Imaging through turbulence (1)

EC 522 Computational Optical Imaging

Lei Tian

Admins

- » HWs
 - » HW 6: posted, due 4/17
- » Group lecture
 - » Reach out to me & your student mentor for discussions if needed
 - » All questions are good questions
 - » Grades are based on the demonstration of technical comprehension during the presentation

Group lectures begin					
3/18		tures begin			
(M)	Selected Topic in computational imaging		Group 1	HW 5: inverse problem 2	HW 4
3/20 (W)	Selected Topic in computational imaging		Group 2		
3/25 (M)	Selected Topic in computational imaging		Group 3		
3/27 (W)	Selected Topic in computational imaging		Group 4		
4/1 (M)	Selected Topic in computational imaging		Group 5	HW 6: inverse problem 3	HW 5
4/3 (W)	Selected Topic in computational imaging		Group 6		
4/8 (M)	Selected Topic in computational imaging		Group 7		
4/10 (W)	Selected Topic in computational imaging		Group 8		
4/15 (M)	Patriots' Day Holiday				
4/17 (W)	Selected Topic in computational imaging		Group 9		HW 6
4/22 (M)	Cancelled				
4/24 (W)	Final Projects		Group 1-3		
4/29 (M)	Final Projects		Group 4-6		
5/1 (W)	Final Projects		Group 7-9		

Theme: Computational photography

Team 4 - 3/27 (W) / / 4/29 (M)

Paper: CLIP

- Saini Ye
- Chen Qian
- Yuxiang Su

Student mentor: Qianwan Yang

Group Lecture / Class Project 5: Computational 3D photography

Team 5 - 4/1 (M) / 4/29 (M)
Paper: Depth from defocus

- Ian Lee
- Susan Zhang
- Wangyi Chen

Student Mentor: **Qianwan Yang**

Group Lecture / Class Project 9:
Computational imaging in complex media

Synthetic Input 15yn

Fradure of Physics-based differentiable simulator Loss

Re-degraded 15yn

Re-de

Team 6 - 4/3 (W) / 4/29 (M)

Paper: Turbulence

- Shuyue Jia
- Hua Tong
- Yujie Zheng

Student mentor: Tongyu Li

Team 7 - 4/8 (M) / 5/1 (W)

Paper: NeuWS

- Noa Margolin
- Nolan Vild
- Adhithi Ramasubramanian

Student Mentor: Hao Wang

Theme: computational microscopy

Team 8 - 4/10 (W) / 5/1 (W)

- · Yi Shen
- Deming Li
- Kara Stratton

Student mentor:

Tongyu Li

Team 9 - 4/17 (W) / 5/1 (W)

- Rachel Chan
- Qilin Deng

Student Mentor:

Joe Greene

Why imaging through turbulence

Light follows a curved path in an inhomogeneous medium!

material with variable optical "density"

(i.e. inhomogeneous refractive index (index of refraction))

Example: Non-uniform medium with 1D non-uniformity

Refractive index increases in depths

"stratified medium"

Turbulence = 3D non-uniformity

Turbulence *distorts* PSFs

Stroooonger turbulence

Turbulence leads to linear shift variant (LSV) imaging

A collection of point spread functions

An introduction to LSV imaging

The classical approach

Linear shift variant system

$$\mathbf{g} = \mathbf{A}\mathbf{f} \longleftrightarrow \mathbf{g}_m = \sum_{n=1}^N \mathbf{a}_{mn}\mathbf{f}_n$$

$$\mathbf{g} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \cdots & \mathbf{a}_{1N} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \cdots & \mathbf{a}_{2N} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

$$\vdots & \vdots & \ddots & \vdots$$

$$\mathbf{a}_{N1} & \mathbf{a}_{N2} & \cdots & \mathbf{a}_{NN} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

Computational requirement?

