Name & ID:	_Ahmed Abdullah Mujtaba am08402
19/11/2024	

Date:

EE-424L Data Communication & Networking Fall 2024

Habib University

LAB 11: Subnetting

Lab #11 Marks distribution:

		LR2=10	LR4=15	LR5=15	AR2=05	AR4=05
In-Lab	Task 1		/05	/05	/05	/05
Tasks	Task 2	/10	/10	/10		
Marks Obt.			/50			

	The objective of this Lab is to design an IP Addressing Scheme using subnetting and
Objectives	Assign IP Addresses to Network Devices and Verify Connectivity

Task 1:

Exercise 1:

Now that you have an understanding of subnetting, put this knowledge to use. In this task, you are given two address / mask combinations, written with the prefix/length notation, which have been assigned to two devices. Your task is to determine if these devices are on the same subnet or different subnets. You can use the address and mask of each device in order to determine to which subnet each address belongs to.

Device A: 172.16.17.30/20 Device B: 172.16.28.15/20

Determine the Subnet for Device A:

1111111111111111111110000.00000000 In binary (subnet in binary)

255.255.240.0 in decimal

172.16.17.30 in binary is 10101100.00010000.00010001.00011110

Perform bitwise AND with the with the subnet mask

10101100.00010000.00010001.00011110 (device A)

111111111111111111110000.00000000 (subnet mask)

10101100.00010000.00010000.00000000 (answer of bitwise and)

172.16.16.0 (ans in normal notation)

Subnet for device A is 172.16.16.0/20

Determine the Subnet for Device B:

172.16.28.15 in binary 10101100.00010000.00011100.00001111

Performing bitwise AND with the binary form of the subnet

Gives 10101100.00010000.00010000.00000000

172.16.16.0

Subnet for device B is 172.16.16.0/20S

Exercise 2:

Given the Class C network of 204.15.5.0/24, subnet the network in order to create the network in Figure 1 with the host requirements shown.

Figure 1

Looking at the network shown in Figure 1, How many subnets are needed? _____5 subnets are needed for this _____ Is this possible with a Class C network? And if so, then how and assign subnets to topology in Fig. 1 as well **using VLSM**.

NetB:

Subnet Address: 204.15.5.0/27

Prefix: /27

Host range: 204.15.5.1—204.15.5.30

Broadcast: 204.15.5.31

NetE:

Subnet Address: 204.15.5.32/27

Prefix: /27

Host range: 204.15.5.33—204.15.5.62

Broadcast: 204.15.5.63

NetA:

Subnet Address: 204.15.5.64/28

Prefix: /28

Host Range: 204.15.5.65—204.15.5.78

Broadcast: 204.15.5.79

NetD:

Subnet Address: 204.15.5.80/29

Prefix: /29

Host Range: 204.15.5.81-204.15.5.86

Broadcast: 204.15.5.87

NetC:

Subnet Address: 204.15.5.88/30

Prefix: /30

Host Range: 204.15.5.89—204.15.5.90

Broadcast: 204.15.5.91

Task 2: Design and verify connectivity

Topology

Scenario

In this task, you are given the network address of 172.31.1.0 /24 to subnet and provide the IP addressing for the network shown in the Topology. The required host addresses for each WAN and LAN link are labeled in the topology.

Note: you can use normal or serial cable to make connection from router to router.

Part 1: Design an IP Addressing Scheme

Step 1: Subnet the 172.31.1.0/24 network based on the maximum number of hosts required by the largest subnet.

a. Based on the topology, how many subnets are needed? ____7 subnets are needed 3 for Wans and 4 for LAN

b.		_	bits mu to supp									f subne [.]	ts in the	topolo	gy tabl	e?3	bits must be
c.	How	many	subnet	s do	es th	is cı	reat	e? _	8 s	ubnets	(used 8	becaus	se close:	st powe	r to 7)_		
d.		_								-					_	the hos	ts 2^5 = 32
e.	Calcu	late t	he bina	ry v	alue f	or t	he f	irst f	five su	bnets. :	Subnet 2	zero is a	already	shown.			
	Net	0:	172		31		1		0	0	0	0	0	0	0	0	
	Net	1:	172		31		1										
	Net	2:	172		31		1										
	Net	3:	172		31		1										
	Net	4:	172		31		1										
							N	et 1:	172.3	1.1.32.	001000	00					
							N	et2:	172.3	1.1.64.	010000	00					
							Ν	let3:	172.3	1.1.96.0	0110000	00					
							N	et4:1	172.31	1.128.	100000	00					
f.	Calcu	late t	he bina	ry a	nd de	cim	ial v	alue	of the	new sı	ubnet m	ask.					
		111	11111	.11	1111	11	.11	111:	111.								
			255		255			25	5.		_						
			Bina	ary s	subne	t =	111	111	111.1	11111	11.111	 11111	1.1110	0000			

Decimal Subnet Mask: 255.255.255.224

g. Complete the Subnet Table, listing all available subnets, the first and last usable host address, and the broadcast address. The first subnet is done for you. Repeat until all addresses are listed.

Note: You may not need to use all rows.

