LOADING AND PREPROCESSING

from sklearn.datasets import load_breast_cancer

```
cancer=load_breast_cancer()
cancer
```

```
6.802 542.2\nsmoothness (standard error):
                                                                                      0.002 0.031\ncompactness (standard
     (standard error):
     error):
                   0.002 0.135\nconcavity (standard error):
                                                                      0.0 0.396\nconcave points (standard error):
                                                                                                                        0.0
                                                0.008 0.079\nfractal dimension (standard error): 0.001 0.03\nradius
     0.053\nsymmetry (standard error):
     (worst):
                                         36.04\ntexture (worst):
                                                                                    12.02 49.54\nperimeter (worst):
     50.41 251.2\narea (worst):
                                                      185.2 4254.0\nsmoothness (worst):
                                                                                                         0.071
     0.223\ncompactness (worst):
                                                0.027 1.058\nconcavity (worst):
                                                                                                  0.0
                                                                                                        1.252\nconcave
     points (worst):
                                 0.0
                                        0.291\nsymmetry (worst):
                                                                                   0.156 0.664\nfractal dimension (worst):
     212 - Malignant, 357 - Benign\n\n:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n\n:Donor: Nick
     Street\n\n:Date: November, 1995\n\nThis is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic)
     datasets.\nhttps://goo.gl/U2Uwz2\n\nFeatures are computed from a digitized image of a fine needle\naspirate (FNA) of a
     breast mass. They describe\ncharacteristics of the cell nuclei present in the image.\n\nSeparating plane described above
     was obtained using\nMultisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree\nConstruction Via Linear Programming."
     Proceedings of the 4th\nMidwest Artificial Intelligence and Cognitive Science Society,\npp. 97-101, 1992], a classification
     method which uses linear\nprogramming to construct a decision tree. Relevant features\nwere selected using an exhaustive
     search in the space of 1-4\nfeatures and 1-3 separating planes.\n\nThe actual linear program used to obtain the separating
     plane\nin the 3-dimensional space is that described in:\n[K. P. Bennett and O. L. Mangasarian: "Robust Linear\nProgramming
     Discrimination of Two Linearly Inseparable Sets",\nOptimization Methods and Software 1, 1992, 23-34].\n\nThis database is
     also available through the UW CS ftp server:\n\nftp ftp.cs.wisc.edu\ncd math-prog/cpo-dataset/machine-learn/WDBC/\n\n..
     dropdown:: References\n\n - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction\n
     tumor diagnosis. IS&T/SPIE 1993 International Symposium on\n Electronic Imaging: Science and Technology, volume 1905,
                       San Jose, CA, 1993.\n - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and\n
     pages 861-870,\n
     prognosis via linear programming. Operations Research, 43(4), pages 570-577,\n
                                                                                   July-August 1995.\n - W.H. Wolberg, W.N.
     Street, and O.L. Mangasarian. Machine learning techniques\n to diagnose breast cancer from fine-needle aspirates. Cancer
     Letters 77 (1994)\n
                           163-171.\n'.
      'feature names': array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
             'mean smoothness', 'mean compactness', 'mean concavity',
            'mean concave points', 'mean symmetry', 'mean fractal dimension',
             'radius error', 'texture error', 'perimeter error', 'area error',
cancer.keys()
→ dict keys(['data', 'target', 'frame', 'target names', 'DESCR', 'feature names', 'filename', 'data module'])
print(cancer['feature names'])
    ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
      'mean smoothness' 'mean compactness' 'mean concavity'
      'mean concave points' 'mean symmetry' 'mean fractal dimension'
      'radius error' 'texture error' 'perimeter error' 'area error'
```

```
'smoothness error' 'compactness error' 'concavity error'
      'concave points error' 'symmetry error' 'fractal dimension error'
      'worst radius' 'worst texture' 'worst perimeter' 'worst area'
      'worst smoothness' 'worst compactness' 'worst concavity'
      'worst concave points' 'worst symmetry' 'worst fractal dimension']
print(cancer['data'][0])
→ [1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
      1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
      6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
      1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
      4.601e-01 1.189e-01]
cancer['data'].shape
→* (569, 30)
import pandas as pd
import numpy as np
df cancer=pd.DataFrame(np.c [cancer['data'],cancer['target']],columns=np.append(cancer['feature names'],['target']))
df cancer
```


