TD structures algébriques

Exercice 1

On définit dans Z une loi de composition interne par $a*b=a^2+b^2$ Etudier les propriétés de cette loi.

Solution

1. La loi est commutative : en effet pour tous a, b dans Z on a

$$a * b = a^2 + b^2 = b^2 + a^2 = b * a$$

2. la loi n'est pas associative en effet :

$$1*(2*3) = 1*(2^2 + 3^2) = 1*13 = 1^2 + 13^2 = 170$$
$$(1*2)*3 = (1^2 + 2^2)*3 = 5*3 = 5^2 + 3^2 = 34$$
 Donc 1*(2*3) \neq (1*2)*3

3. <u>La loi n'admet pas d'élément neutre</u> en effet :

pour tout e dans Z
$$e \star (e+1) = e^2 + (e+1)^2 = e^2 + e^2 + 2e + 1 = 2e^2 + 2e + 1$$
 si e était neutre alors $e \star (e+1) = e+1$ c'est à dire $2e^2 + 2e + 1 = e+1$ autrement dit $2e^2 + e = 0$ donc soit $e=0$ soit $e=-1/2$ or $-1/2 \notin Z$ donc $e=0$ mais 0 n'est pas neutre car $2 \star 0 = 4 \neq 2$

Donc la loi n'admet pas d'élément neutre

4. <u>Existence d'élément symétrique</u> : il n'y a pas d'élément neutre donc le concept de symétrique pour cette loi est absurde.

Exercice 2

On définit dans R les lois $a \star b = \inf(a, b)$ et $a \circ b = \sup(a, b)$

- 1. Montrer que ces deux lois sont commutatives et associatives.
- 2. Montrer que * est distributive par rapport à •
- 3. Ces lois ont-elles un élément neutre.

Solution

1. <u>La commutativité</u> est évidente.

Associativité de la loi \star : pour tous a,b,c dans R on peut supposer que $a \leq b \leq c$ et on a :

$$(a \star b) \star c = \inf(a, b) \star c = a \star c = \inf(a, c) = a$$
$$a \star (b \star c) = a \star \inf(b, c) = a \star b = \inf(a, b) = a$$

Donc la loi *inf* est associative

Associativité de la loi \circ : pour tous a, b, c dans R on peut supposer que $a \le b \le c$ et on a :

$$a \circ (b \circ c) = a \circ \sup(b, c) = a \circ c = \sup(a, c) = c$$

 $(a \circ b) \circ c = \sup(a, b) \circ c = b \circ c = \sup(b, c) = c$

Donc la loi sup est associative

2. <u>Distributivité de la loi ★ par rapport à la loi •</u>

Pour tous a, b, c dans R on peut supposer que $a \le b \le c$ et on a :

$$a\star(b\circ c)=\sup(a,\inf(b,c))=\sup(a,b)=b$$

$$(a\star b)\circ(a\star c)=\sup(a,b)\circ\sup(a,c)=b\circ c=b$$
 Et on a $a\star(b\circ c)=(a\star b)\circ(a\star c)$
$$b\star(a\circ c)=b\star\inf(a,c)=b\star a=\sup(b,a)=b$$

$$b\star a)\circ(b\star c)=\sup(b,a)\circ\sup(b,c)=b\circ c=\inf(b,c)=b$$
 Et on a $b\star(a\circ c)=(b\star a)\circ(b\star c)$
$$c\star(b\circ c)=c\star\inf(b,c)=c\star b=\sup(c,b)=c$$

$$(c\star b)\circ(c\star a)=\sup(c,b)\circ\sup(c,a)=c\circ c=\inf(c,c)=c$$

Et donc aussi $c \star (b \circ c) = (c \star b) \circ (c \star a)$

Donc dans tous les cas de figure on a $a \star (b \circ c) = (a \star b) \circ (a \star c)$.

3. Existence d'élément neutre pour la loi inf

Supposons que cette loi admette un élément neutre m, alors pourt tout a dans R on a $a \circ m = a$ et si on prend a = m+1 alors $(m+1) \star m = m+1$ or $(m+1) \star m = \inf(m,m+1) = m$ donc m+1 = m ce qui est absurde donc cette loi n'admet pas d'élément neutre.

Existence d'élément neutre pour la loi sup

Même raisonnement pour voir qu'elle n'en admet pas.

