2.
$$\neg(\neg r \rightarrow \neg(p \land q))$$

- \Leftrightarrow (a1) \land (a1 \leftrightarrow ¬a2) \land (a2 \leftrightarrow (a3 \rightarrow a4)) \land (a4 \leftrightarrow ¬a5) \land (a5 \leftrightarrow p \land q)
- \Leftrightarrow (a1) \land (¬a1 \lor ¬a2) \land (a2 \lor a1) \land (¬a2 \lor ¬a3 \lor a4) \land (¬(¬a3 \lor a4) \lor a2) \land (¬a4 \lor ¬a5) \land (a4 \lor a5) \land (¬a5 \lor (p \land q)) \land (a5 \lor ¬(p \land q))
- \Leftrightarrow (a1) \land (¬a1 V ¬a2) \land (a2 V a1) \land (¬a2 V ¬a3 V a4) \land (a3 V a2) \land (¬a4 V a2) \land (¬a4 V ¬a5) \land (a4 V a5) \land (¬a5 V p) \land (¬a5 V q) \land (a5 V ¬p V ¬q)
- 3. Proof by induction: Assume that $pos(I, \phi) \subseteq pos(I', \phi)$

Basis step: literall. If $I \models I \rightarrow I \in pos(I, \phi) \rightarrow I \in pos(I', \phi) \rightarrow I' \models I$

<u>Inductive hypothesis</u>: For some k, assume that if $I \models F_k$ (formula at level k) then $I' \models F_k$ <u>Inductive step</u>: At level k+1 there are two possibilities for formula F_{k+1} :

- $F_{k+1} = F_{k1} \land F_{k2}$. If $I \models F_{k+1} \rightarrow I \models F_{k1} \land I \models F_{k2} \rightarrow I' \models F_{k1} \land I' \models F_{k2}$ (inductive hypothesis) $\rightarrow I' \models F_{k+1}$
- $F_{k+1} = F_{k1} \lor F_{k2}$. If $I \models F_{k+1} \to I \models F_{k1} \lor I \models F_{k2} \to I' \models F_{k1} \lor I' \models F_{k2}$ (inductive hypothesis) $\to I' \models F_{k+1}$

By induction, we've shown that if $I \models \phi$, then $I' \models \phi$.