Exercícios sobre Redução de Dados

Exercício 1 Seja X um vetor aleatório k-dimensional com distribuição normal $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Mostre que, para qualquer matriz A de tamanho $s \times k$, $AX \sim N(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}A')$. Dica: use a função característica de uma normal.

Exercício 2 Considere o experimento dado pela observação de $n \ge 2$ variáveis aleatórias normais independentes, X_1, X_2, \ldots, X_n com parâmetro de média μ comum desconhecido e parâmetro de variância σ^2 conhecido.

- a Qual é o modelo \mathcal{P} ?
- b Mostre que $T(X_1,\ldots,X_n)=\frac{X_1+X_2+\ldots+X_n}{n}$ é uma estatística completa suficiente em $\mathcal P$.
- c Mostre que $\hat{S}^2 = \frac{\sum_{i=1}^n (X_i T(X_1, ..., X_n))^2}{n-1}$ é ancilar em \mathcal{P} . Dica: proceda indutivamente, começando de n=2.
- d Conclua que, para todo valor possível de μ , $T(X_1, \ldots, X_n)$ é independente de \hat{S}^2 .

Exercício 3 Considere o experimento dado pela observação de n variáveis aleatórias independentes com distribuição $U[0,\theta]$, com $\theta > 0$ desconhecido.

- a Qual é o modelo \mathcal{P} ?
- b Mostre que $X_{(n)} := \max_{1 \le i \le n} X_i$ é estatística suficiente para \mathcal{P} .
- c Mostre que a lei de probabilidade induzida por $X_{(n)}$ admite densidade com respeito à medida de Lebesgue λ em \mathbb{R}_+ dada por:

$$g_{\theta}(z) \coloneqq \frac{nz^{n-1}}{\theta^n} \mathbf{1}_{[0,\theta]}(z)$$

d Mostre que, para qualquer transformação $f: \mathbb{R} \mapsto \mathbb{R}$ tal que $\mathbb{E}_{\theta}[f(X_{(n)})] = 0$ para todo $\theta > 0$, devemos ter que:

$$\int t^{n-1} f^+(t) \mathbf{1}_{[0,\theta]} \lambda(dt) = \int t^{n-1} f^-(t) \mathbf{1}_{[0,\theta]} \lambda(dt) .$$

Pela extensão do lema do π -sistema vista na Lista 1 do curso de verão, esse fato implicará que:

$$\int t^{n-1} f^+(t) \mathbf{1}_B(t) \lambda(dt) = \int t^{n-1} f^-(t) \mathbf{1}_B(t) \lambda(dt) \,, \quad \forall B \in \mathcal{B}(\mathbb{R}_+) \,.$$

Usando o fato acima, mostre que f(t)=0 em λ -quase-todo ponto. Conclua que $X_{(n)}$ é estatística completa suficiente..

e Encontre um estimador não viciado de variância uniformemente mínima para θ . $Dica: 2X_1$ é estimador não viciado de θ .

Exercício 4 Considere uma família exponencial $\{P_{\eta} : \eta \in \Xi\}$ com respeito a uma medida μ em que as densidades são da forma:

$$p_{\eta}(x) = \exp(\eta T(x) - B(\eta))h(x),$$

com $\eta \in \mathbb{R}$ e $T(x) \in \mathbb{R}$. O espaço $\Xi \subseteq \mathbb{R}$ é o conjunto de pontos em que:

$$\int \exp(\eta T(x))h(x)\mu(dx) < \infty$$

No que segue, vamos supor que esse conjunto é aberto.

- a Usando que p_{η} é densidade, encontre uma expressão fechada para $B(\eta).$
- b Mostre que, para todo $\eta \in \Xi$, a função geradora de momentos de T(X) existe numa vizinhança de zero, e é dada, nesta vizinhança, por:

$$M_{T(X)|\eta}(u) = \exp(B(\eta + u) - B(\eta))$$

- c Mostre que $\mathbb{E}_{\eta}[T(X)] = B'(\eta)$ para todo $\eta \in \Xi$.
- d Mostre que a variância de T(X), visto enquanto estimador de $B'(\eta)$, atinge o limite inferior de Crámer-Rao.