Contrôle 2: Géométrie analytique

Cours de mathématiques spéciales (CMS)

9 janvier 2018 Semestre d'automne ID: -999

(écrire lisiblement s.v.p)						
Nom:		• • • • •		 		
Prénom :				 · · · · · · · · · ·		
Groupe:				 		

Question	Pts max.	Pts	
1	3		
2	3		
3	8		
4	6		
Total	20		

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à 3 points)

Points obtenus: (laisser vide)

Dans le plan, muni d'un repère orthonormé, on considère un rectangle ABCD vérifiant les conditions suivantes :

- D(3;5),
- $C \in d$ où d: x + 2y + 11 = 0,
- B est le symétrique de D par rapport à la droite g passant par les deux points $M\left(17\,;\,-3\right)$ et $N\left(-5\,;\,-9\right)$.

Déterminer les coordonnées des sommets A, B et C. Retenir la solution pour laquelle $x_C>0$.

laisser la marge vide

laisser la marge vide

Question 2 (à 3 points)

Points obtenus: (laisser vide)

Dans l'espace muni d'un repère orthonormé direct, on donne les trois points non alignés suivants :

$$A(-2; 0; 0), B(0; 5; 1)$$
 et $C(1; 0; 4)$

(a) Déterminer l'équation cartésienne du plan α défini par A, B et C.

Soit la droite d d'équation cartésienne :

$$d: \frac{x+1}{2} = \frac{y}{-2} = z+1.$$

- (b) Déterminer le point d'intersection I entre le plan α et la droite d.
- (c) Déterminer les équations paramétriques de la droite g vérifiant les conditions suivantes :
 - g est contenue dans le plan α ,
 - g est orthogonale et sécante à la droite d.

R'eponse à la question 2:

laisser la marge vide

laisser la marge vide

Question 3 (à 8 points)

Points obtenus: (laisser vide)

On considère dans l'espace deux points distincts P et Q et deux plans ρ et σ distincts et non parallèles. On recherche un plan π vérifiant les deux conditions suivantes :

- les points P et Q appartiennent à π .
- l'intersection $\rho \cap \sigma \cap \pi$ est vide.
- (a) Décrire une marche à suivre permettant la construction d'un tel plan π en fonction des données.
- (b) Soit $m \in \mathbb{R}$. Dans un repère orthonormé de l'espace, les points P et Q ont pour coordonnées :

$$P(-1,2,1)$$
 et $Q(0,3,m+2)$

et les plans ρ et σ ont pour équations cartésiennes :

$$\rho: x + y - z = 1 \text{ et } \sigma: (m-1)x + (m+1)y - mz = m.$$

On suppose $m \neq 1$. Donner si c'est possible une équation cartésienne d'un plan π solution du problème. Justifier rigoureusement votre réponse.

(c) On reprend les hypothèses du (b), mais on suppose maintenant que m=1. Donner si c'est possible une équation cartésienne d'un plan π solution du problème. Justifier rigoureusement votre réponse.

Réponse à la question 3:

laisser la marge vide

laisser la marge vide

laisser la marge vide

Question 4 (à 6 points)

Points obtenus: (laisser vide)

On munit l'espace d'une origine notée O. On considère deux plans α et β passant par O et définis par les vecteurs normaux \vec{n}_{α} et \vec{n}_{β} unitaires, ainsi qu'un point D situé dans le plan β . On suppose $\vec{n}_{\alpha} \cdot \vec{n}_{\beta} \neq 0$. On note $\overrightarrow{OD} = \vec{d}$.

(a) On considère la droite d passant par D et orthogonale à β . En fonction des données \vec{d} , \vec{n}_{α} et \vec{n}_{β} , déterminer depuis l'origine O le point A, intersection de d et α .

Soit i la droite d'intersection des plans α et β .

- (b) En fonction des données, localiser depuis l'origine O le point K projection orthogonale de D sur la droite i.
- (c) En fonction des données, déterminer depuis l'origine le point B sur la droite i tel que le triangle OAB soit isocèle de base OB.

laisser la marge vide

laisser la marge vide

ID: -999

laisser la marge vide

ID: -999

laisser la marge vide

Réponses

Question 1. A(-3,1), B(9,-17) C(15,-13).

Question 2. (a) $\alpha : 4x - y - 3z + 8 = 0$

(b)
$$I(-3,2,-2)$$
.

(c)
$$g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ 10 \\ 6 \end{pmatrix} \lambda \in \mathbb{R}.$$

Question 3. (b) $\pi : x - y + 3 = 0$.

(c) Il y a une infinité de solutions comme par exemple le plan d'équation x-y+3=0, ou celui d'équation -2y+z+3=0.

Question 4. (a) $\overrightarrow{OA} = \overrightarrow{d} - \frac{\overrightarrow{d} \cdot \overrightarrow{n}_{\alpha}}{\overrightarrow{n}_{\alpha} \cdot \overrightarrow{n}_{\beta}} \overrightarrow{n}_{\beta}$.

(b)
$$\overrightarrow{OK} = \overrightarrow{d} \cdot (\overrightarrow{n}_{\alpha} \times \overrightarrow{n}_{\beta}) \frac{\overrightarrow{n}_{\alpha} \times \overrightarrow{n}_{\beta}}{||\overrightarrow{n}_{\alpha} \times \overrightarrow{n}_{\beta}||^{2}}.$$

(c)
$$\overrightarrow{OB} = 2 \vec{d} \cdot (\vec{n}_{\alpha} \times \vec{n}_{\beta}) \frac{\vec{n}_{\alpha} \times \vec{n}_{\beta}}{||\vec{n}_{\alpha} \times \vec{n}_{\beta}||^{2}}$$