Designaldodes

Dados x, y ER, dizemos que x < y se y-x>0, ou seja, se y-x está a direita de o no reta real.

Propriedades básicas:

- PI) YXER, tem-se exclusivamente XXO ou X=0 ou X>0
- P2) + x, y >0, tem-se x+y>0 e xy>0

Mostremos algumas propriedudes:

1) Tricotomia: $\forall x, y \in \mathbb{R}$, tem-se exclusivamente x < y ou x = y ou y < xDe fato, $y - x \in \mathbb{R}$, $\log p_1$, for P_1 , temps:

$$y-x>0$$
 or $y-x=0$ or $y-x<0$

$$\Rightarrow$$
 $\times < y$ ou $x = y$ ou $y < x$

- 2) Transitividade: $\forall x, y, z \in \mathbb{R}$, se x < y < y < z, entain x < z.

 De fato, $x < y \Rightarrow y x > 0$ e $y < z \Rightarrow z y > 0$. Assim, $3-x = (3-y)+(y-x)>0 \Rightarrow x < z$.
- 3) Monotonicidade da adição: Se $x \ge y$, então, para todo $y \in \mathbb{R}$, tem-se x + y < y + y.

$$(y+3)-(x+3) = (y-x)+(3-3) = y-x>0 \Rightarrow x+3 < y+3.$$

4) Monotonicidade da multiplicação: Se x<y, entar, para 3>0, tem-se x3 < y3.

De fato, $x < y \Rightarrow y - x > 0 e$ $y_3 - x_3 = (y - x)_3^{9} > 0 \Rightarrow x_3 < y_3.$

Observe que se 3 < 0 e x < y, temos $y_3 - x_3 = (y_{-x}^{-20}) \xrightarrow{20} < 0 \implies x_3 - y_3 > 0 \implies y_3 < x_3.$

Exercícios:

1) Se x < y e x' < y', mostre que x + x' < y + y'.

Pela monot de adição,

$$x < y \Rightarrow x + x' < y + x'$$

$$e \quad x' < y' \Rightarrow x' + y < y' + y.$$

Pela transitividade, x+x' < y+y'.

2) $\forall y, x', y' > 0$, mostre que se $x < y \in x' < y$, entais x x' < yy'.

Pela monot. de multiplicações,

$$x < y \Rightarrow xx' < yx'$$

Pelo transitividade, xx < yy'.

3) $\chi^2 70$, $\forall \chi \in \mathbb{R}$.

Se x = 0, intai $x^2 = 0^2 = 0$.

se x +0, por P1, x >0 ou x <0. Logo, pela monot. da multiplic.

4) Se x>0, entain $\frac{1}{x}>0$.

Observe que $\frac{1}{x} = x \cdot \left(\frac{1}{x}\right)^2$. Por $\frac{1}{x} > 0$.

5) se ozxzy, entav oztyzt.

Como x,y>0, por P2, x.y>0 e pelo exercício 4, $\frac{1}{x.y}>0$.

Segue de monot. de multiplicação que

 $x < y \Rightarrow \frac{x}{xy} < \frac{y}{xy} \Rightarrow \frac{1}{y} < \frac{1}{x}$

segue do exercício 4 que o < 1/4.