CAPÍTULO 5. SEQUÊNCIAS DE NÚMEROS REAIS

Sumário

Sequências de números reais
Outros exemplos de sequências
Limite de uma sequência
3

1. SEQUÊNCIAS DE NÚMEROS REAIS

Intuitivamente, uma sequência de números reais é uma lista enumerável infinita com possíveis repetições

$$x_0, x_1, \ldots, x_n, \ldots$$

onde $x_n \in \mathbb{R}$ para todo $n \in \mathbb{N}$.

Formalmente, uma sequência de números reais é uma função

$$x: \mathbb{N} \to \mathbb{R}$$
.

Denotamos x(n) por x_n para todo $n \in \mathbb{N}$. Além disso, também escrevemos

$$x = (x_n)_{n \in \mathbb{N}}.$$

Por exemplo, a sequência

$$1, -1, 1, -1, \ldots$$

é formalmente dada pela função

$$x: \mathbb{N} \to \mathbb{R}$$
,

$$x(n) = \begin{cases} 1 & \text{se } n \text{ \'e par} \\ -1 & \text{se } n \text{ \'e impar.} \end{cases}$$

Acontece que essa sequência também pode ser descrita por uma fórmula fechada,

$$x(n) = (-1)^n$$
 para todo $n \in \mathbb{N}$.

Observação 1.1. Uma sequência $x: \mathbb{N} \to \mathbb{R}$ é representada pela lista enumerável infinita

$$x_0, x_1, x_2, \ldots, x_n, \ldots$$

e não pela sua imagem, que é o conjunto

$$x(\mathbb{N}) = \{x_n : n \in \mathbb{N}\}.$$

No exemplo anterior, em que

$$x(n) = (-1)^n$$
 para todo $n \in \mathbb{N}$,

a lista correspondente é

$$1, -1, 1, -1, \dots$$

onde 1 e -1 são alternadamente repetidos um número infinito de vezes, enquanto a imagem de x é simplesmente o conjunto $\{1, -1\}$.

Definição 1.1. Uma sequência $(x_n)_{n\geq 0}$ é limitada superiormente se existe $b\in \mathbb{R}$ tal que

$$x_n \le b$$
 para todo $n \ge 0$.

Similarmente, $(x_n)_{n\geq 0}$ é limitada inferiormente se existe $a\in\mathbb{R}$ tal que

$$a \le x_n$$
 para todo $n \ge 0$.

A sequência $(x_n)_{n\geq 0}$ é limitada se ela é limitada superiormente e inferiormente, i.e., se existem $a,b\in\mathbb{R}$ tais que

$$a \le x_n \le b$$
 para todo $n \in \mathbb{N}$.

Observação 1.2. Uma sequência $(x_n)_{n>0}$ é limitada se e somente se existe $M \in \mathbb{R}$ tal que

$$|x_n| \leq M$$
 para todo $n \in \mathbb{N}$.

De fato, se $|x_n| \leq M$ então

$$-M \le x_n \le M$$
,

logo $(x_n)_{n\geq 0}$ é limitada.

Por outro lado, se $a \leq x_n \leq b$, como

$$b < |b| e - a < |a|$$
,

então $-|a| \le a$, temos que

$$-|a| < x_n < |b|$$

para todo $n \in \mathbb{N}$.

Seja $M = \max\{|a|, |b|\}$. Então $|b| \le M$ e $|a| \le M$, então

$$-M \le x_n \le M$$
, logo $-M \le x_n \le M$,

ou $|x_n| \leq M$.

Definição 1.2. Uma sequência $(x_n)_{n\geq 0}$ é crescente se $x_n < x_{n+1}$ para todo $n\geq 0$, isto é, se

$$x_0 < x_1 < \cdots < x_n < x_{n+1} < \cdots$$

Similarmente, (x_n) é decrescente se $x_n > x_{n+1}$ para todo $n \ge 0$, isto é, se

$$x_0 > x_1 > \dots > x_n > x_{n+1} > \dots$$

Além disso, $(x_n)_n$ é não decrescente se $x_n \le x_{n+1}$ para todo $n \ge 0$ e não crescente se $x_n \ge x_{n+1}$ para todo $n \ge 0$. Uma sequência com uma dessas propriedades é dita monótona.

