5.1 LMMSE Estimator, MSE and SNR

Consider a MIMO point-to-point channel where the transmitter is equipped with N_T transmit antennas and the receiver is equipped with N_R receive antennas. Using the linear MIMO model and assuming additive white Gaussian noise $\mathbf{v} \in \mathbb{R}^{N_R}$ with $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{v}}^2 \mathbf{I})$, the receive signal $\mathbf{y} \in \mathbb{R}^{N_R}$ at the receiver can be expressed as

$$\mathbf{v} = \mathbf{H}\mathbf{x} + \mathbf{v}$$

where $x \in \mathbb{R}^{N_{\text{T}}}$ with $x \sim \mathcal{N}(\mathbf{0}, C_x)$ denotes the transmit signal and $H \in \mathbb{R}^{N_{\text{R}} \times N_{\text{T}}}$ denotes the channel matrix. In the following, assume that H is known to the transmitter and the receiver.

a) Derive the linear minimum mean square error (LMMSE) estimator for an estimation of the transmit signal *x* based on the receive signal *y*. Why is the LMMSE estimator the minimum mean square error (MMSE) estimator as well?

Hint: Following derivatives may be helpful:

$$\frac{\partial \operatorname{tr} \{XA\}}{\partial X} = A^{\mathrm{T}},$$

$$\frac{\partial \operatorname{tr} \{XAX^{\mathrm{T}}\}}{\partial X} = XA^{\mathrm{T}} + XA.$$

In the following, we consider a SIMO channel, i.e., we have $N_T = 1$.

- b) Determine the filter which maximizes the receive SNR. Which SNR does this filter achieve?
- c) Show that in this case the LMMSE estimator actually is a matched filter, i.e., a filter that maximizes the signal to noise power ratio as well.

Hint: Given the matrix $A \in \mathbb{R}^{n \times n}$ and the vectors $b \in \mathbb{R}^{n \times 1}$ and $c \in \mathbb{R}^{n \times 1}$, it follows that

$$(A + bc^{\mathrm{T}})^{-1} = A^{-1} - \frac{A^{-1}bc^{\mathrm{T}}A^{-1}}{1 + c^{\mathrm{T}}A^{-1}b}.$$

d) Express the MSE achieved by LMMSE estimator as a function of the optimal SNR.

5.2 "Linear" Models and LMMSE

The random vectors $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$ model the inputs and outputs of an unknown noisy operator as depicted in Figure 5.1. The input vector and the output vector are stacked into the random vector

Fig. 5.1: Unknown and noisy operator.

 $z = \begin{bmatrix} x^T & y^T \end{bmatrix}^T$. The distribution of z as well as the marginal distributions of x and y are unknown. In contrast, the first and second order moment of z, i.e.,

$$\mu_z = \mathrm{E}[z] = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix} = \mathbf{0}$$
 and $C_z = \mathrm{E}[zz^{\mathrm{T}}] = \begin{bmatrix} C_x & C_{yx}^{\mathrm{T}} \\ C_{yx} & C_y \end{bmatrix}$,

are available. In the following, assume that $C_x > 0$ and $C_y > 0$.

a) Determine T, μ_{ν} , and $C_{\nu} \geq 0$ in order to formulate the "linear" model

$$\mathbf{y}' = \mathbf{T}^{\mathrm{T}}\mathbf{x} + \mathbf{v},$$

where v is independent of x, such that

$$E\left[\begin{bmatrix} x \\ y' \end{bmatrix} \begin{bmatrix} x \\ y' \end{bmatrix}^{T}\right] = C_{z}$$
 and $E\left[\begin{bmatrix} x \\ y' \end{bmatrix}\right] = \mu_{z}$.

Determine S, μ_n , and $C_n \geq 0$ for the equivalent "linear" model

$$x' = S^{\mathrm{T}}y + n$$

as well.

- b) Compare the linear models to the LMMSE estimators $T_{\text{LMMSE}}^{\text{T}}$ with $\hat{y}_{\text{LMMSE}} = T_{\text{LMMSE}}^{\text{T}} x$ and $S_{\text{LMMSE}}^{\text{T}}$ with $\hat{x}_{\text{LMMSE}} = S_{\text{LMMSE}}^{\text{T}} y$.
- c) Determine the error covariance matrix and the covariance matrix of the estimates for both LMMSE estimators. What do you observe?
- d) Let $z \sim \mathcal{N}(\mu_z, C_z)$. Show that in this case T_{LMMSE} and S_{LMMSE} are minimum mean square error (MMSE) estimators as well.

5.3 Least Squares MIMO Channel Estimation

Consider a transmitter which is equipped with N_T transmit antennas and a receiver which is equipped with N_R receive antennas. In order to estimate the channel between transmitter and receiver, the transmitter transmits N globally known training symbols $\{x_i\}_{i=1}^N \in \mathbb{R}^{N_T}$. The corresponding receive signals at the receiver are given by N vectors $\{y_i\}_{i=1}^N \in \mathbb{R}^{N_R}$. The channel between transmitter and receiver is constant during the transmission of the N training symbols.

- a) Formulate a linear model $\hat{Y}_{LS} = XT_{LS} \in \mathbb{R}^{N \times N_R}$ in order to determine the linear least squares (LS) estimator $T_{LS}^T : \mathbb{R}^{N_T} \to \mathbb{R}^{N_R}, \ x \mapsto \hat{y}_{LS} = T_{LS}^T x$.
- b) State the orthogonality condition for the estimator T_{LS} . What is the span of the subspace of the errors $Y \hat{Y}_{LS}$ and what is the span of the subspace of the estimates \hat{Y}_{LS} ?
- c) Using the result from sub-problem b), determine the linear least squares estimator T_{LS} and the least squares estimate \hat{Y}_{LS} .

