Universidade de Lisboa Instituto Superior de Economia e Gestão

PhD in Economics **Advanced Mathematical Economics** 2019-2020

Lecturer: Paulo Brito Exam: **Época Normal**

17.6.2020

- 1. (a) We have N(t) = S(t) + I(t) + R(t). Population is constant if and only if $\dot{N} = 0$. Then $\dot{S} + \dot{I} = -\dot{R} = 0$. Substituting, we find $-\beta SI + \beta SI \gamma I = -\gamma I = -\dot{R}$. Then, the last equation is redundant.
 - (b) The steady state is $\bar{I} = 0$, for any value of S. Then there is an infinite number of steady states, for any $S \in (0, \infty)$. The Jacobian, evaluated at the steady state is

$$J = \begin{pmatrix} 0 & -\beta S \\ 0 & \beta S - \gamma \end{pmatrix}$$

Then $\det(J) = 0$ and $\operatorname{trace}(J) = \beta S - \gamma$. Therefore, if $S < \frac{\gamma}{\beta}$ the steady states are asymptotically stable (although degenerate) and if $S > \frac{\gamma}{\beta}$ they are unstable. The phase diagram is

(c) For $\beta = \beta_0$ both S and I are decreasing to a steady state $\bar{S} < \frac{\gamma}{\beta_0}$ and $\bar{I} = 0$. After the shock, from β_0 to $\beta_1 > \beta_0$, I will increase and S will decrease until S reaches the point $S(\tau) = \frac{\gamma}{\beta_1}$, at time $t = \tau$. From that point on both S and I will decrease to a steady state such that $\bar{I} = 0$ and $\bar{S} < \frac{\gamma}{\beta_1}$. This can only be determined numerically

2. (a) The current-value Hamiltonian is $h(I, K, Q) = AK - \frac{I^2}{2} + Q(I - \delta K)$. The f.o.c are

$$\begin{split} I &= Q \\ \dot{Q} &= (r+\delta)Q - A \\ \dot{K} &= I - \delta K \\ 0 &= \lim_{t \to \infty} Q(t)K(t)e^{-rt} \end{split}$$

The phase diagram is

(c) Optimal K,

$$K(t) = k_0 e^{-\delta t} + \frac{\bar{I}}{\delta} \left(1 - e^{-\delta t} \right)$$

where $\bar{I} = \frac{A}{r+\delta}$.

(d) The HJB equation

$$rV(K) = \max_{I} \left\{ AK - \frac{I^2}{2} + V^K(I - \delta K) \right\}$$

The policy function is $I^* = V'(K)$. Therefore the HJB equation becomes, at the optimum,

$$rV(K) = AK + \left(\frac{V'(K)}{2}\right)^2 - \delta K V'(K)$$

(e) Trial function $V(K) = \alpha_0 + \alpha_1 K + \alpha_2 K^2$. We find there are two candidate solutions

$$V(K) = \bar{I}\left(\frac{\bar{I}}{4r} + K\right) \tag{1}$$

or

$$V_2(K) = \frac{1}{4r} \left(\frac{A}{\delta}\right)^2 - \frac{A}{\delta}K + (r+2\delta)K^2 \tag{2}$$

As $\lim_{K\to\infty} V'(K) = \bar{I}$ is bounded and $\lim_{K\to\infty} V'_2(K)$ is unbounded we take the first, in equation (1), as the value function.

3. (a) The HJB equation is

$$rV(K) = \max_{I} \left\{ AK - \frac{I^2}{2} + V^K(I - \delta K) + \frac{\sigma^2}{2}V''(K) \right\}$$

The policy function is again $I^* = V'(K)$. Therefore the HJB equation becomes, at the optimum,

$$rV(K) = AK + \left(\frac{V'(K)}{2}\right)^2 - \delta K V'(K) + \frac{\sigma^2}{2}V''(K)$$

- (b) Using a trial function $V(K) = \alpha_0 + \alpha_1 K$, the value function is again given by equation (1). If we use a quadratic trial function we could also rule it out because of non boundedness of V'(K).
- (c) As $I^* = V'(K) = \overline{I}$ then capital accumulation is driven by the SDE

$$dK(t) = (\bar{I} - \delta K(t))dt + \sigma dW(t)$$
(3)

where $K(0) = k_0$ given.

(d) Observe that equation (3) is generates a Ornstein-Uhlenbeck process. Therefore, the solution is

$$K(t) = k_0 e^{-\delta t} + \frac{\bar{I}}{\delta} (1 - e^{-\delta t}) + \sigma \int_0^t e^{-\delta (t-s)} dW(s)$$

(e) For $\bar{K} = \frac{\bar{I}}{\delta}$ the statistics are

$$\mathbb{E}\left[K(t)|K(0) = k_0\right] = \bar{K} + (k_0 - \bar{K})e^{-\delta t}$$

$$\mathbb{V}\left[K(t)|K(0) = k_0\right] = \frac{\sigma^2}{2\delta}\left(1 - e^{-2\delta t}\right)$$

(g) Writing $p(t,k) = \mathbb{P}[K(t) = k \,|\, K(0) = k_0]$ the FPK equation is

$$\partial_t p(t,k) = -\partial_k \left(\left(\bar{I} - \delta k \right) p(t,k) \right) + \frac{1}{2} \partial_{kk} \left(\sigma^2 p(t,k) \right)$$

(h) The FPK is a semi-linear parabolic PDE. Letting $\delta = 0$ and solving the equation with the initial condition $p(0, k_0) = \delta(k - k_0)$ we find

$$p(t,k) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\left(\frac{(k-k_0+\bar{I}t)^2}{2\sigma^2t}\right)\right\}$$

(a) (a) $y(t,x) = f\left(xe^{-at}\right)$ for a differentiable arbitrary function $f(\cdot)$

(b)
$$y(t,x) = \exp \left\{ -(xe^{-at})^2 \right\}.$$

- Linear 1 (a) General solution: $y(x) = \bar{y} + (k \bar{y}) e^{-\mu x}$ for $\bar{y} = \frac{\beta}{\mu}$.
 - (b) Particular solution $y(x) = \bar{y} + \mu e^{-\mu x}$.
- Linear 2 (a) Effects of parameters on dynamics: α and β determine the dynamic properties (the type of phase diagram) and the bifurcations; γ determines the value of the steady state. The possible phase diagrams are: saddle point if $\beta < 0 < \alpha$ or $\alpha < 0 < beta$, stable node if $\alpha < 0$ and $\beta < 0$, unstable node if $\alpha > 0$ and $\beta > 0$, unstable degenerate node (or saddle-node unstable) if $\alpha = 0 < \beta$ or $\beta = 0 < \alpha$; stable degenerate node (or saddle-node stable) node if $\alpha = 0 > \beta$ or $\beta = 0 > \alpha$, and degenerate saddle-node if $\alpha = \beta = 0$.
 - (c) $y_1(t) = 0$ and $y_2(t) = \frac{\gamma}{\beta} (1 e^{\beta t})$ for $t \in [0, \infty)$.