EL9343 Data Structure and Algorithm

Lecture 13: NP-Completeness

Instructor: Yong Liu

Last Lecture

- Single-Source Shortest Paths
 - Nonnegative edge weights: Dijkstra's algorithm
 - Unweighted graphs: BFS
 - General case: Bellman-Ford algorithm
 - DAG: Topological sort + one pass Bellman-Ford
- All Pairs Shortest Paths
 - Nonnegative edge weights: IVI times of Dijkstra's algorithm
 - Unweighted graphs: IVI times of BFS
 - General case: Floyd-Warshall algorithm

NP Complete Problems

- The course so far: techniques for designing efficient algorithms, e.g., divide-and-conquer, dynamic programming, greedy algorithms.
- What happens if you can't find an efficient algorithm?
 - Is it your "fault" or the problem's?
- Showing that a problem has an efficient algorithm is, relatively, easy. "All" that is needed is to demonstrate an algorithm.
- Proving that no efficient algorithm exists for a particular problem is difficult. How can we prove the nonexistence of something?
- We will now learn about NP Complete Problems, which provide us with a way to approach this question.

NP-Complete Problems

This is a very large class of thousands of practical problems for which

- It is not known if the problems have "efficient" solutions
- It is known that if any one of the NP-Complete Problems has an efficient solution then all of the NP-Complete Problems have efficient solutions
- Researchers have spent innumerable man-years trying to find efficient solutions to these problems and failing
- There is a large body of tools that often permit us to prove when a new problem is NP-complete.
- The problem of finding an efficient solution to an NP-Complete problem is known, in shorthand as P = NP? There is currently a US \$1,000,000 award offered by the Clay Institute for its solution (https://www.claymath.org/millennium-problems)
 - 14 NP/NP complete/Prove the puller is N-P complete

Optimization & Decision Problems

Decision problems

 Given an input and a question regarding a problem, determine if the answer is yes or no

Optimization problems

- Find a solution with the "best" value
- Optimization problems can be cast as decision problems that are easier to study
 - E.g.: Shortest path: G = unweighted directed graph
 - Find a path between u and v that uses the fewest edges
 - Does a path exist from u to v consisting of at most k edges?

Class of "P" Problems

- Class P consists of (decision) problems that are solvable in polynomial time
- Polynomial-time algorithms
 - Worst-case running time is O(nk), for some constant k
- Examples of polynomial time:
 - ▶ O(n²), O(n³), O(1), O(n lg n)
- Examples of non-polynomial time:
 - $O(2^n), O(n^n), O(n!)$
- Are non-polynomial algorithms always worse than polynomial algorithms?
 - $n^{1,000,000}$ is technically tractable, but really impossible $n^{\log \log \log n}$ is technically intractable, but easy

non-polynomial time

Tractable/Intractable Problems

- Problems in P are also called tractable
- Problems not in P are intractable or undecidable
 - Can be solved in reasonable time only for small inputs, as they grow large, we are unable to solve them in reasonable time
 - Or, can not be solved at all (e.g, Halting Problem)

Example of Unsolvable Problem

- Turing discovered in the 1930's that there are problems unsolvable/undecidable by any algorithm.
- The most famous of them is the halting problem
 - Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "infinite loop?"
 - Decision problem: answer is yes or no
 - Uncomputable: no algorithm solves it (correctly in finite time on all inputs)

We don't care about such problems here; take a theory class

Intractable Problems

- Can be classified in various categories based on their degree of difficulty, e.g.,
 - ► NP
 - NP-complete
 - NP-hard
- Let's define NP algorithms and NP problems ...

Nondeterministic and NP Algorithms

- Nondeterministic algorithm = two stage procedure:
- Nondeterministic ("guessing") stage:
 - generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")
 - Deterministic ("verification") stage:
 - take the certificate and the instance to the problem and returns YES if the certificate represents a solution
- NP algorithms (Nondeterministic polynomial)
 - verification stage is polynomial

Class of "NP" Problems

- Class NP consists of problems that could be solved by NP algorithms
 - i.e., verifiable in polynomial time
- If we were given a "certificate" of a solution, we could verify that the certificate is correct in time polynomial to the size of the input
- Warning: NP does not mean "non-polynomial"

Example: Hamiltonian Cycle

- Given: a directed graph G = (V, E), determine a each cycle is it and any simple cycle that contains each vertex in V
 - Each vertex can only be visited once
 - Certificate:
 - ▶ Sequence: $\langle v_1, v_2, v_3, ..., v_{|V|} \rangle$
 - Cannot solve in polynomial time
 - Can verify solution in polynomial time

Is P = NP?

Any problem in P is also in NP:

$$P \subseteq NP$$

- The big (and open question) is whether $NP \subseteq P$ or P = NP
 - i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Most computer scientists believe that this is false but we do not have a proof ...

NP-Completeness (informally)

NP-complete problems are defined as the hardest

problems in NP: an interesting class of problems whose status is unknown

Most practical problems turn out to be either P or NP-complete.

Proof N-Pamplate Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is easier than problem B, (i.e., we write "A ≤ B")

if we can solve A using the algorithm that solves B.

