Липецкий Государственный Технический Университет Факультет автоматизации и информатики

Кафедра автоматизированных систем управления

Лабораторная работа №3 по информатике:

" Измерение информации"

Выполнил: студент гр. АС-21-1

Станиславчук С. М.

"18" сентября 2021г.

Проверил: Доцент Харитоненко А. А.

" " 2021

2. Краткая теория

Если события равновероятны, то количество информации (I) определяется по формуле Р.Хартли:

$$2^{i} = N$$

где N – количество равновероятных событий.

3. Ход работы

Вариант 4

1.

На следующей неделе обещают хорошую погоду В пятницу в школе проводится дискотека

2.

Важная	Полезная	Безразличная	Вредная
Завтра не будет в	Занятия по	Завтра будет	После 3 урока
школе воды	информатике	интеллектуальная	нужно выключать
	переносятся на	игра среди	свет в кабинетах
	следующую	старших классов	
	неделю		
Номер телефона		ЭВМ появились в	Термин
скорой помощи -		60-70e годы XX	"Кибернетика" на
01		века	греческом языке
			означает
			"искусство
			управления"
		Юрий Гагарин -	
		космонавт	

3. Либо выходит, либо не выходит, то есть N=2

$$2 = 2^i, i = 1$$

$$i=\underline{\mathbf{4}}$$

5. Мог загореться либо красный либо зеленый, т. е N=2,

$$2 = 2^i, i = 1$$

6. Загорится желтый. N=1.

$$1 = 2^i, i = 0$$

$$i = 3$$

8.
$$16 = 2^4$$
, $i = 4$

9.
$$16 = 2^4$$
, $i = 4$

$$32 = 2^5, i = 5$$

11.
$$N = 2^i$$

$$i = 4, N = 16$$

12.
$$i = 1$$

$$N=2^{\textbf{`}}i=2^{\textbf{`}}1=\underline{2}$$

$$N = 2^I$$

$$N = 8$$

$$N = 2^I$$

$$N = 8$$

15.
$$N = 3$$

$$i = log_2 3$$

16.
$$I = N * i = 27 * 8 = \underline{216}$$

17. N = 30 или 31, а I =
$$log_2 30$$
 (или 31)

18.
$$N = 31 * 12 * 24 = 8928$$

$$i = log \ 2 \ (31 * 12 * 24) = \underline{13.12412131}$$

$$i = 9$$

$$4 * 20 = 80$$

$$4*100 = 400 - n$$
 символов

 Π : 64 = 2^6

$$6*60 = 360$$

Письмо племени Мульти содержит информации на 400-360 = 40 бит больше.

22. N = 2,5 * 1024 * 8 = 20480

i = 20480 / 4096 = 5 Битов

 $N = 2^5 = 32$ символа

23. $S = \frac{1}{4}$ мб = 256 кб = 262144 байт – всё сообщение

524288 / 262144 = 2 байт - каждый символ

2 * 8 = 16 бит

 $N = 2^16 = 65536$

24. 1 мбайт = 1024*1024*8 бит

 $2^4 = 16$ бит -1 символ

1/32 мбайта = 262144 бит

262144 / 4 = 65536 символов

25. 10240 / 8 = 1280

1280 / 1024 = 1.25 кбайта

26. 16 = 2^4

2432 * 4 = 9728

9728 / 8 = 1216 байт

1216/1024 = 1.1875

27. 256 = 2^8

70 * 35 = 2450

2450 * 5 = 12250

28. 8 * 20 * 25 = 4000

1500 / 4000 = 0.375 - 1 символ

Т. к. символ занимает 0.375 байт, одним байтом можно закодировать 2 символа. Байт состоит из 8 бит.

8/2 = 4 -символов в алфовите

29. 128 символов = 2^7 т.е. 7 бит на символ

Одна страница занимает = 5775 байт / 3 страниц = 1925 байт

Одна строка занимает = 1925 байт / 40 строк = 48.125 байт

Символов в строке = 48.125 * 8 бит / 7 бит = 55 символов

30. Одна страница значит занимает 1 / 64кб = 16 байт

$$2^x = 8$$

$$x = 3$$

31.
$$N = 2^1 = 2$$

$$N = 2^2 = 4$$

$$N = 2^3 = 8$$

$$N = 2^4 = 16$$

$$N = 2^5 = 32$$

$$5 = 2.5 * 2$$

Следовательно, символ первого текста содержит 5 битов, а второго - 2 бита, т.к. 5 = 2.5*2

Получаем, что в первом алфавите 32 символов, а во втором - 4.

32.
$$N = 2^3 = 8$$

$$3 = 2*1$$

Получаем, что в первом алфавите 2 символов, а во втором - 4.

33.
$$4 = 2^{i}$$

$$4 = 2^2$$

$$2 * 1,5 * 10^23 = 3 * 10^23$$
 бит

Итак, для кодирования любого двузначного числа [10; 99] достаточно 7 бит.

4.Вывод: научился основному подходу к измерению информации, когда события равновероятны, (по формуле Р.Хартли) и использованию его при решении задач.