Exemplo 1.1. A sequência $x_n = n$ para todo $n \in \mathbb{N}$ é claramente crescente, enquanto $x_n = -n$, $n \in \mathbb{N}$ é decrescente. A sequência $x_n = (-1)^n$ não é monótona.

Definição 1.3. Seja $(x_n)_{n\geq 0}$ uma sequência de números reais. Dada uma sequência crescente de números naturais

$$n_1 < n_2 < \dots < n_k < n_{k+1} < \dots$$

a sequência

$$y_k = x_{n_k}, \quad k \ge 1$$

é chamada uma subsequência de $(x_n)_n$.

Exemplo 1.2. Dada uma sequência $(x_n)_{n\geq 0}$,

$$x_0, x_2, x_4, \cdots, x_{2n}, \cdots$$

é a subsequência dos termos de índices pares. Similarmente,

$$x_1, x_3, x_5, \cdots x_{2n+1}, \cdots$$

é a subsequência dos termos ímpares. Outros exemplos de subsequências são:

$$x_1, x_2, x_4, x_8, \cdots, x_{2^n}, \cdots$$

ou

$$x_1, x_4, x_7, x_{10}, \cdots x_{n+3}, \cdots$$

ou, mais geralmente, dado $k \in \mathbb{N}$,

$$(x_{k+n})_{n\in\mathbb{N}}$$

é a subsequências dos termos começando com o índice k.

Outros exemplos de sequências.

• $x_n = \frac{1}{n}$ para $n \ge 1$, ou seja,

$$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{n},\cdots$$

Limitada por 0 e 1, decrescente.

• $x_n = a^n$ para $n \ge 0$, ou seja, $a \in (0,1)$

$$1, a, a^2, \cdots, a^n, \cdots$$

Limitada, decrescente.

■ Dado $a \in (0,1)$, para todo $n \ge 0$

$$x_n = 1 + a + \dots + a^n = \frac{1 - a^{n+1}}{1 - a}$$

Note que se $a \in (0,1)$, então $a^{n+1} \in (0,1)$. Logo

$$0 \le x_n \le \frac{1}{1-a},$$

então a sequência é limitada e estritamente crescente.

■ Dado R > 1, $x_n = R^n$ para $n \in \mathbb{N}$, ou seja,

$$1, R, R^2, \cdots, R^n, \cdots$$

Não limitada, crescente.

■ $a_n = 1 + \frac{1}{1!} + \cdots + \frac{1}{n!}$ limitada por 3, crescente.

2. Limite de uma sequência

Sejam $(x_n)_n$ uma sequência de números reais e $a \in \mathbb{R}$.

Intuitivamente, $(x_n)_n$ converge para a se os termos x_n da sequência se aproximam arbitrariamente perto de a se n é suficientemente grande.

Em outras palavras, dada qualquer ordem de proximidade ε , por exemplo $\varepsilon = 0,001$ ou $\varepsilon = 0,000001$, eventualmente (a partir de um certo limiar n_0), todos os termos x_n se tornam mais próximos do que ε de a. Formalmente,

Definição: Dizemos que

$$\lim_{n \to \infty} x_n = a$$

quando para todo $\varepsilon > 0$ existe $n_{\varepsilon} \in \mathbb{N}$ tal que

$$n \ge n_{\varepsilon}$$
 implica $|x_n - a| \le \varepsilon$

Exemplo 2.1. $\lim_{n \to \infty} \frac{1}{n} = 0.$

De fato, dado $\varepsilon > 0$, $\frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon}$. Pelo fato de ser arquimediano, existe $n_{\varepsilon} \in \mathbb{N}$ tal que $n_{\varepsilon} > \frac{1}{\varepsilon}$. Então para todo $n \geq n_{\varepsilon}$ tem-se $n > \frac{1}{\varepsilon}$,

e daí
$$\frac{1}{n} < \varepsilon$$
. Logo,

$$\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \varepsilon \text{ para todo } n \ge n_{\varepsilon},$$

mostrando que $\lim_{n\to\infty}\frac{1}{n}=0$.

