Example 1.1

This number can also be represented as a polynomial:

$$1 \times 10^3 + 2 \times 10^2 + 5 \times 10^1 + 6 \times 10^0 + 3 \times 10^{-2} + 2 \times 10^{-3} + 9 \times 10^{-1} + 3 \times 10^{-2} + 2 \times 10^{-3}$$

We can thus generalize these two representations to any number system. The general positional notation of a number N is

$$N = (a_n \cdot \cdot \cdot \cdot a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2} a_{-3} \cdot \cdot \cdot a_{-m})_r$$

where r is the radix of the number systems: a_{-1} , a_0 , a_1 , a_2 , and so on, are digits such that $0 \le a_i \le (r-1)$ for all i; a_n is the most significant digit (MSD), and a_m is the least significant digit (LSD). The polynomial representation of the above number is

$$N = \sum_{i=-m}^{n} a_{i} r^{i} \tag{1.2}$$

There are n+1 integer digits and m fraction digits in the number shown

value is equal to r" - 1. Table 1.1 lists the first few numbers in various system, the n-digit number attains the highest value in the range. This Consider an integer with n digits. A finite range of values can be represented by this integer. The smallest value in this range is 0 and corresponds to each digit of the n-digit integer being equal to 0. When each digit corresponds in value to r-1, the highest digit in the number systems. We will discuss binary, octal, and hexadecimal systems next.

1.2.1 Binary System

digiT is abbreviated as BIT. A typical binary number is shown in the In this system, the radix is 2 and the two allowed digits are 0 and 1. BInary positional notation in the following example.

Table 1.1 Number Systems

Decimal $(r = 10)$	Binary $(r = 2)$	Ternary $(r = 3)$	Quaternary $(r = 4)$	Octal $(r = 8)$	Hexadecimal $(r = 16)$
0	0	0	0	0	0
-					_
2	10	2	2	- 2	. 6
3	=	01	3	8	· ers
4	100	=	01	4	4
5	101	12	=	5	ν.
9	110	20	12	9	9
7	Ξ	21	13	7	7
œ	1000	22	20	10	∞
6	1001	001	21	Ξ	6
01	0101	101	22	12	<
=	1011	102	23	13	В
2	1100	110	30	4	ပ
13	1011	=	31	15	D
14	1110	112	32	91	ш
15	=	120	33	17	Ľ
16	00001	121	100	20	01
17	10001	122	<u> </u>	21	=
<u>«</u>	10010	200	102	22	12
61	11001	201	103	23	13
20	10100	202	011	24	4

Example 1.2

407

In polynomial form, this number is

the binary point.

from the binary point.

$$N = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} = 16 + 8 + 0 + 2 + 0 + \frac{1}{2} + \frac{1}{4} + 0 + \frac{1}{18} \text{ (decimal)} = 26 + \frac{1}{2} + \frac{1}{4} + \frac{1}{18} \text{ (decimal)} = (2648)_{10}$$