Amendments to the Claims:

The listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

(currently amended): A method for <u>in-phase and quadrature</u> #Q mismatch calibration of a transmitter, comprising the following steps:

generating a discrete-time signal $x[n] = x(n \cdot T_s)$, wherein $x(t) = e^{j2\pi f_1 t}$ and f_T and T_s are real numbers:

obtaining a corrected signal $x_c[n]$ based on the signal x[n] and a set of correction parameters A_p and B_p , wherein $x_c[n] = A_p \cdot x[n] + B_p \cdot x^*[n]$;

converting the corrected signal $x_c[n]$ to an analog corrected signal $x_c(t)$; applying <u>in-phase and quadrature #Q-modulation</u> to the analog corrected signal $x_o(t)$ and outputting a modulated signal $x_o(t)$:

- obtaining a first desired component measure $W^{(1)}(f_T)$ and a first image component measure $W^{(1)}(-f_T)$ from the modulated signal $x_m(t)$ with a first set of the correction parameters A_0 and B_0 :
- obtaining a second desired component measure $W^{(2)}(f_T)$ and a second image component measure $W^{(2)}(-f_T)$ from the modulated signal $x_m(t)$ with a second set of the correction parameters A_0 and B_0 :

- obtaining a third desired component measure $W^{(3)}(f_T)$ and a third image component measure $W^{(3)}(-f_T)$ from the modulated signal $x_m(t)$ with a third set of the correction parameters A_p and B_p ;
- obtaining a fourth and fifth set of correction parameters A_p and B_p based on the first, the second, and the third desired component measures as well as the first, the second, and the third image component measures;
- obtaining a fourth desired component measure $W^{(4)}(f_T)$ and a fourth image component measure $W^{(4)}(-f_T)$ from the modulated signal $x_m(t)$ with the fourth set of correction parameters A_p and B_p ;
- obtaining a fifth desired component measure $W^{(5)}(f_T)$ and a fifth image component measure $W^{(5)}(-f_T)$ from the modulated signal $x_m(t)$ with the fifth set of correction parameters A_ρ and B_ρ ; and
- obtaining a final set of the correction parameters A_p and B_p from the fourth and fifth sets of correction parameters.
- 2. (currently amended): The method for <u>in-phase and quadrature $\mbox{$\mathbb{H}$}\mbox{$\mathbb{Q}$}$ mismatch calibration of a transmitter as claimed in claim 1, wherein the first set of correction parameters $(A_p,B_p)=(a,0)$, the second set of correction parameters $(A_p,B_p)=(b,b)$, and the third set of correction parameters $(A_p,B_p)=(b,-b)$, where a and b are real numbers.</u>

- 3. (currently amended): The method for <u>in-phase and quadrature $\frac{1}{2}$ wherein the parameter a is 1 and the parameter b is $\frac{1}{2}$.</u>
- 4. (currently amended): The method for <u>in-phase and quadrature </u>#Q mismatch calibration of a transmitter as claimed in claim 1, wherein the fourth set of correction parameters (*A_p*,*B_p*) are obtained by

$$A_{p} = \sqrt{P} - j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} - j\sqrt{Q}$$

and the fifth set of correction parameters (A_p,B_p) are obtained by

$$A_{p} = \sqrt{P} + j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} + j\sqrt{Q}$$

where

$$\alpha \approx \hat{\alpha} = \frac{\sqrt{N_O} - 1}{\sqrt{N_O} + 1},$$

$$N = (W^{(2)}(f_T) + W^{(2)}(-f_T))/2,$$

$$O = (W^{(3)}(f_T) + W^{(3)}(-f_T))/2,$$

$$Q = \frac{\hat{\alpha}^2 - \rho^{(1)}}{(1 + \rho^{(1)})(\hat{\alpha}^2 - 1)},$$

$$P = 1 - Q,$$

$$\rho^{(1)} = \frac{W^{(1)}(-f_T)}{W^{(1)}(f_T)}.$$

- 5. (currently amended): The method for <u>in-phase and quadrature WQ</u> mismatch calibration of a transmitter as claimed in claim 1, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_T)$ is less than the function of $W^{(5)}(-f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 6. (currently amended): The method for <u>in-phase and quadrature WQ mismatch calibration</u> of a transmitter as claimed in claim 5, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if <u>a value of $W^{(4)}(-f_T)$ </u> is less than <u>a value of $W^{(5)}(-f_T)$ </u>, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 7. (currently amended): The method for <u>in-phase and quadrature VQ</u> mismatch calibration of a transmitter as claimed in claim 1, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(f_T)$ is greater than the function of $W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- (currently amended): The method for <u>in-phase and quadrature </u>#Q
 mismatch calibration of a transmitter as claimed in claim 7, wherein the final set

of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if <u>a value of</u> $W^{(4)}(f_r)$ is greater than <u>a value of</u> $W^{(5)}(f_r)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

9. (currently amended): The method for <u>in-phase and quadrature WQ</u> mismatch calibration of a transmitter as claimed in claim 1, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_T)$ and $W^{(4)}(f_T)$ is less than the function of $W^{(5)}(-f_T)$ and $W^{(5)}(-f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

10. (currently amended): The method for <u>in-phase and quadrature WQ</u> mismatch calibration of a transmitter as claimed in claim 9, wherein the final set of correction parameters (A_p, B_p) is set to be the fourth set of correction parameters if $W^{(4)}(-f_T)/W^{(4)}(f_T)$ is less than $W^{(5)}(-f_T)/W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p, B_p) is set to be the fifth set of correction parameters.

11. (currently amended): The method for in-phase and quadrature I/Q mismatch calibration of a transmitter as claimed in claim 1, further comprising the following steps:

- further adding <u>a</u> an-DC compensation parameter γ_p while obtaining the corrected signal $x_c[n]$ such that $x_c[n] = A_p \cdot (x[n] + \gamma_p) + B_p \cdot (x[n] + \gamma_p)^* \; ;$
- obtaining a first local leakage component measure L_1 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $\gamma_p = \zeta_1$, where ζ_1 is a real number;
- obtaining a second local leakage component measure L_2 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_{p_1} and the parameter $\gamma_c = \zeta_2$, where ζ_2 is a real number;
- obtaining a third local leakage component measure L_3 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $y_n = i\zeta_1$;
- obtaining a fourth local leakage component measure L_4 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $y_0 = i\zeta_0$;
- obtaining a fifth local leakage component measure L_5 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter p_0 =0; and
- obtaining a final DC compensation parameter $\gamma_{_{F,fleal}}$ based on the first local leakage component measure L_1 , the second local leakage component measure L_2 , the third local leakage component measure L_4 and the fifth local leakage component measure L_5 .

12. (currently amended):The method for <u>in-phase and quadrature $\mbox{\it lf}$ with mismatch calibration of a transmitter as claimed in claim 11, wherein the final DC compensation parameter $\gamma_{p,final}$ is obtained by</u>

$$\gamma_{p,\mathit{final}} = -\frac{1}{2} \cdot \frac{\zeta_2^2(L_1 - L_s) - \zeta_1^2(L_2 - L_s)}{\zeta_1(L_2 - L_s) - \zeta_2(L_1 - L_s)} - j \frac{1}{2} \cdot \frac{\zeta_2^2(L_3 - L_s) - \zeta_1^2(L_4 - L_s)}{\zeta_1(L_4 - L_s) - \zeta_2(L_3 - L_s)}.$$

- 13. (currently amended): An apparatus for <u>in-phase and quadrature </u>#Q mismatch calibration of a transmitter, comprising:
 - a signal generator for generating a discrete-time signal $x[n] = x(n \cdot T_s)$, wherein $x(t) = e^{j2\pi f_s t}$ and f_T and T_S are real numbers;
 - a correction module for receiving the discrete-time signal x[n] and obtaining a corrected signal $x_c[n]$ based on the test-signal x[n] and a set of correction parameters A_p and B_p , wherein $x_c[n] = A_p \cdot x[n] + B_p \cdot x^*[n]$;
 - a first and second D/A converter converting the corrected signal $x_c[n]$ to an analog signal $x_c(t)$, wherein the first D/A converter converts the real part of the corrected signal to <u>a</u>_the-real part of the analog signal, and the second D/A converter converts the imaginary part of the corrected signal to <u>an_the_inaginary_part of the_inaginary_part of the_inaginary_p</u>
 - a modulator applying <u>in-phase and quadrature VQ-modulation</u> to the analog signal $x_n(t)$, and outputting a modulated signal $x_m(t)$:

- a measurer configured to for implementing the steps of:
 - obtain obtaining-a first desired component measure $W^{(i)}(f_T)$ and a first image component measure $W^{(i)}(-f_T)$ from the modulated signal $x_m(t)$ with a first set of the correction parameters A_0 and B_0 ;
 - obtain obtaining-a second desired component measure $W^{(2)}(f_T)$ and a second image component measure $W^{(2)}(-f_T)$ from the modulated signal $x_m(t)$ with a second set of the correction parameters A_p and B_p ;
 - obtain obtaining a third desired component measure $W^{(3)}(f_T)$ and a third image component measure $W^{(3)}(-f_T)$ from the modulated signal $x_m(t)$ with a third set of the correction parameters A_0 and B_0 ;
 - obtain obtaining—a fourth desired component measure $W^{(4)}(f_{\tilde{r}})$ and a fourth image component measure $W^{(4)}(-f_{\tilde{r}})$ from the modulated signal $x_m(t)$ with a fourth set of correction parameters A_n and B_n ; and
 - obtain obtaining-a fifth desired component measure $W^{(5)}(f_T)$ and a fifth image component measure $W^{(5)}(-f_T)$ from the modulated signal $x_m(t)$ with a fifth set of correction parameters A_p and B_p ; and

a processor configured to for implementing the steps of:

obtain obtaining-the fourth and fifth sets of correction parameters A_p and B_p based on the first, the second, and the third desired component measures as well as the first, the second, and the third image component measures; and $\frac{\text{choose ehoesing-a final set of correction parameters } A_p \text{ and } B_p$ from the fourth and fifth sets of correction parameters.

- 14. (currently amended): The apparatus for <u>in-phase and quadrature $\mbox{\sc HQ}$ mismatch calibration of a transmitter as claimed in claim 13, wherein the first set of correction parameters $(A_p,B_p)=(a,0)$, the second set of correction parameters $(A_p,B_p)=(b,b)$, and the third set of correction parameters $(A_p,B_p)=(b,b)$, where a and b are real numbers.</u>
- 15. (currently amended): The apparatus for <u>in-phase and quadrature $\mbox{$\scalebox{$</u>$
- 16. (currently amended): The apparatus for <u>in-phase and quadrature $\frac{1}{2}$ </u> mismatch calibration of a transmitter as claimed in claim 13, wherein the fourth set of correction parameters (A_n , B_0) are obtained by

$$A_{p} = \sqrt{P} - j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} - j\sqrt{Q}$$

and the fifth set of correction parameters (A_p,B_p) are obtained by

$$A_{p} = \sqrt{P} + j\hat{\alpha}\sqrt{Q}$$

$$B_{p} = -\hat{\alpha}\sqrt{P} + j\sqrt{Q}$$

where

$$\begin{split} \alpha \approx \hat{\alpha} &= \frac{\sqrt{N_O} - 1}{\sqrt{N_O} + 1}, \\ N &= (W^{(2)}(f_T) + W^{(2)}(-f_T))/2, \\ O &= (W^{(3)}(f_T) + W^{(3)}(-f_T))/2, \\ Q &= \frac{\hat{\alpha}^2 - \rho^{(1)}}{(1 + \rho^{(1)})(\hat{\alpha}^2 - 1)}, \\ P &= 1 - Q, \\ \rho^{(1)} &= \frac{W^{(1)}(-f_T)}{W^{(1)}(f_T)}. \end{split}$$

17. (currently amended): The apparatus for <u>in-phase and quadrature ΨQ </u> mismatch calibration of a transmitter as claimed in claim 13, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_T)$ is less than the function of $W^{(5)}(-f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

18. (currently amended): The apparatus for <u>in-phase and quadrature $\mbox{$\mathbb{I}$}\mbox{$\mathbb{I}$}$ mismatch calibration of a transmitter as claimed in claim 17, wherein the final set of correction parameters (A_0,B_0) is set to be the fourth set of correction</u>

parameters if <u>a value of</u> $W^{(4)}(-f_T)$ is less than <u>a value of</u> $W^{(5)}(-f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

19. (currently amended): The apparatus for <u>in-phase and quadrature Ψ Q</u> mismatch calibration of a transmitter as claimed in claim 13, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(f_{\bar{r}})$ is greater than the function of $W^{(5)}(f_{\bar{r}})$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

20. (currently amended): The apparatus for <u>in-phase and quadrature WQ</u> mismatch calibration of a transmitter as claimed in claim 19, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if <u>a value of $W^{(4)}(f_T)$ </u> is greater than <u>a value of $W^{(5)}(f_T)$ </u>, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

21. (currently amended): The apparatus for <u>in-phase and quadrature WQ</u> mismatch calibration of a transmitter as claimed in claim 13, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if a function of $W^{(4)}(-f_{\star})$ and $W^{(4)}(f_{\star})$ is less than the function of

 $W^{(5)}(-f_T)$ and $W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.

- 22. (currently amended): The apparatus for <u>in-phase and quadrature WQ</u> mismatch calibration of a transmitter as claimed in claim 21, wherein the final set of correction parameters (A_p,B_p) is set to be the fourth set of correction parameters if $W^{(4)}(-f_T)/W^{(4)}(f_T)$ is less than $W^{(5)}(-f_T)/W^{(5)}(f_T)$, otherwise the final set of correction parameters (A_p,B_p) is set to be the fifth set of correction parameters.
- 23. (currently amended): The apparatus for <u>in-phase and quadrature #Q</u> mismatch calibration of a transmitter as claimed in claim 13, wherein the processor further configured to <u>implementing the steps of</u>:

further add a adding-an-DC compensation parameter $\gamma_{\mathcal{P}}$ while obtaining the corrected signal $x_{\mathcal{E}}[n]$ such that $x_{\mathcal{E}}[n] = A_{x^{-1}}(x[n] + \gamma_{x^{-1}}) + B_{x^{-1}}(x[n] + \gamma_{x^{-1}})^{*};$

- obtain obtaining—a first local leakage component measure L_1 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_{p_1} and the parameter $\gamma_c = \zeta_1$, where ζ_1 is a real number;
- obtain obtaining-a second local leakage component measure L_2 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $\gamma_0 = \zeta_2$, where ζ_2 is a real number;

- obtain obtaining—a third local leakage component measure L_3 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $\gamma_p = j\zeta_1$;
- obtain obtaining-a fourth local leakage component measure L_4 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_p , and the parameter $\gamma_p = j\zeta_2$;
- obtain ebtaining—a fifth local leakage component measure L_5 from the modulated signal $x_m(t)$ with the final set of parameters A_p and B_{p_1} and the parameter γ_p =0; and
- obtain obtaining-a final DC compensation parameter $\gamma_{p,final}$ based on the first local leakage component measure L_1 , the second local leakage component measure L_2 , the third local leakage component measure L_3 , the fourth local leakage component measure L_4 and the fifth local leakage component measure L_5 .
- 24. (currently amended): The apparatus for <u>in-phase and quadrature $\mbox{${\it l}$}\mbox{${\it l}$}\m</u>$

$$\gamma_{p,\mathit{final}} = -\frac{1}{2} \cdot \frac{\zeta_2^2(L_1 - L_s) - \zeta_1^2(L_2 - L_s)}{\zeta_1(L_2 - L_s) - \zeta_2(L_1 - L_s)} - j \frac{1}{2} \cdot \frac{\zeta_2^2(L_3 - L_s) - \zeta_1^2(L_4 - L_s)}{\zeta_1(L_4 - L_s) - \zeta_2(L_3 - L_s)}.$$