Rohrback Cosasco Systems

TEST REPORT FOR

Data-logger with Bluetooth Communication, MWT-3905-MDL-BT

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.247 and RSS-210 Issue 8

Report No.: 92136-13

Date of issue: August 8, 2011

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 38 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 15 Subpart C	7
15.31(e) Voltage Variations	7
15.207 AC Conducted Emissions	8
15.247 Bandedge	9
15.247(a)(1) Average Time of Occupancy	14
Frequency Separation	15
-20 dB Bandwidth	16
Number of Hopping Channels	17
Average Time of Occupancy	19
15.247(b)(1) RF Power Output	23
15.247(d) Radiated Spurious Emissions	26
RSS-210	33
99 % Bandwidth	33
Supplemental Information	37
Measurement Uncertainty	37
Emissions Test Natails	37

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Rohrback Cosasco Systems
Dianne Dudley
11841 East Smith Ave.
CKC Laboratories, Inc.
Santa Fe Springs, CA 90670
Source Mariposa, CA 95338

Representative: Daljit Singh Project Number: 92136

Customer Reference Number:

DATE OF EQUIPMENT RECEIPT:July 18, 2011
DATE(S) OF TESTING:
July 18-22, 2011

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Stew J Be

Page 3 of 38 Report No.: 92136-13

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Site Registration & Accreditation Information

Location	CB #	Japan	Canada	FCC
Brea A	US0060	R-2945, C-3248 & T-1572	3082D-1	90473

Page 4 of 38 Report No.: 92136-13

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.247 and RSS-210 Issue 8

Description	Test Procedure/Method	Results
Voltage Variations	FCC Part 15 Subpart C Section 15.31(e)	Pass
AC Conducted Emissions	FCC Part 15 Subpart C Section 15.207	NA
Bandedge	FCC Part 15 Subpart C Section 15.247 / DA 00-705 & ITU-R 55/1	Pass
Average Time of Occupancy	FCC Part 15 Subpart C Section 15.247(a)(1) / DA 00-705 & ITU-R 55/1	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.247(b)(1) / DA 00-705 & ITU-R 55/1	Pass
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.247(d) / 15.209 / DA 00-705 & ITU-R 55/1	Pass
99% Occupied Bandwidth	RSS-210 Issue 8	Pass

NA = Not applicable

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 38 Report No.: 92136-13

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Data-logger with Bluetooth Communication

Manuf: Rohrback Cosasco Systems Model: MWT-3905-MDL-BT

Serial: 1199

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Laptop</u>

Manuf: HP Model: N3435 Serial: NA

> Page 6 of 38 Report No.: 92136-13

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.31(e) Voltage Variations

Test Conditions / Setup

The EUT is placed on the test bench, measurement is performed at the antenna port, the RF path includes two internal RF cable and Intrinsic Safety board. The service port is connected to a laptop for testing configuration purposes.

Frequency= 2402MHz, 2441MHz, 2480MHz

Rate power = 4 dBm

Continuous transmit.

Firmware power setting 255, 50.

Measured power= -1.7dBm (0.0007W), -1.8 dBm (0.0007W), -2.7 dBm(0.0005W)

Frequency range of measurement = 2402-2480MHz

Test method: FCC measurement guideline DA 00-705

22°C, 64% Relative Humidity

15.31(e) A fresh battery is used.

20dB External attenuation compensated as amplitude offset entered into the spectrum analyzer.

Engineer Name: E. Wong

Test Equipment							
Asset/Serial # Description Model Manufacturer Cal Date Cal Due							
02672	Spectrum Analyzer	E4446A	Agilent	8/9/2010	8/9/2012		
02945	Cable	32022-2-2909K-36TC	AstroLab	9/21/2009	9/21/2011		

Page 7 of 38 Report No.: 92136-13

15.207 AC Conducted Emissions

NA= AC Conducted Emissions is not applicable because the EUT is battery powered.

Page 8 of 38 Report No.: 92136-13

15.247 Bandedge

Test Conditions / Setup

The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness; the service port is connected to a laptop via a serial cable for testing configuration purposes. Ground cable is connected. EUT orientated in intended installation position. A test plug is connected to the sensor port.

