The statistical power of assumptions tests and the conditional use of non-parameteric tests

Ian Hussey

01 Mai, 2024

Contents

```
Overview
                                                              2
                                                              2
Assumption of normality
 13
  Conditionally running a Welches' t-test or a Wilcoxon signed-rank test depending on Shapiro-Wilk's
     17
Session info
                                                             25
# dependencies ----
# repeated here for the sake of completeness
library(tidyr)
library(dplyr)
## Attache Paket: 'dplyr'
## Die folgenden Objekte sind maskiert von 'package:stats':
##
    filter, lag
## Die folgenden Objekte sind maskiert von 'package:base':
##
    intersect, setdiff, setequal, union
##
library(forcats)
library(readr)
library(purrr)
library(ggplot2)
library(sn)
## Warning: Paket 'sn' wurde unter R Version 4.3.3 erstellt
## Lade nötiges Paket: stats4
##
## Attache Paket: 'sn'
## Das folgende Objekt ist maskiert 'package:stats':
```

```
##
## sd
library(knitr)

## Warning: Paket 'knitr' wurde unter R Version 4.3.3 erstellt
library(kableExtra)

##
## Attache Paket: 'kableExtra'

## Das folgende Objekt ist maskiert 'package:dplyr':
##
## group_rows
```

Overview

What do most statistics textbooks tell you to do when trying to test if two groups' means differ?

- 1. Check if assumptions of an independent Student's t-test are met, e.g., normality of data and homogeneity of variances.
- 2. If so, run and interpret an independent Student's t-test.
- 3. If not, then perhaps either 'interpret results with caution' (which always feels vague) or run and interpret a non-parametric test instead.

Why? What benefits are there for doing so? Or what bad things happen if you don't?

In a previous session, we observed that violations of the assumption of normality actually has very little impact on the statistical power of a t-test, as long as the two conditions have similarly non-normal data, which is plausible in many situations. Of course, non-normality does distort estimates of population parameters and standardized effect sizes - but often not the p values themselves. This lesson seeks to answer two related questions:

- 1. Just like hypothesis tests, assumptions tests are just inferential tests of other properties (e.g., differences in SDs rather than differences in means), and as such they have false-positive rates and false-negative rates (statistical power). What is the power of these tests under different degrees of violations of assumptions? I.e. what proportion of the time do they get it wrong?
- 2. What is the aggregate benefit of choosing a hypothesis test based on the results of assumption tests? This multi-step researcher behaviour can itself be simulated.

Assumption of normality

Illustrate non-normality

In this case using skewed data, although non-normality could take very many different forms.

```
rsn(n = 100000,
    xi = 0,
    omega = 1,
    alpha = 0) |>
    hist(main = "Skew-normal data when alpha is large (0)", xlab = "Score")
```

Skew-normal data when alpha is large (0)


```
rsn(n = 100000,
    xi = 0,
    omega = 1,
    alpha = 1) |>
hist(main = "Skew-normal data when alpha is large (1)", xlab = "Score")
```

Skew-normal data when alpha is large (1)


```
rsn(n = 100000,
    xi = 0,
    omega = 1,
    alpha = 2) |>
hist(main = "Skew-normal data when alpha is large (2)", xlab = "Score")
```

Skew-normal data when alpha is large (2)


```
rsn(n = 100000,
    xi = 0,
    omega = 1,
    alpha = 3) |>
hist(main = "Skew-normal data when alpha is large (3)", xlab = "Score")
```

Skew-normal data when alpha is large (3)


```
rsn(n = 100000,
    xi = 0,
    omega = 1,
    alpha = 6) |>
    hist(main = "Skew-normal data when alpha is large (6)", xlab = "Score")
```

Skew-normal data when alpha is large (6)


```
rsn(n = 100000,
    xi = 0,
    omega = 1,
    alpha = 9) |>
hist(main = "Skew-normal data when alpha is large (9)", xlab = "Score")
```

Skew-normal data when alpha is large (9)


```
rsn(n = 100000,
    xi = 0,
    omega = 1,
    alpha = 12) |>
hist(main = "Skew-normal data when alpha is large (6)", xlab = "Score")
```


Power of Kolmogov-Smirnov test with skew-normal data

The assumption of normality can be assessed using multiple tests, including the Kolmogov-Smirnov test. This test assesses whether two distributions come from the same distribution. It is known to have low power: i.e., in low sample sizes, this test seldomly correctly detects when the two samples come from different distributions.

Slightly confusingly, although the tests compares two samples, it can also be used to test *one* sample for normality by comparing the one *observed* sample with a second hypothetical perfectly normal distribution.

Let's demonstrate that the test does indeed have low power before we move on to an alternative test.

In a single sample

This generates data from a single sample and the analysis only tests the assumption of normality. This is a useful first step to developing the code.

```
# remove all objects from environment ----
rm(list = ls())

# dependencies ----
# repeated here for the sake of completeness

library(tidyr)
library(dplyr)
library(forcats)
library(readr)
```

```
library(purrr)
library(ggplot2)
library(sn)
library(knitr)
library(kableExtra)
# set the seed ----
# for the pseudo random number generator to make results reproducible
set.seed(42)
# define data generating function ----
generate_data <- function(n,</pre>
                           location, # location, akin to mean
                           scale, # scale, akin to SD
                           skew) { # slant/skew. When 0, produces normal/gaussian data
  data <-
    tibble(score = rsn(n = n,
                       xi = location, # location, akin to mean
                       omega = scale, # scale, akin to SD
                        alpha = skew)) # slant/skew. When O, produces normal/gaussian data
 return(data)
}
# define data analysis function ----
analyse_data <- function(data) {</pre>
 fit <- ks.test(data$score, "pnorm", mean = mean(data$score), sd = sd(data$score))</pre>
 results <- tibble(p = fit$p.value)
 return(results)
}
# define experiment parameters ----
experiment_parameters_grid <- expand_grid(</pre>
 n = seq(from = 10, to = 100, by = 10),
 location = 0, # location, akin to mean
 scale = 1, # scale, akin to SD
 skew = c(0, 1, 2, 3, 6, 9, 12), \qquad \# slant/skew. \ \textit{When 0, produces normal/gaussian data}
 iteration = 1:1000
)
# run simulation ----
simulation <-
  # using the experiment parameters
  experiment_parameters_grid |>
  # generate data using the data generating function and the parameters relevant to data generation
```

```
mutate(generated_data = pmap(list(n,
                                    location,
                                    scale,
                                    skew),
                               generate_data)) |>
  # apply the analysis function to the generated data using the parameters relevant to analysis
 mutate(analysis_results = pmap(list(generated_data),
                                 analyse_data))
# summarise simulation results over the iterations ----
## ie what proportion of p values are significant (< .05)
simulation_summary <- simulation |>
 unnest(analysis_results) |>
 mutate(n = as.factor(n)) |>
 group_by(n,
           location,
           scale,
           skew) |>
  summarize(proportion_of_significant_results = mean(p < .05),</pre>
            .groups = "drop") #true of false positives
simulation_summary |>
  #filter(proportion_of_significant_results >= .8) />
 kable() |>
 kable_classic(full_width = FALSE)
```

n	location	scale	skew	proportion_of_significant_results
10	0	1	0	0.000
10	0	1	1	0.000
10	0	1	2	0.001
10	0	1	3	0.000
10	0	1	6	0.000
10	0	1	9	0.000
10	0	1	12	0.000
20	0	1	0	0.000
20	0	1	1	0.000
			2	
20	0	1	Z	0.001
20	0	1	3	0.000
20	0	1	6	0.002
20	0	1	9	0.002
20	0	1	12	0.004
30	0	1	0	0.000
30	0	1	1	0.000
30	0	1	2	0.000
30	0	1	3	0.003
30	0	1	6	0.004
30	0	1	9	0.006
		1		
30	0	1	12	0.005
40	0	1	0	0.000
40	0	1	1	0.000

40	0	1	2	0.002
40	0	1	3	0.004
40	0	1	6	0.016
40	0	1	9	0.012
40	0	1	12	0.015
50	0	1	0	0.000
50	0	1	1	0.001
50	0	1	2	0.001
50 50	0	1	3	0.002
50	0	1	6	0.018
50	0	1	9	0.026
50	0	1	12	0.026
60	0	1	0	0.000
60	0	1	1	0.000
60	0	1	2	0.000
60	0	1 1	$\frac{3}{6}$	0.003
60	0	1	О	0.024
60	0	1	9	0.040
60	0	1	12	0.041
70	0	1	0	0.000
70	0	1	1	0.000
70	0	1	2	0.002
70	0	1	3	0.011
70	0	1	6	0.055
70	0	1	9	0.062
70	0	1	12	0.076
80	0	1	0	0.000
80	0	1	1	0.001
80	0	1	2	0.006
80	0	1	3	0.014
80	0	1	6	0.062
80	0	1	9	0.075
80	0	1	12	0.097
90	0	1	0	0.000
90 90	0	1	1	0.000
90	0	1	2	0.004
90	0	1	3	0.011
90	0	1	6	0.095
90	0	1	9	0.105
90	0	1	12	0.118
100	0	1	0	0.000
100	0	1	1	0.000
100	0	1	2	0.002
100	0	1	3	0.022
100	0	1	6	0.095
100	0	1	9	0.135
100	0	1	12	0.150

Very low power in common sample sizes. Let's examine the Shapiro-Wilk's test instead.

Power of Shapiro-Wilk's test with skew-normal data

In a single sample

This generates data from a single sample and the analysis only tests the assumption of normality. This is a useful first step to developing the code.

```
# remove all objects from environment ----
rm(list = ls())
# dependencies ----
# repeated here for the sake of completeness
library(tidyr)
library(dplyr)
library(forcats)
library(readr)
library(purrr)
library(ggplot2)
library(sn)
library(knitr)
library(kableExtra)
# set the seed ----
\# for the pseudo random number generator to make results reproducible
set.seed(42)
# define data generating function ----
generate_data <- function(n,</pre>
                           location, # location, akin to mean
                           scale, # scale, akin to SD
                           skew) { # slant/skew. When 0, produces normal/qaussian data
  data <-
    tibble(score = rsn(n = n,
                        xi = location, # location, akin to mean
                        omega = scale, # scale, akin to SD
                        alpha = skew)) # slant/skew. When O, produces normal/gaussian data
 return(data)
}
# define data analysis function ----
analyse_data <- function(data) {</pre>
 fit <- shapiro.test(data$score)</pre>
 results <- tibble(p = fit$p.value)
  return(results)
}
```

```
# define experiment parameters ----
experiment_parameters_grid <- expand_grid(</pre>
 n = seq(from = 10, to = 100, by = 10),
 location = 0, # location, akin to mean
              # scale, akin to SD
 scale = 1,
 skew = c(0, 1, 2, 3, 6, 9, 12),
                                   # slant/skew. When O, produces normal/gaussian data
 iteration = 1:1000
# run simulation ----
simulation <-
  # using the experiment parameters
  experiment_parameters_grid |>
  # generate data using the data generating function and the parameters relevant to data generation
  mutate(generated_data = pmap(list(n,
                                    location,
                                    scale,
                                    skew),
                               generate_data)) |>
  # apply the analysis function to the generated data using the parameters relevant to analysis
  mutate(analysis_results = pmap(list(generated_data),
                                 analyse_data))
# summarise simulation results over the iterations ----
## ie what proportion of p values are significant (< .05)
simulation_summary <- simulation |>
  unnest(analysis_results) |>
 mutate(n = as.factor(n)) |>
 group_by(n,
           location,
           scale,
           skew) |>
  summarize(proportion_of_significant_results = mean(p < .05),</pre>
            .groups = "drop")
simulation summary |>
  filter(proportion_of_significant_results >= .95) |>
 kable() |>
 kable_classic(full_width = FALSE)
```

n	location	scale	skew	$proportion_of_significant_results$
70	0	1	12	0.973
80	0	1	9	0.972
80	0	1	12	0.983
90	0	1	6	0.961
90	0	1	9	0.992
90	0	1	12	0.998
100	0	1	6	0.979
100	0	1	9	0.994

In either of two samples

To make the stimulation more realistic, we should test for normality in each of two samples, and return a decision of non-normality if it is found in either.

```
# remove all objects from environment ----
rm(list = ls())
# dependencies ----
# repeated here for the sake of completeness
library(tidyr)
library(dplyr)
library(forcats)
library(readr)
library(purrr)
library(ggplot2)
library(sn)
library(knitr)
library(kableExtra)
# set the seed ----
# for the pseudo random number generator to make results reproducible
set.seed(42)
# define data generating function ----
generate_data <- function(n,</pre>
                           location, # location, akin to mean
                           scale, # scale, akin to SD
                           skew) { # slant/skew. When 0, produces normal/gaussian data
  data control <-
    tibble(condition = "control",
           score = rsn(n = n,
                       xi = location, # location, akin to mean
                        omega = scale, # scale, akin to SD
                        alpha = skew)) # slant/skew. When O, produces normal/gaussian data
  data_intervention <-</pre>
    tibble(condition = "intervention",
           score = rsn(n = n,
                       xi = location, # location, akin to mean
                        omega = scale, # scale, akin to SD
                        alpha = skew)) # slant/skew. When O, produces normal/gaussian data
  data <- bind_rows(data_control,</pre>
                    data_intervention)
  return(data)
```

```
}
# define data analysis function ----
analyse_data <- function(data) {</pre>
  fit_intervention <- shapiro.test(data$score[data$condition == "intervention"])
 fit control <- shapiro.test(data$score[data$condition == "control"])</pre>
 results <- tibble(p_intervention = fit_intervention$p.value,
                    p_control = fit_control$p.value)
  return(results)
# define experiment parameters ----
experiment_parameters_grid <- expand_grid(</pre>
 n = seq(from = 10, to = 100, by = 10), # n per condition, not total
 location = 0, # location, akin to mean
  scale = 1,
              # scale, akin to SD
 skew = c(0, 1, 2, 3, 6, 9, 12), # slant/skew. When 0, produces normal/gaussian data
  iteration = 1:1000
)
# run simulation ----
simulation <-
  # using the experiment parameters
  experiment_parameters_grid |>
  # generate data using the data generating function and the parameters relevant to data generation
  mutate(generated_data = pmap(list(n,
                                     location,
                                     scale,
                                     skew),
                               generate_data)) |>
  # apply the analysis function to the generated data using the parameters relevant to analysis
  mutate(analysis_results = pmap(list(generated_data),
                                 analyse_data))
# summarise simulation results over the iterations ----
## ie what proportion of p values are significant (< .05)
simulation_summary <- simulation |>
  unnest(analysis_results) |>
  mutate(n = as.factor(n),
         lower_p = ifelse(p_intervention < p_control, p_intervention, p_control)) |>
  group_by(n,
           location,
           scale,
           skew) |>
  summarize(proportion_of_significant_results = mean(lower_p < .05),</pre>
```

```
.groups = "drop")
simulation_summary |>
  filter(proportion_of_significant_results >= .95) |>
  kable() |>
  kable_classic(full_width = FALSE)
```

