

AD A 091600

POTOMAC RIVER BASIN
WHETSTONE RUN, MONTGOMERY COUNTY

MARYLAND

LEVEL

LAKE WHETSTONE

NDI ID NO. MD-53

MONTGOMERY VILLAGE FOUNDATION

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

SELECTE NOV 1 4 1980

وهواقاه والمقاه والمراقة والمر

Prepared For
DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

eontains reproducte

By
RUMMEL, KLEPPER & KAHL
Consulting Engineers
Baltimore, Maryland 21202

JULY 1980

Manual Lot Particular Indicated

IDC FILE COPY

8CTT

POTOMAC RIVER BASIN

WHETSTONE PUN, MONTGOMERY COUNTY

MARYLAND

Inspection to mam.

LAKE WHETSTONE

(NDI ID NO. MD-53), Poteriac Rivers

(No interior Rivers (Anna 2 mary Chanty)

MONTGOMERY VILLAGE FOUNDATION GAITHERSBURG, MARYLAND Mariland.

PHASE I INSPECTION REPORT.

NATIONAL DAM INSPECTION PROGRAM

MI -- 1 / Z : lor 1

Prepared for: DEPARTMENT OF THE ARMY Baltimore District Corps of Engineers Baltimore, Maryland 21203

(15/ DAC'N: : = & - C - C T. O]

RUMMEL, KLEPPER & KAHL Consulting Engineers 1035 N. Calvert Street 21202 Baltimore, Maryland

July 980

411913

J7.45

PREFACE

This report is prepared under guidance contained in the <u>Recommended Guidelines for Safety Inspection of Dams</u>, for Phase I Investigations. Copies of these guidelines may be obtained from the Department of the Army, Office of Chief of Engineers, Washington, D.C. 20314.

The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon visual observations and review of available data. Detailed investigations and analyses involving topographic mapping, subsurface investigations, material testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the inspection is intended to identify any need for such studies which should be performed by the owner.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of the dam depends on numerous and constantly changing internal and external factors which are evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The assessment of the conditions and recommendations was made by the consulting engineer in accordance with generally and currently accepted engineering principles and practices.

POTOMAC RIVER BASIN

WHETSTONE RUN, MONTGOMERY COUNTY MARYLAND

LAKE WHETSTONE NDI ID NO. MD-53

MONTGOMERY VILLAGE FOUNDATION GAITHERSBURG, MARYLAND

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

July 1980

CONTENTS

		Description		Page
SECTION 1	-	Project Information		1
SECTION 2		Design Data	•	4
SECTION 3	-	Visual Inspection		6
SECTION 4	•-	Operational Procedures		8
SECTION 5	_	Hydrology and Hydraulics		9
SECTION 6	-	Structural Stability		12
SECTION 7	_	Assessment, Recommendations,	and	13
		Proposed Remedial Measures		

APPENDICES

Appendix	<u>Title</u>
A	Visual Inspection Checklist
В	Engineering Data Checklist
С	Photographs
D	Hydrology and Hydraulics
E	Plates
F	Geology

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION AND RECOMMENDED ACTION

Name of Dam:

Lake Whetstone

NDI ID NO. MD-53

Size:

Small (930 acre-feet, 33.8 feet high)

Hazard Classification:

High

Owner:

Montgomery Village Foundation 19231 Montgomery Village Avenue Gaithersburg, Maryland 20760

Maryland

State Located:
County Located:
Stream:

Montgomery Whetstone Run

Dates of Inspection:

June 26, 1980 and July 15, 1980

Based on the visual inspection, available records, past operational performance, and in accordance with the guideline criteria established for these studies, Lake Whetstone is judged to be in good condition.

The water level in Lake Whetstone is normally maintained at elevation 362 by way of a rectangular concrete drop inlet spillway. Sources of inflow to the lake include Whetstone Run inflow, storm drainage, surface water runoff, and rainfall on the lake surface.

No stability problems were evident for the embankment at the time of the visual inspection. $\boldsymbol{\upbeta}$

Based on the hydrologic and hydraulic analyses, the Lake Whetstone spillway can pass approximately 59 percent of the Probable Maximum Flood (PMF) without overtopping. The spillway capacity is rated as inadequate because, even though the spillway can pass at least 50 percent of the PMF, analyses indicate that the spillway cannot pass the Spillway Design Flood.

At the time of inspection, water was flowing from only the right side of the twin box culvert, which is the outlet works for the spillway. No blockage of the left side was observed from the outlet end of the twin culvert, but a blockage may exist in the bottom of the drop inlet chamber, which is accessible by boat.

Although not apparent at the time of inspection, according to conversations with the Owner, siltation of the lake is a continuing problem. The dam was completed in 1966, and dredging was necessary in 1972. It is estimated by the Owner that dredging will be required again in 1983. This problem of relatively rapid siltation has not been resolved.

The following remedial measures are recommended to be accomplished by the Owner is a timely manner:

- Repair the structural grack on the face of the north headwall of the outlet structure.
- 2. Remove the corrosive build-on which is partially obstructing the negligible to drain outlet.
- Remain the erosion behind the south wingwall of the outlet structure.
- 4. Inspect the chamber of the drop inlet spillway to determine if there is a blockage to the left side of the twin besculvert, and remove any obstructions which exist.
- 5. Schodule formal periodic inspections of the dam embankment and appartenant structures.
- 6. Develop a formal warning system to alert downstream residents in the event of emergencies.

