poster2 (2019-04-23 22:51)

The blow up section family

Brustenga i Moncusí, Laura brust@mat.uab.cat

Universitat Autònoma de Barcelona

Introduction

A cluster of r sections of a family $X \to S$ is a sequence of sections $(\sigma_1, \ldots, \sigma_r)$

$$S \stackrel{\sigma_1}{\longleftarrow} X \longleftarrow \operatorname{bl}_{\sigma_1} X \longleftarrow \cdots$$

A family of clusters of r sectoins parametrised by a scheme T

$$T imes S \longleftarrow T imes X \longleftarrow \mathrm{bl}_{t_1}(T imes X) \longleftarrow \cdots$$

When $X \longrightarrow S$ is smooth, families of clusters of r sections form a functor $\mathcal{Cl}_r \colon \mathsf{Sch}_{\Bbbk} \longrightarrow \mathsf{Set}.$

Theorem 1 (Existence)

If X is quasiprojective and S is proper, then, for every r > 0, \mathcal{Cl}_r is representable by a scheme Cl_r .

Closed points $c \in \operatorname{Cl}_r$ correspond to clusters of r sections $(\sigma_1, \ldots, \sigma_r)$. Observe that, for r > 0, there is a morphism,

$$F \colon \operatorname{Cl}_{r+1} \longrightarrow \operatorname{Cl}_r \times_{\operatorname{Cl}_{r-1}} \operatorname{Cl}_r$$

sending a closed point $c = (\sigma_1, \ldots, \sigma_r, \sigma_{r+1}) \in Cl_r$ to the couple

$$F(c) = ((\sigma_1, \ldots, \sigma_r), (\sigma_1, \ldots, \sigma_{r-1}, b \circ \sigma_{r+1})),$$

where

$$b \colon \mathrm{bl}_{\sigma_r}(\ldots \mathrm{bl}_{\sigma_1}(X) \ldots) {\longrightarrow} \mathrm{bl}_{\sigma_{r-1}}(\ldots \mathrm{bl}_{\sigma_1}(X) \ldots)$$

is the blow up morphism.

Theorem 2 (Structure)

If X is quasiprojective and S is proper and smooth, then there is a stratification by locally closed subschemes

$$\operatorname{Cl}_r \times_{\operatorname{Cl}_{r-1}} \operatorname{Cl}_r = \sqcup_i D_i = \Delta_{\operatorname{Cl}_r} \sqcup (\sqcup_j D_j)$$

such that, for every irreducible component $C \subseteq \operatorname{Cl}_{r+1}$,

- $F(C) \subseteq \overline{D_i}$ for some (obviously unique) D_i ,
- if $D_i \neq \Delta_{\operatorname{Cl}_r}$, then $F|_C: C \longrightarrow \overline{D_i}$ is a blow up along an ideal which fails to be Cartier only along the diagonal $\Delta_{\operatorname{Cl}_r} \cap \overline{D_i}$.

An example

The family (a pencil of planes):

$$\pi : \mathbb{P}^3_{\mathbb{k}} \setminus L \longrightarrow \mathbb{P}^1_{\mathbb{k}}$$

$$(x:y:z:w) \longmapsto (x:y)$$

where L is the line V(x,y). Set $X = \mathbb{P}^3_{\mathbb{k}} \setminus L$.

 Cl_1 parametrises rational curves of degree one, that is lines $R \subseteq X$.

$$Cl_1 = \mathbb{G}(1,3) \setminus \{\text{lines intersecting } L\} \cong \mathbb{A}^4$$

 Cl_2 parametrises couples of sections (σ, τ) where

- $ullet \sigma : \mathbb{P}^1_{\mathbb{k}} \longrightarrow X$ parametrises a line $R \subseteq X$.
- ullet $au: \mathbb{P}^1_{\Bbbk} {\longrightarrow} \mathrm{bl}_{\sigma} X$ is a section of $\mathrm{bl}_{\sigma} X {\longrightarrow} X {\longrightarrow} \mathbb{P}^1_{\Bbbk}$

Notation:

 $Z \subseteq \operatorname{Cl}_1 \times \operatorname{Cl}_1$ cl. subscheme parametrising lines that intersect.

$$E_{\sigma} \subseteq \operatorname{bl}_{\sigma} X$$
 the exceptional divisor.

