Decision Tree (ID3 Algorithm) Classification Example

1 Toy Dataset: Early Diagnosis of Diabetes

AgeGroup	BMI	BP	Glucose	Diabetes
Young	Normal	Normal	Normal	No
Young	Overweight	Normal	High	Yes
Young	Obese	High	High	Yes
Middle	Normal	Normal	Normal	No
Middle	Overweight	High	Normal	No
Middle	Obese	High	High	Yes
Middle	Overweight	Normal	High	Yes
Old	Normal	High	High	Yes
Old	Overweight	Normal	Normal	No
Old	Obese	High	Normal	75 N
Young	Obese	Normal	High	Yes
Middle	Normal	High	Normal	No
Old	Overweight	High	High	Yes
Old	Obese	High	High	Yes

Table 1: Toy dataset for early diagnosis of Diabetes

Question: If a person is young, overweight, with normal blood pressure and glucose level, does he have Diabetes?

1 100-500; H 0-100; H Je [100, 500]

Decision The (ID3)

> ID3 (Iterative Dichotomiser 3) is an early decision tree algorithm, which is early decision tree algorithm problem.

Machine Learning

Supervised Unsupervised Reinforcement
Learning

Semi-supervised

The Binary

Multi-class

Main Idea of Decision Tree (IP3)

-> Build a decision true top down

> At each node, choose the teature with maximum Intermation Grain (Ibr).

(reducing uncertaintal/entropy the most)

Key Concepto

> Entropy is the measure of uncertainty,

ib HC) = 0; pure set

it H(S) =1: manimum uncertaint

> Intermetion Grain (Ibr) measures reduction in entropy after splitting a dateset on a entropy after splitting a dateset on a beature. The beature is with the highest Ibr beature. The beature is with the highest Ibr is chosen as a split.

Intuition

Aegebroup middle

Ourwingth BMI

Ven

Ven

Ven

Ven

Classity a person with young, overweight, Ligh BP, normal glucise.

Calculating It (Age Group):

Ibr (Ask Group) = Sladeraid -
$$\frac{4}{14}$$
 Sy - $\frac{5}{14}$ Sm - $\frac{4}{14}$ So - $\frac{5}{14}$ Sm - $\frac{5}{14}$ Sm - $\frac{5}{14}$ So - $\frac{5}{14}$ Sm -

Calculating IG (BMI):

Extraps (overlesight),
$$E_0 = -\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5}$$

$$=0$$

$$IGr(BMI) = Statessed - \frac{4}{14} \times E_N - \frac{5}{14} \times E_0 - \frac{5}{14} \times E_0$$

$$= 0.94 - \frac{4}{14} \times 0.81 - \frac{5}{14} \times 0.97 - 0$$

$$= 0.36$$

$$TG(BP) = 0.94 - \frac{6}{14} \times 1 - \frac{8}{14} \times 0.81 = 0.04$$

Features	JG
Abebroup	0.70
BMI	0.36
BP	0.04
whicose	0,66 -> max

Note Correct format at veriting I've?

Ib(S, Agebroup) = 0.10

IG(S, BMI) = 0.36

In(S_BP) = 0.04

Ibr (S) (olucose) = 0.66

create a new datoset subsetting «Young"

Calculating I'm (Syoung, BMI):

Intropy (Normal) = - 1/092 1 - 1/092 1

_ 0

Frances (Oververight) = 0

Futnopy (obese) = 0

Iby (Strong, BMI) = Entrop (Young) - 0 = - 3/19/2 \frac{3}{4} - \frac{1}{3} \log_2 \frac{1}{3}

- 0.84

Futnory (High) = 0

The (Syoung, BP) = 0.84 - 3 ×0.91 = 0.15

calculating Itr (Syoung, Collecope):

Entropy (Hurimal) = 0

Entropy (High)= 0

IG (Sjoung, Glucose) = 0.84

Features	76	→ man	and a state of
BMI	0.15	- 182 pre	3 pick
BP	2/1		5
Coluçose	0,84	→ max	

1 randowly

Create a new dataset subsetting 'middle'

futnoy (Smiddle) = $-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}$ = 0.97

deulating Ibr (Smiddle, BMI)?

Enthopy (Monmal) = 0

Enthopy (Overveeight) = $-\frac{1}{2}log_2\frac{1}{2} - \frac{1}{2}log_2\frac{1}{2}$ = 1

Entropy (obede) = 0

ICr (Smiddle, BMI) = 0.97 - $\frac{2}{5} \times 1 = 0.57$

Calculating In (Smiddle, BP)?

Extropy (High) =
$$-\frac{3}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3}$$

Itr (Smiddle, BP) = 0.97 -
$$\frac{2}{5} \times 1 - \frac{3}{5} \times 0.92$$

Calculating Ibr (Smiddle, Checox) 3

IG (Smiddle, Glucose) = 0.97-0 = 0-97

Ratures	Ih	(Fr. 05)	- /* - J.O.,
BMI	0'57	75	1
ВР	0.018		
Orlucose	F6.0	→ W	~x

Similarly, calculate root node ton old. You'll see that allicore becomes the noot node. So, our tinal tree of the seconds.

Pros at Pecision Tree (IP3)

- > Into pretable ML
- > Handler cate gonical data well
- & works very tast

Com

> Not good for continuous doda (binning reasived)

-> can overtit training data