

FCC 47 CFR PART 15 SUBPART C TEST REPORT

For

Applicant: Win Accord Ltd.

12F, No.225, Sec. 5, Nanjing E. Rd., Songshan Dist,

Address: Taipei City 105, Taiwan

Product Name: MID-PTT 726

Model Name: PT07102-46-XXX, WayteQ xPAD-70

Brand Name: N/A

FCC ID: ZIG-PTT726

Report No.: STS110317F3

Date of Issue: May 16,2011

Issued by: Most Technology Service Co., Ltd.

No.5, Langshan 2nd Rd., North Hi-Tech Industrial Park ,Nanshan, Address :

Shenzhen, Guangdong ,China

Tel: 86-755-8617 0306

Fax: 86-755-8617 0310

The report consists 44 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by MOST. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1 Product Information	5
2.2 Objective	6
2.3 Test Standards and Results	6
2.4 Environmental Conditions	6
3. TEST FACILITY	7
3.1TEST FACILITY	7
3.2 GENERAL TEST PROCEDURES	7
3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	8
4. SETUP OF EQUIPMENT UNDER TEST	9
4.1 SUPPORT EQUIPMENT	9
4.2 TEST EQUIPMENT LIST	10
5. 47 CFR Part 15C 15.247 Requirements	11
5.1 Peak Output Power	11
5.1.1 Requirement	11
5.1.2 Test Description	11
5.1.3 Test Setup	11
5.1.4 EUT Setup and Operating Conditions	11
5.1.5 Test Result	11
5.2 6dB Bandwidth	13
5.2.1 Requirement	13
5.2.2 Test Description	
5.2.3 Test Setup	13
5.2.4 Test Procedure	
5.2.5 EUT Setup and Operating Conditions	
5.2.6 Test Result	
5.3 Power Spectrum Density	
5.3.1 limits of Power Spectrum Density	
5.3.2 Test Procedure	
5.3.3 Test Setup	
5.3.4 EUT Setup and Operating Conditions	
5.3.5 Test Result	15
5.4 Band Edge	17
5.4.1 Requirement of the standard	17
5.4.2 Test Procedure	17

5.4.3 Test Setup	17
5.4.4 EUT Setup and Operating Conditions	17
5.4.5 Test Result	17
5.5 Conducted Spurious Emission	19
5.5.1 Requirement of the standard	19
5.5.2 Test Procedure	19
5.5.3 Test Setup	19
5.5.4 EUT Setup and Operating Conditions	19
5.5.5 Test Result	20
5.6 Radiated Emission Test	24
5.6.1 Requirement	24
5.6.2 Test Description	25
5.6.3 Test Description	26
5.6.4 Test Result	27
5.7 Power Line Conducted Emission Test	29
5.7.1 Limits of Line Conducted Emission Test	29
5.7.2 Block Diagram of Test Setup	29
5.7.3 Preliminary Procedure of Line Conducted Emission Test	30
5.7.4 Final Procedure of Line Conducted Emission Test	30
5.7.5 Test Result of Line Conducted Emission Test	31
APPENDIX 1	33
PHOTOGRAPHS OF TEST SETUP	33
APPENDIX 2	36
PHOTOGRAPHS OF EUT	36

1. VERIFICATION OF CONFORMITY

Equipment Under Test: MID-PTT 726

Brand Name: N/A

Model Number: PT07102-46-XXX, WayteQ xPAD-70

FCC ID: ZIG-PTT726

Applicant: Win Accord Ltd.

12F, No.225, Sec. 5, Nanjing E. Rd., Songshan Dist, Taipei City 105, Taiwan

Manufacturer: Win Accord Ltd.

