Figure 1(A)

G <i>GATC</i> GTCTCAGGTCAG <u>CGGAGGGA</u>	- 25
SL33	
GGAGACTTA TAGACCTATCCAGTCT	50 ·
TCAAGGTGCTCCAGAAAGCAGGAGT	75
TGAAGACCTGGGTGTGAGGGACACA	100
TACATCCTAAAAGCACCACAGCAGA	125
GGAGGCCCAGGCAGTGCCAGGAGTC	150
AAGGTTCCCAGAAGACAAACCCCCT	175
AGGAAGACAGGCGACCTGTGAGGCC	200
CTAGAGCACCACCTTAAGAGAAGAA	225
SL34	
GAGCTGTAAGCCGGCCTTTGTCAGA	250
GCCATC ATG GGGGACAAGGATATGC	275
CTACTGCTGGGATGCCGAGTCTTCT	300
CCAGAGTTCCTCTGAGAGTCCTCAG	325
AGTTGTCCTGAGGGGGAGGACTCCC	350
AGTCTCCTCCAGATTCCCCAGAG	375
TTCTCCTGAGAGCGACGACACCCTG	400
TATCCTCTCCAGAGTCCTCAGAGTC	425
GTTCTGAGGGGGAGGACTCCTCG GA	450
TCCTCTCCAGAGACCTCCTGAGGGG	475
AAGGACTCCCAGTCTCCTCTCCAGA	500
TTCCCCAGAGTTCTCCTGAGGGCGA	525
CGACACCCAGTCTCCTCTCCAGAAT	550
TCTCAGAGTTCTCCTGAGGGGAAGG	575
ACTCCCTGTCTCCTCTAGAGATTTC	600
TCAGAGCCCTCCTGAGGGTGAGGAT	625
GTCCAGTCTCCTCTGCAGAATCCTG	650
CGAGTTCCTTCTTCTCCTCTGCTTT	675
ATTGAGTATTTTCCAGAGTTCCCCT	700

Figure 1(B)

GAGAGAACTCAGAGTACTTTTGAGG	725
GTTTTCCCCAGTCTCCTCTCCAGAT	750
TCCTGTGAGCTCCTCCTCCTCC	775
ACTTTATTGAGTCTTTTCCAGAGTT	800
CCCCTGAGAGAACTCAGAGTACTTT	825
TGAGGGTTTTCCCCAGTCTCTTCTC	850
CAGATTCCTATGACCTCCTCCTTCT	875
CCTCTACTTTATTGAGTATTTTCCA	900
GAGTTCTCCTGAGAGTGCTCAAAGT	925
ACTTTTGAGGGTTTTCCCCAGTCTC	950
CTCTCCAGATTCCTGGGAGCCCCTC	975
CTTCTCCTCCACTTTACTGAGTCTT	1000
TTCCAGAGTTCCCCTGAGAGAACTC	1025
ACAGTACTTTTGAGGGTTTTCCCCA	1050
GTCTCCTCTCCAGATTCCTATGACC	1075
TCCTCCTTCTCCTCTACTTTATTGA	1100
GTATTTTCCAGAGTTCTCCTGAGAG	1125
TGCTCAAAGTACTTTTGAGGGTTTT	1150
CCCCAGTCTCCTCTCCAGATTCCTG	1175
GGAGCCCTCCTTCTCCTCCACTTT	1200
ACTGAGTCTTTTCCAGAGTTCCCCT	1225
GAGAGAACTCACAGTACTTTTGAGG	1250
GTTTTCCCCAGTCTCCTCTCCAGAT	1275
TCCTATGACCTCCTCCTTCTCCTCT	1300
ACTTTATTGAGTATTTTACAGAGTT	1325
CTCCTGAGAGTGCTCAAAGTGCTTT	1350
TGAGGGTTTTCCCCAGTCTCCTCTC	1375
CAGATTCCTGTGAGCTCCTCTTTCT	1400

Figure 1(C)

CCTACACTTTATTGAGTCTTTTCCA	1425
GAGTTCCCCTGAGAGAACTCAGAGT	1450
ACTTTTGAGGGTTTTCCCCAGTCTC	1475
CTCTCCAGATTCCTGTGAGCTCCTC	1500
CTCCTCCTCCACTTTATTGAGT	1525
CTTTTCCAGAGTTCCCCTGAGTGTA	1550
CTCAAAGTACTTTTGAGGGTTTTCC	1575
CCAGTCTCCTCTCAGATTCCTCAG	1600
AGTCCTCCTGAAGGGGAGAATACCC	1625
ATTCTCCTCTCCAGATTGTTCCAAG	1650
TCTTCCTGAGTGGGAGGACTCCCTG	1675
TCTCCTCACTACTTTCCTCAGAGCC	1700
CTCCTCAGGGGGAGGACTCCCTATC	1725
TCCTCACTACTTTCCTCAGAGCCCT	1750
CCTCAGGGGAGGACTCCCTGTCTC	1775
CTCACTACTTTCCTCAGAGCCCTCA	1800
GGGGGAGGACTCCCTGTCTCCTCAC	1825
TACTTTCCTCAGAGCCCTCCTCAGG	1850
GGGAGGACTCCATGTCTCCTCTA	1875
CTTTCCTCAGAGTCCTCTTCAGGGG	1900
GAGGAATTCCAGTCTTCTCTCCAGA	1925
GCCCTGTGAGCATCTGCTCCTCCTC	1950
CACTCCATCCAGTCTTCCCCAGAGT	1975
TTCCCTGAGAGTTCTCAGAGTCCTC	2000
CTGAGGGGCCTGTCCAGTCTCCTCT	2025
CCATAGTCCTCAGAGCCCTCCTGAG	2050
GGGATGCACTCCCAATCTCCTCTCC	2075
AGAGTCCTGAGAGTGCTCCTGAGGG	2100

Figure 1(D)

GGAGGATTCCCTGTCTCCTCCAA	2125
ATTCCTCAGAGTCCTCTTGAGGGAG	2150
AGGACTCCCTGTCTTCTCTCCATTT	2175
TCCTCAGAGTCCTCCTGAGTGGGAG	2200
GACTCCCTCTCTCCTCCACTTTC	2225
CTCAGTTTCCTCCTCAGGGGGAGGA	2250
CTTCCAGTCTTCTCTCCAGAGTCCT	2275
GTGAGTATCTGCTCCTCCACTT	2300
CTTTGAGTCTTCCCCAGAGTTTCCC	2325
TGAGAGTCCTCAGAGTCCTCCTGAG	2350
GGGCCTGCTCAGTCTCCTCCAGA	2375
GACCTGTCAGCTCCTTCTTCTCCTA	2400
CACTTTAGCGAGTCTTCTCCAAAGT	2425
TCCCATGAGAGTCCTCAGAGTCCTC	2450
CTGAGGGGCCTGCCCAGTCTCCTCT	2475
CCAGAGTCCTGTGAGCTCCTTCCCC	2500
TCCTCCACTTCATCGAGTCTTTCCC	2525
AGAGTTCTCCTGTGAGCTCCTTCCC	2550
CTCCTCCACTTCATCGAGTCTTTCC	2575
AAGAGTTCCCCTGAGAGTCCTCTCC	2600
AGAGTCCTGTGATCTCCTTCTCCTC	2625
CTCCACTTCATTGAGCCCATTCAGT	2650
GAAGAGTCCAGCAGC <u>CCAGTAGATG</u>	2675
SL26	
<u>AATATACAAGTT</u> CCTCAGACACCTT	2700
GCTAGAGAGTGATTCCTTGACAGAC	2725
AGCGAGTCCTTGATAGAGAGCGAGC	2750
CCTTGTTCACTTATACACTGGATGA	2775
AAAGGTGGACGAGTTGGCGCGGTTT	2800

Figure 1(E)

•	
CTTCTCCTCAAATATC <u>AAGTGAAGC</u>	2825
SL27	
<u>AGCCTATCA</u> CAAAGGCAGAGATGCT	2850
GACGAATGTCATCAGCAGGTACACG	2875
GGCTACTTTCCTGT <i>GATC</i> TTCAGGA	2900
AAGCCCGTGAGTTCATAGAGATACT	2925
TTTTGGCATTTCCCTGAGAGAAGTG	2950
GACCCTGATGACTCCTATGTCTTTG	2975
TAAACACATTAGACCTCACCTCTGA	3000
GGGGTGTCTGAGTGATGAGCAGGGC	3025
ATGTCCCAGAACCGCCTCCTGATTC	3050
TTATTCTGAGTATCATCTTCATAAA	3075
GGGCACCTATGCCTCTGAGGAGGTC	3100
ATCTGGGATGTGCTGAGTGGAATAG	3125
GGGTGCGTGCTGGGAGGAGCACTT	3150
TGCCTTTGGGGAGCCCAGGGAGCTC	3175
CTCACTAAAGTTTGGGTGCAGGAAC	3200
ATTACCTAGAGTACCGGGAGGTGCC	3225
CAACTCTTCTCCTCCTCGTTACGAA	3250
TTCCTGTGGGGTCCAAGAGCTCATT	3275
CAGAAGTCATTAAGAGGAAAGTAGT	3300
AGAGTTTTTGGCCATGCTAAAGAAT	3325
ACCGTCCCTATTACCTTTCCATCCT	3350
CTTACAAGGATGCTTTGAAAGATGT	3375
GGAAGAGAGCCCAGGCCATAATT	3400
GACACCACAGATGATTCGACTGCCA	3425
CAGAAAGTGCAAGCTCCAGTGTCAŢ	3450
GTCCCCAGCTTCTCTTC TGA GTGA	3475
AGTCTAGGGCAGATTCTTCCCTCTG	3500

Figure 1(F)

AGTTTGAAGGGGGCAGTCGAGTTTC	3525
TACGTGGTGGAGGGCCTGGTTGAGG	3550
CTGGAGAGAACACAGTGCTATTTGC	3575
ATTTCTGTTCCATATGGGTAGTTAT	3600
GGGGTTTACCTGTTTTACTTTTGGG	3625
TATTTTCAAATGCTTTTCCTATTA	3650
ATAACAGGTTTAAATAGCTTCAGAA	3675
TCCTAGTTTATGCACATGAGTCGCA	3700
CATGTATTGCTGTTTTTCTGGTTTA	3725
AGAGTAACAGTTTGATATTTTGTAA	3750
AAACAAAAACACACCCAAACACACC	3775
ACATTGGGAAAACCTTCTGCCTCAT	3800
TTTGTGATGTGTCACAGGTTAATGT	3825
GGTGTTACTGTAGGAATTTTCTTGA	3850
AACTGTGAAGGAACTCTGCAGTTAA	3875
ATAGTGGAATAAAGTAAAGGATTGT	3900
TAATGTTTGCATTTCCTCAGGTCCT	3925
TTAGTCTGTTGTTCTTGAAAACTAA	3950
AGATACATACCTGGTTTGCTTGGCT	3975
TACGTAAGAAAGTAGAAGAAAGTAA	4000
ACTGTAATAAATAAAAAAAAAAAAAA	4025
AAAAA	4031

FIG. 2(A)

Ω ≥	Ω ≱	요목	A1 C1 exon	Ω ≥	Ω ≱	Ω ≥	ე ≱	Ω ≥
S A F P T T I TCCGCCTTTCCCACTACCAT	Q A A T S S S GCAGGCTGCCACCTCCT agaggatccccca	M CTGACGAGAGTCATCATG cctgaacaatattcatcatg	A1 ggttcag-ttctcagctgag C1 GG gtgagtttctcagctgag exon III G_intron III	CAGGGGACAGGCCAACCCAG CAGAAGACAAACCCCCCTAGG	cagagiciggccicaccicc agcaccggccctgtagccac	acagagcagaggatgcacag CCACAGCAGAGGAGGCCCAG	AGACTTATAGACCTATCCAG TCTTCAAGlgt////cag GTGCTCCAGAAAGCAGGAGT	CCATTCTGAGGGACGGCGTA GAGTTCGGCCGAAGGAACCT GACCCAGGCTCTGTGAGGAG
N F T R Q R Q CAACTTCACTCGACAGAGGC	S P L V L G CCTCTCCTCTGGGC	S L E Q R S L TCTCTTGAGCAGAGGAGTCT cctctctttctaaaccttcc	gcctctcacacactccctct gccactggcactgtccctct	AGGACAGGATTCCCTGGAGG AAGACAGGCGACCTGTGAGG	ctactgtcagtcctgtagaa ccactgtcattcctggtgcc	ggtgtgccagcagtgaatgt ttgccctgaatgca GCAGTGCCAGGAGTCAAGgt gagtgcacgacctgactgtg exon II intron II	TCTTCAAG gt////cag	GAGTTCGGCCGAAGGAACCT
P AACCC gatgaggaagaggag	T L E E V P T ACCCTGGAGGAGGTGCCCAC	H C K P E E A GCACTGCAAGCCTGAGGAAG acgccccagctttgagcaag	intron IITexon III ctccc-cagGCCTGTGGGTC ctccctcagtcctgtgggat	CCACAGAGGAGCACCA CCCTAGAGCACCACCTTAAG	togac-ctctgctggccggctcatggctgcctgccagc	ttgccctgaatgca gagtgcacgacctgactgtg tron li	gagetecaggaaecaggeag GTGCTCCAGAAAGCAGGAGT exon	GACCCAGGCTCTGTGAGGAG
gaagcttcctccattttctc	A G S T D P P TGCTGGGTCAACAGATCCTC	L E A Q Q E CCCTTGAGGCCCAACAAGAG gcttccagaaggcaattttc	TTCATTG-CCCAGCTCCTGC cccatcatacctattcgtgt	exon II intron II AGGAGAAGATCTgtaagtag AGAAGAAGAGCTGTAAGCCG	tgtaccctga-gtaccctct	caccaagggccccacctgcc taccaagggccgtaccccca	9 •	exon intron G C A A Glg t g a g // G C A Glg t g a g // GGATCGT
tteetettteeaetttttat	T D P P Q S P Q G A CAACAGATCCTC CCCAGAGTCCTCAGGGAGCC	L E A Q Q E A L G L V C V CCCTTGAGGCCCAACAAGAG GCCCTGGGCCTGGTGTGTGT gcttccagaaggcaattttc atactggagttggtagatgc	CCAGCTCCTGC CCACACTCCTGCCTGCTGCC acctattcgtgt tcacacgtttacctgctgct	g c c t t t g t t a g a g t c t c c a a GCCTTTGTCAGAGCCATCAT	t cacttectectteaglGTTTT t cgcgtccttctacaglGTTCC	acaggacacataggactcca gaaacagtgtcagacctggc	tgagacagtatcctcaggtc ACACATACATCCTAAAAGCA	CTCAGGTCAGCGGAGGGAGG
76 431	61 386	28 286	188 -	258	70 158		115	27

FIG. 2(B)

TCCAGATTCCCAGAGTTCTCTG AGAGTCGTGAGAGTTCTCGAGG GGAAGGACTCCCAGATTCTC CAGAGTCCCAGAGTTCTCCAGAGTTCTCCAGAGTTCTCAGAGTTCTCGAGGGAAGACCAGAGTCTCCAGAGTTCCCAGAGTTCTCCAGAGTTCTCCAGAGTTCTCCAGAGTTCTCCAGAGTTCTCAGAGTTCTCCAGAGTTCCAGAGTTTCCAGAGTTTCCAGAGTTTCCAGAGTTTCCAGAGTTTCCAGAGTTCCCAGAGTAGTCCAGAGTATCCTCCAGAGTATCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCCAGAGTATCCTCCAGAGTATCCGAGTAGTAGTAGAGTATTTCCAGAGTATTCCCAGAGTATCCAGAGTATCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCTCCAGAGTATCCTCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCCAGAGTATCAGAGTATCCAGAGTATCAGAGTATCCAGAGTATCAG	2 ≥	<u> </u>	<u> </u>	Ω ≥	9 A	Ω ≥	Ω ≱	<u> </u>
		AGAGTTCCCCTGAGAGTACT CAAAGTCCTTTTGAGGGTTT S P E S T Q S P F E G F	TCCCCTGAGAGTATTCAAAG	_	•	ACCCTGTATCCTCTCCAGAG T L Y P L Q S	TCTTCTCCAGAGTTCCTCTG	
	ACAGTCTCCTCT CCAGATTCCTGTGAGCTCCT CCTCGTCCTCCACTTTA		CTCCAGATTCCT GTGAGCGCCGCCTCCTCCTC CACTTTAGTGAGTATTT	GAATCCTGCGAG TTCCTTCTTCTCCTCTGCTT TATTGAGTATTTTTCCAG	TCCAGAATTCTC AGAGTTCTCCTGAGGGGAAG GACTCCCTGTCTCTQ N S Q S S P E G K D S L S P L	·	l l	tgcttctgcgtt ctccagGGGACAAGGATATG CCTACTGCTGGGATGCC intron III D K D M P T A G M P exon IV
				\GT 694 \G146	 IGA 594 E113			

FIG. 2(C)

Ω ≥

TTCCTGTGAGCTCCTCCTCC TCCTCCTCCACTITATTGAG TCTTTTCCAGAGTTCCCCTG AGTGTACTCAAAGTACTTTT GAGGGTTTTCCCCAGTCTCC 1794

PLV _S _ S _ S _ S _ S _ S _ T _ L _ S _ L _ F _ Q _ S _ P _ E _ C _ T _ Q | S _ T _ E _ G _ F _ P _ Q _ S _ P _ 513

FIG. 2(D)

Ω ≥	Ω ≥	Ω ≱	Ω ≥	Ω ≥	Ω ₹	<u>Ω</u> <u>≥</u>	Ω ≥	Ω <u>A</u>
GCTCCTTCTTCTCCTACACT	TGCTCCTCCTCCACTTCTTT	TCCTCCTGAGTGGGAGGACT	AGAGTGCTCCTGAGGGGGAG	AGTTCTCAGAGTCCTCCTGA	GAGTCCTCTTCAGGGGGAGG S P L Q G E E	TTCCTCAGAGCCCTCAGGGG	TACTTTCCTCAGAGCCCTCC	TÖTCCAGATTCCTCAGAGTC
TTAGCGAGTCTTCTCCAAAG	GAGTCTTCCCCAGAGTTTCC	CCCTCTCCTCCCACTTT	AGAGTGCTCCTGAGGGGGAG GATTCCCTGTCTCCTCCCA AATTCCTCAGAGTCCTCTTG		AATTCCAGTCTTCTCTCCAG F Q S S L Q	GAGGACTCCCTGTCTCCTCA E D S L S P H	TCAGGGGGAGGACTCCCTAT Q G E D S L S	CTCCTGAAGGGGAGAATACC PEGENT
	CTGAGAGTCCTCAGAGTCCT	CCTCAGTTTCCTCCTCAGGG	AATTCCTCAGAGTCCTCTTG	TCCATAGTCCTCAGAGCCCT	AATTCCAGTCTTCTCCCAG AGCCCTGTGAGCATCTGCTC F Q S L Q S P V S I C S	CTACTTTCCTCAGAGCCCTC	CTCCTCACTACTTTCCTCAG	CATTCTCCTCTCCAGATTGT
GTCCTCCTGAGGGGCCTGCC PPEGPA	CCTGAGGGGCCTGCTCAGTC P E G P A Q S		AGGGAGAGGACTCCCTGTCT G E D S L S	CCTGAGGGGATGCACTCCCA P E G M H S Q	CTCCTCCACTCCATCCAGTC		AGCCCTCCTCAGGGGGGAGGA S P P Q G E D	TCCAAGTCTTCCTGAGTGGG
TTCCCATGAGAGTCCTCAGA GTCCTCCTGAGGGGCCTGCC CAGTCTCCTCCCAGAGTCC	GAGTCTTCCCCAGAGTTTCC CTGAGAGTCCTCAGAGTCCT CCTGAGGGGCCTGCTCAGTC TCCTCTCCAGAGACCTGTCA	GGAGGACTTCCAGTCTTCTC TCCAGAGTCCTGTGAGTATC	CTCCCTGTCT TCTCTCCATTTTCCTCAGAG S L S S L H F P Q S	GEGECCTGTCCAGTCTCCTC TCCATAGTCCTCAGAGGCCCT CCTGAGGGGGATGCACTCCCA ATCTCCTCTCC	CCATCCAGTC TTCCCCCAGAGTTTCCCCTGAG 2194	CTCAGGGGGAGGACTCCATG TCTCCTCTCTCTCACTTTCCTCA	TCAGGGGGAGGACTCCCTAT CTCCTCACTACTTTCCTCAG AGCCCTCCTCAGGGGGGAGGA CTCCCTGTCTCCTCACTACT Q G E D S L S P H Y F P Q S P P Q G E D S L S P H Y F	CTCCTGAAGGGGAGAATACC CATTCTCCTCCAGATTGT TCCAAGTCTTCCTGAGTGGG AGGACTCCCTGTCTCCTCAC PEGENT HSPLQIVEPSLPEWEDSLSPH
2694 813	2594 780	2494 746	2394 713	2294 680	2194 646	2094 613	1994 580	1894 546

C1 TGTGAGCTCCTTCCCTCCT CCACTTCATCGAGTCTTTCC CAGAGTTCTCCTGTGAGCTC CTTCCCCTCCACTTCAT CGAGTCTTTCCAAGAGTTCC A1 -----NES S | F | S _T_S_S_L_S_ 0 S S P V S S ۱ – P S S T S S SCSK

Ω ≥ GTTCCTCAGACACCTTGCTA GAGAGTGATTCCTTGACAGA CAGCGAGTCCTTGATAGAGA GCGAGCCCTTGTTCACTTAT ACACTGGATGAAAAGGTGGA ш SDTLL S C - L . 70 ر م s E S D S L T D . -----AGTGAGGGTTCCAGCAG CCGTGAAGAGGGGGGCCAA P V 1 S F S S S I S L S P S S E SESLIES EPLFTY ESLFRA S E S S S s s V - T·K K V A CCCAGTAGATGAATATACAA PVDEYTS Ю M ш m * < 2994 2894 523 523 523 468

Ω ≥ CGAGTTGGCGCGGTTTCTTC TCCTCAAATATCAAGTGAAG CAGCCTATCACAAAGGCAGA GATGCTGACGAATGTCATCA TGATTTGGTTGGTTTTCTGC LVGFLL LARFLL TCCTCAAATATCGAGCCAGG GAGCCAGTCACAAAGGCAGA AATGCTGGAGAGTGTCATCA AAAATTACAAGCACTGTTTT L K Y R A R X Y Q Y X EPVIKAE QPITKAE M L E S V - K MLTNVIS GCAGGTACACGGGCTACTTT N K H C RYTG **~** 623 623

Ω ≥ CCTGAGATCTTCGGCAAAGC CCTGTGATCTTCAGGAAAGC V - F R K A I F G K A CCGTGAGTTCATAGAGATAC CTCTGAGTCCTTGCAGCTGG ж S ESLQLV E F - E - L TTTTTGGCATTTCCCTGAGA GAAGTGGACCCT---GATGA TCTTTGGCATTGACGTGAAG GAAGCAGACCCCACCGGCCA П G - D V K E A D P T G H CTCCTATGTCTTTGTAAACA 3191 CTCCTATGTCCTTGTCACCT တ SYVLVIC

 Ω A CATTAGACCTCACCTCTGAG GGGTGTCTGAGTGATGAGCA
L D L T S E G C L S D E Q GCCTAGGTCTCCCTATGAT GGCCTGCTGGGTGATAATCA LSYD 9 L L G D N Q GGGCATGTCCCAGAACCGCC TCCTGATTCTTATTCTGAGT ATCATCTTCATAAAGGGCAC GATCATGCCCAAGACAGGCT TCCTGATAATTGTCCTGGTC ATGATTGCAATGGAGGGCGG ဌာ I M P K T G F × S Q N R L S - C - S — — F — K ဝ <u>ග</u> 3291

Ω ≥ CCATGCTCCTGAGGAGGAAA TCTGGGAGGAGCTGAGTGTG ATGGAGGTGTATGATGGGAGCTATGCCTCTGAGGAGGTCA TCTGGGATGTGCTGAGTGGA ATAGGGGTGCGTGCTGGGAG HAPEEE < _ WEELSF 0 V L S G. _ ი MEVYDGR V R A ဌာ \mathbf{z} E H S A Y G E GGAGCACAGTGCCTATGGGG GGAGCACTTTGCCTTTGGGG I A F G m AGCCCAGGAAGCTGCTCACC AGCCCAGGGAGCTCCTCACT 70 ϖ \mathbf{x} ш _ _ _

FIG. 2(F)

A1 CAAGATTTGGTGCAGGAAAA
C1 AAAGTTTGGGTGCAGGAACA X V W V Q E H D LAV Q E K GTACCTGGAGTACCGGCAGG TTACCTAGAGTACCGGGAGG YLEYREV Y L E ≺ R Ø TGCCGGACAGTGATCCCGCA CGCTATGAGTTCCTGTGGGG TGCCCAACTCTTCTCCTCCT CGTTACGAATTCCTGTGGGG 70 N S P P 0 RYEFLW TI C മ TCCAAGAGCTCATTCAGAAG 3491 TCCAAGGCCCTCGCTGAAA 1023 70 R A H S т <

