main

April 12, 2025

1 Music Recommendation System with Spotify Data

1.0.1 1. Loading Data:

```
[12]: import pandas as pd
      import seaborn as sns
      import matplotlib.pyplot as plt
      import numpy as np
      from sklearn.preprocessing import MinMaxScaler
      file_path = 'data/spotify_data.csv'
      df_raw = pd.read_csv(file_path)
      print("Original data shape:", df_raw.shape)
      print("Original data head:\n", df_raw.head())
     Original data shape: (1159764, 20)
     Original data head:
         Unnamed: 0
                                                                      track_id \
                        artist name
                                           track_name
     0
                 0
                        Jason Mraz
                                     I Won't Give Up 53QF56cjZA9RTuuMZDrSA6
     1
                 1
                        Jason Mraz
                                    93 Million Miles
                                                      1s8tP3jP4GZcyHDsjvw218
     2
                 2 Joshua Hyslop
                                    Do Not Let Me Go
                                                      7BRCa8MPiyuvr2VU309W0F
                                                      63wsZUhUZLlh10syrZq7sz
     3
                     Boyce Avenue
                 3
                                            Fast Car
     4
                     Andrew Belle
                                                       6nXIYClvJAfi6ujLiKqEq8
                                    Sky's Still Blue
                                                                          mode
                                     danceability
                                                                 loudness
        popularity
                    year
                              genre
                                                   energy
                                                           key
     0
                68
                    2012
                          acoustic
                                            0.483
                                                    0.303
                                                              4
                                                                  -10.058
                                                                              1
     1
                50 2012 acoustic
                                            0.572
                                                    0.454
                                                                  -10.286
                                                                              1
                                                              3
     2
                57 2012 acoustic
                                            0.409
                                                    0.234
                                                              3
                                                                  -13.711
                                                                              1
     3
                58 2012 acoustic
                                            0.392
                                                    0.251
                                                             10
                                                                   -9.845
                                                                              1
     4
                54 2012 acoustic
                                            0.430
                                                    0.791
                                                              6
                                                                   -5.419
        speechiness
                     acousticness
                                    instrumentalness liveness valence
                                                                            tempo
     0
             0.0429
                            0.6940
                                            0.000000
                                                                   0.139
                                                                          133.406
                                                        0.1150
     1
             0.0258
                            0.4770
                                            0.000014
                                                        0.0974
                                                                   0.515
                                                                          140.182
     2
             0.0323
                            0.3380
                                            0.000050
                                                        0.0895
                                                                   0.145
                                                                          139.832
     3
                            0.8070
                                                                          204.961
             0.0363
                                            0.000000
                                                        0.0797
                                                                   0.508
     4
             0.0302
                            0.0726
                                            0.019300
                                                        0.1100
                                                                   0.217
                                                                          171.864
```

```
duration_ms time_signature
0
        240166
                              3
1
        216387
                              4
2
                              4
        158960
3
        304293
                              4
4
        244320
                              4
```

1.0.2 2. Initial Cleaning & Preprocessing:

```
[13]: print("Missing values before dropping:\n", df_raw.isnull().sum())
    df_clean = df_raw.dropna().copy() # Use .copy() to avoid SettingWithCopyWarning
    print("\nShape before dropping NA:", df_raw.shape)
    print("\nShape after dropping NA:", df_clean.shape)

# Checking for duplicates
    print("\nDuplicate rows:", df_clean.duplicated().sum())
```

Missing values before dropping:

```
Unnamed: 0
                       0
artist name
                     15
track_name
                      1
track_id
popularity
                      0
year
                      0
                      0
genre
                      0
danceability
energy
                      0
                      0
key
                      0
loudness
mode
speechiness
                      0
acousticness
                      0
                      0
instrumentalness
liveness
                      0
                      0
valence
tempo
                      0
duration_ms
                      0
time_signature
                      0
dtype: int64
```

Shape before dropping NA: (1159764, 20)

Shape after dropping NA: (1159748, 20)

Duplicate rows: 0

1.0.3 3. Feature Selection and Overview

The dataset contains various audio features from Spotify. For our similarity model, we'll focus on intrinsic audio characteristics rather than metadata.

