Tree Indexes

Immanuel Trummer itrummer@cornell.edu www.itrummer.org

Database Management Systems (DBMS)

Slides by Immanuel Trummer, Cornell University

[RG, Sec. 9]

Quickly Finding Data

- Table Enrollment(sid, cid) links students to courses
- E.g., search entries for specific student (e.g., sid=5)
- Data stored as unordered file must scan all pages!
- Better: data sorted by student ID apply binary search!
- Problem: sometimes search for specific courses!
- Only one sort order, cannot duplicate data ...

Solution: Indexes

- Index: auxiliary data structure for finding data faster
- Exactly same principle as for books!
- Can have multiple indexes for same table, e.g.
 - One index for finding info on specific students
 - One index for finding info on specific courses

How It Works

- Index stores references to data records
 - I.e., stores page IDs and slot IDs
- Index groups records by values in specific columns
- Those columns are called the index search key
- Index retrieves records for specific search key values

P10	
Alan	P25,3
Bob	P42,1
Chan	P29.3

P11	
Dora	P24,2
David	P36,1
Ester	P62,3

P12	
Felix	P21,3
Gert	P91,1
Harry	P74,2

P13	
Holly	P23,1
lda	P47,2
Jana	P62,1

P14	
P76,1	
P22,3	
P56,3	

P15	
P36,1	
P54,2	
P38,2	

P16	
Olivia	P44,1
Paul	P35,2
Philip	P58,1

P [·]	17	P1
Rosa	P29,1	Tia
Ryan	P32,2	Victor
Sergei	P53,1	Zemin

Index Page ID

Data Page ID, Slot ID

P10	
Alan	P25,3
Bob	P42,1
Chan	P29,3

P11	
Dora	P24,2
David	P36,1
Ester	P62,3

P12	
Felix	P21,3
Gert	P91,1
Harry	P74,2

P	13
Holly	P23,1
lda	P47,2
Jana	P62,1

Kyle P76,1 Lana P22,3	P14			
Lana P22,3	Kyl	е		P76,1
	_ar	na		P22,3
Levi P56,3	Le	√i		P56,3

P15		
Mia	P36,1	
Milo	P54,2	
Nicola	P38,2	

P16		
Olivia	P44,1	
Paul	P35,2	
Philip	P58,1	

P17		P1
Rosa	P29,1	Tia
Ryan	P32,2	Victor
Sergei	P53,1	Zemin

P41,1

P47,1

P82,3

Index Search Key

Searching for Student "Alan"

Index Page ID

Data Page ID, Slot ID

P10		
Alan	P25,3	
Bob	P42,1	
Chan	P29,3	

P11		
Dora	P24,2	
David	P36,1	
Ester	P62,3	

P12		
P21,3		
P91,1		
P74,2		

Р	13
Holly	P23,1
lda	P47,2
Jana	P62,1

P14		
Kyle	P76,1	
Lana	P22,3	
Levi	P56,3	

P15		
Mia	P36,1	
Milo	P54,2	
Nicola	P38,2	

P16		
Olivia	P44,1	
Paul	P35,2	
Philip	P58,1	

1,1
7,1
2,3

Index Search Key

Searching for Student "Alan"

Ideas for Improvements

- Binary search narrows down "search space" by factor 2
- Can we get a higher pruning factor per page read?
- Idea: (non-binary) search trees!

Index Types

- Tree indexes Now!
- Hash indexes Next Lecture

P1		
	P2	
Holly	P3	
Olivia	P4	

P2		
	P10	
Dora	P11	
Felix	P12	

P3		
	P13	
Kyle	P14	
Mia	P15	

P4		
	P16	
Rosa	P17	
Tia	P18	

P10		
Alan	P25,3	
Bob	P42,1	
Chan	P29,3	

P11		
Dora	P24,2	
David	P36,1	
Ester	P62,3	

P12		
Felix	P21,3	
Gert	P91,1	
Harry	P74,2	

P13		
Holly	P23,1	
lda	P47,2	
Jana	P62,1	

P14		
P76,1		
P22,3		
P56,3		

P15		
Mia	P36,1	
Milo	P54,2	
Nicola	P38,2	

P [·]	16
Olivia	P44,1
Paul	P35,2
Philip	P58,1

P17		P18	
Rosa	P29,1	Tia	P41,1
Ryan	P32,2	Victor	P47,1
Sergei	P53,1	Zemin	P82,3

Index entries (reference index pages)

P1	
	P2
Holly	P3
Olivia	P4

P2	
	P10
Dora	P11
Felix	P12

P3	
	P13
Kyle	P14
Mia	P15

P4	
	P16
Rosa	P17
Tia	P18

P10	
Alan	P25,3
Bob	P42,1
Chan	P29,3

P11	
Dora	P24,2
David	P36,1
Ester	P62,3

P12	
Felix	P21,3
Gert	P91,1
Harry	P74,2

P13	
Holly	P23,1
lda	P47,2
Jana	P62,1

P14	
P76,1	
P22,3	
P56,3	

P15	
Mia	P36,1
Milo	P54,2
Nicola	P38,2

P16	
Olivia	P44,1
Paul	P35,2
Philip	P58,1

P17	
Rosa	P29,1
Ryan	P32,2
Sergei	P53,1

P18

Tia P41,1

Victor P47,1

Zemin P82,3

Data entries (reference data pages)

