BUILDING CUSTOM ML PIPELINESTAGES FOR FEATURE SELECTION.

SPARK SUMMIT EUROPE 2017.

Kaminski, Schlegel I Oct. 25, 2017

WHAT YOU WILL LEARN DURING THIS SESSION.

- How data-driven car diagnostics look like at BMW.
- Get a good understanding of the most important elements in Spark ML PipelineStages (on a feature selection example).
 - Attention: There will be Scala code examples!
- How to use spark-FeatureSelection in your Spark ML Pipeline.
- The impact of feature selection on learning performance and the understanding of the big data black box.

- #3 contributor to warranty incidents for OEMs are "no trouble found" cases. [1]

[1] BearingPoint, Global Automotive Warranty Survey Report 2009

- #3 contributor to warranty incidents for OEMs are "no trouble found" cases. [1]
- Potential root causes:
 - Manually formalized expert knowledge cannot cope with the vast number of possibilities.
 - Cars are getting more and more complex (hybridization, connectivity).
 - Less experienced workshop staff in evolving markets.

[1] BearingPoint, Global Automotive Warranty Survey Report 2009

- #3 contributor to warranty incidents for OEMs are "no trouble found" cases. [1]
- Potential root causes:
 - Manually formalized expert knowledge cannot cope with the vast number of possibilities.
 - Cars are getting more and more complex (hybridization, connectivity).
 - Less experienced workshop staff in evolving markets.
- Improve three workflows at once by shifting from a manual to a **data driven** approach:

[1] BearingPoint, Global Automotive Warranty Survey Report 2009

- #3 contributor to warranty incidents for OEMs are "no trouble found" cases. [1]
- Potential root causes:
 - Manually formalized expert knowledge cannot cope with the vast number of possibilities.
 - Cars are getting more and more complex (hybridization, connectivity).
 - Less experienced workshop staff in evolving markets.
- Improve three workflows at once by shifting from a manual to a **data driven** approach:
 - Automatic knowledge generation.

[1] BearingPoint, Global Automotive Warranty Survey Report 2009

- #3 contributor to warranty incidents for OEMs are "no trouble found" cases. [1]
- Potential root causes:
 - Manually formalized expert knowledge cannot cope with the vast number of possibilities.
 - Cars are getting more and more complex (hybridization, connectivity).
 - Less experienced workshop staff in evolving markets.
- Improve three workflows at once by shifting from a manual to a data driven approach:
 - Automatic knowledge generation.
 - Automatic workshop diagnostics.
 - Predictive maintenance.

[1] BearingPoint, Global Automotive Warranty Survey Report 2009

MV_S	MV_0	•••	MV_4000	MV_BG	EE_TP	SC_IP	SC_1	SC_2	DTC_PU	DTC_1	DTC_2	CP	Label
44	3	•••	20	-0.06	false	2	77	27	false		true	v.10	false
72	36	•••	73	-0.01	false		16	29			false	v.10	false
100	4	•••	16	-0.02	true		45	1		false	false	v.10	false
44	14	•••	54	-0.02	true		76				false	v.10	true
95	34	•••	73	-0.07	false		80	22		false	false	v.10	false
16	50	•••	33	-0.02	true		61	93	false	false	false	v.11	false
	4	•••	27	-0.09	false		59	91			false	v.10	false
	48	•••	20	-0.07	false		32	31			false	v.10	false
88	60	•••	72	-0.01	true	1.9	96	53	true	false	true	v.10	false
27	14	•••	88		false		73	14			false	v.10	false

High dimensional featurespace (7000 features +)