Exercice 3

On définit sur [0,1] la loi $a \circ b = a + b - ab$

- 1. Montrer que cette loi est interne
- 2. Etudier les propriétés de cette loi.

Solution

1. a+b-ab=a(1-b)+b=a(1-b)+(b-1)+1=(b-1)(1-a)+1Or $[0 \le a \le 1 \text{ et } 0 \le b \le 1]$ donc $[0 \le 1-a \le 1 \text{ et } -1 \le b-1 \le 0]$ donc si on multiplie les

deux membres de cette dernière inégalité par (1-a) alors

- $-1+a \le (b-1)(1-a) \le 0$ or $-1 \le -1+a$ donc $-1 \le (b-1)(1-a) \le 0$ on ajoute 1 aux deux membres pour obtenir $0 \le (b-1)(1-a)+1 \le 1$ c'est-à-dire $0 \le a \circ b \le 1$ et donc la loi est interne dans [0,1].
- 2. <u>la loi est commutative</u> : $a \circ b = a + b ab \xrightarrow{+ commut} b + a ba = b \circ a$

<u>la loi admet un élément neutre</u> : c'est visiblement $0: 0 \circ a = 0 + a - 0$. a = a et 0 est bien dans [0,1].

La loi est associative:

$$(a \circ b) \circ c = (a + b - ab) \circ c = (a + b - ab) + c - (a + b - ab)c$$
 $+ assoc$
 $= a + b - ab + c - ac - bc + abc$
 $= a + b + c - ab - ac - bc + abc$
 $= a \circ (b \circ c) = a \circ (b + c - bc) = a + (b + c - bc) - a(b + c - bc)$
 $= a + b + c - bc - ab - ac + abc = a + b + c - ab - ac - bc + abc$

On a bien donc $(a \circ b) \circ c = a \circ (b \circ c)$

Recherche des éléments symétrisables

a admet un symétrique a^{-1} si et seulement si $a \circ a^{-1} = a^{-1} \circ a = 0$ et il suffit de vérifier une seule de ses égalités :

$$a \circ a^1 = 0 \Leftrightarrow a + a^{-1} - a$$
. $a^{-1} = 0 \Leftrightarrow a^{-1}(1 - a) = -a$

Si a=1: on obtient 0=-1 ce qui est faux, donc 1 n'a pas de symétrique

Si
$$a \neq 1$$
: $a^{-1} = -\frac{a}{1-a}$, mais $-\frac{a}{1-a} \leq 0$ donc

si
$$a = 0$$
 alors $a^{-1} = 0$

et si $a \neq 0$ alors $-\frac{a}{1-a} < 0$ donc $-\frac{a}{1-a} \in [0,1]$ et donc a n'a pas de symétrique.

Donc seul l'élément neutre 0 admet un symétrique.

Exercice 4

On définit dans
$$J =]-1,1[$$
 la loi $a*b = \frac{a+b}{1+ab}$

- 1. Montrer que cette loi est bien interne dans J.
- 2. Vérifier que (J,*) est un groupe commutatif.

Solution

Dans cet exercice il suffit de remarquer que (a+b) et 1+ab font partie d'un développement du produit de facteur $(1\pm a)(1\pm b)$

1. La loi est interne dans J:

$$\begin{split} a \in J &\Rightarrow -1 < a \leq 1 \Rightarrow (1-a) > 0 \\ a,b \in J &\Rightarrow (1-a)(1-b) > 0 \text{ or } [(1-a)(1-b) = 1+ab-(a+b)] \text{ donc} \\ 1+ab-(a+b) > 0] &\Rightarrow [1+ab>a+b] \Rightarrow 1 > \frac{a+b}{1+ab} \text{ ceci d'une part }; \\ \text{D'autre part remarquons que } [(1+a)(1+b) = 1+ab+(a+b) > 0] \text{ donc} \\ 1+ab+(a+b) > 0] &\Rightarrow [1+ab>-(a+b)] \Rightarrow -1 < \frac{a+b}{1+ab} \end{split}$$

On a donc $-1 \le \frac{a+b}{1+ab} < 1$, autrement dit pour tous a,b dans J on a $a*b \in J$ et la loi est donc interne dans J.

