برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
3	<i>ڡ</i> ؙ <i>ڹ</i>	1 بنیادی خ
3	ينياد ي اکائيال	1.1
3	غيرستى	1.2
4	سمتير	1.3
5		1.4
5	1.4.1 كارتيسى محدد ي نظام	
7	1.4.2 نىکى محددى نظام	
9	سمتيررقبر	1.5
11	رقبه عمودی تراش	1.6
12	ىر قى اور مقناطىيى مىدان	1.7
12	1.7.1 برتی میدان اور برتی میدان کی شدت	
13	1.7.2 متناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

13	سطحیاور حجمی کثافت	1.8	
13	1.8.1 منطحی ثثافت		
14	محجى كثافت	1.9	
15	صليبي ضرب اور ضرب نقط	1.10	
15	1.10.1 صلیبی ضرب		
17	1.10.2 نقطى ضرب نقطى ضرب.		
20	تفرق اور جزوی تفرق	1.11	
20	خطی تکمل	1.12	
21	سطح تمل	1.13	
22	دوری سمتنی	1.14	
27) او وار	يمقناطيسي	2
2727)اد وار مزاحمت اور نتچکچاہٹ		2
		2.1	2
27	مزاحمت اور نتکچابث	2.1	2
27 28 30	مزاحمت اور نتیکچابٹ	2.1	2
27 28 30 32	مزاحمت اور نتیکچابث	2.1 2.2 2.3	2
27 28 30 32 34	مزاجمت اور نیکچاب میران کی شدت گافت برقی رواور برقی میدان کی شدت گافت برقی او دار میدان کی شدت برقی او دار میدان کی شدت متناطبیی دور حصه اول میناطبی کی دور حصه کی دور	2.1 2.2 2.3 2.4	2
27 28 30 32 34 36	مزاحمت اور نتیکچابث کثافت برتی رواور برتی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول کثافت متناطیسی بهاواور متناطیسی میدان کی شدت	2.1 2.2 2.3 2.4 2.5	2
27 28 30 32 34 36	مزاجمت اور نیمکیاب گافت برقی رواور برقی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول گافت مقناطیسی بهاواور مقناطیسی میدان کی شدت مقناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

57																															^	نسفار	ٹران	3
58					•			•																		ت	اہمیہ	کی	ار م	رانسفا	*	3	.1	
61																										مام	لحاقه	ر_	ار م	رانسفا	رُ	3	.2	
61																												باو	قىد	الی بر	ا	3	.3	
63										•							•						ياع	ىن	قالب	واور	قىرو	ربرا	انگيز	بجان	Ĩ	3	.4	
66	•		•		•			•	•											Ü	واح	کے خو	رو_	_ قی	له	تباد	واور	ادبا	برقی	بادله	تې	3	.5	
70										•												ژ	با)جان	رائح	كاابتا	وجھ	ب بو	جانسه	انوی.	ť	3	.6	
71					•																ب	طله	الار	نطوا	ير پر نق	ت	علام	کی	ار م	رانسفا	<i>*</i>	3	.7	
72										•							•										لہ .	نبادا	ك كا:	كاور	'n	3	.8	
77										•							•							بئر	يميد	ك-ا	ولر <u>.</u>	کاو	ار م	رانسفا	,	3	.9	
79										•							•					ار	ادو	باوك	رمر	بداور	امال	ر_	ار م	رانسفا	,	3.1	0	
79															نا	ہ کر	نده	عليح	امليه	امتعه	کی	.اگ	ن اور	حمت	مزا	ے کی	"	3	3.1	0.1	1			
81																									. ،	نامال	دِست	3	3.1	0.2	2			
82																		ن	ران	کےاث	_,	لب	ور قا	رواه	۔ تی	ی بر	ثانو	3	3.1	0.3	3			
83										•	•										باو	قى د	بابر	كالمالخ	يھے	ب ی -	ثانو	3	3.1	0.4	4			
83															ت	رار	اثر	2	مله	متعا	ور	تا	زاحمه	کی مز	ر گھے	ب ی	ثانو	3	3.1	0.5	5			
85																		وليه	. تبا	انب	ناج	نانو ک	ئىية	بتدا	16.	وٹ	رکا	3	3.1	0.6	5			
87																	ار	ادوا	وی	مسا	ين	ەتر	ساد	کے	. مر	سفار	ٹران	3	3.1	0.7	7			
88					•																		ائنه	ر مع	ردو	ركس	نداو	حا يَ	ورم	کھلے و	<u>-</u>	3.1	1	
89																								ئنہ	معا	دور	كطلا	3	3.1	1.1	1			
91										•														ئنه	معا	ردور	كم	3	3.1	1.2	2			
95																							•		٠.	رمر	نسفا)ٹرا	وري	نين و	;	3.1	2	
103																		زر	کا گز	ارو	رق	ی ر	ه محر	ز باد	لمحد	تے	لو کر	حال	ار م	. انسفا	ٹر	3.1	3	

vi

ميكانى توانائى كا بابمى تبادله	بر قی اور	4
مقناطيسي نظام ميں قوت اور قوت مروڑ	4.1	
تبادلية توانائي والاايك لچھے كانظام	4.2	
توانا كي اور ۽ مه توانا كي	4.3	
متعدد کیجھوں کامقناطیسی نظام	4.4	
شین کے بنیاد کی اصول 129	گو <u>متے</u> ^	5
تانون فیراڈے	5.1	
معاصر مشين	5.2	
محرک برقی دیاو	5.3	
ت ي لي كچيے اور سائن نمامقناطيسي دياو	5.4	
5.4.1 بدلتارووالے مشین		
مقناطيسي د باو کي گھو متى امواج کی متناطبیتی د باو کی گھو متی امواج کی ساتھ متناطبیتی د باو کی گھو متی امواج کی ساتھ کی کی ساتھ کی سات	5.5	
5.5.1 ایک دورکی لپنی مشین		
5.5.2 تين دور کي لپني مشين کا تحليلي تجربير		
5.5.3 تين دور کي لپني مشين کاتر سيمي تجربيه		
محرک بر قی د باد	5.6	
5.6.1 بدلتاروبرتی جزیئر		
5.6.2 کیک سمت روبر تی جزیئر		
جموار قطب مشینوں میں قوت مروڑ	5.7	
5.7.1 ميكاني قوت مر ور بذريعه تركيب تواناني		
5.7.2 ميكاني توت مر وژيدرييه مقناطيسي بهاو		

vii

6

رمثين 179	يكسال حال، بر قرار چالومعاص
ر مثين	6.1 متعدد دوری معاص
الد	6.2 معاصر مثين ڪا
المالہ	6.2.1 نخور
ر که اماله	÷ 6.2.2
صراباله	6.2.3 معا
اوي دوريارياضي نمونه	6.3 معاصر مشين كامس
لى	6.4 برقی طاقت کی منتقا
رچالومشین کے خصوصیات	6.5 يكسال حال، بر قراه
196	6.5.1 معا
197	6.5.2 معا
رموائد	6.6 کھلےدوراور کسرِ دو
ەدورمعائنە	6.6.1
دور معائنه	6.6.2 کېږ

211	امالی مشیرز	7
ساكن كمچھوں كى گھومتى مقناطىيى موج	7.1	
مشین کی سر کنے اور گھومتی موجول پر تبھرہ	7.2	
ساكن كيچمول مين امالي برقى دياو	7.3	
ساكن لچھوں كى مون كا گھومتے لچھوں كے ساتھوا ضافى رفتاراوران ميں پيداامالى برقى د باو	7.4	
گھومتے کچھوں کی گھومتی متناطبی دیاو کی موج	7.5	
گھومتے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالى موٹر كا مسادى برقى دور	7.7	
مىاوى برقى دور پرغور	7.8	
المالي موشر كامساوى تقونن دورياريا ضي نمونه	7.9	
چنجر انمالهلي موٹر	7.10	
بے پوچھ موٹراور جامد موٹر کے معائنہ	7.11	
7.11.1 بے پوچھ موثر کا معائنہ		
7.11.2 جامد موثر کا معائنہ		
رو ^{مش} ين 245	يك سمت	8
ميكاني ست كاركي بنيادى كاركردگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
يک ست جزير کی برقی د باو	8.2	
قوت مرورث	8.3	
بير وني بيجان اور خود بيجان يك سمت جزير	8.4	
يک سمت مشين کي کار کرد گي کے خط	8.5	
8.5.1 حاصل برتی د باو بالتقابل برتی بوجه		
8.5.2 رفتار بالقابل قوت مرور		
269	ئ	فرہناً

عـــنوان

0.8.3

عــنوان

باب6

يكسال حال، بر قرار جالو معاصر مشين

معاصر مشین وہ گھومنے والی مشین ہے جو ایک مقررہ رفتار سے گھومتی ہے۔ یہ رفتار فراہم کردہ برقی دباو کے تعدد پر منصر ہوتی ہے۔

کسی جزیٹر پر بوجھ تبدیل کرنے یا اسے میکانی طاقت فراہم کرنے والے کی رفتار تبدیل کرنے کے چند ہی کھات میں جزیٹر نئی صورتِ حال کے مطابق دوبارہ بر قرار صورت اختیار کر لیتا ہے۔اس بر قرار چالو حال میں اس کی رفتار، برقی دوباد، برقی رو، درجہ حرارت وغیرہ تبدیل نہیں ہوتے ہیں۔اس طرح موٹر پر بوجھ تبدیل کرنے سے موٹر کی درکار طاقت اور برقی رو تبدیل ہوں گے۔بوجھ تبدیل ہونے سے قبل موٹر ایک مستقل برقی رو حاصل کرتی اور ایک مستقل درجہ حرارت پر رہتی ہے۔بوجھ تبدیل ہونے کے چند ہی کھات میں موٹر دوبارہ ایک نئی بر قرار چالو صورت اختیار کرتی ہے جہاں اس کا برقی رو ایک نئی قیت پر برقرار رہتا ہے اور اس کا درجہ حرارت بھی ایک نئی قیت اختیار کرتا ہے۔دو مختلف برقرار چالو، کیساں صور توں کے در میان چند کھات کے لئے مشین عارضے حالے اس میں ہوتی ہے۔اس بیس ہوتی ہے۔اس بیس بوتی ہے۔اس بیس بوتی ہے۔اس بیس میں پر تبعرہ کیا جائے گا۔

معاصر مشین کے قوی کچھے عموماً ساکن جبکہ میدانی کچھے معاصر رفتار سے گھومتے ہیں۔ قوی کچھوں کا رو میدانی کچھوں کو کچھوں کے روکی نسبت بہت زیادہ ہوتا ہے اور اسے سرک چھلوں کے ذریعہ گزارنا مشکل ہوتا ہے للذا قوی کچھوں کو ساکن رکھا جاتا ہے جبکہ میدانی کچھوں کو گھمایا جاتا ہے۔

> transient state¹ steady state²

ہم دیکھ چکے ہیں کہ تین دوری ساکن لچھوں میں متوازن تین دوری برقی رو ایک گھومتے مقناطیسی دباوکی موج پیدا کرتے ہیں۔اس گھومتے موج کی رفتار کو معاصر رفتار 3 کہتے ہیں۔ معاصر مثنین کا گھومتا حصہ اسی رفتار سے گھومتا ہے۔