Selected Features for Modeling:

Feature	Description	Range
Danceability	Suitability for dancing based on rhythm and beat	0.0-1.0
Energy	Intensity and activity level	0.0-1.0
Key	Musical key (requires one-hot encoding)	-1 to 11
Loudness	Overall loudness (requires scaling)	-60 to 0 dB
Mode	Major (1) or Minor (0) key (requires one-hot encoding)	0 or 1
Speechiness	Presence of spoken words	0.0-1.0
Acousticness	Likelihood of being acoustic	0.0-1.0
Instrumentalness	Likelihood of having no vocals	0.0-1.0
Liveness	Presence of audience/live recording	0.0-1.0
Valence	Musical positiveness/mood	0.0-1.0
Tempo	Speed in BPM (requires scaling)	Varies

We exclude metadata (artist_name, track_name, track_id, genre, year), popularity, duration_ms, and time_signature as they're less relevant for audio similarity.

Selected features shape: (1159748, 11)

1.0.4 4. Feature Engineering & Transformation:

```
[15]: from sklearn.preprocessing import MinMaxScaler
  import pandas as pd

# Apply min-max scaling to tempo
  print("\nTempo statistics before scaling:")
  print(df['tempo'].describe())
  scaler_tempo = MinMaxScaler()
  df['tempo'] = scaler_tempo.fit_transform(df[['tempo']])
```

```
print("\nTempo statistics after scaling:")
print(df['tempo'].describe())
# One-hot encode key
key_dummies = pd.get_dummies(df['key'], prefix='key', drop_first=False) # Keep_u
 ⇔all keys
df = pd.concat([df, key_dummies], axis=1)
# One-hot encode mode
mode_dummies = pd.get_dummies(df['mode'], prefix='mode', drop_first=False) #__
 →Keep both 0 and 1
df = pd.concat([df, mode dummies], axis=1)
# Drop original categorical columns
df.drop(['key', 'mode'], axis=1, inplace=True)
print("\nProcessed features head (after OHE):\n", df.head())
print("Processed features shape (after OHE):", df.shape)
print("Index check:", df.index.name)
# Create some music-specific Meaningful composite features
df['energy_to_acousticness_ratio'] = df['energy'] / (df['acousticness'] + 0.01)
df['vocal_character'] = df['speechiness'] * (1 - df['instrumentalness'])
Tempo statistics before scaling:
count
        1.159748e+06
mean
        1.213775e+02
std
        2.977964e+01
       0.000000e+00
min
25%
        9.879800e+01
50%
       1.219310e+02
75%
        1.399030e+02
         2.499930e+02
max
Name: tempo, dtype: float64
Tempo statistics after scaling:
count
        1.159748e+06
mean
        4.855236e-01
std
       1.191219e-01
min
        0.000000e+00
25%
        3.952031e-01
50%
        4.877377e-01
75%
        5.596277e-01
         1.000000e+00
max
Name: tempo, dtype: float64
/var/folders/93/lcr499bs33s3sbz5nld5dwvc0000gn/T/ipykernel_919/3461003564.py:8:
```

SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy df['tempo'] = scaler_tempo.fit_transform(df[['tempo']])

Processed features head (after OHE):

	danceability	energy	loudness	speechin	ess \	
track_id						
53QF56cjZA9RTuuMZDrSA6	0.483	0.303	-10.058	0.04	29	
1s8tP3jP4GZcyHDsjvw218	0.572	0.454	-10.286	0.02	58	
7BRCa8MPiyuvr2VU309W0F	0.409	0.234	-13.711	0.03	23	
63wsZUhUZLlh10syrZq7sz	0.392	0.251	-9.845	0.03	63	
6nXIYClvJAfi6ujLiKqEq8	0.430	0.791	-5.419	0.03	02	
	acousticness	instrume	entalness	liveness	valence	\
track_id						
53QF56cjZA9RTuuMZDrSA6	0.6940		0.000000	0.1150	0.139	
1s8tP3jP4GZcyHDsjvw218	0.4770		0.000014	0.0974	0.515	
7BRCa8MPiyuvr2VU309W0F	0.3380		0.000050	0.0895	0.145	
63wsZUhUZLlh10syrZq7sz	0.8070		0.000000	0.0797	0.508	
6nXIYClvJAfi6ujLiKqEq8	0.0726		0.019300	0.1100	0.217	
	tempo key_	0 ke	ey_4 key_5	key_6	key_7 \	
track_id	1 3-	- •••	<i>y</i> = <i>y</i> =	<i>y</i> =	<i>y</i> = .	
53QF56cjZA9RTuuMZDrSA6	0.533639 Fals	se 5	True False	e False	False	
1s8tP3jP4GZcyHDsjvw218	0.560744 Fals		alse False		False	
7BRCa8MPiyuvr2VU309W0F	0.559344 Fals		alse False		False	
63wsZUhUZLlh10syrZq7sz	0.819867 Fals		alse False		False	
6nXIYClvJAfi6ujLiKqEq8	0.687475 Fals		alse False		False	
	l 0 l 0	1 10	1 11		- 4	
	key_8 key_9	key_10	key_11 mo	ode_0 mod	e_1	
track_id						
53QF56cjZA9RTuuMZDrSA6	False False	False	False F	False T	rue	
4 0: 00:00:04						
1s8tP3jP4GZcyHDsjvw218	False False	False			rue	
7BRCa8MPiyuvr2VU309W0F	False False	False	False F	Talse T	rue	
5 5			False F	False T False T		

[5 rows x 23 columns]

Processed features shape (after OHE): (1159748, 23)

 ${\tt Index\ check:\ track_id}$

1.0.5 5. Exploratory Data Analysis:

Calculating Correlation Matrix...

1.1 Correlation Analysis Findings

The correlation matrix reveals several highly correlated feature pairs:

Feature Pair	Correlation Coefficient
energy and loudness	0.781
energy and acousticness	-0.753
speechiness and vocal_character	0.965
mode_0 and mode_1	-1.000

These strong correlations suggest potential redundancy in our feature set, which may impact model performance.

The perfect negative correlation between mode_0 and mode_1 is expected since they are one-hot encoded from the same categorical variable.

```
[17]: # Drop highly correlated features to reduce redundancy
print("\nDropping highly correlated features...")
features_to_drop = ['mode_1', 'vocal_character', 'acousticness', 'loudness']
df = df.drop(columns=features_to_drop)

print(f"Features dropped: {features_to_drop}")
print(f"Remaining features: {df.columns.tolist()}")
print("Original dataframe shape:", df_raw.shape)
print(f"New dataframe shape: {df.shape}")
```

```
Dropping highly correlated features...

Features dropped: ['mode_1', 'vocal_character', 'acousticness', 'loudness']

Remaining features: ['danceability', 'energy', 'speechiness',
'instrumentalness', 'liveness', 'valence', 'tempo', 'key_0', 'key_1', 'key_2',
'key_3', 'key_4', 'key_5', 'key_6', 'key_7', 'key_8', 'key_9', 'key_10',
'key_11', 'mode_0', 'energy_to_acousticness_ratio']

Original dataframe shape: (1159764, 20)

New dataframe shape: (1159748, 21)
```

Feature Importance Analysis

```
[18]: print("\nEvaluating feature importance using Random Forest...")
  from sklearn.ensemble import RandomForestRegressor
  import multiprocessing

# Use a simple target like popularity
  target = df_clean['popularity']

# Train a random forest model to get feature importance with parallel processing
  rf = RandomForestRegressor(n_estimators=100, random_state=42, n_jobs=-1)
  rf.fit(df, target)
```

```
# Get feature importances
importances = rf.feature_importances
indices = np.argsort(importances)[::-1]
# Plot feature importances
plt.figure(figsize=(12, 8))
plt.title('Feature Importances for Music Popularity')
plt.bar(range(df.shape[1]), importances[indices], align='center')
plt.xticks(range(df.shape[1]), [df.columns[i] for i in indices], rotation=90)
plt.tight_layout()
plt.show()
# Keep only top features
importance_threshold = 0.05  # This will capture the most significant features_
⇒based on your graph
important_indices = [i for i, imp in enumerate(importances) if imp > u
 →importance_threshold]
top_features = [df.columns[i] for i in indices if importances[i] >__
 →importance_threshold]
print(f"Features with importance > {importance_threshold}: {top_features}")
df_important = df[top_features]
# Let's also keep the custom ratio features since they're highly important
if 'energy_to_acousticness_ratio' not in df_important.columns and⊔
 ⇔'energy_to_acousticness_ratio' in df.columns:
   df_important['energy_to_acousticness_ratio'] =__

→df['energy_to_acousticness_ratio']
if 'vocal_character' not in df_important.columns and 'vocal_character' in df.
 ⇔columns:
   df_important['vocal_character'] = df['vocal_character']
print(f"Refined feature set shape: {df_important.shape}")
```

