LINEAR ALGEBRA: ANSWER TO HOMEWORK 7

VISHVAS VASUKI

1. 24.1

 $A \in C^{m \times m}.$

1.1. a.

Theorem 1.1.1. $k \in C$. l is an ew of A. Then, l-k is an ew of A-kI.

Proof. As 1 is an ew of A, det(A - lI) = 0. So, det(A - kI - lI + kI) = 0. So det(A - kI - (l - k)I) = 0. So, l-k is an ew of A-kI.

1.2. **b.**

Theorem 1.2.1. The following claim is false: "A is real. l is an ew of A. Then, so is -l."

Proof. A = [a]. Now, Ax = ax for any 1×1 x. So, a is an eigenvalue of A. Also, there cannot be anyother ew as the eigenspace of a spans the entire space.

1.3. **c.**

Theorem 1.3.1. A is real. l is an ew of A. Then, so is \bar{l} .

Proof. Let P be the characteristic polynomial. As A is real, the coefficients in P are real. As l is an ew of A, P(l) = 0.

$$P(l) = \sum a_i l^i = 0 = \sum a_i l^i = \sum a_i \bar{l}^i = \sum a_i \bar{l}^i = P(\bar{l}).$$
 So, \bar{l} is also an ew of A.

1.4. **d.**

Theorem 1.4.1. l is an ew of A. A is nonsingular. Then, l^{-1} is ew of A^{-1} .

Proof.
$$\exists x \neq 0 : Ax = lx$$
. So, $xl^{-1} = A^{-1}x$. Thus, l^{-1} is ew of A^{-1} .

1.5. **e.**

Theorem 1.5.1. The following claim is false: If all ews of A are 0, A = 0.

Proof. Take $A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$. $A - lI = \begin{pmatrix} -l & a \\ 0 & -l \end{pmatrix}$; and the characteristic polynomial is $l^2 = 0$. So, all eigenvalues of A are 0; but $A \neq 0$.

1.6. **f.**

Theorem 1.6.1. $A = A^*$. l is an ew of A. Then |l| is a singular value of A.

Proof. As a consequence of a theorem is stated in [1], which follows directly from the theorem about the existence of the Schur factorization, A is unitarily diagonalizable.

So, $A = QLQ^*$. Rearranging, and fixing the signs of the columns of Q and L to ensure that $L_{i,i} \geq 0$, and that they occur in descending order, we arrive at $A = Q'\Sigma Q'^*$, where the elements of the diagonal matrix Σ are the same as the elements of the diagonal matrix L. But, this is the unique SVD of A.

So, |l| is a singular value of A.

1.7. **g.**

Theorem 1.7.1. A is diagonalizable. All its ew's are equal. Then A is a diagonal matrix.

Proof. Let $A = SLS^{-1}$ be the eigenvalue decomposition. But, we know that L = lI. So, $A = lSIS^{-1} = lI$. So, A is a diagonal matrix.

9

Theorem 2.0.2. Let \hat{x} be the solution of hermitian positive definite system Ax = b via Cholesky Factorization (Algorithm 23.1, Trefethen and Bau). Let \hat{x} be the exact solution to the following perturbed system: $(A + \delta A)\hat{x} = b$. Show that $\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} \leq 3n^2 \epsilon_m$.

Remark 2.0.3. You can use the error analysis for LU factorization discussed in the class.

Proof. Using the result from the error analysis for LU factorization, we know that $|\delta A| \leq 3n\epsilon |L||U|$. But, as A is positive definite and Hermitian, $|L||U| = |L||DL^*| = |L||D^{0.5}D^{0.5}L^*| = |L||D^{0.5}||D^{0.5}L^*| = |L||D^{0.5}||D^{0.5}L^*| = |R||R^*|$, where $D^{0.5}$ involves taking the +ve square roots of $\{D_{i,i}\}$, which means that $|D^{0.5}L^*| = |D^{0.5}||L^*|$ and $|LD^{0.5}| = |L||D^{0.5}|$.

So, $\||\delta A|\|_{\infty} = \|\delta A\|_{\infty} \le 3n\epsilon \, \||R||R^*|\|_{\infty} \le 3n\epsilon \, \||R|\|_{\infty} \, \||R^*|\|_{\infty} = 3n\epsilon \, \|R\|_{\infty} \, \|R^*\|_{\infty} \le 3n^2\epsilon \, \|R\|_2 \, \|R^*\|_2$ (Using facts proved in exercise 3.2.). We know that $\|R\|_2 = \|R^*\|_2$ (using SVD). So, $\|\delta A\|_{\infty} \le 3n^2\epsilon \, \|R\|_2^2 = 3n^2\epsilon \, \|A\|_2 \le 3n^{5/2}\epsilon \, \|A\|_{\infty}$. (Using a fact from the last section of lecture 23 of [1].)

Remark 2.0.4. We proved a slightly weaker bound above.

References

[1] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Siam, 1997.