In building the space shuttle, NASA contracts for certain guidance components to be supplied by three different companies: 41% by company A, 25% by company B, and 34% by company C. It has been found that 1%, 1.75%, and 2% of the components from companies A, B, and C, respectively, are defective. If one of these guidance components is selected at random, what is the probability that it is defective?

Solution

$$D = defective; A = company A; B = company B; C = company C$$

$$P(D) = P(A \cap D) \cup P(B \cap D) \cup P(C \cap D)$$

= 0.41(.01) + 0.25(.0175) + .34(.02)
= .0153

Exercise

Suppose the probability of *A* is $P(A) = \frac{1}{4}$ and the probability of *B* is $P(B) = \frac{2}{3}$. What would the probability of *A* intersect *B* need to be for *A* and *B* to be independent events?

Solution

Since *A* and *B* to be independent events:

$$P(A \cap B) = P(A)P(B)$$
$$= \frac{1}{4} \cdot \frac{2}{3}$$
$$= \frac{1}{6}$$

Exercise

In 2 throws of a fair die, what is the probability that you will get at least 5 on each throw? At least 5 on the first or second throw?

Solution

Let
$$A =$$
" At least 5 on the first throw". $\{5, 6\} \rightarrow P(A) = \frac{2}{6} = \frac{1}{3}$

$$B =$$
" At least 5 on the second throw". $\{5,6\} \rightarrow P(B) = \frac{2}{6} = \frac{1}{3}$

Since the events A and B are independent: $P(A \cap B) = P(A) \cdot P(B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{1}{3} + \frac{1}{3} - \frac{1}{3} \frac{1}{3}$$
$$= \frac{5}{9}$$

2 balls are drawn in succession out a box containing 2 red and 5 white balls. Find the probability that the second ball was red, given that the first ball was

- a) Replaced before the second draw
- b) Not replaced before the second draw

Solution

a)
$$P(R_2) = P(R_1 \cap R_2) + P(W_1 \cap R_2)$$

 $= P(R_1)P(R_2|R_1) + P(W_1)P(R_2|W_1)$
 $= \frac{2}{7}\frac{2}{7} + \frac{5}{7}\frac{2}{7}$
 $= \frac{14}{49}$
 $= \frac{2}{7}$

$$\begin{split} \textbf{\textit{b}}) \quad & P\Big(R_2^{}\,\Big) = P\Big(R_1^{}\cap R_2^{}\,\Big) + P\Big(W_1^{}\cap R_2^{}\,\Big) \\ & = P\Big(R_1^{}\,\Big) P\Big(R_2^{}\,\Big|R_1^{}\,\Big) + P\Big(W_1^{}\,\Big) P\Big(R_2^{}\,\Big|W_1^{}\,\Big) \\ & = \frac{2}{7}\frac{1}{6} + \frac{5}{7}\frac{2}{6} \\ & = \frac{12}{42} \\ & = \frac{2}{7}\Big| \end{split}$$

Exercise

2 balls are drawn in succession out a box containing 2 red and 5 white balls. Find the probability that at least 1 ball was red, given that the first ball was

- a) Replaced before the second draw
- b) Not replaced before the second draw

Solution

Let E = " At least 1 ball was red".

a) With replacement:

$$\begin{split} P(E) &= P\Big(R_1 \cap R_2\Big) + P\Big(R_1 \cap W_2\Big) + P\Big(W_1 \cap R_2\Big) \\ &= \frac{2}{7} \frac{2}{7} + \frac{2}{7} \frac{5}{7} + \frac{5}{7} \frac{2}{7} \\ &= \frac{24}{49} \end{split}$$

b)
$$P(E) = P(R_1 \cap R_2) + P(R_1 \cap W_2) + P(W_1 \cap R_2)$$

 $= \frac{2}{7} \frac{1}{6} + \frac{2}{7} \frac{5}{6} + \frac{5}{7} \frac{2}{6}$
 $= \frac{22}{42}$
 $= \frac{11}{21}$

2 balls are drawn in succession out a box containing 2 red and 5 white balls. Find the probability that both balls were the same color, given that the first ball was

- a) Replaced before the second draw
- b) Not replaced before the second draw

Solution

Let E = " both balls were the same color".

a) With replacement:

$$\begin{split} P(E) &= P\left(R_1 \cap R_2\right) + P\left(W_1 \cap W_2\right) \\ &= \frac{2}{7} \frac{2}{7} + \frac{5}{7} \frac{5}{7} \\ &= \frac{29}{49} \end{split}$$

b) Without replacement:

$$\begin{split} P(E) &= P\Big(R_1 \cap R_2\Big) + P\Big(W_1 \cap W_2\Big) \\ &= \frac{2}{7} \frac{1}{6} + \frac{5}{7} \frac{4}{6} \\ &= \frac{22}{42} \\ &= \frac{11}{21} \end{split}$$

An automobile manufacturer produces 37% of its cars at plant A. If 5% of the cars manufactured at plant A have defective emission control devices, what is the probability that one of this manufacturer's cars was manufactured at plant A and has a defective emission control device?

Solution

Let A = "car is produced at plant A". B = "car is defective". P(A) = .37, P(B|A) = .05 $P(A \cap B) = P(A)P(B|A)$ = (.37)(.05)= .0185|

Exercise

To transfer into a particular department, a company requires an employee to pass a screening test. A maximum of 3 attempts are allowed at 6-month intervals between trials. From past records it is found that 40% pass on the first trial; of those that fail the first trial and take the test a second time, 60% pass; and of those that fail on the second trial and take the test a third time, 20% pass. For an employee wishing to transfer:

- a) What is the probability of passing the test on the first or second try?
- b) What is the probability of failing on the first 2 trials and passing on the third?
- c) What is the probability of failing on all 3 attempts?

Solution

a)
$$P\left(passing \ 1^{st} \ or \ 2^{nd} \ try\right) = P\left(P_1\right) + P\left(F_1 \cap P_2\right)$$

= $.4 + (.6)(.6)$
= $.76$

c)
$$P(failing \ all \ trials) = P(F_1 \cap F_2 \cap F_3)$$

= $(.6)(.4)(.8)$
= $.192$

A survey of the residents of a precinct in a large city revealed that 55% of the residents where members of the Democratic Party and that 60% of the Democratic Party members voted in the last election. What is the probability that a person selected at random from the residents of this precinct is a member of the Democratic Party and voted in the last election?

Solution

Let
$$D$$
 = "member of Democratic Party". V = "voted in the last election". Then $P(D)$ = .55, $P(V|D)$ = .6 $P(D \cap V) = P(D)P(V|D)$ = (.55)(.6) = 0.33|