

Automated Osteological Sorting of Human Commingled Remains

Jeffrey James Lynch, MSc

Defense POW/MIA Accounting Agency

University of Queensland

Origin

Large commingled assemblages:

- USS Oklahoma
- Comparison growth:

	Left	Right	Pair-matches	Association s
Humeri	289	294	84,966	2,057,990
Ulnae	196	201	39,396	1,475,252
Radii	190	175	33,250	1,368,020
Femora	343	344	117,992	2,353,662
Tibiae	311	310	96,410	2,168,532
Fibulae	245	254	62,230	1,803,386
Os coxae	282	264	74,448	1,947,582
Scapulae	206	209	43,054	1,534,670
			15,260,800	

Figure 1. USS Oklahoma recovery

ı

Origin

Computerized automation:

- Pair-matching
- Articulation
- Association
- Outlier identification
- Antemortem stature association

Figure 2. Historical sorting of Oklahoma service members

What is it?

OsteoSort vs. OsteoShiny

- Development: R, C++, Shiny
- Free open source code licensed with GNU General Public License version 2
- Source code: www.github.com/jjlynch2/OsteoSort www.github.com/jjlynch2/OsteoShiny
- Installation instructions: www.osteocoder.com

```
[1] "add.alpha"
                                              "analytical_temp_space"
   "antestat.input"
                                              "antestat.regtest"
    "art.input"
"dilated_directional_hausdorff_rcpp"
                                              "art.ttest"
                                             "e_dist"
                                              "fragment_margins"
    "hausdorff dist"
                                              "i efa"
                                              "match.2d"
                                              "max_directional_hausdorff_rcpp"
    "mean directional hausdorff rcpp"
                                              "metricsort"
    "minimum_euclidean_distances_indices" "outline.images"
    "output_function"
                                              "pca_align"
    "pm.input"
"randomstring"
                                              "pm.ttest"
                                              "readtps"
    "reg.input"
                                              "reg.multitest"
                                              "shiftmatrices"
     "remove fragmented margins"
[31] "statsort"
                                              "writetps"
```

Figure 3. OsteoSort R package

Figure 4. OsteoShiny GUI

What is it?

Web vs. Local

- Online tools: www.osteosort.net
- R package installation
- Installation on internal webserver

Figure 5. OsteoSort online GUI

What is it?

Measurement standards:

- Standard nomenclature
- Cheat sheet: www.osteocoder.com/projects/measu rement-standards
- Help guide provides definitions

Figure 6. CoRA standardized measurement variable names

Osteometric Sorting

Pair-matching:

- Homologous measurements
- t-distribution
- Null hypothesis: both elements are similar enough to have come from a single individual

$$D = \sum a_i - b_i$$
$$t = \frac{D - \tilde{x}}{S_{Dref}}$$

Figure 7. t-distribution

Osteometric Sorting

Articulation:

- Minimal difference measurements
- t-distribution
- Null hypothesis: both measurements are similar enough to have come from a single individual

$$D = a_i - b_j$$
$$t = \frac{D - \tilde{x}}{S_{Dref}}$$

Figure 8. Articulation distribution with case comparison not excluded

Osteometric Sorting

Association:

- Correlated measurements
- t-distribution
- Null hypothesis: both elements are similar enough in size to have come from a single individual

$$t = |y^{\hat{}} - y_i| / \left[(S.E.) * \sqrt{\left[1 + \left(\frac{1}{N}\right) + (X_i - X)^2 / (N * S_x^2)\right]} \right]$$

Figure 9. Association plot with case comparison excluded

Outlier Analysis Origin >

Outliers:

- Metric measurements
- Stature point estimates

Figure 10. Stature plots with standard deviations

Osteoshape Sorting

Osteoshape:

- Pair-matching from photographs using form (shape-size) data
- Non-fragmented single form space
- Fragmented pairwise form spaces
- ~98% lowest Hausdorff distance = true-pair

Figure 11. Single registration space

Figure 12. Pairwise registration space

Antemortem Sorting

Antemortem stature

- Closed assemblages
- Known antemortem statures
- Postmortem length measurements
- t-distribution
- Null hypothesis: The bone length is not too long or short to belong to an individual with a particular stature

$$t = |y^{\hat{}} - y_i| / \left[(S.E.) * \sqrt{\left[1 + \left(\frac{1}{N}\right) + (X_i - X)^2 / (N * S_x^2)\right]} \right]$$

Figure 13. Stature graph with case comparison not excluded

Demonstration

REFERENCES

- Lynch JJ, Byrd JE, LeGarde CB. The power of exclusion using automated osteometric sorting: pair-matching.
 J Forensic Sci. https://doi.org/10.1111/1556-4029.13560. Epub 2017 May 26.
- Lynch JJ. An analysis on the choice of alpha level in the osteometric pair-matching of the os coxa, scapula, and clavicle.
 J Forensic Sci. https://doi.org/10.1111/1556-4029.13599. Epub 2017 July 18.
- Lynch JJ. The automation of regression modeling in osteometric sorting: an ordination approach.
 J Forensic Sci. https://doi.org/10.1111/1556-4029.13597. Epub 2017 July 21.
- Lynch JJ. An automated two-dimensional form registration method for osteological pair-matching.
 J Forensic Sci. https://doi.org/10.1111/1556-4029.13670. Epub 2017 Oct 16.
- Lynch JJ. An automated two-dimensional pairwise form registration method for pair-matching fragmented skeletal remains.
 J Forensic Sci. [Under Review]