

Massimo Fornasier, Hui Huang, Lorenzo Pareschi, Philippe Sünnen

TU München

Consensus-based Optimization on Hypersurfaces

Introduction

Goal: Global optimization of nonconvex functions on smooth and comp. hypersurfaces.

Setup: Let $\mathcal{E}: \Gamma \to \mathbb{R}_+$ where $\Gamma = \{x \in \mathbb{R}^d \mid \gamma(x) = 0\}$ and $v_* = \arg\min_{\Gamma} \mathcal{E}$.

Model [4]: System of interacting particles

$$dV_t^i = \lambda P_{\Gamma}(V_t^i) V_t^{\alpha} dt + \sigma P_{\Gamma}(V_t^i) D_t^i dB_t^i - \frac{\sigma^2}{2} (|V_t^i - V_t^{\alpha}|^2 + (D_t^i)^2 - 2|D_t^i V_t^i|^2) V_t^i dt$$

Method:

Euler-Maruyama discretization

$$\begin{cases} \tilde{V}_{n+1}^{i} = V_{n}^{i} + \lambda P_{\Gamma}(V_{n}^{i}) V_{n}^{\alpha} \Delta t \sigma P_{\Gamma}(V_{n}^{i}) D_{n}^{i} \Delta B_{n}^{i} - \Delta t \frac{\sigma^{2}}{2} (|V_{n}^{i} - V_{n}^{\alpha}|^{2} + (D_{n}^{i})^{2} - 2|D_{n}^{i} V_{n}^{i}|^{2}) V_{n}^{i} \\ V_{n+1}^{i} = \Pi_{\Gamma}(\tilde{V}_{n+1}^{i}) \end{cases}$$

ullet Projection $\Pi_{\Gamma}(v)=rg \min_{ ilde{v}\in \Gamma}|v- ilde{v}|,$ e.g., for $\Gamma=\mathbb{S}^{d-1},$ $\Pi_{\mathbb{S}^{d-1}}(v)=v/|v|$

Fig. 1. Left: Rastrigin function on $\Gamma = \mathbb{S}^1$ with initial particles V_0^i (red) and consensus point V_t^{α} (green). Right: function \mathcal{E}_p from the robust PCA application with p = 0.1.

Fig. 2. Ackley function on \mathbb{S}^2 and on the torus \mathbb{T}^2 .

Analysis

Sketch of the proof of convergence:

- ▶ Large particle limit $N \to \infty$: the system of first order SDE's approximates a deterministic PDE of mean-field type
- ▶ The solution $\rho_t(x)$ of the mean-field PDE converges to a delta function $\delta_{\bar{v}}$ as $T \to \infty$
- ▶ The delta function \bar{v} is close to v_{\star} if the initial data is well-prepared

Error Estimate:

- ▶ There is a set of parameters such that $|\mathbb{E}(\rho_{T^*}) v_*| \leq \epsilon$
- ▶ We have $\mathbb{E}(|\frac{1}{N}\sum V_{\Delta t,n_{T^\star}}^i v_\star|^2) \lesssim (\Delta t)^{2m} + N^{-1} + \epsilon^2$

Fig. 3. The function $\rho_t(x)$ for different times t

Robust PCA

Setup: Point cloud $\mathbf{X} = \{x^{(i)} \in \mathbb{R}^d\}$ with cellwise and casewise contamination

Goal: Find principal component of X without weighting the outliers to much

Idea: Minimize $\mathcal{E}_p(v) = \sum_i |(I - v \otimes v)x^{(i)}|^p$ for 0 with KV-CBO

Results:

- ightharpoonup High accuracy for artificial data generated by Haystack model [3] in dimension d=100
- Real data: robust computation of eigenfaces in dimension $d \approx 3000$

Fig. 4. Eigenfaces for Extended Yale Face Database B [7] and 10K US Adult Faces Database [8]

Phase Retrieval

Setup: Measurements $y_i = |\langle z_{\star}, a^{(i)} \rangle|^2$ where $\{a^{(i)}\}_{i=1,...,M}$ is, e.g., a Gaussian frame Goal: Reconstruct unknown vector $z_{\star} \in \mathbb{R}^d$ from known measurements $y \in \mathbb{R}^M$ ldea:

- ▶ Reformulation of the problem: $\tilde{y}_i = |\langle v_{\star}, \tilde{a}^{(i)} \rangle|^2$ with unknown $v_{\star} \in \mathbb{S}^d$
- Find v_{\star} by minimizing the empirical risk $\mathcal{E}(v) = \sum_{i=1}^{M} |\langle \tilde{a}_i, v \rangle^2 \tilde{y}_i|^2$ with KV-CBO
- ightharpoonup Reconstruct z_{\star} from v_{\star}

Fig. 5. Success rate in terms of number of frame vectors and signal-to-noise ratio for different benchmark methods.

Conclusion

- KV-CBO method is a consensus-based 0 order optimization method
- Convergence proof based on mean-field PDE

- ▶ No curse of dimensionality for $\Gamma = \mathbb{S}^{d-1}$ (conj. for any Γ)
- Computationally tractable.
- ► MATLAB implementation: github.com/PhilippeSu/

References

[1] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global optimization and its mean-field limit. Mathematical Models and Methods in Applied Sciences. 2017. [2] J. A. Carrillo, Y.-Pil Choi, C. Totzeck, and O. Tse. An analytical framework for consensus-based global optimization method. Mathematical Models and Methods in Applied Sciences. 2018 [3] G. Lerman, M. McCoy, J. Tropp, T. Zhang. Robust Computation of Linear Models by Convex Relaxation. Foundations of Computational Mathematics. 2015.

[4] M. Fornasier, H. Huang, L. Pareschi, P. Sünnen. Consensus-based optimization on hypersurfaces: well-posedness and mean-field limit. Mathematical Models and Methods in Applied Sciences. 2020.

[5] M. Fornasier, H. Huang, L. Pareschi, P. Sünnen. Consensus based optimization on the sphere: Convergence to global mininizers and machine learning. arXiv:2001.11988. 2020.

[6] M. Fornasier, H. Huang, L. Pareschi, P. Sünnen. Anisotropic Diffusion in Consensus-based Optimization on the Sphere. in preparation.

[7] Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684-698 (2005)

[8] Wilma. A. Bainbridge, Philipp Isola, and Aude Oliva. The Intrinsic Memorability of Face Photographs. Journal of Experimental Psychology: General, 142(4), 1323-1334., 2013.