CA318 Labsheet #5

Question 1

Consider the problem of **making change** using coins as seen in the lecture. Use the algorithm from class to solve this problem:

$$A = 11, C = \{1, 5, 6, 8\}$$

Solution

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	I	I	I	I	I	I	I	I	I	I	I
1	0	1	2	3	4	5	6	7	8	9	10	11
5	0	1	2	3	4	1	2	3	4	5	2	3
6	0	1	2	3	4	1	1	2	3	4	2	2
8	0	1	2	3	4	1	1	2	1	2	2	2

Question 2

Consider the problem of **making change** using coins as seen in the lecture. Use the algorithm from class to solve this problem:

$$A = 12, C = \{ 2, 5, 6, 8 \}$$

Use this table to compute the solution:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	I	I	I	I	I	I	I	I	I	I	I	I	I
2	0	I	1	I	2	I	3	I	4	I	5	I	6
5	0	I	1	I	2	1	3	2	4	3	2	4	3
6	0	I	1	I	2	1	1	2	2	3	2	2	2
8	0	I	1	I	2	1	1	2	1	3	2	2	2

Question 3

- 1. Briefly compare the complexity of this algorithm with the Brute Force solution we discussed in class. In your answer derive an estimate of the complexity for each.
 - a. BF exhaustive search on a graph where $b=2 \Rightarrow \Theta(2^n)$
 - b. DP mn table search => $m\Theta(n)$
- 2. Do they both find the optimal solution if one exists?
 - a. yes
- 3. Give an example where the greedy algorithm fails to find **any** solution even though an optimal one exists.
 - a. EG: $A = \{6\} C = \{2, 3, 5\}$
 - b. Here, greedy performs as follows
 - i. $6-5=1\{5,\}$
 - ii. $1 ?? = \{ 5, ERROR \}$