n	location	scale	skew	proportion_of_significant_results
40	0	1	12	0.952
50	0	1	9	0.979
50	0	1	12	0.983
60	0	1	6	0.971
60	0	1	9	0.989
60	0	1	12	0.994
70	0	1	6	0.987
70	0	1	9	0.999
70	0	1	12	0.999
80	0	1	6	0.994
80	0	1	9	0.999
80	0	1	12	1.000
90	0	1	6	0.999
90	0	1	9	1.000
90	0	1	12	1.000
100	0	1	6	0.998
100	0	1	9	1.000
100	0	1	12	1.000

Conditionally running a Welches' t-test or a Wilcoxon signed-rank test depending on Shapiro-Wilk's test for normality

This stimulation tests normality in both conditions' data, as well as testing for differences in the central tendency using both parametric and non-parametric tests. Which test of the differences in central tendency is used for each simulated data set is determined by whether the assumption of normality is detectably violated.

```
# remove all objects from environment ----
rm(list = ls())

# dependencies ----
# repeated here for the sake of completeness

library(tidyr)
library(dplyr)
library(forcats)
library(readr)
library(purrr)
library(ggplot2)
library(sn)
library(knitr)
library(kableExtra)
```

```
# set the seed ----
# for the pseudo random number generator to make results reproducible
set.seed(42)
# define data generating function ----
generate_data <- function(n,</pre>
                           location_control, # location, akin to mean
                          location intervention,
                           scale, # scale, akin to SD
                           skew) { # slant/skew. When 0, produces normal/gaussian data
  data_control <-</pre>
    tibble(condition = "control",
           score = rsn(n = n,
                       xi = location_control, # location, akin to mean
                       omega = scale, # scale, akin to SD
                       alpha = skew)) # slant/skew. When O, produces normal/gaussian data
  data_intervention <-</pre>
    tibble(condition = "intervention",
           score = rsn(n = n,
                       xi = location_intervention, # location, akin to mean
                       omega = scale, # scale, akin to SD
                       alpha = skew)) # slant/skew. When O, produces normal/gaussian data
 data <- bind_rows(data_control,</pre>
                    data_intervention)
 return(data)
}
# define data analysis function ----
analyse_data <- function(data) {</pre>
  assumption test intervention <- shapiro.test(data$score[data$condition == "intervention"])
 assumption_test_control
                                 <- shapiro.test(data$score[data$condition == "control"])</pre>
 hypothesis_test_welches_t
                                  <- t.test(formula = score ~ condition,
                                       data = data,
                                       var.equal = TRUE,
                                       alternative = "two.sided")
  hypothesis_test_mann_whitney_u <- wilcox.test(formula = score ~ condition,
                                                 data = data,
                                                 alternative = "two.sided")
  results <- tibble(
    assumption_test_p_intervention = assumption_test_intervention$p.value,
    assumption_test_p_control = assumption_test_control$p.value,
    hypothesis_test_p_welches_t = hypothesis_test_welches_t$p.value,
```

```
hypothesis_test_p_mann_whitney_u = hypothesis_test_mann_whitney_u$p.value
  ) |>
   mutate(hypothesis_test_p_conditional = ifelse(min(assumption_test_p_intervention, assumption_test_p
                                                   hypothesis test p mann whitney u,
                                                   hypothesis_test_p_welches_t))
 return(results)
}
# define experiment parameters ----
experiment_parameters_grid <- expand_grid(</pre>
 n = seq(from = 10, to = 100, by = 10), # n per condition, not total
 location_control = 0, # location, akin to mean
 location_intervention = 0.2,
 scale = 1, # scale, akin to SD
 skew = c(0, 1, 2, 3, 6, 9, 12), # slant/skew. When 0, produces normal/gaussian data
 iteration = 1:1000
)
# run simulation ----
simulation <-
  # using the experiment parameters
  experiment parameters grid |>
  # generate data using the data generating function and the parameters relevant to data generation
  mutate(generated_data = pmap(list(n,
                                     location_control,
                                     location_intervention,
                                     scale,
                                     skew).
                                generate_data)) |>
  # apply the analysis function to the generated data using the parameters relevant to analysis
  mutate(analysis_results = pmap(list(generated_data),
                                  analyse data))
# summarise simulation results over the iterations ----
## ie what proportion of p values are significant (< .05)
simulation_summary <- simulation |>
  unnest(analysis_results) |>
  mutate(n_per_group = as.factor(n)) |>
  group_by(n_per_group,
           location_control,
           location_intervention,
           scale,
           skew) |>
  summarize(power_assumption_test = mean(assumption_test_p_intervention < .05 | assumption_test_p_contr</pre>
            power_u = mean(hypothesis_test_p_mann_whitney_u < .05),</pre>
            power_t = mean(hypothesis_test_p_welches_t < .05),</pre>
            power_u = mean(hypothesis_test_p_mann_whitney_u < .05),</pre>
            power_conditional = mean(hypothesis_test_p_conditional < .05),</pre>
```

