Basic Image Processing Algorithms

PPKE-ITK

Lecture 5-6.

Image Recovery

Image Recovery

What is Image Recovery?

Recovery vs Enhancement

- (Recap) Image enhancement is the manipulation or transformation of the image to improve the visual appearance or to help further automatic processing steps.
 - We don't add new information to the image, just make it more visible (e.g. increasing contrast) or highlight a part of it (e.g. dynamic range slicing).
- Recovery: the modeling and removal of the degradation the image is subjected to, based on some optimality criteria.
 - In case of recovery there is a *degradation we want to remove*, lost *information we want to recover* (e.g. make blurred text readable again). It is done by modeling the degradation and making assumptions about the degradation and the original image.

Blurred Image

Restored Image

Original Image

• Images from the Hubble Space Telescope, taken with a defective

mirror.

Source of the images: Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos

• Blind restoration of image corrupted by motion blur:

Original Image with Motion Blur

Restored Image

Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For Multimedia Problems," Multimedia, IEEE Transactions on, vol.16, no.4, pp.1000,1017, June 2014.

Super-resolution:

• The process of combining multiple low resolution images to form a high resolution image.

Single, non-enhanced frame

Multiple Frames of the same scene

Reconstructed Frame

• Error Concealment:

J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded images," IEEE Signal Processing Letters, vol. 15, pp. 178-181, 2008.

• Inpainting

http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digital-image-restoration.html

http://nbviewer.ipython.org/github/chintak/inpainting-demo/blob/master/Hello_ShopSense.ipynb

• Deblocking:

removal of blocking artifacts introduced by compression

S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge Regeneration" Journal of Electronic Imaging (JEI), Jan 2014

Sources of Degradation and Forms of Recovery

Sources of Degradation

- 1. Motion
- 2. Atmospheric turbulence
- 3. Out-of-focus lens
- Finite resolution of the sensors
- 5. Limitations of the acquisition system
- 6. Transmission error
- 7. Quantization error
- 8. Noise

Forms of Restoration

- Restoration/Deconvolution
- Removal of Compression Artifacts
- 3. Super-Resolution
- 4. Inpainting/Concealment
- Noise smoothing

Inverse problem formulation of Recovery

 The original image x goes through a system (H), that introduces some type of degradation resulting the observed image y:

$$x(n_1, n_2) \rightarrow H \rightarrow y(n_1, n_2)$$

recovery

- The objective is to reconstruct x based on...
 - y and H
 - ___
 - y and partially H
- - blind recovery
 - semi-blind recovery

- If we know x and
 - y
 - H

- system identification
- system implementation

Degradation and Restoration

Degradation Model

• The model of degradation for restoration problems:

$$y(n_1, n_2) = H[x(n_1, n_2)] + n(n_1, n_2)$$

 If an LSI degradation system is assumed, with signal independent additive noise:

$$y(n_1, n_2) = x(n_1, n_2) * h(n_1, n_2) + n(n_1, n_2)$$

The restoration problem in this case is called deconvolution.

Point spread function (PSF) of an imaging system

• PSF: system's impulse response:

- "An image" $h(n_1, n_2)$, which describes the response of an imaging system to a point source or point object
- the degree of spreading (blurring)
 of the point object is a measure for
 the quality of an imaging system.
- observed image can be taken as the convolution of the object and the PSF

Optical transfer function:

- the Fourier transform of the PSF.
- convolution in the spatial (PSF) domain becomes simple element wise multiplication in the Fourier domain

$$y(n_1, n_2) = x(n_1, n_2) * h(n_1, n_2)$$

$$Y(\omega_1, \omega_2) = X(\omega_1, \omega_2) \cdot H(\omega_1, \omega_2)$$

Convolution in matrix-vector form

• 1D convolution can be represented in a matrix-vector form:

$$y(n) = x(n) * h(n) = \sum_{k} x(k)h(n-k), \text{ where } \begin{cases} x: 1 \times N \\ h: 1 \times L \\ y: 1 \times (N+L-1) \end{cases}$$

$$\begin{bmatrix} y(0) \\ y(1) \end{bmatrix} = \begin{bmatrix} h(0) & 0 & \cdots & \cdots & 0 \\ h(1) & h(0) & 0 & \cdots & 0 \\ h(2) & h(1) & h(0) & \cdots & 0 \\ \vdots & \vdots & & \ddots & \vdots \\ h(L-1) & \vdots & & & h(0) \\ \vdots & \vdots & & & h(L-1) \end{bmatrix} \cdot \begin{bmatrix} x(0) \\ x(1) \end{bmatrix}$$

$$\vdots$$

$$y(N+L-2)$$

H: block circulant matrix.

LSI Image filtering

- The $N_1 \times N_2$ images involved must be lexicographically ordered. That means that an image is converted to a column vector by pasting the rows one by one after converting them to columns.
 - An image of size 256×256 is converted to a column vector of size 65536×1.
- An LSI degradation model can be written in a matrix form, where the images are vectors and the degradation process is a huge but sparse block circulant matrix:

$$y = Hx$$

The above relationship is ideal. What really happens is

$$y = Hx + n$$

where: n is a noise component

Convolution in matrix-vector form

• Matrix-vector form of degradation:

$$y = Hx + n$$

- x, n and y are column vectors of size $N_1N_2 \times 1$
- if the system is LSI, then **H** is a **block circulant matrix**.
- Representation in the <u>frequency domain</u>:
 - for block circulant matrices it can be shown*, that we can take it to the Fourier domain elementwise, so the following equation holds:

$$Y(\omega_{1}, \omega_{2}) = H(\omega_{1}, \omega_{2}) \cdot X(\omega_{1}, \omega_{2}) + N(\omega_{1}, \omega_{2}), \text{ where } \begin{cases} \omega_{1} = 0, ..., N_{1} - 1\\ \omega_{2} = 0, ..., N_{2} - 1 \end{cases}$$

Here all matrices have a size of $N_1 \times N_2$:

- $X(\omega_1, \omega_2)$: DFT of the $x(n_1, n_2)$ 2D input image (matrix!)
- $H(\omega_1, \omega_2)$: DFT of the point spread function,
- $N(\omega_1, \omega_2)$: DFT of the noise
- $Y(\omega_1, \omega_2)$: DFT of the output

*proof available as supplementary material optional to read, not part of exam

Image Recovery

Deconvolution Algorithms

- Simplest deconvolution filter, developed for LSI systems.
- Can be easily implemented in the frequency domain as the inverse of the degradation filter.
- Main limitations and drawbacks:
 - Strong noise amplification
 - The degradation system has to be known a priori.
- The degradation equation: y = Hx + n
 - In this problem we know H and y and we are looking for a descent x
 - The objective is to find **x** that minimizes the Euclidian norm of the error:

$$\underset{x}{\operatorname{argmin}} (J(x)) = \underset{x}{\operatorname{argmin}} (||y - Hx||^2)$$

 The problem is formulated as follows: we are looking to minimize the Euclidian norm of the error:

$$\underset{x}{\operatorname{argmin}} (J(x)) = \underset{x}{\operatorname{argmin}} (||y - Hx||^2)$$

 The first derivative of the minimization function must be set to zero.

$$\frac{\partial J(x)}{\partial x} = 0 \Rightarrow \frac{\partial}{\partial x} \left(y^T y - 2x^T H^T y + x^T H^T H x \right)$$
$$= -2H^T y + 2H^T H x = 0$$

$$H^{T}Hx = H^{T}y$$
 Generalized Inverse $x = (H^{T}H)^{+}H^{T}y$

• We have that in Matrix-vector form (Mvf):

$$HH^Tx = H^Ty$$

 Frequency domain representation: if we take the DFT of the above relationship in both sides we have:

$$|H(\omega_1, \omega_2)|^2 \cdot X(\omega_1, \omega_2) = H^*(\omega_1, \omega_2) \cdot Y(\omega_1, \omega_2)$$

- Recap: connection between the Mvf and the DFT representation of LSI systems (slide 20)
- We do not prove here: if the DFT of an LSI transform H is $H(\omega_1, \omega_2)$, then the DFT of H^T is $H^*(\omega_1, \omega_2)$ (complex conjugate)
- Easy to prove: for any complex number $c \cdot c^* = |c|^2$:

•
$$c \cdot c^* = (x + jy) \cdot (x - jy) = x^2 - jxy + jxy - jjy^2 = x^2 + y^2 = |c|^2$$

• We have that:

$$X(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2)Y(\omega_1, \omega_2)}{\left|H(\omega_1, \omega_2)\right|^2}$$

- ullet **Problem:** It is very likely that $H(\omega_1, \omega_2)$ is 0 or very small at certain frequency pairs.
- For example, $H(\omega_1, \omega_2)$ could be a *sinc* function.
- In general, since $H(\omega_1, \omega_2)$ is a low pass filter, it is very likely that its values drop off rapidly as the distance of (ω_1, ω_2) from the origin (0,0) increases.

