Assignment 3 Limit Problems (using limit properties)

Philip Nelson

Wednesday 19^{th} of September, 2018

1.

List the properties of limits discussed in class. Give the citation for these properties in the textbook

Properties:

- #1. Uniqueness (p 26)
- #2. Bounded 2.18 (p 35)
- #3. Bounded Away 2.21 (p 36)
- #4. Preservation of Inequality 2.9 (p 28)
- #5. Bounded and Zero 2.12 (p 29)
- #6. Squeeze 2.22 (p 37)
- #7. Sum Property 2.10 (p 28)
- #8. Polynomial Property 2.17 (p 31)
- #9. Product Property 2.13 (p 30)
- #10. Quotient Property 2.15 (p 31)
- #11. Square Roots 2.17 (p 32)
- #12. Convergent Subsequence 2.33 (p 45)
- #13. Monotone Convergence 2.25 (p 38)

Claim:
$$\lim_{n\to\infty} \frac{5n-6}{6n+7} = \frac{5}{6}$$

Proof:
$$\lim_{n \to \infty} \frac{5n-6}{6n+7} = \lim_{n \to \infty} \frac{5-\frac{6}{n}}{6+\frac{7}{n}}$$

Let
$$a_n = 5 - \frac{6}{n}$$

Then the
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 5 - \frac{6}{n}$$

Using the sum property of limits,
$$\lim_{n \to \infty} 5 - \frac{6}{n} = \lim_{n \to \infty} 5 - \lim_{n \to \infty} \frac{6}{n}$$

Let
$$a_n = 5 - \frac{6}{n}$$

Then the $\lim_{n \to \infty} a_n = \lim_{n \to \infty} 5 - \frac{6}{n}$
Using the sum property of limits, $\lim_{n \to \infty} 5 - \frac{6}{n} = \lim_{n \to \infty} 5 - \lim_{n \to \infty} \frac{6}{n}$
From common knowledge and previous $\epsilon - N$ proofs, we know $\lim_{n \to \infty} 5 = 5$ and $\lim_{n \to \infty} \frac{6}{n} = 0$

Thus
$$\lim_{n \to \infty} 5 - \frac{6}{n} = 5 + 0 = 5$$

Let
$$b_n = 6 + \frac{7}{n}$$

Then the
$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} 6 + \frac{7}{n}$$

Using the sum property of limits,
$$\lim_{n\to\infty} 6 - \frac{7}{n} = \lim_{n\to\infty} 6 - \lim_{n\to\infty} \frac{7}{n}$$

Using the sum property of limits,
$$\lim_{n\to\infty} 6 - \frac{7}{n} = \lim_{n\to\infty} 6 - \lim_{n\to\infty} \frac{7}{n}$$

From common knowledge and previous $\epsilon - N$ proofs, we know $\lim_{n\to\infty} 6 = 6$ and $\lim_{n\to\infty} \frac{7}{n} = 0$

Thus
$$\lim_{n \to \infty} 6 - \frac{7}{n} = 6 + 0 = 6$$

Finally, using the quotient property of limits and previous two statements
$$\lim_{n\to\infty} \frac{5n-6}{6n+7} = \lim_{n\to\infty} \frac{a_n}{b_n} = \frac{5}{6}$$

2.2

Claim:
$$\lim_{n \to \infty} \frac{n^2 + n + 1}{n^2 - 4} = 1$$

Proof:
$$\lim_{n \to \infty} \frac{n^2 + n + 1}{n^2 - 4} = \lim_{n \to \infty} \frac{1 + \frac{1}{n} + \frac{1}{n^2}}{1 - \frac{4}{n^2}}$$

Let
$$a_n = 1 + \frac{1}{n} + \frac{1}{n^2}$$

Then
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 1 + \frac{1}{n} + \frac{1}{n^2}$$

