import all required packages

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: path=r"C:\Users\Sruth\Downloads\achou-nba-draft-combine-measurements\achou-nba-d
df=pd.read_csv(path)
df

Out[2]:		column_a	player	year	draft_pick	height_no_shoes	height_with_shoes	wing
	0	0	Blake Griffin	2009	1.0	80.50	82.00	
	1	1	Terrence Williams	2009	11.0	77.00	78.25	
	2	2	Gerald Henderson	2009	12.0	76.00	77.00	
	3	3	Tyler Hansbrough	2009	13.0	80.25	81.50	
	4	4	Earl Clark	2009	14.0	80.50	82.25	
	•••	•••						
	512	512	Peter Jok	2017	NaN	76.25	77.75	
	513	513	Rawle Alkins	2017	NaN	74.50	75.75	
	514	514	Sviatoslav Mykhailiuk	2017	NaN	78.50	79.50	
	515	515	Thomas Welsh	2017	NaN	83.50	84.50	
	516	516	V.J. Beachem	2017	NaN	78.25	80.00	

517 rows × 19 columns

Data quick checks

1.shape

In [3]: # there is 517rows and 19 columns
 df.shape

Out[3]: (517, 19)

2.size

In [4]: # which returns overall size of dataframe

```
df.size
Out[4]: 9823
        3.dtypes
In [5]: # gives type of column
        df.dtypes
                                    int64
Out[5]: column_a
                                   object
        player
        year
                                    int64
        draft_pick
                                  float64
        height_no_shoes
                                  float64
        height_with_shoes
                                  float64
                                  float64
        wingspan
        standing_reach
                                  float64
        vertical_max
                                 float64
        vertical_max_reach
                                  float64
        vertical_no_step
                                  float64
        vertical_no_step_reach
                                  float64
        weight
                                  float64
        body_fat
                                  float64
        hand_length
                                  float64
        hand_width
                                  float64
        bench
                                  float64
        agility
                                  float64
                                  float64
        sprint
        dtype: object
        4.columns
In [6]: # gives total columns present in the dataset
        df.columns
Out[6]: Index(['column_a', 'player', 'year', 'draft_pick', 'height_no_shoes',
```

'height_with_shoes', 'wingspan', 'standing_reach', 'vertical_max',
'vertical_max_reach', 'vertical_no_step', 'vertical_no_step_reach',
'weight', 'body_fat', 'hand_length', 'hand_width', 'bench', 'agility',

In [7]: # gives information about the colums that is either categorical column(object), n

'sprint'],
dtype='object')

5.info

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 517 entries, 0 to 516
Data columns (total 19 columns):
# Column
                            Non-Null Count Dtype
---
                             -----
                            517 non-null int64
 0 column_a
 1 player
                            517 non-null object
 2 year
                            517 non-null int64
3 draft_pick
                            384 non-null float64
4 height_no_shoes 517 non-null float64
5 height_with_shoes 516 non-null float64
                            517 non-null float64
 6 wingspan
7 standing_reach 517 non-null float64
8 vertical_max 450 non-null float64
9 vertical_max_reach 450 non-null float64
10 vertical_no_step 450 non-null float64
 11 vertical_no_step_reach 450 non-null float64
 12 weight
                            516 non-null float64
 13 body fat
                            514 non-null float64
                          470 non-null float64
468 non-null float64
 14 hand_length
 15 hand_width
 16 bench
                            284 non-null float64
17 agility
                            444 non-null float64
 18 sprint
                             446 non-null float64
dtypes: float64(16), int64(2), object(1)
memory usage: 76.9+ KB
```

Convert categorical columns

```
In [8]: cat_cols=df.select_dtypes(include="object").columns
    cat_cols
```

Out[8]: Index(['player'], dtype='object')

conversion of numerical columns

checking the missing values

```
In [10]: # 0 represents no missing values: except 0 any numerical values represents missi
df.isnull().sum()
```

