### **Capstone 2: Milestone Report**

#### **Problem Statement:**

The second capstone will be the creation of a working daily fantasy model forecast system.

This is an advance of the first capstone, which was a seasonal model, based on historical data, whereas this is a daily forecast with rolling updates. This adds multiple layers of complexity as it requires both the regular daily database updates as well as designing new features and using models for forecasting instead of a regression or other method.

Both Machine Learning techniques and Financial Analyst methods will be attempted in order to provide more depth to the model beyond basic statistics recorded by the National Hockey League.

#### Dataset:

The initial data was compiled using a well known <u>api scraper</u>, and <u>compiler documented here</u>. The flat file may also be downloaded from the website <u>evolving-hockey</u>, but this method was chosen to further develop more advanced api scraping and r scripting skills. Given that that was not the focus, here the work has been done on the compiled csv files that were saved from the api and R, with only the work done in python shown.

The primary data source for that api is the official, if albeit completely undocumented and unpublished, api of National Hockey League. The files cover 10 seasons of data, but the quality is significantly lesser before the 2015 season.

A large challenge was the transforming the API data into model ready form, and creating summary statistics from that. Again, this was assisted by the evolving wild process, as well as some pandas functions to create the moving averages.

## **Initial Findings:**

While most of the initial exploratory stats were congruent with the first capstone, a level of difficulty is added by the strong leftward tail in the target dependant variable, fantasy points as seen in the figure below.



This makes sense given the designers of daily fantasy hockey want to create a challenge in selecting winning combinations, but is radically different than the season long product where there is a much more centered distribution. For contrast here is the season long version, as reported in the first capstone.



That said, the same variables as before show strong correlation to the dependant variable, namely Time on Ice and Fenwick, a value that measures the various shot attempts. Below are the respective plots for those variables.



Time On Ice



#### Initial Model: Finance:

At the heart of the project is the idea that you can forecast future performance on past results. Perhaps nowhere else has this been as intensely explored as the financial sector. Worth noting is that these financial methods have also been heavily critiqued, perhaps most notably by the legendary Burton Malkiel, but where they fail in financial markets they could very well succeed in this use case. The most frequent critique of 'Chart watchers' and 'market timers' is that they are using prior information to fill in future assumptions, while the efficient market theory states that there is far more current information that is readily available and therefore the market price at current time isn't based on past pricing. In this case, we do not have more current information or insight into why a player is seeing more time; they might have been moved due to injury or a trade. Even if we do have some of that information for some players via say Twitter or trade trackers, coverage isn't global and we don't have an efficient way to find out if a player will see an increase in ice time. Therefore, finding a moving average might well be an effective signal to show that a player's points will soon increase as well.

Here our hypothesis is that if the average time, power play time, or possession metrics have increased across the past five games over the previous 20, the player will continue to both maintain that higher standing and, due to the nature of those metrics, also see an increase in over all points.

Market theorists have proposed the idea of a 'dual moving average crossover' or a 'moving average convergence'; this is a lagging indicator that shows upward momentum, where if the shorter average is above the value of the larger moving average, this is a positive trend signal and a time to 'buy' or select such a player.

In order to limit noise, these metrics were created for time on ice, power play time on ice, Fenwick, and over all draftkings points, and then back tested before being added to the over all package. Credit for the base code and the visual here go to this excellent DataCamp tutorial, 'Python For Finance: Algorithmic Trading'.

A snapshot of this first application to time on ice looked quite promising. Below is the charting of four randomly selected players with the signal markers overlayed, with black arrows representing a signal of an upcoming positive trend and red signalling an upcoming negative trend.

