ปีริกสาก ป 7

ພາກທີ່ II: ການສັ່ນໄກວກິນຈັກ ບິດທີ່3: ການສັ່ນໄກວແບບກິມກຽວ

ອຈ ຄຳສອນ ຄຳສົມພູ

ໂຮງຮຽນ ມປ ສິ່ງໂສກປ່າຫຼວງ

ເບີໂທ: 020 99548699

ອີເມວ: khamsone896@gmail.com

ບິດທີ່3: ການສັ່ນໄກວແບບກິມກຽວ

1. ມະໂນພາບກ່ຽວກັບການສັ່ນໄກວແບບກົມກຽວ

ໃນທຳມະຊາດມີການເຄື່ອນທີ່ຫຼາຍຢ່າງທີ່ມີລັກສະນະຂອງການສັ່ນໄກວ (Oscillation) ຫຼື ເປັນແບບຮອບວຸງນ (Period). ການເຄື່ອນທີ່ແບບນີ້ຈະຜ່ານຈຸດໆໜຶ່ງກັບໄປກັບມາຕາມ ເສັ້ນທາງເດີມ ຫຼື ບາງສ່ວນຂອງເສັ້ນທາງເດີມໃນຊ່ວງເວລາເທົ່າໆກັນ ເຊັ່ນ: ການໄກວຂອງ ລູກໄກວໂມງ, ການສັ່ນໄກວຂອງວັດຖຸທີ່ຖືກມັດໃສ່ປາຍລໍຊໍ, ການສັ່ນຂອງເສັ້ນລວດ ແລະ ການສັ່ນຂອງໂມເລກູນອາກາດເຫຼົ່ານີ້ເປັນຕົ້ນ.

ສົມຜົນຂອງການສັ່ນໄກວແບບກົມກຸງວ 1 ໄລຍະເຄື່ອນຍ້າຍ

$$x = A\sin(\omega t + \theta_0)$$
 $\Re x(t) = A\cos(\omega t + \theta_0)$

ບິດທີ່3: ການສັ່ນໄກວແບບກົມກຽວ

$$\omega = 2\pi f$$
 ແຕ່ວ່າ $f = \frac{1}{T}$, ດັ່ງນັ້ນ $\omega = \frac{2\pi}{T}$

ໃນນີ້ T ແມ່ນເວລາຮອບວຽນຂອງການສັ່ນໄກວໃນໜຶ່ງຮອບ ແລະ ມີຫົວໜ່ວຍເປັນ ວິນາທີ (s); f ແມ່ນຄວາມຖີ່ການສັ່ນໄກວມີຫົວໜ່ວຍເປັນເຮີຊ (Hz) ຫຼື ເປັນຮອບຕໍ່ວິນາທີ (s)0 ໂດຍວ່າ 1 Hz = 1890/s, (1 kHz = 1000 Hz).

2.2 ຄວາມໄວຂອງການສັ່ນໄກວ

ຄວາມໄວຂອງວັດຖຸສັ່ນໄກວແມ່ນການປ່ຽນແປງຂອງໄລຍະເຄື່ອນຍ້າຍຕາມເວລາ.

ດັ່ງນັ້ນ, ອີງຕາມສົມຜົນ (3.2) ຄວາມໄວຂອງການສັ່ນໄກວກົມກຸງວແມ່ນ:

$$v = x'(t) = \omega A \cos(\omega t + \theta_0)$$
 (3.4)

$$v = \pm \omega \sqrt{A^2 - x^2}$$

ບິດທີ່3: ການສັ່ນໄກວແບບກົມກຽວ

2.3 ຄວາມເລັ່ງຂອງການສັ່ນໄກວ

ຄວາມເລັ່ງຂອງການສັ່ນໄກວ ແມ່ນການປ່ຽນແປງຂອງຄວາມໄວຕາມເວລາ. ດັ່ງນັ້ນ, ອີງໃສ່ສົມຜົນ (3.4) ຂຽນຄືນໃໝ່ໄດ້.

