Unsupervised Learning

by Crystal (Yunan) Zhu, Anupama r.k, Queenie Tsang

18/02/2021

```
library(tidyverse)
library("readx1")
library("ggplot2")

#get the names of the columns
nms <- names(read_excel("US_Superstore_data.xls"))

#if the column name has "Date" in it, read the column as date data type, otherwise guess the type
ct <- ifelse(grep1("^Date", nms), "date", "guess")
data <- read_excel("US_Superstore_data.xls", col_types = ct)</pre>
```

To look at some basic statistics for this dataset:

summary(data)

```
Order ID
##
        Row ID
                                        Order Date
   Min. : 1
                   Length:9994
                                             :2014-01-03 00:00:00
   1st Qu.:2499
                   Class :character
                                      1st Qu.:2015-05-23 00:00:00
  Median:4998
                   Mode :character
                                      Median :2016-06-26 00:00:00
##
  Mean
          :4998
                                             :2016-04-30 00:07:12
                                      Mean
   3rd Qu.:7496
                                      3rd Qu.:2017-05-14 00:00:00
##
##
  Max.
           :9994
                                      Max.
                                             :2017-12-30 00:00:00
##
      Ship Date
                                   Ship Mode
                                                     Customer ID
                                  Length:9994
## Min.
           :2014-01-07 00:00:00
                                                     Length:9994
  1st Qu.:2015-05-27 00:00:00
                                  Class : character
                                                    Class : character
## Median :2016-06-29 00:00:00
                                  Mode :character
                                                     Mode :character
## Mean
          :2016-05-03 23:06:58
## 3rd Qu.:2017-05-18 00:00:00
## Max.
           :2018-01-05 00:00:00
## Customer Name
                         Segment
                                            Country
                                                                 City
## Length:9994
                       Length:9994
                                          Length:9994
                                                             Length:9994
   Class :character
                       Class :character
                                          Class :character
                                                             Class : character
##
   Mode :character
                       Mode :character
                                          Mode :character
                                                             Mode :character
##
##
##
##
                        Postal Code
                                                           Product ID
      State
                                          Region
   Length:9994
                      Min. : 1040
                                       Length:9994
                                                          Length:9994
   Class : character
                       1st Qu.:23223
                                       Class :character
                                                          Class : character
   Mode :character
                       Median :56431
                                       Mode :character
                                                          Mode : character
```

```
##
                                :55190
                        Mean
##
                        3rd Qu.:90008
##
                                :99301
##
      Category
                        Sub-Category
                                            Product Name
                                                                     Sales
##
    Length:9994
                        Length:9994
                                            Length:9994
                                                                 Min.
                                                                              0.444
##
    Class : character
                        Class : character
                                             Class : character
                                                                 1st Qu.:
                                                                             17.280
    Mode :character
                        Mode :character
                                            Mode : character
                                                                 Median:
                                                                             54.490
##
                                                                 Mean
                                                                            229.858
##
                                                                 3rd Qu.:
                                                                            209.940
##
                                                                 Max.
                                                                         :22638.480
##
       Quantity
                        Discount
                                           Profit
           : 1.00
##
    Min.
                     Min.
                             :0.0000
                                       Min.
                                               :-6599.978
##
    1st Qu.: 2.00
                     1st Qu.:0.0000
                                       1st Qu.:
                                                    1.729
##
    Median: 3.00
                     Median :0.2000
                                       Median:
                                                    8.666
          : 3.79
##
    Mean
                     Mean
                             :0.1562
                                       Mean
                                               :
                                                   28.657
##
    3rd Qu.: 5.00
                     3rd Qu.:0.2000
                                       3rd Qu.:
                                                   29.364
    Max.
           :14.00
                             :0.8000
                                             : 8399.976
                     Max.
                                       Max.
```

To look at the dimensions of the data:

dim(data)

```
## [1] 9994 21
```

The dimensions of the dataset are 9994 by 21.