Submitted by:

RUMMUL, KUPPPER & KAHL

Edward J. Zoigler, P.E.
Associate

Date: 1/2 /

Approved by:

JAMES W. PECK

Colonel, Corps of Engineers

District Engineer

1stor 20 Sep1980

LAKE WHETSTONE

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

LAKE WHETSTONE NDI ID NO. MD-53

SECTION 1 PROJECT INFORMATION

1.1 General.

- a. Authority. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. Purpose. The purpose of the dam inspection program is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Lake Whetstone, completed in 1966, is retained by a zoned earthfill embankment. The embankment is approximately 33.8 feet high at its maximum section and approximately 1000 feet long. A drainage trench toe drain is indicated on available as-built drawings. Except for the 1000-foot length of embankment, the shoreline of the lake was constructed by excavation into original ground.

Outflow from the reservoir can be accomplished by opening a sluice gate at the base of the drop inlet structure. The gate is manually operated and the gate stem is located on top of the drop inlet.

The various features of the dam and impoundment are shown on the Photographs in Appendix C and on the Plates in Appendix E. A description of the geology is included in Appendix F.

- b. Location. Lake Whetstone is located along to Whetstone Run in Montgomery County, Maryland. Lake Whetstone is shown on U.S.G.S. Quadrangle, Gaithersburg, Maryland, at latitude N 39° 10' 00" and longitude W 77° 12' 20". A location map is included as Plate E-1.
- c. Size Classification. Small (33.8 feet high, 930 acre-feet).
- d. <u>Hazard Classification</u>. High. Downstream conditions plus the fact that a major roadway traverses the dam crest indicate that a high hazard classification is warranted for Lake Whetstone.

- e. Ownership. Montgomery Village Foundation, 19231 Montgomery Village Avenue, Gaithersburg, Maryland 20760
- f. Purpose of Dam. Aesthetics, Recreation and Flood Control.
- g. Design and Construction History. Lake Whetstone was designed, by Greenhorne, O'Mara, Dewberry, and Nealon, of Fairfax, Virginia, and constructed in 1966. The general contractor for the dam was Northrup and Morrison, Inc. of Silver Spring, Maryland. Detailed as-built drawings of the embankment and appurtenances are available.
- h. Normal Operating Procedure. The lake is maintained at the level of the drop inlet. If the water level in the lake must be lowered, a sluice gate located at the base of the drop inlet structure is opened.

1.3 Pertinent Data.

a.	Drainage Area.	3.34 square miles
ъ.	Discharge at Dam Site(cfs).	2715
c.	Elevation (Feet).	
	Top of Dam	¹ 378.5 (design) 377.8 (low point on crest)
	Maximum Pool	374.3 (design flood level)
	Normal Pool	362.0 (spillway crest)
	Upstream Invert Outlet Works	344.74 341.92
	Downstream Invert Outlet Works Maximum Tailwater	Unknown
	Downstream Toe	344
	Downstleam 100	
d.	Reservoir Length (Feet).	
	Normal Pool Level	2400+
	Maximum Pool Level	4600 +
		_
e.	Storage (acre-feet).	
	Normal Pool Level	167
	Maximum Pool Level	692
	Top of Dam	930
	10F 01 20m	
f.	Reservoir Surface (acres).	
	Normal Pool Level	26.6
	Maximum Pool Level	61.0
	Top of Dam	76.5

g. Dam.

Type
Volume of Fill
Length
Height
Top Width
Side Slopes

Zoning Impervious Core Cutoff Grout Curtain

h. Regulating Outlet.

Type Length Closure Access

i Spillway.

Type
Length
Crest Elevation
Gates
Upstream Channel
Downstream Channel

Earth
175,000+ cubic yards
1000+ feet
33.8+ feet
92+ feet
Downstream: 1V:3H
Upstream: 1V:3H

Upstream: Yes Yes Yes None

7.0' x 8.0' Twin Box Culverts 282 feet 48inch x 48inch sluice gate Intake tower

Drop Inlet

60' 362 None Lake

Stilling Basin and Whetstone Run

SECTION 2 DESIGN DATA

2.1 Design.

- a. <u>Data Available</u>. Detailed as-built drawings of the embankment and appurtenances, and the design report for the dam are available.
 - (1) Hydrology and Hydraulics. Hydrologic computations are included in the design report.
 - (2) Embankment. A typical section of the embankment indicating a zoned core and cutoff is available and is included as Plate E-2.
 - (3) Appurtenant Structures. Detailed drawings are available for the drop injet and sluice gate structure, twin box culvert, and stilling basin.

b. Design Features.

- (1) Embankment. As-built drawings indicate that an earth embankment approximately 1000 feet long and as much as 35 feet high was constructed across the Whetstone Run stream valley. The embankment now serves as the roadway foundation for Montgomery Village Avenue. The drawings indicate the embankment was constructed with a crest width of approximately 92 feet, and has a zoned core and drainage and cutoff trenches.
- (2) Appurtenant Structures. The appurtenant structure for the dam consists of the drop inlet, twin box culverts, and stilling basin. Detailed drawings of these structures are available.

c. Design Data.

- (1) Hydrology and Hydraulics. Pertinent computations and a storm hydrograph are included in the design report.
- (2) Embankment. Cross-sections at several locations along the embankment are included in the design drawings, as well as embankment centerline sections and drainage and cutoff trench profiles.
- 2.2 Construction. The dam was constructed by Northrup and Morrison, Inc. of Silver Spring, Maryland, however is is unknown what, if any, construction supervision was provided. As-built drawings of the project are available.

- 2.3 Operation. No formal operating records have been kept for the dam.

 According the discussions with the Owner, the lake was lowered in 1972 for maintenance dredging.
- 2.4 Other Investigations. None Reported.

2.5 Evaluation.

- a. Availability. Detailed design information is available.
- b. Adequacy. The available data is considered sufficient to evaluate the design and construction of the dam.

SECTION 3 VISUAL INSPECTION

3.1 Findings.

- a. General. The on-site inspection of Lake Whetstone consisted of:
 - (1) Visual inspection of the embankment, abutments, and embankment toe.
 - (2) Visual examination of the appurtenant structures.
 - (3) Evaluation of the downstream area hazard potential.

The specific observations are shown on Plate A-1.

Embankment. The general inspection of the embankment consisted of searching for indications of structural distress, such as cracks, subsidence, bulging, wet areas, seeps and boils, and observing general maintenance conditions, vegetative cover, erosion, and other surficial features. No evidence of structural distress was noted during the inspection. A minor amount of erosion was noted just above the upstream riprap slope protection at the right end of the dam.

The crest of the dam was surveyed and the variance in elevation was 5 feet between the high and low point. This variance is due to the vertical curve of the roadway across the dam crest. The low point on the crest is approximately 8 inches below the design crest elevation of 378.5, and is located 50+ feet left of the intersection of the twin box culverts of the spillway and the embankment. Freeboard at the time of inspection was approximately 16 feet, and under maximum pool (i.e. design flood) conditions would be approximately 3.5 feet. The dam crest profile is included as Plate C-2.

c. Appurtenant Structures. The appurtenant structures were satisfactory with the exception of the right headwall and left wingwall located at the outlet of the twin box culvert and a potential blockage in the left side of the twin box culvert. The right headwall is cracked, the toe drain outlet through the right headwall is partially obstructed by a corrosion deposit, and erosion was noted behind the left wingwall. The ability of the left side of the twin-box culvert to function as designed may presently be impaired since it was observed that most of the flow from the spillway riser was being conveyed through the right side of the culvert.

- d. Reservoir Area. It is apparent that much of the runoff from the residential area which surrounds the lake flows into the lake. While no erosion was noted along the banks, overflow from a sedimentation pond used to control runoff from an adjacent construction site empties into the reservoir.
- e. Downstream Channel. The floodplain directly downstream of the dam is utilized primarily for recreation. Apartments are located on either side of the floodplain recreational area. Failure of the dam could cause significant damage to several of the apartment units located immediately downstream from the dam. Floodwaters from a dam failure could also damage Watkins Mill Road, a secondary road crossing located approximately 2800 feet downstream of the dam. A school is located upstream of the Watkins Mill Road bridge and above the floodplain. Based on these observations, a high hazard classification is warranted for Lake Whetstone dam.
- Evaluation. The visual examination of Lake Whetstone indicates that except for the few problems noted on the headwalls and wingwall at the outlet of the twin box culvert, and the potential blockage of the left culvert, the embankment and appurtenant structures are in good condition. An inspection of the twin box culvert should be made to determine the reason for an apparent blockage of flow in the left side of the twin box culvert.

SECTION 4 OPERATIONAL FEATURES

- 4.1 Procedure. There are no formal operating procedures for the dam.

 The reservoir level is normally maintained at elevation 362.0 by means of a drop inlet spillway.
- Maintenance of The Dam. The maintenance of the dam is considered good. The crest of the dam carries Montgomery Village Avenue, which is maintained by Montgomery County. The upstream face is grassed, with a berm near the base and asphalt walkway. Riprap slope protection is placed along the shoreline. The downstream face is grassed. Both upstream and downstream slopes are moved regularly.
- Maintenance and Operating Facilities. The maintenance of the operating facilities is considered fair. The north headwall and south wingwall of the outlet structure obviously need some repairs. No scheduled formal inspection program for the facilities exists.
- 4.4 Warning System. No formal warning system exists for the dam.
- 4.5 Evaluation. The maintenance of the dam is considered good, while the maintenance of the operating facilities is considered fair.

SECTION 5 HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

- Metstone, Montgomery Village, Montgomery County, Marvland, indicates that the reservoir spillway design was based upon an inflow design flood of 9160 cubic feet per second (cfs) resulting from a 6-hour storm of 9.8 inches over the reservoir's 3.34-square mile drainage area. A storm frequency was not indicated for the 9.8 inches of rainfall. Using the 9160 cfs peak inflow rate, the maximum flood storage level was established at an elevation of 374.3 feet above mean sea level, and a freeboard of 4.2 feet was employed to establish the design low point in Village Avenue, the thoroughfare carried by the dam embankment, at an elevation of 378.5 feet above mean sea level.
- b. Experience Data. No records of maximum pool levels are available.
- c. <u>Visual Observations</u>. Several observations made during the visual inspection of Lake Whetstone are particularly relevant to the hydraulic and hydrological evaluation.
 - (1) Embankment. The survey of the dam crest profile performed during the visual inspection indicates that the existing crest is slightly lower than its design elevation of 378.5 feet above m.s.l., with its low point at elevation 377.8 feet above m.s.l. The elevation data for the existing crest was employed in subsequent hydraulic analyses.
 - (2) Appurtenant Structures. The drop inlet spillway and outlet works appear to have been constructed in accordance with record as-built drawings. During the visual inspection, some debris was observed on the grating at the drop inlet spillway. While the amount of debris present would not significantly affect the spillway capacity, continued accumulation of debris would eventually adversely affect the spillway's hydraulic capacity.

The ability of the left side of the twin outlet box culvert to function as designed may presently be impaired since it was observed that most of the flow from the spillway riser was being conveyed through the right side only. It is assumed, however, that this condition can be corrected, and therefore the design rating curve presented in the design report for the outlet works has been used in subsequent hydraulic analyses.

- (3) Downstream Conditions. Failure of the dam impounding Lake Whetstone could cause significant damage to several apartment units located immediately downstream from the dam and would sever the main traffic thoroughfare through the densely populated development, Montgomery Village Avenue, which is carried by the dam embankment itself. In addition the failure may damage Watkins Mill Road. a secondary road crossing located approximately 2800 feet downstream. In keeping with the potential hazard classification established by the Office of the Chief of Engineers (OCE), damage which may result to downstream multi-family dwelling units, and which will result to Montgomery Village Avenue upon a dam failure, indicates that a high hazard classification be assigned to Lake Whatstone.
- d. Overtopping Potential. According to the criteria promulgated by the Office of the Chief of Engineers, the recommended Spillway Design Flood (SDF) for a dam classified as "small" with a "high" hazard potential ranges between 50 and 100 percent of the Probable Maximum Flood (PMF). While classified as a "small" dam, the capacity of Lake Whetstone puts it very close to the "intermediate" classification which, together with its "high" hazard classification, would require the use of 100 percent of PMF for its Spillway Design Flood. For this reason the 100 percent PMF has been selected as the SDF for Lake Whetstone.

The Probable Maximum Precipitation (PMP) index as adjusted for the Lake Whetstone drainage area is 19.2 inches in 24 Employing criteria established by the Corps of Engineers, Baltimore District, 100 percent and 50 percent PMF inflow hydrographs developed using the HEC-l computer program have peaks of 8000 and 4000 cfs, respectively. important to note that these peak flows are significantly less than the 9160 cfs design inflow previously determined in the design report for a 9.8-inch storm of 6-hour duration. This disparity is understandable since it is recognized that the Snyder method of synthetic unit hydrograph determination employed in the HEC-1 model for dam safety investigation studies may produce hydrograph peaks somewhat less than those derived using other methods when applied to relatively small drainage areas with comparatively short times of concentration. However, in accordance with guidance provided by the Corps of Engineers, Baltimore District, no adjustments have been made to the PMF's determined for Lake Whetstone to account for this disparity.

PMF inflow hydrographs were routed through Lake Whetstone for percentages ranging from 20 to 100 percent of the PMF with each routing starting at the normal pool elevation of 362 feet above m.s.l. For the 50 percent PMF routing, the reservoir water level reached an elevation of 374.8 feet above m.s.l. or 3.0 feet below the low point in the dam crest. For the 100 percent PMF routing, the reservoir water level reached an elevation of 380.1 feet above m.s.l. overtopping the low point in the dam embankment by 2.3 feet. Results for intermediate routings are found in Appendix D.

It is interesting to note that while the percent of PMF routing with a peak inflow rate of 8000 cfs overtopped the dam embankment, the original design flood routing having a higher peak inflow rate of 9160 cfs produced a flood pool level some 5.7 feet below that produced by routing the 100 percent PMF through Lake Whetstone. The reason for this difference is that the total amount and duration of runoff produced by the 100 percent PMF event is much greater than the total runoff amount and duration which would be produced by the original design storm. Hence, passage of the 100 percent PMF event through Lake Whetstone would require a greater amount of flood storage volume (accomplished by higher pool levels) than that required by passage through the reservoir of the original design flood event.

e. Spillway Adequacy. The analyses indicate that the Lake Whetstone spillway can pass approximately 59 percent of the PMF without overtopping of the dam. Since the analyses indicate the spillway cannot pass the Spillway Design Flood but can pass 50 percent of the PMF, the spillway capacity is rated as inadequate, but not seriously inadequate, in accordance with Office of the Chief of Engineers guidelines.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. Visual_Observations.

- (1) Embankment. Visual examination of the dam embankment indicates that there are no wet spots, seepage, slumps or other features that suggest embankment instability.
- (2) Appurtenant Structures: A structural crack was noted across the right headwall of the outlet structure. Erosion was noted behind the left wingwall of the outlet structure.

b. Design and Construction Data.

- (1) Embankment. Based on the computations included in the design report for the dam, a proper assessment of the stability of the dam can be made.
- (2) Appurtenant Structures. The available information includes adequate data to assess the structural adequacy of the appurtenant structures.
- c. Operating Records. The structural stability of the dam is not considered to be affected by the operational features of the dam.
- d. <u>Post-Construction Changes.</u> The only apparent post-construction activity was the dredging of Lake Whetstone in 1972.
- e. Seismic Stability. Lake Whetstone is located in Seismic Zone
 1. Based on visual observations, the static stability of the
 dam appears to be adequate. Consequently, the structure
 should present no hazard from earthquakes.

SECTION 7 ASSESSMENT, RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment.

- a. Assessment. Lake Whetstone is a small storage, high hazard impoundment. The dam embankment is in good condition and the appurtenant structures are in fair condition. A high hazard classification is warranted because a dam failure could result in damage to apartments located immediately downstream of the dam, damage to Montgomerv Village Avenue across the dam crest, and damage to Watkins Mill Road located downstream of the dam. Hydrologic and hydraulic analyses indicate that the Lake Whetstone spillway can pass approximately 59 percent of the PMF without overtopping the dam. Since the analyses indicate that the spillway cannot pass the spillway design flood but can pass 50 percent of the PMF, the spillway capacity is rated as inadequate, but not seriously inadequate in accordance with Office of the Chief Engineers guidelines.
- b. Adequacy of Information. The availability of detailed information on the design and construction of Lake Whetstone is considered adequate for the Phase I report.
- c. <u>Urgency.</u> The following recommendations should be accomplished in a timely manner.
- d. Need for Additional Data. At the present time, there is no need to obtain additional data or conduct additional investigations at Lake Whetstone.

