Übungen zur Linearen Algebra I

Wintersemester 2016/17

Universität Heidelberg Mathematisches Institut

Dr. D. Vogel Dr. M. Witte Blatt 11

Abgabetermin: Donnerstag, 19.01.2017, 9.30 Uhr

Aufgabe 1. (Anwendung des Homomorphiesatzes) Sei K ein Körper und $\alpha \in K$. Zeigen Sie:

- (a) Die Abbildung ev_{α}: $K[t] \to K$, $f \mapsto f(\alpha)$ ist K-linear und surjektiv.
- (b) $I_{\alpha} = \{ f \in K[t] \mid f(\alpha) = 0 \}$ ist ein Untervektorraum von K[t] und

$$\overline{\operatorname{ev}}_{\alpha} \colon K[t]/I_{\alpha} \to K, \qquad f + I_{\alpha} \mapsto f(\alpha)$$

ist ein wohldefinierter Isomorphismus von K-Vektorräumen.

Aufgabe 2. (Isomorphiesätze) Sei K ein Körper, V ein Vektorraum und U_1 , U_2 Untervektorräume von V. Zeigen Sie:

(a) Die Abbildung

$$U_2/U_1 \cap U_2 \to (U_1 + U_2)/U_1, \qquad u_2 + U_1 \cap U_2 \mapsto u_2 + U_1$$

ist ein wohldefinierter Isomorphismus von K-Vektorräumen.

(b) Der Faktorraum $(U_1 + U_2)/U_1$ ist ein Untervektorraum von V/U_1 und die Abbildung

$$V/(U_1+U_2) \to (V/U_1)/((U_1+U_2)/U_1), \qquad v+(U_1+U_2) \mapsto (v+U_1)+(U_1+U_2)/U_1$$

ist ein wohldefinierter Isomorphismus von K-Vektorräumen. Dabei bezeichnet

$$(v + U_1) + (U_1 + U_2)/U_1$$

die Restklasse von $v+U_1\in V/U_1$ modulo des Untervektorraums $(U_1+U_2)/U_1$ von V/U_1 .

Aufgabe 3. (Strenge Zeilenstufenform) Bestimmen Sie die strenge Zeilenstufenform der Matrix

$$\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 0 \\
\bar{2} & \bar{1} & \bar{0} & \bar{3} & \bar{4} & \bar{0} \\
\bar{0} & \bar{1} & \bar{2} & \bar{3} & \bar{0} & \bar{4} \\
\bar{3} & \bar{4} & \bar{0} & \bar{2} & \bar{1} & \bar{0}
\end{pmatrix}$$

mit Einträgen aus \mathbb{F}_5 .

Aufgabe 4. (Invertierbare Matrizen als Produkte von Elementarmatrizen) Sei K ein Körper. Zeigen Sie, dass jede invertierbare $n \times n$ -Matrix A mit Einträgen aus K sich als endliches Produkt von Elementarmatrizen der Form $E_{i,j}(1)$ und $D_k(\lambda)$ mit $i, j, k \in \{1, \ldots, n\}$, $i \neq j$ und $\lambda \in K^{\times}$ (siehe Blatt 8, Aufgabe 3) schreiben lässt.

Zusatzaufgabe 5. (Eindeutigkeit der strengen Zeilenstufenform) Sei K ein Körper, k, n zwei natürliche Zahlen und A, B zwei $k \times n$ -Matrizen mit Einträgen aus K. Seien $\operatorname{ZR}(A)$ und $\operatorname{ZR}(B)$ die Zeilenräume von A und B. Zeigen Sie:

- (a) Seien A und B in strenger Zeilenstufenform. Dann gilt ZR(A) = ZR(B) genau dann, wenn A = B. Tipp: Zeigen Sie im Fall ZR(A) = ZR(B) zunächst, dass A und B dieselben Pivotspalten haben.
- (b) Es gilt ZR(A) = ZR(B) genau dann, wenn eine invertierbare Matrix $G \in GL(k, K)$ mit GA = B existiert.
- (c) Die Menge $GL(k, K)A = \{GA \mid G \in GL(k, K)\}$ enthält genau eine Matrix in strenger Zeilenstufenform. Mit anderen Worten: Die strenge Zeilenstufenform von A ist eindeutig.
- (d) Sei $k \leq n$ und $V \subseteq K^n$ ein Untervektorraum der Dimension k. Dann gibt es genau eine $k \times n$ -Matrix X mit Einträgen aus K, so dass X strenge Zeilenstufenform hat und die Zeilen von X eine Basis von V bilden.