Check that the Order Date and Ship Date column type is POSIXct which is a date data type:

data

```
## # A tibble: 9,994 x 21
      'Row ID' 'Order ID' 'Order Date'
##
                                               'Ship Date'
                                                                    'Ship Mode'
##
         <dbl> <chr>
                          <dttm>
                                               <dttm>
                                                                    <chr>
##
             1 CA-2016-1~ 2016-11-08 00:00:00 2016-11-11 00:00:00 Second Cla~
   1
             2 CA-2016-1~ 2016-11-08 00:00:00 2016-11-11 00:00:00 Second Cla~
##
##
   3
             3 CA-2016-1~ 2016-06-12 00:00:00 2016-06-16 00:00:00 Second Cla~
##
             4 US-2015-1~ 2015-10-11 00:00:00 2015-10-18 00:00:00 Standard C~
##
   5
             5 US-2015-1~ 2015-10-11 00:00:00 2015-10-18 00:00:00 Standard C~
             6 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
##
   6
   7
             7 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
##
##
   8
             8 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
             9 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
##
   9
##
            10 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
##
     ... with 9,984 more rows, and 16 more variables: 'Customer ID' <chr>,
## #
       'Customer Name' <chr>, Segment <chr>, Country <chr>, City <chr>,
       State <chr>, 'Postal Code' <dbl>, Region <chr>, 'Product ID' <chr>,
## #
       Category <chr>, 'Sub-Category' <chr>, 'Product Name' <chr>, Sales <dbl>,
## #
## #
       Quantity <dbl>, Discount <dbl>, Profit <dbl>
```

To check the data type for each column:

```
## tibble [9,994 x 21] (S3: tbl_df/tbl/data.frame)
## $ Row ID : num [1:9994] 1 2 3 4 5 6 7 8 9 10 ...
```

```
## $ Order ID
                  : chr [1:9994] "CA-2016-152156" "CA-2016-152156" "CA-2016-138688" "US-2015-108966" .
                  : POSIXct[1:9994], format: "2016-11-08" "2016-11-08" ...
## $ Order Date
## $ Ship Date
                  : POSIXct[1:9994], format: "2016-11-11" "2016-11-11" ...
                  : chr [1:9994] "Second Class" "Second Class" "Standard Class" ...
## $ Ship Mode
##
   $ Customer ID : chr [1:9994] "CG-12520" "CG-12520" "DV-13045" "SO-20335" ...
## $ Customer Name: chr [1:9994] "Claire Gute" "Claire Gute" "Darrin Van Huff" "Sean O'Donnell" ...
                  : chr [1:9994] "Consumer" "Consumer" "Corporate" "Consumer" ...
## $ Segment
                  : chr [1:9994] "United States" "United States" "United States" "United States" ...
##
   $ Country
##
   $ City
                  : chr [1:9994] "Henderson" "Henderson" "Los Angeles" "Fort Lauderdale" ...
## $ State
                  : chr [1:9994] "Kentucky" "Kentucky" "California" "Florida" ...
## $ Postal Code : num [1:9994] 42420 42420 90036 33311 33311 ...
                  : chr [1:9994] "South" "South" "West" "South" ...
## $ Region
                  : chr [1:9994] "FUR-BO-10001798" "FUR-CH-10000454" "OFF-LA-10000240" "FUR-TA-1000057
## $ Product ID
                  : chr [1:9994] "Furniture" "Furniture" "Office Supplies" "Furniture" ...
## $ Sub-Category : chr [1:9994] "Bookcases" "Chairs" "Labels" "Tables" ...
## $ Product Name : chr [1:9994] "Bush Somerset Collection Bookcase" "Hon Deluxe Fabric Upholstered St
                  : num [1:9994] 262 731.9 14.6 957.6 22.4 ...
## $ Sales
## $ Quantity
                  : num [1:9994] 2 3 2 5 2 7 4 6 3 5 ...
                  : num [1:9994] 0 0 0 0.45 0.2 0 0 0.2 0.2 0 ...
## $ Discount
## $ Profit
                  : num [1:9994] 41.91 219.58 6.87 -383.03 2.52 ...
```

There are 6 numeric variables, 2 date variables, and 13 character variables.

