Math Revision

Funções Trigonométricas

Trigonometria

- trigōnon "triângulo" + metron "medida".
- Etimologicamente: medida de triângulos, particulamente retângulos.
- Também estuda as relações entre lados e os ângulos, e funções trigonométricas.
- Aplicações em medição de terrenos e sobre a superfície da terra.
- Na área científica, impossível separar a trigonometria da astronomia:
 - prever eclipses;
 - medições astronômicas;
 - calendários;
 - navegações;

Buscando um início... 3.141592653

Diâmetro = 1

O perímetro da circunferência é 3,1416... vezes maior que o diâmetro, sendo a razão perímetro/diâmetro o (pi)

Buscando um início... 3.141592653

- **Arquimedes:** polígonos inscritos e circunscritos de 96 lados PI está entre 223/71 e 22/7
- **Ptolomeu**, III dc: 720 lados em um raio de 60 unidades PI está entre 3,1416
- **Liu Hui**: 3,14159
- Matemático hindu **Aryabhatta:**

"Some-se 4 a 100, multiplique-se por 8 e some-se 62.000. O resultado é aproximadamente uma circunferência de diâmetro 20.000".

Séries infinitas...

3.14_{159263}

• François Viète
$$\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \cdot \dots = \frac{2}{\pi}$$

$$\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdot \dots = \frac{\pi}{2}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}.$$

Johann Heinrich Lambert

$$\frac{4}{\pi} = 1 + \frac{1^2}{3 + \frac{2^2}{5 + \frac{2^2}{7 + \frac{4^2}{9 + \frac{5^2}{11 + \frac{6^2}{9 + \frac{1}{9}}}}}}}$$

Conceitos preliminares:

• Graus

- Corresponde a 1/360 da circunferência

Radianos:

relação entre o ângulo (de um círculo) e comprimento do arco.

<math.h> do C++ sempre usa radianos

COS

Compute cosine

Returns the cosine of an angle of x radians.

Medida do arco em Radianos:

• Conversão **graus** ↔ **radianos**

$$Radians = \frac{Degrees * \pi}{180}$$

$$Degrees = \frac{Radians *180}{\pi}$$

Trigonometric	C++ Function
cosine	cos
sine	sin
tangent	tan

Medida do arco em Radianos:

Sendo / = Comprimento do arco ÂB R = Raio da Circunferência

Valores Notáveis

Алсо	Graus	Redianos
	360*	2π ≅ 6,28rad
\bigcirc	270°	$\frac{3\pi}{2} \cong 4.7 \text{ trad}$
	180°	π _≅ 3,14rad
	90.	$\frac{\pi}{2} \cong 157 \text{red}$

R = 10cm	$\mathbf{k} = \frac{\mathbf{L}}{\mathbf{R}}$	R = 8cm	$\mathbf{k} = \frac{\mathbf{L}}{\mathbf{R}}$	R = 5cm	$\mathbf{k} = \frac{\mathbf{L}}{\mathbf{R}}$
L = 62,8cm	≈6,28	L = 50,4 cm	≈6,28	L = 31,4cm	≈6,28

Relação de raio e triângulo

• Coseno, Seno e Tangente

$$cosine(\phi) = \frac{AdjacentSide}{Hypotenuse}$$

$$sine(\phi) = \frac{OppositeSi\ de}{Hypotenuse}$$

$$\mathrm{tangent}(\ \phi) = \frac{\sin(\ \phi)}{\cos(\phi)} = \frac{OppositeSi\ de}{AdjacentSi\ de}$$

Ângulos Notáveis

Razão dos valores de seno e cosseno...

Ângulos Notáveis

Simetrias OX, OY e origem

Relações de ângulos

• Relações Gerais

$$sine^2(\phi) + cosine^2(\phi) = 1$$

$$sine(2\phi) = 2sine(\phi) * cosine(\phi)$$

$$cosine(2\phi) = cosine^2(\phi) - sine^2(\phi)$$

tangent(
$$2\phi$$
) = $\frac{2 \text{ tangent}(\phi)}{1 - \text{ tangent}^2(\phi)}$

• Ângulos Notáveis

Ângulos	0°	30°	45°	60°	90°
seno	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
cosseno	1	$\sqrt{3}/2$	$\frac{\sqrt{2}}{2}$	1/2	0
tangente	0	$\sqrt{3}/3$	1	$\sqrt{3}$	∞

Outras relações fundamentais gerais

 $sen^2x + cos^2x = 1$

N

$$sen^2x = 1 - cos^2x$$

$$\cos^2 x = 1 - \sin^2 x$$

sec x =
$$\frac{1}{\cos x}$$

$$sen^2x = 1 + tg^2x$$

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\tan x}$$

cossec x =
$$\frac{1}{\text{senx}}$$

$$cossec^2x = 1 + cotg^2x$$

Relações com a <math.h>

• Inversas de Coseno, Seno e Tangente

$$\begin{aligned} &\cos \operatorname{ine}(\ \phi) = \frac{AdjacentSi\ de}{Hypotenuse} \iff & \cos \operatorname{ine}(\ \alpha) = \frac{OppositeSi\ de}{Hypotenuse} \Leftrightarrow \\ &\phi = \operatorname{cosine}^{-1}\!\left(\frac{AdjacentSi\ de}{CircleRadi\ us}\right) & \alpha = \operatorname{cosine}^{-1}\!\left(\frac{OppositeSi\ de}{CircleRadi\ us}\right) \end{aligned}$$

Trigonometric	C++ Function	C++ Function Inversed
cosine	cos	acos
sine	sin	asin
tangent	tan	atan/atan2

Gráficos de Funções Trigonométricas

Seno

Gráficos de Funções Trigonométricas

Coseno

Gráficos de Funções Trigonométricas

• Tangente e Cotangente

Gráficos de Funções Trigonométricas

• Secante e Cossecante

Introdução de parâmetros nas funções trigonométricas

A função geral tem o formato: $y = a \operatorname{sen}(bx + c) + d$

Gráficos de $y = \operatorname{sen} x$ e y = 2 ' $\operatorname{sen} x$ (a = 2; b = c = d = 0)

Introdução de parâmetros nas funções trigonométricas

Introdução de parâmetros nas funções trigonométricas

Introdução de parâmetros nas funções trigonométricas

