Protocolo TCP

El Protocolo de Control de Transmisión

 π

Introducción

Protocolo de la capa de Transporte que proporciona un servicio de entrega confiable de transferencia de datos de extremo a extremo.

Acceso a un servidor Web a través de una conexión remota

- Orientado a conexión

- Antes de poder transferir los datos, dos procesos (local y remoto) deben negociar una conexión TCP mediante un proceso de establecimiento de conexión.
- Las conexiones TCP se cierran formalmente mediante el proceso de finalización de conexión TCP.

Control de flujo del emisor y del receptor.

- > TCP implementa control de flujo del emisor que, gradualmente, escala la cantidad de datos a la vez.
- > Para evitar que el emisor envíe datos que el receptor no puede almacenar en buffer. TCP implementa control de flujo del receptor que indica la cantidad de espacio libre en el buffer del receptor.

Full Dúplex

- > Para cada terminal TCP, la conexión TCP está formada por dos canales lógicos: un canal para transmitir datos (salida) y uno para recibir datos (entrada).
- Con la tecnología adecuada de la capa de Interfaz de Red, la terminal podría transmitir y recibir datos al mismo tiempo.
- El encabezado TCP contiene el número de secuencia de los datos de salida y un reconocimiento de los datos de entrada.

Un circuito lógico bidireccional, full dúplex entre dos procesos

- Fiable

- > En el **transmisor**, los datos enviados en una conexión TCP están secuenciados y se espera un reconocimiento afirmativo por parte del receptor.
- > Si no se recibe ningún reconocimiento, el segmento se transmite de nuevo.
- > En el **receptor**, los segmentos duplicados se descartan y los segmentos que llegan fuera de secuencia se colocan en la secuencia correcta.
- > Siempre se utiliza una **suma de comprobación** TCP para comprobar la *integridad* de nivel de bit del segmento TCP.

Segmentación de datos de la capa de aplicación.

- TCP segmenta los datos obtenidos a partir del proceso de la capa de Aplicación para adaptarlos a un datagrama IP enviado por el enlace de la capa de Interfaz de Red.
- Las terminales TCP intercambian el segmento de tamaño máximo que puede recibir cada uno y ajustan el tamaño máximo del segmento TCP mediante el descubrimiento de la Unidad Máxima de Transferencia de Rutas (PMTU, Path Maximum Transmission Unit)

- Entrega de uno a uno

- > Las conexiones de TCP son un circuito lógico **punto a punto** entre dos protocolos de la capa de Aplicación.
- > TCP no proporciona un servicio de uno a varios.
- Normalmente, TCP se utiliza cuando el protocolo de la capa de Aplicación requiere un servicio de transferencia de datos confiable y el protocolo de Aplicación no proporciona este tipo de servicio.

Segmento TCP

- Los segmentos TCP se envían como datagramas IP.

Segmento TCP

- Un segmento TCP, esta formado por un encabezado TCP y un segmento.
- > Se encapsula con un encabezado IP con el campo protocolo con el valor 6(0x06).
- > El segmento de datos puede tener un tamaño máximo de 65,496 bytes (65,536 menos 20 de encabezado IP y 20 de encabezado TCP).

 π

TCP Header

Bit Number

1111111111222222222233

01234567890123456789012345678901

	Source	Port	Destination Port				
		Sequence	e Number				
		Acknowledgr	ment Number				
Offset (Header Length)	Reserved	Flags	Window				
	Check		Urgent Pointer				
	Options (optional)						

11

TCP Header

Bit Number

111111111122222222233

01234567890123456789012345678901

	Source	Port	Destination Port					
		Sequence	Number					
		Acknowledgr	nent Number					
Offset (Header Length)	Reserved	Flags	Window					
	Check		Urgent Pointer					
	Options (optional)							

Tamaño de la cabecera sin opciones 20 bytes

TCP Header

Bit Number

111111111122222222233

01234567890123456789012345678901

	Source	Port	Destination Port				
		Sequence	ce Number				
	1	Acknowledgr	nent Number				
Offset (Header Length)	Reserved	Flags	Window				
	Check		Urgent Pointer				
	Options (optional)						

Offset o Header Lenght indica el número de palabras de 32 bits (4bytes) de la cabecera TCP

Valor mínimo = 5
$$\Rightarrow$$
 5x4 = 20 bytes
Valor máximo = 15 \Rightarrow 15x4= 60 bytes

TCP Header									
Bit Number									
	111111	111122222222233							
012345678	89012345	6789012345678901							
Source	Port	Destination Port							
	Sequence	e Number							
	Acknowledgr	ment Number							
Offset (Heoder Length)	Flags	Window							
Checks	sum	Urgent Pointer							
	Options (optional)							

Puerto Origen

Indica el protocolo de la capa de aplicación de origen que envía el segmento TCP. La dirección IP de origen [IP] + el puerto origen [TCP] = Socket (conector) dirección única Es globalmente significativa desde la que se ha enviado el segmento.

