3.3 The following questions all refer to the mean function

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 (3.26)

3.3.1. Suppose we fit (3.26) to data for which $x_1 = 2.2x_2$, with no error. For example, x_1 could be a weight in pounds, and x_2 the weight of the same object in kg. Describe the appearance of the added-variable plot for X_2 after X_1 .

Solution: Since X_2 is an exact linear function of X_1 , the residuals from the regression of X_2 on X_1 will all be zero, and so the plot will look like

In general, if X_1 and X_2 are highly correlated, the variability on the horizontal axis of an added-variable plot will be very small compared to the variability of the original variable. The coefficient for such a variable will be very poorly estimated.

3.3.2. Again referring to (3.26), suppose now that Y and X_1 are perfectly correlated, so $Y = 3X_1$, without any error. Describe the appearance of the added-variable plot for X_2 after X_1 .

Solution: Since $Y = 3X_1$ the residuals from the regression of Y on X_1 will all be zero, and so the plot will look like

In general, if Y and X_1 are highly correlated, the variability on the vertical axis of an added-variable plot will be very small compared to the variability of the original variable, and we will get an approximately null plot.

3.3.3. Under what conditions will the added-variable plot for X₂ after X₁ have exactly the same shape as the scatterplot of Y versus X₂?

Solution: If X_1 is uncorrelated with both X_2 and Y, then these two plots will be the same.

3.3.4. True or false: The vertical variation in an added-variable plot for X₂ after X₁ is always less than or equal to the vertical variation in a plot of Y versus X₂. Explain.

Solution: Since the vertical variable is the residuals from the regression of Y on X_1 , the vertical variation in the added-variable plot is never larger than the vertical variation in the plot of Y versus X_2 .

- 3.4 Suppose we have a regression in which we want to fit the mean function (3.1). Following the outline in Section 3.1, suppose that the two terms X_1 and X_2 have sample correlation zero. This means that, if x_{ij} , i = 1, ..., n and j = 1, 2 are the observed values of these two terms for the n cases in the data, $\sum_{i=1}^{n} (x_{i1} \bar{x}_1)(x_{i2} \bar{x}_2) = 0$.
- 3.4.1. Give the formula for the slope of the regression for Y on X₁, and for Y on X₂. Give the value of the slope of the regression for X₂ on X₁.

Solution: (1) $\hat{\beta}_1 = SX_1 Y/SX_1 X_1$; (2) $\hat{\beta}_2 = SX_2 Y/SX_2 X_2$; (3) $\hat{\beta}_3 = 0$.

3.4.2. Give formulas for the residuals for the regressions of Y on X₁ and for X₂ on X₁. The plot of these two sets of residuals corresponds to the added-variable plot in Figure 3.1d.

Solution: (1)
$$\hat{e}_{1i} = y_i - \bar{y} - \hat{\beta}_1(x_{i1} - \bar{x}_1)$$
; (2) $\hat{e}_{3i} = x_{i2} - \bar{x}_2$.

3.4.3. Compute the slope of the regression corresponding to the added-variable plot for the regression of Y on X₂ after X₁, and show that this slope is exactly the same as the slope for the simple regression of Y on X₂ ignoring X₁. Also find the intercept for the added variable plot.

Solution: Because $\sum \hat{e}_{3i} = 0$,

Slope =
$$\sum \hat{e}_{3i}\hat{e}_{1i}/\sum \hat{e}_{3i}^2$$

= $\sum (x_{i2} - \bar{x}_2)(y_i - \bar{y} - \hat{\beta}_1(x_{i1} - \bar{x}_1))/\sum (x_{i2} - \bar{x}_2)^2$
= $\left(SX_2Y - \hat{\beta}_1\sum_{i=1}^n(x_{i1} - \bar{x}_1)(x_{i2} - \bar{x}_2)\right)/SX_2X_2$
= SX_2Y/SX_2X_2
= $\hat{\beta}_2$

The estimated intercept is exactly zero, and the \mathbb{R}^2 from this regression is exactly the same as the \mathbb{R}^2 from the regression of Y on X_2 .

