IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Linda B. Buck and Richard Axel

U.S. Serial No. : Not Yet Known

Filed : Herewith

For : ODORANT RECEPTORS AND USES THEREOF

1185 Avenue of the Americas New York, New York 10036

January 26, 2001

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

STATEMENT IN ACCORDANCE WITH 37 C.F.R. §1.821(f)

In accordance with 37 C.F.R. §1.821(f), I hereby certify that the computer readable form containing the nucleic acid and/or amino acid sequences required by 37 C.F.R. §1.821(e) and submitted with the above-identified application contains the same information as the written "Sequence Listing" (98 pages) that is submitted as part of the application.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these were made with the knowledge that wilful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

Respectfully submitted,

Brian J. Amos

Cooper & Dunham LLP

1185 Avenue of the Americas New York, New York 10036

(212) 278-0400

SEQUENCE LISTING

```
<110> Buck, Linda
      Axel, Richard
<120> ODORANT RECEPTORS AND USES THEREOF
<130> 0575/38586-B/JPW/ADM
<150> US 08/129,079
<151> 1993-10-05
<160> 80
<170> PatentIn version 3.0
<210> 1
<211>
      954
<212> DNA
<213> Rattus sp. F12
<400> 1
atggaatcag ggaacagcac aagaagattt tcaagttttt ttcttcttgg atttacagaa
                                                                      60
                                                                     120
aacccacaac ttcacttcct catttttgca ctattcctgt ccatgtacct ggtaacagtg
cttgggaacc tgcttatcat tatggccatc atcacacagt ctcatttgca tacacccatg
                                                                     180
tactttttcc ttgctaacct atcctttgtg gacatctgtt tcacctccac caccatccca
                                                                     240
                                                                     300
aagatgttgg taaatatata cacccagagc aagagcatca cctatgaaga ctgtattagc
cagatgtgtg tettettggt tttegeagaa ttgggeaact tteteetgge tgtgatggee
                                                                     360
                                                                     420
targaccgat atgtggctaa ctgtcaccca ctgtgttaca cagtcattgt gaaccaccgg
                                                                     480
ctctqtatcc tqctqcttct qctqtcctgg qttatcagca ttttccatgc cttcatacag
agcttaattg tgctacagtt gaccttctgt ggagatgtga aaatccctca cttcttctgt
                                                                     540
gaacttaatc agctgtccca actcacctgt tcagacaact ttccaagtca cctcataatg
                                                                     600
aatcttqtac ctqttatqtt qqcaqccatt tccttcaqtq qcatccttta ctcttatttc
                                                                     660
                                                                     720
aagatagtat cetecataca ttetatetee acagtteagg ggaagtacaa ggcattttet
                                                                     780
acttqtqcct ctcacctttc cattqtctcc ttattttata gtacaggcct cggagtgtac
qtcaqttctq ctqtqqtcca aagetcacat tctqctqcaa gtqcttcqgt catqtatact
                                                                     840
qtqqtcaccc ccatqctqaa ccccttcatt tatagtctaa ggaataaaga tgtgaagaga
                                                                     900
                                                                     954
gctctqqaaa qactqttaga aggaaactgt aaagtgcatc attggactgg atga
```

<210> 2

<211> 1002

<212> DNA

<213> Rattus sp. F3

<400> 2	60
atggactcaa gcaacaggac aagagtttca gaatttcttc ttcttggatt tgtagaaaac	60
aaagacctac aaccccttat ttatggtctt tttctctcta tgtacctggt tactgtcatt	120
ggaaacatat ccattattgt ggctatcatt tcagatccct gtctgcacac ccccatgtat	180
ttetteetet etaaeetgte etttgtggae atetgtttea ttteaaeeae tgtteeaaag	240
atgttagtga acatccagac ccaaaacaat gtcatcacct atgcaggatg cattacccag	300
atatactttt tettgetett tgtagaattg gacaaettet tgetgaetat catggeetat	360
gaccgttacg tagccatctg tcaccccatg cactacacag ttatcatgaa ctacaagctc	420
tgtggatttc tggttctggt atcttggatt gtaagtgttc tgcatgcctt gtttcaaagc	480
ttgatgatgt tggcgctgcc cttctgcaca catctggaaa tcccacacta cttctgtgaa	540
cctaatcagg tgattcaact cacctgttct gatgcatttc ttaatgatct tgtgatatat	600
tttacacttg tgctgctggc tactgttcct cttgctggca tcttctattc ttacttcaag	660
atagtgtcct ccatatgtgc tatatcgtca gttcatggga agtacaaagc attctccacc	720
tgtgcatctc acctttcagt cgtgtcttta ttttactgca caggactagg agtgtacctc	780
agttctgctg caaacaacag ctcacaggca agtgccacag cctcagtcat gtacactgta	840
gttaccccta tggtgaaccc ttttatctat agtcttagga ataaagatgt taagagtgtt	900
ctgaaaaaaa ctctttgtga ggaagttata aggagtccac cttccctact tcatttcttc	960
ctagtgttat gtcatctccc ttgttttatt ttttgttatt aa	1002
<210> 3 <211> 942 <212> DNA <213> Rattus sp. F5 <400> 3	
atgagcagca ccaaccagtc cagtgtcacc gagttectcc tectgggact ctccaggcag	60
ccccagcagc agcagctect ettectgete tteeteatea tgtacetgge caetgteetg	120
ggaaacstgc tcatcatcct ggctattggc acagactccc gcctgcacac ccccatgtac	180
ttetteetea gtaacetgte etttgtggat gtetgettet eetetaeeae tgteeetaaa	240
gttctggcca accatatact tgggagtcag gccatttcct tctctgggtg tctcacccag	300
ctgtattttc tcgctgtgtt tggtaacatg gacaatttcc tgctggctgt gatgtcctat	360
gaccgatttg tggccatatg ccaccettta cactacacaa caaagatgac ccgtcagete	420
tgtgtcctgc ttgttgtggg gtcatgggtt gtagccaaca tgaattgtct gttgcacata	480

ctgctcatgg	ctcgactctc	cttctgtgca	gacaacatga	tcccccactt	cttctgtgat	540
ggaactcccc	tcctgaaact	ctcctgctca	gacacacatc	tcaatgagct	gatgattctt	600
acagagggag	ctgtggtcat	ggtcacccca	tttgtctgca	tecteatete	ctacatccac	660
atcacctgtg	ctgtcctcag	agtctcatcc	cccaggggag	gatggaaatc	cttctccacc	720
tgtggctccc	acctggctgt	ggtctgcctc	ttctatggca	ccgtcatcgc	tgtgtatttc	780
aacccatcat	cctctcactt	agctgggagg	gacatggcag	ctgcagtgat	gtatgcagtg	840
gtgaccccaa	tgctgaaccc	tttcatctat	agcctgagga	acagcgacat	gaaagcagct	900
ttaaggaaag	tgctcgccat	gagatttcca	tctaagcagt	aa		942
<210> 4 <211> 936 <212> DNA <213> Ratt	tus sp. F6					
<400> 4 atggcttgga	gtactggcca	gaacctgtcc	acaccaggac	cattcatctt	gctgggcttc	60
ccagggccaa	ggagcatgcg	cattgggctc	ttcctgcttt	tcctggtcat	gtatctgctt	120
acggtagttg	gaaacctagc	catcatctcc	ctggtaggtg	cccacagatg	cctacagaca	180
cccatgtact	tcttcctctg	caacctctcc	ttcctggaga	tctggttcac	cacageetge	240
gtacccaaga	ccctggccac	atttgcgcct	cggggtggag	tcatttcctt	ggctggctgt	300
gccacacaga	tgtactttgt	ctttctttg	ggctgtaccg	agtacttcct	gctggctgtg	360
atggcttatg	accgctacct	ggccatctgc	ctgccactgc	gctatggtgg	catcatgact	420
cctgggctgg	cgatgcggtt	ggccctggga	tcctggctgt	gtgggttttc	tgcaatcaca	480
gttcctgcta	ccctcattgc	ccgcctctct	ttctgtggct	cacgtgtcat	caaccacttc	540
ttctgtgaca	tttcgccctg	gatagtgctt	tcctgcaccg	acacgcaggt	ggtggaactg	600
gtgtcctttg	gcattgcctt	ctgtgttatt	ctgggctcgt	gtggtatcac	actagtctcc	660
tatgcttaca	tcatcactac	catcatcaag	attccctctg	cccggggccg	gcaccgcgcc	720
ttctcaacct	gctcatccca	tctcactgtg	gtgctgattt	ggtatggctc	caccatette	780
ttgcatgtga	ggacctcggt	agagagctcc	ttggacctca	ccaaagctat	cacagtgctc	840
aacaccattg	tcacacctgt	gctgaaccct	ttcatatata	ctctgaggaa	caaggatgtc	900
aaggaagctc	tgcgcaggac	ggtgaagggg	aagtga			936

<210> 5 <211> 939 <212> DNA

<213> Rattus sp. I14 <400> 5 atgactggaa ataaccaaac tttgatcttg gagttcctcc tcctgggtct gcccatccca 60 tcagagtatc atctcctgtt ctatgccctg ttcctggcca tgtacctcac catcatcctg 120 ggaaacctgc taatcattgt cottgttcga ctggactctc atctccacat gcccatgtac 180 ttgtttctca gcaacttgtc cttctctgac ctctgctttt cctctgtcac aatgcccaaa 240 ttgcttcaga acatgcagag ccaagtacca tctatatcct atacaggctg cctgacacag 300 ctgtacttct ttatggtttt tggagatatg gagagcttcc ttcttgtggt catggcctat 360 gaccgctatg tggccatttg ctttcctttg cgttacacca ccatcatgag caccaagttc 420 tgtgcttcac tagtgctact tctgtggatg ctgacgatga cccatgccct gctgcatacc 480 ctactcattg ctagattgtc tttttgtgag aagaatgtga ttcttcactt tttctqtgac 540 atttctgctc ttctgaagtt gtcctgctca gacatttatg ttaatgagct gatgatatat 600 atcttgggtg gactcatcat tattatccca ttcctattaa ttgttatgtc ctatgttaga 660 attitettet ecattitgaa gitteeatet atteaggaea tetaeaaggi atteteaace 720 tgtggttccc atctgtctgt ggtgaccttg ttttatggga caatttttgg tatctactta 780 tgtccatcag gtaataattc tactgtgaag gagattgcca tggctatgat gtacacagtg 840 gtgactccca tgctgaatcc cttcatctac agcctgagga acagagacat gaaaagggcc 900 ctaataagag ttatctgcac taagaaaatc tctctgtaa 939 <210> 6 <211> 945 <212> DNA <213> Rattus sp. I15 <400> 6 atgacagaag agaaccaaac tgtgatctcc cagttccttc tccttttcct gcccatcccc 60 tcagagcacc agcacgtgtt ctacgccctg ttcctgtcca tgtacctcac cactgtcctg 120 gggaacctca tcatcatcat cctcattcac ctggactccc atctccacac acccatgtac 180 ttgtttctca gcaacttgtc cttctctgat ctctgctttt cctctgttac gatgcccaag 240 ttgttgcaga acatgcagag ccaagttcca tccatcccct ttgcaggctg cctgacacaa 300 ttatactttt acctgtattt tgcagacctt gagagcttcc tgcttgtggc catggcctat 360 gaccgctatg tggccatctg cttccccctt cattacatga gcatcatgag ccccaagctc 420 tgtgtgagtc tggtggtgct gtcctgggtg ctgaccacct tccatqccat qctqcacacc 480

540

ctgctcatgg ccagattgtc attctgtgcg gacaatatga tcccccactt tttctgtgat

atatctcctt tattgaaac	t gtootgotot	gacacqcatq	ttaatgagtt	ggtgatattt	600
gtcatgggag ggcttgtta					660
gttgtcgcct ccattctta					720
tgcggctccc atctgtctg	ggtgtcactg	ttctatggga	caatcattgg	tctctactta	780
tgtccgtcag ctaataact	c tactgtgaag	gagactgtca	tggccatgat	gtacacagtg	840
gtgaccccca tgctgaacc	c cttcatctac	agcctgagga	acagagacat	gaaagaggca	900
ctgataagag tcctttgta	a aaagaaaatt	accttctgtc	tatga		945
<210> 7 <211> 933 <212> DNA <213> Rattus sp. I3 <400> 7					
atgaacaatc aaactttca	cacccaattc	cttctcctgg	gactgcccat	ccctgaagaa	60
catcagcacc tgttctatgo	cttgttcctg	gtcatgtacc	tcaccaccat	cttgggaaac	120
ttgctaatca ttgtacttg	tcaactggac	teccagetee	acacacctat	gtatttgttt	180
ctcagcaatt tgtctttctc	: tgatctatgt	ttttcctctg	tcacaatgcc	caagctgctg	240
cagaacatga ggagccagga	a cacatccatt	ccctatggag	gctgcctggc	acaaacatac	300
ttctttatgg tttttggaga	ı tatggagagt	ttccttcttg	tggccatggc	ctatgaccgc	360
tatgtggcca tctgcttccc	tctgcattac	accagcatca	tgagccccaa	gctctgtact	420
tgtctagtgc tgttattgtg	gatgctgacg	acatcccatg	ccatgatgca	Jacactgett	480
gcagcaagat tgtctttttg	, tgagaacaat	gtggtcctca	acttcttctg	tgacctattt	540
gttctcctaa agctggcctg	r ctcagacact	tatattaatg	agttgatgat	atttatcatg	600
agtacactcc tcattattat	tccattcttc	ctcattgtta	tgtcctatgc	aaggatcata	660
tcctctattc ttaaggttcc	: atctacccaa	ggcatctgca	aggtcttctc	tacctgtggt	720
teccatetgt etgtagtate	actgttctat	gggacaatta	ttggtctcta	cttatgtcca	780
gcaggtaata attccactgt	aaaagagatg	gtcatggcca	tgatgtacac	tgtggtgacc	840
cccatgctga atcccttcat	ctacagccta	aggaatagag	atatgaagag	ggccctaata	900
agagttatct gtagtatgaa	aatcactctg	taa			933

