Chapter 4: Orthogonality

Val Anthony Balagon

January 2019

Abstract

This chapter focuses on the orthogonality of the four subspaces, orthogonal vectors, projections, least squares approximations, and the Gram-Schmidt factorization.

1 Orthogonality of the Four Subspaces

Two vectors are orthogonal when their dot product is zero $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = 0$. This chapter will revolve around orthogonal subspaces, orthogonal bases, and orthogonal matrices.

Definition 1.1. Orthogonal vectors have the following properties:

i.
$$v^T w = 0$$

ii.
$$||\boldsymbol{v}||^2 + ||\boldsymbol{w}||^2 = ||\boldsymbol{v} + \boldsymbol{w}||^2 \to \boldsymbol{v}^T \boldsymbol{v} + \boldsymbol{w}^T \boldsymbol{w} = (\boldsymbol{v} + \boldsymbol{w})^T (\boldsymbol{v} + \boldsymbol{w})$$

Remark. The zero vector is orthogonal to any vector.

Remark. The subspaces have orthogonal properties.

- 1. The rowspace $C(A^T)$ is perpendicular to the nullspace N(A). Every row of A is perpendicular to the solution of $A\mathbf{x} = \mathbf{0}$.
- 2. The column space C(A) is perpendicular to the left nullspaces $N(A^T)$. When \mathbf{b} is outside of the column space when we're trying to solve for $A\mathbf{x} = \mathbf{b}$, then this nullspace of A^T comes into its own. It contains the error $\mathbf{e} = \mathbf{b} A\mathbf{x}$ in the least-squares solution.

Definition 1.2. Two subspaces V and W of a vector space are orthogonal if every vector v in V is perpendicular to every vector w in W.

$$\mathbf{v}^T \mathbf{w} = 0$$
 for all \mathbf{v} in \mathbf{V} and all \mathbf{w} in \mathbf{W} .

Theorem 1. Every vector \boldsymbol{x} in the nullspace is perpendicular to every row of A, because $A\boldsymbol{x} = \boldsymbol{0}$. The nullspace N(A) and the row space $C(A^T)$ are orthogonal subspaces of \mathbb{R}^n .

$$A\boldsymbol{x} = \begin{bmatrix} \operatorname{row} & 1 \\ \vdots \\ \operatorname{row} & m \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$C_1(\operatorname{row}_1^T) = 0$$
$$C_2(\operatorname{row}_2^T) = 0$$
$$\vdots$$
$$C_m(\operatorname{row}_m^T) = 0$$

(row 1) $\cdot \boldsymbol{x}$ is zero and (row m) $\cdot \boldsymbol{x}$ is also zero. Every row has a zero dot product with \boldsymbol{x} . Then \boldsymbol{x} is perpendicular to every combination of the rows. The whole row space $C(A^T)$ is orthogonal to N(A).

Proof. The vectors in the row space are combinations of $A^T y$ of the rows. We take the dot product of $A^T y$ with any x in the nullspace.

$$\boldsymbol{x} \cdot (A^T \boldsymbol{y}) = \boldsymbol{x}^T (A^T \boldsymbol{y}) = (A \boldsymbol{x})^T \boldsymbol{y} = 0^T \boldsymbol{y} = 0$$

Example 1. The rows of A are perpendicular to $\boldsymbol{x} = (1, 1, -1)$ in the nullspace:

$$A\boldsymbol{x} = \begin{bmatrix} 1 & 3 & 4 \\ 5 & 2 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1+3-4 \\ 5+2-7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

In this example, the column space is all of \mathbb{R}^2 . The nullspace of A^T is the zero vector. The column space of A and the nullspace of A^T are always orthogonal subspaces.

Theorem 2. Every vector \boldsymbol{y} in the nullspace of A^T is perpendicular to every column of A. The left nullspace $N(A^T)$ and the column space C(A) are orthogonal in \mathbb{R}^m .

Proof. The nullspace of A^T is orthogonal to the row space of A^T , which is the column space of A.

$$A^{T} \boldsymbol{y} = \begin{bmatrix} (\text{column 1})^{T} \\ \vdots \\ (\text{column n})^{T} \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Figure 1: The Four Subspaces. There are two pairs of orthogonal subspaces.

Theorem 3. If a vector v is orthogonal to itself, then v is the zero vector.

Theorem 4. Fundamental Theorem of Linear Algebra, Part 2: N(A) is the orthogonal complement of the row space $C(A^T)$ in \mathbb{R}^n . $N(A^T)$ is the orthogonal complement of the column space C(A) in \mathbb{R}^m .

Things to note from Figure 1

- 1. When A multiplies to $\boldsymbol{x} = \boldsymbol{x}_r + \boldsymbol{x}_n$, it goes to **b** which is in the column space.
- 2. When A multiplies to x_r , it goes to **b** which is also in the column space.
- 3. When A multiplies to x_n , the nullspace component goes to 0.

1.1 Combining Bases from Subspaces

Theorem 5. Any independent vectors in \mathbb{R}^n must span \mathbb{R}^n . So they are a basis. Any n vectors that span \mathbb{R}^n must be independent. So they are a basis

Theorem 6. If the *n* columns of *A* are independent, they span \mathbb{R}^n . So $A\mathbf{x} = \mathbf{b}$ is solvable. If the *n* columns span \mathbb{R}^n , they are independent. So $A\mathbf{x} = \mathbf{b}$ has only one solution.

2 Projections

Let's say we are given an arbitrary vector \boldsymbol{b} . When \boldsymbol{b} is projected onto a line, its projection \boldsymbol{p} is the part of \boldsymbol{b} along that line. If \boldsymbol{b} is projected onto a plane, \boldsymbol{p} is a part in that plane. The projection \boldsymbol{p} is $P\boldsymbol{b}$. The projection matrix P multiplies \boldsymbol{b} to give \boldsymbol{p} .

Figure 2: The projections \boldsymbol{p}_1 and \boldsymbol{p}_2 onto the z axis and the xy plane.

Say $\boldsymbol{b} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}^T$, its projections are $\boldsymbol{p}_1 = \begin{bmatrix} 0 & 0 & 4 \end{bmatrix}^T$ and $\boldsymbol{p}_2 = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}^T$ in Figure 2. \boldsymbol{p}_1 and \boldsymbol{p}_2 are the projections of \boldsymbol{b} onto the z axis and xy axis, respectively. The projection matrices P_1 and P_2 are 3×3 matrices. Projection onto a line comes from a rank one matrix, while a projection onto a planes comes from a rank two matrix.

Onto the z axis:
$$P_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Onto the xy plane: $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\mathbf{p}_1 = P_1 \mathbf{b} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}$$

$$\mathbf{p}_2 = P_2 \mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

The projections p_1 and p_2 are perpendicular. The xy plane and the z axis are orthogonal subspaces. The line and plane are also orthogonal complements. Their dimensions add to 1+2=3. Every vector \boldsymbol{b} in the whole space is the sum of its parts in the two subspaces. The projections \boldsymbol{p}_1 and \boldsymbol{p}_2 are exactly those two parts of \boldsymbol{b} :

The vectors give
$$p_1 + p_2 = b$$
 The matrices give $P_1 + P_2 = I$

In general, the objective is to find p in each subspace, and the projection matrix P that produces that part p = Pb. Every subspace of \mathbb{R}^m has its own $m \times m$ projection matrix. To compute P, we need a good description of the subspace that it projects onto. The best description of a subspace is a basis. We put the basis vectors into the columns of A. Now we are projecting onto the column space of A. The problem now is to project any b onto the column space of any $m \times n$ matrix.

2.1 2-D Case

Figure 3: The projection of b onto a

A line goes through the origin in the direction a. Along that line, we want the point p closest to b. The key to projection is orthogonality: The line from b to p is perpendicular to the vector a. This is the dotted line marked e = b - p for the error on the left side of Figure 3. We now comute p by algebra.

The projection p will be a multiple of a. We call it $p = \hat{x}a$. Computing this number \hat{x} will give the vector p. Then from the formula p, we will read off the projection matrix P. These three steps will lead to all projection matrices: find \hat{x} , then find the vector p, then fin the matrix P.

Projecting **b** onto **a** with error $e = b - \hat{x}a$:

$$a \cdot (b - \hat{x}a) = 0$$
 or $a \cdot b - \hat{x}a \cdot a = 0$
$$\hat{x} = \frac{a \cdot b}{a \cdot a} = \boxed{\frac{a^T b}{a^T a}}$$

Theorem 7. The projection of \boldsymbol{b} onto the line through \boldsymbol{a} is the vector $\boldsymbol{p} = \hat{\boldsymbol{x}} \boldsymbol{a} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} \boldsymbol{a}$ Special Case 1: If $\boldsymbol{b} = \boldsymbol{a}$, then $\hat{\boldsymbol{x}} = 1$. The projection of \boldsymbol{a} onto \boldsymbol{a} is itself. $P\boldsymbol{a} = \boldsymbol{a}$. Special Case 2: If \boldsymbol{b} is perpendicular to \boldsymbol{a} , then $\boldsymbol{a}^T \boldsymbol{b} = 0$. The projection is $\boldsymbol{p} = 0$.

Example 2. Project
$$\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 onto $\boldsymbol{a} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ to find $\boldsymbol{p} = \hat{\boldsymbol{x}} \boldsymbol{a}$.
$$\boldsymbol{p} = \hat{\boldsymbol{x}} \boldsymbol{a} = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} \boldsymbol{a} = \frac{\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}} \boldsymbol{a} = \begin{bmatrix} \frac{5}{9} \boldsymbol{a} \end{bmatrix}$$

The error vector between \boldsymbol{b} and \boldsymbol{p} is $\boldsymbol{e} = \boldsymbol{b} - \boldsymbol{p}$. Those vectors \boldsymbol{p} and \boldsymbol{e} will add to $\boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

$$p = \left(\frac{5}{9}, \frac{10}{9}, \frac{10}{9}\right)$$
 and $e = b - p = \left(\frac{4}{9}, -\frac{1}{9}, -\frac{1}{9}\right)$

To get the magnitude of p:

$$||p|| = \frac{||a||||b||\cos\theta}{||a||^2}||a|| = ||b||\cos\theta$$

Now to find the projection matrix,

$$p = a\hat{x} = a\frac{a^Tb}{a^Ta} = Pb$$
 then $P = \frac{aa^T}{a^Ta}$

$$P = \begin{bmatrix} \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{4}{9} \end{bmatrix}$$

P is a column times a row! Then column is \boldsymbol{a} , the row is \boldsymbol{a}^T . Then divide by the number $\boldsymbol{a}^T\boldsymbol{a}$. The projection matrix P is an $m\times m$ matrix, but its rank is 1. We are projecting onto a 1-D subspace, a line through \boldsymbol{a} . That line is the column space of P. Next, we try to project a second time.

$$P^{2} = \begin{bmatrix} \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{4}{9} \end{bmatrix} \begin{bmatrix} \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{4}{9} \end{bmatrix} = \begin{bmatrix} \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{4}{9} & \frac{4}{9} \end{bmatrix} = P$$

$$\boxed{P^{2} = P}$$

Notice that projecting a second time does not change anything. Notice also that P is symmetric.

To summarize:

- 1. C(P) is a line through A
- $2. \operatorname{rank}(P) = 1$
- 3. $P^T = P$, P is symmetric
- 4. $P^2 = P$, projecting a second time does not change anything

2.2 Projection Onto A Subspace

We now move to n vectors a_1, \ldots, a_n in \mathbb{R}^m . We assume that these \mathbf{a} 's are linearly independent. The problem now becomes: how do we find the combination $\mathbf{p} = \hat{\mathbf{x}}_1 a_1 + \ldots + \hat{\mathbf{x}}_n a_n$ closest to a given vector \mathbf{b} ? We are projecting \mathbf{b} in \mathbb{R}^m onto the subspace spanned by the \mathbf{a} 's.

We compute projections onto *n*-dimensional subspaces in three steps as before: **Find a** vector \hat{x} , find the projection $p = A\hat{x}$, find the projection matrix P.

Figure 4: The projection \boldsymbol{p} of \boldsymbol{b} onto $\boldsymbol{S}=$ column space of A

The error vector $\mathbf{b} - A\hat{\mathbf{x}}$ is perpendicular to the subspace. In *n*-dimensions, there will be n equations for $\hat{\mathbf{x}}$. The error makes a right angle with all the vectors a_1, \ldots, a_n in the base. The n right angles give the n equations for $\hat{\mathbf{x}}$.

$$\begin{bmatrix} & a_1^T & & \\ & \vdots & \\ & a_n^T & & \end{bmatrix}$$
 (1)