```
Out[10]: column_a
                                    0
                                    0
         player
                                    0
         year
         draft_pick
                                  133
         height_no_shoes
         height_with_shoes
                                    1
         wingspan
                                   0
         standing_reach
         vertical_max
                                 67
         vertical_max_reach
vertical_no_step
                                67
                                  67
         vertical_no_step_reach 67
         weight
                                   1
         body_fat
                                    3
                                   47
         hand_length
                                   49
         hand_width
                                  233
         bench
                                   73
         agility
         sprint
                                   71
         dtype: int64
```

From above there are missing values

Filling the missing values

```
In [11]: df=pd.read_csv(path)
         draft_pick=df['draft_pick'].mode()
         df['draft_pick'].fillna(draft_pick[0],inplace=True)
         height_with_shoes=df['height_with_shoes'].mode()
         df['height_with_shoes'].fillna(height_with_shoes[0],inplace=True)
         vertical_max=df['vertical_max'].mode()
         df['vertical_max'].fillna(vertical_max[0],inplace=True)
         vertical_max_reach=df['vertical_max_reach'].mode()
         df['vertical_max_reach'].fillna(vertical_max_reach[0],inplace=True)
         vertical_no_step=df['vertical_no_step'].mode()
         df['vertical_no_step'].fillna(vertical_no_step[0],inplace=True)
         vertical_no_step_reach=df['vertical_no_step_reach'].mode()
         df['vertical_no_step_reach'].fillna(vertical_no_step_reach[0],inplace=True)
         weight=df['weight'].mode()
         df['weight'].fillna(weight[0],inplace=True)
         body_fat=df['body_fat'].mode()
         df['body_fat'].fillna(body_fat[0],inplace=True)
         hand_length=df['hand_length'].mode()
         df['hand_length'].fillna(hand_length[0],inplace=True)
         hand_width=df['hand_width'].mode()
         df['hand_width'].fillna(hand_width[0],inplace=True)
         bench=df['bench'].mode()
         df['bench'].fillna(bench[0],inplace=True)
```

```
agility=df['agility'].mode()
df['agility'].fillna(agility[0],inplace=True)

sprint=df['sprint'].mode()
df['sprint'].fillna(sprint[0],inplace=True)
```

In [12]: # dataframe without any missing values
 df

Out[12]:		column_a	player	year	draft_pick	height_no_shoes	height_with_shoes	winç
	0	0	Blake Griffin	2009	1.0	80.50	82.00	
	1	1	Terrence Williams	2009	11.0	77.00	78.25	
	2	2	Gerald Henderson	2009	12.0	76.00	77.00	
	3	3	Tyler Hansbrough	2009	13.0	80.25	81.50	
	4	4	Earl Clark	2009	14.0	80.50	82.25	
	•••							
	512	512	Peter Jok	2017	14.0	76.25	77.75	
	513	513	Rawle Alkins	2017	14.0	74.50	75.75	
	514	514	Sviatoslav Mykhailiuk	2017	14.0	78.50	79.50	
	515	515	Thomas Welsh	2017	14.0	83.50	84.50	
	516	516	V.J. Beachem	2017	14.0	78.25	80.00	

517 rows × 19 columns

No missing values , all the missing values are filled above

