Sannsynlighetsfordelinger:

Binomisk Fordeling:

- 1. n uavhengige delforsøk
- 2. Suksess eller ikke
- 3. P(A)=p i alle forsøk
- X = Antall ganger A intreffer på n forsøk.
- $X \sim binom(n, p)$
- $f(x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}, \ x = 0, 1, 2, \dots, n$
- $P(X \le x) = \sum_{k=0}^{x} P(X = k)$
- E(X) = np Var(X) = np(1-p)

Hypergeometrisk:

- 1. Populasjon med N elementer.
- 2. k av disse regnes som "Suksess", N-k som fiasko
- 3. Trekker n elementer uten tilbakelegging
- X, antallet suksesser.
- $f(x) = \frac{\binom{k}{x} \cdot \binom{N-k}{n-x}}{\binom{N}{x}}$
- E(X) = np $Var(X) = np(1-p)\frac{N-n}{N-1}, p = k/N$

Negativ-Binomisk:

X er antall forsøk en må gjøre for at en hendelse A skal intreffe

- $f(x) = {x-1 \choose k-1} \cdot p^x (1-p)^{x-k}, \ x = k, k+1, k+2, \dots$
- E(X) = k/p $Var(x) = k \cdot \frac{1-p}{r^2}$

Geometrisk:

X er antall forsøk en må gjøre for at hendelsen A intreffer første

• E(X) = 1/p $Var(X) = \frac{1-p}{p^2}$ Geometrisk fordeling er minneløs!

Poisson:

Antall forekomster av hendelsen A er Poisson-fordelt hvis:

- 1. Antallet av A i disjunkte tidsintervall er uavhengige
- 2. Forventa antall av A er konstant lik λ (raten) per tidsenhet
- 3. Kan ikke få to forekomster samtidig
- \bullet X = antall forekomster av A i et tidsrom t
- $f(x) = \frac{(\lambda t)^x \cdot e^{-\lambda t}}{x!}, \ x = 0, 1, 2, \dots$
- $E(X) = \lambda t \quad Var(X) = \lambda t$
- $P(X \le x) = \sum_{k=0}^{x} P(X = k)$
- \bullet Ventetida til hendelse k er gammafordelt med $\alpha = k$ og $\beta = 1/\lambda$
- Ventetida til første hendelse,og mellom etterfølgende hendelser, er eksponensialfordelt

Uniform fordeling:

En kontinuerlig uniformt fordelt variabel, har samme sannsynlighet for alle verdier innen et intervall. Generelt har vi tetthets-

funksjonen: $f(x) = \begin{cases} \frac{1}{B-A}, & A \le x \le B \\ 0, & \text{ellers} \end{cases}$

• $E(X) = \frac{A+B}{2}$ $Var(X) = \frac{(A-B)^2}{12}$

Gammafordeling:

En kontinuerlig variabel X er gammfordelt med parameter $\alpha > 0$ og $\beta > 0$ dersom tetthetsfunksjonen er gitt ved: $f(x; \alpha, \beta) =$ $\int \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}, \ x > 0$

•
$$E(X) = \alpha \beta$$
 $Var(X) = \alpha \beta^2$

Eksponensialfordeling:

•
$$f(x;\beta) = \begin{cases} \frac{1}{\beta}e^{-\frac{x}{\beta}}, & x > 0\\ 0, & ellers \end{cases}$$

•
$$E(X) = \beta$$
 $Var(X) = \beta^2$

Eksponensialfordelinga er minneløs!

Normalfordeling:

- $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- $P(a \le X \le b) = \int_a^b f(x) dx$

Standard normalfordeling:

- Alle normalfordelinger kan skrives som Standard normalfordeling
- $Z = \frac{X-\mu}{2}$
- $F(x) = F(X \le x) = P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = P\left(Z \le \frac{x-\mu}{\sigma}\right) =$

Anta at X_1, X_2, \ldots, X_n er uavhengige og normalfordelt. Da er: $Y = \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n$ Være normalfordelt med: • $E(Y) = \sum_{i=1}^n \alpha_i \mu_i$ $Var(Y) = \sum_{i=1}^n \alpha_i^2 \sigma_i^2$

Inferens:

QQ-Plot:

- Plotter observasjoner mot teoretiske("ideelle") observasjoner fra en aktuell fordeling.
- Teoretiske observasjoner er gitt ved invers kumulativ fordeling av jevnt spredte Sannsynlighetsfordelinger mellom 0 og
- Om antatt fordeling stemmer skal plottet gi tilnermet rett linje.

Estimering:

Viktige estimatoregenskaper:

- En punktestimator Θ for en paramaeter θ er forventningsrett hvis $E(\Theta) = \theta$
- Variansen $Var(\Theta)$ burde synke med økende antall observasioner
- Om en har to ulike estimatorer, så er den estimatoren med minst varians den mest effektive estimatoren.

Vanlige estimatorer:

Alle estimatorene vist til her er forventningsrett.

- μ : $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $E(\overline{X}) = \mu$ $Var(\overline{X}) = \frac{\sigma^2}{n}$
- σ^2 : $S^2 = \frac{1}{1-n} \sum_{i=1}^n (X_i \overline{X})^2 E(S^2) = \sigma^2 \quad Var(S^2) = \frac{2\sigma^4}{n-1}$
- $p: \hat{p} = \frac{X}{n}$ $E(\hat{p}) = p$ $Var(\hat{p}) = \frac{p(1-p)}{n}$ Binomisk
- $\mu_1 \mu_2$: $\overline{X_1} \overline{X_2}$ $Var(\overline{X_1} \overline{X_2}) = \frac{\sigma_1^2}{n_1} \frac{\sigma_2^2}{n_2}$
- $\frac{\sigma_1^2}{\sigma^2}$: $\frac{S_1^2}{S^2}$
- $p_1 p_2$: $\hat{p_1} \hat{p_2}$, Binomisk
- $\mu_D : \overline{D}$

Utvalgsfordelinger: