LECTURE 9:CONTAGION AND VIRAL MARKET

Models of Cascading Behavior

Last time:

Decision Based Models

- Utility based
- Deterministic

- Require us to know too much about the data
- □ Today: Probabilistic Models
 - Let's you do things by observing data
 - We loose "why people do things"

CLASSICAL MODELS OF DISEASE SPREADING

Spreading Models of Viruses

Virus Propagation: 2 Parameters:

- (Virus) birth rate β:
 - probability than an infected neighbor attacks
- (Virus) death rate δ:
 - probability that an infected node heals

More Generally: S+E+I+R Models

General scheme for epidemic models:

- Each node can go through phases:
 - Transition probs. are governed by the model parameters

SIR Model

□ **SIR** model: Node goes through phases

- Models chickenpox or plague:
 - Once you heal, you can never get infected again
- Assuming perfect mixing (the network is a

complete graph) the

model dynamics is:

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dI}{dt} = \beta SI - \delta I$$

$$\frac{dR}{dt} = \delta I$$

SIS Model

- Susceptible-Infective-Susceptible (SIS) model
- Cured nodes immediately become susceptible
- □ Virus "strength": $s = \beta / \delta$
- □ Node state transition diagram:

SIS Model

□ Models flu:

- Susceptible node becomes infected
- The node then heals and become susceptible again
- Assuming perfect mixing (complete graph):

$$\frac{dS}{dt} = -\beta SI + \delta I$$

$$\frac{dI}{dt} = \beta SI - \delta I$$

Question: Epidemic threshold t

- □ SIS Model:
 - Epidemic threshold of an arbitrary graph G is τ, such that:
 - If virus strength $s = \beta / \delta < \tau$ the epidemic can not happen (it eventually dies out)
- Given a graph what is its epidemic threshold?

Epidemic Threshold in SIS Model

□ We have no epidemic if:

 $\triangleright \lambda_{1,A}$ alone captures the property of the graph!

Experiments (AS graph)

Experiments

Does it matter how many people are initially infected?

(a) Below the threshold, s=0.912

(b) At the threshold, s=1.003

(c) Above the threshold, s=1.1

MODELS OF INFORMATION SPREAD

Independent Cascade Model

- □ Initially some nodes S are active
- □ Each edge (u,v) has probability (weight) p_{uv}

- □ When node v becomes active:
 - \blacksquare It activates each out-neighbor v with prob. p_{ijv}
- Activations spread through the network

Independent Cascade Modal

- Independent cascade model is simple but requires many parameters!
 - Estimating them from data is very hard [Goyal et al. 2010]

- Solution: Make all edges have the same weight (which brings us back to the SIR model)
 - Simple, but too simple
- Can we do something better?

Exposures and Adoptions

- □ From exposures to adoptions
 - Exposure: Node's neighbor exposes the node to the contagion
 - Adoption: The node acts on the contagion

Exposure Curves

Exposure curve:

Probability of adopting new behavior depends on the number of friends who have already adopted

... adopters

What's the dependence?

k = number of friends adopting

Critical mass: Decision making

Exposure Curves

- □ From exposures to adoptions
 - Exposure: Node's neighbor exposes the node to information
 - Adoption: The node acts on the information
- Adoption curve:

Example Application

- Marketing agency would like you to adopt/buy product X
- They estimate the adoption curve
- Should they expose you to X three times?
- Or, is it better to expose you X, then Y and then X again?

Diffusion in Viral Marketing

Senders and followers of recommendations receive discounts on products

- Data: Incentivized Viral Marketing program
 - 16 million recommendations
 - 4 million people, 500k products
 - □ [Leskovec-Adamic-Huberman, 2007]

Exposure Curve: Validation

More Subtle Features

What is the effectiveness of subsequent recommendations?

Exposure Curve: LiveJournal

Group memberships spread over the network:

- Red circles represent existing group members
- Yellow squares may join

□ Question:

How does prob. of joining a group depend on the number of friends already in the group?

Exposure Curve: LiveJournal

□ LiveJournal group membership

What are We Really Measuring?

□ For viral marketing:

■ We see that node v receiving the *i*-th recommendation and then purchased the product

□ For groups:

At time t we see the behavior of node v's friends

□ Good questions:

- When did v become aware of recommendations or friends' behavior?
- When did it translate into a decision by v to act?
- How long after this decision did v act?

Exposure Curve: Information

- □ Twitter [Romero et al. '11]
 - Aug '09 to Jan '10, 3B tweets, 60M users

- Avg. exposure curve for the top 500 hashtags
- What are the most important aspects of the shape of exposure curves?
- Curve reaches peak fast, decreases after!