Let
$$a_n=1+\frac{1}{n}+\frac{1}{n^2}$$

Then $\lim_{n\to\infty}a_n=\lim_{n\to\infty}1+\frac{1}{n}+\frac{1}{n^2}$
Using the sum property of limits, $\lim_{n\to\infty}1+\frac{1}{n}+\frac{1}{n^2}=\lim_{n\to\infty}1+\lim_{n\to\infty}\frac{1}{n}+\lim_{n\to\infty}\frac{1}{n^2}$
From common knowledge and previous $\epsilon-N$ proofs, we know $\lim_{n\to\infty}1=1, \lim_{n\to\infty}\frac{1}{n}=0$, and $\lim_{n\to\infty}\frac{1}{n^2}=0$
Thus $\lim_{n\to\infty}1+\frac{1}{n}+\frac{1}{n^2}=1+0+0=1$

$$\lim_{n \to \infty} 1 = 1$$
, $\lim_{n \to \infty} \frac{1}{n} = 0$, and $\lim_{n \to \infty} \frac{1}{n^2} = 0$

Thus
$$\lim_{n\to\infty} 1 + \frac{1}{n} + \frac{1}{n^2} = 1 + 0 + 0 = 1$$

Let
$$b_n = 1 - \frac{4}{n^2}$$

Then
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} 1 - \frac{4}{n^2}$$

Let
$$b_n=1-\frac{4}{n^2}$$

Then $\lim_{n\to\infty}b_n=\lim_{n\to\infty}=1-\frac{4}{n^2}$
Using the sum property of limits, $\lim_{n\to\infty}=1-\frac{4}{n^2}=\lim_{n\to\infty}1-\lim_{n\to\infty}\frac{4}{n^2}$
From common knowledge and previous $\epsilon-N$ proofs, we know

$$\lim_{n\to\infty} 1 = 1$$
 and $\lim_{n\to\infty} \frac{4}{n^2} = 0$

$$\lim_{n \to \infty} 1 = 1 \text{ and } \lim_{n \to \infty} \frac{4}{n^2} = 0$$
Thus
$$\lim_{n \to \infty} 1 - \frac{4}{n^2} = 1 + 0 = 1$$

Finally, using the quotient property of limits and previous two statements $\lim_{n\to\infty} \frac{n^2+n+1}{n^2-4} = \frac{1}{1} = 1$

2.3

Claim: $\lim_{n\to\infty} \frac{\sqrt{n^3+1}}{n+2} = \infty$ Proof: Begin by multiplying by $\frac{1}{n}/\frac{1}{n}$

$$\lim_{n\to\infty}\frac{\sqrt{n^3+1}}{n+2}=\lim_{n\to\infty}\frac{\sqrt{n+\frac{1}{n}}}{1+\frac{2}{n}}$$

By the quotient property of limits

$$= \frac{\lim_{n \to \infty} \sqrt{n + \frac{1}{n}}}{\lim_{n \to \infty} 1 + \frac{2}{n}}$$

Then by the polynomial property of limits

$$=\frac{\sqrt{\lim_{n\to\infty}n+\frac{1}{n}}}{\lim_{n\to\infty}1+\frac{2}{n}}$$

Then by the summation property of limits

$$= \frac{\sqrt{\lim_{n \to \infty} n + \lim_{n \to \infty} \frac{1}{n}}}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{2}{n}}$$

Then by common knowledge and previous proofs

$$=\frac{\sqrt{\lim\limits_{n\to\infty}n+0}}{1+0}=\frac{\sqrt{\lim\limits_{n\to\infty}n}}{1}=\sqrt{\lim\limits_{n\to\infty}n}$$

Then by the polynomial property

$$=\lim_{n\to\infty}\sqrt{n}$$

Then as previously proven

$$=\lim_{n\to\infty}\sqrt{n}=\infty$$

Thus we can see that $\lim_{n\to\infty} \frac{\sqrt{n^3+1}}{n+2} = \infty$

Claim: $\lim_{n\to\infty} \frac{\sin(n)}{n} = 0$

Proof: We will show by the bounded and zero property of limits that $\lim_{n\to\infty}\frac{\sin(n)}{n}=0$

Let $a_n = \sin(n)$

As we have previously discussed $|\sin(n)| \le 1$

Thus sin(n) is bounded.

Then let $b_n = \frac{1}{n}$.