Intuitively: If A reduces in polynomial time to B, A is "no harder to solve" than B

Idea: transform the inputs of A to inputs of B

Polynomial Reductions

Given two problems A, B, we say that A is

polynomially reducible to B (A \leq_p B) if:

- There exists a function *f* that converts the input of A to inputs of B in polynomial time
- $A(i) = YES \Leftrightarrow B(f(i)) = YES$

NP-Completeness (formally)

- A problem B is NP-complete if:
 - $(1) B \in \mathbb{NP}$
 - (2) $A \leq_p B$ for all $A \in NP$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

NP-naming convention

- NP-complete means problems that are 'complete' in NP, i.e. the most difficult to solve in NP
- NP-hard stands for 'at least' as hard as NP (but not necessarily in NP);
- NP-easy stands for 'at most' as hard as NP (but not necessarily in NP);
- NP-equivalent means equally difficult as NP, (but not necessarily in NP); but difficulty level maybe the same as M.

Implications of Reduction

- ▶ If $A \leq_D B$ and $B \in P$, then $A \in P$
- If A ≤_p B and A ∉ P, then B ∉ P
- If $A \leq_p B$ and A is NP-Complete, B is NP-Hard. In addition, if $B \in NP \Rightarrow B$ is NP-Complete

Proving Polynomial Time

- 1. Use a **polynomial time** reduction algorithm to transform A into B
- 2. Run a known **polynomial time** algorithm for B
- 3. Use the answer for B as the answer for A

Proving NP-Completeness In Practice

- Prove that the problem B is in NP
 - A randomly generated string can be checked in polynomial time to determine if it represents a solution
- Pick a known NP-Complete problem A
- Reduce A to B: show that one known NP-Complete problem A can be transformed to B in polynomial time
 - No need to check that all NP-Complete problems are reducible to B

Revisit "Is P = NP?"

Theorem: If any NP-Complete problem can be solved in polynomial time \Rightarrow then P = NP.

P

NP

NP-complete

- If any *one* NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show P = NP)
- Thus: solve hamiltonian-cycle in $O(n^{100})$ time, you've proved that P = NP. Retire rich & famous.

Reductions Examples

Convert your problem into a problem you already know how to solve, (instead of solving from scratch)

- | least leps • unweighted shortest path → weighted (set weights = 1)
- min-product path → shortest path (take logs) $|gw_p| |gw_w| |w_w|$ = $\sum_{i=1}^{N} |gw_p| |gw_w| |gw_w| |w_w|$
- ▶ longest path in DAG → shortest path in DAG (negate weights)
 - longest path in general graph is NP-Complete

Satisfiability Problem (SAT)

Definition: A Boolean formula is a logical formula

which consists of

boolean variables (0=false, 1=true), logical operations

$$ar{x}$$
, NOT, $x \lor y$, OR, $x \land y$, AND.

These are defined by:

\boldsymbol{x}	y	$ ar{x} $	$x \vee y$	$x \wedge y$
0	0 1 0 1	1	0	0
0	1		1	0
1	0	0	1	0
1	1		1	1

- SAT problem: Determine whether an input Boolean formula is satisfiable. If an Boolean formula is satisfiable, it is a yes-input; otherwise, it is a no-input.
- SAT was the first problem shown to be NP-complete!

No reduction can be used.

Satisfiability Problem (SAT)

A given Boolean formula is *satisfiable* if there is a way to assign truth values (0 or 1) to the variables such that the final result is 1.

Example: $f(x, y, z) = (x \land (y \lor \overline{z})) \lor (\overline{y} \land z \land \overline{x}).$

		_			
x	y	z	$(x \wedge (y \vee \overline{z}))$	$(ar{y} \wedge z \wedge ar{x})$	f(x,y,z)
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	1	0	1
1	1	1	1	0	1

For example, the assignment x = 1, y = 1, z = 0 makes f(x, y, z) true, and hence it is satisfiable.

Satisfiability Problem (SAT)

Example:

$$f(x,y) = (x \vee y) \wedge (\bar{x} \vee y) \wedge (x \vee \bar{y}) \wedge (\bar{x} \vee \bar{y}).$$

x	y	$x \lor y$	$\bar{x} \vee y$	$x \vee \overline{y}$	$\bar{x} \vee \bar{y}$	f(x,y)
0	0	0)	1	1	1	0
0	1	1	1	0	1	0
71	0	1	0	1	1	0
3.1	1	1	1	1	0	0

There is no assignment that makes f(x, y) true, and hence it is NOT satisfiable.

K-CNF-SAT Problem

For a fixed k, consider Boolean formulas in k-conjunctive normal form (k-CNF):

$$f_1 \wedge f_2 \wedge \cdots \wedge f_n$$

where each f_i is of the form

$$f_i = y_{i,1} \vee y_{i,2} \vee \cdots \vee y_{i,k}$$

where each $y_{i,j}$ is a variable or the negation of a variable.

An example of a 3-CNF formula is

▶ 2-SAT: P

$$(x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_1 \vee \overline{x}_3 \vee x_4).$$

k-SAT problem: Determine whether an input Boolean *k*-CNF formula is satisfiable.

Other NP-Complete Problems

- Knapsack
- 3-Partition: given n integers, can you divide them into triples of equal sum?
- Traveling Salesman Problem: shortest path that visits all vertices of a given graph — decision version: is minimum weight ≤ x?
- Longest common subsequence of k strings
- Shortest paths amidst obstacles in 3D