Exercice 3 (/ 3)

Voici le tableau de variation de la fonction dérivée f' d'une fonction f dérivable sur [-5, 8].

x	-5	-1	3	8
f'	0	5	_2	-1

Cocher si les assertions suivantes sont vraies ou fausses (on cochera faux dès lors que l'on ne peut pas affirmer une assertion) :

	Vrai	Faux
\mathbf{A}/f est croissante sur $[3,8]$.		
\mathbf{B}/f est positive sur $[-5, -1]$.		
\mathbf{C}/f est concave sur $[-1,3]$.		

Exercice 4 (/ 3)
On définit la fonction $f: x \mapsto \frac{2x^3 + 6x^2 - 9x + 1}{x^2 + x - 2}$ sur $\mathbb{R} \setminus \{-2, 1\}$.
Le but de cet exercice est de calculer $\lim_{x\to 1} f(x)$.
1. Expliquer pourquoi il n'est pas possible de calculer cette limite directement.
2. On admet que pour tout $x \in \mathbb{R}$, on a :
$2x^3 + 6x^2 - 9x + 1 = (x - 1)(2x^2 + 8x - 1)$ et $2x^2 + x - 2 = (x - 1)(x + 2)$
En déduire la valeur de $\lim_{x\to 1} f(x)$.