Theory of Computing:

3. Finite Automata: NFA

Professor Imed Bouchrika

National Higher School of Artificial Intelligence imed.bouchrika@ensia.edu.dz

Outline:

- Revision : DFA
- Non-Determinism

- Constructing NFA
- Converting NFA to DFA
- Minimization Algorithms
- Software and Tools

Automaton :

- A machine that can do things or actions on its own.
- Machine takes input, moves from one to another state and produces an output (Decision or computed)
- Machines can be abstract, mechanical or electrical or even quantum...
- Machines have different capabilities in terms of memory, processing speed....

Automaton:

- Mechanical Vending Machine: (No electronics, no raspberry PI or
 - arduino or high-level programming language).
 - Assume a single product
 - Price of the product is 30DA
 - Accepted Coins are: 5DA, 10DA and 20DA

Automaton :

- Mechanical Vending Machine: (No electronics, no raspberry PI or arduino or programming language
 - Assume a single product
 - Price of the product is 30DA
 - Accepted Coins are: 5DA, 10

What's the alphabet?

What's the language accepted?

Automaton:

- Mechanical Vending Machine: (No electronics, no raspberry PI or arduino or programming language
 - Assume a single product
 - Price of the product is 30DA
 - Accepted Coins are: 5DA, 10

Can we automate the process to return the change?

We insert 40DA for a price of 30DA, it would give us back 10DA?

• State Diagram:

is the visual representation of finite automata as shown below :

- States : Circles
- Transitions: Arcs/Arrows/Directed Edges

States:

- Start State (q1):
 - There must be one start state with the inbound arrow
- Accepting State (Final or Terminating state) (q2)
 - Drawn as double-line circle
 - There can be multiple or even none,
 - If the string/word ends at this state, the machine would decide an accept for the word.

Non-Accepting State (q3)

- Drawn as single-line circle
- There can be many or none
- If the machine reaches the end of the word at this state, the word is rejected.

Deterministic Finite Automaton :

- Deterministic = Events can be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

• Deterministic?

- From a given state there is only one transition for each symbol + Each transition must have non-empty string symbol.
- The q1 state : There are two transitions for the same symbol 1.
 Therefore, this is not a deterministic finite automaton

Formal Definition of Deterministic Finite Automaton:

- Usually Automated are denoted by the letter M
- \circ It is a 5-tuple defined as $\quad (Q, \Sigma, \delta, q_0, F)$ Such that :
 - 1. Q is a finite set called the *states*,
 - 2. Σ is a finite set called the *alphabet*,
 - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
 - **4.** $q_0 \in Q$ is the *start state*, and
 - **5.** $F \subseteq Q$ is the set of accept states.

• Transition Table:

- Finite Automata can be additionally represented by a Transition Table showing all possible transitions at different configuration:
 - For automaton shown $M = (Q, \Sigma, \delta, q1, F)$ such that

•
$$Q = \{q1,q2,q3\}$$

•
$$\Sigma = \{ 0, 1 \}$$

- Representation of Automata Machines:
 - State Diagram (Graphical)
 - o Transition Table
 - 0 ?

- Regular Language
 - Let **M** a finite Automata:
 - We say that M recognizes language L if L = { w | M accepts/recognizes w}

language is called a **regular language** if some finite automaton recognizes it

- Designing the Deterministic Finite Automata
 - Start always with obvious case and make sure it is accepted.
 - Move on to bigger words and each time:
 - Test if the language words are accepted
 - Test also that non-language words are rejected.
 - At each state, always say "what if" i have a symbol:
 - You can expect all alphabet symbols at each state
 - Create the Trap/Dead states at the end.

Designing Deterministic Finite Automata:

- o Alphabet $\Sigma = \{0, 1\}$
- Design M which recognizes L = {w ∈ {0, 1}* | w ends with 11 }

VS

• Example for Minimizing DFA:

0

• Example for Minimizing DFA:

0

- Question from last lecture :
 - o How to decide if two DFAs represent the same language?

Nondeterministic Finite Automata (NFA)

- For each state there can be zero, one, two, or more transitions corresponding to a particular symbol.
- O Why:
 - Because it is easier, compared to the conditions imposed by DFA
 - To construct
 - To understand
 - To simulate scenarios in real life (but computers are deterministic machines)

DFA vs NFA:

- Transition with the same label from a state
- State A:
 - Two outgoing arrows with 1
 - Two outgoing arrows with o

What language does the NFA recognize?

DFA vs NFA:

- Transition with the same label from a state
- State A:
 - Two outgoing arrows with 1
 - Two outgoing arrows with o

What language does the NFA recognize?

{ w | w in {0,1}* and w contains **00** or **11** }

DFA vs NFA:

- Transition with the empty string
 - State E can **Either**:
 - Move to F on reading symbol U
 - Move to F without reading anything (Empty String ε)

What language does the NFA recognize?

DFA vs NFA :

- Transition with the empty string
 - State F can **Either**:
 - Move to F on reading symbol U
 - Move to F without reading anything (Empty String ε)

What language does the NFA recognize?

L={ colour, color}

DFA vs NFA:

- Trap State for Missing Transitions: is not obligatory
 - State **B**: is not providing the transition **for symbol o**

What language does the NFA recognize?

DFA vs NFA:

- Trap State for Missing Transitions: is not obligatory
 - State **B**: is not providing the transition **for symbol o**

What language does the NFA recognize?

 $L=\{w \mid w \text{ ends with } \mathbf{11}\}$

- Difficulty to construct and interpret : DFA vs NFA :
 - Language: L={w | w ends with 11 }

DFA vs NFA:

	DFA	NFA
Transition with the same label from a state	Strictly one	Multiple
Transition with the empty string	Does not exist	It exists
Trap State for missing transitions	Obligatory	Optional

- How to accept a word using NFA:
 - Are the following words accepted?
 - **10**
 - **00011**
 - **10101**
 - **10011**

- How to accept a word using NFA:
 - Are the following words accepted?
 - 10 not accepted
 - 00011 Accepted
 - **■** 10101 not accepted
 - 10011 *Accepted*
 - The language containing
 A substring of 00 or 11

How to accept a word using NFA:

- An NFA accepts the input string if there exists some choice of transitions that leads to ending in an accept state.
- Thus,
 - One accepting branch is enough for the overall NFA to accept,
 - For rejection, every branch must reject word

- How to accept a word using NFA:
 - An NFA accepts the input string if there exists some choice of transitions that leads to ending in an accept state.
 - Thus,
 - One accepting branch is enough for the overall NFA to accept,
 - For rejection, **every** branch must reject word

EXTREMELY IMPORTANT

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011

0 1 0 1 1

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - Set the initial state as the startState

0 1 0 1 1

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - Reading the first symbolFrom the word
 - Checking the <u>relevant</u>Transition
 - → would stay at qo

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - Read Symbol 1
 - Check the relevant transition

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - → Move to state q1

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - At state q1
 - Read Symbol o
 - Check Relevant Transition

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - **■** There is no transition,
 - What does it mean? Rejected?
 - What we do?

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - **■** There is no transition,
 - The taken path or branch dies
 - Not necessary the word is rejected
 - What we do
 - We seek a different branch/path

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - We start again (At which level?)
 - Read first symbol 0 : move to qo
 - Read second symbol 1: move to qo
 - Read third symbol 0 : move to qo

- Simulating reading a word using NFA:
 - L = { w | w ends with 11 }
 - Let's see the word : 11011
 - Read fourth symbol 1: move to q1
 - Read fourth symbol 1: move to q2
 - End of the word at q2:
 - q2 is accept state → Word is accepted
 - Shall we consider other branches?

Simulating reading a word using NFA:

- An NFA accepts the input string if there exists some choice of transitions that leads to ending in an accept state.
- Thus,
 - One accepting branch is enough for the overall NFA to accept,
 - For rejection, **every** branch must reject word

EXTREMELY IMPORTANT

Simulating reading a word using NFA:

- NFA does the search for the relevant states and backtracks in case the selected path dies.
- There are three strategies for the search for a given input :
 - Tree Computation
 - Parallel Computation
 - Guessing

Simulating reading a word using NFA:

- NFA does the search for the relevant states and backtracks in case the selected path dies.
- The transitions that leads to ending in an accept state.
- o Thus,
 - One accepting branch is enough for the overall NFA is accept,
 - For rejection, every branch must reject word

- Branching : Computation of Trees
 - The tree is constructed with the start state as the root.
 - A child is created
 - for each transition from the parent state
 - This includes self-transitions
 - Tree does not allow linking back children to (super-)parents in case states go back to each other, instead, new tree nodes are created.

