

itu.dk

GPUMemNet: GPU Memory Usage Estimation for Efficient Resource Management for Deep Learning Training

Ehsan Yousefzadeh-Asl-Miandoab (ehyo@itu.dk)

Collaborators: Reza Karimzadeh*, Bulat Ibragimov*, Pınar Tözün

IT University of Copenhagen, *University of Copenhagen

GPU Underutilization

- GPUs are underutilized *.
 - Energy-inefficient & waste of hardware resources
- Collocation can be beneficial
 - ResNet26 on Cifar10, batch size = 32

^{*} Jeon, Myeongjae, et al. "Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads." USENIX Annual Technical Conference. 2019.

^{*} Yanjie Gao et al. "An Empirical Study on Low GPU Utilization of Deep Learning Jobs." ICSE 2024.

[❖] Ties Robroek, Ehsan Yousefzadeh-Asl-Miandoab, and Pınar Tözün. "An analysis of collocation on GPUs for deep learning training." EuroMLSys 2024

Need for GPU Memory Estimation

- Collocation comes with challenges:
 - Out-of-memory (OOM) Crash
 - Resource-interference can degrade performance (can be harsher than being serialized)

Having an estimation for GPU Memory ~= More Reliable Collocation

Estimating GPU Memory is challenging!

- Optimizations
 - Applied by Default:
 - Activation reuse, dynamic memory management
 - May be enabled by the user:
 - Layer fusion, gradient checkpointing, mixed precision, etc.

These introduce levels of unpredictability to GPU memory estimation.

Existing Estimators

1. Analytical

- 1. Horus formula (*TPDS '21*)
- 2. DNNMem, Microsoft's Analytical work (*ESEC/FSE '20*)
- 3. LLMem (*IJCAI '24*)

Evaluating Horus Formula

Up to ~395GB misestimation

GPU Memory Need

Horus Formula Estimation

Horus Overestimates and limits Collocation Potentials!

Existing Estimators

1. Analytical

- 1. Horus formula (TPDS '21)
- 2. DNNMem, Microsoft's Analytical work (*ESEC/FSE '20*)
- 3. LLMem (*IJCAI '24*)

2. Libraries

- 1. Fake Tensor
- 2. DeepSpeed

Evaluating Fake Tensor

Huge Misestimations . E.g., 500GB diff

Fake Tensor misestimates, causing OOMs and limiting the collocation potential!

Existing Estimators

1. Analytical

- 1. Horus formula (*TPDS '21*)
- 2. DNNMem, Microsoft's Analytical work (*ESEC/FSE '20*)
- 3. LLMem (*IJCAI '24*)

2. Libraries

- 1. Fake Tensor
- 2. DeepSpeed

3. ML-based approach

• DNNPerf , graph neural networks (ICSE-SEIP '23)

Challenges of Using ML for Estimation

Dataset

Dataset Building

- Representativeness of the key input features
- Uniform feature distribution

• Different architectures (pyramid, uniform, etc.)

- Different layer types (including batch norm, dropout, etc.)

 Batch Size
- Varying input and output dimensions

Challenges of Using ML for Estimation

- Regression/ Classification

#Activations * Batch Size + Parameters

Different MLP model configurations show staircase growth pattern, suitable for classification!

Classification Formulation

- Discretize data into same-GB classes
 - e.g., 0-1GB (1), 1GB-2GB (2), ...
- Looked into the data through PCA and t-SNE
 - The classes are observable!

Memory Estimator - MLP-based

- #linear layers
- #batch normalization layers
- #dropout layers
- batch size
- #parameters
- #activations
- activation encoding cos/sin

Memory Estimator - Transformer-based

- #linear layers
- #batch normalization layers
- #dropout layers
- batch size
- #parameters
- #activations
- activation encoding cos/sin

Results

Dataset	Estimator	Class Range Size	#Classes	Accuracy
MLP	MLP	1GB	5	0.95
	MLP	2GB	4	0.97
	Transformer	1GB	5	0.97
	Transformer	2GB	4	0.98

Results

Dataset	Estimator	Class Range Size	#Classes	Accuracy
MLP	MLP	1GB	5	0.95
	MLP	2GB	4	0.97
	Transformer	1GB	5	0.97
	Transformer	2GB	4	0.98
CNN	MLP	8GB	6	0.82
	Transformer	8GB	6	0.81

Results

Dataset	Estimator	Class Range Size	#Classes	Accuracy
MLP	MLP	1GB	5	0.95
	MLP	2GB	4	0.97
	Transformer	1GB	5	0.97
	Transformer	2GB	4	0.98
CNN	MLP	8GB	6	0.82
	Transformer	8GB	6	0.81
Transformer	MLP	8GB	6	0.87
	Transformer	8GB	6	0.85

Unseen real-world models

batch size, model (top to bottom)

Horus for mobilenetV2 and efficient underestimates ~= OOM crashes

Horus for vgg and resnet50 and Xception overestimates ~= Wastes Optimization Potential

Unseen real-world models

batch size, model (top to bottom)

Fake Tensor always underestimates ~= OOM crashes

Unseen real-world models

batch size, model (top to bottom)

GPUMemNet closest to actual GPU memory! Almost never underestimates, preventing OOMs.

Conclusion

- GPUs are underutilized.
- Collocation can be an opportunity.
- GPU memory estimation is needed for more reliable collocation
- GPUMemNet
 - Dataset
 - Tools for extending the dataset

Backup Slides

Using Lightweight ML!

No data to train on → Let's build a dataset

- Regression
- Good results on tree-based models
 - ExtraTreeRegressor with a +\− ~ 1.2GB error margin
- On unseen data, no reliable
 - feature importance
 - #layers=0.0152, batch_size=0.0144, #parameters=0.699, and #activations=0.271
- Trained an MLP (different loss functions)
 - No convergence!
 - The staircase growth pattern, non-one-to-one function! (non-identifiability)

Formulating as Classification

- Labeling data points (0-1GB (1), 1GB-2GB (2), 3GB-4GB (3), ...)
- Looked into the data through PCA and t-SNE

 Trained an MLP and observed that the pattern in the data can be learned!

Accuracy	Precision	Recall	F1-Score
0.6909	0.6485	0.6909	0.6520

UNIVERSITY OF COPENHAGEN

Patterns in the data become easier to detect.

PCA

Obvious data patterns in the data subsets!