

CLAIMS

What is claimed is:

1. 1. An apparatus comprising:
 - 2 a processor core including data paths;
 - 3 a plurality of peripheral devices having associated parallel scan registers
 - 4 coupled to the processor core; and
 - 5 operating logic for generating pseudo-random test patterns for the peripheral
 - 6 devices, employing a mixed congruent generation scheme, and using the data paths
 - 7 of the processor core.
1. 2. The apparatus as set forth in claim 1, wherein the operating logic includes operating logic for multiplying n least significant bits of a 2n-bit pseudo-random number generated in an immediately preceding iteration and stored in a first register, with an n-bit multiplier constant stored in a second register to produce a 2n-bit product, adding the 2n-bit product to n most significant bits of the 2n-bit pseudo-random number stored in n least significant locations of an accumulator with 2n locations to produce a new 2n-bit pseudo-random number for a current iteration, and outputting n least significant bits of the new 2n-bit pseudo-random number as an n-bit pseudo-random test vector for the peripheral devices.
1. 3. The apparatus as set forth in claim 2, wherein the operating logic further includes operating logic for copy the n least significant bits of the new 2n-bit pseudo-random number into the first register, and right shifting the 2n-bit new pseudo-random number in the accumulator by n-bits.

1 4. The apparatus as set forth in claim 3, wherein the operating logic further includes
2 operating logic for repeating said multiplying, adding, outputting, copying and right
3 shifting sufficient number of times to generate a sufficiently large pseudo-random test
4 pattern to fill the parallel scan registers.

1 5. The apparatus as set forth in claim 2, wherein the operating logic further includes
2 operating logic for storing a 2n-bit initial value into the accumulator, and storing the n-bit
3 multiplier constant in the second register.

1 6. The apparatus as set forth in claim 5, wherein the variable n, the 2n-bit initial value
2 and the n-bit multiplier constant are equal to (3, 6, 1), (3, 6, 5), (4, 15, 1), (4, 15, 7), (5,
3 27, 1), (5, 27, 5), (6, 45, 1), (6, 45, 7), (7, 126, 1), (7, 126, 5), (8, 249, 1), (8, 249, 5), (9,
4 507, 1) (9, 507, 5), (10, 1020, 1), (10, 1020, 5), (11, 2016, 1), (11, 2016, 5), (12, 4077,
5 1), (12, 4077, 7), (13, 8175, 1), (13, 8175, 7), (14, 16371, 1), (14, 16371, 5), (15,
6 32766, 1), (15, 32766, 5), (16, 65514, 1), or (16, 65514, 5) respectively.

7

1 7. The apparatus as set forth in claim 2, wherein the apparatus further comprises a test
2 port register through which the parallel scan registers are coupled to the processor
3 core, and the operating logic further includes operating logic for moving a pseudo-
4 random test vector from the processor core to the test port register, and then moving
5 the pseudo-random test vector in parallel to the parallel scan registers.

1 8. An apparatus comprising:

2 a processor core including data paths;
3 a plurality of peripheral devices having associated parallel scan registers
4 coupled to the processor core; and

5 operating logic for generating deterministic test patterns for the peripheral
6 devices, emulating a plurality of linear feedback shift register (LFSR) - based segments
7 interconnected by a network of linear functions, and using the data paths of the
8 processor core.

1 9. The apparatus as set forth in claim 8, wherein the operating logic includes operating
2 logic for modifying $n \times L$ storage locations of a circular buffer formed with L registers
3 with n storage locations each of processor core, emulating shifting of the content of the
4 LFSR-based segments, and outputting the content of a head one of the L registers as a
5 portion of a deterministic test pattern being generated for the peripheral devices.

1 10. The apparatus as set forth in claim 9, wherein the operating logic further includes
2 operating logic for repeating said modification and outputting sufficient number of times
3 to generate a sufficiently large deterministic test pattern to fill the parallel scan
4 registers.

1 11. The apparatus as set forth in claim 9, wherein the operating logic further includes
2 operating logic for advancing a head pointer for identifying the head one of the L
3 registers.

1 12. The apparatus as set forth in claim 8, wherein the operating logic generates the
2 deterministic test patterns emulating LFSR-based segments interconnected with a
3 network of linear functions that implements an identical feedback polynomial for each of
4 the LFSR-based segments.

1 13. The apparatus as set forth in claim 8, wherein the operating logic generates the
2 deterministic test patterns emulating LFSR-based segments interconnected with a

3 network of linear functions that provides inter-segment feedback at identical tap
4 positions of the LFSR-based segments.

1 14. The apparatus as set forth in claim 8, wherein the apparatus further comprises a
2 test port register through which the parallel scan registers are coupled to the processor
3 core, and the operating logic further includes operating logic for moving a deterministic
4 test vector from the processor core to the test port register, and then moving the
5 pseudo-random test vector in parallel to the parallel scan registers.

1 15. An apparatus comprising:
2 a processor core including data paths;
3 a plurality of peripheral devices having associated parallel scan registers
4 coupled to the processor core; and
5 operating logic for compacting test responses the peripheral devices, employing
6 a cascaded approach, and using the data paths of the processor core.