	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••	worst texture	wors perimete
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871		17.33	184.6
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667		23.41	158.8
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999		25.53	152.5
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744		26.50	98.8
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883		16.67	152.2
													••
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623		26.40	166.1
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533		38.25	155.0
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648		34.12	126.7
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016		39.42	184.6
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884		30.37	59.10
569 rd	ows × 31 c	olumns											

df_cancer.shape

→ (569, 31)

df_cancer.describe()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062798	
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.007060	
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.049960	
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057700	
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061540	
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066120	
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.097440	
8 rows ×	: 31 columns										

DATA PREPROCESSING

df_cancer.duplicated().sum()

→ 0

df_cancer.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

Column Non-Null Count Dtype
--- ---0 mean radius 569 non-null float64
1 mean texture 569 non-null float64

2	mean perimeter	569 non	-null	float64
3	mean area	569 non	-null	float64
4	mean smoothness	569 non	-null	float64
5	mean compactness	569 non	-null	float64
6	mean concavity	569 non	-null	float64
7	mean concave points	569 non	-null	float64
8	mean symmetry	569 non	-null	float64
9	mean fractal dimension	569 non	-null	float64
10	radius error	569 non	-null	float64
11	texture error	569 non	-null	float64
12	perimeter error	569 non	-null	float64
13	area error	569 non	-null	float64
14	smoothness error	569 non	-null	float64
15	compactness error	569 non	-null	float64
16	concavity error	569 non	-null	float64
17	concave points error	569 non	-null	float64
18	symmetry error	569 non	-null	float64
19	fractal dimension error	569 non	-null	float64
20	worst radius	569 non	-null	float64
21	worst texture	569 non	-null	float64
22	worst perimeter	569 non	-null	float64
23	worst area	569 non	-null	float64
24	worst smoothness	569 non	-null	float64
25	worst compactness	569 non	-null	float64
26	worst concavity	569 non	-null	float64
27	worst concave points	569 non	-null	float64
28	worst symmetry	569 non	-null	float64
29	worst fractal dimension	569 non	-null	float64
30	target	569 non	-null	float64

dtypes: float64(31)
memory usage: 137.9 KB

df_cancer.isnull().sum()

	0
mean radius	0
mean texture	0
mean perimeter	0
mean area	0
mean smoothness	0
mean compactness	0
mean concavity	0
mean concave points	0
mean symmetry	0
mean fractal dimension	0
radius error	0
texture error	0
perimeter error	0
area error	0
smoothness error	0
compactness error	0
concavity error	0
concave points error	0
symmetry error	0
fractal dimension error	0
worst radius	0
worst texture	0

Χ

worst perimeter 0 worst area 0 worst smoothness 0 worst compactness 0 worst concavity 0 worst concave points worst symmetry 0 worst fractal dimension 0 target 0 dtype: int64 x=df_cancer.drop('target',axis=1) y=df_cancer['target']

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••	worst radius	worst texture	ı
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	0.07871		25.380	17.33	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	0.05667		24.990	23.41	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	0.05999		23.570	25.53	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	0.09744		14.910	26.50	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	0.05883		22.540	16.67	
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623		25.450	26.40	
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533		23.690	38.25	
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648		18.980	34.12	
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016		25.740	39.42	
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884		9.456	30.37	

569 rows × 30 columns

4

У

- 6		_
	→	•
- %	_	_

	target
0	0.0
1	0.0
2	0.0
3	0.0
4	0.0
564	0.0
56	0.0
560	0.0
567	7 0.0
568	3 1.0
560	rows x 1 colu

