STANISLAS Thème

Intégrale de DIRICHLET

 \mathbf{PSI}

23

2021-2022

Pour tout entier naturel n, on définit sur \mathbb{R}_+ les fonctions φ_n , Φ_n et f par

$$\varphi_n(x) = \begin{cases} \frac{\sin(2nx)\cos x}{\sin x} &, x \notin \pi \mathbb{N} \\ 2n &, x \in \pi \mathbb{N} \end{cases}, \Phi_n(x) = \begin{cases} \frac{\sin(2nx)}{x} &, x > 0 \\ 2n &, x = 0 \end{cases},$$

$$f(x) = \begin{cases} \frac{\sin x}{x} &, x > 0\\ 1 &, x = 0. \end{cases}$$

- **1.** Soit n un entier naturel
- **a)** Montrer que les fonctions f, φ_n et Φ_n sont continues de \mathbb{R}_+ dans \mathbb{R} .
 - **b)** Montrer que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ converge. Nous noterons ℓ sa valeur.
- **2.** Pour tout entier naturel n, on pose $u_n = \int_0^{\frac{\pi}{2}} \varphi_n(t) dt$. Soit $n \in \mathbb{N}$.
 - a) Montrer que u_n est bien défini
 - **b)** Calculer $u_{n+1} u_n$ et en déduire la valeur de u_n .
- **3.** Pour tout entier naturel n, on pose $v_n = \int_0^{\frac{\pi}{2}} \Phi_n(t) dt$. Soit $n \in \mathbb{N}$.
 - a) Montrer que v_n est bien défini.
- **b)** Étudier la limite lorsque n tend vers l'infini de v_n . Si elle existe, on exprimera cette limite en fonction de ℓ .
- **4.** On suppose que g est une fonction de classe \mathscr{C}^1 sur un intervalle [a,b] et que $(w_n)_{n\in\mathbb{N}}$ est une suite de réels tels que $\lim_{n\to+\infty}w_n=+\infty$. Montrer

que $\lim_{n\to+\infty} \int_a^b g(t) \sin(w_n t) dt = 0.$

Stanislas

5. On considère la fonction h définie sur $[0, \frac{\pi}{2}]$ par

$$h(x) = \begin{cases} \frac{\cos x}{\sin x} - \frac{1}{x} &, x > 0\\ 0 &, x = 0 \end{cases}$$

Montrer que la fonction h est de classe \mathscr{C}^1 sur $[0, \frac{\pi}{2}]$.

- **6.** En déduire la valeur de ℓ .
- 7. Montrer que $t \mapsto \frac{\sin(t)}{t}$ n'est pas intégrable sur \mathbb{R}_+ . L'article DIRICHLET a été retranscrit et peut être téléchargé à l'adresse https: //arxiv.org/abs/0806.1294.

Mathématiciens

DIRICHLET Johann Peter Gustav Lejeune (13 fév. 1805 à Düren-5 mai 1859 à Göttingen).