```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    import re
    from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
    from sklearn.tree import plot_tree
```

In [2]: df=pd.read_csv("c7_used_cars - c7_used_cars.csv")
df

Out[2]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize	ľ
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0	
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0	
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0	
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0	
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5	
					•••						
99182	10663	A 3	2020	16999	Manual	4018	Petrol	145	49.6	1.0	
99183	10664	A 3	2020	16999	Manual	1978	Petrol	150	49.6	1.0	
99184	10665	A 3	2020	17199	Manual	609	Petrol	150	49.6	1.0	
99185	10666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.4	
99186	10667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.4	

99187 rows × 11 columns

```
In [3]: | df1=df.fillna(value=0)
        df1
```

Out[3]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize	ľ
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0	
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0	
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0	
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0	
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5	
99182	10663	A 3	2020	16999	Manual	4018	Petrol	145	49.6	1.0	
99183	10664	A 3	2020	16999	Manual	1978	Petrol	150	49.6	1.0	
99184	10665	A 3	2020	17199	Manual	609	Petrol	150	49.6	1.0	
99185	10666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.4	
99186	10667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.4	

99187 rows × 11 columns

In [4]: df1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99187 entries, 0 to 99186
Data columns (total 11 columns):
```

Data	COTAMILIS (COCA)	L II COIGIIII3).	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	99187 non-null	int64
1	model	99187 non-null	object
2	year	99187 non-null	int64
3	price	99187 non-null	int64
4	transmission	99187 non-null	object
5	mileage	99187 non-null	int64
6	fuelType	99187 non-null	object
7	tax	99187 non-null	int64
8	mpg	99187 non-null	float64
9	engineSize	99187 non-null	float64
10	Make	99187 non-null	object
dtype	es: float64(2),	int64(5), obj	ect(4)

memory usage: 8.3+ MB

```
In [5]: df1.columns
```

```
Out[5]: Index(['Unnamed: 0', 'model', 'year', 'price', 'transmission', 'mileage',
               'fuelType', 'tax', 'mpg', 'engineSize', 'Make'],
              dtype='object')
```

```
In [6]: df2=df1[['Unnamed: 0','year', 'price', 'mileage','tax', 'mpg', 'engineSize', 'Modes'
```

Out[6]:

	Unnamed: 0	year	price	mileage	tax	mpg	engineSize	Make
0	0	2019	25000	13904	145	49.6	2.0	VW
1	1	2019	26883	4562	145	49.6	2.0	VW
2	2	2019	20000	7414	145	50.4	2.0	VW
3	3	2019	33492	4825	145	32.5	2.0	VW
4	4	2019	22900	6500	150	39.8	1.5	VW
99182	10663	2020	16999	4018	145	49.6	1.0	Audi
99183	10664	2020	16999	1978	150	49.6	1.0	Audi
99184	10665	2020	17199	609	150	49.6	1.0	Audi
99185	10666	2017	19499	8646	150	47.9	1.4	Audi
99186	10667	2016	15999	11855	150	47.9	1.4	Audi

99187 rows × 8 columns

```
In [8]: df2['Make'].value_counts()
```

```
Out[8]: ford
                     17965
                     15157
        VW
        vauxhall
                     13632
        merc
                     13119
        BMW
                     10781
        Audi
                     10668
                      6738
        toyota
                      6267
        skoda
        hyundi
                      4860
```

Name: Make, dtype: int64

```
In [10]: x=df2.drop('Make',axis=1)
y=df2['Make']
```

```
In [11]: |g1={"Make":{'VW':1,"Audi":2}}
         df2=df2.replace(g1)
         print(df2)
                Unnamed: 0 year
                                  price mileage tax
                                                        mpg
                                                             engineSize Make
         0
                         0 2019
                                  25000
                                           13904 145
                                                       49.6
                                                                    2.0
                                                                           1
         1
                         1 2019
                                  26883
                                            4562 145
                                                       49.6
                                                                    2.0
                                                                           1
         2
                         2
                            2019
                                            7414 145
                                                                    2.0
                                  20000
                                                       50.4
                                                                           1
                                            4825 145 32.5
         3
                         3 2019 33492
                                                                    2.0
                                                                           1
         4
                         4 2019
                                  22900
                                            6500 150 39.8
                                                                    1.5
                                                                           1
                                             . . .
                             . . .
                                    . . .
                                                  . . .
                                                        . . .
                                                                     . . .
                                            4018 145 49.6
         99182
                     10663 2020 16999
                                                                    1.0
                                                                           2
         99183
                     10664 2020
                                  16999
                                            1978 150 49.6
                                                                    1.0
                                                                           2
                                                                           2
         99184
                     10665 2020
                                  17199
                                            609 150 49.6
                                                                    1.0
                                                                           2
         99185
                     10666 2017
                                  19499
                                            8646 150 47.9
                                                                    1.4
                                                                           2
         99186
                     10667 2016 15999
                                           11855 150 47.9
                                                                    1.4
         [99187 rows x 8 columns]
In [12]:
         x train,x test,y train,y test = train test split(x,y,test size=0.70)
In [13]:
         rfc=RandomForestClassifier()
         rfc.fit(x train,y train)
Out[13]: RandomForestClassifier()
         parameters = {'max depth':[1,2,3,4,5],
In [14]:
                      'min_samples_leaf':[5,10,15,20,25],
                       'n_estimators':[10,20,30,40,50]}
In [15]: grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='ad
         grid_search.fit(x_train,y_train)
Out[15]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [16]: |grid_search.best_score_
Out[16]: 0.5086033068960882
In [17]: rfc_best =grid_search.best_estimator_
```

In [20]: plt.figure(figsize=(50,40))
 plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)

In []: