

Kapitel 7

Das Rucksackproblem

Effiziente Algorithmen, SS 2018

Professor Dr. Petra Mutzel

VO 14/15 am 5./7. Juni 2018

Bisher in der VO

Einführung Approximation

- I. Effiziente Graphalgorithmen
 - Starke Zusammenhangskomponenten
 - 3 Matching Probleme
 - 4 Maximale Flussprobleme
 - 6 Amortisierte Analyse
 - 6 Minimale Schnitte

Im folgenden:

- II. Approximationsalgorithmen
 - 7 Rucksackproblem, Bin Packing Problem
 - **8** Traveling Salesman Problem
 - Erfüllbarkeitsprobleme

Approximationsalgorithmen

zunächst Begriffe (Wdhlg. aus GTI bzw. TfAI)

Optimierungsproblem

- ullet Menge von Instanzen I
- Funktion S, die für alle $w \in I$ Menge zulässiger Lösungen S(w) angibt
- Bewertungsfunktion v, die für alle $w \in I$ und alle $s \in S(w)$ Wert v(s) angibt
- Optimierungsziel: Maximierung oder Minimierung

zugehöriges

Entscheidungsproblem

Eingabe $w \in I$, $k \in \mathbb{N}$ entscheide, ob $\mathsf{OPT}(w) \leq k$ (bei Minimierung) bzw. $\mathsf{OPT}(w) > k$ (bei Maximierung)

Kombinatorische Optimierungsprobleme

Definition

Kombinatorische Optimierungsprobleme sind Optimierungsprobleme, die eine

- 1 endliche Grundmenge besitzen
- 2 aus deren Elementen sich die zulässigen Lösungen durch Vereinigung zusammensetzen lassen, und
- 3 eine Bewertungsfunktion für eine zulässige Lösung, die sich als gewichtete Summe der Bewertungen der Grundelemente schreiben lässt.

Man kann kombinatorische Optimierungsprobleme also in endlicher Zeit durch Enumeration aller zulässigen Lösungen optimal lösen.

Beispiele für Kombinatorische Optimierungsprobleme

Minimum Spanning Tree

Grundmenge: Kantenmenge

zulässige Lösungen: Teilmenge T der Kanten, die spannenden

Bäumen entsprechen

Bewertungsfunktion: Summe der Kantengewichte der Kanten in T

Rucksackproblem

Grundmenge: Gegenstände

zulässige Lösungen: Teilmenge der Gegenstände, die

in den Rucksack passen

Bewertung: Summe der Werte der eingepackten Gegenstände

Petra Mutzel VO 14/15 am 5./7. Juni 2018

Klassifikation von Optimierungsproblemen

Definition

Ein Optimierungsproblem gehört zu \mathcal{NPO} , falls

- Test, ob Eingabe w gültig ist, d.h. $w \in I$, in poly. Zeit geht,
- Test, ob Lösung s zulässig, d.h. $s \in S(w)$, in poly. Zeit geht,
- ullet die Bewertung v in poly. Zeit berechenbar ist, und
- das zugehörige Entscheidungsproblem ∈ NP (konstruktive Lösungen können in Polynomialzeit verifiziert werden)

hier Wir betrachten nur Probleme aus \mathcal{NPO}

Definition (Güte)

Sei $s \in S(w)$ (zul. Lösung) zu $w \in I$. Dann heißt $r := \max\left\{\frac{v(s)}{\mathsf{OPT}(w)}, \frac{\mathsf{OPT}(w)}{v(s)}\right\}$ die Güte der Lösung s.

Klassifikation von Approximationsalgorithmen

 $\text{der für alle Instanzen L\"osung mit G\"ute} \leq r \text{ liefert,}$

heißt r-Approximation

Definition Polynomialzeitalgorithmus A,

 $\text{der für jede G\"{u}te } r=1+\varepsilon \text{ mit } \varepsilon>0$

 $\text{ und alle Instanzen L\"osung mit G\"ute} \leq r \text{ liefert,}$

heißt polynomielles Approximationsschema

Laufzeit beispielsweise $\mathcal{O}(n^{\frac{1}{\varepsilon}})$

Definition polynomielles Approximationsschema A,

dessen Laufzeit polynomiell ist

in Eingabelänge und ε^{-1} ,

heißt echt polynomielles Approximationsschema

Laufzeit beispielsweise $\mathcal{O}(n \cdot \frac{1}{\varepsilon})$

Klassifikation von Optimierungsproblemen

Definition Optimierungsproblem

 $\mbox{mit } r\mbox{-}\mbox{Approximation für konstantes } r \geq 1$

heißt (konstant) approximierbar und

gehört zur Klasse \mathcal{APX}

Definition Optimierungsproblem

mit polynomiellem Approximationsschema

gehört zur Klasse $\mathcal{PT\!AS}$

Definition Optimierungsproblem

mit echt polynomiellem Approximationsschema

gehört zur Klasse \mathcal{FPTAS}

Definition Optimierungsproblem

mit zugehörigem Entscheidungsproblem in P

gehört zur Klasse \mathcal{PO}

Klassifikation von Approximationsalgorithmen

Beobachtung
$$\mathcal{PO} \subseteq \mathcal{FPTAS} \subseteq \mathcal{PTAS} \subseteq \mathcal{APX} \subseteq \mathcal{NPO}$$

Man kann zeigen

$$\mathcal{PO} = \mathcal{FPTAS} = \mathcal{PTAS} = \mathcal{APX} = \mathcal{NPO} \Leftrightarrow P = NP$$

 $\mathcal{PO} \subseteq \mathcal{FPTAS} \subseteq \mathcal{PTAS} \subseteq \mathcal{APX} \subseteq \mathcal{NPO} \Leftrightarrow P \neq NP$

Wunsch Design-Techniken und interessante Beispiele für verschiedene Approximationsalgorithmen

Petra Mutzel

Design-Techniken für Approximationsalgorithmen

- Die Greedy-Methode
- 2 Dynamische Programmierung
- 3 Inkrementelle Algorithmen für Partitionsprobleme
- 4 Spezielle, problemabhängige Verfahren
- **5** LP-basierte Verfahren
- 6 Lokale Suchverfahren

Wir werden Beispiele dazu in diesem und den folgenden Kapiteln kennenlernen.

Design-Techniken im Verlauf der Vorlesung

- 1 Die Greedy-Methode: Rucksack (2-Approximation) (Kap. 7)
- 2 Dynamische Programmierung: Rucksack (echt poly. Approximationsschema) (Kap. 7)
- 3 Inkrementelle Algorithmen für Partitionsprobleme: Bin Packing (Kap. 7)
- 4 Spezielle, problemabhängige Verfahren: TSP (Kap. 8)
- 5 LP-basierte Verfahren: MaxkSAT (Kap. 9)
- 6 Lokale Suchverfahren: MaxCut (Kap. 10)

Petra Mutzel VO 14/15 am 5./7. Juni 2018

Die Greedy-Methode

Grundidee:

Baue iterativ eine Lösung auf und mache dabei jeweils den lokal besten Schritt

Ausführung

- **1** Starte mit $L = \emptyset$ und der Grundmenge \mathcal{S} aus deren Elementen sich zulässige Lösungen zusammensetzen: $S = \mathcal{S}$.
- 2 Sei $s^* \in S$ ein Element das zur besten lokalen Verbesserung führt unter allen Elementen $s \in S$ für die $L \cup \{s\}$ zu einer zulässigen Lösung erweitert werden kann; setze $S \leftarrow S \setminus \{s^*\}$ und $L \cup \{s^*\}$;
- 3 Falls kein solches s^* mehr existiert, gehe zu 4, sonst gehe zu 2.
- 4 Ausgabe der zulässigen Lösung L.

- Kruskal und Prim für das MST (Minimum Spanning Tree)
 Problem sind beide Greedy-Verfahren, die sogar zur
 Optimallösung führen.
- Dasselbe gilt für Dijkstra für kürzeste Wegeprobleme, wenn die Kantenkosten nicht-negativ sind.
- Im allgemeinen führen Greedy Verfahren nicht zur Optimallösung.
- Es gibt stets eine Reihenfolge, die zum Optimum führt, aber i.A. kann man diese nicht im vorhinein berechnen.

