MEMO SUITES

Ι	Résultats en vrac sur les suites		
	I.1	Suites à valeurs réelles	1
	I.2	Deux gros résultats liés à l'ordre sur \mathbb{R}	1
	I.3	Suites à valeurs complexes	1
II	Rela	ations de comparaison	3
III	Tech	nniques d'études de quelques familles de suites	4
	III.1	Suites réelles vérifiant une relation de la forme $\forall n \in \mathbb{N}, u_{n+1} = f(u_n) \dots$	4
		Suites homographiques (facultatif)	
	III.3	Suites récurrentes linéaires	5
		Suites géométriques	5
		Suites arithmético-géométriques	6
		Récurrences linéaires d'ordre 2	6
		Généralisation	6
	III.4	Suites simultanément récurrentes	6
		Des sommes et le théorème de Cesaro	
IV	Déve	eloppement décimal d'un réel positif	8

I. Résultats en vrac sur les suites

I.1 Suites à valeurs réelles

Proposition I.1

- Toute suite réelle stationnaire est convergente
- Etant données deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles qu'à partir d'un certain rang on ait $|u_n| \leq v_n$, si la suite $(v_n)_{n\in\mathbb{N}}$ tend vers 0, il en est de même de la suite $(u_n)_{n\in\mathbb{N}}$.
- Si la suite réelle $(u_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ , alors la suite $(|u_n|)_{n\in\mathbb{N}}$ converge vers $|\ell|$
- Toute suite réelle convergente est bornée
- Toute suite extraite d'une suite réelle convergente converge vers la même limite

Proposition I.2 $\left(\mathbb{R}^{\mathbb{N}}, +, \cdot, \times\right)$ est une \mathbb{R} -algèbre. L'ensemble des suites réelles convergentes en est une sous-algèbre et l'application $u \longmapsto \lim u$ un morphisme d'algèbres de cet ensemble sur \mathbb{R} .

Théorème 1 Une condition nécessaire et suffisante pour qu'une suite croissante (resp. décroissante) soit convergente est qu'elle soit majorée (resp. minorée). Si la suite $(u_n)_n$ est croissante et majorée, on a $\lim_{n\to\infty} u_n = \sup\{u_n \mid n\in\mathbb{N}\}.$

Définition 1 Deux suites réelles $(u_n)_n$ et $(v_n)_n$ sont dites adjacentes lorsque l'une est croissante, l'autre décroissante, et elles vérifient $v_n - u_n \underset{n \to +\infty}{\longrightarrow} 0$.

Théorème 2 Deux suites adjacentes convergent vers la même limite.

Proposition I.3 Toute suite réelle croissante non majorée diverge vers $+\infty$.

I.2 Deux gros résultats liés à l'ordre sur R

Théorème 3 des segments emboîtés

Soit $(I_n)_{n\in\mathbb{N}}$ une suite décroissante de segments de \mathbb{R} dont la longueur tend vers 0. On note $I_n = [a_n, b_n].$

Alors $\bigcap_{n\in\mathbb{N}}I_n$ est un singleton et en notant $\bigcap_{n\in\mathbb{N}}I_n=\{c\}$, le réel c est la limite commune des suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$.

Théorème 4 de Bolzano-Weierstraß

De toute suite réelle bornée, on peut extraire une sous-suite convergente.

I.3 Suites à valeurs complexes

Si $(z_n)_{n\in\mathbb{N}}$ est une suite complexe, on peut (au moins en théorie) se ramener à l'étude de suites réelles en posant : $\forall n \in \mathbb{N}, x_n = \operatorname{Re} z_n, y_n = \operatorname{Im} z_n.$

Proposition I.4

- Une condition nécessaire et suffisante pour que la suite $(z_n)_{n\in\mathbb{N}}$ soit bornée est que les suites réelles $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ le soient.
- $\bullet \ \textit{Soit} \ \ell = \ell_1 + \textit{i} \ \ell_2, \ \textit{avec} \ \ell_1 = \mathop{\mathrm{Re}}\nolimits \ell \ \textit{ et } \ \ell_2 = \mathop{\mathrm{Im}}\nolimits \ell. \ \textit{Une condition n\'ecessaire et suffisante pour que la}$ suite $(z_n)_{n\in\mathbb{N}}$ converge vers ℓ est que les suites réelles $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ convergent respectivement vers ℓ_1 et ℓ_2 .

La plupart des propriétés des suites réelles qui ne reposent pas sur l'ordre défini sur R restent valables pour les suites complexes. Citons notamment :

Proposition I.5 $\left(\mathbb{C}^{\mathbb{N}},+,\cdot,\times\right)$ est une \mathbb{C} -algèbre. L'ensemble des suites complexes convergentes en est une sous-algèbre et l'application $u\longmapsto \lim u$ un morphisme d'algèbres de cet ensemble sur C.

Proposition I.6

- Si la suite complexe $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , la suite $(|u_n|)_{n\in\mathbb{N}}$ converge vers $|\ell|$.
- ullet Toute suite complexe stationnaire est convergente
- Toute suite complexe convergente est bornée
- Toute suite extraite d'une suite complexe convergente converge vers la même limite

Théorème 5 de Bolzano-Weierstraß

De toute suite complexe bornée, on peut extraire une sous-suite convergente.

Relations de comparaison

Dans ce paragraphe, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Définition 2 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites à valeurs dans \mathbb{K} .

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est dominée par la suite $(v_n)_{n\in\mathbb{N}}$ s'il existe une suite bornée $(\alpha_n)_{n\in\mathbb{N}}$ et un entier naturel p vérifiant

$$\forall n \in \mathbb{N}, \ n \geqslant p \Rightarrow u_n = \alpha_n \, v_n$$

On note ceci $u_n = O(v_n)$ ou u = O(v) ("grand O").

Définition 3 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites à valeurs dans \mathbb{K} .

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est négligeable devant la suite $(v_n)_{n\in\mathbb{N}}$ (ou que la suite $(v_n)_{n\in\mathbb{N}}$ est prépondérante devant la suite $(u_n)_{n\in\mathbb{N}}$ s'il existe une suite $(\alpha_n)_{n\in\mathbb{N}}$ tendant vers 0 et un entier naturel p vérifiant

$$\forall n \in \mathbb{N}, \ n \geqslant p \Rightarrow u_n = \alpha_n \, v_n$$

 $\forall n\in\mathbb{N},\ n\geqslant p\Rightarrow u_n=\alpha_n\,v_n$ On note ceci $u_n=o(v_n)$ ou u=o(v) ("petit O").

Remarque II.1 On a l'échelle (chaque suite est négligeable devant la suivante) : $(\ln n)^{\beta} \prec n^{\alpha} \prec a^{n} \prec n! \prec n^{n}$, avec $\alpha > 0$ et a > 1.

Définition 4 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites à valeurs dans \mathbb{K} .

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $(v_n)_{n\in\mathbb{N}}$ (ou que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont équivalentes) s'il existe une suite $(\alpha_n)_{n\in\mathbb{N}}$ tendant vers 1 et un entier naturel p vérifiant

$$\forall n \in \mathbb{N}, \ n \geqslant p \Rightarrow u_n = \alpha_n \, v_n$$

c'est-à-dire lorsque l'on a

$$v_n - u_n = o(u_n)$$

On note ceci $u_n \sim v_n$ ou $u \sim v$.

III. Techniques d'études de quelques familles de suites

III.1 Suites réelles vérifiant une relation de la forme $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

Etant donnée une fonction f de \mathbb{R} dans \mathbb{R} d'ensemble de définition noté \mathcal{D}_f , et $a \in \mathcal{D}_f$, on considère la suite de réels $(u_n)_{n \in \mathbb{N}}$ vérifiant (si elle existe)

$$u_0 = a \quad \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$$

1. Existence de la suite

En notant \sum la plus grande partie de $\mathbb R$ stable par f, la suite est définie si, et seulement si, $a \in \sum$.

Dans la pratique, on essaye de déterminer un intervalle \mathcal{I} stable par f auquel appartient a, ce que l'on suppose réalisé désormais.

