RECEIVED CENTRAL PAX CENTER

Iπ. In the Claims,

JUN 1 9 2008

- 1. The claims are not amended.
- 1. (Previously Presented) A lift belt comprising: an elastomeric body having a width w and a thickness t and having a pulley engaging surface; the elastomeric body having an aspect ratio w/t that is greater than 1; a tensile cord contained within the elastomeric body and extending longitudinally; the pulley engaging surface having a ribbed profile extending longitudinally; and the ribbed profile having a rib with an angle of approximately 90°.
- 2. (Original) The lift belt as in claim 1, wherein the tensile cord comprises a conductive material having a resistance.
- 3. (Original) The lift belt as in claim 2, wherein the resistance of the tensile cord varies to indicate a lifting belt load.
- 4. (Original) The lift belt as in claim 1 comprising a plurality of ribs.
- 5. (Original) The lift belt as in claim 4 having an end.
- 6. (Original) The lift belt as in claim 3 comprising a plurality of tensile cords.
- 7. (Original) The lift belt as in claim 3 further comprising:

- a jacket on a surface opposite the pulley engaging surface.
- 8. (Original) The lift belt as in claim 7, wherein the jacket comprises nylon.
- 9. (Original) The lift belt as in claim 8 wherein a tensile cord comprises a metallic material.
- 10. (Original) The lift belt as in claim 9 wherein a tensile cord comprises steel.
- 11. (Previously Amended) The lift belt as in claim 1 further comprising:

an electrical circuit connected to the tensile cord for measuring a tensile cord load.

- 12.(Original) The lift belt as in claim 1 further
 comprising:
 an electrical circuit for detecting a tensile cord
 failure.
- 13. (Previously Presented) An elevator lift system comprising:
 - a belt having an elastomeric body having a width w and a thickness t and having a pulley engaging surface; the elastomeric body having an aspect ratio w/t that is greater than 1;
 - a tensile cord contained within the elastomeric body and extending longitudinally;
 - the pulley engaging surface having a ribbed profile extending longitudinally;
 - the ribbed profile having a rib with an angle of approximately 90°; and

- at least one pulley having a ribbed profile engaged with the pulley engaging surface.
- 14. (Original) The lift system as in claim 13, wherein the tensile cord comprises a conductive material having a resistance.
- 15. (Original) The lift system as in claim 14, wherein the resistance of the tensile cord varies according to a lifting belt load.
- 16. (Original) The lift system as in claim 13, wherein the pulley engaging surface comprises a plurality of ribs.
- 17. (Original) The lift system as in claim 16, wherein the belt has an end.
- 18. (Original) The lift system as in claim 15 comprising a plurality of tensile cords.
- 19.(Original) The lift system as in claim 15 further
 comprising:
 a jacket on a surface opposite the pulley engaging
 surface.
- 20. (Original) The lift system as in claim 19, wherein the jacket comprises nylon.
- 21. (Original) The lift system as in claim 18 wherein a tensile cord comprises a metallic material.
- 22. (Original) The lift system as in claim 21 wherein a tensile cord comprises steel.

- 23. (Original) The lift system as in claim 13 further comprising:
- an electrical circuit connected to a tensile cord for measuring a tensile cord load.
- 24. (Original) The lift system as in claim 13 further comprising:
 - an electrical circuit for detecting a tensile cord failure.
- 25. (Original) The lift belt as in claim 1 further comprising fibers extending from the pulley engaging surface.
- 26. (Previously Presented) A lift system comprising: a belt having an elastomeric body having a width w and a thickness t and having a pulley engaging surface; the elastomeric body having an aspect ratio w/t that is greater than 1;
 - a tensile cord contained within the elastomeric body and extending longitudinally;
 - the pulley engaging surface having a ribbed profile extending longitudinally;
 - the ribbed profile having a rib with an angle of approximately 90°;
 - at least one pulley having a ribbed profile engaged with the pulley engaging surface; and
 - an electric circuit for detecting a tensile cord load and for controlling operation of the system.
- 27. (Previously Withdrawn) A method of operating a lift system comprising the steps of:
 - training a tensile cord over a pulley between a motor and a load;

measuring an electrical resistance of the tensile cord; and

controlling an operation of the motor according to the electrical resistance.

