Grundbegriffe der Theoretischen Informatik

Sommersemester 2017 - Beate Bollig

Die Folien basieren auf den Materialien von Thomas Schwentick.

Teil B: Kontextfreie Sprachen

8: Normalformen und Korrektheitsbeweise

Normalformen: Einleitung

Erinnerung an die Logik-Vorlesung

- Für aussagenlogische Formeln gibt es verschiedene Normalformen, die eine bestimmte syntaktische Struktur haben:
 - konjunktive Normalform
 - disjunktive Normaform
 - Negationsnormalform
- Für viele Zwecke nützlich:
 - Um den Resolutionskalkül anzuwenden, muss die Formel in KNF vorliegen
 - Um den Tableaukalkül anzuwenden, muss die Formel in NNF vorliegen

- Jetzt: Normalformen f
 ür kontextfreie Grammatiken
- Chomsky-Normalform: Nur Regeln der Art

–
$$X
ightarrow YZ$$
 und

$$-X o\sigma$$

• Greibach-Normalform: Nur Regeln der Art

–
$$X o\sigma X_1\cdots X_k, k\geqslant 0$$

- In beiden Fällen wird bei Bedarf zusätzlich eine Regel $S
 ightarrow \epsilon$ ergänzt
- Nutzen dieser Normalformen:
 - Die automatische Verarbeitung von Grammatiken wird erleichtert
 - → weniger mögliche Fälle zu implementieren
 - Beweise werden übersichtlicher
 - → weniger mögliche Fälle zu untersuchen

Inhalt

- > 8.1 Chomsky-Normalform
 - 8.2 Greibach-Normalform
 - 8.3 Korrekheitsbeweise für kontextfreie Grammatiken
 - 8.4 Anhang: Beweisdetails

Chomsky-Normalform: Definition

Definition

- ullet Eine Variable $oldsymbol{X}$ einer Grammatik $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ heißt
 - **nützlich**, falls es eine Ableitung $S\Rightarrow_G^* \alpha Xeta\Rightarrow_G^* w$ mit $w\in \Sigma^*$ gibt
- Eine Variable ist also nützlich, wenn sie in mindestens einer Ableitung eines Wortes vorkommt

Definition

- ullet $G=(V,\Sigma,S,P)$ ist in Chomsky-Normalform (CNF), wenn
 - G nur nützliche Variablen enthält und
 - alle Regeln von G die Form*X o YZ oder $*X o\sigma$ haben mit $X,Y,Z\in V$, $\sigma\in \Sigma$
- ullet Falls S in keiner rechten Regelseite vorkommt, ist zusätzlich die Regel $S
 ightarrow \epsilon$ erlaubt
- Wir werden jetzt konstruktiv beweisen, dass es zu jeder kontextfreien Grammatik eine äquivalente Grammatik in CNF gibt

Chomsky-Normalform: Ausblick

 Grammatiken werden durch die Umwandlung in CNF meist größer, aber homogener, wie sich an der Beispiel-Grammatik zeigen wird

Beispiel-Grammatik: G_0

$$S \rightarrow bDD \mid Ca \mid bc$$

$$A \rightarrow B \mid aCC \mid baD$$

$$B \rightarrow cBD \mid \epsilon \mid AC$$

$$C \rightarrow bD \mid aBA$$

$$D \rightarrow CD \mid a \mid EF$$

$$E \rightarrow Eb$$

$$F \rightarrow a$$

Beispiel-Grammatik in CNF

$$S \rightarrow W_b S_1 \mid CW_a \mid W_b W_c$$

$$S_1 \rightarrow DD$$

$$egin{array}{lll} A &
ightarrow & W_aA_1 \mid W_bA_2 \mid W_cB_1 \mid AC \mid \ & W_bD \mid W_aC_1 \mid a \end{array}$$

$$A_1 \rightarrow CC$$

$$A_2 \rightarrow W_a D$$

$$B \rightarrow W_c B_1 \mid AC \mid W_b D \mid W_a C_1 \mid a$$

$$B_1 \rightarrow BD \mid CD \mid a$$

$$C \rightarrow W_bD \mid W_aC_1 \mid a$$

$$C_1 \rightarrow BA \mid W_aA_1 \mid W_bA_2 \mid W_cB_1 \mid$$

$$AC \mid W_bD \mid W_aC_1 \mid a$$

$$D \rightarrow CD \mid a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

Chomsky-Normalform: Satz

Satz 8.1 [Chomsky 59]

ullet Für jede kontextfreie Sprache L gibt es eine Grammatik G in Chomsky-Normalform mit L(G)=L

Beweisskizze

- ullet Sei $oldsymbol{G_0} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ eine kontextfreie Grammatik für $oldsymbol{L}$
- ullet Wir entfernen in G_0 nach und nach die Merkmale, die der CNF im Weg stehen und konstruieren dafür Grammatiken mit folgenden Eigenschaften:
- (G_1) nur nützliche Variablen
- (G_2) rechte Seiten enthalten genau ein Terminalsymbol oder nur Variablen
- (G_3) ohne Regeln X oeta mit |eta|>2
- (G_4) ohne ϵ -Regeln
- (G_5) ohne Regeln der Art X o Y
- ullet Es gilt dann $L(G_5) = L \{\epsilon\}$, deshalb muss G_5 evtl. um $S o \epsilon$ ergänzt werden

CNF: (1) Entfernen von nutzlosen Variablen (1/4)

Definition

ullet Eine Variable $oldsymbol{X}$ einer Grammatik $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ heißt

- erreichbar, falls es eine Ableitung $S\Rightarrow_{m{G}}^* lpha Xm{eta}$ gibt
- **erzeugend**, falls es eine Ableitung $X \Rightarrow_G^* w$ mit $w \in \Sigma^*$ gibt
- Klar: nützlich ⇒ erreichbar und erzeugend

Beispiel

In der Grammatik

$$S \rightarrow AB \mid a$$

$$A \rightarrow b$$

$$C \rightarrow ab$$

ist

- -S nützlich
- C erzeugend, aber nicht erreichbar
- B erreichbar, aber nicht erzeugend
- A erreichbar und erzeugend, aber nicht nützlich

- Wie die Variable A im Beispiel zeigt, ist eine erreichbare und erzeugende Variable nicht immer nützlich
- Es genügt, zuerst die nicht erzeugenden und danach die (dann) nicht erreichbaren Variablen zu entfernen

Algorithmus CNF1

- 1: $G_1':=$
 - $oldsymbol{G_0}$ ohne die nicht erzeugenden Variablen
- 2: $G_1:=$
 - G_1^\prime ohne die nicht erreichbaren Variablen
- Dabei werden jeweils außer den Variablen auch alle Regeln entfernt, in denen sie (links oder rechts) vorkommen

CNF: (1) Entfernen von nutzlosen Variablen (2/4)

- ullet Berechnung der Menge V_e der **erzeugen-** den Variablen:
 - Initialisiere V_e durch die Menge aller Variablen X, für die es eine Regel gibt, deren rechte Seite nur aus Terminalsymbolen besteht

riangle Also eine Regel X o lpha mit

 $\alpha \in \Sigma^*$

- Solange möglich, füge Variablen X zu V_e hinzu, wenn sie eine Regel haben, die auf der rechten Seite nur Terminalsymbole und Variablen aus V_e enthält
- ullet Variablen, die am Ende nicht in V_e sind, sind nicht erzeugend

Beispiel-Grammatik: G_0

$$S \rightarrow bDD \mid Ca \mid bc$$

$$A \rightarrow B \mid aCC \mid baD$$

$$B \rightarrow cBD \mid \epsilon \mid AC$$

$$C \rightarrow bD \mid aBA$$

$$D \rightarrow CD \mid a \mid EF$$

$$E \rightarrow Eb$$

$$F \rightarrow c$$

ullet E ist nicht erzeugend und wird daher nicht in G_1^\prime aufgenommen

G_1'

$$S \rightarrow bDD \mid Ca \mid bc$$

$$A \rightarrow B \mid aCC \mid baD$$

$$B \rightarrow cBD \mid \epsilon \mid AC$$

$$C \rightarrow bD \mid aBA$$

$$D \rightarrow CD \mid a$$

$$F \rightarrow a$$

CNF: (1) Entfernen von nutzlosen Variablen (3/4)

- Berechnung der nicht erreichbaren Variablen:
- ullet Konstruiere einen Graphen $oldsymbol{H}(oldsymbol{G_1'})$ zu G_1' :
 - Knotenmenge: Variablen von G_1'
 - Kante von $oldsymbol{X}$ nach $oldsymbol{Y}$, wenn $oldsymbol{Y}$ auf der rechten Seite einer Regel zu $oldsymbol{X}$ vorkommt
- ullet Berechne alle in diesem Graphen von Saus erreichbaren Knoten
- Die übrigen Knoten sind nicht erreichbar

$G_{\mathbf{1}}'$ $S \rightarrow bDD \mid Ca \mid bc$ $A \rightarrow B \mid aCC \mid baD$ $B \rightarrow cBD \mid \epsilon \mid AC$ $C \rightarrow bD \mid aBA$ $D \rightarrow CD \mid a$ $F \rightarrow a$

ullet F ist in G_1' nicht erreichbar

G_1 $S \rightarrow bDD \mid Ca \mid bc$ $A \rightarrow B \mid aCC \mid baD$ $B \rightarrow cBD \mid \epsilon \mid AC$ $C \rightarrow bD \mid aBA$ $D \rightarrow CD \mid a$

CNF: (1) Entfernen von nutzlosen Variablen (4/4)

Lemma 8.2

- ullet Sei G_1 durch Algorithmus CNF1 berechnet
- Dann gelten:
 - (a) $oldsymbol{L}(oldsymbol{G_1}) = oldsymbol{L}(oldsymbol{G_0})$
 - (b) G_1 enthält nur nützliche Variablen

Beweisidee

- (a) $L(G_1)\subseteq L(G_0)$:
 - st weil alle Regeln aus G_1 auch in G_0 vorkommen
 - $L(G_0)\subseteq L(G_1)$:
 - * weil alle in einer Ableitung $S\Rightarrow_{G_0}^* w$ vorkommenden Variablen und Regeln bei der Umwandlung in G_1 erhalten bleiben
- (b) Sei X eine Variable von G_1
 - lacktriangledown X ist erreichbar in G_1'
 - $lackbox{\hspace{0.5em}$\Rightarrow$} S \Rightarrow_{G_1'}^* lpha X eta$ für gewisse lpha,eta
 - Wegen Schritt (1) des Algorithmus sind X und alle Symbole aus lpha,eta erzeugend in G_1'

(und damit auch in G_1)

→ X ist nützlich

CNF: (2) Variablen und Terminalsymbole trennen

Algorithmus CNF2

- 1: **for** jedes Terminalsymbol $oldsymbol{\sigma} \in oldsymbol{\Sigma}$ **do**
- 2: Füge eine neue Variable W_{σ} hinzu
- 3: Ersetze in allen rechten Regelseiten σ durch W_{σ}
- 4: Füge eine neue Regel $W_{\sigma}
 ightarrow \sigma$ hinzu

Lemma 8.3

- ullet Sei G_2 durch Algorithmus CNF2 aus G_1 berechnet
- Dann gelten:
 - (a) $oldsymbol{L}(oldsymbol{G_2}) = oldsymbol{L}(oldsymbol{G_1})$
 - (b) Jede rechte Regelseite von G_2 ist von einem der folgenden drei Typen:
 - ein Terminalsymbol
 - $-\epsilon$
 - ein oder mehrere Variablen

CNF: (2) Variablen und Terminalsymbole trennen: Beispiel

 G_1

$$S \rightarrow bDD \mid Ca \mid bc$$

$$A \rightarrow B \mid aCC \mid baD$$

$$B \rightarrow cBD \mid \epsilon \mid AC$$

$$C \rightarrow bD \mid aBA$$

$$D \rightarrow CD \mid a$$

 G_2

$$S \rightarrow W_bDD \mid CW_a \mid W_bW_c$$

$$A \rightarrow B \mid W_a CC \mid W_b W_a D$$

$$B \rightarrow W_c BD \mid \epsilon \mid AC$$

$$C \rightarrow W_bD \mid W_aBA$$

$$D \rightarrow CD \mid W_a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

CNF: (3) Rechte Seiten verkürzen

Algorithmus CNF3

1: Entferne jede Regel der Art

$$X
ightarrow Y_1 \cdots Y_k$$
, mit $k > 2$

2: Füge dafür folgende Regeln hinzu:

$$egin{array}{ccccc} X &
ightarrow & Y_1 Z_1 \ Z_1 &
ightarrow & Y_2 Z_2 \ dots &
ightarrow & dots \ Z_{k-2} &
ightarrow & Y_{k-1} Y_k \end{array}$$

ullet Dabei sind die $oldsymbol{Z_i}$ neue (und für jede ersetzte Regel andere) Variablen, für alle $i \in \{1,\ldots,k-2\}$

