

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD-A151 001

FILE COPY

MEDICAL PLANNING CRITERIA FOR IMPLEMENTATION OF CLINICAL HYPERBARIC FACILITIES

Wilbur T. Workman, Major, USAF, BSC

Michael D. Robinette, Major, USAF, MC

Thomas D. Laird, Major, USAF, BSC

Frederick S. Cramer, Colonel, USAF, MC

December 1984

Final Report for Period October 1983 - August 1984

Approved for public release; distribution is unlimited.

USAF SCHOOL OF AEROSPACE MEDICINE Aerospace Medical Division (AFSC) Brooks Air Force Base, TX 78235-5000

NOTICES

This final report was submitted by personnel of the Hyperbaric Medicine Division, USAF School of Aerospace Medicine, Aerospace Medical Division, AFSC, Brooks Air Force Base, Texas, under job order HM888202.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Wilhu D. Workman Major USAF BSC

WILBUR T. WORKMAN, Major, USAF, BSC

Royce Mou. &

Project Scientist

FREDERICK S. CRAMER, Colonel, USAF, MC Supervisor

ROYCE MOSER, Jr. Colonel, USAF, MC Commander

SECONITY CLASSIFICATION OF THIS FAGE					
REPORT DOCUMENTATION PAGE					
18. REPORT SECURITY CLASSIFICATION	1b. RESTRICTIVE MARKINGS				
UNCLASSIFIED					
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	VAILABILITY O	FREPORT	
<u></u>		Approved for	public rel	ease; distri	bution is
2b. DECLASSIFICATION, DOWNGRADING SCHED	ULE	unlimited.			
4. PERFORMING ORGANIZATION REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION R	EPORT NUMBERIS)
USAFSAM-TR-84-36					
6a. NAME OF PERFORMING ORGANIZATION	66. OFFICE SYMBOL	7a. NAME OF MONIT	TORING ORGAN	IZATION	
USAF School of Aerospace	(If applicable)	ĺ			
Medicine	USAFSAM/HM				
6c. ADDRESS (City, State and ZIP Code)		7b. ADDRESS (City, State and ZIP Code)			
Aerospace Medical Division (AFS	•				
Brooks Air Force Base, Texas 782	235-5000				
8a. NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NU	MBER
ORGANIZATION USAF School of Aerospace	(If applicable)				
Medicine	USAFSAM/HM	<u> </u>			
8c. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUN	IDING NOS.		
Aerospace Medical Division (AFS)		PROGRAM	PROJECT	TASK	WORK UNIT
Brooks Air Force Base, Texas 782	235-5000	ELEMENT NO.	NO.	NO.	NO.
		87714F	HMS8	82	02
11. TITLE (Include Security Classification) MEDICAL PLANNING CRITERIA FOR IM	ADIEMENTATION OF	CLINICAL HUDE	INDANTO DAG	T1 TMT##	i
					
12. PERSONAL AUTHOR(S) Workman, Wilt Frederick S.	our f.; Robinett	e, Michael D.;	Laird, Th	omas D.; and	Cramer,
	OVERED	14. DATE OF REPOR	ST (Yr. Ma. Day)	15. PAGE CO	NINT
Final Report FROM OC	t 1983 _{to} Aug 1984	1984, Decemb		76	,
16. SUPPLEMENTARY NOTATION		<u> </u>		70	
					,
17 COSATI CODES	18. SUBJECT TERMS (C.	ontinue on reverse if ne	cessary and identi	ly by block number	· · · · · · · · · · · · · · · · · · ·
FIELD GROUP SUB. GR.	Hyperbaric cha				5
06 11	populations.		derene era	noportation,	pacienc
06 19					
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Over the years designs of hyperbaric chambers have varied from spherical, tubular,					
horizontal, and upright cylinder	paric chambers h	lave varieu iri	om spherica	d attempt to	corre-
late vessel size and type, proj					
ments to produce the most cost					
compromise between vessel const					
operate the facility. The maxim	mum patient trea	tment capacity	v was deter	mined for an	up-
right cylinder of six different	diameters. The	se diameters	were 11. 14	. 16. 18. 20	. and
22 ft. The maximum ambulatory	patient capacity	for each ves	sel size is	6, 10, 12,	14.
16, and 18, respectively. The m	aximum litter pa	tient capacity	y for each	vessel size	is 2,
3, 4, 6, 8, and 10, respectivel	y. As the patie	ent load and th	he number o	of dives per	day
increases, the requirement for inside medical attendants increases proportionally. This					
manpower factor is significant in that personnel costs can be as high as 85% of the total					
operating budget for a clinical hyperbaric medicine facility. These facilities must be					
20. DISTRIBUTION/AVAILABILITY OF ABSTRAC	20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION				
UNCLASSIFIED/UNLIMITED 🔀 SAME AS RPT.	C OTIC USERS C	Unclassified			
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE NO		22c OFFICE SYME	3OL
WIIRIR T WODYMAN Moses HEAD	RSC	(512) 536-328		USAFSAM/HM	
WILBUR T. WORKMAN, Major, USAF, BSC (512)536-3281 USAFSAM/HM					

1

SECURITY CLASSIFICATION OF THIS PAGE

20. ABSTRACT (Continued)

designed with manpower costs uppermost in mind. It is a recurring cost that will most likely increase with time. Even though the initial investment in larger diameter vessels is high, these costs are recovered within a reasonable period of time through design and operational efficiencies. Also transportation costs of patients who are candidates for hyperbaric oxygen (HBO) therapy must be considered in the planning for future clinical hyperbaric facilities. This technical report provides a method for determining the cost of air transportation between the 9 Department of Defense (DoD) regions.

A major portion of this report deals with development of a study of prevalence of those patients whose diagnosis and/or complications of treatment would be amenable to adjunctive hyperbaric oxygen therapy. This base data was used in a projected work load algorithm. A survey of extant patient data bases revealed the existence of the Automated Inpatient Data System (AIDS) which collected both demographic and diagnosis data at the time of discharge from a medical treatment facility. Diagnoses were coded according to the International Classification for Disease nomenclature 9th Edition as modified by the DoD. A list of 42 diagnoses and procedures with their associated codes was compiled which included those recognized by the Undersea Medical Society (UMS) Hyperbaric Oxygen Therapy Committee report as well as other experimental entities. The prevalence data extracted from over 400,000 inpatient records for calendar year 1982 was then incorporated into a projected work load algorithm which included estimates of: Outpatient populations, percentages of patients within a diagnosis that could benefit from hyperbaric oxygen, average number of treatments necessary, and the space requirements dictated by chamber design. The population at risk, based on fiscal year 1982 Air Force Inpatient catchment area population estimates for the continental U.S. including Alaska and Hawaii, was 2,057,281. Results are summarized as follows by UMS Hyperbaric Oxygen Committee Report category: Inpatient Count - Accepted 4,514; Experimental 16,592. Number of treatments (Tx) -Accepted 17,992; Experimental 124,265. This is a first approximation of prevalence and potential treatments in the HBO arena. However, the magnitude of need indicated here, in what was basically a conservative estimation of work load based on confirmed diagnoses, points out the necessity of a careful and thoughtful evaluation of the size and capability of any proposed clinical facility. This technical report is to serve as a model for future projects within the clinical arena.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
HYPERBARIC CHAMBER DESIGN CRITERIA	3
PATIENT AIR EVACUATION COSTS	17
Routine	18 18 18
PATIENT POPULATION DATA	24
ACKNOWLEDGMENTS	39
REFERENCES	39
APPENDIX A: DIAGNOSIS BY CODE NUMBER	. 41
APPENDIX B: DIAGNOSIS BY CODE NUMBER AND ASSOCIATED ICD9/ICP CODES	43
APPENDIX C: MEDICAL TREATMENT FACILITY TO REGION ASSIGNMENT	49
APPENDIX D: BASE DATA FOR ANALYSIS BY REGION, DIAGNOSIS, AND STATUS	55
APPENDIX E: HM PHYSICIAN SURVEY DATA WITH AVERAGE BY DX	67
APPENDIX F: ALPHABETIC LISTINGS OF DIAGNOSES WITH ASSOCIATED M VALUES	. 69
APPENDIX G: DATA ANALYSIS SUMMARY SHEETS	71
LIST OF FIGURES	
Fig. No.	
1 DoD patient treatment dives in USAF hyperbaric facilities	2
2 Hyperbaric Chamber Register-Clinical Chambers in the United States (1977-1983)	3
3 Hyperbaric Registry-Case Load	4
Wright-Patterson Clinical Hyperbaric Facility (WPCHF) design	5

Fig.		Page
5	Patient placement for 11-ft diameter chamber design (ambulatory)	7
6	Patient placement for 11-ft diameter chamber design (litter)	7
7	Patient placement for 14-ft diameter chamber design (ambulatory)	8
8	Patient placement for 14-ft diameter chamber design (litter)	8
9	Patient placement for 16-ft diameter chamber design (ambulatory)	9
10	Patient placement for 16-ft diameter chamber design (litter)	9
11	Patient placement for 18-ft diameter chamber design (ambulatory)	10
12	Patient placement for 18-ft diameter chamber design (litter)	10
13	Patient placement for 20-ft diameter chamber design (ambulatory)	11
14	Patient placement for 20-ft diameter chamber design (litter)	11
15	Patient placement for 22-ft diameter chamber design (ambulatory)	12
16	Patient placement for 22-ft diameter chamber design (litter)	12
17	Patient placement for 22-ft diameter chamber design (ambulatory and litter)	13
18	Distribution of operating expenses for the Hyperbaric Medicine Division	13
19	Treatment Chamber I, USAF Hyperbaric Center, Brooks AFB, TX	16
20	Treatment Chamber II, USAF Hyperbaric Center, Brooks AFB, TX	17
21	Routine mission (e.g., Travis AFB CA to Wright-Patterson AFB OH)	20
22	Emergency mission (e.g., Travis AFB CA to Wright-Patterson AFB OH)	22
23	DoD Conus regions	29
24	Projected FY 82 population data by DoD region	30

LIST OF TABLES

Table		Page
1	USAF Experience: Cases Treated 1965-1983	. 1
2	Patient Treatment Capacity Relative To Chamber Diameter	. 6
3	Number Of Patient Dives Required To Treat 36 Ambulatory Patients Daily Relative To Chamber Diameter	. 14
4	Number Of Patient Dives Required To Treat 20 Litter Patients Daily Relative To Chamber Diameter	. 14
5	Clinical Hyperbaric Facility Staffing	. 15
6	Comparison Of Initial And Recurring Costs	16
7	C-9A Aircraft Costs	. 19
8	C-9A Flying Hour Costs	. 19
9	Patient Cost Per Flying Hour For Routine Patients	. 20
10	Routine Air Evacuation to Region 6 (Wright-Patterson AFB OH) Patient Cost	. 21
11	Emergency Air Evacuation To Region 6 (Wright-Patterson AFB OH) .	. 22
12	Total Air Evacuation Costs For HBO Patients (Regions 1-5 to Wright-Patterson AFB OH)	. 23
13	Interregional Flying Times For Routine Category Patients	25
14	Interregional Flying Times For Urgent Category Patients	. 26
15	Interregional Per Patient Transportation Cost For Routine Category Patients - DoD Users (\$95.52/Hr)	. 27
16	Interregional Per Patient Transportation Cost For Urgent Category Patients - DoD Users (\$2025/Hr)	• 28
17	Catchment Area Population Estimates Of Beneficiary Category	30
18	Fraction Of Total Clinical Course Spent As Litter Patient	32
19	P ₁ Through P ₅ Values By DoD Region (UMS Accepted Categories)	. 34
20	P ₁ Through P ₅ Values By DoD Region (UMS Experimental Categories)	35

Table		Page
21	P ₁ Through P ₅ Values By DoD Region (UMS All Categories)	, 36
22	Patient Treatments	37
23	USAF Projected Hyperbaric Oxygen Therapy Work Load/Capacity (UMS Accepted Categories)	. 37
24	USAF Projected Hyperbaric Oxygen Therapy Work Load/Capacity (UMS Experimental Category)	. 38
25	USAF Projected Hyperbaric Oxygen Therapy Work Load/Capacity (UMS All Categories)	. 39
26	European NATO Non-Nuclear Scenario	. 39

MEDICAL PLANNING CRITERIA FOR IMPLEMENTATION OF CLINICAL HYPERBARIC FACILITIES

INTRODUCTION

Hyperbaric Medicine in the United States Air Force (USAF) has entered its 3d phase in the evolution of this specialized treatment modality. The period from 1965-1973 saw the initial installation and operation of 8 small chambers at selected flying bases. Their primary purpose, which continues to the present time, is the emergency treatment of decompression sickness in aviators.

These facilities also provide life and limb-saving hyperbaric oxygen (HBO) therapy in emergency cases of air embolism, carbon monoxide poisoning, and gas gangrene.

In 1974, Colonel Jefferson C. Davis and colleagues at the USAF School of Aerospace Medicine foresaw the emergence of the clinical application of hyperbaric oxygen to all USAF patients. The Hyperbaric Medicine Division was formed and has guided the treatment of over 1,800 patients since that time (table 1).

TABLE	1.	IISAF	EXPERIENCE:	CASES	TREATED	1965	-	1983
INDUE		USAL	DAL PUTPHOD:	CHOLO	INDALED	כטכו		1303

Decompression Sickness	571
Air Embolism	53
Carbon Monoxide Poisoning	115
Clostridial Myonecrosis	138
Chronic Osteomyelitis	151
Osteoradionecrosis - Mandible	130
Diabetes Mellitus - Wound Healing	69
Soft-Tissue Radionecrosis	96
Soft-Tissue Infections	29
Osteomyelitis - Mandible	62
Wound Healing Enhancement	159
Mandibular Reconstruction	151
Other	87
TOTAL	1,811

Patients from each of the services in the Department of Defense (DoD) are included in approximately 3,000 patient treatment dives annually (Fig. 1.), which is the maximum treatment capacity of existing USAF hyperbaric facilities.

DOD PATIENT TREATMENT DIVES IN USAF HYPERBARIC FACILITIES (CY 1965 - 1982)

Figure 1. DoD patient treatment dives in USAF hyperbaric facilities.

Historically, 70% of the DoD patients treated were USAF patients, and 30% were U.S. Army and Navy patients. Based on that initial experience, the U.S. Air Force cosponsored publication of a textbook on hyperbaric oxygen therapy (1) to describe the response of va.:cus disease entities to hyperbaric oxygen. A USAFSAM Technical Report, SAM-TR-77-7, was published (2) which recommended the design and construction of DoD clinical hyperbaric facilities. A variety of design options were considered from which the upright cylinder design was selected for the first of these facilities presently under construction at Wright-Patterson USAF Medical Center, Wright-Patterson Air Force Base, OH. As this first USAF clinical facility becomes operational in early 1985, Hyperbaric Medicine in the U.S. Air Force enters the third phase of its development: The implementation of hospital-based clinical hyperbaric facilities in medical centers.

The purpose of this technical report is three-fold. First, it provides a review of the design criteria used to determine the size of the clinical hyperbaric chamber. The upright cylinder chamber arrangement has been selected for this purpose after careful consideration of the available options.

Secondly, it provides a method for determining the cost of air transportation between DoD regions which has been reviewed and validated by the Military Airlift Command Surgeon in November 1983. Thirdly, it describes a method to predict patient treatments in advance of facility availability which is crucial to facility planning. A system based on inpatient International Classification for Disease Nomenclature - 9th Edition (ICD-9) criteria has been developed and is presented in detail in the Patient Population Data paragraph.

This report provides the various planning data necessary for future design and construction of clinical hyperbaric facilities in the U.S. Air Force. The concepts presented are suitable for application to DoD, VA, and civilian medical centers that are planning clinical hyperbaric facilities.

HYPERBARIC CHAMBER DESIGN CRITERIA

A geometric growth in clinical hyperbaric facilities has occurred in the United States over the past 5 yr. The Maryland Institute for Emergency Medical Services Systems, The Shock and Trauma Center at Baltimore, MD, publishes an annual Hyperbaric Chamber Register which lists the location and work load of clinical chambers (3). According to this report, there were approximately 40 clinical hyperbaric chambers in 1977 compared to 171 such facilities in 1983 (Fig. 2). A corresponding geometric increase in cases treated was also noted (Fig. 3).

Figure 2. Hyperbaric Chamber Register--Clinical Chambers in the United States (1977-1983).

Figure 3. Hyperbaric Registry--Case Load.

Treatments occur in chambers in a variety of shapes and sizes ranging from single person chambers to those that treat several patients simultaneously. The single person chamber (monoplace) is a portable unit in which one patient can be treated by pressurizing the chamber with 100% oxygen (4). These units are primarily located in physician's offices and clinics. Approximately onehalf of the chambers are large clinical chambers (multiplace), in which several patients can be treated concurrently (5). These larger vessels contain oxygen delivery systems that deliver oxygen to the patient via mask, hood, or respirator while the pressurized environment surrounding the patient consists of air. Exhaled gases are routinely exhausted outside the chamber via an overboard dump system in order to reduce the risk of contamination of the chamber air with oxygen and carbon dioxide. One of the most recent chambers to become operational is located at Southwest Texas Methodist Hospital in San Antonio, Texas. It is the second of a two-chamber complex and was constructed in accordance with the upright cylinder design, similar to the design specified for each chamber compartment at Wright-Patterson AFB, OH.

The Wright-Patterson clinical hyperbaric facility is designed as three interconnected upright cylinders in a molecular configuration (Fig. 4).

Figure 4. Wright-Patterson Clinical Hyperbaric Facility (WPCHF) Design.

The largest is 22 ft in diameter with a capacity of 18 ambulatory patients. It is interconnected with two smaller 11-ft-diameter chambers which have a capacity of six ambulatory patients each. This concept permits the management of a large number of patients at one treatment depth, while simultaneously treating an emergency patient at a different treatment depth. The third chamber is used as an elevator to move attendants and equipment up and down in pressure between the other two compartments and the surface. The three pressure vessels are welded together by interconnecting passageways and mounted on large concrete supports. Each chamber is filled with water and hydrostatically pressure tested before being placed into service. Final testing of the facility is scheduled for December 1984, with a projected operational date of March 1985.

Many design concepts were considered in designing the Wright-Patterson chamber (2). The molecular configuration with upright cylinders was considered to be the best of the design options because it provides: (a) the maximum floor space for the minimum chamber volume, (b) the maximum utility of the chamber compartments to manage both routine and emergency patients, and (c) expandable capability in that two of the three compartments can be used for routine patients when there are no emergency treatments in progress. The overall chamber design has two expandable features: (a) there is floor space in the center of the main chamber for additional mask breathing units, and (b) one of the smaller treatment compartments can be used in the event additional patient treatments are required beyond the capability of the larger compartment. The small compartment would not be available for routine patients when emergency patients are being treated.

The number of patients that can be treated in the chamber is directly proportional to the available floor space. For example, an 11-ft-diameter chamber can be outfitted to accommodate 6 ambulatory patients (Fig. 5) or 2 litter patients (Fig. 6). The distribution of seats and litters that achieves maximum treatment capacity for the 14, 16, 18 and 20 ft-diameter chambers is shown in Figures 7 through 14. The maximum treatment capacity for a 22-ft-diameter chamber is 18 ambulatory patients (Fig. 15) or 10 litter patients (Fig. 16). Each 1-ft increase in diameter increases the treatment chamber's capacity by one additional ambulatory or litter patient (table 2).

TABLE 2. PATIENT TREATMENT CAPACITY RELATIVE TO CHAMBER DIAMETER

Chamber Diameter (ft)	Ambulatory Patient Load Per Dive	Litter Patient Load Per Dive
11	6	2
14	10	3
16	12	14
18	14	6
20	16	8
22	18	10

The likelihood that all litter or all ambulatory patients would be treated in any given treatment dive is rare. More commonly, there would be a combination of litter and ambulatory patients (Fig. 17). Each litter occupies two ambulatory patient positions in the upright cylinder. This is a more efficient design than the horizontal cylinder design in which each litter occupies three ambulatory patient positions.

Sizing of the Wright-Patterson clinical hyperbaric chamber is based on an anticipated work load of 36 ambulatory patients/day. The 22-ft-diameter chamber will accommodate this number of patients in two dives/day, which is a single work shift (table 3). If a smaller diameter vessel had been selected (e.g., a 14-ft diameter), four treatment dives would have been required to treat 36 ambulatory patients. This would require two work shifts, or twice the staff to treat the same number of patients. A 22-ft-diameter chamber can accommodate 20 litter patients in two treatment dives during a single work shift (table 4). If a 14-ft-diameter chamber had been selected, seven treatment dives would be required, which is beyond the capacity of a double work shift. It is not practical to plan a triple shift operation because of the downtime required for equipment maintenance, as well as significant patient management concerns.

Figure 5. Patient placement for 11-ft-diameter chamber design (ambulatory).

6 - AMBULATORY

Figure 6. Patient placement for ll-ft-diameter chamber design (litter).

OBS-INSIDE OBSERVER 10 - AMBULATORY

3 - LITTERS

Figure 7. Patient placement for 14-ft-diameter chamber design (ambulatory).

Figure 8. Patient placement for 14-ft-diameter chamber design (litter).

OBS-INSIDE OBSERVER
12 - AMBULATORY

Figure 9. Patient placement for 16-ft-diameter chamber design (ambulatory).

Figure 10. Patient placement for 16-ft-diameter chamber design (litter).

Figure 11. Patient placement for 18-ft-diameter chamber design (ambulatory).

Figure 12. Patient placement for 18-ft-diameter chamber design (litter).

Figure 13. Patient placement for 20-ft-diameter chamber design (ambulatory).

Figure 14. Patient placement for 20-ft-diameter chamber design (litter).

Figure 15. Patient placement for 22-ft-diameter chamber design (ambulatory).

Figure 16. Patient placement for 22-ft-diameter chamber design (litter).

Figure 17. Patient placement for 22-ft-diameter chamber design (ambulatory and litter).

Figure 18. Distribution of operating expenses for the Hyperbaric Medicine Division.

The Wright-Patterson clinical hyperbaric facility has been designed to minimize the staff requirements while accommodating 36 patients/day. A staff of 17 people has been approved for that facility. Table 5 lists recommended staff distribution for future facilities. Staffing is a most important consideration because it constitutes the majority of recurring costs for the facility. For example, the FY 82 operating budget for the USAF Hyperbaric Center at Brooks AFB, Texas, was approximately \$500,000, 83% of which was staffing costs (Fig. 18). Thus, design of a clinical hyperbaric facility must be based on the most efficient patient-to-staff ratio, since the recurring costs to operate the facility will be primarily attributed to staffing costs.

TABLE 3. NUMBER OF PATIENT DIVES REQUIRED TO TREAT 36 AMBULATORY PATIENTS DAILY RELATIVE TO CHAMBER DIAMETER

Chamber Diameter (ft)	Dives Required
11	6
14	ц
16	3
18	3
20	3
22	2

TABLE 4. NUMBER OF PATIENT DIVES REQUIRED TO TREAT 20 LITTER PATIENTS DAILY RELATIVE TO CHAMBER DIAMETER

Chamber Diameter (ft)	Dives Required
11	10
14	7
16	5
18	ц
20	3
22	2

TABLE 5. CLINICAL HYPERBARIC FACILITY STAFFING

Position	Qty
Physician	3
Physiologist	2
Nurse	2
Medical technician	2
Chamber technician	6
Maintenance technician	1
Medical administrative specialist	1
Total	17

Engineering considerations increase the cost of pressure vessels sharply when chamber diameters are selected greater than 14 ft. This is principally due to unavailability of prefabricated heads and restrictions on overland transport which necessitate on-site construction. If one compares the difference in initial cost of two vessels (14 ft vs 22 ft), and the recurring staffing costs required to operate each size, one can see why it is cost effective to select the larger, more expensive vessel (table 6). The estimated capital investment of a 3-compartment chamber (one 14-ft-diameter compartment and two 11-ft-diameter compartments with appropriate supportive systems) is approximately \$4.5 million. If the larger compartment is increased to a 22-ft-diameter, the cost is approximately \$9 million, representing a cost difference of \$4.5 million. However, the improved patient-to-staff ratio which results in reduced staffing costs significantly influences the cost effectiveness of the facility. For example, with the 22-ft diameter chamber, 36 patients can be treated with a single work shift at a cost of about \$.5 million. In the 14-ft-diameter chamber, 2 work shifts are required at a cost of about \$1 million, an added recurring cost of \$.5 million/year. Within 9 years, the added staffing cost for the double shift will equal the \$4.5 million additional purchase price of the larger chamber. Furthermore, the added staffing cost continues to accrue throughout the life of the facility which may be 50 yr or more. Therefore, it is more cost effective to purchase the larger chamber at the additional cost of \$4.5 million because of the increased recurring staffing costs.

TABLE 6. COMPARISON OF INITIAL AND RECURRING COSTS

Chamber Size (ft)	Initial outlay (\$Million)	vs	Recurring staffing costs (\$ Million/year)
14	4.5	_	1.0
22	9.0		0.5
Difference	4.5		-0.5

NOTE: Number of years to equalize costs = 9 yr

The design engineers of new facilities should incorporate the most advanced design features and the most efficient methods of manpower utilization because the chambers remain in service for such a long time. For example, the primary treatment chamber (Fig. 19) at the USAF Hyperbaric Center has been in operation for 25 yr, and the emergency treatment chamber (Fig. 20) was used to treat divers during the construction of the Panama Canal 80 yr ago.

Figure 19. Treatment Chamber I, USAF Hyperbaric Center, Brooks AFB, TX.

Figure 20. Treatment Chamber II, USAF Hyperbaric Center, Brooks AFB, TX.