We know from previous $\epsilon - N$ proofs that $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$

Therefore $\lim_{n\to\infty} \frac{\sin(n)}{n} = 0$

2.5

Claim: $\lim_{n \to \infty} 1 + 3(-1)^n + 4(-1)^{n+1}$ does not exist

Proof: We will show through the convergent sub sequence property that $\lim_{n\to\infty} 1 + 3(-1)^n + 4(-1)^{n+1}$ does not exist

Let
$$a_n = 1 + 3(-1)^n + 4(-1)^{n+1}$$

Let $b_n = a_{2n} = 1 - 3 + 4$

Then the sequence $\{b_n\} = \{0, 0, 0, ...\}$

So $\lim_{n\to\infty} b_n = 0$

Let $c_n=a_{2n+1}=1+3-4$ Then the sequence $\{c_n\}=\{1,1,1,\ldots\}$ So $\lim_{n\to\infty}c_n=1$

The convergent subsequence property states that if $\lim_{n\to\infty} a_n = A$ then the limit of all subsequence of a_n also converge to A. Here we have shown two subsequence b_n and c_n which do not converge to the same value, hence $\lim_{n\to\infty} 1 + 3(-1)^n + 4(-1)^{n+1}$ does not exist.

4

Claim: $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0$

Proof: We will show by the bounded and zero property of limits that $\lim_{n\to\infty}\frac{(-1)^n}{n}=0$

Let $a_n = (-1)^n$

Then $|a_n| = 1$

So a_n is bounded above by 1.

Then let $b_n = \frac{1}{n}$. We know from previous $\epsilon - N$ proofs that $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{n} = 0$

Therefore $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0$

2.7

Claim: $\lim_{n\to\infty} \frac{1}{\ln(n)} = 0$

Proof: By the squeeze property of limits we will show that $\lim_{n\to\infty}\frac{1}{\ln(n)}=0$

Let $a_n = \frac{1}{n}$, $b_n = \frac{1}{\ln(n)}$ and $c_n = \frac{1}{\ln(\ln n)}$

As previously shown $2^n > n^2 > n$ for n > 1. Observe then that $e^n > 2^n > n \Rightarrow e^n > n$.

Which $\Rightarrow n > \ln n$

And $\Rightarrow \frac{1}{n} < \frac{1}{\ln n}$

Next, as we just proved $n > \ln n$

Then $\Rightarrow \ln n > \ln(\ln n)$

And $\Rightarrow \frac{1}{\ln n} < \frac{1}{\ln(\ln n)}$

Note, from previous proofs we know that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$ and $\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{1}{\ln(\ln n)} = 0$ So we have two series, $a_n < b_n < c_n$ and since $\lim_{n \to \infty} a_b = 0$ and $\lim_{n \to \infty} c_n = 0$ then $\lim_{n \to \infty} b_n = 0$

Claim: $\lim_{n\to\infty} \sin \frac{n\pi}{3}$ does not exist

Proof: By the convergent subsequence property we will show that $\lim_{n\to\infty} \sin\frac{n\pi}{3}$ does not exist

Let $a_n = \sin \frac{n\pi}{3}$ Let $b_n = a_{3n} = \sin(n\pi)$ Then the sequence $\{b_n\} = \{0, 0, 0, ...\}$ So $\lim_{n \to \infty} b_n = 0$ Let $c_n = a_{6n+1} = \sin(2\pi + \frac{\pi}{3})$ Then the sequence $\{c_n\} = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, ...\}$ So $\lim_{n \to \infty} c_n = \frac{1}{2}$

The convergent subsequence property states that if $\lim_{n\to\infty} a_n = A$ then the limit of all subsequence of a_n also converge to A. Here we have shown two subsequence b_n and c_n which do not converge to the same value, hence $\lim_{n\to\infty} \sin \frac{n\pi}{3}$ does not exist.

2.9

Claim: $\lim_{n \to \infty} \frac{2\sin(n) + 3\cos(n)}{\sqrt{n}} = 0$

Proof: We will show through the bounded and zero property of limits that $\lim_{n\to\infty} \frac{2\sin(n)+3\cos(n)}{\sqrt{n}} = 0$

First we will show that $|2\sin(n) + 3\cos(n)| \le M$ for all n and thus is bounded. By the triangle inequality we know $|2\sin(n) + 3\cos(n)| \le |2\sin(n)| + |3\cos(n)|$

As previously discussed, $\sin(n)$ and $\cos(n)$ are bounded by ± 1

So $|2\sin(n)| + |3\cos(n)| \le 2 \cdot 1 + 3 \cdot 1 = 5$

Thus $|2\sin(n) + 3\cos(n)| \le 5$ and so it is bounded.

