F8L10T LoRa 终端	文档版本	密级
使用说明书	V2.0.0	
	产品名称: F8L10T	共 23 页

F8L10T LoRa 终端使用说明书

此说明书适用于下列型号产品:

型号	产品类别	
F8L10T-N	LoRa 数传终端	
F8L10T-E	LoRa 数传终端(带 PA)	

厦门四信通信科技有限公司

Add: 厦门市集美区软件园三期诚毅大街 370 号

A06 栋 11 层

客户热线: 400-8838 -199 电话: +86-592-6300320 传真: +86-592-5912735

网址 http://www.four-faith.com

文档修订记录

日期	版本	说明	作者
2016-11-16	V1.0.0	初始版本	WSP
2016-12-13	V1.0.1	修改视距通信距离	WSP
2017-02-10	V1.0.2	1.修改在线指示灯的说明	ZDD
2017-02-20	V1.1.0	根据产品线调整,修改射频频段描述。 参数配置部分多处细节调整。	ZDD
2017-08-17	V1.1.1	1. 增加了 ADC 采集值计算公式 2. 同步增加 V2. 0. 0 软件版本参数	YSL/ZDD
2017-09-23	V2.0.0	更新地址	Faine

著作权声明

本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司 拥有,但注明引用其他方的内容除外。未经四信公司书面许可,任何人不得将本文档上的任 何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商 业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他 所有权的说明)除外。

商标声明

Four-Faith、四信、Four-Faith 场系厦门四信通信科技有限公司注册 商标,未经事先书面许可,任何人不得以任何方式使用四信名称及四信的商标、标记。

注: 不同型号配件和接口可能存在差异, 具体以实物为准。

目录

第一章	产品简介	6
1.1	产品概述	6
1.2	?产品特点	6
1.3	3工作原理框图	7
1.4	产品规格	8
第二章	安装	10
2.1	概述	10
2.2	!装箱清单	10
2.3	安装与电缆连接	10
2.4	电源说明	15
2.5	指示灯说明	15
第三章	参数配置	16
3.1	配置连接	16
3.2	参数配置方式介绍	16
3.3	参数详细介绍	18
	3.3.1 系统参数	18
	3.3.1.1 串口工作模式	18
	3.3.1.2 调试等级	18
	3.3.1.3 休眠模式	19
	3.3.1.4 空中唤醒	19
	3.3.2 串口参数	20
	3.3.3 LoRa 网络参数	21
	3.3.3.1 网络号	22
	3.3.3.2 设备类型	22
	3.3.3.3 设备 ID	22
	3.3.3.4 中继地址(V2.0.0 版本开始不再使用)	22
	3.3.3.5 透传地址	22
	3.3.3.6 载波频率	22
	3.3.3.7 发射功率	23
	3.3.3.8 空中凍率	23

第一章 产品简介

1.1 产品概述

F8L10T LoRa 数据传输终端是一种基于 LoRa 扩频技术的无线数据传输终端,利用 LoRa 网络为用户提供无线数据传输功能。

该产品采用高性能的工业级 LoRa 方案,以嵌入式实时操作系统为软件支撑平台,同时 提供 RS232 和 RS485(或 RS422)接口,可直接连接串口设备,实现数据透明传输功能; 低功耗设计,最低功耗小于 5mA@12VDC;提供 5 路 I/O,可实现数字量输入输出、模拟 量输入、脉冲计数等功能。

该产品已广泛应用于物联网产业链中的 M2M 行业,如智能电网、智能交通、智能家居、 金融、移动 POS 终端、供应链自动化、工业自动化、智能建筑、消防、公共安全、环境保 护、气象、数字化医疗、遥感勘测、军事、空间探索、农业、林业、水务、煤矿、石化等领 域。

