SPECTRUM ANALYZER의 응용분야 및 실제

1.

2. RF

3. (Broadcast Signal Spectrum)

4. (Distortion)

4-1.

4-2. (IMD)

5.

5-1. (Amplitude Modulation)

5-1-1.

5-1-2. Zero Span

5-2. (Frequency Modulation)

5-2-1

5-2-2 Bessel Null

6.

6-1

6-2. (Pulsed Carrier Waveform)

7.

7-1. C/N

7-2.

8. Tracking Generator

8-1.

8-2.

```
2
   Spectrum Analyzer
   Digital Storage
                       . Storage
                                            Marker
                                                         가
                                  RBW
                                                          RBW
            RBW
                                                                        RBW
                                                                가
                                                                        RBW
              가
                            10dB
                                                                 가
                          (Log Amp)
     Marker
      Marker
             (Center Measure)
                                               가 Spectrum Analyzer
                                가
               Spectrum Analyzer
                                         가
                                                                (+20dBm
                           (MAX Span)
                                                                       가
     +30dBm)
                                                   Analyzer
                                                       )
                                       가
      Spectrum Analyzer
2. RF
                                                       가
    Spectrum Analyzer
        3-1>
                                                       Spectrum
                                                       Analyzer
                                    그림 3-1
                        (+20dBm
                                    +30dBm)
 1)
                                                          (MAX span)
```

)

on

1.

- 2) RF RF Spectrum Analyzer 가 가 3) 0dBm 4) Analyzer Span , 가 RBW 5) Analyzer Span RBW (Auto Mode RBW가 가 (Center Measure) 6) 가 가 가 가
- Analyzer가 , 1Hz < 3-2> "C" .

3. (Broadcast Signal Spectrum)

Spectrum Analyzer TV

. < 3-3> TV .

TV 1) Analyzer 2MHz/Div, 2) Analyzer dΒμV 10dB/Div 가 3) Analyzer 가 4) TV 5) (Center Measure) 가 $(dB\mu V/m)$ (dBμV) Factor 6) Factor μ۷ μV / m < 3-4> C 192.250003MHz C -40,1 dBuV 10dB/DIV 192,250MHz -30 dBuV 20kHz/DIV 300kHz RBW TV방송신호의 스펙트럼 4. (Distortion) 가 . 가 2가 (Harmonic distortion) (Inter-modulation Distortion) 가 4-1. 가 1) Audio 5kHz) 2) Spectrum Analyzer 3) 4) Spectrum Analyzer 가 가 가

5)

고조파 찌그러짐 스펙트럼

그림 3-5

가 (Side Band) dB

, RMS

, RMS 100 THD(%) $THD(\%) = \frac{\sqrt{Vf_2^{-2} + Vf_3^{-2} + Vf_4^{-2} ...}}{Vf} \times 100$

, Vf : (rms), Vf_{2,3...} : (rms)

4-2. (IMD) (Inter-modulation Distortion)

. 2

(padded) , 가

< 3-6> 3 Tone Generator Spectrum Analyzer 6/ 10 TV IMD 1) 3 Tone Generator 6 가 2) 3 Tone Fv: -4dB, Fa: -10dB, Fsc: -16dB) 3) < 3-7>가 920kHz ±920kHz 가 가 4) 5) Maker Mode ±920kHz FREQ 195MHz Fv ഥഷവം TV CHID 193,25MHz 상호변조 짜그러짐의 주파수 염역 그림 3-7 5. (Modulation) (modulating) 가? (Amplitude Modulation) , (Frequency Modulation) 5-1. (Amplitude Modulation) (carrier) 가 (Modulating signal) (Modulation Envelope) (Modulation Factor) peak-peak peak-peak 1/2 . 100% 2 가 , peak-peak peak-peak "0" Spectrum Analyzer

5-1-1.

