

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 00/29448 C07R 14/705, C12N 15/12 **A2** (43) International Publication Date: 25 May 2000 (25.05.00)

PCT/JP99/06412 (21) International Application Number: (22) International Filing Date: 17 November 1999 (17.11.99)

(30) Priority Data:

17 November 1998 (17.11.98)	JР
22 December 1998 (22.12.98)	JР
16 March 1999 (16.03.99)	JP
27 April 1999 (27.04.99)	JΡ
19 May 1999 (19.05.99)	JP
	22 December 1998 (22.12.98) 16 March 1999 (16.03.99) 27 April 1999 (27.04.99)

(71) Applicants (for all designated States except US): SAGAMI CHEMICAL RESEARCH CENTER [JP/JP]; 4-1, Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50. Wakamatsu, Sagamihara-shi, Kanagawa 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, 4-1-28. Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 214-0037 (JP).

(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540-0001 (JP).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, and expression vectors for these DNAs as well as eukaryotic cells expressing these DNAs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		•
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
1							
ſ							

WO 00/29448 PCT/JP99/06412

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

25

30

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs encoding these proteins, expression vectors for these DNAs as well as eukaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for genetic diagnosis and gene sources for gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells into which these genes are introduced to express secretory proteins or membrane proteins in large quantity can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like.

BACKGROUND ART

Cells secrete many proteins extracellularly. These secretory proteins play important roles in the proliferation control, the differentiation induction, the material transport, the biophylaxis, and the like of the cells. Unlike intracellular proteins, the secretory proteins exert their actions outside the cells. Therefore, they can be administered in the intracorporeal manner such as the injection or the drip, so that they possess hidden

WO 00/29448

5

10

15

20

25

30

potentialities as pharmaceuticals. In fact, a number of human secretory proteins such as interferons, interleukins, erythropoietin, thrombolytic agents and the like have been currently employed as pharmaceuticals. In addition, secretory proteins other than those described above are undergoing clinical trials for developing their use pharmaceuticals. It is believed that the human cells produce many unknown secretory proteins. Availability of these secretory proteins as well as genes encoding them expected to lead to development of novel pharmaceuticals utilizing these proteins.

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters and like in the material transport and the transduction through the cell membrane. Examples thereof include receptors for various cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion and the like, transporters for saccharides and amino acids and the like. The genes for many of them have already been cloned. It has been clarified that abnormalities of these membrane proteins are involved in a number of previously cryptogenic diseases. Therefore, discovery of a new membrane protein is expected to lead to elucidation of the causes of many so that isolation of new genes encoding the membrane proteins has been desired.

Heretofore, due to difficulty in the purification from human cells, many of these secretory proteins and membrane proteins have been isolated by genetic approaches. A general method is the so-called expression cloning method, in which a cDNA library is introduced into eukaryotic cells to express cDNAs, and the cells secreting, or expressing on the surface of membrane, the protein having the activity of

interest are then screened. However, only genes for proteins with known functions can be cloned by using this method.

In general, a secretory protein or a membrane protein possesses at least one hydrophobic domain within the protein. After synthesis in the ribosome, such domain works as a secretory signal or remains in the phospholipid membrane to be entrapped in the membrane. Accordingly, if the existence of a highly hydrophobic domain is observed in the amino acid sequence of a protein encoded by a cDNA when the whole base sequence of the full-length cDNA is determined, it is considered that the cDNA encodes a secretory protein or a membrane protein.

OBJECTS OF THE INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs encoding these proteins, and expression vectors for these DNAs as well as transformed eukaryotic cells that are capable of expressing these DNAs. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

25 BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02539.

Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02770.

Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02869.

Fig. 4 illustrates the hydrophobicity/hydrophilicity

5

10

15

20

15

20

25

profile of the protein encoded by clone HP02956.

- Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02962.
- Fig. 6 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03014.
- Fig. 7 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10608.
- Fig. 8 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10609.
- 10 Fig. 9 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10611.
 - Fig. 10 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10617.
 - Fig. 11 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02837.
 - Fig. 12 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02991.
 - Fig. 13 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03063.
 - Fig. 14 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03091.
 - Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03092.
 - Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03116.
 - Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10618.
 - Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10619.
- Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10622.
 - Fig. 20 illustrates the hydrophobicity/hydrophilicity

10

15

20

25

30

profile of the protein encoded by clone HP10625.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02883.

Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03140.

Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10628.

Fig. 24 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10629.

Fig. 25 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10635.

Fig. 26 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10636.

Fig. 27 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10640.

Fig. 28 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10644.

Fig. 29 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10656.

Fig. 30 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10672.

Fig. 31 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03194.

Fig. 32 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03219.

Fig. 33 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03236.

Fig. 34 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03237.

Fig. 35 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03267.

Fig. 36 illustrates the hydrophobicity/hydrophilicity

10

15

20

profile of the protein encoded by clone HP03270.

Fig. 37 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03298.

Fig. 38 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10631.

Fig. 39 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10658.

Fig. 40 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10663.

Fig. 41 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03165.

Fig. 42 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03266.

Fig. 43 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP03287.

Fig. 44 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10665.

Fig. 45 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10669.

Fig. 46 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10670.

Fig. 47 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10671.

Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10673.

Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10675.

Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10683.

30

10

15

25

30

7

SUMMARY OF THE INVENTION

As the result of intensive studies, the present inventors have successfully cloned cDNAs encoding proteins having hydrophobic domains from the human full-length cDNA bank, thereby completing the present invention. Thus, the provides a human protein invention present hydrophobic domain(s), namely a protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. Moreover, the present invention provides a DNA encoding the above-mentioned protein, exemplified by a cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120 and 131 to 150 as well as an expression vector that is capable of expressing such DNA by in vitro translation or in eukaryotic cells and a transformed eukaryotic cell that is capable of expressing such DNA and of producing the above-mentioned protein.

20 DETAILED DESCRIPTION OF THE INVENTION

The proteins of the present invention can be obtained, for example, by a method for isolating proteins from human organs, cell lines or the like, a method for preparing peptides by the chemical synthesis based on the amino acid sequence of the present invention, or a method for producing proteins by the recombinant DNA technology using the DNAs encoding the hydrophobic domains of the present invention. Among these, the method for producing proteins by the recombinant DNA technology is preferably employed. For example, the proteins can be expressed in vitro by preparing an RNA by in vitro transcription from a vector having the

10

15

20

25

30

cDNA of the present invention, and then carrying out in vitro translation using this RNA as a template. Alternatively, introduction of the translated region into a suitable expression vector by the method known in the art may lead to expression of a large amount of the encoded protein in prokaryotic cells such as Escherichia coli, Bacillus subtilis, etc., and eukaryotic cells such as yeasts, insect cells, mammalian cells, etc.

In the case where the protein of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro by introducing the translated region of this cDNA into a vector having an RNA polymerase promoter, and then adding the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a wheat germ extract, which contains an RNA polymerase corresponding to the promoter. The RNA polymerase promoters are exemplified by T7, T3, SP6 and the like. The vectors containing these RNA polymerase promoters are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II and the like. Furthermore, the protein of the present invention can be expressed in the secreted form or the form incorporated in the microsome membrane when a canine pancreas microsome or the like is added to the reaction system.

In the case where the protein of the present invention is produced by expressing the DNA in a microorganism such as Escherichia coli etc., a recombinant expression vector in which the translated region of the cDNA of the present invention is introduced into an expression vector having an origin which is capable of replicating in the microorganism, a promoter, a ribosome-binding site, a cDNA-cloning site, a terminator and the like is constructed. After transformation

10

15

20

25

30

of the host cells with this expression vector, the resulting transformant is grown, whereby the protein encoded by the cDNA can be produced in large quantity in the microorganism. In this case, a protein fragment containing any translated region can be obtained by adding an initiation codon and a termination codon in front of and behind the selected translated region to express the protein. Alternatively, the protein can be expressed as a fusion protein with another protein. Only the portion of the protein encoded by the cDNA can be obtained by cleaving this fusion protein with a suitable protease. The expression vectors for Escherichia coli are exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system and the like.

In the case where the protein of the present invention is produced by expressing the DNA in eukaryotic cells, the protein of the present invention can be produced as a secretory protein, or as a membrane protein on the cellmembrane surface, by introducing the translated region of the cDNA into an expression vector for eukaryotic cells that has a promoter, a splicing region, a poly(A) addition site and the like, and then introducing the vector into the eukaryotic cells. The expression vectors are exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vectors, pRS, pYES2 and the like. Examples of eukaryotic cells to be used in general include mammalian cultured cells such as monkey kidney COS7 cells, Chinese hamster ovary CHO cells and the like, budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes and the like. Any eukaryotic cells may be used as long as they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eukaryotic cells by using a method known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method and the like.

After the protein of the present invention is expressed in prokaryotic cells or eukaryotic cells, the protein of interest can be isolated from the culture and purified by a combination of separation procedures known in the art. Examples of the separation procedures include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography and the like.

The proteins of the present invention also include peptide fragments (of 5 amino acid residues or more) containing any partial amino acid sequences in the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the protein of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal sequence [JP 8-187100 A]. Furthermore, some membrane proteins undergo the processing on the cell surface to be converted to the secreted forms. Such proteins or peptides in the secreted forms shall also come within the scope of the protein of the present invention. In the case where

5

10

15

20

25

sugar chain-binding sites are present in the amino acid sequences of the proteins, expression of the proteins in appropriate eukaryotic cells affords the proteins to which sugar chains are attached. Accordingly, such proteins or peptides to which sugar chains are attached shall also come within the scope of the protein of the present invention.

The DNAs of the present invention include all the DNAs encoding the above-mentioned proteins. These DNAs can be obtained by using a method for chemical synthesis, a method for cDNA cloning and the like.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. The cDNAs are synthesized by using poly(A) RNAs extracted from human cells as templates. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method such as the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J., Gene 25: 263-269 (1983)] and the like. However, it is desirable to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available human cDNA libraries can be utilized. The cDNAs of the present invention can be cloned from the cDNA libraries by synthesizing an oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention and screening the cDNA libraries using this oligonucleotide as a probe for colony or plaque hybridization according to a method known in the art. In addition, the cDNA fragments of the present invention can be prepared from an mRNA isolated from human cells by the RT-

5

10

15

20

25

10

PCR method in which oligonucleotides which hybridize with both termini of the cDNA fragment of interest are synthesized, which are then used as the primers.

The cDNAs of the present invention are characterized in that they comprise any one of the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from which the cDNA clone was obtained, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

			, 	· · · · · · · · · · · · · · · · · · ·
SEQ ID NO	HP	Cells	Base	Number of amino
SEQ ID NO	number	Cells	number	acid residues
1, 11, 21	HP02539	Saos-2	4485	647
2, 12, 22	HP02770	HT-1080	1509	350
3, 13, 23	HP02869	КВ	3059	206
4, 14, 24	HP02956	КВ	2367	213
5, 15, 25	HP02962	КВ	2355	595
6, 16, 26	HP03014	Liver	1024	264
7, 17, 27	HP10608	Saos-2	1237	343
8, 18, 28	HP10609	КВ	1332	244
9, 19, 29	HP10611	кв	1932	303
10, 20, 30	HP10617	HT-1080	1124	160
31, 41, 51	HP02837	HT-1080	4473	1445
32, 42, 52	HP02991	КВ	2630	582
33, 43, 53	HP03063	HT-1080	1472	410
34, 44, 54	HP03091	Liver	1652	483
35, 45, 55	HP03092	Liver	2112	607
36, 46, 56	HP03116	КВ	1087	314
37, 47, 57	HP10618	HT-1080	1694	94
38, 48, 58	HP10619	HT-1080	1522	218
39, 49, 59	HP10622	Liver	1591	460
40, 50, 60	HP10625	Liver	1249	216
61, 71, 81	HP02883	KB	4027	392
62, 72, 82	HP03140	HT-1080	2495	497
63, 73, 83	HP10628	HT-1080	1617	417
64, 74, 84	HP10629	WERI-RB	3269	649
65, 75, 85	HP10635	WERI-RB	458	93
66, 76, 86	HP10636	HT-1080	1712	425
67, 77, 87	HP10640	WERI-RB	1055	149
68, 78, 88	HP10644	WERI-RB	1616	396
69, 79, 89	HP10656	PMA-U937	1860	350
70, 80, 90	HP10672	Thymus	783	153
91, 101, 111	HP03194	кв	3438	303

WO 00/29448

92, 102, 112	HP03219	PMA-U937	1144	283
93, 103, 113	HP03236	HT-1080	2339	488
94, 104, 114	HP03237	HT-1080	1765	182
95, 105, 115	HP03267	Liver	1418	184
96, 106, 116	HP03270	PMA-U937	1211	140
97, 107, 117	HP03298	PMA-U937	1099	153
98, 108, 118	HP10631	WERI-RB	3489	173
99, 109, 119	HP10658	HT-1080	931	75
100, 110, 120	HP10663	PMA-U937	1123	159
121, 131, 141	HP03165	KB	3234	636
122, 132, 142	HP03266	HT-1080	2490	318
123, 133, 143	HP03287	Thymus	1465	82
124, 134, 144	HP10665	HT-1080	917	247
125, 135, 145	HP10669	WERI-RB	1306	206
126, 136, 146	HP10670	WERI-RB	2022	432
127, 137, 147	HP10671	Thymus	1227	306
128, 138, 148	HP10673	Thymus	2210	555
129, 139, 149	HP10675	Thymus	1493	250
130, 140, 150	HP10683	PMA-U937	1264	174

The same clones as the cDNAs of the present invention can be easily obtained by screening the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention using an oligonucleotide probe synthesized on the basis of the base sequence of the cDNA provided in any one of SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150.

In general, the polymorphism due to the individual differences is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are added, deleted and/or substituted with other nucleotides in SEQ ID NOS: 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150 shall come within the scope of the present

10

15

20

25

30

invention.

Similarly, any protein in which one or plural amino acids are added, deleted and/or substituted with other amino acids resulting from the above-mentioned changes shall come within the scope of the present invention, as long as the protein possesses the activity of the protein having any one of the amino acid sequences represented by SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

The cDNAs of the present invention also include cDNA fragments (of 10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or in the base sequences represented by SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use;

10

15

20

25

30

as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) identify chromosomes or to map related gene positions: compare with endogenous DNA sequences in patients identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where polynucleotide encodes a protein which binds potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological

10

15

20

25

30

fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the

10

15

20

25

30

form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

<u>Cytokine and Cell Proliferation/Differentiation</u> Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. 137:3494-3500, 1986; Bertagnolli et al., J. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol.

10

15

20

25

30

149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation lymphopoietic cells include, without hematopoietic and limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205al., Nature 336:690-692, 1991; Moreau et Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, limitation, those described in: Current Protocols Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including combined immunodeficiency (SCID)), e.q., regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania malaria spp. and various fungal infections such

5

10

15

20

25

candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic rheumatoid arthritis, autoimmune erythematosus, pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host autoimmune and gravis, disease inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly respiratory problems. other allergic asthma) or suppression is desired which immune conditions. in (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an already in progress or may response immune induction of an immune response. The preventing the T cells may be inhibited functions of activated suppressing T cell responses or by inducing tolerance in T cells, or both. Immunosuppression of T cell generally an active, non-antigen-specific, is process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent

5

10

15

20

25

WO 00/29448

5

10

15

20

25

30

has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result destruction reduced tissue in tissue transplantation. tissue transplants, Typically, in rejection transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antiqen-blocking reagents may avoid the necessity repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a

10

15

20

25

30

subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

particular blocking reagents efficacy of organ transplant rejection or GVHD can be preventing assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. efficacy of blocking reagents in preventing or alleviating

autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating useful responses, may also be therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the

5

10

15

20

25

transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor lymphoma, sarcoma, melanoma, (e.g., neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For cells obtained from a patient can example, tumor transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the surface transfected of the peptides on the Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the provides tumor cell the of the surface costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β 2 microglobulin protein or an MHC class

5

10

15

20

25

10

15

20

25

30

II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated such as the invariant chain, can also cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte orsplenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J.

Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Thl and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Associates and Wiley-Strober, Pub. Greene Publishing Vitro assays for Mouse (Chapter 3, In Interscience Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994;

5

10

15

20

25

10

15

20

25

30

Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to

10

15

20

25

30

stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and **CSF** monocytes/macrophages (i.e., traditional useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting megakaryocytes and proliferation of growth consequently of platelets thereby allowing prevention or platelet disorders as treatment of various thrombocytopenia, and generally for use in place of or complementary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without paroxysmal nocturnal anemia and limitation, aplastic hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or conjunction with bone marrow ex-vivo in (i.e., peripheral with progenitor cell transplantation or (homologous or heterologous)) as transplantation cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and

Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without 5 limitation, described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which cartilage and/or bone growth in circumstances where bone is

10

15

20

25

10

15

20

25

30

not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase etc.) mediated by activity, activity, osteoclast inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and

in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by а composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head

5

10

15

20

25

10

15

20

25

30

trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);

WO 00/29448

5

10

15

20

25

30

34

International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activinorinhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among

10

15

20

25

30

other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for including, for example, monocytes, cells, mammalian fibroblasts, neutrophils, T-cells, mast cells, eosinophils, endothelial cells. Chemotactic and/or epithelial chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. lymphocytes, attraction of monocytes For example, neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among

WO 00/29448

5

10

15

20

25

30

other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. 1744-1748; Gruber et al. J. of 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke)).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include,

10

15

20

25

30

without limitation, those described in: Linet et al., J. 26:131-140, 1986; Burdick et al., Clin. Pharmacol. Thrombosis 45:413-419, 1987; Humphrey et Res. al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors and cell-cell interactions their i.n (including without limitation, cellular adhesion molecules integrins and their ligands) selectins, receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of limitation, (including, without invention the present fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987;

10

15

20

25

30

Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting orpromoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly

(such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

A protein of the invention may also exhibit one or more 10 activities effects: additional orfollowing of the inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without 15 limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body for example, (such as, size or shape augmentation or diminution, change in bone form or shape); or caricadic cycles orrhythms; effecting biorhythms 20 fertility of male or female subjects; effecting the effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or component(s); nutritional factors or 25 behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of 30 embryonic stem cells in lineages other than hematopoietic

WO 00/29448 PCT/JP99/06412

40

lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

10

15

20

25

30

5

Examples

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. procedures with regard to the recombinant DNA and the enzymatic reactions were carried out according to literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restriction enzymes and various modifying enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: (1994)1.

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

The cDNA library of fibrosarcoma cell line HT-1080 (WO 98/11217), the cDNA library of osteosarcoma cell line Saos-2 (WO 97/33993), the cDNA library of epidermoid carcinoma cell line KB (WO 98/11217) and the cDNA library of liver tissue delivered by the operation (WO 98/21328) were used as the

10

15

20

25

30

cDNA libraries. Additionally, the cDNA libraries constructed from phorbol ester-stimulated histiocytic lymphoma cell line U937 (ATCC CRL 1593) mRNA, human retinoblastoma cell line WERI-RB (ATCC HTB 169) mRNA and human thymus mRNA (Clontech) were also used. Full-length cDNA clones were selected from the respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA bank consisting of the full-length cDNA hydrophobicity/hydrophilicity profiles were determined for by the full-length CDNA the proteins encoded registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. A clone that has a hydrophobic region being assumed as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was selected as a clone candidate.

(2) Protein Synthesis by In Vitro Translation

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [35]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of $T_{N}T$ reticulocyte lysate, 0.5 μ l of a buffer solution (attached 2 μ l of an amino acid mixture (without to the kit), methionine), 2 μ l of [35 S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin. The experiment in the presence of a membrane system was carried

out by adding 2.5 μ l of a canine pancreas microsome fraction (Promega) to the reaction system. To 3 μ l of the reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloride buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

10 (3) Expression in COS7

5

15

20

25

30

Escherichia coli cells harboring the expression vector for the protein of the present invention were cultured at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing $100~\mu\text{g/ml}$ of ampicillin, the helper phage M13K07 ($50~\mu$ l) was added, and the cells were then cultured at 37°C overnight. Single-stranded phage particles were obtained by polyethylene glycol precipitation from a supernatant separated by centrifugation. The particles were suspended in $100~\mu\text{l}$ of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from monkey kidney, COS7, were cultured at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum. 1 x 10⁵ COS7 cells were inoculated into a 6-well plate (Nunc, well diameter: 3 cm) and cultured at 37°C for 22 hours in the presence of 5% CO₂. After the medium was removed, the cell surface was washed with a phosphate buffer solution followed by DMEM containing 50 mM Tris-hydrochloride (pH 7.5) (TDMEM). A suspension containing 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM medium and 3 μ l of TRANSFECTAMTM (IBF) was added to the cells and the cells were cultured at 37°C for 3 hours in the presence of 5% CO₂. After the sample solution was removed,

15

20

25

30

the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the cells were cultured at 37°C for 2 days in the presence of 5% CO₂. After the medium was exchanged for a medium containing [35S]cystine or [35S]methionine, the cells were cultured for one hour. After the medium and the cells were separated each other by centrifugation, proteins in the medium fraction and the cell membrane fraction were subjected to SDS-PAGE.

(4) Clone Examples

10 <HP02539> (SEQ ID NOS: 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP02539 obtained from cDNA library of human osteosarcoma cell Saos-2 line revealed the consisting of a 188-bp 5'-untranslated region, a 1944-bp ORF, and a 2353-bp 3'-untranslated region. The ORF encodes a protein consisting of 647 amino acid residues and there existed a putative secretory signal at the N-terminus and six putative transmembrane domains at the C-terminus. Figure 1 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse frizzled-1 (GenBank Accession No. AF054623). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse frizzled-1 Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 90.4% in the entire

region.

Table 2

	HP	MAEEEAPKKSRAAGGGASWELCAGALSARLTEEGSGDAGGRRRPPVDPRRLARQLLLLLLW
		****.***** * * ****.** * * .**** ****
5	MM	MAEEAAPSESRAA-GRLSLELCAEALPGRREEVGHEDTASHRRPRADPRRWASGLLLLLW
	HP	LLEAPLILGVRAQAAGQGPGQGPGPGQQPPPPPPQQQQSGQQYNGERGISVPDHGYCQPIS

	MM	LLEAPLLLGVRAQAAGQVSGPGQQAPPPPQPQQSGQQYNGERGISIPDHGYCQPIS
	HP	IPLCTDIAYNQTIMPNLLGHTNQEDAGLEVHQFYPLVKVQCSAELKFFLCSMYAPVCTVL
10		*****
	MM	IPLCTDMAYNQTIMPNLLGHTNQEDAGLEVHQFYPLVKVQCSAELKFFLCSMYAPVCTVL
	HP	EQALPPCRSLCERARQGCEALMNKFGFQWPDTLKCEKFPVHGAGELCVGQNTSDKGTPTP

	MM	EQALPPCRSLCERARQGCEALMNKFGFQWPDTLKCEKFPVHGAGELCVGQNTSDKGTPTP
15	HP	SLLPEFWTSNPQHGGGGHRGGFPGGAGASERGKFSCPRALKVPSYLNYHFLGEKDCGAPC
		******** ***** ***** ***** *****
	MM	${\tt SLLPEFWTSNGQHGGGGYRGGYPGGAGTVERGKFSCPRALRVPSYLNYHFLGEKDCGAPC}$
	HP	EPTKVYGLMYFGPEELRFSRTWIGIWSVLCCASTLFTVLTYLVDMRRFSYPERPIIFLSG

20	MM	EPTKVYGLMYFGPEELRFSRTWIGIWSVLCCASTLFTVLTYLVDMPRFSYPERPIISLSG
	HP	CYTAVAVAYIAGFLLEDRVVCNDKFAEDGARTVAQGTKKEGCTILFMMLYFFSMASSIWW

	MM	CYTAVAVAYIAGFLLEDRVVCNDKFAEDGARTVAQGTNKEGCTILFMMLYFFSMASSIWW
	HP	VILSLTWFLAAGMKWGHEAIEANSQYFHLAAWAVPAIKTITILALGQVDGDVLSGVCFVG
25		***********
	MM	VILSLTWFLAAGMKWGHEAIEANSQYFHLAAWAVPAIKTITILALGQVDGDVLSGVCFLG
	HP	LNNVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHDGTKTEKLEKLMVRIGVF

	MM	LNNVDALRGFVLAPLFVYLFIGTSFLLAGFVSLFRIRTIMKHDGTKTEKLEKLMVRIGVF
30	HP	SVLYTVPATIVIACYFYEQAFRDQWERSWVAQSCKSYAIPCPHLQAGGGAPPHPPMSPDF

	MM	SVLYTVPATIVIACYFYEQAFRDQWERSWVAQSCKSYAIPCPHLQGGGGVPPHPPMSPDF
	HP	TVFMIKYLMTLIVGITSGFWIWSGKTLNSWRKFYTRLTNSKQGETTV

35	MM	TVFMIKYLMTLNSWRKFYTRLTNSKQGETTV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA010020) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

30

5

<HP02770> (SEQ ID NOS: 2, 12, and 22)

Determination of the whole base sequence of the cDNA insert of clone HP02770 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 252-bp 5'-untranslated region, a 1053-bp ORF, and a 204-bp 3'-untranslated region. The ORF encodes a protein consisting of 350 amino acid residues and there existed two putative transmembrane domains. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 42 kDa that was somewhat larger than the molecular weight of 38,274 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human RING zinc finger protein (GenBank Accession No. AF037204). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human RING zinc finger protein (ZN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue

similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 56.0% in the entire region.

5

Table 3

MHPAAFPLPVVVAAVLWGAAPTRGLIRATSDHNASMDFADLPALFGATLS HP ZN MLLSIGMLMLSATQVYTILTVQLFAFLNLLPVEADILAYNFENASQTFDDLPARFGYRLP HP QEGLQGFLVEAHPDNACSPIAPPPPAPVNGSVFIALLRRFDCNFDLKVLNAQKAGYGAAV 10**.*.***** *** *** *** *** ** ZN AEGLKGFLINSKPENACEPIVPPPVKDNSSGTFIVLIRRLDCNFDIKVLNAQRAGYKAAI HP VHNVNSNELLNMVWNSEEIQQQIWIPSVFIGERSSEYLRALFVYEKGARVLLVPDNTFPL ZN VHNVDSDDLISMGSNDIEVLKKIDIPSVFIGESSANSLKDEFTYEKGGHLILVPEFSLPL 15 HP GYYLIPFTGIVGLLVLAMGAVMIARCIQHRKRLQRNRLTKEQLKQIPTHDYQKGDQYDVC ****** *** *** ZN EYYLIPFLIIVGICLILIVIFMITKFVQDRHRARRNRLRKDQLKKLPVHKFKKGDEYDVC HP AICLDEYEDGDKLRVLPCAHAYHSRCVDPWLTQTRKTCPICKQPVHRGPGDED-QEEETQ ********** 20 ZN AICLDEYEDGDKLRILPCSHAYHCKCVDPWLTKTKKTCPVCKQKVVPSQGDSDSDTDSSQ HP GQEEGDEGEPRDHPASERTPLLGSSPTLPTSFGSLAPAPLVFPGPSTDPPLSPPSSPVIL ...* .* .* .* ZN EENEVTEHTPLLRPLASVSAQSFGALSESRSHQNMTESSDYEEDDNEDTDSSDAENEINE 25 HP V ZN HDVVVQLQPNGERDYNIANTV

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA434312) among ESTs. However, since they are partial sequences, it can not be judged whether or

10

15

20

30

not they encode the same protein as the protein of the present invention.

<HP02869> (SEQ ID NOS: 3, 13, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP02869 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 229-bp 5'-untranslated region, a 621-bp ORF, and a 2209-bp 3'-untranslated region. The ORF encodes a protein consisting of 206 amino acid residues and there existed two putative transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was almost identical with the molecular weight of 22,367 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA278247) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

25 <HP02956> (SEQ ID NOS: 4, 14, and 24)

Determination of the whole base sequence of the cDNA insert of clone HP02956 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 68-bp 5'-untranslated region, a 642-bp ORF, and a 1657-bp 3'-untranslated region. The ORF encodes a protein consisting of 213 amino acid residues and there existed three putative transmembrane domains. Figure 4

depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was almost identical with the molecular weight of 23,902 predicted from the ORF. When expressed in COS7 cells, an expression product of about 20 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human tetraspan NET-4 (GenBank Accession No. AF065389). Table 4 shows the comparison, between amino acid sequences of the human protein of the present invention (HP) and the human tetraspan NET-4 (TS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 58.8% in the C-terminal region of 119 amino acid residues.

5

10

Table 4

HP MHY TS MSGKHYKGPEVSCCIKYFIFGFNVIFWFLGITFLGIGLWAWNEKGVLSNISSITDLGGFD 5 HP YRYSNAKVSCWYKYLLFSYNIIFWLAGVVFLGVGLWAWSEKGVLSDLTKVTRMHGIDPVV TS PVWLFLVVGGVMFILGFAGCIGALRENTFLLKFFSVFLGIIFFLELTAGVLAFVFKDWIK HP LVLMVGVVMFTLGFAGCVGALRENICLLNFNQCCGAYGPEDWDLNVYFNCSGASYSREKC 10 .. ****.*..*.**.** TS DQLYFFINNNIRAYRDDIDLQNLIDFTQEYWQCCGAFGADDWNLNIYFNCTDSNASRERC HP GVPFSCCVPDPAQKVVNTQCGYDVRIQLKSKWDESIFTKGCIQALESWLPRNIYIVAGVF TS GVPFSCCTKDPAEDVINTQCGYDARQKPEVDQQIVIYTKGCVPQFEKWLQDNLTIVAGIF 15 HP IAISLLQIFGIFLARTLISDIEAVKAGHHF *.*.****** **..*.***** TS IGIALLQIFGICLAQNLVSDIEAVRASW

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T05279) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP02962> (SEQ ID NOS: 5, 15, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP02962 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 19-bp 5'-untranslated region, a 1788-bp ORF, and a 548-bp 3'-untranslated region. The ORF encodes a

10

15

20

protein consisting of 595 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the protein. In vitro translation resulted in formation of a translation product of 70 kDa that was somewhat larger than the molecular weight of 67,549 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 85 kDa to which sugar chains are presumably attached. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from alanine at position 23. In addition, there exist in the amino acid sequence of this protein four sites at which Nglycosylation may occur (Asn-Thr-Thr at position 75, Asn-Gln-Thr at position 153, Asn-Tyr-Thr at position 237 and Asn-Ser-Ser at position 360).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0584 (GenBank Accession No. AB011156). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0584 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 52.9% in the entire region.

30

Table 5

	HP	MRAARAAPLLQLLLLLGPWLEAAGVAESPLPAVVLAILARNAEHSL
		* **** * .* . * .* .* .* .* .* .*
5	KI	LAWSLLLLSSALLREGCRARFVAERDSEDDGEEPVVFPESPLQSPTVLVAVLARNAAHTL
	HP	PHYLGALERLDYPRARMALWCATDHNVDNTTEMLQEWLAAVGDDYAAVVWRPEGEPRFYP
		. ******** * ******* * * * *
	KI	PHFLGCLERLDYPKSRMAIWAATDHNVDNTTEIFREWLKNVQRLYHYVEWRPMDEPESYP
	HP	DEEGPKHWTKERHQFLMELKQEALTFAR-NWGADYILFADTDNILTNNQTLRLLMGQGLP
10		** **** * . * . * . * . * . * . *
	KI	DEIGPKHWPTSRFAHVMKLRQAALRTAREKW-SDYILFIDVDNFLTNPQTLNLLIAENKT
	HP	VVAPMLDSQTYYSNFWCGITPQGYYRRTAEYFPTKNRQRRGCFRVPMVHSTFLASLRAEG
		******.*. ********* *** *** *** *** ***
	KI	IVAPMLESRGLYSNFWCGITPKGFYKRTPDYVQIREWKRTGCFPVPMVHSTFLIDLRKEA
15	HP	ADQLAFYPPHPNYTWPFDDIIVFAYACQAAGVSVHVCNEHRYGYMNVPVKSHQGLEDERV

	KI	SDKLTFYPPHQDYTWTFDDIIVFAFSSRQAGIQMYLCNREHYGYLPIPLKPHQTLQEDIE
	HP	NFIHLILEALVDGPRMQASAHVTRPSKRPSKIGFDEVFVISLARRPDRRERMLASLWEME
		*.***** *.*** *.*.*.*.*.*.* .*
20	KI	NLIHVQIEAMIDRPPMEPSQYVSVVPKYPDKMGFDEIFMINLKRRKDRRDRMLRTLYEQE
	HP	ISGRVVDAVDGWMLNSSAIRNLGVDLLPGYQDPYSGRTLTKGEVGCFLSHYSIWEEVVAR
		.* **.******.*.*.*.*.*.*.
	KI	IEVKIVEAVDGKALNTSQLKALNIEMLPGYRDPYSSRPLTRGEIGCFLSHYSVWKEVIDR
	HP	GLARVLVFEDDVRFESNFRGRLERLMEDVEAEKLSWDLIYLGRKQVN-PEKETAVEGLPG
25		****.****** .** .** * **** * *.**
	KI	ELEKTLVIEDDVRFEHQFKKKLMKLMDNIDQAQLDWELIYIGRKRMQVKEPEKAVPNVAN
	HP	LVVAGYSYWTLAYALRLAGARKILASQPLRRMLPVDEFLPIMFDQHPNEQYKAHFWPRDL
		** *.*****.**.**
		LVEADYSYWTLGYVISLEGAQKLVGANPFGKMLPVDEFLPVMYNKHPVAEYKEYYESRDL
30	HP	VAFSAQPLLAAPTHYAGDAEWLSDTETSSPWDDDSGRLISWSGSQKTLRSPRLDLTGS
		****.** ****.******** **
		KAFSAEPLLIYPTHYTGQPGYLSDTETSTIWDNETV-ATDWDRTHAWKSRKQSRIYSNAK
	HP	SGHSLQPQPRDEL
		••••
35	KI	NTEALPPPTSLDTVPSRDEL

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA358896) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

30

5

<HP03014> (SEQ ID NOS: 6, 16, and 26)

Determination of the whole base sequence of the cDNA insert of clone HP03014 obtained from cDNA library of human liver revealed the structure consisting of a 26-bp 5'and a 203-bp untranslated region, a 795-bp ORF, untranslated region. The ORF encodes a protein consisting of 264 amino acid residues and there existed one putative depicts Figure 6 domain. transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, of translation resulted in formation of a translation product of 31 kDa that was somewhat larger than the molecular weight of 28,471 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse WW domain-binding protein 1 (GenBank Accession No. U40825). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse WW domain-binding protein 1 (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue

WO 00/29448 PCT/JP99/06412

54

similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 85.1% in the entire region.

5 Table 6

ΗP MVASAKMGRAGTMAVAAELR MM MARASSRNSSEEAWGSLQAPQQQQSPAASSLEGAIWRRAGTQTRALDTILYHPQQSHLLR 10 HP ELCPGVNNQPYLCESGHCCGETGCCTYYYELWWFWLLWTVLILFSCCCAFRHRRAKLRLQ ************** MM ELCPGVNTQPYLCETGHCCGETGCCTYYYELWWFWLLWTVLILFSCCCAFRHRRAKLRLQ HP OOOROREINLLAYHGACHGAGPFPTGSLLDLRFLSTFKPPAYEDVVHRPGTPPPPYTVAP ********** 15 MM QOQROREINLLAYHGACHGAGPVPTGSLLDLRLLSAFKPPAYEDVVHHPGTPPPPYTVGP HP GRPLTASSEQTCCSSSSSCPAHFEGTNVEGVSSHQSAPPHQEGEPGAGVTPASTPPSCRY * * *,*** * ***,***,**,**,******,*** ***** **,..., .** MM GYPWTTSSECTRCSSESSCSAHLEGTNVEGVSSQOSALPHQEGEPRAGLSPVHIPPSCRY HP RRLTGDSGIELCPCPASGEGEPVKEVRVSATLPDLEDYSPCALPPESVPQIFPMGLSSSE 20 ************* MM RRLTGDSGIELCPCPDSSEGEPLKEARASASQPDLEDHSPCALPPDSVSQVPPMGLASSC HP GDIP MM GTSHK

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W24575) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

25

10

15

20

25

30

<HP10608> (SEQ ID NOS: 7, 17, and 27)

Determination of the whole base sequence of the cDNA insert of clone HP10608 obtained from cDNA library of human the line Saos-2 revealed osteosarcoma cell consisting of a 23-bp 5'-untranslated region, a 1032-bp ORF, and a 182-bp 3'-untranslated region. The ORF encodes a protein consisting of 343 amino acid residues and there existed five putative transmembrane domains. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 37 kDa that was somewhat smaller than the molecular weight of 40,584 predicted from the ORF. When expressed in COS7 cells, an expression product of about 36 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T35406) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10609> (SEQ ID NOS: 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10609 obtained from cDNA library of the human epidermoid carcinoma cell line KB revealed the structure consisting of a 38-bp 5'-untranslated region, a 735-bp ORF, and a 559-bp 3'-untranslated region. The ORF encodes a protein consisting of 244 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 8 depicts the hydrophobicity/hydrophilicity

profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 27,756 predicted from the ORF. When expressed in COS7 cells, an expression product of about 26 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Mycobacterium tuberculosis hypothetical protein Rv1147 (GenBank Accession No. Z95584). Table 7 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Mycobacterium tuberculosis hypothetical protein Rv1147 (MT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.7% in the entire region.

5

10

Table 7

HP	MDILVPLLQLLVLLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFS
MT	MTSGAAASASRVDHPLFARIWPVVAAHEAEAIRAL
HP	QIKGLTGASGKVALLELGCGTGANFQFYPPGC-RVTCLDPNPHFEKFLTKSMAENRHLQY
	. **.* **.* *.*.**** * *
MT	RRENLAGLSGRVLEVGAGVGTNFAYYPVAVEQVIAMEPEPRLAA-KARIAAADAPVPI
HP	ERFVVAPGEDMRQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEP
	* . *
TM	-VVTDKTVEEFRDTETFDAVVCSLVLCSVSDPGAVLAHLRSLLRRGGELRYLEHVASA
HP	YGSWAFMWQQVFEPTWKHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPH
	* * * * *.** * * * ***.
MT	-GARGRVQRFVDATFWPRLAGNCHTHRHTERAILDAGFVVDSSRREWAFPAWVPLPVSEL
HP	IMGKAVK

MT	ALGRAHRT

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T60981) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10611> (SEQ ID NOS: 9, 19, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10611 obtained from cDNA library of the human epidermoid carcinoma cell line KB revealed the structure consisting of a 37-bp 5'-untranslated region, a 912-bp ORF, and a 983-bp 3'-untranslated region. The ORF

encodes a protein consisting of 303 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 31 kDa that was somewhat smaller than the molecular weight of 33,856 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 36 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 34. When expressed in COS7 cells, an expression product of about 35 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the 218 amino acid residues at the C-terminus of the protein matched with the amino acid sequence of human glucosidase II (SWISS-PROT Accession No. Q06003). However, no similarity was observed at the N-terminal portion.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H14054) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10617> (SEQ ID NOS: 10, 20, and 30)

Determination of the whole base sequence of the cDNA insert of clone HP10617 obtained from cDNA library of the human fibrosarcoma cell line HT-1080 revealed the structure

10

15

20

10

15

20

25

30

consisting of a 72-bp 5'-untranslated region, a 483-bp ORF, and a 569-bp 3'-untranslated region. The ORF encodes a protein consisting of 160 amino acid residues and there existed four putative transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. When expressed in COS7 cells, an expression product of about 17 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H67672) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP02837> (SEQ ID NOS: 31, 41, and 51)

Determination of the whole base sequence of the cDNA insert of clone HP02837 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 44-bp 5'-untranslated region, a 4338-bp ORF, and a 91-bp 3'-untranslated region. The ORF encodes a protein consisting of 1445 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 11 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 150 kDa that was almost identical with the molecular weight of 161,657 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the

WO 00/29448 PCT/JP99/06412

60

cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from valine at position 22. In addition, there exist in the amino acid sequence of this protein 18 sites at which N-glycosylation may occur.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human α -2 macroglobulin (SWISS-PROT Accession No. P01023). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human α -2 macroglobulin (MG). Therein, the marks of - and * represent a gap and an amino acid residue identical with that of the protein of the present invention, respectively. The both proteins shared a homology of 29.5% in the entire region.

5

10

Table 8

	HP	MQGPPLLTAAHLLCVCTAALA-VAPGPRFLVTAPGIIRPGGNVTIGVELLEHCPSQVT
		* ** ** * * * * * * * *
5	MG	MGKNKLLHPSLVLLLLVLLPTDASVSGKPQYMVLVP-SLLHTETTEKGCVLLSYLNETVT
	HP	VKAELLKTASN-LTVSVLEAE-GVFEKGSFKTLTLPSLPLNSADEIYELRVTGRTQDEIL
		* * * * * * * * * * * * * * * * * * * *
	MG	VSASLESVRGNRSLFTDLEAENDVLHCVAFAVPKSSSNEEVMFLTVQVKGPTQE
	HP	FSNSTRLSFETKRISVFIQTDKALYKPKQEVKFRIVTLFSDFKPYKTSLNILIKDPKS
10		* * **** *** * * * * * * * * * *
	MG	FKKRTTVMVKNEDSLVFVQTDKSIYKPGQTVKFRVVSMDENFHP-LNELIPLVYIQDPKG
	HP	NLIQQWLSQQSDLGVISKTFQLSSHPILGDWSIQVQ-VNDQTYYQSFQVSEYVLPKFEVT
		* * * * * * * * * * * * * * * * * * * *
	MG	NRIAQWQSFQLEGGLKQFSFPLSSEPFQGSYKVVVQKKSGGRTEHPFTVEEFVLPKFEVQ
15		LQTPLYCSMNSKHLNGTITAKYTYGKPVKGDVTLTFLPLSFWGKKKNITKTFKING
10		* * ****** * **
	MG	VTVPKIITILEEEMNVSVCGLYTYGKPVPGHVTVSICRKYSDASDCHGEDSQAFCEKFSG
		SANFSFNDEEMKNVMDSSNGLSEY-LDLSFPGPVEILTTVTESVTGISRNVSTNVF
		* ** * ** * * *
20	MG	QLNSHGCFYQQVKTKVFQLKRKEYEMKLHTEAQIQEEGTVVELTGRQSSEITRTITKLSF
20		FKQHDYIIEFFDYTTVLKPSLNFTATVKVTRADGNQLTLEERRNNVVITVTQRNYTEY
		* * * * * * * *
	MG	VKVDSHFRQGIPFFGQVRLVDGKGVPIPNKVIFIRGNEANYYSNATTDEHGLV
		WSGSNSGNQKMEAVQKINYTVPQSGTFKIEFPILEDSSELQLKAYFLGSKSSMAVHSLFK
25	111	* * * * * * * * * * * * * *
20	MG	QFSINTTN-VMGTSLTVRVNYKDRSPCYGYQWVSEEHEEAHHTAYLVFSPSKSFVHLEPM
		SPSKTYIQLKTRDENIKVGSPFELVVSGNKRLKELSYMVVSRGQLVAVGKQNSTMF
	nr	* * * * * * * * * * *
	MC	SHELPCGHTQTVQAHYILNGGTLLGLKKLSFYYLIMAKGGIVRTGTHGLLVKQEDMKGHF
00		S-LTPENS-WTPKACVIVYYIEDDGEIISDVLKIPVQLVFKNKIKLYWSKVKAEPSEKVS
30	пP	* * * * * * * * * * * * * * * * * * *
		SISIPVKSDIAPVARLLIYAVLPTGDVIGDSAKYDVENCLANKVDLSFSPSQSLPASHAH
	HP	LRISVT-QPDSIVGIVAVDKSVNLMNASNDITMENVVHEL-ELYNTG
		** ** * * ** ** * * * * * * *
25	MG	I.R VTAA POSVCALRAVDOSVLIMKPDAELSASSVYNLLPEKDLTGFPGPLNDQDDEDC

	HI	P -			YY.	LGM	ŒMI	NSF	'AVF	QE	-C	GLI	WVI	TD	AN.	L	-TI	(DY	IDG	VY.	DN	AEY	AEF	LFME	ENE
					*	*				*			*	*	,	*	*		*					*	* *
	MC	3 I	NRF	INV	YI	NGI	TY:	rpv	SSI	NE	KD	MY	SFI	EDI	MG)	LKA	FTI	ISK	IRK	PK	MCI	PQL	QQY	EMH	GPE
	HI	? н	IV-				I	DIH	DFS	LG	SS	PH-		VRI	KHI	FPE	TWI	WL.	DTN	MG	SRI	QYI	EFE	VTV.	PDSI
5			*									**		**:	* :	***	***	*		,	*		*	***	** *
	MO	3 Li	RVG	FY.	ESI	DVM	GRO	3HA	RLV	HV	EE:	PHI	CET	VRI	(YI	PE	TWI	WD:	LVV	VNS	SAG	VA	EVG	VTV	PDTI
	HE	? T :	SWV	AT	GF1	VIS	EDI	GL	GLT	TT:	PV	ELζ	QAF	QPI	F	FL	NLP	YS	VIR	GEI	EFA	LE:	ITI	FNY	LKDA
		*	*	*	*	*	**	**	*	*		*	**	***	r *	*	*	**	***	**	*	*	*	**	*
	MG	T	EWK	AG	AFC	CLS	EDA	\GL	GIS	ST-	-A:	SLF	LAF	QPF	ΈV	EL:	IMP	YS	JIR	GE <i>I</i>	¥Τ	LK	ATV.	LNY.	LPKC
10	HP	T 1	EVK	VI:	IEF	KSD	KFI	IL	MTS	SE-			-IN	ATG	HÇ	2-Q'	rl.L	VP:	SED	GAJ	ľVI	FP:	IRP	THL.	GE
			*	*	*	*	*			*			*	* *		•		*			*	*		*	*
	MG	; II	RVS	VQI	LEA	ASP.	AFI	.AV	PVE	ΚEÇ	QA J	PHC	:IC	ANG	RÇ	YTV:	SWA	VTI	PKS	LGN	IVN	FTV	/SAI	EAL	ESQE
	HP	· II	PIT	VT	ALS	SP-	-TA	SD	AIT	QM]	[L]	ЛKA	EG:	IEK	SY	SQS	SIL	LDI	TDI	VRI	.QS	TLE	CTL:	SFS1	PPN
			*			*		*			**	k	**	**	•		*	*					*:	k	***
15	MG	LC	CGT	EVI	?sv	PE	HGR	KD'	rvi	KPI	LV	ÆΡ	EG)	LEK	ΕT	TFI	1SL	L	-CI	?SG	GE	VSE	EELS	SLKI	PPN
	HP	TV	/TG	SEF	QV9)IT	AIG	DVI	LGPS	SIN	IGI	AS	LII	RMP	YG	CGE	EQNI	MIN	FAI	PNI	YI	LDY	LTI	ΚΚΚÇ	OLTO
		*	r :	* *	•		*	* 1	* *				*	**	**	***	**	*	***	**	*	* * *	*	4	**
	MG	V	ÆE:	SAF	LAS	VSV	/LG	DII	LGS2	AMÇ	IN('QN	LL	2MP	YG	CGE	QNI	MVI	FAI	NI	YV.	LDY	LNE	ETQÇ	LTP
	HP	NI	KE	KAI	SF	MRζ	QGY	QRE	ELLY	/QR	ED	GS	FS!	\F G		NYL	PS	3SI	WLS	AF	VL	RCF	LEA	IDP Y	IDI
20			* :	* *			**	**	* *	t	*	**	*	**			1	k *	**	**	**	*	. ,	. *	* *
	MG	EV	'KSI	KAI	GY	LNI	rgy (QRÇ	ZLNY	KH	YD	GS	YSI	rfG	ER	YGR	NQC	GNT	WLI	'AF	VL	KTF	AQA	RAY	IFI
	HP	DQ	NVI	LHR	TY	TWI	LKG	HQK	SNO	EF	WD	PG	RVI	HS	EL	QGG	NKS	SPV	TLT	'AY	IV:	rsl	LGY	RKY	QPN
		*				**	t	**	**	*		*				**	_	*	**	**	*	*	*		
	MG	DE	AH]	QT	AL:	IWI	SQI	RQK	DNG	CF	RS	SG	SLI	NN	AII	KGG	VEI	EV	TLS	AY:	IT]	[AL	LEI	PLT	VTH
25	HP	ID	VQE	ESI	HF:	LES			-EF	'SR	GI	SDI	IYV.	LA	CI:	ΓΥA	LSS	VG	-SP	KA	KE.	LN	MLT	WRA	EQE
			*		,	***	,		*		*	*	**	* *	k	**		*		* :	**	*	*	*	
	MG	PV	VRN	IAL.	FC	LES	AWI	KTA	QEG	DH	G-	SH	ΛΥΊ	KAI	LL	AYA	FAI	AG	NQD	KRI	KEV	/LK	SLN	EEA	VKK
	HP	GG	MQF	W-		V	SSI	ESK	LSD	SW	QP:	RSI	DΙ	EV	\A)	ZAL	LSH	FL	QFQ	9	rse	:	G	IPI	MRW
				*						,	*	*		*	4	* *	*			1	***	•		*	*
30	MG	DN	SVH	WE	RΡÇ	QKΡ	KAI	PVG	HFY	EP(QAI	PS <i>I</i>	ŒV	EM]	rsi	(VL	LAY	LT	AQP	AP'I	rse	DL:	rsa'	TNI	VKW
	HP	LS	RQR	NS]	LGC	FA	STÇ	DT'	TVA	LK	AL:	SEF	'AA	LM	1TE	ERTI	QIØ	VIV	/TG	PSS	5-P	SP	ЖF.	LID:	THN
			*	*	* *	t #	***	**	**	* :	**:	*	*		*	**		1	*	* *	t		**	*	*
	MG	ITI	KQQ	NA(QGG	FS	STÇ	DT	VVA	LHA	ALS	SKY	GA	ATF	'T-	RT(3KA	7QA	TI	QSS	GT	FSS	SKF	QVDI	NNN
	HP	RLI	LLQ	TAI	ELA	VV	QPI	'AV	NIS.	ANC	3F(GF <i>A</i>	IC	QLN	IVV	YNY	/ΚΑ	SGS	SRI	RRR	RSI	QNÇ	QEA!	FDLI	OVA
35		**1	***		*		*			4		k		*		**								*	

	MG	RLLL	.QQVS	L-PI	ELP(EYS	MKVT	GEGC	YYLQ	TSLKY	N	- 11121	EKEEFF	'L'ATIGA	ĞLUPĞL
	HP	VKEN	K-DD	LNH	NDLI	WCI	SFSGI	PGRS	LAME	MEVNI	LSGF	IVPS I	EAISLS	ETVKK	VEYDHG
		*	*		*	*	*	*	**	*	***		* *	***	*
	MG	CDEP	KAHI	SFQ	SLS	vsy	TGS-I	RSASI	MAI'	VDVKM	IVSGF		IPLK	(PTVKM	LE
5	HP	KLNL	YLDS	VNE	rqf	ZVNI	PAVRI	NFKV:	QTM3	DASVS	YOU	YEPRI	RQAVRS	YNSEV	KLSSCD
				* *	k	*		**1	* *		*	*	**		*
	MG		RSNH	VSR1	revs	SNH	VLIYI	LDKV	SNQT:	LSLFF	'TVLQI	OVP	VR-	,	D
	HP	LCSD	VQGC	RPCE	EDGI	SGS	HHHSS	SVIF	FCF:	KLLYF	'MELWI	_			
		*			*				*	* *					
10	MG	L	KPAI	VKV	YDY	ETD	EFAI <i>l</i>	AEYN!	APCS:	KDL	GN	A			

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W33075) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

20

25

30

15

<HP02991> (SEQ ID NOS: 32, 42, and 52)

Determination of the whole base sequence of the cDNA insert of clone HP02991 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 81-bp 5'-untranslated region, a 1749-bp ORF, and a 800-bp 3'-untranslated region. The ORF encodes a protein consisting of 582 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 66 kDa that was somewhat larger than the molecular weight of 64,244 predicted from the ORF. In

this case, the addition of a microsome led to the formation of a product of 78 kDa to which sugar chains are presumably attached. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from valine at position 27. In addition, there exist in the amino acid sequence of this protein seven sites at which N-glycosylation may occur (Asn-Gly-Thr at position 70, Asn-Gly-Thr at position 182, Asn-Gly-Ser at position 294, Asn-His-Thr at position 310, Asn-Gly-Thr at position 352, Asn-Glu-Thr at position 393 and Asn-Cys-Ser at position 407).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse FKBP65-binding protein (GenBank Accession No. L07063). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse FKBP65-binding protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 88.8% in the entire region.

5

10

15

Table 9

	HP	${\tt MFPAGPPSHSLLRLPLLQLLLLVVQAVGRGLGRASPAGGPLEDVVIERYHIPRACPREVQ}$
		** .** ** * *
5	MM	${\tt MFLVGSSSHTLHRVRILPLLLL-LQTLERGLGRASPAGAPLEDVVIERYHIPRACPREVQ}$
	HP	${\tt MGDFVRYHYNGTFEDGKKFDSSYDRNTLVAIVVGVGRLITGMDRGLMGMCVNERRRLIVP}$

	MM	${\tt MGDFVRYHYNGTFEDGKKFDSSYDRSTLVAIVVGVGRLITGMDRGLMGMCVNERRRLIVP}$
	HP	PHLGYGSIGLAGLIPPDATLYFDVVLLDVWNKEDTVQVSTLLRPPHCPRMVQDGDFVRYH
10		***********************
	MM	PHLGYGSIGVAGLIPPDATLYFDVVLLDVWNKADTVQSTILLRPPYCPRMVQNSDFVRYH
	HP	YNGTLLDGTSFDTSYSKGGTYDTYVGSGWLIKGMDQGLLGMCPGERRKIIIPPFLAYGEK

	MM	YNGTLLDGTGFDNSYSRGGTYDTYIGSGWLIKGMDQGLLGMCPGEKRKIIIPPFLAYGEK
15	HP	GYGTVIPPQASLVFHVLLIDVHNPKDAVQLETLELPPGCVRRAGAGDFMRYHYNGSLMDG

	MM	${\tt GYGTVIPPQASLVFYVLLLDVHNPKDTVQLETLELPQGCVRRAVAGDFMRYHYNGSLMDG}$
	HP	TLFDSSYSRNHTYNTYIGQGYIIPGMDQGLQGACMGERRRITIPPHLAYGENGTGDKIPG

20	MM	TLFDSSYSRNHTYNTYVGQGYIIPGMDQGLQGACIGERRRITVPPHLAYGENGTGDKIPG
	HP	SAVLIFNVHVIDFHNPADVVEIRTLSRPSETCNETTKLGDFVRYHYNCSLLDGTQLFTSH

	MM	SAVLIFDVHVIDFHNPSDPVEIKTLSRPPENCNETSKIGDFIRYHYNCSLLDGTRLFSSH
	HP	DYGAPQEATLGANKVIEGLDTGLQGMCVGERRQLIVPPHLAHGESGARGVPGSAVLLFEV
25		****** ********** ******
	MM	DYEAPQEITLGANKVIEGLDRGLQGMCVGERRQLIVPPHLAHGENGARGVPGSAVLLFEV
	HP	ELVSREDGLPTGYLFVWHKDPPANLFEDMDLNKDGEVPPEEFSTFIKAQVSEGKGRLMPG

	MM	ELVSREDGLPTGYLFVWYQDPSTSLFEDMDLNKDGEVPPEEFSSFIKAQVNEGKGRLMPG
30	HP	QDPEKTIGDMFQNQDRNQDGKITVDELKLKSDEDEERVHEEL

	MM	ODPDKTISDMFONODRNODGKITAEELKLKSDEDQERVHEEL

Furthermore, the search of the GenBank using the base

10

15

20

25

30

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA308536) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03063> (SEQ ID NOS: 33, 43, and 53)

Determination of the whole base sequence of the cDNA insert of clone HP03063 obtained from cDNA library of human line HT-1080 fibrosarcoma cell revealed the structure consisting of a 88-bp 5'-untranslated region, a 1233-bp ORF, and a 151-bp 3'-untranslated region. The ORF encodes a protein consisting of 410 amino acid residues and there existed a putative transmembrane domain at the N-terminus. Figure 13 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was almost identical with the molecular weight of 45,786 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse AUP1 (GenBank Accession No. U41736). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse AUP1 (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 90.2% in the entire region.

Table 10

	HP	MELPSGPGPERLFDSHRLPGDCFLLLVLLLYAPVGFCLLVLRLFLGIHVFLVSCALPDSV
		** * ********* . * **** . * **** . * ***** . *
5	MM	MEPPPAPGPERLFDSHRLPSDGFLLLALLLYAPVGLCLLVLRLFLGLHVFLVSCALPDSV
	HP	LRRFVVRTMCAVLGLVARQEDSGLRDHSVRVLISNHVTPFDHNIVNLLTTCSTPLLNSPP

	MM	LRRFVVRTMCAVLGLVARQEDSGLRDHRVRVLISNHVTPFDHNIVNLLTTCSTPLLNSPP
	HP	SFVCWSRGFMEMNGRGELVESLKRFCASTRLPPTPLLLFPEEEATNGREGLLRFSSWPFS
10		********
	MM	SFVCWSRGFMEMDRRVELVESLKKFCASTRLPPTPLLLFPEEEATNGREGLLRFSSWPFS
	HP	IQDVVQPLTLQVQRPLVSVTVSDASWVSELLWSLFVPFTVYQVRWLRPVHRQLGEANEEF

	MM	IQDVVQPLTLQVQRPLVSVTVSDASWVSELLWSLFVPFTVYQVRWLHPIRRQLGEESEEF
15	HP	ALRVQQLVAKELGQTGTRLTPADKAEHMKRQRHPRLRPQSAQSSFPPSPGPSPDVQLATL

	MM	ALRVQQLVAKELGQIGTRLTPADKAEHMKRQRHPRLRPQSVQSSFPSPPSPSSDVQLTTL
	HP	AQRVKEVLPHVPLGVIQRDLAKTGCVDLTITNLLEGAVAFMPEDITKGTQSLPTASASKF

20	MM	AHRVKEVLPHVPLNVIQRDLARTGCVDLTITNLLEGAVAFMPEDVTEGSQSPPAPSAPKF
	HP	PSSGPVTPQPTALTFAKSSWARQESLQERKQALYEYARRRFTERRAQEAD
		**** ***********
	MM	PSSGLATPQPTALTFAKSSWARQESLQERKQALYEYARRFRERQAQEAE
		•

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA131932) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03091> (SEQ ID NOS: 34, 44, and 54)

Determination of the whole base sequence of the cDNA insert of clone HP03091 obtained from cDNA library of human liver revealed the structure consisting of a 16-bp 5'-untranslated region, a 1452-bp ORF, and a 184-bp 3'-untranslated region. The ORF encodes a protein consisting of 483 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 14 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 34.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human OS-9 protein (SWISS-PROT Accession No. Q13438). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human OS-9 protein (OS). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.8% in the N-terminal region of 281 amino acid residues. The positions of eight cysteines were conserved between the two proteins.

5

10

15

20

Table 11

HP MEEGGGGVRSLVPGGPVLLVLCGLLEASGGGRALPQLSDDIPFRVNWPGTEFSLPTTGVL MAAETILSSILGIILI-GILIPASLTGGVGSLNLEELSEMRYGIEILPLPVMGGQ 5 HP YKEDNYVIMTTAHKEKYKCILP---LVTSGDEEEEKDYKGPNPRELLEPLFKQSSCSYR .. ***. .*.**. .***.*.* **... .*..* ** OS SOSSDVVIVSSKYKQRYECRLPAGAIHFQREREEETPAYQGPGIPELLSPM-RDAPCLLK HP IESYWTYEVCHGKHIROYHEEKETGQKINIHEYYLGNMLAKNLLFEKEREAEEKEKSNEI ...**** *.*.*** * ... * ... *** 10 OS TKDWWTYEFCYGRHIQQYHME-DSEIKGEV--LYLG-----YYQSAFD-----WDDET HP PTKNIEGQMTPYYPVGMGNGTPCSLKQNRPRSSTVMYIC---HPESKHEILSVAEVTTCE*.. . ***. *.* ..***...* * . * .*.* .*. OS AKASKQHRLKRYHSQTYGNGSKCDL-NGRPREAEVRFLCDEGAGISGDYIDRVDEPLSCS HP YEVVILTPLLCSHPKYRFRASPV-NDIFCQ-SLPGSPFKPLTLRQLEQQEEILRVPFRRN 15 * ..* ** **.** * ..*.. ..*. **. ** . .. OS YVLTIRTPRLCPHPLLRPPPSAAPQAILCHPSLQPEEYMAYVQRQADSKQYGDKIIEELQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA313678) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03092> (SEQ ID NOS: 35, 45, and 55)

Determination of the whole base sequence of the cDNA insert of clone HP03092 obtained from cDNA library of human liver revealed the structure consisting of a 19-bp 5'-untranslated region, a 1824-bp ORF, and a 269-bp 3'-untranslated region. The ORF encodes a protein consisting of

WO 00/29448 PCT/JP99/06412

70

607 amino acid residues and there existed at least six putative transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat liver-specific transport protein (GenBank Accession No. L27651). Table 12 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat liver-specific transport protein (RN). Therein, the marks of - and * represent a gap and an amino acid residue identical with that of the protein of the present invention, respectively. The both proteins shared a homology of 70.0% in the entire region.

5

10

Table 12

	HP	MGFEELLEQVGGFGPFQLRNVALLALPRVLLPLHFLLPIFLAAVPAHRCALPGAPANFSH
		**** ** ******** * **** **** * ***** * *
5	RN	${\tt MGFEDLLDKVGGFGPFQLRNLVLMALPRMLLPMHFILPVFMAAVPAHHCALPGAPANLSH}$
	HP	QDVWLEAHLPREPDGTLSSCLRFAYPQALPNTTLGEERQSRGELEDEPATVPCSQGWEYD
		** ******* ** ******* ** ** ** * * * * *
	RN	QDLWLEAHLPRETDGSFSSCLRFAYPQTVPNVTLGTEVSNSGEPEGEPLTVPCSQGWEYD
	HP	HSEFSSTIATESQVGIYIIHLEVECRWRQSPWEAAGRGLPWEEAEAAGLGRDKVSYSPSW
10		****
	RN	RSEFSSTIAT
	HP	RESLGGLLSGMEWDLVCEQKGLNRAASTFFFAGVLVGAVAFGYLSDRFGRRRLLLVAYVS
		***** * *** ** ****** *******
	RN	EWDLVCQQRGLNKITSTCFFIGVLVGAVVYGYLSDRFGRRRLLLVAYVS
15	HP	TLVLGLASAASVSYVMFAITRTLTGSALAGFTIIVMPLELEWLDVEHRTVAGVLSSTFWT
		**** **** * ** * ********* ********
	RN	SLVLGLMSAASINYIMFVVTRTLTGSALAGFTIIVLPLELEWLDVEHRTVAGVISTVFWS
	HP	GGVMLLALVGYLIRDWRWLLLAVTLPCAPGILSLWWVPESARWLLTQGHVKEAHRYLLHC
		*** ****** ***** ***** *** *** * ******
20		GGVLLLALVGYLIRSWRWLLLAATLPCVPGIISIWWVPESARWLLTQGRVEEAKKYLLSC
	HP	ARLNGRPVCEDSFSQEAVSKVAAGERVVRRPSYLDLFRTPRLRHISLCCVVVWFGVNFSY
		* ***** * * **** * ** ****** * ******
		AKLNGRPVGEGSLSQEALNNVVTMERALQRPSYLDLFRTSQLRHISLCCMMVWFGVNFSY
	HP	YGLSLDVSGLGLNVYQTQLLFGAVELPSKLLVYLSVRYAGRRLTQAGTLLGTALAFGTRL
25		*** *************
		YGLTLDVSGLGLNVYQTQLLFGAVELPSKIMVYFLVRRLGRRLTEAGMLLGAALTFGTSL
	HP	LVSSDMKSWSTVLAVMGKAFSEAAFTTAYLFTSELYPTVLRQTGMGLTALVGRLGGSLAP
		*** *** * * * *************
		LVSLETKSWITALVVVGKAFSEAAFTTAYLFTSELYPTVLRQTGLGLTALMGRLGASLAR
30	HP	LAALLDGVWLSLPKLTYGGIALLAAGTALLLPETRQAQLPETIQDVERKSAPTSLQEEEM
		********* *** **** ** ****** * *****
	RN	LAALLDGVWLLLPKVAYGGIALVAACTALLLPETKKAQLPETIQDVERKSTQEE
	HP	PMKQVQN
25	RN	DV

WO 00/29448 PCT/JP99/06412

72

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI016020) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

30

5

<HP03116> (SEQ ID NOS: 36, 46, and 56)

Determination of the whole base sequence of the cDNA insert of clone HP03116 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 32-bp 5'-untranslated region, a 945-bp ORF, and a 110-bp 3'-untranslated region. The ORF encodes a protein consisting of 314 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 20. In addition, there exist in the amino acid sequence of this protein three sites at which Nglycosylation may occur (Asn-Arg-Thr at position 167, Asn-Asn-Ser at position 200 and Asn-Ile-Ser at position 273).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human Prostasin (SWISS-PROT Accession No. Q16651). Table 13 shows the comparison between amino acid sequences of the human protein of the present

invention (HP) and the human Prostasin (PR). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.8% in the entire region.

Table 13

MGARGALLLALLLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPW 10 HP ..*.* . .* ** ... *. ..*** . .**.** *.*** PR MAQKGVLGPGQLGAVAILLYLGLLRSGTG-AEGAEAPCG-VAPQARITGGSSAVAGQWPW HP QGSLRLWDSHVCGVSLLSHRWALTAAHCFETYSDLSDPSGWMVQFGQLTSMPSFWSLQAY . **** **.*.*.*.* *..*. PR QVSITYEGVHVCGGSLVSEQWVLSAAHCF---PSEHHKEAYEVKLGA-HQLDSY---SED 15 HP YTRYFVSNIYLSPRYLGNSPY-DIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVT *.** ... ****..** *.*....* * * .* * .* * PR AKVSTLKDIIPHPSYLQEGSQGDIALLQLSRPITFSRYIRPICLPAANASFPNGLHCTVT HP GWGYIKEDEALPSPHTLQEVQVAIINNSMCNHLF-LKYSFRKDIF--GDMVCAGNAQGGK 20 PR GWGHVAPSVSLLTPKPLQQLEVPLISRETCNCLYNIDAKPEEPHFVQEDMVCAGYVEGGK HP DACFGDSGGPLACNKNGLWYQIGVVSWGVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMS PR DACQGDSGGPLSCPVEGLWYLTGIVSWGDACGARNRPGVYTLASSYASWIQSKVTELQPR HP QPDPSWPLLFFPLLWALPLLGPV 25 PR VVPQTQESQPDSNLCGSHLAFSSAPAQGLLRPILFLPLGLALGLLSPWLSEH

30 Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA159101) among ESTs. However, since they are partial sequences, it can not be judged whether or

10

15

20

30

not they encode the same protein as the protein of the present invention.

<HP10618> (SEQ ID NOS: 37, 47, and 57)

Determination of the whole base sequence of the cDNA insert of clone HP10618 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 215-bp 5'-untranslated region, a 285-bp ORF, and a 1194-bp 3'-untranslated region. The ORF encodes a protein consisting of 94 amino acid residues and there existed a putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 9,709 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA287125) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

25 <HP10619> (SEQ ID NOS: 38, 48, and 58)

Determination of the whole base sequence of the cDNA insert of clone HP10619 obtained from cDNA library of the human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 11-bp 5'-untranslated region, a 657-bp ORF, and a 854-bp 3'-untranslated region. The ORF encodes a protein consisting of 218 amino acid residues and there existed a putative transmembrane domain at the N-terminus.

10

15

20

25

30

Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. Z43089) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10622> (SEQ ID NOS: 39, 49, and 59)

Determination of the whole base sequence of the cDNA insert of clone HP10622 obtained from cDNA library of the human liver revealed the structure consisting of a 43-bp 5'untranslated region, a 1383-bp ORF, and a 165-bp 3'untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 17. addition, there exist in the amino acid sequence of this protein four sites at which N-glycosylation may occur (Asn-Ser-Ser at position 23, Asn-Met-Ser at position 115, Asn-Glu-Thr at position 296 and Asn-Tyr-Thr at position 357).

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human angiopoietin-1 (GenBank

WO 00/29448 PCT/JP99/06412

76

Accession No. U83508). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human angiopoietin-1 (AN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 28.2% in the entire region and a homology of 39.1% in the C-terminal region of 215 amino acid residues.

5

Table 14

MFTIKLLLFIVPLVISS HP AN MTVFLSFAFLAAILTHIGCSNQRRSPENSGRRYNRIQHGQCAYTFILPEHDGNCRESTTD 5 HP RIDQDNSSFDSLSPEPKSRFAMLDDVKILANGLLQLGHGLKDF-VHKTKGQINDIFQKLN AN QYNTNALQRDAPHVEPDFSSQKLQHLEHVMENYTQWLQKLENYIVENMKSEMAQI-QQNA HP IFDQSFYDLSLQTSEIKEEEKELRR-TTYKLQVKNEEVKNMSLELNSKLESLLEEKILLQ *.. ** *. *. . . ** *.. . 10 AN VONHTATMLEIGTSLLSQTAEQTRKLTDVETQVLNQTSRLEIQLLENSLSTYKLEKQLLQ HP QKVKYLE-EQLTNLIQNQPETPEHPEVTSLKTFVEKQDNSIKDLLQTVEDQYKQLNQQHS *. . *.*... . **. * ...* ...*.* . AN QTNEILKIHEKNSLLEHKILEMEGKHKEELDTLKEEKEN-LQGLVTRQTYIIQELEKQLN HP QIKEIENQLRRTSIQEPTEISLSSKPRAPRTTPFLQLNEIRNVKHDGIPAECTTIYNRGE 15 AN RATTNNSVLQKQQL-ELMDTVHNLVNLCTKEGVLL--KGGKREEEKPFR-DCADVYQAGF HP HTSGMYAIRPSN-SQVFHVYCDV-ISGSPWTLIQHRIDGSQNFNETWENYKYGFGRLDGE ..**.*. .* .. .*.*. .*. **.** *** .*. .*. *** *** .*. AN NKSGIYTIYINNMPEPKKVFCNMDVNGGGWTVIQHREDGSLDFQRGWKEYKMGFGNPSGE 20 HP FWLGLEKIYSIVKQSNYVLRIELEDWKDNKHYIEY-SFYLGNHETNYTLHLVAITGNVPN AN YWLGNEFIFAITSQRQYMLRIELMDWEGNRAYSQYDRFHIGNEKQNYRLYLKGHTGTAGK HP AIP-ENKDLVFSTWDHKAKGHF-NCPEGYSGGWWWHDECGENNLNGKYNKPRAKSKPERR 25 AN OSSLILHGADFSTKDADNDNCMCKCALMLTGGWWF-DACGPSNLNGMFY--TAGQNHGKL HP RGLSWKSQNGRLYSIKSTKMLIHPTDSESFE .*..*. .*. **..**.*.* * AN NGIKWHYFKGPSYSLRSTTMMIRPLDF

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

example, Accession No. R86161) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP10625> (SEQ ID NOS: 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10625 obtained from cDNA library of the human liver revealed the structure consisting of a 133-bp 5'-untranslated region, a 651-bp ORF, and a 465-bp 3'-untranslated region. The ORF encodes a protein consisting of 216 amino acid residues and there existed two putative transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R59052) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP02883> (SEQ ID NOS: 61, 71, and 81)

Determination of the whole base sequence of the cDNA insert of clone HP02883 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 191-bp 5'-untranslated region, a 1179-bp ORF, and a 2657-bp 3'-untranslated region. The ORF encodes a protein consisting of 392 amino acid residues and there existed three putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained

10

15

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 43,381 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the Caenorhabditis elegans the similar to was (GenBank Accession CET24F1.2 hypothetical protein Z49912). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) hypothetical protein Caenorhabditis elegans and the CET24F1.2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.4% in the N-terminal region of 178 amino acid residues.

Table 15

HP NRNCWDCPHCEQYNGFQENGDYNKPIPAQYLEHLNHVVSSAPSLRDP-SQPQX .**** ****** * .***** *		
MEVAAAVGVIASVPILYK-AIRPR-IKTSVECWFCRKSTKVEY(HP NRNCWDCPHCEQYNGFQENGDYNKPIPAQYLEHLNHVVSSAPSLRDP-SQPQX .**** ****** *.***** * * *	HP	MEGVSALLARCPTAGLAGGLGVTACAAAGVLLYRIARRMKPTHTMVNCWFCNQDTLVPYG
HP NRNCWDCPHCEQYNGFQENGDYNKPIPAQYLEHLNHVVSSAPSLRDP-SQPQX .**** ****** * .***** *		** *** * * * * * * * * * *
CE QRNSFTCPSCEQYNGFTEDGDYNRRIPGQAWTTPKRYCEPGKMQSEKPSTFLDRFGGVNN HP WVSSQVLLCKRCNHHQTTKIKQLAAFAPREEGRYDEEVEVYRHHLEQMYKLCRPCQAAVI	CE	MEVAAAVGVIASVPILYK-AIRPR-IKTSVECWFCRKSTKVEYQ
CE QRNSFTCPSCEQYNGFTEDGDYNRRIPGQAWTTPKRYCEPGKMQSEKPSTFLDRFGGVNN HP WVSSQVLLCKRCNHHQTTKIKQLAAFAPREEGRYDEEVEVYRHHLEQMYKLCRPCQAAVI ** ** *** ** ** ** ** ** ** ** **	HP	NRNCWDCPHCEQYNGFQENGDYNKPIPAQYLEHLNHVVSSAPSLRDP-SQPQQ
HP WVSSQVILCKRCNHHQTTKIKQLAAFAPREEGRYDEEVEVYRHHLEQMYKLCRPCQAAVI **.** **.*.*.*.**.**.**.**.**.**		***** ****** *.****** * * *
CE SPKASNGLCSECNLGQEIIMNKVAEFEPIDEDRWNEELEDYRYKLERMYQLCPRCTIQVI HP YYIKHQNRQLRALLLSHQFKRREADQTHAQNFSSAVKSPVQVILLRALAFLACAFLLTTI	CE	QRNSFTCPSCEQYNGFTEDGDYNRRIPGQAWTTPKRYCEPGKMQSEKPSTFLDRFGGVNM
CE SPKASNGLCSECNLGQEIIMNKVAEFEPIDEDRWNEELEDYRYKLERMYQLCPRCTIQVI HP YYIKHQNRQLRALLLSHQFKRREADQTHAQNFSSAVKSPVQVILLRALAFLACAFLLTTA	HP	WVSSQVLLCKRCNHHQTTKIKQLAAFAPREEGRYDEEVEVYRHHLEQMYKLCRPCQAAVE
HP YYIKHQNRQLRALLLSHQFKRREADQTHAQNFSSAVKSPVQVILLRALAFLACAFLLTTA		** ** ** **.* .*. * **. **. **.
***	CE	SPKASNGLCSECNLGQEIIMNKVAEFEPIDEDRWNEELEDYRYKLERMYQLCPRCTIQVH
	HP	YYIKHQNRQLRALLLSHQFKRREADQTHAQNFSSAVKSPVQVILLRALAFLACAFLLTTA
CE GKLEEDKKKY-SYLLKVKYKLKHAIGSTLREVMNNQKRSRRFFFAGGSTCEALHFGCLIS		***
	CE	GKLEEDKKKY-SYLLKVKYKLKHAIGSTLREVMNNQKRSRRFFFAGGSTCEALHFGCLIS

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. F11409) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10 <HP03140> (SEQ ID NOS: 62, 72, and 82)

Determination of the whole base sequence of the cDNA insert of clone HP03140 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 29-bp 5'-untranslated region, a 1494-bp ORF, and a 972-bp 3'-untranslated region. The ORF encodes a protein consisting of 497 amino acid residues and there existed one putative transmembrane domain. Figure 22 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 51 kDa that was almost identical with the molecular weight of 54,245 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein similar to the Caenorhabditis elegans protein hypothetical CELC50D2 (GenBank Accession AF040642). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Caenorhabditis elegans hypothetical protein CELC50D2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

of the protein of the present invention, respectively. The both proteins shared a homology of 37.9% in the N-terminal region of 393 amino acid residues.

5 Table 16

	HP	MALWRGSAYAGFLALAVGCVFLLEPELPGSALRSLWSSLCLGPAPAPPGPVSPEGRLAAA
		* *
	CE	MFSETFVPSIFSYKHRLLHLSVLFFIVPYWYSYYNDQHRLSSYSVETAMFLS
10	HP	WDALIVRPVRRWRRVAVGVNACVDVVLSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFI
		*. **.* * * ********
	CE	WERAIVKPGAMFKKAVIGFNCNVDLIVSGVRVVDALNTTCSEGKDQETLETLADLHQTFA
	HP	HFMWKGAAAERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFAAN-SDLKVLLCG
		*** ****** * * * * * * * * * * * * * * *
15	CE	HFFQRGAAAERYMSSEDQFNLLVAESEASTRSHHHIGGNAALMADRIAANFPSTEVYLVG
	HP	PVGPRLHELLDDNVFVPPESLQEVDEFHLILEYQAGEEWGQLKAPHANRFIFSHDLSNGA
		*.***** .*
	CE	PIGPRSQALLHPSVKRTNSTRILKDELHVILEYKQGEILGDWVAPSSSRFITSHDHFSGS
	HP	MNMLEVFVSSLEEFQPDLVVLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPVHLELA
20		**.**.****** *****
	CE	MVVMEMFFKAIAQFRPDLVVITGVHLLEFQSKEMRQEKMRLIKRNLLQIPPKVPIHLELG
	HP	SMTNRELMSSIVHQQVFPAVTSLGLNEQELLFLTQSASGPH-SSLSSWNGVPDVGMVSDI
		* **. * * * * * *
	CE	SLAD-EIFSTDVINKILPYVDSLGINEQELTFLSHIANGPHMEEYPVQAGTVHVHKVVEM
25	HP	LFWILKEHGRSKSRASDLTRIHFHTLVYHILATVDGHWANQLAAVAAGARVAGT
		* * * * * * * * * * * * * * * * * * * *
	CE	LHWLLKTYGRDPTGQIASKTGYRLSRIHFHCLTYHIMVSSGTDWSNLAAGLAAGARIAGR
	HP	QACATETIDTSRVSLRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTPVLVC
		.**.* *.*.
30	CE	LSCNIGANTMDSELLEIRTPANFVLDKKIEKNYQFEAHKYMLTPFNIARCSTRLIRRKPP
	HP	KDPIRTVGLGDAISAEGLFYSEVHPHY
	CE	GGGILDEGVTFSDVHNVILNPTTRLPYPEEQLREHIEKTSSEIMKERNKIRYGTRKKKDS

10

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA356000) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10628> (SEQ ID NOS: 63, 73, and 83)

Determination of the whole base sequence of the cDNA insert of clone HP10628 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 66-bp 5'-untranslated region, a 1254-bp ORF, and a 297-bp 3'-untranslated region. The ORF encodes a protein consisting of 417 amino acid residues and there existed four putative transmembrane domains. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was almost identical with the molecular weight of 45,461 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Schistosoma mansoni ATP-cassette family protein (GenBank Accession No. L26286). Table 17 shows the comparison between amino acid sequences of the protein of the present invention (HP) Schistosoma mansoni ATP-cassette family protein Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The

both proteins shared a homology of 39.5% in the C-terminal region of 294 amino acid residues.

Table 17

5 HP MLVHLFRVGIRGGPFPGRLLPPLRFQTFSAVRYSDGYRSSSLLRAVAHLRSQLWAHLPRA MFSALCRRGFLTNKVSQFRSTYKCDHYNLKT HP PLAPRWSPSAWCWVGGALLGPMVLSKHPHLCLVALCEAEEAPPASSTPHVVGSRFNWKLF SM HIKPLKCSSSLRLTVGTGLFIALHSKISPESRIQTVQCEVDSYQTDQITFAKSGGIPRYI HP WQFLHPHLLVLGVAVVLALGAALVNVQIPLLLGQLVEVVAKYTRDHVGSFMTESQNLSTH 10 .. *. . * *.. *. **..** *** **..*.* * *... SM GVLILPDCVYLFGAILGAFVAAVMNVYIPLYLGDFVSSLSRCVVTHEG-FVSAVYVPTLR HP LLILYGVQGLLTFGYLVLLSHVGERMAVDMRRALFSSLLRYCQPQGAELGQDITFFDANK * .*.* ** *. **. ***** ** .**..*. * SM LCSSYLLOSLSTFLYIGLLGSVGERMARRMRIQLFRKLV-Y-----QDVAYFDVHS 15 HP TGQLVSRLTTDVQEFKSSFKLVISQGLRSCTQVAGCLVSLSMLSTRLTLLLLMVATPALMG SM SGKLVEIIGSDVONFKSSFKOCISOGLRNGIQVVGSVFALLSISPTLTAALIGCLPCVFL HP VGTLMGSGLRKLSCQCQEQIARAMGVADEALGNVRTVRAFAMEQREEERYGAELEACRCR ********** 20 SM IGSLMGTELRHISREVQSQNSLFASLIDEAFSHIRTVKSLAMEDFLINKINYNVDKAKML HP AEELGRGIALFQGLSNIAFNCMVLGTLFIGGSLVAGQQLTGGDLMSFLVASQTVQRL SM SEKLSFGIGSFQGLSNLTLNGVVLGVLYVGGHLMSRGELDAGHLMSFLATTQTLQRSLTQ 25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. U66688) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

<HP10629> (SEQ ID NOS: 64, 74, and 84)

Determination of the whole base sequence of the cDNA insert of clone HP10629 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 259-bp 5'-untranslated region, a 1950-bp ORF, and a 1060-bp 3'-untranslated region. The ORF encodes a protein consisting of 649 amino acid residues and there existed at least eight putative transmembrane domains. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the was similar to the Caenorhabditis elegans hypothetical protein CELF38B6 (GenBank Accession No. U40060). Table 18 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Caenorhabditis elegans hypothetical protein CELF38B6 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.1% in the C-terminal region of 445 amino acid residues.

Table 18

	HP	${\tt MIPNQHNAGAGSHQPAVFRMAVLDTDLDHILPSSVLPPFWAKLVVGSVAIVCFARSYDGD}$
	CE	MKYAEINVNSGKHFRLNYKLHETS
5	HP	FVFDDSEAIVNNKVAGVVGRADLLCALFFLLSFLGYCKAFRESNKEGAHSSTFWVLLSIF
	CE	TLGYHVVNIICHTVATLVFYKLGKQLEHIFDFFNIAFSASILFAVHPVHTEAVANITGRA
	HP	${\tt LGAVAMLCKEQGITVLGLNAVFDILVIGKFNVLEIVQKVLHKDKSLENLGMLRNGGLLFR}$
	CE	ELIMTIFSLAALILHVKNREINCKFVLLVILSTLSKEQGLMTIPIAICIDFLAHRSCRSN
	HP	MTLLTSGGAGMLYVRWRIMGTGPPAFTEVDNPASFADSMLVRAVNYNYYYSLNAWLLLCP
10		* * ****** .* . * .**.**.**
	CE	FVRMICLLVAIGFLRMMVNGFEAAKFTKLDNPTAFLNSKFYRMINYTYIWLYHAYLLVIP
	HP	wwlcfdwsmgcipliksisdwrvialaalwfcliglicqalcsedghkrriltlglgflv
		****.****. * * . ** * . * . * .
	CE	VNLCFDYSMGCISSITTMWDLRALSPVLIFTIVIIGVKFQNECRAFTLSSLMGI
15	HP	IPFLPASNLFFRVGFVVAERVLYLPSIGYCVLLTFGFGALSKHTKKKKLIAAVVLGILFI
		*.********* *** .******* *.*. * ** * *
	CE	ISFLPASNIFFTVGFSIAERVLYLPSAGFCLLCAIIFKKLSVHFKNADVLSITLILLLIS
	HP	NTLRCVLRSGEWRSEEQLFRSALSVCPLNAKVHYNIGKNLADKGNQTAAIRYYREAVRLN
		* * *****.* **.***** ***.** *.*.** . **.
20	CE	KTYRRSGEWKTELSLYSSGLSVCPTNAKIHYNLGKVLGDNGLTKDAEKNYWNAIKLD
	HP	PKYVHAMNNLGNILKERNELQEAEELLSLAVQIQPDFAAAWMNLGIVQNSLKRFEAAEQS
		. .*.**** *
	CE	PSYEQALMNLGNLLEKSGDSKTAESLLARAVTLRPSFAVAWMNLGISQMNLKKYYEAEKS
	HP	YRTAIKHRRKYPDCYYNLGRLYADLNRHVDALNAWRNATVLKPEHSLAWNNMIILLDNTG
25		** .** *** **. **. *****.** .*.*
	CE	LKNSLLIRPNSAHCLFNLGVLYQRTNRDEMAMSAWKNATRIDPSHSQSWTNLFVVLDHLS
	HP	NLAQAEAVGREALELIPNDHSLMFSLANVLGKSQKYKESEALFLKAIKANPNAASYHGNL

	CE	QCSQVIDLSYQALSSVPNESRVHMQIGSCHAKHSNFTAAENHIKSAIDLNPTSVLFHANL
30	HP	AVLYHRWGHLDLAKKHYEISLQLDPTASGTKENYGLLRRKLELMQKKAV
		.* ** * *.*.*
	CE	GILYORMSRHKEAESQYRIVLALDSKNIVAKQNLQKLEEHNCYNSTLP

Furthermore, the search of the GenBank using the base

10

15

20

25

30

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA450191) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10635> (SEQ ID NOS: 65, 75, and 85)

Determination of the whole base sequence of the cDNA insert of clone HP10635 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 65-bp 5'-untranslated region, a 282-bp ORF, and a 111-bp 3'-untranslated region. The ORF encodes a protein consisting of 93 amino acid residues and there existed two putative transmembrane domains. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 9,489 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA516481) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10636> (SEQ ID NOS: 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HP10636 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure

10

15

20

25

30

consisting of a 179-bp 5'-untranslated region, a 1278-bp ORF, and a 255-bp 3'-untranslated region. The ORF encodes a protein consisting of 425 amino acid residues and there existed ten putative transmembrane domains. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. Z43270) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10640> (SEQ ID NOS: 67, 77, and 87)

Determination of the whole base sequence of the cDNA insert of clone HP10640 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 52-bp 5'-untranslated region, a 450-bp ORF, and a 553-bp 3'-untranslated region. The ORF encodes a protein consisting of 149 amino acid residues and there existed at least two putative transmembrane domains. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 17 kDa that was almost identical with the molecular weight of 16,829 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical

10

25

30

88

protein F27F23.14 (GenBank Accession No. AC003058). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Arabidopsis thaliana hypothetical protein F27F23.14 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 46.5% in the entire region other than the N-terminal region.

Table 19

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N34717) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10644> (SEQ ID NOS: 68, 78, and 88)

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP10644 obtained from cDNA library of the human retinoblastoma cell line WERI-RB revealed the structure consisting of a 221-bp 5'-untranslated region, a 1191-bp ORF, and a 204-bp 3'-untranslated region. The ORF encodes a protein consisting of 396 amino acid residues and there existed two putative transmembrane domains. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the the Caenorhabiditis elegans was similar to protein hypothetical B0511.8 (GenBank Accession No. protein AF067608). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Caenorhabiditis elegans hypothetical protein B0511.8 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.3% in the region of 361 amino acid residues other than the N-terminal region and the C-terminal region.

Table 20

	HS	MAMIELGFGRONFHPLKRKSSLLLKL
	CE	CDKNGQYLSVQEEIDAENKVQRKIAPGLNEKVLERVTQMLMKQEKSTETYMIWLKNLRVP
5	HS	IAVVFAVLLFCEFLIYYLAIFQCNWPEVKTTASDGEQTTREPVLKAMFLADTHLLGEFLG
		* * * * . * . * . * . * . *
	CE	ILLAIILVVYNEYFIFFIAFSSCQWPCKYGRCS-ESSVKAFMISDTHLLGKING
	HS	${\tt HWLDKLRREWQMERAFQTALWILLQPEVVFILGDIFDEGKWSTPEAWADDVERFQKMFRHP}$
		****** ****** *. *.*.*****
10	CE	HWLDKLKREWQMYQSFWISTWIHSPDVTFFLGDLMDEGKWAGRPVFEAYAERFKKLFG
	HS	SHVQLKVVAGNHDIGFHYEMNTYKVERFEKVFSSERLFSWKGINFVMVNSVALNGDGCGI
	CE	DNEKVITLAGNHDLGFHYALVQTFATHLTPTVELKNYLLIMPETLEMFKKEFRR
	HS	CSETEAELIEVSHRLNCSREARG-SSR-CGPGPLLPTSAPVLLQHYPLYRRS
15		·* ·· · · * * · · * · · * · * · * · * ·
	CE	GLIDEMKIKKHRFVLINSMAMHGDGCRLCHEAELILEKIKSRNPKNRPIVLQHFPLYRKS
	HS	DANCSGEDAAPAEERDIPFKENYDVLSREASQKLLWWLQPRLVLSGHTHSACEVH
		**.*. * * *.*. * *.*. *
	CE	DAECDQVDEQHEIDLKEMYREQWDTLSKESSLQIIDSLNPKAVFGGHTHKMCKKKWNKTG
20	HS	HGGRVPELSVPSFSWRNRNNPSFIMGSITPTDYTLSKCYLPREDVVLIIYC-GVVGFLVV
		* * * ***** . *
	CE	NSEYFYEYTVNSFSWRNGDVPAMLLVVIDGDNVLVSSCRLPSEILQIMVYIFGGIGILAK
	HS	LTLTHFGLLASPFLSGLNLLGKRKTR
		•
25	CE	MYNDLITPAPLEWNVNNIAVCTAIILVMIINVVALIFTIFWCLRSKDEGGEIDSNGVVIN

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R88381) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

<HP10656> (SEQ ID NOS: 69, 79, and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10656 obtained from cDNA library of the line U937 revealed the structure lymphoma cell consisting of a 68-bp 5'-untranslated region, a 1053-bp ORF, The ORF encodes a and a 739-bp 3'-untranslated region. protein consisting of 350 amino acid residues and there existed two putative transmembrane domains. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 41 kDa that was almost identical with the molecular weight of 40,043 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 54 kDa to which sugar chains are presumably there exist in the amino acid attached. In addition, sequence of this protein four sites at which N-glycosylation may occur (Asn-Cys-Thr at position 148, Asn-Tyr-Thr at position 155, Asn-Gln-Thr at position 162 and Asn-Lys-Ser at position 190).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA917816) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

30 <HP10672> (SEQ ID NOS: 70, 80, and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10672 obtained from cDNA library of the

10

15

20

25

30

human thymus revealed the structure consisting of a 244-bp 5'-untranslated region, a 462-bp ORF, and a 77-bp 3'-untranslated region. The ORF encodes a protein consisting of 153 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 30 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. When expressed in COS cells, a product of 17 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N48700) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03194> (SEQ ID NOS: 91, 101, and 111)

Determination of the whole base sequence of the cDNA insert of clone HP03194 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 120-bp 5'-untranslated region, a 912-bp ORF, and a 2406-bp 3'-untranslated region. The ORF encodes a protein consisting of 303 amino acid residues and there existed four putative transmembrane domains. Figure 31 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

10

protein was similar to the mouse hyperpolarization-activated cation channel HAC3 (GenBank Accession No. AJ225124). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the mouse hyperpolarization-activated cation channel HAC3 (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 92.5% in the N-terminal region of 293 amino acid residues.

Table 21

HS MEAEORPAAGASEGATPGLEAVPPVAPPPATAASGPIPKSGPEPKRRHLGTLLQPTVNKF 15 **,*,*****,*,****, *, **,**, * **** .*,****** MM MEEEARPAAGAGEAATPARET-PPAAPAQARAASGGVPESAPEPKRRQLGTLLQPTVNKF HS SLRVFGSHKAVEIEQERVKSAGAWIIHPYSDFRFYWDLIMLLLMVGNLIVLPVGITFFKE *********** MM SLRVFGSHKAVEIEQERVKSAGAWIIHPYSDFRFYWDLIMLLLMVGNLIVLPVGITFFKE 20 HS ENSPPWIVFNVLSDTFFLLDLVLNFRTGIVVEEGAEILLAPRAIRTRYLRTWFLVDLISS MM ENSPPWIVFNVLSDTFFLLDLVINFRTGIVVEEGAEILLAPRAIRTRYLRTWFLVDLISS HS IPVDYIFLVVELEPRLDAEVYKTARALRIVRFTKILSLIRLIRLSRLIRYIHQWEEIFHM 25 MM IPVDYIFLVVELEPRLDAEVYKTARALRIVRFTKILSLLRLLRLSRLIRYIHQWEEIFHM HS TYDLASAVVRIFNLIGMMLLLCHWDGCLQFLVPMLQDFPPDCWVSINHMVVRSPHSSAFP ************** MM TYDLASAVVRIFNLIGMMLLLCHWDGCLQFLVPMLQDFPSDCWVSMNRMVNHSWGRQYSH HS GPS 30 MM ALFKAMSHMLCIGYGQQAPVGMPDVWLTMLSMIVGATCYAMFIGHATALIQSLDSSRRQY

WO 00/29448

5

10

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AI571225) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03219> (SEQ ID NOS: 92, 102, and 112)

Determination of the whole base sequence of the cDNA insert of clone HP03219 obtained from cDNA library of human lymphoma cell line U937 revealed the structure consisting of a 55-bp 5'-untranslated region, a 852-bp ORF, and a 237-bp 3'-untranslated region. The ORF encodes a protein consisting of 283 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human putative membrane protein 54TMp (GenBank Accession No. AF004876). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the human putative membrane protein 54TMp (TM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 56.5% in the entire region.

Table 22

MADPHOLFDDTSSAQSRGYGAQRAPGGLSYPAASPT-PHAAF HS .**..**** 5 TM MAYHSGYGAHGSKHRARAAPDPPPLFDDT----SGGYSSQ--PGGYPATGADVAFSVNHL HS LADPVSNMAMAYGSSLAAQGKELVDKNIDRFIPITKLKYYFAVDTMYVGRKLGLLFFPYL *.**..*.***** TM LGDPMANVAMAYGSSIASHGKDMVHKELHRFVSVSKLKYFFAVDTAYVAKKLGLLVFPYT HS HQDWEVQYQQDTPVAPRFDVNAPDLYIPAMAFITYVLVAGLALGTQDRFSPDLLGLQASS 10 TM HONWEVQYSRDAPLPPRQDLNAPDLYIPTKAFITYVLLAGMALGIQKRFSPEVLGLCAST HS ALAWLTLEVLAILLSLYLVTVNTDLTTIDLVAFLGYKYVGMIGGVLMGLLFGKIGYYLVL **.*...***.**.**.**..**..*...*... TM ALVWVVMEVLALLLGLYLATVRSDLSTFHLLAYSGYKYVGMILSVLTGLLFGSDGYYVAL 15 HS GWCCVAIFVFMIRTLRLKILADAAAEGVPVRGARNQLRMYLTMAVAAAQPMLMYWLTFHL TM AWTSSALMYFIVRSLRTAAL-GPDSMGGPV--PRQRLQLYLTLGAAAFQPLIIYWLTFHL HS VR 20 ** TM VR

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H86659) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03236> (SEQ ID NOS: 93, 103, and 113)

Determination of the whole base sequence of the cDNA insert of clone HP03236 obtained from cDNA library of human

25

10

15

20

fibrosarcoma cell line HT-1080 revealed the structure consisting of a 252-bp 5'-untranslated region, a 1467-bp ORF, and a 620-bp 3'-untranslated region. The ORF encodes a protein consisting of 488 amino acid residues and there existed seven putative transmembrane domains. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein ZC513.5 (GenBank Accession No. U53155). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Caenorhabditis elegans hypothetical protein ZC513.5 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.5% in the intermediate region of 365 amino acid residues.

Table 23

HS MAGKGSSGRRPLLLGLLVAVATVHLVICPYTKVEESFNLQATHDLLYHWQDLEQYDHLEF .*** .* MKMKYDHSQF CE 5 HS PGVVPRTFLGPVVIAVFSSPAVYVLSLLEMSKFYSQLIVRGVLGLGVIFGLWTLQKEVRR CE PGVVPRTFIGPISLAILSSPMSFIFRFWAIPKMWQLLLIRATLGLMNAMAFLYFARSVNR HS HFGAMVATMFCWVTAMQFHLMFYCTRTLPNVLALPVVLLALAAWLRHEWARFIWLSAFAI 10 CE KFGRETAMYLRLIMCTQFHYIFYMSRPLPNTFALILVMIVFERLLEGRYESAVRYATASV HS IVFRVELCLFLGLLLL--LALGNRKV-SVVRALRHAVPAGILCLGLTVAVDSYFWRQLTW CE ILFRCELVLLYGPIFLGYMISGRLKVFGFDGAIAIGVRIAAMCLAVSIPIDSYFWGRPLW HS PEGKVLWYNTVLNKSSNWGTSPLLWYFYSALPRGLGCSLLFIPLG-LVDRRTHAPTVLAL 15 CE PEGEVMFFNVVENRSHEYGTQPFLWYFYSALPRCLLTTTLLVPLGLLVDRRLPQIVLPSV HS GFMALYSLLPHKELRFIIYAFPMLNITAARGCSYLLNNYKKSWLYKAGSLLVIGHLVVNA CE IFIFLYSFLPHKELRFIIYVLPIFCLSAAVFCARMLINRHKSFFRMILFFGVILHLLANV 20 HS AYSATALYVSHFNYPGGVAMQ--RLHQLVPPQTDVLLHIDVAAAQTGVSRFLQVNSAWRY CE LCTGMFLLVASKNYPGFDALNYLQFQNRFDAKKPVTVYIDNACAQTGVNRFLHINDAWT

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA744858) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the

<HP03237> (SEQ ID NOS: 94, 104, and 114)

present invention.

25

10

15

20

Determination of the whole base sequence of the cDNA insert of clone HP03237 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 101-bp 5'-untranslated region, a 549-bp ORF, and a 1106-bp 3'-untranslated region. The ORF encodes a protein consisting of 182 amino acid residues and there existed four putative transmembrane domains. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human intestinal membrane A4 protein (SWISS-PROT Accession No. Q04941). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the human intestinal membrane A4 protein (IM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the intermediate region of 111 amino acid residues.

Table 24

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R14227) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03267> (SEQ ID NOS: 95, 105, and 115)

Determination of the whole base sequence of the cDNA insert of clone HP03267 obtained from cDNA library of human liver revealed the structure consisting of a 148-bp 5'untranslated region, a 555-bp ORF, and a 715-bp untranslated region. The ORF encodes a protein consisting of 184 amino acid residues and there existed two putative 35 depicts Figure transmembrane domains. hydrophobicity/hydrophilicity profile, obtained by the Kyteof the present protein. Doolittle method, translation resulted in formation of a translation product of 21 kDa that was almost identical with the molecular

15

20

25

weight of 20,733 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human polyposis locus protein 1 (SWISS-PROT Accession No. Q00765). Table 25 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the human polyposis locus protein 1 (PL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 59.1% in the entire region.

15

20

25

10

5

Table 25

PL MRERFDRFLHEKNCMTDLLAKLEAKTGVNRSFIALGVIGLVALYLVFGYGASLLCNL

PL IGFGYPAYISIKAIESPNKEDDTQWLTYWVVYGVFSIAEFFSDIFLSWFPFYYMLKCGFL

HS LFCMAPRPWNGALMLYQRVVRPLFLRHHGAVDRIMNDLSGRALDAAAGITRNVKPSQTPQ
*.***.* *** .**.**.**.**.**.**.**.**

PL LWCMAPSPSNGAELLYKRIIRPFFLKHESQMDSVVKDLKDKSKETADAITKEAKKATVNL

HS PKDK

PL LGEEKKST

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

example, Accession No. R09702) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP03270> (SEQ ID NOS: 96, 106, and 116)

Determination of the whole base sequence of the cDNA insert of clone HP03270 obtained from cDNA library of human lymphoma cell line U937 revealed the structure consisting of a 132-bp 5'-untranslated region, a 423-bp ORF, and a 656-bp 3'-untranslated region. The ORF encodes a protein consisting of 140 amino acid residues and there existed four putative domains. Figure 36 depicts transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of 17 kDa that was somewhat larger than the molecular weight of 15,864 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Schizosaccharomyces pombe hypothetical protein (EMBL Accession No. AL031854). Table 26 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Schizosaccharomyces pombe hypothetical protein (SP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.4% in the entire region.

Table 26

	НS	MSRFLNVLRSWLVMVSIIAMGNTLQSFRDHTFLYEKLYTGKPNLVNGLQARTFGI
		* *.**. *. **.*** * * * ****
5	SP	${\tt MSQILAMLPDSLVAKWNVVVSVAALFNTVQSFLTPK-LTKRVY-SNTNEVNGLQGRTFGI}$
	HS	${\tt WTLLSSVIRCLCAIDIHNKTLYHITLWTFLLALGHFLSELFVYGTAAPTIGVLAPLMVAS}$
		***** * ** .* ** . * . **** * *.*.*
	SP	WTLLSAIVRFYCAYHITNPDVYFLCQCTYYLACFHFLSEWLLFRTTNLGPGLLSPIVVST
	HS	FSILGMLVGLRYLEVEPVSRQKKRN
10		**
	SP	VSTWFMAKEKASTI.GTAA

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T30721) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03298> (SEQ ID NOS: 97, 107, and 117)

Determination of the whole base sequence of the cDNA insert of clone HP03298 obtained from cDNA library of human lymphoma cell line U937 revealed the structure consisting of a 182-bp 5'-untranslated region, a 462-bp ORF, and a 455-bp 3'-untranslated region. The ORF encodes a protein consisting of 153 amino acid residues and there existed at least one putative transmembrane domain. Figure depicts 37 hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 17.5 kDa that was almost identical with the molecular

15

20

25

10

15

30

103

weight of 17,360 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the the Schizosaccharomyces protein was to similar (EMBL Accession SPBC119.09c hypothetical protein AL022117). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HS) and the Schizosaccharomyces pombe hypothetical SPBC119.09c (SP). Therein, the marks of -, *, represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 41.9% in the entire region other than the N-terminal region.

Table 27

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA043039) among ESTs. However, since

WO 00/29448 PCT/JP99/06412

104

they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5 <HP10631> (SEQ ID NOS: 98, 108, and 118)

Determination of the whole base sequence of the cDNA insert of clone HP10631 obtained from cDNA library of the human retinoblastoma cell line WERI-RB revealed the structure consisting of a 226-bp 5'-untranslated region, a 522-bp ORF, and a 2741-bp 3'-untranslated region. The ORF encodes a protein consisting of 173 amino acid residues and there existed one putative transmembrane domain. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W26443) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10658> (SEQ ID NOS: 99, 109, and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10658 obtained from cDNA library of the human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 24-bp 5'-untranslated region, a 228-bp ORF, and a 679-bp 3'-untranslated region. The ORF encodes a protein consisting of 75 amino acid residues and there existed two putative transmembrane domains. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In

10

15

20

25

10

15

20

25

vitro translation resulted in formation of a translation product of 14 kDa or less that was almost identical with the molecular weight of 8,625 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T85006) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10663> (SEQ ID NOS: 100, 110, and 120)

Determination of the whole base sequence of the cDNA insert of clone HP10663 obtained from cDNA library of the human lymphoma cell line U937 revealed the structure consisting of a 67-bp 5'-untranslated region, a 480-bp ORF, and a 576-bp 3'-untranslated region. The ORF encodes a protein consisting of 159 amino acid residues and there existed two putative transmembrane domains. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA336522) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

30 <HP03165> (SEQ ID NOS: 121, 131, and 141)

Determination of the whole base sequence of the cDNA insert of clone HP03165 obtained from cDNA library of human

10

15

20

25

106

epidermoid carcinoma cell line KB revealed the structure consisting of a 128-bp 5'-untranslated region, a 1911-bp ORF, and a 1195-bp 3'-untranslated region. The ORF encodes a protein consisting of 636 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 61 kDa that was smaller than the molecular weight of 72,033 predicted from the Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 33.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human β -galactosidase (GenBank Protein ID No. AAA51822). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human β -galactosidase (GL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.8% in the entire region.

Table 28

	HP	MTTWSLRRPARTLGLLLLVVLGFLVLRRLDWSTLVPLRLRHRQLGLQAKGWNFMLEDST
		.** .* .**
5	GL	MPGFLVRILPLLLVLLLLGPTRGLRNATQRMFEIDYSRDSFLKDGQP
	HP	${\tt FWIFGGSIHYFRVPREYWRDRLLKMKACGLNTLTTYVPWNLHEPERGKFDFSGNLDLEAF}$
		***** *** **.***** ***. ****** ***
	GL	${\tt FRYISGSIHYSRVPRFYWKDRLLKMKMAGLNAIQTYVPWNFHEPWPGQYQFSEDHDV{\tt EYF}}$
	HP	${\tt VLMAAEIGLWVILRPGPYICSEMDLGGLPSWLLQDPGMRLRTTYKGFTEAVDLYFDHLMS}$
10		* *.** ******** **** **
	GL	${\tt LRLAHELGLLVILRPGPYICAEWEMGGLPAWLLEKESILLRSSDPDYLAAVDKWLGVLLP}$
	HP	RVVPLQYKRGGPIIAVQVENEYGSY-NKDPAYMPYVKKALEDRGIVELLLTSDNKDG
		** ****.*.******* . * .***
	GL	${\tt KMKPLLYQNGGPVITVQVENEYGSYFACDFDYLAFLQKRFRHHLGDDVVLFTTD{\tt GAHKTF}}$
15	HP	${\tt LSKGIVQGVLATINLQSTHELQLLTTFLFNVQGTQPKMVMEYWTGWFDSWGGPHNILD}$
		*. * .***
	GL	${\tt LKCGALQGLYTTVDFGTGSNITDAFLSQRKCEPKGPLINSEFYTGWLDHWGQPHSTIK}$
	HP	SSEVLKTVSAIVDAGSSINLYMFHGGTNFGFMNGAMHFHDYKSDVTSYDYDAVLTEAGDY
		****** *
20	GL	TEAVASSLYDILARGASVNLYMFIGGTNFAYWNGANSPYAAQPTSYDYDAPLSEAGDL
	HP	TAKYMKLRDFFGSISGIPLPPPPDLLPKMPYEPLTPVLYLSLWDALKYLGEPIKSEKPIN
		*.**. ** * * * ** *
	GL	TEKYFALRNIIQKFEKVPEGPIPPSTPKFAYGKVTLEKLKTVGAALDILC-PSGPIKS
	HP	MENLPVNGGNGQSFGYILYETSITSSGILSGHVHDRGQVFVNTVSIGFLDYKT
25		. * * .*. * * * * * * * * * *
	GL	LYPLTFIQVK-QHYGFVLYRTTLPQDCSNPAPLSSPLNGVHDRAYVAVDGIPQGVLE-RN
	HP	TKIAVPLI-QGYTVLRILVENRGRVNYGENIDDQRKGLIGNLYLNDSPLKNFRIYSL
		*** *** *** **** ***** *** *** *** *** *** *** ***
	GL	NVITLNITGKAGATLDLLVENMGRVNYGAYIND-FKGLVSNLTLSSNILTDWTIFPLDTE
30	HP	DMKKSFFQRFGLDKWSSLPETPTLPAFFLGSLSISSTPCDTFLKLEGWE
		* .** ***** * *** * ***
	GL	DAVRSHLGGWGHRDSGHHDEAWAHNSSNYTLPAFYMGNFSIPSGIPDLPQDTFIQFPGWT
	HP	KGVVFINGQNLGRYW-NIGPQKTLYLPGP-WLSSGINQVIVFEETMAGPALQFTETPHLG
		** *.*** ***** . *** ****. **.*
35	GL	KGQVWINGFNLGRYWPARGPQLTLFVPQHILMTSAPNTITVLELEWAPCSSDDPELCAVT

HP RNQYIK

GL FVDRPVIGSSVTYDHPSKPVEKRLMPPPPPQKNKDSWLDHV

5

10

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA054017) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP03266> (SEQ ID NOS: 122, 132, and 142)

Determination of the whole base sequence of the cDNA insert of clone HP03266 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 69-bp 5'-untranslated region, a 957-bp ORF, and a 1464-bp 3'-untranslated region. The ORF encodes a protein consisting of 318 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 42 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was almost identical with the molecular weight of 35,363 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana putative ribotol dehydrogenase (GenBank Protein ID No. AAC23625). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the

Arabidopsis thaliana putative ribotol dehydrogenase (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.0% in the region of 483 residues other than the N-terminal region.

Table 29

10

5

HP MVELMFPLLLLLLPFLLYMAAPQIRKMLSSGVCTSTVQLPGKVVVVTGANTGIGKETAKE ***...*** *.*. MGIYGVMTGKKGKSGFGSASTAEDVTQAIDASHLTAIITGGTSGIGLEAARV AT HP LAQRGARVYLACRDVEKGELVAKEIQTTTGNQQVLVRKLDLSDTKSIRAFAKGFLAEEKH . * . * . . * . . * . . * . . . * * . . . 15 AT LAMRGAHVIIAARNPKAANESKEMILQMNPNARVDYLQIDVSSIKSVRSFVDQFLALNVP HP LHVLINNAGVMMCPYSKTADGFEMHIGVNHLGHFLLTHLLLEKLK----ESAPSRIVNV *..*******.**.. *.**.***.****** AT LNILINNAGVMFCPFKLTEDGIESOFATNHIGHFLLTNLLLDKMKSTARESGVQGRIVNL HP SSLAH---HLGRIHFHNLQGEKFYNAGLAYCHSKLANILFTQELARRLKGSG--VTTYSV 20 AT SSIAHTYTYSEGIKFQGINDPAGYSERRAYGQSKLSNLLHSNALSRRLQEEGVNITINSV HP HPGTVOSELVRHSSFMRWMWWLFSF-FIKTPQQGAQTSLHCALTEGLEILSGNHFSDCHV AT HPGLVTTNLFRYSGFSMKVFRAMTFLFWKNIPQGAATTCYVALHPDLEGVTGKYFGDCNI 25 HP AWVSAQARNETIARRLWDVSCDLLGLPID * * * . . . * . * * * . .

AT VAPSKFATNNSLADKLWDFSVFLIDSISK

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D17020) among ESTs. However, since

15

20

25

30

110

they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

5 <HP03287> (SEQ ID NOS: 123, 133, and 143)

Determination of the whole base sequence of the cDNA insert of clone HP03287 obtained from cDNA library of human thymus revealed the structure consisting of a 83-bp 5'untranslated region, a 249-bp ORF, and a 1133-bp untranslated region. The ORF encodes a protein consisting of 82 amino acid residues and there existed one putative transmembrane domain at the N-terminus and one at the Cterminus, respectively. Figure 43 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Schizosaccharomyces hypothetical protein 9.0kDa (SWISS-PROT Accession No. 013825). Table 30 shows the comparison between amino acid sequences of the human protein of the present invention (HP) Schizosaccharomyces pombe hypothetical 9.0kDa (SP). Therein, the marks of -, *, and . represent a an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 45.7% in the entire region.

Table 30

HP MAFTLYSLLQAALLCVNAIAVLHEERFLKNIGWGTDQGIGGFGE-EPGIKSQLMNLIRSV
... .** .** * .*** .***. ... ***... .***...

SP MFGFGNILYVTLLLLNAVAILSEDRFLGRIGWSQSAAL-GFGDRQDTIKSRILHLIRAI

HP RTVMRVPLIIVNSIAIVLLLLFG

**** *** *** * . *

SP RTVMTFPLIAINTIVIVYNLVLG

10

15

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA853098) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10665> (SEQ ID NOS: 124, 134, and 144)

25

30

20

Determination of the whole base sequence of the cDNA insert of clone HP10665 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 31-bp 5'-untranslated region, a 744-bp ORF, and a 142-bp 3'-untranslated region. The ORF encodes a protein consisting of 247 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 44 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 28 kDa that was somewhat larger than the molecular weight of 25,320 predicted from the ORF. In this case, the addition of a microsome led to the formation

10

15

20

112

of a product of 27 kDa. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from aspertic acid at position 26.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA055367) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10669> (SEQ ID NOS: 125, 135, and 145)

Determination of the whole base sequence of the cDNA insert of clone HP10669 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 73-bp 5'-untranslated region, a 621-bp ORF, and a 612-bp 3'-untranslated region. The ORF encodes a protein consisting of 206 amino acid residues and there existed one putative transmembrane domain. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AF086533) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

30

25

<HP10670> (SEQ ID NOS: 126, 136, and 146)

Determination of the whole base sequence of the cDNA

10

15

20

insert of clone HP10670 obtained from cDNA library of human retinoblastoma cell line WERI-RB revealed the structure consisting of a 117-bp 5'-untranslated region, a 1299-bp ORF, and a 606-bp 3'-untranslated region. The ORF encodes a protein consisting of 432 amino acid residues and there existed seven putative transmembrane domains. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the Caenorhabditis elegans similar to the protein was hypothetical protein CELM03F8.2 (GenBank Protein ID No. AAB65910). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) hypothetical elegans Caenorhabditis CELM03F8.2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 39.6% in the N-terminal region of 376 residues.

Table 31

	HP	MDARWWAVVVLAAFPSLGAGGETPEAPPESWTQLWFFRFVVNAAGYASFMVPGYLLVQYF
		** ** ** ** *
5	CE	MDRSIMPIDSPARDKPPDELVWPLRLFLILLGYSTVATPAAILIYYV
	HP	RRKNYLETGRGLCFPLVKACVFGNEPKASDEVPLAPRTEAAETTPMWQALKL
		** ** *
	CE	RRNRHAFETPYLSIRLILRS-FAVGNPEYQLIPTGEKQARKENDSIPQTRAQCINVIILL
	HP	LFCATGLQVSYLTWGVLQERVMTRSY-GATATSPGERFTDSQFLVLMNRVLALIVAGL
10		** .*.** . ******
	CE	LFFFSGIQVTLVAMGVLQERIITRGYRRSDQLEVEDKFGETQFLIFCNRIVALVLSLMIL
	HP	SCVLCKQPRHGAPMYRYSFASLSNVLSSWCQYEALKFVSFPTQVLAKASKVIPVMLMGKL
		***** * ** * * * * * * * * * * * * * * *
	CE	AKDWTKQPPHVPPLYVHSYTSFSNTISSWCQYEALKYVSFPTQTICKASKVVVTMLMGRL
15	HP	VSRRSYEHWEYLTATLISIGVSMFLLSSGPEPRSSPATTLSGLILLAGYIAFDSFTSN
		**** . **.*****
	CE	VRGQRYSWFEYGCGCTIAFGASLFLLSSSSKGAGSTITYTSFSGMILMAGYLLFDAFTLN
	HP	WQDALFAYKMSSVQMMFGVNFFSCLFTVGSLLEQGALLEGTRFMGRHSEFAAHALLLS
		.*. * .*. ******** **.**.** . * .**
20	CE	WQKALFDTKPKVSKYQMMFGVNFFSAILCAVSLIEQGTLWSSIKFGAEHVDFSRDVFLLS
	HP	ICSACGQLFIFYTIGQFGAAVFTIIMTLRQAFAILLSCLLYGHTVTVVGGLGVAVVFAAL
		* **.**. ****. ****
	CE	LSGAIGQIFIYSTIERFGPIVFAVIMTIRQIFIRNTLIRAEDHRGVEMAPPPPPEPFRLK
	HP	LLRVYARGRLKQRGKKAVPVESPVQKV
25		
	CE	FLSMIIAVIHI

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. Z46196) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the

10

15

20

25

30

115

present invention.

<HP10671> (SEQ ID NOS: 127, 137, and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10671 obtained from cDNA library of human thymus revealed the structure consisting of a 74-bp 5'-921-bp ORF, and a untranslated region, a untranslated region. The ORF encodes a protein consisting of amino acid residues and there existed a N-terminus and putative one secretory signal at the transmembrane domain at the intermediate region. Figure 47 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA357141) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10673> (SEQ ID NOS: 128, 138, and 148)

Determination of the whole base sequence of the cDNA insert of clone HP10673 obtained from cDNA library of the human thymus revealed the structure consisting of a 203-bp 5'-untranslated region, a 1668-bp ORF, and a 339-bp 3'untranslated region. The ORF encodes a protein consisting of 555 amino acid residues and there existed one putative the 48 depicts transmembrane domain. Figure hydrophobicity/hydrophilicity profile, obtained by the Kytepresent protein. Doolittle method, of the translation resulted in formation of a translation product

of 65 kDa that was somewhat larger than the molecular weight of 61,781 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R96413) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

10

15

20

25

5

<HP10675> (SEQ ID NOS: 129, 139, and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10675 obtained from cDNA library of the human thymus revealed the structure consisting of a 92-bp 5'-untranslated region, a 753-bp ORF, and a 648-bp 3'-untranslated region. The ORF encodes a protein consisting of 250 amino acid residues and there existed at least one putative transmembrane domain. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA356139) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

<HP10683> (SEQ ID NOS: 130, 140, and 150)

30 Determination of the whole base sequence of the cDNA insert of clone HP10683 obtained from cDNA library of the human lymphoma cell line U937 revealed the structure

10

15

20

25

30

consisting of a 25-bp 5'-untranslated region, a 525-bp ORF, and a 714-bp 3'-untranslated region. The ORF encodes a protein consisting of 174 amino acid residues and there existed one putative transmembrane domain. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 22 kDa that was somewhat larger than the molecular weight of 19,572 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 24 kDa to which sugar chains are presumably attached. In addition, there exist in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Ile-Thr at position 27).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA482321) among ESTs. However, since they are partial sequences, it can not be judged whether or not they encode the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

The present invention provides human proteins having hydrophobic domains, DNAs encoding these proteins, and expression vectors for these DNAs as well as eukaryotic cells expressing these DNAs. Since all of the proteins of the present invention are secreted or exist in the cell membrane, they are considered to be proteins controlling the proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents

10

15

20

25

30

118

which to control the proliferation and/or differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells into which these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors or ligands, screening of novel small molecule pharmaceuticals and the like.

The present invention also provides genes corresponding to the polynucleotide sequences disclosed herein. "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs which from CDNA polynucleotide sequences are derived and mav include contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

Organisms that have enhanced, reduced, or modified expression of the gene(s) corresponding to the polynucleotide sequences disclosed herein are provided. The

10

15

20

25

30

desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Sci. 15(7): 250-254; Morris, 1994, Trends Pharmacol. Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Prog. Nucleic Acid Res. Mol. Biol. 58: 1-39; incorporated by reference which are Transgenic animals that have multiple copies of the gene(s) the polynucleotide sequences disclosed corresponding to herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the progeny, provided. their are transformed cells and animals that have modified genetic control Transgenic regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 B1, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the disclosed sequences herein have polynucleotide partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153;

10

15

20

25

30

396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more preferably are mammals. Such organisms are useful for the development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane domains of proteins of the invention can be in accordance with identified techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75%

10

15

20

25

30

sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As used herein, a "species homologue" is a protein or polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the Table 32 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

Table 32

Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer [†]	Temperature
		(bp) [‡]		and Buffer†
A	DNA: DNA	≥50	65°C; 1×SSC -or-	65°C; 0.3×SSC
			42°C; 1×SSC,50% formamide	
В	DNA: DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C; 0.3×SSC
			45°C; 1×SSC,50% formamide	
D	DNA: RNA	<50	T _D *; 1×SSC	T _D *; 1×SSC
E	RNA: RNA	≥50	70℃; 1×SSC -or-	70°C; 0.3×SSC
			50°C; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA: DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
ļ			42°C; 4×SSC,50% formamide	
H	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA: RNA	≥50	67°C; 4×SSC -or-	67°C; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA: RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
			50°C; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA: DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
O	DNA : RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42°C; 6×SSC,50% formamide	
P	DNA: RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
			45°C; 6×SSC,50% formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

PCT/JP99/06412

‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

†: SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

* T_B - T_R : The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m (°C)=2(#of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m (°C)=81.5 + 16.6(log₁₀[Na⁺]) + 0.41 (%G+C) - (600/N), where N is the number of bases in the hybrid, and [Na⁺] is the concentration of sodium ions in the hybridization buffer ([Na⁺] for 1×SSC=0.165M).

20

25

30

35

5

10

15

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing

WO 00/29448

polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

10

125

CLAIMS

- 1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID NOS: 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.
- 2. An isolated DNA encoding the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID NOS: 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140.
- 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID NOS: 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eukaryotic cells.
- 6. A transformed eukaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 2 and of producing the protein according to Claim 1.

Fig.2

Fig.3

10/50

Amino Acid Residue Number

Fig. 15

Fig.23

Fig.24

Fig.27

Fig.41

SEQUENCE LISTING

<110> Sagami Chemical Research Center,
Protegene Inc.

<120> Human proteins having hydrophobic domains and DNAs encoding these proteins

<130> 661607

<150> JP 10-326255

<151> 1998-11-17

<150> JP 10-364315

<151> 1998-12-22

<150> JP 11-69811

<151> 1999-03-16

<150> JP 11-119299

<151> 1999-04-27

<150> JP 11-138169

<151> 1999-05-19

<160> 150

<210> 1

<211> 647

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Glu Glu Glu Ala Pro Lys Lys Ser Arg Ala Ala Gly Gly Gly

1 5 10 15

Ala Ser Trp Glu Leu Cys Ala Gly Ala Leu Ser Ala Arg Leu Thr Glu

WO 00/29448 PCT/JP99/06412

		20					25					30					
Glu	Gly	Ser	Gly	Asp	Ala	Gly	Gly	Arg	Arg	Arg	Pro	Pro	Val	Asp	Pro		
		35					40					45					
Arg	Arg	Leu	Ala	Arg	Gln	Leu	Leu	Leu	Leu	Leu	Trp	Leu	Leu	Glu	Ala		
	50					55					60						
Pro	Leu	Leu	Leu	Gly	Val	Arg	Ala	Gln	Ala	Ala	Gly	Gln	Gly	Pro	Gly		
65					70					75					80		
Gln	Gly	Pro	Gly	Pro	Gly	Gln	Gln	Pro	Pro	Pro	Pro	Pro	Gln	Gln	Gln		
				85					90					95			
Gln	Ser	Gly	Gln	Gln	Tyr	Asn	Gly	Glu	Arg	Gly	Ile	Ser	Val	Pro	Asp		
			100					105					110				
His	Gly	Tyr	Суз	Gln	Pro	Ile	Ser	Ile	Pro	Leu	Cys	Thr	Asp	Ile	Ala		
		115					120					125					
Tyr	Asn	Gln	Thr	Ile	Met	Pro	Asn	Leu	Leu	Gly	His	Thr	Asn	Gln	Glu		
	130					135					140						
Asp	Ala	Gly	Leu	Glu	Val	His	Gln	Phe	Tyr	Pro	Leu	Val	Lys	Val	Gln		
145					150					155					160		
Cys	Ser	Ala	Glu	Leu	Lys	Phe	Phe	Leu	_	Ser	Met	Tyr	Ala		Val		
_				165		_			170					175			
Cys	Thr	Val		Glu	Gln	Ala	Leu		Pro	Cys	Arg	Ser		Cys	Glu		
•		•	180	~ 3	.			185		_	_	_,	190				
Arg	ATa		GIN	Gly	Cys	GIU		Leu	Met	Asn	Lys		GIY	Pne	GIN		
Mana	n	195	mb	T	T	~	200	T	DL -	D	**_ 1	205	0 3	. 1_	0 1		
	210	Asp	TILL	Leu	гля	215	GIU	гув	Pne	PIO	220	HIS	стХ	ALA	GIA		
		Cve	Wal	Gly	Gl n		mb x	50 ~	7 am	T ***		mb∽	Dro	Mb~	Dro		
225	Dea	Cys	var	_	230	H211	7111	SET	-	_{டத்} 235	стА	1111	PIO	TILL	240		
	T.e.i	T.e.u	Pro	Glu		ጥሥ	ም ኮ ሥ	Sar			Gla	uie	<u> </u>	Glw			
-		100		245	1110	115			250	FIO	GIII	HTS	_	255	GLY		
Glv	His	Arσ		Gly	Phe	Pro	Glv			Glv	Δla	Ser			Glv		
<u>-</u>			260	4 23		110		265	ALG.	GIY .	ALC		270	ar 9	Cly		
Lvs :	Phe			Pro .	Ara	Ala			Val	Pro	Ser '			Asn	ጥህጉ		
- <u>-</u>		275	- <u>-</u>				280	- <u>,</u> -				-y- 285			-1-		
His :			Glv	Glu :	Lvs .			Glv	Ala '	Pro			Pro '	Thr	Lvs		
	290		4		-	295		4			300		_ =				

Va	l Tyr	Gly	Leu	Met	Tyr	Phe	Gly	Pro	Glu	Glu	Leu	Arg	Phe	Ser	Arg
30	5				310					315					320
Th	r Trp	Ile	Gly	Ile	Trp	Ser	Val	Leu	Cys	Cys	Ala	Ser	Thr	Leu	Phe
				325					330					335	
Th	r Val	Leu	Thr	Tyr	Leu	Val	Asp	Met	Arg	Arg	Phe	Ser	Tyr	Pro	Gli
			340					345					350		
Ar	g Pro	Ile	Ile	Phe	Leu	Ser	Gly	Cys	Tyr	Thr	Ala	Val	Ala	Val	Ala
		355					360					365			
ту	r Ile	Ala	Gly	Phe	Leu	Leu	Glu	Asp	Arg	Val	Val	Cys	Asn	Asp	Lys
	370)				375					380				
Ph	e Ala	Glu	Asp	Gly	Ala	Arg	Thr	Val	Ala	Gln	Gly	Thr	Lys	Lys	Glu
38	5				390					395					400
Gl	у Суз	Thr	Ile	Leu	Phe	Met	Met	Leu	Tyr	Phe	Phe	Ser	Met	Ala	Sez
				405					410					415	
Se	r Ile	Trp	Trp	Val	Ile	Leu	Ser	Leu	Thr	Trp	Phe	Leu	Ala	Ala	Gl
			420					425					430		
Me	t Lys	Trp	Gly	His	Glu	Ala	Ile	Glu	Ala	Asn	Ser	Gln	Tyr	Phe	His
		435					440					445			
Le	u Ale	Ala	Trp	Ala	Val	Pro	Ala	Ile	Lys	Thr	Ile	Thr	Ile	Leu	Ale
	450)				455					460				
Le	ı Gly	Gln	Val	Asp	Gly	Asp	Val	Leu	Ser	Gly	Val	Cys	Phe	Val	Gly
46					470					475					480
Le	ı Asn	Asn	Val	Asp	Ala	Leu	Arg	Gly	Phe	Val	Leu	Ala	Pro	Leu	Ph∈
				485					490				49	95	
Va	l Tyr	Leu	Phe	Ile	Gly	Thr	Ser	Phe	Leu	Leu	Ala	Gly		Val	Sei
			500					505					510		
Le	u Phe	Arg	Ile	Arg	Thr	Ile	Met	Lys	His	Asp	Gly	Thr	Lys	Thr	Glu
		515					520					525			
Ly	s Leu	Glu	Lys	Leu	Met	Val	Arg	Ile	Gly	Val	Phe	Ser	Val	Leu	Туг
	530					535					540				
Th	r Val	Pro	Ala	Thr	Ile	Val	Ile	Ala	Cys	Tyr	Phe	Tyr	Glu	Gln	Ala
54					550					555					560
Ph	e Arg	Asp	Gln	Trp	Glu	Arg	Ser	Trp	Val	Ala	Gln	Ser	Cys	Lys	Ser
				565					570					575	
Trans	- Ala	Tle	Pro	Cvs	Pro	His	Leu	Gln	Ala	Glv	Glv	Glv	Ala	Pro	Pro

			580					585					590		
His	Pro	Pro	Met	Ser	Pro	Asp	Phe	Thr	Val	Phe	Met	Ile	Lys	Tyr	Leu
		595					600					605			
Met	Thr	Leu	Ile	Val	Gly	Ile	Thr	Ser	Gly	Phe	Trp	Ile	Trp	Ser	Gly
	610					615					620				
Lys	Thr	Leu	Asn	Ser	Trp	Arg	Lys	Phe	Tyr	Thr	Arg	Leu	Thr	Asn	Ser
625					630					635					640
Lys	Gln	Gly	Glu	Thr	Thr	Val									
				645											
<210	0> 2														
<21	1> 3	50													
<212	2> PI	RT													
<213	3> Ho	omo s	sapie	ens			•								
	0> 2											_		-	_
Met	His	Pro	Ala		Phe	Pro	Leu	Pro		Val	Val	Ala	Ala		Leu
1	_			5					10	_		_1		15	
Trp	Gly	Ala		Pro	Thr	Arg	Gly		Ile	Arg	Ala	Thr	Ser	Asp	Hls
	_	_	20				_	25				-1	30		mb
Asn	Ala		Met	Asp	Phe	Ala		Leu	Pro	Ala	Leu		Gly	Ala	THE
_	_	35	~ 3	 1	•	01 -	40	5 \.	T	**-1	~ 1	45	ui a	D=0	7 an
Leu		GIN	GIU	GIĀ	Leu		GIĀ	Pne	Leu	val	60	ALG	His	PLO	Asp
	50	~	0	D	71.	55 21a	77	D	D=0	Dro		Dro	Val	yan	Glv
	ATA	cys	Set	PIO	70	MIG	PIO	PLO	PIO	75	ALG	FIO	Val	131311	80
65	1701	Dho	T10	715		T All	Ara	Ara	Dhe		Cva	Δan	Phe	Asp	
261	AGT	FIIC	TTG	85	Dea	Leu	an 9	y	90	ıwp	CyD	*****		95	
Tara	17a7	T.a.ı	λan		Gln	Targ	Δla	Glv		Glv	Δla	Ala	Val		His
пуэ	Val	Den	100	ALU	J 211	шуз	mu	105	-1-	011			110		
Aan	Val	Asn		asn	Glu	Leu	Leu		Met.	Val	Ттт	Asn	Ser	Glu	Glu
	·	115	-				120			V		125			
Tle	Gln		Gln	Ile	Tro	Ile		Ser	Val	Phe	Ile		Glu	Arq	Ser
	130				F	135					140	-4		,	
Ser		Tvr	Leu	Ara	Ala		Phe	Val	Tyr	Glu		Gly	Ala	Arq	Val
145		- _ -			150				-4-	155	- 4 -			-	160

Leu	Leu	Val	. Pro	Asp	Asn	Thr	Phe	Pro	Let	ı Gly	Tyr	туз	: Let	1 Ile	Pro
				165					170)				175	5
Phe	Thr	Gly	' Ile	Val	Gly	Leu	Leu	Val	Let	ı Ala	ı Met	Gly	, Ala	val	L Met
			180	1				185					190)	
Ile	Ala	Arg	Cys	Ile	Gln	His	Arg	Lys	Arg	, Leu	Gln	Arg	, Asn	Arg	Let
		195	1				200					205	i		
Thr	Lys	Glu	Gln	Leu	Lys	Gln	Ile	Pro	Thr	His	Asp	Tyr	Gln	Lys	Gly
	210					215					220				
Asp	Gln	Tyr	Asp	Val	Cys	Ala	Ile	Суз	Leu	Asp	Glu	Tyr	Glu	Asp	Gly
225					230					235					240
Asp	Lys	Leu	Arg	Val	Leu	Pro	Суз	Ala	His	Ala	Tyr	His	Ser	Arg	Cys
				245					250	i				255	
Val	Asp	Pro	Trp	Leu	Thr	Gln	Thr	Arg	Lys	Thr	Cys	Pro	Ile	Cys	Lys
			260					265					270		
Gln	Pro	Val	His	Arg	Gly	Pro	Gly	Asp	Glu	Asp	Gln	Glu	Glu	Glu	Thr
		275					280					285			
Gln	Gly	Gln	Glu	Glu	Gly	Asp	Glu	Gly	Glu	Pro	Arg	Asp	His	Pro	Ala
	290					295					300				
Ser	Glu	Arg	Thr	Pro	Leu	Leu	Gly	Ser	Ser	Pro	Thr	Leu	Pro	Thr	Ser
305					310					315					320
Phe	Gly	Ser	Leu	Ala	Pro	Ala	Pro	Leu	Val	Phe	Pro	Gly	Pro	Ser	Thr
•				325					330					335	
qeA	Pro	Pro	Leu	Ser	Pro	Pro	Ser	Ser	Pro	Val	Ile	Leu	Val		
			340					345					350		
<210	> 3														
<211	> 20	6													
<212	> PR	T													
<213	> Ho	mo s	apie	ns											
<400	> 3														
Met (Gly :	Leu	Gly	Gln :	Pro	Gln	Ala	Trp	Leu	Leu	Gly	Leu	Pro	Thr	Ala
1				5					10					16	

Val Val Tyr Gly Ser Leu Ala Leu Phe Thr Thr Ile Leu His Asn Val

Phe Leu Leu Tyr Tyr Val Asp Thr Phe Val Ser Val Tyr Lys Ile Asn

25

35

6/233

40

45

Lys	Met	Ala	Phe	Trp	Val	Gly	Glu	Thr	Val	Phe	Leu	Leu	Trp	Asn	Sea
	50					55					60				
Leu	Asn	Asp	Pro	Leu	Phe	Gly	Trp	Leu	Ser	Ąsp	Arg	Gln	Phe	Leu	Sei
6 5					70					75					80
Ser	Gln	Pro	Arg	Gly	Arg	Asp	Leu	Pro	Trp	Leu	Gly	Leu	Val	Gly	Pro
				85					90					95	
Ser	Gly	Leu	Trp	Thr	Ala	Asn	Thr	Leu	Суз	Суз	Phe	Trp	Lys	Ile	Pro
			100	•				105					110		
Leu	Pro	His	Pro	Cys	Leu	Ser	Pro	Ser	Ser	Pro	Pro	Thr	Leu	Arg	Ser
		115					120					125			
Gly	His	Pro	Ile	Pro	Phe	Gly	His	Gln	Pro	Asn	Arg	Leu	Ile	Arg	Gly
	130					135					140				
Trp	Lys	Leu	Gly	Gln	Arg	Arg	Arg	Val	Tyr	Pro	Leu	Val	Arg	Arg	Arg
145					150					155					160
Ala	Leu	Leu	Lys	Gly	Cys	Gly	Ala	Gly	Pro	Gly	Ala	Gly	Pro	Gly	Leu
				165					170					175	
Ala	Trp	Ala	Ala	Ala	Gly	Ala	Val	Val	Pro	Gly	Val	Leu	Gly	Ala	Leu
			180					185					190		
Gly	Pro	Ser	Trp	Pro	Ala	Val	Leu	Ala	Val	Pro	Val	Pro	Leu		
		195					200					205			
<210	0> 4														
<211	l> 21	L 3													
<212	2> P F	T													
<213	3> Hc	e ome	apie	ens											
<400															
Met	His	Tyr	Tyr	Arg	Tyr	Ser	Asn	Ala	Lys	Val	Ser	CAa	Trp	Tyr	Lys
1				5					10					15	
Tyr	Leu	Leu	Phe	Ser	Tyr	Asn	Ile	Ile	Phe	Trp	Leu	Ala	Gly	Val	Val
			20					25					30		
Phe	Leu	Gly	Val	Gly	Leu	Trp	Ala	Trp	Ser	Glu	Lys	Gly	Val	Leu	Ser
		35					40					45			
Asp	Leu	Thr	Lys	Val	Thr	Arg	Met	His	Gly	Ile	Asp	Pro	Val	Val	Leu
	50					55					60				

Val	Leu	Met	Val	Gly	Val	Val	Met	: Phe	Thr	Leu	Gly	Phe	Ala	Gly	Cys
65					70					75					80
Val	Gly	Ala	Leu	Arg	Glu	Asn	Ile	Cys	Leu	Leu	Asn	Phe	Asn	Gln	Cys
				85					90	ı				95	
Сув	Gly	Ala	Tyr	Gly	Pro	Glu	Asp	Trp	Asp	Leu	Asn	Val	Tyr	Phe	Asn
			100					105					110		
Суз	Ser	Gly	Ala	Ser	Tyr	Ser	Arg	Glu	Lys	Cys	Gly	Val	Pro	Phe	Ser
		115					120					125			
Суз	Сув	Val	Pro	Asp	Pro	Ala	Gln	Lys	Val	Val	Asn	Thr	Gln	Cys	Gly
	130					135					140				
Tyr	Asp	Val	Arg	Ile	Gln	Leu	Lys	Ser	Lys	Trp	Asp	Glu	Ser	Ile	Phe
145					150					155					160
Thr	Lys	Gly	Cys	Ile	Gln	Ala	Leu	Glu	Ser	Trp	Leu	Pro	Arg	Asn	Ile
				165					170					175	
Tyr	Ile	Val	Ala	Gly	Val	Phe	Ile	Ala	Ile	Ser	Leu	Leu	Gln	Ile	Phe
			180					185					190		
Gly	Ile	Phe	Leu	Ala	Arg	Thr	Leu	Ile	Ser	Asp	Ile	Glu	Ala	Val	Lys
		195					200					205			
Ala	Gly	His	His	Phe											
	210														
<210	> 5														
<211	> 59	95													
<212	> PF	T													
<213	> H	mo s	apie	ens											
<400	> 5														
Met	Arg	Ala	Ala	Arg	Ala	Ala	Pro	Leu	Leu	Gln	Leu	Leu	Leu	Leu	Leu
1				5					10					15	
Gly	Pro	Trp	Leu	Glu	Ala	Ala	Gly	Val	Ala	Glu	Ser	Pro	Leu	Pro	Ala
			20					25					30		
Val	Val	Leu	Ala	Ile	Leu	Ala	Arg	Asn	Ala	Glu	His	Ser	Leu	Pro	His
		35					40					45			
Tyr	Leu	Gly	Ala	Leu	Glu	Arg	Leu	Asp	Tyr	Pro .	Arg	Ala	Arg	Met .	Ala
	50					55 .					60				
Leu '	Tro	Cvs .	Ala	Thr .	asa	His	Asn	Val	αεA	Asn '	Thr	Thr	Glu .	Met :	Leu

65					70					75					80
Gln	Glu	Trp	Leu	Ala	Ala	Val	Gly	Asp	Asp	Tyr	Ala	Ala	Val	Val	TI
				85					90					95	
Arg	Pro	Glu	Gly	Glu	Pro	Arg	Phe	Tyr	Pro	Asp	Glu	Glu	Gly	Pro	Lys
			100					105					110		
His	Trp	Thr	Lys	Glu	Arg	His	Gln	Phe	Leu	Met	Glu	Leu	Lys	Gln	Glu
		115					120					125			
Ala	Leu	Thr	Phe	Ala	Arg	Asn	Trp	Gly	Ala	Asp	Tyr	Ile	Leu	Phe	Ala
	130					135					140				
Asp	Thr	Asp	Asn	Ile	Leu	Thr	Asn	Asn	Gln	Thr	Leu	Arg	Leu	Leu	Met
145					150					155					160
Gly	Gln	Gly	Leu	Pro	Val	Val	Ala	Pro	Met	Leu	Asp	Ser	Gln	Thr	Туг
				165					170					175	
Tyr	Ser	Asn	Phe	Trp	Cys	Gly	Ile	Thr	Pro	Gln	Gly	Tyr	Tyr	Arg	Arg
			180					185					190		
Thr	Ala	Glu	Tyr	Phe	Pro	Thr	Lys	Asn	Arg	Gln	Arg	Arg	Gly	Суз	Phe
		195					200					205			
Arg	Val	Pro	Met	Val	His	Ser	Thr	Phe	Leu	Ala	Ser	Leu	Arg	Ala	Glu
	210					215					220				
Gly	Ala	Asp	Gln	Leu	Ala	Phe	Tyr	Pro	Pro	His	Pro	Asn	Tyr	Thr	Trp
225					230					235					240
Pro	Phe	Asp	qeA	Ile	Ile	Val	Phe	Ala	Tyr	Ala	Cys	Gln	Ala	Ala	Gly
				245					250					255	
Val	Ser	Val	His	Val	Суз	Asn	Glu	His	Arg	Tyr	Gly	Tyr	Met	Asn	Val
			260					265					270		
Pro	Val	Lys	Ser	His	Gln	Gly	Leu	Glu	Asp	Glu	Arg	Val	Asn	Phe	Ile
		275					280					285			
His	Leu	Ile	Leu	Glu	Ala	Leu	Val	Asp	Gly	Pro	Arg	Met	Gln	Ala	Ser
	290					295					300				
Ala	His	Val	Thr	Arg	Pro	Ser	Lys	Arg	Pro	Ser	Lys	Ile	Gly	Phe	Asp
305					310					315					320
Glu	Val	Phe	Val	Ile	Ser	Leu	Ala	Arg	Arg	Pro	Asp	Arg	Arg	Glu	Arg
				325					330					335	
Met	Leu	Ala	Ser	Leu	Trp	Glu	Met	Glu	Ile	Ser	Gly	Arg	Val	Val	Asp
			340					345					350		

Ala	Val	Asp	Gly	Trp	Met	Leu	Asn	Ser	Ser	Ala	Ile	Arg	Asn	Leu	Gly
		355					360					365			
Val	Asp	Leu	Leu	Pro	Gly	Tyr	Gln	Asp	Pro	Tyr	Ser	Gly	Arg	Thr	Leu
	370					375					380				
Thr	Lys	Gly	Glu	Val	Gly	Суз	Phe	Leu	Ser	His	Tyr	Ser	Ile	Trp	Glu
385					390					395					400
Glu	Val	Val	Ala	Arg	Gly	Leu	Ala	Arg	Val	Leu	Val	Phe	Glu	Asp	qeA
				405					410					415	
Val	Arg	Phe	Glu	Ser	Asn	Phe	Arg	Gly	Arg	Leu	Glu	Arg	Leu	Met	Glu
			420					425					430		
Asp	Val	Glu	Ala	Glu	Lys	Leu	Ser	Trp	Asp	Leu	Ile	Tyr	Leu	Gly	Arg
		435					440					445			
Lys	Gln	Val	Asn	Pro	Glu	Lys	Glu	Thr	Ala	Val	Glu	Gly	Leu	Pro	Gly
	450					455					460				
Leu	Val	Val	Ala	Gly	Tyr	Ser	Tyr	Trp	Thr	Leu	Ala	Tyr	Ala	Leu	Arg
465					470					475					480
Leu	Ala	Gly	Ala	Arg	Lys	Leu	Leu	Ala	Ser	Gln	Pro	Leu	Arg	Arg	Met
				485					490					495	•
Leu	Pro	Val	Asp	Glu	Phe	Leu	Pro	Ile	Met	Phe	Asp	Gln	His	Pro	Asn
			500					505					510		
Glu	Gln	Tyr	Lys	Ala	His	Phe	Trp	Pro	Arg	Asp	Leu	Val	Ala	Phe	Ser
		515					520					525			
Ala	Gln	Pro	Leu	Leu	Ala	Ala	Pro	Thr	His	Tyr	Ala	Gly	Asp	Ala	Glu
	530					535	•				540				
Trp	Leu	Ser	Asp	Thr	Glu	Thr	Ser	Ser	Pro	Trp	Asp	Asp	Asp	Ser	Gly
545					550					555					560
Arg	Leu	Ile	Ser	Trp	Ser	Gly	Ser	Gln	Lys	Thr	Leu	Arg	Ser	Pro	Arg
				565					570					575	
Leu	Asp	Leu	Thr	Gly	Ser	Ser	Gly	His	Ser	Leu	Gln	Pro	Gln	Pro	Arg
			580					585					590		
Asp	Glu	Leu													
		595													

<210> 6 <211> 264

<212	2> PI	RT.													
<213	3> Ho	omo :	sapie	ens											
<400	0> 6														
Met	Val	Ala	Ser	Ala	Lys	Met	Gly	Arg	Ala	Gly	Thr	Met	Ala	Val	Ala
1				5					10					15	
Ala	Glu	Leu	Arg	Glu	Leu	Суз	Pro	Gly	Val	Asn	Asn	Gln	Pro	Tyr	Let
			20					25					30		
Cys	Glu	Ser	Gly	His	Cys	Суз	Gly	Glu	Thr	Gly	Суз	Сув	Thr	Tyr	Туз
		35					40					45			
Tyr	Glu	Leu	Trp	Trp	Phe	Trp	Leu	Leu	Trp	Thr	Val	Leu	Ile	Leu	Ph∈
	50					55					60				
Ser	Cys	Суѕ	Cys	Ala	Phe	Arg	His	Arg	Arg	Ala	Lys	Leu	Arg	Leu	Glr
65					70					75					80
Gln	Gln	Gln	Arg	Gln	Arg	Glu	Ile	Asn	Leu	Leu	Ala	Tyr	His	Gly	Ala
				85					90					95	
Cys	His	Gly	Ala	Gly	Pro	Phe	Pro	Thr	Gly	Ser	Leu	Leu	Asp	Leu	Arg
			100					105					110		
Phe	Leu	Ser	Thr	Phe	Lys	Pro	Pro	Ala	Tyr	Glu	Asp	Val	Val	His	Arg
		115					120					125			
Pro	Gly	Thr	Pro	Pro	Pro	Pro	Tyr	Thr	Val	Ala	Pro	Gly	Arg	Pro	Leu
	130					135					140				
Thr	Ala	Ser	Ser	Glu	Gln	Thr	Cys	Cys	Ser	Ser	Ser	Ser	Ser	Сув	Pro
145					150					155					160
Ala	His	Phe	Glu	Gly	Thr	Asn	Val	Glu	Gly	Val	Ser	Ser	His	Gln	Ser
				165			•		170					175	
Ala	Pro	Pro	His	Gln	Glu	Gly	Glu	Pro	Gly	Ala	Gly	Val	Thr	Pro	Ala
			180					185					190		
Ser	Thr	Pro	Pro	Ser	Cys	Arg	Tyr	Arg	Arg	Leu	Thr	Gly	Asp	Ser	Gly
		195					200					205			
Ile	Glu	Leu	Суз	Pro	Сув	Pro	Ala	Ser	Gly	Glu	Gly	Glu	Pro	Val	Lys
	210					215					220				
Glu	Val	Arg	Val	Ser	Ala	Thr	Leu	Pro	Asp	Leu	Glu	Asp	Tyr	Ser	Pro
225					230					235					240
Cys	Ala	Leu	Pro	Pro	Glu	Ser	Val	Pro	Gln	Ile	Phe	Pro	Met	Gly	Leu
				245					250					255	

11/233

Ser Ser Ser Glu Gly Asp Ile Pro 260

<21	10> 1	7													
<21	11> 3	343													
<21	l2> I	PRT													
<21	.3> F	omo	sapi	.ens											
<40	00> 7	7													
Met	Glr	Pro	Pro	Pro	Pro	Gly	Pro	Leu	Gly	Asp	Cys	Leu	Arg	Asp	Trp
1	•			5	i				10)				15	
Glu	Asp	Leu	Gln	Gln	Asp	Phe	Gln	Asn	Ile	Gln	Glu	Thr	His	Arg	Leu
			20	}				25					30	1	
Tyr	Arg	Leu	Lys	Leu	Glu	Glu	Leu	Thr	Lys	Leu	Gln	Asn	Asn	Cys	Thr
		35	1				40					45			
Ser	Ser	Ile	Thr	Arg	Gln	Lys	Lys	Arg	Leu	Gln	Glu	Leu	Ala	Leu	Ala
	50	1				55					60				
Leu	Lys	Lys	Суз	Lys	Pro	Ser	Leu	Pro	Ala	Glu	Ala	Glu	Gly	Ala	Ala
65					70					75					80
Gln	Glu	Leu	Glu	Asn	Gln	Met	Lys	Glu	Arg	Gln	Gly	Leu	Phe	Phe	Asp
				85					90					95	
Met	Glu	Ala	Tyr	Leu	Pro	Lys	Lys		Gly	Leu	Tyr	Leu	Ser	Leu	Val
	_		100					105					110		
Leu	Gly	Asn	Val	Asn	Val	Thr	Leu	Leu	Ser	Lys	Gln	Ala	T.370	Dhe	Ala
										-			Llys	2110	
Tvr		115					120					125	_		
-4-			Glu	Tyr	Glu						Leu	125	_		
	130	Asp				135	Phe	Lys	Leu	Tyr	Leu 140	125 Thr	Ile	Ile	Leu
Ile	130	Asp	Glu Ser		Thr	135	Phe	Lys	Leu	Tyr	Leu 140	125 Thr	Ile	Ile	Leu Thr
Ile 145	130 Leu	Asp	Ser	Phe	Thr 150	135 Cys	Phe Arg	Lys Phe	Leu Leu	Tyr Leu 155	Leu 140 Asn	125 Thr Ser	Ile Arg	Ile Val	Leu Thr 160
Ile 145	130 Leu	Asp		Phe Asn	Thr 150	135 Cys	Phe Arg	Lys Phe	Leu Leu Trp	Tyr Leu 155	Leu 140 Asn	125 Thr Ser	Ile Arg	Ile Val Leu	Leu Thr 160
Ile 145 Asp	130 Leu Ala	Asp Ile Ala	Ser Phe	Phe Asn 165	Thr 150 Phe	135 Cys Leu	Phe Arg Leu	Lys Phe Val	Leu Leu Trp 170	Tyr Leu 155 Tyr	Leu 140 Asn Tyr	125 Thr Ser Cys	Ile Arg Thr	Ile Val Leu 175	Leu Thr 160 Thr
Ile 145 Asp	130 Leu Ala	Asp Ile Ala	Ser Phe Ser	Phe Asn 165	Thr 150 Phe	135 Cys Leu	Phe Arg Leu Asn	Lys Phe Val Asn	Leu Leu Trp 170	Tyr Leu 155 Tyr	Leu 140 Asn Tyr	125 Thr Ser Cys	Ile Arg Thr	Ile Val Leu 175	Leu Thr 160 Thr
Ile 145 Asp	130 Leu Ala Arg	Asp Ile Ala Glu	Ser Phe Ser 180	Phe Asn 165 Ile	Thr 150 Phe Leu	135 Cys Leu Ile	Phe Arg Leu Asn	Lys Phe Val Asn 185	Leu Trp 170 Gly	Tyr Leu 155 Tyr Ser	Leu 140 Asn Tyr Arg	125 Thr Ser Cys	Ile Arg Thr Lys 190	Ile Val Leu 175 Gly	Leu Thr 160 Thr
Ile 145 Asp	130 Leu Ala Arg	Asp Ile Ala Glu Phe	Ser Phe Ser	Phe Asn 165 Ile	Thr 150 Phe Leu	135 Cys Leu Ile Val	Phe Arg Leu Asn Ser	Lys Phe Val Asn 185	Leu Trp 170 Gly	Tyr Leu 155 Tyr Ser	Leu 140 Asn Tyr Arg	125 Thr Ser Cys Ile	Ile Arg Thr Lys 190	Ile Val Leu 175 Gly	Leu Thr 160 Thr
Ile 145 Asp Ile Trp	130 Leu Ala Arg Val	Asp Ile Ala Glu Phe 195	Ser Phe Ser 180	Phe Asn 165 Ile	Thr 150 Phe Leu Tyr	135 Cys Leu Ile Val	Phe Arg Leu Asn Ser 200	Lys Phe Val Asn 185 Thr	Leu Trp 170 Gly Phe	Tyr Leu 155 Tyr Ser Leu	Leu 140 Asn Tyr Arg Ser	125 Thr Ser Cys Ile Gly 205	Ile Arg Thr Lys 190 Val	Ile Val Leu 175 Gly Met	Leu Thr 160 Thr Trp

	210					215					220				
Ser	Phe	Ser	Met	Tyr	Gln	Ser	Phe	Val	Gln	Phe	Leu	Gln	Tyr	Tyr	Туз
225					230					235					240
Gln	Ser	Gly	Суз	Leu	Tyr	Arg	Leu	Arg	Ala	Leu	Gly	Glu	Arg	His	Thi
				245					250					255	
Met	Asp	Leu	Thr	Val	Glu	Gly	Phe	Gln	Ser	Trp	Met	Trp	Arg	Gly	Let
			260					265					270		
Thr	Phe	Leu	Leu	Pro	Phe	Leu	Phe	Phe	Gly	His	Phe	Trp	Gln	Leu	Ph∈
		275					280					285			
Asn	Ala	Leu	Thr	Leu	Phe	Asn	Leu	Ala	Gln	Asp	Pro	Gln	Суз	Lys	Glu
	290					295					300				
Trp	Gln	Val	Leu	Met	Сув	Gly	Phe	Pro	Phe	Leu	Leu	Leu	Phe	Leu	Gly
305					310					315					320
Asn	Phe	Phe	Thr	Thr	Leu	Arg	Val	Val	His	His	Lys	Phe	His	Ser	Glr
				325					330					335	
Arg	His	Gly	Ser	Lys	Lys	Asp									
			340												
<210	8 <0														
<21	1> 24	14													
<212	2> PI	RT													
<213	3> Ho	omo s	sapie	ens											
	8 <0														
Met	Asp	Ile	Leu	Val	Pro	Leu	Leu	Gln	Leu	Leu	Val	Leu	Leu	Leu	Thr
1				5					10					15	
Leu	Pro	Leu	His	Leu	Met	Ala	Leu	Leu	Gly	Суз	Trp	Gln		Leu	Сув
			20					25					30		
Lys	Ser	Tyr	Phe	Pro	Tyr	Leu	Met	Ala	Val	Leu	Thr		Lys	Ser	Asn
		35					40					45			
Arg	Lys	Met	Glu	Ser	Lys	Lys	Arg	Glu	Leu	Phe	Ser	Gln	Ile	ГÀЗ	Gly
	50					55					60				
Leu	Thr	Gly	Ala	Ser	Gly	Lys	Val	Ala	Leu	Leu	Glu	Leu	Gly	Суз	Gly
65					70					75					80
Thr	Gly	Ala	Asn	Phe	Gln	Phe	Tyr	Pro	Pro	Gly	Суз	Arg	Val	Thr	Суз
				85				•	90					95	

13/233

Leu	Asp	Pro	Asn	Pro	His	Phe	Glu	Lys	Phe	Leu	Thr	Lys	Ser	Met	Ala
			100					105					110		
Glu	Asn	Arg	His	Leu	Gln	Tyr	Glu	Arg	Phe	Val	Val	Ala	Pro	Gly	Glu
		115					120					125			
Asp	Met	Arg	Gln	Leu	Ala	Asp	Gly	Ser	Met	Asp	Val	Val	Val	Cys	Thr
	130					135					140				
Leu	Val	Leu	Суз	Ser	Val	Gln	Ser	Pro	Arg	Lys	Val	Leu	Gln	Glu	Val
145					150					155					160
Arg	Arg	Val	Leu	Arg	Pro	Gly	Gly	Val	Leu	Phe	Phe	Trp	Glu	His	Val
				165					170					175	
Ala	Glu	Pro	Tyr	Gly	Ser	Trp	Ala	Phe	Met	Trp	Gln	Gln	Val	Phe	Glu
			180					185					190		
Pro	Thr	Trp	Lys	His	Ile	Gly	Asp	Gly	Cys	Суз	Leu	Thr	Arg	Glu	Thr
		195					200					205			
Trp	Lys	Ąsp	Leu	G1u	Asn	Ala	Gln	Phe	Ser	Glu	Ile	Gln	Met	Glu	Arg
	210					215					220				
Gln	Pro	Pro	Pro	Leu	Lys	Trp	Leu	Pro	Val	Gly	Pro	His	Ile	Met	Gly
225					230					235					240
Lys	Ala	Val	Lys												
										•					
<210	> 9														
<211	> 30	3													
<212	> PR	T				•									
<213	> Ha	mo s	apie	ns											

PCT/JP99/06412

14/233

70 75 80 65 Thr Pro Thr Tyr Ala Arg Pro Leu Trp Val Gln Tyr Pro Gln Asp Val 90 85 Thr Thr Phe Asn Ile Asp Asp Gln Tyr Leu Leu Gly Asp Ala Leu Leu 105 Val His Pro Val Ser Asp Ser Gly Ala His Gly Val Gln Val Tyr Leu 125 120 115 Pro Gly Gln Gly Glu Val Trp Tyr Asp Ile Gln Ser Tyr Gln Lys His 135 His Gly Pro Gln Thr Leu Tyr Leu Pro Val Thr Leu Ser Ser Ile Pro 160 155 150 Val Phe Gln Arg Gly Gly Thr Ile Val Pro Arg Trp Met Arg Val Arg 170 165 Arg Ser Ser Glu Cys Met Lys Asp Asp Pro Ile Thr Leu Phe Val Ala 185 Leu Ser Pro Gln Gly Thr Ala Gln Gly Glu Leu Phe Leu Asp Asp Gly 205 200 195 His Thr Phe Asn Tyr Gln Thr Arg Gln Glu Phe Leu Leu Arg Arg Phe Ser Phe Ser Gly Asn Thr Leu Val Ser Ser Ser Ala Asp Pro Glu Gly 240 230 235 225 His Phe Glu Thr Pro Ile Trp Ile Glu Arg Val Val Ile Ile Gly Ala 245 Gly Lys Pro Ala Ala Val Val Leu Gln Thr Lys Gly Ser Pro Glu Ser 270 265 Arg Leu Ser Phe Gln His Asp Pro Glu Thr Ser Val Leu Val Leu Arg 285 280 275 Lys Pro Gly Ile Asn Val Ala Ser Asp Trp Ser Ile His Leu Arg 295 300 290

<210> 10

<211> 160

<212> PRT

<213> Homo sapiens

<400> 10

wer was pla red pla ria sat red set Giv Giv was tur Gig was wid	
1 5 10 15	
Ser Gly Leu Ser Glu Val Val Glu Ala Ser Ser Leu Ser Trp Ser Thr	
20 25 30	
Arg Ile Lys Gly Phe Ile Ala Cys Phe Ala Ile Gly Ile Leu Cys Ser	
35 40 45	
Leu Leu Gly Thr Val Leu Leu Trp Val Pro Arg Lys Gly Leu His Leu	
50 55 60	
Phe Ala Val Phe Tyr Thr Phe Gly Asn Ile Ala Ser Ile Gly Ser Thr	
65 70 75 80	
Ile Phe Leu Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro	
85 90 95	
Thr Arg Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr	
100 105 110	
Leu Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe	
115 120 125	
Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe Ile	
130 135 140	
Pro Phe Ala Arg Asp Ala Val Lys Lys Cys Phe Ala Val Cys Leu Ala	
145 150 155 160	
<210> 11	
<211> 1941	
<212> DNA	
<213> Homo sapiens	
<400> 11	
	60
	20
	.80
	40
	00
	60
	20
	80
gttoogotg agotoaagtt ottootgtgo tooatgtaog ogocogtgtg cacogtgota 5-	40

gagcaggcgc	tgccgccctg	cegetecetg	tgcgagcgcg	cgcgccaggg	ctgcgaggcg	600
ctcatgaaca	agttcggctt	ccagtggcca	gacacgetca	agtgtgagaa	gttcccggtg	660
cacggcgccg	gcgagctgtg	cgtgggccag	aacacgtccg	acaagggcac	cccgacgccc	720
tegetgette	cagagttctg	gaccagcaac	cctcagcacg	geggeggagg	gcaccgtggc	780
ggcttcccgg	ggggegeegg	cgcgtcggag	cgaggcaagt	tetectgeec	gegegeeete	840
aaggtgccct	cctacctcaa	ctaccacttc	ctgggggaga	aggactgcgg	cgcaccttgt	900
gageegacea	aggtgtatgg	geteatgtae	ttegggeeeg	aggagetgeg	cttctcgcgc	960
acctggattg	gcatttggtc	agtgctgtgc	tgcgcctcca	cgctcttcac	ggtgcttacg	1020
tacctggtgg	acatgcggcg	cttcagctac	ccggagcggc	ccatcatctt	cttgtccggc	1080
tgttacacgg	ccgtggccgt	ggcctacatc	geeggettee	tcctggaaga	ccgagtggtg	1140
tgtaatgaca	agttegeega	ggacggggca	cgcactgtgg	cgcagggcac	caagaaggag	1200
ggctgcacca	tcctcttcat	gatgetetae	ttcttcagca	tggccagctc	catctggtgg	1260
gtgatcctgt	cgctcacctg	gtteetggeg	gctggcatga	agtggggcca	cgaggccatc	1320
gaagccaact	cacagtattt	tcacctggcc	geetgggetg	tgccggccat	caagaccatc	1380
accatcctgg	cgctgggcca	ggtggacggc	gatgtgctga	gcggagtgtg	cttcgtgggg	1440
cttaacaacg	tggacgcgct	gegtggette	gtgetggege	ccctcttcgt	gtacctgttt	1500
atcggcacgt	cctttctgct	ggccggcttt	gtgtcgctct	tecgeatecg	caccatcatg	1560
aagcacgatg	gcaccaagac	cgagaagctg	gagaagetea	tggtgcgcat	tggcgtcttc	1620
agegtgetgt	acactgtgcc	agccaccatc	gtcatcgcct	gctacttcta	cgagcaggcc	1680
ttccgggacc	agtgggaacg	cagctgggtg	gcccagagct	gcaagagcta	cgctatcccc	1740
tgccctcacc	tccaggcggg	cggaggcgcc	cegeegeace	cgcccatgag	cccggacttc	1800
acggtcttca	tgattaagta	ccttatgacg	ctgatcgtgg	gcatcacgtc	gggcttctgg	1860
atctggtccg	gcaagaccct	caactcctgg	aggaagttct	acacgaggct	caccaacagc	1920
aaacaagggg	agactacagt	C	·			1941
<210> 12						
<211> 1050		•				
<212> DNA						
<213> Homo	sapiens					
<400> 12						
atgcaccctg	cagcettece	gcttcctgtg	gttgtggccg	ctgtgctgtg	gggagcggcc	60
			gaccacaatg			120
			caggagggcc			180
			gccccaccac			240
_						

tcagtcttta ttgcgctgct tcgaagattc gactgcaact ttgacctcaa ggtcctaaat

300

gcccagaagg	ctggatatgg	tgccgctgta	gtacacaatg	tgaattccaa	tgaacttctg	360
aacatggtgt	ggaatagtga	ggaaatccag	cagcagatct	ggatcccgtc	tgtatttatt	420
ggggagagaa	gctccgagta	cctgcgtgcc	ctctttgtct	acgagaaggg	ggctcgggtg	480
cttctggttc	cagacaatac	cttccccttg	ggctattacc	tcatcccttt	cacagggatt	540
gtgggactgc	tggttttggc	catgggagca	gtaatgatag	ctcgttgtat	ccagcaccgg	600
aaacggctcc	agcggaatcg	acttaccaaa	gagcaactga	aacagattcc	tacacatgac	660
tatcagaagg	gagaccagta	tgatgtctgt	gccatttgcc	tggatgaata	tgaggatggg	720
gacaagctgc	gggtactccc	ctgtgctcat	gcctaccaca	geegetgegt	ggacccctgg	780
ctcactcaga	cccggaagac	ctgccccatt	tgcaagcagc	ctgttcatcg	gggtcctggg	840
gacgaagacc	aagaggaaga	aactcaaggg	caagaggagg	gtgatgaagg	ggagccaagg	900
gaccaccctg	cctcagaaag	gaccccactt	ttgggttcta	gccccactct	teceaeetee	960
tttggttcct	tageceeage	teceettgtt	tttcctgggc	cttcaacaga	tccccactg	1020
tecetecet	cttcccctgt	tatcctggtc				1050
<210> 13						
<211> 618						
<212> DNA						
<213> Homo	sapiens					
<400> 13						
atggggctgg	gtcagcccca	ggcctggttg	ctgggtctgc	ccacagetgt	ggtctatggc	60
teectggete	tcttcaccac	catcctgcac	aatgtcttcc	tgctctacta	tgtggacacc	120
tttgtctcag	tgtacaagat	caacaaaatg	geettetggg	tcggagagac	agtgtttctc	180
ctctggaaca	gcctcaatga	cccctcttc	ggttggctca	gtgaccggca	gttcctcagc	240
teccageece	ggggaagaga	tctaccctgg	cttggcttgg	ttggcccctc	tggactgtgg	300
actgcaaaca	ccctctgctg	cttctggaag	atteetttge	cccatccctg	cttgagcccg	360
tcatcacccc	caaccttgag	aagtgggcat	cccataccct	ttggccatca	gcccaacagg	420
ctaataaggg	ggtggaaatt	ggggcagagg	aggagagtgt	acccactggt	caggcgccgg	480
gctctcctca	agggctgtgg	tgctggcccg	ggtgcaggcc	ctgggctggc	atgggccgct	540
gctggcgctg	tegtteetgg	cgttctgggt	gecetgggee	ccagctggcc	tgcagttctt	600
gctgtgcctg	tgcctcta					618

<210> 14

<211> 639

<212> DNA

<213> Homo sapiens

<400> 14	
atgcactatt atagatactc taacgccaag gtcagctgct ggtacaagta cctccttttc	60
agetacaaca teatettetg gttggetgga gttgtettee ttggagtegg getgtgggea	120
tggagcgaaa agggtgtgct gtccgacctc accaaagtga cccggatgca tggaatcgac	180
ectgtggtge tggteetgat ggtgggegtg gtgatgttea ecetgggggtt egeeggetge	240
gtgggggctc tgcgggagaa tatctgcttg ctcaacttta accagtgctg tggcgcatat	300
ggccctgaag actgggacct caacgtctac ttcaattgca gcggtgccag ctacagccga	360
gagaagtgeg gggteeeett eteetgetge gtgeeagate etgegeaaaa agttgtgaae	420
acacagtgtg gatatgatgt caggattcag ctgaagagca agtgggatga gtccatcttc	480
acgaaagget geatecagge getggaaage tggeteeege ggaacattta cattgtgget	540
ggegtettea tegecatete getgttgeag atatttggea tetteetgge aaggaegetg	600
atcteagaca tegaggeagt gaaggeegge cateaette	639
<210> 15	
<211> 1785	
<212> DNA	
<213> Homo sapiens	•
<400> 15	
atgegegetg eeegegeege geegetgete eagetgetge teetgetggg geegtggetg	60
gaggetgegg gegttgegga gtegeegetg ceegeegtgg teettgeeat eetggeeege	120
aatgeegaac actegetgee eeactacetg ggegetetgg ageggetgga etaceeegg	180
gecaggatgg ceetetggtg tgecaeggae caeaatgtgg acaacaccae agagatgetg	240
caggagtggc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc	300
caggagtggc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag	300 360
caggagtggc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat	300 360 420
caggagtgge tggeggetgt gggegatgae tatgetgetg tggtetggag geetgaggge gageecaggt tetacecaga tgaagagggt eccaageaet ggaecaaaga aaggeaecag tttetgatgg agetgaagea ggaageeete acetttgeea ggaaetgggg ggeegaetat ateetgtttg cagaeacaga caacattetg accaacaate agaetetgeg getteteatg	300 360 420 480
caggagtgge tggeggetgt gggegatgae tatgetgetg tggtetggag geetgaggge gageecaggt tetacecaga tgaagagggt eccaageaet ggaecaaaga aaggeaecag tttetgatgg agetgaagea ggaageeete acetttgeea ggaactgggg ggeegaetat ateetgtttg eagaeacaga eaacattetg aceaacaate agaetetgeg getteteatg gggeagggge tteeagtggt ggeeceaatg etggaeteee agaeetaeta eteeaaette	300 360 420 480 540
caggagtgc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat atcctgtttg cagacacaga caacattctg accaacaatc agactctgcg gcttctcatg gggcaggggc ttccagtggt ggccccaatg ctggactccc agacctacta ctccaacttc tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaccaag	300 360 420 480 540
caggagtgc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat atcctgtttg cagacacaga caacattctg accaacaatc agactctgcg gcttctcatg gggcaggggc ttccagtggt ggccccaatg ctggactccc agacctacta ctccaacttc tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaccaag aaccgccage gccggggctg cttccgtgtc cccatggtcc actccacctt ccttgcatcc	300 360 420 480 540 600
caggagtgc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat atcctgtttg cagacacaga caacattctg accaacaatc agactctgcg gcttctcatg gggcaggggc ttccagtggt ggccccaatg ctggactccc agacctacta ctccaacttc tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaacaag aaccgccagc gccggggctg cttccgtgtc cccatggtcc actccacctt ccttgcatcc ctgcgggctg aaggggcaga ccagcttgct ttctacccgc cacatcccaa ctacacttgg	300 360 420 480 540 600 660 720
caggagtgc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagaggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat atcctgtttg cagacacaga caacattctg accaacaatc agactctgcg gcttctcatg gggcaggggc ttccagtggt ggccccaatg ctggactccc agacctacta ctccaacttc tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaacaag aaccgccagc gccggggctg cttccgtgtc cccatggtcc actccacctt ccttgcatcc ctgcgggctg aaggggcaga ccagcttgct ttctacccgc cacatcccaa ctacacttgg cctttcgacg acatcacta ctccgccac cttcgacg acatcacac cttcgccac cttcgacg acatcacaa ctacacttgg cctttcgacg acatcacaa ctacacttgg	300 360 420 480 540 600 660 720 780
caggagtgc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat atcctgtttg cagacacaga caacattctg accaacaate agactctgcg gcttctcatg gggcaggggc ttccagtggt ggcccaatg ctggactccc agacctacta ctccaacttc tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaacaag aaccgccage gccggggctg cttccgtgtc cccatggtcc actccaccat ccttgcatcc ctgcgggctg aaggggcaga ccagcttgct ttctacccgc cacatcccaa ctacacttgg cctttcgacg acatcatcgt cttcgcctat gcctgccagg ctgctggggt ctccgtccac gtgtgcaatg agcaccgtta tgggtacatg aatgtgccgg tgaaatccca ccaggggctg	300 360 420 480 540 600 660 720 780 840
caggagtgc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat atcctgtttg cagacacaga caacattctg accaacaatc agactctgcg gcttctcatg gggcaggggc ttccagtggt ggccccaatg ctggactccc agacctacta ctccaacttc tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaacag aaccgccage gccggggctg cttccgtgtc cccatggtcc actccacctt ccttgcatcc ctgcgggctg aaggggcaga ccagcttgct ttctacccgc cacatcccaa ctacacttgg ccttcgacg acatcatcgt cttcgcctat gcctgccagg ctgctggggt ctccgtccac gtgtgcaatg agcaccgtta tgggtacatg aatgtgccgg tgaaatccca ccaggggctg gaagacgaga gggtcaactt catccacctg atcttagaag cactagtgga cggcccccgc	300 360 420 480 540 600 660 720 780 840 900
caggagtgge tggcggetgt gggcgatgae tatgetgetg tggtetggag geetgaggge gageecaggt tetacecaga tgaagagggt eccaageaet ggaceaaaga aaggeaceag tttetgatgg agetgaagea ggaageecte acetttgeea ggaactgggg ggeegactat ateetgtttg cagacacaga caacattetg accaacaate agactetgeg getteteatg gggeagggge ttecagtggt ggeeccaatg etggaeteee agacetaeta etecaactte tggtgggag teacececa gggetactae egeegacaag eegagtaett ecceaacaag aacegeeage geeggggetg etteegtgte eccatggtee actecacett eettgeagee etggggetg aaggggaaga ecagettget ttetaceege eacateceaa etacaettgg eetttegacg acateategt ettegeetat geetgeeagg etgetggggt etceegteae gtgtgeaatg ageacegtta tgggtacatg aatgtgeegg tgaaateeca ecaggggetg gaagaegaga gggteaactt eatecaeetg atettagaag eactagtgga eggeeceege atgeaggeet eageteatgt gaeteggeee tetaagagge ecageaagat agggtttgae	300 360 420 480 540 600 660 720 780 840 900 960
caggagtgc tggcggctgt gggcgatgac tatgctgctg tggtctggag gcctgagggc gagcccaggt tctacccaga tgaagagggt cccaagcact ggaccaaaga aaggcaccag tttctgatgg agctgaagca ggaagccctc acctttgcca ggaactgggg ggccgactat atcctgtttg cagacacaga caacattctg accaacaatc agactctgcg gcttctcatg gggcaggggc ttccagtggt ggccccaatg ctggactccc agacctacta ctccaacttc tggtgtggga tcaccccca gggctactac cgccgcacag ccgagtactt ccccaacag aaccgccage gccggggctg cttccgtgtc cccatggtcc actccacctt ccttgcatcc ctgcgggctg aaggggcaga ccagcttgct ttctacccgc cacatcccaa ctacacttgg ccttcgacg acatcatcgt cttcgcctat gcctgccagg ctgctggggt ctccgtccac gtgtgcaatg agcaccgtta tgggtacatg aatgtgccgg tgaaatccca ccaggggctg gaagacgaga gggtcaactt catccacctg atcttagaag cactagtgga cggcccccgc	300 360 420 480 540 600 660 720 780 840 900

ctctgggag	a tggagatete	tgggagggtg	gtggacgctg	g tggatggctg	gatgctcaac	1080
agcagtgcc	a tcaggaacct	cggcgtagac	ctgctcccgg	g gctaccagga	cccttactcg	1140
ggccgcacto	e tgaccaaggg	cgaggtgggc	tgcttcctca	gecattacto	catctgggaa	1200
gaggtggttg	g ccaggggcct	ggeeegggte	ctggtgtttg	aggatgacgt	gegetttgag	1260
agcaacttca	a gggggegget	ggagcggctg	atggaggatg	tggaggcaga	gaaactgtct	1320
tgggacctg	a tctacctcgg	acggaagcag	gtgaaccctg	agaaggagac	ggccgtggag	1380
gggctgccgg	g goetggtggt	ggctgggtac	tcctactgga	cgctggccta	tgecetgegt	1440
ctggcgggtg	g cccgcaagct	gctggcctca	cagcctctgc	geegeatget	gcccgtggac	1500
gagttcctgo	ccatcatgtt	cgaccagcac	cccaacgagc	agtacaaggc	acacttetgg	1560
ccacgggaco	tggtggcctt	ctccgcccag	ecectgeteg	ctgcccctac	ccactatgcc	1620
ggggacgccg	, agtggctcag	tgacacggag	acatectete	catgggatga	tgacagcggc	1680
cgcctcatca	gctggagcgg	ctcccaaaag	accctgcgca	geceegeet	ggacctgact	1740
ggcagcagcg	ggcacagcct	ccaaccccag	ccccgagatg	agete		1785
					•	
<210> 16						
<211> 792						
<212> DNA						
<213> Homo	sapiens					
<400> 16						
atggtggcct	cagcgaagat	gggccgggca	gggaccatgg	cggtggcagc	agagettega	60
	caggagtgaa					120
	gctgcaccta					180
	ttagetgetg				4	240
	ggcagcgtga					300
ggtcctttcc	ctaccggttc	actgcttgac	cttcgcttcc	tcagcacctt	caagccccca	360
	atgtggttca					420
	tgactgcttc					480
	aaggaacaaa					540
	agcccggggc					600
	ctggcgactc		_			660
gagecagtea	aggaggtgag	ggttagtgcc	accetgeeag	atctggagga	ctactccccg	720
tgtgcactac	ccccagagtc	tgtaccgcag	atctttccca	tggggctgtc	ttccagtgaa	780
ggggacatcc	ca					792

<210> 17

caggacttcc agaacatcca ggagaccat cggctctacc gcctgaagct ggaggactg accaaacttc agaacattg caccagctcc atcacgcgc agaagaagag gctccaggag 18 ctggcctcg ccctgaagaa atgcaaaccc tccctccaag cagaggccga gggggccgca 24 caggagctgg agaaccagat gaaagaggcg caaggcctct tctttgacat ggagggcctat 30 ttgcctaaga agaatggatt gtacctgagc ctggttctgg ggaacgtcaa cgtcacgctc ctgagcaagc aggctaagtt tgcctacaag gacgagtatg agaagttcaa gctctacctc accatcatcc tcatcctcat ctccttcact tgccgcttcc tgctcaactc cagggtgaca 48 gatgctgcct tcaactcct gctggtctgg tactactgca ccctgaccat ccgggagagc 34 accatcatcc tcaactcct gctggtctgg tactactgac ccctgaccat ccgggagagc 34 accatcatca acaacggctc ccggatcaaa ggctggtggg tgttccatca ctacgtgtcc accttcctgt cgggagtcat gctgacgtgg cccgacggtc tcatgtacca gaaattccgg accatcactc tcatccttt catgtaccag agcttcgtgg agtttctcca gtactactac cagaggggct tccaggggg cccgagggc ctggggggg ggcacaccat ggacctcact ggtggaggggt tccaggggg tgctctaccg cctgggggg ctgggggggggg	
<pre><213> Homo sapiens <400> 17 atgeagecce cgececeggg cecgetggge gactgetge gggactggga ggatetacag caggacttce agaacatcca ggagacccat cggetetace gcetgaaget ggaggagetg accaaaacttc agaacaattg caccagetce atcacgegge agaagaageg getecaggag ctggceteg cectgaagaa atgeaaacce tecetecaag cagaggeega gggggeegea caggagetgg agaaccagat gaaagagege caaggeetet tetttgacat ggaggeetat ttgcetaaga agaatggatt gtacetgage ctggttetagg ggaacgtcaa cgteacgete ctgagcaage aggetaagtt tgcetacaag gacgagtatg agaagteaa getetacete accatcatec teatecteat etcetteact tgcegettee tgcteaacte cagggtgaca gatgetgeet teaactteet getggtetgg tactactgae cectgacat cegggagage atcetcatca acaacggete ceggateaaa ggetggtggg tgttecatea ctacgtgtee accattcetgt cgggagteat gctgacetgg cecaacggte teatgtacca gaaattcegg aaccaattce teteettte catgtaccag agettgtgg tgttecatca ctacgtgtee accattcetgt cgggagteat gctgaceggg cegacggte teatgtacca gaaattcegg aaccaattce teteettte catgtaccag agettegtge agtttetea gtactactac cagagggget gcetetaccg cetgggggg ctggggagg ggcacaccat ggacetcact gtggaggget tecagtectg gatgtggegg ggceteacet teetgetgee ttttettte ttttggacact tetggcaget ttttaacgeg ctgacgttgt teaacctgge ccaggacect cagtgcaagg agtggcaggt gettatgtge ggetttecet teetectet ttteetegge aatttettea ccaccetgag ggttgtgcac cacaagttte acagtcagg gcacgggage aatttettea ccaccetgag ggttgtgcac cacaagttte acagtcagg gcacgggage 102 aagaagaggat </pre>	
atgeagecee egeceeggg ecegetggge gactgeetge gggactggga ggatetacag caggacttee agaacatea ggagaceat eggetetace geetgaaget ggaggagetg 12 accaaactte agaacaattg caccagetee ateacgegge agaagaagag getecaggag etgggagetgg acaggagetgg agaacaactte agaacaattg caccagetee teetecaag cagaggeega gggggeegea caggagetgg agaacagaa atgeaaacee teeeteeaag cagaggeega gggggeegea etgggagagetgg agaacaagat gaaagaagage caaggeetet tetttgaaat ggaggeetat ttgeetaaga agaatggatt gtacctgage etggttetgg ggaacgteaa egteacgete etgageaaga aggetaagtt tgeetacaag gaeggatatg agaagteaa egtetacete etgacateatee teatecteat etcetteact tgeegettee tgeteaacte eagggtgaca ggatgetgget teaacteetee teatecteat etgeggtetgg tactactgea ecetgaceat eegggagage atcetacete acactecteet getggtetgg tactactgea ecetgaceat eegggagage accetteetgt egggagteat getgacgtgg eegaacgte teatgtacea gaaatteegg aaccetteetgt egggagteat getgacgtgg eegaacggte teatgtacea gaaatteegg aacceateetee teeteettte eatgtaceag agettegtgg agtteteca gaaatteegg aacceaattee teteetttte eatgtaceag agettegtgg agtteteca gaaatteegg aacceaattee teeteettte eatgtaceag agettegtgg ggeacaccat ggaacetcact ggaggagget teeagteetg geetetaceg eetgggggg ggeeteacet teetgetgee ttttetttte ttttggacact tetggaaggt gettatgtge ggeeteacet teetgetgee ttttetttte ttttggacaag agtggeaggt gettatgtge ggettteet teeteeteet ttteetegge aatttettea eagagaggat gettatgtge ggettteet teeteeteet ttteetegge aatttettea eagagaggat gettatgtge ggettteet teeteeteet ttteetegge aatttettea eagagaggat gettatgtge ggettteet teeteeteet ttteetegge aatttettea eacaceetgag ggttgtgeae eacaagttte acagtcageg geacgggage aagaagaagat 102 102 18 18 102 18 102 18 102 102 18 102 102 18 102 102 18 102 102 102 102 102 102 102 102 102 102	
atgeagecce egececeggg ecegetggge gactgeetge gggactggg ggatetacag caggacttee agaacatea ggagaceat eggetetace geetgaaget ggaggagetg 12 accaaactte agaacaattg eaccagetee ateacgegge agaagaagag getecaggag etggaggetgg agaacaagat gaaagageg caaggeetet tetttgacat ggaggeetat tetgeetaaga agaatggatt gtacetagag etggttetgg ggaacgtcaa egteacget etggagaaga eggetaagtt tgeetacaag gaagagtatg gaaagteaa egteacete etgeagaagaagatgaatg gaagatagatt tgeetacaag gaagagtatg agaagteaa egteacete etgacaateatee teaceteat etcetteact tgeegettee tgeteaacte eagggagage atectacete teaceteate getggtetgg tactactga ecetgaceat eagggagage accetteetgagagage agaagteaa ggetgagagag sacetteetga ecetgaceat eagggagage accetteetgagagage eaggatagagagagagagagagagagagagagagagagag	
caggacttcc agaacatcca ggagaccat cggctctacc gcctgaagct ggaggactg accaaacttc agaacattg caccagctcc atcacgcgc agaagaagag gctccaggag 18 ctggcctcg ccctgaagaa atgcaaaccc tccctccaag cagaggccga gggggccgca 24 caggagctgg agaaccagat gaaagaggcg caaggcctct tctttgacat ggaggcctat 30 ttgcctaaga agaatggatt gtacctgagc ctggttctgg ggaacgtcaa cgtcacgctc ctgagcaagc aggctaagtt tgcctacaag gacgagtatg agaacgtcaa cgtcacgctc ctgagcaagc aggctaagtt tgcctacaag gacgagtatg agaagttcaa gctctacctc accatcatcc tcatcctcat ctccttcact tgccgcttcc tgctcaactc cagggtgaca 48 gatgctgcct tcaactcct gctggtctgg tactactgca ccctgaccat ccgggagagc 34 atcctcatca acaacggctc ccggatcaaa ggctggtggg tgttccatca ctacgtgtcc accttcctgt cgggagtcat gctgacgtgg cccgacggtc tcatgtacca gaaattccgg accttcctgt cgggagtcat gctgacgtgg cccgacggtc tcatgtacca gaaattccgg accttcctgt cgggagtcat gctgacgtgg cccgacggtc tcatgtacca gaaattccgg acctacatc tctccttttc catgtaccag agcttcgtgc agtttctcca gtactactac cagggggggggg	
accaaacttc agaacaattg caccagctcc atcacgeggc agaagaaggg gotccaggag 18 ctggcoctcg coctgaagaa atgcaaaccc tcoctccag cagaggccga gggggccgca 24 caggagctgg agaaccagat gaaagaggcg caaggcctct tctttgacat ggagggccgca 36 ctggcaaga agaatggatt gtacctgagc ctggttctgg ggaacgtcaa cgtcacgctc 36 ctgagcaagc aggctaagtt tgcctacaag gacgagtatg agaagtcaa cgtcacccc 42 accatcatcc tcatcctcat ctccttcact tgccgcttcc tgctcaactc cagggggagc 34 atcctcatca acaacggctc ccggatcaaa ggctggtggg tgttccatca ctacgtgtcc 36 accatcctctgt cgggagtcat gctgaccag ggctggtggg tgttccatca ctacgtgtcc 36 accatcctctgt cgggagtcat gctgacgtgg cccgacggtc tcatgtacca gaaattccgg 36 aaccaattcc totccttttc catgtaccag agcttcgtgc agtttctcca gtactactac 37 cagagagggt gcctctaccg cctgggggg ctggggagc ggcacaccat ggacctcact 37 gtggagggct tccagtcctg gatgtggcgg ggcctcacct tcctgctgc ttttcttttc	60
ctggcctcg ccctgaagaa atgcaaaccc tccctccag cagaggcga gggggccgca 24 caggagctgg agaaccagat gaaagagcgc caaggcctct tctttgacat ggaggcctat 30 ttgcctaaga agaatggatt gtacctgagc ctggttctgg ggaacgtcaa cgtcacgctc ctgagcaagc aggctaagtt tgcctacaag gacgagtatg agaagttcaa gctctacctc accatcatcc tcatcctcat tgccgcttcc tgctcaactc cagggggagc 48 gatgctgcct tcaacttcct gctggtctgg tactactga ccctgaccat ccgggagagc 34 atcctcatca acaacggctc ccggatcaaa ggctggtggg tgttccatca ctacgtgtcc accttcctgt cgggagtcat gctgacgtg cccgacggtc tcatgtacca gaaattccgg 66 aaccaattcc tctcctttc catgtaccag agcttcgtgc agtttctcca gtactactac 72 cagaggggct gcctctaccg cctgggggg ctgggcgagc ggcacaccat ggacctcact 78 gtggagggct tccagtcctg gatgtgggg ggcetcaact tcctgctgcc tttttctttc 84 tttggacact tctggcagct ttttaacgcg ctgacgttg tcaacactgc ccaggaccct 78 gatggaaggag agtggcaggt gcttatgtgc ggctttccct tcctcctct tttcctcgc 96 aattcttca ccaccctgag ggttgtgcac cacaagttc tcccctcct tttcctcgc 96 aattcttca ccaccctgag ggttgtgcac cacaagttc acagtcagcg gcacgggagc 102 aagaaggat 102 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatcc tggtcccact cctgcagctg ctggtgctgc ttcttacct gccctgcac 66	120
caggagctgg agaaccagat gaaagagcgc caaggcetet tetttgacat ggaggcetat ttgcctaaga agaatggatt gtacctgage ctggttetgg ggaacgtcaa cgtcacgetc ctgagcaaga aggetaagtt tgcctacaag gacgagtatg agaagttcaa gctctacctc decatcatec tcatcetcat tgccgcttcc tgctcaactc cagggtgaca 48 gatgctgcet teaacttcct getggtetgg tactactga ccctgaccat ccgggagagc accettacetc accettcatca acaacggctc ccggatcaaa ggctggtggg tgttccatca ctacgtgtcc accettcatca acaacggctc ccggatcaaa ggctggtggg tgttccatca ctacgtgtcc accettcctgt cgggagtcat gctgaccag agcttcgtgc agtttctcca gaaattccgg accettcctgt cgggaggce ccggaggcg ccggaggcg ggcacaccat ggacctcact 72 caggagggct tccattcaccg cctgcggggc ctgggggagc ggcacaccat ggacctcact 73 gtggagggct tccagtcact ggatgtggcg ggcacaccat tcttggcagct ttttaacgcg ctgacgttgt tcaacctggc ccaggaccct cagtgcaagg agtggcaggt gcttatgtgc ggctttccct tcctcctct tttcctcggc aatttcttca ccaccctgag ggttgtgcac cacaagtttc acagtcagcg gcacgggagc 102 aagaaggat 102 18 ccccc 18 cccccccccccccccccccccccccc	180
ttgcctaaga agaatggatt gtacetgage etggttetgg ggaacgtcaa egteacgete ctgageaage aggetaagtt tgcctacaag gacgagtatg agaagttcaa getetacete 42 accateatee teatecteat etecteact tgccgettee tgctcaacte caggggagae 48 gatgetgeet teaactteet getggtetgg tactactga ecetgaccat eegggagage 54 atceteatea acaacggete eeggateaaa ggetggtggg tgttccatea etacgtgtee 60 accttcetgt egggagteat getgacgtgg ecegaeggte teatgtacea gaaatteegg 66 aaccaattee teteettte eatgtaceag agettegtge agtteteea gtactactae caggaggget gedetaceet eteggggggg etggggagge ggeacaceat ggaccteact 78 gtggaggget tecagteetg gatgtgggg etggggagge ggeacaceat ggaccteact tettggaagget tettaacgg etgacgtgt teaacetgge ecaggaccet 90 eagtgeaagg agtggeaggt gettatgtge ggettteeet teeteeteet ttteetegge aatttettea ecagtggaagga ggttgtgeae eacaagtte acagtcageg geacgggage 102 aagaaggat	240
ctgagcaagc aggctaagtt tgcctacaag gacgagtatg agaagtcaa gctctacctc accatcatcc tcatcctcat ctccttcact tgccgcttcc tgctcaactc cagggtgaca 48 gatgctgcct tcaacttcct gctggtctgg tactactgca ccctgaccat ccgggagagc 54 atcctcatca acaacggctc ccggatcaaa ggctggtggg tgttccatca ctacgtgtcc accttcctgt cgggagtcat gctgacgtgg cccgacggtc tcatgtacca gaaattccgg aaccaattcc tctcctttc catgtaccag agcttcgtgc agtttctcca gtactactac cagagcggct gcctctaccg cctgcgggg ctgggcgage ggcacaccat ggacctcact gtggagggct tccagtcctg gatgtggcg ggcctcacct tcctgctgcc ttttctttc tttggacact tctggcagct ttttaacgcg ctgacgttgt tcaacctggc ccaggaccct cagtgcaagg agtggcaggt gcttatgtgc ggcttccct tcctcctct tttcctcggc aatttcttca ccaccctgag ggttgtgcac cacaagttc acagtcagcg gcacgggagc 102 aagaaggat <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	300
accatcatec teatesteat etecticaet tgeegettee tgeteaacte cagggtgaca gatgetgeet teaactteet getggtetgg tactactgea ecetgaceat cegggagage steetcatea acaacggete eeggateaaa ggetggtggg tgtteeatea etacgtgtee acctteetgt egggagteat getgacgtgg eeegacggte teatgtacea gaaatteegg aaccaattee teteettte eatgtaceag agettegtge agtiteteea gtactactae cagagegget geetetaceg eetgegggeg etgggegage ggeacaecat ggaceteaet gtggaggget teeagteetg gatgtggegg ggeeteaeet teetgetgee tittetitte tittggacaet tetggeaget tittaacgeg etgacgtigt teaacetgge eeaggaceet eagtgeaagg agtggeaggt gettatgtge ggettteeet teeteeteet titteetegge aatttettea eeaeeetgag ggttgtgeae eacaagtite acagteageg geaegggage 102 aagaaggat <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre></pre></pre></pre>	360
gatgetgeet teaactteet getggtetgg tactactgea ceetgaceat cegggagage 54 atceteatea acaacggete ceggateaaa ggetggtggg tgttecatea ctacgtgtee 60 acetteetgt egggagteat getgacgtgg ecegacggte teatgtacea gaaatteegg 66 aaceaattee teteettte catgtaceag agettegtge agttteteea gtactactae 72 cagagegget geetetaceg ectgegggeg etgggegage ggeacaceat ggaceteact 78 gtggaggget teeagteetg gatgtggegg ggeeteacet teetgetgee ttttettte 84 tttggacact tetggeaget ttttaacgeg etgacgttgt teaacetgge ecaggacect 90 cagtgeaagg agtggeaggt gettatgtge ggettteeet teeteeteet ttteetegge 96 aatttettea ceaccetgag ggttgtgeac cacaagttte acagtcageg geacgggage 102 aagaaggat 102 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatee tggteecact ectgeagetg etggtgetge ttettaceet geecetgeac 66	420
atcetcatea acaacggete ceggateaaa ggetggtgg tgttecatea etacgtgtee 60 acetteetgt egggagteat getgacgtgg eeegacggte teatgtacea gaaatteegg 66 aaceaattee teteettte catgtaceag agettegtge agttteteea gtactactae 72 cagagegget geetetaceg eetgegggeg etgggegage ggeacaceat ggaceteact 78 gtggaggget tecagteetg gatgtggegg ggeeteacet teetgetgee ttttettte 84 tttggacact tetggeaget ttttaacgeg etgacgttgt teaacetgge eeaggacect 90 cagtgeaagg agtggeaggt gettatgtge ggettteeet teeteeteet ttteetegge 96 aatttettea ceaceetgag ggttgtgeae cacaagttte acagtcageg geacgggage 102 aagaaggat 102 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatee tggteecact eetgeagetg etggtgetge ttettaceet geeetgeac 66	480
accttectgt egggagteat getgaegtgg eeegaeggte teatgtaeca gaaatteegg 66 aaccaattee teteettte eatgtaecag agettegtge agtteteea gaaatteegg cagagegget geetetaeeg eetgegggeg etgggegage ggeacaccat ggaeeteaet gtggaggget teeagteetg gatgtggegg ggeeteaeet teetgetgee ttttettte 84 tttggaeaet tetggeaget ttttaaegge etgaegttgt teaaeetgge eeaggaeeet eagtgeaagg agtggeaggt gettatgtge ggettteeet teeteeteet ttteetegge aattettea eeaeeetgag ggttgtgeae eacaagttte acagteageg geaegggage 102 aagaaggat 102 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggaeatee tggteecaet eetgeagetg etggtgetge ttettaeeet geeeetgeae 66	540
aaccaattcc tetcetttte catgtaccag agettegtge agttteteca gtactactac 72 cagagegget geetetaceg cetgegggeg etgggegage ggeacaccat ggaceteact 78 gtggaggget tecagteetg gatgtggegg ggeeteacet teetgetgee ttttetttte 84 tttggacact tetggeaget ttttaacgeg etgacegttgt teaacetgge ecaggacect 90 cagtgeaagg agtggeaggt gettatgtge ggetteect teeteeteet ttteetegge 96 aatttettea ceaccetgag ggttgtgeac cacaagttte acagteageg geacgggage 102 aagaaggat 102 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatee tggteecact ectgeagetg etggtgetge ttettaceet geecetgeac 66	600
cagagegget geetetaceg cetgegggeg etgggegage ggeacaccat ggaceteact gtggaggget tecagteetg gatgtggegg ggeeteacet tectgetgee ttttettte 84 tttggacact tetggeaget ttttaacgeg etgacgttgt teaacetgge ceaggacect cagtgeaagg agtggeaggt gettatgtge ggettecet tecteeteet ttteetegge aatttettea ceaccetgag ggttgtgeac cacaagttte acagteageg geacgggage 102 aagaaggat 210> 18 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatee tggteecact cetgeagetg etggtgetge ttettaceet geecetgeac 6	660
gtggaggget tecagteetg gatgtggegg ggeeteaeet teetgetgee ttttetttte	720
tttggacact tctggcagct ttttaacgcg ctgacgttgt tcaacctggc ccaggaccct cagtgcaagg agtggcaggt gcttatgtgc ggctttccct tcctcctcct tttcctcggc aatttcttca ccaccctgag ggttgtgcac cacaagtttc acagtcagcg gcacgggagc aagaaggat <pre></pre>	780
cagtgcaagg agtggcaggt gcttatgtgc ggctttccct tcctcctct tttcctcggc aatttcttca ccaccctgag ggttgtgcac cacaagtttc acagtcagcg gcacgggagc 102 aagaaggat 102 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatcc tggtcccact cctgcagctg ctggtgctgc ttcttaccct gccctgcac 6	840
aatttettea ceacectgag ggttgtgeac cacaagttte acagteageg geacgggage 102 aagaaggat 102 <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatee tggteecact cetgeagetg etggtgetge ttettaceet geecetgeac 6	900
aagaaggat <210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatcc tggtcccact cetgcagetg etggtgetge ttettaccet geceetgeac 6	960
<pre><210> 18 <211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatec tggteccact cetgeagetg etggtgetge ttettaccet gecectgeac 6</pre>	020
<211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatec tggteccact cetgeagetg etggtgetge ttettaceet geceetgeac 6	029
<211> 732 <212> DNA <213> Homo sapiens <400> 18 atggacatec tggteccact cetgeagetg etggtgetge ttettaceet geceetgeac 6	
<212> DNA <213> Homo sapiens <400> 18 atggacatec tggteccact cetgeagetg etggtgetge ttettaccet gecectgeae 6	
<213> Homo sapiens <400> 18 atggacatec tggteccact cetgeagetg etggtgetge ttettaccet gecectgeae 6	
<400> 18 atggacatec tggteccact cetgeagetg etggtgetge ttettaccet gecectgeac 6	
atggacatec tggteccact cetgeagetg etggtgetge ttettaccet geceetgeae 6	
acygacacce eggecoact congengers engaged constitution governor	
cteatagete tactaggeta ctaggagece ctatagaaaa actactteee ctagetaata 12	60
countygott typigyery obygonyers obygonnum yeurostes company	120
geogtgetga eteceaagag caacegeaag atggagagea agaaaeggga getetteage 18	180
cagataaagg ggcttacagg agcctccggg aaagtggccc tactggagct gggctgcgga 24	240
accygageed deceedage ecaecades ggorgonggg consequence	300
ccccactttg agaagtteet gacaaagage atggetgaga acaggeacet ccaatatgag 36	360
cggtttgtgg tggctcctgg agaggacatg agacagctgg ctgatggctc catggatgtg 42	420

gradicides ereradider aracterara cadadecess ads	aggteet geaggaggte 480
cggagagtac tgagaccggg aggtgtgctc tttttctggg ago	eatgtggc agaaccatat 540
ggaagetggg cetteatgtg geageaagtt ttegageeea eet	ggaaaca cattggggat 600
ggctgctgcc tcaccagaga gacctggaag gatcttgaga acg	peccagtt eteegaaate 660
caaatggaac gacageceec teeettgaag tggetaeetg ttg	gggcccca catcatggga 720
aaggetgtea aa	732
<210> 19	
<211> 909	
<212> DNA	
<213> Homo sapiens	
<400> 19	
atgaagetga agetgaagaa egtgtttete geetaettee tgg	tgtcgat cgccggcctc 60
ctctacgege tggtacaget eggecageca tgtgactgee tte	ctccct gcgggcagca 120
geegageage taeggeagaa ggatetgagg attteecage tge	aagegga acteegaegg 180
ecacecetg eccetgeeca geceeetgaa eeegaggeee tge	ctactat ctatgttgtt 240
acccccacct atgccaggcc cctgtgggtg cagtaccctc aggs	atgtgac taccttcaat 300
atagatgate agtacttget tggggatgeg ttgetggtte acco	ctgtatc agactctgga 360
geccatggtg tecaggteta tetgeetgge caaggggagg tgtg	ggtatga cattcaaagc 420
taccagaage atcatggtee ecagaceetg tacetgeetg taac	ctctaag cagtatccct 480
gtgttccagc gtggagggac aatcgtgcct cgatggatgc gagt	tgeggeg gtetteagaa 540
tgtatgaagg atgaccccat cactetettt gttgcactta geed	ctcaggg tacagctcaa 600
ggagagetet ttetggatga tgggeaeaeg tteaaetate agae	ctcgcca agagttcctg 660
ctgcgtcgat tctcattctc tggcaacacc cttgtctcca gctc	cagcaga ccctgaagga 720
cactttgaga caccaatctg gattgagegg gtggtgataa tagg	gggctgg aaagccagca 780
gotgtggtac tecagacaaa aggateteca gaaageegee tgte	cetteca geatgaceet 840
gagacetetg tgttggteet gegeaageet ggeateaatg tgge	eatctga ttggagtatt 900
cacctgcga	909
<210> 20	
<211> 480	
<212> DNA	
<213> Homo sapiens	
<400> 20	
atggacaagc tgaagaaggt getgageggg caggacaegg agga	ccggag cggcctgtcc 60

gaggttgttg aggcatette attaagetgg agtaceagga taaaaggett cattgegtgt	120
tttgctatag gaattetetg etcaetgetg ggtaetgtte tgetgtgggt geceaggaag	180
ggactacacc tcttcgcagt gttttatacc tttggtaata tcgcatcaat tgggagtacc	240
atetteetea tgggaccagt gaaacagetg aagegaatgt ttgageetae tegtttgatt	300
geaactatea tggtgetgtt gtgttttgea ettaceetgt gttetgeett ttggtggeat	360
aacaagggac ttgcacttat cttctgcatt ttgcagtctt tggcattgac gtggtacagc	420
ctttccttca taccatttgc aagggatgct gtgaagaagt gttttgccgt gtgtcttgca	480
<210> 21	
<211> 4485	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (189)(2132)	
<400> 21	
gaategeaag ttteegegge ggeggegget geggtaegea gaacaggage eggggggageg	60
ggccgaaage ggcttgggct cgacggaggg cacccgcgca gaggtctccc tggccgcagg	120
gggageegee geeggeegtg ceeetggeag ceeeagegga geggegeeaa gagaggagee	180
gagaaagt atg get gag gag geg cet aag aag tee egg gee gee gge	230
Met Ala Glu Glu Glu Ala Pro Lys Lys Ser Arg Ala Ala Gly	
1 5 10	278
ggt ggc gcg agc tgg gaa ctt tgt gcc ggg gcg ctc tcg gcc cgg ctg	2/0
Gly Gly Ala Ser Trp Glu Leu Cys Ala Gly Ala Leu Ser Ala Arg Leu	
15 20 25 30	326
acg gag gag ggc agc ggg gac gcc ggt ggc cgc cgc cgc ccg cca gtt	320
Thr Glu Glu Gly Ser Gly Asp Ala Gly Gly Arg Arg Pro Pro Val	
35 40 45	374
gae eee egg ega ttg geg ege eag etg etg etg ett tgg etg etg	3/4
Asp Pro Arg Arg Leu Ala Arg Gln Leu Leu Leu Leu Trp Leu Leu 50 55 60	
52	422
gag get eeg etg etg etg ggg gte egg gee eag geg geg gge eag ggg	724
Glu Ala Pro Leu Leu Gly Val Arg Ala Gln Ala Ala Gly Gln Gly	
65 70 75	470
cea gge cag ggg cec ggg ceg ggg cag ceg ceg ceg cet cag	4/0

FIC	, Gry	GII	. 61)	PIC	, GT	PIC	, GT	GII	i GIII	PIC	PIC) PIC) P.L.) PI	2 GTU		
	80)				85	i				90)					
cag	caa	cag	ago	999	cag	caç	, tac	aac	gge	gag	g	g ggc	ato	t to	gtc	518	3
Gln	Gln	Gln	Ser	Gly	Glr	Glr	Туг	Asn	Gly	Glu	Arg	g Gly	, Ile	e Sei	val		
95					100	•				105	•				110		
ccg	gac	cac	ggo	tat	tgo	cag	ccc	ato	tec	ato	ccc	geto	tgo	ac	g gac	566	j
Pro	Asp	His	Gly	Туг	Cys	Gln	Pro	Ile	Ser	Ile	Pro	Leu	Cys	Thi	qeA :		
				115					120					125	;		
atc	gcg	tac	aac	cag	acc	ato	atg	ccc	aac	ctg	ctg	ggc	cac	acc	g aac	614	;
Ile	Ala	Tyr	Asn	Gln	Thr	Ile	Met	Pro	Asn	Leu	Leu	Gly	His	Thr	Asn		
			130	ļ				135					140)			
cag	gag	gac	gcg	ggc	ctg	gag	gtg	cac	cag	ttc	tac	cct	cta	gto	aaa	662	
Gln	Glu	Asp	Ala	Gly	Leu	Glu	Val	His	Gln	Phe	Tyr	Pro	Leu	Val	Lys		
		145					150					155					
gtg	cag	tgt	tcc	gct	gag	ctc	aag	ttc	ttc	ctg	tgc	tcc	atg	tac	geg	710	
Val	Gln	Cys	Ser	Ala	Glu	Leu	Lys	Phe	Phe	Leu	Cys	Ser	Met	Туг	Ala		
	160					165					170						
ccc	gtg	tge	acc	gtg	cta	gag	cag	gcg	ctg	ccg	ccc	tgc	cgc	tcc	ctg	758	
Pro	Val	Cys	Thr	Val	Leu	Glu	Gln	Ala	Leu	Pro	Pro	Суз	Arg	Ser	Leu		
175					180					185					190		
tgc	gag	cgc	gcg	cgc	cag	ggc	tgc	gag	gcg	ctc	atg	aac	aag	ttc	ggc	806	
Cys	Glu	Arg	Ala	Arg	Gln	Gly	Cys	Glu	Ala	Leu	Met	Asn	Lys	Phe	Gly		
				195					200					205			
									gag							854	
?he	Gln	Trp		Asp	Thr	Leu	Lys	Cys	Glu	Lys	Phe	Pro	Val	His	Gly		
			210					215					220				
gee	ggc	gag	ctg	tgc	gtg	ggc	cag	aac	acg	tcc	gac	aag	ggc	acc	ccg	902	
Ala	Gly		Leu	Cys	Val	Gly	Gln	Asn	Thr	Ser	Asp	Lys	Gly	Thr	Pro		
		225					230					235					
									acc							950	
Chr		Ser	Leu	Leu	Pro	Glu	Phe	Trp	Thr	Ser	Asn	Pro	Gln	His	Gly		
	240					245					250						
									999						-	998	
Зly	Gly	Gly	His	Arg	Gly	Gly	Phe	Pro	Gly	Gly	Ala	Gly	Ala	Ser	Glu		
255					260					265					270		

cga	ggc	aag	ttc	tcc	tgc	ccg	cgc	gcc	ctc	aag	gtg	ccc	tcc	tac	ctc	1046
Arg	Gly	Lys	Phe	Ser	Cys	Pro	Arg	Ala	Leu	Lys	Val	Pro	Ser	Tyr	Leu	
				275					280					285		
aac	tac	cac	ttc	ctg	999	gag	aag	gac	tgc	ggc	gca	cct	tgt	gag	ccg	1094
Asn	Tyr	His	Phe	Leu	Gly	Glu	Lys	Asp	Cys	Gly	Ala	Pro	Cys	Glu	Pro	
			290					295					300			
acc	aag	gtg	tat	ggg	ctc	atg	tac	ttc	ggg	ccc	gag	gag	ctg	cgc	ttc	1142
Thr	Lys	Val	Tyr	Gly	Leu	Met	Tyr	Phe	Gly	Pro	Glu	Glu	Leu	Arg	Phe	
		305					310					315				
tcg	cgc	acc	tgg	att	ggc	att	tgg	tca	gtg	ctg	tgc	tgc	gcc	tcc	acg	1190
Ser	Arg	Thr	Trp	Ile	Gly	Ile	Trp	Ser	Val	Leu	Суз	Cys	Ala	Ser	Thr	
	320					325					330					
ctc	ttc	acg	gtg	ctt	acg	tac	ctg	gtg	gac	atg	cgg	cgc	ttc	agc	tac	1238
Leu	Phe	Thr	Val	Leu	Thr	Tyr	Leu	Val	Asp	Met	Arg	Arg	Phe	Ser	Tyr	
335					340					345					350	
eeg	gag	cgg	ccc	atc	atc	ttc	ttg	tcc	ggc	tgt	tac	acg	gcc	gtg	gcc	1286
Pro	Glu	Arg	Pro	Ile	Ile	Phe	Leu	Ser	Gly	Cys	Tyr	Thr	Ala	Val	Ala	
				355					360					365		
gtg	gcc	tac	atc	gcc	ggc	ttc	ctc	ctg	gaa	gac	cga	gtg	gtg	tgt	aat	1334
Val	Ala	Tyr	Ile	Ala	Gly	Phe	Leu	Leu	Glu	Asp	Arg	Val	Val	Суз	Asn	
			370					375					380			
gac	aag	ttc	gcc	gag	gac	ggg	gca	cgc	act	gtg	gcg	cag	ggc	acc	aag	1382
Asp	Lys	Phe	Ala	Glu	Asp	Gly	Ala	Arg	Thr	Val	Ala	Gln	Gly	Thr	Lys	
		385					390					395				
aag	gag	ggc	tge	acc	atc	ctc	ttc	atg	atg	ctc	tac	ttc	ttc	agc	atg	1430
Lys	G1u	Gly	Суз	Thr	Ile	Leu	Phe	Met	Met	Leu	Tyr	Phe	Phe	Ser	Met	
	400					405					410					
gcc	agc	tcc	atc	tgg	tgg	gtg	atc	ctg	tcg	ctc	acc	tgg	ttc	ctg	geg	1478
Ala	Ser	Ser	Ile	Trp	Trp	Val	Ile	Leu	Ser	Leu	Thr	Trp	Phe	Leu	Ala	
415					420					425					430	
gct	ggc	atg	aag	tgg	ggc	cac	gag	gcc	atc	gaa	gcc	aac	tca	cag	tat	1526
Ala	Gly	Met	Lys	Trp	Gly	His	Glu	Ala	Ile	Glu	Ala	Asn	Ser	Gln	Tyr	
				435					440					445		
ttt	cac	ctg	gcc	gcc	tgg	gct	gtg	ccg	gcc	atc	aag	acc	atc	acc	atc	1574
Phe	His	Leu	Ala	Ala	Trp	Ala	Val	Pro	Ala	Ile	Lys	Thr	Ile	Thr	Ile	

			450	,				455)				460	,		
ctg	gcg	cto	g ggc	cag	gtg	gac	ggo	gat	gto	geto	g ago	gge	a gtg	, tgc	ttc	1622
Leu	Ala	Let	ı Gly	Glr	Val	Asp	Gly	/ Asp	Va]	Let	ı Seı	Gly	val	. Cys	Phe	
		465	,				470)				475	j			
gtg	999	ctt	aac	aac	gtg	gac	geg	ctg	cgt	ggc	: tto	gtg	ctg	geg	ccc	1670
Val	Gly	Leu	Asn	Asn	Val	Asp	Ala	Leu	Arg	g Gly	Phe	val	. Leu	Ala	Pro	
	480)				485					490)				
ctc	tto	gtg	tac	ctg	ttt	atc	ggo	acg	tec	ttt	cto	ctg	gee	ggc	ttt	1718
Leu	Phe	Val	Tyr	Leu	Phe	Ile	Gly	Thr	Ser	Phe	Lev	Lev	Ala	Gly	Phe	
495					500					505	,				510	
gtg	tcg	ctc	tta	cgc	atc	cgc	acc	atc	atg	aag	cac	gat	ggc	acc	aag	1766
Val	Ser	Leu	Phe	Arg	Ile	Arg	Thr	Ile	Met	Lys	His	Asp	Gly	Thr	Lys	
				515					520					525	•	
acc	gag	aag	ctg	gag	aag	ctc	atg	gtg	cgc	att	ggo	gtc	ttc	agc	gtg	1814
Thr	Glu	Lys	Leu	Glu	Lys	Leu	Met	Val	Arg	Ile	Gly	Val	Phe	Ser	Val	
			530					535					540			
ctg	tac	act	gtg	cca	gcc	acc	atc	gtc	atc	gcc	tgc	tac	ttc	tac	gag	1862
Leu	Tyr	Thr	Val	Pro	Ala	Thr	Ile	Val	Ile	Ala	Суз	Tyr	Phe	Tyr	Glu	
		545					550					555				
cag	gcc	ttc	cgg	gac	cag	tgg	gaa	cgc	agc	tgg	gtg	gcc	cag	agc	tgc	1910
Gln	Ala	Phe	Arg	Asp	Gln	Trp	Glu	Arg	Ser	Trp	Val	Ala	Gln	Ser	Cys	
	560					565					570					
aag	agc	tac	gct	atc	ccc	tgc	cct	cac	ctc	cag	gcg	ggc	gga	ggc	gcc	1958
Lys	Ser	Tyr	Ala	Ile	Pro	Cys	Pro	His	Leu	Gln	Ala	Gly	Gly	Gly	Ala	
575					580					585					590	
ccg	ccg	cac	ccg	ccc	atg	agc	ccg	gac	ttc	acg	gtc	ttc	atg	att	aag	2006
Pro	Pro	His	Pro	Pro	Met	Ser	Pro	qaA	Phe	Thr	Val	Phe	Met	Ile	Lys	
				595					600					605		
tac	ctt	atg	acg	ctg	atc	gtg	ggc	atc	acg	tcg	ggc	ttc	tgg	atc	tgg	2054
Tyr	Leu	Met	Thr	Leu	Ile	Val	Gly	Ile	Thr	Ser	Gly	Phe	Trp	Ile	Trp	
			610					615					620			
tcc	ggc	aag	acc	ctc	aac	tcc	tgg	agg	aag	ttc	tac	acg	agg	ctc	acc	2102
Ser	Gly	Lys	Thr	Leu	Asn	Ser	Trp	Arg	Lys	Phe	Tyr	Thr	Arg	Leu	Thr	
		625					630					635				
aac	agc	aaa	caa	ggg	gag	act	aca	gtc	tgag	acco	gg g	gctc	agcc	c a		2150

26/233

Asn Ser Lys Gln Gly Glu Thr Thr Val

640

645

tgcccaggcc tcggccgggg cgcagcgatc ccccaaagcc agcgccgtgg agttcgtgcc 2210 2270 aatcctgaca tetegaggtt teeteactag acaactetet ttegeagget eetttgaaca 2330 actcagetee tgeaaaaget teegteeetg aggeaaaagg acacgaggge eegactgeea 2390 gagggaggat ggacagacct cttgccctca cactctggta ccaggactgt tcgcttttat 2450 gattgtaaat agectgtgta agatttttgt aagtatattt gtatttaaat gacgaccgat cacgcgtttt tcttttcaa aagtttttaa ttatttaggg cggtttaacc atttgaggct 2510 2570 tttccttctt gcccttttcg gagtattgca aaggagctaa aactggtgtg caaccgcaca gegeteetgg tegteetege gegeetetee etaceaeggg tgetegggae ggetgggege 2630 2690 2750 tecegeetee teettttgee eceteecet cettetgtee cetecettte ttteetgget tgaggtaggg getettaagg tacagaacte cacaaacett ccaaatetgg aggagggcce 2810 2870 ccatacatta caatteetee ettgetegge ggtggattge gaaggeeegt ecettegaet 2930 tectgaaget ggattttaa etgteeagaa ettteeteea aetteatggg ggeeeaeggg 2990 tgtgggeget ggeagtetea geeteeetee aeggteaeet teaaegeeea gaeaeteeet totoccacct tagttggtta cagggtgagt gagataacca atgccaaact ttttgaagtc 3050 3110 taatttttga ggggtgaget cattteatte tetagtgtet aaaacetggt atgggtttgg 3170 ccagcgtcat ggaaagatgt ggttactgag atttgggaag aagcatgaag ctttgtgtgg gttggaagag actgaagata tgggttataa aatgttaatt ctaattgcat acggatgcct 3230 3290 ggcaaccttg cctttgagaa tgagacagcc tgcgcttaga ttttaccggt ctgtaaaatg gaaatgttga ggtcacctgg aaagctttgt taaggagttg atgtttgctt tccttaacaa 3350 3410 gacagcaaaa cgtaaacaga aattgaaaac ttgaaggata tttcagtgtc atggacttcc 3470 tcaaaatgaa gtgctatttt cttatttta atcaaataac tagacatata tcagaaactt 3530 taaaatgtaa aagttgtaca ctttcaacat tttattacga ttattattca gcagcacatt 3590 ctgaggggg aacaattcac accaccaata ataacctggt aagatttcag gaggtaaaga 3650 aggtggaata attgacgggg agatagcgcc tgaaataaac aaaatatggg catgcatgct 3710 aaagggaaaa tgtgtgcagg tctactgcat taaatcctgt gtgctcctct tttggattta 3770 cagaaatgtg tcaaatgtaa atctttcaaa gccatttaaa aatattcact ttagttctct gtgaagaaga ggagaaaagc aatceteetg attgtattgt tttaaaettt aagaatttat 3830 3890 caaaatgccg gtacttagga cctaaattta tctatgtctg tcatacgcta aaatgatatt 3950 ggtctttgaa tttggtatac atttattctg ttcactatca caaaatcatc tatatttata 4010 gaggaataga agtttatata tatataatac catattttta atttcacaaa taaaaaattc 4070 aaagttttgt acaaaattat atggattttg tgcctgaaaa taatagagct tgagctgtct

gaactatttt acattttatg gtgtctcata gccaatccca cagtgtaaaa attcaggaat

4130

tcaatgaaaa aagtctaccc ttaaaccctc agatcagtct ttccaaagaa ttactctgtt	419
tgcattgttg tgattgacat ttgtgaagtc ccaagaaaag atctgttttc atgacagtag	425
aaaatagaag tttgcaaatt atttetttac teaaagagga ttaaaagaga actetaattt	431
taatattaaa gotttotttt otttoaggga ataaatttao atgaottttt atattatgga	437
ggtttatttt taaatcatca cotttotoat attttttaga ggtattgtot tatotottoo	443
ataatcttgg atattacaaa accctaaata ggcaatcaat aaatggttaa ctggc	448
<210> 22	
<211> 1509	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (253)(1305)	
<400> 22	
ttttccgcgt tttatccccg taccagaaaa ggatacattt agtgcctccc acccagetcc	120
actaaacggg ttggatatet cattetttga gttggtgtte etteecegge geecceatgt	120 180
agctgggaag tgggacctgg gggtggttgg acccctggga tcctaaagga ggggcaggga gggcgcagaa ctccgcttct gctccttgct accaggacgc gcggcctcct cagcctcttt	240
ectecegetg ce atg cae eet gea gee tte eeg ett eet gtg gtt gtg gee	291
Met His Pro Ala Ala Phe Pro Leu Pro Val Val Ala	271
1 5 10	
get gtg ctg tgg gga geg gee eeg ace egg ggg ete att ega geg ace	339
Ala Val Leu Trp Gly Ala Ala Pro Thr Arg Gly Leu Ile Arg Ala Thr	
15 20 25	
teg gae cae aat gee age atg gae ttt gea gae ett eea get etg ttt	387
Ser Asp His Asn Ala Ser Met Asp Phe Ala Asp Leu Pro Ala Leu Phe	
30 35 40 45	
ggg gct acc ttg agc cag gag ggc ctc cag ggg ttc ctt gtg gag gct	435
Gly Ala Thr Leu Ser Gln Glu Gly Leu Gln Gly Phe Leu Val Glu Ala	
50 55 60	
cac cca gac aat gcc tgc agc ccc att gcc cca ccc cca gcc ccg	483
His Pro Asp Asn Ala Cys Ser Pro Ile Ala Pro Pro Pro Pro Ala Pro	
65 70 75	
gtc aat ggg tca gtc ttt att gcg ctg ctt cga aga ttc gac tgc aac	531

Val	Asn	Gly	Ser	Val	Phe	Ile	Ala	Leu	Leu	Arg	Arg	Phe	Asp	Cys	Asn	
		80					85					90				
ttt	gac	ctc	aag	gtc	cta	aat	gcc	cag	aag	gct	gga	tat	ggt	gcc	gct	579
Phe	Asp	Leu	Lys	Val	Leu	Asn	Ala	Gln	Lys	Ala	Gly	Tyr	Gly	Ala	Ala	
	95					100					105					
gta	gta	cac	aat	gtg	aat	tcc	aat	gaa	ctt	ctg	aac	atg	gtg	tgg	aat	627
Val	Val	His	Asn	Val	Asn	Ser	Asn	Glu	Leu	Leu	Asn	Met	Val	Trp	Asn	
110					115					120					125	
agt	gag	gaa	atc	cag	cag	cag	atc	tgg	atc	ccg	tct	gta	ttt	att	9 99	675
Ser	Glu	Glu	Ile	Gln	Gln	Gln	Ile	Trp	Ile	Pro	Ser	Val	Phe	Ile	Gly	
				130					135					140		
gag	aga	agc	tcc	gag	tac	ctg	cgt	gcc	ctc	ttt	gtc	tac	gag	aag	9 99	723
Glu	Arg	Ser	Ser	Glu	Tyr	Leu	Arg	Ala	Leu	Phe	Val	Tyr	Glu	Lys	Gly	
			145					150					155			
gct	cgg	gtg	ctt	ctg	gtt	cca	gac	aat	acc	ttc	CCC	ttg	ggc	tat	tac	771
Ala	Arg	Val	Leu	Leu	Val	Pro	Asp	Asn	Thr	Phe	Pro	Leu	Gly	Tyr	Tyr	
		160					165					170				
ctc	atc	cct	ttc	aca	ggg	att	gtg	gga	ctg	ctg	gtt	ttg	gcc	atg	gga	819
Leu	Ile	Pro	Phe	Thr	Gly	Ile	Val	Gly	Leu	Leu	Val	Leu	Ala	Met	Gly	
	175					180					185					
gca	gta	atg	ata	gct	cgt	tgt	atc	cag	cac	cgg	aaa	cgg	ctc	cag	cgg	867
Ala	Val	Met	Ile	Ala	Arg	Cys	Ile	Gln	His	Arg	Lys	Arg	Leu	Gln	Arg	
190					195					200					205	
aat	cga	ctt	acc	aaa	gag	caa	ctg	aaa	cag	att	cct	aca	cat	gac	tat	915
Asn	Arg	Leu	Thr	Lys	Glu	Gln	Leu	Lys	Gln	Ile	Pro	Thr	His	Asp	Tyr	
				210					215					220		
cag	aag	gga	gac	cag	tat	gat	gtc	tgt	gcc	att	tgc	ctg	gat	gaa	tat	963
Gln	Lys	Gly	Asp	Gln	Tyr	Asp	Val	Cys	Ala	Ile	Cys	Leu	Asp	Glu	Tyr	
			225					230					235			
gag	gat	ggg	gac	aag	ctg	cgg	gta	ctc	CCC	tgt	gct	cat	gcc	tac	cac	1011
Glu	Asp	Gly	Asp	Lys	Leu	Arg	Val	Leu	Pro	Cys	Ala	His	Ala	Tyr	His	
		240					245					250				
agc	cgc	tgc	gtg	gac	ccc	tgg	ctc	act	cag	acc	cgg	aag	acc	tgc	ccc	1059
Ser	Arg	Суз	Val	Asp	Pro	Trp	Leu	Thr	Gln	Thr	Arg	Lys	Thr	Суз	Pro	
	255					260					265					

att tgc aag cag cct gtt cat cgg ggt cct ggg gac gaa gac caa gag	1107
Ile Cys Lys Gln Pro Val His Arg Gly Pro Gly Asp Glu Asp Gln Glu	
270 275 280 285	
gaa gaa act caa ggg caa gag gag ggt gat gaa ggg gag cca agg gac	1155
Glu Glu Thr Gln Gly Gln Glu Gly Asp Glu Gly Glu Pro Arg Asp	
290 295 300	
cac cct gcc tca gaa agg acc cca ctt ttg ggt tct agc ccc act ctt	1203
His Pro Ala Ser Glu Arg Thr Pro Leu Leu Gly Ser Ser Pro Thr Leu	
305 310 315	
ccc acc tcc ttt ggt tcc tta gcc cca gct ccc ctt gtt ttt cct ggg	1251
Pro Thr Ser Phe Gly Ser Leu Ala Pro Ala Pro Leu Val Phe Pro Gly	
320 325 330	
cet tea aca gat eec cea etg tee eet eec tet tee eet gtt ate etg	1299
Pro Ser Thr Asp Pro Pro Leu Ser Pro Pro Ser Ser Pro Val Ile Leu	
335 340 345	
gtc taataacccc ccacacatac acctctggtg acctatttgc acagaccg	1350
Val.	
350	
tegtetteee teeagtette tgagggatag gggacattee ateceaaget teteeettae	1410
ccacacctat ccttttgagg ggctttgggg tggggctggg gcaagcagag ggactgggtc	1470
ttcacttctt gggctaataa aattgtttct ttgtggact	1509
<210> 23	
<211> 3059	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (230)(850)	
<400> 23	
ectggeteec gecagecgtg ggattagget tegeeggeta egattgegge ecceatette	60
gacttttcc tcgtgtgacc catcttttca aattccctta cctgaggaag gagcccgatt	120
acaaggatat ttacctgctc ctaccctgat ctagggacga ggatgggaag accgcctgtg	180
gceatgagee etecceggtg etectgggge taaggetggg getgeagee atg ggg etg	238
Met Cly Ten	

														1		
ggt	cag	ccc	cag	gcc	tgg	ttg	ctg	ggt	ctg	ccc	aca	gct	gtg	gtc	tat	286
Gly	Gln	Pro	Gln	Ala	Trp	Leu	Leu	Gly	Leu	Pro	Thr	Ala	Val	Val	Tyr	
	5					10					15					
gge	tcc	ctg	gct	ctc	ttc	acc	acc	atc	ctg	cac	aat	gtc	ttc	ctg	ctc	334
Gly	Ser	Leu	Ala	Leu	Phe	Thr	Thr	Ile	Leu	His	Asn	Val	Phe	Leu	Leu	
20					25					30					35	
tac	tat	gtg	gac	acc	ttt	gtc	tca	gtg	tac	aag	atc	aac	aaa	atg	gcc	382
Tyr	Tyr	Val	Asp	Thr	Phe	Val	Ser	Val	Tyr	Lys	Ile	Asn	Lys	Met	Ala	
				40					45					50		
ttc	tgg	gtc	gga	gag	aca	gtg	ttt	ctc	ctc	tgg	aac	agc	ctc	aat	gac	430
Phe	Trp	Val	Gly	Glu	Thr	Val	Phe	Leu	Leu	Trp	Asn	Ser	Leu	Asn	Asp	
			55					60					65			
ccc	ctc	ttc	ggt	tgg	ctc	agt	gac	cgg	cag	ttc	ctc	agc	tcc	cag	ccc	478
Pro	Leu	Phe	Gly	Trp	Leu	Ser	Asp	Arg	Gln	Phe	Leu	Ser	Ser	Gln	Pro	
		70					75					80				
								ggc								526
Arg	Gly	Arg	qaA	Leu	Pro	Trp	Leu	Gly	Leu	Val	Gly	Pro	Ser	Gly	Leu	
	85					90					95					
		_						ttc								574
Trp	Thr	Ala	Asn.	Thr	Leu	Cys	Суз	Phe	Trp		Ile	Pro	Leu	Pro		
100					105					110					115	
	-	_	-	-				cca								622
Pro	Cys	Leu	Ser	Pro	Ser	Ser	Pro	Pro	Thr	Leu	Arg	Ser	Gly		Pro	
				120					125					130		
					_			agg								670
Ile	Pro	Phe	Gly	His	Gln	Pro	Asn	Arg	Leu	Ile	Arg	Gly		Lys	Leu	
			135					140					145			
								ctg								718
Gly	Gln	Arg	Arg	Arg	Val	Tyr		Leu	Val	Arg	Arg		Ala	Leu	Leu	
		150	-				155	•				160				
_								gca								766
Lys		Cys	Gly	Ala	Gly		Gly	Ala	Gly	Pro		Leu	Ala	Trp	BLA	
	165					170		4_•			175					01 /
act	act	aac	act	atc	att	cct	adc	att	cta	aat	acc	CTG	qqc	CCC	agc	814

Ala Ala Gly Ala Val Val Pro Gly Val Leu Gly Ala Leu Gly Pro Ser	
180 185 190 195	
tgg cet gea gtt ett get gtg eet gtg eet eta tgatggette etg	860
Trp Pro Ala Val Leu Ala Val Pro Val Pro Leu	
200 205	
acgetegtgg acetgeacca ceatgeettg etggeegace tggeeetete ageecaegae	920
egeacceace teaactteta etgeteeste tteagegegg eeggeteest etstytettt	980
geatectatg cettttggaa caaggaggat tteteeteet teegegettt etgegtgaca	1040
etggetgtea getetggget gggetttetg ggggeeaeae agetgetgag geggegggtt	1100
gaggeggeee gaaaggaeee agggtgetea ggeetggttg tggatagegg eetgtgtgga	1160
gaggagetge ttgtaggeag tgaggaggeg gacageatea cettgggeeg gtateteegg	1220
cagetggeae gecateggaa etteetgtgg ttegtgagea tggaeetggt geaggtette	1280
cactgccact tcaacagcaa cttetteeet ctetteetgg ageatetgtt gteegaceat	1340
atotocottt ccacgggete catectgttg ggeototoct atgtogotoc ccatetoaac	1400
aacetetaet teetgteeet gtgeeggege tggggegtet aegeggtggt geggggete	1460
ttcctgctca agctgggact tagcctgctc atgttgttgg ccggcccgga ccacctcagc	1520
etgetgtgee tetteattge cageaacege gtetteactg agggeacetg taagetgetg	1580
accttggtgg teactgacet ggtagacgag gacetggtge tgaaceaceg caageaggea	1640
gesteggeas testettigg satggitiges tiggitigassa agesaggesa gaesttiges	1700
cegetgetgg geacetgget getetgttte tacacaggte atgacetett ceageagtee	1760
ctcataaccc ctgtggggag tgcccatccc tggccagagc ccccagctcc agcccctgca	1820
caggococga cgctccgcca gggctgcttc tacctgctgg tgctggtgcc catcacctgt	1880
getetgetge agetetteae etggteecag tteaegetge atgggagaeg eetgeacatg	1940
gtcaaggccc agcgccagaa cctgtcacag gcccaaaccc tggatgttaa gatggtgtga	2000
gagetgtgge aaggteacee caetgaggat getgetggea geetggggaa ggagecagtt	2060
ttttttggtt tttttttaa ggatttcata gtttttttt ttttttttg gagatgttgc	2120
ccaaaaaaat ggatctgttg cagtggtgca atctgggctc actgaaacca ccacccaggt	2180
tcaagcaatt atcctgcctc agcttcccga gtaggtggga ttataggagc gtgccaccat	2240
geceggetae tttttgtatt tttagtagag acagggttte ateatgttgg ceaggetagt	2300
ctcaaacccc tgaccttagg tgatcagccc gcctcggcct cccagagtgc tgggattaca	2360
ggcgtgagcc actgtggcca acctaatttt tgtattattt agtagagaca gggtttcacc	2420
acattggcca ggctggtctc gaactcctga cctcaagtga tctgcctgcc ttggtctccc	2480
aaagtgetgg gaatacagge atgageeace geacteggee aggagetagt tttaceagea	2540
tectgeteca etgeetteet etagtgeage etggaagaea tggeageggg tageteetgg	2600
ggctgagcca gaagcatcac tgcagtgaaa gtctctgctt acctgtctgg ctcagcttgg	2660

gcaagggctg ggccatatgt gctcagggac gtgcttctct tgtaaggcag gaggatagaa	2720
gaggaccaag aagggagggg getgeeetgt ggtgeacaca ggeetgeeat ggggegtggg	2780
agcccatccc gctgcctgac tggagctggc cgctgtggtg gactcaggaa ccactttaa	2840
tactgcaact gctccctttt gcccagtcag ggaaagctga ctgtaagtcc cacctcccac	2900
tecgtecace ettetagtgg tttetetgag aggtttetet getteagetg tgettgaagt	2960
ggcatgcctc ctctgctgca gggctccccc accccacac ggcctctaaa gatgtttatt	3020
tecttataga etgattaaag teageeatte ttttteete	3059
<210> 24	
<211> 2367	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (69)(710)	
<400> 24	
aactteeteg geegageegg geegegeege egetgeegee geegegegeg gattetgett	60
ctcagaag atg cac tat tat aga tac tct aac gcc aag gtc agc tgc tgg	110
chagaag and can had bee agu to good and good and good and	
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp	
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10	
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get gga	158
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly	
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30	158
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gte tte ett gga gte ggg etg tgg gea tgg age gaa aag ggt gtg	
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gte tte ett gga gte ggg etg tgg gca tgg age gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val	158
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc tte ett gga gte ggg etg tgg gca tgg age gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45	158 206
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45 ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct gtg	158
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gte tte ett gga gte ggg etg tgg gca tgg age gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45 etg tee gae etc ace aaa gtg ace egg atg eat gga ate gae ect gtg Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val	158 206
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45 ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct gtg Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val 50 55 60	158 206 254
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45 ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct gtg Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val 50 55 60 gtg ctg gtc ctg gtg gtg gtg gtg atg ttc acc ctg ggg ttc gcc	158 206
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac ctc ctt ttc age tac aac atc atc ttc tgg ttg gct gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct gtg Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val 50 55 60 gtg ctg gtc ctg atg gtg gtg gtg atg ttc acc ctg ggg ttc gcc Val Leu Val Leu Met Val Gly Val Val Met Phe Thr Leu Gly Phe Ala	158 206 254
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45 ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct gtg Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val 50 55 60 gtg ctg gtc ctg atg gtg ggc gtg gtg atg ttc acc ctg ggg ttc gcc Val Leu Val Leu Met Val Gly Val Val Met Phe Thr Leu Gly Phe Ala 65 70 75	158 206 254 302
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac etc ett tte age tac aac atc atc tte tgg ttg get gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc tte ett gga gte ggg etg tgg gca tgg age gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45 etg tce gae etc acc aaa gtg acc egg atg eat gga atc gae ect gtg Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val 50 55 60 gtg etg gte etg atg gtg gge gtg gtg atg tte acc etg ggg tte gee Val Leu Val Leu Met Val Gly Val Val Met Phe Thr Leu Gly Phe Ala 65 70 75 gge tge gtg gtg gtg gtg atg tte etc aac ttt aac	158 206 254
Met His Tyr Tyr Arg Tyr Ser Asn Ala Lys Val Ser Cys Trp 1 5 10 tac aag tac ctc ctt ttc agc tac aac atc atc ttc tgg ttg gct gga Tyr Lys Tyr Leu Leu Phe Ser Tyr Asn Ile Ile Phe Trp Leu Ala Gly 15 20 25 30 gtt gtc ttc ctt gga gtc ggg ctg tgg gca tgg agc gaa aag ggt gtg Val Val Phe Leu Gly Val Gly Leu Trp Ala Trp Ser Glu Lys Gly Val 35 40 45 ctg tcc gac ctc acc aaa gtg acc cgg atg cat gga atc gac cct gtg Leu Ser Asp Leu Thr Lys Val Thr Arg Met His Gly Ile Asp Pro Val 50 55 60 gtg ctg gtc ctg atg gtg ggc gtg gtg atg ttc acc ctg ggg ttc gcc Val Leu Val Leu Met Val Gly Val Val Met Phe Thr Leu Gly Phe Ala 65 70 75	158 206 254 302

cag tgc tgt ggc gca tat ggc cct gaa gac tgg gac ctc aac gtc tac	39
Gin Cys Cys Gly Ala Tyr Gly Pro Glu Asp Trp Asp Leu Asn Val Tyr	
95 100 105 110	
tte aat tge age ggt gee age tae age ega gag aag tge ggg gte eee	44
Phe Asn Cys Ser Gly Ala Ser Tyr Ser Arg Glu Lys Cys Gly Val Pro	
115 120 125	
tte tee tge tge gtg cea gat cet geg caa aaa gtt gtg aac aca cag	494
Phe Ser Cys Cys Val Pro Asp Pro Ala Gln Lys Val Val Asn Thr Gln	
130 135 140	
tgt gga tat gat gtc agg att cag ctg aag agc aag tgg gat gag tcc	542
Cys Gly Tyr Asp Val Arg Ile Gln Leu Lys Ser Lys Trp Asp Glu Ser	
145 150 155	
atc ttc acg aaa ggc tgc atc cag gcg ctg gaa agc tgg ctc ccg cgg	590
Ile Phe Thr Lys Gly Cys Ile Gln Ala Leu Glu Ser Trp Leu Pro Arg	
160 165 170	
aac att tac att gtg gct ggc gtc ttc atc gcc atc tcg ctg ttg cag	638
Asn Ile Tyr Ile Val Ala Gly Val Phe Ile Ala Ile Ser Leu Leu Gln	
175 180 185 190	
ata ttt ggc atc ttc ctg gca agg acg ctg atc tca gac atc gag gca	686
Ile Phe Gly Ile Phe Leu Ala Arg Thr Leu Ile Ser Asp Ile Glu Ala	
195 200 205	
gtg aag gcc ggc cat cac ttc tgaggagcag agttgaggga gccgagctga gcc	740
Val Lys Ala Gly His His Phe	
210	
acgctgggag gccagagcct ttctctgcca tcagccctac gtccagaggg agaggagccg	800
acaccccag agccagtgcc ccatcttaag catcagcgtg acgtgacctc tctgtttctg	860
cttgctggtg ctgaagacca agggtccccc ttgttacctg cccaaacttg tgactgcatc	920
cctctggagt ctacccagag acagagaatg tgtctttatg tgggagtggt gactctgaaa	980
gacagagag gctcctgtgg ctgccaggag ggcttgactc agaccccctg cagctcaagc	1040
atgictgcag gacaccctgg tecectetee aetggcatee agacatetge titgggteat	1100
ccacatctgt gggtgggccg tgggtagagg gacccacagg cgtggacagg gcatctctct	1160
ccatcaagca aagcagcatg ggggcctgcc cgtaacggga ggcggacgtg gccccgctgg	1220
geetetgagt geeagegeag tetgetggga catgeacata teaggggttg tttgeaggat	1280
cctcagccat gttcaagtga agtaagcctg agccagtgcg tggactggtg ccacgggagt	1340
acettateca etatececet atatecacea actatteteo tagagegga actacotata	1400

34/233

gtcttgatag cattaagccc	tgatggcgcc	ggtggcgcgg	tgggcatggt	tcttcactga	1460
gageeggete teetttett	aaagtgtgta	aatagtttat	ttataggggt	aagaatgttc	1520
tcacaccatt tcacttcctc	ttcctctcct	ccagcattct	cctctgagca	gccttagata	1580
gtgtccatgg ctggagccga	ccctttgagt	cccttgagt	gtcttaagaa	ccagcccaca	1640
acagoctoto tttotoctoo	acatactgca	geeteeetee	atgcatccca	catacaagca	1700
ctccccact ccccagcgtg	gcctcactgt	cttctggtct	tggtgctact	gaaattgtca	1760
cccagaattt gaatcctgac	cctccccact	gcaagcccag	ggagccccag	cccaagatgg	1820
ccagcctgaa actgttggcc	agggctcctc	ttgtggccat	gtacccaggg	ctggctggcc	1880
tgccatttgc ctctccccgg	agacagccgt	tcttctgcaa	ccacaccccg	tgcctagcca	1940
caaccccagg ctgcagctgc	tcagaagctc	caggcatttt	gtttctggtg	accgccccta	2000
atgggatate ggtgateact	ggtccaccct	tcctgtcagg	gcttttctgg	ggetgetett	2060
ggaaatgaag tottaagtac	tgaataactc	ccctggggat	agctggggca	tttgtctagc	2120
tgggctactt tctaacactt	tgccatagct	cagaccactt	ctcatcgttc	agggatggac	2180
tgcaacctta atttacttgc	cggagtgtac	attctagtgt	ggtgtatact	ggtggetgtt	2240
gatgatgatt tttttttt	tttttacac	aattctctgt	agactaggag	aagaatgett	2300
gtgtttttcg gaagtgtgat	gcttctcttt	gactgccaaa	ctcttttatg	gaatatatct	2360
ttatatt					2367

<210> 25

<211> 2355

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (20)...(1807)

<400> 25

ageogeceaa gegecegee atg ege get gee ege gee geg eeg etg ete eag 52 Met Arg Ala Ala Arg Ala Ala Pro Leu Gln

1 5 10

ctg ctg ctc ctg ctg ggg ccg tgg ctg gag gct gcg ggc gtt gcg gag 100
Leu Leu Leu Leu Gly Pro Trp Leu Glu Ala Ala Gly Val Ala Glu

15 20 25

teg eeg etg eee gee gtg gte ett gee ate etg gee ege aat gee gaa 148 Ser Pro Leu Pro Ala Val Val Leu Ala Ile Leu Ala Arg Asn Ala Glu

30 35 40

cad	e te	g etg	gee	cac	e ta	ete	g ggd	get	t cto	g ga	g eg	gct	g ga	c ta	c ccc	196
His	s Se	r Lei	ı Pro	His	з Ту	Let	ı Gly	, Ala	a Let	ı Glı	ı Ar	g Le	u As _j	р Ту	r Pro	
	4	5				50)				55	5				
cgg	g gco	agg	, atg	ged	cto	: tgg	j tgt	ge:	acq	gad	cac	aat	t gt	g gad	e aac	244
Arc	g Ala	Arc	Met	Ala	a Let	Tr	Суа	Ala	a Thr	: Asr	His	a Ası	ı Val	l Asj	neA o	
60)				65	5				70)				75	
acc	aca	a gag	, atg	cto	cac	g gag	, tgg	cto	geg	gct	gto	ggg	gat	gad	tat	292
Thr	Thi	Glu	Met	Let	ı Glr	Glu	Tr	Let	ı Ala	Ala	val	Gl	/ Asp	As ₁	Tyr	
				80)				85	i				90)	
															a gat	340
Ala	Ala	Val			Arg	Pro	Glu	Gly	Glu	Pro	Arg	Phe	Туг	Pro	qeA o	
			95					100					105			
														_	atg	388
GIU	GIU			Lys	Hls	Trp			Glu	Arg	His			Lev	Met	
		110					115					120				40.4
														_	gac	. 436
GIU	125		GIII	GIU	MLa	130	TILL	Pne	ATA	Arg	Asn 135	Trp	о Сту	ALS	Asp	
tat			ttt	gca	aac		gac	820	att	cta		886	est	Cad	act	484
			Phe											-		303
140					145		F			150				 -	155	
ctg	cgg	ctt	ctc	atg	ggg	cag	ggg	ctt	cca	gtg	ata	qcc	cca	atq		532
			Leu											_	_	
				160					165					170		
gac	tcc	cag	acc	tac	tac	tcc	aac	ttc	tgg	tgt	ggg	atc	acc	ccc	cag	580
Asp	Ser	Gln	Thr	Tyr	Tyr	Ser	Asn	Phe	Trp	Cys	Gly	Ile	Thr	Pro	Gln	
			175					180					185			
ggc	tac	tac	ege	cgc	aca	gcc	gag	tac	ttc	ccc	acc	aag	aac	cgc	cag	628
Gly	Tyr	Tyr	Arg	Arg	Thr	Ala	Glu	Tyr	Phe	Pro	Thr	Lys	Asn	Arg	Gln	
		190					195					200				
cgc	cgg	ggc	tgc	ttc	cgt	gtc	ccc	atg	gtc	cac	tcc	acc	ttc	ctt	gca	676
Arg	_	Gly	Cys	Phe	Arg	Val	Pro	Met	Val	His	Ser	Thr	Phe	Leu	Ala	
	205					210					215					
			gct							-			_			724
Ser	Leu	Arq	Ala	Glu	Gly	Ala	qeA	Gln	Leu	Ala	Phe	TVY	Pro	Pro	His	

220					225					230					235	
ccc	aac	tac	act	tgg	cct	ttc	gac	gac	atc	atc	gtc	ttc	gcc	tat	gcc	772
Pro	Asn	Tyr	Thr	Trp	Pro	Phe	Asp	Asp	Ile	Ile	Val	Phe	Ala	Tyr	Ala	
				240					245					250		
tgc	cag	gct	gct	ggg	gtc	tcc	gtc	cac	gtg	tgc	aat	gag	cac	cgt	tat	820
Cys	Gln	Ala	Ala	Gly	Val	Ser	Val	His	Val	Сўз	Asn	Glu	His	Arg	Tyr	
			255					260					265			
ggg	tac	atg	aat	gtg	ccg	gtg	aaa	tcc	cac	cag	ggg	ctg	gaa	gac	gag	868
Gly	Tyr	Met	Asn	Val	Pro	Val	Lys	Ser	His	Gln	Gly	Leu	Glu	qeA	Glu	
		270					275					280				
agg	gtc	aac	ttc	atc	cac	ctg	atc	tta	gaa	gca	cta	gtg	gac	ggc	ccc	916
Arg	Val	Asn	Phe	Ile	His	Leu	Ile	Leu	Glu	Ala	Leu	Val	Asp	Gly	Pro	
	285					290					295					
cgc	atg	cag	gcc	tca	gct	cat	gtg	act	cgg	ccc	tct	aag	agg	ccc	agc	964
Arg	Met	Gln	Ala	Ser	Ala	His	Val	Thr	Arg	Pro	Ser	Lys	Arg	Pro	Ser	
300					305					310					315	
aag	ata	9 99	ttt	gac	gag	gtc	ttt	gtc	atc	agc	ctg	gct	cgc	agg	cct	1012
Lys	Ile	Gly	Phe	Asp	Glu	Val	Phe	Val	Ile	Ser	Leu	Ala	Arg	Arg	Pro	
				320					325					330		
gac	cgt	cgg	gaa	cgc	atg	ctc	gcc	tcg	ctc	tgg	gag	atg	gag	atc	tct	1060
Asp	Arg	Arg	Glu	Arg	Met	Leu	Ala	Ser	Leu	Trp	Glu	Met	Glu	Ile	Ser	
			335					340					345			
ggg	agg	gtg	gtg	gac	gct	gtg	gat	ggc	tgg	atg	ctc	aac	agc	agt	gcc	1108
Gly	Arg	Val	Val	Asp	Ala	Val	Asp	Gly	Trp	Met	Leu	Asn	Ser	Ser	Ala	
		350					355					360				
atc	agg	aac	ctc	ggc	gta	gac	ctg	ctc	ccg	ggc	tac	cag	gac	cct	tac	1156
Ile	Arg	Asn	Leu	Gly	Val	Asp	Leu	Leu	Pro	Gly	Tyr	Gln	Asp	Pro	Tyr	
	365					370					375					
tcg	ggc	cgc	act	ctg	acc	aag	ggc	gag	gtg	ggc	tgc	ttc	ctc	agc	cat	1204
Ser	Gly	Arg	Thr	Leu	Thr	Lys	Gly	Glu	Val	Gly	Cys	Phe	Leu	Ser	His	
380					385					390					395	
tac	tcc	atc	tgg	gaa	gag	gtg	gtt	gcc	agg	ggc	ctg	gcc	cgg	gtc	ctg	1252
Tyr	Ser	Ile	Trp	Glu	Glu	Val	Val	Ala	Arg	Gly	Leu	Ala	Arg	Val	Leu	
				400					405					410		
gtg	ttt	gag	gat	gac	gtg	cgc	ttt	gag	agc	aac	ttc	agg	ggg	cgg	ctg	1300

Val	Phe	GI	ı Ası) Asp	Val	. Arg	Phe	Glu	. Ser	Asn	Phe	a Arg	Gl	Ar	g Leu	Į.
			415	5				420)				425	j		
gag	cgg	cto	ato	g ag	gat	gtg	gag	gca	gag	aaa	ctg	tet	tgg	gad	ctg	1348
Glu	Arg	Lev	ı Met	: Glu	Asp	Val	Glu	Ala	Glu	Lys	Leu	Ser	Tr	As _I	Leu	
		430)				435					440				
atc	tac	cto	gge	cgg	aag	cag	gtg	aac	cct	gag	aag	gag	acg	geo	gtg	1396
Ile	Тух	Lev	Gly	Arg	Lys	Gln	Val	Asn	Pro	Glu	Lys	Glu	Thr	Ala	val	
	445					450					455					
gag	9 99	ctg	ccg	gge	ctg	gtg	gtg	gct	ggg	tac	tcc	tac	tgg	acg	ctg	1444
Glu	Gly	Leu	Pro	Gly	Leu	Val	Val	Ala	Gly	Tyr	Ser	Tyr	Trp	Thr	Leu	
460					465					470					475	
gcc	tat	gco	ctg	cgt	ctg	gcg	ggt	gcc	cgc	aag	ctg	ctg	gcc	tca	cag	1492
Ala	Tyr	Ala	Leu	Arg	Leu	Ala	Gly	Ala	Arg	Lys	Leu	Leu	Ala	Ser	Gln	
				480					485					490	,	
cct	ctg	cgc	cgc	atg	ctg	ccc	gtg	gac	gag	ttc	ctg	ccc	atc	atg	ttc	1540
Pro	Leu	Arg	Arg	Met	Leu	Pro	Val	Asp	Glu	Phe	Leu	Pro	Ile	Met	Phe	
			495					500					505			
									gca					-	_	1588
qaA	Gln		Pro	Asn	Glu	Gln	Tyr	Lys	Ala	His	Phe	Trp	Pro	Arg	Asp	
		510					515					520				
									ctc	_	_					1636
Leu		Ala	Phe	Ser	Ala		Pro	Leu	Leu	Ala	Ala	Pro	Thr	His	Tyr	
	525					530					535					
									acg	-						1684
Ala	Gly	Asp	Ala	Glu	_	Leu	Ser	Asp	Thr		Thr	Ser	Ser	Pro	_	
540					545					550					555	
									tgg	-						1732
Asp	Asp	Asp	Ser		Arg	Leu	Ile	Ser	Trp	Ser	Gly	Ser	Gln	Lys	Thr	
				560					565					570		
					-	_	_		ggc	•	-			-		1780
Leu	Arg	Ser		Arg	Leu	Asp			Gly	Ser	Ser	Gly	His	Ser	Leu	
			575					580					585			
								tagg	rtcca	gg t	gatg	actg	c as	agce	3	1830
iln	Pro		Pro	Arg	qzA											
		EOA					EOE									

gtgtccagga gcaggccad	et actgeceaga	gagcagagga	ggaggttgtt g	gcagggact 189									
gcagatcctg tcagacctg	gg ccaccacctt	gggcatggcc	actctgccct c	tggacctgt 195									
ctttcatcgg gagaaacca	ac tcagagatgg	atcccattcc	ctaaaggtct c	acagcaaag 201									
gagcaggact cccaggccc	ec tgtaccetge	ctggcctgat	tcagggcctt g	tggececea 207									
gcttctgttt caagctggg	ge agaccccagg	atecettece	tecetaagga e	tcagctgag 213									
gggcccctct gcccccttc	et acctecacet	cagcaccctc	ccccagcttg a	tgtttgggt 219									
ctccccagca ccctcctcc	ee tggeeggtge	aaagtacagg	gaggtaaagc a	ggaccettg 225									
cagacatgtt gcccagcac	ea cagtaggeee	tcaataaaag	ccatttgcac t	ttaaatata 231									
tatatgtatg tatatatat	g tatatatata	tatatatata	tatgt	235									
<210> 26													
<211> 1024													
<212> DNA													
<213> Homo sapiens													
<220>													
<221> CDS													
<222> (27)(821)													
<400> 26				E									
cggatggaag ctccggccg				_									
		Val Ala Sei	. Ala Lys Met	GIY AIG									
	1		5	cca gga 10:									
gea ggg acc atg gcg				32									
Ala Gly Thr Met Ala	var Ara Ara v	20	Gid Led Cys	25									
gtg aac aac cag ccc			and tac tac	_									
Val Asn Asn Gln Pro													
Val Ash Ash Gin Flo	Tyl new cys	35		40									
act ggc tgc tgc acc	tac tac tat o		taa tto taa										
Thr Gly Cys Cys Thr				3									
45	-333-	50	55										
tgg act gtc ctc atc	ctc ttt agc 1		gee tte ege o	cac cga 24!									
Trp Thr Val Leu Ile													
60	65		70										
ega get aaa ete agg	ctg caa caa c	cag cag cgg	cag cgt gaa	atc aac 293									
Arg Ala Lys Leu Arg													

	/3	,				80	,				0.5	•					
ttg	, ttg	geo	: tat	cat	ggg	gca	tgo	cat	ggg	get	ggt:	: cct	tto	cct	acc	341	1
Leu	Leu	Ala	Tyr	His	Gly	Ala	Суз	His	Gly	Ala	Gly	Pro	Phe	Pro	Thr		
90)				95					100)				105		
ggt	tca	ctg	ctt	gac	ctt	cgc	tto	ctc	ago	acc	tto	aaç	g ccc	CCE	gee	389)
Gly	Ser	Leu	Leu	Asp	Leu	Arg	Phe	Leu	Ser	Thr	Phe	Lys	Pro	Pro	Ala		
				110	,				115					120)		
tac	gag	gat	gtg	gtt	cac	cgc	cca	ggc	aca	cca	ccc	ccc	cct	tat	act	437	,
Tyr	Glu	Asp	Val	Val	His	Arg	Pro	Gly	Thr	Pro	Pro	Pro	Pro	Туг	Thr		
			125					130					135				
gtg	gcc	cca	ggc	cgc	ccc	ttg	act	gct	tcc	agt	gaa	caa	acc	tgc	tgt	485	í
Val	Ala	Pro	Gly	Arg	Pro	Leu	Thr	Ala	Ser	Ser	Glu	Gln	Thr	Cys	Cys		
		140					145					150					
tcc	tcc	tca	tcc	agc	tge	cct	gcc	cac	ttt	gaa	gga	aca	aat	gtg	gaa	533	1
Ser	Ser	Ser	Ser	Ser	Сув	Pro	Ala	His	Phe	Glu	Gly	Thr	Asn	Val	Glu		
	155					160					165						
ggt	gtt	tcc	tcc	cac	cag	agt	gcc	ccc	ccc	cat	cag	gag	ggt	gag	ccc	581	
Gly	Val	Ser	Ser	His	Gln	Ser	Ala	Pro	Pro	His	Gln	Glu	Gly	Glu	Pro		
170					175					180					185		
9 99	gca	ggg	gtg	acc	cct	gee	tcc	aca	ccc	ccc	tee	tgc	ege	tat	ege	629	
Gly	Ala	Gly	Val	Thr	Pro	Ala	Ser	Thr	Pro	Pro	Ser	Cys	Arg	Tyr	Arg		
				190					195					200			
cgt	tta	act	ggc	gac	tcc	ggt	att	gag	ctc	tgc	cct	tgt	cct	gcc	tcc	677	
Arg	Leu	Thr	Gly	Asp	Ser	Gly	Ile	Glu	Leu	Cys	Pro	Cys	Pro	Ala	Ser		
			205					210					215				
ggt	gag	ggt	gag	cca	gtc	aag	gag	gtg	agg	gtt	agt	gcc	acc	ctg	cca	725	
Gly	Glu	Gly	Glu	Pro	Val	Lys	Glu	Val	Arg	Val	Ser	Ala	Thr	Leu	Pro		
	,	220					225					230					
gat	ctg	gag	gac	tac	tcc	ccg	tgt	gca	cta	ccc	cca	gag	tct	gta	ccg	773	
Asp	Leu	Glu	Asp	Tyr	Ser	Pro	Cys	Ala	Leu	Pro	Pro	Glu	Ser	Val	Pro		
	235					240					245						
cag	atc	ttt	ccc	atg	9 99	ctg	tct	tcc	agt	gaa	ggg	gac	atc	cca		818	
Gln	Ile	Phe	Pro 1	Met	Gly	Leu	Ser	Ser	Ser	Glu	Gly	Asp	Ile	Pro			
250					255					260							
ta a	igtag	tttt	g ag	aggg	tgga	tgg	gtta	ctt	gccc	acca	ga a	acag	rcect	a		870	

PCT/JP99/06412

gtoccaacto ottgogttoo tttggoccot cootgoctac otagaatotg cotgaaaggg	930
ctggagaggg gcagtattgg gggactgtgc tagctttacc cccgcaggac atacacagga	990
geetttgate teattaaaga gatgtgaace aget	1024
<210> 27	
<211> 1237	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (24)(1055)	
<400> 27	
tactggctac tggcgctgca gcc atg cag ccc ccg ccc ccg ggc ccg ctg ggc	53
Met Gln Pro Pro Pro Gly Pro Leu Gly	
1 5 10	
gac tgc ctg cgg gac tgg gag gat cta cag cag gac ttc cag aac atc	101
Asp Cys Leu Arg Asp Trp Glu Asp Leu Gln Gln Asp Phe Gln Asn Ile	
15 20 25	
cag gag acc cat cgg ctc tac cgc ctg aag ctg gag gag ctg acc aaa	149
Gln Glu Thr His Arg Leu Tyr Arg Leu Lys Leu Glu Glu Leu Thr Lys	
30 35 40	
ctt cag aac aat tgc acc agc tcc atc acg cgg cag aag aag cgg ctc	197
Leu Gln Asn Asn Cys Thr Ser Ser Ile Thr Arg Gln Lys Lys Arg Leu	
45 50 55	
cag gag ctg gcc ctc gcc ctg aag aaa tgc aaa ccc tcc ctc cca gca	245
Gln Glu Leu Ala Leu Ala Leu Lys Lys Cys Lys Pro Ser Leu Pro Ala	
60 65 70	
gag gee gag ggg gee gea eag gag etg gag aac eag atg aaa gag ege	293
Glu Ala Glu Gly Ala Ala Glu Glu Leu Glu Asn Gln Met Lys Glu Arg	
75 80 85 90	241
caa ggc ctc ttc ttt gac atg gag gcc tat ttg cct aag aag aat gga	341
Gln Gly Leu Phe Phe Asp Met Glu Ala Tyr Leu Pro Lys Lys Asn Gly	
95 100 105	200
ttg tac ctg age ctg gtt ctg ggg aac gtc aac gtc acg ctc ctg age	389
Leu Tyr Leu Ser Leu Val Leu Gly Asn Val Asn Val Thr Leu Leu Ser	

			110)				115	5				120	0		
aag	cag	gct	aac	, ttt	geo	tac	aag	gad	gaç	, tat	gag	g aaq	g tto	aa	g ctc	437
Lys	Glr	Ala	Lys	Phe	Ala	Туг	Lys	Asp	Glu	1 Туг	: Glu	ı Lys	Phe	∋ Ly:	s Leu	
		125	j				130)				135	5			
tac	cto	acc	ato	ato	cto	ato	ctc	ato	tec	tto	act	tgo	e ego	tto	ctg	485
Tyr	Leu	Thr	Ile	lle	Lev	Ile	Leu	Ile	e Ser	Phe	Thi	Cys	Arg	y Phe	e Leu	
	140)				145	i				150)				
ctc	aac	tco	agg	gtg	aca	gat	gct	gco	tto	aac	tto	cto	cto	gto	tgg	533
Leu	Asn	Ser	Arg	Val	Thr	Asp	Ala	Ala	Phe	Asn	Phe	Lev	Lev	val	Trp	
155					160	1				165					170	
tac	tac	tgo	acc	ctg	acc	atc	cgg	gag	ago	atc	cto	ato	aac	aac	ggc	581
Tyr	Tyr	Cys	Thr	Leu	Thr	Ile	Arg	Glu	Ser	Ile	Leu	Ile	Asn	Asn	Gly	
				175					180					185	,	
tee	cgg	atc	aaa	ggc	tgg	tgg	gtg	ttc	cat	cac	tac	gtg	tcc	acc	ttc	629
Ser	Arg	Ile	Lys	Gly	Trp	Trp	Val	Phe	His	His	Tyr	Val	Ser	Thr	Phe	
			190					195					200			
									gac							677
Leu	Ser		Val	Met	Leu	Thr	Trp	Pro	Asp	Gly	Leu	Met	Tyr	Gln	Lys	
		205					210					215				
									atg		_					725
Phe		Asn	Gln	Phe	Leu	_	Phe	Ser	Met	Tyr			Phe	Val	Gln	•
	220					225					230					
									tgc							773
	Leu	Gln	Tyr	Tyr		Gln	Ser	Gly	Cys		Tyr	Arg	Leu	Arg		
235					240					245					250	
						_	_		act					_		821
Leu	GIY	GIU	Arg		ınr	Met	Asp	Leu	Thr	Val	Giu	GIY	Pne		Ser	
- ~~	a+#	+		255					260					265		969
				_				_	ctg							869
тъ	Het	пр	270	GIÀ	ren	Thr	Pne		Leu	Pro	Pne	Leu	280	Pne	GTÅ	
220	++-	+~~		a++	+++			275								017
							-	-	acg Thr	_			_	_	_	917
		285		u	~ .16	-1011	290	acu.	T11T	⊒e'u	E116	295	Litt	A.C	3111	
ac.	cct		tơc	aac	aaa	taa		ata	ctt	ato	tac		ttt	CCC	ttc	965

Asp Pro Gin Cys Lys Giu Trp Gin Vai Leu Met Cys Giy Phe Pro Phe	
300 305 310	
ctc ctc ctt ttc ctc ggc aat ttc ttc acc acc ctg agg gtt gtg cac	1013
Leu Leu Phe Leu Gly Asn Phe Phe Thr Thr Leu Arg Val Val His	
315 320 325 330	
cac aag ttt cac agt cag cgg cac ggg agc aag aag gat tgaggctg	1060
His Lys Phe His Ser Gln Arg His Gly Ser Lys Lys Asp	
335 340	
ggeetteeee tgeeggeeea gaggggette tgteetgtgt gttgtgggag gggatgggag	1120
gegeeeteg agtgtgegtg tateaggggg tetettetat teteeettgg gttttatggg	1180
cgctgtgggc cctgaaggaa gacctgggcc cagtgccctc aataaagaga ggcccag	1237
<210> 28	
<211> 1332	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (39)(773)	
<400> 28	
agtgeeceag eggaageaea geteagaget ggtetgee atg gae ate etg gte eea	56
Met Asp Ile Leu Val Pro	
1 5	
ctc ctg cag ctg ctg ctg ctt ctt acc ctg ccc ctg cac ctc atg	104
Leu Leu Gln Leu Leu Val Leu Leu Leu Thr Leu Pro Leu His Leu Met	
10 15 20	
get etg etg gge tge tgg eag eee etg tge aaa age tae tte eee tae	152
Ala Leu Leu Gly Cys Trp Gln Pro Leu Cys Lys Ser Tyr Phe Pro Tyr	
25 30 35	
ctg atg gee gtg etg aet eee aag age aae ege aag atg gag age aag	200
Leu Met Ala Val Leu Thr Pro Lys Ser Asn Arg Lys Met Glu Ser Lys	
40 45 50	
aaa cgg gag ctc ttc agc cag ata aag ggg ctt aca gga gcc tcc ggg	248
Lys Arg Glu Leu Phe Ser Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly	
55 50 65 70	

aaa	gtg	gcc	: cta	ctg	gag	ctg	ggo	tgc:	gga	acc	gga	gcc	aac	ttt	cag	290
Lys	Val	Ala	Leu	Leu	Glu	Leu	Gly	Cys	Gly	Thr	Gly	Ala	. Asn	Phe	Gln	
				75					80	!				85		
ttc	tac	cca	ccg	ggc	tgc	agg	gto	acc	tgc	cta	gac	cca	aat	ccc	cac	344
Phe	Tyr	Pro	Pro	Gly	Суз	Arg	Val	Thr	Cys	Leu	Asp	Pro	Asn	Pro	His	
			90					95					100			
ttt	gag	aag	ttc	ctg	aca	aag	ago	atg	gct	gag	aac	agg	cac	ctc	caa	392
Phe	Glu	Lys	Phe	Leu	Thr	Lys	Ser	Met	Ala	Glu	Asn	Arg	His	Leu	Gln	
		105					110	ı				115				
tat	gag	cgg	ttt	gtg	gtg	gct	cct	gga	gag	gac	atg	aga	cag	ctg	gct	440
Tyr	Glu	Arg	Phe	Val	Val	Ala	Pro	Gly	Glu	Asp	Met	Arg	Gln	Leu	Ala	
	120					125					130					
gat	ggc	tcc	atg	gat	gtg	gtg	gtc	tgc	act	ctg	gtg	ctg	tgc	tct	gtg	488
Asp	Gly	Ser	Met	Asp	Val	Val	Val	Cys	Thr	Leu	Val	Leu	Cys	Ser	Val	
135					140					145					150	
cag	agc	cca	agg	aag	gtc	ctg	cag	gag	gtc	cgg	aga	gta	ctg	aga	ccg	536
Gln	Ser	Pro	Arg	Lys	Val	Leu	Gln	Glu	Val	Arg	Arg	Val	Leu	Arg	Pro	
				155					160					165		
								cat								584
Gly	Gly	Val	Leu	Phe	Phe	Trp	Glu	His	Val	Ala	Glu	Pro	Tyr	Gly	Ser	
			170					175					180			
								ttc								632
rp	Ala		Met	Trp	Gln	Gln		Phe	Glu	Pro	Thr	Trp	Lys	His	Ile	
		185					190					195				
								gag		-	_					680
		Gly	Cys	Cys	Leu		Arg	Glu	Thr	Trp		Asp	Leu	Glu	Asn	
	200					205					210					
								gaa								728
	GIN	Phe	Ser			Gln	Met	Glu	-		Pro	Pro	Pro		_	
215					220					225					230	
											-			taat	ctttc	780
rp !	Leu .	Pro			Pro	His	Ile	Met	_	Lys	Ala	Val	Lys			
				235					240							
									_			-	-		ccacc	840
1gcc1	catc	ta t	CTTC	cact	g ag	aggg	acct	agc	agaa	tga	gaga	agac	at t	catg	tacca	900

cctactagte cetetetece caacetetge cagggeaate tetaaettea atecegee	ett 960
cgacagtgaa aaagctctac ttctacgctg acccagggag gaaacactag gaccctg	tg 1020
tatecteaac tgeaagttte tggaetagte teecaaegtt tgeeteecaa tgttgtee	ect 1080.
tteettegtt eecatggtaa ageteetete gettteetee tgaggetaea eecatgeg	tc 1140
tctaggaact ggtcacaaaa gtcatggtgc ctgcatccct gccaagcccc cctgaccc	tc 1200
tetececaet accaeettet teetgagetg ggggeaccag ggagaateag agatgete	gg 1260
gatgecagag caagaetcaa agaggeagag gttttgttet caaatatttt ttaataas	ta 1320
gacgaaacca cg	1332
<210> 29	
<211> 1932	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (38)(949)	
<400> 29	
agacecegee tgetegggeg egggeggegg egeggee atg aag etg aa	ıg 55
Met Lys Leu Ly	'S
1 5	
aac gtg ttt ctc gcc tac ttc ctg gtg tcg atc gcc ggc ctc ctc tac	
Asn Val Phe Leu Ala Tyr Phe Leu Val Ser Ile Ala Gly Leu Leu Tyr	•
10 15 20	
geg etg gta eag ete gge eag eea tgt gae tge ett eet eee etg egg	
Ala Leu Val Gln Leu Gly Gln Pro Cys Asp Cys Leu Pro Pro Leu Arg	,
25 30 35	100
gea gea gee gag eag eta egg eag aag gat etg agg att tee eag etg	
Ala Ala Ala Glu Gln Leu Arg Gln Lys Asp Leu Arg Ile Ser Gln Leu	
40 45 50	247
caa geg gaa ete ega egg eea eee eet gee eet gee eag eee eet gaa	
Sin Ala Glu Leu Arg Arg Pro Pro Pro Ala Pro Ala Gin Pro Pro Glu	
55 60 65 70	
ecc gag gcc ctg cct act atc tat gtt gtt acc ccc acc tat gcc agg	295
	295

CCC	: cto	, tg	ggt	g cag	tac	cct	cag	gat	gtg	act	aco	tto	aat	t at	a gat	34	3
Pro	Lev	Tr	Va]	l Glm	Туг	Pro	Gln	Asp	Val	. Thi	Thi	Phe	Ası	n Ile	qaA s		
			90)				95					10	כ			
gat	cag	tac	ttg	g ctt	ggg	gat	geg	ttg	ctg	gtt	cac	cct	gta	a to	a gac	39	1
Asp	Gln	тут	Lev	ı Leu	Gly	qaA	Ala	Leu	Leu	Val	. His	Pro	Va]	L Se	c Asp		
		105	5				110					115	i				
tct	gga	geo	cat	ggt	gto	cag	gtc	tat	ctg	cct	ggc	caa	ggg	g ga	ggtg	43	9
Ser	Gly	Ala	His	Gly	Val	Gln	Val	Tyr	Leu	Pro	Gly	Gln	Gly	g Glu	val		
	120)				125					130)					
tgg	tat	gac	att	caa	agc	tac	cag	aag	cat	cat	ggt	ccc	cag	acc	ctg	48	7
Trp	Tyr	Asp	Ile	Gln	Ser	Tyr	Gln	Lys	His	His	Gly	Pro	Gln	Thi	Leu		
135					140					145					150		
tac	ctg	cct	gta	act	cta	agc	agt	atc	cct	gtg	ttc	cag	cgt	gga	ggg	539	5
Tyr	Leu	Pro	Val	Thr	Leu	Ser	Ser	Ile	Pro	Val	Phe	Gln	Arg	Gly	Gly		
				155					160					165			
aca	atc	gtg	cct	cga	tgg	atg	cga	gtg	cgg	cgg	tct	tca	gaa	tgt	atg	583	3
Thr	Ile	Val	Pro	Arg	Trp	Met	Arg	Val	Arg	Arg	Ser	Ser	Glu	Cys	Met		
			170					175					180				
aag	gat	gac	ccc	atc	act	ctc	ttt	gtt	gca	ctt	agc	cct	cag	ggt	aca	631	L
Lys	Asp	Asp	Pro	Ile	Thr	Leu	Phe	Val	Ala	Leu	Ser	Pro	Gln	Gly	Thr		
		185					190					195					
gct	caa	gga	gag	ctc	ttt	ctg	gat	gat	ggg	cac	acg	ttc	aac	tat	cag	679)
Ala	Gln	Gly	Glu	Leu	Phe	Leu	Asp	Asp	Gly	His	Thr	Phe	Asn	Tyr	Gln		
	200					205					210						
act	cgc	caa	gag	ttc	ctg	ctg	cgt	cga	ttc	tca	ttc	tct	ggc	aac	acc	727	,
Chr	Arg	Gln	Glu	Phe	Leu	Leu	Arg	Arg	Phe	Ser	Phe	Ser	Gly	Asn	Thr		
215					220					225					230		
ett	gtc	tcc	agc	tca	gca	gac	cct	gaa	gga	cac	ttt	gag	aca	cca	atc	775	
eu	Val	Ser	Ser	Ser	Ala	Asp	Pro	Glu	Gly	His	Phe	Glu	Thr	Pro	Ile		
				235					240					245			
gg	att	gag	cgg	gtg	gtg	ata	ata	ggg	gct	gga	aag	cca	gca	gct	gtg	823	
jrp	Ile	Glu	Arg	Val	Val	Ile	Ile	Gly	Ala	Gly	Lys	Pro	Ala	Ala	Val		
			250					255					260				
rta	ctc	cag	aca	aaa	gga	tct	cca	gaa	agc	cgc	ctg	tcc	ttc	cag	cat	871	
7a]	ום.ז	G) n	መኮሎ	Tazo	G) v	S02	Dro	G) 11	Sor	>	T 011	Sar	Dho	Gln.	ui a		

265	270	275	
gac cct gag acc tct gt	g ttg gtc ctg o	ege aag eet gge ate aa	at gtg 919
Asp Pro Glu Thr Ser Va	ıl Leu Val Leu A	Arg Lys Pro Gly Ile As	n Val
280	285	290	
gca tct gat tgg agt at	t cac ctg cga 1	taacccaagg gatgttctgg	gtta 970
Ala Ser Asp Trp Ser Il	e His Leu Arg		
295 30	00		
gggggaggga aggggagcat	tagtgctgag agai	tattett tettetgeet tgg	gagttegg 1030
ccctccccag acttcactta	tgctagtcta agad	cccagat tctgccaaca ttt	gggcagg 1090
atgagaggge tgaccctggg	ctccaaattc ctc	ttgtgat ctcctcacct ctc	eccactcc 1150
attgatacca actctttccc	ttcattcccc caac	catects ttgetetaac tgg	gagcacat 1210
tcacttacga acaccaggaa	accacagggc ccti	tgtegec cettetettt ecc	ttattta 1270
ggagccctga actcccccag	agtetateca tte	atgeete ttgtatgttg atg	gecaette 1330
ttggaagaag atgagggcaa	tgagttaggg ctc	ettttee eetteeetee ead	cagattg 1390
ctctcccacc tttcatttct	tectecagge ttt	actocco tttttatgec coa	ecgatac 1450
actgggacca ccccttaccc	cggacaggat gaat	tggatca aaggagtgag gtt	gctaaag 1510
aacatcettt teceteteat	totaccettt teet	totocco gattocttgt aga	gctgctg 1570
caattottag aggggcagtt	ctacctcctc tgto	ecctegg cagaaagaeg ttt	ccacacc 1630
tettagggga tgcgcattaa	acttcttttg ccc	ecticit gicecciting ago	ggcactt 1690
aagatggaga aatcagttgt	ggtttcagtg aato	catggtc acctgtattt att	getagga 1750
gaageetgag ggtggggga	gatgatcatg tgt	geteggg gttggetgga ago	ecctgggt 1810
ggggggttgg gggaggacta	atggggagtc ggg	gaatatt tgtgggtatt ttt	tttactt 1870
cetettggtt cecagetgtg	acacgttttg atca	aaaggag aaacaataaa ggg	gataaacc 1930
at	·		1932
<210> 30			
<211> 1124			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> CDS			
<222> (73)(555)			
<400> 30			
ggaagagccg tcaacttagc	gagegeaaca gget	tgeeget gaggagetgg ago	tggtggg 60
gactgggccg ca atg gac	aag ctg aag aa	g gtg ctg agc ggg cag	gac acg 111

			M	let A	sp L	ys I	eu L	ys L	ys V	al I	eu S	er G	ly (ln A	sp T	hæ	
				1				5					10				
gag	gac	cgg	agc	ggc	ctg	tcc	gag	gtt	gtt	gag	gca	tct	tca	tta	agc	15	9
Glu	Asp	Arg	Ser	Gly	Leu	Ser	Glu	Val	Val	Glu	Ala	Ser	Ser	Let	Ser		
	15					20					25						
tgg	agt	acc	agg	ata	aaa	ggc	ttc	att	gcg	tgt	ttt	gct	ata	gga	att	20	7
Trp	Ser	Thr	Arg	Ile	Lys	Gly	Phe	Ile	Ala	Cys	Phe	Ala	Ile	Gly	Ile		
30					35					40					45		
ctc	tgc	tca	ctg	ctg	ggt	act	gtt	ctg	ctg	tgg	gtg	ccc	agg	aag	gga	25	5
Leu	Cys	Ser	Leu	Leu	Gly	Thr	Val	Leu	Leu	Trp	Val	Pro	Arg	Lys	Gly		
				50					55					60			
cta	cac	ctc	ttc	gca	gtg	ttt	tat	acc	ttt	ggt	aat	atc	gca	tca	att	30	3
Leu	His	Leu	Phe	Ala	Val	Phe	Tyr	Thr	Phe	Gly	Asn	Ile	Ala	Ser	Ile		
			65					70					75				
ggg	agt	acc	atc	ttc	ctc	atg	gga	cca	gtg	aaa	cag	ctg	aag	cga	atg	35	1
Gly	Ser	Thr	Ile	Phe	Leu	Met	Gly	Pro	Val	Lys	Gln	Leu	Lys	Arg	Met		
		80					85					90					
ttt	gag	cct	act	cgt	ttg	att	gca	act	atc	atg	gtg	ctg	ttg	tgt	ttt	399	•
Phe	Glu	Pro	Thr	Arg	Leu	Ile	Ala	Thr	Ile	Met	Val	Leu	Leu	Cys	Phe		
	95					100					105						
gca	ctt	acc	ctg	tgt	tct	gcc	ttt	tgg	tgg	cat	aac	aag	gga	ctt	gca	447	7
Ala	Leu	Thr	Leu	Cys	Ser	Ala	Phe	Trp	Trp	His	Asn	Lys	Gly	Leu	Ala		
110					115					120					125		
ctt	atc	ttc	tgc	att	ttg	cag	tct	ttg	gca	ttg	acg	tgg	tac	agc	ctt	495	j
Leu	Ile	Phe	Суз	Ile	Leu	Gln	Ser	Leu	Ala	Leu	Thr	Trp	Tyr	Ser	Leu		
				130					135					140			
tcc	ttc	ata	cca	ttt	gca	agg	gat	gct	gtg	aag	aag	tgt	ttt	gcc	gtg	543	,
Ser :	Phe	Ile	Pro	Phe	Ala	Arg	Asp	Ala	Val	Lys	Lys	Cys	Phe	Ala	Va1		
			145					150					155				
tgt (ctt	gca	taat	tcat	gg c	cagt	ttta	t ga	agct	ttgg	aag	gcac	tat	ggac	agaa	600)
Cys :	Leu .	Ala															
		160															
			-	-			_			_		_	_	-	tttt		
cett	gcag	ca a	tgtg	ttgc	t tg	tgat	tcga	aca	tttg	agg	gtta	cttt	tg g	aago	aacaa	a 720	
- 808	-+	~~ =	east.	asat.	~ +~	- -	aasa	800	a+~a	~~~	~+ ~~	~++ <i>~</i>	+~+	-+-+	+-+	- 790	

840 900

960

1020 1080 1124

agtggaatet teeteatgta eetgttteet etetggatgt tgteeeactg aatteecatg
aatacaaacc tattcagcaa cagcacataa gccttgggtg caagtgattc ccaggtggca
aaaggcagec ccatcagaga tcacgggagc aacagtaagg gacagagttt tggggtccac
ttgtccctca gcatggaagc catcaccgtg gtcctgcata gagtgagtct acttctactc
tggcatctga gaacaagtga ctctgcttta gacaagcccc tggagagcct ggccatggag
tgaggtagaa aagaagcact ttttggtggt atatgctgtt tctg
<210> 31
<211> 1445
<212> PRT
<213> Homo sapiens
<400> 31
Met Gln Gly Pro Pro Leu Leu Thr Ala Ala His Leu Leu Cys Val Cys
1 5 10 15
Thr Ala Ala Leu Ala Val Ala Pro Gly Pro Arg Phe Leu Val Thr Ala
20 25 30
Pro Gly Ile Ile Arg Pro Gly Gly Asn Val Thr Ile Gly Val Glu Leu
35 40 45
Leu Glu His Cys Pro Ser Gln Val Thr Val Lys Ala Glu Leu Leu Lys
50 55 60
Thr Ala Ser Asn Leu Thr Val Ser Val Leu Glu Ala Glu Gly Val Phe
65 70 75 80
Glu Lys Gly Ser Phe Lys Thr Leu Thr Leu Pro Ser Leu Pro Leu Asn
85 90 95
Ser Ala Asp Glu Ile Tyr Glu Leu Arg Val Thr Gly Arg Thr Gln Asp
100 105 110
Glu Ile Leu Phe Ser Asn Ser Thr Arg Leu Ser Phe Glu Thr Lys Arg
115 120 125
Ile Ser Val Phe Ile Gln Thr Asp Lys Ala Leu Tyr Lys Pro Lys Gln
130 135 140
Glu Val Lys Phe Arg Ile Val Thr Leu Phe Ser Asp Phe Lys Pro Tyr
145 150 155 160
Lys Thr Ser Leu Asn Ile Leu Ile Lys Asp Pro Lys Ser Asn Leu Ile
165 170 175
Gln Gln Trp Leu Ser Gln Gln Ser Asp Leu Gly Val Ile Ser Lys Thr

			180)				185	5				190)	
Phe	Glr	Lev	ı Ser	Sei	: His	Pro	o Ile	Let	ı Gly	/ Asp	Tr	Sea	: Ile	Gli	val
		195	5				200)				205	5		
Gln	Val	. Asr	Asp	Glr	Thr	Туз	Tyr	Glr	sei	: Phe	Glr	val	Ser	Glu	тул
	210)				215	5				220)			
Val	Leu	Pro	Lys	Phe	e Glu	Va]	Thr	Leu	ı Glr	Thr	Pro	Lev	туг	Cys	Sei
225	i				230)				235					240
Met	Asn	Ser	Lys	His	Leu	Asr	Gly	Thr	: Ile	Thr	Ala	Lys	Туг	Thr	Туг
				245	i				250)				255	•
Gly	Lys	Pro	Val	. Lys	Gly	Asp	Val	Thr	Leu	Thr	Phe	Leu	Pro	Leu	Ser
			260)				265	i				270		
Phe	Trp	Gly	Lys	Lys	Lys	Asn	Ile	Thr	Lys	Thr	Phe	Lys	Ile	Asn	Gly
		275					280					285			
Ser	Ala	Asn	Phe	Ser	Phe	Asn	Asp	Glu	Glu	Met	Lys	Asn	Val	Met	Asp
	290					295					300				
Ser	Ser	Asn	Gly	Leu	Ser	Glu	Tyr	Leu	Asp	Leu	Ser	Phe	Pro	Gly	Pro
305					310					315					320
Val	Glu	Ile	Leu	Thr	Thr	Val	Thr	Glu	Ser	Val	Thr	Gly	Ile	Ser	Arg
				325					330					335	
Asn	Val	Ser	Thr	Asn	Val	Phe	Phe	Lys	Gln	His	Asp	Tyr	Ile	Ile	Glu
			340					345					350		
Phe	Phe		Tyr	Thr	Thr	Val	Leu	Lys	Pro	Ser	Leu	Asn	Phe	Thr	Ala
		355					360					365			
Thr	Val	Lys	Val	Thr	Arg	Ala	Asp	Gly	Asn	Gln	Leu	Thr	Leu	Glu	Glu
	370					375					380				
_	Arg	Asn	Asn	Val		Ile	Thr	Val	Thr	Gln	Arg	Asn	Tyr	Thr	Glu
385					390					395					400
Tyr	Trp	Ser	Gly		Asn	Ser	Gly	Asn		Lys	Met	Glu	Ala		Gln
				405					410					415	
Lys	Ile	Asn	Tyr	Thr	Val	Pro	Gln		Gly	Thr	Phe	Lys	Ile	Glu	Phe
			420					425					430		
Pro	Ile		Glu	Ąsp	Ser	Ser		Leu	Gln	Leu	Lys		Tyr	Phe	Leu
		435					440					445			
Gly			Ser							Leu	Phe	Lys	Ser	Pro	Ser
	450					455					460				

PCT/JP99/06412

Lys	Thr	Tyr	Ile	Gln	Leu	Lys	Thr	Arg	Asp	GLu	Asn	He	гÃа	Val	GT2
465					470					475					480
Ser	Pro	Phe	Glu	Leu	Val	Val	Ser	Gly	Asn	Lys	Arg	Leu	Lys	Glu	Let
				485					490					495	
Ser	Tyr	Met	Val	Val	Ser	Arg	Gly	Gln	Leu	Val	Ala	Val	Gly	Lys	Gli
			500					505					510		
Asn	Ser	Thr	Met	Phe	Ser	Leu	Thr	Pro	Glu	Asn	Ser	Trp	Thr	Pro	Lys
		515					520					525			
Ala	Суз	Val	Ile	Val	Tyr	Tyr	Ile	Glu	Asp	Asp	Gly	Glu	Ile	Ile	Ser
	530					535					540				
Asp	Val	Leu	Lys	Ile	Pro	Val	Gln	Leu	Val	Phe	Lys	Asn	Lys	Ile	Lys
545					550					555					560
Leu	Tyr	Trp	Ser	Lys	Val	Lys	Ala	Glu	Pro	Ser	Glu	Lys	Val	Ser	Leu
				565					570					575	
Arg	Ile	Ser	Val	Thr	Gln	Pro	Asp	Ser	Ile	Val	Gly	Ile	Val	Ala	Val
			580					585					590		
Asp	Lys	Ser	Val	Asn	Leu	Met	Asn	Ala	Ser	Asn	Asp	Ile	Thr	Met	Glu
		595					600					605			
Asn	Val	Val	His	Glu	Leu	Glu	Leu	Tyr	Asn	Thr	Gly	Tyr	Tyr	Leu	Gly
	610					615					620				
Met	Phe	Met	Asn	Ser	Phe	Ala	Val	Phe	Gln	Glu	Cys	Gly	Leu	Trp	Val
625					630					635					640
Leu	Thr	qzA	Ala	Asn	Leu	Thr	Lys	Asp	Tyr	Ile	qzA	Gly	Val	Tyr	Asp
				645					650					655	
Asn	Ala	Glu	Tyr	Ala	Glu	Arg	Phe	Met	Glu	Glu	Asn	Glu	Gly	His	Ile
			660					665					670		
Val	Asp	Ile	His	Ązp	Phe	Ser	Leu	Gly	Ser	Ser	Pro	His	Val	Arg	ГÀа
		675					680					685			
Hìs	Phe	Pro	Glu	Thr	Trp	Ile	Trp	Leu	Asp	Thr	Asn	Met	Gly	Ser	Arg
	690					695					700				
Ile	Tyr	Gln	Glu	Phe	Glu	Val	Thr	Val	Pro	Asp	Ser	Ile	Thr	Ser	Trp
705					710					715					720
Val	Ala	Thr	Gly	Phe	Val	Ile	Ser	Glu	Asp	Leu	Gly	Leu	Gly	Leu	Thr
				725					730					735	
ምክተ	Thr	Pro	Val	Glu	Leu	Gln	Ala	Phe	Gln	Pro	Phe	Phe	Ile	Phe	Leu

			740	0				745	;				750)	
Ası	ı Le	ı Pro	э Туг	r Sei	. Val	. Ile	Arg	Gly	Glu	ı Glu	. Phe	Ala	Let	ı Glu	Ile
		75	5				760)				765	i		
Thi	: Ile	Phe	e Ası	туг	Leu	Lys	Asp	Ala	Thr	Glu	Val	Lys	Val	. Ile	Ile
	770)				775	•				780)			
Glu	ı Lys	Sez	: Asp	Lys	Phe	Asp	Ile	Leu	Met	Thr	Ser	Ser	Glu	Ile	Asn
785	;				790					795					800
Ala	Thr	Gly	, His	Gln	Gln	Thr	Leu	Leu	Val	Pro	Ser	Glu	Asp	Gly	Ala
				805	,				810					815	
Thr	Val	. Let	Phe	Pro	Ile	Arg	Pro	Thr	His	Leu	Gly	Glu	Ile	Pro	Ile
			820)				825					830		
Thr	Val	. Thr	Ala	Leu	Ser	Pro	Thr	Ala	Ser	Asp	Ala	Ile	Thr	Gln	Met
		835					840					845			
Ile			Lys	Ala	Glu		Ile	Glu	Lys	Ser	Tyr	Ser	Gln	Ser	Ile
	850					855					860				
		Asp	Leu	Thr	Asp	Asn	Arg	Leu	Gln	Ser	Thr	Leu	Lys	Thr	Leu
865		_			870					875					880
Ser	Phe	Ser	Phe		Pro	Asn	Thr	Val		Gly	Ser	Glu	Arg		Gln
-1.	~ 1			885			_		890	_				895	
тте	Thr	Ala			Asp	Val	Leu	_	Pro	Ser	Ile	Asn	_	Leu	Ala
S	T	Tla	900		Desc	~	a 1	905	01	6 3	a 1	•	910		_
Ser	reu	915	Arg	Met	Pro	ıyr		Cys	GTĀ	GIU	Gin		Met	шe	Asn
Dhe	λla		Aen	Tle	Tyr	T10	920	2	<i>(</i> ()	T 011	mb	925	T	T	a 1-
2110	930	110	ASII	116	-7-	935	Ten	Asp	TÄT	Leu	940	тÀя	тÃя	гуз	GIII
Leu		Asp	Asn	Leu	Lys		Lvs	Δla	T.e.ii	Ser		Mot	Ara	Gln	Glv
945					950		_,_	1114	Dog	955	+ 110	1100	9		960
	Gln	Arg	Glu	Leu	Leu	Tvr	Gln	Ara	Glu		Glv	Ser	Phe		
•		_		965					970		1			975	
Phe	Gly	Asn	Tyr	Asp	Pro	Ser	Gly			Trp	Leu	Ser .			Val
	_		980	-				985		-			990		
Leu	Arg	Суз	Phe	Leu	Glu	Ala	Asp	Pro	Tyr	Ile	Asp	Ile :	qeA	Gln :	Asn
	_	995					1000		_		_	1005	•		
Val	Leu	His	Arg	Thr	Tyr	Thr	Trp	Leu	Lys	Gly			Lys	Ser 2	Asn
	1010					1015			_		1020		_		

Gly Glu	Phe	Trp	Ąsp	Pro	Gly	Arg	Val	Ile	His	Ser	Glu	Leu	Gln	Gly
1025				103	0				103	5				1040
Gly Asn	Lys	Ser	Pro	Val	Thr	Leu	Thr	Ala	Tyr	Ile	Val	Thr	Ser	Leu
			104	5				105	0				105	5
Leu Gly	Tyr	Arg	Lys	Tyr	Gln	Pro	Asn	Ile	Asp	Val	Gln	Glu	Ser	Ile
		106	0				106	5				107	0	
His Phe	Leu	Glu	Ser	Glu	Phe	Ser	Arg	Gly	Ile	Ser	Asp	Asn	Tyr	Thr
	107	5				108	0				108	5		
Leu Ala	Leu	Ile	Thr	Tyr	Ala	Leu	Ser	Ser	Val	Gly	Ser	Pro	Lys	Ala
1090)				109	5				110	0			
Lys Glu	Ala	Leu	Asn	Met	Leu	Thr	Trp	Arg	Ala	Glu	Gln	Glu	Gly	Gly
1105				1110	0				111	5				1120
Met Gln	Phe	Trp	Val	Ser	Ser	Glu	Ser	Lys	Leu	Ser	Asp	Ser	Trp	$\mathbf{Gl} \boldsymbol{v}$
			1125	5				1130)				1135	5
Pro Arg	Ser	Leu	Asp	Ile	Glu	Val	Ala	Ala	Tyr	Ala	Leu	Leu	Ser	His
		1140)				1145	5				1150)	
Phe Leu	Gln	Phe	Gln	Thr	Ser	Glu	Gly	Ile	Pro	Ile	Met	Arg	Trp	Leu
	1155	5				1160)				1165	5		
Ser Arg	Gln	Arg	Asn	Ser	Leu	Gly	Gly	Phe	Ala	Ser	Thr	Gln	Asp	Thr
1170)				1175	5				1180)			
Thr Val	Ala	Leu	Lys	Ala	Leu	Ser	Glu	Phe	Ala	Ala	Leu	Met	Asn	Thr
1185				1190)				1195	5				1200
Glu Arg	Thr	Asn	Ile	Gln	Val	Thr	Val	Thr	Gly	Pro	Ser	Ser	Pro	Ser
			1205	j				1210)				1215	;
Pro Val	Lys	Phe	Leu	Ile	Asp	Thr	His	Asn	Arg	Leu	Leu	Leu	Gln	Thr
		1220)				1225	5				1230)	
Ala Glu	Leu	Ala	Val	Val	Gln	Pro	Thr	Ala	Val	Asn	Ile	Ser	Ala	Asn
	1235	5				1240)				1245	j		
Gly Phe	Gly	Phe	Ala	Ile	Cys	Gln	Leu	Asn	Val	Val	Tyr	Asn	Val	Lys
1250)				1255	5				1260)			
Ala Ser	Gly	Ser	Ser	Arg	Arg	Arg	Arg	Ser	Ile	Gln	Asn	Gln	Glu	Ala
1265				1270)				1275	j				1280
Phe Asp	Leu	Asp	Val	Ala	Val	Lys	Glu	Asn	Lys	Asp	Asp	Leu	Asn	His
			1285	;				1290)				1295	
Val Asp	Leu	Asn	Val	Cys	Thr	Ser	Phe	Ser	Gly	Pro	Gly	Arg	Ser	Gly

			130	0				130	5				131	.0	
Met	Ala	Leu	Met	Glu	Val	Asn	Leu	Leu	Ser	Gly	Phe	Met	Val	. Pro	Ser
		131	5				132	0				132	5		
Glu	Ala	Ile	Ser	Leu	Ser	Glu	Thr	Val	Lys	Lys	Val	Glu	Tyr	Asp	His
	133	0				133	5				134	0			
Gly	Lys	Leu	Asn	Leu	Tyr	Leu	Asp	Ser	Val	Asn	Glu	Thr	Gln	Phe	Суз
134	5				135	0				135	5				1360
Val	Asn	Ile	Pro	Ala	Val	Arg	Asn	Phe	Lys	Val	Ser	Asn	Thr	Gln	Asp
				136	5				137	0				137	5
Ala	Ser	Val	Ser	Ile	Val	Asp	Tyr	Tyr	Glu	Pro	Arg	Arg	Gln	Ala	Val
			138	0				138	5				139	0	٠
Arg	Ser	Tyr	Asn	Ser	Glu	Val	Lys	Leu	Ser	Ser	Суз	Asp	Leu	Cys	Ser
		139	5				140	0				140	5		
Asp	Val	Gln	Gly	Cys	Arg	Pro	Суз	Glu	Asp	Gly	Ala	Ser	Gly	Ser	His
	141	0				141	5				142	0			
His	His	Ser	Ser	Val	Ile	Phe	Ile	Phe	Cys	Phe	Lys	Leu	Leu	Tyr	Phe
142	5				143	0				1435	5				1440
Met	Glu	Leu	Trp	Leu											
				144	5										
<21	0> 3:	2													
<21	1> 5	82													
<21	2> PI	RT													
<21	3> Ho	e ome	sapie	ens			•								
<40	0> 32	2													
Met	Phe	Pro	Ala	Gly	Pro	Pro	Ser	His	Ser	Leu	Leu	Arg	Leu	Pro	Leu
1				5					10					15	
Leu	Gln	Leu	Leu	Leu	Leu	Val	Val	Gln	Ala	Val	Gly	Arg	Gly	Leu	Gly
			20					25					30		
Arg	Ala	Ser	Pro	Ala	Gly	Gly	Pro	Leu	Glu	Asp	Val	Val	Ile	Glu	Arg
		35					40					45			
Tyr	His	Ile	Pro	Arg	Ala	Cys	Pro	Arg	Glu	Val	Gln	Met	Gly	Asp	Phe
	50					55					60				
Val	Arg	Tyr	His	Tyr	Asn	Gly	Thr	Phe	Glu	Asp	Gly	ГЛЗ	Lys	Phe	Asp
65					70					75					80

Ser	Ser	Tyr	Asp	Arg	Asn	Thr	Leu	Val	Ala	Ile	Val	Val	Gly	Val	Gly
				85					90					95	
Arg	Leu	Ile	Thr	Gly	Met	Asp	Arg	Gly	Leu	Met	Gly	Met	Cys	Val	Asn
			100					105					110		
Glu	Arg	Arg	Arg	Leu	Ile	Val	Pro	Pro	His	Leu	Gly	Tyr	Gly	Ser	Ile
		115					120					125			
Gly	Leu	Ala	Gly	Leu	Ile	Pro	Pro	Asp	Ala	Thr	Leu	Tyr	Phe	Asp	Val
	130					135					140				
Val	Leu	Leu	Asp	Val	Trp	Asn	Lys	Glu	Asp	Thr	Val	Gln	Val	Ser	Thr
145					150					155					160
Leu	Leu	Arg	Pro	Pro	His	Суз	Pro	Arg	Met	Val	Gln	Asp	Gly	Asp	Phe
				165					170					175	
Val	Arg	Tyr	His	Tyr	Asn	Gly	Thr	Leu	Leu	Asp	Gly	Thr	Ser	Phe	Asp
			180					185					190		
Thr	Ser	Tyr	Ser	Lys	Gly	Gly	Thr	Tyr	Asp	Thr	Tyr	Val	Gly	Ser	Gly
		195					200					205			
Trp	Leu	Ile	Lys	Gly	Met	Asp	Gln	Gly	Leu	Leu	Gly	Met	Суз	Pro	Gly
	210					215					220				
Glu	Arg	Arg	Lys	Ile	Ile	Ile	Pro	Pro	Phe	Leu	Ala	Tyr	Gly	Glu	Lys
225					230					235					240
Gly	Tyr	Gly	Thr	Val	Ile	Pro	Pro	Gln	Ala	Ser	Leu	Val	Phe	His	Val
				245					250					255	
Leu	Leu	Ile	Asp	Val	His	Asn	Pro	Lys	Asp	Ala	Val	Gln	Leu	Glu	Thr
			260			·		265					270		
Leu	Glu	Leu	Pro	Pro	Gly	Cys	Val	Arg	Arg	Ala	Gly	Ala	Gly	Asp	Phe
		275					280					285			
Met	Arg	Tyr	His	Tyr	Asn	Gly	Ser	Leu	Met	Asp	Gly	Thr	Leu	Phe	Asp
	290					295					300				
Ser	Ser	Tyr	Ser	Arg	Asn	His	Thr	Tyr	Asn	Thr	Tyr	Ile	Gly	Gln	Gly
305					310					315					320
Tyr	Ile	Ile	Pro	Gly	Met	Asp	Gln	Gly	Leu	Gln	Gly	Ala	Cys	Met	Gly
				325					330					335	
Glu	Arg	Arg	Arg	Ile	Thr	Ile	Pro	Pro	His	Leu	Ala	Tyr	Gly	Glu	Asn
			340					345					350		
Gly	Thr	Gly	Asp	Lys	Ile	Pro	Gly	Ser	Ala	Val	Leu	Ile	Phe	Asn	Val

55/233

		35	5				360)				365	5		
His	Val	. Ile	e Asr	Phe	e His	Ası	Pro	Ala	a Asp	Va]	. Val	. Glu	ı Ile	Arc	Thr
	370)				375	5				380)			
Lev	Ser	Arg	g Pro	Ser	Glu	Thr	Cys	Asr	Glu	Thr	Thr	Lys	Lev	Gly	Asp
385	i				390)				395					400
Phe	Val	Arg	Tyr	His	туг	Asr	Cys	Ser	Leu	Leu	Asp	Gly	Thr	Gln	Leu
				405	•				410					415	
Phe	Thr	Ser	His	Asp	тут	Gly	Ala	Pro	Gln	Glu	Ala	Thr	Leu	Gly	Ala
			420	١				425					430		
Asn	Lys	Val	Ile	Glu	Gly	Leu	Asp	Thr	Gly	Leu	Gln	Gly	Met	Суз	Val
		435	,				440		:			445			
Gly	Glu	Arg	Arg	Gln	Leu	Ile	Val	Pro	Pro	His	Leu	Ala	His	Gly	Glu
	450					455					460				
Ser	Gly	Ala	Arg	Gly	Val	Pro	Gly	Ser	Ala	Val	Leu	Leu	Phe	Glu	Val
465					470					475					480
Glu	Leu	Val	Ser	Arg	Glu	Asp	Gly	Leu	Pro	Thr	Gly	Tyr	Leu	Phe	Val
				485					490					495	
Trp	His	Lys	Asp	Pro	Pro	Ala	Asn	Leu	Phe	Glu	Asp	Met	Asp	Leu	Asn
			500					505					510		
Lys	Asp		Glu	Val	Pro	Pro	Glu	Glu	Phe	Ser	Thr	Phe	Ile	Lys	Ala
		515					520					525			
Gln		Ser	Glu	Gly	Lys		Arg	Leu	Met	Pro	Gly	Gln	Asp	Pro	Glu
	530					535					540				
	Thr	Ile	Gly	Asp		Phe	Gln	Asn	Gln	Asp	Arg	Asn	Gln	Asp	Gly
545					550					555					560
Lys	Ile	Thr	Val		Glu	Leu	Lys	Leu	Lys	Ser	Asp	Glu	Asp	Glu	Glu
			_	565					570					575	
Arg	Val	His	Glu	Glu	Leu										
			580												

