Neural Networks and Biological Modeling

Professor Wulfram Gerstner Laboratory of Computational Neuroscience

QUESTIONS SET ABOUT THE CABLE EQUATION

Exercise 1: Inhibitory rebound

Consider the following two-dimensional Fitzhugh-Nagumo model:

$$\begin{bmatrix} \frac{du}{dt} &= u(1-u^2) - w + I \equiv F(v, w) \\ \frac{dw}{dt} &= \varepsilon(u - 0.5w + 1) \equiv \varepsilon G(v, w), \end{cases}$$
(1)

where $\varepsilon \ll 1$.

1.1 Suppose that an inhibitory current step is applied,

$$I(t) = \begin{cases} -I_0 & t \le 0 \\ 0 & t > 0 \end{cases}$$

How does the fixed point move?

1.2 What happens after the driving current is removed? Sketch the form of the trajectories for increasing values of I_0 . What happens for large I_0 ?

Exercise 2: Phase Plane Analysis

In this exercise, we use the phase plane to study the dynamics of a two dimensional, nonlinear neuron model. The system is described by:

$$\begin{cases} \frac{d}{dt}u = F(u, w) \\ \frac{d}{dt}w = G(u, w) \end{cases}$$
 (2)

where F(u, w) = f(u) - w + I(t) and $G(u, w) = \epsilon(g(u) - w)$ with $\epsilon = 0.1$. I(t) is an external current.

Figure 1 shows the u- and w-nullclines for the case I(t) = 0:

- **2.1** Given $F(u_4,0) = 5$, $G(u_4,0) = 1$, draw a few flow arrows along the two nullclines in figure 1.
- **2.2** Without doing any computation, can you determine the stability of the fixed point 2 (the one at (u_2, w_2))? Justify your answer.
- **2.3** Discuss the stability of the third fixed point (the one at (u_3, w_3)) analytically. That is, linearize the system at the fixed point 3 and discuss the evolution of a small perturbation around that point. For the numeric calculations, use $\epsilon = 0.1$ and approximate the values of $\frac{d}{du}f(u)_{|u_3}$ and $\frac{d}{du}g(u_3)_{|u_3}$ from figure 1.
- **2.4** Assume the neuron is at rest. Then, at t_0 we apply a pulse stimulus I(t) to this system:

$$I(t) = (u_3 - u_1)\delta(t - t_0)$$

Figure 1: Phase Plane, I(t) = 0

(i) Sketch the trajectory (u(t), w(t)) in Figure 1.

(ii) Sketch the membrane potential u(t) vs. time in a new figure.

Make sure you get the two plots qualitatively correct: Clearly indicate important states, for example at $t < t_0$, at t_0 , and at $t > t_0$. Furthermore, in your u(t) plot, fast and slow regions should be distinguishable.

2.5 Referring to figure 1, discuss the effect of injecting pulse currents $I(t) = q\delta(t - t_0)$ of different amplitudes q into the neuron. What happens if we gradually increase q? Does this neuron model have a threshold?

2.6 Assume the neuron is at rest. We then apply a step current to the neuron:

$$I(t) = \begin{cases} 0 & if \ t \le 0 \\ 3 & t > 0 \end{cases}$$

(i) Sketch the nullcline $\frac{d}{dt}u = 0$ for t > 0 in figure 2.

(ii) In figure 2, mark the state of the system at t = 0. Starting from that state, sketch the trajectory of the system for t > 0.

(iii) Qualitatively discuss the evolution of the system for $t \to \infty$.

Figure 2: Phase Plane, I(t) = 3

Exercise 3: Impulse response

Consider the following system with separation of time scales:

$$\begin{bmatrix} \frac{du}{dt} & = f(u) - w + I \\ \frac{dw}{dt} & = \varepsilon (bu - \gamma w) \end{bmatrix}$$

where $\varepsilon \ll 1$ and

$$f(u) = \begin{cases} -u & \text{if } u < 1\\ \frac{u-1}{a} - 1 & \text{if } 1 \le u < 1 + 2a\\ 2(1+a) - u & \text{if } u > 1 + 2a \end{cases}$$

Assume that $b, \gamma, a > 0$ and $b/\gamma > 1/a$. Discuss the behaviour of the trajectories of u(t) in response to a current pulse $I(t) = q\delta(t)$. Sketch these trajectories in the phase plane and in the temporal domain for a few values of q. Does the model exhibit a threshold-like behaviour?