$\begin{array}{c} {\rm COMP\text{-}4540/8540} \\ {\rm Design\ and\ Analysis\ of\ Algorithms} \end{array}$

Winter 2025

Assignment 1

Due Date: February 4 (before 11:59p.m.)

1. Prove that $n! \in o(n^n)$ using the definition of o-notation.

2. Prove or disprove: $\Theta(n) - \Theta(n-1) = \Theta(1)$.

3. Prove that $\sum_{k=1}^{n} \frac{1}{2k-1} = O(\lg \sqrt{n})$. [Hint: $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o(\frac{1}{n})$.]

4. Rank the following functions by order of growth; i.e. find an ordering g_1, g_2, \ldots, g_7 of the functions such that $g_i \in o(g_{i+1})$ or $g_i \in \Theta(g_{i+1})$, for $1 \le i < 7$. Partition your lists into equivalences classes such that functions f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$. Provide proofs.

$$(\lg n)!, \ n^{\lg \lg n}, \ (n+1)!, \ 2^{2^{\lg \lg n+1}}, 10^{\lg \lg n}, \ n^2 \cdot 2^n, \ 6^n$$

[Hint: $(\lg n)! \in \Theta(n^{\lg \lg n - \lg e} \sqrt{\lg n})$]

- 5. To be posted
- 6. To be posted