<210> 33

<211> 410

<212> PRT

<213> Homo sapiens

<400> 33

Met	Glu	Leu	Pro	Ser	Gly	Pro	Gly	Pro	GLu	Arg	Leu	Pne	Asp	ser	HIS
1				5					10					15	
Arg	Leu	Pro	Gly	Asp	Cys	Phe	Leu	Leu	Leu	Val	Leu	Leu	Leu	Tyr	Ala
			20					25					30		
Pro	Val	Gly	Phe	Сув	Leu	Leu	Val	Leu	Arg	Leu	Phe	Leu	Gly	Ile	His
		35					40					45			
Val	Phe	Leu	Val	Ser	Суз	Ala	Leu	Pro	Asp	Ser	Val	Leu	Arg	Arg	Phe
	50					55					60				
Val	Val	Arg	Thr	Met	Cys	Ala	Val	Leu	Gly	Leu	Val	Ala	Arg	Gln	Glu
65					70					75					80
Asp	Ser	Gly	Leu	Arg	Asp	His	Ser	Val	Arg	Val	Leu	Ile	Ser	Asn	His
				85					90					95	
Val	Thr	Pro	Phe	Asp	His	Asn	Ile	Val	Asn	Leu	Leu	Thr		Суз	Ser
			100					105					110		
Thr	Pro	Leu	Leu	Asn	Ser	Pro	Pro	Ser	Phe	Val	Cys		Ser	Arg	Gly
		115					120			_	_	125			
Phe	Met	Glu	Met	Asn	Gly		Gly	Glu	Leu	Val		Ser	Leu	Lys	Arg
	130					135					140	_	_		_
	Cys	Ala	Ser	Thr		Leu	Pro	Pro	Thr		Leu	Leu	Leu	Phe	
145			_	_	150					155	_		1		160
Glu	Glu	Glu	Ala		Asn	Gly	Arg	Glu		Leu	Leu	Arg	Pne		Ser
	_		÷	165		_			170		-	mh	T	175	1101
Trp	Pro	Pne		He	GIN	Asp	vaı		GIN	Pro	Leu	THE	190	GTII	vai
0 7.	•	D	180	**-1	0	**-3	erila an	185	C	2	210	507		ບລາ	Sar
GIN	Arg	195	Leu	Vai	ser	val	200	var	SeI	Asp	WTG	205	ттр	Val	Ser
~ 1	Leu		<i>(</i> 1)	C	T 011	Dho		Dro	Dho	ωρ≂	Wal		Gln	Val	Ara
GIU		Leu	тъ	Ser	ьеu	215	vai	PIO	File	7117	220	-7-	GIII	Vul	411.9
m	210 Leu	Ara.	Dro	₹7 ⇒]	ย่อ		G] n	T.e.ii	Cl v	Glu		Δen	Glu	Glu	Phe
225	Den	мy	PLO	Val	230	мg	GIII	Leu	GLY	235	, , , ,	11011	014	024	240
	Leu	720	t/all	Gln.		T.e.ii	ນອງ	Δla	Tare		Len	Glv	Gln	Thr	
ALG	Leu	мg	Val	245	GIII	Tierr	var	niu	250	OLU		O-J		255	1
ጥኮ፦	Arg	ום.ז	ሞኮጕ		Ala	Agn	Lve	Ala		His	Met	Lvs	Ara		Ara
***	ALY	<u> </u>	260	110	- MAC	بإسد	-10	265					270		9
ui e	Pro	Ara		Ara	Pro	Gln	Ser		G) n	Ser	Ser	Phe		Pro	Ser
	ELU		ندا تنابيد												

		275					280					285			
Pro	Gly	Pro	Ser	Pro	Asp	Val	Gln	Leu	Ala	Thr	Leu	Ala	Gln	Arg	Val
	290					295					300				
Lys	Glu	Val	Leu	Pro	His	Val	Pro	Leu	Gly	Val	Ile	Gln	Arg	Asp	Leu
305					310					315					320
Ala	Lys	Thr	Gly	Cys	Val	Asp	Leu	Thr	Ile	Thr	Asn	Leu	Leu	Glu	Gly
				325					330					335	
Ala	Val	Ala	Phe	Met	Pro	Glu	Asp	Ile	Thr	Lys	Gly	Thr	Gln	Ser	Leu
			340					345					350		
Pro	Thr	Ala	Ser	Ala	Ser	Lys	Phe	Pro	Ser	Ser	Gly	Pro	Val	Thr	Pro
		355					360					365			
Gln	Pro	Thr	Ala	Leu	Thr	Phe	Ala	Lys	Ser	Ser	Trp	Ala	Arg	Gln	Glu
	370					375					380				
Ser	Leu	Gln	Glu	Arg	Lys	Gln	Ala	Leu	Tyr	Glu	Tyr	Ala	Arg	Arg	Arg
385					390					395					400
Phe	Thr	Glu	Arg	Arg	Ala	Gln	Glu	Ala	qeA						
				405					410						
<210)> 34	1													
<211	L> 48	33													
<212	2> PF	T													
<213	3> HC	e om	apie	ens											
<400	> 34	1													
Met	Glu	Glu	Gly	Gly	Gly	Gly	Val	Arg	Ser	Leu	Val	Pro	Gly	Gly	Pro
1				5					10					15	

 Met
 Glu
 Glu
 Gly
 Gly
 Val
 Arg
 Ser
 Leu
 Val
 Pro
 Gly
 Pro

 Val
 Leu
 5
 Leu
 Cys
 Gly
 Leu
 Leu
 Glu
 Ala
 Ser
 Gly
 Gly
 Arg

 Val
 Leu
 Val
 Leu
 Ser
 Asp
 Asp
 Ile
 Pro
 Pro
 Arg
 Val
 Asn
 Trp
 Pro

 Ala
 Leu
 Pro
 Gly
 Asp
 Asp
 Ile
 Pro
 Pro
 Arg
 Val
 Asn
 Trp
 Pro

 Gly
 Thr
 Glu
 Pro
 Ser
 Leu
 Pro
 Thr
 Thr
 Gly
 Val
 Leu
 Try
 Lys
 Glu
 Asp
 Lys
 Glu
 Lys
 Try
 Lys
 Glu
 Asp
 Try
 Lys
 Asp
 Try
 Lys
 Glu
 Lys
 Asp
 Try
 Lys
 Lys
 Try
 Lys
 Try
 Lys
 Try
 Lys
 Try
 Lys
 Try
 Lys
 Try
 Lys
 Try

PCT/JP99/06412

Gly	Pro	Asn	Pro	Arg	Glu	Leu	Leu	Glu	Pro	Leu	Phe	Lys	Gln	Ser	Ser
			100					105					110		
Cys	Ser	Tyr	Arg	Ile	Glu	Ser	Tyr	Trp	Thr	Tyr	Glu	Val	Суз	His	Gly
		115					120					125			
Lys	His	Ile	Arg	Gln	Tyr	His	Glu	Glu	Lys	Glu	Thr	Gly	Gln	Lys	Ile
	130					135					140				
Asn	Ile	His	Glu	Tyr	Tyr	Leu	Gly	Asn	Met	Leu	Ala	Lys	Asn	Leu	Leu
145					150					155					160
Phe	Glu	Lys	Glu	Arg	Glu	Ala	Glu	Glu	Lys	Glu	Lys	Ser	Asn	Glu	Ile
				165					170					175	
Pro	Thr	Lys	Asn	Ile	Glu	Gly	Gln	Met	Thr	Pro	Tyr	Tyr	Pro	Val	Gly
			180					185					190		
Met	Gly	Asn	Gly	Thr	Pro	Cys	Ser	Leu	Lys	Gln	Asn	Arg	Pro	Arg	Ser
		195					200					205			
Ser	Thr	Val	Met	Tyr	Ile	Cys	His	Pro	Glu	Ser	Lys	His	Glu	Ile	Leu
	210					215					220				
Ser	Val	Ala	Glu	Val	Thr	Thr	Cys	Glu	Tyr	Glu	Val	Val	Ile	Leu	Thr
225					230					235					240
Pro	Leu	Leu	Суз	Ser	His	Pro	Lys	Tyr	Arg	Phe	Arg	Ala	Ser	Pro	Val
				245					250					255	
Asn	Asp	Ile	Phe	Cys	Gln	Ser	Leu	Pro	Gly	Ser	Pro	Phe	Lys	Pro	Leu
			260					265					270		
Thr	Leu	Arg	Gln	Leu	Glu	Gln	Gln	Glu	Glu	Ile	Leu	Arg	Val	Pro	Phe
		275					280					285			
Arg	Arg	Asn	Lys	Glu	Glu	Asp	Leu	Gln	Ser	Thr	Lys	Glu	Glu	Arg	Phe
	290					295					300				
Pro	Ala	Ile	His	Lys	Ser	Ile	Ala	Ile	Gly	Ser	Gln	Pro	Val	Leu	Thr
305					310					315					320
Val	Gly	Thr	Thr	His	Ile	Ser	Lys	Leu	Thr	Asp	Asp	Gln	Leu	Ile	Lys
				325					330					335	
Glu	Phe	Leu	Ser	Gly	Ser	Tyr	Cys	Phe	Arg	Gly	Gly	Val	Gly	Trp	Trp
			340					345					350		
Lys	Tyr	Glu	Phe	Суз	Tyr	Gly	Lys	His	Val	His	Gln	Tyr	His	Glu	Asp
		355					360					365			
Lvs	Asp	Ser	Glv	Lvs	Thr	Ser	Val	Val	Val	Gly	Thr	Trp	Asn	Gln	Glu

	370)				375	;				380)				
Gli	ı His	: Ile	e Glu	ı TrŢ	Ala	Lys	Lys	a Asr	Thi	: Ala	Arg	Ala	а Туз	r His	s Leu	
385	i				390					395	;				400	
Glr	a Asp	Asp	Gly	Thr	Gln	Thr	· Va]	Arg	Met	: Val	Ser	His	; Phe	э Туг	Gly	
				405	;	•			410)				415	5	
Asr	Gly	' Asp	Ile	e Cys	Asp	Ile	Thi	Asp	Lys	Pro	Arg	Glr	ı Val	Thr	val	
			420)				425	•				430)		
Lys	Leu	Lys	Сув	Lys	Glu	Ser	Asp	Ser	Pro	His	Ala	Val	. Thr	: Val	. Tyr	
		435					440					445				
Met			Pro	His	Ser			TYI	Ile	Leu	Gly	Val	Glu	Ser	Pro	
	450					455					460					
		Cys	Lys	Ile		Asp	Thr	Ala	Asp		Asn	Gly	Leu	Leu	Ser	
465					470					475					480	
Leu	Pro	Asn														
<21	0> 3	5														
	1> 6															
	- 2> P															
			sapi	ens												
	0> 3:		-													
Met	Gly	Phe	Glu	Glu	Leu	Leu	Glu	Gln	Val	Gly	Gly	Phe	Gly	Pro	Phe	
1				5					10					15		
Gln	Leu	Arg	Asn	Val	Ala	Leu	Leu	Ala	Leu	Pro	Arg	Val	Leu	Leu	Pro	
			20					25					30			
Leu	His	Phe	Leu	Leu	Pro	Ile	Phe	Leu	Ala	Ala	Val	Pro	Ala	His	Arg	
		35					40					45				
Суз	Ala	Leu	Pro	Gly	Ala	Pro	Ala	Asn	Phe	Ser	His	Gln	Asp	Val	Trp	
	50					55					60					
	Glu	Ala	His	Leu	Pro .	Arg	Glu	Pro	qzA	Gly	Thr	Leu	Ser	Ser	Cys	
65					70					75					80	
Leu	Arg	Phe	Ala		Pro	Gln	Ala	Leu		Asn	Thr	Thr	Leu	-	Glu	
	_		_	85		- -			90					95		
Glu	Arg	Gln	Ser	Arq	Gly (Glu	Leu	Glu	Asp	Glu	Pro	Ala	Thr	Val	Pro	

105

110

100

PCT/JP99/06412

Cys	Ser	Gln	Gly	Trp	Glu	Tyr	Asp	His	Ser	Glu	Phe	Ser	Ser	Thr	Ile
		115					120					125			
Ala	Thr	Glu	Ser	Gln	Val	Gly	Ile	Tyr	Ile	Ile	His	Leu	Glu	Val	Glu
	130					135					140				
Cys	Arg	Trp	Arg	Gln	Ser	Pro	Trp	Glu	Ala	Ala	Gly	Arg	Gly	Leu	Pro
145					150					155					160
Trp	Glu	Glu	Ala	Glu	Ala	Ala	Gly	Leu	Gly	Arg	Asp	Lys	Val	Ser	Tyr
				165					170					175	
Ser	Pro	Ser	Trp	Arg	Glu	Ser	Leu	Gly	Gly	Leu	Leu	Ser	Gly	Met	Glu
			180					185					190		
Trp	Asp	Leu	Val	Суз	Glu	Gln	Lys	Gly	Leu	Asn	Arg	Ala	Ala	Ser	Thr
		195					200					205			
Phe	Phe	Phe	Ala	Gly	Val	Leu	Val	Gly	Ala	Val	Ala	Phe	_. Gly	Tyr	Leu
	210					215					220				
Ser	Asp	Arg	Phe	Gly	Arg	Arg	Arg	Leu	Leu	Leu	Val	Ala	Tyr	Val	Ser
225					230					235					240
Thr	Leu	Val	Leu	Gly	Leu	Ala	Ser	Ala	Ala	Ser	Val	Ser	Tyr	Val	Met
				245					250					255	
Phe	Ala	Ile	Thr	Arg	Thr	Leu	Thr	Gly	Ser	Ala	Leu	Ala	Gly	Phe	Thr
			260					265					270		
Ile	Ile	Val	Met	Pro	Leu	Glu	Leu	Glu	Trp	Leu	Asp	Val	Glu	His	Arg
		275					280					285			
Thr	Val	Ala	Gly	Val	Leu	Ser	Ser	Thr	Phe	Trp	Thr	Gly	Gly	Val	Met
	290					295					300				
Leu	Leu	Ala	Leu	Val	Gly	Tyr	Leu	Ile	Arg	Asp	Trp	Arg	Trp	Leu	Leu
305					310					315					320
Leu	Ala	Val	Thr	Leu	Pro	Cys	Ala	Pro	Gly	Ile	Leu	Ser	Leu	Trp	Trp
				325					330					335	
Val	Pro	Glu	Ser	Ala	Arg	Trp	Leu	Leu	Thr	Gln	Gly	His	Val	Lys	Glu
			340					345					350		
Ala	His	Arg	Tyr	Leu	Leu	His	Cys	Ala	Arg	Leu	Asn	Gly	Arg	Pro	Val
		355					360					365			
Cys	Glu	Asp	Ser	Phe	Ser	Gln	Glu	Ala	Val	Ser	Lys	Val	Ala	Ala	Gly
	370				•	375					380				
Glu	Arg	Val	Val	Arg	Arg	Pro	Ser	Tyr	Leu	Asp	Leu	Phe	Arg	Thr	Pro

385					390					395	i				400
Arg	Leu	Arg	His	Ile	Ser	Leu	Суз	Cys	Val	Val	Val	Trp	Phe	Gly	Val
				405					410					415	
Asn	Phe	Ser	Tyr	Tyr	Gly	Leu	Ser	Leu	Asp	Val	Ser	Gly	Leu	Gly	Leu
			420					425					430		
Asn	Val	Tyr	Gln	Thr	Gln	Leu	Leu	Phe	Gly	Ala	Val	Glu	Leu	Pro	Ser
		435					440					445			
Lys	Leu	Leu	Val	Tyr	Leu	Ser	Val	Arg	Tyr	Ala	Gly	Arg	Arg	Leu	Thr
	450					455					460				
Gln	Ala	Gly	Thr	Leu	Leu	Gly	Thr	Ala	Leu	Ala	Phe	Gly	Thr	Arg	Leu
465´					470					475					480
Leu	Val	Ser	Ser	Asp	Met	Lys	Ser	Trp	Ser	Thr	Val	Leu	Ala	Val	Met
				485					490					495	
Gly	Lys	Ala	Phe	Ser	Glu	Ala	Ala	Phe	Thr	Thr	Ala	Tyr	Leu	Phe	Thr
			500					505					510		
Ser	Glu		Tyr	Pro	Thr	Val	Leu	Arg	Gln	Thr	Gly	Met	Gly	Leu	Thr
		515					520					525			
		Val	Gly	Arg	Leu	Gly	Gly	Ser	Leu	Ala	Pro	Leu	Ala	Ala	Leu
	530					535					540				
Leu	Asp	Gly	Val	Trp	Leu	Ser	Leu	Pro	Lys	Leu	Thr	Tyr	Gly	Gly	Ile
545					550					555					560
Ala	Leu	Leu	Ala		Gly	Thr	Ala	Leu	Leu	Leu	Pro	Glu	Thr	Arg	Gln
				565					570					575	
Ala	Gln	Leu	Pro	Glu	Thr	Ile	Gln	Asp	Val	Glu	Arg	Lys	Ser	Ala	Pro
			580					585					590		
Thr .			Gln	Glu	Glu	Glu	Met	Pro	Met	Lys	Gln	Val	Gln	Asn	
		595					600					605			
<210	> 36														

<211> 314

<212> PRT

<213> Homo sapiens

<400> 36

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg Ala 1 5 10 15

PCT/JP99/06412

GIY	Leu	Arg	гÃа	PIO	GIU	ser	GIII	GIU	MIG	Ala	FLO	Doa		O _T	
			20					25					30		
Суз	Gly	Arg	Arg	Val	Ile	Thr	Ser	Arg	Ile	Val	Gly	Gly	Glu	qaA	Ala
		35					40					45			
Glu	Leu	Gly	Arg	Trp	Pro	Trp	Gln	Gly	Ser	Leu	Arg	Leu	Trp	Asp	Sei
	50					55					60				
His	Val	Cys	Gly	Val	Ser	Leu	Leu	Ser	His	Arg	Trp	Ala	Leu	Thr	Ala
65					70					75					80
Ala	His	Cys	Phe	Glu	Thr	Tyr	Ser	Asp	Leu	Ser	Asp	Pro	Ser	Gly	TI
				85					90					95	
Met	Val	Gln	Phe	Gly	Gln	Leu	Thr	Ser	Met	Pro	Ser	Phe	Trp	Ser	Let
			100					105					110		
Gln	Ala	Tyr	Tyr	Thr	Arg	Tyr	Phe	Val	Ser	Asn	Ile	Tyr	Leu	Ser	Pro
		115					120					125			
Arg	Tyr	Leu	Gly	Asn	Ser	Pro	Tyr	Asp	Ile	Ala	Leu	Val	Lys	Leu	Ser
	130					135					140				
Ala	Pro	Val	Thr	Tyr	Thr	Lys	His	Ile	Gln	Pro	Ile	Cys	Leu	Gln	Ala
145					150					155					160
Ser	Thr	Phe	Glu	Phe	Glu	Asn	Arg	Thr	Asp	Cys	Trp	Val	Thr	Gly	TIE
				165					170					175	
Gly	Tyr	Ile	Lys	Glu	Asp	Glu	Ala	Leu	Pro	Ser	Pro	His	Thr	Leu	Glr
			180					185					190		
Glu	Val	Gln	Val	Ala	Ile	Ile	Asn	Asn	Ser	Met	Cys	Asn	His	Leu	Phe
		195					200					205			
Leu	Lys	Tyr	Ser	Phe	Arg	Lys	Asp	Ile	Phe	Gly	Asp	Met	Val	Суз	Alé
	210					215					220				
Gly	Asn	Ala	Gln	Gly	Gly	Lys	Asp	Ala	CAa	Phe	Gly	qeA	Ser	Gly	Gl
225					230					235					240
Pro	Leu	Ala	Суз	Asn	Lys	Asn	Gly	Leu	Trp	Tyr	Gln	Ile	Gly	Val	Va]
				245					250					255	
Ser	Trp	Gly	Val	Gly	Cys	Gly	Arg	Pro	Asn	Arg	Pro	Gly	Val	Tyr	Thr
			260					265					270		
Asn	Ile	Ser	His	His	Phe	Glu	Trp	Ile	Gln	Lys	Leu	Met	Ala	Gln	Sex
		275					280					285			
Gly	Met	Ser	Gln	Pro	Asp	Pro	Ser	Trp	Pro	Leu	Leu	Phe	Phe	Pro	Let

290 295 300 Leu Trp Ala Leu Pro Leu Leu Gly Pro Val 305 310 <210> 37 <211> 94 <212> PRT <213> Homo sapiens <400> 37 Met Glu Leu Ser Asp Val Thr Leu Ile Glu Gly Val Gly Asn Glu Val 1 5 10 15 Met Val Val Ala Gly Val Val Val Leu Ile Leu Ala Leu Val Leu Ala 20 30 25 Trp Leu Ser Thr Tyr Val Ala Asp Ser Gly Ser Asn Gln Leu Leu Gly 40 Ala Ile Val Ser Ala Gly Asp Thr Ser Val Leu His Leu Gly His Val 50 55 60 Asp His Leu Val Ala Gly Gln Gly Asn Pro Glu Pro Thr Glu Leu Pro His Pro Ser Glu Ala Asn Thr Ser Leu Asp Lys Lys Ala Arg 85 90 <210> 38 <211> 218 <212> PRT <213> Homo sapiens <400> 38 Met Ala Ser Lys Ile Gly Ser Arg Arg Trp Met Leu Gln Leu Ile Met 10 Gln Leu Gly Ser Val Leu Leu Thr Arg Cys Pro Phe Trp Gly Cys Phe 20 25 30 Ser Gln Leu Met Leu Tyr Ala Glu Arg Ala Glu Ala Arg Arg Lys Pro 40 Asp Ile Pro Val Pro Tyr Leu Tyr Phe Asp Met Gly Ala Ala Val Leu 50 55 60

PCT/JP99/06412

Cys	Ala	Ser	Pne	Met	ser	rne	GTĀ	vaı	гЛз	Arg	Arg	Trp	Fue	ATa	re
65					70					75					80
Gly	Ala	Ala	Leu	Gln	Leu	Ala	Ile	Ser	Thr	Tyr	Ala	Ala	Tyr	Ile	Gly
				85					90					95	
Gly	Tyr	Val	His	Tyr	Gly	Asp	Trp	Leu	Lys	Val	Arg	Met	Tyr	Ser	Arg
			100					105					110		
Thr	Val	Ala	Ile	Ile	Gly	Gly	Leu	Ser	Cys	Val	Gly	Gln	Arg	Cys	Tr
		115					120					125			
Gly	Ala	Val	Pro	Pro	Glu	Thr	Ser	Gln	Pro	Leu	Pro	Ala	Val	His	Arg
	130					135					140				
Pro	Gly	Val	Pro	Gly	Tyr	Leu	Pro	His	Leu	Cys	Gly	Leu	Leu	Thr	Ala
145					150					155					160
Ala	Gln	Gln	Gly	Gly	Pro	Ala	Gly	Val	Ser	Glu	Pro	Ser	Pro	Arg	Arg
				165					170					175	
Gly	Ala	Asp	Asp	Pro	Ala	Val	Leu	Arg	Ala	Val	Trp	His	Pro	Gly	Pro
			180					185					190		
Gly	Leu	Ser	Val	Arg	Leu	Leu	Arg	Asp	Pro	Arg	Суз	Pro	qaA	Pro	Gly
		195					200					205			
Cys	Thr	Ala	Ala	Pro	Cys	His	Ala	Ala	His						
	210					215									
<210)> 39	•													
<21	l> 46	50													
<212	2> PF	TS.					•								
<213	3> Ho		sapie	ens											
<400)> 39	•													
Met	Phe	Thr	Ile	Lys	Leu	Leu	Leu	Phe	Ile	Val	Pro	Leu	Val	Ile	Ser
1				5					10					15	
Ser	Arg	Ile	Asp	Gln	Asp	Asn	Ser	Ser	Phe	Asp	Ser	Leu	Ser	Pro	Glu
			20					25					30		
Pro	Lys	Ser	Arg	Phe	Ala	Met	Leu	Asp	Asp	Val	Lys	Ile	Leu	Ala	Asn
		35			•		40					45			
Gly	Leu	Leu	Gln	Leu	Gly	His	Gly	Leu	Lys	Asp	Phe	Val	His	Lys	Thr
	50					55					60				
T	~1	C1 5	T10	A on	A	T10	Dhe	Gln	T 170	T.011	λen	Tle	Phe	Acn	Gln

65					70					75	•				80
Ser	Phe	Tyr	Asp	Leu	Ser	Leu	Gln	Thr	Ser	Glu	ılle	Lys	Glu	Glu	Glu
				85					90)				95	i
Lys	Glu	Leu	Arg	Arg	Thr	Thr	Tyr	Lys	Leu	Gln	Val	. Lys	. Asn	Glu	Glu
			100					105	,				110	ı	
Val	Lys	Asn	Met	Ser	Leu	Glu	Leu	Asn	Ser	. Ta	Leu	Glu	Ser	Leu	Let
		115					120					125	ı		
Glu	Glu	Lys	Ile	Leu	Leu	Gln	Gln	Lys	Val	Lys	Туг	Leu	Glu	Glu	Glr
	130					135					140				
Leu	Thr	Asn	Leu	Ile	Gln	Asn	Gln	Pro	Glu	Thr	Pro	Glu	His	Pro	Glu
145					150					155					160
Val	Thr	Ser	Leu	Lys	Thr	Phe	Val	Glu	Lys	Gln	Asp	Asn	Ser	Ile	Lys
				165					170					175	
qeA	Leu	Leu	Gln	Thr	Val	Glu	Asp	Gln	Tyr	Lys	Gln	Leu	Asn	Gln	Gln
			180					185					190		
His	Ser	Gln	Ile	Lys	Glu	Ile	Glu	Asn	Gln	Leu	Arg	Arg	Thr	Ser	Ile
		195					200					205			
Gln	Glu	Pro	Thr	Glu	Ile	Ser	Leu	Ser	Ser	Lys	Pro	Arg	Ala	Pro	Arg
	210					215					220				
Thr	Thr	Pro	Phe	Leu	Gln	Leu	Asn	Glu	Ile	Arg	Asn	Val	Lys	His	Asp
225					230					235					240
Gly	Ile	Pro	Ala	Glu	Cys	Thr	Thr	Ile	Tyr	Asn	Arg	Gly	Glu	His	Thr
				245					250			-		255	
Ser	Gly	Met	Tyr	Ala	Ile	Arg	Pro	Ser	Asn	Ser	Gln	Val	Phe	His	Val
			260					265					270		
Tyr	Cys	Asp	Val	Ile	Ser	Gly	Ser	Pro	Trp	Thr	Leu	Ile	Gln	His	Arg
		275					280					285			
Ile	Asp	Gly	Ser	Gln	Asn	Phe	Asn	Glu	Thr	Trp	Glu	Asn	Tyr	Lys	Tyr
	290					295					300				
Gly	Phe	Gly	Arg	Leu	Asp	Gly	Glu	Phe	Trp	Leu	Gly	Leu	Glu	Lys	Ile
305					310					315					320
Tyr	Ser	Ile	Val	Lys	Gln	Ser	Asn	Tyr	Val	Leu	Arg	Ile	Glu	Leu	Glu
				325					330					335	
Asp	Trp	Lys		Asn	Lys	His	Tyr	Ile	Glu	Tyr	Ser	Phe	Tyr	Leu	Gly
			240					245					250		

66/233

Asn His Glu Thr Asn Tyr Thr Leu His Leu Val Ala Ile Thr Gly Asn 355 360 365 Val Pro Asn Ala Ile Pro Glu Asn Lys Asp Leu Val Phe Ser Thr Trp 375 Asp His Lys Ala Lys Gly His Phe Asn Cys Pro Glu Gly Tyr Ser Gly 390 395 400 385 Gly Trp Trp Trp His Asp Glu Cys Gly Glu Asn Asn Leu Asn Gly Lys 405 410 Tyr Asn Lys Pro Arg Ala Lys Ser Lys Pro Glu Arg Arg Arg Gly Leu 425 Ser Trp Lys Ser Gln Asn Gly Arg Leu Tyr Ser Ile Lys Ser Thr Lys 445 435 440 Met Leu Ile His Pro Thr Asp Ser Glu Ser Phe Glu 460 450 455

<210> 40

<211> 216

<212> PRT

<213> Homo sapiens

<400> 40

Met Val Pro Met His Leu Leu Gly Arg Leu Glu Lys Pro Leu Leu Leu 1 5 10 15

Leu Cys Cys Ala Ser Phe Leu Leu Gly Leu Ala Leu Leu Gly Ile Lys 20 25 30

Thr Asp Ile Thr Pro Val Ala Tyr Phe Phe Leu Thr Leu Gly Gly Phe 35 40 45

Phe Leu Phe Ala Tyr Leu Leu Val Arg Phe Leu Glu Trp Gly Leu Arg

Phe Leu Phe Ala Tyr Leu Leu Val Arg Phe Leu Glu Trp Gly Leu Arg
50 55 60

Ser Gln Leu Gln Ser Met Gln Thr Glu Ser Pro Gly Pro Ser Gly Asn 65 70 75 80

Ala Arg Asp Ash Glu Ala Phe Glu Val Pro Val Tyr Glu Glu Ala Val 85 90 95

Val Gly Leu Glu Ser Gln Cys Arg Pro Gln Glu Leu Asp Gln Pro Pro
100 105 110

Pro Tyr Ser Thr Val Val Ile Pro Pro Ala Pro Glu Glu Glu Gln Pro

115 120 125 Ser His Pro Glu Gly Ser Arg Arg Ala Lys Leu Glu Gln Arg Arg Met 135 Ala Ser Glu Gly Ser Met Ala Gln Glu Gly Ser Pro Gly Arg Ala Pro 145 150 155 Ile Asn Leu Arg Leu Arg Gly Pro Arg Ala Val Ser Thr Ala Pro Asp 165 170 175 Leu Gln Ser Leu Ala Ala Val Pro Thr Leu Glu Pro Leu Thr Pro Pro 185 Pro Ala Tyr Asp Val Cys Phe Gly His Pro Asp Asp Asp Ser Val Phe 195 200 205 Tyr Glu Asp Asn Trp Ala Pro Pro 210 215 <210> 41

<211> 4335

<212> DNA

<213> Homo sapiens

<400> 41

atgragggre caregetert garegergre caretertet gegtgtgrae egergegetg 60 geogtggete eegggeeteg gtttetggtg acageeceag ggateateag geoeggagga 120 aatgtgacta ttggggtgga gcttctggaa cactgccctt cacaggtgac tgtgaaggcg 180 gagetgetea agacageate aaaceteact qtetetqtee tqqaaqeaqa aqqaqtettt 240 gaaaaagget ettttaagae aettaetett eeateactae etetgaacag tgeagatgag 300 atttatgage taegtgtaac eggaegtace eaggatgaga ttttattete taatagtace 360 cgcttatcat ttgagaccaa gagaatatct gtcttcattc aaacagacaa ggccttatac 420 aagccaaagc aagaagtgaa gtttcgcatt gttacactct tctcagattt taagccttac 480 aaaacctctt taaacattct cattaaggac cccaaatcaa atttgatcca acagtggttg 540 tcacaacaaa gtgatcttgg agtcatttcc aaaacttttc agctatcttc ccatccaata 600 cttggtgact ggtctattca agttcaagtg aatgaccaga catattatca atcatttcag 660 gtttcagaat atgtattacc aaaatttgaa gtgactttgc agacaccatt atattgttct 720 atgaattota agcatttaaa tggtaccatc acggcaaagt atacatatgg gaagccagtg 780 aaaggagacg taacgettae atttttaeet ttateetttt ggggaaagaa gaaaaatatt 840 acaaaaacat ttaagataaa tggatctgca aacttctctt ttaatgatga agagatgaaa 900 aatgtaatgg attottoaaa tggaotttot gaatacotgg atotatottt cootggaoca 960

gtagaaattt	taaccacagt	gacagaatca	gttacaggta	tttcaagaaa	tgtaagcact	1020
aatgtgttct	tcaagcaaca	tgattacatc	attgagtttt	ttgattatac	tactgtcttg	1080
aagccatctc	tcaacttcac	agccactgtg	aaggtaactc	gtgctgatgg	caaccaactg	1140
actcttgaag	aaagaagaaa	taatgtagtc	ataacagtga	cacagagaaa	ctatactgag	1200
tactggagcg	gatctaacag	tggaaatcag	aaaatggaag	ctgttcagaa	aataaattat	1260
actgtcccc	aaagtggaac	ttttaagatt	gaattcccaa	tcctggagga	ttccagtgag	1320
ctacagttga	aggcctattt	ccttggtagt	aaaagtagca	tggcagttca	tagtetgttt	1380
aagtotoota	gtaagacata	catccaacta	aaaacaagag	atgaaaatat	aaaggtggga	1440
togecttttg	agttggtggt	tagtggcaac	aaacgattga	aggagttaag	ctatatggta	1500
gtatccaggg	gacagttggt	ggctgtagga	aaacaaaatt	caacaatgtt	ctctttaaca	1560
ccagaaaatt	cttggactcc	aaaagcctgt	gtaattgtgt	attatattga	agatgatggg	1620
gaaattataa	gtgatgttct	aaaaattcct	gttcagcttg	tttttaaaaa	taagataaag	1680
ctatattgga	gtaaagtgaa	agctgaacca	tctgagaaag	tctctcttag	gatctctgtg	1740
acacageetg	actccatagt	tgggattgta	gctgttgaca	aaagtgtgaa	tctgatgaat	1800
gcctctaatg	atattacaat	ggaaaatgtg	gtccatgagt	tggaacttta	taacacagga	1860
tattatttag	gcatgttcat	gaattetttt	gcagtctttc	aggaatgtgg	actctgggta	1920
ttgacagatg	caaacctcac	gaaggattat	attgatggtg	tttatgacaa	tgcagaatat	1980
gctgagaggt	ttatggagga	aaatgaagga	catattgtag	atattcatga	ettttetttg	2040
ggtagcagtc	cacatgtccg	aaagcatttt	ccagagactt	ggatttggct	agacaccaac	2100
atgggttcca	ggatttacca	agaatttgaa	gtaactgtac	ctgattctat	cacttcttgg	2160
gtggctactg	gttttgtgat	ctctgaggac	ctgggtcttg	gactaacaac	tactccagtg	2220
gagetecaag	ccttccaacc	atttttcatt	tttttgaatc	ttccctactc	tgttatcaga	2280
ggtgaagaat	ttgctttgga	aataactata	ttcaattatt	tgaaagatgc	cactgaggtt	2340
aaggtaatca	ttgagaaaag	tgacaaattt	gatattctaa	tgacttcaag	tgaaataaat	2400
gccacaggcc	accagcagac	ccttctggtt	cccagtgagg	atggggcaac	tgttctttt	2460
cccatcaggc	caacacatct	gggagaaatt	cctatcacag	tcacagetet	ttcacccact	2520
gcttctgatg	ctatcaccca	gatgatttta	gtaaaggctg	aaggaataga	aaaatcatat	2580
tcacaatcca	tcttattaga	cttgactgac	aataggctac	agagtaccct	gaaaactttg	2640
agtttctcat	ttcctcctaa	tacagtgact	ggcagtgaaa	gagttcagat	cactgcaatt	2700
ggagatgttc	ttggtccttc	catcaatggc	ttagcctcat	tgattcggat	gccttatggc	2760
tgtggtgaac	agaacatgat	aaattttgct	ccaaatattt	acattttgga	ttatctgact	2820
aaaaagaaac	aactgacaga	taatttgaaa	gaaaaagctc	tttcatttat	gaggcaaggt	2880
taccagagag	aacttctcta	tcagagggaa	gatggctctt	tcagtgcttt	tgggaattat	2940
gaccettetg	ggagcacttg	gttgtcagct	tttgttttaa	gatgtttcct	tgaageegat	3000
ccttacatag	atattgatca	gaatgtgtta	cacagaacat	acacttggct	taaaggacat	3060

cagaaatcca	acggtgaatt	ttgggatcca	ggaagagtga	ttcatagtga	gcttcaaggt	3120
ggcaataaaa	gtccagtaac	acttacagcc	tatattgtaa	cttctctcct	gggatataga	3180
aagtatcagc	ctaacattga	tgtgcaagag	tctatccatt	ttttggagtc	tgaattcagt	3240
agaggaattt	cagacaatta	tactctagcc	cttataactt	atgcattgtc	atcagtgggg	3300
agtcctaaag	cgaaggaagc	tttgaatatg	ctgacttgga	gagcagaaca	agaaggtggc	3360
atgcaattct	gggtgtcatc	agagtccaaa	ctttctgact	cctggcagcc	acgctccctg	3420
gatattgaag	ttgcagccta	tgcactgctc	tcacacttct	tacaatttca	gacttctgag	3480
ggaatcccaa	ttatgaggtg	gctaagcagg	caaagaaata	gettgggtgg	ttttgcatct	3540
actcaggata	ccactgtggc	tttaaaggct	ctgtctgaat	ttgcagccct	aatgaataca	3600
gaaaggacaa	atatccaagt	gaccgtgacg	gggcctagct	caccaagtcc	tgtaaagttt	3660
ctgattgaca	cacacaaccg	cttactcctt	cagacagcag	agettgetgt	ggtacagcca	3720
acggcagtta	atatttccgc	aaatggtttt	ggatttgcta	tttgtcagct	caatgttgta	3780
tataatgtga	aggettetgg	gtcttctaga	agacgaagat	ctatccaaaa	tcaagaagcc	3840
tttgatttag	atgttgctgt	aaaagaaaat	aaagatgatc	tcaatcatgt	ggatttgaat	3900
gtgtgtacaa	getttteggg	cccgggtagg	agtggcatgg	ctcttatgga	agttaaccta	3960
ttaagtggct	ttatggtgcc	ttcagaagca	atttctctga	gcgagacagt	gaagaaagtg	4020
gaatatgatc	atggaaaact	caacctctat	ttagattctg	taaatgaaac	ccagttttgt	4080
gttaatattc	ctgctgtgag	aaactttaaa	gtttcaaata	cccaagatgc	ttcagtgtcc	4140
atagtggatt	actatgagcc	aaggagacag	gcggtgagaa	gttacaactc	tgaagtgaag	4200
ctgtcctcct	gtgacctttg	cagtgatgtc	cagggctgcc	gtccttgtga	ggatggagct	4260
tcaggctccc	atcatcactc	ttcagtcatt	tttattttct	gtttcaagct	tctgtacttt	4320
atggaacttt	ggctg					4335
<210> 42		•				
<211> 1746						
<212> DNA						
<213> Homo	sapiens					
<400> 42						
atgttccccg	egggeeeee	cagccacagc	ctcctccggc	tecectget	gcagttgctg	60
ctactggtgg	tgcaggccgt	ggggaggggg	ctgggccgcg	ccagcccggc	cgggggcccc	120
ctggaagatg	tggtcatcga	gaggtaccac	atccccaggg	cctgtccccg	ggaagtgcag	180
atgggggatt	ttgtgcgcta	ccactacaac	ggcacttttg	aagatggcaa	gaagtttgat	240
tcaagctatg	atcgcaacac	cttggtggcc	atcgtggtgg	gtgtggggeg	cctcatcact	300
ggcatggacc	gaggcctcat	gggcatgtgt	gtcaacgagc	ggcgacgcct	cattgtgcct	360
cccacctgg	gctatgggag	categgeetg	gcggggctca	ttccaccgga	tgccaccctc	420

300

360

70/233

tacttcgatg tggttctgct	ggatgtgtgg	aacaaggaag	acaccgtgca	ggtgagcaca	480
ttgctgcgcc cgccccactg	cccccgcatg	gtccaggacg	gcgactttgt	ccgctaccac	540
tacaatggca ccctgctgga	cggcacctcc	ttcgacacca	gctacagtaa	gggcggcact	600
tatgacacct acgteggete	tggttggctg	atcaagggca	tggaccaggg	gctgctgggc	660
atgtgtcctg gagagagaag	gaagattatc	atccctccat	teetggeeta	tggcgagaaa	720
ggctatggga cggtgatccc	cccacaggcc	tegetggtet	ttcacgtcct	cctgattgac	780
gtgcacaacc cgaaggacgc	tgtccagcta	gagacgctgg	agctccccc	cggctgtgtc	840
cgcagagccg gggccgggga	cttcatgcgc	taccactaca	atggctcctt	gatggacggc	900
accetetteg attecageta	ctcccgcaac	cacacctaca	atacctatat	cgggcagggt	960
tacatcatcc ccgggatgga	ccaggggctg	cagggtgcct	gcatggggga	acgccggaga	1020
attaccatcc ccccgcacct	cgcctatggg	gagaatggaa	ctggagacaa	gatecetgge	1080
tetgeegtge taatetteaa	cgtccatgtc	attgacttcc	acaaccctgc	ggatgtggtg	1140
gaaatcagga cactgtcccg	gecatetgag	acctgcaatg	agaccaccaa	gcttggggac	1200
tttgttcgat accattacaa	ctgttctttg	ctggacggca	cccagctgtt	cacctcgcat	1260
gactacgggg cccccagga	ggcgactctc	ggggccaaca	aggtgatcga	aggeetggae	1320
acgggcctgc agggcatgtg	tgtgggagag	aggcggcagc	teategtgee	cccgcacctg	1380
geceaegggg agagtggage	ccggggagtc	ccaggcagtg	ctgtgctgct	gtttgaggtg	1440
gagetggtgt ceegggagga	tgggctgccc	acaggetace	tgtttgtgtg	gcacaaggac	1500
cctcctgcca acctgtttga	agacatggac	ctcaacaagg	atggcgaggt	ccctccggag	1560
gagtteteca cetteateaa	ggctcaagtg	agtgagggca	aaggacgcct	catgcctggg	1620
caggaccetg agaaaaccat	aggagacatg	ttccagaacc	aggaccgcaa	ccaggacggc	1680
aagatcacag tegacgaget	caagctgaag	tcagatgagg	acgaggagcg	ggtccacgag	1740
gagete					1746
	•				
<210> 43					
<211> 1230					
<212> DNA					
<213> Homo sapiens					
<400> 43					
atggagette ceteagggee	ggggccggag	cggctctttg	actcgcaccg	getteegggt	60
gactgettee tactgetegt	getgetgete	tacgcgccag	tegggttetg	ceteetegte	120
ctgcgcctct ttctcgggat	ccacgtcttc	ctggtcagct	gegegetgee	agacagcgtc	180
cttcgcagat tcgtagtgcg	gaccatgtgt	gcggtgctag	ggetegtgge	ccggcaggag	240

gactccggac tccgggatca cagtgtcagg gtcctcattt ccaaccatgt gacacctttc

gaccacaaca tagtcaattt gcttaccacc tgtagcaccc ctctactcaa tagtcccccc

agctttgtgt	gctggtctcg	gggcttcatg	gagatgaatg	ggcggggga	gttggtggag	420
tcactcaaga	gattctgtgc	ttccacgagg	cttccccca	ctcctctgct	gctattccct	480
gaggaagagg	ccaccaatgg	ccgggagggg	ctcctgcgct	tcagttcctg	gccattttct	540
atccaagatg	tggtacaacc	tcttaccctg	caagttcaga	gacccctggt	ctctgtgacg	600
gtgtcagatg	cctcctgggt	ctcagaactg	ctgtggtcac	ttttegteee	tttcacggtg	660
tatcaagtaa	ggtggcttcg	tectgttcat	cgccaactag	gggaagcgaa	tgaggagttt	720
gcactccgtg	tacaacagct	ggtggccaag	gaattgggcc	agacagggac	acggctcact	780
ccagctgaca	aagcagagca	catgaagcga	caaagacacc	ccagattgcg	ccccagtca	840
gcccagtctt	ctttccctcc	ctcccctggt	ccttctcctg	atgtgcaact	ggcaactctg	900
gctcagagag	tcaaggaagt	tttgccccat	gtgccattgg	gtgtcatcca	gagagacetg	960
gccaagactg	gctgtgtaga	cttgactatc	actaatctgc	ttgagggggc	cgtagctttc	1020
atgeetgaag	acatcaccaa	gggaactcag	tccctaccca	cagcctctgc	ctccaagttt	1080
cccagctctg	gcccggtgac	ccctcagcca	acagccctaa	catttgccaa	gtetteetgg	1140
gcccggcagg	agageetgea	ggagcgcaag	caagcactat	atgaatacgc	aagaaggaga	1200
ttcacagaga	gacgagccca	ggaggctgac				1230

<210> 44

<211> 1449

<212> DNA

<213> Homo sapiens

<400> 44

atggaggaag	gaggeggegg	cgtacggagt	ctggtcccgg	gegggeeggt	gttactggtc	60
ctctgcggcc	tectggagge	gteeggegge	ggccgagccc	ttcctcaact	cagcgatgac	120
atccctttcc	gagtcaactg	gcccggcacc	gagttctctc	tgcccacaac	tggagtttta	180
tataaagaag	ataattatgt	catcatgaca	actgcacata	aagaaaaata	taaatgcata	240
cttccccttg	tgacaagtgg	ggatgaggaa	gaagaaaagg	attataaagg	ccctaatcca	300
agagagcttt	tggagccact	atttaaacaa	agcagttgtt	cctacagaat	tgagtcttat	360
tggacttacg	aagtatgtca	tggaaaacac	attcggcagt	accatgaaga	gaaagaaact	420
ggtcagaaaa	taaatattca	cgagtactac	cttgggaata	tgttggccaa	gaaccttcta	480
tttgaaaaag	aacgagaagc	agaagaaaag	gaaaaatcaa	atgagattcc	cactaaaaat	540
atcgaaggtc	agatgacacc	atactatcct	gtgggaatgg	gaaatggtac	accttgtagt	600
ttgaaacaga	accggcccag	atcaagtact	gtgatgtaca	tatgtcatcc	tgaatctaag	660
catgaaattc	tttcagtagc	tgaagttaca	acttgtgaat	atgaagttgt	cattttgaca	720
ccactcttgt	gcagtcatcc	taaatatagg	ttcagagcat	ctcctgtgaa	tgacatattt	780
tgtcaatcac	tgccaggatc	tocatttaag	cccctcaccc	tgaggcagct	ggagcagcag	840

gaagaaatac taagggtgcc ttttaggaga aataaagagg aagattt	gca atcaactaaa 900
gaagagagat ttccagcgat ccacaagtcg attgctattg gctctca	agec agtgeteact 960
gttgggacaa cccacatatc caaattgaca gatgaccaac tcataas	aga gtttcttagt 1020
ggttcttact gctttcgtgg gggtgtcggt tggtggaaat atgaatt	ctg ctatggcaaa 1080
catgtacatc aataccatga ggacaaggat agtgggaaaa cctctgt	ggt tgtcgggaca 1140
tggaaccaag aagagcatat tgaatgggct aagaagaata ctgctag	gage ttatcatett 1200
caagacgatg gtacccagac agtcaggatg gtgtcacatt tttatgg	gaaa tggagatatt 1260
tgtgatataa ctgacaaacc aagacaggtg actgtaaaac taaagtg	gcaa agaatcagat 1320
teaceteatg etgttactgt atatatgeta gageeteact cetgtes	aata tattottggg 1380
gttgaatete cagtgatetg taaaatetta gatacageag atgaaaa	atgg acttctttct 1440
ctcccaac	1449
<210> 45	
<211> 1821	
<212> DNA	
<213> Homo sapiens	
<400> 45	
atgggetttg aggagetget ggageaggtg ggeggetttg ggecett	cca actgcggaat 60
gtggcactgc tggccctgcc ccgagtgctg ctaccactgc acttcct	cet geceatette 120
ctggctgccg tgcctgccca ccgatgtgcc ctgccgggtg cccctgc	caa cttcagccat 180
caggatgtgt ggctggaggc ccatcttccc cgggagcctg atggcac	eget cagetectge 240
ctccgctttg cctatcccca ggctctcccc aacaccacgt tggggga	aaga aaggcagagc 300
egtggggage tggaggatga acctgccaca gtgccctgct ctcaggg	getg ggagtaegae 360
cactcagaat tetectetae cattgeaact gagteecagg teggtat	tta cataatccat 420
ctggaggtgg aatgtcggtg gaggcagtct ccctgggagg cagcagg	steg aggeetteet 480
tgggaagaag ctgaggctgc aggactgggg agggacaaag tttccta	attc cccaagctgg 540
cgtgaatcgt tgggaggttt attatctggc atggagtggg atctggt	gtg tgagcagaaa 600
ggtctgaaca gagctgcgtc cactttcttc ttcgccggtg tgctggt	ggg ggetgtggee 660
tttggatatc tgtccgacag gtttgggcgg cggcgtctgc tgctggt	age ctaegtgagt 720
accetggtgc tgggcetggc atctgcagec teegtcaget atgtaat	gtt tgccatcacc 780
cgcaccetta etggeteage eetggetggt tttaccatea tegtgat	gcc actggagctg 840
gagtggctgg atgtggagca ccgcaccgtg gctggagtcc tgagcag	
gggggggtga tgctgctggc actggttggg tacctgatac gggactg	ggeg atggettetg 960
ctagetgtea ecetgeettg tgeeceagge atecteagee tetggtg	gggt geetgagtet 1020
gcacgctggc ttctgaccca aggccatgtg aaagaggccc acaggta	actt gctccactgt 1080

gccaggctca	atgggeggee	agtgtgtgag	gacagcttca	gccaggaggc	tgtgagcaaa	1140
gtggccgccg	gggaacgggt	ggtccgaaga	ccttcatacc	tagacctgtt	ccgcacacca	1200
cggctccgac	acatctcact	gtgctgcgtg	gtggtgtggt	tcggagtgaa	cttctcctat	1260
tacggcctga	gtetggatgt	gteggggetg	gggctgaacg	tgtaccagac	acagetgttg	1320
tteggggetg	tggaactgcc	ctccaagctg	ctggtctact	tgtcggtgcg	ctacgcagga	1380
cgccgcctca	cgcaagccgg	gacactgctg	ggcacggccc	tggcgttcgg	cactagactg	1440
ctagtgtcct	ctgatatgaa	gtcctggagc	actgtcctgg	cagtgatggg	gaaagctttt	1500
tctgaagctg	ccttcaccac	tgcctacctg	ttcacttcag	agttgtaccc	tacggtgctc	1560
agacagacag	ggatggggct	gactgcactg	gtgggccggc	tggggggctc	tttggcccca	1620
ctggcggcct	tgctggatgg	agtgtggctg	tcactgccca	agcttactta	tggggggatc	1680
gccctgctgg	ctgccggcac	egecetectg	ctgccagaga	cgaggcaggc	acagctgcca	1740
gagaccatcc	aggacgtgga	gagaaagagt	gccccaacca	gtcttcagga	ggaagagatg	1800
cccatgaagc	aggtcc agaa	c				1821

<210> 46

<211> 942

<212> DNA

<213> Homo sapiens

<400> 46

60	actcaggaag	ctcgggctgg	ctgctgctgg	gctgctggcg	geggggeget	atgggcgcgc
120	catcacgtcg	gccgacgggt	ggaccatgcg	gccgttatca	aggaggegge	ccggagtcgc
180	gagcctgcgc	cgtggcaggg	gggcgttggc	cgccgaactc	gtggagagga	cgcatcgtgg
240	actcacggcg	accgctgggc	ctgctcagcc	cggagtgagc	cccacgtatg	ctgtgggatt
300	ggtccagttt	ccgggtggat	agtgatccct	tagtgacctt	ttgaaaccta	gegeactget
360	ccgttacttc	cctactacac	agcctgcagg	atcettetgg	cttccatgcc	ggccagctga
420	cattgccttg	caccctatga	ctggggaatt	ccctcgctac	tctatctgag	gtatcgaata
480	tctccaggcc	agcccatctg	aaacacatcc	cacctacact	ctgcacctgt	gtgaagctgt
540	gtacatcaaa	ctggctgggg	tgctgggtga	ccggacagac	agtttgagaa	tecacatttg
600	catcataaac	ttcaggtcgc	ctccaggaag	tecceaeace	cactgccatc	gaggatgagg
660	ctttggagac	gcaaggacat	tacagtttcc	cttcctcaag	gcaaccacct	aactctatgt
720	ctcaggtgga	gcttcggtga	aaggatgcct	ccaaggcggg	ctggcaatgc	atggtttgtg
780	ctggggagtg	gagtcgtgag	tatcagattg	tggactgtgg	gtaacaagaa	cccttggcct
840	ctttgagtgg	tcagccacca	tacaccaata	gcccggtgtc	ggcccaatcg	ggctgtggtc
900	geegetacte	accectectg	teccagecag	gagtggcatg	tgatggccca	atccagaagc
942		tc	ctggggccgg	teteccaete	ttetetggge	tttttccctc

<210> 47						
<211> 282						
<212> DNA						
<213> Homo	sapiens					
<400> 47						
atggagctct	ctgatgtcac	cctcattgag	ggtgtgggta	atgaggtgat	ggtggtggca	60
ggtgtggtgg	tgctgattct	ageettggte	ctagcttggc	tctctaccta	cgtagcagac	120
agcggtagca	accagctcct	gggcgctatt	gtgtcagcag	gcgacacatc	cgtcctccac	180
ctggggcatg	tggaccacct	ggtggcaggc	caaggcaacc	ccgagccaac	tgaactcccc	240
catccatcag	aggcaaatac	ttccctggac	aagaaagcca	ga		282
<210> 48						
<211> 654						
<212> DNA						
<213> Homo	sapiens					
<400> 48						
atggcgtcga	agataggttc	gagacggtgg	atgttgcagc	tgatcatgca	gttgggttcg	60
gtgctgctca	cacgctgccc	cttttggggc	tgcttcagcc	agctcatgct	gtacgctgag	120
agggctgagg	cacgccggaa	gcccgacatc	ccagtgcctt	acctgtattt	cgacatgggg	180
gcagccgtgc	tgtgcgctag	tttcatgtcc	tttggcgtga	ageggegetg	gttegegetg	240
ggggccgcac	tccaattggc	cattagcacc	tacgccgcct	acatcggggg	ctacgtccac	300
tacggggact	ggctgaaggt	ccgtatgtac	tegegeacag	ttgccatcat	cggcggactt	360
tettgtgttg	gecageggtg	ctggggagct	gtaccgccgg	aaacctcgca	geegeteeet	420
gcagtccacc	ggccaggtgt	tcctgggtat	ctacctcatc	tgtgtggcct	actcactgca	480
gcacagcaag	gaggaccggc	tggcgtatct	gaaccatctc	ccaggagggg	agctgatgat	540
ccagctgttc	ttcgtgctgt	atggcatcct	ggeeetggee	tttctgtcag	gctactacgt	600
gaccctcgct	geceagatee	tggctgtact	gctgccccct	gtcatgctgc	tcat	654
<210> 49						
<211> 1380						
<212> DNA						
<213> Homo	sapiens					
<400> 49						
atgttcacaa	ttaagctcct	tctttttatt	gttcctctag	ttatttcctc	cagaattgat	60

caagacaatt	catcatttga	ttctctatct	ccagagccaa	aatcaagatt	tgctatgtta	120
gacgatgtaa	aaattttagc	caatggcctc	cttcagttgg	gacatggtct	taaagacttt	180
gtccataaga	cgaagggcca	aattaatgac	atatttcaaa	aactcaacat	atttgatcag	240
tctttttatg	atctatcgct	gcaaaccagt	gaaatcaaag	aagaagaaaa	ggaactgaga	300
agaactacat	ataaactaca	agtcaaaaat	gaagaggtaa	agaatatgtc	acttgaactc	360
aactcaaaac	ttgaaagcct	cctagaagaa	aaaattctac	ttcaacaaaa	agtgaaatat	420
ttagaagagc	aactaactaa	cttaattcaa	aatcaacctg	aaactccaga	acacccagaa	480
gtaacttcac	ttaaaacttt	tgtagaaaaa	caagataata	gcatcaaaga	ccttctccag	540
accgtggaag	accaatataa	acaattaaac	caacagcata	gtcaaataaa	agaaatagaa	600
aatcagctca	gaaggactag	tattcaagaa	cccacagaaa	tttctctatc	ttccaagcca	660
agagcaccaa	gaactactcc	ctttcttcag	ttgaatgaaa	taagaaatgt	aaaacatgat	720
ggcattcctg	ctgaatgtac	caccatttat	aacagaggtg	aacatacaag	tggcatgtat	780
gccatcagac	ccagcaactc	tcaagttttt	catgtctact	gtgatgttat	atcaggtagt	840
ccatggacat	taattcaaca	tcgaatagat	ggatcacaaa	acttcaatga	aacgtgggag	900
aactacaaat	atggttttgg	gaggettgat	ggagaatttt	ggttgggcct	agagaagata	960
tactccatag	tgaagcaatc	taattatgtt	ttacgaattg	agctggaaga	ctggaaagac	1020
aacaaacatt	atattgaata	ttctttttac	ttgggaaatc	acgaaaccaa	ctatacgcta	1080
catctagttg	cgattactgg	caatgtcccc	aatgcaatcc	cggaaaacaa	agatttggtg	1140
ttttctactt	gggatcacaa	agcaaaagga	cacttcaact	gtccagaggg	ttattcagga	1200
ggctggtggt	ggcatgatga	gtgtggagaa	aacaacctaa	atggtaaata	taacaaacca	1260
aga gcaaaat	ctaagccaga	gaggagaaga	ggattatett	ggaagtctca	aaatggaagg	1320
ttatactcta	taaaatcaac	caaaatgttg	atccatccaa	cagattcaga	aagctttgaa	1380
<210> 50						

<211> 648

<212> DNA

<213> Homo sapiens

<400> 50

atggtgccaa	tgcacttact	ggggagactg	gagaagccgc	tteteeteet	gtgetgegee	60
tccttcctac	tggggctggc	tttgctgggc	ataaagacgg	acatcacccc	cgttgcttat	120
ttcttctca	cattgggtgg	cttcttcttg	tttgcctatc	tectggteeg	gtttctggaa	180
tgggggcttc	ggtcccagct	ccaatcaatg	cagactgaga	gcccagggcc	ctcaggcaat	240
gcacgggaca	atgaagcctt	tgaagtgcca	gtctatgaag	aggccgtggt	gggactagaa	300
teccagtgee	gececeaaga	gttggaccaa	ccaccccct	acagcactgt	tgtgataccc	360
ccagcacctg	aggaggaaca	acctagccat	ccagaggggt	ccaggagagc	caaactggaa	420

cagaggcgaa tggcctcaga ggggtccatg gcccaggaag gaagccctgg aagagctcca	480
atcaacette ggettegggg accaeggget gtgtecaetg etectgatet geagagettg	540
geggeagtee ceacattaga geetetgaet eeaceeeetg eetatgatgt etgetttggt	600
caccctgatg atgatagtgt tttttatgag gacaactggg caccccct	648
<210> 51	
<211> 4473	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (45)(4382)	
<400> 51	
aacttccccg gcagcggact gtagcccagg cagacgccgt cgag atg cag ggc cca	56
Met Gln Gly Pro	
1	
ceg etc etg ace gee gee cae etc etc tge gtg tge ace gee geg etg	104
Pro Leu Leu Thr Ala Ala His Leu Leu Cys Val Cys Thr Ala Ala Leu	
5 10 15 20	
gee gtg get eee ggg eet egg ttt etg gtg aca gee eea ggg ate ate	152
Ala Val Ala Pro Gly Pro Arg Phe Leu Val Thr Ala Pro Gly Ile Ile	
25 30 35	
agg ccc gga gga aat gtg act att ggg gtg gag ctt ctg gaa cac tgc	200
Arg Pro Gly Gly Asn Val Thr Ile Gly Val Glu Leu Leu Glu His Cys	
40 45 50	0.40
cct tea eag gtg act gtg aag geg gag etg ete aag aca gea tea aac	248
Pro Ser Gln Val Thr Val Lys Ala Glu Leu Leu Lys Thr Ala Ser Asn	
55 60 65	20.5
ctc act gtc tct gtc ctg gaa gca gaa gga gtc ttt gaa aaa ggc tct	296
Leu Thr Val Ser Val Leu Glu Ala Glu Gly Val Phe Glu Lys Gly Ser	
70 75 80	244
ttt aag aca ctt act ctt cca tca cta cct ctg aac agt gca gat gag	344
Phe Lys Thr Leu Thr Leu Pro Ser Leu Pro Leu Asn Ser Ala Asp Glu	
85 90 95 100	200
att tat gag cta cgt gta acc gga cgt acc cag gat gag att tta ttc	392