PATIENT AIR EVACUATION COSTS

Previous studies (2) have supported the concept of placing clinical hyperbaric facilities in major medical centers to serve as a regional resource. Applying this concept, each of the nine DoD medical regions should eventually have at least one clinical hyperbaric facility. An alternative concept might be to construct one large, centrally located clinical hyperbaric facility and air evacuate patients to that location for treatment. For purposes of this theoretical discussion, the Wright-Patterson clinical hyperbaric facility was selected as the central location for the DoD hyperbaric chamber complex.

A study was conducted to determine the cost of moving patients by the Military Airlift Command (MAC) Aeromedical Evacuation System from each of the nine DoD regions to Wright-Patterson AFB, OH. The mission of the MAC Aeromedical Evacuation System, as defined in DoD Directive 4515.13-R and AFR 164-5, is to evacuate casualties from the combat zone to definitive care facilities. Preparation for this mission is accomplished during peacetime by exercising the command control system, training crews, and testing equipment. A by-product of the peacetime mission is that authorized DoD personnel are expeditiously moved between medical facilities to insure optimal patient care. Three movement priorities are used to assure timely, but cost effective transportation. These priorities are:

Routine

Patients who should be picked up within 72 hr and moved on routine or scheduled flights.

Priority

Patients requiring prompt medical care not available locally. Such patients must be picked up within 24 hr and delivered with the least possible delay.

Urgent

Emergency cases which must be moved immediately to save life or limb, or to prevent complication of a serious illness. Psychiatric or terminal cases with a very short life expectancy are not classified "urgent".

Most patients who are candidates for hyperbaric oxygen therapy fall into either the "routine" or "urgent" categories. Therefore, historical data maintained at Headquarters Military Airlift Command, Scott AFB, IL, were used to determine costs of air evacuation of both "routine" and "urgent" cases. The costs associated with moving "routine" ambulatory and litter patients were based on flight data in which several patients would be airlifted on the same routinely scheduled mission. The cost of moving patients in the "urgent" category was based on flight data for which the aircraft mission was dedicated to that patient alone. For each DoD region, a major airport used by USAF C-9A aircraft was selected for calculating interregional transportation costs.

Hourly flying costs for C-9A Nightingale aircraft were calculated based on CY 82 data. The Military Airlift System separates C-9A aircraft operating costs into three user categories: (a) DoD, (b) non-DoD and other Federal agencies, and (c) non-U.S. Government and Foreign Sales. Cost elements used to determine these costs are shown in table 7. Non-DoD users have military pay added as a cost factor and non-U.S. Government and foreign sales users have military pay, civilian pay, and aircraft depreciation added as cost factors.

The cost to airlift a patient from point A to point B was determined by using the following formula:

(C-9A aircraft operating cost/flying hour) X (flying hrs/mission) Average Number of Patients Per Mission

Based on CY 82 data, operating cost of C-9A aircraft per hour of flying time was \$2,025/hr for DoD patients, \$2,904/hr for non-DoD and other Federal patients, and \$3,387/hr for non-U.S. Government patients (table 8). The cost per patient per flying hour was determined by dividing C-9A hourly operating costs by the average number of patients per mission. Records at Scott AFB,IL revealed an average of 21.2 patients per scheduled mission in CY 82. Table 9 lists "routine" DoD patient airlift costs as \$95.52/hr, non-DoD and other Federal patient costs as \$136.98/hr, and non-U.S. Government patient costs as \$159.76/hr in CY 82.

TABLE 7. C-9A AIRCRAFT COSTS

Cost Elements	User
Civilian pay	
Depot maintenance	
Aviation pol	
Supplies	
Travel (aircrew and other)	
Other direct cost	
Aeromedical mgt/admin	
	DoD
Military pay	
	Non-DoD
	other Federal
Military Pay, Accelerated	
Civilian Pay, Unfunded Retirement	
General and Admin	
Depreciation	
	Non-U.S. Government and foreign sales
Source: HQ MAC/ACI	

TABLE 8. C-9A FLYING HOUR COSTS (CY 1982)

User		Cost
DoD		\$2,025
Non-DoD and other	r Federal	\$2,904
Non-U.S. Governm	nent	\$3,387
or foreign sa	ales	
Source: Calcula	ted from F	FY 82-83 figures
from HC	MAC/ACI	

TABLE 9. PATIENT COST PER FLYING HOUR FOR ROUTINE PATIENTS (CY 1982)

User	Cost/Patient/Flying Hour
DoD	\$ 95.52
Non-DoD and other rederal	\$ 136 . 98
Non-U.S. Government or Foreign Sales	\$159.76

In order to convert patient costs per flying hour to the total cost of airlift from the various regions to Wright-Patterson AFB, OH, the flying times for existing air evacuation missions were determined from existing flight plans at the Military Airlift Command Headquarters at Scott AFB, IL. For transportation requiring two travel days, existing missions were selected which would ensure travel on consecutive days.

For a routine mission in which a patient is moved from Travis AFB, CA to Wright-Patterson AFB, OH (following the current plan at Scott AFB, IL), the patient would board at Travis AFB, CA, make 6 intermediate stops (7.92 flying hours), remain overnight at Scott AFB, IL, and then be transported to Wright-Patterson AFB, OH on the following day with two intermediate stops (Fig. 21).

Figure 21. Routine Mission (e.g., Travis AFB CA to Wright-Patterson AFB OH)

This would require a total flying time of 10.5 hr, which, when multiplied by the factor of \$95.52/hr, results in an air transportation cost of about \$1,003/DoD patient. The same cost factors can be applied to determine the cost to air evacuate patients from each of the western regions to Wright-Patterson AFB, OH (table 10). Thus, air evacuation of a routine patient from McChord AFB, WA, would cost \$852; from Travis AFB, \$1,003; from Buckley ANGB, \$414; from El Paso International Airport, \$693; and from Kelly AFB, \$501. These costs do not include the cost of returning patients to their homes upon completion of therapy.

TABLE 10. ROUTINE AIR EVACUATION TO REGION 6 (WRIGHT-PATTERSON AFB, OH)
PATIENT COST

From DoD Region	Flying Hours	DoD	Frip Cost Per Patier Other Fed	nt Non-Fed
1 (McChord AFB)	8.92	\$ 852	\$1,222	\$1,425
2 (Travis AFB)	10.50	\$1,003	\$1,438	\$1,677
3 (Buckley ANGB)	4.33	\$ 414	\$ 593	\$ 692
4 (El Paso Intl)	7.25	\$ 693	\$ 993	\$1,158
5 (Kelly AFB)	5.25	\$ 501	\$ 719	\$ 839

Source: MAC Flight Plans

Emergency or "urgent" patients are more expensive to airlift because an aircraft is dedicated to move a single patient. A similar approach was used to determine the cost of transporting emergency patients from the various DoD regions to Wright-Patterson AFB. The emergency route assumed no opportunity of flights available that were close to the patient such as reserve C-141 Starlifter or C-130 Hercules aircraft. The routes and times were based on the aircraft proceeding from Scott AFB, IL to pick up the patient, transporting the patient to Wright-Patterson AFB, OH, and then returning to Scott AFB, IL. Approximate flying times were obtained from the 0.78 Mach cruise chart in the C-9A flight manuals. For a scenario in which an emergency patient is airlifted from Travis AFB, CA (as shown in Fig. 22), the total flying time would be 8.75 hr.

Figure 22. Emergency Mission (e.g., Travis AFB CA to Wright-Patterson AFB OH)

For an aircraft transporting a single DoD patient at an hourly rate of 2,025, the total cost would be $(2,025 \times 8.75) = 17,719$. The cost to air evacuate an "urgent" DoD patient from McChord AFB would be 17,557. Airlift costs from the other western regions would range from 10,000 to 13,000 (table 11). These calculations do not include the cost of returning patients to their homes after completion of therapy.

TABLE 11. EMERGENCY AIR EVACUATION TO REGION 6 (WRIGHT-PATTERSON AFB JH)

	Flying Hours	*	Trip Cost Per Pat	ient
From DoD Region	(Approximate)	DoD	Other Federal	Non-Federal
1 (McChord AFB)	8.67	\$17,557	\$25,351	\$29,365
2 (Travis AFB)	8.75	\$17,719	\$25,585	\$29,636
3 (Buckley ANGB)	5.33	\$10,793	\$15,585	\$18,053
4 (El Paso Intl)	6.33	\$12,818	\$18,509	\$21,440
5 (Kelly AFB)	5.00	\$10,125	\$14,620	\$16,935

^{*}Assume one patient on board Scott - Pickup - Dest - Scott

Once the patient transportation cost from 1 region to another is known, the total annual cost of moving all HBO amenable patients can be predicted if the number of such patients is known. The Patient Population Data section (p. 24 of this report) provides the data from which the total HBO patient requirement by DoD region was determined.

In 1982, had all patients requiring hyperbaric oxygen therapy in DoD Region 2 (David Grant USAF Medical Center/Travis AFB, CA region) been air evacuated to Wright-Patterson AFB, OH, the transportation cost would have been \$600,000.

Total air evacuation cost from the western DoD regions for patients that could have benefited from hyperbaric oxygen therapy at Wright-Patterson AFB, OH in CY 82 would have exceeded \$1.5 million (table 12). These data are based on the assumption that all patients were in the routine category for aeromedical transportation and that there would be an unlimited hyperbaric treatment capability and hospital capacity at Wright-Patterson AFB, OH.

TABLE 12. TOTAL AIR EVACUATION COSTS FOR HBO PATIENTS (REGIONS 1-5 TO WRIGHT-PATTERSON AFB OH)

From DoD region	Number of Patients	Cost/patient (DoD user)	Total cost from region
1 (McChord AFB)	85	\$ 852	\$ 72,420
2 (Travis AFB)	591	\$1,003	\$ 592,773
3 (Buckley ANGB)	238	\$ 414	\$ 98,532
4 (El Paso Intl)	414	\$ 693	\$ 286,902
5 (Kelly AFB)	1,043	\$ 501	\$ 522,543
		TOTAL COST	\$1,573,170

For future calculations to predict air evacuation costs, flying times between all DoD regions are presented for both "routine" (table 13) and "urgent" (table 14) categories. Individual patient transportation costs between each DoD region were calculated using CY 1982 C-9A costs and are presented for DoD-user "routine" and "urgent" category patients (tables 15 & 16) at \$95.52 and \$2.025/hr respectively.

In determining total cost of patient airlift, several cost factors were excluded from the calculations: (a) Upon completion of therapy, patients must be transported back to their duty stations. (b) Cost of JP4 fuel fluctuates greatly, thus making it difficult to predict future expenses. (c) Should a patient's condition require that the aircraft maintain altitude restrictions (i.e., sea level cabin pressure in the case of a decompression sickness patient), cost of JP4 would increase approximately \$250/hr. (d) Air evacuation

results in added time loss from the duty section. (e) New clinical trials ongoing at the Hyperbaric Medicine Division of the USAF School of Aerospace Medicine may indicate that other disease entities are responsive to hyperbaric oxygen therapy, thereby increasing the number of predicted patients.

PATIENT POPULATION DATA

Heretofore, no acceptable method of determining patient treatment population was available. To provide guidance, the Hyperbaric Medicine Division developed a study of prevalence of those patients whose diagnosis and/or complications of treatment would be amenable to adjunctive hyperbaric oxygen therapy.

The base data was then used in a projected work-load algorithm. A survey of extant patient data bases revealed the existence of the USAF Automated Inpatient Data System (AIDS) which collected both demographic and diagnosis data at the time of discharge from a medical treatment facility.

Diagnoses were coded according to the International Classification of Diseases (ICD), 9th Revision as modified by the Department of Defense. A list of 42 diagnoses and procedures with associated codes was compiled, which included those recognized by the Undersea Medical Society, Hyperbaric Oxygen Therapy Committee Report of 1983 (8), as well as other experimental entities.

The prevalence data extracted from 388,916 inpatient records for CY 82 was then incorporated into a projected work-load algorithm which included estimates of outpatient population, percentages of patients within a diagnosis that would benefit from hyperbaric oxygen, the average of number of treatments necessary, and the space requirement dictated by chamber design. The aforementioned variables were determined either by survey, actual count, or best estimate based on census data. This data was presented in December 1983 to the Hyperbaric Medicine Criteria Development Committee, Office of the Assistant Secretary of Defense of Health Affairs (OASD/HA). This was a first approximation of prevalence and potential treatments in the HBO arena. Also, the work-load algorithm lends itself easily to modification to reflect a more accurate approximation as data becomes available. However, the magnitude of need found pointed out the necessity for a careful and thoughtful evaluation of chamber sizing and capability for future clinical facilities. This study serves as a model for future projects in projecting clinical work loads.

