Bezout's Theorem, mixed volumes and mixed multiplicities

Ngo Viet Trung

Institute of Mathematics, VAST, Hanoi

Bezout's theorem

Maclaurin (1720): Two polynomials f, g in two variables with no common factor have at most $\deg f \cdot \deg g$ common zeros.

Bezout (1764): Let $f_1, ..., f_n$ be n polynomials of degree $d_1, ..., d_n$ in n variables having finitely many common zeros. Then

number common zeros $\leq d_1 \cdots d_n$.

The bound is attained by generic polynomials of degree $d_1, ..., d_n$.

Generic means that the coefficients can be varied in an open non-empty subset of the parameter space.

Sparse polynomials

A polynomial f is full if it contains all monomials of degree $\deg f$.

It is sparse if it doesn't contain all monomials of degree \leq deg f.

Phenomenon: Bezout's theorem does not give a sharp bound for sparse polynomials!

Example: The sparse polynomials

$$f(x,y) = xy + ax + b$$

$$g(x,y) = xy + cy + d$$

have 2 common zeros, whereas 4 is Bezout's bound.

The reason lies in the combinatorial geometry of the sparse polynomials

Newton polytope

P(f) := convex hull of the exponents of the monomials of f

Example 1: f is a full polynomial of degree 2

$$P(f) = \text{triangle } (2,0), (0,2), (0,0)$$

Example 2: $f = xy + \alpha x + \beta$, $g = xy + \mu y + \nu$

P(f) = triangle (1,1), (1,0), (0,0)

P(g) = triangle (1,1), (0,1), (0,0)

Minkowski sum

P, Q polytopes in \mathbb{R}^n

$$P + Q := \{u + v \mid u \in P, v \in Q\}$$

(convex hull of the sums of the vertices of P, Q)

Example 1: P = P(f), Q = P(g)

where f, g are full polynomials of degree 2

Example 2: P = P(f), Q = P(g)

where

$$f = xy + \alpha x + \beta$$
$$g = xy + \mu y + \nu$$

Mixed area

$$mixed-area(P,Q) := area(P+Q) - area(P) - area(Q)$$

Example:
$$P = P(f), Q = P(g)$$

If f, g are full polynomials of degree 2, then

$$mixed-area(P, Q) = 8 - 2 - 2 = 4$$

This is Bezout's bound!

If
$$f = xy + \alpha x + \beta$$
, $g = xy + \mu y + \nu$, then mixed-area $(P,Q) = 3 - \frac{1}{2} - \frac{1}{2} = 2$

This is the number of common zeros of f, g!

Mixed volume

 $P_1, ..., P_n$ polytopes in \mathbb{R}^n

$$MV(P_1, ..., P_n) := \sum_{j=1}^n \sum_{1 \le i_1 < ... < i_j \le n} (-1)^{n-j} V(P_{i_1} + \dots + P_{i_j})$$

where V is the Euclidian volume function

Example: mixed-area if n = 2

- 1. Positivity: $MV(P_1,...,P_n) \ge 0$
- 2. Monotony: $MV(P_1,...,P_n) \leq M(Q_1,...,Q_n)$ if $P_i \subseteq Q_i$

Bernstein's theorem

Bernstein (1975): Let $f_1, ..., f_n$ be n polynomials in n variables having finitely many common zeros in $(\mathbb{C}^*)^n$, $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$. Then number of common zeros in $(\mathbb{C}^*)^n \leq MV(P(f_1), ..., P(f_n))$.

The bound is attained for generic polynomials $f_1, ..., f_n$ with fixed Newton polytopes

Example:
$$f = xy + \alpha x + \beta$$
, $g = xy + \mu y + \nu$
number of common zeros $\leq MV(P(f), P(g)) = 2$

Bezout's theorem as a special case

Let f, g be arbitrary polynomials of degree r, s in two variables with no common factors. Change of coordinates:

number of common zeros = number of common zeros in $(\mathbb{C}^*)^n$

By Bernstein's theorem we only need to show that

$$MV(P(f), P(g)) \le rs$$

By monotony we may assume that f, g are full.

Then P(f), P(g), P(f) + P(g) are isosceles right triangles

Therefore,
$$MV(P(f), P(g)) = \frac{(r+s)^2}{2} - \frac{r^2}{2} - \frac{s^2}{2} = rs$$

Proofs of Bernstein's theorem

Bernstein: combinatoric (mysterious)

Teissier: intersection theory (hard)

Question: Is there any algebraic proof for Bernstein's theorem?

Answer: yes (joint work with Jugal Verma, ITT, Mumbay)

Main tool: Multiplicity theory

Homogenization

$$f \in \mathbb{C}[x_1, ..., x_n] \longrightarrow f^h := x_0^{\deg f} f(x_1/x_0, ..., x_n/x_0)$$

 $(\alpha_1, ..., \alpha_n) \in \mathbb{C}^n \longrightarrow (1, \alpha_1, ..., \alpha_n) \in \mathbb{P}^n_{\mathbb{C}}$ is a bijective map between the zeros of f in $(\mathbb{C}^*)^n$ and the zeros of f^h in $\mathbb{P}^n_{\mathbb{C}^*}$

 $P(f^h) \subset \mathbb{R}^{n+1}$ can be identified with $P(f) \subset \mathbb{R}^n$ by projection:

Homogeneous Bernstein's theorem

Theorem (homogeneous version): Let $f_1, ..., f_n$ be n homogeneous polynomials of degree $d_1, ..., d_n$ in n + 1 variables having finitely many common zeros in $\mathbb{P}^n_{\mathbb{C}^*}$. Then

number of common zeros in $\mathbb{P}^n_{\mathbb{C}^*} \leq MV(P(f_1),...,P(f_n))$ $(P(f_1),...,P(f_n))$ embedded in \mathbb{R}^n by projection).

This bound is attained by generic homogeneous polynomials.

Sketch of proof:

number of common zeros \leftrightarrow mixed multiplicity \leftrightarrow mixed volume

Multiplicity

 $S = \bigoplus_{t \in \mathbb{N}} S_t$ standard graded algebra over a field k

Hilbert: $\dim_k S_t$ is given by a polynomial $P_S(t)$ for $t \gg 0$

Let $r = \deg P_S(t)$. We may write

$$P_S(t) = \frac{1}{r!}e(S)t^r + \{\text{terms of degree} < r\}$$

Then e(S) is a positive integer, called the multiplicity of S

Theorem: Let $f_1, ..., f_m \in k[x_0, ..., x_n]$ be homogeneous polynomials with a finite set of common zeros in \mathbb{P}_k^n . Let $S = k[x_0, ..., x_n]/(f_1, ..., f_m)$. Then

number of common zeros of $f_1, ..., f_m$ in $\mathbb{P}^n_k \leq e(S)$

Mixed multiplicities

 $S = \bigoplus_{u \in \mathbb{N}^{n+1}} S_u$ standard multigraded algebra over a field k

Van der Waerden: $\dim_k S_u$ is given by a polynomial $P_S(u)$ for $u \gg 0$

Let $r = \deg P_S(u)$. We may write

$$P_S(u) = \sum_{a \in \mathbb{N}^{n+1}, |a| = r} \frac{1}{a!} e_{\alpha}(S) u^a + \{\text{terms of degree} < r\}$$

where
$$a = (\alpha_0, ..., \alpha_n), \ a! = \alpha_0! \cdots \alpha_n!, \ u^a := u_0^{\alpha_0} \cdots u_n^{\alpha_n}.$$

Then $e_a(S)$ are non-negative numbers, called the mixed multiplicities of S.

