Process Planning

Dr. Deepu Philip

Basics

- Process a group of related tasks with specific inputs and outputs – exist to create value for the customer
- Process design what tasks need to be done and how they are coordinated among functions, people, and organizations
 - Planning, analyzing, and improving processes is the essence of OM
- Process strategy overall approach of an organization for physically producing goods and/or providing services
 - Vertical integration, capital intensity, process flexibility, customer involvements

Process Planning

Process planning determines how a product is to be produced or a service to be provided.

Necessary decisions

- Converts design into workable instructions for manufacture
- Decides components to be made in-house and to be procured from supplier
- Select processes and equipment
- Develops and documents manufacturing specifications

Outsourcing

- Vertical integration
 - The degree to which a firm produces the parts that go into its products
- ▶ A major decision is how much of the work to be done outside the firm – depends on:
 - Cost Cheaper to make it or buy it
 - Capacity less than full capacity or sufficient capacity
 - Quality in-house allows better quality control
 - Speed who can provide goods faster
 - Reliability specified quality and desired time
 - Expertise Keeping control over expertise and production

Product analysis

- Analyze design specs and creating documents to communicate how to manufacture
 - ▶ I.Assembly chart
 - 2. Operations process chart
 - 3. Process flowchart
- Bill of material (BOM) is the list of materials and components that go into the product; including the quantity

Assembly chart

Schematic diagram that shows the relationship of each component part to its parent assembly, grouping of parts that make up a sub-assembly, and overall sequence of assembly

- Also known as product structure diagram
- Does not include instructions for preparing each item;
 rather the purpose is to show the assembly flow

Assembly diagram example

Class Exercise

Create an assembly chart for the tree stand shown in the figure for a single worker, And a three worker assembly line. Also create the BOM.

Operations process chart

- Shows how a product is to be fabricated
- Resembles an assembly chart, but has more information
 - For each item listed in the assembly chart − a series of operations is added that describe how each item is to be fabricated
 - Contains information on the machines, tools, fixtures, gauges, time necessary, etc.
- Used as the source of operational requirements of job design

An Example

An Operations Sheet for a Plastic Part												
Part name		Crevice Tool	_									
Part No.		52074	_									
Usage		Hand-Vac	_									
Assembly No. 520												
Oper. No.	Descrip	tion	Dept.	Machine/Tools	Time							
10	Pour in	plastic bits	041	Injection molding	2 min							
20	Insert m	old	041	#076	2 min							
30	Check s & start r		041	113, 67, 650	20 min							
40	Collect	oarts & lay flat	051	Plastics finishing	10 min							
 50	Remove	& elean mold	042	Parts washer	15 min							
60	Break o	ff rough edges	051	Plastics finishing	10 min							
				3								

Process flow chart

Also known as flow process charts, describe the process using five standard symbols to highlight non-productive activities.

Details of each process are not necessary; but time required and distance between processes are a must

An Example

Just In Time

	Date: Analyst:				Location: Process: Applesauce					
	Step	Operation	Transport	Inspect	Delay	Storage	Description of process	Time (min)	Distance (feet)	
	1.	Q	₽		D	∇	Unload apples from truck	20		
	2	0	×		D	∇	Move to inspection station		100 ft	
U50	3	0	4		D	∇	Weigh, inspect, sort	30		
	4	0	*	P	D	∇	Move to storage		50 ft	
	5	0	₽			7	Wait until needed	360		
	6	0	*	6	D	∇	Move to peeler		20 ft	
10 L	7	~	文		D	∇	Peel and core apples			
	8	0	\$		A	>▼	Soak in water until needed	20		
60(·)	9	~	\$		D	∇	Place on conveyor	5		
(VVI)	10	0	*		D	∇	Move to mixing area		20 ft	
		P.	age	1 of	3		Total	450	190 ft	

Type of processes

- Production processes are categorized into four:
 - 1. Projects -> Product doesn't murc man, materials,

2. Batch production

- 3. Mass production
- 4. Continuous production
- Project is a one-at-a-time production of a product to customer order
 - Ship building

Aircraft

Construction

usually leave & everyles products.

O Inefficiency.

Fixed Position layout

- Fixed position layouts are used in projects where the product cannot be moved
 - Used when the product is too fragile, bulky, or heavy to move
 - Equipment, materials, workers, and other resources are bought to the production site
- Equipment utilization is low specifically because many times it is cheaper to leave the equipment idle at the site
 - Cost of moving is expensive
 - Mostly leased or sub-contracted

Man & marlines & Stations

Batch production

Product MNRD.

- Processes many different jobs through the production system at the same time in groups (batches)
- Also know as job shop or intermittent production
- Products are made to customer order, low in volume, with fluctuating demand

m(c

 Equipment tends to be general purpose and work force is highly skilled so that variety of items can be produced

Functional layout schematic

16 10/16/2023

Jobshop Example

17 10/16/2023

Mass production

Produces large volumes of a standard product for a mass market

Food.

- Also known as flow lines or assembly lines
 - Automobiles, televisions, personal computers, etc.
- Demand is stable and product volume is high which results in dedicated equipment for the particular product

 Capital intensive, specialized equipment, limited labor skills – high efficiency, low per-unit cost, ease of control, speed

Product Layout Schematic

Assembly Line Example

20 10/16/2023

Continuous process

- Very high volume commodity products that are very standardized
- System is highly automated, runs 24 hours a day called process industries

Crude oil references, metal sonces

- Output is continuous, not discrete implies individual units are measured rather than counted
- ▶ Efficiency, ease of control, capacity are benefits

Process selection

