Formation Machine Learning

Bonnes Pratiques de Développement, Système de Recommandation

Giraud François-Marie

7 Juin 2019

Mettre en place un transition IA

- Séparer les données en TRAIN/VALIDATION/TEST (i.e 60/20/20)
- Apprendre sur TRAIN
- Optimizer les hyperparamètres sur VALIDATION
- Observer la performance finale sur TEST

Projet académiques Vs Industriels

- ≠ Développement logiciel
- ≠ Infrastructure
- ≠ Performances

Développement logiciel

Académique

- Pile de scripts
- Peu de documentation
- Fonctionne le temps de l'expérience
- "Fair use"

Industriel

- Code hiérarchisé et déployable en production
- Documentation
- Code maintenable et robuste
- Galaxies de licences à respecter

Infrastructure

Académique

- Données = un fichier
- Hardware limité
- Performance = Précision

Industriel

- Données = cloud
- Cloud computing
- Performance = Plus-value

Un problème d'ingénérie avant d'être un problème de machine learning :

Données et prétraitements de qualité > algorithme de qualité

Une approche en 4 étapes :

- Créer un pipeline robuste de bout en bout (sans ML)
- Intégrer du ML simple
- Ajouter des caractéristiques sensées
- Conserver un pipeline robuste

Créer un pipeline robuste de bout en bout (sans ML) :

- Une baseline avec une heuristique
- Mettre en place des statistiques d'évaluation

Intégrer du ML simple :

- 1. Obtenir des données
- 2. Définir UNE métrique d'évaluation facile à observer
- 3. Définir des caractéristiques sensées et faciles à obtenir
- 4. Considérer les heuristiques comme des caractéristiques
- 5. Documenter TOUTES les caractéristiques utilisées

Intégrer du ML simple :

- 6. Apprendre un modèle tous les n-jours
- Évaluer la dégradation des performances en fonction de l'âge du modèle
- 8. Vérifier les performances en test avant de déployer en production
- Modèle appris sur des données jusqu'au jour N, tester sur les données après le jour N
- 10. Mesurer la différence entre performance en apprentissage et test
- Plateau de performance ⇒ trouver des nouvelles caractéristiques/augmenter la puissance du modèle
- 12. Supprimer des caractéristiques pas déterminantes

Ajouter des caractérstiques sensées :

- Beaucoup de caractéristiques simples > peu de caractéristiques complexes
- Des caractéristiques répandues plutôt que rares
- Regarder les erreurs pour imaginer les caractéristiques qui aideraient
- Communiquer avec les experts métiers

Des questions à garder en tête :

- Ajouter des statistiques d'évaluation?
- Revoir/Complexifier la métrique d'évaluation?
- Les données sont-elle "stables"?

Machine Learning

Filtrage de l'information :

Produire une information personnalisé pour un "client"

Intérêt mutuel:

• Facilitation des usages pour le "client"

Intérêt mutuel:

- Facilitation des usages pour le "client"
- Des bénéfices accrus pour le "vendeur"

3 types de recommandation :

centrée sur l'utilisateur (user-based)

3 types de recommandation :

- centrée sur l'utilisateur (user-based)
- centrée sur le contenu (item-based)

3 types de recommandation :

- centrée sur l'utilisateur (user-based)
- centrée sur le contenu (item-based)
- colaborative (ou sociale)

2 types de collecte des données :

active

2 types de collecte des données :

- active
- passive

Machine Learning

Filtrage Collaboratif

Filtrage Collaboratif

 \approx Système de recommandation

Méthode hybride :

- user-based
- item-based
- collaboratif

Filtrage Collaboratif

Données explicites et implicites :

Explicite : donnée de qualité mais contraignante pour l'utilisateur (donc potentiellement biaisé)

Implicite : donnée objective mais pauvre du point de vue de la qualité

Filtrage Collaboratif

Grosse volumétrie de données \Rightarrow algorithmes simples et rapides

Machine Learning

Exemple de données collectées :

	film 1	film 2	film 3	film 4
u1	?	2	5	?
u2	5	1	4	3
u3	?	?	1	5
u4	3	3	?	4

Principe: Une bonne recommandation est faite à partir d'individus similaires

Condition : Avoir un échantillon important d'individus représentatifs

	film1	film2	film3	film4
u1	?	2	5	?
u2	5	1	4	3
u3	?	?	1	5
u4	3	3	?	4

Comment prédire les notes manquantes? (et donc faire une recommandation)

Algorithme pour déterminer u1(film1) :

- Identifier les K plus proches utilisateurs de u1
- Agréger leurs notes pour le film1

On a donc besoin:

- d'une mesure de similarité entre les utilisateur
- de trouver un K optimal
- d'une fonction d'agrégation

Similarité de corrélation (Pearson) :

$$cor(a, b) = \frac{\sum_{i \in I} (a_i - \bar{a})((b_i - \bar{b})}{\sqrt{\sum_{i \in I} (a_i - \bar{a})^2 * \sum_{i \in I} (b_i - \bar{b})^2}}$$

Similarité cosinus :

$$cos(a,b) = \frac{a*b^t}{|a|*|b|}$$

Et plein d'autres dans la littérature...

Agrégation des notes des K utilisateurs retenus :

- Moyenne
- Moyenne pondéré par la similarité
- ...

 Des calculs simples mais il faut parcourir toute la base dès qu'on a une nouvelle entrée ou modification, heureusement des heuristiques existent (Locality-sensitive hashing)

- Des calculs simples mais il faut parcourir toute la base dès qu'on a une nouvelle entrée ou modification, heureusement des heuristiques existent (Locality-sensitive hashing)
- "Cold start problem"

Machine Learning

	item 1	item 2	item 3	item 4	
u1	1	2	5	?	
u2	5	1	4	3	
u3	?	?	1	5	
u4	3	3	?	4	

Pour remplir les cellules manquantes, au lieu de traiter les lignes on traite les colonnes.

Une première solution est de transposer la matrice et d'appliquer l'algorithme décrit pour le user-based.

Méthode couramment utilisée \Rightarrow régression simplifié.

	item 1	item 2	item 3	item 4	
u1	u1 1 2		5	?	
u2	5	1	4	3 5	
u3	?	?	1		
u4	3	3	?	4	

Sachant la colonne item1, on cherche uniquement une valeur de biais telle que :

$$item4 = item1 + b_1$$

Pour ce faire, on prend le biais moyen entre ces deux colonnes :

$$b_1 = \frac{\sum_{i \in I} (item4_i - item1_i)}{\#I}$$
, dans notre exemple : $b_1 = \frac{(3-5) + (4-3)}{2} = -0.5$

	item 1	item 2	item 3	item 4	
u1	1 2		5	?	
u2	5	5 1 4 ? ? 1		3	
u3	?			5	
u4	3	3	?	4	

On calcul alors les biais pour chaque colonne, nous donnant une prediction de la valeur u1(item4) sachant u1(item1), une autre sachant u1(item2) et une dernière sachant u1(item3).

La prédiction finale pour u1(item4) est la moyenne pondérée de toutes ces prédictions.

$$b_1 = -0.5 \Rightarrow u1(item4)_1 = 0.5$$

 $b_2 = 1.5 \Rightarrow u1(item4)_2 = 2.5$

$$b_3 = 1.5 \Rightarrow u1(item4)_3 = 2.5$$

$$u1(item4) = \frac{\#I_1*0.5+\#I_2*2.5\#I_3*2.5}{\#I_1+\#I_2+\#I_3} = \frac{11}{6} \approx 1.83$$

	item 1	item 2	item 3	item 4	
u1	1	2	5	1.83	
u2	5	1	4	3	
u3	?	?	1	5	
u4	3	3	?	4	

• Calculs simples à mettre en oeuvre et à tenir à jour

- Calculs simples à mettre en oeuvre et à tenir à jour
- Beaucoup de parmètres à maintenir quand on a beaucoup d'item : $\left(\frac{\#item(\#item-1)}{2}\right)$

- Calculs simples à mettre en oeuvre et à tenir à jour
- Beaucoup de parmètres à maintenir quand on a beaucoup d'item : $\left(\frac{\#item(\#item-1)}{2}\right)$
- "Cold start problem"

Machine Learning

Filtrage Colaboratif - Évaluation

Filtrage Colaboratif - Évaluation

On utilise des techniques d'évaluation du machine learning impliquant des bases d'apprentissage et de test.

$$RMSE = \sqrt{\frac{\sum_{u,i} (u(i)_{pred} - u(i))^2}{\#Q}}$$

où #Q est le nombre de prédictions que l'on fait dans la base.

