Complex Numbers

A complex number is an ordered pair of real numbers, (a, b) = a + bi. A vector in \mathbb{R}^2 is also an ordered pair, (a, b) of real numbers.

Indeed, vector addition and scalar multiplication on complex numbers are defined just as with \mathbb{R}^2 . However, unlike vectors in \mathbb{R}^2 , there is also an operation \cdot . We desire for $(0,1)\cdot(0,1)=(-1,0)$; essentially, $i^2=-1$. We say that i is a square foot of -1; every complex number except 0 has two square roots.

$$(a, b) \cdot (c, d) = (a + bi) + (c + di)$$

 $= a(c) + adi + bci + bd(i^2)$
 $= (ac - bd) + (ad + bc)i$
 $= (ac - bd, ad + bc)$

Thus, \mathbb{R}^2 with the operations + and the above defined complex multiplication is known as \mathbb{C} . We write as a+bi instead of (a,b).

Given $z=(a+bi)\in\mathbb{C}$, we write $\mathrm{Re}(z)=a$ and $\mathrm{Im}(z)=b$. If $\mathrm{Im}(z)=0$, then $z\in\mathbb{R}\times\{0\}\subset\mathbb{C}$. However, many people say that $\mathbb{R}\subseteq\mathbb{C}$, even if \mathbb{C} isn't defined as such.

Reciprocals of Complex Numbers

Let $z \in \mathbb{C}$, where $z \neq 0$. Then, $\exists w \in \mathbb{C}$ such that zw = 1.

Let w = c + di. We want to show that zw = 1.

$$(a + bi) + (c + di) = (ac - bd) + (ad + bc)i$$

with the condition that

$$ac - bd = 1$$
$$ad + bc = 0.$$

Thus, let w = c + di, with $a, b \neq 0$

$$c = \frac{a}{a^2 + b^2}$$
$$d = \frac{-b}{a^2 + b^2}$$

For every $z \neq 0$, with z = a + bi, the *reciprocal* of z is defined as $\frac{1}{z} = \frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}i$. Then, for $w \in \mathbb{C}$, we define

$$\frac{w}{z} := w\left(\frac{1}{z}\right).$$

Properties of Complex Numbers

Let $z = a + bi \in C$. Then, the (Euclidean) norm (or absolute value) of z is defined as

$$|z| = \sqrt{a^2 + b^2}.$$

The conjugate of z = a + bi is $\overline{z} = a - bi$.

- (i) $z\overline{z} = |z|^2$
- (ii) $\overline{(\overline{z})} = z$

(iii)
$$\overline{(z+w)} = \overline{z} + \overline{w}$$

(iv)
$$\overline{zw} = \overline{z} \cdot \overline{w}$$

(v)
$$z + \overline{z} = 2\text{Re}(z)$$
, so $\text{Re}(z) = \frac{z + \overline{z}}{2}$

(vi)
$$z - \overline{z} = 2\text{Im}(z)i$$
, so $\text{Im}(z) = \frac{z - \overline{z}}{2i}$

Polar Representation

Let z = a + bi (or z = (a, b)). Then, $|z| = \sqrt{a^2 + b^2}$ is the *radius*, and the *argument* is found by $\theta = \arctan(b/a)$ for $a \neq 0$. Therefore, the full polar representation is as follows:

$$z = |z| (\cos \theta + i \sin \theta).$$
 $\theta \in [0, 2\pi)$

If z = 0, then |z| = 0, and arg z is undefined.

For example, we can find arg *i* in $[\pi, 3\pi)$ as $\frac{5\pi}{2}$.

For z_1 and z_2 in polar form, we have:

$$|z_1 z_2| = |z_1||z_2| \tag{1}$$

$$\arg(z_1 z_2) = \arg z_1 + \arg z_2 \mod 2\pi \tag{2}$$

Proof of (1):

$$|z_1 z_2|^2 = (z_1 z_2) \overline{(z_1 z_2)}$$

$$= z_1 z_2 \overline{z_1 z_2}$$

$$= z_1 \overline{z_1} z_2 \overline{z_2}$$

$$= |z_1|^2 |z_2|^2$$

Since $|z| \ge 0$, we get $|z_1 z_2| = |z_1||z_2|$.

