

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190300104

FCC REPORT

Applicant: PCD, LLC

Address of Applicant: 1500 Tradeport Drive, Orlando, Florida, 32824. United States

Equipment Under Test (EUT)

Product Name: Monkey II LTE

Model No.: PL504

Trade mark: PCD

FCC ID: 2ALJJPL504

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Mar., 2019

Date of Test: 01 Mar., to 13 Mar., 2019

Date of report issued: 13 Mar., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	13 Mar., 2019	Original

Tested by: Mike DU Date: 13 Mar., 2019

Test Engineer

Reviewed by: Date: 13 Mar., 2019

Project Engineer

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4		T SUMMARY	
5		VERAL INFORMATION	
J			
	5.1	CLIENT INFORMATION	_
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	19
	6.6	BAND EDGE	
	6.6.	1 Conducted Emission Method	22
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	41
7	TES	T SETUP PHOTO	48
ጸ	EUT	CONSTRUCTIONAL DETAILS	49

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass
Pass: The ELIT complies with the assential re-	quiromanta in the standard	•

Pass: The EUT complies with the essential requirements in the standard. N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	PCD, LLC
Address:	1500 Tradeport Drive, Orlando, Florida, 32824. United States
Manufacturer:	PCD, LLC
Address:	1500 Tradeport Drive, Orlando, Florida, 32824. United States

5.2 General Description of E.U.T.

Product Name:	Monkey II LTE
Model No.:	PL504
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
Channel numbers:	11 for 802.11b/802.11g/802.11(HT20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 72.2Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.59dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: PL504 Input: AC100-240V, 50/60Hz, 0.1A Output: DC 5.0V, 700mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 49

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Due emplifier	HP	0447D	2044400250	03-07-2018	03-06-2019
Pre-amplifier	HP HP	8447D	2944A09358	03-07-2019	03-06-2020
Due emplifier	CD	DAD 4C40	44004	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Ronde & Schwarz	F3F30	101454	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Took Doooiyay	Dahda 9 Cahwara	ECDD7	404070	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2019	03-06-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	ZDECL	Z 100-INJ-INJ-0 I	1000430	03-07-2019	03-06-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	WICKO-COAX	WFK04039	K10742-5	03-07-2019	03-06-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
Cable	SURINER	SUCUFLEXIUU	30193/4PE	03-07-2019	03-06-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Elvii Test Receivei	Ronde & Schwarz	ESCI	101169	03-07-2019	03-06-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
Puise Limiter	SCHWARZBECK	USKAW 2306	9731	03-07-2019	03-06-2020
LICN	CHACE	MNIOOFOD	4 4 4 7	03-19-2018	03-18-2019
LISN	CHASE	MN2050D	1447	03-07-2019	03-06-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cabla	1	405004	NI/A	03-07-2018	03-06-2019
Cable	HP	10503A	N/A	03-07-2019	03-06-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		b

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.59 dBi.

6.2 Conducted Emission

Test Requirement: Test Method: ANSI C63.10: 2013 Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56' 56 to 46' 0.5-5 56 46 15-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN						
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 60 50 *Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500nm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500nm/50uH coupling impedance with 500nm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN	Test Requirement:	FCC Part 15 C Section 1	15.207			
Class / Severity: Class B Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 55° 56 to 46° 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN Aux EUT: Equipment Under Test LISN Line Impedence Stabilization Network Test table/Insulation plane Reference Plane Test Instruments: Refer to section 5.8 for details Refer to section 5.3 for details	Test Method:	ANSI C63.10: 2013				
Receiver setup: RBW=9 kHz, VBW=30 kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 5-30 60 50° Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN AUX Equipment LISN Filter AC power Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test stable height-CBM Refer to section 5.8 for details Refer to section 5.3 for details	Test Frequency Range:	150 kHz to 30 MHz				
Limit: Frequency range	Class / Severity:	Class B				
(MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane LISN 40cm 80cm Filter AC power Receiver Test table/Insulation plane Test lastruments: Refer to section 5.8 for details Test mode: Refer to section 5.3 for details	Receiver setup:	RBW=9 kHz, VBW=30 k	Hz			
O.15-0.5 66 to 56* 56 to 46*	Limit:	Frequency range	Limit (c	dBuV)		
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Regulpment Under Test LISN Line impedance Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.8 for details Refer to section 5.3 for details		(MHz)	Quasi-peak	Average		
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane LISN AC power Reference Plane Receiver Test table/Insulation plane Residence Stabilization Network Test Instruments: Refer to section 5.8 for details Refer to section 5.3 for details						
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Ref						
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Regulatory R				50		
line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. Test setup: Reference Plane Reference Plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.8 for details Refer to section 5.3 for details						
Test Instruments: Refer to section 5.8 for details Test mode: Robert AC power Filter AC power Fest lable/Insulation plane Refer to section 5.8 for details		 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted 				
Test mode: Refer to section 5.3 for details	Test setup:	AUX Equipment Test table/Insulat Remark: E.U.T. Equipment Under To	40cm 80cm LISN Fi E.U.T tion plane First	Iter — AC power		
	Test Instruments:	Refer to section 5.8 for o	details			
Test results: Passed	Test mode:	Refer to section 5.3 for o	details			
	Test results:	Passed				