n_per_group	$location_control$	location_intervention	scale	skew	power_assumption_test	power_u	$power_t$
10	0	0.2	1	0	0.090	0.062	0.072
20	0	0.2	1	0	0.108	0.090	0.095
30	0	0.2	1	0	0.087	0.124	0.136
40	0	0.2	1	0	0.106	0.140	0.146
50	0	0.2	1	0	0.092	0.174	0.177
60	0	0.2	1	0	0.099	0.180	0.190
70	0	0.2	1	0	0.088	0.191	0.191
80	0	0.2	1	0	0.097	0.207	0.224
90	0	0.2	1	0	0.093	0.254	0.270
100	0	0.2	1	0	0.099	0.277	0.286
10	0	0.2	1	1	0.106	0.069	0.079
20	0	0.2	1	1	0.125	0.105	0.107
30	0	0.2	1	1	0.098	0.144	0.151
40	0	0.2	1	1	0.103	0.165	0.163
50	0	0.2	1	1	0.142	0.210	0.229
60	0	0.2	1	1	0.126	0.241	0.247
70	0	0.2	1	1	0.127	0.277	0.290
80	0	0.2	1	1	0.140	0.327	0.337
90	0	0.2	1	1	0.135	0.347	0.352
100	0	0.2	1	1	0.168	0.390	0.398
10	0	0.2	1	2	0.117	0.093	0.098
20	0	0.2	1	2	0.191	0.137	0.141
30	0	0.2	1	2	0.252	0.211	0.211
40	0	0.2	1	2	0.312	0.261	0.261
50	0	0.2	1	2	0.354	0.283	0.283
60	0	0.2	1	2	0.428	0.343	0.348
70	0	0.2	1	2	0.451	0.389	0.400
80	0	0.2	1	2	0.522	0.431	0.427
90	0	0.2	1	2	0.558	0.485	0.490
100	0	0.2	1	2	0.617	0.507	0.509
10	0	0.2	1	3	0.186	0.088	0.090
20	0	0.2	1	3	0.294	0.147	0.148
30	0	0.2	1	3	0.442	0.216	0.222
40	0	0.2	1	3	0.550	0.275	0.270
50	0	0.2	1	3	0.671	0.330	0.326
60	0	0.2	1	3	0.724	0.396	0.377

70	0	0.2	1	3	0.798	0.451	0.432
80	0	0.2	1	3	0.845	0.495	0.461
90	0	0.2	1	3	0.867	0.592	0.568
100	0	0.2	1	3	0.922	0.603	0.581
10	0	0.2	1	6	0.251	0.104	0.102
20	0	0.2	1	6	0.538	0.175	0.167
30	0	0.2	1	6	0.731	0.259	0.229
40	0	0.2	1	6	0.855	0.342	0.303
50	0	0.2	1	6	0.934	0.384	0.335
60	0	0.2	1	6	0.971	0.473	0.425
70	0	0.2	1	6	0.987	0.505	0.464
80	0	0.2	1	6	0.994	0.588	0.542
90	0	0.2	1	6	0.999	0.642	0.585
100	0	0.2	1	6	0.998	0.686	0.623
10	0	0.2	1	9	0.312	0.084	0.093
20	0	0.2	1	9	0.608	0.210	0.188
30	0	0.2	1	9	0.802	0.260	0.224
40	0	0.2	1	9	0.929	0.343	0.312
50	0	0.2	1	9	0.979	0.442	0.399
60	0	0.2	1	9	0.989	0.496	0.431
70	0	0.2	1	9	0.999	0.568	0.483
80	0	0.2	1	9	0.999	0.627	0.556
90	0	0.2	1	9	1.000	0.652	0.595
100	0	0.2	1	9	1.000	0.728	0.649
10	0	0.2	1	12	0.324	0.109	0.112
20	0	0.2	1	12	0.619	0.211	0.189
30	0	0.2	1	12	0.830	0.309	0.270
40	0	0.2	1	12	0.952	0.343	0.312
50	0	0.2	1	12	0.983	0.431	0.372
60	0	0.2	1	12	0.994	0.474	0.417
70	0	0.2	1	12	0.999	0.546	0.490
80	0	0.2	1	12	1.000	0.622	0.546
90	0	0.2	1	12	1.000	0.690	0.615
100	0	0.2	1	12	1.000	0.724	0.647

n_per_group	skew	power_t	power_u	$power_conditional$	$conditional_better_than_t$	$power_diff_cond_t$
50	6	0.335	0.384	0.386	TRUE	0.051
90	6	0.585	0.642	0.642	TRUE	0.057
100	6	0.623	0.686	0.686	TRUE	0.063
60	9	0.431	0.496	0.496	TRUE	0.065
70	9	0.483	0.568	0.568	TRUE	0.085

