This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 November 2001 (01.11.2001)

PCT

(10) International Publication Number WO 01/81298 A2

C07C 275/00 (51) International Patent Classification7:

PCT/EP01/04043 (21) International Application Number:

9 April 2001 (09.04.2001) (22) International Filing Date:

English (25) Filing Language:

English (26) Publication Language:

(30) Priority Data: 20 April 2000 (20.04.2000) DE 100 19 755.8

(71) Applicant (for all designated States except US): BAYER AKTIENGESELLSCHAFT [DE/DE]; 51368 Leverkusen (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEHMANN, Thomas [DE/DE]; Unterscheider Weg 20, 51467 Bergisch Gladbach (DE). FISCHER, Rüdiger [DE/DE]; Zu den Fussfällen 23, 50259 Pulheim (DE). ALBERS, Markus [DE/DE]; Edcirather Weg 154, 51372 Leverkusen (DE). RÖLLE, Thomas [DE/DE]; Hans-Sachs-Str. 18, 51375 Leverkusen (DE). MÜLLER, Gerhard [DE/DE]; Berliner Str. 70, 51377 Leverkusen (DE). HESSLER, Gerhard [DE/DE]; Holunderweg 12, 51375 Leverkusen (DE). TAJIMI, Masaomi [JP/JP]; 1-8-7, Sakuragaoka, Seika-cho, Soraku-gun, Kyoto 619-0232 (JP). ZIEGEL-BAUER, Karl [DE/DE]; Düppelstr. 2a, 42781 Haan (DE). OKIGAMI, Hiromi [JP/JP]; 7-1-1-8-204, Saganakadai, Kizu-cho, Soraku-gun, Kyoto 619-0223 (JP). BACON, Kevin [GB/JP]; 5-15-914, Kunimidai, Kizu-cho, Soraku-gun, Kyoto 619-0216 (JP). HASEGAWA, Haruki [JP/JP]; 1-4-1-3-101, Umemidai, Kizu-cho, Soraku-gun, Kyoto 619-0215 (JP).

BAYER AKTIENGE-(74) Common Representative: SELLSCHAFT; 51368 Leverkusen (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ. BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA. MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, MI, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CYCLIC CARBOXYLIC ACIDS AS INTEGRIN ANTAGONISTS

$$R^{6}$$
 X A R^{4} R^{3} R^{2} R^{1} R^{1} R^{1}

(57) Abstract: The present invention relates to compounds of general formula (I), processes for their preparation, pharmaceutical compositions containing them as well as their use for the production of pharmaceutical compositions for the treatment of inflammatory diseases.

Cyclic carboxylic acids as integrin antagonists

The present invention relates to compounds of formula (I),

their preparation and use as pharmaceutical compositions as integrin antagonists, especially as $\alpha_4\beta_1$ and/or $\alpha_4\beta_7$ and/or $\alpha_9\beta_1$ integrin antagonists and in particular for the production of pharmaceutical compositions suitable for the inhibition or the prevention of cell adhesion and cell-adhesion mediated disorders. Examples are the treatment and the prophylaxis of atherosclerosis, asthma, chronic obstructive pulmonary disease (COPD), allergies, diabetes, inflammatory bowel disease, multiple sclerosis, myocardial ischemia, rheumatoid arthritis, transplant rejection and other inflammatory, autoimmune and immune disorders.

15

20

10

5

Adhesive interactions between the leukocytes and endothelial cells play a critical role in leukocyte trafficking to sites of inflammation. These events are essential for normal host defense against pathogens and repair of tissue damage, but can also contribute to the pathology of a variety of inflammatory and autoimmune disorders. Indeed, eosinophil and T cell infiltration into the tissue is known as a cardinal feature of allergic inflammation such as asthma.

25

The interaction of circulating leukocytes with adhesion molecules on the luminal surface of blood vessels appears to modulate leukocyte transmigration. These vascular cell adhesion molecules arrest circulating leukocytes, thereby serving as the first step in their recruitment to infected or inflamed tissue sites. Subsequently, the leukocytes reaching the extravascular space interact with connective tissue cells such as fibroblasts as well as extracellular matrix proteins such as fibronectin, laminin, and collagen. Adhesion molecules on the leukocytes and on the vascular endothelium are

10

15

20

25

hence essential to leukocyte migration and attractive therapeutic targets for intervention in many inflammatory disorders.

Leukocyte recruitment to sites of inflammation occurs in a stepwise fashion beginning with leukocyte tethering to the endothelial cells lining the blood vessels. This is followed by leukocyte rolling, activation, firm adhesion, and transmigration. A number of cell adhesion molecules involved in those four recruitment steps have been identified and characterized to date. Among them, the interaction between vascular cell adhesion molecule 1 (VCAM-1) and very late antigen 4 (VLA-4, $\alpha_4\beta_1$ integrin), as well as the interaction between mucosal addressin cell adhesion molecule 1 (MAdCAM-1) and $\alpha_4\beta_7$ integrin, has been shown to mediate the tethering, rolling, and adhesion of lymphocytes and eosinophils, but not neutrophils, to endothelial cells under a physiologic flow condition. This suggests that the VCAM-1 / VLA-4 and/or MAdCAM-1 / $\alpha_4\beta_7$ integrin mediated interactions could predominantly mediate a selective recruitment of leukocyte subpopulations *in vivo*. The inhibition of this interaction is a point of departure for therapeutic intervention (A. J. Wardlaw, *J. Allergy Clin. Immunol.* 1999, 104, 917-26).

VCAM-1 is a member of immunoglobulin (Ig) superfamily and is one of the key regulators of leukocyte trafficking to sites of inflammation. VCAM-1, along with intracellular adhesion molecule 1 (ICAM-1) and E-selectin, is expressed on inflamed endothelium activated by such cytokines as interleukin 1 (IL-1) and tumor necrosis factor α (TNF- α), as well as by lipopolysaccharide (LPS), via nuclear factor κB (NF- κB) dependent pathway. However, these molecules are not expressed on resting endothelium. Cell adhesion mediated by VCAM-1 may be involved in numerous physiological and pathological processes including myogenesis, hematopoiesis, inflammatory reactions, and the development of autoimmune disorders. Integrins VLA-4 and $\alpha_4\beta_7$ both function as leukocyte receptors for VCAM-1.

The integrin $\alpha_4\beta_1$ is a heterodimeric protein expressed in substantial levels on all circulating leukocytes except mature neutrophils. It regulates cell migration into tis-

sues during inflammatory responses and normal lymphocyte trafficking. VLA-4 binds to different primary sequence determinants, such as a QIDSP motif of VCAM-1 and an ILDVP sequence of the major cell type-specific adhesion site of the alternatively spliced type III connecting segment domain (CS-1) of fibronectin.

5

In vivo studies with neutralizing monoclonal antibodies and inhibitor peptides have demonstrated a critical role for α_4 integrins interaction in leukocyte-mediated inflammation. Blocking of VLA-4/ligand interactions, thus, holds promise for therapeutic intervention in a variety of inflammatory, autoimmune and immune diseases (Zimmerman, C.; Exp. Opin. Ther. Patents 1999, 9, 129-133).

10

Furthermore, compounds containing a bisarylurea moiety as a substituent were disclosed as $\alpha_4\beta_1$ integrin receptor antagonists: WO 96/22966, WO 97/03094, WO 99/33789, WO 99/37605. However, no aminobenzoic acids or aminocycloalkylcarboxylic acids or homologues thereof or heterocyclics analogues thereof with $\alpha_4\beta_1$ integrin receptor antagonists activity have been described.

20

25

30

15

3-[[[(phenylacetyl)amino]acetyl]amino]-benzoic acid has been described in Biochemistry, Vol. 26, No. 12, 1987, 3385 as a substrate for β-lactamases. N-(4-aminophenylacetylglycyl)-4-aminophenylacetic acid has been described in J. für prakt. Chem., 4. Reihe, Band 27, 1965, 63 without giving a pharmaceutical use. N¹-[4-(eth-oxycarbonyl)phenyl]-N²-(phenylacetyl)-α-glutamine and N²-benzoyl-N¹-[4-(ethoxycarbonyl)phenyl]-α-glutamine and related compounds have been described in Minerva Medica, 58 (86), 1967, 3651 and NL 6510006 as antisecretory agents. (S)-4-[[4-carboxy-1-oxo-2-[(phenylacetyl)amino]butyl]amino]-benzeneacetic acid has been described in Drugs Exp. Clin. Res. Suppl. 1, XIII, 1987, 57 as antitumor agent. N-[2-[[4-aminosulfonyl)phenyl]amino]-2-oxoethyl]-N-ethylbenzeneacetamide has been described in Eur. J. Med. Chem.- Chim. Ther. 12 (4), 1977, 387 with schistosomicide activity. N-(2-phenylacetylamino-acetylamino)-benzoic acid ethyl ester has been described in Yakugaku Zasshi 79, 1959, 1606 in decomposition studies of penicil-

lins. Japanese publication Hei 11-269135 describes 3-aminosubstituted benzoic acid derivatives as selectin inhibitors.

None of these compounds have been described in relation to the inhibition or the prevention of cell adhesion and cell-adhesion mediated disorders.

Further to their $\alpha_4\beta_1$ integrin antagonistic activity, the compounds of the present invention may also be used as $\alpha_4\beta_7$ or $\alpha_9\beta_1$ integrin antagonists.

An object of the present invention is to provide new, alternative, aminobenzoic acids or aminocycloalkylcarboxylic acids or homologues thereof or heterocyclic analogues thereof derived integrin antagonists for the treatment of inflammatory, autoimmune and immune diseases.

The present invention therefore relates to compounds of the general formula (I):

wherein

25

20 R¹ represents a 4- to 9-membered saturated, unsaturated or aromatic cyclic residue,

which can contain 0 to 3 heteroatoms selected independently from the group N, S and O,

wherein the cyclic residue R¹ can be annulated with a 4- to 8-membered saturated, unsaturated or aromatic cyclic residue, which can contain 0 to 2 heteroatoms selected independently from the group N, S and O,

 R^{1-1}

and wherein the cyclic residue R^1 and/or a ring annulated to the cyclic residue R^1 is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}-R^{1-3}-Z$, wherein

5

represents a bond, -O-, -S-, NR¹⁻⁴, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

10

wherein R^{1-1} can optionally be substituted by 1 to 2 substituents selected from the group R^{1-5} ,

15

wherein R¹⁻⁵ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

20

wherein R^{1-5} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

25

 $\mbox{R}^{1\text{--}2}$ represents a bond, -O-, -S-, NR $^{1\text{--}4},$ $\mbox{C}_1\text{--}\mbox{C}_{10}$ alkynyl, $\mbox{C}_2\text{--}\mbox{C}_{10}$ alkynyl,

wherein R^{1-2} can optionally be substituted by C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl or R^{1-6} ,

30

wherein R^{1-6} represents hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 or C_{10} aryl, C_3 - C_7 cycloalkyl or a 4-9-membered

saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

5

wherein R^{1-6} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

10

 $\mbox{R}^{1\text{--}4}$ can optionally be hydrogen, $\mbox{C}_1\text{--}\mbox{C}_{10}$ alkyl, $\mbox{C}_2\text{--}\mbox{C}_{10}$ alkynyl,

)

 $R^{1\text{--}3}$ represents a bond, $C_1\text{--}C_{10}$ alkyl, $C_2\text{--}C_{10}$ alkenyl, $C_2\text{--}C_{10}$ alkynyl,

wherein $R^{1\text{--}3}$ can optionally be substituted by $C_1\text{--}C_{10}$ alkyl, $C_2\text{--}C_{10}$ alkenyl, $C_2\text{--}C_{10}$ alkynyl or $R^{1\text{--}7}$,

15

wherein R^{1-7} represents hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 or C_{10} aryl, C_3 - C_7 cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

20

wherein R^{1-7} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

25

with the proviso that, where R¹⁻³ is a bond, R¹⁻² is not a heteroatom,

and with the proviso that R¹⁻¹ and R¹⁻² are not both heteroatom at the same time,

30

5	$ \begin{split} Z & \text{represents -C(O)OR}^{Z1}, \text{ -C(O)NR}^{Z2}R^{Z3}, \text{ -SO}_2NR^{Z2}R^{Z3}, \text{ -SO(OR}^{Z1}) \\ & \text{-SO}_2(OR^{Z1}), \text{ -P(O)R}^{Z1}(OR^{Z3}), \text{ -PO(OR}^{Z1})(OR^{Z3}) \text{ or 5-tetrazolyl,} \end{split} $
	wherein R^{Z-2} is hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl, $-C(O)R^{Z-4}$ or $-SO_2R^{Z-4}$,
10	wherein R^{Z-4} is C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,
	wherein R ^{Z-4} can optionally be substituted by 1 to 3 substituents selected from the group halogen, nitro, cyano, oxo,
15	R^{Z-1} and R^{Z-3} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl or benzyl,
20	wherein R^{Z-1} and R^{Z-3} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,
25	the cyclic residue R ¹ and/or a ring annulated to the cyclic residue formed by R ¹ can optionally be substituted by 0 to 2 substituents R ¹⁻⁸ , halogen, nitro, amino, cyano and oxo,
	wherein
	R ¹⁻⁸ can independently be selected from the group of C ₁ -C ₄ alkyl, C ₁ -C ₄

alkyloxy, phenyl, phenoxy, phenylamino, $C_3\text{-}C_6$ cycloalkyl, and

R² represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

5

which can optionally be substituted by 1 to 3 radicals R²⁻¹,

wherein R^{2-1} represents C_{1-4} alkyl, trifluormethyl, trifluormethoxy, $-OR^{2-2}$, $-SR^{2-2}$, $NR^{2-3}R^{2-4}$, $-C(O)R^{2-2}$, $S(O)R^{2-2}$, $-SO_2R^{2-2}$, $-CO_2R^{2-2}$, $-OC(O)R^{2-2}$, $-C(O)NR^{2-3}R^{2-4}$, $-NR^{2-2}C(O)R^{2-3}$, $-SO_2NR^{2-3}R^{2-4}$, $NR^{2-2}SO_2R^{2-3}$, $-NR^{2-2}C(O)NR^{2-3}R^{2-4}$, $-NR^{2-2}C(O)NR^{2-3}R^{2-4}$, halogen, cyano, nitro or oxo,

15

10

wherein $R^{2\text{--}2}$ represents hydrogen, $C_1\text{--}C_4$ alkyl, C_3 – C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 substituent selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₃-C₆ cycloalkyl, halogen, nitro, cyano,

20

and wherein R^{2-3} and R^{2-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_2 - C_6 cycloalkyl, C_6 or C_{10} aryl,

or

25

R²⁻³ and R²⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R²⁻³ and R²⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,

30

and if \mathbb{R}^2 is alkyl, \mathbb{R}^2 together with the cyclic residue \mathbb{R}^1 and D can form a ring,

R³ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R³ can optionally be substituted by 1 to 3 radicals R³⁻¹,

and wherein R³ can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl, C₆ or C₁₀ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur, which can be annulated with a phenyl ring,

and which can optionally be substituted by 1 to 3 radicals R³⁻¹,

15

10

5

wherein R^{3-1} represents C_1 - C_4 alkyl, trifluormethyl, trifluormethoxy, $-OR^{3-2}$, $-SR^{3-2}$, $NR^{3-3}R^{3-4}$, $-C(O)R^{3-2}$, $S(O)R^{3-2}$, $-SO_2R^{3-2}$, $-OC(O)R^{3-2}$, $-C(O)NR^{3-3}R^{3-4}$, $-NR^{3-2}C(O)R^{3-3}$, $-SO_2NR^{3-3}R^{3-4}$, $NR^{3-2}SO_2R^{3-3}$, $-NR^{3-2}C(O)NR^{3-3}R^{3-4}$, $-NR^{3-2}C(O)NR^{3-3}R^{3-4}$, $-CO_2R^{3-5}$, halogen, cyano, nitro or oxo,

20

wherein R^{3-2} represents hydrogen, $C_1\text{-}C_4$ alkyl, $C_3\text{-}C_6$ cycloalkyl, C_6 or C_{10} aryl

25

which can optionally be substituted by 1 substituent selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₃-C₆ cycloalkyl, halogen, nitro, cyano,

and wherein R^{3-3} and R^{3-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl, benzyl or 9-fluorenylmethyl,

30

R³⁻³ and R³⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R³⁻³ and R³⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,

and wherein R3-5 represents C1-C4 alkyl, C3-C6 cycloalkyl, C6 or C10 aryl

R⁴ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R⁴⁻¹,

15

10

5

and which can furthermore be single-foldedly substituted by C_3 - C_7 cycloalkyl, C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

20

25

which can optionally be substituted by 1 to 3 radicals R⁴⁻¹,

wherein R^{4-1} represents $C_1 - C_4$ alkyl, trifluormethyl, trifluormethoxy, $-OR^{4-2}$, $-SR^{4-2}$, $NR^{4-3}R^{4-4}$, $-C(O)R^{4-2}$, $S(O)R^{4-2}$, $-SO_2R^{4-2}$, $-OC(O)R^{4-2}$, $-C(O)NR^{4-3}R^{4-4}$, $-NR^{4-2}C(O)R^{4-3}$, $-SO_2NR^{4-3}R^{4-4}$, $NR^{4-2}SO_2R^{4-3}$, $-NR^{4-2}C(O)NR^{4-3}R^{4-4}$, $-NR^{4-2}C(O)NR^{4-3}R^{4-4}$, $-CO_2R^{4-5}$, halogen, cyano, nitro or oxo,

wherein R^{4-2} represents hydrogen, $C_1 - C_4$ alkyl, $C_3 - C_6$ cycloalkyl, C_6 or C_{10} aryl

30

which can optionally be substituted by 1 substituent selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₂-C₆ cycloalkyl, halogen, nitro, cyano,

and wherein R^{4-3} and R^{4-4} are identical or different and represent hydrogen, C_{1-4} alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

or

R⁴⁻³ and R⁴⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁴⁻³ and R⁴⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds.

and wherein $\mathbb{R}^{4\cdot 5}$ represents C_1-C_4 alkyl, C_3-C_6 cycloalkyl, C_6 or C_{10} aryl

15

10

5

R⁵ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₂-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

20

25

which can optionally be substituted by 1 to 3 radicals R⁵⁻¹,

and which can furthermore be single-foldedly substituted by C_3 - C_7 cycloalky!, C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R^{5-1} ,

wherein R⁵⁻¹ represents C₁-C₄ alky!, trifluormethyl, trifluormethoxy, -OR⁵⁻², 30 -SR⁵⁻², NR⁵⁻³R⁵⁻⁴, -C(O)R⁵⁻², S(O)R⁵⁻², -SO₂R⁵⁻², -CO₂R⁵⁻², -OC(O)R⁵⁻², -C(O)NR⁵⁻³R⁵⁻⁴, -NR⁵⁻²C(O)R⁵⁻³, -SO₂NR⁵⁻³R⁵⁻⁴, NR⁵⁻²SO₂R⁵⁻³,

