MAT2006: Elementary Real Analysis Assignment #2

Deadline: Oct. 24

1 (Squeeze Theorem). Show that if $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$, and if $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \ell$, then $\lim_{n\to\infty} y_n = \ell$ as well.

2. Show that

(i)
$$\lim_{n \to \infty} \sqrt[n]{1 + \frac{a}{n}} = 1, \text{ where } a > 0.$$

(ii)
$$\lim_{n \to \infty} \frac{n^k}{n!} = 0$$
, where $k \in \mathbb{N}$.

(iii)
$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0, \text{ where } a > 1, k \in \mathbb{N}.$$

(iv)
$$\lim_{n\to\infty} \frac{a^n}{n!} = 0$$
, where $a \in \mathbb{R}$.

(v)
$$\lim_{n \to \infty} \sqrt[n]{\frac{a^n}{n} + \frac{b^n}{n^2}} = b, \text{ where } b \ge a > 0.$$

(vi)
$$\lim_{n \to \infty} \frac{\sqrt[3]{n^2} \sin n!}{n+1} = 0.$$

(vii)
$$\lim_{n \to \infty} \frac{n^2 + \cos n}{[n + (-1)^n]^2} = 1.$$

3 (Cesaro Means). (i) Show that if $\{x_n\}$ is a convergent sequence, then the sequence given by the averages

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

also converges to the same limit.

(ii) Give an example to show that it is possible for the sequence $\{y_n\}$ of averages to converge even if $\{x_n\}$ does not.

4. Show that the sequence

$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$, \cdots ,

is convergent and find its limit.

5. Set $x_1 = 2$ and

$$x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}, \quad \forall n \in \mathbb{N}.$$

Show that $\{x_n\}$ is convergent and find its limit.

6. For a bounded sequence $\{x_n\}$, the Bolzano–Weierstrass Theorem says that there exists a convergent subsequence. Let E be the set of real numbers s such that $x_{n_k} \to s$ for some subsequence $\{x_{n_k}\}$. Show that

$$\limsup_{n \to \infty} x_n = \sup E \quad \text{and} \quad \liminf_{n \to \infty} x_n = \inf E.$$

7. For the following sequences, find their upper and lower limits.

(i)
$$\{(-1)^n\}_{n=1}^{\infty}$$
, (ii) $\{(-1)^n n\}_{n=1}^{\infty}$, (iii) $\{(-1)^n \frac{1}{n}\}_{n=1}^{\infty}$.

8. Find the sup, inf, max and min for the following sets

(a)
$$A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\};$$
 (b) $B = \left\{ 1 - \frac{1}{n} \mid n \in \mathbb{N} \right\}.$

- **9.** Show that a sequence $\{x_n\}$ is convergent if and only if $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$. In this case, all three share the same value.
- 10 (Order Properties for Upper and Lower Limits). Assume there exists $M \in \mathbb{N}$ such that $x_n \leq y_n$ for each $n \geq M$. Show that

$$\liminf_{n \to \infty} x_n \le \liminf_{n \to \infty} y_n, \qquad \limsup_{n \to \infty} x_n \le \limsup_{n \to \infty} y_n.$$

- 11. Assume $0 \le x_{n+m} \le x_n + x_m$ for all $n, m \in \mathbb{N}$. Show that the sequence $\left\{\frac{x_n}{n}\right\}$ converges. **Hint.** Apply the result about upper and lower limits in the above two problems.
- 12. Assume $\lim_{n\to\infty} x_n = A$. Show that

$$\lim_{n \to \infty} \frac{\frac{1}{2}x_1 + \frac{2}{3}x_2 + \dots + \frac{n}{n+1}x_n}{n} = A.$$

- **13.** Assume $x_n > 0$ for every $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \ell < \infty$. Show that $\lim_{n \to \infty} \sqrt[n]{x_n} = \ell$.
- **14.** Assume $x_n > 0$ for every $n \in \mathbb{N}$. Show that

$$\limsup_{n\to\infty} \sqrt[n]{x_n} \le \limsup_{n\to\infty} \frac{x_{n+1}}{x_n}.$$

- 15. (i) Use the Monotone Convergence Theorem to prove the Archimedean Property without making any use of Least Upper Bound Property.
- (ii) Use the Monotone Convergence Theorem to prove the Nested Interval Property without making any use of Least Upper Bound Property.

