Data Science - Platforms

Lecture Notes

Prof. Dr. P. Erdelt

Berliner Hochschule für Technik

WiSe 21/22

Data Science

- **|** • • • ----

What is Data Science Workflow?

What is Data Science Workflow?

Terminology

Software

Literature

Workflow

Definition (Workflow)

A Workflow^a consists of

- an orchestrated and repeatable pattern of activity
- organization of resources into processes.

 $^{{\}it ^a} Software \ AG, \ https://www.ftb.ca.gov/aboutFTB/Projects/ITSP/BPM_Glossary.pdf$

Data Science Workflow

What is Data Science?

I

What is Data Science?

Definition (Data Science)

<u>Data Science</u> is about <u>computer-based data analysis and</u> <u>generation of knowledge</u>.

Something like

- Business Intelligence?
- Business Analytics?
- Information Retrieval?
- Information Theory?
- Knowledge Discovery?
- Data Mining?
- Statistics?
- Machine Learning?

-**> | | | | |**

Terminology

What is Data Science Workflow?

Terminology

Software

Literature

Business Intelligence

Definition (Business Intelligence)

Business Intelligence is about

- using IT
- using in-house data
- turning data into information
- analyze information
- to support management in making decisions.

Keywords: ETL, Data Warehouse, OLAP, Charts

Goal: Answers to: What happened, when, how many?

— p. 9 Terminology

Business Analytics

Definition (Business Analytics)

Business Analytics enhances Business Intelligence by using

- Statistical Analysis
- Data Mining
- Predictive Modeling.

Goal: Answers to: Why did it happen, what will happen?

— p. 10 Terminology

L • • B

Business Analysis

Definition (Business Analysis)

Business Analysis is about up a standing and improving your business processes.

Goal: Answers to: Why did it happen, what will happen?

->=00

p. 11 Terminology

▶ ■ ● ● ─

Information Retrieval

Definition (Information Retrieval)

Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections [MRS08].

Goal: Find and rank relevant information in data

▶■●●── p. 12 Terminology

Information Theory

Definition (Information Theory)

<u>Information Theory</u> studies the quantification, storage, and communication of information [Wik20].

Goal: Quantify portion of information in data

— p. 13 Terminology

Knowledge Discovery

Definition (Knowledge Discovery in Databases)

Knowledge Discovery in Databases (KDD) is the process of discovering

- new
- <u>useful</u> and
- valid knowledge

from a collection of data.

^acf. [FPS96]

Goal: Generate new knowledge for humans

p. 14 Terminology

KDD

Figure: Knowledge Discovery in Databases

Source: [FPS96]

▶**■●●** p. 15

Knowledge Discovery

The Process [CL14]

- 1. Preparation
 - 1.1 Collect domain knowledge
 - 1.2 Collect data
 - 1.3 Define goals
- 2. Data selection
- 3. Data preprocessing
- 4. Data transformation / reduction
- 5. Data Mining
- 6. Interpretation

p. 16 Terminology

Data Mining

Definition (Data Mining)

Data Mining is about efficient methods for (mostly automated) detection of non trivial patterns.

^acf. [FPS96]

Goal: Find and explain relations and patterns

Terminology – p. 17

Data Mining

The process also is about

- Explorative Analysis
- Descriptive Statistics
- Visualisation

and contains a lot of statistics.

—— p. 18 Terminology

Data Mining and Statistics

Definition (Statistics)

Statistics^a is a mathematical and conceptual discipline that focuses on the relation between data and hypotheses.

Descriptive statistics summarizes features of data.

Inferential statistics deduces properties of unseen data.

^acf. [Rom18]

This is very, very rough!

▶■●● p. 19 Terminology

Data Mining and Statistics

Inferential Statistics:

- 1. Formulate hypotheses
- 2. Plan experiments
- 3. Collect small, clean data
- 4. Validate hypotheses

based on theory.