Frequency= 2402MHz, 2441MHz, 2480MHz

Rate power = 4 dBm

Firmware power setting 255, 50

Continuous transmit.

Measured power= -1.7dBm (0.0007W), -1.8 dBm (0.0007W), -2.7 dBm (0.0005W)

22°C, 64% Relative Humidity

15.31(e) A fresh battery is used.

Emission profile of the EUT with transmitting antenna positioned in both the vertical and horizontal orientation was evaluated.

Engineer Name: E. Wong

Test Equipment									
Asset/Serial #	Asset/Serial # Description Model Manufacturer								
02672	Spectrum Analyzer	E4446A	Agilent	8/9/2010	8/9/2012				
00849	Horn Antenna	3115	ETS	4/23/2010	4/23/2012				
00786	Preamp	83017A	HP	8/5/2010	8/5/2012				
02948	02948 Cable 32022 2		AstroLab	9/21/2009	9/21/2011				
P05421	Cable	Sucoflex 104A	Huber & Suhner	2/12/2010	2/12/2012				
P05563	Cable	ANDL-1-PNMN-48	Andrews	9/3/2010	9/3/2012				

Page 9 of 38 Report No.: 92136-13

Test Plots

BANDEDGE PLOT_ L

BANDEDGE PLOT _H _AVERAGE

Page 10 of 38 Report No.: 92136-13

BANDEDGE PLOT _H _PEAK

Test Setup Photos

Page 11 of 38 Report No.: 92136-13

15.247(a)(1) Average Time of Occupancy

Test Conditions / Setup

The EUT is placed on the test bench, measurement is performed at the antenna port, the RF path includes two internal RF cable and Intrinsic Safety board.

The service port is connected to a laptop for testing configuration purposes.

Frequency= 2402MHz, 2441MHz, 2480MHz

Rate power = 4 dBm

Continuous transmit.

Firmware power setting 255, 50.

Measured power= -1.7dBm (0.0007W),-1.8 dBm (0.0007W),-2.7 dBm(0.0005W)

Frequency range of measurement = 2402-2480MHz

Test method: FCC measurement guideline DA 00-705

22°C, 64% Relative Humidity

15.31(e) a fresh battery is used.

20dB External attenuation compensated as amplitude offset entered into the spectrum analyzer.

Engineer Name: E. Wong

Test Equipment						
Asset/Serial # Description Model Manufacturer Cal Date Cal D						
02672	02672 Spectrum Analyzer		Agilent	8/9/2010	8/9/2012	
02945	Cable	32022-2-2909K-36TC	AstroLab	9/21/2009	9/21/2011	

Page 14 of 38 Report No.: 92136-13

Frequency Separation

Test Plot

CHANNEL SEPARATION = 1.008MHz

Page 15 of 38 Report No.: 92136-13

-20 dB Bandwidth

Test Plot

-20dB BW= 0.864MHz

Number of Hopping Channels

Test Plot

Page 17 of 38 Report No.: 92136-13

TOTAL NUMBER OF HOPPING CHANNEL = 79.

Average Time of Occupancy

Centered In One Hopping Channel, The Event On Time Was Measured. EVENT ON TIME =380uS.

Page 19 of 38 Report No.: 92136-13

- Three separate sweeps at 5 second were acquired, averaging 50 events per 5 second sweep.
- 50 events/ 5 second, 10 events per second.
- Limit: On time **shall not exceed 0.4 second**, in 0.4 sec x 79 channels (31.6 Sec)
- Each events on time = 380 uS,
- Therefore, in 31.6 second, total on time = 31.6 sec x 10 events /sec x 380uS/event = **0.12 sec.**

Test Setup Photos

15.247(b)(1) RF Power Output

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: Rohrback Cosasco Systems

Specification: 15.247(b) Power Output (2400-2483.5 MHz FHSS >75 Channels)
Work Order #: 92136 Date: 7/18/2011
Test Type: Conducted Emissions Time: 09:48:51
Equipment: Data-logger with Bluetooth Sequence#: 1

Communication

Manufacturer: Rohrback Cosasco Systems Tested By: E. Wong Model: MWT-3905-MDL-BT 7.2V battery

S/N: 1199

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02672	Spectrum Analyzer	E4446A	8/9/2010	8/9/2012
T1	AN02945	Cable	32022-2-2909K-	9/21/2009	9/21/2011
			36TC		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Data-logger with Bluetooth	Rohrback Cosasco Systems	MWT-3905-MDL-BT	1199
Communication*	-		

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	HP	N3435	NA

Test Conditions / Notes:

The EUT is placed on the test bench, RF output measurement is performed at the antenna port, the RF path includes two internal RF cable and Intrinsic Safety board. The service port is connected to a laptop for testing configuration purposes.

Frequency= 2402MHz, 2441MHz, 2480MHz

Rate power = 4 dBm Continuous transmit.

Firmware power setting 255, 50.

Measured power= -1.7dBm (0.0007W), -1.8 dBm (0.0007W), -2.7 dBm(0.0005W)

Frequency range of measurement = 2402-2480MHz

RBW=VBW=3MHz

22°C, 64% Relative Humidity

15.31(e) A fresh battery is used.

20dB External attenuation compensated as amplitude offset entered into the spectrum analyzer.

Page 23 of 38 Report No.: 92136-13

Ext Attn: 0 dB

Measi	urement Data:	Re	Reading listed by margin.			rin. Test Lead: Antenna port					
#	Freq	Rdng	T1				Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	2401.900M	-2.3	+0.6				+0.0	-1.7	30.0	-31.7	Anten
2	2440.900M	-2.4	+0.6				+0.0	-1.8	30.0	-31.8	Anten
3	2479.770M	-3.3	+0.6				+0.0	-2.7	30.0	-32.7	Anten

Page 24 of 38 Report No.: 92136-13

Test Setup Photos

15.247(d) Radiated Spurious Emissions

Test Data Sheet

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: **Rohrback Cosasco Systems**

15.247(d) / 15.209 Radiated Spurious Emissions Specification:

Work Order #: Date: 7/19/2011 92136 Time: 10:50:12 Test Type: **Radiated Scan** Equipment: Sequence#: 2

Data-logger with Bluetooth

Communication

Manufacturer: Rohrback Cosasco Systems Tested By: E. Wong

MWT-3905-MDL-BT Model:

S/N: 1199

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	8/9/2010	8/9/2012
T2	AN00309	Preamp	8447D	5/7/2010	5/7/2012
Т3	AN01995	Biconilog Antenna	CBL6111C	3/8/2010	3/8/2012
T4	ANP05050	Cable	RG223/U	3/21/2011	3/21/2013
T5	ANP05198	Cable	8268	12/21/2010	12/21/2012
T6	AN00849	Horn Antenna	3115	4/23/2010	4/23/2012
T7	AN00786	Preamp	83017A	8/5/2010	8/5/2012
Т8	AN02948	Cable	32022-2-2909K- 24TC	9/21/2009	9/21/2011
Т9	ANP05421	Cable	Sucoflex 104A	2/12/2010	2/12/2012
T10	ANP05563	Cable	ANDL-1-PNMN-	9/3/2010	9/3/2012
			48		
	AN00314	Loop Antenna	6502	6/30/2010	6/30/2012
T11	AN02744	High Pass Filter	11SH10-	3/5/2010	3/5/2012
			3000/T10000-		
			O/O		
T12	AN02746	Low Pass Filter	11SL10-	11/20/2009	11/20/2011
			2000/U6000-O/O		
	AN01413	Horn Antenna-ANSI	84125-80008	12/2/2010	12/2/2012
		C63.5 Antenna			
		Factors (dB)			
	AN01413	Horn Antenna-1	84125-80008	12/2/2010	12/2/2012
		Meter Antenna			
		Factors (dB) - SAE			
		ARP 958			

Page 26 of 38 Report No.: 92136-13

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Data-logger with Bluetooth Communication*	Rohrback Cosasco Systems	MWT-3905-MDL-BT	1199

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	HP	N3435	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness; the service port is connected to a laptop via a serial cable for testing configuration purposes. Ground cable is connected. EUT orientated in intended installation position. A test plug is connected to the sensor port.

