CIS501 – Lecture 16

Woon Wei Lee Fall 2013, 10:00am-11:15pm, Sundays and Wednesdays

For today:

- Neural Networks
 - Perceptron network
 - Multi-layer Perceptrons intro
- Presentations
 - Khawla Masood Aldhaheri
 - Tesfagabir Meharizghi

Neural Networks

- Biologically inspired computing paradigm based on the functioning of the human brain.
 - ≈10¹¹ Neurons
 - ≈10¹⁴ inter-neural connections
- Desirable properties / Motivations:
 - It's awesome! nothing approaches the flexibility and speed (in certain aspects) of the brain
 - Massively parallel computing architecture
 - easy for implementation on a large number of smaller/cheaper computing units
 - Redundancy and distributed computing damage to parts of the brain are often either "repaired", or the brain works around it
 - Stories of patients surviving horrendous damage to the brain without serious cognitive defects

Neural Networks (Cont'd)

Based on "actual" (Biological) neurons:

- Inputs from other neurons collected through "Dendrites" and aggregated
- Operates on "all or nothing" principle →
 - If aggregated inputs do not exceed a certain threshold, nothing happens
 - If threshold exceed, neuron "fires"
 - Transmitted to downstream neurons via "Axon"
- Reminiscent of a step function (recall from previous lecture..)
- Believed to be basic unit of pattern recognition

McCulloch-Pitts Neuron

 Mathematical abstraction which aims to re-produce the operation of the neuron

- Diagram above shows single "neuron". Operates as follows:
 - As before, can take a number of inputs x₁ ... x_n
 - Inputs are aggregated (summed) via the weight parameters, $w_1 \dots w_n$
 - Bias term b can adjust the "threshold"
 - Result is the activation term, a
 - Activation is transformed via a "transfer function" f(.), to produce the neuron output:

$$Output = f(a) = f\left(\sum_{i=1}^{n} w_i \cdot x_i + b\right)$$

Broader perspective

- In general, the term "network" can be misleading..
 - A neural network can be as simple as a single neuron
 - Alternative term neural computing possibly more representative
- Two general classes:
 - Feed-forward neural networks
 - Perceptrons
 - Multi-Layer Perceptrons
 - RBFs
 - SOMs
 - Hebbian Networks
 - Recurrent neural networks
 - Hopfield Networks
 - Boltzmann Networks
 - "Modern" approaches
 - Support Vector Machines
 - Gaussian Processes

Supervised, Classification/Regression

Un-supervised, Clustering/Visualization

Perceptron

Simplest class of feedforward network

- As in figure above, but f(.) is a step function
- Input weights w₁...w_n define a direction in the input space, bias b defines the location of the decision threshold.

Example: OR boolean function

- Consider the following mapping:
 - $\{[(1,1),1],[(0,1),1],[(1,0),1],[(0,0),0]\}$
- This can be approximated using a perceptron network with the following parameters:

-
$$W_1=1$$
; $W_2=1$; $b=0.5$

 The corresponding decision boundary is denoted as shown on left:

Perceptron

Example 2: AND boolean function

- Consider the following mapping:
 - $\{[(1,1),1],[(0,1),0],[(1,0),0],[(0,0),0]\}$
- This can be approximated using a perceptron network with the following parameters:
 - W_1 =1; W_2 =1; b=1.5
- · Decision boundary is denoted as shown on left
 - note that the weight vectors remain the same, only the bias term has changed, resulting in a shift in the decision boundary along the direction of w

Example 3: NOT boolean function

- NOT logic function:
 - $\{[(1,1),0],[(0,1),0],[(1,0),0],[(0,0),1]\}$
- Corresponding perceptron network has the following parameters:
 - $W_1=-1$; $W_2=-1$; b=0.5
- Decision boundary shown on left. Note the reversal in the direction of w

Perceptron training

- (OR function revisited)
- Two possible situations:
 - There are no errors:
 - Perceptron is trained → terminate learning
 - There are errors, initiate "perceptron learning":
 - Situation is as depicted on right point (1,0) is misclassified; w₄=2, w₂=1
 - Basic intuition:
 - For the points that are correctly classified, do nothing
 - For points that are wrongly classified, need to update these points
 - Update should be based on the misclassified point
- General form which satisfies these requirements:

$$\boldsymbol{w}(n+1) = \boldsymbol{w}(n) + \eta(t-y)\boldsymbol{x}$$

- This expression is known as the Perceptron Learning Rule
- It can be seen that:
 - when the output matches the target, no update is performed
 - Let's examine what happens in event of mismatch..