1.2 产品特点

工业级应用设计

- ◆ 采用高性能工业级芯片
- ◆ 低功耗设计,支持多级休眠和唤醒模式,最大限度降低功耗
- ◆ 采用金属外壳,保护等级 IP30。金属外壳和系统安全隔离,特别适合于工控现场的应
- ◆ 宽电源输入(DC 5~36V)

稳定可靠

- ◆ WDT 看门狗设计,保证系统稳定
- ◆ RS232/RS485/RS422 接口内置 15KV ESD 保护
- ◆ 电源接口内置反相保护和过压保护
- ◆ 天线接口防雷保护(可选)

标准易用

- ◆ 采用工业端子接口,特别适合于工业现场应用
- ◆ 提供标准 RS232 和标准 RS485(或 RS422)接口,可直接连接串口设备
- ◆ 可定制 TTL 电平串口,可定制 ADC
- ◆ 智能型数据终端,上电即可进入数据传输状态
- ◆ 提供功能强大的中心管理软件,方便设备管理(可选)
- ◆ 使用方便,灵活,多种工作模式选择
- ◆ 方便的系统配置和维护接口
- ◆ 支持串口软件升级和远程维护

功能强大

- 支持 LoRa 无线短距离数据传输功能,具有自组网能力
- 具备中继路由和终端设备功能
- 网络容量大: 65000 个节点(典型个数 300 个)
- 发送模式灵活:广播发送或目标地址发送模式可选
- 提供 5 路 I/O, 可实现 3 路模拟量输入、2 路数字量输入输出; 兼容 2 路脉冲计数功能

1.3 工作原理框图

F8L10T 原理框图如下:

数传模块 F8L10T 原理框图

图 1-2 F8L10T 结构框图

1.4 产品规格

LoRa 参数

项 目	内 容	
通信标准及频段	产品系列支持全球各地多种频段(433/470/780/868/915 MHz)	
室内/市区通信距离	F8L10T-N:1km F8L10T-E:2km	
户外/视距通信距离	F8L10T-N:3.5km F8L10T-E:11.5km	
发射功率	F8L10T-N:20dBm(100mW) F8L10T-E:30dBm(1W)	
通信理论速率	6 级可调(0.3、0.6、1.0、1.8、3.1、5.5Kbps)	
灵敏度	-140dBm	

接口类型

项 目	内 容		
串口	1 个 RS232 和 1 个 RS485(或 RS422)接口,内置 15KV ESD 保护,		
	串口参数如下:		
	数据位: 8位		
	停止位: 1位、2位		
	校验:无校验、奇校验、偶校验		
	波特率: 300、600、1200、2400、4800、9600、19200、38400、57600、		
	115200bps		
指示灯	具有电源、通信及 LoRa 指示灯		
天线接口	标准 SMA 阴头天线接口,特性阻抗 50 欧		
电源接口	端子接口,内置电源反相保护和过压保护		
	,		

供电

项 目	内 容
标准电源	DC 12V/0.5A
供电范围	DC 5∼36V

功耗

	项 目	内容	
	休眠	3.1~3.2mA@12 VDC	
	接收数据	13.2~13.4mA@12 VDC	
F8L10T-N	发送数据	60.3~61.2mA@12 VDC	
FOL IUI-IN	休眠	7.3~7.4mA@5 VDC	
	接收数据	26.1~26.2mA@5 VDC	
	发送数据	107.3~115.1mA@5 VDC	
	休眠	3.1~3.3mA@12 VDC	
	接收数据	13.2~13.4mA@12 VDC	
F8L10T-E	发送数据	110-125mA@12 VDC	
FOLIUI-E	休眠	7.2~7.4mA@5 VDC	
	接收数据	26.3~26.5mA@5 VDC	
	发送数据	210~213mA@5 VDC	

物理特性

项 目	内 容
外壳	金属外壳,保护等级 IP30
外形尺寸	91x58.5x22 mm (不包括天线和安装件)
重量	约 205g

其它参数

项 目	内 容
工作温度	-40~+85°C (-40~+185°F)
储存温度	-40∼+125°C (-40∼+257°F)
相对湿度	95% (无凝结)