TTE	ту	C GI	n re	u Ar	g va.	I Thi	r GL	y Arg	Th	r Gli	n Ası	o Glu	ıIl	e Le	u Phe	•
				10	5				110)				11	5	
tet	aat	ag	t ac	c cg	e tta	a tca	a ttt	gag	g acc	aag	g aga	a ata	a to	t gt	e tto	440
Ser	Asr	se:	r Th	r Ar	j Lei	ı Sei	: Phe	e Glu	Thi	Lys	a Arç	, Ile	e Se	r Va	l Phe	•
			120	0				125	i				13	0		
att	caa	aca	a gad	c aag	g ged	tta	tac	aag	CCE	aaq	g cas	gaa	gt	g aa	g ttt	488
Ile	Glr	Thi	r Ası	p Lys	Ala	a Let	туг	Lys	Pro	Lys	Glr.	Glu	ı Va	l Ly	s Phe	•
		135	5				140)				145	,			
									_						tta	
Arg	Ile	· Val	l Thi	Let	Phe	e Ser	Asp	Phe	Lys	Pro	Tyr	Lys	Thi	Se	Leu	
	150)				155					160)				
										_				-	g ttg	
	Ile	Lev	ı Ile	. Lys	Asp	Pro	Lys	Ser	Asn	Leu	Ile	Gln	Glr	Tr	Leu	
165					170					175					180	
															tct	632
Ser	Gln	Gln	Ser			Gly	Val	Ile	Ser	Lys	Thr	Phe	Gln	Let	Ser	
_				185					190					195		
											_				gac	680
Ser	His	Pro			Gly	Asp	Trp		Ile	Gln	Val	Gln			Asp	
			200					205					210			
										_					aaa	728
GIN	Thr			GIn	Ser	Phe		Val	Ser	Glu	Tyr		Leu	Pro	Lys	
		215					220					225				
										_	tct	_			_	776
Pne		vaı	Thr	Leu	GIN		Pro	Leu	Tyr	Cys	Ser	Met	Asn	Ser	Lys	
	230	<u>_</u>				235					240					
											tat					824
245	Leu	ASN	GTĀ	Thr		Thr	Ala	Lys	Tyr		Tyr	Gly	Lys	Pro		
	~~~	<b></b>			250			<b></b>		255			<b>.</b>		260	0.50
											tcc		_	_		872
-yy	GIY	ASP	var		ren	The	Pne	ren		Leu	Ser	Pue	Trp	_	гла	
	200		2++	265			***		270					275	<b></b>	000
											gga					920
-yz	пÄя	ASII	280	THE	пÀв	TUL			тте	nea	Gly			nea	rne	
			200					285					290			

tct	ttt	aat	gat	gaa	gag	atg	aaa	aat	gta	atg	gat	tct	tca	aat	gga	968
Ser	Phe	Asn	Asp	Glu	Glu	Met	Lys	Asn	Val	Met	Asp	Ser	Ser	Asn	Gly	
		295					300					305				
ctt	tct	gaa	tac	ctg	gat	cta	tct	ttc	cct	gga	cca	gta	gaa	att	tta	1016
Leu	Ser	Glu	Tyr	Leu	Asp	Leu	Ser	Phe	Pro	Gly	Pro	Val	Glu	Ile	Leu	
	310					315					320					
acc	aca	gtg	aca	gaa	tca	gtt	aca	ggt	att	tca	aga	aat	gta	agc	act	1064
Thr	Thr	Val	Thr	Glu	Ser	Val	Thr	Gly	Ile	Ser	Arg	Asn	Val	Ser	Thr	
325					330					335					340	
aat	gtg	ttc	ttc	aag	caa	cat	gat	tac	atc	att	gag	ttt	ttt	gat	tat	1112
Asn	Val	Phe	Phe	Lys	Gln	His	Asp	Tyr	Ile	Ile	Glu	Phe	Phe	Asp	Tyr	
				345					350					355		
act	act	gtc	ttg	aag	cca	tct	ctc	aac	ttc	aca	gcc	act	gtg	aag	gta	1160
Thr	Thr	Val	Leu	Lys	Pro	Ser	Leu	Asn	Phe	Thr	Ala	Thr	Val	Lys	Val	
			360					365					370			
act	cgt	gct	gat	ggc	aac	caa	ctg	act	ctt	gaa	gaa	aga	aga	aat	aat	1208
Thr	Arg	Ala	Asp	Gly	Asn	Gln	Leu	Thr	Leu	Glu	Glu	Arg	Arg	Asn	Asn	
		375					380					385				
gta	gtc	ata	aca	gtg	aca	cag	aga	aac	tat	act	gag	tac	tgg	agc	gga	1256
Val	Val	Ile	Thr	Val	Thr	Gln	Arg	Asn	Tyr	Thr	Glu	Tyr	Trp	Ser	Gly	
	390					395					400					
tct	aac	agt	gga	aat	cag	aaa	atg	gaa	gct	gtt	cag	aaa	ata	aat	tat	1304
Ser	Asn	Ser	Gly	Asn	Gln	Lys	Met	Glu	Ala	Val	Gln	Lys	Ile	Asn	Tyr	
405					410		•			415					420	
act	gtc	ccc	caa	agt	gga	act	ttt	aag	att	gaa	ttc	cca	atc	ctg	gag	1352
Thr	Val	Pro	Gln	Ser	Gly	Thr	Phe	Lys	Ile	Glu	Phe	Pro	Ile	Leu	Glu	
				425					430					435		
gat	tcc	agt	gag	cta	cag	ttg	aag	gcc	tat	ttc	ctt	ggt	agt	aaa	agt	1400
Asp	Ser	Ser	Glu	Leu	Gln	Leu	Lys	Ala	Tyr	Phe	Leu	Gly	Ser	Lys	Ser	
			440					445					450			
agc	atg	gca	gtt	cat	agt	ctg	ttt	aag	tct	cct	agt	aag	aca	tac	atc	1448
Ser	Met	Ala	Val	His	Ser	Leu	Phe	Lys	Ser	Pro	Ser	Lys	Thr	Tyr	Ile	
		455					460					465				
						_		ata								1496
Gln	Leu	Lys	Thr	Arg	ĄzĄ	Glu	Asn	Ile	Lys	Val	Gly	Ser	Pro	Phe	Glu	

	4/0	,				475					480	)				
ttg	gtg	gtt	agt	ggc	aac	aaa	cga	ttg	aag	gag	, tta	a ago	tat	ato	gta	1544
Leu	Val	Val	. Ser	Gly	Asn	Lys	Arg	Leu	Lys	Glu	Let	ı Sei	туз	Met	. Val	
485					490					495	,				500	
gta	tcc	agg	gga	cag	ttg	gtg	gct	gta	gge	aaa	cas	a aat	tca	aca	atg	1592
Val	Ser	Arg	Gly	Gln	Leu	Val	Ala	Val	. Gly	Lys	Glr	Asr	Ser	Thr	Met	
				505					510	)				515	•	
ttc	tct	tta	aca	cca	gaa	aat	tct	tgg	act	cca	aaa	gee	tgt:	gta	att	1640
Phe	Ser	Leu	Thr	Pro	Glu	Asn	Ser	Trp	Thr	Pro	Lys	Ala	. Cys	Val	Ile	
			520	)				525					530	)		
gtg	tat	tat	att	gaa	gat	gat	ggg	gaa	att	ata	agt	gat	gtt	cta	aaa	1688
Val	Tyr	Tyr	Ile	Glu	Asp	Asp	Gly	Glu	Ile	Ile	Ser	Asp	Val	Leu	Lys	
		535					540	,				545	i			
att	cct	gtt	cag	ctt	gtt	ttt	aaa	aat	aag	ata	aag	cta	tat	tgg	agt	1736
Ile	Pro	Val	Gln	Leu	Val	Phe	Lys	Asn	Lys	Ile	Lys	Leu	Tyr	Trp	Ser	
	550					555					560					
aaa	gtg	aaa	gct	gaa	cca	tct	gag	aaa	gtc	tct	ctt	agg	atc	tct	gtg	1784
Lys	Val	Lys	Ala	Glu	Pro	Ser	Glu	Lys	Val	Ser	Leu	Arg	Ile	Ser	Val	
565					570					575					580	
aca	cag	cct	gac	tcc	ata	gtt	ggg	att	gta	gct	gtt	gac	aaa	agt	gtg	1832
Thr	Gln	Pro	Asp	Ser	Ile	Val	Gly	Ile	Val	Ala	Val	Asp	Lys	Ser	Val	
				585					590					595		
aat	ctg	atg	aat	gcc	tct	aat	gat	att	aca	atg	gaa	aat	gtg	gtc	cat	1880
Asn	Leu	Met	Asn	Ala	Ser	Asn	Asp	Ile	Thr	Met	Glu	Asn	Val	Val	His	
			600					605					610			
gag	ttg	gaa	ctt	tat	aac	aca	gga	tat	tat	tta	ggc	atg	ttc	atg	aat	1928
Glu	Leu	Glu	Leu	Tyr	Asn	Thr	Gly	Tyr	Tyr	Leu	Gly	Met	Phe	Met	Asn	
		615					620					625				
tct	ttt	gca	gtc	ttt	cag	gaa	tgt	gga	ctc	tgg	gta	ttg	aca	gat	gca	1976
Ser	Phe	Ala	Val	Phe	Gln	Glu	Cys	Gly	Leu	Trp	Val	Leu	Thr	Asp	Ala	
	630					635					640					
aac	ctc	acg	aag	gat	tat	att	gat	ggt	gtt	tat	gac	aat	gca	gaa	tat	2024
Asn	Leu	Thr	Lys	Asp	Tyr	Ile	Asp	Gly	Val	Tyr	Asp	Asn	Ala	Glu	Tyr	
545					650					655					660	
act	gag	agg	ttt	atg	gag	gaa	aat	qaa	gga	cat	att	qta	gat	att	cat	2072

Ala	Glu	Arg	Phe	Met	Glu	Glu	Asn	Glu	Gly	His	Ile	Val	Asp	Ile	His	
				665					670					675		
gac	ttt	tct	ttg	ggt	agc	agt	cca	cat	gtc	cga	aag	cat	ttt	cca	gag	2120
Asp	Phe	Ser	Leu	Gly	Ser	Ser	Pro	His	Val	Arg	Lys	His	Phe	Pro	Glu	
			680					685					690			
act	tgg	att	tgg	cta	gac	acc	aac	atg	ggt	tcc	agg	att	tac	caa	gaa	2168
Thr	Trp	Ile	Trp	Leu	Asp	Thr	Asn	Met	Gly	Ser	Arg	Ile	Tyr	Gln	Glu	
		695					700					705				
ttt	gaa	gta	act	gta	cct	gat	tct	atc	act	tct	tgg	gtg	gct	act	ggt	2216
Phe	Glu	Val	Thr	Val	Pro	Asp	Ser	Ile	Thr	Ser	Trp	Val	Ala	Thr	Gly	
	710					715					720					
ttt	gtg	atc	tct	gag	gac	ctg	ggt	ctt	gga	cta	aca	act	act	cca	gtg	2264
Phe	Val	Ile	Ser	Glu	Asp	Leu	Gly	Leu	Gly	Leu	Thr	Thr	Thr	Pro	Val	
725					730					735					740	
			-					ttc								2312
Glu	Leu	Gln	Ala	Phe	Gln	Pro	Phe	Phe	Ile	Phe	Leu	Asn	Leu	Pro	Tyr	
				745					750					755		
	-		_		-			gct								2360
Ser	Val	Ile	Arg	Gly	Glu	Glu	Phe	Ala	Leu	Glu	Ile	Thr	Ile	Phe	Asn	
			760					765					770			
								aag								2408
Tyr	Leu	Lys	Asp	Ala	Thr	Glu	Val	Lys	Val	Ile	Ile	Glu	Lys	Ser	Asp	
		775					780					785				
		_			_			agt	_							2456
Lys	Phe	Asp	Ile	Leu	Met	Thr	Ser	Ser	Glu	Ile	Asn	Ala	Thr	Gly	His	
	790					795					800					
_								gag								2504
Gln	Gln	Thr	Leu	Leu	Val	Pro	Ser	Glu	Asp		Ala	Thr	Val	Leu		
805					810					815					820	
								gaa								2552
Pro	Ile	Arg	Pro		His	Leu	Gly	Glu		Pro	Ile	Thr	Val		Ala	
				825					830					835		
								atc								2600
Leu	Ser	Pro	Thr	Ala	Ser	Asp	Ala	Ile	Thr	Gln	Met	Ile		Val	Lys	
			840					845					850			

gu	- yac	. 99	aac	a gae	a aa	a CC	tat	. tca	a cas	i tcc	ato	ב בכנ	א בני	a ga	c ttg	2648
Ala	a Glu	ı Gly	, Ile	e Glu	ı Lys	s Ser	туг	Sea	Glr	Sei	: Ile	e Lei	ı Leı	ı As	p Leu	L
		855	5				860	)				865	5			
act	gac	aat	agg	g cta	caç	g agt	acc	cto	g aas	act	tte	g agt	: tto	e te	a ttt	2696
Thi	Asp	) Asi	a Arg	J Lev	Glr	ser	Thr	Lev	Lys	Thr	Let	ı Sez	Phe	e Se	r Phe	•
	870	)				875	,				880	)				
cct	cct	aat	ace	gtg	act	ggc	agt	gaa	aga	gtt	caç	g atc	act	gca	a att	2744
Pro	Pro	Asr	Thr	· Val	Thr	Gly	Ser	Glu	Arg	Val	Glr	ıle	Thr	: Ala	a Ile	
885	<b>i</b>				890	)				895	1				900	
gge	gat	gtt	ctt	ggt	cct	tcc	atc	aat	ggc	tta	gco	tca	ttg	att	cgg	2792
Gly	Asp	Val	Leu	Gly	Pro	Ser	Ile	Asn	Gly	Leu	Ala	Ser	Leu	Ile	arg	
				905					910					915	5	
atg	cct	tat	ggc	tgt	ggt	gaa	cag	aac	atg	ata	aat	ttt	gct	CCE	a aat	2840
Met	Pro	Tyr	Gly	Cys	Gly	Glu	Gln	Asn	Met	Ile	Asn	Phe	Ala	Pro	) Asn	
			920					925					930	)		
															aat	2888
Ile	Tyr	Ile	Leu	Asp	Tyr	Leu	Thr	Lys	Lys	Lys	Gln	Leu	Thr	Asp	Asn	
		935					940					945				
													_	_	gaa	2936
Leu		Glu	Lys	Ala	Leu		Phe	Met	Arg	Gln	Gly	Tyr	Gln	Arg	Glu	
	950					955					960					
						gat				_	_					2984
	Leu	Tyr	Gln	Arg		Asp	Gly	Ser	Phe		Ala	Phe	Gly	Asn	_	
965					970	_				975					980	
						tgg -					,-		_	-		3032
rab	Pro	Ser	GTĀ		Thr	Trp	Leu	Ser		Phe	Val	Leu	Arg		Phe	
				985					990					995		2222
						ata	_		-	_					-	3080
æu	GIU	ATA	1000		TYP	Ile	Asp			GIN	ASN	vaı			Arg	
	+=0	sat			•••		+	1005		<b>.</b>			1010		•	2100
						gga									-	3128
	TÅT	1015		nen	пÄя	Gly	1020		тЛа	SEL	ASN	G1y 1025		rne	TIP	
rat	CCB			ata	att	cat			a++	~aa	aa+			220	s.~+	3176
						His									_	31/0

1030	1035	1040	
cca gta aca ctt aca g	acc tat att gta act	tot oto otg gga tat aga	3224
Pro Val Thr Leu Thr A	la Tyr Ile Val Thr	Ser Leu Leu Gly Tyr Arg	
1045	.050	1055 1060	
aag tat cag cct aac a	att gat gtg caa gag	tet ate cat ttt ttg gag	3272
Lys Tyr Gln Pro Asn I	le Asp Val Gln Glu	Ser Ile His Phe Leu Glu	
1065	1070	0 1075	
tot gaa tto agt aga g	gga att toa gac aat	tat act cta gcc ctt ata	3320
Ser Glu Phe Ser Arg G	Sly Ile Ser Asp Asn	Tyr Thr Leu Ala Leu Ile	
1080	1085	1090	
act tat gca ttg tca to	ca gtg ggg agt cct	aaa gcg aag gaa gct ttg	3368
Thr Tyr Ala Leu Ser Se	Ser Val Gly Ser Pro	Lys Ala Lys Glu Ala Leu	
1095	1100	1105	
aat atg ctg act tgg a	nga gca gaa caa gaa	ggt ggc atg caa ttc tgg	3416
Asn Met Leu Thr Trp A	urg Ala Glu Gln Glu	Gly Gly Met Gln Phe Trp	
1110	1115	1120	
gtg tca tca gag tcc a	aa ctt tct gac tcc	tgg cag cca cgc tcc ctg	3464
Val Ser Ser Glu Ser Ly	ys Leu Ser Asp Ser	Trp Gln Pro Arg Ser Leu	
1125	130	1135 1140	
gat att gaa gtt gca g	gee tat gea etg etc	tca cac ttc tta caa ttt	3512
Asp Ile Glu Val Ala A	la Tyr Ala Leu Leu	Ser His Phe Leu Gln Phe	
1145	1150	0 1155	
cag act tot gag gga a	atc cca att atg agg	tgg cta agc agg caa aga	3560
Gln Thr Ser Glu Gly I	lle Pro Ile Met Arg	Trp Leu Ser Arg Gln Arg	
1160	1165	1170	
aat age ttg ggt ggt t	tt gea tet act cag	gat acc act gtg gct tta	3608
Asn Ser Leu Gly Gly P	he Ala Ser Thr Gln	Asp Thr Thr Val Ala Leu	
1175	1180	1185	
aag get etg tet gaa t	tt gca gcc cta atg	aat aca gaa agg aca aat	3656
Lys Ala Leu Ser Glu P	he Ala Ala Leu Met	Asn Thr Glu Arg Thr Asn	
1190	1195	1200	
atc caa gtg acc gtg a	acg ggg cct agc tca	cca agt cct gta aag ttt	3704
Ile Gln Val Thr Val T	thr Gly Pro Ser Ser	Pro Ser Pro Val Lys Phe	
1205	1210	1215 1220	
ctg att gac aca cac a	ac ege tta etc ett	cag aca gca gag ctt gct	3752

Leu	TTE	e Asi	o Thr	HIS	a Ast	Arg	Let	Let	Let	ı Glr	1 Thi	: Alt	a GI	u Lei	ı Ala	
				122	25				123	10				12:	35	
gtg	gta	cag	g cca	acq	g gca	gtt	aat	att	tcc	gca	a aat	ggt	: tti	t gga	ttt	3800
Val	Val	Glr	Pro	Th	: Ala	Val	Asr	lle	Ser	Ala	a Asr	Gly	Phe	e Gly	Phe	
			124	0				124	5				125	50		
gct	att	: tgt	cag	cto	aat	gtt	gta	tat	aat	gtg	aag	gct	tet	ggg	tet	3848
Ala	Ile	Cys	Gln	Let	. Asn	Val	Val	Tyr	Asn	Val	. Lys	Ala	Sei	Gly	Ser	
		125	5				126	0				126	5			
tct	aga	aga	cga	aga	tct	atc	caa	aat	caa	gaa	gcc	ttt	gat	tta	gat	3896
Ser	Arg	Arg	Arg	Arg	Ser	Ile	Gln	Asn	Gln	Glu	Ala	Phe	Asp	Leu	Asp	
	127	0				127	5				128	0				
gtt	gct	gta	aaa	gaa	aat	aaa	gat	gat	ctc	aat	cat	gtg	gat	ttg	aat	3944
Val	Ala	Val	Lys	Glu	Asn	Lys	Asp	Asp	Leu	Asn	His	Val	Asp	Leu	Asn	
128	5				129	0				129	5				1300	
gtg	tgt	aca	agc	ttt	tcg	ggc	ccg	ggt	agg	agt	ggc	atg	gct	ctt	atg	3992
Val	Суз	Thr	Ser	Phe	Ser	Gly	Pro	Gly	Arg	Ser	Gly	Met	Ala	Leu	Met	
				130	5				131	0				131	5	
gaa	gtt	aac	cta	tta	agt	ggc	ttt	atg	gtg	cct	tca	gaa	gca	att	tct	4040
Glu	Val	Asn	Leu	Leu	Ser	Gly	Phe	Met	Val	Pro	Ser	Glu	Ala	Ile	Ser	
			1320	0				1329	5				133	0		
ctg	agc	gag	aca	gtg	aag	aaa	gtg	gaa	tat	gat	cat	gga	aaa	ctc	aac	4088
Leu	Ser	Glu	Thr	Val	Lys	Lys	Val	Glu	Tyr	Asp	His	Gly	Lys	Leu	Asn	
		133	5				134	D				134	5			
ctc	tat	tta	gat	tct	gta	aat	gaa	acc	cag	ttt	tgt	gtt	aat	att	cct	4136
Leu	Tyr	Leu	qzA	Ser	Val	Asn	Glu	Thr	Gln	Phe	Суз	Val	Asn	Ile	Pro	
	1350	)				1355	<b>j</b>				1360	)				
gct	gtg	aga	aac	ttt	aaa	gtt	tca	aat	acc	caa	gat	gct	tca	gtg	tcc	4184
Ala	Val	Arg	Asn	Phe	Lys	Val	Ser	Asn	Thr	Gln	Asp	Ala	Ser	Val	Ser	
1365					1370	)				1375	5				1380	
ata	gtg	gat	tac	tat	gag	cca	agg	aga	cag	gcg	gtg	aga	agt	tac	aac	4232
Ile	Val	Asp	Tyr	Tyr	Glu	Pro	Arg	Arg	Gln	Ala	Val	Arg	Ser	Tyr	Asn	
				1385	•				1390	)				1395	;	
tct	gaa	gtg	aag	ctg	tcc	tcc	tgt	gac	ctt	tge	agt	gat	gtc	cag	ggc	4280
Ser	Glu	Val	Lys	Leu	Ser	Ser	Cys	Asp	Leu	Суз	Ser	Asp	Val	Gln	Gly	
			1400					1405					1410	)		

tge egt eet tgt gag gat gga get te	a ggc tcc cat cat cac tct tca 432
Cys Arg Pro Cys Glu Asp Gly Ala Se	r Gly Ser His His His Ser Ser
1415 1420	1425
gto att ttt att tto tgt tto aag ot	t ctg tac ttt atg gaa ctt tgg 437
val Ile Phe Ile Phe Cys Phe Lys Le	ı Leu Tyr Phe Met Glu Leu Trp
1430 1435	1440
ctg tgatttattt ttaaaggact ctgtgtaa	ca ctaacatttc cagtagtcac a 443
Leu	
1445	
tgtgattgtt ttgttttcgt agaagaatac t	gettetatt ttg 447
•	,
<210> 52	
<211> 2630	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	·
<222> (82)(1830)	
<400> 52	
agttetggga ggegggggga aggaggttgg t	ggegaetee etegetegee eteaetgeeg 6
geggteecaa etecaggeae e atg tte ee	e geg gge eee eee age eae age 11
Met Phe Pro	o Ala Gly Pro Pro Ser His Ser
1	5 10
ete ete egg ete ece etg etg eag tt	g ctg cta ctg gtg gtg cag gcc 15
Leu Leu Arg Leu Pro Leu Leu Gln Le	ı Leu Leu Leu Val Val Gln Ala
15	20 25
gtg ggg agg ggg ctg ggc cgc gcc ag	c ceg gee ggg gge cee etg gaa 20
Val Gly Arg Gly Leu Gly Arg Ala Se	r Pro Ala Gly Gly Pro Leu Glu
30 3!	5 40
gat gtg gtc atc gag agg tac cac atc	c ecc agg gec tgt ecc egg gaa 25
Asp Val Val Ile Glu Arg Tyr His Ile	Pro Arg Ala Cys Pro Arg Glu
45 50	55
gtg cag atg ggg gat ttt gtg cgc tac	c cac tac aac ggc act ttt gaa 30.
Val Gln Met Gly Asp Phe Val Arg Tyr	His Tyr Asn Gly Thr Phe Glu
60 65	70

	22.		,	9	- 94		a ag		- yu		- au	c ac		3 3-	y yee	221
Asp	Gly	Ly:	3 Lys	3 Phe	a As	Sei	c Sei	туз	c Asp	Ar	g Asi	n Th	r Le	u Va	l Ala	<b>.</b>
75	<b>;</b>				8	0				8:	5				90	
ato	gto	gto	g ggt	t gtg	<b>3 9 9</b>	gege	cto	ato	act	gg:	ate	g gad	e eg	a gg	e ctc	399
Ile	Val	. Val	l Gly	y Val	L Gly	Arg	J Let	ı Ile	Thr	Gly	/ Met	t Ası	o Ar	g Gl	y Leu	
				95	5				100	)				10	5	
atg	ggo	ato	, tgt	gto	aac	gaç	gegg	cga	cgo	cto	att	t gt	g cci	t acc	c cac	447
Met	Gly	Met	Cys	Va]	Ası	ı Glu	Arg	Arg	Arg	Lev	ı Ile	e Val	l Pro	o Pro	His	•
			110	)				115	<b>i</b>				120	כ		
ctg	ggc	tat	ggg	ago	ato	ggo	ctg	gcg	999	cto	att	CCE	a cc	g gat	gee	495
Leu	Gly	Туг	Gly	Ser	: Ile	Gly	Leu	Ala	Gly	Leu	Ile	Pro	Pro	Asp	Ala	
		125	,				130					135	<b>i</b>			
acc	ctc	tac	tto	gat	gtg	gtt	ctg	ctg	gat	gtg	tgg	, aac	aag	g gaa	a gac	543
Thr	Leu	Tyr	Phe	Asp	Val	Val	Leu	Leu	Asp	Val	Tre	) Asn	Lys	Glu	qaA ı	
	140					145					150	)				
acc	gtg	cag	gtg	age	aca	ttg	ctg	ege	ccg	ccc	cac	tgo	ccc	egg	atg	591
Thr	Val	Gln	Val	Ser	Thr	Leu	Leu	Arg	Pro	Pro	His	Суз	Pro	Arg	Met	
155					160					165					170	
gtc	cag	gac	ggc	gac	ttt	gtc	cgc	tac	cac	tac	aat	gge	acc	ctg	ctg	639
Val	Gln	Asp	Gly	Asp	Phe	Val	Arg	Tyr	His	Tyr	Asn	G1y	Thr	Leu	Leu	
				175					180					185		
gac	ggc	acc	tcc	ttc	gac	acc	agc	tac	agt	aag	ggc	ggc	act	tat	gac	687
qaA	Gly	Thr	Ser	Phe	Asp	Thr	Ser	Tyr	Ser	Lys	Gly	Gly	Thr	Tyr	Asp	
			190				•	195					200			
acc	tac	gtc	ggc	tct	ggt	tgg	ctg	atc	aag	ggc	atg	gac	cag	ggg	ctg	735
Thr	Tyr	Val	Gly	Ser	Gly	Trp	Leu	Ile	Lys	Gly	Met	Asp	Gln	Gly	Leu	
		205					210					215				
etg	ggc	atg	tgt	cct	gga	gag	aga	agg	aag	att	atc	atc	cct	cca	ttc	783
Leu	Gly	Met	Cys	Pro	Gly	Glu	Arg	Arg	Lys	Ile	Ile	Ile	Pro	Pro	Phe	
	220					225					230					
etg	gcc	tat	ggc	gag	aaa	ggc	tat	<b>9</b> 99	acg	gtg	atc	ccc	cca	cag	gee	831
eu	Ala	Tyr	Gly	Glu	Lys	Gly	Tyr	Gly	Thr	Val	Ile	Pro	Pro	Gln	Ala	
235					240					245					250	
						ctc							_	_	_	879
er .	Leu	Val	Phe	Hìs	Val	Leu	Leu	Ile	qzA	Val	His	Asn	Pro	Lys	Asp	

	255	260	265	
gct gtc cag cta	gag acg ctg gag	ctc ccc ccc gg	c tgt gtc cgc a	aga 927
Ala Val Gln Leu	Glu Thr Leu Glu	Leu Pro Pro Gl	y Cys Val Arg <i>P</i>	<b>l</b> rg
270		275	280	
gee ggg gee ggg	gac ttc atg cgc	tac cac tac aa	t ggc tcc ttg a	atg 975
Ala Gly Ala Gly	Asp Phe Met Arg	Tyr His Tyr As	n Gly Ser Leu N	<u>let</u>
285	290	)	295	
gac ggc acc ctc	ttc gat tcc ago	tac tcc cgc aa	e cae ace tae a	aat 1023
Asp Gly Thr Leu	Phe Asp Ser Ser	Tyr Ser Arg As	n His Thr Tyr A	Asn
300	305	31	0	
acc tat atc ggg	cag ggt tac ato	atc ccc ggg at	g gac cag ggg c	etg 1071
Thr Tyr Ile Gly	Gln Gly Tyr Ile	: Ile Pro Gly Me	t Asp Gln Gly I	eu
315	320	325	3	130
cag ggt gcc tgc	atg ggg gaa cgc	e cgg aga att ac	e ate ece ecg e	eac 1119
Gln Gly Ala Cys	Met Gly Glu Arg	Arg Arg Ile Th	r Ile Pro Pro E	lis
	335	340	345	
ctc gcc tat ggg	gag aat gga act	gga gac aag at	e eet gge tet g	jee 1167
Leu Ala Tyr Gly	Glu Asn Gly Thr	Gly Asp Lys Il	e Pro Gly Ser A	la
350		355	360	
gtg cta atc ttc	aac gtc cat gtc	att gac ttc ca	c aac cct gcg g	gat 1215
Val Leu Ile Phe	Asn Val His Val	. Ile Asp Phe Hi	s Asn Pro Ala A	Asp
365	370	1	375	
gtg gtg gaa atc	agg aca ctg tcc	egg cca tct ga	g acc tgc aat g	gag 1263
Val Val Glu Ile	Arg Thr Leu Ser	Arg Pro Ser Gl	u Thr Cys Asn G	lu
380	385	39	0	
		. cga tac cat ta		
Thr Thr Lys Leu	Gly Asp Phe Val	Arg Tyr His Ty	r Asn Cys Ser I	eu
395	400	405	4	110
		tcg cat gac ta		
Leu Asp Gly Thr	Gln Leu Phe Thr	Ser His Asp Ty		Sln
	415	420	425	
gag gcg act ctc	ggg gcc aac aag	gtg atc gaa gg	c ctg gac acg g	ge 1407
Glu Ala Thr Leu	Gly Ala Asn Lys	Val Ile Glu Gl	y Leu Asp Thr G	Sly
430		435	440	
ctg cag ggc atg	tgt gtg gga gag	agg cgg cag ct	e atc gtg ccc c	ecg 1455



Leu Gln Gly Met Cys Val Gly Glu Arg Arg Gln Leu Ile Val Pro Pro	
445 450 455	
cac ctg gcc cac ggg gag agt gga gcc cgg gga gtc cca ggc agt gct	1503
His Leu Ala His Gly Glu Ser Gly Ala Arg Gly Val Pro Gly Ser Ala	
460 465 470	
gtg ctg ctg ttt gag gtg gag ctg gtg tcc cgg gag gat ggg ctg ccc	1551
Val Leu Leu Phe Glu Val Glu Leu Val Ser Arg Glu Asp Gly Leu Pro	
475 480 485 490	
aca gge tac etg ttt gtg tgg cac aag gae eet eet gee aac etg ttt	1599
Thr Gly Tyr Leu Phe Val Trp His Lys Asp Pro Pro Ala Asn Leu Phe	
495 500 505	
gaa gac atg gac ctc aac aag gat ggc gag gtc cct ccg gag gag ttc	1647
Glu Asp Met Asp Leu Asn Lys Asp Gly Glu Val Pro Pro Glu Glu Phe	
510 515 520	
tee ace tte ate aag get caa gtg agt gag gge aaa gga ege ete atg	1695
Ser Thr Phe Ile Lys Ala Gln Val Ser Glu Gly Lys Gly Arg Leu Met	
525 530 535	
eet ggg eag gae eet gag aaa ace ata gga gae atg tte eag aac eag	1743
Pro Gly Gln Asp Pro Glu Lys Thr Ile Gly Asp Met Phe Gln Asn Gln	
540 545 550	
gac ege aac cag gac gge aag ate aca gte gac gag ete aag etg aag	1791
Asp Arg Asn Gln Asp Gly Lys Ile Thr Val Asp Glu Leu Lys Leu Lys	
555 560 565 570	
tea gat gag gag gag egg gte eae gag gag ete tga ggggeaggga	1840
Ser Asp Glu Asp Glu Glu Arg Val His Glu Glu Leu	
575 580	
geetggeeag geetgagaea cagaggeeca etgegagggg gaeagtggeg gtgggaetga	1900
ectgetgaca gteaccetee etetgetggg atgaggteea ggageeaact aaaacaatgg	1960
cagaggagac atctctggtg ttcccaccac cctagatgaa aatccacage acagacctct	2020
acceptette tettecatee etaaaceaet teettaaaat etttegattt geaaageeaa	2080
tttggggcct gtggagcctg gggttggata gggccatggc tggtccccca ccatacctcc	2140
cctccacate actgacacag ctgagettgt tatecatete eccaaacttt etettettt	2200
gtacttettg teatececae teecageece tatteeteta tgtgacaget ggetaggace	2260
cototgoott cotococaat cotgactggo tootagggaa ggggaaggot cotggagggo	2320
AGCCCTACCT CTCCCATGCC CTTTGCCTC CTCCCTTCCTC TCCCTTCCTC CTCCCTTCCTC	2200

ccctgggctg ctggaggcca gactgggctg tagttagctt ttcatcccta aagaaggctt	2440
teectaagga accatagaag agaggaagaa aacaaaggge atgtgtgagg gaagetgett	2500
gggtgggtgt tagggctatg aaatcttgga tttggggctg aggggtggga gggagggcag	2560
agetetgeae acteaaagge taaactggtg teagteettt ttteetttgt teeaaataaa	2620
agattaaacc	2630
<210> 53	
<211> 1472	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (89)(1321)	
<400> 53	
aaaaagacte egeetteeea agageeeetg eggeegggeg egaaaatgge ggeggeggeg	60
acggccgggc gctcctgaag cagcagtt atg gag ctt ccc tca ggg ccg ggg	112
Met Glu Leu Pro Ser Gly Pro Gly	
1 5	
ceg gag egg ete ttt gae teg eae egg ett eeg ggt gae tge tte eta	160
Pro Glu Arg Leu Phe Asp Ser His Arg Leu Pro Gly Asp Cys Phe Leu	
10 15 20	
ctg ctc gtg ctg ctc tac gcg cca gtc ggg ttc tgc ctc ctc gtc	208
Leu Leu Val Leu Leu Tyr Ala Pro Val Gly Phe Cys Leu Leu Val	
25 30 35 40	
etg ege etc ttt etc ggg atc eac gtc ttc etg gtc agc tgc geg etg	256
Leu Arg Leu Phe Leu Gly Ile His Val Phe Leu Val Ser Cys Ala Leu	
45 50 55	
cca gac age gte ett ege aga tte gta gtg egg ace atg tgt geg gtg	304
Pro Asp Ser Val Leu Arg Arg Phe Val Val Arg Thr Met Cys Ala Val	
60 65 70	
cta ggg ctc gtg gcc cgg cag gag gac tcc gga ctc cgg gat cac agt	352
Leu Gly Leu Val Ala Arg Gln Glu Asp Ser Gly Leu Arg Asp His Ser	
75 80 85	
gtc agg gtc ctc att tcc aac cat gtg aca cct ttc gac cac aac ata	400
Val Arg Val Leu Ile Ser Asn His Val Thr Pro Phe Asp His Asn Ile	

	90	,				93	)				100	,				
gta	aat	ttg	ctt	acc	acc	tgt	age	acc	cct	. cta	cto	aat	agt		ccc	448
Val	Asn	Leu	Leu	Thr	Thr	Сув	Ser	Thr	Pro	Leu	Let	ı Asn	Ser	Pro	Pro	
105					110	)				115	,				120	
agc	ttt	gtg	tgc	tgg	tct	cgg	ggc	tto	atg	gag	ato	aat	ggg	cgg	999	496
Ser	Phe	Val	Суз	Trp	Ser	Arg	Gly	Phe	Met	Glu	Met	Asn	Gly	Arc	g Gly	
				125					130	)				135	<b>5</b> .	
gag	ttg	gtg	gag	tca	ctc	aag	aga	ttc	tgt	gct	tee	acg	agg	ctt	ccc	544
Glu	Leu	Val	Glu	Ser	Leu	Lys	Arg	Phe	Cys	Ala	Ser	Thr	Arg	Leu	Pro	
			140					145					150			
ccc	act	cct	ctg	ctg	cta	ttc	cct	gag	gaa	gag	gcc	acc	aat	ggo	egg	592
Pro	Thr	Pro	Leu	Leu	Leu	Phe	Pro	Glu	Glu	Glu	Ala	Thr	Asn	Gly	Arg	
		155					160					165				
gag	ggg	ctc	ctg	cgc	ttc	agt	tcc	tgg	cca	ttt	tct	atc	caa	gat	gtg	640
Glu	Gly	Leu	Leu	Arg	Phe	Ser	Ser	Trp	Pro	Phe	Ser	Ile	Gln	Asp	Val	
	170					175					180					
gta	caa	cct	ctt	acc	ctg	caa	gtt	cag	aga	ccc	ctg	gtc	tct	gtg	acg	688
Val	Gln	Pro	Leu	Thr	Leu	Gln	Val	Gln	Arg	Pro	Leu	Val	Ser	Val	Thr	
185					190	,				195					200	
gtg	tca	gat	gcc	tcc	tgg	gtc	tca	gaa	ctg	ctg	tgg	tca	ctt	ttc	gtc	736
Val	Ser	Asp	Ala	Ser	Trp	Val	Ser	Glu	Leu	Leu	Trp	Ser	Leu	Phe	Val	
				205					210					215		
cct	ttc	acg	gtg	tat	caa	gta	agg	tgg	ctt	cgt	cct	gtt	cat	cgc	caa	784
Pro	Phe	Thr	Val	Tyr	Gln	Val	Arg	Trp	Leu	Arg	Pro	Val	His	Arg	Gln	
			220					225					230			
cta	ggg	gaa	gcg	aat	gag	gag	ttt	gca	ctc	cgt	gta	caa	cag	ctg	gtg	832
Leu	Gly	Glu	Ala	Asn	Glu	Glu	Phe	Ala	Leu	Arg	Val	Gln	Gln	Leu	Val	
		235					240					245				
gcc	aag	gaa	ttg	ggc	cag	aca	ggg	aca	cgg	ctc	act	cca	gct	gac	aaa	880
Ala	Lys	Glu	Leu	Gly	Gln	Thr	Gly	Thr	Arg	Leu	Thr	Pro	Ala	qaA	Lys	
	250					255					260					
gca	gag	cac	atg	aag	cga	caa	aga	cac	ccc	aga	ttg	cgc	ccc	cag	tca	928
Ala	Glu	His	Met	Lys	Arg	Gln	Arg	His	Pro	Arg	Leu	Arg	Pro	Gln	Ser	
265					270					275					280	
gcc	cag	tct	tct	ttc	cct	ccc	tcc	cct	aat	cct	tct	cct	gat	gtg	caa	976

PCT/JP99/06412

### 90/233

Ala	Gln	Ser	Ser	Phe	Pro	Pro	Ser	Pro	Gly	Pro	Ser	Pro	Asp	Val	Gln	
				285					290					295		
ctg	gca	act	ctg	gct	cag	aga	gtc	aag	gaa	gtt	ttg	ccc	cat	gtg	cca	1024
Leu	Ala	Thr	Leu	Ala	Gln	Arg	Val	Lys	Glu	Val	Leu	Pro	His	Val	Pro	
			300					305					310			
ttg	ggt	gtc	atc	cag	aga	gac	ctg	gcc	aag	act	ggc	tgt	gta	gac	ttg	1072
Leu	Gly	Val	Ile	Gln	Arg	Asp	Leu	Ala	Lys	Thr	Gly	Суз	Val	Asp	Leu	
		315					320					325				
act	atc	act	aat	ctg	ctt	gag	<b>9</b> 99	gcc	gta	gct	ttc	atg	cct	gaa	gac	1120
Thr	Ile	Thr	Asn	Leu	Leu	Glu	Gly	Ala	Val	Ala	Phe	Met	Pro	Glu	Asp	
	330					335					340					
atc	acc	aag	gga	act	cag	tcc	cta	ccc	aca	gcc	tct	gcc	tcc	aag	ttt	1168
Ile	Thr	Lys	Gly	Thr	Gln	Ser	Leu	Pro	Thr	Ala	Ser	Ala	Ser	Lys	Phe	
345					350					355					360	
ccc	agc	tct	ggc	ccg	gtg	acc	cct	cag	cca	aca	gcc	cta	aca	ttt	gcc	1216
Pro	Ser	Ser	Gly	Pro	Val	Thr	Pro	Gln	Pro	Thr	Ala	Leu	Thr	Phe	Ala	
				365					370					375		
aag	tct	tcc	tgg	gcc	cgg	cag	gag	agc	ctg	cag	gag	cgc	aag	caa	gca	1264
Lys	Ser	Ser	Trp	Ala	Arg	Gln	Glu	Ser	Leu	Gln	Glu	Arg	ГÀЗ	Gln	Ala	
			380					385					390			
cta	tat	gaa	tac	gca	aga	agg	aga	ttc	aca	gag	aga	cga	gcc	cag	gag	1312
Leu	Tyr	Glu	Tyr	Ala	Arg	Arg	Arg	Phe	Thr	Glu	Arg	Arg	Ala	Gln	Glu	
		395					400					405				
gct	gac	tgag	gata	aaa g	ggaac	agge	at g	gcaco	cage	a gcc	gcag	gac .	ggag	jacto	aaa aa	1370
Ala	Asp															
	410															
cago	ccto	eac c	caac	tcac	ca ac	aggo	tgga	a tgg	gtg	ggtg	gtas	aaag	ggg e	agge	atgagg	1430
ctco	ccce	aat c	jtcac	atta	aa at	tcat	ggtt	: ttc	atto	aag	gc					1472

<210> 54

<211> 1652

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (17)(1468)																	
<400> 54																	
aaageggegg eggagg atg gag gaa gge gge gge gta egg agt etg gte 5														52			
				1	Met (	Glu (	Glu (	Gly (	sly (	sly (	Gly '	Val	Arg	Ser :	Leu '	Val	
					1				5					10			
cc	g ggd	gg:	g cc	ggt	g tta	a ct	gto	cto	tgo	gge	cto	e et	g ga	g gc	g te	2 1	100
Pro	Gly	y Gl	y Pro	Val	l Let	ı Let	ı Val	l Let	ı Cys	Gly	Le	ı Le	u Gl	u Ala	a Sei	r	
		1	5				20	)				2	5				
ggo	ggo	gge	e ega	a gcc	ctt	cct	caa	cto	ago	gat	gad	ato	c cc1	t tto	e ege	a 1	.48
Gl	, Gl	, Gly	Arg	J Ala	a Let	Pro	Glr	Lev	Ser	Asp	Asp	ıl.	e Pro	o Phe	Ar	I	
	30	)				35	•				40	)			•		
gto	aac	tg:	g ccc	ggc	acc	gag	tto	tct	ctg	ccc	aca	act	gge	a gtt	tta	1	96
Va]	. Ast	Tr	Pro	Gly	Thr	Glu	Phe	Ser	Leu	Pro	Thr	Thi	: Gly	y Val	. Let	ı	
45	•				50	)				55	i				60	)	
tat	aaa	gaa	gat	aat	tat	gto	ato	atg	aca	act	gca	cat	aaa	a gaa	aaa	2	44
Tyr	Lys	Glu	Asp	Asn	Tyr	Val	Ile	Met	Thr	Thr	Ala	His	Lys	Glu	Lys	:	
				65					70					75			
tat	aaa	tgo	ata	ctt	ccc	ctt	gtg	aca	agt	ggg	gat	gag	gas	gaa	gaa	. 29	92
Tyr	Lys	Cya	Ile	Leu	Pro	Leu	Val	Thr	Ser	Gly	Asp	Glu	Glu	Glu	Glu		
			80					85					90	)			
aag	gat	tat	aaa	ggc	cct	aat	cca	aga	gag	ctt	ttg	gag	CC8	cta	ttt	34	40
Lys	Asp	Tyr	Lys	Gly	Pro	Asn	Pro	Arg	Glu	Leu	Leu	Glu	Pro	Leu	Phe		
		95					100					105					
									gag						_	38	38
Lys		Ser	Ser	Cys	Ser	Tyr	Arg	Ile	Glu	Ser	Tyr	Trp	Thr	Tyr	Glu		
	110					115					120						
									tac							43	16
	Cys	His	Gly	Lys		Ile	Arg	Gln	Tyr	His	Glu	Glu	Lys	Glu	Thr		
125					130					135					140		
									tac							48	14
Gly	Gln	Lys	Ile		Ile	His	Glu	Tyr	Tyr	Leu	Gly	Asn	Met	Leu	Ala		
				145					150					155			
									gaa	_			-	_		53	2
Lys	Asn	Leu	Leu	Phe	Glu	Lys	Glu	Arg	Glu	Ala	Glu	G1u	Lys	Glu	Lys		

165

170

160

WO 00/29448 PCT/JP99/06412

	te	a aa	t ga	g at	t cc	c ac	t aa	a aa	t at	c ga	a gg	t ca	g at	g ac	a cc	a ta	<b>580</b>
	Sei	c As	n Gl	u Il	e Pr	o Th	r Ly:	a Ası	n Ile	e Gl	ı Gl	y Gl	n Me	t Th	r Pr	о Ту	r
			17	5			_	180	0				18	5			
	tat	c cc	t gt	g gg	a ate	g gg	a aat	ggt	t aca	a cct	t tg	t agr	t tt	g aa	a ca	g aac	628
	Туз	Pre	o Va	l Gly	y Met	t Gly	y Asr	Gly	7 Thi	r Pro	с Суз	s Se	r Lei	u Ly	s Gl	n Ası	3
		19	0				195	5				200	)				
											_			_		t aag	
			Ar	g Sei	Sea	Thi	· Val	. Met	Туг	: Ile	е Сув	His	Pro	Gl:	ı Sei	r Lys	3
	205					210					215					220	
															_	a gtt	
	His	Glu	ı Ile	e Leu			. Ala	Glu	ı Val			Cys	Glu	1 Туз	Glu	ı Val	
					225					230					235		
								_	_							aga	
	Val	116	Let			Leu	Leu	Cys			Pro	Lys	Туг	-		Arg	•
				240					245					250			
																cca	
	ALG	set	255		ASII	Asp	TTE	260		GIN	ser	Leu		_	Ser	Pro	
	+++	aac			800	cta	800			<b>797</b>	~~~	~~~	265			cta	969
												_	_	_		Leu	
		270					275	GIII	Deu	Gru	GLII	280	Giu	GIU	TTE	Leu	
	agg			ttt	agg	aga	aat	aaa	gag	gaa	gat		caa	tca	act	ลลล	916
							Asn					_					740
	285				-	290					295					300	
	gaa	gag	aga	ttt	cca	geg	atc	cac	aag	tcg	att	get	att	gge	tct	caq	964
							Ile			_		=				_	
					305					310					315		
(	cca	gtg	ctc	act	gtt	ggg	aca	acc	cac	ata	tcc	aaa	ttg	aca	gat	gac	1012
1	?ro	Val	Leu	Thr	Val	Gly	Thr	Thr	His	Ile	Ser	Lys	Leu	Thr	Asp	qeA	
				320					325					330			
C	caa	ctc	ata	aaa	gag	ttt	ctt	agt	ggt	tct	tac	tgc	ttt	cgt	<b>999</b>	ggt	1060
(	ln	Leu	Ile	Lys	Glu	Phe	Leu	Ser	Gly	Ser	Tyr	Суз	Phe	Arg	Gly	Gly	
			335					340					345				
9	rtc	ggt	tgg	tgg	aaa	tat	gaa	ttc	tgc	tat	ggc	aaa	cat	gta	cat	caa	1108
7	al	Gly	Trp	Trp	Lys	Tyr	Glu	Phe	Cys	Tvr	Glv	Lvs	His	Val	His	Gln	



	350					355					300					
tac	cat	gag	gac	aag	gat	agt	ggg	aaa	acc	tct	gtg	gtt	gtc	ggg	aca	1156
Tyr	His	Glu	Asp	Lys	Asp	Ser	Gly	Lys	Thr	Ser	Val	Val	Val	Gly	Thr	
365					370					375					380	
tgg	aac	caa	gaa	gag	cat	att	gaa	tgg	gct	aag	aag	aat	act	gct	aga	1204
Trp	Asn	Gln	Glu	Glu	His	Ile	Glu	Trp	Ala	Lys	Lys	Asn	Thr	Ala	Arg	
				385					390					395		
gct	tat	cat	ctt	caa	gac	gat	ggt	acc	cag	aca	gtc	agg	atg	gtg	tca	1252
Ala	Tyr	His	Leu	Gln	Asp	Asp	Gly	Thr	Gln	Thr	Val	Arg	Met	Val	Ser	
			400					405					410			
cat	ttt	tat	gga	aat	gga	gat	att	tgt	gat	ata	act	gac	aaa	cca	aga	1300
His	Phe	Tyr	Gly	Asn	Gly	Asp	Ile	Cys	Asp	Ile	Thr	Asp	Lys	Pro	Arg	
		415					420					425				
cag	gtg	act	gta	aaa	cta	aag	tgc	aaa	gaa	tca	gat	tca	cct	cat	gct	1348
Gln	Val	Thr	Val	Lys	Leu	Lys	Cys	Lys	Glu	Ser	Asp	Ser	Pro	His	Ala	
	430					435					440					
gtt	act	gta	tat	atg	cta	gag	cct	cac	tcc	tgt	caa	tat	att	ctt	ggg	1396
Val	Thr	Val	Tyr	Met	Leu	Glu	Pro	His	Ser	Cys	Gln	Tyr	Ile	Leu	Gly	
445					450					455					460	
gtt	gaa	tct	cca	gtg	atc	tgt	aaa	atc	tta	gat	aca	gca	gat	gaa	aat	1444
Val	Glu	Ser	Pro	Val	Ile	Cys	Lys	Ile	Leu	qaA	Thr	Ala	Asp	Glu	Asn	
				465					470					475		
gga	ctt	ctt	tct	ctc	ccc	aac	taaa	aggat	at t	aaaq	gttag	gg gg	gaaa			1490
Gly	Leu	Leu	Ser	Leu	Pro	Asn										
			480													
gaa	agat	ca t	tgaa	agto	a to	gatas	attto	tgt:	ccce	actg	tgto	tcat	ta t	agag	fttete	1550
agc	catte	gga c	ectet	teta	aa ag	gate	gtat	aaa	atga	actc	tcas	accad	tt t	gtge	ataca	1610
tat	gtgta	ata t	caage	aggtt	ta tt	gata	aaact	t tct	gag	gcag	ac					1652

<210> 55

· <211> 2112

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (20)...(1843) <400> 55 52 attttggtgg gtgagcagc atg ggc ttt gag gag ctg ctg gag cag gtg ggc Met Gly Phe Glu Glu Leu Leu Glu Gln Val Gly 10 gge ttt ggg ccc ttc caa ctg cgg aat gtg gca ctg ctg gcc ctg ccc 100 Gly Phe Gly Pro Phe Gln Leu Arg Asn Val Ala Leu Leu Ala Leu Pro 20 15 cga gtg ctg cta cca ctg cac ttc ctc ctg ccc atc ttc ctg gct gcc 148 Arg Val Leu Leu Pro Leu His Phe Leu Leu Pro Ile Phe Leu Ala Ala 40 gtg cct gcc cac cga tgt gcc ctg ccg ggt gcc cct gcc aac ttc agc 196 Val Pro Ala His Arg Cys Ala Leu Pro Gly Ala Pro Ala Asn Phe Ser 45 50 cat cag gat gtg tgg ctg gag gcc cat ctt ccc cgg gag cct gat ggc 244 His Gln Asp Val Trp Leu Glu Ala His Leu Pro Arg Glu Pro Asp Gly 75 70 60 65 292 acq etc age tec tge etc ege ttt gee tat ecc eag get etc ecc aac Thr Leu Ser Ser Cys Leu Arg Phe Ala Tyr Pro Gln Ala Leu Pro Asn 340 acc acg ttg ggg gaa gaa agg cag agc cgt ggg gag ctg gag gat gaa Thr Thr Leu Gly Glu Glu Arg Gln Ser Arg Gly Glu Leu Glu Asp Glu 105 95 100 cet gee aca gtg eee tge tet eag gge tgg gag tac gae cae tea gaa 388 Pro Ala Thr Val Pro Cys Ser Gln Gly Trp Glu Tyr Asp His Ser Glu 120 110 115 436 tte tee tet ace att gea act gag tee eag gte ggt att tae ata ate Phe Ser Ser Thr Ile Ala Thr Glu Ser Gln Val Gly Ile Tyr Ile Ile 484 cat ctg gag gtg gaa tgt cgg tgg agg cag tct ccc tgg gag gca gca His Leu Glu Val Glu Cys Arg Trp Arg Gln Ser Pro Trp Glu Ala Ala 145 150 155 140 ggt cga ggc ctt cct tgg gaa gaa gct gag gct gca gga ctg ggg agg 532 Gly Arg Gly Leu Pro Trp Glu Glu Ala Glu Ala Gly Leu Gly Arg 170 160 165

gad	aaa	a gti	t te	tat	to	CCE	ago	tg:	g egt	ga:	a tc	g tt	<b>3 9 9</b>	a gg	t tta	580
Ası	p Lys	s Val	L Sei	туз	Sei	Pro	Sei	Tr	Arg	g Glu	ı Se	r Le	ı Gl	y Gl	y Leu	ļ
			175	5				180	)				18	5		
tta	a tct	t ggd	ato	gag	tgg	gat	cto	gto	, tgt	gag	g ca	g aas	a ggi	t ct	g aac	628
Lev	sei	c Gly	Met	Glu	Tr	Asp	Let	ı Val	. Сув	Gl:	ı Glı	ı Lys	Gly	y Le	u Asn	•
		190	)				195	•				200	)			
aga	gct	geg	j teo	act	tto	ttc	tto	gee	ggt	gtg	get	gto	<b>9</b> 99	g ge	t gtg	676
Arg	, Ala	a Ala	. Ser	Thr	Phe	Phe	Phe	Ala	Gly	Val	Let	ı Val	. G13	, Ala	a Val	
	205	5				210					215	5				
gcc	ttt:	: gga	tat	ctg	tcc	gac	agg	ttt	ggg	cgg	geg	gegt	cto	g ct	g ctg	724
Ala	Phe	Gly	Tyr	Leu	Ser	Asp	Arg	Phe	Gly	Arg	Arg	Arg	Let	Le	ı Leu	,
220	1				225					230	•				235	
gta	gco	: tac	gtg	agt	acc	ctg	gtg	ctg	ggc	ctg	gea	tet	gca	ged	tcc	772
Val	Ala	Tyr	Val	Ser	Thr	Leu	Val	Leu	Gly	Leu	Ala	Ser	Ala	Ala	a Ser	
				240					245					250	)	
					-										gcc	820
Val	Ser	Tyr	Val	Met	Phe	Ala	Ile	Thr	Arg	Thr	Leu	Thr	Gly	Ser	Ala	
			255					260					265			
						atc							_		_	868
Leu	Ala		Phe	Thr	Ile	Ile	Val	Met	Pro	Leu	Glu	Leu	Glu	Trp	Leu	
		270					275					280				
						gtg										916
Asp		Glu	His	Arg	Thr	Val	Ala	Gly	Val	Leu	Ser	Ser	Thr	Phe	Trp	
	285					290					295					
						ctg -						_			-	964
	GIY	GTĀ	var	Met		Leu	Ala	Leu	Val	-	Tyr	Leu	Ile	Arg	_	
300		<b>.</b>			305					310					315	
						gct										1012
тър	Arg	Trp	Leu		Leu	Ala	vaı	Thr	_	Pro	Cys	Ala	Pro		Ile	
			<b>.</b>	320					325					330		
						cct										1060
Ten	ser	rea	335	ııp	AST	Pro	GTU		ATS	Arg	Trp	Leu		Thr	GIn	
aaa	ast.	at-		<b>~</b> 0~	<b>~</b> ~	<b>a</b> n-		340	<b>+</b>			مليم علا	345			1100
						Cac His										1108
TT L V		VCII	1105	.7 ( )	~ . ~	- I I SE	es r CJ	100			-10	. 3/6			1 011	

		350					355					360				
aat	<b>3</b> 33	cgg	cca	gtg	tgt	gag	gac	agc	ttc	agc	cag	gag	gct	gtg	agc	1156
Asn	Gly	Arg	Pro	Val	Cys	Glu	Asp	Ser	Phe	Ser	Gln	Glu	Ala	Val	Ser	
	365					370					375					
aaa	gtg	gcc	gcc	ggg	gaa	cgg	gtg	gtc	cga	aga	cct	tca	tac	cta	gac	1204
Lys	Val	Ala	Ala	Gly	Glu	Arg	Val	Val	Arg	Arg	Pro	Ser	Tyr	Leu	Asp	
380					385					390					395	
ctg	ttc	cgc	aca	cca	cgg	ctc	cga	cac	atc	tca	ctg	tgc	tgc	gtg	gtg	1252
Leu	Phe	Arg	Thr	Pro	Arg	Leu	Arg	His	Ile	Ser	Leu	Cys	Сув	Val	Val	
				400					405					410		
gtg	tgg	ttc	gga	gtg	aac	ttc	tcc	tat	tac	ggc	ctg	agt	ctg	gat	gtg	1300
Val	Trp	Phe	Gly	Val	Asn	Phe	Ser	Tyr	Tyr	Gly	Leu	Ser	Leu	Asp	Val	
			415					420					425			
tcg	ggg	ctg	ggg	ctg	aac	gtg	tac	cag	aca	cag	ctg	ttg	ttc	ggg	gct	1348
Ser	Gly	Leu	Gly	Leu	Asn	Val	Tyr	Gln	Thr	Gln	Leu	Leu	Phe	Gly	Ala	
		430					435					440				
gtg	gaa	ctg	ccc	tee	aag	ctg	ctg	gtc	tac	ttg	tcg	gtg	cgc	tac	gca	1396
Val	Glu	Leu	Pro	Ser	Lys	Leu	Leu	Val	Tyr	Leu	Ser	Val	Arg	Tyr	Ala	
	445					450					455					
gga	cgc	cgc	ctc	acg	caa	gcc	<b>9</b> 99	aca	ctg	ctg	ggc	acg	gcc	ctg	gcg	1444
Gly	Arg	Arg	Leu	Thr	Gln	Ala	Gly	Thr	Leu	Leu	Gly	Thr	Ala	Leu	Ala	
460					465					470					475	
ttc	ggc	act	aga	ctg	cta	gtg	tcc	tct	gat	atg	aag	tcc	tgg	agc	act	1492
Phe	Gly	Thr	Arg	Leu	Leu	Val	Ser	Ser	Asp	Met	Lys	Ser	Trp	Ser	Thr	
				480					485					490		
gtc	ctg	gca	gtg	atg	<b>9</b> 99	aaa	gct	ttt	tct	gaa	gct	gcc	ttc	acc	act	1540
Val	Leu	Ala	Val	Met	Gly	Lys	Ala	Phe	Ser	Glu	Ala	Ala	Phe	Thr	Thr	
			495					500					505			
gcc	tac	ctg	ttc	act	tca	gag	ttg	tac	cct	acg	gtg	ctc	aga	cag	aca	1588
Ala	Tyr	Leu	Phe	Thr	Ser	Glu	Leu	Tyr	Pro	Thr	Val	Leu	Arg	Gln	Thr	
		510					515					520	•			
ggg	atg	ggg	ctg	act	gca	ctg	gtg	ggc	cgg	ctg	ggg	ggc	tct	ttg	gcc	1636
Gly	Met	Gly	Leu	Thr	Ala	Leu	Val	Gly	Arg	Leu	Gly	Gly	Ser	Leu	Ala	
	525					530					535					
cca	ctg	gcg	gcc	ttg	ctg	gat	gga	gtg	tgg	ctg	tca	ctg	ccc	aag	ctt	1684

Pro Leu Ala Ala Leu Leu Asp Gly Val Trp Leu Ser Leu Pro Lys Leu	
540 545 550 555	
act tat ggg ggg atc gcc ctg ctg gct gcc ggc acc gcc ctc ctg ctg	1732
Thr Tyr Gly Gly Ile Ala Leu Leu Ala Ala Gly Thr Ala Leu Leu	
560 565 570	
cea gag acg agg cag gea cag etg eca gag ace ate cag gae gtg gag	1780
Pro Glu Thr Arg Gln Ala Gln Leu Pro Glu Thr Ile Gln Asp Val Glu	
575 580 585	
aga aag agt gcc cca acc agt ctt cag gag gaa gag atg ccc atg aag	1828
Arg Lys Ser Ala Pro Thr Ser Leu Gln Glu Glu Met Pro Met Lys	•
590 595 600	
cag gtc cag aac taagtgggag tggaggcagg ccctccacag aagctctgca	1880
Gln Val Gln Asn	
605	
gcaggggctg ggagagcaga agggcaggcc ctgcaactca ggctgggagt atcgaaccct	1940
etgectaggg ceggagttge tgecagtace egeteettet geteateeat cettgattat	2000
ttggcttcta ggaacagttg acttcccaga atgcagtggg ctgctgggca cccctctcac	2060
ggttggggag gattctgtaa ataaaggtgc cccttgggtt ggggcagtgg tg	2112
<210> 56	
<211> 1087	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (33)(977)	
<400> 56	
agagggggeg teaggeegeg ggagaggagg ee atg gge geg ege ggg geg etg	53
Met Gly Ala Arg Gly Ala Leu	
1 5	
etg etg geg etg etg get egg get gga ete agg aag eeg gag teg	101
Leu Leu Ala Leu Leu Ala Arg Ala Gly Leu Arg Lys Pro Glu Ser	=
10 15 20	
cag gag geg geg ceg tta tea gga cea tge gge ega egg gte ate aeg	149
Gin Giu ala ala Pro Lou Sor Ciu Pro Cue Giu and are Vol. Tie Min	

	25					30					35					
tcg	cgc	atc	gtg	ggt	gga	gag	gac	gcc	gaa	ctc	ggg	cgt	tgg	ccg	tgg	197
Ser	Arg	Ile	Val	Gly	Gly	Glu	Asp	Ala	Glu	Leu	Gly	Arg	Trp	Pro	Trp	
40					45					50					55	
cag	ggg	agc	ctg	cgc	ctg	tgg	gat	tcc	cac	gta	tgc	gga	gtg	agc	ctg	245
Gln	Gly	Ser	Leu	Arg	Leu	Trp	Asp	Ser	His	Val	Суз	Gly	Val	Ser	Leu	
				60					65					70		
ctc	agc	cac	cgc	tgg	gca	ctc	acg	gcg	gcg	cac	tgc	ttt	gaa	acc	tat	293
Leu	Ser	His	Arg	Trp	Ala	Leu	Thr	Ala	Ala	His	Cys	Phe	Glu	Thr	Tyr	
			75					80					85			
agt	gac	ctt	agt	gat	ccc	tcc	ggg	tgg	atg	gtc	cag	ttt	ggc	cag	ctg	341
Ser	Asp	Leu	Ser	Asp	Pro	Ser	Gly	Trp	Met	Val	Gln	Phe	Gly	Gln	Leu	
		90					95					100				
act	tcc	atg	cca	tcc	ttc	tgg	agc	ctg	cag	gcc	tac	tac	acc	cgt	tac	389
Thr	Ser	Met	Pro	Ser	Phe	Trp	Ser	Leu	Gln	Ala	Tyr	Tyr	Thr	Arg	Tyr	
	105					110					115					
ttc	gta	tcg	aat	atc	tat	ctg	agc	cct	cgc	tac	ctg	ggg	aat	tca	ccc	437
Phe	Val	Ser	Asn	Ile	Tyr	Leu	Ser	Pro	Arg	Tyr	Leu	Gly	Asn	Ser	Pro	
120					125					130					135	
tat	gac	att	gcc	ttg	gtg	aag	ctg	tct	gca	cct	gtc	acc	tac	act	aaa	485
Tyr	Asp	Ile	Ala	Leu	Val	Lys	Leu	Ser	Ala	Pro	Val	Thr	Tyr	Thr	ГÀа	
				140					145					150		
cac	atc	cag	ccc	atc	tgt	ctc	cag	gcc	tcc	aca	ttt	gag	ttt	gag	aac	533
His	Ile	Gln	Pro	Ile	Суз	Leu	Gln	Ala	Ser	Thr	Phe	Glu	Phe	Glu	Asn	
			155					160					165			
cgg	aca	gac	tgc	tgg	gtg	act	ggc	tgg	ggg	tac	atc	aaa	gag	gat	gag	581
Arg	Thr	Asp	Cys	Trp	Val	Thr	Gly	Trp	Gly	Tyr	Ile	ГÄЗ	Glu	Ąsp	Glu	
		170					175					180				
gca	ctg	cca	tct	CCC	cac	acc	ctc	cag	gaa	gtt	cag	gtc	gcc	atc	ata	629
Ala	Leu	Pro	Ser	Pro	His	Thr	Leu	Gln	Glu	Val	Gln	Val	Ala	Ile	Ile	
	185					190					195					
aac	aac	tct	atg	tgc	aac	cac	ctc	ttc	ctc	aag	tac	agt	ttc	cgc	aag	677
Asn	Asn	Ser	Met	Cys	Asn	His	Leu	Phe	Leu	Lys	Tyr	Ser	Phe	Arg	Lys	
200					205					210					215	
gac	atc	ttt	gga	gac	ato	att	tat	act	aac	aat	acc	caa	ggc	aaa	aaq	725

Asp Ile Phe Gly Asp Met Val Cys Ala Gly Asn Ala Gln Gly Gly Lys	
220 225 230	
gat gcc tgc ttc ggt gac tca ggt gga ccc ttg gcc tgt aac aag aat	773
Asp Ala Cys Phe Gly Asp Ser Gly Gly Pro Leu Ala Cys Asn Lys Asn	
235 240 245	
gga etg tgg tat cag att gga gte gtg age tgg gga gtg gge tgt ggt	821
Gly Leu Trp Tyr Gln Ile Gly Val Val Ser Trp Gly Val Gly Cys Gly	
250 255 260	
egg eec aat egg eec ggt gte tae ace aat ate age eac eac ttt gag	869
Arg Pro Asn Arg Pro Gly Val Tyr Thr Asn Ile Ser His His Phe Glu	
265 270 275	
tgg atc cag aag ctg atg gcc cag agt ggc atg tcc cag cca gac ccc	917
Trp Ile Gln Lys Leu Met Ala Gln Ser Gly Met Ser Gln Pro Asp Pro	
280 285 290 295	
tee tgg eeg eta ete ttt tte eet ett ete tgg get ete eea ete etg	965
Ser Trp Pro Leu Leu Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu	
300 305 310	
ggg ccg gtc tgagcctacc tgagcccatg cagcctgggg ccactgccaa gtcagg	1020
Gly Pro Val	
coctggttet ettetgtett gtttggtaat aaacacatte cagttgatge ettgeaggge	1080
attette	1087
<210> 57	
<211> 1694	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	٠
<222> (216)(500)	
×400> 57	
ecgaagttt gaggggtgtg gacggtttgt gacccctta gccgacccta ctcctcactg	60
ccgggacaa ctggtcttat cacggaggct ggggccaggc agcccttcgg ttcgggtggg	120
eccatggace ecagtecaae geegagggaa taggaceate caaaagegga acettegeet	180
agaaaaagg cgtggaccet gecagcagee aggee atg gag ete tet gat gte	233

Met Glu Leu Ser Asp Val											
1 5											
acc ctc att gag ggt gtg ggt aat gag gtg atg gtg g	281										
Thr Leu Ile Glu Gly Val Gly Asn Glu Val Met Val Val Ala Gly Val											
10 15 20											
gtg gtg ctg att cta gcc ttg gtc cta gct tgg ctc tct acc tac gta	329										
Val Val Leu Ile Leu Ala Leu Val Leu Ala Trp Leu Ser Thr Tyr Val											
25 30 35											
gca gac age ggt age aac cag etc etg gge get att gtg tea gea gge	377										
Ala Asp Ser Gly Ser Asn Gln Leu Leu Gly Ala Ile Val Ser Ala Gly											
40 45 50											
gac aca tee gte etc eac etg ggg eat gtg gac eac etg gtg gea gge	425										
Asp Thr Ser Val Leu His Leu Gly His Val Asp His Leu Val Ala Gly											
55 60 65 70											
caa ggc aac ccc gag cca act gaa ctc ccc cat cca tca gag gca aat	.473										
Gln Gly Asn Pro Glu Pro Thr Glu Leu Pro His Pro Ser Glu Ala Asn											
75 80 85											
act too otg gac aag aaa goo aga tgaaactgat otaccagggo ogo	·520										
Thr Ser Leu Asp Lys Lys Ala Arg											
90	580										
ctgctacaag acccagccg cacactgcgt tetetgaaca ttaccgacaa ctgtgtgatt	640										
cactgocace getcaecece agggtcaget gttccaggec cetcagecte ettggecece	700										
teggecactg agecaccag cettggtgte aatgtgggea geeteatggt geetgtettt	760										
gtggtgctgt tgggtgtggt ctggtactte cgaatcaatt accgecaatt cttcacagea	820										
cetgecaetg tetecetggt gggagteace gtettettea getteetagt atttgggatg	880										
tatggacgat aaggacatag gaagaaaatg aaaggcatgg tottteteet ttatggoote	940										
cccacttttc ctggccagag ctgggcccaa gggccgggga gggaggggtg gaaaggatgt gatggaaatc tcctccatag gacacaggag gcaagtatgc ggcctcccct tctcatccac	1000										
aggagtacag atgtccctcc cgtgcgagca caactcaggt agaaatgagg atgtcatctt	1060										
cetteacttt tagggteete tgaaggagtt caaagetget ggeeaagete agtggggage	1120										
ctgggctctg agattccctc ccacctgtgg ttctgactct tcccagtgtc ctgcatgtct	1180										
geoccagea cocagggetg cetgeaaggg cageteagea tggecceage acaacteegt	1240										
agggageetg gagtateett ceatttetea gecaaataet eatettttga gaetgaaate	1300										
acactggegg gaatgaagat tgtgccagcc ttctcttatg ggcacctagc cgccttcacc	1360										
ttetteetet accettage aggaataggg tgteeteet tettteaaag caetttgett	1420										



gcattttatt ttatttttt aagagteett catagagete agteaggaag gggatggge	1480
accaagecaa geceecagea ttgggagegg ecaggecaea getgetgete eegtagteet	1540
caggotgtaa gcaagagaca gcactggccc ttggccagcg tcctaccctg cccaactcca	1600
aggactgggt atggattgct gggccctagg ctcttgcttc tgggggctatt ggagggtcag	1660
tgtctgtgac tgaataaagt tccattttgt ggtc	1694
<210> 58	
<211> 1522	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (12)(668)	
< <b>400&gt;</b> 58	
cotttcccaa g atg gcg tcg aag ata ggt tcg aga cgg tgg atg ttg cag	50
Met Ala Ser Lys Ile Gly Ser Arg Arg Trp Met Leu Gln	
1 5 10	
etg ate atg cag ttg ggt teg gtg etg ete aca ege tge eee ttt tgg	98
Leu Ile Met Gln Leu Gly Ser Val Leu Leu Thr Arg Cys Pro Phe Trp	
15 20 25	
ggc tgc ttc agc cag etc atg etg tac get gag agg get gag gea ege	146
Gly Cys Phe Ser Gln Leu Met Leu Tyr Ala Glu Arg Ala Glu Ala Arg	
30 35 40 45	
egg aag eee gae ate eea gtg eet tae etg tat tte gae atg ggg gea	194
Arg Lys Pro Asp Ile Pro Val Pro Tyr Leu Tyr Phe Asp Met Gly Ala	
50 55 60	
gee gtg etg tge get agt tte atg tee ttt gge gtg aag egg ege tgg	242
Ala Val Leu Cys Ala Ser Phe Met Ser Phe Gly Val Lys Arg Arg Trp  65 70 75	
	200
ttc gcg ctg ggg gcc gca ctc caa ttg gcc att agc acc tac gcc gcc Phe Ala Leu Gly Ala Ala Leu Gln Leu Ala Ile Ser Thr Tyr Ala Ala	290
80 85 90	
tac atc ggg ggc tac gtc cac tac ggg gac tgg ctg aag gtc cgt atg	338
Tyr Ile Gly Gly Tyr Val His Tyr Gly Asp Trp Leu Lys Val Arg Met	<b>330</b>
95 100 105	
100	

tac teg ege aca gtt gee ate ate gge gga ett tet tgt gtt gge cag	386
Tyr Ser Arg Thr Val Ala Ile Ile Gly Gly Leu Ser Cys Val Gly Gln	
110 115 120 125	
egg tge tgg gga get gta eeg eeg gaa aee teg eag eeg ete eet gea	434
Arg Cys Trp Gly Ala Val Pro Pro Glu Thr Ser Gln Pro Leu Pro Ala	
130 135 140	
gtc cac egg cca ggt gtt cct ggg tat cta cct cat ctg tgt ggc cta	482
Val His Arg Pro Gly Val Pro Gly Tyr Leu Pro His Leu Cys Gly Leu	
145 150 155	
ctc act gca gca cag caa gga gga ccg gct ggc gta tct gaa cca tct	530
Leu Thr Ala Ala Gln Gln Gly Gly Pro Ala Gly Val Ser Glu Pro Ser	
160 165 170	
ccc agg agg gga gct gat gat cca gct gtt ctt cgt gct gta tgg cat	578
Pro Arg Arg Gly Ala Asp Asp Pro Ala Val Leu Arg Ala Val Trp His	
175 180 185	
cet gge cet gge ett tet gte agg eta eta egt gae eet ege tge eea	626
Pro Gly Pro Gly Leu Ser Val Arg Leu Leu Arg Asp Pro Arg Cys Pro	
190 195 200 205	
gat cet gge tgt act get gee eec tgt eat get get eat tgatg	670
Asp Pro Gly Cys Thr Ala Ala Pro Cys His Ala Ala His	
210 215	
gcaatgttge ttactggcae aacaegegge gtgttgagtt etggaaceag atgaagetee	730
ttggagagag tgtgggcatc ttcggaactg ctgtcatctg gccactgatg gctgagtttt	790
atggcaagag gctgagatgg gcacagggag ccactgaggg tcaccctgcc ttcctccttg	850
ctggcccage tgctgtttat ttatgctttt tggtctgttt gtttgatctt ttgcttttt	910
anaattgttt tttgcagtta agaggcaget catttgtcca aatttctggg ctcagegett	970
gggagggcag gagccctggc actaatgctg tacaggtttt tttcctgtta ggagagctga	1030
ggccagctgc ccactgagtc tcctgtccct gagaagggag tatggcaggg ctgggatgcg	1090
gctactgaga gtgggagagt gggagacaga ggaaggaaga tggagattgg aagtgagcaa	1150
atgtgaaaaa ttcctctttg aacctggcag atgcagctag gctctgcagt gctgtttgga	1210
gactgtgaga gggagtgcgt gtgttgacac atgtggatca ggcccaggaa gggcacaggg	1270
gctgagcact acagaagtca catgggttct cagggtatgc caggggcaga aacagtaccg	1330
getetetgte acteaecttg agagtagage agaceetgtt etgetetggg etgtgaaggg	1390
gtggagcagg cagtggccag ctttgccctt cctgctgtct ctgtttctag ctccatggtt	1450
ggcctggtgg gggtggagtt ccctcccaaa caccagacca cacagtcctc caaaaataaa	1510



cat	ttt	atat	ag													1522
<21	0> 5	59														
<21	1> 1	1591														
<21	.2> 1	ONA														
<21	.3> F	omo	вар	iens												
<22	:0>															
<22	1> 0	DS.														
<22	2> (	44).	(1	l <b>426</b> )	)											
<40	0> 5	9														
gaa	aaca	gtt	ccac	gttg	jet t	gaaa	attga	a as	tcaa	igata	aaa	ato	tto	aca	att	55
												Met	Phe	Thr	Ile	
												1	•			
aag	ctc	ctt	ctt	ttt	att	gtt	cct	cta	gtt	att	too	tcc	aga	att	gat	103
Lys	Leu	Leu	Leu	. Phe	Ile	Val	Pro	Leu	Val	Ile	Ser	Ser	Arg	Ile	Asp	
5					10					15					20	
															aga	151
Gln	Asp	Asn	Ser	Ser	Phe	Asp	Ser	Leu	Ser	Pro	Glu	Pro	Lys	Ser	Arg	
				25					30					35		
					gat							-			-	199
Phe	Ala	Met			Ązp	Val	Lys			Ala	Asn	Gly	Leu	Leu	Gln	
			40					45					50			
					aaa -			_		_	_	_				247
Leu	GTĀ		GLY	Leu	Lys	Asp		Val	His	Lys	Thr	-	Gly	Gln	Ile	
		55					60					65				
					aaa					_	_				_	295
ASI	70	TTE	Pne	GIN	Lys	ьец 75	Asn	TTE	Pne	Asp		ser	Pne	Tyr	Asp	
~+=		ata	<b></b>	200	agt		=±-a		~		80					242
					Ser							_	_	_	_	343
85		200	O.1.1.		90	Gru	110	цуз	GIU	95	GIU	пур	GIU	Leu	100	
	act.	aca	tat	888	cta	CAA	atc	222	aat		aaa	ata	884	ast		391
					Leu					_		-	_		_	391
3			-4-	105				-1-	110				<u>, -</u> -	115		
tca	ctt	gaa	ctc		tca	aaa	ctt	gaa		ctc	cta	gaa	gaa		att	439

PCT/JP99/06412

Ser	Leu	Glu	Leu	Asn	Ser	Lys	Leu	Glu	Ser	Leu	Leu	Glu	Glu	Lys	Ile	
			120					125					130			
cta	ctt	caa	caa	aaa	gtg	aaa	tat	tta	gaa	gag	caa	cta	act	aac	tta	487
Leu	Leu	Gln	Gln	Lys	Val	Lys	Tyr	Leu	Glu	Glu	Gln	Leu	Thr	Asn	Leu	
		135					140					145				
att	caa	aat	caa	cct	gaa	act	cca	gaa	cac	cca	gaa	gta	act	tca	ctt	535
Ile	Gln	Asn	Gln	Pro	Glu	Thr	Pro	Glu	His	Pro	Glu	Val	Thr	Ser	Leu	
	150					155					160					
aaa	act	ttt	gta	gaa	aaa	caa	gat	aat	agc	atc	aaa	gac	ctt	ctc	cag	583
Lys	Thr	Phe	Val	Glu	Lys	Gln	qeA	Asn	Ser	Ile	Lys	ĄsĄ	Leu	Leu	Gln	
165					170					175					180	
acc	gtg	gaa	gac	caa	tat	aaa	caa	tta	aac	caa	cag	cat	agt	caa	ata	631
Thr	Val	Glu	Asp	Gln	Tyr	Lys	Gln	Leu	Asn	Gln	Gln	His	Ser	Gln	Ile	
				185					190					195		
aaa	gaa	ata	gaa	aat	cag	ctc	aga	agg	act	agt	att	caa	gaa	ccc	aca	679
Lys	Glu	Ile	Glu	Asn	Gln	Leu	Arg	Arg	Thr	Ser	Ile	Gln	Glu	Pro	Thr	
			200					205					210			
gaa	att	tct	cta	tct	tcc	aag	CCA	aga	gca	cca	aga	act	act	ccc	ttt	727
Glu	Ile	Ser	Leu	Ser	Ser	Lys	Pro	Arg	Ala	Pro	Arg	Thr	Thr	Pro	Phe	
		215					220					225				
ctt	cag	ttg	aat	gaa	ata	aga	aat	gta	aaa	cat	gat	ggc	att	cct	gct	775
Leu	Gln	Leu	Asn	Glu	Ile	Arg	Asn	Val	ГÄз	His	Asp	Gly	Ile	Pro	Ala	
	230					235					240					
gaa	tgt	acc	acc	att	tat	aac	aga	ggt	gaa	cat	aca	agt	ggc	atg	tat	823
Glu	Cys	Thr	Thr	Ile	Tyr	Asn	Arg	Gly	Glu	His	Thr	Ser	Gly	Met	Tyr	
245					250					255					260	
gcc	atc	aga	ccc	agc	aac	tct	caa	gtt	ttt	cat	gtc	tac	tgt	gat	gtt	871
Ala	Ile	Arg	Pro	Ser	Asn	Ser	Gln	Val	Phe	His	Val	Tyr	Cys	Asp	Val	
				265					270					275		
ata	tca	ggt	agt	cca	tgg	aca	tta	att	caa	cat	cga	ata	gat	gga	tca	919
Ile	Ser	Gly	Ser	Pro	Trp	Thr	Leu	Ile	Gln	His	Arg	Ile	Asp	Gly	Ser	
			280					285					290			
caa	aac	ttc	aat	gaa	acg	tgg	gag	aac	tac	aaa	tat	ggt	ttt	ggg	agg	967
Gln	Asn	Phe	Asn	Glu	Thr	Trp	Glu	Asn	Tyr	Lys	Tyr	Gly	Phe	Gly	Arg	
		295					300					305				

ctt	gat	gga	gaa	ttt	tgg	ttg	ggc	cta	gag	aag	ata	tac	tcc	ata	gtg	1015
Leu	Asp	Gly	Glu	Phe	Trp	Leu	Gly	Leu	Glu	Lys	Ile	Tyr	Ser	Ile	Val	
	310	•				315					320					
aag	caa	tct	aat	tat	gtt	tta	cga	att	gag	ctg	gaa	gac	tgg	aaa	gac	1063
Lys	Gln	Ser	Asn	Tyr	Val	Leu	Arg	Ile	Glu	Leu	Glu	Asp	Trp	Lys	Asp	
325					330					335					340	
aac	aaa	cat	tat	att	gaa	tat	tct	ttt	tac	ttg	gga	aat	cac	gaa	acc	1111
Asn	Lys	His	Tyr	Ile	Glu	Tyr	Ser	Phe	Tyr	Leu	Gly	Asn	His	Glu	Thr	•
				345					350					355		
aac	tat	acg	cta	cat	cta	gtt	gcg	att	act	ggc	aat	gtc	ccc	aat	gca	1159
Asn	Tyr	Thr	Leu	His	Leu	Val	Ala	Ile	Thr	Gly	Asn	Val	Pro	Asn	Ala	
			360					365					370			
atc	ccg	gaa	aac	aaa	gat	ttg	gtg	ttt	tct	act	tgg	gat	cac	aaa	gca	1207
Ile	Pro	Glu	Asn	Lys	Asp	Leu	Val	Phe	Ser	Thr	Trp	Asp	His	Lys	Ala	
		375					380					385				
aaa	gga	cac	ttc	aac	tgt	cca	gag	ggt	tat	tca	gga	ggc	tgg	tgg	tgg	1255
Lys	Gly	His	Phe	Asn	Cys	Pro	Glu	Gly	Tyr	Ser	Gly	Gly	Trp	Trp	Trp	
	390					395					400					
cat	gat	gag	tgt	gga	gaa	aac	aac	cta	aat	ggt	aaa	tat	aac	aaa	cca	1303
His	Asp	Glu	Cys	Gly	Glu	Asn	Asn	Leu	Asn	Gly	Lys	Tyr	Asn	Lys	Pro	
405					410					415					420	
aga	gca	aaa	tct	aag	cca	gag	agg	aga	aga	gga	tta	tct	tgg	aag	tct	1351
Arg	Ala	Lys	Ser	Lys	Pro	Glu	Arg	Arg	Arg	Gly	Leu	Ser	Trp	Lys	Ser	
				425					430					435		
caa	aat	gga	agg	tta	tac	tct	ata	aaa	tca	acc	aaa	atg	ttg	atc	cat	1399
Gln	Asn	Gly	Arg	Leu	Tyr	Ser	Ile	Lys	Ser	Thr	Lys	Met	Leu	Ile	His	
			440					445					450			
cca	aca	gat	tca	gaa	agc	ttt	gaa	tgaa	ctga	gg c	aaat	ttaa	a ag	gcaa	t	1450
Pro	Thr	Asp	Ser	Glu	Ser	Phe	Glu									
		455					460									
aatt	taaa	ca t	taac	ctca	t te	caag	ttaa	tgt	ggtc	taa	taat	ctgg	ta t	taaa	tectt	1510
aaga	gaaa	ge t	tgag	aaat	a ga	tttt	tttt	tat	ctta	aag	tcac	tgtc	ta t	ttaa	gatta	1570
aaca	taca	at c	acat	aacc	t t											1591

<210> 60

<211> 1249	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (134)(784)	
<400> 60	
adeageeege ggagaeagee gegeeeege ggeeeegge ggeeegge	60
effective adaption and an all the second and an all the second and a second a second and a second a second and a second a	20
ecggggaggg gee acg geg coa acg ear ear and your	.69
Met Val Pro Met His Leu Leu Gly Arg Leu Glu Lys	
1 5 10	
deg cee cee ceg ego ego goo eeo eeo eeo eeo	17
Pro Leu Leu Leu Cys Cys Ala Ser Phe Leu Leu Gly Leu Ala Leu	
15 20 25	. C E
ety gge ata aay acy gae ace ace gee gee gee	65
Leu Gly Ile Lys Thr Asp Ile Thr Pro Val Ala Tyr Phe Phe Leu Thr	
30 35 40	13
tig ggt gge the tee teg tee get the tee teg get the	
Leu Gly Gly Phe Phe Leu Phe Ala Tyr Leu Leu Val Arg Phe Leu Glu 45 50 55 60	
45	61
Trp Gly Leu Arg Ser Gln Leu Gln Ser Met Gln Thr Glu Ser Pro Gly	
65 70 75	
	09
Pro Ser Gly Asn Ala Arg Asp Asn Glu Ala Phe Glu Val Pro Val Tyr	
80 85 90	
gaa gag gee gtg gtg gga eta gaa tee eag tge ege eee eaa gag ttg 4	57
Glu Glu Ala Val Val Gly Leu Glu Ser Gln Cys Arg Pro Gln Glu Leu	
95 100 105	
gac caa cca ccc ccc tac agc act gtt gtg ata ccc cca gca cct gag 5	05
Asp Gln Pro Pro Pro Tyr Ser Thr Val Val Ile Pro Pro Ala Pro Glu	
110 115 120	
gag gaa caa cct agc cat cca gag ggg tcc agg aga gcc aaa ctg gaa 5	53
Glu Glu Gln Pro Ser His Pro Glu Gly Ser Arg Arg Ala Lys Leu Glu	

125 130 135 140	
cag agg cga atg gcc tca gag ggg tcc atg gcc cag gaa gga agc cct	601
Gln Arg Arg Met Ala Ser Glu Gly Ser Met Ala Gln Glu Gly Ser Pro	
145 150 155	
gga aga get eea ate aac ett egg ett egg gga eea egg get gtg tee	649
Gly Arg Ala Pro Ile Asn Leu Arg Leu Arg Gly Pro Arg Ala Val Ser	
160 165 170	
act gct cct gat ctg cag age ttg gcg gca gtc ccc aca tta gag cct	697
Thr Ala Pro Asp Leu Gln Ser Leu Ala Ala Val Pro Thr Leu Glu Pro	
175 180 185	
ctg act cca ccc cct gcc tat gat gtc tgc ttt ggt cac cct gat gat	745
Leu Thr Pro Pro Pro Ala Tyr Asp Val Cys Phe Gly His Pro Asp Asp	
190 195 200	
gat agt gtt ttt tat gag gac aac tgg gca ccc cct taaatgact	790
Asp Ser Val Phe Tyr Glu Asp Asn Trp Ala Pro Pro	
205 210 215	
cteccaagat ttetettete tecacaceag acetegttea tttgactaae attttecage	850
gcctactatg tgtcagaaac aagtgtttct gcctggacat cataaatggg gacttggacc	910
ctgaggagag tcaggccacg gtaagccctt cccagctgag atatgggtgg cataatttga	970
gtettetgge aacatttggt gacetaceee atatecaata tttecagegt tagattgagg	1030
atgaggtagg gaggtgatcc agagaaggcg gagaaggaag aagtaacctc tgagtggcgg	1090
ctattgcttc tgttccaggt gctgttcgag ctgttagaac ccttaggctt gacagctttg	1150
tgagttatta ttgaaaaatg aggattccaa gagtcagagg agtttgataa tgtgcacgag	1210
ggcacactgc tagtaaataa cattaaaata actggaatg	1249
<210> 61	
<211> 392	
<212> PRT	
<213> Homo sapiens	
<400> 61	
Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu	
1 5 10 15	
Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly Val Leu Leu	
20 25 30	
TVF Ard Ile Ala Ard Ard Met Lvs Pro Thr His Thr Met Val Asn Cvs	

		35					40					45			
Trp	Phe	Cys	Asn	Gln	Asp	Thr	Leu	Val	Pro	Tyr	Gly	Asn	Arg	Asn	Cys
	50					55					60				
Trp	Asp	Суз	Pro	His	Cys	Glu	Gln	Tyr	Asn	Gly	Phe	Gln	Glu	Asn	Gly
65					70					75					80
Asp	Tyr	Asn	Lys	Pro	Ile	Pro	Ala	Gln	Tyr	Leu	Glu	His	Leu	Asn	His
				85					90					95	
Val	Val	Ser	Ser	Ala	Pro	Ser	Leu	Arg	Asp	Pro	Ser	Gln	Pro	Gln	Gln
			100					105					110		
Trp	Val	Ser	Ser	Gln	Val	Leu	Leu	Cys	Lys	Arg	Cys	Asn	His	His	Gln
		115					120					125			
Thr	Thr	Lys	Ile	Lys	Gln	Leu	Ala	Ala	Phe	Ala	Pro	Arg	Glu	Glu	Gly
	130					135					140				
Arg	Tyr	Ąsp	Glu	Glu	Val	Glu	Val	Tyr	Arg	His	His	Leu	Glu	Gln	Met
145					150					155					160
Tyr	Lys	Leu	Cys	Arg	Pro	Cys	Gln	Ala	Ala	Val	Glu	Tyr	Tyr	Ile	Lys
				165					170					175	
His	Gln	Asn	Arg	Gln	Leu	Arg	Ala	Leu	Leu	Leu	Ser	His	Gln	Phe	Lys
			180					185					190		
Arg	Arg	Glu	Ala	Asp	Gln	Thr	His	Ala	Gln	Asn	Phe	Ser	Ser	Ala	Val
		195					200					205			
Lys	Ser	Pro	Val	Gln	Val	Ile	Leu	Leu	Arg	Ala		Ala	Phe	Leu	Ala
	210					215					220		_		
Cys	Ala	Phe	Leu	Leu	Thr	Thr	Ala	Leu	Tyr	Gly	Ala	Ser	Gly	His	
225					230					235					240
Ala	Pro	Gly	Thr	Thr	Val	Pro	Leu	Ala	Leu	Pro	Pro	Gly	Gly		Gly
				245					250					255	
Ser	Ala	Thr	Pro	Asp	Asn	Gly	Thr	Thr	Pro	Gly	Ala	Glu		Trp	Arg
			260					265					270		
Gln	Leu	Leu	Gly	Leu	Leu	Pro	Glu	His	Met	Ala	Glu	Lys	Leu	Cys	Glu
		275					280					285			
Ala	Trp	Ala	Phe	Gly	Gln	Ser	His	Gln	Thr	Gly		Val	Ala	Leu	Gly
	290					295					300				
Leu	Leu	Thr	Cys	Leu	Leu	Ala	Met	Leu	Leu	Ala	Gly	Arg	Ile	Arg	Leu
305					310					315					320

Ar	g Arg	g Ile	e As	p Ala	a Phe	е Суз	3 Thi	Cys	s Le	ı Trj	e Ala	a Lev	ı Lev	Lev	Gly
				32					330					335	
Lev	ı His	Let	ı Ala	a Glu	ı Glr	His	3 Lev	ı Glı	n Ala	a Ala	a Sei	Pro	Ser	Tr	Leu
			340	)				345	5				350	)	
Ası	Thr	Let	ı Lys	Phe	e Ser	Thi	Thr	Sez	Let	Cys	Cys	Leu	Val	Gly	Phe
		355	5				360	)				365			
Thi	: Ala	Ala	a Val	l Ala	Thr	Arg	J Lys	Ala	Thr	Gly	Pro	Arg	Arg	Phe	Arg
	370	)				375	•				380	)			
Pro	Arg	Arg	y Sei	Glu	Lys	Glr	Pro	•							
385	•				390	)									
<21	.0> 6	2													
<21	.1> 4	97													
<21	.2> P	RT													
<21	.3> н	omo	sapi	ens.											
<40	0> 6	2													
Met	Ala	Leu	Trp	Arg	Gly	Ser	Ala	Tyr	Ala	Gly	Phe	Leu	Ala	Leu	Ala
1				5					10					15	
Val	Gly	Cys	Val	Phe	Leu	Leu	Glu	Pro	Glu	Leu	Pro	Gly	Ser	Ala	Leu
			20					25					30		
Arg	Ser	Leu	Trp	Ser	Ser	Leu	Суз	Leu	Gly	Pro	Ala	Pro	Ala	Pro	Pro
		35					40					45			
Gly	Pro	Val	Ser	Pro	Glu	Gly	Arg	Leu	Ala	Ala	Ala	Trp	Asp	Ala	Leu
	50					55					60				
Ile	Val	Arg	Pro	Val	Arg	Arg	Trp	Arg	Arg	Val	Ala	Val	Gly	Val	Asn
65					70					75					80
Ala	Cys	Val	Asp	Val	Val	Leu	Ser	Gly	Val	Lys	Leu	Leu	Gln	Ala	Leu
				85					90					95	
Gly	Leu	Ser	Pro	Gly	Asn	Gly	Lys	Asp	His	Ser	Ile	Leu	His	Ser	Arg
			100					105					110		
Asn	Asp	Leu	Glu	Glu	Ala	Phe	Ile	His	Phe	Met	Trp	Lys	Gly	Ala	Ala
		115					120					125			
Ala	Glu	Arg	Phe	Phe	Ser	Asp	Lys	Glu	Thr	Phe	His	Asp	Ile	Ala	Gln
	130					135					140				
Val	Ala	Ser	Glu	Phe	Pro	Gly	Ala	Gln	His	Tyr	Val	Gly	Gly	Asn	Ala

145					150					155					160
Ala	Leu	Ile	Gly	Gln	Lys	Phe	Ala	Ala	Asn	Ser	Asp	Leu	Lys	Val	Leu
				165					170					175	
Leu	Cys	Gly	Pro	Val	Gly	Pro	Arg	Leu	His	Glu	Leu	Leu	Asp	Asp	Asn
			180					185					190		
Val	Phe	Val	Pro	Pro	Glu	Ser	Leu	Gln	Glu	Val	Asp	Glu	Phe	His	Leu
		195					200					205			
Ile	Leu	Glu	Tyr	Gln	Ala	Gly	Glu	Glu	Trp	Gly	Gln	Leu	Lys	Ala	Pro
	210					215					220				
His	Ala	Asn	Arg	Phe	Ile	Phe	Ser	His	Asp	Leu	Ser	Asn	Gly	Ala	Met
225					230					235					240
Asn	Met	Leu	Glu	Val	Phe	Val	Ser	Ser	Leu	Glu	Glu	Phe	Gln	Pro	Asp
				245					250					255	
Leu	Val	Val	Leu	Ser	Gly	Leu	His	Met	Met	Glu	Gly	Gln	Ser	Lys	Glu
			260					265					270		
Leu	Gln	Arg	Lys	Arg	Leu	Leu	Glu	Val	Val	Thr	Ser	Ile	Ser	Asp	Ile
		275					280					285			
Pro	Thr	Gly	Ile	Pro	Val	His	Leu	Glu	Leu	Ala	Ser	Met	Thr	Asn	Arg
	290					295					300				
Glu	Leu	Met	Ser	Ser	Ile	Val	His	Gln	Gln	Val	Phe	Pro	Ala	Val	
305					310					315					320
Ser	Leu	Gly	Leu	Asn	Glu	Gln	Glu	Leu	Leu	Phe	Leu	Thr	Gln		Ala
				325					330					335	
Ser	Gly	Pro	His	Ser	Ser	Leu	Ser	Ser	Trp	Asn	Gly	Val		Asp	Val
			340					345					350		
Gly	Met	Val	Ser	Asp	Ile	Leu	Phe	Trp	Ile	Leu	Lys		His	GLY	Arg
		355					360					365			_
Ser	Lys	Ser	Arg	Ala	Ser		Leu	Thr	Arg	Ile		Phe	His	Thr	Leu
	370					375					380		_		
Val	Tyr	His	Ile	Leu	Ala	Thr	Val	Asp	Gly		Trp	Ala	Asn	GIn	
385					390					395		•		_	400
Ala	Ala	Val	Ala		Gly	Ala	Arg	Val		Gly	Thr	Gin	Ala		ATa
				405					410			_ •		415	<b>0</b> 3
Thr	Glu	Thr		Asp	Thr	Ser	Arg		Ser	Leu	Arg	ALA		GIN	GIU
			420					425					430		

Phe	Met	Th	r Sei	r His	s Sei	c Glu	u Ala	a Gly	y Sei	r Arg	, Ile	va:	l Leu	Asr	) Pr
		439	5				440	)				445	5		
Asn	Lys	Pro	val	l Vai	l Glu	Tr	o His	Arg	g Glu	ı Gly	7 Ile	Se)	Phe	His	Ph
	450	)				455	5				460	)			
Thr	Pro	Va]	Let	ı Val	L Cys	Lys	a Asp	Pro	Ile	e Arg	Thr	Va]	l Gly	Leu	Gl
465					470					475					48
Asp	Ala	Ile	e Ser	Ala	a Glu	Gly	/ Leu	Phe	туг	Ser	Glu	Va]	. His	Pro	Hi
				485	•				490	)				495	
Tyr															
	0> 6														
	1> 4														
	2> P														
	<i>3&gt;</i> н 0> б		sapi	ens											
			ui e	Tou	Dhe	7.20	. Wal	<b>~</b> 1••	· ~1~		<b>~</b> 3	<b>a</b> 1	D	Db.a	D
1	Tierr	Val	nis	Б		ALG	val	GTĀ	10	Arg	GLY	стХ	PIO	15	PIC
	Ara	Leu	Len			T.eu	Ara	Dhe		Thr	Dhe	Sor	Ale		Arc
CLJ	9	204	20		110	DC.	, 111 g	25	GIII		FIIG	Ser	30	Val	M.
Tvr	Ser	azA			Ara	Ser	Ser		Leu	Leu	Ara	Ala		Ala	His
		35	4	-2-	<i>J</i>		40					45	-		
Leu	Arg	Ser	Gln	Leu	Trp	Ala	-	Leu	Pro	Arg	Ala		Leu	Ala	Pro
	50				•	55				5	60				
Arg	Trp	Ser	Pro	Ser	Ala	Trp	Сув	Trp	Val	Gly	Gly	Ala	Leu	Leu	Gly
65					70	-	-	-		- 75	•				80
Pro	Met	Val	Leu	Ser	Lys	His	Pro	His	Leu	Суз	Leu	Val	Ala	Leu	Cys
				85					90					95	
Glu	Ala	Glu	Glu	Ala	Pro	Pro	Ala	Ser	Ser	Thr	Pro	His	Val	Val	Gly
			100					105					110		
Ser	Arg	Phe	Asn	Trp	Lys	Leu	Phe	Trp	Gln	Phe	Leu	His	Pro	His	Leu
		115			•		120					125			
Leu	Val	Leu	Gly	Val	Ala	Val	Val	Leu	Ala	Leu	Gly	Ala	Ala :	Leu	Val
	130					135					140				
Asn	Val	Gln	Ile	Pro	Leu	Leu	Leu	Gly	Gln	Leu	Val	Glu	Val '	Val	Ala
145					150					155					160

WO 00/29448 PCT/JP99/06412

## 112/233

Lys	Tyr	Thr	Arg	Asp	His	Val	Gly	Ser	Phe	Met	Thr	Glu	Ser	Gln	Ası
	•			165					170					175	
Leu	Ser	Thr	His	Leu	Leu	Ile	Leu	Tyr	Gly	Val	Gln	Gly	Leu	Leu	Thi
			180					185					190		
Phe	Gly	Tyr	Leu	Val	Leu	Leu	Ser	His	Val	Gly	Glu	Arg	Met	Ala	Va]
		195					200					205			
Asp	Met	Arg	Arg	Ala	Leu	Phe	Ser	Ser	Leu	Leu	Arg	Tyr	Cys	Gln	Pro
	210					215					220				
Gln	Gly	Ala	Glu	Leu	Gly	Gln	Asp	Ile	Thr	Phe	Phe	Asp	Ala	Asn	Lys
225					230					235					240
Thr	Gly	Gln	Leu	Val	Ser	Arg	Leu	Thr	Thr	Asp	Val	Gln	Glu	Phe	Lys
				245					250					255	
Ser	Ser	Phe	Lys	Leu	Val	Ile	Ser	Gln	Gly	Leu	Arg	Ser	Cys	Thr	Gln
			260					265					270		
Val	Ala	Gly	Суз	Leu	Val	Ser	Leu	Ser	Met	Leu	Ser	Thr	Arg	Leu	Thr
		275					280					285			
Leu	Leu	Leu	Met	Val	Ala	Thr	Pro	Ala	Leu	Met	Gly	Val	Gly	Thr	Leu
	290					295					300				
Met	Gly	Ser	Gly	Leu	Arg	Lys	Leu	Ser	Cys	Gln	Cys	Gln	Glu	Gln	Ile
305					310					315					320
Ala	Arg	Ala	Met	Gly	Val	Ala	Asp	Glu	Ala	Leu	Gly	Asn	Val	Arg	Thr
				325					330					335	
Val	Arg	Ala	Phe	Ala	Met	Glu	Gln	Arg	Glu	Glu	Glu	Arg	Tyr	Gly	Ala
			340			•	•	345					350		
Glu	Leu	Glu	Ala	Cys	Arg	Cys	Arg	Ala	Glu	Glu	Leu	Gly	Arg	Gly	Ile
		355					360					365			
Ala	Leu	Phe	Gln	Gly	Leu	Ser	Asn	Ile	Ala	Phe	Asn	Cys	Met	Val	Leu
	370					375					380				
Gly	Thr	Leu	Phe	Ile	Gly	Gly	Ser	Leu	Val	Ala	Gly	Gln	Gln	Leu	Thr
385					390					395					400
Gly	Gly	Asp	Leu	Met	Ser	Phe	Leu	Val	Ala	Ser	Gln	Thr	Val	Gln	Arg
				405					410					415	
Leu															

<210> 64

<21	1> (	549													
<21	2> 1	PRT													
<21	3> I	iomo	sapi	.ens											
<40	0> 6	54													
Met	Ile	Pro	Asn	Gln	His	Asn	Ala	Gly	Ala	Gly	Ser	His	Gln	Pro	Ala
1				5					10					15	
Val	Phe	Arg	Met	Ala	Val	Leu	Asp	Thr	Asp	Leu	Asp	His	Ile	Leu	Pro
			20	I				25					30		
Ser	Ser	Val	Leu	Pro	Pro	Phe	Trp	Ala	Lys	Leu	Val	Val	Gly	Ser	Val
		35					40					45			
Ala			Суз	Phe	Ala	_	Ser	Tyr	Asp	Gly	-	Phe	Val	Phe	Asp
	50					55					60				
_	Ser	Glu	Ala	Ile		Asn	Asn	Lys	Val		Gly	Val	Val	Gly	_
<b>65</b>					70					75					80
Ala	Asp	Leu	Leu	Cys	Ala	Leu	Phe	Phe		Leu	Ser	Phe	Leu	_	Tyr
_	_			85		_	_	_	90	_=			_	95	
Cys	Lys	Ala		Arg	GLu	Ser	Asn		Glu	GIĀ	Ala	His		Ser	Thr
<b>5</b> 5-	<b></b>	**-1	100	~	0	<b>-1</b> -	<b>51</b> -	105	<b>~1</b> ~~	••-	**-1	22-	110	•	<b>2</b>
Pne	TIP		Leu	Leu	ser	TTE		Leu	GTĀ	ALA	var		Met	Leu	Cys
T 470	CI.	115	<i>0</i> 1 <i>11</i>	Ile	mb~	1701	120	C1.,	Tou	7 an	7 J m	125	Pho	Nan	Tle
тув	130		GTÅ	TTG	TILL	135	Leu	GŢĀ	TIERT	ASII	140	Val	File	wab	TTE
וום.			Glv	Lys	Pho		t/a1	T.esu	Glu	בוד		Gln	Tage	Wal	Len
145	vul	***	GLY	פעם	150	no	·	Leu	GLU	155	var	GLII	туз	VUI	160
	Lvs	Asp	Lvs	Ser		Glu	Asn	Leu	Glv	-	Leu	Ara	Asn	Glv	
		F	-1-	165					170			5		175	~ <b>_</b>
Leu	Leu	Phe	Arq	Met	Thr	Leu	Leu	Thr	_	Glv	Glv	Ala	Gly		Leu
			180					185		•	•		190		
Tyr	Val	Arg	Trp	Arg	Ile	Met	Gly	Thr	Gly	Pro	Pro	Ala	Phe	Thr	Glu
-		195	-	-			200		-			205			
Val	Asp	Asn	Pro	Ala	Ser	Phe	Ala	Asp	Ser	Met	Leu	Val	Arg	Ala	Val
	210					215		-			220				
Asn	Тут	Asn	Tyr	Tyr	Tyr	Ser	Leu	Asn	Ala	Trp	Leu	Leu	Leu	Cys	Pro
225					230					235					240
Trp	Trp	Leu	Суз	Phe	ĄzĄ	Trp	Ser	Met	Gly	Cys	Ile	Pro	Leu	Ile	Lys

PCT/JP99/06412

					245					250					255	
S	er	Ile	Ser	Asp	Trp	Arg	Val	Ile	Ala	Leu	Ala	Ala	Leu	Trp	Phe	Cys
				260					265					270		
L	eu	Ile	Gly	Leu	Ile	Суз	Gln	Ala	Leu	Cys	Ser	Glu	Asp	Gly	His	Lys
			275					280					285			
A	rg	Arg	Ile	Leu	Thr	Leu	Gly	Leu	Gly	Phe	Leu	Val	Ile	Pro	Phe	Leu
		290					295					300				
P	ro	Ala	Ser	Asn	Leu	Phe	Phe	Arg	Val	Gly	Phe	Val	Val	Ala	Glu	Arg
3	05					310					315					320
V	al	Leu	Tyr	Leu	Pro	Ser	Ile	Gly	Tyr	Cys	Val	Leu	Leu	Thr	Phe	Gly
					325					330					335	
P	he	Gly	Ala	Leu	Ser	Lys	His	Thr	Lys	Lys	Lys	Lys	Leu	Ile	Ala	Ala
				340					345					350		
V	al	Val	Leu	Gly	Ile	Leu	Phe	Ile	Asn	Thr	Leu	Arg	Cys	Val	Leu	Arg
			355					360					365			
S	er	Gly	Glu	Trp	Arg	Ser	Glu	Glu	Gln	Leu	Phe	Arg	Ser	Ala	Leu	Ser
		370					375					380				
V	al	Суз	Pro	Leu	Asn	Ala	Lys	Val	His	Tyr	Asn	Ile	Gly	Lys	Asn	Leu
3	85					390					395					400
A	la	Asp	Lys	Gly	Asn	Gln	Thr	Ala	Ala	Ile	Arg	Tyr	Tyr	Arg	Glu	Ala
					405					410					415	
V	al	Arg	Leu	Asn	Pro	Lys	Tyr	Val	His	Ala	Met	Asn	Asn	Leu	Gly	Asn
				420					425					430	٠	
I	le	Leu	Lys	Glu	Arg	Asn	Glu	Leu	Gln	Glu	Ala	Glu	Glu	Leu	Leu	Ser
			435					440					445			
L	eu	Ala	Val	Gln	Ile	Gln	Pro	Asp	Phe	Ala	Ala	Ala	Trp	Met	Asn	Leu
		450					455					460				
G	ly	Ile	Val	Gln	Asn	Ser	Leu	Lys	Arg	Phe	Glu	Ala	Ala	Glu	Gln	
	65					470					475					480
T	уr	Arg	Thr	Ala	Ile	Lys	His	Arg	Arg	Lys	Tyr	Pro	Asp	Cys	Tyr	Tyr
					485					490					495	
A	sn	Leu	Gly	Arg	Leu	Tyr	Ala	Asp	Leu	Asn	Arg	His	Val	Asp	Ala	Leu
				500					505					510		
A	sn	Ala	Trp	Arg	Asn	Ala	Thr	Val	Leu	Lys	Pro	Glu	His	Ser	Leu	Ala
			515					520					525			

80

## 115/233

Trp			n Met	: Ile	∍ Ile	Leu	Leu	Asp	Asn	Thr	Gly	Asn	Leu	Ala	Gln
	530					535			,		540				
Ala	Glu	Alε	val	. Gly	Arg	Glu	Ala	Leu	Glu	Leu	Ile	Pro	Asn	Asp	His
545					550					555					560
Ser	Leu	Met	Phe	Ser	Leu	Ala	Asn	Val	Leu	Gly	Lys	Ser	Gln	Lys	Tyr
				565					570				•	575	
Lys	Glu	Ser	Glu	Ala	Leu	Phe	Leu	Lys	Ala	Ile	Lys	Ala	Asn	Pro	Asn
			580	ı				585					590		
Ala	Ala	Ser	Tyr	His	Gly	Asn	Leu	Ala	Val	Leu	Tyr	His	Arg	Trp	Gly
		595					600					605			
His	Leu	Asp	Leu	Ala	Lys	Lys	His	Tyr	Glu	Ile	Ser	Leu	Gln	Leu	Asp
	610					615					620				
Pro	Thr	Ala	Ser	Gly	Thr	Lys	Glu	Asn	Tyr	Gly	Leu	Leu	Arg	Arg	Lys
625					630					635					640
Leu	Glu	Leu	Met	Gln	Lys	Lys	Ala	Val							
				645											
<210	)> 65	•													
<211	l> 93	3													
<212	2> PR	T													
<213	3> Ho	mo :	sapie	ens											
<400	)> 65	ı													
Met	Ile	His	Leu	Gly	His	Ile	Leu	Phe	Leu	Leu	Leu	Leu	Pro	Val	Ala
1				5					10					15	
Ala	Ala	Gln	Thr	Thr	Pro	Gly	Glu	Arg	Ser	Ser	Leu	Pro .	Ala	Phe	Tyr
			20					25					30		
Pro	Gly	Thr	Ser	Gly	Ser	Cys	Ser	Gly	Cys	Gly .	Ser :	Leu :	Ser :	Leu :	Pro
		35					40					45			
Leu	Leu .	Ala	Gly	Leu	Val .	Ala .	Ala	Asp .	Ala '	Val 1	Ala :	Ser 1	Leu :	Leu :	Ile
	50					55					60				
Val	Gly A	Ala	Val	Phe	Leu	Cys .	Ala .	Arg I	Pro J	Arg I	Arg 8	Ser 1	ero i	Ala (	3ln

Glu Asp Gly Lys Val Tyr Ile Asn Met Pro Gly Arg Gly

85

75

90

<210	)> 60	5													
<21	l> 4:	25													
<212	2> PI	RT.													
<213	3> H		sapie	ans			•								
<400	)> 60	5													
Met	Gly	Ser	Trp	Ala	Ala	Val	Asn	Gly	Ile	Trp	Val	Glu	Leu	Pro	Val
1				5					10					15	
Val	Val	Lys	Glu	Leu	Pro	Glu	Gly	Trp	Ser	Leu	Pro	Ser	Tyr	Val	Ser
			20					25					30		
Val	Leu	Val	Ala	Leu	Gly	Asn	Leu	Gly	Leu	Leu	Val	Val	Thr	Leu	Trp
		35					40					45			
Arg	Arg	Leu	Ala	Pro	Gly	Lys	Asp	Glu	Gln	Val	Pro	Ile	Arg	Val	Val
	50					55					60				
Gln	Val	Leu	Gly	Met	Val	Gly	Thr	Ala	Leu	Leu	Ala	Ser	Leu	Trp	His
65					70					75					80
His	Val	Ala	Pro	Val	Ala	Gly	Gln	Leu	His	Ser	Val	Ala	Phe	Leu	Ala
				85					90					95	
Leu	Ala	Phe	Val	Leu	Ala	Leu	Ala	Cys	Cys	Ala	Ser	Asn	Val	Thr	Phe
			100					105					110		
Leu	Pro	Phe	Leu	Ser	Hìs	Leu	Pro	Pro	Arg	Phe	Leu	Arg	Ser	Phe	Phe
		115					120					125			
Leu	Gly	Gln	Gly	Leu	Ser	Ala	Leu	Leu	Pro	Суз	Val	Leu	Ala	Leu	Val
	130					135					140				
Gln	Gly	Val	Gly	Arg	Leu	Glu	Суз	Pro	Pro	Ala	Pro	Ile	Asn	Gly	Thr
145					150					155					160
Pro	Gly	Pro	Pro	Leu	Asp	Phe	Leu	Glu	Arg	Phe	Pro	Ala	Ser	Thr	Phe
				165					170					175	
Phe	Trp	Ala	Leu	Thr	Ala	Leu	Leu	Val	Ala	Ser	Ala	Ala	Ala	Phe	Gln
			180					185					190		
Gly	Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Ser	Val	Pro	Thr	Gly	Glu
		195					200					205			
Leu	Gly	Ser	Gly	Leu	Gln	Val	Gly	Ala	Pro	Gly	Ala	Glu	Glu	Glu	Val
	210					215					220				
Glu	Glu	Ser	Ser	Pro	Leu	Gln	Glu	Pro	Pro	Ser	Gln	Ala	Ala	Gly	Thr
225					230					235					240



1111	FIO	GLY	FIU	nsp	FLO	цу	, MTG	тут	. GII	1 Let	L	i sei	. AIC	rwr	y se
				245					250	0				255	5
Ala	Cys	Leu	Leu	Gly	Leu	Leu	Ala	Ala	Thi	Asn	Ala	Let	Thr	: Ası	n Gly
			260					265	•				270	)	
Val	Leu	Pro	Ala	Val	Gln	Ser	Phe	Ser	Cys	. Leu	Pro	Туг	Gly	' Arg	j Lei
		275					280					285	•		
Ala	Tyr	His	Leu	Ala	Val	Val	Leu	Gly	Ser	Ala	Ala	Asn	Pro	Leu	a Ala
	290					295					300				
Cys	Phe	Leu	Ala	Met	Gly	Val	Leu	Cys	Arg	, Ser	Leu	Ala	Gly	Lev	ı Gly
305					310					315					320
Gly	Leu	Ser	Leu	Leu	Gly	Val	Phe	Cys	Gly	Gly	Tyr	Leu	Met	Ala	Leu
				325					330	)				335	,
Ala	Val	Leu	Ser	Pro	Cys	Pro	Pro	Leu	Val	Gly	Thr	Ser	Ala	Gly	Val
			340					345					350		
Val	Leu	Val	Val	Leu	Ser	Trp	Val	Leu	Cys	Leu	Gly	Val	Phe	Ser	Туг
		355					360					365			
Val	Lys	Val	Ala	Ala	Ser	Ser	Leu	Leu	His	Gly	Gly	Gly	Arg	Pro	Ala
	370					375					380				
Leu	Leu	Ala	Ala	Gly	Val	Ala	Ile	Gln	Val	Gly	Ser	Leu	Leu	Gly	Ala
385					390					395					400
Val	Ala	Met	Phe	Pro	Pro	Thr	Ser	Ile	Tyr	His	Val	Phe	His	Ser	Arg
				405					410					415	
Lys	Asp	Суз	Ala	Asp	Pro	Суз	Asp	Ser							
			420					425							
<210	> 67	,													
<211	> 14	9													
<212	> PR	T													
<213	> Ho	mo s	apie	ns											
<400	> 67														
