INF1600 - TP4Programmation en assembleur et C++

Giovanni Beltrame giovanni.beltrame@polymtl.ca Carlo Pinciroli carlo.pinciroli@polymtl.ca

Polytechnique Montréal Année académique 2015/2016

Remise

Voici les détails concernant la remise de ce travail pratique :

- **Méthode**: sur Moodle (une seule remise par groupe).
- **Échéance :** avant 12h00; le 28 mars 2017 pour la section B1, le 4 avril 2017 pour la section B2;
- Format: un seul fichier zip, dont le nom sera <matricule1>-<matricule2>.zip. Exemple: 0123456-9876543.zip. L'archive doit contenir les fichiers circle_perimeter.s, circle_area.s, triangle_perimeter.s, triangle_area.s et triangle_height.s.
- Langue écrite : français.
- **Distribution**: les deux membres de l'équipe recevront la même note.

Barème

Contenu	Points du cours
circle_perimeter.s	1
circle_area.s	1
triangle_perimeter.s	2
triangle_area.s	3
triangle_height.s	1
Illisibilité du code (peu de commentaires,	jusqu'à -1
mauvaise structure)	
Format de remise erroné (irrespect des noms	jusqu'à -1
de fichiers demandés, fichiers superflus, etc.)	
Retard	-0,025 par heure

Travail demandé

Vous êtes en charge de coder en assembleur cinq méthodes :

- CCircle::PerimeterAsm()
- CCircle::AreaAsm()
- CTriangle::PerimeterAsm()
- CTriangle::AreaAsm()
- CTriangle::HeightAsm()

La réalization des ces méthodes doit suivre les exemples donnés dans les méthodes corrispondantes en C++ :

- CCircle::PerimeterCpp()
- CCircle::AreaCpp()
- CTriangle::PerimeterCpp()
- CTriangle::AreaCpp()
- CTriangle::HeightCpp()

Fichiers fournis

Les fichiers nécessaires à la réalisation du TP sont dans l'archive inf1600_tp4.zip, disponible sur Moodle.

Voici la description des fichiers :

- Makefile : le makefile utilisé pour compiler et nettoyer le projet ;
- tp4.c: programme de test qui utilise le fonctions de référence et celles en assembleur;
- shape.h : la définition de la classe CShape;
- circle.h: la définition de la classe CCircle;
- circle.cpp: l'implementation C++ de la classe CCircle;
- circle.vtable : la structure de la *virtual table* de la classe CCircle;
- triangle.h: la définition de la classe CTriangle;
- triangle.cpp: l'implementation C++ de la classe CTriangle;
- triangle.vtable : la structure de la virtual table de la classe CTriangle.

Vous devez compléter les fichiers *.s et les remettre dans un archive zip. Votre code doit passer chaque tests dans tp4.c.

Compilation et testing

Pour compiler le programme de test (tp4), il est suffisant de taper :

```
$ make
```

Pour l'éxécuter, vous devez passer 4 arguments. Le premier est le rayon du cercle ; le trois suivants sont la longeur des côtés du triangle. Par exemple, dans la commande :

```
$ ./tp4 1 2 3 4
```

le rayon est 1 et les côtés son 2, 3, et 4.

Les longeurs des côtés ne peuvent pas avoir n'importe quelle valeur; les valeurs doivent respecter l'inégalité triangulaire. Si les valeurs ne le respectent pas, le programme sorte un erreur.

État de la pile au début d'une méthode

Lorsqu'une méthode M d'une classe C est appelée, le premier argument qui se trouve dans la pile (8(%ebp)) est toujours l'adresse de l'objet de la classe C.

Par exemple, avec cette définition:

```
class C {
  public:
    void M(int x);
  private:
    int i;
};
```

quand la méthode M est appelée, la pile est :

12(%ebp)	valeur de x
8(%ebp)	addresse de l'objet de type C
4(%ebp)	ancienne valeur de %eip
(%ebp)	ancienne valeur de %ebp

Opérations avec valeurs float

Pour cet exercice, on se sert de la partie FPU (unité à virgule flottante) du processeur Intel. Il s'agit d'une pile dédiée au calcul flottant (différente de la pile d'appel), de grandeur 8 (elle peut contenir jusqu'à 8 entrées de type float), mais il est rarement nécessaire de dépasser 2 ou 3 entrées. Les quelques instructions agissent toujours sur le premier et le deuxième éléments de la pile (st[0] et st[1]). Voici ces instructions :

Instruction	Rôle
fld x	Ajoute au dessus de la pile la valeur à l'adresse mémoire
	x; st[1] prend la valeur de st[0] et st[0] devient cette
	nouvelle valeur chargée de la mémoire.
fldpi x	Ajoute au dessus de la pile la valeur de π (3,1415).
fstp x	Retire l'élément st[0] pour le mettre en mémoire prin-
	cipale à l'adresse x. st[1] devient st[0].
faddp	st[0] est additioné à st[1] et le resultat remplace ces
	deux éléments.
fsubp	st[1] est soustrait de st[0] et le resultat remplace ces
	deux éléments.
fsubrp	st[0] est soustrait de st[1] et le resultat remplace ces
	deux éléments.
fmulp	st[0] est multiplié avec st[1] et le resultat remplace
	ces deux éléments.
fdivp	st[0] est divisé par st[1] et le resultat remplace ces
	deux éléments.
fdivrp	st[1] est divisé par st[0] et le resultat remplace ces
	deux éléments.
fsqrt	la valeur dans st [0] est remplacée par sa racine carrée

Pour retourner un float en sortant d'une fonction, laissez la valeur sur st[0].