@ production schooling. A company has plants
located in machigan, Now york and this where
it manufactures leptop computers, destrop computer
and servers. The number of writs of each product
that can be produed per day at each plant as
given in the table below. The company has orders for
2,150 laptop computers, 2300 desktop compute and
chould be the control
aparate each plant in order to exactly fell there order?

2/2 1	Michigan	New York	ohio
plant	10	70	60
Derktop	20	50	80
server	40	30	90

Solution

y be New york]

2 be ohio

10x+7041607 = 2150

20x+ 504+802 = 2300

40x+304+902 = 2500

1t augmented matrix

[1 7 6 | 215]

2 5 8 | 230]

(b)
$$\begin{vmatrix} 1 & -2 & 0 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 3/2 \\ 0 & 0 & 0 & 1 & 1 & 1/2 \end{vmatrix}$$

$$M_1 - 2x_2 + 9_1 x_5 = 1$$

$$x_3 + x_5 = \frac{3}{2}$$

$$x_4 - \frac{1}{2}x_5 = -\frac{1}{2}$$

$$\lambda_1 = 1 + 2x_2 - \frac{1}{2}x_5$$

$$\lambda_1 = 1 + 2x_2 - \frac{1}{2}x_5$$

$$\lambda_2 = \frac{3}{2} - x_5$$

$$\lambda_3 = \frac{3}{2} - x_5$$

$$\lambda_4 = \frac{1}{2}x_5 - \frac{1}{2}$$

$$\lambda_5 = 0$$

1.	(c) 10- on 62.
	11/100
	equation and solve using inverses. [note the inverse equation and solve using inverses. [note the inverse
	of each weffirent matrix was found earlier in this
	exercise set in the indicated problem].
	$3x_1 - 4x_2 = 4$
	$-2x_1+3x_2=K_2$
	(A) $K_1 = 3$, $K_2 = -1$.
	B) K1 = 6, K2 = 5
	(c) $K_1 = 0, K_2 = -4$
	solution.
	1th Augmented metrix
	(2 -41 K17
	\[\begin{align*} & -4 & \\ \ \ \ \ & \ \ \ \ \ \ \ \ \ \ \
	(A) $K_1 = 3$, $K_2 = -1$
	(A) H = 1
	$\begin{bmatrix} 3 & -4 & 3 \\ -2 & 3 & -1 \end{bmatrix}$
	[-2]
	Let $A = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$
	$\begin{bmatrix} 3 & -4:1 & 0 \\ -2 & 3:0 & 1 \end{bmatrix} \times R \rightarrow A$
)	$\begin{bmatrix} 3 & -4 & 1 \\ -2 & 2 & 0 \end{bmatrix}$
	L'alle later la
	$\begin{bmatrix} 1 & -8 & 8 & 0 \\ -2 & 3 & 0 & 1 \end{bmatrix} 2R_3 + R_2$
	1-2 3:01)
	$\begin{bmatrix} 1 & -\frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} & 1 \end{bmatrix} 3R_2 \rightarrow R_2$
	0 1/3 1/3 1)
l '	1 -43: 1/3 0] 4/3 P2+R1 -> R1
	(2 1 : 2 3)

(c)
$$\begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$x_1 = 3x3 + 4x - 1 = 5$$

$$x_2 = 2x3 + 3x - 1 = 3$$

$$x_1 = 5, \quad x_2 = 3$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 5x^4 \\ 2x6 + 3x^5 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 4x - 4 \\ 2x6 + 3x^4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 4x - 4 \\ 2x6 + 3x^4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 4x - 4 \\ 2x6 + 3x^4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 4x - 4 \\ 2x6 + 3x^4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 4x - 4 \\ 2x6 + 3x^4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x6 + 4x - 4 \\ 2x6 + 3x^4 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -16 \\ -12 \end{bmatrix}$$