10

25

30

$-NR^{5-2}C(O)NR^{5-3}R^{5-4},$	$-NR^{5-2}C(O)OR^{5-3}$,	-OC(O)NR ⁵⁻³ R ⁵⁻⁴ ,	halogen,	cyano
nitro or oxo,				

wherein $R^{5\text{--}2}$ represents hydrogen, $C_1\text{--}C_4$ alkyl, $C_3\text{--}C_6$ cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 substituent selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano,

and wherein R⁵⁻³ and R⁵⁻⁴ are identical or different and represent hydrogen, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₆ or C₁₀ aryl,

or

- 15 R⁵⁻³ and R⁵⁻⁴ together form a 4-7-membered ring, which includes the nitrogen
 atom to which R⁵⁻³ and R⁵⁻⁴ are bonded and which contains up to 2
 additional heteroatoms selected from the group oxygen, nitrogen or
 sulfur and which contains up to 2 double bonds,
- 20 R⁶ represents phenyl or a 5- to 6-membered aromatic heterocyclic residue containing up to 3 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,
 - which can optionally be annulated with a 5- to 8-membered saturated or unsaturated cyclic residue containing up to 2 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,

and which can optionally be independently substituted by 1 to 3 radicals R⁶⁻¹ and which can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl, C₆ or C₁₀ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein the latter cyclic substituents can themselves optionally be substituted by 1 to 3 radicals R⁶⁻¹,

5 wherein R^{6-1} represents C_1 - C_4 alkyl, trifluormethyl, trifluormethoxy, $-OR^{6-4}$, $-SR^{6-2}$, $NR^{6-3}R^{6-4}$, $-C(O)R^{6-2}$, $S(O)R^{6-2}$, $-SO_2R^{6-2}$, $-CO_2R^{6-2}$, $-OC(O)R^{6-2}$, $-C(O)NR^{6-3}R^{6-4}$, $-NR^{6-2}C(O)R^{6-2}$, $-SO_2NR^{6-3}R^{6-4}$, $-NR^{6-2}SO_2R^{6-2}$, $-NR^{6-2}C(O)NR^{6-3}R^{6-4}$, $-NR^{6-2}C(O)NR^{6-3}R^{6-4}$, halogen, cyano,

nitro or oxo,

10

15

20

25

30

wherein $R^{6\text{-}2}$ represents hydrogen, $C_1\text{-}C_4$ alkyl, C_3 – C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 to 3 substituents selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₃-C₆ cycloalkyl, halogen, nitro, cyano,

and wherein R⁶⁻³ and R⁶⁻⁴ are identical or different and represent hydrogen, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₆ or C₁₀ aryl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano,

or

R⁶⁻³ and R⁶⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁶⁻³ and R⁶⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or

WO 01/81298

sulfur and which contains up to 2 double bonds, which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, benzyl, C3-C7 cycloalkyl, C1-C4 alkyloxy, halogen, nitro, cyano, oxo,

5

and in case that R1 represents a 3-amino benzoic acid derivative and R6-1 represents $-OR^{6-4}$, $-C(O)NR^{6-3}R^{6-4}$ or $-NR^{6-2}C(O)R^{6-4}$, then R^{6-4} represents C_6 or C₁₀ aryl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

10

wherein the ring formed by R6-3 and R6-4 can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano,

15

20

or

R³ and R⁴ or R⁴ and R⁵ together form a 4-7-membered saturated or unsaturated ring containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur, which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo and which can be fused with a 3-7 membered homocyclic or heterocyclic, saturated, unsaturated or aromatic ring,

25

represents -C(O)-, -C(O)-C(O)-, -SO-, -SO₂-, -PO-, -PO₂-, 2-pyri-Α midyl, 4-pyrimidyl, 2-pyridyl, 2-imidazolyl, 4-imidazolyl, 2-benzimidazolyl or a ring selected from the following group:

wherein the abovementioned ring systems can optionally be substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, nitro, amino, cyano,

X represents $-CR^{X-1}R^{X-2}$ -,

wherein R^{X-1} and R^{X-2} can be independently selected from the group hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

or

5

10

15

together with R^6 form a 4-7-membered ring, which can contain up to 2 heteroatoms independently selected from the group oxygen, nitrogen or sulfur and containing up to 2 double bonds, which can optionally be substituted by 1 to 2 substituents selected from the group C_1 - C_4 alkyl, phenyl, benzyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano, oxo,

10

15

20

25

30

Y represents bond, -C(O)-, -S(O)-, -SO₂-, -O-, -S-, -CR $^{Y-1}$ R $^{Y-2}$ -, or -NR $^{Y-3}$,

wherein R^{Y-1}, R^{Y-2}, R^{Y-3} can be independently selected from the group bond, hydrogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl,

and can optionally be substituted by 1 to 2 substituents independently selected from the group C_1 - C_4 alkyl, phenyl, benzyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano, oxo,

D represents N or CR^{D-1},

wherein R^{D-1} can be independently selected from the group bond, hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

and R^{D-1} can optionally be substituted by 1 to 2 substituents independently selected from the group C_1 - C_4 alkyl, phenyl, benzyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano, oxo,

with the proviso that, where D represents -N-, Y does not represent -O- or -S-,

and the compound is not one of the following: 3-[[[(phenyl-acetyl)amino]acetyl]amino]-benzoic acid; N-(4-aminophenylacetylglycyl)-4-aminophenylacetic acid; N\dagger-[4-(ethoxycarbonyl)phenyl]-N\dagger-(phenylacetyl)-\alpha-glutamine; N\dagger-benzoyl-N\dagger-[4-(ethoxycarbonyl)phenyl]-\alpha-glutamine; (S)-4-[[4-carboxy-1-oxo-2-[(phenylacetyl)amino]butyl]amino]-benzeneacetic acid; N-[2-[[4-aminosulfonyl)phenyl]amino]-2-oxoethyl]-N-ethylbenzeneacetamide; N-(2-phenylacetylamino-acetylamino)-benzoic acid ethyl ester,

and pharmaceutically acceptable salts thereof.

In a preferred embodiment, the present invention relates to compounds of general formula (I),

5 wherein

10

15

20

25

30

R¹ represents a 4- to 6-membered saturated, unsaturated or aromatic cyclic residue,

which can contain 0 to 3 heteroatoms selected independently from the group N, S and O,

wherein the cyclic residue R¹ can be annulated with a 5- to 6-membered saturated, unsaturated or aromatic cyclic residue, which can contain 0 to 2 heteroatoms selected independently from the group N, S and O,

and wherein the cyclic residue R^1 and/or a ring annulated to the cyclic residue R^1 is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}-R^{1-3}-Z$, wherein

 R^{1-1} represents a bond, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl or C_6 aryl,

wherein R¹⁻¹ can optionally be substituted by 1 substituent selected from the group R¹⁻⁵, wherein R¹⁻⁵ represents hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₇ cycloalkyl or C₆ aryl,

R¹⁻² represents a bond, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl

 R^{1-3} represents a bond, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl

- Z represents -C(O)OR^{Z-1}, -C(O)NR^{Z-2}R^{Z-3} or 5-tetrazolyl,
- wherein R^{Z-1}, R^{Z-2} and R^{Z-3} are identical or different and represent hydrogen, $C_1-C_4 \text{ alkyl}, C_2-C_6 \text{ alkenyl}, C_2-C_6 \text{ alkynyl or benzyl},$

the cyclic residue R^1 and/or a ring annulated to the cyclic residue formed by R^1 can optionally be substituted by 0 to 2 substituents $R^{1-\delta}$, halogen, nitro, amino, cyano and oxo,

10

15

20

25

30

wherein

R¹⁻⁸ can independently be selected from the group of C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, phenoxy, phenylamino,

 R^2 represents hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_6 aryl, C_5 - C_6 cycloalkyl,

- and if R^2 is alkyl, R^2 together with the cyclic residue R^1 and D can form a 5-to 6-membered ring,
 - R³ represents hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₆ aryl, C₅-C₆ cycloalkyl or a 5-6-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 radical R³⁻¹, and wherein R³ can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl, C₆ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur, which can be annulated with a phenyl ring,

wherein R^{3-1} represents trifluormethyl, trifluormethoxy, $-OR^{3-2}$, $-SR^{3-2}$, $NR^{3-3}R^{3-4}$, $-NR^{3-2}C(O)OR^{3-3}$, $-CO_2R^{3-5}$, halogen, cyano, nitro or oxo,

5 wherein R³⁻² represents hydrogen or C₁-C₄ alkyl,

and wherein R^{3-3} and R^{3-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl or benzyl or 9-fluorenylmethyl,

and wherein R^{3-5} represents C_1 - C_4 alkyl,

R⁴ represents hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ or C₆ aryl,

 R^5 represents hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_6 aryl,

which can optionally be substituted by 1 radical R⁵⁻¹,

wherein R^{5-1} represents trifluormethyl, trifluormethoxy, $-OR^{5-2}$, $-SR^{5-2}$, 20 $NR^{5-3}R^{5-4}$, halogen, cyano, nitro or oxo,

wherein R^{5-2} , R^{5-3} and R^{5-4} are identical or different and represent hydrogen or $C_1\text{-}C_4$ alkyl,

25 R⁶ represents phenyl or a 5- to 6-membered aromatic heterocyclic residue containing up to 3 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,

and which can optionally be independently substituted by 1 to 3 radicals R^{6-1}

30 wherein R^{6-1} represents -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴.

wherein R^{6-2} and R^{6-3} are identical or different and represent hydrogen or C_1 - C_4 alkyl,

5 and wherein R⁶⁻⁴ represents C₆ aryl,

which can optionally be substituted by 1-2 substituents selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano,

- or R³ and R⁴ or R⁴ and R⁵ together form a 5-6-membered saturated or unsaturated ring containing up to 2 nitrogen atoms,
 - A represents -C(O)-, -SO-, -SO₂-,
- 15 X represents -CR $^{X-1}$ R $^{X-2}$,

wherein R^{X-1} and R^{X-2} can be independently selected from the group hydrogen, C_1 - C_4 alkyl,

- 20 Y represents -C(O)-,
 - D represents -N-,

and pharmaceutically acceptable salts thereof.

In another preferred embodiment, the present invention relates to compounds of general formula (I),

wherein

25

R¹ represents a 5- to 6-membered saturated, unsaturated or aromatic cyclic residue,

		which can contain 0 to 3 heteroatoms selected independently from the group N and S,
5		wherein the cyclic residue R ¹ can be annulated with a 5-membered unsaturated or aromatic cyclic residue, which contains 1 nitrogen atom,
10		and wherein the cyclic residue R^1 and/or a ring annulated to the cyclic residue R^1 is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}-R^{1-3}-Z$, wherein
	R ¹⁻¹	represents a bond or C ₁ alkyl,
15		wherein R ¹⁻¹ can optionally be substituted by cyclopentyl,
		R ¹⁻² represents a bond,
		R ¹⁻³ represents a bond,
20	Z	represents -C(O)OR ^{Z-1} or 5-tetrazolyl,
	R ^{Z-1}	represents hydrogen, C ₁ -C ₂ alkyl or benzyl,
25		reclic residue R ¹ can optionally be substituted by 0 to 2 substituents R ¹⁻⁸ , en and nitro,
	where	in
30	R ¹⁻⁸	can independently be selected from the group of C_1 - C_4 alkyloxy,

phenoxy and phenylamino,

	R^2 represents hydrogen or C_1 - C_3 alkyl,
5	or
·	and if R^2 is alkyl, R^2 together with the cyclic residue R^1 and D can form a piperidine ring,
10	R^3 represents hydrogen or C_1 - C_4 alkyl,
	which can optionally be substituted by 1 radical R ³⁻¹ ,
	wherein R ³⁻¹ represents NR ³⁻³ R ³⁻⁴ or -NR ³⁻² C(O)OR ³⁻³ ,
15	wherein R ³⁻² and R ³⁻⁴ represent hydrogen,
	R ³⁻³ represents hydrogen, benzyl or 9-fluorenylmethyl,
20	R ⁴ represents hydrogen,
	R ⁵ represents hydrogen or C ₃ alkyl,
	which can optionally be substituted by 1 radical R ⁵⁻¹ ,
25	wherein R ⁵⁻¹ represents -OR ⁵⁻² ,
	wherein R^{5-2} represents C_1 alkyl,
30	R ⁶ represents phenyl,
	and which is substituted by 1 radical R ⁶⁻¹

wherein R^{6-1} represents -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴,

wherein R⁶⁻² represents hydrogen,

5.

and wherein R⁶⁻³ represents hydrogen

and R⁶⁻⁴ represents C₆ aryl,

which is substituted by 1 substituent C₁ alkyl,

A represents -C(O)-,

X represents -CR^{X-1}R^{X-2}-,

15

wherein RX-1 and RX-2 represent hydrogen,

Y represents -C(O)-,

20

D represents N,

and pharmaceutically acceptable salts thereof.

In another preferred embodiment, the present invention relates to compounds of general formula (I),

wherein

R¹ represents phenyl,

and wherein the phenyl is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}$ $-R^{1-3}-Z$,

4	
wh	erein

5 R ¹⁻¹ r	represents a bond or C ₁	alkyl
----------------------	-------------------------------------	-------

R¹⁻² represents a bond,

R¹⁻³ represents a bond,

10

15

In another preferred embodiment, the present invention relates to compounds of general formula (I), wherein

Z represents -C(O)OR^{Z-1}

R^{Z-1} represents hydrogen, C₁-C₂ alkyl or benzyl,

R² represents hydrogen,

20

R³ represents hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₆ aryl, C₅-C₆ cycloalkyl or a 5-6-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 radical R³⁻¹,

25

and wherein R³ can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl, C₆ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur, which can be annulated with a phenyl ring,

30

wherein R³⁻¹ represents trifluormethyl, trifluormethoxy, -OR³⁻², -SR³⁻², -NR³⁻³R³⁻⁴, -NR³⁻²C(O)OR³⁻³, -CO₂R³⁻⁵, halogen, cyano, nitro or oxo, wherein R³⁻² represents hydrogen or C₁-C₄ alkyl, 5 and wherein R³⁻³ and R³⁻⁴ are identical or different and represent hydrogen, C₁-C₄ alkyl or benzyl or 9-fluorenylmethyl, and wherein R^{3-5} represents C_1 - C_4 alkyl, 10 represents hydrogen, \mathbb{R}^4 represents hydrogen, \mathbb{R}^5 \mathbb{R}^6 represents phenyl, 15 and which is substituted by 1 radical R⁶⁻¹ wherein R⁶⁻¹ represents -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴,

20

wherein R⁶⁻² represents hydrogen,

and wherein R⁶⁻³ represents hydrogen

25

and R⁶⁻⁴ represents C₆ aryl,

which is substituted by 1 substituent C1 alkyl,

30

or R3 and R4 or R4 and R5 together form a 5-6-membered saturated or a unsaturated ring containing up to 2 nitrogen atoms,

- A represents -C(O)-,
- X represents -CR^{X-1}R^{X-2}-,
- 5 wherein R^{X-1} and R^{X-2} represent hydrogen,
 - Y represents -C(O)-,
 - D represents N,

and pharmaceutically acceptable salts thereof.

In a more preferred embodiment, the present invention relates to compounds of general formula (I),

• wherein

10

15

25

R¹ represents phenyl,

which is 1,4-substituted by a substituent $-R^{1-1}-R^{1-2}-R^{1-3}-Z$,

wherein

 R^{1-1} , R^{1-2} and R^{1-3} represent bonds.

In another more preferred embodiment, the present invention relates to compounds of general formula (I),

wherein

30 R¹ represents phenyl,

which is 1,3-substituted by a substituent $-R^{1-1}-R^{1-2}-R^{1-3}-Z$,

wherein

5 R¹⁻¹ represents -CH₂-,

 R^{1-2} and R^{1-3} represent bonds.

In another more preferred embodiment, the present invention relates to compounds of general formula (I),

wherein

R¹ represents a 5-membered heterocycle.

In another more preferred embodiment, the present invention relates to compounds of general formula (I),

wherein

R¹ represents a cyclohexyl ring.

20

In a very preferred embodiment, the present invention relates to compounds of general formula (I),

wherein R⁶ represents

25

$$\bigcap_{CH_3} \bigcap_{H} \bigcap_{H}$$

A preferred process for preparation of compounds of general formula (VII)

has also been found, which comprises reaction of carboxylic acids of general formula (V)

5

or activated derivatives thereof,

10

with compounds of the general formula (VI)

$$R^6 \nearrow X \longrightarrow OH$$
 (VI)

in the presence of a coupling agent and a base in inert solvents, which will be described in more detail in the descriptive part of the specification.

In the context of the present invention alkyl stands for a straight-chain or branched alkyl residue, such as methyl, ethyl, n-propyl, iso-propyl, n-pentyl. If not stated otherwise, preferred is C₁-C₁₀ alkyl, very preferred is C₁-C₆ alkyl.

20

15

Alkenyl and alkinyl stand for straight-chain or branched residues containing one or more double or triple bonds, e.g. vinyl, allyl, isopropinyl, ethinyl. If not stated otherwise, preferred is C1-C10 alkenyl or alkinyl, very preferred is C1-C6 alkenyl or alkinyl.

10

15

Cycloalkyl stands for a cyclic alkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl. Preferred is C₃-C₇ cycloalkyl.

Halogen in the context of the present invention stands for fluorine, chlorine, bromine or iodine. If not specified otherwise, chlorine or fluorine are preferred.

Heteroaryl stands for a monocyclic heteroaromatic system containing 4 to 9 ring atoms, which can be attached via a carbon atom or eventually via a nitrogen atom within the ring, for example, furan-2-yl, furan-3-yl, pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thienyl, thiazolyl, oxazolyl, imidazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidyl or pyridazinyl. C₄-C₉ heteroaryl also stands for a 4 to 9-membered ring, wherein one or more of the carbon atoms are replaced by heteroatoms.

A saturated or unsaturated heterocyclic residue stands for a heterocyclic system containing 4 to 9 ring atoms, which can contain one or more double bonds and which can be attached via a ring carbon atom or eventually via a nitrogen atom, e.g. tetrahydrofur-2-yl, pyrrolidine-1-yl, piperidine-1-yl, piperidine-2-yl, piperidine-3-yl, piperidine-4-yl, piperazine-1-yl, piperazine-2-yl morpholine-1-yl, 1,4-diazepine-1-yl or 1,4-dihydropyridine-1-yl.

20

25

30

If not specified otherwise, in the context of the present invention heteroatom stands preferably for O, S, N or P.

Annulated describes 1,1- or 1,2-fused ring systems, e.g. spiro systems or systems with a [0]-bridge. If not stated otherwise, substituents described for the "parent" ring system (the ring to which the annulated ring is attached) can be also present on the annulated ring.

Derivative stands for a compound that is derived from the parent compound by exchange of one or more hydrogen atoms by other functional groups.

. . 10

15

Surprisingly, the compounds of the present invention show good integrin antagonistic activity. They are therefore suitable especially as $\alpha_4\beta_1$ and/or $\alpha_4\beta_7$ and/or $\alpha_9\beta_1$ integrin antagonists and in particular for the production of pharmaceutical compositions for the inhibition or the prevention of cell adhesion and cell-adhesion mediated disorders. Examples are the treatment and the prophylaxis of atherosclerosis, asthma, chronic obstructive pulmonary disease (COPD), allergies, diabetes, inflammatory bowel disease, multiple sclerosis, myocardial ischemia, rheumatoid arthritis, transplant rejection and other inflammatory, autoimmune and immune disorders.

The integrin antagonists of the invention are useful not only for treatment of the physiological conditions discussed above, but are also useful in such activities as purification of integrins and testing for activity.

For the treatment of the above-mentioned diseases, the compounds according to the invention can exhibit non-systemic or systemic activity, wherein the latter is preferred. To obtain systemic activity the active compounds can be administered, among other things, orally or parenterally, wherein oral administration is preferred.

For parenteral administration, forms of administration to the mucous membranes (i.e. buccal, lingual, sublingual, rectal, nasal, pulmonary, conjunctival or intravaginal) or into the interior of the body are particularly suitable. Administration can be carried out by avoiding absorption (i.e. intracardiac, intra-arterial, intravenous, intraspinal or intralumbar administration) or by including absorption (i.e. intracutaneous, subcutaneous, percutaneous, intramuscular or intraperitoneal administration).

25

30

20

For the above purpose the active compounds can be administered per se or in administration forms.

Suitable administration forms for oral administration are, inter alia, normal and enteric-coated tablets, capsules, coated tablets, pills, granules, pellets, powders, solid

WO 01/81298 PCT/EP01/04043

- 31 -

and liquid aerosols, syrups, emulsions, suspensions and solutions. Suitable administration forms for parenteral administration are injection and infusion solutions.

The active compound can be present in the administration forms in concentrations of from 0.001 - 100 % by weight; preferably the concentration of the active compound should be 0.5 - 90% by weight, i.e. quantities which are sufficient to allow the specified range of dosage.

The active compounds can be converted in the known manner into the abovementioned administration forms using inert non-toxic pharmaceutically suitable auxiliaries, such as for example excipients, solvents, vehicles, emulsifiers and/or dispersants.

The following auxiliaries can be mentioned as examples: water, solid excipients such as ground natural or synthetic minerals (e.g. talcum or silicates), sugar (e.g. lactose), non-toxic organic solvents such as paraffins, vegetable oils (e.g. sesame oil), alcohols (e.g. ethanol, glycerol), glycols (e.g. polyethylene glycol), emulsifying agents, dispersants (e.g. polyvinylpyrrolidone) and lubricants (e.g. magnesium sulphate).

In the case of oral administration tablets can of course also contain additives such as sodium citrate as well as additives such as starch, gelatin and the like. Flavour enhancers or colorants can also be added to aqueous preparations for oral administration.

For the obtainment of effective results in the case of parenteral administration it has generally proven advantageous to administer quantities of about 0.001 to 100 mg/kg, preferably about 0.01 to 1 mg/kg of body weight. In the case of oral administration the quantity is about 0.01 to 100 mg/kg, preferably about 0.1 to 10 mg/kg of body weight.

5

10

15

WO 01/81298 PCT/EP01/04043

- 32 -

It may nevertheless be necessary to use quantities other than those mentioned above, depending on the body weight concerned, the method of administration, the individual response to the active compound, the type of preparation and the time or interval of administration.

5

10

15

Suitable pharmaceutically acceptable salts of the compounds of the present invention that contain an acidic moiety include addition salts formed with organic or inorganic bases. The salt forming ion derived from such bases can be metal ions, e.g., aluminum, alkali metal ions, such as sodium of potassium, alkaline earth metal ions such as calcium or magnesium, or an amine salt ion, of which a number are known for this purpose. Examples include ammonium salts, arylalkylamines such as dibenzylamine and N,N-dibenzylethylenediamine, lower alkylamines such as methylamine, t-butylamine, procaine, lower alkylpiperidines such as N-ethylpiperidine, cycloalkylamines such as cyclohexylamine or dicyclohexylamine, 1-adamantylamine, benzathine, or salts derived from amino acids like arginine, lysine or the like. The physiologically acceptable salts such as the sodium or potassium salts and the amino acid salts can be used medicinally as described above and are preferred.

20

Suitable pharmaceutically acceptable salts of the compounds of the present invention that contain a basic moiety include addition salts formed with organic or inorganic acids. The salt forming ion derived from such acids can be halide ions or ions of natural or unnatural carboxylic or sulfonic acids, of which a number are known for this purpose. Examples include chlorides, acetates, trifluoroacetates, tartrates, or salts derived from amino acids like glycine or the like. The physiologically acceptable salts such as the chloride salts, the trifluoroacetic acid salts and the amino acid salts can be used medicinally as described below and are preferred.

25

These and other salts which are not necessarily physiologically acceptable are useful in isolating or purifying a product acceptable for the purposes described below.

10

15

20

The salts are produced by reacting the acid form of the invention compound with an equivalent of the base supplying the desired basic ion or the basic form of the invention compound with an equivalent of the acid supplying the desired acid ion in a medium in which the salt precipitates or in aqueous medium and then lyophilizing. The free acid or basic form of the invention compounds can be obtained from the salt by conventional neutralization techniques, e.g., with potassium bisulfate, hydrochloric acid, sodium hydroxide, sodium bicarbonate, etc.

The compounds according to the invention can form non covalent addition compounds such as adducts or inclusion compounds like hydrates or clathrates. This is known to the artisan and such compounds are also object of the present invention.

The compounds according to the invention can exist in different stereoisomeric forms, which relate to each other in an enantiomeric way (image and mirror image) or in a diastereomeric way (image different from mirror image). The invention relates to the enantiomers and the diastereomers as well as their mixtures. They can be separated according to customary methods.

The compounds according to the invention can exist in tautomeric forms. This is known to the artisan and such compounds are also object of the present invention.

General compound synthesis

The synthesis of compounds according to the general formula (I) can be illustrated by the following scheme 1:

Scheme 1

5 **•**

10

By coupling of the carboxylic acids or activated derivatives (II) with the amines (III) (D = nitrogen), followed by removal of the protecting group PG^1 the amides (V) can be obtained. Coupling with the carboxylic acids (VI) followed by removal of the protecting group PG^2 affords carboxylic acids of type (VIII). Further examples with different A, Y and D groups as defined in formula (I) are described below.

In the above scheme the depicted ring in formulas (III) – (V), (VII) and (VIII) as well as in scheme 3 represents a cyclic moiety formed by R¹. AG stands for hydroxyl or a suitable activating group forming an activated carboxylic acid derivative. Activated carboxylic acids derivatives of this type are known to the person skilled in the art and are described in detail in standard textbooks such as, for example in (i) Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg

Thieme Verlag, Stuttgart or (ii) Comprehensive Organic Synthesis, Ed. B. M. Trost, Pergamon Press, Oxford, 1991. The carboxylic acid is preferably activated as mixed anhydride, such as, for example, AG = iso-butyl-carbonate; as N-carboxyanhydride (R⁵ and AG = -CO-); or by a coupling agents such as, for example dicyclohexyl-carbodiimid (DCC), 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide×HCl (EDCl), 2-(7-aza-3-oxido-1H-1,2,3-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate. Other activated carboxylic acid derivatives such as, for example symmetric anhydrides, halides, or activated esters e.g. succinyl or pentafluorophenyl esters may also be employed.

10

15

5

In the above scheme PG¹ stands for a suitable protecting group of the amino group that is stable under the respective reaction conditions. Protecting groups of this type are known to the person skilled in the art and are described in detail in T. W. Greene, P. G. Wuts, *Protective Groups in Organic Synthesis*, 3rd ed., John Wiley, New York, 1999. The amino group is preferably protected by carbamates, PG¹ being for example *tert*-butyloxycarbonyl (Boc), 9-fluorenylmethyloxycarbonyl (FMOC) or benzyloxycarbonyl (Cbz-/Z-) or other oxycarbonyl derivatives.

20

25

In the above scheme PG² stands for a suitable protecting group of the carboxyl group or COOPG² stands for the carboxylic group attached to a polymeric resin suitable for solid phase synthesis. Protecting groups of this type are known to the person skilled in the art and are described in detail in T. W. Greene, P. G. Wuts, *Protective Groups in Organic Synthesis*, 3rd ed., John Wiley, New York, 1999. The carboxyl group is preferably esterified, PG² being C₁₋₆-alkyl such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, isopentyl, neopentyl, hexyl, a C₃₋₇-cycloalkyl such as, for example, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclohexyl, an aryl such as, for example, phenyl, benzyl, tolyl or a substituted derivative thereof.

Step A

Formation of the amides (IV) can take place by reacting an activated form of the respective carboxylic acid (II), such as a N-carboxyanhydride or an *iso*-butylcarbonate with the desired amine (III) or an acceptable salt thereof.

5

10

15

N-carboxyanhydrides of (II) are commercially available or can be prepared for example by the reaction of the Bis-(N-tert-butyloxycarbonyl) protected derivative of (II) with thionylchloride and pyridine in dimethylformamide or by the reaction of the free amino acid of (II) with phosgene or with phosgene equivalents such as diphosgene, triphosgene or methylchloroformate. *Iso*-butylcarbonates can be prepared in situ by reaction of the N-protected amino acid (II) with *iso*-butylchloroformate as described below. Activated derivatives of the acids (II) such as other anhydrides, halides, esters e.g. succinyl or pentafluorophenyl esters or activated carboxylic acids obtained by the reaction with coupling agents such as, for example dicyclohexylcarbodiimid (DCC), 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide×HCl (EDCl), 2-(7-aza-3-oxido-1H-1,2,3-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate may also be employed.

For example, amides of type (IV) can be prepared as follows:

20

25

1) N-carboxyanhydride procedure

A solution/suspension of the amine (III), the N-carboxyanhydride of (II) and catalytic amounts of 4-(N,N'-dimethylamino)pyridine in an inert solvent was refluxed for 0.5-14 days with exclusion of moisture. The product was either isolated by filtration or by aqueous workup employing standard procedures. If necessary the product was purified by trituration or by flash-chromatography or used without further purification.

2) Mixed anhydride procedure

A solution of the carboxylic acid derivative (II) and of N-methylmorpholine in an inert solvent was cooled to -15°C and *iso*-butyl chloroformate was added and stirred at 0°C. The amine (III) in an inert solvent was added at -15°C. The solution was stirred at 0°C, and at r.t. and was evaporated. The residue was redissolved in ethyl acetate, washed with aqueous acid and base, dried and evaporated. If necessary the product was purified by trituration or by flash-chromatography or used without further purification.

10

5

Compounds of general formula (II) are commercially available, known or can be prepared by customary methods starting from known α -amino acids or precursors for customary α -amino acid synthesis. For the preparation process according to the invention, the amino group is in this case blocked by a conventional protective group PG^1 .

15

20

25

In the α -position to the carboxyl group, these carboxylic acid derivatives can have substituents such as described under R^3 and R^4 , for example, hydrogen, a C_1 - C_{10} -alkyl, a C_3 - C_7 -cycloalkyl, an aryl, an alkenyl residue, or an alkinyl residue. The alkyl, alkenyl and cycloalkyl residues and the benzyl residue can be introduced by reaction of the ester of the starting compounds with the appropriate alkyl, alkenyl, cycloalkyl or benzyl halides in basic medium, if the corresponding derivatives are not commercially available. The alkinyl residue can be introduced, for example, by reaction of the bromo ester of the present starting compound with an appropriate acetylide anion. In the case of the phenyl residue the starting materials used are preferably the corresponding α -phenyl- α -aminocarboxylic acid derivatives and, if necessary, the other substituents at the α -C atom to the terminal carboxyl group are introduced via the appropriate alkyl halide.

30

The above reactions and their implementation are well known to the person skilled in the art and are described in detail in standard textbooks such as, for example, in (i) Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg Thieme Verlag, Stuttgart or Stuttgart or (ii) Comprehensive Organic Synthesis, Ed. B. M. Trost, Pergamon Press, Oxford, 1991.

If the substituents themselves should be substituted, e.g. by R', appropriate reactive groups should be present in the substituent to allow further functionalization. These reactive groups should be inert to the reaction conditions of the previous step. For this purpose, the substituent can also be unsaturated to allow further functionalization such as palladium catalyzed C-C-coupling reactions (e.g. Heck-reaction or Sonogashira-reaction), eventually followed by hydrogenation (scheme 2):

Scheme 2

15

20

25

5

10

In the abovementioned scheme PG^4 stands for a protecting group of the carboxyl group as described under PG^2 , hal stands for a leaving group such as a halogen, tosyl, mesyl or triflate, [Pd] stands for a Palladium(0) or Palladium(II) moiety. PG^3 stands for a protecting group of the amino group such as described under PG^1 . Protecting groups of this type are known to the person skilled in the art and are described in detail in T. W. Greene, P. G. Wuts, *Protective Groups in Organic Synthesis*, 3^{rd} ed., John Wiley, New York, 1999.

If the substituent R^3 or R^4 in the α -position to the carboxylic group carry an appropriate substituted aryl or heteroaryl unit, another method for insertion of an additional substituent are the C-C-coupling reactions as described under the synthesis of precursors (VI).

WO 01/81298

Compounds of general formula (III) are commercially available, known or can be prepared by customary methods starting from known carboxylic acid derivatives.

In case R^{1-1} , R^{1-2} and/or R^{1-3} are methylen groups, the carbon chain can be elongated by Arndt-Eistert-reaction and optionally be derivatized by common methods for α -derivatization of carboxylic acids such as nucleophilic substitution.

In case, Y is different from carbonyl and/or D is different from nitrogen - as defined in formula (I) - the respective compounds (IV) can be prepared as follows:

10

5

For example, in case Y and D form an sulfinamide, or sulfonamide, they may be prepared by reacting the respective sulfinylchlorides or sulfonylchlorides with the desired amine (III) or an acceptable salt thereof.

For example, in case Y and D form an ether or thioether, the O-C or S-C- bonds are formed via alkylation of the corresponding alcohols or thiols with alkylating agents such as alkyl halides, alkyl tosylates and the like. The thioether can be converted into the corresponding sulfoxides or sulfones by oxidation with reagents like mCPBA or

20

25

30

hydrogen peroxide.

In case Y and D form a carbon-nitrogen-bond or a nitrogen-carbon-bond, the bond is established by reductive amination via the corresponding aldehyde or ketone and the corresponding amine in the presence of a reducing agent such as sodium cyanoborohydride. In the case Y and D form a carbon-nitrogen bond in which the nitrogen atom is attached to an aromatic ring, the amine group -Y-NR²H can be coupled to the aromatic ring by an Buchwald reaction employing an halogen or triflate substituted aromatic residue and a suitable catalyst such as, for example Pd(0) or Pd(II) with phospine ligands such as triphenylphosphine, 2,2'-bis-(diphenylphosphino)-1,1'-bi-naphthyle (BINAP) or 1,1'-bis-(diphenylphosphino)ferrocene (dppf) together with an appropriate base such as, for example cesium carbonate or cesium fluoride.

WO 01/81298 PCT/EP01/04043

- 40 -

In case Y and D form a carbon-carbon-bond, the bond may be established by Wittig reaction of the corresponding ketone or aldehyde and the corresponding phosphonium ylide followed by reduction of the double bond, e.g. by catalytic hydrogenation.

- In case Y is carbonyl and D is a carbon moiety, the bond may be formed by a Grignard type reaction of the corresponding aldehyde of Y and the corresponding Grignard-reagent of D, followed by the oxidation of the resulting alcohol to the ketone, e.g. by Swern-oxidation or Jones-oxidation.
- The above reactions and their implementation are well known to the person skilled in the art and are described in detail in standard textbooks such as, for example, in (i) Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg Thieme Verlag, Stuttgart Stuttgart or (ii) Comprehensive Organic Synthesis, Ed. B. M. Trost, Pergamon Press, Oxford, 1991.

15

When more than one choice of reaction methods exist, the person skilled in the art is able to choose the appropriate pathway according to selectivity and possible use of protecting groups such as described in T. W. Greene, P. G. Wuts, *Protective Groups in Organic Synthesis*, 3rd ed., John Wiley, New York, 1999.

20

25

Step B

The removal of protecting group PG¹ can be performed, depending on the nature of PG¹, either by an acid such as trifluoroacetic acid (for example in the case PG¹ is tert-butyloxycarbonyl (Boc)), a base such as piperidine (for example in the case PG¹ is 9-fluorenylmethyloxycarbonyl (FMOC)) or by catalytic hydrogenation (for example in the case PG¹ is benzyloxycarbonyl (Cbz-/Z-)).

Step C

Formation of the amides (VII) can take place by reacting the respective carboxylic acids (VI) - activated by a coupling agent such as DCC and HOBt; EDCI and HOBt or HATU - with the desired amines (V) or an acceptable salt thereof. Activated derivatives of the acids (VI) such as anhydrides, halides, and esters e.g. succinyl or pentafluorophenyl esters may also be employed.

For example, amides (VII) can be prepared as follows:

10

5

A solution of carboxylic acid, HOBt and EDCI in an inert solvent is stirred at r.t.. After addition of the amine and a non-nucleophilic base such as ethylisopropylamine stirring is continued at r.t. or elevated temperature. The reaction mixture is poured into water and worked up by standard procedures.

15

Compounds of general formula (VI) are commercially available, known or can be prepared by customary methods starting from known carboxylic acid derivatives.

20

For example, biphenyl substituted acetic acid derivatives can be prepared by means of an aryl-aryl coupling of the respective phenyl acetic acid derivatives and a suitable phenyl system.

25

Possible coupling reactions are, for example, the reaction of two unsubstituted phenyl groups in the presence of AlCl₃ and an acid (Scholl reaction), the coupling of the two phenyl iodides in the presence of copper (Ullmann reaction), the reaction of the unsubstituted carboxylic acid derivative with a phenyldiazonium compound under basic conditions (Gomberg-Bachmann reaction) or coupling with participation of organometallic reagents such as coupling of a phenyl halide with an organometallic phenyl compound in the presence of a palladium compound, for example a Pd(0), a Pd(II) or a Pd(IV) compound, and of a phosphane such as triphenylphosphane (e.g. Suzuki reaction).

30

10

15

25

30

Bisarylureas can be prepared by coupling of an amino phenyl acetic acid derivative and a phenylisocyanate. Bisarylamides can be prepared by coupling of an amino phenyl acetic acid and an activated benzoic acid derivative such as described under Step A. Bisarylcarbamates can be prepared by coupling of an isocyanato phenyl acetic acid ester and a phenol derivative followed by saponification as described in Step D.

In case, A - as defined in formula (I) - is different from carbonyl, the respective compounds (IV) can be prepared as follows:

For example, in case A forms a sulfinamide, sulfonamide, they may be prepared as described under Step A. Oxalic amides can be prepared by the same means as the amides described above. Phosphinic acid amides and phosphonic acid amides can be prepared by coupling of activated phosphinic/phosphonic acids with amines (V). In case A is a heteroaromatic or aromatic system, the respective compounds (IV) can be prepared by nucleophilic substitution of the respective fluorosubstituted systems with a suitable amine (V).

