慶應義塾大学試験問題用紙(日吉)

試験時間 分 90 分 平成 23 年 2 月 2 日(水)2 時限施行 学部 学科 年 担当者名 前島信君 学籍番号 科目名 数学B3 氏 名

次の不定積分を計算せよ.

(1)
$$\int \frac{1}{(x^2+1)(x-1)} dx$$

$$(2) \quad \int \frac{x+1}{\sqrt{x^2-2x+3}} dx$$

II. 次の重積分を計算せよ.

(1)
$$\int\int_{D}\frac{1}{\sqrt{x-y}}dxdy,\quad D:y=0,\ y=x,\ x=1\ \text{で囲まれた領域}$$

(2)
$$\int \int \sqrt{1-x^2-y^2} dx dy$$
, $D: x^2+y^2 \le x$

(3)
$$\int \int_{D} (x+1)\cos(2x - x^2 + 2y)dxdy,$$
$$D: 0 \le y - x^2 \le \pi \le 2x + y \le 2\pi, x \ge 0$$

$$D: 0 \le y - x \le \pi \le 2x + y \le 2\pi,$$

(4)
$$\int \int_{D} \frac{|xy|}{x^2 + y^2} dx dy$$
, $D: x^2 + y^2 \le 1$

次の積分の順序を変更せよ.

$$(1) \quad \int_0^1 \left[\int_{\sqrt{1-x^2}}^{x+2} f(x,y) dy \right] dx$$

(2)
$$\int_0^1 \left[\int_{x^2}^{\sqrt{2x-x^2}} f(x,y) dy \right] dx$$

(3)
$$\int_{\frac{1}{2}}^{\frac{2}{3}} \left[\int_{y^2}^{\sqrt{y}} f(x, y) dx \right] dy$$

(裏に続く)

慶應義塾大学試験問題用紙(日吉)

	· ·				試験時間	90 分	分
平成 23	年 2月 2日(水)2時限施行		学部	学科	年 組		
担当者名	前島 信 君	学籍番号					
科目名	数学B3	氏 名					

IV.	$\int_0^\infty e^{-x^2} dx$	lx の値を求め	よ.
-----	-----------------------------	----------	----

GIN?

 $\text{V.} \qquad \sum_{r=1}^{\infty} \frac{1}{n^{\alpha}}, \ \alpha > 0, \, \text{の収束発散を}, \ \int_{1}^{\infty} \frac{1}{x^{\alpha}} dx \, \text{の収束発散を使って調べよ}.$

次の無限級数の収束発散を判定せよ. (授業で習った判定条件,及びV.の結果 $(1) \sum_{n=1}^{\infty} \frac{1}{(2n-1)2n} \qquad (2n+2-1)(2n+2) \qquad (2n+1)(2n+2) \qquad$ を使ってよい.)

(1)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)2n}$$

(2)
$$\sum_{n=2}^{\infty} \frac{3+n}{3+n^2}$$

(3)
$$\sum_{n=1}^{\infty} \left(\sin \frac{x}{n} \right)^2$$

(4)
$$\sum_{n=1}^{\infty} \frac{(n-1)^{n-1}}{n^{n+1}}$$

(5)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(6)
$$\sum_{n=1}^{\infty} \left(\frac{3n-1}{2n+1} \right)^n$$

 $\frac{(2v+2)!}{[1]!} = \frac{(\alpha-1)!^2(zu!)}{[1]!^2(2!+2)!}$

1011111(0.1) - 1 (0.11) (0.11) - 1.20 (0.11)