Outras notações:

Neste caso dize-mos também que a sequência $(x_n)_n$ é convergente e seu limite é a.

Exemplo 2.2. $\lim_{n\to\infty} \frac{1}{2^n} = 0.$

De fato, por indução temos que

 $2^n \ge n$ para todo $n \in \mathbb{N}$.

Logo, dado $\varepsilon > 0$, como existe $n_{\varepsilon} \in \mathbb{N}$ com $n_{\varepsilon} > \frac{1}{\varepsilon}$, segue que para todo $n \geq n_{\varepsilon}$,

$$\frac{1}{2^n} \le \frac{1}{n} < \frac{1}{n_c} < \varepsilon,$$

e daí

$$\left|\frac{1}{2^n} - 0\right| = \frac{1}{2^n} < \varepsilon.$$

Exemplo 2.3. A sequência $x_n = (-1)^n \frac{1}{n}$, $n \ge 1$ também converge para 0.

De fato,

$$\left| (-1)^n \frac{1}{n} - 0 \right| = \left| (-1)^n \frac{1}{n} \right| = \frac{1}{n} < \varepsilon$$

se $n > \frac{1}{\varepsilon}$.

Teorema 2.4. Se existir, o limite de uma sequência é único, isto é, se

$$\lim_{n \to \infty} x_n = a \ e \ \lim_{n \to \infty} x_n = b \ ent \tilde{a}o \ a = b.$$

Demonstração. Suponha por contradição que $a\neq b$ e seja $\varepsilon:=\frac{|a-b|}{2}>0.$

Como $\lim_{n\to\infty} x_n = a$, para este ε existe n_1 t.q.

Se $n \ge n_1$, então $|x_n - a| < \varepsilon$.

Similarmente, como $\lim_{n\to\infty} x_n = b$, existe n_2 t.q.

Se $n \ge n_2$ então $|x_n - b| < \varepsilon$.

Seja $N = \max\{n_1, n_2\}.$

Logo $N \ge n_1$ e $N \ge n_2$, e daí, $|x_N - a| < \varepsilon$ e $|x_N - b| < \varepsilon$.

Portanto, pela desigualdade triangular,

$$|a-b| = |a-x_N + x_N - b| \le |a-x_N| + |x_N - b| < \varepsilon + \varepsilon = 2\varepsilon = |a-b|,$$

que implica o fato absurdo de que |a - b| < |a - b|.

Concluímos que a = b.

Teorema 2.5. Se $\lim_{n\to\infty} x_n = a$ então toda subsequência de $(x_n)_n$ converge para a.

Demonstração. Seja $(x_{n_k})_k$ uma subsequência de $(x_n)_n$, então os números naturais índices

$$n_1 < n_2 < n_3 < \dots < n_k < \dots$$

formam uma sequência crescente de números naturais.

Por indução (fixa o argumento), tem-se

$$n_k \ge k$$
 para todo $k \in \mathbb{N}$.

Então, dado $\varepsilon > 0$, como $\lim_{n \to \infty} x_n = a$, existe $n(\varepsilon) \in \mathbb{N}$ tal que

se
$$k \ge n(\varepsilon)$$
 então $|x_k - a| < \varepsilon$.

Logo, para todo $k \geq n(\varepsilon)$, como $n_k \geq k \geq n(\varepsilon)$, tem-se

$$|x_{n_k} - a| < \varepsilon,$$

provando que $\lim_{k\to\infty} x_{n_k} = a$.

Exemplo 2.6. A sequência $x_n = (-1)^n$, $n \in \mathbb{N}$ não converge. De fato, a subsequência $x_{2n} = (-1)^{2n} = 1$, $n \in \mathbb{N}$ é constante, portanto converge para 1.

Similarmente, a subsequência $x_{2n+1} = (-1)^{2n+1} = -1$ é constante -1, portanto converge para -1.

