Proofs

Continuing on chapter 1

Definitions

- A theorem is a valid logical assertion which can be proved using:
 - axioms (statements which are given to be true)
 - other theorems, and
 - <u>rules of inference</u> (logical rules which allow the deduction of conclusions from premises).
- A *lemma* (not a "lemon") is a 'pre-theorem' or a result which is needed to prove a theorem.
- A *corollary* is a 'post-theorem' or a result which follows directly from a theorem.

Rules of inference

 Rules of inference are <u>tautologies</u> of the following form:

$$H_1 \wedge H_2 \wedge \dots H_n \rightarrow C$$

- Where each H_i is a *hypothesis*, and C is the conclusion.
- I.e., all rules of inference (and theorems!) are of the form

$$(H_1 \land H_2 \land \dots H_n \rightarrow C) \equiv T$$

Alternative (symbolic) notation

• $(H_1 \land H_2 \land \dots H_n \rightarrow C) \equiv T$ is often written in the following form:

$$H_1$$
 H_2
 \vdots
 H_n
 $\therefore C$

• E.g., the tautology $(P \land (P \rightarrow Q)) \rightarrow Q$

is written as

$$P$$

$$P \to Q$$

$$\therefore Q$$

 It is known as modus ponens

Rule of Inference	Tautology	Name
$\frac{p}{\therefore p \vee q}$	$p \to (p \lor q)$	Addition
$\frac{p \wedge q}{\therefore p}$	$(p \land q) \rightarrow p$	Simplification
$ \begin{array}{c} p \\ \underline{q} \\ \vdots p \wedge q \end{array} $	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
$ \begin{array}{c} p \\ \underline{p \to q} \\ \therefore q \end{array} $	$(p \land [p \rightarrow q]) \rightarrow q$	Modus ponens

Rule of Inference	Tautology	Name
$\neg q$		Modus tollens
$p \rightarrow q$	$\left[\neg q \land (p \rightarrow q) \right] \rightarrow \neg p$	
$\therefore \neg p$		
$p \rightarrow q$		Hypothetical
$\underline{q \rightarrow r}$		syllogism
$\therefore \overline{p \to r}$	$ \left[(p \to q) \land (q \to r) \right] \to (p \to r) $	
$p \lor q$		Disjunctive
<u>¬p</u>	$\left[(p \lor q) \land (\neg p) \right] \to q$	syllogism
$\therefore q$		
$p \lor q$	_	Resolution
$\underline{\neg p \lor r}$	$ \left[(p \lor q) \land (\neg p \lor r) \right] \rightarrow (q \lor r) $	
$\therefore q \vee r$		

Example of a proof using inference

Consider the argument given in Example 7 in the text:

If you send me an e-mail message, then I will finish writing the program.

If you do not send me an e-mail message, then I will go to sleep early.

If I go to sleep early, then I will wake up feeling refreshed.

Therefore:

If I do not finish writing the program, then I will wake up feeling refreshed

Example continued...

- We need to determine what are the building blocks of this argument.
- Let
 - e: you send me an e-mail message.
 - p: I finish writing the program.
 - s: I go to sleep early
 - r: I wake up feeing refreshed.

What we need to prove is that

$$e \rightarrow p$$

$$\neg e \rightarrow s$$

$$s \rightarrow r$$

$$\vdots \quad \neg p \rightarrow r$$

Truth Table

p	S	r	e	$e \rightarrow p$	$\neg e \rightarrow s$	$s \rightarrow r$	$\neg p \rightarrow r$	\
T	T	T	T	T	T	T	T	T
Т	T	Т	F	T	T	T	T	T
T	T	F	T	T	Т	F	Т	T
T	T	F	F	T	Т	F	Т	T
Т	F	Т	Т	Т	Т	Т	Т	T
T	F	T	F	T	F	Т	Т	T
Т	F	F	T	T	Т	T	Т	T
Т	F	F	F	Т	Т	Т	Т	T
F	Т	Т	T	F	T	T	Т	T
F	T	T	F	T	F	T	T	T
F	T	F	T	F	T	F	F	T
F	T	F	F	T	Т	F	F	T
F	F	T	T	F	T	T	T	T
F	F	T	F	T	F	T	Т	T
F	F	F	Т	F	Т	Т	F	T
F	F	F	F	Т	F	T	F	T 9

Example (continued)

Steps	Reasons
1. $e \rightarrow p$	Hypothesis
$2. \neg p \rightarrow \neg e$	Contra-positive on Step 1
$3. \neg e \rightarrow s$	Hypothesis
$4. \neg p \to s$	Hypothetical syllogism on steps 2,3
$5. S \rightarrow r$	Hypothesis
6. $\neg p \rightarrow r$	Hypothetical syllogism on steps 4,5

Note, at each step we only used either an equivalence rule or a rule of inference

Steps

- Create a list of logical expressions
- Each entry in your list is either
 - A hypothesis
 - Obtained using inference rules on previous entries on you list, or using equivalence rules on previous entries on your list.
 - Your final entry on your list should be the conclusion you are trying to reach.

Fallacies (i.e. screw-ups!!!)

- Fallacies are incorrect inferences
- The fallacy of affirming the consequent
 - if the butler did it, he has blood in his hands
 - the butler had blood in his hands
 - therefore, the butler did it
- This (invalid!!!) argument has the form:

$$\begin{array}{c} p \to q \\ \underline{q} \\ \vdots p \end{array} \qquad \begin{array}{c} ((p \to q) \land q) \to p \\ \text{IT IS NOT A TAUTOLOGY!} \end{array}$$

More fallacies

- Fallacy of denying the antecedent (hypothesis)
 - If the butler is nervous, he did it.
 - The butler is really mellow (relaxed)
 - Therefore, the butler didn't do it.
- This (invalid!!!) argument has the form:

$$\begin{array}{c} p \to q \\ \underline{\neg p} \\ \therefore \neg q \end{array} \qquad ((p \to q) \land \neg p) \to \neg q \qquad \text{IT IS NOT A TAUTOLOGY!}$$

Rules of Inference for Quantifiers

$$\forall x P(x)$$

 $\therefore P(c)$

Universal Instantiation (UI)

(c can be any element of U that you want)

P(c) for an arbitrary c

 $\therefore \forall x P(x)$

Universal Generalization (UG)

P(c)

 $\therefore \exists x P(x)$

(Here, you do need to know the specific value of c)

Existential Generalization (EG)

 $\exists x P(x)$

 $\therefore P(c)$ for some c

Existential Instantiation (EI)

(Here, you don't know the specific value of c!)

Example

- Prove the following:
 - Every man has two legs. John Smith is a man.
 - Therefore, John Smith has two legs.
- Define the predicates:
 - -M(x): x is a man
 - L(x): x has two legs
 - J: John Smith, a member of the universe
- The argument becomes $\forall x (M(x) \rightarrow L(x))$ M(J)

$$\therefore L(J)$$

Example continued

Step	S	Reasons
1.	$\forall x \big(M(x) \to L(x) \big)$	Hypothesis
2.	$M(J) \to L(J)$	Universal instantiation on Step 1
3.	M(J)	Second Hypothesis
4.	L(J)	Modus ponens on steps 2,3

Proof of Lewis Carroll's earlier example

$$\forall x \left(L\left(x\right) \rightarrow F\left(x\right) \right)$$

Recall
$$\exists x (L(x) \land \neg C(x))$$

$$\therefore \ \exists x \ (F(x) \land \neg C(x))$$

Step		Reason
1.	$\exists x (L(x) \land \neg C(x))$	Hypothesis
2.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Existential instantiation
3.	$\forall x (L(x)) \rightarrow F(x)$	Hypothesis
4.	$\left(L\left(c_{0}\right)\rightarrow F\left(c_{0}\right)\right)$	Universal instantiation
5.	$\neg C (c_0)$	Simplification, step 2
6.	$L(c_0)$	Simplification, step 2
7.	$F\left(c_{0}\right)$	Modus ponens, step 4,6
8.	$F(c_0) \wedge \neg C(c_0)$	Conjunction step 5,7
9.	$\exists x (F(x) \land \neg C(x))$	Existential generalization

Theorems in practice

Assume that someone has proven the following tautology.

$$(H_1 \wedge H_2 \wedge \dots H_n \rightarrow C) \equiv T$$

- Assume also that H_1 through H_n have been proven true by someone else (or perhaps they are simply assumed to be true, i.e., axioms) then,
 - We know the implication $H_1 \wedge H_2 \wedge \cdots \wedge H_n \rightarrow C$ always returns true (it is a tautology)
 - If we have that someone else proved that $H_1 \wedge H_2 \wedge \cdots \wedge H_n$ is true then,
 - C *must* be true (which is what you want) because only true can imply true (recall that the implication was shown to be a tautology).

Direct Proof Method

 Using rules of inference to derive your result is known as the "direct" method.

Example

- Show the following
 - If horses fly or cows eat artichokes, then the mosquito is the national bird.
 - If the mosquito is the national bird then peanut butter tastes good on hot dogs.
 - But peanut butter tastes terrible on hot dogs.
 - Therefore, cows don't eat artichokes.
- Proposition
 - F Horses fly
 - A Cows eat artichokes
 - M The mosquito is the national bird
 - Peanut butter tastes good on hot dogs

Continued ...