80	9	0.556	0.627	0.627	TRUE	0.071
90	9	0.595	0.652	0.652	TRUE	0.057
100	9	0.649	0.728	0.728	TRUE	0.079
50	12	0.372	0.431	0.430	TRUE	0.058
60	12	0.417	0.474	0.474	TRUE	0.057
70	12	0.490	0.546	0.546	TRUE	0.056
80	12	0.546	0.622	0.622	TRUE	0.076
90	12	0.615	0.690	0.690	TRUE	0.075
100	12	0.647	0.724	0.724	TRUE	0.077

```
simulation_summary |>
  arrange(skew, n_per_group) |>
  select(n_per_group, skew, power_t, power_u, power_conditional, conditional_better_than_u) |>
  mutate(power_diff_cond_u = power_conditional - power_u) |>
  kable() |>
  kable_classic(full_width = FALSE)
```

n_per_group	skew	power_t	power_u	power_conditional	conditional_better_than_u	power_diff_cond_u
10	0	0.072	0.062	0.074	TRUE	0.012
20	0	0.095	0.090	0.099	TRUE	0.009
30	0	0.136	0.124	0.137	TRUE	0.013
40	0	0.146	0.140	0.144	TRUE	0.004
50	0	0.177	0.174	0.179	TRUE	0.005
60	0	0.190	0.180	0.188	TRUE	0.008
70	0	0.191	0.191	0.196	TRUE	0.005
80	0	0.224	0.207	0.221	TRUE	0.014
90	0	0.270	0.254	0.268	TRUE	0.014
100	0	0.286	0.277	0.284	TRUE	0.007
10	1	0.079	0.069	0.078	TRUE	0.009
20	1	0.107	0.105	0.114	TRUE	0.009
30	1	0.151	0.144	0.150	TRUE	0.006
40	1	0.163	0.165	0.167	TRUE	0.002
50	1	0.229	0.210	0.222	TRUE	0.012
60	1	0.247	0.241	0.249	TRUE	0.008
70	1	0.290	0.277	0.288	TRUE	0.011
80	1	0.337	0.327	0.338	TRUE	0.011
90	1	0.352	0.347	0.357	TRUE	0.010
100	1	0.398	0.390	0.402	TRUE	0.012
10	2	0.098	0.093	0.105	TRUE	0.012
20	2	0.141	0.137	0.147	TRUE	0.010
30	2	0.211	0.211	0.220	TRUE	0.009
40	2	0.261	0.261	0.276	TRUE	0.015
50	2	0.283	0.283	0.285	TRUE	0.002
60	2	0.348	0.343	0.353	TRUE	0.010
70	2	0.400	0.389	0.405	TRUE	0.016
80	2	0.427	0.431	0.437	TRUE	0.006
90	2	0.490	0.485	0.490	TRUE	0.005
100	2	0.509	0.507	0.512	TRUE	0.005
10	3	0.090	0.088	0.098	TRUE	0.010

```
20
                   3
                          0.148
                                     0.147
                                                          0.161
                                                                 TRUE
                                                                                                              0.014
30
                   3
                          0.222
                                                          0.229
                                                                 TRUE
                                                                                                              0.013
                                     0.216
40
                   3
                          0.270
                                     0.275
                                                          0.285
                                                                 TRUE
                                                                                                             0.010
50
                   3
                          0.326
                                     0.330
                                                         0.340
                                                                 TRUE
                                                                                                             0.010
60
                   3
                          0.377
                                     0.396
                                                         0.400
                                                                 TRUE
                                                                                                              0.004
70
                   3
                          0.432
                                                                 TRUE
                                     0.451
                                                         0.457
                                                                                                             0.006
80
                                                                 TRUE
                   3
                          0.461
                                     0.495
                                                         0.498
                                                                                                             0.003
                                                                 FALSE
90
                   3
                          0.568
                                     0.592
                                                          0.590
                                                                                                             -0.002
100
                   3
                          0.581
                                     0.603
                                                         0.606
                                                                 TRUE
                                                                                                             0.003
10
                   6
                          0.102
                                     0.104
                                                         0.114
                                                                 TRUE
                                                                                                             0.010
20
                          0.167
                                     0.175
                                                         0.187
                                                                 TRUE
                                                                                                             0.012
                   6
                          0.229
30
                   6
                                     0.259
                                                         0.268
                                                                 TRUE
                                                                                                             0.009
40
                   6
                          0.303
                                     0.342
                                                         0.344
                                                                 TRUE
                                                                                                             0.002
50
                   6
                                                         0.386
                                                                 TRUE
                          0.335
                                     0.384
                                                                                                             0.002
                   6
                                                                 TRUE
60
                          0.425
                                     0.473
                                                         0.475
                                                                                                             0.002
70
                   6
                          0.464
                                     0.505
                                                          0.505
                                                                 FALSE
                                                                                                             0.000
80
                   6
                          0.542
                                     0.588
                                                         0.589
                                                                 TRUE
                                                                                                             0.001
90
                   6
                          0.585
                                     0.642
                                                         0.642
                                                                 FALSE
                                                                                                             0.000
100
                                                                 FALSE
                   6
                          0.623
                                     0.686
                                                         0.686
                                                                                                             0.000
10
                   9
                          0.093
                                     0.084
                                                          0.100
                                                                 TRUE
                                                                                                             0.016
20
                   9
                                                         0.211
                                                                 TRUE
                          0.188
                                     0.210
                                                                                                             0.001
30
                   9
                          0.224
                                     0.260
                                                         0.270
                                                                 TRUE
                                                                                                             0.010
40
                   9
                          0.312
                                     0.343
                                                         0.345
                                                                 TRUE
                                                                                                             0.002
50
                   9
                          0.399
                                                         0.444
                                                                 TRUE
                                     0.442
                                                                                                             0.002
60
                   9
                          0.431
                                     0.496
                                                         0.496
                                                                 FALSE
                                                                                                             0.000
70
                   9
                          0.483
                                     0.568
                                                         0.568
                                                                 FALSE
                                                                                                             0.000
                                                         0.627
                                                                 FALSE
80
                   9
                          0.556
                                     0.627
                                                                                                             0.000
90
                   9
                                                         0.652
                                                                 FALSE
                          0.595
                                     0.652
                                                                                                             0.000
100
                   9
                          0.649
                                     0.728
                                                         0.728
                                                                 FALSE
                                                                                                             0.000
10
                  12
                          0.112
                                     0.109
                                                         0.117
                                                                 TRUE
                                                                                                             0.008
20
                  12
                          0.189
                                     0.211
                                                         0.219
                                                                 TRUE
                                                                                                             0.008
30
                  12
                          0.270
                                                         0.313
                                                                 TRUE
                                     0.309
                                                                                                             0.004
40
                  12
                          0.312
                                     0.343
                                                         0.345
                                                                 TRUE
                                                                                                             0.002
50
                  12
                          0.372
                                                         0.430
                                                                 FALSE
                                                                                                             -0.001
                                     0.431
                  12
                                                                 FALSE
60
                          0.417
                                     0.474
                                                         0.474
                                                                                                             0.000
70
                  12
                          0.490
                                     0.546
                                                          0.546
                                                                 FALSE
                                                                                                             0.000
80
                  12
                          0.546
                                     0.622
                                                          0.622
                                                                 FALSE
                                                                                                              0.000
90
                  12
                                                                 FALSE
                          0.615
                                     0.690
                                                          0.690
                                                                                                             0.000
100
                  12
                          0.647
                                     0.724
                                                          0.724
                                                                 FALSE
                                                                                                              0.000
```

```
simulation_summary |>
  arrange(skew, n_per_group) |>
  select(n_per_group, skew, power_t, power_u, power_conditional, conditional_better_than_t) |>
  mutate(power_diff_u_t = power_u - power_t) |>
  kable() |>
  kable_classic(full_width = FALSE)
```

