

Análise de Dados Aplicada à Computação CLASSIFICAÇÃO

Prof. M.Sc. Howard Roatti

Sumário

- 1. Definição de Classificação
- 2. Naive Bayes
- 3. Regressão Logística
- 4. Avaliação de Modelos de Classificação

Classificação

Classificação

- Baseado no Teorema de Bayes (saiba mais) que computa a probabilidade de um evento ocorrer, observando o acontecimento de outro evento associado
- Tem como objetivo calcular probabilidades condicionais do tipo:
 - P(Umidade Alta|Chover)
 - \circ P(Alta Velocidade | Acidente de Carro) $P(A \mid B) = \frac{P(B \mid B)}{P(A \mid B)}$
 - P(Jogou na Mega-Sena | Enriquecer)

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

É chamada de Naive (Ingênuo) por assumir que os eventos são independentes, permitindo calcular a probabilidade através do método da Máxima Probabilidade

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)}{2\sigma^2}}$$

O Passos:

- 1. Separe o conjunto de dados por classes
- Calcule a média e o desvio padrão de todos os atributos por classes
- Para cada registro que queira classificar, calcule o produtório das probabilidades dos atributos ocorrerem para cada classe analisada
- 4. A classe que obtiver a maior probabilidade será a classe associada ao registro ainda não visto.

Python

```
import pandas as pd
from sklearn.naive bayes import MultinomialNB
loan data = pd.read csv('./DataSets/loan data.csv.gz')
# convert to categorical
loan data.outcome = loan data.outcome.astype('category')
loan data.outcome.cat.reorder categories(['paid off', 'default'])
loan data.purpose = loan data.purpose .astype('category')
loan data.home = loan data.home .astype('category')
loan data.emp len = loan data.emp len .astype('category')
predictors = ['purpose ', 'home ', 'emp len ']
outcome = 'outcome'
X = pd.get_dummies(loan_data[predictors], prefix='', prefix_sep='')
y = loan data[outcome]
```


Python

```
naive_model = MultinomialNB(alpha=0.01, fit_prior=True)
naive model.fit(X, y)
MultinomialNB(alpha=0.01, class prior=None, fit prior=True)
 new loan = X.loc[146:146, :]
 print('predicted class: ', naive model.predict(new loan)[0])
 probabilities = pd.DataFrame(naive_model.predict_proba(new_loan),
                              columns=naive_model.classes_)
 print('predicted probabilities',)
 probabilities
 predicted class: default
 predicted probabilities
```

default paid off

- A regressão logística é semelhante à regressão linear múltipla, exceto pelo seu resultado ser binário (0 ou 1).
- Possui um desempenho muito bom em relação a outros modelos no quesito velocidade
- Utiliza a função logística para obter o resultado entre 0 e 1, ajustado pela função logit

$$p = rac{1}{1 + b^{-(eta_0 + eta_1 x_1 + eta_2 x_2 + \cdots + eta_m x_m)}}$$
 Logit $(p) = \log(rac{p}{1 - p})$

OPython

LogisticRegression(C=1e+42, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='12', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

OPython

default paid off

0 0.658086 0.341914

OPython

intercept -0.10330239562885249
classes ['default' 'paid off']

coeff

```
      debt_consolidation
      -0.260492

      home_improvement
      -0.106634

      major_purchase
      0.157170

      medical
      -0.204026

      other
      -0.329056

      small_business
      -1.012170

      OWN
      -0.138570

      RENT
      -0.240933
```

> 1 Year 0.460696

```
print(loan_data['purpose_'].cat.categories)
print(loan_data['home_'].cat.categories)
print(loan_data['emp_len_'].cat.categories)
```


- Para determinar o quão bom um classificador é, faz necessário a utilização de métricas que permitam medir a qualidade de seus resultados.
- Discutiremos: (1) Acurácia e Erro (2) Precision
 e Recall (3) Medida-F e F1 (4) Curva ROC (5) AUC
 (6) Validação Cruzada

Tabela de Contingência:

Case	$\mathcal{T}(d_j, c_p) = 1$	$\mathcal{T}(d_j, c_p) = 0$	Total
$\mathcal{F}(d_j, c_p) = 1$	$n_{f,t}$	$n_f-n_{f,t}$	n_f
$\mathcal{F}(d_j, c_p) = 0$	$n_t - n_{f,t}$	$N_t - n_f - n_t + n_{f,t}$	$N_t - n_f$
All docs	n_t	N_t-n_t	N_t

- o $n_{f,t}$: número de documentos que ambas funções de treinamento e do classificador associaram a classe c_p
- \circ n_t n_{f,t}: número de documentos de treino na classe c_p que foram mal classificados

○Tabela de Contigência → Matriz de Confusão

 Acurácia: contabiliza a proporção de previsões correta

$$accuracy = \frac{VP + VN}{VP + VN + FP + FN}$$

Erro: contabiliza a proporção de previsões
 incorretas
 error = 1 - accuracy

		Detectada		
		Sim	Não	
	Sim	Verdadeiro Positivo	Falso Negativo	
Real		(VP)	(FN)	
&	Não	Falso Positivo	Verdadeiro Negativo	
		(FP)	(VN)	

- Precision: proporção de amostras classificadas corretamente como Sim e realmente são Sim
- Recall: proporção de amostras que são Sim e que foram classificadas como Sim
- Specificty: proporção de amostras que são
 Não e que foram classificados como Não

		Detectada		
		Sim	Não	
	Sim	Verdadeiro Positivo	Falso Negativo	
Teg		(VP)	(FN)	
Rea	Não	Falso Positivo	Verdadeiro Negativo	
		(FP)	(VN)	

