Rules: online test in lms, no proctoring, 20 questions, 60 minutes, only numerical answers are checked, two digits after decimal point are requested, use anything you want (calculators, python/r code, google, ...), don't cheat.

- 1. (bootstrap) I have a sample X_1 , ..., X_{100} .
 - I generate one naive bootstrap sample X_1^* , ..., X_{100}^* .

What is the probability that the first observation will be present in the bootstrap sample 2 times or more?

2. (bootstrap) Nature generates random variables X_1 , ..., X_{100} independently and uniformly on [0; 10].

I generate one naive bootstrap sample X_1^* , ..., X_{100}^* .

Find the variance $Var(X_1^*)$.

3. (welch) We have data for an AB-experiment $\bar{X}_a = 10$, $\bar{X}_b = 12$, $n_a = 20$, $n_b = 30$, $\sum (X_i^a - \bar{X}_a)^2 = 100$, $\sum (X_i^b - \bar{X}_b)^2 = 200$.

Calculate the standard error of $\bar{X}_a - \bar{X}_b$ for the Welch test.

4. (welch) Assume that X_i are independent and identically normally distributed $\mathcal{N}(\mu, \sigma^2)$, sample size is n = 10.

Find
$$Var(\sum (X_i - \bar{X})^2/(n-1))$$
.

- 5. (mw test)
- 6. (mw test)
- 7. (cuped)
- 8. (cuped)
- 9. (matching)
- 10. (matching)
- 11. (multiple comparison)
- 12. (multiple comparison)
- 13. (sample size)
- 14. (sample size)
- 15. (contingency table) I eated 10 M&Ms: 2 green, 1 red, 4 yellow, 1 green, 2 red.

Only these three colors are possible. I assume that yellow and green colors are equally probable.

Calculate the maximal log likelihood for my model.

16. (contingency table) Consider the following contingency table

	B = 1	B=2
$\overline{A=1}$	10	20
A = 2	30	40

Calculate LR statistic that checks the hypothesis that A and B are independent against dependency alternative.

- 17. (anova 1+2)
- 18. (anova 1+2)
- 19. (partial correlation) The variables X and Y are jointly normal with zero means, unit variances and $\operatorname{Corr}(X,Y)=0.8$.

Find α such that $X^* = X - \alpha Y$ is not correlated with Y.

20. (partial correlation) The variables $X_1, X_2, ...$ are independent and identically distributed with mean 5 and variance 7.

Find $pCorr(X_1, X_2; S)$ where $S = X_2 + X_3$.