第二章 安装

2.1 概述

设备必须正确安装方可达到设计的功能,通常设备的安装必须在本公司认可合格的工程 师指导下进行。

▶ 注意事项: 请不要带电安装设备。

2.2 装箱清单

当您开箱时请保管好包装材料,以便日后需要转运时使用。清单如下:

- ◆ LoRa 终端 1 个(根据用户订货情况包装)
- ◆ 使用说明书光盘 1 张
- ♦ LoRa 天线 1 根
- ◆ 配套电源 1 个
- ◆ RS232 交叉线 1条(或 RS485 线 1条,可选)
- ◇ 产品合格证
- ◆ 产品保修卡

2.3 安装与电缆连接

外形尺寸:

设备封装在金属机壳内,可独立使用,两侧有固定的孔位,方便用户安装,具体的尺寸 参见下图。(单位:mm)

图 2-1 安装指示图

天线安装:

LoRa 数传终端天线接口为 SMA 阴头插座。将配套天线的 SMA 阳头旋到 LoRa 数传终 端天线接口上,并确保旋紧,以免影响信号质量。

天线如何放置如下:

- 1、 尽量远离大面积的金属平面及地面;
- 2、 天线尽量保证可对视状态;
- 3、 尽量减少天线之间的障碍物;
- 4、 尽量缩短天线与模块之间的馈线长度。

天线不同安装方式效果参见下图所示说明。

图 2-2 天线安装方式

接口信号定义说明:

接口编号	接口名称	默认功能	扩展功能
1	PWR	电源输入正极	无
2	GND	系统地	无
3	GND	系统地	无
4	RX	RS232 数据接收	无
5	TX	RS232 数据发送	无
6	A	RS485 通讯接口正极	无
7	В	RS485 通讯接口负极	无
8	IO1	GPIO, 可检测干节点信号和 3.3V 开	休眠控制
		关量信号。可输出 3.3V 开关量信号	

厦门四信通信科技有限公司

Page 12 of 23

Add: 厦门市集美区软件园三期诚毅大街 370 号 A06 栋 11 层

9	IO2	GPIO,可检测干节点信号和 3.3V 开	无
		关量信号。可输出 3.3V 开关量信号	
10	IO3	ADC,模拟量输入功能(电压采集0~	GPIO
		5V)	
11	IO4	ADC,模拟量输入功能(电流采集0~	GPIO
		20mA)	
12	IO5	ADC,模拟量输入功能(电流采集0~	GPIO
		20mA)	

ADC 采集计算公式:

电压: (采集指) *3.3*20.16/(4095*12.1) V 电流: (采集指) *3.3*1000/(4095*150) (mA)

安装电缆:

F8L10T 采用工业级端子接口,建议使用的电源线材和数据线材为 28-16AWG。标配电 源和数据线说明如下:

电源(输出 12VDC/0.5A):

线材颜色	电源极性
黑白相间	正极
黑色	负极

RS232 线 (一端为 DB9 母头):

线材颜色	对应 DB9 母头管脚
	2
蓝色	3
黑色	5

RS485 线 (可选):

线材颜色	信号定义
红色	RS485 正极(A)
黑色	RS485 负极(B)

电源和数据接口线缆连接示意图:

连接方式: RS232

连接方式: RS485

连接方式: IO/ADC

2.4 电源说明

LoRa 数传终端通常应用于复杂的外部环境。为了适应复杂的应用环境,提高系统的工 作稳定性, LoRa 数传终端采用了先进的电源技术。用户可采用标准配置的 12VDC/0.5A 电 源适配器给 LoRa 数传终端供电,也可以直接用直流 5~36V 电源给 LoRa 数传终端供电。 当用户采用外加电源给 LoRa 数传终端供电时,必须保证电源的稳定性(纹波小于 300mV, 并确保瞬间电压不超过 36V),并保证电源功率大于 4W 以上。

