Phylogenetic Analyses of the genus *Gekko* using Maximum Likelihood and Minimum Evolution Models

PURDUE UNIVERSITY®
FORT WAYNE

Department of Biology

Deanne Jensen, Nicholas Molisani, Carsten White & Ebenezer Zena

Molecular Ecology and Evolution (FNR 505000) Data Analysis Project

INTRODUCTION

- Wood et al. (2020) sought to resolve phylogenetic relationships within the genus *Gekko*
- Previous studies suggested paraphyly within Gekko with the inclusion of species from the derived genera, Luperosaurus and Ptychozoon
- Using 5060 ultraconserved elements (UCEs), Wood et al. built concatenated maximum likelihood tree to answer research questions:
- 1. Are *Luperosaurus* and *Ptychozoon* monophyletic and are any taxa from these genera included within *Gekko*?
- 2. Is there a sister relationship between *L. iskandari* and *G. vittatus* as previous estimates have identified?
 - 3. Is *L. gulat* correctly placed in *Gekko*?
 - 4. How does *P. Rhacophorus* and *L. browni* fit in the phylogeny?
- Min. Evolution model searches for smallest sum of branch length estimates

OBJECTIVE

Compare phylogenetic relationships resulting from Wood et al.'s maximum likelihood model to relationships suggested by a minimum evolution model.

METHODS

- Aligned dataset from dryad [4] analyzed in MEGA program
- 42 species of lizards are included in and ingroup sampling (two species of Lepidodactylus, two species of Pseudogekko, five Ptychozoon species, sev en Luperosaurus species, and 25 species of Gekko)
- Using bootstrapping method, we were able to perform Min. Evolution analysis on same dataset that Max.
 Likelihod was performed

RESULTS

Figure 1. Maximum Likelihood phylogeny based on 10p dataset. (From Wood et al. 2020)

Figure 2. Minimum Evolution phylogeny based on 10p dataset.

- Maximum Likelihood tree has rooted outgroup comprising of Cyrtodactylus
 - Min. Evolution model does not denote *Cyrtodactylus* as outgroup like authors intended
- Both trees show two major clades derived from the common ancestor
- Min. Evolution model shows different relationships primarily in gekko taxa
 - Very low bootstrap value (66) in lowest gekko clade

DISCUSSION

- (1)Both models have Luperosaurus and Ptychozoon as non-monophyletic with taxa mixed in with gekko; (2)show L. iskandari and G. vittatus sister relationship; (4)show P. rhacophorus to be basal to L. browni
- (3)Min. Evolution places *L. gulat* outside of *gekko,* Max. Likelihood within *gekko*
- More robust bootstrapping methods used in Max. Likelihood leading to differentiation
- Min. Evolution modeling provided much different representation of gekko genus relationships
- Clades related to relative geographic location not seen in new model
- Problems with modeling program led to trouble obtaining correct outgroup
- After only completing Min. Evolution model on 10p dataset, how would tree compare at a higher degree of loci completeness?

Literature Cited

- [1] Brown, R. M., Meneses, C. G., Wood, P. L., Fernandez, J. B., Cuesta, M. A., Clores, M. A., Tracy, C., Buehler, M. D., & Siler, C. D. (2020). Unexpected discovery of another new species of Philippine false gecko (Gekkonidae; pseudogekko) from the Bicol Peninsula of Luzon Island. *Herpetologica*, 76(3), 315.
- [2] Brown, R. M., Oliveros, C., Siler, C. D., & Diesmos, A. C. (2009). Phylogeny of gekko from the northern Philippines, and description of a new species from Calayan Island. *Journal of Herpetology*, *43*(4), 620–635. https://doi.org/10.1670/08-207.1
- [3] Huelsenbeck, J. P. (1995). Performance of phylogenetic methods in simulation. *Systematic Biology*, 44(1), 17. https://doi.org/10.2307/2413481
- [4] Wood, P. L., Guo, X., Travers, S. L., Su, Y.-C., Olson, K. V., Bauer, A. M., Grismer, L. L., Siler, C. D., Moyle, R. G., Andersen, M. J., & Brown, R. M. (2020). Parachute geckos free fall into synonymy: Gekko phylogeny, and a new subgeneric classification, inferred from thousands of ultraconserved elements. *Molecular Phylogenetics and Evolution*, 146, 106731. https://doi.org/10.1016/j.ympev.2020.106731