Solution de Scoring sur dossiers d'emprunt

Société "Prêt à dépenser"

Bailly DIOUNOU, Data Scientist junior – 02/12/2020

Contexte & périmètre du projet

 Fournir des éléments d'appréciation de la prédiction au chargé de relation client

Opportunités

- Aide à la décision automatisée et fiable, gain de temps
- Baisse relative du préjudice financier induit par le coût de l'opportunité.
- Ajout de clarté et de précision dans la relation client

- Analyse exploratoire des données
- Entrainement de modèles d'apprentissage de classification binaire
- Sélection des modèles les plus performants, suivant une métrique métier
- Prédiction et interprétation des modèles

Présentation générale du jeu de données Données statistiques de base-Données brutes

- Problème de classification binaire
- Ensemble de données financières de challenge Kaggle
 - Historique de prêts
 - Historique d'informations financières
 - Données sur le comportement antérieur de l'emprunteurs
- Application_*.csv: données sur le dossier de la candidature courante (informations financières et personnelles)
- Nombre de variables avant (encoding): 121 + 1, dont 16 catégorielles. Variable cible: Target
- Taille des échantillons:

•Application_train: 307k

•Application_test: 48.7k

Analyse exploratoire des données

Importée telle quelle du site de compétition Kaggle

Analyse Exploratoire des données

Faits marquants

Label & One Hot Encodings + Ajustement train-test

• App_train #var.: 122 -> 243 -> 240

App_test #var. : 121 -> 239 -> 239

Corrélations à la variable cible

• Ext_Source_* (benchmark score): corrélation négatives plus élevées avec Target

Effet de l'âge

• Plus de défauts de paiement chez l'individu jeune

Analyse Exploratoire des données

Faits marquants

Label & One Hot Encodings + Ajustement train-test

App_train #var.: 122 -> 243 -> 240

App_test #var.: 121 -> 239 -> 239

Corrélation à la variable cible

 Ext_Source_* (benchmark score): corrélation négatives plus élevées avec Target

Effet de l'âge

 Plus de défauts de paiement chez l'individu jeune

Analyse Exploratoire des données

Faits marquants

Label & One Hot Encodings + Ajustement train-test

• App_train: #var.: 122 -> 243 -> 240

• App_test: #var. : 121 -> 239 -> 239

Corrélation à la variable cible

Ext_Source_* (benchmark score):
 corrélation négatives plus élevées avec
 Target

Effet de l'âge

 Plus de défauts de paiement chez l'individu jeune

Apprentissage et Evaluation de modèles

Classification binaire

Prétraitement des données

• Imputation des valeurs manquantes: impute.SimpleImuter ("median")

 Séparation de App_train en X_train et X_test avec model_selection.train_test_split (test_size= 0.3) - App_test ne contient pas la variable cible "Target".

• Préprocessing avec preprocessing. Standard Scaler.

• CV= 5 (n_folds), Score= précision

GridSearchCV

Dummy Classifier (modèle de référence)

Arbre de décision

Extra Trees (XTree)

Forêts aléatoires (RF)

Régression logistique (LR)

GridSearchCV

Dummy Classifier (modèle de référence)

Arbre de décision

Extra Trees (XTree)

Forêts aléatoires (RF)

Régression logistique (LR)

- CV= 5 (n_folds), Score= précision
- Dummy
 - Strategy = "Stratified" (default)

GridSearchCV

Dummy Classifier - modèle de référence

Arbre de décision

Extra Trees (XTree)

Forêts aléatoires (RF)

Régression logistique (LR)

- CV= 5 (n_folds), Score= précision
- Dummy
 - strategy = "Stratified" (default)
- Arbre de décision
 - max_depth = 2:1:10

GridSearchCV

Dummy Classifier - modèle de référence

Arbre de décision

Extra Trees (XTree)

Forêts aléatoires (RF)

Régression logistique (LR)

- CV= 5 (n_folds), Score= précision
- Dummy
 - strategy = "Stratified" (default)
- Arbre de décision
 - max_depth = 2:1:10
- XTree
 - n estimators=100,
 - max_depth = 2:1:10

GridSearchCV

Dummy Classifier - modèle de référence

Arbre de décision

Extra Trees (XTree)

Forêts aléatoires (RF)

Régression logistique (LR)

- CV= 5 (n_folds), Score= précision
- RF
 - n_estimators=100,
 - max_depth = 2:1:10

GridSearchCV

Dummy Classifier - modèle de référence

Arbre de décision

Extra Trees (XTree)

Forêts aléatoires (RF)

Régression logistique (LR)

- CV= 5 (n_folds), Score= précision
- RF
 - n_estimators=100,
 - max depth = 2:1:10
- LR
 - $C = Log_10(-3:3:5)$

GridSearchCV

Dummy Classifier - modèle de référence

Arbre de décision

Extra Trees (XTree)

Forêts aléatoires (RF)

Régression logistique (LR)

- CV= 5 (n_folds), Score= précision
- RF
 - n_estimators = 100,
 - max depth = 2:1:10
- LR
 - $C = Log_10(-3:3:5)$
- XGB
 - n_estimators = 100,
 - max_depth = 2:1:10
 - learn_rate = Log_10(-3:3:7)

Démarche générale d'apprentissage, d'évaluation et d'interprétation des modèles

- Apprentissage sur set large de modèles (large spectre de complexité) et évaluation par un score classique
 Sélection des modèles performants
- 2. Apprentissage des modèles sélectionnés avec introduction de métrique métier pour l'évaluation
- 3. Apprentissage et évaluation avec introduction de variables métier additionnelles feature engineering
- 4. Apprentissage et évaluation avec introduction de l'équilibrage des classes
- 5. Interprétation des modèles

score GridSCV= 'accuracy'

• Set large de modèles

Score GridSCV= accuracy	roc_auc	f1_score	max_d epth_o pt		learnin g_rate _opt
XGBoosting	0,749	0,02202	3		0,1
Regression Logistique	0,740	0,00415		0,001	
Random Forests	0,707	0,00000	2		
Extra Trees	0,694	0,00000	2		
Arbre de décision	0,644	0,00000	2		
Dummy Classifier	0,500	0,08214			

score GridSCV= 'accuracy'

- Set large de modèles
- Métrique d'évaluation perfo = Roc_AUC

Score GridSCV= accuracy	roc_auc		max_d epth_o pt		learnin g_rate _opt
XGBoosting	0,749	0,02202	3		0,1
Regression Logistique	0,740	0,00415		0,001	
Random Forests	0,707	0,00000	2		
Extra Trees	0,694	0,00000	2		
Arbre de décision	0,644	0,00000	2		
Dummy Classifier	0,500	0,08214			

score GridSCV= 'accuracy'

- Set large de modèles
- Métrique d'évaluation perfo = Roc_AUC
- Modèles retenus

Score GridSCV= accuracy	roc_auc		max_d epth_o pt		learnin g_rate _opt
XGBoosting	0,749	0,02202	3		0,1
Regression Logistique	0,740	0,00415		0,001	
Random Forests	0,707	0,00000	2		
Extra Trees	0,694	0,00000	2		
Arbre de décision	0,644	0,00000	2		
Dummy Classifier	0,500	0,08214			

- Définition de la métrique métier
 - Sans coût de l'opportunité

	Fait défaut	Rembourse
Défaut prédit {1}	VP: pas d'investissement (pai)	FP: pas d'investissement (pai)
Remb. prédit {0}	FN: perte d'investissement (pri)	VN: retour sur investissement (rsi)

- Définition de la métrique métier
 - Sans coût de l'opportunité
 - Min FN, Max VN
 -> Max F_beta (beta>1)

	Fait défaut	Rembourse
Défaut prédit {1}	VP: pas d'investissement (pai)	FP: pas d'investissement (pai)
Remb. prédit {0}	FN: perte d'investissement (pri)	VN: retour sur investissement (rsi)

