Extractive Multi-Document Summarization with Integer Linear Programming and Support Vector Regression

Dimitrios Galanis, Gerasimos Lampouras and Ion Androutsopoulos

Multi-document Summarization

- We aim to produce summaries that are:
 - **relevant** to the query,
 - diverse (do not repeat information),
 - grammatical,
 - and up to a certain **length**.
- An extractive summarization system
 - includes only un-altered sentences.
- An abstractive summarization system
 - may alter (shorten, paraphrase, etc.) sentences,
 - requires more processing time,
 - usually requires **specialized resources** (parsers, paraphrasing rules etc.),
 - is in practice, marginally better than an extractive system.

Greedy Approach to Summarization

- Many extractive summarization systems use a greedy approach.
 - They maximize the **importance** of the summary's **sentences**.
 - Importance can be estimated via statistics, machine learning etc.

- Sentence diversity can be achieved by discarding any sentence that is too similar to the sentences already in the summary.
 - Similarity measures (e.g., cosine similarity) are often employed.
- We use the greedy approach as a baseline.
 - We present a <u>non-greedy</u> approach, based on <u>global optimization</u>.

Global Optimization Approach

- Recent work shows that global optimization approaches produce better (or comparable) summaries, compared to greedy approaches.
 - Take into account the **entire search space** to find an **optimal** solution.
- We jointly optimize sentence importance and diversity to find an optimal summary.
 - Respecting the maximum summary length.
- We do extractive summarization, we do not alter the source sentences.
 - But optimization models can be easily extended.
 - Sentence **compression**, sentence **aggregation** etc.

ILP-Based Global Optimization

- We use Integer Linear Programming (ILP).
 - Binary LP: all the variables are binary (o/1).
- We maximize the summary's Imp(S) + Div(S).
 - Imp(S): Sum of importance scores of sentences in summary S.
 - Div(S): Sum of distinct selected word bigrams in summary S.
 - Following previous work, we assume that bigrams roughly correspond to concepts/things.

Sentence	Importance
X ₁	0.8
X ₂	0.7
X ₃	0.6

Importance	1.5
Diversity	3
Importance	1.4
Diversity	4

ILP Objective function

ILP Constraints

subject to
$$\sum_{i=1}^{n} l_i \cdot x_i \leq L_{\text{max}}$$

The summary length must not exceed the maximum allowed length.

and
$$\sum_{g_j \in B_i} b_j \ge |B_i| \cdot x_i$$
, for $i = 1...n$

and
$$\sum_{s_i \in S_i} x_i \ge b_j$$
, for $j = 1 ... |B|$

Constrains to ensure consistency between sentences and bigrams.

If a sentence is included, all the bigrams it contains must also be included.

If a **bigram** is included, at **least one sentence** that contains it must also be **included**.

SVR Model of Sentence Importance

- SVR Support Vector Regression
 - Regression equivalent of Support Vector Machines.
 - Rather than classification, it aims to learn a function with real values.

Feature vector, one per candidate **sentence**:

- **sentence position** in the original document,
- number of **named entities**,
- Levenshtein distance between query and sentence,
- word overlap between query and sentence,
- content word and document frequencies.

Target sentence importance score:

- The **SVR** learns to **predict** this value.
- Similarity between **sentence** and **human-written** summaries.

Estimated as the average of **ROUGE-2** and **ROUGE-SU4** scores.

- **Bigram** similarity measures.
- **Highly correlated** with human judgments in **summarization**.

Evaluation Setup

- We experimented with the following systems and baselines:
 - ILP system.
 - GREEDY system.
 - Uses the same SVR (for importance scores) as the ILP system.
 - GREEDY-RED system.
 - Includes redundancy checks via cosine similarity.
- Datasets: DUC 2005, DUC 2006, DUC 2007 and TAC 2008.
 - Each dataset contains queries and corresponding sets of relevant documents.
 - For each query, multiple reference (human-authored) summaries are also provided.