$$a = v'(t) = -\omega^2 A \sin(\omega t + \theta_0)$$
 (3.6)

$$a = -\omega^2 x \tag{3.7}$$

ຕົວຢ່າງ 1. ເມັດວັດຖຸໜຶ່ງສັ່ນໄກວຕາມລວງນອນ ໃນເວລາ t=0 ເມັດວັດຖຸມີໄລຍະເຄື່ອນ ຍ້າຍ $x_0=0.5\,\mathrm{cm}$ ແລະ ມີຄວາມໄວເທົ່າສູນ. ຖ້າວ່າຄວາມຖີ່ຂອງການສັ່ນໄກວແມ່ນ $0.25\,\mathrm{s}$ ຮອບ/ s . ຈົ່ງຄິດໄລ່ເວລາຮອບວຽນ, ຄວາມໄວມູມ, ໄລຍະເຄື່ອນຍ້າຍໃຫຍ່ສຸດ, ສົມຜົນໄລ ຍະເຄື່ອນຍ້າຍຢູ່ແຕ່ລະຈຸດເວລາ, ສົມຜົນຄວາມໄວແຕ່ລະຈຸດເວລາ, ຄວາມເລັ່ງໃຫຍ່ສຸດ, ໄລຍະເຄື່ອນຍ້າຍໃນຈຸດເວລາ $t=2\mathrm{s}$ ແລະ ຄວາມໄວໃນຈຸດເວລາດັ່ງກ່າວ.

ແກ້. - ເວລາຮອບວຸງນ:
$$T = \frac{1}{f} = \frac{1}{0.25} = 4 \text{ s}$$

- ຄວາມໄວມູນ:
$$\omega=2\pi f=\frac{2\pi}{T}$$
 $\Rightarrow \omega=\frac{2\times 3,14}{4}=1,57 \text{ rad/s}$

- ເລືອກເອົາສົມຜົນ
$$x(t) = A\cos(\omega t + \theta_0)$$

ຕາມບົດເລກທີ່ໃຫ້ມາ $t=0$ ຈະມີ $x(0) = A\cos\theta_0 = 0,5$

$$\mathfrak{D} v(0) = -\omega A \sin(\omega t + \theta_0) = 0 = -\omega A \sin \theta_0 = 0$$

ຈະມີພຽງແຕ່ $\sin\theta_0=0$ ເທົ່ານັ້ນ, ສະແດງວ່າ $\theta_0=0$ ແລະ ຈະໄດ້ $\cos\theta_0=1$ ເພາະສະນັ້ນ $A=0.5{
m cm}$

- ສົມຜົນໄລຍະເຄື່ອນຍ້າຍໃນແຕ່ລະຈຸດເວລາແມ່ນ $x(t) = A\cos(\omega t + \theta_0) = 0.5\cos 1.57t \quad \text{(cm)}$
- ສົມຜົນຄວາມໄວໃນແຕ່ລະຈຸດເວລາແມ່ນ $v(t) = -\omega A \sin(\omega t + \theta_0) = -0,785 \sin 1,57t \text{ (cm/s)}$

- ຄວາມເລັ່ງໃຫຍ່ສຸດ:
$$a_{\max} = \omega^2 A$$

 $\Rightarrow a_{\max} = (1,57)^2 \times 0, 5 = 1,23 \text{ (cm/s}^2)$

- ໄລຍະເຄື່ອນຍ້າຍຂອງວັດຖຸສັ່ນໄກວໃນຈຸດເວລາ t = 2s ແມ່ນ $x(2) = A\cos(1.57 \times 2) = -0.5 \text{ cm}$
- ຄວາມໄວຂອງວັດຖຸສັ່ນໄກວໃນຈຸດເວລາ t=2 s ແມ່ນ $v(2) = -\omega A \sin(1,57 \times 2) = 0$

ບິດທີ່3: ການສັ່ນໄກວແບບກິມກຽວ

3. ພະລັງງານກົນຈັກຂອງການສັ່ນໄກວແບບກົມກຸງວ

ການສັ່ນໄກວແບບກົມກຸງວ ແມ່ນການເຄື່ອນທີ່ແບບກົນຈັກ. ດັ່ງນັ້ນ, ພະລັງງານຂອງ ການສັ່ນໄກວແມ່ນຜົນບວກພະລັງງານເດີນເຄື່ອນ ແລະ ພະລັງງານທ່າຕັ້ງຂອງວັດຖຸ.