2. Limite éventuelle de la suite

En général, la fonction f est continue sur \mathcal{D}_f et la limite finie éventuelle ℓ de la suite, si elle appartient à \mathcal{D}_f , vérifie $f(\ell) = \ell$. Attention à ne pas oublier la possibilité que la suite diverge vers $\pm \infty$ ou converge vers un réel n'appartenant pas à \mathcal{D}_f .

L'obtention des limites éventuelles facilite parfois la recherche de minorants ou de majorants de la suite : par exemple, si f est croissante sur \mathcal{I} , alors pour tout entier naturel n, les quantités $\ell - u_{n+1}$ et $\ell - u_n$ (si elles ne sont pas nulles) sont de même signe, donc du signe de $\ell - u_0$.

3. Monotonie de la suite

L'étude de la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ peut être facilitée dans les deux cas suivants :

- (a) Si f est croissante, la suite $(u_n)_{n\in\mathbb{N}}$ est monotone, plus précisément croissante lorsque l'on a $f(a) \ge a$, décroissante lorsque l'on a $f(a) \le a$.
- (b) Si f est décroissante (la fonction $f \circ f$ est croissante), les suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont monotones, de monotonies opposées. Dans ce cas, une condition nécessaire et suffisante pour que la suite $(u_n)_{n \in \mathbb{N}}$ converge est que les suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ soient adjacentes.

4. Convergence de la suite

Les théorèmes usuels assurent le plus souvent la convergence ; on étudie ainsi la monotonie, un encadrement du terme général...

On peut aussi conclure, si ℓ est un élément de \mathcal{I} , s'il existe $k, k \in [0, 1]$, tel que

$$\exists p \in \mathbb{N} \mid \forall n \in \mathbb{N}, \ n \geqslant p \Rightarrow |u_{n+1} - \ell| \leqslant k \ |u_n - \ell| \tag{1}$$

La relation (1) est satisfaite, selon le théorème des accroissements finis, si on sait qu'à partir d'un certain rang u_n appartient à \mathcal{I} , que f est dérivable sur \mathcal{I} et qu'il existe $k, k \in [0, 1[$, tel que $|f'| \leq k$.

On peut noter que le graphe de la fonction f ou l'étude de ses variations permet souvent d'orienter et de faciliter l'étude de la suite $(u_n)_{n\in\mathbb{N}}$.

III.2 Suites homographiques (facultatif)

On considère la suite de nombres complexes définie par la donnée de $u_0 \in \mathbb{C}$ et la relation

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{a \, u_n + b}{c \, u_n + d}$$

où a, b, c, d sont des nombres complexes avec $c \neq 0$ et $ad - bc \neq 0$ (sinon la suite est constante). Dans le cas de suites réelles, les techniques vues précédemment peuvent être utilisées.

Notons $f:\mathbb{C}\setminus\left\{-\frac{d}{c}\right\}\longrightarrow\mathbb{C}$ l'application (appelée une homographie) définie par

$$\forall z \in \mathbb{C} \setminus \left\{ -\frac{d}{c} \right\}, \ f(z) = \frac{az+b}{cz+d}$$

Les limites finies éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$ sont les points fixes de l'homographie f, à savoir les racines de l'équation $(E): cz^2 + (d-a)z - b = 0$, (dont on vérifie que $-\frac{d}{c}$ n'est pas solution). Il y a deux possibilités:

- (E) admet deux solutions distinctes α et β dans \mathbb{C}
 - (a) Si on a $u_0 = \alpha$ (resp. $u_0 = \beta$), la suite $(u_n)_{n \in \mathbb{N}}$ est constante (puisque l'on a $\forall n \in \mathbb{N}, u_n = \alpha$ (resp. $u_n = \beta$)) et converge.
 - (b) Supposons alors $u_0 \notin \{\alpha, \beta\}$. Comme f est injective, on a $\forall n \in \mathbb{N}, \ u_n \notin \{\alpha, \beta\}$. Il existe une constante k telle que l'on ait $\forall n \in \mathbb{N}, \ \frac{u_{n+1} - \alpha}{u_{n+1} - \beta} = k \frac{u_n - \alpha}{u_n - \beta}$. On a $k \neq 1$. Par conséquent $\forall n \in \mathbb{N}, \ \frac{u_n - \alpha}{u_n - \beta} = k^n \frac{u_0 - \alpha}{u_0 - \beta}$, ce qui entraîne la discussion suivante :
 - |k| < 1: la suite $(u_n)_{n \in \mathbb{N}}$ converge vers α
 - |k| > 1: la suite $(u_n)_{n \in \mathbb{N}}$ converge vers β
 - |k| = 1: la suite $(u_n)_{n \in \mathbb{N}}$ diverge (éventuellement périodique), car on a $k \neq 1$

