

Befehlsbeschreibung XpressNet V3.6 mit LAN/USB Interface 23151 Kommunikation auf den Schnittstellen

XPressNet Version 3.6

Doku Version 1.2 05/2019

| 0                  | Änderungen                                                                                                                                                | 4  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1                  | Allgemeines                                                                                                                                               | 5  |
| 1.1                | USB - Schnittstelle                                                                                                                                       | 5  |
| 1.2                | LAN Schnittstelle                                                                                                                                         | 5  |
| 1.2.1              | Anschluss an einen Router                                                                                                                                 | 5  |
| 1.2.2              | Direkter Anschluss an einen PC                                                                                                                            | 5  |
| 1.2.3              | IP Addressierung                                                                                                                                          | 5  |
| 1.3                | Konventionen                                                                                                                                              | 6  |
| 1.4                | Ungefragte Informationen                                                                                                                                  | 6  |
| 1.5                | Antworten des Interface 23151                                                                                                                             | 7  |
| 1.6                | Versionsnummer des Interface 23151 feststellen                                                                                                            | 9  |
| 1.7                | Geräteadresse des Interface 23151 feststellen und ändern                                                                                                  | 10 |
| 2                  | Protokollerweiterungen für den Betrieb mit der LAN-Schnittstelle                                                                                          | 11 |
| 2.1                | Interface Status Befehl                                                                                                                                   |    |
| 2.2                | XpressNet Version Befehl                                                                                                                                  | 11 |
| 2.3                | . Verfügbare Freie Verbindungen                                                                                                                           |    |
| 3                  | Datenverkehr Zentrale und PC                                                                                                                              | 13 |
| 3.1                | Zentrale an PC                                                                                                                                            | 13 |
| 3.1.1              | Broadcast                                                                                                                                                 | 13 |
| 3.1.1.1            | BC "Alles An"                                                                                                                                             | 13 |
| 3.1.1.2            | BC "Alles Aus" (Notaus)                                                                                                                                   |    |
| 3.1.1.3            | BC "Alle Loks Aus" (Nothalt)                                                                                                                              |    |
| 3.1.1.4<br>3.1.1.5 | BC "Programmiermode" BC "Rückmeldung"                                                                                                                     |    |
| 3.1.2              | Programmierinformationen                                                                                                                                  |    |
| 3.1.2.1            | Programmierinfo "Kurzschluß"                                                                                                                              |    |
| 3.1.2.2            | Programmierinfo "Daten nicht gefunden"                                                                                                                    | 16 |
| 3.1.2.3            | Programmierinfo "Zentrale Busy"                                                                                                                           |    |
| 3.1.2.4<br>3.1.2.5 | Programmierinfo "Zentrale Bereit"Programmierinfo "Daten 3-Byte-Format"                                                                                    | 17 |
| 3.1.2.6            | Programmierinfo "Daten 4-Byte-Format" CV 1-255 und CV1024 (neu ab Version 3.6;                                                                            | 17 |
| 23                 | ersetzt gleichen Befehl bis Version 3)                                                                                                                    | 18 |
| 3.1.2.7            | Programmierinfo "Daten 4-Byte-Format" CV256 bis CV511 (neu ab Version 3.6)                                                                                |    |
| 3.1.2.8<br>3.1.2.9 | Programmierinfo "Daten 4-Byte-Format" CV512 bis CV767 (neu ab Version 3.6)<br>Programmierinfo "Daten 4-Byte-Format" CV768 bis CV1023 (neu ab Version 3.6) |    |
| 3.1.2.9            | Softwareversion Zentrale                                                                                                                                  |    |
| 3.1.4              | Status Zentrale                                                                                                                                           |    |
| 3.1.5              | Übertragungsfehler                                                                                                                                        | 22 |
| 3.1.6              | Zentrale Busy                                                                                                                                             | 23 |
| 3.1.7              | Befehl in Zentrale nicht vorhanden                                                                                                                        | 23 |
| 3.1.8              | Schaltinformation                                                                                                                                         | 24 |
| 3.1.9              | Lokinformationen                                                                                                                                          | 26 |
| 3.1.9.1            | Lokinformation normale Lok                                                                                                                                |    |
| 3.1.9.2            | Funktionszustand F13 bis F28 der angefragten Lok (ab Version 3.6)                                                                                         |    |
| 3.1.9.3            | Lokinformation Lok befindet sich in einer Mehrfachtraktion                                                                                                |    |
| 3.1.9.4<br>3.1.9.5 | Lokinformation Lokadresse ist die Basisadresse einer Mehrfachtraktion                                                                                     |    |
| 3.1.10             | Lok besetzt ab Zentralen-Version 3.0                                                                                                                      |    |
| 3.1.11             | Funktionsstatus F0 bis F12 der angefragten Lok                                                                                                            |    |
| 3.1.12             | Funktionsstatus F13 bis F28 der angefragten Lok (ab Version 3.6)                                                                                          |    |
| 3.1.13             | Lokinformation bei Adress-Suchanfragen                                                                                                                    |    |
| -                  | <del>-</del>                                                                                                                                              |    |

| 3.1.14               | Fehlermeldungen                                                                            |            |
|----------------------|--------------------------------------------------------------------------------------------|------------|
| 3.2                  | PC an Zentrale                                                                             |            |
| 3.2.1                | Alles An                                                                                   |            |
| 3.2.2                | Alles Aus (Notaus)                                                                         |            |
| 3.2.3                | Alle Loks anhalten (Nothalt)                                                               |            |
| 3.2.4                | Eine Lok anhalten (Nothalt für eine Lok)                                                   |            |
| 3.2.5                | Leseanfrage Programmieren 3-Byte-Format (Registermode)                                     |            |
| 3.2.6                | Leseanfrage Programmieren 4-Byte-Format (CV-Mode)                                          |            |
| 3.2.7                | Leseanfrage Programmieren 4-Byte-Format (CV 1-255 und CV1024) (neu ab V3.6)                |            |
| 3.2.8                | Leseanfrage Programmieren 4-Byte-Format (CV 256-511) (neu ab V3.6)                         |            |
| 3.2.9                | Leseanfrage Programmieren 4-Byte-Format (CV 512-767) (neu ab V3.6)                         |            |
| 3.2.10               | Leseanfrage Programmieren 4-Byte-Format (CV 768-1023) (neu ab V3.6)                        |            |
| 3.2.11               | Leseanfrage Programmieren 3-Byte-Format (Pagemode)                                         |            |
| 3.2.12               | Programmierergebnis anfordern                                                              |            |
| 3.2.13               | Schreibbefehl Programmieren 3-Byte-Format (Register-Mode)                                  |            |
| 3.2.14               | Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV1-256)                               | . 39       |
| 3.2.15               | Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 1-255 und CV1024) (neu Version 3.6) |            |
| 3.2.16               | Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 256-511) (neu ab Version 3.6)       | .41        |
| 3.2.17               | Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 512-767) (neu ab Version 3.6)       |            |
| 3.2.18               | Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 768-1023) (neu ab Versio 3.6)       |            |
| 3.2.19               | Schreibbefehl Programmieren 3-Byte-Format (Page-Mode)                                      | .42        |
| 3.2.20               | Softwareversion der Zentrale anfordern                                                     | .43        |
| 3.2.21               | Status der Zentrale anfordern                                                              | .43        |
| 3.2.22               | Zentralen-Startmode setzen                                                                 | .43        |
| 3.2.23               | Schaltinformationen anfordern                                                              | .44        |
| 3.2.24               | Schaltbefehl                                                                               | .45        |
| 3.2.25               | Lokinformationen anfordern                                                                 | .46        |
| 3.2.25.1             | Funktionsstatus anfordern                                                                  | .46        |
|                      | Funktionsstatus anfordern F13 – F28 (neu ab Zentralen-Version 3.6)                         |            |
|                      | Funktionszustand anfordern F13 – F28 (neu ab Zentralen-Version 3.6)                        |            |
| 3.2.26               | Lok steuern Fahrbefehle                                                                    |            |
|                      | Funktionsbefehle ab Zentralen-Version 3.0 / Version 3.6                                    |            |
|                      | Funktionsstatus setzen                                                                     |            |
|                      | Funktionsstatus setzen ab Zentralen-Version 3.0 / Version 3.6                              |            |
|                      | Funktionsrefresh-Modus setzen ab Zentralen-Version 3.6                                     |            |
| 3.2.27               | Doppeltraktionen                                                                           |            |
|                      | Doppeltraktion montieren                                                                   |            |
| 3.2.28               | Programming on Main                                                                        |            |
| 3.2.28.1             | Programming on Main Byte schreiben                                                         |            |
| 3.2.28.2             | Programming on Main Byte lesen (ab Version 3.6)                                            | . 55       |
|                      | Programming on Main Bit schreiben                                                          |            |
| 3.2.29               | Mehrfachtraktionen                                                                         |            |
| 3.2.29.1<br>3 2 20 2 | Lok zu einer Mehrfachtraktion hinzufügen oder MTR erzeugen                                 | . 20<br>57 |
| 3.2.30               | Adress-Suchbefehle                                                                         |            |
| 3.2.30.1             | Adressanfrage Mitglied einer Mehrfachtraktion                                              |            |
|                      | Adressanfrage Mehrfachtraktion                                                             |            |

3.2.30.3 Adressanfrage Lok in Zentralenstack 59
3.2.31 Lok aus Zentralenstack löschen 59

Befehlsübersicht Zentrale an PC 61

Befehlsübersicht PC an Zentrale 62

# 0 Änderungen

| Wann         | Was                            | Wo    |
|--------------|--------------------------------|-------|
| Februar 2012 | Querverweis korrigiert         | 1.2.3 |
| Mai 2019     | Verweis auf Datei aktualisiert | 1.2.3 |

# **Allgemeines**

Die vorliegende Dokumentation enthält die Befehlsbeschreibung des XpressNet für die Benutzung des Interface 23151 über die serielle USB- oder LAN-Schnittstelle

### 1.1 USB - Schnittstelle

Die USB-Schnittstelle stellt über den mitgelieferten Treiber ein virtuelles COMPort her, welches mit folgenden Parametern betrieben wird:

- Baudrate: immer 57600 Bit pro Sekunde
- 8 Datenbits, 1 Startbit, 1 Stopbit, kein Paritybit
- kein Handshake

# 1.2 LAN Schnittstelle

Das Interface ist mit einem Ethernet Anschluss zur Verwendung in einem Netzwerk ausgerüstet. Es erlaubt bis zu acht Verbindungen mit anderen Netzwerkgeräten zur selben Zeit.

# 1.2.1 Anschluss an einen Router

Der Anschluss erfolgt üblicherweise über einen Router. Wird ein WLAN-fähiger Router eingesetzt, so kann das Interface über mobile, WLAN-fähige Geräte angesprochen werden.

# 1.2.2 <u>Direkter Anschluss an einen PC</u>

Auch der direkte Anschluss an einen PC ist mit einem Xover-LAN-Kabel möglich. In diesem Fall muss der PC auf eine IP-Adresse im Bereich des Interface eingestellt werden, z.B. 192.168.0.201.

# 1.2.3 IP Addressierung

In der Werkseinstellung ist das Interface auf eine feste IP-Adresse eingestellt. Diese Adresse lautet: 192.168.0.200

Aus eigener Erfahrung sei der Hinweis erlaubt, dass der Router ggf. auf diesen Adressbereich eingestellt werden muss, um Zugriff auf das Interface zu bekommen.

Das Interface kann auf den Betrieb mit DHCP eingestellt werden, Informationen dazu im PDF "Information LAN USB Interface 23151 04.pdf"

Dieses PDF ist im Archiv "23151 info.zip" enthalten.

Für den praktischen Betrieb empfehlen wir die Verwendung einer festen IP.

Subnetzmaske ist 255.255.255.0

Das verwendete TCP Port ist 5550.

Sowohl den Gebrauch von DHCP, die eingestellte IP und die Subnetzmaske können mit Hilfe des im Gerät integrierten Web-Interface verändert werden.

### 1.3 Konventionen

Jeder Befehl, der an das Interface gesendet wird, muss die Sequenz 0xFF 0xFE vorangestellt bekommen. Diese Sequenz fliesst nicht in die Berechnung der Checksumme ein.

Als Beispiel, um den Befehl "Alles an" an das Interface zu senden, müssen folgende Daten übertragen werden :

0xFF 0xFE 0x21 0x81 0xA0

Jeder Befehl an das Interface wird mit einer Antwort quittiert, dies ist entweder die allgemeine Antwort

0xFF 0xFE 0x01 0x04 0x05

die besagt, dass der Befehl erfolgreich an die Zentrale abgesetzt wurde, oder eine Fehlermeldung oder die erwarteten Daten.

Antworten auf einen Befehl werden ebenfalls immer mit dem Header 0xFF 0xFE geschickt.

Achtung: Im Programmiermodus kann es bis zu einer Minute dauern, bis eine Antwort erfolgt.

Solange das Interface einen Befehl nicht quittiert hat, darf kein weiterer Befehl an das Interface gesendet werden, erst nach Ablauf des Timeouts (5 sek im Normalen Betrieb, 1,5 Min im Programmiermodus) darf ein neuer Befehl gesendet werden

Wurde ein Befehl an das Interface gesendet und hat dieses noch keine Antwort zurückgesendet, so ist die nächste Antwort des Interface immer die Befehlsantwort. Zwischenzeitlich im Interface auflaufende Broadcasts werden im Interface gespeichert und erst nach der Befehlsantwort an den Computer gesendet.

Broadcasts sowie unerwartete Meldungen tragen als Header die Kennung 0xFF 0xFD, um diese einwandfrei von Befehlsantworten unterscheiden zu können.

# 1.4 Ungefragte Informationen

Ungefragte Informationen an eines oder alle Geräte, also auch den PC, werden immer dann verschickt, wenn Anlagenzustände allen Geräten bekannt gemacht werden müssen, damit diese in ihrem Verhalten schnellstmöglich korrekt reagieren können. Ungefragte Infos werden entweder als Broadcast verschickt, wenn alle Slaves sie erhalten sollen oder als Antwort formatiert, wenn es nur einen bestimmten Slave betrifft. Kennzeichnend ist immer, daß ein Slave diese Informationen nicht anfragt (also eigentlich nicht mit ihnen rechnet), sie trotzdem zu einem beliebigen Zeitpunkt erhält und richtig bei z.B. Eingaben (Lok-Fahrbefehle) reagieren muß. Ungefragte Infos sind:

Broadcast "Alles An" (an alle Teilnehmer)

Broadcast "Alles Aus" (an alle Teilnehmer)
Broadcast "Alle Loks Aus" (an alle Teilnehmer)

Broadcast "Programmiermode" (an alle Teilnehmer)

Broadcast "Rückmeldung" (an alle Teilnehmer)

Broadcast "Railcom-Info" (an alle Teilnehmer)

Antwort "Lok besetzt" (an denjenigen Teilnehmer, der die Lok

gerade

im Zugriff hatte)

Antwort "Doppeltraktion besetzt" (an denjenigen Teilnehmer, der die

Doppeltraktion gerade im Zugriff hatte)

Die Antworten "Übertragungsfehler", "Zentrale Busy", "Doppeltraktionsfehler" und "Befehl nicht vorhanden" sind keine ungefragten Infos, da diese Antworten grundsätzlich auf Befehle eines Slaves an die Zentrale kommen können. Sie sind also zeitlich an den Befehl an die Zentrale gekoppelt, auch wenn dieser normalerweise keine Antwort zur Folge hat.

### 1.5 Antworten des Interface 23151

Die Befehle, die der PC über das Interface 23151 an die Zentrale schickt, gliedern sich in zwei Bereiche: zum einen Befehle, die eine direkte Reaktion der Zentrale ohne Bearbeitung anderer XpressNet-Geräte zur Folge haben (z.B. Lokanfrage, aber auch vom PC ausgelöste Broadcasts!) und zum anderen in Befehle, die keine Zentralenantwort zur Folge haben (z.B. Fahrbefehl erteilen). Damit aber im PC-Programm eine Zuordnung zwischen gesendeten und empfangenen Daten möglich wird, wird auf jeden Fall nach einem Befehl des PC an diesen eine Antwort zurückgeschickt.

