CG1111A: Engineering Principles & Practice I

CG1111A: Engineering Principles & Practice I

Revision Practice Questions for Quiz #1

For the resistor network shown in the figure above, what is the equivalent resistance R_{AB} between the terminals A and B?

- (A) 9.14 Ω
- (B) 10.94Ω
- (C) 106.5Ω
- (D) 116.5Ω

Ans: A

Benedict, who'd just learnt about the voltage divider principle, is excited about applying it to build a circuit shown in the figure above. He wishes to obtain V_1 = 6 V, and V_2 = 2 V. However, he does not realize that he cannot apply the principle directly to R_A and R_B , as resistors R_C and R_D have a "loading effect". Which one of the following sets of resistor values would allow him to get V_1 and V_2 to be closest to his desired voltages of 6 V and 2 V, respectively?

	R _A	R _B	R C	R _D
(A)	40 Ω	60 Ω	400 Ω	200 Ω
(B)	40 Ω	60 Ω	4000 Ω	2000 Ω
(C)	400 Ω	600 Ω	40 Ω	20 Ω
(D)	4000 Ω	6000 Ω	40 Ω	20 Ω

Ans: B

For the circuit shown in the figure above, what is the voltage V_1 ?

A: 5.4 V

B: 7.5 V

C: 15.0 V

D: 30.0 V

Ans: B (most common mistakes: C and D)

What is the value of R that will result in a current of 0.1 A passing through R? (Hint: Use Thevenin equivalent circuit)

- (A) 56Ω
- (B) 24Ω
- (C) 40Ω
- (D) 16Ω

Ans: D

What is the value of R that will result in a current of I = 0.15 A passing through R? (Hint: Use Thevenin equivalent circuit)

A: 60Ω

B: 40Ω

C: 30Ω

D: 20Ω

Ans: D (most common mistake: B)

What is this maximum power that can be utilized by the load R?

- (A) 0.25 W
- (B) 1 W
- (C) 1.56 W
- (D) 6.25 W

Ans: A

For the circuit shown in the figure above, what is the value of current I_1 ?

A: 0 A

B: 1 A

C: 2 A

D: 3 A

Ans: D (most common mistake: B)

A current of 8 A flows through a resistor network as shown in the figure above. The voltage difference V_{XY} (given by $V_X - V_Y$) is

- (A) 12 V
- (B) 6 V
- (C) 4.57 V
- (D) 11.4 V

Ans: B

A current of 3 A flows through a resistor network as shown in the figure above. The voltage difference V_{XY} (given by $V_X - V_Y$) is

A: 2 V

B: -2 V

C: 5 V

D: 8 V

Ans: A (most common mistake: B)

Suppose a load resistance R_L is to be placed across the nodes **a** and **b** in the circuit above, so as to draw maximum power. What is this maximum power that can be utilized by the load R_L ?

- (A) 10 W
- (B) 20 W
- (C) 40 W
- (D) 80 W

Ans: B

For the circuit shown in the figure above, what is the Thevenin equivalent circuit as <u>seen</u> by the $\underline{40~\Omega}$ resistor (i.e., between nodes A and B)?

- (A) $V_T = 120 \text{ V}, R_T = 6.67 \Omega$
- (B) $V_T = 140 \text{ V}, R_T = 6.67 \Omega$
- (C) $V_T = 120 \text{ V}, R_T = 5.45 \Omega$
- (D) $V_T = 140 \text{ V}, R_T = 5.45 \Omega$

Ans: B

For the circuit shown in the figure above, what is the Thevenin equivalent circuit's *Thevenin voltage* as seen by the load R_L ?

A: 4 V

B: 2.4 V

C: 4.56 V

D: 4.28 V

Ans: A (most common mistake: uniform for the other 3 options... random guesses!)

For the circuit shown in the figure above, what is the Thevenin equivalent circuit's *Thevenin* resistance as seen by the load R_L ?

A: 6Ω

B: 1.33Ω

C: 7.2Ω

D: 2.53Ω

Ans: A (most common mistake: D)

For the circuit shown in the figure above, what is the voltage V_A ?

- (A) 12.1 V
- (B) 11.7 V
- (C) 11.3 V
- (D) 10.3 V

Ans: D

For the circuit shown in the figure above, the 10 V voltage source is

- (A) supplying a power of about 28 W.
- (B) consuming a power of about 21 W.
- (C) consuming a power of about 3 W.
- (D) consuming a power of about 13 W.

For the circuit shown in the figure above, the 10 V voltage source is

A: consuming a power of 12.5 W.

B: supplying a power of 12.5 W.

