ČESKÉ VYS UČENÍ TECH V PRAZ	INICKÉ KATEDRA FYZIKY						
LABORATORNÍ CVIČENÍ Z FYZIKY							
Jméno		Ajio666		Datum měření	21.10.2011		
Stud. rok	2	Ročník	2011/2012	Datum odevzdání	11.11.2011		
Stud. skupina		Lab. skupina		Klasifikace			
· · · · · · · · · · · · · · · · · · ·							
Čís. úlohy		Název úlohy					
9	Franckův-Hertzův pokus a stanovení excitační energie atomu rtuti						

Pomůcky a použité přístroje

- zdroj proměnného urychlovacího napětí
- voltmetr Mastech MY-64
- nanoampérmetr TP 1,5
- regulátor topení
- elektronka

Úkol měření

Proměřit závislost anodového proudu I_A na napětí U_G speciální elektronky ve Franckově-Herzově pokusu. Měření se provádí ve speciální pícce, při teplotě od 160 do 250 °C. Výsledky se poté graficky znázorní. A také se vypočte excitační energie atomu rtuti, které byly ostřelovány urychlenými elektrony, a vlnová délka emitovaného světla.

Přibližné znázornění aparatury:

Naměřené hodnoty – Tabulky

180 °C										
U _g [V]	4,72	5,87	6,40	8,40	9,00	10,90	12,00	13,00	14,00	15,80
I _a [nA]	0,10	0,95	0,60	0,04	0,40	6,50	0,65	0,10	1,80	23,00

220 °C						
U _g [V]	I _a [nA]	U _g [V]	I _a [nA]			
5,70	0,04	15,15	0,80			
6,80	0,09	15,70	1,50			
7,70	0,06	16,60	0,50			
9,10	0,03	18,20	0,04			
10,00	0,16	19,30	0,20			
10,60	0,30	20,00	0,90			
11,20	0,45	20,80	1,80			
12,00	0,20	21,30	1,00			
13,00	0,10	22,20	0,20			
13,50	0,04	23,50	0,06			
14.30	0.15					

250 °C							
U _g [V]	I _a [nA]	U _g [V]	I _a [nA]				
10,90	0,04	25,50	0,25				
12,80	0,08	26,50	0,45				
14,60	0,04	27,50	0,25				
16,00	0,06	29,20	0,07				
17,70	0,14	29,90	0,25				
19,00	0,06	30,90	0,80				
20,30	0,04	32,60	0,24				
21,60	0,16	33,70	0,09				
22,50	0,18	34,60	0,55				
23,35	0,12	35,80	1,80				
24,40	0,06		·				

Tučně vyznačené hodnoty odpovídají minimům a maximům.

Výpočty

Pro zjištění excitační energie atomů jsme využili metodu postupných měření, viz postup v kapitole 7.1 v [2]. Přičemž námi naměřené rozdíly (přírůstky) napětí minim Δx přímo odpovídají hodnotám energie E. Poté jsme ze získané energie dopočetli i požadovanou vlnovou délku emitovaného světla dle vztahu:

$$\lambda = \frac{c \cdot h}{E}$$

kde c je rychlost světla, h Planckova konstanta a E již získaná excitační energie. Zde použité jednotky pro energii a Planckovu konstantu: $eV \cdot s$ a eV.

Názorné řešení pro teplotu 220 °C:

Excitační energie v jednotkách eV a J.

$$E = \frac{1}{k^2} \left(\sum_{i=k+1}^{N} x_i - \sum_{i=i}^{k} x_i \right) = \frac{1}{2} \left(\frac{18,2-9,1}{2} + \frac{23,5-13,5}{2} \right) = 4,78 \text{ eV}$$

Odhad rozptylu přírůstku napětí Δx (který odpovídá energii E).

$$s^{2} = \frac{1}{k^{2}(k-1)} \sum_{i=1}^{k} (x_{k+i} - x_{i} - k\overline{\Delta x})^{2} =$$

$$= \frac{\left(\frac{18,2-9,1}{2} - 4,78\right)^{2} + \left(\frac{23,5-13,5}{2} - 4,78\right)^{2}}{2-1} = 0,10$$

Odhad směrodatné odchylky.

$$\bar{s} = \frac{s}{\sqrt{k}} = \sqrt{\frac{0,10}{2}} = 0,22$$

Vlnová délka emitovaného světla a nejistota.

$$\lambda = \frac{c \cdot h}{E} = \frac{3 \cdot 10^8 \cdot 4,13566733 \cdot 10^{-15}}{4,755} \cdot 10^9 = 260,93 \text{ nm}$$

$$\vartheta_{\lambda} = \frac{\bar{s}}{E} \lambda = \frac{0,22}{4,67} 260,93 = 12$$

A nakonec vše s nejistotami.

$$E = (4.76 \pm 0.22) \ eV \rightarrow E = (7.62 \pm 0.35) \cdot 10^{-19} \ J$$

 $\lambda = (261 \pm 12) \ nm$

Pro teplotu 250 °C:

$$E = 4,55 \, eV$$

$$s^2 = 0.2 \ \bar{s} = 0.1$$

$$\lambda = 272,68 \, nm \, \vartheta_{\lambda} = 6$$

$$E = (4.55 \, \pm 0.10) eV \quad \rightarrow \quad E = (7.29 \cdot 10^{-19} \, \pm 0.16 \cdot 10^{-19}) \, J$$

$$\lambda = (273 \pm 6) \, nm$$

Pro teplotu 180 °C:

$$E = 4.6 \, eV \rightarrow E = 7.369 \cdot 10^{-19} \, J$$

$$\lambda = 270 \ nm$$

(Vzhledem k nedostatku hodnot, určování nepřesností postrádá smysl.)

Naměřené hodnoty - Grafy

Zavislost proudu I a na napeti U g pro teplotu 220°C

Závěr:

Při Franckově-Herzově pokusu jsme zjišťovali pro teploty 180, 220 a 250 °C excitační energii atomů rtuti, které jsme ve speciální pícce pro tento pokus určené, ostřelovali elektrony s různou rychlostí.

Pro nejnižší teplotu jsme mnoho hodnot závislosti proudu a napětí nezískaly, kvůli brzkému zažehnutí výboje mezi anodou a katodou. Další, vyšší teploty už byli o poznání optimálnější. Výsledné hodnoty $E=4,6~eV,~E=(4,76\pm0,22)~eV$ a $E=(4,55\pm0,10)~eV$ (vzestupně dle teploty) se poněkud liší od tabulkové hodnoty 4,9~eV. Podobně tak na energiích závislé vlnové délky emitovaného světla $\lambda=270~nm,~\lambda=(261\pm12)~nm,~\lambda=(273\pm6)~nm~$ (vzestupně dle teploty). Kde tabulková hodnota je $\lambda=253,6~nm$. Odchylka od tabulkových hodnot pro obě požadované veličiny je tedy skoro 6%.

Dokonalé přiblížení k tabulkám daným hodnotám je samozřejmě při podobných experimentech velmi obtížné, a zatíženo řadou nepřesností. Zde hrál určitě velkou roli analogový ampérmetr s maximálním rozsahem pouhých 100 nA, z kterého nebylo lehké přesně odčítat kvůli nutnosti častého přepínání rozsahu. A také při minimech měřeného proudu se hodnoty dostávali skoro k nule a tedy na samotnou hranici možností ampérmetru.

Použitá literatura

- 1) Laboratorní cvičení z Fyziky I a II na serveru HERODES, http://herodes.feld.cvut.cz/mereni/
- 2) Zpracování fyzikálních měření Studijní text pro fyzikální praktikum, Červenka M., katedra fyziky FEL-ČVUT