INF2220 - Algoritmer og datastrukturer

HØSTEN 2015

Ingrid Chieh Yu
Institutt for informatikk, Universitetet i Oslo

Forelesning 4: **Prioritetskø og Heap**

Prioritetskø

- M.A.W. Data Structures and Algorithm Analysis kap. 6
- Kø implementasjoner vi kjenner
 - ► FIFO Liste
 - ▶ LIFO Stack
- ▶ Vi ønsker ofte bedre kontroll over elementene i køen
- Eksempel: Job scheduler (OS)
 - Jobber kan ikke kjøre ferdig før neste slipper til
 - Jobber tas typisk ut og settes inn igjen
 - Round-Robin kan bli urettferdig
 - Prioritet kan gjøre fordeling rettferdig

Prioritetskø - grensesnitt

- Prioritet er gitt ved heltall (lavt tall = høy prioritet)
- ▶ Vi kan se på prioritet som tid vi maksimalt kan vente

```
insert(p, x) sett inn element x med prioritet p
deleteMin() fjern element med høyest prioritet
```

Prioritetskø - Datastruktur og Kompleksitet

Forskjellige datastrukturer kan implementere et slikt grensesnitt

- ► Liste (sortert eller uordnet)
- Søketre
- ► Heap

	insetting	sletting	
uordnet liste			
sortert liste			
søketrær (worst/av. case)			

Prioritetskø - Datastruktur og Kompleksitet

Forskjellige datastrukturer kan implementere et slikt grensesnitt

- ► Liste (sortert eller uordnet)
- Søketre
- ► Heap

	insetting	sletting
uordnet liste	$\mathcal{O}(1)$	$\mathcal{O}(n)$
sortert liste	$\mathcal{O}(n)$	$\mathcal{O}(1)$
søketrær (worst/av. case)	$\mathcal{O}(n)/\mathcal{O}(\log_2(n))$	$\mathcal{O}(n)/\mathcal{O}(\log_2(n))$

- ► Heap er den vanligste implementasjonen av en prioritetskø
- ▶ Vi skal se på en implementasjon som kalles binær heap
- ► En binær heap er et binærtre med et strukturkrav
 - ► En binær heap er et komplett binærtre
- Og et ordningskrav
 - Barn er alltid større eller lik sine foreldre
- Ordet Heap blir også brukt om dynamisk allokert minne

- ► Heap er den vanligste implementasjonen av en prioritetskø
- ▶ Vi skal se på en implementasjon som kalles binær heap
- ► En binær heap er et binærtre med et strukturkrav
 - ▶ En binær heap er et komplett binærtre
- Og et ordningskrav
 - ▶ Barn er alltid større eller lik sine foreldre
- Ordet Heap blir også brukt om dynamisk allokert minne

- ► Heap er den vanligste implementasjonen av en prioritetskø
- ▶ Vi skal se på en implementasjon som kalles binær heap
- ► En binær heap er et binærtre med et strukturkrav
 - ► En binær heap er et komplett binærtre
- ► Og et ordningskrav
 - Barn er alltid større eller lik sine foreldre
- Ordet Heap blir også brukt om dynamisk allokert minne

- ► Heap er den vanligste implementasjonen av en prioritetskø
- ▶ Vi skal se på en implementasjon som kalles binær heap
- En binær heap er et binærtre med et strukturkrav
 - ► En binær heap er et komplett binærtre
- ► Og et ordningskrav
 - Barn er alltid større eller lik sine foreldre
- Ordet Heap blir også brukt om dynamisk allokert minne

Binær Heap - Strukturkrav - Komplett Binætre

Binær Heap - Strukturkrav - Komplett Binætre

Binær Heap - Strukturkrav

Ett komplett binærtre har følgende egenskaper

- ► Treet vil være i perfekt balanse
- Bladnoder vil ha høydeforskjell på maksimalt 1
- ▶ Treet med høyden h har mellom 2^h og $2^{h+1} 1$ noder
- ▶ Den maksimale høyden på treet vil være $log_2(n)$

Binær Heap - Ordningskrav

Binær Heap - Representasjon

- ▶ Binærtreet er komplett så vi kan legge elementene i en array
- ▶ Vi kan enkelt finne foreldre og barn ut i fra array index
 - ▶ Venstre barn: index × 2
 - ▶ Høyre barn: index × 2 +1
 - Foreldre: (int) index/2
- ▶ Vi kan risikere å måtte allokere ny array og kopiere alle elementene

Binær Heap - Representasjon

- ▶ Legg det nye elementet på neste ledige plass i heapen
- ► La det nye elementet flyte opp til riktig posisjon
- ▶ Dette kalles **percolate up** i læreboka
- ▶ Siden treet er i balanse kan vi maksimalt flyte $O(log_2(n))$

- ▶ Vi fjerner rot elementet fra heapen
- ▶ Vi lar det siste elementet bli ny rot
- ▶ Vi lar den nye rota flyte ned til riktig posisjon
- Dette kalles percolate down i læreboka
- ▶ Siden treet er i balanse kan vi maksimalt flyte $O(log_2(n))$

Binær Heap - Andre Operasjoner

- ▶ findMin kan gjøres i konstant tid
- delete fjern vilkårlig element fra heapen
- Vi kan også endre prioritet på elementer i heap
 - Senking av prioritet kalles ofte increaseKey
 - Øking av prioritet kalles ofte decreaseKey
- Både increaseKey og decreaseKey gjøres typisk ved å:
 - ► Lokalisere element i heapen
 - Øk eller senk prioritet
 - ▶ La elementet *flyte* opp eller ned avhengig av operasjon
- lacktriangle delete kan typisk gjøres ved decreaseKey $\infty+$ deleteMin

Oppgave

Hvilken av følgende BT er ikke en heap?:

I: A, B og C

II: B og C

III A og C

Oppgave

Basert på prioritetskø, hvor fort kan vi sortere n tall ?:

l: $\mathcal{O}(n)$

II: $\mathcal{O}(n^2)$

III: $\mathcal{O}(n\log n)$

IV: $\mathcal{O}(\log n)$

Binær Heap - Sortering

- ▶ Vi kan bruke en binær heap til å sortere
- ▶ Vi kan bygge en binær heap (insert) på $\mathcal{O}(n \cdot log_2(n))$
- ▶ Vi kan ta ut alle elementene (deleteMin) på $\mathcal{O}(n \cdot log_2(n))$
- ▶ $2 \cdot \mathcal{O}(n \cdot log_2(n)) = \mathcal{O}(n \cdot log_2(n))$ (worst case)
- Oppbygging av heap kan også effektiviseres
 - ► Legg alle elementene på heapen (inn i arrayen)
 - ▶ foreach node som ikke er bladnode:
 - percolateDown(node)

Binær Heap - Sortering

- ▶ Vi kan bruke en binær heap til å sortere
- ▶ Vi kan bygge en binær heap (insert) på $\mathcal{O}(n \cdot log_2(n))$
- ▶ Vi kan ta ut alle elementene (deleteMin) på $\mathcal{O}(n \cdot log_2(n))$
- ▶ $2 \cdot \mathcal{O}(n \cdot log_2(n)) = \mathcal{O}(n \cdot log_2(n))$ (worst case)
- Oppbygging av heap kan også effektiviseres
 - ▶ Legg alle elementene på heapen (inn i arrayen)
 - ▶ foreach node som ikke er bladnode:
 - percolateDown(node)

Venstreorientert Heap

- ► En venstreorientert heap er en prioritetskø implementert som en variant av binær heap
- ▶ Ordningskrav: samme som ordningskravet til binær heap
- ► Strukturkrav:
 - ► La null path length npl(x) være lengden av den korteste veien fra x til en node uten to barn.
 - ▶ $npl(l) \ge npl(r)$ hvor l og r er venstre og høyre barnet til x
 - forsøker å være ubalansert!
- ▶ Å flette to binære heaper (merge) tar $\Theta(N)$ for heaper med like størrelser
- ▶ Venstreorientert Heap støtter merge i $\mathcal{O}(\log n)$

Venstreorientert Heap

- ► En venstreorientert heap er en prioritetskø implementert som en variant av binær heap
- ► Ordningskrav: samme som ordningskravet til binær heap
- ► Strukturkrav:
 - La null path length npl(x) være lengden av den korteste veien fra x til en node uten to barn.
 - ▶ $npl(l) \ge npl(r)$ hvor l og r er venstre og høyre barnet til x
 - forsøker å være ubalansert!
- ▶ Å flette to binære heaper (merge) tar $\Theta(N)$ for heaper med like størrelser
- ► Venstreorientert Heap støtter merge i $\mathcal{O}(\log n)$

Venstreorientert Heap - Strukturkrav

Venstreorientert Heap - Strukturkrav

La **H1** og **H2** være to heaper.

Merge kan gjøres rekursivt:

- sammenligner H1.rot med H2.rot. Antar nå at H1.rot er minst.
- ▶ la den høyre subheapen til H1 være heapen som man får ved å merge H1.høyre med H2
- bevare strukturkravet ved å bytte ut (swap) rotens høyre og ventre barn.

Kompleksitet,

- ▶ insert: utføre merge med en en-noders heap
- ▶ deleteMin: fjerne rotnoden og merge høyre og venstre subheap
- \triangleright $\mathcal{O}(\log n)$

Neste Forelesning: 17. september $G_{\rm RAFER}$