Sinusoidal model

Adeline Leclercq Samson

2023-01-11

Description of the sinusoidal model

The observations along the tusk are denoted Y_i for i = 1, ..., n, with the corresponding position along the tusk denoted x_i . The model is the following

$$Y_i = f(x_i, \varphi) + \varepsilon_i$$

with ε_i a random noise assumed to be normally distributed with mean 0 and variance ω^2 . The regression function is a periodic sinusoidal function

$$f(x,\varphi) = A\sin(g(x) + b) + B\sin(2g(x) + 2b + \pi/2)$$

with function g defined as

$$g(x) = ax + \xi_x$$

and finally ξ_x is assumed to be a random Ornstein-Uhlenbeck process

$$d\xi_x = -\beta \xi_x dx + \sigma dW_x$$

The objective is to estimate the parameters $\varphi = (A, B, a, b)$; $\psi = e^{\beta \Delta}$ where Δ is the step size between two observations and $\gamma^2 = \sigma^2/\beta$.

Simulation of trajectories

Let us start with some simulations.

```
# parameters
A = 1/2
B = -1/4
b = 1
a = 0.1
beta = 0.05
sigma = 0.1
omega = 0.01

# simulations
n = 500
x = 1:n
delta = 1
psi = exp(-delta*beta)
gamma = sigma/sqrt(2*beta)*sqrt(1-psi^2)
xi = rep(0,n)
```

```
for (i in 2:n){
    xi[i] = xi[i-1]*psi + rnorm(1,0, gamma)
}
gx = a*x+xi
fx = A*sin(gx+b) + B*sin(2*gx + 2*b + pi/2)
Y = fx + rnorm(n,0,omega)
plot(x,Y,type = "l")
```


Estimation with the EM algorithm

The EM algorithm is based on the complete log-likelihood of the model. The solution of the hidden process ξ_x is

$$\xi_{x+\Delta} = \xi_x e^{-\beta \Delta} + \int_x^{x+\Delta} \sigma e^{\beta(s-x)} dW_s$$

such that the transition density is

$$p(\xi_{x+\Delta}|\xi_x) = \mathcal{N}(\xi_x e^{-\beta\Delta}, \frac{\sigma^2}{2\beta}(1 - e^{-2\beta\Delta}))$$

The complete log-likelihood is thus

$$\log L(Y, \xi, \theta) = \sum_{i=1}^{n} \log p(Y_{i}|\xi_{i}) + \sum_{i=1}^{n} \log p(\xi_{i}|\xi_{i-1}) + \log p(\xi_{1})$$

$$= -\sum_{i=1}^{n} \frac{(Y_{i} - f(x_{i}, \varphi))^{2}}{2\omega^{2}} - \frac{n}{2} \log(\omega^{2})$$

$$-\sum_{i=1}^{n} \frac{(\xi_{i} - \xi_{i-1}e^{-\beta\Delta})^{2}}{\frac{\sigma^{2}}{\beta}(1 - e^{-2\beta\Delta})} - \frac{n}{2} \log(\frac{\sigma^{2}}{\beta}(1 - e^{-2\beta\Delta}))$$

The EM algorithm proceeds at iteration k with the two following steps, given the current value of the parameters θ^k

- E step: calculation of $Q(\theta, \theta^k)$
- M step: update of the parameters $\theta^{k+1} = \arg \max_{\theta} Q(\theta, \theta^k)$

E step The condition distribution $p(\xi|Y;\theta^k)$ is not explicit because the regression function is not linear. We should proceed with a MCMC algorithm to sample from this distribution. This will lead to a stochastic version of the EM algorithm, namely the SAEM algorithm.

M step We need the sufficient statistics to update the algorithm.

To update ω^2 , the statistic is

$$S_1(\xi_i) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(x_i(\xi_i), \varphi))^2$$

To update $\phi = (A, B, a, b)$, the statistic is

$$S_2(\xi_i) = \sum_{i=1}^n \partial_{\varphi} f(x_i(\xi_i), \varphi) (y_i - f(x_i(\xi_i), \varphi))$$

For $\gamma^2 = \sigma^2/(2\beta)$, the statistic is

$$S_3(\xi_i) = \frac{1}{n} \sum_{i=1}^n (\xi_i - \xi_{i-1}\psi)^2$$

To update ψ , we need to statistics

$$S_4(\xi) = \sum_{i=1}^{n} \xi_i \xi_{i-1}$$

and

$$S_5(\xi) = \sum_{i=1}^n (\xi_i^2 + \xi_{i-1}^2)$$

SAEM algorithm The steps of the SAEM algorithm are

- E step: simulation of a new trajectory ξ^k with a MCMC algorithm targeting $p(\xi|Y;\theta^k)$ as stationary distribution
- SA step: stochastic approximation of the sufficient statistics

$$s^{k} = s^{k-1} + (1 - \alpha_{k})(S(\xi^{k}) - s^{k-1})$$

- M step: update of θ^k using the sufficient statistics s^k