MV_S	MV_0	•••	MV_4000	MV_BG EE_TI	SC_IP	SC_1	SC_2	DTC_PU	DTC_1	DTC 2	CP>	Label
44	3	•••	20	-0.06fals	2	//	271	false		true	v.10	false
72	36	•••	73	-0.01fals	2	16	29			false	v.10	false
100	4	•••	16	-0.02 true		45	1		false	false	v.10	false
44	14	•••	54	-0.02 true		76				false	v.10	true
95	34	•••	73	-0.07 fals	2	80	22		false	false	v.10	false
16	50	•••	33	-0.02 true		61	93 1	false	false	false	v.11	false
	4	•••	27	-0.09 fals	2	59	91			false	v.10	false
	48	•••	20	-0.07 fals	2	32	31			false	v.10	false
88	60	•••	72	-0.01true	1.9	96	53 t	true	false	true	v.10	false
27	14	•••	88	false	2	73	14			false	v.10	false

High dimensional featurespace (7000 features +)

MV_S	MV_0	•••	MV_4000	MV_BG EE_TP	SC_IP	SC_1	SC_2DTC_	PU DTC_1	DTC 2	CP>	Label
44	3	•••		-0.06false	2	//	27tals		true		
72	36	•••	73	-0.01false		16	29		false	v.10	false
100	4	•••	16	-0.02true		45	1	false	false	v.10	false
44	14	•••	54	-0.02true		76			false	v.10	true
95	34	•••	73	-0.07 false		80	22	false	false	v.10	false
16	50	•••	33	-0.02true		61	93fals	e false	false	v.11	false
	4	•••	27	-0.09 false		59	91		false	v.10	false
	48	•••	20	-0.07 false		32	31		false	v.10	false
88	60	•••	72	-0.01true	1.9	96	53true	false	true	v.10	false
27	14	•••	88	false		73	14		false	v.10	false

High sparsity

High dimensional featurespace (7000 features +)

High class imbalance

MV_S	MV_0	•••	MV_4000	MV_BG EE_TP	SC_IP	SC_1	SC_2DTC_PU	DTC_1	DTC 2	CP>	Label
44	3	•••	20	-0.06false	2	//	27false		true	v.10	false
72	36	•••	73	-0.01false		16	29		false	v.10	false
100	4	•••	16	-0.02true		45	1	false	false	v.10	false
44	14	•••	54	-0.02true		76			false	v.10	true
95	34	•••	73	-0.07 false		80	22	false	false	v.10	false
16	50	•••	33	-0.02true		61	93false	false	false	v.11	false
	4	•••	27	-0.09 false		59	91		false	v.10	false
	48	•••	20	-0.07 false		32	31		false	v.10	false
88	60	•••	72	-0.01true	1.9	96	53true	false	true	v.10	false
27	14	•••	88	false		73	14		false	v.10	false

High sparsity

Relational DWH

Page 5

Page 5

0.0

0.0

1.0

1.0

SPARK PIPELINE. Model **Crossvalidation loop** Relational DWH 'false\ Classifier true Logistic Regression/ Random Forest ETL Preprocessing Std.Scaler Handling imbalance Loading SMOTE[2] StringIndexer VectorAssembler Undersampling OneHotEncoder Discretization **Imputation** Feature selection [3] Gini L1 LogReg ChiSquared **InformationGain** MV S SC IP DTC PU CP Label Label Features Correlation false v.10 false [0.34, 0.8, 0, 1]0.0

[0.7, 0.4, 1, 0]

[0.3, 0.4, 1.1]

[0.31, 0.35, 1, 0]

0.0

1.0

1.0

true

true

false

v.11 false

v.11 false

v.10 true

44

72

23

44

1.5

1.4

1.5

Ran. Forest

^{[3]:} Schlegel et al.: Design and optimization of an autonomous feature selection pipeline for high dimensional, heterogeneous feature spaces.

SPARK PIPELINE API.

SPARK PIPELINE API.

SPARK PIPELINE API.