Evaluating feature importance using Random Forest...


```
Features with importance > 0.05: ['energy_to_acousticness_ratio', 'danceability', 'tempo', 'valence', 'speechiness', 'liveness', 'instrumentalness', 'energy']
Refined feature set shape: (1159748, 8)
```

```
[24]: # Define more musically meaningful components based on feature importance
      df_important.loc[:, 'energy_dynamics'] = df['energy']
      df_important.loc[:, 'dance_rhythm'] = 0.6*df['danceability'] + 0.4*df['tempo']
      df_important.loc[:, 'emotional_content'] = df['valence']
      df_important.loc[:, 'vocal_presence'] = df['speechiness'] - 0.
       ⇔5*df['instrumentalness']
      df_important.loc[:, 'performance_style'] = df['liveness']
      print("Improved music-specific components (first 5 rows):")
      print(df_important.head())
      # Visualize top dimensions
      plt.figure(figsize=(10, 8))
      sample_size = min(10000, len(df_important))
      plt.scatter(
          df_important['energy_dynamics'].iloc[:sample_size],
          df_important['dance_rhythm'].iloc[:sample_size],
          alpha=0.5, s=5
```

```
plt.xlabel('Energy Dynamics')
plt.ylabel('Dance Rhythm')
plt.title('Music Map: Top Two Popularity-Related Dimensions')
plt.tight_layout()
plt.show()
Improved music-specific components (first 5 rows):
                        energy_to_acousticness_ratio danceability
                                                                        tempo \
track_id
53QF56cjZA9RTuuMZDrSA6
                                            0.430398
                                                             0.483 0.533639
1s8tP3jP4GZcyHDsjvw218
                                            0.932238
                                                             0.572 0.560744
7BRCa8MPiyuvr2VU309W0F
                                            0.672414
                                                             0.409 0.559344
63wsZUhUZLlh10syrZq7sz
                                            0.307222
                                                             0.392 0.819867
6nXIYClvJAfi6ujLiKqEq8
                                            9.576271
                                                             0.430 0.687475
                        valence
                                 speechiness liveness
                                                        instrumentalness \
track_id
53QF56cjZA9RTuuMZDrSA6
                          0.139
                                      0.0429
                                                0.1150
                                                                 0.000000
1s8tP3jP4GZcyHDsjvw218
                          0.515
                                      0.0258
                                                0.0974
                                                                 0.000014
7BRCa8MPiyuvr2VU309W0F
                                      0.0323
                                                0.0895
                          0.145
                                                                 0.000050
63wsZUhUZLlh10syrZq7sz
                          0.508
                                      0.0363
                                                0.0797
                                                                 0.000000
6nXIYClvJAfi6ujLiKqEq8
                          0.217
                                      0.0302
                                                0.1100
                                                                 0.019300
                                energy_dynamics dance_rhythm \
                        energy
track_id
53QF56cjZA9RTuuMZDrSA6
                         0.303
                                          0.303
                                                     0.503256
1s8tP3jP4GZcyHDsjvw218
                         0.454
                                          0.454
                                                     0.567497
7BRCa8MPiyuvr2VU309W0F
                         0.234
                                          0.234
                                                     0.469137
63wsZUhUZLlh10syrZq7sz
                         0.251
                                          0.251
                                                     0.563147
6nXIYClvJAfi6ujLiKqEq8
                         0.791
                                          0.791
                                                     0.532990
                        emotional_content vocal_presence performance_style
track_id
53QF56cjZA9RTuuMZDrSA6
                                    0.139
                                                 0.042900
                                                                       0.1150
                                                 0.025793
1s8tP3jP4GZcyHDsjvw218
                                                                       0.0974
                                    0.515
7BRCa8MPiyuvr2VU309W0F
                                    0.145
                                                 0.032275
                                                                       0.0895
                                    0.508
63wsZUhUZLlh10syrZq7sz
                                                 0.036300
                                                                       0.0797
6nXIYClvJAfi6ujLiKqEq8
                                    0.217
                                                 0.020550
                                                                       0.1100
```


1.1.1 6. Standard Scaling:

We'll initially scale all features to have zero mean and unit variance. This is important for distance-based algorithms like K-Means and PCA..

