

Controladores PID y controladores PID modificados

8-1 Introducción

En los capítulos previos, de forma ocasional se analizaron los esquemas básicos de control PID. Por ejemplo, en el Capítulo 5 se presentaron los controladores PID hidráulicos, neumáticos y electrónicos. También se diseñaron sistemas de control que contenían controladores PID.

Es interesante señalar que más de la mitad de los controladores industriales que se usan hoy en día utilizan esquemas de control PID o PID modificado.

Como casi todos los controladores PID se ajustan en el sitio, en la literatura se han propuesto muchos tipos diferentes de reglas de sintonización, que permiten llevar a cabo una sintonización delicada y fina de los controladores PID en el sitio. Asimismo, se han desarrollado métodos automáticos de sintonización y algunos de los controladores PID poseen capacidad de sintonización automática en línea. Actualmente se usan en la industria formas modificadas del control PID, tales como el control I-PD y el control PID con dos grados de libertad. Es posible obtener muchos métodos prácticos para una conmutación sin choque (desde la operación manual hasta la operación automática) y una programación del aumento.

La utilidad de los controles PID estriba en que se aplican en forma casi general a la mayoría de los sistemas de control. En particular, cuando el modelo matemático de la planta no se conoce y, por lo tanto, no se pueden emplear métodos de diseño analíticos, es cuando los controles PID resultan más útiles. En el campo de los sistemas para control de procesos, es un hecho bien conocido que los esquemas de control PID básicos y modificados han demostrado su utilidad para aportar un control satisfactorio, aunque tal vez en muchas situaciones específicas no aporten un control óptimo.

En este capítulo se presenta en primer lugar el diseño de un sistema controlado por un PID utilizando las reglas de sintonía de Ziegler y Nichols. A continuación se estudia un diseño de un

controlador PID con el método convencional de respuesta en frecuencia, seguido del método de optimización computacional para el diseño de controladores PID.

Seguidamente se estudian controles PID modificados, tales como control PI-D y control I-PD. Se continúa con los sistemas de control con múltiples grados de libertad, que pueden satisfacer especificaciones que entran en conflicto y que los sistemas de control con un grado de libertad no pueden satisfacer. (Para la definición de sistemas de control con dos grados de libertad véase la Sección 8-6.)

En casos prácticos, puede haber especificaciones sobre la respuesta a perturbaciones de entrada y otras sobre la respuesta a una entrada de referencia. Con frecuencia estos dos requisitos son incompatibles entre sí y no se pueden cumplir en el caso de tener sólo un grado de libertad. Al aumentar los grados de libertad se pueden satisfacer ambos. En este capítulo se presentan con detalle los sistemas de control con dos grados de libertad.

El método computacional que se presenta en este capítulo para el diseño de sistemas de control (para buscar conjuntos óptimos de valores de parámetros que satisfagan determinadas especificaciones de respuesta transitoria) se puede emplear para diseñar sistemas de control con un único grado de libertad o con múltiples grados de libertad a condición de que se conozca un modelo de la planta bastante preciso.

Contenido del capítulo. La Sección 8-1 presentó el material introductorio al capítulo. La Sección 8-2 aborda el diseño de un controlador PID con las reglas de sintonía de Ziegler-Nichols. La Sección 8-3 presenta un diseño de un controlador PID con el método de la respuesta en frecuencia. La Sección 8-4 presenta un método computacional para buscar conjuntos óptimos de valores de parámetros de controladores PID. La Sección 8-5 introduce los sistemas de control con múltiples grados de libertad incluyendo los esquemas de control PID modificados.

8-2 Reglas de Ziegler-Nichols para la sintonía de controladores PID

Control PID de plantas. La Figura 8-1 muestra un control PID de una planta. Si se puede obtener un modelo matemático de la planta, es posible aplicar diversas técnicas de diseño con el fin de determinar los parámetros del controlador que cumpla las especificaciones del transitorio y del estado estacionario del sistema en lazo cerrado. Sin embargo, si la planta es tan complicada que no es fácil obtener su modelo matemático, tampoco es posible un método analítico para el diseño de un controlador PID. En este caso, se debe recurrir a procedimientos experimentales para la sintonía de los controladores PID.

