PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10232113 A

(43) Date of publication of application: 02 . 09 . 98

(51) Int. CI

G01B 11/14 G01M 11/00 G02F 1/13

(21) Application number: 09052259

(22) Date of filing: 20 . 02 . 97

(71) Applicant:

HITACHI ELECTRON ENG CO LTD

(72) Inventor:

AIKO KENJI

MORIGUCHI YASUYUKI

(54) METHOD FOR MEASURING GAP BETWEEN ELECTRODES OF LIQUID CRYSTAL CELL

(57) Abstract:

PROBLEM TO BE SOLVED: To properly measure the gap with the electrode plate opposite to the pixel electrode plate of a liquid crystal cell.

SOLUTION: A luminous flux LT of a mercury lamp 611 is outputted for a proper amount of time by controlling a shutter 612, is focused to a spot Sp of excitation light (ultraviolet rays or near ultraviolet rays) by a pin hole p, a focusing lens 614, and an excitation filter 615, is projected to the surface of a first galss substrate 1a and is transmitted through each layer, excitation light reflected by the surface of each layer is eliminated, fluorescence R3' and R4' generated on the surface of both alignment layers 3a and 3b are transmitted and the images are formed at the element of a CCD sensor 623 by an image- focusing lens 622, a gap G' between the surfaces of both alignment layers 3a and 3b is calculated from the gap of both elements whose images are formed, and a thickness ΔG of the alignment layer 3b is added to it, thus obtaining the dimension of the a gap G between a picture element electrode plate 2a and the counter electrode plate 2b. As a result, by using fluorescence and a fluorescence transmission

filter, unneeded reflection light of each layer is eliminated, thus positively and accurately measuring the gap G.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平10-232113

(43)公開日 平成10年(1998)9月2日

(51) Int.Cl.*	識別記号	FI		
G01B 11/14		G 0 1 B 11/14	Z	
G 0 1 M 11/00		G 0 1 M 11/00	T	
G 0 2 F 1/13	101	G 0 2 F 1/13	1 0 1	

審査請求 未請求 請求項の数2 FD (全 4 頁)

(21)出顧番号	特顧平9 -52259	(71)出版人 000233480	
		日立電子エンジニアリング株式会社	
(22)出顧日	平成9年(1997)2月20日	東京都渋谷区東3丁目16番3号	
		(72) 発明者 愛甲 健二	
		東京都渋谷区東3丁目16番3号 日立電子	
		エンジニアリング株式会社内	
		(72)発明者 森口 秦之	
		東京都渋谷区東3丁目16番3号 日立電子	
		エンジニアリング株式会社内	
		(74)代理人 弁理士 梶山 佶是 (外1名)	

(54) 【発明の名称】 液晶セルの電極間ギャップ測定方法

(57)【要約】

【課題】 液晶セルの画素電極板対向電極板のギャップ を正しく測定する。

【解決手段】 水銀ランプ611 の光東LT を、シャッタ 612 を制御して適当な時間出力し、ピンホールpと集束 レンズ614、励起フィルタ615 により、励起光 (紫外線 または近紫外線)のスポットSp に集束し、これを第1 のガラス基板1aの表面に投射して各層を透過させ、蛍 光透過フィルタ621 により、各層の表面が反射する励起 光を除去し、両配光膜3a,3bの表面に発生する蛍光 R3', R4'を透過させて、結像レンズ622 によりCCD センサ623 の素子に結像させ、結像した両素子の間隔よ り両配光膜3a,3bの表面間のギャップG'を算出 し、これに配光膜3bの厚さ△Gを加えて、画素電極板 2aと対向電極板2b間のギャップGの寸法とする。

【効果】 蛍光と蛍光透過フィルタの使用により、各層 の無用な反射光が除去されて、ギャップGを確実・正確 に測定できる。

【特許請求の範囲】

【請求項1】裏面側に画素電極板と配向膜が順次に積層 された第1のガラス基板と、表面側にカラーフィルタと 対向電極板および配向膜が順次に積層された第2のガラ ス基板とを、該画素電極板と該対向電極板を所定の寸法 のギャップをなして対面させ、該両配向膜間のギャップ 内に液晶を注入して構成される液晶セルにおいて、該液 晶が未注入の状態の未完成の液晶セルを測定対象とし、 光軸が前記第1のガラス基板の表面対して適当な傾斜角 をなし、励起光を発生する光源と集束レンズとを有する 投光系と、光軸が該投光系に対して対称的な方向をな し、蛍光透過フィルタと結像レンズおよびCCDセンサ を有する受光系とをそれぞれ設け、該励起光を該集束レ ンズによりスポットに集束して該第1のガラス基板の表 面に投射し、該蛍光透過フィルタにより、該第1のガラ ス基板、画素電極板、対向電極板、カラーフィルタの、 それぞれの表面が反射する励起光を除去し、該励起光に より該両配光膜の表面に発生する蛍光を透過させて、該 結像レンズにより該CCDセンサの素子にそれぞれ結像 させ、該蛍光が結像した両素子の間隔より該両配光膜の 表面間のギャップ寸法を算出し、該算出された寸法に該 配光膜の厚さを加えて、前記画素電極と対向電極間のギ ャップ寸法とすることを特徴とする、液晶セルの電極間 ギャップ測定方法。

【請求項2】前記投光系の光源に水銀ランプを使用して、該水銀ランプの発光する紫外線または近紫外線を前記励起光とし、該水銀ランプの各種の波長を含む光束より該励起光を選択して透過する励起フィルタと、該励起光の投射時間を制御するシャッタとを該投光系に設けたことを特徴とする、請求項1記載の液晶セルの電極間ギャップ測定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、液晶セルの電極間のギャップ寸法の測定方法に関する。

[0002]

RGBに対する画素電極eが配列されている。

【0003】液晶セル内の液晶は、印加電圧が変化すると透過率が変化して照明された光を透過または遮断するもので、印加電圧の変化に対する透過率の変化特性が急峻なほど電圧感度がよくて、望ましい。この変化特性の急峻度は液晶材の種類により異なり、また画素電極板2aと対向電極板2bのギャップGの寸法に依存して大きく変化するもので、最適の急峻度はギャップGが、例えば約10μmのときえられる。このようにギャップGは急峻度に影響するので、これを測定してその適否が検査されている。以下、図2により従来のギャップ測定方法を説明する。

【0004】図2において、液晶セルを測定対象とする と、注入された液晶5が測定に悪影響を及ぼすので、こ れが未注入の状態、すなわち未完成の液晶セルが測定対 象とされる。第1のガラス基板1aの表面に対して適当 な傾斜角 θ_T 、例えば4.5°で直径 ϕ が数 μ mの白色光 を投射する。投射された白色光は、ガラス基板1a,画 素電極板2a、両配向膜3a,3b、対向電極板2b、 カラーフィルタ4を順次に透過する。この間、それぞれ の表面(上面)は正反射方向に反射光R1~R6 (図で は便宜上、それぞれの光軸を示す)を反射し、これらが CCDセンサに入射して対応する各素子にそれぞれ受光 される。なお、画素電極板2aの画素電極eも測定を邪 魔するので、白色光はこれを避けるように投射される。 ギャップGの測定には、画素電極板2aの下面、すなわ ちこれに接触した配向膜3 a の表面の反射光R3 と、対 向電極板2bの表面の反射光R5 とが必要であり、これ 以外の反射光 R_1 , R_2 , R_4 , R_6 は無用であるので、これ らの位置の順序関係により、反射光R3,R5 を受光した 素子を識別し、両素子の間隔よりギャップGの寸法が算 出されている。

[0005]

【発明が解決しようとする課題】さて、上記の各反射光 $R_1 \sim R_6$ は、すべてがかならずしも明確なものでなく、強度の弱い不鮮明なものや、反対に各層の裏面の反射光もありうる。このため、各素子のうちから反射光R $_3$ 、 $_3$ 、 $_4$ 、 $_5$ を受光した両素子を正しく識別することは難しい場合があり、そのような場合にはギャップ $_4$ は正しく測定されず、または測定が不可能となる。そこで、無用な反射光を除去して必要な反射光のみを $_4$ C C D センサにのる。この発明は、以上に鑑みてなされたもので、無用な反射光を除去して必要な反射光のみを $_4$ C C D センサにる。この発明は、以上に鑑みてなされたもので、無用な反射光を除去して必要な反射光のみを $_4$ C C D センサに受光し、ギャップ $_4$ を正しく測定する手段を課題とする。

[0006]

【課題を解決するための手段】この発明は液晶セルの電極間ギャップ測定方法であって、液晶が未注入の状態の未完成の液晶セルを測定対象とする。光軸が第1のガラス基板の表面対して適当な傾斜角をなし、励起光を発生

する光源と集束レンズとを有する投光系と、光軸が投光 系に対して対称的な方向をなし、蛍光透過フィルタと結 像レンズおよびCCDセンサを有する受光系とをそれぞ れ設ける。励起光を集束レンズによりスポットに集束し て第1のガラス基板の表面に投射し、蛍光透過フィルタ により、第1のガラス基板、画素電極板、対向電極板、 カラーフィルタの、それぞれの表面が反射する励起光を 除去し、励起光により両配光膜の表面に発生する蛍光を 透過させて、結像レンズによりCCDセンサの素子にそ れぞれ結像させ、蛍光が結像した両素子の間隔より両配 光膜の表面間のギャップ寸法を算出し、これに配光膜の 厚さを加えて、画素電極板と対向電極板間のギャップ寸 法とする。上記において、投光系の光源に水銀ランプを 使用し、これが発光する紫外線または近紫外線を励起光 とし、水銀ランプの各種の波長を含む光束より励起光を 選択して透過する励起フィルタと、励起光の投射時間を 制御するシャッタとを投光系に設ける。

[0007]

【発明の実施の形態】上記のギャップ測定方法は、配向 膜を形成する配向剤が、例えば有機シランなどの有機物 であって、適当な波長の励起光を照射すると、これと異 なる波長の蛍光をよく発生し、他の構成要素のガラス基 板や両電極板、カラーフィルタは励起光をそのまま反射 し、蛍光を発生しないか、または発生しても極めて微弱 なことに着眼したものである。測定対象は、従来と同様 に液晶が未注入の未完成の液晶セルとし、投光系の光源 が発生する励起光は集束レンズによりスポットに集束さ れて、第1のガラス基板の表面に対して適当な傾斜角で 投射される。投射された励起光のスポットは、第1のガ ラス基板、画素電極板、対向電極板, カラーフィルタ の、それぞれの表面により正反射方向に反射されるが、 これらの反射光は励起光のままであって無用であるの で、受光系の蛍光透過フィルタにより除去される。これ に対して両配光膜の表面には、投射された励起光により 蛍光が発生し、これが蛍光透過フィルタを透過して、結 像レンズによりCCDセンサの素子にそれぞれ結像され る。蛍光が結像した両素子の間隔より両配光膜の表面間 のギャップ寸法が算出され、これに配光膜の厚さを加え ると、画素電極板と対向電極板間の正しいギャップ寸法 がえられる。このようにこの発明は、蛍光と蛍光透過フ ィルタを使用することにより、従来困難であった反射光 の識別の問題が解消され、必要な蛍光のみがCCDセン サに確実に受光されて、ギャップGを正しく測定できる ものである。

