Leistungsanalyse

Yannik Könneker, Maik Simke, Jonas Bögle, Flo Dreyer January 19, 2020

Weak Scaling

NProcs	NNodes	Interlines	Time JA	Time GS
1	1	400	326.4932	330.0873
2	1	564	320.9708	325.6805
4	2	800	324.8454	330.6102
8	4	1128	324.7296	331.2220
16	4	1600	329.7679	339.2012
24	4	1960	333.4741	345.2406
64	8	3200	343.5295	362.7573

Während das Jacobi-Verfahren im Generellen immer weniger Zeit beansprucht, als das Gauß-Seidel-Verfahren, entsteht bei beiden Verfahren ungefähr die selbe Zeitverbesserung bzw- Einbuße bei Veränderung der Knoten/Prozesse/Interlines Anzahl.

Mehr Prozesse pro Knoten sorgen für einen kleineren Überkopf (en. Overhead), allerdings hat die Anzahl der Interlines den größten Einfluss, wobei mehr Interlines eine Verlängerung der benötigten Zeit verursachen.

Strong Scaling

NProcs	NNodes	Interlines	Time JA	Time GS
12	1	1920	317.0871	329.6379
24	2	1920	160.6282	170.2184
48	4	1920	84.9980	90.9851
96	8	1920	47.6506	54.1192
120	10	1920	42.2491	43.1594
240	10	1920	32.4652	39.0177

[&]quot;Corporate needs you to find the difference between this graph and this graph."

Ähnlich wie beim Weak-Scaling ist auch beim Strong-Scaling das Jacobi-Verfahren schneller, wobei dies nicht mehr prozentual sondern konstant mit durchschnittlich ca. sieben Sekunden der Fall ist. Der erreichte Speedup beider Verfahren ist hingegen fast identisch.

Bei gleicher Menge an Prozessen pro Knoten (12 Prozesse pro Knoten) halbiert sich ungefähr die verbrauchte Zeit beider Verfahren bei einer Verdopplung der Anzahl der Prozesse bzw. Knoten. Der Speedup hällt sich ebenfalls bei bei einer Erhöhung auf 120 Prozesse und 10 Knoten.

Die Erhöhung auf 240 Prozesse bei 10 Knoten (Nun 24 Prozesse pro Knoten) erzeugt einen kleineren Speedup, aufgrund eines höheren Überkopfes.

[&]quot;They are the same graph."

Communication

NProcs	NNodes	Interlines	Time JA	Time GS
10	1	200	17.3323	23.8212
10	2	200	15.0131	28.0650
10	3	200	16.0491	29.1836
10	4	200	16.8908	29.4307
10	6	200	17.7107	29.6298
10	8	200	17.5372	29.6727
10	10	200	18.8156	31.2063

Wie bereits beim Weak- und Strong-Scaling ist auch bei der Kommunikation das Jacobi-Verfahren zeitlich am effizientesten. Aufgrund der gleichbleibenden Anzahl an Prozessen, wird die Zeit der Kommunikation nur von der Anzahl an Knoten beeinflusst. Ein größere Anzahl an Knoten sorgt dabei für einen größeren Überkopf, weshalb die verbrauchte Zeit für die Kommunikation mit einer höheren Anzahl an Knoten zunimmt. Der Überkopf beider Verfahren scheint gleich zu sein, nur ist das Gauß-Seidel-Verfahren im generellen langsamer.