Folgende Meldungen werden vom Interface 23151 als Antwort an den PC gesendet, falls keine anderen Zentralendaten verfügbar sind (jeweils in dezimaler Darstellung):

| Frame1 | Frame2 | Header | Meldung | X-Or | Bedeutung                                                                                           |
|--------|--------|--------|---------|------|-----------------------------------------------------------------------------------------------------|
| 255    | 254    | 01     | 01      | 00   | Die im Header angegebene Anzahl Bytes stimmt nicht mit der Anzahl der empfangenen Bytes überein     |
| 255    | 254    | 01     | 02      | 03   | Fehler zwischen Interface und Zentrale (Timeout bei Datenübertragung des Interface an die Zentrale) |
| 255    | 254    | 01     | 03      | 02   | unbekannter Fehler (Zentrale adressierte das Interface mit Quittierungsaufforderung)                |
| 255    | 254    | 01     | 04      | 05   | Befehl ist an Zentrale geschickt                                                                    |
| 255    | 253    | 01     | 05      | 04   | Zentrale adressiert das Interface nicht mehr (x)                                                    |
| 255    | 254    | 01     | 06      | 07   | Puffer-Überlauf im Interface 23151                                                                  |
| 255    | 253    | 01     | 07      | 06   | Zentrale adressiert das Interface wieder (x)                                                        |
| 255    | 254    | 01     | 08      | 09   | Derzeit können keine Befehle an die Zentrale gesendet werden                                        |
| 255    | 254    | 01     | 09      | 08   | Fehler in den Befehlsparametern (z.B. Lokadresse falsch)                                            |
| 255    | 254    | 01     | 10      | 11   | unbekannter Fehler (Zentrale lieferte nicht die erwartete Antwort)                                  |

Hierbei bedeutet:

255 / 254 / 01 / 01 / 00:

Beim ersten Byte, das der PC an das Interface 23151 schickt, wird die Zahl der noch folgenden Bytes festgestellt. Wird diese Anzahl Bytes in einer bestimmten Zeit vom PC nicht gesendet, wird bei Erreichen des Timeouts diese Meldung gesendet. Diese Meldung tritt oft dann auf, wenn zuvor Übertragungsfehler erkannt wurden.

255 / 254 / 01 / 02 / 03:

Die Reaktion der Zentrale auf einen an sie gesendeten Befehl muß ebenfalls innerhalb einer bestimmten Zeit erfolgen, anderenfalls diese Meldung an den PC gesendet wird. 255 / 254 / 01 / 03 / 02:

Kommt es während einer Datenübertragung an die Zentrale zu einem Fehler, so wird das gerade bediente XpressNet-Gerät (Interface 23151) noch einmal angesprochen und muß dann eine Quittierung senden. Der PC erhält hierüber diese Information. Tritt dies wiederholt auf, so ist zunächst die Verkabelung zu prüfen. Diese Meldung, daß das Interface 23151 an die Zentrale eine Quittierung gesendet hat, ist nicht zu verwechseln mit der Meldung "Übertragungsfehler", die an den PC gesendet wird und eine Antwort zu einem vorangegangenen Befehls darstellt.

255 / 254 / 01 / 04 / 05:

Wird immer dann an den PC gesendet, wenn ein Befehl, den das Interface 23151 an die Zentrale geleitet hat, keine Antwort zur Folge hatte (z.B. ein Lok-Fahrbefehl). D.h. wenn nach Senden eines Befehles die Zentrale das Interface wieder adressiert hat. Die Meldung kommt auch als Bestätigung, daß die Zentrale das Interface 23151 wieder anspricht, nachdem dies für eine bestimmte Zeit nicht der Fall war (nach einem Timeout beim Adressieren). Hat ein Befehl, der normalerweise keine Zentralenantwort hat, z.B. die Antwort "Übertragungsfehler" zur Folge, dann wird vom Interface 23151 keine Befehlsbestätigung gesendet.

Es ist zu beachten, daß seitens des PC-Programmes (und auch des Interface 23151) keine Möglichkeit besteht, festzustellen, ob ein Befehl von der Zentrale auch schon auf das Gleis gelegt worden ist. Die Meldung "Befehl verschickt" besagt lediglich, daß der zugehörige Befehl an die Zentrale gereicht werden konnte. Wird vom PC ein Befehl versendet, der eine Broadcast zur Folge hat (z.B. "Alles An"), so wird dies nicht mit dieser Meldung bestätigt, weil hier eine direkte Zentralenreaktion aus Sicht des auslösenden Gerätes erfolgt. Beispiel: Der PC sendet "Alles An" an die Zentrale, aber die Anlage kann von der Zentrale nicht eingeschaltet werden. Vom sendenden Gerät aus gesehen (dem PC) hat der Befehl "Alles An" die Antwort "Alles Aus", für alle anderen Geräte kommt dieser Broadcast ungefragt. Diese Zentralenantwort muß vom PC auch auf ihren Inhalt untersucht werden, um den Erfolg oder Mißerfolg des gesendeten Befehles (z.B. "Alles An") festzustellen.

255 / 253 / 01 / 05 / 04:

Die Zentrale adressiert angeschlossene Geräte in einem bestimmten Zeitintervall. Passiert das nicht, wird diese Meldung an den PC gesendet. Diese Meldung kommt ungefragt.

255 / 254 / 01 / 06 / 07:

Falls zu viele Daten ohne ein Trennframe (0xFF 0xFE) an das Interface gesendet werden, läuft der Eingangspuffer über und diese Meldunng wird generiert.

255 / 253 / 01 / 07 / 06:

Die Zentrale adressiert das Interface 23151 wieder (zum Beispiel nach dem Programmiermodus). Diese Meldung ist üblicherweise auch die erste Meldung, die das Interface aussendet. Diese Meldung kommt ungefragt.

255 / 254 / 01 / 08 / 09:

Diese Fehlermeldung gibt das Interface zurück wenn versucht wird, einen Befehl zu senden, während das Interface nicht von den Zentrale adressiert wird (zum Beispiel, während ein anderer Handregler sich im Programmiermodus befindet)

255 / 254 / 01 / 09 / 08:

Wurden Fehler bei den Parametern gemacht, so antwortet das Interface 23151 mit diesem Befehl. So zum Beispiel, wenn eine DTR grösser 99 angegeben wurde. Das Interface 23151 prüft alle Befehle auf Plausibilität.

255 / 254 / 01 / 10 / 11:

Wird diese Fehlermeldung vom Interface 23151 gesendet, so ist davon auszugehen, dass der letzte Befehl nicht von der Zentrale verstanden wurde. Daher empfiehlt es sich, den letzten Befehl zu wiederholen.

### 1.6 Versionsnummer des Interface 23151 feststellen

Das Auslesen der Versionsnummer des Interface 23151 ist eine Aktion, die nur zwischen PC und Interface 23151 stattfindet. Der Befehlsaufbau und die zugehörige Interface 23151-Antwort entsprechen aber trotzdem dem in Kapitel 2 beschriebenen Format.

### Befehl zum Auslesen der Versions- und Codenummer:

|         | Frame1    | Frame2    | Headerbyte | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1111 0000  | 1111 0000 |
| Hex:    | 0xFF      | 0xFE      | 0xF0       | 0xF0      |
| Dez :   | 255       | 254       | 240        | 240       |

### Antwort des Interface 23151:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0000 0010  | VVVV VVVV | CCCC CCCC | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x02       | VV        | CC        | X-Or-Byte |
| Dez :   | 255       | 254       | 2          | VV        | CC        | X-Or-Byte |

### Beschreibung:

VV gibt die Versionsnummer des Interface 23151 hexadezimal in BCD-Darstellung an. CC gibt die Codenummer des Interface 23151 hexadezimal in BCD-Darstellung an. Beispiel:

Antwort =  $0x02 \ 0x30 \ 0x01 \ 0x33$ 

Versionsnummer 3.0, Codenummer 01

### Besonderheiten:

Dies ist der einzige Befehl, den das Interface 23151 selbst auswertet. Alles, was nicht diesem Befehl entspricht, wird vom Interface 23151 an die Zentrale weitergeleitet und inhaltlich nicht geprüft.

### 1.7 Geräteadresse des Interface 23151 feststellen und ändern

Das Auslesen der Versionsnummer des Interface 23151 ist eine Aktion, die nur zwischen PC und Interface 23151 stattfindet. Der Befehlsaufbau und die zugehörige Interface 23151-Antwort entsprechen aber trotzdem dem in Kapitel 2 beschriebenen Format.

### Befehl zum Auslesen der Geräteadresse:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten2 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1111 0010  | 0000 0001 | ADR    | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xF2       | 0x01      | ADR    | X-Or-Byte |
| Dez :   | 255       | 254       | 242        | 1         | ADR    | X-Or-Byte |

#### Antwort des Interface 23151:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten2 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1111 0010  | 0000 0001 | ADR    | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xF2       | 0x01      | ADR    | X-Or-Byte |
| Dez :   | 255       | 254       | 242        | 1         | ADR    | X-Or-Byte |

# Beschreibung:

ADR gibt die XpressNet-Geräteadresse an, die das Interface 23151 verwenden soll. Der erlaubte Bereich liegt zwischen 1 und 31 dez. In der Antwort des Interface 23151 ist in daten 2 die Adresse zu finden, auf die das Gerät eingestellt wurde. Üblicherweise sind also Befehl und Antwort identisch.

### Besonderheiten:

Wird im Befehl an das Interface 23151 die Geräteadresse nicht im Bereich von 1 bis 31 angegeben, so antwortet das Interface 23151 mit seiner aktuell eingestellten Adresse. Damit kann die Adresse festgestellt werden, ohne sie zu ändern.

# 2 Protokollerweiterungen für den Betrieb mit der LAN-Schnittstelle

### 2.1 Interface Status Befehl

Damit das Interface weiß, an wen es von der Zentrale verschickte broadcasts schicken muss, speichert es Informationen über die mit ihm verbundenen LAN Geräte. Empfängt das Interface für eine bestimmte Zeit keine Informationen von einem verbundenen LAN Gerät (Timeout), geht es davon aus, dass die Verbindung geschlossen wurde und es sendet keine weiteren broadcasts mehr an dieses Gerät. Jeder Befehl setzt diesen Timeout zurück. Wenn ein Gerät also die Verbindung auch dann aufrecht erhalten möchte, wenn gerde keine Befehle zu senden sind, dann kann der Timout mit hilfe das "Interface Status Befehl" zurückgesetzt werden. Befehl:

|        | Frame 1   | Frame 2   | Header    | Identification | X-OR      |
|--------|-----------|-----------|-----------|----------------|-----------|
| Binary | 1111 1111 | 1111 1110 | 1111 0001 | 0000 0001      | 1111 0000 |
| Hex    | 0xFF      | 0xFE      | 0xF1      | 0x01           | 0xF0      |
| Dec    | 255       | 254       | 241       | 1              | 240       |

### Antwort vom Interface:

|        | Frame 1   | Frame 2   | Header    | Data 1    | Data 2    | X-OR |
|--------|-----------|-----------|-----------|-----------|-----------|------|
| Binary | 1111 1111 | 1111 1110 | 1111 0010 | 0000 0001 | RRRR RRRA | X-OR |
| Hex    | 0xFF      | 0xFE      | 0xF2      | 0x01      | Data      | X-OR |
| Dec    | 255       | 254       | 242       | 1         | Data      | X-OR |

### Data2:

R: reserviert (=0)

A: 1 = Interface empfängt Daten von der Zentrale

# 2.2 XpressNet Version Befehl

Mit diesem Befehl kann die unterstützte XpressNet Version abgefragt werden. Befehl:

|        | Frame 1   | Frame 2   | Header    | Identification | X-OR      |
|--------|-----------|-----------|-----------|----------------|-----------|
| Binary | 1111 1111 | 1111 1110 | 1111 0001 | 0000 0010      | 1111 0011 |
| Hex    | 0xFF      | 0xFE      | 0xF1      | 0x02           | 0xF3      |
| Dec    | 255       | 254       | 241       | 2              | 243       |

# Antwort vom Interface:

|        | Frame 1   | Frame 2   | Header    | Data 1    | Data 2 | X-OR |
|--------|-----------|-----------|-----------|-----------|--------|------|
| Binary | 1111 1111 | 1111 1110 | 1111 0010 | 0000 0010 | VVVVVV | X-OR |
| Hex    | 0xFF      | 0xFE      | 0xF2      | 0x02      | VV     | X-OR |
| Dec    | 255       | 254       | 242       | 2         | VV     | X-OR |

### Data2:

V: die unterstützte XpressNet Version, BCD – codiert.

Beispiel: VV = 0x36 : Interface unterstützt XpressNet Version 3.6

#### 2.3 Verfügbare Freie Verbindungen

Mit diesem Befehl kann festgestellt werden, wie viele freie LAN-Verbindungen vom Interface zur Verfügung gestellt werden.

### Befehl:

|        | Frame 1   | Frame 2   | Header    | Identification | X-OR      |
|--------|-----------|-----------|-----------|----------------|-----------|
| Binary | 1111 1111 | 1111 1110 | 1111 0001 | 0000 0011      | 1111 0010 |
| Hex    | 0xFF      | 0xFE      | 0xF1      | 0x03           | 0xF2      |
| Dec    | 255       | 254       | 241       | 3              | 242       |

# Antwort vom Interface

|        | Frame 1   | Frame 2   | Header    | Data 1    | Data 2  | X-OR |
|--------|-----------|-----------|-----------|-----------|---------|------|
| Binary | 1111 1111 | 1111 1110 | 1111 0010 | 0000 0011 | AAAAAAA | X-OR |
| Hex    | 0xFF      | 0xFE      | 0xF2      | 0x03      | AA      | X-OR |
| Dec    | 255       | 254       | 242       | 3         | AA      | X-OR |

### Data2:

A: Anzahl der freien Verbindungen im binärformat.

# Beispiel:

AA = 0x06 bedeuted, dass das Interface weitere 6 LAN Verbindungen zur Verfügung stellen kann. Es wird nur die Anzahl der unbenutzten und freien LAN Verbindungen angegeben.

### Datenverkehr Zentrale und PC

#### 3.1 Zentrale an PC

### Befehlsaufbau:

Die Zentrale sendet an das Interface Daten, die dieses dann sofort an den PC weiterreicht. Die Daten können vom PC vorher angefordert worden sein oder sie ergaben sich aufgrund von Veränderungen auf der Anlage (ungefragt).

Es wird ein Headerbyte gesendet, ein bis maximal 15 Datenbytes und ein X-Or-Byte. Im Headerbyte wird im unteren Nibble die Anzahl der noch folgenden Datenbytes eingetragen.

Vereinbarungen für die folgenden Befehlsbeschreibungen:

N = Anzahl der noch folgenden Datenbytes (binär und hexadezimal)

GA = Geräteadresse

Das Befehlsformat wird sowohl binär als auch dezimal und hexadezimal angegeben.

Nicht alle Zentralen unterstützen alle Befehle. Dies muß in einem PC-Programm beachtet werden, um Endlosschleifen zu vermeiden (siehe auch Kap. 3.1.7, Befehl nicht vorhanden).

# 3.1.1 Broadcast

Die Rufgruppe "Broadcast" gibt der Zentrale die Möglichkeit, an alle Slaves gleichzeitig Informationen zu senden. Also auch an den PC. Ein Broadcast wird mehrmals hintereinander ausgesandt, um sicherzustellen, daß jeder Teilnehmer ihn empfangen kann. Einige Befehle an die Zentrale lösen einen solchen Broadcast aus (z.B. "Notaus"). Ein Gerät, welches einen Broadcast auslöst, muß selbst dafür sorgen, daß es zu keinen internen Unstimmigkeiten kommt, wenn es sofort danach diesen Broadcast selbst wieder erhält (wenn z.B. die Zentrale in den Programmiermode gesetzt wurde).

# 3.1.1.1 BC "Alles An"

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1101 | 0110 0001  | 0000 0001 | 0110 0000 |
| Hex:    | 0xFF      | 0xFD      | 0x61       | 0x01      | 0x60      |
| Dez :   | 255       | 253       | 97         | 1         | 96        |

### Beschreibung:

Sendet der PC den Befehl "Alles An" (siehe Abschnitt Gerät an Zentrale), so wird zur Information für alle Teilnehmer der Broadcast "Alles An" gesendet. Dieser Broadcast entspricht dann dem tatsächlichen Anlagenzustand. Steht z.B. ein Notaus an, der nicht aufgehoben werden kann und ein Busteilnehmer sendet "Alles An", so erfolgt der Broadcast "Alles Aus"!

#### Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Gerätes verschickt. Er ist eine ungefragte Info.

# 3.1.1.2 BC "Alles Aus" (Notaus)

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1101 | 0110 0001  | 0000 0000 | 0110 0001 |
| Hex:    | 0xFF      | 0xFD      | 0x61       | 0x00      | 0x61      |
| Dez :   | 255       | 253       | 97         | 0         | 97        |

# Beschreibung:

Die Zentrale sendet hiermit die Information, daß die Gleisspannung abgeschaltet wurde und deswegen kein Schalt- oder Fahrbefehl mehr verschickt werden kann.

### Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Gerätes verschickt. Er ist eine ungefragte Info.

# 3.1.1.3 BC "Alle Loks Aus" (Nothalt)

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1101 | 1000 0001  | 0000 0000 | 0110 0001 |
| Hex:    | 0xFF      | 0xFD      | 0x81       | 0x00      | 0x81      |
| Dez :   | 255       | 253       | 129        | 0         | 129       |

# Beschreibung:

Die Zentrale sendet hiermit die Information, daß alle Loks auf dem Gleis mittels eines Broadcast (gleisseitig) angehalten worden sind. Die Gleisspannung liegt weiterhin an, so daß Schaltbefehle verschickt werden können, jedoch wird keine Lok mehr adressiert, bis alles wieder eingeschaltet wurde.

### Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Gerätes verschickt. Er ist eine ungefragte Info.

# 3.1.1.4 BC "Programmiermode"

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1101 | 0110 0001  | 0000 0010 | 0110 0011 |
| Hex:    | 0xFF      | 0xFD      | 0x61       | 0x02      | 0x63      |
| Dez :   | 255       | 253       | 97         | 2         | 99        |

# Beschreibung:

Wird dieser Ruf an alle Busgeräte (auch den PC) geschickt, so stellt dies eine Information darüber dar, daß jetzt Programmieraktionen laufen. Es wird danach kein XpressNet-Gerät mehr adressiert außer demjenigen, das die Programmieraktion (durch z.B. einen Programmier-Lesebefehl an die Zentrale) ausgelöst hat. D.h. wenn der PC den Programmiermode ausgelöst hat, kann er weiterhin mit dem Interface 23151 kommunizieren. Hat ein anderes Gerät den Programmiermode ausgelöst, so kann kein Befehl an das Interface 23151 gesendet werden. Der Programmiermodus kann wieder aufgehoben werden, indem das auslösende Gerät den Befehl "Alles An" sendet.

#### Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Gerätes verschickt. Er ist eine ungefragte Info.

# 3.1.1.5 BC "Rückmeldung"

### Format:

|         | Frame1    | Frame2    | Headerbyte   | Daten 1 | Daten 2 | Daten 3 | Daten 4 | usw. | X-Or-Byte |
|---------|-----------|-----------|--------------|---------|---------|---------|---------|------|-----------|
| Binär : | 1111 1111 | 1111 1101 | 0100<br>NNNN | ADR_1   | DAT_1   | ADR_2   | DAT2    | usw. | X-Or-Byte |
| Hex:    | 0xFF      | 0xFD      | 0x40 + N     |         |         |         |         |      | X-Or-Byte |
| Dez :   | 255       | 253       | 64 + N       |         |         |         |         |      | X-Or-Byte |

### Beschreibung:

Mit diesem Ruf teilt die Zentrale allen Slaves mit, daß sich ein oder mehrere Rückmelde-zustände geändert haben. Nur bei Änderungen wird der Ruf verschickt. In einem Broadcast wird mindestens ein Adresszustand, maximal 7 Zustände übertragen (Je Adresse ein Datenbyte, insgesamt 15 Byte pro Ruf ohne Header und X-Or-Byte). ADR x und DAT x haben das Format wie unter "Schaltinformationen"beschrieben. Gerät muß für z.B. eine korrekte Anzeige des Zustandes Rückmeldebausteins den gesamten Inhalt der Broadcast auf die gewünschte Adresse untersuchen.

### Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Gerätes verschickt. Er ist eine ungefragte Info.

# 3.1.2 <u>Programmierinformationen</u>

Nach Erteilung eines Programmier-Lesebefehls wird die Zentrale in Programmiermodus versetzt. Mit einem sich daran anschließenden Ergebnis-Lesebefehl antwortet die Zentrale mit einer der hier beschriebenen Antworten. Befindet sich die Zentrale nicht im Programmier-modus und ein Ergebnis-Lesebefehl wurde von einem Slave verschickt, so wird als Antwort von der Zentrale "Befehl nicht vorhanden" gesendet.

# 3.1.2.1 Programmierinfo "Kurzschluß"

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0001  | 0001 0010 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x61       | 0x12      | X-Or-Byte |
| Dez :   | 255       | 254       | 97         | 18        | X-Or-Byte |

# Beschreibung:

Bei Auslesen oder Beschreiben eines Empfängers am Programmier-Anschluß der Zentrale ist ein Kurzschluß bzw. ein zu hoher Strom aufgetreten. Es ist davon auszugehen, daß bei einem Schreibbefehl an eine Speicherstelle des Empfängers diese nicht oder falsch beschrieben wurde. Das Programmieren sollte dann mit einer Fehlermeldung abgebrochen werden und falls intern Daten des Empfängers verwendet wurden, diese auf ihre ursprünglichen Werte zurückgesetzt werden.

### Besonderheiten:

Keine.

# 3.1.2.2 Programmierinfo "Daten nicht gefunden"

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0001  | 0001 0011 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x61       | 0x13      | X-Or-Byte |
| Dez :   | 255       | 254       | 97         | 19        | X-Or-Byte |

### Beschreibung:

Am Programmieranschluß der Zentrale befindet sich kein Empfänger oder der Empfänger antwortet nicht auf den Leseversuch der Zentrale. Das Programmieren dieses Empfängers sollte abgebrochen oder neu versucht werden.

# Besonderheiten:

Keine.

# 3.1.2.3 Programmierinfo "Zentrale Busy"

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0001  | 0001 1111 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x61       | 0x1f      | X-Or-Byte |
| Dez :   | 255       | 254       | 97         | 31        | X-Or-Byte |

# Beschreibung:

Dieser Befehl wird bis einschließlich Zentralen-Version 3.0 noch nicht verwendet.

### Besonderheiten:

Keine.

# 3.1.2.4 Programmierinfo "Zentrale Bereit"

# Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0001  | 0001 0001 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x61       | 0x11      | X-Or-Byte |
| Dez :   | 255       | 254       | 97         | 17        | X-Or-Byte |

# Beschreibung:

Dieser Befehl wird bis einschließlich Zentralen-Version 3.0 noch nicht verwendet.

### Besonderheiten:

Keine.

# 3.1.2.5 Programmierinfo "Daten 3-Byte-Format"

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2      | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0011  | 0001 0000 | EEEE<br>FFFF | DDDD DDDD | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x63       | 0x10      | E            | D         | X-Or-Byte |
| Dez :   | 255       | 254       | 99         | 16        | E            | D         | X-Or-Byte |

# Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die EEPROM-Adresse (E) und die darin gelesenen Daten (D). Nur bei Register- und Pagemode erfolgt diese Antwort!

#### Besonderheiten:

Die Antwort bezieht sich auf Programmieraktionen im Register- und Pagemode. Wurde ein Empfänger jedoch mit CV-Lesen angefragt und man erhält diese Antwort, dann kann der Empfänger mit der CV-Programmierung nicht umgehen (alter Empfänger). Für weitere Programmieraktionen muß man nun Schreib- und Lesebefehle für Register- und Pagemode verwenden.

# 3.1.2.6 Programmierinfo "Daten 4-Byte-Format" CV 1-255 und CV1024 (neu ab Version 3.6; ersetzt gleichen Befehl bis Version 3)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0011  | 0001 0100 | CCCC CCCC | DDDD DDDD | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x63       | 0x14      | С         | DAT       | X-Or-Byte |
| Dez :   | 255       | 254       | 99         | 20        | С         | DAT       | X-Or-Byte |

# Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

| C     | CV    |  |  |
|-------|-------|--|--|
| 0     | 1024  |  |  |
| 1 255 | 1 255 |  |  |

### Besonderheiten:

Wurde ein Empfänger mit CV-Lesen angefragt und man bekommt diese Antwort, ist alles ok, denn der Empfänger kann damit umgehen. Diese Antwort muß aber nicht zwangsläufig bei CV-Anfrage zurückkommen. Ein Gerät muß dies beachten und dann den Empfänger in Register- oder Pagemode programmieren. Siehe dazu 3.1.2.5.

# 3.1.2.7 <u>Programmierinfo "Daten 4-Byte-Format" CV256 bis CV511 (neu a</u>b Version 3.6)

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0011  | 0001 0101 | CCCC CCCC | DDDD DDDD | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x63       | 0x15      | С         | DAT       | X-Or-Byte |
| Dez :   | 255       | 254       | 99         | 21        | С         | DAT       | X-Or-Byte |

# Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

| С     | CV      |  |  |
|-------|---------|--|--|
| 0 255 | 256 511 |  |  |

### Besonderheiten:

Siehe 3.1.2.6.

# 3.1.2.8 Programmierinfo "Daten 4-Byte-Format" CV512 bis CV767 (neu ab Version 3.6)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0011  | 0001 0110 | CCCC CCCC | DDDD DDDD | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x63       | 0x16      | С         | DAT       | X-Or-Byte |
| Dez :   | 255       | 254       | 99         | 22        | С         | DAT       | X-Or-Byte |

# Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

| С     | CV      |  |  |
|-------|---------|--|--|
| 0 255 | 512 767 |  |  |

#### Besonderheiten:

Siehe 3.1.2.6.

# 3.1.2.9 <u>Programmierinfo "Daten 4-Byte-Format" CV768 bis CV1023 (neu ab Version</u> <u>3.6)</u>

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0011  | 0001 0111 | CCCC CCCC | DDDD DDDD | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x63       | 0x17      | С         | DAT       | X-Or-Byte |
| Dez :   | 255       | 254       | 99         | 23        | С         | DAT       | X-Or-Byte |

# Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

| C     | CV       |  |  |
|-------|----------|--|--|
| 0 255 | 768 1023 |  |  |

### Besonderheiten:

Siehe 3.1.2.6.

# 3.1.3 <u>Softwareversion Zentrale</u>

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2      | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0011  | 0010 0001 | 0000<br>UUUU | 1111 1111 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x63       | 0x21      | O + U        | ID        | X-Or-Byte |
| Dez:    | 255       | 254       | 99         | 33        | O + U        | ID        | X-Or-Byte |

# Beschreibung:

Auf die Anfrage nach der Zentralen-Software-Version erhält man diese Antwort. Die Versionsnummer ist in oberes (OOOO) und unteres (UUUU) Nibble hexadezimal kodiert. Beispiel: Daten  $2 = 0011\ 0000 = 0x30$ : Version 3.0.

Zusätzlich wird die Zentralen-Kennung gesendet, die folgende Bedeutung hat:

ID = 0x00: LZ 100 - ZentraleID = 0x01: LH 200 – Zentrale

ID = 0x02: DPC – Zentrale (Compact und Commander)

### Besonderheiten:

Keine.

### 3.1.4 Status Zentrale

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2      | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0010  | 0010 0010 | SSSS<br>SSSS | X-Or-Byte |
|         |           |           |            |           | <b>3333</b>  |           |
| Hex:    | 0xFF      | 0xFE      | 0x62       | 0x22      | S            | X-Or-Byte |
| Dez :   | 255       | 254       | 98         | 34        | S            | X-Or-Byte |

# Beschreibung:

Auf die Anfrage nach dem Zentralenstatus bekommt man das Statusbyte zurück. Dieses Byte ist bitweise wie folgt kodiert:

Bit 0: wenn 1, Anlage in Nothalt

Bit 1: wenn 1, Anlage in Notaus

Bit 2: Zentralen-Startmode (0 = manueller Start, 1 = automatischer Start) Auto-Start : Alle Loks fahren mit ihren Einstellungen sofort los

Manueller Start: Alle Loks haben Geschwindigkeit 0 und Funktionen aus.

Bit 3: wenn 1, dann Programmiermode aktiv

Bit 4: reserviert Bit 5: reserviert

Bit 6: wenn 1, dann Kaltstart in der Zentrale

Bit 7: wenn 1, dann RAM-Check-Fehler in der Zentrale

### Besonderheiten:

Nicht alle Bits sind in allen Zentralen vorhanden. Sind Bit 6 und Bit 2 gesetzt, so legt die Zentrale noch keine Daten auf das Gleis. Erst wenn ein Gerät den Startmode auf manuell oder Automatik stellt, beginnt die Gleisausgabe. Zuvor wird von der Zentrale noch der Broadcast "Alles an" gesendet. Nicht alle Zentralen unterstützen verschiedene Startmodes. Stellt ein Gerät also "Kaltstart" und "Startmode Auto" fest, so sollte es in seinem Kontext erst weitergehen (z.B. zum Steuern von Lokomotiven), wenn es den gewünschten Startmode an die Zentrale gesendet hat oder ein Broadcast "Alles an" empfangen wurde. Dann hat nämlich ein anderes XpressNet-Gerät den Startmode eingestellt. Es ist also sinnvoll, nach einem Gerätereset zunächst den Zentralenstatus und danach erst Lokdaten zu erfragen etc.

# 3.1.5 Übertragungsfehler

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0001  | 1000 0000 | 1110 0001 |
| Hex:    | 0xFF      | 0xFE      | 0x61       | 0x80      | 0xE1      |
| Dez :   | 255       | 254       | 97         | 128       | 225       |

# Beschreibung:

Die Zentrale sendet an ein Gerät die Antwort "Übertragungsfehler", wenn aufgrund eines solchen bei der Zentrale das X-Or-Byte nicht aufgeht, d.h. die X-Or-Verknüpfung aller Bytes einschl. des X-Or-Bytes nicht 0 wird.

### Besonderheiten:

Ein Übertragungsfehler entsteht meist dann, wenn das X-Or-Byte falsch berechnet wurde oder der Hardware-Handshake nicht beachtet wurde. Ursache kann auch ein Puffer-Überlauf der UART-Hardware des PC sein (dies ist nicht der per Treiber-Software eingerichetete Sende- und Empfangs- FiFo). In aller Regel hat ein Übertragungsfehler noch weitere Fehlermeldungen (Timeout PC-Interface 23151) zur Folge. Auch ein Befehl, der normalerweise keine Antwort zur Folge hat und mit 255/254/01/04/05 quittiert würde, kann stattdessen diese Antwort liefern.

### 3.1.6 Zentrale Busy

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0001  | 1000 0001 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x61       | 0x81      | X-Or-Byte |
| Dez :   | 255       | 254       | 97         | 129       | X-Or-Byte |

# Beschreibung:

Die Zentrale sendet an ein Gerät als Antwort auf einen Befehl "Busy", wenn dieser Befehl zur Zeit nicht ausgeführt werden kann. D.h. im wesentlichen, daß der Befehl zur Zeit nicht auf das Gleis gelegt werden kann.

#### Besonderheiten:

Die Antwort "Busy" wird dann an den PC gesendet, wenn dieser z.B. versucht, möglichst schnell viele Weichen zu schalten, ohne zu warten, ob der Befehl auch tatsächlich von der Zentrale akzeptiert werden konnte. Um die Antwort "Busy" dann zuordnen zu können, sollte ein PC-Programm sich an der Ablaufstruktur des XpressNet orientieren, um in dieser Situation den richtigen Befehl wiederholen zu können.

# 3.1.7 Befehl in Zentrale nicht vorhanden

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0110 0001  | 1000 0010 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x61       | 0x82      | X-Or-Byte |
| Dez :   | 255       | 254       | 97         | 130       | X-Or-Byte |

# Beschreibung:

Wurde ein Befehl zwar korrekt übertragen, ist aber nicht im Befehlsvorrat der Zentrale enthalten, so sendet die Zentrale diese Antwort zurück. Ebenso, wenn Befehle aus dem aktuellen Kontext heraus nicht möglich sind (Programmierergebnis lesen, ohne daß die Zentrale im Programmiermode ist).

### Besonderheiten:

Keine.

# 3.1.8 Schaltinformation

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0100 0010  | AAAA AAAA | ITTN ZZZZ | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x42       | ADR       | ITNZ      | X-Or-Byte |
| Dez :   | 255       | 254       | 66         | ADR       | ITNZ      | X-Or-Byte |

# Beschreibung:

Die Zentrale sendet als Antwort auf eine Anfrage nach Schalt-/Rückmeldeinformationen diese Info. Es kann als Information enthalten sein der Zustand von rückmeldefähigen oder nicht rückmeldefähigen Weichen oder der Zustand eines Rückmeldeempfängers. Es bedeuten im Einzelnen:

Daten 1: AAAA AAAA

Für eine Weiche ist Daten 1 die durch 4 geteilte Adresse einer Weiche aus demWertebereich 0..255. Daten 1 hat für Zentralen kleiner Version 3.0 den Wert 0 bis 63 = 6 Bit. Ist ADR z.B. = 0x00, so hat man eine Info über die Weichen 0, 1, 2 oder 3, d.h. über die Weichengruppe 0 (wenn die Kennungsbits TT einen Schaltempfänger kennzeichnen). Für Zentralen ab Version 3.0 werden alle 8 Bit von Daten 1 als Gruppenadresse erlaubt. D.h. es können 256\*4=1024 Weichen abgefragt und geschaltet werden.

Für einen Rückmeldebaustein kann die Adresse im Bereich 0..127 liegen (7 Bit Adresse). Dies ist direkt die Adresse des Bausteins.

Die Adressinformation wird so in dieser Info zurückgeschickt, wie sie in der Anfrage nach Schaltinformationen der Zentrale gesendet wurde.

Daten 2: I Ist das Bit = 1, so bedeutet das, daß der Schaltbefehl

noch in der Ausführung ist und die Weiche noch keine

Endstellung erreicht hat. Nicht definiert für

Rückmeldebausteine, da deren Eingänge ja immer 0 oder 1 sind und keinen Zwischenzustand annehmen können.

Daten 2: TT Diese beiden Bits stellen die Kennung der angefragten

Adresse dar. Es gilt:

TT = 0 0 : Adresse ist Schaltempfänger ohne Rückmeldung TT = 0 1 : Adresse ist Schaltempfänger mit Rückmeldung

TT = 1 0 : Adresse ist ein Rückmeldebaustein TT = 1 1 : reserviert für zukünftige Anwendungen

Daten 2: N Dies ist die Kennung, um welches Nibble einer Weiche

oder eines Rückmeldebausteins es sich handelt. N = 0 entspricht dem unteren Nibble, N = 1 entspricht dem oberen Nibble. Für z.B. Weichengruppe 0 bedeutet das

untere Nibble den Zustand der Weichen 0 und 1 in den 4

Zustandsbits Z. Das obere Nibble den Zustand der Weichen 2 und 3 in den 4 Zustandsbits Z. Für einen Rückmeldeempfänger bedeutet das untere Nibble den Zustand der unteren 4 Eingänge in den 4 Zustandsbits Z, das obere Nibble den Zustand der oberen 4 Eingänge in den 4 Zustandsbits Z. Um also alle 8 Eingänge eines Rückmelde-bausteins zu erfassen, ist eine Anfrage an das untere Nibble und eine zweite Anfrage an das obere Nibble der Rückmeldeadresse zu richten. Achtung: Das Nibble-Bit stimmt nur dann, wenn die Weiche schon einmal geschaltet wurde! Z3 Z2 Z1 Z0 Für den Zustand eines Schaltempfängers gilt: Z1 und Z0 stellen den Zustand der ersten Weiche (z.B Weiche Nr. 0 in Weichengruppe 0, Nibble = 0) im Nibble dar. Z3 und Z2 Den Zustand der zweiten Weiche im Nibble (Z.B Weiche Nr. 3 in Weichengruppe 0, Nibble = 1). Mögliche Kombinationen: Z0 (erste Weiche im Nibble) 0 Weiche seit Zentralenstart noch nicht geschaltet oder bei rückmeldefähigen Weichen ist kein Eingang für Endstellung angeschlossen. 1 Der letzte Schaltbefehl war "0", die Weiche steht links (das ist natürlich nur relativ). 0 Der letzte Schaltbefehl war "1", die Weiche steht in der anderen Endstellung (z.B. rechts, relativ). 1 Ungültige Kombination, wenn beide Endschalter

> ->Verdrahtungsfehler? Gleiches gilt für Z3 und Z2 (zweite Weiche im Nibble). Bei einem Rückmeldeempfänger stellen die 4 Bits Z3..Z0

> den Zustand der 4 Eingänge des angefragten Nibbles dar.

einer rückmeldefähigen Weiche aktiv sind.

### Besonderheiten:

Keine.

Daten 3:

Ζ1

0

0

1

1

### 3.1.9 Lokinformationen

Als Antwort auf eine allgemeine Lokanfrage im Format für Version 3.0 oder höher (siehe Abschnitt 3.2.25, Seite 46) kann eine der im folgenden beschriebenen vier Antworten kommen. Im Gegensatz zu früheren Versionen ist die "Besetzt"-Information hier enthalten. D.h. die hier beschriebenen Antworten kommen nicht als ungefragte Info. Wird eine Lok von einem anderen XpressNet-Gerät übernommen, so wird dies jetzt über die ungefragte Info "Lok besetzt" mitgeteilt (siehe 3.1.2). Es wird weiterhin ein zusätzliches Kennungs-Byte nach dem Headerbyte eingefügt, welches zur Unterscheidung der verschiedenen Befehle ab Zentralen-Version 3.0 dient. Bei den hier beschriebenen Antworten ist die Adresse der angefragten Lok nicht enthalten, um nicht unnötig redundante Daten über das XpressNet zu senden.. Aus der Struktur des XpressNet ergibt sich aber die eindeutige Zuordnung dieser Antworten, weil sie direkt auf eine vorhergegangene Anfrage nach Lokdaten kommt.

# 3.1.9.1 Lokinformation normale Lok

Diese Antwort wird immer dann gesendet, wenn sich die angefragte Lok nicht in einer Mehrfach-/Doppeltraktion befindet und auch nicht die Basisadresse Mehrfachtraktion ist.

#### Format:

|       | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1   | Daten 2      | Daten 3      | X-Or-Byte |
|-------|-----------|-----------|------------|-----------|-----------|--------------|--------------|-----------|
| Binär | 1111 1111 | 1111 1110 | 1110 0100  | 0000 BFFF | RVVV VVVV | 000F<br>FFFF | FFFF<br>FFFF | X-Or-Byte |
| Hex:  | 0xFF      | 0xFE      | 0xE4       | Kennung   | Speed     | F0           | F1           | X-Or-Byte |
| Dez : | 255       | 254       | 228        | Kennung   | Speed     | F0           | F1           | X-Or-Byte |

# Beschreibung:

Kennung: Bit3: B=0: Lok ist frei

B=1: Lok ist an anderem Gerät aufgerufen (besetzt)

Kennung: FFF Bit2 bis Bit0: Kennung der Fahrstufenzahl:

| Bit2 | Bit1 | Bit0 |                |
|------|------|------|----------------|
| 0    | 0    | 0    | 14 Fahrstufen  |
| 0    | 0    | 1    | 27 Fahrstufen  |
| 0    | 1    | 0    | 28 Fahrstufen  |
| 1    | 0    | 0    | 128 Fahrstufen |

Speed: Codierung der Geschwindigkeit und Richtung. R=1: vorwärts, R=0:

rückwärts.

Bei 14 Fahrstufen: Codierung der Bits 3,2,1,0 für die Geschwindigkeit:

| Bit3 | Bit2 | Bit1 | Bit0 |                                            |
|------|------|------|------|--------------------------------------------|
| 0    | 0    | 0    | 0    | Fahrstufe 0                                |
| 0    | 0    | 0    | 1    | Lokspezifischer Nothalt. Die Lok hält ohne |
|      |      |      |      | die eingestellte Verzögerung sofort an.    |
| 0    | 0    | 1    | 0    | Fahrstufe 1                                |
|      |      |      |      |                                            |
| 1    | 1    | 1    | 1    | Fahrstufe 14                               |

Bei 27 Fahrstufen: Codierung der Bits 4,3,2,1,0 : Man beachte, daß das Bit4 das **LSB** der Fahrstufe ist.

| Bit3 | Bit2 | Bit1 | Bit0 | Bit4 (!) |                                  |
|------|------|------|------|----------|----------------------------------|
| 0    | 0    | 0    | 0    | 0        | Fahrstufe 0                      |
| 0    | 0    | 0    | 0    | 1        | nicht verwendet!                 |
| 0    | 0    | 0    | 1    | 0        | Lokspezifischer Nothalt. Die Lok |
|      |      |      |      |          | hält ohne die eingestellte       |
|      |      |      |      |          | Verzögerung sofort an.           |
| 0    | 0    | 0    | 1    | 1        | nicht verwendet!                 |
| 0    | 0    | 1    | 0    | 0        | Fahrstufe 1                      |
| 0    | 0    | 1    | 0    | 1        | Fahrstufe 2                      |
| 0    | 0    | 1    | 1    | 0        | Fahrstufe 3                      |
|      |      |      |      |          |                                  |
| 1    | 1    | 1    | 1    | 0        | Fahrstufe 27                     |

Bei 28 Fahrstufen: Codierung der Bits 4,3,2,1,0 für die Geschwindigkeit: Man beachte, daß das Bit4 das **LSB** der Fahrstufe ist.

| Bit3 | Bit2 | Bit1 | Bit0 | Bit4 (!) |                                  |
|------|------|------|------|----------|----------------------------------|
| 0    | 0    | 0    | 0    | 0        | Fahrstufe 0                      |
| 0    | 0    | 0    | 0    | 1        | nicht verwendet!                 |
| 0    | 0    | 0    | 1    | 0        | Lokspezifischer Nothalt. Die Lok |
|      |      |      |      |          | hält ohne die eingestellte       |
|      |      |      |      |          | Verzögerung sofort an.           |
| 0    | 0    | 0    | 1    | 1        | nicht verwendet!                 |
| 0    | 0    | 1    | 0    | 0        | Fahrstufe 1                      |
| 0    | 0    | 1    | 0    | 1        | Fahrstufe 2                      |
| 0    | 0    | 1    | 1    | 0        | Fahrstufe 3                      |
|      | -    |      |      |          |                                  |
| 1    | 1    | 1    | 1    | 0        | Fahrstufe 27                     |
| 1    | 1    | 1    | 1    | 1        | Fahrstufe 28                     |

### Bei 128 Fahrstufen:

| Bit6 | B5 | B4 | В3 | B2 | B1 | B0 |               |
|------|----|----|----|----|----|----|---------------|
| 0    | 0  | 0  | 0  | 0  | 0  | 0  | Fahrstufe 0   |
| 0    | 0  | 0  | 0  | 0  | 0  | 1  | Nothalt       |
| 0    | 0  | 0  | 0  | 0  | 1  | 0  | Fahrstufe 1   |
| 0    | 0  | 0  | 0  | 0  | 1  | 1  | Fahrstufe 2   |
|      |    |    |    |    |    |    |               |
| 1    | 1  | 1  | 1  | 1  | 1  | 1  | Fahrstufe 126 |

F0: Zustand der Funktionen 0 bis 4. 0 0 0 F0 F4 F3 F2 F1

F1: Zustand der Funktionen 5 bis 12 F12 F11 F10 F9 F8 F7 F6 F5 Eine 1 bedeuted jeweils Funktion ist an.

# Besonderheiten:

Keine.

# 3.1.9.2 Funktionszustand F13 bis F28 der angefragten Lok (ab Version 3.6)

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0011  | 0101 0010 | FFFF FFFF | FFFF FFFF | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE3       | 0x52      |           |           | X-Or-Byte |
| Dez :   | 255       | 254       | 227        | 82        |           |           | X-Or-Byte |

# Beschreibung:

Daten1: Beinhaltet den Zustand der Funktionen 13 bis 20. Fx=1 heißt Funktion ist

eingeschaltet.

F2 = F20 F19 F18 F17 F16 F15 F14 F13

Daten2: Beinhaltet den Zustand der Funktionen 21 bis 28. Fx=1 heißt Funktion ist

eingeschaltet.

F3 = F28 F27 F26 F25 F24 F23 F22 F21

# Besonderheiten:

Keine.

# 3.1.9.3 Lokinformation Lok befindet sich in einer Mehrfachtraktion

### Format:

|      | Frame1         | Frame2    | Headerbyte | Kennung   | Daten 1   | Daten 2 | Daten 3 | Daten 4 | X-Or-Byte |
|------|----------------|-----------|------------|-----------|-----------|---------|---------|---------|-----------|
| Binā | ir : 1111 1111 | 1111 1110 | 1110 0101  | 0001 BFFF | RVVV VVVV | 000F    |         | MTR     | X-Or-Byte |
|      |                |           |            |           |           | FFFF    | FFFF    |         |           |
| Hex  | : 0xFF         | 0xFE      | 0xE5       | Kennung   | Speed     | F0      | F1      | MTR     | X-Or-Byte |
| Dez  | : 255          | 254       | 229        | Kennung   | Speed     | F0      | F1      | MTR     | X-Or-Byte |

# Beschreibung:

Kennung: Die Bits 3 bis 0 sind wie unter 3.1.9.1 beschrieben codiert. Die

> Fahrstufenzahl gibt die Fahrstufenzahl der angefragten Lok an! Diese kann anders sein als die Fahrstufenzahl der Mehrfachtraktion (MTR),

in der sich die Lok befindet.

Speed: Das Geschwindigkeits-Byte ist wie unter 3.1.9.1 beschrieben codiert.

Die Geschwindigkeit gibt die Geschwindigkeit der angefragten Lok an!

F0, F1: Codiert wie unter 2.1.14.1. beschrieben.

MTR: Dies ist die MTR-Basisadresse der angefragten Lok.

### Besonderheiten:

Lok-Fahrbefehle sind an die Basisadresse zu senden, da nicht alle Zentralen diese Umsetzung vornehmen. Funktionsbefehle sind an die Lokadresse selbst zu senden.

# 3.1.9.4 Lokinformation Lokadresse ist die Basisadresse einer Mehrfachtraktion

### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0010  | 0010 BFFF | RVVV VVVV | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE2       | Kennung   | Speed     | X-Or-Byte |
| Dez :   | 255       | 254       | 226        | Kennung   | Speed     | X-Or-Byte |

# Beschreibung:

Die Bits 3 bis 0 sind wie unter 3.1.9.1 beschrieben codiert. Die Kennung:

Fahrstufenzahl gibt die Fahrstufenzahl der Mehrfachtraktion an.

Das Geschwindigkeits-Byte ist wie unter 3.1.9.1 beschrieben codiert. Speed:

Die Geschwindigkeit gibt die Geschwindigkeit der MTR an.

### Besonderheiten:

An die Basisadresse einer MTR sollen keine Funktionsbefehle gesendet werden.

# 3.1.9.5 <u>Lokinformation Lok befindet sich in einer Doppeltraktion</u>

#### Format:

|        | Frame1 | Frame2 | Headerby  | Kennung | Daten 1   | Daten 2 | Daten 3 | Daten 4  | Daten 5 | X-Or-     |
|--------|--------|--------|-----------|---------|-----------|---------|---------|----------|---------|-----------|
|        |        |        | te        |         |           |         |         |          |         | Byte      |
| Binär: | 1111   | 1111   | 1110 0110 | 0110    | RVVV VVVV | 000F    | FFFF    | Adr High | Adr Low | X-Or-Byte |
|        | 1111   | 1110   |           | BFFF    |           | FFFF    | FFFF    |          |         |           |
| Hex:   | 0xFF   | 0xFE   | 0xE6      | Kennung | Speed     | F0      | F1      | AH       | AL      | X-Or-Byte |
| Dez :  | 255    | 254    | 230       | Kennung | Speed     | F0      | F1      | AH       | AL      | X-Or-Byte |

# Beschreibung:

Kennung: Die Bits 3 bis 0 sind wie unter 3.1.9.1 beschrieben codiert.

Speed: Das Geschwindigkeits-Byte ist wie unter 3.1.9.1 beschrieben codiert. F0, F1: Codiert wie unter 3.1.9.1 beschrieben.

AH: Highbyte der zweiten Lokadresse der Doppeltraktion. AL: Lowbyte der zweiten Lokadresse der Doppeltraktion

Für Lokadressen < 100 gilt:

Highbyte der Lokadresse ist 0x00

Lowbyte der Lokadresse ist 0x00 bis 0x63

Für Lokadresse von 100 bis 9999 gilt:

Highbyte der Lokadresse ist: AH = (ADR&0xFF00)+0xC000

Lowbyte der Lokadresse ist: AL = (ADR&0x00FF)

### Besonderheiten:

Diese Antwort kommt nur dann, wenn die Lok in der DTR mit dem "neuen" Lokanfragebefehl angefragt wurde (siehe 3.2.27).

# 3.1.10 Lok besetzt ab Zentralen-Version 3.0

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1      | Daten 2 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------------|---------|-----------|
| Binär : | 1111 1111 | 1111 1101 | 1110 0011  | 0100 0000 | Adresse High | Adresse | X-Or-Byte |
|         |           |           |            |           |              | Low     |           |
| Hex:    | 0xFF      | 0xFD      | 0xE3       | 0x40      | AH           | AL      | X-Or-Byte |
| Dez :   | 255       | 253       | 227        | 64        | AH           | AL      | X-Or-Byte |

# Beschreibung:

AH: Highbyte der Lokadresse. AL: Lowbyte der Lokadrese.

Für Lokadressen < 100 gilt:

Highbyte der Lokadresse ist 0x00

Lowbyte der Lokadresse ist 0x00 bis 0x63

Für Lokadresse von 100 bis 9999 gilt:

Highbyte der Lokadresse ist: AH = (ADR&0xFF00)+0xC000

Lowbyte der Lokadresse ist: AL = (ADR&0x00FF)

# Besonderheiten:

Diese Information kommt immer ungefragt, wenn ein anderes XpressNet-Gerät diese Lok übernommen hat.

# 3.1.11 Funktionsstatus F0 bis F12 der angefragten Lok

Ab Version 3.0 der LZ100-Zentrale speichert diese als zusätzliche Information zu einer Lok, ob deren Funktionen tastend oder nicht tastend sein sollen. Die Gleisausgabe hierfür ändert sich jedoch nicht. XpressNet-Geräte können aber ihre Funktionalität in der Bedieneroberfläche erweitern, so daß z.B. für Geräusche eine zugeordnete Funktion nur solange ausgeführt wird, wie eine Taste gedrückt ist. Der Befehl ist in der Zentrale vorgesehen, damit diese Eigenschaft auch bei der Übernahme einer Lok

durch ein anderes XpressNet-Gerät genutzt werden kann. Die zugehörige Lokadresse wird nicht mitgesendet, weil sich die korrekte Zuordnung durch die direkt vorangegangene Anfrage nach dem Funktionsstatus ergibt.

### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0011  | 0101 0000 | 000S SSSS | SSSS SSSS | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE3       | 0x50      | S0        | S1        | X-Or-Byte |
| Dez:    | 255       | 254       | 227        | 80        | S0        | S1        | X-Or-Byte |

# Beschreibung:

S0: Beinhaltet den Status der Funktionen 0 bis 4. Sx=1 heißt Funktion ist tastend. S0 = 0 0 0 S0 S4 S3 S2 S1

S1: Beinhaltet den Status der Funktionen 5 bis 12. Sx=1 heißt Funktion ist tastend. S1 = S12 S11 S10 S9 S8 S7 S6 S5

#### Besonderheiten:

Keine.