20 Step D

The removal of the protecting group PG² can be performed either by an acid such as trifluoroacetic acid or an base such as potassium hydroxide or lithium hydroxide, depending on the nature of PG². Reactions are carried out in aqueous, inert organic solvents such as alcohols e.g. methanol or ethanol, ethers e.g. tetrahydrofurane or dioxane or polar aprotic solvents e.g. dimethylformamide. If necessary, mixtures of the above solvents may be used.

In case PG² stands for polymeric resin, the removal can take place using strong acid such as trifluoroacetic acid in dichloromethane.

Examples

Abbreviations

5	AcOH	acetic acid
	Boc	tert-butyloxycarbonyl
	DCC	dicyclohexylcarbodiimid
	GC	gas chromatography
	DIPEA	diisopropylethylamine
10	EDCI	1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide×HCl
	eq.	equivalents
	FC	flash chromatography
	HATU	2-(7-aza-3-oxido-1H-1,2,3-benzotriazoI-1-yl)-1,1,3,3-tetramethyluro-
		nium hexafluorophosphate
15	HOBt	N-hydroxybenzotriazole monohydrate
	HPLC	high performance liquid chromatography
	ICAM-1	intracellular adhesion molecule 1
	IL-1	interleukin 1
	LPS	lipopolysaccharide
20	MAdCAM-1	mucosal addressin cell adhesion molecule 1
	MeOH	methanol
	min.	minutes
	M.p.	melting point
	NF-kB	nuclear factor κB
25	NMR	nuclear magnetic resonance
	n.d.	not determined
	r.t.	room temperature
	R_{f}	TLC: R_f value = distance spot traveled / distance solvent front traveled
	TFA	trifluoroacetic acid
30	THF	tetrahydrofurane
	TLC	thin layer chromatography

WO 01/81298

TNF-α tumor necrosis factor α

t_R retention time determined by HPLC

VCAM-1 vascular cell adhesion molecule 1

VLA-4 very late antigen 4 ($\alpha_4\beta_1$ integrin)

5

General remarks

In the examples below, all quantitative data, if not stated otherwise, relate to percentages by weight.

Flash chromatography was carried out on silica gel 60, 40–63 μ m (E. Merck, Darmstadt, Germany).

Thin layer chromatography was carried out, employing silica gel 60 F₂₅₄ coated aluminum sheets (E. Merck, Darmstadt, Germany) with the mobile phase indicated.

Melting points were determined in open capillaries and are not corrected.

- All retention times are indicated in minutes and, if not stated otherwise, were determined by high-performance liquid chromatography (HPLC) by means of UV detection at 210 / 250 nm and a flow rate of 1 ml/min. An acetonitrile/water mixture with 0.1% trifluoroacetic acid (vol./vol.) was used as eluent with a linear gradient of: 0 min. = 0% acetonitrile, 25 min. = 100% acetonitrile, 31 min = 100 % acetonitrile, 32 min 0% acetonitrile, 38 min 0% acetonitrile. Two methods were used: for method A a LiChrospher 100 RP-18, 5 μm, 250×4mm (E. Merck, Darmstadt, Germany) column and for method B a Purospher RP-18e, 5μm, 250×4mm (E. Merck, Darmstadt, Germany) column was used.
- The mass determinations were carried out using the electron spray ionization (ESI) method employing loop injection or split injection via a HPLC system.

10

15

Precursor synthesis

Example I: 2-{4-[(2-Toluidinocarbonyl)amino]phenyl}acetic acid

To a solution of 2-(4-aminophenyl)acetic acid (108.8 g, 0.72 mol) in CH₂Cl₂ (1.0 l) and triethylamine (120 ml) was added a solution of 2-methylphenyl isocyanate (90.5 ml, 0.72 mol) in CH₂Cl₂ (500 ml) dropwise at r.t.. After stirring for 18 h at r.t., water (2.5 l) and CH₂Cl₂ (2.0 l) were added and the layers were separated. The organic layer was extracted with water (3 × 400 ml). The combined aqueous layers were concentrated to 3.0 l and acidified to pH 2 by the addition of concentrated aqueous HCl. The precipitate was collected by filtration, washed with cold water and dried in an exsiccator over concentrated H₂SO₄ affording 166.5 g (82%) white solid. M.p. 205-206°C; TLC (CH₂Cl₂/MeOH 9:1): R_f 0.14. ¹H-NMR (400 MHz, D₆-DMSO): 12.21 (br s, 1H), 9.11 (s, 1H), 8.00 (s, 1H), 7.83 (d, 7.6 Hz, 1H), 7.40 (d, 8.5 Hz, 2H), 7.17-7.12 (m, 4H), 6.96-6.92 (m, 1H), 3.48 (s, 2H), 2.24 (s, 3H).

Example II: 2-{4-[(2-Toluidinocarbonyl)amino]phenyl}acetyl-L-leucine methyl ester

20

25

A solution of 2-{4-[(2-toluidinocarbonyl)amino]phenyl}acetic acid (1.96 g, 6.89 mmol), HOBt (1.16 g, 7.58 mmol) and EDCI in 70 ml dimethylformamide was stirred 90 min at r.t.. After addition of L-leucine methyl ester hydrochloride (1.25 g, 6.89 mmol) in dimethylformamide (20 ml) and ethyldiisopropylamine (5.75 ml, 34.5 mmol) stirring at r.t. was continued for 18 h. The reaction mixture was poured into water (350 ml) and extracted with ethyl acetate (4×150 ml). The combined organic layers were washed with 0.1 N aqueous HCl, saturated aqueous Na₂CO₃, brine, dried (MgSO₄) and evaporated. Yield: 2.49 g (88%) white solid. M.p. 166-168°C; TLC

 $(CH_2Cl_2/MeOH~9:1): R_f~0.56; ^1H-NMR~(400~MHz, D_6-DMSO): 8.96~(s, 1H), 8.42~(d, 7.7~Hz, 1H), 7.89~(s, 1H), 7.84~(d, 7.44~Hz, 1H), 7.38~(d, 8.5~Hz, 2H), 7.18-7.11~(m, 4H), 6.96~(m, 1H), 4.30-4.23~(m, 1H), 3.61~(m, 3H), 3.43-3.36~(m, 2H), 2.24~(s, 3H), 1.67-1.45~(m, 3H), 0.89~(d, 6.4~Hz, 3H), 0.82~(d, 6.4~Hz, 3H).$

5

10

15

20

25

Example III:2-{4-[(2-toluidinocarbonyl)amino]phenyl}acetyl-L-leucine

A solution of 2-{4-[(2-toluidinocarbonyl)amino]phenyl}acetyl-L-leucine methyl ester (2.42 g, 5.88 mmol) and KOH (3.30 g, 58.75 mmol) in methanol/water 1:1 (180 ml) was stirred at 50°C for 5 h. After washing with methyl-tert-butylether (80 ml) the volume of the reaction mixture was reduced until a slight turbidity was observed. The solution was acidified to pH 2 by the addition of 1 N aqueous HCl. The precipitate was collected by filtration, washed with cold water and dried in vacuum. Yield: 1.75 g (72 %) white solid. M.p.: 178-179°C, TLC (CH₂Cl₂/MeOH/AcOH 9:1:0.1): R_f 0.16; ¹H-NMR (400 MHz, D₆-DMSO): 12.51 (br s, 1H), 9.00 (s, 1H), 8.25 (d, 8.0 Hz, 1H), 7.93 (s, 1H), 7.83 (d, 7.5 Hz, 1H), 7.36 (d, 8.5 Hz, 2H), 7.17-7.12 (m, 4H), 6.95-6.91 (m, 1H), 4.23-4.17 (m, 1H), 3.43-3.32 (m, 2H), 2.24 (s, 3H), 1.68-1.46 (m, 3H), 0.89 (d, 6.5 Hz, 3H), 0.82 (d, 6.5 Hz, 3H).

Example IV: Methyl 4-({[(3-methoxypropyl)amino]acetyl}amino)benzoate

To a solution of methyl 4-aminobenzoate (10.0 g, 66.2 mmol) and triethylamine (10.1 ml, 72.8 mmol) in dichloromethane (100 ml) was added a solution of bromo-acetylbromide (6.34 ml, 72.8 mmol) in dichloromethane (30 ml) at 0°C. After stirring for 18 h at room temperature and 18 h under reflux the reaction mixture was concentrated under vacuum. The residue was taken up in ethyl acetate, washed with 1 N aqueous HCl and water, dried over MgSO₄ and evaporated. Yield 15.8 g (88%)

of methyl 4-[(bromoacetyl)amino]benzoate as a pale brown solid. M.p.: 144-146°C, TLC (hexane/ethyl acetate 1:1): R_f 0.46.

To a solution of methyl 4-[(bromoacetyl)amino]benzoate (2.72 g, 10.0 mmol) in dimethylformamide (20 ml) was added 3-methoxypropylamine (1.78 g, 20.0 mmol) and triethylamine (22.3 ml, 160 mmol). After stirring at room temperature for 18 h, the reaction mixture was concentrated under vacuum and purified by flash chromatography (CH₂Cl₂/MeOH 9:0.4) affording 1.81 g (65%) of methyl 4-({[(3-methoxy-propyl)amino]acetyl}amino)benzoate as a pale red solid.

10

5

Example V: 4-(1H-tetraazol-5-yl)aniline

$$H_2N$$
 \longrightarrow H_N \longrightarrow H_N

To a solution of 4-aminobenzonitrile (11.8 g, 100 mmol) and triethylamine hydrochloride (17.9 g, 130 mmol) in toluene (550 ml) was added sodium azide (8.45 g, 130 mmol). After stirring for 24 h at 95°C, the reaction mixture was cooled to room temperature and was extraced with water (3×60 ml). The combined aqueous phases were acidified with concentrated aqueous HCl-to pH 2-3. The product was collected by filtration, washed with water and dried in vacuum. Yield 9.59 g (60%) pale brown solid. M.p.: 280-281°C, TLC (CH₂Cl₂/MeOH/AcOH 9:1:0.1): R_f 0.30

20

25

15

Example VI: Ethyl 1,2,3,4-tetrahydro-6-quinolinecarboxylate

A solution of 6-quinolinecarboxylic acid (9.50 g, 54.9 mmol) and 2 ml of concentrated sulfuric acid in ethanol (250 ml) was refluxed for 8 h. The solvent was evaporated and the residue was taken up in water. After adjustment of the pH to 8 by the addition of potassium hydroxide the product was collected by filtration and dried in

10

vacuum. Yield 9.85 g (89%) of ethyl 6-quinolinecarboxylate as a pale brown solid. M.p.: $66-67^{\circ}$ C, TLC (CH₂Cl₂/MeOH/AcOH 9:0.5:0.1): R_f 0.52

A solution of ethyl 6-quinolinecarboxylate (9.80 g, 48.7 mmol) was acidified to pH 2 by the addition of 1N aqueous HCl. After addition of 20% Pd-Mohr catalyst (1.96 g) the solution was hydrogenated at 60°C under 3 bar of hydrogen pressure for 17 h. The reaction mixture was filtered through celite. The filtrate was evaporated and the residue was taken up in ethyl acetate and water. The pH was adjusted to 10 by the addition of 1 N aqueous potassium hydroxide. The phases were separated and the organic phase was washed with brine, dried over Na₂SO₄ and evaporated. Yield 8.72 g (87%) of ethyl 1,2,3,4-tetrahydro-6-quinolinecarboxylate as a pale brown solid. M.p.: 68-70°C, GC-MS: [M⁺] = 205.

Compound synthesis

5 Scheme 3

15

Step A:

General procedure A1 (GP A1): Coupling of amines with Boc-L-leucin-N-carboxy-anhydride:

A solution/suspension of 1.0 eq. of the amine, 1.0 eq. of Boc-L-leucin-N-carboxyan-hydride and 0.3 eq. of 4-(N,N'-dimethylamino)pyridine was refluxed for 0.5 – 14 days with exclusion of moisture. If a precipitate was formed, the precipitate (product) was collected by filtration. The reaction mixture / filtrate was evaporated to dryness, redissolved in ethyl acetate and washed with 1 N aqueous HCl, saturated aqueous NaHCO₃ and brine, dried over MgSO₄ and evaporated. Both solids were combined.

If necessary the product was purified by trituration or by flash-chromatography or used without further purification.

Example 1: Methyl 4-({Boc-L-leucine}amino)benzoate

5

Methyl 4-aminobenzoate (0.75 g, 4.97 mmol) was dissolved in CH₂Cl₂ (7 ml). After the addition of Boc-L-leucin-N-carboxyanhydride (1.28 g, 4.79 mmol) and 4-(N,N'-dimethylamino)pyridine (180 mg, 1.49 mmol) the solution was stirred under reflux for 4 days. The precipitate (product) was collected by filtration. The filtrate was evaporated to dryness, redissolved in ethyl acetate and washed with 1 N aqueous HCl, saturated aqueous NaHCO₃ and brine, dried over MgSO₄ and evaporated. Combined Yield: 1.35 (75%) white solid.

15

10

General procedure A2 (GP A2): Coupling of amines with carboxylic acids activated by *iso*-butyl chloroformate.

20

25

A solution of 1.0 eq. of the carboxylic acid derivative and 1.0 eq. of N-methyl-morpholine in tetrahydrofurane was cooled to -15°C and 1.0 eq. of *iso*-butyl chloroformate was added dropwise. After 5 min at 0°C, 1.0 eq. of the amine in tetrahydrofurane was added at -15°C. The solution was stirred for 1 h at 0°C, 1-4 d at r.t. and was evaporated. The residue was redissolved in ethyl acetate, washed with 1 N aqueous HCl (2x), saturated aqueous NaHCO₃ and brine, dried over MgSO₄ and evaporated.

Table 1: Characterization of reaction products according to Step A

Example	Structure	Procedure	Yield [%]	Product	Rr	M.p. [°C]	ESI-MS	HPLC
No.								t _R [min]
		GP A1	75	white solid	0.52 (CH ₂ Cl ₂ /McOH 9:0.1)	72 - 73	309.1 [M+H] ⁺	n.d.
2		GP A1, FC: CH ₂ Cl ₂ /MeOH 9:0.3- 8:2	31	white solid	white solid 0.68 (petrol ether / ethyl acetate 8:2)	n.d.	413.4 [M+H] ⁺	27.5 Method B
ဗ		GP A1, crude product	42	pale red solid	0.60 (petrol ether / ethyl acetate 6:4)	.b.u	409.1 [M+H] [†]	25.4 Method B
4		GP A1, crude product	39	pale brown oil	0.30 (petrol ether / ethyl acetate 8:2)	n.d.	399.0 [M+HJ ⁺	25.4 Method B
\$		GP A1, crude product	92	white solid	white solid 0.46 (petrol ether / ethyl 207 - 209 acetate 8:2)	207 - 209	456.1 [M+HJ] ⁺	27.8 Method B

PCT/EP01/04043

Example	Structure	Procedure	Yield [%]	Product	Rr	M.p. [°C]	ESI-MS	HFLC
No.								t _R [min]
9		GP A1,	52	white solid	white solid 0.70 (petrol ether / ethyl	n.d.	457.1	26.0
		crude product	•		acetate 8:2)		$[M+H]^{+}$	Method B
7	\$ 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	GP A1,	34	pale	0.84 (petrol ether / cthyl	n.d.	431.0 [M-	27.1
		crude product		brown	acetate 6:4)		HJ-	Method B
	E			solid	.•			
8	72. 2-	GP A1 (aq. NaHCO3 wash	39	pale	0.62	n.d.	373.1 [M-	21.3
		omitted)		brown	(CH2Cl2/MeOFI/AcOH		H]-	Method A
	=> =>	crude product		solid	9:1:0.1)		·	
S)	>0 0	GP A1,	46	pale	0.80 (petrol ether / ethyl	n.d.	424.1	25.9
		crude product		yellow	acetate 1:1)		[M+H]	Method B
	:= := =0			solid				
10		GP A1,	3	yellow oil	0.52 (petrol ether / ethyl	n.d.	419 [M+HJ ⁺	n.d.
		FC: petrol ether/ethyl acetate			acetate 1:1)			
	〉 人。	9:0.3 – 9:1						

Example	Structure	Procedure	Yield [%] Product	Product	Rr	M.p. [°C]	ESI-MS	MILEC
No.								t _R [min]
=		GF A2, FC: petrol ether/ethyl acetate 9:1	17	pale yellow solid	0.90 (petrol ether / ethyl acetate 6:4)	n.d.	461.5 [M+H] ⁺	n.d.
12		GP A2, crude product	68	pale yellow oil	0.83 (CH ₂ Cl ₂ /MeOH/AcOH 9:1:0.1)	n.d.	414.3 [M+II] [‡]	25.3 Method B
13		GP A2, FC: petrol ether/ethyl acetate 10:1 – 6:4	35	white solid	white solid 0.36 (petrol ether / ethyl acetate 6:4)	50 - 52	590.4 [M+H] ⁺	n.d.
41		as described in the precursor synthesis	65%	pale red solid	0.36 (CH ₂ Cl ₂ /MeOH 9:1)	49 - 50	281.0 [M+H] [†]	n.d.

Step B:

General procedure B (GP B): Cleavage of the Boc-protecting group with trifluoroacetic acid

- 54 -

5

10

15

20

To a solution of the Boc-protected amine was added 20 vol% trifluoroacetic acid in dichloromethane at 0°C. Stirring was continued at room temperature for 0.5-24 h. The solvent was removed at room temperature under reduced pressure. The residue was coevaporated twice with dichloromethane, dried under high vacuum and subjected to the reaction step C without further purification.

Step C:

General procedure (GP C1): Coupling of amines with 2-{4-[(2-toluidinocarbonyl)-amino]phenyl}acetic acid:

A solution of 1.0 eq. 2-{4-[(2-toluidinocarbonyl)amino]phenyl} acetic acid, 1.1 eq. HOBt and 1.1 eq. EDCI in DMF was stirred for 2 h at r.t.. After addition of 1.0 eq. amine e.g. as TFA salt and 3 – 9 eq. ethylisopropylamine stirring was continued for 18 h at r.t.. The reaction mixture was poured into the 4-fold amount of water. The precipitate was collected by filtration, washed with cold water and dried in vacuum. If necessary the product was purified by trituration or by flash-chromatography.

 $Methyl\ 4-([(\{4-[(2-toluid in ocarbonyl) a mino] phenyl\} a cetyl) L-leucin] a mino) benzo a tenylly a cetylly benzo a cetyll$

25

Methyl 4-[(L-leucin)amino]benzoate trifluoroacetate (3.81 g, 10.1 mmol) was reacted according to GP C1 in a total volume of 60 ml of dimethylacetamide. Trituration

10

15

20

with CH_2Cl_2 yielded 4.78 g (90%) pale brown solid. M.p. 250-252°C, TLC (AcOH:MeOH: CH_2Cl_2 0.1:0.5:9): R_f 0.46; ¹H-NMR (400 MHz, D₆-DMSO):10.47 (s, 1H), 8.96 (s, 1H), 8.39 (d, 7.7 Hz, 1H), 7.93-7.89 (m, 3H), 7.83 (d, 7.8 Hz, 1H), 7.75 (d, 8.8 Hz, 2H), 7.37 (d, 8.4 Hz, 2H), 7.18-7.12 (m, 4 H), 6.95-6.92 (m, 1H), 4.49 – 4.43 (m, 1H), 3.82 (s, 3H), 3.47 – 3.38 (m, 2H), 2.24 (s, 3H), 1.66 – 1.50 (m, 3H), 0.92 (d, 6.4 Hz, 3H), 0.86 (d, 6.4 Hz, 3H); ESI-MS: 531.3 [M+H]⁺.

