Podstawy Ochrony Danych – laboratorium AGC Implementacja publicznego systemu kryptograficznego w oparciu o algorytm RSA.

Cel

Zapoznanie się z algorytmem RSA. Praktyczne zastosowanie algorytmu do publicznego systemu kryptograficznego.

Realizacja

Ćwiczenie polega na przygotowaniu prostej implementacji algorytmu RSA wg poniższego schematu:

generowanie klucza:

czynność	przykład
wybieramy dwie liczby pierwsze <i>p</i> i <i>q</i>	p = 31, q = 19
obliczamy $n = p \cdot q$	n = 589
obliczamy $phi = (p-1)(q-1)$;	<i>phi</i> = 540
generujemy e jako liczbę względnie pierwszą	e = 7
z <i>phi</i> czyli taką, która jest liczbą pierwszą i	
dla której największy wspólny dzielnik z phi	
wynosi 1	
generujemy d w taki sposób, aby spełniona	d = 463
była zależność: iloczyn <i>e</i> i <i>d</i> przystaje do 1	
modulo <i>phi</i> . Co oznacza, że <i>phi</i> dzieli	
wyrażenia $e \cdot d - 1$.	

Para *e* i *n* stanowią klucz publiczny, natomiast para *d* i *n* jest kluczem prywatnym.

szyfrowanie wiadomości:

czynność	przykład
$c = m \wedge e \mod n$; gdzie c oznacza wiadomość	m = 8
zaszyfrowana, a <i>m</i> wiadomość jawna.	$c = 8 \land 7 \mod 589 = 312$

deszyfrowanie wiadomości:

czynność	przykład
$m = c \wedge d \mod n$; gdzie c oznacza wiadomość	c = 312
zaszyfrowaną, a <i>m</i> wiadomość jawną.	$m = 312 ^463 \mod 589 = 8$

Zadania

- 1. Przygotować dwie czterocyfrowe liczby pierwsze p i q.
- 2. Wygenerować dwa klucze: klucz prywatny i klucz publiczny.
- 3. Przygotować wiadomość składającą się z 50-ciu znaków.
- 4. Zaszyfrować wiadomość kluczem publicznym.
- 5. Odszyfrować wiadomość kluczem prywatnym.
- 6. Porównać pierwotną wiadomość z wiadomością odszyfrowaną.
- 7. Zwrócić uwagę, że wiadomość była szyfrowana kluczem publicznym (jawnym). Każdy kto chce otrzymywać wiadomości zaszyfrowane w tym systemie zatrzymuje dla siebie klucz prywatny (tajny), a upowszechnia klucz publiczny. Jeżeli ktoś (A) chce wysłać wiadomość zaszyfrowaną do kogoś (B), powinien użyć klucza jawnego B, gdyż wtedy B odczyta ją kluczem tajnym, który jest znany tylko jemu.

Pytania

- 1. Jakie elementy algorytmu są trudne w realizacji?
- 2. Co stanowi o bezpieczeństwie i jakości tego algorytmu szyfrowania?

Sprawozdanie

Sprawozdanie powinno zawierać:

- 1. Założenia jak duże liczby pierwsze mogą być wykorzystane w programie?
- 2. Opis metod użytych do wyznaczania *e* i *d*.
- 3. Opis realizacji zadań (programu i jego składowych) i wartości uzyskane podczas ich realizacji.
- 4. Odpowiedzi na pytania.
- 5. Wnioski.