

UNIVERSITY INSTITUTEOF ENGINEERING

Bachelor of Engineering (Computer Science & Engineering)

Operating System (20CST/ITT-313)

Subject Coordinator: Er. Puneet Kaur(E6913)

Introduction to Operating SystemFont size 24

DISCOVER . LEARN . EMPOWER

Distributed and Network Operating Systems

Introduction

- Distributed system is collection of loosely coupled processors interconnected by a communications network
- Processors variously called nodes, computers, machines, hosts
 - Site is location of the processor
- Reasons for distributed systems
 - Resource sharing
 - sharing and printing files at remote sites
 - processing information in a distributed database
 - using remote specialized hardware devices
 - Computation speedup load sharing
 - Reliability detect and recover from site failure, function transfer, reintegrate failed site
 - Communication message passing

A Distributed System

Types of Distributed Operating Systems

- Network Operating Systems
- Distributed Operating Systems

Network-Operating Systems

- Users are aware of multiplicity of machines. Access to resources of various machines is done explicitly by:
 - Remote logging into the appropriate remote machine (telnet, ssh)
 - Remote Desktop (Microsoft Windows)
 - Transferring data from remote machines to local machines, via the File Transfer Protocol (FTP) mechanism

Distributed-Operating Systems

- Users not aware of multiplicity of machines
 - Access to remote resources similar to access to local resources
- Data Migration transfer data by transferring entire file, or transferring only those portions of the file necessary for the immediate task
- Computation Migration transfer the computation, rather than the data, across the system

Distributed-Operating Systems (Cont.)

- Process Migration execute an entire process, or parts of it, at different sites
 - Load balancing distribute processes across network to even the workload
 - Computation speedup subprocesses can run concurrently on different sites
 - Hardware preference process execution may require specialized processor
 - Software preference required software may be available at only a particular site
 - Data access run process remotely, rather than transfer all data locally

Network Structure

- Local-Area Network (LAN) designed to cover small geographical area.
 - Multiaccess bus, ring, or star network
 - Speed ≈ 10 100 megabits/second
 - Broadcast is fast and cheap
 - Nodes:
 - usually workstations and/or personal computers
 - a few (usually one or two) mainframes

Depiction of typical LAN

University Institute of Engineering (UIE)

Network Types (Cont.)

- Wide-Area Network (WAN) links geographically separated sites
 - Point-to-point connections over long-haul lines (often leased from a phone company)
 - Speed ≈ 1.544 45 megbits/second
 - Broadcast usually requires multiple messages
 - Nodes:
 - usually a high percentage of mainframes

Communication Processors in a Wide-Area Network

Network Topology

- Sites in the system can be physically connected in a variety of ways; they are compared with respect to the following criteria:
 - Installation cost How expensive is it to link the various sites in the system?
 - Communication cost How long does it take to send a message from site A to site B?
 - Reliability If a link or a site in the system fails, can the remaining sites still communicate with each other?
- The various topologies are depicted as graphs whose nodes correspond to sites
 - An edge from node A to node B corresponds to a direct connection between the two sites
- The following six items depict various network topologies

Network Topology

fully connected network

partially connected network

tree-structured network

F B C C ring network

Video Links

https://www.youtube.com/watch?v=MtrcTjJfWSY

https://www.youtube.com/watch?v=-OTP2O-UHhI

References

- https://www.unf.edu/public/cop4610/ree/Notes/PPT/PPT8E/CH15-OS8e.pdf
- https://www.tutorialspoint.com/operating_system/os_security.htm
- https://www.coursehero.com/file/19323929/Operating-System-Threats-and-Vulnerabilities/
- https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/15_Security.h
 tml
- https://devqa.io/security-threats-attack-vectors/
- https://www.geeksforgeeks.org/system-security/
- https://www.javatpoint.com/os-security-management