A Level Maths - S3
Sam Robbins 13SE

Regression and Correlation

1 Spearman's rank

Spearman's rank shows whether two sets of data agree or disagree.

 r_s can take values from 1 to -1 (inclusive)

$1.1 \quad r_s = 1$

The total sets of data are in perfect rank order.

The gradient between each successive point is positive

$1.2 \quad r_{\rm s} = -1$

The gradient between each point is negative

1.3 Formula

$$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$

1.4 Example

Height of a sunflower(cm)	Rank	Width of	Rank	d	d^2
sunflower(cm)		stem(mm)			
183	4	21	4	0	0
134	3	14	1	2	4
234	6	24	5	1	1
256	7	32	7	0	0
190	5	29	6	1	1
89	1	18	2	1	1
112	2	20	3	1	1

$$\Sigma d^2 = 8$$

$$1 - \frac{6 \times 8}{7(7^2 - 1)} = \frac{6}{7}$$

A Level Maths - S3 Sam Robbins 13SE

$2\quad Hypothesis\ Test\ For\ r_s$

Step 1

 $\overline{\text{State }} H_0 \text{ and } H_1$

 $H_0: \rho_s = 0 \text{ (always)}$

 $H_1: \rho_s \neq 0$ or

 $H_1: \rho_s > 0 \text{ or }$

 $H_1: \rho < 0$

Step 2

State critical value from tables

Step 3

 $\overline{\text{Calcul}}$ ate r_s

Step 4

 $\overline{\text{Compare } r_s}$ to the critical value. If in the critical region, testis significant, reject H_0 in favour of H_1

Step 5

Make conclusion in context of question

3 Tied ranks

If there are tied ranks and average of the positions they would take up