# Moving Averages and Signal Indicators - Random Sample of Players and Games









This seemed promising, and a grid search was generated to find the best performing windows, which ended up being over 3 and 20 games respectively, and then back tested on the past games. Unfortunately, while this further analysis showed that while these signals are effective, the overall yield was approximately 3 seconds in time, less than 1/10th to 1/100th of the average shift. When utilized in an OLS model with total points as the dependant variable, this was slightly more effective, finding the coefficient at 8 seconds of time, almost 1/4th a shift, but the long moving average was a much better indicator, being worth more than 30 seconds: a complete additional shift.

| OLS Regression Results                                              |                   |                                            |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 |                                                                              |  |
|---------------------------------------------------------------------|-------------------|--------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------|------------------------------------------------------------------------------|--|
| Dep. Variable Model: Method: Date: Time: No. Observat: Df Residuals | T                 | Least Squa<br>ue, 17 Sep 2<br>18:59<br>353 | OLS<br>ares<br>2019<br>9:51<br>3268 | Adj.<br>F-sta<br>Prob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nared: R-squared: atistic: (F-statistic): bikelihood: |                 | 0.972<br>0.972<br>3.092e+06<br>0.00<br>-8.7465e+05<br>1.749e+06<br>1.749e+06 |  |
| Df Model:<br>Covariance Ty                                          | ype:              | nonrok                                     | 4<br>oust                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                 |                                                                              |  |
|                                                                     | coef              | std err                                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P> t                                                  | [0.025          | 0.975]                                                                       |  |
| long_mavg<br>positions                                              | 0.5331<br>-0.1409 | 0.004<br>0.004<br>0.012                    | 108.<br>135.<br>-11.                | 273<br>472<br>415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000<br>0.000<br>0.000<br>0.000                      | 0.525<br>-0.165 | 0.541<br>-0.117                                                              |  |
| Omnibus: Prob(Omnibus Skew: Kurtosis:                               | ) :               | 0.                                         | .000<br>.140                        | A CONTRACTOR OF THE PARTY OF TH |                                                       |                 | 2.003<br>578353.067<br>0.00<br>89.6                                          |  |

This was predictably less successful in the case of points, showing less than .04 points increase for the signal, and .06 points for the long average.

|                       |         | OLS Re       | gression E | Results<br>   |        |                    |
|-----------------------|---------|--------------|------------|---------------|--------|--------------------|
| Dep. Variable: Model: |         | dk_poi       | nts R-so   | R-squared:    |        | 0.541              |
|                       |         |              | OLS Adj    | . R-squared:  |        | 0.541<br>1.041e+05 |
| Method:               |         | Least Squa   | res F-st   | F-statistic:  |        |                    |
| Date:                 | Tı      | ue, 17 Sep 2 | 019 Prob   | o (F-statisti | Lc):   | 0.00               |
| Time:                 |         | 19:07        | :55 Log-   | -Likelihood:  |        | -7.2697e+05        |
| No. Observation       | ons:    | 353          | 268 AIC    |               |        | 1.454e+06          |
| Df Residuals:         |         | 353          | 264 BIC:   |               |        | 1.454e+06          |
| Df Model:             |         |              | 4          |               |        |                    |
| Covariance Typ        | e:      | nonrob       | ust        |               |        |                    |
|                       |         |              |            |               |        |                    |
|                       | coef    |              | t          | P> t          | [0.025 | 0.975]             |
| short_mavg            | 0.0545  |              |            | 0.000         | 0.049  | 0.060              |
| long_mavg             | 0.0647  | 0.003        | 24.993     | 0.000         | 0.060  | 0.070              |
| positions             | -0.0280 | 0.008        | -3.451     | 0.001         | -0.044 | -0.012             |
| toi_signal            | 0.0442  | 0.010        | 4.229      | 0.000         | 0.024  | 0.065              |
| Omnibus:              |         | 128101.      | 103 Durl   | oin-Watson:   |        | 2.003              |
| Prob(Omnibus):        |         | 0.           | 000 Jaro   | que-Bera (JB) | :      | 522647.738         |
| Skew:                 |         | 1.           | 779 Prob   | o(JB):        |        | 0.00               |
| Kurtosis:             |         | 7.           | 781 Cond   | d. No.        |        | 89.6               |

When the same methods were applied to Fenwick the results were far more encouraging, with significant increases both in Fenwick events and overall fantasy points, as indicated in two OLS models.

Again the long moving average is most successful, but the signal is in fact effective, showing a .4 point bump per game.

