SOLUTIONS DU RATTRAPAGE

14 juin 2018

[durée : 3 heures]

Exercice 1 (Géométrie du plan complexe et barycentres)

On considère trois points A_1 , A_2 et A_3 du plan complexe dont les affixes z_1 , z_2 et z_3 sont les racines complexes du polynôme $P(Z) = Z^3 + 2Z + \sqrt{3}$, fixées arbitrairement une fois pour toutes.

- a) Déterminer l'affixe de l'isobarycentre des trois points A_1 , A_2 et A_3 .

 Indication: Rappeler comment s'expriment les coefficients de P en fonction de ses racines.
- b) Montrer que pour A_1 , A_2 et A_3 fixés, le vecteur $\overrightarrow{v} = \overrightarrow{MA_1} 2\overrightarrow{MA_2} + \overrightarrow{MA_3}$ ne dépend pas du choix du point M.
- c) Déterminer l'affixe de \vec{v} en fonction de z_1, z_2 et z_3 , puis montrer que $\vec{v} \neq 0$.

Solution:

- a) Comme le coefficient devant Z^2 est 0 on trouve la somme des trois racines $z_1 + z_2 + z_3 = 0$, d'où l'isobarycentre de A_1 , A_2 et A_3 est le point O d'affixe $\frac{1}{3}z_1 + \frac{1}{3}z_2 + \frac{1}{3}z_3 = 0$.
- **b)** Comme 1 + (-2) + 1 = 0, d'après le cours le vecteur $\overrightarrow{MA_1} 2\overrightarrow{MA_2} + \overrightarrow{MA_3}$ ne dépend pas du point M, on le note $A_1 2A_2 + A_3$ et son affixe est $z_1 2z_2 + z_3$.
- c) D'après la question précédente l'affixe de \vec{v} est $z_1 2z_2 + z_3$. Si on suppose que $z_1 2z_2 + z_3 = 0$, comme $z_1 + z_2 + z_3 = 0$ on trouve $z_2 = 0$, mais 0 n'est pas racine de P. Donc $\vec{v} \neq 0$ car son affixe $z_1 2z_2 + z_3 \neq 0$.

Exercice 2 (Espaces affines et transformations affines)

Soit \mathcal{E} un espace affine réel et $T: \mathcal{E} \to \mathcal{E}$ une application affine. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $T^n = Id_{\mathcal{E}}$. Montrer que T a au moins un point fixe, c'est-à-dire qu'il existe $p \in \mathcal{E}$ vérifiant T(p) = p.

Indication: On pourra construire un tel p en partant de $v \in \mathcal{E}$ quelconque et en regardant la suite $(v, T(v), T^2(v), \dots, T^{n-1}(v))$.

Solution : On suit l'indication : soit $v \in \mathcal{E}$ arbitraire. On pose $p = \frac{1}{n}v + \frac{1}{n}T(v) + \dots + \frac{1}{n}T^{n-1}(v)$, l'isobarycentre des points $(v, T(v), \dots, T^{n-1}(v))$. Comme T préserve les barycentres, on a $T(p) = T(\frac{1}{n}v + \frac{1}{n}T(v) + \dots + \frac{1}{n}T^{n-1}(v)) = \frac{1}{n}T(v) + \frac{1}{n}T^2(v) + \dots + \frac{1}{n}T^n(v)$. Et comme $T^n(v) = v$ on trouve T(p) = p. Ainsi T a au moins un point fixe, le point p.

Exercice 3 (Espaces euclidiens et isométries)

On considère l'espace affine \mathbb{R}^3 muni de sa structure euclidienne standard. Soit l'application $\phi: \mathbb{R}^3 \to \mathbb{R}^3$, dont l'expression dans la base canonique est

$$\phi(x,y,z) = \frac{1}{9}(7x - 4y - 4z + 9, -4x + y - 8z + 27, -4x - 8y + z + 9).$$

- a) Montrer que ϕ est une application affine.
- b) Donner la matrice $M_{\vec{\phi}}$ de la partie linéaire de ϕ dans la base canonique.
- c) Montrer que ϕ est une isométrie.
- d) Déterminer la nature et les paramètres de la partie linéaire $\overrightarrow{\phi}$.
- e) Déterminer la nature et les paramètres de ϕ .