# 3.1.12 Funktionsstatus F13 bis F28 der angefragten Lok (ab Version 3.6)

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0101 0001 | SSSS SSSS | SSSS SSSS | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x51      |           |           | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 81        |           |           | X-Or-Byte |

# Beschreibung:

Daten1: Beinhaltet den Status der Funktionen 13 bis 20. Sx=1 heißt Funktion ist tastend.

Bits:

| 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| F20 | F19 | F18 | F17 | F16 | F15 | F14 | F13 |

Beinhaltet den Status der Funktionen 21 bis 28. Sx=1 heißt Funktion ist Daten2: tastend.

Bits:

| 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| F28 | F27 | F26 | F25 | F24 | F23 | F22 | F21 |

### Besonderheiten:

Keine.

# 3.1.13 Lokinformation bei Adress-Suchanfragen

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1      | Daten 2        | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------------|----------------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0011  | 0011 KKKK | Adresse High | Adresse<br>Low | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE3       | 0x30 + K  | AH           | AL             | X-Or-Byte |
| Dez :   | 255       | 254       | 227        | 48 + K    | AH           | AL             | X-Or-Byte |

# Beschreibung:

Diese Antwort wird gesendet, wenn das XpressNet-Gerät eine der Suchanfragen aus 3.2.30 benutzt hat. Damit kann z.B. in dem Gerät eine Auswahlliste der gewünschten Loks gezeigt werden (nächste Lok einer Mehrfachtraktion etc.).

Die Kennung enthält den Typ der Lokadresse, die in Adresse High / Adresse Low steht.

Kennung: KKKK = 0: Normale Lok in Daten 1/2

> KKKK = 1: Doppeltraktionslok in Daten 1/2

Mehrfachtraktions-Basisadresse in Daten 1/2 KKKK = 2: Mitglied einer Mehrfachtraktion in Daten 1/2 KKKK = 3:

KKKK = 4: Keine Adresse zur Suchanfrage mehr gefunden. Daten 1/2

= 0x00

AH/AL: Die Lokadresse wird berechnet, wie unter 3.1.10 beschrieben.

#### Besonderheiten:

Keine.

# 3.1.14 Fehlermeldungen

Der Zusammenhang ergibt sich aus dem vorausgehend erteilten Befehl an die Zentrale, auf den sich die Fehlermeldung bezieht.

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung      | X-Or-Byte |
|---------|-----------|-----------|------------|--------------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0001  | 1000<br>FFFF | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE1       | 0x80 + F     | X-Or-Byte |
| Dez :   | 255       | 254       | 225        | 128 + F      | X-Or-Byte |

# Beschreibung:

Die 4 Fehlerbits sind wie folgt codiert:

FFFF = 0001: Eine Lok ist bei Montage einer Mehrfachtraktion nicht durch das

montierende Gerät aufgerufen oder die Lok 0 ist gewählt.

FFFF = 0010: Eine der Loks der Mehrfachtraktion ist bei einem anderen Gerät

aufgerufen.

FFFF = 0011: Eine der Loks ist schon in einer anderen Mehrfachtraktion oder

Doppeltraktion eingebunden.

FFFF = 0100: Die Geschwindigkeit einer der Loks der Mehrfachtraktion ist nicht Null.

FFFF = 0101: Die Lok ist nicht in einer Mehrfachtraktion.

Die Lokadresse ist keine Mehrfachtraktions-Basisadresse. FFFF = 0110

FFFF = 0111: Lok löschen ist nicht möglich FFFF = 1000: Der Zentralenstack ist voll

### Besonderheiten:

Keine.

#### 3.2 PC an Zentrale

Je nach gewünschter Aktion gibt die Zentrale bzw. das Interface 23151 dem PC die entsprechende Antwort.

# 3.2.1 Alles An

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0001  | 1000 0001 | 1010 0000 |
| Hex:    | 0xFF      | 0xFE      | 0x21       | 0x81      | 0xA0      |
| Dez :   | 255       | 254       | 33         | 129       | 160       |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, die Spannung am Gleis wieder einzuschalten, wenn sie abgeschaltet war und mit der Aussendung von Gleisbefehlen wieder zu beginnen. Damit wird ein Nothalt, ein Notaus oder der Programmierbetrieb auf dem Programmiergleis beendet. Die Zentrale sendet nach erfolgreichem Einschalten die Broadcast "Alles An". Siehe 2.1.4.1.

#### Besonderheiten:

Keine.

# 3.2.2 Alles Aus (Notaus)

# Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0001  | 1000 0000 | 1010 0001 |
| Hex:    | 0xFF      | 0xFE      | 0x21       | 0x80      | 0xA1      |
| Dez :   | 255       | 254       | 33         | 128       | 161       |

### Beschreibung:

Der Befehl veranlasst die Zentrale dazu, die Spannung am Gleis abzuschalten. Danach sendet die Zentrale mehrmals die Broadcast "Alles Aus" an alle Busteilnehmer. Auch an denjenigen, der dieses Kommando gegeben hat.

#### Besonderheiten:

Keine.

# 3.2.3 Alle Loks anhalten (Nothalt)

# Format:

|         | Frame1    | Frame2    | Headerbyte | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1000 0000  | 1000 0000 |
| Hex:    | 0xFF      | 0xFE      | 0x80       | 0x80      |
| Dez :   | 255       | 254       | 128        | 128       |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, alle Loks auf dem Gleis ohne deren eingestellte Verzögerung sofort anzuhalten. Die Spannung am Gleis bleibt jedoch eingeschaltet, so daß z.B. Weichen weiterhin geschaltet werden können.

### Besonderheiten:

Keine.

# 3.2.4 Eine Lok anhalten (Nothalt für eine Lok)

### Format:

|        | Frame1    | Frame2    | Headerbyte | Daten 1 | Daten 2 | X-Or-Byte |
|--------|-----------|-----------|------------|---------|---------|-----------|
| Binär: | 1111 1111 | 1111 1110 | 1001 0010  | Adresse | Adresse | X-Or-Byte |
|        |           |           |            | High    | Low     | -         |
| Hex:   | 0xFF      | 0xFE      | 0x92       | AH      | AL      | X-Or-Byte |
| Dez :  | 255       | 254       | 146        | AH      | AL      | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, nur die gewünschte Lok auf dem Gleis ohne deren eingestellte Verzögerung sofort anzuhalten. Die Spannung am Gleis bleibt eingeschaltet, so daß z.B. Weichen weiterhin geschaltet werden können und auch alle anderen Loks normal weiterfahren.

### Besonderheiten:

Es können die Loks 0 bis 9999 angehalten werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

# 3.2.5 <u>Leseanfrage Programmieren 3-Byte-Format (Registermode)</u>

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0001 0001 | 0000 RRRR | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x22       | 0x11      | R         | X-Or-Byte |
| Dez :   | 255       | 254       | 34         | 17        | R         | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Registermode zu lesen. Es wird versucht, das Register, welches mit 0000 RRRR angegeben ist, zu lesen. Zulässig ist Register 1..8.

### Besonderheiten:

Die Leseanforderung hat keine Antwort der Zentrale zur Folge! Diese muß explizit mit dem Befehl "Programmierergebnis anfordern" geholt werden. Erst dann kann erkannt werden, ob der Lesebefehl erfolgreich war oder nicht und ob das Ergebnis in der gewünschten Form (Registermode) vorliegt.

Nach dem Erteilen eines Lesebefehls sendet die Zentrale an alle Busteilnehmer die Broadcast "Programmiermode" und es kann ausschließlich das Gerät weiter Befehle an die Zentrale senden, das den Programmiermode ausgelöst hat.

# 3.2.6 Leseanfrage Programmieren 4-Byte-Format (CV-Mode)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0001 0101 | CCCC    | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x22       | 0x15      | CV      | X-Or-Byte |
| Dez:    | 255       | 254       | 34         | 21        | CV      | X-Or-Byte |

### Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Der Bereich ist von 1 bis 256, wobei CV256 als 00 zu senden ist.

# Besonderheiten:

Dieser Befehl existiert zusätzlich zum Befehl wie in 3.2.7 beschrieben. Wird eine Zentrale ab Version 3.6 verwendet, so liefert der Befehl den Wert der CV1024 statt der CV256 zurück. Daher empfehlen wir die Verwendung des in 3.2.7 beschriebenen Befehls.

Die Leseanforderung hat keine Antwort der Zentrale zur Folge! Diese muß explizit mit dem Befehl "Programmierergebnis anfordern" geholt werden. Erst dann kann erkannt

werden, ob der Lesebefehl erfolgreich war oder nicht und ob das Ergebnis in der gewünschten Form (CV-Mode) vorliegt. Konnte der Empfänger nicht im CV-Mode gelesen werden, so versucht es die Zentrale im Registermode. Gelingt diese Leseaktionen, so liegt ein Ergebnis zum Abholen in der Zentrale bereit und das XpressNet-Gerät muß dieses Ergebnis daraufhin prüfen, ob es ein CV-, oder Registerergebnis ist.

Nach dem Erteilen eines Lesebefehls sendet die Zentrale an alle Busteilnehmer die Broadcast "Programmiermode" und es kann ausschließlich das Gerät weiter Befehle an die Zentrale senden, das den Programmiermode ausgelöst hat.

### 3.2.7 Leseanfrage Programmieren 4-Byte-Format (CV 1-255 und CV1024) (neu ab V3.6)

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0001 1000 | CCCC CCCC | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x22       | 0x18      | CV        | X-Or-Byte |
| Dez:    | 255       | 254       | 34         | 24        | CV        | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV    |
|---------|-------|
| 0       | 1024  |
| 1 255   | 1 255 |

### Besonderheiten:

Dieser Befehl sollte an einer Zentrale ab Version 3.6 immer verwendet werden. weitere Besonderheiten gelten wie unter 3.2.6 beschrieben.

#### 3.2.8 Leseanfrage Programmieren 4-Byte-Format (CV 256-511) (neu ab V3.6)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0001 1001 | CCCC CCCC | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x22       | 0x19      | CV        | X-Or-Byte |
| Dez:    | 255       | 254       | 34         | 25        | CV        | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV      |  |  |
|---------|---------|--|--|
| 0 255   | 256 511 |  |  |

### Besonderheiten:

Wie unter 3.2.6 beschrieben.

#### 3.2.9 Leseanfrage Programmieren 4-Byte-Format (CV 512-767) (neu ab V3.6)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0001 1010 | CCCC CCCC | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x22       | 0x1A      | CV        | X-Or-Byte |
| Dez :   | 255       | 254       | 34         | 26        | CV        | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV      |  |  |
|---------|---------|--|--|
| 0 255   | 512 767 |  |  |

#### Besonderheiten:

Wie unter 3.2.6 beschrieben.

#### 3.2.10 Leseanfrage Programmieren 4-Byte-Format (CV 768-1023) (neu ab V3.6)

#### Format:

|   |         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---|---------|-----------|-----------|------------|-----------|-----------|-----------|
| E | Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0001 1011 | CCCC CCCC | X-Or-Byte |
| ŀ | Hex :   | 0xFF      | 0xFE      | 0x22       | 0x1B      | CV        | X-Or-Byte |
| [ | Dez :   | 255       | 254       | 34         | 27        | CV        | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV       |  |  |
|---------|----------|--|--|
| 0 255   | 768 1023 |  |  |

#### Besonderheiten:

Wie unter 3.2.6 beschrieben.

# 3.2.11 Leseanfrage Programmieren 3-Byte-Format (Pagemode)

# Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0001 0100 | CCCC    | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x22       | 0x14      | CV      | X-Or-Byte |
| Dez :   | 255       | 254       | 34         | 20        | CV      | X-Or-Byte |

### Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Pagemode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen. Die Zentrale setzt die Pageangaben auf Register um (gleisseitig) und versucht, den Empfänger im Registermode auszulesen.

Der Bereich ist von 1 bis 256, wobei CV256 als 00 zu senden ist.

#### Besonderheiten:

Die Leseanforderung hat keine Antwort der Zentrale zur Folge! Diese muß explizit mit dem Befehl "Programmierergebnis anfordern" geholt werden. Erst dann kann erkannt werden, ob der Lesebefehl erfolgreich war oder nicht und ob das Ergebnis in der gewünschten Form (Pagemode) vorliegt. Gelingt eine Leseaktionen, so liegt ein Ergebnis zum Abholen in der Zentrale bereit und das XpressNet-Gerät muß dieses Ergebnis auf seinen Inhalt hin untersuchen.

Nach dem Erteilen eines Lesebefehls sendet die Zentrale an alle Busteilnehmer die Broadcast "Programmiermode" und es kann ausschließlich das Gerät weiter Befehle an die Zentrale senden, das den Programmiermode ausgelöst hat.

### 3.2.12 Programmierergebnis anfordern

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0001  | 0001 0000 | 0011 0001 |
| Hex:    | 0xFF      | 0xFE      | 0x21       | 0x10      | 0x31      |
| Dez :   | 255       | 254       | 33         | 16        | 49        |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, das Ergebnis einer vorangegangenen Leseaktion an das XpressNet-Gerät zu senden. Die Antwort ist eine der unter 3.1.2 beschriebenen Möglichkeiten.

# Besonderheiten:

Keine.

# 3.2.13 Schreibbefehl Programmieren 3-Byte-Format (Register-Mode)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0011  | 0001 0010 | 0000 RRRR | Daten   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x23       | 0x12      | R         | Daten   | X-Or-Byte |
| Dez :   | 255       | 254       | 35         | 18        | R         | Daten   | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Register-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die Register-Adresse in Daten 2 zu schreiben.

Der Bereich ist Register 1 bis 8.

#### Besonderheiten:

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt werden. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

## 3.2.14 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV1-256)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2 | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0011  | 0001 0110 | CCCC    | Daten   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x23       | 0x16      | CV      | Daten   | X-Or-Byte |
| Dez :   | 255       | 254       | 35         | 22        | CV      | Daten   | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Der Bereich ist CV 1 bis 255.

#### Besonderheiten:

Dieser Befehl existiert zusätzlich zum Befehl wie in 3.2.15 beschrieben. Wird eine Zentrale ab Version 3.6 verwendet, so wird die CV1024 statt der CV256 beschrieben. Daher empfehlen wir die Verwendung des in 3.2.15 beschriebenen Befehls.

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt und geprüft werden, ob der Empfänger sich im CV-Mode programmieren läßt. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

# Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 1-255 und 3.2.15 CV1024) (neu ab Version 3.6)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0011  | 0001 1100 | cccc cccc | Daten   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x23       | 0x1C      | CV        | Daten   | X-Or-Byte |
| Dez :   | 255       | 254       | 35         | 28        | CV        | Daten   | X-Or-Byte |

### Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV    |  |  |
|---------|-------|--|--|
| 0       | 1024  |  |  |
| 1 255   | 1 255 |  |  |

# Besonderheiten:

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt und geprüft werden, ob der Empfänger sich im CV-Mode programmieren läßt. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

### 3.2.16 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 256-511) (neu ab Version 3.6)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0011  | 0001 1101 | CCCC CCCC | Daten   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x23       | 0x1D      | CV        | Daten   | X-Or-Byte |
| Dez :   | 255       | 254       | 35         | 29        | CV        | Daten   | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV      |
|---------|---------|
| 0 255   | 256 511 |

#### Besonderheiten:

wie 3.2.15.

# 3.2.17 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 512-767) (neu ab Version 3.6)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0011  | 0001 1110 | CCCC CCCC | Daten   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x23       | 0x1E      | CV        | Daten   | X-Or-Byte |
| Dez :   | 255       | 254       | 35         | 30        | CV        | Daten   | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV      |
|---------|---------|
| 0 255   | 512 767 |

### Besonderheiten:

wie 3.2.15.

# 3.2.18 <u>Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 768-1023)</u> (neu ab Version 3.6)

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0011  | 0001 1111 | CCCC CCCC | Daten   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x23       | 0x1F      | CV        | Daten   | X-Or-Byte |
| Dez :   | 255       | 254       | 35         | 31        | CV        | Daten   | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

| Daten 2 | CV       |
|---------|----------|
| 0 255   | 768 1023 |

#### Besonderheiten:

wie 3.2.15.

# 3.2.19 Schreibbefehl Programmieren 3-Byte-Format (Page-Mode)

### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2 | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0011  | 0001 0111 | CCCC    | Daten   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x23       | 0x17      | CV      | Daten   | X-Or-Byte |
| Dez :   | 255       | 254       | 35         | 23        | CV      | Daten   | X-Or-Byte |

# Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Page-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben, wobei die Zentrale eine entsprechende Umrechnung der CV auf die zu verwendende Page macht und den Empfänger im Registermode programmiert. Der Bereich ist CV 1 bis 256, wobei CV256 als 0x00 gesendet werden muß.

#### Besonderheiten:

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt und geprüft werden, ob der Empfänger sich im Page-Mode programmieren läßt. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

# 3.2.20 <u>Softwareversion der Zentrale anfordern</u>

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0001  | 0010 0001 | 0000 0000 |
| Hex:    | 0xFF      | 0xFE      | 0x21       | 0x21      | 0x00      |
| Dez :   | 255       | 254       | 33         | 33        | 0         |

# Beschreibung:

Mit diesem Befehl wird die Zentrale veranlasst, ihre Softwareversion dem XpressNet-Gerät mitzuteilen. Je nach Zentralenversion sind die Antworten wie unter 3.1.3 beschrieben möglich.

