

Regelungstechnik

für BEI4, BMEI4 und IBT

Prof. Dr. B. Wagner

Kap. 6 Stabilitätskriterien Teil 1: Das Nyquist-Kriterium

Wiederholung und Einordnung

Bisher:

- 1. Was ist ein Regelkreis?
- 2. Welche Arten von Systemen kommen vor?
- 3. Wie zeichne / lese ich ein Bode-Diagramm?
- 4. Wie finde ich die Regelstrecken-Übertragungsfunktion?
- 5. Die "klassischen" Regler P, PI, PDT₁, PIDT₁, ...

Jetzt:

- 6. Stabilität von Regelkreisen
 - a. Was passiert am "Stabilitätsrand"? Dauerschwingung!
 - b. Wo ist "der Stabilitätsrand" im Bode-Diagramm und in der Ortskurve zu finden?
 - c. Wie bestimmt man den "Abstand zum Stabilitätsrand" ⇔ Betrags- / Phasenreserve?
 - d. Wie lege ich einen Regelkreis nach Betrags- und Phasenreserve aus?

Beispiel: Raumtemperaturregelstrecke aus BORIS (PT₃) mit P-Regler

Stabilitätsrand ⇔ Dauerschwingung

Experimentell $V_{R,krit} = 8$ --> Stabilitätsrand

Achtung!

Bei messtechnischer Bestimmung des Stabilitätsrands:

Stellsignal soll nicht in die Begrenzung gehen!

Sonst erhält man eine nichtlineare Dauerschwingung "Grenzzyklus", bei der andere Analysemethoden gelten (=> Masterstudium!)

invertiert vom Ausgang:

 $T_x <--> w_x = 2pi/Tx$

Periodendauer

Dauerschwingungsbedingung:

$$G_O(jw_x) = G_R(jw_x) * G_S(jw_x) = -1$$

$$--> |G_O(jw_x)| = 1 = 0dB$$

Dauerschwingungsbedingung

$$G_S(j\omega) = \frac{1}{(1+100j\omega)^3}$$
, $G_R(j\omega) = 8$ $\rightarrow G_O(j\omega) = \frac{8}{(1+100j\omega)^3}$ \rightarrow Ortskurve zeichnen

⇒ Ist ein (<u>geschlossener</u>) Regelkreis am Stabilitätsrand, dann verläuft die Ortskurve des <u>geöffneten</u> Regelkreises durch den kritischen Punkt -1 + 0-j

1. Möglichkeit: alle Schnittpunkte der Ortskurve von $G_o(j\omega)$ mit der negativen reellen Achse liegen rechts des kritischen Punkts -1+j0

2. Möglichkeit: es gibt keinen Schnittpunkt von $G_o(j\omega)$ mit der negativen reellen Achse

PT2 mit P-Regler

3. Möglichkeit:

Bei mehreren Schnittpunkten mit der negativen reellen Achse:

Merksatz:

Soll der geschlossene Regelkreis stabil sein, muss der kritische Punkt KP = (-1,0) auf der linken Seite der Ortskurve des offenen Kreises liegen, wenn diese in Richtung von ω durchlaufen wird, wobei es auf den Teil der Ortskurve ankommt, der dem kritischen Punkt am nächsten liegt.

⇒ PT₂-Strecke mit P-Regler:

⇒ In Kapitel 5 hatten wir gesehen, dass jeder Regelkreis mit PT2-Strecke und P-Regler für alle V_R stabil ist.

⇒ PT₃-Strecke mit P-Regler:

- G_O (jw) hat maximale Phasennacheilung von -270°
- --> für große VR liegt der kritische Punkt -1 rechts der Ortskurve
- --> alle PT3-Strecken mit P-Regler werden für große VR instabil!

In der (Nyquist-)Ortskurve:

Befindet sich ein Regelkreis am Stabilitätsrand, dann verläuft die Ortskurve von $G_o(j\omega)$ durch den kritischen Punkt $V_{Rkrit} = -1$

Die zugehörige Kreisfrequenz ist ω_{krit}

Im Bode-Diagramm:

Befindet sich ein Regelkreis am Stabilitätsrand, dann gibt es eine Kreisfrequenz ω_{krit} , bei der der Betrag gleich 1 = 0dB ist und die Phase gleich -180°.

IGI/dB

-20

-40

<G

-100

-200

1. Möglichkeit in der Ortskurve: alle Schnittpunkte der Ortskurve von $G_o(j\omega)$ mit der negativen reellen Achse liegen rechts des kritischen Punkts -1+j0

1. Möglichkeit im Bode-Diagramm Bei allen Kreisfrequenzen, bei denen die Phase gleich -180° ist, ist der Betrag unterhalb von 0 dB (⇒ positive Phasenreserve)

2. Möglichkeit in der Ortskurve: es gibt keinen Schnittpunkt der Ortskurve $G_o(j\omega)$ mit der negativen reellen Achse

2. Möglichkeit im Bode-Diagramm Die Phase $\phi_o(j\omega)$ verläuft für alle ω oberhalb der -180°-Linie.

Ablesen aus der Ortskurve:

Häufig verwendete Abstandsmaße zum Stabilitätsrand: Amplitudenreserve und Phasenreserve = Amplitudenrand und Phasenrand

Ablesen aus dem Bode-Diagramm:

bei Bode-Diagramm mit Kleinbuchstaben --> a_R

Amplitudenreserve: $a_R = 0dB - (-6dB) = +6dB$

Phasenreserve: phi_R = 180° + (-150°) = +30°

Ein Übungsbeispiel

Gegeben ist die Ortskurve und das Bode-Diagramm einer Regelstrecke.

Diese soll mit einem P-Regler geregelt werden.

- a. Ist der Regelkreis für VR=1 stabil?
- b. Bestimmen Sie die Amplitudenreserve und die Phasenreserve aus Ortskurve und Bode-Diagramm.
- c. Ermitteln Sie die kritische Verstärkung, bei der der Regelkreis am Stabilitätsrand ist!

Ein Übungsbeispiel

Gegeben ist die Ortskurve und das Bode-Diagramm einer Regelstrecke.

Diese soll mit einem P-Regler geregelt werden.

- a. Ist der Regelkreis für VR=1 stabil?
- b. Bestimmen Sie die Amplitudenreserve und die Phasenreserve aus Ortskurve und Bode-Diagramm.
- c. Ermitteln Sie die kritische Verstärkung, bei der der Regelkreis am Stabilitätsrand ist!

W

Ein Übungsbeispiel

Gegeben ist die Ortskurve und das Bode-Diagramm einer Regelstrecke. Diese soll mit einem P-Regler geregelt werden.

- a. Ist der Regelkreis für VR=1 stabil?
- b. Bestimmen Sie die Amplitudenreserve und die Phasenreserve aus Ortskurve und Bode-Diagramm.
- c. Ermitteln Sie die kritische Verstärkung, bei der der Regelkreis am Stabilitätsrand ist!

Wir besprechen nur das "vereinfachte Nyquistkriterium" für stabile $G_o(j\omega)$, wobei einfaches oder doppeltes integrierendes Verhalten auch noch abgedeckt ist.

Falls Pole in rechter s-Halbebene in $G_o(j\omega)$ vorhanden sein sollten ...

- ... ein gutes Buch über Regelungstechnik konsultieren ("Umschlingungen des kritischen Punkts").
- ... eine andere Stabilitätsmethode verwenden

Für den praktischen Einsatz gibt es typische Richtlinien:

=> aperiodisches Führungsverhalten (nahezu) ohne Überschwinger: phi_R ~= 90°

- => gut gedämpftes Führungsverhalten mit "im Wesentlichen einem Überschwinger": 60°
- => schwächer gedämpftes Führungsverhalten mit mehreren und größeren Überschwingern jedoch besserer Störunterdrückung:

Für die Übungsstunde nächste Woche:

- => Großes Beispiel in Abschnitt 6.3
- => Übungsaufgaben 6.1 und 6.2 am Ende des Kapitels

Wiederholung und Einordnung

Bisher:

- 1. Was ist ein Regelkreis?
- 2. Welche Arten von Systemen kommen vor?
- 3. Wie zeichne / lese ich ein Bode-Diagramm?
- 4. Wie finde ich die Regelstrecken-Übertragungsfunktion?
- 5. Die "klassischen" Regler P, PI, PDT₁, PIDT₁, ...

Jetzt:

- 6. Stabilität von Regelkreisen
 - a. Was passiert am "Stabilitätsrand"?
 - b. Der "Stabilitätsrand" im Bode-Diagramm und in der Ortskurve?
 - c. Wie bestimmt man den "Abstand zum Stabilitätsrand"?
 - d. Wie lege ich einen Regelkreis nach Betrags- und Phasenreserve aus?