Composing Lattices and CRDTs

Paulo Sérgio Almeida, **Carlos Baquero**, Alcino Cunha {psa,cbm,alcino}@di.uminho.pt

February, 2013

Dagstuhl Seminar on Consistency in Distributed Systems

Universidade do Minho

Motivation

- Conflict-free Replicated Data Types (CRDTs)
- Convergence after concurrent updates. Favor AP under CAP
- Examples include counters, sets, mv-registers, maps, graphs
- State based CRDTs are rooted on join semi-lattices
- Current catalog design is heuristic and proofs are specific
- Here we revisit CRDTs looking at composition strategies
- Composition applies to lattices, operations and proofs

Type hierarchy

- set, provides identity comparison
- poset, provides partial order
- lattice, provides universal join a.k.a. LUB, merge
- lattice⊥, adds a bottom element, least element

Partially ordered sets

$$\frac{A : poset}{A : set}$$

$$a \sqsubseteq a$$
 $a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$
 $a \sqsubseteq b \land b \sqsubseteq a \Rightarrow a = b$

Reflexive Transitive Anti-symmetric

$$a \sqsubset b \equiv a \sqsubseteq b \land a \neq b$$
 $a \parallel b \equiv a \not\sqsubseteq b \land b \not\sqsubseteq a$

Join semi-lattices

 $\frac{A : lattice}{A : poset}$

$$a \sqcup a = a$$
 $a \sqcup b = b \sqcup a$
 $a \sqcup (b \sqcup c) = (a \sqcup b) \sqcup c$
 $a \sqsubseteq a \sqcup b \qquad b \sqsubseteq a \sqcup b$
 $a \sqsubseteq c \land b \sqsubseteq c \Rightarrow a \sqcup b \sqsubseteq c$

$$a \sqsubseteq b \equiv a \sqcup b = b$$

Idempotent
Commutative
Associative
Upper-bound
Minimal

Bounded join semi-lattices

$$\frac{A : lattice_{\perp}}{A : lattice}$$

$$a \sqcup \bot = a$$

Neutral

Singleton type

 $1 : \mathsf{lattice}_{\perp}$

$$\bullet \sqcup \bullet = \bullet$$

$$\perp = \bullet$$

Boolean

 $\overline{\mathbb{B}}:\mathsf{lattice}_{\perp}$

False \sqsubseteq True $x \sqcup y = x \vee y$ $\bot =$ False

Natural numbers

$$\overline{\mathbb{N}:\mathsf{lattice}_\perp}$$

$$n \sqsubseteq m = n \le m$$
 $n \sqcup m = \max(n, m)$ $\perp = 0$

Product

$$\frac{A: \mathsf{lattice} \quad B: \mathsf{lattice}}{A \times B: \mathsf{lattice}} \quad \frac{A: \mathsf{lattice}_{\bot} \quad B: \mathsf{lattice}_{\bot}}{A \times B: \mathsf{lattice}_{\bot}}$$

$$(x_1, y_1) \sqsubseteq (x_2, y_2) = x_1 \sqsubseteq x_2 \land y_1 \sqsubseteq y_2$$

$$(x_1, y_1) \sqcup (x_2, y_2) = (x_1 \sqcup x_2, y_1 \sqcup y_2)$$

$$\bot = (\bot, \bot)$$

Product

E.g. Version Vectors,
$$\mathbb{N} \times \mathbb{N}$$

$$[3,5] \not\sqsubseteq [6,0]$$

$$[3,5] \not\sqsubseteq [6,0]$$
 $[3,5] \sqsubseteq [6,5]$

Lexicographic product

$$\frac{A: \mathsf{lattice} \quad B: \mathsf{lattice}_{\perp}}{A \boxtimes B: \mathsf{lattice}_{\perp}} \quad \frac{A: \mathsf{lattice}_{\perp} \quad B: \mathsf{lattice}_{\perp}}{A \boxtimes B: \mathsf{lattice}_{\perp}}$$

$$(x_1, y_1) \sqsubseteq (x_2, y_2) = x_1 \sqsubseteq x_2 \lor (x_1 = x_2 \land y_1 \sqsubseteq y_2)$$

$$(x_1, y_1) \sqcup (x_2, y_2) = \begin{cases} (x_1, y_1) & \text{if } x_2 \sqsubseteq x_1 \\ (x_2, y_2) & \text{if } x_1 \sqsubseteq x_2 \\ (x_1, y_1 \sqcup y_2) & \text{if } x_1 = x_2 \\ (x_1 \sqcup x_2, \bot) & \text{otherwise} \end{cases}$$