【0008】次に、一般に蛍光を発生させる励起光として、紫外線や近紫外線などの波長が比較的に短い光が適当とされている。投光系の光源に使用した水銀ランプは、紫外線や近紫外線を含む各種の波長の光束を発生するので、これを光源に使用して紫外線と近紫外線のいすれかを、投光系に設けた励起フィルタにより選択して励

起光とされる。また、紫外線や近紫外線は加熱効果や化学作用が可視光より強く、投射時間が長いと、両電極板、両配光膜、カラーフィルタなどを損傷する恐れがあるので、投光系に設けたシャッタにより投射時間を適当な短時間に制御して、これらの損傷が防止される。

[0009]

【実施例】図 1 は、この発明を実行するギャップ測定装置 1 0 の一実施例を示す。図 1 に示すギャップ測定装置 1 0 は、投光系61と受光系62よりなる測定光学系6と、シャッタ制御回路71とギャップ算出回路72よりなる制御・演算部7とにより構成される。投光系61は、水銀ランプ611、シャッタ612、ピンホール pを有するピンホール板613、集束レンズ614、および紫外線または近紫外線を透過する励起フィルタ615 よりなり、その光軸は、第 1 のガラス基板 1 名の表面に対して、従来と同様に、画素電極 e を避けて傾斜角 θ T の方向に設定される。受光系62は、蛍光透過フィルタ621 、結像レンズ622 、および C C D センサ623 よりなり、その光軸は投光系61に対称的な方向に設定される。

【0011】これらの反射光R₁,R₂,R₅,R₆ は励起光 そのままであるので、無用として受光系62の蛍光透過フ ィルタ621 により除去される。これに対して両配光膜3 a, 3bの表面は、投射されたスポットSpにより励起 されて蛍光 R_3 ', R_4 'をそれぞれ発生し、これらは蛍光 透過フィルタ621 を透過して、結像レンズ622 によりC CDセンサ623 の対応する素子に結像される。蛍光 R3', R4'が結像した両素子の出力信号は、ギャップ算 出回路72に入力して、両素子の間隔より両配光膜3 a, 3 bの表面間のギャップG'(拡大図に示す)の寸法が 正しく算出され、これに配光膜3bの厚さΔGが加えら れて、画素電極板2aの下面と対向電極板2bの上面間 のギャップGの寸法がえられ、これより出力されるギャ ップGの測定データを基準値または許容値に比較して良 否が検査される。なお付言すると、ギャップGは液晶セ ルの全面に対して均一に、所定の寸法とすることが必要 であり、このために、液晶セルの面積の大きさに応じた 適当な複数箇所についてギャップGの寸法を測定して、

(4)

各箇所の寸法と均一性の良否が検査される。

[0012]

【発明の効果】以上の説明のとおり、この発明のギャップ測定方法は、配向膜が蛍光を発生することに着眼したもので、励起光として、例えば水銀ランプ光源が発光する紫外線または近紫外線を使用し、そのスポットを、落晶が注入される前の液晶セルに投射し、第1のガラス基板などによる励起光のままの無用な反射光を蛍光透過となどによる励起光のままの無用な反射光を蛍光透過してCCDセンサの素子に確実に受光することが配慮で、液晶セルの各層が損しないように励起光の投射時間を制限することが配慮されており、液晶セルの電極間ギャップの確実・正確な測定に寄与する効果には大きいものがある。

【図面の簡単な説明】

【図1】図1は、この発明を実行するギャップ測定装置の一実施例の構成図である。

【図2】図2は、液晶セルの断面と、従来のギャップ測 定方法の説明図である。

【符号の説明】

1 a…第1のガラス基板、1 b…第2のガラス基板、2 a…画素電極板、2 b…対向電極板、3 a, 3 b…配向膜、4…カラーフィルタ、5…液晶(LCD)、6…この発明の測定光学系、61…投光系、611 …水銀ランプ、612…シャッタ

【図1】

【図2】

G:電極期ギャップ