El proceso de seleccionar los parámetros del controlador que cumplan con las especificaciones de comportamiento dadas se conoce como sintonía del controlador. Ziegler y Nichols sugirieron reglas para sintonizar los controladores PID (esto significa dar valores a K_p , T_i y T_d) basándose en las respuestas escalón experimentales o en el valor de K_p que produce estabilidad marginal cuando sólo se usa la acción de control proporcional. Las reglas de Ziegler-Nichols, que se presentan a continuación, son muy convenientes cuando no se conocen los modelos matemáticos de las plantas. (Por supuesto, estas reglas se pueden aplicar al diseño de sistemas con modelos matemáticos conocidos.) Tales reglas sugieren un conjunto de valores de K_p , T_i y T_d

Figura 8-1. Control PID de una planta.

que darán una operación estable del sistema. No obstante, el sistema resultante puede presentar una gran sobreelongación en su respuesta escalón de forma que resulte no aceptable. En tales casos se necesitará una serie de ajustes finos hasta que se obtenga el resultado deseado. De hecho, las reglas de sintonía de Ziegler-Nichols dan una estimación razonable de los parámetros del controlador y proporcionan un punto de partida para una sintonía fina, en lugar de dar los parámetros K_m , T_i y T_d en un único intento.

Reglas de Ziegler-Nichols para sintonizar controladores PID. Ziegler y Nichols propusieron reglas para determinar los valores de la ganancia proporcional K_p , del tiempo integral T_i y del tiempo derivativo T_d , basándose en las características de respuesta transitoria de una planta dada. Tal determinación de los parámetros de los controladores PID o sintonía de controladores PID la pueden realizar los ingenieros mediante experimentos sobre la planta. (Después de la propuesta inicial de Ziegler-Nichols han aparecido numerosas reglas de sintonía de controladores PID. Estas reglas están disponibles tanto en publicaciones técnicas como de los fabricantes de estos controladores.)

Hay dos métodos denominados reglas de sintonía de Ziegler-Nichols: el primero y el segundo método. A continuación se hace una breve presentación de estos dos métodos.

Primer método. En el primer método, la respuesta de la planta a una entrada escalón unitario se obtiene de manera experimental, tal como se muestra en la Figura 8-2. Si la planta no contiene integradores ni polos dominantes complejos conjugados, la curva de respuesta escalón unitario puede tener forma de S, como se observa en la Figura 8-3. Este método se puede aplicar si la respuesta muestra una curva con forma de S. Tales curvas de respuesta escalón se pueden generar experimentalmente o a partir de una simulación dinámica de la planta.

La curva con forma de S se caracteriza por dos parámetros: el tiempo de retardo L y la constante de tiempo T. El tiempo de retardo y la constante de tiempo se determinan dibujando una recta tangente en el punto de inflexión de la curva con forma de S y determinando las intersecciones de esta tangente con el eje del tiempo y con la línea c(t) = K, tal como se muestra en la

Figura 8-2. Respuesta a un escalón unitario de una planta.

Figura 8-3. Curva de respuesta en forma de S.

Tipo de controlador	K_p	T_i	T_d
Р	$\frac{T}{L}$	8	0
PI	$0.9 \frac{T}{L}$	$\frac{L}{0.3}$	0
PID	$1.2\frac{T}{L}$	2L	0.5L

Tabla 8-1. Regla de sintonía de Ziegler-Nichols basada en la respuesta escalón de la planta (primer método).

Figura 8-3. En este caso, la función de transferencia C(s)/U(s) se aproxima mediante un sistema de primer orden con un retardo del modo siguiente:

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

Ziegler y Nichols sugirieron establecer los valores de K_p , T_i y T_d de acuerdo con la fórmula que se muestra en la Tabla 8-1.

Obsérvese que el controlador PID sintonizado mediante el primer método de las reglas de Ziegler-Nichols produce

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$= 1.2 \frac{T}{L} \left(1 + \frac{1}{2Ls} + 0.5 L s \right)$$

$$= 0.6 T \frac{\left(s + \frac{1}{L} \right)^2}{s}$$

Por tanto, el controlador PID tiene un polo en el origen y un cero doble en s = -1/L.

Segundo método. En el segundo método, primero se fija $T_i = \infty$ y $T_d = 0$. Usando sólo la acción de control proporcional (véase la Figura 8-4), se incrementa K_p desde 0 hasta un valor crítico $K_{\rm cr}$, en donde la salida presente oscilaciones sostenidas. (Si la salida no presenta oscilaciones sostenidas para cualquier valor que pueda tomar K_p , entonces este método no se puede aplicar.) Así, la ganancia crítica $K_{\rm cr}$ y el periodo $P_{\rm cr}$ correspondiente se determinan experimental-

Figura 8-4. Sistema en lazo cerrado con un controlador proporcional.

