Subt. For, PT	D-1449			Docket Number	Application Number	
INFORMATION DISCLOSURE IN AN APPLICATION (Use several sheets if necessary)				102286.123	09/746,662	
				Applicant Turski et al.		
,			• .	Filing Date	Group Art Unit	
Sheet	1	OF	1	December 22, 2000	-1614 - 164 6	

U.S. Patent Documents						
EXAMINER INITIAL	DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	FILING DATE IF APPROPRIATE
RLi	5,750,525	5/12/1998	Huth et al.	514	249	
RLi	5,597,809	01/28/1997	Dreyer	514	37	

Foreign Patent Documents							
EXAMINER DOCUMENT		DATE	COUNTRY	CLASS	SUBCLASS	TRANSLATION	
INITIAL	NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	YES	NO
RLi	EP 0 492 485 B1	07/01/1992	EP	491	04		
RZi	DE 4239816 A1	6/01/1994	Germany	37	02		

		Other Documents (Including Author, Title, Date Pertinent Pages, Etc.)
RLi	A1	Dusart I et al., "Demyelination, and remyelination by Schwann cells and oligodendrocytes after kainate-induced neuronal depletion in the central nervous system" Neuroscience 1992 51(1): 137-48
	A2	Hewett SJ et al., "Potentiation of oxygen-glucose deprivation-induced neuronal death after induction of iNOS" Stroke 1996 27(9): 1586-91
	АЗ	Kim WG. et al., "AMPA/kainate receptor antogonists reduce lipopolysaccharide (LPS)/interferon-gamma (IFN-gamma)-induced neurotoxixity in mixed cortica neuronal/glial cell cultures" Society for Neuroscience 1998 24(1-2): 1857
	Α4	Matute C "Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve" Proc Natl Acad Sci U S A. 1998 95(17): 10229-34
	A5	Matute C et al., "Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes" Proc Natl Acad Sci U S A. 1997 94(16): 8830-5
	A6	McDonald JW et al., "Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity" Nat Med. 1998 4(3): 291-7
	A7	McDonald JW et al., "Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity" Neuroreport. 1998 9(12): 2757-62
	8A	McDonald JW et al., "AMPA/ kainate receptor-induced excitotoxixity mediates sublethal myelin injury and death of oligodendrocytes from spinal cord" Society for Neuroscience Abstracts 1998 24(1-2): 465
	Α9	Merk Manual, "Demyelinating Cord Disorders" 1992 1507 and 1316
V	A10 '	Miller LG and Fahey JM "Interleukin-1 modulates GABAergic and glutamatergic function in brain" Ann N Y Acad Sci. 1994 739: 292-8
RLi	A11	Rosenberg LJ et al., " 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline reduces glial loss and acute white matter pathology after experimental spinal cord contusion" J Neurosci. 1999 19(1): 464-75

EXAMINER	Ruiciang	L.	DATE CONSIDERED	7/16/2004		
EXAMINER: Initial if citation is considered, whether or not citation is in conformance with MPEP § 609: Draw Line through						
citation if not conformance and not considered. Include copy with next communication to applicant.						