TABLE 13. INTERREGIONAL FLYING TIMES FOR ROUTINE CATEGORY PATIENTS

ျ	Origin Dod Region/Airdrome				Hours					
-	McChord AFB	ļ	1.58	4.58	5.00	4.50	8.92	6.67	11.92	7.92
2.	Travis AFB	1.58	1	6.17	3.42	3.58	10,50	5.08	8.58	8.00
÷	Buckley ANGB	4.75	6.33	t.	9.75	4.42	4.33	3.25	7.33	3.33
.	El Paso Intl	4.75	3.17	7.00	1	2.00	7.25	3.50	10.25	6.25
5.	Kelly AFB	6.58	2.00	2.00	2.75	! ! !	5.25	1.50	8.25	7 n
•	Wright-Patterson AFB	10.25	11.83	5.50	7.92	5.17	1	4°67	8.75	4.75
7.	Keesler AFB	8.58	6.58	3.83	4.33	1.58	4.08	i I	2.75	2.92
&	Norfolk NAS	12.75	00 ° 6	8.00	10.42	8.33	8.25	4.17	! !	0.58
6	Andrews AFB	10.00	8.42	4.17	5.75	3.42	8.83	4.75	0.58	
Des	Destination DoD Region	-	7	m	#	S.	9	7	c	6

TABLE 14. INTERREGIONAL FLYING TIMES FOR URGENT CATEGORY PATIENTS

g	Origin DoD region/airdrome				Hours					
- :	1. McChord AFB		8.75	7.75	8.83	9.17	8.67	9.42	9.83	10.00
2.	Travis AFB	8.75	!	7.58	8.17	8.67	8.75	80.6	10.75	10.33
ů	Buckley ANGB	7.75	7.58	! !	5.33	5.33	5.33	5.50	6.92	6.67
.	El Paso Intl	8.83	8.17	5.33	į	5.25	6.33	00*9	7.75	7.58
5.	Keliy AFB	9.17	8.67	5.33	5.25	 	2.00	4.58	6.50	6.42
•	Wright-Patterson AFB	8.67	8.75	2.00	6.25	2.00	!	4.00	3.92	3.75
7.	Keesler AFB	9.42	90.6	5.50	00.9	4.58	4.00	1	5.08	5.08
ъ. Ф	Norfolk NAS	10.42	10.50	6.92	7.75	05.9	3.92	5.08	1	3.92
6	Andrews AFB	10.00	9.92	6.67	7.58	05.9	3.67	5.08	00° h	
Des	Destination DoD region	-	~	m	4	Ŋ	9	7	œ	6

INTERREGIONAL PER PATIENT TRANSPORTATION COST FOR ROUTINE CATEGORY PATIENTS--Dod USERS (\$95.52/HR) TABLE 15.

	- 1 - 1 - 0									
Dol	Origin DoD Region/airdrome	j		Ď	Dollar cost					
-:	McChord AFB	! !	151	437	478	130	852	637	1139	757
2	Travis AFB	151	-	589	327	345	1003	485	820	164
ŕ	Buckley ANGB	1121	605	1 1 1	931	755 1	111	310	700	318
†	El Paso Intl	† 5†	303	699	-	191	693	334	616	597
5.	Kelly AFB	629	478	824	263	1	501	143	788	422
•	Wright-Patterson AFB	616	1130	525	757	ħ6ħ	1	9111	836	454
7.	Keesler AFB	820	629	366	111	151	390	.t 1	263	279
œ	Norfolk NAS	1218	860	764	995	962	788	398	1 1	55
6	Andrews AFB	955	804	398	645	327	843	454	55	1
Des	Destination DoD region	-	8	m	₽	'n	9	7	∞	6

INTERREGIONAL PER PATIENT TRANSPORTATION COST FOR URGENT CATEGORY PATIENTS--DOD USERS (\$2025/HR) TABLE 16.

8	Origin Region/airdrome			Dolla	Dollar cost					
- :	McChord AFB	!	17,719	15,694	17,881	18,569	17,577	19,075	19,906	20,250
2.	Travis AFB	17,719	t 1 5 7	15,349	16,544	17,557	17,719	18,387	21,769	20,918
'n	Buckley ANGB	15,694	15,349	1 1 1 1	10,793	10,793	10,793	11,137	14,013	13,507
.	El Paso Intl	17,881	16,544	10,793	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10,631	12,818	12,150	15,694	15,349
5.	Kelly AFB	18,569	17,557	10,793	10,631	1	10,125	9,274	13,162	13,000
9	Wright-Patterson AFB	17,557	17,719	10,125	12,656	10,125		8,100	7,938	7,594
7.	Keesler AFB	19,075	18,387	11,137	12,150	9,274	8,100	1 1 1	10,287	10,287
φ	Norfolk NAS	21,100	21,262	14,013	15,694	13,162	7,938	10,287	1	7,938
6	Andrews AFB	20,250	20,088	13,507	15,349	13,162	7,432	10,287	8,100	: : : :
De	Destination DoD region	-	N	٣	4	رح	9	7	∞	σ

The basic document for selection of hyperbaric entities was the Hyperbaric Oxygen Therapy - A Committee Report Undersea Medical Society Publication No. 30 CR (HBO) 1983, Jefferson C. Davis, MD, Chairman (8). In addition, after a thorough literature search, other diagnoses were added. An initial list was compiled consisting of 49 diagnoses or procedures. Certain diagnoses had to be grouped to conform to ICD9/ICP code criteria. As a result, 42 diagnostic or procedure related categories were subsequently assigned a numeric code from 1 to 42 to facilitate the required data analysis (Appendix A--Diagnosis by Code Number).

Based on the aforementioned identified diagnoses or procedures, an initial survey of the DoD modified ICD 9 codes resulted in the identification of 267 separate codes. These codes were reviewed with deletions and additions as deemed appropriate. For the 42 diagnoses and procedures there were 115 distinct diagnostic codes and/or range of codes.

Many times the individual diagnosis or procedure was associated with ICD9/ICP codes in multiple areas within the classification schema. As a result, an attempt was made to get as definitive a group referent to that diagnosis or procedure as possible. This is the first attempt to produce a definitive listing with associated codes. However, it is understood that additions and/or deletions will, in all likelihood, be made in the future (Appendix B--Diagnosis By Code Number And Associated ICD9/ICP Codes).

Since OASD/HA required the reporting of biometric data by DoD region, an initial assignment of the medical treatment facility (MTF) to the appropriate region was made. There are nine CONUS DoD regions, with PACAF and USAFE considered to be "regions" to simplify the data analysis (Fig. 23).

Figure 23. DoD Conus Regions.

Difficulty arose in the assignment of Alaskan Air Command facilities. This was resolved by assigning them to the PACAF "region". The rationale being that all air evacuation would proceed through or from the west coast (Appendix C-Medical Treatment Facility to Region Assignment).

An initial extract from the AIDS files, both demographic and diagnosis portions, was done. The data extracted was defined by the identified ICD9/ICP codes and the MTF assignments. It was further subdivided by the duty status of the patient (i.e., active duty military, retired military, dependents of active duty military, dependents of retired / deceased military, and other). The "other" category was reserved for civilian, Veterans Administration Hospital patients, and foreign national treatments (Appendix D).

The United States Air Force population estimates were determined in two ways: (1) an inpatient catchment area population defined by a 40-mile radius around hospitals; and (2) an ambulatory catchment area which was defined by 20-mile radius around all medical treatment facilities (i.e., clinics and hospitals). The estimates were for CONUS only, including Alaska and Hawaii (table 17).

TABLE 17. CATCHMENT AREA POPULATION ESTIMATES OF BENEFICIARY CATEGORY

	Active	Dependents		Dependents of Retired/	
	Duty	Active Duty	Retired	Deceased	Total
Inpatient	404,599	619,887	346,937	685,858	2,057,281
Ambulatory	433,800	666,106	307,294	614,006	2,021,206

Also from OASD/HA Resource Analysis and Planning System (RAPS), Version 3.31, we received tri-service estimates of a base population for FY 82 of 6,083,270 (Fig. 24).

Figure 24. Projected FY 82 Population Data by DoD Region

B - WRIGHT-PATTERSON USAFMC

C - DAVID GRANT USAFMC

An algorithm was developed to define those variables necessary to adequately determine a realistic potential work-load. The four variables of primary importance are:

- M_1 What is the <u>true</u> prevalence of the diagnostic entity in question-recalling that we were dealing only with inpatient counts?
- M_2 What percent of the above patients would benefit from hyperbaric oxygen treatment?
- M₃ What is the treatment space required based upon the patient's physical status (i.e., ambulatory vs litter)?
- $M_{\mbox{\sc i}}$ What constitutes an adequate and appropriate treatment series for a particular diagnosis?

The variables are then incorporated into a work-load projection formula as M_1 , M_2 , M_3 , and M_4 multipliers respectively.

In addition to the aforementioned variables, interim values obtained are assigned a P-prefix.

- P₁ The initial patient prevalence rate as extracted from AIDS.
- P2 The "true" prevalence rate.

- P₃ The number of patients requiring treatment.
- P4 The space requirement adjustment.
- P_5 The total patient-treatments required. In the text that follows, the variables and interim values will be further defined.
- 1. (M_1) : $P_1 \times M_1 = P_2$. M_1 , equivalent to an outpatient multiplier, attempts to answer the question: for every patient hospitalized with a particular diagnosis, how many non-hospitalized patients exist with the same condition? M₁ ranges were initially estimated to range from 1 to 10. For example, if M_1 were 1 all patients with the diagnosis were hospitalized. At the other end of the spectrum, if it were 10, there were 9 additional patients being treated as outpatients. In reality, an upper range could be in excess of the arbitrarily assigned one. This multiplier was subsequently assigned a value of 1 since no reasonable estimate could be made of the outpatient population. The data base did not exist, nor could it be extrapolated from extant disease census data with any reasonable accuracy. As previously stated, the P1 variable was equal to the number of patients hospitalized with a particular confirmed diagnosis in CY 82. Therefore, P1 X M1 equals the number of patients with a diagnosis times the outpatient multiplier (always one) which gives the beginning patient prevalence base for a particular diagnosis, and is equivalent to the P2 variable.
- 2. (M_2) : $P_2 \times M_2 = P_3$. M_2 , an HBO indicator multiplier, delineates the ratio of those patients with a particular diagnosis who are candidates for

treatment. M_2 was assigned a range of .001 (0.1%) to 1 (100%). This multiplier was defined for each of the 42 diagnostic codes by polling eight experienced hyperbaric medicine physicians, for percentage estimates. The high and low values were discarded and the average of the remaining six values taken (Appendix E). This multiplier was then applied to the P_2 X M_2 segment of the formula resulting in P_3 , which is the total number of patients with a particular diagnosis actually needing HBO. It should be noted that the physicians surveyed were asked to respond as conservatively as possible.

3. (M_3) : $P_3 \times M_3 = P_4$. M_3 is the litter multiplier. This variable had to be taken into account, since one litter takes two treatment spaces in the chamber (upright cylinder). This multiplier was used to determine the number of chamber spaces required and was based on the percentage of time a patient occupied a litter. An actual estimate was assigned only for those entities for which a good historical record existed (table 18). If it was not available, the litter multiplier became one if the patient could reasonably be expected to be ambulatory for the entire time. When the diagnosis was such that the patient's condition would warrant a litter for the entire treatment series, it was assigned a value of 2. We know for a fact that, in the majority of the diagnoses assigned a (1), many times full ambulatory status did not occur. This multiplier was taken times P_3 resulting in P_4 giving the total number of chamber spaces (ambulatory) required for all HBO amenable patients with a particular diagnosis.

TABLE 18. FRACTION OF TOTAL CLINICAL COURSE SPENT AS LITTER PATIENT*

DX		% As
Code	Description	Litter patient
8	Meningitis	66.5
9	Abscess, intraabdominal/intracranial	93.5
12	Retinopathy and retinal detachment	66.5
19	Radiation cystitis	60.0
23	Fracture healing	90.0
25	Burns	66.5
32	Radiation enteritis/myelitis/proctitis	70.0
34	Skin grafts/flaps, compromised	93.5
39	Necrotizing fasciitis	83.5
41	Pseudomembranous colitis	83.5
42	Pyoderma gangrenosum	83.5

*See Appendix F--Alphabetic Listings of Diagnoses with Associated M Values for complete M3 Values.

4. (M_{4}) : P_{4} X M_{4} = P_{5} . M_{4} is the average number of HBO treatments required for a particular diagnosis. This was based on the UMS Committee Report of Clinical Hyperbaric Oxygen. If none existed, a survey was made of the Brooks AFB Hyperbaric Medicine Division physician staff regarding each individual diagnosis as to the best estimate of the average number of treatments prescribed for that diagnosis (Appendix F). This multiplier was then applied to the prior P_{4} value, equivalent to total number of spaces required giving P_{5} which is the total number of HBO patient treatments required for a population with those diagnoses.

