Project 3

12-04-2024

Group 5: Neha Karna, Prafulla Shrestha, Aidan Stewart, Josh Lefdal, Shivam Bhardwaj

Predictive Modeling and Vole Species Classification

- Predictive Modeling
 - Predictive modeling is a statistical technique that combines explanatory variables to predict a response variable (IBM, 2024a).
 - Predictive analytics uses historical data to uncover patterns and trends for future predictions (IBM, 2024a).
- Background on Vole Species:
 - Two vole species, Microtus subterraneus and Microtus multiplex, are distinct based on differences in chromosomal counts (Airoldi et al., 1995).
 - Both species have two chromosomal types, but hybrids have not been identified (Airoldi et al., 1995).
- Objective:
 - Use morphometric data (skull length, height, width) from 288 vole specimens to classify species.
 - Chromosomal data:
 - 89 specimens: Definitively classified as subterraneus or multiplex (training set).
 - 199 specimens: Chromosomal data unavailable (test set).
- Goal:
 - Develop 7 predictive models using the classified 89 specimens and apply the model to classify the remaining 199 unclassified specimens into one of the two species.

Generalized Linear Model (GLM): Logistic Regression

- Logistic Regression
 - A type of classification model derived from Generalized Linear Models (GLMs).
 - Used to predict binary outcomes (e.g., subterraneus vs. multiplex).
 - In this study, logistic regression predicts vole species based on skull measurements (length, height, width).
- Leave-One-Out Cross Validation (LOOCV)
 - Each data point is used once as test data and the remaining n-1 observation as training data
 - The model is trained and tested n times, each time excluding a different observation
 - The MSE (test error) is calculated for each iteration and LOOCV test MSE is the average of n test error

Data Manipulation and Cleaning

- Dataset measurements include **skull length**, **height**, **and width** and consists of 288 vole specimens:
 - 89 known specimens: Classified as subterraneus or multiplex.
 - 199 unknown specimens: Classification unavailable.
- Data Preparation:
 - Updated the column names of the **known** and **unknown** datasets as "index", "chromosomal_id", "skull_length", "skull_height", "skull_width".
 - Combined subterraneus and multiplex data into a single dataset as known dataset.
 - Removed rows with missing values to ensure a complete dataset for model training.
 - Response variable was created where 1 represents subterraneus and 0 represents multiplex
 - For **known** dataset, rows with Outliers, beyond $1.5 \times IQR$, were removed
 - For unknown dataset, replaced extreme outlier with adjusted mean values

Exploratory Data Analysis (EDA)

- A process used to: Investigate and summarize datasets. Identify errors, patterns, outliers, and relationships. Inform analysis before making assumptions (IBM, 2024b).
- Observation counts of known dataset M. multiplex: 44 and M. subterraneus: 46 (note: 2 rows had missing values, reducing usable observations to 90).
- Column renaming Simplified variable names:
 - skull_height
 - skull_length
 - skull width
- Data Visualization:
 - Created boxplot and histogram
 - Descriptive Summary
 - Pair plot

List of outliers removed from known dataset

index	Chromosomal ID	Measurement	Outlier value	Mean value without outliers
2	subterraneus	skull_width	42	427.60
13	subterraneus	skull_length	21899	2232.81
33	subterraneus	skull_height	7722	758.07
45	subterraneus	skull_length	1965	2232.81
54	multiplex	skull_height	84	804.25
69	multiplex	skull_length	2600	2374.30
69	multiplex	skull_height	910	804.25
72	multiplex	skull_length	2590	2374.30
86	multiplex	skull_length	234	2374.30

List of extreme outliers (typos) replaced in unknown dataset

Measurement	Outlier value	Replaced with
		mean value
skull_length	23555	2600
skull_width	5000	500
Skull_width	40	400
	skull_length skull_width	skull_length 23555 skull_width 5000