Index entries (reference index pages)

P1	
	P2
Holly	P3
Olivia	P4

P2	
	P10
Dora	P11
Felix	P12

P3	
	P13
Kyle	P14
Mia	P15

P4	
	P16
Rosa	P17
Tia	P18

P10	
Alan	P25,3
Bob	P42,1
Chan	P29,3

P11	
Dora	P24,2
David	P36,1
Ester	P62,3

P12	
Felix	P21,3
Gert	P91,1
Harry	P74,2

P13	
Holly	P23,1
lda	P47,2
Jana	P62,1

P14	
Kyle	P76,1
Lana	P22,3
Levi	P56,3

P15	
Mia	P36,1
Milo	P54,2
Nicola	P38,2

P [·]	P16	
Olivia	P44,1	
Paul	P35,2	
Philip	P58,1	

P17	
Rosa	P29,1
Ryan	P32,2
Sergei	P53,1

P18	
Tia	P41,1
Victor	P47,1
Zemin	P82,3

Data entries (reference data pages)

Searching for Student "Alan"

Index entries (reference index pages)

P2	
	P10
Dora	P11
Felix	P12

P3	
	P13
Kyle	P14
Mia	P15

P4	
	P16
Rosa	P17
Tia	P18
	•

P10	
Alan	P25,3
Bob	P42,1
Chan	P29,3

Р	P11	
Dora	P24,2	
David	P36,1	
Ester	P62,3	

P12	
Felix	P21,3
Gert	P91,1
Harry	P74,2

P13	
Holly	P23,1
lda	P47,2
Jana	P62,1

P14	
P76,1	
P22,3	
P56,3	

P15	
Mia	P36,1
Milo	P54,2
Nicola	P38,2

P16	
Olivia	P44,1
Paul	P35,2
Philip	P58,1

P17	
Rosa	P29,1
Ryan	P32,2
Sergei	P53,1

P18		
Tia	P41,1	
Victor	P47,1	
Zemin	P82,3	

Data entries (reference data pages)

Searching for Student "Alan"

Index entries (reference index pages)

P3		
P13		
Kyle	P14	
Mia	P15	

P4		
	P16	
Rosa	P17	
Tia	P18	

P10		
Alan P25,3		
Bob	P42,1	
Chan	P29,3	

P11		
Dora	P24,2	
David	P36,1	
Ester	P62,3	

P12		
Felix	P21,3	
Gert	P91,1	
Harry	P74,2	

P13			
Holly P23,1			
lda	P47,2		
Jana	P62,1		

P	P14		
Kyle	P76,1		
Lana	P22,3		
Levi	P56,3		

P15		
Mia	P36,1	
Milo	P54,2	
Nicola	P38,2	

P16		
Olivia	P44,1	
Paul	P35,2	
Philip	P58,1	

P17		
Rosa	P29,1	Tia
Ryan	P32,2	Victo
Sergei	P53,1	Zemi

P18

Tia P41,1

Victor P47,1

Zemin P82,3

Data entries (reference data pages)

Searching for Student "Alan"

Index entries (reference index pages)

P3		
P13		
Kyle	P14	
Mia	P15	

P4	
	P16
Rosa	P17
Tia	P18

P	10		
Alan	P25,3		
Bob	P42,1		
Chan	P29	نع	
A SA CO	AR O	٠	

P11		
2	ora	Do
1	yid	T _{Ja}
3	ster	Est
	ster	Est

P12		
Felix	P21,3	
Gert	P91,1	
Harry	P74,2	

P13	
Holly	P23,1
lda	P47,2
Jana	P62,1

P.	P14	
Kyle	P76,1	
Lana	P22,3	
Levi	P56,3	

P15	
Mia	P36,1
Milo	P54,2
Nicola	P38,2

P16	
Olivia	P44,1
Paul	P35,2
Philip	P58,1

P17	
Rosa	P29,1
Ryan	P32,2
Sergei	P53,1

P18	
Tia	P41,1
Victor	P47,1
Zemin	P82,3

Data entries (reference data pages)

Searching for Student "Alan"

Index Node Content

- Content of inner nodes:
 - R(0), K(1), R(1), K(2), R(2), ...
 - R(i) leads to entries (strictly) ordered before K(i+1)
 - R(i) references an index page
- Content of leaf nodes:
 - K(1), R(1), K(2), R(2), K(3), R(3), ...
 - R(i) leads to data entries with key K(i)
 - R(i) references a data page and a slot on that page

Where to Use Tree Indexes?