7F, Garden City Cyber Port, Nanhai Road A, No.1079, Nanshan District,

Shenzhen, China

Technical Standards: 47 CFR Part 15 Subpart C

File Number: STS110317F3

Date of test: April 20, 2011- May 16,2011

Deviation: None
Condition of Test Sample: Normal
Test Result: PASS

The above equipment was tested by MOST for compliance with the requirements set forth in FCC rules and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Tested by (+ signature):	Petter pins		
Review by (+ signature):	Petter Ping May 16,2011		
	July Wen May 16,2011		
Approved by (+ signature):	Tang Yang		
_	Terry Yang May 16,2011		

2. GENERAL INFORMATION

2.1 Product Information

Product	MID-PTT 726
Trade Name	N/A
Model Number	PT07102-46-XXX
Power Supply	DC 5V by AC/DC adapter 100~240V 50/60Hz
Frequency Range	IEEE 802.11b/g mode: 11 Channels (2412MHz – 2462MHz) IEEE 802.11n Standard-20 MHz Channel mode: 11 Channels (2412MHz – 2462MHz) IEEE 802.11n Wide-40 MHz Channel mode: 7 Channels (2422MHz – 2452MHz)
Modulation Type	IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mpbs) IEEE 802.11g mode: OFDM (6, 9, 12, 18, 24, 36, 48 and 54 Mpbs) IEEE 802.11n Standard-20 MHz Channel mode: OFDM (6.5, 13, 19.5, 26, 39, 52, 58.5, 65.0Mbps) IEEE 802.11n Wide-40 MHz Channel mode: OFDM (13.5, 27, 40.5, 54, 81, 108, 121.5, 135Mbps)
Channel Number	11
Temperature Range	-20°C ~ 55°C

NOTE:

^{1.} Please refer to Appendix I for the photographs of the EUT. For a more detailed features description about the EUT, please refer to User's Manual.

2.2 Objective

The objective of the report is to perform tests according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15 (10-1-05 Edition)	Radio Frequency Devices

2.3 Test Standards and Results

Test items and the results are as bellow:

No.	Section	Description	Result	Date of Test
1	15.247(b)	Peak Output Power	PASS	2011-05-10
2	15.247(a)	Bandwidth	PASS	2011-05-10
3	15.247(d)	Peak Power Spectral Density	PASS	2011-05-10
4	15.247(c)	Conducted Spurious Emission	PASS	2011-05-10
5	15.247(c)	Band Edge	PASS	2011-05-10
6	15.209 15.247(c)	Radiated Emission	PASS	2011-05-10
7	15.207	Power Line Conducted Emission Test	PASS	2011-05-12

Note: 1. The test result judgment is decided by the limit of measurement standard

2. The information of measurement uncertainty is available upon the customer's request.

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C - Humidity: 30-60 %

- Atmospheric pressure: 86-106 kPa

3. TEST FACILITY 3.1TEST FACILITY

Test Site: Most Technology Service Co.,ltd

Location: No.5, Langshan 2nd Rd., North Hi-Tech Industrial park , Nanshan

Shenzhen, Guangdong, China

Description: There is one 3m semi-anechoic an area test sites and two line conducted labs for final

test. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2009 and CISPR

16 requirements. The FCC Registration Number is 490827.

Site Filing: The site description is on file with the Federal Communications

Commission, 7435 Oakland Mills Road, Columbia, MD 21046.

Instrument Tolerance: All measuring equipment is in accord with ANSI C63.4:2009 and CISPR 16

requirements that meet industry regulatory agency and accreditation agency

requirement.

Ground Plane: Two conductive reference ground planes were used during the Line Conducted

Emission, one in vertical and the other in horizontal. The dimensions of these ground planes are as below. The vertical ground plane was placed distancing 40 cm to the rear of the wooden test table on where the EUT and the support equipment were placed during test. The horizontal ground plane projected 50 cm beyond the footprint of the EUT system and distanced 80 cm to the wooden test table. For Radiated Emission Test, one horizontal conductive ground plane extended at least 1m beyond the periphery of the EUT and the largest measuring antenna, and covered the entire

area between the EUT and the antenna.

3.2 GENERAL TEST PROCEDURES

EUT Function and Test Mode

The EUT has been tested under normal operating (TX) and standby (RX) condition.

The field strength of radiation emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis).

The following data show only with the worst case setup.

The worst case of Y axis was reported.

Based on client request, all normal using modes of the Bluetooth function were tested but only the worst test data of the worst mode is reported by this report.

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4:2009, Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4:2009.