Linear operator and matrix

» A linear operator $A: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$ (assume only real components in A, f, g^*) Af = g

» Described by a
$$MxN$$
 matrix A

$$Af = g$$

*Same framework also works for complex numbers:

- Split a complex number into real and imag. parts
- CR (Wirtinger)-Calculus

Singular value decomposition (SVD)

$$A = U \Sigma V^{ extbf{H}}$$
 $U = [u_1, \dots, u_r] \in \mathbb{R}^{m \times r}$ $u_i \in \mathbb{R}^m$ left singular vectors $V = [v_1, \dots, v_r] \in \mathbb{R}^{n \times r}$ $v_i \in \mathbb{R}^n$ right singular vectors $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r) \in \mathbb{R}^{r \times r}$ $\sigma_1 \geq \dots, \geq \sigma_r$ singular values

Spectral representation in terms of Singular value decomposition (SVD)

$$A = U\Sigma V^{H} = \sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{H}$$

$$A\mathbf{f} = \sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} (\mathbf{v}_{k}^{H} \mathbf{f})$$

- 1. projects the input vector along v_k : $f_k = v_k^{\mathbf{H}} f$
- 2. synthetizes g = Af by the linear combination $g = \sum_{k=1}^{r} \sigma_k f_k u_k$

Range of A

$$A\mathbf{f} = \sum_{k=1}^{r} \sigma_k \mathbf{u}_k \left(\mathbf{v}_k^H \mathbf{f} \right)$$

- » $R(\mathbf{A})$ contains all the vectors \mathbf{g} , spanned by the **column** space in the form $\mathbf{g} = \mathbf{Af}$
- » $R(\mathbf{A})$ is spanned by left singular vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r$

Null space of A

$$A\mathbf{f} = \sum_{k=1}^{r} \sigma_k \mathbf{u}_k \left(\mathbf{v}_k^H \mathbf{f} \right)$$

» The null space $\mathcal{N}(\mathbf{A})$ is the subspace spanned by all the vectors $\mathbf{Af} = 0$

» Dimensionality? n-r

Interim summary

- » Singular values act like the "discrete transfer function" for linear shift-variant system
 - » *The quality of a LSV system can be characterized by distribution of SVs

^{*} More in inverse problem

Adjoint

$$A = U\Sigma V^{H} = \sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} \mathbf{v}_{k}^{H}$$
$$A\mathbf{f} = \sum_{k=1}^{r} \sigma_{k} \mathbf{u}_{k} (\mathbf{v}_{k}^{H} \mathbf{f})$$

$$A^{H} = V\Sigma U^{H} = \sum_{k=1}^{r} \sigma_{k} \mathbf{v}_{k} \mathbf{u}_{k}^{H}$$

$$A^{\mathbf{H}}\mathbf{g} = \sum_{k=1}^{r} \sigma_{k} \mathbf{v}_{k} \left(\mathbf{u}_{k}^{H} \mathbf{g} \right)$$

Range of A^H

$$A^{\mathbf{H}}\mathbf{g} = \sum_{k=1}^{r} \sigma_k \mathbf{v}_k \left(\mathbf{u}_k^H \mathbf{g} \right)$$

» $R(\mathbf{A^H})$ is spanned by right singular vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r$

Null space of A^H

$$A^{\mathbf{H}}\mathbf{g} = \sum_{k=1}^{T} \sigma_{k} \mathbf{v}_{k} \left(\mathbf{u}_{k}^{H} \mathbf{g} \right)$$

» Dimensionality? *m-r*

Relation between left & right singular vectors

$$A = \mathbf{U}\Sigma V^H = \sum_{k=1}^r \sigma_k \mathbf{u}_k \, \mathbf{v}_k^H$$

$$A\mathbf{v}_k$$
? $A\mathbf{v}_k = \sigma_k \mathbf{u}_k$

$$A^H = V\Sigma U^H = \sum_{k=1}^r \sigma_k \mathbf{v}_k \ \mathbf{u}_k^H$$

$$A^H \mathbf{u}_k? \quad A^H \mathbf{u}_k = \sigma_k \mathbf{v}_k$$

Relation between left & right singular vectors

Review: relation between null space and range