- 2. <u>Commutativité</u>: pour tous a, b dans $J: a*b = \underbrace{\frac{a+b}{1+ab}} \underbrace{\stackrel{+ \ commut}{=}} \underbrace{\frac{b+a}{1+ba}} = b*a$
- 3. <u>Element neutre</u>: si on regarde bien $\frac{a+b}{1+ab} = a$, on voit que b=0 réalise l'égalité, autrement dit $b=0 \implies a*0=a$ et comme la loi est commutative alors a*0=0*a=a donc 0 est l'élément neutre.
- 4. <u>Element symétrique</u> :si on observe bien $\frac{a+b}{1+ab}=0$ on voit que b=-a et on a a*(-a)=(-a)*a=0, de plus $(-1< a<1)\Longrightarrow (-1< -a<1)$, c'est-à-dire que $-a\in J$, donc pour tout a dans (-a) est le symétrique de a.
- 5. Associativité: pour tout a, b,c dans J on a :

$$a*(b*c) = a*\frac{b+c}{1+bc} = \frac{a+\frac{b+c}{1+bc}}{1+a.\frac{b+c}{1+bc}} = \frac{a+b+c+abc}{1+bc+ab+ac}$$

$$(a*b)*c = \frac{a+b}{1+ab}*c = \frac{\frac{a+b}{1+ab}+c}{1+\frac{a+b}{1+ab}c} = \frac{a+b+c+abc}{1+ab+ac+bc}$$

On a bien a * (b * c) = (a * b) * c et donc la loi est associative.

Ainsi (J,*) est bien un groupe commutatif.

Exercice 5

On considère les quatre applications suivantes de R dans R:

$$f_1: x \to x$$
, $f_2: x \to -x$, $f_3: x \to \frac{1}{x}$ $f_4: x \to -\frac{1}{x}$.

Montrer que ces applications forment un groupe pour la loi \circ de composition des fonctions. Solution

Il est facile de voir que la loi de composition des fonctions est internes dans $\{f_1, f_2, f_3, f_4\}$ en composants les fonctions entre-elles, la fonction f_1 est l'élement neutre, et en remarquant que l'inverse de l'inverse est neutre, ainsi que l'opposé de l'opposé est neutre aussi. On a le tableau de

composition suivant construit en composant les fonctions de la colonne gauche avec celles de la igne horizontale du haut :

	f ₁	f ₂	f ₃	f ₄
f ₁	f_1	f ₂	f ₃	f ₄
f ₂	f ₂	f ₁	f ₄	f ₃
f ₃	f ₃	f ₄	f ₁	f ₂
f ₄	f ₄	f ₃	f ₂	f_1

la loi est commutative, la fonction f_1 est l'élément neutre, toute fonction est son propre symétrique, et je vous laisse le soin de vérifier que la loi est associative.

Exercice 6

Soit (G,*) un groupe tel que $\forall x \in G: x*x = e$ où e est l'élément neutre Montrer que la loi est commutative.

Solution

Pour tous x, y dans G on a:

$$x * x = e = y * y = (x * y) * (x * y) = (x * x) * (y * y)$$

$$assoc$$

$$(x * y) * (x * y) = (x * x) * (y * y) \iff x * (y * x) * y = x * (x * y) * y$$

$$\Rightarrow x^{-1} * x * (y * x) * y * y^{-1} = x^{-1} * x * (x * y) * y * y^{-1}$$

$$Assoc$$

$$\iff (x^{-1} * x) * (y * x) * (y * y^{-1}) = (x^{-1} * x) * (x * y) * (y * y^{-1})$$

$$\Rightarrow e * (y * x) * e = e * (x * y) * e$$

$$\Rightarrow y * x = x * y$$

La loi est donc bien commutative.

Exercice 7

- 1. Est-ce que $([0,1],\times)$ est un sous-groupe de (R^*,\times) .
- 2. Est-ce que le cercle C(0;1), d'équation $x^2+y^2=1$, muni de l'addition dans R^2 , est un sous-groupe de R^2 .
- 3. Est-ce que $E = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ muni de l'addition est un sous-groupe de \mathbb{R}^2
- 4. Même question pour $(A \cup B, +)$ avec $A = \{(x, y) \in R^2 : y = 0\}$ et $B = \{(x, y) \in R^2 : x = 0\}$.
- 5. Est-ce que la droite $D_a = \{(x, y) \in \mathbb{R}^2 : y = ax\}$ muni de l'addition dans \mathbb{R}^2 .
- 6. Meme question pour la droite $D_{a,b} = \{(x,y) \in \mathbb{R}^2 : y = ax + b\}$ où $b \neq 0$.
- 7. Est –ce que le plan $P = \{x, y, z\} \in \mathbb{R}^3$: ax + by + cz = 0 muni de l'addition dans \mathbb{R}^3 .
- 8. Meme question pour le plan $P_c = \{x, y, z\} \in \mathbb{R}^3$: $ax + by + cz = c\}$ où $c \neq 0$.

