范围修改查询问题相关算法及其应用

沈吉滪

杭州学军中学教育集团文渊中学

123

一个经典问题

引入

从一个经典问题引入:

问题

维护一个序列,序列上的每个元素为一个 2*2 矩阵,要求做以 下操作:

修改操作: 给定 l, r, v, 将区间 [l, r] 中的矩阵乘上矩阵 v.

查询操作: 给定 l, r, 查询区间 [l, r] 的矩阵之和。

上述问题是线段树的经典问题,可以使用带懒惰标记的线段树解决。对于线段树上的每个节点,需要维护区间矩阵和,以及对区间中的矩阵乘的一个懒标记。

现在我们考虑抽象数据结构问题:不考虑具体维护什么信息,考虑在维护的信息满足某些特定条件下的通用问题形式。

对于线段树能维护问题,抽象后的问题是:

维护一个序列,可以用某种数据表示序列上一个区间的信息,可以用某种数据表示序列区间的一次修改,需要满足的性质:

- 1. 序列上两个区间 [l, mid], [mid+1, r] 的信息可以 O(1) 合并出 [l, r] 的信息。
- 2. 对一个区间进行的相邻两次修改操作可以 O(1) 合并为一次修改操作。
- 3. 如果知道了一个区间的信息,可以 O(1) 计算出这个区间经过一次修改后的信息。

矩阵的乘法满足结合律 $(A \times B) \times C = A \times (B \times C)$ 与分配律 $A \times (B + C) = A \times B + A \times C$,但不满足交换律。

在上面的问题中,信息的合并是矩阵加法;而结合律、分配律分 别使这个问题能满足 2 和 3 的性质。

抽象信息的定义

定义半群为:

给定一个集合 \mathcal{D} , 以及 \mathcal{D} 上的一个二元运算: $\mathcal{D} * \mathcal{D} \to \mathcal{D}$ 。

运算满足结合律: $\forall a, b, c \in D, (a*b)*c = a*(b*c)$ 。

抽象信息的定义

定义半群为:

给定一个集合 \mathcal{D} , 以及 \mathcal{D} 上的一个二元运算: $\mathcal{D} * \mathcal{D} \to \mathcal{D}$ 。

运算满足结合律: $\forall a, b, c \in D, (a*b)*c = a*(b*c)$ 。

定义幺半群为:

给定一个集合 \mathcal{D} ,以及 \mathcal{D} 上的一个二元运算: $\mathcal{D} * \mathcal{D} \to \mathcal{D}$ 。

运算满足结合律: $\forall a, b, c \in D, (a * b) * c = a * (b * c)$ 。

有幺元: $\forall a \in D, a * \epsilon = \epsilon * a = a$ 。

抽象信息的定义

定义半群为:

给定一个集合 \mathcal{D} , 以及 \mathcal{D} 上的一个二元运算: $\mathcal{D} * \mathcal{D} \to \mathcal{D}$ 。

运算满足结合律: $\forall a, b, c \in D, (a * b) * c = a * (b * c)$ 。

定义幺半群为:

给定一个集合 \mathcal{D} ,以及 \mathcal{D} 上的一个二元运算: $\mathcal{D} * \mathcal{D} \to \mathcal{D}$ 。

运算满足结合律: $\forall a, b, c \in D, (a*b)*c = a*(b*c)$ 。

有幺元: $\forall a \in D, a * \epsilon = \epsilon * a = a$ 。

定义交换半群为:

给定一个集合 \mathcal{D} ,以及 \mathcal{D} 上的一个二元运算: $\mathcal{D} * \mathcal{D} \to \mathcal{D}$ 。

运算满足结合律: $\forall a, b, c \in D, (a*b)*c = a*(b*c)$ 。

运算满足交换律: $\forall a, b \in D, a * b = b * a$ 。

前面的例子维护的信息可以看作半群信息。

可以发现维护的是双半群信息,一个表示区间的信息,一个表示 修改的懒标记的信息。

不难发现,只要区间的信息与修改的信息均为半群信息,就可以 用线段树维护。

更广的范围

在问题中,修改和询问的范围不一定是序列的区间,而可能为树 简单路径,二维平面矩形,高维正交范围,半平面范围,曲线范 围等。

初始有 n 个点,一个范围代表了初始点集的一个子集。 可以用一个信息表示范围内点的信息和,用一个信息表示对范围 的一个修改。这两个信息满足的条件是:

- 1. 两个范围的信息 S,T 可以 O(1) 合并成一个信息 S+T。
- 2. 对一个范围的相邻的两次修改可以 O(1) 合并成一次修改。
- 3. 如果知道了一个范围的信息,可以 O(1) 计算出这个范围经过一次修改后的信息。

问题的形式

初始给出 n 个点的一个点集,每个点有一个初始权值。 每次修改给一个范围以及一个修改的值,表示把范围内的点的权值与修改权值做一个二元运算。

每次查询给一个范围,求范围内的点的权值求和后得到的值。其中点的权值和修改的权值满足双半群的性质。

问题的形式

形式化的问题如下:

给定交换半群 $(\mathcal{D},+)$, 半群 $(\mathcal{M},*)$, 二元运算符 *:

 $\mathcal{D}*\mathcal{M} o \mathcal{D}_{\circ}$

其中二元运算符满足:

结合律: $\forall a \in \mathcal{D}, b, c \in \mathcal{M}, (a * b) * c = a * (b * c)$ 。

分配律: $\forall a, b \in \mathcal{D}, c \in \mathcal{M}, (a+b) * c = a * c + b * c$ 。

给定一个初始集合 I_0 ,一个有限集合 $I \subseteq I_0$,询问集合 Q。

I 中每个点有初始权值 $d_0(x) \in D$ 。

第 t 个操作定义为:

1. 范围修改:给出范围 $q_t \in Q$ 和 $f_t \in \mathcal{M}$,如果 $x \in q_t$ 则

 $d_t(x) = d_{t-1}(x) * f_t$, 否则 $d_t(x) = d_{t-1}(x)$ 。

2. 范围查询: 给出范围 $q_t \in Q$, 设 $d_t(x) = d_{t-1}(x)$, 答案为

 $\sum_{x \in q_t} d_t(x)$.

问题的形式

形式化的问题如下:

给定交换半群 $(\mathcal{D},+)$, 半群 $(\mathcal{M},*)$, 二元运算符 *:

 $\mathcal{D}*\mathcal{M}\to\mathcal{D}\,{}_{\circ}$

其中二元运算符满足:

结合律: $\forall a \in \mathcal{D}, b, c \in \mathcal{M}, (a * b) * c = a * (b * c)$ 。

分配律: $\forall a, b \in \mathcal{D}, c \in \mathcal{M}, (a+b) * c = a * c + b * c$ 。

给定一个初始集合 I_0 ,一个有限集合 $I \subseteq I_0$,询问集合 Q。

I 中每个点有初始权值 $d_0(x) \in D$ 。

第 t 个操作定义为:

1. 范围修改: 给出范围 $q_t \in Q$ 和 $f_t \in \mathcal{M}$, 如果 $x \in q_t$ 则

 $d_t(x) = d_{t-1}(x) * f_t$, 否则 $d_t(x) = d_{t-1}(x)$ 。

2. 范围查询: 给出范围 $q_t \in Q$, 设 $d_t(x) = d_{t-1}(x)$, 答案为

 $\sum_{x \in q_t} d_t(x)$

用 n = |I| 表示初始权重的个数,m 表示修改查询的操作数。

离线范围修改查询算法

下面将介绍一种离线范围修改查询算法, 由清华大学李欣隆与蔡 承泽提出 1 。这个算法可以被简单实现,并且常数较小。可以证 明这个算法的操作次数复杂度是最优的。

¹Xinlong Li and Chengze Cai. Offline optimal range query and update algorithm. 2021.