$$x_1 = -16 , \quad x_2 = -12.$$

(1) 10-5 00 71, it's clear that x = 0 4 11 is a solution to each of the systems given in problem 71. 11st craner's rule to determine whelling this selection is unique. [Hint of D to what in you conclude? If D=0, what can you conclude?]. (a) x - 4y + 92 = 0(b) 3x-4+32=0 4x-4+62= 0 5x+54+92 = 0 X - 4 + 32 = 0-2x+y-3+=0 Solution € x-44+92=0 4x-4+62=0 X-4+32=0' It's augmented matrix. $\begin{bmatrix} 1 & -4 & 9 & 0 \\ 4 & -1 & 6 & 0 \\ 1 & -1 & 3 & 0 \end{bmatrix}$ 1) |A| = |-1 6| - -4| 4 6| + 9 | 4 -1 | 1A1 = -3+6 - (-4(12-6))+ 9(-4+1) A1 = 3+24+-27 A1 = 01 Determinant =0, therefore the solution . Not unique since the value of x14,2

does not exist

(3) 3x-4+32 = 0 5x +54 -92 20 -2x+y-32=0 solution. Its Augmented matrix $\begin{bmatrix} 3 & -1 & 3 & 0 \\ 5 & 5 & -9 & 0 \\ -2 & 1 & -3 & 0 \end{bmatrix}$ $D = \begin{cases} 3 & -1 \\ 5 & 5 & -9 \\ -2 & 1 & -3 \end{cases}$ |D| = 3|5 - 9| - 1|5 - 9| + 3|5 5|1D1 = 3(-15+9) - -1(-15-18) + 3(5+10). 101 = -18 - 33 + 45 Hence, the solution is unique since the she 9 (x1 y12) are obtained through and rule.

12 (d) solve the system of equations 1110) 11. inverse of the coefficient matrix of the equivalent matrix equetors. 5W-4x+3y-22=-6 W + 4x - 2y + 32 = -52W-3x+64-97= 14 3w-5w+2y-42=-3 Solution. Us Augmented matrix. $\begin{bmatrix} 5 & -4 & 3 & -2 \\ 1 & 4 & -2 & 3 \\ 2 & -3 & 6 & -9 \\ 3 & -5 & 2 & -4 \end{bmatrix} \begin{bmatrix} -6 \\ -4 \\ -3 \end{bmatrix}$ let A = \[\begin{pmatrix} 5 & -4 & 3 & -2 \\ 4 & -2 & 3 \\ 2 & -5 & 2 & -4 \end{pmatrix} \] Determinent of A. $|A| = 5 \begin{vmatrix} 4 & -2 & 3 \\ -3 & 6 & -9 \end{vmatrix} + 4 \begin{vmatrix} 1 & -2 & 3 \\ 2 & 6 & -9 \end{vmatrix} + 8 \begin{vmatrix} 1 & 4 & 3 \\ 2 & 7 & 4 \end{vmatrix}$ 7 2 1 4 -2 1 2 -3 6 1 -90 +- 40 -336+164 1A1 = -302