ORG.APACHE.SPARK.ML.*

ORG.APACHE.SPARK.ML.*

ORG.APACHE.SPARK.ML.*

Needs to know, what it shall return.

abstract class FeatureSelector[

Learner <: FeatureSelector[Learner, M],</pre>

M <: FeatureSelectorModel[M]</pre>

extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable {

}

Needs to know, what it shall return.

abstract class FeatureSelector[

Learner <: FeatureSelector[Learner, M],

M <: FeatureSelectorModel[M])

extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable {

```
Needs to know, what it shall return.

abstract class FeatureSelector[
Learner <: FeatureSelector[M]

extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable

// Setters for params in FeatureSelectorParams

def setParam*(value: ParamType): Learner = set(param, value).asInstanceOf[Learner]
```

Needs to know, what it shall return.

abstract class FeatureSelector[
Learner <: FeatureSelector[Learner, M],

M <: FeatureSelectorModel[M]

extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable

// Setters for params in FeatureSelectorParams

def setParam*(value: ParamType): Learner = set(param, value) asInstanceOf[Learner]

Needs to know, what it Makes all **Param** writable. shall return. Defined later. For setter concatenation: abstract class FeatureSelector[mdl.setParam1(val1) Learner <: FeatureSelector[Learner, M],</pre> .setParam2(val2)... M <: FeatureSelectorModel[M]</pre> extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable // Setters for params in FeatureSelectorParams def setParam*(value: ParamType): Learner = set(param, value) (asInstanceOf[Learner] // PipelineStage and Estimator methods Performs input override def transformSchema(schema: StructType): StructType = {} checking and fails fast. Can throw exceptions.

}


```
Needs to know, what it
                                                                         Makes all Param writable.
                             shall return.
                                                       Defined later.
                                                                                          For setter concatenation:
abstract class FeatureSelector[
                                                                                          mdl.setParam1(val1)
  Learner <: FeatureSelector[Learner, M],</pre>
                                                                                            .setParam2(val2)...
       M <: FeatureSelectorModel[M]</pre>
              extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable
  // Setters for params in FeatureSelectorParams
  def setParam*(value: ParamType): Learner = set(param, value) (asInstanceOf[Learner]
  // PipelineStage and Estimator methods
                                                                                            Performs input
  override def transformSchema(schema: StructType): StructType = {} 
                                                                                             checking and fails fast.
  override def fit(dataset: Dataset[_]): M = {}
                                                                                             Can throw exceptions.
 override def copy(extra: ParamMap): Learner
                                                                                          Learns from data and returns
                                                                                         a Model. Here: calculate
                                                                                         feature importances.
```

Needs to know, what it Makes all **Param** writable. shall return. Defined later. For setter concatenation: abstract class FeatureSelector[mdl.setParam1(val1) Learner <: FeatureSelector[Learner, M],</pre> .setParam2(val2)... M <: FeatureSelectorModel[M]</pre> extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable // Setters for params in FeatureSelectorParams def setParam*(value: ParamType): Learner = set(param, value) (asInstanceOf[Learner] // PipelineStage and Estimator methods Performs input override def transformSchema(schema: StructType): StructType = {} checking and fails fast. override def fit(dataset: Dataset[_]): M = {} Can throw exceptions. override def copy(extra: ParamMap): Learner // Abstract methods that are called from fit() Learns from data and returns a **Model**. Here: calculate protected def train(dataset: Dataset[]): Array[(Int, Double)] feature importances. protected def make(uid: String, selectedFeatures: Array[Int], featureImportances: Map[String, Double]): M

Needs to know, what it Makes all **Param** writable. shall return. Defined later. For setter concatenation: abstract class FeatureSelector[mdl.setParam1(val1) Learner <: FeatureSelector[Learner, M],</pre> .setParam2(val2)... M <: FeatureSelectorModel[M]</pre> extends Estimator[M] with FeatureSelectorParams with DefaultParamsWritable // Setters for params in FeatureSelectorParams def setParam*(value: ParamType): Learner = set(param, value) (asInstanceOf[Learner] // PipelineStage and Estimator methods Performs input override def transformSchema(schema: StructType): StructType = {} checking and fails fast. override def fit(dataset: Dataset[_]): M = {} Can throw exceptions. override def copy(extra: ParamMap): Learner // Abstract methods that are called from fit() Learns from data and returns a **Model**. Here: calculate protected/def train(\dataset: Dataset[_]): Array[(Int, Double)] feature importances. protected def make(yid: String, selectedFeatures: Array[Int], featureImportances: Map[String, Double]): M

Not necessary, but avoids code duplication.

```
abstract class FeatureSelectorModel[M <: FeatureSelectorModel[M]] (override val uid: String,
  val selectedFeatures: Array[Int],
  val featureImportances: Map[String, Double])
  extends Model[M] with FeatureSelectorParams with MLWritable{</pre>
```

```
abstract class FeatureSelectorModel[M <: FeatureSelectorModel[M]] (override val uid: String,
  val selectedFeatures: Array[Int],
  val featureImportances: Map[String, Double])
  extends Model[M] with FeatureSelectorParams with MLWritable.</pre>
For persistence.
```

```
abstract class FeatureSelectorModel[M <: FeatureSelectorModel[M]] (override val uid: String,
 val selectedFeatures: Array[Int],
 val featureImportances: Map[String, Double])
 extends Model[M] with FeatureSelectorParams with(MLWritable)
                                                                                   For persistence.
 // Setters for params in FeatureSelectorParams
 def setFeaturesCol(value: String): this.type = set(featuresCol, value)
 // PipelineStage and Transformer methods
 override def transformSchema(schema: StructType): StructType = {}
 override def transform(dataset: Dataset[_]): DataFrame = {}
 def write: MLWriter
```

```
abstract class FeatureSelectorModel[M <: FeatureSelectorModel[M]] (override val uid: String,
 val selectedFeatures: Array[Int],
 val featureImportances: Map[String, Double])
                                                                                     For persistence.
  extends Model[M] with FeatureSelectorParams with(MLWritable)
 // Setters for params in FeatureSelectorParams
 def setFeaturesCol(value: String): this.type = set(featuresCol, value)
 // PipelineStage and Transformer methods
                                                                                Same idea as in Estimator, but
                                                                                different tasks.
 override def transformSchema(schema: StructType): StructType = {}
 override def transform(dataset: Dataset[_]): DataFrame = {}
 def write: MLWriter
```

```
abstract class FeatureSelectorModel[M <: FeatureSelectorModel[M]] (override val uid: String,
    val selectedFeatures: Array[Int],
    val featureImportances: Map[String, Double])
    extends Model[M] with FeatureSelectorParams with MLWritable

// Setters for params in FeatureSelectorParams
def setFeaturesCol(value: String): this.type = set(featuresCol, value)

// PipelineStage and Transformer methods
    override def transformSchema(schema: StructType): StructType = {}

    override def transform(dataset: Dataset[_]): DataFrame = {}

    def write: MLWriter</pre>

Transforms data.
```

```
abstract class FeatureSelectorModel[M <: FeatureSelectorModel[M]] (override val uid: String,</pre>
 val selectedFeatures: Array[Int],
 val featureImportances: Map[String, Double])
                                                                                      For persistence.
  extends Model[M] with FeatureSelectorParams with(MLWritable)
 // Setters for params in FeatureSelectorParams
 def setFeaturesCol(value: String): this.type = set(featuresCol, value)
 // PipelineStage and Transformer methods
                                                                                 Same idea as in Estimator, but
                                                                                 different tasks.
 override def transformSchema(schema: StructType): StructType = {}
 override def transform(dataset: Dataset[_]): DataFrame = {}
                                                                                  Transforms data.
 def write: MLWriter ←
                                                                                 Adds persistence.
```

```
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared._

private[selection] trait FeatureSelectorParams extends Params
  with HasFeaturesCol with HasOutputCol with HasLabelCol {
    // Define params and getters here...
    final val param = new Param[Type](this, "name", "description")

    def getParam: Type = $(param)
}
```

```
import org.apache.spark.ml.param._
import org.apache.spark.ml.param.shared.

private[selection] trait FeatureSelectorParams extends Params
    with HasFeaturesCol with HasOutputCol with HasLabelCol
    // Define params and getters here...
    final val param = new Param[Type](this, "name", "description")

def getParam: Type = $(param)
}
```

```
Possible, because package
import org.apache.spark.ml.param._
                                                           is in org.apache.spark.ml.
import org.apache.spark.ml.param.shared.
private[selection] trait FeatureSelectorParams extends Params
  with (HasFeaturesCol) with (HasOutputCol) with (HasLabelCol)
  // Define params and getters here...
  final val param <new Param[Type](this, "name", "description"</pre>
  def getParam: Type = $(param)
                                           Out of the box for several types, e.g.:
                                           DoubleParam, IntParam,
                                           BooleanParam, StringArrayParam,...
                                           Other types: need to implement
```

