BEAGLE 3 FOR BEAST 2.7 ON EULER

cEvo group meeting, 2024-12-17

Beagle 3 for BEAST2.7

BEAGLE (Bayesian Evolutionary Analysis by Sampling Trees Library) is a high-performance computational library designed to accelerate phylogenetic likelihood calculations.

NB: Only available for genetic sequence data

All benchmarking was done using:

- Openjdk 17.0.8.1 1
- Beagle 3.1.2
- BEAST 2.7.4 with ReMaster, Feast and BeastLabs packages
- NVIDIA GeForce RTX 2080 GPUs and AMD EPYC CPUs

Set-up largely inspired by Remco Bouckaert analyses and CIPRES study (https://www.beast2.org/2021/03/31/command-line-options.html, bottom)

3x4x4x(5x3+3x1)x4x2=1728 configurations tested

Taxa	Partitions	Total seq. length	CPUs	GPUs	Beagle option	Instances
20	1	500	1	1	java	true
250	3	1000	2	2	beagle_CPU	false
1000	6	3000	4	4	beagle_SSE	
	9	9000	6		beagle_GPU	
			8			

- If instances true, it is equal to number of CPU cores or assigned GPUs
- Threads are always set to the number or CPU cores or GPUs
- Whenever more than 1 GPUs are used, -beagle_order option is specified

3x4x4x(5x3+3x1)x4x2=1728 configurations tested

Taxa	Partitions	Total seq. length	CPUs	GPUs	Beagle option	Instances
20	1	500	1	1	java	true
250	3	1000	2	2	beagle_CPU	false
1000	6	3000	4	4	beagle_SSE	
	9	9000	6		beagle_GPU	
			8			

For every data setup (taxa-partitions-seq. length):

- Simulated coalescent trees and sequences at the tips
- Effective pop. size = 2, all taxa sampled at present
- HKY + Gamma, subst. rate = 1
- Inference of tree, coalescent and substitution model parameters using broad default priors.
- In case of multiple partitions, MultiPartitionTreeLikelihood (BeastLABS, pre-release) was used.

Worst CPU vs best CPU time

Even without GPU availability, optimising for best CPU running configuration is worthwhile in ALL cases!

Number of Cores (CPU) or GPUs used

3 partitions | Instances — false ···· true | Beagle Variant → java → beagle_CPU → beagle_SSE → beagle_GPU 7

Number of Cores (CPU) or GPUs used

6 partitions

Instances — false ···· true Beagle Variant → java → beagle_CPU → beagle_SSE → beagle_GPU 8

Number of Cores (CPU) or GPUs used

9 partitions | Instances — false ···· true | Beagle Variant → java → beagle_CPU → beagle_SSE → beagle_GPU 9

Real data Thanks Noémie!

- Bacteria causing Pertussis
- 1248 taxa
- 1 partition
- 4701 sites
- 3388 patterns (4081486 constant sites)

Real data Thanks Noémie!

- Bacteria causing Pertussis
- 1248 taxa
- 1 partition
- 4701 sites
- 3388 patterns (4081486 constant sites)

	CPUs / GPUs	10^6 iterations	Speedup	10^8 iteration
java	1/0	14 h 56 min		62 days 5 h 39 min
beagle_SSE	1/0	36 min	24.7	2 days 12 h 30 min
beagle_SSE	6/0	18-19 min	47.7	1 days 7 h 17 min
beagle_GPU	1/1	17-18 min	50.6	1 day 5 h 30 min

■ Automatic Beagle 3 benchmarking: available in BEAST1 and being implemented in BEAST2.

■ Automatic Beagle 3 benchmarking: available in BEAST1 and being implemented in BEAST2.

	CPUs / GPUs	10^6 iterations	Speedup	10^8 iteration
java	1/0	14 h 56 min		62 days 5 h 39 min
beagle_SSE	1/0	36 min	24.7	2 days 12 h 30 min
beagle_SSE	6/0	18-19 min	47.7	1 days 7 h 17 min
beagle_GPU	1/1	17-18 min	50.6	1 day 5 h 30 min

■ Automatic Beagle 3 benchmarking: available in BEAST1 and being implemented in BEAST2.

	CPUs / GPUs	10^6 iterations	Speedup	10^8 iteration
java	1/0	14 h 56 min		62 days 5 h 39 min
beagle_SSE	1/0	36 min	24.7	2 days 12 h 30 min
beagle_SSE	6/0	18-19 min	47.7	1 days 7 h 17 min
beagle_SSE	8/0	30 min	30	2 days 2 h 22 min
beagle_GPU	1/1	17-18 min	50.6	1 day 5 h 30 min

- Automatic Beagle 3 benchmarking: available in BEAST1 and being implemented in BEAST2.
- Benchmarking for yourself: https://github.com/jugne/beast-beagle-benchmark/tree/main/self_benchmarking_scripts

- Automatic Beagle 3 benchmarking: available in BEAST1 and being implemented in BEAST2.
- Benchmarking for yourself: https://github.com/jugne/beast-beagle-benchmark/tree/main/self_benchmarking_scripts

```
[jugne@eu-login-32:/cluster/scratch/jugne/self_benchmarking_scripts$ ./submit_jobs.sh --minCPU 1 --maxCPU 4 --increment 1
Submitting job 1 with 1 CPUs...
Submitted batch job 18480684
Submitting job 2 with 2 CPUs...
Submitted batch job 18480685
Submitting job 3 with 3 CPUs...
Submitted batch job 18480686
Submitting job 4 with 4 CPUs...
Submitting job 4 with 4 CPUs...
Submitted batch job 18480687
All jobs submitted.
```

- Automatic Beagle 3 benchmarking: available in BEAST1 and being implemented in BEAST2.
- Benchmarking for yourself: https://github.com/jugne/beast-beagle-benchmark/tree/main/self_benchmarking_scripts

```
[jugne@eu-login-32:/cluster/scratch/jugne/self_benchmarking_scripts$ ./print_results.sh
File: ./job_1.out, CPUs: 1, Time: .32 minutes
File: ./job_2.out, CPUs: 2, Time: .39 minutes
File: ./job_3.out, CPUs: 3, Time: .26 minutes
File: ./job_4.out, CPUs: 4, Time: .28 minutes
```

Remarks

- Cipres benchmarking study specify data by number of site patterns and partitions, not number of taxa. I have seen significant influence on speedup depending also on number of taxa.
- It is always beneficial to use Beagle.
- In majority of the cases adequate number of CPU cores is enough and GPU is not needed.
- It is still hard to come up with rules of thumb for exact number of cores needed.
- In majority of the cases increasing the number of GPUs did not improve runtime significantly.