Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich

Regression

Outlook

- Problem: \mathcal{D} distribution on $\mathcal{X} \times \mathbb{R}$... will mostly assume $\mathcal{X} \subset \mathbb{R}^p$ Given training sample $S = \{(x_i, y_i)\}_{i=1}^m \sim \mathcal{D}^m$, find a predictor $h: \mathcal{X} \to \mathbb{R}$
- Training/learning by (regularised) squared regression:

minimise
$$\frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2 + \lambda \cdot \text{complexity}(h)$$

- Two perspectives for guarantees:
 - Approximation: Assume y = f(x). Which functions f can be learned by our model?

$$\sup_{x \in \mathcal{X}} |f(x) - h(x)| \le ?$$

• Generalisation: How well does learned h predict on new data?

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[(y-h(x))^2\right] \le ?$$

Outline

- Neural network regression: Universal approximation theorem
- Kernel regression: Universal kernels, Stability / Generalisation

How many neurons needed to learn a Lipschitz function?

- Let $\mathcal{X} = [0,1)$ and $f: \mathcal{X} \to \mathbb{R}$ be a ρ -Lipschitz function $|f(x) f(x')| \le \rho \cdot |x x'|$ for all $x, x' \in \mathcal{X}$
- Construct $\widetilde{h}(x)$ with values
 - Let $t_i = \frac{i-1}{N}$, $i = 1, \dots, N$. Define $h(x) = f(t_i)$ for $x \in [t_i, t_{i+1})$
 - How well does \tilde{h} approximate f?

$$\sup_{x \in [0,1)} |f(x) - h(x)| \le \max_{i} \sup_{x \in [t_{i}, t_{i+1})} |f(x) - f(t_{i})| \le \frac{\rho}{N}$$

- Suppose we use step activation $\mathbf{1}\{z\geq 0\}$. So $\widetilde{h}(x)=\sum_{i=1}^{M}a_i\cdot\mathbf{1}\{x+b_i\geq 0\}$
 - How many M needed to model $\widetilde{h}(x)$? How many needed to ensure $\sup |f(x) \widetilde{h}(x)| \le \epsilon$?

How many ReLU units needed to learn a Lipschitz function?

• With step activation, a 2-layer NN

$$\widetilde{h}(x) = f(0) \cdot \mathbf{1} \left\{ x \ge 0 \right\} + \sum_{i=2}^{N} \left(f(t_i) - f(t_{i-1}) \right) \cdot \mathbf{1} \left\{ x - t_i \ge 0 \right\} \qquad \text{with } N \ge \frac{\rho}{\epsilon}$$
 guarantees
$$\sup_{x} |f(x) - \widetilde{h}(x)| \le \epsilon$$

• Problem: What is N, if the activations are ReLU $(z) = \max\{z, 0\}$?

$$h(x) = \sum_{i=1}^{M} a_i \cdot \text{ReLU}(w_i x + b_i)$$

• How can we approximately construct $1 \{z \ge 0\}$ using ReLU (·)?

How many ReLU units needed to learn a Lipschitz function?

•
$$\mathbf{1} \{z \ge 0\} \approx \operatorname{ramp}_{\gamma}(z) = \begin{cases} 0 & z < -\gamma \\ 1 & z \ge 0 \\ \frac{z+\gamma}{\gamma} & z \in [-\gamma, 0) \end{cases}$$
; $\gamma \in (0, 1)$

- Observe $\sup_{z} |\mathbf{1}\{z \ge 0\} \operatorname{ramp}_{\gamma}(z)| = 1$
- $\bullet \ \operatorname{ramp}_{\gamma}(z) = \frac{1}{\gamma} \mathrm{ReLU}\left(z + \gamma\right) \frac{1}{\gamma} \mathrm{ReLU}\left(z\right)$

Approximating Lipschitz functions by ReLU network

Theorem Reg.1 (Approximating Lipschitz functions by ReLU network)