A summary of the identified variables follows:

- P_1 = A count of the confirmed discharge diagnoses and equivalent to the prevalence rate of the entity in question for CY 82.
- M_1 = An outpatient multiplier, equal to (1) due to the lack of a total patient data base.
 - P_2 = Total patients with a particular diagnosis.
- M_2 = Percentage of those patients identified by P_2 amenable to adjunctive HBO.
 - P_3 = Total hyperbaric patients with a particular diagnosis.
- M_3 = The percentage a patient remains litter bound during a treatment series.
 - P_{ij} = Total "ambulatory" patients with a particular diagnosis.
- $\mbox{M}_{\mbox{\sc i}}$ = The average number of treatments necessary to complete therapy for a given diagnosis.
- P_5 = The total number of patient-treatments for the identified population.

$$P_1 (M_1)(M_2)(M_3)(M_4) = P_5$$

The Department of Defense required that reports be broken out by region and status grouping as well as individual diagnosis. A major programming effort resulted in the design, development, and verification of approximately 36 programs (Appendix G). The reports were generated by patient's status, status groupings, diagnosis, and DoD region. As stated at the beginning of this section, the data is limited to USAF data only and as such is not an overall reflection of the true prevalence in the DoD. However, the algorithm employed can be readily adapted to extract the basic biometric data required for analysis from the other services AIDS data base equivalent. It would also

be reasonable to extrapolate tri-service need using estimates of prevalence per 1 million USAF population. A reasonable assumption can be made that the demography of the patient populations in the other services would not be significantly different. In the following tables, there is no diagnostic category in the ICD9/ICP coding schema for Wound Healing Enhancement (a major accepted UMS category). Therefore, those diagnoses or procedures were included in the experimental category. Tables 19-21 readily reveal a potential for 142,257 treatments for all UMS categories, of which 17,992 were in the fully accepted category. If Wound Healing Enhancement entities, i.e., Diabetic Ulcer, Venous Stasis Ulcer, Decubitus Ulcer, Arterial Ulcer, were included in this analysis, another 101,960 accepted treatments is predicted. Table 22 emphasizes the fact that active duty and dependents have a significant impact on the number of peacetime treatments required (i.e., 43,335 of the total treatments in all categories). In tables 23-25, an analysis of treatment capacity versus need emphasizes the disparity given a conservative estimate.

TABLE 19. P1 THROUGH P5 VALUES BY DOD REGION (UMS ACCEPTED CATEGORIES)

Region	P ₁ (Inpatient)	P ₂ (Population)	P ₃ (Rx population)	Р ₄ (Rx spaces)	P ₅ (Rx)
1	112	112	20	32	350
2	536	536	100	151	2,160
3	316	316	45	61	1,068
4	436	436	85	126	1,952
5	1,167	1,167	258	388	5,960
6	205	205	38	57	846
7	676	676	117	177	2,336
8	132	132	20	28	552
9	286	286	45	68	916
PACAF	359	359	45	65	814
USAFE	289	289	45	65	1,038
	4,514	4,514	818	1,218	17,992

TABLE 20. P1 THROUGH P5 VALUES BY DOD REGION (UMS EXPERIMENTAL CATEGORIES)

Region	P ₁ (Inpatient)	P ₂ (Population)	P ₃ (Rx Population)	Р ₄ (Rx Spaces)	P ₅ (Rx)
					· · · · · · · · · · · · · · · · · · ·
1	329	329	65	76	2,368
2	2,280	2,280	491	553	8,451
3	1,062	1,062	193	227	7,031
4	1,669	1,669	329	382	12,015
5	3,638	3,638	785	886	29,577
6	968	968	220	247	8,281
7	2,742	2,742	607	683	22,767
8	607	607	107	124	3,878
9	1,249	1,249	248	287	9,543
PACAF	961	961	162	203	5,853
USAFE	1,087	1,087	133	172	4,501
	16,592	16,592	3,340	3,840	114,265

TABLE 21. P₁ THROUGH P₅ VALUES BY DOD REGION (UMS ALL CATEGORIES)

Region	P ₁ (Inpatient)	P ₂ (Population)	P ₃ (Rx Population)	Р _Ц (Rx Spaces)	P ₅ (Rx)
1	441	441	85	108	2,718
2	2,816	2,816	591	704	20,611
3	1,378	1,378	238	288	8,099
4	2,105	2,105	414	508	13,967
5	4,805	4,805	1,043	1,274	35,537
6	1,173	1,173	258	304	9,127
7	3,418	3,418	724	860	25,103
8	739	739	127	152	4,430
9	1,535	1,535	293	355	10,459
PACAF	1,320	1,320	207	268	6,667
USAFE	1,376	1,376	178	237_	5,539
	21,106	21,106	4,158	5,058	142,257

TABLE 22. PATIENT TREATMENTS

	UMS Accepted Categories	UMS Experimental Categories	UMS All Categories
AD AF/Dep	9,136	34,199	43,335
Retired & others	8,938	90,056	98,994
Total beneficiaries	18,074	124,255	142,329

TABLE 23. USAF PROJECTED HYPERBARIC OXYGEN THERAPY WORK LOAD/CAPACITY (UMS ACCEPTED CATEGORIES)

			Location			
Year	Patient dives (P ₅)*	Brooks AFB	Wright-Patterson AFB	Travis AFB	Total patient treatment capacity	Ratio W/C
1982	17,992	2,000			2,000	9/1
1985	19,235	2,000	9,000		11,000	2/1
1987	20,111	2,000	9,000	9,000	20,000	1/1

^{*}P₅ increases 2.25%/year over 1982 base (Hq USAF/SGHC)

TABLE 24. USAF PROJECTED HYPERBARIC OXYGEN THERAPY WORK LOAD/CAPACITY (UMS EXPERIMENTAL CATEGORY)

			Location			
Year	Patient dives (P ₅)*	Brooks AFB	Wright-Patterson AFB	Travis AFB	Total patient treatment capacity	Ratio W/C
1982	124,265	2,000			2,000	62/1
1985	132,844	2,000	9,000		11,000	12/1
1987	138,890	2,000	9,000	9,000	20,000	7/1

^{*}Ps increases 2.25%/year over 1982 base (Hq USAF/SGHC)

TABLE 25. USAF PROJECTED HYPERBARIC OXYGEN THERAPY WORK LOAD/CAPACITY (UMS ALL CATEGORIES)

			Location			
Year	Patient dives (P ₅)*	Brooks AFB	Wright-Patterson AFB	Travis AFB	Total patient treatment capacity	Ratio W/C
1982	142,257	2,000			2,000	71/1
1985	152,078	2,000	9,000		11,000	14/1
1987	158,998	2,000	9,000	9,000	20,000	8/1

^{*}P5 increases 2.25%/year over 1982 base (Hq USAF/SGHC)

As part of readiness capability in the event of war, the possible impact on clinical HBO from the numbers and kinds of patients likely to result from this activity was addressed. The U.S. Army has developed a computer-based algorithm (combat zone area requirements - CZAR) projecting casualties in the NATO/European sphere. This data was subsequently extracted for those diagnoses for which adjunctive HBO might be useful. A scenario of conventional warfare was selected as most conservative. Table 26 shows the impact on clinical HBO requirements which are significantly greater than our foreseeable nearterm capability.

TABLE 26. EUROPEAN NATO NON-NUCLEAR SCENARIO

- Casualties: 20,000/Day For 1C Days = 200,000
- Casualties by category* for CONUS evacuation

1.	Abdominal wounds	55,317
2.	Burns, thermal	6,880
3.	Cerebral trauma	3,084
4.	Crush injuries	5,841
5.	Fractures	56,426
		127,548

"Source: CZAR (Combat Zone Area Requirements) UNCLASSIFIED

ACKNOWLEDGEMENTS

The authors wish to express sincere gratitude to Mrs. Zette P. Rouse for her dedication to this project. Without her diligence and concern, the preparation of this report would have been impossible.

REFERENCES

- J.C. Davis, and T.K. Hunt (eds). Hyperbaric Oxygen Therapy. Bethesda, MD., The Undersea Medical Society, (1977).
- Sheffield, P.J., J.C. Davis, and C.J. Cutrona. Fabrication and Design Considerations For a Multiplace Clinical Hyperbaric Facility. SAM-TR-77-7, March 1977.
- 3. Myers, R. Hyperbaric Chamber Register, Shock, and Trauma Center Report. Baltimore, MD., 1983.
- 4. Hart, G.B., and E.P. Kindwall. Hyperbaric Chamber Clinical Support:
 Monoplace. IN: J.C. Davis, and T.K. Hunt (eds.). Hyperbaric Oxygen
 Therapy. Bethesda, MD., The Undersea Medical Society, pp 41-46 (1977).
- 5. Sheffield, P.J., J.C. Davis, G.C. Bell, and T.J. Gallagher. Hyperbaric Chamber Clinical Support: Multiplace. IN: J.C. Davis, and T.K. Hunt (eds.). Hyperbaric Oxygen Therapy. Bethesda, MD., The Undersea Medical Society, pp 25-40 (1977).
- Aeromedical Transportation. IN: U.S. Department of Defense Regulation 4515.13-R, Air Transportation Eligibility, U.S. Department of Defense, 1980.
- 7. U.S. Air Force Regulation 164-5, Worldwide Aeromedical Evacuation, U.S. Air Force, 1975.
- 8. Davis, J.C., Hyperbaric Oxygen Therapy a Committee Report, Publication No. 30CR, Undersea Medical Society, Bethesda, MD. (1983).

APPENDIX A

DIAGNOSIS BY CODE NUMBER

- 1. Leprosy
- 2. Mycosis, selected refractory
- 3. Gas gangrene
- 4. Soft tissue infection
- 5. Diabetic ulcer
- 6. Sickle cell crisis/hematuria
- 7. Anemia due to exceptional blood loss
- 8. Meningitis
- 9. Abscess, intraabdominal/intracranial
- 10. Multiple sclerosis
- 11. Cerebral edema, acute
- 12. Retinopathy and retinal detachment
- 13. Myocardial infarction with shock
- 14. Gas embolism, acute
- 15. Peripheral arterial insufficiency, acute
- 16. Venous stasis ulcer
- 17. Osteoradionecrosis
- 18. Mesenteric thrombosis, acute
- 19. Radiation cystitis
- 20. Decubitus ulcer
- 21. Scleroderma
- 22. Osteomyelitis, refractory
- 23. Fracture healing
- 24. Crush injury
- 25. Burns
- 26. Head and spinal cord injury
- 27. Carbon tetrachloride poisoning, acute
- 28. Cyanide poisoning, acute
- 29. Carbon monoxide poisoning
- 30. Soft tissue radionecrosis
- 31. Decompression sickness
- 32. Radiation enteritis/myelitis/proctitis
- 33. Bone grafts-noninfected/nonunions
- 34. Skin grafts/flaps, compromised
- 35. Arterial ulcer
- 36. Corneal grafts, failing
- 37. Cerebral vascular accidents, acute
- 38. Hydrogen sulfide poisoning, acute
- 39. Necrotizing fasciitis
- 40. Pneumocystosis
- 41. Pseudomembranous colitis
- 42. Pyoderma gangrenosum

APPENDIX B

DIAGNOSIS BY CODE NUMBER AND ASSOCIATED ICD9/ICP CODES

1.	Leprosy
	03000
	03010
	03020 03030
	03080
	03090
2.	Mycosis, selected refractory
	03930
	11280
	11290 11740
	11770
	11790
3.	Gas gangrene
	04000
4.	Soft tissue infection
	04180
	04190
	68200
	68210 68220
	68230
	68240
	68250
	68260
	68270 68280
	68290
5.	Diabetic ulcer
٦.	
	25060
	25061 25069
	23009
6.	Sickle cell crisis/hematuria

28250 28260

7. Anemia due to exceptional blood loss 8. Meningitis 9. Abscess, intraabdominal/intracranial 10. Multiple sclerosis 11. Cerebral edema, acute 12. Retinopathy and retinal detachment 13. Myocardial infarction with shock 14. Gas embolism, acute

Peripheral arterial insufficiency, acute 16. Venous stasis ulcer 17. Osteoradionecrosis 18. Mesenteric thrombosis, acute 19. Radiation cystitis Decubitus ulcer 21. Scleroderma 22. Osteomyelitis, refractory

23. Fracture healing

80000-82910

24. Crush injury

92500~92990

25. Burns 94100 94130~94200 94230-94300 94330~94400 94430-94500 94530-94600 94630-94900 94930-94940 26. Head and spinal cord injury 95300-95390 27. Carbon tetrachloride poisoning, acute 98210 28. Cyanide poisoning, acute 98510 98770 98780 98900 29. Carbon monoxide poisoning 98600 30. Soft tissue radionecrosis 99000 31. Decompression sickness 99330 32. Radiation enteritis/myelitis/proctitis 3712 3713 3749 3829 3899 33. Bone grafts-noninfected/nonunions 5786 34. Skin grafts/flaps, compromised 5891~5898