2(d) prints
$$q$$
 A

 $M_{11} = \begin{vmatrix} 4 & -2 & 3 \\ -3 & 6 & 7 \\ -5 & 2 & 7 \end{vmatrix} = -19$
 $M_{12} = \begin{vmatrix} 1 & -2 & 3 \\ 2 & 6 & 7 \\ 3 & 2 & -4 \end{vmatrix} = 70$
 $M_{13} = \begin{vmatrix} 1 & 4 & 3 \\ 2 & -3 & -9 \\ 3 & -5 & -4 \end{vmatrix} = -112$
 $M_{14} = \begin{vmatrix} 1 & 4 & 2 \\ 2 & -3 & 6 \\ 3 & -5 & 2 \end{vmatrix} = 82$
 $M_{21} = \begin{vmatrix} -4 & 2 & -2 \\ -3 & 6 & 7 \end{vmatrix} = 75$
 $M_{22} = \begin{vmatrix} 5 & -4 & -2 \\ 2 & -3 & -4 \end{vmatrix} = 75$
 $M_{23} = \begin{vmatrix} 5 & -4 & -2 \\ 4 & -2 & 3 \\ -5 & 2 & 7 \end{vmatrix} = -1$
 $M_{31} = \begin{vmatrix} -4 & 3 & -2 \\ 4 & -2 & 3 \\ -5 & 2 & 7 \end{vmatrix} = -1$
 $M_{32} = \begin{vmatrix} 5 & -4 & -2 \\ 4 & -2 & 3 \\ 2 & -5 & -4 \end{vmatrix} = -23$
 $M_{33} = \begin{vmatrix} 5 & -4 & -2 \\ 4 & -2 & 3 \\ 2 & -5 & -4 \end{vmatrix} = -23$
 $M_{34} = \begin{vmatrix} 5 & -4 & 3 \\ 4 & -2 & 3 \\ 3 & -5 & -4 \end{vmatrix} = -23$
 $M_{44} = \begin{vmatrix} 5 & -4 & 3 \\ 4 & -2 & 3 \\ -3 & 6 & -9 \end{vmatrix} = 45$
 $M_{44} = \begin{vmatrix} 5 & -4 & 3 \\ 4 & -2 & 3 \\ -3 & 6 & -9 \end{vmatrix} = 713$
 $M_{44} = \begin{vmatrix} 5 & -4 & 3 \\ 4 & -2 & 3 \\ -3 & 6 & -9 \end{vmatrix} = 713$
 $M_{44} = \begin{vmatrix} 5 & -4 & 3 \\ 4 & -2 & 3 \\ -3 & 6 & -9 \end{vmatrix} = 713$
 $M_{44} = \begin{vmatrix} 5 & -4 & 3 \\ 4 & -2 & 3 \\ -3 & 6 & -9 \end{vmatrix} = 713$

2.6	(q) Wiyar 2 4.
	$= \begin{cases} -18 & -10 & -112 & 82 \\ 75 & -59 & 147 & 61 \\ -1 & 33 & -23 & -29 \\ 45 & 25 & 173 & 97 \end{cases}$
	Cofactor 2 A = \(\frac{1}{-7} - \frac{1}{-7} \\ \frac{1}{-7} - \frac{1}{-7} - \frac{1}{-7} \\ \frac{1}{-7} - \frac{1}{-7} - \frac{1}{-7} \\ \frac{1}{-7} - \frac{1}
L)	$\begin{cases} -18 & 10 & -1/2 & -82 \\ -25 & -59 & -147 & 61 \\ -1 & -33 & -23 & 29 \\ -45 & 25 & -173 & 97 \end{cases}$ $Adjoint methor 9 A.$ $\begin{cases} -18 & -75 & -1 & -45 \\ 10 & -59 & -33 & 25 \\ -112 & -147 & -23 & -173 \\ -82 & 61 & 29 & 97 \end{cases}$ $At = Adjoint A = \begin{cases} +19 & \frac{25}{302} & \frac{1}{302} & \frac{1}{302} \\ -10/302 & \frac{51}{302} & \frac{1}{302} & \frac{1}{302} \\ +112 & \frac{147}{302} & \frac{21}{302} & \frac{1}{302} \\ \frac{92}{302} & -\frac{61}{302} & \frac{29}{302} & \frac{1}{302} \end{cases}$

2. (d)
$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} +18 & 25 & 70 & 33 & -25 \\ -10 & 52 & 30 & 173 \\ -10 & 51 & 23 & 1001 \\ 112 & 142 & 23 & 1001 \\ 112 & 30 & -29 & -97 \\ 12 & -6 & 30 & -29 & 3001 \end{bmatrix} \begin{bmatrix} -3 & 12 & 12 \\ 12 & -1 & 2 & 3 \\ 2 & -1 & 2 & 1 \\ 2 & 3 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} W \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix}$$

$$|A| = -14.$$

$$|A| = |A| = -14.$$

$$|A| = |A| = |A$$

breat contains 190 CAL, 279 of protein, 39 of Jat, 13 mg of calcium, and 64 mg of Sodium, One-half cup of protein saled contains 180 ml 49 of protein, 119 of fat, 24 mg of calcium, and 662 mg of salium. One brocali spear contains 50% of protein, 19 of fat, 92 mg of calcium, and 20 mg of salium. (Source: Home and Garden Bullon NO 22. U.s. Government printing office, washington D. C. 20 402).

a write 1x5 matrices C, P, and B that represe

(3) Find (+2P+3B and tell what He entires

Sohn bon.