推荐使用标配的 12VDC/0.5A 电源。

2.5 指示灯说明

LoRa 终端提供三个指示灯: "Power", "ACT", "Online"。指示状态如下:

指示灯	状态	说明
Power	灭	设备未上电
	亮	设备电源正常
ACT	灭	没有数据通信
	闪烁	正在数据通信
Online	灭	设备不在线 / 休眠
	亮	设备在线 / 唤醒

第三章 参数配置

3.1 配置连接

在对 LoRa 数传终端进行配置前,需要通过出厂配置的 RS232 串口线或 RS232-485 转换 线把 LoRa 数传终端和用于配置的 PC 连接起来,如下图:

图 3-1 F8L10T 与 PC 的配置连接

3.2 参数配置方式介绍

F8L10T 的参数配置方式有两种:

- 通过"四信 LoRa 配置软件 LoRaConfig"进行配置: 所有的配置都通过软件 界面的相应条目进行配置,这种配置方式只适合于用户方便用 PC 机进行配 置的情况。
- 通过扩展 AT 命令(以下简称 AT 命令)的方式进行配置:在这种配置方式下, 用户只需要有串口通信的程序就可以配置 F8L10 模块的所有的参数,比如 WINDOWS 下的超级终端,LINUX 下的 minicom, putty 等,或者直接由用户 的单片机系统对节点进行配置。在运用扩展 AT 命令对 F8L10 系列模块进行 配置前需要让模块进入配置状态。

其中,AT 命令配置方式可参考《AT 命令手册》。

通过配置软件配置 F8L10T 参数,如图 3-2 所示。

图 3-2 配置界面

在串口通信设置栏内显示当前打开串口的串口参数,请在此项配置中选择正确的值,同 时打开串口。串口通信设置栏内的右边按钮若显示为"关闭串口",表明串口已经打开,否 则请打开串口。

设备上电后,配置软件点击"加载参数",自动载入设备中的当前配置参数,显示在参 数区域中,至此可以开始配置 F8L10T 中所有参数,如图 3-2 所示。

3.3 参数详细介绍

3.3.1 系统参数

配置 系统参数 串口参数	网络参数 IO端口			
永城多刻 串口参数	M络参数 IO端口 工作模式 调试等级 DDM INF 休眠模式	透传模式 ▼ 1 ▼ 0 ▼ None ▼	厂 空中唤醒	

3.3.1.1 串口工作模式

模块的串口工作模式,可分为"TRNS"、"AT"、"API"。 其中

"TRNS":数据透传模式,此时需要配置透传地地址,即目的地址。

"AT": AT 操作模式,参考《AT 命令手册》中的 AT 命令操作模块,通常用于参数配 置和手动测试。

"API": API 操作模式,参考《API 命令手册》中的 API 命令格式操作模块。其中 API Payload 数据长度最大为 100 字节。

默认值: TRNS

3.3.1.2 调试等级

调试等级控制模块的日志显示,可分为三个调试等级,其中:

- 0 不输出任何日志信息
- 1 输出关键日志信息

厦门四信通信科技有限公司

Page 18 of 23

2 输出详细日志信息 默认值: 1

3.3.1.3 休眠模式

当设备处于低功耗模式,可设置为NONE(不休眠)、TIME(定时休眠)和DEEP(深度休眠)。 深度休眠时,只能通过 RST 复位模块或 SLEEP RQ 脚置高电平来唤醒。

默认值: NONE

3.3.1.4 空中唤醒

无线网络应用中有一种低功耗操作模式,即空中唤醒模式:节点即使处于休眠,当需要 节点工作时,可以直接通过无线手段唤醒该节点,让其接收到数据。

空中唤醒的基础原理是,唤醒发起端在有效数据前头加一段较长的前导码,待唤醒端的 无线节点进行周期性地唤醒, 监听网络。一旦捕捉到前导码就进入正常的接收流程, 若没有 就立即休眠,等待下一次唤醒。