- Can use index for queries with equality predicates
 - E.g., ... WHERE Sname = 'Alan'
- Can use index for queries with inequality predicates
 - E.g., ... WHERE gpa > 3
- Both cases: works if predicate references index key

Using Index for Equality

- Searching for entries with key value V → Start at root node
- Until reaching a leaf node:
 - Search for i such that V ≥ K(i), V < K(i+1)
 - Follow associated reference R(i)
- At leaf node:
 - Search for i such that K(i) = V
 - Retrieve data from R(i) if found, otherwise return empty

Linking Leaf Nodes

- Often want entries from neighboring leaf nodes
- Could get leaf node references from parent nodes
- Better: store pointer to next/previous neighbor in leaf
- Leaf pages essentially become doubly linked list

Index entries (reference index pages)

P1	
	P2
Holly	P3
Olivia	P4

P2	
	P10
Dora	P11
Felix	P12

P3	
	P13
Kyle	P14
Mia	P15

P4	
	P16
Rosa	P17
Tia	P18

P10	
Alan	P25,3
Bob	P42,1
Chan	P29,3

P24,2
P36,1
P62,3

P12		
Felix	P21,3	
Gert	P91,1	
Harry	P74,2	
4		

P13	
Holly	P23,1
lda	P47,2
Jana	P62,1

P14	
Kyle	P76,1
Lana	P22,3
Levi	P56,3
4	

P15	
Mia	P36,1
Milo	P54,2
Nicola	P38,2

P16	
Olivia	P44,1
Paul	P35,2
Philip	P58,1
Philip	P58, I

P17	
Rosa	P29,1
Ryan	P32,2
Sergei	P53,1
-	

P18	
Tia	P41,1
Victor	P47,1
Zemin	P82,3

Data entries

(reference data pages)

Using Index for Inequalities

- Searching for index entries with key value from [L,U]
- Use equality search procedure to find entry with value L
- Follow links between leaf nodes until reaching value U
- Retrieve referenced data on the way

Composite Keys

- Index search key may consist of multiple columns
- Must decide priority order between key columns
- Key comparisons use that priority order
 - I.e., consider second column if same value in first etc.
- Can use index for (in)equalities on <u>prefix</u> of key columns

Explain Restriction to Key Prefix!

Indexes in Postgres

- CREATE INDEX <index-name> on (<columns>)
 - Creates index for table using specified search key
 - Refer to index later via <index-name>
 - <columns> is comma-separated column list (key)
- DROP INDEX <index-name>
 - Delete index with given name

Which Indexes to Create?

- Depends a lot on your typical queries
- Analyze predicates of queries for index ideas
- Too many indexes can be bad for performance
- Active area of research in databases
 - Some tools are available, e.g.:
 - Dexter: https://ankane.org/introducing-dexter

Concise Data Entries

- Many references for same search key value?
 - Optimization: store search key value with reference list
 - Advantage: avoids storing key values redundantly
 - Disadvantage: creates variable length field (list)

Merging Index and Data

- Idea: index stores data instead of references to data
- This is called a clustered index
- Can have at most one clustered index per table (why?)
- More efficient as it saves chasing one reference
- More importantly: collocates data with same key

Tree Index Variants

- B+ tree index (focus so far) is very popular
- Some tree indexes put data references in inner nodes
- Some omit the links between leaf nodes
- •
- Also: differences in how updates are handled (next)!

Handling Updates

- Index refers to database table
- If data changes, so must the index!
- Need to change index in case of inserts/deletes
- Ideally: want to keep index balanced during updates
 - Not required but can improve efficiency!

Updates without Balancing

Updates without Balancing

Bruce P46.1

Bruce P46.1

Cara :

Bruce P46.1

Cara :

Problems

- Aforementioned approach used e.g. by ISAM index
- Ok for static data but problematic if dynamic
 - Lots of overflow pages reduce performance
 - Empty pages lead to space overheads

B+ Trees

- One of the most popular index structure
 - E.g., the default index in Postgres
- Balances tree after insert/delete operations
- Keeps the tree compact
 - Each node (except root) is at least half full!
 - I.e., number entries between d and 2*d (d is "order")

B+ Trees Are Shallow

- Typical order is 100, typical fill factor 67%
- → Average fanout (i.e., number of child nodes) is 133
- Second level can have 133^2 = 17,689 nodes
- Third level can have 133³ = 2,352,637 nodes
- → Fourth level can have 133⁴ = **312,900,721 nodes**

•

Insert student 'Bella'

P19	
Bob	P42,1
Chan	P29,3

P62,3

Ester

Chan | P29,3

David P36,1

Ester

P62,3

P62,3

Ester

Remark on Example

- Typically, expect even number of maximal entries
 - I.e., maximal number of entries is 2 * [order]
 - Nodes are "underfull" with less than [order] entries
- Have up to three entries per node in our example
- Will consider nodes with one entry as "underfull"

More Options for Balancing

- After deletion, need to fix nodes that are underfull
- Here: have redistributed entries from sibling leafs
- Otherwise: may have to merge tree nodes together
- Merge operations may propagate upwards in tree
 - E.g., imagine student "Bella" is deleted again
 - Tree loses one level (inverse to insertion operation)