- 28. (Previously Presented) A lift belt comprising:
 an elastomeric body having a width w and a thickness t
 and having a pulley engaging surface;
 the elastomeric body having an aspect ratio w/t that
 is greater than 1;
 a tensile cord contained within the elastomeric body
 and extending longitudinally;
 the pulley engaging surface having a ribbed profile;
 and
 the ribbed profile having a rib with a rib angle of
- 29 (Original) The lift belt as in claim 28, wherein the tensile cord comprises a conductive material having a resistance.

approximately 90°.

- 30.(Original) The lift belt as in claim 29, wherein the resistance of the tensile cord varies to indicate a lifting belt load.
- 31. (Original) The lift belt as in claim 28, wherein the rib angle is in the range of approximately 60° to 120°.
- 32. (Previously Cancelled) The lift belt-as in claim -28, wherein the rib angle is approximately 50°.
- 33. (Previously Added) The lift belt as in claim 1 further comprising a fiber loading in the elastomeric body.

- 34. (Previously Added) The lift belt as in claim 13 further comprising a fiber loading in the elastomeric body.
- 35. (Previously Added) The lift belt as in claim 26 further comprising a fiber loading in the elastomeric body.
- 36. (Previously Added) The lift belt as in claim 33, wherein the fiber loading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 37. (Previously Added) The lift belt as in claim 34, wherein the fiber loading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 38. (Previously Added) The lift belt as in claim 35, wherein the fiber loading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 39. (Previously Cancelled) A lift belt comprising:

 an clastomeric body having a width w and a thickness t

 and having a pulley engaging surface;

 the clastomeric body having an aspect ratio w/t that

 is greater than 1;

 a tensile cord contained within the clastomeric body

 and extending longitudinally;

 the pulley engaging surface having a ribbed profile;

 and;

 the ribbed profile having a rib with an angle in the

 range of approximately 60° to approximately 120°.

- 40. (Previously Cancelled) The lift belt as in claim 39 further comprising a fiber loading in the clastomeric body.
- 41. (Previously Cancelled) The lift belt as in claim 40, wherein the fiber leading comprises one of cellulose, aramid, polyester, cotton, nylon, carbon, acrylic, polyurethane, or glass fibers individually or in combination with two or more of the foregoing.
- 42. (Previously Cancelled) The lift belt as in claim -39, wherein the angle is approximately 90%.
- 43. (Previously Presented) A lift belt comprising:

an elastomeric body having a width w and a thickness t and having a pulley engaging surface;

the elastomeric body having an aspect ratio w/t that is greater than 1;

a tensile cord contained within the elastomeric body and extending longitudinally;

the pulley engaging surface having a ribbed profile extending longitudinally along the elastomeric body; and

the ribbed profile having a rib with an angle of approximately 90°.

44. (Previously Presented) An elevator lift system comprising:

a belt having an elastomeric body having a width w and a thickness t and having a pulley engaging surface;

the elastomeric body having an aspect ratio w/t that is greater than 1;

a tensile cord contained within the elastomeric body and extending longitudinally;

the pulley engaging surface having a ribbed extending longitudinally and having a rib with an angle of approximately 90°; and at least one pulley having a ribbed profile engaged with the pulley engaging surface

45. (Previously Presented) A lift belt comprising:
an elastomeric body having a pulley engaging surface;
a tensile cord contained within the elastomeric body
and extending longitudinally.

the pulley engaging surface having a ribbed profile, the ribbed profile extending longitudinally along the elastomeric body; and

the ribbed profile having a rib with a rib angle of approximately 90°.