HOMEWORK 12

MATH 2001

QI WANG

ABSTRACT. This is the first homework assignment. The problems are from Hammack [?, Ch. 11, §11.4]:

• Chapter 11 Section 11.4, Exercises: 4, 6.

CONTENTS

Chapter 1 Section 1.1	1
Ch.1, §1.1, Exercise 2	1
Ch.1, §1.1, Exercise 8	1
Ch.1, §1.1, Exercise 18	2
Ch.1, §1.1, Exercise 30	3
Ch.1, §1.1, Exercise 38	3
Ch.1, §1.1, Exercise 40	3

CHAPTER 11 SECTION 11.4

Ch.11, §11.4, Exercise 4. Suppose P is a partition of a set A. Define a relation R on A by declaring xRy if and only if $x,y \in P$. Prove R is an equivalence relation on A. Then prove that P is the set of equivalence classes of R.

Date: April 27, 2020.

2 QI

Solution to Ch.11, §11.4, Exercise 4.

Proposition: *R* is an equivalence relation on *A*.

Proof: Assume $a \in A$, $a \in X$ for some $X \in P$, so we have aRa, thus R is reflexive. Assume $a, b \in A$ and aRb, we have $a, b \in X$ for some $X \in P$, so bRa, thus R is symmetric. Assume $a, b, c \in A$, also suppose aRb and bRc, we have $a, b \in X$ for some $X \in P$ and $b, c \in Y$ for some $Y \in P$. Because every part of P is unique, it follows X = Y, so we have aRc, thus R is transitive.

Proposition *P* is the set of equivalence class of *R*.

Arbitrary chose a element in set A, we have the equivalence class [a], then $[a] = \{x : xRa\}$. There for $a, x \in X$ for some $X \in P$.

Ch.11, §11.4, Exercise 6. Describe the equivalence relation whose equivalence class are the elements of *P*.

Solution to Ch.11, §11.4, Exercise 6. R = Sum equals to zero.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu