

Students: Section 2.6 is a part of 1 assignment: **Reading Assignment 2**

Requirements: PA

No due date

2.6 Cartesian products

An **ordered pair** of items is written (x, y). The first **entry** of the ordered pair (x, y) is x and the second entry is y. The use of parentheses () for an ordered pair indicates that the order of entries is significant, unlike sets which use curly braces $\{\}$, indicating that the order in which the elements are listed does not matter. For example, $(x, y) \neq (y, x)$ unless x = y. By contrast, $\{x, y\}$ is equal to $\{y, x\}$, with both denoting the set consisting of elements x and y. Two ordered pairs (x, y) and (u, w) are equal if and only if x = u and y = w.

For two sets, A and B, the *Cartesian product* of A and B, denoted A x B, is the set of all ordered pairs in which the first entry is in A and the second entry is in B. That is:

$$A \times B = \{ (a, b) : a \in A \text{ and } b \in B \}$$

Since the order of the elements in a pair is significant, $A \times B$ will not be the same as $B \times A$, unless A = B, or either A or B is empty. If A and B are finite sets, then $|A \times B| = |A| \cdot |B|$.

PARTICIPATION 2.6.1: Cartesian products: Finite examples. **ACTIVITY** $B = \{ a, b, c \}$ $A \times B =$ $A = \{ 1, 2 \}$ {(1,a),(1,b),(1,c), (2,a),(2,b),(2,c)} $A = \{ 1, 2 \}$ $B \times A$ $B = \{ a, b, c \}$ (a,1) {(a,1),(a,2), (b,1),(b,2), (b, 1) (c,1),(c,2)} (c, 1) $B \times A = \{ (a,1), (a,2), (b,1), (b,2), (c,1), (c,2) \}.$

Captions ^

- 1. A = $\{1, 2\}$ and B = $\{a, b, c\}$. To find A × B, make 6 pairs. Three pairs will have the form (1, *) and three pairs will have the form (2, *).
- 2. Then fill in the second entry of one (1,*) pair with a and one (2,*) pair with a. Do the same with b and c.
- 3. $A \times B = \{ (1,a), (1,b), (1,c), (2,a), (2,b), (2,c) \}.$
- 4. To find B \times A, make 6 pairs. Two pairs will have the form (a, *), two will be (b,*), and two will be (c,*).
- 5. Then fill in the second entry of one (a,*) pair, one (b,*) pair and one (c,*) pair with 1. Do the same with 2.
- 6. $B \times A = \{ (a,1), (a,2), (b,1), (b,2), (c,1), (c,2) \}.$

Feedback?

The set forms an infinite grid of points when plotted on the x-y plane.

Captions ^

- 1. is the set of all integers. The set is the set of all pairs (x, y) where x and y are both integers.
- 2. The set forms an infinite grid of points when plotted on the x-y plane.

Feedback?

PARTICIPATION ACTIVITY

2.6.3: Cartesian products of two sets.

Consider the following sets:

$$A = \{1, 2, 3\}$$

$$B = \{ x, y \}$$

- 1) $(1, y) \in A \times B$
 - O True
 - O False
- 2) $(1, y) \in B \times A$
 - O True
 - O False
- 3) $A \subseteq A \times B$
 - O True
 - O False
- 4) $(2,3) \in \mathbf{Z} \times \mathbf{Z}$
 - O True
 - O False
- 5) |A x B| = 5
 - O True
 - O False

Correct

A x B is the set of all ordered pairs where the first entry in the pair is in A and the second entry is in B. $1 \in A$ and y $\in B$, so (1, y) is an element of A x B.

Correct

If a pair is in B x A, then the first entry in the pair must be in B and the second entry must be in A. However, $1 \notin B$ and $y \notin A$, so (1, y) cannot be an element of B x A.

Correct

The elements in A are single numbers such as 1. The set $A \times B$ contains only ordered pairs such as (1, x). Therefore A and $A \times B$ have no elements in common.

Correct

 $\mathbf{Z} \times \mathbf{Z}$ is the set of all ordered pairs (x, y) such that x and y are integers. 2 and 3 are both integers, so (2, 3) is an element of $\mathbf{Z} \times \mathbf{Z}$.

Correct

 $|A \times B| = |A| \cdot |B| = 3 \cdot 2 = 6$

Feedback?

3 of 11

Section 2.6 - CS 220: Discrete Structures and their Appl...

