Personal Information E-mail: blake.w.wulfe@gmail.com

Professional Experience

Toyota Research Institute, Los Altos, California

April 2018 - Present

Phone: (713) 569-7795

Research Software Engineer, Prediction

- ♦ Led the design and implementation of the prediction system (C++)
- ♦ Defined performance metrics for prediction, and implemented a system for computing them (C++)
- ♦ Deployed a neural network model for predicting the intent of other agents, which involved (i) dataset collection, (ii) model design, implementation, and training, (iii) run-time performance optimization, and (iv) deployment on vehicle as the primary intent prediction algorithm (Python / C++)
- ♦ Led a team in developing decision making features relying on the intent-prediction model (C++)
- Worked with other researchers to define the long-term research direction of the prediction team, which included identifying and defining research projects, hiring and mentoring research interns, and co-leading a planning / prediction literature review
- ♦ Served as a mentor to newer members of the prediction team

Stanford Intelligent Systems Lab, Stanford University

April 2016 - December 2017

Research Assistant

Automotive Scene Risk Prediction

- ♦ Implemented a framework for deriving risk estimates of simulated automotive scenes (Julia)
- $\diamond \ \, {\rm Addressed \ collision \ rarity \ challenges \ through \ importance \ sampling \ of \ a \ Bayesian \ network \ (Julia)}$
- ♦ Trained domain adaptation, neural network models to predict collision risk (Python)

Multi-Agent Human Driver Modeling

- ♦ Implemented a multi-agent driving environment (Julia)
- ♦ Developed a multi-agent, generative adversarial imitation learning variant, which produced agents capable of driving realistically on a highway for approximately 20 seconds (Python)

Deep Reinforcement Learning of Collision Avoidance Policies

- ♦ Developed a deep reinforcement learning system (using a Deep Q-Network) that solves for policies twice as fast as a baseline dynamic programming method while maintaining performance (Python)
- ♦ Built an interface to an aircraft encounter model to serve as the training environment (C++)

Intelligent Agent Action Coordination

- \diamond Implemented a novel method for coordinating UAV actions that reduced collisions 25%-75%
- \diamond Developed an aircraft encounter simulation framework for evaluating agent policies (Julia)

Adobe Research, San Jose, California

June 2017 - September 2017

Research Intern

Adversarial Imitation Learning of Drawing Policies

Applied generative adversarial imitation learning to the task of learning to draw sketches from human examples, demonstrating improved sample efficiency over baseline methods (Python)

Accenture, Austin, TX

August 2014 - August 2015

Business and Systems Integration Analyst

EDUCATION

Stanford University

August 2015 - December 2017

M.S. Computer Science, Specialization in Artificial Intelligence

GPA: 3.94 / 4.0

Vanderbilt University

August 2010 - May 2014

B.S Computer Science, Cum Laude & Honors Minors in Mathematics & Engineering Management

GPA: 3.77 / 4.0

Computer & Technical Skills **Programming Languages**: Python, C++, experience with Julia **Software**: Deep learning frameworks (Pytorch, TensorFlow)

Publications

- Bhattacharyya, R. P., Phillips, D. J., Wulfe, B., Morton, J., Kuefler, A., and Kochenderfer, M. J.
 "Multi-agent imitation learning for driving simulation", in *International Conference on Intelligent Robots and Systems*, 2018.
- Wulfe, B., Chintakindi, S., Choi, S. C. T., Hartong-Redden, R., Kodali, A., and Kochenderfer, M. J. "Real-time prediction of intermediate-horizon automotive collision risk", in *International Conference on Autonomous Agents and Multi-Agent Systems*, 2018.
- ♦ Tompa, R. E., Wulfe, B., Kochenderfer, M. J., and Owen, M. P. "Horizontal maneuver coordination for aircraft collision-avoidance systems", in *Journal of Aerospace Information Systems*, 2018.
- ♦ Tompa, R. E., Wulfe, B., Owen, M. P., and Kochenderfer, M. J. "Collision avoidance for unmanned aircraft using coordination tables", in *Digital Avionics Systems Conference*, 2016.