Im folgenden: Greedy für das Rucksackproblem

Erinnerung

Rucksackproblem (KP)

Eingabe n Objekte mit

Gewichten $q_1, q_2, \ldots, q_n \in \mathbb{N}$

Nutzen $v_1, v_2, \ldots, v_n \in \mathbb{N}$ Gewichtsschranke $G \in \mathbb{N}$

Bepackung $B \subseteq \{1, 2, \dots, n\}$ Ausgabe mit $\sum g_i \leq G$

und $\sum v_i$ maximal

Erinnerung

 $\mathsf{KP} \in \mathcal{NPO}$

zugehöriges Entscheidungsproblem NP-vollständig

harmlos

 $g_i \leq G$ für alle i voraussetzen \checkmark

- 1 Sortiere die Elemente nicht-aufsteigend gemäß ihrem Nutzen-Gewichtverhältnis v_i/q_i . Sei (x_1,\ldots,x_n) die sortierte Folge der Gegenstände.
- \bigcirc Starte mit $B = \emptyset$.
- **3** Für j = 1, ..., n:
- Falls $G \geq g_i$ dann packe Gegenstand x_i ein: $B \leftarrow B \cup \{x_i\}$ und reduziere $G \leftarrow G - g_i$.
- **6** Ausgabe der zulässigen Bepackung B.

Laufzeit: $\mathcal{O}(n \log n)$

Analyse des Greedy

Seien m_C der von GREEDY-KNAPSACK erhaltene Zielfunktionswert und m^* der Optimalwert. Wir betrachten die Instanz mit

$$v_i:$$
 1 1 ... 1 $(kn-1)$
 $g_i:$ 1 1 ... 1 (kn)

und G = kn mit beliebig großem $k \in \mathbb{N}$. Dann ist $m^* = G - 1 = kn - 1$ und $m_G = n - 1$ und deshalb $\frac{m^*}{m_G} = \frac{kn-1}{n-1} > k.$

D.h. das Verhältnis kann beliebig schlecht werden. Wir können also keine Güte (Approximationsfaktor) zeigen.

Modifizierter Greedy

Grund: Der wertvollste Gegenstand wird nicht genommen.

Modifikation: Wähle die Greedy Lösung oder einen Gegenstand

mit größtem Wert $v_{\rm max}$.

Theorem (Approximation Greedy Knapsack)

Für $m_H := \max\{v_{\max}, m_G\}$ gilt

$$\frac{m^*}{m_H} < 2.$$

Wir haben nun also einen 2-approximativen Algorithmus für das Rucksackproblem.

Sei j der Index des ersten nicht genommenen Gegenstands.

Wert bis dahin:
$$\overline{v}_j = \sum_{i=1}^{j-1} v_i \leq m_G$$

Gewicht bis dahin:
$$\overline{g}_j = \sum_{i=1}^{j-1} g_i \leq G$$

Vertauscht man ein gewähltes $x_k \in \{x_1, x_2, \dots, x_{i-1}\}$ mit einem nicht gewähltem $x_l \in \{x_i, x_{i+1}, \dots, x_n\}$ ohne Größenzuwachs $(g_l \leq g_k)$, so hat die neue partielle Lösung den Wert $\overline{v}' = \overline{v}_i - v_k + v_l.$

Mit $g_l \leq g_k$ und $\frac{v_l}{q_l} \leq \frac{v_k}{q_k}$ erhalten wir $v_l \leq v_k$ und deshalb $\overline{v}' \leq \overline{v}_j$.

Petra Mutzel

Analyse des Greedy-Verfahrens ff

Das Wertgrößenverhältnis für die Gegenstände in $\{x_j, x_{j+1}, \dots, x_n\}$ ist höchstens $\frac{v_j}{a_i}$. Mit $\overline{g}_i + g_i > G$ (x_i wurde nicht genommen) erhalten wir:

$$m^* \leq \overline{v}_j + \overbrace{(G - \overline{g}_j)}^{\langle g_j} \frac{v_j}{g_j}$$
$$< \overline{v}_j + v_j$$

Fall 1: $v_i \leq \overline{v}_i$. Dann gilt: $m^* < 2\overline{v}_i \leq 2m_G \leq 2m_H$ Fall 2: $v_i > \overline{v}_i$. Dann ist $v_{\text{max}} > \overline{v}_i$ und es gilt: $m^* < \overline{v}_i + v_i$ $\leq \overline{v}_i + v_{\max}$ $< 2v_{\text{max}}$

In beiden Fällen erhalten wir also $m^* < 2m_H$.

