РОЗДІЛ 1 Дослідження моделі з вибором місця для авто за сумішшю рівномірного та розподілу Бернулі

В цій моделі водії вибирають місце для автомобіля, керуючись наступним правилом

- з ймовірністю α водій ставить автомобіль в правому кінці вільного проміжку,
- з ймовірністю $\beta = 1 \alpha$ водій вибирає місце керуючись рівномірним розподілом, аналогічно тому, як це робилося у главі $\ref{eq:continuous}$.

1.1 Виведення інтегрального рівняння

Аналогічно, як і в попередній частині, порядок вибору вільних проміжків водіями не впливає на результат, тому будемо вважати, що після паркування одного автомобіля парковка розбивається на 2 частини, і після цього спочатку заповнюється ліва частина, а потім права.

Необхідно визначити $m(X) = \mathbb{E} F(X)$. Нехай $\xi \sim Uniform(0, X-1)$ — випадкова величина, що визначає положення лівого краю першого автомобіля на парковці у випадку вибору місця за рівномірним розподілом. Тоді маємо наступну тотожність:

$$\begin{split} m(X) &= \alpha (1 + m(X - 1)) + \beta (1 + \mathbb{E}(\mathbb{E}(F(\xi) + F(X - 1 - \xi)|\xi))) = \\ &= 1 + \alpha m(X - 1) + \beta \int\limits_{0}^{X - 1} m(t) \frac{1}{X - 1} dt + \beta \int\limits_{0}^{X - 1} m(X - t - 1) \frac{1}{X - 1} dt \end{split}$$

Аналогічно виведенню формули (??), отримаємо

$$m(X+1) = 1 + \alpha m(X) + \frac{2\beta}{X} \int_{0}^{X} m(t)dt, \quad \forall X > 0$$
 (1.1)

Аналогічно діям в главі ??, маємо, що виконується (??), (??) та (??).

1.2 Перехід до зображення Лапласа

Спробуємо розв'язати (1.1) за допомогою перетворення Лапласа.

Оскільки виконується (??), то зображення Лапласа для m(X) існує. До того ж, аналогічно до виведення в главі ?? маємо, що зображення Лапласа існує і для інших доданків в правій частині рівняння (1.1).

Таким чином, отримали інтегральне рівняння в термінах зображення Лапласа, яке вже можна розв'язати, адже нема зсуву:

$$e^{p}M(p) = \alpha M(p) + 2\beta \int_{p}^{\infty} \frac{M(s)}{s} ds + \frac{1}{p}$$
(1.2)

Продиференціюємо обидві частини рівняння за p:

$$e^{p}M(p) + e^{p}\dot{M}(p) = \alpha\dot{M}(p) - 2\beta\frac{M(p)}{p} - \frac{1}{p^{2}}$$
 (1.3)

Виразимо $\dot{M}(p)$ з цього рівняння:

$$\dot{M}(p) = -M(p) \left(\frac{e^p}{e^p - \alpha} + \frac{2\beta}{p(e^p - \alpha)} \right) - \frac{1}{p^2(e^p - \alpha)} \tag{1.4} \label{eq:1.4}$$

Розв'яжемо отримане диференційне рівняння. Спочатку розв'яжемо однорідну частину:

$$\begin{split} \dot{M}_h(p) &= -M_h(p) \left(\frac{e^p}{e^p - \alpha} + \frac{2\beta}{p(e^p - \alpha)} \right) \\ \frac{\dot{M}_h(p)}{M_h(p)} &= -\left(\frac{e^p}{e^p - \alpha} + \frac{2\beta}{p(e^p - \alpha)} \right) \\ \int\limits_1^p \frac{\dot{M}_h(s)}{M_h(s)} ds &= -\int\limits_1^p \left(\frac{e^s}{e^s - \alpha} + \frac{2\beta}{s(e^s - \alpha)} \right) ds \\ \ln M_h(s) \big|_1^p &= -\int\limits_1^p \frac{e^s}{e^s - \alpha} ds - 2\int\limits_1^p \frac{\beta}{s(e^s - \alpha)} ds \end{split}$$

