

Introduction à la Statistique

Concepts Clés en Probabilité

Stéphane Guerrier, Mucyo Karemera, Samuel Orso & Lionel Voirol

Data Analytics Lab

Contenu du cours

Ce cours propose une introduction aux notions fondamentales de la statistique.

Thèmes abordés:

- Règles de probabilité élémentaires
- Variables aléatoires discrètes et continues
- Estimateurs
- Intervalles de confiance
- Tests d'hypothèses
- Régression linéaire

Statistique

Le contenu de ce cours se compose de trois parties :

- Probabilité
 - Nous utilisons les règles de probabilités élémentaires afin de quantifier la probabilité associée à certains événements.
- Statistiques descriptives
 - Nous résumons et visualisons un échantillon de données.
- Statistiques inférentielles
 - Nous utilisons des modèles statistiques pour tirer des conclusions à partir d'un échantillon de données.

Modélisation des phénomènes aléatoires

- Résultats : résultats possibles d'une expérience.
- Population : ensemble de tous les résultats possibles (noté S).
- Événement : ensemble de résultats (par exemple, A dans l'illustration).

Exemple : Lancer d'un dé équilibré

- Univers:

$$S = \{1, 2, 3, 4, 5, 6\}$$

- Exemples d'événements :

 $I = \text{``obtenir un nombre impair''} = \{1, 3, 5\}$

 $P = "obtenir un nombre pair" = \{2, 4, 6\}$

 $A = "obtenir un 5 et un 6" = \{5, 6\}$

 $C = "obtenir un 5" = \{5\}$

Exemple : Lancer d'un dé équilibré

Si le dé est *équilibré*, alors la **probabilité d'obtenir chaque face est la même**, c'est-à-dire

Probabilité (quatre) = Probabilité (cinq) = Probabilité (six) ou, en d'autres termes,

$$\mathbb{P}(\{1\}) = \mathbb{P}(\{2\}) = \mathbb{P}(\{3\}) = \mathbb{P}(\{4\}) = \mathbb{P}(\{5\}) = \mathbb{P}(\{6\})$$

Exemple : Lancer d'une pièce équilibrée

- Univers:

$$S = \{F, P\}$$

 Si la pièce est équilibrée, alors la probabilité d'obtenir Face ou Pile est la même, c'est-à-dire

ou, en d'autres termes,

$$\mathbb{P}(\{F\}) = \mathbb{P}(\{P\})$$

Probabilité

Si tous les résultats sont *équiprobables*, c'est-à-dire qu'ils ont la même probabilité de se produire

$$\mathbb{P}(\acute{\text{Evénement}}) = \frac{\text{\# résultats dans l'événement}}{\text{Nombre total de résultats}}$$

Exemple : Lancer d'un dé équilibré

- Quelle est la probabilité d'obtenir un 5?
- Quelle est la probabilité que le dé tombe sur un nombre impair?

Nous pouvons utiliser la *définition classique de la probabilité*, car tous les nombres d'un dé ont la même probabilité d'apparaître, puisque c'est un dé équilibré.

Exemple : Lancer d'un dé équilibré

(i) Déterminer l'univers, qui sont les résultats possibles d'un tirage de dé :

$$S = \{1, 2, 3, 4, 5, 6\}$$

(ii) Déterminer les événements qui nous intéressent :

$$C = "obtenir un 5" = \{5\}$$

I = "obtenir un nombre impair" = $\{1, 3, 5\}$

(iii) Calculer la probabilité en utilisant la définition :

$$\mathbb{P}(C) = \frac{\text{# de résultat dans } C}{\text{Nombre total de résultats possibles}} = \frac{1}{6}$$

$$\mathbb{P}(I) = \frac{\text{# de résultats dans } I}{\text{Nombre total de résultats possibles}} = \frac{3}{6} = \frac{1}{2}$$

Exemple : Lancer une pièce équilibrée trois fois

Probabilité d'obtenir 3 faces :

$$\mathbb{P}(\{FFF\}) = \frac{1}{8} = 0.125$$

Résultats:

Exemple : Lancer une pièce équilibrée trois fois

Probabilité d'obtenir 2 faces :

$$\mathbb{P}(D)=\frac{3}{8}=0.375$$

Résultats:

Exemple : Lancer une pièce équilibrée trois fois

Probabilité d'obtenir au moins 2 faces :

A = "obtenir au moins deux faces" = {FFF, PFF, FFP, FPF}

$$\mathbb{P}(A) = \frac{4}{8} = 0.5$$

Résultats:

FFF FFP FPF FPP

Propriétés des probabilités

- 1. $0 \leq \mathbb{P}(A) \leq 1$, pour tout événement A.
- P(S) = 1.
 Un événement qui a une probabilité de 1 est appelé certain.
- 3. $\mathbb{P}(A) = 0$. Un événement qui a une probabilité de 0 est appelé *impossible*.

Complément/Événements opposés

$$\mathbb{P}(A) = 1 - \mathbb{P}(\text{opposé de } A) = 1 - \mathbb{P}(A^c)$$

Exemple : Lancer un dé équilibré

$$A =$$
 "obtenir un nombre impair" = $\{1,3,5\}$

$$A^c$$
 = "NE PAS obtenir un nombre impair" = "obtenir un nombre pair" = {2, 4, 6}
 $\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$

$$\mathbb{P}("nombre impair") = 1 - \mathbb{P}("nombre pair")$$

Événements mutuellement exclusifs

• Lorsque les événements $A ext{ et } B$ (notés par $A \cap B$) ne peuvent pas se produire simultanément (noté par $A \cap B = \emptyset$), alors ils sont appelés événements mutuellement exclusifs .

Exemples:

Élections :

2 Lancer une pièce

$$A = "obtenir face" = \{F\}$$

$$B = "obtenir pile" = \{P\}$$

Lancer un dé équilibré

$$A =$$
 "obtenir un nombre impair" = $\{1,3,5\}$
 $B =$ "obtenir un nombre pair" = $\{2,4,6\}$

Événements mutuellement exclusifs

Si A et B ne peuvent pas se produire simultanément (*):

$$\mathbb{P}(A \text{ OU } B) = \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

(*) A et B n'ont aucun élément en commun

Ensembles

Ensemble	Notation	Interprétation	Diagramme
A et B	A∩B	Résultats dans A et B	S A B
A ou B	A∪B	Résultats dans A ou B, ou les deux	SAB
Complément de A	A ^c	Résultats qui ne sont pas dans A	S A Ac

Lancez un dé équilibré et quelqu'un nous dit que le résultat du dé est un nombre impair.

- Quelle est la probabilité que le résultat soit un cinq étant donné que le résultat du dé est un nombre impair?
- Et la probabilité d'obtenir un 6 étant donné que le résultat du dé est un nombre impair?

Probabilité conditionnelle de l'événement B étant donné que l'événement A est survenu :

$$\mathbb{P}(B|A) =$$
 "la probabilité de B sachant A" = $\frac{\mathbb{P}(A \text{ et } B)}{\mathbb{P}(A)}$

Probabilité conditionnelle de l'événement *B* étant donné que l'événement *A* est survenu. Si les résultats sont équiprobables :

```
\mathbb{P}(B|A) = \text{``la probabilit\'e de B sachant A''}
= \frac{\text{[# de r\'esultats dans } A \text{ et } B\text{]/[Nombre total de r\'esultats]}}{\text{[# de r\'esultats dans } A\text{]/[Nombre total de r\'esultats]}}
```


Probabilité conditionnelle de l'événement *B* étant donné que l'événement *A* est survenu :

$$\mathbb{P}(B|A) = \text{ la probabilité de B sachant A}$$
$$= \frac{\text{# de résultats dans } A \text{ et } B}{\text{# de résultats dans } A}$$

