ARDUINO-BASED AUTOMATIC CAR

Objective

To design and implement an autonomous robotic car using Arduino that moves forward and automatically avoids obstacles using an ultrasonic sensor and servo motor

Component	Quantity
Arduino Uno	1
Titulino Ono	
Ultrasonic Sensor	1
Servo Motor	1
DC Motors	2
Motor Driver	1
Wheels	2
Jumper Wires	Several
LED (for alert)	1
LED (for alert)	1

Working

- 1. **Ultrasonic Sensing**: The ultrasonic sensor continuously measures the distance to obstacles in front of the car.
- 2. **Obstacle Detection**: If the distance is less than a defined 40 cm, the car stops and changes direction.
- 3. **Servo Scanning**: The servo motor rotates to scan surroundings, though in your current code it's static at 90° during an obstacle event.
- 4. **Movement Control**: Based on the obstacle, the car either:
 - o Moves forward when path is clear.
 - o Turns right if an obstacle is detected ahead.

CODE

```
#include <Servo.h>
                         // Include Servo library
Servo eby;
                       // Create a Servo object
#define trigPin 6
                       // Ultrasonic trigger pin
#define echoPin 7
                       // Ultrasonic echo pin
// Motor driver pins
int motor1pin1 = 2;
int motor1pin2 = 3;
int motor2pin1 = 4;
int motor2pin2 = 5;
int duration, distance;
void setup() {
 Serial.begin(9600);
 eby.attach(8);
                    // Attach servo to pin 8
 eby.write(0);
                    // Initialize servo to 0 degrees
 // Ultrasonic sensor setup
 pinMode(trigPin, OUTPUT);
 pinMode(echoPin, INPUT);
 // LED indicator setup
 pinMode(13, OUTPUT);
 // Motor pins setup
 pinMode(motor1pin1, OUTPUT);
 pinMode(motor1pin2, OUTPUT);
 pinMode(motor2pin1, OUTPUT);
 pinMode(motor2pin2, OUTPUT);
```

```
void loop () {
 // Trigger the ultrasonic sensor
 digitalWrite(trigPin, HIGH);
 delay ms(500);
 digitalWrite(trigPin, LOW);
 duration = pulseIn(echoPin, HIGH); // Read echo time
 distance = duration * 0.034 / 2; // Calculate distance in cm
 Serial.println(distance);
 if (distance < 40) {
  // Obstacle detected
  digitalWrite(13, HIGH);
                               // Turn on LED as indicator
  eby.write(90);
                   // Turn servo to 90° (middle scan position), Along with ultrasonic sensor
  // Turn right
  digitalWrite(motor1pin1, HIGH);
  digitalWrite(motor1pin2, LOW);
  digitalWrite(motor2pin1, LOW);
  digitalWrite(motor2pin2, LOW);
  delay(3000);
 else {
  // Clear path, move forward
  digitalWrite(13, LOW);
                                // Turn off LED
  eby.write(0);
                          // Reset servo
  digitalWrite(motor1pin1, HIGH);
  digitalWrite(motor1pin2, LOW);
  digitalWrite(motor2pin1, HIGH);
  digitalWrite(motor2pin2, LOW);
```

Relevance and Applications

This project introduces key concepts in **robotics**, **automation**, **and sensor integration**, which are highly relevant in:

- Autonomous vehicle development
- Industrial automation
- Smart delivery robots
- Security patrolling systems
- Educational robotics platforms