معاصر مشین کے میدانی کچھے کو یک سمت برقی رو درکار ہوتا ہے جو سرک چھلوں کے ذریعہ اس تک باہر سے پہنچایا جاتا ہے یا مشین کے دھرے پر نسب ایک چھوٹے یک سمت جزیٹر سے اسے فراہم کیا جاتا ہے۔

میدانی لچھا ایک میدانی مقناطیسی دباو پیدا کرتا ہے جو اس کچھے کے ساتھ ساتھ معاصر رفتار سے گھومتا ہے۔ یول معاصر مثین کے گھومتے کچھوں کے مقناطیسی دباو اور ساکن کچھوں کے مقناطیسی دباو معاصر رفتار سے گھومتے ہیں۔ اس لئے انہیں معاصر مثین کہتے ہیں۔

6.1 متعدد دوری معاصر مشین

معاصر مشین عموماً تین دوری ہوتے ہیں۔ تین دوری ساکن قوی کچھے خلائی درز میں 120° برقی زاویہ پر نسب ہوتے ہیں جبکہ میدانی کچھے گھومتے حصے پر نسب ہوتے ہیں اور ان میں یک سمت برقی رو ہوتا ہے۔

اگر مشین کے گھومتے جھے کو بیرونی میکانی طاقت سے گھمایا جائے تو یہ مشین ایک معاصر جزیٹر کے طور پر کام کرتی ہے اور اس کے تین دوری ساکن قوی کچھوں میں تین دوری برقی دباو پیدا ہوتا ہے جس کا برقی تعدد گھومنے کی رفتار پر منحصر ہوتا ہے۔ اس کے برعکس اگر مشین کے تین دوری ساکن قوی کچھوں کو تین دوری برقی طاقت مہیا کی جائے تو یہ مشین ایک معاصر موٹر کے طور پر کام کرتی ہے جو معاصر رفتار سے گھومتی ہے۔ مشین کی کل برقی قوت کے چند فی صد برابر برقی قوت میدان کچھے کو درکار ہوتی ہے۔

گھومتے کچھے تک برقی دہاو مختلف طریقوں سے پہنچایا جاتا ہے۔شکل 6.1 میں گھومتے کچھے تک موصل سرکھ پھلے 4 کی مدد سے یک سمت برقی رو پہنچانے کا طریقہ دکھایا گیا ہے۔ یہ سرک چھلے اسی دھرے پر نسب ہوتے ہیں جس پر گھومتا کچھا نسب ہوتا ہے اور دونوں کچھے کے ساتھ ساتھ ایک ہی رفتار سے گھومتے ہیں۔

> synchronous speed³ slip rings⁴

6.1 متعبد د دوری معب اصر مثین

شكل 6.1: كاربن كُبْن اور سرك چھلوں سے گھومتے لچھے تك برقى روينجايا يا گياہے۔

کاربن کے ساکن بش، اسپر نگ کی مدد ہے، سرک چھلوں کے بیرونی سطح کے ساتھ دباکر رکھے جاتے ہیں۔ جب مشین چلتی ہے، کاربن بش ان سرک چھلوں پر سرکتے ہیں۔ اسپر نگ کا دباو ان کا برقی جوڑ مضبوط رکھتا ہے تا کہ ان کے نیچ چنگاریاں نہ نگلیں۔ کاربن بش کے ساتھ برقی تار لگی ہے۔ یک سمت برقی رو I_r ، کاربن بش ⁵ اور سرک چھلوں سے ہوتا ہوا، گھومتے کچھے تک پہنچتا ہے۔

بڑی معاصر مشینوں میں میدانی یک سمت رو عموماً بدلتا رو چھوٹے جنریٹر سے حاصل کیا جاتا ہے جو معاصر مشین کے دھرے پر نسب ہوتا ہے اور دھرے کے ساتھ گھومتا ہے چھوٹے جنریٹر کے برقی دباو کو دھرے پر نسب برقیاتی ست کار کی مدد سے یک سمت برقی دباو میں تبدیل کیا جاتا ہے۔ یوں سرک چھلے کی ضرورت پیش نہیں آتی ہے۔ سرک چھلے بوجہ رگڑ خراب ہوتے ہیں جس کی وجہ سے معاصر مشین کی مرمت درکار ہوتی ہے جو ایک مہنگا کام ہے۔

اُبھرے قطب⁶ مشین، پانی سے چلنے والے ست رفتار جزیٹر اور عام استعال کی موٹروں کے لئے موزوں ہیں۔ جبکہ ہموار قطب⁷ مشین، تیز رفتار دو یا چار قطبی ٹربائن جزیٹروں کے لئے موزوں ہیں۔

ایک (بڑے) مملکت کو درکار برقی توانائی کسی ایک جزیٹر سے دینا ممکن نہیں ہوتا ہے بلکہ چند در جن سے لیکر کئی سو جزیٹر بیک وقت یہ فرنضہ سر انجام دیتے ہیں۔ ایک سے زیادہ جزیٹر استعال کرنا فائدہ مند ثابت ہوتا ہے۔ اوّل، برقی توانائی کی ضرورت کے مطابق جزیٹر چالو کئے جا سکتے ہیں۔ دوم، جزیٹروں کو ان مقامات کے قریب نسب کیا جا سکتا ہے جہاں جہاں برقی توانائی درکار ہو۔ کسی بھی اس طرح کے بڑے نظام میں ایک جزیٹر کی حیثیت بہت کم ہو

carbon bush⁵ salient poles⁶

non-salient poles⁷

جاتی ہے۔ ایک جزیر چالو یا بند کرنے سے پورے نظام پر کوئی خاص فرق نہیں پڑتا۔ اس صورت میں ہم اس نظام کو ایک مقررہ برقی دباو اور ایک مقررہ برقی تعدد کا نظام تصور کر سکتے ہیں۔ معاصر جزیر کے کئی اہم پہلو با آسانی سمجھے جا سکتے ہیں اگر یہ تصور کر لیا جائے کہ یہ ایک ایسے نظام سے جوڑا گیا ہے۔

مساوات 5.103 معاصر مشین کی قوت مروڑ دیتی ہے۔ اس مساوات کے مطابق برقی قوت مروڑ، مشین میں موجود عمل کرنے والے مقناطیسی دباو کو ایک دوسرے کی سیدھ میں لانے کی کوشش کرتی ہے۔ برقرار چالو مشین کی برق قوت مروڑ اور اس کے دھرے پر لا گو میکانی قوت مروڑ ایک دوسرے کے برابر ہوتے ہیں۔ جب مشین ایک جزیر کی حیثیت سے استعال ہو تب میکانی طاقت دھرے کو گھماتا ہے اور گھومتے کچھے کا مقناطیسی دباو کل مقناطیسی دباو سے گھومنے کے رخ آگے ہوتا ہے۔ مساوات 5.103 سے حاصل قوت مروڑ ایسی صورت میں گھومنے کو روکنے کی کوشش کرتا ہے۔ میکانی طاقت چلتے پانی، ایندھن سے چلتے انجی، وغیرہ سے حاصل ہو سکتا ہے۔ اس طرح اگر مشین ایک موٹر کی حیثیت سے استعال ہو، تب صورت اس کے بالکل اُلٹ ہو گی۔

کل مقناطیسی بہاو ϕ_{ar} اور گھومتے لچھے کا مقناطیسی دباو τ_r تبدیل نہ ہونے کی صورت میں مساوات δ کی مطابق مثین کی قوت مر وڑ ہی صاتھ تبدیل ہو گی۔ اگر زاویہ θ_r صفر ہو تب قوت مر وڑ بھی صفر ہو گ۔ استعال ہو رہی ہے۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جاتا اب تصور کریں کہ یہی مثین ایک موٹر کے طور پر استعال ہو رہی ہے۔ جیسے جیسے موٹر پر لدا میکانی بوجھ بڑھایا جاتا ہے ویسے ویسے اس کے دھرے پر میکانی قوت مر وڑ بڑھے گی۔ موٹر کو برابر کی برقی قوت مر وڑ پیدا کرنے کے لئے، موٹر کو برابر کی برقی قوت مر وڑ پیدا کرنے کے لئے، موٹر کو بید زاویہ کو بڑھانا ہو گا۔ یہاں یہ سمجھنا ضروری ہے کہ موٹر ہر وقت معاصر رفتار سے گھومتا ہے ماسوانے ایک لحم کے لئے جس کے دوران موٹر آہتہ ہو کر زاویہ کو ضرورت کے مطابق درست کرتی ہے۔ یعنی موٹر کا زاویہ ہو وقت میکانی قوت مروڑ کا تعقب 8 کرتا ہے۔

موٹر پر لدا میکانی بوجھ بندر تئے بڑھانے سے ایک لمحہ آئے گا جب زاویہ θ_r نوے درجہ، $\frac{\pi}{2}$ ریڈیئن، تک پہنچتا ہے۔ اس لمحہ موٹر اپنی انتہائی قوت مروڑ پیدا کرے گی۔ موٹر کسی بھی صورت میں اس سے زیادہ قوت مروڑ پیدا نہیں کر سکتی ہے لہذا بوجھ مزید بڑھانے سے موٹر رکھ جائے گی۔ ہم کہتے ہیں کہ موٹر نے غیر معاصر 10 صورت اختیار کر لی ہے۔ مساوات 5.103 سے ظاہر ہے کہ کل مقاطیسی بہاو یا گھومتے کچھے کا مقاطیسی دباو بڑھا کر موٹر کی انتہائی قوت مروڑ بڑھائی جا سکتی ہے۔

hunting⁸ pull out torque⁹ lost synchronism¹⁰

6.2. معاصر مشين كے اماله

یہی صورت اگر مشین برقی جزیٹر کے طور پر استعال کی جائے سامنے آتی ہے۔ جب بھی مشین غیر معاصر صورت اختیار کرے، اسے جلد خود کار دور شکر ہے ¹¹ کی مدد سے برقی بھم رسانی سے الگ کر دیا جاتا ہے۔

ہم نے دیکھا کہ ایک معاصر موٹر صرف اور صرف معاصر رفتار سے ہی گھوم سکتی ہے اور صرف اسی رفتار پر گھوم کر قوت مروڑ پیدا کر علی ہے لہذا ساکن معاصر موٹر کو چالو کرنے کی کوشش ناکام ہو گی۔ معاصر موٹر کو پہلے کسی دوسرے طریقے سے معاصر رفتار تک لایا جاتا ہے اور اس کے بعد اسے چالو کیا جاتا ہے۔ ایسا عموماً ایک چھوٹی امالھے موٹر کو چالو کیا جاتا ہے۔ چس کے بعد معاصر موٹر کو چالو کیا جاتا ہے۔ ایک امالہ موٹر عموماً معاصر موٹر کو دھرے پر نسب ہوتی ہے۔

6.2 معاصر مثين كے اماليہ

ہم تصور کرتے ہیں کہ مشین دو قطب اور تین دوری ہے اور اس کے کچھے ستارہ نما جڑے ہیں۔اس طرح کچھوں میں برقی رو، تار برقی رو¹³ ہی ہو گا اور ان پر لا گو برقی دباو، یک دوری برقی دباو ہو گا۔ایسا کرنے سے مسئلے پر غور کرنا آسان اور نتیجہ کسی بھی موڑ کے لئے درست ہوتا ہے۔

شکل 6.2 میں ایک ایس تین دوری دو قطبی معاصر مثین دکھائی گئی ہے۔ اس کا گھومتا حصہ نکلی نما ہے۔اس کو دو قطبی مثین یا P قطبی مثین کے دو قطب کا حصہ سمجھا جا سکتا ہے۔

اگرچہ یہاں پچھ لچھے دکھائے گئے ہیں، حقیقت میں پھلے لچھے استعال ہوں گے للذا انہیں پھلے لچھے تصور کریں۔
اس طرح ہر لچھا سائن نما برقی دباو پیدا کرتا ہے جس کی چوٹی لچھے کی مقناطیسی محور کے رخ ہو گا۔ چونکہ معاصر مثین کے گھومتے لچھے میں یک سمت رو ہوتا ہے لہذا، جیسا شکل 6.2 میں دکھایا گیا ہے، اس کچھے کا مقناطیسی دباو ہر لمحہ کی مقناطیسی محور کے رخ ہو گا۔ گھومتے لچھے کا مقناطیسی دباو گھومتے حصہ کے ساتھ ساتھ معاصر رفتار سے گھومے گا۔

فرض کریں کہ یہ مثین معاصر رفتار ω سے گھوم رہی ہے۔ یوں اگر لمحہ t=0 پر دور a اور گھومتے کچھے کی مقاطیسی محور کے رخ ایک دوسرے جیسے ہوں تب کسی بھی لمحہ t پر ان کے پھی زاویہ $\theta=\omega t$ ہو گا۔ امالہ کا حساب

circuit breaker¹¹

 $[\]begin{array}{c} \text{induction motor}^{12} \\ \text{line current}^{13} \end{array}$

شکل 6.2: تین دوری، دو قطبی معاصر مشین ـ

 l_g کرنے کے لئے شکل 6.2 سے رجوع کریں جہاں محیط پر خلائی ورز یکساں ہے۔ رداسی رخ خلائی ورز کی لمبائی ρ ہے۔ ساکن جصے میں شگافوں کے اثر کو نظرانداز کریں۔ محور سے خلائی درز تک کا اوسط رداسی فاصلہ ρ ہے اور مشین کی محوری لمبائی (دھرے کے رخ) ρ ہے۔

کسی بھی کچھے کے خود امالہ کا حساب کرتے وقت باقی تمام کچھوں کو نظرانداز کریں۔یوں باقی تمام کچھوں میں برقی رو صفر تصور کریں، یعنی ان کچھوں کے سرے آزاد رکھیں۔کسی ایک کچھے کے خود امالہ کو پیما سے ناپتے وقت بھی باقی تمام کچھوں کے سرے آزاد رکھیں جائیں گے۔

6.2.1 خوداماليه

au گھو متے یا ساکن کچھے کا خود امالہ L زاویہ au پر منحصر نہیں ہوتا ہے۔ ان میں سے کسی بھی کچھے کی مقناطیسی دباو L

$$\tau = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p$$

سے خلائی درز میں درج ذیل کثافت مقناطیسی بہاو B پیدا ہو گا۔

(6.2)
$$B = \mu_0 H = \mu_0 \frac{\tau}{l_g} = \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} \cos \theta_p$$

6.2. معاصر مشین کے امالہ

یہ مساوات زاویہ θ_p کے ساتھ کثافت مقناطیسی دباو B کا تعلق پیش کرتی ہے۔ لچھا کے ایک قطب پر کل مقناطیسی بہاو ϕ اس مساوات کا سطح کمل 14 دے گا۔

(6.3)
$$\phi = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} Bl\rho \, d\theta_p$$

$$= \mu_0 k_w \frac{4}{\pi} \frac{Ni}{2l_g} l\rho \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos \theta_p \, d\theta_p$$

$$= \frac{4\mu_0 k_w Nil\rho}{\pi l_q}$$

ایک کیھے کا خود امالہ L، مساوات 2.29 میں جزو کھیلاو k_w کا اثر شامل کرتے ہوئے حاصل کرتے ہیں۔

$$(6.4) L = \frac{\lambda}{i} = \frac{k_w N \phi}{i} = \frac{4\mu_0 k_w^2 N^2 l \rho}{\pi l_q}$$

يه مساوات شكل 6.2 مين تينول توى لچھوں كا خود اماليه

(6.5)
$$L_{aa0} = L_{bb0} = L_{cc0} = \frac{4\mu_0 k_{wa}^2 N_a^2 l\rho}{\pi l_g}$$

اور میدانی کھیے کا خود امالہ دیتی ہے۔

(6.6)
$$L_{mm0} = \frac{4\mu_0 k_{wm}^2 N_m^2 l \rho}{\pi l_g}$$

6.2.2 مشتركه اماله

اب ہم دو کچھوں کا مشتر کہ امالہ حاصل کرتے ہیں۔تصور کریں صرف گھومتا کچھا مقناطیسی بہاو پیدا کر رہا ہے۔ ہم بہاو کے اس حصہ سے، جو a کچھا سے گزرتا ہے، گھومتے کچھا اور a کچھا کا مشتر کہ امالہ حاصل کرتے ہیں ۔شکل 6.2

surface integral¹⁴

میں گھومتے اور a کچھا کے نی زاویہ θ ہے۔الی صورت میں صورت میں گھومتے اور a کچھا کے نی زاویہ a بہاو، a بہاو، a بہاو کا حساب مساوات a میں حکمل کے حد تبدیل کر کے حاصل کرتے ہیں۔

(6.7)
$$\phi_{am} = \int \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} B l \rho \, d\theta_{p}$$

$$= \mu_{0} k_{wm} \frac{4}{\pi} \frac{N_{m} i_{m}}{2 l_{g}} l \rho \int_{-\frac{\pi}{2} - \theta}^{+\frac{\pi}{2} - \theta} \cos \theta_{p} \, d\theta_{p}$$

$$= \frac{4 \mu_{0} k_{wm} N_{m} i_{m} l \rho}{\pi l_{g}} \cos \theta$$

یوں گھومتے کچھا اور کچھا کا مشتر کہ امالہ

(6.8)
$$L_{am} = \frac{\lambda_{am}}{i_m} = \frac{k_{wa}N_a\phi_{am}}{i_m} = \frac{4\mu_0k_{wa}k_{wm}N_aN_ml\rho}{\pi l_g}\cos\theta$$

یا

$$(6.9) L_{am} = L_{am0}\cos\theta$$

ہو گا جہاں

$$(6.10) L_{am0} = \frac{4\mu_0 k_{wa} k_{wm} N_a N_m l \rho}{\pi l_a}$$

ہے اور $\omega t = \omega t$ گومنے کی رفتار پر منحصر ہو گا۔ اگرچہ مساوات 6.9 ایک گھومتے اور ایک ساکن کچھے کے لئے حاصل کی گئی ہے، در حقیقت یہ شکل 6.2 میں کسی بھی دو کچھوں کے لئے درست ہے۔ دونوں ساکن کچھے ساکن یا دونوں متحرک لینے سے بھی یہی نتیجہ حاصل ہوتا ہے۔ یوں دو ساکن یکسال کچھے، مثلاً α اور α جن کے آج 120° زاویہ ہے، کا مشتر کہ امالہ کا مشتر کہ امالہ

(6.11)
$$L_{ab} = \frac{4\mu_0 k_{wa} k_{wb} N_a N_b l \rho}{\pi l_g} \cos 120^\circ = -\frac{2\mu_0 k_{wa}^2 N_a^2 l \rho}{\pi l_g}$$

ہو گا جہاں یکسانیت کی بدولت $k_{wb}=k_{wa}$ اور $N_b=N_a$ اور $N_b=N_b$ اور $N_b=k_{wa}$ بالکل یکسال ہوں تب درج بالا مساوات اور مساوات 6.5 کی مدد سے درج ذیل لکھا جا سکتا ہے۔

(6.12)
$$L_{ab} = L_{bc} = L_{ca} = -\frac{L_{aa0}}{2}$$

6.2. معیاصر مثین کے امالہ

6.2.3 معاصراماله

مشین پر لا گو برقی دباو کو مشین کے کچھوں کا خود امالہ، مشتر کہ امالہ اور کچھوں کے برقی رو کی مدد سے لکھا جا سکتا ہے۔ یہ کرنے کے لئے ہم پہلے کچھوں کی ارتباط بہاو 🖍 کو ان کے امالہ اور ان کے برقی رو کی مدد سے لکھتے ہیں۔

(6.13)
$$\lambda_{a} = L_{aa}i_{a} + L_{ab}i_{b} + L_{ac}i_{c} + L_{am}I_{m}$$

$$\lambda_{b} = L_{ba}i_{a} + L_{bb}i_{b} + L_{bc}i_{c} + L_{bm}I_{m}$$

$$\lambda_{c} = L_{ca}i_{a} + L_{cb}i_{b} + L_{cc}i_{c} + L_{cm}I_{m}$$

$$\lambda_{m} = L_{ma}i_{a} + L_{mb}i_{b} + L_{mc}i_{c} + L_{mm}I_{m}$$

ان مساوات میں ساکن کچھوں کا بدلتا رو چھوٹے حروف i_a,i_b,i_c جبکہ گھومتے میدانی کچھے کا یک سمت رو بڑے حرف I_m حرف I_m

ان چار مساوات میں سے ہم کسی ایک کو حل کرتے ہیں۔ چونکہ چاروں مساوات ایک طرح کی ہیں للذا باقی بھی اسی طرح حل ہوں گی۔ ہم ان میں پہلی مساوات منتخب کرتے ہیں:

$$\lambda_a = L_{aa}i_a + L_{ab}i_b + L_{ac}i_c + L_{am}I_m$$

مساوات 6.5 لچھا a کا خود امالہ دیتی ہے اور اس کو حاصل کرتے ہوئے تصور کیا گیا کہ لچھے کا پورا مقناطیسی بہاہ خلائی درز سے گزر تا ہے۔ حقیقت میں ایسا نہیں ہوتا اور مقناطیسی بہاہ کا کچھ حصہ خلائی درز سے گزر کر دوسری جانب نہیں پہنچ پاتا۔ مقناطیسی بہاہ کا یہ حصہ رستا امالہ L_{al} اللہ L_{al} پیدا کرتا ہے جو ٹرانسفار مرکے رستا امالہ کی طرح ہوتا ہے۔ یوں لچھے کا کل خود امالہ میں دو حصوں پر مشتمل ہوگا:

$$(6.15) L_{aa} = L_{aa0} + L_{al}$$

ہم مساوات 6.5، مساوات 6.9، مساوات 6.12 اور مساوات 6.15 کی مدد سے مساوات 6.14 کو درج ذیل صورت میں لکھتے ہیں۔

(6.16)
$$\lambda_{a} = (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} i_{b} - \frac{L_{aa0}}{2} i_{c} + L_{am0} I_{m} \cos \omega t$$
$$= (L_{aa0} + L_{al}) i_{a} - \frac{L_{aa0}}{2} (i_{b} + i_{c}) + L_{am0} I_{m} \cos \omega t$$

leakage inductance¹⁵

اب تین دوری برقی رو کا مجموعہ صفر ہوتا ہے

$$(6.17) i_a + i_b + i_c = 0$$

للذا مساوات 6.16 میں اس کو استعال کرتے ہوئے

(6.18)
$$\lambda_a = (L_{aa0} + L_{al}) i_a - \frac{L_{aa0}}{2} (-i_a) + L_{am0} I_m \cos \omega t$$
$$= \left(\frac{3}{2} L_{aa0} + L_{al}\right) i_a + L_{am0} I_m \cos \omega t$$
$$= L_s i_a + L_{am0} I_m \cos \omega t$$

