

Covalent bonding

Covalent bonding

Part A	Number of bonding electrons
Wh	nich of the following molecules contains six bonding electrons?
	\bigcirc NCl $_3$
	\bigcirc C ₂ H ₄
	\bigcirc SF $_6$
	\bigcirc H ₂ S
	\bigcirc CO ₂

Part B P-H and Cl-H bonds

The P-H bond energy is the mean (average) of the H-H and P-P values. Explain why the H-Cl bond energy is **not** the mean of the H-H and Cl-Cl values.

Some bond energy values are given in the table below:

bond	bond energy $/\mathrm{kJ}\mathrm{mol}^{-1}$	bond	bond energy $/\mathrm{kJ}\mathrm{mol}^{-1}$
H-H	436	$\mathrm{H}\mathrm{-H}$	436
P-P	208	Cl-Cl	244
Р-Н	322	H-Cl	431

- **1** The Cl-H bond is more polar than the P-H bond.
- 2 Cl has a smaller covalent radius than P.
- **3** P has five valence electrons whereas Cl has seven.

\bigcirc	1, 2 and 3 are correct
	1 and 2 only are correct
	2 and 3 only are correct
	1 only is correct
	3 only is correct

Part A adapted with permission from UCLES, A-Level Chemistry, November 1992, Paper 4, Question 5; Part B adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 2, Question 2

Shapes of molecules and ions

Shapes of molecules and ions

Part A F ₂ O
By considering the number of lone and bonding pairs of electrons, predict the shape of ${ m F}_2{ m O}.$
Part B H_3O^+ By considering the number of lone and bonding pairs of electrons, predict the shape of H_3O^+ .
Part C ${ m ClF_4}^-$ By considering the number of lone and bonding pairs of electrons, predict the shape of ${ m ClF_4}^-$.

Part D $\operatorname{SbF_5}^{n-}$

Antimony, Sb, is in group 15 of the Periodic Table. It forms a series of salts which contain the ${\rm SbF}_5{}^{n-}$ anion, the structure of which is a square-based pyramid:

Figure 1: Structure of the ${\rm SbF_5}^{n-}$ anion

Deduce the total number of electrons around the antimony atom.

Deduce the value of n.

Adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 3, Question 2

Dative bond and similar shapes

Dative bond and similar shapes

Part A Me_3N and BF_3

Trimethylamine, Me_3N , reacts with boron trifluoride, BF_3 , to form a compound of formula Me_3NBF_3 .

$$[\mathrm{Me}=\mathrm{CH_3}]$$

How may this reaction be drawn in terms of the shapes of the reactants and products?

A Me
$$\stackrel{\text{Me}}{\downarrow}$$
 $\stackrel{\text{Me}}{\downarrow}$ $\stackrel{\text{Me}}{$

$$\mathbf{D} \quad \mathbf{Me} \quad \mathbf{Me} \quad \mathbf{Me} \quad \mathbf{F} \quad \mathbf{F} \quad \mathbf{F} \quad \mathbf{Me} \quad$$

- \bigcirc
- () E
- () C
- () D

Part A adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 3; Part B adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 6

Part B

Similar shapes

Home Shapes and angles

Shapes and angles

Why is the molecule of BCl_3 planar, whereas the molecule of PH_3 is pyramidal? The boron atom has no d-orbitals available for bonding. The boron atom in BCl_3 has six electrons in its valency shell, whereas the phosphorus atom in PH_3 has eight. The repulsion between chlorine atoms is greater than that between hydrogen atoms,	Part A	BCl_3 and PCl_3
The boron atom in BCl_3 has six electrons in its valency shell, whereas the phosphorus atom in PH_3 has eight.	Wi	hy is the molecule of BCl_3 planar, whereas the molecule of PH_3 is pyramidal?
		The boron atom has no d-orbitals available for bonding.
The repulsion between chlorine atoms is greater than that between hydrogen atoms,		$ \qquad \text{The boron atom in } BCl_3 \text{ has six electrons in its valency shell, whereas the phosphorus atom in } PH_3 \text{ has eight.} $
		The repulsion between chlorine atoms is greater than that between hydrogen atoms,
The covalent radius of phosphorus is greater than that of boron.		The covalent radius of phosphorus is greater than that of boron.
The covalent radius of chlorine is greater than that of hydrogen.		The covalent radius of chlorine is greater than that of hydrogen.
Part B NH_3	Part B	NH_3
In the ammonia molecule, what is the approximate value of the ${ m H-N-H}$ bond angle?	In ¹	the ammonia molecule, what is the approximate value of the $\mathrm{H-N-H}$ bond angle?
○ 180°		○ 180°
\bigcirc 120 $^{\circ}$		\bigcirc 120 $^{\circ}$
\bigcirc 107 $^{\circ}$		\bigcirc 107 $^{\circ}$
O 90°		○ 90°
○ 60°		○ 60°