```
In [13]: # there is no missing values in dataset
    df.isnull().sum()
```

```
player
                                    0
          year
                                    0
          draft_pick
                                    0
          height_no_shoes
          height_with_shoes
                                    0
                                    0
          wingspan
                                    0
          standing_reach
          vertical_max
                                    0
          vertical_max_reach
                                    0
          vertical_no_step
                                    0
          vertical_no_step_reach
                                    0
          weight
          body_fat
                                    0
                                    0
          hand_length
          hand width
                                    0
                                    0
          bench
          agility
                                    0
          sprint
                                    0
          dtype: int64
         Categorical Data Analysis
In [14]: cat_cols
Out[14]: Index(['player'], dtype='object')
In [15]: # There are 516 unique items in dataframe
         df['player'].nunique()
Out[15]: 516
In [16]: df['player'].value_counts()
Out[16]: player
         Marcus Thornton
                              2
          Jordan Mickey
                              1
          Kevon Looney
                              1
          Chris McCullough
                              1
          R.J. Hunter
                              1
          Tony Wroten
          Jared Cunningham
                              1
          John Jenkins
                              1
          Fab Melo
                              1
          V.J. Beachem
          Name: count, Length: 516, dtype: int64
         Numerical Column Analysis
In [17]: num_cols
Out[17]: Index(['column_a', 'year', 'draft_pick', 'height_no_shoes',
                 'height_with_shoes', 'wingspan', 'standing_reach', 'vertical_max',
                 'vertical_max_reach', 'vertical_no_step', 'vertical_no_step_reach',
                 'weight', 'body_fat', 'hand_length', 'hand_width', 'bench', 'agility',
                 'sprint'],
```

dtype='object')

0

Out[13]: column_a

Method-Correlation

In [18]: df.corr(numeric_only=True)

\cap	4-	[10]	
U	uч	I TO I	

	column_a	year	draft_pick	height_no_shoes	height_with_sh
column_a	1.000000	0.992944	0.009979	-0.005443	-0.006 ⁻
year	0.992944	1.000000	0.012478	0.005332	0.0049
draft_pick	0.009979	0.012478	1.000000	-0.093051	-0.0917
height_no_shoes	-0.005443	0.005332	-0.093051	1.000000	0.995
height_with_shoes	-0.006703	0.004975	-0.091260	0.995220	1.000
wingspan	0.040212	0.051316	-0.114980	0.846048	0.843
standing_reach	-0.032146	-0.024578	-0.109112	0.921464	0.920
vertical_max	0.133720	0.147984	0.012902	-0.378723	-0.3854
vertical_max_reach	0.033574	0.051841	-0.100302	0.629287	0.622
vertical_no_step	0.106966	0.123862	0.043796	-0.235172	-0.243
vertical_no_step_reach	0.040380	0.060176	-0.101921	0.735780	0.730
weight	-0.075281	-0.074153	-0.095277	0.741385	0.743
body_fat	0.004468	-0.007667	0.006432	0.280954	0.280
hand_length	-0.008950	0.001826	-0.081943	0.578244	0.581
hand_width	-0.158802	-0.159639	-0.111546	0.367684	0.369
bench	-0.135496	-0.140121	0.020223	0.089620	0.087
agility	0.035009	0.021478	0.045494	0.382487	0.379
sprint	0.056455	0.044251	0.075731	0.382458	0.375
4					•

Heat_map

In [19]: corr_data=df.corr(numeric_only=True)
 sns.heatmap(corr_data,annot=True,cmap='coolwarm')
 plt.show()

pre defined function

df.describe()

Out[20]:

In [20]:

	column_a	year	draft_pick	height_no_shoes	height_with_shoes	wings
count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000
mean	258.000000	2013.187621	24.764023	77.609284	78.901838	82.49
std	149.389312	2.531507	15.086264	3.287633	3.273419	3.943
min	0.000000	2009.000000	1.000000	68.250000	69.500000	70.000
25%	129.000000	2011.000000	14.000000	75.250000	76.750000	79.750
50%	258.000000	2013.000000	19.000000	77.750000	79.000000	82.500
75%	387.000000	2015.000000	37.000000	80.000000	81.250000	85.500
max	516.000000	2017.000000	60.000000	85.250000	86.500000	92.500
4						•

Histogram analysis for numerical columns

In [21]: num_cols

```
Out[21]: Index(['column_a', 'year', 'draft_pick', 'height_no_shoes',
                 'height_with_shoes', 'wingspan', 'standing_reach', 'vertical_max',
                 'vertical_max_reach', 'vertical_no_step', 'vertical_no_step_reach',
                 'weight', 'body_fat', 'hand_length', 'hand_width', 'bench', 'agility',
                 'sprint'],
               dtype='object')
In [22]: for i in num_cols:
             skew=round(df[i].skew(),2)
             print(f"skew of column {i} is {skew}")
        skew of column column a is 0.0
        skew of column year is -0.1
        skew of column draft_pick is 0.63
        skew of column height_no_shoes is -0.24
        skew of column height_with_shoes is -0.24
        skew of column wingspan is -0.24
        skew of column standing_reach is -0.24
        skew of column vertical_max is 0.01
        skew of column vertical_max_reach is -0.52
        skew of column vertical_no_step is 0.24
        skew of column vertical_no_step_reach is -0.45
        skew of column weight is 0.32
        skew of column body_fat is 1.32
        skew of column hand_length is 0.11
        skew of column hand_width is 0.13
        skew of column bench is 0.3
        skew of column agility is 0.91
        skew of column sprint is 0.77
In [23]: for i in num cols:
             kurt=round(df[i].kurt(),2)
             print(f"kurtosis of column {i} is {skew}")
        kurtosis of column column_a is 0.77
        kurtosis of column year is 0.77
        kurtosis of column draft_pick is 0.77
        kurtosis of column height_no_shoes is 0.77
        kurtosis of column height_with_shoes is 0.77
        kurtosis of column wingspan is 0.77
        kurtosis of column standing reach is 0.77
        kurtosis of column vertical_max is 0.77
        kurtosis of column vertical_max_reach is 0.77
        kurtosis of column vertical_no_step is 0.77
        kurtosis of column vertical no step reach is 0.77
        kurtosis of column weight is 0.77
        kurtosis of column body_fat is 0.77
        kurtosis of column hand_length is 0.77
        kurtosis of column hand_width is 0.77
        kurtosis of column bench is 0.77
        kurtosis of column agility is 0.77
        kurtosis of column sprint is 0.77
In [24]: len(num_cols)
Out[24]: 18
In [25]: for i in num cols:
             year_data=df[i]
             count,bins,x=plt.hist(year_data,bins=20)
```

```
plt.xlabel(i)
plt.ylabel('count')
plt.title('Histogram')
print(len(count))
print(len(bins))
print(x)
plt.show()
```

20
21
<BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

21
<BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

21 <BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

20
21
<BarContainer object of 20 artists>

Box plot creation Outlier analysis for numerical columns

```
In [26]: for i in num_cols:
    year_data=df[i]
    plt.boxplot(year_data,vert=False)
    plt.title("Box plot")
    plt.xlabel(i)
    plt.show()
```


30 32 vertical_no_step

weight

7.5

8.0

8.5

9.5

9.0

hand_length

10.0

Removing outliers from the data removing outliers refres that non-outliers data

```
In [27]: # by using IQR we are able to remove outliers in data
         height_data=df['height_no_shoes']
         q1=np.percentile(height_data,25)
         q2=np.percentile(height_data,50)
         q3=np.percentile(height_data,75)
         IQR=q3-q1
         1b=(q1-(1.5*IQR))
         ub=(q3+(1.5*IQR))
         con1=height_data>lb
         con2=height_data<ub
         con3=con1&con2
         non_outliers_data=height_data[con3]
         non_outliers_data
Out[27]: 0
                80.50
                77.00
         2
               76.00
         3
              80.25
         4
              80.50
               . . .
         512 76.25
         513 74.50
         514
               78.50
         515
              83.50
         516
               78.25
         Name: height_no_shoes, Length: 517, dtype: float64
In [28]: # data frame without any outliers
         non_outliers_df=df[con3]
         non_outliers_df.dropna(inplace=True)
         non_outliers_df
```

Out[28]:		column_a	player	year	draft_pick	height_no_shoes	height_with_shoes	wing
	0	0	Blake Griffin	2009	1.0	80.50	82.00	
	1	1	Terrence Williams	2009	11.0	77.00	78.25	
	2	2	Gerald Henderson	2009	12.0	76.00	77.00	
	3	3	Tyler Hansbrough	2009	13.0	80.25	81.50	
	4	4	Earl Clark	2009	14.0	80.50	82.25	
	•••							
	512	512	Peter Jok	2017	14.0	76.25	77.75	
	513	513	Rawle Alkins	2017	14.0	74.50	75.75	
	514	514	Sviatoslav Mykhailiuk	2017	14.0	78.50	79.50	
	515	515	Thomas Welsh	2017	14.0	83.50	84.50	
	516	516	V.J. Beachem	2017	14.0	78.25	80.00	

517 rows × 19 columns

```
In [29]: # Without any outliers
height=non_outliers_df[['height_no_shoes']]
sns.boxplot(height,orient='h')
plt.xlabel('height_no_shoes')
plt.show()
```


box plot without any outliers

```
In [30]: for i in num_cols[6:]:
    height=non_outliers_df[['column_a']]
    sns.boxplot(height,orient='h')
    plt.xlabel([i])
    plt.show()
```


In []: