题目: 讨论求解方程组

$$\begin{cases} x_1 + 2x_2 + \dots + 2^{n-1}x_n = 2^n - 1 \\ x_1 + 3x_2 + \dots + 3^{n-1}x_2 = \frac{1}{2}(3^n - 1) \\ \dots \\ x_1 + (n+1)x_2 + \dots + (n+1)x_n = \frac{1}{n}((n+1)^n - 1) \end{cases}$$

一、基本结果展示

首先,进行了一下手算推到,想要通过计算直接利用量化的列主元素高斯消去法来进行求解。这部分计算内容放到后面,下面先阐述使用 Matlab 进行计算的结果。

(step.1) 首先分别编写 matlab 左除、列主元素高斯消去法、LU 分解法三种方法的函数:

(step.2) 从 n=2 到 n=16 进行测试;

(step.3)每次测试利用这些解与标准解的二范数进行评估,来展现机器求解与真实值之间的差别程度;

(step.4)绘制图像,进行分析。

图 1.方程阶数与方程解误差之间的关系图

由上图,不难发现:

- (1) 列主元素高斯消去法在三种方法中效果最好,其次是 matlab 左除的方法,最差的是 LU 分解法
- (2)列主元素高斯消去法在 n=15 时误差增大至不可接受,matlab 左除在 n=14 时误差增大至不可接受,LU 分解法在 n=11 时分解失败,因此只能测试至 n=10。
- (3) 在后期测试中,发现列主元素高斯消去法的误差增长速度明显低于 matlab 左除方法,也可以说明 matlab 中的方法并非最优的方法。
- (4) 经过相似测试,可以参见报告第四部分,可以得出:最终确定 n=11 时 LU 分解崩溃,最终确定 n 大于 12 时这个方程组列主元素高斯消去法和左除法崩溃,但是列主元素高斯消去法误差比左除法要小。

二、相关程序

Matlab 程序请见我的 github:

https://github.com/17863958533/MatlabDataAnalysis.git

欢迎给我点星星。

考察增广知阵(A). 考虑使用型化用创运记售高斯消去法。

$$A \sim \begin{bmatrix} 2^{n} & 2^{1} & 2^{2} & \cdots & 2^{n-1} & \frac{1}{1}(2^{n}-1) \\ 0 & 3^{i}-2^{1} & 3^{i}-2^{1} & \cdots & 3^{n-1}-2^{n-1} & \frac{1}{2}(3^{n}-1)-\frac{1}{1}(2^{n}-1) \\ 0 & 4^{i}-2^{1} & 4^{2}-2^{2} & \cdots & 4^{n-1}-2^{n-1} & \frac{1}{3}(4^{n}-1)-\frac{1}{1}(2^{n}-1) \\ \cdots \\ 0 & (n+1)^{i}-2^{i} & (n+1)^{2}-2^{2} & \cdots & (n+1)^{n-1}-2^{n-1} & \frac{1}{n}\left[(n+1)^{n}-1\right]-\frac{1}{1}D^{n}+1 \end{pmatrix}$$

国理、继续使用量化则到玩享高期消去法:

观言发现,第一次消无使用的车还算是。 $0.02^{11} = -\frac{2^{\circ}}{2^{\circ}}$ $2^{(1)} = -\frac{4^{\circ}}{2^{\circ}}$... $2^{(1)}_{n} = -\frac{\ln +17^{\circ}}{2^{\circ}}$ (注: 其门表彩儿公, 品新乳行)

等=次消耗使用的本海第3: ②:
$$d_{2}^{11} = -\frac{4^{1}-2^{1}}{3^{1}-2^{1}}$$
, $d_{3}^{11} = -\frac{5^{1}-2^{1}}{3^{1}-2^{1}}$, ... $d_{n}^{(a)} = -\frac{(n+1)^{1}-2^{1}}{3^{1}-2^{1}}$

$$\frac{17}{3} = \frac{17}{3^{1}-2^{1}} = \frac{1$$

显然,问题被导向了极其复杂的情况。我们本来想要直接写成 [an qn - qn] [x] = [bn] 这种形式的。

因此,军里并出第四次消礼的主任第一分的,和相对主的分。通过上面明前4次推手资价,发现还是存 在一定的规律师,译 21107 = 90分别 这一类公式十分复杂、这里维不管生。

同群,对于bn也如此维导,计算量也不小。下面直括阐述一下matlab的计算识别。

四、测试过程中的解变化情况(n=2~17)

说明: y 的第一列是左除求出的解,第二列是列主元素高斯消去法求得的解,第三列是 LU 分解求得的解:

n=10		
y =		
1.0000	1.0000	1.0000
1.0000	0.9999	1.0000
1.0000	1.0001	1.0000
1.0000	1.0000	1.0000
1.0000	1.0000	1.0000
1.0000	1.0000	1.0000
1.0000	1.0000	1.0000
1.0000	1.0000	1.0000
1.0000	1.0000	1.0000
1.0000	1.0000	1.0000
err =		
1.0e-04 *		
0.0449	0.8239	0.0449
n=11		
LU 分解失败		
y =		
1.0017	0.9996	
0.9967	1.0008	
1.0029	0.9992	
0.9986	1.0004	
1.0004	0.9999	
0.9999	1.0000	

```
1.0000
              1.0000
    1.0000
              1.0000
    1.0000
              1.0000
    1.0000
              1.0000
    1.0000
              1.0000
err =
              0.0008
    0.0033
n=12
LU 分解失败
左除方法报警: RCOND = 5.352005e-18
y =
    0.9503
              1.0380
    1.1156
              0.9245
    0.8836
              1.0648
    1.0670
              0.9681
    0.9755
              1.0100
    1.0060
              0.9979
    0.9990
              1.0003
    1.0001
              1.0000
    1.0000
              1.0000
    1.0000
              1.0000
    1.0000
              1.0000
    1.0000
              1.0000
err =
    0.1164
              0.0755
```

n=13

LU 分解失败

左除方法报警: RCOND = 7.638818e-20

```
y =
```

- -39.1272 -63.5886
 - 87.0874 139.4108
- -79.9871 -129.0559
- 45.3360 72.1145
- -14.7786 -24.2814
 - 4.8559 7.1726
 - 0.3350 -0.0639
 - 1.0817 1.1307
 - 0.9929 0.9886
 - 1.0004 1.0007
 - 1.0000 1.0000
 - 1.0000 1.0000
 - 1.0000 1.0000

err =

86.0874 138.4108

n=14

LU 分解失败

左除方法报警: RCOND = 9.763482e-22

y =

- 1.0e+03 *
- -0.2695 -0.9418
- 0.5918 2.0238
- -0.5691 -1.9117
- 0.3240 1.0612
- -0.1192 -0.3849
- 0.0321 0.0987
- -0.0048 -0.0168

```
0.0018
              0.0034
    0.0009
              0.0008
    0.0010
              0.0010
    0.0010
              0.0010
    0.0010
              0.0010
    0.0010
              0.0010
    0.0010
              0.0010
err =
   1.0e+03 *
    0.5908
              2.0228
n=15
LU 分解失败
左除方法报警: RCOND = 1.209491e-23
y =
   1.0e+05 *
    3.5404
             0.3430
   -7.9400
             -0.8033
    7.9063
             0.8392
   -4.6516
             -0.5199
    1.8128
              0.2140
   -0.4965
             -0.0620
    0.0989
              0.0131
   -0.0146
             -0.0020
    0.0016
              0.0002
   -0.0001
             -0.0000
    0.0000
              0.0000
    0.0000
              0.0000
    0.0000
              0.0000
    0.0000
              0.0000
```

```
0.0000 0.0000
err =
   1.0e+05 *
   7.9400 0.8392
n=16
LU 分解失败
左除方法报警: RCOND = 1.356237e-25
y =
   1.0e+07 *
    3.8819 -1.8559
   -8.9902 4.3294
   9.3001
            -4.5188
   -5.7218
            2.8103
   2.3490
            -1.1686
   -0.6835
             0.3451
   0.1460
            -0.0750
   -0.0234
             0.0122
   0.0028
            -0.0015
   -0.0003
             0.0001
    0.0000
            -0.0000
   -0.0000
             0.0000
    0.0000
             0.0000
    0.0000
             0.0000
    0.0000
             0.0000
    0.0000
             0.0000
err =
   1.0e+07 *
    9.3001 4.5188
```

n=17

LU 分解失败

左除方法报警: RCOND = 1.484755e-27

y =

- 1.0e+10 *
- 1.0678 -0.1905
- -2.5655 0.4553
- 2.7712 -0.4889
- -1.7927 0.3143
- 0.7797 -0.1358
- -0.2424 0.0419
- 0.0558 -0.0096
- -0.0097 0.0017
- 0.0013 -0.0002
- -0.0001 0.0000
- 0.0000 -0.0000
- -0.0000 0.0000
- 0.0000 -0.0000
- -0.0000 0.0000
- 0.0000 0.0000
- 0.0000 0.0000
- 0.0000 0.0000

err =

- 1.0e+10 * 2.7712

0.4889