SRM SIGNAL OF SCHOOL AND ATT POLICIES

SRM Institute of Science and Technology

Ramapuram campus

Department of Mathematics

18MAB101T - Calculus and Linear Algebra

Year/Sem: I/I Part – A Branch: Common to All

Unit – V

Sequence and Series

1.	A sequence $\{a_n\}$ is said to be convergent if	1 Mark	
	$\begin{array}{ll} \text{(a)} \lim_{n \to \infty} a_n = finite & \text{(b)} \lim_{n \to \infty} a_n = \infty \\ \text{(c)} \lim_{n \to \infty} a_n = -\infty & \text{(d)} \lim_{n \to \infty} a_n = infinite \end{array}$	Ans (a)	(CLO 5, Remember)
2.	The sequence $\{(-1)^n\}$ is	1 Mark	
	(a) oscillatory (b) monotonic (c) divergent to $-\infty$ (d) divergent to $+\infty$	Ans (a)	(CLO 5, Remember)
3.	A sequence which is monotonic and bounded is	1 Mark	
	(a) conditionally convergent (b) absolutely convergent (c) convergent (d) divergent	Ans (c)	(CLO 5, Remember)
4.	The necessary condition for the convergence of $\sum u_n$ is	1 Mark	
	(a) $\lim_{n\to\infty} u_n = 0$ (b) $\lim_{n\to\infty} u_n = \infty$ (c) $\lim_{n\to\infty} u_n = -\infty$ (d) $\lim_{n\to\infty} u_n \neq 0$	Ans (a)	(CLO 5, Remember)
5.	If $\{a_n\}$ and $\{b_n\}$ are two convergent sequences, then $\{a_n+b_n\}$ is	1 Mark	
	(a) convergent(b) divergent(c) oscillatory(d) neither convergent nor divergent	Ans (a)	(CLO 5, Remember)
6.	The geometric series $1 + x + x^2 + x^3 + \cdots$ converges if	1 Mark	
	(a) $-1 < x < 1$ (b) $x < 1$ (c) $x > 1$ (d) $x \ge 1$	Ans (a)	(CLO 5, Remember)
7.	The series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ converges if	1 Mark	
	(a) $p > 0$ (b) $p < 1$ (c) $p > 1$ (d) $p \le 1$	Ans (c)	(CLO 5, Remember)

8.	The series $\frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ diverges if	1 Mark	
	(a) $p > 0$ (b) $p < 1$ (c) $p > 1$ (d) $p \le 1$	Ans (d)	(CLO 5, Remember)
9.	If $\sum u_n$ is a convergent series, then $\lim_{n\to\infty}u_n=$	1 Mark	
	(a) 1 (b) \pm 1 (c) 0 (d) ∞	Ans (c)	(CLO 5, Remember)
10.	According to D' Alembert's ratio test, if $\sum u_n$ is a series of positive terms and $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$, then $\sum u_n$ converges if	1 Mark	
	(a) $l < 1$ (b) $l > 1$ (c) $l = 1$ (d) $-1 < l < 1$	Ans (a)	(CLO 5, Remember)
11.	By Cauchy's root test, if $\sum u_n$ is a series of positive terms and $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l$, then $\sum u_n$ converges if	1 Mark	
	(a) $l < 1$ (b) $l > 1$ (c) $l = 1$ (d) $-1 < l < 1$	Ans (a)	(CLO 5, Remember)
12.	By Raabe's test, if $\lim_{n\to\infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = k$, then $\sum u_n$ diverges if	1 Mark	
	(a) $k < 1$ (b) $k > 1$ (c) $k = 1$ (d) $-1 < k < 1$	Ans (a)	(CLO 5, Remember)
13.	By Logarithmic test, if $\lim_{n\to\infty} n \log \frac{u_n}{u_{n+1}} = l$, then $\sum u_n$ converges if	1 Mark	
	(a) $l < 1$ (b) $l > 1$ (c) $l = 1$ (d) $-1 < l < 1$	Ans (b)	(CLO 5, Remember)
14.	The series $\sum u_n$ containing positive and negative terms is, if $\sum u_n $ is divergent but $\sum u_n$ is convergent.	1 Mark	
	(a) divergent (b) oscillating finitely (c) oscillating infinitely (d) conditionally convergent	Ans (d)	(CLO 5, Remember)
15.	The series $\sum u_n$ containing positive and negative terms is absolutely convergent, if $\sum u_n $ is	1 Mark	
	(a) convergent (b) divergent to $-\infty$ (c) divergent to $+\infty$ (d) oscillatory	Ans (a)	(CLO 5, Remember)