<210> 8

<211> 984 <212> DNA

<213> Rattus sp. I7

<400> 8

atggagcgaa ggaaccacag	tgggagagtg	agtgaatttg	tgttgctggg	tttcccagct	60
cctgccccac tgcgagtact	actattttc	ctttctcttc	tggactatgt	gttggtgttg	120
actgaaaaca tgctcatcat	tatagcaatt	aggaaccacc	caaccctcca	caaacccatg	180
tattttttct tggctaatat	gtcatttctg	gagatttggt	atgtcactgt	tacgattcct	240
aagatgctcg ctggcttcat	tggttccaag	gagaaccatg	gacagctgat	ctcctttgag	300
gcatgcatga cacaactcta	ctttttcctg	ggcttgggtt	gcacagagtg	tgtccttctt	360
gctgtgatgg cctatgaccg	ctatgtggct	atctgtcatc	cactccacta	ccccgtcatt	420
gtcagtagcc ggctatgtgt	gcagatggca	gctggatcct	gggctggagg	ttttggtatc	480
tccatggtta aagttttcct	tatttctcgc	ctgtcttact	gtggccccaa	caccatcaac	540
cactttttct gtgatgtgtc	tccattgctc	aacctgtcat	gcactgacat	gtccacagca	600
gagcttacag actttgtcct	ggccattttt	attctgctgg	gaccgctctc	tgtcactggg	660
gcatcetaca tggccatcac	aggtgctgtg	atgcgcatcc	cctcagctgc	tggccgccat	720
aaagcctttt caacctgtgc	ctcccacctc	actgttgtga	tcatcttcta	tgcagccagt	780
attttcatct atgccaggcc	taaggcactc	tcagcttttg	acaccaacaa	gctggtctct	840
gtactctacg ctgtcattgt	accgttgttc	aatcccatca	tctactgctt	gcgcaaccaa	900
gatgtcaaaa gagcgctacg	tcgcacgctg	cacctggccc	aggaccagga	ggccaatacc	960
aacaaaggca gcaaaattgg	ttag				984
<210> 9 <211> 939 <212> DNA <213> Rattus sp. I8 <400> 9					
atgaacaaca aaactgtcat	cacccatttc	ctcctcctgg	gattgcccat	cccccagag	60
caccagcaac tgttctttgc	cctgttcctg	atcatgtacc	tcaccacctt	tctgggaaac	120
ctgctaattg ttgtccttgt	tcaactggac	tctcatctcc	acacacccat	gtacttgttt	180
ctcagcaact tgtccttctc	tgatctctgc	ttttcctctg	ttacaatgct	gaaattgctg	240
caaaatatac agagccaagt	accatctata	tcctatgcag	gatgcctgac	acagatattc	300
ttctttttgt tgtttggcta	ccttgggaat	ttccttcttg	tagccatggc	ctatgaccgc	360
tatgtggcca tctgcttccc	tctgcattat	accaacatca	tgagccataa	gctctgtact	420
tgtctcctgc tggtattttg	gataatgaca	tcatctcatg	ccatgatgca	caccctgctt	480

gcagcaagat tgtctttttg	tgagaacaat	gtactcctca	actttttctg	tgacctgttt	540
gttctcctaa agttggcctg	ctcagacact	tatgttaatg	agttgatgat	acatatcatg	600
ggcgtgatca tcattgttat	tccattcgtg	ctcattgtta	tatcctatgc	caagatcatc	660
tectecatic itaaggitee	atctactcaa	agcattcaca	aggtcttctc	cacttgtggt	720
tctcatctct ctgtggtgtc	tctgttctac	gggacaatta	ttggtctcta	tttatgtcca	780
tcaggtgata attttagtct	aaaggggtct	gccatggcta	tgatgtacac	agtggtaact	840
ccaatgctga acccgttcat	ctacagccta	agaaacagag	acatgaagca	ggccctaata	900
agagttacct gtagcaagaa	aatctctctg	ccatggtag			939
<210> 10 <211> 945 <212> DNA <213> Rattus sp. I9 <400> 10					
atgactagaa gaaaccaaac	tgccatctct	cagttcttcc	ttctgggcct	gccattcccc	60
ccagagtacc aacacctgtt	ctatgccctg	ttcctggcca	tgtacctcac	cactctcctg	120
gggaacctca tcatcatcat	cctcattcta	ctggactccc	atctccacac	acccatgtac	180
ttgtttctca gcaatttatc	ctttgccgac	ctctgttttt	cctctgtcac	aatgcccaag	240
ttgttgcaga acatgcagag	ccaagttcca	tccatcccct	atgcagggtg	cctggcacag	300
atacacttct ttctgttttt	tggagacctt	ggaaacttcc	tgcttgtggc	catggcctat	360
gaccgctatg tggccatctg	cttccccctt	cattacatga	gcatcatgag	ccccaagete	420
tgtgtgagtc tggtggtgct	gtcctgggtg	ctgactacct	tccatgccat	gctgcacacc	480
ctgctcatgg ccagattgtc	attctgtgag	gacagtgtga	tccctcacta	tttctgtgat	540
atgtctactc tgctgaaagt	ggcttgttct	gacacccatg	ataatgaatt	agcaatattt	600
atcttagggg gccctatagt	tgtactacct	ttccttctca	tcattgtttc	ttatgcaaga	660
attgtttcct ccatcttcaa	ggtcccttct	tctcaaagca	tccataaagc	cttctccacc	720
tgtggctccc acctgtctgt	ggtgtcactg	ttctatggga	cagtcattgg	tctctactta	780
tgtccttcag ctaataactc	cactgtgaag	gagactgtca	tgtctttgat	ytacacaatg	840
gtgacaccca tgctgaaccc	cttcatctac	agcctaagaa	acagagacat	aaaagatgca	900
ttagaaaaaa taatgtgcaa	aaagcaaatt	ccctcctttc	tatga		945

<210> <211> <212> 11 645 DNA

<21.	3>	Homo	Sap	ıens	H5												
<220 <221 <221 <221	1> 2>	()	_fea () unkn														
<400 atc		11 ttg	tgtc	tacc	ac t	gtcc	caaa	g ca	gctg	gtga	aca	tcca	gac	acag	agca	ga	60
gtca	atca	cct	atgc	agac	tg c	atca	ccca	g at	gtgc	tttt	tta	tact	ctt	tgta	gtgt	tg	120
gaca	agct	tac	tcct	gact	gt g	atgg	ccta [.]	t ga	ccgg	tttg	tgg	ccat	ctg	tcac	accc	tg	180
cact	aca	cag	tcat	tatg	ag c	taat	ggct	c tg	tgga	ctgc	tgg	ttct	ggt	gtcc	tgga	tc	240
gtga	agca:	tcc	tata	ttct	ct g	ttac	aaag	c at	aatg	gcat	tgc	agct	gtc	cttc	tgta	ca	300
gaad	ctga	aaa	tccc	tcaa	tt t	ttct	gtgaa	a ct	taat	cagg	tca	tcca	cct	tgcc	tgtt	CC	360
gaca	actt	tta	ttaa [.]	tgac	at g	atga	tgaat	t tt	taca	agtg	tgc	tgct:	ggg	tggg	ggat	gc	420
ctc	gatg:	gaa	tatt [.]	ttac	tn n	tact [.]	ttaaq	g at	actt	tgtt	gca	tatg	ttc	gatc	tcat	ca	480
gcto	cagg	gga	tgaai	taaa	gc a	cttt	ccac	c tg	tgca	tctc	acc	tctc	agt	tgtc	tcct	ta	540
tttt	att	gta	cagg	cgta	gg t	gtgt	acctt	t ag	ttat	gctg	caa	ccca	taa	ctca	ctct	ca	600
aato	gctg	cag	cctc	ggtga	at g	taca	ctgt	g gt	cacc	tcca	tgc	tg					645
<210 <211 <212 <213 <220 <221 <222 <223	.> 2 ?> 1 ?> 1 ?> 1	UNSUI (147)	Sap: RE)(1 unkno	147)	Н5												
<400	> :	12															
Ile 1	Cys	Phe	Val	Ser 5	Thr	Thr	Val	Pro	Lys 10	Gln	Leu	Val	Asn	Ile 15	Gln		
Thr	Gln	Ser	Arg 20	Val	Ile	Thr	Tyr	Ala 25	Asp	Cys	Ile	Thr	Gln 30	Met	Cys		
Phe	Phe	Ile 35	Leu	Phe	Val	Val	Leu 40	Asp	Ser	Leu	Leu	Leu 45	Thr	Val	Met		
Ala	Tyr 50	qaA	Arg	Phe	Val	Ala 55	Ile	Cys	His	Pro	Leu 60	His	Tyr	Thr	Val		
Ile 65	Met	Ser	Ser	Trp	Leu 70	Cys	Gly	Leu	Leu	Val 75	Leu	Val	Ser	Trp	Ile 80		

Val	Ser	lle	Leu	Tyr 85	Ser	Leu	Leu	Gln	Ser 90	Ile	Met	Ala	Leu	Gln 95	Leu	
Ser	Phe	Cys	Thr 100	Glu	Leu	Lys	Ile	Pro 105	Gln	Phe	Phe	Cys	Glu 110	Leu	Asn	
Gln	Val	Ile 115	His	Leu	Ala	Cys	Ser 120	Asp	Thr	Phe	Ile	Asn 125	Asp	Met	Met	
Met	Asn 130	Phe	Thr	Ser	Val	Leu 135	Leu	Gly	Gly	Gly	Cys 140	Leu	Ala	Gly	Ile	
Phe 145	Tyr	Xaa	Tyr	Phe	Lys 150	Ile	Leu	Cys	Cys	Ile 155	Cys	Ser	Ile	Ser	Ser 160	
Ala	Gln	Gly	Met	Asn 165	Lys	Ala	Leu	Ser	Thr 170	Суѕ	Ala	Ser	His	Leu 175	Ser	
Val	Val	Ser	Leu 180	Phe	Tyr	Cys	Thr	Gly 185	Val	Gly	Val	Tyr	Leu 190	Ser	Ser	
Ala	Ala	Thr 195	His	Asn	Ser	Leu	Ser 200	Asn	Ala	Ala	Ala	Ser 205	Val	Met	Tyr	
Thr	Val 210	Val	Thr	Ser	Met	Leu 215										
<210 <211 <212 <213	.> 6 ?> [.3 540 NA Ratti	ıs sp	o. J1	L											
<220 <221 <222 <223	.> m		_feat () unkno													
<40C		.3														
															aacaa	60
ggtg	atca	ıcc t	atga	ıaggc	et go	catct	ccca	. agt	atac	ttt	tcat	acto	tt t	ggag	ıttttg	120
gaca	actt	tc t	itata	gact	g tg	gatgg	rccta	. tga	.ccga	tat	gtgg	ccat	ct c	gtcac	ccatc	180
tnac	taca	ıca ç	ggtca	tcat	g aa	ıccnn	nnnn	nnn	ınnnn	nnn	nnnn	nnnn	ınn n	nnnn	nnnnn	240
nnnn	nnnn	ınn r	nnnn	nnnn	ın nn	ınnnn	nnnn	nnn	.nnnn	nnn	nnnn	.nnnn	ınn r	nnnn	nnnnn	300
nnnn	nnnn.	ınn r	nnnn	nnnn	ın nn	ınnnn	nnnn	nnn	.nnnn	nnn	nnnn	nnnn	.nn n	nnnn	nnnnn	360
nnnn	nnnn	.nn r	nnnn	.nnnn	ın nn	ınnnn	nnnn	nnn	nnnn	nnn	nnnn	nnnn	.nn n	nnnn	nnnnn	420
nnnn	nnnn	tt t	attc	ttac	t ct	aaga	tagt	ttc	ctcc	ata	cgag	aaat	ct c	atca	tcaca	480
ggga	aagt	ac a	agnn	atto	t cc	acct	gtgc	atc	ccac	ctc	tcag	ttgt	tt c	atta	ttcta	540
ttat	acac	++ +	taaa	tata	rt ac	c++ =	atta	++~	++++	200	<i>a</i>	20+0	20 2	a+ a=	- a+ a=	600

```
<210> 14
```

