The DPLL algorithm

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 10, 2019

Overview of the session

- Designing an efficient SAT solver
- DPLL: A Bit of History
- Abstract DPLL:
 - ◆ Rules
 - **♦** Examples
 - ◆ Theoretical Results

Designing an efficient SAT solver

INPUT: formula F in **CNF**

OUTPUT:

- If F is SAT: YES + model
- If F is UNSAT: NO + refutation (proof of unsatisfiability)

Two possible methods:

- resolution-based:
 - not direct to obtain model
 - straightforward to give refutation
- DPLL-based:
 - + straightforward to obtain model
 - not direct to give refutation

Due to their efficiency, DPLL-based solvers are the method of choice

Overview of the session

- Problem Solving with Prop. Logic
- DPLL: A Bit of History
- Abstract DPLL:
 - ◆ Rules
 - ◆ Examples
 - ♦ Theoretical Results

DPLL - A Bit of History

- Original DPLL was incomplete method for FOL satisfiability
- First paper (Davis and Putnam) in 1960: memory problems
- Second paper (Davis, Logemann and Loveland) in 1962: Depth-first-search with backtracking
- Late 90's and early 00's improvements make DPLL efficient:
 - Break-through systems: GRASP, SATO, Chaff, MiniSAT

Overview of the session

■ Problem Solving with Prop. Logic

■ DPLL: A Bit of History

Abstract DPLL:

- Rules
- ◆ Examples
- ◆ Theoretical Results

Our Abstraction of DPLL

- lacksquare Given F in CNF, DPLL tries to build assignment M s.t. $M \models F$
- Assignments M are represented as sequences of literals (those to be true): **EXAMPLE:** sequence $p\overline{q}r$ is M(p)=1, M(q)=0, M(r)=1 (overlining bar $\bar{}$ may be used to represent negation, like $\bar{}$)
 - lacktriangle Order in M matters
 - lacktriangle No literal appears twice in M
 - lacktriangle No contradictory literals in M
- Sequences may have decision literals, denoted l^d .
- We will introduce a transition system modelling DPLL
- States in the transition system are pairs $M \parallel F$, where M is a (partial) assignment and F is a CNF
- The algorithm starts with an empty assignment
- The rules in the transition system indicate which steps $M \parallel F \Longrightarrow M' \parallel F'$ are allowed.

Abstract DPLL - Rules

Extending the model:

Decide

$$M \parallel F \implies M l^{\mathsf{d}} \parallel F \text{ if } \left\{ \begin{array}{l} l \text{ or } \overline{l} \text{ occurs in } F \\ l \text{ is undefined in } M \end{array} \right.$$

Abstract DPLL - Rules (2)

Repairing the model:

Fail

Backtrack

$$M \ l^{\operatorname{d}} \ N \parallel F, \ C \implies M \ \overline{l} \parallel \ F, \ C \ \ \operatorname{if} \ \left\{ \begin{array}{l} M \ l^{\operatorname{d}} \ N \models \neg C \\ N \ \ \operatorname{contains no \ decision \ lits} \end{array} \right.$$

 $\emptyset \parallel \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow$

 $\emptyset \parallel \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow (\mathsf{Decide})$

 $\emptyset \parallel \overline{1} \vee 2 \vee 3, \ 1, \ \overline{2} \vee 3, \ \overline{2} \vee \overline{3}, \ 2 \vee 3, \ 2 \vee \overline{3} \Longrightarrow$

 $\emptyset \parallel \overline{1} \vee 2 \vee 3, \ 1, \ \overline{2} \vee 3, \ \overline{2} \vee \overline{3}, \ 2 \vee 3, \ 2 \vee \overline{3} \qquad \Longrightarrow \qquad (\mathsf{UnitProp})$

Abstract DPLL

- lacktriangle There are no infinite sequences of the form $\emptyset \parallel F \implies \dots$
- \blacksquare If $\emptyset \parallel F \Longrightarrow^* M \parallel F$ with state $M \parallel F$ final, then
 - lacktriangleright F is satisfiable
 - lacktriangledown M is a model of F
- If $\emptyset \parallel F \implies^* fail$ then F is unsatisfiable

Hence the transition system gives a decision procedure for SAT

Bibliography - Some further reading

- Martin Davis, Hilary Putnam. A Computing Procedure for Quantification Theory. J. ACM 7(3): 201-215 (1960)
- Martin Davis, George Logemann, Donald W. Loveland. *A machine program for theorem-proving*. Commun. ACM 5(7): 394-397 (1962)
- Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).

 J. ACM 53(6): 937-977 (2006)