Data Visualization Using R

Data Science Dojo

Data Visualization Using R

Data Visualization Using R

- 1. **Base graphics**: constructed piecemeal. Conceptually simpler and allows plotting to mirror the thought process.
- 2. Lattice graphics: entire plots created in a simple function call.
- 3. **ggplot2 graphics**: an implementation of the Grammar of Graphics by Leland Wikinson. Combines concepts from both base and lattice graphics. (Need to install ggplot2 library)
- 4. Fancier and more telling ones.

A list of interactive visualization in R can be found at: http://ouzor.github.io/blog/2014/11/21/interactive-visualizations.html

Base plotting system

```
par(cex=1.5) ## increase the size of texts
## scatter plot
plot(x = airquality$Temp, y = airquality$Ozone)
```


Base plotting system

```
## par() function is used to specify global graphics parameters that affect all plots in an R session."
par(mfrow=c(1, 2), mar=c(4, 4, 2, 1), oma=c(0, 0, 2, 0), cex=1.5)
## mfrow=c(1, 2): the figures will be drawn in an 1x2 array by row.
## mar/oma: A numerical vector of the form 'c(bottom, left, top, right)', which gives the number of lin with(airquality, {
    plot(Wind, Ozone, main="Ozone and Wind")
    plot(Temp, Ozone, main="Ozone and Temperature")
    mtext("Ozone and Weather in New York City", outer=TRUE)})
```

Difference and relation of mar and oma, check out

http://research.stowers-institute.org/mcm/efg/R/Graphics/Basics/mar-oma/index.htm.

Base plotting system

Ozone and Weather in New York City

Plotting functions (high level)

PHASE ONE: Mount a canvas panel on the easel, and draw the draft. (Initialize a plot.)

- **boxplot()**: a boxplot show the distribution of a vector. It is very useful to example the distribution of different variables.
- plot(): one of the most frequently used plotting functions in R.
- barplot(): create a bar plot with vertical or horizontal bars.
- hist(): compute a histogram of the given data values.
- **pie()**: draw a pie chart.

Remember to use **?plot** or **str(plot)**, etc. to check the arguments when you want to make more personalized plots.

A **tutorial** of base plotting system with more details:

http://bcb.dfci.harvard.edu/~aedin/courses/BiocDec2011/2.Plotting.pdf

Plotting functions (low level)

PHASE TWO: Add more details on your canvas, and make an artwork. (Add more on an existing plot.)

- lines: adds liens to a plot, given a vector of x values and corresponding vector of y values
- points: adds a point to the plot
- text: add text labels to a plot using specified x,y coordinates
- title: add annotations to x,y axis labels, title, subtitles, outer margin

- mtext: add arbitrary text to margins (inner or outer) of plot
- axis: specify axis ticks

Save your artwork

R can generate graphics (of varying levels of quality) on almost any type of display or printing device. Like:

- postscript(): for printing on PostScript printers, or creating PostScript graphics files.
- pdf(): produces a PDF file, which can also be included into PDF files.
- jpeg(): produces a bitmap JPEG file, best used for image plots.

help(Devices) for a list of them all. Simple example:

```
## png(filename = 'plot1.png', width = 480, height = 480, units = 'px')
## plot(x, y)
## dev.off()
```

Example: boxplot and histogram

```
## the layout
par(mfrow = c(2, 1), mar = c(2, 0, 2, 0), oma = c(0, 0, 0, 0))
## histogram at the top
hist(airquality$0zone, breaks=12, main = "Histogram of Ozone")
## box plot below for comparison
boxplot(airquality$0zone, horizontal=TRUE, main = "Box plot of Ozone")
```

Histogram of Ozone

Lattice plotting system

```
## install.packages("lattice") # install the lattice library if you haven't
library(lattice) # load the library

## set the seed so our plots are the same
set.seed(10)

## use rnorm(): generate 100 random numbers
x <- rnorm(100)

## use rep() function to generate a vector, with first 25 elements are 1, second 25 elements are 2, ...
f <- rep(1:4, each = 25)
y <- x + f - f * x + rnorm(100, sd = 0.5)

# name the levels of the factor: first 25 elements are in Group 1, second 25 elements are in Group 2, .
f <- factor(f, labels = c("Group 1", "Group 2", "Group 3", "Group 4"))
xyplot(y ~ x | f)</pre>
```

Lattice plotting system

Lattice plotting system

Want more on the plot? Customize the panel function:

```
xyplot(y ~ x | f, panel = function(x, y, ...) {
    # call the default panel function for xyplot
```

```
panel.xyplot(x, y, ...)
# adds a horizontal line at the median
panel.abline(h = median(y), lty = 2)
# overlays a simple linear regression line
panel.lmline(x, y, col = 2)
})
```

Lattice plotting system

Lattice plotting system

Plotting functions

- xyplot(): main function for creating scatterplots
- bwplot(): box and whiskers plots (box plots)
- histogram(): histograms
- stripplot(): box plot with actual points
- dotplot(): plot dots on "violin strings"
- splom(): scatterplot matrix (like pairs() in base plotting system)
- levelplot()/contourplot(): plotting image data

Very useful when we want a lot...

pairs(iris) ## iris is a data set in R

ggplot2

- An implementation of the Grammar of Graphics by Leland Wikinson
- Written by Hadley Wickham (while he was a graduate student as lowa State)
- A "third" graphics system for R (along with base and lattice) Available from CRAN via install.packages() web site: http://ggplot2.org (better documentation)
- Grammar of graphics represents the abstraction of graphics ideas/objects Think "verb", "noun", "adjective" for graphics "Shorten" the distance from mind to page

• Two main functions:

qplot() hides what goes on underneath, which is okay for most operations

ggplot() is the core function and very flexible for doing this qplot() cannot do

qplot function

The qplot() function is the analog to plot() but with many build-in features Syntax somewhere in between base/lattice
Difficult to be customized (don't bother, use full ggplot2 power in that case)

```
## install.packages("ggplot2") # need to install ggplot2 first
library(ggplot2) # load the library
theme_set(theme_gray(base_size = 20)) # change text size
qplot(displ, hwy, data = mpg, facets = .~drv)
```


ggplot function

When building plots in ggplot2 (ggplot, rather than using qplot) The "artist's palette" model may be the closest analogy Plots are built up in layers

Step I: Input the data

noun: the data

```
library(ggplot2) ## need to install and load this library
g <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) ## this would not show you add plot</pre>
```

ggplot function

• Step II: Add layers
adjective: describe the type of plot you will produce.
geom_smooth(method="lm"): add linear regression line;
geom_grid(. ~ Species): lay out panels in a grid by Species;
theme(): revision of the appearance. (It is actually the step III)

g <- g + geom_point() + geom_smooth(method = "lm") + facet_grid(. ~ Species) + theme(text = element_tex

ggplot function

• Step III: Add metadata and annotation adjective: control the mapping between data and aesthetics. ggtitle(): add the title; theme_bw: choose the classic dark-on-light ggplot2 theme.

g + ggtitle("Sepal length vs. width for different species") + theme_bw() + theme(text = element_text(size))

Great documentation

Great **documentation** of ggplot with all functions in **step II** and **III** and demos: http://docs.ggplot2.org/current/

Interactive visualization in R - rCharts

• What is rCharts?

Is an R package to create, customize and publish interactive javascript visualizations from R using a familiar lattice style plotting interface.

• What rCharts can make and how? Quick start at: http://ramnathv.github.io/rCharts/

• A list of interactive visualization in R can be found at: http://ouzor.github.io/blog/2014/11/21/interactive-visualizations.html