

Introduction to Machine Learning

Practical Considerations:

Features and Handling Class Imbalance

Features

"garbage in, garbage out"

Features

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

Feature Engineering

Imputation

• Why are values missing?

• What do we do?

Outliers

- Standard deviation
- Percentiles

• What do we do?

Binning

- Equal width
- Equal frequency
- Bin value

Log Transform

Another way to normalize

• Log(x+1)

Splitting

Selection

- Prune features with low variance
- Prune redundant features
 - Use decision tree
 - Wrapper
 - Correlation

Correlation

• Covariance

$$Cov(X,Y) = \sum_{i=1}^{N} \frac{(x_i - \mu_x)(y_i - \mu_y)}{N}$$

Correlation

$$Cor(X,Y) = r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Scale

We discussed feature normalization

Another approach is z-scores

(standard scores)

Handling Class Imbalance

@ 2013 Ted Goff

"I achieved that 99.9% fraud detection accuracy you requested."

Imbalanced class distributions - misleading results

Imbalanced class distributions

Imbalanced class distributions - misleading results

Standard binary classification

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$
- 3. A training set D sampled from \mathcal{D}

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

Standard binary classification

TASK: α-WEIGHTED BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$
- 3. A training set D sampled from \mathcal{D}

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\alpha^{y=1}\left[f(x)\neq y\right]\right]$

How use this for imbalanced class distribution?

- Fraudulent transactions, 0.01% data
 - Weight = 0.0001
- Normal transactions
 - Weight = 0.9999

Importance weight

- Entropy(S) = $-p_+\log_2 p_+ p_-\log_2 p_-$
- WeightedEntropy(S) = $(\alpha) p_+ \log_2 p_+ (1 \alpha) p_- \log_2 p_-$
- Gain(S,A) = Entropy(S) $\sum_{v \in Values(A)} \frac{|S_v|}{|S|}$ Entropy(S_v)
- WeightedGain(S,A) = Entropy(S) $\sum_{v \in Values(A)} \frac{\alpha|S_v^+| + (1-\alpha)|S_v^-|}{\alpha|S^+| + (1-\alpha)|S^-|}$

Sampling (undersampli

Algorithm 11 SubsampleMap($\mathcal{D}^{weighted}$, α)

```
while true do
(x,y) \sim \mathcal{D}^{weighted} \qquad \text{// draw an example from the weighted distribution}
u \sim \text{uniform random variable in } [0,1]
\text{if } y = +1 \text{ or } u < \frac{1}{\alpha} \text{ then}
\text{return } (x,y)
\text{end if}
\text{end while}
```

Algorithm 12 SubsampleTest(f^{BINARY} , \hat{x})

```
1: return f^{\text{BINARY}}(\hat{x})
```


Original dataset

Oversampled dataset

Let's try this out

Decompose

Let's try this out