Descriptive Summary after removing outliers

	Kn	own		T.T1	
Chromosomal type	multiplex	subterraneus	Overall	Unknown	
Number	40	42	82	199	
minimum skull length	2145 2042		2042	1908	
maximum skull length	2535 2365		2355	2605	
mean skull length 2374.30		2232.81	2301.83	2308.45 (n=159)	
minimum skull height	760	715	715	700	
maximum skull height	880	805	880	904	
mean skull height	804.2500	758.0714	780.60	795.08 (n=162)	
minimum skull width	num skull width 416		395	375	
maximum skull width	kull width 521		521	545	
mean skull width	465.4000 427.5952		446.04	453.18 (n=168)	

Boxplot for known dataset

Boxplot for unknown dataset

Modeling

Model	Predictor Variables			
Model_LWH	skull_length, skull_height, skull_width			
Model_LH	skull_length, skull_height			
Model_HW	skull_height, skull_width			
Model_LW	skull_length, skull_width			
Model_L	skull_length			
Model_H	skull_height			
Model_W	skull_width			

Model Assessment

- Akaike Information Criterion (AIC): The AIC is the log likelihood adjusted for the number of coefficients and is used to decide input variables for the best fitting model (Zumel and Mount, 2020). The log-likelihood increases with the number of variables. The model with lowest AIC score is best fit.
- LOOCV MSE: Mean Squared Error (MSE) is the average of the squared differences between the predicted and actual value. In LOOCV, the MSE is averaged over n iteration, where each data point is used once as the test data. When predicted responses are very close to the true response, the MSE would be small. The best-fit model would have the smallest LOOCV MSE (James et al., 2021).

Results: Model summary

Table: Summary of Model's coefficients for different skull measurements (length, height, and width)

• Model LWH and Model LW are not significant (p-value more than 0.05 for the length variable)

Model	Coefficients Estimates (Pr (> z))						
	Intercept	Length	Height	Width			
LWH	70.27	-0.0012	-0.0450	-0.0728			
	(2.52e-05 ***)	(0.88476)	(0.00741 **)	(0.02542 *)			
LH	77.54	-0.0175	-0.0476	-			
	(2.01e-05 ***)	(0.00474 **)	(0.00273 **)				
HW	69.46	-	-0.0454	-0.0764			
	(7.68e-06 ***)		(0.006274 **)	(0.000437 ***)			
$\mathbf{L}\mathbf{W}$	46.88	-0.0054	-	-0.0773			
	(2.34e-05 ***)	(0.45741)		(0.00777 **)			
L	53.22	-0.0230	-	-			
	(1.74e-05 ***)	(1.73e-05 ***)					
H	52.48	-	-0.0673	-			
	(2.94e-06 ***)		(3.03e-06 ***)				
W	42.31	-	-	-0.0948			
	(6.83e-07 ***)			(7.12e-07 ***)			

Significance (p-values)
***0.001, **0.01 & *0.05

Results: Model summary

Since lower AIC values represent better models, **Model HW** provides the best performance (also evident by the least MSE value of 0.10199 and highest model accuracy of 87.8%); hence is the preferred model.

Model	Null	Residual	AIC	MSE	Accuracy
	deviance	deviance			
LWH	112.179	49.868	57.868	0.104292451851834	0.878048780487805
LH	112.179	55.596	61.596	0.119165610534167	0.817073170731707
HW	112.18	49.89	55.89	0.101990727460953	0.878048780487805
LW	112.179	58.931	64.931	0.116627593509013	0.841463414634146
L	112.179	67.413	71.413	0.138905355257529	0.804878048780488
H	112.179	67.259	71.259	0.148056282731839	0.768292682926829
W	112.179	59.512	63.512	0.112939220562617	0.841463414634146

Result

Confusion Matrix (Known)

The diagonals (shaded) represent correct predictions, and off-diagonals (white) represent incorrect predictions. Model_LWH and Model_HW show relatively higher numbers of correct predictions.