The combination $\mathbf{p} = \hat{x_1} \mathbf{a}_1 + \ldots + \hat{x_n} \mathbf{a}_n = A\hat{\mathbf{x}}$ that is closest to \mathbf{b} comes from $\hat{\mathbf{x}}$:

$$A^{T}(\boldsymbol{b} - A\hat{\boldsymbol{x}}) = \boldsymbol{0} \quad \text{or} \quad A^{T}A\hat{\boldsymbol{x}} = A^{T}\boldsymbol{b}$$
(2)

This symmetric A^TA is $n \times n$. It is invertible if \boldsymbol{a} 's are independent. The solution $\hat{\boldsymbol{x}} = (A^TA)^{-1}A^T\boldsymbol{b}$. The projection of \boldsymbol{b} onto the subspace is \boldsymbol{p} :

$$p = A\hat{\boldsymbol{x}} = A(A^T A)^{-1} A^T \boldsymbol{b}$$
(3)

To find the projection matrix P:

$$P = A(A^T A)^{-1} A^T \tag{4}$$

The equations above are equivalent to their n=1 counterparts. We use the inverse $(A^TA)^{-1}$ instead of $\frac{1}{a^Ta}$. Matrix inversion is a guarantee because the columns of A are linearly independent.

Here are interesting properties:

- 1. Our subspace is the column space of A
- 2. The error vector $\boldsymbol{b} A\hat{\boldsymbol{x}}$ is perpendicular to that column space
- 3. Therefore $\boldsymbol{b} A\hat{\boldsymbol{x}}$ is in the nullspace of A^T . This means that $A^T(\boldsymbol{b} A\hat{\boldsymbol{x}}) = \boldsymbol{0}$

Example 3. If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $\boldsymbol{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ find $\hat{\boldsymbol{x}}$ and \boldsymbol{p} .

Computing for A^TA and $A^T\boldsymbol{b}$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$$
$$A^{T}\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

Computing for \hat{x}

$$\begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \rightarrow \hat{\boldsymbol{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

Finding p:

$$\boldsymbol{p} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$

Finding the error:

$$e = b - p = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

Finding P:

$$(A^T A)^{-1} = \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 3 \end{bmatrix}$$

$$P = A(A^T A)^{-1} A^T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} * \frac{1}{6} \begin{bmatrix} 5 & -3 \\ -3 & 3 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$

Projecting it twice,

$$P^{2} = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix} * \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$$
$$\boxed{P^{2} = P}$$

If A is a rectangular matrix, then we won't be able to do $(A^TA)^{-1} = A^{-1}(A^T)^{-1}$. This is because A does not have an inverse.

Theorem 8. A^TA is invertible if and only if A has linearly independent columns.

Proof. A^TA and A share the same nullspace in \mathbb{R}^n . A is invertible when its nullspace is the zero vector. The same goes for A^TA . Let A be any matrix. If \boldsymbol{x} is in the nullspace of A, then $A\boldsymbol{x}=\boldsymbol{0}$. Multiplying both sides by A^T gives:

$$A^T A \boldsymbol{x} = \boldsymbol{0}$$

We prove $A\mathbf{x} = \mathbf{0}$ from here. We multiply \mathbf{x}^T to both sides.

$$(x^{T})A^{T}Ax = 0$$
$$(Ax)^{T}(Ax) = 0$$
$$Ax \cdot Ax = 0$$
$$||Ax|| = 0$$

If $A^T A \boldsymbol{x} = \boldsymbol{0}$, then $A \boldsymbol{x}$ has length zero. Therefore $A \boldsymbol{x} = \boldsymbol{0}$. Every vector \boldsymbol{x} in the nullspace of A is also in the nullspace of $A^T A$. If A has dependent columns, then $A^T A$ also has dependent columns. If A has independent columns, then $A^T A$ also has independent columns. In this case, $A^T A$ is invertible.

Theorem 9. When A has independent columns, A^TA is square and invertible.

Proof.

Take the transpose of A^TA :

$$(A^T A)^T = A^T (A^T)^T = A^T A$$
$$(A^T A)^T = A^T A$$

Hence, A^TA is symmetric. Since A has independent columns, this means that A^T is also invertible. Hence, A^TA is invertible.

3 Least Squares Approximations

Sometimes Ax = b has no solution. This is seen in the case of overdetermined systems where there are more equations than unknowns which means that b is outside the column space of A.

We cannot always get e = b - Ax to zero (with zero error, we can solve the system exactly with x). When the length of e is as small as possible, \hat{x} is a least squares solution.