- 55 -

General procedure (GP C2): Coupling of amines with 2-{4-[(2-toluidinocarbon-yl)amino]phenyl}acetyl-L-leucine

In several cases it is advisable to couple the amine (III) directly with with 2-{4-[(2-toluidinocarbonyl)amino]phenyl} acetyl-L-leucine followed by the cleavage of the protecting group PG², thus omitting steps A and B:

A solution of 1.0 eq. 2-{4-[(2-toluidinocarbonyl)amino]phenyl} acetyl-L-leucine, 1.1 eq. HOBt and 1.1 eq. EDCI in DMF was stirred for 2 h at r.t.. After addition of 1.0 eq. amine (as free amino or as a salt) and 3-9 eq. ethylisopropylamine stirring was continued for 18 h at r.t.. The reaction mixture was poured into the 4-fold amount of water. The precipitate was collected by filtration, washed with cold water and dried in vacuum. If necessary the product was purified by trituration or by flash-chromatography.

Table 2 The following examples were prepared by subsequently applying the general procedures B & C1/C2 as indicated.

Example Structure		Procedure	Yield	Yield Product	Rf	M.p.	ESI-MS	HPLC
No.			[%]			[2]		t _R [min]
		GP C2	1		7	170	1	n.d.
91		GP C2	1 .	}		220		n.d.
17	~{	1) GP B	90	pale	0.46	250 -	531.3	26.6
	 □	2) GP CI, 9 eq. DIPEA.		brown solid	(CH ₂ Cl ₂ /MeOH/AcOH 9:0.5:0.1)	252	[M+H]⁺	Method A
18	<u>ټ</u>	GP C2		1	-	218		n.d.
61		GP C2	1	1		200	1	n.d.

Example	Example Structure	Procedure	Yield	Yield Product	Rr	M.p.	ESI-MS	HPLC
No.			[%]			[]		t _{k[} min]
20		GP C2	l	1	1	222	1	n.d.
21		1) GP B 2) GP C1, 9 eq. DIPEA	18	pale brown solid	0.74 (CH ₂ Cl ₂ /MeOH/AcOH 9:1:0.1)	163 -	579.3 [M+H] [†]	25.5 Method B
2.2		1) GP B 2) GP C1, 3) 9 eq. DIPEA	18	pale brown solid	0.34 (CH ₂ Cl ₂ /MeOH/AcOH 9:1:0.1)	139 -	575.0 [M+H] ⁺	24.5 Method A
23		1) GP B 2) GP CI: 1.1 eq. HATU (no EDCI, EOBI) & 5 eq. DIPEA	99	white	0.74 (CH ₂ Cl ₂ /MeOH 9:1)	181 -	564.5 [M+H] ⁺	24.0 Method A
24		1) GP B 2) GP C1, 9 eq. DIPEA	8	pale brown solid	0.34 (CH ₂ Cl ₂ /MeOH/AcOH 9:0.5:0.1)	205 -	622.2 [M+H] ⁺	26.1 Method B

	Example Siructure	Procedure	X iela	Yield Product	Rf	M.p.	ESI-MS	HPLC
Š.			[%]			[]		t _R [min]
25	, A.	1) GPB	30	yellow	yellow 0.66 (CH ₂ Cl ₂ /MeOH 9:1) 191 -	191 -	622.9	24.3
		2) GP CI, 9 eq.		solid		195	$[M+H]^{\dagger}$	Method A
		DIPEA						
26		1) GP B	21	white	0.34 (petrol ether / ethyl	204 -	598.9	25.5
		2) GP C1, 9 eq.		solid	acetate 1:1)	205	$[M+H]^{\dagger}$	Method B
	=0	DIPEA						
27	227	1) GP B, 3 eq.	2	white	0.16	255 -	541.2	21.4
		Thiohyenole		solid	(CH ₂ Cl ₂ /MeOII/AcOH.	257	[M+H] ⁺	Method A.
	=0	added			9.5:0.5:0.1)			
		2) GP C1, 9 eq.						
		DIFEA						
28	~o~o	1) GP B	66	palc	0.80	90 - 95	590.0	25.0
		2) GP C1, 9 eq.		brown	(CH2Cl2/McOH/AcOH		[M+H]*	Method B
		DIPBA		solid	9:1:0.1)			
29		1) GP B	1.6	pale	0.68 (CH ₂ Cl ₂ /MeOH	n.d.	585.2	n.d.
		2) GP C1, 9 eq.		yellow	9:0.5)		$[M+H]^{\dagger}$	
	〉人。~~~	DIPEA		oil				

Example	Example Structure	Procedure	Yield	Yield Product	Rf	M.p.	ESI-MS	HPLC
No.			[%]			[°C]		t _R [min]
30	> 0 → 0	1) GP B	73	pale	pale 0.66 (CH ₂ Cl ₂ /McOH 9:1) 186 -	186 -	627.4	26.2
		2) GP C1, 9 eq.		brown	· i	189	$[M^{4}H]^{4}$	Method A
		DIPEA.		solid				
31	7	GP C2		1		n.d.	ļ	n.d.
5	C 1711 C	65 95				-		
75		7)	t	l	1	н.а.	1	j
33	CH	1) GP B	91	vellow	vellow 0.90 (CH-CL/McOH 9-1) 125 -	125 -	580.2	24.2
		2) GP C1, 9 eq.)	solid	(***	130	[M+H]	Method A
		DIPEA					1	
34		GP C2	1	1		n.d.	-	n.d.

Example	Example Structure	Procedure	Yield	Yield Product	R,	Σ	FSI-MS	HPIC
No.			[%]		Ĩ			ta[min]
35		1) GP B	97	pale	0.62	188 -	756.4	n.d.
		2) GP C1, 9 eq.		brown	(CH ₂ Cl ₂ /MeOH/AcOH	189	[M+H] ⁺	
		DIPEA		solid	9:1:0.1)			
	→							
36		1) GP B	• 64	white	white 0.50 (CH ₂ Cl ₂ /MeOH 9:1) 197 -	197 -	547.0	21.8
		2) GP C1, 3 eq.	•	solid		198	[M+H]	Method A
) >== >==	DIPEA			٠.			
37	:	GP C2, 3 eq. DIPEA	82	white	white 0.80 (CH ₂ Cl ₂ /MeOH 9.1) 188 -	188 -	613.3	n.d.
				solid		189	[M+H]⁺	
88 8		GP C2	1	1		n.d.		n.d.

WO 01/81298 PCT/EP01/04043

- 61 -

Step D

15

20

General procedure D1 (GP D1): ester saponification

A solution or suspension of the ester and 1.1 eq. KOH in water/ethanol, methanol and/or dioxane was stirred at 25–50°C for 2–24 h. After washing with methyl-tert-butylether (80 ml) the volume of the reaction mixture was reduced until a slight turbidity was observed. The solution was acidified to pH 2 by the addition of 1 N aqueous HCl. The precipitate was collected by filtration, washed with cold water and dried in vacuum.

General procedure D2 (GP D2): deprotection of benzyl esters / benzyl carbamates

A solution or suspension of the ester and 10% Pd-C (10%) in dimethylformamide was hydrogenated for 12 h at r.t. and 50 bar hydrogen pressure. The reaction mixture was filtered through celite. Evaporation of the filtrate and purification of the crude product by preparative HPLC (LiChrospher RP-18, 12 μM, 250x25 mm; flow rate 40 ml/min; eluent: acetonitrile/water mixture with 0.1% trifluoroacetic acid (vol./vol.), linear gradient of: 0 min. = 40% acetonitrile, 20 min. = 80% acetonitrile) afforded the product.

General procedure D3 (GP D3): deprotection of benzyl esters

A solution or suspension of the ester and 10% Pd-C (10%) in tetrahydrofurane was hydrogenated for 18 h at r.t. under atmospheric hydrogen pressure. The reaction mixture was filtered through celite. Evaporation of the filtrate afforded the product.

Table 3: following examples were prepared according to the general procedures D1-D3:

				,				
Example	Example Structure	Procedure Yield Product	Yield	Product	Rf	M.p. [°C] ESI-MS	ESI-MS	HPLC t _R [min]
No.			[%]					
39		GP D1; 10 eq. KOH	ľ	1	1	190	1	n.d.
40		GP D1; 10	1		·	220	1	n.d.
41		GP D1; 10 eq. KOH	06	white	0.24 (CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)	219-223	517.0 [M+HJ ⁺	21.3 Method A
42		GP D1; 10 eq. KOH	87	yellow solid	0.06 (CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)	186-190	531 [M+H] [†]	26.6 Method A
43		GP D1; 10 eq. KOH	83	white solid	0.06 (CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)	178-181	531 [M+HJ ⁺	26.8 Method A

Example	Example Structure	Procedure	Yield	Product	R _f	M.p. [°C]	ESI-MS	HFLC t _R [min]
No.			[%]					
44		он GP D1; 10 еq. КОН	I	-		206	1	n.d.
				•				
45		GP D1; 1.5	64	pale	0.34	154-158	551.3	22.2 Method B
		ец. КОН		brown	(CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)		[M·H]	
46	O	GP DI; 1.6	16	white	0.28	138-142	546.8	23.1 Method B
		cq. NaOH		solid	(CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)		[M+H] ⁺	
47	0-	GP D1; 1.1	36	pale red	0.36	178 -180	551.1	21.6 Method A
		ед. КОН		solid	(CH ₂ Cl ₂ /MeOtI/AcO H 9:1:0.1)		[M+H] ⁺	
48	C	GP D1; 3.5	89	palc	0.30	164-169	608.0	23.7 Method A
		са. КОП		brown solid	(CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)		[M+H] ⁺	

Example No.	Structure	Procedure	Yield [%]	Product	$R_{\hat{f}}$	M.p. [°C]	ESI-MS	HPLC t _R [min]
49		GP DI; I.1 eq. KOH	81	pale brown solid	0.62 (CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)	158-160	609.2 [M.+H.J ⁺	23.1 Method A
50.		GP D1; 1.1 eq. KOH	∞	pale red solid	0.68 (CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)	185-188	584.9 [M+H] ⁺	22.5 Method A
51		GP D1; 1.5 cq. NaOH	45	yellow	9.10 (CH ₂ Cl ₂ /MeOH 9:1)	188-190	562.0 [M+H] ⁺	23.5 Melhod A.
52		GP D1; 1.1 eq. KOH	76	white	n.d.	n.d.	557 [M+HJ ⁺ HPLC- MS	22.8 Method A
53		GP D1; 1.1	26	white	0.74 (CH ₂ Cl ₂ /MeOH/AcO H 9:1:0.1)	206-208	599.4 [M+H] ⁺	19.2 23.5 Method B; 2 dia- steromeres

No. 55			[%]					
55								
55		GP D1; 1.5	26	pale	0.30	178-180	538.2	29.4 Method A
55		еф. КОН		brown	(CH ₂ Cl ₂ /MeOH/AcO		[M+H] ⁺	
55				solid	H 9:1:0.1)			
		GP D1; 1.5	33	pale	0.18	187-189	539.2	28.7 Method A
-		eq. KOH		brown	(CU ₂ Cl ₂ /MeOH/AcO		$[M+H]^{\dagger}$	
	-			solid	H 9:1:0.1)			
56	4	GP D1; 1.1	2	pale	0.26	172 - 174	552.07	21.3 Method A
		ед. КОН		brown	(CH ₂ Cl ₂ /MeOH/AcO		[M+H]	
	 =>			solid	H 9:1:0.1)			
57.		c GP DI; 1.5	22	pale	0.08	240 de-	556.2	29.4 Method A
		eq. KOH		brown	(CH ₂ Cl ₂ /MeOH/AcO	composi-	[M+H]⁺	
T T				solid	H 9:1:0.1)	tion		
58		GP D2	3	white	0.05	168-169	532.1	n.d.
				solid	(CH ₂ Cl ₂ /MeOH/AcO		[M+H] [≠]	
					H 9:4:0.1)		LC-MS	

				4				
Example	Example Structure	Procedure Yield Product	Yield	Product	Rf	M.p. [°C]	ESI-MS	M.p. [°C] ESI-MS HPLC t _R [min]
No.			[%]					
59	ز ا	GP D1; 1.1 76	9/	white	0.48	210-218	570.8	20.0 Method A
		eq. KOH		solid	solid (CH2Cl2/McOH/AcO		$[M+K]^{\dagger}$	
					H 9:1:0.1)			
		į						
09	, > <u>}</u>	GP D3	95	white	0.12	175	523.2	20.2 Method B
				pilos	(CH ₂ Cl ₂ /MeOH/AcO decompo- [M+H] ⁺	decombo-	$[M+H]^{t}$	
					H 9.5:0.5:0.1)	sition		
19		GP D1, 1.5	-	pale	0.10	n.d.	523.2	20.0 Method A
		еф. КОН		brown	brown (CH2Cl2/MeOH/AcO		[M+H]⁴	
	- -			solid	H 9.5:0.5:0.1)			

...

WO 01/81298 PCT/EP01/04043

- 67 -

In vitro assay: adhesion of Jurkat/Ramos cells to immobilized VCAM-1 (domains 1-3)

Preparation of VCAM-1 (extracellular domains 1-3)

5

10

15

20

25

Complementary DNA (cDNA) encoding 7-domain form of VCAM-1 (GenBank accession #M60335) was obtained using Rapid-ScreenTM cDNA library panels (OriGene Technologies, Inc) at Takara Gene Analysis Center (Shiga, Japan). The primers used were 5'-CCA AGG CAG AGT ACG CAA AC-3' (sense) and 5'-TGG CAG GTA TTA TTA AGG AG-3' (antisense). PCR amplification of the 3-domain VCAM-1 cDNA was perform using Pfu DNA polymerase (Stratagene) with the following sets of primers: (U-VCAMd1-3) 5'-CCA TAT GGT ACC TGA TCA ATT TAA AAT CGA GAC CAC CCC AGA A-3'; (L-VCAMd1-3) 5'-CCA TAT AGC AAT CCT AGG TCC AGG GGA GAT CTC AAC AGT AAA-3'. PCR cycle was 94 °C for 45 sec. 55 °C for 45 sec, 72 °C for 2 min, repeating 15 cycles. After the purification of the PCR product, the fragment was digested with KpnI-AvrII. The digested fragment was ligated into pBluescript IISK(-) (Strategene), which was linearized by digesting with KpnI-XhoI. The ligation was followed by transformation to a Dam/Dcm methylase-free E. coli strain SCS110 (Strategene) to create the donor plasmid pHH7. To direct VCAM-1 molecule into the insect cell secretory pathway, the VCAM-1 coding sequence was fused to signal peptide sequence of honeybee melittin. The resulting melittin-VCAM fusion was placed in correct orientation to the baculovirus polyhedrin promoter. Baculovirus transfer vector containing first 3-domain form VCAM-1 (pH10) was constructed by ligation of 0.9 kb fragment from AvrII/Klenow/Bcll digests of pH7 into Sall/Klenow/BamHI digests of pMelBacB (Invitrogen). Recombinant baculovirus was generated by using Bac-N-BlueTM Transfection kit (Invitrogen) according to the manufacture's instruction. The recombinant virus was amplified by infection to High-Five TM insect cells for 5 - 6 days, and virus titer was determined by plaque assay.

10

15

20

25

30

High-FiveTM insect cells were pelleted in a 225 ml conical tube by centrifugation at 1000 rpm for 5 min. After discarding the supernatant, the pellet was resuspended in 1.5 x 10° pfu (MOI = 5) of high-titer virus solution, followed by incubation for 1.5 hours at room temperature. The cells were pelleted again and washed once in fresh Express FiveTM serum free medium. The cells were pelleted again and finally, resuspended in 200 ml of fresh Express Five TM medium, transferred to a 1,000 ml shaker flask, and incubated in a shaker at 27 °C, 130 rpm, for 48 hours before the culture supernatant was collected. The purification of 3-domain form of VCAM-1 from the culture supernatant was performed by one-step anion exchange chromatography. Protein concentration was determined by using Coomassie protein assay reagent (Pierce) according to the manufacture's instruction.

Preparation of VCAM-1 coated microtiter plates

Recombinant human VCAM-1 (extracellular domains 1-3) was dissolved at 1.0 µg/ml in PBS. Each well of the microtiter plates (Nalge Nunc International, Fluoronunc Cert, 437958) was coated with 100 µl of substrate or for background control with buffer alone for 15 hours at 4 °C. After discarding the substrate solution, the wells were blocked using 150 µl per well of block solution (Kirkegaard Perry Laboratories, 50-61-01) for 90 minutes. The plate was washed with wash buffer containing 24 mM Tris-HCl (pH 7.4), 137 mM NaCl, 27 mM KCl and 2 mM MnCl₂ just before addition of the assay.

In vitro assay using Jurkat cells

Preparation of fluorescence labeled Jurkat cells:

Jurkat cells (American Type Culture Collection, Clone E6-1, ATCC TIB-152) were cultured in RPMI 1640 medium (Nikken Bio Medical Laboratory, CM1101) supplemented with 10% fetal bovine serum (Hyclone, A-1119-L), 100 U/ml penicilin (Gibco BRL, 15140-122) and 100 μg/ml streptomycin (Gibco BRL, 15140-122) in a humidified incubator at 37 °C with 5% CO₂.

Jurkat cells were incubated with phosphate balanced solution (PBS, Nissui, 05913) containing 25 μM of 5(-and -6)-carboxyfluorescein diacetate, succinimidyle ester (CFSE, Dojindo Laboratories, 345-06441) for 20 min at room temperature while gently swirling every 5 min. After centrifugation at 1000 rpm for 5 min, the cell pellet was resuspended with adhesion assay buffer at a cell density of 4 x 10⁶ cells/ml. The adhesion assay buffer was composed of 24 mM Tris-HCl (pH 7.4), 137 mM NaCl, 27 mM KCl, 4 mM glucose, 0.1 % bovine serum albumin (BSA, Sigma, A9647) and 2 mM MnCl₂.

10

15

20

5

Assay procedure (Jurkat cells)

The assay solution containing each test compounds was transferred to the VCAM-1 coated plates. The final concentration of each test compounds was 5 μ M, 10 μ M or various concentrations ranging from 0.0001 μ M to 10 μ M using a standard 5-point serial dilution. The assay solution containing the labeled Jurkat cells was transferred to the VCAM-1 coated plates at a cell density of 2 x 10⁵ cells per well and incubated for 1 hour at 37 °C. The non-adherent cells were removed by washing the plates 3 times with wash buffer. The adherent cells were broken by addition of 1 % Triton X-100 (Nacalai Tesque, 355-01). Released CFSC was quantified fluorescence measurement in a fluorometer (Wallac, ARVO 1420 multilabel counter).