What's perhaps most interesting here is dependant variable here actually decreases with the short moving average in both instances, but the long average and the Fenwick Signal seems to be worth almost a half a point, which in terms of an 8 man fantasy hockey team where difference between cashing in a tournament or not is often far less than that.

# OLS Regression Results

| OLS Regression Results                                                                   |                   |                                     |                                      |                       |                                  |        |                                                                 |  |
|------------------------------------------------------------------------------------------|-------------------|-------------------------------------|--------------------------------------|-----------------------|----------------------------------|--------|-----------------------------------------------------------------|--|
| Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T | ions:             | Least Sq<br>Tue, 17 Sep<br>19:<br>3 |                                      | Adj.<br>F-sta<br>Prob | R-squared:                       |        | 0.692<br>0.692<br>1.986e+05<br>0.00<br>-6.8397e+05<br>1.368e+06 |  |
| ========                                                                                 | coef              | std err                             | =====                                | ======<br>t           | P> t                             | [0.025 | 0.975]                                                          |  |
| short_mavg<br>long_mavg<br>positions<br>FF_signal                                        | 0.9484<br>-0.0969 | 0.004                               | 23                                   | 7.691<br>5.028        | 0.000<br>0.000<br>0.000<br>0.000 | 0.941  | 0.956<br>-0.084                                                 |  |
| Omnibus: Prob(Omnibus Skew: Kurtosis:                                                    | <br>):<br>        |                                     | <br>5.756<br>0.000<br>0.757<br>4.223 | Jarqı                 | 10                               | ====== | 1.999<br>55779.263<br>0.00<br>13.4                              |  |

## OLS Regression Results

| ======================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                  |       |                        |                     |        |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|-------|------------------------|---------------------|--------|-------------|--|
| Dep. Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •       | dk n             | oints | D_cm                   | uared:              |        | 0.564       |  |
| and the state of t | -•      | uk_p             | OLS   | 100 To                 |                     |        |             |  |
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                  |       | Control of the Control | R-squared:          |        | 0.564       |  |
| Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Least Squares    |       |                        | atistic:            |        | 1.141e+05   |  |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Tue, 17 Sep 2019 |       | Prob                   | Prob (F-statistic): |        | 0.00        |  |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 19:              | 40:33 | Log-                   | Likelihood:         |        | -7.1802e+05 |  |
| No. Observations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 353268           |       | AIC:                   | AIC:                |        | 1.436e+06   |  |
| Df Residuals:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 3                | 53264 | BIC:                   |                     |        | 1.436e+06   |  |
| Df Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                  | 4     |                        |                     |        |             |  |
| Covariance Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mo.     | nonr             | obust |                        |                     |        |             |  |
| covariance 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ype:    | 11011            | obust |                        |                     |        |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |       |                        |                     |        |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coef    | std err          |       | t                      | P> t                | [0.025 | 0.975]      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |       |                        |                     |        |             |  |
| short_mavg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                  | -1    | 7.141                  | 0.000               | -0.099 | -0.079      |  |
| long_mavg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8332  | 0.004            | 18    | 9.642                  | 0.000               | 0.825  | 0.842       |  |
| positions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.1410 | 0.007            | -1    | 9.850                  | 0.000               | -0.155 | -0.127      |  |
| FF signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4067  | 0.009            | 4:    | 2.926                  | 0.000               | 0.388  | 0.425       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |       |                        |                     |        |             |  |
| Omnibus:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 10537            | 6.837 | Durb:                  | in-Watson:          |        | 1.997       |  |
| Prob(Omnibus)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ):      |                  | 0.000 | Jargi                  | ue-Bera (JB):       |        | 368300.817  |  |
| Skew:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ILE   |                  | 1.493 | -                      |                     |        | 0.00        |  |
| Kurtosis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                  | 7.014 | Cond                   | •                   |        | 13.4        |  |
| RUI COSIS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                  | 7.014 | Cond                   | . NO.               |        | 13.4        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |       |                        |                     |        |             |  |

# Next Steps:

For the final leg we'll rejoin the tables and create a composite model for daily use, and test it using historical tracking and team generators to see how it would perform in real time.