Teorico Estructuras Algebraicas

Javier Vera

October 15, 2024

-	\sim 1	_
1	(Tase	۱ د

10 Clase 10

12 Clase 12

Definición 12.1 (Accion de Grupo)

Sean G grupo y $X \neq \emptyset$ conjunto. Una accion de G en X es una funcion

$$G \times X \longrightarrow X$$

$$(g,x) \longmapsto g.x$$

Que cumple:

1.
$$gh.x = g.(h.x)$$

2.
$$e.x = x \quad \forall x \in X$$

En este caso se dice que G actua (opera) en X mediante $G \times X \longrightarrow X$

Ejemplo 12.1. 1. $G, X \neq \emptyset$ cualesquiera la accion trivial de G en X es aquella tal que $g.x = x \quad \forall x \in X \quad \forall g \in G$

2.
$$S(x)$$
 actua en X en la forma $S \times X \longrightarrow X$ $\sigma.x = \sigma(x)$ $\forall \sigma \in S(x)$ $\forall x \in X$. En particular S actua en $I_n = \{1, \dots n\}$

3. Sea G grupo actua en si mismo de distintas formas, en este caso mediante el producto $G \times G \longrightarrow G$ es decir g.x = gx esto se llama *accion regular*

4. $H \subseteq G$ entonces G actua por conjugacion $G \times H \longrightarrow H$ dada por $g \in G$ $x \in H$

5. $S(G) = \{\text{subgrupos de } G\}$. entonces G actua en S por conjugacion $g \in G$ $H \subseteq G$

6. $H \le G$ entonces G actua en las coclases G/H Ejercicio probar que satisfacen (A1) y (A2)

Proposición 1

Sea G grupo $X \neq \emptyset$ conjunto. Son equivalentes:

1. Una accion $G \times X \longrightarrow X$

2. *Un homomorfismo* $\alpha : G \rightarrow \mathbb{S}(x)$

Proof. pendiente

Ejemplo 12.2. 1. La accion trivial $G \times X \to X$ corresponde a

$$G \longrightarrow \mathbb{S}(X)$$
$$g \longmapsto Id_{x}$$

2. La accion regular $G \times G \longrightarrow G$ corresponde al homomorfismo de Cayley (DUDA)G

Definición 12.2

Sea $G \times X \longrightarrow X$ una accion de un grupo G en $X \neq \emptyset$. Dos elementos $x,y \in X$ se dicen G-conjugados mediante esta accion si $\exists g \in G$ tal que g.x = y (notacion $x \sim y$)

Esto define una relacion de equivalencia en X (Ejercici). Asi, tal relacion particiona a X en clases de equivalencia Sea $x \in X$ entonces G.x o $\mathcal{O}_G(x)$ es la clase de equivalencia de x que se llamara G-Orbita de x

$$X = \bigcup_{x \in X} G.x$$

Observación

 $Si \ G \times X \longrightarrow X$ es accion entonces cualquier subgrupo de G actua en X por restriccion. De este modo $G = \mathbb{S}_n$ actua naturalmente en I_n

$$<\sigma>.j=\mathcal{O}_{\sigma}=\{\sigma^k:k\geq 0\}\quad \forall \sigma\in \mathbb{S}_n$$

Definición 12.3 (Accion Transitiva)

Una accion se dice transitiva si posee una unica orbita es decir si $\exists x \in X$ *tal que* X = G.x

Definición 12.4 (G-Estabilizador)

Sea $G \times X \longrightarrow X$ accion. Dado $x \in X$ el G-estabilizador de x es

$$G_x = \{g \in G : g.x = x\}$$

 G_x es un subgrupo de G, $\forall x \in X \quad \forall g, h \in G_x$ (No necesariamente normal) $Si \alpha : G \longrightarrow S$ homomorfismo correspondiente a la accion dada entonces:

$$Ker(\alpha) = \bigcap_{x_i X} G_x$$

Ejemplo 12.3. 1. $G \times X \longrightarrow G$ accion trivial $g.x = \{x\}$ entonces $G_x = G$

2. $G \times G \longrightarrow G$ accion regular g.x = gx G.x = G pues $y = (yx^{-1})x = yx^{-1}.x$ (Entonces es transitiva) $G_x = \{e\}$ pues $gx = x \iff g = e$ 3. $H \subseteq G$, $G \times H \longrightarrow H$ por conjugacion $g.x = gxg^{-1}$

$$G.x = \{gxg^{-1} : g \in G\} = Cl(X)$$
 (Clase de conjugacion de X)
 $G_x = \{g \in G : gxg^{-1} = x\} = C_G(x)$ (Centralizador de x en G)

(ejercicios calcular estabilizador y centralizador de traslaciones para alfguna coclase)

4. Sea $H \leq G$ con

$$G \times {}^{G}/_{H} \longrightarrow {}^{G}/_{H}$$

dada por $g.aH = ga.H \operatorname{con}^{G}/_{H} = \{aH : a \in G\}$

Es accion transitiva porque $G.^G/_H = ^G/_H$

$$G_H = \{g \in G : g.eH = ge.H = H\} = H \text{ (DUDA)}$$

Proposición 2

Sea $G \times X \longrightarrow X$ *una accion de* G *en* X, *se tienen:*

1.
$$\forall x \in X$$
, $G_{g,x} = gG_xg^{-1} \quad \forall g \in G$

2.
$$|G.x| = [G:G_x]$$

Proof. Pendiente

Teorema 12.1 (Ecuacion de Clase)

Sean G grupo y $G \times X \longrightarrow X$ una accion de G en $X \neq \emptyset \exists$ famlia $\{G_i\}_{i \in I}$ de sugrupos propios de G tales que:

$$|X| = |X^G| + \sum_{n=1}^{N}$$

 $\textit{donde } X^G = \{x \in X : g.x = x \quad \forall g \in G\} \; (\textit{BG-invariante})$

Proof. pendiente

Teorema 12.2 (Teorema de Cauchy)

Sea G grupo de orden n y sea p > 0 primo tal que p n entonces G tiene un elemento de orden p

Proof. Pendiente

13 Clase 13

13.1 Duda

pagina 1 teo13 parte gris no entiendo

Observación

Si tenemos |G| = p con p primo y tomamos $e \neq x \in G$ como |x||p y p primo entonces |x| = p, luego $G = \langle x \rangle y$ $G \equiv \mathbb{Z}_p$

Proposición 3

Sea p primo con $|G| = p^2$ entonces G es abeliano

 \Box

Observación

*Grupos abelianos de orden p*² (No isomorfos entre si) \mathbb{Z}_{p^2} y $\mathbb{Z}_p \oplus \mathbb{Z}_p$

Definición 13.1

Un grupo G se dice un p-grupo, con p primo si $\forall x \in G \exists n \in \mathbb{N}$ *tal que* $x^{p^n} = e$ *Es decir todo elemento de G tiene orden una potencia de p*

Observación

Un p-grupo finito tiene orden potencia de p

Proof. 1. Sea $|G| = p_1^{n_1} \dots p_k^{n_k}$ con p_i primos.

- 2. Entonces $p_i||G|$ por lo tanto $\exists x \in G \quad |x| = p_i$ (Por Teorema de Cauchy)
- 3. Luego $p_i = |x| = p^j$ (Esto ultimo por ser **p-grupo**)
- 4. Entonces j = 1 y $p_i = p \quad \forall 1 \le i \le k$
- 5. por lo tanto $|G| = p^j \operatorname{con} j > k$

Observación

 $Si |G| = p^3 y G$ no abeliano entonces $G \times \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (k-veces) es no abeliano $y |G| = p^{k+3}$

Proposición 4

Sea G un p-grupo finito, no tivial entonces $Z(G) = \{e\}$ (no trivial)

Proof. Copias

Definición 13.2 (Normalizador)

Sea $H \leq G$, el normalizador de H en G es el subgrupo

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}$$

Observación

 $N_G(H)$ es el estabilizador de $H \in \{$ subgrupos de $G\}$ con respecto a la accion de G por conjugacion (DUDA) Version mia sea $H \leq G$ y G actuando sobre H por conjugacion entonces $N_G(H)$ es el estabilizador de H en G

Observación

 $H \subseteq N_G(H)$. Ademas $N_G(H)$ es el mayor subgrupo de G que contiene a H como un subgrupo normal. En particular

$$H \triangleleft G \iff N_G(H) = G$$

Lema 13.1

Sean p primo y G un p-grupo finito. Si H < G entonces $H < N_G(H)$. Concluyendo que $H = N_G(H)$ entonces H = G

Definición 13.3

Un grupo se llama simple si no contiene subgrupos normales distintos de $\{e\}$ y G

Corolario 13.1.1

 $Si |G| = p^n y H \le G con [G:H] = p \ entonces H \le G.$ En particular el unico p-subgrupo finito simple es \mathbb{Z}_p

