

UnB - Universidade de Brasília IE - Departamento de Estatística

POPULAÇÃO ESTÁVEL

População Malthusiana

- O conceito de *População Estável* foi introduzido por Lotka em 1939;
- Representa uma população teórica;
- Caso particular de População Malthusiana;
- População Malthusiana:
 - população fechada;
 - lei de mortalidade → constante
 - distribuição por sexo e idade → constante

Propriedades

- (1) Se distribuição por sexo e idade → constante mortalidade → constante
- Então distribuição por sexo e idade dos óbitos será constante.
- (2) Se a = idade
 - c(a) = estrutura por idade
 - b = taxa bruta de natalidade
- Então $c(0) = b \rightarrow constante$.

Propriedades

- (3) Mortalidade → constante estrutura por idade → constante
 - d = taxa bruta de mortalidade \rightarrow constante.
- (4) r = b-d = taxa de variação natural \rightarrow constante
 - Lei de crescimento \rightarrow N(t) = N(0)*e^{rt} B(t) = b* N(0)*e^{rt} (nascimentos)
 - $D(t) = d * N(0)*e^{rt}$ (óbitos)

Propriedades

- (5) Se p(a) = função de sobrevivência desde o nascimento até a idade a, então...
 - $c(a) = b*e^{-ra}*p(a).$
- (6) Por definição temos:

$$b = \frac{1}{\int\limits_{0}^{\infty} e^{-ra} p(a) da}$$

Propriedades

(7) Distribuição por sexo → constante:

$$c(x) = b \times e^{-ra} \times p(a)$$

(8) Equação fundamental:

$$1 = \int_{a}^{\beta} e^{-ra} p_f(a) m(a) da$$

Onde $m(a) = \tan a$ de fecundidade feminina das mulheres em idade a no instante t.

População Estável

• Em suma, pode ser definida como:

"Dadas uma função de fecundidade (TEF) e uma função de mortalidade (TEM) se elas são mantidas constantes, em uma população fechada, qualquer que seja a distribuição etária inicial, necessariamente a população tenderá, no longo prazo, a ter uma distribuição etária relativa constante (Preston et all, 2001)".

População Estável

- Consequentemente...
- → Taxa Bruta de Natalidade (TBN), a Taxa Bruta de Mortalidade (TBM) e a taxa de crescimento não variam, transformando-se, então, em uma população estável.
- Sua composição etária é definida pela prevalência das funções de fecundidade e mortalidade, bem como a sua taxa de crescimento, conhecida como Taxa Intrínseca de Crescimento (TIC).

ATLR

- Se TLR > 1: levará necessariamente, no longo prazo, a um crescimento positivo da população;
- Se TLR =1: crescimento nulo;
- Se TLR < 1: crescimento negativo.
- Em qualquer população e qualquer momento existe um conjunto de TEM e TEF, o qual define uma determinada TLR, a qual está relacionada uma determinada TIC e uma determinada população estável.

Importante...

- Só existe uma única população estável correspondente às leis de mortalidade e fecundidade dadas.
- No estado estável limite, as taxas brutas de mortalidade, natalidade e de crescimento natural, assim como a estrutura por idades, são independentes da população inicial e determinadas apenas pelas leis de mortalidade e fecundidade dadas.

População Estacionária

- Caso particular de uma População Estável;
- Conceito importante de populações na construção de Tábuas de Vida;
- Modelo teórico:
 - distribuição por sexo e idade → constante
- Conceito: as taxas de natalidade e mortalidade são iguais e, por consequência, a taxa de crescimento é igual a zero.
 - população fechada

População Estacionária

- Esta população pode ser obtida supondo:
 - nascimentos anuais \Rightarrow constantes e iguais a l_0 e submetidos à lei de mortalidade da tábua de vida.
- Na Tábua de Vida \Rightarrow população estacionária é dada pela função $_{\rm n}{\rm L}_{\rm x}$