La probabilité conditionnelle de l'événement A sachant que l'événement B s'est produit :

$$\mathbb{P}(A|B) =$$
la probabilité de A sachant $B = \frac{\mathbb{P}(A \text{ et } B)}{\mathbb{P}(B)}$

La probabilité conditionnelle de l'événement A sachant que l'événement B s'est produit. Si les résultats sont équiprobables :

```
\mathbb{P}(A|B) = \text{la probabilité de A sachant B}
= \frac{\text{[# de résultats dans } A \text{ et } B\text{]/[# total de résultats]}}{\text{[# de résultats dans } B\text{]/[# total de résultats]}}
```


La probabilité conditionnelle de l'événement A sachant que l'événement B s'est produit :

$$\mathbb{P}(A|B) = \text{la probabilité de A sachant B}$$

$$= \frac{\text{# de résultats dans } A \text{ et } B}{\text{# de résultats dans } B}$$

Probabilité jointe

 $\mathbb{P}(A \text{ et } B) = probabilité jointe de A \text{ et } B$ la probabilité que les événements A et B se produisent **ensemble** $(A \cap B)$.

Quelle est la probabilité que le résultat d'un lancer de dé équilibré soit cinq étant donné que le résultat est un nombre impair?

$$A = "obtenir un 5" = \{5\}$$

 $B = "obtenir un nombre impair" = \{1, 3, 5\}$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \text{ et } B)}{\mathbb{P}(B)} = \frac{\text{\# de résultats dans } A \text{ et } B}{\text{\# de résultats dans } B} = \frac{1}{3},$$

puisque A et $B = A \cap B = \{5\}$

Autre exemple

Si vous savez qu'une famille a *deux enfants* et que l'un d'eux est un garçon, quelle est la probabilité que l'autre enfant soit également un garçon?

Population = ensemble des paires possibles d'enfants

$$S = \{GG, GF, FG, FF\}$$

 La probabilité que les deux enfants soient des garçons étant donné qu'il y a au moins un garçon est

```
\mathbb{P}(\text{ deux garçons | au moins un garçon}) = \frac{\mathbb{P}(\text{ deux garçons } \textbf{et} \text{ au moins un garçon})}{\mathbb{P}(\text{au moins un garçon})}
```

Exemple

$$\mathbb{P}(\text{deux garçons } \textbf{et} \text{ au moins un garçon}) = \mathbb{P}(\text{deux garçons})$$

$$= \frac{\# \text{ de paires avec deux garçcons}}{\# \text{ total de paires}}$$

$$= \frac{1}{4}$$

$$\mathbb{P}(\text{au moins un garçon}) = \frac{\text{\# de paires avec au moins un garçon}}{\text{\# total de paires}} = \frac{3}{4}$$

$$\mathbb{P}(\text{deux garçons } | \text{au moins un garçon}) = \frac{1/4}{3/4} = \frac{1}{3}$$

En général, $\mathbb{P}(A|B) \neq \mathbb{P}(B|A)$

- $\mathbb{P}(A|B)$ = probabilité conditionnelle de A sachant B
- $\mathbb{P}(B|A)$ = probabilité conditionnelle de B sachant A
- Exemple :

$$A = \{\text{obtenir un 5}\}$$
 $B = \{\text{obtenir un nombre impair}\}$

- ▶ $\mathbb{P}(A|B) = \mathbb{P}(\text{obtenir un 5}|\text{obtenir un impair}) = 1/3$
- ▶ $\mathbb{P}(B|A) = \mathbb{P}(\text{obtenir un impair}|\text{obtenir un 5}) = 1$

Règles de Probabilité

1. Probabilité conditionnelle de A sachant B

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \text{ et } B)}{\mathbb{P}(B)}$$

Probabilité conditionnelle de B sachant A

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A \text{ et } B)}{\mathbb{P}(A)}$$