<213> Rattus sp. J1

<220>

<221> UNSURE

<222> (61)..(165) <223> x = unknown

<400> 14

Ile Cys Phe Thr Ser Ala Ser Ile Pro Lys Met Leu Val Asn Ile Gln

Thr Lys Asn Lys Val Ile Thr Tyr Glu Gly Cys Ile Ser Gln Val Tyr

Phe Ser Tyr Ser Leu Glu Phe Trp Thr Thr Phe Phe Ser Thr Val Met

Ala Tyr Asp Arg Tyr Val Ala Ile Cys His Pro Ser Xaa Tyr Thr Gly

105

120

Ser Tyr Ser Lys Ile Val Ser Ser Ile Arg Glu Ile Ser Ser Gln 145 155

Gly Lys Tyr Lys Xaa Phe Ser Thr Cys Ala Ser His Leu Ser Val Val

Ser Leu Phe Tyr Ser Thr Leu Leu Gly Val Tyr Leu Ser Ser Phe 185

Thr Gln Asn Ser His Ser Thr Ala Arg Ala Ser Val Met Tyr Ser Val 200

Val Thr Pro Met Leu 210

<211> 213

<212> PRT

<21 <21 <21 <21	1> 2>	15 636 DNA Ratt	us s	р. Ј	2												
<40 acc	-	15 cca	ccat	ccca	aa g	atgc	taat	a aa	tata	caca	ccc	agag	caa	tact.	atcaco		60
															aacttt		120
															tacaca		180
															agcatt		240
															gtgaaa		300
atc	cctc	act	tctt	ctgt	ga g	ctca	atca	g ct	gtcc	caac	tca	catg	ttc	agac	aacttt		360
ccaa	agtc	acc	tcac	aatg	ca t	cttg	tacc	t gt	tata	tttg	cag	ctat	ttc	cctc	agtggt		420
atc	ottt	act	ctta [.]	tttc	aa g	atag	tgtc	t tc	cata	cgtt	cta	tgtc	ctc	agtt	caaggg	ſ	480
aagt	caca	agg .	catt [.]	ttct	ac a	tgtg.	cctc	t ca	cctt	tcca	ttg	tctc	ctt	attt:	tatagt		540
aca	ggcc	tcg :	gggt	gtac	gt c	agtt	ctgc	t gt	gatc	cgaa	gct	caca	ctc	ctct	gcaagt		600
gcti	cgg.	tca ·	tgta	tact	gt g	gtca	ccca	c at	gttg								636
<210 <211 <211 <211 <400	L> 2 2> 1 3> 1	16 212 PRT Ratti 16	ıs sı	p. J:	2												
Thr 1	Ser	Thr	Thr	Ile 5	Pro	Lys	Met	Leu	Val 10	Asn	Ile	His	Thr	Gln 15	Ser		
Asn	Thr	Ile	Thr 20	Tyr	Glu	Asp	Cys	Ile 25	Ser	Gln	Met	Phe	Val 30	Leu	Leu		
Val	Phe	Gly 35	Glu	Leu	Asp	Asn	Phe 40	Leu	Leu	Ala	Val	Met 45	Ala	Tyr	Asp		
Arg	Tyr 50	Val	Ala	Ile	Cys	His 55	Pro	Leu	Tyr	Tyr	Thr 60	Val	Ile	Val	Asn		
His 65	Arg	Leu	Cys	Ile	Leu 70	Leu	Leu	Leu	Leu	Ser 75	Trp	Val	Val	Ser	Ile 80		
Leu	His	Ala	Phe	Leu 85	Gln	Ser	Leu	Ile	Val 90	Leu	Gln	Leu	Thr	Phe 95	Cys		
Gly	Asp	Val	Lys 100	Ile	Pro	His	Phe	Phe 105	Cys	Glu	Leu	Asn	Gln 110	Leu	Ser		
Gln	Leu	Thr 115	Cys	Ser	Asp	Asn	Phe 120	Pro	Ser	His	Leu	Thr 125	Met	His	Leu		

```
Val Pro Val Ile Phe Ala Ala Ile Ser Leu Ser Gly Ile Leu Tyr Ser
    130
                       135
Tyr Phe Lys Ile Val Ser Ser Ile Arg Ser Met Ser Ser Val Gln Gly
145
                   150
                                      155
Lys Tyr Lys Ala Phe Ser Thr Cys Ala Ser His Leu Ser Ile Val Ser
Leu Phe Tyr Ser Thr Gly Leu Gly Val Tyr Val Ser Ser Ala Val Ile
           180
Arg Ser Ser His Ser Ser Ala Ser Ala Ser Val Met Tyr Thr Val Val
                           200
Thr Pro Met Leu
    210
<210> 17
<211>
      646
<212>
      DNA
<213> Rattus sp. J4
<400> 17
cataggetat teatettetg teacaceeaa tatgettgte aaetteetta taaageaaaa
                                                                   60
taccatetea tacettggat gttetataea gtttggetea getgetttgt ttggaggtet
                                                                  120
tgaatgette ettetggetg ceatggegta tgategtttt gtageaatet geaacecaet
                                                                  180
getttattea aegaaaatgt eeacacaagt etgtgteeag ttggttgtgg gatettatat
                                                                  240
300
accaaataga atcaatcact tttactgtga ttttgctccg ttagtagaac tttcttgctc
                                                                  360
tgatgtcagt gttcctgatg ctgttacctc attttctgct gcctcagtta ctatgctcac
                                                                  420
agtgtttatc atagccatct cctataccta tatcctcatc accatcctga agatgcgttc
                                                                  480
cactgagggt cgacagaaag cattctctac ctgcacttcc cacctcactg cagtcactct
                                                                  540
gtgctatgga accatcacat tcatctatgt gatgcccaag tccaqctact ccacagacca
                                                                  600
gaacaaggtg gtgtctgtgt tttatatggt ggtgatcccc atgttg
                                                                  646
<210>
      18
<211>
      215
<212>
      PRT
<213> Rattus sp. J4
<400> 18
```

Ile Gly Tyr Ser Ser Ser Val Thr Pro Asn Met Leu Val Asn Phe Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Ile Lys Gln Asn Thr Ile Ser Tyr Leu Gly Cys Ser Ile Gln Phe Gly

Ser	Ala	Ala 35	Leu	Phe	Gly	Gly	Leu 40	Glu	Cys	Phe	Leu	Leu 45	Ala	Ala	Met		
Ala	Tyr 50	Asp	Arg	Phe	Val	Ala 55	Ile	Cys	Asn	Pro	Leu 60	Leu	Tyr	Ser	Thr		
Lys 65	Met	Ser	Thr	Gln	Val 70	Суѕ	Val	Gln	Leu	Val 75	Val	Gly	Ser	Tyr	Ile 80		
Gly	Gly	Phe	Leu	Asn 85	Ala	Ser	Ser	Phe	Thr 90	Leu	Ser	Phe	Phe	Ser 95	Leu		
Ser	Phe	Cys	Gly 100	Pro	Asn	Arg	Ile	Asn 105	His	Phe	Tyr	Cys	Asp 110	Phe	Ala		
Pro	Leu	Val 115	Glu	Leu	Ser	Cys	Ser 120	Asp	Val	Ser	Val	Pro 125	Asp	Ala	Val		
Thr	Ser 130	Phe	Ser	Ala	Ala	Ser 135	Val	Thr	Met	Leu	Thr 140	Val	Phe	Ile	Ile		
Ala 145	Ile	Ser	Tyr	Thr	Tyr 150	Ile	Leu	Ile	Thr	Ile 155	Leu	Lys	Met	Arg	Ser 160		
Thr	Glu	Gly	Arg	Gln 165	Lys	Ala	Phe	Ser	Thr 170	Cys	Thr	Ser	His	Leu 175	Thr		
Ala	Val	Thr	Leu 180	Cys	Tyr	Gly	Thr	Ile 185	Thr	Phe	Ile	Tyr	Val 190	Met	Pro		
Lys	Ser	Ser 195	Tyr	Ser	Thr	Asp	Gln 200	Asn	Lys	Val	Val	Ser 205	Val	Phe	Tyr		
Met	Val 210	Val	Ile	Pro	Met	Leu 215											
<210 <211 <212 <213	.> 4 !> [.9 181 NA Rattu	ıs sp). J7	,												
<400 catc		.9 lag c	ccct	.gcac	t ac	acca	.ccat	: cat	gaat	aac	cgag	ıtgtg	ca c	cagtt	ctagt		60
cata	tcct	gt t	ggtt	tgct	g gc	ctgt	tgat	cat	cctc	cca	cctc	ttgg	tc a	ıtggc	ctcca	1	.20
gctg	gagt	tc t	gtga	ctcc	a at	gtga	ttga	. tca	tttt	ggc	tgtg	atgo	ct c	ctcca	attct	1	.80
gcag	ataa	cc t	gata	agac	a cg	gtat	ttat	aga	.gaaa	att	gtct	tggc	tt t	tgcc	atact	2	240
gaca	ctca	tc a	ittac	tctg	g ta	.tgtg	ttgt	tct	ctcc	tac	acat	acat	ca t	caag	accat	3	800
ttta	aagt	tt c	cttc	tgct	c aa	.caaa	gaaa	. aaa	ggcc	ttt	tcta	catg	tt c	ttcc	cacat	3	60
gatt	gtgg	tt t	ccat	cacc	t at	ggga	gctg	tat	tttc	atc	taca	tcaa	ac c	ttca	gcgaa	4	20
ggaa	gggg	ta g	ccat	caat	a ag	gttg	tatc	tgt:	gcta	aca	acat	cagt	cg c	ccct	ttgct	4	80

120

```
<210> 20
<211> 160
<212>
      PRT
<213> Rattus sp. J7
<400> 20
Ile Cys Lys Pro Leu His Tyr Thr Thr Ile Met Asn Asn Arg Val Cys
                                    10
Thr Val Leu Val Leu Ser Cys Trp Phe Ala Gly Leu Leu Ile Ile Leu
            20
                                25
Pro Pro Leu Gly His Gly Leu Gln Leu Glu Phe Cys Asp Ser Asn Val
Ile Asp His Phe Gly Cys Asp Ala Ser Pro Ile Leu Gln Ile Thr Cys
    50
                        55
Ser Asp Thr Val Phe Ile Glu Lys Ile Val Leu Ala Phe Ala Ile Leu
Thr Leu Ile Ile Thr Leu Val Cys Val Val Leu Ser Tyr Thr Tyr Ile
Ile Lys Thr Ile Leu Lys Phe Pro Ser Ala Gln Gln Arg Lys Lys Ala
                                105
Phe Ser Thr Cys Ser Ser His Met Ile Val Val Ser Ile Thr Tyr Gly
        115
                            120
Ser Cys Ile Phe Ile Tyr Ile Lys Pro Ser Ala Lys Glu Gly Val Ala
                        135
Ile Asn Lys Val Val Ser Val Leu Thr Thr Ser Val Ala Pro Leu Leu
145
                                        155
<210> 21
<211>
      481
<212>
      DNA
<213> Rattus sp. J8
<220>
<221> misc feature
<222>
      ()..()
<223>
      n = unknown
<400> 21
catctgccac ccgctccact actctcttct catgagtcct gacaactgtg ctgctctggt
aacagtctcc tgggtgacag gggtgggcac gggcttcctg ccttccctcc tgatttctaa
gttggacttc tgtgggccca accgcatcaa ccatttcttc tgtgacctcc ctccattaat
```

ccagetgtee	tgctccagcg	tctttgtgac	agaaatggcc	atctttgtcc	tgtccatcgc	240
tgtgctctgc	atctgtttcc	tectaaceen	nnnntcctac	attttcatag	tgtcctccat	300
tctgagaatc	ccttccacta	ccggcaggat	gaagacattt	tctacatgtg	gctcccacct	360
ggccgtggtc	accatctact	atgggaccat	gatctccatg	tatgtcggcc	caaatgcgca	420
tatgtacaag	gagctcaaca	aggtcatttc	tgtcttctac	actgtgatca	ccccactact	480
g						481

<210> 22

<211> 160

<212> PRT

<213> Rattus sp. J8

<220>

<221> UNSURE

<222> (90)..(91)

