Can Geospatial Auxiliary Variables be Beneficial in Small Area Estimation? If so, How Can They be Effectively Utilized?

Partha Lahiri

University of Maryland College Park, USA

Based on my joint research with my collaborators Priyanka Anjoy, Yuting Chen, Santanu Pramanik, Nicola Salvati, Jiraphan Suntornchost

An Example

Ref: Battese, Harter and Fuller (1988 JASA)

	No. of segments		Reported hectares		No. of pixels in sample segments		Mean number of pixels per segment*	
County	Sample	County	Corn	Soybeens	Com	Soybeens	Garn	Scybean
Cerro Gordo	1	545	165.76	8.09	374	55	295.29	189.70
Hamilton	1	566	96.32	106.03	209	218	300.40	196.65
Worth	1	394	76.08	103.60	253	250	289.60	205.28
Humboldt	2	424	185.35 116.43	6.47 63.82	432 367	96 178	290.74	220.22
Frankle	3	564	162.08 152.04 161.75	43.50 71.43 42.49	361 286 369	137 206 165	318.21	188.05
Pocahontas	3	570	92.88 149.94 64.75	105.26 76.49 174.34	206 316 145	216 221 338	257.17	247.13
Winnebago	3	402	127.07 133.55 77.70	95.67 76.57 93.48	355 295 223	128 147 204	291.77	185.37
Wright	3	567	206.39 108.33 118.17	37.84 131.12 124.44	459 290 307	217 258	301.26	221.36
Webster	4	587	99.96 140.43 98.95 131.04	144.15 103.60 88.59 115.58	252 293 206 302	303 221 222 274	262.17	247.09
Hancock	5	569	114.12 100.60 127.88 116.90 87.41	99.15 124.56 110.88 109.14 143.66	313 246 353 271 237	190 270 172 228 297	314.28	198.66
Kossuth	5	966	93.48 121.00 109.91 122.66 104.21	91.05 132.33 143.14 104.13 118.57	221 369 343 342 294	167 191 249 182 179	298.65	204.61
Hardin	6	556	88.59 68.59 165.35 104.00 88.63 153.70	102.59 29.46 69.28 99.15 143.66 94.49	220 340 355 261 167 350	262 87 160 221 345 190	325.99	177.05

Fig 2: Plot of Corn Hectares versus Corn Pixels by County

This plot also reflects the strong relationship between the 📱 🗀 👢 🔻 🔾

Anjoy, Lahiri, Pramanik (2025)

Correlation between Population Size vs. Nighttime Light Data for 2012

States	Rural	Urban	Aggregate
Uttar Pradesh	-0.49	0.82	0.27
Maharashtra	-0.28	0.48	0.26
Madhya Pradesh	-0.27	0.90	0.59
Gujarat	-0.32	0.56	0.50
Tamil Nadu	-0.51	0.79	0.58
West Bengal	-0.14	0.75	0.56
Odisha	-0.05	0.32	0.37
Assam	-0.35	0.71	0.20

Correlation between Estimated Poverty Rates vs. Nighttime Light Data for 2022

States	Rural	Urban	Aggregate
Uttar Pradesh	0.003	-0.40	0.03
Maharashtra	-0.29	-0.38	-0.30
Madhya Pradesh	-0.14	-0.61	-0.35
Gujarat	-0.30	-0.38	-0.47
Tamil Nadu	-0.06	-0.03	-0.14
West Bengal	-0.28	-0.33	-0.25
Odisha	-0.48	-0.86	-0.64

An Example from the EMAP Lake Survey Data

Ref: Lahiri and Salvati (JRSS B, 2024)

- 334 lakes selected from the population of 21,026 lakes
- 86 Hydrologic Unit Codes (HUCs) are in-sample
- 27 HUCs are out-of-sample
- Estimation of average Acid Neutralising Capacity (ANC) by HUC is of interest.

