2-6. 圣言当台》 改为部分 印度

主告对台217.

O(201) CL^2 $SIGC Z' (LETSCE), Q^X (ZISSES), 109eX (ZZSLES), <math>SIGX$, COS X, FANX (SSLESSES) = 012E \$36

Flan St.		知為是以可能
D1725	χʻ	1×1-1
71535	Cx, EXCIT)	e^{χ} , $e^{\chi}(\chi)$
	Q^{χ}	ax 109ea
3206	109e2 (200)	(X
15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sin DC	CXX
	CoSX	-S71)C
	fanz	ا

7.43491 32349 DIME 2022 Sh 2021 3234 536 32 3234 5356 32 3234 52 3

$$J = e^{2C} \qquad \frac{5 = \frac{1}{h}}{h} \qquad \frac{e^{x+h} - e^{x}}{h}$$

$$= \frac{1}{h} \qquad \frac{e^{x} (e^{h} - 1)}{h}$$

$$= e^{x} \frac{e^{h} - 1}{h}$$

6-2-H ex = DIBAL 2-17 2-4-19 3/2.

$$y = \alpha^{2} \qquad \frac{36\%}{h} \qquad y' = \frac{17n}{h} \qquad \frac{\alpha^{2}(a^{h} - \alpha^{2})}{h}$$

$$= \frac{17m}{h-20} \qquad \frac{\alpha^{2}(a^{h} - 1)}{h} \qquad \frac{3m^{2}2}{h} \qquad \alpha$$

$$= \alpha^{2} \times \frac{17m}{h} \qquad \alpha$$

$$= \alpha^{2} \times \frac{109e^{\alpha}}{h} \qquad \alpha$$

$$\frac{22569}{4}$$

$$\frac{235}{5}$$

$$\frac{235}{5}$$

$$\frac{17m}{5}$$

$$\frac{$$

$$\lim_{x \to \infty} \left(\frac{1+x}{x} \right)^{\frac{1}{x}} = \lim_{x \to \infty} \frac{1}{h} \times \ln \left(\frac{1+x}{x} \right)$$

$$= \lim_{x \to \infty} \frac{1}{h} \times \ln \left(\frac{1+x}{x} \right)$$

$$= \lim_{x \to \infty} \frac{1}{h} \times \ln \left(\frac{1+x}{x} \right)$$

$$= \lim_{x \to \infty} \frac{1}{h} \times \ln \left(\frac{1+x}{x} \right)$$

$$=\frac{1}{2}\times$$

$$y' = \frac{1}{\ln \alpha} \times (\ln x)'$$

$$y' = \frac{1}{1n\alpha} \times \frac{\Gamma}{2c}$$

图 题表对

@ sitesit (FIFT IM) A= [CO) ARA

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} \implies Charn Rule (CHANGE)$$

的部件(新知公知) Z=f(以外)可以是實

$$\frac{\chi_{\text{oll}} \chi_{\text{in}}}{215^{6} z^{\text{cm}}} \frac{\partial z}{\partial \chi} = \frac{\partial z}{\partial u} \chi \frac{\partial u}{\partial \chi} + \frac{\partial z}{\partial \chi} \chi \frac{\partial v}{\partial \chi}$$

O हुन धुने

$$\frac{d}{dx} \left\{ f(x)g(x) \right\} = \frac{df(x)}{dx} g(x) + f(x) \frac{dg(x)}{dx}$$

()4/27/

$$\frac{df(x)}{dx} = \frac{df(x)}{du} \times \frac{du}{dx}$$

$$= \frac{d(3x-4)^{6}}{d(3x-4)} \times \frac{d(3x-4)}{dx}$$

$$= 50(3x-4)^{69} \times 3$$

$$= 150(3x-4)^{69} \times 3$$

$$u = 3x + 1$$
, $V = x + y + (0) = 12 + 2 - 12 = (0) =$

$$\frac{\partial f(x,y)}{\partial x} = \frac{\partial f(x,y)}{\partial x} \times \frac{\partial u}{\partial x} + \frac{\partial f(x,y)}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial u^{2}}{\partial x} \times \frac{\partial u}{\partial x} + \frac{\partial v^{3}}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial u}{\partial x} + \frac{\partial v^{3}}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial x}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x} \times \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}$$

$$\frac{(2)^{2}}{(2)^{2}} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2}$$

0/32/2016/2

- 1/305016 3/4 2022 5/30 Gol 3050105017171612 9 2/3 11-321(4) = 23/30 6 2/32 6/32 6/32
- 一时间,对别为强化剂量为几个1010(全沙克 7-安阳 起时发起 在安工 2012)
- Olym Folton Cham Rule of High

Ly 0/2 BackPropagation, Dir Grogety of 22 of