CSE350: Assignment-2

Data Encryption Standard

Language:- Python

Operating System:- Ubuntu

For this assignment, We are presenting an implementation of the Data Encryption Standard (DES) algorithm in Python. DES is a symmetric key encryption method that processes 64-bit blocks of plaintext using a 56-bit key, producing a 64-bit ciphertext. Our algorithm follows an iterative structure with 16 encryption rounds.

Implementation

The code consists of the following major components:

- **DES Tables and Constants:** Predefined tables for initial and final permutation, PC-1, PC-2, S-Boxes, and P-Box permutation.
- **Utility Functions:** Functions for bitwise XOR, hexadecimal-to-binary, permutations, and shifting.
- **Key Scheduling:** The key is permuted and split into two halves, which go through left shifts before being concatenated to generate round keys.
- **Feistel Network:** The DES encryption process involves dividing the plaintext, processing the right half using round keys through expansion, substitution, and permutation.
- **Encryption & Decryption:** Encryption follows 16 rounds of Feistel structures, while decryption follows the same process with reversed round keys.
- **Final Permutation & Output:** The final ciphertext is obtained after a final permutation step.

Results and Verification

- The program correctly encrypts and decrypts messages.
- Verification checks confirm that intermediate results follow expected patterns:
 - Round 1 of encryption matches Round 15 of decryption (swapped halves).
 - Round 14 of encryption matches Round 2 of decryption.

Relevant test cases have been mentioned in the README.md file for the evaluator to peruse through.

Enter the message to be encrypted (hexadecimal):0123456789ABCDEF Enter the 64-bit key for encryption (hexadecimal):133457799BBCDFF1

--- Encryption Process ---

+ Round	Left	Right	Combined	++ Round Key
	CC00CCFF	FOAAFOAA	 CC00CCFFF0AAF0AA	
j 1	F0AAF0AA	EF4A6544	F0AAF0AAEF4A6544	1B02EFFC7072
j 2	EF4A6544	CC017709	EF4A6544CC017709	79AED9DBC9E5
j 3	CC017709	A25C0BF4	CC017709A25C0BF4	55FC8A42CF99
4	A25C0BF4	77220045	A25C0BF477220045	72ADD6DB351D
5	77220045	8A4FA637	772200458A4FA637	7CEC07EB53A8
6	8A4FA637	E967CD69	8A4FA637E967CD69	63A53E507B2F
7	E967CD69	064ABA10	E967CD69064ABA10	EC84B7F618BC
8	064ABA10	D5694B90	064ABA10D5694B90	F78A3AC13BFB
9	D5694B90	247CC67A	D5694B90247CC67A	E0DBEBEDE781
10	247CC67A	B7D5D7B2	247CC67AB7D5D7B2	B1F347BA464F
11	B7D5D7B2	C5783C78	B7D5D7B2C5783C78	215FD3DED386
12	C5783C78	75BD1858	C5783C7875BD1858	7571F59467E9
13	75BD1858	18C3155A	75BD185818C3155A	97C5D1FABA41
14	18C3155A	C28C960D	18C3155AC28C960D	5F43B7F2E73A
15	C28C960D	43423234	C28C960D43423234	BF918D3D3F0A
16	0A4CD995	43423234	0A4CD99543423234	CB3D8B0E17F5

Encrypted:85E813540F0AB405

--- Decryption Process ---

Round	Left	Right	Combined	Round Key		
0	0A4CD995	43423234	0A4CD99543423234	i i		
j 1 j	43423234	C28C960D	43423234C28C960D	CB3D8B0E17F5		
j 2 j	C28C960D	18C3155A	C28C960D18C3155A	BF918D3D3F0A		
j 3 j	18C3155A	75BD1858	18C3155A75BD1858	5F43B7F2E73A		
j 4 j	75BD1858	C5783C78	75BD1858C5783C78	97C5D1FABA41		
j 5 j	C5783C78	B7D5D7B2	C5783C78B7D5D7B2	7571F59467E9		
j 6 j	B7D5D7B2	247CC67A	B7D5D7B2247CC67A	215FD3DED386		
j 7 j	247CC67A	D5694B90	247CC67AD5694B90	B1F347BA464F		
8	D5694B90	064ABA10	D5694B90064ABA10	E0DBEBEDE781		
9	064ABA10	E967CD69	064ABA10E967CD69	F78A3AC13BFB		
10	E967CD69	8A4FA637	E967CD698A4FA637	EC84B7F618BC		
j 11 j	8A4FA637	77220045	8A4FA63777220045	63A53E507B2F		
12	77220045	A25C0BF4	77220045A25C0BF4	7CEC07EB53A8		
13	A25C0BF4	CC017709	A25C0BF4CC017709	72ADD6DB351D		
j 14 j	CC017709	EF4A6544	CC017709EF4A6544	55FC8A42CF99		
j 15 j	EF4A6544	F0AAF0AA	EF4A6544F0AAF0AA	79AED9DBC9E5		
16 	CC00CCFF	F0AAF0AA	CC00CCFFF0AAF0AA	1B02EFFC7072 		

Decrypted:0123456789ABCDEF