MSML651: Big Data Analytics

News Article Classification using Machine Learning

Presented By Suraj T C

Problem Statement

The Core Problem:

- The dynamic nature of language and the expansive range of news topics make traditional methods of news classification less adaptable.
- As we grapple with this information explosion, there's a pressing need for advanced techniques to precisely categorize and understand the nuances within news articles.

The Dilemma:

- Traditional approaches may struggle to keep pace with the evolving language and content of news articles.
- This creates a gap between the rapid evolution of news and the effectiveness of current classification systems.

Why It Matters:

- A proficient news classification system is crucial for efficient information retrieval, aiding researchers, analysts, and anyone seeking specific news topics.
- Solving this problem ensures that our systems can accurately interpret the vast landscape of news, making information more accessible and manageable.

Dataset Overview: AG News Classification

- The AG News dataset is a widely used benchmark for text classification tasks, specifically designed for news categorization.
- The dataset is sourced from the AG's corpus of news articles collected by the Academic Free License.
- Composition
 - O Size: **127,600** News Articles
 - Categories: Four major categories, each representing a specific news genre.
 - 0 -> World
 - 1 -> Sports
 - 2 -> Business
 - 3 -> Science/Technology
- Data Distribution
 - Each category contains 30,000 train samples and 1,900 test samples

Data Distribution

Data Preprocessing with PySpark

Text Cleaning:

- Remove HTML Tags:
 - Eliminate any HTML tags from the text data.
- Remove Special Characters:
 - Discard non-alphanumeric characters, punctuation, and symbols.

Tokenization:

- Support Vector Classifier: Utilized Scikit-learn's **TfidfVectorizer()**.
- BERT: Leveraged transformers' BertTokenizer() for advanced tokenization.
- RoBERTa: Applied transformers' RobertaTokenizer() for robust tokenization.

Pre Processed Data

Utilized Spark UDF for Efficient Data Processing

Data Exploration: Sentiment Analysis

Evaluate Bias through Sentiment Analysis:

- Employed TextBlob for sentiment analysis.
- Sentiment Analysis by Class
 - Visualized sentiment scores using a box plot.
 - Each class represented on the x-axis.
 - Sentiment polarity depicted on the y-axis.

Observation:

- Majority of data clustered around the neutral zone.
- Indicates a prevalence of neutral sentiment across all classes.

Sentiment Scores by Class

Data Exploration: World Cloud

Model Training: SVC

Support Vector Classifier (SVC)

Challenge Encountered: Model execution on CPU caused crashes.

Data Reduction:

- Reduced training data to 24,000 samples per class.
- Tested the model on 6,000 samples per class for validation.

Algorithm:

- Sklearn Support Vector Classifier (SVC) with a linear kernel.
- Accuracy Achieved: 86.37%.
- Training Time: **47 mins**.

Confusion Matrix

Model Training: BERT and RoBERTa

Fine-tuning BERT and RoBERTa:

- Utilized Google Colab's **T4 GPU** for model training.
- Employed **pre-trained models** from the Hugging Face transformers.

Model Architecture:

- BERT:
 - Trained using tokenized data from BERT tokenizer.
 - Learning rate: **1e-4**, Epochs: 5, Batch size: 32.
- RoBERTa:
 - Trained using tokenized data from RoBERTa tokenizer.
 - Learning rate: **1e-5**, Epochs: 5, Batch size: 32.

Training Details:

- 3750 iterations per epoch for batch size of 32.
- Each epoch took an average of **90 mins**.
- Noted consistent validation metrics after 3 epochs, indicating possible early stopping.

Train vs Validation Metrics

Result Evaluation

Model	Platform	Tokenizer	Batch Size	Training Time	Accuracy (%)	F1 Score
Logistic	CPU	N/A	N/A	12 mins	83.65	0.84
SVC	CPU	N/A	N/A	47 mins	86.38	0.85
BERT	T4 GPU	BERT	32	450 mins	88.46	0.88
RoBERTa	T4 GPU	RoBERTa	32	450 mins	91.89	0.92

Conclusion and Future Work

Conclusion

- In conclusion, the exploration and experimentation with different models for news classification have yielded insightful results
- Achieved impressive testing accuracies of 88.46% for BERT and 91.89% for RoBERTa
- RoBERTa is the best model among all three

Future Work

- Hyper-parameter tuning
- Topic modeling and multi-class classification
- Ensemble Models
- Bias Analysis

References

- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
- Hugging Face. (2021). Transformers Library Documentation. https://huggingface.co/transformers/
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011).
 Scikit-learn: Machine learning in Python. Journal of machine learning research, 12(Oct), 2825-2830.
- PySpark Documentation. (2021). https://spark.apache.org/docs/latest/
- TextBlob Documentation. (2021). https://textblob.readthedocs.io/en/dev/
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
 Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

THANK YOU

Any Questions?