

大数据分析聚类分析

什么是聚类

- 聚类是指对相似的数据对象进行分组,形成簇。
- 组内的对象之间 是相似的,不同组 中的对象是不同的
- 组内相似度越大,

组间差别越大,聚类越好

地震

GLOBAL SEISMIC HAZARD MAP

簇的概念

How many clusters?

Six Clusters

Two Clusters

Four Clusters

K-MEANS

- 算法过程:
 - ★1)从N个样本数据中随机选取K个对象作为初始的质心;
 - ★ 2) 分别计算每个样本到各个质心的距离,将对象分配到距离最近的 质心;
 - * 3)所有对象分配完成后,重新计算K个簇的质心;
 - ★ 4) 与前一次计算得到的K个质心比较,如果质心发生变化,转2),否则转5);
 - ★ 5) 当质心不发生变化时停止并输出聚类结果。

相似性度量-连续属性

- 对于连续属性,要先对各属性值进行零-均值规范,再进行距离的计算。
- 用 p 个属性来表示 n 个样本的数据矩阵如下:

```
\begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix}
```

相似性度量-连续属性(续)

■ 欧几里德距离:

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

■ 曼哈顿距离:

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

■ 闵可夫斯基距离:

$$d(i,j) = \sqrt[q]{|(x_{i1} - x_{j1}|)^q + (|x_{i2} - x_{j2}|)^q + \dots + (|x_{ip} - x_{jp}|)^q}$$

 $\begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix}$

相似性度量-文档数据

■ 对于文档数据使用余弦相似性度量,先将文档数据整理成文档—词矩阵

格式:

	lost	win	team	score	music	һарру	sad	•••	coach
文档一	14	2	8	0	8	7	10		6
文档二	1	13	3	4	1	16	4	•••	7
文档三	9	6	7	7	3	14	8	•••	5

■ 两个文档之间的相似度的计算公式为:

$$d(i,j) = \cos(i,j) = \frac{\vec{i} \cdot \vec{j}}{|\vec{i}||\vec{j}|}$$

目标函数

- 使用误差平方和SSE作为度量聚类质量的目标函数,对于两种不同的 聚类结果,选择误差平方和较小的分类结果。
- 1)连续属性的SSE计算公式为:

$$SSE = \sum_{i=1}^{K} \sum_{x \in E_i} dist(e_i, x)^2$$

2) 文档数据的SSE计算公式为:

$$SSE = \sum_{i=1}^{K} \sum_{x \in E_i} \cos(e_i, x)^2$$

符号	含义
K	簇的个数
E _i	第i个簇
x	对象(样本)
e_{i}	簇 E _i 的质心

举例(续)

选择初始质心

- 多次运行,每次随机地选取一组初始质心
- 使用层次聚类技术进行聚类,从层次聚类中提取k个簇,并用这些簇的 质心作为初始质心
- 随机地选择第一个点,或取所有点的质心作为第一个点,然后对于每个后继初始质心,选择离已经选取过的质心最远的点。
- 二分k均值,后处理
- 。 。

K-MEANS的局限

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

不同尺寸

Original Points

K-means (3 Clusters)

不同密度

Original Points

K-means (3 Clusters)

非球形

15 -10 -5 0 5 10 15 X

Original Points

K-means (2 Clusters)

解决方案

3 - 2 - 1 0 1 2 3 4

Original Points

K-means Clusters

解决方案(续)

Original Points

K-means Clusters

解决方案(续)

Original Points

K-means Clusters

课后调研

■如何优化K-means算法?

举例:餐饮客户的消费行为

■ RFM模型

- * R (Recency):最近一次消费时间与截止时间的间隔。
- * F (Frequency): 客户在某段时间内所消费的次数。
- * M (Monetary) : 客户在某段时间内所 消费的金额。

ID	R	F	M
1	37	4	579
2	35	3	616
3	25	10	394
4	52	2	111
5	36	7	521
6	41	5	225
7	56	3	118
8	37	5	793
9	54	2	111
10	5	18	1086
	•••	•••	•••

层次聚类

- ■划分聚类简单地将数据对象集划分成不重叠的子集(簇), 使得每个数据对象恰在一个子集中。
- ■层次聚类允许簇具有子簇。层次聚类是嵌套簇的集族,组织成一棵树,除叶结点外,树的每一个结点都是其子女结点的并,而树根是包含所有对象的簇。

22

凝聚层次聚类

- 从点作为个体簇开始,每一步合并两个最接近的簇
- 常常使用树状图和嵌套簇图来表示簇-子簇联系和簇合并次序

基本凝聚层次聚类算法

■从个体点作为簇开始,相继合并两个最接近的簇,直到只剩下一个簇 关键操作: 计算两

Basic algorithm is straightforward

- Compute the proximity matrix
- 2. Repeat
- Merge the two closest clusters
- 4. Update the proximity matrix
- Until only a single cluster remains