(b) Find C + 2P + 3B and represent: $2P = [180 \times 2 \quad 4 \times 2101 \quad 4 \times 2 \quad 667 \times 2]$ $2P = [26D \quad 8 \quad 2248 \quad 1324]$

 $2P = \begin{bmatrix} 360 \\ 50x^2 \end{bmatrix}$ $5x^3 = \begin{bmatrix} 360 \\ 50x^2 \end{bmatrix}$

	(b) 6.4 on 21
2	61
	2P = [180x2 4x2 11x2 24x2 662x2]
٠.	[360 8 22 48 1324]
7	28 = [150 15 -3 246 60]
	C+2P+3B=
	[150 27 3 13 64]+ [360 8 22 44 1324]+
	[150 15 3 246 60]
	C+ 2P+38 = [650 50 28 307 1448]
2-	96.3 on 40
2-	alse the system of linear equation using
2.	solve the system of linear equation to the elimination
2	Ob 3 on 40 Colve the system of linear equation using bourse elimination or transforder elimination. Use a graphing calculate to the check you arouse
2.	Whe a graphing columber to the check you around - W+ 2x-2y+2 = -8
2.	Whe a graphing columbe to the check you moved - W+ 2x-3y+2 = -8 - W + x + y - z = -4
2.	Whe the system of linear equality to the sure sorder elimination. Use a graphing calculate to the check you arrow - w + 2x - 2y + 2 = -8 - w + x + y - 2 = -4 w + x + y + 2 = 22
2.	When the system of linear equality to the check you wave of the ch
2	Whe he system of linear equality to the check you wave - w+ 2x-2y+2=-8 -w+x+y-z=-4 w+x+y+z=22 -w+x-y-z=-14 solution
2	Whe he system of linear equality to be the check you moved - wt 2x-3y+2=-8 - wt x+y-2=-4 wt x+y+2=22 -wtx-y-2=-14 solution It augmented metrix.
2	Whe he system of linear equality to be the check you moved - wt 2x-3y+2=-8 - wt x+y-2=-4 wt x+y+2=22 -wtx-y-2=-14 solution It augmented metrix.
2	Whe he system of linear equality to the check you wave - w+ 2x-2y+2=-8 -w+x+y-z=-4 w+x+y+z=22 -w+x-y-z=-14 solution

$$\begin{bmatrix}
1 & 1 & 1 & -1 & -4 \\
-1 & 1 & 1 & -1 & -4 \\
-1 & 1 & 1 & -1 & -4
\end{bmatrix} R_{1} + R_{2} \rightarrow R_{3}.$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 22 \\
-1 & 2 & 3 & 1 & -8 \\
-1 & 2 & 3 & 1 & -8
\end{bmatrix} R_{1} + R_{2} \rightarrow R_{2}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 22 \\
-1 & 2 & 3 & 1 & -8 \\
-1 & 1 & -1 & -1 & -14
\end{bmatrix} R_{1} + R_{3} \rightarrow R_{3}$$

$$R_{1} + R_{3} \rightarrow R_{3}$$

$$R_{1} + R_{3} \rightarrow R_{4}$$

$$\begin{bmatrix}
1 & 1 & 1 & 22 \\
0 & 2 & 0 & 0 & 8
\end{bmatrix} R_{4} + R_{4}$$

$$\begin{bmatrix}
1 & 1 & 1 & 22 \\
0 & 2 & 0 & 0 & 8
\end{bmatrix} R_{4} \rightarrow R_{3}$$

$$\begin{bmatrix}
1 & 1 & 1 & 22 \\
0 & 1 & 0 & 9 \\
0 & 0 & -5 & 2 & -13 \\
0 & 0 & -5 & 2 & -13
\end{bmatrix} R_{4} \rightarrow R_{3}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 22 \\
0 & 1 & 0 & 9 \\
0 & 0 & -5 & 2 & -13
\end{bmatrix} R_{4} \rightarrow R_{3}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 22 \\
0 & 1 & 0 & 9 \\
0 & 0 & -5 & 2 & -13
\end{bmatrix} R_{4} \rightarrow R_{4}$$

$$\begin{bmatrix}
1 & 1 & 1 & 1 & 22 \\
0 & 1 & 0 & 9 \\
0 & 0 & -5 & 2 & -13
\end{bmatrix} R_{4} \rightarrow R_{4}$$

