Лабораторная работа 8.1 Определение постоянных Стефана-Больцмана и Планка из анализа теплового излучения накаленного тела

Нехаев Александр, гр. 65412 декабря 2018 г.

Содержание

1.	Введение	2
2.	Ход работы	2
	2.1. Изучение работы оптического пирометра	2
	2.2. Проверка закона Стефано-Больцмана	3

1. Введение

Цель работы: При помощи модели абсолютно черного тела (АЧТ) проводятся измерения температуры оптическим пирометром с исчезающей нитью и термопарой, исследуется излучение накаленных тел с различной испускательной способностью, определяются постоянные Планка и Стефана-Больцмана.

В работе используются: оптический пирометр, модель абсолютно черного тела (АЧТ), три исследуемых образца, блок питания, цифровые мультиметры.

Теоретические основы: Закон Стефана-Больцмана для АЧТ

$$W = \sigma S \left(T^4 - T_0^4 \right) \tag{1}$$

Для серого тела, с учетом большой разницы между температурой самого тела и комнатной температуры

$$W = \varepsilon_T \sigma S T^4 \tag{2}$$

где постоянная Стефана-Больцмана определяется из соотношения

$$\sigma = \frac{2\pi^5 k_{\rm B}^4}{15c^2 h^3} = 5.67 \cdot 10^{-12} \frac{\rm Br}{\rm cm^2 \cdot K^4}$$
 (3)

Выражение для постоянной Планка

$$h = \sqrt[3]{\frac{2\pi^5 k_{\rm B}^4}{15c^2\sigma}} \tag{4}$$

2. Ход работы

2.1. Изучение работы оптического пирометра

- 1) Включим установку и проверим её функционирование.
- 2) Определим температуру АЧТ при помощи пирометра с учетом постоянной термопары 41мкв/°С и комнатной температуры $t_k=26$ °С.

№	$T_{\text{AYT}}, \text{ mV}$	$T_{\mathrm{AYT}},^{\circ}\mathrm{C}$	$T_{\mathrm{AYT}}, ^{\circ}C$
1	44.27	1079.76	1105.76
2	44.49	1085.12	1111.12
3	44.66	1089.27	1115.27
4	44.45	1084.15	1110.15
5	44.31	1080.73	1106.73

Таблица 1: Показания пирометра при измерении температуры модели АЧТ

- 3) С помощью пирометра определим температуру неоновой лампы. Нижний предел измерений пирометра составляет 700°С, однако лампа горит более тусклым светом. Отсюда следует, что температура лампы немного ниже 700°С. Кроме того, температура лампы достаточно мала, чтобы можно было до неё дотронуться.
- 4) При попытке измерить температуру колец столкнулись со схожей проблемой: их яркость заметно ниже минимальной яркости нити. В связи с этим удалось измерить только температуру керамической трубки: $T_{\text{пир}} = 726$ °C.

2.2. Проверка закона Стефано-Больцмана

- 1) Направим пирометр на нить лампы накаливания.
- 2) Снимем зависимость яркостной температуры нити от мощности выделяющейся на ней:

$N_{\overline{0}}$	$T_{\rm spk}$, K	$T_{\text{терм}}, K$	I, A	U, B	W, B _T	σW , BT	$\log T$	$\log W$
1	1230.	1265.08	0.8	26.65	21.32	0.05065	7.14289	3.05965
2	1363.	1405.66	0.894	34.48	30.8251	0.0613	7.24826	3.42833
3	1455.	1502.91	0.962	40.44	38.9033	0.0693	7.31516	3.66108
4	1569.	1623.4	1.157	58.65	67.8581	0.09336	7.39228	4.21742
5	1718.	1780.9	1.263	69.41	87.6648	0.1073	7.48487	4.47352
6	1851.	1921.48	1.368	80.4	109.987	0.12144	7.56085	4.70036
7	1952.	2028.23	1.546	101.34	156.672	0.14772	7.61492	5.05415
8	2056.	2138.16	1.615	109.74	177.23	0.15819	7.6677	5.17745
9	2159.	2247.03	1.735	125.32	217.43	0.17737	7.71737	5.38188
10	2195.	2285.09	1.753	127.71	223.876	0.1803	7.73416	5.41109

Таблица 2: Зависимость яркостной температуры от мощности

- 3) Построим график зависимости $\log W = f(\log T)$. Таким образом $n = 4.08 \pm 0.12$.
- 4) Определим величину постоянной Стефана-Больцмана и Планка для всех температур больше 1700 K.

$T_{\text{терм}}$, K	$\sigma, \frac{10^{-7} \text{Bt}}{\text{M}^2 \text{K}^4}$	$\sigma\sigma, \frac{10^{-7}\mathrm{Br}}{\mathrm{M}^2\mathrm{K}^4}$	$h, 10^{-34}$ Дж·с	$\sigma h, 10^{-34}$ Дж·с
1780.9	11.01	0.24	2.46	0.02
1921.48	9.29	0.36	2.60	0.03
2028.23	9.99	0.47	2.54	0.04
2138.16	8.59	0.62	2.67	0.06
2247.03	8.15	0.80	2.72	0.09
2285.09	7.69	0.87	2.77	0.10

Рис. 1: График зависимости $\log W = f(\log T)$