Energy Dynamics

1.1.2 7. Dimensionality Reduction:

We'll use PCA on the scaled data to reduce the number of features while retaining most of the information (variance).

```
[27]: from sklearn.decomposition import PCA
     import numpy as np
     # Apply PCA with 6 components
     n_{components} = 6
     pca = PCA(n_components=n_components)
     df_pca_improved = pca.fit_transform(df_important_scaled)
     df_pca_improved = pd.DataFrame(df_pca_improved,
                               index=df.index.
                               columns=[f'PC{i+1}' for i in range(n_components)])
     # Calculate explained variance
     explained_variance = pca.explained_variance_ratio_
     cumulative_variance = np.cumsum(explained_variance)
     print(f"Using {n components} components for dimensionality reduction")
     print(f"Total explained variance: {cumulative_variance[-1]:.4f}")
     print("Explained variance by component:")
     for i, var in enumerate(explained_variance):
         print(f"PC{i+1}: {var:.4f} - Cumulative: {cumulative_variance[i]:.4f}")
     print("\nPCA data shape:", df_pca_improved.shape)
     print("First 5 rows of PCA-transformed data:")
     df_pca_improved.head()
     Using 6 components for dimensionality reduction
     Total explained variance: 0.9199
     Explained variance by component:
     PC1: 0.2905 - Cumulative: 0.2905
     PC2: 0.2045 - Cumulative: 0.4950
     PC3: 0.1717 - Cumulative: 0.6668
     PC4: 0.1028 - Cumulative: 0.7695
     PC5: 0.0806 - Cumulative: 0.8501
     PC6: 0.0697 - Cumulative: 0.9199
     PCA data shape: (1159748, 6)
     First 5 rows of PCA-transformed data:
[27]:
                                 PC1
                                           PC2
                                                    PC3
                                                              PC4
                                                                        PC5 \
     track id
     53QF56cjZA9RTuuMZDrSA6 -1.749151 -0.675105 -0.963789 1.070585 0.905743
     7BRCa8MPiyuvr2VU309W0F -2.155084 -0.735199 -1.013651 1.193784 0.763185
     63wsZUhUZLlh1OsyrZq7sz -0.511750 -1.510278 -0.427134 0.608818 1.182305
     6nXIYClvJAfi6ujLiKqEq8 -0.227597 0.293794 0.927159 1.192396 0.897316
                                 PC6
     track_id
```

```
53QF56cjZA9RTuuMZDrSA6 0.991398
      1s8tP3jP4GZcvHDsjvw218
                             1.063358
      7BRCa8MPiyuvr2VU309W0F 1.379218
      63wsZUhUZLlh10syrZq7sz 3.115824
      6nXIYClvJAfi6ujLiKqEq8 1.579808
[37]: import matplotlib.pyplot as plt
      from sklearn.preprocessing import MinMaxScaler
      # Create a 3D plot for the first 3 principal components
      fig = plt.figure(figsize=(12, 10))
      ax = fig.add_subplot(111, projection='3d')
      # Scale data for better visualization
      scaler = MinMaxScaler(feature_range=(-10, 10))
      viz_data = scaler.fit_transform(df_pca_improved[['PC1', 'PC2', 'PC3']])
      # Create scatter plot
      scatter = ax.scatter(
          viz_data[:, 0], viz_data[:, 1], viz_data[:, 2],
          c=df_pca_improved['PC4'],
          cmap='viridis', alpha=0.7, s=80,
          edgecolors='w', linewidth=0.5
      # Add labels and styling
      plt.colorbar(scatter).set_label('PC4 Values', fontsize=12)
      ax.set_xlabel(f'PC1 ({explained_variance[0]:.2%} variance)', fontsize=12)
      ax.set_ylabel(f'PC2 ({explained_variance[1]:.2%} variance)', fontsize=12)
      ax.set_zlabel(f'PC3 ({explained_variance[2]:.2%} variance)', fontsize=12)
      plt.title('3D PCA Visualization of Music Data', fontsize=16)
      # Set view properties
      ax.grid(True, alpha=0.3)
      ax.view init(elev=35, azim=60)
      ax.set_xlim(-10, 10); ax.set_ylim(-10, 10); ax.set_zlim(-10, 10)
      plt.tight_layout()
```

plt.show()