569 rows × 1 columns

dtype: float64

#split data to train and test

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y)

x_train.shape

→ (426, 30)

y_train.shape

```
→- (426,)
x test.shape
→ (143, 30)
y test.shape
→ (143,)
#scaling data
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
x train=scaler.fit transform(x train)
x test=scaler.fit transform(x test)
x train
    array([[-0.11260789, 0.92201873, -0.16545343, ..., -0.62077161,
             -0.42469392, -0.80372721],
            \lceil -0.02244327, -1.40112566, -0.03815238, \ldots, -0.16175543, \rceil
             -1.24478977, -0.63770518],
            [ 1.62869645, 0.53636753, 1.56902327, ..., 1.07987099,
              0.30352397, -0.08319159],
            [-0.8085661, -1.42190926, -0.8313358, ..., -0.87804278,
             -0.05548064, -0.903893831,
            [-0.44227231, -0.81687563, -0.35395689, ..., 0.95802194,
              1.86034493, 2.23281576],
            [-0.63668978, -0.25340919, -0.66282512, ..., -0.62293096,
             -1.55445252, -0.82475667]])
```

x test

```
array([[ 0.77055256,  1.83735121,  0.72832304, ...,  0.49012906,  0.11709937,  0.38814075],

[ 1.94451087,  1.69903497,  2.07199288, ...,  2.48666846,  1.67094058,  2.49183469],

[ -0.62882918, -0.84550675, -0.65245768, ..., -1.099845 ,  -0.63697063, -1.14455054],

...,

[ -0.38291272,  0.30871836, -0.34746595, ..., -0.06380694,  -0.52128944, -0.10494729],

[ 0.158689 ,  1.37232249,  0.06032718, ..., -1.38362612,  -1.94659599, -1.59088984],

[ 0.17625446, -0.089537 ,  0.13369582, ..., -0.15415479,  -0.92260321, -0.7839173 ]])
```

LOGISTIC REGRESSION

#Fitting data to model

```
from sklearn.linear_model import LogisticRegression
log_reg=LogisticRegression()
log_reg.fit(x_train,y_train)

** LogisticRegression ① ?
LogisticRegression()

#model prediction

y_pred=log_reg.predict(x_test)

from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
```


cr=classification_report(y_test,y_pred)
print("Classification Report:")
print(cr)

→	Classificati	on Report: precision	recall	f1-score	support
	0.0 1.0		0.89 1.00	0.94 0.96	62 81
	accuracy macro avg weighted avg	0.96	0.94 0.95	0.95 0.95 0.95	143 143 143

```
#accuracy score
log reg acc=accuracy score(y test,y pred)
print(log reg acc)
    0.951048951048951
DECISION TREE
from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()
dtc.fit(x train, y train)
\rightarrow
         DecisionTreeClassifier (i) ?
     DecisionTreeClassifier()
y pred=dtc.predict(x test)
y pred
\rightarrow array([0., 0., 1., 1., 1., 0., 1., 1., 0., 1., 1., 0., 1., 1., 0., 0., 1.,
            1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 1., 1.,
            1., 1., 1., 0., 0., 0., 0., 1., 1., 0., 1., 1., 1., 1., 1., 0., 1.,
            1., 1., 1., 0., 1., 1., 0., 1., 1., 0., 0., 0., 1., 1., 1., 0.,
            1., 0., 0., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 0., 0., 1., 0.,
            1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1.,
            1., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 1., 0., 0., 0., 1., 1.,
            1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1.,
            1., 0., 1., 1., 1., 0., 1.])
print(confusion matrix(y test,y pred))
    [[52 10]
      [ 2 79]]
```

```
cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```


print(classification_report(y_test,y_pred))

→		precision	recall	f1-score	support	
	0.0	0.96	0.84	0.90	62	
	1.0	0.89	0.98	0.93	81	

```
accuracy 0.92 143
macro avg 0.93 0.91 0.91 143
weighted avg 0.92 0.92 0.92 143
```

#accuracy score