The adhesion of Jurkat cells to VCAM-1 was analyzed by percent binding calculated by the formula:

25

 $100 \times (FTS - FBG) / (FTB - FBG) = \%$ binding, where FTB is the total fluorescent intensity from VCAM-1 coated wells without test compound; FBG is the fluorescent intensity from wells lacking VCAM-1 and FTS is the fluorescent intensity from wells containing the test compound of this invention.

10

15

In Vitro Assay using Ramos cells

Preparation of fluorescence labeled Ramos cells:

Ramos cells (American Type Culture Collection, Clone CRL-1596) were cultured in RPMI 1640 medium (Nikken Bio Medical Laboratory, CM1101) supplemented with 10% fetal bovine serum (Hyclone, A-1119-L), 100 U/ml penicilin (Gibco BRL, 15140-122) and 100 μg/ml streptomycin (Gibco BRL, 15140-122) in a humidified incubator at 37 °C with 5% CO₂.

Ramos cells were incubated with phosphate balanced solution (PBS, Nissui, 05913) containing 25 µM of 5(-and -6)-carboxyfluorescein diacetate, succinimidyle ester (CFSE, Dojindo Laboratories, 345-06441) for 20 min at room temperature while gently swirling every 5 min. After centrifugation at 1000 rpm for 5 min, the cell pellet was resuspended with adhesion assay buffer at a cell density of 4 x 10⁶ cells/ml. The adhesion assay buffer was composed of 24 mM Tris-HCl (pH 7.4), 137, mM NaCl, 27 mM KCl, 4 mM glucose, 0.1 % bovine serum albumin (BSÅ, Sigma, A9647) and 2 mM MnCl₂.

Assay procedure (Ramos cells)

20

25

30

The assay solution containing each test compounds or 5 μ g/ml anti-CD49d monoclonal antibody (Immunotech, 0764) was transferred to the VCAM-1 coated plates. The final concentration of each test compounds was 5 μ M, 10 μ M or various concentrations ranging from 0.0001 μ M to 10 μ M using a standard 5-point serial dilution. The assay solution containing the labeled Ramos cells was transferred to the VCAM-1 coated plates at a cell density of 2 x 10⁵ cells per well and incubated for 1 hour at 37 C. The non-adherent cells were removed by washing the plates 3 times with wash buffer. The adherent cells were broken by addition of 1 % Triton X-100 (Nacalai Tesque, 355-01). Released CFSC was quantified fluorescence measurement in a fluorometer (Wallac, ARVO 1420 multilabel counter).

WO 01/81298 PCT/EP01/04043

- 71 -

The adhesion of Ramos cells to VCAM-1 was analyzed by percent binding calculated by the formula:

100 x (FTS - FBG) / (FTB - FBG) = % binding, where FTB is the total fluorescent intensity from VCAM-1 coated wells without test compound; FBG is the fluorescent intensity from wells with anti-CD49d monoclonal antibody and FTS is the fluorescent intensity from wells containing the test compound of this invention.

In vitro activity:

10

5

In the Jurkat - VCAM-1 assay (indicated as Jurkat - VCAM-1) and the Ramos - VCAM-1 (indicated as Ramos - VCAM-1) the observed IC₅₀ value ranges are indicated Table 4.

 $D > 10 \ \mu M \ge C > 2 \ \mu M \ge B > 0.5 \ \mu M \ge A$

Table 4.

	No	Structure	IC	O-11 T
39 40 41 41 42 43 44 44 45 44 45 46 47 48 48 49 40 40 40 40 41 41 42 44 44 45 46 47 48 48 48 48 49 40 40 40 40 40 41 41 42 42 44 44 45 46 47 48 48 49 40 40 40 40 41 41 42 41 42 43 44 44 44 45 46 47 48 48 49 40 40 40 40 40 41 41 41 41 42 41 42 43 44 44 44 44 44 44 44 44	140	Duadime	IC ₅₀	Cell Type
39 40 41 41 42 43 44 44 44 44 45 44 45 46 47 48 48 49 40 40 40 40 41 41 42 44 44 45 46 47 48 48 49 40 40 40 40 40 41 41 42 42 44 44 44 45 46 47 48 48 49 40 40 40 40 40 41 41 41 42 42 44 44 44 45 46 47 48 48 48 49 40 40 40 40 40 41 41 41 41 42 42 44 44 44 45 46 47 48 48 48 48 48 48 48 48 48	٠		<u> </u>	
40 41 41 42 43 43 44 44 44 44 44 45 46 46 47 48 48 49 40 40 40 41 41 41 42 43 44 44 45 46 46 47 48 48 49 40 40 40 40 41 41 42 43 44 44 45 46 47 48 48 49 40 40 40 40 40 41 41 42 43 44 44 44 44 44 45 46 47 48 48 49 40 40 40 40 40 40 40 40 40	27		С	Ramos
41 42 AB Jurkat AB AB Jurkat AB AB AB AB AB AB AB AB AB A	39		D	Jurkat
42 43 44 44 44 45 46 46 47 48 48 49 40 40 40 40 41 41 42 43 44 44 44 44 44 44 44 44	40		D	Jurkat
43 — B Jurkat HH C Jurkat H C Jurkat H C D Ramos	41	COH CHANGE	A	Jurkat
44 45 46 A-B A-B Armos	42	Children Con	D	Jurkat
A-B Jurkat OF D Ramos	43		В	Jurkat
6 Pamos	14	CHILD HE CONTROL	С	Jurkat
О	15		A-B	Jurkat
	6		D	Ramos

No	Structure	IC ₅₀	Cell Type
47	P	A	Ramos
••	н в Стон		
			•
48	0	A	Ramos
40	, в СТОН	71	TCM11103
	O O O O O O O O O O O O O O O O O O O		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
49	и в Дон	A	Ramos
50	8	С	Ramos
	н всттон		
	QLDYYY"		
	TART		•
51	но о	C	Ramos
-	н 8		
~~			D
52	, , ,	С	Ramos
	,		
53	OYOH	С	Jurkat
	QII OF TO		
	H H }		
54		С	Jurkat
	QIJT O'S		
	T H H T T		

	Structure	IC ₅₀	Cell Type
55	CHILD STOR	С	Jurkat
56	Children Ch	D	Ramos
57		D	Jurkat
58	NH3	A	Ramos
59	Child Con	Α	Ramos
60	THE TON	C .	Jurkat
61		С	Ramos

WO 01/81298

5

10

15

20

25

Claims:

1. Compounds of the general formula (I),

wherein

R¹ represents a 4- to 9-membered saturated, unsaturated or aromatic cyclic residue,

which can contain 0 to 3 heteroatoms selected independently from the group N, S and O,

wherein the cyclic residue R¹ can be annulated with a 4- to 8-membered saturated, unsaturated or aromatic cyclic residue, which can contain 0 to 2 heteroatoms selected independently from the group N, S and O,

and wherein the cyclic residue R^1 and/or a ring annulated to the cyclic residue R^1 is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}-R^{1-3}-Z$, wherein

R¹⁻¹ represents a bond, -O-, -S-, NR¹⁻⁴, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R¹⁻¹ can optionally be substituted by 1 to 2 substituents selected from the group R¹⁻⁵,

wherein R^{1-5} represents hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 or C_{10} aryl, C_3 - C_7 cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R^{1-5} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

 R^{1-2} represents a bond, -O-, -S-, NR^{1-4} , C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl,

wherein ${}^4R^{1-2}$ can optionally be substituted by C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl or R^{1-6} ,

wherein R^{1-6} represents hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 or C_{10} aryl, C_3 - C_7 cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R^{1-6} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

 R^{1-4} can optionally be hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl or C_2 - C_{10} alkynyl,

10

5

15

20

10

15

20

	R^{1-3} represents a bond, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl,
	wherein R^{13} can optionally be substituted by C_1C_{10} alkyl, C_2C_{10} alkenyl, C_2C_{10} alkynyl or R^{17} ,
	wherein R^{1-7} represents hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 or C_{10} aryl, C_3 - C_7 cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,
	wherein R^{1-7} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,
	with the proviso that, where R^{1-3} is a bond, R^{1-2} is not a heteroatom,
	and with the proviso that R ¹⁻¹ and R ¹⁻² are not both heteroatom at the same time,
Z	represents $-C(O)OR^{Z-1}$, $-C(O)NR^{Z-2}R^{Z-3}$, $-SO_2NR^{Z-2}R^{Z-3}$, $-SO(OR^{Z-1})$, $-SO_2(OR^{Z-1})$, $-P(O)R^{Z-1}(OR^{Z-3})$, $-PO(OR^{Z-1})(OR^{Z-3})$ or 5-tetrazolyl,

wherein R^{Z-2} is hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl, $-C(O)R^{Z-4}$ or $-SO_2R^{Z-4}$,

25

wherein R^{Z-4} is C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

30

wherein R^{Z-4} can optionally be substituted by 1 to 3 substituents selected from the group halogen, nitro, cyano, oxo,

 R^{Z-1} and R^{Z-3} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl or benzyl,

5

wherein R^{Z-1} and R^{Z-3} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,

10

the cyclic residue R¹ and/or a ring annulated to the cyclic residue formed by R¹ can optionally be substituted by 0 to 2 substituents R¹⁻⁸, halogen, nitro, amino, cyano and oxo,

wherein

15

R¹⁻⁸ can independently be selected from the group of C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, phenoxy, phenylamino, C₃-C₆ cycloalkyl, and

20

R² represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R²⁻¹,

25

wherein R^{2-1} represents C_{1-4} alkyl, trifluormethyl, trifluormethoxy, $-OR^{2-2}$, $-SR^{2-2}$, $NR^{2-3}R^{2-4}$, $-C(O)R^{2-2}$, $S(O)R^{2-2}$, $-SO_2R^{2-2}$, $-CO_2R^{2-2}$, $-OC(O)R^{2-2}$, $-C(O)NR^{2-3}R^{2-4}$, $-NR^{2-2}C(O)R^{2-3}$, $-SO_2NR^{2-3}R^{2-4}$, $NR^{2-2}SO_2R^{2-3}$, $-NR^{2-2}C(O)NR^{2-3}R^{2-4}$, $-NR^{2-2}C(O)OR^{2-3}$, $-OC(O)NR^{2-3}R^{2-4}$, halogen, cyano, nitro or oxo,

wherein R^{2-2} represents hydrogen, C_1 - C_4 alkyl, C_3 – C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 substituent selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₃-C₆ cycloalkyl, halogen, nitro, cyano,

and wherein R^{2-3} and R^{2-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

10 or

5

15

30

R²⁻³ and R²⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R²⁻³ and R²⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,

and if R^2 is alkyl, R^2 together with the cyclic residue R^1 and D can form a ring,

- 20 R³ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,
- 25 wherein R³ can optionally be substituted by 1 to 3 radicals R³⁻¹,

and wherein R³ can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl, C₆ or C₁₀ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can be annulated with a phenyl ring,

and which can optionally be substituted by 1 to 3 radicals R³⁻¹,

- wherein R^{3-1} represents C_1 - C_4 alkyl, trifluormethyl, trifluormethoxy, $-OR^{3-2}$, $-SR^{3-2}$, $NR^{3-3}R^{3-4}$, $-C(O)R^{3-2}$, $S(O)R^{3-2}$, $-SO_2R^{3-2}$, $-OC(O)R^{3-2}$, $-C(O)NR^{3-3}R^{3-4}$, $-NR^{3-2}C(O)R^{3-3}$, $-SO_2NR^{3-3}R^{3-4}$, $NR^{3-2}SO_2R^{3-3}$, $-NR^{3-2}C(O)NR^{3-3}R^{3-4}$, $-NR^{3-2}C(O)OR^{3-3}$, $-OC(O)NR^{3-3}R^{3-4}$, $-CO_2R^{3-5}$, halogen, cyano, nitro or oxo,
- wherein R^{3-2} represents hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl
 - which can optionally be substituted by 1 substituent selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano,
- and wherein R³⁻³ and R³⁻⁴ are identical or different and represent hydrogen, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₆ or C₁₀ aryl, benzyl or 9-fluorenylmethyl,
 - or ---

- 20 R³⁻³ and R³⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R³⁻³ and R³⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,
- 25 and wherein R^{3-5} represents hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl
 - R⁴ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R⁴⁻¹,

and which can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl,

C₆ or C₁₀ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2

heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R⁴⁻¹,

wherein R^{4-1} represents $C_1 - C_4$ alkyl, trifluormethyl, trifluormethoxy, $-OR^{4-2}$, $-SR^{4-2}$, $NR^{4-3}R^{4-4}$, $-C(O)R^{4-2}$, $S(O)R^{4-2}$, $-SO_2R^{4-2}$, $-OC(O)R^{4-2}$, $-C(O)NR^{4-3}R^{4-4}$, $-NR^{4-2}C(O)R^{4-3}$, $-SO_2NR^{4-3}R^{4-4}$, $NR^{4-2}SO_2R^{4-3}$, $-NR^{4-2}C(O)NR^{4-3}R^{4-4}$, $-NR^{4-2}C(O)NR^{4-3}$, $-OC(O)NR^{4-3}R^{4-4}$, $-CO_2R^{4-5}$, halogen, cyano, nitro or oxo,

wherein R^{4-2} represents hydrogen, C_1-C_4 alkyl, C_3-C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 substituent selected from the group C_1 - C_4 alkylo, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano,

and wherein R^{4-3} and R^{4-4} are identical or different and represent hydrogen, C_{1-4} alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

25 or

15

20

30

R⁴⁻³ and R⁴⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁴⁻³ and R⁴⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,

and wherein R^{4-5} represents hydrogen, C_1 – C_4 alkyl, C_3 – C_6 cycloalkyl, C_6 or C_{10} aryl

represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R⁵⁻¹,

10

5

and which can furthermore be single-foldedly substituted by C_3 - C_7 cycloalkyl, C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

15

which can optionally be substituted by 1 to 3 radicals \mathbb{R}^{5-1} ,

20

wherein R^{5-1} represents C_1 - C_4 alkyl, phenyl, trifluormethyl, trifluormethoxy, - OR^{5-2} , - SR^{5-2} , $NR^{5-3}R^{5-4}$, - $C(O)R^{5-2}$, $S(O)R^{5-2}$, - SO_2R^{5-2} , - CO_2R^{5-2} , - CO_2R^{5-2} , - $C(O)R^{5-2}$, - $C(O)R^{5-2}$, - $C(O)R^{5-3}R^{5-4}$, halogen, cyano, nitro or oxo,

25 ar

wherein R^{5-2} represents hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 substituent selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₃-C₆ cycloalkyl, halogen, nitro, cyano,

30

and wherein R^{5-3} and R^{5-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

or

5

15

20

R⁵⁻³ and R⁵⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁵⁻³ and R⁵⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,

represents phenyl or a 5- to 6-membered aromatic heterocyclic residue containing up to 3 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,

which can optionally be annulated with a 5- to 8-membered saturated or unsaturated cyclic residue containing up to 2 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,

and which can optionally be independently substituted by 1 to 3 radicals R^{6-1} and which can furthermore be single-foldedly substituted by C_3 - C_7 cycloalkyl, C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein the latter cyclic substituents can themselves optionally be substituted by 1 to 3 radicals R⁶⁻¹,

wherein R^{6-1} represents C_1 - C_4 alkyl, trifluormethyl, trifluormethoxy, $-OR^{6-4}$, $-SR^{6-2}$, $NR^{6-3}R^{6-4}$, $-C(O)R^{6-2}$, $S(O)R^{6-2}$, $-SO_2R^{6-2}$, $-CO_2R^{6-2}$, $-OC(O)R^{6-2}$, $-C(O)NR^{6-3}R^{6-4}$, $-NR^{6-2}C(O)R^{6-2}$, $-SO_2NR^{6-3}R^{6-4}$, $-NR^{6-2}SO_2R^{6-2}$, $-NR^{6-2}C(O)NR^{6-3}R^{6-4}$, $-NR^{6-2}C(O)N$

10

15

20

wherein $R^{6\text{-}2}$ represents hydrogen, $C_1\text{-}C_4$ alkyl, C_3 – C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano,

and wherein R^{6-3} and R^{6-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 2 substituents selected from the group C_1 - C_4 alkyl, phenyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,

or

R⁶⁻³ and R⁶⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁶⁻³ and R⁶⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds, which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo,

and in case that R¹ represents a 3-amino benzoic acid derivative and R⁶⁻¹ represents -OR⁶⁻⁴, -C(O)NR⁶⁻³R⁶⁻⁴ or -NR⁶⁻²C(O)R⁶⁻⁴, then R⁶⁻⁴ represents C₆ or C₁₀ aryl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

25

WO 01/81298

wherein the ring formed by R^{6-3} and R^{6-4} can optionally be substituted by 1 to 2 substituents selected from the group C_1 - C_4 alkyl, phenyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,

5

or

R² and R³ or R³ and R⁴ or R⁴ and R⁵ together form a 4-7-membered saturated or unsaturated ring containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur, which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo and which can be fused with a 3-7 membered homocyclic or heterocyclic, saturated, unsaturated or aromatic ring,

15

10

A represents -C(O)-, -C(O)-C(O)-, -SO-, -SO₂-, -PO-, -PO₂-, 2-pyr-imidyl, 4-pyrimidyl, 2-pyridyl, 2-imidazolyl, 4-imidazolyl, 2-benzimidazolyl or-a-ring selected from the following group:

wherein the abovementioned ring systems can optionally be substituted by C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, nitro, amino, cyano,

X represents $-CR^{X-1}R^{X-2}$,

wherein R^{X-1} and R^{X-2} can be independently selected from the group hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

or

5

10

15

together with R⁶ form a 4-7-membered ring, which can contain up to 2 heteroatoms independently selected from the group oxygen, nitrogen or sulfur and containing up to 2 double bonds, which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo,

10

15

20

Y represents bond, -C(O)-, -S(O)-, -SO₂-, -O-, -S-, -CR^{Y-1}R^{Y-2}-, or -NR^{Y-3},

wherein R^{Y-1} , R^{Y-2} , R^{Y-3} can be independently selected from the group bond, hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

and can optionally be substituted by 1 to 2 substituents independently selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo,

D represents N or CR^{D-1},

wherein R^{D-1} can be independently selected from the group bond, hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

and R^{D-1} can optionally be substituted by 1 to 2 substituents independently selected from the group C_1 - C_4 alkyl, phenyl, benzyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano, oxo,

with the proviso that, where D represents -N-, Y does not represent -O- or -S-,

and the compound is not one of the following: 3-[[[(phenylacetyl)amino]acetyl]amino]-benzoic acid; N-(4-aminophenylacetylglycyl)-4-aminophenylacetic acid; N¹-[4-(ethoxycarbonyl)phenyl]-N²-(phenylacetyl)- α -glutamine; N²-benzoyl-N¹-[4-(ethoxycarbonyl)phenyl]- α -glutamine; (S)-4-[[4-carboxy-1-oxo-2-[(phenylacetyl)amino]butyl]amino]-benzeneacetic acid; N-[2-[[4-aminosulfonyl)phenyl]amino]-2-oxoethyl]-N-ethylbenzeneacetamide; N-(2-phenylacetylamino-acetylamino)-benzoic acid ethyl ester,

and pharmaceutically acceptable salts thereof.

