

Cloud Computing

Introduction to virtualization

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Spring 2024

Why Virtualization?

- As the scale of a system and the size of its users grows, it becomes very challenging to manage its recourses.
- Resource management issues:
 - Provision for peak demands overprovisioning
 - Heterogeneity of hardware and software
 - Machine failures
- ➤ Virtualization is a basic enabler of Cloud Computing, it simplifies the management of physical resources.

Virtualization Applications

For example, the state of a virtual machine (VM) running under a virtual machine manager (VMM) can be saved and migrated to another server to balance the load.

➤ Virtualization allows users to operate in environments they are familiar with, rather than forcing them to specific ones.

Virtualization

Virtualization techs have a long trail in the history of computer science.

- > Virtualization is often synonymous with hardware virtualization
- ➤ Plays a fundamental role in efficiently delivering Infrastructure-as-a-Service (IaaS) solutions for cloud computing.

➤ Virtualization abstracts the underlying resources, simplifies their use, isolates users from one another, and supports replication which increases the elasticity of a system

Virtualization (cont.)

- ➤ In many flavors by providing Virtual Environments (VE) at the:
 - Operating system level
 - Programming language level
 - Application level

➤ Virtualization technologies provide a VE for not only executing applications but also for storage, memory, and networking.

Major components of a virtualized environment

≻ Guest

 The system component that interacts with the virtualization layer rather than with the host, as would normally happen.

Host

The original env. where the guest is supposed to be managed.

➤ Virtualization layer

Recreate the same or a different env. where the guest will operate.

Major components of a virtualized environment (cont.)

Taxonomy of Virtualization Techniques

- Execution Virtualization
 - Hardware Level
 - Operating System Level
 - Programming Language Level
- Network Virtualization
- ➤ Storage Virtualization
- Desktop Virtualization
- **>**...

> Emulation of an execution environment (env.)

> The env. is separate from the one hosting the virtualization layer.

- Providing support for the execution of programs, such as:
 - An operating system
 - A binary specification of a program compiled against an abstract machine model
 - An application.

Machine Reference Model

Consider different levels of the computing stack

> We need A reference model that defines the interfaces between the levels of abstractions, which hide implementation details.

➤ Virtualization techniques *replace* one of the layers *and intercept*the calls that are directed toward it.

Machine Reference Model (cont.)

ISA: Instruction Set Architecture

ABI: Application Binary Interface

API: Application Programming Interface

Read more

Machine Reference Model (cont.)

- > ISA is an interface between software and hardware.
- ➤ **ABI** allows the ensemble consisting of the application and the library modules to access the hardware; the ABI does not include privileged system instructions, instead it invokes system calls.
- ➤ API defines the set of instructions the hardware was designed to execute and gives the application access to the ISA; it includes high-level language library calls which often invoke system calls

Machine Reference Model (cont.)

- ➤ Hardware is expressed in terms of ISA
 - ISA for processor, registers, memory and the interrupt management.
- > ABI separates the OS layer from the application and libraries
 - System Calls defined
 - Enables portability of various applications and libraries across OS which employ the same ABI

Instruction Set

➤ Non-privileged instructions

- Can be used without interfering with other tasks.
- They do not access shared resources.
- All the floating, fixed-point, and arithmetic instructions.

> Privileged instructions

- Executed under specific restrictions
- Behavior-sensitive instructions that operate on the I/O.
- Control-sensitive instructions that alter the state of the CPU registers.

Multi-class of privileged instructions

- >A hierarchy of privileges in the form of ring-based security:
 - Ring 0, Ring 1, Ring 2, and Ring 3.

Least execution modes

- >Supervisor mode (master mode or kernel mode)
 - To perform sensitive operations on hardware-level resources.
- ➤ User mode

There are restrictions to control the machine-level resources.

Least execution modes (cont.)

Invoking the privileged instructions is user mode

hardware interrupts occur and trap the potentially harmful execution of the instruction

What is hypervisor?

- Conceptually, the hypervisor runs above the supervisor mode.
 - From here the prefix hyper- is used.

➤ In reality, hypervisors are run in supervisor mode.

The division between privileged and non-privileged instructions has posed *challenges* in designing virtual machine managers.

Historical approach for efficient virtualization

- > Virtual machine & guest Operating System are run in user mode
 - Direct execution of non-privileged instructions on the hardware
- > Hypervisor is run in supervisor mode.
- ➤ Running sensitive instructions in user mode →

A big challenge

Sensitive instructions *should only be* executed in **privileged mode**.

- Original ISA lets 17 sensitive instructions to be called in user mode.
- > Not able to isolate multiple operating systems from each other
 - They can access the privileged state of the processor and change it.

- ➤ Recent ISA redesign such instructions as privileged ones.
 - Intel VT and AMD Pacifica

What is Intel Virtualization Technology (VT)?

➤ Intel VT is the company's hardware assistance for processors running virtualization platforms.

➤On November 13, 2005, Intel released two models of Pentium 4 as the first Intel processors to support VT-x.

Read more

Int VT extensions

➤ Intel VT-x adds migration, priority and memory handling capabilities.

➤ Intel VT-d adds virtualization support to Intel chipsets that can assign specific I/O devices to specific virtual machines.

➤ Intel VT-c brings better virtualization support to I/O devices such as network switches

Read more

