eë quareure f_i ($i\in\mathcal{U}$) repubadrement \mathcal{U} . Donomiere, 470 Deceptoro repossible deux Π_i f_i respecte shellenton as u.

- e Ucuoragueu repurque bédereurs Dre b: corrabueu elapererad $f_{t,i}$, codepramee b totalité organisation orogeneure $f_{t,i}$. Total $f: I \longrightarrow f_{t,i}$ correcte u $f_{t,i}$ $\subseteq U$ $=> U f_{t,i}$ $= U f_{t,i}$ $\subseteq U$
- $\prod_{i} f_{i} \stackrel{\text{det}}{:=} \left\{ q: I \longrightarrow \bigcup_{i \in I} f_{i} : q(i) \in f_{i} \right\} \left(\text{com } f_{i} = \emptyset \text{ The menoropose } i, \tau0 \right. \prod_{i} f_{i} = \emptyset \in \mathcal{U} \right)$
- I= $\mathcal{U} \stackrel{(2)}{\Rightarrow} \{I\} \in \mathcal{U}$. Paccumpus $\mathcal{D}(\{I\} \times (\mathcal{P}(I \times Uf_i)) \times \{Uf_i\}) \in \mathcal{U}$. Ho $\varphi \in \{I\} \times (\mathcal{P}(I \times Uf_i)) \times \{Uf_i\}$ $Uf_i \in \mathcal{U} \stackrel{(2)}{\Rightarrow} \{Uf_i\} \in \mathcal{U}$ $=> \prod_i f_i \in \mathcal{U}$

Ynparrience 2

- (a) Dre Dannes yoursepayer U is objunction $f\colon I \to b$ a discress opposerure $I \in U$ homomore,
- 470 6 sodiumen Uf: estierce unomecroon us U.
 (5) Ponomure, 470 6 supodenum yunsepagna U nothino someway ychosus (5) ka coorde us (c) 2000 gypameure, a uz yoursur XEU Borrencer, 400 UXEU.

Peuseure:

- (a) Doursaus 6 1
- (S) MEDROUMENCTE DONGSCHOL, DOMOMEN DOCTOPOROCE hyero boundueur general (a) a Dana correctiona figure $f: a \rightarrow b$, and a $b \in \mathcal{U}$. The note $b \in \mathcal{U}$, to $x \in b = 7$ $\{x\} \in \mathcal{U} = 7$ $\{x \in b\} \in \mathcal{U}$. Departure formula for $a \rightarrow b$, and $a \in \mathcal{U}$ is $a \rightarrow b$. Sometime, 470 DEPART EDEPHATEL & U =7 APLANERAD YTO: U {K} = b & U.

Pyons xeU => {x}eU => } f: {x} → {x} => Ux = Ux ∈ U.