Lecture 03 Transformations in 2D Short version

We will discuss transformation in 3D, and with full details, later in the course

Scaling

- We can use different constants (s_x, s_y) for the x-axis vs. the y-axis. Then we shift each point (x,y) into the point
- $\bullet (x, y) \to (s_x \cdot x, \ s_y \cdot y)$

Scaling

• Let s be a constant. If we move each point (x,y) into the point $(x,y) \rightarrow (s \cdot x, s \cdot y)$ we scaled the image by s.

Scaling

• We might pick different constants to x and to y.

•

Shearing

• If we move each point (x,y) into the point $(x,y) \rightarrow (x+y,y)$ we scaled the image by s.

Shearing

 Vertical shearing shifts each column based on the x value.

$$(x, y) \rightarrow (x, x + y)$$

Rotation

• Rotate counterclockwise by an angle ϕ about the origin.

$$(x, y) \rightarrow (x \cos \phi + y \sin \phi, x \sin \phi - y \cos \phi)$$
New x
New y