 $\perp = (\perp, \perp)$

Lexicographic product

Motivation

$$\frac{A: \mathsf{lattice} \qquad B: \mathsf{lattice}_{\perp}}{A\boxtimes B: \mathsf{lattice}} \qquad \frac{A: \mathsf{lattice}_{\perp} \qquad B: \mathsf{lattice}_{\perp}}{A\boxtimes B: \mathsf{lattice}_{\perp}}$$

$$(x_1,y_1) \sqsubseteq (x_2,y_2) = x_1 \sqsubseteq x_2 \lor (x_1 = x_2 \land y_1 \sqsubseteq y_2)$$

$$(x_1, y_1) \sqcup (x_2, y_2) = egin{cases} (x_1, y_1) & \text{if } x_2 \sqsubset x_1 \\ (x_2, y_2) & \text{if } x_1 \sqsubset x_2 \\ (x_1, y_1 \sqcup y_2) & \text{if } x_1 = x_2 \\ (x_1 \sqcup x_2, \bot) & \text{otherwise} \end{cases}$$

$$\perp = (\perp, \perp)$$

E.g. Dictionary order, $\{a,b,c\} \boxtimes \{a,b,c\}$ $ac \sqsubseteq bc$ $ac \sqsubseteq ba$

Linear sum

$$A \oplus B$$
 : lattice

A: lattice B: lattice

$$A \oplus B$$
: lattice $_{\perp}$

A: lattice B: lattice

```
Left x \sqsubseteq \text{Left } y = x \sqsubseteq y

Right x \sqsubseteq \text{Right } y = x \sqsubseteq y

Left x \sqsubseteq \text{Right } y = \text{True}

Right x \sqsubseteq \text{Left } y = \text{False}
```

Left
$$x \sqcup \text{Left } y = \text{Left } (x \sqcup y)$$

Right $x \sqcup \text{Right } y = \text{Right } (x \sqcup y)$
Left $x \sqcup \text{Right } y = \text{Right } y$
Right $x \sqcup \text{Left } y = \text{Right } x$

$$\bot = \mathsf{Left} \ \bot$$

Linear sum

$$\frac{A: lattice}{A \oplus B: lattice}$$

$$\frac{A: \mathsf{lattice}_{\perp} \qquad B: \mathsf{lattice}}{A \oplus B: \mathsf{lattice}_{\perp}}$$

```
Left x \subseteq \text{Left } y = x \subseteq y
Right x \sqsubseteq Right \ y = x \sqsubseteq y
Left x \subseteq Right y = True
Right x \sqsubseteq \text{Left } y = \text{False}
```

Left
$$x \sqcup \text{Left } y = \text{Left } (x \sqcup y)$$

Right $x \sqcup \text{Right } y = \text{Right } (x \sqcup y)$
Left $x \sqcup \text{Right } y = \text{Right } y$
Right $x \sqcup \text{Left } y = \text{Right } x$

$$\bot = \mathsf{Left} \ \bot$$

E.g.
$$\{a, b, c\} \oplus \mathbb{N}$$

$$a \sqsubseteq c$$
 5 \sqsubseteq 6

$$b \sqsubseteq 1$$

Function

$$\frac{A: \mathsf{set} \quad B: \mathsf{lattice}}{A \to B: \mathsf{lattice}} \qquad \frac{A: \mathsf{set} \quad B: \mathsf{lattice}_{\perp}}{A \to B: \mathsf{lattice}_{\perp}}$$

$$f \sqsubseteq g = \forall x \in A \cdot f(x) \sqsubseteq g(x)$$
 $(f \sqcup g)(x) = f(x) \sqcup g(x)$
 $\bot(x) = \bot$

E.g:
$$\{a, b, c\} \to \mathbb{N}$$

 $\{a \mapsto 0, b \mapsto 2, c \mapsto 0\} \sqsubseteq \{a \mapsto 3, b \mapsto 2, c \mapsto 0\}$

