

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт кибернетики Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №11

«Синтез четырехразрядного счетчика с параллельным переносом между разрядами двумя способами» по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИКБ	Хан А.А		
Принял Доцент, к.т.н.			Норица В.М
Практическая работа выполнена	« <u> » </u>	2020 г.	
«Зачтено»	« »	2020 г.	

Содержание

1.	Постановка задачи и персональный вариант	3
	Таблица переходов истинности	
3.	Проектирование оптимальных схем управления триггерами (через	
МИ	нимизацию при помощи карт Карно)	5
4.	Реализация счетчика с оптимальной схемой управления	12
5.	Реализация счетчика на преобразователей кодов.	13
ВЬ	ЛВОДЫ	14
СГ	ІИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	15

1. Постановка задачи и персональный вариант

Разработать счетчик с параллельным переносом на D-триггерах двумя способами:

- с оптимальной схемой управления, выполненной на логических элементах общего базиса;
- со схемой управления, реализованной на преобразователе кодов (быстрая реализация, но не оптимальная схема).

Протестировать работу схемы и убедиться в ее правильности. Подготовить отчет о проделанной работе и защитить ее.

Заданный индикатор CNT лабораторного комплекса имеет следующий вид: 1C8

2. Таблица переходов истинности

- направление счета вычитание;
- максимальное значение C (12 в десятичной системе);
- шаг счета 8.

По исходным данным восстановим таблицу переходов счетчика (табл. 1).

Таблица 1

Q ₃ (t)	$Q_2(t)$	Q ₁ (t)	Q ₀ (t)	$Q_3(t+1)$	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	0	0	1	0	1
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	1
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	0
0	1	1	0	1	0	1	1
0	1	1	1	1	1	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1
1	0	1	0	0	0	1	0
1	0	1	1	0	0	1	1
1	1	0	0	0	1	0	0
1	1	0	1	*	*	*	*
1	1	1	0	*	*	*	*
1	1	1	1	*	*	*	*

Таблица переходов является частично определенной: состояния 1101, 1110 и 1111 согласно исходным данным возникать никогда не должны, поэтому очередное состояние Q(t+1) для этих случаев мы можем интерпретировать как нам удобно в целях минимизации управляющей логики.

3. Проектирование оптимальных схем управления триггерами (через минимизацию при помощи карт Карно)

Рассматриваем столбцы Q_i (t+1) как самостоятельные функции от четырех переменных и проводим их минимизацию. Необходимо для каждой функции из двух возможных минимальных форм выбрать самую короткую.

Оценим сложность минимальных форм, которые получатся, по количеству переменных, входящих в них, и выберем оптимальную форму. Для этого построим необходимые карты Карно.

Построим карту Карно для МДНФ функции Q₃(t+1) (рис. 1)

Рис.1. Карта Карно для МДН Φ функции $Q_3(t+1)$

Оценим сложность МДНФ: 3+2=5 переменных или их отрицаний.

Построим карту Карно для МКНФ функции Q₃(t+1) (рис. 2)

Рис.2. Карта Карно для МКНФ функции Q₃(t+1)

Оценим сложность МКНФ: 1+2+3+3=9 переменных или их отрицаний.

Таким образом получается, что МДНФ для $Q_3(t+1)$ строить выгоднее, чем МКНФ.

Запишем формулу для МДНФ Q₃(t+1) (формула 1):

$$Q_3(t+1)_{\text{MДH}\Phi} = (\overline{Q_3} \cdot Q_1 \cdot Q_0) + (\overline{Q_3} \cdot Q_2) \tag{1}$$

Построим карту Карно для МДНФ функции Q₂(t+1) (рис. 3)

Рис.3. Карта Карно для МДНФ функции Q₂(t+1)

Оценим сложность МДНФ: 3+3+3+2=11 переменных или их отрицаний.

Построим карту Карно для МКНФ функции Q_2 (t+1) (рис. 4)

Рис.4. Карта Карно для МКН Φ функции $Q_2(t+1)$

Оценим сложность МКНФ: 3+3+3+2=11 переменных или их отрицаний, что эквивалентно сложности МДНФ. Следовательно, нам все равно, какую минимальную форму взять.

Запишем формулу для МКНФ $Q_2(t+1)$ (формула 2):

$$Q_2(t+1)_{\text{MKH}\Phi} = (Q_2 + \overline{Q_1} + \overline{Q_0}) \cdot (Q_3 + \overline{Q_2} + Q_1) \cdot (Q_3 + \overline{Q_2} + Q_0) \cdot (\overline{Q_3} + Q_2)$$
(2)

Построим карту Карно для МДНФ функции Q₁(t+1) (рис. 5)

Рис.5. Карта Карно для МДНФ функции Q₁(t+1)

Оценим сложность МДНФ: 3+2+2=7 переменных или их отрицаний.

Построим карту Карно для МКНФ функции $Q_1(t+1)$ (рис. 6)

Рис.6. Карта Карно для МКН Φ функции $Q_1(t+1)$

Оценим сложность МКНФ: 2+2+3=7 переменных или их отрицаний, что эквивалентно сложности МДНФ. Следовательно, нам все равно, какую минимальную форму взять.

Запишем формулу для МКНФ $Q_1(t+1)$ (формула 3):

$$Q_1(t+1)_{\mathsf{MKH}\Phi} = (Q_1 + Q_0) \cdot (Q_3 + \overline{Q_1} + \overline{Q_0}) \cdot (\overline{Q_3} + Q_1) \tag{3}$$

Построим карту Карно для МДНФ функции $Q_0(t+1)$ (рис. 7)

	$\begin{array}{c} Q_1(t) \\ Q_0(t) \end{array}$				
Q ₃ (t) Q ₂ (t)		00	01	11	10
	00	1			1
	01	1			1
	11		*	*	
	10		1	1	

Рис.7. Карта Карно для МДН Φ функции $Q_0(t+1)$

Оценим сложность МДНФ: 2+2=4 переменных или их отрицаний.

Построим карту Карно для МКНФ функции $Q_0(t+1)$ (рис. 8)

Рис.8. Карта Карно для МКН Φ функции $Q_0(t+1)$

Оценим сложность МКНФ: 2+2=4 переменных или их отрицаний, что эквивалентно сложности МДНФ. Следовательно, нам все равно, какую минимальную форму взять.

Запишем формулу для МДНФ $Q_0(t+1)$ (формула 4):

$$Q_0(t+1)_{\mathrm{MJH}\Phi} = (\overline{Q_3} \cdot \overline{Q_0}) + (Q_3 \cdot Q_0) \tag{4}$$

4. Реализация счетчика с оптимальной схемой управления

При помощи полученных формул выполним реализацию схем управления для триггеров счетчика (рис. 9).

Рис. 9. Схема счетчика с подключением к устройству проверки

5. Реализация счетчика на преобразователей кодов.

Выполним быструю реализацию счетчика при помощи преобразователя кодов в качестве схемы управления триггерами (рис.10).

Рис. 10. Счетчик со схемой управления, выполненной на преобразователе кодов Тестирование показало, что все схемы работают правильно.

выводы

Мы научились разрабатывать счетчик с параллельным переносом на D-триггерах двумя способами: с оптимальной схемой управления, выполненной на логических элементах общего базиса и со схемой управления, реализованной на преобразователе кодов (быстрая реализация, но не оптимальная схема).

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Программа построения и моделирования логических схем Logisim. http://www.cburch.com/logisim/ (Дата обращения 20.11.2020)
- 2. Справочная система программы Logisim. Устанавливается вместе с программой [1]. Также доступно: http://www.cburch.com/logisim/ru/docs.html (Дата обращения 20.11.2020)
- 3. Описание библиотеки элементов Logisim. Устанавливается вместе с программой [1]. Также доступно: http://www.cburch.com/logisim/ru/docs.html (Дата обращения 20.11.2020)
- 4. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. –102с. (Дата обращения 20.11.2020)