Figura 8-5. Oscilación sostenida con periodo P_{cr} (P_{cr} se mide en seg.).

mente (véase la Figura 8-5). Ziegler-Nichols sugirieron que se establecieran los valores de los parámetros K_p , T_i y T_d de acuerdo con la fórmula que se muestra en la Tabla 8-2.

Tabla 8-2. Regla de sintonía de Ziegler-Nichols basada en la ganancia crítica K_{cr} y periodo crítico P_{cr} (segundo método).

Tipo de controlador	K_p	T_i	T_d
P	$0.5K_{\rm cr}$	∞	0
PI	$0.45K_{\rm cr}$	$\frac{1}{1.2} P_{\rm cr}$	0
PID	$0.6K_{\rm cr}$	$0.5P_{\rm cr}$	$0.125P_{\rm cr}$

Obsérvese que el controlador PID sintonizado mediante el segundo método de las reglas de Ziegler-Nichols produce

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$= 0.6 K_{cr} \left(1 + \frac{1}{0.5 P_{cr} s} + 0.125 P_{cr} s \right)$$

$$= 0.075 K_{cr} P_{cr} \frac{\left(s + \frac{4}{P_{cr}} \right)^2}{s}$$

Por tanto, el controlador PID tiene un polo en el origen y un cero doble en s = $-4/P_{\rm cr}$.

Conviene darse cuenta de que, si el sistema tiene un modelo matemático conocido (como la función de transferencia), entonces se puede emplear el método del lugar de las raíces para encontrar la ganancia crítica $K_{\rm cr}$ y las frecuencias de las oscilaciones sostenidas $\omega_{\rm cr}$, donde $2\pi/\omega_{\rm cr}=P_{\rm cr}$. Estos valores se pueden determinar a partir de los puntos de cruce de las ramas del lugar de las raíces con el eje $j\omega$. (Obviamente, si las ramas del lugar de las raíces no cortan al eje $j\omega$ este método no se puede aplicar.)

Comentarios. Las reglas de sintonía de Ziegler-Nichols (y otras reglas de sintonía que se presentan en la literatura) se han usado ampliamente para sintonizar controladores PID en sistemas de control de procesos en los que no se conoce con precisión la dinámica de la planta. Durante muchos años tales reglas de sintonía han demostrado ser muy útiles. Por supuesto, las reglas de sintonía de Ziegler-Nichols se pueden aplicar a plantas cuya dinámica se conoce. (En estos casos, hay disponibles muchos métodos analíticos y gráficos para el diseño de controladores PID, además de las reglas de sintonía de Ziegler-Nichols.)

EJEMPLO 8-1 Sea el sistema de control que se muestra en la Figura 8-6, en el cual se usa un controlador PID para controlar el sistema. El controlador PID tiene la función de transferencia

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

Aunque existen muchos métodos analíticos para el diseño de un controlador PID para este sistema, se aplica la regla de sintonía de Ziegler-Nichols para la determinación de los valores de los parámetros K_p , T_i y T_d . A continuación, obtenga una curva de respuesta escalón unitario y compruebe si el sistema diseñado presenta una sobreelongación de aproximadamente el 25%. Si la sobreelongación es excesiva (40% o más), haga una sintonía fina y reduzca la cantidad de sobreelongación al 25% o menos.

Como la planta tiene un integrador, se utiliza el segundo método de las reglas de sintonía de Ziegler-Nichols. Fijando $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia en lazo cerrado del modo siguiente:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p}$$

El valor de K_p que hace al sistema marginalmente estable para que ocurra una oscilación sostenida se obtiene mediante el criterio de estabilidad de Routh. Como la ecuación característica para el sistema en lazo cerrado es

$$s^3 + 6s^2 + 5s + K_p = 0$$

el array de Routh es:

$$s^{3}$$
 1 5
 s^{2} 6 K_{p}
 s^{1} $\frac{30 - K_{p}}{6}$
 s^{0} K_{p}

Examinando los coeficientes de la primera columna del array de Routh, se encuentra que ocurrirá una oscilación sostenida si $K_p = 30$. Así, la ganancia crítica K_{cr} es

Figura 8-6. Sistema de control PID.