n_per_group	skew	$power_t$	power_u	power_conditional	$conditional_better_than_t$	power_diff_u_t
10	0	0.072	0.062	0.074	TRUE	-0.010

20	0	0.095	0.090	0.099	TRUE	-0.005
30	0	0.136	0.124	0.137	TRUE	-0.012
40	0	0.146	0.140	0.144	FALSE	-0.006
50	0	0.177	0.174	0.179	TRUE	-0.003
60	0	0.190	0.180	0.188	FALSE	-0.010
70	0	0.191	0.191	0.196	TRUE	0.000
80	0	0.224	0.207	0.221	FALSE	-0.017
90	0	0.270	0.254	0.268	FALSE	-0.016
100	0	0.276	0.277	0.284	FALSE	-0.010
10	1	0.079	0.069	0.078	FALSE	-0.010
20	1	0.107	0.105	0.114	TRUE	-0.002
30	1	0.151	0.144	0.150	FALSE	-0.007
40	1	0.163	0.165	0.167	TRUE	0.002
50	1	0.229	0.210	0.222	FALSE	-0.019
60	1	0.247	0.241	0.249	TRUE	-0.006
70	1	0.290	0.277	0.288	FALSE	-0.013
80	1	0.337	0.327	0.338	TRUE	-0.010
90	1	0.352	0.347	0.357	TRUE	-0.005
100	1	0.398	0.390	0.402	TRUE	-0.008
10	2	0.098	0.093	0.105	TRUE	-0.005
20	$\frac{2}{2}$	0.141	0.137	0.103 0.147	TRUE	-0.003
30	2	0.211	0.211	0.220	TRUE	0.000
40	2	0.261	0.261	0.226 0.276	TRUE	0.000
50	$\frac{2}{2}$	0.201 0.283	0.283	0.270 0.285	TRUE	0.000
60	2	0.348	0.343	0.353	TRUE	-0.005
70	2	0.400	0.389	0.405	TRUE	-0.011
80	2	0.427	0.431	0.437	TRUE	0.004
90	2	0.490	0.485	0.490	FALSE	-0.005
100	2	0.509	0.507	0.512	TRUE	-0.002
10	3	0.090	0.088	0.098	TRUE	-0.002
20	3	0.148	0.147	0.161	TRUE	-0.001
30	3	0.222	0.216	0.229	TRUE	-0.006
40	3	0.270	0.275	0.285	TRUE	0.005
50	3	0.326	0.330	0.340	TRUE	0.004
60	3	0.377	0.396	0.400	TRUE	0.019
70	3	0.432	0.451	0.457	TRUE	0.019
80	3	0.461	0.495	0.498	TRUE	0.013
90	3	0.568	0.592	0.490 0.590	TRUE	0.034
100	3	0.581	0.603	0.606	TRUE	0.024 0.022
10	6	0.102	0.104	0.114	TRUE	0.002
20	6	0.167	0.175	0.187	TRUE	0.008
30	6	0.229	0.259	0.268	TRUE	0.030
40	6	0.303	0.342	0.344	TRUE	0.039
50	6	0.335	0.384	0.386	TRUE	0.049
60	6	0.425	0.473	0.475	TRUE	0.048
70	6	0.464	0.505	0.505	TRUE	0.041
80	6	0.542	0.588	0.589	TRUE	0.046
90	6	0.585	0.642	0.642	TRUE	0.057
100	6	0.623	0.686	0.686	TRUE	0.063
10	9	0.093	0.084	0.100	TRUE	-0.009