 $\langle 223 \rangle$ x = unknown

<400> 22

Ile Cys His Pro Leu His Tyr Ser Leu Leu Met Ser Pro Asp Asn Cys 1 10 15

Ala Ala Leu Val Thr Val Ser Trp Val Thr Gly Val Gly Thr Gly Phe 20 25 30

Leu Pro Ser Leu Leu Ile Ser Lys Leu Asp Phe Cys Gly Pro Asn Arg 35 40 45

Ile Asn His Phe Phe Cys Asp Leu Pro Pro Leu Ile Gln Leu Ser Cys 50 55 60

Ser Ser Val Phe Val Thr Glu Met Ala Ile Phe Val Leu Ser Ile Ala 65 70 75 80

Val Leu Cys Ile Cys Phe Leu Leu Thr Xaa Xaa Ser Tyr Ile Phe Ile 85 90 95

Val Ser Ser Ile Leu Arg Ile Pro Ser Thr Thr Gly Arg Met Lys Thr
100 105 110

Phe Ser Thr Cys Gly Ser His Leu Ala Val Val Thr Ile Tyr Tyr Gly 115 120 125

Thr Met Ile Ser Met Tyr Val Gly Pro Asn Ala His Leu Ser Pro Glu 130 135 140

Leu Asn Lys Val Ile Ser Val Phe Tyr Thr Val Ile Thr Pro Leu Leu 145 150 155 160

<210> 23

<211> 646

<212> DNA

<21	3>	Ratt	us s	p. J	11												
<22	1> 2>	()	:_fea () unkn														
< 40	0>	23															
ngt	ctgc	ttc	tcct	ccac	ca c	tgtc	ccca	a gg	tact	ggct	aac	caca	tac	tcag	tagt	ca	60
ggc	catt	tcc	ttct	ctgg	gt g	tcta	actc	a gc	tgta	tttt	ctc	tgtg	tgt	ctgt	gaat	at 1:	20
gga	caat	ttc	ctgc	tggc	tg t	gatg	gcct	a tg	acag	attt	gtg	gcca	tat	gcca	ccct	tt 1	80
gta	ctac	aca	acaa	agat	ga c	ccac	cage	t ct	gtgt	cttg	ctg	gtgt	ctg	gatc	annn	inn 2	40
nnnı	nnnn	nnn	nnnn	nnnn	nn n	nnnn	nnnn:	n nn	nnnn	nnnn	nnn	nnnn	nnn	nnnn	nnnn	.nn 3(00
nnnı	annn	nnn	nnnn	nnnn	nn n	nnnn	nnnn	n nn	nnnn	nnnn	nnn	nnnn	nnn	nnnn	nnnn	nn 3	60
nnnı	nnn	nnn	nnnn	nnnn	nn n:	nnnn	nnnn	n nn	nnnn	nnnn	nnt	gtga	tca	tggt	cacc	cc 42	20
atti	tgtc	tgc	atcc	tcat	ct c	ttac	atct	a ca	tcac	caat	gca	gtcc	tca	gagt	ctca	tc 48	30
ctt	tagg	gga	ggat	ggaa	ag c	cttc	tcca	c ct	gtgg	ctca	cac	ctgg	ctg	tggt	ctgc	ct 54	40
ctt	ctat	ggc	acca	tcat	tg c	tgtg	tatt	t ca	atcc	tgta	tct	tccc	att	catc	tgag	aa 60	0.0
ggad	cact	gca	gcaa	ctgt	gc ta	atac	acag	t gg	tgac	taca	atg	ttg				64	46
<210 <211 <212 <213 <220 <221 <222 <223	L> : 2> : 3> : C> : L> :	JNSU: (79)	us s RE (1: unkno	34)	11												
< 400)> ;	24															
Val 1	Cys	Phe	Ser	Ser 5	Thr	Thr	Val	Pro	Lys 10	Val	Leu	Ala	Asn	His 15	Ile		
Leu	Ser	Ser	Gln 20	Ala	Ile	Ser	Phe	Ser 25	Gly	Cys	Leu	Thr	Gln 30	Leu	Tyr		
Phe	Leu	Cys 35	Val	Ser	Val	Asn	Met 40	Asp	Asn	Phe	Leu	Leu 45	Ala	Val	Met		
Ala	Tyr 50	qzA	Arg	Phe	Val	Ala 55	Ile	Cys	His	Pro	Leu 60	Tyr	Tyr	Thr	Thr		
Lys 65	Met	Thr	His	Gln	Leu 70	Cys	Val	Leu	Leu	Val 75	Ser	Gly	Ser	Xaa	Xaa 80		

Χā	ıa Xaa	a Xaa	. Xaa	Xaa 85	Xaa	Xaa	Xaa	Xaa	Хаа 90	Xaa	Xaa	Xaa	Xaa	Xaa 95	Xaa		
Ха	ıa Xaa	a Xaa	. Xaa 100	Xaa	Xaa	Xaa	Xaa	Xaa 105	Xaa	Xaa	Xaa	Xaa	Хаа 110	Xaa	Xaa		
Ха	a Xaa	Xaa 115		Xaa	Xaa	Xaa	Xaa 120	Xaa	Xaa	Xaa	Xaa	Xaa 125	Xaa	Xaa	Xaa		
Xa	a Xaa 130	Xaa	Xaa	Xaa	Xaa	Val 135	Ile	Met	Val	Thr	Pro 140	Phe	Val	Cys	Ile		
Le 14	u Ile 5	e Ser	Tyr	Ile	Tyr 150	Ile	Thr	Asn	Ala	Val 155	Leu	Arg	Val	Ser	Ser 160		
Ph	e Arç	Gly	Gly	Trp 165	Lys	Ala	Phe	Ser	Thr 170	Cys	Gly	Ser	His	Leu 175	Ala		
Va	l Val	. Cys	Leu 180	Phe	Tyr	Gly	Thr	Ile 185	Ile	Ala	Val	Tyr	Phe 190	Asn	Pro		
Va	l Ser	Ser 195	His	Ser	Ser	Glu	Lys 200	Asp	Thr	Ala	Ala	Thr 205	Val	Leu	Tyr		
Th	r Val 210		Thr	Pro	Met	Leu 215											
<2 <2	10> 11> 12> 13>	25 646 DNA Ratt	us sp	o. J1	. 4												
<2 <2	22>	()	_feat () unkno														
		25 ttc 1	taata	cacc	a ct	atco	ccaa	. aat	acto	ract.	aacc	acat:	ac t	cagt	agtca	60	
															aatat	120	
															ccttt	180	
gt	actac	aca a	acacc	gatg	ra cc	cacc	agct	ctg	tgtc	ttg	ctgg	tgtc	tg g	gatca	nnnnn	240	
nn:	nnnn	nnn r	nnnn	nnnn	n nn	nnnn	nnnn	nnn	nnnn	.nnn	nnnn	.nnnn	nn n	ınnnn	nnnnn	300	
nnı	nnnn	nnn r	nnnn	nnnn	n nn	nnnn	nnnn	nnn	nnnn	.nnn	nnnn	nnnn	nn n	ınnnn	nnnnn	360	
nnı	nnnn	nnn r	nnnn	nnnn	n nn	nnnn	nnnn	nnn	nnnn	.nnn	nntg	tgat	ca t	.ggtc	acccc	420	
at [.]	tgtc	tgc a	atcct	catc	t ct	taca	tcta	cat	cacc	aat	gcag	tcct	ca g	agtc	tcatc	480	
cti	tagg	gga q	ggatg	gaaa	g cc	ttct	ccac	ctg	tggc	tca	cacc	tggc	tg t	ggtc	tgcct	540	

```
<210> 26
```

<212> PRT

<213> Rattus sp. J14

<220>

<221> UNSURE

<222> (79)..(134)

 $\langle 223 \rangle$ x = unknown

<400> 26

Leu Ser Ser Gln Ala Ile Ser Phe Ser Gly Cys Leu Thr Gln Leu Tyr 20 25 30

Phe Leu Cys Val Ser Val Asn Met Asp Asn Phe Leu Leu Ala Val Met 35 40 45

Ala Tyr Asp Arg Phe Val Ala Ile Cys His Pro Leu Tyr Tyr Thr Thr 50 55 60

Pro Met Tar His Gln Leu Cys Val Leu Leu Val Ser Gly Ser Xaa Xaa 65 70 75 80

Xaa Xaa Xaa Xaa Xaa Xaa Val Ile Met Val Thr Pro Phe Val Cys Ile 130 135 140

Leu Ile Ser Tyr Ile Tyr Ile Thr Asn Ala Val Leu Arg Val Ser Ser 145 150 155 160

Phe Arg Gly Gly Trp Lys Ala Phe Ser Thr Cys Gly Ser His Leu Ala 165 170 175

Val Val Cys Leu Phe Tyr Gly Thr Ile Ile Ala Val Tyr Phe Asn Pro 180 185 190

Val Ser Ser His Ser Ser Glu Lys Asp Thr Ala Ala Thr Val Leu Tyr 195 200 205

Thr Val Val Thr Pro Met Leu 210 215

<211> 215

```
<210> 27
 <211> 481
 <212> DNA
<213> Rattus sp. J15
<220>
<221> misc feature
<222> ()..()
\langle 223 \rangle x = unknown
<400> 27
tatctgcaac cctctgcgct acccagtgct catgagcggc cgggtgtgcc tgctcatggt
                                                                        60
cgtggcctcc tggttgggag gatccctcaa cgcctccatt cagacttctc tgacccttca
                                                                       120
gttcccctac tgtggatcac ggaagatctc ccacttcttc tgtgaggtgc cctcgctgct
                                                                       180
gannntggcc tgtgcagaca ctgaagccta tgagcaggta ctatttgtga caggcgtggt
                                                                       240
ggtcctcctg gtgcccatta cattcattac tgcctcttat gccctcatcc tggctgctgt
                                                                       300
gctccgaatg cactctgcgg aggggagtca gaaggcccta gccacatgct cctctcacct
                                                                       360
gacagtcgtc aatctcttct atgggcccct tgtctacacc tacatgttac ctgcttccta
                                                                       420
teacteacea ggecaagaeg acatagtate egtetttae acegttetea cacceatget
                                                                       480
                                                                       481
<210> 28
<211>
      160
<212> PRT
<213> Rattus sp. J15
<220>
<221> UNSURE
<222>
      (61)..(62)
\langle 223 \rangle x = unknown
<400> 28
Ile Cys Asn Pro Leu Arg Tyr Pro Val Leu Met Ser Gly Arg Val Cys
                5
                                     1.0
Leu Leu Met Val Val Ala Ser Trp Leu Gly Gly Ser Leu Asn Ala Ser
                                 25
Ile Gln Thr Ser Leu Thr Leu Gln Phe Pro Tyr Cys Gly Ser Arg Lys
                             40
                                                 45
Ile Ser His Phe Phe Cys Glu Val Pro Ser Leu Leu Xaa Xaa Ala Cys
Ala Asp Thr Glu Ala Tyr Glu Gln Val Leu Phe Val Thr Gly Val Val
                    70
                                         75
```

Val Leu	ı Lev	ı Val	Pro 85	Ile	Thr	Phe	Ile	Thr 90	Ala	Ser	Tyr	Ala	Leu 95	Ile	
Leu Ala	a Ala	Val		Arg	Met	His	Ser 105	Ala	Glu	Gly	Ser	Gln 110	Lys	Ala	
Leu Ala	Thr 115		Ser	Ser	His	Leu 120	Thr	Val	Val	Asn	Leu 125	Phe	Tyr	Gly	
Pro Leu 130	val	Tyr	Thr	Tyr	Met 135	Leu	Pro	Ala	Ser	Tyr 140	His	Ser	Pro	Gly	
Gln Asp 145	Asp	Ile	Val	Ser 150	Val	Phe	Tyr	Thr	Val 155	Leu	Thr	Pro	Met	Leu 160	
<211> <212>	29 481 DNA Ratt	us s	p. J:	16											
<400> catctgt	29 agg	cctc	ttcad	ct at	tccta	accct	cat	igado	ccag	acad	etgte	gtg c	ccaaç	gattgc	60
cactggt	tgc	tggti	tggga	ag go	ettg	gatgo	g gcd	cagto	gta	gaaa	ıtttc	ct t	ggto	gtctcg	120
tctcctt	ttt	tgtg	gada	ca at	caca	attca	a aca	acato	ttt	tgto	gattt	ac c	cacct	gtgct	180
gagcttg	gct	tgtad	ctgat	ta ca	atcaç	gtgaa	ı tgt	catç	gta	gatt	ttat	ta t	aaac	cctctg	240
caagatc	ctg	gcca	catta	cc to	gctga	atcct	gag	gatac	ctac	ttgc	agat	aa t	ccgc	cacagt	300
gctcaag	att	cctt	cagct	ig ca	aggca	agaa	ı gaa	aagca	ttc	tcga	cttg	ıtg c	catac	catct	360
cactgtg	gtt	ctcat	tatta	ct at	ggga	igcat	cct	tttc	atg	tato	rtgcg	ıgc t	gaag	gaagac	420
ttactcc	ctt	gacta	acgad	a ga	agcct	tggc	agt	agto	tac	tacg	ıtggt	ta c	ccct	ttcct	480
g															481
<211> <212>	30 160 PRT Rattı	us sp	o. J1	. 6											
<400>	30														
Ile Cys 1	Arg	Pro	Leu 5	His	Tyr	Pro	Thr	Leu 10	Met	Thr	Gln		Leu 15	Cys	
Ala Lys	Ile	Ala 20	Thr	Gly	Cys	Trp	Leu 25	Gly	Gly	Leu		Gly 30	Pro	Val	
Val Glu	Ile 35	Ser	Leu	Val	Ser	Arg 40	Leu	Leu	Phe	Cys	Gly 45	Pro	Asn	His	
Ile Gln 50	His	Ile	Phe	Cys	Asp 55	Phe	Pro	Pro	Val	Leu 60	Ser	Leu	Ala	Cys	

```
Thr Asp Thr Ser Val Asn Val Leu Val Asp Phe Ile Ile Asn Leu Cys
65
                     70
Lys Ile Leu Ala Thr Phe Leu Leu Ile Leu Ser Ser Tyr Leu Gln Ile
Ile Arg Thr Val Leu Lys Ile Pro Ser Ala Ala Gly Lys Lys Ala
             100
Phe Ser Thr Cys Ala Ser His Leu Thr Val Val Leu Ile Phe Tyr Gly
         115
Ser Ile Leu Phe Met Tyr Val Arg Leu Lys Lys Thr Tyr Ser Leu Asp
    130
                         135
Tyr Asp Arg Ala Leu Ala Val Val Tyr Ser Val Val Thr Pro Phe Leu
                                         155
<210>
       31
<211>
       481
      DNA
<212>
<213> Rattus sp. J17
<220>
<221> misc feature
<222>
       ()..()
\langle 223 \rangle n = unknown
<400> 31
aatctgcaac ccactgcttt attccaccaa aatgtccaca caagtctgta tccagttggt
tgcaggatct tatatagggg gttttcttaa tacttgcctc atcatgtttt actttttctc
                                                                       120
ttttctcttc tgtgggccaa atatagttga tcattttttc tgtgattttg ctcctttnnt
                                                                      180
ggaactttcg tgctctgatg tgagtgtctc tgtagttgtt atgtcatttt ctgctggctc
                                                                       240
agttactatg atcacagtgt ttatcatagc catctcctat tcttacatcc tcatcaccat
                                                                      300
cctgaagatg tcctcaactg agggccgtca caaggctttc tccacatgta cctcccacct
                                                                      360
cactgoagto actototact atggoaccat tacottoatt tatgtgatgo ccaagtocac
                                                                      420
atactctaca gaccagaaca aggtggtgtc tgtgttttac atggtggtga tcccaatgtt
                                                                      480
g
                                                                       481
<210>
      32
<211>
      160
      PRT
<212>
<213> Rattus sp. J17
<220>
<221> UNSURE
<222>
      (59)..(60)
\langle 223 \rangle x = unknown
```

