# Topic 3.1 Relation











## What you will learn in this lecture:

- Cartesian products
- Binary Relations
- Inverse of Relations
- Composition of Relations
- Equivalence Relation
- Partial Ordering Relation



#### Introduction

 Relationship between elements of sets occur in many contexts. For example a relationship of a person and their country origin which can be described as "x is a citizen of y", where x is from the set of people and y is from the set of countries.



• Relationships between elements of sets are represented using the structure called a relation, which is just a subset of the Cartesian product of the sets.

## Cartesian products

Definition: Ordered *n*-tuples

The ordered n-tuple  $(a_1, a_2, ..., a_n)$  is the ordered collection that has  $a_1$  as its first element,  $a_2$  as its second element,...,and  $a_n$  as its nth element.



Example of ordered 2-tuples which also called ordered pairs:

Note:

- The ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d.
- Hence (a, b) and (b, a) are not equal unless a = b.

## Cartesian products

#### Definition: Cartesian product of A and B

• Let A and B be sets. The Cartesian product of A and B, denoted by  $A \times B$ , is the set of all ordered pairs (a, b), where  $a \in A$  and  $b \in B$ . Hence,  $A \times B = \{(a, b) | a \in A \land b \in B\}$ 

#### Example 1

What is the Cartesian product of  $A = \{1,2\}$  and  $B = \{a,b,c\}$ Solution

The Cartesian product  $A \times B$  is

$$A \times B =$$

## Cartesian products

Definition: Cartesian product of the sets  $A_1, A_2, \dots, A_n$ 

The Cartesian product of the sets  $A_1, A_2, \dots, A_n$ , denoted by  $A_1 \times A_2 \times \dots \times A_n$ , is the set of ordered n-tuples  $(a_1, a_2, \dots, a_n)$ , where  $a_i$  belongs to  $A_i$  for i = 1, 2, ..., n. In other words,

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \cdots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \cdots n\}$$

#### Example 2

What is the Cartesian product of  $A \times B \times C$ , where A={Ali, Sam}, B = {TMA1201, TMA1101}, and C = {P, F}

$$A \times B \times C =$$

# Representation of Relation

- A relation *R* is a subset of Cartesian product.
- A relation that expresses relationship between two sets are known as binary relation.



**Definition: Binary Relation** 

Let A and B be sets. A binary relation from A to B is a subset of  $A \times B$ .

- For  $x \in A$ ,  $y \in B$ , we use notation xRy to denotes  $(x, y) \in R$  and xRy denotes  $(x, y) \notin R$ .
- For example A= {a, b, c} and B = {1, 2} and R = {(a, 1), (b, 2), (c, 1)}
- Hence aR1 and aR2



#### **Arrow Diagram**

Suppose R is a relation from a set A to a set B. An arrow diagram can be used to illustrate R.

#### Example 3

Suppose A be set of students, B be subjects offered by FCI and R denotes the enrollment of students from A to subjects B. For simplicity let A = {Ali, Sam}, B = {Maths, Eng, CP} and R={(Ali, Maths), (Ali Eng), (Sam, Eng), (Sam, CP)}.





Let S be the relation "<" on the real number set.

The set of S thus consists of all the pairs (x, y) with x < y. It is the following shaded subset of the xy plane.





(The dashed line indicates that the points where x = y are omitted.)

Note: order is important in this relation, e.g., 1S2 but 281

## An Example of *n*-ary Relation:

Assuming that MMU students' attendance database contains the following:

 $A_1$  be a set of positive integers for student ID

 $A_2$  a set of alphabetic character strings for name

 $A_3$  a set of numeric character strings for date of attendance for a subject

A<sub>4</sub> a set of logical character T for "attended" and F for "absence" for indicating attendance

Assume that a student, "Tanpa Nama" wishes to retrieve his attendance detail for a particular date. The data that will be retrieved can be in the following form:





For this particular example, the relation is known as a quaternary relation R on the sets  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$ , where:

 $(a_1, a_2, a_3, a_4) \in R$  $\Leftrightarrow$  a student with student ID number  $a_1$ , named  $a_2$ , date of attendance  $a_3$ , with attendance info  $a_4$ .

The elements of set R above may contain those of below:

{(10000011, No Name, 250612, F), (100000111, Namaewa lie, 250612, T), ...}



## Inverse of a Relation

If R is a relation from set A to set B, the inverse of a relation denoted as  $R^{-1}$  can be defined to be a relation from set B to set A.