	TCP H	eader						
Bit Number								
	111111	111122222222233						
012345678	89012345	6789012345678901						
Source	Port	Destination Port						
	Sequence	Number						
	Acknowledgr	nent Number						
Offset (Header Length)	Flags	Window						
Checks	sum	Urgent Pointer						
	Options (optional)						

Puerto Origen

Indica el protocolo de la capa de aplicación de origen que envía el segmento TCP. La dirección IP de origen [IP] + el puerto origen [TCP] = Socket (conector) dirección única Es globalmente significativa desde la que se ha enviado el segmento.

Puerto Destino

Indica el protocolo de la capa de aplicación de destino.

La dirección IP de destino + el puerto de destino del encabezado TCP = Conector = Dir. única Es globalmente significativa a la que se envía el segmento.

Números de puertos asignados por la IANA (Autoridad de. Números Asignados en Internet)

	TCP H	eader							
Bit Number									
	111111	111122222222233							
012345678	9012345	6789012345678901							
Source F	Port	Destination Port							
	Sequence	Number							
	Acknowledgr	nent Number							
Offset (Header Length) Reserved	Flags	Window							
Checksum Urgent Pointer									
	Options (optional)							

- Número de Secuencia

Indica el número de secuencia, basado en secuencias de bytes de salida del primer byte del segmento.

Al establecer una conexión TCP, los segmentos TCP con un valor de indicador SYN (Sincronización) en 1, define el campo Número de Secuencia con el Numero de Secuencia Inicial (ISN, Inicial Sequence Number).

Esto indica que **el primer octeto** de la secuencia de bytes **de salida** enviado en la conexión es **ISN+1**.

	TCP H	eader
	Bit No	umber
	111111	111122222222233
012345678	9012345	6789012345678901
Source P	ort	Destination Port
	Sequence	Number
	Acknowledgr	nent Number
Offset (Heoder Length)	Flags	Window
Checksu	ım	Urgent Pointer
	Options (optional)

- Número de Asentimiento o reconocimiento

Indica el número de secuencia del siguiente byte que el receptor espera recibir. (Similar a un ACK)

TCP Header Bit Number 11111111111222222222233 0123456789012345678901

	Source P	ort	Destination Port				
		Sequence	ce Number				
	,	Acknowledge	nent Number				
Offset (Header Length)	Reserved	Flags	Window				
	Checks	ım	Urgent Pointer				
	Options (optional)						

Offset o Header Lenght (4 bits)

indica el número de palabras de 32 bits (4bytes) de la cabecera TCP

Valor mínimo = 5 \Rightarrow 5x4 = 20 bytes Valor máximo = 15 \Rightarrow 15x4= 60 bytes

6 BITS RESERVADOS 0's

- Banderas

0 0 URG ACK PSH RST SYN FIN

URG- Urgente.- Indica que el segmento TCP contiene datos urgentes.

ACK.- Asentimiento Este campo contiene el valor siguiente octeto esperado en la conexión.

PSH.- Push .- Indica que el contenido del búfer de recepción de TCP se debería trasladar al protocolo de la capa de aplicación con lo que se liberará inmediatamente.

RST.- Reset Reinició de la conexión.- Indica que la conexión debe abortar.

SYN .- Sincronizar.- Indica que el segmento contiene el número de secuencia de sincronización.

FIN.- Finalización del envío de datos.

	TCP Header									
	Bit Number									
	111111	111122222222233								
012345678	9012345	6789012345678901								
Source F	Port	Destination Port								
	Sequence	Number								
	Acknowledgr	nent Number								
Offset (Heoder Length) Reserved	Reserved Flags Williams									
Checks	Checksum Urgent Pointer									
	Options (optional)								

Ventana

Indica el número de bytes que hay disponible en el buffer receptor

El receptor TCP indica al emisor cuantos datos puede enviar aún que se puedan guardar en el buffer.

