ADPS 2025Z — Laboratorium 1

Konrad Jędrzejewski, Marek Rupniewski

Przykład 1

Pobranie danych

• W katalogu domowym utwórz katalog ADPS/Lab1. W tym celu w RStudio w prawym dolnym oknie w zakładce Files wybierz New Folder.

W R
Studio zmień katalog roboczy na ADPS/Lab1. W zakładce Files wybier
z $More \rightarrow Set~As~Working~Directory$

• Znajdź i pobierz dane historyczne spółki KGHM (KGH) ze strony https://stooq.pl/:

```
# https://stooq.pl/q/d/l/?s=kgh&i=d
Ticket = 'KGH'
webLink = paste0('https://stooq.pl/q/d/l/?s=', Ticket, '&i=d')
fileName = paste0(Ticket, '.csv')
# if(!file.exists(fileName)) {
   download.file(webLink, fileName)
#}
```

Wykres kursu w czasie

- Wczytaj dane z pliku .csv. Obejrzyj dane dotyczące spółki KGHM, zwróć uwagę na nazwy kolumn.
- Narysuj wykres kursu otwarcia w zależności od daty:

Procentowe zmiany kursu

• Wykres procentowych zmian kursu otwarcia:

Ograniczenie danych do danych z ostatnich dwóch lat

Histogram

• Histogram procentowych zmian kursu otwarcia:

```
hist(df_KGH_2lata$0twarcie_zm, breaks = 50, prob = T,
    xlab = 'Zmiana kursu otwarcia [%] ',
    ylab = 'Częstość występowania',
    main = paste('Histogram procentowych zmian kursu', 'KGHM') )
grid()
```

Histogram procentowych zmian kursu KGHM

Funkcja gęstości prawdopodobieństwa

• Wartość średnia oraz odchylenie standardowe zmian kursu otwarcia:

```
m = mean(df_KGH_2lata$Otwarcie_zm, na.rm = T)
s = sd(df_KGH_2lata$Otwarcie_zm, na.rm = T)
```

Wartość średnia zmian kursu otwarcia wynosi 0.1335 %, a odchylenie standardowe 2.3012 %.

• Dorysowanie do histogramu wykres gęstości rozkładu normalnego o obliczonych parametrach:

```
hist(df_KGH_2lata$Otwarcie_zm, breaks = 50, prob = T,
    xlab = 'Zmiana kursu otwarcia [%] ',
    ylab = 'Częstość występowania',
    main = paste('Histogram procentowych zmian kursu', 'KGHM') )
grid()
min_c = min(df_KGH_2lata$Otwarcie_zm, na.rm = T)
max_c = max(df_KGH_2lata$Otwarcie_zm, na.rm = T)
curve(dnorm(x, mean = m, sd = s), add = T, col = 'red', from = min_c, to = max_c)
```

Histogram procentowych zmian kursu KGHM

Wykres pudełkowy

• Wykres pudełkowy procentowych zmian kursu otwarcia:

```
boxplot(df_KGH_2lata$0twarcie_zm, col = 'green',
    xlab = 'KGHM', ylab = 'Zmiana kursu otwarcia [%] ',
    main = 'KGHM' )
grid()
```


KGHM

Przykład 2

Pobranie danych

- Wgraj dane historyczne dotyczące katastrof lotniczych znajdujące się w pliku crashes.csv do katalogu ADPS/Lab1.
- Wczytaj dane z pliku crashes.csv do środowiska R:

```
kat = read.csv('crashes.csv')
```

• Obejrzyj dane, zwróć uwagę na puste pola.

Liczba wypadków w latach

• Dodanie do danych kolumny z rokiem:

```
kat\$Year = strftime(as.Date(kat\$Date, '\%m/\%d/\%Y'), '\%Y')
```

• Wykres liczby wypadków w danym roku:

```
plot(table(kat$Year), type = 'h', col = 'blue', xlab = 'Rok',
ylab = 'Liczba katastrof', main = 'Liczba katastrof w roku')
grid()
```

Liczba katastrof w roku

Liczba ofiar w latach

• Agregacja danych po latach:

Liczba ofiar katastrof w roku

Przykład 3

- Generacja 1000 próbek z rozkładu normalnego N(2,9):

```
proba = rnorm(1000, mean = 2, sd = 3)
plot(proba)
```


• Wartości parametrów z próby

```
m = mean(proba); s = sd(proba)
```

Wyestymowane parametry rozkładu wynoszą: wartość średnia 2.1073, wariancja 8.9339.

• Histogram i gęstość prawdopodobieństwa:

Histogram i g sto prawdopodobie stwa

• Dystrybuanta empiryczna i teoretyczna:

Dystrybuanta

• Wykres pudełkowy:

```
boxplot(proba, col = 'green', xlab = 'dane', ylab = 'Wartości próbek', main = 'Wykres pudełkowy')
grid()
```

Wykres pudełkowy

dane

• Teoretyczne i empiryczne wartości kwantyli dla 0.25,0.5 i 0.75:

```
q_theor = qnorm(c(0.25, 0.5, 0.75), mean = 2, sd = 3)
q_empir = quantile(proba, c(0.25, 0.5, 0.75))
```

Kwartyle teoretyczne: -0.0235, 2, 4.0235.

Kwartyle empiryczne: 0.1584, 2.1503, 3.9998.

Przykład 4

• Generacja 1000 próbek z rozkładu Poissona Pois(4):

```
M = 1000
proba = rpois(M, lambda = 4)
```

• Wartości parametrów z próby:

```
m = mean(proba); v = var(proba)
```

Wyestymowane parametry rozkładu wynoszą: wartość średnia 3.918, wariancja 4.2135.

• Wykres próbek:

Warto ci wygenerowanych próbek

• Empiryczna funkcja prawdopodobieństwa:

Funkcja prawdopodobie stwa dla M = 1000

• Teoretyczna funkcja prawdopodobieństwa:

Funkcja prawdopodobie stwa dla M = 1000

• Dystrybuanta empiryczna:

Dystrybuanta dla M = 1000

• Dystrybuanta empiryczna i teoretyczna:

Dystrybuanta dla M = 1000

• Dystrybuanta empiryczna wyznaczona za pomocą ecdf() z dystrybuantą teoretyczną:

Dystrybuanta empiryczna (ecdf)

