Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 – Bioestatística

Medidas de Tendência Central

Renata Lilian Dantas Cavalcante Mestranda PPG-Bioinformática - UFRN

Por que estudar bioestatística é legal?

Deixando alguns conceitos mais claros...

- Estatística: é a ciência que tem por objetivo planejar, coletar, tabular, analisar e interpretar informações de dados experimentais.
- Bioestatística: consiste na aplicação da estatística nos campos relacionados às ciências da vida.
- Áreas:
 - → Estatística Descritiva.
 - → Estatística Inferencial ou Indutiva.

- Estatística descritiva: descreve, analisa e representa um conjunto de dados, utilizando métodos numéricos e gráficos que resumem e apresentam a informação neles contidos.
- Faz-se uso de: tabelas e gráficos, medidas de centralidade (MTC) e dispersão (MD).
- População: conjunto de elementos que possuem pelo menos uma característica em comum de interesse a ser analisada.
- Amostra: subconjunto finito de elementos em uma população, que são representativos para o estudo de uma determinada característica de interesse na população.

POPULAÇÃO

AMOSTRA

Medidas de tendência central

- Costumam representar um conjunto de dados, com valores centrais pelos quais os dados tendem a concentrar-se.
- A sua medida dá uma ideia de onde localiza-se o centro (o ponto médio) de um determinado conjunto de dados.
- São medidas de resumo dos dados.
- Ex.: valores típicos que servem para caracterizar uma população.
- Existem várias maneiras de expressar essa tendência central. As mais comuns são: Moda, Mediana e Média.

Moda (Mo)

- É definida como a observação mais frequente do conjunto de valores observados, ou seja, o valor que mais aparece dentro da amostra.
- Uma amostra pode ser:
 - → Amodal: não apresenta uma moda.
 - → Unimodal: 1 único valor aparece mais.
 - → Bimodal: 2 valores aparecem mais.
 - → Multimodal: 3 ou + valores.

Tipo Sanguíneo	Número de indivíduos
0	1500
А	700
В	543
АВ	200

Mediana (Md)

- É a observação que indica exatamente o ponto médio de um conjunto de dados quando estes estão ordenados (crescente ou decrescente).
- Sua principal característica é dividir o conjunto de dados em duas partes com o mesmo número de elementos.
- Quantidade ímpar de valores: a Md corresponderá ao termo central do conjunto de dados.
- Quantidade par de valores: a Md corresponderá a média dos dois termos centrais.

Método para determinação da Mediana

Amostra obtida

$$\{x_1, x_2, \dots, x_k, \dots, x_n\}$$

☐ Série com número par de termos:

$$[(n/2)+(n/2+1)]/2$$

Ex.: Calcule a mediana da amostragem de plantas com flores { 1, 3, 0, 2, 4, 1, 2, 5 }

1º - ordenar a série { 0, 1, 1, 2, 2, 3, 4, 5 } n = 8

[(n/2) +(n/2+1)] / 2 \rightarrow [(8/2) +(8/2+1)] / 2 = 4,5 Ou seja, a média entre o 4º e 5º elemento da série ordenada será a mediana.

A mediana será o elemento = 2

Amostra ordenada

$$\{x_{(1)}, x_{(2)}, \dots, x_{(k)}, \dots, x_{(n)}\}$$

min k-ésima max

☐ Série com número ímpar de termos:

$$(n+1)/2$$

Ex.: Calcule a mediana da amostragem de plantas com flores { 1, 3, 0, 0, 2, 4, 1, 2, 5 }

1º - ordenar a série { 0, 0, 1, 1, 2, 2, 3, 4, 5 } n = 9

$$(n + 1)/2 \rightarrow (9+1)/2 = 5$$

Ou seja, o 5º elemento da série ordenada será a mediana.

A mediana será o 5º elemento = 2

Média

- É o valor médio das observações.
- Tipos:
 - → Média Aritmética;
 - → Média Ponderada;
 - → Média Geométrica;
 - → Média Harmônica;

Média Aritmética

- Consiste na soma dos valores observados dividido pelo número de observações.
- É a medida de tendência central mais utilizada.

$$\frac{1}{x} = \frac{\sum x_i}{n}$$

Média Aritmética

Ex.: Calcule a média de crianças internadas com viroses em um hospital por dia, baseando-se nos seguintes dados semanais: {2,1,8,9,6,4,5}.