Modeling the Shape of the Curve

- □ Persistence of P is the ratio of the area under the curve P and the area of the rectangle of length max(P), width max(D(P))
 □ D(P) is the domain of P
- Persistence measures the decay of exposure curves
- \square Stickiness of P is max(P).
- Stickiness is the probability of usage at the most effective exposure

Exposure Curve: Persistence

Manually identify 8
 broad categories with
 at least 20 HTs in each

Category	Examples			
Celebrity	mj, brazilwantsjb, regis, iwantpeterfacinelli			
Music	thisiswar, mj, musicmonday, pandora			
Games	mafiawars, spymaster, mw2, zyngapirates			
Political	tcot, glennbeck, obama, hcr			
Idiom	cantlivewithout, dontyouhate, musicmonday			
Sports	golf, yankees, nhl, cricket			
Movies/TV	lost, glennbeck, bones, newmoon			
Technology	digg, iphone, jquery, photoshop			

- Idioms and Music have lower persistence than that of a random subset of hashtags of the same size
- Politics and Sports have higher persistence than that of a random subset of hashtags of the same size

Exposure Curve: Stickiness

- Technology and Movies have lower stickiness than that of a random subset of hashtags
- Music has higher stickiness than that of a random subset of hashtags (of the same size)

Network & External Exposures

- Two sources of exposures [Myers et al., KDD, 2012]
 - Exposures from the network
 - External exposures

Putting it all together

Model Inference Task

□ Given:

- Network G
- A set of node adoption
 times (u, t) single piece of info

□ Goal: Infer

■ External event profile:

 $\lambda_{ext}(t)$... # external exposures over time

■ Adoption curve:

Experiment

- In social networks people post links to interesting articles
 - You hear about an article from a friend
 - You read the article and then post it
- Data from Twitter
 - Complete data from Jan 2011:3 billion tweets
 - Trace the emergence of URLs
 - Label each URL by its topic

Results: Different Topics

Adoption of URLs across Twitter:

k at Downtiers 1 0/ Feet					
	max P(k)	may D(k)	Duration	% Ext.	
	liidx i (K)	max P(k)	(hours)	Exposures	
Politics (25)	0.0007 +/- 0.0001	4.59 +/- 0.76	51.24 +/- 16.66	47.38 +/- 6.12	
World (824)	0.0013 +/- 0.0000	2.97 + (-0.10)	43.54 +/- 2.94	26.07 +/- 1.19	
Entertain. (117)	0.0015 +/- 0.0002	3.52 +/- 0.28	89.89 +/- 16.13	17.87 +/- 2.51	
Sports (24)	0.0010 +/- 0.0003	4.76 +/- 0.83	87.85 +/- 38.03	43.88 +/- 6.97	
Health (81)	0.0016 +/- 0.0002	3.25 +/- 0.30	100.09 +/- 17.57	18.81 +/- 3.33	
Tech. (226)	0.0013 +/- 0.0001	3.00 + - 0.16	83.05 +/- 8.73	18.36 -/- 1.80	
Business (298)	0.0015 +/- 0.0001	3.18 +/- 0.16	49.61 +/- 5.14	22.27 +/- 1.79	
Science (106)	0.0012 +/- 0.0002	4.06 +/- 0.30	135.28 +/- 16.19	20.53 +/- 2.78	
Travel (16)	0.0005 +/- 0.0001	2.33 + -0.29	151.73 +/- 39.70	39.99 +/- 6.60	
Art (32)	0.0006 +/- 0.0001	5.26 +/- 0.66	188.55 +/- 48.17	27.54 +/- 5.30	
Edu. (31)	0.0009 +/- 0.0001	3.77 +/- 0.51	130.53 +/- 38.63	21.45 +/- 6.40	

□ More in Myers et al., KDD, 2012

MODELING INTERACTIONS BETWEEN CONTAGIONS

Interactions

 So far we considered pieces of information as independently propagating

- Do pieces of information interact?
 - Does being exposed to blue change the probability of talking about red?

Modeling Interactions

- Goal: Model interaction between many pieces of information
 - Some pieces of information may help each other in adoption
 - Other may compete for attention

Modeling Interactions

You are reading posts on Twitter:

- You examine posts one by one
- Currently you are examining X
- How does your probability of reposting X depend on what you have seen in the past?

P(post X | exposed to X, Y_1 , Y_2 , Y_3) = ?

Dataset: Twitter

- Data from Twitter
 - Complete data from Jan 2011: 3 billion tweets
 - □ All URLs tweeted by at least 50 users: 191k
- □ Task:

Predict whether a user will post URL X

- Train on 90% of the data, test on 10%
- Baselines:
 - **□** Infection Probability (IP):
 - □ IP + Node bias (NB):
 - **Exposure curve (EC):** $= P(X \mid \# times \ exposed \ to \ X)$

 $P(X = u_i | Y_k = u_i) =$

 $=P(X=u_i)$

 $= P(X = u_i) + \gamma_n$

How to Tweets Interact?

\square How $P(post u_2 \mid exp. u_1)$ changes if ...

- \mathbf{u}_{1} and \mathbf{u}_{1} are similar/different in the content?
- □ U₁ is highly viral?

Relative change in infection prob. 15