

proof of implicit function theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfImplicitFunctionTheorem}$

Date of creation 2013-03-22 13:31:23 Last modified on 2013-03-22 13:31:23

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 8

Author paolini (1187)

Entry type Proof Classification msc 26B10 We state the Theorem with a different notation:

Theorem 1. Let Ω be an open subset of $\mathbb{R}^n \times \mathbb{R}^m$ and let $f \in \mathcal{C}^1(\Omega, \mathbb{R}^m)$. Let $(x_0, y_0) \in \Omega \subset \mathbb{R}^n \times \mathbb{R}^m$. If the matrix $D_y f(x_0, y_0)$ defined by

$$D_y f(x_0, y_0) = \left(\frac{\partial f_j}{\partial y_k}(x_0, y_0)\right)_{i,k} \quad j = 1, \dots, m \quad k = 1, \dots, m$$

is invertible, then there exists a neighbourhood $U \subset \mathbb{R}^n$ of x_0 , a neighbourhood $V \subset \mathbb{R}^m$ of y_0 and a function $g \in \mathcal{C}^1(U, V)$ such that

$$f(x,y) = f(x_0, y_0) \Leftrightarrow y = g(x) \qquad \forall (x,y) \in U \times V.$$

Moreover

$$Dg(x) = -(D_y f(x, g(x)))^{-1} D_x f(x, g(x)).$$

Proof. Consider the function $F \in \mathcal{C}^1(\Omega, \mathbb{R}^n \times \mathbb{R}^m)$ defined by

$$F(x,y) = (x, f(x,y)).$$

One finds that

$$DF(x,y) = \begin{pmatrix} I_m & 0 \\ \hline D_x f & D_y f \end{pmatrix}.$$

Being $D_y f(x_0, y_0)$ invertible, $DF(x_0, y_0)$ is invertible too. Applying the inverse function Theorem to F we find that there exist a neighbourhood U of x_0 and V of y_0 and a function $G \in C^1(U \times V, \mathbb{R}^{n+m})$ such that F(G(x, y)) = (x, y) for all $(x, y) \in U \times V$. Letting $G(x, y) = (G_1(x, y), G_2(x, y))$ (so that $G_1: V \times W \to \mathbb{R}^n$, $G_2: V \times W \to \mathbb{R}^m$) we hence have

$$(x,y) = F(G_1(x,y), G_2(x,y)) = (G_1(x,y), f(G_1(x,y), G_2(x,y)))$$

and hence $x = G_1(x, y)$ and $y = f(G_1(x, y), G_2(x, y)) = f(x, G_2(x, y))$. So we only have to set $g(x) = G_2(x, f(x_0, y_0))$ to obtain

$$f(x,g(x)) = f(x_0,y_0), \quad \forall x \in U.$$

Differentiating with respect to x we obtain

$$D_x f(x, g(x)) + D_y f(x, g(x)) Dg(x) = 0$$

which gives the desired formula for the computation of Dg.