# 1 Conditional Expectation

#### 1.1 Conditional distribution

Consider two random variables X and Y with joint mass function or joint density function denoted by  $f_{X,Y}$ , i.e.,

$$f_{X,Y}(x,y) = \begin{cases} \Pr(X = x, Y = y), & X \text{ and } Y \text{ are discrete at points } x \text{ and } y \text{ respectively} \\ \frac{\partial^2}{\partial x \partial y} \Pr(X \le x, Y \le y), & X \text{ and } Y \text{ are continuous at points } x \text{ and } y \text{ respectively} \end{cases}$$

We define the following concepts.

• the marginal mass or density function of X

$$f_X(x) = \sum_{y} f_{X,Y}(x,y)$$
 or  $f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) dy$ .

ullet the marginal mass or density function of Y

$$f_Y(y) = \sum_x f_{X,Y}(x,y)$$
 or  $f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx$ .

• the conditional mass or density function of X given Y = y

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}, \quad \text{provided } f_Y(y) > 0.$$
 (1)

Using the conditional distribution of X given Y, the marginal mass or density function of X can be expressed as

$$f_X(x) = \int_{\mathbb{R}} f_{X|Y}(x|y) f_Y(y) dy \quad \text{or} \quad f_X(x) = \sum_{y \in \mathbb{R}} f_{X|Y}(x|y) f_Y(y)$$
 (2)

**Proposition 1.** If the random variables X and Y are independent, we have

$$f_{X,Y}(x,y) = f_X(x) f_Y(y).$$

As an immediate consequence, we have

$$f_{X|Y}(x|y) = \frac{f_X(x) f_Y(y)}{f_Y(y)} = f_X(x).$$

### 1.2 Conditional expectation w.r.t. random variables

Throughout this section, we assume that X given Y = y is a continuous random variable with density function  $f_{X|Y}(\cdot|y)$  (if X|Y is discrete, replace all the integral signs by summation signs). The conditional expectation of X given Y = y is given by the expected value with respect to the conditional density function

$$\mathbb{E}\left[X|Y=y\right] = \int_{\mathbb{R}} x f_{X|Y}\left(x|y\right) \, \mathrm{d}x.$$

We can interpret the conditional expected value as the "best" estimate for the value of X given a realization of Y. This motivates the following definition:

**Definition 1.** The conditional expectation of X given Y is the random variable

$$\mathbb{E}\left[X|Y\right] = \int_{\mathbb{R}} x f_{X|Y}\left(x|Y\right) dx.$$

**Remark 1.** The conditional expectation is a random variable since it takes elements in the range of Y and assigns it to a number. In other words, if we define the function g through

$$g(y) = \mathbb{E}\left[X \mid Y = y\right] = \int_{\mathbb{R}} x f_{X\mid Y}(x\mid y) \, \mathrm{d}x,$$

then

$$\mathbb{E}\left[X|Y\right] = g(Y).$$

The conditional expectation obeys the following useful properties.

**Proposition 2.** The conditional expectation has the following properties:

- 1. Law of total expectation:  $\mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right] = \mathbb{E}\left[X\right]$
- 2. Pulling out known factors: If h is a function, then

$$\mathbb{E}\left[h(Y)X|Y\right] = h(Y)\mathbb{E}\left[X|Y\right]$$

**Proof.** The properties follow directly from the definition

(a) We define  $g(y) = \mathbb{E}[X|Y=y] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$ . By the definition of the expected value,

$$\mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right] = \mathbb{E}\left[g(Y)\right] = \int_{\mathbb{R}} g(y)f_{Y}(y) \, \mathrm{d}y = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} x f_{X|Y}(x|y) \, \mathrm{d}x\right) f_{Y}(y) \, \mathrm{d}y$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} x f_{X|Y}(x|y) f_{Y}(y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} x f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{\mathbb{R}} x \left(\int_{\mathbb{R}} f_{X,Y}(x,y) \, \mathrm{d}y\right) \, \mathrm{d}x$$

$$= \int_{\mathbb{R}} x f_{X}(x) \, \mathrm{d}x = \mathbb{E}\left[X\right].$$

(b) For any y in the support of Y,

$$g(y) = \mathbb{E}\left[h(Y)X|Y=y\right] = \int_{\mathbb{R}} h(y)x f_{X|Y}\left(x|y\right) \,\mathrm{d}x = h(y) \int_{\mathbb{R}} x f_{X|Y}\left(x|y\right) \,\mathrm{d}x = h(y)\mathbb{E}\left[X|Y=y\right].$$

Therefore,

$$\mathbb{E}\left[h(Y)X|Y\right] = g(Y) = h(Y)\mathbb{E}\left[X|Y\right].$$

Likewise, one can define the conditional variance in the obvious way.

**Definition 2.** The conditional variance of X given Y is defined as

$$\operatorname{Var}(X|Y) = \mathbb{E}\left[ (X - \mathbb{E}[X|Y])^2 | Y \right]$$

The conditional variance satisfies the following useful properties.

Proposition 3. We have

1. 
$$\operatorname{Var}(X|Y) = \mathbb{E}[X^2 | Y] - (\mathbb{E}[X | Y])^2$$

2. Law of total variance:  $\operatorname{Var}(X) = \mathbb{E}\left[\operatorname{Var}(X|Y)\right] + \operatorname{Var}\left(\mathbb{E}\left[X|Y\right]\right)$ 

**Proof.** (a) With  $g(Y) = \mathbb{E}[X|Y]$  we have from Proposition 2 (b) that

$$\operatorname{Var}(X|Y) = \mathbb{E}\left[X^2 - 2X\mathbb{E}[X|Y] + (\mathbb{E}[X|Y])^2 \mid Y\right]$$

$$= \mathbb{E}\left[X^2 \mid Y\right] - 2\mathbb{E}\left[X\mathbb{E}[X|Y] \mid Y\right] + \mathbb{E}\left[(\mathbb{E}[X|Y])^2 \mid Y\right]$$

$$= \mathbb{E}\left[X^2 \mid Y\right] - 2\mathbb{E}\left[Xg(Y) \mid Y\right] + \mathbb{E}\left[(g(Y))^2 \mid Y\right]$$

$$= \mathbb{E}\left[X^2 \mid Y\right] - 2g(Y) \cdot \mathbb{E}\left[X \mid Y\right] + (g(Y))^2\mathbb{E}[1|Y] \qquad \text{(by Proposition 2 (b))}$$

$$= \mathbb{E}\left[X^2 \mid Y\right] - 2\mathbb{E}\left[X \mid Y\right] \cdot \mathbb{E}\left[X \mid Y\right] + (\mathbb{E}[X|Y])^2$$

$$= \mathbb{E}\left[X^2 \mid Y\right] - (\mathbb{E}\left[X \mid Y\right])^2$$

(b) It follows from (a) and Proposition 2 (a) that

$$\mathbb{E}\left[\operatorname{Var}\left(X|Y\right)\right] = \mathbb{E}\left[\mathbb{E}\left[X^{2}|Y\right]\right] - \mathbb{E}\left[\left(\mathbb{E}\left[X|Y\right]\right)^{2}\right]$$
$$= \mathbb{E}\left[X^{2}\right] - \mathbb{E}\left[\left(\mathbb{E}\left[X|Y\right]\right)^{2}\right].$$

On the other hand,

$$\operatorname{Var}\left(\mathbb{E}\left[X|Y\right]\right) = \mathbb{E}\left[\left(\mathbb{E}\left[X|Y\right]\right)^{2}\right] - \left(\mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right]\right)^{2}$$
$$= \mathbb{E}\left[\left(\mathbb{E}\left[X|Y\right]\right)^{2}\right] - \left(\mathbb{E}\left[X\right]\right)^{2}.$$

Combining the preceding two relations implies

$$\mathbb{E}\left[\operatorname{Var}\left(X|Y\right)\right] + \operatorname{Var}\left(\mathbb{E}\left[X|Y\right]\right) = \mathbb{E}\left[X^{2}\right] - \left(\mathbb{E}\left[X\right]\right)^{2} = \operatorname{Var}\left(X\right).$$

#### 1.3 Example Problems

**Problem 1.1.** Suppose that X and  $\Theta$  are two random variables such that X given  $\Theta = \theta$  is Poisson distributed with mean  $\theta$ , i.e.,

$$f_{X|\Theta}(k|\theta) = e^{-\theta} \frac{\theta^k}{k!}, \quad k = 0, 1, 2, \dots$$

and  $\Theta$  is Gamma distributed with parameters  $\alpha, \beta > 0$ . That is,  $\Theta$  has the density function

$$f_{\Theta}(\theta) = \frac{\beta^{\alpha} \theta^{\alpha - 1} e^{-\beta \theta}}{\Gamma(\alpha)}, \quad \theta > 0,$$

where  $\Gamma$  denotes the Gamma function,

$$\Gamma\left(\alpha\right) = \int_{0}^{\infty} \theta^{\alpha - 1} e^{-\theta} \, d\theta.$$

Compute the marginal mass function of X.