Lemma 8.4

- ullet Sei G_3 durch Algorithmus CNF3 aus G_2 berechnet
- Dann gelten:
 - (a) $L(G_3)=L(G_2)$
 - (b) Jede rechte Regelseite von G_3 ist von einem der folgenden Typen:
 - ein Terminalsymbol
 - $-\epsilon$
 - eine Variable
 - zwei Variablen

CNF: (3) Rechte Seiten verkürzen: Beispiel

 G_2

$$S \rightarrow W_b DD \mid CW_a \mid W_b W_c$$

$$A \rightarrow B \mid W_a CC \mid W_b W_a D$$

$$B \rightarrow W_c BD \mid \epsilon \mid AC$$

$$C \rightarrow W_bD \mid W_aBA$$

$$D \rightarrow CD \mid W_a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

 G_3

$$S \rightarrow W_b S_1 \mid CW_a \mid W_b W_c$$

$$S_1 \rightarrow DD$$

$$A \rightarrow B \mid W_a A_1 \mid W_b A_2$$

$$A_1 \rightarrow CC$$

$$A_2 \rightarrow W_a D$$

$$B \rightarrow W_c B_1 \mid \epsilon \mid AC$$

$$B_1 \rightarrow BD$$

$$C
ightarrow W_b D \mid W_a C_1$$

$$C_1 \rightarrow BA$$

$$D \rightarrow CD \mid W_a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

CNF: (4) ϵ -Regeln entfernen (1/3)

Beispiel

Was ist zu beachten, wenn eine Grammatik (unter anderem) die Regeln

$$egin{array}{ccccc} A &
ightarrow & BC \ B &
ightarrow & EF \ C &
ightarrow & DE \ D &
ightarrow & E \ E &
ightarrow & \epsilon \ \end{array}$$

enthält und wir die ϵ -Regel $E
ightarrow \epsilon$ entfernen wollen?

- ullet Um weiterhin den Effekt der (Teil-)Ableitung $B\Rightarrow EF\Rightarrow F$ zu ermöglichen, sollte die Regel B o F hinzugefügt werden
- ullet Das Entfernen von $E o \epsilon$ bewirkt aber auch, dass ϵ nicht mehr von D und C abgeleitet werden kann
- Deshalb müssen auch für Vorkommen dieser Variablen auf rechten Regelseiten Ergänzungen vorgenommen werden:
 - ightarrow z.B. neue Regel: A
 ightarrow B

- ullet Der folgende Algorithmus CNF4 berechnet deshalb zunächst die Menge $oldsymbol{V}'$ aller Variablen, von denen der Leerstring abgeleitet werden kann
- Für jedes Vorkommen dieser Variablen in rechten Regelseiten fügt er dann neue Regeln ein
- Alle ϵ -Regeln werden dann entfernt
- Es ist klar, dass der Leerstring danach nicht mehr erzeugt werden kann

CNF: (4) ϵ -Regeln entfernen (2/3)

Algorithmus CNF4

1:
$$V' := \{X \mid X \Rightarrow^* \epsilon\}$$

- 2: for X o YZ in P do
- 3: if $oldsymbol{Z} \in oldsymbol{V}'$ then
- 4: Füge Regel X o Y hinzu
- 5: if $Y \in V'$ then
- 6: Füge Regel X o Z hinzu
- 7: Entferne alle Regeln der Art $X
 ightarrow \epsilon$
- 8: Entferne nutzlos gewordene Variablen mit CNF1

Lemma 8.5

- ullet Sei G_4 durch Algorithmus CNF4 aus G_3 berechnet
- Dann gelten:
 - (a) $L(G_4) = L(G_3) \{\epsilon\}$
 - (b) Jede rechte Regelseite von G_4 ist von einem der folgenden 3 Typen:
 - ein Terminalsymbol
 - eine Variable
 - zwei Variablen

CNF: (4) ϵ -Regeln entfernen: Beispiel

$$G_3$$

$$S \rightarrow W_b S_1 \mid CW_a \mid W_b W_c$$

$$S_1 \rightarrow DD$$

$$A
ightarrow B \mid W_a A_1 \mid W_b A_2$$

$$A_1 \rightarrow CC$$

$$A_2 \rightarrow W_a D$$

$$B \rightarrow W_c B_1 \mid \epsilon \mid AC$$

$$B_1 \rightarrow BD$$

$$C \rightarrow W_bD \mid W_aC_1$$

$$C_1 \rightarrow BA$$

$$D \rightarrow CD \mid W_a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

$$ullet V' = \{A,B,C_1\}$$

G_4

$$S \rightarrow W_b S_1 \mid CW_a \mid W_b W_c$$

$$S_1 \rightarrow DD$$

$$A
ightarrow B \mid W_a A_1 \mid W_b A_2$$

$$A_1 \rightarrow CC$$

$$A_2 \rightarrow W_a D$$

$$B \rightarrow W_c B_1 \mid AC \mid C$$

$$B_1 \rightarrow BD \mid D$$

$$C \rightarrow W_b D \mid W_a C_1 \mid W_a$$

$$C_1 \rightarrow BA \mid A \mid B$$

$$D \rightarrow CD \mid W_a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

CNF: (4) ϵ -Regeln entfernen (3/3)

Algorithmus CNF4

1:
$$V' := \{X \mid X \Rightarrow^* \epsilon\}$$

2: for
$$X o YZ$$
 in P do

3: if
$$oldsymbol{Z} \in oldsymbol{V}'$$
 then

4: Füge Regel
$$X o Y$$
 hinzu

5: if
$$Y \in V'$$
 then

6: Füge Regel
$$X o Z$$
 hinzu

- 7: Entferne alle Regeln der Art $X
 ightarrow \epsilon$
- 8: Entferne nutzlos gewordene Variablen (CNF1)

Beweisidee für Lemma 8.5

- Da der Algorithmus sowohl Regeln hinzufügt als auch Regeln entfernt, ist der Nachweis, dass die neue Grammatik äquivalent ist (bis auf ε), etwas kompliziert
- ullet Es wird bewiesen, dass für jede Variable X von G_3 und jeden String $w\in \Sigma^*-\{\epsilon\}$ äquivalent sind:

(1)
$$X \Rightarrow_{G_4}^* w$$

(2)
$$X \Rightarrow_{G_3}^* w$$

ullet Für "(1) \Rightarrow (2)" lässt sich für jede neue Regel X o Y in G_4 zeigen:

$$X \Rightarrow_{G_3}^* Y$$

• Für "(2) \Rightarrow (1)" lässt sich durch Induktion nach n zeigen:

$$X\Rightarrow_{G_3}^n w \;\Rightarrow\; X\Rightarrow_{G_4}^* w$$

Weitere Details im Anhang

CNF: (5) Einzel-Variablen der rechten Seite entfernen (1/2)

ullet Jetzt müssen nur noch die **Einheitsregeln** entfernt werden, also Regeln der Form X o Y

Beispiel

ullet Was ist beim Entfernen der Einheitsregeln aus einer Grammatik, die folgende Regeln enthält, zu beachten? $A \to BC$

 $B \rightarrow D$

 $C \rightarrow DF$

 $D \rightarrow E$

 $E \rightarrow e$

ullet Um den Effekt der Ableitung $C\Rightarrow DF\Rightarrow EF\Rightarrow eF$ zu erhalten, nehmen wir die Regel D o e auf:

$$C\Rightarrow DF\Rightarrow eF$$

Um den Effekt der Ableitung

$$A\Rightarrow BC\Rightarrow DC\Rightarrow EC\Rightarrow eC$$

zu erhalten, nehmen wir auch noch B
ightarrow e auf:

$$A \Rightarrow BC \Rightarrow eC$$

- ullet Der folgende Algorithmus CNF5 berechnet zunächst alle Variablenpaare $X \neq Y$, für die $X \Rightarrow^* Y$ gilt
- ullet Dann fügt er für jedes solche Paar zu jeder binären Regel Y o lpha eine neue Regel X o lpha hinzu

CNF: (5) Einzel-Variablen der rechten Seite entfernen (2/2)

Algorithmus CNF5

1: $U := \{(X,Y) \mid X \Rightarrow_{G_A}^* Y, X \neq Y\}$

- 2: $\mathbf{for}\left(oldsymbol{X},oldsymbol{Y}
 ight)$ in $oldsymbol{U}$ und jede Nicht-Einheitsregel $oldsymbol{Y}
 ightarrow lpha$ do
- 3: Füge neue Regel X olpha ein
- 4: Entferne alle Einheitsregeln
- 5: Entferne alle nicht erreichbaren Variablen (und ihre Regeln)

Lemma 8.6

- ullet Sei G_5 durch Algorithmus CNF5 aus G_4 berechnet
- Dann gelten:
 - (a) $oldsymbol{L}(oldsymbol{G_5}) = oldsymbol{L}(oldsymbol{G_4})$
 - (b) G_5 ist in Chomsky-Normalform

Beweisidee

- ullet " $L(G_5)\subseteq L(G_4)$ ":
 - Für jede neue Regel X
 ightharpoonup lpha von G_5 gibt es in G_4 eine Variable Y, so dass gilt:
 - $*~X\Rightarrow_{G_4}^* Y$
 - $st\ Y olpha$ ist Regel in G_4
 - Also gibt es für jede neue RegelX olpha von G_5 in G_4 eine Ableitung $X\Rightarrow_{G_4}^*lpha$
- ullet " $L(G_4)\subseteq L(G_5)$ ":
 - Jede Folge $X\Rightarrow_{G_4}\cdots\Rightarrow_{G_4}Y\Rightarrow_{G_4}lpha$ kann in G_5 durch Anwendung vonX olpha ersetzt werden
 - ullet Dabei ist lpha keine Variable!
- Weitere Details im Anhang

CNF: (5) Einzel-Variablen entfernen (Beispiel)

$$G_4$$

$$S \rightarrow W_b S_1 \mid CW_a \mid W_b W_c$$

$$S_1 \rightarrow DD$$

$$A
ightarrow B \mid W_a A_1 \mid W_b A_2$$

$$A_1 \rightarrow CC$$

$$A_2 \rightarrow W_a D$$

$$B \rightarrow W_c B_1 \mid AC \mid C$$

$$B_1 \rightarrow BD \mid D$$

$$C \rightarrow W_bD \mid W_aC_1 \mid W_a$$

$$C_1 \rightarrow BA \mid A \mid B$$

$$D \rightarrow CD \mid W_a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

$$U = \{(C_1,A), (A,B), (B,C), \ (C,W_a), (B_1,D), (D,W_a), \ (C_1,B), (C_1,C), (C_1,W_a), \ (A,C), (A,W_a), (B,W_a), (B_1,W_a)\}$$

$$G_5$$

$$S
ightarrow W_b S_1 \mid CW_a \mid W_b W_c$$

$$S_1 \rightarrow DD$$

$$A_1 \rightarrow CC$$

$$A_2 \rightarrow W_a D$$

$$B \rightarrow W_c B_1 \mid AC \mid W_b D \mid W_a C_1 \mid a$$

$$B_1 \rightarrow BD \mid CD \mid a$$

$$C \rightarrow W_bD \mid W_aC_1 \mid a$$

$$C_1
ightarrow BA \mid W_aA_1 \mid W_bA_2 \mid W_cB_1 \mid$$

$$AC \mid W_bD \mid W_aC_1 \mid a$$

$$D \rightarrow CD \mid a$$

$$W_a \rightarrow a$$

$$W_b \rightarrow b$$

$$W_c \rightarrow c$$

Chomsky-Normalform: Abschluss der Beweisskizze

ullet Falls die Sprache L den String ϵ enthält, ergänzen wir noch einen weiteren Schritt

Algorithmus CNF6

- 1: **if** $\epsilon \in L$ und S kommt in keiner rechten Seite einer Regel vor **then**
- 2: Füge neue Regel $S
 ightarrow \epsilon$ ein
- 3: **else**
- 4: Füge ein neues Startsymbol S' und die Regel $S' o \epsilon$ hinzu
- 5: Füge für jede Regel S o lpha die Regel S' o lpha hinzu

Satz 8.1 [Chomsky 59]

ullet Für jede kontextfreie Sprache L gibt es eine Grammatik G in Chomsky-Normalform mit L(G)=L

Beweisskizze

- ullet Sei $oldsymbol{G_0} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ eine Grammatik für $oldsymbol{L}$
- Für die wie beschrieben konstruierten Grammatiken G_1, \ldots, G_5 gilt:

$$egin{aligned} L(G_5) &= L(G_4) & ext{Lemma 8.6} \ &= L(G_3) - \{\epsilon\} & ext{Lemma 8.5} \ &= L(G_2) - \{\epsilon\} & ext{Lemma 8.4} \ &= L(G_1) - \{\epsilon\} & ext{Lemma 8.3} \ &= L(G_0) - \{\epsilon\} & ext{Lemma 8.2} \end{aligned}$$

- ullet Falls $\epsilon
 otin L(G_0)$, gilt also $L(G_5) = L(G_0)$
- ullet Falls $\epsilon \in L(G_0)$, gilt für die in CNF6 konstruierte Grammatik: $L(G_6) = L(G_0)$

CNF: Größe

- Wie groß wird die durch den Algorithmus insgesamt konstruierte CNF-Grammatik im Vergleich zur Ausgangsgrammatik?
- ullet Sei $m=|oldsymbol{\Sigma}|$ und für jedes i jeweils
 - $-\ n_i$ die Anzahl der Variablen von G_i
 - $-k_i$ die Anzahl der Produktionen von G_i
 - l_i die maximale Länge einer rechten Seite von G_i
- Dann gilt für die einzelnen Teilschritte:
 - 1. Alle Parameter können allenfalls kleiner werden

2.
$$n_2 = n_1 + m, k_2 = k_1 + m$$

3.
$$n_3 = \mathcal{O}(k_2 l_2)$$
, $k_3 = \mathcal{O}(k_2 l_2)$, $l_3 = 2$

4.
$$k_4 \leqslant 3k_3$$

5.
$$k_5 = \mathcal{O}(k_4 n_4)$$

Insgesamt also:

$$-\ k_5 = \mathcal{O}(l_0^2(m+k_0)^2) = \mathcal{O}(|G_0|^4)$$

$$-n_5 = \mathcal{O}(l_0(m+k_0))$$

Inhalt

- 8.1 Chomsky-Normalform
- > 8.2 Greibach-Normalform
 - 8.3 Korrekheitsbeweise für kontextfreie Grammatiken
 - 8.4 Anhang: Beweisdetails

Greibach-Normalform (1/2)

Definition

- ullet Eine kontextfreie Grammatik $oldsymbol{G} = (oldsymbol{V}, oldsymbol{\Sigma}, oldsymbol{S}, oldsymbol{P})$ ist in Greibach-Normalform (GNF), wenn
 - $oldsymbol{-} oldsymbol{V}$ nur nützliche Variablen enthält und
 - alle Regeln von G von der Form $*X o \sigma Y_1 \cdots Y_k$ mit $X,Y_1,\ldots,Y_k \in V$, $\sigma \in \Sigma$ sind
- ullet Falls S in keiner rechten Regelseite vorkommt, ist zusätzlich die Regel $S
 ightarrow \epsilon$ erlaubt

Satz 8.7 [Greibach 65]

ullet Ist L kontextfrei, so gibt es eine Grammatik G in Greibach-Normalform, so dass L(G)=L

Greibach-Normalform (2/2)

- Es ist in der Greibach-Normalform möglich, die Anzahl der Variablen in rechten Regelseiten auf maximal zwei zu beschränken
- Es gibt dann nur Regeln der Art:

$$-X o \sigma$$

$$-X o \sigma Y$$

$$-X o \sigma YZ$$

Beispiel

ullet Die Grammatik $G_{a=b}^{\prime}$:

$$S
ightarrow aB \mid bA \mid \epsilon$$

$$S' \rightarrow aB \mid bA$$

$$A
ightarrow aS' \mid bAA \mid a$$

$$B
ightarrow bS' \mid aBB \mid b$$

ist in Greibach-Normalform

Bemerkungen

- ullet Ist G in GNF, so haben Strings der Länge n Ableitungen der Länge n
- Der Beweis von Satz 8.7 ist aufwändiger als der Beweis von Satz 8.1
 - → Buch von Ingo Wegener (siehe auch: [Blum, Koch 99])

Inhalt

- 8.1 Chomsky-Normalform
- 8.2 Greibach-Normalform
- > 8.3 Korrekheitsbeweise für kontextfreie Grammatiken
 - 8.4 Anhang: Beweisdetails

Korrektheitsbeweise für Grammatiken: allgemein

- ullet Sei G eine Grammatik und L eine Sprache
- ullet Wie lässt sich beweisen, dass $oldsymbol{L}(oldsymbol{G}) = oldsymbol{L}$ gilt?
- ullet Wie üblich: Zeige $oldsymbol{L}(oldsymbol{G})\subseteqoldsymbol{L}$ und $oldsymbol{L}\subseteqoldsymbol{L}(oldsymbol{G})$
- ullet $L(G)\subseteq L$ bedeutet, dass die Grammatik *nur* Strings aus L erzeugt
 - Der Korrektheitsbeweis ist meist durch Induktion nach der Ableitungslänge möglich
- ullet $L\subseteq L(G)$ bedeutet, dass die Grammatik \emph{alle} Strings aus L erzeugt Vollständigkeit
 - Meistens durch Induktion nach der Wortlänge
 - Der Induktionsschritt verwendet meist eine geeignete Fallunterscheidung
 - Hier ist oft eine weitere, nicht-induktive Definition von $oldsymbol{L}$ nötig
- ullet Hat eine Grammatik mehrere Variablen, so wird meist für jede Variable $oldsymbol{X}$ gezeigt, was die Sprache $oldsymbol{L}(oldsymbol{X})$ der von $oldsymbol{X}$ aus ableitbaren Strings ist

- Second Faustregel:
 - Zum Beweis der Korrektheit wird im Ableitungsbaum "von oben nach unten" argumentiert
 - Zum Beweis der Vollständigkeit von unten nach oben
- Wir betrachten im Folgenden drei Korrektheitsbeweise:
 - für eine sehr einfache Grammatik: Palindrome
 - für eine etwas trickreichere Grammatik: $G_{a=b}$
 - für eine ziemlich trickreiche Grammatik: $G_{
 m diff}$

Korrektheitsbeweise: Palindrome (1/2)

Zur Erinnerung:

$$oldsymbol{L}_{\mathsf{pali}} = \{oldsymbol{w} \in \{oldsymbol{a}, oldsymbol{b}\}^* \mid oldsymbol{w}^{oldsymbol{R}} = oldsymbol{w}\}$$

ullet Mit G_{pali} bezeichnen wir die Grammatik

$$P
ightarrow \epsilon \mid a \mid b \mid aPa \mid bPb$$

- Nicht-induktive Definition von Palindromen:
 - Ein String $oldsymbol{w}$ ist genau dann ein Palindrom, wenn für alle $i \in \{1,\ldots,|w|\}$ gilt: $oxed{w[i]} = oxed{w[|w|-i+1]}$

Proposition 8.8

ullet $L(oldsymbol{G}_{ extsf{pali}}) = oldsymbol{L}_{ extsf{pali}}$

Beweisskizze

- ullet Korrektheit " $L(G_{\mathsf{pali}}) \subseteq L_{\mathsf{pali}}$ ":
 - Sei $oldsymbol{w} \in oldsymbol{L}(oldsymbol{G}_{\mathsf{pali}})$
 - $lacktriangledown P \Rightarrow^k w$ für ein $k \geqslant 1$
 - Wir zeigen $oldsymbol{w} \in oldsymbol{L}$ durch Induktion nach der Ableitungslänge k
 - -k = 1:
 - $*~\epsilon, a, b$ sind Palindrome \checkmark
 - -k > 1:
 - * Fallunterscheidung nach dem ersten Ableitungsschritt
 - st 1. Fall: $P\Rightarrow aPa\Rightarrow^{k-1}ava=w$, für ein $v \in \{a,b\}^*$
 - $ightharpoonup P \Rightarrow^{k-1} v$
 - $\Rightarrow v^R = v$

Induktion

- $\Rightarrow w^R = av^R a = ava = w$
- * 2. Fall: $P\Rightarrow bPb\Rightarrow^{k-1}bvb=w$, für ein $v \in \{a,b\}^*$

Korrektheitsbeweise: Palindrome (2/2)

Beweisskizze (Forts.)

- ullet Vollständigkeit " $L_{\mathsf{pali}} \subseteq L(G_{\mathsf{pali}})$ ":
 - Sei $oldsymbol{w} \in oldsymbol{L}_{\mathsf{pali}}$ und $oldsymbol{n} \stackrel{ ext{ iny def}}{=} |oldsymbol{w}|$
 - Wir zeigen $oldsymbol{w} \in oldsymbol{L}(oldsymbol{G}_{\mathsf{pali}})$ durch Induktion nach $oldsymbol{n}$
 - $-n \in \{0,1\}$:
 - $ightharpoonup w \in \{\epsilon, a, b\}$ ist ableitbar \checkmark
 - $-n \geqslant 2$:
 - st 1. Fall: w[1]=a
 - $\Rightarrow w[n] = a$
 - ightharpoonup w = ava für einen String v der Länge n-2
 - \cdot Da $w^{oldsymbol{R}}=w$ ist, gilt auch $v^{oldsymbol{R}}=v$, denn für alle $i\leqslant n-2$:

- · Induktion: $P \Rightarrow^* v$
- $ightharpoonup P \Rightarrow aPa \Rightarrow^* ava = w$
- st 2. Fall: w[1] = b analog

Korrektheitsbeweise: $L_{a=b}$ (1/2)

• Zur Erinnerung:

$$egin{aligned} oldsymbol{-} & L_{oldsymbol{a}=oldsymbol{b}} \ & \{oldsymbol{w} \in \{oldsymbol{a}, oldsymbol{b}\}^* \mid \ & \#_{oldsymbol{a}}(oldsymbol{w}) = \#_{oldsymbol{b}}(oldsymbol{w}) \}. \end{aligned}$$

 $egin{aligned} ullet & G_{a=b} ext{ ist} \ & S
ightarrow aSbS \mid bSaS \mid \epsilon \end{aligned}$

Proposition 8.9

 $\bullet \ L(G_{a=b}) = L_{a=b}$

Beweisskizze: Korrektheit

- ullet Zu zeigen: $L(G_{oldsymbol{a}=oldsymbol{b}})\subseteq L_{oldsymbol{a}=oldsymbol{b}}$
- ullet Sei $w \in L(G_{oldsymbol{a}=oldsymbol{b}})$
- ullet Induktion nach der Ableitungslänge $oldsymbol{k}$
- $k = 1: S \Rightarrow \epsilon \checkmark$
- ullet k>1: Fallunterscheidung nach dem ersten Ableitungsschritt

– 1. Fall:
$$S\Rightarrow aSbS\Rightarrow^{k-1}aubv=w$$

$$st$$
 Induktion: $\#_{m{a}}(m{u}) = \#_{m{b}}(m{u})$ und

$$\#_{\boldsymbol{a}}(\boldsymbol{v}) = \#_{\boldsymbol{b}}(\boldsymbol{v})$$

$$egin{aligned} \#_{m{a}}(m{w}) &= \#_{m{a}}(m{u}) + \#_{m{a}}(m{v}) + \mathbf{1} \\ &= \#_{m{b}}(m{u}) + \#_{m{b}}(m{v}) + \mathbf{1} \\ &= \#_{m{b}}(m{w}) \end{aligned}$$

– 2. Fall: $S\Rightarrow bSaS\Rightarrow^*buav=w$ analog

Korrektheitsbeweise: $L_{a=b}$ (2/2)

- ullet Sei für jeden String $m{w} \in \{m{a}, m{b}\}^*$: $m{d}(m{w}) \stackrel{ ext{def}}{=} \#_{m{b}}(m{w}) \#_{m{a}}(m{w})$
- ullet Also: $oldsymbol{L_{a=b}}=\{oldsymbol{w}\in\{oldsymbol{a},oldsymbol{b}\}^*\mid oldsymbol{d}(oldsymbol{w})=oldsymbol{0}\}$

Beweisskizze: Vollständigkeit

- ullet Zu zeigen: $L_{a=b}\subseteq L(G_{a=b})$
- ullet Sei $w\in L_{a=b}$
- ullet Induktion nach $oldsymbol{n} \stackrel{ ext{ iny def}}{=} |oldsymbol{w}|$
- n = 0: $S \Rightarrow \epsilon \checkmark$

Beweisskizze (Forts.)

- n > 0:
- ullet 1. Fall: $oldsymbol{w} = oldsymbol{a}oldsymbol{u}$ für ein $oldsymbol{u} \in \{oldsymbol{a}, oldsymbol{b}\}^*$ mit $|oldsymbol{u}| = oldsymbol{n} oldsymbol{1}$
 - Da $oldsymbol{d}(oldsymbol{w}) = oldsymbol{0}$ gilt $oldsymbol{d}(oldsymbol{u}) = oldsymbol{1}$
 - Sei $i\geqslant 1$ die kleinste Zahl mit

$$\boldsymbol{d}(\boldsymbol{u}[1,\boldsymbol{i}]) = \boldsymbol{1}$$

- lack d(u[1,i-1])=0 und u[i]=b
 - Außerdem: $m{d}(m{u}[m{i}+m{1},m{n}-m{1}]) = m{d}(m{w}) (m{d}(m{u}[m{1},m{i}]) m{1}) = m{0}$
 - Induktion: $S \Rightarrow^* u[1,i-1]$ und $S \Rightarrow^* u[i+1,n-1]$
- $lackbox{lackbox{}} S \Rightarrow aSbS \Rightarrow^* \ au[1,i{-}1]bu[i+1,n{-}1] \ = au = w$
- ullet 2. Fall: w=bv analog

Korrektheitsbeweise: $L_{ m diff}$ (1/3)

- ullet Für einen String $oldsymbol{w}$ gerader Länge bezeichne $oldsymbol{1}^{ ext{st}}(oldsymbol{w})$ seine erste Hälfte und $oldsymbol{2}^{ ext{nd}}(oldsymbol{w})$ seine zweite Hälfte
 - Für Strings ungerader Länge seien beide Funktionen undefiniert
- ullet Sei $m{L}_{\mathsf{diff}} \stackrel{ ext{def}}{=} \{m{w} \in \{m{a}, m{b}\}^* \mid \mathbf{1}^{\mathsf{st}}(m{w}) \, \mp \, \mathbf{2}^{\mathsf{nd}}(m{w})\}$
- Idee für die Konstruktion einer Grammatik:
 - Sorge dafür, dass $m{a}$ in $m{1}^{\sf st}(m{w})$ an derselben Stelle steht wie $m{b}$ in $m{2}^{\sf nd}(m{w})$
 - * Erlaube ansonsten beliebige Zeichen
 - riangle Oder umgekehrt mit $m{b}$ in $m{1}^{ ext{st}}(m{w})$ und $m{a}$ in $m{2}^{ ext{nd}}(m{w})$

- ullet Setze dazu $w=w_1w_2$ aus Teilstrings $w_1=u_1av_1$ und $w_2=u_2bv_2$ zusammen mit $|u_1|=|v_1|$ und $|u_2|=|v_2|$
- ullet Setze $i\stackrel{ ext{def}}{=}|u_1|$ und $j\stackrel{ ext{def}}{=}|u_2|$
- ightharpoonup |w| = 2i + 1 + 2j + 1 = 2(i + j + 1)
 - ullet Das mittlere $oldsymbol{a}$ von $oldsymbol{w_1}$ ist an Position $oldsymbol{i+1}$ von $oldsymbol{1^{ ext{st}}}(oldsymbol{w})$
 - ullet Das mittlere $oldsymbol{b}$ von $oldsymbol{w_2}$ ist in $oldsymbol{w}$ an Position $oldsymbol{2i+1+j+1}=(i+j+1)+(i+1)$
- lacktriangledown es ist in $\mathbf{2}^{\mathsf{nd}}(oldsymbol{w})$ an Position $oldsymbol{i}+\mathbf{1}$
 - ullet Sei $G_{ ext{diff}}$ also die Grammatik

$$S \rightarrow AB \mid BA$$

$$A
ightarrow aAa \mid bAb \mid aAb \mid bAa \mid a$$

$$B
ightarrow aBa \mid bBb \mid aBb \mid bBa \mid b$$

Satz 8.10

ullet $oldsymbol{L}(oldsymbol{G}_{\mathsf{diff}}) = oldsymbol{L}_{\mathsf{diff}}$

Korrektheitsbeweise: $L_{ m diff}$ (2/3)

- ullet Zur Illustration betrachten wir eine Ableitung des Strings $oldsymbol{w} = abaaabba$
- ullet Aus $oldsymbol{A}$ ist $oldsymbol{aba}aaa$ ableitbar (mit $oldsymbol{a}$ in der Mitte)
- ullet Aus B ist bba ableitbar (mit b in der Mitte)
- ullet Also ist w ableitbar durch

$$S\Rightarrow AB\Rightarrow^*abaaaB\Rightarrow^*abaaabba$$

ullet Zu beachten: $oldsymbol{A}$ erzeugt *nicht* die erste Hälfte von $oldsymbol{w}$

Korrektheitsbeweise: $L_{ m diff}$ (3/3)

Beweisskizze

- Durch Induktion ist sehr leicht zu zeigen:
 - $egin{aligned} m{L}(m{A}) &= \{m{u}m{a}m{v} \mid |m{u}| = |m{v}|, m{u}, m{v} \in \{m{a}, m{b}\}^*\} \ m{L}(m{B}) &= \{m{u}m{b}m{v} \mid |m{u}| = |m{v}|, m{u}, m{v} \in \{m{a}, m{b}\}^*\} \end{aligned}$
- riangle Hier bezeichnet $oldsymbol{L}(oldsymbol{A})$ die Menge der von der Variablen $oldsymbol{A}$ ableitbaren Terminalstrings
- $igsplus egin{aligned} igsplus L(G_{ ext{diff}}) &= L(S) = \ & \{u_1 a v_1 u_2 b v_2 \mid |u_1| = |v_1|, |u_2| = |v_2|, \ & u_1, u_2, v_1, v_2 \in \{a, b\}^* \} \cup \ & \{u_1 b v_1 u_2 a v_2 \mid |u_1| = |v_1|, |u_2| = |v_2|, \ & u_1, u_2, v_1, v_2 \in \{a, b\}^* \} \end{aligned}$
 - ullet Damit lässt sich $oldsymbol{L}(oldsymbol{G}_{ ext{diff}}) = oldsymbol{L}_{ ext{diff}}$ recht einfach zeigen Anhand

Zusammenfassung

- ullet Jede kontextfreie Sprache hat eine Grammatik in Chomsky-Normalform, also nur mit Regeln der Art X o YZ und X o a
- ullet Jede kontextfreie Sprache hat eine Grammatik in Greibach-Normalform, also nur mit Regeln der Art $X o a Y_1 \cdots Y_k$
- ullet Außerdem kann jeweils noch eine Regel $S
 ightarrow \epsilon$ hinzukommen
 - ${\color{red}\mathsf{-}}\ \mathsf{dann}\ \mathsf{darf}\ S$ aber auf keiner rechten Seite vorkommen

Literatur für dieses Kapitel

Chomsky-Normalform:

Noam Chomsky. On certain formal properties of grammars.
 Information and Control, 2(2):137–167, 1959

Greibach-Normalform:

- Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars. *J. ACM*, 12(1):42–52, 1965
- Norbert Blum and Robert Koch. Greibach normal form transformation revisited. *Inf. Comput.*, 150(1):112–118, 1999

Inhalt

- 8.1 Chomsky-Normalform
- 8.2 Greibach-Normalform
- 8.3 Korrekheitsbeweise für kontextfreie Grammatiken
- > 8.4 Anhang: Beweisdetails

CNF: (4) ϵ -Regeln entfernen

Beweisskizze (Forts.)

ullet " $X\Rightarrow_{G_4}^*w \;\; \Rightarrow \;\; X\Rightarrow_{G_3}^*w$ ": Wir zeigen:

$$X o_{G_4} Y \Rightarrow X \Rightarrow_{G_3}^* Y$$
 Für jede neue Regel $X o Y$

- Denn dann gibt es zu jeder Ableitung $S \Rightarrow_{G_4}^* w$ eine Ableitung $S \Rightarrow_{G_3}^* w$
- ullet Sei also X o Y neu in G_4
 - **1. Fall:** In G_3 gibt es eine Regel X o YZ und $Z \Rightarrow_{G_2}^* \epsilon$
 - Dann gilt:

$$X\Rightarrow_{G_3}YZ\Rightarrow_{G_3}^*Y$$

- **2. Fall:** In G_3 gibt es eine Regel X o ZY und $Z \Rightarrow_{G_3}^* \epsilon$
 - Dann gilt:

$$X\Rightarrow_{G_3}ZY\Rightarrow_{G_3}^*Y$$

Beweisskizze (Forts.)

- ullet " $X\Rightarrow_{G_3}^* w$ \Rightarrow $X\Rightarrow_{G_4}^* w$ ":
- Wir zeigen durch Induktion nach n:

$$oldsymbol{^-} X \Rightarrow_{G_3}^n w \; \Rightarrow \; X \Rightarrow_{G_4}^* w$$

- ullet Es gelte also $X \Rightarrow_{G_3}^n w$
- ullet n=1: $w=\sigma$ und $X o\sigma$ ist Regel von G_3 , also auch von G_4
- n > 1:
 - 1. Fall:

$$X\Rightarrow_{G_3}YZ\Rightarrow_{G_3}^{n-1}w_1w_2=w$$
 mit $Y\Rightarrow_{G_3}^iw_1,Z\Rightarrow_{G_3}^jw_2$ und $i+j=n-1$

- * Falls $w_1 \neq \epsilon \neq w_2$ folgt die Behauptung per Induktion
- st Falls $w_1=\epsilon$, $w_2
 eq \epsilon$, so ist $Y \in V'$
- $lackbox{} X \Rightarrow_{G_4} Z \Rightarrow_{G_4}^* w_2 = w$
 - * (Analog: $w_1 \neq \epsilon$, $w_2 = \epsilon$)
- 2. Fall: $X \Rightarrow_{G_3} Y \Rightarrow_{G_3}^* w$
 - st Induktion liefert: $X\Rightarrow_{G_4}Y\Rightarrow_{G_4}^st w$

CNF: (5) Einzel-Variablen der rechten Seite entfernen (3/3)

Beweisskizze für Lemma 8.6

- (b) klar
- (a) " $L(G_5)\subseteq L(G_4)$ ":
 - Sei X
 ightarrow lpha eine gegenüber G_4 neue Regel von G_5
 - In G_4 gibt es dann eine RegelY o lpha, für ein Y, und es gilt $X \Rightarrow_{G_4}^* Y$
 - $ightharpoonup X \Rightarrow_{G_4}^* \alpha$
 - lacktriangledown Zu jeder Ableitung $S \Rightarrow_{G_5}^* w$ gibt es also eine Ableitung $S \Rightarrow_{G_4}^* w$

Beweisskizze (Forts.)

- ullet " $L(G_4)\subseteq L(G_5)$ ":
 - Sei $w \in L(G_4)$
 - Dann gibt es eine Linksableitung für w in G_4
 - Wird in einer Linksableitung eine Einheitsregel $X \to Y$ verwendet, so muss Y im nächsten Schritt wieder ersetzt werden
 - Nach endlich vielen Schritten muss dann zum ersten Mal eine Regel $Z \to \alpha$ verwendet werden, die keine Einheitsregel ist
 - $lack X \Rightarrow_{G_4}^* Z$
 - lacktriangledown Nach Konstruktion enthält G_5 dann die Regel X olpha
 - ightharpoonup Zu jeder G_4 -Ableitung gibt es eine äquivalente G_5 -Ableitung

Details des Korrektheitsbeweises für $L_{ m diff}$

Beweisskizze: " $oldsymbol{L}(oldsymbol{G}_{ ext{diff}}) \subseteq oldsymbol{L}_{ ext{diff}}$ "

- ullet Sei $oldsymbol{w} \in oldsymbol{L}(oldsymbol{G}_{\mathsf{diff}})$
- ullet 1. Fall: $oldsymbol{w}=oldsymbol{u_1}oldsymbol{av_1}oldsymbol{u_2}oldsymbol{bv_2}$ für gewisse $oldsymbol{u_1},oldsymbol{u_2},oldsymbol{v_1},oldsymbol{v_2}oldsymbol{v_1}oldsymbol{v_2}oldsymbol{v$
 - Sei $i\stackrel{ ext{ iny def}}{=}|u_1|$ und $j\stackrel{ ext{ iny def}}{=}|u_2|$
 - $lackbox{lackbox{}} |w| = 2i + 2j + 2$ und *w[i+1] = a *w[2i+j+2] = b
 - Wie schon berechnet ist dann $* \ \mathbf{1}^{\mathsf{st}}(oldsymbol{w})[oldsymbol{i+1}] = oldsymbol{a} \ * \ \mathbf{2}^{\mathsf{nd}}(oldsymbol{w})[oldsymbol{i+1}] = oldsymbol{b}$
 - $ightharpoonup w \in L_{\mathsf{diff}}$
- ullet 2. Fall: $w=u_1bv_1u_2av_2$...
 - analog

Beweisskizze: " $L_{ ext{diff}} \subseteq L(G_{ ext{diff}})$ "

- ullet Sei $oldsymbol{w} \in oldsymbol{L}_{\mathsf{diff}}$ und $oldsymbol{n} \stackrel{\mathsf{def}}{=} |\mathbf{1}^{\mathsf{st}}(oldsymbol{w})|$ $|oldsymbol{w}| |oldsymbol{w}| = oldsymbol{2}oldsymbol{n}$
- ullet OBdA gibt es ein $m{i} \in \{m{0}, \dots, m{n-1}\}$, so dass $m{1}^{\mathsf{st}}(m{w})[m{i+1}] = m{a}$ und $m{2}^{\mathsf{nd}}(m{w})[m{i+1}] = m{b}$
- Wir setzen:

$$egin{aligned} &-u_1\stackrel{ ext{def}}{=}w[1,i]\ &-v_1\stackrel{ ext{def}}{=}w[i+2,2i+1]\ &-u_2\stackrel{ ext{def}}{=}w[2i+2,n+i]\ &-v_2\stackrel{ ext{def}}{=}w[n+i+2,2n] \end{aligned}$$

- $lack egin{aligned} lack & lack w = u_1 a v_1 u_2 b v_2 ext{ und } \ & |u_1| = i = |v_1| ext{ und } \ & |u_2| = n + i (2i + 2) + 1 \ & = n i 1 \ & = 2n (n + i + 2) + 1 \ & = |v_2| \end{aligned}$
- $lacktriangledown w \in m{L}(m{G}_{\mathsf{diff}})$