

ASSIGNMENT 2

SECI1013 STRUKTUR DISKRIT (DISCRETE STRUCTURE)

LECTURER: DR. NOORFA HASZLINNA BINTI MUSTAFFA

SECTION: 02

GROUP MEMBERS:

TAN YI YA	A23CS0187
TEH RU QIAN	A23CS0191
GOE HE VING	A23CS0224

Assignment 2

1. A={2,3,4,5,6,7,8} ,x-y=3n

when x - y= 3n (n = multiple of 3),

R= {(8,5), (5,8), (7,4), (4,7), (6,3), (3,6), (5,2), (2,5), (8,2), (2,8)}, when a-y= o (3n=0),

R = {(2,1), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8)},

Domain = {2,3,4,5,6,7,8} Range = {2,3,4,5,6,7,8} Pefkxive, Symmetric, Transitive

- Equivalance

2. $R = \{ (1,9), (1,8), (1,7), (2,9), (2,8), (2,7), (3,9), (3,8), (3,7) \}$

(a) R={(1,9),(1,7),(2,8),(3,9),(3,7)}

R-1= { (9,1), (7,1), (8,2), (9,2), (7,3)}

(b) R

(c) R-1: B to A
For all (b,a) ∈ B×A, b R a ←> b+ a is an even number.

3. A={1,2,3,4,5}

R= {(1,1),(2,2),(3,2),(3,3),(3,4)(4,1),(4,4),(4,5),(5,4),(5,5)}

	In-degree	Out-degree
1	2	1
2	1	1
3	1	3
4	3	3
5	2	2

4.

:. Ris reflexive because (0,0), (1,1), (2,2), (3,3), (4,4) e R

D is symmetric because C0,1) and $C1,0) \in \mathbb{R}$, C1,2) and $C2,1) \in \mathbb{R}$, C2,3) and $C3,2) \in \mathbb{R}$, C3,4) and $C4,3) \in \mathbb{R}$.

R is not transitive because $(0,1) k(1,2) \in R$, but $(0,2) \notin R$

5. R={(1,3),(2,6),(3,9),(4,12)

- (a) R is irreflexive because (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), (8,8), (9,9), (10,10), (11,11), (12,12), (13,13), (14,14) & R. (x,x) & R
- (b) R is antisymmetric because (1,3) ∈ R but (3,1) € R.
- (c) R is not transitive because (1,3) and (3,9) ∈ R but (1,9) ∉ R.

6. (a)
$$RS = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

(b) $SR = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

- 7. Relation is a set of ordered pairs, function is a specific type of relation where each input value (element of the domain) is associated with exactly one output value (element of the codomain).
- 8. A= {2,3,4,5}
 - (i) {(2,3), (3,4), (4,5), (5,2)}

 is a function because (x, y,) ∈ f

 and (x, y,2) ∉ f.

(ii) $\{(2,4),(3,4),(5,4),(4,4)\}$ is a function because $(x_1,y_1) \in f$ and $(x_1,y_2) \notin f$

(iii) $\{(2,3),(3,4),(5,4)\}$ is not a function because (2,3) and (2,4) \in f, $3 \neq 4$

(v) $\{(2,1),(2,3),(4,4),(4,5)\}$ is not a function because (2,2)and $(2,3) \in f$, $2 \neq 3$

- 9. $R = \{(1,6), (2,7), (3,8), (4,9), (5,10)\}$ Domain = $\{1,2,3,4,5\}$ Range = $\{6,7,8,9,10\}$
- 10. (v) $f=R \rightarrow R$, $f(\alpha)=1-2x$ $f(x_1)=f(x_2)$ $1-2x_1=1-2x_2$ $f(x_2)=1-2x_1$ $f(x_1)=1-2x_2$ $f(x_1)=1-2x_2$ $f(x_2)=1-2x_1$ $f(x_1)=1-2x_2$ $f(x_2)=1-2x_2$ $f(x_1)=1-2x_2$ $f(x_1)=1-2x_2$ $f(x_2)=1-2x_2$ $f(x_1)=1-2x_2$ $f(x_2)=1-2x_2$ $f(x_1)=1-2x_2$ $f(x_2)=1-2x_2$ $f(x_1)=1-2x_2$ $f(x_2)=1-2x_2$ $f(x_1)=1-2x_2$ $f(x_2)=1-2x_2$
 - X, = 22 : one to one : there exist an x for every y, hence it is onto

(iv) $\{(2,3),(3,5),(4,5)\}$

there is no arrow from 5

is not a function because (5,4) &f,

-. Since the function is both one to one and onto, it is bijective

-. Since the function is not one to one and not onto, it is not bijective.