Frequency= 2402MHz, 2441MHz, 2480MHz

Rate power = 4 dBm

Firmware power setting 255, 50

Continuous transmit.

Measured power= -1.7dBm (0.0007W), -1.8 dBm (0.0007W), -2.7 dBm(0.0005W)

22°C, 64% Relative Humidity

Frequency range of measurement = 9 kHz- 25GHz.

9 kH -150 kHz; RBW=200 Hz, VBW=200 Hz;150 kHz-30 MHz; RBW=9 kHz, VBW=9 kHz;30 MHz-1000 MHz; RBW=120 kHz, VBW=120 kHz,1000 MHz-2500 MHz; RBW=1 MHz, VBW=1 MHz.

15.31(e) A fresh battery is used.

Emission profile of the EUT with transmitting antenna positioned in both the vertical and horizontal orientation was evaluated.

Ext Attn: 0 dB

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
1	4804.000M	40.0	+0.0	+0.0	+0.0	+0.0	+0.0	43.4	54.0	-10.6	Vert
			+0.0	+33.0	-37.1	+0.7			TX ant Ho	riz	
			+1.9	+4.4	+0.5	+0.0					
2	4882.167M	39.3	+0.0	+0.0	+0.0	+0.0	+0.0	42.8	54.0	-11.2	Horiz
			+0.0	+33.1	-37.1	+0.7			TX ant Ver	rt	
			+1.9	+4.5	+0.4	+0.0					
3	1625.983M	50.4	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	54.0	-11.4	Vert
			+0.0	+26.1	-38.2	+0.4			TX ant Ver	rt	
			+1.0	+2.5	+0.0	+0.4					
4	4803.667M	39.2	+0.0	+0.0	+0.0	+0.0	+0.0	42.6	54.0	-11.4	Horiz
			+0.0	+33.0	-37.1	+0.7			TX ant Ver	rt	
			+1.9	+4.4	+0.5	+0.0					
5	249.242M	45.7	+0.0	-27.8	+12.6	+0.2	+0.0	33.5	46.0	-12.5	Horiz
			+2.8	+0.0	+0.0	+0.0			TX ant Ver	rt	
			+0.0	+0.0	+0.0	+0.0					
6	1654.067M	48.0	+0.0	+0.0	+0.0	+0.0	+0.0	40.4	54.0	-13.6	Horiz
			+0.0	+26.2	-38.2	+0.4			TX ant Ho	riz	
			+1.0	+2.6	+0.0	+0.4					

