Refo Yudhanto

CS455

HW3

Chap 3

P1.a. H3 are forwarded through interface 3 so forwarding table will look like:

Destination	Interface
H3	Interface 3

b. Router A will only have 1 forwarding rule, so having 2 different rote is not possible. So, router A can only have run through interface 3 or interface 4, but not both.

P5. A.

Prefix	Link Interface
11100000 00	0
11100000 01000000	1
1110000	2
otherwise	3

B.1st address = link interface 3

2nd address = link interface 2

3rd address = link interface 3

P8.

Subnet 2: 90 interface = 7bits w/128 addresses prefix=32-7=25 = 223.1.17.0-127/25 Subnet 1: 60 interface = 6 bits w/ 64 addresses prefix=32-6=26 = 223.1.17.128-191/26 Subnet 3: 12 interface = 4bits w/ 16 addresses prefix=32-4=28 = 223.1.17.192-207/28

P10.

Prefix	Link Interface
224.0.0.0/10	0
224.64.0.0/16	1
224.0.0.0/8	2
otherwise	3

P13.

WSU: Net Range = 216.186.59.128 - 216.186.59.255, CIDR = 216.186.59.128/25

Uofl: Net Range = 129.101.0.0-129.101.255.255, CIDR = 129.101.0.0/16

IP Address	Country Code	Location	Postal Code	Approximate Coordinates*	Accuracy Radius (km)	ISP		Organ	nization	
216.186.59.128	US	United States, North America		37.751, -97.822	1000	Washington State K- 20 Telecommunications Network		Washington State K- 20 Telecommunications Network		
IP Address	Country	/ Location	Posta Code	I Approximates		y ISP	Organi	zation	Domain	Metro
129.101.119.25	0 US	Moscow Idaho,	, 83844	46.7324, -117.0002	5	University of Idaho	Univers	sity of		881

WhoIs does not show geographical location, but you use maxmind to find it.

P16. A. Home = 192.168.1.1-3 and router = 192.168.1.4

United States, North America

В.

NAT translation table:

Global	Local
24.34.112.235, 4000	192.168.1.1, 3345
24.34.112.235, 4001	192.168.1.1, 3346
24.34.112.235, 4002	192.168.1.2, 3445
24.34.112.235, 4003	192.168.1.2, 3446
24.34.112.235, 4004	192.168.1.3, 3545
24.34.112.235, 4005	192.168.1.3, 3546

P22. a)h1 and h6 to h3/h4

Source IP	Destination IP	Source Host	Destination Host	Interface	Action	
10.1.0.2	Any	H2	any	Any	Block	
10.3.0.5	any	H5	Any	Any	Block	
10.1.0.1	10.2.0.3	H1	Н3	2	Forwarded	
10.1.0.1	10.2.0.4	H1	H4	2	Forwarded	
10.3.0.6	10.2.0.3	H6	Н3	1	Forwarded	
10.3.0.6	10.2.0.4	H6	H4	1	Forwarded	
b) only tcp allo	owed for h3 or h4,	UDP blocked	_ <u> </u>			
				Protocol		
Any	10.2.0.3	Any	Н3	ТСР	Forwarded	
Any	10.2.0.4	Any	H4	ТСР	Forwarded	
any	Any except both	any	Any except both	UDP	Block	
c)only traffic f	or h3 is delivered,	h4 is blocked				
Any	10.2.0.3	any	Н3	any	Forwarded	
Any	10.2.0.4	any	H4	any	Block	
d)only UDP fro	om h1 to h3 is deliv	vered, all other is	blocked			
10.1.0.1	10.2.0.3	H1	H3 UDP		Forwarded	
Any except	Any except	Any except	Any except	Any except	Blocked	

Chapter 5

P3.

Step	N'	D(t),p(t)	D(u),p(u)	D(v),p(v)	D(w),p(w)	D(y),p(y)	D(z),p(z)
0	Х	∞	∞	3,x	6,x	6,x	8,x
1	Xv	7,v	6,v	3,x	6,x	6,x	8,x
2	Xvu	7,v	6,v	3,x	6,x	6,x	8,x
3	Xvuw	7,v	6,v	3,x	6,x	6,x	8,x
4	Xvuwy	7,v	6,v	3,x	6,x	6,x	8,x
5	Xvuwyt	7,v	6,v	3,x	6,x	6,x	8,x
6	xvuwytz	7,v	6,v	3,x	6,х	6,x	8,x

P12. BGP uses AS routing protocol. AS have 2 useful attributes which is AS-PATH and NEXT-HOP. Detection of loops in path is detected by using AS-PATH attribute.

P14.a. eBGP

- b. iBGP
- c. eBGP
- d. iBGP
- P.15. a. value of I will be equal to I1 for this matter sincel1 is the least cost path with 2 hops from router 1d to 1c.
- b. For this matter, I will be set to I2 as both have the same AS-PATH length but I2 has the closest NEXT-HOP router next.
- c. I will be equal to I1 as I1 has the shortest AS-PATH.