3.3 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475	16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17	399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267	4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0
12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	167.72 - 173.2 240 - 285 322 - 335.4	3332 - 3339 3345.8 - 3358 3600 - 4400	31.2 - 31.8 36.43 - 36.5 (²)

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

4. SETUP OF EQUIPMENT UNDER TEST 4.1 SUPPORT EQUIPMENT

Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord

Remark:

All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipment used at Most for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1.0 GHz or above.

No.	Equipment	Manufacturer	Model No.	S/N	Calibration due date
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2012/03/14
2	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2012/03/14
3	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2012/03/14
4	Terminator	Hubersuhner	50Ω	No.1	2012/03/14
5	RF Cable	SchwarzBeck	N/A	No.1	2012/03/14
6	Test Receiver	Rohde & Schwarz	ESPI	101202	2012/03/14
7	Bilog Antenna	SCHWARZBECK	BBHA9120D	D69250	2012/03/14
8	Cable	Resenberger	N/A	NO.1	2012/03/14
9	Cable	SchwarzBeck	N/A	NO.2	2012/03/14
10	Cable	SchwarzBeck	N/A	NO.3	2012/03/14
11	DC Power Filter	DuoJi	DL2×30B	N/A	2012/03/14
12	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2012/03/14
13	3 Phase Power Line Filter	DuoJi	FNF 402B30	N/A	2012/03/14
14	Test Receiver	Rohde & Schwarz	ESCI	100492	2012/03/14
15	Absorbing Clamp	Luthi	MDS21	3635	2012/03/14
16	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2012/03/14
17	AC Power Source	Kikusui	AC40MA	LM003232	2012/03/14
18	Test Analyzer	Kikusui	KHA1000	LM003720	2012/03/14
19	Line Impendence Network	Kikusui	LIN40MA- PCR-L	LM002352	2012/03/14
20	ESD Tester	Kikusui	KES4021	LM003537	2012/03/14
21	EMCPRO System	EM Test	UCS-500-M4	V0648102026	2012/03/14
22	Signal Generator	IFR	2032	203002/100	2012/03/14
23	Amplifier	A&R	150W1000	301584	2012/03/14
24	CDN	FCC	FCC-801-M2-25	47	2012/03/14
25	CDN	FCC	FCC-801-M3-25	107	2012/03/14
26	EM Injection Clamp	FCC	F-203I-23mm	403	2012/03/14
27	RF Cable	MIYAZAKI	N/A	No.1/No.2	2012/03/14
28	Universal Radio Communication Tester	ROHDE&SCHWARZ	CMU200	0304789	2012/03/14
29	Telecommunication Antenna	European Antennas	PSA 75301R/170	0304213	2012/03/14
30	Telecommunication Test Equipment	R&S	CMU200	N/A	2012/03/14

NOTE: Equipments listed above have been calibrated and are in the period of validation.

5. 47 CFR Part 15C 15.247 Requirements

5.1 Peak Output Power

5.1.1 Requirement

According to FCC section 15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

5.1.2 Test Description

The EUT was connected to the Spectrum Analyzer. The radio frequency load attached to the EUT antenna terminal was 50 Ohm. The lost of the cables and the test system is calibrated to correct the reading.

5.1.3 Test Setup

5.1.4 EUT Setup and Operating Conditions

Controlled by an embedded test program provided by applicant, the EUT was set to continuous transmitting at maximum peak output power and different data rate(802.11b 11Mbps,802.11g 54Mbps),Lowest ,middle and highest channel were measured respectively.

5.1.5 Test Result

802.11b:

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (W)	Limit (W)	Result
Low	2412	12.83	0.0192		PASS
Mid	2437	12.85	0.0193	0.125	PASS
High	2462	12.79	0.0190		PASS

802.11g:

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (W)	Limit (W)	Result
Low	2412	11.45	0.0140		PASS
Mid	2437	11.40	0.0138	0.125	PASS
High	2462	11.36	0.0137		PASS

802.11 n-20MHz:

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (W)	Limit (W)	Result
Low	2412	11.15	0.0141		PASS
Mid	2437	11.11	0.0129	0.125	PASS
High	2462	11.08	0.0128		PASS

802.11n-40MHz:

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (W)	Limit (W)	Result
Low	2422	11.09	0.0129		PASS
Mid	2437	11.05	0.0127	0.125	PASS
High	2452	11.06	0.0128		PASS

5.2 6dB Bandwidth

5.2.1 Requirement

Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands.

The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2.2 Test Description

The EUT was connected to the Spectrum Analyzer. The radio frequency load attached to the EUT antenna terminal was 50 Ohm. The lost of the cables and the test system is calibrated to correct the reading.

5.2.3 Test Setup

5.2.4 Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100 kHz, VBW = RBW, Span = 20MHz, Sweep = auto.
- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

5.2.5 EUT Setup and Operating Conditions

Controlled by an embedded test program provided by applicant, the EUT was set to continuous transmitting at maximum peak output power and different data rate(802.11b 11Mbps,802.11g 54Mbps),Lowest ,middle and highest channel were measured respectively.

5.2.6 Test Result

802.11b:

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	12850		PASS
Mid	2437	12860	>500	PASS
High	2462	12900		PASS

802.11g

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	16610		PASS
Mid	2437	16610	>500	PASS
High	2462	16620		PASS

802.11 n-20MHz:

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	16620		PASS
Mid	2437	16600	>500	PASS
High	2462	16610		PASS

802.11 n-40MHz:

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2422	16620		PASS
Mid	2437	16600	>500	PASS
High	2452	16610		PASS

5.3 Power Spectrum Density

5.3.1 limits of Power Spectrum Density

1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

5.3.2 Test Procedure

- Place the EUT on the table and set it in transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 3. Record the max. Reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

5.3.3 Test Setup

5.3.4 EUT Setup and Operating Conditions

Controlled by an embedded test program provided by applicant, the EUT was set to continuous transmitting at maximum peak output power and different data rate(802.11b 11Mbps,802.11g 54Mbps),Lowest ,middle and highest channel were measured respectively.

5.3.5 Test Result

802.11b:

Channel	Frequency	Peak Power Spectrum Density (dBm)	Limit (dBm)	Result
Low	2412	-26.12		PASS
Mid	2437	-26.35	8.00	PASS
High	2472	-27.06		PASS

802.11g:

Cha	annel	Frequency	Peak Power Spectrum Density (dBm) Limit (dBm)		Result
L	.ow	2412	-30.58		PASS
N	Лid	2437	-31.43	8.00	PASS
Н	ligh	2462	-31.66		PASS

802.11 n-20MHz:

Channel	Frequency	Peak Power Spectrum Density (dBm)	Limit (dBm)	Result
Low	2412	-32.46		PASS
Mid	2437	-31.28	8.00	PASS
High	2462	-32.09		PASS

802.11 n-40MHz:

Channel	Frequency	Peak Power Spectrum Density (dBm)	Limit (dBm)	Result
Low	2422	-32.51		PASS
Mid	2437	-32.79	8.00	PASS
High	2452	-33.42		PASS

5.4 Band Edge

5.4.1 Requirement of the standard

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

5.4.2 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

5.4.3 Test Setup

5.4.4 EUT Setup and Operating Conditions

Controlled by an embedded test program provided by applicant, the EUT was set to continuous transmitting at maximum peak output power and different data rate(802.11b 11Mbps,802.11g 54Mbps),Lowest ,middle and highest channel were measured respectively.

5.4.5 Test Result

The radio frequency power beyond the band edge was 20dB below the peak output power, measured with 100 KHz resolution bandwidth.

The EUT operates at continuous transmit test mode. The peak and average test data of the lowest and highest channels are tested to verify the band edge emissions.

Test Mode		Channel Marked	Limit	Test Result Highest Emission (dBuv/m)			
rest	Mode	Frequency	(dBuv/m)	Ver	tical	Hor	izontal
				Peak	Average	Peak	Average
	Low	2300MHz		30.23	20.11	30.16	20.08
802.11 b	Channel	2390MHz		32.12	23.26	30.45	22.19
802.110	High	2483.5MHz		46.42	40.13	46.22	40.16
	Channel	2500MHz		31.28	23.01	30.48	23.05
	Low	2300MHz		30.15	20.26	30.04	20.01
000 44 =	Channel	2390MHz	74(Peak) 54(Average)	45.28	24.68	46.85	24.26
802.11 g	High	2483.5MHz		46.38	40.15	46.75	40.34
	Channel	2500MHz		30.69	22.45	30.53	23.26
	Low	2300MHz		30.36	20.51	30.24	20.12
802.11 n	Channel	2390MHz		46.49	23.90	46.12	24.74
-20MHz	High	2483.5MHz		46.05	40.31	46.66	40.29
	Channel	2500MHz		30.82	22.48	30.54	23.35
	Low	2300MHz		30.23	20.14	30.25	20.12
802.11 n	Channel	2390MHz		43.96	23.42	47.09	24.66
-40MHz	High	2483.5MHz		45.51	40.66	47.25	40.89
	Channel	2500MHz		30.44	22.76	31.46	23.94