4.1 Fit the regression of Soma on AVE, LIN and QUAD as defined in Section 4.1 for the girls in the Berkeley Guidance Study data, and compare to the results in Section 4.1.

Solution:

> summary(m1) Mean function 1 from Table 4.1

Call:

lm(formula = Soma ~ WT2 + WT9 + WT18)

Coefficients:

	Estimate	Std. Error	t	value	Pr(> t)
(Intercept)	1.5921	0.6742		2.36	0.0212
WT2	-0.1156	0.0617		-1.87	0.0653
WT9	0.0562	0.0201		2.80	0.0068
WT18	0.0483	0.0106		4.56	2.3e-05

Residual standard error: 0.543 on 66 degrees of freedom

Multiple R-Squared: 0.566

F-statistic: 28.7 on 3 and 66 DF, p-value: 5.5e-12

> summary(m2) Mean function with transformed terms

Call:

lm(formula = Soma ~ AVE + LIN + QUAD)

Residuals:

```
Min 1Q Median 3Q Max -1.4030 -0.2608 -0.0318 0.3801 1.4409
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.5921	0.6742	2.36	0.0212
AVE	-0.0111	0.0519	-0.21	0.8321
LIN	-0.0820	0.0304	-2.70	0.0089
QUAD	-0.0300	0.0162	-1.85	0.0688

Residual standard error: 0.543 on 66 degrees of freedom Multiple R-Squared: 0.566, Adjusted R-squared: 0.546 F-statistic: 28.7 on 3 and 66 DF, p-value: 5.5e-12

All summary statistics are identical.
 All residuals are identical.
 Intercepts are the same. The mean function for the first model is

$$E(Soma|W) = \beta_0 + \beta_1 WT2 + \beta_2 WT9 + \beta_3 WT18$$

Substituting the definitions of AVE, LIN and QUAD, the mean function for the second model is

$$\begin{split} \mathrm{E}(Soma|W) &= \eta_0 + \eta_1 AVE + \eta_2 LIN + \eta_3 \, QUAD \\ &= \eta_0 + \eta_1 (WT2 + WT9 + WT18)/3 \\ &+ \eta_2 (WT2 - WT18) + \eta_3 (WT2 - 2WT9 + WT18) \\ &= \eta_0 + (\eta_1/3 + \eta_2 + \eta_3) \, WT2 + (\eta_1/3 - 2\eta_3) \, WT9 \\ &+ (\eta_1/3 - \eta_2 + \eta_3) \, WT18 \end{split}$$

which shows the relationships between the β s and the η s (for example, $\hat{\beta}_1 = \hat{\eta}_1/3 + \hat{\eta}_2 + \hat{\eta}_3$). The interpretation in the transformed scale may be a bit easier, as only the linear trend has a small p-value, so we might be willing to describe the change in Soma over time as increasing by the same amount each year.

4.2.1. Starting with (4.10), we can write

$$y_i = \mu_y + \rho_{xy} \frac{\sigma_y}{\sigma_x} (x_i - \mu_x) + \varepsilon_i$$

Ignoring the error term ε_i , solve this equation for x_i as a function of y_i and the parameters.

Solution:

$$x_i = \mu_x + \frac{1}{\rho_{xy}} \frac{\sigma_x}{\sigma_y} (y_i - \mu_y)$$

This is undefined if $\rho_{xy} = 0$.

4.2.2. Find the conditional distribution of $x_t|y_t$. Under what conditions is the equation you obtained in Problem 4.2.1, which is computed by inverting the regression of y on x, is the same as the regression of x on y?

Solution: Simply reverse the role of x and y in (4.10) to get

$$x_i|y_i \sim N\left(\mu_x + \rho_{xy}\frac{\sigma_x}{\sigma_y}(y_i - \mu_y), \sigma_y^2(1 - \rho_{xy}^2)\right)$$

These two are the same if and only if the correlation is equal to plus or minus one. In general there are two regressions. ■