Contrôle continu n° 2

Durée 1h20

Tous documents, calculatrices et téléphones interdits. Une rédaction précise et concise sera récompensée.

Questions

- 1. Rappeler la définition des élément irréductibles dans un anneau intègre. (0.5p)
- 2. Rappeler la définition d'anneau et celle d'anneau principal, puis donner la liste des anneaux principaux que vous connaissez. (1.5p)

Exercice 1

- 1. Rappeler le théorème des restes Chinois. (1p)
- 2. Justifier (sans le résoudre) que le système

$$\begin{cases} x \equiv 2 \ [44] \\ x \equiv 5 \ [9] \end{cases}$$

admet au moins une solution dans \mathbb{Z} . A-t-on unicité? (1p+0.5p)

3. Résoudre ce système dans \mathbb{Z} . (2p)

Exercice 2

On pose ${\mathcal H}$ l'ensemble des matrices 2x2 à coefficients complexes de la forme :

$$A(x,y) = \left(\begin{array}{cc} x & y \\ -\bar{y} & \bar{x} \end{array}\right)$$

- 1. Montrer que \mathcal{H} est un sous-anneau de $M_2(\mathbb{C})$. (2p)
- 2. Quels sont les éléments inversibles de \mathcal{H} ? (1.5p)
- 3. \mathcal{H} est il commutatif? Est-ce un corps? (0.5p+0.5p)

Tournez SVP»»

Exercice 3

Soit l'anneau $A=\mathbb{Z}+\mathbb{Z}\sqrt{5}=\{a+\sqrt{5}\,b\;,\;(a,b)\in\mathbb{Z}^2\}.$ On définit pour $x=a+\sqrt{5}\,b\in A$ avec $(a,b)\in\mathbb{Z}^2$:

$$n(x) := a^2 - 5b^2.$$

- 1. Montrer que pour tout $x, y \in A$, on a : n(xy) = n(x)n(y). (1p)
- 2. Justifier que $x \in A$ est inversible si et seulement si $n(x) \in \{-1, 1\}$. Donner un élément x_0 de A tel que $n(x_0) = -1$ (1p+0.5p)
- 3. Si $k \in \mathbb{N}$ et r est le reste de la division euclidienne de k^2 par 4, quelles sont les seules valeurs possibles de r (donner un exemple pour chaque valeur)? En déduire qu'il n'existe pas dans A d'élément x tel que $n(x) = \pm 2$. (1.5p+1.5p)
- 4. Calculer n(-2), n(2), $n(1+\sqrt{5})$, $n(1-\sqrt{5})$. (0.5p)
- 5. En déduire que -2, 2, $1+\sqrt{5}$, $1-\sqrt{5}$ sont irréductibles dans A. (1.5p)
- 6. L'élément 2 divise t'il $1 \pm \sqrt{5}$ dans A? (0.5p)
- 7. L'anneau A est il principal? (indic. $(-2) \times 2 = (1 + \sqrt{5})(1 \sqrt{5})$). (1p)