As previously proven, $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$

Finally, by the product of limits property, we have the product of a bounded series and zero which is zero so $\lim_{n\to\infty}\frac{2\sin(n)+3\cos(n)}{\sqrt{n}}=0$

6

Claim: $\lim_{n\to\infty} \frac{\sqrt{n+4}}{\sqrt{n-12}} = 1$

Proof: $\lim_{n\to\infty} \frac{\sqrt{n+4}}{\sqrt{n-12}} = \lim_{n\to\infty} \sqrt{\frac{n+4}{n-12}}$

By the polynomial property of limits

$$\lim_{n \to \infty} \sqrt{\frac{n+4}{n-12}} = \sqrt{\lim_{n \to \infty} \frac{n+4}{n-12}}$$

Then by the quotient properties of limits

$$= \sqrt{\frac{\lim\limits_{n\to\infty}n+4}{\lim\limits_{n\to\infty}n-12}} = \sqrt{\frac{\lim\limits_{n\to\infty}1+\frac{4}{n}}{\lim\limits_{n\to\infty}1-\frac{12}{n}}}$$

Then by the sum property of limits

$$= \sqrt{\frac{\lim\limits_{n\to\infty}1+\lim\limits_{n\to\infty}\frac{4}{n}}{\lim\limits_{n\to\infty}1-\lim\limits_{n\to\infty}\frac{12}{n}}}$$

Then by common knowledge and previous $\epsilon - N$ proofs

$$=\sqrt{\frac{1+0}{1-0}}=\sqrt{\frac{1}{1}}=\sqrt{1}=1$$

Thus we have shown that $\lim_{n\to\infty} \frac{\sqrt{n+4}}{\sqrt{n-12}} = 1$

Claim: $\lim_{n \to \infty} \sqrt{n^2 + n + 1} - \sqrt{n^2 - n} = 1$

Proof: Using the relation $\sqrt{a} - \sqrt{b} = \frac{a-b}{\sqrt{a}+\sqrt{b}}$

$$\lim_{n \to \infty} \sqrt{n^2 + n + 1} - \sqrt{n^2 - n} = \lim_{n \to \infty} \frac{n^2 + n + 1 - n^2 + n}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n}} = \lim_{n \to \infty} \frac{2n + 1}{\sqrt{n^2 + n + 1} + \sqrt{n^2 - n}}$$

Then multiplying by $\frac{1}{n}/\frac{1}{n}$

$$= \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{1 - \frac{1}{n}}}$$

Then by the quotient property of limits

$$= \frac{\lim_{n \to \infty} 2 + \frac{1}{n}}{\lim_{n \to \infty} \sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{1 - \frac{1}{n}}}$$

Then by the summation property of limits

$$= \frac{\lim_{n \to \infty} 2 + \lim_{n \to \infty} \frac{1}{n}}{\lim_{n \to \infty} \sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \lim_{n \to \infty} \sqrt{1 - \frac{1}{n}}}$$

Then by the polynomial property of limits

$$= \frac{\lim\limits_{n\to\infty} 2 + \lim\limits_{n\to\infty} \frac{1}{n}}{\sqrt{\lim\limits_{n\to\infty} 1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{\lim\limits_{n\to\infty} 1 - \frac{1}{n}}}$$

Then by the summation property of limits

$$= \frac{\lim\limits_{n\to\infty} 2 + \lim\limits_{n\to\infty} \frac{1}{n}}{\sqrt{\lim\limits_{n\to\infty} 1 + \lim\limits_{n\to\infty} \frac{1}{n} + \lim\limits_{n\to\infty} \frac{1}{n^2}} + \sqrt{\lim\limits_{n\to\infty} 1 - \lim\limits_{n\to\infty} \frac{1}{n}}}$$

Then by common knowledge and previous proofs

$$= \frac{2+0}{\sqrt{1+0+0} + \sqrt{1-0}} = \frac{2}{\sqrt{1} + \sqrt{1}} = \frac{2}{1+1} = \frac{2}{2} = 1$$