Ω ≥ S Y V K V L E Y V I K V S A R V R F F F P S L R E A CCAGCTATGTGAAAGTCCTT GAGTATGTGATCAAGGTCAG TGCAAGAGTTCGCTTTTTCT TCCCATCCCTGCGTGAAGCA TCATTAAGAGGAAAGTAGTA GAGTTTTTGGCCATGCTAAA GAATACCGTCCCTATTACCT TTCCATCCTCTTACAAGGAT GCTTTGAAAGATGTGGAAGA 3591 | K R K V V E F L A M L K N T V P | T F P S S Y K D A L K D V E E 1112 GCTTTGAGAGAGGAGGAAGA

Ω ≥ GAGAGCCCAGGCCATAATTG ACACCACAGATGATTCGACT GCCACAGAAAGTGCAAGCTC R A Q A I I D T T D D S T A T E S A S S GGGAGTCTGAGCATGAGTTG CAGCCAAGGCCAGTGGGAGG GGGACTGGGCCAGTGCACCT TCCAGGGCCGCGTCCAGCAG CTTCCCCTGCCTCGTGTGAC AQAIID CAGTGTCATGTCCCCCAGCT TCTCTTCTGAGTGAAGTCTA SVMSPSF တ တ 3691 1223 1142

A1 ---ATGAGGCCCATTCTTCA CTCTGAAGAGAGCGGTCAGT GTTCTCAGTAGTAG-----C1 GGGCAGATTCTTCCCTCTGA GTTTGAAGGGGGCAGTCGAG TTTCTACGTGGTGGAGGGGCAGTCGAG GGGCAGATTCTTCCCTCTGA GTTTGAAGGGGGCAGTCGAG TTTCTACGTGGTGGAGGGCC TGGTTGAGGCTGGAGAGAAC ACAGTGCTATTTGCATTTCT 3791 GTTTC 1279

A1 TGTTCTATTGGGTGACTTGG AGATTTATCTTTGTTCTCTT GTTCCATATGGGTAGTTATG GGGTTTACCTGTTTTACTTT TGGGTATTTTTCAAATGCTT TTCCTATTAATAACAGGTTT TTGGAATTGTTCAAATGTTT TT--TTTTAAGGGATGGTTG AAATAGCTTCAGAATCCTAG AATGAACTTCAGCATCCAAG 389 1 1377

Ω ≥ TTTATGAATGACAGCAGT-C TTTATGCACATGAGTCGCAC ATGTATTGCTGTTTTTCTGG TTTAAGAGTAACAGTTTGAT ATTTTGTAAAAAACAAAAAACA CACCCAAACACACCACATTG ACACAGTTCTGTGTATATAG TTTAAGGGTAAGAGTCTTGT GTTTTATTCAGATTGGGAAA TCCATTCTATTTTGTGAATT 1476 3991

A1 GGGATAATAACAGCAGTGGA ATAAGTACTTAGAATGTGA AAAATGAGCAGTAAAATAGA TGAGATAAAGAACTAAAGAA ATTAAGAGATAGTCAATTCT Ω GGAAAACCTTCTGCCTCATT TTGTGATGTGTCACAGGTTA ATGTGGTGTTACTGTAGGAA TTTTCTTGAAACTGTGAAGG AACTCTGCAGTTAAATAGTG

TGCCTTATACCTCAGTCTAT TCTGTAAAAATTTTTAAAGAT GAATAAAGTAAAGGATTGTT AATGTTTGCATTTCCTCAGG TCCTTTAGTCTGTTGTTCTT GAAAACTAAAGATACATACC ATATGCATACCTGGATTTCC TTGGCTTCTTTGAGAATGTA AGAGAAATTAAATCTGAATA TGGTTTGCTTGGCTTACGTA 4191 1676

AGAAAGTAGAAGAAAGTAAA CTGTAATAAATAAA AAGAATTCTTCCTGT-----

> 1691 4225

E

Figure 5 Nucleotide sequence of gene MAGE-C3 (SEQ ID NO: 21)

The sequence corresponds to nucleotides 3761 to 4801 of PAC clone 232G24 (GenBank accession number AL022152). It has been renumbered in this figure, taking as nucleotide number 1 the first nucleotide of the start codon.

Primers SL164 and SL165 that were used in the RT-PCR assay are indicated.