glimpse(data)

```
## Rows: 9,994
## Columns: 21
## $ 'Row ID'
                     <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
## $ 'Order ID'
                     <chr> "CA-2016-152156", "CA-2016-152156", "CA-2016-138688...
## $ 'Order Date'
                     <dttm> 2016-11-08, 2016-11-08, 2016-06-12, 2015-10-11, 20...
## $ 'Ship Date'
                     <dttm> 2016-11-11, 2016-11-11, 2016-06-16, 2015-10-18, 20...
## $ 'Ship Mode'
                     <chr> "Second Class", "Second Class", "Second Class", "St...
                     <chr> "CG-12520", "CG-12520", "DV-13045", "S0-20335", "S0...
## $ 'Customer ID'
## $ 'Customer Name' <chr> "Claire Gute", "Claire Gute", "Darrin Van Huff", "S...
## $ Segment
                     <chr> "Consumer", "Consumer", "Corporate", "Consumer", "C...
## $ Country
                     <chr> "United States", "United States", "United States", ...
                     <chr> "Henderson", "Henderson", "Los Angeles", "Fort Laud...
## $ City
                     <chr> "Kentucky", "Kentucky", "California", "Florida", "F...
## $ State
## $ 'Postal Code'
                     <dbl> 42420, 42420, 90036, 33311, 33311, 90032, 90032, 90...
                     <chr> "South", "South", "West", "South", "South", "West",...
## $ Region
                     <chr> "FUR-B0-10001798", "FUR-CH-10000454", "OFF-LA-10000...
## $ 'Product ID'
## $ Category
                     <chr> "Furniture", "Furniture", "Office Supplies", "Furni...
## $ 'Sub-Category'
                     <chr> "Bookcases", "Chairs", "Labels", "Tables", "Storage...
## $ 'Product Name'
                     <chr> "Bush Somerset Collection Bookcase", "Hon Deluxe Fa...
## $ Sales
                     <dbl> 261.9600, 731.9400, 14.6200, 957.5775, 22.3680, 48....
## $ Quantity
                     <dbl> 2, 3, 2, 5, 2, 7, 4, 6, 3, 5, 9, 4, 3, 3, 5, 3, 6, ...
## $ Discount
                     <dbl> 0.00, 0.00, 0.00, 0.45, 0.20, 0.00, 0.00, 0.20, 0.2...
                     <dbl> 41.9136, 219.5820, 6.8714, -383.0310, 2.5164, 14.16...
## $ Profit
```

See if there are duplicates in the data and extract them:

data %>% distinct()

```
## # A tibble: 9,994 x 21
      'Row ID' 'Order ID' 'Order Date'
##
                                               'Ship Date'
                                                                   'Ship Mode'
##
         <dbl> <chr>
                          <dttm>
                                               <dttm>
                                                                   <chr>
##
             1 CA-2016-1~ 2016-11-08 00:00:00 2016-11-11 00:00:00 Second Cla~
             2 CA-2016-1~ 2016-11-08 00:00:00 2016-11-11 00:00:00 Second Cla~
##
##
             3 CA-2016-1~ 2016-06-12 00:00:00 2016-06-16 00:00:00 Second Cla~
             4 US-2015-1~ 2015-10-11 00:00:00 2015-10-18 00:00:00 Standard C~
##
##
   5
             5 US-2015-1~ 2015-10-11 00:00:00 2015-10-18 00:00:00 Standard C~
             6 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
##
   6
             7 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
##
   7
             8 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
##
   8
##
             9 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
## 10
            10 CA-2014-1~ 2014-06-09 00:00:00 2014-06-14 00:00:00 Standard C~
## # ... with 9,984 more rows, and 16 more variables: 'Customer ID' <chr>,
       'Customer Name' <chr>, Segment <chr>, Country <chr>, City <chr>,
       State <chr>, 'Postal Code' <dbl>, Region <chr>, 'Product ID' <chr>,
## #
       Category <chr>, 'Sub-Category' <chr>, 'Product Name' <chr>, Sales <dbl>,
## #
## #
       Quantity <dbl>, Discount <dbl>, Profit <dbl>
```

Another way to extract only the unique columns of the dataset:

```
data_unique <- unique(data)
dim(data_unique)</pre>
```

```
## [1] 9994 21
```

The dimensions of the dataset with only the unique rows are still 9994 by 21, so it appears there are no duplicated rows in the original dataset.

Check for missing values in data:

```
##
    [1] "Row ID-1 missing values"
                                          "Order ID-1 missing values"
##
    [3] "Order Date-1 missing values"
                                          "Ship Date-1 missing values"
    [5] "Ship Mode-1 missing values"
                                          "Customer ID-1 missing values"
##
    [7] "Customer Name-1 missing values"
                                          "Segment-1 missing values"
##
   [9] "Country-1 missing values"
                                          "City-1 missing values"
## [11] "State-1 missing values"
                                          "Postal Code-1 missing values"
## [13] "Region-1 missing values"
                                          "Product ID-1 missing values"
## [15] "Category-1 missing values"
                                          "Sub-Category-1 missing values"
## [17] "Product Name-1 missing values"
                                          "Sales-1 missing values"
## [19] "Quantity-1 missing values"
                                          "Discount-1 missing values"
## [21] "Profit-1 missing values"
This is 1 missing value in this dataset.
```

```
## [1] "Row ID-0 missing values" "Order ID-0 missing values"
## [3] "Order Date-0 missing values" "Ship Date-0 missing values"
```

```
## [5] "Ship Mode-0 missing values"
                                         "Customer ID-0 missing values"
  [7] "Customer Name-O missing values" "Segment-O missing values"
##
  [9] "Country-O missing values"
                                         "City-0 missing values"
## [11] "State-0 missing values"
                                         "Postal Code-0 missing values"
## [13] "Region-O missing values"
                                         "Product ID-0 missing values"
## [15] "Category-O missing values"
                                         "Sub-Category-O missing values"
## [17] "Product Name-O missing values"
                                         "Sales-0 missing values"
## [19] "Quantity-0 missing values"
                                         "Discount-O missing values"
## [21] "Profit-0 missing values"
```