Figure 5: The big picture of least squares. The projection $\mathbf{p} = A\hat{\mathbf{x}}$ is closest to \mathbf{b} , so $\hat{\mathbf{x}}$ minimizes $E = ||\mathbf{b} - A\mathbf{x}||^2$

Remark. When $A\mathbf{x} = \mathbf{b}$ has no solution, multiply by A^T and solve $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Example 4. An important application of least squares is fitting a straight line to m points. This problem is called "linear regression" in statistics. We have to find the closest line to the points (0,6),(1,0), and (2,0).

The general equation for a line is:

$$C + Dx = y$$

From those points, we can generate our matrix A.

$$C + D \cdot (0) = 6$$

$$C + D \cdot (1) = 0$$

$$C + D \cdot (2) = 0$$

We are left with the following system of equations:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \quad \hat{\boldsymbol{x}} = \begin{bmatrix} C \\ D \end{bmatrix} \quad \boldsymbol{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

Figure 6: Points that need to be fitted with a straight line.

We want to solve $A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$:

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$$
$$A^{T}\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

Solving for \hat{x} :

$$\hat{\boldsymbol{x}} = (A^T A)^{-1} A^T \boldsymbol{b} = \begin{bmatrix} \frac{5}{6} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$
$$\hat{\boldsymbol{x}} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

Hence, the equation of the fitted line is:

$$y = 5 - 3x$$

This problem can also be solved through calculus. We want to minimize $||A\boldsymbol{x}-\boldsymbol{b}||^2=||\boldsymbol{e}||^2$

$$||A\mathbf{x} - \mathbf{b}|| = ||\mathbf{e}||^2 = \mathbf{e}_1^2 + \mathbf{e}_2^2 + V\mathbf{e}_3^2$$
$$\mathbf{e}_1^2 + \mathbf{e}_2^2 + \mathbf{e}_3^2 = (C + D \cdot (0) - 6)^2 + (C + D \cdot (1))^2 + (C + D \cdot (2))^2$$

Figure 7: The points and the linear fit.

Setting $||A\boldsymbol{x} - \boldsymbol{b}||^2 = 0$ and taking its partial derivative with respect to C and D

$$\frac{\partial ||\mathbf{e}||^2}{\partial C} = 2(C + D \cdot (0) - 6) + 2(C + D \cdot (1)) + 2(C + D \cdot (2)) = 0$$
$$\frac{\partial ||\mathbf{e}||^2}{\partial D} = 2(C + D \cdot (1)) = 0$$

Reduction will yield A^TA :

$$3C + 3D = 6$$
$$3C + 5D = 0$$

Solution:

$$\hat{\boldsymbol{x}} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$$

Remark. The least squares solution $\hat{\boldsymbol{x}}$ makes $E = ||A\boldsymbol{x} - \boldsymbol{b}||^2$ as small as possible.

Remark. The partial derivatives of $||A\mathbf{x} - \mathbf{b}||^2$ are zero when $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

Example 5. A has orthogonal columns when the measurement times t_i add to zero. Suppose b = (1, 2, 4) and t = (-2, 0, 2). We want to fit these points into a line.

$$C + D \cdot (-2) = 1$$
$$C + D \cdot (0) = 2$$
$$C + D \cdot (2) = 4$$

Notice that the two columns of A are orthogonal via the dot product test $(\mathbf{col}_1 \cdot \mathbf{col}_2 = 0)$. A and \mathbf{b} becomes:

$$A\boldsymbol{x} = \begin{bmatrix} 1 & -2 \\ 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

When the columns of A are orthogonal, A^TA will be a diagonal matrix.

$$A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b} \rightarrow \begin{bmatrix} 3 & 0 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$

We see that A^TA is a diagonal matrix. This makes solving for $\hat{\boldsymbol{x}}$ a lot easier.

4 Orthonormal Bases and Gram-Schmidt

Orthogonality is good. Dot products are zero, so A^TA will be diagonal. It becomes easier to find \hat{x} and $p = A\hat{x}$. The goal of this subsection is to construct orthogonal vectors. The Gram-Schmidt process chooses original basis vectors to produce right angles. Those original vectors are the columns of a non-orthogonal matrix A. The orthonormal basis vectors will be the columns of a new matrix Q.

The vectors $\mathbf{q}_1, \dots, \mathbf{q}_n$ are orthogonal if their dot products $\mathbf{q}_i \cdot \mathbf{q}_j$ are zero whenever $i \neq j$. When we divide each vector by its length, the vectors become orthogonal unit vectors. Their lengths are all 1. Then the basis is called **orthonormal**.

