SynapSense Corporation

TEST REPORT FOR

Plug Meter, 0642

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207, 15.209, 15.247 and RSS 210 Issue 8

Report No.: 91167-9

Date of issue: February 3, 2011

TESTING CERT #803.01, 803.02, 803.05, 803.06 This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 47 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.207 AC Conducted Emissions	7
15.209/15.247(d) Spurious Radiated Emissions	16
15.47(b)(3) RF Power Output	33
15.247(a)(2) Occupied Bandwidth	35
15.247(e) Power Spectral Density	38
15.247(d) Bandedge	40
RSS-210	43
99% Bandwidth	43
Supplemental Information	46
Measurement Uncertainty	46
Fmissions Test Details.	46

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

SynapSense Corporation

2365 Iron Point Road, Suite 100

Folsom, CA 95630

Dianne Dudley

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Pat Weston Project Number: 91167

Customer Reference Number: 9948

DATE OF EQUIPMENT RECEIPT: October 20, 2010

DATE(S) OF TESTING: October 20, 2010 – January 29, 2011

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Stew J Be

Page 3 of 47 Report No.: 91167-9

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539

Site Registration & Accreditation Information

Location	CB #	Japan	Canada	FCC
Fremont	US0082	R-2160, C2332 & T-228	3082B-1	958979

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.209, 15.247 and RSS-210 Issue 8

Description	Test Procedure/Method	Results
AC Mains Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.209 /15.247(d) / ANSI C63.4 (2003)	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.247(b)(3) / 2.1046	Pass
Occupied Bandwidth	FCC Part 15 Subpart C Section 15.247(a)(2) / 2.1049(I)	Pass
Power Spectral Density	FCC Part 15 Subpart C Section 15.247(e)	Pass
Bandedge	FCC Part 15 Subpart C Section 15.247(d) / 2.1053	Pass
99% Bandwidth	RSS-210 Issue 8	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

During Conducted Emissions testing, the Engineer replaced the 0.01uF capacitor with a 0.1uF capacitor after the fuse from L-N. Only two LEDs are on instead of four, this is done by firmware change.

Page 5 of 47 Report No.: 91167-9

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Plug Meter

Manuf: SynapSense Corporation

Model: 0642 Serial: None

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Halogen Worklight (Dual)

Manuf: Husky

Model: 553143 1200-Watts

Serial: None

Page 6 of 47 Report No.: 91167-9

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: SynapSense Corporation
Specification: 15.207 AC Mains - Average

Work Order #: 91176 Date: 12/17/2010
Test Type: Conducted Emissions Time: 09:06:54
Equipment: Plug Meter Sequence#: 8
Manufacturer: SynapSense Corporation Tested By: A. Brar
Model: 0642 110V 60Hz

S/N: None

Test Equipment:

	l ··· · · · · · · · · · · · · · · · · ·				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	3/9/2009	3/9/2011
T1	ANP05258	High Pass Filter	HE9615-150K-50-720B	12/2/2010	12/2/2012
T2	ANP01211	Attenuator	23-10-34	5/18/2009	5/18/2011
T3	ANP05440	Cable		1/18/2010	1/18/2012
T4	ANP05300	Cable	RG214/U	3/6/2009	3/6/2011
T5	AN00494	50uH LISN-Line (dB)	3816/NM	3/30/2009	3/30/2011
	AN00494	50uH LISN-Neutral (dB)	3816/NM	3/30/2009	3/30/2011

Equipment Under Test (* = EUT):

1 T	- 7		
Function	Manufacturer	Model #	S/N
Plug Meter*	SynapSense Corporation	0642	None

Support Devices:

Function	Manufacturer	Model #	S/N
Halogen Worklight (Dual)	Husky	553143 1200-Watts	None

Page 7 of 47 Report No.: 91167-9

Test Conditions / Notes:

Conducted Emissions 0.15-30MHz. Highest Clock: 2.4GHz (intentional Radiator).

Temperature: 65°F Humidity: 42%

Atmospheric Pressure: 1022mbar

Notes: Testing 2440MHz unit

Modification: Replaced the 0.01uF capacitor with a 0.1uF capacitor after the fuse from L-N. Only two LEDs are on instead of four, this is done by firmware change.

Ext Attn: 0 dB

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Line		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	3.242M	33.2	+0.2	+9.8	+0.1	+0.1	+0.0	43.5	46.0	-2.5	Line
	Ave		+0.1								
^	3.242M	34.1	+0.2	+9.8	+0.1	+0.1	+0.0	44.4	46.0	-1.6	Line
3	2.914M	32.6	+0.1	+9.8	+0.1	+0.2	+0.0	43.0	46.0	-3.0	Line
			+0.1								
4	635.774k	31.6	+0.2	+9.8	+0.0	+0.3	+0.0	42.0	46.0	-4.0	Line
	577 5071	21.2	+0.1	0.0	0.0	0.1	0.0	41.7	46.0	4.5	T ·
5	577.597k	31.3	$+0.2 \\ +0.1$	+9.8	+0.0	+0.1	+0.0	41.5	46.0	-4.5	Line
6	693.950k	31.0	+0.2	+9.8	+0.0	+0.1	+0.0	41.2	46.0	-4.8	Line
			+0.1								
7	522.329k	30.3	+0.1 +0.1	+9.8	+0.1	+0.2	+0.0	40.6	46.0	-5.4	Line
8	655.408k	29.5	+0.2	+9.8	+0.0	+0.2	+0.0	39.8	46.0	-6.2	Line
			+0.1								
9	712.857k	29.3	+0.2 +0.1	+9.8	+0.0	+0.2	+0.0	39.6	46.0	-6.4	Line
10	4.671M	28.7	+0.1	+9.9	+0.1	+0.2	+0.0	39.1	46.0	-6.9	Line
10		20.7	+0.1	17.7	10.1	10.2	10.0	37.1	40.0	0.7	Line
11	4.713M	28.6	+0.1	+9.9	+0.1	+0.2	+0.0	39.0	46.0	-7.0	Line
12	1 5 CCM	20.4	+0.1	+9.9	+0.1	+0.1	.00	38.7	46.0	-7.3	T !
12	1.566M	28.4	+0.1	+9.9	+0.1	+0.1	+0.0	36.7	40.0	-1.3	Line
13	4.768M	28.2	+0.1	+10.0	+0.1	+0.2	+0.0	38.7	46.0	-7.3	Line
			+0.1								
14	463.426k	29.2	+0.1	+9.8	+0.0	+0.2	+0.0	39.3	46.6	-7.3	Line
			+0.0								
15	407.431k	30.1	+0.1	+9.8	+0.0	+0.2	+0.0	40.2	47.7	-7.5	Line
1.0	4.61534	27.0	+0.0	.00	. 0. 1	.0.2	. 0. 0	20.2	46.0	7.0	т
16	4.615M	27.8	$+0.1 \\ +0.1$	+9.9	+0.1	+0.2	+0.0	38.2	46.0	-7.8	Line
17	1.621M	27.9	+0.1	+9.9	+0.0	+0.2	+0.0	38.2	46.0	-7.8	Line
			+0.1								
18	4.556M	27.7	+0.1	+9.9	+0.1	+0.2	+0.0	38.1	46.0	-7.9	Line
			+0.1								

19	1.681M	27.7	+0.1 +0.1	+9.9	+0.1	+0.1	+0.0	38.0	46.0	-8.0	Line
20	752.127k	27.7	+0.2 +0.1	+9.8	+0.1	+0.1	+0.0	38.0	46.0	-8.0	Line
21	1.507M	27.5	+0.1 +0.1	+9.9	+0.2	+0.1	+0.0	37.9	46.0	-8.1	Line
22	1.741M	27.5	+0.1	+10.0	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Line
23	4.441M	27.3	+0.1	+9.9	+0.1	+0.2	+0.0	37.7	46.0	-8.3	Line
24	1.796M	27.2	+0.1	+10.0	+0.1	+0.2	+0.0	37.7	46.0	-8.3	Line
25	1.451M	27.3	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	37.7	46.0	-8.3	Line
26	4.790M	27.2	+0.1 +0.1	+10.0	+0.1	+0.2	+0.0	37.7	46.0	-8.3	Line
27	4.730M	27.1	+0.1 +0.1	+10.0	+0.1	+0.2	+0.0	37.6	46.0	-8.4	Line
28	4.692M	27.2	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	37.6	46.0	-8.4	Line
29	4.496M	27.1	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	37.5	46.0	-8.5	Line
30	4.654M	27.1	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	37.5	46.0	-8.5	Line
31	350.709k	29.8	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	40.2	48.9	-8.7	Line
32	4.828M	26.8	+0.1 +0.1	+10.0	+0.1	+0.2	+0.0	37.3	46.0	-8.7	Line
33	4.381M	26.8	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	37.2	46.0	-8.8	Line
34	501.240k	26.8	+0.1 +0.1	+9.8	+0.1	+0.2	+0.0	37.1	46.0	-8.9	Line
35	4.577M	26.6	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	37.0	46.0	-9.0	Line
36	810.303k	26.4	+0.2 +0.1	+9.8	+0.1	+0.1	+0.0	36.7	46.0	-9.3	Line
37	4.326M	26.3	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	36.7	46.0	-9.3	Line
38	2.685M	26.2	+0.2 +0.1	+9.9	+0.1	+0.2	+0.0	36.7	46.0	-9.3	Line
39	2.744M	26.2	+0.2 +0.1	+9.8	+0.1	+0.2	+0.0	36.6	46.0	-9.4	Line
40	1.583M	26.2	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	36.6	46.0	-9.4	Line
41	4.598M	26.2	+0.1 +0.1	+9.9	+0.1	+0.2	+0.0	36.6	46.0	-9.4	Line
42	2.625M	26.0	+0.2 +0.1	+9.9	+0.2	+0.1	+0.0	36.5	46.0	-9.5	Line
43	1.698M	26.1	+0.1	+10.0	+0.1	+0.1	+0.0	36.5	46.0	-9.5	Line
44	1.855M	26.0	+0.1 +0.1	+10.0	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Line

45	4.267M	26.1	+0.1	+9.9	+0.1	+0.2	+0.0	36.5	46.0	-9.5	Line
			+0.1								
46	2.723M	25.9	+0.2	+9.8	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
			+0.1								
47	2.608M	25.8	+0.2	+9.9	+0.2	+0.1	+0.0	36.3	46.0	-9.7	Line
			+0.1								
48	1.643M	26.0	+0.1	+9.9	+0.0	+0.2	+0.0	36.3	46.0	-9.7	Line
			+0.1								
49	1.528M	25.9	+0.1	+9.9	+0.2	+0.1	+0.0	36.3	46.0	-9.7	Line
			+0.1								
50	4.518M	25.9	+0.1	+9.9	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
			+0.1								
51	2.799M	25.9	+0.2	+9.8	+0.1	+0.2	+0.0	36.3	46.0	-9.7	Line
			+0.1								

CKC Laboratories, Inc. Date: 12/17/2010 Time: 09:06:54 SynapSense Corporation WO#: 91176 Model:0642 SN:None 15.207 AC Mains - Average Test Lead: Line 110V 60Hz Sequence#: 8 Line

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: SynapSense Corporation
Specification: 15.207 AC Mains - Average

Work Order #: 91176 Date: 12/17/2010
Test Type: Conducted Emissions Time: 8:58:08 AM

Equipment: Plug Meter Sequence#: 11

Manufacturer: SynapSense Corporation Tested By: A. Brar

Model: 0642 110V 60Hz

S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	3/9/2009	3/9/2011
T1	ANP05258	High Pass Filter	HE9615-150K-50-720B	12/2/2010	12/2/2012
T2	ANP01211	Attenuator	23-10-34	5/18/2009	5/18/2011
T3	ANP05440	Cable		1/18/2010	1/18/2012
T4	ANP05300	Cable	RG214/U	3/6/2009	3/6/2011
	AN00494	50uH LISN-Line (dB)	3816/NM	3/30/2009	3/30/2011
T5	AN00494	50uH LISN-Neutral (dB)	3816/NM	3/30/2009	3/30/2011

Equipment Under Test (* = EUT):

	 ,		
Function	Manufacturer	Model #	S/N
Plug Meter*	SynapSense Corporation	0642	None

Support Devices:

Function	Manufacturer	Model #	S/N
Halogen Worklight (Dual)	Husky	553143 1200-Watts	None

Test Conditions / Notes:

Conducted Emissions 0.15-30MHz. Highest Clock: 2.4GHz (intentional Radiator).

Temperature: 65°F Humidity: 42%

Atmospheric Pressure: 1022mbar

Notes: Testing 2440MHz unit

Modification: Replaced the 0.01uF capacitor with a 0.1uF capacitor after the fuse from L-N. Only two LEDs are on instead of four, this is done by firmware change.

