

Human-Centered Data & Al

Google for Startups

Accelerator Mentor

Vinicius Caridá, Ph.D.

 Executive Specialist, Artificial Intelligence and Data - Itaú

MBA Professor – FIAP and ESPM

Dinheiro traz felicidade?

Country	GDP per capita (\$US)	Life satisfaction
Hungary	12240,0	4,9
Korea	27195,0	5,8
France	37675,0	6,5
Australia	50962,0	7,3
United States	55805,0	7,2

O que acham? Podemos usar uma função?

Dinheiro traz felicidade?

Country	GDP per capita (\$US)	Life satisfaction
Hungary	12240,0	4,9
Korea	27195,0	5,8
France	37675,0	6,5
Australia	50962,0	7,3
United States	55805,0	7,2

Diversas possibilidades

Qual é a melhor e porque?

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow.

Dinheiro traz felicidade?

Country	GDP per capita (\$US)	Life satisfaction
Hungary	12240,0	4,9
Korea	27195,0	5,8
France	37675,0	6,5
Australia	50962,0	7,3
United States	55805,0	7,2

Melhor ajuste

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow.

Objetivo: "prever" o valor de y (qualidade de vida) usando dados observados de x (renda per capita).

Abordagem: podemos usar uma <u>reta</u> (ou <u>hiperplano</u>, para mais dimensões). Assim:

$$y = f(x)$$

Qual é a cara dessa função?

Abordagem supervisionada simples

Assume uma dependência linear entre a variável resposta Y e os valores $X_1, X_2, ..., X_p$

Assume-se o modelo:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$$

Sendo β_0 , β_1 , ..., β_p coeficientes aprendidos pelo modelo

A fim de encontrar o hiperplano de que melhor se ajusta aos dados, devemos minimizar o erro quadrático médio obtido por ele

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y} - y)^2}{n}}$$

onde \hat{y} é o valor predito, y é o valor real e n o número de exemplos

É muito importante utilizar $(\hat{y} - y)^2$, caso contrário um erro negativo (valor predito menor que o real) cancelaria um positivo (valor predito maior que o real)

• Há alguma relação entre aumento de vendas e propaganda?

Qual mídia contribui mais para as vendas?

 Para o exemplo do slide 5, foi obtida a seguinte equação do hiperplano:

$$Vendas = 2,939 + 0,046 \times TV + 0,189 \times radio + 0.01 \times Jornal$$

 Para o exemplo do slide 5, foi obtida a seguinte equação do hiperplano:

$$Vendas = 2,939 + 0,046 \times TV + 0,189 \times radio + 0.01 \times Jornal$$

- caso nenhuma ação de propaganda seja feita as vendas serão de 2,939
- Mantendo todos os outros valores constantes, a cada uma unidade aumentada nas ações por TV, as vendas aumentam 0,046
- A influência da utilização de jornal é quase nula

Reta

- β_0 : deslocamento
- β_1 : inclinação

$$y = \beta_0 + \beta_1 x$$

Reta

$$y = \beta_0 + \beta_1 x$$

 β_0 fixo; β_1 variável

Χ

Χ

$$e = y - \hat{y}$$

$$e = y - (\beta_0 + \beta_1 x)$$

Positivo

Negativo

$$y - \hat{y} > 0 \qquad \qquad y - \hat{y} < 0$$

$$(y - \hat{y})^2$$
$$|y - \hat{y}|$$

$$|y-\hat{y}|$$

Como avaliar o erro total?

Erro quadrático médio
$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$
 (MSE)

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

 Como a função RMSE é convexa, é possível encontrar o valor mínimo por meio de algoritmos de otimização

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	-0		
	Pessoa 3	90 kg	175
5	Pessoa 4	95 kg	188

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$\hat{y} =$	β_0 +	$\beta_1 X_1$
_		

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 \times 163$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 x 163$$

$$\hat{y} = 310,4$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$\hat{y} = 310,4$$

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	Pessoa 3	90 kg	175
6	Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 17 + 1.8 x 163$$
 MSE = $(80 - 310.4)^2$ $\hat{y} = 310.4$

		Peso	Altura	
	Pessoa 1	80 kg	163	
	Pessoa 2	85 kg	168	
	Pessoa 3	90 kg	175	
6	Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 17 + 1.8 \times 163$$
 MSE = $(80 - 310.4)^2$

$$\hat{y} = 310,4$$
 MSE = 53.084,16

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	0		
	Pessoa 3	90 kg	175
6	Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