5.5 Conducted Spurious Emission

5.5.1 Requirement of the standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.5.2 Test Procedure

- 1. Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.
- 2. The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.
- 3. Measurements are made over the 30MHz to 26.5GHz range with the transmitter set to the lowest, middle, and highest channels.

5.5.3 Test Setup

5.5.4 EUT Setup and Operating Conditions

Controlled by an embedded test program provided by applicant, the EUT was set to continuous transmitting at maximum peak output power and different data rate(802.11b 11Mbps,802.11g 54Mbps),Lowest ,middle and highest channel were measured respectively.

5.5.5 Test Result

Channel	Frequency (MHz)	Fundamental Level (dBm)	Emission Level Limit (dBm)
802.11b Low	2412	12.83	-7.17
802.11b Mid	2437	12.85	-7.15
802.11b High	2462	12.79	-7.21
802.11g Low	2412	11.45	-8.55
802.11g Mid	2437	11.40	-8.60
802.11g High	2462	11.36	-8.64
802.11 n-20M Low	2412	11.15	-8.85
802.11 n-20M Mid	2437	11.11	-8.89
802.11 n-20M High	2462	11.08	-8.92
802.11 n-40M Low	2422	11.09	-8.91
802.11 n-40M Mid	2437	11.05	-8.95
802.11 n-40M High	2452	11.06	-8.94

NO.	Frequency	Measurement Bandwidth		Limit	Margin
	MHz	KHz	Level (dBm)	dBm	dB
TX:802.1	1 b Low Channel				
1	<1000	100	\	-7.17	>20
2	4824	100	-37.45	-7.17	>20
3	7236	100	\	-7.17	>20
4	9648	100	\	-7.17	>20
5	12060	100	\	-7.17	>20
6	other	100	\	-7.17	>20
TX: 802.1	1 b Middle Channe]	·		
1	<1000	100	\	-7.15	>20
2	4874	100	-36.86	-7.15	>20
3	7311	100	\	-7.15	>20
4	9748	100	\	-7.15	>20
5	12185	100	\	-7.15	>20
6	other	100	\	-7.15	>20
TX: 802.1	1 b High Channel		·		
1	<1000	100	\	-7.21	>20
2	4924	100	-37.14	-7.21	>20
3	7386	100	\	-7.21	>20
4	9848	100	\	-7.21	>20
5	12310	100	\	-7.21	>20
6	other	100	\	-7.21	>20
Measure	ment uncertainty:±3	3.2dB			

NO.	Frequency	Measurement Bandwidth	Emission Level	Limit	Margin
	MHz	KHz	(dBm)	dBm	dB
TX:802.11	g Low Channel				
1	<1000	100	/	-8.55	>20
2	4824	100	-38.26	-8.55	>20
3	7236	100	\	-8.55	>20
4	9648	100	\	-8.55	>20
5	12060	100	\	-8.55	>20
6	other	100	\	-8.55	>20
TX: 802.1	1 g Middle Chanr	nel			
1	<1000	100	\	-8.60	>20
2	4874	100	-39.45	-8.60	>20
3	7311	100	\	-8.60	>20
4	9748	100	\	-8.60	>20
5	12185	100	/	-8.60	>20
6	other	100	\	-8.60	>20

TX: 802.1	1 g High Channel				
1	<1000	100	\	-8.64	>20
2	4924	100	-39.68	-8.64	>20
3	7386	100	\	-8.64	>20
4	9848	100	\	-8.64	>20
5	12310	100	\	-8.64	>20
6	other	100	\	-8.64	>20
Measuren	nent uncertainty:±3	3.2dB	•		

