Midterm 2 Review

Math 253

Section 4

1. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2 + 20}$ converges.

2. Does the series $\sum_{n=1}^{\infty} \frac{1}{n^4 + n^3}$ converge or diverge?

3. Determine the behavior of $\sum_{m=2}^{\infty} \frac{1}{\ln(m)}$.

4. Does $\sum_{n=1}^{\infty} \frac{1}{2^n + 3}$ converge?

5. Determine if $\sum_{k=1}^{\infty} \frac{2^k + 3^k}{4^k}$ converges or diverges.

6. Does the series $\sum_{n=1}^{\infty} \frac{2^n - n}{3^n}$ converge?

7. Does the series $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}+10}$ converge or diverge?

8. What is the behavior of the series $\sum_{k=1}^{\infty} \frac{k^2}{k(k+3)}$?

9. Determine the behavior of $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$.

Section 5

- 1. Does $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converge absolutely, conditionally, or not at all?
- 2. Does $\sum_{i=1}^{\infty} \left(-\frac{1}{i}\right)^i$ converge absolutely, conditionally, or not at all?
- 3. Does $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sin(n)}$ converge absolutely, converge conditionally, or diverge?
- 4. Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$ converges, and then estimate it to within .001 of its true value.
- 5. Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{3/4}}$ converges, and then estimate it to within .2 of its true value.
- 6. Does the series $\sum_{k=2}^{\infty} \frac{(-1)^k}{\ln(k)}$ converge absolutely, conditionally, or not at all?
- 7. Does the series $\sum_{k=1}^{\infty} \frac{\sin(k)}{k^2}$ converge absolutely, conditionally, or not at all?

Section 6

- 1. Does the series $\sum_{n=0}^{\infty} \frac{e^n}{n!}$ converge or diverge?
- 2. Does the series $\sum_{n=0}^{\infty} \frac{(-1)^n n}{2^n}$ converge absolutely, conditionally, or not at all?

- 3. Determine the behavior of the series $\sum_{k=0}^{\infty} \frac{(k!)^2}{(2k)!}$.
- 4. Apply the ratio test to the following series and state what conclusion you can draw.
- a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}.$
- b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$.
- c) $\sum_{n=1}^{\infty} (-1)^n$.
- 5. Does $\sum_{n=1}^{\infty} \frac{\sin^n(n)}{n^n}$ converge absolutely, conditionally, or not at all?
- 6. Does $\sum_{n=1}^{\infty} \frac{n}{2^n}$ converge or diverge?

Section 7

- 1. Find the interval and radius of convergence of $\sum_{n=0}^{\infty} \frac{(x+1)^n}{2^n(n+1)}$
- 2. Find the interval and radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$.
- 3. Write $\frac{x}{1+3x^2}$ as a power series and state the interval and radius of convergence.
- 4. Write $\frac{x^3}{2+x^2}$ as a power series and state the interval and radius of convergence.

Section 8

- 1. Express $f(x) = \frac{5}{(1-2x)(1+x^2)}$ as a power series in two ways: first with partial fractions and then with power series multiplication. For each, find the interval and radius of convergence, and make sure they match.
- 2. Express $g(x) = \frac{6}{(1-x)(2-x)(3-x)}$ as a power series by using partial fractions and determine the interval and radius of convergence.
- 3. Express $h(x) = \frac{1}{(1-x)^2}$ as a power series by using power series multiplication.