Analysis 1 - Midterm

MAS241 - Spring 2019

Problem 1. Suppose that A and B are nonempty subsets of \mathbb{R} . Prove or disprove the following:

- 1. (10 points) If $x \in A$ and x is an upper bound of A, then $x = \sup A$.
- 2. (10 points) If a < b for all $a \in A, b \in B$, then $\sup A < \sup B$.

Problem 2. (30 points) Let S and T be nonempty subsets of \mathbb{R} . Define the Cartesian product of S and T by

$$S \times T = \{(a, b) \in \mathbb{R}^2 : a \in S, b \in T\}.$$

Prove that $S \times T$ is compact if and only if S and T are compact.

Problem 3. Given a series of real numbers $\sum a_n$, define the k-th partial sum s_k by $s_k = a_1 + a_2 + \cdots + a_k$. Let σ_m be the average of the first m partial sums,

$$\sigma_m = \frac{s_1 + s_2 + \dots + s_m}{m}.$$

If σ_m converges to a limit as $m \to \infty$, we say that the series $\sum a_n$ is Cesàro summable.

- 1. (15 points) Find an example of a Cesàro summable series that does not converge.
- 2. (15 points) Prove that any convergent series of real numbers is Cesàro summable.

Problem 4. Let f be a real uniformly continuous function on a bounded set E in \mathbb{R} .

- 1. (10 points) Prove that f is bounded on E.
- 2. (10 points) Show that the conclusion is false if boundedness of E is omitted from the hypothesis.