

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №7 «ГРАФЫ»

Студент Ковалец Кирилл

Группа ИУ7 – 33Б

Описание условия задачи

Обработать графовую структуру в соответствии с указанным вариантом задания. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Ввод данных — на усмотрение программиста. Результат выдать в графической форме.

Описание технического задания

Найти все вершины заданного орграфа, недостижимые из заданной его вершины.

Входные данные:

Номер команды, отвечающий за определённое действие.

Команды:

- 1. Загрузить данные из файла (5 элементов в графе);
- 2. Загрузить данные из файла (10 элементов в графе);
- 3. Загрузить данные из файла (15 элементов в графе);
- 4. Ввести данные вручную;
- 0. Выйти из программы.

Выходные данные:

- 1. Результат выполнения определённой команды;
- 2. Печать графа с цветными вершинами (зелёный вершина достижима из заданной вершины, красный недостижима).

Обращение к программе:

Запускается через терминал командой make run

Сообщения при аварийных ситуациях:

- 1. Не удалось прочитать номер команды;
- 2. Номер команды должен быть >= 0 и <= 4;
- 3. Не удалось открыть файл;
- 4. Не удалось закрыть файл;
- 5. Не удалось выделить память;
- 6. Не удалось прочитать кол-во вершин графа;
- 7. Кол-во вершин графа должно быть больше 0;
- 8. Не удалось прочитать вершину графа;
- 9. Такой вершины в графе нет.

Описание структуры данных

graph h - структура, содержащая информацию об орграфе.

```
typedef struct graph
{
  int **matrix;
  int size;
} graph h;
```

Поля структуры:

- 1) int **matrix матрица смежности;
- 2) int size кол-во вершин в графе;

Описание алгоритма

- 1. Выводится меню программы (каждой команде присвоен номер);
- 2. Пользователь вводит номер команды, который отвечает за определённое действие;
- 3. Вывод графа на экран относительно заданной вершины осуществляется до того момента, пока не будет введён 0, являющийся признаком выхода из программы (поиск вершин в графе осуществляется обходом в глубину).

Набор тестов

No	Название теста	Входные данные	Результат
1	Номер команды - число	k	Не удалось прочитать номер команды
2	Номер команды >= 0 и <=4	8	Номер команды должен быть >= 0 и <= 4
3	Открытие несуществую- щего файла	Iu7.txt	Не удалось открыть файл
4	Кол-во вершин в графе – число	k	Не удалось прочитать кол-во вершин графа
5	Кол-во вершин в графе > 0	0	Кол-во вершин графа должно быть больше 0

6	Вершина графа - число	k	Не удалось прочитать вершину графа
7	Заданная вершина должна существовать в графе	(граф состоит из 5 вершин) 10	Такой вершины в графе нет
8	Загрузка данных из файлов	Команды 1-3	Данные успешно загружены
9	Вывод графа на экран	Команда 4 (кол-во вершин в графе - 15) 1 10 7 3 4 4 5 9 2 6 3 8 8 10 7 7 15 7 4 7 13 2 9 12 12 8 6 9 12 5 0 (относительная вершина - 12)	13 2 5 6 4 15 9 7 12 3 10
10	Выход из программы	Команда 0	Выход из программы

Ответы на контрольные вопросы

Что такое граф?

Граф – конечное множество вершин и соединяющих их ребер; $G = \langle V, E \rangle$. Если пары E (ребра) имеют направление, то граф называется ориентированным.

Как представляются графы в памяти?

С помощью матрицы смежности или списков смежности.

Какие операции возможны над графами?

Обход вершин, поиск различных путей, исключение и включение вершин.

Какие способы обхода графов существуют?

Обход в ширину и обход в глубину.

Где используются графовые структуры?

Графовые структуры могут использоваться в задачах, в которых между элементами могут быть установлены произвольные связи, необязательно иерархические.

Какие пути в графе Вы знаете?

Эйлеров путь, непростой путь, гамильтонов путь.

Что такое каркасы графа?

Каркас графа — дерево, в которое входят все вершины графа, и некоторые (необязательно все) его рёбра.

Вывод

В данной лабораторной работе для хранения графа была использована матрица смежности. Для поиска недостижимых вершин в графе из заданной, подходит как алгоритм поиска в глубину, так и в ширину. Я выбрал метод поиска в глубину, так как его преимуществом является простота реализации и интуитивность алгоритма. У данного метода есть один недостаток, который заключается в том, что полученный путь, в общем случае не является кратчайшим путем из вершины v в вершину u. Данный недостаток метода никак не повлиял для нахождения недостижимых вершин.

Сам алгоритм заключается в том, что начиная с произвольной вершины v0, ищется ближайшая смежная вершина v, для которой, в свою очередь, осуществляется поиск в глубину до тех пор, пока не встретится ранее просмотренная вершина, или не закончится список смежности вершины. Если нет новых вершин, смежных с v, то вершина v считается использованной, идет возврат в вершину, из которой попали в вершину v, и процесс продолжается до тех пор, пока не получим v = v0.