Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Методи наукових досліджень

Лабораторна робота №5

«Проведення трьохфакторного експерименту при використаннірівняння регресії з квадратичними членами»

Виконала: Студентка групи IB-93 Баранчук І. М. Перевірив: Регіда П. Г. **Мета:** провести трьохфакторний експеримент і отримати адекватну модель

– рівняння регресії, використовуючи рототабельний композиційний план.

Завдання до лабораторної роботи:

- Ознайомитися з теоретичними відомостями.
- Вибрати з таблиці варіантів і записати в протокол інтервали значень x1, x2, x3. Обчислити і записати значення, відповідні кодованим значенням факторів +1; -1;+; -; 0 для 1, 2, 3.
- Значення функції відгуку знайти за допомогою підстановки в формулу: уі = f(x1, x2, x3) + random(10)-5, де f(x1, x2, x3) вибирається по номеру всписку в журналі викладача.
- Провести експерименти і аналізуючи значення статистичних перевірок, отримати адекватну модель рівняння регресії. При розрахунках використовувати натуральні значення факторів.
- Зробити висновки по виконаній роботі.

- 1	-							· •
	301	-10	50	20	60	-10	5	7,1+9,5*x1+7,9*x2+4,9*x3+1,5*x1*x1+0,9*x2*x2+9,7*x3*x3+1,6*x1*x2+0,1*x1*x3+3,8*x2*x3+4,9*x1*x2*x3

<u>Лістинг програми:</u>

```
from math import fabs

from random import randrange
import numpy as np

from numpy.linalg import solve
from scipy.stats import f, t

from time import perf_counter

counter_1 = 0

counter_2 = 0

counter_3 = 0

for i in range(10):

    m = 3

    n = 15

# варіант 201

x1min = -10
```

```
x3max = 5
```

```
Y average = []
    Y average.append(np.mean(Y[i], axis=0))
    dispersions.append(a / len(Y[i]))
def find known(num):
```

```
number lst.append(list for a[j][i])
        mx.append(sum(number lst) / len(number lst))
beta[6] * list_for_a[k][5] + beta[7] *
```

```
coefs2.append(beta[j])
    y st.append(res[0] + res[1] * x1[i] + res[2] * x2[i] + res[3] * x3[i]
Fp = Sad / sb
F4 = n - d
print("Fp =", Fp)
```

```
start_3 = 0
if Fp < f.ppf(q=0.95, dfn=F4, dfd=F3):
    print("Рівняння регресії адекватне при рівні значимості 0.05")
else:
    print("Рівняння регресії неадекватне при рівні значимості 0.05")
counter_3 += perf_counter() - start_3</pre>
```

Результати роботи програми:

Матриця планув	ання з натур	алізованими к	оефіцієнтами)	K :					
X1	X2	Х3	X1X2	X1X3	X2X3	X1X2X3	X1X1	X2X2	X3X3
-10.000	20.000	-10.000	-200.000	100.000	-200.000	2000.000	100.000	400.000	100.000
-10.000	20.000	5.000	-200.000	-50.000	100.000	-1000.000	100.000	400.000	25.000
-10.000	60.000	-10.000	-600.000	100.000	-600.000	6000.000	100.000	3600.000	100.000
-10.000	60.000	5.000	-600.000	-50.000	300.000	-3000.000	100.000	3600.000	25.000
50.000	20.000	-10.000	1000.000	-500.000	-200.000	-10000.000	2500.000	400.000	100.000
50.000	20.000	5.000	1000.000	250.000	100.000	5000.000	2500.000	400.000	25.000
50.000	60.000	-10.000	3000.000	-500.000	-600.000	-30000.000	2500.000	3600.000	100.000
50.000	60.000	5.000	3000.000	250.000	300.000	15000.000	2500.000	3600.000	25.000
-31.900	40.000	-2.500	-1276.000	79.750	-100.000	3190.000	1017.610	1600.000	6.250
71.900	40.000	-2.500	2876.000	-179.750	-100.000	-7190.000	5169.610	1600.000	6.250
20.000	5.400	-2.500	108.000	-50.000	-13.500	-270.000	400.000	29.160	6.250
20.000	74.600	-2.500	1492.000	-50.000	-186.500	-3730.000	400.000	5565.160	6.250
20.000	40.000	-15.475	800.000	-309.500	-619.000	-12380.000	400.000	1600.000	239.476
20.000	40.000	10.475	800.000	209.500	419.000	8380.000	400.000	1600.000	109.726
20.000	40.000	-2.500	800.000	-50.000	-100.000	-2000.000	400.000	1600.000	6.250

```
Матриця планування Ү:
      Υ1
                   Y2
                                Y3
  10226.100
              10228.100
                            10229.100
  -3993.900
              -4002.900
                            -4000.900
  30871.100
               30863.100
                            30867.100
  -10485.900
               -10486.900
                            -10477.900
  -42535.900
              -42537.900
                            -42541.900
  31525.100
              31523.100
                            31517.100
 -135660.900
              -135662.900
                           -135662.900
  87678.100
              87678.100
                            87673.100
  16250.215
               16248.215
                            16254.215
  -20780.435
                            -20775.435
               -20779.435
  -294.121
               -294.121
                             -293.121
  -10163.041
               -10156.041
                            -10156.041
  -56967.964
               -56963.964
                            -56963.964
  47619.916
               47619.916
                            47623.916
               -6300.525
  -6299.525
                            -6305.525
```

Висновки: в даній лабораторній роботі проведено трьохфакторний експеримент та отримано адекватну модель — рівняння регресії, використовуючи рототабельний композиційний план. Кінцевої мети досягнуто.