Metodi Matematici I **Appunti di Metodi Matematici I**

Marco Romagnoli (578061) m.romagnoli3@studenti.unipi.it

30/12/2019

INDICE

1	Spazi Vettoriali	5
2	Norma e Topologia	7
3	Prodotto scalare e Spazi di Hilbert	11

Definizione 1.1. (vettori e spazi vettoriali)

I vettori sono, essenzialmente, oggetti che si possono "sommare e moltiplicare per scalari". Formalmente uno spazio vettoriale V è un insieme dotato di una somma "+", sotto cui è un gruppo abeliano, e di una moltiplicazione con elementi di un campo C compatibile con la somma di cui sopra.

Quindi dati $x, y \in V$ e $\lambda, \mu \in C$ vale che:

1.
$$x + y = y + x \in V$$

2.
$$\lambda x \in V$$

3.
$$\lambda(x+y) = \lambda x + \lambda y$$

4.
$$(\lambda + \mu)x = \lambda x + \mu x$$

5.
$$(\lambda \mu)x = \lambda(\mu x)$$

Inoltre, dati $0, 1 \in C$ allora $0 \cdot x = 0$ e $1 \cdot x = x$.

Per noi il campo C sarà sempre uno tra il campo dei numeri reali \mathbb{R} e quello dei numeri complessi \mathbb{C} . Gli esempi più semplici di spazi vettoriali sono le n-ple di numeri. \mathbb{R}^n definito da tutti gli elementi del tipo (x_1, x_2, \dots, x_n) con $x_i \in \mathbb{R}$, dove:

•
$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n);$$

•
$$\lambda(x_1, x_2, \ldots, x_n) = (\lambda x_1, \lambda x_2, \ldots, \lambda x_n).$$

Analogamente si può definire \mathbb{C}^n .

Spesso (ma non sempre!) le "soluzioni di un problema" matematico o fisico formano uno spazio vettoriale. Ad esempio le soluzioni di un'equazione differenziale lineare come

$$\alpha(x)u''(x) + \beta(x)u'(x) + \gamma(x)u(x) = 0 \tag{1}$$

in cui, se $u_1(x)$ e u_2 sono soluzioni, anche $\lambda u_1(x) + \mu u_2(x)$ lo è, per ogni scelta di $\lambda, \mu \in \mathbb{R}$ (o \mathbb{C}). In questo caso si dice che il problema è lineare e soddisfa il "principio di sovrapposizione". Capita spesso che un problema generico (quindi non lineare) diventi lineare nell'approssimazione di piccole fluttuazioni attorno ad un punto di equilibrio.

Prendiamo uno spazio vettoriale V su $\mathbb C$ di dimensione arbitraria, non necessariamente finita. La discussione varrà anche per spazi definiti su $\mathbb R$, basta trascurare *(il coniugio) quando compare. Ora equipaggiamo V con una norma.

Definizione 2.1 ((norma e spazi normati)). Una norma $|||: V \mapsto \mathbb{R}$ è una funzione che ad ogni elemento $v \in V$ associa un numero reale ||v||, da intendersi come una nozione di "lunghezza" di v. Deve generalizzare il concetto di modulo in \mathbb{C} $|z| = \sqrt{z^*z}$. Una norma, per essere tale deve soddisfare le le seguenti proprietà:

- 1) $||v|| \ge 0$ $e = si \ verifica \iff v = 0$
- $2) \|\lambda v\| = |\lambda| \|v\|$
- 3) $||v_1 + v_2|| \le ||v_1|| + ||v_2||$ (disuguaglianza triangolare)

In questo caso (V, ||||) *è uno* spazio normato.

La norma introduce anche una *metrica*, cioè una distanza fra due elementi v_1, v_2 definita da $d(v_1, v_2) = ||v_1 - v_2||$.

Definizione 2.2. (distanza e spazi metrici) In genere uno spazio metrico è un insieme, non necessariamente uno spazio vettoriale, in cui per ogni coppia di di elementi è definita una distanza $d: V \times V \mapsto \mathbb{R}$ tale che:

- 1) $d(v_1, v_2) \ge 0$ $e = si \ verifica \iff v_1 = v_2$
- 2) $d(v_1, v_2) = d(v_2, v_1)$
- 3) $d(v_1, v_2) \leq d(v_1, v_3) + d(v_3, v_2)$

Uno spazio normato (V, ||||) è quindi anche uno spazio metrico.