For those who can't get enough of optimization problems:

d) Determine T_{LS} without exploiting the orthogonality principle.

Hint 1: For $A \in \mathbb{R}^{n \times m}$, the square of the Frobenius norm is given as

$$||A||_{\mathrm{F}}^2 = \sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2 = \mathrm{tr}\{AA^{\mathrm{T}}\}.$$

Hint 2: Following derivatives may be helpful:

$$\frac{\partial \operatorname{tr} \{XA\}}{\partial X} = A^{\mathrm{T}},$$
$$\frac{\partial \operatorname{tr} \{XAX^{\mathrm{T}}\}}{\partial X} = XA^{\mathrm{T}} + XA.$$

5.4 Least Squares Estimation—A Different Perspective

Consider two random vectors $x \in \mathbb{R}^M$ and $y \in \mathbb{R}^d$. In this problem, no knowledge about the marginal distributions and joint distribution of x and y is available. However, we have a set of samples/realizations $\{(x_1, y_1), \dots, (x_N, y_N)\}$ with N > d. We define the matrices

$$Y = \begin{bmatrix} \mathbf{y}_{1}^{\mathrm{T}} & \mathbf{\hat{y}}_{1}^{\mathrm{T}} \\ \vdots & \vdots & \vdots \\ \mathbf{y}_{N}^{\mathrm{T}} & \mathbf{\hat{y}}_{N}^{\mathrm{T}} \end{bmatrix}, \quad \hat{\mathbf{Y}}_{\mathrm{LS}} = \begin{bmatrix} \mathbf{y}_{1}^{\mathrm{T}} & \mathbf{\hat{y}}_{1}^{\mathrm{T}} \\ \vdots & \vdots & \vdots \\ \mathbf{y}_{N}^{\mathrm{T}} & \mathbf{\hat{y}}_{N}^{\mathrm{T}} & \mathbf{\hat{y}}_{N}^{\mathrm{T}} \end{bmatrix}, \quad \text{and} \quad X = \begin{bmatrix} \mathbf{x}_{1}^{\mathrm{T}} & \mathbf{x}_{1}^{\mathrm{T}} \\ \vdots & \vdots & \vdots \\ \mathbf{x}_{N}^{\mathrm{T}} & \mathbf{\hat{y}}_{N}^{\mathrm{T}} & \mathbf{\hat{y}}_{N}^{\mathrm{T}} \end{bmatrix}. \quad (5.1)$$

Using a linear model $\hat{Y}_{LS} = XT_{LS} \in \mathbb{R}^{N \times d}$ we can formulate the least squares (LS) estimator $T_{LS}^T : \mathbb{R}^M \to \mathbb{R}^d$, $x \mapsto \hat{y}_{LS} = T_{LS}^T x$. It can be shown that T_{LS}^T is given as $T_{LS}^T = Y^T X (X^T X)^{-1}$.

a) Express the LS estimator and the LS estimate in terms of the sample correlation matrices

$$\hat{R}_{xx} = \frac{1}{N} \sum_{i=1}^{N} x_i x_i^{\text{T}} \text{ and } \hat{R}_{yx} = \frac{1}{N} \sum_{i=1}^{N} y_i x_i^{\text{T}}.$$
 (5.2)

- b) Assume that E[x] = 0 and E[y] = 0. What does this imply for your result of sub-problem a)? Give an interpretation of your result!
- c) Assume that E[x] = 0 and E[y] = 0. What happens to the LS estimator and the LS estimate if $N \to \infty$?

Advanced: From now on, we consider the affine case

$$\hat{\mathbf{y}}_{LS} = \mathbf{T}^{T} \mathbf{x} + \mathbf{m} = \begin{bmatrix} \mathbf{T}^{T} & \mathbf{m} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} = \mathbf{T}_{LS}^{\prime,T} \mathbf{x}^{\prime}, \tag{5.3}$$

where $T_{LS}^{',T} = \begin{bmatrix} T^T & m \end{bmatrix}$ is given as $T_{LS}^{',T} = Y^T X' (X'^T X')^{-1}$ using $X' = \begin{bmatrix} X & 1 \end{bmatrix}$ with X defined above.

d) Express the LS estimator and the LS estimate in terms of the sample covariance matrices

$$\hat{C}_{xx} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu}_x)(x_i - \hat{\mu}_x)^{\mathrm{T}} \quad \text{and} \quad \hat{C}_{yx} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{\mu}_y)(x_i - \hat{\mu}_x)^{\mathrm{T}}.$$
 (5.4)

where $\hat{\mu}_x$ and $\hat{\mu}_v$ are the sample means

$$\hat{\mu}_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $\hat{\mu}_y = \frac{1}{N} \sum_{i=1}^{N} y_i$. (5.5)

Give an interpretation of your result!

Hint 1: Recall that

$$\hat{C}_{xx} = \hat{R}_{xx} - \hat{\mu}_x \hat{\mu}_x^{\mathrm{T}}$$
 and $\hat{C}_{yx} = \hat{R}_{yx} - \hat{\mu}_y \hat{\mu}_x^{\mathrm{T}}$.

Hint 2: It can be shown that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix}$$

if D and $A - BD^{-1}C$ are regular.

e) What happens to the LS estimator and the LS estimate if $N \to \infty$?