Multiple Regression

7 Oct 2011 CPSY501 Dr. Sean Ho Trinity Western University Please download from "Example Datasets":

- Record2.sav
- Domene.sav

Outline: Multiple Regression

- Regression Modelling Process
- Building a Regression Model
 - Shared vs. Unique Variance
 - Strategies for Entering IVs
 - Interpreting Output
- Diagnostic Tests:
 - Residuals, Outliers, and Influential Cases
- Checking Assumptions:
 - Non-multicollinearity, independence, normality, homoscedasticity, linearity

Encouragement on Research

- Undergrad students: "is this on the test?"
 - "What do I need to do to pass?"
 - Doing the bare minimum: 1 DV, 2 IVs, 1 test
- Graduate students / prep for research:
 - "What structure/effects are in the data?"
 - Do whatever it takes to understand the data
- You may need several RQs
- Your RQs may change as you progress
- Have a theme/goal and aim to tell a story about the effects in the dataset

Regression Modelling Process

- (1) RQ: IVs/DVs, metrics, sample size, collect data
- (2) Clean: data entry errors, missing data, outliers
- (3) Explore: assess requirements, xform if needed
- (4) Build model: order & method of entry from RQ
- (5) Test model: "diagnostic" issues:
 - Multivariate outliers, overly influential cases
- (6) Test model: "generalizability" issues:
 - Multicollinearity, linearity of residuals
- (7) Run final model and interpret results

Required Sample Size

- Depends on effect size and # of predictors
 - Use G*Power to find exact sample size
 - Rough estimates on pp.222-223 of Field
- Consequences of insufficient sample size:
 - Regression model may be overly influenced by individual participants (not generalizable)
 - Can't detect "real" effects of moderate size
- Solutions:
 - Collect more data from more participants!
 - Reduce number of predictors in the model

Sample Size Estimates (Field)

Outline: Multiple Regression

- Regression Modelling Process
- Building a Regression Model
 - Shared vs. Unique Variance
 - Strategies for Entering IVs
 - Interpreting Output
- Diagnostic Tests:
 - Residuals, Outliers, and Influential Cases
- Checking Assumptions:
 - Non-multicollinearity, independence, normality, homoscedasticity, linearity

Example: Record Sales data

- Dataset: Record2.sav
- Outcome ("criterion"): record sales (RS)
- Predictors: advertising budget (AB), airtime (AT)
 - Both have good 'variability', and n=200
- Research Question: Do AB and AT both show unique effects in explaining Record Sales?
- Research design:
 Cross-sectional, correlational study (same year?)
 with 2 quantitative IVs & 1 quantitative DV
- Analysis strategy: Multiple regression (MR)

Regression Model with 1 IV

Regression Model with 2 IVs

Asking Precise RQs

- What does literature say about AB and AT in relation to record sales?
 - Previous lit may be theoretical or empirical
 - May focus on these variables or others
 - May be consistent or conflicting results
- Contrast these two seemingly similar RQs:
 - Is AB or AT more important for Sales?
 - Do AB and AT both show unique effects in accounting for the variance of Sales?

Example: Record Sales

- Dataset: Record2.sav
- Analyze → Regression → Linear
- Dependent: Record Sales (RS)
- Independent: Advertising (AB) & Airtime (AT)
 - This is a "simultaneous" regression
- Statistics: check R² change and partial correl.
- Review output: t-test for each β coefficient: significance of unique effects for each predictor

Outline: Multiple Regression

- Regression Modelling Process
- Building a Regression Model
 - Shared vs. Unique Variance
 - Strategies for Entering IVs
 - Interpreting Output
- Diagnostic Tests:
 - Residuals, Outliers, and Influential Cases
- Checking Assumptions:
 - Non-multicollinearity, independence, normality, homoscedasticity, linearity

Shared vs. Unique Variance

- When predictors are correlated, they account for overlapping portions of variance in outcome
 - Redundant IVs, mediation, shared background effects, etc.
- Order of entry will help distinguish shared and unique contributions

Order of Entry

- Predictors in same block are entered into model at the same time
- Subsequent blocks only look at remaining variance after previous blocks have been factored out
- To find a predictor's unique contribution, put it last after other predictors are factored out
- Try several runs with different orderings to get each predictor's unique effect
- Order for your final run should reflect theory about relative importance of predictors

Options for Variable Selection

- Within each block, not all IVs need to be used:
 - Manual method: "Enter" (forced entry)
 - All specified IVs will be included
 - "Stepwise" automatic methods:
 - Forward: add significant IVs one-at-a-time
 - Backward: eliminate non-significant IVs
- Best to use "Enter": manual control
 - You decide order according to theory/lit
- Automatic methods might not show shared effects, interaction effects

Record Sales Example

- Analyze → Regression → Linear
- Dependent: Record Sales
- Statistics: check R² change
- Run 1: "simultaneous" regression
 - Both AB and AT in Block 1
- Run 2: AB in Block 1, and AT in Block 2
- Run 3: AT in Block 1, and AB in Block 2

Calculating Shared Variance

- Output from Run 1: Total effect size from both predictors together is 63%
- Run 2: Airtime's unique effect size is 30%
 - Look at last △R²: when airtime is added
- Run 3: Advertising's unique effect size is 27%
- Shared variance:
 - = Total minus all unique effects
 - \bullet = 63% 30% 27% \approx 6%

Steps for Entering IVs

- First, create a conceptual outline of all IVs and their connections & order of entry.
 - Run a simultaneous regression: look at beta weights & t-tests for all unique effects
- Second, create "blocks" of IVs (in order) for any variables that must be in the model
 - Use "Enter" method to force vars into model
 - Covariates may go in these blocks
 - Interaction and curvilinear terms go in last of these blocks

Steps for Entering IVs (cont.)

- Any remaining variables go in a separate block: try all possible combinations to sort out shared & unique variance portions.
 - See record sales example above (no interaction terms were used)
- Summarize the final sequence of entry that clearly presents the predictors & their respective unique and shared effects.
- Interpret the relative sizes of the unique & shared effects for the Research Question

Entering IVs: SPSS tips

- Plan out your order and method on paper
- Each set of variables that should be entered in at the same time should be in a single block.
 - Other vars & interactions go in later blocks
- Usually choose "Enter" method (default)
 - Try automatic ("Backward") only if needed
- Confirm correct order & method of entry in your SPSS output
 - Usually only need a few blocks of IVs

Outline: Multiple Regression

- Regression Modelling Process
- Building a Regression Model
 - Shared vs. Unique Variance
 - Strategies for Entering IVs
 - Interpreting Output
- Diagnostic Tests:
 - Residuals, Outliers, and Influential Cases
- Checking Assumptions:
 - Non-multicollinearity, independence, normality, homoscedasticity, linearity

Output: "Model Summary"

- R²: the variance in the outcome accounted for by the model (i.e., combined effect of all IVs)
 - Interpretation is similar to r² in correlation
 - Multiply by 100 to convert into a percentage
 - Adjusted R²: unbiased estimate of the model, always smaller than R²
- R² Change (ΔR²): Increase in effect size from one block of predictors to the next.
 - F-test checks whether this "improvement" is significant.

Output: "ANOVA" Table

- Summarizes results for the model as a whole: Is the "simultaneous" regression a better predictor than simply using the mean score of the outcome?
- Proper APA format for reporting F statistics (see also pp. 136-139 of APA publication manual):

$$F(3, 379) = 126.43, p < .001$$

Output: "Coefficients" Table

- Individual contribution of each predictor, and whether its contribution is significant
- B (b-weight, slope, gradient): Change in outcome, for every unit change of the predictor
- beta (β): Standardized b-weight. Compares the relative strength of the different predictors.
- t-test (p-value): Tests whether a particular variable contributes a significant unique effect in the outcome variable for that equation.

Non-significant Predictors

What if the *t*-test shows a predictor's unique effect is non-significant?

- In general, the ΔR^2 will be small. If not, then you have low power for that test & must report that.
- Remove the IV unless there is a theoretical reason for retaining it in the model (e.g., low power, help for interpreting shared effects)
- Re-run the regression after any variables have been removed

Outline: Multiple Regression

- Regression Modelling Process
- Building a Regression Model
 - Shared vs. Unique Variance
 - Strategies for Entering IVs
 - Interpreting Output
- Diagnostic Tests:
 - Residuals, Outliers, and Influential Cases
- Checking Assumptions:
 - Non-multicollinearity, independence, normality, homoscedasticity, linearity

Residuals in Regression

- A residual is the difference between the actual score and the score predicted by the model
 - I.e., the amount of error for each case
- Examine the residuals in a trial run
 - Include all IVs: simultaneous regression
 - Save the residuals in a new variable:
- Analyze → Regression → Linear → Save: "standardized" and/or "unstandardized"

Multivariate Outliers

- Definition: Cases from a different population than what we want to study
 - Combination of scores across predictors is substantially different from rest of sample
- Consequence: distortion of regression line, reduced generalizability
- Screening: Standardized residual ≥ ±3, and Cook's distance > 1 (these are rules of thumb)
- Solution: remove outliers from from sample (if they exert too much influence on the model)

Effect of Multivariate Outliers

Overly-Influential Cases

- Definition: A case that has a substantially greater effect on the regression model than the majority of other cases in the sample
- Consequence: reduced generalizability
- Screening & Solution (rules of thumb):
 - if leverage > 0.50 then remove the case;
 - if 0.20 ≤ leverage ≤ 0.50 and Cook's distance > 1, then remove the case

Outliers & Influential cases

- Outliers and influential cases should be examined and removed together
 - Unlike other aspects of MR, screen only once
 - Why shouldn't you repeat this screening?
- SPSS: Analyze → Regression → Linear:
 - Save: Standardized Resid, Cook's, Leverage
 - Will be saved as additional vars in dataset
- Examine the Residual Statistics table
- Examine the saved scores in the data set
 - Try sorting: Data → Sort

Outline: Multiple Regression

- Regression Modelling Process
- Building a Regression Model
 - Shared vs. Unique Variance
 - Strategies for Entering IVs
 - Interpreting Output
- Diagnostic Tests:
 - Residuals, Outliers, and Influential Cases
- Checking Assumptions:
 - Non-multicollinearity, independence, normality, homoscedasticity, linearity

Multicollinearity

- Definition: Predictors covary too highly; i.e., too much overlap of shared variance
- Consequences: deflated R²; may interfere with evaluation of β (depending on RQ & design)
- In "Statistics": check "Collinearity Diagnostics"
- Indicators of possible problems: any of:
 - Any VIF (Variance Inflation Factor) score > 10
 - Average VIF is NOT approximately = 1
 - ◆Tolerance < 0.2</p>
- Solution: delete, combine, or transform some of

Independence of Residuals

- Definition: Residuals for different cases should not be systematically related
- Consequence: Can interfere with α and power, although effect size is unaffected
- Screening: Durbin-Watson scores that are relatively far away from 2 (on possible range of 0 to 4) indicate a problem with independence.
 - D-W sensitive to case ordering, so ensure cases aren't inherently ordered in dataset
- Solution: Re-evaluate sampling technique, or try multi-level modelling.

Normally Distributed Residuals

- Definition: Residuals normally distributed
 - Predictors don't have to be normal!
- Consequence: reduced generalizability (predictive value of the model is distorted)
- Screening: normality tests/plots on residuals
 - save standardized residuals
 - Analyze → Descriptives → Explore → "Normality tests with plots"
- Solution: check if predictors are non-normal or ordinal; look for non-linearity

Homoscedastic Residuals

- Definition: Residuals should have similar variances at every point on the regression line
 - Generalisation of homogeneity of variance
- Consequence: the model is less accurate for some people than others
- Screening: fan-shaped residual scatterplots:
 - Analyze → Regression → Linear → Plots:
 X: "ZPRED" Y: "ZRESID"
- Solution: identify moderators and include, try weighted regression, or accept it and acknowledge the drop in accuracy

Heteroscedasticity

Non-linear Relationships

- Definition: Relationship between predictor and outcome is not linear (i.e., a straight line).
- Consequences: sub-optimal fit for the model (R² is lower than it could be)
- Screening: examine residual scatterplots OR try curve estimation:
 - Analyze → Regression → Curve estimation
- Solutions: Model the non-linear relationship by entering a polynomial term into the regression equation (e.g., X², X³)
 - Or just accept the poorer fit

Exercise: Regression with SPSS

- Dataset: Domene.sav
- You try it! Build a regression model with:
 - DV: "educational attainment"
 - IV: Block 1: "academic performance"
 - IV: Block 2: "educational aspirations" and "occupational aspirations"
 - Use "Enter" method (force entry)
- Ask SPSS for ΔR^2 and partial correlation scores

