Misura delle righe di Balmer per H con metodi Monte Carlo

F. Polleri* and M. Sotgia[†]

Dipartimento di Fisica, Università degli Studi di Genova, 16146 Genova, Italy (Dated: 26 novembre 2022)

I. INTRODUZIONE

Sfruttando il fenomeno della rifrazione, un prisma ottico può essere utilizzato come spettrometro per ottenere misure precise della lunghezza d'onda di un fascio monocromatico incidente e anche per separare le componenti di un fascio non monocromatico.

Si sa che infatti la differenza δ_i tra l'angolo di ingresso nel prisma θ_0 e l'angolo d'uscita dal prisma θ_i risulta essere legato al valore dell'indice di rifrazione del materiale,

$$\delta_i = \theta_0 - \alpha + \arcsin\left(n\sin\left(\alpha - \arcsin\left(\frac{\sin\theta_0}{n}\right)\right)\right),$$
 (1)

con n indice di rifrazione e α apertura angolare del prisma.

Si osserva che δ_i ha un minimo in corrispondenza del quale la misura è più stabile e la relazione precedente si semplifica come

$$n\sin\frac{\alpha}{2} = \sin\frac{\delta_m + \alpha}{2} \tag{2}$$

Da quest'ultima relazione possiamo ottenere una forma per l'indice

$$n(\theta_i, \theta_0) = \frac{\sin\frac{\theta_i - \theta_0 + \alpha}{2}}{\sin\frac{\alpha}{2}}.$$
 (3)

Però possiamo anche ricavare la relazione che lega la lunghezza d'onda λ al valore di δ_m confrontando la relazione di Cauchy

$$n(\lambda) = A + \frac{B}{\lambda^2},\tag{4}$$

appropriata ad un ordine $\mathcal{O}(1/\lambda^2)$, con A e B coefficienti propri del materiale in questione, e l'Eq. (3)

A. Angoli di Balmer

Dato un fascio di luce che attraversa un determinato materiale, si possono le bande di assorbimento o di emissione e venne definita da Balmer una relazione che permise di quantificare la posizione di queste bande

$$\frac{1}{\lambda} = R_H(T(n) - T(m)) \tag{5}$$

che nel caso dell'idrogeno assume una forma particolarmente comoda, per cui $T(n) = 1/n^2$. Otteniamo quindi un'equazione del tipo

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n^2} - \frac{1}{m^2} \right). \tag{6}$$

^{*} s5025011@studenti.unige.it

 $^{^{\}dagger}$ s4942225@studenti.unige.it

Le lunghezze d'onda presenti nello spettro di emissione (o mancanti nel caso dello spettro di assorbimento) sono legate ognuna a degli angoli che possono essere determinati dallo strumento descritto sopra e appena caratterizzato.

II. MISURA DELLA COSTANTE DI RYDBERG

Il prisma ottico, con le equazioni ad esso legate, insieme alla relazione di Balmer possono essere utilizzati per ricavare una stima del parametro R_H , detto costante di Rydberg. Sono noti gli angoli θ_m ai quali si trovano le bande di emissione dell'idrogeno, per m=3,4,5,6 e n=2, e si conoscono i parametri A,B con le loro distribuzioni e il loro coefficiente di correlazione ρ_{AB} .

Possiamo allora determinare per ogni θ_m il valore λ_m come

$$\frac{1}{\lambda_m} = \sqrt{\frac{n(\theta, \theta_0) - A}{B}},\tag{7}$$

dove $n(\theta, \theta_0)$ è fornito dalla Eq. (3). Possiamo quindi trovare una relazione tra i dati forniti e il valore di R_H . Come prima cosa possiamo calcolare il valore delle lunghezze d'onda a partire dai dati conosciuti. Conosciamo la forma effettiva di $\frac{1}{\lambda} = \frac{1}{\lambda}(\theta, \theta_0, A, B, \alpha)$, dove, a parte α , i parametri presentano deviazione standard non trascurabile, comportando una correlazione tra i valori λ_m al variare di m. Però, prima ancora di incontrare il problema legato alla correlazione tra le diverse lunghezze d'onda, dobbiamo capire come procedere per poter ottenere non solo il loro valore , ma anche il relativo errore. Dalle relazioni (6) e (7) osserviamo che la quantità che in realtà è utile ottenere è il fattore $1/\lambda$, comune alle due equazioni.

Possiamo osservare che la dipendenza della lunghezza d'onda dai suoi parametri è molto probabilmente non lineare (si può vedere subito dalla presenza della radice quadrata che serve per ottenere il valore di $1/\lambda$), senza considerare che A e B sono tra loro legati da un coefficente di correlazione $\rho_{A,B}$. L'unico modo per ottenere il valore di $1/\lambda$ sarà quindi procedendo con metodi Monte Carlo (da qui in avanti MC). I parametri che presentano errore associato, e che non sono correlati tra loro e con le altre variabili (θ_m , θ_0), sono ipotizzati essere distribuiti secondo una Gaussiana, centrata nel calor medio μ_i e deviazione standard σ_i , con $i=\theta_m$, θ_0 . Il parametro α è considerato privo di errore. Supponendo di poter considerare A, B come distribuzioni Gaussiane di valor medio μ_A , μ_B e deviazione standard σ_A , σ_B resta da capire come possiamo generare valori di A, B che presentano invece coefficente di correlazione $\rho_{A,B}=-0.872$. Analizziamo in seguito il problema.

A. Generazione di variabili correlate

Il risultato che si ottiene è frutto di una ricerca e non tutto farina del nostro sacco, i crediti vanno a [1-3], anche se siamo riusciti a rieseguire i calcoli e trovare la soluzione proposta.

Sapendo che le distribuzioni di A, B corrispondono a distribuzioni Gaussiane (fig. 1), possiamo ipotizzare che siano legate tra loro imponendo che

$$\begin{cases}
A = x_1 X_1 + x_2 X_2 \\
B = X_1
\end{cases}$$
(8)

con x_1, x_2 ignote e X_1, X_2 distribuzioni che consideriamo essere gaussiane. Sappiamo inoltre che

$$Corr[A, B] = \rho = \frac{Cov[A, B]}{\sqrt{Var[A] Var[B]}} = \frac{x_1 Cov[X_1, X_1]}{\sqrt{x_1^2 Var[X_1] + x_2^2 Var[X_2]}} = \frac{x_1 \sigma_1}{\sqrt{x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2}}, \quad (9)$$

oltre a sapere che

$$\rho = x_1 \frac{\sigma_B}{\sigma_A} \implies x_1 = \rho \frac{\sigma_A}{\sigma_B},\tag{10}$$

Figura 1. Abbiamo generato A, B prima utilizzando le formule, quindi a partire da λ_i , θ_i , θ_0 , α , poi utilizzando media e deviazione standard abbiamo ricostruito A e B come distribuzioni gaussiane, riportate in rosso.

dove abbiamo considerato che $\sigma_B = \sigma_1$ e $\mu_B = \mu_1$. Dalle relazioni in (8) abbiamo ottenuto il sistema

$$\begin{cases}
\mu_A = x_1 \mu_1 + x_2 \mu_2 \\
\mu_B = \mu_1 \\
\sigma_A^2 = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 \\
\sigma_B^2 = \sigma_1^2,
\end{cases}$$
(11)

da cui abbiamo che, con le dovute sostituzioni,

$$\begin{cases} x_1 = \rho \frac{\sigma_A}{\sigma_B} \\ x_2 = \sigma_A \sqrt{1 - \rho^2} \\ \mu_1 = \mu_B \\ \sigma_1 = \sigma_B \\ \mu_2 = \left(\frac{\mu_A}{\sigma_A} - \rho \frac{\mu_B}{\sigma_B}\right) \frac{1}{\sqrt{1 - \rho^2}} \\ \sigma_2 = 1 \end{cases}$$

$$(12)$$

Abbiamo quindi la possibilità di generare in modo coerente con quanto atteso il valore di A e il valore di B, generando quindi B secondo una distribuzione Gaussiana (μ_B, σ_B) e ottenendo invece A come $A = \rho \frac{\sigma_A}{\sigma_B} \cdot B + \sigma_A \sqrt{1 - \rho^2} \cdot X_2$, con X_2 generata come una Gaussiana

$$\begin{cases}
\mu_2 = \left(\frac{\mu_A}{\sigma_A} - \rho \frac{\mu_B}{\sigma_B}\right) \frac{1}{\sqrt{1 - \rho^2}} \\
\sigma_2 = 1
\end{cases}$$
(13)

_

Figura 2. possiamo generare N_{exp} esperimenti per ogni coppia (m, θ_m) , per ognuno dei quali otteniamo il valore di $R_{H,m}$ per ogni valore di m, e possiamo così avere quattro distribuzioni per R_H corrispondenti ai rispettivi valori di m.

B. Valori di R_H dagli angoli di Balmer

Con metodi MC possiamo ora trovare i valori di $1/\lambda$, e successivamente, conoscendo la (6), potremmo realizzare un fit lineare per trovare il parametro R_H . Se considerassimo un fit minimizzando il valore del χ^2 in maniera standard potremmo non considerare i coefficenti di correlazione che esistono dovuti al modo in cui stiamo calcolando i valori di $1/\lambda_m$, che dipendono tutti dagli stessi valori (con errore associato non trascurabile) di A, $B \in \theta_0$.

Però possiamo calcolare per ogni coppia (m, λ_m) , o meglio $(m, 1/\lambda_m)$, un valore di $R_{H,m}$, come

$$R_{H,m} = \frac{n^2 m^2}{m^2 - n^2} \sqrt{\frac{1}{B} \left(\frac{\sin \frac{\theta_m - \theta_0 + \alpha}{2}}{\sin \frac{\alpha}{2}} - A \right)},\tag{14}$$

dove α è considerato privo di errore, θ_m , θ_0 sono considerati con errore, n=2, m=3,4,5,6 sono privi di errori, e A, B sono generati come definito prima. Considerata questa relazione possiamo generare N_{exp} esperimenti per ogni coppia (m, θ_m) , per ognuno dei quali otteniamo il valore di $R_{H,m}$ per ogni valore di m, e possiamo così avere quattro distribuzioni per R_H corrispondenti ai rispettivi valori di m (come in fig. 2).

^[1] Anthony, "How does the formula for generating correlated random variables work?" (2015).

^[2] A. Sobolev, "How does the formula for generating correlated random variables work?" (2015).

^[3] H. F. Kaiser and K. Dickman, Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix, Psychometrika 27, 179 (1962).