Self-Supervised Representation Learning for Images Contrastive learning

Иван Сафонов БПМИ 182

23.03.2021

План

- Введение
- SimCLR
- MoCo
- MoCo v2
- Результаты сравнения, эффективности

Введение

- хотим обучить encoder f(Image), который будет вычислять хорошее векторное представление для картинки
- данные: много неразмеченных картинок

Зачем?

- мало supervised данных, но много unsupervised
- можно использовать в supervised задаче обученный на unsupervised данных encoder f, например сделав fine-tuning
- можно получать признаки, которые будут полезны для множества задач

Способ оценивания алгоритма

- обучим алгоритм на ImageNet как на unsupervised данных
- построим линейную модель на ImageNet на представлениях, полученных с помощью encoder-a f
- ассигасу этой модели будет говорить об эффективности представлений

Contrastive Learning

SimCLR (Simple Framework for Contrastive Learning of Visual Representations)

Идея:

Будем обучать представления, максимизируя схожесть представлений между двумя случайными аугментациями одной картинки.

SimCLR: составные части метода

- Распределение 7 на аугментациях картинки
- Нейронная сеть encoder f: Image $\to \mathbb{R}^n$
- 3.
- Нейронная сеть g: $\mathbb{R}^n o \mathbb{R}^m$ (сеть проекции) Функция схожести двух векторов $sim: \mathbb{R}^m imes \mathbb{R}^m$

Авторы статьи использовали:

- 1. Т это композиция случайного обрезания, цветового искажения и случайного Гауссовского размытия
- 2. f: ResNet-50
- g: MLP с одним скрытым слоем (нелинейность ReLU)
- Функция схожести двух векторов: $sim(u,v) = (u^T v)/(||u||_2||v||_2)$ cosine similarity

SimCLR: схема работы

$$egin{aligned} \widetilde{x_i} &= t(x) \ h_i &= f(\widetilde{x_i}) \ z_i &= g(h_i) \ \widetilde{x_j} &= t'(x) \ h_j &= f(\widetilde{x_j}) \ z_j &= g(h_j) \ ext{agreement} &= sim(z_i, z_j) \end{aligned}$$

SimCLR: мини-supervised задача

Задача: для \tilde{x}_i определить верно ли, что \tilde{x}_j с ним в паре.

2N мини-задач классификации:

 $\tilde{x}_{2i-1}:$ positive $\tilde{x}_{2i},$ others are negative

 $\tilde{x}_{2i}:$ positive $\tilde{x}_{2i-1},$ others are negative

SimCLR: мини-supervised задача

SimCLR: loss

Если (i, j) — положительная пара, то loss function для этой пары определяется так:

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

 \mathcal{T} — температурный параметр

Оптимизируем сети f и g, минимизируя суммарный loss для всех 2N мини-задач:

$$\mathcal{L} = \sum_{k=1}^{N} (\ell_{2k-1,2k} + \ell_{2k,2k-1})$$

SimCLR: псевдокод

input: batch size N, constant τ , structure of f, q, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \dots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{m{x}}_{2k} = t'(m{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_i\|)$ # pairwise similarity end for define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{\lceil k \neq i \rceil} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$ update networks f and g to minimize \mathcal{L} end for

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

SimCLR: итог

- Получаем обученный encoder f, который по картинке выдает информативное представление
- Сеть g нам больше не нужна, она была нужна для того, чтобы вычислять similarity не в исходном пространстве, а после проекции в некоторое другое пространство

SimCLR: важность деталей

Авторами статьи было исследовано и показано, что:

- Для эффективности представлений важен выбор аугментаций
- Использование проекции представлений для сравнения схожести дает лучший результат, чем просто сравнение схожести представлений
- Больший размер mini-batch N дает результат лучше
- Использование большего количества эпох дает результат лучше

(f) Rotate {90°, 180°, 270°

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

Projection output dimensionality

MoCo (Momentum Contrast)

Другой метод Self-Supervised Representation Learning, основанный на той же идее contrastive learning.

МоСо: составные части метода

- Распределение 7 на аугментациях картинки
- 2. Нейронная сеть encoder f_q : Image $\to \mathbb{R}^n$ 3. Нейронная сеть encoder f_k : Image $\to \mathbb{R}^n$

- f_q и f_k аналогично берутся ResNet-50
 будет обучаться два разных encoder-a; тот, который в итоге будет результатом это f

МоСо: алгоритм

Будет поддерживаться очередь размера K, состоящая из представлений

 $queue := \{\tilde{x}_{key,1},\tilde{x}_{key,2},\ldots,\tilde{x}_{key,K}\}$

На каждом шаге обучения, берется mini-batch размера N x_1, x_2, \ldots, x_N $x_{query,1}, x_{query,2}, \ldots, x_{query,N}$ $x_{key,1}, x_{key,2}, \ldots, x_{key,N}$ f_q $x_{query,1}, x_{query,2}, \ldots, x_{query,N}$ $x_{batch,key,1}, x_{batch,key,2}, \ldots, x_{batch,key,N}$

МоСо: алгоритм

Добавим представления $\stackrel{\sim}{x}_{batch,key,1},\stackrel{\sim}{x}_{batch,key,2},\ldots,\stackrel{\sim}{x}_{batch,key,N}$ в очередь.

Для каждого $\stackrel{\sim}{x}_{query,i}$ получается своя мини-задача классификации:

Среди K+N представлений из очереди найти представление, соответствующее той же картинке.