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	577.597k	33.4	+0.2	+9.8	+0.0	+0.1	+0.0	43.5	46.0	-2.5	Neutr
			+0.0								
2	637.228k	33.0	+0.2	+9.8	+0.0	+0.3	+0.0	43.3	46.0	-2.7	Neutr
			+0.0								
3	693.223k	33.1	+0.2	+9.8	+0.0	+0.1	+0.0	43.2	46.0	-2.8	Neutr
			+0.0								
4	656.135k	32.5	+0.2	+9.8	+0.0	+0.2	+0.0	42.7	46.0	-3.3	Neutr
			+0.0								
5	521.602k	31.6	+0.1	+9.8	+0.1	+0.2	+0.0	41.8	46.0	-4.2	Neutr
			+0.0								

6	750.672k	30.7	+0.2 +0.0	+9.8	+0.1	+0.1	+0.0	40.9	46.0	-5.1	Neutr
7	713.585k	30.6	+0.2 +0.0	+9.8	+0.0	+0.2	+0.0	40.8	46.0	-5.2	Neutr
8	4.611M	30.3	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	40.6	46.0	-5.4	Neutr
9	4.552M	29.9	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	40.2	46.0	-5.8	Neutr
10	809.576k	29.7	+0.2 +0.1	+9.8	+0.1	+0.1	+0.0	40.0	46.0	-6.0	Neutr
11	4.496M	29.7	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	40.0	46.0	-6.0	Neutr
12	1.562M	29.6	+0.1 +0.0	+9.9	+0.1	+0.1	+0.0	39.8	46.0	-6.2	Neutr
13	1.617M	29.5	+0.1 +0.0	+9.9	+0.0	+0.2	+0.0	39.7	46.0	-6.3	Neutr
14	597.232k	29.5	+0.2 +0.0	+9.8	+0.0	+0.1	+0.0	39.6	46.0	-6.4	Neutr
15	1.502M	29.3	+0.1 +0.0	+9.9	+0.2	+0.1	+0.0	39.6	46.0	-6.4	Neutr
16	462.699k	30.0	+0.1 +0.0	+9.8	+0.0	+0.2	+0.0	40.1	46.6	-6.5	Neutr
17	4.437M	29.2	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	39.5	46.0	-6.5	Neutr
18	1.677M	29.1	+0.1 +0.0	+9.9	+0.1	+0.1	+0.0	39.3	46.0	-6.7	Neutr
19	4.666M	28.8	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	39.1	46.0	-6.9	Neutr
20	405.977k	30.6	+0.1 +0.0	+9.8	+0.0	+0.2	+0.0	40.7	47.7	-7.0	Neutr
21	1.736M	28.7	+0.1 +0.0	+10.0	+0.1	+0.1	+0.0	39.0	46.0	-7.0	Neutr
22	4.322M	28.6	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	38.9	46.0	-7.1	Neutr
23	771.034k	28.7	+0.2 +0.0	+9.8	+0.1	+0.1	+0.0	38.9	46.0	-7.1	Neutr
24	4.628M	28.6	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	38.9	46.0	-7.1	Neutr
25	4.377M	28.6	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	38.9	46.0	-7.1	Neutr
26	501.968k	28.6	+0.1 +0.0	+9.8	+0.1	+0.2	+0.0	38.8	46.0	-7.2	Neutr
27	1.447M	28.5	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	38.8	46.0	-7.2	Neutr
28	1.792M	28.3	+0.1 +0.0	+10.0	+0.1	+0.2	+0.0	38.7	46.0	-7.3	Neutr
29	1.388M	28.1	+0.2 +0.0	+9.9	+0.1	+0.2	+0.0	38.5	46.0	-7.5	Neutr
30	4.573M	28.1	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	38.4	46.0	-7.6	Neutr
31	4.649M	28.1	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	38.4	46.0	-7.6	Neutr
			. 3.0								

32	674.316k	28.2	+0.2 +0.0	+9.8	+0.0	+0.1	+0.0	38.3	46.0	-7.7	Neutr
33	1.698M	27.9	+0.1	+10.0	+0.1	+0.1	+0.0	38.2	46.0	-7.8	Neutr
34	2.680M	27.8	+0.0	+9.9	+0.1	+0.2	+0.0	38.2	46.0	-7.8	Neutr
35	4.262M	27.9	+0.0	+9.9	+0.1	+0.2	+0.0	38.2	46.0	-7.8	Neutr
36	1.583M	27.8	+0.0	+9.9	+0.1	+0.2	+0.0	38.1	46.0	-7.9	Neutr
37	867.752k	27.9	+0.0 +0.1 +0.1	+9.8	+0.1	+0.1	+0.0	38.1	46.0	-7.9	Neutr
38	4.705M	27.8	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	38.1	46.0	-7.9	Neutr
39	1.855M	27.7	+0.1 +0.0	+10.0	+0.1	+0.2	+0.0	38.1	46.0	-7.9	Neutr
40	2.855M	27.7	+0.2 +0.0	+9.8	+0.1	+0.2	+0.0	38.0	46.0	-8.0	Neutr
41	2.566M	27.5	+0.2 +0.0	+9.9	+0.2	+0.1	+0.0	37.9	46.0	-8.1	Neutr
42	1.638M	27.7	+0.1 +0.0	+9.9	+0.0	+0.2	+0.0	37.9	46.0	-8.1	Neutr
43	4.513M	27.6	+0.1 +0.0	+9.9	+0.1	+0.2	+0.0	37.9	46.0	-8.1	Neutr
44	2.625M	27.5	+0.2 +0.0	+9.9	+0.2	+0.1	+0.0	37.9	46.0	-8.1	Neutr
45	1.758M	27.5	+0.1 +0.0	+10.0	+0.1	+0.1	+0.0	37.8	46.0	-8.2	Neutr
46	2.740M	27.5	+0.2 +0.0	+9.8	+0.1	+0.2	+0.0	37.8	46.0	-8.2	Neutr
47	1.524M	27.4	+0.1 +0.0	+9.9	+0.2	+0.1	+0.0	37.7	46.0	-8.3	Neutr
48	1.332M	27.3	+0.2 +0.0	+9.9	+0.1	+0.2	+0.0	37.7	46.0	-8.3	Neutr
49	4.207M	27.5	+0.1 +0.0	+9.8	+0.1	+0.2	+0.0	37.7	46.0	-8.3	Neutr
50	2.795M	27.4	+0.2 +0.0	+9.8	+0.1	+0.2	+0.0	37.7	46.0	-8.3	Neutr

CKC Laboratories, Inc. Date: 12/17/2010 Time: 8:58:08 AM SynapSense Corporation WO#: 91176 Model:0642 SN:None
15.207 AC Mains - Average Test Lead: Neutral 110V 60Hz Sequence#: 11 Neutral

15.209/15.247(d) Spurious Radiated Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: SynapSense Corporation
Specification: 15.209 Radiated Emissions

Work Order #: 91167 Date: 11/9/2010
Test Type: Maximized Emissions Time: 12:44:52 PM

