Usuwanka

XIV OIJ, zawody II stopnia

10 czerwca 2020

Kod zadania: usu
Limit czasu: 7 s
Limit pamięci: 256 MB

Bajtyna dostała ostatnio ciekawą grę o nazwie *Usuwanka*. Jest to gra jednoosobowa, w której gracz posługuje się zestawem N klocków ułożonych w rząd od lewej do prawej. Na każdym klocku znajduje się pewna liczba całkowita nieujemna, na i-tym klocku z lewej strony znajduje się liczba T_i . Rozważmy przykładowy zestaw N=7 klocków, na których kolejno znajdują się liczby (4,1,5,2,4,1,3).

W każdej turze Bajtyna wybiera pewien klocek, usuwa go z zestawu, a razem z nim usuwa tyle sąsiadów po prawej stronie, ile wynosiła liczba na wybranym klocku. Czyli jeśli wybierze klocek na pozycji i, to usunie, oprócz niego, T_i klocków z prawej. Jeżeli klocków po prawej stronie wybranego elementu jest mniej niż T_i to wszystkie klocki po prawej są usuwane. Jeżeli jednak po prawej stronie po usunięciu klocków pozostaną jeszcze jakieś klocki, to przysuwane są one w lewo tak, aby w ciągu klocków nie powstała dziura.

Dla przykładu, jeżeli Bajtyna wybrałaby klocek na czwartej pozycji z liczbą $T_4 = 2$ to usunięty zostanie ten klocek oraz 2 klocki z jego prawej strony, to jest klocek na piątej i szóstej pozycji. Wtedy Bajtynie pozostaną klocki: (4, 1, 5, 3) (jak na rysunku poniżej).

Załóżmy, że teraz Bajtyna wybrała klocek na pierwszej pozycji z liczbą $T_1 = 4$. Po prawej stronie są już jedynie 3 klocki, dlatego Bajtyna może w ten sposób usunąć wszystkie klocki.

Celem gry jest usunięcie wszystkich klocków. Bajtyna zawsze była zwolenniczką zasady, żeby nie robić więcej niż potrzeba – w tym przypadku, chciałaby osiągnąć cel gry wykonując jak najmniej ruchów. Czy pomożesz jej w tym zadaniu? Napisz program, który wczyta początkowy ciąg klocków w grze *Usuwanka*, wyznaczy minimalną liczbę ruchów niezbędną do usunięcia wszystkich klocków i wypisze wynik na standardowe wyjście.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita N ($1 \le N \le 200\,000$), określająca liczbę klocków. W drugim (ostatnim) wierszu wejścia znajduje się ciąg N nieujemnych liczb całkowitych T_i ($0 \le T_i < N$), pooddzielanych pojedynczymi odstępami – są to liczby znajdujące się na kolejnych klockach od lewej do prawej.

Wyjście

W pierwszym (jedynym) wierszu wyjścia powinna się znaleźć jedna liczba całkowita – minimalna liczba ruchów potrzebnych do usunięcia wszystkich klocków.

Ocenianie

Możesz rozwiązać zadanie w kilku prostszych wariantach — niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
na klockach znajdują się jedynie liczby 0 lub 1	29
$N \le 10$	44
$N \le 100$	55
$N \le 1000$	67

Przykłady

Wejście dla testu usu0a:	Wyjście dla testu usu0a:
7	2
4 1 5 2 4 1 3	

Wyjaśnienie do przykładu: Bajtyna może zacząć od wybrania klocka na czwartej pozycji z liczbą 2, a następnie mogłaby wybrać klocek na pierwszej pozycji liczbą 4 (zgodnie z przykładem opisanym w treści powyżej). Zauważ, że nie jest to jedyna możliwa optymalna sekwencja ruchów. Można także zacząć od wybrania klocka 5 na trzeciej pozycji, a następnie klocka 4 na pierwszej pozycji. Jeszcze inną możliwością jest wybranie klocka 4 na piątej pozycji, a następnie klocka 4 na pierwszej pozycji.

Wejście dla testu usu0b:	Wyjście dla testu usu0b:
5	3
1 1 1 1 1	

Wyjaśnienie do przykładu: W tym przypadku, Bajtyna mogłaby wielokrotnie wybierać zawsze pierwszy klocek, co usuwałoby go oraz sąsiadujący klocek z prawej (o ile istnieje). A zatem po pierwszym ruchu ciąg klocków to (1,1,1), po drugim: (1), a po trzecim nie mamy już żadnego klocka.

Wejście dla testu usu0c:	Wyjście dla testu usu0c:
5	1
4 4 4 4 4	

Wyjaśnienie do przykładu: W tym przypadku wystarczy, żeby Bajtyna wybrała pierwszy klocek. Spowoduje to usunięcie wszystkich klocków.

Wejście dla testu usu0d:	Wyjście dla testu usu0d:
6	6
0 0 0 0 0 0	

Wyjaśnienie do przykładu: W tym przypadku wybory Bajtyny nie mają znaczenia, i tak musi wybrać każdy klocek tego ciągu uzyskując po drodze (0,0,0,0,0), (0,0,0,0), (0,0,0,0), (0,0,0), (0,0)

Pozostałe testy przykładowe

- test usu0e: N = 990, ciag liczb napisanych na klockach to $(1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, \dots, 44, 44, 44)$
- test usu0f: $N = 200\,000$, ciag liczb napisanych na klockach to $(1,0,1,0,1,0,\ldots)$
- test usu0g: $N = 200\,000$, ciąg liczb napisanych na klockach to $(4, 1, 4, 1, 4, 1, \ldots)$