Модели пространства состояний в задачах классификации сигналов ЭКоГ

Владимиров Э.А.

Московский физико-технический институт

Научный руководитель: д. ф.-м. н. В. В. Стрижов

2023

Модели глубокого обучения в задаче нейронного декодирования

Проблема

Моделирование и распознание динамики нейронных систем

Задача

Выбор модели пространства состояний

Решение

Сделать выбор на основе анализа свойств моделей

Модель пространства состояний (SSM)

Непрерывная модель пр-ва состояний x'(t) = Ax(t) + Bu(t) $y(t) = Cx(t) + \frac{Du(t)}{D}$

$$x_k = Ax_{k-1} + Bu_k$$
$$y_k = Cx_k + Du_k$$

SSM	CNN	Transformer
LSTM	EEGNet	GPT
???	HTNet	Wav2Vec

Постановка задачи классификации сигнала ЭКоГ

 $\mathbf{X} \in \mathbb{R}^{M \times N \times T}$ — M измерений ЭКоГ, где N — число электродов, T — число элементов временного ряда $Y \in \{0,1\}^M$ — целевая переменная Критерий качества — бинарная кросс-энтропия

$$L(\mathbf{w}) = -\frac{1}{M} \sum_{m=1}^{M} \left[y_m \log(f(\mathbf{w}, \mathbf{x})) + (1 - y_m) \log(1 - f(\mathbf{w}, \mathbf{x})) \right] + \lambda ||\mathbf{w}||^2$$

Оптимизационная задача: $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} L(\mathbf{w})$

Рекуррентные нейронные сети (RNN)

$$\mathbf{x}_{t} = \sigma_{x}(W_{x}\mathbf{x}_{t-1} + W_{u}\mathbf{u}_{t})$$

$$\mathbf{y}_{t} = \sigma_{y}(W_{y}\mathbf{x}_{t}),$$

где $\mathbf{u}_i \in \mathbb{R}^d$, $\mathbf{x}_i \in \mathbb{R}^K$ $\mathbf{y}_i \in \mathbb{R}^s$ $\sigma: \mathbb{R}^K \to \mathbb{R}^K$ — функция активации $W_x \in \mathbb{R}^{K \times K}, W_u \in \mathbb{R}^{s \times K}, W_y \in \mathbb{R}^{K \times d}$ — матрицы весов

¹Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J Learning internal representations by error propagation //California Univ San Diego La Jolla Inst for Cognitive Science – 1985

Свойства модели RNN

Количество параметров $=K^2+Ks+Kd=O(KM)$ Время прямого прохода =O(KML), где $M=\max(d,K,s)$

Преимущества	Недостатки
есть реализация во всех фреймвор-	не работают с данными, содержа-
ках глубокого обучения	щими пропуски и/или разной ча-
	стотой сэмплирования
относительно быстрое обучение и	легко переобучается
предсказание модели	

Нейронные контролируемые дифференциальные уравнения (NCDE/Neural CDE)

где $\mathbf{u}_i \in \mathbb{R}^d, \ \mathbf{y}_i \in \mathbb{R}^s$ $\mathbf{x}: [t_1, t_n] \to \mathbb{R}^K$ — функция скрытого состояния $U: [t_1, t_n] \to \mathbb{R}^{d+1}$ — кубический сплайн $\zeta: \mathbb{R}^{d+1} \to \mathbb{R}^K$ — проектор в скрытое пространство $f: \mathbb{R}^K \to \mathbb{R}^{K \times (d+1)}$ — динамика скрытого состояния $g: \mathbb{R}^K \to \mathbb{R}^s$ — линейное отображение

$$\begin{cases} \mathbf{x}(t_1) = \zeta(\mathbf{u}_1, t_1) \\ \mathbf{x}(t) = \mathbf{x}(t_1) + \int_{t_1}^{t} \mathbf{f}(\mathbf{x}(\tau)) dU(\tau) \\ \mathbf{y}_i = g(\mathbf{x}(t_i)) \end{cases}$$