An ordered list of three items is called an **ordered triple** and is denoted (x, y, z). For $n \ge 4$, an ordered list of n items is called an **ordered n-tuple** (or just **n-tuple** for short). For example, (w, x, y, z) is an ordered 4-tuple and (u, w, x, y, z) is an ordered 5-tuple.

The Cartesian product of three sets contains ordered triples, and for $n \ge 4$, the Cartesian product of n sets contains n-tuples. The Cartesian product of n sets, A_1 , A_2 , ..., A_n is

$$A_1 \times A_2 \times ... \times A_n = \{ (a_1, a_2, ..., a_n) : a_i \in A_i \text{ for all } i \text{ such that } 1 \le i \le n \}$$

For example, define A = {a, b}, B = {1, 2}, C = {x, y}, and D = { α , β }. Then the 4-tuples (a, 1, y, β) and (b, 1, x, α) are both examples of elements in the set A × B × C × D.

PARTICIPATION ACTIVITY

2.6.4: Cartesian products of many sets.

Consider the following sets:

$$A = \{1, 2, 3\}$$

$$B = \{ x, y \}$$

$$C = \{ u, v, w \}$$

1) $(w, y, 2) \in C \times B \times A$

O True

O False

2) $A \times B \times C \subseteq A \times B \times C \times D$

- O True
- O False
- 3) $(1, x, u, +) \in B \times A \times C \times D$
 - O True
 - O False

4) $(1, 2, +) \in A \times A \times D$

- O True
- O False

Correct

C x B x A contains all ordered triples in which the first entry in the triple is in C, the second entry is in B, and the third entry is in A. $w \in C$, $y \in B$, and $2 \in A$, so (w, y, 2) is an element of C x B x A.

Correct

The set $A \times B \times C$ contains triples. The set $A \times B \times C \times D$ contains 4-tuples. The two sets do not have any elements in common.

Correct

If a 4-tuple in the set B x A x C x D, then the first entry in the tuple must be in B. However, $1 \notin B$, so (1, x, u, +) cannot be an element of B x A x C x D.

Correct

The set A x A x D contains all ordered triples in which the first and second entries are in A, and the third entry is in D. $1 \in A$, $2 \in A$, and $+ \in D$, so (1, 2, +) is an element of A x A x D.

Feedback?

Section 2.6 - CS 220: Discrete Structures and their Appl...

The Cartesian product of a set A with itself can be denoted as $A \times A$ or A^2 . More generally:

For example, if $A = \{0, 1\}$, then A^n is the set of all ordered n-tuples whose entries are bits (0 or 1). For n = 3:

$$\{0, 1\}^3 = \{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) \}$$

Another common example is \mathbf{R}^n , which is the set of all ordered n-tuples of real numbers. When n = 2, \mathbf{R}^2 is the set of all pairs (x, y) such that x and y are real numbers.

Strings

If A is a set of symbols or characters, the elements in A^n can be written without the usual punctuation (parentheses and commas) used for ordered n-tuples. For example, if $A = \{x, y\}$, the set A^2 would be $\{xx, xy, yx, yy\}$. A sequence of characters is called a **string**. The set of characters used in a set of strings is called the **alphabet** for the set of strings. The **length** of a string is the number of characters in the string. For example, the length of the string xxyxyx is 6.

A binary string is a string whose alphabet is {0, 1}. A bit is a character in a binary string. A

string of length n is also called an **n-bit string**. The set of binary strings of length n is denoted as {0,1}ⁿ. An example of a binary string of length 7 (or 7-bit string) is: 0010110. Binary strings are fundamental objects in computer science: the input and output of every computer program is described by a binary string. In fact every piece of information including programs themselves are stored in computers as binary strings.

The **empty string** is the unique string whose length is 0 and is usually denoted by the symbol λ . Since $\{0, 1\}^0$ is the set of all binary strings of length 0, $\{0, 1\}^0 = \{\lambda\}$.

If s and t are two strings, then the **concatenation** of s and t (denoted st) is the string obtained by putting s and t together. If s = 010 and t = 11, then st = 01011. It is also possible to concatenate a string and a single symbol: t0 = 110. Concatenating any string x with the empty string gives back x: $x\lambda = x$.

Strings are used to specify passwords for computers or online accounts. Security systems vary with respect to the alphabet of characters allowed or required in a valid password. Strings also play an important role in discrete mathematics as a mathematical tool to help count the cardinality of sets.

Section 2.6 - CS 220: Discrete Structures and their Appl...

Additional exercises

EXERCISE

2.6.1: Cartesian product of three small sets.

The sets A, B, and C are defined as follows:

A = {tall, grande, venti}

B = {foam, no-foam}

C = {non-fat, whole}

Use the definitions for A, B, and C to answer the questions. Express the elements using n-tuple notation, not string notation.

- (a) Write an element from the set $A \times B \times C$.
- (b) Write an element from the set $B \times A \times C$.
- (c) Write the set $B \times C$ using roster notation.

Feedback?

EXERCISE

2.6.2: Cartesian product of two small sets.

Define the sets X and Y as: $X = \{*, +, \$\}$ and $Y = \{52, 67\}$. Use the definitions for X and Y to answer the questions.

- (a) Write the set $X \times Y$ using roster notation.
- (b) Give an element of X⁴. Express your answer as a 4-tuple, not as a string.
- (c) Give an element of $X \times X \times Y \times Y \times X$. Express your answer as a 5-tuple, not as a string.

Feedback?

EXERCISE

2.6.3: Cartesian product - true or false.

Indicate which of the following statements are true.

(a) $\mathbf{R}^2 \subseteq \mathbf{R}^3$

- (b) $\mathbf{Z}^2 \subseteq \mathbf{R}^2$
- (c) $\mathbf{Z}^2 \cap \mathbf{Z}^3 = \emptyset$
- (d) For any two sets, A and B, if $A \subseteq B$, then $A^2 \subseteq B^2$.
- (e) For any three sets, A, B, and C, if A \subseteq B, then A \times C \subseteq B \times C.

Feedback?

2.6.4: Expressing sets defined by Cartesian products in roster notation.

Express each set in roster notation. Express the elements as strings, not n-tuples.

- (a) A^2 , where $A = \{+, -\}$.
- (b) A^3 , where $A = \{0, 1\}$.

Feedback?

2.6.5: Cardinality of a set defined by a Cartesian product.

- (a) What is $|\{0, 1\}^7|$?
- (b) What is $|\{a, b, c, d\}^3|$?

Feedback?

EXERCISE

2.6.6: Roster notation for sets defined using set builder notation and the Cartesian product.

Express the following sets using the roster method. Express the elements as strings, not n-tuples.

- (a) $\{0x: x \in \{0, 1\}^2\}$
- (b) $\{0, 1\}^0 \cup \{0, 1\}^1 \cup \{0, 1\}^2$
- (c) $\{0x: x \in B\}$, where $B = \{0, 1\}^0 \cup \{0, 1\}^1 \cup \{0, 1\}^2$.

- Section 2.6 CS 220: Discrete Structures and their Appl...
 - (d) {xy: where $x \in \{0\} \cup \{0\}^2$ and $y \in \{1\} \cup \{1\}^2$ }
 - (e) $\{xy: x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$

Feedback?

EXERCISE

2.6.7: Cartesian products, power sets, and set operations.

Use the following set definitions to specify each set in roster notation. Except where noted, express elements of Cartesian products as strings.

- $A = \{a\}$
- $B = \{b, c\}$
- $C = \{a, b, d\}$
- (a) $A \times (B \cup C)$
- (b) $A \times (B \cap C)$
- (c) $(A \times B) \cup (A \times C)$
- (d) $(A \times B) \cap (A \times C)$
- (e) $(C \times B) \cap (B \times C)$
- (f) $P(A \times B)$
- (g) $P(A) \times P(B)$. Use ordered pair notation for elements of the Cartesian product.

Feedback?

EXERCISE

2.6.8: Proving set identities with Cartesian products.

Use the following three definitions and the laws of logic to prove the two identities given below.

- Definition of Cartesian product: $(x,y) \in A \times B \leftrightarrow (x \in A) \land (y \in B)$
- Definition of intersection: $x \in A \cap B \leftrightarrow (x \in A) \land (x \in B)$
- Definition of union: $x \in A \cup B \leftrightarrow (x \in A) \lor (x \in B)$
- (a) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- (h) $\wedge \vee (D \cap C) = (\wedge \vee D) \cap (\wedge \vee C)$

10 of 11

Activity summary for assignment: Reading Assignment 2100 / 105 pts

No due date

100 / 105 pts submitted to canvas

Completion details ∨