Wydział	Imię i nazwisko		Rok	Grupa	Zespół		
	1.						
	2.						
PRACOWNIA	Temat:	Temat:					
FIZYCZNA							
WFiIS AGH							
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA		

Ćwiczenie nr 43: HALOTRON

Cel ćwiczenia

Celem ćwiczenie jest zapoznanie się ze zjawiskiem Halla, wycechowanie halotronu i pomiar rozkładu pola magnetycznego pochodzącego od cewki kołowej i magnesu trwałego.

	Zagadnienia kontrolne	Ocena i podpis
1.	Pojęcie pola elektrycznego i definicja wektora natężenie tego pola E .	
2.	Pojęcie potencjału pola elektrycznego V oraz napięcia U . Omów wzór na obliczanie pracy w polu elektrycznym.	
3.	Podaj prawo Ohma: wersja makroskopowa i mikroskopowa.	
4.	Omów takie wielkości jak: wektor gęstości prądu \mathbf{j} , prędkość unoszenia \mathbf{v} , koncentracja nośników prądu n . Podaj związek miedzy tymi wielkościami.	
5.	Pojęcie pola magnetycznego i indukcji magnetycznej B . Kształt linii pola magnetycznego wokół przewodnika prostoliniowego i cewki.	
6.	Podaj prawo Biota-Savarta i wyprowadź wzór na indukcję magnetyczną ${\bf B}$ w środku kołowego przewodnika o promieniu ${\it R}$, w którym płynie w nim prąd o natężeniu ${\it I}$.	

7.	Podaj wzór na siłę Lorentza i omów zachowanie się ładunków jednorodnym polu magnetycznym.	
8.	Omów zjawisko Halla i wyprowadź wzór na napięcie Halla.	

1. Układ pomiarowy

Na rysunku 2 przedstawiony jest schemat układu pomiarowego

Rys. 2. Schemat układu pomiarowego

2. Wykonanie ćwiczenia

A. Cechowanie halotronu

- 1. Zestawić obwód zgodnie ze schematem przedstawionym na rysunku 2. Po sprawdzeniu przez prowadzącego zajęcia włączyć mierniki i układy zasilające. (Włączenia najlepiej dokonać w obecności prowadzącego zajęcia).
- 2. Ustawić halotron w środku cewki:
 - a) przesuwając halotron w kierunku poziomym znaleźć położenie odpowiadające maksymalnej wartości U.
 - b) przesuwając halotron w kierunku pionowym znaleźć położenie odpowiadające minimalnej wartości U.
- 3. Wykonać pomiar napięcia U w funkcji natężenia prądu cewki I_s dla trzech wartości prądu halotronu I. Jeżeli prowadzący zajęcia nie ustali inaczej to:
 - dla prądu halotronu *I* przyjąć wartości 3,5; 5,0 i 7,5 mA.
 - prąd cewki I_s zmieniać w zakresie 0 10 A, co 1 A.

Uzyskane wyniki wpisać do tabeli 1 i nanieść na wykres 1

B. Pomiar rozkładu pola magnetycznego wzdłuż osi cewki

- 1. Ustalić prąd halotronu I i cewki I_c (zaleca się przyjąć wartości maksymalne czyli odpowiednio 7,5 mA i 10 A).
- 2. Zaczynając od środka cewki przesuwać halotron co 0,5 cm i odczytywać napięcie U. Wyniki wpisać do tabeli 2. **Uwaga**: co kilka pomiarów wyłączyć prąd halotronu i sprawdzić wartość napięcia U_r . W przypadku wystąpienia istotnych różnic tych wartości zwrócić się do prowadzącego zajęcia o sprawdzenie układu pomiarowego.

C. Pomiar indukcji pola magnetycznego dla magnesu stałego (ferrytowego).

 Wyłączyć prąd cewki i umieścić w układzie magnes ferrytowy. Podobnie jak w punkcie B dokonać pomiaru napięcia U dla trzech odległości halotronu od magnesu: x = 0 cm, 5 cm i 10 cm.

Wariant do wykonania (określa prowadzący)

Wykonaj pomiary opisane w punktach	
	podpis

3. Wyniki pomiarów

Tabela 1

Prąd cewki I_c [A]	0	1	2	3	4	5	6	7	8	9	10
Prąd halotronu <i>I</i> [mA]	Napięcie U [mV]										

2. Opracowanie wyników pomiarów.

A. Cechowanie halotronu

- 1. Na wykresie 1, dla każdego prądu halotronu dopasować prostą metodą graficzną. Uwaga: Proste te można również wyznaczyć metodą regresji liniowej.
- 2. Z wykresu prostych wyznaczyć ich parametry czyli współczynniki kierunkowe i punkty przecięcia z osią rzędnych.
- 3. W oparciu o równanie (6) i wyniki z punktu 2 obliczyć stałą holotronu *c* i opór *R* (po trzy wartości).
- 4. Dla tych trzech wartości c i R obliczyć wartość średnią i niepewność standardową.

Obliczenia:

B. Pomiar rozkładu pola magnetycznego wzdłuż osi cewki

- 1. Przekształcając równania (6) i korzystając z wyznaczonych w punkcie **A** wartości *c* i *R* obliczyć wartości indukcji pola magnetycznego *B* w odpowiednich punktach i wpisać do tabeli 2.
- 2. Wykonać wykres zależności indukcji pola magnetycznego *B* w funkcji odległości od środka cewki (wykres 2).
- 3. Na tle punktów doświadczalnych (wykres 2) nanieść zależność teoretyczną, którą przedstawia równanie:

$$B(x) = \frac{B_0}{\left(1 + \frac{x}{r}\right)^{\frac{3}{2}}}$$

Gdzie – B_0 jest indukcją magnetyczną w środku cewki, x jest odległością od środka cewki wzdłuż osi symetrii, r jest promieniem cewki.

Wykres 2 (wkleić papier milimetrowy)

C. Pomiar indukcji pola magnetycznego dla magnesu stałego (ferrytowego). (przedstawienie wyników i obliczeń)

- 1. Analogicznie jak w punkcie B(1) obliczyć indukcję pola magnetycznego B dla zadanych odległości.
- 2. Oszacować niepewności i porównać wartości pola magnetycznego magnesu i cewki