HUHTIKUUN 2016 VALMENNUSTEHTÄVÄT

HELPOMPI JA VAIKEAMPI SARJA

Ohessa huhtikuun valmennustehtäväsarja. Kannattaa huomioida, että valmennustehtäväaktiivisuudella on yhä suurempi vaikutus joukkuevalintoihin. Valmennustehtävien aktiivinen ratkaiseminen on myös välttämätöntä, mikäli haluaa kilpailumatematiikkaa oppia. IMO-joukkue valitaan toukokuun puolen välin hujakoissa. Mikäli toivoo ratkaisujen vaikuttavan joukkuevalintaan, kannattaa viimeistään siihen mennessä lähettää ratkaisut.

Ratkaisuja kaivataan marraskuun loppuun mennessä osoitteeseen Anne-Maria Ernvall-Hytönen, Kalannintie 6c A2, 00430 Helsinki. Mahdollisista epäselvyyksistä tehtävissä voi kysyä soittamalla 041-5228141 tai lähettämällä sähköpostia aernvall@abo.fi.

НЕГРОММАТ ТЕНТÄVÄТ

(1) Osoita, että luku

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

ei ole kokonaisluku, kun n > 1 on kokonaisluku.

(2) Käyttäen hyväksi tietoa, että

$$\binom{2n-1}{n} \le 2^{2n-2},$$

todista, että

$$\prod_{p \le x} p \le 2^{2x-3},$$

missä tulo on alkulukujen yli.

- (3) Onko olemassa neljä eri positiivista kokonaislukua niin, että kun minkä tahansa kahden tuloon lisätään 2006, niin tulos on neliöluku?
- (4) Suorakulmaisen kolmion piiri on 60 ja hypotenuusan vastainen korkeus 12. Määritä kolmion sivujen pituudet.
- (5) Olkoon annettuna säännöllinen kuusikulmio sekä piste tasossa. Miten voidaan piirtää pisteen kautta suora siten, että se jakaa kuusikulmion kahteen pinta-alaltaan yhtä suureen osaan?
- (6) Piste P sijaitsee suorakulmion sisällä siten, että sen etäisyys yhdestä kulmasta on 5, vastakkaisesta kulmasta 14 ja kolmannesta kulmasta 10. Mikä on pisteen P etäisyys viimeisestä kulmasta?
- (7) Kahdella toisiaan leikkaavalla ympyrällä ω_1 ja ω_2 on yhteinen tangentti, joka leikkaa ω_1 :n pisteessä P ja ω_2 :n pisteessä Q. Ympyrät leikkaavat toisensa pisteissä M ja N. Todista, että kolmioiden MNP ja MNQ pinta-alat ovat yhtä suuret.

- (8) Kahdella toisiaan leikkaavalla ympyrällä ω_1 ja ω_2 on yhteinen tangentti, joka leikkaa ω_1 :n pisteessä P ja ω_2 :n pisteessä Q. Ympyrät leikkaavat toisensa pisteissä M ja N. Todista, että kolmioiden MNP ja MNQ pinta-alat ovat yhtä suuret.
- (9) Kolmion ABC sivujen pituudet ovat a = BC, b = CA ja c = AB. Kärkipisteiden koordinaatit ovat $A = (x_A, y_A)$, $B = (x_B, y_B)$ ja $C = (x_C, y_C)$. Määritä
 - (a) pisteen A ja sivun BC keskipisteen yhdistävän suoran yhtälö,
 - (b) kolmion ABC keskijanojen leikkauspisteen koordinaatit,
 - (c) kulman $\angle BAC$ puolittajan yhtälö ja
 - (d) kolmion ABC sisäänpiirretyn ympyrän keskipisteen koordinaatit.

Apua tähän ja seuraaviin analyyttisen geometrian tehtäviin voi hakea monisteesta

http://matematiikkakilpailut.fi/kirjallisuus/ag.pdf

(10) Ratkaise analyyttisellä geometrialla: Suunnikkaan ABCD lävistäjät leikkaavat pisteessä E. Kulmien $\angle DAE$ ja $\angle EBC$ puolittajat pisteessä F. Lisäksi tiedetään että ECFD on suunnikas. Määritä suhde AB:AD.