Let $z=2(\cos \pi/6+i\sin \pi/6)$, and let $f:\mathbb{C}\to\mathbb{C}$ defined as f(w)=zw. Then, f rotates w by $\pi/6$ and scales w by 2.

Theorem: For $n \in \mathbb{N}$, if $z = r(\cos \theta + i \sin \theta)$, then $z^n = r^n(\cos(n\theta) + i \sin(n\theta))$.

Proof: Induct on n. For the base case, we know that n = 1 satisfies this property. For n > 1, we have:

$$z^{n+1} = (z^n)(z)$$

$$= (r^n(\cos(n\theta) + i\sin(n\theta))) r(\cos\theta + i\sin\theta)$$

$$= (r^n)(r) (\cos(n\theta + \theta) + i\sin(n\theta + \theta))$$
Polar Representation Definition
$$= r^{n+1}(\cos((n+1)\theta) + i\sin((n+1)\theta))$$

We can use this technique to find the "roots of unity." For example, to find all z such that $z^3 = 1$, we use our

technique:

$$z^{3} = 1$$

$$|z| = 1$$

$$\arg z^{3} = 0$$

$$3 \arg z = 0 \mod 2\pi$$

$$\arg z = \frac{k2\pi}{3}$$

$$= 0, \frac{2\pi}{3}, \frac{4\pi}{3}$$

$$z_{1} = 1$$

$$z_{2} = (\cos 2\pi/3 + i \sin 2\pi/3)$$

$$z_{3} = (\cos 4\pi/3 + i \sin 4\pi/3)$$

We can see that $z_2^2 = z_3$.

For the *n* case, we find $z_2 = \cos(2\pi/n) + i\sin(2\pi/n)$, and $z_k = z_2^{k-1}$.

Exponential, Logarithm, and Trigonometric Functions in $\mathbb C$

Exponential

Let z = a + bi. We define e^{a+bi} as follows:

$$e^{a+bi} = e^a (\cos b + i \sin b)$$

Recall that for every nonzero complex number, $z = |z|(\cos \theta + i \sin \theta)$, where $\theta = \arg z$. Thus,

$$z = |z|e^{i\theta}$$
$$= |z|e^{i\arg z}.$$

The function e^z has some properties similar to the function e^x in real numbers, and some properties varying with the real numbers.

$$e^z e^w = e^{z+w}$$
$$e^z \neq 0$$

However, there are some differences:

$$|e^{i\theta}| = 1$$
 $\forall \theta$ $e^{a+bi} = e^a$

From these properties, we find Euler's equation:

$$e^{i\pi}+1=0$$

Additionally, e^z is periodic, while $f(x) = e^x$ is injective:

$$e^{z+2n\pi} = e^{z} (\cos(2n\pi) + i \sin 2n\pi)$$
$$= e^{z}$$

When examining the function $f: \mathbb{C} \to \mathbb{C} \setminus \{0\}$, $z \mapsto e^z$, we find that the following happen:

- $f(\mathbb{R}) = (0, \infty)$ we apply $f(x) = e^x$.
- $f(a+bi) = e^a e^{bi} e^a$ is rotated by b.
- $f(\mathbb{R} + bi)$ is expressed as the line along b radians through the origin.
- Therefore, $f(A_0) = \mathbb{C} \setminus \{0\}$, where $A_0 = \{a + bi \mid a \in \mathbb{R}, b \in [0, 2\pi)\}$.

Logarithm

Recall that for a function $f: A \to B$, f^{-1} is a function if f is injective. However, for any f, it is the case that $f^{-1}(b)$ does exist, defined as follows:

$$f^{-1}(b) = \{a \mid f(a) = b\}.$$

For the function $f(z) = e^z$, f is not one to one, so for $w = e^z$, $f^{-1}(w) = \{z' \in \mathbb{C} \mid e^{z'} = w\}$. We can find this as $f^{-1}(w) = \{z + 2n\pi i \mid n \in \mathbb{Z}\}$.

We define $\log(w) := \{z \in \mathbb{C} \mid e^z = w\}$. For a fixed $\theta \in \mathbb{R}$, we define $\log_{A_0}(w) := \{z \mid e^z = w, z \in A_\theta\}$.

Let $z = 1 + \frac{5\pi}{2}i$. Then,

$$\log_{A_{-\pi}} e^z = 1 + \frac{\pi}{2}i$$

Let $w \in \mathbb{C} \setminus \{0\}$. To find log w (all values), then

$$z \in \log w$$

$$e^{z} = w$$

$$= |w|e^{i \arg w}$$

$$e^{a+bi} = |w|e^{i \arg w}$$

$$e^{a}e^{ib} = |w|e^{i \arg w}$$

Therefore, $a = \ln |w|$ and $b = \arg w$. Additionally, the following hold, for $z_1, z_2 \in \mathbb{C}$:

$$\log_{A_a}(z_1 z_2) = \log_{A_a}(z_1) + \log_{A_a}(z_2) + 2n\pi i$$

Cosine and Sine

$$e^{ib} = \cos b + i \sin b$$

$$e^{-ib} = \cos b - i \sin b$$

$$\cos z := \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z := \frac{e^{iz} - e^{-iz}}{2i}$$

Complex Powers

Recall that for $s, t \in \mathbb{R}$, $s^t = e^{t \ln s}$, where s > 0. For $z, w \in \mathbb{C}$, $z^w = e^{w \log z}$., where $z \neq 0$.

$$(-2)^{i} = e^{i \log(-2)}$$

$$= e^{i(\ln(2) + i\pi)}$$

$$= e^{i \ln 2 - (\pi + 2\pi n)}$$

$$= e^{-\pi + 2\pi n + i \ln 2}$$

This has infinitely many values.

Let $\alpha = u + vi$. Then,

$$z^{\alpha} = e^{\alpha \log z}$$

$$= e^{(u+vi)(\ln|z|+i\arg z)}$$

$$= e^{(u\ln|z|-v\arg z)}e^{i(v\ln|z|+u\arg z)}$$

Since arg $z = \theta + 2\pi n$ for some real $\theta \in [0, 2\pi)$,

$$= e^{u \ln z} e^{-v(\theta+2\pi n)} e^{iv \ln |z|} e^{iu(\theta+2\pi n)}$$

Therefore, complex exponentiation is single-valued if $\alpha \in \mathbb{R}$. If $\alpha \in \mathbb{Z}$, then z^{α} has only one value; if $\alpha \in \mathbb{Q}$, where $\alpha = \frac{p}{q}$ and $\gcd(p, q) = 1$, then z^{α} takes q distinct values, which are the qth-roots.

Continuous Functions with Complex Domains

Let $z \in \mathbb{C}$, let r > 0.

- The set $D(z; r) := \{ w \mid w \in \mathbb{C}, |z w| < r \}$ is the *r*-neighborhood of *z*.
- A subset $A \subseteq \mathbb{C}$ is open if $(\forall z \in A) (\exists r > 0) \ni D(z; r) \subseteq A$.

For example, if $A = \{z \mid \text{Re}(z) > 0\}$, we can find r equal to half the magnitude of the real component of z for any $z \in A$, meaning A is open.

Meanwhile, if $A = \{z \mid \text{Re}(z) \ge 0\}$, this is not the case. If z = 0, then $\nexists r > 0$ such that $D(z; r) \subseteq A$, as any open ball of radius r will have some element in \overline{A} .

• A subset $B \subseteq \mathbb{C}$ is closed if $\overline{B} \subseteq \mathbb{C}$ is open.

For example, $A = \emptyset$ is open, by vacuous truth, so $\overline{A} = \mathbb{C}$ is closed. Similarly, since \mathbb{C} is open, \emptyset is closed.

