Robotic Prosthesis

Robotic hand prosthesis

Table of Contents

- Development of a functional prosthesis
- Health area

About The Theory

EMG signal: (Filtering and processing)

- Frequency: 0Hz 500Hz
- Noise

About The Theory

Filtering and processing

- Analog signal recovery
- Analog to digital conversion
- Signal processing

Control

Control of the robotic hand

Abstract

Technical Features

EMG Sensor

- Myoware muscle sensor
- Electrodes

Microcontroller

STM32F072RB

Robotic hand

- Bionic RobotHand SKUROB0142
- SKU:DFR0265 shield

Technical design

EMG signal: - 2 pairs of electrodes + Ref

- Analogic filtered signal
- Butterworth low pass 6th at 50Hz
- Flexor and extensor muscles

Technical design

STM processing:

- ADC conversion using DMA channel 11 and 12
- Digital filtering: band pass 2nd (100 400 Hz)
- Hysteresis Threshold and comparison
- Teager Kaiser Operator Energy

Technical design

Robotic hand control:

- 5 servos motors (PWM signal)
- Driving by IO Expansion shield

- 5 fingers <u>together</u>

Anatomy Of The Error

Conclusion

DEMO

GITLAB Polytech:

https://gitlab.polytech.umontpellier.fr/victor. rios/robotic-prosthesis

Contact:

victor.rios@etu.umontpellier.fr