Informa2 S.A.S

Parcial 2 - Análisis y diseño

Carolina Jimenez Restrepo

Despartamento de Ingeniería Electrónica y Telecomunicaciones Universidad de Antioquia Medellín Septiembre de 2021

Índice

1.	Seco	ción introductoria
	1.1.	Análisis y diseño
	1.2.	Esquema
	1.3.	Algoritmo
2.	Incl	usión de imágenes
	2.1.	Matriz LEDs
	2.2.	Esquema
	2.3.	Diagra de flujo

1. Sección introductoria

Análisis y diseño del segundo parcial, presentar una imagen en matriz de LEDs RGB

1.1. Análisis y diseño

Luego de leer y analizar el desafío propuesto para el parcial 2 se tiene una idea de cómo dar solución a este, lo primero que se debe tener en cuenta son los requerimientos del desafío el cual nos pide ajustar las dimensiones de una imagen para proyectarlas en una matriz de LEDs RGB, así mismo como crear la matriz y hacer el montaje de la parte eléctrica que permitirá su funcionamiento. Para la parte de ajustar las dimensiones de la imagen que sería submuestreo (disminución de la resolución) y sobremuestreo (aumento de la resolución) se creara un código que realice estos procesos, sin ayuda de librerías como lo indican las instrucciones del desafío, el siguiente paso es guardar una nueva imagen con estas nuevas dimensiones para luego obtener los datos correspondientes a esta imagen y escribirlos en un archivo txt el cual será utilizado en la plataforma tinkercad para la generación de una matriz de colores que junto con otras líneas de código nos permitirán ver la imagen proyectada en la matriz de LEDs RGB. Para el montaje de la matriz LEDs RGB se utilizan 14 tiras de LEDs RGB lo cual nos genera una matriz 10x10 un Arduino y una fuente de voltaje que nos permitirán alimentar la matriz.

Para el desarrollo del algoritmo se crea en el entorno Qt una clase que contiene métodos los cuales van a permitir realizar el proceso de escalado de imagen (submuestreo y sobremuestreo), guardar la nueva imagen y escribir la información en un txt, comprobar si lo cargado es una imagen. La clase y los métodos mencionados pueden variar a medida que se va desarrollando el proyecto.

1.2. Esquema

Las tareas definidas para el desarrollo del algoritmo son:

Montaje de la matriz LEDs RGB: En tinkercad se utilizan tiras de 14 NeoPixels así se crea una matriz LEDs de 14x14, esta matriz se complementa con un Arduino y una fuente de alimentación de 5v la cual debe ir conectada a al pin de voltaje del Arduino 5V, los cuales permitirán el funcionamiento de la matriz.

Lectura y verificación de la imagen: El algoritmo recibe la dirección donde se encuentra ubicada una imagen, luego de esto verifica si lo que se encuentra en dicha ubicación si es una imagen o corresponde a otro tipo de archivo, si lo verificado es diferente a una imagen mostrara un mensaje de error.

Proceso de escalado de imagen: Se aplica el código desarrollado para el submuestreo o sobremuestreo de la imagen, el cual genera una nueva imagen con las nuevas dimensiones que se adapta a la matriz LEDs RGB que ya tenemos creada en tinkercad.

Obtención de valores: Luego de aplicar el código de escalado de imagen se obtienen los valores equivalentes a los colores que contiene la imagen, estos valores se muestran en una matriz la cual se guarda en un archivo txt y luego se copian en el código implementado en tinkercad.

La proyección de la imagen: En tinkercad al tener la matriz que contiene los colores y el código que permite el funcionamiento de la matriz de LEDs se toman los valores que se encuentran en la matriz, se recorre y esos mismos valores se representan en la matriz de LEDs (proyección de la imagen)

1.3. Algoritmo

- 1. Tener una imagen guardada que se quiera proyectar en la matriz LEDs
- 2. Se ingresa la ubicación de la imagen
- 3. Lectura de la imagen
- 4. verificación de imagen, si la imagen es correcta (es una imagen) va al siguiente paso si es incorrecta muestra mensaje de error y debe volver a ingresar la ubicación
- 5. comprobar si la imagen a proyectar necesita sobremuestreo o submuestreo, si es sobremuestreo se aumenta la resolución, si es submuestreo se disminuye la resolución
- 6. ejecutar el proceso de escalamiento (escogido en el punto anterior)
- 7. Genera una nueva imagen con el escalamiento
- 8. Obtención de valores de los colores RGB que componen la imagen
- 9. Crear matriz con los colores obtenidos
- 10. Crear un archivo txt
- 11. Escribir la matriz que contiene la información de los colores en un archivo .txt
- 12. Abrir el archivo .txt con un editor de texto
- 13. Copiar la información que contiene el archivo txt
- 14. Ingresar o pegar en la parte de código de tinkercad donde se tiene la matriz LED
- 15. Ejecutar el código que se encuentra en tinkercad
- 16. Proyectar la imagen en la matriz de LEDs RGB

2. Inclusión de imágenes

2.1. Matriz LEDs

En la Figura (1), se presenta la matriz de LEDs con la que se trabajara, esta matriz esta dispuesta a cambios segun lo requiera el avance del desafio

Figura 1: Matriz LEDs RGB

2.2. Esquema

En la Figura (2), se presenta el esquema de las tareas a realizar repartidas por bloques los cuales indican las tareas que se desean lograr juntas.

Esquema de tareas a realizar

Función que permita Lectura y verificación de la imagen en -unición o dase que permita escalado de la imagen en valores de cotores ROB

Figura 2: Esquema tareas

2.3. Diagra de flujo

En la Figura (3), se presenta el diagrama de flujo del algoritmo planteado

Figura 3: Diagrama de flujo