	VP	VP	101.1	VN
precision =	$\overline{VP + FP}$	$recall = \frac{VP}{VP + FN}$	specificity =	$\overline{VN + FP}$

measure		calculated value
Error rate	ERR	6 / 20 = 0.3
Accuracy	ACC	14 / 20 = 0.7
Sensitivity True positive rate Recall	SN TPR REC	6 / 10 = 0.6
Specificity True negative rate	SP TNR	8 / 10 = 0.8
Precision Positive predictive value	PREC PPV	6 / 8 =0.75

F1: é a média harmônica entre o precision e o recall

$$F_1 = \frac{2PR}{P + R}$$

- $\bigcirc \textit{Micro-F1:} \ \textit{micro} F_1 = \frac{2PR}{P+R} \qquad P = \sum_{c_p \in C} precision(c_p) \qquad R = \sum_{c_p \in C} recall(c_p)$
- O *Macro-F1*: $macro F_1 = \frac{\sum_{p=1}^{|C|} F_1(c_p)}{|C|}$

- Cross-validation (Validação Cruzada): métodos comuns que garantem a validação estatística dos resultados constrói diferentes modelos de classificação, para isso, divide o conjuto de treino D_t em k conjuntos disjuntos (folds)
- Um classificador treina com o conjunto de treino menos o i-ésimo fold e testa com o i-ésimo fold.
- Cada classificador é avaliado de forma independente usando Recall, Precision e F1.
- A validação cruzada calcula a média das k medidas
- o É comum adotar k = 10, esse método é chamado de ten-fold cross-validation

Open Python

```
from sklearn.metrics import confusion matrix, precision recall fscore support
from sklearn.metrics import roc curve, accuracy score, roc auc score
# Confusion matrix
pred = logit reg.predict(X)
pred y = logit reg.predict(X) == 'default'
true y = y == 'default'
                                                     Yhat = default Yhat = paid off
true pos = true y & pred y
true neg = ~true y & ~pred y
                                   Y = default
                                                               14337
                                                                                    8334
false pos = ~true y & pred y
                                   Y = paid off
                                                                8149
                                                                                   14522
false neg = true y & ~pred y
conf_mat = pd.DataFrame([[np.sum(true_pos), np.sum(false_neg)], [np.sum(false_pos), np.sum(true_neg)]],
                      index=['Y = default', 'Y = paid off'],
                      columns=['Yhat = default', 'Yhat = paid off'])
print(conf mat)
```


O Python

```
conf_mat = confusion_matrix(y, logit_reg.predict(X))
print('Precision', conf_mat[0, 0] / sum(conf_mat[:, 0]))
print('Recall', conf_mat[0, 0] / sum(conf_mat[0, :]))
print('Specificity', conf_mat[1, 1] / sum(conf_mat[1, :]))
```

```
Precision 0.6375967268522637
Recall 0.6323938070662961
Specificity 0.640554011733051
```


O Python

```
fpr, tpr, thresholds = roc_curve(y, logit_reg.predict_proba(X)[:, 0],
                                  pos label='default')
roc df = pd.DataFrame({'recall': tpr, 'specificity': 1 - fpr})
ax = roc df.plot(x='specificity', y='recall', figsize=(4, 4), legend=False)
ax.set_ylim(0, 1)
                                   1.0
ax.set xlim(1, 0)
ax.plot((1, 0), (0, 1))
                                  0.8
ax.set xlabel('specificity')
ax.set ylabel('recall')
                                  0.6
                                  0.4
plt.tight_layout()
plt.show()
                                  0.2
                                   0.0
```

1.0

0.8

specificity

0.2

0.0

O Python

```
fpr, tpr, thresholds = roc_curve(y, logit_reg.predict_proba(X)[:,0],
                                  pos label='default')
roc df = pd.DataFrame({'recall': tpr, 'specificity': 1 - fpr})
ax = roc_df.plot(x='specificity', y='recall', figsize=(4, 4), legend=False)
ax.set ylim(0, 1)
                                            1.0
ax.set xlim(1, 0)
\# ax.plot((1, 0), (0, 1))
                                            0.8
ax.set xlabel('specificity')
ax.set ylabel('recall')
                                            0.6
ax.fill between(roc df.specificity,
                                            0.4
                roc df.recall, alpha=0.3)
plt.tight_layout()
                                            0.2
plt.show()
                                                 0.6917107116268887
```


Referências

- Bruce, P.; Bruce, A.; Estatística Prática para Cientista de Dados: 50 Conceitos Essenciais;
 Rio de Janeiro; Alta Books; 2019.
- o Morettin, P. A.; Bussab, W. O.; Estatística Básica. 8 ed. São Paulo: Saraiva, 2013.
- https://www.s-cubed-global.com/biometrics/statistics-and-machine-learning
- https://intellipaat.com/blog/tutorial/machine-learning-tutorial/classification-machine-learning/
- https://www.researchgate.net/publication/276079439 Metabolic profiling of human b lood/figures
- ohttps://en.wikipedia.org/wiki/Receiver operating characteristic
- https://classeval.wordpress.com/introduction/basic-evaluation-measures/

Referências

https://scikit-learn.org/stable/modules/cross_validation.html

https://www.researchgate.net/publication/326465007_RFAmyloid_A_Web_Server_for_Predicting_Amyloid_Proteins/figures?lo=1

Análise de Dados Aplicada à Computação

PROF. M.SC HOWARD ROATTI