MoCo: loss function

loss function для одной такой мини-задачи классификации будет:

$$\mathcal{L}_{q,k^+,\{k^-\}} = -\log \frac{\exp(q \cdot k^+/\tau)}{\exp(q \cdot k^+/\tau) + \sum \exp(q \cdot k^-/\tau)}$$
 InfoNCE loss

(q — представление запрос, k^+ — единственное положительное представление ключ из очереди, $\{k^{-}\}$ — отрицательные представления ключи из очереди)

Суммарный loss L $_{ ext{step}}$ на этом шаге — это сумма InfoNCE по всем $q=\stackrel{\sim}{x}_{query,i}$

МоСо: алгоритм

Удаляем первые N представлений из очереди (таким образом ее размер снова K).

Делаем один backpropagation шаг для \mathbf{f}_{q} , оптимизирующий $\mathbf{L}_{\mathsf{step}}$.

Параметры $\mathbf{f}_{\mathbf{k}}$ меняются с помощью momentum через параметры $\mathbf{f}_{\mathbf{q}}$: $\theta_k \leftarrow m\theta_k + (1-m)\theta_q$

МоСо: псевдокод

```
# f_q, f_k: encoder networks for guery and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
  x_q = aug(x) # a randomly augmented version
  x k = aug(x) # another randomly augmented version
  q = f_q.forward(x_q) # queries: NxC
  k = f_k.forward(x_k) # keys: NxC
  k = k.detach() # no gradient to keys
   # positive logits: Nx1
   l_{pos} = bmm(q.view(N, 1, C), k.view(N, C, 1))
   # negative logits: NxK
   l_neg = mm(g.view(N,C), gueue.view(C,K))
   # logits: Nx(1+K)
   logits = cat([l_pos, l_neg], dim=1)
   # contrastive loss, Eqn. (1)
  labels = zeros(N) # positives are the 0-th
  loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
  loss.backward()
  update(f q.params)
   # momentum update: key network
  f_k.params = m*f_k.params + (1-m)*f_q.params
   # update dictionary
   enqueue (queue, k) # enqueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.
```

МоСо: детали

- Невозможно обучать f_k с помощью backpropagation, потому что представления в очереди получены на разных шагах (т.е. с разными encoder-ами)
- Использование одинаковых encoder-ов f_k и f_q, вместо обновления f_k с помощью momentum приводит к тому, что нет сходимости.

momentum m	0	0.9	0.99	0.999	0.9999
accuracy (%)	fail	55.2	57.8	59.0	58.9

MoCo vs SimCLR

Преимущества SimCLR:

- более грамотное сравнение similarity (проекция на другое пространство)
- подбор эффективных аугментаций

Преимущества МоСо:

 За размер мини-задачи классификации отвечает размер очереди К, а размер batch N не влияет на эффективность представлений ⇒ обучение не требует огромных вычислительных мощностей

MoCo v2

Авторы статьи добавили в MoCo две идеи из SimCLR:

- считать similarity после проекции на другое пространство (с помощью обучаемой MLP)
- больше аугментаций (добавлено Гауссовское размытие, увеличено искажение цветов)

В результате получился state-of-the-art алгоритм (превзошедший MoCo и SimCLR)

Transfer learning results (SimCLR)

Сравниваются:

- Представления, полученные из SimCLR
- Представления, полученные из supervised обучения на другую задачу

	Food	CIFAR10	CIFAR100	Birdsnap	SUN397	Cars	Aircraft	VOC2007	DTD	Pets	Caltech-101	Flowers
Linear evaluation	on:											
SimCLR (ours)	76.9	95.3	80.2	48.4	65.9	60.0	61.2	84.2	78.9	89.2	93.9	95.0
Supervised	75.2	95.7	81.2	56.4	64.9	68.8	63.8	83.8	78.7	92.3	94.1	94.2
Fine-tuned:												
SimCLR (ours)	89.4	98.6	89.0	78.2	68.1	92.1	87.0	86.6	77.8	92.1	94.1	97.6
Supervised	88.7	98.3	88.7	77.8	67.0	91.4	88.0	86.5	78.8	93.2	94.2	98.0
Random init	88.3	96.0	81.9	77.0	53.7	91.3	84.8	69.4	64.1	82.7	72.5	92.5

Результаты сравнения [MoCo, SimCLR]

Результаты сравнения [MoCo, SimCLR, MoCo v2]

		ImageNet				
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	✓	✓	✓	200	256	61.9
SimCLR [2]	✓	\checkmark	\checkmark	200	8192	66.6
MoCo v2	✓	✓	\checkmark	200	256	67.5
results of longe	e r unsupe	rvised tr	aining	follow:		
SimCLR [2]	✓	√	√	1000	4096	69.3
MoCo v2	✓	✓	✓	800	256	71.1

Итог

- contrastive learning методы для решения задачи Self-Supervised Representation Learning для картинок эффективны
- представления, полученные через Self-Supervised Representation Learning достигают по эффективности представления, полученные через Supervised обучение

Источники

- SimCLR: https://arxiv.org/pdf/2002.05709.pdf
- Визуализация SimCLR: https://amitness.com/2020/03/illustrated-simclr/
- Презентация про SimCLR:
 https://speakerdeck.com/scatterlab/simclr-a-simple-framework-for-contra-stive-learning-of-visual-representations
- MoCo: https://arxiv.org/pdf/1911.05722.pdf
- MoCo v2: https://arxiv.org/pdf/2003.04297.pdf
- видео про MoCo: https://www.youtube.com/watch?v=2Undxq7jlsA
- Обзор Self-Supervised Representation Learning методов:
 https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html