La relation $\forall n \in \mathbb{N}$, $\frac{u_n - \alpha}{u_n - \beta} = k^n \frac{u_0 - \alpha}{u_0 - \beta}$ permet en outre de déterminer l'ensemble des valeurs de u_0 assurant l'existence de la suite $(u_n)_{n \in \mathbb{N}}$ (c'est le principal intérêt de cette étude dans le cas des suites réelles).

- (E) admet une racine double α dans \mathbb{C}
 - (a) Si on a $u_0 = \alpha$, la suite $(u_n)_{n \in \mathbb{N}}$ est constante (puisque l'on a $\forall n \in \mathbb{N}, u_n = \alpha$) et converge.
 - (b) Supposons alors $u_0 \neq \alpha$. Comme f est injective, on a $\forall n \in \mathbb{N}, \ u_n \neq \alpha$. Il existe une constante k telle que l'on ait $\forall n \in \mathbb{N}, \ \frac{1}{u_{n+1} - \alpha} = \frac{1}{u_n - \alpha} + k$. On a $k \neq 0$. Par conséquent $\forall n \in \mathbb{N}, \ \frac{1}{u_n - \alpha} = \frac{1}{u_0 - \alpha} + n \, k$. La suite $(u_n)_{n \in \mathbb{N}}$ converge vers α . La relation $\forall n \in \mathbb{N}, \ \frac{1}{u_n - \alpha} = \frac{1}{u_0 - \alpha} + n \, k$ permet en outre de déterminer l'ensemble des valeurs de u_0 assurant l'existence de la suite $(u_n)_{n \in \mathbb{N}}$ (c'est le principal intérêt de cette étude

III.3 Suites récurrentes linéaires

dans le cas des suites réelles).

III.3.a Suites géométriques

Soit $a \in \mathbb{K}$. Une suite géométrique $(u_n)_{n \in \mathbb{N}}$ de raison a vérifie $\forall n \in \mathbb{N}, \ u_n = a^n u_0$. Lorsque u_0 est non nul, la suite $(a^n u_0)_{n \in \mathbb{N}}$ converge si, et seulement si, on a a = 1 ou |a| < 1.

III.3.b Suites arithmético-géométriques

Soient $a, b \in \mathbb{K}$, $b \neq 0$. Une suite $(u_n)_{n \in \mathbb{N}}$ vérifiant la relation $\forall n \in \mathbb{N}$, $u_{n+1} = a u_n + b$ est dite arithmético-géométrique.

Il s'agit d'une équation linéaire d'inconnue u. On connaît la solution générale de l'équation homogène associée. On peut en chercher une solution particulière qui soit constante égale à ℓ . On note ℓ la limite finie éventuelle de la suite $(u_n)_{n\in\mathbb{N}}$. Ainsi ℓ vérifie $(1-a)\,\ell=b$. D'où les deux cas possibles :

- (a) a=1: il s'agit d'une suite arithmétique divergente $\forall n\in\mathbb{N},\ u_n=u_0+nb$
- (b) $a \neq 1$: on a $\ell = \frac{b}{1-a}$, la suite $(u_n \ell)_{n \in \mathbb{N}}$ est une suite géométrique et la suite $(u_n)_{n \in \mathbb{N}}$ converge si, et seulement si, on a |a| < 1 ou $u_0 = \frac{b}{1-a}$

III.3.c Récurrences linéaires d'ordre 2

Soient $a,b \in \mathbb{C}$, $b \neq 0$. On étudie ici les suites $(u_n)_{n \in \mathbb{N}}$ à valeurs dans \mathbb{C} vérifiant la relation $(L): \forall n \in \mathbb{N}, \ u_{n+2} = a \, u_{n+1} + b \, u_n$.

