Jürgen Doenhardt

Jugend trainiert Mathematik

Teilung einer Seite durch die Winkelhalbierenden

Jürgen Doenhardt, im Juni 2023

Satz

In Dreieck ABC seien a = |BC|, b = |AC| und c = |AB|, dabei gelte $a \neq b$. Des Weiteren seien w_y und w_y' die Winkelhalbierenden des Innen- und der Außenwinkel bei C, die Schnittpunkte mit AB seien W_c und W_c' . So gilt $\frac{AW_c}{W_cB} = \frac{AW_c'}{BW_c'} = \frac{b}{a}$, d. h. die Winkelhalbierenden in C teilen die Seite \overline{AB} innen und außen im Verhältnis der anliegenden Seiten.

Beweis:

Sei a < b; der Fall a > b ist symmetrisch. Zunächst gilt $\angle W_c CB = \angle ACW_c = \angle ACB/2 = y/2$. Die Parallele zu $W_c C$ durch B schneide nun AC in D, ebenso schneide die Parallele zu BC durch $A W_c' C$ in E. So ist $\gamma' = \angle BCD$ ein Außenwinkel in C mit $\gamma'/2 = \angle BCW_c' = \angle W_c' CD$. Damit gilt $\angle ECA = \angle W_c' CD = \gamma'/2$ (Scheitelwinkel). Wegen der parallelen Geraden gilt weiter $\angle DBC = \angle W_c CB = \gamma/2$ (Wechselwinkel), $\angle CDB = \angle ACW_c = \gamma/2$ (Stufenwinkel) und $\angle AEC = \angle BCW_c' = \gamma'/2$ (Stufenwinkel).

Damit sind aber die Dreiecke EAC und DCB gleichschenklig mit Spitze bei A bzw. C. Also gilt |CD| = |BC| = a und |AE| = |AC| = b. Mit dem ersten Strahlensatz ergibt sich $\frac{|AW_c|}{|W_cB|} = \frac{|AC|}{|CD|} = \frac{b}{a}$, mit dem zweiten $\frac{|AW_c'|}{|BW_c'|} = \frac{|AE|}{|BC|} = \frac{b}{a}$.

Anmerkung:

Bei a = b gilt $|AW_c| = |W_c B|$ aus Symmetriegründen, also $\frac{AW_c}{W_c B} = 1 = \frac{b}{a}$. W_c' existiert nicht.

Man kann zeigen, dass die Dreiecksecken C, die dasselbe Verhältnis $\frac{b}{a} = \lambda$ ergeben, den Thaleskreis über $\overline{W_cW_c}$ bilden, einen *Apolloniuskreis*. Für jedes $\lambda > 0$ mit $\lambda \neq 1$ erhält man einen solchen Kreis, bei $\lambda = 1$ jedoch eine Gerade, die Mittelsenkrechte von \overline{AB} . Die Kreise haben untereinander und mit der Geraden keinen Punkt gemeinsam. Sie überdecken die Ebene ohne die Punkte A, B.