Solution

- 1. Le symétrique de 1/2 est 2 mais 2 n'appartient pas à]0,1], donc $(]0,1],\times)$ n'est pas un sousgroupe de (R^*,\times) .
- 2. $A=(0;1)\in\mathcal{C}(0,1),\ B=(1;0)\in\mathcal{C}(0,1)$ voyons si A+B est dans le cercle C(0,1) : (A+B)=(1,1) et $1^2+1^2=2\neq 1$ donc $A+b\notin\mathcal{C}(0;1)$ donc l'addition dans C(0,1) n'est pas interne dans C(0;1) n'est pas un sous-groupe de R²
- 3. $1 \times 0 = 0$ et $0 \times 1 = 0$ donc $(1,0) \in E$ et $(0,1) \in E$ mais (1,0) + (0,1) = (1,1) et $1 \times 1 \neq 0$ donc $(1,0) + (0,1) \notin E$ donc l'addition n'est pas interne dans E donc E n'est pas un sous-groupe de \mathbb{R}^2 .
- 4. Remarquer que $A \cup B = E$
- 5. D_a est un sous-groupe de (\mathbb{R}^2 ,+) en effet :

•
$$(x,y) \in D_a$$
 et $(x',y') \in D_a \Leftrightarrow y = ax$ et $y' = ax'$
 $(x,y) + (x',y') = (x+x',y+y')$ or $y+y' = a(x+x')$ donc $(x,y) + (x',y') \in D_a$

Le symétrique de (x, y) est (-x, -y) pour l'addition dans R^2 , donc si $(x, y) \in D_a$ alors y = ax donc -y = a(-x), ce qui signifie que $(-x, -y) \in D_a$

Ainsi D_a est un sous-groupe $de(R^2, +)$

- 6. L'élément neutre(0,0) de R^2 n'est pas dans $D_{a,b}$ en effet $0 \neq 0 + b$ car $b \neq 0$ donc $D_{a,b}$ n'est pas un sous-groupe de $(R^2, +)$
- 7. P est un osu-groupe de (\mathbb{R}^3 ,+) en effet :

•
$$(x,y,z) \in P$$
 et $(x',y',z') \in P \Leftrightarrow ax + by + cz = 0$ et $ax' + by' + cz' = 0$
 $(x,y,z) + (x',y',z') = (x+x',y+y',z+z')$ or $a(x+x') + b(y+y') + c(z+z') = 0$
Donc $(x+x',y+y',z+z') \in P$ autrement dit $(x,y,z) + (x',y',z') \in P$

Le symétrique de (x, y, z) est (-x, -y, -z) pour l'addition dans R^2 , donc si $(x, y, z) \in P$ alors ax + by + cz = 0 donc a(-x)b(-y) + c(-z) = 0, ce qui signifie que $(-x, -y, -z) \in P$

Ainsi P est bien un sous-groupe de $(R^3, +)$.

8. P_c n'est pas un sous-groupe de $(R^3, +)$ en effet vu que $a.0 + b.0 + c.0 = 0 \neq c$, l'élément neutre $(0,0,0) \notin P_c$

Exercice 8

On considère l'ensemble des fonctions \mathcal{F} : $\{f_a: C \to C \text{ telles que } f(z) = az \text{ avec } a \in C \text{ et } |a| = 1\}$. Montrer que (\mathcal{F}, \circ) est un groupe commutatif, où \circ représente la composition des fonctions. Solution

La loi est interne : en effet pour tout z dans C on a

 $(f_a \circ f_b)(z) = f_a(f_b(z)) = f_a(bz) = a(bz) = (ab)z$, donc $f_a \circ f_b = f_{ab}$, et si $f_a \in \mathcal{C}$ et $f_a \in \mathcal{C}$ alors |a| = 1 = |b|, et comme $|a| \times |b| = |ab|$, alors |ab| = 1, ainsi $f_{ab} \in \mathcal{F}$, c'est-à-dire $f_a \circ f_b \in \mathcal{F}$ La loi est commutative