Measurement Data:

Product name:	Monkey II LTE	Product model:	PL504
Test by:	Alex	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>2</u>	MHz	dBu₹	dB	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.174	32.18	0.16	10.77	43.11	64.77	-21.66	QP
2	0.174	17.10	0.16	10.77	28.03	54.77	-26.74	Average
3	0.361	29.25	0.12	10.73	40.10	58.69	-18.59	QP
2 3 4 5 6 7	0.373	15.83	0.12	10.73	26.68	48.43	-21.75	Average
5	0.435	16.56	0.12	10.73	27.41	47.15	-19.74	Average
6	0.614	27.70	0.13	10.77	38.60	56.00	-17.40	QP
7	0.792	27.20	0.13	10.81	38.14	56.00	-17.86	QP
8	2.736	14.16	0.16	10.93	25.25	46.00	-20.75	Average
9	4.952	28.18	0.21	10.85	39.24	56.00	-16.76	QP
10	15.970	35.55	0.31	10.91	46.77	60.00	-13.23	QP
11	16.226	18.47	0.31	10.91	29.69	50.00	-20.31	Average
12	17.849	19.11	0.29	10.92	30.32			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Test by: Alex Test mode: Wi-Fi Tx mode Test frequency: 150 kHz ~ 30 MHz Phase: Neutral Test voltage: AC 120 V/60 Hz Environment: Temp: 22.5℃ Huni: 55% FCC PART 15.247 QF FCC PART 15.247 AV 40 4 5 8 10
Test voltage: AC 120 V/60 Hz Environment: Temp: 22.5°C Huni: 55% 80 Level (dBuV) FCC PART 15.247 QF FCC PART 15.247 AV
80 Level (dBuV) 70 60 FCC PART 15.247 QF FCC PART 15.247 AV
FCC PART 15.247 QF FCC PART 15.247 AV 10
Trace: 7 Read LISN Cable Limit Over Line Limit Remark MHz dBuV dB dB dBuV dBuV dB 1 0.178 34.53 0.95 10.77 46.25 64.59 -18.34 QP 2 0.178 19.76 0.95 10.77 31.48 54.59 -23.11 Average 3 0.358 18.03 0.97 10.73 29.73 48.78 -19.05 Average 4 0.361 29.39 0.97 10.73 29.73 48.78 -19.05 Average 4 0.361 29.39 0.97 10.73 41.09 58.69 -17.60 QP 5 0.481 29.18 0.97 10.75 40.90 56.32 -15.42 QP 6 0.481 18.70 0.97 10.75 40.90 56.32 -15.42 QP 6 0.481 18.70 0.97 10.75 30.42 46.32 -15.90 Average 7 0.617 16.53 0.97 10.77 28.27 46.00 -17.73 Average 8 0.830 29.21 0.97 10.82 41.00 56.00 -15.00 QP 9 0.830 16.00 0.97 10.82 27.79 46.00 -18.21 Average 10 4.926 29.49 1.01 10.85 41.35 56.00 -14.65 QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU	Maximum (Maximum Conducted Output Power (dBm)		Limit(dBm)	Result
Test CH	802.11b 802.11g 802.11n(HT20)		802.11n(HT20)	Limit(abm)	Resuit
Lowest	13.66	13.57	12.91		
Middle	13.89	14.95	14.10	30.00	Pass
Highest	12.27	11.66	12.65		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)		6dB Emission Bandwidth (MHz)		Hz)	Limit/IsLI=)	Result	
Test CH	802.11b	802.11g 802.11n(HT20)		Limit(kHz)	Result			
Lowest	9.28	16.56	17.52					
Middle	8.80	16.48 17.76		>500	Pass			
Highest	9.28	16.48	17.76					
Test CH	99%	Limit(kHz)	Result					
Test CH	802.11b	802.11g	802.11n(HT20)	LIIIII(KHZ)	Result			
Lowest	11.92	16.64	17.68					
Middle	11.76	16.64	17.68	N/A	N/A			
Highest	12.00	16.72	17.76					

