Introduction to Data Science

CS 5665
Utah State University
Department of Computer Science
Instructor: Prof. Kyumin Lee

Data Visualization

Critique

Design Critique Questions

- What is the purpose of the visualization?
- Does it serve its purpose well?
 - Does it convey the data honestly?
 - Does it show the appropriate amount of data?
- · Does it address an important topic?
- Is it innovative?

http://www.nytimes.com/interactive/2 008/02/23/movies/20080223 REVENUE GRAPHIC.html

http://www.npr.org/sections/itsallpolitic s/2012/11/01/163632378/a-campaignmap-morphed-by-money

Practical Tips

Cloud Computing + MapReduce

The Trend Today: Big Data

- Google processes 20 PB a day (2008)
- Wayback Machine has 3 PB + 100 TB/month (3/2009)
- Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
- eBay has 6.5 PB of user data + 50 TB/day (5/2009)
- CERN's LHC will generate 15 PB a year (??)

What can we do with more data?

Brief history of the "cloud"

- · Before clouds...
 - Grids
 - Vector supercomputers
 - **–** ...
- Cloud computing means many different things:
 - Large-data processing
 - Rebranding of web 2.0
 - Utility computing
 - Everything as a service

Rebranding of web 2.0

- Rich, interactive web applications
 - Clouds refer to the servers that run them
 - AJAX as the de facto standard (for better or worse)
 - Examples: Facebook, YouTube, Gmail, ...
- "The network is the computer": take two
 - User data is stored "in the clouds"
 - Rise of the netbook, smartphones, etc.
 - Browser is the OS

Utility Computing

- What?
 - Computing resources as a metered service ("pay as you go")
 - Ability to dynamically provision virtual machines
- · Why?
 - Cost: capital vs. operating expenses
 - Scalability: "infinite" capacity
 - Elasticity: scale up or down on demand
- · Does it make sense?
 - Benefits to cloud users
 - Business case for cloud providers

Everything as a Service

- Utility computing = Infrastructure as a Service (laaS)
 - Why buy machines when you can rent cycles?
 - Examples: Amazon's EC2, Rackspace
- Platform as a Service (PaaS)
 - Give me nice API and take care of the maintenance, upgrades, ...
 - Example: Google App Engine
- Software as a Service (SaaS)
 - Just run it for me!
 - Example: Gmail, Salesforce

Who cares?

- · Ready-made large-data problems
 - Lots of user-generated content
 - Even more user behavior data
 - Examples: Facebook friend suggestions, Google ad placement
 - Business intelligence: gather everything in a data warehouse and run analytics to generate insight
- Utility computing
 - Provision Hadoop clusters on-demand in the cloud
 - Lower barrier to entry for tackling large-data problem
 - Commoditization and democratization of large-data capabilities

Data Science at Scale

Single-node architecture

Motivation (Google)

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - -~4 months to read the web
- ~1,000 hard drives to store the web
- Even more to do something with the data

Commodity Clusters

- Web data sets can be very large
 - Tens to hundreds of terabytes
- · Cannot analyze on a single server
- · Standard architecture emerging:
 - Cluster of commodity Linux nodes
 - Gigabit ethernet interconnect
- How to organize computations on this architecture?
 - Issues such as hardware failure

Big computation – Big Machines

- Traditional big-iron box (circa 2003)
 - 8 2GHz Xeons
 - 64GB RAM
 - 8TB disk
 - \$758,000
- Prototypical Google rack (circa 2003)
 - 176 2GHz Xeons
 - 176GB RAM
 - ~7TB disk
 - \$278,000
- In Jan 2012, Google had ~1,800,000 machines

https://www.youtube.com/watch?v=XZmG
GAbHqq0

Large-scale computing

- Large-scale computing for data mining problems on commodity hardware
 - PCs connected in a network
 - Need to process huge datasets on large clusters of computers
- Challenges:
 - How do you distribute computation?
 - Distributed programming is hard
 - Machines fail

MapReduce

Class Outline

- What is MapReduce and why do we need it?
- Understand how MapReduce works
- How do we use it?
- Examples of solving large data problems using MapReduce

Distributed Computing Challenges - Scheduling

- How do we assign work units to workers?
- What if we have more work units than workers?

Distributed Computing Challenges - Synchronization

- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?

Current Tools Programming models Shared memory (pthreads) Message passing (MPI) Design Patterns Master-slaves Producer-consumer flows Shared work queues

Where the rubber meets the road

- Concurrency is difficult to reason about
- Concurrency is even more difficult to reason about
 - At the scale of datacenters (even across datacenters)
 - In the presence of failures
 - In terms of multiple interacting services
- Not to mention debugging...

MapReduce to the rescue

Introducing MapReduce

- A framework to support distributed computing on large datasets. (Wikipedia)
- Introduced by Google in 2004.
- Very popular with almost every company involved in large scale data processing.
 - Google, Twitter, Amazon, Facebook etc.

What MapReduce Does?

- · Handles scheduling
 - Assigns workers to map and reduce tasks
- · Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- · Handles errors and faults
 - Detects worker failures and automatically restarts
- Everything happens on top of a distributed FS
 - Ex: Google's GFS and Hadoop's HDFS

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, used in production
 - Now an Apache project
 - Rapidly expanding software ecosystem, but still lots of room for improvement
- · Lots of custom research implementations
 - For GPUs, cell processors, etc.

What do you do?

- · Define two functions:
 - map $(k, v) \rightarrow \langle k', v' \rangle^*$
 - reduce $(k', \langle v' \rangle) \rightarrow \langle k', v'' \rangle^*$
- All v' with the same k' are reduced together and processed in v' order

MapReduce: Word counting

- · Program specifies two primary methods
 - Map(k,v) →<k', v'>*
 - Reduce(k',<v'>*) →<k', v''>*
- Ex: Two documents (d1, "the crew") and (d2, "of the")
 - Map(d1, "the crew") => [(the, 1), (crew, 1)]
 - Map(d2, "of the") => [(of, 1), (the, 1)]
 - MapReduce runs its grouper module and calls reduce for every key
 - Reduce (the, [1,1]) => (the, 2)
 - Reduce (crew, [1]) => (crew, 1)
 - Reduce (of, [1]) => (of, 1)

Word Count in MapReduce

```
def mapper(self, key, value):
    for word in value.split(): yield word, 1

def reducer(self, key, values): yield key, sum(values)
```

Word Count in MapReduce (Java)

```
    public void map(Object key, Text value, Context context) {
    StringTokenizer itr = new StringTokenizer(value.toString());
    while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    context.write(word, one);
    }
```

Data flow

- Input, final output are stored on a distributed file system
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local filesystem of map and reduce workers
- Output is often the input to another MapReduce task

Word Count in MapReduce (Java)

```
    public void reduce(Text key, Iterable<IntWritable> values, Context context) {
    int sum = 0;
    for (IntWritable val : values) {
    sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
    }
```