Definition 4.1. The vectors q_1, \ldots, q_n are orthonormal if

$$\boldsymbol{q}_i^T \boldsymbol{q} = \begin{cases} 0 & \text{when } i \neq j \text{ (orthogonal vectors)} \\ 1 & \text{when } i = j \text{ (unit vectors: } ||\boldsymbol{q}_i|| = 1) \end{cases}$$

A matrix with orthonormal columns is assigned the special letter Q.

Remark. A matrix Q with orthonormal columns satisfies $Q^TQ = I$.

$$Q^TQ = egin{bmatrix} & & oldsymbol{q}_1^T & & & \ & dots & \ & & oldsymbol{q}_n^T & & \end{bmatrix} egin{bmatrix} | & & \dots & | & \ & oldsymbol{q}_1 & \dots & oldsymbol{q}_n \ | & \dots & & | \end{bmatrix} = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \end{bmatrix}$$

Theorem 10. When Q is a square matrix, $Q^TQ = I$ means that $Q^T = Q^{-1}$.

Proof.

$$Q^TQ = I$$

Multiplying from the right by Q^{-1}

$$Q^T Q Q^{-1} = I Q^{-1}$$

By definition, $QQ^{-1} = I$. Therefore,

$$Q^T = Q^{-1}$$

Example 6. A rotation matrix is an orthogonal matrix. Q rotates each vector in the plane by the angle θ .

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

These columns give an orthonormal basis for \mathbb{R}^2 .

Example 7. A permutation matrix is also an orthogonal matrix.

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} y \\ z \\ x \end{bmatrix}$$

Theorem 11. Rotations, reflections, and permutations preserve the length of every vector. So does multiplication by any orthogonal matrix Q - lengths and angles do not change!.

Proof.

$$(Q\boldsymbol{x})^T(Q\boldsymbol{x}) = \boldsymbol{x}^TQ^TQ\boldsymbol{x} = \boldsymbol{x}^TI\boldsymbol{x} = \boldsymbol{x}^T\boldsymbol{x}$$

 $||Q\boldsymbol{x}||^2 = ||\boldsymbol{x}||^2$

Theorem 12. If Q has orthonormal columns $(Q^TQ = I)$, it leaves lengths unchanged.

$$||Q\boldsymbol{x}|| = ||\boldsymbol{x}||$$
 for every vector \boldsymbol{x}

Q also preserves dot products: $(Q\mathbf{x})^T(Q\mathbf{y}) = \mathbf{x}^T Q^T Q\mathbf{y} = \mathbf{x}^T \mathbf{y}$

4.1 Projections Using Orthonormal Bases: Q Replaces A

Orthonormal matrices simplify many projection problems. There are no matrices to invert because we can simply use the transpose.

Non-orthonormal	Orthonormal
$A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$	$Q^TQ\hat{m{x}} = Q^Tm{b} ightarrow \hat{m{x}} = Q^Tm{b}$
$oldsymbol{p} = A^T \hat{oldsymbol{x}}$	$oldsymbol{p} = Q^T \hat{oldsymbol{x}} = Q Q^T oldsymbol{b}$
$P = A(A^T A)^{-1} A^T$	$P = Q(Q^T Q)^{-1} Q^T = QQ^T$

Projection onto q's:

$$m{p} = egin{bmatrix} ig| & m{q}_1 & \dots & m{q}_n \ m{q}_1 & \dots & m{q}_n \ m{q}_n & m{b} \end{bmatrix} egin{bmatrix} m{q}_1 m{b} \ m{q}_n m{b} \end{bmatrix} = m{q}_1 (m{q}_1^T m{b}) + \dots + m{q}_n (m{q}_n^T m{b})$$

Important Case: When Q is square, the subspace is the whole space. Then $Q^T = Q^{-1}$ and $\hat{\boldsymbol{x}} = Q^T \boldsymbol{b}$ is the same as $\hat{\boldsymbol{x}} = Q^T \boldsymbol{b}$. The solution is exact. The projection of \boldsymbol{b} onto the whole space is \boldsymbol{b} itself. In this case, $\boldsymbol{p} = \boldsymbol{b}$ and $P = QQ^T = I$.

When p = b, our formula assembles b out of its 1-dimensional projections. If q_1, \ldots, q_n is an orthonormal basis for the whole space, then Q is square. Every $b = QQ^Tb$ is the sum of its components along the q's.

$$\boldsymbol{b} = \boldsymbol{q}_1(\boldsymbol{q}_1^T \boldsymbol{b}) + \ldots + \boldsymbol{q}_n(\boldsymbol{q}_n^T \boldsymbol{b}) \tag{5}$$

Remark. $QQ^T = I$ is the foundation of Fourier series and all great "transforms" of applied mathematics. They break vectors \mathbf{b} or functions f(x) into perpendicular pieces. Then by adding the pieces in Equation 6, the inverse transform puts \mathbf{b} and f(x) back together.

4.2 Gram-Schmidt Process

Example 8. Start with three independent vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$. Our goal is to make three orthogonal vectors $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$. At the end, we divide each orthogonal vector by their lengths. The result is $\boldsymbol{q}_1 = \boldsymbol{A}/||\boldsymbol{A}||$, $\boldsymbol{q}_2 = \boldsymbol{B}/||\boldsymbol{B}||$, $\boldsymbol{q}_3 = \boldsymbol{C}/||\boldsymbol{C}||$.

Begin by choosing the first orthogonal vector as:

$$A = a$$

The next direction \boldsymbol{B} must be perpendicular to \boldsymbol{A} . Start with \boldsymbol{b} and subtract its projection along \boldsymbol{A} :

$$oldsymbol{B} = oldsymbol{b} - rac{oldsymbol{A}^Toldsymbol{b}}{oldsymbol{A}^Toldsymbol{A}} oldsymbol{A}$$

 \boldsymbol{B} is the same as the error vector \boldsymbol{e} perpendicular to \boldsymbol{A} . For the next Gram-Schmidt step, we subtract off C's components in the two directions of A and \boldsymbol{B} to get a perpendicular direction \boldsymbol{C} .

$$C = oldsymbol{c} - rac{oldsymbol{A}^Toldsymbol{c}}{oldsymbol{A}^Toldsymbol{A}}oldsymbol{A} - rac{oldsymbol{B}^Toldsymbol{c}}{oldsymbol{B}^Toldsymbol{B}}oldsymbol{B}$$

The goal of the Gram-Schmidt process is to subtract from every new vector its projections in the directions already set. Finally, the next step is to normalize the orthogonal vectors A, B, C.

4.3 Factorization of A = QR

The goal of QR factorization is to relate A and Q using A = QR, where R is a triangular matrix. QR decomposition is Gram-Schmidt in a nutshell.

$$A = QR$$

$$\begin{bmatrix} | & | & | \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \mathbf{q}_1^T \mathbf{a} & \mathbf{q}_1^T \mathbf{b} & \mathbf{q}_1^T \mathbf{c} \\ & \mathbf{q}_2^T \mathbf{b} & \mathbf{q}_2^T \mathbf{c} \\ & & \mathbf{q}_3^T \mathbf{c} \end{bmatrix}$$

To get R, we simply multiply both sides by Q^T then we get $R = Q^T A$.

Definition 4.2. From independent vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$, Gram-Schmidt constructs orthonormal vectors $\mathbf{q}_1, \ldots, \mathbf{q}_n$. The matrices with these columns satisfy A = QR. Then $R = Q^T A$ is upper triangular because later \mathbf{q} 's are orthogonal to earlier \mathbf{a} 's

Any $m \times n$ matrix A with independent column vectors can be factored into A = QR. The $m \times n$ matrix Q has orthonormal columns, and the square matrix R is upper triangular with a positive diagonal. QR factorization is important to least squares because:

$$A^T A = (QR)^T (QR) = R^T Q^T QR = R^T R$$

$$\tag{6}$$

Then the least squares equation $A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$ simplifies to $R^T R \hat{\boldsymbol{x}} = R^T Q^T \boldsymbol{b}$. Then we reach:

$$R\hat{\boldsymbol{x}} = Q^T \boldsymbol{b} \tag{7}$$

Remark. Least squares becomes $R^T R \hat{\boldsymbol{x}} = R^T Q^T \boldsymbol{b}$ or $R \hat{\boldsymbol{x}} = Q^T \boldsymbol{b}$ or $\hat{\boldsymbol{x}} = R^{-1} Q^T \boldsymbol{b}$

5 Problems

Problem 1.1. asd

Solution. soln