# Besonderheiten:

Keine.

# 3.2.21 Status der Zentrale anfordern

# Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0001  | 0010 0100 | 0000 0101 |
| Hex:    | 0xFF      | 0xFE      | 0x21       | 0x24      | 0x05      |
| Dez :   | 255       | 254       | 33         | 36        | 5         |

# Beschreibung:

Die Anfrage nach dem Zentralenstatus ergibt die unter 3.1.4 beschriebene Antwort.

# Besonderheiten:

Keine.

# 3.2.22 Zentralen-Startmode setzen

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0010 0010  | 0010 0010 | 0000 0M00 | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x22       | 0x22      | M         | X-Or-Byte |
| Dez :   | 255       | 254       | 34         | 34        | M         | X-Or-Byte |

# Beschreibung:

Setzt den Startmode der Zentrale nach Reset. M=0: Manueller Start aller Loks, M=1: automatischer Start aller Loks mit den letzten Geschwindigkeits-Funktionseinstellungen.

#### Besonderheiten:

Nicht alle Zentralen unterstützen diesen Befehl.

# 3.2.23 Schaltinformationen anfordern

#### Format:

|   |        | Frame1    | Frame2    | Headerbyte | Daten 1 | Daten 2      | X-Or-Byte |
|---|--------|-----------|-----------|------------|---------|--------------|-----------|
| В | inär : | 1111 1111 | 1111 1110 | 0100 0010  |         | 1000<br>000N | X-Or-Byte |
| Н | ex:    | 0xFF      | 0xFE      | 0x42       |         |              | X-Or-Byte |
| D | ez:    | 255       | 254       | 66         | Adresse | 128 + N      | X-Or-Byte |

# Beschreibung:

Aufgrund dieses Kommandos sendet die Zentrale die unter 3.1.8 beschriebene Antwort.

Adresse:

Für einen Schaltempfänger ist dies die durch 4 geteilte Adresse des gewünschten Schaltausganges (=Weichengruppe). Damit ergibt sich für die Adresse ein Bereich von 0 bis 63 = 6 Bit für alle Versionen kleiner 3.0.

Ab der Version 3.0 werden für die Weichengruppe alle 8 Bit erlaubt. Damit ergibt sich ein Bereich von 256 (0..255) Weichengruppen. Es können also 1024 Weichen geschaltet werden, wobei die Weichen Nr. 1..512 rückmeldefähig sind, die Weichen Nr. 513 bis 1024 jedoch nicht. Für einen Rückmeldebaustein ist die Adresse im Bereich 0 bis 127 (=7Bit) und gibt direkt den gewünschten Baustein an.

N:

Kennzeichnung für das gewünschte Nibble.

N=0 ist das untere Nibble, N=1 das obere.

Für Schaltempfänger ist es so, daß in einer Weichengruppe 4 Weichen enthalten sind und das untere Nibble die Weichen 0 und 1 der

Weichengruppe bezeichnet und das obere Nibble die Weichen Nr. 2 und 3 der Weichengruppe.

Für einen Rückmeldebaustein bezeichnet das untere Nibble den Zustand der ersten 4 Eingänge des Rückmeldebausteins und das obere Nibble den Zustand der oberen 4 Eingänge.

# Besonderheiten:

Beispiel 1: Weichenbereich 0...255, der Zustand der Weiche Nr. 21 ist gewünscht. Adresse: 21 mod 4 = 5, dh. Weiche 21 liegt in Weichengruppe 5 In Weichengruppe 5 liegen die Weichen 20, 21, 22, 23. Damit ist das Nibblebit 0 (unteres Nibble).

Beispiel 2: Weichenbereich 0..1023, der Zustand der Weiche Nr. 620 ist gewünscht. Adresse: 623 mod 4 = 155, dh. Weiche 623 liegt in Weichengruppe 155. In Weichengruppe 155 liegen die Weichen 620, 621, 622, 623. Damit ist das Nibblebit 1 (oberes Nibble).

# 3.2.24 Schaltbefehl

# Format:

|         | Frame1    | Frame2    | Headerbyte | Daten 1   | Daten 2     | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-------------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 0101 0010  | AAAA AAAA | 1000 DBBD   | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0x52       | Adresse   | 0x80 + DBBD | X-Or-Byte |
| Dez :   | 255       | 254       | 82         | Adresse   | 128 + DBBD  | X-Or-Byte |

# Beschreibung:

Schaltbefehle können nur an Schaltempfänger erteilt werden. Die Adresse ist damit die Weichennummer / 4 (=Weichengruppe). Es bleibt noch die Definition des Offsets in der Weichengruppe, um die gewünschte Weiche exakt zu definieren, sowie die Auswahl, welcher der beiden Ausgänge dieser Weiche gewünscht ist und ob dieser Ausgang zu aktivieren oder zu deaktivieren ist. Dies geschieht über die 4 Bits D1 B1 B0 D2 in Daten 2.

B1 B0: Dies sind die beiden LSB's der Weichenadresse, die bei der Division

durch 4 weggefallen sind.

D1: D1 = 0 bedeuted Ausgang deaktivieren.

D1 = 1 bedeuted Ausgang aktivieren.

D2: D2 = 0 bedeuted Ausgang 1 der Weiche gewählt.

D2 = 1 bedeuted Ausgang 2 der Weiche gewählt.

# Besonderheiten:

Für Zentralen kleiner Version 3.0 ist ein Bereich von 0..63 für die Weichengruppe definiert. Damit ist die Gruppenaddresse 6 Bit lang. Ab Version 3.0 können auch die Gruppen bis 255 benutzt werden. Siehe auch 3.2.23.

# 3.2.25 Lokinformationen anfordern

# Format:

|        | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1      | Daten 2 | X-Or-Byte |
|--------|-----------|-----------|------------|-----------|--------------|---------|-----------|
| Binär: | 1111 1111 | 1111 1110 | 1110 0011  | 0000 0000 | Adresse High | Adresse | X-Or-Byte |
|        |           |           |            |           |              | Low     |           |
| Hex:   | 0xFF      | 0xFE      | 0xE3       | 0x00      | AH           | AL      | X-Or-Byte |
| Dez :  | 255       | 254       | 227        | 0         | AH           | AL      | X-Or-Byte |

# Beschreibung:

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Die möglichen Antworten sind unter 3.1.9 beschrieben.

#### Besonderheiten:

Keine.

#### 3.2.25.1 Funktionsstatus anfordern

# Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1      | Daten 2 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|--------------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0011  | 0000 0111 | Adresse High | Adresse | X-Or-Byte |
|         |           |           |            |           |              | Low     |           |
| Hex:    | 0xFF      | 0xFE      | 0xE3       | 0x07      | AH           | AL      | X-Or-Byte |
| Dez :   | 255       | 254       | 227        | 7         | AH           | AL      | X-Or-Byte |

# Beschreibung:

Holt den Funktionszustand F0 bis F12 als tastend oder nicht tastend.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Die möglichen Antworten sind unter 3.1.11 beschrieben.

#### Besonderheiten:

Keine.

#### 3.2.25.2 Funktionsstatus anfordern F13 – F28 (neu ab Zentralen-Version 3.6)

# Format:

|        | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1      | Daten 2 | X-Or-Byte |
|--------|-----------|-----------|------------|-----------|--------------|---------|-----------|
| Binär: | 1111 1111 | 1111 1110 | 1110 0011  | 0000 1000 | Adresse High | Adresse | X-Or-Byte |
|        |           |           |            |           |              | Low     |           |
| Hex:   | 0xFF      | 0xFE      | 0xE3       | 0x08      | AH           | AL      | X-Or-Byte |
| Dez :  | 255       | 254       | 227        | 8         | AH           | AL      | X-Or-Byte |

# Beschreibung:

Holt den Funktionsstatus F13 bis F28 als tastend oder nicht tastend.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Die möglichen Antworten sind unter 3.1.12 beschrieben.

#### Besonderheiten:

Keine.

#### 3.2.25.3 Funktionszustand anfordern F13 – F28 (neu ab Zentralen-Version 3.6)

# Format:

|        | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1      | Daten 2 | X-Or-Byte |
|--------|-----------|-----------|------------|-----------|--------------|---------|-----------|
| Binär: | 1111 1111 | 1111 1110 | 1110 0011  | 0000 1001 | Adresse High | Adresse | X-Or-Byte |
|        |           |           |            |           |              | Low     |           |
| Hex:   | 0xFF      | 0xFE      | 0xE3       | 0x09      | AH           | AL      | X-Or-Byte |
| Dez :  | 255       | 254       | 227        | 9         | AH           | AL      | X-Or-Byte |

# Beschreibung:

Holt den Funktionszustand der Funktionen F13 bis F28.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Die möglichen Antworten sind unter 3.1.9.2 beschrieben.

#### Besonderheiten:

Keine.

# 3.2.26 Lok steuern

#### 3.2.26.1 Fahrbefehle

Der Fahrbefehl für eine Lok gliedert sich in 4 verschieden Möglichkeiten auf, die der Fahrstufenzahl 14, 27, 28 und 128 zugeordnet sind. Dies wird durch die unterschiedliche Kennung erreicht. Die Geschwindigkeit selbst ist für 14, 27 und 28 Fahrstufen wie unter 3.1.9.1 "Lokinformation normale Lok" beschrieben codiert. Die Geschwindigkeit für 128 Fahrstufen wie unter 3.1.9.1.

#### Fahrbefehl 14 Fahrstufen:

# Format:

|        | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3   | X-Or-Byte |
|--------|-----------|-----------|------------|-----------|---------|---------|-----------|-----------|
| Binär: | 1111 1111 | 1111 1110 | 1110 0100  | 0001 0000 | Adresse | Adresse | R000 VVVV | X-Or-Byte |
|        |           |           |            |           | High    | Low     |           |           |
| Hex:   | 0xFF      | 0xFE      | 0xE4       | 0x10      | AH      | AL      | RV        | X-Or-Byte |
| Dez :  | 255       | 254       | 228        | 16        | AH      | AL      | RV        | X-Or-Byte |

#### Fahrbefehl 27 Fahrstufen:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1         | Daten 2        | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------------|----------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0001 0001 | Adresse<br>High | Adresse<br>Low | R00V VVVV | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x11      | AH              | AL             | RV        | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 17        | AH              | AL             | RV        | X-Or-Byte |

# Fahrbefehl 28 Fahrstufen:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|---------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0001 0010 | Adresse |         | R00V VVVV | X-Or-Byte |
|         |           |           |            |           | High    | Low     |           |           |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x12      | AH      | AL      | RV        | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 18        | AH      | AL      | RV        | X-Or-Byte |

#### Fahrbefehl 128 Fahrstufen:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1         | Daten 2        | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------------|----------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0001 0011 | Adresse<br>High | Adresse<br>Low | RVVV VVVV | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x13      | AH              | AL             | RV        | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 19        | AH              | AL             | RV        | X-Or-Byte |

# Beschreibung:

Der Fahrbefehl für Version 3-Zentralen enthält nur noch die Geschwindigkeits- und Richtungsinformation. Die Funktionen werden separat gesetzt.

Es können die Loks 0 bis 9999 gesteuert werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

# Besonderheiten:

Keine.

#### 3.2.26.2 Funktionsbefehle ab Zentralen-Version 3.0 / Version 3.6

Die Funktionsbefehle für eine Lok gliedern sich in 3 verschieden Möglichkeiten auf, die den Funktionen der Gruppe 1 (F0..F4), Gruppe 2 (F5..F8), Gruppe 3 (F9..F12), Gruppe 4 (F13...F20) (ab V3.6) und der Gruppe 5 (F21...F28) (ab V3.6) zugeordnet sind. Dies wird durch die unterschiedliche Kennung erreicht.

# Funktionsbefehl Gruppe 1:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1         | Daten 2        | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------------|----------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0000 | Adresse<br>High | Adresse<br>Low | 000F FFFF | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x20      | AH              | AL             | Gruppe 1  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 32        | AH              | AL             | Gruppe 1  | X-Or-Byte |

Für die Funktionen gilt:

Daten 3: 0 0 0 F0 F4 F3 F2 F1 Ist Fx=1, so ist die Funktion an, sonst aus.

# Funktionsbefehl Gruppe 2:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1         | Daten 2        | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------------|----------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0001 | Adresse<br>High | Adresse<br>Low | 0000 FFFF | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x21      | AH              | AL             | Gruppe 2  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 33        | AH              | AL             | Gruppe 2  | X-Or-Byte |

Für die Funktionen gilt:

Daten 3: 0 0 0 0 F8 F7 F6 F5 Ist Fx=1, so ist die Funktion an, sonst aus..

# Funktionsbefehl Gruppe 3:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|---------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0010 | Adresse | Adresse | 0000 FFFF | X-Or-Byte |
|         |           |           |            |           | High    | Low     |           |           |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x22      | AH      | AL      | Gruppe 3  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 34        | AH      | AL      | Gruppe 3  | X-Or-Byte |

Für die Funktionen gilt:

0 0 0 0 F12 F11 F10 F9 Ist Fx=1, so ist die Funktion an, sonst aus... Daten 3:

Funktionsbefehl Gruppe 4 (neu ab Version 3.6):

#### Format:

|        | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3   | X-Or-Byte |
|--------|-----------|-----------|------------|-----------|---------|---------|-----------|-----------|
| Binär: | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0011 | Adresse | Adresse | 0000 FFFF | X-Or-Byte |
|        |           |           |            |           | High    | Low     |           |           |
| Hex:   | 0xFF      | 0xFE      | 0xE4       | 0x23      | AH      | AL      | Gruppe 4  | X-Or-Byte |
| Dez :  | 255       | 254       | 228        | 35        | AH      | AL      | Gruppe 4  | X-Or-Byte |

Für die Funktionen gilt:

Daten 3: F20 F19 F18 F17 F16 F15 F14 F13 Ist Fx=1, so ist die Funktion an, sonst aus...

# Funktionsbefehl Gruppe 5 (neu ab Version 3.6):

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1         | Daten 2        | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------------|----------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 1000 | Adresse<br>High | Adresse<br>Low | 0000 FFFF | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x28      | AH              | AL             | Gruppe 5  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 40        | AH              | AL             | Gruppe 5  | X-Or-Byte |

# Für die Funktionen gilt:

Daten 3: F28 F27 F26 F25 F24 F23 F22 F21 Ist Fx=1, so ist die Funktion an, sonst aus..

# Beschreibung:

Für die Funktionen gilt:

Gruppe 1: 0 0 0 F0 F4 F3 F2 F1 Ist Fx=1, so ist die Funktion an, sonst aus.

Gruppe 2: 0 0 0 0 F8 F7 F6 F5 Gruppe 3: 0 0 0 0 F12 F11 F10 F9

Es können die Loks 0 bis 9999 angesprochen werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

# Besonderheiten:

Keine.

# 3.2.26.3 Funktionsstatus setzen

# 3.2.26.4 Funktionsstatus setzen ab Zentralen-Version 3.0 / Version 3.6

Die LZ100-Zentrale ab Version 3.0 speichert für jede Lokadresse den Zustand ihrer Funktionen als tastend oder nicht tastend. XpressNet-Geräte können diesen Zustand abfragen und ihre Bedienoberfläche entsprechend gestalten. Diese Funktionalität ist vor allem für Geräusche gedacht.

Wie bei den Funktionen wird auch hier die Gruppe 1, Gruppe 2 und Gruppe 3 durch die Kennung unterschieden.

In Version 3.6 sind neu hinzugekommen die Gruppe 4 (F13...20) und Gruppe 5 (F21...F28).

# Funktionsstatus setzen Gruppe 1:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1         | Daten 2        | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------------|----------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0100 | Adresse<br>High | Adresse<br>Low | 000S SSSS | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x24      | AH              | AL             | Gruppe 1  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 36        | AH              | AL             | Gruppe 1  | X-Or-Byte |

Für die Funktionen gilt:

0 0 0 S0 S4 S3 S2 S1 Ist Sx=1, so ist die Funktion tastend, sonst Daten 3: nicht.

# Funktionsstatus setzen Gruppe 2:

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|---------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0101 | Adresse |         | 0000 SSSS | X-Or-Byte |
|         |           |           |            |           | High    | Low     |           |           |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x25      | AH      | AL      | Gruppe 2  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 37        | AH      | AL      | Gruppe 2  | X-Or-Byte |

Für die Funktionen gilt:

0 0 0 0 S8 S7 S6 S5 Daten 3: Ist Sx=1, so ist die Funktion tastend, sonst nicht.

# Funktionsstatus setzen Gruppe 3:

# Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1         | Daten 2        | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|-----------------|----------------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0110 | Adresse<br>High | Adresse<br>Low | 0000 SSSS | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x26      | AH              | AL             | Gruppe 3  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 38        | AH              | AL             | Gruppe 3  | X-Or-Byte |

Für die Funktionen gilt:

Daten 3: 0 0 0 0 S12 S11 S10 S9 Ist Sx=1, so ist die Funktion tastend, sonst nicht.