7.2 Recommendations/Remedial Measures.

The following remedial measures are recommended to be accomplished by the Owner:

- a. Repair the structural crack on the face of the north headwall of the outlet structure.
- b. Remove the corrosive build-up which is partially obstructing the northern toe drain outlet.
- c. Repair the erosion behind the south wingwall of the outlet structure.
- d. Inspect the chamber of the drop inlet spillway to determine if there is a blockage to the left side of the twin box culvert, and remove any obstructions which exist.
- e. Schedule formal periodic inspections of the dam embankment and appurtenant structures.
- f. Develop a formal warning system to alert downstream residents in the event of emergencies.

APPENDIX A VISUAL INSPECTION CHECKLIST PHASE I

VISUAL INSPECTION CHECKLIST PHASE I

Pool Elevation at Time of Inspection: 362.0 M.S.L. Tailwater at Time of Insp.341+ M.S.L. Hazard Category: High Name of Dam: Lake Whelstone County (or City): Mondonery County State: Maryland Temperature: Earth Clear Date(s) Inspection: 6/26/80 & 7/15/80Weather: Type of Dam: NDI ID. No.: MD- 53

Review Inspection Personnel:

Inspection Personnel:

J.D. Nouman

J. Wise

E. J. Zeisler J. G. Mintlens J. D. Novman J. D. Mayman Recorder

VISUAL INSPECTION PHASE I EMBANKWENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	None	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	Лопе	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	Slight erosion at base of upstream slope directly above riprap at north end of dam. Erosion behind left wingwall of outsail conduit	Erosion behind left wingwall should be repaired
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Horizontal alignment satisfactory Vertical alignment Varies 5 feet from end to end, lowest point 50± feet south of intersection of outsall conduit	
RIPRAP FAILURF3	None	

VISUAL INSPECTION
PHASE I
EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	Sotisfactory	Existing storm water droins adequately, prevent surface runosts from eroding downstream embankment
ANY NOTICEABLE SEEPAGE	None	
STAFF GAGE AND RECORDER	None	
DRAINS	Toe drain along full length of dam. Outlets on either side of outfall conduit.	
·		

VISUAL INSPECTION PHASE I OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Satisjoctory except for crack on north half of headwall	
INTAKE STRUCTURE	15 Feet by 15 feet drop inlet with trash gote	Flow from north outfoll conduit only, at time of inspection: drop inlet invert is two inches lower on north holf
OUTLET STRUCTURE	Twin box culvert; 24 inth sewerline constructed through left culvert,	At time of inspection, only the right culvert constant in any blocknic to left colvert.
OUTLET CHANNEL	Small stilling bond, riprap erosion protection on bonks of bond	
EMERGENCY GATE	Sluice gate submerged and not observed.	Sluice yests not operated during inspection. Penedically check sluice grite for proper operation.

VISUAL INSPECTION PHASE I UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	N/A	
APPROACH CHANNEL	N/N	
DISCHARGE CHANNEL	N/A	·
BRIDGE AND PIERS	N/A	·

VISUAL INSPECTION
PHASE I
GATED SPILLWAY

VISUAL EXAMINATION	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SILL	N/A	
APPROACH CHANNEL	N/A	
DISCHARGE CHANNEL	N/A	
BRIDGE PIERS	N/A	
GATES AND OPERATION EQUIPMENT	N/A	

VISUAL INSPECTION
PHASE I
INSTRUMENTATION

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None	
OBSERVATION WELLS	None	
WEIRS	None	
PIEZOMETERS	Лопе	
ОТНЕЯ		

VISUAL INSPECTION PHASE I RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
STOPES	Vegetated to shoreline, only	
	minor erosion	
SEDIMENTATION	None	Owner indicated dredging is required approximately every 10 years
UPSTREAM RESERVOIRS	Recreational lake in residential area	
·		

VISUAL INSPECTION
PHASE I
DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	No signs of erosion, stilling pond has riprof erosion protection	REMARKS OR RECOMMENDATIONS
	Storm drains and outfall from adjacent pand (north side) enter stresni	
APPROXIMATE NUMBER OF HOMES AND POPULATION	Apartments on either side of downstream channel, recreational area in flood-plain. Watkins Mill Road bridge downstream.	
,		

APPENDIX B ENGINEERING DATA CHECKLIST PHASE I

APPENDIX B

CHECKLIST

ENGINEERING DATA

DESIGN, CONSTRUCTION, OPERATION
PHASE I

NAME OF DAM Lake Whetstone

10# NDI I.D. No Md-53

"Lake Whetstone, Montgomery Village, Maryland by Greenhorne, O'Mara, Dewberry and Newlon, dated February 7, 1967, sheets 1 05 8 through 8 of 8. A typical section of the embankment is shown on the As-Built drawings and is included as Plate E-2. A regional vicinity map is included as Plate E-1. See As-Built drawings for outlet plans and detoils. See Design Report for discharge ratings. Lake whetstone constructed in 1966. REMARKS DISCHARGE RATINGS TYPICAL SECTIONS OF DAM - CONSTRAINTS REGIONAL VICINITY MAP CONSTRUCTION HISTORY - DETAILS AS-BUILT DRAWINGS OUTLETS - PLAN

CHECKLIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE I

ITEM	REMARKS
RAINFALL/RESERVOIR RECORDS	None
DESIGN REPORTS	Design Report for Lake Whetstone, Montgomery Village, Montgomery County, Maryland, by Greenhorne, O'Mara, Dewberry, and Nealon dated March 10, 1966.
GEOLOGY REPORTS	Refer to Design Report
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	Refer to Design Report
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Reserto Design Report

CHECKLIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE I

ITEM	REMARKS
POST CONSTRUCTION SURVEYS OF DAM	None
BORROW SOURCES	Unknown
MONITORING SYSTEMS	None
MODIFICATIONS	None
HIGH POOL RECORDS	None

CHECKLIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE I

ITEM	REMARKS
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None
MAINTENANCE OPERATION RECORDS	None
SPILLWAY PLAN SECTIONS DETAILS	Refer to As-Built drawings
OPERATING EQUIPMENT PLANS AND DETAILS	Refer to As-Built drawings.

APPENDIX C

PHOTOGRAPHS

A. Upstream slope and walkway

B. Downstream slope of Dam

C. Drop inlet with trash grate

D. Riprap slope protection

E. Montgomery Village Avenue over crest of dam

F. Plunge basin with riprap protection (foreground) and sediment control pond and townhouses north of Whetstone Run.

G. Outlet conduits and toe drains

H. Erosion behind left wingwall of outlet structure

APPENDIX D

HYDROLOGY AND HYDRAULICS

BASE DATA FOR DETERMINATION OF PROBABLE MAXIMUM FLOOD, UNIT HYDROGRAPH AND INFLOW HYDROGRAPHS

Name of Dam: Lake Whetstone NDI-ID MD 53

Unit Hydrograph Parameters

Watershed Drainage Area	3.34 sq. miles
Main Channel Length L	2.7 miles
Main Channel to Centroid Length, Lca	1.3 miles
Main Channel to Centroid Length, Lca Lag Time tp = Ct (L x Lca)	3.64 hours
Basin Zone Location from Unit Hydrograph	
Coefficient Map	33
Basin Coefficients	
	1.25
Cp Ct ¹	2.50

Inflow Hydrograph Parameters 1

Base Flow at Start of Storm	1.5 c.f.s./sq. mile
Initial Rainfall Loss	l inch
Uniform Rainfall Loss	0.05 inches/hour
Ratio of Peak Discharge Used to Compute	
Base Flow which Deviates from Hydrograph	
Falling Limb	0.05
Ratio of Recession Flow occuring 10	
Tabulation Intervals Later	2.0

Rainfall Data²

Probable Maximum Precipitation Index	
for 24 hours and 200 square miles	24 inches
Percentage Adjustments of PMP for	
Drainage Area	
6 hour storm	112%
12 hour storm	123%
24 hour storm	132%

¹Basin Coefficients and Hydrograph Data established by Corps of Engineers, Baltimore District

2Hydrometeorological Report 33, Corps of Engineers, 1956

Tabulation of
Reservoir Area and Storage Vs. Elevation

Name of Dam: Lake Whetstone NDI-ID MD-53

Pool Elevation feet above m.s.l.	Surface ¹ Area acres	Reservoir 1 Storage acre-feet
348	0	0
350	3.2	3.2
352	5.1	11.5
354	8.3	24.9
356	12.0	45.2
358	15.7	72.9
360	20.7	114.6
362	26.6	166.6
364	31.4	224.6
366	36.0	292.0
368	41.5	369.5
370	47.4	458.4
372	53.6	559.4
374	60.0	673.0
374.3 (Maximum Flood Pool)	61	692
376	66.6	799.6
377.8 (Top of Dam)	76.5	930
380	88.6 ²	1092.62
400	178.0 ²	3495 ²

Source: Design Report - Lake Whetstone Montgomery Village, Greenhorne,
O'Mara, Dewberry and Nealson, 10 March 1966
Computed by Rummel, Klepper and Kahl

Spillway/Outlet Rating Curves

Name of Dam: Lake Whetstone NDI-ID MD-53

Pool Elevation feet above m.s.1.	Weir Control c.f.s.	Conduit Control c.f.s.	Spilling Discharge c.f.s.
362	0		0
363	186		186
364	526		526
366	1488	2200	1488
368	2734	2250	2250
370	4204	2400	2400 -
372		2450	2450
374		2550	2550
374.8		2570	2570
376		2600	2600
378		2730	2730
380		2800 ²	2800 ²
380.1		2803 ²	2803 ²
382		2850 ²	2850 ²
385		2975 ²	2975 ²

Source: Design Report - Lake Whetstone Montgomery Village, Greenhorne,
O'Mara, Dewberry and Nealon, 10 March 1966
Computed by Rummel, Klepper & Kahl

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAN SAFETY VERSION JULY 1978
LGST MODIFICATION OF FEB

FOR		٥															374		2550		292		366						
**** SNYDER UNIT HYDROGRAPH, FLOOD ROUTING AND DAM OVERTOPPING ANALYSES FOR 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, AND 100%, PMF AT LAKE WYETSTONE DAM.		4			1.0			- 4									372		2450		224.6		364						
OPPING A		0			6	٥	ETSTONE			0.05						-1	370		2400		166 6	3495	362	900					
AM OVERT		ò			8 0		LAKE WHETSTONE			1.0				DIR		166. 6	368		2250		114 6	1092. 6	360	380					
NG AND D		0			0.7	0	OF SNYDER INFLOW HYDROGRAPH TO	0		•				ROUTED FLOWS THROUGH LAKE WHETSTONE RESERVOIR			367		2125		72.9	930	358	377.8			1000	381. 5	
00 ROUTI 2.90% AN	-21-5D	0			9.0	0	OM HYDRO	٥	132					WHETSTON	-		366	385	1488	2975	45.2	799 6	356	376			850	380.0	
(APH, FLO	COMM NO. 580-21-50	0			0.5		DER INFL		123					H LAKE			365	382	925	2850	24.9	673	354	374		S S	929	379.5	
HYDROGE 50%, 603	S COM	15			6			3.34	112			0 (i		IS THROUG			364	380	526	2800	11.5	559.4	352	372		1.5	450	378.3	
. 30%, 40%	NDI-1. D. MD53	0		o	ი 0	-	CALCULATION	-	24		1. 25	-0.05	CA	ITED FLOW			363	378	186	2730	6 6	458 4	320	370		2.63	250	378.0	
SNYD 20%.	ION	150	'n	, ,	N O	0	CAL		٥		3.64	-1.5		ROC		-	362	376	٥	2600					362	377.5	20	377.8	66
* * * * * * * * * * * * * * * * * * *	A	Ф	B1	7	รี	×	¥	ε	Q.	۳	3	*	¥	X X	>	7.	44	44	¥5	ς Υ	ទ	S	Ħ	¥	**	9	*	>	¥
- + + + + + +																													
	ო	4	ın	4	۲۰	00	0.	9	11	Ç	13	14	15	16	17	18	13	ខ្ល	21	[1] [4]	23	24	23	56	23	88	53	9	31

**********	KAGE (HEC-1)	JULY 1978	06 FEB 80	
*****************	FLOOD H' ROGRAPH PACKAGE (HEC-1)	DAM SAFETY VERSION	LAST MODIFICATION	

SNYDER UNIT HYDROGRAPH, FLOOD ROUTING AND DAM OVERTOPPING ANALYSES FOR 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, AND 100% PMF AT LAKE WHETSTONE DAM. NDI-I. D. MD\$3 — COMM ND. 580-21-5D

NSTAN O IPLT 0 IMIN METRC 0 0 LROPT TRACE 0 0 JOB SPECIFICATION
INF IMIN ME
O O
NUT LROPT TR IDAY OGPER S NE ST A O 200

MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN= 1 NRTIO= 9 LRTIO= 1 0.30 0.40 0.50 0.60 0.70 0.80

******* ******* ********

SUB-AREA RUNDFF COMPUTATION

OTUAI O LOCAL CALCULATION OF SNYDER INFLOW HYDROGRAPH TO LAKE WHETSTONE
ISTAG ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE
1 0 0 0 0 1 ISNOW ISAME 0 1 R96 0.00 R72 0.00 RAT 10 R48 0.00 HYDROGRAPH DATA TRSDA TRSPC 3.34 0.00 SPFE PMS R6 R12 R24 0.00 24.00 112.00 123.00 132.00 TRSPC COMPUTED BV THE PROGRAM IS 0.800 SNAP 0.00 TAREA 3.34 10Hg 1 IHYDG 1

871MP 0.00 ALSMX 0.00 CNSTL 0.05 STRTL 1.00 LCSS DATA ERAIN STRKS RTIDK 0.00 0.00 1.00 R710L 1.00 DL TKR 0 00 LROPT STRKR 0 0.00

UNIT HYDROGRAPH DATA
3.64 CP=1.25 NTA= 0 TP=

RTIOR* 2.00 RECESSION DATA GRCSN= -0.05 -1.50 STRT6=

369 3.62 HDURS, CP= 0 76 VDL= 1.00 315. 341. 364. 431. 411. 391 137. 57. UNIT HYDROGRAPH 28 END-OF-PERIOD ORDINATES, LAG= 121 180 222. 257. 286 427. 446. 463 465. 450. 321. 292. 264. 230. 190. 407. 346.

COMP Q **5507** END-OF-PERIOD FLOW
COMP G HO DA HR.MN PERIOD RAIN EXCS O MO.DA HR.MN PERIOD RAIN EXCS LOSS

SUM 25.34 23.49 1.86 204601. (644.)(5773.65)

	****	•	****	*	*	******		*****	*	*	*****		
					HYDROGR	HYDROGRAPH ROUTING	ONL						
		ROUTED FLOWS THROUGH LAKE WHETSTONE RESERVOIR 1STAG 1COMP IECON ITAPE JPL. 2 1 0 0	OWS THRO ISTAG	NGH LAK ICOMP	E WHETST	ETSTONE RESER	WOIR JPLT O	JPRT O	INAME	INAME ISTAGE	IAUTO O		
		0.0 0.0	000 °0	A .0	IRES	ISAME 1	IOPT	IPMP 0		LSTR			
		_	NSTPS 1	NSTDL O	LAG	AMSKK 0. 000	o. 000	15K 0.000	STORA 167.	ISPRAT -1	٠,		
STAGE	362.00 376.00	363.00 378.00	364	364.00 380.00	365.00 382.00		366.00 385.00	367. 00		368.00	370.00	372. 00	374.00
FLOW	00 00	186.00 2730.00	526.00 2800.00	88	925.00 2850.00		1488.00 2975.00	2125.00		2250.00	2400.00	2450.00	2550.00
CAPACITY	√= 0. 370.	458		12. 559.	25. 673 .	45. 800.	93	73. 930. 1	115. 1093.	167.	225.	292.	
ELEVATION*	348. 368	350 370		352. 372.	354. 374.	356. 376.	358. 378.		36 0.	362. 400.	364.	366.	
		CREL 362. 0	C SPUID		CDQW EXPW 0.0 0.0	PW ELEVL		CDOL CAR	CAREA 0.0	EXPL 0.0			
					TOPEL 377. S	DAM DATA COGD EX	Ďυ	DAMWID 50.					
CREST LE		50. 25	250.	450.	650.	850.		1000.					
ELEVATION		377.8 378	378.0	378.3	379. 5	380.0		381. 5					
PEAK DUTFLOW IS	IS 1532. AT	TIME	19.50 HDURS	OURS									
PEAK GUTFLOW IS	IS 2187. AT	TIME	19.75 HDURS	OURS									
PEAK OUTFLOW IS	15 2421.	AT TIME	20.50 HOURS	OURS									
PEAK OUTFLOW IS	15 2569.	AT TIME	21.00 HDURS	OURS									
PEAK QUTFLOW IS	15 2962.	AT TIME	21.25 HOURS	OURS									•
PEAK DUTFLOW IS	15 4707.	AT TIME	20. 25 HOURS	OURS									
PEAK OUTFLOW IS	15 5958.	AT TIME	19.75 HOURS	OURS									
PEAK QUTFLOW IS	15 7044.	AT TIME	19.25 HOURS	OURS									
PEAK OUTFLOW IS	15 7888	AT TIME	19.25 HOURS	OURS									

