NOM :

PRENOM:.....GROUPE:.....

Contrôle 2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM(4 points, pas de points négatifs)

Entourer la bonne réponse

1- L'énergie mécanique de la masse m d'un pendule simple est d'expression :

 $E_m = \frac{1}{2}mL^2.(\dot{\theta})^2 + mgL(1-\cos(\theta))$; Où m, L et g sont des constantes.

La dérivée de cette énergie par rapport au temps est

a)
$$\frac{dE_m}{dt} = mL^2 \ddot{\theta} \ \dot{\theta} - mgLsin(\theta) . \dot{\theta}$$
b)
$$\frac{dE_m}{dt} = mL^2 \ddot{\theta} + mgLsin(\theta)$$
c)
$$\frac{dE_m}{dt} = mL^2 \ddot{\theta} + mgLsin(\theta) . \dot{\theta}$$

$$= mL^2\ddot{\theta} + mgL\sin(\theta)$$

2- L'équation différentielle du mouvement de la masse du pendule simple, obtenue en écrivant $\frac{dE_m}{dt} = 0$, est

a)
$$\ddot{\theta} + \frac{g}{L}\cos(\theta) = 0$$

a)
$$\ddot{\theta} + \frac{g}{L}\cos(\theta) = 0$$
 b) $\ddot{\theta} + \frac{g}{L}\sin(\theta) = 0$ c) $\ddot{\theta} - \frac{g}{L}\sin(\theta) = 0$

3- La résolution de l'équation différentielle $x + \frac{\alpha}{m}x + \omega_0^2x = 0$ nécessite de distinguer trois régimes. Le régime critique correspond à une valeur particulière de α (α étant le coefficient de frottement)

a)
$$\alpha_{crit} = 0$$

b)
$$\alpha_{crit} > 2m\omega_0$$

a)
$$\alpha_{crit} = 0$$
 b) $\alpha_{crit} > 2m\omega_0$ (c) $\alpha_{crit} = 2m\omega_0$ d) $\alpha_{crit} < 2m\omega_0$

d)
$$\alpha_{crit} < 2m\omega_0$$

4- Un système qui n'échange ni matière, ni énergie avec le milieu extérieur est appelé :

- (a))un système isolé
- b) un système exclusif
- c) un système fermé

5- Quelle est l'expression de la résistance thermique ?

a)
$$R_{th} = -\frac{\Phi}{\Delta \ell}$$

a)
$$R_{th} = -\frac{\Phi}{\Delta\theta}$$
 b) $R_{th} = \frac{e}{\lambda_{th}.S}$ c) $R_{th} = \frac{\lambda_{th}.S}{e}$

c)
$$R_{th} = \frac{\lambda_{th}.S}{e}$$

6- Un double vitrage est constitué de deux vitres en verre, chacune de résistance R_{verre}, séparées par un espace rempli d'air de résistance R_{air} . Que vaut la résistance totale du double vitrage?

-1-

a)
$$R_{verre} + R_{air}$$

b)
$$\frac{2}{R_{verre}} + \frac{1}{R_{air}}$$

b)
$$\frac{2}{R_{verre}} + \frac{1}{R_{air}}$$
 ©) $2R_{verre} + R_{air}$

7- La température d'équilibre atteinte lorsque l'on mélange dans un calorimètre (de capacité calorifique négligeable) un volume V_1 d'eau à la température θ_1 et un volume V_2 d'eau à la température θ_2 est

(a)
$$\theta_e = \frac{v_1\theta_1 + v_2\theta_2}{v_1 + v_2}$$
 b) $\theta_e = \frac{\theta_1 + \theta_2}{2}$ c) $\theta_e = V_1\theta_1 + V_2\theta_2$

b)
$$\theta_e = \frac{\theta_1 + \theta_2}{2}$$

c)
$$\theta_e = V_1 \theta_1 + V_2 \theta_2$$

- 8- Laquelle des grandeurs ci-dessous n'est pas extensive?
 - (a))la température
 - b) la masse
 - d) le nombre de moles

Exercice 1 (5 points)

On considère un système (ressort, masse m) représenté sur la figure ci-dessous. On écarte la masse de sa position d'équilibre x = 0 d'une distance x_0 , $(x_0 > 0)$, et on la lâche sans vitesse initiale.

La masse est soumise à une force de frottement d'expression : $\vec{f} = -\alpha$. \vec{V} , α est un coefficient de frottement positif.

On pose x(t) la position de la masse à un instant t quelconque et k le coefficient de raideur du ressort.

- 1- Représenter sur le schéma les forces appliquées sur la masse m. On suppose la masse se déplaçant de x_0 vers x = 0.
- 2- a) Utiliser la deuxième loi de Newton pour retrouver l'équation différentielle du mouvement

ZFext =
$$m\vec{a}$$
 \vec{p}_{+} \vec{R}_{p} + \vec{T} + \vec{f} = $m\vec{a}$) \vec{n}

Sur laxe $\vec{o}\vec{x}$: axe du mouvement

 $\vec{o}.\vec{u}_{n}$ + $\vec{o}\vec{u}_{n}$ - \vec{k} \vec{u}_{n} - \vec{d} \vec{u}_{n} = \vec{m} \vec{n} \vec{u}_{n}
 \vec{n}
 \vec{n}

b) Donner l'équation caractéristique de l'équation différentielle, préciser les trois régimes d'oscillations selon les conditions sur le coefficient de frottement α . Donner l'allure de la courbe x(t) pour chacun des régimes.

Exercice 2 (5 points)

I- Rappeler l'expression du flux thermique Φ traversant un milieu, en fonction de l'écart de température $\Delta\theta$ et de la résistance thermique R_{th} . On suppose une propagation de chaleur à une dimension et en régime stationnaire. Retrouver les unités de Φ , R_{th} et de la conductivité thermique λ_{th}

$$\begin{array}{lll}
\boxed{D} & \boxed{D} = -\lambda + R \cdot \frac{\Delta \theta}{e} \cdot S &=& -\frac{\Delta \theta}{R + R} \text{ avec } R_{HR} = \frac{e}{\lambda + R \cdot S} \\
\boxed{D} & \text{ ob since energy is thermical pour surists de temps} \\
\boxed{D} & \boxed{D} \\
\boxed{D} & \boxed{R} & \boxed{R} & \boxed{R} & \boxed{D} & \boxed{R} & \boxed{R$$

2- Montrer que la résistance thermique R_{th} d'un système formé de trois milieux, de conductivités respectives λ_1 , λ_2 et λ_3 , de même surface S et d'épaisseurs respectives e_1 , e_2 et e_3 , s'écrit :

 $R_{th} = R_{th1} + R_{th2} + R_{th3}$. Les trois milieux sont traversés par le même flux thermique Φ .

3)
$$\theta_{1} = \theta_{1}$$
 $\theta_{2} = \theta_{2}$ $\theta_{3} = \theta_{2}$ $\theta_{4} = \theta_{2}$ $\theta_{5} = \theta_{2}$ $\theta_{7} = \theta_{2}$ $\theta_{7} = \theta_{2}$ $\theta_{7} = \theta_{2}$ $\theta_{7} = \theta_{2} = \theta_{3} = \theta_{4}$ $\theta_{7} = \theta_{2} = \theta_{3} = \theta_{4} = \theta_{4} = \theta_{5} =$

Exercice 3 (6 points) Les questions 1, 2 et 3 sont indépendantes.

1- Dans un calorimètre de capacité thermique 100 J.K⁻¹, on introduit 100 g d'eau, l'ensemble est à 20°C. On y ajoute 100 g d'huile à 100°C (température inférieure à sa température d'ébullition). La température finale est de 40°C.

Calculer la capacité massique de l'huile. On donne : $c_{\text{cau}} = 4.10^3 \text{ J.kg}^{-1} \text{.K}^{-1}$

$$\frac{Z(\Omega i = 0) \quad (calorimètre : enceinte acliabatique)}{Ge + QR + Qcal = 0}$$

$$Me Ce \left(\frac{\partial eq}{\partial eq} - \frac{\partial n}{\partial n}\right) + MR \times CR \left(\frac{\partial eq}{\partial eq} - \frac{\partial eq}{\partial n}\right) + Ccal \left(\frac{\partial eq}{\partial eq} - \frac{\partial i}{\partial n}\right) = 0.$$

$$CR = -\frac{\left(\frac{\partial eq}{\partial eq} - \frac{\partial i}{\partial n}\right) \left(\frac{\partial eq}{\partial eq} - \frac{\partial eq}{\partial n}\right)}{MR \left(\frac{\partial eq}{\partial eq} - \frac{\partial eq}{\partial n}\right)} - \frac{\left(\frac{40 - 20}{40 - 100}\right) \left(\frac{40 - 100}{40 - 100}\right)}{MR \left(\frac{40 - 100}{6}\right)}$$

$$Chuile = -\frac{20 \times 500}{-6} = \frac{10000}{6} = 1,67.10 \text{ gK} \cdot \text{kg}^{-1}$$

Caldrinétre (01) expression littérale
Application numérique

2- Quelle est la quantité de chaleur nécessaire pour convertir 10 g de glace à -20°C en vapeur à 100°C ?

Capacité massique de l'eau : Ce = 4.10³J.kg⁻¹.K⁻¹

Chalcur latente de fusion de la glace $L_f = 335.10^3 J.kg^{-1}$

Capacité massique de la glace $Cg = 2.10^3 J.kg^{-1}.K^{-1}$

Chaleur latente de vaporisation $Lv = 225.10^4 \text{ J.kg}^{-1}$

On donne la capacité massique de l'eau : C_e = 4.10³JK⁻¹kg⁻¹.

$$-20^{\circ}C - 30^{\circ}C - 30^{\circ}C - 300^{\circ}C -$$

3- Un calorimètre contient une masse $m_1 = 150g$ d'eau. La température initiale de l'ensemble est θ_1 =20°C. On ajoute une masse m_2 = 250g d'eau à la température θ_2 =70°C. Calculer la capacité thermique C_{cal} du calorimètre sachant que la température d'équilibre est θ_c =50°C.

$$\begin{aligned}
\mathcal{Z}(\Omega) &= 0 \quad (\text{calorimètre} : \text{enceinte achiabatique}) \\
\mathcal{Q}(\Omega) &+ \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) \\
\mathcal{Q}(\Omega) &+ \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) \\
\mathcal{Q}(\Omega) &+ \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) \\
\mathcal{Q}(\Omega) &+ \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) \\
\mathcal{Q}(\Omega) &+ \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) + \mathcal{Q}(\Omega) \\
\mathcal{Q}(\Omega) &+ \mathcal{Q}(\Omega) \\
\mathcal{Q}(\Omega$$