(vii)
$$f=R \ni R$$
, $f(x)=x^{+}$
 $f(x_{+}) = f(x_{+})$
 $x_{+} = x_{+}$
 x

.. Since the function is not one to one and not onto, it is not bijective.

(viii)
$$f = R \Rightarrow R$$
, $f(x) = \left(\frac{x_1 - 2}{x_1 - 3}\right)$ $y = \frac{x_1 - 2}{x_2 - 3}$
 $f(x_1) = f(x_1)$ $y(x_2 - 3) = x_2 - 2$
 $\left(\frac{x_1 - 2}{x_1 - 3}\right) = \left(\frac{x_2 - 2}{x_2 - 3}\right)$ $xy - 3y = x - 2$
 $(x_1 - 2)(x_2 - 3) = (x_2 - 2)(x_1 - 3)$ $x = \frac{3y - 2}{y - 1}$ \therefore onto

.. Since the function is not both one to one and onto, it is not bijective.

11. (ix)
$$f(g(x)) = f(x^{2}-1)$$

$$= 3(x^{2}-1)-1$$

$$= 3(x^{2}-1)-1$$

$$= 3(x^{2}-1)-1$$

$$= 3(x^{2}-1)-1$$

$$= 3(x^{2}-1)-1$$

$$= -4,$$

$$\frac{x=0}{fg(0)} = 3(0)^{2}-4$$

$$= -4,$$

$$\frac{x=1}{fg(1)} = 3(1)^{2}-4$$

$$= -1,$$

$$\frac{x=1}{fg(1)} = 3(1)^{2}-4$$

$$= -1,$$

$$\frac{x=2}{fg(2)} = 3(3)^{2}-4$$

$$= 8,$$

$$\frac{x=3}{fg(3)} = 3(3)^{2}-4$$

$$= 8,$$

$$\frac{x=3}{fg(3)} = 3(3)^{2}-4$$

$$= 16,$$

$$\frac{x=3}{fg(3)} = 3(3)^{2}-60(3)+36$$

$$= 16,$$

$$= 8,$$

$$(xi) f(g(x)) = f(x^{3}+1)$$

$$= x^{3}+1-1$$

$$= x^{3}+1-$$

12.
$$(x_{11})$$
 $a_{11} = 6a_{11} - 9a_{11} = 2a_{11} = 1$ and $a_{11} = 6$
 $a_{11} = 6(6) - 9(1) = 27$
 $a_{11} = 6(2) - 9(6) = 108$ $a_{11} = 6(2) - 9(2) = 405$
 $a_{11} = 6(2) - 9(2) = 405$

(xiii)
$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$
; $a_n = 2$, $a_n = 5$, $a_n = 15$
 $a_n = 6(15) - 11(5) + 6(2) = 47$
 $a_n = 6(47) - 11(15) + 6(5) = 147$ $\therefore 2, 5, 15, 47, 147, 455, ...$
 $a_n = 6(147) - 11(47) + 6(15) = 455$

(xiv)
$$a_{n}=-3a_{n-1}-3a_{n-2}+9n-3$$
; $a_{n}=1$, $a_{1}=-2$, $a_{2}=-1$
 $a_{3}=-3(-1)-3(-2)+1=10$
 $a_{4}=-3(10)-3(-1)+(-2)=-24$: $1,-2,-1,10,-29,56,...$
 $a_{5}=-3(-29)-3(10)+(-1)=56$

13. (i)
$$a_{n+1} = 5a_{n} - 3 ; a_{1} = k$$

$$a_{2} = 5k - 3$$

$$a_{3} = 5(5k - 3) - 3$$

$$= 25k - 18$$

$$a_{4} = 5(25k - 18) - 3$$

$$= 125k - 90 - 3$$

$$= 125k - 93$$