2. Règle de multiplication

$$\mathbb{P}(A \text{ et } B) = \mathbb{P}(B) \cdot \mathbb{P}(A|B)$$

$$\mathbb{P}(A \text{ et } B) = \mathbb{P}(A) \cdot \mathbb{P}(B|A)$$

Règles de Probabilité

3. Règle générale d'addition

$$\mathbb{P}(A \text{ ou } B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \text{ et } B)$$

4. Probabilité totale

$$\mathbb{P}(A) = \mathbb{P}(A \text{ et } B) + \mathbb{P}(A \text{ et } B^c)$$

5. Règle du complément

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$

$$\mathbb{P}(A|B) = 1 - \mathbb{P}(A^c|B)$$

Deux types de questions

- - ▶ Déduire la probabilité conditionnelle $\mathbb{P}(B|A)$.
 - Nous calculons la probabilité jointe : $\mathbb{P}(A \text{ et } B) = \mathbb{P}(B|A)\mathbb{P}(A)$
- - Nous connaissons la probabilité jointe = $\mathbb{P}(A \text{ et } B)$
 - Nous calculons la probabilité conditionnelle : $\mathbb{P}(B|A) = \frac{\mathbb{P}(A \text{ et } B)}{\mathbb{P}(A)}$

Exemple : Le problème de Monty Hall

- 1 % des étudiants ont le COVID.
- Le test de dépistage est précis à 99 %. (Ainsi, il y a 1 % de chance que le test ne soit pas précis).
- Léa (une étudiante) est testée positive au COVID.

Quelle est la probabilité que Léa ait effectivement le COVID étant donné qu'elle a été testée positive?

- 1 % des étudiants ont le COVID.
- Le test de dépistage est précis à 99 % (et 1 % non précis).
- Quelle est la probabilité que Léa ait effectivement le COVID, étant donné qu'elle a été testée positive?
 - Nous savons que :

$$\mathbb{P}(\text{``L\'ea a le COVID''}) = 0.01$$

$$\mathbb{P}(\text{``Test positif''}| \text{``L\'ea a le COVID''}) = 0.99 \text{ (pr\'ecis)}$$

$$\mathbb{P}(\text{``Test positif''}| \text{``L\'ea N'A PAS le COVID''}) = 0.01 \text{ (non pr\'ecis)}$$

Mais, nous devons calculer

 $\mathbb{P}("L\'{e}a \ a \ le \ COVID" \mid "Test \ positif") =???$

Commençons par la définition

$$\mathbb{P}(\text{``L\'ea a le COVID''} \mid \text{``Test positif''}) = \frac{\mathbb{P}(\text{``L\'ea a le COVID''} \text{ et ``Test positif''})}{\mathbb{P}(\text{``Test positif''})}$$

Utilisons la règle de multiplication :

Utilisez la règle de la probabilité totale :

```
 \mathbb{P}( \text{ "Test positif"}) = \mathbb{P}( \text{ "Test positif"} \textbf{ et "L\'ea a le COVID"}) \\ + \mathbb{P}( \text{ "Test positif"} \textbf{ et "L\'ea N'A PAS le COVID"})
```

Utilisez la règle de multiplication :

```
ℙ( "Test positif" et "Léa N'A PAS le COVID") =
ℙ("Léa N'A PAS le COVID") ℙ( "Test positif" | "Léa N'A PAS le COVID")
```

Utilisez la règle du complément :

```
\mathbb{P}(\text{``L\'ea N'A PAS le COVID''}) = 1 - \mathbb{P}(\text{``L\'ea a le COVID''}) = 1 - 0.01 = 0.99
```

Enfin,

$$\mathbb{P}(\text{ "Test positif"}) = 0.0099 + (0.99)(0.01) = 0.0198$$

$$\mathbb{P}(\text{``L\'ea a le COVID''} \mid \text{``Test positif''}) = \frac{\mathbb{P}(\text{``L\'ea a le COVID''}et \text{``Test positif''})}{\mathbb{P}(\text{``Test positif''})} \\ = \frac{0.0099}{0.0198} \\ = \frac{1}{2}$$