Page 27 of 38

Report No.: 92136-13

	1 5 7 2 2 7 7 7 7	45.0	0.0	0.0	0.0	0.0	0.0	40.0		**
7	1652.050M	47.9			+0.0	+0.0	+0.0	40.3	54.0 -13.7	Vert
			+0.0	+26.2	-38.2	+0.4			TX ant Vert	
0	1629 100M	46.0	+1.0	+2.6	+0.0	+0.4	+ O O	20.1	54.0 -14.9	Vert
8	1628.100M	46.9	+0.0 +0.0	+0.0	+0.0	$+0.0 \\ +0.4$	+0.0	39.1	54.0 -14.9 TX ant Horiz	vert
			+0.0	$+26.1 \\ +2.5$	-38.2 +0.0	+0.4			та ан пони	
0	1599.983M	46.8	+0.0	+0.0	+0.0	+0.4	+0.0	39.7	54.0 -15.3	Horiz
,	Ave	40.6	+0.0	+25.9	-38.2	+0.0	+0.0	36.7	TX ant horiz	HOHZ
	Avc		+1.0	+2.5	+0.0	+0.4			1 A ant north	
10	1625.983M	45.9	+0.0	+0.0	+0.0	+0.0	+0.0	38.1	54.0 -15.9	Horiz
10	1023.703141	73.7	+0.0	+26.1	-38.2	+0.4	10.0	30.1	TX ant Vert	HOHZ
			+1.0	+2.5	+0.0	+0.4			171 ant voit	
11	4959.800M	34.3	+0.0	+0.0	+0.0	+0.0	+0.0	38.0	54.0 -16.0	Horiz
	Ave	51.5	+0.0	+33.2	-37.0	+0.7	10.0	30.0	TX ant Horiz	HOHE
	1110		+1.9	+4.5	+0.4	+0.0			111 4111 110112	
^	4959.800M	46.2	+0.0	+0.0	+0.0	+0.0	+0.0	49.9	54.0 -4.1	Horiz
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		+0.0	+33.2	-37.0	+0.7	. 0.0	.,,,	TX ant Horiz	110112
			+1.9	+4.5	+0.4	+0.0				
13	1654.000M	45.3	+0.0	+0.0	+0.0	+0.0	+0.0	37.7	54.0 -16.3	Vert
			+0.0	+26.2	-38.2	+0.4			TX ant Horiz	
			+1.0	+2.6	+0.0	+0.4				
14	1599.983M	45.8	+0.0	+0.0	+0.0	+0.0	+0.0	37.7	54.0 -16.3	Vert
	Ave		+0.0	+25.9	-38.2	+0.4			TX ant Vert	
			+1.0	+2.5	+0.0	+0.3				
15	4803.833M	34.0	+0.0	+0.0	+0.0	+0.0	+0.0	37.4	54.0 -16.6	Horiz
	Ave		+0.0	+33.0	-37.1	+0.7			TX ant Horiz	
			+1.9	+4.4	+0.5	+0.0				
^	4803.833M	44.4	+0.0	+0.0	+0.0	+0.0	+0.0	47.8	54.0 -6.2	Horiz
			+0.0	+33.0	-37.1	+0.7			TX ant Horiz	
			+1.9	+4.4	+0.5	+0.0				
17	1652.050M	44.8	+0.0	+0.0	+0.0	+0.0	+0.0	37.2	54.0 -16.8	Horiz
			+0.0	+26.2	-38.2	+0.4			TX ant Vert	
			+1.0	+2.6	+0.0	+0.4				
18	4881.950M	32.9	+0.0	+0.0	+0.0	+0.0	+0.0	36.4		Horiz
	Ave		+0.0	+33.1	-37.1	+0.7			TX ant Horiz	
			+1.9	+4.5	+0.4	+0.0				
^	4881.950M	45.1	+0.0	+0.0	+0.0	+0.0	+0.0	48.6		Horiz
				+33.1	-37.1	+0.7			TX ant Horiz	
	44# 0505	40.1	+1.9	+4.5	+0.4	+0.0	0.0	27.5	10.5	** .
20	115.020M	40.1	+0.0	-27.8	+11.5	+0.2	+0.0	25.8	43.5 -17.7	Horiz
			+1.8	+0.0	+0.0	+0.0			TX ant Vert	
21	4002 ((7) (21.0	+0.0	+0.0	+0.0	+0.0	.0.0	25.2	£40 100	X7 ·
	4803.667M	31.8	+0.0	+0.0	+0.0	+0.0	+0.0	35.2	54.0 -18.8	Vert
	Ave		+0.0	+33.0	-37.1	+0.7			TX ant Vert	
	4902 ((7) /	111	+1.9	+4.4	+0.5	+0.0	.0.0	47.0	540 62	17 4
_ ^	4803.667M	44.4	+0.0	+0.0	+0.0	+0.0	+0.0	47.8	54.0 -6.2	Vert
			+0.0	+33.0	-37.1	+0.7			TX ant Vert	
22	206 54234	40.0	+1.9	+4.4	+0.5	+0.0	100	24.6	12 5 10 0	Most
23	206.542M	40.0	+0.0	-27.7	+9.6	+0.2	+0.0	24.6	43.5 -18.9	Vert
			+2.5	+0.0	+0.0	+0.0			TX ant Vert	
<u> </u>			+0.0	+0.0	+0.0	+0.0				

