Nome e mail	Algebra 2	13 Settembre 2016
Matricola		
Esercizio 1 Dimostrare che (\mathbb{Z}_8 ,	$+$) e Aut(\mathbb{Z}_{15}) non son	no isomorfi.

Esercizio 2 Sia $A = \{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \mid \alpha, \beta \in \mathbb{C} \}.$

- (1) Dimostrare che A è un sottoanello di $M_2(\mathbb{C})$.
- (2) Sia q = a + bi + cj + dk un elemento del corpo dei quaternioni \mathbb{H} . Si dimostri che l'applicazione $\varphi : \mathbb{H} \to A$ definita da

$$\varphi(q) = \left(\begin{array}{cc} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{array} \right), \ \alpha = a + bi, \ \beta = c + id \in \mathbb{C}$$

- è un isomorfismo di anelli e pertanto di corpi.
- (3) Si verifichi che

$$\det(\varphi(q)) = ||q||^2 = a^2 + b^2 + c^2 + d^2.$$

- Si deduca che $||q_1q_2|| = ||q_1|| ||q_2||$, per ogni $q_1, q_2 \in \mathbb{H}$. (4) Si verifichi che l'insieme dei quaternioni di norma 1 è un sottogruppo del gruppo moltiplicativo (\mathbb{H}^*, \cdot) .