<400> 32	
Ile Cys Asn Pro Leu Leu Tyr Ser Thr Lys Met Ser Thr Gln Val Cys 1 10 15	
Ile Gln Leu Val Ala Gly Ser Tyr Ile Gly Gly Phe Leu Asn Thr Cys 20 25 30	
Leu Ile Met Phe Tyr Phe Phe Ser Phe Leu Phe Cys Gly Pro Asn Ile 35 40 45	
Val Asp His Phe Phe Cys Asp Phe Ala Pro Xaa Xaa Glu Leu Ser Cys 50 55 60	
Ser Asp Val Ser Val Ser Val Val Val Met Ser Phe Ser Ala Gly Ser 65 70 75 80	
Val Thr Met Ile Thr Val Phe Ile Ile Ala Ile Ser Tyr Ser Tyr Ile 85 90 95	
Leu Ile Thr Ile Leu Lys Met Ser Ser Thr Glu Gly Arg His Lys Ala 100 105 110	
Phe Ser Tar Cys Thr Ser His Leu Thr Ala Val Thr Leu Tyr Tyr Gly 115 120 125	
Thr Ile Thr Phe Ile Tyr Val Met Pro Lys Ser Thr Tyr Ser Thr Asp 130 135 140	
Gln Asn Lys Val Val Ser Val Phe Tyr Met Val Val Ile Pro Met Leu 145 150 155 160	
<210> 33 <211> 479 <212> DNA <213> Rattus sp. J19	
<400> 33	
tatetgeeae eetetgaagt acacagttat catgaateae tatttttgtg tgatgetget	60
	120
	180
	240
attttttggt gttcatattg tagggatcat tttgtcttat atttacactg tatcctcagt	300
tttaagaatg tcattattgg gaggaatgta taaagccttt tcaacatgtg gatctcattt	360
gtcggttgtc tctgttttat ggcacaggtt ttggggtaca cataagctct ccacttactg	420
actctccaag gaagactgta gtggcttcag tgatgtacac tgtggttact cagatgctg	479

<210> 34 <211> 139 <212> PRT <213> Rattus sp. J19

< 40	0>	34														
Ile 1	Cys	His	Pro	Leu 5	Lys	Tyr	Tnr	Val	Ile 10	Met	Asn	His	Tyr	Phe 15	Cys	
Val	Met	Leu	Leu 20	Leu	Phe	Ser	Val	Phe 25	Val	Ser	Ile	Ala	His 30	Ala	Leu	
Phe	His	Ile 35	Leu	Met	Val	Leu	Ile 40	Leu	Thr	Phe	Ser	Thr 45	Lys	Thr	Glu	
Ile	Pro 50	His	Phe	Phe	Cys	Glu 55	Leu	Ala	His	Ile	Ile 60	Lys	Leu	Thr	Cys	
Ser 65	Asp	Asn	Phe	Ile	Asn 70	Tyr	Leu	Leu	Ile	Tyr 75	Thr	Glu	Ser	Val	Leu 80	
Phe	Phe	Gly	Val	His 85	Ile	Val	Gly	Ile	Ile 90	Leu	Ser	Tyr	Ile	Tyr 95	Thr	
Val	Ser	Ser	Val 100	Leu	Arg	Met	Ser	Leu 105	Leu	Gly	Gly	Met	Tyr 110	Lys	Ala	
Phe	Ser	Thr 115	Cys	Gly	Ser	His	Leu 120	Ser	Val	Val	Ser	Val 125	Leu	Trp	His	
Arg	Phe 130	Trp	Gly	Thr	His	Lys 135	Leu	Ser	Tnr	Tyr						
<210 <211 <212 <213	> 2 > I	35 180 DNA Rattu	ıs sp). J2	:0											
<220 <221 <222 <223	> r >	nisc_ ()(n = v	()													
<400 aatc		35 cac c	cact	gagg	t ac	cttc	tcat	cat	gagc	tgg	gtgg	tgtg	ca c	agca	.ctgtc	60
cgtg	gcaa	itc t	gggt	cata	g gc	tttt	gtgc	ctc	cgtt	ata	cctc	tctg	ct t	cacg	atcct	120
ccca	ctct	gt g	gtcc	ttac	g tc	gttg	atta	tct	tttc	tgc	gagc	tgcc	ca t	cctt	ctgca	180
cctg	ttct	gc a	caga	taca	t ct	ctgc	tgga	gnn	nnnn	nnn	nnnn	nnnn	nn n	nnnn	nnnnn	240
nnnn	nnnr	ınn n	nccc	ttcc	t cc	tgat	tgtt	ctc	tcct	acc	ttcg	catc	ct g	gtgg	ctgtg	300
ataa	gaat	ag a	ctca	gctg	a gg	gcag	aaaa	aag	gcct	ttt	caac	ttgt	gc t	tcac	acttg	360
gctg	tggt	ga c	catc	tact	a tg	gaac	aggg	ctg	atca	ggt	actt	gagg	cc c	aagt	ccctt	420
tatt	aaga	tg a	ggga	gaca	g ac	tgat	ctct	ata	trat.	ata	caq+	catt	aa c	ccta	cacta	480

```
<210> 36
<211> 160
<212> PRT
<213> Rattus sp. J20
<220>
<221> UNSURE
<222> (71)..(84)
\langle 223 \rangle x = unknown
<400> 36
Ile Cys Tyr Pro Leu Arg Tyr Leu Leu Ile Met Ser Trp Val Val Cys
Thr Ala Leu Ser Val Ala Ile Trp Val Ile Gly Phe Cys Ala Ser Val
Ile Pro Leu Cys Phe Thr Ile Leu Pro Leu Cys Gly Pro Tyr Val Val
Asp Tyr Leu Phe Cys Glu Leu Pro Ile Leu Leu His Leu Phe Cys Thr
65
                   70
Xaa Xaa Xaa Pro Phe Leu Leu Ile Val Leu Ser Tyr Leu Arg Ile
Leu Val Ala Val Ile Arg Ile Asp Ser Ala Glu Gly Arg Lys Lys Ala
           100
                              105
Phe Ser Thr Cys Ala Ser His Leu Ala Val Val Thr Ile Tyr Tyr Gly
       115
Thr Gly Leu Ile Arg Tyr Leu Arg Pro Lys Ser Leu Tyr Ser Ala Glu
   130
                      135
Gly Asp Arg Leu Ile Ser Val Phe Tyr Ala Val Ile Gly Pro Ala Leu
145
                   150
<210> 37
<211> 35
<212> DNA
<213> artificial - primer A1
<220>
<221> modified base
<222> (9)..(9)
<223> i
<220>
<221> misc_feature
<222> (3)..(3)
<223> t or c
```

```
<220>
 <221> modified_base
<222> (12)..(12)
<223> i
 <220>
 <221> misc_feature
<222> (5)..(5)
<223> g or a
 <220>
 <221> misc_feature
<222> (6)..(6)
<223> g or c
 <220>
<221> misc_feature
<222> (10)..(10)
<223> a or c
<220>
<221> misc_feature
<222> (13)..(13)
<223> g or c
<220>
<221> modified_base
<222> (15)..(15)
<223> i
<220>
<221> modified_base
<222> (21)..(2\overline{1}) <223> i
<220>
<221> misc_feature
<222> (18)..(18)
<223> t or c
<220>
<221> misc_feature
\langle 222 \rangle (19)..(19) \langle 223 \rangle c or t
<220>
<221> modified_base
```

<222> (24)..(24)

```
<223> i
 <220>
 <221> modified base
 <222> (27)..(27)
<223> i
 <220>
 <221> modified base
\langle 222 \rangle (30)..(3\overline{0}) \langle 223 \rangle i
<220>
<221> modified_base
<222> (33)..(33)
<223> i
<400> 37
aantnnatnn tnntnaannt ngcngtngcn gcnga
<210> 38
<211> 32
<212> DNA
<213> artificial - primer A2
<220>
<221> misc_feature
<222> (3)..(3)
<223> n = c or t
<220>
<221> misc_feature
<222> (6)..(6)
<223> n = c or t
<220>
<221> misc_feature
\langle 222 \rangle (9)..(9)
\langle 223 \rangle n = c or t
<220>
<221> misc_feature
<222>
        (10)..(10)
<223> n = c or a
<220>
<221> modified base
<222>
        (12)..(12)
<223> i
```

<220>

```
<220>
 <221> misc_feature
<222> (13)..(13)
<223> n = g or a
<220>
<221> modified_base
<222> (15)..(15)
<223> i
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = t or c
<220>
<221> modified base
\langle 222 \rangle (21)..(2\overline{1}) \langle 223 \rangle \underline{i}
<220>
<221> modified base
<222> (24)..(24)
<223> i
<220>
<221> misc_feature
<222> (25)..(25)
<223> n = c or t
<220>
<221> modified base
<222>
        (27)..(27)
<223> i
<220>
<221> modified base
<222>
        (30)..(30)
<223> i
<400> 38
aantanttnn tnntnaanct ngcnntngcn ga
<210> 39
<211> 32
<212> DNA
<213> artificial - primer A3
```

27

```
<221> misc_feature <222> (3)..(4)
    (223) n = c or t
    <220>
    <221> misc_feature <222> (5)..(5)
    \langle 223 \rangle n = a or t
    <220>
    <221> modified_base
    <222> (6)..(6)
<223> i
    <220>
   <221> misc_feature
<222> (9)..(9)
<223> n = c or t
   <220>
   <221> misc_feature
<222> (10)..(10)
<223> n = c or a
<220>
   <221> modified_base
  <222> (12)..(12)
<223> i
 <220>
  <221> modified_base
<222> (15)..(15)
<223> i
   <220>
   <221> misc_feature
<222> (16)..(16)
<223> n = a or t
   <220>
   <221> modified base
   <222> (18)..(18)
<223> i
   <220>
   <221> modified_base
   <222> (21)..(21)
<223> i
```

```
<220>
   <221> modified_base
<222> (24)..(24)
<223> i
   <220>
   <221> misc_feature
<222> (26)..(26)
<223> n = c or g
   <220>
  <221> modified_base
<222> (27)..(27)
<223> i
   <220>
  <221> modified_base
<222> (30)..(30)
<223> i
  <400> 39
  aannnnttnn tnatnncnct ngcntnngcn ga
<210> 40
  <211> 32
<212> DNA
  <213> artificial - primer A4
<220>
 <221> misc_feature
<222> (1)..(1)
<223> n = c or a
  <220>
  <221> modified_base
  <222> (3)..(3)
<223> ±
  <220>
  <221> modified base
  <222> (6)..(6) <223> i
  <220>
  <221> misc_feature <222> (7)..(7)
  <223> n = t or c
  <220>
  <221> modified_base
```

```
<222> (9)..(9)
     <223> i
     <220>
     <221> misc_feature
<222> (15)..(15)
<223> n = c or t
     <220>
    <221> misc_feature
<222> (18)..(18)
<223> n = c or t
     <220>
    <221> modified base
<222> (21)..(21)
<223> i
    <220>
   <221> misc_feature
<222> (22)..(22)
<223> n = a or t
<220>
<221> misc_feature
<222> (23)..(23)
<223> n = c or g
<220>
<221> misc_feature
<222> (24)..(24)
<223> n = c or t
    <220>
    <221> misc_feature
    \begin{array}{rrrr} <222> & (27) & ... & (27) \\ <223> & n = c & or t \end{array}
    <220>
    <221> modified base
    <222> (30)..(30)
<223> i
    <400> 40
    ngnttnntna tgtgnaanct nnnnttngcn ga
    <210> 41
    <211> 32
    <212> DNA
```

```
<213> artificial - primer A5
      <220>
      <221> modified_base
<222> (3)..(3)
<223> i
      <220>
      <221> modified_base
<222> (6)..(6)
<223> i
      <220>
     <221> misc_feature
<222> (9)..(9)
<223> n = t or c
     <220>
     <221> modified base
<222> (12)..(12)
<223> i
<220>
<221> modified_base
<222> (15)..(15)
<223> i
 <220>
    <221> misc_feature
<222> (18)..(19)
<223> n = t or c
     <220>
     <221> modified base
     <222> (21)..(21)
<223> i
     <220>
     <221> misc_feature
     <222>
               (22)..(22)
     <223> n = a or t
     <220>
     <221> misc_feature
<222> (23)..(23)
<223> n = c or g
     <220>
     <221> modified base
     \langle 222 \rangle (24)...(24)
```

```
<223> i
 <220>
<221> modified_base
<222> (27)..(27)
<223> i
 <220>
<221> modified_base
<222> (30)..(30)
<223> i
<400> 41
acngtntana tnacncannt nnnnatngcn ga
<210> 42
<211> 33
<212> DNA
<213> artificial - primer B1
<220>
<221> modified_base
<222> (4)..(4) - (223> i
<220>
<221> misc_feature
\langle 222 \rangle (5)..(5)
\langle 223 \rangle n = c or t
<220>
<221> misc_feature
<222> (6)..(6)
<223> n = g or t
<220>
<221> misc_feature
<222> (7)..(7)
<223> n = g or a
<220>
<221> modified base
<222>
         (13)..(13)
<223> i
<220>
<221> misc_feature
<222>
         (15)..(15)
\langle 223 \rangle n = a or t
```

```
<220>
  <221> modified_base
  \langle 222 \rangle (16)..(1\overline{6})
  <223> 1
  <220>
  <221> misc_feature
  <222> (17)..(18)
  <223> n = a or c
 <220>
 <221> misc_feature
 <222> (19)..(19)
 <223> n = a or g
 <220>
 <221> modified base
 <222> (22)..(22)
 <223> i
 <220>
<221> misc_feature
<222> (24)..(24)
<223> n = t or c
<220>
 <221> modified base
 <222> (25)..(25)
<223> i
 <220>
 <221> misc feature
 <222> (27)..(27)
 <223> n = t or c
 <220>
 <221> modified base
 <222> (28)..(28)
 <223> i
 <220>
 <221> misc_feature
 <222> (31)..(31)
 <223> n = g or a
 <400> 42
```