Vihje: valitse koordinaatiston akselit niin, että mahdollisimman moni laskuissa esiintyvä koordinaatti on nolla.

(11) Ratkaise analyyttisellä geometrialla: Olkoon piste D kolmion ABC kärjestä B piirretyn korkeusjanan kantapiste ja AB=1. Kolmion BCD sisäänpiirretyn ympyrän keskipiste on sama kuin kolmion ABC keskijanojen leikkauspiste. Laske sivujen AC ja BC pituudet.

Vaikeammat tehtävät

- (1) Ratkaise analyyttisellä geometrialla: Olkoon AD korkeusjana kolmiossa ABC, joka ei ole tasakylkinen. Olkoon M sivun BC keskipiste ja piste N pisteen M kuva peilauksessa pisteen D yli. Kolmion AMN ympäripiirretty ympyrä leikkaa janan AB pisteessä $P \neq A$ ja janan AC pisteessä $Q \neq A$. Osoita, että suorat AN, BQ ja CP leikkaavat toisensa yhdessä pisteessä.
- (2) Kolmion janat AD, BE ja CF ovat kolmion ABC kulmanpuolittajia. Osoita, että suorien EF ja BC, FD ja AC sekä DE ja AB leikkauspisteet ovat samalla suoralla.
- (3) Kolmiossa ABC on AB < AC. Jana AD on kolmion ABC kulmanpuolittaja. Pisteiden B ja C kohtisuorat projektiot puolisuoralla AD ovat B' ja C'. Osoita, että (A, D, C', B') on harmoninen pisteistö.
- (4) Osoita: jos (A, B, C, D) on harmoninen pisteistö ja $\angle COD$ on suora kulma, niin OC puolittaa kulman AOB.
- (5) Pisteestä A piirretään tangentit O-keskiselle ympyrälle Γ ; sivuamispisteet ovat P ja Q. Piirretään janojen OA ja PQ leikkauspisteen E kautta Γ :n jänne CD. Osoita, että $\angle CAE = \angle EAD$.
- (6) ABCD on täydellinen nelikulmio ja $E = AB \cap CD$, $F = AD \cap BC$ ja $G = AC \cap BD$ ovat sen lävistäjien leikkauspisteet. Osoita, että pisteet $H = EF \cap BD$, $I = FG \cap AB$ ja $J = GE \cap BC$ ovat samalla suoralla.
- (7) Pisteestä A piirretään tangentit ympyrälle Γ ; sivuamispisteet ovat P ja Q. A:n kautta piirretty suora leikkaa Γ :n pisteissä B ja C. QE on γ :n jänne; $QE \parallel BC$. Osoita, että PE kulkee janan BC keskipisteen kautta.

- (8) Todista, että epätasakylkisen kolmion kahden kulman puolittajat ja kolmannen kulman vieruskulman puolittaja leikkaavat vastakkaiset sivut pisteissä, jotka ovat samalla suoralla.
- (9) Näytä, että epätasakylkisen kolmion kulmien vieruskulmien puolittajat leikkaavat vastakkaiset sivut pisteissä, jotka ovat samalla suoralla.
- (10) Neliön ABCD sivua AB jatketaan pisteeseen P siten, että BP=2AB. Olkoon M sivun CD keskipiste ja Q janojen BM ja AC leikkauspiste sekä R janan PQ ja sivun BC leikkauspiste. (Ks. kuva.) Määritä Menelaoksen lausetta käyttäen $\frac{CR}{RB}$.

(11) Suora leikkaa nelikulmion ABCD sivut AB, BC, CD ja DA pisteissä K, L, M, N tässä järjestyksessä. (Ks. kuva.) Osoita, että

$$\frac{BL}{LC} \cdot \frac{AK}{KB} \cdot \frac{DN}{NA} \cdot \frac{CM}{MD} = 1.$$

(12) Todista, että jos kolmion yksi sivu on lyhyempi kuin kahden muun aritmeettinen keskiarvo, sen vastainen kulma on pienempi kuin kahden muun kulman aritmeettinen keskiarvo.