 Represent the formal argument using the variables

$$1.(F \vee A) \rightarrow M$$

$$2.M \rightarrow P$$

$$3.\neg P$$

$$\therefore \neg A$$

<u>Assertion</u>

$$\overline{1.(F \vee A)} \rightarrow M$$

$$2.M \rightarrow P$$

$$3.(F \lor A) \rightarrow P$$

$$4.\neg P$$

$$5.\neg(F \lor A)$$

$$6.\neg F \land \neg A$$

$$7. \neg A \land \neg F$$

$$8.\neg A$$

Use the three hypotheses and the rules of inference and any logical equivalences obtain the conclusion.

Reasons

Hypothesis 1.

Hypothesis 2.

steps 1 and 2 and

hypothetical syll.

Hypothesis 3.

steps 3 and 4 and

modus tollens

step 5 and DeMorgan

step 6 and

commutativity of 'and'

step 7 and simplification

Trivial Proofs

- You want to show H → C, and you "know" C is true,
 - I.e. if you assume that C is true
 - then you can conclude that $H \rightarrow C$ regardless of H
 - H could be ``dogs can fly" and we are still fine.
- Why? This is because p

•

$$q \rightarrow p$$

is a rule of inference (i.e. $p \rightarrow (q \rightarrow p)$) is a tautology

Trivial Proof (continued ...)

- E.g.,
 - if Dr. Cobb is ten feet tall then 0 + 1 = 1
 - If the moon is made of cheese then UT Dallas is part of the UT system

Vacuous Proof

- If we know the hypothesis H is false, then we know H → C for any C.
 - This is because $F \rightarrow C$ is a tautology.

- E.g.,
 - -if 0 = 1 then I am ten feet tall
 - If the moon is made of cheese then UT Dallas has a football team

Indirect Proof

- Remember direct proofs?
- An indirect proof is that, instead of a direct proof of $H \rightarrow C$, we do a direct proof of $\neg C \rightarrow \neg H$
- Note that by the contra-positive rule, these two are the same.

Abbreviated Proofs

- Writing things down in "perfect logic" often would yield pages and pages and pages of proof
- Thus, people use abbreviated (often just English) arguments
- This simplifies reading a proof, but if one is not careful, it can introduce errors (invalid proofs!)

Direct Method example

Theorem: If 6x + 9y = 101, then x or y is not an integer.

Proof: (*Direct*) Assume 6x + 9y = 101 is true.

Then from the rules of algebra 3(2x + 3y) = 101.

But 101/3 is not an integer so it must be the case that one of 2x or 3y is not an integer (maybe both).

Therefore, one of x or y must not be an integer.

Q.E.D.

Indirect Proof example

A *perfect* number is one which is the sum of all its divisors except itself. For example, 6 is perfect since 1 + 2 + 3 = 6. So is 28.

Theorem: A perfect number is not a prime.

Proof: (*Indirect*). We assume the number p is a prime and show it is not perfect.

But the only divisors of a prime are 1 and itself.

Hence the sum of the divisors less than p is 1 which is not equal to p.

Hence p cannot be perfect.

Q.E.D

Proof by Contradiction

- To show M, assume $\neg M$ is true, then derive a contradiction (i.e., derive false)
- I.e., we are proving that $\neg M \rightarrow F$
- Note that if we take the contra-positive of the above we have

$$T \rightarrow M$$

This is just equivalent to M.

Example

Theorem: There is no largest prime number.

(Note that there are no formal hypotheses here.)

We assume the conclusion 'there is no largest prime number' is false.

There is a largest prime number.

Call it p.

Hence, the set of all primes lie between 1 and p.

Form the product of these primes:

$$r = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot \dots \cdot p$$
.

But r + 1 is a prime larger than p. (Why?).

This contradicts the assumption that there is a largest prime.

Q.E.D.

Proof by Cases

- Assume we want to show that $(H_1 \vee H_2 \vee H_3) \rightarrow C$
- Then, we take advantage of the following equivalence

$$((H_1 \lor H_2 \lor H_3) \xrightarrow{} C)$$

= $((H_1 \xrightarrow{} C) \land (H_2 \xrightarrow{} C) \land (H_3 \xrightarrow{} C))$

 It is important to show that it holds for ALL cases (in this case, three cases)

Example

Let \otimes be the operation 'max' on the set of integers:

if $a \ge b$ then $a \otimes b = \max\{a, b\} = a = b \otimes a$.

Theorem: *The operation* \otimes *is associative.*

For all a, b, c

$$(a \otimes b) \otimes c = a \otimes (b \otimes c)$$
.

Proof:

Let a, b, c be arbitrary integers.