Justin Ko

**Solution 1.1.** The marginal mass function of X is given by

$$\begin{split} \mathbb{P}\left(X=k\right) &= \int_{0}^{\infty} f_{X\mid\Theta}\left(k\mid\theta\right) f_{\Theta}\left(\theta\right) \,\mathrm{d}\theta \\ &= \int_{0}^{\infty} \frac{\theta^{k}e^{-\theta}}{k!} \cdot \frac{\beta^{\alpha}\theta^{\alpha-1}e^{-\beta\theta}}{\Gamma\left(\alpha\right)} \,\mathrm{d}\theta \\ &= \frac{\beta^{\alpha}}{k!\Gamma\left(\alpha\right)} \int_{0}^{\infty} \theta^{k+\alpha-1}e^{-(\beta+1)\theta} \,\mathrm{d}\theta \\ &= \frac{\beta^{\alpha}}{k!\Gamma\left(\alpha\right)} \cdot \frac{1}{(\beta+1)^{k+\alpha}} \int_{0}^{\infty} x^{k+\alpha-1}e^{-x} \,\mathrm{d}x \\ &= \frac{1}{k!\Gamma\left(\alpha\right)} \left(\frac{\beta}{\beta+1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{k} \Gamma\left(k+\alpha\right) \\ &= \frac{(k+\alpha-1)(k+\alpha-2)\cdots(\alpha+1)\alpha}{k!} \left(1-\frac{1}{\beta+1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{k} \\ &= \binom{k+\alpha-1}{k} \left(1-\frac{1}{\beta+1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{k} \,. \end{split}$$

Therefore, X follows a negative binomial distribution with parameters  $\alpha$  and  $\frac{1}{\beta+1}$ .

**Problem 1.2.** Suppose that X given  $\Theta = \theta$  is Poisson distributed with mean  $\theta$  and  $\Theta$  is Gamma distributed with density function

$$f_{\Theta}(\theta) = \frac{\beta^{\alpha} \theta^{\alpha - 1} e^{-\beta \theta}}{\Gamma(\alpha)}, \quad \theta > 0.$$

- 1. Compute  $\mathbb{E}[X]$ .
- 2. Compute Var[X].

#### Solution 1.2.

(a) Using the law of total expectation,

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\Theta]] = \mathbb{E}[\Theta] = \frac{\alpha}{\beta}.$$

(b) By the law of total variance

$$\begin{aligned} \operatorname{Var}\left(X\right) &= \mathbb{E}\left[\operatorname{Var}\left(X|\Theta\right)\right] + \operatorname{Var}\left(\mathbb{E}\left[X|\Theta\right]\right) \\ &= \mathbb{E}\left[\Theta\right] + \operatorname{Var}\left(\Theta\right) \\ &= \frac{\alpha}{\beta} + \frac{\alpha}{\beta^2} = \frac{\alpha\left(\beta+1\right)}{\beta^2}. \end{aligned}$$

**Problem 1.3.** Suppose that

$$X = \left\{ \begin{array}{ll} \displaystyle \sum_{i=1}^{N} Y_i, & \text{if } N > 0, \\ 0, & \text{if } N = 0, \end{array} \right.$$

where N is Poisson distributed with mean  $\lambda$  and  $Y_1, Y_2, ...$  is a sequence of iid random variables with mean  $\mu$  and variance  $\sigma^2$  that is independent of N. We say that X is a **compound Poisson random variable**.

- 1. Compute  $\mathbb{E}[X]$ .
- 2. Compute Var[X].

## Solution 1.3.

(a) By the law of total expectation

$$\mathbb{E}\left[X\right] = \mathbb{E}\left[\mathbb{E}\left[X|N\right]\right] = \mathbb{E}\left[N\mu\right] = \lambda\mu,$$

(b) By the law of total variance

$$\begin{aligned} \operatorname{Var}\left(X\right) &= \mathbb{E}\left[\operatorname{Var}\left(X|N\right)\right] + \operatorname{Var}\left(\mathbb{E}\left[X|N\right]\right) \\ &= \mathbb{E}\left[N\sigma^{2}\right] + \operatorname{Var}\left(N\mu\right) \\ &= \sigma^{2}\mathbb{E}\left[N\right] + \mu^{2}\operatorname{Var}\left(N\right) \\ &= \lambda\left(\sigma^{2} + \mu^{2}\right). \end{aligned}$$