Solution:

- a) Nous avons $\phi(x, y, z) = \frac{1}{9} \begin{pmatrix} 7 & -4 & -4 \\ -4 & 1 & -8 \\ -4 & -8 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ et donc ϕ est une application de \mathbb{R}^3 de la forme $X \mapsto AX + B$, et donc d'après le cours c'est une application affine.
- b) D'après le cours la partie linéaire de $X \mapsto AX + B$ est $X \mapsto AX$ qui a pour matrice dans la base canonique A. Ainsi d'après la question précédente $M_{\vec{\phi}} = \frac{1}{9} \begin{pmatrix} 7 & -4 & -4 \\ -4 & 1 & -8 \\ -4 & -8 & 1 \end{pmatrix}$.
- c) Comme les trois vecteurs colonnes forment une base orthonormée (à vérifier), la matrice $M_{\overrightarrow{\phi}}$ est orthogonale et donc ϕ est une isométrie.
- d) Comme det $M_{\vec{\phi}} = -1$, la partie linéaire $\vec{\phi}$ est une anti-rotation ou réflexion. On trouve facilement que l'ensemble des vecteurs (-1)-propres (l'axe de rotation) est $\langle (1,2,2) \rangle$ et que l'angle de rotation θ vérifie $2\cos(\theta) 1 = \operatorname{tr} M_{\vec{\phi}} = 1 \implies \theta = 0 \pmod{2\pi}$. Donc $\vec{\phi}$ est une réflexion * par rapport au plan $\langle (1,2,2) \rangle^{\perp}$.

^{*.} Pour dire que $\overrightarrow{\phi}$ est une symétrie, on aurait pu également utiliser le fait que $M_{\overrightarrow{\phi}}$ est symétrique, puis chercher les points fixes à la place des vecteurs (-1)-propres.

e) On décompose le vecteur (1,3,1) = (1,2,2) + (0,1,-1) avec $(1,2,2) \in \langle (1,2,2) \rangle$ et $(0,1,-1) \in \langle (1,2,2) \rangle^{\perp}$. D'après le cours

$$T_{\overline{(1,2,2)}} \circ M_{\vec{\phi}} = \frac{1}{9} \begin{pmatrix} 7 & -4 & -4 \\ -4 & 1 & -8 \\ -4 & -8 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

est une réflexion par rapport à un hyperplan de direction $\langle (1,2,2) \rangle^{\perp}$. En cherchant ses points fixes qui vérifient $\frac{1}{9}(7x-4y-4z+9,-4x+y-8z+18,-4x-8y+z+18)=(x,y,z)$ on trouve que son hyperplan de réflexion est $(\frac{1}{2},1,1)+\langle (1,2,2)\rangle^{\perp}$. Pour finir on peut dire, d'après le cours, que comme (0,1,-1) est dans la direction du plan de réflexion de $T_{\overline{(1,2,2)}} \circ M_{\overrightarrow{\phi}}$ alors ϕ est une réflexion glissée par rapport à l'hyperplan $(\frac{1}{2},1,1)+\langle (1,2,2)\rangle^{\perp}$ et de vecteur de translation (0,1,-1).

Exercice 4 (Coniques)

Soient deux droites orthogonales \mathcal{D}_1 et \mathcal{D}_2 qui se coupent en un point O, et deux cercles \mathcal{C}_1 et \mathcal{C}_2 de centre O et de rayons respectifs r et R avec 0 < r < R.

Pour tout point Q sur \mathcal{C}_2 , soit $P = \mathcal{C}_1 \cap [O, Q]$. Soient \mathcal{D}'_1 et \mathcal{D}'_2 les deux droites parallèles à \mathcal{D}_1 et \mathcal{D}_2 et passant par P et Q respectivement.

On considère le point d'intersection de ces deux droites $M = \mathcal{D}_1' \cap \mathcal{D}_2'$.

Montrer que quand Q parcourt C_2 le point M parcourt une ellipse.

Solution:

On se place dans un repère orthonormé de centre O et d'axes \mathcal{D}_1 et \mathcal{D}_2 . Dans ce repère si $P = (x_P, y_P)$ et $Q = (x_Q, y_Q)$, alors d'une part $(x_P, y_P) = \frac{r}{R}(x_Q, y_Q)$, car P est l'image de Q par l'homothétie de centre O et de rapport $\frac{r}{R}$, et d'autre part $M = (x_Q, y_P)$ par la construction de M, et donc $M = (x_Q, \frac{r}{R}y_Q)$.

Ainsi quand Q parcourt C_2 ayant pour équation $\{x^2 + y^2 = R^2\}$, M parcourt l'image de C_2 par l'affinité $(x, y) \mapsto (x, \frac{r}{R}y)^{\dagger}$, qui est l'ellipse dont l'équation dans ce repère orthonormé est

$$x^{2} + \left(\frac{R}{r}y\right)^{2} = R^{2} \iff \left(\frac{x}{R}\right)^{2} + \left(\frac{y}{r}\right)^{2} = 1.$$

^{†.} dont l'inverse est l'affinité $(x,y)\mapsto (x,\frac{R}{r}y)$.