$$E = E_k + E_P \tag{3.8}$$

$$E = E_k + E_P = \frac{1}{2}kA^2\sin^2(\omega t + \theta_0) + \frac{1}{2}kA^2\cos^2(\omega t + \theta_0) = \frac{1}{2}kA^2 = \text{const}$$

3.1 ພະລັງງານເດີນເຄື່ອນ

$$E_k = \frac{1}{2}kA^2\sin^2(\omega t + \theta_0)$$

3.2 ພະລັງງານທ່າຕັ້ງ

$$E_P = \frac{1}{2}kA^2\cos^2(\omega t + \theta_0)$$

ບິດທີ່3: ການສັ່ນໄກວແບບກົມກຽວ

- **ຕົວຢ່າງ 2**. ວັດຖຸມີມວນສານ 25g ຖືກມັດໃສ່ສິ້ນໜຶ່ງຂອງລໍຊໍອັນໜຶ່ງ ເຊິ່ງວາງໄວ້ຕາມລວງ ນອນທີ່ບໍ່ມີການຮຸກຖູ, ວັດຖຸສັ່ນໄກວຕາມສົມຜົນ $x = 15\sin(10\pi t + \frac{\pi}{4})$ cm. ຖາມວ່າ:
 - ກ. ໄລຍະເຄື່ອນຍ້າຍໃຫຍ່ສຸດ, ຄວາມໄວມູມ, ຄວາມຖີ່, ເວລາຮອບວຽນ ແລະ ເຟສເລີ່ມ ຕົ້ນຂອງການສັ່ນໄກວມີເທົ່າໃດ?
 - ຂ. ຄວາມແຮງໃຫຍ່ສຸດທີ່ກະທົບໃສ່ວັດຖຸມີເທົ່າໃດ?
 - ຄ. ພະລັງງານທັງໝົດຂອງວັດຖຸ ແລະ ສຳປະສິດຫິດຢືດຂອງລໍຊໍມີເທົ່າໃດ?

ແກ້. ກ. ເມື່ອທຽບສົມຜົນໃນບົດເລກທີ່ໃຫ້ມາໃສ່ກັບສົມຜົນ $x = A\sin(\omega \, {\bf t} + \theta_0)$ ໄດ້

$$A = 15 \text{ cm}$$
; $\omega = 10\pi \text{ rad/s}$; $f = \frac{\omega}{2\pi} = \frac{10\pi}{2\pi} = 5$ ຮອບ/ s;

$$T = \frac{1}{f} = \frac{1}{5} = 0.2 \text{ s}$$
 ແລະ $\theta_0 = \frac{\pi}{4} \text{ rad.}$

ຂ. ຈາກສູດຄວາມແຮງໃຫຍ່ສຸດ $F_{
m max}=ma_{
m max}$

ເມື່ອວັດຖຸມີໄລຍະເຄື່ອນຍ້າຍໃຫຍ່ສຸດ $x_{
m max}=A$, ຄວາມເລັ່ງຂອງວັດຖຸສັ່ນໄກວ

ຈະມີຄ່າໃຫຍ່ສຸດ ($a_{
m max}$) ແລະ $a_{
m max} = -\omega^2 A$

ສະນັ້ນ,
$$F_{\text{max}} = -m\omega^2 A = -0.025 \times (10\pi)^2 \times 0.15 = -3.697$$
 N

ຄ. ພະລັງງານທັງໝົດ

$$E = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2} \times 0.025 \times (10\pi)^2 \times (0.15)^2 = 0.2773 \text{ J}$$

ສຳປະສິດຫິດຢຶດຂອງລໍຊໍ $k=m\omega^2\Rightarrow k=0,025 imes(10\pi)^2=24,65$ N/m

1. ຄູສະຫຼຸບເນື້ອໃນບົດຮຽນທີ່ໄດ້ຮຽນມາອີກເທື່ອໜຶ່ງ

1. ການສັ່ນໄກວກົມກຸງວ

2. ສົມຜົນຂອງການສັ່ນໄກວແບບກົມກຸງວ

3. ພະລັງງານກົນຈັກຂອງການສັ່ນໄກວແບບກົມກຸງວ