24 40 50	2221	21.2	0.0	0.0	0.0	0.0		27.0	7 40 400	**
24 4960	.333M	31.3			+0.0	+0.0	+0.0	35.0	54.0 -19.0	Vert
Ave			+0.0	+33.2	-37.0	+0.7			TX ant Vert	
A 40.60	2227.6	12.0	+1.9	+4.5	+0.4	+0.0	0.0	167	540 50	X 7 .
^ 4960	.333M	43.0	+0.0	+0.0	+0.0	+0.0	+0.0	46.7	54.0 -7.3	Vert
			+0.0	+33.2	-37.0	+0.7			TX ant Vert	
26 4060	0001.6	21.1	+1.9	+4.5	+0.4	+0.0	0.0	24.0	540 100	TT '
26 4960	.000M	31.1	+0.0	+0.0	+0.0	+0.0	+0.0	34.8	54.0 -19.2	Horiz
Ave			+0.0	+33.2	-37.0	+0.7			TX ant Vert	
4 40.50	0007.5	10.7	+1.9	+4.5	+0.4	+0.0		4.5.0	7.1.0 7.0	** .
^ 4960	.000M	42.5	+0.0	+0.0	+0.0	+0.0	+0.0	46.2	54.0 -7.8	Horiz
			+0.0	+33.2	-37.0	+0.7			TX ant Vert	
20 4001	702) 1	20.6	+1.9	+4.5	+0.4	+0.0	0.0	24.1	5 4.0 10.0	X7 .
28 4881	.583M	30.6	+0.0	+0.0	+0.0	+0.0	+0.0	34.1	54.0 -19.9	Vert
Ave			+0.0	+33.1	-37.1	+0.7			TX ant Vert	
			+1.9	+4.5	+0.4	+0.0				
^ 4881	.583M	43.2	+0.0	+0.0	+0.0	+0.0	+0.0	46.7	54.0 -7.3	Vert
			+0.0	+33.1	-37.1	+0.7			TX ant Vert	
			+1.9	+4.5	+0.4	+0.0				
30 130	.120M	37.3	+0.0	-27.8	+11.9	+0.2	+0.0	23.5		Horiz
			+1.9	+0.0	+0.0	+0.0			TX ant Horiz	
			+0.0	+0.0	+0.0	+0.0				
31 221	.600M	40.3	+0.0	-27.8	+10.7	+0.2	+0.0	26.0		Horiz
			+2.6	+0.0	+0.0	+0.0			TX ant Horiz	
			+0.0	+0.0	+0.0	+0.0				
32 1599	.983M	41.7	+0.0	+0.0	+0.0	+0.0	+0.0	33.6	54.0 -20.4	Vert
Ave			+0.0	+25.9	-38.2	+0.4			TX ant horiz	
			+1.0	+2.5	+0.0	+0.3				
^ 1599	.983M	56.4	+0.0	+0.0	+0.0	+0.0	+0.0	48.3		Vert
			+0.0	+25.9	-38.2	+0.4			TX ant Vert	
			+1.0	+2.5	+0.0	+0.3				
^ 1599	.983M	52.8	+0.0	+0.0	+0.0	+0.0	+0.0	44.7		Vert
			+0.0	+25.9	-38.2	+0.4			TX ant horiz	
			+1.0	+2.5	+0.0	+0.3				
35 300	.525M	36.5	+0.0	-27.8	+13.3	+0.2	+0.0	25.3		Horiz
			+3.1		+0.0	+0.0			TX ant Vert	
			+0.0		+0.0	+0.0				
36 117	.120M	36.9	+0.0	-27.8	+11.6	+0.2	+0.0	22.7		Horiz
			+1.8		+0.0	+0.0			TX ant Horiz	
			+0.0	+0.0	+0.0	+0.0				
37 4960	.000M	29.3	+0.0	+0.0	+0.0	+0.0	+0.0	33.0	54.0 -21.0	Vert
Ave			+0.0	+33.2	-37.0	+0.7			TX ant Horiz	
			+1.9	+4.5	+0.4	+0.0				
^ 4960	.000M	43.3	+0.0	+0.0	+0.0	+0.0	+0.0	47.0	54.0 -7.0	Vert
			+0.0	+33.2	-37.0	+0.7			TX ant Horiz	
			+1.9	+4.5	+0.4	+0.0				
39 4881	.700M	28.4	+0.0	+0.0	+0.0	+0.0	+0.0	31.9	54.0 -22.1	Vert
Ave			+0.0	+33.1	-37.1	+0.7			TX ant Horiz	
			+1.9	+4.5	+0.4	+0.0				
^ 4881	.700M	38.7	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	54.0 -11.8	Vert
			+0.0	+33.1	-37.1	+0.7			TX ant Horiz	
			+1.9	+4.5	+0.4	+0.0				

