전기이론

- 문 1. 전류원과 전압원의 특징에 대한 설명으로 옳은 것만을 모두 고르면?
 - ㄱ. 이상적인 전류원의 내부저항 $r = 1[\Omega]$ 이다.
 - \cup . 이상적인 전압원의 내부저항 $r = 0[\Omega]$ 이다.
 - 다. 실제적인 전류원의 내부저항은 전원과 직렬 접속으로 변화할 수 있다.
 - 르. 실제적인 전압원의 내부저항은 전원과 직렬 접속으로 변환할 수 있다.
 - ① 7, ∟
 - ② 7. ⊏
 - ③ ∟, ≥
 - ④ ⊏, ⊒
- 문 2. 그림의 회로에 대한 설명으로 옳지 않은 것은?

- ① 회로의 마디(node)는 4개다.
- ② 회로의 루프(loop)는 3개다.
- ③ 키르히호프의 전압법칙(KVL)에 의해 $V_1-V_{R1}-V_{R3}-V_2=0$ 이다.
- ④ 키르히호프의 전류법칙(KCL)에 의해 $I_{R1} + I_{R2} + I_{R3} = 0$ 이다.
- 문 3. 그림의 R-C 직렬회로에서 t=0[s]일 때 스위치 S를 닫아 전압 E[V]를 회로의 양단에 인가하였다. t=0.05[s]일 때 저항 R의 양단 전압이 $10e^{-10}$ [V]이면, 전압 E[V]와 커페시턴스 $C[\mu F]$ 는? (단, R=5,000[Ω], 커페시터 C의 초기전압은 0[V]이다)

	<u>E[V]</u>	$\underline{\text{C}\left[\mu\mathrm{F} ight]}$	
1	10	1	
2	10	2	
3	20	1	
4	20	2	

- 문 4. 전압 V = 100 + j10[V]이 인가된 회로의 전류가 I = 10 j5 [A]일 때, 이 회로의 유효전력[W]은?
 - ① 650

2 950

③ 1.000

- 4 1,050
- 문 5. 그림의 회로에서 평형 3상 \triangle 결선의 \times 표시된 지점이 단선되었다. 단자 a와 단자 b 사이에 인가되는 전압이 120 [V]일 때, 저항 r_a 에 흐르는 전류 I[A]는? (단, $R_a=R_b=R_c=3$ [Ω], $r_a=r_b=r_c=1$ [Ω]이다)

- ① 10
- 3 30

- 40
- 문 6. 그림의 회로에서 부하에 최대전력이 전달되기 위한 부하 임피던스 [Ω]는? (단, $R_1 = R_0 = 5[\Omega]$, $R_3 = 2[\Omega]$, $X_C = 5[\Omega]$, $X_L = 6[\Omega]$ 이다)

- ① 5-j5
- ② 5+j5
- 3 5-j10
- 4 5+j10
- 문 7. 그림 (가)와 그림 (나)는 두 개의 물질에 대한 히스테리시스 곡선이다. 두 물질에 대한 설명으로 옳은 것은?

- ① (가)의 물질은 (나)의 물질보다 히스테리시스 손실이 크다.
- ② (가)의 물질은 (나)의 물질보다 보자력이 크다.
- ③ (나)의 물질은 (가)의 물질에 비해 고주파 회로에 더 적합하다.
- ④ (나)의 물질은 (가)의 물질에 비해 영구자석으로 사용하기에 더 적합하다.

문 8. 그림의 회로가 역률이 1이 되기 위한 $X_C[Ω]$ 는?

- $2 \frac{3}{5}$
- $3\frac{4}{5}$
- 4) 1

문 9. 그림의 Y-Y 결선 평형 3상 회로에서 전원으로부터 공급되는 3상 평균전력[W]은? (단, 극좌표의 크기는 실횻값이다)

- ① $440\sqrt{3}$
- ② $660\sqrt{3}$
- ③ $1,320\sqrt{3}$
- (4) 2,640 $\sqrt{3}$

문 10. 그림의 회로에서 스위치 S가 충분히 오랜 시간 동안 개방되었다가 t=0[s]인 순간에 닫혔다. t>0일 때의 전류 i(t)[A]는?

- $1 \frac{1}{7} (6 + e^{-2t})$
- $2 \frac{1}{7} \left(6 + e^{-\frac{3}{2}t} \right)$
- $3 \frac{1}{7} (8 e^{-2t})$
- $4 \frac{1}{7} \left(8 e^{-\frac{3}{2}t} \right)$

- 문 11. 인덕턴스 L의 정의에 대한 설명으로 옳은 것은?
 - ① 전압과 전류의 비례상수이다.
 - ② 자속과 전류의 비례상수이다.
 - ③ 자속과 전압의 비례상수이다.
 - ④ 전력과 자속의 비례상수이다.
- 문 12. R-L 직렬회로에 200 [V], 60 [Hz]의 교류전압을 인가하였을 때, 전류가 10 [A]이고 역률이 0.8이었다. R을 일정하게 유지하고 L만을 조정하여 역률이 0.4가 되었을 때, 회로의 전류[A]는?
 - ① 5

2 7.5

③ 10

④ 12

문 13. 그림의 회로에서 저항 R에 인가되는 전압이 6[V]일 때, 저항 $R[\Omega]$ 은?

- ① 2
- 2 4
- ③ 10
- 4) 25
- 문 14. 그림 (가)와 같이 면적이 S, 극간 거리가 d인 평행 평판 커패시터가 있고, 이 커패시터의 극판 내부는 유전율 ε인 물질로 채워져 있다. 그림 (나)와 같이 면적이 S인 평행 평판 커패시터의 극판 사이에 극간 거리 d의 $\frac{1}{3}$ 부분은 유전율 3ε인 물질로 극간 거리 d의 $\frac{1}{3}$ 부분은 유전율 2ε인 물질로 그리고 극간 거리 d의 $\frac{1}{3}$ 부분은 유전율 ε인 물질로 채웠다면, 그림 (나)의 커패시터 전체 정전용량은 그림 (가)의 커패시터 정전용량의 몇 배인가? (단, 가장자리 효과는

① $\frac{11}{18}$

무시한다)

- $2 \frac{9}{11}$
- $3 \frac{11}{9}$
- $\frac{18}{11}$

문 15. 그림의 평형 3상 Y-Y 결선에 대한 설명으로 옳지 않은 것은?

- ① 선간전압 $V_{ca} = \sqrt{3} \, V_p \angle -210\,^{\circ}$ 로 상전압 V_{cn} 보다 크기는 $\sqrt{3}$ 배 크고 위상은 $30\,^{\circ}$ 앞선다.
- ② 선전류 I_{aA} 는 부하 상전류 I_{AN} 과 크기는 동일하고, Z_i 가 유도성인 경우 부하 상전류 I_{aA} 의 위상이 선전류 I_{aA} 보다 뒤진다.
- ③ 중성선 전류 $I_{Nn} = I_{aA} I_{Bb} + I_{cC} = 0$ 을 만족한다.
- ④ 부하가 △결선으로 변경되는 경우 동일한 부하 전력을 위한 부하 임피던스는 기존 임피던스의 3배이다.
- 문 16. 그림의 회로는 동일한 정전용량을 가진 6개의 커패시터로 구성 되어 있다. 그림의 회로에 대한 설명으로 옳은 것은?

- ① C₅에 충전되는 전하량은 C₁에 충전되는 전하량과 같다.
- ② C₆의 양단 전압은 C₁의 양단 전압의 2배이다.
- ③ C₃에 충전되는 전하량은 C₅에 충전되는 전하량의 2배이다.
- ④ C_2 의 양단 전압은 C_6 의 양단 전압의 $\frac{2}{3}$ 배이다.
- 문 17. 그림의 R-L 직렬회로에 대한 설명으로 옳지 않은 것은? (단, 회로의 동작상태는 정상상태이다)

- ① v(t)와 i(t)의 위상차는 45°이다.
- ② i(t)의 최댓값은 10[A]이다.
- ③ i(t)의 실횻값은 5[A]이다.
- ④ R-L의 합성 임피던스는 $\sqrt{2}$ [Ω]이다.

문 18. 그림의 회로에서 전류 I_x [A]는?

문 19. 시변 전자계 시스템에서 맥스웰 방정식의 미분형과 관련 법칙이 서로 옳게 짝을 이룬 것을 모두 고른 것은? (단, E는 전계, H는 자계, D는 전속밀도, J는 전도전류밀도, B는 자속밀도, $\rho_{\rm v}$ 는 체적전하밀도이다)

	맥스웰 방정식 미분형	관련 법칙	
가.	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial \mathbf{t}}$	패러데이의 법칙	
나.	$\nabla \cdot \mathbf{B} = \rho_{\mathbf{v}}$	가우스 법칙	
다.	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{E}}{\partial \mathbf{t}}$	암페어의 주회적분 법칙	
라.	$\nabla \cdot \mathbf{D} = \rho_{\mathbf{v}}$	가우스 법칙	

- ① 가, 나
- ② 가, 라
- ③ 나, 다

④ 다. 라

문 20. 그림과 같은 전류 i(t)가 $4[k\Omega]$ 의 저항에 흐를 때 옳지 않은 것은?

- ① 전류의 주기는 6[s]이다.
- ② 전류의 실횻값은 $2\sqrt{2}$ [A]이다.
- ③ 4[kΩ]의 저항에 공급되는 평균전력은 32[kW]이다.
- ④ $4[k\Omega]$ 의 저항에 걸리는 전압의 실횻값은 $4\sqrt{2}[kV]$ 이다.