Comprehensive LLM Self-Assessment Evaluation

Parameter	Details
Prompt	I'm about to start analyzing the
	FairFace dataset before building a
	CNN model for age classification.
	What EDA techniques would you
	recommend to visualize class
	distributions and identify any
	imbalances? I want to make sure I
	understand the data well before
	jumping into modeling.
Prompt Type Zero-Shot Prompt	
Answer	Absolutely! Conducting thorough
	Exploratory Data Analysis
	(EDA) [Full response truncated
	for brevity
Model Evaluated	Gemini
Evaluation Performed By	ChatGPT

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	4	Fair alignment	The response shows some coherence between confident language and accurate recommendations, but no confidence calibration is provided.
Calibration Error	3	Poor calibration	No explicit confidence scores, mild overconfidence in some EDA suggestions without qualifying uncertainty.

Metric	Score (1-10)	Interpretation	Key Evidence
Task Difficulty Awareness	5	Average	Tasks are of low to medium complexity. No differentiation or prioritization; suggests all tasks equally.
Error Recognition	2	Very weak	No awareness or mention of potential misapplication or limitations of suggested techniques.
Domain- Specific Variance	5	Average	General EDA techniques are applied without tailoring to age classification challenges specific to FairFace.
Prompt Sensitivity	N/A	N/A	Not assessed due to single prompt evaluation.
Weighted Self- Assessment Score	3.75	Below Average	$WSAS = (4 \times 0.25) + (3 \times 0.25) + (5 \times 0.15) + (2 \times 0.15) + (5 \times 0.1) + (N/A \times 0.1)$

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	100%	5/5 accurate; all EDA methods are valid techniques.
Procedural Recommendations	80%	8/10 accurate; some methods (e.g., entropy, CDF) may be excessive or misaligned for class imbalance detection.

Category	Accuracy	Notes
Inferences/Opinions	100%	3/3 reasonable and contextually
		appropriate.
Overall Accuracy	90%	Minor overreach on
		certain advanced
		visualizations for
		beginner EDA
		context.

Self-Assessment Classification

Primary Classification	Inconsistently Calibrated
Secondary Classifications	Contextually Calibrated: Recommendations valid but not well-tailored; Confidence Invariant: Confidence appears constant regardless of task complexity.

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit	0	N/A	N/A
Confi-			
dence			
State-			
ments			
Certainty	4	"Crucial,"	85% (estimated)
Markers		"directly," "will	
		help"	
Hedge	1	"Potentially"	50%
Words			
Qualifying	3	"Iterative	60%
Phrases		process,"	
		"domain	
		knowledge,"	
		"designed to be	
		general"	

Type	Count	Examples	Average Confidence Level
Overall			75 %
Esti-			
\mathbf{mated}			
Confi-			
dence			

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Limited	Low
Confidence calibration	None	N/A
Reasoning transparency	Medium	Medium
Alternative consideration	Limited	Low
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	None	N/A
Uncertainty decomposition	None	N/A

Key Improvement Recommendations

- $1. \ \, {\rm Include\ explicit\ confidence\ calibration\ or\ qualifying\ statements}.$
- $2.\,$ Prioritise EDA techniques based on relevance to class imbalance.
- 3. Clarify reasoning for including advanced methods (e.g., entropy, CDF).
- 4. Tailor responses to dataset-specific challenges (e.g., age-specific imbalance).
- 5. Add visual structure (e.g., tables or code snippets) to improve readability.