< 3-8> . 3

진폭변조의 주파수 영역 표시

그림 3-8

() . (modulation sideband) Fc+Fm, Fc-Fm < 3-8> 7 100MHz , 1

$$\begin{split} m(\%) &= \frac{2Esb}{Ec} \times 100 \\ m(\%) &= \frac{2}{10^{-(2dB/20)}} \times 100 \\ \text{, Esb}: &, \text{Ec}: &, \text{m}: \end{split}$$

1) Maker , (Center Measure) 가 .

2) Maker Mode .

10kHz

3)

가 가 .

4) 가 'D" 가 .

5) < 3-1> .

Modulation	Sidebnd amplitude relative to carrier		Modulation	Sidebnd amplitude relative to carrier	
index(%)	(%)	dB	index(%)	(%)	dB
100	50.0	-6.02	30	15.0	-16.48
95	47.5	-6.47	25	12.5	-18.06
90	45.0	-6.94	20	10.0	-20.00
85	42.5	-7.43	15	7.5	-22.50
80	40.0	-7.96	10	5.0	-26.02
75	37.5	-8.52	9	4.5	-26.94
70	35.0	-9.12	8	4.0	-27.96
65	32.5	-9.76	7	3.5	-29.12
60	30.0	-10.46	6	3.0	-30.46
55	27.5	-11.21	5	2.5	-32.04
50	25.0	-12.04	4	2.0	-33.98
45	22.5	-12.96	3	1.5	-36.48
40	20.0	-13.98	2	1.0	-40.00
35	17.5	-15.14	1	0.5	-46.02

丑 3-1

5-1-2. Zero Span

(Zero Span) .

1) Maker

.

2) Zero Span Mode . < 3-9>

3) Analyzer ("Linear") (Reference Level)

.

4) "Single Line" Maker (pk-pk) Vmax()

.

5) Maker Vmin() .

6)

$$m(\%) = \frac{Emax - Emin}{Emax + Emin} \times 100 = \frac{1 - Emin/Emax}{1 + Emin/Emax} \times 100$$

Zero Span Mode AM

5-2. (Frequency Modulation) 가 가 가 (Frequency Deviation, F) FΜ (Bessel functions) Μ 가 M = f / fm, M , fm 5-2-1 가 MAX 가 HOLD Digital Storage < 3-10> **RBW** BW = 2(f + fm), BW: , f: , fm:

Tektronix 2712 Spectrum Analyzer . < 3-11>

2712의 주파수편이 표시

그림 3-11

5-2-2 Bessel Null

가 BESSEL NULL

. BESSEL NULL

FM 가 "0"

.

		1	2	3		
(NULL NO)	J ₀ (M)	J ₁ (M)	J ₂ (M)	J ₃ (M)		
1	2.4048	3.8317	5.1356	6.3802		
2	5.5201	7.0156	8.4172	9.7610		
3	8.6531	10.1735	11.6198	13.0152		
4	11.7915	13.3237	14.7960	16.2235		
M= f / fm M , f , fm						

FM Jo(M) Jn(M) . n 가 FM M , < 3-2> 가 ±75kHz가 100% 1) NULL < 3-2> 75kHz . 2 NULL 31.188kHz NULL 2) 31kHz 13.586kHz NULL 75kHz ÷ 5.5201 = 13.586kHz. 3) 13.586kHz . Bessel null 4) "O "(0) Spectrum Analyzer RF , 가 100% 5) (Deviation meter)가 가 . Analyzer가 NULL 가 가 . 6) NULL < 3-12> 80MHz fm(13,586kHz) 0dBm 20kHz/Divi 3kHz_RES Carrier Null Bessel Carrier Null 그림 3-12 NULL-CARRIER 가 100% 100% . Bessel null 100% 2 NULL 가 6.793kHz(13.586kHz) 50% (Squre Wave Spectrum) 6. 6-1.

Spectrum Analyzer 50kHz

500kHz , Span 50kHz/Div 1) Analyzer , 50kHz () 2) Analyzer 3) 10dBm(+57dBmV) 가 Analyzer 가 . , 50kHz 가 가 < 3-13> Analyzer (50kHz) (Fundamental) 3 , 5 , 7 (Duty Cycle) 50%가 (Distortion) 500kHz ATTN ~400B 10 dBm 50kHz/DIV 3kHz ||RRW VF OFF 10ye/DIV 100kHz 구형파의 스폑트럼 그림 3-13 6-2. (Pulsed Carrier Waveform) (tpw) (fc) (fr) 3-14>

펄스반송파의 주파수 염역

Spectrum Analyzer (GRASS) dBm/Hz Watt/Hz 1Hz 가 Noise(dBm, 1Hz) = $10 \log \left[\frac{No}{(Zo \times 1m W)} \right]$ $(volts^2/Hz)$, Zo = No = 가 가 1Hz Noise(dBm) = $10\log[BW_N \frac{No}{(Zo \times 0.001)}]$ dBm(1Hz) 10log(BW_N) 가 . 가 가 $K_{dB} = 10log(\frac{BW2}{BW1})$ BW_2 BW_1 BW_1 K_{dB} (AVG) Spectrum Analyzer **RBW** 가 3dB 15% 20% Spectrum Analyzer 2.5dB(LIN 1.06dB) 가 Analyzer 3dB Analyzer

< 3-3>

7.

(Noise Measurements)

(dB)	()	(dB)	()
20 dB	0.04 dB	6 dB	1.26 dB
15 dB	0.14 dB	5 dB	1.65 dB
10 dB	0.46 dB	4 dB	2.20 dB
9 dB	0.58 dB	3 dB	3.02 dB
8 dB	0.75 dB	2 dB	4.33 dB
7 dB	0.97 dB	1 dB	6.87 dB

丑 3-3

Spectrum Analyzer

7-1. C/N

271X Spectrum Analyzer TV CH3 C/N

TV 1) Analyzer

Analyzer

Analyzer RF 가 0 (baseline)

가

(Setup Table) 2) (APPL Menu) 4.0MHz C/N

가 3)

2712 MIN/MAX (Acquire mode) 3-15>

C/N , Analyzer

> 61,250MHz -20 dBm 20kHz/DIV 300kHz RBW C/N 750B 100'B/DIV

> > TV방송신호의 C/N비

RF , (Oscillators)

가

Vo zero-to-peak

fo

$$v(t) = [Vo + a(t)]\sin[2\pi fot + \phi(t)]$$

$$a(t) = (t) = (t)$$

< 3-16>

Spectrum Analyzer

RF 점현파의 위상잡음 스펙트럼

그림 3-16

8. Tracking Generator

8-1.

Tracking Generator

Spectrum Analyzer

. Tracking Generator Spectrum Analyzer

(Couplers)

X-tal Q

< 3-17> Tracking Generator

Spectrum Analyzer

Tracking Generator Spectrum Analyzer가 가 .

. Analyzer가 가

"B-SAVE A" "B, C MINUS A"

1) Tracking Generator Spectrum Analyzer
A "

2) Tracking Generator Analyzer

Analyzer

"Tracking Generator + + Spectrum Analyzer"

"B" "C" .

3) 'B,C-SAVE A"

. "D" off

< 3-18> TV 10

Band Pass Filter 그림 3-18

8-2. (VSWR)

가

(Standing Wave Ratio)

가, 가

가 . (return loss)

Spectrum Analyzer, (bridge), Tracking Generator

Bridge

Tracking Generator Bridge

가 Bridge

가 Bridge

Spectrum Analyzer

Tracking Generator가 Analyzer Analyzer

< 3-19> SWR

1) , () () 7t , 7t

2) () (Reference) Dummy-load(50) -30~-60 dBm .

3) Reference Dummy-load

< 3-20> 35MHz 235MHz 135MHz 38dB

2712ºI ANT Sweep