Statistical Learning

Prova d'esame

26 Aprile 2022

Tempo a disposizione: 180 minuti

Problema 1

Si risponda alle seguenti domande.

a) Sia

$$X^t = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}, y^t = \begin{bmatrix} -1 & -1 & 1 \end{bmatrix}, X^t X = \begin{bmatrix} 9 \end{bmatrix}, X^t y = \begin{bmatrix} -5 \end{bmatrix},$$

Riportare la varianza dello stimatore *ridge regression*, i.e. $\mathbb{V}\operatorname{ar}(\hat{\beta}_{\lambda})$ per $\lambda=1$, sostituendo al valore incognito σ^2 la stima $\hat{\sigma}^2=n^{-1}\|y-X\hat{\beta}_{\lambda}\|^2$.

b) Sia $y = X\beta + \epsilon$, dove

$$X = \begin{bmatrix} -0.5 & -0.5 \\ -0.5 & 0.5 \\ 0.5 & -0.5 \\ 0.5 & 0.5 \end{bmatrix}, \quad \beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \epsilon \sim N \left(\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right)$$

Riportare il valore di λ che minimizza $MSE(\hat{\beta}_{\lambda})$ per lo stimatore ridge regression

$$\hat{\beta}_{\lambda} = \min_{\beta} \|y - X\beta\|^2 + \lambda \|\beta\|_2^2$$

(non è richiesto di standardizzare y e/o le colonne di X e non è presente l'intercetta).

c) Sia $y = (-1.6, -0.2, 1.6, 1.1)^t$ una realizzazione del modello specificato al punto precedente. Calcolare la stima $\tilde{\beta}_{\lambda}$ dello stimatore lasso

$$\tilde{\beta}_{\lambda} = \min_{\beta} \frac{1}{2} \|y - X\beta\|^2 + \lambda \|\beta\|_1$$

con il valore di λ determinato al punto precedente (non è richiesto di standardizzare y e/o le colonne di X e non è presente l'intercetta). Riportare il valore del primo elemento di $\tilde{\beta}_{\lambda}$.

Problema 2

Si consideri il dataset longley presente nella libreria datasets. La variabile risposta è Employed, i predittori sono GNP.deflator, GNP, Unemployed, Armed.Forces, Population e Year.

- a) Per questi dati, si stimi la regressione Best Subset Selection scegliendo il Best Subset finale con il criterio BIC. Riportare la stima $\hat{\beta}_{GNP}$ per la variabile GNP.
- b) Si suddivida il dataset in Learning set con osservazioni con indici in $L = \{1, 3, 5, 7, 9, 11, 13, 15\}$ e Inference set con osservazioni con indici in $I = \{2, 4, 6, 8, 10, 12, 14, 16\}$. Sulla base del Learning set, stimare $\hat{S} = \{j : \hat{\beta}_j \neq 0\}$, dove $\hat{\beta}_j$ sono le stime della regressione Best Subset Selection scegliendo

il Best Subset finale con il criterio BIC. In altre parole, \hat{S} contiene le variabili selezionate da Best Subset Selection stimato sul Learning set. Sulla base dell'Inference set, calcolare i p-values del modello lineare con le variabili selezionate (e l'intercetta). Riportare il p-value relativo alla variabile Unemployed aggiustato con il metodo di Bonferroni, che tiene conto della molteplicità della selezione.

c) Sia $\hat{\mu}_L(x) = \hat{\mu}(x; (x_l, y_l), l \in L)$ il modello Best Subset Selection stimato sul Learning set al punto precedente. Calcolare i residui in valore assoluto $R_i = |y_i - \hat{\mu}_L(x_i)|$ per $i \in I$, e ordinare $\{R_i, i \in I\}$ in senso crescente, i.e. $R_{(1)} \leq \ldots \leq R_{(m)}$. Riportare il valore critico $R_\alpha = R_{(k)}$ con $k = \lceil (1 - \alpha)(m + 1) \rceil$, dove m = 8 e $\alpha = 1/3$.

Problema 3

Si consegni il file .R che produce le risposte alle domande richieste. Il codice deve essere **riproducibile** e, se eseguito, deve stampare in output **solo** il risultati richiesti dalle domande a), b) e c).

Si consideri il dataset mcycle, presente nella libreria MASS, dove accel è la variabile risposta e times il predittore.

Costruire una base *B-splines* B di grado 3 con 50 intervalli equidistanti (il range da dividere è da min(times) a max(times)). Si consideri la regressione *P-splines* che utilizza la base B e un ordine delle differenze pari a 2. Si determini il valore di λ tra i seguenti valori

lambdas =
$$10^{\circ}$$
 seq(from = -4 , to = 2, by = .1)

in modo da minimizzare l'errore di convalida incrociata Leave-One-Out, ovvero

LOO(
$$\lambda$$
) = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i^{(-i)}(\lambda))^2$

dove $\hat{y}_i^{(-i)}(\lambda)$ è la stima per y_i ottenuta con la regressione P-splines (λ) rimuovendo l'i-sima osservazione. Riportare

- a) il valore λ^* che minimizza LOO (λ)
- b) il valore LOO(λ^*),
- c) i gradi di libertà effettivi corrispondenti a λ^* .

Problema 4

Si risponda alle seguenti domande:

a) Si consideri il metodo Stability Selection. Se si vuole garantire

$$\mathbb{E}(|\hat{S}_{\text{stab}} \cap N|) \le 10$$

con p = 2000 e $q = \mathbb{E}(|\hat{S}_{n/2}|) = 10$, quanto deve valere la soglia τ ?

- b) Siano X_1, X_2, X_3 variabili aleatorie indipendenti con $X_i \sim N(\mu_i, 1)$ per i = 1, 2, 3. Lo stimatore $\hat{\mu} = (1, 2, 3)$ per $\mu = (\mu_1, \mu_2, \mu_3)$ è ammissibile? Si motivi la risposta.
- c) Si considerino i dati longley del Problema 2. Si supponga di voler utilizzare il metodo fixed-X knockoffs per selezionare la variabili, controllando il False Discovery Rate al livello $\alpha=0.1$. Prima di analizzare i dati, vi confrontate con una vostra amica, che vi consiglia di lasciar perdere perché con $\alpha=0.1$ il metodo non selezionerà nessuna variabile con probabilità 1. La vostra amica ha ragione? Motivare la risposta.