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU	P	ower Spectral Density (d	IBm)	Limit/dDm)	Dooult
Test CH	802.11b	802.11g	802.11n(H20)	Limit(dBm)	Result
Lowest	2.35	0.55	-0.29		
Middle	4.33	2.06	0.96	8.00	Pass
Highest	1.91	0.65	-0.11		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oonducted Enhancement						
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	NSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

6.6.2 Radiated Emission Method

Test Method: ANSI C63.10: 2013 and KDB 558074 Test Frequency Range: 2.3GHz to 2.5GHz Test Distance: 3m Receiver setup: Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value Above 1GHz RMS 1MHz 3MHz Peak Value Above 1GHz Frequency Limit (dBuV/m @3m) Remark Above 1GHz 74.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to 16 md he maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using each, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.8 for details Test rocults: Passed	Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15 205		1	
Test Prequency Range: Test Distance: 3m							
Test Distance: Receiver setup: Frequency Detector RBW VBW Remark				3 00007 1			
Frequency			1 12				
Above 1GHz Frequency Limit (dBuV/m @3m) Remark			Dotostor	DD\\/	\/D\//	Pomark	
Limit: Frequency Limit (BuV/m @3m) Above 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz Above 1GHz Frequency Limit (BuV/m @3m) Average Value 54.00 Average Value 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details	Receiver setup:						
Limit: Frequency		Above 1GHz					
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and then tota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details	Limit:	Frequenc	y Lir	nit (dBuV/m @			
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details		Above 1GI	-lz				
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details					404in o 40 h l o		
Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.3 for details		 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- 					
Test mode: Refer to section 5.3 for details	Test setup:		(Turntable)	3m Ground Reference Plane	-	a Tower	
	Test Instruments:	Refer to section	5.8 for detail	S			
Test results: Passed	Test mode:	Refer to section	5.3 for detail	s			
	Test results:	Passed					

802.11b mode:

roduct	Name:	Monkey II	LTE		Pr	oduct mod	lel:	PL504	
est By:		Caffrey			Те	Test mode:		802.11b Tx mode	
est Cha	annel:	Lowest ch	annel		Po	larization:		Vertical	
est Vol	Itage:	AC 120/60)Hz		En	vironment	::	Temp: 24℃	Huni: 57%
Lo	avol (dDuV/m)				•				
110	evel (dBuV/m)								
100							-		~~
								1	
80								FCC	PART 15 (PK)
60								~ ₹CC	PART 15 (AV)
V	mun	more	mm_	www	mm	mym	month	~	
40							- 2		
20									
0									
23	310 2320		235		uency (MH:	z)			2422
	Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	<u>dB</u> /m		<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	17.18	27.37	4.69	0.00	50.92	74.00	-23.08	Peak
1 2	2390.000	8.18	27.37	4.69	0.00				Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:		Monkey II	LTE		Pr	oduct mod	el:	PL504		
est By	<i>/</i> :	Caffrey			Те	est mode:		802.11b Tx	mode	
est Ch	nannel:	Lowest ch	annel		Po	Polarization:		Horizontal		
est Vo	oltage:	AC 120/60)Hz		Er	nvironment	:	Temp: 24℃	Huni: 57%	
Le	vel (dBuV/m)									
10	ver (abaviii)									
00										
									m	
80										
_								FCQ	PART 15 (PK)	
SE NA									1	
60								FCC	PART 15 (AV)	
- 7						-		A ALL		
	man	man	more	www	morning	Mary	who	(Sect		
W	m	~~~	Mamora	~~~~	mon	m				
	mmmm	~~~	Manneyer	VVVVV	morn	m.m				
40	~~~~	~~~	manne	~~~~	~~~~	man				
W	~~~~~	~~~	valannovo	~~~~	~~~~~	~~~				
40	~~~~	~~~	and an annual man	~~~~	~~~~~					
40		~~~			~~~~~				24	
40		~~~	235	50					24	
40		ReadA	235	50 Freq	uency (MH	IZ)	Limit	Over	24	
40			235 nt enna	50 Freq Cable	uency (MH Preamp	IZ)			24 Remark	
40	10 2320 Freq	Level	235 ntenna Factor	50 Freq Cable Loss	uency (MH Preamp Factor	lz) Level	Line	Limit		
40	10 2320 Freq MHz	Level — <u>dBu</u> V	235 ntenna Factor ——dB/m	Freq Cable Loss	uency (MH Preamp Factor	Level	Line dBuV/m	Limit ———————————————————————————————————	Remark	
40	10 2320 Freq	Level	235 ntenna Factor ——dB/m	50 Freq Cable Loss	uency (MH Preamp Factor ————————————————————————————————————	Level	Line dBuV/m 74.00	Limit	Remark	

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct Name:	Monkey II LTI	E	Pi	roduct mod	del:	PL504	
st By:	Caffrey		Te	est mode:		802.11b Tx	mode
st Channel:	Highest chan	nel	Po	olarization:		Vertical	
st Voltage:	AC 120/60Hz		Eı	nvironmen	t:	Temp: 24°0	Huni: 57%
Loyal (dDul//m)							
110 Level (dBuV/m)							
100	~~~						
80						FCC	PART 15 (PK)
60			~~~	1		FCC	PART 15 (AV)
				~~~~	~~	~~~	~~~
40							
20							
02452							250
02452			quency (MH	10			250
0 ₂₄₅₂ Freq	ReadAnt Level Fa	enna Cable	quency (MH Preamp Factor	in. La mari	Limit Line		250 Remark
2452	Level Fa	enna Cable	Preamp Factor	in. La mari	Line		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



Product	roduct Name:	Monkey II	LTE		Pr	oduct mod	el:	PL504	
Test By:		Caffrey			Те	st mode:		802.11b Tx	mode
Test Cha	annel:	Highest ch	annel		Po	larization:		Horizontal	
Test Vol	tage:	AC 120/60	Hz		En	vironment	:	Temp: 24℃	Huni: 57%
110 Le	evel (dBuV/m)							TW.	
100									
80			1					FCC	PART 15 (PK)
60				<u></u>		1		FCC	PART 15 (AV)
40						2	· ~~	· · · · · ·	
20									
0 24	452						90		2500
	Freq	ReadA Level	ntenna Factor	Cable	puency (MH Preamp Factor		Limit Line		Remark
ě	MHz	—dBu∜		<u>ab</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBu√/m	<u>d</u> B	
1 2	2483.500 2483.500	18.91 10.09	27.57 27.57	4.81 4.81		52.99 44.17		-21.01 -9.83	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### 802.11g mode:

Product	t Name:	Monkey II	LTE		Pro	oduct mod	el:	PL504	
est By	:	Caffrey			Te	st mode:		802.11g Tx	mode
est Ch	annel:	Lowest ch	annel		Ро	larization:		Vertical	
est Vo	Itage:	AC 120/60	)Hz		En	vironment	:	Temp: 24℃	Huni: 57%
Lo	wel (dDullim)								
110	evel (dBuV/m)			Y					
100									00000
									AND DO
80								FCC	PART 15 (PK)
								- 1	17111 10 (11)
60								No rec	PART 15 (AV)
~	mm	moms	n-mark	man	mm	many	~~	N FCC	PART 15 (AV)
40						•			
IL ONE									
20									
20									
									10
023	310 2320		235						242
				enous org.	uency (MH				
	Freq	Kead! Level	Intenna Factor				Limit Line		Remark
	MHz	<u>dBu</u> ₹	<u>d</u> B/m		<u>a</u> B	dBu√/m	dBu√/m	<u>d</u> B	
		20.09	27 27	4 60	0.00	E3 03	74 00	-20.17	Dools
1	2390.000	711 Hu							

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product I	Name:	Monkey II	Monkey II LTE			oduct mod	el:	PL504	
est By:		Caffrey			Tes	st mode:		802.11g Tx r	mode
est Cha	nnel:	Lowest ch	nannel		Ро	larization:	I	Horizontal	
est Volt	tage:	AC 120/6	0Hz		En	vironment:	-	Temp: 24℃ Huni: 57	
Lo	vol /dDu\//n				<u> </u>		•		
110	vel (dBuV/n	1)							
100									
								m	my
80								FCC F	PART 15 (PK)
								1	
60								n/ FCC I	PART 15 (AV)
							a 10 0	VA LCCI	HILL ID (HA)
V	www	mmm	www	mon	mylym	who was	when		
40	mm	mmm	m	m	and and an	www	2	1	
	m	mmm	m	M	more	www	2		
40	~~~~~	mmmm	m	www		~~~~~	2		
	~~~~~	man	~~~	www	w Jan	why.	2		
20		man				whow.	2		
20	10 2320	man	235	50			2		242
20			235	50 Freq	uency (MH:	z)	2	Over	242
20	10 2320		235 Ant enna	50 Freq Cable	uency (MH: Preamp	z)	Limit		
20	10 2320 	Read	235 Antenna Factor	50 Freq Cable	uency (MH: Preamp Factor	z)	Limit Line	Limit	
20	10 2320 	Read eq Level Hz dBuV	235 Antenna Factor dB/m	Freq Cable Loss	uency (MH: Preamp Factor dB	z) Level dBuV/m	Limit Line	Limit	Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Monkey II LTE	Product model:	PL504
Test By:	Caffrey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
110 Level (dBuV/m)			

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		Monkey II I	_TE		Pro	oduct mode	el: F	PL504	
est By:		Caffrey			Tes	st mode:	8	302.11g Tx r	mode
est Channel:		Highest ch	annel		Pol	Polarization:		Horizontal	
est Voltage:		AC 120/60Hz		Environment:		Т	Temp: 24℃ Huni: 57		
110 Level (dBuV/i	m)								
100									
		~~							
80				1					
								FCC	PART 15 (PK)
60				1					
00					~~~	1	^-	FCCI	PART 15 (AV)
						2	····		·~~·
40									
20									
0									
02452				Frequ	uency (MHz	1)			250
		ReadA	ntenna		Preamp		Limit	Over	
F	req					Level			Remark
	WHz	dBu∀		āB	J B	dBu√/m	∃B.,⊽7=	<u>d</u> B	
1	IIIIZ	ши	ш/ ж	ш	ш	шиу/ ж	mpra/ iii	ш	
1 2483.		19.38	27.57	4.81		53.46			
2 2483.	500	11.67	27.57	4.81	0.00	45.75	54.00	-8.25	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

oduc	ct Name:	Monkey II	LTE		P	roduct mo	del:	PL504	
est By	y:	Caffrey			T	est mode:		802.11n(H	T20) Tx mode
est Cl	hannel:	Lowest ch	nannel		Р	olarization	:	Vertical	
est Vo	oltage:	AC 120/6	0Hz		E	nvironmen	nt:	Temp: 24°	C Huni: 57 %
Lo	evel (dBuV/m)								
10	ever (ubuv/iii)								
00									MMM
								5	way a a
80								FCC	C PART 15 (PK)
60							1	NW FCI	C PART 15 (AV)
00								7 10	or milit to inter
7	way sow	mar	V~~~	www	Marin	Y and	V 2		
7	munam	mar	~~~	~~~	M	Smon	√~ 2		
7	munn	r	~~~	~~~	wyw	Smy	√~ ²		
40		r	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~~~~	www	June	v~ 2		
40		bonn	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~~~~	Mar	m	V 2		
20		bmar	V~\~		M	m	2		
20	310 2320	bmar	23	50		V	2		
40	310 2320	ReadA		50 Fred	quency (MF	Hz)	Limit	Over	
40		ReadA Level	ntenna	50 Fred Cable		Hz)	Limit Line	Over Limit	242
40			ntenna	50 Fred Cable	quency (Mi Preamp Factor	Hz)	Line	Limit	242
40	Freq	Level	ntenna Factor	50 Fred Cable Loss dB	quency (Mi Preamp Factor dB	Hz) Level dBuV/m	Line dBuV/m 74.00	Limit	242 Remark

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct I	oduct Name: Monkey		LTE		Pro	Product model:		PL504	
est By:		Caffrey			Те	Test mode:		802.11n(HT20) Tx mode	
est Cha	nnel:	Lowest ch	annel		Ро	larization:	ŀ	Horizontal	
est Volta	age:	AC 120/60)Hz		En	vironment:		Temp: 24°C Huni: 5	
Love	ol (dBu\l/m)								
10	el (dBuV/m)								
00									
								~~	www
80								- too	DADT 45 (DIC)
								fee	PART 15 (PK)
10									
60									
60			000	0.0	0.0.	2	1/20	FCC	PART 15 (AV)
~	~~~~	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www		V~~~	~~~}^	FCC	PART 15 (AV)
60	~~~~	~~~	\^\\ <u>\</u>	www	M	V~~~	²	FCC	PART 15 (AV)
~	~~~~	~~~	~~~~	www	ww	V~~~	²	FCC	PART 15 (AV)
~	mm	~~~	~~~~~	~~~		V~~~		FCC	PART 15 (AV)
40	mm	~~~	~~~~~	~~~~		V		FCC	PART 15 (AV)
40		~~~				V~~~	~~~ <u>}</u>	FCC	
40		~~~	235	50			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FCC	PART 15 (AV)