30

2. Compounds of the general formula (I) according to claim 1,

5

wherein

R¹ represents a 4- to 9-membered saturated, unsaturated or aromatic cyclic residue,

10

which can contain 0 to 3 heteroatoms selected independently from the group N, S and O,

15

wherein the cyclic residue R¹ can be annulated with a 4- to 8-membered saturated, unsaturated or aromatic cyclic residue, which can contain 0 to 2 heteroatoms selected independently from the group N, S and O,

20

and wherein the cyclic residue R^1 and/or a ring annulated to the cyclic residue R^1 is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}-R^{1-3}-Z$, wherein

25

R¹⁻¹ represents a bond, -O-, -S-, NR¹⁻⁴, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R¹⁻¹ can optionally be substituted by 1 to 2 substituents selected from the group R¹⁻⁵,

wherein R^{1-5} represents hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 or C_{10} aryl, C_3 - C_7 cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R^{1-5} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

 $R^{1\text{--}2}$ represents a bond, -O-, -S-, $NR^{1\text{--}4},\ C_1\text{--}C_{10}$ alkyl, $C_2\text{--}C_{10}$ alkynyl, $C_2\text{--}C_{10}$ alkynyl,

wherein $R^{1\text{-}2}$ can optionally be substituted by $C_1\text{-}C_{10}$ alkyl, $C_2\text{-}C_{10}$ alkenyl, $C_2\text{-}C_{10}$ alkynyl or $R^{1\text{-}6}$,

wherein R^{1-6} represents hydrogen, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl, C_6 or C_{10} aryl, C_3 - C_7 cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R^{1-6} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

 $\mbox{R}^{1\text{--}4}$ can optionally be hydrogen, $\mbox{C}_1\mbox{-}\mbox{C}_{10}$ alkyl, $\mbox{C}_2\mbox{-}\mbox{C}_{10}$ alkynyl,

 R^{1-3} represents a bond, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl,

10

5

15

20

wherein R^{1-3} can optionally be substituted by C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_2 - C_{10} alkynyl or R^{1-7} ,

wherein R¹⁻⁷ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 3 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein R^{1-7} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano, oxo,

with the proviso that, where R1-3 is a bond, R1-2 is not a heteroatom,

and with the proviso that R^{1-1} and R^{1-2} are not both heteroatom at the same time,

Z represents $-C(O)OR^{Z-1}$, $-C(O)NR^{Z-2}R^{Z-3}$, $-SO_2NR^{Z-2}R^{Z-3}$, $-SO(OR^{Z-1})$, $-SO_2(OR^{Z-1})$, $-P(O)R^{Z-1}(OR^{Z-3})$, $-PO(OR^{Z-1})(OR^{Z-3})$ or 5-tetrazolyl,

wherein R^{Z-2} is hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl, $-C(O)R^{Z-4}$ or $-SO_2R^{Z-4}$,

wherein R^{Z-4} is C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

wherein R^{Z-4} can optionally be substituted by 1 to 3 substituents selected from the group halogen, nitro, cyano, oxo,

10

5

15.

20

- R^{Z-1} and R^{Z-3} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl or benzyl,
- wherein R^{Z-1} and R^{Z-3} can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,
- the cyclic residue R¹ and/or a ring annulated to the cyclic residue formed by R¹ can optionally be substituted by 0 to 2 substituents R¹⁻⁸, halogen, nitro, amino, cyano and oxo,

wherein

- R¹⁻⁸ can independently be selected from the group of C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, phenoxy, phenylamino, C₃-C₆ cycloalkyl, and
 - R² represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R²⁻¹,

wherein $R^{2\text{-}1}$ represents $C_{1\text{-}4}$ alkyl, trifluormethyl, trifluormethoxy, $-OR^{2\text{-}2}$, $-SR^{2\text{-}2}$, $NR^{2\text{-}3}R^{2\text{-}4}$, $-C(O)R^{2\text{-}2}$, $S(O)R^{2\text{-}2}$, $-SO_2R^{2\text{-}2}$, $-CO_2R^{2\text{-}2}$, $-OC(O)R^{2\text{-}2}$, $-C(O)NR^{2\text{-}3}R^{2\text{-}4}$, $-NR^{2\text{-}2}C(O)R^{2\text{-}3}$, $-SO_2NR^{2\text{-}3}R^{2\text{-}4}$, $NR^{2\text{-}2}SO_2R^{2\text{-}3}$, $-NR^{2\text{-}2}C(O)NR^{2\text{-}3}R^{2\text{-}4}$, $-NR^{2\text{-}2}C(O)OR^{2\text{-}3}$, $-OC(O)NR^{2\text{-}3}R^{2\text{-}4}$, halogen, cyano, nitro or oxo,

15

wherein R^{2-2} represents hydrogen, $C_1\text{-}C_4$ alkyl, C_3 – C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 substituent selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₃-C₆ cycloalkyl, halogen, nitro, cyano,

and wherein R^{2-3} and R^{2-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

10 or

5

15

30

R²⁻³ and R²⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R²⁻³ and R²⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,

and if R^2 is alkyl, R^2 together with the cyclic residue R^1 and D can form a ring,

- 20 R³ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,
- 25 wherein R³ can optionally be substituted by 1 to 3 radicals R³⁻¹,

and wherein R^3 can furthermore be single-foldedly substituted by C_3 - C_7 cycloalkyl, C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can be annulated with a phenyl ring,

30

and which can optionally be substituted by 1 to 3 radicals R³⁻¹,

- wherein R^{3-1} represents C_1 - C_4 alkyl, trifluormethyl, trifluormethoxy, -OR³⁻², -SR³⁻², NR³⁻³R³⁻⁴, -C(O)R³⁻², S(O)R³⁻², -SO₂R³⁻², -OC(O)R³⁻², -C(O)NR³⁻³R³⁻⁴, -NR³⁻²C(O)R³⁻³, -SO₂NR³⁻³R³⁻⁴, NR³⁻²SO₂R³⁻³, -NR³⁻²C(O)NR³⁻³R³⁻⁴, -NR³⁻²C(O)OR³⁻³, -OC(O)NR³⁻³R³⁻⁴, -CO₂R³⁻⁵, halogen, cyano, nitro or oxo,
- wherein R^{3-2} represents hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} arvl
 - which can optionally be substituted by 1 substituent selected from the group C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, C₃-C₆ cycloalkyl, halogen, nitro, cyano,
- and wherein R³⁻³ and R³⁻⁴ are identical or different and represent hydrogen, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₆ or C₁₀ aryl, benzyl or 9-fluorenylmethyl,
 - or —
- 20 R³⁻³ and R³⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R³⁻³ and R³⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,
- 25 and wherein R³⁻⁵ represents C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₆ or C₁₀ aryl
 - R⁴ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

15

20

25

30

which can optionally be substituted by 1 to 3 radicals R⁴⁻¹,

and which can furthermore be single-foldedly substituted by C_3 - C_7 cycloalkyl, C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R⁴⁻¹,

wherein R^{4-1} represents $C_1 - C_4$ alkyl, trifluormethyl, trifluormethoxy, $-OR^{4-2}$, $-SR^{4-2}$, $NR^{4-3}R^{4-4}$, $-C(O)R^{4-2}$, $S(O)R^{4-2}$, $-SO_2R^{4-2}$, $-OC(O)R^{4-2}$, $-C(O)NR^{4-3}R^{4-4}$, $-NR^{4-2}C(O)R^{4-3}$, $-SO_2NR^{4-3}R^{4-4}$, $NR^{4-2}SO_2R^{4-3}$, $-NR^{4-2}C(O)NR^{4-3}R^{4-4}$, $-NR^{4-2}C(O)NR^{4-3}R^{4-4}$, $-CO_2R^{4-5}$, halogen, cyano, nitro or oxo,

wherein R^{4-2} represents hydrogen, $C_1 - C_4$ alkyl, $C_3 - C_6$ cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 substituent selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano,

and wherein $R^{4\text{-}3}$ and $R^{4\text{-}4}$ are identical or different and represent hydrogen, $C_{1\text{-}4}$ alkyl, $C_3\text{-}C_6$ cycloalkyl, C_6 or C_{10} aryl,

or

R⁴⁻³ and R⁴⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁴⁻³ and R⁴⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or

sulfur and which contains up to 2 double bonds,

and wherein $R^{4\text{-}5}$ represents C_1-C_4 alkyl, C_3-C_6 cycloalkyl, C_6 or C_{10} aryl

10

20

25

R⁵ represents hydrogen, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₆ or C₁₀ aryl, C₃-C₇ cycloalkyl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R⁵⁻¹,

and which can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl, C₆ or C₁₀ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can optionally be substituted by 1 to 3 radicals R⁵⁻¹,

wherein R^{5-1} represents C_1 - C_4 alkyl, trifluormethyl, trifluormethoxy, $-OR^{5-2}$, $-SR^{5-2}$, $NR^{5-3}R^{5-4}$, $-C(O)R^{5-2}$, $S(O)R^{5-2}$, $-SO_2R^{5-2}$, $-CO_2R^{5-2}$, $-OC(O)R^{5-2}$, $-C(O)NR^{5-3}R^{5-4}$, $-NR^{5-2}C(O)R^{5-3}$, $-SO_2NR^{5-3}R^{5-4}$, $NR^{5-2}SO_2R^{5-3}$, $-NR^{5-2}C(O)NR^{5-3}R^{5-4}$, $-NR^{5-2}C(O)OR^{5-3}$, $-OC(O)NR^{5-3}R^{5-4}$, halogen, cyano, nitro or oxo,

wherein R⁵⁻² represents hydrogen, C₁-C₄ alkyl, C₂-C₆ cycloalkyl, C₆ or C₁₀ aryl

which can optionally be substituted by 1 substituent selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano,

and wherein R^{5-3} and R^{5-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 or C_{10} aryl,

30 or

R⁵⁻³ and R⁵⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁵⁻³ and R⁵⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds,

5

R⁶ represents phenyl or a 5- to 6-membered aromatic heterocyclic residue containing up to 3 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,

. 10

which can optionally be annulated with a 5- to 8-membered saturated or unsaturated cyclic residue containing up to 2 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,

15

and which can optionally be independently substituted by 1 to 3 radicals R^{6-1} and which can furthermore be single-foldedly substituted by C_3 - C_7 cycloalkyl, C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

20

wherein the latter cyclic substituents can themselves optionally be substituted by 1 to 3 radicals R⁶⁻¹,

wherein R^{6-1} represents C_1 - C_4 alkyl, trifluormethyl, trifluormethoxy, -OR⁶⁻⁴, -SR⁶⁻², NR⁶⁻³R⁶⁻⁴, -C(O)R⁶⁻², S(O)R⁶⁻², -SO₂R⁶⁻², -CO₂R⁶⁻², -OC(O)R⁶⁻², -C(O)NR⁶⁻³R⁶⁻⁴, -NR⁶⁻²C(O)R⁶⁻², -SO₂NR⁶⁻³R⁶⁻⁴, -NR⁶⁻²SO₂R⁶⁻², -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴, -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴, halogen, cyano, nitro or oxo,

25

wherein $R^{6\cdot 2}$ represents hydrogen, $C_1\text{-}C_4$ alkyl, C_3 – C_6 cycloalkyl, C_6 or C_{10} aryl

which can optionally be substituted by 1 to 3 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl, halogen, nitro, cyano,

5

WO 01/81298

and wherein R⁶⁻³ and R⁶⁻⁴ are identical or different and represent hydrogen, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₆ or C₁₀ aryl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

10

which can optionally be substituted by 1 to 2 substituents selected from the group C_1 - C_4 alkyl, phenyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,

or

15

R⁶⁻³ and R⁶⁻⁴ together form a 4-7-membered ring, which includes the nitrogen atom to which R⁶⁻³ and R⁶⁻⁴ are bonded and which contains up to 2 additional heteroatoms selected from the group oxygen, nitrogen or sulfur and which contains up to 2 double bonds, which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo,

25

20

and in case that R¹ represents a 3-amino benzoic acid derivative and R⁶⁻¹ represents -OR⁶⁻⁴, -C(O)NR⁶⁻³R⁶⁻⁴ or -NR⁶⁻²C(O)R⁶⁻⁴, then R⁶⁻⁴ represents C₆ or C₁₀ aryl or a 4-9-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

wherein the ring formed by R^{6-3} and R^{6-4} can optionally be substituted by 1 to 2 substituents selected from the group C_1 - C_4 alkyl, phenyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,

5 or

10

R³ and R⁴ or R⁴ and R⁵ together form a 4-7-membered saturated or unsaturated ring containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur, which can optionally be substituted by 1 to 2 substituents selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo and which can be fused with a 3-7 membered homocyclic or heterocyclic, saturated, unsaturated or aromatic ring,

A represents -C(O)-, -C(O)-C(O)-, -SO-, -SO₂-, -PO-, -PO₂-, 2-pyrimidyl, 4-pyrimidyl, 2-pyridyl, 2-imidazolyl, 4-imidazolyl, 2-benzimidazolyl or a ring selected from the following group:

wherein the abovementioned ring systems can optionally be substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, nitro, amino, cyano,

X represents $-CR^{X-1}R^{X-2}$ -,

wherein R^{X-1} and R^{X-2} can be independently selected from the group hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

or

5

10

15

together with R^6 form a 4-7-membered ring, which can contain up to 2 heteroatoms independently selected from the group oxygen, nitrogen or sulfur and containing up to 2 double bonds, which can optionally be substituted by 1 to 2 substituents selected from the group C_1 - C_4 alkyl, phenyl, benzyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano, oxo,

10

15

20

25

30

Y represents bond, -C(O)-, -S(O)-, -SO₂-, -O-, -S-, -CR^{Y-1}R^{Y-2}-, or -NR^{Y-3},

wherein R^{Y-1}, R^{Y-2}, R^{Y-3} can be independently selected from the group bond, hydrogen, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl,

and can optionally be substituted by 1 to 2 substituents independently selected from the group C₁-C₄ alkyl, phenyl, benzyl, C₃-C₇ cycloalkyl, C₁-C₄ alkyloxy, halogen, nitro, cyano, oxo,

D represents N or CR^{D-1},

wherein R^{D-1} can be independently selected from the group bond, hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 - C_4 alkynyl,

and $^{\circ}R^{D-1}$ can optionally be substituted by 1 to 2 substituents independently selected from the group C_1 - C_4 alkyl, phenyl, benzyl, C_3 - C_7 cycloalkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano, oxo,

with the proviso that, where D represents -N-, Y does not represent -O- or -S-,

and the compound is not one of the following: 3-[[[(phenylacetyl)amino]acetyl]amino]-benzoic acid; N-(4-aminophenylacetylglycyl)-4-aminophenylacetic acid; N¹-[4-(ethoxycarbonyl)phenyl]-N²-(phenylacetyl)- α -glutamine; N²-benzoyl-N¹-[4-(ethoxycarbonyl)phenyl]- α -glutamine; (S)-4-[[4-carboxy-1-oxo-2-[(phenylacetyl)amino]butyl]amino]-benzeneacetic acid; N-[2-[[4-aminosulfonyl)phenyl]amino]-2-oxoethyl]-N-ethylbenzeneacetamide; N-(2-phenylacetylamino-acetylamino)-benzoic acid ethyl ester,

and pharmaceutically acceptable salts thereof.

3. Compounds according to claim 1 or 2,

wherein

5

R¹ represents a 4- to 6-membered saturated, unsaturated or aromatic cyclic residue,

10

which can contain 0 to 3 heteroatoms selected independently from the group $N,\,S$ and $O,\,$

wherein the cyclic residue R¹ can be annulated with a 5- to 6-membered saturated, unsaturated or aromatic cyclic residue, which can contain 0 to 2 heteroatoms selected independently from the group N, S and O,

15

and wherein the cyclic residue R^1 and/or a ring annulated to the cyclic residue R^1 is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}-R^{1-3}-Z$, wherein

20

 R^{1-1} represents a bond, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_6 aryl,

25

wherein R^{1-1} can optionally be substituted by 1 substituent selected from the group R^{1-5} , wherein R^{1-5} represents hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 cycloalkyl or C_6 aryl,

 $R^{1\text{--}2}$ represents a bond, $C_1\text{--}C_6$ alkyl, $C_2\text{--}C_6$ alkenyl, $C_2\text{--}C_6$ alkynyl

30

R¹⁻³ represents a bond, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl

Z	represents -	-C(0)0	R ^{Z-1} , -C(O)NR ^{Z-2}	$^{2}R^{Z-3}$ or	5-tetrazol	v1
			, -(- /			<i>J</i> -

wherein R^{Z-1} , R^{Z-2} and R^{Z-3} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or benzyl,

5

the cyclic residue R¹ and/or a ring annulated to the cyclic residue formed by R¹ can optionally be substituted by 0 to 2 substituents R¹⁻⁸, halogen, nitro, amino, cyano and oxo,

10 wherein

- R¹⁻⁸ can independently be selected from the group of C₁-C₄ alkyl, C₁-C₄ alkyloxy, phenyl, phenoxy, phenylamino,
- 15 R^2 represents hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_6 aryl, C_5 - C_6 cycloalkyl,

and if R² is alkyl, R² together with the cyclic residue R¹ and D can form a 5-to 6-membered ring,

20

R³ represents hydrogen, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₆ aryl, C₅-C₆ cycloalkyl or a 5-6-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

25

30

which can optionally be substituted by 1 radical R³⁻¹,

and wherein R³ can furthermore be single-foldedly substituted by C₃-C₇ cycloalkyl, C₆ aryl, C₄-C₉ heteroaryl or a heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur, which can be annulated with a phenyl ring,

30

wherein R^{3-1} represents trifluormethyl, trifluormethoxy, $-OR^{3-2}$, $-SR^{3-2}$, $NR^{3-3}R^{3-4}$, $-NR^{3-2}C(O)OR^{3-3}$, $-CO_2R^{3-5}$, halogen, cyano, nitro or oxo,

5 wherein R³⁻² represents hydrogen or C₁-C₄ alkyl,

and wherein R^{3-3} and R^{3-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl or benzyl or 9-fluorenylmethyl,

and wherein R³⁻⁵ represents C₁-C₄ alkyl,

 R^4 represents hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 or C_6 aryl,

 R^5 represents hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkynyl or C_6 aryl,

which can optionally be substituted by 1 radical R⁵⁻¹,

wherein R⁵⁻¹ represents trifluormethyl, trifluormethoxy, -OR⁵⁻², -SR⁵⁻², NR⁵⁻³R⁵⁻⁴, halogen, cyano, nitro or oxo,

wherein R^{5-2} , R^{5-3} and R^{5-4} are identical or different and represent hydrogen or C_1 - C_4 alkyl,

25 R⁶ represents phenyl or a 5- to 6-membered aromatic heterocyclic residue containing up to 3 heteroatoms independently selected from the group oxygen, nitrogen or sulfur,

and which can optionally be independently substituted by 1 to 3 radicals $R^{6\text{-}1}$

wherein R⁶⁻¹ represents -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴,

WO 01/81298

wherein R^{6-2} and R^{6-3} are identical or different and represent hydrogen or $C_1\text{-}C_4$ alkyl,

5 and wherein R⁶⁻⁴ represents C₆ aryl,

which can optionally be substituted by 1-2 substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, halogen, nitro, cyano,

or R³ and R⁴ or R⁴ and R⁵ together form a 5-6-membered saturated or unsaturated ring containing up to 2 nitrogen atoms,

A represents -C(O)-, -SO-, -SO₂-,

15 X represents -CR^{X-1}R^{X-2},

wherein R^{X-1} and R^{X-2} can be independently selected from the group hydrogen, C_1 - C_4 alkyl,

20 Y represents -C(O)-,

D represents -N-,

and pharmaceutically acceptable salts thereof.