- **16.** Assume the Nested Interval Property is true. Use the technique in proving the Bolzano–Weierstrass Theorem to provide a proof of the Lest Upper Bound Property. To prevent the argument from being circular, assume also that $1/2^n \to 0$ (which is a consequence of the Archimedean Property).
- 17. Assume the Bolzano-Weierstrass Theorem is true and use it to construct a proof of the Monotone Convergence Theorem without making any appeal to the Archimedean Property.
- 18. Use the Cauchy Criterion to prove the Bolzano-Weierstrass Theorem, and find the point in the argument where the Archimedean Property is implicitly required.
- **19.** Assume $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n^2$ converge. Show that

$$\sum_{n=1}^{\infty} |a_n b_n|, \qquad \sum_{n=1}^{\infty} (a_n + b_n)^2, \qquad \sum_{n=1}^{\infty} \frac{|a_n|}{n}$$

also converge.

- **20.** Show that if $\lim_{n\to\infty} na_n = a \neq 0$ then $\sum_{n=1}^{\infty} a_n$ diverges.
- 21. Proving the Alternating Series Test amounts to showing that the sequence of partial sums

$$s_n = a_1 - a_2 + a_3 + \dots + (-1)^{n+1} a_n$$

converges. Different characterizations of completeness lead to different proofs.

- (a) Prove the Alternating Series Test by showing that $\{s_n\}$ is a Cauchy sequence.
- (b) Supply another proof for this result using the Nested Interval Property.
- (c) Consider the subsequences $\{s_{2n}\}$ and $\{s_{2n+1}\}$, and show how the Monotone Convergence Theorem leads to a third proof for the Alternating Series Test.
- 22. Discuss the convergence (absolute, conditional convergence or divergence) of the following series

(i)
$$\sum_{n=1}^{\infty} \frac{n \cos \frac{n\pi}{3}}{2^n}$$
; (ii) $\sum_{n=1}^{\infty} (-1)^n \frac{\sin^2 n}{n}$.

- **23** (Abel's test). Abel's Test for convergence states that if the series $\sum_{k=1}^{\infty} x_k$ converges, and if $\{y_k\}$ is a sequence satisfying $y_1 \geq y_2 \geq y_3 \geq \cdots \geq 0$, then the series $\sum_{k=1}^{\infty} x_k y_k$ converges.
- (i) Prove the summation by parts formula. Let $s_0 = 0$ and $s_n = x_1 + x_2 + \cdots + x_n$ for $n \in \mathbb{N}$. Then

$$\sum_{k=m}^{n} x_k y_k = s_n y_{n+1} - s_{m-1} y_m + \sum_{k=m}^{n} s_k (y_k - y_{k+1})$$

Hint. Note that $x_k = s_k - s_{k-1}$.

(ii) Use the Comparison Test to argue that $\sum_{k=m}^{\infty} s_k(y_k - y_{k+1})$ converges absolutely, and show how this leads directly to a proof of Abel's Test.

- 24 (Dirichlet's Test). Dirichlet's Test for convergence states that if the partial sums of $\sum_{k=1}^{\infty} x_k$ are bounded (but not necessarily convergent), and if $\{y_k\}$ is a sequence satisfying $y_1 \geq y_2 \geq y_3 \geq \cdots \geq 0$, with $\lim_{k \to \infty} y_k = 0$, then the series $\sum_{k=1}^{\infty} x_k y_k$ converges.

 (i) Point out how the hypothesis of Dirichlet's Test differs from that of Abel's Test, but
- show that essentially the same strategy can be used to provide a proof.
- (ii) Show how the Alternating Series Test can be derived as a special case of Dirichlet's Test.

— End —