

Ejercicios ley de Boyle

Encontrar la relación en una serie de datos

Observe los siguientes datos

Presión $(\frac{lb}{in^2})$	Volumen (in³)	$P \cdot V$ (lb · in)
29.5	48	1.416
35.4	40	1.416
59.0	24	1.416
88.5	16	1.416
118.0	12	1.416

Analice y responda

Al multiplicar la presión con el volumen, ¿Qué se observa?

El producto de la presión y el volumen es constante

Al aumentar la presión, ¿qué sucede con el volumen?

Al aumentar la presión el volumen disminuye

03

"A temperatura constante y para la misma masa de gas, las presiones son inversamente proporcionales a los volúmenes"

—Robert Boyle y Edme Mariotte

Se pasa de un estado 1 a un estado 2

Fórmulas ley de Boyle

A partir de la ecuación principal puede despejar según se requiera

$$P_I = \frac{P_2 \cdot V_2}{V_I}$$

$$P_2 = \frac{P_1 \cdot V}{V_2}$$

$$V_1 = \frac{P_2 \cdot V_2}{P_1}$$

$$I_2 = \frac{P_1 \cdot V_1}{P_2}$$

EJEMPLOS

Un tanque a presión de 5.50 atmósferas contiene 100 m³ de un gas. Calcular el volumen que ocuparía en un tanque a presión ambiente de 1.00 atmósfera si la temperatura permanece constante.

01

Identificar los datos

Estado 1:

 $P_1 = 5.50 atm$ $V_1 = 100 m^3$

Estado 2:

$$P_2 = 1.00 atm$$

 $V_2 = ?$

Por lo tanto la ecuación requerida es la siguiente:

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

02

A continuación se deben sustituir los datos conocidos

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

$$V_2 = \frac{5.50 \cdot 100}{1.00} = 550 \text{ m}^3$$

Un globo de helio ocupa 90.0 litros a nivel del mar (1.00 atmósfera). Calcular el volumen del globo a 15 kilómetros de altura donde la presión del aire es de 0.056 atmósferas. Se considera que la temperatura es la misma en los dos puntos.

Identificar los datos

Estado 1:

$$P_1 = 1.00 atm$$

 $V_1 = 90.0 L$

Estado 2:
$$P_2 = 0.056 \text{ atm}$$
 $V_2 = ?$

Por lo tanto la ecuación requerida es la siguiente:

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

$$P_1 = 1.00 atm$$

 $V_1 = 90.0 L$
 $P_2 = 0.056 atm$
 $V_2 = ?$

02

A continuación se deben sustituir los datos conocidos

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

$$V_2 = \frac{1.00 \cdot 90.0}{0.056} = 1.61 L \leftarrow$$

Un gas ocupa 1.50 litros a una presión de 2.50 atm. Si la temperatura permanece constante, ¿Cuál es la presión en mm de Hg, si se pasa a un recipiente de 3 litros?

3)

3

01

Identificar los datos

Estado 1:

$$P_1 = 2.50 atm$$

 $V_1 = 1.50 L$

$$P_2 = ?$$

$$V_2 = 3 L$$

Por lo tanto la ecuación requerida es la siguiente:

$$P_2 = \frac{P_1 \cdot V_1}{V_2}$$

02

A continuación se deben sustituir los datos conocidos

$$P_2 = \frac{P_1 \cdot V_1}{V_2}$$

$$P_1 = 2.50 \ atm$$

 $V_1 = 1.50 \ L$
 $P_2 = ?$
 $V_2 = 3 \ L$

950 mmHg

$$P_2 = \frac{2.50 \cdot 1.50}{3} = 1.25 \ atm$$

$$\rightarrow$$

$$1.25 \ atm \cdot \frac{760 \ mmHg}{1 \ atm} =$$

Ya que la respuesta se pide en mmHg es necesaria una conversión

Un gas a una temperatura constante ocupa un volumen de 600 cm³ a una presión de 760 mm de Hg, ¿cuál será su volumen si la presión recibida aumenta a 1500 mm de Hg?

3

01

Identificar los datos

Estado 1:

$$P_1 = 760 mmHg$$
$$V_1 = 600 cm^3$$

$$\rightarrow$$

Estado 2:

$$P_2 = 1500 \, mmHg$$

 $V_2 = ?$

Por lo tanto la ecuación requerida es la siguiente:

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

02

A continuación se deben sustituir los datos conocidos

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

$$P_1 = 760 \text{ mmHg}$$

 $V_1 = 600 \text{ cm}^3$
 $P_2 = 1500 \text{ mmHg}$
 $V_2 = ?$

$$V_2 = \frac{760 \cdot 600}{1500} = 304 \ cm^3$$

Ya que la respuesta se pide en mmHg es necesaria una conversión

01

Identificar los datos

 $V_1 = 615 \,\mathrm{mL}$

Estado 1: $P_1 = 1.00 atm$

Estado 2:
$$P_2 = 752 \text{ } mmHg$$

 $V_2 = ?$

Por lo tanto la ecuación requerida es la siguiente:

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

Inicialmente se requiere tener consistencia en las unidades, por lo tanto se debe elegir si trabajar en atm o en mmHg, en este caso se trabajará en atm, por lo que se hará la conversión de la P_2 como se muestra a continuación:

$$P_1 = 1.00 \ atm$$

 $V_1 = 615 \ mL$
 $P_2 = 752 \ mmHg$
 $V_2 = ?$

$$752 \, mmHg \cdot \frac{1.00 \, atm}{760 \, mmHg} = 0.989 \, atm$$

Por lo tanto los datos conocidos en las unidades correspondientes son:

02

$$P_1 = 1.00 \ atm$$

 $V_1 = 615 \ mL$
 $P_2 = 0.989 \ atm$
 $V_2 = ?$

03

A continuación se deben sustituir los datos conocidos

$$V_2 = \frac{P_1 \cdot V_1}{P_2}$$

$$P_1 = 1.00 \ atm$$

 $V_1 = 615 \ mL$
 $P_2 = 0.989 \ atm$
 $V_2 = ?$

$$V_2 = \frac{1.00 \cdot 615}{0.989} = 621.8 \, mL$$

Ejercicio extra

Similar a lo anterior

Un gas recibe una presión de 2.00 atmósferas y ocupa un volumen de 125 cm³, calcular la presión que debe soportar para que su volumen sea de 95 cm^3

Referencias bibliográficas

- (1) Atkins, P. Principios De Química; Editorial Medica Panamericana: Buenos Aires, 2006.
- (2) Barrio, M. Termodinámica Básica; Universitat Politècnica de Catalunya: Barcelona, 2006.
- (3) Rodríguez, O. ḤĂ ƯƯƯƯỢ ÁÜ Î dắ ÈĂÜÛK, UNAM, Dirección General de la Escuela Nacional Preparatoria: México, D.F., 2004.

TCU-565 Apoyo y promoción de las ciencias en la educación costarricense

