

Epidemiology by Design: Building a Usable SIRS Pipeline

Varun Sridhar 28 October 2025

Project Snapshot

Package (working name)

epi-simulation

Who's it for

- Epidemiology analysts
- Public-health planners
- Modelling/biostats teams

My role

- Design the workflow
- Build simulators & plots
- Package + docs
- · Live demos & handover

Repo

• https://github.com/idem-lab/epi-simulation

Tianxiao (August) Hao

- *Senior Research Officer
- Qualifications: B-ENVS, MSc, PhD
 Email: tianxiao.hao@thekids.org.au

Nick Golding

- •Honorary Research Fellow
- Qualifications: BSc, Dphil
 Email: nick.golding@thekids.org.au
- *Email: mck.gotumgeotnekius.org.

Saras Windecker

- •Research Fellow
- Qualifications: BES, PhD
- Email: saras.windecker@thekids.org.au

Kate Senior

- Post-doctoral Researcher
- •Qualifications: BEnvSc (Hons), PhD

Why It Matters

- Fast, clear signals for seasonal illness planning
- Decision-ready visuals from modelling
- Repeatable outputs teams can share quickly
- Quick what-if comparisons to test options
- Consistent, standardized figures across projects/terms

Project Goal

Overall Aim:

- Standardised package
- Simple visuals
- Faster decisions

Core Outputs:

- Baseline
- Seasonality
- Risk band
- Multi-group

What Users Can Do Now:

- Quick start
 - What-if
 - Compare groups
- Export PNGs

What is the SIR Model?

- **S** Susceptible: can get it
- I Infected: contagious now
- **R** Recovered: temporarily immune
- Flows: $S \rightarrow I$ (spread), $I \rightarrow R$ (recovery), $R \rightarrow S$ (waning)
- Model used: SIRS (includes waning immunity)

How It Works (At a Glance)

CHOOSE INPUTS

- Days, population
- Spread, recovery, immunity
- Seasonality (optional)

PRESS RUN

- Pipeline builds plots
- Seeded → reproducible
- Files saved to plots/

USE THE FIGURES

- Baseline Seasonality
- Risk band
- Multi-group compare PNGs

Quick Demo (What I'll change)

- **Days (n_times)** length of the run
- Population (pop) number of people
- Seed cases (I_init) starting infections
- Contagiousness (beta) how easily it spreads
- Recovery time (gamma) how fast people recover

- Immunity waning (omega)
 - how fast immunityfades
- **Sims (n_sims)** width of the risk band
- **Seed (seed)** makes the run repeatable

Quick Demo (Code I'll run)

```
# Load helpers + simulators
R.utils::sourceDirectory("R/", modifiedOnly = FALSE)
source("R/simulate_sirs_det.R")
source("R/simulate_sirs_stoch.R")
source("R/plot_det_vs_stoch.R")
# Inputs to tweak
n_times <- 365; pop <- 100000; I_init <- 10
beta <-0.18; gamma <-1/7; omega <-1/30
# Run baseline + ribbons
det <- simulate_sirs_det(n_times, pop, I_init, beta, gamma, omega)</pre>
st <- simulate_sirs(n_times, pop, I_init, beta, gamma, omega,</pre>
                     epsilon = 0, alpha = NULL, n_sims = 200,
                     stochastic = TRUE, seed = 42)
plot_det_vs_stoch(det, st, state = "incidence", probs = c(0.1, 0.9))
```

What People Can Do Now

Trust & Quality

Challenges & Limitations

Challenges we faced:

- Clarity vs speed
- Naming & standards
- Uncertainty handling
- Environment quirks
- Multi-group setup

Current limitations:

- No real-data calibration yet
- Simple dynamics (SIRS only)
- Performance at high sims/P
- Packaging & docs in progress
- Reliant on user inputs

What's Next?

- Calibrate to real data fit parameters to recent term data for local realism.
- Add simple age/school groups — kids vs adults (or year bands) with split outputs.
- One-click weekly report auto-export PNG/PDF bundle for briefings.

- Preset scenarios baseline, winter bump, holiday closure, quick what-ifs.
- Package + quick-start docs — install, run, and reproduce in minutes.
- Pin versions & basic tests
 - lock deps; add unit checks for core functions.