Let $f:[0,1) \to \mathbb{R}$ be a ρ -Lipschitz continuous function. There is a 1-hidden layer neural network with $\left\lceil \frac{4\rho}{\epsilon} \right\rceil$ ReLU units whose output h(x) satisfies $\sup_{x \in [0,1)} |f(x) - h(x)| \le \epsilon$

Extensions of construction/proof idea:

- $f:[0,1)^p \to \mathbb{R}$ is ρ -Lipschitz: $|f(x) f(x')| \le \rho \cdot ||x x'||_2 \le \rho \sqrt{p} \cdot \max_i |x^{(i)} x'^{(i)}|$
 - We can ϵ -approximate f by a ReLU net with $\sim \frac{\rho\sqrt{p}}{\epsilon^p}$ ReLU units
- Uniformly continuous $g:[0,1)^p\to\mathbb{R}$
 - For any $\epsilon > 0$, there is $\delta_{\epsilon} > 0$, such that $||x x'||_2 \le \delta \implies |f(x) f(x')| \le \epsilon$
 - Discretise into hypercubes of length $\sim \delta_{\epsilon}$ instead of $\sim \frac{\epsilon^p}{\rho}$

Proof: The ReLU network

• Let $N \geq \frac{2\rho}{\epsilon}$ and $t_i = \frac{i-1}{N}, i = 1, \dots, N$ $\widetilde{h}(x) = f(0) \cdot \mathbf{1} \left\{ x \geq 0 \right\} + \sum_{i=2}^{N} \left(f(t_i) - f(t_{i-1}) \right) \cdot \mathbf{1} \left\{ x - t_i \geq 0 \right\}$ guarantees $\sup_{x \in [0,1)} |f(x) - \widetilde{h}(x)| \leq \epsilon/2$

• Choose $\gamma \leq \frac{1}{N}$, and define

$$h(x) = f(0) \cdot \operatorname{ramp}_{\gamma}(x) + \sum_{i=2}^{N} \left(f(t_i) - f(t_{i-1}) \right) \cdot \operatorname{ramp}_{\gamma}(x - t_i)$$

$$= \frac{f(0)}{\gamma} \cdot \left(\operatorname{ReLU}(x + \gamma) - \operatorname{ReLU}(x) \right)$$

$$+ \sum_{i=2}^{N} \frac{\left(f(t_i) - f(t_{i-1}) \right)}{\gamma} \cdot \left(\operatorname{ReLU}(x - t_i + \gamma) - \operatorname{ReLU}(x - t_i) \right)$$
... 2N ReLU units

Proof: Bounding $\sup_{x} |\tilde{h}(x) - h(x)|$

• Recall $\mathbf{1}\{z \geq 0\}$ and $\operatorname{ramp}_{\gamma}(z)$ differs only on $x \in (-\gamma, 0)$

$$\widetilde{h}(x) - h(x) = f(0) \cdot \left(1 - \frac{x + \gamma}{\gamma}\right) \cdot \underbrace{\mathbf{1}\left\{x \in (-\gamma, 0)\right\}}_{x \notin [0, 1)}$$

$$+ \sum_{i=2}^{N} \underbrace{\left(f(t_i) - f(t_{i-1})\right) \cdot \left(1 - \frac{x - t_i + \gamma}{\gamma}\right) \cdot \mathbf{1}\left\{x \in (t_i - \gamma, t_i)\right\}}_{\leq \rho \cdot |t_i - t_{i-1}| \leq \rho/N}$$

• For $\gamma \leq \frac{1}{N}$, intervals are disjoint. Hence,

$$\sup_{x \in [0,1)} |\widetilde{h}(x) - h(x)| \le \frac{\rho}{N} \le \frac{\epsilon}{2}$$