An Example from the EMAP Lake Survey Data (Cont'd)

An Example from the EMAP Lake Survey Data (Cont'd)

Notation

- m small areas with N_i units;
- y_{ij} and \mathbf{x}_{ij} denote the values of the study variable and a $p \times 1$ vector of known auxiliary variables for the jth unit of the ith small area, respectively, with $i = 1, \dots, m, j = 1, \dots, N_i$;
- Parameter of interest: $\bar{Y}_i = N_i^{-1} \sum_{j=1}^{N_i} y_{ij}, \ i=1,\ldots,m.$
- n_i is the sample size for area i and it is not large enough to support the use of a direct estimator: $\bar{y}_i = n_i^{-1} \sum_{j \in s_i} y_{ij}$, where s_i denotes the part of the sample from the ith small area.

Nested error regression model (NER)

• Nested error regression model for the finite population:

$$y_{ij} = \beta_0 + \mathbf{x}'_{ij}\boldsymbol{\beta} + \gamma_i + \epsilon_{ij}, \ i = 1, ..., m; \ j = 1, ..., N_i,$$

- β_0 and β are fixed intercept and regression coefficients, respectively;
- γ_i is a random effect for area i; ϵ_{ij} is the sampling error for the jth observation in the ith area; γ_i and ϵ_{ij} are all assumed to be independent with $\gamma_i \sim N(0, \sigma_\gamma^2)$ and $\epsilon_{ij} \sim N(0, \sigma_\epsilon^2)$, $i=1,\ldots,m;\ j=1,\ldots,N_i$;
- The model parameters σ_{γ}^2 and σ_{ϵ}^2 are referred to as the variance components.

An extension of NER model

We propose the following extension of NER model:

$$y_{ij} = \beta_0 + \mathbf{x}'_{ij}\beta_i + \gamma_i + \epsilon_{ij}, \ i = 1, \dots, m; \ j = 1, \dots, N_i,$$

- β_0 is a common intercept term;
- β_i is a $p \times 1$ vector of fixed regression coefficients for area i;
- γ_i and ϵ_{ij} are all independent with $\gamma_i \sim N(0, \sigma_{\gamma}^2)$ and $\epsilon_{ij} \sim N(0, \sigma_{\epsilon i}^2)$.

The Best Predictor (BP)

The best predictor (BP) of $\bar{Y}_i \approx \theta_i = \beta_0 + \bar{\mathbf{X}}_i' \boldsymbol{\beta}_i + \gamma_i$ is given by

$$\begin{split} & \hat{\theta}_i^{BP} \\ = & \left(1 - B_i\right) \left\{ \bar{y}_i + \left[\beta_0 + (\bar{\mathbf{X}}_i - \bar{\mathbf{x}}_i)' \boldsymbol{\beta}_i\right] \right\} + B_i (\beta_0 + \bar{\mathbf{X}}_i' \boldsymbol{\beta}_i) \\ = & \hat{\theta}_i(\boldsymbol{\phi}_i), \text{ (say)} \end{split}$$

where

- $\bar{\mathbf{X}}_i$: population mean for area i
- $\bar{\mathbf{x}}_i$: sample mean for area i
- $B_i = \frac{\sigma_{\epsilon i}^2/n_i}{\sigma_{\epsilon i}^2/n_i + \sigma_{\gamma}^2};$
- $\phi_i = (\beta_0, \beta_i, \sigma_{\gamma}^2, \sigma_{\epsilon i}^2)';$
- An empirical best predictor (EBP) of θ_i can be written as $\hat{\theta}_i^{EBP} \equiv \hat{\theta}_i(\hat{\phi}_i)$.

EMAP Lake Survey Data Analysis

Figure: Maps showing the spatial variation in the HUC-specific area elevation slope coefficient (left) and sampling variance (right) estimates that are generated when the proposed nested error regression model with high dimensional parameter is fitted to the EMAP data.

Maps of estimated average ANC for HUCs using direct and EBP under NERHDP

Boxplot of CVs ratios

Figure: Boxplot showing the ratio between the CVs of the direct estimates and the CVs of the estimates obtained by the nested error regression model with high dimensional parameter. Values greater than 1 indicates that the CVs of the direct estimates are higher than the other ones.

R package: NERHD

The R package is at:

https://github.com/nicolasalvati73/NERHD/blob/main/NERHD_0.1.1.tar.gz

Figure:

Thank You!