Subnet Table:

Subnet		First Usable Host	IP Last Usable Host	IP Broadcast
Number	Subnet IP			Address
0	172.31.1.0	172.31.1.1	172.31.1.14	172.31.1.15
1	172.31.1.32	172.31.1.33	172.31.1.46	172.31.1.47
2	172.31.1.64	172.31.1.65	172.31.1.78	172.31.1.79
3	172.31.1.96	172.31.1.97	172.31.1.110	172.31.1.111
4	172.31.1.128	172.31.1.129	172.31.1.142	172.31.1.143
5	172.31.1.160	172.31.1.161	172.31.1.174	172.31.1.175
6	172.31.1.192	172.31.1.193	172.31.1.206	172.31.1.207
7	172.31.1.224	172.31.1.225	172.31.1.238	172.31.1.239
8				

Step 2: Assign the subnets to the network shown in the topology.

When assigning the subnets, keep in mind that routing is necessary to allow information to be sent throughout the network.

a. Assign Subnet 0 to the R1 LAN: 172.31.1.1 - 172.31.1.14

b. Assign Subnet 1 to the R2 LAN: 172.31.1.33 - 172.31.1.46

c. Assign Subnet 2 to the R3 LAN: 172.31.1.65 - 172.31.1.78

d. Assign Subnet 3 to the R4 LAN: 172.31.1.97 – 172.31.1.110

e. Assign Subnet 4 to the link between R1 and R2. 172.31.1.129 -172.31.1.130

f. Assign Subnet 5 to the link between R2 and R3. 172.31.1.161—172.31.1.162

g. Assign Subnet 6 to the link between R3 and R4. 172.31.1.193—173.31.1.194

Step 3: Document the addressing scheme.

Assign the first usable IP addresses to routers interfaces for each of the links.

Use the following method to assign WAN link IP addresses:

• For the WAN link between R1 and R2, assign and mention the first usable IP address to R1 and last usable IP address to R2.

172.31.1.129-R1

172.31.1.130-R2

• For the WAN link between R2 and R3, assign and mention the first usable IP address to R2 and last usable IP address to R3.

172.31.1.161-R2

172.31.1.162-R3

• For the WAN link between R3 and R4, assign and mention the first usable IP address to R3 and last usable IP address to R4.

172.31.1.193-R3

172.31.1.194-R4

Assign the last usable IP addresses to the hosts.

Part 2: Assign IP Addresses to Network Devices and Verify Connectivity

Most of the IP addressing is already configured on this network. Implement the following steps to complete the addressing configuration.

Step 1: Configure IP addressing on R1 and R2 LAN interfaces, on S3 and PC4, including the default gateway.

Step 2: Configure Static or Dynamic Routing (RIP version 2 supports subnetting) on R1, R2, R3 and R4.

RIP Ver-2 syntax is below:

R(config)#router rip

R(config-router)#version 2

R(config-router)#network 1.2.3.4

R(config-router)#end

Step 3: Verify connectivity.

You can only verify connectivity from R1, R2, S3, and PC4. However, you should be able to ping every IP address listed in the Addressing Table. Check this to RA.

Attach the Network Topology, all configurations and verification results with the Lab manual.

Lab Evaluation Assessment Rubric

EE-424 Lab 11

#	Assessment Elements	Level 1: Unsatisfactory Points 0-1	Level 2: Developing Points 2	Level 3: Good Points 3	Level 4: Exemplary Points 4
LR2	Program/Code/ Simulation Model/ Network Model	Program/code/simulation model/network model does not implement the required functionality and has several errors. The student is not able to utilize even the basic tools of the software.	Program/code/simulation model/network model has some errors and does not produce completely accurate results. Student has limited command on the basic tools of the software.	Program/code/simulation model/network model gives correct output but not efficiently implemented or implemented by computationally complex routine.	Program/code/simulation /network model is efficiently implemented and gives correct output. Student has full command on the basic tools of the software.
LR4	Data Collection	Measurements are incomplete, inaccurate and imprecise. Observations are incomplete or not included. Symbols, units and significant figures are not included.	Measurements are somewhat inaccurate and imprecise. Observations are incomplete or vague. Major errors are there in using symbols, units and significant digits.	Measurements are mostly accurate. Observations are generally complete. Minor errors are present in using symbols, units and significant digits.	Measurements are both accurate and precise. Data collection is systematic. Observations are very thorough and include appropriate symbols, units and significant digits and task completed in due time.
LR5	Results & Plots	Figures/ graphs / tables are not developed or are poorly constructed with erroneous results. Titles, captions, units are not mentioned. Data is presented in an obscure manner.	Figures, graphs and tables are drawn but contain errors. Titles, captions, units are not accurate. Data presentation is not too clear.	All figures, graphs, tables are correctly drawn but contain minor errors or some of the details are missing.	Figures / graphs / tables are correctly drawn and appropriate titles/captions and proper units are mentioned. Data presentation is systematic.
AR4	*Report Submission	Late submission after 1 week and in between 2 weeks.	Late submission after 2 days and within a week.	Late submission after the lab timing and within 2 days of the due date.	Timely submission of the report and in the lab time.

^{*}Report: Report will not be accepted after due date

