Melhores momentos

AULA 10

Pontes em grafos

Uma aresta de um grafo é uma **ponte** (= bridge = separation edge) se ela é a única aresta que atravessa algum corte do grafo.

Exemplo:

Pontes em grafos

Uma aresta de um grafo é uma **ponte** (= bridge = separation edge) se ela é a única aresta que atravessa algum corte do grafo.

Exemplo: as arestas em vermelho são pontes

Procurando pontes

Problema: encontrar as pontes de um grafo dado

Exemplo: as arestas em vermelho são pontes

Propriedade

Um arco v-w da floresta DFS faz parte (juntamente com w-v) de uma ponte se e somente se não existe arco de retorno que ligue um descendente de w a um ancestral de v

Aresta-biconexão

Um grafo é aresta-biconexo (= 2-edge-connected) ou 2-aresta-conexo se for conexo e não tiver pontes.

Fato básico importante:

Um grafo é aresta-biconexo se e somente se, para cada par (s,t) de seus vértices, existem (pelo menos) dois caminhos de s a t sem arestas em comum.

Exemplo

É preciso remover pelo menos duas arestas de um grafo aresta-biconexo para que ele deixe de ser conexo

AULA 11

Articulações e biconexão

S 18.6

Articulações em grafos

Uma articulação (= articulation point) ou vértice de corte (= cut vertex) de um grafo é um vértice cuja remoção aumenta o número de componentes

Exemplo:

Articulações em grafos

Uma articulação (= articulation point) ou vértice de corte (= cut vertex) de um grafo é um vértice cuja remoção aumenta o número de componentes

Exemplo: os vértices em vermelho são articulações

Procurando articulações

Problema: encontrar as articulações de um grafo

Exemplo: os vértices em vermelho são articulações

Articulações e busca em profundidade

É possível encontrar todas as articulações de um grafo através de uma variante da função bridgeR Exemplo: os vértices em vermelho são articulações

Biconexão

Um grafo é **biconexo** (= biconnected) ou **2-conexo** se é conexo e não tem articulações

Fato básico

Um grafo é biconexo se e somente se, para cada par (s,t) de vértices, existem (pelo menos) dois caminhos de s a t sem vértices internos em comum

Componentes fortemente conexos

S 19.8

Digrafos fortemente conexos

Um digrafo é **fortemente conexo** se e somente se para cada par {s,t} de seus vértices, existem caminhos de s a t e de t a s

Exemplo: um digrafo fortemente conexo

Componentes fortemente conexos

Um componente **fortemente conexo** (= strongly connected) é um conjunto maximal de vértices W tal que digrafo induzido por W é fortemente conexo

Exemplo: 4 componentes fortemente conexos

Componentes fortemente conexos

Um componente **fortemente conexo** (= strongly connected) é um conjunto maximal de vértices W tal que digrafo induzido por W é fortemente conexo

Exemplo: 4 componentes fortemente conexos

Determinando componentes f.c.

Problema: determinar os componentes fortemente conexos

Exemplo: 4 componentes fortemente conexos

Exemplo

V	0	1	2	3	4	5	6	7	8	9	10	11	12
sc[v]	2	1	2	2	2	2	2	3	3	0	0	0	0

strongreach

```
int
strongreach(Digraph G, Vertex s, Vertex t)
{
   return sc[s] == sc[t];
}
```

Propriedade

Vértices de de um componente fortemente conexo é uma **subarborescência** em uma floresta DFS

Digrafos dos componentes

O digrafo dos componentes de G tem um vértice para cada componente fortemente conexo e um arco U-W se G possui um arco com ponta inicial em U e ponta final em W

Digrafos dos componentes

O digrafo dos componentes de G tem um vértice para cada componente fortemente conexo e um arco U-W se G possui um arco com ponta inicial em U e ponta final em W

Digrafo dos componente é um DAG

Numeração pós-ordem

Exemplo

v	0	1	2	3	4	5	6	7	8	9	10	11	12
pos[v]	6	5	7	8	9	4	10	11	12	3	1	2	0

Exemplo

i	0	1	2	3	4	5	6	7	8	9	10	11	12	
sop[i]	12	10	11	9	5	1	0	2	3	4	6	7	8	

Numeração pós-ordem e componentes f.c.