D'après ce qui vient d'être vu on a $f_a \circ f_b = f_{ab} = f_{ba} = f_b \circ f_a$

La loi admet un élément neutre

 $f_a\circ f_b=f_{ab}$ et si on prend b=1 alors $f_a\circ f_1=f_{a\times 1}=f_a$. La loi est commutative donc f_1 est l'élément neutre, rappelons que $f_1(z)=1\times z=z$

La loi est associative

$$(f_a\circ f_b)\circ f_c=f_{ab}\circ f_c=f_{(ab)c}=f_{a(bc)}=f_a\circ f_{bc}=f_a\circ (f_b\circ f_c)$$

Calcul du symétrique de f_a

Soit f_a , f_b , f_c dans \mathcal{F} :

 f_b est le symétrique de f_a si et seulement si $(f_a \circ f_b) = (f_b \circ f_a) = f_1$ autrement dit $f_{ab} = f_{ba} = f_1$ On a $f_{ab} = f_1$ lorsque pour tout z dans C, $f_{ab}(z) = f_1(z)$, c'est à dire (ab)z = z d'où ab = 1, et comme $|a| = 1 \neq 0$ donc $a \neq 0$ d'où $b = \frac{1}{a}$ de plus $\left|\frac{1}{a}\right| = \frac{1}{|a|} = 1$ donc $f_{\frac{1}{a}} \in \mathcal{F}$. Et comme la loi est commutative alors $(f_a \circ f_{\frac{1}{a}}) = (f_{\frac{1}{a}} \circ f_a) = f_1$ donc tout fonction f_a de \mathcal{F} admet un symétrique. Ainsi (\mathcal{F}, \circ) est un groupe commutatif.

Exercice 9

Déterminer toutes les bijections $f: \{0,1\} \rightarrow \{0,1\}$

Montrer que l'ensemble de ces bijections muni de la composition des fonctions forment un groupe. Solution

If y deux bijections:
$$f_1 = \begin{pmatrix} 0 & \rightarrow & 0 \\ 1 & \rightarrow & 1 \end{pmatrix}$$
 et $f_2 = \begin{pmatrix} 0 & \rightarrow & 1 \\ 1 & \rightarrow & 0 \end{pmatrix}$ $f_1 \circ f_1 = f_1$, $f_1 \circ f_2 = f_2$ $f_2 \circ f_1 = f_2$ $f_2 \circ f_2 = f_1$

On voit que la loi est une loi de composition interne, elle est commutative. Son élément neutre est f_1 . Le symétrique de f_2 est f_2 lui-même. De meme pour f_1 .

Reste a vérifier l'associativité :

$$(f_1 \circ f_1) \circ f_2 = f_1 \circ f_2 = f_2 \text{ et } f_1 \circ (f_1 \circ f_2) = f_1 \circ f_2 = f_2 \text{ donc } (f_1 \circ f_1) \circ f_2 = f_1 \circ (f_1 \circ f_2).$$

$$(f_1 \circ f_2) \circ f_1 = f_2 \circ f_1 = f_2 \text{ et } f_1 \circ (f_2 \circ f_1) = f_1 \circ f_2 = f_2 \text{ donc } (f_1 \circ f_2) \circ f_1 = f_1 \circ (f_2 \circ f_1)$$

$$f_2 \circ (f_2 \circ f_1) = f_2 \circ f_2 = f_1 \text{ et } (f_2 \circ f_2) \circ f_1 = f_1 \circ f_1 = f_1 \text{ donc } f_2 \circ (f_2 \circ f_1) = (f_2 \circ f_2) \circ f_1$$
 Etc...

Exercice10

Soit (G,\star) un groupe, e son élément neutre, et a un élément de G.

- 1. Soit $H = \{x \in G: a * x = x * a\}$. Montrer que (H, \star) est un sous-groupe.
- 2. On suppose de plus que G est commutatif. Montrer que *T* est un sous-groupe.

$$T = \{x \in G : \exists n \in \mathbb{N}, x^n = e\}, x^n = \underbrace{x * x * \dots * x}_{n \text{ fois}}$$

Solution

H est un sous-groupe

- Pour tout x, y dans H on a : a * x = x * a et a * y = y * a d'où a * (x * y) = (a * x) * y = (x * a) * y = x * (a * y) = x * (y * a) = (x * y) * a Donc $x * y \in H$, donc <u>la loi est interne dans H</u>
- Soit x dans , donc a * x = x * a, il s'agit de montrer que x^{-1} appartient à H: $a * x = x * a \Rightarrow x^{-1} * (a * x) * x^{-1} = x^{-1} * (x * a) * x^{-1}$ $\Rightarrow (x^{-1} * a) * (x * x^{-1}) = (x^{-1} * x) * (a * x^{-1})$ $\Rightarrow (x^{-1} * a) * e = e * (a * x^{-1})$ $\Rightarrow x^{-1} * a = a * x^{-1}$

Donc $x^{-1} \in H$. Donc H est bien un groupe.

T est un sous-groupe

Soient x, y dans T, alors il existe n, m dans N tels que : $x^n = e$ et $y^m = e$.

donc $(x^n)^m = e^m = e$ et $(y^m)^n = e^n = e$ autrment dit $x^{nm} = y^{nm} = e$ On a $(x*y)^{nm} = \underbrace{(x*y)*(x*y)*...*(x*y)}_{nm \ fois} \stackrel{* commut}{=} \underbrace{(x*x*...*x)}_{nm \ fois} *\underbrace{(y*y*...*y)}_{nm \ fois}$ $= x^{nm} * y^{nm} = e * e = e$

Donc $x * y \in T$

Si $x^n = e$ alors $(x^n)^{-1} = e^{-1} = e$ or $(x^n)^{-1} = (x * x * ... * x)^{-1} = x^{-1} * ... * x^{-1} = (x^{-1})^n$ Donc $x^{-1} \in T$

T est bien un sous-groupe.

Exercice 11

Montrer que la fonction $exp:(C,+)\to (C^*,\times)$ est un homomorphisme de groupe. Déterminer son image et son noyau.

Solution

 $e^{z+z'} = e^z \times e^{z'}$, donc exp est un un homomorphisme de (C, +) dans (C^*, x) .

Ker(exp):

L'élément neutre du groupe (C^*,\times) est 1; donc $ker(exp)=\{z\in (C,+): e^z=1\}$ Posons $z=re^{i\theta}$. On a $e^z=1\Leftrightarrow \left(re^{i\theta}=1\right)\Leftrightarrow \left(re^{i\theta}=1e^{i0}\right)\Leftrightarrow (r=1\ {\rm et}\ \theta=2k\pi)$ Donc $z=1e^{2ik\pi}$ d'où $Ker(exp)=\{2ik\pi: k\in Z\}$

■ <u>Im(exp):</u>

Soit $w = re^{i\theta}$, posons a = lnr et et $z = a + i\theta$ alors $e^z = e^{a+i\theta} = e^a$. $e^{i\theta} = re^{i\theta} = w$, ce qui veut dire que exp est surjectif et donc $Im(exp) = C^*$

Exercice 12

Déterminer tous les homomorphisme de (Z, +) dans lui-même. Quels sont ceux qui sont injectifs ?surjectif ?

Solution

Tous morphisme f doit vérifier f(x + y) = f(x) + f(y)

Si x = y = 0 alors f(0 + 0) = f(0) + f(0) autrement dit f(0) = 2f(0) donc f(0) = 0.

Posons f(1)=a

$$f(1+1) = f(1) + f(1)$$
 c'est-à-dire $f(2) = 2f(1) = 2a$

Par récurrence on peut prouver que pour tout n dans N, f(n) = an (faites-le).

$$f(1+(-1)) = f(1) + f(-1)$$
 d'où $0 = a + f(-1)$ donc $f(-1) = -a$

$$f(-2) = f((-1) + (-1)) = f(-1) + f(-1) = -2a$$

et par récurrence on prouve que pour tout n dans N on a f(-n) = -an.

Donc pour tout x dans Z on a f(x) = ax avec a = f(1)

Caractérisations des morphismes surjectif

f est surjectif si et seulement si il pour tout m dans Z existe un entier relatif n tel que m = f(1). n donc f(1) divise tout les entiers relatifs donc f(1) = 1 ou f(1) = -1, donc f(n) = n ou f(n) = -n.

Cette condition reste suffisante vu que clairement ces deux fonctions sont surjectives.

Caractérisation des morphismes injectifs

Si $f(1) \neq 0$ alors f est injective, sinon si f(1) = 0 alors f est la fonction nulle et donc f n'est pas injective.