$$d(v_1, v_2) = ||v_1 - v_2|| = ||v_2 - v_1|| = d(v_2, v_1);$$

$$d(v_1, v_2) = ||v_1 - v_2|| = ||v_1 - v_3| + ||v_3 - v_2|| = d(v_1, v_3) + d(v_3, v_2).$$

Noi ci occuperemo sempre di spazi la cui metrica discende da una norma. Abbiamo già visto esempi di spazi normati in dimensione finita. Su \mathbb{C}^n , $z=(z_1,z_2,\ldots,z_n)$, possiamo definire $\|z\|=\max_i|z_i|$, per cui 1) e 2) sono ovvie, 3) discende da

$$||z+w|| = \max_{i} |z_i + w_i| \le \max_{i} (|z_i| + |w_i|) \le \max_{i} |z_i| + \max_{i} |w_i| = ||z|| + ||w||.$$

Oppure sempre su \mathbb{C}^n possiamo prendere $||z|| = \sum_{i=1}^n |z_i|$. Ancora 1) e 2) sono ovvie, mentre 3):

$$||z+w|| = \sum_{i=1}^{n} |z_i + w_i| \le \sum_{i=1}^{n} |z_i| + \sum_{i=1}^{n} |w_i| = ||z|| + ||w||.$$

Vediamo ora alcuni esempi che generalizzano i casi sopra in dimensione infinita. Prendiamo le sequenze z_i con $i \in \mathbb{N}^+$ di numeri complessi. Quindi $z = (z_1, z_2, \dots, z_n, \dots)$ limitiamoci alle

sequenze limitate, cioè per cui $\sup_i |z_i| < \infty$. Questo è uno spazio vettoriale e $||z|| = \sup_i |z_i|$ è una norma. Come prima si vede che

$$||z+w|| = \sup_{i} |z_i + w_i| \le \sup_{i} (|z_i| + |w_i|) \le \sup_{i} |z_i| + \sup_{i} |w_i| = ||z+w||.$$

Possiamo prendere invece le sequenze tali che $\sum_i |z_i| < \infty$, e usare come norma proprio $||z|| = \sum_i |z_i|$.

Vediamo altri esempi usando spazi funzionali. Prendiamo l'insieme delle funzioni continue su un intervallo chiuso $f \in C([a,b]), f:[a,b] \to \mathbb{C}$. Questo è uno spazio vettoriale e su di esso possiamo prendere, ad esempio: $||f|| = \max_{x \in [a,b]} |f(x)|$, oppure $||f|| = \int_a^b |f(x)| dx$. Consideriamo ora gli aspetti topologici, cioè le nozioni di limite e continuità che la norma induce sugli spazi.

Definizione 2.3 (punto di accumulazione). *Prendiamo un sottoinsieme* $A \subset V$, $un \ \underline{v} \in V$ si dice punto di accumulazione di A se $\forall \varepsilon > 0 \ \exists v \neq \underline{v} \ con \ v \in A \ tale \ che \ \|v - \underline{v}\| < \varepsilon$.

Osservazione 2.4. \underline{v} può appartenere o meno ad A.

Definizione 2.5 (chiusura di un insieme). *Si denota con* \overline{A} *la* chiusura di A, cioè l'unione di A e di tutti i suoi punti di accumulazione, per cui vale $A \subset \overline{A}$.

Prendiamo ora una funzione $f:A\subset V\to W$ dove $(V,\|\|)$ e $(W,\|\|)$ sono entrambi dotati di norma e A è il dominio della funzione f.

Definizione 2.6 (limite di una funzione). *Prendiamo un* \underline{v} punto di accumulazione di A, si dice che $\lim_{v \to v} f(v) = w \in W$ se $\forall \delta > 0 \; \exists \varepsilon > 0$ tale che $\|v - \underline{v}\| < \varepsilon$ e $v \neq \underline{v} \Rightarrow \|f(v) - w\| < \delta$.

Definizione 2.7 (continuità puntuale). *Nel caso in cui* $\underline{v} \in A$ $e \lim_{v \to \underline{v}} = w = f(\underline{v})$ allora si dice che la funzione f è continua in \underline{v} .

Definizione 2.8 (continuità). *Una funzione si dice* continua se è continua in ogni punto del proprio dominio.

Teorema 2.9 (unicità del limite). Il limite di una funzione, se esiste, è unico.