Met	Glu	Thr :	Leu '	Tyr .	Arg '	Val	Pro	Phe	Leu	Val	Leu	Glu	Cys	Pro	Asn
1				5					10					15	

Leu Lys Leu Lys Lys Pro Pro Trp Leu His Met Pro Ser Ala Met Thr

Val Tyr Ala Leu Val Val Val Ser Tyr Phe Leu Ile Thr Gly Gly Ile

25

20

35	40	45
Ile Tyr Asp Val Ile Val	Glu Pro Pro Ser	Val Gly Ser Met Thr Asp
50	55	60
Glu His Gly His Gln Arg	Pro Val Ala Phe	Leu Ala Tyr Arg Val Asn
65 70	)	75 80
Gly Gln Tyr Ile Met Glu	Gly Leu Ala Ser	Ser Phe Leu Phe Thr Met
85	90	95
Gly Gly Leu Gly Phe Ile	e Ile Leu Asp Arg	Ser Asn Ala Pro Asn Ile
100	105	110
Pro Lys Leu Asn Arg Phe	Leu Leu Leu Phe	Ile Gly Phe Val Cys Val
115	120	125
Leu Leu Ser Phe Phe Met	: Ala Arg Val Phe	Met Arg Met Lys Leu Pro
130	135	140
Gly Tyr Leu Met Gly		
145		
<210> 68	d .	
<211> 396		
<212> PRT		
<213> Homo sapiens		
<400> 68		
Met Ala Met Ile Glu Leu		Gln Asn Phe His Pro Leu
1 5	10	15
<u>-</u>		Ile Ala Val Val Phe Ala
20	25	30
Val Leu Leu Phe Cys Glu		Tyr Leu Ala Ile Phe Gln
<b>35</b>	40	45
		Ser Asp Gly Glu Gln Thr
50	55	60
-		Leu Ala Asp Thr His Leu
65 70		75 80
_		Lys Leu Arg Arg Glu Trp
85	90	95
		Trp Leu Leu Gln Pro Glu 110
100	105	

Val	L Vai	l Ph	e Il	e Le	u Gly	/ As	p Ile	e Ph	e As	p Gl	u Gl	у Lу	s Tr	p Se	r Thr
		11	5				120	)				12	5		
Pro	Gli	ı Al	a Tr	p Al	a Ası	) Asj	p Val	l Gl	u Ar	g Ph	e Gl	n Ly	s Met	t Ph	e Arg
	130	)				13	5				140	)			
His	Pro	Se	r Hi	s Va	l Glr	Le	ı Lys	Va.	l Va	l Al	a Gly	/ Asi	n His	a As	p Ile
145	i				150	)				15	5				160
Gly	Phe	Hi:	s Ty	r Gl	u Met	Ası	ı Thr	Туз	Ly	s Vai	l Glu	ı Arç	J Phe	e Gl	ı Lys
				16	5				170	0				175	5
Val	Phe	Se	r Se	r Gl	ı Arg	Let	. Phe	Ser	Tij	p Lys	s Gly	, Ile	a Asr	ı Phe	e Val
			180	0				185	; ·				190	)	
Met	Val	Ası	ı Sei	r Val	l Ala	Let	Asn	Gly	As _I	o Gly	7 Cys	Gly	' Ile	: Cys	s Ser
		195	5				200	)				205	;		
Glu	Thr	Glu	a Ala	a Glu	ı Leu	Ile	Glu	Val	Ser	His	Arg	Leu	Asn	Cys	Ser
	210	ı				215	į				220				
Arg	Glu	Ala	Arg	g Gly	ser	Ser	Arg	Cys	Gly	Pro	Gly	Pro	Leu	Leu	Pro
225					230					235					240
Thr	Ser	Ala	Pro	Val	. Leu	Leu	Gln	His	Туг	Pro	Leu	Tyr	Arg	Arg	Ser
				245	i				250	)				255	
Asp	Ala	Asn	Cys	Ser	Gly	Glu	Asp	Ala	Ala	Pro	Ala	Glu	Glu	Arg	Asp
			260	)				265					270		
Ile	Pro	Phe	Lys	Glu	Asn	Tyr	Asp	Val	Leu	Ser	Arg	Glu	Ala	Ser	Gln
		275					280					285			
Lys	Leu	Leu	Trp	Trp	Leu	Gln	Pro	Arg	Leu	Val	Leu	Ser	Gly	His	Thr
	290					295					300				
	Ser	Ala	Cys	Glu	Val	His	His	Gly	Gly	Arg	Val	Pro	Glu	Leu	Ser
305					310					315					320
Val	Pro	Ser	Phe	Ser	Trp	Arg	Asn	Arg	Asn	Asn	Pro	Ser	Phe	Ile	Met
				325					330					335	
Gly	Ser	Ile	Thr	Pro	Thr	Asp	Tyr	Thr	Leu	Ser	Lys	Cys	Tyr	Leu	Pro
			340					345					350		
Arg			Val	Val	Leu	Ile	Ile	Tyr	Cys	Gly	Val	Val	Gly	Phe	Leu
		355					360					365			
		Leu	Thr	Leu	Thr		Phe	Gly	Leu	Leu	Ala	Ser	Pro	Phe	Leu
	370					375					380				
Ser (	Gly	Leu	Asn	Leu	Leu	Gly	Lys .	Arg	Lys	Thr	Arg				

385	390	395	
<210> 69			
<211> 350			
<212> PRT			
<213> Homo sapiens			
<400> 69			
Met Ile Arg Gln Glu	Arg Ser Thr Ser	Tyr Gln Glu Leu s	Ser Glu Glu
1 5		10	15
Leu Val Gln Val Val	Glu Asn Ser Glu I	Leu Ala Asp Glu (	Gln Asp Lys
20	25		30
Glu Thr Val Arg Val	Gln Gly Pro Gly	Ile Leu Pro Gly 1	Leu Asp Ser
35	40	45	
Glu Ser Ala Ser Ser	Ser Ile Arg Phe S	Ser Lys Ala Cys I	Leu Lys Asn
50	55	60	
Val Phe Ser Val Leu	Leu Ile Phe Ile 7	Tyr Leu Leu Leu M	Met Ala Val
65	70	75	80
Ala Val Phe Leu Val	Tyr Arg Thr Ile 1	Thr Asp Phe Arg (	
85		90	95
Lys His Pro Val Met	Ser Val Ser Tyr I		
100	105	•	110
Ala Pro Gly Ile Ala			Leu Ser Cys
115	120	125	
Lys His His Tyr Glu			Ely Gin Pro
130	135	140	
Gly Asp Met Asn Cys			
145	150	155	160
Ser Asn Gln Thr Val			175
165		170	
Val Lys Lys Arg Glu			ish hys ser
180	185		
Ser Glu Asp Phe Ser 195	200	Leu Leu File Sei S 205	CL EIN GIH
Glu Phe Leu Gln Ser			da Cvs Glu
	215	220	
210	213	220	

Ser	Ala	Tyr	Ser	Ser	Trp	Lys	Phe	Ser	Gly	Gly	Phe	Arg	Thr	Trp	Val
225					230					235					240
Lys	Met	Ser	Leu	Val	Lys	Thr	Lys	Glu	Glu	Asp	Gly	Arg	Glu	Ala	Val
				245					250					255	
Glu	Phe	Arg	Gln	Glu	Thr	Ser	Val	Val	Asn	Tyr	Ile	Asp	Gln	Arg	Pro
			260					265					270		
Ala	Ala	Lys	Lys	Ser	Ala	Gln	Leu	Phe	Phe	Val	Val	Phe	Glu	Trp	Lys
		275					280					285			
qaA	Pro	Phe	Ile	Gln	Lys	Val	Gln	Asp	Ile	Val	Thr	Ala	Asn	Pro	Trp
	290					295					300				
Asn	Thr	Ile	Ala	Leu	Leu	Cys	Gly	Ala	Phe	Leu	Ala	Leu	Phe	Lys	Ala
305					310					315					320
Ala	Glu	Phe	Ala	Lys	Leu	Ser	Ile	Lys	Trp	Met	Ile	Lys	Ile	Arg	Lys
				325					330					335	
Arg	Tyr	Leu	Lys	Arg	Arg	Gly	Gln	Ala	Thr	Ser	His	Ile	Ser		
			340					345					350		

<210> 70

<211> 153

<212> PRT

<213> Homo sapiens

<400> 70

Met Thr Ile His Ile Leu Ile Leu Leu Leu Leu Leu Ala Phe Ser Ala

1 5 10 15

Gln Gly Asp Leu Asp Thr Ala Ala Arg Arg Gly Gln His Gln Val Pro
20 25 30

Gln His Arg Gly His Val Cys Tyr Leu Gly Val Cys Arg Thr His Arg

35 40 45

Leu Ala Glu Ile Ile Tyr Trp Ile Arg Cys Leu His Gln Gly Ala Leu
50 55 60

Gly Glu Gly Gln Pro Arg Ala Pro Gly Pro Leu Gln Leu Trp Ala Pro 65 70 75 80

Pro Val Ala Arg Gly Gly Ser Pro Ala Arg Phe Pro Gly Phe Arg Pro 85 90 95

Ala Ala Arg Gly Leu Ala Gln Cys Pro Ala Arg Trp Val Thr Ser Gly

110 105 100 Thr Ala Arg Pro Leu Leu Gly Phe Ser Leu Pro Ile Cys Met Leu Glu 125 120 115 Leu Leu Leu His Ile Ser Ser Pro Leu Thr Pro Ala Pro Glu Thr Val 140 135 Phe Pro Ser Pro Ser Pro Gly Cys Asp 150 145 <210> 71 <211> 1176 <212> DNA <213> Homo sapiens <400> 71 60 atggagggag tgagegeget getggeeege tgeeecaegg eeggeetgge eggeggeetg ggggtcacgg cgtgcgccgc ggccggcgtg ttgctctacc ggatcgcgcg gaggatgaag 120 180 ccaacgcaca cgatggtcaa ctgctggttc tgcaaccagg atacgctggt gccctatggg 240 aacegcaact gctgggactg tccccactgc gagcagtaca acggcttcca ggagaacggc 300 gactacaaca agccgatccc cgcccagtac ttggagcacc tgaaccacgt ggtgagcagc 360 gegeceagee tgegegaeee ttegeageeg cageagtggg tgageageea agteetgetg tgcaagaggt gcaaccacca ccagaccacc aagatcaagc agctggccgc cttcgctccc 420 480 cgcgaggagg gcaggtatga cgaggaggtc gaggtgtacc ggcatcacct ggagcagatg tacaagetgt geeggeegtg ecaagegget gtggagtaet acateaagea eeagaacege 540 600 cagctgcgcg ccctgttgct cagccaccag ttcaagcgcc gggaggccga ccagacccac gcacagaact tetecteege egtgaagtee eeggteeagg teateetget eegtgeeete 660 720 gcettectgg cetgegeett cetactgace accgegetgt atggggccag eggacactte 780 gececaggea ceaetgtgee eetggeeetg eeaeetggtg geaatggete agecaeaeet 840 gacaatggca ccaccctgg ggccgaggcc tggcggcagt tgctgggcct actccccgag 900 cacatggcgg agaagctgtg tgaggcctgg gcctttgggc agagccacca gacgggcgtc 960 gtggcactgg gcctactcac ctgcctgctg gcaatgctgc tggctggccg catcaggctc 1020 eggaggateg atgeettetg eacetgeetg tgggeeetge tgetgggget geacetgget 1080 · gagcagcacc tgcaggccgc ctcgcctagc tggctagaca cgctcaagtt cagcaccaca 1140 tetttgtget geetggttgg etteaeggeg getgtggeea caaggaagge aaegggeeea

1176

<210> 72

cggaggttcc ggccccgaag gtcagagaag cagcca

WO 00/29448 PCT/JP99/06412

#### 123/233

<211> 1491 <212> DNA <213> Homo sapiens <400> 72 atggcgctgt ggcgcggctc cgcgtacgcg ggcttcctgg cgctggccgt gggctgcgtc 60 tteetgetgg agceagaget geeaggeteg gegetgeget etetetggag etegetgtgt 120 ctggggeeeg cgcctgegee cccgggaeee gtctcccccg agggeeggtt ggeggeagee 180 tgggacgcgc ttatcgtgcg gccagtccgg cgctggcgcc gcgtggcagt gggagtcaat 240 . geatgtgttg atgtggtget eteaggggtg aagetettge aggeaettgg cettagteet 300 gggaatggga aagatcacag cattctgcat tcaaggaatg atctggaaga agccttcatt 360 cacttcatgt ggaagggage agctgctgag cgcttcttca gtgataagga aacttttcac 420 gacattgccc aggttgcgtc agagttccca ggagcccagc actatgtagg aggaaatgca 480 getttaattg gacagaaatt tgcagccaac tcagatttaa aggttettet ttgcggtcca 540 gttggcccaa ggctacatga gcttcttgat gacaatgtct ttgttccacc agagtcattg 600 caggaagtgg atgagttcca cctcatttta gagtatcaag caggggagga gtggggccag 660 ttaaaagete eecatgeeaa eegatteate tteteteaeg aceteteeaa eggggeeatg 720 aatatgctgg aggtgtttgt gtctagcctg gaggagtttc agccagacct ggtggtcctc 780 tetggattge acatgatgga gggacaaage aaggagetee agaggaagag actettggag 840 gttgtaacct ccatttctga catccccact ggtattccag ttcacctaga gctggccagt 900 atgactaaca gggageteat gageageatt gteeateage aggtetttee egeggtgact 960 teeettggge tgaatgaaca ggagetgtta tttctcaccc agtcagectc tggacetcac 1020 tettetetet etteetggaa eggtgtteet gatgtgggea tggteagtga eateetette 1080 tggatcttga aagaacatgg gaggagtaaa agcagagcct cggatctcac caggatccat 1140 ttecacacge tggtctacca catectggca actgtggatg gacactgggc caaccagetg 1200 gcagccgtgg ctgcaggagc tcgtgtggct gggacacagg cctgcgccac agaaaccata 1260 gacaccagee gagtgtetet gagggeacee caagagttea tgaetteeea tteggaggea 1320 ggctccagga ttgtattaaa cccaaacaag ccagtagtag aatggcacag agagggaata 1380 tecttecact teacaceagt attggtgtgt aaagaceeca ttegaactgt aggeettgga 1440 gatgccattt cagccgaagg actcttctat tcggaagta caccctcacta t 1491

<210> 73

<211> 1251

<212> DNA

<213> Homo sapiens

<400> 73

240

300

360

420

480

#### 124/233

atgctggtgc	atttatttcg	ggtcgggatt	eggggtggcc	cattcccagg	caggetgeta	60
ccgccctcc	gcttccagac	atteteaget	gtcaggtact	ctgatggcta	cegeagetee	120
tecetectee	gggccgtggc	ccacctgcgg	tcccagctct	gggcccacct	ccctcgagcc	180
cccctagctc	ccagatggag	ccctctgcc	tggtgctggg	ttgggggagc	cctgctaggc	240
cccatggtac	tgagtaagca	tececaecte	tgccttgtgg	ccctgtgtga	ggcagaagag	300
gcccctcctg	ccagctccac	accccatgtc	gtggggtctc	gctttaactg	gaagctcttc	360
tggcagtttc	tgcaccccca	cctgctggtc	ctgggggtag	ccgtcgtgct	ggccttgggt	420
geggeacteg	tgaatgtaca	gateceetg	ctcctgggcc	agctggtaga	ggtcgtggcc	480
aagtacacaa	gggaccacgt	agggagtttc	atgactgagt	cccagaatct	cagcacccac	540
ctgcttatcc	tctatggtgt	ccagggactg	ctgaccttcg	ggtacctggt	gctgctgtcc	600
cacgttggcg	agegeatgge	tgtggacatg	cggagggccc	tetteagete	cctgctccgg	660
tactgccagc	cgcagggtgc	agagttggga	caagacatca	ccttctttga	cgccaataag	720
acagggcagc	tggtgagccg	cttgacaact	gacgtgcagg	agtttaagtc	atccttcaag	780
cttgtcatct	cccaggggct	gcgaagctgc	acccaggtgg	caggetgeet	ggtgtccctg	840
tecatgetgt	cgacacgcct	cacgctgctg	ctgatggtgg	ccacaccagc	cctgatggga	900
gtgggcaccc	tgatgggctc	aggeeteega	aaattgtctt	gccagtgtca	ggagcagatc	960
gccagggcaa	tgggcgtagc	agacgaggcc	ctgggcaatg	tgcggactgt	gegtgeette	1020
gccatggagc	aacgggaaga	ggagcgctat	ggggcagagc	tggaagcctg	cegetgeegg	1080
gcagaggagc	tgggccgcgg	categeettg	ttccaagggc	tttccaacat	cgccttcaac	1140
tgcatggtct	tgggtaccct	atttattggg	ggetecettg	tggccggaca	gcagctgaca	1200
gggggagacc	teatgteett	cctggtggcc	teccagacag	tgcaaaggct	g	1251
<210> 74						
<211> 1947						
<212> DNA						
<213> Homo	sapiens					
<400> 74						
atgattccta	accagcataa	tgctggagcc	gggagccacc	aacctgcagt	tttcagaatg	60
		ggatcacatt				120
gctaagttag	tagtgggatc	ggttgccatt	gtgtgttttg	cacgcagcta	tgatggagac	180

tttgtctttg atgactcaga agctattgtt aacaataagg ttgctggtgt tgtcggccgt

geagacetee tgtgtgeeet gttettettg ttatetttee ttggetactg taaageattt

agagaaagta acaaggaggg agcgcattct tccaccttct gggtgctgct gagtatcttt

ctgggagcag tggccatgct gtgcaaagag caagggatca ctgtgctggg tttaaatgcg

gtatttgaca tcttggtgat aggcaaattc aatgttctgg aaattgtcca gaaggtacta

240



### 125/233

cataaggaca agtcattaga gaatctcggc atgctcagga acgggggcct cctcttcaga	540
atgacectge teacetetgg aggggetggg atgetetaeg tgegetggag gateatggge	600
acgggcccgc cggccttcac cgaggtggac aacccggcct cctttgctga cagcatgctg	660
gtgagggccg taaactacaa ttactactat tcattgaatg cctggctgct gctgtgtccc	720
tggtggctgt gttttgattg gtcaatgggc tgcatccccc tcattaagtc catcagcgac	780
tggagggtaa ttgcacttgc agcactctgg ttctgcctaa ttggcctgat atgccaagcc	840
ctgtgctctg aagacggcca caagagaagg atccttactc tgggcctggg atttctcgtt	900
atcccatttc tccccgcgag taacctgttc ttccgagtgg gcttcgtggt cgcggagcgt	960
gtectetace tecceageat tgggtactgt gtgetgetga ettttggatt eggageeetg	1020
agcaaacata ccaagaaaaa gaaactcatt geegetgteg tgetgggaat ettatteate	1080
aacacgetga gatgtgtget gegeagegge gagtggegga gtgaggaaca getttteaga	1140
agtgctctgt ctgtgtgtcc cctcaatgct aaggttcact acaacattgg caaaaacctg	1200
gctgataaag gcaaccagac agctgccatc agatactacc gggaagctgt aagattaaat	1260
cccaagtatg ttcatgccat gaataatctt ggaaatatct taaaagaaag gaatgagcta	1320
caggaagetg aggagetget gtetttgget gtteaaatae agecagaett tgeegetgeg	1380
tggatgaate taggcatagt geagaatage etgaaaeggt ttgaageage agageaaagt	1440
taccggacag caattaaaca cagaaggaaa tacccagact gttactacaa cctcgggcgt	1500
ctgtatgcag atctcaatcg ccacgtggat gccttgaatg cgtggagaaa tgccaccgtg	1560
ctgaaaccag agcacagcct ggcctggaac aacatgatta tactcctcga caatacaggt	1620
aatttagccc aagctgaagc agttggaaga gaggcactgg aattaatacc taatgatcac	1680
teteteatgt tetegttgge aaacgtgetg gggaaateec agaaatacaa ggaatetgaa	1740
getttattee teaaggeaat taaageaaat eeaaatgetg caagttacea tggtaatttg	1800
getgtgettt ateategttg gggacateta gaettggeea agaaacaeta tgaaatetee	1860
ttgcagcttg accccacggc atcaggaact aaggagaatt acggtctgct gagaagaaag	1920
ctagaactaa tgcaaaagaa agctgtc	1947
<210> 75	
<211> 279	
<212> DNA	
<213> Homo sapiens	
<400> 75	
atgatecate tgggteacat cetetteetg ettttgetee eagtggetge ageteagaeg	60
actocaggag agagateate actocotgee ttttaccotg geactteagg etettgttee	120
ggatgtgggt cectetetet geegeteetg geaggeeteg tggetgetga tgeggtggea	180

tegetgetea tegtgggge ggtgtteetg tgegeacgee caegeegeag ceeegeeaa

gaagatggca aagtctacat c	aacatgcca	ggcaggggc			279
<210> 76 <211> 1275					
<212> DNA					
<213> Homo sapiens		٠			
<400> 76		**********	teactataat	aatcaaaaa	60
atgggeteet gggetgeggt e			*		120
cttccagagg gttggagcct c					
ggtctgctgg tggtgaccct c					180
atccgggtgg tgcaggtgct g					240
catgtggccc cagtggcagg a	cagttgcat	tetgtggeet	tettageact	ggcctttgtg	300
ctggcactgg catgctgtgc c	tcgaatgtc	actttcctgc	ccttcttgag	ccacctgcca	360
cetegettet taeggteatt e	ttcctgggt	caaggcctga	gtgccctgct	gecetgegtg	420
ctggccctag tgcagggtgt g	ggeegeete	gagtgcccgc	cagcccccat	caacggcacc	480
cetggeeece egetegaett e	cttgagcgt	tttcccgcca	gcaccttctt	ctgggcactg	540
actgeeette tggtegette a	igetgetgee	ttccagggtc	ttctgctgct	gttgccgcca	600
ccaccatctg tacccacagg g					660
gaggaagagg tggaagagtc c					720
accetggte cagacectaa g					780
ggcctgttgg ccgccaccaa c					840
tectgettae ectaegggeg t					900
aatcccctgg cctgcttcct g					960
ggeetetete tgetgggegt g					1020
ccctgcccgc ccctggtggg c					1080
ctgtgtcttg gcgtgttctc c					1140
					1200
ggccggccgg cattgctggc a					1260
gttgetatgt tececegae e	agcatctat	cacgrgrrcc	acaycayaaa	ggactgtgta	1275
gacccctgtg actcc					1613

<210> 77

<211> 447

<212> DNA

<213> Homo sapiens

<400> 77

1188



### 127/233

atggagaett tgtacegtgt ceegttetta gtgetegaat gteecaacet gaagetgaag	60
aageegeeet ggttgeacat geegteggee atgaetgtgt atgetetggt ggtggtgtet	120
tacttcctca tcaceggagg aataatttat gatgttattg ttgaacctcc aagtgteggt	180
totatgactg atgaacatgg gcatcagagg ccagtagctt tottggccta cagagtaaat	240
ggacaatata ttatggaagg acttgcatcc agcttcctat ttacaatggg aggtttaggt	300
ttcataatcc tggaccgatc gaatgcacca aatatcccaa aactcaatag attccttctt	360
ctgttcattg gattcgtctg tgtcctattg agttttttca tggctagagt attcatgaga	420
atgaaactgc cgggctatct gatgggt	447
<210> 78	
<211> 1188	
<212> DNA	
<213> Homo sapiens	
<400> 78	
atggcgatga tcgaattggg gtttggaaga cagaattttc atccattaaa gaggaagagt	60
teattgetgt tgaaactcat agetgttgte tttgetgtge ttetattttg tgaattttta	120
atctattact tagegatett teagtgtaat tggeetgaag tgaaaaceae ageetetgat	180
ggtgaacaga ccacacgtga gcctgtgctc aaagccatgt ttttggctga cacccatttg	240
cttggggaat teetaggeea etggetggae aaattaegaa gggaatggea gatggagaga	300
gegttecaga cagetetgtg gttgetgeag eeggaagteg tetteateet gggggatate	360
tttgatgaag ggaagtggag cacecetgag geetgggegg atgatgtgga geggttteag	420
aaaatgttca gacacccaag tcatgtacag ctgaaggtag ttgctggaaa ccatgacatt	480
ggcttccatt atgagatgaa cacatacaaa gtagaacgct ttgagaaagt gttcagctct	540
gaaagactgt tttcttggaa aggcattaac tttgtgatgg tcaacagcgt ggcgctgaac	600
ggggatggct gtggcatctg ctctgaaaca gaagcagagc tcattgaagt ttctcacaga	660
ctgaactgct cccgagaggc acgtggctcc agccggtgtg gacctgggcc tctgctgccc	720
acgtetgece etgteeteet geageattat cetetgtate ggagaagtga tgetaactgt	780
tetggggaag acgetgetee tgeagaggaa agggaeatee eatttaagga gaactatgae	840
gtgctttcac gggaggcatc acaaaagctg ctgtggtggc tccagccgcg cctggttctc	900
agtggccaca cgcacagcgc ctgcgaggtg caccacgggg gccgagtccc cgagctcagc	960
gteccatett teagttggag gaacagaaac aaccecagtt teatcatggg tagcatcacg	1020
cccacagact acaccctctc caagtgctac ctcccacgtg aggatgtggt tttgatcatc	1080

tactgtggag tggtgggett cettgtggte etcacactea etcactttgg gettetagee 1140

teacetttte tttetggttt gaacttgete ggaaagegta agacaaga

WO 00/29448 PCT/JP99/06412

<210> 79						
<211> 1050						
<212> DNA						
<213> Homo	sapiens					
<400> 79						
atgatccggc	aggagcgctc	cacatcctac	caggagctga	gtgaggagtt	ggtccaggtg	60
gttgagaact	cagagetgge	agacgagcag	gacaaggaga	cggtcagagt	ccaaggtccg	120
ggtatcttac	caggcctgga	cagegagtee	gcctccagca	gcatccgctt	cagcaaggcc	180
tgcctgaaga	acgtcttctc	ggtcctactc	atcttcatct	acctgctgct	catggctgtg	240
gccgtcttcc	tggtctaccg	gaccatcaca	gactttcgtg	agaaactcaa	gcaccctgtc	300
atgtctgtgt	cttacaagga	agtggatcgc	tatgatgccc	caggtattgc	cttgtacccc	360
ggtcaggccc	agttgctcag	ctgtaagcac	cattacgagg	tcattcctcc	tctgacaagc	420
cctggccagc	cgggtgacat	gaattgcacc	acccagagga	tcaactacac	ggaccccttc	480
tccaatcaga	ctgtgaaatc	tgccctgatt	gtccaggggc	cccgggaagt	gaaaaagcgg	540
gagetggtet	tectecagtt	ccgcctgaac	aagagtagtg	aggacttcag	cgccattgat	600
tacctcctct	tetettettt	ccaggagttc	ctgcaaagcc	caaacagggt	aggetteatg	660
caggectgtg	agagtgccta	ttccagctgg	aagttetetg	ggggcttccg	cacctgggtc	720
aagatgtcac	tggtaaagac	caaggaggag	gatgggcggg	aagcagtgga	gttccggcag	780
gagacaagtg	tggttaacta	cattgaccag	aggccagctg	ccaaaaaaag	tgctcaattg	840
ttttttgtgg	tctttgaatg	gaaagatcct	ttcatccaga	aagtccaaga	tatagtcact	900
gccaatcctt	ggaacacaat	tgctcttctc	tgtggcgcct	tcttggcatt	atttaaagca	960
gcagagtttg	ccaaactgag	tataaaatgg	atgatcaaaa	ttagaaagag	ataccttaaa	1020
agaagaggtc	aggcaacgag	ccacataagc				1050
<210> 80						
<211> 459						
<212> DNA						
<213> Homo	sapiens					
<400> 80				,		
atgactatcc	acatcctcat	cctgctgttg	ctcctcgcct	teteegeeca	aggggacctg	60
gacactgcag	ccaggcgagg	ccagcaccag	gtccccagc	accgcgggca	cgtctgctac	120
ctgggcgtat	geeggaeeea	ccgcctggcg	gagatcatat	actggattcg	ctgtctccac	180
caaggageee	tcggggaagg	ccagccacga	gccccaggac	ccctacagct	atgggcgccg	240
ccggtggcgc	gaggcggaag	cccggctcgg	ttcccaggat	teeggeetge	agcgaggggg	300
ctagcgcagt	gcccagctcg	ctgggtgacc	tcgggcacgg	ctcgtcccct	ceteggette	360

WO 00/29448 PCT/JP99/06412

agtitgecta tetgtatgtt ggagetteta etecacattt etteteeeet aacteeagee	420
cetgaaaceg tettececag teecteceeg ggetgegae	459
<210> 81	
<211> 4027	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (192)(1370)	
<400> 81	
gecegetaea aageggegaa ggteaeggeg egaggaggeg egegtegeeg eeeegegtee	60
egectgegge eegegeeee ggegteaceg ectectgeee geetgeeege etgeeegeet	120
gecegeetae eegeetaeee geetaeeege etaeeeeet geeggeetge egteetteea	180
egeggagage e atg gag gga gtg age geg etg etg gee ege tge eec aeg	230
Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr	
1 5 10	
gee gge etg gee gge etg ggg gte aeg geg tge gee geg gee gge	278
Ala Gly Leu Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly	
15 20 25	
gtg ttg ctc tac egg atc geg egg agg atg aag eca acg cac acg atg	326
Val Leu Leu Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met	
30 35 40 45	
gtc aac tgc tgg ttc tgc aac cag gat acg ctg gtg ccc tat ggg aac	374
Val Asn Cys Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn	
50 55 60	
ege aac tge tgg gae tgt eee eac tge gag eag tac aac gge tte eag	422
Arg Asn Cys Trp Asp Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln	
65 70 75	
gag aac ggc gac tac aac aag ccg atc ccc gcc cag tac ttg gag cac	470
Glu Asn Gly Asp Tyr Asn Lys Pro Ile Pro Ala Gln Tyr Leu Glu His	
80 85 90	
ctg aac cac gtg gtg agc agc gcg ccc agc ctg cgc gac cct tcg cag	518
Leu Asn His Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln	
95 100 105	

															566
Gln	Gln	Trp	Val	Ser	Ser	Gln	Val	Leu	Leu	Cys	Lys	Arg	Cys	Asn	
				115					120					125	
cac	cag	acc	acc	aag	atc	aag	cag	ctg	gcc	gcc	ttc	gct	ccc	cgc	614
His	Gln	Thr	Thr	Lys	Ile	Lys	Gln	Leu	Ala	Ala	Phe	Ala	Pro	Arg	
			130					135					140		
gag	ggc	agg	tat	gac	gag	gag	gtc	gag	gtg	tac	cgg	cat	cac	ctg	662
Glu	Gly	Arg	Tyr	qaA	Glu	Glu	Val	Glu	Val	Tyr	Arg	His	His	Leu	
		145					150					155			
cag	atg	tac	aag	ctg	tgc	cgg	ccg	tgc	caa	gcg	gct	gtg	gag	tac	710
Gln	Met	Tyr	Lys	Leu	Суз	Arg	Pro	Cys	Gln	Ala	Ala	Val	Glu	Tyr	
	160					165					170				
atc	aag	cac	cag	aac	cgc	cag	ctg	cgc	gcc	ctg	ttg	ctc	agc	CaC	758
Ile	Lys	His	Gln	Asn	Arg	Gln	Leu	Arg	Ala	Leu	Leu	Leu	Ser	His	
175					180					185					
ttc	aag	cgc	cgg	gag	gcc	gac	cag	acc	cac	gca	cag	aac	ttc	tee	806
Phe	Lys	Arg	Arg	Glu	Ala	Asp	Gln	Thr	His	Ala	Gln	Asn	Phe	Ser	
				195					200					205	
gcc	gtg	aag	tcc	ccg	gtc	cag	gtc	atc	ctg	ctc	cgt	gcc	ctc	gcc	854
Ala	Val	Lys	Ser	Pro	Val	Gln	Val	Ile	Leu	Leu	Arg	Ala	Leu	Ala	
			210					215					220		
ctg	gcc	tgc	gcc	ttc	cta	ctg	acc	acc	gcg	ctg	tat	ggg	gcc	agc	902
Leu	Ala	Cys	Ala	Phe	Leu	Leu	Thr	Thr	Ala	Leu	Tyr	Gly	Ala	Ser	
		225					230					235			
cac	ttc	gcc	cca	ggc	acc	act	gtg	ccc	ctg	gcc	ctg	cca	cct	ggt	950
His	Phe	Ala	Pro	Gly	Thr	Thr	Val	Pro	Leu	Ala	Leu	Pro	Pro	Gly	
	240					245					250				
aat	ggc	tca	gcc	aca	cct	gac	aat	ggc	acc	acc	cct	ggg	gcc	gag	998
Asn	Gly	Ser	Ala	Thr	Pro	Asp	Asn	Gly	Thr	Thr	Pro	Gly	Ala	Glu	
255					260					265					
tgg	cgg	cag	ttg	ctg	ggc	cta	ctc	ccc	gag	cac	atg	gcg	gag	aag	1046
Trp	Arg	Gln	Leu	Leu	Gly	Leu	Leu	Pro	Glu	His	Met	Ala	Glu	Lys	
				275					280					285	
tgt	gag	gcc	tgg	gcc	ttt	ggg	cag	agc	cac	cag	acg	ggc	gtc	gtg	1094
Cys	Glu	Ala	Trp	Ala	Phe	Gly	Gln	Ser	His	Gln	Thr	Gly	Val	Val	
	Gln cac His gag Glu cag Gln atc Ile 175 ttc Phe gcc Ala ctg Leu cac His aat Asn 255 tgg Trp	Glm Glm  cac cag His Glm  gag ggc Glu Gly  cag atg Glm Met 160 atc aag Ile Lys 175 ttc aag Phe Lys  ctg gtg Ala Val  ctg gcc Leu Ala  cac ttc His Phe 240 aat ggc Asn Gly 255 tgg cgg Trp Arg	Glm Glm Trp  cae cag ace His Glm Thr  gag gge agg Glu Gly Arg 145 cag atg tae Glm Met Tyr 160 atc aag cac Ile Lys His 175 tte aag cgc Phe Lys Arg  tte aag cgc Phe Lys Arg  ctg gcg tgc Leu Ala Cys 225 cac ttc gcc His Phe Ala 240 aat ggc tca Asn Gly Ser 255 tgg cgg cag Trp Arg Glm	Gln         Trp         Val           cac         cac         acc           His         Gln         Thr         Thr           gag         ggc         agg         tat           Glu         Gly         Arg         Tyr           cag         atg         tac         aag           Gln         Met         Tyr         Lys           atc         aag         cag         cag           Ile         Lys         His         Gln           175         T         Tyr         Lys           ttc         aag         cag         cag           phe         Lys         Arg         Arg           phe         Lys         Ser         210           ctg         gcc         tgc         gcc           Ala         Cys         Ala         221           ctg         gcc         tgc         ca           Leu         Ala         Cys         Ala           cac         ttc         gc         ca           Leu         Ala         Pro           cac         ttc         gc         ca           His         Phe	Gln       Trp       Val       Ser         cac       cag       acc       acg         His       Gln       Thr       Thr       Lys         gag       ggc       agg       tat       gac         gag       ggc       agg       tat       gac         Glu       Gly       Arg       Tyr       Asp         cag       atg       tat       acg       ctg         glu       Arg       Lys       Leu         atc       aag       cag       acg         lle       Lys       Arg       Arg       gag         phe       Lys       Arg       Arg       Glu         phe       Lys       Arg       Arg       Arg         gcc       gtg       aag       tcc       ccg         Ala       Val       Lys       Ser       Pro         gcc       gtg       aag       tcc       ccg         Ala       Val       Lys       ala       Pro         ctg       gcc       tca       ggc         tetg       gcc       tca       ggc         tetg       gcc       cca       ggc	Gln Gln Trp Val Ser       Ser         cac cag acc acc aag atc         His Gln Thr Thr Lys Ile         gag ggc agg tat gac gag         Glu Gly Arg Tyr Asp Glu         cag atg tac aag ctg tgc         Gln Met Tyr Lys Leu Cys         160         atc aag cac cag aac cgc         Ile Lys His Gln Asn Arg         175       180         ttc aag cgc cgg gag gcc         Phe Lys Arg Arg Glu Ala         195       195         qcc gtg aag tcc ccg gtc         Ala Val Lys Ser Pro Val         ctg gcc tgc gcc ttc cta         Leu Ala Cys Ala Phe Leu         ctg gcc tgc gcc ttc cta         Leu Ala Cys Ala Phe Leu         Leu Ala Pro Gly Thr         cac ttc gcc cca ggc acc         His Phe Ala Pro Gly Thr         240         Tas ggc tca gcc acc         Asn Gly Ser Ala Thr Pro         255         Trp Arg Cal ttg ctg gcc         Trp Arg Gln Leu Leu Gly         ttg gag tca ttg ctg gcc	Gln         Trp         Val         Ser         Ser         Gln           cac         cag         acc         aag         atc         aag           His         Gln         Thr         Thr         Lys         Lys         Lys           gag         Gln         Thr         Lys         Lys         gag         gag           Glu         Gly         Arg         Tyr         Asp         Glu         Glu           Gag         atg         tac         aag         ctg         Gg         agg           Glu         Arg         Lys         Leu         Cys         Arg           Atc         aag         cag         cag         cag           Atc         aag         cag         cag         cag           Atc         aag         cag         gac         gac           Atc         aag         cag         gac         gac           Atc         Arg         Arg         Arg         Ha           Atc         Arg         Arg         cag         gac         gac           Atc         Arg         Arg         cag         cag         cag         cag         cag	Gln         Trp         Val         Ser         Gln         Val           cac         cag         acc         acg         atc         acg         cag         cag         cag         cag         acg         cag         acg         cag         cag	Gln         Trp         Val         Ser         Gln         Val         Leu           Cac         Cag         acc         acg         acg         acg         cag         cag	Gln         Trp         Val         Ser         Gln         Val         Leu         Leu           Gac         cag         acg         acg         acg         cag         cag	Can Gin Gin Gin Gin Gin Gin Gin Gin Gin Gi	Can         Can <td>Call Ring Ring Part 1         See See Sign Wat 1         Lew Lieu Cys Ring Ring Name 1         Lew Ring Ring Ring Name 1         Lew Ring Ring Ring Ring Ring Ring Ring Ring</td> <td>Call Rin Rin Rin Rin Rin Rin Rin Rin Rin Rin</td> <td>Cac cag ac cag ac ag ac ag ctg gag gag gt cac ag ctg gcg gcc tc gcc ccc ccc  His Gln Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg  130 135 140  gag ggc agg tat gac gag gag gtc gag gtg tac cgg cat cac ctg Glu Gly Arg Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu  145 150 155 155  cag atg tac aag ctg tgc cgg cgg tgc tac ag gcg gtg gag tac Gln Met Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala Val Glu Tyr  160 165 170  atc aag cac cag aac cgc cag cag ctg cgc ctg tgc cac agc Ile Lys His Gln Asn Arg Gln Leu Arg Ala Leu Leu Ser His  175 180 185  ttc aag cgc cgg gag gcc gac gac ac cag acc cag acc cag Ala Val Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Leu Ser  Ala Val Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Leu Ser  Leu Ala Cys Ala Phe Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser  225 230 235  cac ttc gcc cca ggc acc acc acc acc acc acc ac</td>	Call Ring Ring Part 1         See See Sign Wat 1         Lew Lieu Cys Ring Ring Name 1         Lew Ring Ring Ring Name 1         Lew Ring Ring Ring Ring Ring Ring Ring Ring	Call Rin	Cac cag ac cag ac ag ac ag ctg gag gag gt cac ag ctg gcg gcc tc gcc ccc ccc  His Gln Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg  130 135 140  gag ggc agg tat gac gag gag gtc gag gtg tac cgg cat cac ctg Glu Gly Arg Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu  145 150 155 155  cag atg tac aag ctg tgc cgg cgg tgc tac ag gcg gtg gag tac Gln Met Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala Val Glu Tyr  160 165 170  atc aag cac cag aac cgc cag cag ctg cgc ctg tgc cac agc Ile Lys His Gln Asn Arg Gln Leu Arg Ala Leu Leu Ser His  175 180 185  ttc aag cgc cgg gag gcc gac gac ac cag acc cag acc cag Ala Val Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Leu Ser  Ala Val Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Leu Ser  Leu Ala Cys Ala Phe Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser  225 230 235  cac ttc gcc cca ggc acc acc acc acc acc acc ac

WO 00/29448 PCT/JP99/06412

290	295	300
gca ctg ggc cta ctc acc tgc ctg	ctg gca atg ctg c	tg get gge ege 1142
Ala Leu Gly Leu Leu Thr Cys Leu	Leu Ala Met Leu L	eu Ala Gly Arg
305	310	315
ate agg cte egg agg ate gat gee	tto tgo acc tgo o	tg tgg gee etg 1190
Ile Arg Leu Arg Arg Ile Asp Ala	Phe Cys Thr Cys L	eu Trp Ala Leu
320 325	3:	30
ctg ctg ggg ctg cac ctg gct gag	cag cac ctg cag go	ce gee teg eet 1238
Leu Leu Gly Leu His Leu Ala Glu	Gln His Leu Gln A	la Ala Ser Pro
335 340	345	
age tgg cta gae acg etc aag tte	age ace aca tet tt	g tgc tgc ctg 1286
Ser Trp Leu Asp Thr Leu Lys Phe	Ser Thr Thr Ser Le	eu Cys Cys Leu
350 355	360	365
gtt ggc ttc acg gcg gct gtg gcc	aca agg aag gca ac	g ggc cca cgg 1334
Val Gly Phe Thr Ala Ala Val Ala	Thr Arg Lys Ala Th	r Gly Pro Arg
370	375	380
agg ttc cgg ccc cga agg tca gag		cggg ggg 1380
Arg Phe Arg Pro Arg Arg Ser Glu	Lys Gln Pro	
385	390	
aggacacacg gatgetcagg cecaggettt		
tgeetetttt cacetgetea egeeeteeca		
agteceteca etgeetegaa gagteagtet		
ccateceega gtgecetgta gecaeteace		
ttcactggcc tggtgactgg aatgtgggca		
ctactggcag ctccaggcac cccctctca		
ggtgagggte etggteetge tgtetteeet		
getacagget gggcccetgg egtgccctga		
agageceag ceteacecet gaggageace		
ctggaccggc cctgcaggag gtggtggagc		
getgettgge etcetgetee aagaecetee		
tgggcccagc ctggccttcg ccatgagttt		
taggagectg tgctgacctt ggggaatctg		
tgcaggcctt cagtgacate aggtcgttgt	catectttec etecetg	acc tgtcacgage 2220
ctctgcaggt gcctgctcac catggcccag		
ggcagcccac agacctgctc ctcagtagca	gggcctggcc aggcccc	tgc tgttctcage 2340

ctcagtttgc	catctatgaa	atgaggtgga	ccctctcca	tagcccttgg	gtgccagctc	2400
agtgggtgtg	gggatcacat	gaggtggctc	atgaggacac	actctggaag	tegagggget	2460
gccacgtgca	gaggaagttc	ceggeetggg	ggctttatcc	aggggtccca	gtcgagagtg	2520
gcccgaggcc	gtccctcacc	gggcatgttc	cctctggctg	cccactccct	cagggcccac	2580
atgtcctgcc	actcgccact	ctgagcacga	gttcaccttc	cagatgtggc	cagggtgtgc	2640
cageteetet	ctcctgtgcg	ttggaacccc	gggggaggca	agagcagatc	acaggtgcat	2700
gagggttaca	cccgtcacct	gggtetgeeg	ggatgggttg	ggggggcagg	tgccaggcct	2760
cactgctgtg	aatctgccac	gcctgggggt	cctagaggct	gccccacccc	agtgattggg	2820
tagcagctca	cateceaece	agcttcacaa	gtgaggaacc	caggtgcatc	gggagaccct	2880
cgggggcttc	tgtggcctct	gtgcccgatg	acctgcgtgg	cttcagacaa	ggccccagcg	2940
ttactgggct	cagcttgttg	ttctgtgtgg	agcgtgaggt	gagaaaaccc	ctctgaaaag	3000
atgtggtcgg	ggccacgctt	cccactggtt	ctgcagtgag	gagttggggc	gggtgagcca	3060
aagcggcccc	ccatggtgtc	tacctgaggg	gcagggaacc	gcctgcctgt	gcactcacgc	3120
cacccccag	cccacaaaga	gcccatctga	gagaaggacg	tggtggagcc	aggacgggaa	3180
agcgtcctgt	cggctggcca	tgctgttgct	tgcgtctcga	atcttcggtt	ctcgaggaag	3240
tgttgacagt	gtgatgctaa	tgtctgcttt	tettggegtt	gggtagaagc	aggacatetg	3300
tgtgtatgtg	cgtatttaaa	ttagattatt	tataataacc	agagecagee	etegeg <b>et</b> gg	3360
ccaggatcct	cctgccgagc	tgatgtcgct	cctgccctct	gccggggtcc	ggaagegaea	3420
tctcaggagg	tagctctcag	cagagtgagg	attectgeet	ttcgtagagt	tttgtgtgac	3480
tttttaaatt	attcatgtgt	cccttaaaag	tttcactacg	tggagaaaat	tecageacea	3540
agtgttgtgg	caacagctga	gagagtgcag	gcaccactgt	gttgtggctt	gttgaccggg	3600
aatgtgtcac	ccctgccagg	gaactcttct	cctcgcgggg	gacttgggat	ggccatcaga	3660
ccttctaggg	tetggetggg	gtaatcctag	gtatgggtga	ccgtccctga	gacataagcg	3720
aggtagattc	agccatcctc	accctcagac	ttgaggtccc	cacccaggcc	aagccggccc	3780
cccgtacccc	ttgcctggga	gcaaaccgcc	aggacgcagc	ctccacgccg	cacetgeeac	3840
acccagccct	gcccaggaag	gaacacatga	cccttctgtc	tgtgactgtt	gctgagtctc	3900
tgtctcatgt	cgtagaattg	tggataattg	tctagtgacc	ctctcatcac	tgtaaccatc	3960
gegeetggee	tagatgtcgt	gttttggatg	ctgtgttttc	aataaatgcc	tetggggeee	4020
tgetttt						4027

<210> 82

<211> 2495

<212> DNA

<213> Homo sapiens

<220>



	<22	21> (	CDS														
	<22	22>	(30)	(	1523	)											
	<40	00> 1	<b>B</b> 2														
	gtt	cgc	gcag	gtg	gggc	gcc t	egggt	ccc	ato	geg	ct	j tg	gege	gge	e te	e geg	53
									Met	: Ala	Let	ı Trj	Arg	g Gly	y Sei	r Ala	
									3	L			5	<b>5</b>			
	tac	ge	g ggd	; ttc	cto	g geg	gctg	geo	gtg	ggo	tgo	gto	tto	cto	gct	g gag	101
	Туг	Ala	a Gly	Phe	Let	a Ala	1 Leu	Ala	a Val	. Gly	Cys	Va]	. Phe	Let	ı Let	ı Glu	
		10	)				15	i				20	)				
	CCa	gag	gete	g cca	ggo	teg	gcg	cto	gege	tet	cto	tgg	ago	tog	cto	, tgt	149
	Pro	Glu	Let	Pro	Gly	Ser	Ala	Lev	Arg	Ser	Leu	Trp	Ser	Ser	Let	суз	
	25	,				30	)				35	i				40	
	ctg	999	ccc	geg	cct	gcg	ccc	ccg	gga	ccc	gto	tcc	ccc	gag	ggo	cgg	197
	Leu	Gly	Pro	Ala	Pro	Ala	Pro	Pro	Gly	Pro	Val	Ser	Pro	Glu	Gly	Arg	
					45					50					55		
															_	tgg	245
	Leu	Ala	Ala	Ala	Trp	Asp	Ala	Leu	Ile	Val	Arg	Pro	Val	Arg	Arg	Trp	
				60					65					70			
				gca													293
	Arg	Arg		Ala	Val	Gly	Val	Asn	Ala	Cys	Val	Asp	Val	Val	Leu	Ser	
			75					80					85				
				ctc													341
	Gly			Leu	Leu	Gln			Gly	Leu	Ser		Gly	Asn	Gly	Lys	
		90					95					100					
				att 													389
		His	Ser	Ile	Leu			Arg	Asn	Asp		Glu	Glu	Ala	Phe	Ile	
	105					110					115					120	
				tgg 												_	437
į	Hls	Pne	Met	Trp		Gly	Ala	Ala	Ala		Arg	Phe	Phe	Ser	_	Lys	
					125					130					135		
				cac													485
•	GTU	Thr	Pne	His	Asp	Ile	Ala	Gln		Ala	Ser	Glu	Phe		Gly	Ala	
				140					145					150			
				gta												-	533
(	ĭΙΝ	HLS	ıyr	Val	GTA	GTA	Asn .	Ala	Ala	Leu	Ile	Gly	Gln	Lys	Phe	Ala	

155		160	165		
gcc aac tca ga	at tta aag gtt	ctt ctt tgc	ggt cca gtt	ggc cca agg	581
Ala Asn Ser As	sp Leu Lys Val	Leu Leu Cys	Gly Pro Val	Gly Pro Arg	Ī
170	175		180		
cta cat gag ct	t ctt gat gac	aat gtc ttt	gtt cca cca	gag tca ttg	629
Leu His Glu Le	eu Leu Asp Asp	Asn Val Phe	Val Pro Pro	Glu Ser Leu	ı
185	190		195	200	)
cag gaa gtg ga	at gag ttc cac	ctc att tta	gag tat caa	gca ggg gag	677
Gln Glu Val As	sp Glu Phe His	Leu Ile Leu	Glu Tyr Gln	Ala Gly Glu	l .
•	205	210		215	
gag tgg ggc ca	ng tta aaa gct	ccc cat gcc	aac cga ttc	atc ttc tct	725
Glu Trp Gly Gl	ln Leu Lys Ala	Pro His Ala	Asn Arg Phe	Ile Phe Ser	•
22	20	225		230	
cac gac ctc to	ec aac ggg gcc	atg aat atg	ctg gag gtg	ttt gtg tct	773
His Asp Leu Se	er Asn Gly Ala	Met Asn Met	Leu Glu Val	Phe Val Ser	•
235		240	245		
age etg gag ga	ag ttt cag cca	gac ctg gtg	gte etc tet	gga ttg cac	821
Ser Leu Glu Gl	u Phe Gln Pro	Asp Leu Val	Val Leu Ser	Gly Leu His	i
250	255		260		
atg atg gag gg	ga caa agc aag	gag ctc cag	agg aag aga	ctc ttg gag	869
Met Met Glu Gl	y Gln Ser Lys	Glu Leu Gln	Arg Lys Arg		
265	270		275	280	
gtt gta acc to					
Val Val Thr Se	er Ile Ser Asp	Ile Pro Thr	Gly Ile Pro	Val His Leu	!
	285	290		295	
gag ctg gcc ag					
Glu Leu Ala Se	er Met Thr Asn	Arg Glu Leu	Met Ser Ser		
30		305		310	
cag cag gtc tt					
Gln Gln Val Ph	ne Pro Ala Val	Thr Ser Leu		Glu Gln Glu	
315		320	325		
ctg tta ttt ct					
Leu Leu Phe Le	eu Thr Gln Ser	Ala Ser Gly		Ser Leu Ser	•
330	335		340		
tee tgg aac gg	ft gtt cct gat	gtg ggc atg	gtc agt gac	ate ete tte	1109



ser	Trp	Asn	GTĀ	vai	Pro	Asp	Val	GTĀ	Met	Val	Ser	Asp	He	Leu	Phe	
345					350					355					360	
tgg	atc	ttg	aaa	gaa	cat	<b>9</b> 99	agg	agt	aaa	agc	aga	gcc	tcg	gat	ctc	1157
Trp	Ile	Leu	Lys	Glu	His	Gly	Arg	Ser	Lys	Ser	Arg	Ala	Ser	Asp	Leu	
				365					370					375		
acc	agg	atc	cat	ttc	cac	acg	ctg	gtc	tac	cac	atc	ctg	gca	act	gtg	1205
Thr	Arg	Ile	His	Phe	His	Thr	Leu	Val	Tyr	His	Ile	Leu	Ala	Thr	Val	
			380					385					390			
gat	gga	cac	tgg	gcc	aac	cag	ctg	gca	gcc	gtg	gct	gca	gga	gct	cgt	1253
Asp	Gly	His	Trp	Ala	Asn	Gln	Leu	Ala	Ala	Val	Ala	Ala	Gly	Ala	Arg	
		395					400					405				
gtg	gct	ggg	aca	cag	gcc	tgc	gcc	aca	gaa	acc	ata	gac	acc	agc	cga	1301
Val	Ala	Gly	Thr	Gln	Ala	Суз	Ala	Thr	Glu	Thr	Ile	Asp	Thr	Ser	Arg	
	410					415					420					
gtg	tct	ctg	agg	gca	ccc	caa	gag	ttc	atg	act	tcc	cat	tcg	gag	gca	1349
Val	Ser	Leu	Arg	Ala	Pro	Gln	Glu	Phe	Met	Thr	Ser	His	Ser	Glu	Ala	
425					430					435					440	
ggc	tcc	agg	att	gta	tta	aac	cca	aac	aag	cca	gta	gta	gaa	tgg	cac	1397
Gly	Ser	Arg	Ile	Val	Leu	Asn	Pro	Asn	Lys	Pro	Val	Val	Glu	Trp	His	
				445					450					455		
aga	gag	gga	ata	tcc	ttc	cac	ttc	aca	cca	gta	ttg	gtg	tgt	aaa	gac	1445
Arg	Glu	Gly	Ile	Ser	Phe	His	Phe	Thr	Pro	Val	Leu	Val	Суз	Lys .	qaA	
			460					465					470			
ccc ·	att	cga	act	gta	ggc	ctt	gga	gat	gcc	att	tca	gee	gaa	gga	ctc	1493
Pro	Ile	Arg	Thr	Val	Gly	Leu	Gly	Asp	Ala	Ile	Ser .	Ala	Glu	Gly	Leu	
		475					480					485				
tc 1	tat	tcg	gaa	gta	cac	cct	cac	tat	tagg	aaga	tt c	ttag	gggt	a		1540
?he !	Tyr	Ser	Glu '	Val	His	Pro	His	Tyr								
4	490					495										
attti	ttct	ga g	gaag	gaga	a ct	agcc	aact	taa	gaat	tac	agga	agaa	ag t	ggtti	tggaa	1600
jaca	gcca	aa g	aaat	aaaa	g ca	gatt	aaac	tgt	atca	ggt	acat	tcca	ge et	tgtt	ggcaa	1660
tec	ataa	aa a	catt	tcag	a tt	ttaa	teeg	aat	ttag	cta :	atga	gact	gg at	tttt	tgttt	1720
ttat	tgtt	gt gi	tgtc	acag	a gc	taaa	aact	cag	ttcc	caa (	atcc	ccagt	tt ta	atge	agege	1780
atca	aggt	at ti	ttaa	gcta	a ac	ttct	tcac	ccc	tgag	agc a	atgto	cagct	eg ga	agaaa	aagca	1840
++~+	+~~	tt ac	2002	n++~:	- 42	o at a	7200	000	ooto:			+~~	-~ ~			1000

aagcctcatg tgaggtteet etttetttea geteagtgee catgggeaag gateatgatt	1960
tocattocgt gttacaatga caatatttaa tgagcataac cttctcagtc toctgetete	2020
aaatttagga cagagccgct aaggacaaaa caatccctcc cgtgctttat gatggcagca	2080
ggggctgggg agcctctgag ggactctttc attctgcagt tgtctggaag cctgggtggc	2140
gtcatgaget gaaggateat gettteetgt eetggeteea taggttatag getggetggt	2200
gaaaggttca cgtggcccag gctgaacttc attgcctagc tttggatgtg ctttctgcca	2260
taaagactga tttttgttcg ttctgagcct tcaaggaatt tgttttttac aactggaata	2320
tgctcctgtg tgtgttaaca gatcatggat gttttatgtt ttcactgatc atttaaagag	2380
tttgacctca gagctccagg atcatcagta aatttgtcat gttatatatt tattttttta	2440
taaatcaaga cttctgtgtg ctcttaaata tattaaaaac aatttacatt tcagg	2495
<210> 83	
<211> 1617	
<212> DNA	-
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (67)(1320)	
<222> (67)(1320)	60
<222> (67)(1320) <400> 83 atagageeet cagtgggatg agggtgaaac tgetattgee ggeggeteet gttttacege gtcage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea	60 108
<222> (67)(1320) <400> 83 atagageeet cagtgggatg agggtgaaac tgetattgee ggeggeteet gttttacege	
<222> (67)(1320) <400> 83 atagageeet cagtgggatg agggtgaaac tgetattgee ggeggeteet gttttacege gtcage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea	
<222> (67)(1320)  <400> 83  atagageeet cagtgggatg agggtgaaae tgetattgee ggeggeteet gttttaeege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea  Met Leu Val His Leu Phe Arg Val Gly Ile Arg Gly Gly Pro	
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83  atagageeet cagtgggatg agggtgaaac tgetattgee ggeggeteet gttttaeege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea     Met Leu Val His Leu Phe Arg Val Gly Ile Arg Gly Gly Pro     1     5     10</pre>	108
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83 atagageeet cagtgggatg agggtgaaae tgetattgee ggeggeteet gttttaeege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea     Met Leu Val His Leu Phe Arg Val Gly Ile Arg Gly Gly Pro     1    5    10 tte eea gge agg etg eta eeg eee ete ege tte eag aca tte tea get</pre>	108
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83 atagageeet cagtgggatg agggtgaaae tgetattgee ggeggeteet gttttaeege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea</pre>	108
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83 atagageeet cagtgggatg agggtgaaae tgetattgee ggeggeteet gttttacege gtcage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea</pre>	108
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83  atagageeet eagtgggatg agggtgaaae tgetattgee ggeggeteet gttttaeege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea</pre>	108
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83 atagageeet eagtgggatg agggtgaaae tgetattgee ggeggeteet gttttaeege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eea</pre>	108
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83 atagageeet cagtgggatg agggtgaaac tgetattgee ggeggeteet gttttacege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eca     Met Leu Val His Leu Phe Arg Val Gly Ile Arg Gly Gly Pro</pre>	108 156 204
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83  atagageeet eagtgggatg agggtgaaac tgetattgee ggeggeteet gttttacege gteage atg etg gtg eat tta ttt egg gte ggg att egg ggt gge eca     Met Leu Val His Leu Phe Arg Val Gly Ile Arg Gly Gly Pro     1     5     10  tte eca gge agg etg eta eeg ece ete ege tte eag aca tte tea get Phe Pro Gly Arg Leu Leu Pro Pro Leu Arg Phe Gln Thr Phe Ser Ala 15</pre>	108 156 204
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83  atagagecet cagtgggatg agggtgaaae tgetattgee ggeggeteet gttttacege gtcage atg etg gtg cat tta ttt egg gte ggg att egg ggt gge eea</pre>	108 156 204
<pre>&lt;222&gt; (67)(1320) &lt;400&gt; 83  atagagecet cagtgggatg agggtgaaac tgctattgec ggeggeteet gttttacege gtcagc atg ctg gtg cat tta ttt egg gte ggg att egg ggt gge eea</pre>	108 156 204 252



cta	a ggo	2 220	ato	ggt	a cto	g agt	aag	, cat	ccc	cac	cto	e tgo	c cti	gt	g gcc	34
Lev	ı Gly	Pro	o Met	Va.	Lev	ı Ser	Lys	His	Pro	His	Let	ı Cys	s Le	ı Va	l Ala	
	80	)				85	•				90	)				
ctg	, tgt	gag	g gca	a gaa	a gag	gec	cct	cct	geo	ago	tcc	aca	ccc	cat	t gtc	39
Leu	Cys	Glu	ı Ala	a Glu	ı Glu	ı Ala	Pro	Pro	Ala	Ser	Ser	Thr	Pro	His	val	
95	i				100	)				105	•				110	
gtg	ggg	tct	: cgc	: ttt	aac	tgg	aag	ctc	tto	tgg	cag	, ttt	cto	cad	ccc	444
Val	Gly	Ser	Arg	Phe	e Asn	Trp	Lys	Leu	Phe	Trp	Gln	Phe	Lev	His	Pro	
				115	•				120					125	•	
cac	ctg	ctg	gto	cto	<b>a</b>	gta	gcc	gtc	gtg	ctg	gcc	ttg	ggt	gcg	gca	492
His	Leu	Leu	\ Val	. Let	Gly	Val	Ala	Val	Val	Leu	Ala	Leu	Gly	Ala	Ala	
			130					135					140			
															gte	540
Leu	Val			Gln	Ile	Pro			Leu	Gly	Gln			Glu	Val	
		145					150					155				
										agt		_				588
VAI	160		туг	unr	Arg	_	HIS	Val	GIĀ	Ser			Thr	GIU	Ser	
<b>CP</b> C			9.00	B.C.C	020	165	<b></b>	a <b>t</b> -	-+-		170					£2£
			_			_				tat Tyr		_	_		_	636
175	110.1		501	1111	180	neu	Leu	116	Leu	185	GIY	Val	GIII	GLY	190	
	acc	tte	aaa	tac		ata	cta	cta	tcc	cac	att	aac	gag	cac		684
										His						001
			2	195					200					205		
gct	gtg	gac	atg	cgg	agg	gee	ctc	ttc	agc	tcc	ctq	ctc	cqq	tac	tgc	732
										Ser						
		-	210	_	_			215					220	-	_	
cag	ccg	cag	ggt	gca	gag	ttg	gga	caa	gac	atc	acc	ttc	ttt	gac	gcc	780
Gln	Pro	Gln	Gly	Ala	Glu	Leu	Gly	Gln	Asp	Ile	Thr	Phe	Phe	Asp	Ala	
		225					230					235				
aat	aag	aca	ggg	cag	ctg	gtg	agc	ege	ttg	aca	act	gac	gtg	cag	gag	828
Asn	Lys	Thr	Gly	Gln	Leu	Val	Ser	Arg	Leu	Thr	Thr	Asp	Val	Gln	Glu	
	240					245					250					
ttt	aag	tca	tcc	ttc	aag	ctt	gtc	atc	tcc	cag	ggg	ctg	cga	agc	tgc	876
Phe	T.vs	Ser	Ser	Phe	Lvs	Leu	Val	Tle	Ser	Gln	Glv	Ten	Δτα	Sar	Cve	

255					260					265					270	
acc	cag	gtg	gca	ggc	tgc	ctg	gtg	tcc	ctg	tcc	atg	ctg	tcg	aca	cgc	924
Thr	Gln	Val	Ala	Gly	Cys	Leu	Val	Ser	Leu	Ser	Met	Leu	Ser	Thr	Arg	
				275					280					285		
ctc	acg	ctg	ctg	ctg	atg	gtg	gcc	aca	cca	gcc	ctg	atg	gga	gtg	gge	972
Leu	Thr	Leu	Leu	Leu	Met	Val	Ala	Thr	Pro	Ala	Leu	Met	Gly	Val	Gly	
			290					295					300			
acc	ctg	atg	ggc	tca	ggc	ctc	cga	aaa	ttg	tct	tgc	cag	tgt	cag	gag	1020
Thr	Leu	Met	Gly	Ser	Gly	Leu	Arg	Lys	Leu	Ser	Cys	Gln	Суз	Gln	Glu	
		305					310					315				
cag	atc	gcc	agg	gca	atg	ggc	gta	gca	gac	gag	gcc	ctg	ggc	aat	gtg	1068
Gln	Ile	Ala	Arg	Ala	Met	Gly	Val	Ala	Asp	Glu	Ala	Leu	Gly	Asn	Val	
	320					325					330					
cgg	act	gtg	cgt	gcc	ttc	gcc	atg	gag	caa	cgg	gaa	gag	gag	cgc	tat	1116
Arg	Thr	Val	Arg	Ala	Phe	Ala	Met	Glu	Gln	Arg	Glu	Glu	Glu	Arg	Tyr	
335					340					345					350	
ggg	gca	gag	ctg	gaa	gcc	tgc	cgc	tgc	cgg	gca	gag	gag	ctg	ggc	cgc	1164
Gly	Ala	Glu	Leu	Glu	Ala	Cys	Arg	Суз	Arg	Ala	Glu	Glu	Leu	Gly	Arg	
				355					360					365		
ggc	atc	gcc	ttg	ttc	caa	ggg	ctt	tcc	aac	atc	gcc	ttc	aac	tgc	atg	1212
Gly	Ile	Ala	Leu	Phe	Gln	Gly	Leu	Ser	Asn	Ile	Ala	Phe	Asn	Суз	Met	
			370					375					380			
gtc	ttg	ggt	acc	cta	ttt	att	ggg	ggc	tcc	ctt	gtg	gcc	gga	cag	cag	1260
Val	Leu	Gly	Thr	Leu	Phe	Ile	Gly	Gly	Ser	Leu	Val	Ala	Gly	Gln	Gln	
		385					390					395				
ctg	aca	ggg	gga	gac	ctc	atg	tcc	ttc	ctg	gtg	gcc	tcc	cag	aca	gtg	1308
Leu	Thr	Gly	Gly	Asp	Leu	Met	Ser	Phe	Leu	Val	Ala	Ser	Gln	Thr	Val	
	400					405					410					
caa	agg	ctg	tgad	catto	ca t	gcat	ggaa	ag ga	accat	cctt	gad	aggo	tgt	gtg		1360
Gln	Arg	Leu														
415																
agct	tgaaa	ett c	ccca	atgco	et go	cact	tcca	a ggg	gatga	caa	gct	acco	et q	gteed	ccacac	1420
acco	ccaco	ect t	ata	getta	at to	gettt	:gcgt	tg:	gtcca	aaaa	ccac	ccgc	etc a	agct	gageet	1480
ctg	gate	gac c	agag	getga	at ca	acca	gacag	gcto	aagg	gegg	gcct	cccc	ecc t	cct	atctct	1540
ttc	caago	eta a	acac	caago	a gt	teta	cata	a aat	atgt	tat	ggte	aata	at c	gagat	agtaa	1600

atatgetgta acagate	1617
<210> 84	
<211> 3269	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (260)(2209)	
<400> 84	
agagtttccg caccegggag ggagatgcgg ccggggctca ggctccttgc agttgt	aatt 60
tagattcgag aagtggttta tcctttgact ggaaaagaaa agtagctgca gtattc	eccc 120
ageaettget gagageatge egtatgeeag getgtgagge tegagagaea ageagt	ggaa 180
gagttgegge etgttteate tetggattgt aaatetgage eteettetgg eeeetg	gaag 240
gggacagcat cacgatgga atg att cct aac cag cat aat gct gga gcc	
Met Ile Pro Asn Gln His Asn Ala Gly Ala	Gly
1 5 10	
age cae caa cet gea gtt tte aga atg gee gtg ttg gae act gat t	
Ser His Gln Pro Ala Val Phe Arg Met Ala Val Leu Asp Thr Asp L	eu
15 20 25	
gat cac att ctt cca tct tct gtt ctt cct cca ttc tgg gct aag t	
Asp His Ile Leu Pro Ser Ser Val Leu Pro Pro Phe Trp Ala Lys L 30 35 40	eu
gta gtg gga teg gtt gee att gtg tgt ttt gea ege age tat gat g	~n 436
Val Val Gly Ser Val Ala Ile Val Cys Phe Ala Arg Ser Tyr Asp G	
45 50 55	LY
gae ttt gte ttt gat gae tea gaa get att gtt aac aat aag gtt ge	ct 484
Asp Phe Val Phe Asp Asp Ser Glu Ala Ile Val Asn Asn Lys Val Al	
<b>7.</b>	75
ggt gtt gtc ggc cgt gca gac ctc ctg tgt gcc ctg ttc ttc ttg tt	ta 532
Gly Val Val Gly Arg Ala Asp Leu Leu Cys Ala Leu Phe Phe Leu Le	
80 85 90	
tet tte ett gge tae tgt aaa gea ttt aga gaa agt aac aag gag gg	ga 580
Ser Phe Leu Gly Tyr Cys Lys Ala Phe Arg Glu Ser Asn Lys Glu Gl	.y
95 100 105	

gcg	cat	tct	rcc	acc	LLC	egg	geg	etg	CLG	ayc	acc	CCC	ccg	994	gea	UZ
Ala	His	Ser	Ser	Thr	Phe	Trp	Val	Leu	Leu	Ser	Ile	Phe	Leu	Gly	Ala	
		110					115					120				
gtg	gcc	atg	ctg	tgc	aaa	gag	caa	ggg	atc	act	gtg	ctg	ggt	tta	aat	676
Val	Ala	Met	Leu	Cys	Lys	Glu	Gln	Gly	Ile	Thr	Val	Leu	Gly	Leu	Asn	
	125					130					135					
gcg	gta	ttt	gac	atc	ttg	gtg	ata	ggc	aaa	ttc	aat	gtt	ctg	gaa	att	724
Ala	Val	Phe	Asp	Ile	Leu	Val	Ile	Gly	Lys	Phe	Asn	Val	Leu	Glu	Ile	
140					145					150					155	
gtc	cag	aag	gta	cta	cat	aag	gac	aag	tca	tta	gag	aat	ctc	ggc	atg	772
Val	Gln	Lys	Val	Leu	His	Lys	Asp	Lys	Ser	Leu	Glu	Asn	Leu	Gly	Met	
				160					165					170		
ctc	agg	aac	ggg	ggc	ctc	ctc	ttc	aga	atg	acc	ctg	ctc	acc	tct	gga	820
Leu	Arg	Asn	Gly	Gly	Leu	Leu	Phe	Arg	Met	Thr	Leu	Leu	Thr	Ser	Gly	
			175					180					185			
ggg	gct	ggg	atg	ctc	tac	gtg	cgc	tgg	agg	atc	atg	ggc	acg	ggc	ccg	868
Gly	Ala	Gly	Met	Leu	Tyr	Val	Arg	Trp	Arg	Ile	Met	Gly	Thr	Gly	Pro	
		190					195					200				
ccg	gcc	ttc	acc	gag	gtg	gac	aac	ccg	gcc	tcc	ttt	gct	gac	agc	atg	916
Pro	Ala	Phe	Thr	Glu	Val	Asp	Asn	Pro	Ala	Ser	Phe	Ala	Asp	Ser	Met	
	205					210					215					
ctg	gtg	agg	gcc	gta	aac	tac	aat	tac	tac	tat	tca	ttg	aat	gcc	tgg	964
Leu	Val	Arg	Ala	Val	Asn	Tyr	Asn	Tyr	Tyr	Tyr	Ser	Leu	Asn	Ala	Trp	
220					225					230					235	
ctg	ctg	ctg	tgt	ccc	tgg	tgg	ctg	tgt	ttt	gat	tgg	tca	atg	ggc	tgc	1012
Leu	Leu	Leu	Cys	Pro	Trp	Trp	Leu	Cys	Phe	Asp	Trp	Ser	Met	Gly	Cys	
				240					245					250		
						atc										1060
Ile	Pro	Leu	Ile	ГÀЗ	Ser	Ile	Ser	ĄzĄ	Trp	Arg	Val	Ile	Ala	Leu	Ala	
			255					260					265			
						att										1108
Ala	Leu	Trp	Phe	Cys	Leu	Ile	Gly	Leu	Ile	Сла	Gln	Ala	Leu	Cys	Ser	
		270					275					280				
•	_	-				agg										1156
<b>6</b> 111	Nen	Glv	Hie	T.379	Ara	Ara	Tle	T.eu	Thr	Leu	Glv	Leu	Glv	Phe	Leu	

	28:	•				290	)				29:	5				
gtt	ato	cce	a tti	t etc	cec	geg	agt	aac	cto	tto	tto	e ega	a gt	g gg	e tte	1204
Val	. Ile	e Pro	Phe	e Leu	Pro	Ala	Ser	Asr	Let	Phe	Phe	a Arg	y Va.	l Gly	y Phe	
300	)				305	<b>i</b>				310	)				315	
gtg	gto	geg	ggag	g cgt	gto	cto	tac	cto	e ccc	ago	att	ggg	j tad	e tgt	gtg	1252
Val	Val	. Ala	a Glu	a Arg	Val	. Leu	Tyr	Leu	Pro	Ser	Ile	e Gly	туз	c Cys	Val	
				320	)				325	i				330	)	-
ctg	ctg	act	ttt	gga	tto	gga	gcc	ctg	ago	aaa	cat	acc	aac	g aas	a aag	1300
Leu	Lev	Thr	Phe	Gly	Phe	Gly	Ala	Leu	Ser	Lys	His	Thr	Lys	Lys	Lys	
			335	5				340	)				345	5		
aaa	cto	att	ged	get	gtc	gtg	ctg	gga	atc	tta	tto	ato	aac	acg	g ctg	1348
Lys	Leu	Ile	Ala	Ala	Val	Val	Leu	Gly	Ile	Leu	Phe	Ile	Asn	Thr	Leu	
		350	)				355					360	)			
aga	tgt	gtg	ctg	cgc	agc	ggc	gag	tgg	cgg	agt	gag	gaa	cag	ctt	ttc	1396
Arg	Cys	Val	Leu	Arg	Ser	Gly	Glu	Trp	Arg	Ser	Glu	Glu	Gln	Leu	Phe	
	365					370					375					
						tgt										1444
Arg	Ser	Ala	Leu	Ser	Val	Cys	Pro	Leu	Asn	Ala	Lys	Val	His	Tyr	Asn	
380					385					390					395	
						gat										1492
Ile	Gly	Lys	Asn		Ala	Asp	Lys	Gly	Asn	Gln	Thr	Ala	Ala	Ile	Arg	
				400					405					410		
						aga				_		_		-	-	1540
Tyr	Tyr	Arg		Ala	Val	Arg.	Leu		Pro	Lys	Tyr	Val		Ala	Met	
			415					420					425			
						tta										1588
Asn	Asn		GTĀ	Asn	Ile	Leu		Glu	Arg	Asn	Glu		Gln	Glu	Ala	
		430					435					440				
						gct				_		_		_	_	1636
žIU		ren	Leu	Ser	Leu	Ala	Val	Gln	Ile	Gln		Asp	Phe	Ala	Ala	
	445					450					455					
						ata				_	_					1684
160 778	ттр	rie C	ASII			Ile	vaī	GTU			ren	тда	Arg	<b>LUG</b>		
	aa=	~=~	722		465 tag	<b></b>		<b>~ ~ ~ ~</b>		470	<b>-</b>				475	1770
بتα.	yua	yau	caa	aut	Lac	caa .	aca.	uca	act	<b>866</b>	CAC	aga	add	aaa	LAC	1732

Ala Ala Glu Gln Ser Tyr Arg Thr Ala Ile Lys His Arg Arg Lys Tyr	
480 485 490	
cca gac tgt tac tac aac cte ggg egt ctg tat gea gat cte aat ege	1780
Pro Asp Cys Tyr Tyr Asn Leu Gly Arg Leu Tyr Ala Asp Leu Asn Arg	
495 500 505	
cac gtg gat gcc ttg aat gcg tgg aga aat gcc acc gtg ctg aaa cca	1828
His Val Asp Ala Leu Asn Ala Trp Arg Asn Ala Thr Val Leu Lys Pro	
510 515 520	
gag cac age ctg gee tgg aac aac atg att ata ctc ctc gac aat aca	1876
Glu His Ser Leu Ala Trp Asn Asn Met Ile Ile Leu Leu Asp Asn Thr	
525 530 535	
ggt aat tta gcc caa gct gaa gca gtt gga aga gag gca ctg gaa tta	1924
Gly Asn Leu Ala Gln Ala Glu Ala Val Gly Arg Glu Ala Leu Glu Leu	
540 545 550 555	
ata cet aat gat eac tet ete atg tte teg ttg gea aac gtg etg ggg	1972
Ile Pro Asn Asp His Ser Leu Met Phe Ser Leu Ala Asn Val Leu Gly	
560 565 570	
aaa too cag aaa tac aag gaa tot gaa got tta tto oto aag goa att	2020
Lys Ser Gln Lys Tyr Lys Glu Ser Glu Ala Leu Phe Leu Lys Ala Ile	
575 580 585	2060
aaa gca aat cca aat gct gca agt tac cat ggt aat ttg gct gtg ctt	2068
Lys Ala Asn Pro Asn Ala Ala Ser Tyr His Gly Asn Leu Ala Val Leu	
590 595 600	2116
tat cat cgt tgg gga cat cta gac ttg gcc aag aaa cac tat gaa atc	2116
Tyr His Arg Trp Gly His Leu Asp Leu Ala Lys Lys His Tyr Glu Ile	
605 610 615	2164
tec ttg cag ett gae eee aeg gea tea gga aet aag gag aat tae ggt	2104
Ser Leu Gln Leu Asp Pro Thr Ala Ser Gly Thr Lys Glu Asn Tyr Gly	
020	2210
ctg ctg aga aga aag cta gaa cta atg caa aag aaa gct gtc tgat	2224
Leu Leu Arg Arg Lys Leu Glu Leu Met Gln Lys Lys Ala Val	
640 645	2270
cetgttteet teatgttttg agtttgagtg tgtgtgtgea tgaggeatat cattaatagt	
atgtggttac atttaaccat ttaaaagtct tagacatgtt attttactga ttttttctc	
tgaaaacaaa gacatgcaaa aagattatag caccagcaat atactcttga atgcgtgata	



tgatttttca ttgaaattgt attttttcag acaactcaaa tgtaattcta aaattccaaa	2450
aatgtotttt ttaattaaac agaaaaagag aaaaaattat ottgagcaac ttttagtaga	2510
attgagetta catttgggat etgageettg tegtgtatgg actageacta ttaaaettea	2570
attatgacca agaaaggata cactggcccc tacaatttgt ataaatattg aacatgtcta	2630
tatattagca tttttattta atgacaaagc aaattaagtt tttttatctc tttttttaa	2690
aacaacatac tgtgaacttt gtaaggaaat atttatttgt attttatgt tttgaatagg	2750
gcaaataatc gaatgaggaa tggaagtttt aacatagtat atctatatgc ttttccccat	2810
aggaagaaat tgactcttgc agtttttgga tgctctgact tgtgcaattt caatacacag	2870
gagattatgt aatgtaatat ttttcataag cggttactat caattgaaag ttcaagccat	2930
getttaggea agageaggea geeteacate tttatttttg ttacatecaa ggtgaagagg	2990
gcaacacatc tgtgtaagct gctttttagt gtgtttatct gaaggccgtt ttccattttg	3050
cttaatgtaa ctacagacat tatccagaaa atgcaaaatt ttctatcaaa tggagccaca	3110
ttcggggaat tcgtggtatt tttaagaatt gagttgttcc tgctgttttt tatttgatcc	3170
aaacaatgtt ttgttttgtt cttctctgta tgctgttgac ctaatgattt atgcaatctc	3230
tgtaatttet tatgeagtaa aattaetaea caaactage	3269
<210> 85	
<211> 458	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (66)(347)	
<400> 85	
acagttecte tggaettete tggaecaeag teetetgeea gaeceetgee agaeceeagt	60
ceace atg ate cat etg ggt cae ate ete tte etg ett ttg ete eea gtg	110
Met Ile His Leu Gly His Ile Leu Phe Leu Leu Leu Pro Val	
1 5 10 15	
get gea get eag acg act eea gga gag aga tea tea ete eet gee ttt	158
Ala Ala Ala Gln Thr Thr Pro Gly Glu Arg Ser Ser Leu Pro Ala Phe	
20 25 30	
tac cet gge act tea gge tet tgt tee gga tgt ggg tee ete tet etg	206
Tyr Pro Gly Thr Ser Gly Ser Cys Ser Gly Cys Gly Ser Leu Ser Leu	
35 40 45	

ccg ctc ctg gca ggc ctc gtg gct gct gct gcg gtg gca tcg ctg ctc 254

Pro Leu Leu Ala Gly Leu Val Ala Ala Asp Ala Val Ala Ser Leu Leu	
50 55 60	
atc gtg ggg gcg gtg ttc ctg tgc gca cgc cca cgc cgc agc ccc gcc	302
Ile Val Gly Ala Val Phe Leu Cys Ala Arg Pro Arg Arg Ser Pro Ala	
65 70 75	
caa gaa gat ggc aaa gtc tac atc aac atg cca ggc agg ggc tgaccc	350
Gln Glu Asp Gly Lys Val Tyr Ile Asn Met Pro Gly Arg Gly	
80 85 90	
tectgcaget tggacetttg acttetgace eteteatect ggatggtgtg tggtggcaca	410
ggaacccccg ccccaacttt tggattgtaa taaaacaatt gaaacacc	458
<210> 86	
<211> 1712	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (180)(1457)	
<400> 86	60
tecegetgge tagaagaagt etteacttee caggagagee aaagegtgte tggeeetagg	60
tgggaaaaga actggctgtg acctttgccc tgacctggaa gggcccagcc ttgggctgaa	120
tggcagcacc cacgcccgcc cgtccggtgc tgacccacct gctggtggct ctcttcggc	179
atg gge tee tgg get geg gte aat ggg ate tgg gtg gag eta eet gtg	227
Met Gly Ser Trp Ala Ala Val Asn Gly Ile Trp Val Glu Leu Pro Val	
•	275
gtg gtc aaa gag ctt cca gag ggt tgg agc ctc ccc tct tac gtc tct	2/3
Val Val Lys Glu Leu Pro Glu Gly Trp Ser Leu Pro Ser Tyr Val Ser  20 25 30	
	323
gtg ctt gtg gct ctg ggg aac ctg ggt ctg ctg gtg gtg acc ctc tgg Val Leu Val Ala Leu Gly Asn Leu Gly Leu Leu Val Val Thr Leu Trp	-
	371
agg agg ctg gcc cca gga aag gac gag cag gtc ccc atc cgg gtg gtg Arg Arg Leu Ala Pro Gly Lys Asp Glu Gln Val Pro Ile Arg Val Val	
50 55 60	
	419

WO 00/29448 PCT/JP99/06412

GIT	ı val	Leu	ı GIŞ	Met	. Va.	L Gly	Thr	Ala	a Lev	Let	ı Ala	a Ser	: Le	u Trj	p His	
65	i				70	)				75	<b>,</b>				80	
cat	gto	ged	CCE	a gto	g gca	a gga	cag	tte	g cat	tet	gt	g geo	tto	e tta	a gca	467
His	Val	. Ala	Pro	Val	Ala	a Gly	Gln	Let	ı His	Ser	Va]	Ala	Phe	e Le	ı Ala	
				85	•				90	)				95	5	
ctg	geo	ttt	gtg	gctg	ge	ctg	gca	tgo	tgt:	gcc	teg	aat	gto	e act	tte	515
Leu	Ala	Phe	val	Let	Ala	Leu	Ala	Cys	Суз	Ala	Ser	Asn	Va]	l Thi	Phe	
			100	)				105	,				110	)		
ctg	ccc	tto	ttg	ago	cac	ctg	cca	cct	cgc	ttc	tta	cgg	tca	tto	ttc	563
Leu	Pro	Phe	Leu	Ser	His	Leu	Pro	Pro	Arg	Phe	Leu	Arg	Ser	Phe	Phe	
		115	•				120					125				
ctg	ggt	caa	gge	ctg	agt	gcc	ctg	ctg	ccc	tgc	gtg	ctg	gco	cta	gtg	611
Leu	Gly	Gln	Gly	Leu	Ser	Ala	Leu	Leu	Pro	Cys	Val	Leu	Ala	Leu	Val	
	130					135					140					
									cca							659
	Gly	Val	Gly	Arg	Leu	Glu	Cys	Pro	Pro	Ala	Pro	Ile	Asn	Gly	Thr	
145					150					155					160	
									cgt			_	_			707
Pro	Gly	Pro	Pro		Asp	Phe	Leu	Glu	Arg	Phe	Pro	Ala	Ser			
				165					170					175		
									gct						_	755
Phe	Trp	Ala		Thr	Ala	Leu	Leu		Ala	Ser	Ala	Ala			Gln	
	- 4. 4.		180					185					190			
									cca							803
СТĀ	Leu		Leu	Leu	Leu	Pro		Pro	Pro	Ser	Val		Thr	Gly	Glu	
<b>.</b>		195					200					205				
									cca -							851
Leu	210	ser	GTĀ	ren	GIN		GLY	Ala	Pro	GIĀ		GIu	GIU	GIU	Val	
						215					220					
									cca -							899
	GIU	ser	ser	PIO		GIN	GIU	Pro	Pro		GIN	Ala	Ala	СТА		
225	aa+	~~+	<b>ac</b> ^	<b>~~</b>	230					235	_4_	<b>.</b>			240	0.48
									cag							947
LILL	210	атÃ		245	PLO	тÀв	WTG .		Gln 250	Leu	теп	ser .	нтα		ser	
				443					230					255		

gcc	tgc	ctg	ctg	ggc	ctg	ttg	gcc	gcc	acc	aac	gcg	ctg	acc	aat	ggc	995
Ala	Суз	Leu	Leu	Gly	Leu	Leu	Ala	Ala	Thr	Asn	Ala	Leu	Thr	Asn	Gly	
			260					265					270			
gtg	ctg	cct	gcc	gtg	cag	agc	ttt	tcc	tgc	tta	ccc	tac	ggg	cgt	ctg	1043
Val	Leu	Pro	Ala	Val	Gln	Ser	Phe	Ser	Суз	Leu	Pro	Tyr	Gly	Arg	Leu	
		275					280					285				
gcc	tac	cac	ctg	gct	gtg	gtg	ctg	ggċ	agt	gct	gcc	aat	ccc	ctg	gcc	1091
Ala	Tyr	His	Leu	Ala	Val	Val	Leu	Gly	Ser	Ala	Ala	Asn	Pro	Leu	Ala	
	290					295					300					
tgc	ttc	ctg	gcc	atg	ggt	gtg	ctg	tgc	agg	tcc	ttg	gca	ggg	ctg	ggc	1139
Cys	Phe	Leu	Ala	Met	Gly	Val	Leu	Cys	Arg	Ser	Leu	Ala	Gly	Leu	Gly	
305					310					315					320	
ggc	ctc	tct	ctg	ctg	ggc	gtg	ttc	tgt	ggg	ggc	tac	ctg	atg	gcg	ctg	1187
Gly	Leu	Ser	Leu	Leu	Gly	Val	Phe	Cys	Gly	Gly	Tyr	Leu	Met	Ala	Leu	
				325					330					335		
gca	gtc	ctg	agc	ccc	tgc	ccg	ccc	ctg	gtg	ggc	acc	tcg	gcg	<b>3</b> 33	gtg	1235
Ala	Val	Leu	Ser	Pro	Cys	Pro	Pro	Leu	Val	Gly	Thr	Ser	Ala	Gly	Val	
			340					345					350			
gtc	ctc	gtg	gtg	ctg	tcg	tgg	gtg	ctg	tgt	ctt	ggc	gtg	ttc	tcc	tac	1283
Val	Leu	Val	Val	Leu	Ser	Trp	Val	Leu	Cys	Leu	Gly	Val	Phe	Ser	Tyr	
		355					360					365				
gtg	aag	gtg	gca	gcc	agc	tcc	ctg	ctg	cat	ggc	ggg	ggc	cgg	ccg	gca	1331
Val	Lys	Val	Ala	Ala	Ser	Ser	Leu	Leu	His	Gly	Gly	Gly	Arg	Pro	Ala	
	370					375					380					
ttg	ctg	gca	gcc	ggc	gtg	gcc	atc	cag	gtg	ggc	tct	ctg	ctc	ggc	gct	1379
Leu	Leu	Ala	Ala	Gly	Val	Ala	Ile	Gln	Val	Gly	Ser	Leu	Leu	Gly	Ala	
385					390					395					400	
gtt	gct	atg	ttc	CCC	ccg	acc	agc	atc	tat	cac	gtg	ttc	cac	agc	aga	1427
Val	Ala	Met	Phe	Pro	Pro	Thr	Ser	Ile	Tyr	His	Val	Phe	His	Ser	Arg	
				405					410					415		
aag	gac	tgt	gca	gac	ccc	tgt	gac	tcc	tgag	geet	ggg c	aggt	ggg	ga co	eccgc	1480
Lys	Asp	Суз	Ala	Asp	Pro	Cys	Asp	Ser								
			420					425								
tcc	ccaa	cac d	etgto	ettt	ec ct	caat	gate	g CC8	eccat	gcc	tgag	jtged	tg o	agco	cagga	
ggc	ccgce	aca d	ceggt	cacao	et c	gtgga	caco	tac	cacac	tcc	atag	gaga	atc c	etggo	etttee	1600



agg	gtg	gca	agg	gcaaq	gga g	gcag	gette	gg ag	gcca	gggad	ca	gtgg	gggc	tgt	agggt	aa	1660
gcc	ccto	gagc	ctg	ggaco	eta d	catg	ggti	tt go	egta	ataaa	a ac	attt	gtat	tt			1712
<21	0> 8	37															
<21	1> 1	.055															
<21	2> D	NA															
<21	3> H	OMO	sapi	iens													
<220	0>																
<22	1> C	DS															
<222	2> (	53).	(5	602)													
<400	0> 8	7															
acco	ggga	ggc	gcgt	aaaa	ct t	gagg	ccga	g aa	cggc	cctt	gct	gcca	cca	ac a	itg		55
							,							M	let		
															1		
gag	act	ttg	tac	cgt	gto	ccg	ttc	tta	gtg	ctc	gaa	tgt	cco	aac	ctg		103
Glu	Thr	Leu	Тух	Arg	Val	Pro	Phe	Leu	Val	Leu	Glu	Суз	Pro	Asn	Leu		
			5					10					15				
aag	ctg	aag	aag	ccg	ccc	tgg	ttg	cac	atg	ccg	tcg	gcc	atg	act	gtg		151
ГÀЗ	Leu	Lys	Lys	Pro	Pro	Trp	Leu	His	Met	Pro	Ser	Ala	Met	Thr	Val		
		20					25					30					
tat	gct	ctg	gtg	gtg	gtg	tct	tac	ttc	ctc	atc	acc	gga	gga	ata	att		199
Tyr	Ala	Leu	Val	Val	Val	Ser	Tyr	Phe	Leu	Ile	Thr	Gly	Gly	Ile	Ile		
	35					40					45						
tat	gat	gtt	att	gtt	gaa	cct	CCA	agt	gtc	ggt	tct	atg	act	gat	gaa		247
Tyr .	Asp	Val	Ile	Val	Glu	Pro	Pro	Ser	Val	Gly	Ser	Met	Thr	Asp	Glu		
50					55					60					65		
cat	999	cat	cag	agg	cca	gta	gct	ttc	ttg	gcc	tac	aga	gta	aat	gga		295
His	Gly	His	Gln	Arg	Pro	Val	Ala	Phe	Leu	Ala	Tyr	Arg	Val	Asn	Gly		
				70					75					80			
caa 1	tat	att	atg	gaa	gga	ctt	gca	tcc	agc	ttc	cta	ttt	aca	atg	gga		343
Gln !	Tyr	Ile	Met	Glu	Gly	Leu	Ala	Ser	Ser	Phe	Leu	Phe	Thr	Met	Gly		
			85					90					95				
igt 1	tta	ggt	ttc	ata	atc	ctg	gac	cga	tcg	aat	gca	cca	aat	atc	cca		391
3ly 1	Leu	Gly	Phe	Ile	Ile	Leu	qzA	Arg	Ser	Asn	Ala	Pro	neA	Ile	Pro		
		100					105					110					

and ctc ant aga ttc ctt ctt ctg ttc att gga ttc gtc tgt gtc cta	439
Lys Leu Asn Arg Phe Leu Leu Leu Phe Ile Gly Phe Val Cys Val Leu	
115 120 125	
ttg agt ttt ttc atg gct aga gta ttc atg aga atg aaa ctg ccg ggc	487
Leu Ser Phe Phe Met Ala Arg Val Phe Met Arg Met Lys Leu Pro Gly	
130 135 140 145	
tat ctg atg ggt tagagtgcct ttgagaagaa atcagtggat actggatttg c	540
Tyr.Leu Met Gly	
teetgteaat gaagttttaa aggetgtaee aateetetaa tatgaaatgt ggaaaagaat	600
gaagagcagc agtaaaagaa atatctagtg aaaaaacagg aagcgtattg aagcttggac	660
tagaatttct tettggtatt aaagagacaa gtttatcaca gaatttttt teetgetgge	720
ctattgctat accaatgatg ttgagtggca ttttcttttt agtttttcat taaaatatat	780
tocatatota caactataat atcaaataaa gtgattattt tttacaaccc tottaacatt	840
ttttggagat gacatttctg attttcagaa attaacataa aatccagaag caagattccg	900
taagetgaga actetggaca gttgateage tttacetatg gtgetttgee tttaactaga	960
gtgtgtgatg gtagattatt tcagatatgt atgtaaaact gtttcctgaa caataagatg	1020
tatgaacgga gcagaaataa atactttttc taatt	1055
<210> 88	
<211> 1616	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (222)(1412)	
<400> 88	
gageteteac ggttteetet tteetgacaa aaagaatatt aatgaaaett tateatettg	60
gtgagaaaag cattctaata gctttattct gacatacgga ggtatggaga gcttgaagga	120
gtcagagagg tgcccagcta agacctgaat gccatcaccc tccccagggc tctgcagttt	180
totogtggtg aaccottgat ggatttgttg ttgcttgaga a atg gcg atg atc	233
Met Ala Met Ile	
1.	
gaa ttg ggg ttt gga aga cag aat ttt cat cca tta aag agg aag agt	281
Glu Leu Gly Phe Gly Arg Gln Asn Phe His Pro Leu Lys Arg Lys Ser	



	1				10	,				1:	•				20	
tca	ttg	getg	, ttg	aaa	cto	ata	gct	gtt	gto	ttt	get	gto	g ctt	cte	a ttt	32
Ser	Let	1 Lev	Leu	Lys	Leu	Ile	Ala	Val	Va]	. Phe	e Ala	a Val	Let	Lev	Phe	
				25	5				30	)				35	•	
tgt	gaa	ttt	tta	ato	: tat	tac	tta	geg	ato	: ttt	cag	, tgt	aat	tgg	cct	37
Cys	Glu	Phe	Leu	Ile	Tyr	Туг	Leu	Ala	Ile	Phe	e Glr	Cys	Asr	Tr	Pro	
			40					45					50	)		
gaa	gtg	aaa	acc	aca	gcc	tct	gat	ggt	gaa	cag	acc	aca	cgt	gag	cct	425
Glu	Val	Lys	Thr	Thr	Ala	Ser	Asp	Gly	Glu	Gln	Thr	Thr	Arg	Glu	Pro	
		55					60	ı				65				
gtg	ctc	aaa	gcc	atg	ttt	ttg	gct	gac	acc	cat	ttg	ctt	<b>gg</b> g	gaa	ttc	473
Val	Leu	Lys	Ala	Met	Phe	Leu	Ala	Asp	Thr	His	Leu	Leu	Gly	Glu	Phe	
	70					75					80					
cta	ggc	cac	tgg	ctg	gac	aaa	tta	cga	agg	gaa	tgg	cag	atg	gag	aga	521
Leu	Gly	His	Trp	Leu	Asp	Lys	Leu	Arg	Arg	Glu	Trp	Gln	Met	Glu	Arg	
85					90					95					100	
								ctg	_	_	_		-			569
Ala	Phe	Gln	Thr		Leu	Trp	Leu	Leu		Pro	Glu	Val	Val		Ile	
				105					110					115		
								aag								617
Leu	GIĄ	Asp		Phe	Asp	Glu	Gly	Lys	Trp	Ser	Thr	Pro		Ala	Trp	
			120					125					130			
							_	aaa -	_		-			_		665
AIB	Asp		vai	GIU	Arg	rne		Lys	Met	Pne	Arg		Pro	Ser	HTS	
<b></b> -	~~~	135		<b></b>			140					145			<b></b>	212
								aac Asn								713
Val	150	Dea	цуs	vai	vai	155	сту	ASII	uts	wsb	160	СТА	PILE	urs	TÄT	
aaa		aac	aca	tac	222		raa	cgc	+++	aaa		ata	ttc	acc	tet	761
								Arg								701
165				-1-	170			9	- 110	175		141			180	
	aga	cta	ttt	tct		aaa	aac	att	aac		at.a	atσ	atc	aac		809
								Ile				_	-		_	
	-			185	•	-	•		190				-	195		
at a	aca	cta	886	aaa	net.	aac	+	~~~		taa	+a+	<b>~</b> 22	200	~~~	<b>~</b>	957

Val	Ala	Leu	Asn	Gly	Asp	Gly	Cys	Gly	Ile	Cys	Ser	Glu	Thr	Glu	Ala	
			200					205					210			
gag	ctc	att	gaa	gtt	tct	cac	aga	ctg	aac	tgc	tee	cga	gag	gca	cgt	905
Glu	Leu	Ile	Glu	Val	Ser	His	Arg	Leu	Asn	Cys	Ser	Arg	Glu	Ala	Arg	
		215					220					225				
ggc	tcc	agc	cgg	tgt	gga	cct	ggg	cct	ctg	ctg	ccc	acg	tct	gcc	cct	953
Gly	Ser	Ser	Arg	Cys	Gly	Pro	Gly	Pro	Leu	Leu	Pro	Thr	Ser	Ala	Pro	
	230					235					240					
gtc	ctc	ctg	cag	cat	tat	cct	ctg	tat	cgg	aga	agt	gat	gct	aac	tgt	1001
Val	Leu	Leu	Gln	His	Tyr	Pro	Leu	Tyr	Arg	Arg	Ser	Asp	Ala	Asn	Суз	
245					250					255					260	
tct	ggg	gaa	gac	gct	gct	cct	gca	gag	gaa	agg	gac	atc	cca	ttt	aag	1049
Ser	Gly	Glu	Asp	Ala	Ala	Pro	Ala	Glu	Glu	Arg	Asp	Ile	Pro	Phe	ГÄЗ	
				265					270					275		
gag	aac	tat	gac	gtg	ctt	tca	cgg	gag	gca	tca	caa	aag	ctg	ctg	tgg	1097
Glu	Asn	Tyr	Asp	Val	Leu	Ser	Arg	Glu	Ala	Ser	Gln	Lys	Leu	Leu	Trp	
			280					285					290			
tgg	ctc	cag	ccg	cgc	ctg	gtt	ctc	agt	ggc	cac	acg	cac	agc	gcc	tgc	1145
Trp	Leu	Gln	Pro	Arg	Leu	Val	Leu	Ser	Gly	His	Thr	His	Ser	Ala	Cys	
		295					300					305				
								ccc								1193
Glu	Val	His	His	Gly	Gly	Arg	Val	Pro	Glu	Leu	Ser	Val	Pro	Ser	Phe	
	310					315					320					
_								agt								1241
Ser	Trp	Arg	Asn	Arg	Asn	Asn	Pro	Ser	Phe	Ile	Met	Gly	Ser	Ile		
325					330					335					340	
								tgc								1289
Pro	Thr	Asp	Tyr	Thr	Leu	Ser	Lys	Cys		Leu	Pro	Arg	Glu		Val	
				345					350					355		4005
								gtg								1337
Val	Leu	Ile	Ile	Tyr	Сув	Gly	Val	Val	Gly	Phe	Leu	Val		Leu	Thr	
			360					365					370			
								tca								1385
Leu	Thr	His	Phe	Gly	Leu	Leu		Ser	Pro	Phe	Leu		Gly	Leu	Asn	
		375					380					385				

ttg ctc gga aag cgt aag aca aga tgaagagcag gcgccattat a	1430
Leu Leu Gly Lys Arg Lys Thr Arg	
390 395	
aatatcaaag cccaagaaat ggaactttgg gcagagatca tgttagaatc aagtggatga	1490
tgagaccaat tacaggccgt ctctctgcac agcacagaaa ttctcaatca ctgaaatgag	1550
taactgcaaa ataaatagtt gattgtactg ttctcatgct ataaaagtgg acaggtactc	1610
tacaac	1616
	•
<210> 89	
<211> 1860	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (69)(1121)	
<400> 89	
gagaagtget gegteegtge geegeggget ggggeggtet eaggtgtgee gaagetetgg	60
teagtgee atg ate egg cag gag ege tee aca tee tae cag gag etg	107
Met Ile Arg Gln Glu Arg Ser Thr Ser Tyr Gln Glu Leu	
1 5 10	
agt gag gag ttg gtc cag gtg gtt gag aac tca gag ctg gca gac gag	155
Ser Glu Glu Leu Val Gln Val Val Glu Asn Ser Glu Leu Ala Asp Glu	
15 20 25	
cag gac aag gag acg gtc aga gtc caa ggt ccg ggt atc tta cca ggc	203
Gln Asp Lys Glu Thr Val Arg Val Gln Gly Pro Gly Ile Leu Pro Gly	
30 35 40 45	
ctg gac age gag tee gee tee age age ate ege tte age aag gee tge	251
Leu Asp Ser Glu Ser Ala Ser Ser Ser Ile Arg Phe Ser Lys Ala Cys	
50 55 60	
ctg aag aac gtc ttc tcg gtc cta ctc atc ttc atc tac ctg ctc	299
Leu Lys Asn Val Phe Ser Val Leu Leu Ile Phe Ile Tyr Leu Leu Leu	
65 70 75	
atg get gtg gee gte tte etg gte tae egg ace ate aca gae ttt egt	347
Mot Ala Val Ala Val Dha Yau Val Dama Ann mha ala mha ann at	
Met Ala Val Ala Val Phe Leu Val Tyr Arg Thr Ile Thr Asp Phe Arg	

gag	aaa	ctc	aag	cac	cct	gtc	atg	tct	gtg	tet	tac	aag	gaa	grg	gat	395
Glu	Lys	Leu	Lys	His	Pro	Val	Met	Ser	Val	Ser	Tyr	Lys	Glu	Val	Asp	
	95					100					105					
cgc	tat	gat	gcc	cca	ggt	att	gcc	ttg	tac	ccc	ggt	cag	gcc	cag	ttg	443
Arg	Tyr	Asp	Ala	Pro	Gly	Ile	Ala	Leu	Tyr	Pro	Gly	Gln	Ala	Gln	Leu	
110					115					120					125	
ctc	agc	tgt	aag	cac	cat	tac	gag	gtc	att	cct	cct	ctg	aca	agc	cct	491
Leu	Ser	Cys	Lys	His	His	Tyr	Glu	Val	Ile	Pro	Pro	Leu	Thr	Ser	Pro	
				130					135					140		
ggc	cag	ccg	ggt	gac	atg	aat	tgc	acc	acc	cag	agg	atc	aac	tac	acg	539
Gly	Gln	Pro	Gly	Asp	Met	Asn	Cys	Thr	Thr	Gln	Arg	Ile	Asn	Tyr	Thr	
			145					150					155			
gac	ccc	ttc	tcc	aat	cag	act	gtg	aaa	tct	gcc	ctg	att	gtc	cag	ggg	587
Asp	Pro	Phe	Ser	Asn	Gln	Thr	Val	Lys	Ser	Ala	Leu	Ile	Val	Gln	Gly	
		160					165					170				
ccc	cgg	gaa	gtg	aaa	aag	cgg	gag	ctg	gtc	ttc	ctc	cag	ttc	cgc	ctg	635
Pro	Arg	Glu	Val	Lys	Lys	Arg	Glu	Leu	Val	Phe	Leu	Gln	Phe	Arg	Leu	
	175					180					185					
aac	aag	agt	agt	gag	gac	ttc	agc	gcc	att	gat	tac	ctc	ctc	ttc	tct	683
Asn	Lys	Ser	Ser	Glu	Asp	Phe	Ser	Ala	Ile	Asp	Tyr	Leu	Leu	Phe	Ser	
190					195					200					205	
tct	ttc	cag	gag	ttc	ctg	caa	agc	cca	aac	agg	gta	ggc	ttc	atg	cag	731
Ser	Phe	Gln	Glu	Phe	Leu	Gln	Ser	Pro	Asn	Arg	Val	Gly	Phe	Met	Gln	
				210					215					220		
gcc	tgt	gag	agt	gcc	tat	tcc	agc	tgg	aag	ttc	tct	ggg	ggc	ttc	cgc	779
Ala	Cys	Glu	Ser	Ala	Tyr	Ser	Ser	Trp	Lys	Phe	Ser	Gly	Gly	Phe	Arg	
			225					230					235			
acc	tgg	gtc	aag	atg	tca	ctg	gta	aag	acc	aag	gag	gag	gat	ggg	cgg	827