 $R^{-1}$  can be found by interchanging the elements of all ordered pairs. Its mathematical definition is as below:

For all 
$$x \in A$$
 and  $y \in B$ ,  $(y, x) \in R^{-1} \Leftrightarrow (x, y) \in R$ .

Note: A and B can be a similar set or a different set

Let A = $\{2,3,4\}$  and B = $\{2,6,8\}$  and let the relation R= $\{(x, y) \in A \times B \mid y \text{ is divisible by } x\}$ .



a) State explicitly which ordered pairs are in R and  $R^{-1}$ , and draw arrow diagrams for R and  $R^{-1}$ .

b) Describe  $R^{-1}$  in words.

List the elements of below:

Let  $R_2$  be the relation define on the set of integers and  $R_2 = \{(n, m) \mid n < m\}$ 



List down the elements of R<sub>2</sub>

$$R_2 =$$

List down the elements of  $R_2^{-1}$ 

$$R_2^{-1} =$$

Write the definition of R<sub>2</sub><sup>-1</sup>

# **Composition of Relations**



- Objects in a set can comprise of more than one relation.
- The composition of relations is denoted by the symbol o
- $S \circ R = \{(a, c) \mid \text{there exist } b \in B \text{ where aRb and bSc} \}$  is called the composite of  $R \subseteq A \times B$  and  $S \subseteq B \times C$ .



Let R and S be relations on the set {0,1,2,3,4} and

$$R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$$

$$S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$$

Find  $R \circ S$  and  $S \circ R$ .



#### Solution:

$$S \circ R = \{(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)\}$$
  
 $R \circ S = \{(3, 1), (3, 4), (3, 3), (4, 1), (4, 4)\}$ 

How will these looks like in the form of arrow diagram?

Given R = { (1, 3), (2, 6), (3, 2), (2,7)} on the set A={1, 2, 3, 4, 5, 6, 7}. Find R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, and R<sup>6</sup>.



#### Solution:

$$R^2 = R \circ R = \{(1, 2), (3, 6), (3, 7)\}$$

$$R^3 = R^2 \circ R =$$

$$R^4 = R^3 \circ R =$$

$$R^5 = R^4 \circ R =$$

$$R^6 = R^5 \circ R =$$

## Relations on One Set

Definition: A relation on one set

A relation on a set A is a relation from A to A.

(relationships between elements of a single set)



Let A be the set  $\{0, 1, 2, 3, 4\}$ . Which ordered pairs are in the relation  $R = \{(a, b) \mid a \text{ divides } b \land a, b \in A\}$ ?

R =



## Relations on One Set

Relation on one set can be represented by directed graphs, or digraphs.

#### **Example 10**



Let R be the relation on set  $A=\{a, b, c, d, e, f, g, h, i\}$  and relation  $R=\{(a, a), (a, b), (b, c), (d, e), (e, d), (i, i)\}$ . The arrow diagram of R that indicates transitions between elements in A is as the following:



Write the set of ordered pairs for the relation  $''\subseteq''$  on  $P(\{1,2\})$  and draw an arrow diagram for it.

#### **Solution**:

$$P(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$$

R= { 
$$(\emptyset, \emptyset)$$
,  $(\emptyset, \{1\})$ ,  $(\emptyset, \{2\})$ ,  $(\emptyset, \{1, 2\})$ ,  $(\{1\}, \{1\})$ ,  $(\{1\}, \{1, 2\})$ ,  $(\{2\}, \{1, 2\})$ ,  $(\{1, 2\}, \{1, 2\})$  }





## Properties of relation

A relation R defined on a set A has these properties,

#### **REFLEXIVE**

if and only if, for all  $a \in A$ ,  $(a, a) \in R$ 



if and only if, for all a, b  $\in$  A, if (a, b)  $\in$  R then (b, a)  $\in$  R

#### **ANTISYMMETRIC**

if and only if, for all a, b  $\in$  A and a  $\neq$  b, if (a, b)  $\in$  R then (b, a)  $\notin$  R

#### **TRANSITIVE**

if and only if, for all a, b,  $c \in A$ , if  $(a, b) \in R$  and  $(b, c) \in R$  then  $(a, c) \in R$ 



## Properties of relation

A relation R defined on a set A has these properties,

#### **REFLEXIVE**

 $\leftrightarrow \forall a \in A, (a, a) \in R$ 



#### **SYMMETRIC**

$$\leftrightarrow \forall a, b \in A, \quad (a, b) \in R \rightarrow (b, a) \in R$$

#### **ANTISYMMETRIC**

$$\leftrightarrow \forall a, b \in A \text{ and } a \neq b, \qquad (a, b) \in R \to (b, a) \notin R$$

#### **TRANSITIVE**

$$\leftrightarrow \forall a, b, c \in A,$$
  $(a, b) \in R \text{ and } (b, c) \in R \rightarrow (a, c) \in R$ 



#### Reflexive (For a binary relation R on a set A)

Think about it as...



