Permit Number 81011

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Source Name (2) Air Contaminant Name (3)		ates (6)
			lbs/hour	TPY (4)
189	Process Steam Generator Boiler Stack	РМ	0.09	0.41
		PM ₁₀	0.09	0.41
		PM _{2.5}	0.09	0.41
		voc		0.30
		со		4.54
		NO _x	1.24	5.41
		SO ₂	0.01	0.03
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	0.02	0.10
221	Tank 1 Heater Stack	РМ	0.01	0.05
		PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
		voc	0.01	0.04
		со	0.12	0.54
		NO _x	0.15	0.64
		SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.01

224	Tank 2 Heater Stack	РМ	0.01	0.05
		PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
		VOC	0.01	0.04
		СО	0.12	0.54
		NO _x	0.15	0.64
		SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.01
227	Tank 3 Heater Stack	РМ	0.01	0.05
		PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
		VOC	0.01	0.04
		СО	0.12	0.54
		NO _x	0.15	0.64
		SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.01
230	Tank 4 Heater Stack	РМ	0.01	0.05
		PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
		VOC	0.01	0.04
		СО	0.12	0.54
		NO _x	0.15	0.64
230	Tank 4 Heater Stack	SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01

		HAPs (5)	<0.01	0.01
233	Tank 6 Heater Stack	PM	0.01	0.03
		PM ₁₀	0.01	0.03
		PM _{2.5}	0.01	0.03
		VOC	<0.01	0.02
		со	0.07	0.29
		NO _x	0.08	0.34
		SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.01
236	Tank 13 Heater Stack	PM	0.01	0.03
		PM ₁₀	0.01	0.03
		PM _{2.5}	0.01	0.03
		VOC	<0.01	0.02
		со	0.07	0.29
		NO _x	0.08	0.34
		SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.01
239	Tank 14 Heater 1 Stack	PM	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
239	Tank 14 Heater 1 Stack	voc	0.01	0.06
		со	0.21	0.90
		NO _x	0.25	1.07
		SO ₂	<0.01	0.01

		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
240	Tank 14 Heater 2 Stack	PM	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		voc	0.01	0.06
		со	0.21	0.90
		NO _x	0.25	1.07
		SO ₂	<0.01	0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
243	Tank 15 Heater 1 Stack	PM	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		VOC	0.01	0.06
		со	0.21	0.90
		NO _x	0.25	1.07
		SO ₂	<0.01	0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
244	Tank 15 Heater 2 Stack	PM	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		VOC	0.01	0.06
		СО	0.21	0.90
		NO _x	0.25	1.07

İ	I			
		SO ₂	<0.01	0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
247	Tank 16 Heater Stack	PM	0.01	0.03
		PM ₁₀	0.01	0.03
		PM _{2.5}	0.01	0.03
		VOC	<0.01	0.02
		СО	0.07	0.29
		NO _x	0.08	0.34
		SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.01
250	Tank 17 Heater 1 Stack	РМ	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		VOC	0.01	0.06
250	Tank 17 Heater 1 Stack	со	0.21	0.90
		NO _x	0.25	1.07
		SO ₂	<0.01	0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
251	Tank 17 Heater 2 Stack	PM	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		VOC	0.01	0.06
Project Number: 240696			1	

		со	0.21	0.90
		NO _x	0.25	1.07
		SO ₂	<0.01	0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
254	Tank 18 Heater Stack	РМ	0.01	0.03
		PM ₁₀	0.01	0.03
		PM _{2.5}	0.01	0.03
		voc	<0.01	0.02
		со	0.07	0.29
		NO _x	0.08	0.34
		SO ₂	<0.01	<0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.01
258	Tank 20 (Diesel Storage)	VOC	<0.01	<0.01
280, 282, 283, 284, 285, 286	Asphalt Pouring Sheds	РМ	0.60	0.18
203, 200		PM ₁₀	0.60	0.18
		PM _{2.5}	0.60	0.18
		VOC	2.14	0.65
		со	0.10	0.03
		H ₂ S	0.05	0.01
		COS (8)	0.07	0.02
		CH ₂ O (8)	0.08	0.02
		HAPs (5)	1.97	0.60
	1	 	†	†