等价关系

定义等价关系:

假设有一个操作序列 $q_1, q_2, ..., q_n$,定义点 x_1 与点 x_2 的等价关系: 若 $R(x_1, x_2) = \forall_{i \in [1, n]}, x_1 \in q_i \leftrightarrow x_2 \in q_i$,其中 q_i 为第 i 次操作的范围,则称 x_1 与 x_2 等价。

等价类

我们将等价的点归于一个等价类中,可以得到若干个等价类。 假设进行了 $q_l, q_{l+1}, ..., q_r$ 这些操作,设划分为的等价类集合为 $R_{l,r}$ 。 如果 $[l', r'] \in [l, r]$,则 $R_{l,r}$ 比 $R_{l',r'}$ 将点集划为更细的部分,称 这个关系为 $R_{l,r} \subseteq R_{l',r'}$ 。

算法介绍

由于修改操作是给定的,我们考虑设计一个在修改操作序列上分 治的算法。

在该问题中,考虑维护如下的一个动态有根森林:

- 每个节点都对应一个操作序列的某个等价类;
- 每个叶子节点存储的信息为大小为 1 的等价类的信息,即 n 个初始给定点各自的信息。

假设我们想将当前等价类集合从 R_1 变为 R_2 , 并满足 $R_1 \subseteq R_2$ (R_2 的等价类个数更少)。

若我们对当前有根森林做若干次合并操作,每次合并若干有根树,就可以将状态 R_1 移动到目标状态 R_2 。合并若干棵以 $x_1,x_2,...,x_k$ 为根的有根树的方法是新建一个点 y 作为 $x_1,x_2,...,x_k$ 的父亲节点。

同样,我们可以通过撤销状态 R_2 的若干次合并操作(即删除根节点),将其改变为 R_1 的状态。称这两种操作为有根森林之间的移动。

为了支持修改查询操作,考虑在有根森林的非叶子节点上维护额外的域。需要记录两个额外的值,一个存储修改的懒惰标记u(x),一个存储子树的和 d(x)(即为等价类中元素的和)。

为了支持修改查询操作,考虑在有根森林的非叶子节点上维护额外的域。需要记录两个额外的值,一个存储修改的懒惰标记u(x),一个存储子树的和 d(x)(即为等价类中元素的和)。在有根森林加点时,我们会新建一个点 y 作为 $x_1,x_2,...,x_k$ 的父亲,此时设置 $u(y)=\epsilon_M,d(y)=\sum_{i=1}^k d(x_i)$,即可以上传信息。

为了支持修改查询操作,考虑在有根森林的非叶子节点上维护额外的域。需要记录两个额外的值,一个存储修改的懒惰标记u(x),一个存储子树的和 d(x)(即为等价类中元素的和)。在有根森林加点时,我们会新建一个点 y 作为 $x_1,x_2,...,x_k$ 的父亲,此时设置 $u(y)=\epsilon_M,d(y)=\sum_{i=1}^k d(x_i)$,即可以上传信息。在有根森林删点时,需要删除点 y 并分裂出 $x_1,x_2,...,x_k$ 这 k 棵有根树,此时需要下放点 y 的懒惰标记并删除节点 y。

为了支持修改查询操作,考虑在有根森林的非叶子节点上维护额外的域。需要记录两个额外的值,一个存储修改的懒惰标记u(x),一个存储子树的和 d(x)(即为等价类中元素的和)。在有根森林加点时,我们会新建一个点 y 作为 $x_1,x_2,...,x_k$ 的父亲,此时设置 $u(y)=\epsilon_M,d(y)=\sum_{i=1}^k d(x_i)$,即可以上传信息。在有根森林删点时,需要删除点 y 并分裂出 $x_1,x_2,...,x_k$ 这 k 棵有根树,此时需要下放点 y 的懒惰标记并删除节点 y。如果有一棵以 x 为根的树,其包含的叶子节点恰好是一次修改或查询中包含的点,则 d(x) 即为本次询问的答案,修改则可以对 x 打上标记 $(d(x),u(x))\to (d(x)*U,u(x)*U)$ 。