Equipment: Plug Meter Sequence#: 16
Manufacturer: SynapSense Corporation Tested By: A. Brar

Model: 0642 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	3/9/2009	3/9/2011
T1	ANP05300	Cable	RG214/U	3/6/2009	3/6/2011
T2	ANP05440	Cable		1/18/2010	1/18/2012
T3	AN00432	Loop Antenna	6502	5/18/2009	5/18/2011

Equipment Under Test (* = EUT):

=quipinent citater z				
Function	Manufacturer	Model #	S/N	
Plug Meter*	SynapSense Corporation	0642	None	

Support Devices:

Function	Manufacturer	Model #	S/N
Halogen Worklight (Dual)	Husky	553143 1200-Watts	None

Test Conditions / Notes:

Temp: 66°F

Relative Humidity: 45%

AP: 1031mbar

Frequency range tested: 0.09 - 30MHz

There are 4 EUTs, each set to a different transmit frequency: 2402, 2440, 2470MHz and one in Rx only mode.

This data sheet covers 2.1057 (a) (1) and 15.33 (a).

Ext Attn: 0 dB

Measur	rement Data:	Reading listed by margin.			argin.	Test Distance: 4.5 Meters					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	609.954k	38.5	+0.1	+0.0	+9.9		-33.0	15.5	31.9	-16.4	Perpe
							-5				100
2	517.964k	39.6	+0.2	+0.1	+9.9		-33.0	16.8	33.3	-16.5	Perpe
							-5				100
3	758.394k	35.9	+0.1	+0.1	+10.3		-33.0	13.4	30.0	-16.6	Perpe
							-5				100
4	831.569k	35.0	+0.1	+0.1	+10.3		-33.0	12.5	29.2	-16.7	Paral
							-6				100

Page 16 of 47 Report No.: 91167-9

5	672.676k	36.8	+0.2	+0.0	+10.2	-33.0	14.2	31.0	-16.8	Paral
						-6				100
6	1.124M	29.5	+0.1	+0.1	+10.3	-33.0	7.0	26.5	-19.5	Perpe
						-5				100
7	1.340M	27.4	+0.2	+0.1	+10.4	-33.0	5.1	25.0	-19.9	Perpe
						-5				100
8	1.595M	25.6	+0.2	+0.1	+10.4	-33.0	3.3	23.5	-20.2	Perpe
						-5				100
9	1.289M	27.6	+0.2	+0.0	+10.3	-33.0	5.1	25.3	-20.2	Perpe
						-5				100
10	1.555M	25.7	+0.1	+0.2	+10.4	-33.0	3.4	23.7	-20.3	Perpe
						-5				100
11	1.691M	24.7	+0.1	+0.1	+10.4	-33.0	2.3	23.0	-20.7	Paral
						-6				100
12	1.478M	25.6	+0.2	+0.1	+10.4	-33.0	3.3	24.2	-20.9	Paral
						-6				100
13	2.078M	24.2	+0.2	+0.0	+10.4	-33.0	1.8	29.5	-27.7	Paral
						-6				100

CKC Laboratories, Inc. Date: 11/9/2010 Time: 12:44:52 PM SynapSense Corporation WO#: 91167 Model:0642 SN:None 15:209 Radiated Emissions Test Distance: 4.5 Meters Sequence#: 16 Perpendicular

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: SynapSense Corporation
Specification: 15.209 Radiated Emissions

Work Order #: 91167 Date: 11/9/2010
Test Type: Maximized Emissions Time: 11:36:53 AM

Equipment: Plug Meter Sequence#: 13
Manufacturer: SynapSense Corporation Tested By: A. Brar

Model: 0642 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	3/9/2009	3/9/2011
T1	ANP05299	Cable	RG214	3/6/2009	3/6/2011
T2	ANP05300	Cable	RG214/U	3/6/2009	3/6/2011
T3	ANP05440	Cable		1/18/2010	1/18/2012
T4	AN00730	Preamp	8447D	2/9/2009	2/9/2011
T5	AN00852	Biconilog Antenna	CBL 6111C	12/22/2008	12/22/2010

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Plug Meter*	SynapSense Corporation	0642	None

Support Devices:

Function	Manufacturer	Model #	S/N
Halogen Worklight (Dual)	Husky	553143 1200-Watts	None

Test Conditions / Notes:

Temp: 66°F

Relative Humidity: 45%

AP: 1031mbar

Frequency range tested: 30-1000MHz

There are 4 EUTs, each set to a different transmit frequency: 2402, 2440, 2470MHz and one in Rx only mode.

This data sheet covers 2.1057 (a) (1) and 15.33 (a).

Ext Attn: 0 dB

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	720.933M	42.5	+0.2	+0.9	+1.7	-27.0	+0.0	38.8	46.0	-7.2	Vert
			+20.5				-5				130
2	162.014M	51.0	+0.2	+0.5	+0.6	-27.3	+0.0	35.2	43.5	-8.3	Horiz
			+10.2				391				100
3	288.020M	50.1	+0.2	+0.6	+0.9	-27.2	+0.0	37.6	46.0	-8.4	Horiz
			+13.0				391				100
4	61.744M	52.0	+0.1	+0.4	+0.5	-27.3	+0.0	31.3	40.0	-8.7	Vert
			+5.6				-5				130
5	56.353M	50.8	+0.1	+0.3	+0.4	-27.3	+0.0	30.8	40.0	-9.2	Vert
			+6.5				-5				130

Page 18 of 47 Report No.: 91167-9

6	223.996M	51.4	+0.2	+0.6	+0.8	-27.2	+0.0	36.5	46.0	-9.5	Horiz
			+10.7				391				100
7	163.816M	49.0	+0.2	+0.5	+0.6	-27.3	+0.0	33.1	43.5	-10.4	Horiz
			+10.1				391				100
8	38.319M	41.0	+0.1	+0.3	+0.3	-27.3	+0.0	29.1	40.0	-10.9	Vert
			+14.7				-5				130
9	42.112M	43.0	+0.1	+0.3	+0.3	-27.3	+0.0	29.0	40.0	-11.0	Vert
			+12.6				-5				130

CKC Laboratories, Inc. Date: 11/9/2010 Time: 11:36:53 AM SynapSense Corporation WO#: 91167 Model:0642 SN:None 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 13 Horiz

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: SynapSense Corporation
Specification: 15.209 Radiated Emissions

Work Order #: 91167 Date: 11/9/2010
Test Type: Maximized Emissions Time: 11:24:32
Equipment: Plug Meter Sequence#: 10
Manufacturer: SynapSense Corporation Tested By: A. Brar

Model: 0642 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	3/9/2009	3/9/2011
T1	AN02061	Horn Antenna	DRG-118A	1/19/2009	1/19/2011
T2	ANP04241	Cable	FSJ1-50A	3/2/2010	3/2/2012
T3	ANP05138	Cable	FSJ1P-50A-4	3/19/2010	3/19/2012
T4	AN03114	Preamp	AMF-7D-	9/16/2009	9/16/2011
			00101800-30-10P		
T5	ANP05843	Cable	32022-2-29094K-	7/30/2010	7/30/2012
			48TC		
T6	ANP05411	Attenuator	54A-10	2/4/2010	2/4/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Plug Meter*	SynapSense Corporation	0642	None

Support Devices:

Function	Manufacturer	Model #	S/N
Halogen Worklight (Dual)	Husky	553143 1200-Watts	None

Test Conditions / Notes:

Temp: 66°F

Relative Humidity: 45%

AP: 1031mbar

Frequency range tested: 1- 3.5GHz

There are 4 EUTs, each set to a different transmit frequency: 2402, 2440, 2470MHz and one in Rx only mode. This data sheet covers 2.1057 (a) (1) and 15.33 (a).

Ext Attn: 0 dB

Meas	urement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	2439.352M	108.0	+28.7	+0.5	+2.3	-58.1	+0.0	91.4	54.0	+37.4	Horiz
	Ambient		+0.7	+9.3					In Band.		129
2	2470.383M	107.4	+28.8	+0.5	+2.3	-58.2	+0.0	90.8	54.0	+36.8	Vert
	Ambient		+0.7	+9.3			-5		In Band.		130
3	2440.353M	107.3	+28.7	+0.5	+2.3	-58.1	+0.0	90.7	54.0	+36.7	Vert
	Ambient		+0.7	+9.3			-5		In Band.		130
4	2470.383M	106.4	+28.8	+0.5	+2.3	-58.2	+0.0	89.8	54.0	+35.8	Horiz
	Ambient		+0.7	+9.3					In Band.		129

Page 20 of 47 Report No.: 91167-9

_	2402.315M	105.0	+28.6	+0.5	+2.3	-58.1	+0.0	88.3	54.0	+34.3	Vert
	Ambient		+0.7	+9.3			-5		In Band.		130
6	2410.323M	68.0	+28.7	+0.5	+2.3	-58.1	+0.0	51.4	54.0	-2.6	Horiz
	Ambient		+0.7	+9.3					In Band.		129
7	2421.334M	67.8	+28.7	+0.5	+2.3	-58.1	+0.0	51.2	54.0	-2.8	Vert
4	Ambient		+0.7	+9.3			-5		In Band.		130
8	3494.768M	63.3	+31.4	+0.7	+2.9	-58.6	+0.0	49.9	54.0	-4.1	Horiz
			+0.9	+9.3					Noise Floor		129
9	3494.380M	63.0	+31.4	+0.7	+2.9	-58.6	+0.0	49.6	54.0	-4.4	Horiz
			+0.9	+9.3					Noise Floor		129
10	3387.994M	62.8	+31.2	+0.6	+2.8	-58.4	+0.0	49.2	54.0	-4.8	Vert
			+0.9	+9.3			-5		Noise Floor		130
11	3400.396M	62.6	+31.3	+0.6	+2.8	-58.3	+0.0	49.2	54.0	-4.8	Vert
			+0.9	+9.3			-5		Noise Floor		130
12	3489.923M	62.6	+31.4	+0.7	+2.9	-58.6	+0.0	49.2	54.0	-4.8	Vert
			+0.9	+9.3			-5		Noise Floor		130
13	3412.992M	62.5	+31.3	+0.6	+2.8	-58.3	+0.0	49.1	54.0	-4.9	Vert
			+0.9	+9.3			-5		Noise Floor		130
14	3493.218M	62.5	+31.4	+0.7	+2.9	-58.6	+0.0	49.1	54.0	-4.9	Vert
			+0.9	+9.3			-5		Noise Floor		130
15	3437.021M	62.4	+31.3	+0.7	+2.9	-58.4	+0.0	49.1	54.0	-4.9	Horiz
			+0.9	+9.3					Noise Floor		129
16	3423.069M	62.3	+31.3	+0.7	+2.9	-58.3	+0.0	49.1	54.0	-4.9	Horiz
			+0.9	+9.3					Noise Floor		129
17	2825.076M	54.6	+30.0	+0.6	+2.5	-58.1	+0.0	39.7	54.0	-14.3	Vert
	Ave		+0.8	+9.3			47				130
^	2825.076M	66.1	+30.0	+0.6	+2.5	-58.1	+0.0	51.2	54.0	-2.8	Vert
			+0.8	+9.3			-5				130

CKC Laboratories, Inc. Date: 11/9/2010 Time: 11:24:32 SynapSense Corporation WO#: 91167 Model:0642 SN:None 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 10 Horiz

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: SynapSense Corporation
Specification: 15.209 Radiated Emissions

Work Order #: 91167 Date: 11/9/2010
Test Type: Maximized Emissions Time: 08:27:22
Equipment: Plug Meter Sequence#: 7

Equipment: Plug Meter Sequence#: 7
Manufacturer: SynapSense Corporation Tested By: A. Brar

Model: 0642 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	3/9/2009	3/9/2011
T1	AN02061	Horn Antenna	DRG-118A	1/19/2009	1/19/2011
T2	ANP04241	Cable	FSJ1-50A	3/2/2010	3/2/2012
T3	ANP05138	Cable	FSJ1P-50A-4	3/19/2010	3/19/2012
T4	AN01416	High Pass Filter	84300-80038	2/23/2010	2/23/2012
T5	AN03114	Preamp	AMF-7D-	9/16/2009	9/16/2011
			00101800-30-10F)	
T6	ANP05913	Cable	32022-29094K-	9/10/2009	9/10/2011
			65TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Plug Meter*	SynapSense Corporation	0642	None	

Support Devices:

Function	Manufacturer	Model #	S/N
Halogen Worklight (Dual)	Husky	553143 1200-Watts	None

Test Conditions / Notes:

Temp: 73°F

Relative Humidity: 40%

AP: 1014mbar

Frequency range tested: 3.5-18GHz.

There are 4 EUTs, each set to a different transmit frequency: 2402, 2440, 2470MHz and one in Rx only mode.

This data sheet covers 2.1057 (a) (1) and 15.33 (a).

Ext Attn: 0 dB

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar		
			T5	T6									
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant		
1	15452.941	55.2	+42.5	+2.2	+6.9	+0.3	+0.0	52.0	54.0	-2.0	Horiz		
	M		-57.7	+2.6									
							-5				134		
2	15794.282	54.5	+42.2	+2.2	+7.2	+0.6	+0.0	51.9	54.0	-2.1	Vert		
	M		-57.5	+2.7									
							368				129		
3	15206.695	55.0	+42.9	+2.0	+6.6	+0.0	+0.0	51.7	54.0	-2.3	Horiz		
	M		-57.4	+2.6									
							-5				134		

Page 23 of 47 Report No.: 91167-9

1	15677 165	7.4.C	. 12.2	. 2. 1	7.1	. 0. 5	. 0. 0	<i>[</i> 1 <i>[</i> 2	710	2.2	
4	15677.165	54.6	+42.3	+2.1	+7.1	+0.5	+0.0	51.7	54.0	-2.3	Horiz
	M		-57.6	+2.7			5				134
- 5	15092.581	55.0	+43.0	+2.0	+6.6	+0.0	-5 +0.0	51.7	54.0	-2.3	Horiz
3	M	33.0	+43.0 -57.5	+2.6	+0.0	+0.0	+0.0	31.7	34.0	-2.3	попх
	IVI		-37.3	+2.0			-5				134
6	15579.067	55.0	+42.3	+2.0	+7.1	+0.4	+0.0	51.7	54.0	-2.3	Horiz
	M	33.0	-57.8	+2.7	⊤/.1	⊤0. 4	+0.0	31.7	34.0	-2.3	110112
	141		37.0	12.7			-5				134
7	15268.757	55.1	+42.8	+1.9	+6.6	+0.1	+0.0	51.7	54.0	-2.3	Vert
,	M	55.1	-57.4	+2.6	10.0	10.1	10.0	51.7	5 1.0	2.5	, 011
	1.1		0,	. 2.0			368				129
8	15330.819	55.0	+42.7	+2.0	+6.7	+0.1	+0.0	51.6	54.0	-2.4	Vert
	M		-57.5	+2.6							
							368				129
9	12792.283	57.9	+40.7	+1.9	+6.0	+0.2	+0.0	51.5	54.0	-2.5	Vert
	M		-57.6	+2.4							
							368				129
10	15697.185	54.6	+42.2	+2.1	+7.0	+0.5	+0.0	51.5	54.0	-2.5	Vert
	M		-57.6	+2.7							
							368				129
11	13032.523	57.7	+40.9	+2.4	+5.8	+0.5	+0.0	51.4	54.0	-2.6	Vert
	M		-58.3	+2.4							
							368				129
12	15680.168	54.0	+42.3	+2.1	+7.1	+0.5	+0.0	51.1	54.0	-2.9	Vert
	M		-57.6	+2.7							
							368				129
13	15448.937	54.2	+42.5	+2.2	+6.9	+0.3	+0.0	51.1	54.0	-2.9	Horiz
	M		-57.6	+2.6			~				124
1.4	4004 2021 4	60 0	. 22.0	. 0. 0	. 2. 4	.0.2	-5	10.7	540	11.0	134
	4804.303M	62.8	+33.0	+0.8	+3.4	+0.3	+0.0	42.7	54.0	-11.3	Horiz
	4904 202M	01.0	-59.0	+1.4	+2.4	+0.2	283	<i>(</i> 1.0	540	.70	135
	4804.303M	81.9	+33.0	+0.8	+3.4	+0.3	+0.0	61.8	54.0	+7.8	Horiz 134
16	7410.907M	54.3	-59.0 +37.2	+1.4	+4.6	+0.3	-5 +0.0	41.0	54.0	-13.0	
	/410.90/M Ave	34.3	+37.2 -58.3	+1.1 +1.8	+4.0	+0.5	+0.0 54	41.0	54.0	-13.0	Horiz 140
	7410.907M	73.9	+37.2	+1.1	+4.6	+0.3	+0.0	60.6	54.0	+6.6	Horiz
	/ 10.30 / WI	13.7	+57.2 -58.3	+1.1 + 1.8	±+.0	±0.5	+0.0 -5	00.0	J+.U	±0.0	134
18	4879.411M	60.0	+33.1	+0.8	+3.5	+0.4	+0.0	40.3	54.0	-13.7	Horiz
	4679.411WI Ave	00.0	+53.1 -58.9	+1.4	13.3	10.4	120	TU. J	J 1 .U	-13.7	158
	4879.411M	79.4	+33.1	+0.8	+3.5	+0.4	+0.0	59.7	54.0	+5.7	Horiz
	1077.111111	, , , , ,	-58.9	+1.4	13.3	10.4	-5	57.1	5 1.0	13.1	134
20	7321.026M	53.3	+37.3	+1.1	+4.5	+0.3	+0.0	39.8	54.0	-14.2	Horiz
	Ave	55.5	-58.4	+1.7	11.5	. 0.5	119	27.0	21.0	11,2	139
	7321.026M	72.4	+37.3	+1.1	+4.5	+0.3	+0.0	58.9	54.0	+4.9	Horiz
			-58.4	+1.7		. 0.0	-5	23.7	2 110		134
<u> </u>							_				-0.

22	7408.946M	53.0	+37.2	+1.1	+4.6	+0.3	+0.0	39.7	54.0	-14.3	Vert
	Ave		-58.3	+1.8			104				147
٨	7408.946M	72.3	+37.2	+1.1	+4.6	+0.3	+0.0	59.0	54.0	+5.0	Vert
			-58.3	+1.8							129
24	4940.764M	58.1	+33.2	+0.8	+3.5	+0.4	+0.0	38.6	54.0	-15.4	Horiz
	Ave		-58.8	+1.4			117				159
^	4940.764M	77.8	+33.2	+0.8	+3.5	+0.4	+0.0	58.3	54.0	+4.3	Horiz
			-58.8	+1.4			-5				134
26	4880.668M	58.0	+33.1	+0.8	+3.5	+0.4	+0.0	38.3	54.0	-15.7	Vert
	Ave		-58.9	+1.4			132				129
٨	4880.668M	77.7	+33.1	+0.8	+3.5	+0.4	+0.0	58.0	54.0	+4.0	Vert
			-58.9	+1.4							129
28	4940.808M	56.4	+33.2	+0.8	+3.5	+0.4	+0.0	36.9	54.0	-17.1	Vert
	Ave		-58.8	+1.4			118				124
^	4940.808M	76.3	+33.2	+0.8	+3.5	+0.4	+0.0	56.8	54.0	+2.8	Vert
			-58.8	+1.4							129
30	7319.816M	49.2	+37.3	+1.1	+4.5	+0.3	+0.0	35.7	54.0	-18.3	Vert
	Ave		-58.4	+1.7			70				126
٨	7319.816M	65.7	+37.3	+1.1	+4.5	+0.3	+0.0	52.2	54.0	-1.8	Vert
			-58.4	+1.7							129
32	7413.910M	48.3	+37.2	+1.1	+4.6	+0.3	+0.0	35.0	54.0	-19.0	Vert
	Ave		-58.3	+1.8			118				124
٨	7413.910M	68.2	+37.2	+1.1	+4.6	+0.3	+0.0	54.9	54.0	+0.9	Vert
			-58.3	+1.8							129
34	7406.240M	47.3	+37.2	+1.1	+4.6	+0.3	+0.0	34.0	54.0	-20.0	Horiz
	Ave		-58.3	+1.8			125				161
٨	7406.240M	69.9	+37.2	+1.1	+4.6	+0.3	+0.0	56.6	54.0	+2.6	Horiz
			-58.3	+1.8			-5				134

CKC Laboratories, Inc. Date: 11/9/2010 Time: 08:27:22 SynapSense Corporation WO#: 91167 Model:0642 SN:None 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 7 Vert

Test Location: CKC Laboratories, Inc. • 1120 Fulton Place. • Fremont, CA 94539 • (510) 249-1170

Customer: SynapSense Corporation
Specification: 15.209 Radiated Emissions

Work Order #: 91167 Date: 11/9/2010
Test Type: Maximized Emissions Time: 1:14:29 PM

Equipment: Plug Meter Sequence#: 19
Manufacturer: SynapSense Corporation Tested By: A. Brar

Model: 0642 S/N: None

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02668	Spectrum Analyzer	E4446A	3/9/2009	3/9/2011
T1	AN02694	Active Horn Antenna	AMFW-5F-18002650-	11/13/2008	11/13/2010
			20-10P		
T2	ANP00929	Cable	various	3/29/2010	3/29/2012
Т3	AN03143	Cable	32022-29094K-144TC	9/10/2009	9/10/2011
T4	ANP05843	Cable	32022-2-29094K-48TC	7/30/2010	7/30/2012

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Plug Meter*	SynapSense Corporation	0642	None

Support Devices:

Function	Manufacturer	Model #	S/N
Halogen Worklight (Dual)	Husky	553143 1200-Watts	None

Test Conditions / Notes:

Temp: 66°F,

Relative Humidity: 45%

AP: 1031mbar

Frequency range tested: 18-26.5GHz

There are 4 EUTs, each set to a different transmit frequency: 2402, 2440, 2470MHz and one in Rx only mode.

This data sheet covers 2.1057 (a) (1) and 15.33 (a).

Ext Attn: 0 dB

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	26423.740	42.6	-11.5	+3.4	+7.4	+2.7	+0.0	44.6	54.0	-9.4	Vert
	M										
							359				
2	26469.988	41.9	-11.1	+3.4	+7.4	+2.7	+0.0	44.3	54.0	-9.7	Horiz
	M										
3	26482.780	41.8	-11.0	+3.4	+7.4	+2.7	+0.0	44.3	54.0	-9.7	Horiz
	M										
4	26417.836	42.2	-11.5	+3.4	+7.4	+2.7	+0.0	44.2	54.0	-9.8	Horiz
	M										

5	26424.232 M	42.2	-11.5	+3.4	+7.4	+2.7	+0.0	44.2	54.0	-9.8	Horiz
6	26496.556 M	41.6	-10.9	+3.4	+7.4	+2.7	+0.0	44.2	54.0	-9.8	Horiz
7	26368.636 M	42.4	-11.9	+3.4	+7.4	+2.7	+0.0	44.0	54.0	-10.0	Vert
8	26400.616 M	42.1	-11.7	+3.4	+7.4	+2.7	+0.0	43.9	54.0	-10.1	Vert
9	26470.972 M	41.5	-11.1	+3.4	+7.4	+2.7	+0.0	43.9	54.0	-10.1	Vert
10	26405.044 M	41.9	-11.6	+3.4	+7.4	+2.7	+0.0	43.8	54.0	-10.2	Horiz
11	26371.096 M	41.9	-11.9	+3.4	+7.4	+2.7	+0.0	43.5	54.0	-10.5	Horiz
12	26387.824 M	41.8	-11.8	+3.4	+7.4	+2.7	+0.0	43.5	54.0	-10.5	Horiz
13	26389.792 M	41.6	-11.8	+3.4	+7.4	+2.7	+0.0	43.3	54.0	-10.7	Horiz
14	26209.228 M	43.1	-13.2	+3.3	+7.4	+2.7	+0.0	43.3	54.0	-10.7	Horiz
15	26438.008 M	41.1	-11.4	+3.4	+7.4	+2.7	+0.0	43.2	54.0	-10.8	Vert
16	26444.404 M	41.0	-11.3	+3.4	+7.4	+2.7	+0.0	43.2	54.0	-10.8	Vert
17	26241.700 M	42.6	-12.9	+3.3	+7.4	+2.7	+0.0	43.1	54.0	-10.9	Vert
18	26390.284 M	41.3	-11.7	+3.4	+7.4	+2.7	+0.0	43.1	54.0	-10.9	Vert
19	26429.644 M	41.0	-11.4	+3.4	+7.4	+2.7	+0.0	43.1	54.0	-10.9	Vert
20	26392.744 M	41.2	-11.7	+3.4	+7.4	+2.7	+0.0	43.0	54.0	-11.0	Vert
21	26091.640 M	43.5	-14.1	+3.3	+7.4	+2.7	+0.0	42.8	54.0	-11.2	Horiz

22 26150.188	42.6	-13.6	+3.3	+7.4	+2.7	+0.0	42.4	54.0	-11.6	Horiz
M										
23 26072.452	43.0	-14.2	+3.3	+7.4	+2.7	+0.0	42.2	54.0	-11.8	Horiz
M										
24 26173.312	41.9	-13.4	+3.3	+7.4	+2.7	+0.0	41.9	54.0	-12.1	Horiz
M										
25 26104.924	42.5	-14.0	+3.2	+7.4	+2.7	+0.0	41.8	54.0	-12.2	Horiz
M										
26 26152.156	41.4	-13.6	+3.3	+7.4	+2.7	+0.0	41.2	54.0	-12.8	Vert
M					,			•		
						359				
27 24965.959	43.8	-15.4	+3.0	+7.2	+2.6	+0.0	41.2	54.0	-12.8	Vert
M								•		
						359				
28 25877.870	42.8	-14.9	+3.2	+7.4	+2.6	+0.0	41.1	54.0	-12.9	Vert
M	.2.0	2.17			. 2.0	. 0.0			12.,	, 510
						359				
29 26109.844	41.7	-13.9	+3.2	+7.4	+2.7	+0.0	41.1	54.0	-12.9	Vert
M	11./	13.7	1 3.2	· / • · ·	1 2.7	10.0	11.1	51.0	12.7	, 011
141						359				
30 26072.452	41.9	-14.2	+3.3	+7.4	+2.7	+0.0	41.1	54.0	-12.9	Vert
M	41.7	-14.2	±3.3	⊤/. 1	<i>⊤∠.1</i>	+0.0	71.1	34.0	-14.9	V CI i
1V1						359				
						337				

CKC Laboratories, Inc. Date: 11/9/2010 Time: 1:14:29 PM SynapSense Corporation WO#. 91167 Model:0642 SN:None 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 19 Vert

9kHz - 30MHz Mag Loop Antenna

30-1000MHz Bi Log Antenna

1-18GHz Horn Antenna

18-26.5GHz Horn Antenna

15.47(b)(3) RF Power Output

Test Conditions

There are three EUTs, each set to a different transmit frequency: 2402, 2440 & 2470MHz. Testing one EUT at a time set to one of the three channels. Fundamental readings, RBW 8MHz / VBW 8MHz

Temp: 68.2°F, Relative Humidity: 48%, AP: 1025mbar. FCC 2.1055(d) & 15.31(e) covered under this data sheet by altering the voltage from 85% to 115% of the nominal, no effects were noticed.

Engineer Name: A. Brar

	Test Equipment										
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due						
AN02668	Spectrum Analyzer	E4446A	Agilent	3/9/2009	3/9/2011						
AN02061	Horn Antenna	DRG-118A	ARA	1/19/2009	1/19/2011						
ANP04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012						
ANP05138	Cable	FSJ1P-50A-4	andrews	3/19/2010	3/19/2012						

Test Data

Frequency (MHz)	F/S in dBuV/m	Antenna Gain in dBi	Numeri c Gain G	F/S in V/m	Test Distance in meters	Power in Watts	Limit (Watts)	Results
2402.083	91.5	3.60	2.29	0.0376	3	1.8498E-04	1	Pass
2439.675	93.0	3.60	2.29	0.0447	3	2.6129E-04	1	Pass
2470.335	99.4	3.6	2.29	0.0933	1	1.2673E-04	1	Pass

Page 33 of 47 Report No.: 91167-9

15.247(a)(2) Occupied Bandwidth

Test Conditions

There are three EUTs, each is set to transmit at one frequency at a time, low, mid and high channel. Only one unit is being tested at a time. Temp: 73°F, Relative Humidity: 45%, AP: 1034mbar. RBW 100kHz, VBW 300kHz. Sweep Time: 20ms.

Engineer Name: A. Brar

	Test Equipment										
Asset/Serial # Description Model Manufacturer Cal Date Cal Due											
AN02668	Spectrum Analyzer	E4446A	Agilent	3/9/2009	3/9/2011						
AN02061	Horn Antenna	DRG-118A	ARA	1/19/2009	1/19/2011						
ANP04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012						
ANP05138	Cable	FSJ1P-50A-4	Andrews	3/19/2010	3/19/2012						

Test Plots

Low-Channel-6dB Bandwidth

Mid Channel-6dB Bandwidth

High Channel-6dB Bandwidth

15.247(e) Power Spectral Density

Test Conditions

There are three EUTs, each set to a different transmit frequency: 2402, 2440 & 2470MHz. Testing one EUT at a time set to one of the three channels. Temp: 61°F, Relative Humidity: 47%, AP: 1030mbar. RBW 3kHz / VBW 9kHz

Engineer Name: A. Brar

	Test Equipment										
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due						
AN02668	Spectrum Analyzer	E4446A	Agilent	3/9/2009	3/9/2011						
AN02061	Horn Antenna	DRG-118A	ARA	1/19/2009	1/19/2011						
ANP04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012						
ANP05138	Cable	FSJ1P-50A-4	Andrews	3/19/2010	3/19/2012						

Test Data

Frequency (MHz)	F/S in dBuV/M	Antenna Gain in dBi	Numeric Gain G	F/S in V/M	Test Distance in meters	Power dBm	Limit dBm	Results
2402.083	90.2	3.60	2.29	0.0324	1	-18.2	8	Pass
2439.675	91.3	3.60	2.29	0.0367	1	-17.1	8	Pass
2470.335	85.5	3.6	2.29	0.0188	1	-22.9	8	Pass

Page 38 of 47 Report No.: 91167-9

15.247(d) Bandedge

Test Conditions

There are three EUTs, each is set to transmit at one frequency at a time, low, mid and high channel. Only one unit is being tested at a time. Temp: 73°F, Relative Humidity: 45%, AP: 1034mbar . RBW 100kHz, VBW 300kHz. Sweep Time: 20ms

Engineer Name: A. Brar

	Test Equipment										
Asset/Serial # Description Model Manufacturer Cal Date Cal Due											
AN02668	Spectrum Analyzer	E4446A	Agilent	3/9/2009	3/9/2011						
AN02061	Horn Antenna	DRG-118A	ARA	1/19/2009	1/19/2011						
ANP04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012						
ANP05138	Cable	FSJ1P-50A-4	Andrews	3/19/2010	3/19/2012						

Test Plots

Low Channel

High Channel

High Channel Average

RSS-210

99% Bandwidth

Test Conditions

There are three EUTs, each is set to transmit at one frequency at a time, low, mid and high channel. Only one unit is being tested at a time. Temp: 65°F, Relative Humidity: 42%, AP: 1030mbar. RBW 30kHz, VBW 90kHz. IC 99% OBW.

Engineer Name: A. Brar

Test Equipment							
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due		
AN02668	Spectrum Analyzer	E4446A	Agilent	3/9/2009	3/9/2011		
AN02061	Horn Antenna	DRG-118A	ARA	1/19/2009	1/19/2011		
ANP04241	Cable	FSJ1-50A	Andrews	3/2/2010	3/2/2012		
ANP05138	Cable	FSJ1P-50A-4	Andrews	3/19/2010	3/19/2012		

Test Plots

Low-Channel-99%-Bandwidth

Mid-Channel-99%-Bandwidth

High-Channel-99%-Bandwidth

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter	
4.73 dB	Radiated Emissions	
3.34 dB	Mains Conducted Emissions	
3.30 dB	Disturbance Power	

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 46 of 47 Report No.: 91167-9

SAMPLE CALCULATIONS					
	Meter reading	(dBμV)			
+	Antenna Factor	(dB)			
+	Cable Loss	(dB)			
-	Distance Correction	(dB)			
-	Preamplifier Gain	(dB)			
=	Corrected Reading	(dBµV/m)			

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 47 of 47 Report No.: 91167-9