Checksum

1.- Formar la seudocabecera TCP

Dirección IP Origen [IP] 4 bytes
Dirección IP Destino [IP] 4 bytes
No usado = 0X00 1 byte
Protocolo= 0X06 [IP] 1 byte
Tamaño en bytes [TCP] hexa 2 bytes

Cabecera TCP sin opciones tiene tamaño=20bytes =0x0014

		Segmento TCP	
Seudo Cabecera TCP [12 bytes]	Cabecera TCP [20 – 60 bytes]	Segmento	0x00 Relleno si es necesario

	TCP Header									
	Bit Number									
	111111	111122222222233								
012345678	39012345	6789012345678901								
Source I	Port	Destination Port								
	Sequence	Number								
	Acknowledgr	nent Number								
Offset (Heoder Length) Reserved	The served Flags William William									
Checks	Checksum Urgent Pointer									
	Options (optional)								

Puntero Urgente

Indica la ubicación de los datos urgentes en el segmento

Encabezado TCP

Puerto Origen Puerto Destino Número de Secuencia Número de Reconocimiento Desplazamiento de datos Reservado Banderas Ventana Suma de Comprobación Puntero Urgente Opciones y Relleno

Trama TCP

TOT= 0X0800 Sigue IP

```
      00
      14
      d1
      c2
      38
      be
      00
      18
      e7
      33
      3d
      c3
      08
      00
      45
      00

      00
      30
      94
      71
      40
      00
      80
      06
      f9
      8c
      c0
      a8
      02
      3c
      4a
      7d

      5f
      68
      10
      52
      00
      50
      03
      c7
      5a
      a1
      00
      00
      00
      70
      02

      40
      00
      67
      4b
      00
      00
      02
      04
      05
      b4
      01
      01
      04
      02
```

 00
 14
 d1
 c2
 38
 be
 00
 18
 e7
 33
 3d
 c3
 08
 00
 45
 00

 00
 30
 94
 71
 40
 00
 80
 06
 f9
 8c
 c0
 a8
 02
 3c
 4a
 7d

 5f
 68
 10
 52
 00
 50
 03
 c7
 5a
 a1
 00
 00
 00
 70
 02

 40
 00
 67
 4b
 00
 02
 04
 05
 b4
 01
 01
 04
 02
 ...

IP sin opciones Prot= 0x06 TCP

Offset= $7 \times 4 = 28$ bytes

00	14	d1	с2	38	be	00	18	e7	33	3d	с3	08	00	45	00
00	30	94	71	40	00	80	06	f9	8c	с0	a8	02	3с	4a	7d
5f	68	10	52	00	50	03	с7	5a	a1	00	00	00	00	70	02
40	00	67	4b	00	00	02	04	05	b4	01	01	04	02		

Trama TCP con 8 bytes de opciones

Offset= $7 \times 4 = 28$ bytes

00	14	d1	с2	38	be	00	18	e7	33	3d	с3	08	00	45	00
00	30	94	71	40	00	80	06	f9	8c	c0	a8	02	3с	4a	7d
5f	68	10	52	00	50	03	с7	5a	a1	00	00	00	00	70	02
40	00	67	4b	00	00	02	04	05	b4	01	01	04	02		

Offset= $7 \times 4 = 28$ bytes

00	14	d1	с2	38	be	00	18	e7	33	3d	с3	08	00	45	00
00	30	94	71	40	00	80	06	f9	8c	c0	a8	02	3с	<u>4a</u>	<u>7d</u>
<u>5f</u>	<u>6</u> 8	10	52	00	50	03	с7	5a	a1	00	00	00	00	70	02
40	00	67	4b	00	00	02	04	05	b4	01	01	04	02		

Checksum Correcto

Classroom:

Investigar como se calcula el CHECKSUM de TCP

Nota: En la cabecera IP el checksum se calcula tomando en cuenta todos los bytes que conforman a la cabecera IP

En el protocolo TCP no es así

Se debe formar la seudocabecera + cabecera TCP

(en otras palabras, se toman ciertos valores de otra cabecera y se ponen con ciertos valores de la cabecera TCP.

Eso es lo que tendrás que investigar.

Con media cuartilla a mano en tu cuaderno es suficiente

Ejercicio TCP

```
00 01 f4 43 c9 19 00 18 e7 33 3d c3 08 00 45 00 00 28 f6 18 40 00 80 06 6b a4 94 cc 19 f5 40 e9 a9 68 08 3a 00 50 42 fe d8 4a 6a 66 ac c8 50 10 42 0e 00 00 00 00
```

Analizar Toda la trama a mano (todos los campos) Cabecera Ethernet, Cabecera IP,

Para la cabecera TCP Puerto origen y destino

Se escribe su valor en decimal : Num. Secuencia, Num ACK, Ventana , Puntero Urgente Indicar si hay alguna bandera prendida

Verificar checksum (calcularlo de acuerdo a tu investigación y mostrar paso a paso)

Recuerda formar la seudocabecera + cabecera TCP