Set

$$\frac{A : \mathsf{set}}{\mathcal{P}(A) : \mathsf{lattice}_{\perp}}$$

$$\mathcal{P}(A) \cong A \to \mathbb{B}$$

$$a \sqsubseteq b = a \subseteq b$$
 $a \sqcup b = a \cup b$ $\bot = \emptyset$

$$\frac{A : \mathsf{set}}{\mathcal{P}(A) : \mathsf{lattice}_\perp}$$

$$\mathcal{P}(A) \cong A \to \mathbb{B}$$

$$a \sqsubseteq b = a \subseteq b$$
 $a \sqcup b = a \cup b$ $\bot = \emptyset$

E.g.
$$\mathcal{P}(\{a,b,c\})$$
 $\{b\} \sqsubseteq \{a,b\}$ $\{a,b\} \parallel \{b,c\}$

Multiset

$$\frac{A : \mathsf{set}}{\mathcal{M}(A) : \mathsf{lattice}_{\perp}}$$

$$\mathcal{M}(A) \cong A \to \mathbb{N}$$

$$a \sqsubseteq b = a \subseteq b$$
 $a \sqcup b = a \cup b$ $\bot = \emptyset$

Мар

$$\frac{\textit{K}: \mathsf{set} \qquad \textit{V}: \mathsf{lattice}}{\textit{K} \hookrightarrow \textit{V}: \mathsf{lattice}_{\perp}}$$

$$K \hookrightarrow V \cong K \rightarrow \mathbb{1} \oplus V$$

$$f \sqsubseteq g = \dots$$
 $f \sqcup g = \dots$ $\bot = \dots$

Map

$$\frac{\textit{K}: \mathsf{set} \qquad \textit{V}: \mathsf{lattice}}{\textit{K} \hookrightarrow \textit{V}: \mathsf{lattice}_{\perp}}$$

$$K \hookrightarrow V \cong K \rightarrow \mathbb{1} \oplus V$$

$$f \sqsubseteq g = \dots$$
 $f \sqcup g = \dots$ $\bot = \dots$

E.g:
$$\{a, b, c\} \hookrightarrow \mathbb{N}$$

$$\{b\mapsto 2\} \sqsubseteq \{a\mapsto 3, b\mapsto 2\} \qquad \{b\mapsto 2\} \parallel \{a\mapsto 3, b\mapsto 1\}$$

Set of maximal elements (antichain)

$$\frac{A : poset}{\mathcal{A}(A) : lattice_{\perp}}$$

$$A(A) = \{ maximal(a) \mid a \in \mathcal{P}(A) \} \cong \mathcal{O}(A)$$

$$\mathsf{maximal}(a) = \{ x \in a \mid \nexists y \in a \cdot x \sqsubset y \}$$

$$a \sqsubseteq b = \forall x \in a \cdot \exists y \in b \cdot x \sqsubseteq y \qquad = \downarrow a \subseteq \downarrow b$$

$$a \sqcup b = \mathsf{maximal}(a \cup b)$$

$$\perp = \emptyset$$

Catalog

CRDT	Lattice	Ops	Comments
P Counter	$I\hookrightarrow \mathbb{N}$	inc	version vector
PN Counter	$(I \hookrightarrow \mathbb{N}) \times (I \hookrightarrow \mathbb{N})$	inc dec	in riak-dt
	$I\hookrightarrow \mathbb{N}\boxtimes \mathbb{N}$		in cassandra
G Set	$\mathcal{P}(E)$	add	grow only
2P Set	$\mathcal{P}(E) \times \mathcal{P}(E)$	add rmv	tombstones
	$E \hookrightarrow \mathbb{B}$		
LWW elem Set	$E \hookrightarrow \mathbb{N} \boxtimes \mathbb{B}$	add rmv	by H.G. Roh
OR Set	$E \hookrightarrow I \hookrightarrow \mathbb{N} \boxtimes \mathbb{B}$	add rmv	add/rmv wins
Opt OR Set	$I \hookrightarrow \mathbb{N} \hookrightarrow E \oplus \mathbb{1}$	add rmv	compactable

Catalog

CRDT	Lattice	Ops	Comments
LWW Reg	$\mathbb{N} \boxtimes V$	assign	unique timestamps
	$\mathbb{N} \boxtimes \mathcal{P}(V)$		allowing collisions
MV Reg	$\mathcal{A}((I \hookrightarrow \mathbb{N}) \boxtimes V)$	assign	BloomL Dom Set
MV KVS	$K \hookrightarrow \mathcal{A}((I \hookrightarrow \mathbb{N}) \boxtimes V)$	put	Dynamo like
Sequences	t.b.d.		
Graphs	t.b.d.		
Trees	t.b.d.		