To prove R is reflexive, show that "For all  $x \in A$ , xRx".

**To prove R is not reflexive**, show that "There is an  $x \in A$  such that  $x \not R x$ .

Consider the following relations on  $A = \{1, 2, 3\}$ 

$$R_{1} = \{(1,1), (2,2), (3,3)\}$$

$$R_{2} = \{(1,1), (1,2), (2,1), (1,3)\}$$

$$R_{3} = \{(1,1), (1,2), (1,3), (2,2), (2,1), (3,3), (3,1)\}$$

$$R_{4} = \{(1,1), (1,2), (2,2), (2,3), (3,3)\}$$

$$R_{5} = \{(1,1), (1,2), (2,2), (2,3), (3,1)\}$$

$$R_{6} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

Which of these relations are reflexive? Explain your answer.

#### Sample solution:

 $R_1$ ,  $R_3$ ,  $R_4$  and  $R_6$  are **reflexive** because,  $\forall a \in A$ , they contain all pairs in the form (a,a), namely (1,1), (2,2),(3,3).

 $R_2$  is **irreflexive** because  $2 \in A$ , but  $(2,2) \notin R_2$  (counter example).

 $R_3$  is **irreflexive** because\_\_\_\_\_









Consider these relations on the set of integers:

$$R_1 = \{(a, b) \mid a \le b\},\$$
 $R_2 = \{(a, b) \mid a > b\},\$ 
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$ 
 $R_4 = \{(a, b) \mid a = b\},\$ 
 $R_5 = \{(a, b) \mid a = b + 1\},\$ 
 $R_6 = \{(a, b) \mid a + b \le 3\}.$ 



#### Sample solution:

 $R_1$  is **reflexive** because,  $\forall y \in Z, y \leq y$  is always true, i. e.,  $(y, y) \in R_1$ .

 $R_3$  is **reflexive** because

 $R_4$  is **reflexive** because

 $R_2$  is **irreflexive** because, 2>2 is false (counter example), hence  $(2,2) \notin R_2$ , i. e.,  $\forall y \in Z, y > y$  is false.











#### Symmetric (For a binary relation R on a set A)

Think about it as...









**To prove R is symmetric**, show that "For all  $x, y \in A$ , if xRy then yRx".

**To prove R is not symmetric**, show that "There are some  $x, y \in A$  such that xRy but  $y\not\in X$ .

Consider the following relations on  $A = \{1, 2, 3\}$ 

$$R_{1} = \{(1,1), (2,2), (3,3)\}$$

$$R_{2} = \{(1,1), (1,2), (2,1), (1,3)\}$$

$$R_{3} = \{(1,1), (1,2), (1,3), (2,2), (2,1), (3,3), (3,1)\}$$

$$R_{4} = \{(1,1), (1,2), (2,2), (2,3), (3,3)\}$$

$$R_{5} = \{(1,1), (1,2), (2,2), (2,3), (3,1)\}$$

$$R_{6} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

Which of these relations are symmetric? Explain your answer.

#### Sample solution:

 $R_1$ ,  $R_3$  and  $R_6$  are **symmetric** because,  $\forall x, y \in A$ , if xRy then yRx.

 $R_2$  is **not symmetric** because,  $(1,3) \in R_2$  but  $(3,1) \notin R_2$  (counter example).

 $R_4$  is **not symmetric** because...

 $R_5$  is **not symmetric** because...









Consider these relations on the set of integers:

$$R_1 = \{(a, b) \mid a \le b\},\$$
 $R_2 = \{(a, b) \mid a > b\},\$ 
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$ 
 $R_4 = \{(a, b) \mid a = b\},\$ 
 $R_5 = \{(a, b) \mid a = b + 1\},\$ 
 $R_6 = \{(a, b) \mid a + b \le 3\}.$ 



#### **Sample solution:**

 $R_3$  is **symmetric** because,  $\forall x, y \in Z$ , if x = y then y = x is true, or, if x = -y then y = -x is true.

 $R_4$  is **symmetric** because...

 $R_6$  is **symmetric** because...

 $R_1$  is not **symmetric** because  $2 \le 3$  is true,  $i.e.(2,3) \in R_1$ , but  $3 \le 2$  is false,  $i.e.(2,3) \notin R_1$ 

 $R_2$  is not **symmetric** because ...

 $R_5$  is not **symmetric** because ...











## Antisymmetric (For a binary relation R on a set A)

Think about it as...







**To prove R is antisymmetric**, show that "For all  $x, y \in A$ , if xRy and yRx then x = y".

**To prove R is not antisymmetric**, show that "There are some  $x, y \in A$  such that  $x \neq y$ , xRy and yRx. and

Consider the following relations on  $A = \{1, 2, 3\}$ 

$$R_{1} = \{(1,1), (2,2), (3,3)\}$$

$$R_{2} = \{(1,1), (1,2), (2,1), (1,3)\}$$

$$R_{3} = \{(1,1), (1,2), (1,3), (2,2), (2,1), (3,3), (3,1)\}$$

$$R_{4} = \{(1,1), (1,2), (2,2), (2,3), (3,3)\}$$

$$R_{5} = \{(1,1), (1,2), (2,2), (2,3), (3,1)\}$$

$$R_{6} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

Which of these relations are antisymmetric? Explain your answer.

#### **Sample solution:**

 $R_1, R_4$  and  $R_5$  are antisymmetric because,  $\forall x, y \in A$ , if xRy and yRx then y = x.

 $R_2$  is not **antisymmetric** because  $1 \neq 2$  and  $(1,2) \in R_2$ , but  $(2,1) \in R_2$ .

 $R_3$  is not **antisymmetric** because ...

 $R_6$  is not **antisymmetric** because ...

38









Consider these relations on the set of integers:

$$R_1 = \{(a, b) \mid a \leq b\},\$$
 $R_2 = \{(a, b) \mid a > b\},\$ 
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$ 
 $R_4 = \{(a, b) \mid a = b\},\$ 
 $R_5 = \{(a, b) \mid a = b + 1\},\$ 
 $R_6 = \{(a, b) \mid a + b \leq 3\}.$ 



#### **Sample solution:**

 $R_1$  is **antisymmetric** because....

 $R_2$  is **antisymmetric** because...

 $R_4$  is **antisymmetric** because...

 $R_5$  is **antisymmetric** because ...

 $R_3$  is not **antisymmetric** because ...

 $R_6$  is not **antisymmetric** because ...











### Transitive (For a binary relation R on a set A)

Think about it as...









To prove R is transitive, show that "For all x, y,  $z \in A$ , if xRy and yRz then xRz".

To prove R is not transitive, show that "There are some  $x, y, z \in A$  such that xRy and yRz but xRz".

Consider the following relations on  $A = \{1, 2, 3\}$ 

$$R_{1} = \{(1,1), (2,2), (3,3)\}$$

$$R_{2} = \{(1,1), (1,2), (2,1), (1,3)\}$$

$$R_{3} = \{(1,1), (1,2), (1,3), (2,2), (2,1), (3,3), (3,1)\}$$

$$R_{4} = \{(1,1), (1,2), (2,2), (2,3), (3,3)\}$$

$$R_{5} = \{(1,1), (1,2), (2,2), (2,3), (3,1)\}$$

$$R_{6} = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

Which of these relations are transitive? Explain your answer.

#### **Sample solution:**

 $R_1$  and  $R_6$  are **transitive** because,  $\forall x, y, z \in A$ , if xRy and yRz then xRz.

R<sub>2</sub> is **not transitive**because...

 $R_3$  is **not transitive** because...

 $R_4$  is **not transitive** because ...

 $R_5$  is **not transitive** because (1,2), (2,3)  $\in R_5$ , but (1,3)  $\notin R_5$ .









Consider these relations on the set of integers:

$$R_1 = \{(a, b) \mid a \leq b\},\$$
 $R_2 = \{(a, b) \mid a > b\},\$ 
 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$ 
 $R_4 = \{(a, b) \mid a = b\},\$ 
 $R_5 = \{(a, b) \mid a = b + 1\},\$ 
 $R_6 = \{(a, b) \mid a + b \leq 3\}.$ 



#### **Sample solution:**

 $R_1$  is **transitive** because,  $\forall x, y, z \in Z$ , if  $x \le y$  and  $y \le z$  then  $x \le z$ , i. e.,  $(x, y), (y, z) \in R_1 \to (x, z) \in R_1$ 

R<sub>2</sub> is **transitive**because...

R<sub>3</sub> is **transitive** because...

 $R_4$  is **transitive** because ...

 $R_5$  is **not transitive** because

 $R_6$  is **not transitive** because 3+0  $\leq$ 3 and 0+2  $\leq$ 3 but (counter example) 3+2  $\not\leq$  3, i.e., (3,0),(0,2)  $\in$   $R_6$ , but (3,2)  $\notin$   $R_6$ .











# **Equivalence Relation**

A relation is said to be an equivalence relation if it has the properties of,

reflexive, symmetric, and transitive.



#### Example 20:

Let R be the relation on  $Z^+$  such that aRb if and only if a divides b. Is R reflexive, symmetric, and/or transitive? Is R an equivalence relation?

#### **Solution**:

Reflexive? Yes -> a divides a for all  $a \in Z^+$ .

Symmetric? No -> 3 divides 6 but 6 does not divide 3, so 3R6 but 6 R3.

Transitive? Yes -> if a divides b and b divides c, then a divides c for all a, b,  $c \in Z^+$ .

R is not equivalent relation since it is not symmetric



Is the relation "5 divides (x - y)" an equivalence relation on Z?



## **Equivalence Class**

Giving an equivalence relation on a nonempty set is equivalent to partitioning the set into many subsets  $\{A_1, A_2, ...\}$  with the following requirements:



 $A_i$ 's are mutually disjoint, i.e.  $A_i \cap A_i = \emptyset$  for  $i \neq j$ , and

$$A = \bigcup A_n$$
.

#### Example 22:



$$A_i \cap A_j = \emptyset$$
, whenever  $i \neq j$   
 $A_i \cup A_2 \cup \cdots \cup A_6 = A$ 

 $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$ ,  $A_5$ ,  $A_6$  are called the equivalence classes.



## **Equivalence Class**

There are 5 equivalence classes for the equivalence relation 5 divides x - y on the set Z:



```
{..., -10, -5, 0, 5, 10, ...}

{..., -9, -4, 1, 6, 11, ...}

{..., -8, -3, 2, 7, 12, ...}

{..., -7, -2, 3, 8, 13, ...}

{..., -6, -1, 4, 9, 14, ...}
```

# **Partial Ordering Relation**

A relation is said to be a partial order if it has the properties of, reflexive, anti-symmetric, and transitive.

The ordered pair objects in R is called a **poset** .

A partial order set can indicate that for certain pairs of elements in the set, one of the element is of higher order than the other.

An example is the pre-requisite subjects that is imposed on a student's study plan at a university.

```
Given, R = \{(i, j) \mid i \text{ divides } j\}, where i, j \in Z^+ Determine if R is a partial order.
```



Solution:
Check the followings:
is it reflexive?
is it antisymmetric?

is it transitive?

Make sure that you are able to explain the answer based on the definition of the properties!

# Summary

We have learnt the following concepts related to relations:



- Relations occur in a set and may involve two or more sets.
- Relations are a subset of Cartesian products.
- Relations have inverse and can form composition.
- Relations may have none/any/all of the following properties: reflexive, symmetric, antisymmetric, transitive.
- An equivalence relation has the properties reflexive, symmetric and transitive.
- A partial order has the properties reflexive, antisymmetric and transitive.

## Exercise 1

What is the difference between {a, b, c} and (a, b, c)? Explain.



58

## Exercise 2

Give the set of ordered pairs for the relation  $\leq$  on the set  $\{1, 2, 3, 4, 5, 6\}$ . Draw an arrow diagram to illustrate the relationship between elements in the set.



## Exercise 3

#### Given,

- $R_1 = \{(x, y) \mid x \text{ and } y \text{ are human beings and } x \text{ is taller than } y\}$   $R_2 = \{(x, y) \mid x \text{ and } y \text{ are human beings, and both have the same height}\}$
- $R_3 = \{(a, b) \mid |a b| \le 4\}, \text{ where } a, b \in Z$
- $R_4 = \{(a, b) \mid (a b) \text{ is a multiple of 7}\}, \text{ where a, } b \in Z$



2) Determine if each of these are partial order. Justify your answer.