Inverse filtering for noisy scenarios

 \odot Simplification: consider a system where $H(\omega_1, \omega_2)$ is real*. In this case, the inverse filter output is calculated as:

$$\hat{X}_{inv}(\omega_1, \omega_2) = \frac{Y(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$$

• Assume, that in fact the degradation system output is affected by noise $N(\omega_1, \omega_2)$:

$$Y(\omega_1, \omega_2) = H(\omega_1, \omega_2) \cdot X(\omega_1, \omega_2) + N(\omega_1, \omega_2)$$

• In this case:

Real signal $X(\omega_1, \omega_2) = \frac{Y(\omega_1, \omega_2) - N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} = \frac{Y(\omega_1, \omega_2) - N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$

 $\hat{X}_{inv}(\omega_1, \omega_2) \qquad \begin{array}{c} \text{Reconstruction error} \\ \\ \hline \\ \frac{Y(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} \\ \hline \\ \frac{N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} \end{array}$

*holds for central symmetric PSF

Inverse filtering for noisy scenarios

 \odot Filter output is affected by noise $N(\omega_1, \omega_2)$:

$$X(\omega_1, \omega_2) = \frac{Y(\omega_1, \omega_2) - N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} = \frac{Y(\omega_1, \omega_2)}{H(\omega_1, \omega_2)} - \frac{N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$$

- **Problem:** It is definite that while $H(\omega_1, \omega_2)$ is 0 or very small at certain frequency pairs, $N(\omega_1, \omega_2)$ is large.
- Note that $H(\omega_1, \omega_2)$ is a low pass filter, whereas $N(\omega_1, \omega_2)$ is an all pass function. Therefore, the term $\frac{N(\omega_1, \omega_2)}{H(\omega_1, \omega_2)}$ (error of estimation for $X(\omega_1, \omega_2)$) can be huge!
- The drawback of this method is the strong amplification of noise - Inverse filtering fails in that case ☺

Pseudo-inverse filtering

 Instead of the conventional inverse filter, we implement the following:

$$X(\omega_{1}, \omega_{2}) = \begin{cases} \frac{H^{*}(\omega_{1}, \omega_{2})Y(\omega_{1}, \omega_{2})}{\left|H(\omega_{1}, \omega_{2})\right|^{2}} & \text{if } \left|H(\omega_{1}, \omega_{2})\right| \geq T \\ T & \text{if } \left|H(\omega_{1}, \omega_{2})\right| < T \end{cases}$$

- \odot The parameter T (called **threshold** in the figures in the next slides) is a small number chosen by the user.
- This filter is called pseudo-inverse or generalized inverse filter.

Pseudo-inverse filtering with different thresholds

Original Image

Blurred Image with Additional Noise

Blurred Image

The Noise Component (amplified 10 times)

Reconstructed Image (with *T=0.005*)

Reconstructed Image (with *T=0.02*)

Reconstructed Image (with *T=0.01*)

Reconstructed Image (with *T=0.1*)

Blurred Image with Additional Noise

Reconstructed Image (with *T=0.1*)

Matlab code of an inverse filter

```
T=.2;
x=double(imread('lena.bmp')); %read original image
N1=size(x,1); N2=size(x,2);
figure (1); imagesc(x); colormap(gray); %display original image
w=5; h=ones(w,w)/w^2; % PSF of bluring
X=fft2(x); % DFT of original image
H=fft2(h,N1,N2); % DFT of PSF
Y=X.*H; % DFT of blurred image
y=ifft2(Y)+10*randn(N1,N2); %observed image: blurred + additive
noise
Y=fft2(y); % DFT of the observed image
figure (2); imagesc (abs (ifft2 (Y))); colormap (gray); %display
observed image
BF = find(abs(H) < T);
H(BF)=T;
invH=ones(N1,N2)./H;
X1=Y.*invH;
im=abs(ifft2(X1)); % reconstructed image
figure (3); imagesc (im); colormap (gray) % display result
```

- The objective is to reduce the noise amplification effect of the inverse filter by adding extra constraints about the restored image:
 - On one hand we still have the term describing the solution's fidelity to the data:

 $\underset{x}{\operatorname{argmin}} (J(x)) = \underset{x}{\operatorname{argmin}} (||y - Hx||^2)$

• But we also have a second term, incorporating some *prior knowledge* about the smoothness of the original image:

$$\left\|Cx\right\|_{2}^{2} < \varepsilon$$

• Putting the two together with the introduction of α :

$$\underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \left\| Cx \right\|_{2}^{2} \right)$$

$$\underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \left\| Cx \right\|_{2}^{2} \right) \implies x = \left(H^{T}H + \alpha C^{T}C \right)^{+} H^{T} y$$

- C is a high pass filter
 - Intuitively this means that we want to keep under control the amount of energy contained in the high frequencies on the restored image.
- \odot α is the regularization parameter
- In the frequency domain (for H and C block circulant) we have the following formula:

$$X(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2)}{\left|H(\omega_1, \omega_2)\right|^2 + \alpha \left|C(\omega_1, \omega_2)\right|^2} Y(\omega_1, \omega_2)$$

• if α is 0, we get back the simple Least Square method (Inverse Filter)

- (Optional) Different types of regularization:
 - CLS:

$$\widetilde{x}(\alpha)_{CLS} = \underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \left\| Cx \right\|_{2}^{2} \right)$$

Maximum Entropy Regularization:

$$\widetilde{x}(\alpha)_{ME} = \underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \sum_{i=1}^{N} x_{i} \log(x_{i}) \right)$$

Total Variation Regularization:

$$\widetilde{x}(\alpha)_{TV} = \underset{x}{\operatorname{argmin}} \left(\left\| y - Hx \right\|_{2}^{2} + \alpha \sum_{i=1}^{N} \left[\Delta x \right]_{i} \right)$$

• $I_p - norms$:

$$J(z) = ||z||_p^p = \sum_{i=1}^N |z_i|^p, \qquad 1 \le p \le 2$$

Original Image

Reconstructed Image (CLS with α =0.1)

Blurred Image with Additional Noise

Reconstructed Image (CLS with α =0.5)

CLS vs. LS

Reconstructed Image (CLS with α =0.1)

Reconstructed Image (LS with T=0.02)

Reconstructed Image (CLS with α =0.5)

Reconstructed Image (LS with T=0.1)

Wiener Filter

- Stochastic restoration approach:
 - Treat the image as a sample from a 2D random field.
 - The image is part of a class of samples (an ensemble), realizations of the same random field.

$$R(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2) \cdot P_{xx}(\omega_1, \omega_2)}{\left| H(\omega_1, \omega_2) \right|^2 \cdot P_{xx}(\omega_1, \omega_2) + P_{NN}(\omega_1, \omega_2)}$$

• Autocorrelation:

Expected value over many realizations of the 2D random field

$$R_{ff}(n_1, n_2, n_3, n_4) = E[f(n_1, n_2)f^*(n_3, n_4)]$$

• Power-Spectrum (Wide Sense Stationarity (WSS) input)

$$P_{ff}(\omega_1, \omega_2) = \text{DFT} \Big\{ R_{ff}(d_1, d_2) \Big\}_{d_1 = n_1 - n_3, d_2 = n_2 - n_4}$$
 Fourier transformation

Autocorrelation calculation - some details

• Definition of autocorrelation:

Expected value over many realizations of the 2D random field

$$R_{ff}(n_1, n_2, n_3, n_4) = E[f(n_1, n_2)f^*(n_3, n_4)]$$

• Wide Sense Stationarity property (WSS):

$$R_{ff}(n_1, n_2, n_3, n_4) = R_{ff}(n_1 - n_3, n_2 - n_4) = R_{ff}(d_1, d_2)$$

- Ergodicity:
 - ensemble average is equal to spatial average

$$R_{ff}(d_1, d_2) = \lim_{N \to \infty} \frac{1}{(2N+1)^2} \sum_{k_1 = -N}^{N} \sum_{k_2 = -N}^{N} f(k_1, k_2) f^*(k_1 - d_1, k_2 - d_2)$$

Autocorrelation calculation the Fourier domain

- Recap (from textures lecture) Wiener-Khinchin Theorem
 - Input image: $x(n_1, n_2)$
 - Fourier transform: $\{X(\omega_1, \omega_2)\} = DFT\{x(n_1, n_2)\}$
 - Power spectrum: $P_{\chi\chi}(\omega_1, \omega_2) = X(\omega_1, \omega_2) \cdot X^*(\omega_1, \omega_2)$
 - Autocorrelation: inverse Fourier transform of the power spectrum: $\{R_{\chi\chi}(d_1,d_2)\}=\mathrm{IDFT}\{P_{\chi\chi}(\omega_1,\omega_2)\}$

Wiener Filter

- The degradation model: $y(n_1, n_2) = x(n_1, n_2) * h(n_1, n_2) + n(n_1, n_2)$
- The objective:

$$\widetilde{x}(n_1, n_2) = \underset{\widetilde{x}(n_1, n_2)}{\operatorname{argmin}} E \Big[x(n_1, n_2) - \widetilde{x}(n_1, n_2) \Big]^2 \Big]$$

 We look for the solution in the following format, assuming an LSI restoration model:

$$\widetilde{x}(n_1, n_2) = r(n_1, n_2) * y(n_1, n_2)$$

- The input image is assumed to be WSS with autocorrelation $R_{xx}(n_1, n_2)$.
- The recovered image is obtained in the Fourier domain:

$$X(\omega_1, \omega_2) = R(\omega_1, \omega_2) \cdot Y(\omega_1, \omega_2)$$

Recovered Wiener Observed

image filter degraded image

Wiener Filter

• Assumptions:

- that both the input image and the noise are WSS.
- The restoration error and the signal (the observed image) is orthogonal:

$$E[e(n_1, n_2)y^*(n_3, n_4)] = E[(x(n_1, n_2) - \widetilde{x}(n_1, n_2))y^*(n_3, n_4)] = 0, \quad \forall (n_1, n_2), (n_3, n_4)$$

• It can be shown* that the following transfer function implements the above constraint:

$$R(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2) \cdot P_{xx}(\omega_1, \omega_2)}{\left| H(\omega_1, \omega_2) \right|^2 \cdot P_{xx}(\omega_1, \omega_2) + P_{NN}(\omega_1, \omega_2)}$$

^{*}proof available as supplementary material optional to read, not part of exam

Wiener Filter and CLS Filter

• Wiener filter:

$$R(\omega_{1},\omega_{2}) = \frac{H^{*}(\omega_{1},\omega_{2}) \cdot P_{xx}(\omega_{1},\omega_{2})}{\left|H(\omega_{1},\omega_{2})\right|^{2} \cdot P_{xx}(\omega_{1},\omega_{2}) + P_{NN}(\omega_{1},\omega_{2})} = \frac{H^{*}(\omega_{1},\omega_{2})}{\left|H(\omega_{1},\omega_{2})\right|^{2} + \frac{P_{NN}(\omega_{1},\omega_{2})}{P_{xx}(\omega_{1},\omega_{2})}} = \frac{H^{*}(\omega_{1},\omega_{2})}{\left|H(\omega_{1},\omega_{2})\right|^{2} + \frac{\sigma_{N}^{2}}{P_{xx}(\omega_{1},\omega_{2})}}$$

$$\bullet \text{ CLS filter:}$$

$$R(\omega_{1},\omega_{2}) = \frac{H^{*}(\omega_{1},\omega_{2})}{\left|H(\omega_{1},\omega_{2})\right|^{2} + \alpha |C(\omega_{1},\omega_{2})|^{2}}$$
Noise to signal ratio

 \odot With the right choice of C and α , CLS filter is the same as the Wiener filter.

Wiener Filter

Original Image

Reconstructed with Wiener filter

Motion Blurred Noisy Image

Reconstructed with CLS filter

Wiener Lab task on week 7

See more practical details on the corresponding laboratory excercise!

original

noisy blurred with edge-/frame-modification

reconstructed with autocorrelations

Main Sources and Further Readings

- Fundamentals of Digital Image and Video Processing lectures by Aggelos K. Katsaggelos
- Babacan, D. S., R. Molina, and A. K. Katsaggelos, "Total Variation Super Resolution Using A Variational Approach", IEEE International Conf. on Image Processing 2008, San Diego, USA, 10/10/2008.
- J. Rombaut, A. Pizurica, and W. Philips, "Locally adaptive passive error concealment for wavelet coded images," IEEE Signal Processing Letters, vol. 15, pp. 178-181, 2008.
- Zhaofu Chen; Derin Babacan, S.; Molina, R.; Katsaggelos, AK., "Variational Bayesian Methods For Multimedia Problems," *Multimedia, IEEE Transactions on*, vol.16, no.4, pp.1000,1017, June 2014
- http://www.mathworks.com/company/newsletters/articles/applying-modern-pde-techniques-to-digitalimage-restoration.html
- S. Alireza Golestaneh, D. M. Chandler, "An Algorithm for JPEG Artifact Reduction via Local Edge Regeneration" Journal of Electronic Imaging (JEI), Jan 2014