SPRAWOZDANIE Z PROJEKTU ROZPROSZONEJ BAZY DANYCH

System DeliveryDB - Centrum Logistyczne

Autorzy: Jędrzej Małaczyński 245871, Michał Urbaniak 245954

1. ZAŁOŻENIA PROJEKTOWE

1.1 Wstep

W ramach projektu nie analizowano szczegółowych zagadnień optymalizacyjnych takich jak problem komiwojażera czy problem plecakowy. Chociaż wspomniane problemy są istotne w kontekście zaawansowanej optymalizacji tras i zasobów w logistyce, ich implementacja wykracza poza zakres naszego projektu. Celem było stworzenie funkcjonalnego, heterogenicznego systemu zarządzania przesyłkami i paczkomatami, integrującego różne źródła danych (SQL Server, Oracle, Excel) oraz realizującego podstawowe zadania logistyczne i analityczne.

1.2 Założenia projektowe

Walidacja i kompletność danych

System sprawdza poprawność gabarytów, danych odbiorcy i wymaga podania paczkomatu lub adresu, zależnie od typu dostawy.

Obsługa klientów i adresów

Dane odbiorców są tworzone tylko, jeśli nie istnieją; każdy adres zapisywany jest w dedykowanej tabeli.

Dobór sortowni i kuriera

Sortownie dobierane są według województwa. System próbuje uzyskać rekomendowanego kuriera z Oracle, a w razie braku — dobiera lokalnie.

Dostępność paczkomatów i skrytek

Przed nadaniem paczki system weryfikuje dostępność paczkomatu i sprawnych skrytek.

Szacowanie dostawy

Przewidywana godzina doręczenia wyliczana jest na podstawie trasy, czasu przejazdu oraz typu dostawy.

Rejestracja i śledzenie przesyłki

Tworzone są wpisy w historii statusów i trasie paczki; odbiorca otrzymuje powiadomienie.

Obsługa awarii i błędów

Możliwość zgłaszania awarii i błędów przez pracowników, kurierów lub klientów. Krytyczne awarie automatycznie dezaktywują obiekty.

Bezpieczeństwo transakcji

Wszystkie procesy są transakcyjne, z obsługą wyjątków i rollbackiem w przypadku błędu.

1.3 Estymacja czasu dostawy i parametry czasowe

W procedurze *sp_NadajPrzesylkeV2* zastosowano sztywne parametry czasowe do wyliczenia przewidywanej daty dostawy:

- +4 godziny czas obsługi przesyłki w sortowni (bufor logistyczny),
- +4 godziny czas dostawy do domu (czas przejazdu kuriera i obsługi końcowej),
- +2 godziny czas dostawy do paczkomatu (logistyka terminalowa),
- Godziny doręczeń ograniczone są do przedziału 8:00–20:00 z odpowiednią korektą daty w przypadku przekroczenia tego zakresu,
- Czas przejazdu między sortowniami pobierany jest z tabeli *CzasyPrzejazdow*, a brak tej informacji skutkuje domyślnym czasem transportu równym 18 godzin.

Parametry te są obecnie zakodowane bezpośrednio w procedurze SQL i nie są zdefiniowane w tabelach konfiguracyjnych, co może wymagać dalszej pracy nad elastycznością systemu.

2. STRUKTURA ROZPROSZONEJ BAZY DANYCH

2.1 Architektura systemu

System DeliveryDB został zaprojektowany jako **heterogeniczna rozproszona baza danych** składająca się z:

- SQL Server (Serwer Operacyjny) główny system transakcyjny
- Oracle Database (Centrum Analityczne) system raportowania i analiz
- **Źródła zewnętrzne** pliki Excel,(dane słownikowe)

3. ZAPYTANIA AD HOC - OPENROWSET

a. **Dostęp SQL Server** → **Oracle**

Zaimplementowano mechanizm pobierania analiz z Oracle bez konieczności stałego linked server:

Zastosowanie:

- I. Import wyników analiz wydajności kurierów
- II. Pobieranie rekomendacji z algorytmów Oracle
- III. Synchronizacja parametrów konfiguracyjnych
- b. **Dostęp SQL Server** → **Excel**

Utworzono automatyczny import danych słownikowych z pięciu plików Excel:

Pliki źródłowe:

- Ceny_uslug.xlsx (arkusze: Cennik_Podst, Dodatki)
- II. Kody_Bledow.xlsx (arkusz: Słownik_Bledow)
- III. Kursy Sortownie.xlsx (arkusze: Krusy TIR, Czas Przejazdu)
- IV. Limity_Rozmiarow.xlsx (arkusze: Gabaryty, Dopasowanie)
- V. Parametry_Systemu.xlsx (arkusze: Parametry_Ogolne, Parametry_Powiadomien) Proces importu:
- VI. Automatyczne mapowanie kolumn Excel na tabele SQL Server
- VII. Walidacja typów danych podczas importu
- VIII. Obsługa błędów i konfliktów danych
- c. Wielodostęp heterogeniczny

Opracowano procedury łączące dane z SQL Server (operacyjne), Oracle (analityczne) i Excel (konfiguracyjne) w jednym zapytaniu, umożliwiając kompleksowe raporty wykorzystujące wszystkie źródła danych jednocześnie.

4. SERWERY POŁĄCZONE (LINKED SERVERS)

a. SQL Server → Oracle

Skonfigurowano linked server "ORACLE_ANALYTICS" umożliwiający SQL Serverowi bezpośredni dostęp do funkcji analitycznych Oracle:

Zastosowanie:

- Wywołanie funkcji F_REKOMENDUJ_KURIERA z Oracle w procedurach SQL Server
- II. Pobieranie wyników analiz wydajności kurierów
- III. Dostęp do dashboardów analitycznych w czasie rzeczywistym

b. SQL Server → Excel

Ustanowiono linked servers do plików Excel z danymi słownikowymi:

- I. **Provider:** Microsoft.ACE.OLEDB.12.0
- II. **Źródła:** Ceny_uslug.xlsx, Kody_Bledow.xlsx, Kursy_Sortownie.xlsx, Limity_Rozmiarow.xlsx, Parametry_Systemu.xlsx
- III. **Zastosowanie:** Automatyczny import danych konfiguracyjnych i słownikowych

5. TRANSAKCJE ROZPROSZONE

a. Konfiguracja MS DTC

Skonfigurowano Microsoft Distributed Transaction Coordinator umożliwiający wykonywanie transakcji obejmujących zarówno SQL Server jak i Oracle.

b. Scenariusze zastosowania

Transakcje rozproszone zostały wdrożone w kluczowych procesach biznesowych:

- I. Nadawanie przesyłek z jednoczesną aktualizacją statystyk
- II. Aktualizacja statusów przesyłek z synchronizacją analityk
- III. Operacje finansowe wymagające spójności między systemami

c. Obsługa błędów

Zaimplementowano mechanizmy rollback zapewniające atomowość operacji rozproszonych oraz procedury recovery w przypadku awarii komunikacji.

6. REPLIKACJA MIGAWKOWA SQL SERVER → ORACLE

a. Architektura replikacji

System DeliveryDB wykorzystuje **replikację migawkową** (snapshot replication) z pojedynczej instancji SQL Server do Oracle Database jako centrum analitycznego:

- I. **Publisher:** SQL Server (DeliveryDB) system operacyjny
- II. Subscriber: Oracle Database centrum analityczne
- III. Częstotliwość: Codziennie o godzinie 02:00
- IV. **Zakres:** Wszystkie tabele operacyjne i słownikowe

b. Widoki źródłowe do replikacji

W SQL Server utworzono wyspecjalizowane widoki agregujące dane operacyjne do postaci odpowiedniej dla analiz Oracle:

- V_STAT_KURIERZY_SNAPSHOT statystyki wydajności kurierów z tabel Kurierzy i OperacjeKurierskie
- V_STAT_SORTOWNIE_SNAPSHOT efektywność sortowni na podstawie danych z Sortownie, PracownicySortowni i OperacjeSortownicze
- V_STAT_PRZESYLKI_SNAPSHOT analizy przesyłek agregujące dane z Przesylki, TrasaPrzesylki i HistoriaStatusowPrzesylek
- V_STAT_DROPPOINTY_SNAPSHOT wykorzystanie paczkomatów z tabel Droppointy, SkrytkiPaczkomatow i AwarieInfrastruktury
- V_STAT_BLEDY_AWARIE_SNAPSHOT agregacja błędów z ZgloszeniaBledow i AwarieInfrastruktury
- V_STAT_AGREGACJE_MIESIECZNE miesięczne podsumowania wszystkich operacji

6.3 Transformacja danych

Podczas replikacji następuje automatyczne mapowanie typów danych:

- SQL Server INT IDENTITY → Oracle NUMBER GENERATED BY DEFAULT AS IDENTITY
- SQL Server VARCHAR → Oracle VARCHAR2
- SQL Server DATETIME2 → Oracle TIMESTAMP
- SQL Server BIT → Oracle NUMBER(1)

6.4 Partycjonowanie w Oracle

Tabele docelowe w Oracle są partycjonowane według DataAktualizacji z automatycznym tworzeniem nowych partycji co miesiąc, co zapewnia optymalną wydajność zapytań analitycznych.