ctgnnnnttc atnannnnt anannanngg ntt

```
<210> 43
 <211> 31
 <212> DNA
 <213> artificial - primer B2
<220>
<221> misc_feature
<222> (1)..(1)
<223> n = g or t
<220>
<221> misc_feature
\begin{array}{rcl}
(222) & (2) & (2) \\
(223) & (2) & (2)
\end{array}
<220>
<221> misc_feature
<222> (4)..(4)
<223> n = g or c
<220>
<221> misc_feature
<222>
         (5)..(5)
<223> n = g or a
<220>
<221> modified_base
<222> (8)..(8) <223> i
<220>
<221> misc_feature
\langle 222 \rangle (11)...(11)
\langle 223 \rangle n = g or a
<220>
<221> misc_feature
<222> (14)...(14) <223> n = g \text{ or } a
<220>
<221> misc_feature
\langle 222 \rangle (17)...(17)
\langle 223 \rangle n = g or a
<220>
<221> modified base
<222> (20)..(20)
<223> i
```

```
<220>
   <221> modified_base
<222> (23)..(23)
<223> i
   <220>
   <221> modified_base
<222> (26)..(26)
<223> i
   <220>
   <221> misc_feature
<222> (29)..(29)
<223> n = g or a
   <400> 43
   nntnnttnag ncancantan atnatnggnt t
                                                                                                             31
   <210> 44
   <211> 32
<212> DNA
   <213> artificial - primer B3
<220>
  <221> modified_base
<222> (3)..(3)
<223> i
<220>
  <221> misc_feature
<222> (6)..(6)
<223> n = g or a
   <220>
   <221> misc feature
   <222> (9)..(9) <223> n = g or a
  <220>
   <221> modified base
  <222> (12)..(1\overline{2}) <223> i
  <220>
  <221> modified_base
<222> (15)..(15)
<223> i
  <220>
  <221> misc_feature
```

```
<222> (18)..(18)
  <223> n = g or a
  <220>
  <221> modified_base
<222> (21)..(21)
  <223> i
  <220>
  <221> modified base
  <222> (24)..(24)
<223> ±
  <220>
 <221> modified_base
<222> (27)..(27)
<223> 1
 <220>
 <221> misc_feature
<222> (30)..(30)
<223> n = g or a
<400> 44
 tcnatnttna angtngtnta natnatnggn tt
<210> 45
 <211> 32
 <212> DNA
 <213> artificial - primer B4
<220>
 <221> misc_feature
 <222> (3)..(3)
 <223> n = c or t
 <220>
 <221> modified_base
 <222> (6)..(6)
 <223> i
 <220>
 <221> misc feature
 <222> (9)..(9)
 <223> n = g or a
 <220>
 <221> modified base
 <222> (12)..(12)
 <223> i
```

```
<220>
 <221> modified base
 \langle 222 \rangle (15)..(1\overline{5}) \langle 223 \rangle i
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = g or a
<220>
<221> modified base
<222> (21)..(21)
<223> i
<220>
<221> misc_feature
<222> (24)..(24)
\langle 223 \rangle n = g or a
<220>
<221> modified_base
<222> (27)..(27)
<223> i
<220>
<221> misc_feature <222> (30)..(30)
<223> n = g or a
<400> 45
genttngtna anatngenta nagnaanggn tt
<210> 46
<211> 32
<212> DNA
<213> artificial - primer B5
<220>
<221> misc_feature
<222> (3)..(3)
<223> n = a or g
<220>
<221> modified_base
<222> (6)..(6)
<223> i
```

```
<220>
   <221> misc_feature
<222> (9)..(9)
<223> n = a or g
   <220>
  <221> misc_feature
<222> (10)..(10)
<223> n = c or g
   <220>
  <221> misc_feature
<222> (11)..(11)
<223> n = a or t
   <220>
  <221> modified_base
<222> (12)..(12)
<223> i
  <220>
 <221> modified_base
 \langle 222 \rangle (15)..(1\overline{5}) \langle 223 \rangle i
<220>
 <221> misc_feature
<222> (16)..(16)
<223> n = g or c
  <220>
  <221> misc_feature
  \langle 222 \rangle (18)..(18)
\langle 223 \rangle n = g or a
  <220>
  <221> modified base
  <222> (21)..(21) <223> i
  <220>
  <221> misc_feature
  \langle 222 \rangle (24)...(24) \langle 223 \rangle n = g \text{ or } c
 <220>
  <221> modified base
 <222> (26)..(27)
<223> i
```

```
<220>
  <221> misc_feature
<222> (30)..(30)
  \langle 223 \rangle n = a or g
  <400> 46
  aantenggnn nnegnnanta natnannggn tt
  <210> 47
  <211> 32
  <212> DNA
  <213> artificial - primer B6
  <220>
  <221> misc_feature
  <222> (1)..(1)
<223> n = g or c
  <220>
  <221> misc_feature
 \langle 222 \rangle (2)..(2)
\langle 223 \rangle n = a or t
<220>
 <221> modified base
 <222> (3)..(3) <223> i
 <220>
 <221> misc_feature
 <222> (4)..(4)
<223> n = g or c
  <220>
  <221> misc_feature
  <222>
         (5)..(5)
  <223> n = a or t
 <220>
 <221> modified base
  <222>
          (6)..(6)
  <223> i
 <220>
  <221> modified base
  <222>
         (9)..(9)
  <223> i
 <220>
```

```
<221> misc_feature <222> (12)..(12)
(12) \cdot (12) \cdot (12)

(223) \quad n = a \text{ or } g
<220>
<221> misc_feature
<222> (15)..(15)
<223> n = a or g
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = a or g
<220>
<221>
        modified base
\langle 222 \rangle (21)..(2\overline{1}) \langle 223 \rangle i
<220>
<221> misc_feature
<222> (24)..(24)
<223> n = a or g
<220>
<221> modified base
<222> (27)...(27) <223> i
<220>
<221> misc_feature
<222> (30)..(30)
<223> n = g or a
<400> 47
nnnnnnccna cnaanaanta natnaanggn tt
<210> 48
<211> 23
<212> DNA
<213> artificial - primer P1
<220>
<221> modified base
<222> (6)..(6) 
<223> i
<220>
<221> misc_feature
<222> (9)..(9)
```

```
<223> n = t or c
 <220>
<221> misc_feature
<222> (12)..(12)
<223> n = t or c
<220>
<221> misc_feature
<222> (13)..(13)
<223> n = a or c
<220>
<221> modified_base
<222> (15)..(15)
<223> i
<220>
<221> misc_feature
<222> (18)..(18)
<223> n = t or c
<220>
<221> modified_base
<222> (21)..(21)
<223> i
<400> 48
atggentang anngntangt nge
<210> 49
<211> 29
<212> DNA
<213> artificial - primer P4
<220>
<221> modified_base
<222> (3)..(3) <223> i
<220>
<221> misc_feature
<222> (5)..(5)
<223> n = g or a
<220>
<221> modified base
<222>
         (6)..(6)
<223> i
```

```
<220>
  <221> misc_feature
  <222> (7)..(7)
  <223> n = g or c
  <220>
  <221> misc_feature
  <222> (8)..(8)
  <223> n = a or t
  <220>
  <221> modified_base
  <222> (9)..(9) <223> i
  <220>
  <221> modified_base
<222> (12)..(12)
<223> i
<220>
<221> misc_feature
<222> (14)..(14)
<223> n = t or c
<220>
 <221> modified_base
 <222> (15)..(15)
<223> i
  <220>
  <221> misc_feature <222> (16)..(16)
  <223> n = g or c
  <220>
  <221> misc_feature
  <222> (17)..(17)
  <223> n = a or t
  <220>
  <221> modified_base
  \langle 222 \rangle (18)..(1\overline{8})
  <223> i
  <220>
  <221> misc_feature
  <222> (20)..(20)
```

<223> n = g or a

```
<220>
  <221> misc_feature
  \langle 222 \rangle (21)...(21) \langle 223 \rangle n = g \text{ or a}
  <220>
 <221> modified_base
<222> (24)..(24)
<223> i
  <220>
 <221> misc_feature
<222> (25)..(25)
<223> n = g or c
 <220>
 <221> misc_feature
 \langle 222 \rangle (26)...(26)
\langle 223 \rangle n = a or t
<220>
 <221> modified base
 \langle 222 \rangle (27)..(2\overline{7}) \langle 223 \rangle i
<220>
 <221> misc_feature
 <222>
           (28)..(28)
 <223> n = g or c
 <400> 49
  aanannnnna cnannnnnan ntgnnnnnc
 <210> 50
 <211> 6
 <212> PRT
 <213> artificial - motif
 <400> 50
 Lys Ile Val Ser Ser Ile
 <210> 51
 <211> 6
 <212> PRT
 <213> artificial - motif
 <400> 51
```

```
Arg Ile Val Ser Ser Ile
 <210> 52
  <211> 6
  <212> PRT
  <213> artificial - motif
 <400> 52
 His Ile Thr Cys Ala Val
 1
 <210> 53
 <211> 6
<212> PRT
<213> artificial - motif
 <400> 53
 His Ile Thr Trp Ala Val
 1 5
<210> 54
<211> 19
<212> PRT
<213> Rattus sp.
<400> 54
Leu Ser Lys Glu Asp Cys Ser Gly Phe Ser Asp Val His Cys Gly Tyr
                   5
Ser Asp Ala
 <210> 55
<211> 9
<212> PRT
<213> Artificial - motif
 <220>
 <221> UNSURE
 <222> (2)..(7)
<223> x = unknown
 <400> 55
 Leu Xaa Xaa Pro Met Tyr Xaa Phe Leu
 <210> 56
 <211> 9
 <212> PRT
<213> Artificial - motif
 <220>
 <221> VARIANT
```

```
<222> (2)..(2)
  <223> X = H \text{ or } Q
  <220>
  <221> VARIANT
 <222> (3)..(3)
<223> X = K or M or T
 <220>
 <221> VARIANT
<222> (7)..(7)
<223> X = F or L
 <400> 56
 Leu Xaa Xaa Pro Met Tyr Xaa Phe Leu
 1 5
 <210> 57
 <211> 10
<212> PRT
 <213> Artificial - motif
<220>
<221> UNSURE
 <222> (2)..(7)
<223> X = UNKNOWN
<400> 57
 Met Xaa Tyr Asp Arg Xaa Xaa Ala Ile Cys
 1 5
 <210> 58
 <211> 10
<212> PRT
<213> Artificial - motif
 <220>
 <221> VARIANT
 <222> (2)..(2) <223> X = A OR S
 <220>
 <221> VARIANT
 <222> (6)..(6) <223> X = F OR Y
 <220>
 <221> VARIANT
 \begin{array}{lll} <\!\!222\!\!> & (7)..(7) \\ <\!\!223\!\!> & X = L \text{ or } V \end{array}
```

```
<400> 58
Met Xaa Tyr Asp Arg Xaa Xaa Ala Ile Cys
                 5
<210> 59
<211> 7
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222>
       (3)..(4)
<223> X = Unknown
<400> 59
Asp Arg Xaa Xaa Ala Ile Cys
<210> 60
       7
<211>
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (3)..(3) <223> X = F or Y
<220>
<221> VARIANT
<222>
       (4)..(4)
\langle 223 \rangle X = L or V
<400> 60
Asp Arg Xaa Xaa Ala Ile Cys
<210> 61
       9
<211>
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (2)..(7)
<223> X = Unknown
<220>
<221> VARIANT
<222> (1)..(1)
<223> X = K \text{ or } R
```

```
<400> 61
 Xaa Xaa Phe Ser Thr Cys Xaa Ser His
 <210> 62
         9
 <211>
 <212> PRT
 <213> Artificial - motif
 <220>
 <221> VARIANT
<222> (1)..(1)
<223> X = K or R
 <220>
 <221> VARIANT
\langle 222 \rangle (2)..(2) \langle 223 \rangle X = A or I or S or V
<220>
<221> VARIANT
\langle 222 \rangle (7)..(7)
\langle 223 \rangle X = A or G or S
<400> 62
Xaa Xaa Phe Ser Thr Cys Xaa Ser His
<210> 63
<211> 7
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
<222> (5)..(5)
<223> X = Unknown
<400> 63
Phe Ser Thr Cys Xaa Ser His
                     5
<210> 64
<211>
         7
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (5)..(5)
```

```
\langle 223 \rangle X = A or G or S
<400> 64
Phe Ser Tnr Cys Xaa Ser His
<210> 65
<211> 12
<212> PRT
<213> Artificial - motif
<220>
<221> UNSURE
\langle 222 \rangle (2)..(9)
\langle 223 \rangle X = Unknown
<400> 65
Pro Xaa Xaa Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
<210> 66
        12
<211>
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (2)..(2)
<223> X = M or L or V
<220>
<221> VARIANT
<222> (3)..(3)
<223> X = F or L or V
<220>
<221> VARIANT
<222>
        (6)..(6)
<223> X = F \text{ or } I
<220>
<221> VARIANT
<222>
        (9)..(9)
\langle 223 \rangle X = C or S or T
<400> 66
Pro Xaa Xaa Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
<210> 67
```

```
<211> 8
 <212> PRT
<213> Artificial - motif
 <220>
 <221> UNSURE
 <222> (2)..(6)
<223> X = Unknown
 <400> 67
 Pro Xaa Xaa Asn Pro Xaa Ile Tyr
 <210> 68
 <211> 8
<212> PRT
 <213> Artificial - motif
 <220>
 <221> VARIANT
 \langle 222 \rangle (2)..(2)
\langle 223 \rangle X = M or L or V
<220>
<221> VARIANT
<222> (3)..(3)
<223> X = F or L or V
<220>
<221> VARIANT
<222> (6)..(6) <223> X = F or I
 <400> 68
 Pro Xaa Xaa Asn Pro Xaa Ile Tyr
<210> 69
<211> 9
<212> PRT
 <213> Artificial - motif
<220>
 <221> UNSURE
 <222> (3)..(6)
<223> X = Unknown
 <400> 69
 Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
                     5
```

```
<210> 70
<211> 9
<212> PRT
<213> Artificial - motif
<220>
<221> VARIANT
<222> (3)..(3)
<223> X = F \text{ or } I
<220>
<221> VARIANT
<222> (6)..(6)
(223) X = C or S or T
<400> 70
Asn Pro Xaa Ile Tyr Xaa Leu Arg Asn
<210> 71
<211> 333
<212> PRT
<213> Rattus sp. F3
<400> 71
Met Asp Ser Ser Asn Arg Thr Arg Val Ser Glu Phe Leu Leu Gly
Phe Val Glu Asn Lys Asp Leu Gln Pro Leu Ile Tyr Gly Leu Phe Leu
Ser Met Tyr Leu Val Thr Val Ile Gly Asn Ile Ser Ile Ile Val Ala
Ile Ile Ser Asp Pro Cys Leu His Thr Pro Met Tyr Phe Phe Leu Ser
    50
Asn Leu Ser Phe Val Asp Ile Cys Phe Ile Ser Thr Thr Val Pro Lys
Met Leu Val Asn Ile Gln Thr Gln Asn Asn Val Ile Thr Tyr Ala Gly
                85
Cys Ile Thr Gln Ile Tyr Phe Phe Leu Leu Phe Val Glu Leu Asp Asn
            100
Phe Leu Leu Thr Ile Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys His
       115
Pro Met His Tyr Thr Val Ile Met Asn Tyr Lys Leu Cys Gly Phe Leu
Val Leu Val Ser Trp Ile Val Ser Val Leu His Ala Leu Phe Gln Ser
145
                    150
                                        155
```

