Problemes de Càlcul amb Vàries Variables. Full 8

Teoremes integrals de Stokes i Gauss

- 1. Calcula la integral de línia del camp $\mathbf{F}(x,y,z) = (y-z,x-z,y-x)$ sobre el cercle unitat. Repeteix el càlcul per a la semiesfera de radi unitat i finalment per a $\frac{1}{4}$ d'esfera. Comprova en cada cas que es satisfà el teorema de Stokes. Repeteix l'exercici utilitzant ara el camp $\mathbf{F}(x,y,z) = (2xyz,x^2z,x^2y)$.
- 2. Calculeu la integral del camp $\mathbf{F}(x,y,z) = (y,-x)$ en el disc unitari.
- 3. Verifiqueu que es satisfà el teorema de Stokes bo i avaluant el camp vectorial $\mathbf{F}(x,y,z) = (0,0,y)$ sobre la capa triangular superior del volum delimitat pels plans z=0, y=0, x=0 i x+2y+3z=6.
- 4. Donada la corba tancada en el primer quadrant definida per la intersecció dels plans xz, yz, z=a, z=b i el con d'equació

$$z = \sqrt{x^2 + y^2},$$

verifiqueu el teorema de Stokes pel camp vectorial $\mathbf{F}(x, y, z) = (y, z, y)$.

5. Sigui la superfície definida a \mathbb{R}^3 limitada pels lligams:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

z = c, z = 2c (c > 0) Verifiqueu el teorema de Stokes per al camp vectorial $\mathbf{F}(x, y, z) = (y, 0, 0)$.

6. Donada una teula cilíndrica definida per

$$x^2 + y^2 = R^2$$

x negatives i z limitada pels plans z=0, z=L, verifiqueu el teorema de Stokes per al camp vectorial $\mathbf{F}(x,y,z)=(y,z,x)$.

- 7. Calculeu el flux del camp $\mathbf{F}(x,y,z)=(ax,ay,z^2)$ a través de l'esfera de radi R. Verifiqueu explícitament el teorema de Gauss.
- 8. Comproveu que el teorema de Gauss es compleix per al camp vectorial $\mathbf{F}(x,y,z)=(0,0,z)$ a la regió limitada per

$$x^2 + y^2 + z^2 = R^2$$

$$, z = a, z = R.$$

9. Donat el volum tancat dins de la superfície

$$ax^2 + ay^2 = z$$

i del pla z=a, verifiqueu explícitament el teorema de Gauss per al camp vectorial ${\bf F}(x,y,z)=(x,y,z).$

10. Verifiqueu el teorema de la divergència pel camp vectorial $\mathbf{F}(x, y, z) = (x^2, y^2, 0)$ sobre el cilindre de base centrada a (0, L, 0), radi R i altura H.

- 11. Donat el cub definit pels vèrtexs (1,0,0), (0,2,0) i (0,0,1), verifica que es satisfà el teorema de la divergència per als camps vectorials $\mathbf{F}(x,y,z) = (y^2,z^2,x^2)$ i $\mathbf{F}(x,y,z) = (x,y,z)$.
- 12. Donat el camp vectorial $\mathbf{F}(x,y,z)=(x^2,1-y^2,xy^3)$, verifiqueu el teorema de Stokes en la regió compresa per les superfícies $x^2+y^2-3z=0,\ z=\frac{2}{3},\ x-y=0$. Calculeu l'àrea de la regió en qüestió.
- 13. Verifiqueu el teorema de Gau β en la regió $x^2 + y^2 z^2 \le 1$, z = 2, z = -4 per al camp vectorial $\mathbf{F}(x,y) = (x,z,y)$. Calculeu també el volum de la regió i la seva superfície.
- 14. Verifiqueu el teorema de Stokes per al camp vectorial

$$\mathbf{F}(x, y, z) = (xz, yx, zy)$$

a la superfície helicoidal parametritzada per

$$\mathbf{h}(u, v) = (u \cos v, u \sin v, v) \qquad (u, v) \,\epsilon \,[0, 1] \times [0, 2\pi]$$

Calculeu l'àrea de l'helicoide.

15. Considera les dues funcions

$$\phi(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$

$$\psi(x, y, z) = \frac{x}{a} + \frac{y}{b} + \frac{z}{c}$$

Verifiqueu el teorema de Gauss per al camp vectorial $\mathbf{F}(x,y,z) = \nabla \phi$ sobre la regió determinada per

$$S = \{(x, y, z) | \psi(x, y, z) = 1, x > 0, y > 0, z > 0\}$$

Calculeu el volum i la superfície de la regió.