# Funktionsstatus setzen Gruppe 4 (ab Version 3.6):

# Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3   | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|---------|-----------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100  | 0010 0111 | Adresse |         | 0000 SSSS | X-Or-Byte |
|         |           |           |            |           | High    | Low     |           |           |
| Hex:    | 0xFF      | 0xFE      | 0xE4       | 0x27      | AH      | AL      | Gruppe 4  | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 39        | AH      | AL      | Gruppe 4  | X-Or-Byte |

Für die Funktionen gilt:

Daten 3: tastend, sonst nicht.

Funktionsstatus setzen Gruppe 5 (ab Version 3.6):

#### Format:

|        | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3   | X-Or-Byte |
|--------|-----------|-----------|------------|-----------|---------|---------|-----------|-----------|
| Binär: | 1111 1111 | 1111 1110 | 1110 0100  | 0010 1100 | Adresse | Adresse | 0000 SSSS | X-Or-Byte |
|        |           |           |            |           | High    | Low     |           |           |
| Hex:   | 0xFF      | 0xFE      | 0xE4       | 0x2C      | AH      | AL      | Gruppe 5  | X-Or-Byte |
| Dez:   | 255       | 254       | 228        | 44        | AH      | AL      | Gruppe 5  | X-Or-Byte |

Für die Funktionen gilt:

Daten 3: S20 S19 S18 S17 S16 S15 S14 S13 Ist Sx=1, so ist die Funktion tastend, sonst nicht.

# 3.2.26.5 Funktionsrefresh-Modus setzen ab Zentralen-Version 3.6

Unter Funktionsrefresh versteht man das zyklische Wiederholen von Funktionsdaten auf dem Gleis. Ab der Zentralenversion 3.6 ist einstellbar, welche Funktionsdaten refreshed werden. Werkseinstellung ist der Refresh der Funktionen 0 bis 8.

#### Format:

|         | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1 | Daten 2 | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|------------|-----------|---------|---------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0101  | 0010 1111 | Adresse | Adresse |         | X-Or-Byte |
|         |           |           |            |           | High    | Low     | Modus   |           |
| Hex:    | 0xFF      | 0xFE      | 0xE5       | 0x2F      | AH      | AL      | RF      | X-Or-Byte |
| Dez :   | 255       | 254       | 228        | 47        | AH      | AL      | RF      | X-Or-Byte |

# Für Daten 3 (Refresh-Modus) gilt:

| Wert | Refresh für |
|------|-------------|
| 0    | F0 F4       |
| 1    | F0 F8       |
| 3    | F0 F12      |
| 7    | F0 F20      |
| 0xF  | F0 F28      |

# Beschreibung:

Für die Funktionen gilt:

Gruppe 1: 0 0 0 S0 S4 S3 S2 S1 Ist Sx=1, so ist die Funktion tastend, sonst

nicht.

Gruppe 2: 0 0 0 0 S8 S7 S6 S5 Gruppe 3: 0 0 0 0 S12 S11 S10 S9

Es können die Loks 0 bis 9999 angesprochen werden.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

#### Besonderheiten:

Keine.

# 3.2.27 Doppeltraktionen

#### 3.2.27.1 <u>Doppeltraktion montieren</u>

#### Format:

|       | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1    | Daten 2   | Daten 3     | Daten 4   | X-Or-Byte |
|-------|-----------|-----------|------------|-----------|------------|-----------|-------------|-----------|-----------|
| Binär | 1111 1111 | 1111 1110 | 1110 0101  | 0100 0011 | Adr High 1 | Adr Low 1 | Adr. High 2 | Adr Low 2 | X-Or-Byte |
| Hex:  | 0xFF      | 0xFE      | 0xE5       | 0x43      | AH1        | AL1       | AH 2        | AL 2      | X-Or-Byte |
| Dez : | 255       | 254       | 229        | 67        | AH1        | AL1       | AH 2        | AL 2      | X-Or-Byte |

# Beschreibung:

Die Loks in Daten 1/2 und Daten 3/4 werden in der Zentrale zu einer Doppeltraktion zusammengefügt, was bedeutet, daß ein Fahrbefehl an eine der Loks durch die Zentrale auch an die andere gesendet wird.

Die Lokadressen AH/AL berechnen sich wie unter 3.1.10 angegeben.

Gelingt die Montage nicht, so sendet die Zentrale eine der unter 3.1.14 beschriebenen Fehlermeldungen.

#### Besonderheiten:

Der Befehl ersetzt die alten Doppeltraktionsbefehle, die in späteren Zentralenversionen nicht mehr unterstützt werden.

#### 3.2.27.2 Doppeltraktion auflösen

#### Format:

|            | Frame1    | Frame2    | Headerbyte | Kennung   | Daten 1    | Daten 2   | Daten 3   | Daten 4   | X-Or-Byte |
|------------|-----------|-----------|------------|-----------|------------|-----------|-----------|-----------|-----------|
| Binär<br>: | 1111 1111 | 1111 1110 | 1110 0101  | 0100 0011 | Adr High 1 | Adr Low 1 | 0000 0000 | 0000 0000 | X-Or-Byte |
| Hex:       | 0xFF      | 0xFE      | 0xE5       | 0x43      | AH1        | AL1       | 0x00      | 0x00      | X-Or-Byte |
| Dez :      | 255       | 254       | 229        | 67        | AH1        | AL1       | 0x00      | 0x00      | X-Or-Byte |

# Beschreibung:

Die Lok in Daten 1/2 wird aus der Doppeltraktion, in der sie eingebunden ist, entfernt. Damit wird auch die Doppeltraktion in der Zentrale aufgelöst.

Daß es sich um das Auflösen einer DTR handelt, kann die Zentrale an der zweiten Lokadresse erkennen, die hier 0 ist.

Die Lokadresse AH/AL berechnet sich wie unter 2.1.15. angegeben.

Gelingt das Auflösen nicht, so sendet die Zentrale eine der unter 3.1.14 beschriebenen Fehlermeldungen.

### Besonderheiten:

keine

# 3.2.28 Programming on Main

Programming on Main bedeutet, daß CV's eines Empfängers geändert werden können, während die Lok auf dem normalen Gleis steht. Ein Programmiergleis ist in diesem Fall nicht nötig. Allerdings kann hiermit nicht die Adresse eines Empfängers geändert werden, da diese im Programmierbefehl benutzt werden muß.

Zentralen, die Programming on Main nicht unterstützen, senden "Befehl nicht vorhanden" an das XpressNet-Gerät.

Im Gegensatz zum Programmieren auf dem Programmiergleis sind hier die CV's 1..1024 möglich, allerdings sollten XpressNet-Geräte keine CV's zulassen, die eine Adressänderung zur Folge haben, denn dann würde ein Empfänger nicht mehr auf später ausgesandte Datenpakete hören können, falls er die Sendung auswertet (was allerdings nicht erlaubt ist).

#### 3.2.28.1 Programming on Main Byte schreiben

#### Format:

|       | Frame1 | Frame2 | Headerbyte | Kennung | Daten 1 | Daten 2 | Daten 3  | Daten 4 | Daten 5 | X-Or- |
|-------|--------|--------|------------|---------|---------|---------|----------|---------|---------|-------|
|       |        |        |            |         |         |         |          |         |         | Byte  |
| Binär | 1111   | 1111   | 1110 0110  | 0011    | Adresse | Adresse | 1110     | CCCC    | DDDD    | X-Or- |
| :     | 1111   | 1110   |            | 0000    | High    | Low     | 11CC     | CCCC    | DDDD    | Byte  |
| Hex:  | 0xFF   | 0xFE   | 0xE6       | 0x30    | AH      | AL      | 0xEC + C | CV      | D       | X-Or- |
|       |        |        |            |         |         |         |          |         |         | Byte  |
| Dez:  | 255    | 254    | 230        | 48      | AH      | AL      | 236 + C  | CV      | D       | X-Or- |
|       |        |        |            |         |         |         |          |         |         | Bvte  |

# Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, auf die sich das Byte-Programmieren bezieht.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Da die CV's von 0..1023 möglich sind (=10Bit), werden die oberen 2 Bits (MSB's) nach Daten 3 geschrieben. Der Rest der CV-Adresse (die 8 LSB's) stehen in Daten 4. Der zu programmierende Wert dieser CV steht in Daten 5.

Die CV-Adresse wird so gesendet, wie sie auf dem Gleis erscheint, d.h. um eins decrementiert.

#### Besonderheiten:

Es sollten keine CV's verwendet werden, die sich auf Empfängeradressen beziehen.

#### 3.2.28.2 Programming on Main Byte lesen (ab Version 3.6)

#### Format:

|       | Frame1 | Frame2 | Headerbyte | Kennung | Daten 1 | Daten 2 | Daten 3  | Daten 4 | Daten 5 | X-Or-Byte |
|-------|--------|--------|------------|---------|---------|---------|----------|---------|---------|-----------|
| Binär | 1111   | 1111   | 1110 0110  | 0011    | Adresse | Adresse | 1110     | CCCC    | DDDD    | X-Or-Byte |
| :     | 1111   | 1110   |            | 0000    | High    | Low     | 01CC     | CCCC    | DDDD    |           |
| Hex:  | 0xFF   | 0xFE   | 0xE6       | 0x30    | AH      | AL      | 0xEA + C | CV      | D       | X-Or-Byte |
| Dez : | 255    | 254    | 230        | 48      | AH      | AL      | 234 + C  | CV      | D       | X-Or-Byte |

# Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, auf die sich das Byte-Programmieren bezieht.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Da die CV's von 0..1023 möglich sind (=10Bit), werden die oberen 2 Bits (MSB's) nach Daten 3 geschrieben. Der Rest der CV-Adresse (die 8 LSB's) stehen in Daten 4. Der zu programmierende Wert dieser CV steht in Daten 5.

Die CV-Adresse wird so gesendet, wie sie auf dem Gleis erscheint, d.h. um eins decrementiert.

#### Besonderheiten:

Es sollten keine CV's verwendet werden, die sich auf Empfängeradressen beziehen.

#### 3.2.28.3 Programming on Main Bit schreiben

#### Format:

|       | Frame1 | Frame2 | Headerbyte | Kennung | Daten 1 | Daten 2 | Daten 3 | Daten 4 | Daten 5 | X-Or-     |
|-------|--------|--------|------------|---------|---------|---------|---------|---------|---------|-----------|
|       |        |        |            |         |         |         |         |         |         | Byte      |
| Binär | 1111   | 1111   | 1110 0110  | 0011    | Adresse | Adresse | 1110    | CCCC    | 1111    | X-Or-Byte |
| :     | 1111   | 1110   |            | 0000    | High    | Low     | 10CC    | CCCC    | WBBB    |           |
| Hex:  | 0xFF   | 0xFE   | 0xE6       | 0x30    | AH      | AL      | 0xE8 +  | CV      | WB      | X-Or-Byte |
|       |        |        |            |         |         |         | С       |         |         | •         |
| Dez:  | 255    | 254    | 230        | 48      | AH      | AL      | 232 + C | CV      | WB      | X-Or-Byte |
|       |        |        |            |         |         |         |         |         |         | -         |

# Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, auf die sich das Bit-Programmieren bezieht.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Da die CV's von 0..1023 möglich sind (=10Bit), werden die oberen 2 Bits (MSB's) nach Daten 3 geschrieben. Der Rest der CV-Adresse (die 8 LSB's) stehen in Daten 4. Der zu programmierende Bitwert steht in Daten 5 und berechnet sich wie folgt:

W ist der Bitwert 0 oder 1.

Die Bits B2, B1, B0 geben die Position des Bits in der CV an (Bitposition 0 bis Bitposition 7).

Die CV-Adresse wird so gesendet, wie sie auf dem Gleis erscheint, d.h. um eins decrementiert.

### Besonderheiten:

Es sollten keine CV's verwendet werden, die sich auf Empfängeradressen beziehen.

# 3.2.29 Mehrfachtraktionen

# 3.2.29.1 <u>Lok zu einer Mehrfachtraktion hinzufügen oder MTR erzeugen</u>

Eine Lok kann zu einer Mehrfachtraktion (MTR) hinzugefügt werden, wenn sie noch in keiner anderen MTR enthalten ist. Ist diese Lok die erste Lok, so wird automatisch eine MTR erzeugt.

Zusätzlich kann die Einfügerichtung definiert werden, so daß eine Lok auch "falsch" herum in einer MTR sitzen kann, aber dennoch in die korrekte Richtung fährt. Dies wird durch ein Bit in der Kennung (R) entschieden.

#### Format:

|         | Frame1    | Frame2    | Headerbyt<br>e | Kennung      | Daten 1         | Daten 2     | Daten 3 | X-Or-Byte |
|---------|-----------|-----------|----------------|--------------|-----------------|-------------|---------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0100      | 0100<br>000R | Adresse<br>High | Adresse Low | MTR     | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE4           | 0x40 + R     | AH              | AL          | MTR     | X-Or-Byte |
| Dez :   | 255       | 254       | 228            | 64 + R       | AH              | AL          | MTR     | X-Or-Byte |

### Beschreibung:

R: R = 0 bedeutet, daß die Lok nicht invertiert in die MTR eingefügt wird. D.h. fährt die

MTR vorwärts, fährt auch die Lok vorwärts.

R =1 bedeutet, daß die Fahrtrichtung der Lok invertiert wird.

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, die in die MTR eingefügt werden soll. Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

MTR: Dies ist die MTR-Basisadresse im Bereich von 1 bis 99.

# Besonderheiten:

Per Definition kann eine Lok nicht in eine Mehrfachtraktion eingefügt werden, die die gleiche Adresse hat.

# 3.2.29.2 Lok aus einer Mehrfachtraktion entfernen oder MTR löschen

Eine Lok kann aus einer MTR entfernt werden, wenn sie Mitglied dieser MTR ist. Mit Entfernen der letzten Lok einer MTR wird auch die MTR in der Zentrale gelöscht.

#### Format:

|        | Frame1    | Frame2    | Headerbyt | Kennung   | Daten 1 | Daten 2     | Daten 3 | X-Or-Byte |
|--------|-----------|-----------|-----------|-----------|---------|-------------|---------|-----------|
|        |           |           | е         |           |         |             |         |           |
| Binär: | 1111 1111 | 1111 1110 | 1110 0100 | 0100 0010 | Adresse | Adresse Low | MTR     | X-Or-Byte |
|        |           |           |           |           | High    |             |         |           |
| Hex:   | 0xFF      | 0xFE      | 0xE4      | 0x42      | AH      | AL          | MTR     | X-Or-Byte |
| Dez :  | 255       | 254       | 228       | 66        | AH      | AL          | MTR     | X-Or-Byte |

# Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an die aus der MTR entfernt werden soll.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

MTR: Dies ist die Basisadresse oder MTR-Adresse im Bereich von 1 bis 99, unter der die

Mehrfachtraktion gefahren werden kann.

# Besonderheiten:

Keine.

# 3.2.30 Adress-Suchbefehle

Durch die Einführung von Mehrfachtraktionen und einem erweiterten Stack-Handling in den Zentralen ist es nötig geworden, daß XpressNet-Geräte auch Lokadressen suchen müssen, um eine komfortable Bedieneroberfläche zu erzielen.

# 3.2.30.1 Adressanfrage Mitglied einer Mehrfachtraktion

Die Unterscheidung zwischen Vorwärts- und Rückwärtssuche wird über die Kennung gemacht.

#### Format:

|        | Frame1    | Frame2    | Headerbyt | Kennung  | Daten 1 | Daten 2 | Daten 3     | X-Or-Byte |
|--------|-----------|-----------|-----------|----------|---------|---------|-------------|-----------|
|        |           |           | е         |          |         |         |             |           |
| Binär: | 1111 1111 | 1111 1110 | 1110 0100 | 0000     | MTR     | Adresse | Adresse Low | X-Or-Byte |
|        |           |           |           | 00RR     |         | High    |             |           |
| Hex:   | 0xFF      | 0xFE      | 0xE4      | 0x01 + R | MTR     | AH      | AL          | X-Or-Byte |
| Dez :  | 255       | 254       | 228       | 1 + R    | MTR     | AH      | AL          | X-Or-Byte |

# Beschreibung:

Um einen schnellen Zugriff auf die Loks in einer MTR zu haben, um z.B. Funktionen schalten zu können, liefert die Zentrale aufgrund dieser Anfrage die nächste Adresse, die der angefragten folgt (Vorwärtssuche) bzw. vorausgeht (Rückwärtssuche).

Für Zentralen Version 3.x ist nur die Vorwärtssuche definiert.

Kennung = 0x01: (RR=01) bedeutet Vorwärtssuche

Kennung = 0x02: (RR=10) bedeutet Rückwärtssuche

Daten 1 gibt die MTR-Basisadresse im Bereich von 1..99 an, auf die sich die Suche bezieht.

Daten 2 und Daten 3 geben die Lokadresse von 1..9999 an, zu der die folgende bzw. vorausgehende Adresse gesucht werden soll.

