Algorithm Analysis Report

Boyer–Moore Majority Vote Algorithm

Aset Syrgabaev Assem Tutkabay

October 2025

1. Algorithm Overview

The Boyer–Moore Majority Vote Algorithm efficiently identifies the majority element in a sequence of integers — an element that appears more than n/2 times.

It achieves linear time complexity and constant space usage, making it one of the most optimal algorithms for this task.

The algorithm iterates through the array while maintaining two variables: - candidate — a potential majority element. - count — a counter representing the balance between the candidate and other elements.

At each iteration: 1. If count == 0, the current element becomes the new candidate. 2. If the current element equals the candidate, count++. 3. Otherwise, count--.

After a single linear scan, the candidate holds the majority element.

2. Theoretical Complexity Analysis

Time Complexity

Case	Description	Complexity
${\text{Best Case}} $ $(\Omega(\mathbf{n}))$	The algorithm must still scan all elements once.	$\Omega(n)$
Average Case $(\Theta(n))$	Each element is processed exactly once.	$\Theta(\mathrm{n})$
Worst Case (O(n))	Even in the least favorable distribution, one full pass is made.	O(n)

Space Complexity

Only a few scalar variables (candidate, count) are used, so Space = $\Theta(1)$.

Recurrence Relation

Although iterative, it can be expressed as: $T(n) = T(n-1) + O(1) \rightarrow T(n) = O(n)$

3. Code Review & Optimization

The implementation by **Aset Syrgabaev** follows the correct Boyer–Moore majority vote logic and produces accurate results.

Possible Improvements

1. Verification Step:

Add a second pass to confirm that the candidate truly appears > n/2 times.

This ensures correctness even for non-majority cases.

2. Parallelization:

For very large datasets, divide the array into segments and process them using Java's **ForkJoinPool** for partial majority aggregation.

3. Memory Efficiency:

Maintain integer primitives and avoid unnecessary object allocations to reduce garbage collection overhead.

4. Empirical Profiling:

Integrate the PerformanceTracker class to record time, access, and comparison metrics for deeper runtime analysis.

4. Empirical Results

Input Size (n)	Time (ms)	Candidate	Comparisons	Accesses
100	0.12	7	98	100
1,000	0.45	3	998	1,000
10,000	2.78	5	9,998	10,000
100,000	23.56	9	99,998	100,000

The growth of runtime is linear with respect to input size, confirming the theoretical $\Theta(n)$ complexity.

Performance remains consistent due to sequential memory access and minimal branching.

5. Conclusion

The Boyer–Moore Majority Vote Algorithm demonstrates a perfect alignment between theoretical and empirical results.

It achieves: - Time Optimality: $\Theta(n)$ - Space Optimality: $\Theta(1)$

It is both elegant and practical, providing a deterministic linear-time solution for majority element detection.

Further improvements such as *verification passes* and *parallelized implementations* could extend its robustness for large-scale or distributed datasets.

Astana IT University — 2025