jsonEncode and jsonDecode to

maintain persistence.

```
Possible, because package
import org.apache.spark.ml.param._
                                                             is in org.apache.spark.ml.
import org.apache.spark.ml.param.shared.
private[selection] trait FeatureSelectorParams extends Params
  with (HasFeaturesCol) with (HasOutputCol) with (HasLabelCol)
  // Define params and getters here...
  final val param < new Param[Type](this, "name", "description")</pre>
  def getParam: Type = $(param)
                                            Out of the box for several types, e.g.:
                                            DoubleParam, IntParam,
                                            BooleanParam, StringArrayParam,...
     getters are shared between
     Estimator and Transformer.
                                            Other types: need to implement
    setters not, for the pursuit of
                                            jsonEncode and jsonDecode to
     concatenation.
                                            maintain persistence.
```

- What has to be saved?
 - Metadata: uid, timestamp, version, ...
 - Parameters
 - Learnt data: selectedFeatures & featureImportances

- What has to be saved?

 - Parameters

Metadata: uid, timestamp, version, ...
Parameters
Since we are in org.apache.spark.ml, use:

DefaultParamsWriter.saveMetadata() DefaultParamsReader.loadMetadata()

– Learnt data: selectedFeatures & featureImportances

- What has to be saved?

 - Parameters

Metadata: uid, timestamp, version, ...
 Since we are in org.apache.spark.ml, use:

DefaultParamsWriter.saveMetadata() DefaultParamsReader.loadMetadata()

- Learnt data: selectedFeatures & featureImportances
 - → Create DataFrame and use write.parquet(...)

- What has to be saved?

 - Parameters

Metadata: uid, timestamp, version, ...
 Since we are in org.apache.spark.ml, use:

```
DefaultParamsWriter.saveMetadata()
DefaultParamsReader.loadMetadata()
```

- Learnt data: selectedFeatures & featureImportances
 - → Create DataFrame and use write.parquet(...)
- How do we do that?
 - Create companion object FeatureSelectorModel, which offers the following classes:
 - abstract class FeatureSelectorModelReader[M <: FeatureSelectorModel[M]] extends MLReader[M] {...}</pre>
 - class FeatureSelectorModelWriter[M <: FeatureSelectorModel[M]](instance: M) extends MLWriter {...}</pre>

```
import org.apache.spark.ml.feature.selection.filter._
import org.apache.spark.ml.feature.selection.util.VectorMerger
import org.apache.spark.ml.Pipeline
```

df

```
features Label
[0,1,0,1] 1.0
[0,0,0,0] 0.0
[1,1,0,0] 0.0
r [1,0,0,0] 1.0
```

```
import org.apache.spark.ml.feature.selection.filter._
import org.apache.spark.ml.feature.selection.util.VectorMerger [1,0,0,0]
import org.apache.spark.ml.Pipeline
```

```
// load Data
val df = spark.read.parquet("path/to/data/train.parquet")
```

df

```
features Label
[0,1,0,1] 1.0
[0,0,0,0] 0.0
[1,1,0,0] 0.0
[1,0,0,0] 1.0
```

```
import org.apache.spark.ml.feature.selection.filter._
import org.apache.spark.ml.feature.selection.util.VectorMerger
[1,0,0,0]
import org.apache.spark.ml.Pipeline
```

```
// load Data
val df = spark.read.parquet("path/to/data/train.parquet")
val corSel = new CorrelationSelector().setInputCol("features").setOutputCol("cor")
val giniSel = new GiniSelector().setInputCol("features").setOutputCol("gini")
different selection methods.
```

df

```
features Label
[0,1,0,1] 1.0
[0,0,0,0] 0.0
[1,1,0,0] 0.0
er [1,0,0,0] 1.0
```

```
import org.apache.spark.ml.feature.selection.filter._
import org.apache.spark.ml.feature.selection.util.VectorMerger
[1,0,0,0]
import org.apache.spark.ml.Pipeline
```

```
// load Data
val df = spark.read.parquet("path/to/data/train.parquet")
val corSel = new CorrelationSelector().setInputCol("features").setOutputCol("cor")
val giniSel = new GiniSelector().setInputCol("features").setOutputCol("gini")

different selection methods.
```

// VectorMerger merges VectorColumns and removes duplicates. Requires vector columns with names!

val merger = new VectorMerger().setInputCols(Array("cor", "gini")).setOutputCol("selected")

```
import org.apache.spark.ml.feature.selection.filter.
import org.apache.spark.ml.feature.selection.util.VectorMerger [1,0,0,0]
import org.apache.spark.ml.Pipeline
```

```
features Label
[0,1,0,1]
           1.0
[0,0,0,0]
           0.0
[1,1,0,0]
           0.0
           1.0
```

Feature	F1	F2	F3	F4
Score 1	0.9	0.7	0.0	0.5
Score 2	0.6	0.8	0.0	0.4

```
// load Data
val df = spark.read.parquet("path/to/data/train.parquet")
val corSel = new CorrelationSelector().setInputCol("features").setOutputCol("cor")
val giniSel = new GiniSelector().setInputCol("features").setOutputCol("gini")
```

Feature selectors. Offer different selection methods.

```
// VectorMerger merges VectorColumns and removes duplicates. Requires vector columns with names!
val merger = new VectorMerger().setInputCols(Array("cor", "gini")).setOutputCol("selected")
// Put everything in a pipeline and fit together
val plModel = new Pipeline().setStages(Array(corSel, giniSel, merger)).fit(df)
```

```
import org.apache.spark.ml.feature.selection.filter.
import org.apache.spark.ml.feature.selection.util.VectorMerger
import org.apache.spark.ml.Pipeline
```

val df = spark.read.parquet("path/to/data/train.parquet")

```
dft
                                                                                         selected Label
                                                                     features Label
                                                                     [0,1,0,1]
                                                                                 1.0
                                                                                           [0,1]
                                                                                                     1.0
                                                                     [0,0,0,0]
                                                                                 0.0
                                                                                           [0,0]
                                                                                                     0.0
                                                                     [1,1,0,0]
                                                                                 0.0
                                                                                           [1,1]
                                                                                                     0.0
                                                                     [1,0,0,0]
                                                                                           [1,0]
                                                                                                     1.0
                                                                                  Transform
                                                                                         F2
                                                                                              F3
                                                                        Feature
                                                                                     F1
                                                                                                   F4
                                                                        Score 1
                                                                                    0.9
                                                                                         0.7
                                                                                             0.0
                                                                                                  0.5
                                                                        Score 2
                                                                                    0.6
                                                                                         8.0
                                                                                             0.0
                                                                                                  0.4
val corSel = new CorrelationSelector().setInputCol("features").setOutputCol("cor")
                                                                                           Feature selectors. Offer
                                                                                           different selection methods.
val giniSel = new GiniSelector().setInputCol("features").setOutputCol("gini")
```

```
// VectorMerger merges VectorColumns and removes duplicates. Requires vector columns with names!
val merger = new VectorMerger().setInputCols(Array("cor", "gini")).setOutputCol("selected")
// Put everything in a pipeline and fit together
val plModel = new Pipeline().setStages(Array(corSel, giniSel, merger)).fit(df)
val dfT = plModel.transform(df).drop("Features")
```

// load Data

SPARK-FEATURESELECTION PACKAGE.

- Offers selection based on:
 - Gini coefficient
 - Correlation coefficient
 - Information gain
 - L1-Logistic regression weights
 - Randomforest importances
- Utility stage:
 - VectorMerger
- Three modes:
 - Percentile (default)
 - Fixed number of columns
 - Compare to random column [4]

Find on GitHub: spark-packages

[4]: Stoppiglia et al.: Ranking a Random Feature for Variable and Feature Selection

0,9

0,5

0,6

Area under ROC

0,7

0,8

Correlation between feature importances from feature selection and random forest

Correlation between feature importances from feature selection and random forest

0,9

0,5

0,6

Area under ROC

0,7

0,8

LESSONS LEARNT.

- Know what your data looks like and where it is located! Example:
 - Operations can succeed in local mode, but fail on a cluster.
 - Use .persist(StorageLevel.MEMORY_ONLY), when data fits into Memory. Default for .cache is MEMORY_AND_DISK.
- Do not reinvent the wheel for common methods \rightarrow Consider putting your stages in to the spark.ml namespace.
- Use the Spark Web GUI to understand your Spark jobs.

QUESTIONS?

Marc.Kaminski@bmw.de Bernhard.bb.Schegel@bmw.de

BACKUP.

DETERMINING WHERE YOUR PIPELINESTAGE SHOULD LIVE.

org.apache.spark.ml.*			
Pro	Con		
Less code duplication (sharedParams, SchemaUtils,)	More dangerous, when not cautious		
Easier to implement persistence			

VS.

Own namespace			
Pro	Con		
Safer solution	Code duplication		

FEATURE SELECTION.

F1	F2	Noise	Label = F1 XOR F2
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	0

Feature Selection				
Feature	e Importance			
Feature	21 0.7			
Feature	2 0.7			
Noise	0.2			

F1	F2	Label = F1 XOR F2
0	0	0
1	0	1
0	1	1
1	1	0

– Motivation:

- Many sparse features \rightarrow feature space has to be reduced \rightarrow select features that carry a lot of information for prediction.
- Feature selection (unlike feature transformation) enables understanding of which features have a high impact on the model.

FEATURE SELECTION.

F1	F2	Noise	Label = F1 XOR F2
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	0

Feature	Selection
Feature	Importance
Feature 1	0.7
Feature 2	0.7
Noise	0.2

F1	F2	Label = F1 XOR F2
0	0	0
1	0	1
0	1	1
1	1	0

E.g.:

etc.

- Correlation

- InformationGain

- RandomForest

– Motivation:

- Many sparse features \rightarrow feature space has to be reduced \rightarrow select features that carry a lot of information for prediction.
- Feature selection (unlike feature transformation) enables understanding of which features have a high impact on the model.

FEATURE SELECTION.

	Description	Advantages	Disadvantages	Examples
Filter	Evaluate intrinsic data properties	Fast Scalable	Ignore inter-feature dependencies Ignore interaction with classifier	Chi-squared Information gain Correlation
Wrapper	Evaluate model performance of feature subset	Feature dependencies Simple	Classifier dependent selection Computational expensive Risk of overfitting	Genetic algorithms Search algorithms
Embedded	Feature selection is embedded in classifier training	Feature dependencies	Classifier dependent selection	L1-Logistic regression Random forest

CHALLENGES.

- Big plans for DataFrames when performing many operations on many columns \rightarrow Can take a long time to build and optimize DAG.
- Column limit for DataFrames introduced by several Jiras, especially: <u>SPARK-18016</u> → Hopefully fixed in Spark 2.3.0.
- Spark PipelineStages are not consistent in how they handle DataFrame schemas → Sometimes no schema is appended.

Building custom ml PipelineStages for feature selection | BMW | Oct. 25, 2017