NO.	Frequency	Measurement Bandwidth	Emission Level	Limit	Margin
	MHz	KHz	(dBm)	dBm	dB
TX:802.1	1 n-20MHz Low Cha	annel			
1	<1000	100	\	-8.85	>20
2	4824	100	-39.23	-8.85	>20
3	7236	100	\	-8.85	>20
4	9648	100	\	-8.85	>20
5	12060	100	\	-8.85	>20
6	other	100	\	-8.85	>20
TX: 802.1	1 n-20MHz Middle	Channel			
1	<1000	100	\	-8.89	>20
2	4874	100	-39.68	-8.89	>20
3	7311	100	\	-8.89	>20
4	9748	100	\	-8.89	>20
5	12185	100	\	-8.89	>20
6	other	100	\	-8.89	>20
TX: 802.1	1 n-20MHz High Ch	nannel			
1	<1000	100	\	-8.92	>20
2	4924	100	-40.25	-8.92	>20
3	7386	100	\	-8.92	>20
4	9848	100	\	-8.92	>20
5	12310	100	\	-8.92	>20
6	other	100	\	-8.92	>20
Measure	ment uncertainty:±	3.2dB			

NO.	Frequency	Measurement Bandwidth	Emission Level	Limit	Margin
	MHz	KHz	(dBm)	dBm	dB
TX:802.11	n-40MHz Low C	hannel			
1	<1000	100	\	-8.91	>20
2	4824	100	-39.61	-8.91	>20
3	7236	100	\	-8.91	>20
4	9648	100	\	-8.91	>20

5	12060	100	\	-8.91	>20
6	other	100	\	-8.91	>20
TX: 802.1	1 n-40MHz Middle	e Channel			
1	<1000	100	\	-8.95	>20
2	4874	100	-39.94	-8.95	>20
3	7311	100	\	-8.95	>20
4	9748	100	\	-8.95	>20
5	12185	100	\	-8.95	>20
6	other	100	\	-8.95	>20
TX: 802.1	1 n-40MHz High C	Channel			
1	<1000	100	\	-8.94	>20
2	4924	100	-40.76	-8.94	>20
3	7386	100	\	-8.94	>20
4	9848	100	\	-8.94	>20
5	12310	100	\	-8.94	>20
6	other	100	\	-8.94	>20
Measure	ment uncertainty:	±3.2dB			

Note:Data of measurement within this frequency range shown "\" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5.6 Radiated Emission Test5.6.1 Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

In the above emission table, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

5.6.2 Test Description

Test Setup:

Blow 1GHz:

Above 1GHz:

5.6.3 Test Description

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

Above 1GHz:(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

5.6.4 Test Result

Below 1 GHz:

Operation Mode: Operationg Mode **Test Date:** 2010-05-10

Temperature: 20°C Tested by: Petter Ping

Humidity: 70 % RH **Polarity:** Ver. / Hor.

	Ant.	Peak	AV	Ant./	Actu	al Fs	Peak	AV		
Freq. (MHz)	Pol H/V	Reading (dBuV)		CL CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit	Limit (dBuV/m)	Margin (dB)	Remark
	٧								>20	Peak
N/A										
	Н								>20	Peak
N/A			-							

Note:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Remark"--- "means that the emission level is too low to be measured
- 3. The frequency is mainly from the environment noise.

Above 1 GHz

Operation Mode:Operationg ModeTest Date:2010-05-10Temperature:20°CTested by:Petter PingHumidity:70 % RHPolarity:Ver. / Hor.

	Ant.	Peak	AV	Ant. /	Actu	al Fs	Peak	AV		
Freq. (MHz)	Pol H/V		Reading (dBuV)		Peak (dBuV/m)	AV (dBuV/m)	Limit	Limit (dBuV/m)	Margin (dB)	Remark
4860.02	V	30.45		8.24	38.69		74.00	54.00	-15.31	Peak
N/A									>20	
4860.02	Η	29.64		8.24	37.88		74.00	54.00	-16.12	Peak
N/A									>20	

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
 - b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

40cm

Communication Antenna

FCC ID: ZIG-PTT726 Report No.: MOST110317F3

EUT >80cm

5.7 Power Line Conducted Emission Test

5.7.1 Limits of Line Conducted Emission Test

и		LISN					
80c.	Eroguenev	Maximum RF Line Voltage					
8	Frequency	Q.P.(dBuV)	Recei	ver Average(dBuV)			
	150kHz-500kHz	66-56		56-46			
	500kHz-5MHz	56	Sys	tem 46			
	5MHz-30MHz	60	Sim	ilator 50			

**Note: 1. the lower limit shall apply at the transition frequency.

5.7.2 Block Diagram of Test Setup

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

5.7.3 Preliminary Procedure of Line Conducted Emission Test

1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per FCC Part 15 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

- 2) Support equipment, if needed, was placed as per FCC Part 15.
- 3) All I/O cables were positioned to simulate typical actual usage as per FCC Part 15.
- 4) The EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5) All support equipments received power from a second LISN supplying power of AC 120V/60Hz, if any.
- 6) The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test:

	Preliminary Conducted Emission Test						
Frequency Range I	nvestigated		150KHz TO 30 MHz				
Mode of operation Date		Report No.	Data#	Worst Mode			
WiFi Mode	2011-05-12	STS110317F3	1_(L, N)	\boxtimes			

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

5.7.4 Final Procedure of Line Conducted Emission Test

EUT and support equipment was set up on the test bench as per step 9 of the preliminary test.

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.

The test data of the worst case condition(s) was reported on the Summary Data page.

5.7.5 Test Result of Line Conducted Emission Test

Address:No.5,Langshan 2nd Rd., North HI-Tech Industrial park Guangdong ,China

Tel: 0755-86170306 Fax: 0755-86170310

Power: AC 120V/60Hz

Limit: FCC Part15 B Class B QP

EUT: MID-PTT 726 M/N: PT07102-46-XXX Mode: FULL LOAD Note: GP302U-050-200

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dΒ	dBuV	dBuV	dΒ	Detector	Comment
1 .	0.2340	40.63	11.77	52.40	62.31	-9.91	peak	
2	0.3420	34.36	11.05	45.41	59.15	-13.74	peak	
3	1.4420	26.59	9.56	36.15	56.00	-19.85	peak	
4	2.9700	20.94	9.97	30.91	56.00	-25.09	peak	
5	8.4860	17.75	9.91	27.66	60.00	-32.34	peak	

Humidity: 60 %

[&]quot;:Maximum data x:Over limit !:over margin

Address:No.5,Langshan 2nd Rd., North HI-Tech Industrial park Guangdong ,China

Tel: 0755-86170306 Fax: 0755-86170310

Power: AC 230V/50Hz

Limit: EN55022 Class B QP

EUT: MID-PTT 726 M/N: PT07102-46-XXX Mode: FULL LOAD

Note: ADS-12G-06 05010GP

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dΒ	dBuV	dBuV	dB	Detector	Comment
1	•	0.1540	48.00	9.24	57.24	65.78	-8.54	peak	
2		0.1860	44.08	11.16	55.24	64.21	-8.97	peak	
3		0.9420	29.41	10.00	39.41	56.00	-16.59	peak	
4		2.9780	20.99	9.98	30.97	56.00	-25.03	peak	
5		6.8020	22.29	10.92	33.21	60.00	-26.79	peak	

Humidity: 60 %

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

RADIATED EMISSION TEST SETUP

APPENDIX 2 PHOTOGRAPHS OF EUT

FRONT VIEW OF SAMPLE

BACK VIEW OF SAMPLE

LEFT VIEW OF SAMPLE

RIGHT VIEW OF SAMPLE

TOP VIEW OF SAMPLE

BOTTOM VIEW OF SAMPLE

INTERNAL PHOTO OF SAMPLE - 1

INTERNAL PHOTO OF SAMPLE - 2

INTERNAL PHOTO OF SAMPLE -3

INTERNAL PHOTO OF SAMPLE-4

INTERNAL PHOTO OF SAMPLE-5

INTERNAL PHOTO OF ADAPTER-1

INTERNAL PHOTO OF ADAPTER-2

----END OF REPORT----