Lycée qualifiant Moulay rachid Guelmim //

// Année Scolaire 2017 – 2018 //

Prof. ENNIMOU Abdelkader

Série N° 10/2018 (consommation de la matière organique et flux d'énergie)

Afin d'étudier certains phénomènes biologiques producteurs d'énergie, on propose les données expérimentales suivantes :

Des cellules de levure de bière (champignon microscopique) sont cultivées en présence du glucose dans des conditions expérimentales différentes. Le <u>document 1</u> résume les conditions et les résultats expérimentaux :

en g jours consommée en g levures en g Voile de levure 150 9 150 1.97 B 150 90 0.255		Les conditions expérimentales			Les résultats	
A 150 9 150 1.97 Solution du glucose B 150 90 0.255	Les milieux		glucose initiale	l'expérience en	glucose	de la biomasse des
B 150 90 0.255	A		<u>150</u>	<u>9</u>	<u>150</u>	<u>1.97</u>
Document 01	В	bouchon levures +	<u>150</u>	<u>90</u>	<u>45</u>	

 Après ces expériences, on a observé au microscope la structure deux cellules de levure prélevées à partir des milieux A et B <u>document2</u>.

Figure A:cellule de levure prélevée du milieu B

Figure B: cellule de levure prélevée du milieu A

Document 02

- 1. A partir de <u>l'exploitation</u> des documents 1 et 2, <u>déduisez</u>, en <u>justifiant</u> votre réponse, le phénomène biologique producteur d'énergie qui s'est produit dans chaque milieu.
- Après l'ajout du glucose radioactif dans les deux milieux A et B, l'analyse du milieu intracellulaire a mis en évidence l'apparition de différentes substances chimique radioactives (l'analyse des différentes compartiments intracellulaires a été réalisée successivement temps t0 à t4) *document 3*.

Tomas	Milieu extérieur	Mili	Milieu B				
Temps		Hyaloplasme	Mitochondrie	Hyaloplasme			
Т0	\underline{G}^{+++}						
T1	\underline{G}^+	$\underline{G}^{\scriptscriptstyle ++}$		\underline{G}^{++}			
T2	T2 $\underline{a.P^{++}}$ $\underline{a.P^{+}}$ $\underline{a.P^{++}}$						
T3 $\underline{a.P^{+++}, a.K^{+}}$							
T4	<u>CO2</u> ⁺		<u>a.K⁺⁺⁺</u>				
Les symboles : G :Glucose, a.P : acide pyruvique, a.K : acides du cycle de Krebs							

Document 03

- 2. <u>Expliquez</u> les résultats présentés dans le <u>document 3</u>.
- On a isolé 1,5 mg de mitochondries à partir des cellules du milieu A. Ces mitochondries sont placées dans un milieu de culture saturé en ions phosphates et en oxygène O2, le **document 4** présente les variations de la concentration d'oxygène dans le milieu en fonction du temps (450 mmol d'ADP ont été ajoutés à deux reprises au milieu).

3. En se <u>basant</u> sur les <u>documents 3 et 4</u>, et sur vos <u>connaissances</u>, <u>réalisez</u> un schéma montrant les étapes de la dégradation du glucose dans le milieu A.

Pr. ENNIMOU Abdelkader // Lycée Moulay Rachid Guelmim Page 02