list rows of data that have missing values

```
data[!complete.cases(data),]

## # A tibble: 0 x 21

## # ... with 21 variables: 'Row ID' <dbl>, 'Order ID' <chr>, 'Order Date' <dttm>,

## # "Ship Date' <dttm>, 'Ship Mode' <chr>, 'Customer ID' <chr>, 'Customer

## # Name' <chr>, Segment <chr>, Country <chr>, City <chr>, State <chr>, 'Postal

## # Code' <dbl>, Region <chr>, 'Product ID' <chr>, Category <chr>,

## # "Sub-Category' <chr>, 'Product Name' <chr>, Sales <dbl>, Quantity <dbl>,

## # Discount <dbl>, Profit <dbl>

Percentage of missing values

## [1] 0
```

Remove the spaces in the column names and replace with "_" to make variable names easier to handle:

```
[1] "Row ID"
                         "Order ID"
                                          "Order_Date"
                                                           "Ship_Date"
   [5] "Ship_Mode"
                         "Customer_ID"
                                          "Customer_Name"
                                                           "Segment"
   [9] "Country"
                         "City"
                                          "State"
                                                           "Postal_Code"
                                                           "Sub-Category"
## [13] "Region"
                         "Product_ID"
                                          "Category"
                                          "Quantity"
## [17] "Product_Name"
                         "Sales"
                                                           "Discount"
## [21] "Profit"
```

Exploratory Data Analysis

Find the difference between Order Date and Ship Date, and store into a new column called diff_in_days:

```
data$diff_in_days<- difftime(data$Ship_Date, data$Order_Date, units = c("days"))</pre>
```


Plot Sales in relation to Order Date: Plot Profit in relation to Order Date:

```
ggplot(data = data) +
geom_point(mapping = aes(x = Order_Date, y = Profit), xlab="Order Date", ylab="Profit")
```

Warning: Ignoring unknown parameters: xlab, ylab

Some outliers for certain days

table(data\$'Sub-Category')

##						
##	Accessories	Appliances	Art	Binders	Bookcases	Chairs
##	775	466	796	1523	228	617
##	Copiers	Envelopes	Fasteners	Furnishings	Labels	Machines
##	68	254	217	957	364	115
##	Paper	Phones	Storage	Supplies	Tables	
##	1370	889	846	190	319	

look at the time range for these transactions, ie. start date for Order_Date column:

min(data\$Order_Date)

[1] "2014-01-03 UTC"

#[1] "2014-01-03 UTC"

max(data\$Order_Date)

[1] "2017-12-30 UTC"

#[1] "2017-12-30 UTC"

Basically this dataset covers transactions ranging from 2014-01-03 to 2017-12-30.

```
ggplot(data = data) +
geom_bar(mapping = aes(x = Category))
```


Most type of products sold belong to the Office supplies category.

```
ggplot(data = data) +
geom_bar(mapping = aes(y = 'Sub-Category'))
```



```
ggplot(data = data, mapping = aes(x = Sales)) +
    xlim(0, 5000) +
    geom_histogram(binwidth = 5)
```

- ## Warning: Removed 19 rows containing non-finite values (stat_bin).
- ## Warning: Removed 2 rows containing missing values (geom_bar).

Most sales are very few items (<500).

```
ggplot(data = data, mapping = aes(x = Quantity)) +
geom_histogram(binwidth = 5)
```



```
ggplot(data = data) +
geom_histogram(mapping = aes(x = Discount), xlab="Discount")
```

Warning: Ignoring unknown parameters: xlab

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Sales transactions mostly do not involve discounts.

Visualise sales transactions by state over time (order date).

How does profit change with sub-category?

```
#density plot where the count is standardized, area under each frequency is 1
ggplot(data = data, mapping = aes(x = Sales, y = ..density..)) +
geom_freqpoly(mapping = aes(colour = 'Sub-Category'), binwidth = 500)
```


It looks like some categories of items ie. supplies or accessories have negative sales values.

```
ggplot(data = data, mapping = aes(x = Sales, y = 'Sub-Category')) +
geom_boxplot()
```

