

CI 8 : Analyse, Modélisation et Conception des systèmes mécaniques

EXERCICE DE COLLE – ROULEAU D'ENTRAINEMENT DE MACHINE À TISSER

Mise en situation

On s'intéresse à une unité de fabrication de tissus qui peuvent intervenir dans la confection de vêtements élaborés à partir de fils entrelacés. Les rouleaux étudiés permettent d'assurer le convoyage du tissus.

Rouleaux de sortie d'une machine à tisser

Trame de tissus

Les fils longitudinaux forment la chaîne et les fils transversaux forment la trame. Pour des raisons de résistance et d'esthétique les tissus doivent avoir une trame géométriquement correcte par rapport à la chaîne. Pour obtenir cette condition il fait que la machine puisse corriger la position de la trame de tissus pendant la fabrication. Cette exigence fonctionnelle est réalisée par le rouleau d'entraînement.

Principe de fonctionnementt

Le rouleau d'entrainement du tissu à l'entrée de la machine est réalisé en trois tronçons : un tronçon central est deux tronçons aux extrémités. Les tronçons d'extrémité pouvant tourner à des vitesses différentes par rapport à la vitesse du tronçon central.

Lorsque l'erreur géométrique de la trame se trouve dans l'intervalle de tolérance admis par le cahier des charges, les trois tronçons tournent à la même vitesse de rotation et le rouleau entraîne le tissu à une vitesse linéaire de 1,5 m/s.

Bonne géométrie de trame – Rouleaux men arche normale

Mauvaise géométrie de trame – Rouleaux en phase de correction

Lorsque les capteurs détectent un défaut, le tronçon d'extrémité concerné voit sa fréquence de rotation augmenter. Pour éviter toute détérioration du tissu la variation de vitesse du tronçon d'extrémité par rapport au rouleau central doit être faible. La correction du défaut est obtenue par la différence des vitesses linéaires des tronçons d'extrémité par rapport au tronçon central.

Constitution d'un rouleau d'entraînement

Les tronçons d'extrémités sont appelés rouleaux d'extrémités. Le tronçon central appelé rouleau central.

Les éléments fonctionnels du rouleau d'entraînement sont principalement :

- deux freins électromagnétiques;
- deux réducteurs épicycloïdaux;
- deux roues libres.

On donne le dessin d'ensemble du rouleau d'entraînement à l'échelle 0,7 et sa nomenclature. Les rouleaux d'extrémités étant identiques, le dessin représente uniquement un rouleau d'extrémité et un demi-rouleau central.

Étude technologique

Question 1

Quelle est la fonction des pièces 37 et 48?

Question 2

En déduire la liaison cinématique entre 35 et 36 et entre 44 et 36. Justifier rigoureusement vos choix de liaison. On admettra que 37 et 35 sont montés serrés ainsi que 36 et 48.

Question 3

Donner la désignation complète des 2 roulements 21.

Question 4

Quel est le rôle des rouleaux 19?

Ouestion 5

Quel est le rôle des ressorts 26?

Question 6

Comment est assurée la lubrification du système ? Comment est assurée l'étanchéité dynamique du système ? Le frein électromagnétique est constitué des pièces 1 à 13'. La pièce 13' est en liaison encastrement avec la pièce 36.

Question 7

Quelle est la fonction des pièces 6 et 8 ? Expliquer le fonctionnement du frein électromagnétique. Vous pourrez éventuellement vous appuyer sur des schémas.

Question 8

Quelle est la liaison cinématique entre l'ensemble 10 et le bâti 1 ? Vous justifierez rigoureusement le choix de cette liaison.

Ouestion 9

Comment s'effectue la transmission entre les pièces 44 et 47 lorsque le frein n'est pas alimenté?

Étude cinématique

Le réducteur est composé des pièces 32, 35, 36 et 51.

Question 10

Colorier le plan d'ensemble en utilisant une couleur par classe d'équivalence cinématique.

Question 11

Réaliser le schéma cinématique minimal du plan d'ensemble dans les coupes C-C et A-A en tenant compte des couleurs utilisées précédemment.

Question 12

Que se passe-t-il lorsque le frein est alimenté?

Question 13

Déterminer le rapport de réduction du réducteur.

Rep Nb	Désignation	Matériau	Observations		Rep	Nb	Désignation	Matériau	Observations
2	Armature				29	2	Clavette 8x7 - 45	C35	
2 2	Bobinage				30	2	Palier auto-alignant		INA RFE 30
2	Disque arrière			03	31	8	Vis CHC M8 10	Classe 6-8	
10				אר	32	2	Roue dentée intérieure	E295	52 dent, m=3
10				πэ	33	9	Vis CHc M88	Classe 6-8	
2	Pige d'arrêt			nbi	¥	2	Graisseur M8		Tecalemit Lub réf : 9.20.40.21
∞	Ressort			19u	35	2	Satellite	E295	44 dents / 40 dents, m=3
8	Poussoir de rappel			Seu	36	2	Porte satellite	S185	Mécano-soudé
2	Fourrure amagnétique			uo.:	37	2	Coussinet	Cu Sn 16 Pb	
2	Armature mobile			pə	88	2	Rondelle d'appui	S185	
2	Segment d'arrêt		Cirdips 7100 Ø52	ə ui	39	2	Segment d'arrê t		Cirdips 7100 Ø35
2	Ecrou de réglage			БтĒ	40	16	Rondelle WZ 6		
2	Vis CHc M5 15	Classe 6-8			41	8	Vis HM6 20	Classe 6-8	
2	Cloche				42	∞	Vis HM6 20	Classe 6-8	
2	Bride de fermeture	S 250			43	2	Clavette 10x8; 18	C35	
2	Roulement arrière	100 Cr 6	SKF 6008 RS		44	1	Rouleau central	S235	Mécano-soudé
2	Cale de réglage	5185			45	2	Joint à lèvre		Paulsta type IE ref 722 010
2	Noyau à pans	35 Ni Cr 6	Trempe 850°C - Revenu 550°C		46	12	Vis F/90 M612	Classe 6-8	
2	Segment d'arrêt		Cirdips 7100 Ø55 Virax	o	47	2	Rouleau d'extrémité	S235	Mécano-soudé
20	Rouleau	35 Ni Cr 6	Trempe 850°C - Revenu 550°C	oun	48	4	Coussinet	Cu Sn 16 Pb	Métafram 35/44 - 28
2	Segment d'arrêt		Cirdips 7100 Ø55 Virax	Ιэ	49	2	Rondelle d'appui	S185	
2	Roulement avant	100 Cr 6	SKF 6008 RS	ıdil	20	2	Segment d'arrê t		Cirdips 7100 Ø80
2	Tambour	35 Ni Cr 6		əno	51	2	Roue dentée intérieure	E295	48 dents, m=3
2	Flasque	S 250		В	52	2	Flasque	S185	
8	Vis CHc M670	Classe 6-8			53	2	Rondelle de réglage		Cale pelable
9	Poussoir	C70			72	2	Garniture		Rulon Strip ep.15; I=33; L=600
9	Ressort de rappel		Dm=5, d=0,3		55	2	Clavette 12x8; 35	C35	
2	Cloche	Fonte grise	Rm = 20 MPa		29	∞	Vis HM10 30	Classe 6-8	
8	Vis H M8 18	Classe 6-8			57	8	Rondelle WZ 10		
					82	3	Garniture	Néoprène	