35. Arterial ulcer

36. Corneal grafts, failing 5125

37. Cerebral vascular accidents, acute43600

38. Hydrogen sulfide poisoning, acute 98780

39. Necrotizing fasciitis
72940

40. Pneumocystosis

41. Pseudomembranous colitis
56410

42. Pyoderma gangrenosum 68600

APPENDIX C

MEDICAL TREATMENT FACILITY TO REGION ASSIGNMENT

DoD REGION 1 CODE FACILITY

1651 Mountain Home AFB ID

4152 Kingsley FLD OR

5351 Fairchild AFB WA

5354 McChord AFB WA

5652 F E Warren AFB WY

DoD REGION 2 CODE FACILITY

0652 Beale AFB CA

0653 Castle AFB CA

0654 Edwards AFB CA

0655 George AFB CA

0658 March AFB CA

0659 Mather AFB CA

0661 McClellan AFB CA

0662 Norton AFB CA

0664 Travis AFB CA

0670 Vandenberg AFB CA

0671 Los Angeles AFS CA

0672 35 TAC Hosp

0673 22 TAC Hosp

3251 Nellis AFB NV

DoD REGION 3 CODE FACILITY

0855 Lowry AFB CO

0857 USAF Academy CO

0859 ADC Med Aid Sta Sum

0860 Peterson AFB CO

2057 McConnell AFB KS

3051 Malmstrom AFB MT

3151 Offutt AFB NE

3153 SAC Med Aid Sta Sum

3851 Grand Forks AFB ND

3852 Minot AFB ND

4651 Ellsworth AFB SD

4951 Hill AFB UT

DOD REGION 4 CODE FACILITY

0451 Davis-Monthan AFB AZ

0452 Luke AFB AZ

0454 Williams AFB AZ

DoD REGION 4 CODE FACILITY

0456 58 TAC Hosp 0457 832 TAC Hosp 0551 Blytheville AFB AR 0553 Little Rock AFB AR 3551 Holloman AFB NM 3552 Kirtland AFB NM 3554 Cannon AFB NM 3557 49 TAC Hosp 3952 Rickenbacker AFB OH 3954 Wright-Patterson AFB OH

DoD REGION 5 CODE FACILITY

CALL TANKS TO SEE THE SECOND OF THE SECOND S

2251 England AFB LA 2252 Barksdale AFB LA 2256 23 TAC HOSP 4052 Tinker AFB OK 4053 Vance AFB OK 4057 Altus AFB OK 4852 Bergstrom AFB TX 4854 Webb AFB TX 4855 Brooks AFB TX 4857 Carswell AFB TX 4860 Goodfellow AFB TX 4864 Kelly AFB TX 4865 Lackland AFB TX 4868 Randolph AFB TX 4869 Reese AFB TX 4871 Sheppard AFB TX 4877 Laughlin AFB TX 4879 Dyess AFB TX 4882 ATC MED AID STA SUM

DoD REGION 6 CODE FACILITY

1752 Chanute AFB IL 1756 Scott AFB IL 1757 MAC Med Sta Sum 1854 Grissom AFB IN 2652 Wurtsmith AFB MI 2655 Kincheloe AFB MI 2656 K I Sawyer AFB MI 2751 Duluth IAP MN 2954 Whiteman AFB MO 2955 Richards-Gebour AFB MO

DOD REGION 7 CODE FACILITY

0153 Craig AFB AL
0155 Maxwell AFB AL
1252 Eglin AFB FL
1253 Macdill AFB FL
1256 Patrick AFB FL
1258 Tyndall AFB FL
1263 Homestead AFB FL
1355 Moody AFB GA
1356 Robins AFB GA
2851 Columbus AFB MS
2853 Keesler AFB MS

DOD REGION 8 CODE FACILITY

3752 Pope AFB NC
3753 Seymour Johnson AFB NC
4552 Shaw AFB SC
4553 Charleston AFB SC
4554 Myrtle Beach AFB SC
4555 354 TAC Hosp
4556 363 TAC Hosp
5151 Langley AFB VA
5152 1 TAC Hosp
5153 TRAC Med Aid Sta Sum

DoD REGION 9 CODE FACILITY

1051 Dover AFB DE
2352 Loring AFB ME
2451 Andrews AFB MD
2452 SYS Med Aid Sta Sum
2551 Hanscom AFB MA
3352 Pease AFB NH
3453 McGuire AFB NJ
3653 Griffiss AFB NY
3660 Hancock FLD NY

DOD REGION PACAF CODE FACILITY

0251 Eielson AFB AK 0252 Elmendorf AFB AK 0254 Shemya AFB AK 0256 AAC Med Aid Sta Sum 1551 Hickam AFB HI 1553 PAF Med Aid Sta Sum

DoD REGION PACAF CODE FACILITY

CA55 TAC Med Aid Sta Sum GQ51 Anderson AB GU JA56 Misawa AFB JA JA63 Yokota AFB JA JA71 655 TAC Hosp JA73 Kadena AFB JA KS54 Kunsan AB KS KS55 Osan AB KS KS59 Taegu ABS KS TW53 SHU Lin Kou Tw PQ51 Howard AFB PQ RP51 Clark AB RP RP54 656 TAC Hosp

DoD REGION USAFE CODE FACILITY

TU52 Izmir TU

RP55 657 TAC Hosp

GE02 Geilenkirchen AB GE GE55 Rhein-Main AB GE GE56 Weisbaden GE GE59 Bitburg AB GE GE60 Hahn AB GE GE61 Sembach AB GE GE62 Spanudahlem AB GE GE64 Ramstein AB GE GE72 AFE Med Aid Sta Sum GE73 Zweibrucken AB GE GE74 50 TAC Hosp GE75 86 TAC Hosp GE76 36 TAC Hosp GL52 Sondrestrom AB GL GL53 Thule AB GL GR51 Hellenikon AG GR GR53 Iraklion AS GR GR54 7206 TAC Hosp IT52 Aviano AB IT IT54 San Vito Dei Normanni IT IT55 Comiso AB IT NL51 Camp New Amsterdam NL PO51 Lajes AB PO SP51 Torrejon AB SP SP53 Zaragosa AB SP SP74 401 TAC Hosp TU51 Incirlik AB TU

DOD REGION USAFE CODE FACILITY

TU53 Ankara TU
TU54 Karamursel TU
UK53 RAF Bentwaters UK
UK57 RAF Fairford UK
UK58 RAF Greenham Common UK
UK59 RAF Lakenheath UK
UK63 RAF Upper Heyford UK
UK65 RAF Chicksands UK
UK73 RAF Alconbury UK
UK81 48 TAC Hosp
UK82 20 TAC Hosp

APPENDIX D

BASE DATA FOR ANALYSIS BY REGION, DIAGNOSIS, AND STATUS*

Region 1

DX	AD	Depn	Ret	Depn Ret	All	
Code	Mil	AD Mil	Mil	/Dec Mil	Others	Total
1	0	0	0	0	0	0
2	0	0	0	1	0	1
3	0 14	0 26	0	0	0	0
4			15 46	12	0	67
5 6	3 0	12 4		50	1	112
		8	0	0	0	4
7 8	2 2	7	O 4	0 2	0	10 15
9	3	3	1	5	0 0	15 12
10	0	ے 4	i) 1	0	6
11	0	0	Ó	1	0	1
12	ŏ	ő	ŏ	2	ő	2
13	5	ő	27	3	ŏ	35
14	ĺ	Ö	3	1	ŏ	5
15	Ó	Ō	ŏ	0	Ŏ	ó
16	Ō	Ō	0	0	Ö	Ŏ
17	0	0	1	1	Ō	2
18	0	0	0	0	0	0
19	0	0	0	2	0	2
20	0	0	2	3	0	5
21	0	0	0	0	0	0
22	0	0	0	0	0	0
23	69	15	8	14	0	106
24	1	1	0	0	0	2
25	7	6	3	3	0	19
26	1	0	0	0	0	1
27	0	0	0	0	0	0
28	1	0	0	0	0	1
29	0	0	0	0	0	0
30	0	0	0	1	0	1
31	3 0	0 0	0 0	0 0	0 0	3 0
32	0	0	0	0	0	0
33 34	7	7	6	9	0	29
3 7 35	Ó	Ó	0	0	Ö	0
36	Ö	Ö	0	Ö	ő	Ö
37	0	Ö	Ö	0	Õ	Ö
38	o O	Õ	Ŏ		ŏ	Ö
38 39	0 0	0 0	ŏ	0 0	ŏ	Ö
40	ŏ	ŏ	Ŏ	Ö	Ö	Ö
41	Ō	Ō	Ō	Ō	Ō	0
42	Ō	0	0	0	0	0
Total	119	93	117	111	1	441

^{*}Source: Biometric Division, SG Director of Health Care Support, Brooks AFB, TX

Region 2

DX Code 1 2	AD Mil O 2	Depn AD Mil O 2	Ret Mil O 5	Depn Ret /Dec Mil O 1	All Others O O	Total 0 10
3 4	0 79	0 7 2	0 72	0 76	0	0
5	68	72	457	387	0 2	299 986
6	4	4	0	4	0	12
7	1	3	2	3	Ö	9
8	7	36	3	5	0	51
9	9	28	23	29	1	90
10	5	6	11	11	0	33
11	0	2	11	7	0	20
12	1	2	4 (1)	0	0	7
13 14	13 2	2 5	164 15	40 6	5 0	224
15	0	0	7	2	0	28 9
16	1	1	ų	2	0	8
17	8	2	1	2 3 2	Ö	14
18	1	0	3	2	0	6
19	0	1	0	0	0	1
20	1	0	14	4	0	19
21	1	0	7	9	0	17
22	1	3	6	1	0	11
23	393	103	59	156	3	714
24 25	1	0 22	0	1	0	2
26	32 1	0	5 0	6 0	0 0	65 1
27	Ö	Ö	Ö	0	0	0
28	2	3	1	ŏ	ő	6
29	1	Ŏ	0	1	Ō	2
30	0	0	4	1	0	5
31	5	0	0	0	1	6
32	0	2	10	7	0	19
33	5	2	0	2	0	9
34	23	38	32	39	1	133
35 36	0	0	0	0	0	0
36 37	0 0	0 0	0 0	0 0	0	0 0
38	0	0	0	0	0	0
39	ő	ő	Ö	ő	ő	Ö
40	Ö	Ö	Ö	ŏ	Ŏ	ŏ
41	0	0	0	0	0	0
42	0	0	0	0	0	0
TOTAL	667	411	920	805	13	2816

Region 3

DX	AD	Depn	Ret	Depn Ret	All	m . A . 3
Code	Mil	AD Mil	Mil	/Dec Mil	Others	Total
1	0	0	0	0	0	0
2	0	0	1	1	0	2 0
3	0	0	0	0	0	
Ħ	112	61	29	24	5	231
5	21	74	116	92	27	330 12
6	2	9	0	1	0	12 42
7	9 2	25	1	5	2 0	42 32
8		28	0	2		52 52
9	15	13	8	16	0	12
10	2	2	3	4	1	4
11	1	2	0	1	0	1
12	0	0	0	0	1	91
13	13	2	53	15	8	4
14	0	1	1	1	1	0
15	0	0	0	0	0	
16	1	0	2	0	0	3
17	2	1	2	0	0	2
18	1	1	0	0	0	3 5 2 5
19	1	2	0	2	0	5 4
20	0	1	1	1	1	0
21	0	0	0	0	0	7
22	1	0	1	5	0	405
23	204	96	34	44	27	
24	1	0	1	0	0	2 61
25	23	18	5	14	1	0
26	0	0	0	0	0 0	1
27	1	0	0	0	0	6
28	4	1	0	1	0	5
29	2	0	0	0	0	0
30	0	0	0	0	0	3
31	3	0	0	0	0	0
32	0	0	0	0	0	9
33	5	3	1	0	4	50
34	23	12	2	9	0	0
35	0	0	0	0	0	ő
36	0	0	0	0 0	0	Ö
37	0	0	0		0	Ö
38	0	0	0	0 0	ő	Ŏ
39	0	0	0	0	ő	Ö
40	0	0	0		Ö	0
41	0	0	0	0 0	0	ŏ
42	0	0	0	U	O	Ŭ
Total	449	352	261	238	78	1378

Region 4

DX	AD	Depn	Ret	Depn Ret	A11	
Code	Mil	AD Mil	Mil	/Dec Mil	Others	Total
1	0	0	0	0	0	0
2	0	3	2	1	0	6
3	0	0	0	0	1	1
4	83	69	53	56	3	264
5	33	75	251	235	16	610
6	7	21	0	8	0	36
7	0	5	0	3	0	8
8	15	29	1	2	1	48
9	20	25	8	10	0	63
10	1	3	18	7	0	29
11	0	2	5	3	1	11
12	0	0	0	0	0	0
13	20	6	124	31	7	188
14	2	1	8	6	0	17
15	1	1	2	5	0	9
16	0	1	4	4	0	9
17	6	2	3	5	0	16
18	1	0	1	2	0	4
19	0	0	1	0	0	1
20	1	3	4	8	0	16
21	2	0	0	3	0	5
22	3	1	4	0	0	8
23	294	103	48	90	14	549
24	6	1	1	1_	0	9
25	36	19	8	5	0	68
26 27	1	0	0	0	0	1
27	0	0	0	0	0	0
28	3	1	1	0	0	5
29	2	1	0	1	0	4
30	0	1	1	2	0	4
31	8	0	0	0	0	8
32	0 18	0	0	0	0	0
33 34		4	3	0	0	25
3 4 35	29	26	15	13	0	83
35 36	0	0	0	0	0	0
	0	0	0	0	0	0
37	0	0	0	0	0	0
38 39	0 0	0	0	0	0	0
39 40	0	0	0	0	0	0
40		0	0	0	0	0
41 42	0	0	0	0	0	0
46	0	0	0	0	0	0
Total	592	403	566	501	43	2105

