# UNISONIC TECHNOLOGIES CO., LTD

## **TL072**

### LINEAR INTEGRATED CIRCUIT

DIP-8

SOP-8

## LOW NOISE DUAL J-FET OPFRATIONAL AMPLIFIER

#### DESCRIPTION

The UTC TL072 is a high speed J-FET input quad operational amplifier. It incorporates well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit. The device features high slew rates, low input bias ar offset voltage temperature coefficient.

#### **FFATURES**

- \* Low power consumption
- \* Wide common-mode (up to  $V_{\text{CC+}}$  ) and di
- \* Low input bias and offset current
- \* Low noise en =  $15\text{nV} / \sqrt{\text{Hz}}$  (typ.)
- \* Output short-circuit protection
- \* High input impedance J-FET input stage
- \* Low harmonic distortion:0.01% (typ.)
- \* Internal frequency compensation
- \* Latch up free operation
- \* High slewrate:10V/μs (typ.)

#### ORDERING INFORMATION

| nd offset current, and low | Willest . |
|----------------------------|-----------|
|                            | TSSOP-8   |
| differential voltage range |           |
| Э                          |           |
|                            |           |

| Ordering Number |              | Dookogo | Dooking   |  |  |
|-----------------|--------------|---------|-----------|--|--|
| Lead Free       | Halogen Free | Package | Packing   |  |  |
| TL072L-D08-T    | TL072G-D08-T | DIP-8   | Tube      |  |  |
| TL072L-S08-R    | TL072G-S08-R | SOP-8   | Tape Reel |  |  |
| TL072L-P08-R    | TL072G-P08-R | TSSOP-8 | Tape Reel |  |  |



#### **MARKING**



www.unisonic.com.tw 1 of 8

#### ■ PIN CONFIGURATION



#### BLOCK DIAGRAM



#### ■ ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                              |         | SYMBOL           | RATINGS             | UNIT |
|----------------------------------------|---------|------------------|---------------------|------|
| Supply Voltage (Note 2)                |         | V <sub>CC</sub>  | ±18                 | ٧    |
| Input Voltage (Note 3)                 |         | V <sub>IN</sub>  | ±15                 | V    |
| Differential Input Voltage (Note 4)    |         | $V_{I(DIFF)}$    | ±30                 | V    |
| Power Dissipation                      | DIP-8   | P <sub>D</sub>   | 625                 | mW   |
|                                        | SOP-8   |                  | 440                 | mW   |
|                                        | TSSOP-8 |                  | 360                 | mW   |
| Output Short-Circuit Duration (Note 5) |         |                  | Infinite            |      |
| Operating Temperature                  |         | T <sub>OPR</sub> | -40 ~ +125 (Note 6) | °C   |
| Storage Temperature                    |         | T <sub>STG</sub> | -65 ~ +150          | Ô    |

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between  $V_{CC}$  and  $V_{CC}$ +.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.
- 5. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 6. It is guarantee by design, not 100% be tested.

#### ■ ELECTRICAL CHARACTERISTICS (V<sub>CC</sub>=±15V, T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                                       | SYMBOL               | CONDITIONS                                                                                          |                                                                   | MIN | TYP              | MAX | UNIT                                 |
|-------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|------------------|-----|--------------------------------------|
| Input Offset Voltage                            | V <sub>I(OFF)</sub>  | R <sub>S</sub> =50Ω                                                                                 | T <sub>A</sub> =25°C                                              |     | 3                | 10  | mV                                   |
|                                                 | VI(OFF)              | NS-3022                                                                                             | $T_{MIN}\! \le \! T_{A}\! \le \! T_{MAX}$                         |     |                  | 13  | mV                                   |
| Temperature Coefficient of Input Offset Voltage | $\Delta V_{I(OFF)}$  | R <sub>S</sub> =50Ω                                                                                 |                                                                   |     | 10               |     | μV/°C                                |
| Input Offset Current (Note)                     | I <sub>I(OFF)</sub>  | T <sub>A</sub> =25°C                                                                                |                                                                   |     | 5                | 100 | pА                                   |
| Input Offset Current (Note)                     |                      | $T_{MIN} \le T_A \le T_{MAX}$                                                                       |                                                                   |     |                  | 10  | nA                                   |
| Input Diog Current (Nata)                       | I <sub>I(BIAS)</sub> | T <sub>A</sub> =25°C                                                                                |                                                                   |     | 20               | 200 | pА                                   |
| Input Bias Current (Note)                       |                      | $T_{MIN} \leq T_A \leq T_{MA}$                                                                      | $T_{MIN} \le T_A \le T_{MAX}$                                     |     |                  | 20  | nA                                   |
| Input Common Mode Voltage                       | V <sub>I(CM)</sub>   |                                                                                                     | _                                                                 | ±11 | -12~+15          |     | V                                    |
|                                                 | , ,                  | $R_L=2k\Omega$                                                                                      | T <sub>A</sub> =25°C                                              | ±10 | ±12              |     | V                                    |
| Outmut Valtage Suing                            | \/                   | $R_L=10k\Omega$                                                                                     | TA=25°C                                                           | ±12 | ±13.5            |     | V                                    |
| Output Voltage Swing                            | $V_{O(SW)}$          | $R_L=2k\Omega$                                                                                      | T <t <t<="" td=""><td>±10</td><td></td><td></td><td>V</td></t>    | ±10 |                  |     | V                                    |
|                                                 |                      | $R_L=10k\Omega$                                                                                     | $T_{MIN} \le T_A \le T_{MAX}$                                     | ±12 |                  |     | V                                    |
|                                                 | 0                    | $R_L=2k\Omega$ ,                                                                                    | T <sub>A</sub> =25°C                                              | 25  | 200              |     | V/mV                                 |
| Large Signal Voltage Gain                       | G∨                   | V <sub>OUT</sub> =±10V                                                                              | $T_{MIN} \le T_A \le T_{MAX}$                                     | 15  |                  |     | V/mV                                 |
| Gain Bandwidth Product                          | GBw                  | T <sub>A</sub> =25°C, R <sub>L</sub> =                                                              | T <sub>A</sub> =25°C, R <sub>L</sub> =10kΩ, C <sub>L</sub> =100pF |     | 4                |     | MHz                                  |
| Input Resistance                                | Rin                  |                                                                                                     | ·                                                                 |     | 10 <sup>12</sup> |     | Ω                                    |
| 0 N I D : 1: D !:                               | OMB                  | D 500                                                                                               | T <sub>A</sub> =25°C                                              | 70  | 86               |     | dB                                   |
| Common Mode Rejection Ratio                     | CMR                  | $R_s=50\Omega$                                                                                      | $T_{MIN} \le T_A \le T_{MAX}$                                     | 70  |                  |     | dB                                   |
| 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         | SVR                  | R <sub>S</sub> =50Ω                                                                                 | T <sub>A</sub> =25°C                                              | 70  | 86               |     | dB                                   |
| Supply Voltage Rejection Ratio                  |                      |                                                                                                     | $T_{MIN} \le T_A \le MAX$                                         | 70  |                  |     | dB                                   |
| O                                               | Icc                  | No load                                                                                             | T <sub>A</sub> =25°C                                              |     | 1.4              | 2.5 | mA                                   |
| Supply Current                                  |                      |                                                                                                     | $T_{MIN}\!\leq\!T_{A}\!\leq\!T_{MAX}$                             |     |                  | 2.5 | mA                                   |
| Channel Separation                              | V01/V02              | G <sub>V</sub> =100                                                                                 |                                                                   |     | 120              |     | dB                                   |
| Outrout Shart aircuit Commant                   | los                  | T <sub>A</sub> =25°C                                                                                |                                                                   | 10  | 40               | 60  | mA                                   |
| Output Short-circuit Current                    |                      | $T_{MIN}\!\leq\!T_{A}\!\leq\!T_{MAX}$                                                               |                                                                   | 10  |                  | 60  | mA                                   |
| Slew Rate                                       | SR                   | $V_{IN}$ =10V, $R_L$ =2k $\Omega$ , $C_L$ =100pF, unity gain                                        |                                                                   | 6   | 10               |     | V/µs                                 |
| Rise Time                                       | t <sub>R</sub>       | $V_{IN}$ =20mV, $R_L$ =2k $\Omega$ , $C_L$ =100pF, unity gain                                       |                                                                   |     | 0.1              |     | μs                                   |
| Overshoot Factor                                | Kov                  | $V_{IN}$ =20mV,R <sub>L</sub> =2k $\Omega$ ,C <sub>L</sub> =100pF, unity gain                       |                                                                   |     | 10               |     | %                                    |
| Total Harmonic Distortion                       | THD                  | G <sub>V</sub> =20dB, f=1kHz, R <sub>L</sub> =2kΩ,<br>C <sub>L</sub> =100pF, V <sub>OUT</sub> =2Vpp |                                                                   |     | 0.01             |     | %                                    |
| Phase Margin                                    | φm                   |                                                                                                     |                                                                   |     | 45               |     | Degrees                              |
| Equivalent Input Noise Voltage                  | eN                   | Rs=100Ω, f=1                                                                                        | KHz                                                               |     | 15               |     | $\frac{\text{nV}}{\sqrt{\text{Hz}}}$ |

Note: The Input bias currents are junction leakage currents, which approximately double for every 10 °C increase in the junction temperature.

## ■ PARAMETER MEASUREMENT INFORMATION

Figure 1. Voltage Follower



Figure 2. Gain-of-10 Inverting Amplifier



#### ■ TYPICAL CHARACTERISTICS

# Maximum Peak-to-Peak Output Voltage vs. Frequency



Maximum Peak-to-Peak Output Voltage vs. Frequency



Maximum Peak-to-Peak Output Voltage vs. Load Resistance

Frequency (Hz)



Maximum Peak-to-Peak Output Voltage vs. Frequency



Frequency (Hz)

Maximum Peak-to-Peak Output Voltage vs. Free Air Temp.



Maximum Peak-to-Peak Output Voltage vs. Supply Voltage



Large Signal Differential Voltage Amplification vs.

Free Air Temperature

#### TYPICAL CHARACTERISTICS (Cont.)

Input Bias Current vs. Free Air Temperature



400 200 100

1000



Temperature (°C)

Large Signal Differential Voltage Amplification and Phase Shift vs. Frequency



Total Power Dissipation vs. Free Air Temperature





Total Power Dissipation vs. Free Air Temperature



#### ■ TYPICAL CHARACTERISTICS (Cont.)









UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.