ATGCCTCTCTTTCCAAACCTTCCACGCCTCAGCTTTGAGGAAGACTTCCA	50
GAACCCGAGTGTGACAGAGGACTTGGTAGATGCACAGGATTCCATAGATG	100
AGGAGGAGGATGCCTCCTCCACTTCCTCTTTCCTCTTTTTTA	150
TTCCCCTCCTCTTCCTTGTCC <u>TCATCCTCACCCTTGTCCTCA</u> CCCTT	200
ACCCTCTACTCTCATTCTGGGTGTTCCAGAAGATGAGGATATGCCTGCTG	250
CTGGGATGCCACCTCTTCCCCAGAGTCCTCCTGAGATTCCTCCCCAGGGT	300
CCTCCCAAGATCTCTCCCCAGGGTCCTCCGCAGAGTCCTCCCCAGAGTCC	350
TCTAGACTCCTGCTCATCCCCTCTTTTGTGGACCCGATTGGATGAGGAGT	400
CCAGCAGTGAAGAGGAGGATACAGCTACTTGGCATGCCTTGCCAGAAAGT	450
GAATCCTTGCCCAGGTATGCCCTGGATGAAAAGGTGGCTGAGTTGGTGCA	500
GTTTCTTCTCCTCAAATATCAAACAAAAGAGCCTGTCACAAAGGCAGAGA	550
TGCTGACGACTGTCATCAAGAAGTATAAGGACTATTTTCCCATGATCTTC	600
GGGAAAGCCCATGAGTTCATAGAGCTAATTTTTGGCATTGCCCTGACTGA	650
TATGGACCCCGACAACCACTCCTATTTCTTTGAAGACACATTAGACCTCA	700
CCTATGAGGG <u>AAGCCTGATTGATGACCAGGG</u> CATGCCCAAGAACTGTCTC	750
SL165 CTGATTCTTATTCTCAGTATGATCTTCATAAAGGGCAGCTGTGTCCCCGA	800
GGAGGTCATCTGGGAAGTGTTGAGTGCAATAGGGGTGTGTGCTGGGAGGG	850
AGCACTTTATATATGGGGATCCCAGAAAGCTGCTCACTATACATTGGGTG	900
CAGAGAAAGTACCTGGAGTACCGGGAGGTGCCCAACAGTGCTCCTCCACG	950
TTATGAATTTTTGTGGGGTCCAAGAGCCCATTCAGAGGCCAGCAAGAGAA	1000
GTCTTAGAGTTTTTATCCAAGCTATCCAGTATCATCCCTAG	1041

Figure 6 Amino-acid sequence of the putative MAGE-C3 protein (SEQ ID NO: 22)

MPLFPNLPRLSFEEDFQNPSVTEDLVDAQDSIDEEEEDASSTSSSSFHFL	50.3,
FPSSSSLSSSSPLSSPLPSTLILGVPEDEDMPAAGMPPLPQSPPEIPPQG	100
PPKISPQGPPQSPPQSPLDSCSSPLLWTRLDEESSSEEEDTATWHALPES	150
ESLPRYALDEKVAELVQFLLLKYQTKEPVTKAEMLTTVIKKYKDYFPMIF	200
GKAHEFIELIFGIALTDMDPDNHSYFFEDTLDLTYEGSLIDDQGMPKNCL	250
LILILSMIFIKGSCVPEEVIWEVLSAIGVCAGREHFIYGDPRKLLTIHWV	300
QRKYLEYREVPNSAPPRYEFLWGPRAHSEASKRSLRVFIQAIQYHP	346

Figure 7 Nucleotide sequence of gene MAGE-B5 (SEQ ID NO: 23)

This sequence is the antiparallel sequence corresponding to nucleotides 123358 to 124185 of BAC clone 46604 (GenBank accession number AC005297). The sequence has been renumbered in this figure, taking the first nucleotide of the start codon as nucleotide number 1.

Primers SL189 and SL190 that were used in the RT-PCR assay are indicated.

ATGACTTCTGCAGGTGTTTTTAATGCAGGATCTGACGAAAGGGCTAACAG	50
TAGAGATGAGGAGTACCCATGTTCCTCAGAGGTCTCACCCTCCACTGAGA	100
GTTCATGCAGCAATTTCATAAATATTAAGGTGGGTTTGTTGGAGCAGTTC	150
CTGCTCTACAAGTTCAAAATGAAACAGCGTATTTTGAAGGAAG	200
GAAGATTGTCAACCCAAGATACCAAAACCAGTTTGCTGAGATTCACAGAA	250
GAGCTTCTGAGCACATTGAGGTTGTCTTTGCAGTTGACTTGAAGGAAG	300
AACCCAACTTGTCACTTATATGACCTTGTCAGCAAGCTGAAACTCCCCAA	350
CAATGGGAGGATTCATGTT <u>GGCAAAGTGTTACCCAAGACTGGTC</u> TCCTCA SL189	400
TGACTTTCCTGGTTGTGATCTTCCTGAAAGGCAACTGTGCCAACAAGGAA	450
GATACCTGGAAATTTCTGGATATGATGCAAATATATGATGGGAAGAAGTA	500
CTACATCTATGGAGAGCCCAGGAAGCTCATCACTCAGGATTTCGTGAGGC	550
TAACGTACCTGGAGTACCACCAGGTGCCCTGCAGTTATCCTGCACACTAT	600
CAATTCCTTTGGGGTCCAAGAGCCTATACTGAAACCAGCAAGATGAAAGT	650
CCTGGAATATTTGGCCAAGGTCAATGATATT <u>GCTCCAGGTGCCTTCTCAT</u> SL190	700
<u>CACAA</u> TATGAAGAGGCTTTGCAAGATGAGGAAGAGAGCCCAAGCCAGAGA	750
TGCAGCCGAAACTGGCACTACTGCAGTGGCCAAGACTGTCTCAGGGCGAA	800
GTTCAGCAGCTTCTCAACCCTATTGA	828

Figure 8 Amino-acid sequence of the putative MAGE-B5 protein (SEQ ID NO: 24)

MTSAGVFNAGSDERANSRDEEYPCSSEVSPSTESSCSNFINIKVGLLEQF	Ç, 50
LLYKFKMKQRILKEDMLKIVNPRYQNQFAEIHRRASEHIEVVFAVDLKEV	100
NPTCHLYDLVSKLKLPNNGRIHVGKVLPKTGLLMTFLVVIFLKGNCANKE	150
DTWKFLDMMQIYDGKKYYIYGEPRKLITQDFVRLTYLEYHQVPCSYPAHY	200
QFLWGPRAYTETSKMKVLEYLAKVNDIAPGAFSSQYEEALQDEEESPSQR	250
CSRNWHYCSGODCLRAKFSSFSOPY	275

Figure 9 Nucleotide sequence of gene MAGE-B6 (SEQ ID NO: 25)

This sequence is the antiparallel sequence corresponding to nucleotides 146417 to 147640 of BAC clone 46604 (GenBank accession number AC005297). The sequence has been renumbered in this figure, taking the first nucleotide of the start codon as nucleotide number 1.

Primers SL191 and SL192 that were used in the RT-PCR assay are indicated.

ATGCCTCGGGGTCACAAGAGTAAGCTCCGTACCTGTGAGAAACGCCAAGA	50
GACCAATGGTCAGCCACAGGGTCTCACGGGTCCCCAGGCCACTGCAGAGA	100
${\tt AGCAGGAAGAGTC} \underline{{\tt CCACTCTTCCTCATCCTCTTCTCG}} {\tt CGCTTGTCTGGGT}$	150
SL191	
GATTGTCGTAGGTCTTCTGATGCCTCCATTCCTCAGGAGTCTCAGGGAGT	200
GTCACCCACTGGGTCTCCTGATGCAGTTGTTTCATATTCAAAATCCGATG	250
TGGCTGCCAACGGCCAAGATGAGAAAAGTCCAAGCACCTCCCGTGATGCC	300
TCCGTTCCTCAGGAGTCTCAGGGAGCTTCACCCACTGGCTCTCCTGATGC	350
AGGTGTTTCAGGCTCAAAATATGATGTGGCTGCCAACGGCCAAGATGAGA	400
AAAGTCCAAGCACTTCCCATGATGTCTCCGTTCCTCAGGAGTCTCAGGGA	450
GCTTCACCCACTGGCTCGCCTGATGCAGGTGTTTCAGGCTCAAAATATGA	500
TGTGGCTGC <u>CGAGGGTGAAGATGAGGAAAGTG</u> TAAGCGCCTCACAGAAAG	550
SL192	
CCATCATTTTTAAGCGCTTAAGCAAAGATGCTGTAAAGAAGAAGGCGTGC	600
ACGTTGGCGCAATTCCTGCAGAAGAAGTTTGAGAAGAAGAGTCCATTTT	650
GAAGGCAGACATGCTGAAGTGTCCCGCAGAGAGTACAAGCCCTACTTCC	700
CTCAGATCCTCAACAGAACCTCCCAACATTTGGTGGTGGCCTTTGGCGTT	750
GAATTGAAAGAAATGGATTCCAGCGGCGAGTCCTACACCCTTGTCAGCAA	800
GCTAGGCCTCCCCAGTGAAGGAATTCTGAGTGGTGATAATGCGCTGCCGA	850
AGTCGGGTCTCCTGATGTCGCTCCTGGTTGTGATCTTCATGAACGGCAAC	900
TGTGCCACTGAAGAGGAGGTCTGGGGAGTTCCTGGGGTCTGTTGGGGATATA	950
TGATGGGATCCTGCATTCAATCTATGGGGATGCTCGGAAGATCATTACTG	1000
AAGATTTGGTGCAAGATAAGTACGTGGTTTACCGGCAGGTGTGCAACAGT	1050
GATCCTCCATGCTATGAGTTCCTGTGGGGTCCACGAGCCTATGCTGAAAC	1100
CACCAAGATGAGAGTCCTGCGTGTTTTGGCCGACAGCAGTAACACCAGTC	1150
${\tt CCGGTTTATACCCACATCTGTATGAAGACGCTTTGATAGATGAGGTAGAG}$	1200
AGAGCATTGAGACTGAGAGCTTAA	1224

Figure 10 Amino-acid sequence of the putative MAGE-B6 protein (SEQ ID NO: 26)

MPRGHKSKLRTCEKRQETNGQPQGLTGPQATAEKQEESHSSSSSRACLG	` ` 50 _{~.}
DCRRSSDASIPQESQGVSPTGSPDAVVSYSKSDVAANGQDEKSPSTSRDA	100
SVPQESQGASPTGSPDAGVSGSKYDVAANGQDEKSPSTSHDVSVPQESQG	150
ASPTGSPDAGVSGSKYDVAAEGEDEESVSASQKAIIFKRLSKDAVKKKAC	200
TLAQFLQKKFEKKESILKADMLKCVRREYKPYFPQILNRTSQHLVVAFGV	250
ELKEMDSSGESYTLVSKLGLPSEGILSGDNALPKSGLLMSLLVVIFMNGN	300
CATEEEVWEFLGLLGIYDGILHSIYGDARKIITEDLVQDKYVVYRQVCNS	350
DPPCYEFLWGPRAYAETTKMRVLRVLADSSNTSPGLYPHLYEDALIDEVE	400
RALRLRA	407