3. Счётность множества рациональных чисел, несчётность множества действительных чисел

1. Мощность множеств. Конечные и бесконечные множества

- Определение: Два множества A и B называются равномощными, если существует биекция $f:A \to B$. Обозначение: |A| = |B|.
- **Конечное множество**: Множество, равномощное некоторому отрезку натурального ряда $\{1, 2, \dots, n\}$.
- Бесконечное множество: Множество, не являющееся конечным.
- Счётное множество: Бесконечное множество, равномощное множеству натуральных чисел \mathbb{N} . Обозначение: $|A|=\aleph_0$.

2. Счётность множества рациональных чисел

2.1. Счётность \mathbb{Z}

Построим биекцию $f: \mathbb{N} \to \mathbb{Z}$:

$$f(n) = egin{cases} rac{n}{2}, & ext{если } n ext{ чётное}, \ -rac{n-1}{2}, & ext{если } n ext{ нечётное}. \end{cases}$$

Интуиция: Мы «перечисляем» целые числа в порядке:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

2.2. Счётность ℚ

Теорема: Множество рациональных чисел \mathbb{Q} счётно.

Доказательство (метод Кантора):

- 1. Рациональные числа можно представить в виде дробей $\frac{p}{q}$, где $p \in \mathbb{Z}$, $q \in \mathbb{N}$, и дробь несократима.
- 2. Расположим все такие дроби в таблицу:

3. Проходим по таблице «зигзагом» и нумеруем все несократимые дроби. Это даёт биекцию между $\mathbb N$ и $\mathbb Q$.

Интуиция: Хотя рациональных чисел «очень много», их можно занумеровать.

3. Несчётность множества действительных чисел

3.1. Мощность континуума

Определение: Множество, равномощное отрезку ([0, 1]), называется континуальным.

Обозначение: $|[0,1]| = \mathfrak{c}$.

3.2. Теорема Кантора

Теорема: Множество действительных чисел $\mathbb R$ несчётно.

Доказательство (метод диагонали Кантора):

1. Предположим, что ℝ счётно. Тогда все числа из ([0, 1]) можно записать в виде последовательности:

$$x_1, x_2, x_3, \dots$$

2. Запишем каждое число в десятичной системе (бесконечная дробь):

$$egin{array}{l} x_1 = 0.a_{11}a_{12}a_{13}\dots \ x_2 = 0.a_{21}a_{22}a_{23}\dots \ x_3 = 0.a_{31}a_{32}a_{33}\dots \ dots \end{array}$$

3. Построим число $y = 0.b_1b_2b_3\dots$, где

$$b_k = egin{cases} 5, & ext{если } a_{kk}
eq 5, \ 1, & ext{если } a_{kk} = 5. \end{cases}$$

4. Число y отличается от каждого x_k в k-м знаке $\Rightarrow y \notin \{x_1, x_2, \ldots\}$. Противоречие с предположением о счётности.

Интуиция: Невозможно «занумеровать» все действительные числа — их «больше», чем натуральных.

4. Сравнение мощностей

- $|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = \aleph_0$ счётные множества.
- $|\mathbb{R}| = |[0,1]| = \mathfrak{c}$ континуум.

Теорема Кантора: Для любого множества A выполняется $|A| < |\mathcal{P}(A)|$, где $\mathcal{P}(A)$ — множество всех подмножеств A.

Следствие: Существуют сколь угодно большие бесконечные мощности.

5. Вопросы для самопроверки

- 1. Что означает, что множество счётно? Приведите пример счётного множества, отличного от №.
- 2. Объясните метод диагонали Кантора. Почему он доказывает несчётность \mathbb{R} ?

- 3. Может ли объединение двух счётных множеств быть несчётным? Ответ обоснуйте.
- 4. Докажите, что множество всех бесконечных последовательностей из 0 и 1 несчётно.
- 5. Верно ли, что любое подмножество счётного множества счётно? Если нет, приведите контрпример.
- 6. Что такое континуум? Приведите пример множества мощности континуума, отличного от \mathbb{R} .