

Corso di Laurea Magistrale in Ingegneria Informatica

CORSO DI ALGORITMI E STRUTTURE DATI

Prof. ROBERTO PIETRANTUONO

Indicazioni

Si consegni un file in **formato editabile (.txt, .docx, .rtf, etc.)** nominandolo "CognomeNome", in cui è riportata l'implementazione (nel linguaggio scelto) seguita da una indicazione della complessità temporale dell'algoritmo implementato (complessità nel caso peggiore, è sufficiente il limite superiore O(f(n))). Se si utilizzano librerie di cui non si conosce la complessità, lo si indichi nella spiegazione (ad esempio, "la complessità è $O(n \log n)$ al netto della complessità dell'algoritmo x, che è non nota"). Se si utilizza la randomizzazione, si indichi anche il tempo di esecuzione atteso.

PROBLEMA

Una progressione aritmetica è una successione di numeri tali che la differenza tra ciascun termine (o elemento) della successione e il suo precedente è costante. La somma degli elementi in una progressione di n elementi è data da: $S = \frac{1}{2} * n * (a_1 + a_n)$, dove a_1 ed a_n sono il primo e l'ultimo elemento. E' dato in input un array di interi positivi che rappresenta una progressione aritmetica dove però manca un elemento. La massima lunghezza è 30, il massimo valore è 1000. Si implementi un algoritmo che trova l'elemento mancante.

Suggerimento: una soluzione semplice si ottiene scorrendo il vettore, complessità O(N). Si utilizzi un algoritmo divide et impera con complessità O(LogN).

INPUT

La prima riga contiene il numero di casi di test N. Ogni caso di test, che inizia alla riga successiva, è composto da due righe: la prima riportante la dimensione del vettore, la seconda riportante gli elementi del vettore separati da uno spazio.

OUTPUT

Si stampi, per ogni caso di test, il numero mancante.

Sample Input

2

4

1359

6

3 6 12 15 18 21

Sample Output

7

9