- Définition de la métrique métier
 - Sans coût de l'opportunité
 - Min FN, Max VN
 -> Max F_beta (beta>1)
 - Avec coût de l'opportunité

	Fait défaut	Rembourse
Défaut prédit {1}	VP: rsi "bas"+ rsi partiel "haut" + pri partiel	FP: rsi "bas"+ - rsi (total) "haut"
Remb. prédit {0}	FN: rsi partiel "haut" + pri partiel - rsi "bas"	VN: rsi (total) "haut" - rsi "bas"

- Définition de la métrique métier
 - Sans coût de l'opportunité
 - Min FN, Max VN
 -> Max F beta (beta>1)
 - Avec coût de l'opportunité
 - Max combinaison linéaire {VP, FP, FN, VN} (
 rsi "bas" = 1.5%, rsi "haut" = 5%,
 p: partie du principal remboursée avec intérêt = 50%

	Fait défaut	Rembourse
Défaut prédit {1}	VP: rsi "bas"+ rsi partiel "haut" + pri partiel	FP: rsi "bas"+ - rsi (total) "haut"
Remb. prédit {0}	FN: rsi partiel "haut" + pri partiel - rsi "bas"	VN: rsi (total) "haut" - rsi "bas"

- Définition de la métrique métier
 - Sans coût de l'opportunité
 - Min FN, Max VN
 -> Max F beta (beta>1)
 - Avec coût de l'opportunité
 - Max combinaison linéaire {VP, FP, FN, VN} (
 rsi "bas" = 1.5%, rsi "haut" = 5%,
 p: partie du principal remboursée avec intérêt = 50%
 - Métrique non-corrélée avec #FN!!

	Fait défaut	Rembourse
Défaut prédit {1}	VP: rsi "bas"+ rsi partiel "haut" + pri partiel	FP: rsi "bas"+ - rsi (total) "haut"
Remb. prédit {0}	FN: rsi partiel "haut" + pri partiel - rsi "bas"	VN: rsi (total) "haut" - rsi "bas"

- Définition de la métrique métier
 - Sans coût de l'opportunité
 - Min FN, Max VN
 - -> Max F_beta (beta>1)
 - Avec coût de l'opportunité
 - Max combinaison linéaire {VP, FP, FN, VN} (
 rsi "bas" = 1.5%, rsi "haut" = 5%,
 p: partie du principal remboursée avec intérêt = 50%
 - Métrique non-corrélée avec #FN
 - Métrique conservée: F_beta (beta=2)

	Fair differen	Danaharina
	Fait défaut	Rembourse
Défaut prédit {1}	VP: pas d'investissement (pai)	FP: pas d'investissement (pai)
Remb. prédit {0}	FN: perte d'investissement (pri)	VN: retour sur investissement (rsi)

Introduction de la métrique métier

 Sur modèles sélectionnés précédemment

Score GridSCV= accuracy	business _metrics	roc_auc		max_de pth_opt	C_opt	learn ing_r ate_ opt
XGBoosting	0,0768	0,716	0,107	3		1
Regression Logistique	0,0181	0,740	0,028		31,62	
Random Forests	0,0000	0,701	0,000	2		
Extra Trees	0,0000	0,695	0,000	2		

- Sur modèles sélectionnés précédemment
- Métrique d'évaluation perfo = business_metrics

Score GridSCV= accuracy	business _metrics	roc_auc	f1_score	max_de pth_opt	C_opt	learn ing_r ate_ opt
XGBoosting	0,0768	0,716	0,107	3		1
Regression Logistique	0,0181	0,740	0,028		31,62	
Random Forests	0,0000	0,701	0,000	2		
Extra Trees	0,0000	0,695	0,000	2		

Introduction de 4 variables métier - feature engineering

Les 4 variables métier

```
• ['CREDIT ANNUITY RATIO'] =
 ['AMT_CREDIT'] / ['AMT_ANNUITY']
• ["credit income ratio"] =
 ["AMT CREDIT"] /
 ["AMT INCOME TOTAL"]
• ["annuity income ratio"] =
 ["AMT ANNUITY"] /
 ["AMT INCOME TOTAL"]
• ["credit good ratio"] =
 ["AMT CREDIT"] /
```

["AMT GOODS PRICE"]

Introduction de 4 variables métier - feature engineering

- Les 4 variables métier
- Amélioration des performances sur la métrique métier (et sur le roc_auc).

Score GridSCV = accuracy	business_ metrics	roc_auc		max_ dept h_op t	C_op t	learn ing_r ate_ opt
XGBoosting	0,0819	0,724	0,112	3		1
Regression Logistique	0,0196	0,742	0,031		1	
Random Forests	0,0000	0,708	0,000	2		
Extra Trees	0,0000	0,687	0,000	2		

Apprentissage et évaluation avec

Introduction de l'équilibrage des classes

• Constat d'un déséquilibre des classes de l'ordre de:

Apprentissage et évaluation avec

Introduction de l'équilibrage des classes

- Constat d'un déséquilibre des classes de l'ordre de: #(y=1) / #(y=0) ~ 11
- Introduction de l'hyperparamètre class_weight dans les modèles:
 - class_weight = 'balanced' ou 11 (pour XGB)

Score GridSCV = accuracy	busines s_metri cs	roc_au c	re	max_d epth_ opt	C_op t	learni ng_rat e_opt
XGBoosting	0,426	0,758	0,274	3		0,178
Regression Logistique	0,411	0,744	0,257		0,001	
Random Forests	0,395	0,727	0,246	5		
Extra Trees	0,372	0,707	0,232	9		

Apprentissage et évaluation avec

Introduction de l'équilibrage des classes

- Constat d'un déséquilibre des classes de l'ordre de: #(y=1) / #(y=0) ~ 11
- Introduction de l'hyperparamètre class_weight dans les modèles:
 - class_weight = 'balanced' ou 11 (pour XGB)
- Amélioration des performances sur la métrique métier (et sur le roc_auc).

Score GridSCV = accuracy	busines s_metri cs	roc_au	re	max_d epth_ opt		learni ng_rat e_opt
XGBoosting	0,426	0,758	0,274	3		0,178
Regression Logistique	0,411	0,744	0,257		0,001	
Random Forests	0,395	0,727	0,246	5		
Extra Trees	0,372	0,707	0,232	9		

Evolution des métriques principales

- Evolution de la ROC AUC
- Evolution du F1 Score
- Evolution de la métrique métier =
 F1 beta

Evolution des métriques principales

- Evolution de la ROC AUC
- Evolution du F1 Score
- Evolution de la métrique métier = F1_beta

Evolution des métriques principales

- Evolution de la ROC AUC
- Evolution du F1 Score
- Evolution de la métrique métier = F1_beta

Interprétation des modèles

Classification binaire

Feature importance

Forêts aléatoire

<u>Principe</u>: La forêt aléatoire est constituée de plusieurs arbres. Chaque arbre grandit jusqu'à une taille espérée qui correspond au maximum du *gain d'information*. A chaque nœud, une valeur particulière d'une variable parmi toutes, va minimiser l'*impureté de gini* (du nœud), fixant ainsi les deux prochaines branches. C'est la moyenne sur tous les arbres de la décroissance d'impureté de gini par une variable qui est la mesure de son importance.

C'est donc une mesure globale sur tous les individus.

Lime

<u>Principe</u>: Lime permet l'interprétation de la prédiction d'un modèle sur chaque individu de l'échantillon de données. Ceci est rendu possible par l'apprentissage d'un modèle linéaire localement, autour de l'individu - dans l'espace contenant le nuage des points-individus. Cet apprentissage est fait sur un dataset reconstitué après une attribution de poids chaque autre individu, dont la valeur est inversede sa distance à l'individu cible.

Dans Lime, l'importance d'une variable dans la prédiction du modèle est quantifiée (avec, au cas échéant une précision de la plage de valeurs de la variable particulièrement concernée).

Merci pour votre attention

Disponible pour des questions/réponses