Region 5

DX	AD	Depn	Ret	Depn Ret	All	
Code	Mil	AD Mil	Mil	/Dec Mil	Others	Total
1	1	0	1	0	0	2
2	2	8	7	12	1	30
3	0	2	0	1	0	3
4	269	129	104	138	1	641
5	66	184	683	632	8	1573
6	6	13	1	14	1	35
7	2	8	3	5	0	18
8	20	58	9	13	0	100
9	39	29	33	46	2	149
10	6	7	12	6	0	31
11	3	1	18	10	0	32
12	15	10	38	12	0	75
13	19	3	192	39	5	258
14	10	17	31	28	0	86
15	0	3	17	14	0	34
16	1	1	10	12	0	24
17	18	6	22	12	0	58
18	1	1	2	1	2	7
19	1	1	5	9	0	16
20	0	1	21	20	0	42
21	2	12	3 6	8	0	25
22	3	4		5	0	18
23	418	228	121	255	50	1072
24	2	1	1	2	0	6
25	25	28	13	19	7	92 6
26	2	0	3	0	1	0
27	0	0	0	0	0	4
28	1	1	1	1	0 0	10
29	5 2	4	0	1	0	20
30	2	5	3 0	10	0	9
31	9	0		0	0	34
32	1	9	9	15	1	45
33	22	8	4	10	2	250
34	63	66	59	60	0	0
35	0	0	0	0	0	ő
36	0	0	0	0	0	ő
37	0	0	0	0	0	Ö
38	0	0	0	0	0	ŏ
39	0	0	0	0	Ö	ŏ
40	0	0	0	0	0	ŏ
41	0	0	0	0	0	ő
42	0	0	0	0	O	
Total	1034	848	1432	1410	81	4805

Region 6

DX	AD	Depn	Ret	Depn Ret	All	
Code	Mil	AD Mil	Mil	/Dec Mil	Others	Total
1	0	0	0	0	0	0
2	2	2	1	2	0	7
3	0	0	0	0	0	0
4	51	27	18	23	2	121
5	15	65	175	172	3	430
6	8	6	0	2	0	16
7	7	10	1	4	0	22
8	9	17	0	5	1	32
9	8	11	15	12	0	46
10	0	3	4	4	0	11
11	0	0	3	1	0	4
12	0	0	0	1	0	1
13	12	2	40	11	6	71
14	0	0	6	3	0	9
15	0	0	0	0	0	0
16	0	0	5	2	0	7
17	2	0	5	1	0	8
18	1	0	0	1	0	2
19	0	0	0	0	0	0
20	0	0	2	3	0	5
21	3	0	1	0	0	4
22	2	0	0	1	0	3
23	149	50	28	32	7	266
24	2	0	0	0	0	2
25	20	22	2	2	1	47
26	1	0	0	0	0	1
27	0	0	0	0	0	0
28	5	2	0	0	0	7
29	0	1	0	0	0	1
30	0	0	0	0	0	0
31	0	0	0	0	0	0
32	1	0	0	1	0	2
33	1	2	0	2	0	5
34	13	14	7	8	1	43
35	0	0	0	0	0	0
36	0	0	0	0	0	0
37	0	0	0	0	0	0
38	0	0	0	0	0	0
39	0	0	0	0	0	0
40	0	0	0	0	0	0
41	0	0	0	0	0	0
42	0	0	0	0	0	0
Total	312	234	313	293	21	1173

Region 7

DX	AD	Depn	Ret	Depn Ret	All	
Code	Mil	AD Mil	Mil	/Dec Mil	Others	Total
1	0	0	0	0	0	0
2	1	10	6	5	0	22
3	Ö	0	0	0	0	0
4	117	82	95	86	3	383
	45	144	488	532	6	1215
5 6	8	11	3	11	0	33
7	2	12	5	6	0	25
8	11	44	7	6	1	69
9	37	17	28	25	1	108
10	4	4	2	5	0	15
11	0	1	19	11	0	31
12	2	0	6	1	0	9
13	25	10	207	41	7	290
14	4	4	24	7	1	40
15	0	3	4	2	0	9
16	0	1	8	3 6	0	12
17	5	1	2	6	0	14
18	0	1	2 2	1	0	4
19	1	^	0	3	0	6
20	1	2	5 2	14	0	22
21	0	2	2	6	0	10
22	2	1	6	1	1	11
23	418	144	86	130	12	790
24	2	0	0	0	1	3
25	52	20	13	9	0	94
26	1	0	0	1	0	2
27	0	0	0	0	0	0
28	4	0	1	0	0	5
29	0	0	0	0	0	2 0 5 0 3 2 6
30	0	0	1	2	0	3
31	2	0	0	0	0	2
32	0	0	3	3 4	0	
33	12	5	2		0	23
34	48	56	30	28	0	162
35	0	0	0	0	0	0
36	0	С	0	0	0	0
37	0	0	0	0	0	0 0
38	0	0	0	0	0	=
39	0	0	0	0	0	0
40	0	0	0	0	0	0
41	0	0	0	0	0	0 0
42	0	0	0	0	0	U
Total	804	577	1055	949	33	3418

Region 8

DX	AD	Depn	Ret	Depn Ret	All	
Code	Mil	AD Mil	Mil	/Dec Mil	Others	Total
1	0	0	0	0	0	0
2	0	2	0	0	0	2
3	0	0	0	0	0	0
4	29	19	14	21	0	83
5	7	40	97	63	0	207
6	0	6	1	4	0	11
7	0	2	1	1	0	4
8	4	9	0	1	0	14
9	5 2	7	2	7	0	21
10		8	1	1	0	12
11	0	0	3	1	0	4
12	0	0	0	0	0	0
13	10	2	58	28	1	99
14	0	0	1	0	0	1
15	0	0	0	0	0	0
16	1	0	0	3	0	4
17	3	1	0	2	0	6
18	0	0	1	0	0	1
19	0	0	0	0	0	0
20	0	1	0	2	0	3
21	1	1	1	0	0	3
22	1	0	0	0	0	1
23	97	37	22	50	3	209
24	2	0	0	1	0	3
25	6	5	1	1	0	13
26	0	1	0	0	0	1
27	0	0	0	0	0	0
28	1	1	0	0	0	2
29	0	0	0	0	0	0
30	0	0	0	0	0	0
31	2	0	0	0	0	2
32	0	0	0	0	0	0
33	1	2	1	1	0	5
34	15	6	1	6	0	28
35	0	0	0	0	0	0
36	0	0	0	0	0	0
37	0	0	0	0	0	0
38	0	0	0	0	0	0
39	0	0	0	0	0	0
40	0	0	0	0	0	0
41	0	0	0	0	0	0
42	0	0	0	0	0	0
Total	187	150	205	193	4	739

Region 9

DX Code	AD Mil	Depn AD Mil	Ret Mil	Depn Ret /Dec Mil	All Others	Total
1	0	0	0	0	0	0
2	ő	2	3	2	ő	7
3	ŏ	Õ	ő	0	Ö	ó
4	49	34	34	21	Ö	138
5	23	55	194	178	5	455
6	2	7	1	1	ó	11
7	4	7	i	i	Ô	13
8	11	19	o O	4	Ö	34
9	7	. 8	9	6	Ö	30
10	ó	5	5	4	Ö	14
11	1	ó	ĺ	3	Ö	5
12	2	ŏ	i	í	Ö	4
13	9	ŭ	84	20	5	122
14	ó	1	7	2	1	11
15	Ö	Ö	2	1	Ö	3
16	Ö	ő	5	3	Ö	8
17	2	ő	ź	0	Ö	4
18	0	ŏ	1	1	ő	2
19	1	ŏ	ò	Ö	ő	1
20	1	6	š	3	Ö	18
21	Ó	ž	ő	2	Ö	4
22	1	0	2	0	Ö	3
23	217	85	41	71	6	420
24	0	Ő	Ö	0	Ō	0
25	9	18	4	1	Ō	32
26	ó	0	0	0	Ō	0
27	Ö	Ö	Ō	Ō	0	0
28	Ö	Ö	1	2	0	3
29	Ö	Ŏ	Ó	0	Ō	ő
30	ő	2	3	2	Ö	7
31	2	ō	õ	0	Ö	2
32	5	Ğ	37	17	Ŏ	65
33	5 6	2	1	4	0	13
34	33	27	25	21	ij	106
3 5	0	0	ő	0	Ó	0
36	ő	ŏ	Ö	Ö	Ö	Ō
37	ő	ŏ	Ö	Ö	Ō	0
38	Ö	ő	ő	Ŏ	Ö	ō
39	0	ŏ	ő	Ö	Ö	Ö
40	0	Ö	ő	Ö	ŏ	Ö
41	0	ō	0	Ö	ő	ő
42	0	0	0	ŏ	Ö	ő
Total	385	290	472	371	17	1535

Region PACAF

DX Code 1	AD Mil 2	Depn AD Mil 2	Ret Mil O	Depn Ret /Dec Mil O	All Others O	Total
2	4	2	0	0	0	4 6
3	1	Ō	Ö	0	Ö	1
4	151	62	18	10	12	253
5	19	57	49	54	19	198
6	5	4	Ó	Ö	Ó	9
7	8	19	2	3	0	32
8	8	31	0	4	3	46
9	19	10	1	2	2	34
10	0	4	1	3	2	10
11	1	3	2	0	2	8
12	3	1	0	1	0	5
13	10	2	22	7	8	49
14	3	1	0	1	1	6
15	1	0	0	0	1	2
16	0	4	2	0	2	8
17	1	1	0	0	0	2
18	0	0	1	2	1	4
19	8	2	0	0	3	13
20	0	0	1	2	3	6
21	0	0	0	0	0	0
22	2	0	0	0	0	2
23	237	110	22	21	42	432
24	3	0	0	0	0	3
25 26	42	38	2	0	13	95
26	0	0	0	0	0	0
27 28	0 1	0 1	0	0 0	0 0	0
20 29	5	1	0 1	0	0	2
30	0	0	0	1	0	7
31	1	0	0	0	0	,
32	Ö	1	0	0	Ö	1
33	7	5	ő	1	ő	13
34	32	25	3	4	3	67
35	0	0	ő	0	ő	Ö
36	0	Ö	Ō	Ö	Ō	ō
37	0	0	Ō	Ö	0	Ō
38	0	0	0	0	0	0
39	0	0	Ō	0	0	0
39 40	0	0	0	0	0	ວ
41	0	0	0	0	0	0
42	0	0	0	0	0	0
Total	574	386	127	116	117	1320

Region USAFE

DX	AD	Depn	Ret	Depn Ret	A11	m - 4 - 1
Code	Mil	AD Mil	Mil	/Dec Mil	0thers	Total O
1	0	0	0	0	0	2
2	1	1	0	0	0	0
3	0	0	0	0	0 4	194
Ħ	120	50	13	7	*	158
5	42	66	31	6	13 1	17
6	2	14	0	0	·	35
7	7	25	0	0	3 2	34
8	8	23	0	1	2	57
9	23	29	1	2 0	0	5
10	3	1	1	•	1	2
11	0	0	0	1	Ó	0
12	0	0	0	0	7	30
13	8	5	9 0	1	Ó	2
14	1	0	0	0	0	0
15	0	0	0	0	0	1
16	1	0	0	Ö	Ö	8
17	6	2 0	0	Ö	1	1
18	0 4		0	1	Ö	12
19		7 0	1	1	Ö	3
20	1	3	Ö	Ö	Ö	3 3 3
21	0	1	0	ŏ	Ö	3
22	2 444	154	7	10	39	654
23	12	2	Ó	Ö	ó	14
24	35	22	1	ŏ	1	59
25 26	39 1	0	ò	Ö	0	1
	Ó	0	Ö	Ō	0	0
27 28		Ö	Ö	0	0	5
26 29	5 3 0	Ö	Ö	0	0	3
30	0	Ö	1	0	0	1
31	5	Ö	Ó	0	0	5
32	ó	Ö	0	0	0	0
3 <i>c.</i> 33	12	5	0	0	0	17
34	28	19	1	1	1	50
35	0	0	0	0	0	0
36	Ō	0	0	0	0	0
37	Ō	0	0	0	0	0
38	Ö	0	0	0	0	0
39	Ö	0	0	0	0	0
40	Ō	0	0	0	0	0
41	0	0	0	0	0	0
42	0	0	0	0	0	0
Total	774	429	66	32	7 5	1376