Filtrage Collaboratif - Aujourd'hui

Machine Learning

Filtrage Collaboratif - SVD

Utiilisation de SVD pour réduire le nombre de dimensions du problème.

$$M = U^p * V^p * I^p$$
, où :

M est la matrice user/item de \mathbb{R}^{n*m}

 U^p la matrice des vecteurs de base orthonormée de \mathbb{R}^n (input)

 V^p la matrice diagonale des valeurs singulières de U

 I^p la matrice des vecteurs de base orthonormée de \mathbf{R}^m (output)

$$M = \begin{bmatrix} 2 & 5 & ? \\ 1 & 4 & 3 \\ \hline ? & 1 & 5 \\ \hline 3 & ? & 4 \end{bmatrix} =$$

$U_{(1,1)}^{p}$	$U_{(1,2)}^p$							
$U_{(2,1)}^{p}$	$U_{(2,2)}^{p}$	*	$V_{(1)}^{\rho}$	0	*	$I_{(1,1)}^{p}$	$I_{(1,2)}^{p}$	$I_{(1,3)}^{p}$
$U_{(3,1)}^p$	$U_{(3,2)}^p$		0	$V_{(2)}^{p}$		$I_{(2,1)}^p$	<i>I</i> ^p _(2,2)	<i>I</i> ^p _(2,3)
$U_{(4,1)}^{p}$	$U_{(4,2)}^{p}$							

Filtrage Collaboratif - SVD

Avantages:

On choisit le nombre de valeurs singulières de notre transformation (PCA).

Filtrage collaboratif user-based $\Rightarrow U^p$

Filtrage collaboratif item-based $\Rightarrow I^p$

Filtrage Collaboratif - SVD

La SVD est extrèmement coûteuse sur des grandes matrices :

$$O(\min(m*n^2,m^2*n))$$

Heureusement des algorithmes approchés existent. Ces approches tirent parti du fait que les matrices sont généralement sparses et que l'on ne s'intéresse qu'a un nombre limité de valeurs singulières.

Par exemple, on peut calculer les 20 premières valeurs singulières d'une matrice $100k \times 100k$ avec 1M valeurs non-nulles en moins d'une seconde (redsvd).

Filtrage Collaboratif - Embeddings

Utilisation d'Embeddings sur les utilisateurs et les items afin de pouvoir exprimer la matrice des ratings ainsi :

$$M = U^{embed} * I^{embed}$$

Pour Faire une recommandation :

$$argmax(u_{query} * I^t)$$

Filtrage Collaboratif - Recommandation par le contenu

Jusqu'à présent, la nature des items était sans importance.

Que les items soient des livres ou des voitures, l'algorithme ne faisait aucune différence.

On peut utiliser les détails textuels, les images (, etc...) sur les items afin d'améliorer les recommandations. (Embeddings, Catégorisation des items)

Machine Learning

• Défis technologique :

- Défis technologique :
 - Grande volumétrie ⇒ algorithmes simples et rapides

- Défis technologique :
 - Grande volumétrie ⇒ algorithmes simples et rapides
 - Quel est le minimum nécessaire d'information sur un utilisateur?

- Défis technologique :
 - Grande volumétrie ⇒ algorithmes simples et rapides
 - Quel est le minimum nécessaire d'information sur un utilisateur?
- Défis sociologique :

- Défis technologique :
 - Grande volumétrie ⇒ algorithmes simples et rapides
 - Quel est le minimum nécessaire d'information sur un utilisateur?
- Défis sociologique :
 - aimer ≠ acheter

- Défis technologique :
 - Grande volumétrie ⇒ algorithmes simples et rapides
 - Quel est le minimum nécessaire d'information sur un utilisateur?
- Défis sociologique :
 - aimer ≠ acheter
 - prédiction par agrégation ⇒ peu propice à l'exploration

TP 5

Filtrage Colaboratif

TP 5 : Filtrage Colaboratif

www.filtrage-colaboratif.ipynb