16.	Every absolutely convergent series is necessarily		1 Mark	
	(a) divergent (b) convergent (c) oscillatory (d) conditionally convergent	Ans (b)	(CLO 5, Remember)	
17.	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if	1 Mark		
	(a) $p = 0$ (b) $p = 1$ (c) $p > 1$ (d) $p < 1$	Ans (c)	(CLO 5, Remember)	
18.	As per D' Alembert's ratio test, if $\sum u_n$ is a series of positive terms and $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$, then the series is divergent if	1 Mark		
	(a) $l = 0$ (b) $l = 1$ (c) $l > 1$ (d) $l < 1$	Ans (c)	(CLO 5, Remember)	
19.	A series of positive terms cannot	1 Mark		
	(a) oscillate (b) absolutely converge (c) converge (d) diverge	Ans (a)	(CLO 5, Remember)	
20.	The series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ is	1 Mark		
	(a) divergent(b) conditionally convergent(c) oscillatory(d) neither convergent nor divergent	Ans (b)	(CLO 5, Apply)	
	The series $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$ is	1 Mark		
21.	(a) divergent(b) absolutely convergent(c) oscillatory(d) neither convergent nor divergent	Ans (b)	(CLO 5, Apply)	
	By Raabe's test, if $\lim_{n\to\infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = k$, then $\sum u_n$ converges if	1 Mark		
22.	(a) $k < 1$ (b) $k > 1$ (c) $k = 1$ (d) $-1 < k < 1$	Ans (b)	(CLO 5, Remember)	

23.	By Cauchy's root test, if $\sum u_n$ is a series of positive terms and $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l$, then $\sum u_n$ diverges if	1 Mark	
	(a) $l < 1$ (b) $l > 1$ (c) $l = 1$ (d) $-1 < l < 1$	Ans (b)	(CLO 5, Remember)
24.	By Logarithmic test, if $\lim_{n\to\infty} n \log \frac{u_n}{u_{n+1}} = l$, then $\sum u_n$ diverges if	1 Mark	
	(a) $l < 1$ (b) $l > 1$ (c) $l = 1$ (d) $-1 < l < 1$	Ans (a)	(CLO 5, Remember)
	If $-1 < x < 1$, then the geometric series $1 + x + x^2 + x^3 + \cdots$ converges to	1 Mark	
25.	(a) $\frac{1}{1-x}$ (b) $\frac{1}{1+x}$ (c) e^x (d) $\frac{1}{x!}$	Ans (a)	(CLO 5, Remember)
26	The geometric series $1 + x + x^2 + x^3 + \cdots$ oscillates finitely if	1 Mark	
26.	(a) $x = -1$ (b) $x < 1$ (c) $x > 1$ (d) $x \ge 1$	Ans (a)	(CLO 5, Remember)
27	The geometric series $1 + x + x^2 + x^3 + \cdots$ oscillates infinitely if	1 Mark	
27.	(a) $x < -1$ (b) $x < 1$ (c) $x > 1$ (d) $x \ge 1$	Ans (a)	(CLO 5, Remember)
20	If $\sum u_n$ is convergent, then $\sum k u_n$ (where k is constant) is	1 Mark	
28.	(a) convergent(b) divergent(c) oscillatory(d) neither convergent nor divergent	Ans (a)	(CLO 5, Remember)
20	The series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$ is	1 Mark	
29.	(a) divergent (b) neither convergent nor divergent (c) oscillatory (d) conditionally convergent	Ans (d)	(CLO 5, Apply)
30.	The convergence of the series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ is tested by	1 Mark	
	(a) Ratio test (b) Raabe's test (c) Leibnitz test (d) Cauchy Root test	Ans (c)	(CLO 5, Remember)

	A monotonic increasing s above is	equence which is not bounded	1 Mark	
31.	(a) oscillatory(c) divergent to - ∞	(b) convergent(d) divergent to + ∞	Ans (d)	(CLO 5, Remember)
32.	A monotonic decreasing sequence which is not bounded below is		1 Mark	
	(a) oscillatory (c) divergent to $-\infty$	(b) convergent(d) divergent to + ∞	Ans (c)	(CLO 5, Remember)
33.	The series $\sum u_n$ of positive terms is convergent if		1 Mark	
	(a) $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} < 1$ (c) $\lim_{n \to \infty} \frac{u_n}{u_{n+1}} \le 1$	(b) $\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = 1$ (d) $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} > 1$	Ans (a)	(CLO 5, Remember)
2.4		n Arithmetic Progression is	1 Mark	
34.	(a) $t_n = a - (n-1)d$ (c) $t_n = a - (n+1)d$	(b) $t_n = a + (n+1)d$ (d) $t_n = a + (n-1)d$	Ans (d)	(CLO 5, Remember)
25	$\sum_{1}^{\infty} \frac{n^3}{3^n} is$		1 Mark	
35.	(a) oscillatory	(b) convergent (d) divergent to $+\infty$	Ans (b)	(CLO 5, Apply)
26	The series $\sum \frac{1}{n} \sin\left(\frac{1}{n}\right)$ is		1 Mark	
36.	(a) oscillatory (c) divergent	(b) convergent (d) conditionally convergent	Ans (b)	(CLO 5, Apply)
37.	If D'Alembert's ratio test fail	s, then use	1 Mark	
	(a) Comparison test(c) Cauchy's integral test	(b) Leibnitz's test (d) Raabe's test	Ans (d)	(CLO 5, Remember)
38.	The series $\sum \frac{1}{n!}$ is			1 Mark
	(a) oscillatory (c) divergent	(b) convergent (d) conditionally convergent	Ans (b)	(CLO 5, Apply)