1 16. The apparatus as set forth in claim 15, wherein the operating logic includes.
2 operating logic for moving a first test response into a first accumulator, adding a first
3 signature to the first accumulator, moving a second test response into a second
4 accumulator, outputting the content of the first accumulator and adding the output of
5 the first accumulator into the second accumulator.

1 17. The apparatus as set forth in claim 16, wherein the operating logic further includes
2 operating logic for moving the second test response into the first accumulator, adding a
3 second signature that includes the first test response into the first accumulator, moving
4 a third test response into the second accumulator, outputting the content of the first
5 accumulator, and adding the output of the first accumulator to the second accumulator.

- 1 18. The apparatus as set forth in claim 17, wherein the operating logic adds the output
- 2 of the first accumulator into the second accumulator in accordance with a 1's
- 3 complement convention.

- 1 19. The apparatus as set forth in claim 17, wherein the operating logic adds the output
- 2 of the first accumulator into the second accumulator using a rotate carry scheme.

- 1 20. The apparatus as set forth in claim 15, wherein the apparatus further comprises a
- 2 test port register through which the parallel scan registers are coupled to the processor
- 3 core, and the operating logic further includes operating logic for moving a test response
- 4 of the peripheral devices from the test port register to the processor core.

- 1 21. The apparatus as set forth in claim 20, wherein the test response of the peripheral
- 2 devices is recovered in the test port register as an integral part of storing a test vector
- 3 in parallel into the parallel scan registers.

- 1 22. An apparatus comprising:
 - 2 a processor core including data paths;
 - 3 a plurality of peripheral devices having associated parallel scan registers; and
 - 4 a test port register coupled to the processor core and the parallel scan registers
 - 5 for loading the parallel scan registers with test patterns generated by the data paths of
 - 6 the processor core for testing the peripheral devices, and for recovering test responses
 - 7 of the peripheral devices to application of the test patterns from the parallel scan
 - 8 registers for the processor core.

1 23. The apparatus as set forth in claim 22, wherein the test port register comprises a
2 plurality of output ports correspondingly coupled to first cells of the parallel scan
3 registers, and a plurality of input ports correspondingly coupled to last cells of the
4 parallel scan registers.

1 24. An apparatus comprising:
2 a processor core including data paths;
3 a plurality of peripheral devices having associated parallel scan registers;
4 a test port register coupled to the processor core and the parallel scan registers;
5 and
6 operating logic for moving a test pattern generated by the data paths of the
7 processor core to the test port register, and then to the parallel scan registers.

1 25. The apparatus as set forth in claim 24, wherein the operating logic further includes
2 operating logic for applying one or more clock cycles to the peripheral devices to apply
3 the test pattern in the parallel scan registers to the peripheral devices.

1 26. The apparatus as set forth in claim 24, wherein the operating logic further includes
2 operating logic for moving test responses of the peripheral devices from the test port
3 register to the processor core.

1 26. An apparatus comprising:
2 a processor core including data paths;
3 a plurality of peripheral devices having associated parallel scan registers
4 coupled to the processor core; and
5 operating logic for placing the processor core in a test mode, saving a pre-test
6 state of the parallel scan registers, applying a plurality of test patterns to the peripheral

7 devices using the data paths of the processor core, and restoring the pre-test state of
8 the parallel scan registers.

1 27. The apparatus as set forth in claim 26, wherein the operating logic for applying a
2 plurality of test patterns to the peripheral devices includes operating logic for generating
3 one or more test vectors for the peripheral devices using the data paths of the
4 processor core, and compacting test responses of the peripheral devices using the
5 data paths of the processor core.

1 28. An apparatus comprising:
2 a processor core including data paths;
3 a plurality of peripheral devices coupled to the processor core; and
4 operating logic for generating one or more test vectors for the peripheral devices
5 using the data paths of the processor core, and compacting test responses of the
6 peripheral devices using the data paths of the processor core.

1 29. A method for generating pseudo-random test patterns comprising the steps of:
2 multiplying n least significant bits of a 2n-bit pseudo-random number
3 generated in an immediately preceding iteration and stored in a first register, with an n-
4 bit multiplier constant stored in a second register to produce a 2n-bit product,
5 adding the 2n-bit product to n most significant bits of the 2n-bit pseudo-
6 random number stored in n least significant locations of an accumulator with 2n
7 locations to produce a new 2n-bit pseudo-random number for a current iteration, and
8 outputting n least significant bits of the new 2n-bit pseudo-random
9 number as an n-bit pseudo-random test vector for the peripheral devices.

1 30. The method as set forth in claim 29, wherein the method further includes the step of
2 copying the n least significant bits of the new 2n-bit pseudo-random number into the
3 first register, and right shifting the 2n-bit new pseudo-random number in the
4 accumulator by n-bits.

1 31. The method as set forth in claim 30, wherein the method further includes the step of
2 repeating said multiplying, adding, outputting, copying and right shifting steps sufficient
3 number of times to generate a sufficiently large pseudo-random test pattern to fill a
4 parallel scan registers.

1 32. The method as set forth in claim 29, wherein the method further includes the step of
2 storing a 2n-bit initial value into the accumulator, and storing the n-bit multiplier
3 constant in the second register.

1 33. The method as set forth in claim 32, wherein the variable n, the 2n-bit initial value
2 and the n-bit multiplier constant are equal to (3, 6, 1), (3, 6, 5), (4, 15, 1), (4, 15, 7), (5,

3 27, 1), (5, 27, 5), (6, 45, 1), (6, 45, 7), (7, 126, 1), (7, 126, 5), (8, 249, 1), (8, 249, 5), (9,
4 507, 1) (9, 507, 5), (10, 1020, 1), (10, 1020, 5), (11, 2016, 1), (11, 2016, 5), (12, 4077,
5 1), (12, 4077, 7), (13, 8175, 1), (13, 8175, 7), (14, 16371, 1), (14, 16371, 5), (15,
6 32766, 1), (15, 32766, 5), (16, 65514, 1), or (16, 65514, 5) respectively.

1 34. The method as set forth in claim 29, wherein the method further comprises the step
2 moving a pseudo-random test vector to a test port register, and then moving the
3 pseudo-random test vector in parallel to a plurality of parallel scan registers.

1 35. A method for generating deterministic test patterns comprising the steps of:
2 modifying $n \times L$ storage locations of a circular buffer formed with L
3 registers, each having n storage locations,
4 emulating shifting of the content of a plurality of LFSR-based segments,
5 and
6 outputting the content of a head one of the L registers as a portion of a
7 deterministic test pattern being generated.

1 36. The method as set forth in claim 35, wherein the method further includes the step of
2 repeating said modification and outputting sufficient number of times to generate a
3 sufficiently large deterministic test pattern to fill a plurality of parallel scan registers.

1 37. The method as set forth in claim 35, wherein the method further includes the step of
2 advancing a head pointer for identifying the head one of the L registers.

1 38. The method as set forth in claim 35, wherein the emulation step emulates shifting of
2 LFSR-based segments interconnected with a network of linear functions that
3 implements an identical feedback polynomial for each of the LFSR-based segments.

1 39. The method as set forth in claim 35, wherein the emulation step emulates shifting of
2 LFSR-based segments interconnected with a network of linear functions that provides
3 inter-segment feedback at identical tap positions of the LFSR-based segments.

1 40. The method as set forth in claim 35, wherein the method further comprises the
2 steps of moving a deterministic test vector to a test port register, and then moving the
3 pseudo-random test vector in parallel to a plurality of parallel scan registers.

1 41. A method comprising the steps of:

2 moving a first test response into a first accumulator,
3 adding a first signature to the first accumulator,
4 moving a second test response into a second accumulator,
5 outputting the content of the first accumulator and
6 adding the output of the first accumulator into the second accumulator.

1 42. The method as set forth in claim 41, wherein the method further includes the step
2 of:

3 moving the second test response into the first accumulator,
4 adding a second signature that includes the first test response into the
5 first accumulator,
6 moving a third test response into the second accumulator,
7 outputting the content of the first accumulator, and
8 adding the output of the first accumulator to the second accumulator.

1 43. The method as set forth in claim 42, wherein the step of adding of the output of the
2 first accumulator into the second accumulator is performed in accordance with a 1's
3 complement convention.

1 44. The method as set forth in claim 42, wherein the step of adding the output of the
2 first accumulator into the second accumulator is performed using a rotate carry
3 scheme.

1 45. The method as set forth in claim 41, wherein the method further comprises the step
2 of moving a partial test response from a test port register.

1 46. The method as set forth in claim 45, wherein the step of moving the partial test
2 response is performed as an integral part of a step of providing a test vector from the
3 test port register.

1 47. A method for testing peripheral devices of an integrated circuit, the method
2 comprising the steps of:

3 generating first test patterns using mission datapaths of a processor core;
4 loading a plurality of parallel scan registers with the first test patterns from a test
5 port register, one bit slice for each scan register at a time, and simultaneously
6 recovering test responses for previously generated second test patterns from the
7 parallel scan registers into the test port register; one bit slice per scan register a time;
8 moving the test responses into the processor core, and compacting the test
9 responses into a signature.

1 48. The method as set forth in claim 47, wherein the method further includes the step of
2 applying one or more clock cycles to the peripheral devices to apply the first test
3 patterns in the parallel scan registers to the peripheral devices.

1 49. A method for testing an integrated circuit, comprising the steps of:
2 placing a processor core in a test mode;
3 saving a pre-test state of a plurality of parallel scan registers,
4 generating and applying a plurality of test patterns to a plurality of
5 peripheral devices using the data paths of the processor core and the parallel scan
6 registers, and
7 restoring the pre-test state of the parallel scan registers.

1 50. The method as set forth in claim 49, wherein the generating and applying step
2 includes generating one or more test vectors for the peripheral devices using the data
3 paths of the processor core, and compacting test responses of the peripheral devices
4 using the data paths of the processor core.