Logistic 回归

Logistic 模型

回归分析中,y可能有两种情况: ①y 为定量的变量,可用 regress 进行回归。②y 为定性的变量,只有 0,1 取值,那么就需要进行 Logistic 回归。Logistic 回归主要研究某些现象发生的概率 P, 比如股票涨还是跌,公司成功或失败的概率。

Logistic 回归模型基本形式为:

$$P(Y = 1 \mid x_1, x_2, \dots, x_k) = \frac{\exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$

其中,参数βi 类似于多元线性回归中的参数。该式表示: 当自变量为 xi 时,Y=1 的概率。进行对数变换有:

$$\ln \frac{P}{1-P} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

此处,P 为单调连续的概率函数,由P 对 Y 的映射,即可得到 Y。下面举一个例子:

(其中还有 matlab 的文件操作, 要会搞)

企业到金融商业机构贷款,金融商业机构需要对企业进行评估。评估结果为 0,1 两种形式,0 表示企业两年后破产,将拒绝贷款;而 1 表示企业 2 年后具备还款能力,可以贷款。在表 3-2 中,已知前 20 家企业的三项评价指标值和评估结果,试建模型对其他 5 家企业(企业 $21\sim25$)进行评估。

数据(由 excel 表格得到)

企业编

号	X1		X2	X3	Υ		预测值
-	1 .	-62.8	-89.5	1	L.7	0	0
	2	3.3	-3.5	1	L.1	0	0
(3 -1	120.8	-103.2	2	2.5	0	0
4	4	-18.1	-28.8	1	L.1	0	0
į	5	-3.8	-50.6	C).9	0	0
(ŝ ·	-61.2	-56.2	1	L.7	0	0
-	7	-20.3	-17.4		1	0	0
{	3 -1	194.5	-25.8	C).5	0	0
(9	20.8	-4.3		1	0	0
10) -í	106.1	-22.9	1	L.5	0	0
13	1	43	16.4	1	L.3	1	1
12	2	47	16	1	L.9	1	1
13	3	-3.3	4	2	2.7	1	1
14	4	35	20.8	1	L.9	1	1

```
15
        46.7
                 12.6
                            0.9
                                       1
                                                 1
        20.8
                 12.5
                            2.4
                                       1
                                                 1
16
17
                 23.6
                                       1
         33
                            1.5
                                                 1
18
        26.1
                 10.4
                            2.1
                                       1
                                                 1
19
        68.6
                 13.8
                            1.6
                                       1
                                                 1
20
        37.3
                 33.4
                            3.5
                                       1
                                                 1
21
      -49.2
                -17.2
                            0.3
                                                 0
22
      -19.2
                -36.7
                            8.0
                                                 0
23
       40.6
                  5.8
                                                 1
                            1.8
24
        34.6
                 26.4
                                                 1
                            1.8
25
                            2.3
        19.9
                 26.7
                                                 1
```

```
Matlab 代码:
clear all;
clc;
X0=xlsread('E:\顾子涵专用文件夹\学习\matlab 学习\Logistic 回归数
据.xlsx',1,'B2:D21');
XE=xlsread('E:\顾子涵专用文件夹\学习\matlab 学习\Logistic 回归数
据.xlsx',1,'B2:D26');
Y0=xlsread('E:\顾子涵专用文件夹\学习\matlab 学习\Logistic 回归数
据.xlsx',1,'E2:E21');
%数据转化
n=size(Y0,1);
%由于 Y 的值只能等于 1 或 0
%但由于回归模型中Y不可以等于1或0
%因此将 Y 进行变换,变换为概率函数,在此,取中值进行计算。
for i=1:n
   if Y0(i)==0
      Y1(i,1)=0.25;
   else
      Y1(i,1)=0.75;
   end
end
%进行普通的多元线性回归
%构建常数项系数
X1=ones(size(X0,1),1);
X=[X1,X0];
%在此处 Y1 是概率函数, Y 是即将进行线性回归的因变量
Y = log(Y1./(1-Y1));
b=regress(Y,X);
%理论结果
%b=[-0.63656,0.004127,0.01692,0.53305]';
%模型的应用
```

```
for i=1:size(XE,1)
%这是 Logistic 回归的基本模型
Pai0=1/(1+exp(-(b(1)+b(2)*XE(i,1)+b(3)*XE(i,2)+b(4)*XE(i,3))));
%基本分界点,小于 0.5 为 0,大于 0.5 为 1
if Pai0<0.5
    P(i)=0;
else
    P(i)=1;
end
end
%视察验证结果
disp(['回归系数: ',num2str(b')])
disp(['评价结果: ',num2str(P)])
```