Свойства модели NCDE

Количество параметров = $O(K^2d + Ks)$ Время прямого прохода = $O(K^2dL)$

Преимущества	Недостатки
большая гибкость в настройке мо-	в десятки раз медленнее, чем RNN
дели: выбор архитектуры функции	
f(x) и пути $U(t)$	
работает с данными, в которых со-	на текущий момент не существует
держатся пропуски и которые име-	эффективной реализации
ют разную частоту сэмплирования	
	долгая настройка модели
	нестабильное обучение при боль-
	ших K , при использовании солве-
	ров с адаптивным шагом и функ-
	ции активации ReLU

¹Kidger P. et al. Neural controlled differential equations for irregular time series //Advances in Neural Information Processing Systems. – 2020. – T. 33. – C. 6696-6707

Модели структурированного пространства состояний (S4)

$$x_k = \overline{A}x_{k-1} + \overline{B}u_k$$
 свёрточное представление $y_k = \overline{C}x_k$ $y = \overline{K}*u$, где $\overline{K} = (\overline{CB}, \overline{CAB}, \dots, \overline{CA^{L-1}B})$

Экономия памяти: производящая функции от $\overline{\mathbf{K}}$ в точках $\left\{exp\left(\frac{2\pi i}{L}\cdot 0\right), \;\; \dots, \; \exp\left(\frac{2\pi i}{L}\cdot (L-1)\right)\right\}$

Экономия времени: инициализация HiPPO + наложение ограничений на $A:A=\Lambda-PQ^*$

Свойства модели S4

Количество параметров = Kd + KsВремя прямого прохода = O(KML)

Преимущества	Недостатки		
хорошо работает с данными, со-	не работают с данными, содержа-		
держащими долговременные зави-	щими пропуски и/или разной ча-		
симости	стотой сэмплирования		
существует эффективная реализа-			
ция			

¹ Gu, Albert, Karan Goel, and Christopher Ré Efficiently modeling long sequences with structured state spaces //arXiv preprint arXiv:2111.00396. – 2021

Итоговое сравнение моделей

L — длина последовательности

d — размерность исходного пространства

K — размерность скрытого пространства (в случае с CNN — размер ядра)

s — размерность целевого пространства

N — количество датчиков ЭКоГ

 $M = \max(d, K, s)$

Таблица: Сравнение моделей по числу обучаемых параметров, времени прямого прохода, наличию эффективной реализации, возможности работы с пропусками и хранения всей истории

	Parameters	Forward	Fast	Cont.	Unb.
			impl.	time	context
RNN	O(KM)	O(KML)	+	_	+
NCDE	$O(K^2d + Ks)$	$O(K^2dL)$	_	+	+
S4	O(Kd + Ks)	O(KML)	+	_	+
Transformer	$O(K^2d + Ks)$	$O(LK \cdot (L+s))$	+	_	+
CNN	$O(K^2)$	$O(K^2(L-K)(N-K))$	+	_	_

Вычислительный эксперимент на данных ЭКоГ

Цель

На примере задачи классификации сигналов ЭКоГ сравнить работу различных моделей пространства состояний

Данные

ЭКоГ-записи были получены от 12 участников в ходе клинического мониторинга эпилепсии. Эти записи длятся 7 ± 2 дня на каждого участника. ЭКоГ сигнал измерялся 126 каналами с частотой 250 Гц. Один сэмпл соответствует 2 секундам записи сигнала, во время которых участник двигал или не двигал рукой. Train/Val/Test = 7/4/1 Количество разбиений = 36

Анализ ошибки моделей декодирования

	Parameters	Time per epoch (sec)	Accuracy
RNN	45.5k	3.42 ± 0.55	0.516 ± 0.027
S4	38k	3.12 ± 0.81	0.591 ± 0.049
Neural CDE	153.3k	37.23 ± 0.64	0.596 ± 0.026

Выносится на защиту

- 1. Рассмотрено применение моделей пространства состояний в задаче классификации сигналов ЭКоГ
- Изучены свойства следующих моделей пространства состояний: RNN, NCDE, S4
- 3. Предоставлена рекомендация по выбору моделей пространства состояния
- 4. Продемонстрировано, что модель Neural CDE имеет лучшее качество на тестовой выборке по сравнению с другими моделями, однако её время обучения сильно превышает время обучения других моделей