如果需要启用空中唤醒模式,可按照 唤醒端 和 休眠端 来分别进行配置。

工作模式	透传模式	•		
调试等级	1	•		
DDM	0	•		
INF	0	•		
休眠模式	Time	¥	☑ 空中唤醒	
○ 唤醒端				
前导码时间			(0~5)sec	
← 休眠端				
休眠时间	0	•	(0~5)sec	
唤醒时间	0		(0~65535)ms	

空中唤醒的休眠端,需要配置"唤醒时间"和"休眠时间":唤醒时间,指保持设备唤 醒的时间,单位 ms,当设备唤醒超这个时间则会进入休眠;休眠时间,指保持设备休眠的 周期,单位 s,当设备休眠超这个时间则会唤醒,监听前导码。

空中唤醒的唤醒端,需要配置"前导码时间",该数值需要与休眠端的休眠时间一致, 否则会造成无法通信的情况。

3.3.2 串口参数

可配置通信串口的波特率,数据位,校验位,停止位。 默认值,波特率 115200,属性 8N1。

- 配置		
系统参数 串口参数 网络参数 IO端口		
波特率	115200	
数据帧间隔	20	(1~65535)ms
校验位	无 ▼	
停止位	1 🔻	

3.3.3 LoRa 网络参数

Netwrok 网络号	0	(0~65527)
设备类型	终端 ▼	
设备ID	13654	(0~65527)
中继地址		(0~65535)
透传地址	0	(0~65535)
Radio —		
载波频率	433	(410~441, 470~510, 850~950)
(需要相应的天线)		
发射功率	20 🔻	
空中速率	3 level ▼	

3.3.3.1 网络号

网络号用于区分不同的 LoRa 网络,只有在相同信道并且使用相同网络号的设备才会相互通 信。

注: 从标准版程序 V2.0.0 开始支持该命令。

3.3.3.2 设备类型

从标准版程序 V2.0.0 开始支持 Mesh 网络。 设备类型为1的节点(路由器),具备中继功能,需要长期供电。 设备类型为2的节点(终端),无中继功能,可休眠。

3.3.3.3 设备 ID

设置模块的 ID, 可配置范围 0~65527。

3.3.3.4 中继地址(V2.0.0 版本开始不再使用)

注: V2.0.0 标准版本开始,支持 MESH 协议,此参数不再使用,只需将中继节点的设 备类型配置为路由器即可。

当节点间传输距离过远时使用,该参数设置成中继节点的 ID,中继节点会帮助本节点 将数据转发给最终目的节点。

默认值: 1000

3.3.3.5 透传地址

透传模式下,串口数据可直接发向该透传地址的设备。可配置范围 0~65535。

3.3.3.6 载波频率

模块数据传输的工作频率,不同的硬件模块可工作的频段不同,大致分为低频段 (525MHz 以下)和高频段(525MHz 以上)两类。典型的工作频段为 410M~441MHz, 470M~510MHz, 850~950MHz 等, 1000KHz 为一个信道。不同应用地区有不同的频段限制,

以及不同信道的干扰因素,误码率不同,因此需要根据实际情况调整此值。 低频段硬件模块的默认值为433,高频段模块的默认值为868。

3.3.3.7 发射功率

不带 PA 的硬件模块可设置 5~20dBm 的发射功率。带 PA 的硬件模块的发射功率固定 为 30dBm。

默认值: 20

3.3.3.8 空中速率

数据在空中的速率选择,可分为6个等级,等级越高速率越高,相同相同条件下,速率 越高,则传输距离越近。因此需要根据实际应用环境调整此值。

注:一旦速率确定,那么所有的设备必须为同一速率,否则不能通信。 默认值: 3级。