Solution Section 3.5 - Curve Sketching (Summary)

Exercise

Given
$$f(x) = x^4 - 4x^3 + 5$$

Solution

$$f'(x) = 4x^3 - 12x^2 = 0$$
$$4x^2(x-3) = 0$$
$$\Rightarrow x = 0, 0, 3$$

$$f''(x) = 12x^2 - 24x = 0$$
$$12x(x-2) = 0$$
$$\Rightarrow x = 0, 2$$

	f	f'	f"	
$(-\infty,0)$		-	+	Decreasing, Concave up
x = 0	5	0	0	RMAX
(0, 2)		-	-	Decreasing, Concave down
x = 2	-11	-	0	Point of Inflection
(2, 3)		-	+	Decreasing, Concave up
x = 3	-22	0	+	RMIN
(3, ∞)		+	+	Increasing, Concave up

Exercise

Given
$$f(x) = \frac{x^2 + 1}{x^2 - 1}$$

Solution

VA: $x = \pm 1$

HA: y = 1

$$f'(x) = \frac{(2x)(x^2 - 1) - (x^2 + 1)(2x)}{(x^2 - 1)^2}$$
$$= \frac{2x^3 - 2x - 2x^3 - 2x}{(x^2 - 1)^2}$$
$$= \frac{-4x}{(x^2 - 1)^2} = 0$$
$$\Rightarrow x = 0$$

$$f'' = \left(\frac{-4x}{(x^2 - 1)^2}\right)'$$

$$= \frac{-4(x^2 - 1)^2 - (-4x)(x^2 - 1)(2x)}{(x^2 - 1)^4}$$

$$= \frac{(x^2 - 1)\left[-4(x^2 - 1) - (-4x)(2x)\right]}{(x^2 - 1)^4}$$

$$= \frac{-4x^2 + 4 + 8x^2}{(x^2 - 1)^3}$$

$$= \frac{4x^2 + 4}{(x^2 - 1)^3}$$

$$= \frac{4(x^2 + 1)}{(x^2 - 1)^3} = 0$$

$$\Rightarrow x^2 + 1 = 0 \Rightarrow x^2 = -1$$
 (no zeros)

	f	f'	f''	
$(-\infty, -1)$		+	-	Increasing, Concave up
<i>x</i> = -1	Undef.	Undef.	Undef.	Vertical Asymptote
(-1, 0)		+	-	Increasing, Concave down
x = 0	-1	0	-	RMAX
(0, 1)		-	-	Decreasing, Concave down
x = 1	Undef.	Undef.	Undef.	Vertical Asymptote
$(1,\infty)$		-	+	Decreasing, Concave up

Exercise

Given
$$f(x) = 2x^{3/2} - 6x^{1/2}$$

Solution

$$f'(x) = 3x^{1/2} - 3x^{-1/2} = 0$$

$$x^{1/2} \left(3x^{1/2} - 3x^{-1/2} \right) = 0$$

$$3x - 3 = 0$$

$$\Rightarrow x = 1$$

$$f''(x) = \frac{3}{2}x^{-1/2} + \frac{3}{2}x^{-3/2} = 0$$

$$\frac{2}{3}x^{3/2}\left(\frac{3}{2}x^{-1/2} + \frac{3}{2}x^{-3/2}\right) = 0$$

$$x+1=0$$

$$\rightarrow x = -1 < 0$$

Х	f	f'	f"	
(0, 1)		-	+	Decreasing, Concave up
x = 1	-4	0	+	RMIN
$(1,\infty)$		+	+	Increasing, Concave up