个簇之间的邻近度

邻近度定义

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN (单链)

■取不同簇的两个最近的点之间的邻近度作为簇的邻近度

举例

	P1	P2	Р3	P4	P5	P6
P1	0	0.2357	0.2218	0.3688	0.3421	0.2347
P2	0.2357	0	0.1483	0.2042	0.1388	0.2540
Р3	0.2218	0.1483	0	0.1513	0.2843	0.1100
P4	0.3688	0.2042	0.1513	0	0.2932	0.2216
P5	0.3421	0.1388	0.2843	0.2932	0	0.3921
P6	0.2347	0.2540	0.1100	0.2216	0.3921	0

	P1	P2	P3、6	P4	P5
P1	0	0.2357	0.2218	0.3688	0.3421
P2	0.2357	0	0.1483	0.2042	0.1388
P3、6	0.2218	0.1483	0	0.1513	0.2843
P4	0.3688	0.2042	0.1513	0	0.2932
P5	0.3421	0.1388	0.2843	0.2932	0

	P1	P2、5	P3、6	P4
P1	0	0.2357	0.2218	0.3688
P2、5	0.2357	0	0.1483	0.2042
P3、6	0.2218	0.1483	0	0.1513
P4	0.3688	0.2042	0.1513	0

dist $({1},{3,6})=min(dist(1,3),dist(1,6))$ =min(0.2218,0.2347)=0.2218

	P1	P2、5、3、6、4
P1	0	0.2218
P2、5、3、6、4	0.2218	0

	P1	P2、5、3、6	P4
P1	0	0.2218	0.3688
P2、5、3、6	0.2218	0	0.1513
P4	0.3688	0.1513	0

举例(续)

Nested Clusters

Dendrogram

MAX(全链)

■取不同簇中两个最远的点之间的邻近度作为簇的邻近度

举例

	P1	P2	Р3	P4	P5	Р6
P1	0	0.2357	0.2218	0.3688	0.3421	0.2347
P2	0.2357	0	0.1483	0.2042	0.1388	0.2540
Р3	0.2218	0.1483	0	0.1513	0.2843	0.1100
P4	0.3688	0.2042	0.1513	0	0.2932	0.2216
P5	0.3421	0.1388	0.2843	0.2932	0	0.3921
P6	0.2347	0.2540	0.1100	0.2216	0.3921	0

	P1	P2	P3、6	P4	P5
P1	0	0.2357	0.2347	0.3688	0.3421
P2	0.2357	0	0.2540	0.2042	0.1388
P3、6	0.2347	0.2540	0	0.2216	0.3921
P4	0.3688	0.2042	0.2216	0	0.2932
P5	0.3421	0.1388	0.3921	0.2932	0

	P1	P2、5	P3、6	P4
P1	0	0.3421	0.2347	0.3688
P2、5	0.3421	0	0.3921	0.2932
P3、6	0.2347	0.3921	0	0.2216
P4	0.3688	0.2932	0.2216	0

 $dist({1},{3,6})=max(dist(1,3),dist(1,6))$ =max(0.2218,0.2347)=0.2347

	P1、2、5	P3、4、6
P1、2、5	0	0.3921
P3、4、6	0.3921	0

	P1	P2、5	P3、4、6
P1	0	0.3421	0.3688
P2、5	0.3421	0	0.3921
P3、4、6	0.3688	0.3921	0

举例

0.4 0.35 0.3-0.25 0.15-0.1-0.05 0 3 6 4 1 2 5

Nested Clusters

Dendrogram

GROUP AVERAGE

■取不同簇的所有点对邻近度的平均值作为簇的邻近度

举例

Dist(3,6,4),(1)=(0.2218+0.2347+0.3688)/(3*1)=0.28Dist(3,6,4),(2,5)=(0.1483+0.2843+0.2541+0.3921+0.2042+0.2932)/(3*2)=0.26

Nested Clusters

Dendrogram

DISTANCE BETWEEN CENTROIDS

■取不同簇的质心之间的距离作为簇的邻近度

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN

DBSCAN算法

- 1、将所有点标记为核心点、边界点或噪声点
- 2、删除噪声点
- 3、为距离在Eps之内的所有核心点之间赋予一条边
- 4、每组连通的核心点形成一个簇
- 5、将每个边界点指派到一个与之关联的核心点的簇中

举例

Eps = 10, MinPts = 4

举例(续)

- Resistant to Noise
- Can handle clusters of different shapes and sizes

Point types: core, border and noise

Clusters