حاصل ہو گا جہاں

$$(6.19) L_s = \frac{3}{2}L_{aa0} + L_{al}$$

کو معاصراماله ¹⁶ کہتے ہیں۔

مساوات 6.19 اور مساوات 5.49 پر ایک مرتبہ دوبارہ غور کریں۔ یہ دونوں ایک دوسرے جیسے ہیں۔ وہاں کل گھومتا مقاطیسی دباو ایک کچھے کے امالہ کا $\frac{3}{2}$ گنا تھا اور یہاں معاصر امالہ ایک کچھے کے امالہ کا $\frac{3}{2}$ گنا ہے۔ یہ دو مساوات ایک ہی حقیقت کے دو پہلو ہیں۔

معاصر امالہ تین حصوں پر مشتمل ہے۔ پہلا حصہ L_{aa0} ہے جو a کچھے کا خود امالہ ہے۔ دوسرا حصہ $\frac{L_{aa0}}{2}$ ، کچھا کا باقی دو کچھوں کے ساتھ اس صورت مشتر کہ امالہ ہے جب مشین میں تین دوری متوازن برقی رو ہو۔ تیسرا حصہ a کا باقی دو کچھا کا رستا امالہ ہے۔ یوں متوازن برقی روکی صورت میں معاصر امالہ، مشین کے ایک کچھے کا ظاہری امالہ ہوتا ہے۔

مثال 6.1: ایک معاصر جزیٹر کی یک دوری کل خود امالہ 2.2 mH اور رستا امالہ 0.2 mH ہیں۔اس مشین کے دو مرحلوں کا آپس میں مشتر کہ امالہ اور مشین کا معاصر امالہ حاصل کریں۔

 $L_{ab} = -1\,\mathrm{mH}$ عل: چونکه $L_{aa} = L_{aa0} + L_{ab}$ لیزا $L_{aa} = L_{aa0} + L_{ab}$ کی مدد سے $L_{aa0} = 2\,\mathrm{mH}$ اور میادات $L_{aa} = 3.2\,\mathrm{mH}$ کی مدد سے $L_{s} = 3.2\,\mathrm{mH}$ ہور میادات

 $synchronous\ inductance^{16}$

6.3 معاصر مشین کامساوی دوریاریاضی نمونه

کے ہوتی دباو کے برابر ہو گا، لیتی R_a میں برتی دباو کے گھنے اور λ_a کے برتی دباو کے برابر ہو گا، لیتی R_a

$$(6.20) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t}$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} - \omega L_{am0} I_m \sin \omega t$$

$$= i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + e_{am}$$

يہاں

(6.21)
$$e_{am} = -\omega L_{am0} I_m \sin \omega t$$
$$= \omega L_{am0} I_m \cos \left(\omega t + \frac{\pi}{2}\right)$$

کو پیجانی برقی دباو یا اندرونی پیدا برقی دباو کہتے ہیں جو گھومتے کچھے سے پیدا مقناطیسی بہاو کی وجہ سے وجود میں آتی ہے۔ اس کے موثر قیت $E_{am,rms}$ مساوات 1.42 کی مدد سے حاصل ہوتا ہے۔

(6.22)
$$E_{am,rms} = \frac{\omega L_{am0} I_m}{\sqrt{2}} = 4.44 f L_{am0} I_m$$

مساوات 6.20 کو ایک برتی دور سے ظاہر کیا جا سکتا ہے جے شکل 6.3 میں دکھایا گیا ہے۔ کسی بھی برتی آلہ پر جب برتی دباو لا گو کیا جائے تو برتی روکی مثبت سمت لا گو برتی دباو کے مثبت سرے سے باہر کی جانب کو ہوتی ہے۔ المذا اس شکل میں برتی رو i_a لا گو برتی دباو v_a کی مثبت سرے سے باہر کی جانب کو ہے۔ یہ شکل ایک موٹر کو ظاہر کرتی ہے جہاں موٹر کے مثبت سرے پر برتی رو اندر کی جانب کو ہوتا ہے۔ اگر موٹر کی بجائے ایک معاصر جزیئر کی بات

شکل 6.4: معاصر جزیٹر کامساوی دوریاریاضی نمونہ۔

شکل 6.5: معاصر جنریٹر کے مساوی ادوار۔

ہوتی تو یہ جزیر برقی دباو پیدا کرتا اور برقی رو اس جزیر کی مثبت سرے سے باہر کی جانب کو ہوتی۔ اس صورت میں ہمیں شکل 6.3 کی جگه شکل 6.4 ملے گا۔اس شکل کی مساوات اسی شکل سے یوں حاصل ہوتی ہے۔

$$(6.23) e_{am} = i_a R_a + L_s \frac{\mathrm{d}i_a}{\mathrm{d}t} + v_a$$

یہاں میہ دھیان رہے کہ جزیٹر کے مساوی دور میں برقی رو کی مثبت سمت موٹر کے مساوی دور میں برقی رو کی مثبت سمت کے اُلٹ ہے۔اس کا دوری سمتیہ مساوات یوں لکھا جائے گا۔

(6.24)
$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s + \hat{V}_a$$

اس دوری سمتیہ کے مساوات کو شکل 6.5-الف میں دکھایا گیا ہے۔عام حالات میں X_s کی مقدار R_a سے سو سے دو سو گنا زیادہ ہوتی ہے۔

مثال 6.2: دو قطب 50 ہر ٹرز کا ایک معاصر جزیٹر 40 ایمپیئر میدانی برقی رو پر 2100 وولٹ یک دوری موثر برقی دباو پیدا کرتی ہے۔اس مشین کی قوی اور میدانی کچھول کے مابین مشتر کہ امالہ حاصل کریں۔ 6.4. برقى طب قىية كى منتقلى

حل: مساوات 6.22 سے

(6.25)
$$L_{am} = \frac{\sqrt{2}E_{am}}{\omega I_m} = \frac{\sqrt{2} \times 2100}{2 \times \pi \times 50 \times 40} = 0.2363 \,\text{H}$$

 \Box

6.4 برقی طاقت کی منتقلی

شکل 3.23 ٹرانسفار مر کا مساوی دور (ریاضی نمونہ) اور شکل 6.5 معاصر جزیٹر کا مساوی دور (ریاضی نمونہ) ہے۔ دونوں بالکل ایک طرح کے ہیں، للذا مندرجہ ذیل بیان دونوں کے لئے درست ہوگا، اگرچہ یہاں ہمیں صرف معاصر آلوں سے دلچیسی ہے۔

معاصر آلوں میں معاصر متعاملہ کچھے کی مزاحمت سے بہت زیادہ ہوتا ہے للذا اس کے مزاحمت کو نظرانداز کیا جا سکتا۔ ایبا ہی شکل کے حصہ بامیں کیا گیا ہے۔

شکل 6.5ب کو اگر ہم ایک کھے کے لئے ایک سادہ برقی دور سمجھیں جس کے بائیں جانب \hat{E}_{am} اور دائیں جانب \hat{V}_a جانب \hat{V}_a برقی دباو ہے جن کے مابین ایک متعاملہ $\hat{J}X_s$ جڑا ہے۔ اس برقی دور میں برقی طاقت کے منتقلی کا حساب یوں ممکن ہے۔

شکل 6.5-ب کی دوری سمتیہ شکل 6.6 میں دی گئی ہے۔ شکل 6.6-الف میں برتی رو \hat{I}_a برتی دباو \hat{V}_a سے ϕ زاویہ پیچھے ہے اور شکل 6.6-ب میں برتی رو ϕ زاویہ برتی دباو سے آگے ہے۔ چونکہ زاویہ اُفقی سمت سے گھڑی کی اُلٹی سمت ناپا جاتا ہے لہذا شکل-الف میں ϕ منفی زاویہ ہے اور σ مثبت زاویہ ہے جبکہ شکل-ب میں دونوں زاویے مثبت ہیں۔

دائیں جانب طاقت p_v منتقل ہو رہی ہے جہاں

$$(6.26) p_v = V_a I_a \cos \phi$$

شکل6.6: معاصر جنریٹر کادوری سمتیہ۔

ك برابر ہے۔ شكل 6.6-الف سے

(6.27)
$$\hat{I}_{a} = I_{a} \underline{/\phi_{a}} = \frac{\hat{E}_{am} - \hat{V}_{a}}{jX_{s}}$$

$$= \frac{E_{am}\underline{/\sigma} - V_{a}\underline{/0}}{X_{s}\underline{/\frac{\pi}{2}}}$$

$$= \frac{E_{am}\underline{/\sigma} - \pi/2 - V_{a}\underline{/-\pi/2}}{X_{s}}$$

کھا جا سکتا ہے۔ایک دوری سمتیہ کے دو جزو ہوتے ہیں۔ اس کا حقیقی جزو اُفقی سمت میں بنایا جاتا ہے اور اس کا فرضی جزو حقیقی جزو ک \hat{V}_a عمود میں بنایا جاتا ہے۔شکل 6.6 سے واضح ہے کہ اس مساوات کا حقیقی جزو کے ہم قدم ہے لہٰذا

(6.28)
$$I_a \cos \phi_a = \frac{E_{am}}{X_s} \cos \left(\sigma - \frac{\pi}{2}\right) - \frac{V_a}{X_s} \cos \left(-\frac{\pi}{2}\right)$$
$$= \frac{E_{am}}{X_s} \sin \sigma$$

اس مساوات اور مساوات 6.26 سے حاصل ہوتا ہے

$$(6.29) p_v = \frac{V_a E_{am}}{X_s} \sin \sigma$$

تین دوری معاصر مشین کے لئے اس مساوات کو تین سے ضرب دیں یعنی

$$(6.30) p_v = \frac{3V_a E_{am}}{X_s} \sin \sigma$$

 E_{am} یہ طاقت بالمقابل زاویہ 17 کا قانون ہے۔اگر V_a معین ہو تو جزیٹر E_{am} یا σ بڑھا کر طاقت بڑھا سکتا ہے۔اگر معین ہو تو جزیٹر مکن ہے۔ کچھے کی مزاحمت میں برقی توانائی گھومتے کچھے میں برقی رو بڑھا کر بڑھائی جاتی ہے۔البتہ یہ ایک حد تک کرنا ممکن ہے۔ کچھے کی مزاحمت میں برقی توانائی

power-angle law¹⁷

6.4. برقى طب قت كى منتقلى

ضائع ہونے سے یہ گرم ہوتا ہے اور اس کی حرارت کو خطر ناک حد تک پہنچنے نہیں دیا جا سکتا۔ دوسری جانب σ کو نوے زاویہ تک بڑھایا جا سکتا ہے اور اس صورت میں جزیٹر زیادہ سے زیادہ طاقت مہیا کرے گا۔

$$p_{v, ; z_i} = \frac{3V_a E_{am}}{X_s}$$

حقیقت میں جزیٹر کو اس طرح بنایا جاتا ہے کہ اس کی زیادہ سے زیادہ قابل استعال طاقت نوے درجے سے کافی کم زاویہ پر ہو۔ نوے درجے پر جزیٹر کو قابور کھنا مشکل ہو جاتا ہے۔

مثال 6.3: ایک 50 قطب ستارہ جڑی تین دوری 50 ہرٹز 2300 وولٹ تار کی برقی دباو پر چلنے والی 1800 کلو وولٹ-ایمپیئر کی معاصر مشین کی یک دوری معاصر امالہ 2.1 اوہم ہے۔

- مثین کے برتی سروں پر 2300 وولٹ تارکی برتی دباو مہیا کرتے ہوئے اگر اس کی میدانی برتی رواتنی رکھی جائے کہ پورے بوجھ پر مثین کا جزو طاقت ایک کے برابر ہو تو اس سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جائے ہے۔
- اگر اسے 2 قطب 3000 چکر فی منٹ تین دوری سارہ جڑی 2300 وولٹ تارکی برقی دباو پیدا کرنے والی 2200 کلو وولٹ ایم بییئر کی معاصر جزیئر سے چلایا جائے جس کی یک دوری معاصر امالہ 2.3 اوہم ہو۔ موٹر پر اس کا پورا برقی بوجھ لادکر جزیئر کو معاصر رفتار پر چلاتے ہوئے دونوں مشینوں کی میدانی برقی رو تبدیل کی جاتی ہے حتی کہ موٹر ایک جزو طاقت پر چلنے گئے۔ دونوں مشینوں کی میدانی برقی رو یہاں بر قرار رکھ کر موٹر پر بوجھ آہتہ آہتہ بڑھائی جاتی ہے۔ اس صورت میں موٹر سے زیادہ سے زیادہ کتنی قوت مروڑ حاصل کی جا سکتی ہے اور اس کی سروں پر تارکی برقی دباو کتنی ہوگی۔

حل:

• شكل 6.7-الف اور 6.7-ب سے رجوع كريں ـ يك دورى برقى دباو اور كل برقى رويہ ہيں

$$\frac{2300}{\sqrt{3}} = 1327.9 \,\mathrm{V}$$
$$\frac{1800000}{\sqrt{3} \times 2300} = 451.84 \,\mathrm{A}$$

للذا

$$\begin{split} \hat{E}_{am,m} &= \hat{V}_a - j\hat{I}_a X_{s,m} \\ &= 1327.9 / 0^\circ - j451.84 / 0^\circ \times 2.1 \\ &= 1327.9 - j948.864 \\ &= 1632 / -35.548^\circ \end{split}$$
 يك دورى زياده سے زياده برتی طاقت $p_{ij} = \frac{1327.9 \times 1632}{2.1} = 1\,031\,968\,\mathrm{W}$

ہے ۔یوں تین دوری زیادہ سے زیادہ طاقت 904 095 واٹ ہو گی۔50 ہر ٹز اور 50 قطب سے مشین کی معاصر میکانی رفتار مساوات 5.53 کی مدد سے دو چکر فی سینٹر حاصل ہوتی ہے لینی $f_m=2$ یوں مشین سے زیادہ سے زیادہ قوت مروڑ

$$T_{|\vec{\varphi}|} = \frac{p_{|\vec{\varphi}|}}{2\pi f_m} = \frac{3095904}{2 \times \pi \times 2} = 246\,364\,\mathrm{N}\,\mathrm{m}$$

حاصل ہو گی۔

• شکل 6.7-پ سے رجوع کریں۔ پہلی جزو کی طرح یہاں بھی موٹر کی برقی سروں پر تار کی برقی دباو 2300 وولٹ اور اس کی محرک برقی دباو 1632 وولٹ ہے۔ جزیئر کی محرک برقی دباو

$$\begin{split} \hat{E}_{am,g} &= \hat{V}_a + j\hat{I}_a X_{s,g} \\ &= 1327.9 / 0^{\circ} + j451.84 / 0^{\circ} \times 2.3 \\ &= 1327.9 + j1039.233 \\ &= 1686 / 38.047^{\circ} \end{split}$$

ہے۔ یہ صورت شکل 6.7-ت میں دکھائی گئی ہے۔

معاصر موٹر اس وقت زیادہ سے زیادہ طاقت پیدا کرے گی جب $\hat{E}_{am,m}$ اور $\hat{E}_{am,m}$ آپس میں $\hat{E}_{am,m}$ زاویہ پر ہوں۔ ایسا شکل $\hat{E}_{am,m}$ میں وکھایا گیا ہے ۔

اب مساوات 6.31 میں ایک معاصر امالہ کی جگہ سلسلہ وار جڑی موٹر اور جزیئر کی امالہ ہیں اور دو برقی دباو اب موٹر اور جزیئر کی محرک برقی دباو ہیں۔یوں موٹر کی یک دوری زیادہ سے زیادہ طاقت

$$p_{\xi i} = \frac{1686 \times 1632}{2.3 + 2.1} = 625352 \,\mathrm{W}$$

حاصل ہوں گے۔ یوں تنین دوری $1\,876\,056$ واٹ حاصل ہوں گے اور زیادہ سے زیادہ قوت مروڑ $T_{|\tau|}=rac{1876056}{2 imes\pi imes2}=149\,291\,\mathrm{N}\,\mathrm{m}$

ہو گی۔

6.5 کیسال حال، بر قرار چالومشین کے خصوصیات

معاصر جنریٹر: برقی بوجھ بالمقابل I_m کے خطوط 6.5.1

شکل 6.5-ب کے لئے دوری سمتیوں کا مساوات یہ ہے

$$\hat{E}_{am} = \hat{V}_a + j\hat{I}_a X_s$$

اسے بوں لکھ سکتے ہیں

(6.33)
$$E_{am/\underline{\sigma}} = V_a/\underline{0} + I_a X_s / \frac{\pi}{2} + \phi$$

اس مساوات کو مخلوط عدد 18 کے طور پر یوں لکھ سکتے ہیں۔

 $E_{am}\cos\sigma + jE_{am}\sin\sigma = V_a\cos0 + jV_a\sin0 + I_aX_s\cos\left(\frac{\pi}{2} + \phi\right) + jI_aX_s\sin\left(\frac{\pi}{2} + \phi\right)$ $= E_{am,x} + jE_{am,y}$

اس مساوات سے $\left|\hat{E}_{am}
ight|$ یعنی $\left|\hat{E}_{am}
ight|$ کی مقدار یوں حاصل ہوتی ہے۔

(6.34)
$$\begin{aligned} \left| \hat{E}_{am} \right| &= E_{am} = \sqrt{E_{am,x}^2 + E_{am,y}^2} \\ &= \sqrt{V_a^2 + (I_a X_s)^2 + 2V_a I_a X_s \sin \phi} \end{aligned}$$

جزیڑ کے سروں پر معین V_a رکھتے ہوئے مختلف ϕ کے لئے E_{am} بالقابل I_a خط شکل I_a میں دکھائے گئے ہیں۔ چونکہ I_a اور I_m براہِ راست متناسب ہیں اور اسی طرح کسی ایک مخصوص جزو طاقت اور معین V_a کئے جزیڑ کا طاقت I_a کے براہِ راست متناسب ہوتا ہے الہذا یہی ترسیم I_m بالقابل جزیڑ کے طاقت کو بھی ظاہر کرتا ہے۔

 ${\rm complex}\ {\rm number}^{18}$

 I_a بر تی باریا قوی کچھے کی بر تی رو

شکل 6.8: جزیٹر: برقی بوجھ بالمقابل I_m کے خط

معاصر موٹر: I_a بالمقابل معاصر موٹر: I_a

معاصر موٹر کا مساوی دور (ریاضی نمونہ) شکل 6.3 میں دکھایا گیا ہے اور اس کا دوری سمتیہ شکل 6.9 میں دکھایا گیا ہے۔ ہے۔ اس میں مزاحمت نظرانداز کرنے سے اس کی مساوات یوں ہو گی۔

(6.35)
$$\begin{split} \hat{V}_{a} &= \hat{E}_{am} + j\hat{I}_{a}X_{s} \\ V_{a}\underline{/0} &= E_{am}\underline{/\sigma} + jI_{a}\underline{/\phi}X_{s} \\ &= E_{am}\underline{/\sigma} + I_{a}X_{s}\underline{/\frac{\pi}{2} + \phi} \end{split}$$

اس مساوات میں زاویے موٹر پر لاگو برقی دباو \hat{V}_a کے حوالہ سے ہیں، لیعنی \hat{V}_a کا زاویہ صفر لیا گیا ہے۔یاد رہے کہ زاویہ ناپنے کی مثبت سبت افقی کیر سے گھڑی کی اُلٹی سبت ہے الہذا پیچ زاویہ 19 مثبت اور ماخیری زاویہ 20 مثنی ہیں۔ اس مساوات سے امالی دباو E_{am} کی مقدار یوں حاصل ہو گی۔

$$\begin{split} E_{am/\underline{\sigma}} &= V_a/\underline{0} - I_a X_s / \frac{\pi}{2} + \phi \\ &= V_a - I_a X_s \cos\left(\frac{\pi}{2} + \phi\right) - j I_a X_s \sin\left(\frac{\pi}{2} + \phi\right) \\ &= V_a + I_a X_s \sin\phi - j I_a X_s \cos\phi \end{split}$$

leading angle¹⁹ lagging angle²⁰

شکل 6.9: موٹر کادوری سمتیہ۔ ح

للذا

(6.36)
$$|E_{am}| = \sqrt{(V_a + I_a X_s \sin \phi)^2 + (I_a X_s \cos \phi)^2}$$
$$= \sqrt{V_a^2 + I_a^2 X_s^2 + 2V_a I_a X_s \sin \phi}$$

موٹر پر لاگو برقی و باو اور اس پر میکانی بوجھ کو 0%، 25% اور 75% پر رکھ کر اس مساوات کو شکل 6.10 میں ترسیم کیا گیا ہے۔ یہ موٹر کے E_{am} بالمقابل I_a بالمقابل I_a بالمقابل میں سے ہر خط ایک معین میکانی بوجھ I_a کے لئے ہے جہاں I_a

$$(6.37) p = V_a I_a \cos \phi$$

اس مساوات سے واضح ہے کہ اگر q اور V_a معین ہوں تو جزو طاقت تبدیل کر کے I_a تبدیل کیا جا سکتا ہے۔ لہذا مساوت 6.36 کو مساوات 6.36 کی مدو سے ترسیم کیا جاتا ہے۔ یہ کچھ یوں کیا جاتا ہے۔ معین V_a اور V_a کا فرو سے مختلف I_a کی مساوات 0.36 میں استعال کر کے 0.36 کا میں استعال کر کے 0.36 میں استعال کر کے 0.36 کا میں اور 0.36 بالمقابل 0.36 ترسیم کریں۔

موٹر کی ان خطوط سے واضح ہے کہ I_m کو تبدیل کر کے موٹر کی جزو طاقت تبدیل کی جاسکتی ہے۔ للذا موٹر کو پیٹر زاویہ یا آخیری زاویہ پر چلایا جا سکتا ہے۔ اگر اسے پیٹر زاویہ پر رکھا جائے تو یہ ایک کپیسٹر 21 کے طور پر استعال ہو سکتا ہے اگرچہ ایسا کیا نہیں جاتا چونکہ کپیسٹر از خود زیادہ ستا ہوتا ہے۔

 $ec{\epsilon}$ ى ئىچى كىرىن دە I_a

 I_m میدانی کچھے کی بر تی رو

شکل I_a : موٹر: I_m بالمقابل I_a خط

6.6 کھلے دوراور کسرِ دور معائنہ

معاصر مشین کے مساوی دور بنانے کے لئے اس کے جزو معلوم کرنا لازم ہے۔ یہ دو قشم کے معائنوں سے کیا جاتا ہے۔ انہیں کھلے دور معائنہ اور کسرِ دور معائنہ کہتے ہیں۔ان معائنوں سے قالب کے سیر اب ہونے کے اثرات بھی سامنے آتے ہیں۔ ہم نے ٹرانسفار مر کے لئے بھی اسی قشم کے معائنے کیے تھے۔ وہاں ہم نے دیکھا تھا کہ کھلے دور معائنہ اس برقی دباو پر کیا جاتا ہے معائنہ اس برقی دو پر کیا جاتا ہے جاتا ہے مثین بنائی گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جاتے گئے مثین بنائی گئی ہو جبکہ کسرِ دور معائنہ اس برقی رو پر کیا جاتا ہے جاتے گا۔

6.6.1 گطے دور معائنہ

معاصر مثین کے برقی سرے گھلے رکھ کر اور اسے معاصر رفتار پر گھماتے ہوئے مختلف I_m پر مثین کے سرول پر پیدا برقی دباو V_a ناپی جاتی ہے ۔ ان دو کا ترسیم شکل 6.11-الف میں دکھایا گیا ہے۔ یہ خط مثین کے گھلے دور خاصیت ظاہر کرتا ہے۔ یہی خط مثین بنانے والے بھی مہیا کر سکتے ہیں۔

design²²

شكل 6.11: گھلے دور خطاور قالبی ضیاع۔

اس کتاب کے حصہ 2.8 میں بتلایا گیا تھا کہ قالب پر لاگو مقناطیسی دباوا گر بڑھایا جائے تو اس میں مقناطیسی بہاو بڑھتی ہے البتہ جلد ہی قالب سیر اب ہونے لگتا ہے۔اس کا اثر شکل-الف میں خط کے جھکنے سے واضح ہے۔اگر قالب سیر اب نہ ہوتا تو یہ خط شکل میں دیئے سیدھی ککیر کی پیروی کرتا۔شکل میں مشین کا پورا برقی دباو اور اس پر درکار برقی رو I_{m0} دکھلایا گیا ہے۔

یہ معائد کرتے وقت اگر دھرے پر میکانی طاقت p_1 ناپی جائے تو یہ بے بوجھ مشین کی طاقت کے ضیاع کے برابر ہو گی۔ اس کا بیشتر حصہ رگڑ کی وجہ سے ، کچھ حصہ قالب میں ضیاع کی وجہ سے اور کچھ گھومتے لچھے میں ضیاع کی وجہ سے ہو گا۔ یاد رہے کہ عموماً گھومتے لچھے کو یک سمت جزیئر سے برقی توانائی دی جاتی ہے اور یہ جزیئر بھی مشین کی وجہ سے ہو تا ہے لہذا اسے طاقت محرک 23 سے ہی ملتی ہے۔ بے بوجھ مثین اور بوجھ بردار مثین دونوں کا رگڑ سے طاقت کے ضیاع کو کیساں سمجھا جاتا ہے چونکہ رگڑ سے طاقت کے ضیاع کا مثین پر لدے بوجھ سے کوئی خاص تعلق نہیں۔ اب اگر یہی معائد دوبارہ کیا جائے لیکن اس مرتبہ I_m بھی صفر رکھا جائے تو اس مرتبہ ناپا گیا طاقت کے ضیاع اور گھومتے لچھے میں برتی ضیاع بہت کم ہوتا قالب میں طاقت کے ضیاع اور گھومتے لچھے میں برتی ضیاع بہت کم ہوتا قالب میں طاقت کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے اور اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل ہے۔ اور اس کو عموماً قالب کے ضیاع کا حصہ ہی تصور کیا جاتا ہے۔ اس طرح ناپے گئے قالبی ضیاع کا ایک خط شکل

6.6.2 كسرٍ دور معائنه

 I_m معاصر مثین کو معاصر رفتار پر جزیئر کے طور چلاتے ہوئے اس کے ساکن کچھے کے سرے کسرِ دور کر کے مختلف I_m پر کسرِ دور برقی رو I_a بنائی جاتی ہے۔ ان دو کا ترسیم شکل I_a -الف میں دکھایا گیا ہے۔ یہ خط کسرِ دور مشین کی I_a -الف میں دکھایا گیا ہے۔ یہ خط کسرِ دور مشین کی I_a -دور مشین کی I_a -دور مشین کی I_a -دور میں دور مشین کی دور میں دور مشین کی دور کی دور میں دور مشین کی دور کی

شكل 6.12: كسر دور خطاور كھلے دور خط۔

خاصیت و کھلاتا ہے۔ یہ معائنہ کرتے وقت یہ دھیان رکھنا بہت اہم ہے کہ I_a کی مقدار کہیں خطرناک حد تک نہ بڑھ جائے للذا اسے جزیئر کے پورے برقی بوجھ 24 پر I_a کی مقدار یا اس کی دگنی مقدار سے کم رکھنا ضروری ہے ورنہ مثین گرم ہو کر تباہ ہو سکتی ہے۔ کسرِ دور مثین میں، ڈیزائن کردہ برقی دباو کے، صرف دس سے پندرہ فی صد برقی دباو پر ہی اس میں سو فی صد برقی رو شروع ہو جاتی ہے۔ اتنا کم برقی دباو حاصل کرنے کے لئے خلائی درز میں اس تناسب سے کم مقناطیسی بہاو درکار ہوتا ہے۔

شکل 6.5 میں جزیٹر کے مساوی برقی دور دکھائے گئے ہیں۔ اسے شکل 6.13 میں کسرِ دور کر کے دکھایا گیا ہے۔ یہاں سے واضح ہے کہ

$$\hat{E}_{am} = \hat{I}_a R_a + j \hat{I}_a X_s$$

کو نظر انداز کر کے اس مساوات سے معاصر امالہ یوں حاصل کیا جا سکتا ہے۔ R_a

(6.39)
$$X_s = \frac{\left|\hat{E}_{am}\right|}{\left|\hat{I}_a\right|} = \frac{E_{am}}{I_a}$$

اس مساوات میں \hat{I}_a کسرِ دور مشین کی برقی رو اور \hat{E}_{am} اس کی اسی حال میں ایک دور کی امالہ برقی دباو ہے۔ کھلے دور مشین میں \hat{I}_a صفر ہو تو \hat{E}_{am} اور مشین میں \hat{I}_a صفر ہوتا ہے ۔مساوات \hat{E}_{am} ہول گے۔ لہذا ہم کسی معین \hat{I}_a پر شکل \hat{I}_a -الف سے \hat{I}_a اور شکل \hat{I}_a -ب سے \hat{I}_a معلوم کرتے ہیں اور ان سے \hat{I}_a کا حساب لگاتے ہیں، یعنی \hat{I}_a

$$(6.40) X_s = \frac{V_{a0}}{I_{a0}}$$

 $full\ load^{24}$

$$\begin{split} \hat{E}_{am} &= \hat{I}_a R_a + j \hat{I}_a X_s \\ &\approx j \hat{I}_a X_s \qquad X_s \gg R_a \\ X_s &= \frac{|\hat{E}_{am}|}{|\hat{I}_a|} \end{split}$$

شكل 6.13: معاصراماليه

معاصر امالہ عموماً مشین کے بورے برقی دباو پر معلوم کی جاتی ہے تاکہ قالب سیر اب ہونے کے اثر کو بھی شامل کیا جائے۔شکل میں ایسا ہی کیا گیا ہے۔

معاصر امالہ مشین کو ستارہ نما تصور کر کے اس کا یک دوری X_s حاصل کیا جاتا ہے۔المذا اگر معائنہ کرتے وقت مشین کی تار برتی د ہاو 25 ناپے گئے ہوں تو انہیں $\sqrt{3}$ سے تقسیم کر کے مشین کے یک دوری برتی د ہاو حاصل کر کے مساوات میں استعال کریں، لینی

$$V_{\zeta_{0},\zeta_{0}} = \frac{V_{\lambda^{*}}}{\sqrt{3}}$$

مثال 6.4: ایک 75 کلو وولٹ-ایمپیئر ستارہ جڑی 415 وولٹ پر چلنے والی تین دوری معاصر مشین کے کھلے دور اور کسرِ دور معائنے کئے گئے۔حاصل نتائج یہ ہیں۔

- کھلے دور معائنہ: $I_m = 3.2\,\mathrm{A}$ اور $I_m = 3.2\,\mathrm{A}$ بیں۔
- کسر دور معائنه: جب قوی کچھے کی برتی رو A 104 تھی تب میدانی کچھے کی برتی رو A 2.48 تھی اور جب قوی کچھے کی برتی رو A 126 تھی تب میدانی کچھے کی برتی رو A 3.2 تھی۔

اس مشین کی معاصر امالہ حاصل کریں۔

حل: یک دوری برقی دباو

$$V_{\zeta,z,\zeta} = \frac{V_{x}}{\sqrt{3}} = \frac{415}{\sqrt{3}} = 239.6 \,\mathrm{V}$$

line voltage 25

شكل 6.14: كسر دور معاصر مشين ميں طاقت كاضياع۔

ہے۔ یہ کھلے دور برقی دباو 3.2 ایمپیئر میدانی برقی رو پر حاصل ہوتی ہے۔ اتنی میدانی برقی رو پر کسرِ دور برقی رو 126 ایمپیئر ہیں للذا یک دوری معاصر امالہ

$$X_s = \frac{239.6}{126} = 1.901\,\Omega$$

ہو گی۔

 V_{n} کر دور معائنہ کرتے وقت اگر دھرے پر لاگو میکانی طاقت p_{3} ناپی جائے تو یہ کر دور مثین کی کل ضیاع ہو گی۔ p_{3} ناپ لیس۔ اس کا کچھ حصہ قالب کی برتی ضیاع، کچھ دونوں کچھوں میں برتی ضیاع اور کچھ رگڑ سے میکانی ضیاع سے بہلے معائنہ میں ناپی گئی رگڑ کی ضیاع p_{2} منفی کی جائے تو ہمیں کچھوں کی ضیاع اور قالب کی ضیاع مات ہے۔ جیسا اُوپر عرض کیا گیا کہ کر دور مثین میں پورا برتی رو، جات ہورے برتی دباوے و مرف دس تا ہیں فی صدیر حاصل ہو جاتا ہے اور اتنا کم برتی دباو حاصل کرنے کے لئے درکار مقاطیعی بہاو اتنا ہی کم ہوتا ہے۔ اس طرح کسی مقاطیعی بہاو پر قالب میں ضیاع کو نظر انداز کیا جا سکتا ہے۔ اس طرح کسی کسر دور معاصر مثین کے گھومتے کچھے میں برتی ضیاع کو نظر انداز کیا جا سکتا ہے۔ اس طرح کسی کسر دور معاصر مثین کے گھومتے کچھے میں برتی ضیاع سے بہت کم ہوتا ہے اور اسے بھی نظر انداز کیا جا سکتا ہے۔ لہذا $(p_{3}-p_{2})$ کو ساکن کچھے میں برتی ضیاع کے برابر لیا جاتا ہے۔ شکل 6.14 میں بھی نظر انداز کیا جا سکتا ہے۔ لہذا

$$p_3 - p_2 = I_{a,3}^2 R_a$$

اس مساوات سے معاصر مشین کی مساوی مزاحت بوں حاصل ہوتی ہے۔

(6.42)
$$R_a = \frac{p_3 - p_2}{I_{a.3}^2}$$

مثال 6.5: ایک 75 کلو وولٹ-ایمپیئر 415 وولٹ پر چلنے والی تین دوری معاصر مشین کے پورے برقی رو پر کل رو پر کل کل کر ہے۔ اس مشین کی یک دوری موثر مزاحمت حاصل کریں۔

$$\sqrt{300} = 733.33 \,\mathrm{W}$$
 کی دوری ضیاع $\sqrt{3000} = 733.33 \,\mathrm{W}$ کے بوری برتی رو $\sqrt{3000} = 104.34 \,\mathrm{A}$