Actual Predicted	Multiplex (0)	Subterraneus (1)
	Model_LWH	
Multiplex (0)	35	5
Subterraneus (1)	5	37
	Model_LH	
Multiplex (0)	34	9
Subterraneus (1)	6	33
	Model_HW	
Multiplex (0)	35	5
Subterraneus (1)	5	37
	Model_LW	
Multiplex (0)	34	7
Subterraneus (1)	6	35
	Model_L	
Multiplex (0)	31	7
Subterraneus (1)	9	35
-	Model_H	×
Multiplex (0)	30	9
Subterraneus (1)	10	33
	Model_W	
Multiplex (0)	34	7
Subterraneus (1)	6	35

Predictions

- Prediction was made for the unknown dataset using seven subsets.
- Depending on the model being used, a subset of the data is created by removing any rows with missing values. This means that if any of the predictor variables (such as skull measurements) are missing for an observation, that entire observation is discarded.
- For example, in the LWH model, which uses three predictor variables, only the rows where all three variables have valid values will be included. If even one value is missing for any of the predictor variables, the entire row is excluded from the dataset.

	Model_L WH	Model_L H	Model_H W	Model_LW	Model_L	Model_H	Model_W
subterraneus	45	59	55	62	74	69	72
multiplex	72	76	80	75	85	93	96
Total predicted	117	135	135	137	159	162	168

The final prediction was made based on the frequency of predicted chromosomal IDs by all seven models. Each unknown specimen was assigned a chromosomal type on the basis of how frequently they were predicted to be a certain class on all of our seven models. Using an odd number of models (seven) allowed us to identify the highest frequency, a process that might not have been feasible with an even number of models.

Final Predictions

Comment: Out of 199 total unknown specimens, 117 were predicted to be multiplex and remaining 82 were predicted to be subterraneus.

Recommendation

- Based on our analysis, we recommend the use of the Model HW (Height and Width) for classification of vole species. This model demonstrated the lowest AIC and MSE values, indicating better performance compared to other models.
- While the overall accuracy of all models was above 75%, Model HW stands out as the most efficient for predictive classification given the dataset and its variables.
- If skull height and width are readily available, Model HW is the most efficient choice for prediction.

References

- Airoldi, J., Flury, B., & Salvioni, M. (1995). Discrimination between two species of Microtus using both classified and unclassified observations. Journal of Theoretical Biology, 177(3), 247-262.
- Bobbitt, Z. (2022, February 23). How to Interpret glm Output in R (With Example). Statology. https://www.statology.org/interpret-glm-output-in-r/
- Caughlin, D. E. (n.d.). Chapter 49 applying K-fold cross-validation to logistic regression. R for HR: An Introduction to Human Resource Analytics Using R. https://rforhr.com/kfold.html
- Confusion matrix in machine learning. (2024, July 8). GeeksforGeeks. https://www.geeksforgeeks.org/confusion-matrix-machine-learning/
- Everitt, B. S., & Hothorn, I. (2010). A handbook of statistical analyses using R (SECOND) [Book]. CRC
 Press. https://www.ehu.eus/ccwintco/uploads/9/93/A Handbook of Statistical Analyses Using R Second Edition.pdf
- IBM. (2024, November 1). Predictive Analytics. *IBM*. https://www.ibm.com/topics/predictive-analytics?utm_content=SRCWW&p1=Search&p4=43700075153304567&p5=p&p9=58700008227853819&gclid=EAIaIQobChMIzefRt-LUiQMVFk7 AR01LDiEEAAYASAAEgLVRPD BwE&gclsrc=aw.ds
- IBM. (2024b, November 7). Exploratory Data Analysis. IBM. https://www.ibm.com/topics/exploratory-data-analysis
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning: with Applications in R. https://link.springer.com/content/pdf/10.1007/978-1-0716-1418-1.pdf
- Lecture Notes and Resources (STAT 541, STAT 600, STAT 601)
- Zumel, N., & Mount, J. (2019). Practical Data Science with R, Second Edition. Manning.