AG H	
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE	Technika cyfrowa
Temat ćwiczenia	Numer ćwiczenia
Minimalizacja i praktyczna realizacja złożonych funkcji logicznych	2
Wykonawca	Ocena
Marcin Przewięźlikowski	

1 Cel ćwiczenia

Zapoznanie się z zastosowaniem tablic Karnaugh'a do minimalizacji graficznej złożonych funkcji logicznych oraz zaprojektowanie w Multisimie układu cyfrowego zwiększającego o 1 trzybitową liczbę całkowitą oraz wyświetlacza siedmiosegmentowego.

2 Przebieg ćwiczenia

2.1 Układ cyfrowy inkrementujący trzybitową nieujemną liczbę całkowitą

Układ składa się z 3 wejść reprezentujących 3 bitową liczbę całkowitą oraz 4 wyjść, z których to czwarte jest opcjonalne: reprezentuje ono flagę przeniesienia (carry flag). Najstarszy bit na wejściu i wyjściu znajduje się najniżej na wykresie.

2.2 Minimalizacja funkcji metodą tablic Karnaugha

Zadaną funkcję logiczną przedstawiono w poniższej tabeli, a następnie zminimalizowano korzystając z metody Karnaugh'a. Wynik minimalizacji również znajduje się na poniższym zdjęciu:

MultiSimie swtworzono model bramki niezminimalizowanej oraz zminimalizowanej. Porównano je Logic Analyzerem i oceniono, że minimalizacja przebiegła pomyślnie:

2.3 Transkoder czterobitowych cyfr

W oparciu o poniższą konfigurację segmentów:

Dla każdego z 7 segmentów zrealizowano tablicę Karnaugh'a prezentującą pożądane zachowanie segmentu:

Segment	0:

 	_	_	_	_	
ab/cd	00	01	11	10	
00	1	0	1	1	
01	0	0	1	1	
11	X	x	x	x	
10	1	1	x	x	

Segment 1:

ab/cd	00		01		11		10	
00		1		0		0		0
01		1		1		1		0
11	x		x		X		x	
10		1		1	x		x	

Segment 2:

_			0		_	
	ab/cd	00	01	11	10	
!	00	1	1	1	1	
}	01	1	0	0	1	
ŀ	11	X	x	X	X	
i	10	1	1	x	x	

Segment 3:

			U ~		-	
1	ab/cd	00	01	11	10	
2	00	0	0	1	1	
3	01	1	1	1	0	
1	11	x	x	x	x	
5	10	1	1	x	x	

Segment 4:

		_		_	
ab/cd	00	01	11	10	
00	1	0	1	0	
01	0	0	1	0	
11	X	x	X	X	
10	1	0	X	X	

Segment 5:

	_						_	
ab/cd	00		01		11		10	
00		1		1		0		1
01		1		1		1		1
11	x		x		X		X	
10		1		1	x		x	

Segment 6:

			-	L
ab/cd 00	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	X	x	x	x
10	1	1	X	x