• Observation: when τ does factorises through E_{σ} , it is a section of

$$\mathbb{P}^1_{\mathbb{k}} \times \mathbb{P}^1_{\mathbb{k}} \cong E_{\sigma} {\longrightarrow} \mathrm{bl}_{\sigma} X {\longrightarrow} X {\longrightarrow} \mathbb{P}^1_{\mathbb{k}}.$$

It corresponds to a curve

$$C_n \subseteq \mathbb{P}^1_{\mathbb{k}} \times \mathbb{P}^1_{\mathbb{k}}$$
 of bidegree $(1, n)$.

Such curves are parametrised by open subschemes

$$V_n {\longrightarrow} \mathbb{P}^1 imes \mathbb{P}^n$$

• Observation: for n = 0, 1, the curves C_n are respectively flat limit of two intersecting lines or two non-intersecting lines.

$$\operatorname{Cl}_2 = W \sqcup U \sqcup (\sqcup_{n \geq 2} V_n)$$

with

$$W = (Z \setminus \Delta_{\operatorname{Cl}_1}) \cup V_0 {\longrightarrow} Z$$
 and

$$U = ((\operatorname{Cl}_1 \times \operatorname{Cl}_1) \setminus Z) \cup V_1 \longrightarrow \operatorname{Cl}_1 \times \operatorname{Cl}_1$$
.

The blow up section family

Consider schemes X, S and a closed subscheme Z of $X \times S$. The blow up section family of the projection $X \times S \longrightarrow S$ along Z is a morphism b: $\mathfrak{X} \longrightarrow X$ such that $(b \times \mathrm{Id}_S)^{-1}(Z) \subseteq \mathfrak{X} \times S$ is an effective Cartier divisor

$$(b imes \operatorname{Id}_S)^{-1}(Z) \overset{\mathbf{Cartier}}{\longrightarrow} \mathfrak{X} imes S \longrightarrow \mathfrak{X}$$
 $\downarrow b imes \operatorname{Id}_S \qquad \downarrow b$
 $Z \overset{\mathbf{cl.emb.}}{\longrightarrow} X imes S \longrightarrow X$

and b satisfies the following universal property: For every morphism f: $X' \rightarrow X$ such that $(f \times \mathrm{Id}_S)^{-1}(Z) \subseteq X' \times S$ is an effective Cartier divisor, there is a unique morphism $g: X' \rightarrow \mathfrak{X}$ such that $f = g \circ b$.

Theorem 3 (Existence)

If X is quasiprojective and S is projective and integral, then the blow up section family of $X \times S \longrightarrow S$ along Z exists.

Theorem 4 (Structure)

If X is quasiprojective and S is projective, integral and smooth, then there is a stratification by locally closed subschemes with a distinguished stratum X' (which is a closed subscheme)

$$X = \sqcup_i X_i = X' \sqcup (\sqcup_j X_j)$$

such that the morphism

$$b|_{\mathfrak{X}\setminus b^{-1}(X')}\colon \mathfrak{X}\setminus b^{-1}(X'){\longrightarrow} X\setminus X'$$

factorises through $\sqcup_j X_j$ and such a corestriction is an isomorphism with its image.

Examples

- When S is the base field, we retrieve the classic blow up and Theorem 4 (Structure) just says that a blow up is an isomorphism away of its centre.
- From the example, the morphism

$$b:W\sqcup U{\longrightarrow}\operatorname{Cl}_1{\times}\operatorname{Cl}_1$$

is the blow up sections family of $\mathbb{P}^1_{\mathbb{k}} \times (\operatorname{Cl}_1 \times \operatorname{Cl}_1) \longrightarrow \mathbb{P}^1_{\mathbb{k}}$ along a suitable closed subscheme. The distinguished stratum is $\Delta_{\operatorname{Cl}_1}$ and

$$(W \sqcup U) \setminus b^{-1}(\Delta_{\operatorname{Cl}_1}) = (Z \setminus \Delta_{\operatorname{Cl}_1}) \sqcup ((\operatorname{Cl}_1 \times \operatorname{Cl}_1) \setminus Z)$$