40				50 Frequ	uency (MH	z)	Limit	FCC	
40		Read	235	50 Frequ	uency (MH: Preamp	z)	2	Over	
40	0 2320	Read	235 unt enna	50 Frequ	uency (MH: Preamp Factor	z)	Limit Line	Over Limit	242
40	0 2320 Freq	Read! Level	235 Intenna Factor ————————————————————————————————————	50 Frequ Cable Loss	uency (MH: Preamp Factor dB	z) Level	Limit Line	Over Limit	242 Remark

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name:	Monkey II LTE		Pro	oduct mod	el:	PL504	
est By:	Caffrey		Те	st mode:		802.11n(HT	20) Tx mode
est Channel:	Highest channel		Po	larization:		Vertical	
est Voltage:	AC 120/60Hz		En	vironment	:	Temp: 24°C Huni: 57°	
110 Level (dBuV/m)							
100							
** 				_		FCC	PART 15 (PK)
60		1	~~			FCC	PART 15 (AV)
40							
20							
02452							2500
	D 14 1		iency (MH	160	T	^	
Freq	ReadAntenna Level Factor				Limit Line		Remark
MHz	dBu∀ dB/m	dB	₫B	$\overline{dBuV/m}$	dBu√/m	<u>ab</u>	
1 2483.500 2 2483.500	16.23 27.57 10.74 27.57	4.81 4.81	0.00 0.00			-23.69 -9.18	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Monkey II LTE		Pr	oduct mod	el:	PL504		
Test By:	Caffrey		Те	est mode:		802.11n(HT	T20) Tx mode	
Test Channel:	Highest channel		Po	olarization:		Horizontal		
Test Voltage:	AC 120/60Hz		Er	Environment:		Temp: 24℃ Huni: 57%		
110 Level (dBuV/m)								
The same of the sa								
100								
		1						
80						FCC	PART 15 (PK)	
60			In	1		FCC	PART 15 (AV)	
					~~	~~~	~~~~	
40								
20								
02452							2500	
\$1,000 \$100,000 HS			quency (MH		•			
Free	ReadAntenna Level Factor				Limit Line		Remark	
MH ₂	dBu∀ dB/m		<u>ab</u>	dBu√/m	dBuV/m	<u>ab</u>		
1 2483.500 2 2483.500	18.38 27.57 14.82 27.57					-21.54	Peak Average	
2 2403.000	13.02 21.01	7.01	0.00	20.50	04.00	0.10	morago	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

spectrum intentional radiator is op is produced by the intentional radi	e the frequency band in which the spread perating, the radio frequency power that iator shall be at least 20 dB below that in						
Limit: In any 100 kHz bandwidth outside spectrum intentional radiator is op is produced by the intentional radi	e the frequency band in which the spread perating, the radio frequency power that iator shall be at least 20 dB below that in						
spectrum intentional radiator is op is produced by the intentional radi	perating, the radio frequency power that iator shall be at least 20 dB below that in						
the desired power, based on either measurement. If the transmitter combased on the use of RMS averaging under paragraph(b)(3) of this sect	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Spectrum Analyzer Non-Conducted T							
Test Instruments: Refer to section 5.8 for details							
Test mode: Refer to section 5.3 for details							
Test results: Passed							

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	etiloa									
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test Distance:	3m									
Receiver setup:	Frequency Detector RBW VBW Remark									
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value				
	Above 1GHz Peak 1MHz 3MHz Peak									
	RMS 1MHz 3MHz Average Va									
Limit:	Frequency		nit (dBuV/m @3	m)		Remark				
	30MHz-88MH	1	40.0			uasi-peak Value				
	88MHz-216MH		43.5			uasi-peak Value				
	216MHz-960M 960MHz-1GH		46.0 54.0			uasi-peak Value uasi-peak Value				
	9001011 12-1 131 1		54.0			Average Value				
	Above 1GHz		74.0			Peak Value				
Test Procedure:	1. The EUT wa	s placed on t	he top of a rot	ating to	able 0					
	1GHz)/1.5m The table was highest radia value. 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the means and the meters and the meters and to find the most of the test-reconspecified Basis of the limit specified by have 10dB meters and the limit specified by the l	(above 1GHz as rotated 360 ation. s set 3 meter ich was mour height is var determine total and vertice asurement. Spected emissen the antennament he rota table aximum read eiver system andwidth with on level of the cified, then tevould be reponargin would	above the grown and polarization was turned from the was turned from the was turned from the was turned from the maximum the was turned from the w	tound a etermine the interpretation of a value of a val	at a 3 ine the erference of the four of the free ente of the free extra free ect Fulle. was 1 eed and emissione us	meter chamber. e position of the ce-receiving e-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-				