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND) AREA IN SQUARE MILES (SQUARE KILOMETERS)

						DATTOG AD	o ten to Fi	540				
OPERATION	STATION	AREA	PLAN	RATIO 1 0.20	RATIO 2 0.30	RATIO 3	RATIO 4	RATIO 5 0.60	PLAN RATIO 1 RATIO 2 RATIO 3 RATIO 4 RATIO 5 RATIO 6 RATIO 7 RATIO 9 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00	RATIO 7 0.80	RATIO B 0.90	RAT10 9 1.00
HYDROGRAPH AT	AT 1	3.34 8.65)	~	1600.	2400.	3200	4001.	4801. 135, 94) (4001. 4801. 5601. 113.28)(135.94)(158.60)(6401. 181, 25) (7201.	8001. 226. 57)
ROUTED TO	ณั	3.34	~ ~	1532. 43. 39) (2187. 61. 92) (2421 68, 55) (2569 72.76)(2962. 83. 88) (4707. 133. 29) (5958. 168.71)(7044.	7888. 223. 36)

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

	TIME OF	FATI URE	HOURS	00	000	000	00	00 0	0	0		00	
TOP OF DAM 377, 50 908. 2698.	TIME OF	MAX DUTFLOW	HOURS	19, 50	19, 75	20.50	21.00	21, 25	20.25	19 75	19.25	19 25	
	DURATION	OVER TOP	HOURS	00.00	00 0	00.0	00.0	2 25	3.50	10.0	2.00	5.25	
SPILLMAY CREST 362 00 167. 0.	MAXIMUM	OUTFLOW	CFS	1532.	2187.	2421.	2569	2962	4707	5958.	7044	7888.	
VALUE 00 67.	MAXIMUM	STORAGE	AC-FT	295.	350	200	722.	965.	1032.	1063.	1084	1102	
INITIAL VALUE 362.00 167. 0.	MAXIMUM	DEPTH	OVER DAM	00 0	00.0	00.0	0.00	0.77	1. 68	2.0 9	2 38	2, 58	
ELEVATION STORAGE OUTFLOW	MAX I MUM	RESERVOIR	M S ELEV	366.07	367, 49	370 83	374 78	378.27	379, 18	379 59	379, 88	390 08	
	RATIO	Ŗ,	PMF	0 50	ဂ ဝ	0.40	0 20	09 0	0 40	0 80	0 00	8	

APPENDIX E
PLATES

FILL MATERIAL

TYPE

REQUIREMENTS

Section 1

ML* (Plasticity Index From 8 to 10)

Section 2

ML* (Plasticity Index Less Than 8)

* Silt And Clay Defined By Unified Soil Classification System

Scale 1" = 201

Fied Soil Classification System

10)

Scale 1" = 20"

TYPICAL SECTION

LAKE WHETSTONE

FROM AS BUILT DRAWING
DATED FEB. 7, 1987
SHEET NO. 4

PLATE E-2

APPENDIX F
GEOLOGY

APPENDIX F REGIONAL GEOLOGY

The Lake Whetstone Dam is located within the Piedmont Physiographic Province and is situated on rock strata of the Wissahickon Formation, which is characterized by phyllites, schists, and sandstone and conglomerate beds. Minor alluvial deposits have also been mapped along Whetstone Run. The age of the Wissahickon and its stratigraphic relationship with adjacent rock formations are uncertain. It is estimated that the thicknesses of the Wissahickon Formation exceeds many thousands of feet. Strata in the vicinity of the dam dip very steeply to the east-southeast.

LEGEND

Was

Wissahickon formation

(Banded or laminated quarterich phyllites and schists with magnetite, quartz veins, sandstone and conglomerate beds composed of muscovite, chlorite, abbit, quarts. Grading into coarser schist to the east. Includes some Marburg schist. May be the equivalent of Harpers to the west. Calcareous layers are c. mmon. Filerngers with Liamsville phyllite. SS: sandstone beds)

IJ

ljamsville phyllite

(Soft purple or green phyllite and state in places with flattened amyodules. Composed of muscovite, chlorite or chloridid, quarts, and fine imenite or iron oxide dust. Interbedded with greenstone and sericite schist. In part equivalent to Marburg schist in Frederick County. Underlain by quartrite bed)

Qal

Alluvium

(Shown only along major streams)

Serpentine

REFERENCE:

GEOLOGIC MAP OF MONTGOMERY COUNTY, PREPARED BY THE STATE OF MARYLAND, MARYLAND GEOLOGICAL SURVEY. CEOLOGY MAP
RUMMEL, KLEPPER & KAHL