Komplexná funkcia komplexnej premennej

Oľga Stašová

Ústav informatiky a matematiky Fakulta elektrotechniky a informatiky Slovenská technická univerzita

letný semester 2023/2024

Obsah prednášky

- Reálna funkcia reálnych premenných
- Komplexná funkcia komplexnej premennej

Reálna funkcia jednej reálnej premennej

Reálna funkcia jednej reálnej premennej $f: X \to Y$, y = f(x) je zobrazenie množiny X do množiny Y.

To znamená, že každému prvku $x \in X$ vieme **jednoznačne** priradiť prvok

 $y \in Y$ tak, že platí f(x) = y.

x je nezávislá premenná (vzor),

y je závislá premenná (funkčná hodnota, obraz).

Reálna funkcia jednej reálnej premennej

Veta z predchádzajúceho slajdu:

To znamená, že každému prvku $x \in X$ vieme **jednoznačne** priradiť prvok $y \in Y$ tak, že platí f(x) = y.

Jednoznačne priradiť znamená, že každému prvku $x \in X$ sa priradí **práve jeden** (presne jeden, jediný, matem. označenie 1!) prvok $y \in Y$ a to podľa presne definovaného pravidla, v našom prípade je to pravidlo: y = f(x). Ak $f(x) = x^2 + 5$, tak prvku x = 3 priradíme prvok y = 14, lebo $f(3) = 3^2 + 5 = 14$.

Reálna funkcia jednej reálnej premennej $f:R\to R$

$$f(x) = \frac{x^2}{2} - 1$$

Reálna funkcia 2 reálnych premenných $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \frac{\sin(x\,y)}{x^2+y^2+1}$$

Reálna funkcia 3 reálnych premenných $f: \mathbb{R}^3 \to \mathbb{R}$

Jednotlivým bodom A[x,y,z] priradíme hodnotu podľa nejakého predpisu napr. $f(x,y,z)=cos(x)+sin(y)+z^3$.

Zobrazujeme po rezoch, fixujeme jednu premennú napr. z: f(x,y,-2), f(x,y,0),f(x,y,2),...

Reálna funkcia 3 reálnych premenných $f: \mathbb{R}^3 \to \mathbb{R}$

Aplikácie z praxe: 3D teleso a funkciou je:

- teplota v jednotlivých bodoch.
- intenzita koncentrácie znečistenia v jednotlivých bodoch.
- intenzita šede (graylevel) v 3D obraze (medicínske aplikácie, radarové obrazy - detekcia chýb v priemyselných výrobkoch, v pilieroch mostov, hľadanie geologických ložísk, archeologických nálezísk).

Reálna funkcia reálnych premenných $f: \mathbb{R}^m \to \mathbb{R}^n$

Aplikácie z praxe:

- 3D farebný RGB obraz $f:R^3 \to R^3$ (3 farebné kanály RGB red, green, blue).
- 3D farebný CMYK obraz $f: \mathbb{R}^3 \to \mathbb{R}^4$ (4 farebné kanály CMYK cyan, magenta, yellow, karbon).
- Časovo-priestorové úlohy: $f:R^4\to R$ 3D teleso v časovom intervale f(x,y,z,t)= Funkcia reprezentuje napr.
 - šírenie tepla v telese v časovom intervale.
 - šírenie znečistenia vo vode v časovom intervale.
 - video pozostávajúce z 3D obrazov.

Reálna funkcia jednej reálnej premennej

Reálna funkcia jednej reálnej premennej $f:X(\subset R) \to {\color{red} Y}(\subset R)$,

y = f(x) je zobrazenie množiny X do množiny Y.

To znamená, že každému prvku $x \in X$ vieme **jednoznačne** priradiť prvok

 $y \in Y$ tak, že platí f(x) = y.

x je nezávislá premenná (vzor),

y je závislá premenná (funkčná hodnota, obraz).

Komplexná funkcia komplexnej premennej $f:A (\subset C) \to C$, w=f(z) je zobrazenie množiny A do množiny C. To znamená, že každému prvku $z \in A$ vieme priradiť:

- jeden prvok (hodnotu) $w \in C$ tak, že platí f(z) = w (v takom prípade f nazývame **jednoznačná** funkcia) alebo
- viac prvkov (hodnôt)(môže ich byť aj ∞) $w \in C$ tak, že platí f(z) = w (v takom prípade f nazývame **mnohoznačná** (viacznačná) funkcia).
- z je nezávislá premenná (vzor),
- w je závislá premenná (funkčná hodnota, obraz).
- Množinu $A \subset C$ nazývame **definičný obor** funkcie f.

Komplexná funkcia komplexnej premennej $f:A (\subset C) \to C$, w=f(z) Každému prvku $z \in A$ vieme priradiť:

- jeden prvok (hodnotu) $w \in C$ tak, že platí f(z) = w (v takom prípade f nazývame **jednoznačná** funkcia) alebo
- viac prvkov (hodnôt) $w \in C$ tak, že platí f(z) = w (v takom prípade f nazývame **mnohoznačná** (viacznačná) funkcia).

Príkladom **jednoznačnej** funkcie je napr. $f:C\to C,\,w=z^2.$ Príkladom **mnohoznačnej** funkcie je napr. $f:C\to C,\,w=\sqrt{z}$, ktorá každému $z=r(\cos\varphi+i\sin\varphi)$ (r=|z|) priradí 2 hodnoty: $w_1=\sqrt{r}(\cos\frac{\varphi}{2}+i\sin\frac{\varphi}{2})$ a $w_2=\sqrt{r}(\cos\left(\frac{\varphi}{2}+\pi\right)+i\sin\left(\frac{\varphi}{2}+\pi\right)).$

Komplexná funkcia komplexnej premennej $f: A (\subset C) \to C$, w=f(z). Množinu $A (\subset C)$ nazývame **definičný obor** funkcie f.

Obr.: Komplexná rovina C. $A \subset C$

Ak napíšeme komplexné čísla $z,w\in C$ v algebrickom tvare:

$$z = x + iy, \quad x, y \in R$$

 $w = u + iv, \quad u, v \in R$

potom vieme vyjadriť funkciu \boldsymbol{w} nasledovne:

$$w = f(z) = f(x + iy) = u(x, y) + iv(x, y),$$

kde $u(x,y)=Re\,f(z),\,v(x,y)=Im\,f(z),\,u,v:R^2\to R.$ Takýto tvar komplexnej funkcie sa používa pri riešení niektorých matematických (a aj odborných) úloh.

Príklad: Nájdite reálnu a imaginárnu časť funkcie $f: C \to C$, $w = z^2 + 5$ **Riešenie:** z = x + iy $w = f(z) = f(x + iy) = z^2 + 5 = (x + iy)^2 + 5 = x^2 + 2xyi + i^2y^2 + 5 = (x^2 - y^2) + 5 + i2xy$ a z toho $u(x,y) = x^2 - y^2 + 5$ a v(x,y) = 2xy.

Teória pre funkcie reálnej a komplexnej premennej

V nasledujúcich prednáškach budeme často porovnávať teóriu (vety, definície):

ullet pre funkciu reálnej premennej f:R
ightarrow R

а

ullet pre funkciu komplexnej premennej f:C o C.

Symboly používané na označenie:

```
x.....reálna premenná f(x)....funkcia reálnej premennej z.....komplexna premenná f(z)....funkcia komplexnej premennej
```

Ďakujem za pozornosť.