Universal approximation with 1-hidden layer nets

- Earliest results by Cybenko (1989); Hornik et al. (1989)
 - Various versions exist now for wide or deep nets. See Wikipedia
 - We will see version by Allan Pinkus (Acta Numerica, 1999)
- Setup:
 - Let $C(\mathbb{R}) = \text{space of all continuous functions } f: \mathbb{R} \to \mathbb{R}$
 - $\sigma \in C(\mathbb{R})$ is a continuous activation function
 - Space of functions obtained from 1 hidden layer NN

$$\mathcal{H}_{\sigma} = \left\{ \sum_{i=1}^{N} a_i \cdot \sigma(w_i x + b_i) : N = 1, 2, \dots, w_i, b_i, a_i \in \mathbb{R} \right\}$$
$$= \operatorname{span} \left\{ \sigma(w x + b) : w, b \in \mathbb{R} \right\}$$

Universal approximation with 1-hidden layer nets

Theorem Reg.2 (Universal approximation theorem (Pinkus, 1999))

Let $\sigma \in C(\mathbb{R})$. If σ is **not** a **polynomial**, then \mathcal{H}_{σ} is **dense** in $C(\mathbb{R})$ in the following sense:

- for every compact set $\mathcal{X} \subset \mathbb{R}$,
- for $f \in C(\mathcal{X})$ and $\epsilon > 0$,

there is a function $h \in \mathcal{H}_{\sigma}$ such that $\sup_{x \in \mathcal{X}} |f(x) - h(x)| \le \epsilon$.

- Proof skipped. Idea is to approximate any $f \in C(\mathbb{R})$ by an arbitrarily wide NN
- If σ is a polynomial, then \mathcal{H}_{σ} is **not dense** in $C(\mathbb{R})$. Why?
 - If σ is a polynomial of degree d, then $h \in \mathcal{H}_{\sigma}$ cannot approximate weell a polynomial of degree > d

Can we approximate any function by bounded width NN?

- Let $\mathcal{F} = \text{some class of function } f: [0,1]^p \to [0,1]^q$
 - Example: Continuous OR Convex OR ρ -Lipschitz OR L_p (where $\int |f(x)|^p dx < \infty$)
- Consider the deep ReLU NN of the form $h : \mathbb{R}^p \to \mathbb{R}^q$ $h(x) = A_k \cdot \text{ReLU} (A_{k-1} \cdot \text{ReLU} (\dots \text{ReLU} (A_2 \cdot \text{ReLU} (A_1x + b_1) + b_2) \dots) + b_{k-1}) + b_k$
 - Alternates between affine transforms, Ax + b, and coordinate-wise ReLU
 - $A_i \in \mathbb{R}^{p_i \times p_{i-1}}, b \in \mathbb{R}^{p_i}, p_0 = p \text{ and } p_k = q$
 - Depth of network = k, and width of network $w = \max\{p_0, p_1, \dots, p_k\}$

Can we approximate any function by bounded width NN?

Theorem Reg.3 (Minimum width of ReLU NN for universal approximation)

Let $w_{\min}(p, q; \mathcal{F}) = minimum \ w \ such \ that \ ReLU \ NNs \ of \ width \le w \ (and \ arbitrary \ depth)$ can approximate any function $f \in \mathcal{F}$

- Hanin, Sellke (arXiv:1710.11278): $\mathcal{F} = \{continuous\ functions\} \implies p+1 \le w_{\min}(p,q;\mathcal{F}) \le p+q$
- Park et al. (ICLR 2021): $\mathcal{F} = \{L_p \text{ functions}\} \implies w_{\min}(p, q; \mathcal{F}) = \max\{p+1, q\}$
- Next slides: $\mathcal{F} = \{\rho\text{-}Lipschitz\ functions}\} \implies w_{\min}(1,1;\mathcal{F}) \leq 2$

Will prove only last statement. Use steps provided in next slides (exercises marked in red)

Proof: Width 2 ReLU NN for Lipschitz functions (not in exam)

- The following is a possible construction based on Hanin, Sellke (arXiv:1710.11278).
- Let $f:[0,1)\to\mathbb{R}$ be ρ -Lipschitz
 - Discretise [0,1) by points $t_i = \frac{i-1}{N}$, for $i = 1, \dots, N$
 - Max-min string: We call a function $g:[0,1)\to\mathbb{R}$ of length k if there are k affine functions $r_1,\ldots,r_k,\ (r(x)=ax+b)$ such that

$$h(x) = \sigma_k \{ r_k(x), \sigma_{k-1} \{ r_{k-1}(x), \sigma_{k-2} \{ \dots, \sigma_2 \{ r_3(x), \sigma_1 \{ r_2(x), r_1(x) \} \dots \} \} \}$$

where σ_i is either max or min

- We will construct a max-min string g(x) of length 2N that matches f(x) on $\{t_1,\ldots,t_N\}$
- Above max-min string h(x) of length 2N can be modelled by a ReLU NN of width 2 and depth 2N
- Bound |h(x) f(x)| for $x \notin \{t_1, \dots, t_N\}$ using ρ -Lipschitz (not sure how bad is bound)

Proof: Max-min string on $S = \{t_1, \ldots, t_N\}$

- Choose $b > \max\{|f(t_i)| : i = 1, ..., N\}$
- We construct h recursively.
 - Define $g_1(x) = f(t_1)$ (constant function)
 - For each $j = 1, 2, ..., let \ell_j(x) = N \cdot b \cdot (t_{j+1} x)$
 - Define $g_{j+1}(x) = \max \{ f(t_{j+1}) \ell_j(x), \min\{g_j(x), f(t_{j+1}) + \ell_j(x)\} \}$
- (1.1) Show that $\ell_j(x) = 0$ for $x = t_j$ and $\ell_j(x) \ge b$ for $x = t_1, \dots, t_{j-1}$. Hence, by induction, show that $g_j(x) = f(x)$ for $x \in \{t_1, \dots, t_j\}$.
 - $h(x) = g_N(x)$ is a max-min string of length 2N that matches f(x) on $\{t_1, \ldots, t_N\}$
- (1.2) Derive a bound on $\sup_{x \in [0,1)} |f(x) h(x)|$ using ρ -Lipschitzness. Hence, choose N

Proof: Modelling max, min by ReLU NN

- Let α, β be two scalar such that $|\beta| < b$
- (1.3) Show that $\max\{\alpha,\beta\}$ can be modelled by a 1-hidden layer NN with 2 ReLU units as

$$\max\{\alpha,\beta\} = \begin{pmatrix} 1\\1 \end{pmatrix}^{\top} \cdot \operatorname{ReLU}\left(\begin{pmatrix} 1 & -1\\0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha\\\beta \end{pmatrix} + \begin{pmatrix} 0\\b \end{pmatrix}\right) - b$$

- Above construction also works when α, β are functions of x (but then we need to also propagate x through the NN)
- (1.4) What is the corresponding ReLU NN for computing min $\{\alpha, \beta\}$?

Proof: Modelling h(x) by ReLU NN

• Idea: Model the map $\begin{pmatrix} x \\ g_j(x) \end{pmatrix} \mapsto \begin{pmatrix} x \\ g_{j+1}(x) \end{pmatrix}$ with a 2-hidden layer ReLU NN

• One can combine consecutive affine maps into a single affine map, $\mathbb{R}^2 \to \mathbb{R}^2$, resulting in a NN with 2 ReLU layers

(1.5) Compute the resulting affine maps

Outline

- Neural network regression: Universal approximation theorem
- Kernel regression: Universal kernels, Stability / Generalisation

Positive Semidefinite Kernels

- Kernel: $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is any symmetric function
 - Informally, k(x, x') measures similarity between $x, x' \in \mathcal{X}$
 - Examples: Gaussian kernel $k(x, x') = e^{-\|x x'\|^2/\gamma}$, Quadratic kernel $k(x, x') = (\langle x, x' \rangle)^2$

Theorem Reg.4 (Positive semidefinite definite (psd) kernel)

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a kernel. Then the following statements are equivalent:

- 1. For all n = 1, 2, ... and all $x_1, ..., x_n \in \mathcal{X}$, the $n \times n$ matrix K with entries $K_{ij} = k(x_i, x_j)$ is positive semidefinite $(u^{\top}Ku \geq 0 \text{ for all } u \in \mathbb{R}^n)$
- 2. There exists an inner product space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ and a map $\phi : \mathcal{X} \to \mathcal{H}$ such that $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ for all $x, x' \in \mathcal{X}$

 $A\ kernel\ k\ satisfying\ above\ (equivalent)\ conditions\ is\ a\ psd\ kernel$

 \mathcal{H} is called the reproducing kernel Hilbert space (rkhs) for k

Reproducing kernel Hilbert space (summary)

- What is real inner product space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$?
 - \bullet \mathcal{H} is a set of elements
 - $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a valid inner (dot) product defined on \mathcal{H}
- When is \mathcal{H} a Hilbert space?
 - From $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, we can define a norm $\|\phi\|_{\mathcal{H}} = \sqrt{\langle \phi, \phi \rangle_{\mathcal{H}}}$ and a metric $d(\phi, \phi') = \|\phi \phi'\|_{\mathcal{H}}$
 - \mathcal{H} is a Hilbert space if "it contains limiting points" Any sequence $\{\phi_n\}_{n=1}^{\infty} \in \mathcal{H}$ such that $d(\phi_m, \phi_n)$ becomes arbitrarily small as $m, n \to \infty$ (Cauchy sequence) has a limit $\phi_n \to \phi \in \mathcal{H}$
- How do we construct rkhs for kernel k?
 - Many possible Hilbert spaces and feature maps for k, but they are isomorphic

Reproducing kernel Hilbert space (summary)

- Assume $\int \int k^2(x, x') dx dx' < \infty$ (k has finite trace)
- Constructing ϕ and \mathcal{H}
 - Given kernel k, for every $x \in \mathcal{X}$, define the map $\phi_x : \mathcal{X} \to \mathbb{R}$, $\phi_x(\cdot) = k(x, \cdot)$
 - Define set $\mathcal{H}_1 = \operatorname{span}\{\phi_x \mid x \in \mathcal{X}\} = \left\{ \sum_{i=1}^m c_i \phi_{x_i}(\cdot) \mid m \in \mathbb{N}, c_i \in \mathbb{R}, x_i \in \mathcal{X} \right\}$
 - \mathcal{H}_1 may not contain limits of sequences, so add them. $\mathcal{H} = \text{closure of } \mathcal{H}_1$
- Constructing inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, and hence, rkhs $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$
 - For every $\phi_x, \phi_{x'}$, define $\langle \phi_x, \phi_{x'} \rangle_{\mathcal{H}} = k(x, x')$... why? end of next slide

Reproducing kernel Hilbert space (summary)

• Any $f, g \in \mathcal{H}_1$ is of the form $f = \sum_{i=1}^m c_i \phi_{x_i}, g = \sum_{j=1}^{m'} c'_j \phi_{x'_j}$

$$\langle f, g \rangle_{\mathcal{H}} = \left\langle \sum_{i=1}^{m} c_i \phi_{x_i}, \sum_{j=1}^{m'} c'_j \phi_{x'_j} \right\rangle_{\mathcal{H}} = \sum_{i,j} c_i c'_j \langle \phi_{x_i}, \phi_{x'_j} \rangle_{\mathcal{H}} = \sum_{i,j} c_i c'_j k(x_i, x'_j)$$

- Any $f \in \mathcal{H} \setminus \mathcal{H}_1$ would be of form $\sum_{i=1}^{\infty} c_i \phi_{x_i}$ with $\sum_{i=1}^{\infty} c_i^2 < \infty$. Define $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ as above
- Why do we define $\langle \phi_x, \phi_{x'} \rangle_{\mathcal{H}} = k(x, x')$?
 - Define an evaluation functional $\delta_x : \mathcal{H} \to \mathbb{R}$ such that $\delta_x(f) = f(x)$
 - Riesz representation theorem: There is unique $\phi_x \in \mathcal{H}$ such that $\delta_x(f) = \langle f, \phi_x \rangle_{\mathcal{H}}$

In present case,
$$k(x, x') = \phi_x(x') = \delta_{x'}(\phi_x) = \langle \phi_x, \phi_{x'} \rangle$$

Universal kernel

- Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is universal if
 - for every $\epsilon > 0$, every continuous function $f: \mathcal{X} \to \mathbb{R}$ and all compact subsets $C \subset \mathcal{X}$,
 - there exists $h \in \text{span}\{\phi_x : x \in \mathcal{X}\}\ \text{such that } \sup_{x \in C} |f(x) h(x)| \le \epsilon$
- Taylor criterion for universality (proof skipped):
 - Let $\mathcal{X} = \{x \in \mathbb{R}^p \mid ||x||_2 \le r\}$ and kernel $k(x, x') = g(\langle x, x' \rangle)$
 - If g can be expressed as a power series $g(z) = \sum_{i=0}^{\infty} a_i z^i$ that converges for all $|z| < r^2$

then k is universal

- Example: Exponential $k(x, x') = e^{\gamma \langle x, x' \rangle}, \ \gamma > 0$ is universal
 - Here, $g(z) = e^{\gamma z} = \sum_{i=0}^{\infty} \frac{\gamma^i}{i!} z^i$ is convergent for all radius r

Representer theorem: Do we need to know \mathcal{H}, ϕ for regression?

Theorem Reg.5 (Representer theorem)

- Let \mathcal{H} be rkhs for a psd kernel kGiven $S = \{(x_i, y_i)\}_{i=1}^m \subset \mathcal{X} \times \mathbb{R}$, consider regularised loss minimisation (RLM) $\underset{h \in \mathcal{H}}{minimise} \ L_S(h) + r\left(\|h\|_{\mathcal{H}}^2\right)$
 - $L_S: \mathcal{H} \to \mathbb{R}$ arbitrary loss function, computed on S; $r: \mathbb{R} \to \mathbb{R}$ non-decreasing regularisation function
- Then optimal solution can be expressed as $\widehat{h}(\cdot) = \sum_{i=1}^{m} \alpha_i k(x_i, \cdot)$ for some $\alpha_1, \dots, \alpha_m$

Proof: Let $\mathcal{G} = \operatorname{span}\{\phi_{x_1}, \dots, \phi_{x_m}\}$ and \mathcal{G}^{\perp} its complement.

Can write any $h = h_s + h_{\perp}$, where $h_s \in \mathcal{G}, h_{\perp} \in \mathcal{G}^{\perp}$.

 $L_S(h) = L_S(h_s)$ but $r(\|h\|_{\mathcal{H}}^2) \geq r(\|h_s\|_{\mathcal{H}}^2)$. So for any $h \in \mathcal{H}$, h_s has smaller objective

Kernel Ridge Regression

• Given $S = \{(x_i, y_i)\}_{i=1}^m \subset \mathcal{X} \times \mathbb{R}$

minimise
$$\frac{1}{m} \sum_{j=1}^{m} (h(x_j) - y_j)^2 + \lambda ||h||_{\mathcal{H}}^2$$

• Exercise: Use representer theorem—optimal $\widehat{h}(\cdot) = \sum_{i=1}^{m} \alpha_i k(x_i, \cdot)$ —to show that above problem is equivalent to

- Assuming K is full rank, $\alpha = (K + \lambda mI)^{-1} y$
- Above is a Tikhonov RLM. Can we derive stability guarantees?

Recap: Stability of Tikhonov RLM solution (rephrased)

• Recall Riesz representation, $h(x) = \langle h, \phi_x \rangle_{\mathcal{H}}$. Hence RLM is

$$\underset{h \in \mathcal{H}}{\text{minimise}} \ \frac{1}{m} \sum_{j=1}^{m} \underbrace{\left(\langle h, \phi_{x_j} \rangle - y_j \right)^2}_{\ell_{x_j, y_j}(h)} + \lambda \|h\|_{\mathcal{H}}^2$$

Theorem Reg.6 (Tikhonov RLM is a stable learner)

- If $\ell = convex$, ρ -Lipschitz loss with respect to $h \in \mathcal{H}$ then Tikhonov RLM based on loss ℓ is on-average-replace-one stable with rate $\frac{2\rho^2}{\lambda m}$
- Expected generalisation error of \hat{h} satisfies

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(\widehat{h}) \right] \leq \mathbb{E}_{S \sim \mathcal{D}^m} \left[L_S(\widehat{h}) \right] + \frac{2\rho^2}{\lambda m}$$

Is squared loss Lipschitz? What is ρ ?

• Observe for $\ell_{x,y}(h) = (\langle h, \phi_x \rangle - y)^2$

$$\begin{aligned} |\ell_{x,y}(h) - \ell_{x,y}(h')| &= \left| \langle h - h', \phi_x \rangle_{\mathcal{H}} \left(\langle h, \phi_x \rangle_{\mathcal{H}} + \langle h', \phi_x \rangle_{\mathcal{H}} - 2y \right) \right| \\ &\leq \left| \langle h - h', \phi_x \rangle_{\mathcal{H}} \right| \cdot \left| \langle h, \phi_x \rangle_{\mathcal{H}} + \langle h', \phi_x \rangle_{\mathcal{H}} - 2y \right| \\ &\leq \|h - h'\|_{\mathcal{H}} \cdot \|\phi_x\|_{\mathcal{H}} \cdot \left| \|h\|_{\mathcal{H}} \cdot \|\phi_x\|_{\mathcal{H}} + \|h'\|_{\mathcal{H}} \cdot \|\phi_x\|_{\mathcal{H}} - 2y \right| \\ &\underbrace{= \sqrt{k(x,x)}} \end{aligned} \qquad \text{(we use Cauchy-Schwarz)}$$

- Assume $y \in [-c, c]$ and $k(x, x) \le r$ for all xThen $\ell_{x,y}(h) = (\langle h, \phi_x \rangle - y)^2$ is 2r(rB + c)-Lipschitz over $\{h \in \mathcal{H} : ||h||_{\mathcal{H}} \le B\}$
- Exercise: Let $L_{\mathcal{D}}^{sq}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[(h(x)-y)^2\right]$ Show that $L_{\mathcal{D}}^{sq}(\hat{h}) \leq \min_{\|h\|_{x\in\mathcal{B}}} L_{\mathcal{D}}^{sq}(h) + \sqrt{\frac{8\rho^2 B^2}{m}}$ where $\rho = 2r(rB+c)$

Recap: Rademacher complexity

- Rademacher complexity (can be defined for any loss):
 - Consider finite set $Z = \{z_1, \ldots, z_m\}$, and \mathcal{F} be class of real-valued functions defined on Z
 - Rademacher complexity of \mathcal{F} with respect to set Z

$$R(\mathcal{F} \circ Z) = \mathbb{E}_{\sigma_1, \dots, \sigma_m \sim_{iid}} \text{Unif}\{\pm 1\} \left[\sup_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i) \right]$$

- Generalisation error bound using Rademacher complexity:
 - Loss satisfies $|\ell(h(x), y)| \leq M$ for all $h \in \mathcal{H}, (x, y) \in \mathcal{X} \times \mathcal{Y}$. Let $\mathcal{F} = \{\ell(h(x), y) : h \in \mathcal{H}\}$
 - For any $\delta \in (0,1)$, with probability $1-\delta$ over training samples $S \sim \mathcal{D}^m$,

$$\sup_{h \in \mathcal{H}} \left(L_{\mathcal{D}}(h) - L_{S}(h) \right) \leq 2R(\mathcal{F} \circ S) + 4M \sqrt{\frac{2\ln(\frac{4}{\delta})}{m}}$$

Rademacher complexity for kernel models

Theorem Reg.7 (Rademacher complexity for kernel models)

Let $X = \{x_1, \ldots, x_m\}$ and $K = [k(x_i, x_j)]_{i,j=1,\ldots,m}$ be the kernel matrix defined on X.