, , , , , , , , , , , , , , , , , , , ,	
1 1 1 0 9 /2 Pry -1 Pry 12 12 12 12 12 12 12 12 12 12 12 12 12	
W+x+y+2=22 $W+x+y=9$ $y=6$	*4 *** ** ** ** ** ** ** ** ** ** ** ** **
Brek sobst htm	
$\begin{array}{c} x_{4}y = 9 \\ x_{7} = 9 \\ \frac{x_{7}}{4} = 4 \end{array}$	
W + 4 + 5 + 6 = 22 $W = 22 - 15$	
WZZ	
(4, x, y, z) = (7, 4,5,6).	

Ong a Corp. to the determinant 0 1 2 3 0 0 -2 -13 0 0 0 2/1) Min min min my chuse the 4th row to check the delerm. 0+0-0+2/1 2 1/ Republican Determinant = -2 4(b) like adjoint to compute A12 $\begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 1 \\ 9 & -1 & -2 \end{bmatrix}$ 1) check the determinent 2 Ms.

2/11/-3/21/+1/21/= 2. Mil = /0 1/= -2

$$M_{13} = \begin{vmatrix} 0 & 1 \\ 2 & -1 \end{vmatrix} = -3$$

$$M_{21} = \begin{vmatrix} 3 & 1 \\ -1 & 2 \end{vmatrix} = -5$$

$$M_{22} = \begin{vmatrix} 2 & 1 \\ 2 & -1 \end{vmatrix} = -6$$

$$M_{23} = \begin{vmatrix} 2 & 3 \\ 2 & -1 \end{vmatrix} = -8$$

$$M_{31} = \begin{vmatrix} 3 & 1 \\ 2 & -1 \end{vmatrix} = 2$$

$$M_{32} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{32} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{33} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{34} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{35} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{36} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{37} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{38} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{39} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{31} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{32} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{33} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{35} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{36} = \begin{vmatrix} 2 & 1 \\ -5 & -6 & 2 \\ 2 & 2 \end{vmatrix}$$

 $\begin{bmatrix} -1 & 2 & -2 \\ 5 & -6 & 8 \\ 2 & -2 & 2 \end{bmatrix}$

5 -6 0 (11) 11- spose of afection = xilyunt $\begin{vmatrix} -1 & 2 & -2 \\ 5 & -6 & 9 \\ 2 & -1 & 2 \end{vmatrix} = \begin{bmatrix} -1 & 3 \\ 2 & -6 & -2 \\ -2 & 8 & 2 \end{bmatrix}$ $Now, \quad \rho^{-1} = \frac{\text{Adjoint } (\Lambda)}{|\Lambda|} = \frac{1}{2} \times \begin{bmatrix} -1 & 5 & 2 \\ 2 & -6 & 2 \\ -1 & 8 & 2 \end{bmatrix}.$ $\begin{bmatrix} -1 & -1 & -1 & -1 \\ -1 & -1 & 4 & 1 \end{bmatrix}$ 5) 3-5 gure 2 Regent exercise 1 for the following linear systems: 2x1+3x2+7x3 = 0 $-2x_1 - 4x_3 = 0$ X1 + 2x2 + 4x3 =0 Solution. In the exercise , required to find the value of verible by Jordan elmination.

$$\begin{bmatrix}
2 & 3 & 7 & 0 \\
2 & 0 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
-2 & 0 & -4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
-2 & 3 & 7 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & -1 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 4 & 4 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 4 &$$