Deckblatt für die Ausarbeitung zu Versuch 1

Teilnehmer	Gruppe Nr.:
Nils Helming	
Nabeel Elamaireh	A2
Lukas Piening	

Wahrheitstabellen für die Vorbereitung

NAND:

<i>X</i> 1	X0	$\overline{X1 \wedge X0}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR:

<i>X</i> 1	X0	$\overline{X1 \lor X0}$
0	0	1
0	1	0
1	0	0
1	1	0

XOR:

<i>X</i> 1	X0	<i>X</i> 1 ⊕ <i>X</i> 0
0	0	0
0	1	1
1	0	1
1	1	0

Vorbereitung

Disjunktive Normalform von XOR:

$$X_1 \oplus X_2 = m_1 \vee m_2 = (\overline{X_1} \wedge X_2) \vee (X_1 \wedge \overline{X_2})$$

Umformung in NAND und Inverter: (2. De Morgansches Gesetz)

$$X_1 \oplus X_2 = (\overline{X_1} \wedge X_2) \vee (X_1 \wedge \overline{X_2})$$
$$= \overline{\overline{\overline{X_1}} \wedge X_2} \wedge \overline{\overline{X_1} \wedge \overline{X_2}}$$

Aufgabe 1: Simulation von Logik-Gattern mit Logisim-Evolution

1a)

1b)

1c)

1d)

1e)

Disjunktive Normalform von NOR: $f(X_1, X_2) = \overline{X_1 \vee X_2} = m_1 = \overline{X_1} \wedge \overline{X_2}$

$$h(X_1, X_2) = f(X_1, X_2) = \overline{X_1} \wedge \overline{X_2}$$

Hier sind keine Änderungen nötig, da alle Eingänge schon negiert sind. Das \land wird in dem Schaltungsgatter in einer Reihenschaltung umgesetzt.

$$g(X_1,X_2)=\overline{f(X_1,X_2)}=\overline{\overline{X_1}\wedge\overline{X_2}}=X_1\vee X_2$$

Das V wird in dem Schaltungsgatter in einer Parallelschaltung umgesetzt.

1f)

1g)

Aufgabe 2: Normalformen einfacher Schaltungen

Minterme:	Maxterme:
$m_0 = \overline{X_2} \wedge \overline{X_1} \wedge \overline{X_0}$	$M_0 = \overline{X_2} \vee \overline{X_1} \vee \overline{X_0}$
$m_1 = \overline{X_2} \wedge \overline{X_1} \wedge X_0$	$M_1 = \overline{X_2} \vee \overline{X_1} \vee X_0$
$m_2 = \overline{X_2} \wedge X_1 \wedge \overline{X_0}$	$M_2 = \overline{X_2} \vee X_1 \vee \overline{X_0}$
$m_3 = \overline{X_2} \wedge X_1 \wedge X_0$	$M_3 = \overline{X_2} \vee X_1 \vee X_0$
$m_4 = X_2 \wedge \overline{X_1} \wedge \overline{X_0}$	$M_4 = X_2 \vee \overline{X_1} \vee \overline{X_0}$
$m_5 = X_2 \wedge \overline{X_1} \wedge X_0$	$M_5 = X_2 \vee \overline{X_1} \vee X_0$
$m_6 = X_2 \wedge X_1 \wedge \overline{X_0}$	$M_6 = X_2 \vee X_1 \vee \overline{X_0}$
$m_7 = X_2 \wedge X_1 \wedge X_0$	$M_7 = X_2 \vee X_1 \vee X_0$

Y_1 :

Konjunktive Normalform von Y_1 ist die Konjunktion (UND) der Maxterme, dessen Zeilen in der Wahrheitstabelle 0 darstellen

$$Y_1 = M_1 \wedge M_5 \wedge M_7 = (\overline{X_2} \vee \overline{X_1} \vee X_0) \wedge (X_2 \vee \overline{X_1} \vee X_0) \wedge (X_2 \vee X_1 \vee X_0)$$

Disjunktive Normalform von Y_1 ist die Disjunktion (ODER) der Minterme, dessen Zeilen in der Wahrheitstabelle 1 darstellen

$$Y_1 = m_0 \vee m_2 \vee m_3 \vee m_4 \vee m_6$$

= $(\overline{X_2} \wedge \overline{X_1} \wedge \overline{X_0}) \vee (\overline{X_2} \wedge X_1 \wedge \overline{X_0}) \vee (\overline{X_2} \wedge X_1 \wedge X_0) \vee (X_2 \wedge \overline{X_1} \wedge \overline{X_0}) \vee (X_2 \wedge X_1 \wedge \overline{X_0})$