望ましく、本発明の実施の一例 に於いて、Na を含む本発明研磨工程処理ガラス を(2)又は(3)の方法によつてNa ^十 を K ^十で置換す ることによつて、表面から 30~200 u 程度の 層に圧縮応力を及ぼし、ガラスの破壊強度を約2

次に本発明の実施例を説明する。

実施例 1

Si O2	7 0.9 %	Na 2O	1 4.1 %
A12O3	1.44	Fe 2O3	0.09
MgO	2.00	TiO2	0.04
CaO	1.1.0 3	SO ₅ O ₃	0.31
		As ₂ O ₃	0.06

腐蝕溶液処理工程と重複せしめることもできる。 40 で示される普通板ガラス組成の一例のガラス板サ ンブルを準備する。ガラスサンプルを下記A,B, C,D,の研磨工程で研磨し、10×10cm、厚 さ3mmの4種の透明、平滑な研磨ガラスサンプル を製作し、強度試験を行なつた。

A. 通常の磨板ガラスの製造工程に従つて、荒摺 工程で珪砂研磨剤として荒摺りし、次いで艶出 工程で酸化セリウムで艶出し研磨を行なう。

- B. 荒摺工程では、Aの場合と同様にして荒摺り を行なつた後、HF 4%、 H_2SO_4 4%の腐蝕 5 Na^+ を浴中の K^+ と置換せしめた。 性水溶液中に5分間浸漬した後、艶出工程で、 Aの場合と同様にして酸化セリウムを研磨剤と して表面が平滑になるまで艶出し研磨を行なう。 C. 前記Bの方法に於いて、腐蝕処理を20分間
- 行なう。 D. 前記Bの方法に於いて、腐蝕処理を60分間 行なり。

強度試験として、3点荷重法による曲げ強度試 験及び1309鋼球の落下によつて破壊する高さ を測定する衝撃強度試験を行なつた。結果は下表 15 の通りである。

武 料 (10×10cm、 厚さ3mm)	曲げ強度 (k <i>g/ni</i> i)	衝擊強度 (cm)
A	5. 5	2 4
В	1 2	3 7
С	1 5	4 3
D	1 5.5	4 4

従来の磨板ガラス或は研磨ガラス製品に相当す る通常の研磨工程を経たガラス試料Aに比較して、 本発明の研磨工程を経たガラス試料では、強度に 於いて約2~3倍の増大が認められた。又、表面 30 の平滑性透明性等光学的品質に於いても本発明研 磨工程を経たガラス試料は、従来の研磨ガラス製 品に比較して遜色はなかつた。

実施例 2

本例に於いては、実施例1で用意された研磨ガ 35

ラス試料に対して更にイオン交換強化処理を行な つた。

イオン交換強化処理は、溶融 KNO。浴中にガラ ス試料を460℃で70時間浸漬し、ガラス中の

実施例1のAの研磨工程を経たガラス試料に本 例によるイオン交換強化処理を行なつて得た試料 をEとし、実施例1のBの研磨工程を経たガラス 試料に本例によるイオン交換強化処理を行なつて 10 得た試料をFとして、実施例1と同様な強度試験 を行なつた。結果は下記の通りである。

試料	曲げ強度(kg/mi)	衝擊強度(㎜)
E	3 2	1 2 0
Er.	A 8	205

砂特許請求の範囲

- 1 ガラス製品の研磨工程に於いて、荒摺工程で 20 得られたガラス表面をフツ酸又はこれと同効の腐 蝕性溶液で処理してキズの多い表面層を除去し、 次いで該ガラス表面を艶出工程に於いて艶出し仕 上げを行なうことを特徴とする研磨ガラス製品の 強度を増大せしめる方法。
- 25 2 前記第1項目の方法で得られた研磨ガラス製 品を、溶融塩に浸漬して該研磨ガラス製品の表面 層のイオンを溶融塩中のイオンとイオン交換せし めて表面層に圧縮力を及ぼすことを特徴とする研 磨ガラス製品の強度を増大せしめる方法。

69引用文献

公 昭37-10170 ベルギー特許 648331

BEST AVAILABLE COPY

(4)

特公 昭48-6925

第/四

第2回

第3回