Meanwhile, $A = \{x + iy \mid -1 \le x < 1\}$ is neither open nor closed.

Limits

Let $A \subseteq \mathbb{C}$, $f: A \to \mathbb{C}$, $z_0 \in \mathbb{C}$. Then,

$$\lim_{z \to z_0} f(z) = \ell$$

means both of the following hold:

- (i) for some r > 0, $D(z_0; r) \setminus \{z_0\} \subseteq dom(f)$,
- (ii) $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $f(D(z_0; \delta) \setminus \{z_0\}) \subseteq D(\ell; \varepsilon)$.

For example, if

$$f(z) = \begin{cases} z & z \in \mathbb{C} \setminus \mathbb{R} \\ 3i & z \in \mathbb{R} \end{cases}$$

Then, $\lim_{z\to 0} f(z)$ does not exist, as there is no ℓ that satisfies both conditions. Specifically, if $\ell=3i$, and we set $\varepsilon=1$, then a disc of any radius around 0 has some $z\in\mathbb{C}\setminus\mathbb{R}$ that maps to itself. Similarly, if we set $\ell=0$, then there is a real number in a disc of any radius around 0.

Note: f does not have to be defined at z_0 for the limit to be defined at z_0 .

Let $A \subseteq \mathbb{C}$ be open, $f: A \to \mathbb{C}$, and $z_0 \in A$. We say f is continuous at z_0 if $\lim_{z \to z_0} f(z) = f(z_0)$. We say f is continuous on A if $\forall z_0 \in A$, f is continuous at z_0 .

We will show that $f: \mathbb{C} \to \mathbb{C}$, $z \mapsto 3z$ is continuous.

Scratch Work: We want δ such that $f(D(z_0; \delta)) \subseteq D(3z_0; \varepsilon)$. Let $z \in D(z_0; \delta)$, meaning f(z) = 3z. We want $3z \in D(3z_0; \varepsilon)$, meaning we want $|3z - 3z_0| < \varepsilon$, or $|z - z_0| < \frac{\varepsilon}{3}$.

Proof: Let $\varepsilon > 0$. Set $\delta = \frac{\varepsilon}{3}$. We show $f(D(z_0; \delta)) \subseteq D(f(z_0); \varepsilon)$. Let $z \in D(z_0; \delta)$. Then, $|z - z_0| < \delta = \varepsilon/3$, meaning $3|z - z_0| < \varepsilon$, meaning $|3z - 3z_0| < \varepsilon$, so $|f(z) - f(z_0)| < \varepsilon$. Therefore, $f(z) \in D(f(z_0); \varepsilon)$. Since f is continuous at arbitrary z_0 , f is continuous on \mathbb{C} .

Sequences

A sequence $z_1, z_2, \dots \in \mathbb{C}$. A sequence converges to $z_0 \in \mathbb{C}$ if

$$(\forall \varepsilon > 0)(\exists M \in \mathbb{N}) \ni \forall z_{n>M}, |z_n - z_0| < \varepsilon$$

In words, for any radius around z_0 , we can find z_n arbitrarily close to z_0 for sufficiently large n. We write $z_n \to z_0$ if this is the case.

Let $f: \mathbb{C} \to \mathbb{C}$. Then, f is continuous on \mathbb{C} if and only if the following equivalent conditions are met:

- (i) the inverse image of every open set is open $(f^{-1}(B) := \{a \in \mathbb{C} \mid f(a) \in B\});$
- (ii) the inverse image of every closed set is closed;
- (iii) for every sequence $(z_n)_n$ such that $(z_n)_n \to z_0$, $f(z_n) \to f(z_0)$.

Let

$$f(z) = \begin{cases} 0 & z = 0 \\ 1 & z \neq 0 \end{cases}.$$

This function is not continuous. We will check that (i)–(iii) fail.

- (i) Let B = D(0; 1). Then, $f^{-1}(B) = \{0\}$, which is not open set.
- (ii) Let $B = \operatorname{cl}(D(1; 0.5))$. Then, $f^{-1}(B) = \mathbb{C} \setminus \{0\}$, which is not closed.
- (iii) Let $z_n = \frac{1}{n}$. Then, $(z_n)_n \to 0$, but $f(z_n) = 1$ for all n, meaning $f(z_n) \to 1 \neq f(0)$.

To show limit divergence, recall the definition of limit convergence:

$$\lim_{n\to\infty} z_n = z_0 \Leftrightarrow (\forall \varepsilon > 0)(\exists M \in \mathbb{N}) \ni \forall z_{n>M}, \ |z_n - z_0| < \varepsilon.$$

Let $z_1, \ldots, \in \mathbb{C}$ be a sequence. Then, $\lim_{n\to\infty} = \infty$ means

$$(\forall M > 0)(\exists N \in \mathbb{N}) \ni \forall n > N, |z_n| > M.$$

In words, $|z_n|$ is arbitrarily large for sufficiently large n.

Connected Sets

Let $a, b \in \mathbb{C}$. A path from a to b is a continuous function $p : [0, 1] \to \mathbb{C}$ such that p(0) = a and p(1) = b. Let $S \subseteq \mathbb{C}$. If $p([0, 1]) \subseteq S$, then p is a path in S.

We say S is path-connected if for any $s, t \in S$, there is a path in S from s to t.

Every set that is path-connected is connected, but not necessarily the other way around — if A is open and path connected, then A is connected.

An open, path-connected subset of \mathbb{C} is known as a region, or a domain.

Let $A = \mathbb{R} \times \{0\}$ (or the x axis in \mathbb{C}). A is not a region, as A is not an open set, even if A is path-connected.

 $A \subseteq \mathbb{C}$ is bounded if there exists r > 0 such that $A \subseteq D(0; r)$. $A = \mathbb{R} \times \{0\}$ is not bounded.

If $A \subseteq \mathbb{C}$, then A is compact if A is closed and bounded. There are various properties of compact sets that make them particularly amenable towards analysis.

Extreme Value Theorem: Every real-valued continuous function on a compact domain attains its maximum and minimum values.

Uniform Continuity Theorem: Elaborated below.

Uniform Continuity

Recall that if $f: A \to \mathbb{C}$, f is continuous if $\forall a \in A$, $\lim_{z \to a} f(z) = f(a)$.

$$(\forall a \in A)(\forall \varepsilon > 0)(\exists \delta_a > 0) \ni f(D(a; \delta_a)) \subseteq D(f(a); \varepsilon)$$
 δ depends on a

When f is uniformly continuous, there is one value of δ , dependent on ε , that applies for every value of a.

$$(\forall \varepsilon > 0)(\exists \delta_{\varepsilon} > 0) \ni (\forall a \in A), f(D(a; \delta_{\varepsilon})) \subseteq D(f(a); \varepsilon)$$

Riemann Sphere

Let $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2\}$. Let N = (0, 0, 1) denote the north pole. Then, there is a continuous bijection from $S^2 \setminus \{N\} \to \mathbb{C}$.

We can visualize this by picking a random point on the sphere and drawing a line from the north pole through the sphere to this point, and finding the point that intersects the plane.

Consider the sequence $z_n = n^2 i$ for n = 1, 2, ... We can see that, on the projection from z_n to the sphere, all the values of p converge to N. Therefore, we write $\lim_{n\to\infty} z_n = \infty$, where ∞ corresponds to N on S^2 .

We can define $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ to be the complex plane that includes the "point at infinity" (from the projection on S^2 that corresponds to the north pole).

Analytic Functions

Let $f: A \subseteq \mathbb{C} \to \mathbb{C}$ where A is open. Let $z_0 \in A$. We say f is differentiable at z_0 if

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$$

exists.

