

Department of Electrical & Computer Engineering ENEE2103 - Circuits and Electronics Laboratory

Experiment #8 The Field-Effect Transistor

Prepared by:

Mohammad Abu-Shelbaia 1200198

Instructor: Dr. Mahran Quran

Assistant: Eng. Raffah Rahal

Section: 4

Date: August 19, 2023

Contents

1	Sim	ulation and Data Analysis	1
	1.1	Characteristics of the N-JFET	1
	1.2	Common Drain Amplifier	

List of Figures

1	N-CHANNEL JFET Circuit	1
2	I_{DS} vs. V_{DS}	1
3	Common Drain Amplifier Circuit	2
4	V_{in} and I_{in}	3
5	V_{out} and I_{out}	3

1 Simulation and Data Analysis

1.1 Characteristics of the N-JFET

Figure 1: N-CHANNEL JFET Circuit

Figure 2: I_{DS} vs. V_{DS}

From the graph above, Id is unchanged with Vds after it exceeds 2V, Ig is very small and is almost zero.

1.2 Common Drain Amplifier

Figure 3: Common Drain Amplifier Circuit

From the above circuit, V_G is 652mV and V_S is 2.3V.

from the above graph, the voltage gain is given by:

$$A_v = \frac{V_{out}}{V_{in}} = \frac{151}{200} = 0.755 \tag{1}$$

and the phase shift is given by:

$$\phi = \Delta t \times 360 \times f = \frac{4 \times 360 \times 1000}{10^6} = 1.44^{\circ}$$
 (2)

Figure 4: V_{in} and I_{in}

from the above graph, the input impedance is given by:

$$Z_{in} = \frac{V_{in}}{I_{in}} = \frac{200 \times 10^{-3}}{20.567^{-6}} = 9.72K\Omega$$
 (3)

Figure 5: V_{out} and I_{out}

From the above graph, the output impedance is given by:

$$Z_{out} = \frac{V_{out}}{I_{out}} = \frac{151.047 \times 10^{-3}}{6.865^{-6}} = 22K\Omega \tag{4}$$