14 Clase 14

Corolario 14.0.1

 $[G:S] = p \ entonces \ S \subseteq G$

 \square

Proposición 5

 $|G| = p^n \text{ con } n \in \mathbb{N}_0 \text{ entonces:}$

- 1. G posee subrupos de orden $p^i \quad \forall 0 \leq i \leq n$
- 2. $Si\ 0 \le i \le n-1 \ y\ S \le G \ con \ |S| = p^i \ entonces \ \exists \ subrupo \ T \ de \ orden \ p^{i+1} \ tal \ que \ S \le T$

14.1 Teoremas de Sylow

Observación

En esta seccion G es grupo finito y p primo

Definición 14.1 (p-grupo de Sylow)

Un p-subgrupo de Sylow de G es un subgrupo H tal que $|H| = p^n$ donde $|G| = p^n k$ con (p,k) = 1

14.2 Primer Teorema de Sylow

Teorema 14.1 (Primer Teorema de Sylow)

Supongamos que $|G| = p^n k$ con (p,k) = 1. Entonces $\forall 0 \le i \le n$ tenemos que G posee un subgrupo de orden p^i . En particular G posee un p-Sylow

Proof. pendiente

Teorema 14.2 (Segundo Teorema de Sylow)

Sea G grupo finito y p primo. Sean $S \subseteq G$ tal que $|S| = p^i$ con $i \in N_0$ y H un **p-subgrupo de Sylow** de G entonces $\exists a \in G$ tal que $S \subseteq aHa^{-1}$.

En particular S es **p-sylow** si y solo si S y H son conjugados

Proof.

Corolario 14.2.1 (DUDA)

Sea $H \leq G$ **p-sylow** entonces H es el unico **p-sylow** de G si y solo si $H \leq G$

Proof. (\Rightarrow) Supongamos que no es normal entonces $aHa^{-1} = J$ con $J \neq H$ entonces por ser J es conjugado de H es **p-sylow**. Absurdo por que H era el unico **p-sylow**

(\Leftarrow) Existencia no se , se que existe alguno pero no se si es H. Unicidad supongamos que no es unico entonces $\exists J$ **p-sylow** , entonces $J = aHa^{-1}$ pero $aHa^{-1} = H$ por ser H normal \Box

Teorema 14.3 (Tercer Teorema Sylow)

Sea G grupo finito, p primo y sea $n_p = |\{p\text{-sylow de } G\}|$ entonces

$$n_p \bigg| |G| \quad y \quad n_p \equiv 1(p)$$

15 Clase 16

Definición 15.1

Sea R anillo. Un elemento $0 \neq a \in R$ se divisor de cero a izquierda (derehca) si $\exists 0 \neq b \in R$ tal que ab = 0 (respectivamente ba = 0)

Si a es divisor de cero a izquierda y a derecha entonces se dice que a es divisor de cero

Ejemplo 15.1. 1. En \mathbb{Z}_n si n no es primo tomamos d|n entonces \overline{d} es un divisor en \mathbb{Z}_n

2. En $M_n(R)$ n > 1 tomamos COPIAR MATRICES

Definición 15.2

Un anillo conmutativo con identidad $1 \neq 0$ se dice de dominio integro (o de integridad) si no posee divisores de 0

Ejemplo 15.2. 1. \mathbb{Z} , \mathbb{R} , \mathbb{Q} , \mathbb{C} son dominios de integridad

- 2. \mathbb{Z}_n es dominio de integridad sii n es primo observamos que $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$
- 3. $\mathbb{Z}[x], \mathbb{Z}[x_1, \dots, x_k]$ etc , son dominios de integridad (Los polonomios con eoficientes en \mathbb{Z} y variables x_i)

Definición 15.3 (Anillo inversible)

Sea R un anillo con identidad y sea $0 \neq a \in R$ se dice que a es:

• Inversible a izquierda $\iff \exists b \in R \text{ tal que ba} = 1$

- Inversible a derecha $\iff \exists b \in R \text{ tal que } ab = 1$
- Inversible si lo es a derecha y a izquierda

Un anillo D con $1 \neq 0$ donde todo elemento es inversible se llama **anillo de division**

Observación

Si $a \in R$ es inversible entonces el inverso a izquierda de a coincide con su inverso a derecha y esta univocamente determiando por a (Notacion: a^{-1})

Definición 15.4

El conjunto de los elementos inversibles en un anillo R (con $1 \neq 0$) se llama **grupo de unidades de R**. (Notacion: R^X o R^* o $\mathcal{U}(R)$)

Ejemplo 15.3. 1.