Goal: Generalize facts to something you have not seen

o. 20 Terminology

Data Mining and Statistics

Data Mining: A lot unclean data already is there

- 1. Try
- 2. Validate
- 3. Try
- 4. Validate
- 5. ...

based on data.

o. 21

Terminology

CRISP-DM

Cross-industry standard process for data mining (**CRISP**)

Figure: CRISP

p. 22

CRISP-DM

Business Understanding

Know the keywords, concepts and goals

Data Understanding

Know the schema and meaning, explore data

Data Preparation

Transform and clean data

Modeling

Apply algorithm

Evaluation

Validate if goal is reached

Deployment

Reporting for customer

— p. 23 Terminology

Berliner Hochschule für Tech

Data Mining - Areas

Find and explain

- Regression Analysis: Real values
- Classification: Categorical belonging
- Cluster Analysis: Groups of data

Association Analysis: Rules

p. 24 Terminology

Data Mining - Areas

Find and explain

- Regression Analysis: Real values
 - Predict the numeric target label of a data point
- Classification: Categorical belonging
 - Predict if a data point belongs to one of the predefined classes
- Cluster Analysis: Groups of data
 - Identify natural clusters (groups) within the data set based on inherit properties within the data set
- Association Analysis: Rules
 - Identify relationships within an item set based on transaction data
- **.**..

It contains a lot of Machine Learning.

Machine Learning

Definition (Machine Learning)

Machine Learning is a part of artificial intelligence and is about

- progressively improving performance
- on a specific task
- based on data
- without being explicitly programmed.

^acf. [Sam59]

Goal: Generate new abilities for machines

– p. 26 Terminology

Traditional approach

Figure: Write explicit rules

Image source: [Gér17]

p. 27

->**=**••

Berliner Hochschule für Technik - Data Science Platforms - Prof. Dr. P. Erdelt

Machine Learning approach

Figure: Train ML algorithm to learn from data

Image source: [Gér17]

-▶■●● p. 28 Terminology

Berliner Hochschule für Technik - Data Science Platforms - Prof. Dr. P. Erdelt

Machine Learning automation

Figure: Learning is iterative: Start, evaluate, improve

Image source: [Gér17]

→■●● p. 29 Terminology

- **|** • • • ----

Predictive Analytics

One very important ability is prediction:

Definition (Predictive Analytics)

<u>Predictive Analytics</u> is about analyzing current or past events in order to predict future (unknown) events.

p. 30 Terminology

Microsoft - Data Science Lifecycle

Source: https://docs.microsoft.com/de-de/azure/machine-learning/team-data-science-process/overview

Data Science

Definition (Data Science)

<u>Data Science</u> is about <u>computer-based data analysis and</u> <u>generation of knowledge</u>.

It contains

- Domain Knowledge (Business aspects)
- Statistics (Math / theory)
- Data Mining (Process of data treatment)
- Machine Learning (Clever algorithms)
- Computer Science (Modern SW / HW architecture)

Data Science means the whole thing!

—— p. 32 Terminology

Data Science includes modern Computer Science

Computer Science

- ▶ Big Data (3V-5V)
 - A lot of data
 - Also unstructured data
 - Natural language
 - Images
 - **.**..
 - NoSQL
- Distributed (everything)
- Coding
 - SQL
 - R
 - Python
- Deployment to machines
 - Docker
 - Kubernetes
 - Clouds

p. 33

Terminology

—— Berliner Hochschule für Technik - Data Science Platforms - Prof. Dr. P. Erdelt

$$DA = KDD = DM = ML (= DS)$$

- © Everything in this lecture is correct!
- \odot Not everything in this lecture is the perfect truth¹!

p. 34

 $^{^1}$ You can always find somebody having a slightly different but sound opinion about this terminology. Not really *definitions*, sorry. \odot

Software

What is Data Science Workflow?

Terminology

Software

Literature

Gartner - Magic Quadrant for Data Science and Machine Learning Platforms

Source: https://www.gartner.com/doc/reprints?id=1-25DIVGDE&ct=210303&st=sb

— p. 36

Data Science and Machine Learning Platforms

- ► We will use **RapidMiner**
- There are other products
- In particular interesting: Visual Workflow Designer

. 37 Software

I

RapidMiner

RapidMiner²

- is a Visionary in Gartner's Magic Quadrant [Gar21]
- Origin: Technische Universität Dortmund
- Strong presence in many industries
 - but especially manufacturing, life sciences, banking, insurance, energy, business services, government and education
- Strong presence in the academic world
- Strengths
 - Multipersona collaboration
 - Clear vision and delivery of aligned features
 - Explainable, governed and secured AI

▶ ■ ● ●

RapidMiner

RapidMiner Studio³

- Visual Workflow Designer
- Java-based
- More than 1500 operators
- Origin: Technische Universität Dortmund
- Windows / Mac / Linux
- Educational License
 - https://my.rapidminer.com/nexus/account/index.html#licenses/request
- Deployment: Kubernetes Cluster

³https://rapidminer.com/products/studio/

I

RapidMiner: Documentation

RapidMiner Studio

- Documentation
 - Docs:
 - https://docs.rapidminer.com/latest/studio/getting-started/
 - https://docs.rapidminer.com/latest/studio/operators/rapidminer-studio-operator-reference.pdf
 - https://rapidminer.com/wp-content/uploads/2013/10/RapidMiner-5.2-Advanced-Charts-english-v1.0.pdf
 - Videos:
 - https://rapidminer.com/training/videos/
 - Youtube Channel:
 - https://www.youtube.com/channel/UCxneJBWWNLs-A6ckls1Rrug
 - ▶ Books: [KD14], [Chi13]
- Model Filter: https://mod.rapidminer.com/

p. 40 Software

RapidMiner: Feature List

RapidMiner Studio

- Feature List⁴
 - Data AccessAccess, load and analyze data
 - Data Exploration
 Extract statistics and key information
 - Data Prep Cleanse data for predictive analytics
 - Modeling
 Build and deliver models
 - Validation
 Estimate model performance

⁴https://rapidminer.com/products/studio/feature-list/

RapidMiner: Data Access

(i) rapidminer

RapidMiner Studio

- Data Access
 - Structured
 - CSV
 - Semi-Structured
 - ► HTML
 - Unstructured
 - Text
 - Audio
 - Video
 - Cloud Storage
 - Dropbox
 - AWS S3

p. 42 Software

RapidMiner: Data Access

RapidMiner Studio

- Data Access
 - Databases
 - JDBC
 - NoSQL
 - MongoDB
 - Cassandra

■●●── p. 43 Software

Literature

Figure: [HK16] Figure: [KD14]

Figure: [Chi13]

Figure: [KD18] Figure: [Nor18]

Software p. 44

KNIME

KNIME Analytics Platform⁵

- ▶ is a Visionary in Gartner's Magic Quadrant
- Visual Workflow Designer
- Java-based
- Origin: Universität Konstanz
- Windows / Mac / Linux
- Client base spans all industries and company sizes
- Strengths
 - Breadth and depth of capabilities
 - Open-Source platform
 - Coherence of visual workflow

Orange

DATA MINING FRUITFUL&FUN

Orange⁶

- Visual Workflow Designer
- ► C++ / Python-based
- Origin: University of Ljubljana
- Windows / Mac / Linux
- Part of Anaconda

Alteryx Designer

Alteryx⁷

alteryx

- ▶ is a Challenger in Gartner's Magic Quadrant
- Alteryx Designer⁸: Visual Workflow Designer
- Irvine, California, United States
- Cloud-based
- Educational License: https://www.alteryx.com/sparked
- Clients in most domains and industries
 - but especially manufacturing, financial services, consumer packaged goods, retail, healthcare and government
- Strengths
 - Ease of use
 - Go-to-market strategy
 - Customer and operational support

⁷https://www.alteryx.com/

⁸https://www.alteryx.com/products/alteryx-platform/alteryx-designer

Dataiku

Dataiku⁹

- is a Leader in Gartner's Magic Quadrant
- End-to-End Al Platform
- Visual Workflow Designer
- New York City, United States
- Cloud-based, Windows / Mac / Linux
- Clients spans many industries and business functions
- Strengths
 - Also for beginning data scientists
 - Focus on business value
 - Increasing market traction
- Deployment: Kubernetes Cluster

⁹https://www.dataiku.com/

Azure Machine Learning

Azure Machine Learning¹⁰

- ▶ is a Visionary in Gartner's Magic Quadrant
- Microsoft Corporation
- Redmond, Washington, United States
- Designer¹¹: Visual Workflow Designer
- Cloud-based
- Clients spans many industries and business functions
- Strengths
 - Enterprise data science
 - Multipersona
 - Openness and partnerships

https://azure.microsoft.com/en-us/services/machine-learning/
 https://azure.microsoft.com/en-us/services/machine-learning/designer/

▶●●─── Berliner Hochschule für Technik - Data Science Platforms - Prof. Dr. P. Erdelt

Exercise: RapidMiner Basics

Exercise

Please work on exercise 1

Literature

What is Data Science Workflow?

Terminology

Software

Literature

Literature I

- DS: [Pie15], [Gru16], [Gru15], [CMA16], [PF13]
- KDD: [Fay96], [FPS96]
- ML: [Sam59], [BRF16], [Gér17], [Ert16]
- DM: [Run10], [WFH11], [Tor10], [CL14], [Liu07], [Bro14], [BCJ14]
- RM: [HK16], [Chi13], [KD14], [KD18], [Nor18]
- [BCJ14] A. Bari, M. Chaouchi, and T. Jung. *Predictive Analytics For Dummies*. —For dummies. Wiley, 2014. ISBN: 9781118729410. URL: https://books.google.de/books?id=IjMKAwAAQBAJ.
- [BRF16] H. Brink, J.W. Richards, and M. Fetherolf. *Real-world Machine Learning*. Manning, 2016. ISBN: 9781617291920. URL: https://books.google.de/books?id=DoQAswEACAAJ.
- [Bro14] M.S. Brown. Data Mining For Dummies. —For dummies. Wiley, 2014. ISBN: 9781118893173. URL: https://books.google.de/books?id=zcDlBQAAQBAJ.
- [Chi13] A. Chisholm. Exploring Data with RapidMiner. Community experience distilled. Packt Publishing, 2013. ISBN: 9781782169345. URL: https://books.google.de/books?id=FustAgAAQBAJ.
- [CL14] J. Cleve and U. Lämmel. *Data Mining*. De Gruyter Studium Series. De Gruyter Oldenbourg, 2014. ISBN: 9783486713916. URL: https://books.google.de/books?id=4i2nngEACAAJ.

p. 52

Literature II

[CMA16]	D. Cielen, A. Meysman, and M. Ali. Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools. Manning Publications, 2016. ISBN: 9781633430037. URL: https://books.google.de/books?id=zYbisgEACAAJ.
[Ert16]	W. Ertel. Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung. Computational Intelligence. Springer Fachmedien Wiesbaden, 2016. ISBN: 9783658135492. URL: https://books.google.de/books?id=ecD3DAAAQBAJ.
[Fay96]	U.M. Fayyad. Advances in Knowledge Discovery and Data Mining. AAAI Press Series. AAAI Press, 1996. ISBN: 9780262560979. URL: https://books.google.de/books?id=XqVQAAAAMAAJ.
[FPS96]	Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. "Advances in Knowledge Discovery and Data Mining". In: ed. by Usama M. Fayyad et al. Menlo Park, CA, USA: American Association for Artificial Intelligence, 1996. Chap. From Data Mining to Knowledge Discovery: An Overview, pp. 1–34. ISBN: 0-262-56097-6. URL: http://dl.acm.org/citation.cfm?id=257938.257942.
[Gar21]	Gartner, Inc. Magic Quadrant for Data Science and Machine Learning Platforms. [Online; accessed 5. Mar. 2021]. Mar. 2021. URL: https://www.gartner.com/doc/reprints?id=1-25DIVGDE&ct=210303&st=sb.
[Gér17]	A. Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, 2017. ISBN: 9781491962244. URL: https://books.google.de/books?id=bRpYDgAAQBAJ.
[Gru15]	J. Grus. Data Science from Scratch: First Principles with Python. O'Reilly Media, 2015. ISBN: 9781491904398. URL: https://books.google.de/books?id=24kdCAAAQBAJ.
[Gru16]	J. Grus. Einführung in Data Science: Grundprinzipien der Datenanalyse mit Python. O'Reilly, 2016. ISBN: 9783960100256. URL: https://books.google.de/books?id=g-RNDAAAQBAJ.

Literature III

[HK16]	M. Hofmann and R. Klinkenberg. <i>RapidMiner: Data Mining Use Cases and Business Analytics Applications</i> . Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. CRC Press, 2016. ISBN: 9781482205503.
[KD14]	V. Kotu and B. Deshpande. <i>Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner</i> . Elsevier Science, 2014. ISBN: 9780128016503. URL: https://books.google.de/books?id=dRHoAwAAQBAJ.
[KD18]	V. Kotu and B. Deshpande. <i>Data Science: Concepts and Practice</i> . Elsevier Science, 2018. ISBN: 9780128147627. URL: https://books.google.de/books?id=-nt8DwAAQBAJ.
[Liu07]	B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Data-centric systems and applications. Springer, 2007. ISBN: 9783540378815. URL: https://books.google.de/books?id=6Mh50Uaq6AIC.
[MRS08]	Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. <i>Introduction to Information Retrieval</i> . New York, NY, USA: Cambridge University Press, 2008. ISBN: 0521865719, 9780521865715.
[Nor18]	M. North. Data Mining for the Masses, Third Edition: With Implementations in RapidMiner and R. CreateSpace Independent Publishing Platform, 2018. ISBN: 9781727102475. URL: https://books.google.de/books?id=stwbvAEACAAJ.
[PF13]	F. Provost and T. Fawcett. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. O'Reilly Media, 2013. ISBN: 9781449374280. URL: https://books.google.de/books?id=4ZctAAAAQBAJ.
[Pie15]	L. Pierson. <i>Data Science For Dummies</i> . —For dummies. Wiley, 2015. ISBN: 9781118841457. URL: https://books.google.de/books?id=Jx%5C_JBgAAQBAJ.
[Rom18]	Jan-Willem Romeijn. <i>Philosophy of Statistics</i> . [Online; accessed 5. Apr. 2018]. Apr. 2018. URL: https://plato.stanford.edu/entries/statistics.

Berliner Ho

Literature IV

[Run10]	T.A. Runkler. Data Mining: Methoden und Algorithmen intelligenter Datenanalyse. Computational Intelligence. Vieweg+Teubner Verlag, 2010. ISBN: 9783834893536. URL: https://books.google.de/books?id=cnYMys3V2t4C.
[Sam59]	A. L. Samuel. "Some Studies in Machine Learning Using the Game of Checkers". In: <i>IBM Journal of Research and Development</i> 3.3 (July 1959), pp. 210–229. ISSN: 0018-8646. DOI: 10.1147/rd.33.0210.
[Tor10]	L. Torgo. Data Mining with R: Learning with Case Studies. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series. Taylor & Francis, 2010. ISBN: 9781439810187. URL: https://books.google.de/books?id=EaNQPgAACAAJ.
[WFH11]	I.H. Witten, E. Frank, and M.A. Hall. <i>Data Mining: Practical Machine Learning Tools and Techniques</i> . The Morgan Kaufmann Series in Data Management Systems. Elsevier Science, 2011. ISBN: 9780080890364. URL: https://books.google.de/books?id=bDtLM8CODsQC.
[Wik20]	Wikipedia. <i>Information theory - Wikipedia</i> . [Online; accessed 24. Feb. 2020]. Feb. 2020. URL: https://en.wikipedia.org/wiki/Information_theory.