1	2	3	4	5	Calificación

Cálculo Avanzado

Primer parcial - 08/10/2014

1) Calcular el cardinal del conjunto

$$A = \{ X \subset \mathbb{R}^2 : \#(X) = \aleph_0 \text{ y } \overline{X} = \mathbb{R}^2 \}.$$

2) Probar que

$$||f|| = \sup_{x \in [0,1]} \{x^2 |f(x)|\}$$

es una norma en $C([0,1]) = \{f : [0,1] \to \mathbb{R} \text{ continuas}\}.$ ¿Son $\|\cdot\| \text{ y } \|\cdot\|_{\infty}$ equivalentes?

- 3) Decidir si las siguientes afirmaciones son verdaderas o falsas, dando una demostración o un contraejemplo según corresponda:
 - a) $(f(U))^o \subset f(U^o)$ para todo $U \subset X \Longrightarrow f$ continua.
 - b) $f^{-1}(V^o)\subset (f^{-1}(V))^o$ para todo $V\subset Y\Longrightarrow f$ continua.
 - $c)\ f$ continua $\Longrightarrow (f(U))^o\subset f(U^o)$ para todo $U\subset X.$
 - $d)\ f$ continua $\Longrightarrow f^{-1}(V^o)\subset (f^{-1}(V))^o$ para todo $V\subset Y.$
- 4) Sea $c = \{(a_n)_{n \in \mathbb{N}} \subset \mathbb{R} / a_n \text{ es convergente}\}$. Probar que $c \subset \ell^{\infty}$ y es completo con $\|\cdot\|_{\infty}$.
- 5) Para cada $k \in \mathbb{N}$ sea $f_k : \mathbb{R}^n \to \mathbb{R}$ de clase \mathcal{C}^1 tal que $\nabla f_k(x) \neq 0$ para todo $x \in \mathbb{R}^n$. Si $F_k = \{x \in \mathbb{R}^n : f_k(x) = 0\}$, probar que $\bigcup_{k \in \mathbb{N}} F_k \neq \mathbb{R}^n$.

Justifique todas las respuestas