Efficiency

- Our ILP method is a generalization of o-1 Knapsack (NP-Hard).
 - But we input only the top 100 sentences with the highest SVR scores.
 - We also ignore in the ILP model bigrams that consist exclusively of stop words or occur only once.
 - The steps above **reduce** the ILP variables to the **order of hundreds**.
 - The ILP variables grow approximately linearly to the number and length of the input sentences.
- 0.9 1.25 seconds are required for an off-the-shelf solver to find the optimal solution per summary.
 - If we include **preprocessing** of input documents and **formulation** of the **ILP program**, it takes **10-11 seconds** to produce a summary.

Results on the Development Set

- In all cases, we trained the SVR on DUC 2006 data.
- We used **DUC 2007** as a **development set** for parameter tuning.
 - Best results are achieved for $\lambda_1 = 0.4$, $\lambda_2 = 0.6$.
 - Both sentence importance and diversity contribute to the results.

system	ROUGE-2	ROUGE-SU ₄
$ILP (\lambda_1 = 0.4)$	0.12517	0.17603
GREEDY-RED	0.11591	0.16908
GREEDY	0.11408	0.16651
Lin and Bilmes 2011	0.12380	N/A
Celikyilmaz and Hakkani-Tur 2010	0.11400	0.17200
Haghighi and Vanderwende 2009	0.11800	0.16700
Schilder and Ravikumar 2008	0.11000	N/A
Pingali et al. 2007 (DUC 2007)	0.12448	0.17711
Toutanova et al. 2007 (DUC 2007)	0.12028	0.17074
Conroy et al. 2007 (DUC 2007)	0.11793	0.17593
Amini and Usunier 2007 (DUC 2007)	0.11887	0.16999

Our ILP method outperforms the baselines.

Our ILP method has the best ROUGE-2.

And the **second best ROUGE-SU**₄ score.

But these are development set results.

Results on Test Set - TAC 2008

system	ROUGE-2	ROUGE-SU4
$ILP (\lambda_1 = 0.4)$	0.11168	0.14413
Woodsend and Lapata 2012 (with QSTG)	0.11370	0.14470
Woodsend and Lapata 2012 (without QSTG)	0.10320	0.13680
Berg-Kirkpatrick et al. 2011 (with subtree cuts)	0.11700	0.14380
Berg-Kirkpatrick et al. 2011 (without subtree cuts)	0.11050	0.13860
Shen and Li 2010	0.09012	0.12094
Gillick and Favre 2009 (with sentence compression)	0.11100	N/A
Gillick and Favre 2009 (without sentence compr.)	0.11000	N/A
Gillick et al. 2008 (run 43 in TAC 2008)	0.11140-	0.14298-
Gillick et al. 2008 (run 13 in TAC 2008)	0.11044-	0.13985-
Conroy and Schlesinger 2008 (run 60 in TAC 2008)	0.10379-	0.14200-
Conroy and Schlesinger 2008 (run 37 in TAC 2008)	0.10338-	0.14277-
Conroy and Schlesinger 2008 (run 06 in TAC 2008)	0.10133+	0.13977-
Galanis and Malakasiotis 2008 (run 02 in TAC 2008)	0.10012+	0.13694-

Third best results in ROUGE-2 and second best in ROUGE-SU4.

Some methods are **abstractive**.

Best results amongst extractive.

Better results than some abstractive.

+ and - denote the existence or absence of statistical significance (t-test), respectively.

Conclusions

- We presented an ILP-based method for multi-document extractive summarization that jointly maximizes:
 - sentence importance scores provided by a Support Vector Regression (SVR) model, and
 - sentence diversity scores, computed as the number of distinct bigrams of the input documents that occur in the summary,
 - respecting the maximum allowed summary length.
- Experiments on widely used benchmark datasets show that our ILP-based method:
 - achieves state of the art results amongst extractive methods,
 - outperforms two greedy baselines that use the same SVR model (without ILP),
 - performs better than some abstractive methods.
- Future work:
 - We are experimenting with an extended form of our ILP-based method that includes sentence compression (Galanis & Androutsopoulos 2010).

Thank you!

Questions?