ہے۔للذا

$$R_a = \frac{733.33}{104.34^2} = 0.067\,\Omega$$

مثال 6.6: شکل 6.15 میں 500 وولٹ، 50 ہر ٹز، 4 قطب ستارہ جڑی معاصر جزیٹر کا کھلے دور خط دکھایا گیا ہے۔ اس جزیٹر کا معاصر امالہ 0.1 اوہم اور قوی کچھے کی مزاحمت 0.01 اوہم ہے۔ پورے برقی بوجھ پر جزیٹر 0.92 تاخیری جزو طاقت²⁶ پر 1000 ایمپیئر فراہم کرتا ہے۔ پورے بوجھ پر رگڑ کے ضیاع اور کچھے کی مزاحمت میں ضیاع کا مجموعہ 30 کلو واٹ جبکہ قالب کی ضیاع 25 کلو واٹ ہے۔

- جزیٹر کی رفتار معلوم کریں۔
- بے بوجھ جزیٹر کی سرول پر 500 وولٹ برقی دباو کتنی میدانی برقی رو پر حاصل ہو گا۔
- اگر جزیٹر پر 9.92 تاخیر ی جزو طاقت، 1000 ایمپیئر کا برقی بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو در کار ہو گی۔
- جزیٹر پورے بوجھ پر کتنی طاقت فراہم کر رہا ہے جبکہ اس کو محرک کتنی میکانی طاقت فراہم کر رہا ہے۔ان دو سے جزیٹر کی فی صد کارگزار کھے 27 حاصل کریں۔
 - اگر جزیٹر سے یک دم برقی بوجھ ہٹایا جائے تواس لحہ اس کے برقی سروں پر کتنا برقی دباو ہو گا۔
- اگر جزیٹر پر 1000 ایمپیئر 0.92 پیش جزو طاقت والا بوجھ لادا جائے تو جزیٹر کے برقی سروں پر 500 وولٹ برقرار رکھنے کے لئے کتنی میدانی برقی رو درکار ہو گی۔

lagging power factor²⁶ efficiency²⁷

شكل 6.15: كطيح دور خطيه

• ان دو 1000 ایمبیئر تاخیری جزو طاقت اور پیش جزو طاقت بوجھوں میں کونمی بوجھ زیادہ میدانی برقی رو پر حاصل ہوتی ہے۔جزیٹر کس بوجھ سے زیادہ گرم ہو گا۔

حل:

- ے کے $f_e=\frac{P}{2}f_m$ فی منٹ ہے۔ $f_e=\frac{P}{2}f_m$ فی منٹ ہے۔ $f_e=\frac{P}{2}f_m$
 - شكل 6.15 سے 500 وولٹ كے لئے دركار ميداني برقى رو تقريباً 2.86 ايمپيئر ہے۔
- ستارہ برقی دباو کے تعلق $V_{JR} = \sqrt{3}V_{JR} = 289$ سے $V_{JR} = \sqrt{3}V_{JR}$ وولٹ حاصل ہوتا ہے۔ ستارہ جوڑ میں یک دوری برقی رو اور تار برقی رو برابر ہوتے ہیں۔ جزو طاقت ستارہ یک دوری برقی دباو کے نسبت سے بیان کیا جاتا ہے۔ چو نکہ $\cos^{-1}0.92 = 23.07$ کھا جائے سے بیان کیا جاتا ہے۔ چو نکہ $\cos^{-1}0.92 = 23.07$ کھی جائے گی۔ یول شکل 6.4 یا مساوات 6.24 سے اندرونی تو تاخیری دوری برقی رو $\frac{6.24}{300}$ میں دوری برقی دباو

$$\begin{split} \hat{E}_a &= \hat{V}_a + \hat{I}_a \left(R_a + j X_s \right) \\ &= 289 \underline{/0^\circ} + 1000 \underline{/-23.07^\circ} (0.01 + j0.1) \\ &= 349 \underline{/14.6^\circ} \end{split}$$

ہو گا جس سے اندرونی پیدا تار برتی دباو $604=604 imes\sqrt{3} imes04$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتن دباو کے لئے $4.1\,\mathrm{A}$ میدانی برتی رو درکار ہے۔

• جزیٹر اس صورت میں

$$\begin{aligned} p &= \sqrt{3} \hat{V}_a \cdot \hat{I}_a \\ &= \sqrt{3} \times 500 \times 1000 \times 0.92 \\ &= 796743 \, \mathrm{W} \end{aligned}$$

فراہم کر رہاہے جبکہ محرک

$$p_m = 796.743 + 30 + 25 = 851.74 \,\text{kW}$$

$$\eta=\frac{796.743}{851.74} imes 100=93.54\%$$
 فراہم کر رہا ہے للذا اس جزیٹر کی کار گزاری

• اگر جزیٹر سے یک دم برتی بوجھ ہٹایا جائے تو اس لحہ اس کے برتی سرول پر 604 وولٹ برتی دباو ہو گا۔

• پیش جزو طاقت کی صورت میں

$$\hat{E}_a = \hat{V}_a + \hat{I}_a (R_a + jX_s)$$

$$= 289/0^{\circ} + 1000/23.07^{\circ} (0.01 + j0.1)$$

$$= 276/20.32^{\circ}$$

در کار ہو گی جس سے اندرونی پیدا تار برتی دباو $478=76\times\sqrt{3}$ وولٹ حاصل ہوتا ہے۔ شکل 6.15 سے اتنی دباو کے لئے $2.7\,\mathrm{A}$ میدانی برتی رو در کار ہے۔

• تاخیری جزو طاقت کے بوجھ پر جزیٹر کو زیادہ میدانی برقی رو درکار ہے۔میدانی کچھے کی مزاحمت میں اس کی وجہ سے زیادہ برقی طاقت ضائع ہوگی اور جزیئر یوں زیادہ گرم ہوگا۔

П

مثال 6.7: ایک 415 دولٹ، 40 کلو دولٹ-ایمپیئر ستارہ جڑی 0.8 جزو طاقت، 50 ہرٹز پر چلنی والی معاصر موٹر کا معاصر اللہ 2.2 اوہم ہے جبکہ اس کی مزاحمت قابل نظرانداز ہے۔اس کی رگڑ اور کچھوں کی مزاحمت میں طاقت کا ضیاع ایک کلو واٹ جبکہ قالبی ضیاع 800 واٹ ہے۔ یہ موٹر 12.2 کلوواٹ میکانی بوجھ سے لدی ہے اور یہ 0.8 پیش جزو طاقت پر چل رہی ہے۔یاد رہے کہ معاصر امالہ مشین کو ستارہ نما تصور کرتے ہوئے حاصل کی جاتی ہے۔

اس کی دوری سمتیہ بنائیں۔تار کی برتی رو \hat{I}_t اور قوی کیجھے کی برتی رو \hat{I}_a حاصل کریں۔موٹر کی اندرونی ہیجانی برقی دباو \hat{E}_a حاصل کریں۔

- میدانی برقی رو کو بغیر تبدیل کئے میکانی بوجھ آہتہ آہتہ بڑھا کر دگنی کی جاتی ہے۔اس صورت میں موٹر کی رو عمل دوری سمتیہ سے واضح کریں۔
- اس د گنی میکانی بوجھ پر قوی کچھے کی برتی رو، تارکی برقی رواور موٹر کی اندرونی پیجانی برقی د باو حاصل کریں۔موٹر کی جزو طاقت بھی حاصل کریں۔

حل:

• سارہ جڑی موٹر کے سروں پر یک دوری برتی دباو $239.6\,\mathrm{V}$ ہوگا جسے صفر زاویہ پر تصور کرتے ہوئے برتی رو کا زاویہ بیان کیا جاتا ہے۔ یوں $0.8.6\,\mathrm{V}$ کھا جائے گا۔ جزو طاقت $0.8\,\mathrm{C}$ زاویہ $0.8\,\mathrm{C}$ کھا جائے گا۔ جزو طاقت $0.8\,\mathrm{C}$ زاویہ $0.8\,\mathrm{C}$ کھا جائے گا۔ جزو طاقت $0.8\,\mathrm{C}$ ناویہ کہی ہو گا۔ موٹر کو مہیا برتی طاقت اس کی میکانی طاقت اور طاقت کے ضیاع کے برابر ہو گی لیمنی

12200 W + 1000 W + 800 W = 14000 W

جس کے لئے در کار تار کی برقی رو

$$I_t = \frac{p}{\sqrt{3}V_t\cos\theta}$$
$$= \frac{14\,000}{\sqrt{3}\times415\times0.8}$$
$$= 24.346\,\text{A}$$

ہو گی۔ستارہ جڑی موٹر کے قوی کچھے کی برقی رو تار کے برقی رو کے برابر ہو گی۔یوں برقی رو کا زاویہ شامل کرتے ہوئے اسے

$$\hat{I}_a = \hat{I}_t = 24.346/36.87^{\circ}$$

لکھا جا سکتا ہے۔

موٹر کا اندرونی یک دوری ہیجانی برتی دباو موٹر کی مساوی دور شکل 6.3 کی مدد سے

$$\begin{split} \hat{E}_a &= \hat{V}_{a,s} - jX_s\hat{I}_a \\ &= 239.6 / \underline{0^{\circ}} - j2.2 \times 24.346 / \underline{36.87^{\circ}} \\ &= 276 / \underline{-8.96^{\circ}} \end{split}$$

ہو گی۔یہ تمام صورت حال شکل 6.16 میں دوری سمتیات کی مدد سے دکھایا گیا ہے۔

شکل6.16: بوجھ بر دار معاصر موٹر۔

شكل 6.17: بوجھ بڑھنے كااثر۔

میکانی بوجھ بڑھنے سے موٹر کو زیادہ برقی طاقت درکار ہوگی۔ یہ اس صورت ممکن ہوگا جب موٹر کے قوی لیجھ کی برقی رو بڑھ سکے۔ میدانی برقی رو معین ہونے کی وجہ سے موٹر کی اندرونی پیجانی برقی دباو \hat{E}_a کی مقدار تبدیل نہیں ہو سکتی البتہ اس کا زاویہ تبدیل ہو سکتا ہے۔ موٹر \hat{E}_a کی مقدار تبدیل کئے بغیر برقی سروں پر لاگو برقی دباو \hat{V}_a کا مقدار تبدیل بین زاویہ بڑھا کہ قوی کچھے کی برقی رو اور یوں حاصل برقی طاقت بڑھا کے گا۔ایسا شکل \hat{E}_a میں دکھایا گیا ہے۔ شکل میں \hat{E}_a میں دکھایا گیا ہے۔ شکل میں ہوتا۔ زاویہ بڑھنے سے \hat{E}_a کی برقی رو بڑھ گئی ہے۔ زاویہ بڑھنے سے \hat{E}_a کی برقی رو بڑھ گئی ہے۔ زیادہ بوجھ کے متغیرات کو بلکی سیابی میں دکھایا گیا ہے۔

