pXp analysis

Luiz Emediato (Sao Paulo)
Tom McDowell, Cory Rude, Brandon Williams,
Jane Nachtman (Ulowa)
Mike Albrow (FNAL)

Overview

- 4-track 2015 sample
- 4-pion mass distribution using PID
- ratio TTBB/DIAG: spike
- transverse x and y position of the vertex
- understanding the vertex collection
- looking for the secondary vertex for the K-shorts: MyKshorts class
- Kshort collection
- Kshort mass distribution
- Kshort x, y, z, pt, eta, phi
- Kshort lifetime
- Lambda collection

TTBB+DIAG variable bins

cut 2, Q=0

125 bins: 0.0 to 2.5 GeV/c²

60 bins: 2.5 to 4.0 GeV/c²

80 bins: 4.0 to 8.0 GeV/c²

TTBB+DIAG variable bins

ratio TTBB/DIAG variable bins

ratio TTBB/DIAG variable bins

nvtx=1 only

nvtx=2 only

they look like pretty much primary

vtx.isFake()

Ntrk for nPixelHits>0

Nvtx

Ntrkvtx

Ntrkvtx2

4-pion and pion-pair mass distributions

new conditions:

- 1. pTcut=0.0
- 2. no CTpycut
- 3. no CTpxcut
- 4. PID yes
- 5. total charge = 0
- 6. charge of the pion-pairs = 0
- 7. fiducial yes

X vs Y vtx

X vs Z vtx

Y vs Z vtx

Vertex Collection: using itVtx → Print() per

event:		
vertex information:	vertex information:	vertex information:
id : 0	id : 0	id : 0
x : 0.0868251	x : 0.0445989	x : 0.0719692
y : 0.13628	y : 0.135187	y : 0.0268902
z : -0.700064	z : 6.41865	z : -5.04181
error x : 0.149151	error x : 0.0312259	error x : 0.0355899
error y : 0.0408441	error y : 0.0336866	error y : 0.0282491
error z : 0.264829	error z : 0.0297338	error z : 0.150801
validity : 1	validity : 1	validity : 1
fake: 0	fake: 0	fake: 0
chi2 : 0.0083628	chi2 : 0.991081	chi2 : 2.91895
ndof : 0.942757	ndof : 4.86067	ndof : 2.80123
chi2n : 0.00887058	chi2n : 0.203898	chi2n : 1.04202
ntracks : 2	ntracks : 4	ntracks : 3
SumPtTracks: 0.737237	SumPtTracks: 1.03838	SumPtTracks: 1.58472

So far we do not have secondary vertex information in the code, only primary.

However, we do have secondary vertex in the data: K-shorts do appear! see next plots

$M_{\pi_1\pi_2} \!\!+\! M_{\pi_3\pi_4} \!\!+\! M_{\pi_1\pi_3} \!\!+\! M_{\pi_2\pi_4} \ OS$

 $M_{\pi_3\pi_4}\,OS$ # of events/0.02GeV/c2 hm2rec2OS_pi3pi4 500 **Entries** 4878 0.5858 Mean 497MeV/c² Std Dev 0.219 400 300 350MeV/c² 200 job#142 100 0.2 1.6 0.4 0.6 8.0 1.2 1.4 31 M (GeV/c²)

- why do we have a K-short peak in the pion-pair mass distributions requesting ntrkvtx=2 and nvtx=1 for the 4-track events but the transverse x & y positions are primary?

it seems contradictory!

- do we have access to the secondary vertex collection?
 (for instance, we do not have a Phi collection or MyPhis class)
- is it possible to have access the secondary vertex code?

Kshort mass distribution using the kshort collection via MyKshorts class

```
Accessing the Kshort collection - secondary vertex :
#include "UATree/UADataFormat/interface/MyKshorts.h"
defining the Kshort vector:
vector<MyKshorts>* kshort coll = NULL;
accessing de Kshort branch:
tree → SetBranchAddress("Kshort",&kshort coll);
loop over events nested with
  loop over Kshorts in the collection:
    int nks=0:
    for(vector<MyKshorts>::iterator it ks = kshort coll->begin(); it ks != kshort coll-
>end(); ++it ks){
     nks++:
     bool isKshort = nks;
     double ksvertexx = it ks->vertexx;
     double ksvertexy = it ks->vertexy;
     double ksvertexz = it ks->vertexz;
                                                                                 36
                                                         ...continue
```

```
double kspt = it ks->pt;
     double kseta = it ks->eta;
     double ksphi = it_ks->phi;
     double ksmass = it ks->mass;
     double ksradius = TMath::Sqrt((ksvertexx-xvtx)*(ksvertexx-xvtx)+
(ksvertexy-yvtx)*(ksvertexy-yvtx));
     double energy = TMath::Sqrt(kspt*kspt+0.4976*0.4976);
     double gamalorentz = energy/0.4976;
     double kslifetime = ksradius/gamalorentz;
     histosTH1F["hkspt"]->Fill(kspt,wei);
     histosTH1F["hkseta"]->Fill(kseta,wei);
     histosTH1F["hksphi"]->Fill(ksphi,wei);
     histosTH1F["hksmass"]->Fill(ksmass,wei);
     histosTH1F["hksvertexx"]->Fill(ksvertexx,wei);
     histosTH1F["hksvertexy"]->Fill(ksvertexy,wei);
     histosTH1F["hksvertexz"]->Fill(ksvertexz,wei);
     histosTH1F["hksradius"]->Fill(ksradius,wei);
     histosTH1F["hkslifetime"]->Fill(kslifetime,wei);
     histosTH2F["h2dimksxy"]->Fill(ksvertexx,ksvertexy);
     histosTH2F["h2dimksxz"]->Fill(ksvertexx,ksvertexz);
     histosTH2F["h2dimksyz"]->Fill(ksvertexy,ksvertexz);
     it ks->Print();
    histosTH1F["hnks"] → Fill(nks);
```

Nks

Kshort mass

K0s X vertex

K0s Y vertex

K0s Z vertex

Ks Y vs X vtx

Ks Z vs X vtx

Ks Z vs Y vtx

Kshort pt

Kshort η

Kshort φ

K0s vertex radius

K0s lifetime

K0s lifetime

Λ mass

Thanks for the attention.