Exercise 1

Zeigen Sie, dass für Mengen $A_i, i \in I$ beliebig, die "de Morganschen Regeln"

$$\overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \bar{A}_i \quad \text{und} \quad \overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \bar{A}_i$$

gelten.

Exercise 2

Sei der Ergebnisraum $\Omega = \{a, b, c, d, e\}$ gegeben. Welche der folgenden Mengen sind σ -Algebren über Ω ?

i)
$$\mathcal{F}_1 = \{\emptyset, \{a\}, \{b, c, d, e\}, \Omega\}$$

ii)
$$\mathcal{F}_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, \Omega\}$$

iii)
$$\mathcal{F}_3 = \{\emptyset, \{a\}, \{b\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, \Omega\}$$

iv)
$$\mathcal{F}_4 = \{\emptyset, \{a, b, c\}, \{c, d, e\}, \{a, b\}, \{d, e\}, \{a, b, d, e\}, \Omega\}$$

Exercise 3

Sei (Ω, \mathcal{F}, P) ein beliebiger Wahrscheinlichkeitsraum mit $A_1, \ldots, A_n \subset \Omega, n \in \mathbb{N}$.

a) Beweisen Sie die Siebformel (Satz 4.3. iii)):

$$\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n (-1)^{i+1} \sum_{1 \le j_1 < \dots < j_i \le n} \mathbb{P}\left(\bigcap_{k=1}^i A_{j_k}\right).$$

b) Wie groß ist die (Laplace-)Wahrscheinlichkeit, dass eine beliebig gewählte Zahl $n \in \{1, ..., 100\}$ durch mindestens eine der Zahlen 2,3 oder 5 teilbar ist?

Exercise 4

Für eine Lieferung von drei Motoren wird für jeden Motor untersucht, ob dieser defekt oder nicht defekt ist.

a) Geben Sie den Ergebnisraum Ω an.

b) Die Ereignisse A, B, C und D sind definiert als:

C: Motor Nr. 3 ist defekt.

A: Mindestens ein Motor ist defekt.B: Höchstens ein Motor ist defekt.

D: Genau 2 Motoren sind defekt.

Wahrscheinlichkeitstheoretische Grundlagen der Statistik Prof. Dr. Volker Schmid Dennis Mao, Julian Rodemann, Michael Kobl

Sommersemester 2022 Blatt 1 Besprechung 02./04.05.2022

Interpretieren Sie folgende Ereignisse:

1. \bar{A}

- 3. $A \cap B$
- 5. $C \setminus B$

 $2. \, \bar{B}$

- 4. $A \cup B$
- 6. $B \cap D$
- c) Bezeichne nun M_i , i=1,2,3 das Ereignis "Motor i ist defekt". Formulieren Sie das Ereignis A aus Aufgabe b) über M_1, M_2 und M_3 .

Exercise 5

Geben Sie den Ergebnisraum Ω für folgende Zufallsexperimente an:

- a) Geschäftserwartung eines zufällig ausgewählten Unternehmens beim Ifo-Geschäftsklimaindex,
- b) zweifacher Würfelwurf,
- c) dreifacher Münzwurf,
- d) Anzahl schwarzer Autos, die innerhalb eines Tages einen zufällig ausgewählten Ort passiert haben,
- e) Lebensdauer (in Stunden) einer zufällig ausgewählten Glühlampe.