	Cleaners and Roofing Solvent Fugitives (4)			
4	3-Tab Line Filler Storage Silo Dust	PM	0.09	0.39
	Collector Stack	PM ₁₀	0.09	0.39
		PM _{2.5}	0.09	0.39
5	3-Tab Line Filler Upper Surge Hopper Dust	PM	0.05	0.23
	Collector Stack	PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
6	3-Tab Line Filler Heater and Lower Surge	PM	0.01	0.04
	Hopper Dust Collector Stack	PM ₁₀	0.01	0.04
	Slack	PM _{2.5}	0.01	0.04
10	Lam Line Sand Storage Silo Dust Collector	PM	0.05	0.23
	Stack	PM ₁₀	0.05	0.23
		PM _{2.5}	0.05	0.23
11	3-Tab Line Process Dust Collector Stack	PM	0.01	0.04
	Bust Collector Stack	PM ₁₀	0.01	0.04
		PM _{2.5}	0.01	0.04
		VOC	4.85	4.25
		со	3.80	4.04
		H ₂ S	0.51	0.88
		CH ₂ O (8)	0.37	1.64
		COS (8)	0.07	0.30
		HAPs (5)	0.44	1.94
		PM ₁₀	0.11	0.49
		PM _{2.5}	0.11	0.49

		voc	0.08	0.35
		СО	1.24	5.41
		NO _x	1.47	6.44
		SO ₂	0.01	0.04
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	0.03	0.12
18	3-Tab Line Process Oil Heater Stack	РМ	0.09	0.41
	Treater Stack	PM ₁₀	0.09	0.41
		PM _{2.5}	0.09	0.41
		voc	0.07	0.30
		СО	1.03	4.51
		NO _x	1.23	5.37
18	3-Tab Line Process Oil Heater Stack	SO ₂	0.01	0.03
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	0.02	0.10
23-A, 23-B, 23-C, 23-D	3-Tab Line Cooling Stacks	PM	4.60	20.15
23-0	Stacks	PM ₁₀	4.60	20.15
		PM _{2.5}	4.60	20.15
		VOC	0.64	2.79
		H ₂ S	0.51	0.88
312	3-Tab Line Asphalt Preheater	PM	0.04	0.16
	FICHEALCI	PM ₁₀	0.04	0.16
		PM _{2.5}	0.04	0.16
		VOC	0.03	0.12
		СО	0.41	1.80
		NO _x	0.49	2.15
Project Number: 240696		1	I	<u> </u>

		SO ₂	<0.01	0.01
		CH ₂ O(8)	<0.01	<0.01
		HAPs (5)	0.01	0.04
318	Lam Line Filler Hot Oil Heater	PM	0.03	0.13
		PM ₁₀	0.03	0.13
		PM _{2.5}	0.03	0.13
		VOC	0.02	0.09
		СО	0.33	1.44
		NO _x	0.39	1.72
318	Lam Line Filler Hot Oil Heater	SO ₂	<0.01	0.01
	reacei	CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	0.01	0.03
319	Lam Line Process Oil Heater	РМ	0.01	0.07
	react	PM ₁₀	0.01	0.07
		PM _{2.5}	0.01	0.07
		voc	0.01	0.05
		со	0.16	0.72
		NO _x	0.20	0.86
		SO ₂	<0.01	0.01
		CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
320	3-Tab Line Regenerative Thermal	РМ	0.03	0.12
	Oxidizer Stack (Sealant Bulk Tanks 101 and	PM ₁₀	0.03	0.12
	201, Adhesive Bulk Tank 301, Coater, and	PM _{2.5}	0.03	0.12
	Coater Surge Tank)	voc	0.37	0.60