Leu Met Met Leu Ala Leu Pro Phe Cys Thr His Leu Glu Ile Pro His
165 170 175

Tyr Phe Cys Glu Pro Asn Gln Val Ile Gln Leu Thr Cys Ser Asp Ala 180 185 190

Phe Leu Asn Asp Leu Val Ile Tyr Phe Thr Leu Val Leu Leu Ala Thr 195 200 205

Val Pro Leu Ala Gly Ile Phe Tyr Ser Tyr Phe Lys Ile Val Ser Ser 210 215 220

Ile Cys Ala Ile Ser Ser Val His Gly Lys Tyr Lys Ala Phe Ser Thr 225 230 235 240

Cys Ala Ser His Leu Ser Val Val Ser Leu Phe Tyr Cys Thr Gly Leu 245 250 255

Gly Val Tyr Leu Ser Ser Ala Ala Asn Asn Ser Ser Gln Ala Ser Ala 260 265 270

Thr Ala Ser Val Met Tyr Thr Val Val Thr Pro Met Val Asn Pro Phe 275 280 285

Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Ser Val Leu Lys Lys Thr 290 295 300

Leu Cys Glu Glu Val Ile Arg Ser Pro Pro Ser Leu Leu His Phe 305 310 315 320

Leu Val Leu Cys His Leu Pro Cys Phe Ile Phe Cys Tyr 325 330

<210> 72

<211> 313

<212> PRT

<213> Rattus sp. F5

<400> 72

Met Ser Ser Thr Asn Gln Ser Ser Val Thr Glu Phe Leu Leu Gly $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Ser Arg Gln Pro Gln Gln Gln Leu Leu Phe Leu Phe Leu 20 25 30

Ile Met Tyr Leu Ala Thr Val Leu Gly Asn Leu Leu Ile Ile Leu Ala 35 40 45

Ile Gly Thr Asp Ser Arg Leu His Thr Pro Met Tyr Phe Phe Leu Ser 50 60

Asn Leu Ser Phe Val Asp Val Cys Phe Ser Ser Thr Thr Val Pro Lys 70 75 80

Val Leu Ala Asn His Ile Leu Gly Ser Gln Ala Ile Ser Phe Ser Gly
85 90 95

Cys Leu Thr Gln Leu Tyr Phe Leu Ala Val Phe Gly Asn Met Asp Asn

100 105 110

Phe Leu Leu Ala Val Met Ser Tyr Asp Arg Phe Val Ala Ile Cys His

Pro Leu His Tyr Thr Thr Lys Met Thr Arg Gln Leu Cys Val Leu Leu 130 135 140

Val Val Gly Ser Trp Val Val Ala Asn Met Asn Cys Leu Leu His Ile 145 150 155 160

Leu Leu Met Ala Arg Leu Ser Phe Cys Ala Asp Asn Met Ile Pro His \$165\$ \$170\$ \$175\$

Phe Phe Cys Asp Gly Thr Pro Leu Leu Lys Leu Ser Cys Ser Asp Thr 180 185

His Leu Asn Glu Leu Met Ile Leu Thr Glu Gly Ala Val Val Met Val 195 200 205

Thr Pro Phe Val Cys Ile Leu Ile Ser Tyr Ile His Ile Thr Cys Ala 210 215 220

Val Leu Arg Val Ser Ser Pro Arg Gly Gly Trp Lys Ser Phe Ser Thr 225 230 235 240

Cys Gly Ser His Leu Ala Val Val Cys Leu Phe Tyr Gly Thr Val Ile 245 250 255

Ala Val Tyr Phe Asn Pro Ser Ser Ser His Leu Ala Gly Arg Asp Met 260 265 270

Ala Ala Val Met Tyr Ala Val Val Tnr Pro Met Leu Asn Pro Phe 275 280 285

Ile Tyr Ser Leu Arg Asn Ser Asp Met Lys Ala Ala Leu Arg Lys Val 290 295 300

Leu Ala Met Arg Phe Pro Ser Lys Gln 305

<210> 73

<211> 311

<212> PRT

<213> Rattus sp. F6

<400> 73

Leu Leu Gly Phe Pro Gly Pro Arg Ser Met Arg Ile Gly Leu Phe Leu 20 25 30

Leu Phe Leu Val Met Tyr Leu Leu Thr Val Val Gly Asn Leu Ala Ile $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ile Ser Leu Val Gly Ala His Arg Cys Leu Gln Thr Pro Met Tyr Phe 50 55 60

Phe Leu Cys Asn Leu Ser Phe Leu Glu Ile Trp Phe Thr Thr Ala Cys 70 75 80

Val Pro Lys Thr Leu Ala Thr Phe Ala Pro Arg Gly Gly Val Ile Ser 85 90 95

Leu Ala Gly Cys Ala Thr Gln Met Tyr Phe Val Phe Ser Leu Gly Cys
100 105

Thr Glu Tyr Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr Leu Ala 115 120 125

Ile Cys Leu Pro Leu Arg Tyr Gly Gly Ile Met Thr Pro Gly Leu Ala 130 135 140

Met Arg Leu Ala Leu Gly Ser Trp Leu Cys Gly Phe Ser Ala Ile Thr 145 150 155 160

Val Pro Ala Thr Leu Ile Ala Arg Leu Ser Phe Cys Gly Ser Arg Val 165 170 175

Ile Asn His Phe Phe Cys Asp Ile Ser Pro Trp Ile Val Leu Ser Cys
180 185 190

Thr Asp Thr Gln Val Val Glu Leu Val Ser Phe Gly Ile Ala Phe Cys 195 200 205

Val Ile Lea Gly Ser Cys Gly Ile Thr Leu Val Ser Tyr Ala Tyr Ile 210 215 220

Ile Thr Thr Ile Ile Lys Ile Pro Ser Ala Arg Gly Arg His Arg Ala 225 230 235 240

Phe Ser Thr Cys Ser Ser His Leu Thr Val Val Leu Ile Trp Tyr Gly 245 250 255

Ser Thr Ile Phe Leu His Val Arg Thr Ser Val Glu Ser Ser Leu Asp 260 265 270

Leu Thr Lys Ala Ile Thr Val Leu Asn Thr Ile Val Thr Pro Val Leu 275 280 285

Asn Pro Phe Ile Tyr Thr Leu Arg Asn Lys Asp Val Lys Glu Ala Leu 290 295 300

Arg Arg Thr Val Lys Gly Lys 305 310

<210> 74

<211> 317

<212> PRT

<213> Rattus sp. F12

<400> 74

Met Glu Ser Gly Asn Ser Thr Arg Arg Phe Ser Ser Phe Phe Leu Leu 1 5 10 15

Gly Phe Thr Glu Asn Pro Gln Leu His Phe Leu Ile Phe Ala Leu Phe 20 25 30

Leu Ser Met Tyr Leu Val Thr Val Leu Gly Asn Leu Leu Ile Ile Met $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Ala Ile Ile Thr Gln Ser His Leu His Thr Pro Met Tyr Phe Phe Leu 50 60

Ala Asn Leu Ser Phe Val Asp Ile Cys Phe Thr Ser Thr Thr Ile Pro 65 70 75 80

Lys Met Leu Val Asn Ile Tyr Thr Gln Ser Lys Ser Ile Thr Tyr Glu 85 90 95

Asp Cys Ile Ser Gln Met Cys Val Phe Leu Val Phe Ala Glu Leu Gly
100 105 110

Asn Phe Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr Val Ala Asn Cys 115 120 125

His Pro Leu Cys Tyr Thr Val Ile Val Asn His Arg Leu Cys Ile Leu 130 135 140

Leu Leu Leu Ser Trp Val Ile Ser Ile Phe His Ala Phe Ile Gln 145 150 155 160

Ser Leu Ile Val Leu Gln Leu Thr Phe Cys Gly Asp Val Lys Ile Pro 165 170 175

His Phe Phe Cys Glu Leu Asn Gln Leu Ser Gln Leu Thr Cys Ser Asp 180 185 190

Asn Phe Pro Ser His Leu Ile Met Asn Leu Val Pro Val Met Leu Ala 195 200 205

Ala Ile Ser Phe Ser Gly Ile Leu Tyr Ser Tyr Phe Lys Ile Val Ser 210 215 220

Ser Ile His Ser Ile Ser Thr Val Gln Gly Lys Tyr Lys Ala Phe Ser 225 230 235 240

Thr Cys Ala Ser His Leu Ser Ile Val Ser Leu Phe Tyr Ser Thr Gly 245 250 255

Leu Gly Val Tyr Val Ser Ser Ala Val Val Gln Ser Ser His Ser Ala
260 265 270

Ala Ser Ala Ser Val Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro 275 280 285

Phe Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Arg Ala Leu Glu Arg 290 295 300