Number of common zeros versus mixed multiplicity

$$R := k[x] = k[x_0, ..., x_n]$$

 $R := k[x] = k[x_0, ..., x_n]$ $f_1, ..., f_n$ homogeneous polynomials in R with finite set of common zeros in $\mathbb{P}^n_{k^*}$

$$I_0 := (x_0, ..., x_n)$$
 and $I_j := (x^a | x^a \text{ monomial of } f_j)$
 $S := R[I_0 t_0,, I_n t_n]$ (\mathbb{N}^{n+1} -graded algebra)

$$S := R[I_0 t_0,, I_n t_n] \ (\mathbb{N}^{n+1}\text{-graded algebra})$$

Theorem: $\deg P_S(u) = n$ and

number of common zeros of $f_1, ..., f_n$ in $\mathbb{P}^n_{k^*} \leq e_{(0,1,...,1)}(S)$

Equality holds if $\overline{k} = k$ and $f_1, ..., f_n$ are generic.

Minkowski formulas

 $Q_0,...,Q_n$ integral polytopes in \mathbb{R}^n

 $\lambda = (\lambda_0, ..., \lambda_n)$ any vector of positive integers

$$\lambda Q := \lambda_0 Q_0 + \dots + \lambda_n Q_n$$

$$SV(\lambda Q) = n! \sum_{a \in \mathbb{N}^{n+1}, |a| = n} \frac{1}{a!} MV(Q_a) \lambda^a$$

 $(Q_a \text{ is the family of } \alpha_i \text{ copies of } Q_i, i = 0, ..., n)$

$$S^{\lambda} := \bigoplus_{t \geq 0} S_{t\lambda}$$
 (standard graded algebra)

$$e(S^{\lambda}) = n! \sum_{a \in \mathbb{N}^{n+1}, |a| = n} \frac{1}{a!} e_a(R) \lambda^a$$

Multiplicity versus volume

P integral polytope on a hyperplane in \mathbb{R}^{n+1} $k[P] := k[x^a | a \in P]$ is a standard graded algebra with $\dim_k k[P]_t = \text{number of integral point in } tP$

Ehrhart (1963): e(k[P]) = V(P)

Example: P is the segment with the edges (2,0),(0,2)

$$\Rightarrow k[P] = k[x_1^2, x_1x_2, x_2^2]$$

tP is the segment with the edges (2t,0),(0,2t)

- \Rightarrow dim $k[P]_t = 2t + 1$
- $\Rightarrow e(k[P]) = 2$

Mixed multiplicity versus mixed volume

Set
$$Q_0 = P(x_0 + \dots + x_n)$$
 and $Q_i = P(f_i), i = 1, \dots, n$.

Then
$$S^{\lambda} = k[\lambda Q]$$

Erhart's formula: $e(S^{\lambda}) = V(\lambda Q)$

Comparing the two Minkowski formulas \Rightarrow

Theorem: $e_a(S) = MV(Q_a)$ for all $a \in \mathbb{N}^{n+1}$ with |a| = n

Corollary: $e_{(0,1,...,1)}(S) = MV(Q_1,...,Q_n)$

⇒ Bernstein's theorem for arbitrary field

Applications

- 1. Mixed volume is a special case of mixed multiplicity (consequence: positivity, monotony)
- 2. Alternate method for computing mixed volume (computing mixed multiplicity by means of Gröbner Basis)

Open problem

Alexandroff-Fenchel inequality:

$$MV(Q_1,...,Q_n)^2 \ge MV(Q_1,Q_1,Q_3,..,Q_n)MV(Q_2,Q_2,Q_3,..,Q_n)$$

Question: Does there exists a similar inequality for mixed multiplicities?

References

- [1] B. Sturmfels, Solving systems of polynomial equations. CBMS Regional Conference Series in Mathematics 97. American Mathematical Society, Providence, 2002.
- [2] N.V. Trung, Positivity of mixed multiplicities. Math. Ann. 319, 33-63 (2001).
- [3] N.V. Trung and J. Verma, Mixed multiplicities of ideals versus mixed volumes of polytopes, Trans. Amer. Math. Soc. 359, 4711-4727 (2007)

(http://front.math.ucdavis.edu/math.AC/0504178)