SEP11 Previously in Physics 11

• SI units/metric

Base units:			Derived units:		
distance/le		metre	speed	m/s	
mass		kilograms	acceleration	m/5 ²	
time		Seconds	energy (J)	kqm^2/s^2	

Unit conversion

$$\frac{1 \text{ m/s} \rightarrow \text{km/h}}{\text{s}} \times \frac{3600 \text{s}}{1 \text{ h}} \times \frac{1 \text{ km}}{1000 \text{ m}} = 3.6 \text{ km/h}$$

Motion variables

Uniform accelerated motion

0	d = Vay	at	(4) + (3)	$\partial = \frac{1}{2} ((V_i + a +) + V_i) + V_i$
1	Vava =	$\frac{3}{2}(\Lambda^{t}+\Lambda^{!})$		$\vec{d} = \frac{1}{2} \left((V_i + a +) + V_i \right) + t$ $\vec{d} = V_i + \frac{1}{2} a + t^2$
(3)	Nt = N!	t 2(Vf+N!) +at		2
			G+ B	g = = (N+Ni) [NE-Ni]

Ex ① You drive past a stationery police vehicle at 20 m/s (72 km/h)
If the officer catches up to you in 10 seconds at constant
acceleration, what is their acceleration and final velocity?

	0	
dyou = Vaug t	diop = 1/2+ = at2	Vf = Vitat
dyou = (20)(10)	$200 = \frac{1}{2} \alpha (10)^2$	$V_{\rm f} = 0 + (4)(10)$
dyou = 200 m	200 = 50a	= 40 m/s
,	a = 4 m/s2	= 144 km/h

SEP13 · Review of 2D vector

1) Adding vectors

vectors are added graphically by connecting head to tail sum of 2+ vectors is called resultant

EXAMPLE A disc is thrown 40 m east but also pushed by wind 15 m north. Where is the disc?

EXAMPLE A pilot flies 10° E of S for 22.0 km and then flies at 60° E of N for 47.0 km. What is their displacement?

$$R = \sqrt{1.84^2 + 44.52^2}$$

 $R = 44.55 \text{ m}$

Assignment vector worksheet (odd/even)

SEP 15 · Projectile Motion

An object's motion in one dimension does not affect the motion in any other dimension

- Side projectile

$$V_R = \sqrt{V_x^2 + V_y^2}$$

$$\Delta n \theta = \frac{V_y}{V_x}$$

Ex An egg rolls off a table at Vix = 2.7 m/s. What will be its horizontal distance from the table, and its final velocity, if the table is 0.98 m high?

$$V_{fy} = V_{fy}^{2} + \alpha_{y}t$$
 $V_{f} = \sqrt{V_{fx}^{2} + v_{fy}^{2}}$ $tan \theta = \frac{V_{fy}}{V_{fx}}$
 $V_{fy} = (-9.81)(0.45)$ $V_{f} = \sqrt{(-4.41)^{2} + (2.7)^{2}}$ $\theta = 58.36^{\circ}$ below horizontal

Ex Team Rocket is launched at 62° above the horizontal with V1 = 28 m/s. After 3.5s what is the max height reached? What is the rocket's final v at this time?

$V_{x} = V_{1} \cos 6Z = 13.15 \text{ m/s}$ $V_{y} = V_{1} \sin 6Z = 24.72 \text{ m/s}$	V _{fy} =∨ _{iy} +at
$V_y = V_1 \sin 62 = 24.72 \text{m/s}$	Vfy = 24.72 + (-9.81)(3.5)
,	Vfy = -9.6 m/s
$V_{fy}^2 = V_{iy}^2 + 2\alpha_y d_y$ $0 = (24.72)^2 + 2(-9.81) d_y$	Vfx = 13.15 m/s
0 = (24.72) + 2 (-9.81) dy	
19.62 dy= 611.0784	$V_{\rm f} = \sqrt{(-9.6)^2 + (13.15)^2}$
dy= 31.11 m	V _f ≈ 16.28 m/s
,	
	$\theta = \arctan\left(\frac{V_{x}}{V_{x}}\right)$
	$\theta = 36.1^{\circ}$ below horizontal

Assignment: Giancoli p.72 28-32;38

SEP 21 • The Unknown Angle Problem

Ex () Imagine you shoot a canonball from the ground at 16 m/s. If you want it to land 20.0 m away (Still on ground) at what angle do you shoot

SEP 26 • Dynamics

- Torces affecting motion (macroscopic or observable) a) force of normal FN
 - b) force of gravity Fq

g = gravitational field strength

Free Body Diagrams
 we do not draw Free in free body diagrams

- 3 Force of friction (Ff)
 - Kinetic Ff = Mx Fn -> already moving Static Ff = Ms Fn -> about to move

Ms > MK

4 Tens:on

Tension force is directed along the length of wire/string and pulls equally on the different objects on the opposite ends

Newton's laws of Motion

Ist law:
the law of inertia
when $F_{net} = \emptyset$ then
objects continue with
constant ∇

2 nd law:

Fnet = mã

action-reaction force
if there is a reaction force
on every force, how can ne
achieve any net?
THEY ACT ON DIFFERENT OBJECTS

Assignment: Giancoli P. 104 # 4,7,8,10, (2,14,16

SEP 28 Blocks on ramps

 $Fg \perp = Fg \cos \theta$ $Fg \mid I = Fg \sin \theta$

Ex (1) A box is placed on a frictionless ramp at a height of 0.14 m off the ground. The ramp has an incline of 30° from the horizontal. What is the final speed at the bottom?

$$ma = F_g$$
 length of ramp:
 $ma = yngsin \theta = 0.14$
 $a = (9.8) sin (30°)$ $sin 30°$
 $a = 4.9 m/s^2 = 0.28 m$

$$V_f^2 = V_i^2 + 2\alpha d$$

 $V_f = \sqrt{0 + 2(4.9)(0.28)}$

EX @ A small block of mass m is given initial velocity Vo up a ramp inclined at angle 0 to the horizontal. It travels up a distance d along the ramp and comes to rest. Determine a formula for the coefficient of kinetic friction between the block and ramp

$$V_{F}^{2} = V_{i}^{2} + 2\alpha d$$

$$o_i = \frac{-V_i^2}{2d}$$

Fnet =
$$F_f + F_{g11}$$

 $ma = Mmgcos \theta + mgsin \theta$

$$\frac{-V_1^2}{2d} = \mu g \cos \theta + g \sin \theta$$

$$\frac{-V_i^2}{2d}$$
 - gsin0 = μ gcos0

$$\mu = \frac{-V_i^2}{2d \cdot g \cos \theta} - \frac{g \sin \theta}{g \cos \theta}$$

$$\mu = \frac{-V_i^2}{2d g \cos \theta} - \frac{\sin \theta}{\cos \theta}$$

Assignment P, 105 # 25,27,28,53

OCTS • The Force Awatens

ExD What is the tension in the rope if we let the system go? Given: $M_A = 10 \text{ kg}$; $M_B = 12 \text{ kg}$; $M_K = 0.10$

| Solate B
| FT | Fnet =
$$F_{gB} - F_{T}$$

| B · 12kg | m_B a = m_Bg - F_T
| Fg_B (12)(4.9) = (12)(9.87-F_T
| F_T = 58.8 N

Ex 1 The rope has no friction nor mass

Fnet =
$$fgB - fgA$$

 $ma = m_B g - m_A g$
 $10a = (8)(9.8) - (2)(9.8)$
 $A = 5.88 m/s^2$
 $849 B Fnet = fgB - ft$
 $m_B a = m_B g - ft$
 $(8)(5.88) = (8)(9.8) - ft$
 $ft = 31.36 N$

Ex 3 Assume no friction

Isolate B

Fret =
$$F_{gg} - F_{gA11}$$

ma = $M_B g - 101.844$
 $22a = (10)(9.8) - 101.844$
 $a = -0.17 \text{ m/s}^2$

$$(10)(0.17) = F_T - (10)(9.8)$$

 $F_T = 99.7 N$

Assignment p 110 #61, 63, 73, 81

·