 $\hat{y} = 14 + 1.5 x 163$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 17 + 1.8 \times 163$ MSE = $(80 - 310.4)^2$
 $\hat{y} = 310.4$ MSE = $53.084.16$

 $\hat{y} = 20 + 2.1 \times 163$

		Peso	Altura
	Pessoa 1	80 kg	163
	Pessoa 2	85 kg	168
	Pessoa 3	90 kg	175
5	Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ $\hat{y} = 17 + 1.8 \ x \ 163$ MSE = $(80 - 310.4)^2$ $\hat{y} = 310.4$ MSE = $53.084.16$ $\hat{y} = 20 + 2.1 \ x \ 163$ $\hat{y} = 14 + 1.5 \ x \ 163$

 $\hat{y} = 362,3$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{\mathbf{y}} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{\mathbf{y}} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 79.693,29$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
0		
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Y		

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 79.693,29$$

$$MSE = 31.862,25$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$\hat{y} = 310,4$$

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = (80 - 310,4)^2$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 31.862,25$$

Peso Altura

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 362,3$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 362,3)^2$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 79.693,29$$

$$MSE = 31.862,25$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$\hat{y} = 310,4$$

$$\hat{y} = 20 + 2,1 \times 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$MSE = (80 - 310,4)^2$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 31.862,25$$

Peso

Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 17 + 1.8 \times 163$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

 $MSE = (80 - 310,4)^2$

$$\hat{y} = 20 + 2.1 \times 163$$

$$\hat{y} = 362,3$$

$$MSE = (80 - 362,3)^2$$

$$MSE = 79.693,29$$

$$\hat{y} = 14 + 1.5 x 163$$

$$\hat{y} = 258,5$$

$$MSE = (80 - 258,5)^2$$

$$MSE = 31.862,25$$

	Peso	Altura	
Pessoa 1	80 kg	163	+
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 \times 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	—
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 \times 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1.1 \times 168$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	4
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 \times 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1,1 \times 168$$

$$\hat{y} = 194,8$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	4
Dosson 2	00 kg	175	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	
Y			

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 \times 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1,1 \times 168$$

$$MSE = (85 - 194,8)^2$$

$$\hat{y} = 194,8$$

		Peso	Altura	
	Pessoa 1	80 kg	163	
	Pessoa 2	85 kg	168	—
	Pessoa 3	90 kg	175	
(5)	Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 17 + 1.8 \times 163$$

$$MSE = (80 - 310,4)^2$$

$$\hat{y} = 310,4$$

$$MSE = 53.084,16$$

$$\hat{y} = 14 + 1.5 x 163$$

$$MSE = (80 - 258,5)^2$$

$$\hat{y} = 258,5$$

$$MSE = 31.862,25$$

$$\hat{y} = 10 + 1,1 \times 168$$

$$MSE = (85 - 194.8)^2$$

$$\hat{y} = 194,8$$

$$MSE = 12.056,04$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	←
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

Peso /	Altura
80 kg	163
85 kg	168
90 kg	175
95 kg	188
	80 kg 85 kg 90 kg

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = 7 + 0.8 \times 175$$

$$\hat{y} = 147$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	←
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 7 + 0.8 \times 175$ MSE = $(90 - 147)^2$
 $\hat{y} = 147$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	—
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 7 + 0.8 \times 175$ MSE = $(90 - 147)^2$
 $\hat{y} = 147$ MSE = 3.249

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$\hat{y} = 97$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
			_
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 $\hat{y} = 7 + 0.8 \times 175$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$y = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
-0			
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	←

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$\hat{y} = 38,6$$

		Peso	Altura	
	Pessoa 1	80 kg	163	
				_
	Pessoa 2	85 kg	168	
	-0			_
	Pessoa 3	90 kg	175	
				_
	Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
T.			
Pessoa 4	95 kg	188	—

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$= \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$\hat{y} = 147$$

$$MSE = (90 - 147)^2$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$\hat{y} = 97$$

$$MSE = (95 - 97)^2$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$\hat{y} = 38,6$$

$$MSE = (95 - 38,6)^2$$

$$MSE = 3.180,97$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

=
$$\beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 7 + 0.8 x 175$$

$$\hat{y} = 147$$

$$MSE = (90 - 147)^2$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$\hat{y} = 97$$

$$MSE = (95 - 97)^2$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$\hat{y} = 38,6$$

$$MSE = (95 - 38,6)^2$$

$$MSE = 3.180,97$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

=
$$\beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 7 + 0.8 x 175$$

$$\hat{y} = 147$$

MSE = 3.249

 $MSE = (90 - 147)^2$

$$\hat{y} = 3 + 0.5 x 188$$

$$\hat{y} = 97$$

$$MSE = (95 - 97)^2$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$\hat{y} = 38,6$$

$$MSE = (95 - 38,6)^2$$

$$MSE = 3.180,97$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$= \beta_0 + \beta_1 X_1 \qquad \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