Thr	Trp	Val	Lys	Met	Ser	Leu	Val	Lys	Thr	Lys	Glu	Glu	Asp	Gly	Arg	
		240					245					250				
gaa	gca	gtg	gag	ttc	cgg	cag	gag	aca	agt	gtg	gtt	aac	tac	att	gac	875
Glu	Ala	Val	Glu	Phe	Arg	Gln	Glu	Thr	Ser	Val	Val	Asn	Tyr	Ile	Asp	
	255					260					265					
cag	agg	cca	gct	gcc	aaa	aaa	agt	gct	caa	ttg	ttt	ttt	gtg	gtc	ttt	923
Gln	Ara	Pro	Ala	Ala	Lvs	Lvs	Ser	Ala	Gln	Leu	Phe	Phe	Val	Val	Phe	

270 275 280 285	
gaa tgg aaa gat cet tte ate eag aaa gte eaa gat ata gte aet gee	971
Glu Trp Lys Asp Pro Phe Ile Gln Lys Val Gln Asp Ile Val Thr Ala	
290 295 300	
aat cot tgg aac aca att get ett ete tgt gge gee tte ttg gea tta	1019
Asn Pro Trp Asn Thr Ile Ala Leu Leu Cys Gly Ala Phe Leu Ala Leu	
305 310 315	
ttt aaa gca gca gag ttt gcc aaa ctg agt ata aaa tgg atg atc aaa	1067
Phe Lys Ala Ala Glu Phe Ala Lys Leu Ser Ile Lys Trp Met Ile Lys	
320 325 330	
att aga aag aga tac ctt aaa aga aga ggt cag gca acg agc cac ata	1115
Ile Arg Lys Arg Tyr Leu Lys Arg Arg Gly Gln Ala Thr Ser His Ile	
335 340 345	
age tgaagteace tegegttgtt tagagaactg tecacateaa tgggagetgt ca	1170
Ser	
350	
teacttecae titgtaaaeg gagetateaa eaateetgta eteacttgaa gaaatgggge	1230
cttgctggga ggaacagcat gtaaaactgg aacttctaac cccgtcccaa aagaggcggt	1290
gtagagecta atagaagaga ctaatggata aacctacaag ttatttaaat atttaaatta	1350
ttaataaact ttttaaagag ctggccaatg acttttgaat agggtttgta gaagatgcct	1410
ttcttcctgt ttggttcatt gtattgtatt aggttaagct ctactagggt aatgaaggct	1470
ctacttttca ctttttaaaa gtggacaaaa gagtgtgatt ttctttttcc aaaaattcct	1530
gagtatcaag acgtgcaggt catgctttgg agcctatgca ctgtacacaa aggcaaaacc	1590
ctatgacttt ggcatcatct gccattgatg tecagectct gacatgetet ttgatttgtt	1650
aaatgttaaa tgagacttta aggctactag aaactagtaa ttaagtttct taatggactg	1710
agtagecace tacttgteeg getagaatgt ttgttgatgt atgagtttag attaacacte	1770
aaaagcacta ggacagatgt acatagaagg tgcctactca ttgtattttg atgatttcat	1830
taacaqqtaa ataaaaqtta atacaaaaqq	1860

<210> 90

<211> 783

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (245)...(706) <400> 90 60 acacaccag tgaggtetet ggageegegg tgegggaage ggggaeeegg gtttgaatee tgeccetetg gtgtggtgeg geetetteee acagaetttt ggeeteagtg tteecegeet 120 gggaagtggg gactggccct ggtacctggc tccagagctg cacccagagg cgatcagccc 180 240 ggtgegggaa eggggegggg tggeegeaac taegggeeac ggateetgae eegeeetgee cacg atg act atc cac atc ctc atc ctg ctg ttg ctc ctc gcc ttc 286 Met Thr Ile His Ile Leu Ile Leu Leu Leu Leu Ala Phe 1 10 334 tce qce caa ggg gae ctg gae act gea gce agg cga gge cag cac cag Ser Ala Gln Gly Asp Leu Asp Thr Ala Ala Arg Arg Gly Gln His Gln 382 qte ece cag cae ege ggg cae gte tge tae etg gge gta tge egg ace Val Pro Gln His Arg Gly His Val Cys Tyr Leu Gly Val Cys Arg Thr 40 35 430 cac ege etg geg gag ate ata tac tgg att ege tgt etc eac eaa gga His Arg Leu Ala Glu Ile Ile Tyr Trp Ile Arg Cys Leu His Gln Gly 60 50 478 gee ete ggg gaa gge eag eea ega gee eea gga eee eta eag eta tgg Ala Leu Gly Glu Gly Gln Pro Arg Ala Pro Gly Pro Leu Gln Leu Trp geg ceg ceg gtg geg ega gge gga age ceg get egg tte cea gga tte 526 Ala Pro Pro Val Ala Arg Gly Gly Ser Pro Ala Arg Phe Pro Gly Phe 90 80 85 574 cgg cct gca gcg agg ggg cta gcg cag tgc cca gct cgc tgg gtg acc Arg Pro Ala Ala Arg Gly Leu Ala Gln Cys Pro Ala Arg Trp Val Thr 110 105 95 100 tog ggc acg gct cgt ccc ctc ctc ggc ttc agt ttg cct atc tgt atg 622 Ser Gly Thr Ala Arg Pro Leu Leu Gly Phe Ser Leu Pro Ile Cys Met 120 125 115 670 ttq gag ctt cta ctc cac att tct tct ccc cta act cca gcc cct gaa Leu Glu Leu Leu His Ile Ser Ser Pro Leu Thr Pro Ala Pro Glu 135 140 130 720 ace qte tte eee agt eee tee eeg gge tge gae taggttggae etagaag Thr Val Phe Pro Ser Pro Ser Pro Gly Cys Asp

780

783

		14:	)				120	)								
caca	acgg	gac	cago	getge	gge g	gaaga	acac	t ga	egee	caga	gco	gaat	aaa	caaç	gagtt	CC
gtg																
<21	0> 9	1														
<21	1> 3	03														
<212	2> P	RT														
<213	3> H	omo	sapi	ens.												
<400	)> 9	1														
Met	Glu	Ala	Glu	Gln	Arg	Pro	Ala	Ala	Gly	Ala	Ser	Glu	Gly	Ala	Thr	
1				5	ı				10					15		
Pro	Gly	Leu	Glu	Ala	Val	Pro	Pro	Val	Ala	Pro	Pro	Pro	Ala	Thr	Ala	
			20	)				25					30			
Ala	Ser	Gly	Pro	Ile	Pro	Lys	Ser	Gly	Pro	Glu	Pro	Lys	Arg	Arg	His	
		35					40					45				
Leu	Gly	Thr	Leu	Leu	Gln	Pro	Thr	Val	Asn	Lys	Phe	Ser	Leu	Arg	Val	
	50					55					60					
Phe	Gly	Ser	His	Lys	Ala	Val	Glu	Ile	Glu	Gln	Glu	Arg	Val	Lys	Ser	
65					70					75					80	
Ala	Gly	Ala	Trp	Ile	Ile	His	Pro	Tyr	Ser	Ąsp	Phe	Arg	Phe	Tyr	Trp	
				85					90					95		
Asp	Leu	Ile	Met	Leu	Leu	Leu	Met	Val	Gly	Asn	Leu	Ile	Val	Leu	Pro	
			100					105					110			
Val	Gly	Ile	Thr	Phe	Phe	Lys	Glu	Glu	Asn	Ser	Pro	Pro	Trp	Ile	Val	
		115					120					125				
Phe .	Asn	Val	Leu	Ser	Asp	Thr	Phe	Phe	Leu	Leu	Asp	Leu	Val	Leu	Asn	
	130					135					140					
Phe .	Arg	Thr	Gly	Ile	Val	Val	Glu	Glu	Gly	Ala	Glu	Ile	Leu	Leu	Ala	
145					150					155					160	
Pro .	Arg	Ala	Ile	Arg	Thr	Arg	Tyr	Leu	Arg	Thr	Trp	Phe	Leu	Val	Asp	
				165					170					175		
Leu	Ile	Ser	Ser	Ile	Pro	Val	Asp	Tyr	Ile	Phe	Leu	Val	Val	Glu	Leu	
			180					185					190			
Glu 1	Pro	Arg	Leu	Asp	Ala	Glu	Val	Tyr	Lys	Thr	Ala	Arg	Ala	Leu	Arg	
		195					200					205				

WO 00/29448 PCT/JP99/06412

#### 156/233

Ile Val Arg Phe Thr Lys Ile Leu Ser Leu Leu Arg Leu Leu Arg Leu 215 Ser Arg Leu Ile Arg Tyr Ile His Gln Trp Glu Glu Ile Phe His Met 240 230 235 Thr Tyr Asp Leu Ala Ser Ala Val Val Arg Ile Phe Asn Leu Ile Gly 250 255 245 Met Met Leu Leu Cys His Trp Asp Gly Cys Leu Gln Phe Leu Val 265 Pro Met Leu Gln Asp Phe Pro Pro Asp Cys Trp Val Ser Ile Asn His 275 285 Met Val Val Arg Ser Pro His Ser Ser Ala Phe Pro Gly Pro Ser 295 300 290 <210> 92 <211> 283

<212> PRT

<213> Homo sapiens

<400> 92

Met Ala Asp Pro His Gln Leu Phe Asp Asp Thr Ser Ser Ala Gln Ser

1 5 10 15

Arg Gly Tyr Gly Ala Gln Arg Ala Pro Gly Gly Leu Ser Tyr Pro Ala

Ala Ser Pro Thr Pro His Ala Ala Phe Leu Ala Asp Pro Val Ser Asn 35 40 . 45

Met Ala Met Ala Tyr Gly Ser Ser Leu Ala Ala Gln Gly Lys Glu Leu 50 55 60

Val Asp Lys Asn Ile Asp Arg Phe Ile Pro Ile Thr Lys Leu Lys Tyr
65 70 75 80

Tyr Phe Ala Val Asp Thr Met Tyr Val Gly Arg Lys Leu Gly Leu Leu 85 90 95

Phe Phe Pro Tyr Leu His Gln Asp Trp Glu Val Gln Tyr Gln Gln Asp 100 105 110

Thr Pro Val Ala Pro Arg Phe Asp Val Asn Ala Pro Asp Leu Tyr Ile
115 120 125

Pro Ala Met Ala Phe Ile Thr Tyr Val Leu Val Ala Gly Leu Ala Leu

	130					135	ļ.				140	,			
Gly	Thr	Gln	Asp	Arg	Phe	Ser	Pro	Asp	Leu	Leu	Gly	Leu	Gln	Ala	Ser
145					150					155					160
Ser	Ala	Leu	Ala	Trp	Leu	Thr	Leu	Glu	Val	Leu	Ala	Ile	Leu	Leu	Ser
				165					170	1				175	
Leu	Tyr	Leu	Val	Thr	Val	Asn	Thr	Asp	Leu	Thr	Thr	Ile	Asp	Leu	Val
			180					185					190		
Ala	Phe	Leu	Gly	Tyr	Lys	Tyr	Val	Gly	Met	Ile	Gly	Gly	Val	Leu	Met
		195					200					205			
Gly	Leu	Leu	Phe	Gly	Lys	Ile	Gly	Tyr	Tyr	Leu	Val	Leu	Gly	Trp	Cys
	210					215					220				
Cys	Val	Ala	Ile	Phe	Val	Phe	Met	Ile	Arg	Thr	Leu	Arg	Leu	Lys	Ile
225					230					235					240
Leu	Ala	Asp	Ala	Ala	Ala	Glu	Gly	Val	Pro	Val	Arg	Gly	Ala	Arg	Asn
				245					250					255	
Gln	Leu	Arg	Met	Tyr	Leu	Thr	Met	Ala	Val	Ala	Ala	Ala	Gln	Pro	Met
			260					265					270		
Leu	Met	Tyr	Trp	Leu	Thr	Phe	His	Leu	Val	Arg					
		275					280								
<210	> 93	3													
<211	> 48	38													
<212	> PF	TS													
<213	> Hc	e ome	apie	ens											
<400	> 93	3													
Met .	Ala	Gly	Lys	Gly	Ser	Ser	Gly	Arg	Arg	Pro	Leu	Leu	Leu	Gly	Leu
1				5					10					15	
Leu	Val	Ala	Val	Ala	Thr	Val	His	Leu	Val	Ile	Суз	Pro	Tyr	Thr	Lys
			20					25					30		
Val	Glu	Glu	Ser	Phe .	Asn	Leu	Gln	Ala	Thr	His	Asp	Leu	Leu	Tyr	His
		35					40					45			
Trp	Gln	Asp :	Leu	Glu	Gln	Tyr	Asp	His	Leu	Glu	Phe	Pro	Gly	Val	Val
	50					55					60				
Pro I	Arg	Thr I	Phe	Leu	Gly	Pro	Val	Val	Ile	Ala	Val	Phe	Ser	Ser :	Pro
65					70					75					80

PCT/JP99/06412

Ala	Val	Tyr	Val	Leu	Ser	Leu	Leu	Glu	met	ser	тАз	rne	TYT		GIN
				85					90					95	
Leu	Ile	Val	Arg	Gly	Val	Leu	Gly	Leu	Gly	Val	Ile	Phe	Gly	Leu	Trp
			100					105					110		
Thr	Leu	Gln	Lys	Glu	Val	Arg	Arg	His	Phe	Gly	Ala	Met	Val	Ala	Thr
		115					120					125			
Met	Phe	Суз	Trp	Val	Thr	Ala	Met	Gln	Phe	His	Leu	Met	Phe	Tyr	Суз
	130					135					140				
Thr	Arg	Thr	Leu	Pro	Asn	Val	Leu	Ala	Leu	Pro	Val	Val	Leu	Leu	Ala
145					150					155					160
Leu	Ala	Ala	Trp	Leu	Arg	His	Glu	Trp	Ala	Arg	Phe	Ile	Trp	Leu	Ser
				165					170					175	
Ala	Phe	Ala	Ile	Ile	Val	Phe	Arg	Val	Glu	Leu	Cys	Leu	Phe	Leu	Gly
			180					185					190		
Leu	Leu	Leu	Leu	Leu	Ala	Leu	Gly	Asn	Arg	Lys	Val	Ser	Val	Val	Arg
		195					200					205			
Ala	Leu	Arg	His	Ala	Val	Pro	Ala	Gly	Ile	Leu	Cys	Leu	Gly	Leu	Thr
	210					215					220				
Val	Ala	Val	Asp	Ser	Tyr	Phe	Trp	Arg	Gln	Leu	Thr	Trp	Pro	Glu	Gly
225					230					235					240
Lys	Val	Leu	Trp	Tyr	Asn	Thr	Val	Leu	Asn	Lys	Ser	Ser	Asn	Trp	Gly
				245					250					255	
Thr	Ser	Pro	Leu	Leu	Trp	Tyr	Phe	Tyr	Ser	Ala	Leu	Pro	Arg	Gly	Leu
			260					265					270		
Gly	Cys	Ser	Leu	Leu	Phe	Ile	Pro	Leu	Gly	Leu	Val	Ąsp	Arg	Arg	Thr
		275					280					285			
His	Ala	Pro	Thr	Val	Leu	Ala	Leu	Gly	Phe	Met	Ala	Leu	Tyr	Ser	Leu
	290					295					300				
Leu	Pro	His	Lys	Glu	Leu	Arg	Phe	Ile	Ile	Tyr	Ala	Phe	Pro	Met	
305					310					315					320
Asn	Ile	Thr	Ala	Ala	Arg	Gly	Cys	Ser	Tyr	Leu	Leu	Asn	Asn		Lys
				325					330					335	
Lys	Ser	Trp	Leu	Tyr	Lys	Ala	Gly	Ser	Leu	Leu	Val	Ile		His	Leu
			340					345					350		
Val	Val	Asn	Ala	Ala	Tvr	Ser	Ala	Thr	Ala	Leu	Tyr	Val	Ser	His	Phe

		355	•				360	)				365	ı		
Asr	Туг	Pro	Gly	gly	Val	Ala	Met	Glr	Arg	, Leu	His	Gln	Leu	Val	Pro
	370	)				375	i				380	ŀ			
Pro	Gln	Thr	Asp	Val	Leu	Leu	His	Ile	Asp	val	Ala	Ala	Ala	Gln	Thr
385	i				390					395					400
Gly	val	Ser	Arg	Phe	Leu	Gln	Val	Asn	Ser	Ala	Trp	Arg	Tyr	Asp	Lys
				405					410	)				415	
Arg	Glu	Asp	Val	Gln	Pro	Gly	Thr	Gly	Met	Leu	Ala	Tyr	Thr	His	Ile
			420	)			-	425					430		
Leu	Met	Glu	Ala	Ala	Pro	Gly	Leu	Leu	Ala	Leu	Tyr	Arg	Asp	Thr	His
		435					440					445			
Arg	Val	Leu	Ala	Ser	Val	Val	Gly	Thr	Thr	Gly	Val	Ser	Leu	Asn	Leu
	450					455					460				
Thr	Gln	Leu	Pro	Pro	Phe	Asn	Val	His	Leu	Gln	Thr	Lys	Leu	Val	Leu
465					470					475					480
Leu	Glu	Arg	Leu	Pro	Arg	Pro	Ser								
				485											
<21	0> 9	4													
<21	1> 1	82													
<21	2> PI	RT													
<21	3> H		sapio	ens											
	0> 94														
	Trp	Pro	Pro	_	Pro	Asp	Pro	qaA		Asp	Pro	Glu	Pro		Gly
1				5					10					15	
Gly	Ser	Arg		Gly	Pro	Ala	Val		Gly	Leu	Arg	Ala		Leu	Pro
_ •	_		20					25					30	_	_
Ala	Arg		Phe	Leu	Cys	Ser		Lys	Gly	Arg	Leu		Leu	Ala	Glu
_		35	_				40				_	45			_
ser		Leu	Ser	Phe	Ile		Phe	Ile	Cys	Tyr		Ala	Ser	Ser .	Ala
0	50	<b>~</b> 1		_,		55	_	_			60	_		_	_
	Ala	Phe	Leu	Thr		Pro	Leu	Leu	Glu	Phe	Leu	Leu .	Ala	Leu '	
65 	_		_ •	_	70 			_		75					80
Pne	Leu	Phe	ALA		Ala .	Met	GIn	Leu		Asp	Lys	Trp	Gln		Leu
				85					90					95	

WO 00/29448 PCT/JP99/06412

#### 160/233

Cys Trp Pro Met Met Asp Phe Leu Arg Cys Val Thr Ala Ala Leu Ile 105 100 Tyr Phe Ala Ile Ser Ile Thr Ala Ile Ala Lys Tyr Ser Asp Gly Ala 120 Ser Lys Ala Ala Gly Val Phe Gly Phe Phe Ala Thr Ile Val Phe Ala 140 135 130 Thr Asp Phe Tyr Leu Ile Phe Asn Asp Val Ala Lys Phe Leu Lys Gln 155 Gly Asp Ser Ala Asp Glu Thr Thr Ala His Lys Thr Glu Glu Glu Asn 175 170 Ser Asp Ser Asp Ser Asp 180 <210> 95 <211> 184 <212> PRT <213> Homo sapiens <400> 95 Met Asp Gly Leu Arg Gln Arg Val Glu His Phe Leu Glu Gln Arg Asn 15 10 1 Leu Val Thr Glu Val Leu Gly Ala Leu Glu Ala Lys Thr Gly Val Glu 20 25 Lys Arg Tyr Leu Ala Ala Gly Ala Val Thr Leu Leu Ser Leu Tyr Leu 40 Leu Phe Gly Tyr Gly Ala Ser Leu Leu Cys Asn Leu Ile Gly Phe Val 60 50 Tyr Pro Ala Tyr Ala Ser Ile Lys Ala Ile Glu Ser Pro Ser Lys Asp

Leu Ala Glu Phe Phe Ser Asp Leu Leu Leu Ser Trp Phe Pro Phe Tyr

100 105 110

Tyr Val Gly Lys Cys Ala Phe Leu Leu Phe Cys Met Ala Pro Arg Pro
115 120 125

Asp Asp Thr Val Trp Leu Thr Tyr Trp Val Val Tyr Ala Leu Phe Gly

70

85

75

95

130 135 140 Leu Arg His His Gly Ala Val Asp Arg Ile Met Asn Asp Leu Ser Gly 145 150 155 160 Arg Ala Leu Asp Ala Ala Ala Gly Ile Thr Arg Asn Val Lys Pro Ser 165 170 175 Gln Thr Pro Gln Pro Lys Asp Lys 180 <210> 96 <211> 140 <212> PRT <213> Homo sapiens <400> 96 Met Ser Arg Phe Leu Asn Val Leu Arg Ser Trp Leu Val Met Val Ser 10 Ile Ile Ala Met Gly Asn Thr Leu Gln Ser Phe Arg Asp His Thr Phe 25 Leu Tyr Glu Lys Leu Tyr Thr Gly Lys Pro Asn Leu Val Asn Gly Leu 35 45 Gln Ala Arg Thr Phe Gly Ile Trp Thr Leu Leu Ser Ser Val Ile Arg 55 Cys Leu Cys Ala Ile Asp Ile His Asn Lys Thr Leu Tyr His Ile Thr 65 70 75 80 Leu Trp Thr Phe Leu Leu Ala Leu Gly His Phe Leu Ser Glu Leu Phe 85 90 Val Tyr Gly Thr Ala Ala Pro Thr Ile Gly Val Leu Ala Pro Leu Met 100 105 Val Ala Ser Phe Ser Ile Leu Gly Met Leu Val Gly Leu Arg Tyr Leu 115 120 125 Glu Val Glu Pro Val Ser Arg Gln Lys Lys Arg Asn 130 135 140

<210> 97

<211> 153

<212> PRT

WO 00/29448 PCT/JP99/06412

#### 162/233

<213> Homo sapiens <400> 97 Met Asn Val Gly Val Ala His Ser Glu Val Asn Pro Asn Thr Arg Val 15 10 Met Asn Ser Arg Gly Met Trp Leu Thr Tyr Ala Leu Gly Val Gly Leu 25 20 Leu His Ile Val Leu Leu Ser Ile Pro Phe Phe Ser Val Pro Val Ala 40 Trp Thr Leu Thr Asn Ile Ile His Asn Leu Gly Met Tyr Val Phe Leu 60 50 His Ala Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ala 70 75 Arg Leu Leu Thr His Trp Glu Gln Leu Asp Tyr Gly Val Gln Phe Thr 95 90 Ser Ser Arg Lys Phe Phe Thr Ile Ser Pro Ile Ile Leu Tyr Phe Leu 100 105 Ala Ser Phe Tyr Thr Lys Tyr Asp Pro Thr His Phe Ile Leu Asn Thr 120 Ala Ser Leu Leu Ser Val Leu Ile Pro Lys Met Pro Gln Leu His Gly 140 130 135 Val Arg Ile Phe Gly Ile Asn Lys Tyr 145 150 <210> 98 <211> 173 <212> PRT <213> Homo sapiens <400> 98 Met Ala Ala Phe Leu Ile Gln Thr Lys Asp Asn Pro Met Lys Ala Val 15 10 Gly Val Leu Ala Gly Thr Met Ala Thr Val Val Ala Ile Thr Val Leu 25 Ile Ser Thr Ala Thr Phe Trp Arg Asn Lys Lys Ser Asn Lys Val Leu 45

Pro Met Arg Arg Val Leu Arg Lys Arg Pro Ser Pro Ala Pro Arg Thr

WO 00/29448 PCT/JP99/06412

#### 163/233

50 55 60 Ile Arg Ile Glu Trp Leu Lys Ser Lys Ser Thr Lys Ala Ala Thr Lys 70 75 Phe Met Leu Lys Glu Lys Pro Pro Asn Glu Asn Cys Asn Asn Asn Ser 85 90 Pro Glu Ser Ser Leu Leu Pro Arg Ala Pro Ala Leu Pro Pro Pro 100 105 110 Ser Val Ala Pro Ser Thr Gly Ala Ala Gln Trp Thr Val Pro Thr Val 120 Ser Gly Ser Leu Thr Pro Gln Pro Thr Gln Pro Pro Pro Lys 130 135 140 Thr Met Gly Ser Pro Val Gln Ser Thr Leu Ile Ser Glu Leu Lys Gln 150 155 160 Lys Phe Glu Lys Lys Ser Val His Asn Lys Ala Tyr Phe 165 170 <210> 99 <211> 75 <212> PRT <213> Homo sapiens <400> 99 Met Ile Gly Asp Ile Leu Leu Phe Gly Thr Leu Leu Met Asn Ala Gly Ala Val Leu Asn Phe Lys Leu Lys Lys Lys Asp Thr Gln Gly Phe Gly 20 Glu Glu Ser Arg Glu Pro Ser Thr Gly Asp Asn Ile Arg Glu Phe Leu Leu Ser Leu Arg Tyr Phe Arg Ile Phe Ile Ala Leu Trp Asn Ile Phe 50 55 Met Met Phe Cys Met Ile Val Leu Phe Gly Ser 65 70 75 <210> 100 <211> 159 <212> PRT



ctggtgctca acttccg	aac gggcatcgtg	gtggaggagg	gtgctgagat	cctgctggca	480
ccgcgggcca tccgcac	gcg ctacctgcgc	acctggttcc	tggttgacct	catctcttct	540
atccctgtgg attacat	ctt cctagtggtg	gagctggagc	cacggttgga	cgctgaggtc	600
tacaaaacgg cacgggc	ect acgcatcgtt	cgcttcacca	agatectaag	cctgctgagg	660
ctgctccgcc tctcccg	cct catccgctac	atacaccagt	gggaggagat	ctttcacatg	720
acctatgacc tggccag	tgc tgtggttege	atcttcaacc	tcattgggat	gatgetgetg	780
ctatgtcact gggatgg	ctg tctgcagttc	ctggtgccca	tgctgcagga	cttccctccc	840
gactgctggg tctccat	caa ccacatggtg	gtgagaagtc	cccacagete	tgeettteet	900
gggeettet					909
•					
<210> 102					
<211> 849					
<212> DNA					
<213> Homo sapiens					
<400> 102					
atggeegace eccacea	get tttegatgae	acaagttcag	cccagagccg	gggetatggg	60
gcccagcggg cacctgg	tgg cctgagttat	cctgcagcct	ctcccacgcc	ccatgcagcc	120
tteetggetg acceggt	gtc caacatggcc	atggcctatg	ggagcagcct	ggccgcgcag	180
ggcaaggagc tggtgga	taa gaacatcgac	cgcttcatcc	ccatcaccaa	gctcaagtat	240
tactttgctg tggacac	cat gtatgtgggc	agaaagctgg	gcctgctgtt	cttcccctac	300
ctacaccagg actggga	agt gcagtaccaa	caggacaccc	cggtggcccc	ccgctttgac	360
gtcaatgccc cggacct	cta cattccagca	atggctttca	tcacctacgt	tttggtggct	420
ggtcttgcgc tggggac	cca ggataggttc	tececagace	tcctggggct	gcaagcgagc	480
teagecetgg cetgget	gac cctggaggtg	ctggccatcc	tgctcagcct	ctatctggtc	540
actgtcaaca ccgacct	cac caccatcgac	ctggtggcct	tcttgggcta	caaatatgtc	600
gggatgattg geggggt	ect catgggeetg	ctcttcggga	agattggcta	ctacctggtg	660
ctgggctggt gctgcgt	age catetttgtg	ttcatgatcc	ggacgctgcg	gctgaagatc	720
ttggcagacg cagcagct	tga gggggteeeg	gtgcgtgggg	cccggaacca	gctgcgcatg	780
tacctgacca tggcggtg	ggc ggcggcag	cctatgctca	tgtactggct	caccttccac	840
ctggtgcgg					849

<210> 103

<211> 1464

<212> DNA

<213> Homo sapiens

<400> 103	
atggetggaa aggggteate aggeaggegg eeeetgetge tggggetget ggtggeegta	60
gccactgtcc acctggtcat ctgtccctac accaaagtgg aggagagett caacctgcag	120
gecacacatg acetgeteta ecactggeaa gacetggage agtaegacea tettgagtte	180
eceggagteg tecceaggae gtteeteggg ceagtggtga tegeagtgtt etecageece	240
geggtttaeg tgettteget gttagaaatg teeaagtttt aeteteaget aatagttaga	300
ggagtgettg gacteggegt gatttttgga etetggaegt tacaaaagga agtgagaegg	360
cacttegggg ceatggtgge caccatgtte tgetgggtga eggecatgea gttecacetg	420
atgttctact gcacgoggac actgcccaat gtgctggccc tgcctgtagt cctgctggcc	480
ctcgcggcct ggctgcggca cgagtgggcc cgcttcatct ggctgtcagc cttcgccatc	540
ategtgttea gggtggaget gtgeetgtte etgggeetee tgetgetget ggeettggge	600
aaccgaaagg tttctgtagt cagageeett egecaegeeg teeeggeagg gateetetgt	660
ttaggactga cggttgctgt ggactcttat ttttggcggc agetcacttg gccggaagga	720
aaggtgettt ggtacaacae tgteetgaac aaaageteea aetgggggae eteeeegetg	780
ctgtggtact tctactcage cctgeccege ggcctgggct geagectget cttcatcece	840
ctgggcttgg tagacagaag gacgcacgcg ccgacggtgc tggcactggg cttcatggca	900
ctctactccc tectgecaca caaggageta egetteatea tetatgeett ecceatgete	960
aacatcacgg ctgccagagg ctgctcctac ctgctgaata actataaaaa gtcttggctg	1020
tacaaagcag ggtctctgct tgtgatcgga cacctcgtgg tgaatgccgc ctactcagcc	1080
acggccctgt atgtgtccca tttcaactac ccaggtggcg tcgcaatgca gaggctgcac	1140
cagetggtgc cccccagac agacgtectt etgcacattg acgtggcage egeccagaca	1200
ggtgtgtete ggttteteea agteaacage geetggaggt acgacaagag ggaggatgtg	1260
cageegggga caggeatget ggeatacaea caeateetea tggaggegge eeetgggete	1320
ctggccctct acagggacac acaccgggtc ctggccagcg tcgtggggac cacaggtgtg	1380
agtotgaaco tgaccoaact gooccootto aacgtocaco tgcagacaaa gotggtgott	1440
ctggagaggc teceeeggee gtee	1464
<210> 104	
<211> 546	
<212> DNA	
<213> Homo sapiens	
<400> 104	
atgtggcccc cagaccccga ccccgacccg gaccccgagc ctgccggcgg ctcccgtccc	60
ggeecegegg teeceggget cegegeeetg etgeeggege gggettteet etgetetete	120
anaggeegee teetgetgge egagtegggt eteteattea teaettttat etgetatgtg	180



gegteeteag catetgeett ceteacageg cetetgetgg agtteetget ggeettgtae	240
tteetetttg etgatgeeat geagetgaat gacaagtgge agggettgtg etggeecatg	300
atggactice tgegetgtgt caeegeggee eteatetact ttgetatete cateaeggee	360
ategecaagt acteggatgg ggetteeaaa geegetgggg tgtttggett etttgetace	420
atcgtgtttg caactgattt ctacctgatc tttaacgacg tggccaaatt cctcaaacaa	480
ggggactetg cagatgagae cacageeeae aagacagaag aagagaatte egacteggae	540
totgac	546
<210> 105	
<211> 552	
<212> DNA	
<213> Homo sapiens	
<400> 105	
atggacggcc tgaggcagcg cgtggagcac ttcctggagc aaaggaacct ggtcaccgaa	60
gtgctggggg cgctggaggc caagaccggg gtggagaagc ggtatctggc tgcaggagcc	120
gtcactctgc taagcctgta tctgctgttc ggctacggag cgtctctgct gtgcaatctc	180
ateggatttg tgtacecege atatgeetea ateaaageta tegagageee aageaaggae	240
gacgacactg tgtggctcac ctactgggtg gtgtacgccc tgtttgggct ggccgagttc	300
ttcagcgatc tactcctgtc ctggttccct ttctactacg tgggcaagtg cgccttcctg	360
ttgttctgca tggctcccag gccctggaac ggggctctca tgctgtatca gcgcgtcgtg	420
egteegetgt teetaaggea eeaeggggee gtagacagaa teatgaaega eeteageggg	480
egageeetgg aegeggegge eggaataace aggaaegtea ageeaageea gaeeeegeag	540
ccgaaggaca ag	552
<210> 106	
<211> 420	
<212> DNA	
<213> Homo sapiens	
<400> 106	
atgageegtt teetgaatgt gttaagaagt tggetggtta tggtgteeat catageeatg	60
gggaacacge tgeagagett eegagaeeae acttttetet atgaaaaget etacaetgge	120
aagccaaacc ttgtgaatgg cctccaagct cggacctttg ggatctggac gctgctctca	180
tcagtgatte getgeetetg tgecattgae atteacaaca agaegeteta tcacatcaca	240
ctctggacct tcctccttgc cctggggcat ttcctctctg agttgtttgt ctatggaact	300
gcagetecea egattggegt eetggeacee etgatggtgg caagtttete cateetgggt	360

atgetggteg ggeteeggta tetagaagta gaaccagtat eeagacagaa gaagagaaac	420
<210> 107	
<211> 459	
<212> DNA	
<213> Homo sapiens	
<400> 107	
atgaacgttg gagttgccca cagtgaagtg aatccaaata cccgtgtcat gaacagccgg	60
ggtatgtggc tgacatatgc attgggagtt ggcttgcttc atattgtctt actcagcatt	120
cccttcttca gtgttcctgt tgcttggact ttaacaaata ttatacataa tctggggatg	180
tacgtatttt tgcatgcagt gaaaggaaca cctttcgaaa ctcctgacca gggtaaagca	240
aggetectaa eteattggga acaaetggae tatggagtae agtttaeate tteaeggaag	300
tttttcacaa tttctccaat aattctatat tttctggcaa gtttctatac gaagtatgat	360
ccaactcact tcatcctaaa cacagcttct ctcctgagtg tactaattcc caaaatgcca	420
caactacatg gtgttcggat ctttggaatt aataagtat	459
<210> 108	
<211> 519	
<212> DNA	
<213> Homo sapiens	
<400> 108	
atggctgcct teetgataca gaccaaggae aaccecatga aggeegtggg tgtgctggee	60
ggcaccatgg ccaccgtcgt ggccatcact gtcctcatct ccaccgccac cttctggcgc	120
aacaagaagt ctaacaaggt cetgecaatg eggegggtge teegcaageg geecageeet	180
gegeeeegea ceateegeat tgagtggete aagteeaaga geaecaaage egetaceaag	240
ttcatgctca aagagaaacc tcccaatgag aactgtaaca acaacagccc agaaagctct	300
ctgctcccga gagetccggc teteceteca ccacccageg tggcgcccag cactggcgca	360
geccagtgga eegtgeetae tgtetetgge teteteaete egeageegae eeaaceeeg	420
ccaaaaccca aaactatggg aagccccgtc cagtcaactc tgatctctga gctcaagcaa	480
aagtttgaga agaagagtgt gcacaacaag gcttacttc	519
<210> 109	
<211> 225	
<212> DNA	
<213> Homo sapiens	

<400> 109	
atgateggag acatectget gttegggaeg ttgetgatga atgeegggge ggtgetgaae	60
tttaagctga aaaagaagga cacgcagggc tttggggagg agtccaggga gcccagcaca	120
ggtgacaaca teegggaatt ettgetgage eteagatact ttegaatett eategeeetg	180
tggaacatet teatgatgtt etgeatgatt gtgetgtteg getet	225
<210> 110	
<211> 477	
<212> DNA	
<213> Homo sapiens	
<400> 110	
atggagetge etgetgtgaa eetgaaggtg atteteetag gteaetgget getgaeaace	60
tggggctgca ttgtattctc aggetcctat gcctgggcca acttcaccat cctggccttg	120
ggcgtgtggg ctgtggctca gcgggactcc atcgacgcca taagcatgtt tctgggtggc	180
ttgctggcca ccatcttcct ggacatcgtg cacatcagca tcttctaccc gcgggtcagc	240
ctcacggaca cgggccgctt tggcgtgggc atggccatcc tcagcttgct gctcaagccg	300
ctctcctgct gcttcgtcta ccacatgtac cgggagcgcg ggggtgagct cctggtccac	360
actggtttcc ttgggtcttc tcaggaccgt agtgcctacc agacgattga ctcagcagag	420
gegeeegeag atecetttge agteeeagag ggeaggagte aagatgeeeg agggtae	477
<210> 111	,
<211> 3438	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (121)(1032)	
<400> 111	
geetacgacg ceteegetag agecegeggg getgegeega eteetgetet ggaggggttg	60
cgggtacctg atggccacag agggctctag gaggccgagc gtgtaagcgg ggtgggcgcc	120
atg gag gca gag cag cgg ccg gcg gcg gcc agc gaa ggg gcg acc	168
Met Glu Ala Glu Gln Arg Pro Ala Ala Gly Ala Ser Glu Gly Ala Thr	
1 5 10 15	
cet gga etg gag geg gtg eet eee gtt get eee eeg eet geg ace geg	216
Pro Gly Leu Glu Ala Val Pro Pro Val Ala Pro Pro Pro Ala Thr Ala	

			20					25					30			
gcc	tca	ggt	ccg	atc	ccc	aaa	tct	ggg	cct	gag	cct	aag	agg	agg	cac	264
Ala	Ser	Gly	Pro	Ile	Pro	Lys	Ser	Gly	Pro	Glu	Pro	Lys	Arg	Arg	His	
		35					40					45				
ctt	ggg	acg	ctg	ctc	cag	cct	acg	gtc	aac	aag	ttc	tcc	ctt	cgg	gtg	312
Leu	Gly	Thr	Leu	Leu	Gln	Pro	Thr	Val	Asn	Lys	Phe	Ser	Leu	Arg	Val	
	50					55					60					
ttc	ggc	agc	cac	aaa	gca	gtg	gaa	atc	gag	cag	gag	cgg	gtg	aag	tca	360
Phe	Gly	Ser	His	Lys	Ala	Val	Glu	Ile	Glu	Gln	Glu	Arg	Val	Lys	Ser	
65					70					75					80	
gcg	ggg	gcc	tgg	atc	atc	cac	ccc	tac	agc	gac	ttc	cgg	ttt	tac	tgg	408
Ala	Gly	Ala	Trp	Ile	Ile	His	Pro	Tyr	Ser	Asp	Phe	Arg	Phe	Tyr	Trp	
				85					90					95		
gac	ctg	atc	atg	ctg	ctg	ctg	atg	gtg	ggg	aac	ctc	atc	gtc	ctg	cct	456
Asp	Leu	Ile	Met	Leu	Leu	Leu	Met	Val	Gly	Asn	Leu	Ile	Val	Leu	Pro	
			100					105					110			
gtg	ggc	atc	acc	ttc	ttc	aag	gag	gag	aac	tcc	ccg	cct	tgg	atc	gtc	504
Val	Gly	Ile	Thr	Phe	Phe	Lys	Glu	Glu	Asn	Ser	Pro	Pro	Trp	Ile	Val	
		115					120					125				
		-	_		gat											552
Phe	Asn	Val	Leu	Ser	Asp	Thr	Phe	Phe	Leu	Leu	Asp	Leu	Val	Leu	Asn	
	130					135					140					
	-	_			gtg											600
Phe	Arg	Thr	Gly	Ile	Val	Val	Glu	Glu	Gly	Ala	Glu	Ile	Leu	Leu	Ala	
145					150					155					160	
_	-	-			acg											648
Pro	Arg	Ala	Ile	Arg	Thr	Arg	Tyr	Leu	Arg	Thr	Trp	Phe	Leu	Val	Asp	
				165					170					175	•	
					cct											696
Leu	Ile	Ser	Ser	Ile	Pro	Val	Asp	Tyr	Ile	Phe	Leu	Val	Val	Glu	Leu	
			180					185					190			
gag	cca	cgg	ttg	gac	gct	gag	gtc	tac	aaa	acg	gca	cgg	gcc	cta	ege	744
Glu	Pro	Arg	Leu	Asp	Ala	Glu	Val	Tyr	Lys	Thr	Ala	Arg	Ala	Leu	Arg	
		195					200					205				
atc	att	cac	ttc	acc	aag	atc	cta	agc	ctg	ctg	agg	ctg	ctc	cgc	ctc	792



Ile Val Arg Phe Thr Lys Ile Leu Ser Leu Leu Arg Leu Leu Arg Leu	
210 215 220	
tee ege ete ate ege tae ata eae eag tgg gag gag ate ttt eae atg	840
Ser Arg Leu Ile Arg Tyr Ile His Gln Trp Glu Glu Ile Phe His Met	
225 230 235 240	
ace tat gac ctg gcc agt gct gtg gtt cgc atc ttc aac ctc att ggg	888
Thr Tyr Asp Leu Ala Ser Ala Val Val Arg Ile Phe Asn Leu Ile Gly	
245 250 255	
atg atg ctg cta tgt cac tgg gat ggc tgt ctg cag ttc ctg gtg	936
Met Met Leu Leu Cys His Trp Asp Gly Cys Leu Gln Phe Leu Val	
260 265 270	
ccc atg ctg cag gac ttc cct ccc gac tgc tgg gtc tcc atc aac cac	984
Pro Met Leu Gln Asp Phe Pro Pro Asp Cys Trp Val Ser Ile Asn His	
275 280 285	
atg gtg gtg aga agt ccc cac agc tct gcc ttt cct ggg cct tct t	1030
Met Val Val Arg Ser Pro His Ser Ser Ala Phe Pro Gly Pro Ser	
290 295 300	
agggetette tgeetgagta geagggatgg ecaeagggag eaggaggtgg gagatgatea	1090
caacagaaaa taggagcgag gaggtgggga ggagggagga aaggggaagg agacccagaa	1150
gaagtgeteg tgtgttggag ggageaggea aaggaagggt acctaceegg aagetgagge	1210
ccccaagtty caatagagga cccttttgcc tcagggcccc ccagaaccaa acttaagtgc	1210 1270
ccccaagttg caatagagga cccttttgcc tcagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg	
ccccaagtty caatagagga cccttttgcc tcagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg gcaggcag	1270
ccccaagtty caatagagga cccttttgcc tcagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg gcaggcag	1270 1330
ccccaagttg caatagagga cccttttgcc tcagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg gcaggcag	1270 1330 1390
ceceaagttg caatagagga ecettttgee teagggeece ecagaaceaa acttaagtge etgecaggag gaaggeetge agtagaaggg geagacagaa agaceaaaga aggaaaaggg geaggeagag aatgaggete egaggggeec atgeceaget etgeaatata etetgeecet eagaaceact egtggggeeg ecagtattee eatgecetgt teaaggeeat gageeacatg etgtgeattg getatgggea geaggeacet gtaggeatge eegacgtetg geteaceatg eteageatga tegtaggtge eacatgetae gecatgttea teggeeatge eacggeacte	1270 1330 1390 1450
ccccaagttg caatagagga cccttttgcc tcagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg gcaggcag	1270 1330 1390 1450 1510 1570
ceceaagttg caatagagga ecettttgee teagggeece ecagaaceaa acttaagtge etgecaggag gaaggeetge agtagaaggg geagacagaa agaccaaaga aggaaaaggg geaggeagag aatgaggete egaggggeec atgeceaget etgeaatata etetgeecet eagaaceaet egtggggeeg ecagtattee eatgecetgt teaaggeeat gagecacatg etgtgeattg getatgggea geaggeacet gtaggeatge eegaegtetg geteaceatg eteageatga tegtaggtge eacatgetae gecatgttea teggeeatge eacggeacte atecagteec tggaetette eeggegteag taccaggaga agtacaagca ggtggageag tacatgteet teeacaaget gecageagea aegeggeage geatecaega gtactatgag	1270 1330 1390 1450 1510 1570 1630 1690
ccccaagttg caatagaga cccttttgcc teagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg gcaggcag	1270 1330 1390 1450 1510 1570 1630 1690 1750
ccccaagttg caatagaga cccttttgcc teagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg gcaggcag	1270 1330 1390 1450 1510 1570 1630 1690 1750
ccccaagttg caatagagga cccttttgcc tcagggcccc ccagaaccaa acttaagtgc ctgccaggag gaaggcctgc agtagaaggg gcagacagaa agaccaaaga aggaaaaggg gcaggcag	1270 1330 1390 1450 1510 1570 1630 1690 1750 1810
ceccaagitig caatagagga ecetititgee teagggeece ecagaaceaa acttaagige etgecaggag gaaggeetge agtagaaggg geagacagaa agaceaaaga aggaaaaggg geaggeagag aatgaggete egaggggeec atgeceaget etgeaatata etetgeecet eagaaceaet egtggggeeg ecagtattee eatgeeetgt teaaggeeat gageeacatg etgitgeatig getatgggea geaggeaect gtaggeatge eegaegtetig geteaecatg eteageatga tegtaggtge eacatgetae gecatgitea teggeeatge eaeggeaete ateeagteee tggaetette eeggegteag taceaggaga agtaeaagea ggtggageag eaeeggetaee agggeaagat gitegatgag gaaageatee tgggegaget gagegageeg ettegegagg agateattaa etteaeetgi eggggeetgg tggeeeaeat geegetgitt geeeatgeeg aceceageit egteaetgea giteteaeea agetgegett tgaggtette eageeggggg atetegtgg eggtgagge teegtgggga ggaagatgta etteateeag	1270 1330 1390 1450 1510 1570 1630 1690 1750 1810 1870
ceccaagitig caatagagga ecettitigee teagggeece ecagaaceaa acttaagitge etgecaggag gaaggeetge agtagaaggg geagacagaa agaceaaaga aggaaaaggg geaggeagag aatgaggete egaggggee atgeecaget etgeaatata etetgeecet eagaaceaet egitggggeeg ecagitatiee eatgeecitgi teaaggeeat gageeacatg etgitgeatig getatgggea geaggeaect gitaggeatge eegaggiteig geteaecatg eteageatga tegitaggite eacatgetae geeatgitea teggeeatge eaeggeaete ateeagteee tiggaetette eeggegiteag taceaggaga agitacaagea ggitggageag eaeeggetaee agggeaagat giteegatgag gaaageatee tigggegagei gagegageeg ettegegagg agateattaa etteaeetgi eggggeetgg tiggeeeacat geegetgitti geeeatgeeg aceeeageit egiteaetgea giteteaeea agetgegett tigaggitette eageeggggg atetegitigi gegitgaggge teegitgggga ggaagatgita etteateeag eatgggetge teagtgitee teagtgitee ggeeegggaea eaeeegggaea eaegeeteae egatggatee	1270 1330 1390 1450 1510 1570 1630 1690 1750 1810 1870 1930
ceccaagitig caatagagga ecetititgee teagggeece ecagaaceaa acttaagige etgecaggag gaaggeetge agtagaaggg geagacagaa agaceaaaga aggaaaaggg geaggeagag aatgaggete egaggggeec atgeceaget etgeaatata etetgeecet eagaaceaet egtggggeeg ecagtattee eatgeeetgt teaaggeeat gageeacatg etgitgeatig getatgggea geaggeaect gtaggeatge eegaegtetig geteaecatg eteageatga tegtaggtge eacatgetae gecatgitea teggeeatge eaeggeaete ateeagteee tggaetette eeggegteag taceaggaga agtaeaagea ggtggageag eaeeggetaee agggeaagat gitegatgag gaaageatee tgggegaget gagegageeg ettegegagg agateattaa etteaeetgi eggggeetgg tggeeeaeat geegetgitt geeeatgeeg aceceageit egteaetgea giteteaeea agetgegett tgaggtette eageeggggg atetegtgg eggtgagge teegtgggga ggaagatgta etteateeag	1270 1330 1390 1450 1510 1570 1630 1690 1750 1810 1870

WO 00/29448 PCT/JP99/06412

#### 172/233

cccatgatgc	geegggeett	tgagactgtg	gccatggatc	ggctgctccg	catcggcaag	2170
aagaattcca	tactgcagcg	gaagegetee	gagccaagtc	caggcagcag	tggtggcatc	2230
atggagcagc	acttggtgca	acatgacaga	gacatggctc	ggggtgttcg	gggtegggee	2290
ccgagcacag	gageteaget	tagtggaaag	ccagtactgt	gggagccact	ggtacatgcg	2350
cccttcagg	cagctgctgt	gacctccaat	gtggccattg	ccctgactca	tcagcggggc	2410
cctctgcccc	tctcccctga	ctctccagcc	accetecttg	ctcgctctgc	ttggcgctca	2470
gcaggctctc	cagetteece	gctggtgccc	gtccgagctg	gcccatgggc	atccacctcc	2530
egeetgeeeg	cccacctgc	ccgaaccctg	cacgccagcc	tatcccgggc	agggcgctcc	2590
caggtctccc	tgctgggtcc	ccctccagga	ggaggtggac	ggcggctagg	acctcggggc	2650
cgcccactct	cagcctccca	accetetetg	cctcagcggg	caacaggcga	tggctctcct	2710
gggcgtaagg	gatcaggaag	tgagcggctg	cctccctcag	ggeteetgge	caaacctcca	2770
			cctgagccag			2830
			catecageet			2890
			aaggccatgg			2950
			catactgcca			3010
			cataatccat			3070
			acaggaggag			3130
			cccatcagcg			3190
			gggagaagga			3250
			ttggtgcagg			3310
			agcacctctg			3370
			ctctcctact			3420
ggaccagg		•				3438

<210> 112

<211> 1144

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (56)...(907)

<400> 112

caaggatetg gaaccetgag cetegaageg gaggateeet gtgteeeage eggge atg gee gae eee eae eag ett tte gat gae aca agt tea gee eag age Met Ala Asp Pro His Gln Leu Phe Asp Asp Thr Ser Ser Ala Gln Ser

55

103

•	Ţ			:	5				10	0				1	5	
cg	g gg	c ta	t ggg	ged	ca	g egg	g gca	a cct	ggt:	gge	c ct	g ag	t ta	t cc	t gca	151
Arg	g Gly	у Ту	r Gly	Ala	a Glr	ı Arg	, Ala	a Pro	Gly	, Gl	y Le	u Se	r Ty	r Pr	o Ala	ì
			20					25	•				3	0		
geo	tet	ccc	e acg	ccc	cat	gca	geo	tto	cto	g gct	t gad	2 00	g gt	g tc	c aac	199
Ala	a Sei	r Pro	o Thr	Pro	His	. Ala	Ala	Phe	Lev	a Ala	a Asj	o Pro	o Va	l Se	r Asn	
		35	5				40	)				45	5			
ato	ged	ato	g gcc	tat	. ggg	agc	ago	cto	geo	geç	g ca	g ggd	aa	g ga	g ctg	247
Met	: Ala	a Met	Ala	Tyr	Gly	Ser	Ser	Leu	Ala	Ala	a Glr	ı Gly	/ Ly	s Gl	ı Leu	
	50	)				55					60	)				•
gtg	gat	aag	, aac	ato	gac	cgc	tto	ato	ccc	ato	acc	aag	cto	aaq	y tat	295
Val	Asp	Lys	Asn	Ile	Asp	Arg	Phe	Ile	Pro	Ile	Thr	Lys	Let	ı Lys	Tyr	
65					70					75	;				80	
tac	ttt	gct	gtg	gac	acc	atg	tat	gtg	ggc	aga	aag	ctg	ggo	cto	g ctg	343
Tyr	Phe	Ala	Val	Asp	Thr	Met	Tyr	Val	Gly	Arg	Lys	Leu	Gly	Let	l Leu	
				85					90					95	j	
ttc	tto	ccc	tac	cta	cac	cag	gac	tgg	gaa	gtg	cag	tac	cas	cag	gac	391
Phe	Phe	Pro	Tyr	Leu	His	Gln	Asp	Trp	Glu	Val	Gln	Tyr	Gln	Gln	qeA	
			100					105					110	)		
acc	ccg	gtg	gcc	ccc	cgc	ttt	gac	gtc	aat	gcc	ccg	gac	cto	tac	att	439
Thr	Pro	Val	Ala	Pro	Arg	Phe	Asp	Val	Asn	Ala	Pro	Asp	Leu	Tyr	Ile	
		115					120					125				
			gct													487
Pro	Ala	Met	Ala	Phe	Ile	Thr	Tyr	Val	Leu	Val	Ala	Gly	Leu	Ala	Leu	
	130					135					140					
			gat									_			_	535
Gly	Thr	Gln	Asp	Arg	Phe	Ser	Pro	Asp	Leu	Leu	Gly	Leu	Gln	Ala	Ser	
145					150					155					160	
			gcc													583
Ser	Ala	Leu	Ala		Leu	Thr	Leu	Glu	Val	Leu	Ala	Ile	Leu	Leu	Ser	
				165					170					175		
			gtc											_		631
Leu	Tyr	Leu	Val '	Thr	Val	Asn '	Thr	Asp	Leu	Thr	Thr	Ile	Asp	Leu	Val	
			180					185					190			
gcc	ttc	ttg	ggc 1	tac	aaa	tat (	gtc	ggg	atg	att	ggc	ggg	gtc	ctc	atg	679

WO 00/29448 PCT/JP99/06412

Ala Phe Leu Gly Tyr Lys Tyr Val Gly Met Ile Gly Giy Val Leu Met	
195 200 205	
gge etg ete tte ggg aag att gge tae tae etg gtg etg gge tgg tge	727
Gly Leu Leu Phe Gly Lys Ile Gly Tyr Tyr Leu Val Leu Gly Trp Cys	
210 215 220	
tge gta gee ate ttt gtg tte atg ate egg aeg etg egg etg aag ate	775
Cys Val Ala Ile Phe Val Phe Met Ile Arg Thr Leu Arg Leu Lys Ile	
225 230 235 240	
ttg gca gac gca gca gct gag ggg gtc ccg gtg cgt ggg gcc cgg aac	823
Leu Ala Asp Ala Ala Ala Glu Gly Val Pro Val Arg Gly Ala Arg Asn	
245 250 255	
cag ctg cgc atg tac ctg acc atg gcg gtg gcg gcg cag cct atg	871
Gln Leu Arg Met Tyr Leu Thr Met Ala Val Ala Ala Ala Gln Pro Met	
260 265 270	
cte atg tac tgg ctc acc ttc cac ctg gtg cgg tgagcgcgcc cgctga	920
Leu Met Tyr Trp Leu Thr Phe His Leu Val Arg	
275 280	
acctcccgct gctgctgctg ctgctggggg ccactgtggc cgccgaactc atctcctgcc	980
tgeaggeece aaggteeace etgtetggee acaggeaceg cetecatece atgteecgee	1040
cageceegee eccaaceeaa ggtgetgaga gateteeage tgeaeaggee acegeeecag	1100
ggegtggeeg etgttaeaga aacaataaae eetgatggge atgg	1144
<210> 113	
<211> 2339	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (253)(1719)	
<400> 113	
ctttactcag ggcacagagg gtctctgcgg ccgtagcggc cggggctgcg gtagccactt	60
tagatttggg caaggacttt agatteggge tetgttetgt tteegeegte etgetteetg	120
cegaggetgg eccaggeage egegettega aggaegeege egggagetge ggageatgeg	180
tggagtggca gtgctaacgg ctggtgtctc gcactgttgg cctgtgaagg tacgtgaagc	240
trassacetr de eta det dos esa dog tes tes doc ado edo ece eto	288



				Met 1	Ala (	SLY I	rys (	Gly 3	Ser S	Ser (	Gly A	Arg.	Arg	Pro	Leu	
				1				5					10			
cto	gct	g gg	g ct	gct	g gto	gge	gta	a gco	e act	: gto	c ca	e et	g gt	c at	c tgt	336
Lev	ı Leı	ı Gl	y Le	ı Let	ı Val	Ala	va.	l Ala	a Thi	. Va	L Hi:	s Le	u Va	1 Il	e Cys	l
		1	5				20	)				2	5			
ccc	: tac	ac	c aaa	gto	ggag	gag	ago	tto	aac	cto	g cag	g gc	ac	a ca	t gac	384
Pro	туз	Th	r Lys	Va]	Glu	ı Glu	Ser	: Phe	Asr	Let	ı Glr	a Ala	a Th	r Hi	s Asp	ı
	30	)				35	ı				40	)				
ctg	cto	tac	cac	tgg	cae	gac	cto	gag	cag	tac	gac	cat	cti	gag	g ttc	432
Leu	Lev	туз	: His	Tr	Gln	Asp	Leu	Glu	Gln	Туг	. Ası	His	Let	ı Glı	ı Phe	
45	,				50	)				55	,				60	
ccc	gga	gto	gto	ccc	agg	acg	tto	cto	999	cca	gtg	gte	ato	gea	gtg	480
Pro	Gly	v Val	. Val	Pro	Arg	Thr	Phe	Leu	Gly	Pro	Val	Val	. Ile	Ala	val	
				65					70					75	5	
ttc	tcc	ago	ccc	gcg	gtt	tac	gtg	ctt	tcg	ctg	tta	gaa	ato	tec	aag	528
Phe	Ser	Ser	Pro	Ala	Val	Tyr	Val	Leu	Ser	Leu	Leu	Glu	Met	Ser	Lys	
			80					85					90	)		
ttt	tac	tct	cag	cta	ata	gtt	aga	gga	gtg	ctt	gga	ctc	ggo	gtg	att	576
Phe	Tyr	Ser	Gln	Leu	Ile	Val	Arg	Gly	Val	Leu	Gly	Leu	Gly	Val	Ile	
		95					100					105				
ttt	gga	ctc	tgg	acg	tta	caa	aag	gaa	gtg	aga	cgg	cac	ttc	ggg	gcc	624
Phe	Gly	Leu	Trp	Thr	Leu	Gln	Lys	Glu	Val	Arg	Arg	His	Phe	Gly	Ala	
	110					115					120					
atg	gtg	gee	acc	atg	ttc	tgc	tgg	gtg	acg	gcc	atg	cag	ttc	cac	ctg	672
Met	Val	Ala	Thr	Met	Phe	Cys	Trp	Val	Thr	Ala	Met	Gln	Phe	His	Leu	
125					130					135					140	
atg	ttc	tac	tgc	acg	cgg	aca	ctg	ccc	aat	gtg	ctg	gcc	ctg	cct	gta	720
Met	Phe	Tyr	Суз	Thr	Arg	Thr	Leu	Pro	Asn	Val	Leu	Ala	Leu	Pro	Val	
				145					150					155		
gtc	ctg	ctg	gcc	ctc	gcg	gcc	tgg	ctg	cgg	cac	gag	tgg	gcc	cgc	ttc	768
Val	Leu	Leu	Ala	Leu	Ala	Ala	Trp	Leu	Arg	His	Glu	Trp	Ala	Arg	Phe	
			160					165					170			
atc	tgg	ctg	tca	gcc	ttc	gcc	atc	atc	gtg	ttc	agg	gtg	gag	ctg	tgc	816
Ile	Trp	Leu	Ser	Ala	Phe .	Ala	Ile	Ile	Val	Phe	Arg	Val	Glu	Leu	Суз	
		175					180					185				

ctg	ttc	ctg	ggc	ctc	ctg	ctg	ctg	ctg	gcc	ttg	ggc	aac	cga	aag	gtt	864
Leu	Phe	Leu	Gly	Leu	Leu	Leu	Leu	Leu	Ala	Leu	Gly	Asn	Arg	Lys	Val	
	190					195					200					
tct	gta	gtc	aga	gcc	ctt	cgc	cac	gcc	gtc	ccg	gca	ggg	atc	ctc	tgt	912
Ser	Val	Val	Arg	Ala	Leu	Arg	His	Ala	Val	Pro	Ala	Gly	Ile	Leu	Cys	
205					210					215					220	
tta	gga	ctg	acg	gtt	gct	gtg	gac	tct	tat	ttt	tgg	cgg	cag	ctc	act	960
Leu	Gly	Leu	Thr	Val	Ala	Val	Asp	Ser	Tyr	Phe	Trp	Arg	Gln	Leu	Thr	
				225					230					235		
tgg	ccg	gaa	gga	aag	gtg	ctt	tgg	tac	aac	act	gtc	ctg	aac	aaa	agc	1008
Trp	Pro	Glu	Gly	Lys	Val	Leu	Trp	Tyr	Asn	Thr	Val	Leu	Asn	Lys	Ser	
			240					245					250			
tcc	aac	tgg	ggg	acc	tcc	ccg	ctg	ctg	tgg	tac	ttc	tac	tca	gcc	ctg	1056
Ser	Asn	Trp	Gly	Thr	Ser	Pro	Leu	Leu	Trp	Tyr	Phe	Tyr	Ser	Ala	Leu	
		255					260					265				
								ctc								1104
Pro	Arg	Gly	Leu	Gly	Cys	Ser	Leu	Leu	Phe	Ile	Pro	Leu	Gly	Leu	Val	
	270					275					280					
_								gtg								1152
Asp	Arg	Arg	Thr	His	Ala	Pro	Thr	Val	Leu	Ala	Leu	Gly	Phe	Met	Ala	
285					290					295					300	
								gag								1200
Leu	Tyr	Ser	Leu	Leu	Pro	His	Lys	Glu	Leu	Arg	Phe	Ile	Ile	Tyr	Ala	
				305					310					315		
								gcc								1248
Phe	Pro	Met	Leu	Asn	Ile	Thr	Ala	Ala	Arg	Gly	Cys	Ser		Leu	Leu	
			320					325					330			
								tac								1296
Asn	Asn	Tyr	ГÀЗ	Lys	Ser	Trp	Leu	Tyr	Lys	Ala	Gly		Leu	Leu	Val	
		335					340					345				
				-				gcc								1344
Ile	Gly	His	Leu	Val	Val		Ala	Ala	Tyr	Ser		Thr	Ala	Leu	Tyr	
	350					355					360					
								ggc								1392
Val	Ser	His	Phe	Asn	Tyr	Pro	Gly	Gly	Val	Ala	Met	Gln	Arg	Leu	His	



365 370 375 380	
cag ctg gtg ccc ccc cag aca gac gtc ctt ctg cac att gac gtg gca	1440
Gln Leu Val Pro Pro Gln Thr Asp Val Leu Leu His Ile Asp Val Ala	
385 390 395	
gee gee cag aca ggt gtg tet egg ttt etc caa gte aac age gee tgg	1488
Ala Ala Gln Thr Gly Val Ser Arg Phe Leu Gln Val Asn Ser Ala Trp	
400 405 410	
agg tac gac aag agg gag gat gtg cag ccg ggg aca ggc atg ctg gca	1536
Arg Tyr Asp Lys Arg Glu Asp Val Gln Pro Gly Thr Gly Met Leu Ala	
415 420 425	
tac aca cac atc ctc atg gag gcg gcc cct ggg ctc ctg gcc ctc tac	1584
Tyr Thr His Ile Leu Met Glu Ala Ala Pro Gly Leu Leu Ala Leu Tyr	
430 435 440	
agg gac aca cac cgg gtc ctg gcc agc gtc gtg ggg acc aca ggt gtg	1632
Arg Asp Thr His Arg Val Leu Ala Ser Val Val Gly Thr Thr Gly Val	
445 450 455 460	
agt ctg aac ctg acc caa ctg ccc ccc ttc aac gtc cac ctg cag aca	1680
Ser Leu Asn Leu Thr Gln Leu Pro Pro Phe Asn Val His Leu Gln Thr	
465 470 475	
aag ctg gtg ctt ctg gag agg ctc ccc cgg ccg tcc tgagggggac cagg	1730
Lys Leu Val Leu Leu Glu Arg Leu Pro Arg Pro Ser	
480 485	
cageceteag cagecacagg cettecagga getgttatea etaccagttt etggcacaat	1790
tecageacaa ttatgacaat teagagaage aagteaaagg aetgggeace tgeetetgae	1850
agacaccaga ccaggtccag ggcctcctcc acagcctcag ctggggctct cagcaccaaa	1910
gaacgagggg cccaggtett gttggcaccc cgggagccac tgcccagggt gatggtggcc	1970
ageteaggge tteetgeggg tgaetgtege ceagaceagg tgeeatteat gaetaateag	2030
gagcagcggg ctcacccagg cacctgtctg ccaggaggcc acgtgtgtcc tgcccaccca	2090
99999agetg tattttggca gcacccaeg ettgetgece gagggeetet tggggeacet	2150
aagacagcac ceceteteag gggagaccat ggtggceceg geegeaccec cecaccetgg	2210
tgccaccact gcaacttttg tattcacagg catcccatct ccatcacaga taaaatctta	2270
ggagataaac acattcaaaa aggaatgaga taaaaagaat aaggcaataa atgttgattg	2330
gaacetete	2339

<210> 114

<211	> 17	756															
<212> DNA																	
<213> Homo sapiens																	
<220>																	
<221	> CI	os															
<222	2> (1	102)	(	650)													
<400																	
	-														agaag	а	60
gggg	gaged	eag g	gccg	agcco	cc g	geeet	acc	gcc	gccg	ccgc	c at						113
											Me		rp P:	ro Pi	ro		
												1					
_											ggc						161
Asp	Pro	Asp	Pro	Asp	Pro	Asp	Pro	Glu	Pro		Gly	Gly	Ser	Arg			
5					10					15					20		200
											ccg						209
Gly	Pro	Ala	Val		Gly	Leu	Arg	Ala		Leu	Pro	ALA	Arg		Pne		
				25					30		<b>,</b>	<b>.</b>		35			257
											gag						237
Leu	Cys	Ser		Lys	GIY	Arg	Leu		Leu	ATa	Glu	Ser	50	Leu	Ser		
			40		<b>.</b>			45		+	<b>~~</b>	tat		tta	ctc		305
											gca						505
Pne	TTE	55	Pne	TTE	Cys	TYL	60	ALG	SET	261	Ala	65	1114	- 110	204		
	<i></i>		ota	ata	asa	tta	_	cta	acc	tta	tac		ctc	ttt	act		353
											Tyr						•
1111	70	FIO	Dea	LCu	010	75	204				80						
gat		atg	cad	cta	aat		aaq	taa	caq	aac	ttg	tgc	tgg	ccc	atg		401
											Leu						
85					90					95		-	_		100		
	gac	ttc	cta	cac		atc	acc	aca	qcc	ctc	atc	tac	ttt	gct	atc		449
_	_										Ile						
	•			105	-				110			•		115			
tee	atc	acg	gee		gcc	aag	tac	teg	gat	999	gct	tcc	aaa	gcc	gct		497
											Ala						
			120			-	-	125	_				130				



ggg glg tit gge tie tit get aee ate gtg tit gea aet gat tie tae	545
Gly Val Phe Gly Phe Phe Ala Thr Ile Val Phe Ala Thr Asp Phe Tyr	
135 140 145	
ctg atc ttt aac gac gtg gcc aaa ttc ctc aaa caa ggg gac tct gca	593
Leu Ile Phe Asn Asp Val Ala Lys Phe Leu Lys Gln Gly Asp Ser Ala	
150 155 160	
gat gag acc aca gcc cac aag aca gaa gaa gag aat tcc gac tcg gac	641
Asp Glu Thr Thr Ala His Lys Thr Glu Glu Glu Asn Ser Asp Ser Asp	
165 170 175 180	
tot gac tgaaggeetg gegggtgeet tggeaacetg agecacacag gee	690
Ser Asp	
tecacecetg egecteacag gggtegetgg egttggageg gaggeetgga ettetgagtt	750
geagaggggg etgeggaeae ageaggeeee etaeageete aggttetgee tgageeeage	810
ctaccagget tgcccctcag ctcagcactg ttgaccacgc tgcgtatgag ggcatcttgg	870
gtateceaet cettetecee atttetgtee cacaggeett cagecettta aegtetetge	930
caaaaaccag cacaaggaga caaagcagag cettgtetgt atetgggcag caggtgttee	990
atgetgetag gtggeggggg tegggggtet tetgttteae taacaggaae aaagacagaa	1050
accatgacag ggctgccccg ccaggccccg gtgggtttgt ctgcacttgg tgctcctgcc	1110
cacaccagec actttggtga caatgaceet tecaagaate tttggtteaa ggageaccag	1170
ttccctcttc attcttgaag cagggagaaa ttgacctttg ccttgtcgcc caggaagtgg	1230
ggctcggcac ccataactaa cacctcccac ccttggaaac catgtcttct gggggtgaga	1290
tgaccattct gggtetaaga etgttteaaa gaagagetea tagaetgaet ggteeagaag	1350
acagagggta caacagtggc atcacagtga cagtgtcatg gggagctggg cgggcccagc	1410
caaaccctcc ttcttcctag agcccagcca gcaggcagga gttcctggac cctcaggaca	1470
gtgaacttcc agacctcagg gcaggtctat gggccactgc aggagatgag accagccttc	1530
tgtgttcacc taacgattta tactgtgtat ctgtctttga tggaattttg taactttta	1590
tattttttta tgcaaaagea gettettaae agatggeatt ttetgtgaet etaggeetea	1650
caaaagagcc agagttetgg acceatgttt ggagcatttg tagcettatt etettgegtg	1710
GAALCICIL ACCIDAAA AAAGCATAA TGAATTAAGC CAAAAG	1756

<210> 115

<211> 1418

<212> DNA

<213> Homo sapiens

WO 00/29448 PCT/JP99/06412

<220>	>																	
<221>	> CI	os																
<222>	> (1	149)	•••(	703)														
<400>	<b>- 1</b> ]	(149)(703)  115  Leeta geggggggee gggggggae aceggegeg ggeeggagea gegeggetea 60																
attg	gted	ta (	gegg	<b>9</b> 999	cc g	gggg	cgga	c ac	cggc	gcgg	ggc	cgga	gca	gaga	gg	ctca	60	
ggct	gege	gga a	aagc	ggtg	cg c	gtgc	agcg	g gg	tggg	tgcc	ctg	gtcc	gcg	ggcg	ag	ctcg	120	
agcac	gcce	ac o	cccg	ggcg	cg t	cggg	gec :	atg	gac	ggc (	ctg (	agg	cag	cgc	gt	g	172	
							1	Met .	Asp	Gly :	Leu .		Gln	Arg	Va.	1		
								1				5						
gag c																	220	
Glu F	lis	Phe	Leu	Glu	Gln	Arg	Asn	Leu	Val	Thr	Glu	Val	Leu	Gly	A	la		
	10					15					20							
ctg g	_	_															268	
Leu G	lu	Ala	ГÀЗ	Thr	Gly	Val	Glu	Lys	Arg	Tyr	Leu	Ala	Ala	Gly				
25					30					35						40		
gtc e																	316	
Val 1	hr	Leu	Leu	-	Leu	Tyr	Leu	Leu		Gly	Tyr	Gly	Ala			eu		
				45					50					55			244	
ctg t																	364	
Leu C	:ys	Asn		Ile	Gly	Phe	Val		Pro	Ala	Tyr	Ala		Ile	ΓŻ	ys		
			60					65					70				410	
gct a																	412	
Ala I	ile		Ser	Pro	Ser	Lys		Asp	Asp	Thr	Val		ren	THE	.1.7	γr		
		75					- 80					85			~4		460	
tgg g																	400	
Trp V		Val	ıyr	ATS	ьеи		GTĀ	rea	ATA	GIU		Pne	9er	wsb	7.45	su		
	90	<b>.</b>				95					100	taa	<i>a</i> aa	++~	a t	- ~	508	
ete e	_																300	
Leu L	æu	ser	rrp	Pne		Pile	TÄT	TYL	vai		гур	Cys	ALG	FIIC	12			
105		<b>.</b>			110					115	~a+	ata	sta.	a+«			556	
ttg t Leu P		-															330	
Leu P	ne	Сув	Met	125	PIO	Arg	PIO	TTD	130	GIY	Ma	Leu	Mec	135	-7	₹ <b>-</b>		
cag c		ato	ata		CCG	cta	tto	cts		CRC	CAC	aaa	acc		æ	3C	604	
cay c Gln A																		
сіп А	μg	AGT	var	AL 9	FIU	ıı <del>c</del> u.	LIE	TIGIT	ALY.	いてつ		J-X	2244	A CIT	-	'E'		



140 145 150	
aga ate atg aac gac ete age ggg ega gee etg gac geg geg gee gga	652
Arg Ile Met Asn Asp Leu Ser Gly Arg Ala Leu Asp Ala Ala Gly	
155 160 165	
ata acc agg aac gtc aag cca age cag acc ccg cag ccg aag gac aag	700
Ile Thr Arg Asn Val Lys Pro Ser Gln Thr Pro Gln Pro Lys Asp Lys	
170 175 180	
tgaagcagce ceetgageet cacaaggace teetggetgg tgaggagggg geegegeeag	760
geteccagge etecacagag tetteagege atececcaae ageageceet gecagteeet	820
cgggtccagg caaggccctg ggggtctcct taaatgccac ctcgggcaag tcccagtccc	880
agtectegge caceceage tetggatece agggeeaget geeetetgge tetggetgtg	940
geteeegeet gteeggeagg geeeagggee agegteggge acagggeage teecactggt	1000
ctcggcaaca cacccagccg cetggtactt cetccggccc ctcccagtca gccctcccgt	1060
cctcggggcc cctgcagcca cccaacgtca cctccagccc ggtctcaccc atggtccagt	1120
ctcccagcag cagcaacatc cccacgcagc cccccagcaa gtcctctggc aagccggagg	1180
acgcagcccc caagaccagc ggacagcgcc agaaggaatc gtcgaaacag cctgccagca	1240
gegeeteagt geeegagetg gteeeetgee atteegggae etetetggag taeaettegg	1300
agtecaccae egagateace tgeagetgge cacaccaeag geeceegtge etgeageact	1360
actggtgcct gaaacacctg gectgctagg aggetecaat aaagetaacc eggaccag	1418
<210> 116	
<211> 1211	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (133)(555)	
<400> 116	~^
gaaaatgget eaggtggaet eegggetgga getgteetgg gggagettgt ttgeggeage	60
ggetgetget geeactgetg tgetggggge ceggtegeca ggeaaaaage ceteceaegt	120
ttgaggggag to atg ago ogt tto otg aat gtg tta aga agt tgg otg	168
Met Ser Arg Phe Leu Asn Val Leu Arg Ser Trp Leu	
1 5 10	21.6
gtt atg gtg tee ate ata gee atg ggg aac acg ctg cag age tte ega	216
Val Met Val Ser Ile Ile Ala Met Gly Asn Thr Leu Gln Ser Phe Arg	

		15					20					25				
gac	cac	act	ttt	ctc	tat	gaa	aag	ctc	tac	act	ggc	aag	cca	aac	ctt	264
Asp	His	Thr	Phe	Leu	Tyr	Glu	Lys	Leu	Tyr	Thr	Gly	Lys	Pro	Asn	Leu	
	30					35					40					
gtg	aat	ggc	ctc	caa	gct	cgg	acc	ttt	ggg	atc	tgg	acg	ctg	ctc	tca	312
Val	Asn	Gly	Leu	Gln	Ala	Arg	Thr	Phe	Gly	Ile	Trp	Thr	Leu	Leu	Ser	
45					50					55					60	
tca	gtg	att	cgc	tgc	ctc	tgt	gcc	att	gac	att	cac	aac	aag	acg	ctc	360
Ser	Val	Ile	Arg	Cys	Leu	Cys	Ala	Ile	qaA	Ile	His	Asn	Lys	Thr	Leu	
				65					70					75		
tat	cac	atc	aca	ctc	tgg	acc	ttc	ctc	ctt	gcc	ctg	999	cat	ttc	ctc	408
Tyr	His	Ile	Thr	Leu	Trp	Thr	Phe	Leu	Leu	Ala	Leu	Gly	His	Phe	Leu	
			80					85					90			
tct	gag	ttg	ttt	gtc	tat	gga	act	gca	gct	CCC	acg	att	ggc	gtc	ctg	456
Ser	Glu	Leu	Phe	Val	Tyr	Gly	Thr	Ala	Ala	Pro	Thr	Ile	Gly	Val	Leu	
		95					100					105				
gca	ccc	ctg	atg	gtg	gca	agt	ttc	tcc	atc	ctg	ggt	atg	ctg	gtc	ggg	504
Ala	Pro	Leu	Met	Val	Ala	Ser	Phe	Ser	Ile	Leu	Gly	Met	Leu	Val	Gly	
	110					115					120					
ctc	cgg	tat	cta	gaa	gta	gaa	cca	gta	tcc	aga	cag	aag	aag	aga	aac	552
Leu	Arg	Tyr	Leu	Glu	Val	Glu	Pro	Val	Ser	Arg	Gln	Lys	Lys	Arg	Asn	
125					130					135					140	
tgag	ggcca	a gca	attat	cac	ctcc	agga	ect t	tete	gttt	t co	eacct	tggc	cat	ctto	ette	610
ctto	egte	gtc t	tetec	tctt	t aa	tttc	tttt	cta	attco	catc	atct	geed	tt t	tatt	cacti	670
ttag	gaato	ett t	tttt	aatt	t tt	aaas	ittta	aag	gatat	gca	tact	gaaa	ag t	atat	caacat	730
gtad	gtac	aa t	ttaa	agas	ıt aa	tttt	aaag	, tga	atac	ctac	gtaa	ctcc	at c	caac	rtcaa	790
aaat	tgcc	ag c	cttct	cgge	a go	ccac	tgtg	, tat	cctt	ccc	ctac	ctgo	aa c	etet	teca	g 850
gcto	cctt	tt d	ccago	ctto	e cc	tttt	tecc	ttt	tatt	ttc	atgo	cttg	rat t	tgac	ttgt	910
tggt	ggge	ac a	atgto	aact	a to	aaac	ttae	acc	tgct	gee	caco	caga	igc 8	gcto	gtgaco	970
aagg	ggetç	jcc t	caag	gggt	t gt	ccac	gcag	gtt	gggc	etec	tete	tgct	.gc t	ggac	ccaa	1030
acto	etgaa	ecc t	tcca	aggg	a ca	ıggca	gtto	tto	taag	gaag	ggct	cccc	tg t	gtgt	gagea	a 1090
agad	cace	igc t	ctcc	ttct	a to	taca	gatg	cat	gagg	gtt	ggaa	gagt	ct g	gget	gttt	1150
taga	acctt	ct g	ggtca	igctg	rt at	ttgt	gtaa	cas	cttt	tgt	aata	aata	iga e	aaac	cctct	1210
a																1211



<210> 117												
<211> 1099												
<212> DNA												
<213> Homo sapiens												
<220>												
<221> CDS												
<222> (183)(644)												
<400> 117												
gtateegegg eegtageage egggetggte etgetgegag eeggegeee ggagtggge	60											
ggcggcatgt accttccaca ttgagtattc agaaagaagt gatctgaact ctgaccattc	120											
tttatggata cattaagtca aatataagag tctgactact tgacacactg gctcgagcaa	180											
ac atg aac gtt gga gtt gcc cac agt gaa gtg aat cca aat acc cgt	227											
Met Asn Val Gly Val Ala His Ser Glu Val Asn Pro Asn Thr Arg												
1 5 10 15												
gtc atg aac agc cgg ggt atg tgg ctg aca tat gca ttg gga gtt ggc	275											
Val Met Asn Ser Arg Gly Met Trp Leu Thr Tyr Ala Leu Gly Val Gly												
20 25 30												
ttg ctt cat att gtc tta ctc agc att ccc ttc ttc agt gtt cct gtt	323											
Leu Leu His Ile Val Leu Leu Ser Ile Pro Phe Phe Ser Val Pro Val												
35 40 45												
get tgg act tta aca aat att ata cat aat etg ggg atg tae gta ttt	371											
Ala Trp Thr Leu Thr Asn Ile Ile His Asn Leu Gly Met Tyr Val Phe												
50 55 60												
ttg cat gca gtg aaa gga aca cct ttc gaa act cct gac cag ggt aaa	419											
Leu His Ala Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys												
65 70 75												
gca agg ctc cta act cat tgg gaa caa ctg gac tat gga gta cag ttt	467											
Ala Arg Leu Leu Thr His Trp Glu Gln Leu Asp Tyr Gly Val Gln Phe												
80 85 90 95												
aca tot toa egg aag tit tie aca att tot ooa ata att eta tat tit	515											
Thr Ser Ser Arg Lys Phe Phe Thr Ile Ser Pro Ile Ile Leu Tyr Phe												
100 105 110												
ctg gca agt ttc tat acg aag tat gat cca act cac ttc atc cta aac	563											
Leu Ala Ser Phe Tyr Thr Lys Tyr Asp Pro Thr His Phe Ile Leu Asn												
115 120 125												

aca get tet ete etg agt gta eta att ece aaa atg eea eaa eta eat Thr Ala Ser Leu Leu Ser Val Leu Ile Pro Lys Met Pro Gln Leu His	611
ggt gtt cgg atc ttt gga att aat aag tat tgaaatgttt tgaaactga Gly Val Arg Ile Phe Gly Ile Asn Lys Tyr  145 150	660
aaaaaaattt tacagctact gaatttotta taaggaagga gtggttagta aactgcactg	720
tttctctgat aatgtgaaat gagaagtatt tacattggag ggccaatggc tggtccttca	780
agtgetgttt tgaagtgeag attteeatta aatgatgeet etgtttaata cacetggtae	840
atttetgaag aggggettta taagcagget gggcaggeec agettataag ttaaagggca	900
tcacagtgag ggtgtagtag ataaattcaa ggaaataaga gatttgtaag aaactaggac	960
cagettaact tataatgaat gggeattgtg ttaagaaaag aacattteea gteatteage	1020
tgtggttatt taaagcagac ttacatgtaa accggaatcc tctctataca agtttattaa	1080
agattatttt tattaccgt	1099
<210> 118	
<211> 3489	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (227)(748)	
<400> 118	
gcgtgcattt ttctggagaa ctgcatgcat catgctctct ctgtgtgcat tttcctggac	60
aaaagcccat agtgcctatc agattctcaa agggactcct gactccagaa agtttaaaaa	120
ccattagget taaggaagca catacetact etgtacteca gggaccaggt gggaacaget	180
gagtgcaggg agtggctttc tctttcagac cctctcccgg agcccc atg gct gcc	235
Met Ala Ala	
1	
ttc ctg ata cag acc aag gac aac ccc atg aag gcc gtg ggt gtg ctg	283
Phe Leu Ile Gln Thr Lys Asp Asn Pro Met Lys Ala Val Gly Val Leu	
5 10 15	
gce gge ace atg gcc ace gtc gtg gcc atc act gtc ctc atc tcc acc	331
Ala Gly Thr Met Ala Thr Val Val Ala Ile Thr Val Leu Ile Ser Thr	
20 25 30 35	

gcc	acc	ttc	tgg	cgc	aac	aag	aag	tct	aac	aag	gtc	ctg	cca	atg	cgg	379
Ala	Thr	Phe	Trp	Arg	Asn	Lys	Lys	Ser	Asn	Lys	Val	Leu	Pro	Met	Arg	
				40					45					50		
cgg	gtg	ctc	cgc	aag	cgg	ccc	agc	cct	gcg	ccc	cgc	acc	atc	cgc	att	427
Arg	Val	Leu	Arg	Lys	Arg	Pro	Ser	Pro	Ala	Pro	Arg	Thr	Ile	Arg	Ile	
			55					60					65			
gag	tgg	ctc	aag	tcc	aag	agc	acc	aaa	gcc	gct	acc	aag	ttc	atg	ctc	475
Glu	Trp	Leu	Lys	Ser	Lys	Ser	Thr	Lys	Ala	Ala	Thr	Lys	Phe	Met	Leu	
		70					75					80				
aaa	gag	aaa	cct	ccc	aat	gag	aac	tgt	aac	aac	aac	agc	cca	gaa	agc	523
Lys	Glu	Lys	Pro	Pro	Asn	Glu	Asn	Cys	Asn	Asn	Asn	Ser	Pro	Glu	Ser	
	85					90					95					
tct	ctg	ctc	ccg	aga	gct	ccg	gct	ctc	cct	cca	cca	ccc	agc	gtg	gcg	571
Ser	Leu	Leu	Pro	Arg	Ala	Pro	Ala	Leu	Pro	Pro	Pro	Pro	Ser	Val	Ala	
100					105					110					115	
ccc	agc	act	ggc	gca	gcc	cag	tgg	acc	gtg	cct	act	gtc	tct	ggc	tct	619
Pro	Ser	Thr	Gly	Ala	Ala	Gln	Trp	Thr	Val	Pro	Thr	Val	Ser	Gly	Ser	
				120					125					130		
ctc	act	ccg	cag	ccg	acc	caa	ccc	ccg	cca	aaa	ccc	aaa	act	atg	gga	667
Leu	Thr	Pro	Gln	Pro	Thr	Gln	Pro	Pro	Pro	Lys	Pro	Lys	Thr	Met	Gly	
			135					140		•			145			
agc	ccc	gtc	cag	tca	act	ctg	atc	tct	gag	ctc	aag	caa	aag	ttt	gag	715
Ser	Pro	Val	Gln	Ser	Thr	Leu	Ile	Ser	Glu	Leu	Lys	Gln	Lys	Phe	Glu	
		150				•	155					160				
aag	aag	agt	gtg	cac	aac	aag	gct	tac	ttc	tagt	gtat	gc c	ctat			760
.ys	Lys	Ser	Val	His .	Asn	Lys .	Ala	Tyr	Phe							
	165					170										
gacc	cccc	at c	tttc	ctcc	g cc	cctg	accc	cca	ccac	cct	gctg	ctcg	ga c	tatg	ctccc	820
ette	ctct	gc t	cctt	aagg	t ca	ctga	ccc	tgt	tttg	cac	aatg	gtat	aa t	cccc	actgt	880
ctc	atct	ct a	ccgc	cacc	t to	tggc	gcaa	caa	gaag	ttg	cgct	ctga	ca g	ggct	ctagt	940
agg	gcct	tg g	gcaa	gaca	t tg	ggct	ctag	gat	gcaa	ttg	gcaa	atac	gt c	cccg	ttact	1000
aaat	tcct [.]	tg g	cact	acta	c aa	tgcc	ctcc	att	cttc	agg	gctg	agaa	tt g	acga	gaagc	1060
agct	tcac	cc a	tecc	agac	e te	acag	tece	tca	ggtt	cta	ctgg	gatc	tc a	tcat	catcc	1120
tagi	tcaa	gc a	gcag	ggcc	t tg	gcca	egtg	gag	caac	act	gact	agaa	tc t	ggat	cctga	1180
geet	tgcad	ge to	qaqaq	jcaq	a ac	cagge	aaa	gga	aact	cao (	cact	gtct	ca o	acta	gaagt	1240

cagegaacet egtggge	tgt aggaaagcaa	atgtaggtaa	ggggagagca	aggatgcaca	1300
gaaaacacac tgactgt	ggg actgtgccag	gatgcatttg	gaaagataga	gcattctgtc	1360
tgggcagaga ctgtgga	ccc tggtatgccc	acgtgggaca	gaggacacag	aggtggaaga	1420
ttgatcttgc caagagt	gag ggcagatgtc	tecagecagg	actgccctga	gccgcaaaat	1480
gtcaaagctg gagctat	aga ggtagcccta	aaggcaacta	gaagagcatc	agggctgctc	1540
tctgaggagc tgcccca	cca gccatccttg	aagagacaat	tcagggcagt	tgatgaatat	1600
cagggctgag atgtggt	gag acttccgttt	ttatccagct	cttttgctca	catcgcgtaa	1660
ccttgggaaa gctgttt	aaa gtcgctgatc	atcctcttcc	tcatctgtaa	atgaagaaag	1720
taggccctgt ctacctc	aca tgcaggtcta	gggtgaggat	tgaagaaaat	agtggtgatg	1780
agggctttaa ccaagtg	caa agcggcatga	atgcaaagta	tttttctgca	gcccagttct	1840
gtgggtgcag ctcttcc	aga aagtattagg	agcctcacat	ctactctgcc	aagcgcccca	1900
gcaggcactg tgctggg	ctt aggggctacc	actggatgat	ggcattgccg	tgactcacac	1960
acctetactt etgttet	tcc ctcactccat	ccccgctacc	gtcctggcca	gctaccgtca	2020
gagagaacca gagetee	aag tetttaattt	gccaagatga	agaaaatgag	ttctcaagga	2080
gggaatgctt tgcttga	gge cacacagcag	gttggtagca	aagatcttgt	ctagccaggg	2140
cagecettat cagettg	tga caacetteee	caggacagaa	gtcatacaag	gcctctgggg	2200
ttaatacaaa taggttg	tgc cctgctttaa	ggaacctgct	atcaggaaat	ctacatgtgt	2260
gcacagagag agaaaag	tag aacagttett	tgcatttggc	tctacttact	aacaacccct	2320
ctagaataca ttggtga	ttt catttaaaga	gattgtatgc	atttgtggct	ttcctgattt	2380
ctgagtctgt gtttgga	ggt gttactgaga	tgtgccagtg	tgcagaatcc	ttgctggggt	2440
ttctacagtc cccaacg	tga acagtattaa	gcaagaggtg	gactcgagca	atccaggagc	2500
ccagactgag caaataa	gta ctttccagcc	tgtgtttcag	gagaggactg	tgctggatca	2560
tgcttgccct ccacagg	gaa tacagcatcc	ttacagettg	catgcaatca	acctcttttg	2620
taaatggaaa ataaagt	ctg ttacccaaag	gccatgctga	teceetgete	cctgctttca	2680
tttatgtttg ctgacct	gtg gagaccagtc	tttctgacac	acagtgaagc	tcaacttgcc	2740
tectggetge tteagea	ggt ggatecatte	ttegacecec	agatgtgact	ctaaagaagg	2800
ctgaaaattt ttgtcca	aat tgccatgcag	atatcttgaa	cagcaggaca	tttgcaggcc	2860
ttgtctactg gactttt	ctc ccaaacagga	caagcccagg	cagggctgca	tggagaggaa	2920
tggaacctgg agctaga	att aattgeeeae	teteceacce	taccagtgca	geceggeaag	2980
ggcaggaatt gggaggc	cta gggtgggcat	gaaagcttgg	gaagcactgt	cgtctctcag	3040
acaggcgtcc taaagac	ctc taggctggaa	gettgggett	gcaagtggat	ccgggaccga	3100
gggtggtctc ttggaca	acc ccaggaactt	ggaccaaggc	agagccaatc	ttgcaaactg	3160
gccatggatg gggaagt	gcc cggtagccag	catgagccac	actaggaaag	aggaggaggg	3220
tgcagccaaa cttaagg	cac cggcaagtgt	tgtcagcact	ggaggagacc	ccgccagtgg	3280
ggtgaggcca gccaagt	ccc tgtgttacga	atggtgggcc	aaggggctgt	ctgctaggtc	3340



cagtaggaca ggcagagctc caggctggca ccatggtagg cctccaggga aagagctggg	3400
aggcaggaat ggcacactgg gcaggcttgc ccattcctgg ccctgagaat ggagctgtag	3460
cctcatggac aataaatgga tgtgacacc	3489
<210> 119	
<211> 931	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (25)(252)	
<400> 119	
ctgacggacg cttcggccgt aacg atg atc gga gac atc ctg ctg ttc ggg	51
Met Ile Gly Asp Ile Leu Leu Phe Gly	
1 5	
acg ttg ctg atg aat gcc ggg gcg gtg ctg aac ttt aag ctg aaa aag	99
Thr Leu Leu Met Asn Ala Gly Ala Val Leu Asn Phe Lys Leu Lys Lys	
10 15 20 25	
aag gac acg cag ggc ttt ggg gag gag tcc agg gag ccc agc aca ggt	147
Lys Asp Thr Gln Gly Phe Gly Glu Glu Ser Arg Glu Pro Ser Thr Gly	
30 35 40	
gac aac atc cgg gaa ttc ttg ctg agc ctc aga tac ttt cga atc ttc	195
Asp Asn Ile Arg Glu Phe Leu Leu Ser Leu Arg Tyr Phe Arg Ile Phe	
45 50 55	
atc goo otg tgg aac atc ttc atg atg ttc tgc atg att gtg ctg ttc	243
Ile Ala Leu Trp Asn Ile Phe Met Met Phe Cys Met Ile Val Leu Phe	
60 65 70	
ggc tet tgaateeeag egatgaaace aggaaeteae ttteeeggga tgeegagtet e	300
Gly Ser	
75	
cattecteca tteetgatga etteaagaat gtttttgace agaaaacega caacetteee	360
agaaagteea agetegtggt gggtggaaaa gtgttegeea aggtgtgeat ggttteeeag	420
ccacgtccct gttttcaaag atagtttcac tttggtctct gaattgaaat gctgtctact	480
gaaagggttt caggagcgtt tatgtaaggg gctgtgatga aattgcattc cccatagata	540
ABBQBBBBB Catttetate cagagatetg ageagaagga tragetratt agttrages	600

ageogtiftt tiggaeatte agrifttaett getgagtety acayeet	ecg ggcccggcca 000
ggggccctgt taacaaactg ctttcacatc ccaacagggt ctgcttg	ggee acteagtgea 720
gctgcgatta accctaaagg ctttaaggaa cgggccacct gtaacag	gaga caccagcett 780
cctgtataga cactaaattg ttagcaagag tgttgagcta gttcctg	ggtg aagtgtttcc 840
acagaagaca tgtggagcag ttgtggggat attaagggaa actttco	etct geettgaeee 900
ctttgttaaa taaaatgact ttgggagcca t	931
<210> 120	
<211> 1123	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (68)(547)	
<400> 120	
gttccccgag ttcggagcct aggagcccc cgcggctgcg gcgcagg	
agteggg atg gag etg eet get gtg aac etg aag gtg att	
Met Glu Leu Pro Ala Val Asn Leu Lys Val Ile	Leu Leu Gly
1 5 10	
cac tgg ctg ctg aca acc tgg ggc tgc att gta ttc tca	
His Trp Leu Leu Thr Thr Trp Gly Cys Ile Val Phe Ser	
15 20 25	30
gee tgg gee aae tte ace ate etg gee ttg gge gtg tgg	
Ala Trp Ala Asn Phe Thr Ile Leu Ala Leu Gly Val Trp	
35 40	45
cag egg gae tee ate gae gee ata age atg ttt etg ggt	
Gln Arg Asp Ser Ile Asp Ala Ile Ser Met Phe Leu Gly	
50 55	60
gcc acc atc ttc ctg gac atc gtg cac atc agc atc ttc	
Ala Thr Ile Phe Leu Asp Ile Val His Ile Ser Ile Phe	
65 70 75	
gtc agc ctc acg gac acg ggc cgc ttt ggc gtg ggc atg	
Val Ser Leu Thr Asp Thr Gly Arg Phe Gly Val Gly Met	. Ala Ile Leu
80 85 90	
age ttg ctg ctc aag ccg ctc tcc tgc tgc ttc gtc tac	cac atg tac 397



Ser Leu Leu Lys Pro Leu Ser Cys Cys Phe Val Tyr His Met Tyr	
95 100 105 110	
cgg gag cgc ggg ggt gag ctc ctg gtc cac act ggt ttc ctt ggg tct	445
Arg Glu Arg Gly Glu Leu Leu Val His Thr Gly Phe Leu Gly Ser	
115 120 125	
tot cag gac ogt agt god tac cag acg att gac toa goa gag gog coc	493
Ser Gln Asp Arg Ser Ala Tyr Gln Thr Ile Asp Ser Ala Glu Ala Pro	
130 135 140	
gca gat ccc ttt gca gtc cca gag ggc agg agt caa gat gcc cga ggg	541
Ala Asp Pro Phe Ala Val Pro Glu Gly Arg Ser Gln Asp Ala Arg Gly	
145 150 155	
tac tgaagecage caegetgege ceggecetge ceegggeett cetegtgeet gggagg	600
Tyr	
tegttetagg gatgeteetg aceteegtet ettggaeeta agatggaatg tgteeecage	660
teagggattg cetgaaccaa gaggecagga geececatgg geegeecagt accatgeaca etectgteec gaacteectg aggeeteece teectteagg geaccaactg gtteecagge	720 780
tggaaccagg gtctctcttt acctcctacc ccatggtggc accacagagg ccctcagecg	840
agtectgeet gagtgttgea ageteaggee tttaaggaet getgatgeee eeteaggeet	900
ccccaagtt tgctgggett tggtggaage cctgagaget tcaggtcctg ctcagcccga	960
ggagcagtet ggcatgggag tgaggccccg teetteteae tgcctggtca catggtgcct	1020
agggatgeag ggctggagge cagaggtgte ageaacactg tgaccacca caacctccag	1080
cctccctttt cagagcacag cattaaagtt tggggaatte tgt	1123
<210> 121	
<211> 636	
<212> PRT	
<213> Homo sapiens	
<400> 121	
Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu Gly Leu	
1 5 10 15	
Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp	
20 25 30	
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln	
35 40 45	

WO 00/29448 PCT/JP99/06412

Ala	Lys	Gly	Trp	) Asr	Phe	Met	Let	ı Glı	ı Ası	Se:	r Thi	r Ph	e Tr	p Il	e Ph
	50	)				55	5				60	)			
Gly	Gly	Ser	Ile	His	Tyr	Phe	Arç	y Val	l Pro	Arq	g Glı	тут	r Tr	p Ar	g As
65					70	)				75	5				8
Arg	Leu	Leu	Lys	Met	Lys	Ala	Cys	Gl	Let	ı Ası	1 Thi	: Le	ı Thi	r Thi	г Ту
				85					90	)				9:	5
Val	Pro	Trp	Asn	Leu	His	G1u	Pro	Glu	a Arg	g Gly	Lys	Phe	a Asp	Phe	e Sei
			100					105	<b>i</b>				110	)	
Gly	Asn	Leu	Asp	Leu	Glu	Ala	Phe	Val	. Leu	Met	Ala	Ala	a Glu	ı Ile	e Gly
		115					120	ł				125	<b>i</b>		
Leu	Trp	Val	Ile	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Cys	Ser	Glu	ı Met	e Asp
	130					135					140	l			
Leu	Gly	Gly	Leu	Pro	Ser	Trp	Leu	Leu	Gln	Asp	Pro	Gly	Met	Arg	Leu
145					150					155					160
Arg	Thr	Thr	Tyr	ГÀЗ	Gly	Phe	Thr	Glu	Ala	Val	Asp	Leu	Туг	Phe	Asp
				165					170					175	•
His	Leu	Met	Ser	Arg	Val	Val	Pro	Leu	Gln	Tyr	Lys	Arg	Gly	Gly	Pro
			180					185					190		
Ile	Ile		Val	Gln	Val	Glu		Glu	Tyr	Gly	Ser	Tyr	Asn	Lys	Asp
		195					200					205			
Pro		Tyr	Met	Pro	Tyr		Lys	Lys	Ala	Leu	Glu	Asp	Arg	Gly	Ile
	210					215					220				
	Glu	Leu	Leu	Leu		Ser	Asp	Asn	Lys	Asp	Gly	Leu	Ser	Lys	
225		_	_		230					235					240
Ile	Val	Gln	Gly		Leu	Ala	Thr	Ile	Asn	Leu	Gln	Ser	Thr		Glu
				245					250					255	
Leu	Gln	Leu		Thr	Thr	Phe	Leu		Asn	Val	Gln	Gly	Thr	Gln	Pro
			260					265					270		
Lys			Met	Glu	Tyr	Trp		Gly	Trp	Phe	Asp		Trp	Gly	Gly
		275					280					285			
		Asn	Ile	Leu			Ser	Glu	Val	Leu	_	Thr	Val	Ser	Ala
	290					295					300				
	Val	Asp	Ala			Ser	Ile	Asn	Leu	_	Met	Phe	His	Gly	_
305					310					315					320
Chr .	Asn .	Phe	Gly :	Phe :	Met .	Asn	Gly	Ala	Met	His	Phe	His	Asp	Tyr	Lys

				325					330					335	
Ser	Asp	Val	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Val	Leu	Thr	Glu	Ala	Gly
			340					345					350		
Asp	Tyr	Thr	Ala	Lys	Tyr	Met	Lys	Leu	Arg	Asp	Phe	Phe	Gly	Ser	Ile
		355					360					365			
Ser	Gly	Ile	Pro	Leu	Pro	Pro	Pro	Pro	Asp	Leu	Leu	Pro	Lys	Met	Pro
	370					375					380				
Tyr	Glu	Pro	Leu	Thr	Pro	Val	Leu	Tyr	Leu	Ser	Leu	Trp	Asp	Ala	Let
385					390					395					400
Lys	Tyr	Leu	Gly	Glu	Pro	Ile	Lys	Ser	Glu	Lys	Pro	Ile	Asn	Met	Glu
				405					410					415	
Asn	Leu	Pro	Val	Asn	Gly	Gly	Asn	Gly	Gln	Ser	Phe	Gly	Tyr	Ile	Let
			420					425					430		
Tyr	Glu	Thr	Ser	Ile	Thr	Ser	Ser	Gly	Ile	Leu	Ser	Gly	His	Val	His
		435					440					445			
Asp	Arg	Gly	Gln	Val	Phe	Val	Asn	Thr	Val	Ser	Ile	Gly	Phe	Leu	Asp
	450					455					460				
Tyr	Lys	Thr	Thr	Lys	Ile	Ala	Val	Pro	Leu	Ile	Gln	Gly	Tyr	Thr	Val
465					470					475					480
Leu	Arg	Ile	Leu	Val	Glu	Asn	Arg	Gly	Arg	Val	Asn	Tyr	Gly	Glu	Asn
				485					490					495	
Ile	Asp	Asp	Gln	Arg	Lys	Gly	Leu	Ile	Gly	Asn	Leu	Tyr	Leu	Asn	Asp
			500					505					510		
Ser	Pro	Leu	Lys	Asn	Phe	Arg	Ile	Tyr	Ser	Leu	Asp	Met	Lys	Lys	Ser
		515					520					525			
Phe	Phe	Gln	Arg	Phe	Gly	Leu	Asp	Lys	Trp	Ser	Ser	Leu	Pro	Glu	Thr
	530					535					540				
Pro	Thr	Leu	Pro	Ala	Phe	Phe	Leu	Gly	Ser	Leu	Ser	Ile	Ser	Ser	Thr
545					550					555					560
Pro	Cys	Asp	Thr	Phe	Leu	Lys	Leu	Glu	Gly	Trp	Glu	Lys	Gly	Val	Val
				565					570					575	
Phe	Ile	Asn	Gly	Gln	Asn	Leu	Gly	Arg	Tyr	Trp	Asn	Ile	Gly	Pro	Gln
			580					585					590		
Lys	Thr	Leu	Tyr	Leu	Pro	Gly	Pro	Trp	Leu	Ser	Ser	Gly	Ile	Asn	Gln
		E06					600					605			

WO 00/29448 PCT/JP99/06412

192/233

Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr 615 Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys 630 <210> 122 <211> 318 <212> PRT <213> Homo sapiens <400> 122 Met Val Glu Leu Met Phe Pro Leu Leu Leu Leu Leu Pro Phe Leu 10 Leu Tyr Met Ala Ala Pro Gln Ile Arg Lys Met Leu Ser Ser Gly Val 20 25 Cys Thr Ser Thr Val Gln Leu Pro Gly Lys Val Val Val Val Thr Gly 35 40 45 Ala Asn Thr Gly Ile Gly Lys Glu Thr Ala Lys Glu Leu Ala Gln Arg Gly Ala Arg Val Tyr Leu Ala Cys Arg Asp Val Glu Lys Gly Glu Leu 65 75 80 Val Ala Lys Glu Ile Gln Thr Thr Gly Asn Gln Gln Val Leu Val 90 Arg Lys Leu Asp Leu Ser Asp Thr Lys Ser Ile Arg Ala Phe Ala Lys 100 105 110 Gly Phe Leu Ala Glu Glu Lys His Leu His Val Leu Ile Asn Asn Ala 115 125 120 Gly Val Met Met Cys Pro Tyr Ser Lys Thr Ala Asp Gly Phe Glu Met 135 His Ile Gly Val Asn His Leu Gly His Phe Leu Leu Thr His Leu Leu 145 150 155 160 Leu Glu Lys Leu Lys Glu Ser Ala Pro Ser Arg Ile Val Asn Val Ser 170 Ser Leu Ala His His Leu Gly Arg Ile His Phe His Asn Leu Gln Gly 180 185 190 Glu Lys Phe Tyr Asn Ala Gly Leu Ala Tyr Cys His Ser Lys Leu Ala

205 195 200 Asn Ile Leu Phe Thr Gln Glu Leu Ala Arg Arg Leu Lys Gly Ser Gly 215 220 210 Val Thr Thr Tyr Ser Val His Pro Gly Thr Val Gln Ser Glu Leu Val 230 235 Arg His Ser Ser Phe Met Arg Trp Met Trp Trp Leu Phe Ser Phe Phe 255 250 245 Ile Lys Thr Pro Gln Gln Gly Ala Gln Thr Ser Leu His Cys Ala Leu 270 260 265 Thr Glu Gly Leu Glu Ile Leu Ser Gly Asn His Phe Ser Asp Cys His 285 280 Val Ala Trp Val Ser Ala Gln Ala Arg Asn Glu Thr Ile Ala Arg Arg 300 290 295 Leu Trp Asp Val Ser Cys Asp Leu Leu Gly Leu Pro Ile Asp 310 315 305 <210> 123 <211> 82 <212> PRT <213> Homo sapiens <400> 123

Met Ala Phe Thr Leu Tyr Ser Leu Leu Gln Ala Ala Leu Leu Cys Val 1 5 10 15

Asn Ala Ile Ala Val Leu His Glu Glu Arg Phe Leu Lys Asn Ile Gly

20 25 30

Trp Gly Thr Asp Gln Gly Ile Gly Gly Phe Gly Glu Glu Pro Gly Ile
35 40 45

Lys Ser Gln Leu Met Asn Leu Ile Arg Ser Val Arg Thr Val Met Arg
50 55 60

Val Pro Leu Ile Ile Val Asn Ser Ile Ala Ile Val Leu Leu Leu Leu 65 70 75 80

Phe Gly

<210> 124

<211> 247

<21	2> E	RT													
<21	3> F		sapi	ens											
<40	0> 1	24													
Met	His	Leu	Ala	Arg	Leu	Val	. Gly	Ser	Cys	Ser	Leu	Leu	Leu	Leu	Le
1				5	j .				10	)				15	
Gly	Ala	Leu	Ser	Gly	Trp	Ala	Ala	Ser	Asp	Asp	Pro	Ile	Glu	Lys	Va
			20					25	,				30		
Ile	Glu	Gly	Ile	Asn	Arg	Gly	Leu	Ser	Asn	Ala	Glu	Arg	Glu	Val	Gl
		35					40					45			
Lys	Ala	Leu	qeA	Gly	Ile	Asn	Ser	Gly	Ile	Thr	His	Ala	Gly	Arg	Gl
	50					55					60				
Val	Glu	Lys	Val	Phe	Asn	Gly	Leu	Ser	Asn	Met	Gly	Ser	His	Thr	Gly
65					70					75					80
Lys	Glu	Leu	Asp	Lys	Gly	Val	Gln	Gly	Leu	Asn	His	Gly	Met	Asp	Lys
				85					90					95	
Val	Ala	His		Ile	Asn	His	Gly	Ile	Gly	Gln	Ala	Gly	_	Glu	Ala
			100				•	105					110		
Glu	Lys		Gly	His	Gly	Val		Asn	Ala	Ala	Gly		Ala	Gly	Lys
		115					120					125			_
Glu		Asp	Lys	Ala	Val		Gly	Phe	His	Thr	_	Val	His	Gln	Ala
	130		_			135					140		_		
_	Lys	Glu	Ala	Glu		Leu	Gly	Gln	Gly	Val	Asn	His	Ala	Ala	_
145					150			_		155				•	160
Gln	Ala	GIĀ	Lys		Val	Glu	Lys	Leu		Gln	GLY	Ala	His		ALE
	<b>43</b>	<b>~</b> 3		165			_		170			_	-	175	_
ALA	GIĀ	GIN		GIĀ	Lys	Glu	Leu		Asn	Ala	His	Asn		Vai	Asn
