Primjeri zadataka

Opće odrednice za ispit

Računski zadaci

Teorijsko-računski zadaci

Teorijski zadaci

Zadatak

 Zadana je Hopfieldova mreža s tri neurona i matricom težina W pri čemu su svi pragovi neurana postavljeni na nulu. Odredite sva stabila stanja.

•
$$\mathbf{W} = \begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix}$$

\begin{pmatrix} -1 \\ -1 \end{pmatrix}

$$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{pmatrix}
-1 \\
-1
\end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix}
-1 \\
-1
\end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Zadatak

 Na ulaz M primijeni se konvolucijski filtar f uz popunjavanje nulama, a potom max pooling veličine 2x2 uz korak pomaka 2. Kakav je rezultat?

```
      16
      2
      3
      13

      5
      11
      10
      8

      9
      7
      6
      12

      4
      14
      15
      1
```

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0 •-1	0 • 0	0 • 1	0	0	0
0 ·-2	16 · 0	0 · 1 2 · 2 11 · 1	3	13	0
0 ·-1	5 · 0	11 · 1	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0 •-1	0 .0	0 · 1 2 · 2	0	0	0
0 ·-2	16 · 0	2 · 2	3	13	0
0 ·-1	5 · 0	11 · 1	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

$$0 \cdot -1 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot -2 + 16 \cdot 0 + 2 \cdot 2 + 0 \cdot -1 + 5 \cdot 0 + 11 \cdot 1 = 15$$

0 ·-1	0 .0	0 · 1 2 · 2	0	0	0
0 · -2	16 · 0	2 · 2	3	13	0
0 ·-1	5 · 0	11 · 1	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

$$0 \cdot -1 + 0 \cdot 0 + 0 \cdot 1 + 0 \cdot -2 + 16 \cdot 0 + 2 \cdot 2 + 0 \cdot -1 + 5 \cdot 0 + 11 \cdot 1 = 15$$

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

15 -21

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

15 -21 19

0	0	0	0	0	0	
0	16	2	3	13	0	
0	5	11	10	8	0	
0	9	7	6	12	0	
0	4	14	15	1	0	
0	0	0	0	0	0	

15 -21 19 -16

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

15	-21	19	-16
31	-6	10	-29
39	10	-6	-37

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

15	-21	19	-16
31	-6	10	-29
39	10	-6	-37
35			

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

15	-21	19	-16
31	-6	10	-29
39	10	-6	-37
35	19		

0	0	0	0	0	0
0	16	2	3	13	0
0	5	11	10	8	0
0	9	7	6	12	0
0	4	14	15	1	0
0	0	0	0	0	0

15	-21	19	-16
31	-6	10	-29
39	10	-6	-37
35	19	-21	

0	0	0	0	0	0	
0	16	2	3	13	0	
0	5	11	10	8	0	_
0	9	7	6	12	0	
0	4	14	15	1	0	
0	0	0	0	0	0	

15	-21	19	-16
31	-6	10	-29
39	10	-6	-37
35	19	-21	-36

```
15
          -21
                     19
                               -16
31
          -6
                     10
                               -29
39
          10
                     -6
                               -37
                               -36
35
          19
                    -21
```

```
15
          -21
                    19
                              -16
31
          -6
                    10
                              -29
                     -6
39
          10
                              -37
                              -36
35
          19
                    -21
```

15	-21	19	-16
31	-6	10	-29
39	10	-6	-37
35	19	-21	-36

```
-21
                               -16
15
                     19
          -6
                     10
31
                               -29
39
          10
                     -6
                               -37
                               -36
35
          19
                    -21
```

31 19

15	-21	19	-16
31	-6	10	-29
39	10	-6	-37
35	19	-21	-36

311939

```
-21
                               -16
15
                     19
          -6
                               -29
31
                     10
          10
39
                     -6
                               -37
                               -36
35
          19
                    -21
```

```
311939-6
```

Zadatak

 Na ulaz mreže se dovodi slika dimenzija 32x32 s 3 kanala. <u>Slijedi 8 filtara 3x3 po svim kanalima</u>, zatim 16 filtara 3x3 i na kraju potpuno povezan sloj s 256 neurona s aktivacijskom funkcijom bez parametara. Koliko parametara ima opisani dio mreže?

• 8

 Na ulaz mreže se dovodi slika dimenzija 32x32 s 3 kanala. <u>Slijedi 8 filtara 3x3 po svim kanalima</u>, zatim 16 filtara 3x3 i na kraju potpuno povezan sloj s 256 neurona s aktivacijskom funkcijom bez parametara. Koliko parametara ima opisani dio mreže?

8x3x3

 Na ulaz mreže se dovodi slika dimenzija 32x32 s 3 kanala. <u>Slijedi 8 filtara 3x3 po svim kanalima</u>, zatim 16 filtara 3x3 i na kraju potpuno povezan sloj s 256 neurona s aktivacijskom funkcijom bez parametara. Koliko parametara ima opisani dio mreže?

• 8x3x3x3

 Na ulaz mreže se dovodi slika dimenzija 32x32 s 3 kanala. Slijedi 8 filtara 3x3 po svim kanalima, zatim 16 filtara 3x3 i na kraju potpuno povezan sloj s 256 neurona s aktivacijskom funkcijom bez parametara. Koliko parametara ima opisani dio mreže?

• 8x3x3x3 + 8

- 8x3x3x3 + 8
- 16x3x3x8 + 16

- 8x3x3x3 + 8
- 16x3x3x8 + 16
- 16x32x32x256 + 256

- 8x3x3x3 + 8
- 16x3x3x8 + 16
- 16x32x32x256 + 256
- 4 195 952

- 8x3x3x3 + 8
- 16x3x3x8 + 16
- 16x32x32x256 + 256
- 4 195 952 = 1392 + 4 194 560

- 8x3x3x3 + 8
- 16x3x3x8 + 16
- 16x32x32x256 + 256
- 4 195 952 = 1392 + <u>4 194 560</u>

Zadatak

 Koji su glavni razlozi uspjeha dubokog učenja u posljednih desetak godina?

