Discrete Mathematics

Chinese remainder theorem, CRT map, Euler's Phi function, group

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Chinese Remainder Theorem

THEROEM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ be pairwise relatively prime and let $n = n_1 \cdots n_k$. Then for any $b_1, ..., b_k \in \mathbb{Z}$, then the system

$$\begin{cases} x \equiv b_1 \pmod{n_1} \\ x \equiv b_2 \pmod{n_2} \\ \vdots \\ x \equiv b_k \pmod{n_k} \end{cases}$$

always has a solution. Furthermore, if $b \in \mathbb{Z}$ is a solution, then any solution x must satisfy $x \equiv b \pmod{n}$.

• $x \equiv b_i \pmod{n_i}$ for all i

 $\Rightarrow (n_1 n_2 \cdots n_k) | (x - b)$

 $\Rightarrow n_i | (x - b)$ for all i

 $\Rightarrow x \equiv b \pmod{n_i}$ for all i

- Let $N_i = n/n_i$ for every $i \in [k]$.
 - $gcd(N_i, n_i) = 1$ for every $i \in [k]$.
 - $\exists s_i, t_i, N_i s_i + n_i t_i = 1.$
- Let $b = b_1(N_1s_1) + \dots + b_k(N_ks_k)$.
 - Then $b \equiv b_i \pmod{n_i}$ for every $i \in [k]$. $\Rightarrow x \equiv b \pmod{n}$

Solution to Sun-Tsu's Question

EXAMPLE: Solve the system
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

- $n_1 = 3, n_2 = 5, n_3 = 7; n = n_1 n_2 n_3 = 105; b_1 = 2, b_2 = 3, b_3 = 2$
 - $N_1 = n_2 n_3 = 35, N_2 = n_1 n_3 = 21, N_3 = n_1 n_2 = 15$
 - $12 n_1 N_1 = 1$; $-4n_2 + N_2 = 1$; $-2 n_2 + N_3 = 1$
 - $t_1 = 12, s_1 = -1; t_2 = -4, s_2 = 1; t_3 = -2, s_3 = 1$
- $b = b_1(N_1s_1) + b_2(N_2s_2) + b_3(N_3s_3)$ = 2(-35) + 3(21) + 2(15)= 23
- $x \in \mathbb{Z}$ is a solution of the system iff $x \equiv 23 \pmod{105}$
 - Solutions: [23]₁₀₅

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for all $i \neq j$. Let $n = n_1 \cdots n_k$. The **CRT map** $\theta([x]_n) = ([x]_{n_1}, ..., [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n to $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$.

- θ is well-defined, i.e., $[x]_n = [y]_n \Rightarrow \theta([x]_n) = \theta([y]_n)$
 - $[x]_n = [y]_n$
 - $x \equiv y \pmod{n}$
 - $x \equiv y \pmod{n_i}$ for every $i \in [k]$;
 - $[x]_{n_i} = [y]_{n_i}$ for every $i \in [k]$
 - $\theta([x]_n) = ([x]_{n_1}, \dots, [x]_{n_k})$ $= ([y]_{n_1}, \dots, [y]_{n_k})$ $= \theta([y]_n)$

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for all $i \neq j$. Let $n = n_1 \cdots n_k$. The **CRT map** $\theta([x]_n) = ([x]_{n_1}, ..., [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n to $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$.

- θ is injective, i.e., $\theta([x]_n) = \theta([y]_n) \Rightarrow [x]_n = [y]_n$
 - $\theta([x]_n) = \theta([y]_n)$
 - $([x]_{n_1}, ..., [x]_{n_k}) = ([y]_{n_1}, ..., [y]_{n_k})$
 - $[x]_{n_i} = [y]_{n_i}$ for every $i \in [k]$
 - $n_i|(x-y)$ for every $i \in [k]$
 - n|(x-y)
 - $[x]_n = [y]_n$
- θ is surjective, i.e., every element in $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}$ has a preimage
 - This is obvious, because $|\mathbb{Z}_n| = |\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}|$

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for all $i \neq j$. Let $n = n_1 \cdots n_k$. The CRT map $\theta([x]_n) = ([x]_{n_1}, ..., [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n^* to $\mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$.

- θ is well-defined:
 - show that $\theta([x]_n) \in \mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$ for every $[x]_n \in \mathbb{Z}_n^*$
 - $[x]_n \in \mathbb{Z}_n^*$
 - gcd(x, n) = 1
 - $gcd(x, n_i) = 1$ for every $i \in [k]$
 - $[x]_{n_i} \in \mathbb{Z}_{n_i}^*$ for every $i \in [k]$
 - show that $[x]_n = [y]_n \Rightarrow \theta([x]_n) = \theta([y]_n)$
 - see the previous theorem
- θ is injective: see the previous theorem

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for all $i \neq j$. Let $n = n_1 \cdots n_k$. The CRT map $\theta([x]_n) = ([x]_{n_1}, ..., [x]_{n_k})$ is a well-defined bijection from \mathbb{Z}_n^* to $\mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$.