4. Compounds according to claim 1, 2 or 3,

wherein

25

30 R¹ represents a 5- to 6-membered saturated, unsaturated or aromatic cyclic residue,

which can contain 0 to 3 heteroatoms selected independently from the group N and S,

5 wherein the cycli

wherein the cyclic residue R1 can be annulated with a 5-membered un-

saturated or aromatic cyclic residue, which contains 1 nitrogen atom,

and wherein the cyclic residue R^1 and/or a ring annulated to the cyclic residue R^1 is substituted by 1 to 2 substituents $-R^{1-1}-R^{1-2}-R^{1-3}-Z$, wherein

10

 R^{1-1} represents a bond or C_1 alkyl,

15

wherein R^{1-1} can optionally be substituted by cyclopentyl,

R¹⁻² represents a bond,

R¹⁻³ represents a bond,

20

Z represents $-C(O)OR^{Z-1}$ or 5-tetrazolyl,

 R^{Z-1} represents hydrogen, C_1 - C_2 alkyl or benzyl,

25

the cyclic residue R¹ can optionally be substituted by 0 to 2 substituents R¹⁻⁸, halogen and nitro,

wherein

30

 R^{1-8} can independently be selected from the group of C_1 - C_4 alkyloxy, phenoxy and phenylamino,

	R^2 represents hydrogen or C_1 - C_3 alkyl,
5	or
J	and if R^2 is alkyl, R^2 together with the cyclic residue R^1 and D can form a piperidine ring,
10	R^3 represents hydrogen or C_1 - C_4 alkyl,
10	which can optionally be substituted by 1 radical R ³⁻¹ ,
	wherein R^{3-1} represents $NR^{3-3}R^{3-4}$ or $-NR^{3-2}C(O)OR^{3-3}$,
15	wherein R^{3-2} and R^{3-4} represent hydrogen,
	R ³⁻³ represents hydrogen, benzyl or 9-fluorenylmethyl,
20	R ⁴ represents hydrogen,
20	R ⁵ represents hydrogen or C ₃ alkyl,
	which can optionally be substituted by 1 radical R ⁵⁻¹ ,
25	wherein R ⁵⁻¹ represents -OR ⁵⁻² ,
	wherein R^{5-2} represents C_1 alkyl,
30	R ⁶ represents phenyl,
٥٥	

and which is substituted by 1 radical R^{6-1}

wherein R⁶⁻¹ represents -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴, wherein R⁶⁻² represents hydrogen, 5 and wherein R⁶⁻³ represents hydrogen and R⁶⁻⁴ represents C₆ aryl, 10 which is substituted by 1 substituent C1 alkyl, A represents -C(O)-, represents -CRX-1RX-2-, X 15 wherein RX-1 and RX-2 represent hydrogen, represents -C(O)-, Y 20 D represents N, and pharmaceutically acceptable salts thereof. Compounds according to claim 1, 2 or 3, 5. 25 wherein R^{1} represents phenyl, and wherein the phenyl is substituted by 1 to 2 substituents $-R^{1\text{--}1}-R^{1\text{--}2}$ 30

 $-R^{1-3}-Z$,

30

wherein

<u></u>		R ¹⁻¹ represents a bond or C ₁ alkyl,
5		R ¹⁻² represents a bond,
		R ¹⁻³ represents a bond,
10		Z represents -C(O)OR ^{Z-1}
	·	R ^{Z-1} represents hydrogen, C ₁ -C ₂ alkyl or benzyl,
		R ² represents hydrogen,
15		represents hydrogen, C ₁ -C ₆ alkyl, C ₂ -C ₆ alkenyl, C ₂ -C ₆ alkynyl, C ₆ aryl, C ₅ -C ₆ cycloalkyl or a 5-6-membered saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,
20		which can optionally be substituted by 1 radical R ³⁻¹ ,
2.5		and wherein R ³ can furthermore be single-foldedly substituted by C ₃ -C ₇ cycloalkyl, C ₆ aryl, C ₄ -C ₉ heteroaryl or a heterocyclic residue containing up
25		to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

which can be annulated with a phenyl ring,

wherein R^{3-1} represents trifluormethyl, trifluormethoxy, $-OR^{3-2}$, $-SR^{3-2}$, $-NR^{3-3}R^{3-4}$, $-NR^{3-2}C(O)OR^{3-3}$, $-CO_2R^{3-5}$, halogen, cyano, nitro or oxo,

wherein R³⁻² represents hydrogen or C₁-C₄ alkyl,

and wherein R^{3-3} and R^{3-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl or benzyl or 9-fluorenylmethyl,

5

and wherein R³⁻⁵ represents C₁-C₄ alkyl,

R⁴ represents hydrogen,

10 R⁵ represents hydrogen,

R⁶ represents phenyl,

and which is substituted by 1 radical R⁶⁻¹

15

wherein R^{6-1} represents -NR⁶⁻²C(O)NR⁶⁻³R⁶⁻⁴,

wherein R^{6-2} represents hydrogen,

20

and wherein R^{6-3} represents hydrogen

and R^{6-4} represents C_6 aryl,

which is substituted by 1 substituent C_1 alkyl,

25

or R³ and R⁴ or R⁴ and R⁵ together form a 5-6-membered saturated or a unsaturated ring containing up to 2 nitrogen atoms,

A represents -C(0)-,

30

X represents - $CR^{X-1}R^{X-2}$ -,

wherein R^{X-1} and R^{X-2} represent hydrogen,

Y represents -C(O)-,

5

D represents N,

and pharmaceutically acceptable salts thereof.

10 6. Compounds according to any one of claims 1 to 5,

wherein

R¹ represents phenyl,

15

which is 1,4-substituted by a substituent $-R^{4-1}-R^{1-2}-R^{1-3}-Z$,

wherein

- $20 \hspace{1cm} R^{1\text{--}1},\, R^{1\text{--}2} \text{ and } R^{1\text{--}3} \text{ represent bonds}.$
 - 7. Compounds according to any one of claims 1 to 5,

wherein

25

R¹ represents phenyl,

which is 1,3-substituted by a substituent $-R^{1-1}-R^{1-2}-R^{1-3}-Z$,

30 wherein

 R^{1-1} represents $-CH_2$ -,

wherein

 R^{1-2} and R^{1-3} represent bonds.

- 5 8. Compounds according to any one of claims 1 to 5,
 - R¹ represents a 5-membered heterocycle.
- 9. Compounds according to any one of claims 1 to 5, wherein
- 15 R¹ represents a cyclohexyl ring.
 - 10. Compounds according to any one of claims 1 to 5, wherein \mathbb{R}^6 represents

20

25

11. Compounds according to any one of claims 1 to 5, wherein \mathbb{R}^6 represents

12. Compounds according to claim 1, wherein

R⁵ represents hydrogen, C₁-C₄ alkyl,

which can optionally be substituted by 1 radicals R⁵⁻¹,

5

and which can furthermore be single-foldedly substituted by C_6 or C_{10} aryl, C_4 - C_9 heteroaryl or a saturated or unsaturated heterocyclic residue containing up to 2 heteroatoms selected from the group oxygen, nitrogen or sulfur,

10

which can optionally be substituted by 1 to 3 radicals R⁵⁻¹,

wherein R^{5-1} is independently selected from the group C_1 - C_4 alkyl, phenyl, trifluormethyl, trifluormethoxy, -OR $^{5-2}$, NR $^{5-3}$ R $^{5-4}$, halogen or oxo,

15

wherein R^{5-2} represents hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl or C_6 aryl

which can optionally be substituted by 1 substituent selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkyloxy, phenyl, C_3 - C_6 cycloalkyl or halogen,

20

and wherein R^{5-3} and R^{5-4} are identical or different and represent hydrogen, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_6 aryl.

13. A process for preparation of compounds of general formula (VII),

$$R^{6}$$
 R^{4} R^{3} R^{2} R^{1-2} R^{1-3} (VII)

25

according to any one of claims 5 to 9,

which comprises reaction of carboxylic acids of general formula (V)

5 or activated derivatives thereof

with compounds of the general formula (VI)

10

in the presence of a coupling agent and a base in inert solvents.

14. Compounds according to any one of claims 1 to 8, wherein the compound is selected from the following group:

15

 $\label{eq:N2-leading} N^2-\{[4-(\{[(2-methylphenyl)amino]carbonyl\}amino)phenyl]acetyl\}-N^1-[4-(1H-tetraazol-5-yl)phenyl]-L-leucinamide,$

20

2-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]benzoic acid,

20

3-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]benzoic acid,

25

4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]benzoic acid,

	{2-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-Leucyl)amino]phenyl}acetic acid,
5	{3-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L leucyl)amino]phenyl}acetic acid,
10	{4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-Leucyl)amino]phenyl}acetic acid,
10	3-chloro-4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]benzoic acid,
15	3-methoxy-4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phen-yl]acetyl}-L-leucyl)amino]benzoic acid,
	2-chloro-4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phen-yl]acetyl}-L-leucyl)amino]benzoic acid,
20	2-anilino-4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]benzoic acid,
	4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]-2-phenoxybenzoic acid,
25	2,5-dichloro-4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phen-yl]acetyl}-L-leucyl)amino]benzoic acid,
30	3-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]-5-nitrobenzoic acid,

	1-(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)-1,2,3,4-tetrahydro-6-quinolinecarboxylic acid,
5	4-{[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]methyl}benzoic acid,
	cyclopentyl {4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phen-yl]acetyl}-L-leucyl)amino]phenyl}acetic acid,
10	{2-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]-1,3-thiazol-4-yl}acetic acid,
	{5-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]-1,3,4-thiadiazol-2-yl}acetic acid,
15	{2-[methyl(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]-1,3-thiazol-4-yl}acetic acid,
20	5-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]-1H-indole-2-carboxylic acid
	N^{1} -(4-carboxyphenyl)- N^{2} -{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-lysinamide trifluoroacetate,
25	4-[(N-(3-methoxypropyl)-N-{[4-({[(2-methylphenyl)amino]carbon-yl}amino)phenyl]acetyl}glycyl)amino]benzoic acid,
	4-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phenyl]acetyl}-L-leucyl)amino]cyclohexanecarboxylic acid and

WO 01/81298

5

10

15

- 116 -

PCT/EP01/04043

(1R,2S)-2-[(N-{[4-({[(2-methylphenyl)amino]carbonyl}amino)phen-yl]acetyl}-L-leucyl)amino]cyclohexanecarboxylic acid.

- 15. The use of a compound according to any one of claims 1 to 5 in the manufacture of a medicament.
- 16. The use of a compound according to any one of claims 1 to 5 in the manufacture of a medicament for the treatment or the prevention of a condition mediated by integrins.

17. The use of a compound according to any one of claims 1 to 5 in the manufacture of a medicament for the treatment or the prevention of atherosclerosis, asthma, chronic obstructive pulmonary disease (COPD), allergies, diabetes, inflammatory bowel disease, multiple sclerosis, myocardial ischemia, rheumatoid arthritis, transplant rejection and other inflammatory, autoimmune and immune disorders.

18. Pharmaceutical composition, comprising compounds according to any one of claims 1 to 5 and a pharmaceutically acceptable carrier.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 November 2001 (01.11.2001)

PCT

(10) International Publication Number WO 01/81298 A3

(51) International Patent Classification⁷: C07C 271/22, 275/42, C07D 257/04, 277/44, 285/08, A61K 31/185, 31/17, 31/41, 31/425, 31/433, A61P 29/00, C07C 237/20, C07D 209/42, 215/48, 285/12

(21) International Application Number: PCT/EP01/04043

(22) International Filing Date: 9 April 2001 (09.04.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 100 19 755.8 20 April 2000 (20.04.2000) DE

(71) Applicant (for all designated States except US): BAYER AKTIENGESELLSCHAFT [DE/DE]: 51368 Leverkusen (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LEHMANN, Thomas [DE/DE]: Unterscheider Weg 20, 51467 Bergisch Gladbach (DE), FISCHER, Rüdiger [DE/DE]: Zu den Fussfällen 23, 50259 Pulheim (DE), ALBERS, Markus [DE/DE]: Edelrather Weg 154, 51372 Leverkusen (DE), RÖLLE, Thomas [DE/DE]: Hans-Sachs-Str. 18–51375 Leverkusen (DE), MÜLLER, Gerhard [DE/DE]: Berliner Str. 70, 51377 Leverkusen (DE), HESSLER, Gerhard [DE/DE]: Holunderweg 12, 51375 Leverkusen (DE), TAJIMI, Masaomi [JP/JP]: 1-8-7, Sakuragaoka, Seika-cho, Soraku-gun, Kyoto 619-0232 (JP), ZIEGEL-BAUER, Karl [DE/DE]: Düppelstr. 2a, 42781 Haan (DE).

OKIGAMI, Hiromi [JP/JP]: 7-1-1-8-2()4. Saganakadai. Kizu-cho. Soraku-gun. Kyoto 619-0223 (JP). BACON, Kevin [GB/JP]: 5-15-914. Kunimidai. Kizu-cho. Soraku-gun. Kyoto 619-0216 (JP). HASEGAWA, Haruki [JP/JP]: 1-4-1-3-101. Umemidai. Kizu-cho. Soraku-gun. Kyoto 619-0215 (JP).

(74) Common Representative: BAYER AKTIENGE-SELLSCHAFT; 51368 Leverkusen (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 2 May 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Ŕ

(54) Title: CYCLIC CARBOXYLIC ACIDS AS INTEGRIN ANTAGONISTS

(57) Abstract: The present invention relates to compounds of general formula (1), processes for their preparation, pharmaceutical compositions containing them as well as their use for the production of pharmaceutical compositions for the treatment of inflammatory diseases.

INTERNATIONAL SEARCH REPORT

Inti ional Application No PCT/EP 01/04043

IPC 7	FICATION OF SUBJECT MATTER C07C271/22 C07C27 A61K31/185 A61K31 A61P29/00 C07C23 of International Patent Classification (IPC)			7/44 (425 6/48	CO7D285/08 A61K31/433 CO7D285/12
	SEARCHED	,			
Minimum do IPC 7	cumentation searched (classification sy CO7C CO7D	stem followed by classificat	ion symbols)		
Documentat	ion searched other than minimum docur	nentation to the extent that	such documents are incl	uded in the	fields searched
	ata base consulted during the internation ternal, WPI Data, CHE		ase and, where practical	, search tern	ns used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVAN	т			
Category °	Citation of document, with indication,	where appropriate, of the re	levant passages		Relevant to claim No.
Υ	WO 96 22966 A (BIOGEN INC ;ADAMS STEVEN P (US); LIN KO CHUNG (US); LEE WEN CHERNG) 1 August 1996 (1996-08-01) cited in the application claim 1				14
Υ .	WO 99 33789 A (MORLEY ANDREW DAVID ;RHONE POULENC RORER LTD (GB); ASTLES PETER CH) 8 July 1999 (1999-07-08) cited in the application tables 3-15				14
Υ	WO 99 37605 A (NOV GMBH ;NOVARTIS AG JOS) 29 July 1999 cited in the appli claim 11	(CH); VON MATT (1999-07-29)			14
Furtr	er documents are listed in the continual	ion of box C.	χ Patent family r	members are	e listed in annex.
	er documents are listed in the continual legories of cited documents:	ion of box C.	T faler document publ	ished after th	ne international filing date
consid 'E' earlier o filing d	nt defining the general state of the art wared to be of panicular relevance locument but published on or after the in all the properties of the properties o	itemational	cited to understand invention "X" document of particular cannot be consider	the principle ar relevance red novel or	ct with the application but e or theory underlying the stitle claimed invention cannot be considered to the document is taken alone
which citation other r	is cred to establish the publication date of or other special reason (as specified) and referring to an oral disclosure, use, e	ot another exhibition or	"Y" document of particu cannot be consider document is combi	iar relevance red to involve ined with one	
later tr	an the priority date claimed		*&* document member		
	actual completion of the international sea	rcn	Date of mailing of to 25/01/20		nai search report
	nalling address of the ISA European Patent Office, P.B. 5818 F	Patentlaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 Fax: (+31-70) 340-3016	epo ni,	Goetz, (à	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-13, 15-18 (all in part)

The initial phase of the search revealed a very large number of documents relevant to the issue of novelty. So many documents were retrieved that it is impossible to determine which parts of the claim(s) may be said to define subject-matter for which protection might legitimately be sought (Article 6 PCT). For these reasons, a meaningful search over the whole breadth of the claim(s) is impossible. Consequently, the search has been restricted to the compounds of present claim 14 as well as to the use of these compounds

In addition, present claims 1 to 13 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds as claimed in present claim 14 as well to the use of these compounds.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

information on patent family members

Int: :lonal Application No
PCT/EP 01/04043

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
		· · · · · · · · · · · · · · · · · · ·		` '	<u> </u>	
WO 9622966	Α	01-08-1996	US	6306840 B1	23-10-2001	
			AU	718926 B2	04-05-2000	
			AU	4911596 A	14-08-1996	
			BG	101841 A	30-04-1998	
			BR	9606778 A	06-01-1998	
			CA	2211181 A1	01-08-1996	
			CN	1177343 A	25-03-1998	
			CZ	9702340 A3	18-03-1998	
			EE	9700172 A	16-02-1998	
			ΕP	1142867 A2	10-10-2001	
			ΕP	0805796 A1	12-11-1997	
			FΙ	973087 A	22-09-1997	
			ΗŪ	9702461 A2	28-04-1998	
			JP	10513160 T	15-12-1998	
			NO	973384 A	19-09-1997	
			PL	321848 A1	22-12-1997	
			SK	98797 A3	04-02-1998	
			WO	9622966 A1	01-08-1996	
					01 00-1530	
WO 9933789	A	08-07-1999	ΑU	1771999 A	19-07-1999	
			BR	9814376 A	10-10-2000	
			CN	1283181 T	07-02-2001	
			CZ	20002342 A3	14-11-2001	
			ΕP	1042279 A1	11-10-2000	
			WO	9933789 Al	08-07-1999	
			ΗU	0101701 A2	28-11-2001	
			NO	20003273 A	22-06-2000	
		•	PL	341280 A1	09-04-2001	
			TR	200001947 T2	22-01-2001	
WO 9937605	 А	29-07-1999	AU	2829299 A	09-08-1999	
	"		BR	9907733 A	17-10-2000	
			CN	1294576 T	09-05-2001	
			WO	9937605 A1	29-07-1999	
			EP	1049665 A1		
			HU	0100336 A2	08-11-2000	
			NO NO		30-07-2001	
			PL	20003694 A	20-09-2000	
			ΓL	341899 A1	07-05-2001	