Leu Leu Glu Gly Asn Cys Lys Val His His Trp Thr Gly 305 310 315

<210> 75 <211> 310 <212> PRT

<213> Rattus sp. I3

<400> 75

Met Asn Asn Gln Thr Phe Ile Thr Gln Phe Leu Leu Gly Leu Pro $1 \ 5 \ 10 \ 15$

Ile Pro Glu Glu His Gln His Leu Phe Tyr Ala Leu Phe Leu Val Met 20 25 30

Tyr Leu Thr Thr Ile Leu Gly Asn Leu Leu Ile Ile Val Leu Val Gln 35 40 45

Leu Asp Ser Gln Leu His Thr Pro Met Tyr Leu Phe Leu Ser Asn Leu 50 55 60

Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys Leu Leu 65 70 75 80

Gln Asn Met Arg Ser Gln Asp Thr Ser Ile Pro Tyr Gly Gly Cys Leu 85 90 95

Ala Gln Thr Tyr Phe Phe Met Val Phe Gly Asp Met Glu Ser Phe Leu 100 105 110

Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu 115 120 125

His Tyr Thr Ser Ile Met Ser Pro Lys Leu Cys Thr Cys Leu Val Leu 130 135 140

Leu Leu Trp Met Leu Thr Thr Ser His Ala Met Met His Thr Leu Leu 145 150 155 160

Ala Ala Arg Leu Ser Phe Cys Glu Asn Asn Val Val Leu Asn Phe Phe 165 170 175

Cys Asp Leu Phe Val Leu Leu Lys Leu Ala Cys Ser Asp Thr Tyr Ile 180 185 190

Asn Glu Leu Met Ile Phe Ile Met Ser Thr Leu Leu Ile Ile Pro 195 200 205

Phe Pne Leu Ile Val Met Ser Tyr Ala Arg Ile Ile Ser Ser Ile Leu 210 215 220

Lys Val Pro Ser Thr Gln Gly Ile Cys Lys Val Phe Ser Thr Cys Gly 225 230 235 240

Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Ile Ile Gly Leu 245 250 255

Tyr Leu Cys Pro Ala Gly Asn Asn Ser Thr Val Lys Glu Met Val Met 260 265 270

Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Tyr 275 280 285

Ser Leu Arg Asn Arg Asp Met Lys Arg Ala Leu Ile Arg Val Ile Cys 290 295

Ser Met Lys Ile Thr Leu 310

<210> 76

327 <211> PRT

<212>

<213> Rattus sp. I7

<400> 76

Met Glu Arg Arg Asn His Ser Gly Arg Val Ser Glu Phe Val Leu Leu

Gly Phe Pro Ala Pro Ala Pro Leu Arg Val Leu Leu Phe Phe Leu Ser

Leu Leu Asp Tyr Val Leu Val Leu Thr Glu Asn Met Leu Ile Ile

Ala Ile Arg Asn His Pro Thr Leu His Lys Pro Met Tyr Phe Phe Leu

Ala Asn Met Ser Phe Leu Glu Ile Trp Tyr Val Thr Val Thr Ile Pro

Lys Met Leu Ala Gly Phe Ile Gly Ser Lys Glu Asn His Gly Gln Leu

Ile Ser Phe Glu Ala Cys Met Thr Gln Leu Tyr Phe Phe Leu Gly Leu

Gly Cys Thr Glu Cys Val Leu Leu Ala Val Met Ala Tyr Asp Arg Tyr 115 120

Val Ala Ile Cys His Pro Leu His Tyr Pro Val Ile Val Ser Ser Arg 135

Leu Cys Val Gln Met Ala Ala Gly Ser Trp Ala Gly Gly Phe Gly Ile 145

Ser Met Val Lys Val Phe Leu Ile Ser Arg Leu Ser Tyr Cys Gly Pro 170

Asn Thr Ile Asn His Phe Phe Cys Asp Val Ser Pro Leu Leu Asn Leu 185

Ser Cys Thr Asp Met Ser Thr Ala Glu Leu Thr Asp Phe Val Leu Ala 195

Ile Phe Ile Leu Leu Gly Pro Leu Ser Val Thr Gly Ala Ser Tyr Met

Ala Ile Thr Gly Ala Val Met Arg Ile Pro Ser Ala Ala Gly Arg His 225 230 235

Lys Ala Phe Ser Thr Cys Ala Ser His Leu Thr Val Val Ile Ile Phe

245 250 255

Tyr Ala Ala Ser Ile Phe Ile Tyr Ala Arg Pro Lys Ala Leu Ser Ala 260 265 270

Phe Asp Thr Asn Lys Leu Val Ser Val Leu Tyr Ala Val Ile Val Pro 275 280 285

Leu Phe Asn Pro Ile Ile Tyr Cys Leu Arg Asn Gln Asp Val Lys Arg 290 295 300

Ala Leu Arg Arg Thr Leu His Leu Ala Gln Asp Gln Glu Ala Asn Thr 305 310 315 320

Asn Lys Gly Ser Lys Ile Gly 325

<210> 77

<211> 312

<212> PRT

<213> Rattus sp. I8

<400> 77

Met Asn Asn Lys Thr Val Ile Thr His Phe Leu Leu Leu Gly Leu Pro 1 $$ 5 $$ 10 $$ 15

Ile Pro Pro Glu His Gln Gln Leu Phe Phe Ala Leu Phe Leu Ile Met 20 25 30

Tyr Leu Thr Thr Phe Leu Gly Asn Leu Leu Ile Val Val Leu Val Gln 35 40 45

Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser Asn Leu 50 55 60

Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Leu Lys Leu Leu 65 70 75 80

Gln Asn Ile Gln Ser Gln Val Pro Ser Ile Ser Tyr Ala Gly Cys Leu 85 90 95

Thr Gln Ile Phe Phe Phe Leu Leu Phe Gly Tyr Leu Gly Asn Phe Leu 100 105 110

Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe Pro Leu 115 120 125

His Tyr Thr Asn Ile Met Ser His Lys Leu Cys Thr Cys Leu Leu Lau 130 135 140

Val Phe Trp Ile Met Thr Ser Ser His Ala Met Met His Thr Leu Leu 145 150 155 160

Ala Ala Arg Leu Ser Phe Cys Glu Asn Asn Val Leu Leu Asn Phe Phe 165 170 175

Cys Asp Leu Phe Val Leu Leu Lys Leu Ala Cys Ser Asp Thr Tyr Val \$180\$

Asn Glu Leu Met Ile His Ile Met Gly Val Ile Ile Val Ile Pro 195 200 205

Phe Val Leu Ile Val Ile Ser Tyr Ala Lys Ile Ile Ser Ser Ile Leu 210 215 220

Lys Val Pro Ser Thr Gln Ser Ile His Lys Val Phe Ser Thr Cys Gly 235 230 235 240

Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Ile Ile Gly Leu 245 250 255

Tyr Leu Cys Pro Ser Gly Asp Asn Phe Ser Leu Lys Gly Ser Ala Met 260 265 270

Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe Ile Tyr 275 280 285

Ser Leu Arg Asn Arg Asp Met Lys Gln Ala Leu Ile Arg Val Thr Cys 290 295 300

Ser Lys Lys Ile Ser Leu Pro Trp 305 310

<210> 78

<211> 314

<212> PRT

<213> Rattus sp. I9

<400> 78

Met Thr Arg Arg Asn Gln Thr Ala Ile Ser Gln Phe Phe Leu Leu Gly
1 5 10 15

Leu Pro Phe Pro Pro Glu Tyr Gln His Leu Phe Tyr Ala Leu Phe Leu 20 25 30

Ala Met Tyr Leu Thr Thr Leu Leu Gly Asn Leu Ile Ile Ile Leu 35 40 45

Ile Leu Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser 50 55 60

Asn Leu Ser Phe Ala Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys 65 70 75 80

Leu Leu Gln Asn Met Gln Ser Gln Val Pro Ser Ile Pro Tyr Ala Gly
85 90 95

Cys Leu Ala Gln Ile Tyr Phe Phe Leu Phe Phe Gly Asp Leu Gly Asn 100 105 110

Phe Leu Leu Val Ala Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe 115 120 125

Pro Leu His Tyr Met Ser Ile Met Ser Pro Lys Leu Cys Val Ser Leu 130 135 140 Val Val Leu Ser Trp Val Leu Thr Thr Phe His Ala Met Leu His Thr 145 150 155 160

Leu Leu Met Ala Arg Leu Ser Phe Cys Glu Asp Ser Val Ile Pro His 165 170 175

Tyr Phe Cys Asp Met Ser Thr Leu Leu Lys Val Ala Cys Ser Asp Thr 180 185 190

His Asp Asn Glu Leu Ala Ile Pne Ile Leu Gly Gly Pro Ile Val Val 195 200 205

Leu Pro Phe Leu Leu Ile Ile Val Ser Tyr Ala Arg Ile Val Ser Ser 210 215 220

Ile Phe Lys Val Pro Ser Ser Gln Ser Ile His Lys Ala Phe Ser Thr 225 230 235 240

Cys Gly Ser His Leu Ser Val Val Ser Leu Phe Tyr Gly Thr Val Ile 245 250 255

Gly Leu Tyr Leu Cys Pro Ser Ala Asn Asn Ser Thr Val Lys Glu Thr 260 265 270

Val Met Ser Leu Met Tyr Thr Met Val Thr Pro Met Leu Asn Pro Phe 275 280 285

Ile Tyr Ser Leu Arg Asn Arg Asp Ile Lys Asp Ala Leu Glu Lys Ile 290 295 300

Met Cys Lys Lys Gln Ile Pro Ser Phe Leu 305

<210> 79

<211> 312

<212> PRT

<213> Rattus sp. I14

<400> 79

Met Thr Gly Asn Asn Gln Thr Leu Ile Leu Glu Phe Leu Leu Gly 1 5 10

Leu Pro Ile Pro Ser Glu Tyr His Leu Leu Phe Tyr Ala Leu Phe Leu 20 25 30

Ala Met Tyr Leu Thr Ile Ile Leu Gly Asn Leu Leu Ile Ile Val Leu 35 40

Val Arg Leu Asp Ser His Leu His Met Pro Met Tyr Leu Phe Leu Ser 50 55 60

Asn Leu Ser Phe Ser Asp Leu Cys Phe Ser Ser Val Thr Met Pro Lys 70 75 80

Leu Leu Gln Asn Met Gln Ser Gln Val Pro Ser Ile Ser Tyr Thr Gly
85 90 95

Cys Leu Thr Gln Leu Tyr Phe Phe Met Val Phe Gly Asp Met Glu Ser

100 105 110

Phe Leu Val Val Met Ala Tyr Asp Arg Tyr Val Ala Ile Cys Phe 115 120 125

Pro Leu Arg Tyr Thr Thr Ile Met Ser Thr Lys Phe Cys Ala Ser Leu 130 135 140

Val Leu Leu Trp Met Leu Thr Met Thr His Ala Leu Leu His Thr 145 150 155 160

Leu Leu Ile Ala Arg Leu Ser Phe Cys Glu Lys Asn Val Ile Leu His
165 170 175

Phe Phe Cys Asp Ile Ser Ala Leu Leu Lys Leu Ser Cys Ser Asp Ile 180 185 190

Tyr Val Asn Glu Leu Met Ile Tyr Ile Leu Gly Gly Leu Ile Ile 195 200 205

Ile Pro Pne Leu Leu Ile Val Met Ser Tyr Val Arg Ile Phe Phe Ser 210 215 220

Ile Leu Lys Phe Pro Ser Ile Gln Asp Ile Tyr Lys Val Phe Ser Thr 225 230 235 240

Cys Gly Ser His Leu Ser Val Val Thr Leu Phe Tyr Gly Thr Ile Phe \$245\$ \$250\$ \$255\$

Gly Ile Tyr Leu Cys Pro Ser Gly Asn Asn Ser Thr Val Lys Glu Ile
260 265 270

Ala Met Ala Met Met Tyr Thr Val Val Thr Pro Met Leu Asn Pro Phe 275 280 285

Ile Tyr Ser Leu Arg Asn Arg Asp Met Lys Arg Ala Leu Ile Arg Val 290 295 300

Ile Cys Thr Lys Lys Ile Ser Leu 305 310

<210> 80

<211> 314

<212> PRT

<213> Rattus sp. I15

<400> 80

Met Thr Glu Glu Asn Gln Thr Val Ile Ser Gln Phe Leu Leu Phe 1 5 10 15

Leu Pro Ile Pro Ser Glu His Gln His Val Phe Tyr Ala Leu Phe Leu 20 25 30

Ser Met Tyr Leu Thr Thr Val Leu Gly Asn Leu Ile Ile Ile Leu 35 40 45

Ile His Leu Asp Ser His Leu His Thr Pro Met Tyr Leu Phe Leu Ser 50 55 60

Asn 65	Leu	Ser	Phe	Ser	Asp 70	Leu	Cys	Phe	Ser	Ser 75	Val	Thr	Met	Pro	Ly 80
Leu	Leu	Gln	Asn	Met 85	Gln	Ser	Gln	Val	Pro 90	Ser	Ile	Pro	Phe	Ala 95	Gl
Cys	Leu	Thr	Gln 100	Leu	Tyr	Phe	Tyr	Leu 105	Tyr	Phe	Ala	Asp	Leu 110	Glu	Se
Phe	Leu	Leu 115	Val	Ala	Met	Ala	Tyr 120	Asp	Arg	Tyr	Val	Ala 125	Ile	Cys	Ph
Pro	Leu 130	His	Tyr	Met	Ser	Ile 135	Met	Ser	Pro	Lys	Leu 140	Cys	Val	Ser	Le
Val 145	Val	Leu	Ser	Trp	Val 150	Leu	Thr	Thr	Phe	His 155	Ala	Met	Leu	His	Th:
Leu	Leu	Met	Ala	Arg 165	Leu	Ser	Phe	Суѕ	Ala 170	Asp	Asn	Met	Ile	Pro 175	Hi:
Phe	Phe	Cys	Asp 180	Ile	Ser	Pro	Leu	Leu 185	Lys	Leu	Ser	Cys	Ser 190	Asp	Th:
His	Val	Asn 195	Glu	Leu	Val	Ile	Phe 200	Val	Met	Gly	Gly	Leu 205	Val	Ile	Va.
Ile	Pro 210	Phe	Val	Leu	Ile	Ile 215	Val	Ser	Tyr	Ala	Arg 220	Val	Val	Ala	Se:
Ile 225	Leu	Lys	Val	Pro	Ser 230	Val	Arg	Gly	Ile	His 235	Lys	Ile	Phe	Ser	Th:
Суѕ	Gly	Ser	His	Leu 245	Ser	Val	Val	Ser	Leu 250	Phe	Tyr	Gly	Thr	Ile 255	Ile
Gly	Leu	Tyr	Leu 260	Cys	Pro	Ser	Ala	Asn 265	Asn	Ser	Thr	Val	Lys 270	Glu	Th
Val	Met	Ala 275	Met	Met	Tyr	Thr	Val 280	Val	Thr	Pro	Met	Leu 285	Asn	Pro	Ph€
Ile	Tyr 290	Ser	Leu	Arg	Asn	Arg 295	Asp	Met	Lys	Glu	Ala 300	Leu	Ile	Arg	Va.

Leu Cys Lys Lys Lys Ile Thr Phe Cys Leu 305