Page 29 of 38 Report No.: 92136-13

41 275.870M	35.0	+0.0	-27.7	+13.0	+0.3	+0.0	23.5	46.0	-22.5	Horiz
		+2.9	+0.0	+0.0	+0.0			TX ant Hor	riz	
		+0.0	+0.0	+0.0	+0.0					
42 1600.000M	39.6	+0.0	+0.0	+0.0	+0.0	+0.0	31.5	54.0	-22.5	Horiz
Ave		+0.0	+25.9	-38.2	+0.4			TX ant Ver	rt	
		+1.0	+2.5	+0.0	+0.3					
^ 1599.983M	58.2	+0.0	+0.0	+0.0	+0.0	+0.0	50.1	54.0	-3.9	Horiz
		+0.0	+25.9	-38.2	+0.4			TX ant hor	iz	
		+1.0	+2.5	+0.0	+0.3					
^ 1600.000M	51.4	+0.0	+0.0	+0.0	+0.0	+0.0	43.3	54.0	-10.7	Horiz
		+0.0	+25.9	-38.2	+0.4			TX ant Ver	rt	
		+1.0	+2.5	+0.0	+0.3					
45 1625.400M	36.3	+0.0	+0.0	+0.0	+0.0	+0.0	28.5	54.0	-25.5	Horiz
Ave		+0.0	+26.1	-38.2	+0.4			TX ant Hor	riz	
		+1.0	+2.5	+0.0	+0.4					
^ 1625.400M	51.5	+0.0	+0.0	+0.0	+0.0	+0.0	43.7	54.0	-10.3	Horiz
		+0.0	+26.1	-38.2	+0.4			TX ant Hor	riz	
		+1.0	+2.5	+0.0	+0.4					

CKC Laboratories, Inc. Date: 7/19/2011 Time: 10:50:12 Rohrback Cosasco Systems WO#: 92136 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Sequence#: 2 Ext ATTN: 0 dB

Test Setup Photos

RSS-210

99 % Bandwidth

Test Conditions / Setup

The EUT is placed on the test bench, measurement is performed at the antenna port, the RF path includes two internal RF cable and Intrinsic Safety board. The service port is connected to a laptop for testing configuration purposes.

Frequency= 2402MHz, 2441MHz, 2480MHz

Rate power = 4 dBm

Continuous transmit.

Firmware power setting 255, 50.

Measured power= -1.7dBm (0.0007W), -1.8 dBm (0.0007W), -2.7 dBm(0.0005W)

Frequency range of measurement = 2402-2480MHz

22DegC, 64%rh

15.31(e) A fresh battery is used.

20dB External attenuation compensated as amplitude offset entered into the spectrum analyzer.

Engineer Name: E. Wong

Test Equipment							
Asset/Serial #	Description	Model	Manufacturer	Cal Date	Cal Due		
02672	Spectrum Analyzer	E4446A	Agilent	8/9/2010	8/9/2012		
02945	Cable	32022-2-2909K-36TC	AstroLab	9/21/2009	9/21/2011		

Page 33 of 38 Report No.: 92136-13

Test Plots

99%BW_2402MHz

99%BW_2441MHz

99%BW_2480MHz

Test Setup Photos

Page 35 of 38 Report No.: 92136-13

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 37 of 38 Report No.: 92136-13

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 38 of 38 Report No.: 92136-13