Média = (2 + 1 + 8 + 9 + 6 + 4 + 5)/7

Média = 35/7

Média = 5 crianças por dia.

$$\frac{1}{x} = \frac{\sum x_i}{n}$$

Média Ponderada

- Em alguns casos, um determinado valor pode repetir-se várias vezes ao longo de uma amostra e a quantidade de vezes que esse número se repete é denominado peso.
- A média ponderada nada mais é que a média aritmética com o uso de pesos.

$$M_p = \frac{x_1 p_1 + x_2 p_2 + \dots + x_n p_n}{p_1 + p_2 + \dots + p_n}$$

$$M_p = \frac{\sum_{i=1}^n x_i p_i}{\sum_{i=1}^n p_i}$$

Média Ponderada

Espécie	Frequência (f _i)	Peso
А	8,2	3
В	10	2
С	9,5	4
D	7,8	2
E	10	2
F	9,5	3
G	6,7	4

$$M_p = \frac{3.8,2 + 2.10,0 + 4.9,5 + 2.7,8 + 2.10 + 3.9,5 + 4.6,7}{3 + 2 + 4 + 2 + 2 + 3 + 4}$$

$$24.6 + 20 + 38 + 15.6 + 20 + 28.5 + 26.8$$

$$M_p = \frac{24,6 + 20 + 38 + 15,6 + 20 + 28,5 + 26,8}{20}$$

$$M_p = \frac{173,5}{20}$$

$$M_p = 8.7$$

Média Geométrica

- Utilizada principalmente em dados que possuem natureza exponencial.
- Retorna a média do produto dos elementos de um conjunto.

$$\left(\prod_{i=1}^{n} a_{i}\right)^{1/n} = \sqrt[n]{a_{1} \ a_{2} \ a_{3} \dots a_{n}}$$

 $M_G = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n}$

- M_G: média geométrica;
- n: número de elementos do conjunto de dados;
- $x_1, x_2, x_3, ..., x_n$: valores dos dados;

Média Geométrica

Exemplo: Qual o valor da média geométrica entre os números 9, 8 e 3?

$$M_G = \sqrt[3]{3.8.9} = \sqrt[3]{216} = 6$$

- M_G: média geométrica;
- n: número de elementos do conjunto de dados;
- $x_1, x_2, x_3, ..., x_n$: valores dos dados;

Média Harmônica

- Utilizada principalmente em dados que estão organizados por taxas e proporções (grandezas inversamente proporcionais).
- O valor é obtido dividindo o número de elementos pela soma dos valores recíprocos de cada elemento.

$$H = rac{n}{rac{1}{x_1} + rac{1}{x_2} + \cdots + rac{1}{x_n}} = rac{n}{\sum\limits_{i=1}^{n} rac{1}{x_i}}$$

→ Considerando os conjuntos A e B, abaixo:

$$A = (1, 3, 5, 7, 9)$$
 $B = (2, 3, 5, 7, 58)$

Mediana = 5 Mediana = 5

Enquanto a média é afetada por valores extremos, a mediana é mais "robusta", ou seja, não sofre influência de valores extremos.

Idade	Frequência (f _i)
25-30	1
30-35	2
35-40	6
40-45	16
45-50	10
50-55	8
55-60	4
60-65	3
65-70	2
TOTAL	52

$$\overline{x} = \mu = \frac{\sum x_i f_i}{\sum f_i} \quad \text{ou} \quad \overline{x} = \mu = \frac{\sum x_i f_i}{n}$$
• x_i : ponto médio do intervalo;
• f_i : frequência;
• n : soma das frequências;

1º Calcular o ponto médio de uma classe:

Ponto médio
$$\rightarrow x_i = LI_{classe} + LS_{classe}$$

$$x_i = \frac{25 + 30}{2} = 27,5$$

Idade	Frequência (f _i)	Ponto Médio (x _i)
25-30	1	27,5
30-35	2	32,5
35-40	6	37,5
40-45	16	42,5
45-50	10	47,5
50-55	8	52,5
55-60	4	57,5
60-65	3	62,5
65-70	2	67,5
TOTAL	52	427,5

$$\overline{x} = \mu = \frac{\sum x_i f_i}{\sum f_i} \quad \text{ou} \quad \overline{x} = \mu = \frac{\sum x_i f_i}{n}$$

Média =
$$\frac{27,5*1 + 32,5*2 + 37,5*6 + 42,5*16 + ... + 67,5*2}{1 + 2 + 6 + 16 + ... + 2}$$

