

La nota de la competencia transversal "Comprensión e integración" se evaluará en base a las cuestiones 1, 3 y 5

1. (1 pto) Comparativa redes cableadas e inalámbricas. Justifique las respuestas.

	Fáb a ma a á	MIT: 002 44h
\ O'	Ethernet	WiFi - 802.11b
a) Si dos estaciones colisionan por 2ª vez, el tiempo de espera antes de volver a transmitir será ¿mayor? ¿siempre mayor? ¿menor?etc. que tras la primera colisión Cuantifique la respuesta	Backoff para Ethernet es [0 a 2 ⁿ – 1] time slots (donde un time slot = t en tx 512 bits) Para la primera retransmisión fue un valor aleatorio entre [0 a 1]. En la segunda retransmisión será un valor aleatorio entre [0 a 3] time slots. Por lo tanto, pueden darse todas las casuísticas, siendo lo más probable que tras la segunda colisión se espere más. Pero también posible que se espere lo mismo o incluso menos (p.ej. en la 1ª retransmisión se esperó 1 time slot y en la 2º se espera 0 time slots)	El razonamiento es el mismo.
b) Detección de colisiones. Cómo lo hace cada tecnología.	/CD escucha el canal mientras transmite. Si escucha algo distinto a lo que él transmite entiende que es una colisión	La estación espera un reconocimiento (ACK). Si no lo recibe entiende que puede haber habido una colisión
	Switch	Punto de acceso
c) ¿Separan dominios de difusión y de colisión?	El switch no propaga una colisión → separa dominios de colisión. El switch transmite un broadcast por todos los puertos menos el de entrada → no separa dominios de difusión.	Es lo mismo. El PA a fin de cuentas es un switch (trabaja a N2) pero con dos tecnologías distintas (cableado – inalámbrico).

2. (0,75 ptos) Una estación recibe la secuencia de bits **1001.1001.1001.** Suponiendo que esta secuencia de bits incluye un campo CRC, y que este se calculó utilizando el polinomio generador **x**⁴ + **x** + **1**, a) dibuje el circuito b) justifique si ha habido errores de transmisión. (Incluya los cálculos en la respuesta).

El resto es distinto de cero → ha habido errores

3. (1 pto) Un router con la siguiente tabla de reenvío (tabla de forwarding) recibe datagramas con las siguientes direcciones de destino. Indique por dónde se reencamina (next-hop) el datagrama.

Datagramas				
	Dir IP de destino	Debe ir por	D	
a)	12.132.12.12	В	0.	
b)	12.249.132.132	С	1:	
c)	12.254.64.64	G	1:	
d)	12.253.224.240	J	1:	
e)	63.63.63.12	В	1:	

Tabla reenvío			
Destino	Ir por		
	(next-hop)		
0.0.0.0 /0	Α		
0.0.0.0 /2	В		
12.240.0.0 / 12	С		
12.192.0.0 / 14	D		
12.224.0.0 / 14	E		
12.240.0.0 / 14	F		
12.252.0.0 / 14	G		
12.130.0.0 / 15	Н		
12.252.0.0 / 15	J		

Decimal	Binario
12	0000.1100
63	0011.1111
64	0100.0000
130	1000.0010
132	1000.0100
224	1110.0000
240	1111.0000
249	1111.1001
252	1111.1100
253	1111.1101
254	1111.1110

4. (1,5 pto) Dada la red de la figura:

a) Dibuje los dominios colisión y de difusión

En el PA1 están asociadas las estaciones móviles C y D (no se ven entre ellas) y al PA2 están asociadas las estaciones móviles J y K (tampoco se ven entre ellas). Los routers están correctamente configurados y los switches conocen la ubicación de todas las máquinas. Las caches de ARP de todos los dispositivos están vacías, excepto la de los routers R1 y R2 que tienen la información necesaria.

b) Relacione las tramas que se generan en los casos siguientes hasta que se alcanza el destino indicado (para hacer referencia a la dirección física de un dispositivo, utiliza el nombre del dispositivo: R1-1, R1-2, R2-1, R2-2, A, B, PA1, ...)

i. **K** envia un datagrama IP a F

Tipo trama (Ethernet o 802.11)	MAC destino o Dir. 1	MAC. origen o Dir. 2	Dir. 3	Tipo de Paquete
802.11	PA2	K	Difusión	Consulta ARP
802.11	Difusión	PA2	K	Consulta ARP
Ethernet	Difusión	K		Consulta ARP
Ethernet	K	F		Respuesta ARP
802.11	K	PA2	F	Respuesta ARP
802.11	PA2	К	F	Datagrama IP
Ethernet	F	K		Datagrama IP

ii. G envia un datagrama IP a C

Tipo trama (Ethernet o 802.11)	MAC destino o Dir . 1	MAC. origen o Dir . 2	Dir . 3	Tipo de Paquete
Ethernet	Difusión	G		Consulta ARP
802.11	Difusión	PA2	G	Consulta ARP
Ethernet	G	R2-2		Respuesta ARP
Ethernet	R2-2	G		Datagrama IP
Ethernet	R1-3	R2-1		Datagrama IP
Ethernet	С	R1-1		Datagrama IP
802.11	С	PA1	R1-1	Datagrama IP

- 5. (1 pto) Los routers de un sistema autónomo utilizan OSPF. El router-A recibe los "link states" (LS o "estados de los enlaces") que se muestran en la tabla. Calcule la tabla de reenvío (tabla de forwarding) del **nodo-A**. Para ello...
- a) Resuelva costes mínimos por Dijkstra.
- b) Muestre claramente cómo quedaría la tabla de reenvío del nodo-A indicando:

destino	coste	Ir por

Α	(B, 5)	(C, 1)	(D, 5)	(E, 8)
В	(A, 3)	(C, 8)	(D, 2)	(E, 1)
С	(A, 3)	(B, 3)	(D, 2)	(E, 5)
D	(A, 3)	(B, 8)	(C, 4)	(E, 4)
Е	(A, 5)	(B, 11)	(C, 4)	(D, 3)

A C1C D3C B4C E5B	Tentative (B5,B) (C1C) (D8D) (BE) (B.4,C) (D3C) (E6C) (B,4D) (E7B) (E5B)	
Halla dest.	Jerusanding. Der Coste	
BCDE	C 1 C 3 C 4 C 5	

destino	coste	Ir por
В	4	С
С	1	С
D	3	С
Е	5	С

- 6. (0,75 pto) Dado un canal de transmisión con un ancho de banda de 34.000 Hz,
- a) Calcule cuántos armónicos se enviarán al transmitir de forma periódica el carácter de 6 bits 010000 a una velocidad de 9600 bps utilizando codificación NRZ. Muestre los cálculos realizados y justifique su respuesta.
- b) Indique cuál debería ser la velocidad de transmisión para que solo pasen 8 armónicos.

a)

6 bits → 1 ciclo

f = (9600 bits /seg) / (6 bits/ciclo) = 1600 Hz

n° de armónicos = BW / f = $34000 / 1600 = 21,25 \rightarrow 21$ armónicos

b)

 $f_8 = 34.000 Hz \rightarrow f = 34.000 / 8 = 4250 Hz$

Vtx = 4250 ciclos/seg * 6 bits/ciclo = **25.500 bits/seg**