CS161: Homework 7

Rodrigo Valle

Problem 1

Prove Generalized Product Rule

$$\Pr(A, B|K) = \Pr(A|B, K) \Pr(B|K)$$

To prove the generalized product rule, we use the axiom of conditional probability, which states:

$$Pr(X|Y) = \frac{Pr(X,Y)}{Pr(Y)} \tag{1}$$

From this follows the less general product rule, for the intersection of two events:

$$Pr(Y|X) = \frac{Pr(X,Y)}{Pr(X)}$$
$$Pr(X,Y) = Pr(Y|X) Pr(X)$$

Substitute $X = A \cap B$ and Y = K into (1)

$$Pr(A, B|K) = \frac{Pr(A, B, K)}{Pr(K)}$$

Substitute X = A and $Y = B \cap K$ into (1)

$$Pr(A|B,K) = \frac{Pr(A,B,K)}{Pr(B,K)}$$

Now combine and simplify using the $\Pr(B|K) = \frac{\Pr(B,K)}{\Pr(K)}$:

$$\Pr(A,B|K) = \frac{\Pr(A|B,K)\Pr(B,K)}{\Pr(K)} = \Pr(A|B,K)\Pr(B|K)$$

Prove Generalized Baye's Rule

$$\Pr(A|B,K) = \frac{\Pr(B|A,K)\Pr(A|K)}{\Pr(B|K)}$$

$$Pr(A, B) = Pr(A|B) Pr(B)$$
$$= Pr(B|A) Pr(A)$$
$$Pr(B|A) Pr(A) = Pr(A|B) Pr(B)$$
$$Pr(A|B) = \frac{Pr(B|A) Pr(A)}{Pr(B)}$$

$$\begin{split} \Pr(A|B,K) &= \Pr(A|B,K) \Pr(B|K) \\ \Pr(B|A,K) &= \Pr(B|A,K) \Pr(A|K) \\ \Pr(B|A,K) \Pr(A|K) &= \Pr(A|B,K) \Pr(B|K) \\ \Pr(A|B,K) &= \frac{\Pr(B|A,K) \Pr(A|K)}{\Pr(B|K)} \end{split}$$

Problem 2

where $n \in \{1, 2, 3\}$, the CPTs for the coin tosses X_1, X_2 and X_3 are:

\overline{C}	X_n	$\Pr(X_n C)$
a	h	0.2
a	\mathbf{t}	0.8
b	h	0.6
b	\mathbf{t}	0.4
\mathbf{c}	h	0.8
\mathbf{c}	\mathbf{t}	0.2

and the distribution for C is:

\overline{C}	$\Pr(C)$
a	$0.\overline{3}$
b	$0.\overline{3}$
\mathbf{c}	$0.\overline{3}$

Problem 3

world	N	S	C	$\Pr(N, S, C)$
1	1	square	black	2/13
2	1	square	white	1/13
3	1	circle	black	1/13
4	1	circle	white	1/13
5	2	square	black	4/13
6	2	square	white	1/13
7	2	circle	black	2/13
8	2	circle	white	1/13

- α_1 : the object is black
- α_2 : the object is square
- α_3 : if the object is one or black, then it is also a square
- α_1 holds in worlds 1, 3, 5 and 7 with a probability of

$$\Pr(\alpha_1) = \frac{2}{13} + \frac{1}{13} + \frac{4}{13} + \frac{2}{13} = \frac{9}{13}$$

• α_2 holds in worlds 1, 2, 5 and 6 with a probability of

$$\Pr(\alpha_2) = \frac{2}{13} + \frac{1}{13} + \frac{4}{13} + \frac{1}{13} = \frac{8}{13}$$

• α_3 holds in worlds 1, 2 and 5 with a probability of

$$\Pr(\alpha_3) = \frac{2}{13} + \frac{1}{13} + \frac{4}{13} = \frac{7}{13}$$

Problem 4

\mathbf{A}

These should be read as: the variable (first parameter to I) is independent of its non-descendants (third parameter to I), when giving values for the variable's parents.

- $I(A, \varnothing, \{B, E\})$
- $I(B,\varnothing,\{A,C\})$
- I(C, A, {D, B, E})
 I(D, {A, B}, {C, E})

- $I(E, B, \{A, C, D, F, G\})$
- $I(F, \{C, D\}, \{A, B, E\})$
- $I(G, F, \{A, B, C, D, E, H\})$
- $I(H, \{F, E\}, \{A, B, C, D, G\})$

\mathbf{B}

• d_separated(A, BH, E): false, there is a path

$$A \to C \to F \to H \leftarrow E$$

where the collider H does not block the path because it is given.

• d separated(G, D, E): false, there is a path

$$G \leftarrow F \leftarrow C \leftarrow A \rightarrow D \leftarrow B \rightarrow E$$

where the collider D does not block the path because it is given.

• d_separated(AB, F, GH): false, there is a path

$$B \to E \to H$$

\mathbf{C}

 $\Pr(a,b,c,d,e,f,g,h) = \Pr(a)\Pr(b)\Pr(c|a)\Pr(d|a,b)\Pr(e|b)\Pr(f|c,d)\Pr(g|f)\Pr(h|f,e)$

\mathbf{D}

1.
$$Pr(A = 0, B = 0) = Pr(A = 0) Pr(B = 0) = (.8)(.3) = 0.24$$

2.

- Pr(E = 1|A = 1) = Pr(E = 1)
- $\Pr(E=1) = \Pr(E=1|B=0) \Pr(B=0) + \Pr(E=1|B=1) \Pr(B=1)$
- Pr(E=1) = (0.9)(0.3) + (0.1)(0.7) = 0.27 + 0.07 = 0.34