APPENDIX E

HYPERBARIC MEDICINE PHYSICIAN SURVEY DATA WITH AVERAGE BY DX

DX Physician - % Indicated									
Code	1	2	3	ħ	5	6	7	8	Average*
1	100.0	1.0	.1	0.0	50.0	100.0	50.0	100.0	50.2
2	0.0	.1	.1	100.0	10.0	20.0	20.0	20.0	11.7
3	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
4	4.0	1.0	5.0	80.0	10.0	10.0	5.0	10.0	7.3
5	80.0	5.0	50.0	50.0	50.0	30.0	30.0	30.0	40.0
6	50.0	90.0	1.0	0.0	10.0	5.0	5.0	5.0	12.7
7	.1	. 1	.1	0.0	0.0	0.0	0.0	0.0	.1
8	1.0	1.0	1.0	0.0	1.0	10.0	0.0	10.0	2.2
9	80.0	1.0	•1	30.0	5.0	5.0	0.0	5.0	7.7
10	100.0	1.0	.1	0.0	20.0	0.0	0.0	0.0	3.5
11	70.0	20.0	10.0	20.0	1.0	10.0	10.0	10.0	13.3
12	.1	.1	.1	0.0	1.0	0.0	0.0	0.0	.1
13	.1	10.0	1.0	0.0	5.0	10.0	0.0	10.0	4.4
14	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
15	10.0	1.0	50.0	50.0	20.0	30.0	0.0	30.0	23.5
16	80.0	1.0	30.0	50.0	25.0	30.0	30.0	30.0	32.5
17	100.0	95.0	100.0	60.0	40.0	80.0	60.0	80.0	79.2
18	2.0	50.0	1.0	0.0	10.0	10.0	10.0	0.0	5.5
19	100.0	50.0	10.0	30.0	25.0	20.0	20.0	20.0	27.5 3.8
20	2.0	1.0	1.0	20.0	5.0	5.0	5.0	5.0	_
21 22	5.0 100.0	10.0 100.0	1.0 100.0	50.0 100.0	2.0 100.0	1.0 100.0	1.0 100.0	1.0 100.0	3.3 100.0
23	1.0	5.0	1.0	30.0	5.0	5.0	5.0	5.0	4.3
23 24	50.0	30.0	20.0	100.0	50.0	30.0	30.0	30.0	36.7
25	50.0	50.0	10.0	90.0	100.0	10.0	50.0	50.0	50.0
26	100.0	10.0	.1	10.0	0.0	0.0	0.0	0.0	3.4
27	.1	50.0	1.0	50.0	1.0	10.0	0.0	10.0	12.0
28	100.0	100.0	100.0	50.0	30.0	20.0	20.0	20.0	53.3
29	75.0	100.0	100.0	80.0	50.0	50.0	50.0	50.0	67.4
30	100.0	80.0	20.0	100.0	94.0	10.0	40.0	10.0	57.3
31	30.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
32	100.0	50.0	10.0	30.0	25.0	20.0	20.0	20.0	27.5
33	5.0	5.0	5.0	5.0	10.0	1.0	0.0	1.0	3.7
34	75.0	1.0	20.0	80.0	90.0	90.0	90.0	90.0	74.2
35	70.0	1.0	10.0	0.0	25.0	30.0	30.0	30.0	20.8
36	50.0	50.0	0.0	50.0	100.0	50.0	50.0	50.0	50.0
37	90.0	5.0	.1	5.0	10.0	20.0	20.0	20.0	13.3
38	10.0	10.0	.1	5.0	1.0	0.0	0.0	0.0	2.7
39	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
40	1.0	10.0	.1	0.0	0.0	0.0	0.0	0.0	•2
41	1.0	1.0	10.0	0.0	2.0	0.0	0.0	0.0	.6
42	90.0	50.0	10.0	50.0	50.0	30.0	30.0	30.0	33.3

 $^{^{*}}$ The average was determined by eliminating both the low and high estimates and averaging the remainder.

APPENDIX F

ALPHABETIC LISTINGS OF DIAGNOSES WITH ASSOCIATED M VALUES

Alphabetic Listing of UMS All Diagnoses By Category With Associated M Values

DXM₁ M_2 M3 Мμ Abscess, Intraabdominal/Intracranial (9) .077 1.87 10 2.00 Anemia due to exceptional blood loss (7) .001 1 Arterial ulcer (35) .208 1.73 30 Bone grafts-noninfected/nonunions (33) .037 1.00 20 Burns (25) .500 1.33 30 Carbon monoxide poisoning (29) .675 2.00 2 Carbon tetrachloride poisoning, acute (27) .120 2.00 1 Cerebral edema, acute (11) .133 2.00 5 Cerebral vascular accidents, acute (37) 2.00 5 .133 5 Corneal grafts, failing (36) .500 1.00 Crush injury (24) .367 2.00 10 Cyanide poisoning, acute (28) 2.00 2 •533 Decompression sickness (31) 1.000 2.00 1 Decubitus ulcer (20) .038 2.00 40 Diabetic ulcer (5) .400 1.00 40 Fracture healing (23) .043 1.80 10 Gas embolism, acute (14) 1.000 2.00 2 Gas gangrene (3) 1.000 2.00 7 Head and spinal cord injury (26) .034 2.00 5 Hydrogen sulfide poisoning, acute (38) .027 2.00 1 .502 1.00 10 Leprosy (1) Meningitis (8) .022 1.33 5 Mesenteric thrombosis, acute (18) .055 2.00 5 .044 Myocardial infarction with shock (13) 2,00 5 20 Multiple sclerosis (10) .035 1.00 Mycosis, selected refractory (2) 1.00 10 .117 .500 1.67 10 Necrotizing fasciitis (39) 1.00 1.000 50 Osteomyelitis, refractory (22) .792 1.00 60 Osteoradionecrosis (17) Peripheral arterial insufficiency, acute (15) .235 2.00 5 .002 2.00 10 Pneumocystosis (40) 1.67 5 Pseudomembranous colitis (41) .006 Pyoderma gangrenosum (42) •333 1.67 60 1.20 40 Radiation cystitis (19) .275 Radiation enteritis/myelitis/proctitis (32) .275 1.40 40 .001 1.33 3 Retinopathy and retinal detachment (12) Scleroderma (21) .033 1.00 40 Sickle cell crisis/hematuria (6) .127 2.00 4 .074 1.87 10 Skin grafts/flaps, compromised (34) 1.00 20 Soft tissue infection (4) .073 .573 1.00 40 Soft tissue radionecrosis (30) .325 2.00 20 Venous stasis ulcer (16)

Alphabetic Listing of UMS Accepted Diagnoses With Associated M Values

DX	^M 1	M ₂	M ₃	Мц
Carbon monoxide poisoning (29)	1	.675	2.00	2
Cerebral edema, acute (11)	1	.133	2.00	5
Crush injury (24)	1	.367	2.00	10
Cyanide poisoning, acute (28)	1	•533	2.00	2
Decompression sickness (31)	1	1.000	2.00	1
Gas embolism, acute (14)	1	1.000	2.00	2
Gas gangrene (3)	1	1.000	2.00	7
Mycosis, selected refractory (2)	1	.117	1.00	10
Osteomyelitis, refractory (22)	1	1.000	1.00	50
Osteoradionecrosis (17)	1	.792	1.00	60
Skin grafts/flaps, compromised (34)	1	.074	1.87	10
Soft tissue infection (4)	1	.073	1.00	20
Soft tissue radionecrosis (30)	1	•573	1.00	40

Alphabetic Listing of UMS Experimental Diagnoses With Associated M Values

DX	M ₁	M ₂	м3	Мц
Abscess, Intraabdominal/Intracranial (9)	1	.077	1.87	10
Anemia due to exceptional blood loss (7)	1	.001	2.00	1
Arterial ulcer (35)	1	.208	1.73	30
Bone grafts-noninfected/nonunions (33)	1	.037	1.00	20
Burns (25)	1	•500	1.33	30
Carbon tetrachloride poisoning, acute (27)	1	.120	2.00	1
Corneal grafts, failing (36)	1	•500	1.00	5
Cerebral vascular accidents, acute (37)	1	.133	2.00	5
Decubitus ulcer	1	.038	2.00	40
Diabetic ulcer (5)	1	.400	1.00	40
Fracture healing (23)	1	.043	1.80	10
Head and spinal cord injury (26)	1	.034	2.00	5
Hydrogen sulfide poisoning, acute (38)	1	.027	2.00	1
Leprosy (1)	1	•502	1.00	10
Meningitis (8)	1	.022	1.33	5
Mesenteric thrombosis, acute (18)	1	•055	2.00	5
Myocardial infarction with shock (13)	1	.044	2.00	5
Multiple sclerosis (10)	1	.035	1.00	20
Peripheral arterial insufficiency, acute (15)	1	.235	2.00	5
Pneumocystosis (40)	1	.002		10
Pseudomembranous colitis (41)	1	.006	1.67	5
Pyoderma gangrenosum (42)	1	•333	1.67	60
Radiation cystitis (19)	1	.275	1.20	40
Radiation enteritis/myelitis/proctitis (32)	1	.275	1.40	40
Retinopathy and retinal detachment (12)	1	.001	1.33	3
Scleroderma (21)	1	•033	1.00	40
Sickle cell crisis/hematuria (6)	1	.127	2.00	4
Venous stasis ulcer (16)	1	•325	2.00	20

APPENDIX G

DATA ANALYSIS SUMMARY SHEETS

Region Summary Totals For - Active Duty/All Diagnoses

Region	P ₁	P ₂	P ₃	Рц	P ₅
1	119	119	15	24	294
2	667	667	87	120	2654
3	449	449	50	71	1378
4	592	592	80	117	2234
5	1034	1034	131	182	3592
6	312	312	38	54	1130
7	804	804	95	135	2806
8	187	187	20	29	568
9	385	385	36	50	1084
PACAF	574	574	70	99	1942
USAFE	774	774	90	130	2554
	5,897	5,897	712	1,011	20,236

Region Summary Totals For - Active Duty/Accepted Diagnoses

Region	P ₁	P ₂	P ₃	Рц	P ₅
1	27	27	7	13	54
2	124	124	24	35	596
3	149	149	19	27	388
4	142	142	31	48	686
5	387	387	67	95	1614
6	77	77	13	18	352
7	185	185	28	40	638
8	53	53	10	15	258
9	88	88	11	15	294
PACAF	205	205	26	38	484
USAFE	183	183	33	50	734
	1.620	1,620	269	394	6,098

Region Summary Totals For - Active Duty/UMS Experimental Categories

Region	P ₁	P ₂	P ₃	Рц	P ₅
1	92	92	8	11	240
2	543	543	63	85	2058
3	300	300	31	44	990
4	450	450	49	69	1548
5	647	647	64	87	1978
6	235	235	25	36	778
7	619	619	67	95	2168
8	134	134	10	14	310
9	297	297	25	35	790
PACAF	369	369	44	61	1458
USAFE	591	591	57	80	1820
	4.277	4.277	443	617	14,138

Region Summary Totals For - Active Duty/UMS Special Categories

Region	P ₁	P ₂	P ₃	Рų	P ₅
1	9	9	4	5	150
2	33	33	16	21	630
3	32	32	12	16	480
4	36	36	18	24	720
5	27	27	13	17	510
6	27	27	10	13	390
7	54	54	26	35	1050
8	6	6	3	4	120
9	13	13	5	7	210
PACAF	50	50	21	28	840
USAFE	42	42	18	24	720
	329	329	146	194	5.820

Summary By Diagnosis For Active Duty

DX Code	P ₁ X M ₁ =	P ₂ X M ₂ =	P3 X M3=	<u>Рц X Мц=</u>	<u>P5</u>
1	3	3	2	2	20
2	12	12	0	0	0
3 4	1	1	1	2	14
4	1074	1074	80	80	1600
5 6	342	342	136	136	5440
6	44	44	6	12	48
7 8	42	42	0	0	0
8	97	97	0	0	0
9 10	185	185	15	30	300
10	23	23	0	0	0
11	6	6	0	0	0
12	23	23	0	0	0
13	144	144	6	12	60
14	23	23	23	46	92
15	2	2	0	0	0
16	5	5	0	0	0
17 18	53	53	43	43	2580
19	5 16	5 16	0	0	120
20	5	10 E	3 0	3 0	120
21	9	5 9	0	0	0 0
22	18	18	18	18	900
23	2940	2940	126	225	2250
24	32	32	11	22	220
25	287	287	146	194	5820
26	8	8	0	0	0
27	1	1	Ö	ŏ	Ŏ
28	27	27	17	34	68
29	18	18	11	22	44
30	2	2	1	1	40
31	40	40	40	80	80
32	7	7	1	1	40
33	89	89	2	2	40
34	314	314	24	46	460
35	0	0	0	0	0
36	0	0	0	0	0
37	0	0	0	0	0
38	0	0	0	0	0
39	0	0	0	0	0
40	0	0	0	0	0
41	0	0	0	0	0
42	0	0	0	0	0
	5,897	5,897	712	1,011	20,236

END

FILMED

4-85

DTIC