NADA for R A contributed package for censored environmental data

Dennis Helsel Practical Stats

Lopaka (Rob) Lee U.S. Geological Survey

Censored data

- Data known only to be above or below a threshold. The exact, single number is not known.
- In environmental studies, most frequent application is to "nondetects", values known only to be below reporting (detection) limits.
- <10 = a value measured somewhere between 0 and 10

"Nondetects" occur in many fields

- Water quality
- Air quality
- Soil chemistry
- Geochemistry

- Astronomy
- Occupational health
- Risk analysis
- Biocontaminants

The Problem

- <u>Substitution</u> is the most commonly-used method for incorporating censored environmental data
- $\frac{1}{2}$ or $\frac{1}{\sqrt{2}}$ times RL are the most commonly-used substitutions
- Using ½, each <1 becomes 0.5, each <5 becomes 2.5, etc.

Survival analysis methods perform better than substitution

- Survival analysis methods explicitly incorporate censored data
- Substituted value is arbitrary
- No 'invasive data' added to the observations measured
- No reason to use substitution except that it is cheap and easy

NADA for R package

- Performs parametric and nonparametric methods for left-censored data
- Consistent function names and usage
- Almost all functions begin with the prefix "cen" -for example, "cenfit", and "cenmle"
- Generic functions such as "mean", "quantile", and "plot" can be used with output objects from any of the NADA for R functions

Example censored data set

Pyrene concentrations in benthic sediments. 56 observations, 11 censored at 8 DLs. From She (Journal. AWRA, 1997)

Entering and summarizing data

> ShePyrene

```
Pyrene PyreneCen
1 28 TRUE
2 31 FALSE
3 32 FALSE
```

> censummary(ShePyrene)

all:

```
n n.cen pct.cen min max 56.00000 11.00000 19.64286 28.00000 2982.00000
```

limits:

	limit	n	uncen	pexceed		limit	n	uncen	pexceed
1	28	1	3	0.9629191	5	117	1	2	0.3325437
2	35	2	3	0.8516764	6	122	1	5	0.2920918
3	58	1	10	0.7775146	7	163	3	1	0.1964286
4	86	1	11	0.5550292	8	174	1	10	0.1785714

Plotting Censored Data

> cenboxplot(Pyrene, PyreneCen)

Plotting Censored Data

Censored probability plot

Percent Chance of Exceedance

Plotting Censored Data

Survival curve (a cdf for left-censored

Three Valid Approaches for the Analysis of Censored Data

- Parametric methods. Assume data follow a specific distribution.
 - Maximum likelihood estimation (MLE)
- 2. "Robust" methods
 - Regression on Order Statistics (ROS)
- 3. Nonparametric methods. Based on percentiles, ranks.
 - Kaplan-Meier
 - Wilcoxon score tests
 - Kendall's tau

MLE for Pyrene data - using cenmle function.

Lognormal distribution is assumed by default

Parametric Method: MLE

Check residuals to see if they follow a lognormal distribution

Robust Regression on Order Statistics (ROS)

ROS is not strongly sensitive to choice of distribution. Can check with probability plot.

Regression on Order Statistics

Kaplan-Meier (nonparametric) method

- Standard method in medical and industrial statistics
- Software currently built for right-censored data, so left-censored data must be flipped: flip = Constant - X.
- Estimates the survival function S, which becomes the CDF (percentiles) of the original X data.

Commercial stat software: must 'flip' the data manually

Kaplan-Meier using cenfit command

Cenfit is is analgous to the "survfit" function in the survival package

K-M survival curve

> Plot (pykm)

All 3 methods with censtats

None of these 3 methods required substitution

ANOVA using censored regression

Are these 3 distributions the same, or different?

> cenboxplot(TCEConc, TCECen, Density)

ANOVA using censored regression

```
> tcemle = cenmle(TCEConc, TCECen, Density)
> summary(tcemle)
             Value Std. Error z
(Intercept) -0.722 0.416 -1.73 8.28e-02
DensityLow -3.060 1.138 -2.69 7.17e-03
DensityMedium -1.656 0.553 -2.99 2.76e-03
Log(scale) 1.048 0.111 9.41 4.76e-21
Scale= 2.85
Log Normal distribution
Loglik (model) = -308.7
Loglik(intercept only) = -316.4
Loglik-r: 0.2459125
Chisq= 15.41 on 2 degrees of freedom, p= 0.00045
```

Wilcoxon tests with censored data

Nonparametric

```
> cendiff(TCEConc, TCECen, Density)

N Observed Expected (O-E)^2/E (O-E)^2/V

Dens=High 92 30.45 18.2 8.26 15.65

Dens=Low 25 1.73 5.7 2.76 3.62

Dens=Med 130 15.47 23.8 2.89 6.76

Chisq= 16.3 on 2 degrees of freedom, p= 0.000295
```

Wilcoxon tests for censored data

Score test looks for differences among survival curves (cdfs) for the three land-use groups.

Correlation and regression with censored data

Is there a correlation between Dissolved Iron and Year?

What equation best describes the trend?

Parametric Censored Regression

> cenreg(Cen(Summer, SummerCen)~Year)

```
Value Std. Error z p

(Intercept) 507.472 106.3237 4.77 1.82e-06

Year -0.255 0.0537 -4.76 1.97e-06

Log(scale) -1.118 0.4106 -2.72 6.48e-03

Scale= 0.327 cenreg is analogous to survreg in the survival package. Data are Log Normal distribution flipped within cenreg.

Loglik(model) = -9.3 Loglik(intercept only) = -12.8

Loglik-r: 0.7371631
```

Chisq= 7.06 on 1 degrees of freedom, p= 0.0079

ATS nonparametric line for censored data

Nonparametric approach: ATS version of Thiel-Sen robust line (based on Kendall's tau)

```
> cenken(Summer, SummerCen, Year)
slope
[1] -2.572113
intercept
[1] 5103.5
tau
[1] -0.3611111
p
[1] 0.1315868
```

ATS nonparametric line for censored data

> cenxyplot(Year, YearCen, Summer, SummerCen)

> lines(cenken(Summer, SummerCen, Year))

More detail is available in the textbook:

Nondetects And Data Analysis

Statistics for Censored Environmental Data

by Dennis R. Helsel Wiley (2005)

www.PracticalStats.com/nada