- Branching : Computation of Trees
 - o For the word: **010110**
 - From the tree, there are two possible paths

- Branching: Execution in Parallel
 - At each state with multiple choices for the same input:
 - We fork a new process or thread for each choice
 - Processes or threads run in parallel at the same time to search.
 - No backtracking is necessary

- Branching: Execution in Parallel
 - Setting initial states q₀
 - Reading Symbol o

- Branching: Execution in Parallel
 - Moving to q1 when reading 0
 - Reading Symbol 1
 - We have two choices
 - Move to q2
 - Move to q4

- Branching : Execution in Parallel
 - For the two choices
 - Move to q2
 - Move to q4
 - Two processes are created to run in parallel

- Branching : Execution in Parallel
 - Reading Symbol o
 - Blue thread dies
 - Yellow thread : Two choices
 - Fork x 2 threads
 - Move to q5
 - Move to q4

- Branching: Execution in Parallel
 - Two threads running at the same time
 - Red and Yellow
 - When reading input 1 next
 - Red thread dies : no transition
 - Yellow thread: ?

Branching : Guessing

- This is not to mean Random guessing
- The machine or system has some "heuristics" or business logic for the machine to guess the correct choice/path to take.
- This depends on the context and rules being treated.
- Some literature may refer to the term supermagic guessing?

Formal Definition for NFA

- \circ A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , qo , F) where:
 - Q is a finite set of states,
 - \blacksquare Σ is a finite alphabet,
 - δ : Q × Σ U ε \rightarrow 2^Q is the transition function
 - qo ∈ Q is the start state
 - $F \subseteq Q$ is the set of accept states.

Transition Table for a formal definition

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is given as

*	0	1	arepsilon
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	$\emptyset,$

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

Transition Table for a formal definition

1. $Q = \{q_1, q_2\}$

2. $\Sigma = \{0,1\},$

3. δ is given as

Empty Symbol is considered as input

8	0	1	ε
q_1	$\{q_1\}$	$\{q_1,q_2\}$	W
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	$\emptyset,$

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

Transition Table for a formal definition

1. $Q = \{q_1, q_2\}$

2. $\Sigma = \{0,1\},$

3. δ is given as

For the missing transitions : no transition for 1

	0	1	ε
q_1	$\{q_1\}$	$\{a_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø		Ø
q_4	$\{q_4\}$	$\{q_4\}$	$\emptyset,$

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

_ .

Transition Table for a formal definition

For multiple choices on the same input from the same state

1.
$$Q = \{q_1,$$

2.
$$\Sigma = \{0,1\},\$$

3. δ is given as

	0	1	ε
$\overline{q_1}$	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø,

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

- o Design the NFA for the following Language L over Σ ={1,0}
 - L= { w | w ends with o or contains only 1s }

- o Design the NFA for the following Language L over Σ ={1,0}
 - L= { w | w ends with 0 **or** contains only 1s }
 - Let's design the first part : ends with o

- o Design the NFA for the following Language L over Σ ={1,0}
 - L= { w | w ends with o **or** contains only 1s }
 - Second part : contains only 1s

- o Design the NFA for the following Language L over Σ ={1,0}
 - L= { w | w ends with o or contains only 1s }
 - We need to combine them : as a union \rightarrow use the epsilon

- Example 1:
 - Design the NFA for the following Language L over Σ ={1,0}
 - L= { w | w ends with 0 **or** contains only 1s }
 - We need to combine them : as a union \rightarrow use the epsilon

- Equivalence Theories
 - Every DFA is NFA
 - Inversely:
 - Every NFA is not a DFA
 - But, there is an equivalent DFA for each NFA
 (See Sipser Book for the proof : Theorem : 1.39)

Algorithm to convert NFA to DFA:

- It is called conversion by subset construction :
- States are represented as sets from the power set : 2^Q
 - 1. Determine the initial Start State
 - It is the set containing the original start state union all other states reached from the original state by ϵ (directly or indirectly)
 - 2. Determine the Accept States
 - Any State set containing at least an original accept state
 - 3. For each possible state created from 2^Q, find the possible transitions
 - If there is missing transition, create a dead state
 - 4. Draw the state diagram
 - 5. Remove any state without **incoming** transitions
- Another Strategy: Use the Transition Tables to facilitate the conversion

- Algorithm to convert NFA to DFA:
 - What's the start state for the following :
 - It is the set containing the original start state union all other states reached from the original state by ε (directly or indirectly)
 - 1
 - 3
- o {1,3}

- Algorithm to convert NFA to DFA :
 - What's the start state for the following :
 - It is the set containing the original start state union all other states reached from the original state by ε (directly or indirectly)

- Algorithm to convert NFA to DFA:
 - What's the start state for the following :
 - It is the set containing the original start state union all other states reached from the original state by ε (directly or indirectly)
 - 1
 - 3
 - 2
- o {1,2,3}

- What's the possible accept states
 - Any State set containing at least an original accept state
 - 1 (original state)
 - 0 {1}
 - o {1,2}
 - 0 {1,3}
 - 0 {1,2,3}

- Algorithm to convert NFA to DFA:
 - What's the possible accept states
 - Any State set containing at least an original accept state
 - 3 (original state)
 - 4 (original state)
 - 0 {3}
 - 0 {4}
 - 0 {3,1}
 - o {3,2}
 - o {3,1,2}
 - 0 {4,1}
 - 0

Algorithm to convert NFA to DFA:

- Compute the transitions for all possible powerset elements over the alphabet
 - {1} on reading
 - \bullet $a \rightarrow \{3,1\}$
 - $b \rightarrow \{2\}$
 - {2} on reading:
 - $a \rightarrow \{2,3\}$
 - $b \rightarrow \{3\}$
 - {1,3} on reading:
 - $a \rightarrow \{1, 3\}$
 - $\bullet \qquad b \to \{2\}$
 - {1,2} on reading:
 - $\bullet \quad a \to \{2,3\}$
 - $b \rightarrow \{2,3\}$

- {2,3} on reading:
 - $a \rightarrow \{1,2,3\}$
 - $b \rightarrow \{3\}$

- Algorithm to convert NFA to DFA:
 - At state 1, reading a, what possible states we can reach :
 - **2** ?

Algorithm to convert NFA to DFA:

At state 1, reading a, what possible states we can reach :

$$\blacksquare \quad \mathbf{1} - \boldsymbol{\varepsilon} \rightarrow \mathbf{3} - \boldsymbol{a} \rightarrow \mathbf{1}$$

$$\blacksquare \quad \mathbf{1} - \boldsymbol{\varepsilon} \rightarrow \mathbf{3} - \boldsymbol{\alpha} \rightarrow \mathbf{1} - \boldsymbol{\varepsilon} \rightarrow \mathbf{3}$$

- The possible states that can be reached from 1 are { 1, 3 }
 - Remember to consider always:
 - ε^* STATE ε^*

- Algorithm to convert NFA to DFA: Example 1
 - Using Transition Table

	а	b	ε
1	{1,3}	{2}	{3,1}
2	{2,3}	{3}	{2}
3	{1,3}	Φ	{3}

- Algorithm to convert NFA to DFA: Example 1
 - Using Transition Table

	а	b	ε
1	{1,3}	{2}	{3,1}
2	{2,3}	{3}	{2}
3	{1,3}	Ф	{3}

	а	b	
{1,3}			
{1}	{1,3}	{2}	
{2}	{2,3}	{3}	
{3}	{1}	Ф	

- Algorithm to convert NFA to DFA: Example 1
 - Using Transition Table

	а	b	ε
1	{1,3}	{2}	{3,1}
2	{2,3}	{3}	{2}
3	{1,3}	Φ	{3}

	а	b	
{1,3}	{1,3}	{2}	
{1}	{1,3}	{2}	
{2}	{2,3}	{3}	
{3}	{1}	Ф	

a,b

Don't overlook the $\boldsymbol{\mathcal{E}}$!

