Relationship between Fourier Series and Transforms for Periodic & Aperiodic Functions

Note: In this document, $X(\omega)$ and c_n are real for ease of plotting. In general they are complex.

For an aperiodic function, x(t). $\int_{-\infty}^{+\infty} |x(t)| dt < \infty$. Use Fourier Transform.

For a periodic function, $x_T(t)$, that is a periodic extension of x(t), with period $T=2\pi/\omega_0$. Use Fourier Series.

Series (Periodic function)	Example function	Graph
Synthesis: $x_{T}(t) = \sum_{n=-\infty}^{+\infty} c_{n} e^{jn\omega_{0}t}$	$x_{T}(t) = \Pi_{T} \left(\frac{t}{T_{p}} \right)$ (periodic extension of $\Pi(t/T_{p})$	Periodic function, $x_{\tau}(t)$ $\begin{array}{ccccccccccccccccccccccccccccccccccc$
Analysis: $c_{n} = \frac{1}{T} \int_{T} x_{T}(t) e^{-jn\omega_{0}t} dt$ $= \frac{1}{T} X(n\omega_{0})$	$c_{n} = \frac{T_{p}}{T} \operatorname{sinc}\left(n\frac{T_{p}}{T}\right)$	Fourier Series Coefficients of periodic function Tp/T 00000000000000000000000000000000

If $x_T(t)$ is a periodic version of x(t) with $T=2\pi/\omega_0$, then $Tc_n=X(n\omega_0)$.

For a periodic function, $x_T(t) \left(\text{with } \int_{-\infty}^{+\infty} \left| x_T(t) \right| dt = \infty \right)$. Use Fourier Transform, with impulses in frequency.

Transform (Periodic)	Example function	Graph
Synthesis $x_{T}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$	$x_{T}(t) = \Pi_{T} \left(\frac{t}{T_{p}} \right)$ (periodic extension of $\Pi(t/T_{p})$	Periodic function, $x_{\tau}(t)$ $\begin{array}{ccccccccccccccccccccccccccccccccccc$
Analysis		Fourier Transform of Periodic Extension
$X_{T}(\omega) = 2\pi \sum_{-\infty}^{+\infty} c_{n} \delta(\omega - n\omega_{0})$	$X_{T}(\omega) = 2\pi \sum_{n=-\infty}^{+\infty} c_{n} \delta(\omega - n\omega_{0})$	
$c_{n} = \frac{1}{T} \int_{T} x_{p}(t) e^{-jn\omega_{0}t} dt$	$c_{n} = \frac{T_{p}}{T} \operatorname{sinc}\left(n \frac{T_{p}}{T}\right)$	$\frac{2\pi}{2\pi}$ $\frac{2\pi}{2\pi}$ ω
c_n = Fourier Series coefficient		$T_{ m p}$ $T_{ m p}$