Idade	Frequência (f _i)	Ponto Médio (x _i)	fi * Xi	Acumulado
25-30	1	27,5	27,5	1
30-35	2	32,5	65	3
35-40	6	37,5	225	9
40-45	16	42,5	680	25
45-50	10	47,5	475	35
50-55	8	52,5	420	43
55-60	4	57,5	230	47
60-65	3	62,5	187,5	50
65-70	2	67,5	135	52
TOTAL	52	427,5	2445	

$$\overline{x} = \mu = \frac{\sum x_i f_i}{\sum f_i} \quad \text{ou} \quad \overline{x} = \mu = \frac{\sum x_i f_i}{n}$$

x_i: ponto médio do intervalo;

f_i: frequência;

n: soma das frequências;

Média = 2445/52 Média = **47,02**

Dados agrupados (Mediana)

Idade	Frequência (f _i)	Acumulado	Posições
25-30	1	1	1 ^a
30-35	2	3	2ª a 3ª
35-40	6	9	4ª a 9ª
40-45	16	25	10ª a 25ª
45-50	10	35	26ª a 35ª
50-55	8	43	36ª a 43ª
55-60	4	47	44ª a 47ª
60-65	3	50	48ª a 50ª
65-70	2	52	51ª a 52ª
TOTAL	52		

- L_{Md}: limite inferior do classe que contém a mediana;
- n: número total de valores;
- F_{ant}: frequência acumulada da classe anterior à classe mediana;
- f_{Md}: frequência do grupo que possui a mediana;
- h: amplitude do intervalo da classe mediana;

1º passo: encontrar a classe mediana \rightarrow 52/2 = **26º posição**

Idade	Frequência (f _i)	Acumulado	Posições
25-30	1	1	1 ^a
30-35	2	3	2ª a 3ª
35-40	6	9	4ª a 9ª
40-45	16	25	10ª a 25ª
45-50	10	35	26ª a 35ª
50-55	8	43	36ª a 43ª
55-60	4	47	44ª a 47ª
60-65	3	50	48ª a 50ª
65-70	2	52	51ª a 52ª
TOTAL	52		

$$L_{\rm Md} = 45$$

$$\bullet \quad \mathsf{F}_{\mathsf{ant}} = 25$$

$$Md = L_{Md} + \left(\frac{\frac{n}{2} - F_{ant}}{f_{Md}}\right).h$$

$$Md = 45 + \left(\frac{\frac{52}{2} - 25}{10}\right) * 5$$

$$Md = 45 + 0.5$$

Método de Czuber:

$$Mo = L_{Mo} + \left(\frac{D_1}{D_1 + D_2}\right).h$$

$$D_1 = f_{mo} - f_{ant}$$

$$D_2 = f_{mo} - f_{post}$$

- L_{mo}: limite inferior da classe modal.
- f_{mo}: frequência da classe modal.
- f_{ant}: frequência da classe imediatamente anterior à classe modal.
- f_{post}: frequência da classe imediatamente posterior à classe modal.
- h: amplitude da classe modal.

Método de Czuber Ex.: Calcule a moda para a distribuição de frequências das idades das mulheres diagnosticadas com câncer de mama.

IDADE	fi
25-30	2
30-35	6
40-45	16
45-50	10
50-55	8
55-60	4
60-65	3
65-70	2
TOTAL	51

$$Mo = L_{Mo} + \left(\frac{D_1}{D_1 + D_2}\right) h$$

$$D_1 = f_{mo} - f_{ant}$$

$$D_2 = f_{mo} - f_{post}$$

A moda será:

$$M_o = 40 + (10/10+6)*5$$

 $M_o = 40 + 10/16*5$
 $M_o = 43,13$

Método de King Ex.: Calcule a moda para a distribuição de frequências das idades das mulheres diagnosticadas com câncer de mama.

IDADE	fi
25-30	2
30-35	6
40-45	16
45-50	10
50-55	8
55-60	4
60-65	3
65-70	2
TOTAL	51

$$Mo_{king} = l_i + \left(\frac{f_{post}}{f_{ant} + f_{post}}\right)h$$

- *I_i*: 40
- f_{ant}: 6
 f_{post}: 10

- I_i: limite inferior da classe modal;
- f_{ant} : frequência da classe anterior à modal;
- f_{post} : frequência da classe posterior à modal;
- h: amplitude da classe modal;

$$Mo_{king} = 40 + \left(\frac{10}{6 + 10}\right)5$$

$$Mo_{king} = 43,13$$

Método de Pearson:

IDADE	fi
25-30	2
30-35	6
40-45	16
45-50	10
50-55	8
55-60	4
60-65	3
65-70	2
TOTAL	51

$$M_o = 3M_d - 2\overline{X}$$

• X : valor da média;

• M_d: valor da mediana;

$$M_o = 3 * 45,5 - 2*47,02$$

 $M_o = 136,5 - 94,04$
 $M_o = 42,5$

OBRIGADA