

Curso: Engenharias

Unidade Curricular: Cálculo Numérico

Professor(es): Maria Clara Schuwartz Ferreira

Período Letivo: 2021/2 Carga Horária: 60 H

OBJETIVOS

Gerais:

• Aplicar técnicas numéricas à solução de problemas de engenharia.

Específicos:

- Realizar aproximação de funções numericamente;
- Resolver equações diferenciais numericamente;
- Resolver integrais numericamente;
- Resolver sistemas de equações numericamente;
- Programar no ambiente aplicado ao cálculo numérico.

EMENTA

Introdução a um ambiente de programação aplicado ao cálculo numérico; Erros; Zeros reais de funções reais; Resolução de sistemas lineares; Resolução de sistemas não lineares; Ajuste de curvas; Interpolação polinomial; Integração numérica; Resolução numérica de equações diferenciais ordinárias.

PRÉ-REQUISITO (SE HOUVER)

Algoritmos e estruturas de dados

	CONTEÚDOS	СН
UNIDADE I: INTRODUÇÃO A UM AMBIENTE DE PROGRAMAÇÃO		6
1.1	O ambiente de programação	
1.2	Estruturas de controle: if, for e while;	
1.3	Sistemas de numeração: conversão de bases, operações aritméticas;	
UNIDADE II: ANÁLISE DE ARREDONDAMENTO EM PONTO FLUTUANTE		
2.1	Absoluto e relativo;	
2.2	Truncamento e arredondamento;	
2.3	Aritmética de ponto flutuante.	
UNIDADE III: ZEROS REAIS DE FUNÇÕES REAIS		8
3.1	Método da bissecção;	
3.2	Método do ponto fixo;	
3.3	Método de Newton;	
3.4	Método da secante.	
UNIDADE IV: RESOLUÇÃO DE SISTEMAS LINEARES		
4.1	Métodos diretos: Gauss e Fatoração LU;	
4.2	Métodos iterativos: Gauss–Jacobi e Gauss–Seidel.	
UNIDADE V: RESOLUÇÃO DE SISTEMAS NÃO-LINEARES		4
5.1	Método de Newton.	
UNIDADE VI: AJUSTE DE CURVAS		
6.1	Método dos quadrados mínimos.	

Campus Carracica			
UNIDADE VII: INTERPOLAÇÃO POLINOMIAL	6		
7.1 Forma de Lagrange;			
7.2 Interpolação inversa.			
UNIDADE VIII: INTEGRAÇÃO NUMÉRICA	10		
8.1 Fórmulas de Newton-Cotes;			
8.2 Quadratura Gaussiana;			
8.3 Erro na integração.			
UNIDADE IX: RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS	10		
9.1 Problemas de valor inicial: método de euler, métodos de série de Taylor e de Runge– Kutta;			
9.2 Equações de ordem superior;			
9.3 Problemas de valor de contorno: método das diferenças finitas.			

AVALIAÇÃO DA APRENDIZAGEM

Exercícios individuais, trabalho em grupo e apresentações orais.

A disciplina foi dividida em 6 blocos:

- A princípio, a avaliação da aprendizagem de cada bloco será por meio de:
- 1º) UNIDADE II Lista de exercícios L1 (10 pontos) 25 a 31 de outubro
- 2º) UNIDADE III Trabalho em grupo T1 (20 pontos) 8 a 14 de novembro
- 3º) UNIDADES IV e V Lista de exercícios L2 (15 pontos) 06 a 12 de novembro
- 4º) UNIDADES VI e VII Trabalho em grupo (30 pontos) 07 a 13 de fevereiro
- 5º) UNIDADE VIII Seminário (15 pontos) 13 a 19 de dezembro
- 6º) UNIDADE IX Lista de exercícios L3 (10 pontos) 21 a 27 de fevereiro
- Esta proposta de avaliações pode ser modificada de maneira a facilitar o processo de aprendizagem do aluno (diálogo com a turma) e de acordo com as definições do lfes quanto as atividades não presenciais.

Para ser considerado aprovado é necessário que o aluno obtenha média final MF igual ou superior a 60.

 $\{$ MS ≥ 60 \rightarrow Aluno aprovado e MF = MS

∫ MS < 60 → O aluno poderá realizar uma **Prova Fina**l de recuperação (PF), cujo conteúdo abrangerá toda a matéria da disciplina. Nesse caso, a média final será calculada como: MF = (MS + PF)/2

Prova Final: 07 a 13 de março de 2022.

Bibliografia

RUGGIERO, M.A.G.; LOPES, V.L.R. **Cálculo numérico: aspectos teóricos e computacionais.** 2ª Ed. São Paulo: Pearson, 2006.

CHAPRA, S.C. **Métodos Numéricos aplicados com Matlab para engenheiros e cientistas.** 3ª Ed. Porto Alegre: McGrawHill, 2013.

SPERANDIO, D.; MENDES J.T.; SILVA, L.H.M. Cálculo numérico. 2ª Ed. São Paulo: Pearson, 2014.

QUADROS, R.S.; DE BORTOLI, Á.L. Fundamentos de Cálculo Numérico para Engenheiros. Porto Alegre: 2009.

CAMPOS FILHO, F.F. Algoritmos Numéricos. 2ª Ed. Belo Horizonte: LTC, 2007