

 $\begin{array}{l} \mathrm{Ma2201/CS2022} \\ \mathrm{Quiz} \ 1010 \end{array}$

Foundations of C.S.

Spring, 2021 Online Quiz

1. Consider the non-deterministic finite automaton with λ -rules:

a) Find the λ closure of each of the five states.

*

A	$\{A,B\}$
B	$\{B\}$
C	$\{C,D\}$
D	$\{D\}$
E	$\{E\}$

*

b) Use the λ -closure fill in the transition relation

	a	b
A		
B		
C		
D		
E		

• For each state q, and for each letter $\sigma \in \Sigma$, we want to compute $\lambda(\sigma(\lambda(q)))$:

	a	b
A	$\{C,D\}$	$\{C, D, E\}$
B	$\{C,D\}$	Ø
C	$\{A,B\}$	Ø
D	$\{A,B\}$	Ø
E	$\{E\}$	$\{D\}$

4

- c) Use parts a) and b) to construct an equivalent deterministic finite automaton. (The start state should be $\{A, B\}$). (You may specify your machine diagramatically or via a table, but the table must be in the correct format for a DFA).
- \clubsuit The table can be constructed directly from the transition relation. There will be six states connected to the start state, $\{A,B\}$, so the resulting deterministic machine has six

states, and three final states $\{D\}$, $\{C,D\}$, and $\{C,D,E\}$. For incomplete determinism you can leave of the state \emptyset .

	a	b
$\{A,B\}$	$\{C,D\}$	$\{C, D, E\}$
$\{C,D\}$	$\{A,B\}$	Ø
$\{C, D, E\}$	$\{A, B, E\}$	$\{D\}$
$\{A,B,E\}$	$\{C, D, E\}$	$\{C, D, E\}$
$\{D\}$	$\{A,B\}$	Ø
Ø	Ø	Ø

A diagram is