Se a sequência $(x_n)_n$ convergisse, qualquer subsequência dela convergiria para o mesmo limite, o que não é o caso, já que $1 \neq -1$.

Portanto $(x_n)_n$ não converge.

Teorema 2.7. Toda sequência convergente é limitada. A recíproca não é verdadeira (veja o $exemplo \ acima).$

Demonstração. Sejam $(x_n)_n$ uma sequência, $a \in \mathbb{R}$ e suponha que $\lim_{n\to\infty} x_n = a$.

Para $\varepsilon = 1$ existe um $n_1 \in \mathbb{N}$ tal que

$$n \ge n_1 \Rightarrow |x_n - a| < 1$$

$$\Rightarrow x_n \in (a-1, a+1).$$

Considere o conjunto finito de números reais consistindo nos primeiros n_1 termos da sequência (x_n) e nos pontos extremos a-1 e a+1, isto é, seja

$$F = \{x_0, x_1, \dots, x_{n_1-1}, a-1, a+1\}.$$

Então F possui um máximo M e um mínimo m (sendo finito).

Consequentemente, para todo $n \in \mathbb{N}$,

$$m < x_n < M$$

mostrando que $(x_n)_n$ é limitada.

Teorema 2.8. Toda sequência monótona e limitada é convergente.

Mais precisamente, se $(x_n)_n$ é não decrescente e limitada superiormente, então $(x_n)_n$ é convergente e

$$\lim_{n \to \infty} x_n = \sup\{x_n : n \in \mathbb{N}\}.$$

Similarmente, se $(x_n)_n$ é não crescente $(x_n \geq x_{n+1}, \forall n \in \mathbb{N})$ e limitada inferiormente, então $(x_n)_n$ é convergente e

$$\lim_{n \to \infty} x_n = \inf\{x_n : n \in \mathbb{N}\}.$$

Demonstração. Consideremos o primeiro caso, o segundo sendo similar (exercício).

 $(x_n)_n$ satisfaz $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$.

Seja $b = \sup\{x_n : n \in \mathbb{N}\}.$

Vamos provar que $\lim_{n\to\infty} x_n = b$.

Seja $\varepsilon > 0$. Então $b - \varepsilon < b$, e como b é a menor cota superior de $\{x_n : n \in \mathbb{N}\}$, existe $n_{(\varepsilon)} \in \mathbb{N}$ tal que $b - \varepsilon < x_{n_{(\varepsilon)}}$.

Se $n \ge n(\varepsilon)$, como $(x_n)_n$ é não decrescente, tem-se $x_n \ge x_{n(\varepsilon)}$. Portanto,

$$b - \varepsilon < x_{n(\varepsilon)} \le x_n$$
 para todo $n \ge n(\varepsilon)$.

Por outro lado, b é uma cota superior de $\{x_n : n \in \mathbb{N}\}$, logo

$$x_n \le b < b + \varepsilon$$

para todo $n \in \mathbb{N}$.

Concluímos que

$$b - \varepsilon < x_n < b + \varepsilon$$

para todo $n \ge n(\varepsilon)$

$$\Rightarrow |x_n - b| < \varepsilon,$$

provando que $\lim_{n\to\infty} x_n = b$.

Corolário 2.9. Seja $(x_n)_n$ uma sequência monótona. Se $(x_n)_n$ possui uma subsequência convergente, então $(x_n)_n$ é convergente.

Demonstração. Vamos tratar o caso de uma sequência não crescente, $x_n \leq x_{n+1} \ \forall n$. Seja $(x_{n_k})_k$ uma subsequência convergente, então limitada, logo existe $M \in \mathbb{R}$ tal que

$$x_{n_k} \leq M$$
 para todo k .

Mas $n_k \geq k \ \forall k \in \mathbb{N}$, então $x_{n_k} \geq x_k \ \forall k \in \mathbb{N}$

Logo $x_k \leq x_{n_k} \leq M \ \forall k \in \mathbb{N}$, ou seja, a sequência $(x_k)_k$ é limitada superiormente. Sendo monótona por cima, pelo teorema anterior é convergente.