20	9	0.188	0.210	0.211	TRUE	0.022
30	9	0.224	0.260	0.270	TRUE	0.036
40	9	0.312	0.343	0.345	TRUE	0.031
50	9	0.399	0.442	0.444	TRUE	0.043
60	9	0.431	0.496	0.496	TRUE	0.065
70	9	0.483	0.568	0.568	TRUE	0.085
80	9	0.556	0.627	0.627	TRUE	0.071
90	9	0.595	0.652	0.652	TRUE	0.057
100	9	0.649	0.728	0.728	TRUE	0.079
10	12	0.112	0.109	0.117	TRUE	-0.003
20	12	0.189	0.211	0.219	TRUE	0.022
30	12	0.270	0.309	0.313	TRUE	0.039
40	12	0.312	0.343	0.345	TRUE	0.031
50	12	0.372	0.431	0.430	TRUE	0.059
60	12	0.417	0.474	0.474	TRUE	0.057
70	12	0.490	0.546	0.546	TRUE	0.056
80	12	0.546	0.622	0.622	TRUE	0.076
90	12	0.615	0.690	0.690	TRUE	0.075
100	12	0.647	0.724	0.724	TRUE	0.077

```
percent_u_better_than_t percent_conditional_better_than_t percent_conditional_better_than_u

52.9 85.7 78.6
```

```
percent_u_much_better_than_t percent_conditional_much_better_than_t percent_conditional_much_better_than_t 18.6 20
```

Session info

```
sessionInfo()
## R version 4.3.2 (2023-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
```

```
## Running under: Windows 11 x64 (build 22631)
##
## Matrix products: default
##
## locale:
## [1] LC COLLATE=German Switzerland.utf8 LC CTYPE=German Switzerland.utf8
## [3] LC_MONETARY=German_Switzerland.utf8 LC_NUMERIC=C
## [5] LC_TIME=German_Switzerland.utf8
## time zone: Europe/Zurich
## tzcode source: internal
## attached base packages:
## [1] stats4
                           graphics grDevices utils
                 stats
                                                          datasets methods
## [8] base
##
## other attached packages:
## [1] kableExtra_1.4.0 knitr_1.46
                                                           ggplot2_3.5.1
                                         sn_2.1.1
## [5] purrr_1.0.2
                        readr_2.1.5
                                         forcats 1.0.0
                                                           dplyr_1.1.4
## [9] tidyr_1.3.1
##
## loaded via a namespace (and not attached):
## [1] utf8 1.2.4
                            generics 0.1.3
                                                 xml2 1.3.6
                            hms_1.1.3
## [4] stringi_1.8.3
                                                 digest_0.6.35
                            evaluate_0.23
                                                grid_4.3.2
## [7] magrittr_2.0.3
## [10] timechange_0.3.0
                            fastmap_1.1.1
                                                 fansi_1.0.6
## [13] viridisLite_0.4.2
                                                 numDeriv_2016.8-1.1
                            scales_1.3.0
## [16] mnormt_2.1.1
                            cli_3.6.2
                                                 rlang_1.1.3
                            withr_3.0.0
## [19] munsell_0.5.1
                                                 yaml_2.3.8
## [22] tools_4.3.2
                            tzdb_0.4.0
                                                 colorspace_2.1-0
## [25] vctrs_0.6.5
                            R6_2.5.1
                                                 lifecycle_1.0.4
## [28] lubridate_1.9.3
                            snakecase_0.11.1
                                                 stringr_1.5.1
## [31] janitor_2.2.0
                            pkgconfig_2.0.3
                                                pillar_1.9.0
                                                 systemfonts_1.0.6
## [34] gtable 0.3.5
                            glue 1.7.0
## [37] xfun_0.43
                            tibble_3.2.1
                                                tidyselect_1.2.1
## [40] highr 0.10
                            rstudioapi 0.16.0
                                                htmltools 0.5.8.1
## [43] rmarkdown_2.26
                            svglite_2.1.3
                                                 compiler_4.3.2
```