-				
		со	0.37	0.88
		H ₂ S	0.04	0.07
		NOx	0.16	0.69
		SO ₂	3.55	6.15
		COS (8)	<0.01	0.01
		CH ₂ O (8)	<0.01	0.01
		HAPs (5)	<0.01	0.03
321 and 322	General Ventilation and Fugitives (Roof Vent, 3-	РМ	5.32	23.28
	Tab and Lam Line Material Surfacing	PM ₁₀	5.32	23.28
	Areas, 3-Tab and Lam	PM _{2.5}	5.32	23.28
	Line Coaters, Lam Line Cooling Section, 3-Tab and Lam Line Sealant	voc	3.29	14.40
	Applicators, Lam Line Adhesive	со	0.32	1.40
	Applicator, 3-Tab and	H ₂ S	1.27	2.20
	Lam Line Ink Jet Printers, 3-Tab Mat	CH ₂ O (8)	0.05	0.20
	Unwind Dry Looper, and 3-Tab and Lam	COS (8)	0.04	0.18
	Line Sealant Run Tanks)	HAPs (5)	0.09	0.38
323	Lam Line Filler Upper Surge Hopper Dust	РМ	0.04	0.19
	Collector Stack	PM ₁₀	0.04	0.19
		PM _{2.5}	0.04	0.19
324	Lam Line Process Dust	PM	0.04	0.20
	Collector Stack	PM ₁₀	0.04	0.20
		PM _{2.5}	0.04	0.20
		VOC	4.85	4.25
		со	3.80	4.04
		H ₂ S	0.51	0.88
		CH ₂ O (8)	0.50	2.17

		COS (8)	0.09	0.40
		HAPs (5)	0.59	2.57
325	Lam Line Regenerative	PM	0.04	0.16
	Thermal Oxidizer Stack (MSA Melt Tank,	PM ₁₀	0.04	0.16
	Adhesive Run Tank, Coater, Coater Surge	PM _{2.5}	0.04	0.16
	Tank, Sealant Applicator, Adhesive	VOC	0.31	0.68
	Applicator)	СО	0.31	0.84
		NO _x	0.16	0.69
		SO ₂	4.39	7.60
		H ₂ S	0.05	0.08
		CH ₂ O (8)	<0.01	0.02
		COS (8)	<0.01	0.01
		HAPs (5)	<0.01	0.03
326	Lam Line Filler Storage Silo Dust Collector	PM	0.04	0.19
	Stack	PM ₁₀	0.04	0.19
		PM _{2.5}	0.04	0.19
327	Lam Line Filler Heater and Lower Surge	PM	0.01	0.04
	Hopper Dust Collector Stack	PM ₁₀	0.01	0.04
		PM _{2.5}	0.01	0.04
328	Lam Line Asphalt Preheater	РМ	0.02	0.08
		PM ₁₀	0.02	0.08
		PM _{2.5}	0.02	0.08
		VOC	0.01	0.06

		СО	0.21	0.90
		NO _x	0.25	1.07
328	Lam Line Asphalt	SO ₂	<0.01	0.01
	Preheater	CH ₂ O (8)	<0.01	<0.01
		HAPs (5)	<0.01	0.02
330	3-Tab Line Surfacing Materials Silos and	PM	<0.01	0.01
	Unloading	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
331	Lam Line Surfacing Materials Silos and	PM	<0.01	0.01
	Unloading	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
400	Sealant Filler Hopper Dust Collector	PM	0.01	0.04
	Dust Collector	PM ₁₀	0.01	0.04
		PM _{2.5}	0.01	0.04
401	Adhesive Filler Hopper Dust Collector	PM	0.01	0.04
	Dust Collector	PM ₁₀	0.01	0.04
		PM _{2.5}	0.01	0.04
MAT	Lam Line Mat Unwind Dry Looper Dust	PM	0.04	0.19
	Collector Stack	PM ₁₀	0.04	0.19
		PM _{2.5}	0.04	0.19
UNLOAD	Railcar/Truck Granule Unloading Fugitives	PM	0.02	0.06
	(Both Lines) (4)	PM ₁₀	<0.01	0.03
		PM _{2.5}	<0.01	0.03
FUG 2	Asphalt Railcar Unloading Fugitives (4)	voc	0.14	0.28
271	Asphalt Truck Unloading Fugitives (4)	VOC	0.12	0.24

3	Fume Incinerator/	PM	3.03	13.45
	Preheater/Waste Heat Boiler Stack (3 Asphalt Blowing Stills/Converters, 15	PM ₁₀	3.03	13.45
		PM _{2.5}	3.03	13.45
	Asphalt Plant Active Storage Tanks, Asphalt	VOC	2.75	13.89
	Truck Loading Racks)	СО	28.52	119.49
		NO _x	5.58	24.03
		SO ₂	38.51	157.34
		H ₂ S	0.30	1.29
		CH ₂ O (8)	0.01	0.03
		COS (8)	0.01	0.02
		HAPs (5)	0.64	2.65
217, 218, 219	Asphalt Loading Rack Fugitives and BD Oil	PM	0.21	13.45
	Loading System Fugitives (4)	PM ₁₀	0.21	13.45
	r ugitives (4)	PM _{2.5}	0.21	13.45
		voc	35.56	13.89
		СО	0.05	119.49
		COS(8)	<0.01	0.02
		H ₂ S	0.01	1.29
		CH ₂ O (8)	<0.01	0.03
		HAPs (5)	<0.01	2.65
273	Asphalt Loading Rack (External Truck	РМ	1.07	13.45
	Shipping) Fiber Bed Filter Stack (7)	PM ₁₀	1.07	13.45
	(·)	PM _{2.5}	1.07	13.45
		VOC	38.00	13.89
		СО	16.66	119.49

		COS (8)	0.09	0.02
		H₂S	2.63	1.29
		CH ₂ O (8)	0.11	0.03
		HAPs (5)	0.2	2.65
3, 217, 218, 219, and 273	Total Combined Annual Emission Allowance for Fume Incinerator/ Preheater/Waste Heat Boiler Stack (3 Asphalt Blowing Stills/Converters, 15 Asphalt Plant Active Storage Tanks, Asphalt Truck Loading Racks), Asphalt Loading Rack Fugitives and BD Oil Loading System Fugitives, and Asphalt Loading Rack (External Truck Shipping) Fiber Bed Filter Stack	PM	-	13.45
		PM ₁₀	-	13.45
		PM _{2.5}	-	13.45
		VOC	-	13.89
		со	-	119.49
		NO _x	-	24.03
		SO ₂	-	157.34
		H ₂ S	-	1.29
		CH ₂ O (8)	-	0.03
		COS (8)	-	0.02
		HAPs (5)	-	2.65

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.

- volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1 (3) VOC

- total oxides of nitrogen NO_x

- sulfur dioxide SO₂

PM- total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

 PM_{10} - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as represented

 $PM_{2.5}$ - particulate matter equal to or less than 2.5 microns in diameter

- carbon monoxide CO hydrogen sulfide H₂S formaldehyde (HAP) CH₂O carbonyl sulfide (HAP) COS

any of the Section 112(b), Federal Clean Air Act named compounds **HAPS**

- (4) Fugitive emissions are an estimate only.
- (5) HAPs are included in the PM and VOC maximum allowable emission quantities.
- (6) Planned startup and shutdown emissions are included. Maintenance activities are not authorized by this permit.

- (7) Alternate operating scenario when loading trucks for external shipment.(8) Formaldehyde and Carbonyl Sulfide emission rates are included in the total HAPs limits.

Dated:	November 3, 2015