More information about this function can be fount at : $http://googology.wikia.com/wiki/Veblen_function \\$

Every non-zero ordinal $\alpha < \Gamma_0$, where Γ_0 is the smallest ordinal α such that $\varphi_{\alpha}(0) = \alpha$, can be uniquely written in normal form for the Veblen hierarchy:

$$\alpha = \varphi_{\beta_1}(\gamma_1) + \varphi_{\beta_2}(\gamma_2) + \dots + \varphi_{\beta_k}(\gamma_k),$$

where

$$\varphi_{\beta_1}(\gamma_1) \ge \varphi_{\beta_2}(\gamma_2) \ge \cdots \ge \varphi_{\beta_k}(\gamma_k) \ \gamma_m < \varphi_{\beta_m}(\gamma_m) \ \text{for } m \in \{1, ..., k\}$$

Now we will see how we can find the fundamental sequence of an ordinal written in this notmal form.

From the rule defining addition of a limit ordinal:

$$\alpha + lim(f) = lim(n \mapsto \alpha + f(n))$$

we deduce the fundamental sequence :

$$(\alpha + \beta)[n] = \alpha + \beta[n]$$

if β is a limit ordinal.

In particular, we have:

$$(\varphi_{\beta_1}(\gamma_1) + \varphi_{\beta_2}(\gamma_2) + \dots + \varphi_{\beta_k}(\gamma_k))[n] = \varphi_{\beta_1}(\gamma_1) + \dots + \varphi_{\beta_{k-1}}(\gamma_{k-1}) + (\varphi_{\beta_k}(\gamma_k)[n]), \text{ where } \varphi_{\beta_1}(\gamma_1) \ge \varphi_{\beta_2}(\gamma_2) \ge \dots \ge \varphi_{\beta_k}(\gamma_k) \text{ and } \gamma_m < \varphi_{\beta_m}(\gamma_m) \text{ for } m \in \{1, 2, \dots, k\},$$

Then, $\varphi_0(\gamma)$ is ω^{γ} .

For $\gamma = 0$ it is 1.

From the rule of multiplication by a limit ordinal:

$$\alpha \cdot lim(f) = lim(n \mapsto \alpha \cdot f(n))$$

we deduce the fundamental sequence :

 $(\alpha \cdot \beta)[n] = \alpha \cdot \beta[n]$ if β is a limit ordinal.

In particular, for ω :

$$(\alpha \cdot \omega)[n] = \alpha \cdot \omega[n] = \alpha \cdot n$$

Then we have:

$$\varphi_0(\gamma+1) = \omega^{\gamma+1} = \omega^{\gamma} \cdot \omega = \varphi_0(\gamma) \cdot \omega$$

So the corresponding fundamental sequence is:

$$\varphi_0(\gamma+1)[n] = (\varphi_0(\gamma) \cdot \omega)[n] = \varphi_0(\gamma) \cdot n$$

If γ is a limit ordinal, the fundamental sequence is defined canonically : $\varphi_0(\gamma)[n] = \varphi_0(\gamma[n])$

This function can be defined with fundamental sequences.

The fundamental sequences for the Veblen functions $\varphi_{\beta}(\gamma) = \varphi(\beta, \gamma)$ are :

1.
$$(\varphi_{\beta_1}(\gamma_1) + \varphi_{\beta_2}(\gamma_2) + \cdots + \varphi_{\beta_k}(\gamma_k))[n] = \varphi_{\beta_1}(\gamma_1) + \cdots + \varphi_{\beta_{k-1}}(\gamma_{k-1}) + (\varphi_{\beta_k}(\gamma_k)[n])$$
, where $\varphi_{\beta_1}(\gamma_1) \ge \varphi_{\beta_2}(\gamma_2) \ge \cdots \ge \varphi_{\beta_k}(\gamma_k)$ and $\gamma_m < \varphi_{\beta_m}(\gamma_m)$ for $m \in \{1, 2, ..., k\}$,

- 2. $\varphi_0(0) = 1$,
- 3. $\varphi_0(\gamma+1)[n] = \varphi_0(\gamma)n$

```
4. \varphi_{\beta+1}(0)[0] = 0 and \varphi_{\beta+1}(0)[n+1] = \varphi_{\beta}(\varphi_{\beta+1}(0)[n]),
```

- 5. $\varphi_{\beta+1}(\gamma+1)[0] = \varphi_{\beta+1}(\gamma)+1 \text{ and } \varphi_{\beta+1}(\gamma+1)[n+1] = \varphi_{\beta}(\varphi_{\beta+1}(\gamma+1)[n]),$
- 6. $\varphi_{\beta}(\gamma)[n] = \varphi_{\beta}(\gamma[n])$ for a limit ordinal $\gamma < \varphi_{\beta}(\gamma)$,
- 7. $\varphi_{\beta}(0)[n] = \varphi_{\beta[n]}(0)$ for a limit ordinal $\beta < \varphi_{\beta}(0)$,
- 8. $\varphi_{\beta}(\gamma+1)[n] = \varphi_{\beta[n]}(\varphi_{\beta}(\gamma)+1)$ for a limit ordinal β .

These fundamental sequences can be reformulated to get a definition of the function φ .

- 1. This does not concern the definition of the φ function but the definition of addition
- 2. and
- 3. are equivalent to $\varphi_0(\gamma) = \omega^{\gamma}$.
- 4. $\varphi_{\beta+1}(0) = \lim(n \mapsto \varphi_{\beta}^{n}(0)) = \varphi_{\beta}^{\omega}(0)$ which is the least fixed point of φ_{β} .
- 5. $\varphi_{\beta+1}(\gamma+1) = \lim(n \mapsto \varphi_{\beta}^{n}(\varphi_{\beta+1}(\gamma)+1))$, which is the least fixed point of φ_{β} strictly greater than $\varphi_{\beta+1}(\gamma)$, so $\varphi_{\beta+1}(\gamma)$ is the $1+\gamma$ -th fixed point of φ_{β} .