Perceptron training (cont'd)

In this case, this expression gives us:

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(t-y)\mathbf{x}$$
$$= \begin{pmatrix} 1\\2 \end{pmatrix} + \eta \cdot (1-0) \cdot \begin{pmatrix} 1\\0 \end{pmatrix}$$

- η is a learning rate constant
 - (not necessarily constant but let's assume it is!)
 - Determines the speed at which the weights are adjusted – typically set heuristically
 - Regardless of the actual value, this update clearly moves w towards the desired value
- NOT operation example →
 - misclassified point is (0,1)
 - Update term is:

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(t-y)\mathbf{x}$$
$$= \begin{pmatrix} -2 \\ -1 \end{pmatrix} + \eta \cdot (0-1) \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

i.e. result is weight get's closer to desired value of (-2,-2)

Perceptron training (cont'd)

- Perceptron "neural network" is plagued by a number of shortcomings:
 - Really only suitable for very simple problems
 - Training algorithm does not lead to good separation of patterns
 - Resulting from binary output
 - Perceptron learning algorithm is based on ad-hoc intuition
 - difficult to improve!
 - Only works with problems that are linearly separable
 - AND, OR and NOT are ok
 - XOR (depicted left) is a simple classification problem, but not soluble using perceptrons

Multi-Layer Perceptrons

- MLP structure shown on right →
- In present situation, we would require
 - Single hidden layer
 - Two hidden units
- In general, MLPs can have as many hidden layers as required, however..
 - A single layer is capable of approximating arbitrary functions

- XOR can be solved by combining two separate decision boundaries as shown (w¹ and w²)
- The outputs of the individual perceptrons then become an "OR" problem (linearly separable).
- The resulting architecture is known as a "multi-layer" perceptron (for obvious reasons)
- Frequently referred to as an "MLP"

Multi-Layer Perceptrons (Cont'd)

- Next problem how to train an MLP
- Perceptron learning rule is not suitable → no way to determine the errors at the internal layers to perform updates
 - What is needed is a transfer function which is "smooth" (i.e. differentiable)
 - allows errors at the output layer to be propagated back to the internal layers
 - Also, probabilistic interpretation for output function would be nice!
 - → Logistic function!
- Note: MLPs are suitable for both regression and classification
 - Difference is in the transfer function
 - Logistic function is the choice method for classification, but for regression, MLPs with linear outputs can be used
 - (the main requirement is that the function is differentiable)
- Basic principle for training:
 - Start with a randomly chosen initial weight value
 - Determine suitable change in weight value which would result in reduction in the network error
 - Update weights, iterate until convergence...

Gradient Descent

- Gradient descent is an Iterative parameter optimization technique
 - Start with initial value, $x_0 \rightarrow$
 - The goal is to find the minimum in the function E(x) (the "error" or "objective" function)
 - At each iteration, need an update term which "improves" on current value of *x*
- Suitable *direction* and *magnitude* of update can be found via the gradient of the error function at a given point.
- Update is of the form:

$$x(n+1) = x(n) - \frac{\eta \cdot dE(x)}{dx}$$

Termination of the learning can be found when gradient equals zero

 For multivariate x, same procedure can be applied but by using the vector gradient:

$$\frac{dE(\mathbf{x})}{d\mathbf{x}} = \left(\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2}\right)$$

As before, η is a learning rate parameter which is set heuristically

Gradient Descent (single layer)

- The gradient descent procedure describe previously translates directly to NN context
 - For single layer case:

$$E(w) = \sum_{i=1}^{n} \left[y(x(i)) - t_i \right]^2$$

$$= \sum_{i=1}^{n} \left[f\left(\sum_{j=1}^{3} w_j x_j(i)\right) - t_i \right]^2$$

 For each w_p we can find the partial derivative w.r.t. the error function thus:

$$\Rightarrow \frac{\partial E(w)}{\partial w_k} = \sum_{i=1}^n 2 \cdot [y(x(i)) - t_i] \cdot f'(a) \cdot x_k$$

- Note the similarity between this and the perceptron rule
 - Only difference is the f'(.) term
 - General principle: if there is an error, and this input is large, change the weight!
 - Known as Hebbian Learning

Backpropagation

 For the MLP, the error is simply "propagated" back through the network layers:

$$E(w) = \sum_{i=1}^{n} \left[y(x(i)) - t_i \right]^2$$

$$= \sum_{i=1}^{n} \left[f\left(\sum_{j=1}^{3} v_j g\left(\sum_{k=1}^{3} w_{jk} x_k(i)\right)\right) - t_i \right]^2$$

As before, gradient calculations through chain rule:

$$\Rightarrow \frac{\partial E(w)}{\partial w_k} = \sum_{i=1}^n 2 \cdot [y(x(i)) - t_i] \cdot f'(a_2) \cdot v_2 \cdot g'(a_1) \cdot x_k$$

- Just one thing left, finding those pesky f'(.) and g'(.)'s?
 - Depending on transfer function.. most commonly used ones are linear (f'(.)=1) and logistic.
 - For logistic function:

$$\frac{df}{dx} = \frac{d\left[\frac{1}{1 + e^{-x}}\right]}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2}$$