对于原问题,考虑分治。将当前操作序列分成左右两部分。对于 两部分操作,由于操作数量更少,拥有的等价类个数也更少,这 意味着分治后的两个区间都只需要处理更少的信息。 对于原问题,考虑分治。将当前操作序列分成左右两部分。对于 两部分操作,由于操作数量更少,拥有的等价类个数也更少,这 意味着分治后的两个区间都只需要处理更少的信息。

当我们需要进行 $q_l,...,q_r$ 的分治时,设 $mid = \lfloor \frac{l+r}{2} \rfloor$,先将等价类集合从 $R_{l,r}$ 移动到 $q_l,...,q_{mid}$ 的状态 $R_{l,mid}$,这会在有根森林上加若干个点。处理完 $q_l,...,q_{mid}$ 后,将状态回退到 $R_{l,r}$,然后移动到 $R_{mid+1,r}$,对 $q_{mid+1},...,q_r$ 执行分治算法,再将状态回退到 $R_{l,r}$ 。

对于原问题,考虑分治。将当前操作序列分成左右两部分。对于 两部分操作,由于操作数量更少,拥有的等价类个数也更少,这 意味着分治后的两个区间都只需要处理更少的信息。

当我们需要进行 $q_l,...,q_r$ 的分治时,设 $mid = \lfloor \frac{l+r}{2} \rfloor$,先将等价类集合从 $R_{l,r}$ 移动到 $q_l,...,q_{mid}$ 的状态 $R_{l,mid}$,这会在有根森林上加若干个点。处理完 $q_l,...,q_{mid}$ 后,将状态回退到 $R_{l,r}$,然后移动到 $R_{mid+1,r}$,对 $q_{mid+1},...,q_r$ 执行分治算法,再将状态回退到 $R_{l,r}$ 。

当递归到 l=r 时只有一个操作,也就只有 2 个等价类。修改就在需要操作的等价类对应的有根树的根上打上标记,查询则提取该根节点 d 的信息即可。

图中演示了等价关系为 $R_{1,4}, R_{1,2}, R_{3,4}, R_{1,1}$ 时有根森林的结构。

我们从 $R_{1,4}$ 移动到 $R_{1,2}$ 时,将等价类 $\{A\}, \{B\}, \{F\}$ 合并为 $\{A,B,F\}$; $\{C\}, \{D,E\}$ 合并为 $\{C,D,E\}$; $\{G\}, \{J,K\}$ 合并为 $\{G,J,K\}$ 。从 $R_{1,2}$ 移动回 $R_{1,4}$ 时,撤销上述合并。 递归到 $R_{1,1}$ 时,需要修改的树即为 a 树,代表了等价类,设 x 为 $\{A,B,C,D,E,F\}$ 即 a 树的根,我们打上修改标记并查询 x 的值。

算法的复杂度

定义离散函数 F, F(x) 表示 x 个操作最多将点集分成多少个等价类。

不难发现 F(x) 是单调递增的,且 x 个操作最多将集合 I 分成 $\min(F(x),|I|)$ 个等价类。

定义离散函数 G, G(n) 满足 $F(G(n)) \le n$, F(G(n)+1) > n。 G(n) 表示在给定范围下,至少需要多少个操作能把 n 个点分成最细的等价关系,即 n 个等价类。

$$T(n,m) = O(n) + \frac{m}{G(n)}T_1(G(n)), T_1(n) = 2T_1(n/2) + O(F(n))$$
.

$$T(n,m) = O(n) + \frac{m}{G(n)} T_1(G(n)), T_1(n) = 2T_1(n/2) + O(F(n))$$
。
在序列上的问题中,有 $F(n) = O(n)$,此时
 $T(n,m) = O(n+m\log\min(n,m))$ 。

 $T(n,m) = O(n) + \frac{m}{G(n)} T_1(G(n)), T_1(n) = 2T_1(n/2) + O(F(n))$ 。 在序列上的问题中,有 F(n) = O(n),此时 $T(n,m) = O(n+m\log\min(n,m))$ 。

对于修改查询范围为半平面,多边形,圆,椭圆,双曲线等情况,有 $F(n) = O(n^2)$,此时 $T(n,m) = O(n + m\sqrt{n})$ 。

 $T(n,m) = O(n) + \frac{m}{G(n)} T_1(G(n)), T_1(n) = 2T_1(n/2) + O(F(n))$ 。 在序列上的问题中,有 F(n) = O(n),此时 $T(n,m) = O(n+m\log\min(n,m))$ 。 对于修改查询范围为半平面,多边形,圆,椭圆,双曲线等情况,有 $F(n) = O(n^2)$,此时 $T(n,m) = O(n+m\sqrt{n})$ 。 对于修改查询范围为 d 维的空间范围时,其中 d>1,有 $F(n) = O(n^d)$,此时 $T(n,m) = O(n+mn^{1-1/d})$ 。

 $T(n,m) = O(n) + \frac{m}{G(n)}T_1(G(n)), T_1(n) = 2T_1(n/2) + O(F(n))$ 在序列上的问题中,有 F(n) = O(n),此时 $T(n,m) = O(n + m \log \min(n,m))$. 对于修改查询范围为半平面,多边形,圆,椭圆,双曲线等情 况,有 $F(n) = O(n^2)$,此时 $T(n,m) = O(n + m\sqrt{n})$ 。 对于修改查询范围为 d 维的空间范围时, 其中 d > 1, 有 $F(n) = O(n^d)$, 此时 $T(n, m) = O(n + mn^{1-1/d})$ 。 特别的,若修改查询范围为点集的任意子集,有 $F(n) = O(2^n)$, 此时 $G(n) = O(\log n)$, 可得 $T(n,m) = O(n + m \frac{n}{\log n})$ 。这意味 着修改查询为任意子集可以做到比暴力更优的复杂度。

给定交换半群 $(\mathcal{D},+)$, 半群 $(\mathcal{M},*)$, 二元运算符 *: $\mathcal{D} * \mathcal{M} \to \mathcal{D}$, 其中 * 满足结合律与分配律。 给定平面上的 n 个点 (x_i, y_i) , 每个点有初始权值 $d_i \in \mathcal{D}$ 。 需要实现 m 个操作: 第 j 次操作给出 a_i, b_i, c_i 与半群信息 $o_i \in \mathcal{M}$ 。 对于所有满足 $a_i x_i + b_i y_i < c_i$ 的 i,需要先回答 $\sum_i d_i$,后将所 有 d_i 修改为 $o_i * d_i$ 。 操作离线。

²https://goj.ac/problem/9020,https://goj.ac/problem/4817 ()

对操作序列每 B 个分一组进行分治,并应用上面的算法,设 $B = \sqrt{n}$,可以得到操作次数复杂度为 $O(n+m\sqrt{n})$ 。接下来我们要处理的问题就是计算几何问题,可以使用平面图点定位的算法。

对操作序列每 B 个分一组进行分治,并应用上面的算法,设 $B = \sqrt{n}$,可以得到操作次数复杂度为 $O(n + m\sqrt{n})$ 。接下来我们要处理的问题就是计算几何问题,可以使用平面图点定位的算法。

具体的,对于 \sqrt{m} 个询问的直线,处理出每两条直线的交点,并将交点按照 x 坐标排序后扫描线。

扫描线过程中,实时维护出所有直线在当前 x 坐标下,按照 y 坐标排序后的顺序,在遇到一个交点后就交换两条直线的顺序。同时对所有点按 x 坐标排序,在扫描到该点时二分定位出该点属于哪个区域。这样就得到了 O(m) 个区域的初始信息。

例题

对于每条直线,将直线上的交点按 x 坐标增大排序,维护一个链表,每个交点属于两条直线的链表。

例题

对于每条直线,将直线上的交点按 x 坐标增大排序,维护一个链表,每个交点属于两条直线的链表。

当删除该直线时,遍历链表上的每个交点,在该交点所属的另一个链表中删除该点,并合并两边的区域。

例题

对于每条直线,将直线上的交点按 x 坐标增大排序,维护一个链表,每个交点属于两条直线的链表。

当删除该直线时,遍历链表上的每个交点,在该交点所属的另一个链表中删除该点,并合并两边的区域。

这样就完成了删直线并合并区域的过程。撤回删掉的直线时,也同样遍历该直线的链表,依次撤回操作即可。

对于每条直线,将直线上的交点按 x 坐标增大排序,维护一个链表,每个交点属于两条直线的链表。

当删除该直线时,遍历链表上的每个交点,在该交点所属的另一个链表中删除该点,并合并两边的区域。

这样就完成了删直线并合并区域的过程。撤回删掉的直线时,也同样遍历该直线的链表,依次撤回操作即可。

这样做的时间复杂度为 $O(n+m\sqrt{n}\log n)$,瓶颈在对交点排序与扫描线二分。不过该题是交互题,只需要保证操作次数正确即可。

问题的形式

在该问题中,没有修改操作,只有查询操作,查询为半平面的一侧的交换半群信息。

若可以离线,则使用上述的修改查询算法,就可以达到运算次数的下界 $O(n+m\sqrt{n})$ 。

但在仅有查询,没有修改的情况下,有另一些复杂度可能更低、或可以强制在线的算法。下面将介绍一些针对该问题的算法。

旋转扫描线

将点集随意划分为大小为 B 的块。

旋转扫描线

将点集随意划分为大小为 B 的块。

定义半平面的标准型为将询问的半平面先一直向下平移,直到碰到第一个点,之后将询问的半平面一直顺时针方向旋转,直到碰到第一个点。可以证明这样的变换是不会改变这个半平面一侧的点集的。

旋转扫描线

将点集随意划分为大小为 B 的块。

定义半平面的标准型为将询问的半平面先一直向下平移,直到碰到第一个点,之后将询问的半平面一直顺时针方向旋转,直到碰到第一个点。可以证明这样的变换是不会改变这个半平面一侧的点集的。

在这样的变换下,在 B 个点的情况下,只存在 $O(B^2)$ 个不同的半平面的标准型。如果两个半平面变换到了相同的标准型,则这两个平面对应同一个点集,询问的答案相同,即只有 $O(B^2)$ 个需要预处理的答案。

旋转扫描线的过程为:假设当前有一条直线,斜率从 $-\infty$ 逐渐移向 $+\infty$,在过程中维护当前所有点的顺序。

旋转扫描线的过程为:假设当前有一条直线,斜率从 $-\infty$ 逐渐移向 $+\infty$,在过程中维护当前所有点的顺序。

对于一次半平面范围询问,可以在扫描线扫到对应斜率时,在点的序列上二分求出前驱后继。然后相当于要在序列上支持前缀,后缀查询。动态维护当前旋转扫描线的序列,每次交换的元素都是相邻的,可以 O(1) 进行修改。

取 $B = \sqrt{m}$,代数结构上的运算次数为 $O(n\sqrt{m})$,总时间复杂度 $O(n\sqrt{m}\log n)$ 。时间复杂度的瓶颈在于对斜率的排序以及点定位的二分。

注意这里复杂度与修改查询问题的区别:范围修改查询问题的复杂度下界为 $O(n+m\sqrt{n})$,不会因为操作多而降低复杂度;而仅支持查询的复杂度可以做到 $O(n\sqrt{m})$,会因为操作多而降低复杂度。

此外,还有一些其他的处理范围修改查询问题的方法,如最优点 集划分树、平面分块等。由于时间所限,在这里不进行展开,可 以以阅读我的集训队论文。

致谢

感谢大家的聆听。

感谢中国计算机学会提供学习和交流的平台。

感谢国家集训队教练彭思进、杨耀良的指导。

感谢家人对我的陪伴与支持。

感谢学军中学徐先友老师的关心与指导。

感谢李欣隆学长、蔡承泽学长与我交流讨论、给我启发。

感谢学军中学的同学们为本文验稿。

感谢其他给予我帮助的老师与同学。