Adversarial examples

Adversarial examples

Jan-Hendrik Plank, Jonas Dehning & Philipp Höhne

July 12, 2017

Dog or Cat?

Dog or Cat?

The data sets

MNIST

1665407401 3134727121 1742351244

- ► greyscale
- ▶ 28x28 pixel

Dogs vs. Cats

- colored
- ▶ 128x128 pixel

Networks

Convolutional Neural Network

Data set	Network structure	# Layers
MNIST	5 CL - 2 FC	7
Dogs vs. Cats	11 CL - 3 FC	14

Finding adversarial examples: Gradient Method

$$ec{\eta} = \epsilon \cdot \operatorname{sign}\left(\nabla_{ec{x}} J_{loss} \big|_{ec{x}} \right)$$

 $\vec{\eta}$: noise \vec{x} : picture $\epsilon \ll 1$

From Goodfellow et al. 2015

Finding adversarial examples: Minimizer

Minimize over η :

$$\begin{aligned} \min_{\vec{\eta}} \left(c \cdot \sigma(\vec{\eta}) + \frac{1}{1 + \delta - p(\vec{x} + \vec{\eta})} \right) \\ \vec{\eta} &: \text{noise} \\ \vec{x} &: \text{picture} \\ p &: \text{prediction} \\ c &: \text{a constant} \\ \delta \ll 1 \end{aligned}$$

with constraint:

$$\vec{x} + \vec{\eta} \in [0, 1]^n$$

From Szegedy et al. 2014

MNIST adversarial examples (Gradient Method)

MNIST adversarial examples (Minimizer)

Dogs vs. Cats adversarial examples (Gradient Method)

Dogs vs. Cats adversarial examples (Minimizer)

MNIST misclassification rate for gradient method

Dogs vs. Cats misclassification rate for gradient method

MNIST robustness Minimizer

Dogs vs. Cats robustness Minimizer

Conclusion

- Minimizer: smaller noise
- Gradient: computationally cheap
- MNIST:
 - robust
 - no dependence on number of layers found
- Dogs vs. Cats:
 - vulnerable
 - deeper networks seemingly less vulnerable