C: supplying a power of 37.5 W.

D: consuming a power of 25 W.

Ans: A (most common mistake: D)

For the circuit shown in the figure above, what is the voltage V_A ?

A: 10.9 V

B: 11.9 V

C: 12.3 V

D: 12.7 V

Ans: A (most common mistake: C)

For the circuit shown in the figure above, what is the voltage V_1 with respect to ground?

- (A) 3.4 V
- (B) -3.4 V
- (C) 1.6 V
- (D) -1.6 V

Ans: D

What is the maximum power that can be utilized by the variable load R_L ?

A: 333 mW

B: 1.33 W

C: 4 W

D: 259 mW

Ans: A (most common mistake: B)

For the circuit shown in the figure above, the switch has been opened for a long time, and the current measured by the ammeter was 1 A before time t = 0. At time t = 0, the switch is closed. What would be the voltage $V_2(t)$ at time $t = 0^+$ s?

- (A) 0 V
- (B) −6 V
- (C) 4 V
- (D) 6 V Ans: A

What is the time constant (τ) for the inductor's current after t = 0?

A: 136 ms

B: 109 ms

C: 50 ms

D: 81.8 ms

Ans: A (most common mistake: B)

In the circuit shown in the figure above, the switch was initially OPEN for a long time. At time t = 0, the switch is closed. What is the inductor's voltage $V_L(t)$ at time t = 0.2 s?

- (A) 8.16 V
- (B) 1.84 V
- (C) 6.32 V
- (D) 3.68 V

Ans: B

In the circuit shown in the figure above, switch S_1 was CLOSED and switch S_2 was OPEN for a long time before time t = 0. At time t = 0, both switches are flipped (i.e., S_1 becomes OPEN, and S_2 becomes CLOSED). What is the capacitor's current i(t) at time t = 0.2 second?

- (A) 0.147 A
- (B) 0.253 A
- (C) 3.68 A
- (D) 73.6 mA

Ans: A

In the circuit shown in the figure above, the two capacitors were fully discharged initially. At time t = 0, both the switches are closed simultaneously. How long does it take for the voltage $V_c(t)$ to reach 5 V?

A: 4.9 s

B: 7.4 s

C: 22.1 s

D: 1.6 s

Ans: A (most common mistake: B and D)

In the circuit shown in the figure above, the switch was initially OPEN for a long time. At time t = 0, the switch is closed. What is the practical inductor's voltage $V_{PL}(t)$ at time t = 0.1 s?

A: 4.31 V

B: 0.63 V

C: 5.69 V

D: 1.00 V

Ans: A (most common mistake: B)

In the circuit shown in the figure above, the capacitor was fully discharged initially, and the current measured by the ammeter was 2 A before time t = 0. At time t = 0, the switch is closed. What would be the ammeter's reading at time t = 5 s?

A: 2.15 A

B: 2.00 A

C: 3.00 A

D: 2.37 A

Ans: A (most common mistake: D)

In the circuit shown in the figure above, the voltage v(t) is

- (A) $9.58 \cos(100t 16.7^{\circ}) \text{ V}$
- (B) $9.58 \cos(100t + 16.7^{\circ}) \text{ V}$
- (C) $10.4 \cos(100t + 16.7^{\circ}) \text{ V}$
- (D) $10.4 \cos(100t 16.7^{\circ}) \text{ V}$

In the circuit shown in the figure above, the current i(t) is

- (A) $237 \cos(100t + 30.9^{\circ})$ A
- (B) $2.17 \cos(100t 2.5^{\circ}) A$
- (C) $0.46 \cos(100t + 2.5^{\circ}) A$
- (D) $0.54 \cos(100t 17.6^{\circ}) A$

In the circuit shown in the figure above, a 100 Ω resistor is connected in series with a practical inductor. The practical inductor has a resistance of 22 Ω , and an unknown inductance L. Suppose the phase angle of the voltage $V_R(t)$ is found to be -67° with respect to the source voltage $V_S(t)$, the inductance L can be obtained as:

- (A) 0.825 mH
- (B) 3.75 mH
- (C) 4.57 mH
- (D) 5.88 mH

In the circuit shown in the figure above, a 100 Ω resistor is connected in series with a practical capacitor. The practical capacitor has a series resistance of 5 Ω , and an unknown capacitance C. Suppose the phase angle of the voltage $V_R(t)$ is found to be 43.6° with respect to the source voltage $V_S(t)$, the capacitance C can be obtained as:

- (A) 10μ F
- (B) 100 μF
- (C) 1 mF
- (D) 10 mF

Ans: B