CS 162 Notes (Winter 2017)

Justin Lubin

Contents

1	\mathbf{Asy}	Asymptotic Analysis			
	1.1	Big-Oh	Notation		
			Definition		
		1.1.2	Assumption: Constant Operations (Approximations)		
		1.1.3	Non-Constant Operations		
	1.2	Reduci	ng Big-O Expressions		
			What to Eliminate		
		1.2.2	Examples		
	1.3	Linear	Search		
		1.3.1	Code		
		1.3.2	Analysis		
	1.4	Binary	Search		
			Code		
		1.4.2	Analysis		
	1.5		ds of Asymptotic Analysis		
			Method 1		
			Method 2 (Substitution Method)		
			Examples		
	1.6		owers of Hanoi		
			Gameplay		
		1.6.2	Algorithmic Solution		

4 CONTENTS

Chapter 1

Asymptotic Analysis

1.1 Big-Oh Notation

1.1.1 Definition

We have that a function $f \in O(g(n))$ if and only if there exists constants c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$.

We have that a function $f \in \Omega(g(n))$ if and only if there exists constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \leq n_0$.

We have that a function $f \in \Theta(g(n))$ if and only if $f \in O(g(n))$ and $f \in \Omega(g(n))$.

This notation can be used to analyze the best-case, average-case, and worse-case efficiency of an algorithm, but this class typically concerns the worst-case efficiency of an algorithm.

Note that efficiency can be a measure of time, space, or even power complexity.

1.1.2 Assumption: Constant Operations (Approximations)

- Arithmetic (fixed width)
- Assignment
- Access any array element

1.1.3 Non-Constant Operations

Control Flow	Time
Consecutive statements Conditional	Sum of time of each statement Time of test + time of the slower branch
Loop	Number of iterations * time of body
Function call Recursion	Time of function body Solve recurrence relation

1.2 Reducing Big-O Expressions

1.2.1 What to Eliminate

- Eliminate low-order terms
- Eliminate coefficients

1.2.2 Examples

```
• 4n + 5 \in O(n)

• \frac{1}{2}n\log n + 2n + 7 \in O(n\log n)

• n^3 + 2^n + 3n \in O(2^n)

• n\log(10n^2) + 2n\log n \in O(n\log n)

- Note that n\log(10n^2) = 2n\log(10n)
```

1.3 Linear Search

1.3.1 Code

```
int find(int[] arr, int arr_length, int k) {
    for (int i = 0; i < arr_length; ++i) {
        if (arr[i] == k) {
            return 1;
        }
    }
    return 0;
}</pre>
```

1.3.2 Analysis

```
• Worst case: 6 * arr_length steps -n = arr_length, so O(n)
```

1.4 Binary Search

1.4.1 Code

```
int find(int[] arr, int k, int lo, int hi) {
    return help(arr, k, 0, arr_length);
}
int find(int[] arr, int arr_length, int k) {
    int mid = (hi + lo) / 2;
    if (lo == hi) {
        return 0;
    }
```

```
if (arr[mid] == k) {
    return 1;
}
if (arr[mid] < k) {
    return help(arr, k, mid + 1, k);
} else {
    return help(arr, k, lo, mid);
}</pre>
```

1.4.2 Analysis

Let T(n) be the efficiency of find. Then, because each split takes approximately ten operations, we have that:

$$T(n) = 10 + T\left(\frac{n}{2}\right)$$

$$= 10 + \left(10 + T\left(\frac{n}{4}\right)\right)$$

$$= 10 + \left(10 + \left(10 + T\left(\frac{n}{8}\right)\right)\right)$$

$$= 10k + T\left(\frac{n}{2^k}\right).$$

To solve this, there are a couple methods.

1.5 Methods of Asymptotic Analysis

1.5.1 Method 1

Let $\frac{n}{2^k} = 1$, so then $k = \log n$. Then

$$T(n) = 10 \log n + T\left(\frac{n}{2^{\log n}}\right)$$

$$= 10 \log n + T(1)$$

$$= 10 \log n + 10$$

$$\in O(\log n).$$

However, this method actually gives you a big-theta approximation for T; in other words, not only is $T \in O(\log n)$, we also have that $T \in O(\log n)$.

1.5.2 Method 2 (Substitution Method)

Guess O(?), then check. For example (in this case), guess $\log n$ because we have something like $\frac{n}{2^n}$ in the formula. Then:

$$T(n) = 10 + T(n/2)$$

= $10 + \log(n/2)$

Because we have guessed that $T \in O(\log n)$, we have that $T(n) \le c \log n$ for all $n \ge n_0$, for some constants c, n_0 .

$$T(n) \le c \log n$$

$$10 + \log(n/2) \le c \log n$$

$$10 + \log(n) - \log(2) \le c \log n$$

$$\frac{10 + \log(n) - \log(2)}{\log n} \le c$$

$$\frac{10}{\log n} + 1 - \frac{\log(2)}{\log n} \le c$$

$$\frac{10}{\log n} + 1 - \frac{1}{\log n} \le c$$

Now take $n_0 = 2$, so $n \ge 2$ and thus $\log n \ge 1$ (log is base two). We then have:

$$c \ge \frac{10}{1} + 1 - \frac{1}{1}$$
$$c \ge 10$$

Therefore, $T \in O(\log n)$ because with c = 10 and $n_0 = 2$, we have that $T(n) \le c \log n$ for all $n \ge n_0$.

Note that the substituion method is more general than $Method\ 1$, but it does not give you a big-theta approximation (unlike $Method\ 1$).

1.5.3 Examples

Example 1: $f(n) = 45n \log n + 2n^2 + 65$. We will use the substitution method, with a guess of $f \in O(n^2)$.

$$cn^{2} \ge 45n \log n + 2n^{2} + 65$$

$$c \ge \frac{45n \log n + 2n^{2} + 65}{n^{2}}$$

$$c \ge \frac{45 \log n}{n} + 2 + \frac{65}{n^{2}}$$

TODO

1.6 The Towers of Hanoi

1.6.1 Gameplay

The goal of the Towers of Hanoi is to move all disks to goal peg, with the following rules:

- You can only move one disk at a time
- $\bullet~$ You can only move the top-most disk in a pile
- You cannot put a larger disk on top of a smaller one

1.6.2 Algorithmic Solution

$$\begin{array}{lll} \mbox{if } n = 1: & => T(1) \\ \mbox{move to goal (base case)} & = 1 \\ \mbox{else:} & => T(n) \\ \mbox{move top } n\text{--}1 \mbox{ disks to temporary peg} & = T(n-1) \\ \mbox{move bottom disk to goal} & + T(1) \\ \mbox{move the } n\text{--}1 \mbox{ disks to goal} & + T(n-1) \end{array}$$

Thus, T(n) = T(n-1) + T(1) + T(n-1), with T(1) = 1. So:

$$\begin{split} T(n) &= 2T(n-1)+1\\ &= 2(2T(n-2)+1)+1\\ &= 4T(n-2)+3\\ &= 4(2T(n-3)+1)+3\\ &= 8T(n-3)+7. \end{split}$$

By inspection, we have:

$$T(n) = 2^{n-1}T(1) + (2^{n-1} - 1),$$

but T(1) = 1, so we have:

$$T(n) = 2^{n-1} + 2^{n-1} - 1,$$

= $2^n - 1$
 $\in \Theta(2^n).$