- θ is surjective: Let $([b_1]_{n_1}, ..., [b_k]_{n_k}) \in \mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$. Preimage?
 - Due to CRT, the system $x \equiv b_i \pmod{n_i}$, i = 1, ..., k, has a solution b
 - $b \equiv b_i \pmod{n_i}$ for all $i \in [k]$
 - Since $[b_i]_{n_i} \in \mathbb{Z}_{n_i}^*$, $gcd(b, n_i) = 1$ for all $i \in [k]$
 - $gcd(b, n_1 n_2 \cdots n_k) = 1$
 - $\theta([b]_n) = ([b]_{n_1}, \dots, [b]_{n_k}) = ([b_1]_{n_1}, \dots, [b_k]_{n_k})$
 - $[b]_n$ is a preimage of $([b_1]_{n_1}, ..., [b_k]_{n_k})$

Euler's Phi Function

THEOREM: Let $n_1, ..., n_k \in \mathbb{Z}^+$ be pairwise relatively prime.

Let $n = n_1 \cdots n_k$. Then $\phi(n) = \phi(n_1) \cdots \phi(n_k)$.

- $\theta: \mathbb{Z}_n^* \to \mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$ is bijective
- $\phi(n) = \phi(n_1) \times \cdots \times \phi(n_k)$

COROLLARY: If $n = p_1^{e_1} \cdots p_k^{e_k}$ for distinct primes p_1, \dots, p_k and integers $e_1, \dots, e_k \ge 1$, then $\phi(n) = n(1 - p_1^{-1}) \cdots (1 - p_k^{-1})$.

• $\phi(n) = \phi(p_1^{e_1}) \cdots \phi(p_k^{e_k})$ = $n(1 - p_1^{-1}) \cdots (1 - p_k^{-1})$

EXAMPLE: $\phi(10) = \phi(2)\phi(5) = 4$; n = 10; $n_1 = 2$, $n_2 = 5$

- $\theta \colon \mathbb{Z}_n^* \to \mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^*$
 - $1 \mapsto (1,1); 3 \mapsto (1,3); 7 \mapsto (1,2); 9 \mapsto (1,4)$

$(\mathbb{Z}_n,+)$

EXAMPLE: For $n \in \mathbb{Z}^+$, \mathbb{Z}_n and + satisfy the following properties.

- Closure: $[a]_n + [b]_n \in \mathbb{Z}_n$
 - $[a]_n + [b]_n = [a+b]_n \in \mathbb{Z}_n$
- Associative: $([a]_n + [b]_n) + [c]_n = [a]_n + ([b]_n + [c]_n)$

•
$$([a]_n + [b]_n) + [c]_n = [a+b]_n + [c]_n = [(a+b)+c]_n$$

= $[a+(b+c)]_n = [a]_n + [b+c]_n$
= $[a]_n + ([b]_n + [c]_n)$

- **Identity**: $[a]_n + [0]_n = [0]_n + [a]_n = [a]_n$
 - $[a]_n + [0]_n = [a+0]_n = [0+a]_n = [0]_n + [a]_n$
- Inverse: $[a]_n + [-a]_n = [-a]_n + [a]_n = [0]_n$
 - $[a]_n + [-a]_n = [a + (-a)]_n = [0]_n$
- **Commutative**: $[a]_n + [b]_n = [b]_n + [a]_n$
 - $[a]_n + [b]_n = [a+b]_n = [b+a]_n = [b]_n + [a]_n$

Group

DEFINITION: A **group** is a set G together with a binary operation \star on G such that

- Closure: $\forall a, b \in G, a \star b \in G$
- **Associative**: $\forall a, b, c \in G, a \star (b \star c) = (a \star b) \star c$
- **Identity**: $\exists e \in G, \forall a \in a \neq e = e \neq a = a$
- **Inverse**: $\forall a \in G, \exists b \in G, a \star b = b \star a = e$

DEFINITION: A group *G* is said to be an **Abelian group** if it additionally satisfies the following property:

• Commutative: $\forall a, b \in G, a \star b = b \star a$

Group \mathbb{Z}_n^*

THEOREM: \mathbb{Z}_n^* is an Abelian group for any integer n > 1.

- Closure: $\forall [a]_n, [b]_n \in \mathbb{Z}_n^*, [a]_n \cdot [b]_n = [ab]_n \in \mathbb{Z}_n^*$
- **Associative**: $\forall [a]_n, [b]_n, [c]_n \in \mathbb{Z}_n^*, [a]_n \cdot ([b]_n \cdot [c]_n) = [abc]_n = ([a]_n \cdot [b]_n) \cdot [c]_n$
- Identity element: $\exists [1]_n \in \mathbb{Z}_n^*, \forall [a]_n \in \mathbb{Z}_n^*, [a]_n \cdot [1]_n = [1]_n \cdot [a]_n = [a]_n$
- **Inverse**: $\forall [a]_n \in \mathbb{Z}_n^*, \exists [s]_n \in \mathbb{Z}_n^* \text{ such that } [a]_n \cdot [s]_n = [s]_n \cdot [a]_n = [1]_n$
- Commutative: $\forall [a]_n, [b]_n \in \mathbb{Z}_n^*, [a]_n \cdot [b]_n = [ab]_n = [ba]_n = [b]_n \cdot [a]_n$

REMARK: we are interested in two types of Abelian groups

- Additive Group: binary operation +; identity 0
 - Example: $(\mathbb{Z}, +)$, $(n\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{Z}_n, +)$
- Multiplicative Group: binary operation \cdot ; identity $1/(\mathbb{Z}_n^*, \cdot)$
 - Example: (\mathbb{Q}^*,\times) , $(\{\pm 1\},\times)$, (\mathbb{Z}_n^*,\cdot)