Se U e W são componentes f.c. e exite arco com ponta inicial em U e ponta final em W, então

$$\mathsf{pos}[\mathtt{U}] > \mathsf{pos}[\mathtt{W}]$$

Propriedade

Um digrafo G e seu digrafo reverso R têm os mesmos componente fortemente conexos

Exemplo: Digrafo G

Propriedade

Um digrafo G e seu digrafo reverso R têm os mesmos componente fortemente conexos

Exemplo: Digrafo reverso R de G

Digrafo reverso

V	0	1	2	3	4	5	6	7	8	9	10	11	12
sc[v]	2	1	2	2	2	2	2	3	3	0	0	0	0

Digrafo reverso e DFS

i	0	1	2	3	4	5	6	7	8	9	10	11	12
sop[i]	8	7	6	5	4	3	2	0	1	10	11	12	9

Digrafo reverso e DFS

i	0	1	2	3	4	5	6	7	8	9	10	11	12
sop[i]	8	7	6	5	4	3	2	0	1	10	11	12	9

Digrafo e DFS

i													
sop[i]	8	7	6	5	4	3	2	0	1	10	11	12	9

Digrafo e DFS

i	0	1	2	3	4	5	6	7	8	9	10	11	12
sop[i]	8	7	6	5	4	3	2	0	1	10	11	12	9

Digrafo e DFS

i	0	1	2	3	4	5	6	7	8	9	10	11	12
sop[i]	8	7	6	5	4	3	2	0	1	10	11	12	9

Digrafo e DFS

i	0	1	2	3	4	5	6	7	8	9	10	11	12	
sop[i]	8	7	6	5	4	3	2	0	1	10	11	12	9	•

Digrafo e DFS

i	0	1	2	3	4	5	6	7	8	9	10	11	12
sop[i]	8	7	6	5	4	3	2	0	1	10	11	12	9

Algoritmo de Kosaraju

A função devolve o número de componentes fortemente conexos do digrafo G

```
static int sc[maxV], sop[maxV], sopR[maxV];
static int cnt, id;
```

Além disso, ela armazena no vetor sc o número do componente a que o vértice pertence: se o vértice v pertence ao k-ésimo componente então sc[v] == k-1

```
int DIGRAPHsc (Graph G)
```


DIGRAPHsc

```
int DIGRAPHsc (Digraph G) {
   Vertex v;
   int id, i
1 \text{ cnt} = 0;
2 R = DIGRAPHreverse(G);
3
   for (v = 0; v < G -> V; v++) sc[v] = -1;
   for (v = 0; v < G -> V; v++)
       if (sc[v] == -1)
5
6
           dfsRsc(R, v, 0);
```

DIGRAPHsc

```
7 id = cnt = 0:
    for (v = 0: v < G -> V: v++) sc[v] = -1:
 9
    for (i = 0; i < G->V; i++)
10
        sopR[i] = sop[i]
    for (i=G->V-1; i>0; i--)
11
12
        if (sc[sopR[i]] == -1)
13
            dfsRsc(R, sopR[i], id++);
14
    DIGRAPHdestroy(R);
15
    return id;
```

dfsRsc

```
void dfsRsc(Digraph G, Vertex v, int id){
 link p;
sc[v] = id:
for (p=G->adj[v];p!=NULL;p=p->next)
    if (sc[p->w] == -1)
        dfsRsc(G, p->w, id);
sop[cnt++]=v;
```

DIGRAPHreverse

```
Digraph DIGRAPHreverse (Digraph G) {
   Vertex v; link p;
   Digraph R= DIGRAPHinit(G->V);
3
   for (v=0; v<G->V; v++)
       for (p=G->adj[v];p!=NULL; p=p->next)
          DIGRAPHinsertA(R, p->w, v);
5
6
   return R:
```

Consumo de tempo

O consumo de tempo da função DIGRAPHSc é O(V + A).

Algoritmo de Tarjan

O menor **número de pré-ordem** de um vértice "ativo" que pode ser alcançado por v utilizando arcos da arborescência e **até um** arco de retorno será denotado por low[v]

Exemplo

v	0	1	2	3	4	5	6	7	8	9	10	11	12
pre[v]													
low[v]	0	9	0	0	0	0	0	11	11	5	6	5	5

DIGRAPHsc

```
void DIGRAPHsc (Graph G) {
   Vertex v:
  cnt = id = t = 0;
2 for (v = 0; v < G -> V; v++)
       pre[v] = -1;
   for (v = 0; v < G -> V; v++)
       if (pre[v] == -1)
6
          dfsRsc(G, v);
```

```
void dfsRsc(Digraph G, Vertex v) {
    link p; Vertex w; int min;
    pre[v] = cnt++; low[v] = pre[v];
    min = low[v]; s[t++] = v;
    for (p=G->adj[v]; p!=NULL; p=p->next){
        if (pre[w=p->w]==-1) dfsRsc(G,w);
        if (low[w] < min) min=low[w];</pre>
    if (min<low[v]) {low[v]=min; return;}</pre>
    do {
 8
        sc[w=s[--t]]=id; low[w]=G->V;
 9
10
    } while (s[t] != v);
11
    id++:
```

```
void dfsRsc(Digraph G, Vertex v) {
    link p; Vertex w;
    pre[v] = cnt++; low[v] = pre[v];
    s[t++] = v:
    for (p=G->adj[v];p!=NULL;p=p->next){
        if (pre[w=p->w]==-1) dfsRsc(G,w);
        if (low[w] < low[v]) low[v] = low[w];
    if (low[v] < pre[v]) return;</pre>
    do {
 8
        sc[w=s[--t]]=id; low[w]=G->V;
 9
10
   } while (s[t] != v):
11
    id++:
```