Part A adapted with permission from UCLES, A-Level Chemistry, June 1991, Paper 3, Question 4; Part B adapted with permission from OCSEB, A-Level Chemistry, June 1994, Paper 1, Question 1

Home Shape of ozone

Shape of ozone

А	Lev	el
С	С	С

Part A $ m O_3$
Predict the shape of the ozone molecule O_3 .
- 100.00 u.o 0.u.o 0_0.o 0.u.o 0_0.o
Part B
How many lone pairs of electrons are in O_3 ?

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 1, Question 5; Part B created for isaacphysics.org by Robert Less

Bond angles

Bond angles

Part A Methane, ammonia and water

The bond lengths and bond angles in the molecules of methane, ammonia and water may be represented as follows:

Figure 1: Shapes of molecules of methane, ammonia and water.

What causes this trend in the bond angles shown, according to valence shell electron pair repulsion theory?

- 1 increasing repulsion between hydrogen atoms as the bond length decreases
- 2 the number of non-bonding electron pairs in the molecule
- 3 a nonbonding electron pair having a greater repulsive force than a bonding electron pair
 - 1, 2 and 3 are correct
 1 and 2 only are correct
 2 and 3 only are correct
 1 only is correct
 3 only is correct

Part B SO_3^{2-}

The ${\rm SO_3}^{2-}$ ion may be represented as (geometry not necessarily representative):

$$\left[\begin{array}{cc} O - \ddot{S} - O \\ O \end{array}\right]^{2}$$

Figure 2: $SO_3^{\ 2-}$ ion

What is the O-S-O bond angle?

- \bigcirc 90° exactly
- about 107°
- \bigcirc about 109.5°
- 120° exactly

Part A adapted with permission from UCLES, A-Level Chemistry, June 1992, Paper 4, Question 31; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 2

 $\underline{\text{Home}} \qquad \text{Shape of } SnCl_2$

Shape of $SnCl_2$

Which of the following structures represents the gaseous SnCl_2 molecule? The orbital lobe represents a lone (unshared) pair of electrons.

Figure 1: Possible shapes of SnCl_2

В
С
D

Ε

Adapted with permission from UCLES, A-Level Chemistry, November 1991, Paper 1, Question 5

Home SI

Shapes of fluorides

Shapes of fluorides

For each of the following, enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".
Part A ${ m BF}_3$
Describe the shape of ${ m BF_3}.$
Part B ${ m CF_4}$ Describe the shape of ${ m CF_4}.$
Part C NF_3 Describe the shape of NF_3 .
Part D ${ m SF}_6$ Describe the shape of ${ m SF}_6$.

Part A adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 1, Question 1

Shapes of halide compounds

Shapes of halide compounds

For each of the following, deduce the shape of the molecules and enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

Part A BBr ₃
Deduce the shape of of BBr_3 .
Part B ${ m PF}_3$
Deduce the shape of of PF_3 .
Part C SF ₄
Deduce the shape of ${ m SF}_4.$
Part D ${ m IF}_5$
Deduce the shape of ${ m IF}_5$.
Part E $AlCl_3$ and Cl^-
Predict the shape of the species formed from the reaction of $\mathrm{AlCl_3}$ with $\mathrm{Cl^-}$.

Shapes of xenon compounds

Shapes of xenon compounds

For each of the following, deduce the shape of the molecules and enter a one to two word answer, using appropriate shape of molecule terminology, e.g. "linear".

Part A XeF ₂
Describe the shape of XeF_2 .
Part B ${ m XeOF}_2$
Describe the shape of ${ m XeOF_2}$.
Part C XeO ₄
Describe the shape of ${ m XeO_4}.$
Part D XeF ₄
Describe the shape of ${ m XeF_4}$.
Part E XeOF ₄
Describe the shape of ${ m XeOF_4}$.