Con la ganancia K_p fijada igual a K_{cr} (=30), la ecuación característica es

$$s^3 + 6s^2 + 5s + 30 = 0$$

Para encontrar la frecuencia de la oscilación sostenida, se sustituye $s = j\omega$ en la ecuación característica, del modo siguiente:

$$(j\omega)^3 + 6(j\omega)^2 + 5(j\omega) + 30 = 0$$

o bien

$$6(5 - \omega^2) + j\omega(5 - \omega^2) = 0$$

a partir de lo cual se encuentra que la frecuencia de la oscilación sostenida es $\omega^2 = 5$ o $\omega = \sqrt{5}$. Así, el periodo de la oscilación sostenida es

$$P_{\rm cr} = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{5}} = 2.8099$$

Teniendo en cuenta la Tabla 8-2, se determinan K_p , T_t y T_d del modo siguiente:

$$K_p = 0.6K_{\rm cr} = 18$$

 $T_i = 0.5P_{\rm cr} = 1.405$
 $T_d = 0.125P_{\rm cr} = 0.35124$

Por tanto, la función de transferencia del controlador PID es

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$= 18 \left(1 + \frac{1}{1.405 s} + 0.35124 s \right)$$

$$= \frac{6.3223(s + 1.4235)^2}{s}$$

El controlador PID tiene un polo en el origen y un cero doble en s = -1.4235. En la Figura 8-7 se muestra un diagrama de bloques del sistema de control con el controlador PID diseñado.

A continuación, se examina la respuesta escalón unitario del sistema. La función de transferencia en lazo cerrado C(s)/R(s) está dada por

$$\frac{C(s)}{R(s)} = \frac{6.3223s^2 + 18s + 12.811}{s^4 + 6s^3 + 11.3223s^2 + 18s + 12.811}$$

$$\frac{6.3223(s + 1.4235)^2}{s}$$
Controlador
PID
$$\frac{C(s)}{s}$$

Figura 8-7. Diagrama de bloques del sistema con controlador PID diseñado mediante la regla de sintonía de Ziegler-Nichols (segundo método).

La respuesta escalón unitario de este sistema se obtiene fácilmente con MATLAB. Véase el Programa MATLAB 8-1. La Figura 8-8 muestra la curva de respuesta escalón unitario resultante. La sobreelongación en la respuesta a un escalón unitario es de aproximadamente 62%. Esta sobreelongación es excesiva. Se pueden reducir mediante una sintonía fina los parámetros del controlador. Dicha sintonía se puede hacer en la computadora. Se encuentra que manteniendo $K_p = 18$ y moviendo el cero doble del controlador PID a s = -0.65, es decir, usando el controlador PID

$$G_c(s) = 18\left(1 + \frac{1}{3.077s} + 0.7692s\right) = 13.846 \frac{(s + 0.65)^2}{s}$$
 (8-1)

la sobreelongación en la respuesta a un escalón unitario se reduce a, aproximadamente, 18% (véase la Figura 8-9). Si se incrementa la ganancia proporcional K_p a 39.42, sin modificar la localización del cero doble (s = -0.65), esto es, usando el controlador PID

$$G_c(s) = 39.42 \left(1 + \frac{1}{3.077s} + 0.7692s \right) = 30.322 \frac{(s + 0.65)^2}{s}$$
 (8-2)

entonces la velocidad de respuesta se incrementa, pero la sobreelongación también aumenta a, aproximadamente, 28%, como se observa en la Figura 8-10. Como, en este caso, la sobreelongación está bastante cerca del 25% y la respuesta es más rápida que el sistema con $G_c(s)$ dada por la

Figura 8-8. Curva de respuesta a un escalón unitario del sistema controlado PID diseñado por la regla de sintonía de Ziegler-Nichols (segundo método).

Figura 8-9. Respuesta a un escalón unitario del sistema mostrado en la Figura 8-6 con controlador PID teniendo parámetros $K_p = 18$, $T_i = 3.077$ y $T_d = 0.7692$.

Ecuación (8-1), se puede considerar aceptable la $G_c(s)$ obtenida a partir de la Ecuación (8-2). En este caso, los valores sintonizados de K_p , T_i y T_d son

$$K_p = 39.42, T_i = 3.077, T_d = 0.7692$$

Es interesante observar que estos valores son aproximadamente el doble de los valores sugeridos mediante el segundo método de las reglas de sintonía de Ziegler-Nichols. Lo que se debe señalar aquí es que las reglas de sintonía de Ziegler-Nichols han aportado un punto de partida para la sintonía fina.