Peso Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 7 + 0.8 x 175$$

$$MSE = (90 - 147)^2$$

$$\hat{y} = 147$$

$$MSE = 3.249$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 1 + 0.2 \times 188$$

$$MSE = (95 - 38,6)^2$$

$$\hat{y} = 38,6$$

$$MSE = 3.180,97$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 x 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 84.5$$
 MSE = 20.25

Peso	Altura

Pessoa 1

80 kg

163

Pessoa 2

85 kg

168

Pessoa 3

90 kg

175

188

Pessoa 4 95 kg

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 \times 188$$
 MSE = $(95 - 97)^2$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 84,5$$
 MSE = 20,25
 $\hat{y} = 87$ MSE = 4

Peso Altura

Pessoa 1

80 kg

163

Pessoa 2

85 kg

168

Pessoa 3

90 kg

175

Pessoa 4

95 kg

188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 x 188$$

$$\hat{y} = 97$$

$$MSE = (95 - 97)^2$$

$$MSE = 4$$

$$\hat{y} = 84.5$$
 MSE = 20.25

$$\hat{y} = 87$$
 MSE = 4

$$\hat{y} = 90.5$$
 MSE = 0.25

Peso	Altura

Pessoa 1

80 kg

163

Pessoa 2

85 kg

168

Pessoa 3

90 kg

175

Pessoa 4

95 kg

188

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$\hat{y} = \beta_0 + \beta_1 X_1$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\hat{y} = 3 + 0.5 \times 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 84.5$$
 MSE = 20.25

$$\hat{y} = 87$$

$$MSE = 4$$

$$\hat{y} = 90,5$$

$$MSE = 0.25$$

$$\hat{y} = 97$$

$$MSE = 4$$

0	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
 $\hat{y} = 3 + 0.5 x 188$ MSE = $(95 - 97)^2$
 $\hat{y} = 97$ MSE = 4
 $\hat{y} = 84.5$ MSE = 20,25
 $\hat{y} = 87$ MSE = 4
 $\hat{y} = 90.5$ MSE = 0,25
 $\hat{y} = 97$ MSE = 4

MSE = 7,125

Pessoa 1	80 kg	163	

Peso

Altura

$$\hat{y} = \beta_0 + \beta_1 X_1$$

$$X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$\hat{y} = 3 + 0.5 \times 188$$

$$MSE = (95 - 97)^2$$

$$\hat{y} = 97$$

$$MSE = 4$$

$$\hat{y} = 84,5$$
 MSE = 20,25
 $\hat{y} = 87$ MSE = 4
 $\hat{y} = 90,5$ MSE = 0,25
 $\hat{y} = 97$ MSE = 4

MSE = 7,125

	Peso	Altura	
Pessoa 1	80 kg	163	
Pessoa 2	85 kg	168	
Pessoa 3	90 kg	175	
Pessoa 4	95 kg	188	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $7,125$ $\beta_1 = 0,5$

$$\hat{y} = 3 + 0.5 X_1$$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
	9	
Pessoa 5	?? kg	158

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = 7,125 $\beta_1 = 0.5$

$$\hat{y} = 3 + 0.5 X_1$$

		Peso	Altura
	Pessoa 1	80 kg	163
60	Pessoa 2	85 kg	168
	0		
	Pessoa 3	90 kg	175
(5)	Pessoa 4	95 kg	188
	Pessoa 5	?? kg	158

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $7,125$ $\beta_1 = 0,5$

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
Pessoa 5	?? kg	158

	Peso	Altura
Pessoa 1	80 kg	163
Pessoa 2	85 kg	168
Pessoa 3	90 kg	175
Pessoa 4	95 kg	188
	9	
Pessoa 5	82 kg	158

		Peso	Altura	
	Pessoa 1	80 kg	163	
	Pessoa 2	85 kg	168	
	Pessoa 3	90 kg	175	
	Pessoa 4	95 kg	188	
	Ϋ́	Q		
	Pessoa 5	82 kg	158	
Vinicius F. carria	Pessoa 6	?? kg	163	

$$\hat{y} = \beta_0 + \beta_1 X_1$$
 MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ MSE = $7,125$ $\beta_1 = 0,5$

84,5

Implementação de Exemplo

Thank you!

