

We claim:

1. A process for purifying compounds of the formula (Ia)

5

10

15

where

20 M is a metal of transition group III, IV, V or VI of the Periodic Table of the Elements, in particular Ti, Zr or Hf, particularly preferably zirconium,

25 R¹ are identical or different and are each a radical SiR₃¹², where R¹² are identical or different and are each a hydrogen atom or a C₁-C₄₀ group, preferably C₁-C₂₀-alkyl, C₁-C₁₀-fluoroalkyl, C₁-C₁₀-alkoxy, C₆-C₂₀-aryl, C₆-C₁₀-fluoroaryl, C₆-C₁₀-aryloxy, C₂-C₁₀-alkenyl, C₇-C₄₀-arylalkyl, C₇-C₄₀-alkylaryl or C₈-C₄₀-arylalkenyl,
30 or R¹ is a C₁-C₃₀ group, preferably C₁-C₂₅-alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C₂-C₂₅-alkenyl, C₃-C₁₅-alkylalkenyl, C₆-C₂₄-aryl, C₅-C₂₄-heteroaryl, C₇-C₃₀-arylalkyl, C₇-C₃₀-alkylaryl, fluorinated C₁-C₂₅-alkyl, fluorinated C₆-C₂₄-aryl, fluorinated C₇-C₃₀-arylalkyl, fluorinated C₇-C₃₀-alkylaryl or C₁-C₁₂-alkoxy,
35 or two or more radicals R¹ may be joined to one another in such a way that the radicals R¹ and the atoms of the cyclopentadienyl ring which connect them form a C₄-C₂₄-ring system which may in turn be substituted,

40 R² are identical or different and are each a radical SiR₃¹², where R¹² are identical or different and are each a hydrogen atom or a C₁-C₄₀ group, preferably C₁-C₂₀-alkyl, C₁-C₁₀-fluoroalkyl, C₁-C₁₀-alkoxy, C₆-C₁₄-aryl, C₆-C₁₀-fluoroaryl, C₆-C₁₀-aryloxy, C₂-C₁₀-alkenyl, C₇-C₄₀-arylalkyl, C₇-C₄₀-alkylaryl or C₈-C₄₀-arylalkenyl.

42

or R² is a C₁-C₃₀ group, preferably C₁-C₂₅-alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C₂-C₂₅-alkenyl, C₃-C₁₅-alkylalkenyl, C₆-C₂₄-aryl, C₅-C₂₄-heteroaryl, C₇-C₃₀-arylalkyl, C₇-C₃₀-alkylaryl,
 5 fluorinated C₁-C₂₅-alkyl, fluorinated C₆-C₂₄-aryl, fluorinated C₇-C₃₀-arylalkyl, fluorinated C₇-C₃₀-alkylaryl or C₁-C₁₂-alkoxy,
 or two or more radicals R² may be joined to one another in such a way that the radicals R² and the atoms of the
 10 cyclopentadienyl ring which connect them form a C₄-C₂₄ ring system which may in turn be substituted,

x is a halogen atom, in particular chlorine,
 n is from 1 to 5 when k = 0, and n is from 0 to 4 when k = 1,
 15 n' is from 1 to 5 when k = 0, and n' is from 0 to 4 when k = 1,
 m is from 1 to 4, preferably 2,
 k is zero or 1, where the metallocene is unbridged when k = 0 and is bridged when k = 1, with preference being given to k = 1, and
 20 B is a bridging structural element between the two cyclopentadienyl rings,

comprising the steps:

25 a) reacting the compound of the formula (Ia) with a ligand exchange component

30 where

M¹ is a cation or a cationic fragment, in particular Li, Na, K, MgCl, MgBr, MgI, or is an ammonium cation corresponding to an amine,

35 R³ is hydrogen or a C₁-C₄₀ group, preferably C₁-C₂₅-alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C₂-C₂₅-alkenyl, C₃-C₁₅-alkylalkenyl, C₆-C₂₄-aryl, C₅-C₂₄-heteroaryl such as pyridyl, furyl or quinolyl,
 40 C₇-C₃₀-arylalkyl, C₇-C₃₀-alkylaryl, fluorinated C₁-C₂₅-alkyl, fluorinated C₆-C₂₄-aryl, fluorinated C₇-C₃₀-arylalkyl or fluorinated C₇-C₃₀-alkylaryl,

Y is an element of main group 6 of the Periodic Table of the Elements, in particular oxygen or sulfur, or a fragment CR^3_2 , NR^3 , $\text{NR}^3(\text{CO})-$, $\text{NR}^3(\text{SO}_2)-$, PR^3 or $\text{P}(=\text{O})\text{R}^3$, $\text{O}(\text{CO})-$, $\text{O}(\text{SO}_2)-$,

5

to form the compound of the formula (I)

10

15

20

25

30

35

40

45

where

M , R^1 , R^2 , R^3 , X , Y , n , n' , m , k , B and R^{12} are as defined above and

m' is from 1 to 4, preferably 1 or 2,

with the compound of the formula M^1X , where M^1 and X are as defined above, being eliminated, in an inert solvent or solvent mixture,

- b) if desired, separating off solid residues of the formula M^1X
- c) if desired, separating off the inert solvent or solvent mixture,
- d) recrystallizing the compound of the formula (I) from an aprotic hydrocarbon,
- e) separating the compound of the formula (I) from the mother liquor.

2. A process as claimed in claim 1, wherein a polar or nonpolar, aprotic hydrocarbon or hydrocarbon mixture is used in step d).

- sub A1* 3. A process as claimed in claim 1 or 2, wherein toluene, hexane, heptane, xylylene, tetrahydrofuran (THF), dimethoxyethane (DME), toluene/THF, heptane/DME or toluene/DME is used in step d).

4. The use of a compound obtained as set forth in claim 1 for preparing a catalyst system for the polymerization of olefins.

5. A catalyst system comprising at least one compound obtained as set forth in claim 1 and a support and, if desired, a cocatalyst.
- 5 6. A process for preparing a polyolefin in the presence of a catalyst system as claimed in claim 5.
7. The use of a catalyst as claimed in claim 5 for the polymerization of one or more olefins.

10

15

20

25

30

35

40

45