 $< 2m_H$

Ein echt poly. Approx.-Schema für das Rucksackproblem

Grundlage: Pseudopolynomieller Algorithmus für KP basierend auf Dynamischer Programmierung

 $\begin{array}{ll} \text{Definiere} & M_{i,V} := \min \left\{ \sum\limits_{j \in B} g_j \mid B \subseteq \{1,2,\ldots,i\}, \sum\limits_{j \in B} v_j = V \right\} \\ & \text{minimales Gewicht, um Nutzen genau } V \text{ zu erzielen,} \end{array}$

durch Auswahl einiger der ersten i Gegenständen

"Randfälle"
$$M_{0,0}=0$$

$$M_{0,V}=\infty \ \mbox{für} \ V>0$$

$$M_{i,V}=\infty \ \mbox{für} \ V<0$$

Rek.-gleichung
$$M_{i,V} = \min\{M_{i-1,V}, M_{i-1,V-v_i} + g_i\}$$

Beobachtung dynamische Programmierung \leadsto Laufzeit $O(n \cdot V_{\max})$

KP mit kleinen Nutzenwerten schnell lösen

Laufzeit
$$O(n \cdot V_{\text{max}})$$
 mit dynamischer Programmierung

klar
$$V_{\max} = \sum_{i=1}^{n} v_i \le n \cdot \max\{v_1, \dots, v_n\}$$
 geeignet

klar Bepackung selbst mit gleichem Aufwand bestimmbar

Theorem (DP für Rucksackproblem)

Es gibt einen Algorithmus für KP, der in Zeit $O(n^2 \cdot \max\{v_1, \dots, v_n\})$ eine optimale Lösung berechnet.

Ein winziges Beispiel

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	∞	8	8	8	4	4
2	~	8	8	8	8	3
3	8	8	8	8	8	7
4	∞	8	8	8	8	∞
5	~	8	8	8	8	∞
6	~	8	8	11	11	11
7	8	∞	~	∞	15	15
8	~	8	8	8	8	14
9	8	∞	13	13	13	13
10	∞	∞	∞	∞	17	17
11	~	8	8	8	8	14
12	8	∞	~	∞	~	8
13	~	17	17	17	17	17
14	~	8	8	8	21	21
15	∞	∞	∞	24	24	20

	0	1	2	3	4	5
16	∞	∞	∞	∞	28	24
17	∞	∞	∞	∞	∞	27
18	∞	∞	∞	∞	∞	31
19	∞	∞	∞	28	28	28
20	8	∞	∞	∞	32	32
21	∞	∞	∞	∞	∞	31
22	∞	∞	30	30	30	30
23	∞	∞	∞	∞	34	34
24	8	8	∞	8	8	33
25	∞	~	8	~	∞	37
26	∞	∞	∞	∞	∞	∞
27	8	8	∞	8	8	8
28	∞	∞	∞	41	41	41
29	8	8	∞	8	45	45
30	8	8	∞	8	8	44
31	∞	∞	∞	∞	∞	48

FPTAS für Knapsack

Ausgabe 15 (mit $B = \{1, 5\}$)

Ein echt polynomielles Approximationsschema für KP

Beobachtung wenn alle v_i polynomiell klein Polynomialzeitalgorithmus verfügbar

 $\begin{array}{ll} \text{Idee} & \text{mache alle } v_i \text{ polynomiell klein} \\ v_i \leadsto \tilde{v_i} := \left\lfloor \frac{v_i}{k} \right\rfloor \\ k \text{ gerade ausreichend groß} \end{array}$

zentrale Einsicht Zulässigkeit davon unberührt Hoffnung Rundungsfehler werden nicht zu groß

Eine modifizierte, abgerundete Instanz

ursprüngliche Instanz

Gewichte
$$g_1, \ldots, g_n \in \mathbb{N}$$

Nutzen $v_1, \ldots, v_n \in \mathbb{N}$
Gewichtsschranke $G \in \mathbb{N}$

modifizierte Instanz

Gewichte
$$g_1,\ldots,g_n\in\mathbb{N}$$

Nutzen $\tilde{v_1},\ldots,\tilde{v_n}\in\mathbb{N}$
mit $\tilde{v_i}:=\left\lfloor\frac{v_i}{k}\right\rfloor$ mit $k:=\frac{\varepsilon\cdot\max\{v_1,\ldots,v_n\}}{(1+\varepsilon)\cdot n}$
Gewichtsschranke $G\in\mathbb{N}$

FPTAS für Knapsack

Beobachtungen

- k > 0
- Bepackungen zulässig für beide Instanzen oder keine Instanz

FPTAS für Knapsack 0000000

$$O\left(n^{2} \cdot \max\left\{\tilde{v}_{1}, \tilde{v}_{2}, \dots, \tilde{v}_{n}\right\}\right)$$

$$= O\left(n^{2} \cdot \max\left\{\left\lfloor \frac{v_{1}}{k} \right\rfloor, \left\lfloor \frac{v_{2}}{k} \right\rfloor, \dots, \left\lfloor \frac{v_{n}}{k} \right\rfloor\right\}\right)$$

$$= O\left(n^{2} \cdot \max_{1 \leq i \leq n} \left\{\left\lfloor \frac{(1+\varepsilon) \cdot n \cdot v_{i}}{\varepsilon \cdot \max\{v_{1}, v_{2}, \dots, v_{n}\}}\right\rfloor\right\}\right)$$

$$= O\left(n^{2} \cdot \left\lfloor \frac{(1+\varepsilon) \cdot n}{\varepsilon} \right\rfloor\right) = O\left(\frac{n^{3}}{\varepsilon} + n^{3}\right)$$

- polynomiell in Eingabelänge und $1/\varepsilon$ also
- also k jedenfalls groß genug

Abschätzung der Güte

Betrachte optimale Lösung B' für ursprüngliche Instanz optimale Lösung B für modifizierte Instanz berechnet durch pseudopolynomiellen Algorithmus

$$\text{zu zeigen} \quad \frac{\sum\limits_{i \in B'} v_i}{\sum\limits_{i \in B} v_i} \leq 1 + \varepsilon$$

Beobachtungen

- $\frac{v_i}{k} \geq \tilde{v_i} \geq \frac{v_i}{k} 1$ (wegen $\tilde{v_i} := \left\lfloor \frac{v_i}{k} \right\rfloor$)
- $\sum_{i \in B} \tilde{v_i} \ge \sum_{i \in B'} \tilde{v_i}$

weil B optimal für modifizierte Instanz

FPTAS für Knapsack 0000000

B': optimale Lösung für ursprüngliche Instanz

B: berechnete optimale Lösung für modifizierte Instanz

$$\begin{split} \sum_{i \in B} v_i & \geq \quad k \cdot \sum_{i \in B} \tilde{v_i} \geq k \cdot \sum_{i \in B'} \left(\frac{v_i}{k} - 1\right) \\ & = \quad \left(\sum_{i \in B'} v_i\right) - k \cdot \left|B'\right| = \mathsf{OPT} - k \cdot \left|B'\right| \\ & \geq \quad \mathsf{OPT} - \frac{\varepsilon \cdot \max\{v_1, v_2, \dots, v_n\}}{(1 + \varepsilon) \cdot n} \cdot n \\ & = \quad \mathsf{OPT} - \frac{\varepsilon}{1 + \varepsilon} \cdot \max\{v_1, v_2, \dots, v_n\} \\ & \geq \quad \mathsf{OPT} - \frac{\varepsilon}{1 + \varepsilon} \cdot \mathsf{OPT} \\ & = \quad \mathsf{OPT} \cdot \left(1 - \frac{\varepsilon}{1 + \varepsilon}\right) = \mathsf{OPT} \cdot \frac{1}{1 + \varepsilon} \end{split}$$

Zur Güte

$$\begin{array}{ll} \text{Wir haben} & \sum\limits_{i \in B} v_i \geq \mathsf{OPT} \cdot \frac{1}{1+\varepsilon} \\ & = \left(\sum\limits_{i \in B'} v_i\right) \cdot \frac{1}{1+\varepsilon} \end{array}$$

also
$$\frac{\sum\limits_{i \in B'} v_i}{\sum\limits_{i \in B} v_i} \leq 1 + \varepsilon \checkmark$$

Theorem (FPTAS für Rucksackproblem)

$$\mathsf{KP} \in \mathcal{FPTAS}$$

Design-Techniken im Verlauf der Vorlesung

- 1 Die Greedy-Methode: Rucksack (2-Approximation) (Kap. 7)
- 2 Dynamische Programmierung: Rucksack (echt poly. Approximationsschema) (Kap. 7)
- 3 Inkrementelle Algorithmen für Partitionsprobleme: Bin Packing (Kap. 7)
- 4 Spezielle, problemabhängige Verfahren: TSP (Kap. 8)
- **5** LP-basierte Verfahren: MaxkSAT (Kap. 9)
- 6 Lokale Suchverfahren: MaxCut (Kap. 10)

Bin Packing

Einführung Approximation Greedy für Knapsack F

Ein Inkrementeller Algorithmus für Bin Packing

Allgemein: Inkrementelle Algorithmen für Partitionsprobleme

Partitionsprobleme: Optimierungsprobleme, deren zulässige Lösungen Partitionen der endlichen Grundmenge entsprechen

Mögliche Ziele: Minimale Anzahl an Partitionen, Minimiere maximale Partition, . . .

Inkrementeller Algorithmus: Baut inkrementell eine Ausgabepartition auf

Beispiele: Machine Scheduling, Bin Packing, Graphfärbung

Petra Mutzel VO 14/15 am 5./7. Juni 2018

Inkrementelle Algorithmen für Partitionsprobleme

Grundidee

- 1 Sortiere die Elemente der endlichen Grundmenge S. Sei $\langle x_1, x_2, \dots, x_n \rangle$ die sortierte Folge
- 2 Setze $P \leftarrow \{\{x_1\}\}$
- 3 Für $i=2,\ldots,n$: Falls x_i zu einer Partitionsmenge $p\in P$ hinzugefügt werden kann, dann setze $p \leftarrow p \cup \{x_i\}$. Sonst füge eine neue Partitionsmenge $\{x_i\}$ zu P hinzu
- 4 Ausgabe der Partition P

Bin Packing

Das Bin Packing Problem

Eingabe: Endliche Menge $I = \{a_1, a_2, \dots, a_n\}$

 $\forall i \in \{1, 2, \dots, n\} : a_i \in (0, 1], a_i \in \mathbb{Q}$

Ausgabe: Partition $\{B_1, B_2, \dots, B_k\}$ von I mit minimalem k, so dass

 $\sum_{a_i \in B_i} a_i \le 1 \text{ für alle } j \in \{1, 2, \dots, k\}.$

- Suche die kleinste Anzahl an Kisten (Bins), in die n Gegenstände mit Volumina a_1, \ldots, a_n gepackt (Packing) werden können (1-dimensional). Die Kisten sind identisch und haben Größe 1.
- Entscheidungsproblem (existiert Bepackung mit $\leq K$ Kisten?) ist \mathcal{NP} -vollständig
- Beispiel: Für Tischlerei kleinere Stücke aus großen Holzblöcken schneiden, so dass Abfall minimiert wird
- Packungsprobleme in der Praxis: 2-D- bzw. 3-D-Bin Packing

Petra Mutzel VO 14/15 am 5./7. Juni 2018

First Fit Decreasing für Bin Packing

Algorithmus: First Fit Decreasing (FFD)

- **1** Sortiere die Elemente nicht-aufsteigend nach ihren Volumina a_i . Sei $x_1 \ge x_2 \ge \ldots \ge x_n$ die sortierte Folge.
- 2 Weise x_1 die Kiste B_1 zu. B_1 ist nun die einzige offene Kiste.
- 3 Für $i=2,\ldots,n$: Weise x_i derjenigen offenen Kiste mit dem kleinsten Index zu, in die x_i passt. Falls x_i in keine bereits geöffnete Kiste mehr passt, dann öffne eine neue Kiste und weise x_i dieser zu.

Beobachtungen:

- korrekt
- Laufzeit $\mathcal{O}(n^2)$

Bin Packing

Analyse First Fit Decreasing

Theorem

Sei I eine Instanz des Bin Packing Problems

- $m_{\mathsf{FFD}}(I)$: Lösungswert der FFD Heuristik
- $m^*(I)$: optimaler Lösungswert

Es gilt:

$$m_{\mathsf{FFD}}(I) \leq \frac{3}{2} m^*(I) + 1$$

Beweis zur Analyse von FFD

Wir partitionieren die sortierte Folge $x_1 > x_2 > ... > x_n$ wie folgt:

$$A = \left\{ x_i \mid a_i > \frac{2}{3} \right\}$$

$$B = \left\{ x_i \mid \frac{2}{3} \ge a_i > \frac{1}{2} \right\}$$

$$C = \left\{ x_i \mid \frac{1}{2} \ge a_i > \frac{1}{3} \right\}$$

$$D = \left\{ x_i \mid \frac{1}{3} \ge a_i \right\}$$

Betrachte FFD-Lösung und unterscheide zwei Fälle:

Fall 1: Es gibt eine Kiste, die nur Gegenstände aus D enthält

Fall 2: Keine Kiste enthält nur Gegenstände aus D

Petra Mutzel VO 14/15 am 5./7. Juni 2018

Beweis zur Analyse von FFD – Fall 1

- Fall 1: Es gibt eine Kiste, die nur Gegenstände aus D enthält
 - \Rightarrow Es gibt höchstens eine Kiste mit Belegung $<\frac{2}{3}$ (die letzte geöffnete)
 - denn: D-Gegenstände haben Größe $a_i \leq \frac{1}{3}$. Wenn es also eine zweite Kiste geben würde, hätte man diese mit den D-Gegenständen weiter gefüllt
 - \Rightarrow Bis auf eine Kiste alle $\geq \frac{2}{3}$ belegt
 - Behauptung folgt

Beweis zur Analyse von FFD – Fall 2

Fall 2: Keine Kiste enthält nur Gegenstände aus D

Sei I' die Instanz I ohne die $x_i \in D$

- Beobachtung: $m_{\mathsf{FFD}}(I') = m_{\mathsf{FFD}}(I)$
- Wir zeigen: $m_{\mathsf{FFD}}(I') = m^*(I')$, also FFD für I' optimal!
 - $\Rightarrow m_{\mathsf{FFD}}(I) = m^*(I)$, also FFD für I optimal! Begründung: Für Elemente aus D keine neue Kiste notwendig

Noch zu Zeigen: $m_{\text{FFD}}(I') = m^*(I')$

FFD Analyse: $m_{\text{FFD}}(I') = m^*(I')$

Noch zu Zeigen: $m_{\mathsf{FFD}}(I') = m^*(I')$

Jede Bepackung hat folgende Eigenschaften:

- **1** Gegenstände aus A sind immer allein in einer Kiste $(a_i > \frac{2}{3})$ \rightarrow FFD macht nichts falsch
- **2** Höchstens ein B-Gegenstand pro Kiste $(a_i > \frac{1}{2})$ \rightarrow FFD macht nichts falsch
- 3 Eine Kiste kann höchstens zwei Gegenstände enthalten:
 - "B+C" oder "C+C"
 - → Nur Verteilung der C-Gegenstände kritisch

Beobachtung (*): Wenn Anzahl der "B + C"-Kisten max. \Rightarrow opt.

Denn: Zwei beliebige C-Gegenstände passen in eine "C + C"-Kiste \rightarrow FFD macht nichts falsch

Argument für (*): da FFD in nicht-aufsteigender Reihenfolge packt, kommt jeder C-Gegenstand zum größtmöglichen B-Gegenstand \Rightarrow optimal

Bin Packing

FFD Analyse: $m_{\text{FFD}}(I') = m^*(I')$ – Anschauung

Legende: $B_1, \dots B_5, C_1, \dots C_4$: sortierte B- bzw. C-Gegenstände

Petra Mutzel VO 14/15 am 5./7. Juni 2018

FFD Analyse: $m_{\text{FFD}}(I') = m^*(I')$ – Anschauung 2

Legende: $B_1, \dots B_5, C_1, \dots C_4$: sortierte B- bzw. C-Gegenstände

					÷
	Х	Х	Х	Х	C_4
		Χ	Χ	Х	C₃
			Х	Х	C ₄ C ₃ C ₂ C₁
			Х	Х	$\overline{C_1}$
B_1	B ₂	B ₃	l _{B₄}	l _{B5}	

Petra Mutzel

Diskussion zum Bin Packing Problem

- Aufwändige Fallunterscheidung ermöglicht folgende Verschärfung: $m_{\mathsf{FFD}}(I) \leq \frac{11}{9} m^*(I) + 1$ → Diese Schranke ist scharf, d.h. es existieren Beispiele mit der Eigenschaft
- Best Fit Decreasing Heuristik (BFD): wähle jeweils die am besten passende Kiste (also diejenige mit dem kleinsten Restplatz, in die der Gegenstand geht). Für BFD gilt gleiche Schranke wie für FFD, obwohl die Lösungswerte i.A. nicht identisch sind.
- Verzichtet man auf die Vorsortierung (z.B. Online Optimierung: Daten werden erst nach und nach bekannt), dann kann man zeigen, dass die First Fit Heuristik die folgende Schranke erfüllt: $m_{\text{FF}}(I) \leq \frac{17}{10} m^*(I) + 2$.

Petra Mutzel VO 14/15 am 5./7. Juni 2018