```
dtc_acc=accuracy_score(y_test,y_pred)
print(dtc acc)
```

9.916083916083916

RANDOM FOREST

from sklearn.ensemble import RandomForestClassifier
rand_clf=RandomForestClassifier()
rand clf.fit(x train,y train)

RandomForestClassifier ① ?
RandomForestClassifier()

```
y_pred=rand_clf.predict(x_test)
y pred
```

print(confusion_matrix(y_test,y_pred))

cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()

print(classification_report(y_test,y_pred))

→	precision	recall	f1-score	support
0.0 1.0	1.00 0.90	0.85 1.00	0.92 0.95	62 81
accuracy	0.20	2.00	0.94	143
macro avg	0.95	0.93	0.93	143
weighted avg	0.94	0.94	0.94	143

#accuracy score
ran_clf_acc=accuracy_score(y_test,y_pred)
print(ran_clf_acc)

0.9370629370629371

SUPPORT VECTOR MACHINE

from sklearn.svm import SVC
svc_clf=SVC()
svc_clf.fit(x_train,y_train)

y_pred=svc_clf.predict(x_test)
y_pred

```
1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1.,
1., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 1., 0., 0., 0., 0., 1.,
1., 0., 0., 1., 1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 1., 1.,
1., 0., 0., 1., 1., 0., 1.])

print(confusion_matrix(y_test,y_pred))

cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```


print(classification_report(y_test,y_pred))

⇒	precision	recall	f1-score	support
0.	0.98	0.89	0.93	62
1.	0.92	0.99	0.95	81
accurac	У		0.94	143
macro av	g 0.95	0.94	0.94	143
weighted av	g 0.95	0.94	0.94	143

```
#accuracy score
svc clf acc=accuracy score(y test,y pred)
print(svc clf acc)
     0.9440559440559441
K-NFAREST NEIGHBOUR
from sklearn.neighbors import KNeighborsClassifier
knn clf=KNeighborsClassifier()
knn clf.fit(x train, y train)
\overline{\longrightarrow}
         KNeighborsClassifier (i) ?
     KNeighborsClassifier()
y pred=knn clf.predict(x test)
y pred
    array([0., 0., 1., 1., 1., 1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 1.,
            1., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 1., 0., 1., 0., 1., 1.,
            1., 1., 1., 0., 0., 1., 0., 1., 1., 0., 1., 1., 1., 1., 1., 0., 1.,
            1., 1., 1., 0., 1., 1., 0., 1., 1., 0., 0., 0., 1., 1., 1., 0.,
            1., 0., 0., 1., 1., 0., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0.,
            1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1.,
            1., 1., 0., 1., 1., 1., 1., 0., 1., 1., 1., 1., 0., 0., 0., 0., 1.,
            1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 1.,
            1., 0., 1., 0., 1., 1., 1.])
print(confusion matrix(y test,y pred))
→ [[52 10]
      [ 0 81]]
```

```
cm=confusion_matrix(y_test,y_pred)
sns.heatmap(cm,annot=True)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```


print(classification_report(y_test,y_pred))

\Rightarrow		precision	recall	f1-score	support	
	0.0	1.00	0.84	0.91	62	
	1.0	0.89	1.00	0.94	81	

→

accuracy			0.93	143
macro avg	0.95	0.92	0.93	143
weighted avg	0.94	0.93	0.93	143

```
#accuracy score
knn_clf_acc=accuracy_score(y_test,y_pred)
print(knn_clf_acc)
```

0.9300699300699301

MODEL COMPARISON

dict={"model":['LogisticRegression','Decision tree classifier','Random forest classifier','Support vector machine','K-nearest neight

df_model=pd.DataFrame(dict)
df_model.sort_values(by='Score',ascending=False)

	model	Score	\blacksquare
0	LogisticRegression	0.950	ılı
3	Support vector machine	0.940	
2	Random forest classifier	0.937	
4	K-nearest neighbor	0.930	
1	Decision tree classifier	0.916	

Logistic regression performed the best and Decision tree classifier performed the worst.