KỸ THUẬT NÂNG - VẬN CHUYỂN

CHƯƠNG 2 CÁC THIẾT BỊ MANG VẬT

Chapter II

CÔNG DỤNG

Dùng để treo, mang và di chuyển vật

PHÂN LOẠI

- Bộ phận mang vạn năng:
 - Móc đơn, móc kép, vòng treo.
- Bộ phận mang chuyên dùng:
 - Gầu ngoạm: than, cát đá.
 - Gầu, thùng: vật liệu lỏng.
 - Kìm: thép tấm, thép đúc, thùng gỗ có cùng kích thước
 - Nam châm: vật liệu bằng kim loại

Bài tập 2.1:

Xác định tên gọi các thiết bị mang cụ thế theo thứ tự các clip được xem

- Clip 1
- Clip 2
- Clip 3
- Clip 4
- Clip 5
- Clip 6

-

1. MÓC (TT)

Công dụng, vật liệu, chế tạo

- Nâng vật từ trăm đến hàng trăm tấn
- Vật liệu thép ít các bon (thép 20)
- Chế tạo: rèn, dập (đúc ít sử dụng cần kiểm tra khuyết tật)
- Chế tạo từ các thép tấm (Ct3 hoặc C20)- thay thế từng tấm khi hỏng

1. MÓC (TT) Yêu cầu

- Yêu cầu kích thước trọng lượng nhỏ nhất,
 đảm bảo bền đều ở mọi tiết diện
- Các móc bị nứt cần loại bỏ, không được hàn đắp
- Sau khi chế tạo cần thử tải: 125%Q

Cần kiểm tra các tiết diện nguy hiểm nào?

1. MÓC(tt):

Kiểm tra các thiết diện nguy hiểm

-Cuống móc: A-A

-Thân móc: B-B

C-C

Chapter II

1. MÓC (tt):

- Cuống móc: A-A
 - Ứng suất: kéo

$$\sigma_k = \frac{Q}{\pi . d_1^2 / 4} \le \left[\sigma_k\right]$$

 $d\tilde{a}n \, d\hat{o}ng \, tay: [\sigma_k] = 80 \, \text{N/mm}^2$ $d\tilde{a}n \, d\hat{o}ng \, m\acute{a}y: [\sigma_k] = 70 \, N/mm^2 (Nhe, TB)$ $[\sigma_{k}]=50 \text{ N/mm}^{2} (N \ddot{a} ng, RN)$

- Chiêù dài phần ren cuống móc

$$H = \frac{4Qt}{\pi \cdot (d_0^2 - d_1^2)[\sigma_d]} \qquad [\sigma_d] = 30-35 \text{ N/mm}^2$$

$$[\sigma_{d}] = 30 - 35 \text{ N/mm}^2$$

-

1. MÓC (tt):

$$S_{1t} = \pi (d_0^2 - d_1^2)/4$$

$$= S = S_{1t}x(H/t) = \pi(d_0^2 - d_1^2)H/4t$$

•
$$\sigma = 4Qxt/(\pi(d_0^2 - d_1^2)H)$$

$$\sigma \leq [\sigma_d]$$

$$\rightarrow H = \frac{4Qt}{\pi \cdot (d_0^2 - d_1^2)[\sigma_d]}$$

1. MÓC (tt):

Tiết diện B-B: chịu kéo và uốn, ứng suất tính theo lý thuyết thanh cong:

$$\sigma = \sigma_k + \sigma_u = \frac{Q}{F} + \frac{M_u}{Fr} + \frac{M_u}{K.Fr} \cdot \frac{y}{r+y} \le [\sigma]$$

Tại điểm 1:
$$\sigma_1 = \frac{Qe_1}{F.k.\frac{a}{2}}$$

$$\sigma_1 = \frac{Qe_1}{F.k.\frac{a}{2}}$$

$$\sigma_2 = -\frac{Qe_2}{F.k.\left(\frac{a}{2} + h\right)}$$

Tiết diện C-C: chịu cắt và uốn, ứng suất tính theo lý thuyết thanh cong:

Úng suất cắt: $\tau_c = \frac{Q_3}{F_c}$

Úng suất uốn:

$$\tau_c = \frac{Q_3}{F_1}$$

ng suất uốn:
Tại điểm 3:
$$\sigma_{u3} = \frac{Q_2 e_4}{F_1 \cdot k \cdot \frac{a}{2}}$$

Tại điểm 4:
$$\sigma_{u4} = \frac{2}{F_1 \cdot k_1 \cdot \left(\frac{a}{2} + h_1\right)}$$

Ứng suất tổng lớn nhất tại điểm 3, 4:

Trong đó:
$$Q_2 = \frac{Q}{2}tg\gamma$$
 $Q_3 = \frac{Q}{2}$

$$\sigma_3 = \sqrt{\sigma_{u3}^2 + 3\tau_c^2}$$

$$\sigma_4 = \sqrt{\sigma_{u4}^2 + 3\tau_c^2}$$

钩号	a1	a2	a3	b1	b2	d1	e3	h1	h2	L	重量 (kg)
1.6	56	45	64	45	38	36	118	56	48	224	4. 5
2.5	63	50	72	53	45	42	132	67	58	253	6.3
4	71	56	80	63	53	48	148	80	67	285	8.8
5	80	63	90	71	60	53	165	90	75	318	12.3
6	90	71	101	80	67	60	185	100	85	380	17. 1
8	100	80	113	90	75	67	210	112	95	418	24
10	112	90	127	100	85	75	221	125	106	452	34
12	125	100	143	112	95	85	252	140	118	510	47
16	140	112	160	125	106	95	280	160	132	582	66

tiêu chuẩn: GB / T10051.4-2010

<u>Thông số kỹ thuật</u>

Khi sử dụng móc cẩu mắt xoay khóa an toàn cần chú ý:

Trọng lượng vật cẩu để lựa chọn móc cẩu, xích đúng tải trọng.

Các thông số kỹ thuật liên quan

THÔNG SỐ KỸ THUẬT MÓC CẨU MẮT XOAY										
		Tải								
Loai	Kích thước	trong làm việc (LBS)	L	В	С	E	F	G	н	Khối lượng (LBS)
BKLK-5/6-8	7/32	2100	5.8	1.1	0.87	1.3	0.43	0.55	0.75	1.5
BKLK-7/8-8	9/32	3500	7.2	1.4	1.1	1.4	0.47	0.67	0.91	2.4
BKLK-10-8	3/8	7100	8.5	1.7	1.3	1.6	0.59	0.99	1.1	4.2
BKLK-13-8	1/2	12000	10.9	2.1	1.6	1.9	0.75	1.1	1.5	8.4
BKLK-16-8	5/8	18100	13.2	2.5	2.0	2.4	0.87	1.5	1.9	15.9
BKLK-18/20-8	3/4	28300	14.5	2.7	1.7	2.3	2.2	2.9	1.0	23.8

Trong tải(t)											
	a	_b_	b ₁	h	d	d ₁	$-\mathbf{d}_0$]	l ₁	Trọng lợng móc (kg)	
125	321	210	96	319	276	240	228	624	264		
	$\mathbf{l_2}$	m	n	S	r	R ₁	R ₂	R ₃	R ₄	520	
	288	282	289	138	48	60	10	372	452		

2. KHUNG TREO MÓC:

Cụm móc treo.
a) Cụm móc treo thường; b) Cụm móc treo ngắn.

2. KHUNG TREO MÓC (tt):

Dài

Trục móc và puly độc lập:

Ngắn

- Trục móc và puly chung.
- Số puly động chẳn (cân bằng).

2. KHUNG TREO MÓC (tt):

• Vật liệu chế tạo trục: Thép CT4, thép 15, thép 20.

Fig. 49. Tongs-type grade
Chapter II

• Giữ vật bằng ma sát.

$$F \ge Q$$

$$F = 2fN \Rightarrow N \ge \frac{Q}{2f}$$

$$\sum M_0 = 0$$

$$\sum M_0 = Nb - \frac{Q}{2}(\frac{a}{2}) - S.c = 0$$

Điều kiện nâng:

$$\frac{b}{f} - \frac{a}{2} - \frac{c}{\cos \alpha} = 0$$

Chapter II

BỘ PHẬN MANG CHUYÊN DÙNG CHO VẬT LIỆU RỜI-

-Gàu ngoạm-

Chapter II

4. BỘ PHẬN MANG CHUYÊN DÙNG CHO VẬT LIỆU RỜI (TT)

Phân loại

- Đóng mở má bằng động cơ
- Đóng mở bằng dây:- một dây.
 - hai dây

4. BỘ PHẬN MANG CHUYÊN DÙNG CHO VẬT LIỆU RỜI (TT)

-Gầu ngọam hai dây-

1. mở gầu

- Fig. 56. Operating sequence of a two-line grab bucket
- 2. Hạ gầu lên vật liệu
- 3. Đóng gầu lấy liệu
- 4. Nâng gầu di chuyển cùng vật liệu Chapter II

4. BỘ PHẬN MANG CHUYÊN DÙNG CHO VẬT LIỆU RỜI (TT)

Gàu ngoạm một dây

- 1. Hạ gầu lên chỗ vật liệu:móc treo hạ cho đến khi khoá dưới ăn khớp
- 2. Đóng gầu lấy vật liệu và di chuyển
- 3. Mở khóa tháo hàng
- 4. Hàng rơi nhờ trọng lượng bản thân

Fig. 55. Operating sequence of a single-line grab bucket

5. BỘ PHẬN MANG ĐIỆN TỪ