Dimostrazione. Supponiamo per assurdo $\lim_{v \to \underline{v}} f(v) = w_1$ e $\lim_{v \to \underline{v}} f(v) = w_2$ con $w_1 \neq w_2$. Per la 1) $\|w_1 - w_2\| = \alpha > 0$. Prendiamo $\delta < \frac{\alpha}{2}$ abbiamo che $\exists \varepsilon > 0$ tale che $\|v - \underline{v}\| < \varepsilon \Rightarrow \|f(v) - w_1\| < \frac{\alpha}{2}$ e $\|f(v) - w_2\| < \frac{\alpha}{2}$. Ora usando la 3):

$$\alpha = \|w_1 - w_2\| = \|w_1 - f(v) + f(v) - w_2\| \le \|w_1 - f(v)\| + \|f(v) - w_2\| < \alpha.$$

П

Quindi $\alpha < \alpha$ il che non è possibile.

Vediamo ora le successioni di elementi $v_i \in V$ con i = 1, 2, ...

Definizione 2.10 (limite di una successione). *Si dice che* $\lim_{i\to\infty} v_i = \underset{tilde}{v}$ se $\forall \delta > 0 \ \exists N \ tale \ che$, se $i > N \Rightarrow \|\underline{v} - v_i\| < \delta$.

Teorema 2.11 (esistenza e unicità del limite). Sia v un punto di accumulazione di $A \subset V$, possiamo sempre trovare una successione $v_i \in A$ di elementi che ha $\lim_{i \to \infty} v_i = v$. Il limite di una successione, se esiste, è unico.

Dimostrazione. Come prima per il limite di una funzione.

Definizione 2.12 (successione di Cauchy). *Una successione si dice* di Cauchy $se \ \forall \delta > 0 \ \exists N \ tale \ che \ \forall i,j>N \|v_i-v_j\|<\delta.$

Definizione 2.13 (completezza). Uno spazio si dice completo se per ogni successione di Cauchy esiste un \underline{v} tale che v_i converge a \underline{v} .

Definizione 2.14 (spazio di Banach). Uno spazio normato e completo si chiama spazio di Banach.

Vediamone alcuni esempi. Prendiamo \mathbb{C}^n con la norma $\max_i |z_i|$ e la successione $z^j = \left(z_1^j, z_2^j, \ldots, z_n^j\right)$ dove $j = 1, 2, \ldots, \infty$ di Cauchy. Si vede che se z^j è di Cauchy, le n singole successioni in \mathbb{C} z_i^j sono di Cauchy e, per la completezza di \mathbb{C} convergono $z_i^j \to w_i$. Ora prendiamo $w = (w_1, w_2, \ldots, w_n)$ e verifichiamo che $\lim_{j \to \infty} z^j = w$. Quindi dalla completezza di \mathbb{C} discende la completezza di \mathbb{C}^n con la norma vista sopra. Vedremo che su \mathbb{C}^n questo vale per qualsiasi norma.

Definizione 3.1. Prodotto Scalare Prendiamo uno spazio vettoriale V. Un prodotto scalare

$$(,): V \times V \longmapsto \mathbb{C}$$

è definito dalle seguenti proprietà:

1.
$$(v,v) \ge 0 \ e(v,v) = 0 \leftrightarrow v = 0$$

2.
$$(v, w) * = (w, v)$$

3.
$$(v, \lambda w) = \lambda(v, w)$$

4.
$$(v, w_1 + w_2) = (v, w_1) + (v, w_2)$$

Possiamo definire la seguente funzione $||v|| = \sqrt{(v,v)}$ e dimostrare che è una norma.

Teorema 3.2. Sia V uno spazio vettoriale con prodotto scalare (,). Sia $||v|| = \sqrt{(v,v)}$. Allora ||v|| è una norma per cui, per ogni $v, w \in V$, vale la disuguaglianza di Cauchy-Schwarz

$$|(v,w)| \le ||v|| \cdot ||w||. \tag{1}$$

Dimostrazione. Si vede immediatamente che ||v|| è una norma ben definita, grazie al fatto che il prodotto scalare è definito positivo per costruzione.

Per cui $||v - \lambda(v, w)w|| \ge 0$ con $\lambda \in \mathbb{R}$. Quindi

$$(v - \lambda(v, w)w, v - \lambda(v, w)w) =$$

$$= ||v||^2 - 2\lambda|(v, w)|^2 + \lambda^2|(v, w)|^2||w||^2 \ge 0.$$

Per cui

$$4|(v,w)|(|(v,w)|^2 - ||v||^2||w||^2) \le 0$$

da cui la disuguaglianza.

Quindi uno spazio dotato di prodotto scalare è anche uno spazio normato. Se lo spazio è anche completo si chiama spazio di Hilbert (\mathcal{H}) . Un esempio di spazio di Hilbert è \mathbb{C}^n con il prodotto scalare $(z,w)=\sqrt{\sum_i z_i^* w_i}$