<b>~1</b>			180	<b>~</b> 1		•	<b>~</b> 3.	185			<b>~</b> 1		190	<b>a</b> 1-	<b>0</b>
GIN	ALA		гйз	GIU	Ala	Asn		Leu	Leu	Asn	ĞТĀ		HIS	GIN	Ser
<b></b>	_	195		·		~3	200				_,	205	<b>.</b>		<b>a</b>
_		Ser	ser	HIS	GIN	_	GIĀ	Ala	Thr	Thr		Pro	Leu	АТа	ser
	210	0	**- *	•	ent	215	n.			•	220		•	<b>6</b> 1111111	<b>3</b>
_	ATG	ser	vaT	ASN		r I O	LUE	тте	ASN	Leu	7.LO	₩TØ	reg	_	_
225	**- 7	<b>57</b> -	<b>N</b>	<b>~</b> 1 -	230	<b>n</b>				235					240
ser	vaT	ATS	Asn	TTE	Met	PLO									

245

<210>	125													
<211>	206													
<212>	PRT													
<213>	Homo	sapi	ens											
<400>	125													
Met Al	a Pro	Ser	His	Leu	Ser	Val	Arg	Glu	Met	Arg	Glu	Asp	Glu	Lys
1			5					10					15	
Pro Le	u Val	Leu	Glu	Met	Leu	Lys	Ala	Gly	Val	Lys	Asp	Thr	Glu	Ası
		20					25					30		
Arg Va	l Ala	Leu	His	Ala	Leu	Thr	Arg	Pro	Pro	Ala	Leu	Leu	Leu	Let
	35					40					45			
Ala Al	a Ala	Ser	Ser	Gly	Leu	Arg	Phe	Val	Leu	Ala	Ser	Phe	Ala	Leu
5	0				55					60				
Ala Le	u Leu	Leu	Pro	Val	Phe	Leu	Ala	Val	Ala	Ala	Val	Lys	Leu	Gly
65				70					75					80
Leu Ar	g Ala	Arg	Trp	Gly	Ser	Leu	Pro	Pro	Pro	Gly	Gly	Leu	Gly	Gly
			85					90					95	
Pro Tr	p Val	Ala	Val	Arg	Gly	Ser	Gly	Asp	Val	Суз	Gly	Val	Leu	Ala
		100					105					110		
Leu Al	a Pro	Gly	Thr	Asn	Ala	Gly	qeA	Gly	Ala	Arg	Val	Thr	Arg	Leu
	115					120					125			
Ser Va	l Ser	Arg	Trp	His	Arg	Arg	Arg	Gly	Val	Gly	Arg	Arg	Leu	Leu
13					135					140				
Ala Ph	e Ala	Glu	Ala		Ala	Arg	Ala	Trp		Gly	Gly	Met	Gly	
145				150					155				_	160
Pro Ar	g Ala	Arg		Val	Val	Pro	Val		Val	Ala	Ala	Trp		Val
			165					170				_	175	
Gly Gl	y Met		Glu	Gly	Cys	Gly	_	Gln	Ala	Glu	Gly		Trp	Gly
	_	180			_		185				_	190		
Cys Let	_	Tyr	Thr	Leu	Val			Phe	Ser	Lys		Leu		
	195					200					205			

<210> 126

<21	1> 4	32													
<21	2> P	RT													
<21	3> H		sapi	ens											
<40	0> 1	26													
Met	Asp	Ala	Arg	Trp	Trp	Ala	Val	Val	Val	Leu	Ala	Ala	Phe	Pro	Se
1				5					10					15	
Leu	Gly	Ala	Gly	Gly	Glu	Thr	Pro	Glu	Ala	Pro	Pro	Glu	Ser	Trp	Th
			20					25					30		
Gln	Leu	Trp	Phe	Phe	Arg	Phe	Val	Val	Asn	Ala	Ala	Gly	Tyr	Ala	Se
		35					40					45			
Phe	Met	Val	Pro	Gly	Tyr	Leu	Leu	Val	Gln	Tyr	Phe	Arg	Arg	Lys	Ası
	50					55					60				
Tyr	Leu	Glu	Thr	Gly	Arg	Gly	Leu	Cys	Phe	Pro	Leu	Val	Lys	Ala	Cy
65					70					75					8
Val	Phe	Gly	Asn	Glu	Pro	Lys	Ala	Ser	Asp	Glu	Val	Pro	Leu	Ala	Pro
				85					90					95	
Arg	Thr	Glu	Ala	Ala	Glu	Thr	Thr	Pro	Met	Trp	Gln	Ala	Leu	Lys	Le
			100					105					110		
Leu	Phe	Cys	Ala	Thr	Gly	Leu	Gln	Val	Ser	Tyr	Leu	Thr	Trp	Gly	Va.
		115					120					125			
Leu	Gln	Glu	Arg	Val	Met	Thr	Arg	Ser	Tyr	Gly	Ala	Thr	Ala	Thr	Sei
	130					135					140				
Pro	Gly	Glu	Arg	Phe	Thr	Asp	Ser	Gln	Phe	Leu	Val	Leu	Met	Asn	
145					150		•			155				_	160
Val	Leu	Ala	Leu	Ile	Val	Ala	Gly	Leu	Ser	Cys	Val	Leu	Cys	Lys	Glı
				165					170					175	
Pro	Arg	His	Gly	Ala	Pro	Met	Tyr	Arg	Tyr	Ser	Phe	Ala		Leu	Sea
			180					185					190		
Asn	Val	Leu	Ser	Ser	Trp	Суз	Gln	Tyr	Glu	Ala	Leu	ГÀЗ	Phe	Val	Ser
	·	195					200					205			
Phe	Pro	Thr	Gln	Val	Leu	Ala	Lys	Ala	Ser	Lys	Val	Ile	Pro	Val	Met
	210					215					220				
Leu	Met	Gly	Lys	Leu	Val	Ser	Arg	Arg	Ser	Tyr	Glu	His	Trp	Glu	Туз
225					230					235					240
Leu	Thr	Ala	Thr	Leu	Ile	Ser	Ile	Gly	Val	Ser	Met	Phe	Leu	Leu	Sex

				245					250	l				255	)
Ser	Gly	Pro	Glu	Pro	Arg	Ser	Ser	Pro	Ala	Thr	Thr	Leu	Ser	Gly	Leu
			260					265					270	)	
Ile	Leu	Leu	Ala	Gly	Tyr	Ile	Ala	Phe	Asp	Ser	Phe	Thr	Ser	Asn	Trp
		275					280					285			
Gln	Asp	Ala	Leu	Phe	Ala	Tyr	Lys	Met	Ser	Ser	Val	Gln	Met	Met	Phe
	290					295					300				
Gly	Val	Asn	Phe	Phe	Ser	Cys	Leu	Phe	Thr	Val	Gly	Ser	Leu	Leu	Glu
305					310					315					320
Gln	Gly	Ala	Leu	Leu	Glu	Gly	Thr	Arg	Phe	Met	Gly	Arg	His	Ser	Glu
				325					330					335	-
Phe	Ala	Ala	His	Ala	Leu	Leu	Leu	Ser	Ile	Cys	Ser	Ala	Cys	Gly	Gln
			340					345					350		
Leu	Phe	Ile	Phe	Tyr	Thr	Ile	Gly	Gln	Phe	Gly	Ala	Ala	Val	Phe	Thr
		355					360					365			
Ile	Ile	Met	Thr	Leu	Arg	Gln	Ala	Phe	Ala	Ile	Leu	Leu	Ser	Суз	Leu
	370					375					380				
Leu	Tyr	Gly	His	Thr	Val	Thr	Val	Val	Gly	Gly	Leu	Gly	Val	Ala	Val
385					390					395					400
Val	Phe	Ala	Ala	Leu	Leu	Leu	Arg	Val	Tyr	Ala	Arg	Gly	Arg	Leu	Lys
				405					410					415	
Gln	Arg	Gly	Lys	Lys	Ala	Val	Pro	Val	Glu	Ser	Pro	Val	Gln	Lys	Val
			420					425					430		
<210	> 12	27													
<211	> 30	6													
<212	> PR	T						•							
		mo s	apie	ns											
	> 12														
Met	Gly	His .	Arg	Thr	Leu	Val	Leu	Pro	Trp	Val	Leu	Leu	Thr	Leu	Суз
1				5					10					15	
/al	Thr	Ala	Gly '	Thr	Pro	Glu	Val	Trp	Val	Gln	Val .	Arg	Met	Glu	Ala
			20					25					30		

Thr Glu Leu Ser Ser Phe Thr Ile Arg Cys Gly Phe Leu Gly Ser Gly

45

40

35

WO 00/29448 PCT/JP99/06412

Ser	Ile	Ser	Leu	Val	Thr	Val	Ser	Trp	Gly	Gly	Pro	Asp	Gly	Ala	GTA
	50					55					60				
Gly	Thr	Thr	Leu	Ala	Val	Leu	His	Pro	Glu	Arg	Gly	Ile	Arg	Gln	Trp
65					70					75					80
Ala	Pro	Ala	Arg	Gln	Ala	Arg	Trp	Glu	Thr	Gln	Ser	Ser	Ile	Ser	Leu
				<b>8</b> 5					90					95	
Ile	Leu	Glu	Gly	Ser	Gly	Ala	Ser	Ser	Pro	Суз	Ala	Asn	Thr	Thr	Phe
			100					105					110		
Cys	Cys	Lys	Phe	Ala	Ser	Phe	Pro	Glu	Gly	Ser	Trp	Glu	Ala	Cys	Gly
		115					120					125			
Ser	Leu	Pro	Pro	Ser	Ser	Asp	Pro	Gly	Leu	Ser	Ala	Pro	Pro	Thr	Pro
	130					135					140				
Ala	Pro	Ile	Leu	Arg	Ala	Asp	Leu	Ala	Gly	Ile	Leu	Gly	Val	Ser	Gly
145					150					155					160
Val	Leu	Leu	Phe	Gly	Cys	Val	Tyr	Leu	Leu	His	Leu	Leu	Arg		His
				165					170					175	
Lys	His	Arg	Pro	Ala	Pro	Arg	Leu	Gln	Pro	Ser	Arg	Thr	Ser	Pro	Gln
			180					185					190		
Ala	Pro	Arg		Arg	Ala	Trp	Ala	-	Ser	Gln	Ala	Ser		Ala	Ala
		195	Ala				200	Pro				205	Gln		
		195	Ala		Ala Ala		200	Pro				205	Gln		
Leu	His 210	195 Val	Ala Pro	Tyr	Ala	Thr 215	200 Ile	Pro	Thr	Ser	Cys 220	205 Arg	Gln Pro	Ala	Thr
Leu	His 210	195 Val	Ala Pro	Tyr		Thr 215	200 Ile	Pro	Thr	Ser Ser	Cys 220	205 Arg	Gln Pro	Ala	Thr Leu
Leu Leu 225	His 210 Asp	195 Val Thr	Ala Pro Ala	Tyr His	Ala Pro 230	Thr 215 His	200 Ile Gly	Pro Asn Gly	Thr Pro	Ser Ser 235	Cys 220 Trp	205 Arg Trp	Gln Pro Ala	Ala Ser	Thr Leu 240
Leu Leu 225	His 210 Asp	195 Val Thr	Ala Pro Ala	Tyr His	Ala Pro	Thr 215 His	200 Ile Gly	Pro Asn Gly	Thr Pro Gly	Ser Ser 235	Cys 220 Trp	205 Arg Trp	Gln Pro Ala	Ala Ser Ala	Thr Leu 240
Leu Leu 225 Pro	His 210 Asp	195 Val Thr	Ala Pro Ala Ala	Tyr His Ala 245	Ala Pro 230 His	Thr 215 His	200 Ile Gly Pro	Pro Asn Gly	Thr Pro Gly 250	Ser Ser 235 Pro	Cys 220 Trp Ala	205 Arg Trp Ala	Gln Pro Ala Trp	Ala Ser Ala 255	Thr Leu 240 Ser
Leu Leu 225 Pro	His 210 Asp	195 Val Thr	Ala Pro Ala Ala	Tyr His Ala 245	Ala Pro 230	Thr 215 His	200 Ile Gly Pro	Pro Asn Gly	Thr Pro Gly 250	Ser Ser 235 Pro	Cys 220 Trp Ala	205 Arg Trp Ala	Gln Pro Ala Trp	Ala Ser Ala 255	Thr Leu 240 Ser
Leu Leu 225 Pro Thr	His 210 Asp Thr	195 Val Thr His	Pro Ala Ala Pro 260	Tyr His Ala 245 Ala	Ala Pro 230 His	Thr 215 His Arg	200 Ile Gly Pro	Pro Asn Gly Gln Phe 265	Thr Pro Gly 250 Val	Ser 235 Pro	Cys 220 Trp Ala Val	205 Arg Trp Ala Glu	Gln Pro Ala Trp Asn 270	Ala Ser Ala 255 Gly	Thr Leu 240 Ser Leu
Leu Leu 225 Pro Thr	His 210 Asp Thr	195 Val Thr His	Pro Ala Ala Pro 260	Tyr His Ala 245 Ala	Ala Pro 230 His	Thr 215 His Arg	200 Ile Gly Pro	Pro Asn Gly Gln Phe 265	Thr Pro Gly 250 Val	Ser 235 Pro	Cys 220 Trp Ala Val	205 Arg Trp Ala Glu Pro	Gln Pro Ala Trp Asn 270	Ala Ser Ala 255 Gly	Thr Leu 240 Ser Leu
Leu Leu 225 Pro Thr	His 210 Asp Thr Pro	195 Val Thr His Ile Gln 275	Ala Pro Ala Ala Pro 260 Ala	Tyr His Ala 245 Ala Gly	Ala Pro 230 His Arg	Thr 215 His Arg Gly	200 Ile Gly Pro Ser Pro 280	Pro Asn Gly Gln Phe 265 Pro	Thr Pro Gly 250 Val	Ser 235 Pro Ser Thr	Cys 220 Trp Ala Val	205 Arg Trp Ala Glu Pro 285	Gln Pro Ala Trp Asn 270 Gly	Ala Ser Ala 255 Gly Leu	Thr Leu 240 Ser Leu Thr
Leu Leu 225 Pro Thr	His 210 Asp Thr Pro	195 Val Thr His Ile Gln 275	Ala Pro Ala Ala Pro 260 Ala	Tyr His Ala 245 Ala Gly	Ala Pro 230 His	Thr 215 His Arg Gly	200 Ile Gly Pro Ser Pro 280	Pro Asn Gly Gln Phe 265 Pro	Thr Pro Gly 250 Val	Ser 235 Pro Ser Thr	Cys 220 Trp Ala Val Gly	205 Arg Trp Ala Glu Pro 285	Gln Pro Ala Trp Asn 270 Gly	Ala Ser Ala 255 Gly Leu	Thr Leu 240 Ser Leu Thr
Leu Leu 225 Pro Thr	His 210 Asp Thr Pro	195 Val Thr His Ile Gln 275	Ala Pro Ala Ala Pro 260 Ala	Tyr His Ala 245 Ala Gly	Ala Pro 230 His Arg	Thr 215 His Arg Gly	200 Ile Gly Pro Ser Pro 280	Pro Asn Gly Gln Phe 265 Pro	Thr Pro Gly 250 Val	Ser 235 Pro Ser Thr	Cys 220 Trp Ala Val	205 Arg Trp Ala Glu Pro 285	Gln Pro Ala Trp Asn 270 Gly	Ala Ser Ala 255 Gly Leu	Thr Leu 240 Ser Leu Thr
Leu 225 Pro Thr Tyr	His 210 Asp Thr Pro Ala	195 Val Thr His Ile Gln 275	Ala Pro Ala Ala Pro 260 Ala	Tyr His Ala 245 Ala Gly	Ala Pro 230 His Arg	Thr 215 His Arg Gly Arg	200 Ile Gly Pro Ser Pro 280	Pro Asn Gly Gln Phe 265 Pro	Thr Pro Gly 250 Val	Ser 235 Pro Ser Thr	Cys 220 Trp Ala Val Gly	205 Arg Trp Ala Glu Pro 285	Gln Pro Ala Trp Asn 270 Gly	Ala Ser Ala 255 Gly Leu	Thr Leu 240 Ser Leu Thr

<21	0> ]	128									•					
<21	1> 5	555														
<21	2> E	RT														
<21	3> E	omo	sapi	iens												
<40	0> 1	.28														
Met	Glr	Ser	Cys	Glu	Ser	Ser	Gly	Asp	Ser	Ala	Asp	Asp	Pro	Let	Ser	
1				5	i				10	)				15	i	
Arg	Gly	Leu	Arg	Arg	Arg	Gly	Gln	Pro	Arg	Val	Val	Val	Ile	Gly	Ala	
			20	)				25					30	l		
Gly	Leu	Ala	Gly	Leu	Ala	Ala	Ala	Lys	Ala	Leu	Leu	Glu	Gln	Gly	Phe	
		35					40	)				45				
Thr	Asp	Val	Thr	Val	Leu	Glu	Ala	Ser	Ser	His	Ile	Gly	Gly	Arg	Val	
	50					55					60					
	Ser	Val	Lys	Leu	Gly	His	Ala	Thr	Phe	Glu	Leu	Gly	Ala	Thr	Trp	
65					70					75					80	
Ile	His	Gly	Ser	His	Gly	Asn	Pro	Ile	Tyr	His	Leu	Ala	Glu	Ala	Asn	
				85					90					95		
Gly	Leu	Leu		Glu	Thr	Thr	Asp	Gly	Glu	Arg	Ser	Val	_	Arg	Ile	
_	_	_	100	_				105					110			
Ser	Leu		Ser	Lys	Asn	Gly		Ala	Суз	Tyr	Leu		Asn	His	Gly	
<b>&gt;</b>	<b>3</b>	115	<b></b> .	•	•		120				_	125	_	_	_	
Arg		TTE	PIO	ьys	Asp		vaı	Glu	GIU	Pne		Asp	Leu	Tyr	Asn	
Clu	130	Петъ	) an	T	M)	135	<b>61</b>	Dh.	nh -	<b>3</b>	140	•	T	<b>5</b>	**-7	
145	val	TÄT	ASII	Ten	150	GIII	GIU	Phe	Pne		HIS	Asp	гÀз	PIO		
	Ala	Glu	Sor	Gln		Ser	t7=1	Gly	77a 1	155	mb~	N	<b>~</b> 1	<i>C</i> 1	160	
	mu	014	OCI	165	Poli	Ser	Val	GLY	170	FIIC	TILL	Arg	GIU	175	vai	
Ara .	Asn	Ara	Tle		Asn	Agn	Pro	ĄsĄ		Dro	Glu	Δla	ጥኮ፦		Ara	
			180			·		185	ար	110	GIU		190	шув	a.y	
Leu :	Lvs	Leu		Met	Ile	Gln	Gln	Tyr	T.e.11	Lvs	Val			Cvs	Glu	
	•	195					200	-1-		_,_		205		-1-		
Ser :	Ser		His	Ser	Met	αεA		Val	Ser	Leu	Ser		Phe	Glv	Glu	
	210					215		,			220			1		
		Glu	Ile	Pro			His	His :	Ile			Ser	Glv	Phe	Met	
225					230					235			-		240	

Arg	Val	Val	Glu	Leu	Leu	Ala	Glu	Gly	Ile	Pro	Ala	His	Val	Ile	Gln
				245					250					255	
Leu	G1y	Lys	Pro	Val	Arg	Суз	Ile	His	Trp	Asp	Gln	Ala	Ser	Ala	Arg
			260					265					270		
Pro	Arg	Gly	Pro	Glu	Ile	Glu	Pro	Arg	Gly	Glu	Gly	Asp	His	Asn	His
		275					280					285			
Asp	Thr	Gly	Glu	Gly	Gly	Gln	Gly	Gly	Glu	Glu	Pro	Arg	Gly	Gly	Arg
	290					295					300				
Trp	Asp	Glu	Asp	Glu	Gln	Trp	Ser	Val	Val	Val	Glu	Cys	Glu	Asp	Cys
305					310					315					320
Glu	Leu	Ile	Pro	Ala	Asp	His	Val	Ile	Val	Thr	Val	Ser	Leu	Gly	Val
				325					330					335	
Leu	Lys	Arg	Gln	Tyr	Thr	Ser	Phe	Phe	Arg	Pro	Gly	Leu	Pro	Thr	Glu
			340					345					350		
Lys	Val	Ala	Ala	Ile	His	Arg	Leu	Gly	Ile	Gly	Thr	Thr	Asp	Lys	Ile
		355					360					365			
Phe	Leu	Glu	Phe	Glu	Glu	Pro	Phe	Trp	Gly	Pro	Glu	Суз	Asn	Ser	Leu
	370					375					380				
Gln	Phe	Val	Trp	Glu	Asp	Glu	Ala	Glu	Ser	His	Thr	Leu	Thr	Tyr	Pro
385					390					395					400
Pro	Glu	Leu	Trp	Tyr	Arg	Lys	Ile	Суз	Gly	Phe	Asp	Val	Leu	Tyr	Pro
				405					410					415	
Pro	Glu	Arg	Tyr	Gly	His	Val	Leu	Ser	Gly	Trp	Ile	Суз	Gly	Glu	Glu
			420					425					430		
Ala	Leu	Val	Met	Glu	Lys	Cys	Asp	Asp	Glu	Ala	Val	Ala	Glu	Ile	Cys
		435					440					445			
Thr	Glu	Met	Leu	Arg	Gln	Phe	Thr	Gly	Asn	Pro	Asn	Ile	Pro	Lys	Pro
	450					455					460				
Arg	Arg	Ile	Leu	Arg	Ser	Ala	Trp	Gly	Ser	Asn	Pro	Tyr	Phe	Arg	Gly
465					470					475					480
Ser	Tyr	Ser	Tyr	Thr	Gln	Val	Gly	Ser	Ser	Gly	Ala	Asp	Val	Glu	Lys
				485					490					495	
Leu	Ala	Lys	Pro	Leu	Pro	Tyr	Thr	Glu	Ser	Ser	Lys	Thr	Ala	Pro	Met
			500					505					510		
Glr	Val	Lev	Phe	Ser	Glv	Glu	Ala	Thr	His	Ara	Lvs	Tvr	Tyr	Ser	Thr

	51	5				520	1				52	5		
ምስ <u>ታ</u> ዩ			. To	ı Tar				. 3	- <b>0</b> 1.				<b></b>	1
	is Gl 30	у ка	a De	u Det			/ GII	ı ALÇ	3 GTI		_	a AL	у те	u 11
		A		<b></b>	535		-3	<b>~</b> 3.		540	U			
	et Ty	r Arg	j Asj			∋ GIr	i Gir	J GT						
545				550	,				555	•				
<210>	129													
<211>														
<212>														
	Homo	sapi	ens											
<400>														
Met G		r Gln	. His	: Ser	Ala	Ala	Ala	Ara	Pro	Ser	Ser	· Cvs	Ara	r Arc
1	•		5					10				-1-	15	-
Lys G	ln Glı	gaA ı			Asp	Glv	Leu			Glu	Aro	Glu		
•		20		3			25					30	<b></b>	
Glu A	la Ile	a Ala	Gln	Phe	Pro	Tvr			Phe	Thr	Glv		Asp	Ser
	35					40					45			
Ile T	hr Cys	Leu	Thr	Cys	Gln		Thr	Glv	Tvr	Ile			Glu	G1n
	50			-	55	2				60				
Val A	sn Glu	ı Leu	Val	Ala	Leu	Ile	Pro	His	Ser		Gln	Arq	Leu	Ara
65				70					75	_		_		80
Pro G	ln Arg	Thr	Lys	Gln	Tyr	Val	Leu	Leu	Ser	Ile	Leu	Leu	Cys	Leu
			85		-			90					- 95	
Leu A	la Ser	Gly	Leu	Val	Val	Phe	Phe	Leu	Phe	Pro	His	Ser	Va1	Leu
		100					105					110		
Val As	p Asp	Asp	Gly	Ile	Lys	Val	Val	Lys	Val	Thr	Phe	Asn	Lys	Gln
	115					120		_			125		_	
Asp Se	r Leu	Val	Ile	Leu	Thr	Ile	Met	Ala	Thr	Leu	Lys	Ile	Arg	Asn
13					135					140			•	
Ser As	n Phe	Tyr	Thr	Val	Ala	Val	Thr	Ser	Leu	Ser	Ser	Gln	Ile	Gln
145				150					155					160
Tyr Me	t Asn	Thr	Val	Val	Ser	Thr	Tyr	Val	Thr	Thr	Asn	Val	Ser	Leu
			165					170					175	
Ile Pr	o Pro	Arg	Ser	Glu	Gln	Leu	Val	Asn	Phe	Thr	Gly	Lys	Ala	Glu
		180					195					100		

WO 00/29448 PCT/JP99/06412

#### 202/233

<210> 130

<211> 174

<212> PRT

<213> Homo sapiens

<400> 130

Met Gln Ala Pro Ala Phe Arg Asp Lys Lys Gln Gly Val Ser Ala Lys

1 5 10 15

Asn Gln Gly Ala His Asp Pro Asp Tyr Glu Asn Ile Thr Leu Ala Phe
20 25 30

Lys Asn Gln Asp His Ala Lys Gly Gly His Ser Arg Pro Thr Ser Gln
35 40 45

Val Pro Ala Gln Cys Arg Pro Pro Ser Asp Ser Thr Gln Val Pro Cys
50 55 60

Trp Leu Tyr Arg Ala Ile Leu Ser Leu Tyr Ile Leu Leu Ala Leu Ala
65 70 75 80

Phe Val Leu Cys Ile Ile Leu Ser Ala Phe Ile Met Val Lys Asn Ala 85 . 90 95

Glu Met Ser Lys Glu Leu Leu Gly Phe Lys Arg Glu Leu Trp Asn Val

Ser Asn Ser Val Gln Ala Cys Glu Glu Arg Gln Lys Arg Gly Trp Asp 115 120 125

Ser Val Gln Gln Ser Ile Thr Met Val Arg Ser Lys Ile Asp Arg Leu

130 135 140

Glu Thr Thr Leu Ala Gly Ile Lys Asn Ile Asp Thr Lys Val Gln Lys
145 150 155 160

Ile Leu Glu Val Leu Gln Lys Met Pro Gln Ser Ser Pro Gln



165 170

<210> 131 <211> 1908 <212> DNA

<213> Homo sapiens

<400> 131

atgaccacgt ggagcctccg gcggaggccg gcccgcacgc tgggactcct gctgctggtc 60 gtettggget teetggtget tegeaggetg gaetggagea eeetggteee tetgeggete 120 egecategae agetgggget geaggeeaag ggetggaaet teatgetgga ggatteeace 180 ttetggatet tegggggete catecaetat tteegtgtge ceagggagta etggagggae 240 egectgetga agatgaagge etgtggettg aacaccetca ceacctatgt teegtggaac 300 etgeatgage cagaaagagg caaatttgac ttetetggga acetggacet ggaggeette 360 gtectgatgg cegeagagat egggetgtgg gtgattetge gtecaggece etacatetge 420 agtgagatgg accteggggg cttgcccagc tggctactcc aagaccctgg catgaggctg 480 aggacaactt acaagggett cacegaagca gtggacettt attttgacca eetgatgtee 540 agggtggtgc cactecagta caagegtggg ggaeetatea ttgeegtgea ggtggagaat 600 gaatatggtt cctataataa agaccccgca tacatgccct acgtcaagaa ggcactggag 660 gaccgtggca ttgtggaact gctcctgact tcagacaaca aggatgggct gagcaagggg 720 attgtccagg gagtcttggc caccatcaac ttgcagtcaa cacacgagct gcagctactg 780 accacettte tetteaacgt eeaggggaet eageceaaga tggtgatgga gtaetggaeg 840 gggtggtttg actcgtgggg aggccctcac aatatcttgg attcttctga ggttttgaaa 900 acceptatety ccattetyga cyccogotice tecateaace tetacatett ccaegyagge 960 accaactttg getteatgaa tggageeatg caetteeatg actacaagte agatgteace 1020 agctatgact atgatgctgt gctgacagaa gccggcgatt acacggccaa gtacatgaag 1080 cttcgagact tcttcggctc catctcaggc atccctctcc ctcccccacc tgaccttctt 1140 eccaagatge egtatgagee ettaaegeea gtettgtace tgtetetgtg ggaegeete 1200 aagtacctgg gggagccaat caagtctgaa aagcccatca acatggagaa cctgccagtc 1260 aatgggggaa atggacagtc cttcgggtac attctctatg agaccagcat cacctcgtct 1320 ggcatcctca gtggccacgt gcatgatcgg gggcaggtgt ttgtgaacac agtatccata 1380 ggattettgg actacaagac aacgaagatt getgteeece tgatecaggg ttacacegtg 1440 ctgaggatct tggtggagaa tcgtgggcga gtcaactatg gggagaatat tgatgaccag 1500 cgcaaaggct taattggaaa tctctatctg aatgattcac ccctgaaaaa cttcagaatc 1560 tatagcctgg atatgaagaa gagcttcttt cagaggttcg gcctggacaa atggagttcc 1620 ctcccagaaa cacccacatt acctgctttc ttcttgggta gcttgtccat cagetccacc 1680

180

#### 204/233

ccttgtgaca cctttctgaa	gctggagggc	tgggagaagg	gggttgtatt	catcaatggc	1740
cagaaccttg gacgttactg	gaacattgga	ccccagaaga	cgctttacct	cccaggtccc	1800
tggttgagca gcggaatcaa	ccaggtcatc	gtttttgagg	agacgatggc	gggccctgca	1860
ttacagttca cggaaacccc	ccacctgggc	aggaaccagt	acattaag		1908
<210> 132					
<211> 954					
<212> DNA					
<213> Homo sapiens					
<400> 132					
atggttgage teatgtteee	gctgttgctc	ctccttctgc	cetteettet	gtatatggct	60
gcgccccaaa tcaggaaaat	gctgtccagt	ggggtgtgta	catcaactgt	teagetteet	120
gggaaagtag ttgtggtcac	aggagctaat	acaggtatcg	ggaaggagac	agccaaagag	180
ctggctcaga gaggagctcg	agtatattta	gcttgccggg	atgtggaaaa	gggggaattg	240
gtggccaaag agatccagac	cacgacaggg	aaccagcagg	tgttggtgcg	gaaactggac	300
ctgtctgata ctaagtctat	tcgagctttt	gctaagggct	tcttagctga	ggaaaagcac	360
ctccacgttt tgatcaacaa	tgcaggagtg	atgatgtgtc	cgtactcgaa	gacagcagat	420
ggetttgaga tgcacatagg	agtcaaccac	ttgggtcact	tectectaac	ccatctgctg	480
ctagagaaac taaaggaatc	agccccatca	aggatagtaa	atgtgtcttc	cctcgcacat	540
cacctgggaa ggatccactt	ccataacctg	cagggcgaga	aattctacaa	tgcaggcctg	600
gcctactgtc acagcaagct	agccaacatc	ctcttcaccc	aggaactggc	ccggagacta	660
aaaggctctg gcgttacgac	gtattctgta	caccctggca	cagtccaatc	tgaactggtt	720
eggeactcat ettteatgag	atggatgtgg	tggcttttct	cctttttcat	caagactcct	780
cagcagggag cccagaccag	cctgcactgt	gccttaacag	aaggtcttga	gattctaagt	840
gggaatcatt tcagtgactg	tcatgtggca	tgggtctctg	cccaagetcg	taatgagact	900
atagcaaggc ggctgtggga	cgtcagttgt	gacetgetgg	gcctcccaat	agac	954
<210> 133					
<211> 246					
<212> DNA					
<213> Homo sapiens					
<400> 133					
atggccttta ccctgtactc					60
gtgctgcacg aggagcgatt	cctcaagaac	attggctggg	gaacagacca	gggaattggt	120

ggatttggag aagagccggg aattaaatca cagctaatga accttattcg atctgtaaga

WO 00/29448 PCT/JP99/06412

accgtgatga	gagtgccatt	gataatagta	aactcaattg	caattgtgtt	acttttatta	240
tttgga						246
<210> 134						
<211> 741						
<212> DNA						
<213> Homo	sapiens					-
<400> 134						
atgcatcttg	cacgtctggt	cggetectge	tecetectte	tgctactggg	ggeeetgtet	60
ggatgggcgg	ccagcgatga	ccccattgag	aaggtcattg	aagggatcaa	ccgagggctg	120
agcaatgcag	agagagaggt	gggcaaggcc	ctggatggca	tcaacagtgg	aatcacgcat	180
gccggaaggg	aagtggagaa	ggttttcaac	ggacttagca	acatggggag	ccacaccggc	240
aaggagttgg	acaaaggcgt	ccaggggctc	aaccacggca	tggacaaggt	tgcccatgag	300
atcaaccatg	gtattggaca	agcaggaaag	gaagcagaga	agcttggcca	tggggtcaac	360
aacgctgctg	gacaggccgg	gaaggaagca	gacaaagcgg	tccaagggtt	ccacactggg	420
gtccaccagg	ctgggaagga	agcagagaaa	cttggccaag	gggtcaacca	tgctgctgac	480
caggctggaa	aggaagtgga	gaagcttggc	caaggtgccc	accatgctgc	tggccaggcc	540
gggaaggagc ·	tgcagaatgc	tcataatggg	gtcaaccaag	ccagcaagga	ggccaaccag	600
ctgctgaatg	gcaaccatca	aagcggatct	tccagccatc	aaggagggc	cacaaccacg	660
ccgttagcct	ctggggcctc	ggtcaacacg	cctttcatca	accttcccgc	cctgtggagg	720
agegtegeea a	acatcatgcc	c				741
<210> 135						
<211> 618						
<212> DNA						
<213> Homo a	sapiens					
<400> 135		•				
atggcccca g	gecacetgte	agtgcgggag	atgagggaag	atgagaagcc	cctggtgctg	60
gagatgctga a	aggeeggegt	gaaggacacg	gaaaaccgcg	tggccctcca	tgeettgaea	120
cggccgccgg c	ecctgctcct	cctggcggcg	gccagcagcg	gcctgcgctt	tgteetgget	180
teettegeee t	ggeeeteet	cctgccggtg	tteetggetg	tggccgccgt	gaagetggge	240
ctgegggeee g	gatggggctc	gctgcctccg	ccgggtggcc	tggggggccc	ctgggtggcc	300
gtgegggget e	ecggtgacgt	gtgtggggtc	ctggctctgg	cccctggcac	aaatgcaggg	360
gacggggccc g	ggtcacccg	cctgtctgtc	tetegetgge	accgccgccg	gggcgtgggc	420
aggaggetge t	ggeettege	ggaggcccgg	getegggeet	gggctggggg	catgggggag	480

eccegggece ggetegtggt eccegtgg	et gtggccgcct ggggggtggg agggatgctg 540	)
gagggetgtg getaceagge egaggggg	gc tggggctgcc tgggctacac gctggtgagg 600	)
gaattcagca aagacctg	618	}
<210> 136		
<211> 1296		
<212> DNA		
<213> Homo sapiens		
<400> 136		
atggacgcca gatggtgggc agtggtgg	tg ctggctgcgt tcccctccct aggggcaggt 60	,
ggggagacte eegaageeee teeggagte	ca tggacccage tatggttett cegatttgtg 120	,
gtgaatgetg ctggetatge cagetttat	tg gtacctggct acctcctggt gcagtacttc 180	ı
aggoggaaga actacotgga gacoggtag	gg ggcctctgct ttcccctggt gaaagcttgt 240	i
gtgtttggca atgagcccaa ggcctctga	at gaggttcccc tggcgccccg aacagaggcg 300	ł
gcagagacca ccccgatgtg gcaggccct	tg aagetgetet tetgtgeeae agggeteeag 360	
gtgtcttate tgacttgggg tgtgctgca	ag gaaagagtga tgacccgcag ctatggggcc 420	
acagecacat cacegggtga gegetttad	cg gactegeagt teetggtget aatgaacega 480	
gtgctggcae tgattgtgge tggcctctc	ce tgtgttetet geaageagee eeggeatggg 540	
gcacccatgt accggtactc ctttgccac	ge ctgtccaatg tgcttagcag ctggtgccaa 600	
tacgaagete ttaagttegt cagetteed	ce acceaggtge tggccaagge ctctaaggtg 660	
atecetgtca tgetgatggg aaagettgt	tg teteggegea getaegaaca etgggagtae 720	
ctgacageca cacteatete cattggggt	te ageatgttte tgetatecag eggaceagag 780	
ccccgcaget ccccagecae cacacteto	ca ggcctcatct tactggcagg ttatattgct 840	
tttgacagct tcacctcaaa ctggcagga	at gecetgiting ectataagat gicateggig 900	
cagatgatgt ttggggtcaa tttcttctc	ce tgeetettea eagtgggete aetgetagaa 960	
cagggggccc tactggaggg aacccgctt	te atggggggae acagtgagtt tgctgcccat 1020	
gecetgetae tetecatetg etcegeatg	gt ggccagctct tcatctttta caccattggg 1080	
cagtttgggg ctgccgtctt caccatcat	te atgacectee geeaggeett tgecateett 1140	
cttteetgee ttetetatgg ceacactgt	te actgtggtgg gagggctggg ggtggctgtg 1200	
gtetttgetg cectectget cagagteta	ac gegegggee gtetaaagea aeggggaaag 1260	
aaggetgtge etgttgagte teetgtgea	ag aaggtt 1296	

<210> 137

<211> 918

<212> DNA



<213> Homo sapiens	
<400> 137	
atggggcacc ggaccctggt cctgccctgg gtgctgctga ccttgtgtgt cactgcgggg	60
acceeggagg tgtgggttea agtteggatg gaggeeaeeg agetetegte etteaeeate	120
cgttgtgggt teetggggte tggeteeate teeetggtga etgtgagetg ggggggeeee	180
gacggtgctg gggggaccac gctggctgtg ttgcacccag aacgtggcat ccggcaatgg	240
gecetgete gecaggeeg etgggaaace cagageagea teteteteat eetggaagge	300
totggggcca gcagcccctg cgccaacacc accttctgct gcaagtttgc gtccttccct	360
gagggeteet gggaggeetg tgggageete eegeeeaget eagaceeagg getetetgee	420
ccgccgactc ctgcccccat tctgcgggca gacctggccg ggatcttggg ggtctcagga	480
gtectectet ttggetgtgt etaceteett eatetgetge geegacataa geacegeeet	540
geocetagge tecageegte eegcaceage eeccaggeac egagageacg ageatgggea	600
ccaagecagg ceteceagge tgetetteae gtecettatg ceaetateaa caecagetge	660
egeceageta etttggacae ageteaeece eatgggggge egteetggtg ggegteaete	720
cccaccacg ctgcacaccg gccccagggc cctgccgcct gggcctccac acccatccct	780
gcacgtggca gctttgtctc tgttgagaat ggactctacg ctcaggcagg ggagaggcct	840
ceteacactg gteeeggeet caetetttte eetgaceete gggggeeeag ggeeatggaa	900
ggaccettag gagttega	918
<210> 138	
<211> 1665	
<212> DNA	
<213> Homo sapiens	
<400> 138	
atgeaaagtt gtgaateeag tggtgaeagt geggatgaee eteteagteg eggeetaegg	- 60
agaaggggac agcetegtgt ggtggtgate ggegeegget tggetggeet ggetgeagee	120
aaagcacttc ttgagcaggg tttcacggat gtcactgtgc ttgaggcttc cagccacatc	180
ggaggccgtg tgcagagtgt gaaacttgga cacgccacct ttgagctggg agccacctgg	240
atccatgget cccatgggaa ccctatctat catctagcag aagccaacgg cctcctggaa	300
gagacaaccg atggggaacg cagcgtgggc cgcatcagcc tctattccaa gaatggcgtg	360
geotgetace ttaccaacca eggeegeagg atceccaagg acgtggttga ggaatteage	420
gatttataca acgaggteta taacttgacc caggagttet teeggeacga taaaccagte	480
aatgetgaaa gteaaaatag egtgggggtg tteaecegag aggaggtgeg taacegeate	540
aggaatgace etgacgacce agaggetace aagegeetga agetegeeat gateeageag	600
tacctgaagg tggagagctg tgagagcagc tcacacagca tggacgaggt gtccctgagc	660

gccttcgggg	agtggaccga	gatccccggc	gctcaccaca	teatececte	gggcttcatg	720
cgggttgtgg	agctgctggc	ggagggcatc	cctgcccacg	tcatccagct	agggaaacct	780
gtccgctgca	ttcactggga	ccaggcctca	gcccgcccca	gaggccctga	gattgagccc	840
cggggtgagg	gcgaccacaa	tcacgacact	ggggagggtg	gccagggtgg	agaggagccc	900
cgggggggca	ggtgggatga	ggatgagcag	tggtcggtgg	tggtggagtg	cgaggactgt	960
gagetgatee	cggcggacca	tgtgattgtg	accgtgtcgc	taggtgtgct	aaagaggcag	1020
tacaccagtt	tcttccggcc	aggeetgeee	acagagaagg	tggctgccat	ccaccgcctg	1080
ggcattggca	ccaccgacaa	gatetttetg	gaattcgagg	agcccttctg	gggccctgag	1140
tgcaacagcc	tacagtttgt	gtgggaggac	gaagcggaga	gccacaccct	cacctaccca	1200
cctgagctct	ggtaccgcaa	gatetgegge	tttgatgtcc	tctacccgcc	tgagcgctac	1260
ggccatgtgc	tgagcggctg	gatctgcggg	gaggaggccc	tegteatgga	gaagtgtgat	1320
gacgaggcag	tggccgagat	ctgcacggag	atgctgcgtc	agttcacagg	gaaccccaac	1380
attccaaaac	ctcggcgaat	cttgcgctcg	gcctggggca	gcaaccctta	ctteegegge	1440
tcctattcat	acacgcaggt	gggctccagc	ggggcggatg	tggagaaget	ggccaagccc	1500
ctgccgtaca	cggagagctc	aaagacagcg	cccatgcagg	tgctgttttc	cggtgaggcc	1560
acccaccgca	agtactattc	caccacccac	ggtgctctgc	tgtccggcca	gcgtgaggct	1620
gecegeetea	ttgagatgta	ccgagacctc	ttccagcagg	ggacc		1665

<210> 139

<211> 750

<212> DNA

<213> Homo sapiens

<400> 139

60	gcaagaagat	gcaggcgaaa	ccctcctcct	tgatgataga	agcattccgc	atggggtctc
120	gttcccatat	ccattgctca	caggaagaag	tgaacgagag	gtttgctggc	gacagggacg
180	aggctacatt	gccaggggac	tgtctcacgt	tagcatcacc	ccgggagaga	gtggaattca
240	gagattgcgc	acagtgatca	ttgatcccac	gttggtggct	aagtaaatga	ccaacagagc
300	ggcatctggt	tttgtctcct	tccatcctgc	tgtcctcctg	ctaagcaata	cctcagcgaa
360	catcaaagtg	atgatgacgg	gtccttgtgg	teegeattea	tetteetgtt	ttggtggttt
420	ggccaccctg	tcaccatcat	cttgtaattc	gcaagactcc	catttaataa	gtgaaagtca
480	ccagattcag	gcctgtccag	gcagtgacca	ctacacggtg	actccaactt	aaaatcagga
540	tccacctcgg	tctcccttat	actactaacg	tacatatgtg	cagtggtcag	tacatgaaca
600				taccgggaag		
660	_			tgagatcctg		
720				tggcctcatg		

gtggattgtg gaggaaattc cacagctatt	750
<210> 140	
<211> 522	
<212> DNA	
<213> Homo sapiens	
<400> 140	
atgcaagcac cagccttcag ggacaagaaa cagggggtct cagccaagaa tcaaggtgcc	60
catgacccag actatgagaa tatcaccttg gccttcaaaa atcaggacca tgcaaagggt	120
ggtcattcac gacccacgag ccaagtccca gcccagtgca ggccgccctc agactccacc	180
caggtcccct gctggttgta cagagccatc ctgagcctgt acatectect ggccctggcc	240
tttgtcctct gcatcatcct gtcagccttc atcatggtga agaatgctga gatgtccaag	300
gagetgetgg getttaaaag ggagetttgg aatgteteaa aeteegtaca ageatgegaa	360
gagagacaga agagaggctg ggattccgtt cagcagagca tcaccatggt caggagcaag	420
attgatagat tagagacgac attagcaggc ataaaaaaca ttgacacaaa ggtacagaaa	480
atcttggagg tgctgcagaa aatgccacag tcctcacctc aa	522
<210> 141	
<211> 3234	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (129)(2039)	
<400> 141	
aatgagegee ggegggeegg ttgeeeagge gaeeagegeg eggeteegee eeeegeggeg	60
aggeteeege gegeggetga gtgeggaetg gagtgggaae eegggteeee gegettagag	120
aacacgeg atg acc acg tgg agc ctc egg egg agg eeg gec ege acg etg	170
Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu	
1 5 10	
gga ctc ctg ctg ctc gtc ttg ggc ttc ctg gtg ctt cgc agg ctg	218
Gly Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu	
15 20 25 30	
gac tgg agc acc ctg gtc cct ctg cgg ctc cgc cat cga cag ctg ggg	266
Asp Trp Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly	

				35					40					45		
ctg	cag	gcc	aag	ggc	tgg	aac	ttc	atg	ctg	gag	gat	tcc	acc	ttc	tgg	314
Leu	Gln	Ala	Lys	Gly	Trp	Asn	Phe	Met	Leu	Glu	Asp	Ser	Thr	Phe	Trp	
			50					55					60			
atc	ttc	ggg	ggc	tcc	atc	cac	tat	ttc	cgt	gtg	ccc	agg	gag	tac	tgg	362
Ile	Phe	Gly	Gly	Ser	Ile	His	Tyr	Phe	Arg	Val	Pro	Arg	Glu	Tyr	Trp	
		65					70					75				
agg	gac	cgc	ctg	ctg	aag	atg	aag	gcc	tgt	ggc	ttg	aac	acc	ctc	acc	410
Arg	Asp	Arg	Leu	Leu	Lys	Met	Lys	Ala	Сув	Gly	Leu	Asn	Thr	Leu	Thr	
	80					85					90					
acc	tat	gtt	ccg	tgg	aac	ctg	cat	gag	cca	gaa	aga	ggc	aaa	ttt	gac	458
Thr	Tyr	Val	Pro	Trp	Asn	Leu	His	Glu	Pro	Glu	Arg	Gly	Lys	Phe	Asp	
95					100					105					110	
ttc	tct	<b>9</b> 99	aac	ctg	gac	ctg	gag	gcc	ttc	gtc	ctg	atg	gcc	gca	gag	506
Phe	Ser	Gly	Asn	Leu	qaA	Leu	Glu	Ala	Phe	Val	Leu	Met	Ala	Ala	Glu	
				115					120					125		
atc	ggg	ctg	tgg	gtg	att	ctg	cgt	cca	ggc	ccc	tac	atc	tgc	agt	gag	<b>5</b> 54
Ile	Gly	Leu	Trp	Val	Ile	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Cys	Ser	Glu	
			130					135					140			
atg	gac	ctc	ggg	ggc	ttg	ccc	agc	tgg	cta	ctc	caa	gac	cct	ggc	atg	602
Met	Asp	Leu	Gly	Gly	Leu	Pro	Ser	Trp	Leu	Leu	Gln	Asp	Pro	Gly	Met	
		145					150					155				
agg	ctg	agg	aca	act	tac	aag	ggc	ttc	acc	gaa	gca	gtg	gac	ctt	tat	650
Arg	Leu	Arg	Thr	Thr	Tyr	Lys	Gly	Phe	Thr	Glu	Ala	Val	Asp	Leu	Tyr	
	160					165					170					
ttt	gac	cac	ctg	atg	tcc	agg	gtg	gtg	cca	ctc	cag	tac	aag	cgt	aaa	698
Phe	Asp	His	Leu	Met	Ser	Arg	Val	Val	Pro	Leu	Gln	Tyr	Lys	Arg	Gly	
175					180					185					190	
gga	cct	atc	att	gcc	gtg	cag	gtg	gag	aat	gaa	tat	ggt	tcc	tat	aat	746
Gly	Pro	Ile	Ile	Ala	Val	Gln	Val	Glu	Asn	Glu	Tyr	Gly	Ser	Tyr	Asn	
				195					200					205		
aaa	gac	ccc	gca	tac	atg	ccc	tac	gtc	aag	aag	gca	ctg	gag	gac	cgt	794
Lys	Asp	Pro	Ala	Tyr	Met	Pro	Tyr	Val	Lys	Lys	Ala	Leu	Glu	Asp	Arg	
			210					215					220			
ggc	att	gtg	gaa	ctg	ctc	ctg	act	tca	gac	aac	aag	gat	ggg	ctg	agc	842

01,				·	Let	LCC	. 1111	. 561	. Ast	, Per	יעניי	. Wal	y GI	LTE	rer	
		22	5				230	)				235	5			
aag	999	g ati	t gtc	caç	gga	gto	ttç	g geo	acc	ato	aac	tte	g ca	g tca	a aca	890
Lys	Gly	/ Ile	e Val	Glr	Gly	<b>Val</b>	Let	a Ala	Thr	Ile	Ası	ı Leı	ı Glı	n Ser	Thr	
	240	)				245	1				250	)				
cac	gag	, ct	g cag	cta	ctg	acc	acc	ttt	cto	tto	aac	gto	cag	<b>9</b> 99	act	938
His	Glu	ı Let	ı Gln	Leu	Let	. Thr	Thr	Phe	Leu	Phe	Asr	val	Glr	a Gly	Thr	
255					260	)				265	•				270	
cag	ccc	aaq	, atg	gtg	atg	gag	tac	tgg	acg	<b>9</b> 99	tgg	ttt	gac	: tcg	tgg	986
Gln	Pro	Lys	Met	Val	Met	Glu	Tyr	Trp	Thr	Gly	Trp	Phe	Asp	Ser	Trp	
				275					280					285		
gga	ggc	cct	cac	aat	ato	ttg	gat	tet	tet	gag	gtt	ttg	aaa	acc	gtg	1034
Gly	Gly	Pro	His	Asn	Ile	Leu	Asp	Ser	Ser	Glu	Val	Leu	Lys	Thr	Val	
			290					295					300	ı		
tct	gcc	att	gtg	gac	gcc	ggc	tcc	tcc	atc	aac	ctc	tac	atg	tte	cac	1082
Ser	Ala	Ile	· Val	Asp	Ala	Gly	Ser	Ser	Ile	Asn	Leu	Tyr	Met	Phe	His	
		305					310					315				
gga	ggc	acc	aac	ttt	ggc	ttc	atg	aat	gga	gcc	atg	cac	ttc	cat	gac	1130
Gly	Gly	Thr	Asn	Phe	Gly	Phe	Met	Asn	Gly	Ala	Met	His	Phe	His	Asp	
	320					325					330					
tac	aag	tca	gat	gtc	acc	agc	tat	gac	tat	gat	gct	gtg	ctg	aca	gaa	1178
Tyr	Lys	Ser	Asp	Val	Thr	Ser	Tyr	Asp	Tyr	Asp	Ala	Val	Leu	Thr	Glu	
335					340					345					350	
								-	aag		-	_				1226
Ala	Gly	Asp	Tyr	Thr	Ala	Lys	Tyr	Met	Lys	Leu	Arg	Asp	Phe	Phe	Gly	
				355					360					365		
									CCA		_					1274
Ser	Ile	Ser		Ile	Pro	Leu	Pro		Pro	Pro	Asp	Leu	Leu	Pro	Lys	
			370					375					380			
									ttg							1322
Met	Pro		Glu	Pro	Leu	Thr		Val	Leu	Tyr	Leu	Ser	Leu	Trp	Asp	
		385					390					395				
									aag		_	_				1370
Ala		Lys	Tyr	Leu			Pro	Ile	Lys			Lys	Pro	Ile	Asn	
	400					405					410					

atg	gag	aac	ctg	cca	gtc	aat	ggg	gga	aat	gga	cag	tee	ttc	ggg	tac	1418
Met	Glu	Asn	Leu	Pro	Val	Asn	Gly	Gly	Asn	Gly	Gln	Ser	Phe	Gly	Tyr	
415					420					425					430	
att	ctc	tat	gag	acc	agc	atc	acc	tcg	tct	ggc	atc	ctc	agt	ggc	cac	1466
Ile	Leu	Tyr	Glu	Thr	Ser	Ile	Thr	Ser	Ser	Gly	Ile	Leu	Ser	Gly	His	
				435					440					445		
gtg	cat	gat	cgg	ggg	cag	gtg	ttt	gtg	aac	aca	gta	tcc	ata	gga	ttc	1514
Val	His	Asp	Arg	Gly	Gln	Val	Phe	Val	Asn	Thr	Val	Ser	Ile	Gly	Phe	
			450					455					460			
ttg	gac	tac	aag	aca	acg	aag	att	gct	gtc	ccc	ctg	atc	cag	ggt	tac	1562
Leu	Asp	Tyr	Lys	Thr	Thr	Lys	Ile	Ala	Val	Pro	Leu	Ile	Gln	Gly	Tyr	
		465					470					475				
acc	gtg	ctg	agg	atc	ttg	gtg	gag	aat	cgt	ggg	cga	gtc	aac	tat	agg	1610
Thr	Val	Leu	Arg	Ile	Leu	Val	Glu	Asn	Arg	Gly	Arg	Val	Asn	Tyr	Gly	
	480					485					490					
gag	aat	att	gat	gac	cag	cgc	aaa	ggc	tta	att	gga	aat	ctc	tat	ctg	1658
Glu	Asn	Ile	qeA	Asp	Gln	Arg	Lys	Gly	Leu	Ile	Gly	Asn	Leu	Tyr	Leu	
495					500					505					510	
aat	gat	tca	ccc	ctg	aaa	aac	ttc	aga	atc	tat	agc	ctg	gat	atg	aag	1706
Asn	Asp	Ser	Pro	Leu	Lys	Asn	Phe	Arg	Ile	Tyr	Ser	Leu	Asp	Met	Lys	
				515					520					525		
-	_					ttc										1754
Lys	Ser	Phe	Phe	Gln	Arg	Phe	Gly	Leu	Asp	Lys	Trp	Ser	Ser	Leu	Pro	
			530					535					540			
-						gct										1802
Glu	Thr	Pro	Thr	Leu	Pro	Ala	Phe	Phe	Leu	Gly	Ser		Ser	Ile	Ser	
		545					550		•			<b>\$55</b>				
			_	-		ttt										1850
Ser	Thr	Pro	Суз	Asp	Thr	Phe	Leu	Lys	Leu	Glu	Gly	Trp	Glu	ГЛЗ	Gly	
	560					565					570					
						cag										1898
Val	Val	Phe	Ile	Asn	Gly	Gln	Asn	Leu	Gly	Arg	Tyr	Trp	Asn	Ile		
575					580					585					590	
						ctc										1946
Pro	Gln	Lys	Thr	Leu	Tyr	Leu	Pro	Gly	Pro	Trp	Leu	Ser	Ser	Gly	Ile	

WO 00/29448 PCT/JP99/06412

#### 213/233

595	600	605	
aac cag gtc atc gtt tt	t gag gag acg atg gcg	ggc cct gca tta cag	1994
Asn Gln Val Ile Val Pho	e Glu Glu Thr Met Ala	Gly Pro Ala Leu Gln	
610	615	620	
ttc acg gaa acc ccc cad	e ctg gge agg aac cag	tac att aag tgag	2040
Phe Thr Glu Thr Pro His	s Leu Gly Arg Asn Gln	Tyr Ile Lys	
625	630	635	
cggtggcacc ccctcctgct	ggtgccagtg ggagactgcc	gcctcctctt gacctgaagc	2100
ctggtggctg ctgcccacc c	ectcactgca aaagcatctc	cttaagtage aacctcaggg	2160
actgggggct acagtctgcc c	ectgteteag eteaaaacee	taageetgea gggaaaggtg	2220
ggatggctct gggcctggct t	tgttgatga tggctttcct	acagecetge tettgtgeeg	2280
aggetgtegg getgteteta g	ggtgggage agetaateag	atcgcccagc ctttggccct	2340
cagaaaaagt gctgaaacgt g	cccttgcac cggacgtcac	agccctgcga gcatctgctg	2400
gacteaggeg tgetetttge t	ggtteetgg gaggettgge	cacatccctc atggccccat	2460
tttatccccg aaatcctggg t	gtgtcacca gtgtagaggg	tggggaaggg gtgtctcacc	2520
tgagetgaet ttgttettee t	tcacaacct tctgagcctt	ctttgggatt ctggaaggaa	2580
ctcggcgtga gaaacatgtg a	cttcccctt tcccttccca	ctcgctgctt cccacagggt	2640
gacaggetgg getggagaaa e	agaaateet caeeetgegt	cttcccaagt tagcaggtgt	2700
ctctggtgtt cagtgaggag g	acatgtgag tcctggcaga	agccatggcc catgtctgca	2760
catccaggga ggaggacaga a	ggcccagct cacatgtgag	tcctggcaga agccatggcc	2820
catgtctgca catccaggga g	gaggacaga aggcccagct	cacatgtgag tcctggcaga	2880
agecatggee catgtetgea e	atccaggga ggaggacaga	aggcccagct cacatgtgag	2940
tcctggcaga agccatggcc c	atgtctgca catccaggga	ggaggacaga aggcccagct	3000
cacatgtgag tcctggcaga a	gecatggee catgtetgea	catccaggga ggaggacaga	3060
aggeceaget eagtggeece e	gececeae eecceaegee	cgaacagcag gggcagagca	3120
geceteette gaagtgtgte e	aagtccgca tttgagcctt	gttctggggc ccagcccaac	3180
acctggcttg ggctcactgt co	ctgagttge agtaaageta	taaccttgaa tcac	3234

<210> 142

<211> 2490

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (70)...(1026)

<400> 14	2
----------	---

aga	aaga	gaa	gcca	tagt	.cg g	cgag	caac	g ct	ggag	gcato	e cc	gctcl	ggt	gccg	jctg	cag	60
ccg	gcag	ag a	tg g	tt g	ag c	tc a	tg t	tc c	eg c	tg t	tg	ctc o	ete c	ett c	tg	ccc	11
		M	et V	al G	lu L	eu M	et P	he P	ro I	eu I	eu	Leu I	eu I	æu I	eu	Pro	
			1				5					10					
ttc	ctt	ctg	tat	atg	gct	gcg	ccc	caa	ato	ago	g aa	a ato	, ctg	, tec	ag	t	159
Phe	Leu	Leu	Tyr	Met	Ala	Ala	Pro	Gln	Ile	Arg	J Ly	s Met	: Lev	ı Ser	Se	r	
15					20	l				25	5	,			3	0	
ggg	gtg	tgt	aca	tca	act	gtt	cag	ctt	cct	ggg	g aa	a gta	gtt	gtg	gt	C	207
Gly	Val	Суз	Thr	Ser	Thr	Val	Gln	Leu	Pro	Gly	Ly	s Val	. Val	. Val	Va	1	
				35					40	)				45			
aca	gga	gct	aat	aca	ggt	atc	<b>ggg</b>	aag	gag	aca	ge g	c aaa	gag	ctg	gc	t	255
Thr	Gly	Ala	Asn	Thr	Gly	Ile	Gly	ГЛа	Glu	Thr	Ala	a Lys	Glu	Leu	Al	a	
			50					55					60	)			
cag	aga	gga	gct	cga	gta	tat	tta	gct	tgc	cgg	gat	t gtg	gaa	aag	gg	g	303
Gln	Arg	Gly	Ala	Arg	Val	Tyr	Leu	Ala	Суз	Arg	Asj	p Val	Glu	Lys	Gl	Y	
		65					70					75					
gaa	ttg	gtg	gcc	aaa	gag	atc	cag	acc	acg	aca	gg	g aac	cag	cag	gt	g	351
Glu	Leu	Val	Ala	Lys	Glu	Ile	Gln	Thr	Thr	Thr	Gly	y Asn	Gln	Gln	Va.	1	
	80					85					9(	_					
-	-											t att					399
Leu	Val	Arg	Lys	Leu	Asp	Leu	Ser	Asp	Thr	Lys	Sea	r Ile	Arg	Ala	Phe	9	
95					100					105	ı				110	0	
_	_					_						gtt					447
Ala	Lys	Gly	Phe	Leu	Ala	Glu	Glu	Lys	His	Leu	His	yal	Leu		Ası	n	
				115					120					125			
	-		-	_	_		_					a gca					495
Asn	Ala	Gly	Val	Met	Met	Cya	Pro	Tyr	Ser	Lys	Thi	r Ala			Phe	€	
			130					135					140				
-	_				_							e ctc					543
Glu	Met	His	Ile	Gly	Val	Asn	His	Leu	Gly	His	Phe	Leu	Leu	Thr	His	3	
		145					150					155					
_	_											a agg					591
Leu	Leu	Leu	Glu	Lys	Leu	ГЛа	Glu	Ser	Ala	Pro		: Arg	Ile	Val	Ası	3	
	160					165					170	)					

gcg	ret	ree	GEG	gca	cat	cac	ctg	gga	agg	atc	cac	ttc	cat	aac	ctg	63
Val	Ser	Ser	Leu	Ala	His	His	Leu	Gly	Arg	Ile	His	Phe	His	Asn	Leu	
175					180					185					190	
cag	ggc	gag	aaa	ttc	tac	aat	gca	ggc	ctg	gcc	tac	tgt	cac	agc	aag	68
Gln	Gly	Glu	Lys	Phe	Tyr	Asn	Ala	Gly	Leu	Ala	Tyr	Cys	His	Ser	Lys	
				195					200					205		
cta	gcc	aac	atc	ctc	ttc	acc	cag	gaa	ctg	gcc	cgg	aga	cta	aaa	ggc	73
Leu	Ala	Asn	Ile	Leu	Phe	Thr	Gln	Glu	Leu	Ala	Arg	Arg	Leu	Lys	Gly	
			210					215					220			
tct	ggc	gtt	acg	acg	tat	tct	gta	cac	cct	ggc	aca	gtc	caa	tct	gaa	783
Ser	Gly	Val	Thr	Thr	Tyr	Ser	Val	His	Pro	Gly	Thr	Val	Gln	Ser	Glu	
		225					230					235				
ctg	gtt	cgg	cac	tca	tct	ttc	atg	aga	tgg	atg	tgg	tgg	ctt	ttc	tcc	831
Leu	Val	Arg	His	Ser	Ser	Phe	Met	Arg	Trp	Met	Trp	Trp	Leu	Phe	Ser	
	240					245					250					
ttt	ttc	atc	aag	act	cct	cag	cag	gga	gcc	cag	acc	agc	ctg	cac	tgt	879
Phe	Phe	Ile	Lys	Thr	Pro	Gln	Gln	Gly	Ala	Gln	Thr	Ser	Leu	His	Сув	
255					260					265					270	
gcc	tta	aca	gaa	ggt	ctt	gag	att	cta	agt	ggg	aat	cat	ttc	agt	gac	927
Ala	Leu	Thr	Glu	Gly	Leu	Glu	Ile	Leu	Ser	Gly	Asn	His	Phe	Ser	Asp	
				275					280					285		
tgt	cat	gtg	gca	tgg	gtc	tct	gcc	caa	gct	cgt	aat	gag	act	ata	gca	975
Cys	His	Val	Ala	Trp	Val	Ser	Ala	Gln	Ala	Arg	Asn	Glu	Thr	Ile	Ala	
			290					295					300			
agg	cgg	ctg	tgg	gac	gtc	agt	tgt	gac	ctg	ctg	ggc	ctc	cca	ata	gac	1023
Arg .	Arg	Leu	Trp	Asp	Val	Ser	Cys	Asp	Leu	Leu	Gly	Leu	Pro	Ile	Asp	
		305					310					315				
taac	agg	cagt	gcca	gt t	ggac	ccaa	g ag	aaga	ctgc	ago	agac	tac	acag	tact	tc	1080
ttgt	caaa	at g	attc	teet	t ca	aggt	tttc	aaa	acct	tta	gcac	aaag	ag a	gcaa	aacct	1140
tcca	gect	tg c	ctgc	ttgg	t gt	ccag	ttaa	aac	tcag	tgt	actg	ccag	at to	cgtc	taaat	1200
gtct	gtca	tg t	ccag	attt	a ct	ttgc	ttct	gtt	actg	cca	gagt	tact	ag a	gata	tcata	1260
atag	gata	ag a	agac	cctc	a ta	tgac	ctgc	aca	gctc	att	ttcc	ttct	ga a	agaa	actac	1320
tacc	tagg	ag a	atct	aagc	t at	agca	ggga	tga	ttta	tgc	aaat	ttga	ac ta	agct	tcttt	1380
gtte	acaa	tt c	agtto	cete	c ca	acca	acca	gtc	ttca	ctt	caag	aggg	cc ad	cact	gcaac	1440
tca	actt	aa c	ataa:	ataa	~ 88	adaci	raac	ton	aaaa	cad	aact.	tacca	78 G	rcat.	actac	1500

atcaccggag	gtcagtagtt	caagaccagc	ctggccaaca	tggtgaaacc	ccacctctac	1560
taaaaattgt	gtatatcttt	gtgtgtcttc	ctgtttatgt	gtgccaaggg	agtattttca	1620
caaagttcaa	aacagccaca	ataatcagag	atggagcaaa	ccagtgccat	ccagtcttta	1680
tgcaaatgaa	atgctgcaaa	gggaagcaga	ttctgtatat	gttggtaact	acccaccaag	1740
agcacatggg	tagcagggaa	gaagtaaaaa	aagagaagga	gaatactgga	agataatgca	1800
caaaatgaag	ggactagtta	aggattaact	agccctttaa	ggattaacta	gttaaggatt	1860
aatagcaaaa	gatattaaat	atgctaacat	agctatggag	gaattgaggg	caagcaccca	1920
ggactgatga	ggtcttaaca	aaaaccagtg	tggcaaaaaa	aaaaaaaaa	aaaaaaaaaa	1980
aaaaaaatcc	taaaaacaaa	caaacaaaaa	aaacaattct	tcattcagaa	aaattatctt	2040
agggactgat	attggtaatt	atggtcaatt	taataatatt	ttggggcatt	tecttacatt	2100
gtcttgacaa	gattaaaatg	tctgtgccaa	aattttgtat	tttatttgga	gacttcttat	2160
caaaagtaat	gctgccaaag	gaagtctaag	gaattagtag	tgttcccatc	acttgtttgg	2220
agtgtgctat	tctaaaagat	tttgatttcc	tggaatgaca	attatatttt	aactttggtg	2280
ggggaaagag	ttataggacc	acagtcttca	cttctgatac	ttgtaaatta	atcttttatt	2340
gcacttgttt	tgaccattaa	gctatatgtt	tagaaatggt	cattttacgg	aaaaattaga	2400
aaaattctga	taatagtgca	gaataaatga	attaatgttt	tacttaattt	atattgaact	2460
gtcaatgaca	aataaaaatt	ctttttgatt				2490

<210> 143

<211> 1465

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (84)...(332)

<400> 143

gaaggegeeg geegtggagg e	gecaegtee ettgeggegg egggagagaa ategettgga	60
cttcggggcg gcctcggacg g	gee atg gee ttt acc etg tac tea etg etg	110
	Met Ala Phe Thr Ieu Tvr Ser Ieu Ieu	

1 5

cag gea gec etg etc tgc gtc aac gec atc gea gtg etg eac gag gag

Gln Ala Ala Leu Leu Cys Val Asn Ala Ile Ala Val Leu His Glu Glu

10

15

20

25

cga ttc etc aag aac att ggc tgg gga aca gac cag gga att ggt gga

Arg Phe Leu Lys Asn Ile Gly Trp Gly Thr Asp Gln Gly Ile Gly Gly



30 35 40	
ttt gga gaa gag ccg gga att aaa tca cag cta atg aac ctt att cga	254
Phe Gly Glu Glu Pro Gly Ile Lys Ser Gln Leu Met Asn Leu Ile Arg	Ī
45 50 55	
tot gta aga acc gtg atg aga gtg cca ttg ata ata gta aac tca att	302
Ser Val Arg Thr Val Met Arg Val Pro Leu Ile Ile Val Asn Ser Ile	
60 65 70	
gca att gtg tta ctt tta tta ttt gga tgaatatcag tggagaaaat g	350
Ala Ile Val Leu Leu Leu Phe Gly	
75 80	
gagactcaga agaggacatg ccagtagaag ttattacttt ggtcattatt ggaatatt	ta 410
tatettaget ggetgacett geacttgtea aaaatgtaaa getgaaaata aaaccagg	gt 470
ttctatttat ctgtttttt ttttaatgtt gcacttgtag tttcattaca aaagatca	ga 530
tcatgaaagg cagtaactct ccaggactgg aatatctgat tgctcagtgt taatagta	gt 590
teatgetgtg gtgagattgt taaaagggtg caagactgtt gettetettt ttttagat	at 650
ttttctatct ctcacttctc agggatgaaa ttcttttca aagttttgaa gttccttg	ca 710
acttagecat gatgtgagtg gttateceta gataaaatta aaaggatttt taaaaagta	aa 770
ttactgcaca taaaatgata aataggtaat ttgaataatt ttattttaag ctccttgg	tt 830
aattattttg totattgtot cagotataaa ttoaaattta tacatactat tgagtatta	aa 890
tattetetga ttteagggag aattetgtea gteacatgat gattatgttt ttgtttaac	ca 950
ttettteeat geaettgtta ttttattaat ttgeetgaat gatgagaeea gaceagtg	tc 1010
tacagatttt cattgtcaga aaaatctata agtctgccct ttttacaatg atgattta	aa 1070
aaaaacaaca gcgtaaatat tagcccacaa gagcagtcct aaacaatcac aattacac	tg 1130
tactacccaa gaagactgtt tattgtgaag catttacctt tcaaaaaatc attacatt	tc 1190
tatttcttgg tggagcagca cattgtggag tgtgattctt aattcttcat tgagtttgt	tc 1250
aataggacat tgatgctgga taggttgtct tttgttttta tgtctcagac catcttgtg	ga 1310
gattgtttgc ctatctcata atacagtttt atgcagaaag gttgaaacta tgtaaatg	gt 1370
ttttatggaa attatcagtt acaatatttt aaaggtgtag aatggcatct ttgtttats	ag 1430
gagaacattt gtaaataaag ttaaatttct aagtc	1465

<210> 144

<211> 917

<212> DNA

<213> Homo sapiens

<220>

<22	1> C	DS														
<22	2> (	32).	(7	75)												
<40	0> 1	44		-												
tct	ctgc	atc	cttc	ccga	cc t	tece	agca	a t	atg	cat	ctt	gca	cgt	ctg	gtc	52
								:	Met	His	Leu	Ala	Arg	Leu	Val	
									1				5			
ggc	tcc	tgc	tcc	ctc	ctt	ctg	cta	ctg	ggg	gcc	ctg	tct	gge	tgg	geg	100
Gly	Ser	Суз	Ser	Leu	Leu	Leu	Leu	Leu	Gly	Ala	Leu	Ser	Gly	TIF	Ala	
		10					15					20	ı			
gcc	agc	gat	gac	ccc	att	gag	aag	gtc	att	gaa	<b>333</b>	atc	aac	: cga	ggg	148
Ala	Ser	Asp	Asp	Pro	Ile	Glu	Lys	Val	Ile	Glu	Gly	Ile	Asr	Arg	Gly	
	25					30					35					
ctg	agc	aat	gca	gag	aga	gag	gtg	ggc	aag	gcc	ctg	gat	ggo	atc	aac	196
Leu	Ser	Asn	Ala	Glu	Arg	Glu	Val	Gly	Lys	Ala	Leu	Asp	Gly	' Ile	Asn	
40					45					50					55	
_								gaa								244
Ser	Gly	Ile	Thr	His	Ala	Gly	Arg	Glu		Glu	Lys	Val	Phe			
				60					65					70		
				-				ggc								292
Leu	Ser	Asn		Gly	Ser	His	Thr	Gly	Lys	Glu	Leu	Asp			Val	
			75					80		•			85			340
								aag -								340
GIN	GTĀ		Asn	Hls	GIŊ	Met	-	Lys	Vaı	Ala	HIS		TTE	Asn	HIS	
		90					95					100	+			388
				-	-			gca								200
стХ	105	GIĀ	GIN	Ala	GTĀ	110	GIU	Ala	GIU	гÀв	115	GIĀ	птэ	GTĀ	var	
		t										200	<i>aaa</i>	ata	C83	436
						-	-	aag Lys								450
120	VOII	МД	ATG	GIĀ	125	AIQ	GŢŽ	тÃа	Giu	130	wab	цуs	ALG	vui	135	
	<b>++</b> ~	C2C	act	aaa		<b>C</b> 2C	C20	gct	aaa		ass	aca	aaa	222		484
								Ala								
<b>-1</b>	1116	******		140	VUL	11.25	<b>-</b>	ща	145	TYS	014			150		
aac	caa	gga	at.c		cat	act	get	gac		act	gga	aag	gaa		gag	532
						_		Asp	-	-						



			155					160					165			
aag	ctt	ggc	caa	ggt	gcc	cac	cat	gct	gct	ggc	cag	gcc	aaa	aag	gag	580
Lys	Leu	Gly	Gln	Gly	Ala	His	His	Ala	Ala	Gly	Gln	Ala	Gly	Lys	Glu	
		170					175					180				
ctg	cag	aat	gct	cat	aat	ggg	gtc	aac	caa	gcc	agc	aag	gag	gcc	aac	628
Leu	Gln	Asn	Ala	His	Asn	Gly	Val	Asn	Gln	Ala	Ser	Lys	Glu	Ala	Asn	
	185					190					195					
cag	ctg	ctg	aat	ggc	aac	cat	caa	agc	gga	tct	tcc	agc	cat	caa	gga	676
Gln	Leu	Leu	Asn	Gly	Asn	His	Gln	Ser	Gly	Ser	Ser	Ser	His	Gln	Gly	
200					205					210					215	
ggg	gcc	aca	acc	acg	ccg	tta	gcc	tct	ggg	gcc	tcg	gtc	aac	acg	cct	724
Gly	Ala	Thr	Thr	Thr	Pro	Leu	Ala	Ser	Gly	Ala	Ser	Val	Asn	Thr	Pro	
				220					225					230		
ttc	atc	aac	ctt	ccc	gcc	ctg	tgg	agg	agc	gtc	gcc	aac	atc	atg	CCC	772
Phe	Ile	Asn	Leu	Pro	Ala	Leu	Trp	Arg	Ser	Val	Ala	Asn	Ile	Met	Pro	
			235					240					245			
taas	ctg	g cat	ccgg	rcct	tgct	ggge	ıga e	taat	gtcg	ic co	ıttgt	caca	tca	agato	<b>jaca</b>	830
tgad	ctg	gag g	ggtt	.gggg	g to	19999	acag	gtt	tete	gaaa	tece	tgaa	igg g	ggtt	gtact	890
ggge	attte	jtg a	ataa	actt	g at	acac	t									917
<210	)> 14	15											•			
<211	> 13	06														
<212	> DN	IA.														
<213	> Hc	mo s	apie	ns												
<220	<b>&gt;</b>															
<221	> CI	S														
<222	> (7	4)	. (69	4)												
<400	> 14	5														
gaag	gacc	aa a	ggcg	accg	g tg	cagg	tgca	cga	egee	agc	tccc	ttct	gg g	gggc	egggg	60
cctg	19999	tt g	cc a	tg g	cc c	cc a	gc c	ac c	tg t	ca g	tg c	gg g	ag a	tg a	gg	109
			M	et A	la P	ro S	er H	is L	eu S	er V	al A	rg G	lu M	et A	rg	
				1				5					10			
gaa	gat	gag	aag	ccc	ctg	gtg	ctg	gag	atg	ctg	aag	gcc	ggc	gtg	aag	157
Glu	Asp	Glu :	Lys :	Pro :	Leu	Val :	Leu	Glu :	Met	Leu	Lys .	Ala	Gly	Val	Lys	
		15					20					25				

WO 00/29448 PCT/JP99/06412

gad	acq	g gaa	a aac	cgc	gto	gcc	cto	cat	gcc	ttg	g ace	ı cg	a cc	g cc	g gcc	205
Asj	Thi	Glu	ı Asn	Arg	Val	Ala	Leu	His	Ala	Leu	Thr	Arg	y Pro	) Pro	o Ala	
	30	)				35					40	)				
ct	gete	cto	ctg	gcg	geg	gcc	ago	ago	ggc	ctg	cgc	ttt	gto	cte	g get	253
Let	1 Let	Leu	Leu	Ala	Ala	Ala	Ser	Ser	Gly	Leu	Arg	Phe	Va]	Let	Ala	
45	•				50					55					60	
							_	_				_		_	gee	301
Ser	Phe	Ala	Leu	Ala	Leu	Leu	Leu	Pro	Val	Phe	Leu	Ala	Val	. Ala	Ala	
				65					70					75		
													_	_	ggt	349
Val	. Lys	Leu		Leu	Arg	Ala	Arg	Trp	Gly	Ser	Leu	Pro	Pro	Pro	Gly	
			80					85					90			
									cgg							397
Gly	Leu		Gly	Pro	Trp	Val		Val	Arg	Gly	Ser		Asp	Val	Суз	
		95					100					105				
							_		aat	_		_		-		445
GTĀ		ren	ALA	Leu	ALa		GTÅ	Thr	Asn	Ala		Asp	GIĀ	Ala	Arg	
	110					115		•	•		120					400
									cac							493
125	тиц	ALG	rea	ser	130	Ser	Arg	TIP	His	135	Arg	Arg	GTĀ	vaı	140	
	add	cta	cta	<i>a</i> aa		<b>~~~</b>	<b>~~~</b>	<i>aa</i> a	000		088	<b>600</b>	+~~	aat		541
									egg Arg							241
•		204		145	1116	niu.	GLU	ALG	150	ALG	мy	ALG	TTP	155	GIĀ	
aac	ato	aaa	ааа		caa	acc.	caa	ctc	gtg	atc	ccc	ata	act		acc	589
									Val	-					-	303
			160		5		,	165					170			
gcc	tgg	qqq		gga	aaa	ato	cta		ggc	tat	aac	tac		acc	gag	637
									Gly							
	_	175		-	_		180		-	•	•	185				
ggg	ggc	tgg	ggc	tgc	ctg	gge	tac	acg	ctg	gtg	agg	gaa	ttc	agc	aaa	685
									Leu '							
	190	-	_			- 195	_				200				_	
gac	ctg	tgaa	gcta	ca g	actg	acag	c ca	gggc	aggg	gag	gagg	gag	gggc	gcca	ıg	740
Agn				_	_	•							<b>-</b>	-	-	

205	
cacctgatga tegectactg tetgegggtt ettttacetg etetecetea gtgagteete	800
aaccaccctg ggcccagaaa cagaggcctg ccgaggggag gagcctggcc tctgtccacc	860
cgtcagcagt gtgaagtctg ttgtgtttga gcttctcaga gtggaatgac tccttttcct	920
tectggeect egggggeete tegaggteag cetetecaae ecetacetea geteetgtet	980
gcactgagaa accteccegg gtgatgtctg caaagtctgt gctgtccgtg ccccaggctg	1040
ggagagctat ctggggaggg ggagaggagg ccgagcagaa tacaccccag agttagggtt	1100
tgcgactccg cctccctggg acctggattg ggtcagatgc ctgtccttgg aggggacaag	1160
gttgactgct taggaggcgc gacgcacagg gctgccaggc ctggcccctc tctgggaagg	1220
ttgagagetg agaegggeag ceetgteeet teeteeagat eegtetggtt ttttacaeeg	1280
tttgttaata aageetgaaa cegett	1306
<210> 146	
<211> 2022	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (118)(1416)	
<400> 146	
cttccgctgg ccgctggctc gctggccgct cctggaggcg gcggcgggag cgcagggggc	60
gegeggeeeg gggaetegea tteeceggtt ececeteeae eceaegegge etggaee	117
atg gae gee aga tgg tgg gea gtg gtg gtg etg get geg tte eec tee	165
Met Asp Ala Arg Trp Trp Ala Val Val Leu Ala Ala Phe Pro Ser	
1 5 10 15	
cta ggg gca ggt ggg gag act ccc gaa gcc cct ccg gag tca tgg acc	213
Leu Gly Ala Gly Glu Thr Pro Glu Ala Pro Pro Glu Ser Trp Thr	
20 25 30	
cag cta tgg ttc ttc cga ttt gtg gtg aat gct gct ggc tat gcc agc	261
Gln Leu Trp Phe Phe Arg Phe Val Val Asn Ala Ala Gly Tyr Ala Ser	
35 40 45	
ttt atg gta cet gge tae ete etg gtg eag tae tte agg egg aag aac	309
Phe Met Val Pro Gly Tyr Leu Leu Val Gln Tyr Phe Arg Arg Lys Asn	
50 55 60	
tac ctg gag acc ggt agg ggc ctc tgc ttt ccc ctg gtg aaa gct tgt	357

Tyr	Leu	Glu	Thr	Gly	Arg	Gly	Leu	Cys	Phe	Pro	Leu	Val	. Lys	Ala	Cys	
65					70					75	•				80	
gtg	ttt	ggc	aat	gag	ccc	aag	gcc	tct	gat	gag	gtt	ccc	ctg	geg	ccc	405
Val	Phe	Gly	Asn	Glu	Pro	Lys	Ala	Ser	Asp	Glu	Val	Pro	Leu	Ala	Pro	
				85					90					95		
cga	aca	gag	geg	gca	gag	acc	acc	ccg	atg	tgg	cag	gcc	ctg	aag	ctg	453
Arg	Thr	Glu	Ala	Ala	Glu	Thr	Thr	Pro	Met	Trp	Gln	Ala	Leu	Lys	Leu	
			100					105					110			
ctc	ttc	tgt	gcc	aca	999	ctc	cag	gtg	tct	tat	ctg	act	tgg	ggt	gtg	501
Leu	Phe	Суз	Ala	Thr	Gly	Leu	Gln	Val	Ser	Tyr	Leu	Thr	Trp	Gly	Val	
		115					120					125				
ctg	cag	gaa	aga	gtg	atg	acc	cgc	agc	tat	aaa	gcc	aca	gcc	aca	tca	549
Leu		Glu	Arg	Val	Met	Thr	Arg	Ser	Tyr	Gly	Ala	Thr	Ala	Thr	Ser	
	130					135					140					
=			_		_	_	tcg	_		_	-					597
	Gly	Glu	Arg	Phe		Asp	Ser	Gln	Phe		Val	Leu	Met	Asn		
145					150					155					160	
	_	_	_			_	ggc			_	-		-	_	-	645
Val	Leu	Ala	Leu		Val	Ala	Gly	Leu		Cys	Val	Leu	Cys		GIn	
				165			•		170					175		602
				_		_	tac									693
Pro	Arg	HLS	_	ALA	Pro	Met	Tyr	_	ıyr	ser	Pne	AIA		ren	ser	
			180		<b>.</b>	<b>-</b>		185		4_			190			743
			-	=			caa		_	-						741
ASN	vaı	195	ser	ser	Trp	Cys	Gln	TYL	GIU	ALA	Leu	டர் 205	Pne	vaı	ser	
++0	000		<b>C2C</b>	a+ a	ot a	~~~	200	~~~	tat	224	at a		cot	at a	sta	789
			_		_	_	aag Lys	_		_				_		,09
	210	1111	GIII	val	Dea	215	пЛэ	ATG	Ser	Бур	220	TTG	PIO	var	ricc	
		aas	aad	ctt	at a		cgg	cac	age	tac		CBC	taa	asa	tac	837
_	_		_				Arg	_	-		-					
225		~~]	- <u>,</u> .	u	230		~ <del>~</del> 7	- <del></del> 9	J	235	ها بدین. ا				240	
	aca	acc	aca	ete		tee	att	aaa	ata		ata	ttt	cta	cta		885
_		_					Ile		_	_	-		•			
				245		~ <b>~~</b>		_	250					255		



agc	gga	cca	gag	ccc	cgc	agc	tcc	cca	gcc	acc	aca	ctc	tca	ggc	ctc	933
Ser	Gly	Pro	Glu	Pro	Arg	Ser	Ser	Pro	Ala	Thr	Thr	Leu	Ser	Gly	Leu	
			260					265					270			
atc	tta	ctg	gca	ggt	tat	att	gct	ttt	gac	agc	ttc	acc	tca	aac	tgg	981
Ile	Leu	Leu	Ala	Gly	Tyr	Ile	Ala	Phe	Asp	Ser	Phe	Thr	Ser	Asn	Trp	
		275					280					285				
cag	gat	gcc	ctg	ttt	gcc	tat	aag	atg	tca	tcg	gtg	cag	atg	atg	ttt	1029
Gln	Asp	Ala	Leu	Phe	Ala	Tyr	Lys	Met	Ser	Ser	Val	Gln	Met	Met	Phe	
	290					295					300					
<b>9</b> 99	gtc	aat	ttc	ttc	tcc	tgc	ctc	ttc	aca	gtg	gge	tca	ctg	cta	gaa	1077
Gly	Val	Asn	Phe	Phe	Ser	Cys	Leu	Phe	Thr	Val	Gly	Ser	Leu	Leu	Glu	
305					310					315					320	
cag	ggg	gcc	cta	ctg	gag	gga	acc	cgc	ttc	atg	ggg	cga	cac	agt	gag	1125
Gln	Gly	Ala	Leu	Leu	Glu	Gly	Thr	Arg	Phe	Met	Gly	Arg	His	Ser	Glu	
				325					330					335		
ttt	gct	gcc	cat	gcc	ctg	cta	ctc	tcc	atc	tgc	tcc	gca	tgt	ggc	cag	1173
Phe	Ala	Ala	His	Ala	Leu	Leu	Leu	Ser	Ile	Сув	Ser	Ala	Суз	Gly	Gln	
			340					345					350			
ctc	ttc	atc	ttt	tac	acc	att	ggg	cag	ttt	ggg	gct	gcc	gtc	ttc	acc	1221
Leu	Phe	Ile	Phe	Tyr	Thr	Ile	Gly	Gln	Phe	Gly	Ala	Ala	Val	Phe	Thr	
		355					360					365				
atc	atc	atg	acc	ctc	cgc	cag	gcc	ttt	gcc	atc	ctt	ctt	tcc	tgc	ctt	1269
Ile	Ile	Met	Thr	Leu	Arg	Gln	Ala	Phe	Ala	Ile	Leu	Leu	Ser	Cys	Leu	
	370					375					380					
ctc	tat	ggc	cac	act	gtc	act	gtg	gtg	gga	ggg	ctg	ggg	gtg	gct	gtg	1317
Leu	Tyr	Gly	His	Thr	Val	Thr	Val	Val	Gly	Gly	Leu	Gly	Val	Ala	Val	
385					390					395					400	
gtc	ttt	gct	gcc	ctc	ctg	ctc	aga	gtc	tac	gcg	cgg	ggc	cgt	cta	aag	1365
Val	Phe	Ala	Ala	Leu	Leu	Leu	Arg	Val	Tyr	Ala	Arg	Gly	Arg	Leu	Lys	
				405					410					415		
caa	cgg	gga	aag	aag	gct	gtg	cct	gtt	gag	tct	cct	gtg	cag	aag	gtt	1413
Gln	Arg	Gly	Lys	Lys	Ala	Val	Pro	Val	Glu	Ser	Pro	Val	Gln	Lys	Val	
			420					425					430			
tgag	ggt	ggaa	aggg	cc t	gagg	ggtg	a ag	tgaa	atag	gad	cctc	cca	ccat	cccc	tt	1470
rtac	tata	ac c	teta	adda	a ac	+aac	taaa	agg	acas	aat	acaa	atat	tt t	ctca	gtate	1530

WO 00/29448 PCT/JP99/06412

acagaccage tetgcagcag gggattgggg ageccaggag geageettee ettttgeett	1590
aagtcaccca tettecagta agcagtttat tetgageece gggggtagae agteeteagt	1650
gaggggtttt ggggagtttg gggtcaagag agcataggta ggttccacag ttactcttcc	1710
cacaagttee ettaagtett geeetagetg tgetetgeea eetteeagae teaeteeeet	1770
ctgcaaatac ctgcatttct taccctggtg agaaaagcac aagcggtgta ggctccaatg	1830
etgettteee aggagggtga agatggtget gtgetgagga aaggggatge agagecetge	1890
ccagcaccac cacctcctat gctcctggat ccctaggete tgttccatga gcctgttgca	1950
ggttttggta ctttagaaat gtaacttttt gctcttataa ttttatttta	2010
ttactgcagt gg	2022
<210> 147	
<211> 1227	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (75)(995)	
<400> 147	
aaagacttee tgegatgaga acagaggeae aggtgeegge eetgeageee eeagaacetg	60
gactgtaggg ggcc atg ggg cac cgg acc ctg gtc ctg ccc tgg gtg ctg	110
Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu	
1 5 10	
ctg acc ttg tgt gtc act gcg ggg acc ccg gag gtg tgg gtt caa gtt	158
Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val	
15 20 25	
egg atg gag gee ace gag ete teg tee tte ace ate egt tgt ggg tte	206
Arg Met Glu Ala Thr Glu Leu Ser Ser Phe Thr Ile Arg Cys Gly Phe	
30 35 40	
etg ggg tet gge tee ate tee etg gtg act gtg age tgg ggg gge eee	254
Leu Gly Ser Gly Ser Ile Ser Leu Val Thr Val Ser Trp Gly Gly Pro	
45 50 55 60	
gac ggt gct ggg ggg acc acg ctg gct gtg ttg cac cca gaa cgt ggc	302
asp Gly Ala Gly Gly Thr Thr Leu Ala Val Leu His Pro Glu Arg Gly	
65 70 75	
ste aga ann tag aga agt agt aga ann ann ann tag ann ann ann	250



Ile	Arg	Gln	Trp	Ala	Pro	Ala	Arg	Gln	Ala	Arg	Trp	GIU	Thr	GIN	Ser	
			80					85		•			90			
agc	atc	tct	ctc	atc	ctg	gaa	ggc	tct	<b>999</b>	gcc	agc	agc	ccc	tgc	gee	398
Ser	Ile	Ser	Leu	Ile	Leu	Glu	Gly	Ser	Gly	Ala	Ser	Ser	Pro	Cys	Ala	
		95					100					105				
aac	acc	acc	ttc	tgc	tgc	aag	ttt	gcg	tcc	ttc	cct	gag	ggc	tcc	tgg	446
Asn	Thr	Thr	Phe	Cys	Суз	Lys	Phe	Ala	Ser	Phe	Pro	Glu	Gly	Ser	Trp	
	110					115					120					
gag	gcc	tgt	ggg	agc	ctc	ccg	ccc	agc	tca	gac	cca	ggg	ctc	tct	gcc	494
Glu	Ala	Cys	Gly	Ser	Leu	Pro	Pro	Ser	Ser	Asp	Pro	Gly	Leu	Ser	Ala	
125					130					135					140	
ccg	ccg	act	cct	gcc	ccc	att	ctg	cgg	gca	gac	ctg	gcc	ggg	atc	ttg	542
Pro	Pro	Thr	Pro	Ala	Pro	Ile	Leu	Arg	Ala	Asp	Leu	Ala	Gly	Ile	Leu	
				145					150					155		
<b>3</b> 33	gtc	tca	gga	gtc	ctc	ctc	ttt	ggc	tgt	gtc	tac	ctc	ctt	cat	ctg	590
Gly	Val	Ser	Gly	Val	Leu	Leu	Phe	Gly	Суз	Val	Tyr	Leu	Leu	His	Leu	
			160					165					170			
ctg	cgc	cga	cat	aag	cac	cgc	cct	gcc	cct	agg	ctc	cag	ccg	tcc	cgc	638
Leu	Arg	Arg	His	Lys	His	Arg	Pro	Ala	Pro	Arg	Leu	Gln	Pro	Ser	Arg	
		175					180					185				
acc	agc	ccc	cag	gca	ccg	aga	gca	cga	gca	tgg	gca	cca	agc	cag	gcc	686
Thr	Ser	Pro	Gln	Ala	Pro	Arg	Ala	Arg	Ala	Trp	Ala	Pro	Ser	Gln	Ala	
	190					195					200					
tcc	cag	gct	gct	ctt	cac	gtc	cct	tat	gcc	act	atc	aac	acc	agc	tgc	734
Ser	Gln	Ala	Ala	Leu	His	Val	Pro	Tyr	Ala	Thr	Ile	Asn	Thr	Ser	Cys	
205					210					215					220	
cgc	cca	gct	act	ttg	gac	aca	gct	cac	ccc	cat	ggg	ggg	ccg	tcc	tgg	782
Arg	Pro	Ala	Thr	Leu	Asp	Thr	Ala	His	Pro	His	Gly	Gly	Pro	Ser	Trp	
				225					230					235		
tgg	geg	tca	ctc	ccc	acc	cac	gct	gca	cac	cgg	ccc	cag	ggc	cct	gcc	830
Trp	Ala	Ser	Leu	Pro	Thr	His	Ala	Ala	His	Arg	Pro	Gln	Gly	Pro	Ala	
			240					245					250			
gcc	tgg	gcc	tcc	aca	ccc	atc	cct	gca	cgt	ggc	agc	ttt	gtc	tct	gtt	878
Ala	Trp	Ala	Ser	Thr	Pro	Ile	Pro	Ala	Arg	Gly	Ser	Phe	Val	Ser	Val	
		255					260					265				

gag aat gga ctc tac gct cag gca ggg gag agg cct cct cac act ggt	92
Glu Asn Gly Leu Tyr Ala Gln Ala Gly Glu Arg Pro Pro His Thr Gly	
270 275 280	
ccc ggc ctc act ctt ttc cct gac cct cgg ggg ccc agg gcc atg gaa	97
Pro Gly Leu Thr Leu Phe Pro Asp Pro Arg Gly Pro Arg Ala Met Glu	
285 290 295 300	
gga ece tta gga gtt ega tgagagagae catgaggeea etgggett	102
Gly Pro Leu Gly Val Arg	
305	
tececetece aggeetectg ggtgteacee cettacttta attettggge etecaataag	108
tgtcccatag gtgtctggcc aggcccacct gctgcggatg tggtctgtgt gcgtgtgtgg	114
gcacaggtgt gagtgtgtga gtgacagtta ccccatttca gtcatttcct gctgcaacta	120
agtcagcaac acagtttctc tgatgtc	122
<210> 148	
<211> 2210	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (204)(1871)	
<400> 148	
aggggacgcg aggcggagcg gggccccaca caggccgcgg cggctggctc gggcccctac	60
ggtcccggcg gcggctggag gaggaagcca ggcggctggc ggaggaggag agacggagga	120
ggeegagace ggagegeege tegeegeaga ettaetteee eggeteagea gggaaaggtt	180
cctagaaggt gagegeggae ggt atg eaa agt tgt gaa tee agt ggt gae agt	233
Met Gln Ser Cys Glu Ser Ser Gly Asp Ser	
1 5 10	
gcg gat gac cet etc agt ege eta egg aga agg gga eag eet egt	281
Ala Asp Asp Pro Leu Ser Arg Gly Leu Arg Arg Arg Gly Gln Pro Arg	
15 20 25	
gtg gtg gtg atc ggc gcc ggc ttg gct ggc ctg gct gca gcc aaa gca	329
Val Val Ile Gly Ala Gly Leu Ala Gly Leu Ala Ala Ala Lys Ala	
30 35 40	
ctt ctt gag cag ggt ttc acg gat gtc act gtg ctt gag gct tcc agc	377

Leu	Leu	Glu	Gln	Gly	Phe	Thr	Asp	Val	Thr	Val	Leu	Glu	Ala	Ser	Ser	
		45					50					55				
cac	atc	gga	ggc	cgt	gtg	cag	agt	gtg	aaa	ctt	gga	cac	gcc	acc	ttt	425
His	Ile	Gly	Gly	Arg	Val	Gln	Ser	Val	Lys	Leu	Gly	His	Ala	Thr	Phe	
	60					65					70					
gag	ctg	gga	gcc	acc	tgg	atc	cat	ggc	tcc	cat	999	aac	cct	atc	tat	473
Glu	Leu	Gly	Ala	Thr	Trp	Ile	His	Gly	Ser	His	Gly	Asn	Pro	Ile	Tyr	
75					80					85					90	
		•	-	gcc				_	_							521
His	Leu	Ala	Glu	Ala	Asn	Gly	Leu	Leu	Glu	Glu	Thr	Thr	Asp	Gly	Glu	
				95					100					105		
_	-			cgc												569
Arg	Ser	Val	Gly	Arg	Ile	Ser	Leu	Tyr	Ser	Lys	Asn	Gly	Val	Ala	Cys	
			110					115					120			
				cac												617
Tyr	Leu		Asn	His	Gly	Arg	_	Ile	Pro	Lys	Asp		Val	Glu	Glu	
		125					130					135				
	_	-		tac			-									665
Phe		Asp	Leu	Tyr	Asn		Val	Tyr	Asn	Leu		Gln	Glu	Phe	Phe	
	140					145					150					
		_		cca			-	-								713
	His	Asp	Lys	Pro		Asn	Ala	Glu	Ser		Asn	Ser	Val	GTĀ		
155					160					165					170	261
				gag	_	_										761
Phe	Thr	Arg	Glu	Glu	Val	Arg	Asn	Arg		Arg	Asn	Asp	Pro		Asp	
				175					180					185		900
				aag												809
Pro	Glu	Ala		Lys	Arg	Leu	Lys		Ala	Met	Ile	GIN		туг	Leu	
			190					195					200		<b>.</b>	957
				tgt												857
ГĀЗ			Ser	Cys	GIU	Ser		ser	HIS	Ser	Met		GIU	vai	ser	
		205				<b>.</b> .	210					215				005
				ggg												905
Leu	ser	ALA	Phe.	Gly	GLU	Trp	TNT	GIU	ITE	Pro	GTA	AIS	HIS	HIS	TTE	
	-3-11					つつち					7 (1)					

WO 00/29448 PCT/JP99/06412

95.	atc	30	3 99	ga	gcg	ctg	ctg	gag	gre	gci	cgg	ato	: EEC	3 999	LCC	CCC	acc
	Ile	lу	ı Gl	Glı	Ala	Leu	Leu	Glu	. Val	Va.	Arg	Met	Phe	Gly	Ser	Pro	Ile
	250						245					240					235
100	tgg	ac	ca	att	tgc	cgc	gtc	cct	aaa	ggg	cta	cag	ato	gto	cac	gcc	cct
	Trp	ĹS	Hi	Ile	Cys	Arg	Val	Pro	Lys	Gly	Lev	Gln	Ile	Val	His	Ala	Pro
		55	26					260					255				
1049	ggt	19	: cg	ccc	gag	att	gag	cct	ggc	aga	CCC	cgc	gcc	tca	gcc	cag	gac
	Gly	:g	Ar	Pro	Glu	Ile	Glu	Pro	Gly	Arg	Pro	Arg	Ala	Ser	Ala	Gln	qeA
			)	280					275					270			
1097	gag	ſα	gg	ggt	cag	ggc	ggt	gag	999	act	gac	cac	aat	cac	gac	ggc	gag
	Glu	·Y	Gl	Gly	Gln	Gly	Gly	Glu	Gly	Thr	Asp	His	Asn	His	Asp	Gly	Glu
					295					290					285		
1145	gtg	g	gt	tcg	tgg	cag	gag	gat	gag	gat	tgg	agg	ggc	999	cgg	CCC	gag
	Val	1	Va.	Ser	Trp	Gln	Glu	Asp	Glu	Asp	Trp	Arg	Gly	Gly	Arg	Pro	Glu
						310					305					300	
1193														gag			
	Val	е `	Ile	Val	His	qeA	Ala	Pro	Ile	Leu	Glu	Суз	Asp	Glu	Суз	Glu	Val
	330						325					320					315
1241														cta			
	Arg	e i	Phe	Phe	Ser	Thr	Tyr		Arg	Lys	Leu	Val		Leu	Ser	Val	Ihr
			345					340					335				
1289														ccc			
	Ile	/ :	Gly			lis .	Ile	Ala		Val	ГĀЗ	Glu	Thr	Pro	Leu	GŢĀ	?ro
				360					355					350			
1337														gac			
	Gly	<b>Э</b> (	Trp	Phe			GLu	Phe	GLu		Pne	TTE	гàз	Asp		THE	этХ
1005					375			<b>.</b>		370					365		
1385														aac			
	ser	1 2	GIU	ата	ilu i	-		trb	var	rne			set	Asn	cys	380	
1422						90		<b>.</b>			385		<b>+</b>	200	ata		
1433														acc			
			cys	тте	ys .	reg 1	lyr <i>1</i> 105	_	LEU	31U	FTO	400		Thr	Leu	-11L	95
1 401	110		<b>5</b> ~~	·+~	rt-c= -	s+ -			000	75~	+			ctc	ata	ret .	
1481	-	_	_	_			-							CCC Ten '			

				415					420					425		
tgg	atc	tgc	ggg	gag	gag	gcc	ctc	gtc	atg	gag	aag	tgt	gat	gac	gag	1529
Trp	Ile	Суз	Gly	Glu	Glu	Ala	Leu	Val	Met	Glu	Lys	Сув	Ąsp	Asp	Glu	
			430					435					440			
gca	gtg	gcc	gag	atc	tgc	acg	gag	atg	ctg	cgt	cag	ttc	aca	ggg	aac	1577
Ala	Val	Ala	Glu	Ile	Cys	Thr	Glu	Met	Leu	Arg	Gln	Phe	Thr	Gly	Asn	
		445					450					455				
ccc	aac	att	cca	aaa	cct	cgg	cga	atc	ttg	cgc	tcg	gcc	tgg	ggc	agc	1625
Pro	Asn	Ile	Pro	Lys	Pro	Arg	Arg	Ile	Leu	Arg	Ser	Ala	Trp	Gly	Ser	
	460					465					470					
aac	cct	tac	ttc	cgc	ggc	tcc	tat	tca	tac	acg	cag	gtg	ggc	tcc	agc	1673
Asn	Pro	Tyr	Phe	Arg	Gly	Ser	Tyr	Ser	Tyr	Thr	Gln	Val	Gly	Ser	Ser	
475					480					485					490	
ggg	gcg	gat	gtg	gag	aag	ctg	gcc	aag	ccc	ctg	ccg	tac	acg	gag	agc	1721
Gly	Ala	Asp	Val	Glu	Lys	Leu	Ala	Lys	Pro	Leu	Pro	Tyr	Thr	Glu	Ser	
				495					500					505		
tca	aag	aca	gcg	ccc	atg	cag	gtg	ctg	ttt	tcc	ggt	gag	gcc	acc	cac	1769
Ser	Lys	Thr	Ala	Pro	Met	Gln	Val	Leu	Phe	Ser	Gly	Glu	Ala	Thr	His	
			510					515					520			
cgc	aag	tac	tat	tcc	acc	acc	cac	ggt	gct	ctg	ctg	tcc	ggc	cag	cgt	1817
Arg	Lys	Tyr	Tyr	Ser	Thr	Thr	His	Gly	Ala	Leu	Leu	Ser	Gly	Gln	Arg	
		525					530					535				
gag	gat	gee	cgc	ctc	att	gag	atg	tac	cga	gac	ctc	ttc	cag	cag	ggg	1865
Glu	Ala	Ala	Arg	Leu	Ile	Glu	Met	Tyr	Arg	qaA	Leu	Phe	Gln	Gln	Gly	
	540					545					550					
acc	tgag	Jggct	gt c	ctc	getge	t ga	ıgaaç	gagco	act	aact	cgt	gaco	tcca	ige c	:t	1920
Thr																
555																
geed	ctto	jet <u>c</u>	geegt	gtgo	et co	tgec	ttcc	tga	atcct	ctg	taga	aagg	rat t	ttta	tette	1980
tgte	gago	ta ç	jeege	cct	ja ct	gcct	tcag	g acc	tggc	cct	gtag	jcttt	tc t	tttt	ctcca	2040
ggct	gggc	eg t	gago	aggt	g gg	ccgt	tgag	; tta	ecto	tgt	geto	gato	cc g	rtgcc	cccac	2100
ttgc	ctac	ecc t	ctgt	cct	je et	tgtt	atto	, tas	gtgo	ctt	caat	actt	tg c	attt	tggga	2160
taat	aaas	ıaa ç	gete	ccto	:c cc	tgcc	cctc	ago	ttct	ctc	tggt	tttc	tc			2210

<210> 149

<211>	1493															
<212>	DNA															
<213>	Homo	sap	iens	:												
<220>																
<221>	CDS															
<222>	(93)	(3	845)													
<400>	149															
ctcaag	ctgg	cag	gtgg	tcg (	gggg	agcg	ge e	ggaga	agga	g ct	geeg	ggag	ttc	gtgcc	ct	60
gc <b>a</b> gga																113
														r Ala		
								1	L			!	5			
gat ga	t ego	ccc	te	tec	t tg	agg	g cga	aag	g caa	a gae	a gat	gad	e ag	g gac	1	161
Ala Ala	a Arç	Pro	Sea	. Sei	Cys	Arg	, Arg	Lys	Glı	n Glu	ı Ası	As _l	o Ar	g Asp		
	10	)				15	;				20	)				
ggt tt	g ctg	gct	gaa	a cga	ı gaç	cag	gaa	gaa	geo	att	gct	cag	, tto	cca	2	209
Gly Le	ı Leu	Ala	Glu	ı Arg	Glu	Gln	Glu	Glu	Ala	a Ile	Ala	Glr	n Phe	Pro		
25	5				30	)				35	;					
tat gto	j gaa	ttc	acc	<b>. g</b> gg	aga	gat	ago	atc	acc	: tgt	cto	acq	tgo	cag	2	257
Tyr Val	Glu	Phe	Thr	Gly	Arg	Asp	Ser	Ile	Thr	Cys	Leu	Thr	Cys	Gln		
40				45					50	)				55		
ggg aca	ı ggc	tac	att	cca	aca	gag	caa	gta	aat	gag	ttg	gtg	gct	ttg	3	05
Gly Thr	Gly	Tyr	Ile	Pro	Thr	Glu	Gln	Val	Asn	Glu	Leu	Val	Ala	Leu		
			60					65					70			
atc cca	cac	agt	gat	cag	aga	ttg	cgc	cct	cag	cga	act	aag	caa	tat	3	53
Ile Pro	His	Ser	Asp	Gln	Arg	Leu	Arg	Pro	Gln	Arg	Thr	Lys	Gln	Tyr		
		75					80					85				
gte ete													-		40	01
Val Leu	Leu	Ser	Ile	Leu	Leu	Cys	Leu	Leu	Ala	Ser	Gly	Leu	Val	Val		
	90					95					100					
ttc ttc															44	19
Phe Phe	Leu	Phe	Pro	His	Ser	Val	Leu	Val	Asp	Asp	Asp	Gly	Ile	Lys		
105					110					115						
gtg gtg															49	7
Val Val	Lys	Val	Thr		Asn	Lys	Gln	Asp	Ser	Leu	Val	Ile	Leu	Thr		
120				125					130					135		

ate atg goe ace ctg aaa ate agg aac tee aac tte tac acg gtg gea	343
lle Met Ala Thr Leu Lys Ile Arg Asn Ser Asn Phe Tyr Thr Val Ala	
140 145 150	
gtg acc agc ctg tec agc cag att cag tac atg aac aca gtg gtc agt	593
Val Thr Ser Leu Ser Ser Gln Ile Gln Tyr Met Asn Thr Val Val Ser	
155 160 165	
aca tat gtg act act aac gtc tcc ctt att cca cct cgg agt gag caa	641
Thr Tyr Val Thr Thr Asn Val Ser Leu Ile Pro Pro Arg Ser Glu Gln	
170 175 180	
ctg gtg aat ttt acc ggg aag gcc gag atg gga gga ccg ttt tcc tat	689
Leu Val Asn Phe Thr Gly Lys Ala Glu Met Gly Gly Pro Phe Ser Tyr	
185 190 195	
gtg tac ttc ttc tgc acg gta cct gag atc ctg gtg cac aac ata gtg	737
Val Tyr Phe Phe Cys Thr Val Pro Glu Ile Leu Val His Asn Ile Val	
200 205 210 215	
atc ttc atg cga act tca gtg aag att tca tac att ggc ctc atg acc	785
Ile Phe Met Arg Thr Ser Val Lys Ile Ser Tyr Ile Gly Leu Met Thr	
220 225 230	
cag age tee ttg gag aca eat eae tat gtg gat tgt gga gga aat tee	833
Gln Ser Ser Leu Glu Thr His His Tyr Val Asp Cys Gly Gly Asn Ser	
235 240 245	
aca get att taacaactge tattggttet tecacacage geetgtagaa gagagcae	890
Thr Ala Ile	
250	
agcatatgtt cccaaggcct gagttctgga cctacccca cgtggtgtaa gcagaggagg	950
aattggttca cttaactccc agcaaacatc ctcctgccac ttaggaggaa acacctccct	1010
atggtaccat ttatgtttct cagaaccagc agaatcagtg cctagcctgt gcccagcaaa	1070
tagttggcac tcaataaaga tttgcagaat ttaatacaga tcttttcagc tgttcttagg	1130
gcattataaa tggaaatcat aacgtggttc taggttatca aaccatggag tgatgtggag	1190
ctaggattgt gagtgacctg caggccatta tcagtgcctc atctgtgcag aagtcgcagc	1250
agagagggac catccaaata cctaagagaa aacagaccta gtcaggatat gaatttgttt	1310
cagetgttee caaaggeetg ggagettttt gaaaagaaag aaaaaagtgt gttggetttt	1370
tttttttta gaaagttaga attgtttta ccaagagtct atgtggggct tgattcaccc	1430
ttcatccatt ggctggaaca tggattgggg atttgataga aaaataaacc ctgcttttga	1490
***	1493

<21	L0> ;	150														
<2	11> :	1264														
<21	l2> I	ONA														
<21	13> I	omo	sapi	Lens												
<22	20>															
<22	?1> (	DS														
<22	2> (	(26).	(5	550)												
<40	0> 1	50														
aat	ctac	aag	caco	agge	ag t	caaç	, ato	cae	gca	cca	gco	tto	ago	g gad	aag	52
							Met	Glr	Ala	Pro	Ala	Phe	Arg	J Asj	Lys	
							1				5	•				
aaa	cag	999	gto	tca	gcc	aag	aat	caa	ggt	gcc	cat	gac	cca	gad	: tat	100
		Gly	Val	. Ser	Ala	Lys	Asn	Gln	Gly	Ala	His	Asp	Pro	Asp	Tyr	
10					15					20					25	
				_	_				_	_		_	_		ggt	148
Glu	Asn	Ile	Thr			Phe	Lys	Asn		_	His	Ala	Lys		Gly	
				30					35					40		
				_	_		-		_	_	_				tca	196
HIS	Ser	Arg			Ser	Gln	Val	Pro	Ala	Gln	Суз	Arg		Pro	Ser	
	<b>.</b>		45					50				_4_	55			244
				-		_		ttg		_	-				-	244
nap	Ser	60		val	PIO	Cys		Leu	TYL	Arg	Ald	70	ren	Ser	Leu	
tec	ato			<i>~~</i>	a+a	<i>~~~</i>	65	-+-	ata	+~~	et a		at a	tas	gaa	292
				_	_	_		gtc Val		_			_			292
-1-	75		204		Lou	80	F 11C	VUL		Cys	85	116	cu	DOL	ща	
ttc		ato	at.a	aac	eat.	-	gag	atg	tee	aaα		cta	cta	aac	ttt	340
						_	_	Met		-		_				340
90					95					100					105	
aaa	agg	gag	ctt	tgg		atc	tca	aac	tcc		caa	qca	tac	gaa		388
						_		Asn		_		_	-	_		
_	_			110					115				-	120		
aga	cag	aag	aga	ggc	tgg	gat	tcc	gtt		cag	agc	atc	acc		gtc	436
						-		Val	_	_	-				_	

125	130	135	
agg agc aag att gat ag	ga tta gag acg aca tta	gca ggc ata aaa aac	484
Arg Ser Lys Ile Asp Ar	g Leu Glu Thr Thr Leu	Ala Gly Ile Lys Asn	
140	145	150	,
att gac aca aag gta ca	ng ama atc ttg gag gtg	ctg cag aaa atg cca	532
Ile Asp Thr Lys Val Gl	n Lys Ile Leu Glu Val	Leu Gln Lys Met Pro	
155	160	165	
cag tcc tca cct caa ta	aatgagag gacattgtgg ca	ngccaaagc cac	580
Gln Ser Ser Pro Gln			
170			
aacttggaag atggggctgc	acctgccaac gaagacggga	aatgacccc cccccagcc	640
tagtgtgaac ctgcccctcg	tcccacgtat agaaaaacct	cgagtcatgg tgaatgagtg	700
tctcggagtt gctcgtgtgt	gtgtacacct gcgtgcgtgt	gtgtgegtgt gtgegegtgt	760
gttcgtgtat gtgcgtgtgt	gegtgegegt gtgtgtgeat	tttgcaaagg gtggacattt	820
cagtgtatct cccagaaagg	tgatgaatga ataggactga	gagtcacagt gaatgtggca	880
tgcatgcctg tgtcatgtga	catatgtgag teteggeatg	tcacggtggg tggctgtgtc	940
tgagcacctc cagcagatgt	cactctgagt gtgggtgttg	gtgacatgca ttgcacgggc	1000
ctgtctccct gtttgtgtaa	acatactaga gtatactgcg	gegtgtttte tgtetaccea	1060
tgtcatggtg ggggagattt	atctccgtac atgtgggtgt	cgccatgtgt gccctgtcac	1120
tatctgtggc tgggtgaacg	gctgtgtcat tatgagtgtg	ccgagttatg ccaccctgtg	1180
tgctcagggc acatgcacac	agacatttat ctctgcactc	acattttgtg acttatgaag	1240
ataaataaag tcaagggaaa	acag		1264