• وگنی میکانی بوجھ پر موٹر کو کل 26200 = 26200 + 800 + 1000 واٹ یا 26.2 کلو واٹ برتی طاقت در کار ہے۔مساوات 6.29 کی مدر سے

$$\sigma = \sin^{-1}\left(\frac{pX_s}{3V_aE_a}\right) = \sin^{-1}\left(\frac{26200 \times 2.2}{3 \times 239.6 \times 276}\right) = 16.89^{\circ}$$

یوں موٹر کی اندرونی ہیجانی برتی دباو <u>°16.89 – 27</u>6 ہو گی اور قوی کچھے کی برتی رو

$$\begin{split} \hat{I}_{a} &= \frac{\hat{V}_{a} - \hat{E}_{a}}{jX_{s}} \\ &= \frac{239\underline{/0^{\circ}} - 276\underline{/-16.89^{\circ}}}{j2.2} \\ &= 38\underline{/17.4^{\circ}} \end{split}$$

ہو گی۔تارہ جوڑ کی وجہ سے \hat{I}_t بھی اتنا ہی ہو گا۔ پیش جزو طاقت $\cos 17.4^\circ = 0.954$ ہے۔

فرہنگ

earth, 94	ampere-turn, 32
eddy current loss, 62	armature coil, 131, 251
eddy currents, 62, 126	axle, 161
electric field intensity, 10 electrical rating, 59 electromagnet, 131 electromotive force, 61, 137 emf, 137 enamel, 62 energy, 43 Euler, 21 excitation, 61	carbon bush, 177 cartesian system, 4 charge, 10, 136 circuit breaker, 178 coercivity, 46 coil high voltage, 56 low voltage, 56 primary, 55
excitation, 61 excitation current, 50, 60, 61 excitation voltage, 61 excited coil, 61	secondary, 55 commutator, 164, 241 conductivity, 25 conservative field, 108
Faraday's law, 38, 125 field coil, 131, 251 flux, 30 Fourier series, 63, 142 frequency, 130 fundamental, 142 fundamental component, 64	core, 55, 126 core loss, 62 core loss component, 64 Coulomb's law, 10 cross product, 13 cross section, 9 current transformation, 66 cylindrical coordinates, 5
ac, 159 ground current, 94 ground wire, 94 harmonic, 142	delta connected, 92 design, 195 differentiation, 18 dot product, 15
harmonic components, 64	E,I, 62

ئىرىتاك 270

parallel connected, 253	Henry, 39
permeability, 26	hunting, 178
relative, 26	hysteresis loop, 46
phase current, 94	
phase difference, 23	impedance transformation, 71
phase voltage, 94	in-phase, 69
phasor, 21	induced voltage, 38, 49, 61
pole	inductance, 39
non-salient, 140	
salient, 140	Joule, 43
power, 43	
power factor, 23	lagging, 22
lagging, 23	laminations, 31, 62, 126
leading, 23	leading, 22
power factor angle, 23	leakage inductance, 79
power-angle law, 188	leakage reactance, 79
primary	line current, 94
side, 55	line voltage, 94
	linear circuit, 226
rating, 96, 97	load, 98
rectifier, 164	Lorentz law, 136
relative permeability, 26	Lorenz equation, 102
relay, 101	
reluctance, 25	magnetic constant, 26
residual magnetic flux, 45	magnetic core, 31
resistance, 25	magnetic field
rms, 49, 164	intensity, 11, 33
rotor, 36	magnetic flux
rotor coli, 104	density, 33
rpm, 155	leakage, 78
	magnetizing current, 64
saturation, 47	mmf, 30
scalar, 1	model, 81, 207
self excited, 251	mutual flux linkage, 43
self flux linkage, 42	mutual inductance, 42
self inductance, 42	
separately excited, 251	name plate, 97
side	non-salient poles, 177
secondary, 55	
single phase, 23, 59	Ohm's law, 26
slip, 209	open circuit test, 86
slip rings, 176, 229	orthonormal, 3

ف رہنگ

unit vector, 2	star connected, 92
unit vector, 2	· · · · · · · · · · · · · · · · · · ·
VA, 75 vector, 2 volt, 137 volt-ampere, 75 voltage, 137 DC, 164 transformation, 66	stator, 36 stator coil, 104, 127 steady state, 175 step down transformer, 58 step up transformer, 58 surface density, 11 synchronous, 130 synchronous inductance, 184 synchronous speed, 155, 176
Watt, 43	
Weber, 32	Tesla, 33
winding distributed, 140 winding factor, 147	theorem maximum power transfer, 229 Thevenin theorem, 226 three phase, 59, 92 time period, 100, 142 torque, 165, 209 pull out, 178 transformer air core, 59 communication, 59 ideal, 65
	transient state, 175

پتريان،62	ابتدائي
يورابو جھ،197	جانب،55
نیچیے،80	گچھا،55
يىش پىش زاوىيە، 22	ار تباط بهاو ، 39
	اضافی
تاخير ي زاويه، 22	زاویا کی رفتار، 212
تار کی برقی د باو،94	اكائى سمتىيە، 2
تار کی بر قی رو،94	اماليه،39
تانا،28	امالى بر تى د باو،38،49،36
تبادليه	اوہم میٹر،237
ر کاوٹ، 71	ايك، تين پتريال،62
مختی،97 کے تبدیر	ايك مرحله، 59
تدریجی تفرق،113	ايمپيئر- چکر، 32
تعدد،130 ت	
تعقب،178	بار،136
تفرق،18	بر قرار چالو،175،100
جزوی،18	برتي بر،10،136
للمل،18	بر تى د باد، 137، 28
تکونی جوڙ،92 تند که چه	تبادله، 66،56
توانائی،43 تنسب میرود	محرک،137
تين م _ر حله ،92،59	بيجاني، 185
ٹرانسفار مر	ي ستى،164
را شفار سر بر قی د باووالا، 59	برقىدە:28
رن د بودوان در بوچھ بر دار ، 68	بھنور نما،126
بر جط برور روبي خلائی قالب، 59	تبادله، 66
د باوبر مطاتا، 58	بيجان انگيز ، 50
د باو گھٹاتا،58	برقي سکت،59
دِبِرِ درائع ابلاغ، 59	برقی میدان،10
رووالا، 59	شدت،28،10
كال،65	بش،177
ٹسلا،33	بناوك،86
ھنڈی نار،94	بنیادی جزو، 142،64
	بوجمير 98،
ثانوی جانب، 55	بھٹی،114
42 [جھنور نما بر تی رو، 62
جاول،43 حو	
جزو 147 مال ه	ضیاع،62 بھنورنمایر تی رو،126
چھیلاو،147 جزوطاقت،23	بسور مهر بن رو 120۰ بے بوچھ 60،
بروطانت،23 پیش،23	00. %
چین،23 تاخیری،23	پترى، 31، 126
43.0 / V	120:31:07:

<u>ــــرہگ</u>ـــــ

سرك چىلے،176،229	جنزیٹر بدلتی رو، 159 جوڑ تکونی، 92 تالیم نیا 92
سطى تكمل، 181	بدلخارو،159
سطى كثافت،11	جوز گانی ۵۲
سكت،96،96	ستاره نماه 92 ستاره نماه 92
سلسله وار 145	92100
سمت كار، 241	چکر فی منٹ،126
برقیاتی،164	پولى - 211 چۇلى، 211
ميكاني،164	
سمتىيە،2	خطى
عمودياکائي، 3	ېر تې دور، 226
سمتی ر فتار ،102	خو دار تباط بهاو، 42
سير ابيت،47	خوداماله، 42
ضرب	داخلي ڀيجان
نقطه،15	ر ساسله وار ، 253 سلسله وار ، 253
ضرب صليبي، 13	متوازی، 253 متوازی، 253
42 ***	مرکب،253
طاقت،43	دور برطی مرکب، 253
طاقت بالمقابل زاويه، 188 طول موج، 18	دور شکن، 178
طول مون، ۱۵	دوری عرصه، 142،100
عار ضی صور ت، 175	دهره 161
عمودی تراش،9	
ر تبہ،9	رشا
•	اماله، 79
غيرسمتي،1	متعامله، 79
غير معاصر ،178	رستامتعامليت،217
250 / :	رفتار
فورئير،250 : برنسل دې ده د	اضافی زاویاکی، 212
فوريئرنشلىل،63،142	روغن،62
فیراڈے	رياضي نمونه، 207،81
تانون،38،125	ریلے،101
قالب،126	زاویه جزوطاقت، 23
قالبي ضياع، 62	رادييه اردون تعديد زمين ،94
64.9.7.	رين. زيني بر تي رو، 94
قانون	رين برن روم. زيني تار، 94
اوېم،26)-t-000-0
كولمب ،10	ساكن حصه،36
لورينز،136	ساكن كيچها،127،104
قدامت پبند میدان، 108	ستاره نماجوژ،92
قريب جڙي مر ٽب، 253	سرك،209

274 سنرہنگ

مر حلی فرق، 23	قطب
مركب جزيثر، 253	ابھرے،140،177
مزاَحت، 2ُ5ُ	ہموار،140،177
مساوات لورينز، 102	قوت مر و _ل ر، 209، 165
مسكم	انتهائي،178
تھو نن ،226	قوى اليكٹر انكس، 241،207
زیادہ سے زیادہ طاقت کی منتقلی، 228	قوى ك <u>ى</u> ھے، 251
مشتر كه ارتباط اماله، 43	•
مشتركه اماله، 42	كارين بش،177
معاصر،130	كِار گذارى،200
معاصراماله،184	^ک پیسر ،194
معاصر ر فتار ، 176،155	کافت :
معائنه	برقې دو، 27
کھلے دور ،86	کثافت مقناطیسی بهاو
مقناطيس	بقاي،45
برق،131	كسر دور ، 38
معائنه کطیر دور،86 متناطیس برتی،131 چال کادائرہ،46	04
خاتم شدت،46	گرم تار، 94 **
مقناطیسی بر قی رو، 64	گومتاحصه،36
مقناطیسی بهاو،30	گھومتالچھا،104
رتا،78	ليجا
كثافت،33	•
مقناطيسي چال،52	ابترائی،55 سال 140
مقناطیسی د باو، 30	<u>کھلے</u> ،140
سمت، 141	.يىچىدار، 40 ئاندى، 55
مقناطيسي قالب، 55،31	عوی،دی زیاده برتی دباو، 56
مقناطیسی مستقل،166،26	ريده بري د بري د. ساكن، 104
31.26.9.7.	سمت،104 سمت،133
مقناطیسی میدان	ئىت. قوي،131
شدت، 33،11	- دن. کم بر تی د باو، 56
موژ،49،19	ا برن دورد. گومتا، 104
موثر قیت ،164	موم،104 میدانی، 131
 موسیقائی جزو،64،142	131,0
موصلیت،25	محد د
ميداني لچھے، 251	محد د کار تثیمی، 4 نکلی 5
¥ · · ·	تَلَىءَ 5
واٹ، 43	محرك بر تي د باو، 61
وولٹ،137	161.15
وولٺ-ايمپيئر،75	مخلوط عدد، 192
ويبر،32	مرحلي سمتيه، 186،21

> ك سمتى رو مشين، 241 ك مر حله، 23 ك مر حله برقى د باو، 94 كي مر حله برقى د و، 94 يولر مساوات، 21

39، چکر، 39 نگلچاب ، 30،25 بم قدم، 69 بم قدم، 61 چیان، 13 خود، 251 پیچان انگیز برتی دو، 16 برتی دو، 16