Capítulo 1

Números complejos

Números complejos en forma binómica y polar.

- 1. Dados $Z_1 = 3 2i$, $Z_2 = -1 + 3i$, $Z_3 = 1 + 2i$, hallar $(Z_1 + Z_2)^2 \frac{Z_2}{Z_3}$
- 2. Calcular $\frac{1-Z}{1+Z}$, siendo $Z = \cos(\theta) + i \sin(\theta)$
- 3. Hallar el valor de $m \in \mathbb{R}$ para que $Z = \frac{1+mi}{m+i}$ verifique:
 - a) Re(Z) = 0, b) Im(Z) = 0, c) |Z| = 1, d) Z esté en la bisectriz del segundo cuadrante.
- 4. Sabiendo que el complejo $(1+i+i^2+\cdots+i^{22})(3+ki)$ tiene módulo 5, hallar razonadamente el valor del número real k.
- 5. Calcular el valor del número real $\left(1+\sqrt{3}i\right)^n+\left(1-\sqrt{3}i\right)^n$ siendo n un número natural.
- 6. Hallar dos números complejos sabiendo que la diferencia entre ambos es real, la suma tiene parte real 8, y su producto es 11 - 16i.
- 7. Demuestra que $\overline{iz} = -i\overline{z}$

Lugares geométricos.

- 8. Indicar la región del plano que satisface cada una de las siguientes condiciones:
 - a) |Z-1|+|Z+1| < 4, b) |Z-1|+|Z+1| > 2, c) |Z-2|-|Z+2| > 3,
- - d) |Z| = Re(Z) + 1, e) |Z 5| = |Z i|, f) |Z 4| > 1,

- g) Im(Z) > 2,
- h) 0 < Re(iZ) < 1.
- 9. Hallar y describir el conjunto de todos los números complejos tales que:

a)
$$\frac{1}{Z} + \frac{1}{\overline{Z}} = 1$$
, b) $\left| \frac{Z-1}{Z+1} \right| \le 1$

10. Hallar las coordenadas de los vértices de un cuadrado, inscrito en una circunferencia centrada en el origen, sabiendo que uno de los vértices es el número complejo 1+2i.

1

Raíces, exponenciales y logaritmos complejos.

11. Calcular el valor de los siguientes complejos:

a)
$$\sqrt[3]{-2+2i}$$
, b) $(1+i)^{-3i}$, c) i^i , d) $\sqrt[5]{(1+i)^3}$, e) $\frac{1}{\sqrt[4]{-16i}}$.

12. Hallar los siguientes logaritmos complejos, indicando sus valores principales:

a)
$$\ln(4)$$
, b) $\ln(-2)$, c) $\ln(-i)$, d) $\ln(2-3i)$.

- 13. Obtener la suma y el producto de las raíces n-ésimas de la unidad.
- 14. Calcula y representa los afijos de las raíces cúbicas de $\frac{2i^9+i^{-7}}{3i}$. Expresar el resultado en forma binómica.
- 15. Hallar el argumento del complejo Z que tenga módulo 1, siendo

$$Z = (1+i)^{\left(\frac{9\pi}{4} + i \ln \sqrt{2}\right)}.$$

- 16. Calcular $Z = ln\sqrt{t}$ siendo t un número complejo de módulo 1 que verifica que $\frac{t}{1+\sqrt{3}i} \in \mathbb{R}$.
- 17. Utilizando la fórmula de Moivre, hallar en función de $\cos x$ y sen x:

a)
$$\sin 5x$$
, b) $\cos 7x$.

- 18. Los afijos de Z_1 , Z_2 , Z_3 , Z_4 , Z_5 y Z_6 son los vértices consecutivos de un hexágono regular. Sabiendo que $Z_1 = 0$ y $Z_4 = 4 + 6i$, hallar los restantes vértices.
- 19. Expresar en forma binómica $z=i\mathrm{e}^{(i\frac{7\pi}{4})}$.

Soluciones de algunos de los problemas propuestos.

$$1.-2+3i.$$

2

$$2.-\frac{-\sin\theta}{1+\cos\theta}i.$$

3.- a)
$$m = 0$$
; b) $m = \pm 1$; c) $\forall m \in \mathbb{R}$; d) $m = -1 \pm \sqrt{2}$.

4.-
$$k = \pm 4$$
.

5.-
$$2^{n+1}\cos\frac{n\pi}{3}$$
.

- 8.- b) Imposible, c) Zona interior de la hipérbola $\frac{x^2}{\frac{9}{4}} \frac{y^2}{\frac{7}{4}} = 1$,
 - f) Exterior de la circunferencia de centro (4,0) y radio 1.

13.-
$$S=0,\,P=\pm 1$$
según sea n
 par o impar.

15.-
$$\alpha = \left(\ln\sqrt{2}\right)^2 + \frac{81\pi^2}{16}$$
.