Inflation

- Inflation: $x \sqsubseteq f(x)$
- Inflations advance state with robustness to join
- New state subsumes old state
- Immune to replays of the past
- Not same as monotone functions: $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$

Inflation - strict and non strict

$$\frac{\forall x \in a \cdot x \sqsubseteq f(x)}{f : A \stackrel{\sqsubseteq}{\longrightarrow} A}$$

$$\frac{\forall x \in a \cdot x \sqsubset f(x)}{f : A \stackrel{\square}{\longrightarrow} A}$$

$$\frac{f:A \xrightarrow{\sqsubseteq} A}{f:A \xrightarrow{\sqsubseteq} A}$$

Primitive inflations

$$\operatorname{id}(x) = x \qquad \overline{\operatorname{id} : A \xrightarrow{\sqsubseteq} A}$$

$$\underline{\operatorname{True}}(x) = \operatorname{True} \qquad \overline{\underline{\operatorname{True}} : \mathbb{B} \xrightarrow{\sqsubseteq} \mathbb{B}}$$

$$\operatorname{succ}(x) = x + 1 \qquad \overline{\operatorname{succ} : \mathbb{N} \xrightarrow{\sqsubseteq} \mathbb{N}}$$

$$\operatorname{insert}_{x}(a) = a \cup \{x\} \qquad \overline{\operatorname{insert}_{x} : \mathcal{P}(A) \xrightarrow{\sqsubseteq} \mathcal{P}(A)}$$

Sequential composition

$$(f \bullet g)(x) = f(g(x))$$

$$\frac{f : A \xrightarrow{\sqsubseteq} A \quad g : A \xrightarrow{\sqsubseteq} A}{f \bullet g : A \xrightarrow{\sqsubseteq} A}$$

$$\frac{f : A \xrightarrow{\sqsubseteq} A \quad g : A \xrightarrow{\sqsubseteq} A}{f \bullet g : A \xrightarrow{\sqsubseteq} A} \qquad \frac{f : A \xrightarrow{\sqsubseteq} A \quad g : A \xrightarrow{\sqsubseteq} A}{f \bullet g : A \xrightarrow{\sqsubseteq} A}$$

Products

$$(f \times g)(x, y) = (f(x), g(y))$$

$$\underbrace{f : A \xrightarrow{\sqsubseteq} A \quad g : B \xrightarrow{\sqsubseteq} B}_{f \times g : A \times B \xrightarrow{\sqsubseteq} A \times B}$$

$$\frac{f:A \xrightarrow{\sqsubseteq} A \quad g:B \xrightarrow{\sqsubset} B}{f \times g:A \times B \xrightarrow{\sqsubset} A \times B} \qquad \frac{f:A \xrightarrow{\sqsubset} A \quad g:B \xrightarrow{\sqsubseteq} B}{f \times g:A \times B \xrightarrow{\sqsubset} A \times B}$$

Lexicographic products

$$(f \boxtimes g)(x,y) = (f(x),g(y))$$

$$\frac{f: A \xrightarrow{\sqsubseteq} A \quad g: B \xrightarrow{\sqsubseteq} B}{f \boxtimes g: A \boxtimes B \xrightarrow{\sqsubseteq} A \boxtimes B}$$

$$\frac{f: A \xrightarrow{\sqsubseteq} A \quad g: B \xrightarrow{\sqsubset} B}{f \boxtimes g: A \boxtimes B \xrightarrow{\sqsubseteq} A \boxtimes B} \qquad \frac{f: A \xrightarrow{\sqsubset} A \quad g: B \longrightarrow B}{f \boxtimes g: A \boxtimes B \xrightarrow{\sqsubseteq} A \boxtimes B}$$

Linear sum

$$(f \oplus g)(\text{Left } x) = \text{Left } f(x)$$

$$(f \oplus g)(\text{Right } x) = \text{Right } g(x)$$

$$\frac{f : A \xrightarrow{\sqsubseteq} A \quad g : B \xrightarrow{\sqsubseteq} B}{f \oplus g : A \oplus B \xrightarrow{\sqsubseteq} A \oplus B}$$

$$\frac{f : A \xrightarrow{\sqsubseteq} A \quad g : B \xrightarrow{\sqsubseteq} B}{f \oplus g : A \oplus B \xrightarrow{\sqsubseteq} A \oplus B}$$