- Algorithm to convert NFA to DFA: Example 1
 - Using Transition Table

	а	b	ε
1	{1,3}	{2}	{3,1}
2	{2,3}	{3}	{2}
3	{1,3}	Φ	{3}

	а	b	
{1,3}	{1,3}	{2}	
{1}	{1,3}	{2}	
{2}	{2,3}	{3}	
{3}	{1}	Φ	

Using Transition Table

	а	b	ε
1	{1,3}	{2}	{3,1}
2	{2,3}	{3}	{2}
3	{1,3}	Φ	{3}

	а	b
{1,3}	{1,3}	{2}
{1}	{1,3}	{2}
{2}	{2,3}	(6)
{3}	{1}	D ₁

We create a new row to represent this state

Using Transition Table

	а	b	ε
1	Φ	{2}	{3,1}
2	{2,3}	{3}	{2}
3	{1,3}	Φ	{3}

{1,2,3}	{1,2,3}	{2,3}	
{2,3}	{1,2,3}	{3}	
{3}	[1]	D ₁	
{2}	{2,3}	{3}	
{1}	D ₁	{2}	
{1,3}	{1,3}	{2}	
	а	b	

We create a new state

row to represent this

Algorithm to convert NFA to DF

Using Transition Table

	а	b	ε
1	{1,3}	{2}	{3,1}
2	{2,3}	{3}	{2}
3	{1,3}	Φ	{3}

	а	b
{1,3}	{1,3}	{2}
{1}	{1,3}	{2}
{2}	{2,3}	{3}
{3}	{1}	D ₁
{2,3}	{1,2,3}	{3}
{1,2,3}	{1,2,3}	{2,3}
D ₁	D ₁	D ₁

We create a new row to represent this state

Algorithm to convert NFA to DFA: Example 1

	а	b
{1,3}	{1,3}	{2}
{1}	{1,3}	{2}
{2}	{2,3}	{3}
{3}	{1,3}	D ₁
{2,3}	{1,2,3}	{3}
{1,2,3}	{1,2,3}	{2,3}

NO incoming transitions to {1}, no need for this state

• Algorithm to convert NFA to DFA: Example 1

{1,3}	a {1,3}	b {2}
{1,0 <i>j</i>	{1,3}	{2}
{2}	{2,3}	{3}
{3}	{1,3}	D ₁
{2,3}	{1,2,3}	{3}
{1,2,3}	{1,2,3}	{2,3}

- How to determine that two deterministic finite automata are equivalent
 - Represent the same language

- From initial pair (q_o^a, q_o^b) of the start states of the automata M_a and M_b
 - Start the computing transitions for all symbols
 - To be equivalent: for a given symbol, the resulting states must be an accepting for both or a non-accepting for both machines.
 - Otherwise, the two machines are not equivalent
- Any new pair showing up, do the same recursively until no new pair shows up

All possible inputs from the Alphabet

	С	d
(q4,q1)		

Pair of states from the two machines to compare

	С	d
(q4,q1)	(q4,q1)	(q5,q2)

	С	d
(q4,q1)	(q4,q1) Both Accept	(q5,q2) Both Non-Accept

The pair (q5,q2) needs to be assessed in the same way, (q4,q1) already done

	С	d
(q4,q1)	(q4,q1) Both Accept	(q5,q2) Both Non-Accept
(q5,q2)	(q6,q3) Both Non-accept	(q4,q1) Both Accept

	С	d
(q4,q1)	(q4,q1) Both Accept	(q5,q2) Both Non-Accept
(q5,q2)	(q6,q3) Both Non-accept	(q4,q1) Both Accept
(q6,q3)		

Questions

- DFA/NFA have finite number of states, can they be used to represent languages with infinite words?
- Can we construct an NFA for the language of palindromes $L = \{w \mid w = w^R \text{ and } | w | < 5 \}$, alphabet is $\{0,1\}$?
- Inferring the NFA for the complement of language ?

Notations

- Language notation
 - o ai: a is being repeated a times.

o $n_a(x)$: number of occurrences of a in the word x

• Example 2:

- Design the NFA for the following Language L over Σ ={1,0}
 - L={}

• Example 2:

- o Design the NFA for the following Language L over Σ ={1,0}

• Example 3:

- o Design the NFA for the following Language L over Σ ={1,0}
 - L={}

• Example 3:

- o Design the NFA for the following Language L over Σ ={1,0}
 - L={}