Fondamenti di Informatica - A.A. 2020-2021

Scuola di Ingegneria Industriale e dell'Informazione Prof.ssa Cristiana Bolchini Appello del 14/01/2021

gnome	Nome		Matricola o Cod. Persona				
4							
8	Quesito:	1	2	3	4	Totale	
2:	Valutazione massima:	6	6	7	11	30	
⊈	Valutazione in decimi (/10):						
tempo a disposizione: 1 Stile del codice C: non è necessario inserir				elettronico	o, né com	unicare;	
	ttoprogrammi di libreria.						

(5 pti) Dati i due valori $X = -52_{10MS}$ e $Y = -52_{16MS}$ effettuare la conversione in base 2, notazione complemento a 2 (2C2), di ognuno degli operandi sul numero minimo di bit necessari. Si effettuino quindi le operazioni X+Y e X-Y indicando esplicitamente se si verifica overflow o meno, e motivando la risposta.

Indicare quale tra le 4 risposte è corretta.

$oldsymbol{A}_{X_{2G}}$	72:	1 0 0 1 1 0 0		Y_{2C2} :	
			ovf		
(X	$+Y)_{2C2}$:	0 1 1 1 1 0 1 0	X	$(X-Y)_{2C2}$:	1 0 0 1 1 1 0
$oldsymbol{B}_{X_{2G}}$	72:			Y_{2C2} :	
			ovf		
(X	$+Y)_{2C2}$:	0 1 1 1 1 0 1 0	X	$(X-Y)_{2C2}$:	
$oldsymbol{C}_{X_{2G}}$	72:	1 0 0 1 1 0 0		Y_{2C2} :	
			ovf		
(X	$+Y)_{2C2}$:	1 0 1 1 1 1 0 1 0		$(X-Y)_{2C2}$:	1 1 0 0 1 1 1 0
$egin{array}{c} {\sf D} \ X_{20} \end{array}$	72:			Y_{2C2} :	
			ovf		
(X	$+Y)_{2C2}$:	0 1 1 1 1 0 1 0	X	$(X-Y)_{2C2}$:	0 0 1 1 1 0

(1 pto) Con riferimento alla notazione IEEE 754 per la rappresentazione dei numeri reali nel sistema binario, il valore 11.3 verrà rappresentato esattamente. Vero o falso?

Quesito 2 [6 pti]

Scrivere un sottoprogramma che ricevuto in ingresso un array di valori interi e qualsiasi altro parametro ritenuto strettamente necessario trasmette al chiamante i) il primo quartile $\mathfrak{q}1$, ii) la mediana (o secondo quartile, $\mathfrak{q}2$), iii) il terzo quartile $\mathfrak{q}3$. I quartili si ottengono dividendo l'insieme di dati *ordinati* in 4 parti uguali ed esattamente: a) il primo quartile è il valore che lascia alla sua sinistra il 25% degli elementi; b) il secondo quartile coincide con la mediana dato che è quello che lascia alla sua sinistra il 50% dei dati, c) il terzo quartile è il valore che lascia il 75% degli elementi a sinistra e il 25% a destra.

Quesito 3 [7 pti]

(5 pti) Scrivere un sottoprogramma che ricevuta in ingresso una lista per la gestione dei numeri interi la compatta, facendo in modo che alla fine la lista non contenga valori replicati o nulli. Il programma chiamante dovrà ovviamente accedere al termine dell'esecuzione del sottoprogramma, alla lista compattata.

Se la lista iniziale è la seguente

$$1 \rightarrow 3 \rightarrow 5 \rightarrow -2 \rightarrow 3 \rightarrow -1 \rightarrow 0 \rightarrow 2 \rightarrow 4 \rightarrow 1$$

al termine dell'esecuzione dovrà essere:

$$1 \rightarrow 3 \rightarrow 5 \rightarrow -2 \rightarrow -1 \rightarrow 2 \rightarrow 4$$

- (1 pto) Definire un tipo di dato opportuno per gli elementi della lista.
- (1 pto) Completare con la chiamata al sottoprogramma

```
list_t * head = NULL;
list_t * p;
/* chiamata */
...
/* visualizza */
for(p = head; p; p = p->next)
    printf(" %d ->" p->info);
```

Si considerino già disponibili e non da sviluppare i sottoprogrammi seguenti:

```
/* inserisce in testa alla lista */
elem_t * push(elem_t *, int);
/* inserisce in coda alla lista */
elem_t * append(elem_t *, int);
/* inserisce un elemento nella lista in ordine crescente */
elem_t * insert_inc(elem_t *, int);
/* inserisce un elemento nella lista in ordine decrescente */
elem_t * insert_dec(elem_t *, int);
/* elimina dalla lista il primo elemento */
elem_t * pop(elem_t *);
/* elimina dalla lista tutti gli elementi con il valore indicato */
elem_t * delete(elem_t *, int);
/* restituisce il riferimento all'elemento nella lista che ha il valore indicato, se esiste, NULL altrimenti */
elem_t * exists(elem_t *, int);
/* restituisce il numero di elementi nella lista */
int length(elem_t *);
```

Quesito 4 [11 pti]

La cerniera è uno schema enigmistico che segue una formula del tipo ZX / YZ = XY, ossia date due stringhe s1 e s2 cerca una sottostringa Z presente in entrambe, in s1 all'inizio, in s2 alla fine, e se esiste crea una nuova stringa concatenando ciò che avanza da s1 e s2. Per esempio, se s1 = mare e s2 = tema, la sottostringa ma rispetta i vincoli e viene creata la stringa rete; se s1 = flauto e s2 = golf, la sottostringa t rispetta i vincoli e viene creata la stringa lautogol. Non consideriamo valide soluzioni in cui Y non esista, ossia s2 è una sottostringa di s1, come per esempio in s1 = autoscuola e s2 = auto.

- (5 pti) Scrivere un sottoprogramma cercacerniera che riceve in ingresso due stringhe e restituisce l'indice della posizione in cui comincia in s2 la sottostringa Z, se esiste, -1 se non esiste. Con questa informazione il chiamante potrà creare la stringa risultante. Con riferimento agli esempi precedenti, se s1 = mare e s2 = tema il sottoprogramma cercacerniera restituisce 2. Naturalmente non è importante in questo frangente che il vocabolo che risulterebbe dalla cerniera abbia senso in italiano.
- (4 pti) Scrivere un sottoprogramma cerniera che riceve in ingresso due stringhe s1 e s2 ed un valore intero inizio. Il sottoprogramma crea e restituisce una nuova stringa che si ottiene concatenando i caratteri di s1 che seguono la sottostringa di s2 a partire dalla posizione inizio, ai caratteri di s2 che precedono inizio. Senz'altro il valore di inizio è compatibile con le dimensioni di s1 e s2.
- (2 pti) Scrivere un programma che acquisisce da riga di comando due stringhe e calcola, se esiste, la cerniera visualizzandola (chiamando i sotto-programmi di cui sono state indicate le funzionalità precedentemente). Nel caso in cui la cerniera non esista, il programma non visualizza nulla.