Test setup:	Below 1GHz EUT Turn Table Ground F Above 1GHz				_					

500

1000

Measurement Data (worst case):

50

Below 1GHz:

Product Name:		Monkey	onkey II LTE Product model: PL504							
Test By:	y: Caffrey Test mode:			BLE Tx mode						
Test Frequency:		30 MHz	~ 1 GHz Polarization: Vertical							
Test Voltage:		AC 120/	60Hz			Environmen	it:	Temp: 24°C Huni:		
80 Level (dBuV/m	1)									
70										
60								FC	C PART	15.247
50						115				
40	+									
30	May .		2	3	4	5 6		يملن و	والمرابع والمرابع والمرابع	negraph property and
20 Market of Harry	- Van	meen	media	ما لها أسمله	L. Way	may be the same	And the state of t	and grand from the sales		

				Fren	uency (MH	7)				
	Freq			Cable	Cable Preamp Loss Factor Level					
2	MHz	dBu∜	<u>dB</u> /m	<u>ab</u>	<u>d</u> B	dBuV/m	dBu√/m	<u>ab</u>		
1	46.340	42.53	13.81	1.28	29.85	27.77	40.00	-12.23	QP	
2	88.033	41.79	9.64	1.96	29.58	23.81	43.50	-19.69	QP	
3	109.412	38.23	12.27	2.04	29.46	23.08	43.50	-20.42	QP	
4	146.888	43.06	8.45	2.47	29.24	24.74	43.50	-18.76	QP	
5	214.514	36.50	12.07	2.85	28.74	22.68	43.50	-20.82	QP	
1 2 3 4 5 6	258.326	35.80	13.35		28.52					

200

Remark:

100

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Oddot	Name:	Monkey II	LTE		Pro	duct Mode	l: l	PL504		
est By:		Caffrey			Tes	st mode:	\	Wi-Fi Tx mode		
est Fred	quency:	30 MHz ~ 1 GHz			Pol	arization:	I	Horizontal		
est Volt	tage:	AC 120/60	0Hz		Env	/ironment:	-	Temp: 24°C Huni: €		
Love	el (dBuV/m)									
80	a (dDdv/iii)									
70										
60		1 1						FCC	PART	45 247
50								FCC	PARI	13.247
30									_	
40		+++								
20										60
30					3			5 Walland W	Barry Market	And between
20	1		2			4	ar Alta phalasty and a series	and the state of t		
	New Market and Market Market	Mandaniak	John May M	luya Luu	A Land	A Marchiston March	arillolologues publication	angendary Heart		
20 10	New Adams in the land	mandelpools	down the work	Luylannodolph		North Personal Park	or Helpfoliot political	agente traffete		
10		in and an about	man de la companya dela companya dela companya dela companya de la companya de la companya de la companya dela compa	huylannoodel H		Maritim Marie Marie	or No. 24 days particular			
10	SO	marioteanista	100	Frequ	200		and the production of	500		100
10			Antenna	Cable	200 uency (MHz Preamp	z)	Limit	500 Over		100
10				Cable	200 Jency (MHz	z)		500 Over		100
10	50		Antenna	Cable	200 uency (MHz Preamp	ı) Level	Limit Line	500 Over Limit		100
030	50 Freq MHz	Level ——dBuV	Antenna Factor ——dB/m	Cable Loss dB	200 Jency (MHz Preamp Factor	Level	Limit Line	500 Over Limit	Rema	100
030	50 Freq	Level	Antenna Factor	Cable Loss	200 Jency (MHz Preamp Factor	z) Level	Limit Line dBuV/m	500 Over Limit	Rema	100
030	50 Freq MHz 49.014 109.796 180.017	Level dBuV 31.79 33.70 40.60	Antenna Factor dB/m 14.02 12.29 9.80	Cable Loss dB 1.26 2.05 2.73	200 Jency (MHz Preamp Factor dB 29.83 29.46 28.97	Level dBuV/m 17.24 18.58 24.16	Limit Line dBuV/m 40.00 43.50 43.50	500 Over Limit ———————————————————————————————————	Rema QP QP QP	100
030	50 Freq MHz 49.014 109.796 180.017 254.728	Level 31.79 33.70 40.60 32.58	Antenna Factor ——dB/m 14.02 12.29 9.80 13.33	Cable Loss dB 1.26 2.05 2.73 2.82	200 Jency (MHz Preamp Factor dB 29.83 29.46 28.97 28.53	Level dBuV/m 17.24 18.58 24.16 20.20	Limit Line dBuV/m 40.00 43.50 43.50 46.00	500 Over Limit ———————————————————————————————————	Rema QP QP QP QP	100
10	50 Freq MHz 49.014 109.796 180.017	Level dBuV 31.79 33.70 40.60	Antenna Factor dB/m 14.02 12.29 9.80	Cable Loss dB 1.26 2.05 2.73	200 Jency (MHz Preamp Factor dB 29.83 29.46 28.97	Level dBuV/m 17.24 18.58 24.16	Limit Line dBuV/m 40.00 43.50 43.50 46.00 46.00	500 Over Limit ———————————————————————————————————	Rema QP QP QP QP QP QP	100

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above 1GHz				802.11b							
			Tastak								
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.31	30.94	6.81	41.82	43.24	74.00	-30.76	Vertical			
4824.00	48.52	30.94	6.81	41.82	44.45	74.00	-29.55	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	37.29	30.94	6.81	41.82	33.22	54.00	-20.78	Vertical			
4824.00	38.46	30.94	6.81	41.82	34.39	54.00	-19.61	Horizontal			
	Test channel: Middle channel Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.53	31.20	6.85	41.84	42.74	74.00	-31.26	Vertical			
4874.00	46.68	31.20	6.85	41.84	42.89	74.00	-31.11	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	36.72	31.20	6.85	41.84	32.93	54.00	-21.07	Vertical			
4874.00	36.87	31.20	6.85	41.84	33.08	54.00	-20.92	Horizontal			
				annel: High							
		T T		tector: Peal	Value		I				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	46.23	31.46	6.89	41.86	42.72	74.00	-31.28	Vertical			
4924.00	46.61	31.46	6.89	41.86	43.10	74.00	-30.90	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	36.88	31.46	6.89	41.86	33.37	54.00	-20.63	Vertical			
4924.00	35.83	31.46	6.89	41.86	32.32	54.00	-21.68	Horizontal			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g											
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.38	30.94	6.81	41.82	43.31	74.00	-30.69	Vertical			
4824.00 48.64 30.94 6.81 41.82 44.57 74.00 -29.43 Horizontal											
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	37.26	30.94	6.81	41.82	33.19	54.00	-20.81	Vertical			
4824.00	38.40	30.94	6.81	41.82	34.33	54.00	-19.67	Horizontal			
Test channel: Middle channel											
			De	tector: Peak	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.62	31.20	6.85	41.84	42.83	74.00	-31.17	Vertical			
4874.00	46.37	31.20	6.85	41.84	42.58	74.00	-31.42	Horizontal			
			Dete	ctor: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	35.43	31.20	6.85	41.84	31.64	54.00	-22.36	Vertical			
4874.00	36.59	31.20	6.85	41.84	32.80	54.00	-21.20	Horizontal			
			T								
				annel: High							
	Dand	Antono		tector: Peak	value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	46.28	31.46	6.89	41.86	42.77	74.00	-31.23	Vertical			
4924.00	46.37	31.46	6.89	41.86	42.86	74.00	-31.14	Horizontal			
			Dete	ector: Averaç	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	36.74	31.46	6.89	41.86	33.23	54.00	-20.77	Vertical			
4924.00	35.86	31.46	6.89	41.86	32.35	54.00	-21.65	Horizontal			
Remark:											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20)											
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	47.42	36.06	6.81	41.82	48.47	74.00	-25.53	Vertical			
4824.00 48.53 36.06 6.81 41.82 49.58 74.00 -24.42 Horizonta											
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	37.29	36.06	6.81	41.82	38.34	54.00	-15.66	Vertical			
4824.00	38.35	36.06	6.81	41.82	39.40	54.00	-14.60	Horizontal			
	Test channel: Middle channel										
		1		tector: Peak	(Value		ı				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	46.86	36.32	6.85	41.84	48.19	74.00	-25.81	Vertical			
4874.00	46.29	36.32	6.85	41.84	47.62	74.00	-26.38	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	35.36	36.32	6.85	41.84	36.69	54.00	-17.31	Vertical			
4874.00	35.98	36.32	6.85	41.84	37.31	54.00	-16.69	Horizontal			
			T 4 - l-	annah I Kab							
				annel: High							
	Dand	A		tector: Peak	value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	46.37	36.58	6.89	41.86	47.98	74.00	-26.02	Vertical			
4924.00	46.86	36.58	6.89	41.86	48.47	74.00	-25.53	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	36.79	36.58	6.89	41.86	38.40	54.00	-15.60	Vertical			
4924.00	35.92	36.58	6.89	41.86	37.53	54.00	-16.47	Horizontal			
Remark:	vol – Posoivo	» Dood lovel		otor i Coblo	Lana Dunan	anlifior Footor					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.