Let \mathcal{H} is the rkhs for kernel k, and $\mathcal{H}_B = \{h \in \mathcal{H} : ||h||_{\mathcal{H}} \leq B\}$, then the Rademacher complexity is given by

$$R(\mathcal{H}_B \circ X) = \mathbb{E}_{\sigma_1, \dots, \sigma_m \sim_{iid} Unif\{\pm 1\}} \left[\sup_{h \in \mathcal{H}_B} \frac{1}{m} \sum_{i=1}^m \sigma_i \langle h, \phi_{x_i} \rangle_{\mathcal{H}} \right]$$

and is bounded as
$$R(\mathcal{H}_B \circ X) \leq \frac{B\sqrt{\operatorname{trace}(K)}}{m} \leq \frac{B\sqrt{r}}{\sqrt{m}}$$

where $k(x,x) \leq r$ for all x

Proof: Exercise

Rademacher complexity based bounds for kernel regression

 \bullet For generalisation bounds, we need Rademacher complexity of loss class $\mathcal{F}\circ S,$ where

$$S = \{(x_i, y_i)\}_{i=1,\dots,m}$$
 and $\mathcal{F} = \{f_h(x, y) = \ell(h(x), y) : h \in \mathcal{H}\}$

Theorem Reg.8 (Talagrand's lemma)

Consider the sets $X = \{x_1, \dots, x_m\}$, $S = \{(x_i, y_i)\}_{i=1,\dots,m}$ and a function class \mathcal{H} .

If the loss $\ell = \ell_{x,y}(h)$ is ρ -Lipschitz with respect to $h \in \mathcal{H}$, then the Rademacher complexity of the loss class $\mathcal{F} = \{f_h(x,y) = \ell(h(x),y) : h \in \mathcal{H}\}$ is bounded as

$$R(\mathcal{F} \circ S) \le \rho \cdot R(\mathcal{H} \circ X)$$

- If $y \in [-c, c]$, then loss is bounded by M = (rB + c) and $\rho = 2rM$ -Lipschitz
- For any $\delta \in (0,1)$, with probability $1-\delta$ over training samples $S \sim \mathcal{D}^m$,

$$\sup_{h \in \mathcal{H}_B} \left(L_{\mathcal{D}}^{sq}(h) - L_S^{sq}(h) \right) \leq \frac{2\rho B \sqrt{\operatorname{trace}(K)}}{m} + 4M \sqrt{\frac{2\ln(\frac{4}{\delta})}{m}}$$

Consistency of kernel ridge(less) regression

- Kernel ridge regression: minimise $\frac{1}{m} \sum_{j=1}^{m} (h(x_j) y_j)^2 + \lambda_m ||h||_{\mathcal{H}}^2$
 - Ridge-"less" case $(\lambda = 0)$: $\hat{h}(\cdot) = \sum_{i=1}^{m} \alpha_i k(x_i, \cdot)$ is still a possible solution

Theorem Reg.9 (Consistency and inconsistency of kernel (least squares) regression)

- Weak consistency of ridge regression (Christmann, Steinwart, Bernoulli, 2007): If k is a universal kernel, and distribution \mathcal{D} satisfies $\mathbb{E}_{(x,y)\sim\mathcal{D}}[|y|^2] < \infty$, then if $\lambda_m \to 0$ and $\lambda_m^4 m \to \infty$ as $m \to \infty$, then the ridge solution satisfies $L_{\mathcal{D}}^{sq}(\widehat{h}) \to L_{\mathcal{D}}^*$
- Inconsistency of ridgeless regression (Rakhlin, Zhai, COLT, 2019; Malinar et al. arXiv:2207.06569): Let $k(x,x') = e^{-\gamma ||x-x||^2}$ (Gaussian kernel) or $e^{-\gamma ||x-x'||}$ (Laplace kernel) on \mathbb{R}^p . There is a distribution \mathcal{D} such that $L_{\mathcal{D}}^{sq}(\hat{h}) - L_{\mathcal{D}}^* = \Omega(1)$