Maps

$$\mathsf{map}(f)(m) = \{(k, f(v)) \mid (k, v) \in m\}$$

$$\frac{f : V \stackrel{\sqsubseteq}{\longrightarrow} V}{\mathsf{map}(f) : (K \hookrightarrow V) \stackrel{\sqsubseteq}{\longrightarrow} (K \hookrightarrow V)}$$

$$\mathsf{apply}_k(f)(m) = \begin{cases} m\{k \mapsto f(v)\} & \mathbf{if} \ (k, v) \in m \\ m\{k \mapsto f(\bot)\} & \mathbf{otherwise} \end{cases}$$

$$\frac{f : V \stackrel{\sqsubseteq}{\longrightarrow} V}{\mathsf{apply}_k(f) : (K \hookrightarrow V) \stackrel{\sqsubseteq}{\longrightarrow} (K \hookrightarrow V)}$$

$$\frac{f : V \stackrel{\sqsubseteq}{\longrightarrow} V}{\mathsf{apply}_k(f) : (K \hookrightarrow V) \stackrel{\sqsubseteq}{\longrightarrow} (K \hookrightarrow V)}$$

Discussion

P Counter

$$\mathsf{PCounter}(I) = I \hookrightarrow \mathbb{N}$$

$$inc_i(a) = apply_i(succ)(a)$$

 $value(a) = \sum \{v \mid (c, v) \in a\}$

OR Set - add wins

$$\mathsf{ORSet}^+(E,I) = E \hookrightarrow I \hookrightarrow \mathbb{N} \boxtimes \mathbb{B}$$

$$\mathsf{add}_{e,i}(a) = \mathsf{apply}_e(\mathsf{apply}_i(\mathsf{succ} \boxtimes \underline{\mathsf{False}}))(a)$$
 $\mathsf{rmv}_e(a) = \mathsf{apply}_e(\mathsf{map}(\mathsf{id} \boxtimes \underline{\mathsf{True}}))(a)$
 $\mathsf{member}_e(a) = \exists (e, m) \in a \cdot \exists i, n \cdot (n, \mathsf{False}) \in m(i)$

OR Set - remove wins

$$\mathsf{ORSet}^-(E,I) = E \hookrightarrow I \hookrightarrow \mathbb{N} \boxtimes \mathbb{B}$$

$$\mathsf{rmv}_{e,i}(a) = \mathsf{apply}_e(\mathsf{apply}_i(\mathsf{succ} \boxtimes \underline{\mathsf{False}}))(a)$$
 $\mathsf{add}_e(a) = \mathsf{apply}_e(\mathsf{map}(\mathsf{id} \boxtimes \underline{\mathsf{True}}))(a)$ $\mathsf{member}_e(a) = \exists (e,m) \in a \cdot \nexists i, n \cdot (n, \mathsf{False}) \in m(i)$

MV Register

$$\mathsf{MVReg}(V,I) = \mathcal{A}((I \hookrightarrow \mathbb{N}) \boxtimes V) \qquad V$$
: poset

$$assign_{v,i}(a) = \{apply_i(succ)(\bigsqcup\{c \mid (c,v') \in a\}) \boxtimes v\}$$
$$values(a) = \{v \mid (c,v) \in a\}$$

MV Register with reconcile

$$\mathsf{MVRegisterR}(V,I) = \mathcal{A}((I \hookrightarrow \mathbb{N}) \boxtimes V) \qquad V : \mathsf{lattice}$$

$$\operatorname{assign}_{v,i}(a) = \{\operatorname{apply}_i(\operatorname{succ})(\bigsqcup\{c \mid (c,v') \in a\}) \boxtimes v\}$$

$$\operatorname{reconcile}_i(a) = \{\bigsqcup\{c \mid (c,v) \in a\} \boxtimes \bigsqcup\{v \mid (c,v) \in a\}\}$$

$$\operatorname{values}(a) = \{v \mid (c,v) \in a\}$$

Discussion

- Now \sqcup , \sqsubseteq are derived, inflation class also
- But no semantics captured. Though can help checking it
- Convergence related to known updates, not stopping updates: $upds(a) \subseteq upds(b) \Rightarrow a \sqsubseteq b$. But, does not imply correctness
- Correction often requires global invariants, e.g. id uniqueness
- Are these lattice compositions universal?
- Embedding the id in the state, looking relevant for protocols
- Scalability: Id management, GC.