

V	
Пусть $X(t), t∈T=[a,b]$ — случайный процесс.	
Установите соответствие между термином и формулой.	
Выберите верный ответ из выпадающего списка для каждого. Верны	м может быть не один ответ,
но указать нужно один.	
1. $f(x_{(1)}, x_{(2)},, x_{(N)}) = f(x_{(N)} x_{(N-1)}) f(x_{(N-1)} x_{(N-2)}) f(x_{(2)} x_{(1)}) f(x_{(1)})$	
Марковский процесс	~
2. $T=\{t_k\},\ k=1\div +\infty,\ X_1(\omega),\ X_2(\omega),\dots,\ X_n(\omega),\ $ если $\forall n>1$ выполняется: $f(x_n\mid x_{n-1},x_{n-2},\dots,x_1)\equiv f(x_n\mid x_{n-1}),$ $p_1^k=P\left(s_1^k\mid s_1^{k-1}\right)$	
Цепь Маркова	▽
3. $\lambda_{ij}(t) = \lim_{\Delta t \to +0} \frac{p_{ij}(t,t+\Delta t)}{\Delta t}$, $p'_k(t) = \sum_{i=1,i\neq k}^n \lambda_{ik}(t) p_i(t) - (\sum_{i=1,i\neq k}^n \lambda_{ik}(t) p_i(t))$ Марковский процесс с дискретными состояниями и непрерывным времене 4. $\forall t=t_0$ с.в. $X(t_0)$ является дискретной	
Марковский процесс с дискретными состояниями	▽ 1
5. $\lambda_{ij}(t) = \lim_{\Delta t o +0} \frac{p_{ij}(t,t+\Delta t)}{\Delta t}$ = λ_{ij} = const	
Однородный марковский процесс с дискретными состояниями	~
6. $f(x_{(1)}, x_{(2)},, x_{(N)})$ заданы для любых $N ≥ 1$ и $t_k ∈ T$, $k=1 ÷ N$, таких,	
что $t_1 < t_2 < < t_N$, при этом $f(x_{(N)} \mid x_{(N-1)},, x_{(1)}) = f(x_{(N)} \mid x_{(N-1)})$	
Марковский процесс	~
7. $p_{ij} = P(s_{j} s_{i})$ на любом шаге k	
Однородная цепь Маркова	~

10 ~	
Пусть $X(t,\omega)$, $t\in T=[a,b]$, $t_k\in T$, $k=1$	
÷	
N, N≥1 – нормальный случайный процесс, с математическим ожиданием $m_{\chi}(t)$ и к	ковариационной функцией
$K_X(\cdot,t_2),$ V_N – матрица ковариаций случайного процесса.	>
V_N — матрица ковариации случаиного процесса. 1. Тогда любой конечномерный закон распределения с.в. $X_N(\omega)$ является нормальным	1 🕶
2. Любой конечномерный закон распределения с.п. определяется его mx(t)	и Kx(t1,t2) 🗸
3. Тогда функция плотности вероятностей с.в. X _N (ω) определена, если det VN >0 4. Сормостись расправления F(x) — x x t — t) на имога плотности верхи det VN =	
4. Совместное распределение $F(x_1,,x_N,t_1,,t_N)$ не имеет плотности, если $det VN =$	0 🗸
Назад Далее	Завершить
Назад Далее	Завершить

Пусть X(t) – случайный процесс.

	Термин				Формула
	Дисперсия стационарного с.п. на интервале t \in $[0,+\infty]$	3	•	1	$S_x(w) = \frac{1}{\pi} \int_{-\infty}^{+\infty} K_x(\tau) cos(w\tau) d\tau, w \in (-\infty, +\infty)$
К К	Спектральное разложение стационарного с.п.	6	•		$S_x * (w) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} K_x(\tau) e^{-jwt} d\tau$
	Каноническое разложение корреляционной функции при t∈[0, I]	7	٠		<i>v</i> =∞
	Дисперсия стационарного с.п. при $t \in [0, 1]$	8	•		$D_x = \int_0^{+\infty} S_x(w) dw$
	Спектральная плотность стационарного с.п. в вещественной	1	٠	4	$K_x(\tau) = \frac{1}{2} \int_{-\infty}^{+\infty} S_x(w) cos(w\tau) dw$
d d k	форме Корреляционная функция			5	$K_x(au) = \int_{-\infty}^{+\infty} S_x^*(w) e^{jwt} dw$
	стационарного с.п. в вещественной форме	4	•		$X(t) = m_x(t) + \sum_{k=0}^{\infty} (\mathbf{A}_k cosw_k t + \mathbf{B}_k sinw_k t)$, где w _k
	Спектральная плотность стационарного с.п. в комплексной форме	2	•	6	$\sum_{k=0}^{\infty} (1_k COOR_k C + 1_k COOR_k C)$ – неслучайные частоты, A_k , B_k – случайные величины, $t \in [0,1]$
	Корреляционная функция стационарного с.п. в комплексной форме	5	•	7	$\begin{split} K_x(\tau) &= K_x(t_2 - t_1) = \\ &= \sum_{k=0}^{\infty} (D_k cosw_k t_1 cosw_k t_2 + D_k sinw_k t_1 sinw_k t_2) \end{split}$
				8	$D_x = \sum_{k=1}^{\infty} D_k$

Пусть $P^{(k)}$ – матрица переходных вероятностей системы S в состояние s_i из состоянии s_i на любом k-м шаге, а вектор вероятностей p(k) состояний S после k шагов, k ≥1, вычисляется по формуле:

a)
$$p(k) = (P^k)^T p(0)$$

a)
$$p(k) = (P^k)^T p(0)$$

b) $p(k) = (P^{(1)}P^{(2)}...P^{(k)})^T p(0)$

c)
$$p(k) = (P^{(k)})^T p(k-1)$$

d)
$$p(k) = 1 - p(k-1)$$

Укажите, к какому классу относится случайный процесс:

а) однородная марковская цепь

- b) марковская цепь
- с) марковская цепь
- d) не является марковской цепью >

20 ~

Укажите, к какому виду относятся следующие операторы:

1) $y(t)=a_2\frac{\partial^2 x(t)}{\partial t^2}+a_1\frac{\mathrm{d}x(t)}{\mathrm{d}t}+a_0x(t)$ (оператор дифференциального уравнения второго порядка с

постоянными коэффициентами)

линейный однородный 🗸

2)
$$y(t) = a(t) \int_0^t x(\tau)d\tau + \varphi(t)$$

линейный неоднородный ~