Le but de ce problème est d'étudier la fonction définie par :

$$g: x \mapsto \int_{x}^{x^2} \frac{dt}{\ln(t)}.$$

- 1. Etude globale:
 - (a) Justifier que g est bien définie sur $\mathcal{D}_g =]0, 1[\cup]1, +\infty[$.
 - (b) Montrer que g est positive sur \mathcal{D}_q .
 - (c) Justifier que g est dérivable sur \mathcal{D}_g et exprimer sa dérivée en tout point de \mathcal{D}_g .
 - (d) Montrer que g est de classe \mathcal{C}^{∞} sur \mathcal{D}_g .
 - (e) Etudier les variations de g sur \mathcal{D}_g . (les limites aux bornes ne sont pas demandées pour cette question)
- 2. Etude au voisinage de 0
 - (a) Montrer que:

$$\forall x \in]0,1[\quad \frac{x(x-1)}{2\ln(x)} \le g(x) \le \frac{x(x-1)}{\ln(x)}$$

On fera très attention aux signes dans les inégalités.

- (b) En déduire que g se prolonge par continuité en 0 et préciser la valeur de ce prolongement. Par la suite, on note encore g la fonction continue, prolongée en 0
- (c) Montrer que g est dérivable à droite en 0 et préciser g'(0).
- 3. Etude au voisinage de 1.
 - (a) A l'aide du théorème des accroissements finis appliquer à $h(t) = \ln(t) t$ montrer que pour tout $t \in]0,1[$:

$$0 \le \frac{\ln(t) - t + 1}{t - 1} \le \frac{1 - t}{t}$$

(b) En déduire que pour tout $t \in]0,1[$:

$$\left| \frac{\ln(t) - t + 1}{t - 1} \right| \le \left| \frac{1 - t}{t} \right|.$$

(c) Montrer de manière analogue que pour tout t > 1 on a

$$\left| \frac{\ln(t) - t + 1}{t - 1} \right| \le \left| \frac{1 - t}{t} \right|.$$

(d) En déduire qu'il existe $\eta>0$ tel que pour tout $t\in[1-\eta,1+\eta]$

$$\left| \frac{1}{\ln(t)} - \frac{1}{t-1} \right| \le 2$$

- (e) Conclure que g est prolongeable par continuité en 1.
- 4. Etude au voisinage de $+\infty$.
 - (a) Montrer que :

$$\forall x \in]1, +\infty[\quad \frac{x(x-1)}{2\ln(x)} \le g(x)$$

(b) En déduire la limite de g en $+\infty$.