Позначимо

$$Q_{\alpha}(p) := \int\limits_{1}^{p} \frac{\beta}{s(e^{s} - \alpha)} ds \tag{1.5}$$

Оскільки

$$\int_{1}^{p} \frac{e^{s}}{e^{s} - \alpha} ds = \langle u = e^{s} - \alpha, du = e^{s} ds = (u + \alpha) ds \rangle =$$

$$= \int_{e - \alpha}^{e^{p} - \alpha} \frac{u + \alpha}{u} (u + \alpha)^{-1} du = \int_{e - \alpha}^{e^{p} - \alpha} \frac{du}{u} =$$

$$= \log(e^{p} - \alpha) - \log(e - \alpha) = \log \frac{e^{p} - \alpha}{e - \alpha},$$

TO

$$\begin{split} \ln M_h(p) &= \ln M_h(1) - \log \frac{e^p - \alpha}{e - \alpha} - 2Q_\alpha(p) \\ M_h(p) &= M_h(1) \cdot \frac{e - \alpha}{e^p - \alpha} \cdot e^{-2Q_\alpha(p)} \cdot const \end{split}$$

Оскільки M(1) та $(e-\alpha)$ можна включити в константу, то маємо розв'язок

$$M_h(p) = C \cdot \left((e^p - \alpha) e^{2Q_\alpha(p)} \right)^{-1}, \quad \forall C \in \mathbb{R} \tag{1.6}$$

Дійсно, перевіримо цей розв'язок:

$$\begin{split} \dot{M}_h(p) &= C \cdot \left(\frac{1}{(e^p - \alpha)e^{2Q_\alpha(p)}}\right)' = \\ &= -C \cdot \left(\frac{1}{(e^p - \alpha)e^{2Q_\alpha(p)}}\right)^2 \cdot \left(e^p + (e^p - \alpha)\frac{2\beta}{p(e^p - \alpha)}\right)e^{2Q_\alpha(p)} = \\ &= -C\left((e^p - \alpha)e^{2Q_\alpha(p)}\right)^{-1} \cdot \left(\frac{e^p}{e^p - \alpha} + \frac{2\beta}{p(e^p - \alpha)}\right) = \\ &= -M(p) \cdot \left(\frac{e^p}{e^p - \alpha} + \frac{2\beta}{p(e^p - \alpha)}\right) \end{split}$$

Нескладно помітити, що отримали вихідне рівняння. Тепер застосуємо метод варіації довільних сталих:

$$M(p) = C(p) \cdot \left((e^p - \alpha)e^{2Q_{\alpha}(p)} \right)^{-1}$$

Продиференціювавши за p, отримаємо:

$$\begin{split} \dot{M}(p) &= \dot{C}(p) \cdot \left((e^p - \alpha) e^{2Q_\alpha(p)} \right)^{-1} - C(p) \left((e^p - \alpha) e^{2Q_\alpha(p)} \right)^{-1} \cdot \\ &\cdot \left(\frac{e^p}{e^p - \alpha} + \frac{2\beta}{p(e^p - \alpha)} \right) \end{split}$$

3 іншої сторони, з (1.4) маємо

$$\dot{M}(p) = -C(p) \left((e^p - \alpha) e^{2Q_\alpha(p)} \right)^{-1} \left(\frac{e^p}{e^p - \alpha} + \frac{2\beta}{p(e^p - \alpha)} \right) - \frac{1}{p^2(e^p - \alpha)}$$

Тому

$$\dot{C}(p) = -\left((e^p - \alpha)e^{2Q_\alpha(p)}\right) \cdot \frac{1}{p^2(e^p - \alpha)} = -\frac{e^{2Q_\alpha(p)}}{p^2}$$

Тоді простим інтегруванням в межах від 1 до p отримуємо:

$$C(p) = -\int_{1}^{p} \frac{e^{2Q_{\alpha}(s)}}{s^2} ds + const$$
 (1.7)

І тоді отримуємо вираз для M(p):

$$\begin{split} M(p) &= -\left(\int\limits_{1}^{p} \frac{e^{2Q_{\alpha}(s)}}{s^{2}} ds + const\right) \left((e^{p} - \alpha)e^{2Q_{\alpha}(p)}\right)^{-1} = \\ &= -\left(\int\limits_{1}^{p} \frac{e^{2Q_{\alpha}(s)}}{s^{2}} ds + K\right) \frac{1}{(e^{p} - \alpha)e^{2Q_{\alpha}(p)}}, \quad K \in \mathbb{R} \end{split} \tag{1.8}$$

Перевіримо отриманий результат:

$$\begin{split} \dot{M}(p) &= -\left(\int\limits_{1}^{p} \frac{e^{2Q_{\alpha}(s)}}{s^{2}}ds + K\right)^{'} \frac{1}{(e^{p} - \alpha)e^{2Q_{\alpha}(p)}} - \left(\int\limits_{1}^{p} \frac{e^{2Q_{\alpha}(s)}}{s^{2}}ds + K\right) \cdot \\ &\cdot \left(\frac{1}{(e^{p} - \alpha)e^{2Q_{\alpha}(p)}}\right)^{'} = -\frac{e^{2Q_{\alpha}(p)}}{p^{2}} \frac{1}{(e^{p} - \alpha)e^{2Q_{\alpha}(p)}} + \left(\int\limits_{1}^{p} \frac{e^{2Q_{\alpha}(s)}}{s^{2}}ds + K\right) \cdot \\ &\cdot \left((e^{p} - \alpha)e^{2Q_{\alpha}(p)}\right)^{-1} \cdot \left(\frac{e^{p}}{e^{p} - \alpha} + \frac{2\beta}{p(e^{p} - \alpha)}\right) = -\frac{1}{p^{2}(e^{p} - \alpha)} - \\ &- M(p)\left(\frac{e^{p}}{e^{p} - \alpha} + \frac{2\beta}{p(e^{p} - \alpha)}\right) \end{split}$$

Перевірено. Тоді остаточний результат без вирахування константи:

$$M_{\alpha}(p) = \left(\int_{p}^{1} \frac{e^{2Q_{\alpha}(s)}}{s^{2}} ds + K \right) \frac{1}{(e^{p} - \alpha)e^{2Q_{\alpha}(p)}}$$
(1.9)

Зазначимо, що у випадку $\alpha=0$ ми маємо випадок з глави $\ref{eq:constraint}$, тож і формула (1.9) має співпадати з ($\ref{eq:constraint}$) при $\alpha=0$. Спираючись на те, що $Q_0(p)\equiv Q(p)$, отримуємо, що $M_0(p)\equiv M(p)\ \forall p>0$.

1.3 Визначення константи у розв'язку

У ?? було доведено, що зображення Лапласа існує не тільки для m(X), а і для m(X+1), до того ж,

$$\mathcal{L}\left\{m(X+1)\right\} = e^p M(p). \tag{1.10}$$

Аналогічно доводиться той самий факт, але для випадку суміші рівномірного розподілу та розподілу Бернулі. Таким чином, маємо

$$\mathcal{L}\left\{m_{\alpha}(X+1)\right\} = \tilde{M}_{\alpha}(p) = \left(\int\limits_{p}^{1} \frac{e^{2Q_{\alpha}(s)}}{s^{2}} ds + K\right) \frac{e^{p}}{e^{p} - \alpha} e^{-2Q_{\alpha}(p)}. \quad (1.11)$$

Оскільки зображення Лапласа – аналітична функція в деякій правій півплощині комплексного простору, то $\tilde{M}_{\alpha}(p) \to 0, \; p \to +\infty.$

Розглянемо $Q_{\alpha}(p)$ (p розглядаємо на дійсній вісі):

$$Q_{\alpha}(p) = \int_{1}^{p} \frac{1-\alpha}{s(e^{s}-\alpha)} ds < \int_{1}^{\infty} \frac{1-\alpha}{s(e^{s}-\alpha)} ds < \int_{1}^{\infty} \frac{1-\alpha}{e^{s}-\alpha} ds <$$

$$< \int_{1}^{\infty} \frac{1}{e^{s}} ds = \exp(-1) - \exp(-\infty) = \exp(-1)$$

$$(1.12)$$

Останній перехід нерівності пояснюється досить просто:

$$\frac{1-\alpha}{u-\alpha} < \frac{1}{\alpha}, \ u > 1 \Leftrightarrow u-u\alpha = u(1-\alpha) < u-\alpha, \ u > 1$$

Тобто $Q_{\alpha}(p)$ - обмежена на $[1;\infty]$. Тому обмеженими на цій вісі будуть і $e^{\pm 2Q_{\alpha}(p)}$. Також зрозуміло, що якщо інтегрувати по дійсній вісі, то $Q_{\alpha}(p)$ – монотонно зростаюча за p. Тому

$$0 = \tilde{M}_{\alpha}(\infty) = \lim_{p \to \infty} \tilde{M}_{\alpha}(p) = \left(\int_{\infty}^{1} \frac{e^{2Q_{\alpha}(s)}}{s^2} ds + K \right) \lim_{p \to \infty} e^{-2Q_{\alpha}(p)} \quad (1.13)$$

Тут $\lim_{p o \infty} e^{-2Q_{lpha}(p)} = const > 0$, тому маємо, що

$$K = -\int_{-\infty}^{1} \frac{e^{2Q_{\alpha}(s)}}{s^2} ds = \int_{1}^{\infty} \frac{e^{2Q_{\alpha}(s)}}{s^2} ds.$$
 (1.14)

Таким чином, отримали нову версію M(p):

$$\begin{split} M_{\alpha}(p) &= \left(\int_{p}^{1} \frac{e^{2Q_{\alpha}(s)}}{s^{2}} ds + K \right) \frac{1}{(e^{p} - \alpha)e^{2Q_{\alpha}(p)}} = \\ &= \frac{1}{(e^{p} - \alpha)e^{2Q_{\alpha}(p)}} \int_{p}^{\infty} \frac{e^{2Q_{\alpha}(s)}}{s^{2}} ds \end{split} \tag{1.15}$$

1.4 Застосування теореми Таубера

Для знаходження асимптотики $m_{\alpha}(X)$ на нескінченності, за теоремою Таубера (??) необхідно визначити асимптотику $M_{\alpha}(p)$ при $p \to 0$.

Якщо знайти такі $C\in\mathbb{R}$ та $\delta\in\mathbb{R}^+$, що $M_{\alpha}(p)\sim C\cdot p^{-\delta},\ p\to 0$, то можна стверджувати, що $\int\limits_0^X m_{\alpha}(x)dx\sim \frac{1}{\Gamma(\delta+1)}CX^{\delta},\ X\to\infty$. Вже зараз зрозуміло, що $\delta=2$, адже теорема справедлива в обидва боки і виконується $(\ref{eq:constraint})$.

Для цього розглянему поведінку в нулі трьох множників, з яких складається $M_{\alpha}(p)$, а саме:

- a) $\frac{1}{e^p-\alpha}$;
- $\mathsf{f})\ e^{-2\widetilde{Q}_{\alpha}(p)};$

B)
$$\int\limits_{p}^{\infty} \frac{e^{2Q_{\alpha}(s)}}{s^2} ds$$
,

Щодо першого множнику, то в 0 він, очевидно, прямує до $\frac{1}{1-\alpha}$, Для наступного аналізу доведемо деякі леми.

Лема 1.4.1: $e^{-2Q(p)}$ поводиться як p^{-2} в 0, з точністю до константи, а саме:

$$\lim_{p \to 0} \frac{e^{-2Q(p)}}{p^{-2}} = \exp\left(-2\int_{0}^{1} \frac{e^{s} - 1}{s(s^{s} - \alpha)} ds\right)$$
(1.16)

Доведення. Для знаходження ліміту прологарифмуємо вираз. Отримаємо:

$$\begin{split} 2\ln p - 2Q_{\alpha}(p) &= 2\ln p - 2\int\limits_{1}^{p} \frac{1-\alpha}{s(e^{s}-\alpha)}ds = 2\int\limits_{1}^{p} \frac{1}{s}ds - \\ &- 2\int\limits_{1}^{p} \frac{1-\alpha}{s(e^{s}-\alpha)}ds = 2\int\limits_{1}^{p} \frac{e^{s}-1}{s(e^{s}-\alpha)}ds = -2\int\limits_{p}^{1} \frac{e^{s}-1}{s(e^{s}-\alpha)}ds \end{split}$$

Тепер, підвівши до експоненти обидві частини, отримаємо:

$$\frac{e^{-2Q_{\alpha}(p)}}{p^{-2}} = \exp\left(-2\int\limits_{p}^{1} \frac{e^{s}-1}{s(e^{s}-\alpha)}ds\right)$$

Якщо довести, що інтеграл

$$-2\int\limits_0^1\frac{e^s-1}{s(e^s-\alpha)}ds$$

збігається, то лему буде доведено, адже експонента – неперервна функція, і можна переходити до ліміту під експонентою. Зрозуміло, що

$$-2\int_{p}^{1} \frac{e^{s}-1}{s(e^{s}-\alpha)} ds$$

збігається для $\forall p \in (0;\ 1]$. Дійсно, оскільки $e^s-1 < e^s-\alpha$, підінтегральна функція $\frac{1-e^{-s}}{s}$ мажорується $\frac{1}{s}$, яка, в свою чергу, має скінченне значення інтегралу:

$$\int_{p}^{1} \frac{1}{s} ds = \ln 1 - \ln p = -\ln p, \quad p > 0$$

Невизначеність виникає лише в точці 0. Знайдемо ліміт підінтегральної функції в точці 0:

$$\lim_{p\to 0}\frac{e^s-1}{s(e^s-\alpha)}=\langle \text{правило Лопіталя для невизначенності }0/0\rangle=\\ =\lim_{p\to 0}\frac{e^s}{se^s+(e^s-\alpha)}=\frac{1}{1-\alpha}$$

Таким чином, підінтегральна функція обмежена в деякому ε -околі 0, тому інтеграл також збіжний, і лему доведено.

Лема 1.4.2: Функція

$$Q_{\alpha}(p) = \int\limits_{1}^{p} \frac{1-\alpha}{s(e^{s}-\alpha)} ds$$

– обмежена на $[w; \infty], w > 0.$

Доведення. На проміжку $[1; \infty]$ підінтегральна функція мажорується функцією e^{-s} (див. (1.12)), а на проміжку [w; 1] – функцією $\frac{1}{s}$, адже $1-\alpha < \infty$

 $e^s-lpha,\ s>0.$ Тому, аналогічно доведенню попередньо леми, інтеграл буде збіжний, і:

$$\begin{split} Q_{\alpha}(p) & \leq \int\limits_{1}^{\infty} e^{-s} ds = \exp(-1), \quad p \geq 1 \\ Q_{\alpha}(p) & \leq \int\limits_{w}^{1} \frac{1}{s} ds = -\ln w, \quad p \in [w; \ 1] \end{split}$$

Таким чином, $Q_{\alpha}(p) \leq \max\{-\ln w, \exp(-1)\}.$

Лема 1.4.3: Інтеграл

$$\int\limits_{0}^{\infty}\frac{e^{2Q_{\alpha}(s)}}{s^{2}}ds$$

- збіжний.

Доведення. Спираючись на лему (1.4.1), маємо, що підінтегральна функція прямує до деякої константи при $s\to 0$, оскільки є обернено пропорційною до функції з тої леми. Тому в деякому проколотому ε -околі точки 0 підінтегральна функція буде обмежена. На інтервалі $[\varepsilon;\infty]$ за лемою (1.4.2), $Q_{\alpha}(s)$ — обмежена, а тому і $\exp(2Q_{\alpha}(s))$ також. Тому збіжність на інтервалі $[\varepsilon;\infty]$ виконується, якщо збігається інтеграл

$$\int_{\varepsilon}^{\infty} \frac{1}{s^2} ds.$$

А його збіжність – відомий факт.

Таким чином, спираючись на доведені леми, маємо при $p \to 0$:

$$\begin{split} &M_{\alpha}(p) \sim \frac{p^{-2}}{1-\alpha} \cdot \exp\left(-2\int\limits_{0}^{1} \frac{e^{s}-1}{s(e^{s}-\alpha)} ds\right) \int\limits_{0}^{\infty} \frac{e^{2Q_{\alpha}(s)}}{s^{2}} ds = \\ &= \frac{p^{-2}}{1-\alpha} \cdot \exp\left(-2\int\limits_{0}^{1} \frac{e^{s}-1}{s(e^{s}-\alpha)} ds\right) \int\limits_{0}^{\infty} \exp\left(2\int\limits_{1}^{s} \frac{1-\alpha}{\tau(e^{\tau}-\alpha)} d\tau - 2\ln s\right) ds = \\ &= \frac{p^{-2}}{1-\alpha} \cdot \exp\left(-2\int\limits_{0}^{1} \frac{e^{s}-1}{s(e^{s}-\alpha)} ds\right) \int\limits_{0}^{\infty} \exp\left(2\int\limits_{1}^{s} \frac{1-\alpha}{\tau(e^{\tau}-\alpha)} d\tau - 2\int\limits_{1}^{s} \frac{1}{\tau} d\tau\right) ds = \\ &= \frac{p^{-2}}{1-\alpha} \cdot \exp\left(-2\int\limits_{0}^{1} \frac{e^{s}-1}{s(e^{s}-\alpha)} ds\right) \int\limits_{0}^{\infty} \exp\left(-2\int\limits_{1}^{s} \frac{e^{\tau}-1}{\tau(e^{\tau}-\alpha)} d\tau\right) ds = \\ &= \frac{p^{-2}}{1-\alpha} \cdot \int\limits_{0}^{\infty} \exp\left(-2\int\limits_{0}^{1} \frac{e^{\tau}-1}{\tau(e^{\tau}-\alpha)} d\tau - 2\int\limits_{1}^{s} \frac{e^{\tau}-1}{\tau(e^{\tau}-\alpha)} d\tau\right) ds \end{split}$$

Склавши інтеграли під експонентою, отримаємо:

$$M_{\alpha}(p) \sim p^{-2} \cdot \frac{1}{1-\alpha} \int\limits_{0}^{\infty} \exp\left(-2 \int\limits_{0}^{s} \frac{e^{\tau}-1}{\tau(e^{\tau}-\alpha)} d\tau\right) ds, \quad p \to 0. \tag{1.17}$$

Тепер, за теоремою Таубера маємо при $X \to \infty$:

$$\int_{0}^{X} m_{\alpha}(x)dx \sim \frac{1}{(1-\alpha)\Gamma(2+1)} \int_{0}^{\infty} \exp\left(-2 \int_{0}^{s} \frac{e^{\tau}-1}{\tau(e^{\tau}-\alpha)} d\tau\right) ds \cdot X^{2}. \tag{1.18}$$

Або, продиференціювавши обидві частини, отримаємо:

$$m_{\alpha}(X) \sim \frac{2}{(1-\alpha)\Gamma(2+1)} \int\limits_{0}^{\infty} \exp\left(-2 \int\limits_{0}^{s} \frac{e^{\tau}-1}{\tau(e^{\tau}-\alpha)} d\tau\right) ds \cdot X.$$
 (1.19)

$$m_{\alpha}(X) \sim \frac{1}{1-\alpha} \int_{0}^{\infty} \exp\left(-2 \int_{0}^{s} \frac{e^{\tau} - 1}{\tau(e^{\tau} - \alpha)} d\tau\right) ds \cdot X, \quad X \to \infty. \quad (1.20)$$

Тут ми мали право диференціювати обидві частини за правилом Лопіталя, адже має місце невизначеність ∞/∞ .