Introduction

Theoretical Deep Learning

Eugene Golikov

MIPT, spring 2019

Neural Networks and Deep Learning Lab., MIPT

Levels of research which studies NNs:

Levels of research which studies NNs:

- 1. Competition level:
 - Try almost random things; do not invent anything truly novel;
 - Give explanation based on faint intuition;
 - Objective: SOTA on popular datasets;
 - Success is achieved mostly by careful fine-tuning.

Levels of research which studies NNs:

1. Competition level:

- Try almost random things; do not invent anything truly novel;
- Give explanation based on faint intuition;
- Objective: SOTA on popular datasets;
- Success is achieved mostly by careful fine-tuning.

2. Invention level:

- Provide a novel idea based on surmise or intuition;
- Objective: robust improvement on popular datasets;
- Fine-tuning can still be crucial for success;
- Explanation is still mostly intuitive;
- Examples: Batchnorm, Resnet, Attention, Dropout papers.

Levels of research which studies NNs:

- 3. Physics level:
 - Treat NNs as physical objects; make experiments, develop a theory;
 - Experiment (mostly) in simple setups;
 - Objective: gain understanding of how things work;
 - Examples: empirical research of loss surfaces, ability to fit random labels, learning phases.

Levels of research which studies NNs:

3. Physics level:

- Treat NNs as physical objects; make experiments, develop a theory;
- Experiment (mostly) in simple setups;
- Objective: gain understanding of how things work;
- Examples: empirical research of loss surfaces, ability to fit random labels, learning phases.

4. Math level:

- Treat NNs as mathematical objects; prove theorems in simplified setups;
- Use empirical observations as source of hypotheses;
- Almost no practical outcome;
- Objective: "solve a puzzle";
- Examples: GD achieves 100% train accuracy as long as NN is overparametrized; there exist local minima for sufficiently wide NNs.

Supervised learning objective:

$$\mathcal{L}_{\textit{train}}(W) = \mathbb{E}_{x,y \sim \mathcal{D}_{\textit{train}}} L(y, \hat{y}(x, W))
ightarrow \min_{W},$$

where W – network weights, \hat{y} – network response, \mathcal{D}_{train} – train data distribution, L – loss function.

Dimension of $W > 10^4$ (typically $10^6 \div 10^8$).

Optimize with (stochastic) gradient descent.

Supervised learning objective:

$$\mathcal{L}_{\textit{train}}(W) = \mathbb{E}_{x,y \sim \mathcal{D}_{\textit{train}}} L(y, \hat{y}(x, W)) \rightarrow \min_{W},$$

where W – network weights, \hat{y} – network response, \mathcal{D}_{train} – train data distribution, L – loss function.

Dimension of $W>10^4$ (typically $10^6\div 10^8$).

Optimize with (stochastic) gradient descent.

Main puzzles:

- 1. A non-overfitting puzzle
- 2. A local optimization puzzle

Basic theorem of generalization theory:

$$\|R_{test}(W) - R_{train}(W)\| \le O\left(\sqrt{\frac{N}{m}}\right),$$

where R is the empirical risk (i.e. classification error), m is the number of training examples, and N is the complexity measure.

Basic theorem of generalization theory:

$$\|R_{test}(W) - R_{train}(W)\| \le O\left(\sqrt{\frac{N}{m}}\right),$$

where R is the empirical risk (i.e. classification error), m is the number of training examples, and N is the complexity measure.

Problem:

Existing complexity measures lead to vacuous bounds.

Some existing complexity measures¹:

¹http://www.offconvex.org/2018/02/17/generalization2/

Does network overfits more as the number of parameters grows?

Does network overfits more as the number of parameters grows?

Does network overfits more as the number of parameters grows?

Learning objective:

$$\mathcal{L}_{\textit{train}}(W) = \mathbb{E}_{x,y \sim \mathcal{D}_{\textit{train}}} \textit{L}(y, \hat{y}(x, W)) \rightarrow \min_{W}.$$

Learning objective:

$$\mathcal{L}_{\textit{train}}(W) = \mathbb{E}_{x,y \sim \mathcal{D}_{\textit{train}}} L(y, \hat{y}(x, W))
ightarrow \min_{W}.$$

This optimization problem is proved to be NP-complete.

Learning objective:

$$\mathcal{L}_{\textit{train}}(W) = \mathbb{E}_{x,y \sim \mathcal{D}_{\textit{train}}} L(y, \hat{y}(x, W))
ightarrow \min_{W} .$$

This optimization problem is proved to be NP-complete.

However, empirically as long as the number of parameters is large enough, we can achieve a near-global optimum with gradient descent — a local search method!

Optimization becomes easier as number of parameters grows:

Optimization becomes easier as number of parameters grows:

Optimization becomes easier as number of parameters grows:

Other topics

Extra topics:

- Signal propagation in deep and wide nets
- Information bottleneck

Will not be present at the course:

- Expressivity
- Why does Batchnorm / Resnet / Attention / Dropout / Other popular stuff work
- Theory of convolutional neural networks
- Unsupervised learning

Homeworks

Labs ($\sim 20\%$ of final grade):

- We use pytorch²
- GPU is desirable

Theoretical assignments ($\sim 30\%$ of final grade)

Based on papers mentioned in lectures

Oral exam ($\sim 50\%$ of final grade)

In the form of interview

E-mail to send homeworks: tdl_course_mipt@protonmail.com

²https://pytorch.org/