

Arquitetura de Computadores

ASCII (American Standard Code for Information Interchange, "Código Padrão Americano para o Intercâmbio de Informação")

- É um conjunto de códigos para o computador representar números, letras, pontuação e outros caracteres.
- Assim, ASCII é um código numérico usado para representar os caracteres, entendido por quase todos os computadores, impressoras e programas de edição de texto, que usa a escala do decimal 0 a 127

Para representar CARACTERES são utilizadas tabelas de codificação

Ex: Tabela ASCII

1 byte = 8 bits □ 2⁸ combinações = 256 combinações (cada combinação codifica 1 caracter)

Caracter	Decimal	Hexadecimal	Binário	Comentário
NUL	00	00	0000 0000	Caracter Nulo
son	01	01	0000 0001	Começo de cabeçalho de transmissão
STX	02	02	0000 0010	Começo de texto
ETX	03	03	0000 0011	Fim de texto
EOT	04	04	0000 0100	Fim de transmissão
ENQ	05	05	0000 0101	Interroga
ACK	06	06	0000 0110	Confirmação
BEL	07	07	0000 0111	Sinal sonoro
BS	08	08	0000 0100	Volta um caracter
HT	09	09	0000 1001	Tabulação Horizontal
LF	10	0A	0000 1010	Próxima linha
VT	11	0B	0000 1011	Tabulação Vertical
FF	12	0.C	0000 1100	Próxima Página
CR	13	OD.	0000 1101	Início da Linha
so	14	0E	0000 1110	Shift-out
SI	15	0.F	0000 1111	Shift-in

Caracter	Decimal	Hexadecimal	Binário	Comentário
DLE	16	10	0001 0000	Data link escape
D1	17	11	0001 0001	Controle de dispositivo
D2	18	12	0001 0010	Controle de dispositivo
D3	19	13	0001 0011	Controle de dispositivo
D4	20	14	0001 0100	Controle de dispositivo
NAK	21	15	0001 0101	Negativa de Confirmação
SYN	22	16	0001 0110	Synchronous idle
ETB	23	17	0001 0111	Fim de transmissão de bloco
CAN	24	18	0001 1000	Cancela
EM	25	19	0001 1001	Fim de meio de transmissão
SUB	26	1A	0001 1010	Substitui
ESC	27	1B	0001 1011	Escape
FS	28	1C	0001 1100	Separador de Arquivo
GS	29	1D	0001 1101	Separador de Grupo
RS	30	1E	0001 1110	Separador de registro
US	31	1F	0001 1111	Separador de Unidade

Caracter	Decimal	Hexadecimal	Binário	Comentário
Espaço	32	20	0010 0000	
!	33	21	0010 0001	
11	34	22	0010 0010	
#	35	23	0010 0011	
\$	36	24	0010 0100	
%	37	25	0010 0101	
&	38	26	0010 0110	
	39	27	0010 0111	
Ĺ	40	28	0010 1000	
).	41	29	0010 1001	
*	42	2A	0010 1010	
+	43	2B	0010 1011	
•	44	2.C	0010 1100	
19.73	45	2D	0010 1101	
	46	2E	0010 1110	
I	47	2F	0010 FFFF	
0	48	30	0011 0000	

••••

Caracter	Decimal	Hexadecimal	Binário	Comentário
1	49	31	0011 0001	
2.	50	32	0011 0010	
3	51	33	0011 0011	
4.	52	34	0011 0100	
5.	53	35	0011 0101	
6	54	36	0011 0110	
Z	55	37	0011 0111	
8	56	38	0011 1000	
8	57	39	0011 1001	
	58	3A	0011 1010	
;	59	3B	0011 1011	
₹	60	3C	0011 1100	
=	61	3D	0011 1101	
>	62	3E	0011 1110	
?	63	3F	0011 1111	
@	64	40	0100 0000	

•••

••••

Caracter	Decimal	Hexadecimal	Binário	Comentário
A	65	41	0100 0001	
В	66	42	0100 0010	
C	67	43	0100 0011	
D	68	44	0100 0100	
E	69	45	0100 0101	
F	70	46	0100 0110	
G	71	47	0100 0111	
Н	72	48	0100 1000	
I	73	49	0100 1001	
J	74	4A	0100 1010	
K	75	4B	0100 1011	
L	76	4C	0100 1100	
M	77	4D	0100 1101	
N	78	4E	0100 1110	
О	79	4F	0100 1111	
P	80	50	0101 0000	
Q	81	51	0101 0001	
R	82	52	0101 0010	
S	83	53	0101 0011	

Caracter	Decimal	Hexadecimal	Binário	Comentário
Т	84	54	0101 0100	
U	85	55	0101 0101	
V	86	56	0101 0110	
W	87	57	0101 0111	
X	88	58	0101 1000	
Y	89	59	0101 1001	
Z	90	5A	0101 1010	
I	91	5B	0101 1011	
١	92	5.C	0101 1100	
1	93	5D	0101 1101	
^	94	5E	0101 1110	
	95	5F	0101 1111	
×	96	60	0110 0000	
a	97	61	0110 0001	
b	98	62	0110 0010	
c	99	63	0110 0011	
d	100	64	0110 0100	

•••

••••

Caracter	Decimal	Hexadecimal	Binário	Comentário
е	101	65	0110 0101	
f	102	66	0110 0110	
g	103	67	0110 0111	
h	104	68	0110 1000	
i	105	69	0110 1001	
j	106	6A	0110 1010	
k	107	6B	0110 1011	
1	108	6C	0110 1100	
m	109	6D	0110 1101	
n	110	6E	0110 1110	
0	111	6F	0110 1111	
р	112	70	0111 0000	
q	113	71	0111 0001	
r	114	72	0111 0010	
S	115	73	0111 0011	
t	116	74	0111 0100	

Caracter	Decimal	Hexadecimal	Binário	Comentário
u	117	75	0111 0101	
v	118	76	0111 0110	
w	119	77	0111 0111	
x	120	78	0111 1000	
у	121	79	0111 1001	
Z	122	7A	0111 1010	
1	123	7B	0111 1011	
	124	.7.C	0111 1100	
1	125	7 D .	0111 1101	
2	126	7E	0111 1110	
DELETE	127	.7F	0111 1111	

- 1. Qual o valor ASCII correspondente aos seguintes símbolos: 'A', 'B', 'a', 'b', '0' e '9' ?
- 2. Qual o valor da tabela ASCII nas posições 0, 8, 9 e 123?
- 3. Escreva a mensagem moro em São Paulo com o código ASCII

Exemplo: "mensagem teste"

m	e	n	S	а	g	e	m	6	t	e	5	t	e
6D	65	6E	73	61	67	65	6D	20	74	65	73	74	65

Os valores estão em HEXA.

SISTEMAS DIGITAIS

FUNÇÕES E PORTAS LÓGICAS

Introdução Portas lógicas (Gates)

- As operações de um computador resumem-se na combinação de operações aritméticas básicas: somar, complementar, comparar e mover bits.
- "Quem" realiza estas complicadíssimas operações são circuitos eletrônicos conhecidos como circuitos lógicos ou Gates.
- A lógica é a base da eletrônica digital e da informática.

Histórico

 Esta surgiu na Grécia antiga com a contribuição de três filósofos:

Sócrates - Pelo sua investigação, se duas verdades são alcançadas individualmente, ao juntá-las tem-se uma **única** verdade.

Platão - Platão (seguidor de Sócrates) escreveu vários de seus diálogos e desenvolveu sua filosofia abrangendo a ética, a política e o conhecimento, tendo como princípio o método da investigação.

Aristóteles - Aristóteles, baseado nos diálogos escritos por Platão, observou que a linguagem deve ter uma estrutura lógica, para que leve, necessariamente, a uma verdade.

Histórico

- Os sistemas lógicos estão calcados na álgebra dos chaveamentos ou álgebra de Boole, instituída pelo matemático inglês George Boole (1815 – 1864) e que admite apenas duas grandezas: falso ou verdadeiro, representados por 0 e 1 respectivamente.
- Esses sinais binários são representados por níveis de tensão nos circuitos do computador.
- Um computador pode ser projetado e/ou descrito em diversos níveis de abstração. Assim podemos descrever inteiramente um computador através de equações booleanas ou o seu equivalente em portas lógicas E, OU e NOT.

Variável Booleana

- Exemplos:
- -Lâmpada: acesa (1) ou apagada (0)
- -Chave:

fechada (1) ou aberta (0)

-Verdadeiro (1) ou Falso(0)

- Representação:
 - Expressão Lógica
 - Tabela Verdade
 - Símbolos (portas lógicas)

Circuito Integrado / CI / Microchip (1959)

- O primeiro circuito integrado, ou CI, foi fabricado pela Texas Instruments e apresentado em 6 de Fevereiro de 1959.
- O desenvolvimento do circuito integrado evoluiu muito nas décadas de 60 e 70, até o surgimento dos microprocessa-dores, no início dos anos 1980.

Os operadores lógicos ou funções lógicas básicas são as seguintes:

NÃO ou NOT

INVERSOR

Basicamente tem-se uma alternância entre os dois valores.

Tabela -Verdade

Entrada a	Saída s
0	1
1	0

 Representação da Porta Lógica
 Porta NOT ou NÃO

Expressão Boleana

$$s = \bar{a}$$

$$a' = NOT a$$

E ou AND Uma função é verdadeira se, e somente se, todos os termos forem verdadeiros.

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	0
0	1	0
1	0	0
1	1	1

Expressão Boleana

$$s = a.b$$

$$s = ab$$

NÃO E ou NAND Equivale a uma porta AND seguida de uma porta NÃO. O resultado é o inverso da saída de uma porta AND.

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	1
0	1	1
1	0	1
1	1	0

Expressão Boleana

$$s = \overline{a \cdot b}$$

 $s = \overline{ab}$

OU ou OR Uma função é verdadeira se, qualquer um dos termos for verdadeiro

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	0
0	1	1
1	0	1
1	1	1

Expressão Boleana

$$s = a + b$$

NOR ou AND Euivale a uma porta OR seguida de uma porta NÃO. O resultado é o inverso da saída de uma porta OR.

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	1
0	1	0
1	0	0
1	1	0

Expressão Boleana

$$s = a + b$$

XOR ou OU EXCLUSIVO A função é verdadeira se, e somente se, um dos termos for verdadeiro

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	0
0	1	1
1	0	1
1	1	0

Expressão Boleana

$$s = a \oplus b$$

XNOR ou OU NÃO EXCLUSIVO A

função é verdadeira se, e somente se, ambos os termos forem iguais

Tabela da Verdade

Entrada a	Entrada b	Saída s
0	0	1
0	1	0
1	0	0
1	1	1

Expressão Boleana

$$s = a \oplus b$$

EXPRESSÕES LÓGICAS

PORTAS LÓGICAS

$$S = S1+C$$

 $S = (A.B) + C$

$$S = S1.S2$$

 $S = (A+B) + (C+D)$

$$S = A.B.C + (A+B).C$$
 $S = A.B.C + (A+B).C$
 $S = A.B.C + (A+B).C$