Then one of the following 6 cases must hold (are exhaustive):

1.
$$a \ge b \ge c$$

2.
$$a \ge c \ge b$$

3.
$$b \ge a \ge c$$

4.
$$b \ge c \ge a$$

5.
$$c \ge a \ge b$$

6.
$$c \ge b \ge a$$

Case 1: $a \otimes b = a$, $a \otimes c = a$, and $b \otimes c = b$.

Hence

$$(a \otimes b) \otimes c = a = a \otimes (b \otimes c).$$

Therefore the equality holds for the first case.

The proofs of the remaining cases are similar (and are left for the student).

Q. E. D.

Existence Proofs

- To prove that $\exists x P(x)$, we have **constructive** and **non-constructive** proofs
- In a <u>constructive proof</u>, simply exhibit a c such that P(c) is true (finding c may be by brute force)
- E.g., there exists an integer solution to the equation $x^2 + y^2 = z^2$
 - Proof: simply choose x = 3, y = 4, and z = 5
 - (finding these values may be by exhaustive search, e.g., by a computer program)

Non-constructive Existence Proof

- Want to show that $\exists x P(x)$
- We do so by assuming no c exists such that
 P(c) is true, and then arrive at a contradiction
 - We thus prove $\neg \exists x P(x) \rightarrow F$, i.e. a contradiction proof.
- Note you never exhibit a c' such that P(c') is true!
 - Hence, it is ``non-constructive''

Example

Theorem: There exists an irrational number.

Proof:

Assume there doesn't exist an irrational number.

Then all numbers must be rational.

Then the set of all numbers must be countable.

Then the real numbers (rational + irrational) in the interval [0, 1] is a countable set.

But we have already shown this set is not countable (page 160).

Hence, we have a contradiction (The rationals in the set [0,1] is countable and not countable).

Therefore, there must exist an irrational number.

Universal Quantification

- To show that $\forall x P(x)$,
 - We consider any element c in the universe
 - There is *nothing* specific about *c*, it can be *any* element
 - Show P(c) is true
 - Your argument must hold irrespective of which c value is chosen (zero is a typical screw up for numbers, think division by zero!).
 - From universal generalization, $\forall x P(x)$ is true.

Example

Theorem: For the universe of integers, x is even iff x^2 is even.

Proof: The quantified assertion is

$$\forall x[x \text{ is even } \leftrightarrow x^2 \text{ is even}]$$

We assume x is arbitrary.

Recall that $P \leftrightarrow Q$ is equivalent to $(P \rightarrow Q) \land (Q \rightarrow P)$.

continued ...

Case 1. We show if x is even then x² is even using a direct proof (the *only if* part or *necessity*).

If x is even then x = 2k for some integer k.

Hence, $x^2 = 4k^2 = 2(2k^2)$ which is even since it is an integer which is divisible by 2.

This completes the proof of case 1.

Case 2. We show that if x^2 is even then x must be even (the *if* part or *sufficiency*).

We use an indirect proof:

Assume x is not even and show x^2 is not even.

If x is not even then it must be odd.

So, x = 2k + 1 for some k.

Then

$$x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

which is odd and hence not even.

This completes the proof of the second case.

Therefore we have shown x is even iff x^2 is even.

Since x was arbitrary, the result follows by UG.

Q.E.D.

Negation of Universal Quantifier

• To show that $\neg \forall x P(x)$

- Typically, you do a *constructive proof* of $\exists x \neg P(x)$, which is equivalent to $\neg \forall x P(x)$
 - I.e., find an element c such that $\neg P(c)$ holds
- This is known as finding a **counter-example** to $\forall x P(x)$

Negation of Existential Quantifier

- To show that $\neg \exists x P(x)$ (which equals $\forall x \neg P(x)$)
 - Typically, do a contradiction proof
 - Assume that for an element c, P(c) holds (i.e., $\exists x P(x)$)
 - There is *nothing* specific about *c*, it can be *any* element
 - Reach false from this
 - Note: I cannot apply the constructive method since it is used to prove $\exists x \ P(x)$ rather than $\neg \exists x \ P(x)$.
 - I.e., if you choose a specific c_0 , so what? If $P(c_0)$ is true, you just proved that $\neg \exists x P(x)$ is false! If $P(c_0)$ is false, it is not helpful since you need to show $\forall x \neg P(x)$ not just for one c_0 .
 - Or, you can use the method of the previous slides but with $\forall x \neg P(x)$ rather than $\forall x P(x)$

Remarks

 Learning how to construct proofs is quite difficult, and is a slow learning process. One only learns how to do it by practicing.

Be careful of fallacies and incorrect arguments

 The book gives you examples of some incorrect proofs.