L'équation $(E): r^2 - a \, r - b = 0$ est appelée équation caractéristique associée à (L). Elle admet deux racines α et β dans \mathbb{C} (distinctes ou non).

Théorème 6 Dans le cas $\alpha \neq \beta$, les suites satisfaisant (L) sont les suites $(\lambda \alpha^n + \mu \beta^n)_{n \in \mathbb{N}}$, $\lambda, \mu \in \mathbb{C}$. Dans le cas $\alpha = \beta$, les suites satisfaisant (L) sont les suites $(\lambda \alpha^n + \mu n \alpha^n)_{n \in \mathbb{N}}$, $\lambda, \mu \in \mathbb{C}$.

III.3.d Généralisation

Soient $a, b, c \in \mathbb{C}$, $b \neq 0$. On étudie ici les suites $(u_n)_{n \in \mathbb{N}}$ à valeurs dans \mathbb{C} vérifiant la relation $(L): \forall n \in \mathbb{N}, \ u_{n+2} = a \ u_{n+1} + b \ u_n + c$

On note ℓ la limite éventuelle de la suite $(u_n)_{n\in\mathbb{N}}$. Ainsi ℓ vérifie $(1-a-b)\,\ell=c$. D'où les deux possibilités :

- (a) a+b=1: on peut alors écrire $\forall n \in \mathbb{N}, \ u_{n+2}-u_{n+1}=-(1-a)\left(u_{n+1}-u_n\right)+c$ et la suite $(u_{n+1}-u_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique. Pour $n\in\mathbb{N}^*$, notant $v_n=u_n-u_{n-1}$, on aboutit à l'expression de u_n à l'aide de la relation $u_n=\sum_{k=1}^n v_k+u_0$.
- (b) $a+b \neq 1$: en posant $\ell = \frac{c}{1-a-b}$ la suite v définie par $\forall n \in \mathbb{N}, \ v_n = u_n \ell$ vérifie $\forall n \in \mathbb{N}, \ v_{n+2} = a \ v_{n+1} + b v_n$ et on applique les techniques vues dans le paragraphe précédent.

III.4 Suites simultanément récurrentes

On considère les suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par la donnée d'un couple de réels (u_0,v_0) et la relation $\forall n\in\mathbb{N},$ $\begin{cases} u_{n+1}=f\left(u_n,v_n\right) \\ v_{n+1}=g\left(u_n,v_n\right) \end{cases}$. Dans la plupart des exemples, la meilleure idée est de chercher à montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes ou "au pire" essayer d'appliquer d'autres théorèmes du cours.

On peut aussi penser à étudier la suite $(z_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N},\ z_n=u_n+i\,v_n.$

III.5 Des sommes... et le théorème de Cesaro

La somme des n+1 premiers termes de la suite arithmétique de raison r est égale à $\frac{(n+1)(u_0+u_n)}{2}$. La somme des n+1 premiers termes de la suite arithmétique de raison r (différente de 1) est égale à $u_0 \frac{1-r^{n+1}}{1-r}$.

Les sommes de Riemann sont à part (voir le cours d'intégration). Et ant donnée $f:[a,b] \longrightarrow \mathbb{K}$ continue par morceaux sur [a,b],

$$\lim_{n \to \infty} \frac{b - a}{n} \sum_{k=0}^{n-1} f(\alpha_k) = \int_{[a,b]} f$$

$$\text{avec } \forall k \in \llbracket 0, n-1 \rrbracket, \ \alpha_k \in \left\lceil a + k \frac{b-a}{n}, a + (k+1) \frac{b-a}{n} \right\rceil.$$

Théorème 7 Théorème de Cesaro.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{R} ou \mathbb{C} . On définit $(v_n)_{n\in\mathbb{N}}$ par : $\forall n\in\mathbb{N}, \ v_n=\frac{1}{n+1}\sum_{k=0}^n u_k$.

Si la suite $(u_n)_{n\in\mathbb{N}}$ converge, alors la suite $(v_n)_{n\in\mathbb{N}}$ converge vers la même limite.