Rules of Differentiation

- (f + q)' = f' + q'
- (fg)' = f'g + fg'
- $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{(g)^2}$
- $(f \circ g)' = g'(f' \circ g)$
- For $n \in \mathbb{Z}$, $(z^n)' = nz^{n-1}$

Let $f(z) = \overline{z}$. We will find this value by directly applying the definition of the derivative.

$$f'(z_0) = \lim_{z \to z_0} \frac{\overline{z} - \overline{z_0}}{\overline{z - z_0}}$$
$$= \lim_{z \to z_0} \frac{\overline{z} - \overline{z_0}}{\overline{z - z_0}}$$

Let's approach z_0 from the horizontal direction. Suppose $z=z_0+t$ for some $t\in\mathbb{R}$. Then,

$$\lim_{z \to z_0} \frac{\overline{z_0 + t} - \overline{z_0}}{z_0 + t - z_0} = 1.$$

Let's approach z_0 from the horizontal direction. Suppose $z=z_0+ti$ for some $t\in\mathbb{R}$. Then,

$$\lim_{z \to z_0} \frac{\overline{z_0 + ti} - \overline{z_0}}{z_0 + ti - z_0} = \frac{-ti}{ti}$$
$$= -1.$$

Since $1 \neq -1$, we find that the limit does not exist.

We see that complex-differentiability is a strong condition.

Suppose that $f'(z_0) = 2i$, meaning

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = 2i.$$

If z is close to z_0 , then $f(z) - f(z_0) \approx 2i(z - z_0)$. Pictorially, we can visualize this as, for z_0 sufficiently close to z, the vector $z_0 - z$ is akin to a counterclockwise rotation and a scaling by 2. This is applicable for *all* z in sufficient proximity to z_0 .

Specifically, we can see that the complex differentiable function is *angle-preserving*. The technical name for f is that f is *conformal*.

Analytic Function

Let $f: A \subseteq C \to \mathbb{C}$. If f is differentiable at every $z_0 \in A$, we say f is analytic on A.

If f is analytic on A, then f is infinitely differentiable on A.

If f is analytic on A and $f'(z_0) \neq 0$ for some $z_0 \in A$, then f is conformal at $z_0 \in A$.

Cauchy-Riemann Theorem

Given a function $f(x,y): \mathbb{R}^2 \to \mathbb{R}$. Recall that we can take partial derivatives, $\frac{\partial f}{\partial x}$, and directional derivative $\frac{\partial f}{\partial u}$ for some unit vector u.

However, for \mathbb{C} , there is only one derivative, $f'(z_0)$, meaning that regardless of direction, $f'(z_0)$ exists and has one value. We can contextualize f(z) = f(x+yi) = u(x,y) + iv(x,y), where $u(x,y) \in \mathbb{R}$ and $v(x,y) \in \mathbb{R}$. Then,

$$\frac{\partial u}{\partial x} \neq \frac{\partial u}{\partial v}$$

and

$$\frac{\partial v}{\partial x} \neq \frac{\partial v}{\partial y}$$

but

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}.$$

We can see this by first letting $z = z_0 + \delta x$.

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z_0 + \delta x) - f(z_0)}{z_0 + \delta x - z_0}$$

$$= \lim_{z \to z_0} \frac{u(x_0 + \delta x, y_0) + iv(x_0 + \delta x, y_0) - (u(x_0, y_0) + iv(x_0, y_0))}{\delta x}$$

$$= \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

and in the y direction,

$$f'(z_0) = \frac{1}{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$
$$= -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

We set these two values equal to find

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y},$$

which are the Cauchy-Riemann equations. The corresponding theorem states that if $f'(z_0)$ exists, then the Cauchy-Riemann equations must hold.

For example, if $f(z) = \overline{z}$, with f(x + yi) = x - yi, we have u(x, y) = x and v(x, y) = -y. Then,

$$\frac{\partial u}{\partial x} = 1$$

$$\frac{\partial v}{\partial v} = -1,$$

meaning f is not complex-differentiable.

If $f:A\to\mathbb{C}$ satisfies the Cauchy-Riemann equations at every $z_0\in A$, then f is analytic on A.