SEAN C. LEWIS

Ph.D. Candidate \diamond Deptartment of Physics \diamond Drexel University Philadelphia, PA 19104, USA

sean.christian.lewis@drexel.edu

RESEARCH INTERESTS

Computational astrophysics, including the formation of evolution of star clusters, the impact of massive stars and stellar feedback, and software development for migrating astrophysical simulation codebases.

EDUCATION

Drexel University

Ph.D. Student/Candidate of Physics

2017 – Present

M.S. in Physics

2019

California Polytechnic State University

B.S. in Physics Cum Laude

2016

POSITIONS HELD

Drexel University

2017 - Present

Teaching Fellow; Research Fellow

Department of Physics

California Polytechnic State University

2015 - 2016

Research Assistant
Department of Physics

AWARDS AND HONORS

Chambliss Astronomy Achievement Honorable Mention, American Astronomical Society	2020
Department of Physics Teaching Excellence Award, Drexel University	2019
CoAS Dean Honors List, California Polytechnic State University	2012 – 2016

RESEARCH HISTORY

2021-Present Hydrodynamical Simulation Data Structure Conversion

Developed a novel software technique for transferring simulation data from a Voronoi mesh data structure to a block-based adaptively refined grid structure utilizing matrix manipulation and interpolation.

2018-Present Early Forming Massive Stars

Developed a controlled experiment using the high performance coupled magnetoydrodynamic, radiation, and N-body software suite Torch to determine the effects of the formation time of very massive stars, an under-tested parameter space. Time series data analysis and cluster identification techniques revealed that early forming massive stars had significant effect on star cluster development and evolution.

REFEREED PUBLICATIONS

Lewis, S. C., McMillan, S. L. W., Mac Low, M-M., Cournoyer-Cloutier, C., Polak, B., Wilhelm, M. J. C., Tran, A., Sills, A., Portegies Zwart, S., Klessen R., and Wall, J. E., "Early Forming Massive Stars Suppress Star Formation and Hierarchical Cluster Assembly," Submitted to ApJ (2022)

- Cournoyer-Cloutier, C., Tran, A., Lewis, S. C., Wall, J. E., Harris, W. E., Mac Low, M-M., McMillan, S. L. W., Portegies Zwart, S., and Sills, A., "Implementing primordial binaries in simulations of star cluster formation with a hybrid MHD and direct N-body method", MNRAS 501, 4464–4478 (2021) [arXiv:2011.06105]
- 1. Bennert, V., N., Loveland, D., Donohue, E., Cosens, M., **Lewis, S. C.**, Komossa, S., Treu, T., Malkan, M. A., Milgram, N., and Flatland, K., "Studying the O III $\lambda 5007$ emission-line width in a sample of ~ 80 local active galaxies: a surrogate for σ ", MNRAS. **481**, 138–152 (2018) [arXiv:1808.04821]

CONFERENCES AND TALKS

Contributed Talks

- "The Effects of Early Forming Massive Stars & A Novel Method for Inter-codebase Interpolation" Clusters 2022, McMaster University 23 Aug. 2022
- "Quantifying the Effects of O-type Star Formation in Embedded Stellar Clusters"

 Modest 21a Virtual Conference

 Jul. 2021
- "Using the MHD code FLASH to create a protoplanetary disk"
 Phyics Ph.D. Candidacy Exam, Drexel University

 4 Jun. 2019

Poster Presentations

- "The Effects of Early Massive Star Formation: Gas Expulsion and Cluster Dynamics" American Astronomical Society – 238th Conference Jun. 2021
- "The effects of O-type star formation in embedded stellar clusters."

 American Astronomical Society 236th Conference

 Jun. 2020
- "Was the first observed hypervelocity globular cluster, HVGC-1, accelerated by a supermassive binary black hole?" American Astronomical Society – 233rd Conference

- "The mystery of a hypervelocity globular cluster: is a binary black hole to blame?"

Drexel Emerging Graduate Scholars, Drexel University Sept. 2018

Jan. 2019

SOFTWARE DEVELOPED

Authored	
VorAMR	A robust tool that utilizes numpy matrix manipulation, scipy nearest neighbor interpolation and the AMUSE software suite to convert output data from any Voronoi mesh data structure to input data for adaptive block-based structures. Publicly available code written in Python. https://bitbucket.org/torch-sf/voramr/src/main
PythonOpenMPI	A generalizable utility for efficient task-based parallel programming using the mpi4py library. Publicly available code written in Python. https://github.com/seanlabean/PythonOpenMPI
Contributed	
Torch	A star cluster formation simulation software suite that couples the AMUSE framework with the magnetohydrodynamical code FLASH. Publicly available

code written in Python. https://bitbucket.org/torch-sf/torch/src/main/src/