Si la suite $(u_n)_{n\in\mathbb{N}}$ est à valeurs réelles et tend vers $+\infty$ (ou $-\infty$), alors il en est de même de la suite $(v_n)_{n\in\mathbb{N}}$.

Remarque III.1 Avec les mêmes notations, il est aisé de construire une suite $(u_n)_{n\in\mathbb{N}}$ divergente telle que la suite $(v_n)_{n\in\mathbb{N}}$ converge. On parle alors de convergence "au sens de Cesaro" pour la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 1 Donner un exemple de suite $(u_n)_{n\in\mathbb{N}}$ positive non majorée telle que $(v_n)_{n\in\mathbb{N}}$ converge vers 0.

IV. Développement décimal d'un réel positif

Il s'agit d'utiliser les propriétés des séries à termes réels pour obtenir une description (voire une construction) de \mathbb{R} .

Soit $x \in \mathbb{R}_+$. On note D (ou \mathbb{Q}_{10}) l'ensemble des nombres décimaux : $D = \left\{ \frac{m}{10^n} \mid m \in \mathbb{Z}, n \in \mathbb{N} \right\}$.

Définition 5 On appelle développement décimal de x toute suite $(d_n)_{n\in\mathbb{N}}$ d'entiers naturels véri-

fiant :
$$\forall n \in \mathbb{N}^*, d_n \in [0, 9]$$
 et $x = \sum_{n=0}^{+\infty} \frac{d_n}{10^n}$. On écrit alors $x = d_0, d_1 \dots d_n \dots$

Définition 6 Soit $n \in \mathbb{N}$. On appelle approximation décimale par défaut (resp. par excès) de x à 10^{-n} près le nombre α_n (resp. β_n) défini par $\alpha_n = 10^{-n} E\left(10^n x\right)$ (resp. $\beta_n = \alpha_n + 10^{-n} = 10^{-n} \left(E\left(10^n x\right) + 1\right)$.

Proposition IV.1 Les suites $(\alpha_n)_{n\in\mathbb{N}}$ et $(\beta_n)_{n\in\mathbb{N}}$ sont adjacentes de limite x. De plus : $\forall m\in\mathbb{N}, \ \exists n\in\mathbb{N}: n>m$ et $\beta_n<\beta_m$. Notamment : $\forall n\in\mathbb{N}, \ x<\beta_n$. Ainsi la suite $(\beta_n)_{n\in\mathbb{N}}$ ne peut pas être stationnaire, contrairement à $(\alpha_n)_{n\in\mathbb{N}}$ si x est décimal.

Corollaire IV.1 Deux réels positifs, dont les suites des approximations décimales par défaut (ou par excès) sont égales, sont égales.

Proposition IV.2 Soit $x' \in \mathbb{R}_+$. On note $(\alpha'_n)_{n \in \mathbb{N}}$ la suite de ses approximations décimales par défaut. On a $x < x' \iff \exists n \in \mathbb{N} : \alpha_n < \alpha'_n$.

Théorème 8 x a au moins un développement décimal $(d_n)_{n\in\mathbb{N}}$ que l'on note $x=d_0,d_1\ldots d_n\ldots$ Si x n'est pas décimal, alors ce développement décimal est unique. Si x est décimal non nul, x a exactement deux développements décimaux : l'un s'écrit $x=d_0,d_1\ldots d_p9\ldots 9\ldots$, avec $d_p\in \llbracket 0,8\rrbracket$ si $p\geqslant 1$, et l'autre $x=d_0,d_1\ldots (d_p+1)0\ldots 0\ldots$

Définition 7 Avec les notations précédentes, on dit que le développement décimal $(d_n)_{n\in\mathbb{N}}$ est propre si la suite $(d_n)_{n\in\mathbb{N}}$ ne stationne pas à 9.

Remarque IV.1 Tout réel positif admet un unique développement décimal propre. Avec les notations précédentes, les nombres d_n , $n \in \mathbb{N}^*$, sont appelés les décimales de ce réel.

Proposition IV.3 Une condition nécessaire et suffisante pour que le réel x soit rationnel est que son développement décimal propre soit périodique à partir d'un certain rang.

Notamment les nombres décimaux ont un développement décimal propre périodique à partir d'un certain rang de période égale à 1.