Es instructivo señalar que, para el caso en el que el cero doble se localice en s=-1.4235, incrementar el valor de K aumenta la velocidad de respuesta, pero, en lo que respecta a la sobreelongación, variar la ganancia K_p tiene un efecto mínimo. La razón de esto se observa a partir del análisis del lugar de las raíces. La Figura 8-11 muestra el diagrama del lugar de las raíces para el sistema diseñado mediante el segundo método de las reglas de sintonía de Ziegler-Nichols. Como

Figura 8-10. Respuesta a un escalón unitario del sistema mostrado en la Figura 8-6 con controlador PID teniendo parámetros $K_p = 39.42$, $T_i = 3.077$ y $T_d = 0.7692$.

Figura 8-11. Lugar de las raíces del sistema cuando el controlador PID tiene un cero doble en s = -1.4235.

las ramas dominantes del lugar de las raíces están a lo largo de las líneas $\zeta=0.3$ para un rango considerable de K, al variar el valor de K (de 6 a 30) no se modifica mucho la razón de amortiguamiento de los polos dominantes en lazo cerrado. Sin embargo, modificar la localización del cero doble tiene un efecto significativo sobre la sobreelongación, porque cambia mucho la razón de amortiguamiento de los polos dominantes en lazo cerrado. Esto también se observa a partir del análisis del lugar de las raíces. La Figura 8-12 muestra el diagrama del lugar de las raíces para el sistema en el cual el controlador PID tiene un cero doble en s=-0.65. Observe el cambio en la configuración del lugar de las raíces. Este cambio hace posible modificar la razón de amortiguamiento de los polos dominantes en lazo cerrado.

En la Figura 8-12 se observa que, en el caso en el que el sistema tiene la ganancia K=30.322, los polos en lazo cerrado en $s=-2.35\pm j4.82$ funcionan como polos dominantes. Dos polos adicionales en lazo cerrado están muy cerca del cero doble en s=-0.65, por lo que estos polos en lazo cerrado y el cero doble casi se cancelan uno al otro. El par de polos dominantes en lazo cerrado determina realmente la naturaleza de las respuestas. Por otra parte, cuando el sistema tiene K=13.846, los polos en lazo cerrado en $s=-2.35\pm j2.62$ no son realmente dominantes, porque los otros dos polos en lazo cerrado cerca del cero doble en s=-0.65 tienen un efecto considerable en la respuesta. En este caso, la sobreelongación en la respuesta escalón (18%) es mucho más grande que en el caso del sistema de segundo orden que tiene sólo polos dominantes en lazo cerrado. (En el último caso, la sobreelongación en la respuesta escalón sería de aproximadamente 6%.)

Es posible hacer un tercero, un cuarto e incluso más intentos para obtener una respuesta mejor. Pero esto lleva consigo muchos cálculos y tiempo. Si se desea realizar más intentos, es aconsejable emplear el método computacional presentado en la Sección 10-3. El Problema A-8-12 resuelve este problema con el método computacional con MATLAB. Determina conjuntos de valores para los parámetros que dan una sobreelongación máxima del 10% o menos y un tiempo de asentamiento de 3 seg o menos. Una solución a este problema obtenida en el Problema A-8-12 es que para controladores PID definidos por

$$G_c(s) = K \frac{(s+a)^2}{s}$$

Figura 8-12. Lugar de las raíces del sistema cuando el controlador PID tiene un cero doble en s=-0.65. K=13.846 corresponde a $G_c(s)$ dada por la Ecuación (8-1) y K=30.322 corresponde a $G_c(s)$ dada por la Ecuación (8-2).

los valores de K y a son

$$K = 29$$
, $a = 0.25$

con la sobreelongación máxima igual al 9.52% y el tiempo de asentamiento igual a 1.78 seg. Otra posible solución que se puede obtener es

$$K = 27, \qquad a = 0.2$$

con un 5.5% de sobreelongación máxima y 2.89 seg de tiempo de asentamiento. Véase el Problema **A-8-12** para los detalles.

8-3 Diseño de controladores PID mediante el método de respuesta en frecuencia

En esta sección se presenta un diseño de un controlador PID basado en el método de respuesta en frecuencia.

Considérese el sistema que se muestra en la Figura 8-13. Diséñese un controlador PID utilizando el método de la respuesta en frecuencia tal que la constante de error estático en velocidad sea 4 seg⁻¹, el margen de fase sea de al menos 50° y el margen de ganancia de al menos 10 dB. Obténgase las curvas de respuesta a un escalón unitario y a una rampa unitaria del sistema controlado con un PID en MATLAB.