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

MTR: Dies ist die Basisadresse oder MTR-Adresse im Bereich von 1 bis 99, unter der die Mehrfachtraktion gefahren werden kann.

Das Ergebnis der Suche wird an das Gerät in der Antwort wie unter 3.1.13 beschrieben gesendet.

#### Besonderheiten:

Keine.

#### 3.2.30.2 Adressanfrage Mehrfachtraktion

Die Unterscheidung zwischen Vorwärts- und Rückwärtssuche wird über die Kennung gemacht.

#### Format:

|         | Frame1    | Frame2    | Headerbyt | Kennung   | Daten 1 | X-Or-Byte |
|---------|-----------|-----------|-----------|-----------|---------|-----------|
|         |           |           | е         |           |         |           |
| Binär : | 1111 1111 | 1111 1110 | 1110 0010 | 0000 0RRR | MTR     | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE2      | 0x03 + R  | MTR     | X-Or-Byte |
| Dez :   | 255       | 254       | 226       | 3 + R     | MTR     | X-Or-Byte |

#### Beschreibung:

Dieser Befehl veranlasst die Zentrale dazu, dem XpressNet-Gerät die nächste Basisadresse einer MTR zu senden, die der angefragten MTR folgt (Vorwärtssuche) bzw. vorausgeht (Rückwärtssuche).

Für Zentralen Version 3.x ist nur die Vorwärtssuche definiert.

(RRR=011) bedeutet Vorwärtssuche Kennung = 0x03: Kennung = 0x04: (RRR=100) bedeutet Rückwärtssuche

MTR: Dies ist die Basisadresse oder MTR-Adresse im Bereich von 1 bis

99, unter der die Mehrfachtraktion gefahren werden kann.

Das Ergebnis der Suche wird an das Gerät in der Antwort wie unter 3.1.13 beschrieben gesendet.

#### Besonderheiten:

Keine.

#### 3.2.30.3 Adressanfrage Lok in Zentralenstack

Die Unterscheidung zwischen Vorwärts- und Rückwärtssuche wird über die Kennung gemacht.

#### Format:

|        | Frame1    | Frame2    | Headerbyt | Kennung   | Daten 1 | Daten 2     | X-Or-Byte |
|--------|-----------|-----------|-----------|-----------|---------|-------------|-----------|
|        |           |           | е         |           |         |             |           |
| Binär: | 1111 1111 | 1111 1110 | 1110 0011 | 0000 01RR | Adresse | Adresse Low | X-Or-Byte |
|        |           |           |           |           | High    |             |           |
| Hex:   | 0xFF      | 0xFE      | 0xE3      | 0x05 + R  | AH      | AL          | X-Or-Byte |
| Dez :  | 255       | 254       | 227       | 5 + R     | AH      | AL          | X-Or-Byte |

# Beschreibung:

Es wird dem XpressNet-Gerät die Lokadresse gesendet, die im Zentralenstack hinter (Vorwärtssuche) bzw. vor der Lokadresse (Rückwärtssuche) in Daten 1/2 abgelegt ist. Für Zentralen Version 3.x ist nur die Vorwärtssuche definiert.

Kennung = 0x05: (RR=01) bedeutet Vorwärtssuche Kennung = 0x06: (RR=10) bedeutet Rückwärtssuche

Daten 1 und Daten 2 geben die Lokadresse von 0..9999 an, zu der die folgende bzw. vorausgehende Adresse gesucht werden soll. Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

Das Ergebnis der Suche wird an das Gerät in der Antwort wie unter 3.1.13 beschrieben gesendet.

# Besonderheiten:

Keine.

# 3.2.31 Lok aus Zentralenstack löschen

#### Format:

|         | Frame1    | Frame2    | Headerbyt<br>e | Kennung   | Daten 1         | Daten 2     | X-Or-Byte |
|---------|-----------|-----------|----------------|-----------|-----------------|-------------|-----------|
| Binär : | 1111 1111 | 1111 1110 | 1110 0011      | 0100 0100 | Adresse<br>High | Adresse Low | X-Or-Byte |
| Hex:    | 0xFF      | 0xFE      | 0xE3           | 0x44      | AH              | AL          | X-Or-Byte |
| Dez :   | 255       | 254       | 227            | 68        | AH              | AL          | X-Or-Byte |

# Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, die im Zentralenstack zu

Die Lokadresse AH/AL berechnet sich wie unter 3.1.10 angegeben.

### Besonderheiten:

Das Problem, daß der Zentralenstack voll ist, stellt sich vor allem bei Zentralen mit geringer Hardwareausstattung, die dann nicht alle jemals aufgerufenen Loks mit allen

Daten speichern können. Der Zentralenstack dient dazu, die Daten dieser Loks auf das Gleis zu senden.

Das XpressNet-Gerät welches die Lok im Stack gelöscht hat, sollte dafür sorgen, daß es mit einer anderen Lok weiterarbeiten kann, so daß das Löschen auch von Erfolg gekrönt wird. Ansonsten würde man die Lok, die man gerade gelöscht hat, sofort wieder aufnehmen.

# 4 Befehlsübersicht Zentrale an PC

Die exakte Bedeutung der jeweiligen Datenbytes ist in den entsprechenden Kapiteln beschrieben. N im Headerbyte gibt die Zahl der folgenden Datenbytes an.

| Befehl                 | Frame1 | Frame2 | Header   | Daten1   | Daten2   | Daten3  | Daten4 | Daten5   | Daten6  | Daten7 |
|------------------------|--------|--------|----------|----------|----------|---------|--------|----------|---------|--------|
| BC Alles An            | 0xFF   | 0xFD   | 0x61     | 0x01     | 0x60     |         |        |          |         |        |
| BC Alles Aus           | 0xFF   | 0xFD   | 0x61     | 0x00     | 0x61     |         |        |          |         |        |
| BC Alle Loks Aus       | 0xFF   | 0xFD   | 0x81     | 0x00     | 0x81     |         |        |          |         |        |
| BC Programmiermode     | 0xFF   | 0xFD   | 0x61     | 0x02     | 0x63     |         |        |          |         |        |
| BC Rückmeldung         | 0xFF   | 0xFD   | 0x40 + N | ADR_1    | DAT_1    | ADR_2   | DAT2   | usw.     | usw.    | X-Or   |
| P-Info Kurzschluß      | 0xFF   | 0xFE   | 0x61     | 0x12     | X-Or     |         |        |          |         |        |
| P-Info Keine Daten     | 0xFF   | 0xFE   | 0x61     | 0x13     | X-Or     |         |        |          |         |        |
| P-Info Busy            | 0xFF   | 0xFE   | 0x61     | 0x1f     | X-Or     |         |        |          |         |        |
| P-Info bereit          | 0xFF   | 0xFE   | 0x61     | 0x11     | X-Or     |         |        |          |         |        |
| P-Info Daten 3 Byte    | 0xFF   | 0xFE   | 0x63     | 0x10     | EE       | DAT     | X-Or   |          |         |        |
| P-Info CV1-255 u. 1024 | 0xFF   | 0xFE   | 0x63     | 0x14     | CV       | DAT     | X-Or   |          |         |        |
| P-Info CV256 - 511     | 0xFF   | 0xFE   | 0x63     | 0x15     | CV       | DAT     | X-Or   |          |         |        |
| P-Info CV512 - 767     | 0xFF   | 0xFE   | 0x63     | 0x16     | CV       | DAT     | X-Or   |          |         |        |
| P-Info CV768 - 1023    | 0xFF   | 0xFE   | 0x63     | 0x17     | CV       | DAT     | X-Or   |          |         |        |
| Softwareversion        | 0xFF   | 0xFE   | 0x63     | 0x21     | DAT1     | DAT2    | X-Or   |          |         |        |
| Status Zentrale        | 0xFF   | 0xFE   | 0x62     | 0x22     | DAT      | X-Or    |        |          |         |        |
| Übertragungsfehler     | 0xFF   | 0xFE   | 0x61     | 0x80     | X-Or     |         |        |          |         |        |
| Zentrale Busy          | 0xFF   | 0xFE   | 0x61     | 0x81     | X-Or     |         |        |          |         |        |
| Befehl nicht vorhanden | 0xFF   | 0xFE   | 0x61     | 0x82     | X-Or     |         |        |          |         |        |
| Schaltinformationen    | 0xFF   | 0xFE   | 0x42     | ADR      | DAT      | X-Or    |        |          |         |        |
| Normale Lokinfo        | 0xFF   | 0xFE   | 0xE4     | Kennung  | Speed    | FKT0    | FKT1   | X-Or     |         |        |
| F-Zustand F13 F28      | 0xFF   | 0xFE   | 0xE3     | 0x52     | F 13-20  | F 21-28 | X-Or   |          |         |        |
| MTR-Mitglied           | 0xFF   | 0xFE   | 0xE5     | Kennung  | Speed    | FKT0    | FKT1   | MTR      | X-Or    |        |
| MTR-Basisadresse       | 0xFF   | 0xFE   | 0xE2     | Kennung  | Speed    | X-Or    |        |          |         |        |
| Lok ist in DTR         | 0xFF   | 0xFE   | 0xE6     | Kennung  | Speed    | FKT0    | FKT1   | ADR High | ADR Low | X-Or   |
| Lok besetzt            | 0xFF   | 0xFD   | 0xE3     | 0x40     | ADR High | ADR Low | X-Or   |          |         |        |
| Funktionsstatus        | 0xFF   | 0xFE   | 0xE3     | 0x50     | STAT 0   | STAT 1  | X-Or   |          |         |        |
| F-status F13 bis 28    | 0xFF   | 0xFE   | 0xE4     | 0x51     | STAT 2   | STAT 3  | X-Or   |          |         |        |
| Lok-Suchergebnis       | 0xFF   | 0xFE   | 0xE3     | 0x30 + K | ADR High | ADR Low | X-Or   |          |         |        |
| DTR-Fehler             | 0xFF   | 0xFE   | 0x61     | 0x80 + F | X-Or     |         |        |          |         |        |
| Fehlermeldung          | 0xFF   | 0xFE   | 0xE1     | 0x80 + F | X-Or     |         |        |          |         |        |

# Befehlsübersicht PC an Zentrale

Die Bedeutung der jeweiligen Datenbytes ist in den entsprechenden Kapiteln beschrieben.

| Befehl                       | Frame1 | Frame2 | Header | Kennun   | Daten1   | Daten2   | Daten3   | Daten4 | Daten5 | Daten6 |
|------------------------------|--------|--------|--------|----------|----------|----------|----------|--------|--------|--------|
|                              |        |        |        | g        |          |          |          |        |        |        |
| Alles An                     | 0xFF   | 0xFE   | 0x21   | 0x81     | 0xA0     |          |          |        |        |        |
| Alles Aus                    | 0xFF   | 0xFE   | 0x21   | 0x80     | 0xA1     |          |          |        |        |        |
| Alle Loks anhalten           | 0xFF   | 0xFE   | 0x80   | 0x80     |          |          |          |        |        |        |
| Eine Lok anhalten            | 0xFF   | 0xFE   | 0x92   | ADR High | ADR Low  | X-Or     |          |        |        |        |
| ProgLesen Register           | 0xFF   | 0xFE   | 0x22   | 0x11     | REG      | X-Or     |          |        |        |        |
| ProgLesen CV                 | 0xFF   | 0xFE   | 0x22   | 0x15     | CV       | X-Or     |          |        |        |        |
| ProgLesen CV1-255; 1024      | 0xFF   | 0xFE   | 0x22   | 0x18     | CV low   | X-Or     |          |        |        |        |
| ProgLesen CV256-511          | 0xFF   | 0xFE   | 0x22   | 0x19     | CV low   | X-Or     |          |        |        |        |
| ProgLesen CV512-767          | 0xFF   | 0xFE   | 0x22   | 0x1A     | CV low   | X-Or     |          |        |        |        |
| ProgLesen CV768-1023         | 0xFF   | 0xFE   | 0x22   | 0x1B     | CV low   | X-Or     |          |        |        |        |
| ProgLesen Paging             | 0xFF   | 0xFE   | 0x22   | 0x14     | CV       | X-Or     |          |        |        |        |
| ProgErgebnis anfordern       | 0xFF   | 0xFE   | 0x21   | 0x10     | 0x31     |          |          |        |        |        |
| ProgSchreiben Register       | 0xFF   | 0xFE   | 0x23   | 0x12     | REG      | DAT      | X-Or     |        |        |        |
| ProgSchreiben CV             | 0xFF   | 0xFE   | 0x23   | 0x16     | CV       | DAT      | X-Or     |        |        |        |
| ProgSchr. CV1-255; 1024      | 0xFF   | 0xFE   | 0x23   | 0x1C     | CV low   | DAT      | X-Or     |        |        |        |
| ProgSchr. CV256-511          | 0xFF   | 0xFE   | 0x23   | 0x1D     | CV low   | DAT      | X-Or     |        |        |        |
| ProgSchr. CV512-767          | 0xFF   | 0xFE   | 0x23   | 0x1E     | CV low   | DAT      | X-Or     |        |        |        |
| ProgSchr. CV768-1023         | 0xFF   | 0xFE   | 0x23   | 0x1F     | CV low   | DAT      | X-Or     |        |        |        |
| ProgSchreiben Paging         | 0xFF   | 0xFE   | 0x23   | 0x17     | CV       | DAT      | X-Or     |        |        |        |
| Softwareversion anfordern    | 0xFF   | 0xFE   | 0x21   | 0x21     | 0x00     |          |          |        |        |        |
| Status Zentrale anfordern    | 0xFF   | 0xFE   | 0x21   | 0x24     | 0x05     |          |          |        |        |        |
| Schaltinformation anfordern  | 0xFF   | 0xFE   | 0x42   | ADR      | Nibble   | X-Or     |          |        |        |        |
| Schaltbefehl                 | 0xFF   | 0xFE   | 0x52   | ADR      | DAT      | X-Or     |          |        |        |        |
| Lokdaten anfordern           | 0xFF   | 0xFE   | 0xE3   | 0x00     | ADR High | ADR Low  | X-Or     |        |        |        |
| Fkt-Status anfordern         | 0xFF   | 0xFE   | 0xE3   | 0x07     | ADR High | ADR Low  | X-Or     |        |        |        |
| Fkt-Status anf. F13-F28      | 0xFF   | 0xFE   | 0xE3   | 0x08     | ADR High | ADR Low  | X-Or     |        |        |        |
| Fkt-Zustand anf. F13-F28     | 0xFF   | 0xFE   | 0xE3   | 0x09     | ADR High | ADR Low  | X-Or     |        |        |        |
| Lok Fahrbefehl               | 0xFF   | 0xFE   | 0xE4   | Kennung  | ADR High | ADR Low  | Speed    | X-Or   |        |        |
| Lok Funktionsbefehl          | 0xFF   | 0xFE   | 0xE4   | Kennung  | ADR High | ADR Low  | Gruppe   | X-Or   |        |        |
| Funktionsstatus setzen       | 0xFF   | 0xFE   | 0xE4   | Kennung  | ADR High | ADR Low  | Gruppe   | X-Or   |        |        |
| Func.refresh-Modus setzen    | 0xFF   | 0xFE   | 0xE5   | 0x2F     | ADR High | ADR Low  | Modus    | X-Or   |        |        |
| Funktionsstatus setzen       | 0xFF   | 0xFE   | 0xE4   | Kennung  | ADR High | ADR Low  | Gruppe   | X-Or   |        |        |
| DTR-Befehle                  | 0xFF   | 0xFE   | 0xE5   | 0x43     | ADR1 H   | ADR1 L   | ADR2 H   | ADR2 L | X-Or   |        |
| Prog. on Main Byte schreiben | 0xFF   | 0xFE   | 0xE6   | 0x30     | ADR High | ADR Low  | 0xEC + C | CV     | DAT    | X-Or   |
| Prog. on Main Byte lesen     | 0xFF   | 0xFE   | 0xE6   | 0x30     | ADR High | ADR Low  | 0xEA + C | CV     | DAT    | X-Or   |
| Prog. on Main Bit            | 0xFF   | 0xFE   | 0xE6   | 0x30     | ADR High | ADR Low  | 0xE8 + C | CV     | DAT    | X-Or   |
| Lok zu MTR hinzufügen        | 0xFF   | 0xFE   | 0xE4   | 0x40 + R | ADR High | ADR Low  | MTR      | X-Or   |        |        |
| Lok aus MTR entfernen        | 0xFF   | 0xFE   | 0xE4   | 0x42     | ADR High | ADR Low  | MTR      | X-Or   |        |        |
| Adresssuche Lok in Mtr       | 0xFF   | 0xFE   | 0xE4   | 0x01 + R | MTR      | ADR High | ADR Low  | X-Or   |        |        |

| Adresssuche MTR       | 0xFF | 0xFE | 0xE2 | 0x03 + R | MTR      | X-Or    |      |  |  |
|-----------------------|------|------|------|----------|----------|---------|------|--|--|
| Stacksuche Lok        | 0xFF | 0xFE | 0xE3 | 0x05 + R | ADR High | ADR Low | X-Or |  |  |
| Lok aus Stack löschen | 0xFF | 0xFF | 0xE3 | 0x44     | ADR High | ADR Low | X-Or |  |  |