

Newton's Method

Guess the root

Derivatives

General Equation

 $\begin{array}{c} {\rm Simple} \\ {\rm Example:} \ \ x^2 \end{array}$

Automate with Python

Discrete Structures: CMPSC 102

Oliver BONHAM-CARTER

Fall 2018 Week 3

Newton's Method Application In Mathematics

Newton's Method

Guess the root

Derivatives

General Equation

Simple Example: x^2

Automate with Python

Suppose that a car dealer offers to sell you a car for \$18,000 or for payments of \$375 per month for five years. You would like to know what monthly interest rate the dealer is, in effect, charging you.

To find the answer, there is an equation from the bank

Equation to Solve : Find the Roots

$$f(x) = 48x(1+x)^{60}(1+x)^{60} + 1 = 0$$

- An approximate solution
- ullet Let's plot the equation to see where it crosses the x axis
- Ask: for what value of x does this x-axis intersection happen?

Plot the Equation

Newton's Method

Guess the root

Derivatives

General Equation

Simple Example: x^2

- \bullet Two roots to find to solve equation: x=0 and some other x value.
- We want the *other*, non-zero intersection point!

Plot the Equation

Newton's Method

Guess the

Derivatives

General Equation

Simple Example: x^2

- A solution between 0.007 and 0.008 (approx 0.0076)
- Want to be able to calculate this value to out own level of accuracy.
- How to find the roots?

Newton's Method

Guess the root

Derivatives

General Equation

Simple Example: x^2

Automate with Python

• Approximate the root (x_r) using Newton's Method

Isaac Newton

Newton's Method

Guess the root

Derivatives

General Equation

Simple Example: x^2

- Time line: 25 December 1642 20 March 1726 or 1727)
- English mathematician, astronomer, theologian, author and physicist
- One of the most influential scientists of all time
- A key figure in the scientific revolution.

Guess a root

Newton's Method

Guess the

Derivatives

General Equation

Simple Example: x^2

- ullet The relevant root is labeled r
- ullet First approximation for x_1 is a simple *guess* made by understanding the plot

Method Guess the root

Newton's

Derivatives

General Equation

Simple Example: x^2

- Consider the tangent line, L to the curve y = f(x) at the point $(x_1, f(x_1))$ and look at the x-intercept of L, labeled x_2 .
- Main idea: the tangent line is close to the curve and its x-intercept (an intersection point at x_2), is close to the x-intercept of the curve (the root r).
- This point root r that want to find!

Derivatives Defined Mathematically (somewhat ...)

Newton's Method

Guess the

Derivatives

General Equation

Simple Example: x^2

Automate with Python

The Derivative

Roughly speaking...

• The derivative is an equation extracted from the original f(x) used to find the x values of where the y=0.

Derivatives

Newton's Method

Guess the

Derivatives

General Equation

Simple Example: x^2

Automate with Python

Roughly speaking...

- We want to find where line L passes x-intercept
- Slope of line L: f'(x)
- Line formula (from algebra): y = m * x + b
- ullet To find a formula for x_2 in terms of x_1

$$y - f(x_1) = f'(x_1)(\frac{x_2}{2} - x_1)$$
 (1)

Thinking Recursively

Use derivatives to find lines crossing x-axis, converging on root

Newton's Method

Guess the root

Derivatives

General Equation

Simple Example: x^2

Automate with Python

We want to insert initial approximation values of x back into the line equation (recursively) to find the next approximation (and converge on the root, x_r).

Find a General Equation for Finding Roots

Newton's Method

Guess the root

Derivatives

General Equation

Simple Example: x^2

Automate with Python We are solving for x_2 , or a closer approx. of root!

$$y - f(x_1) = f'(x_1)(x_2 - x_1)$$

$$0 - f(x_1) = f'(x_1)(x_2 - x_1)$$

$$f(x_1) = -f'(x_1)(x_2 - x_1)$$

$$f(x_1) = x_1 * f'(x_1) - x_2 * f'(x_1)$$

$$f(x_1) - x_1 * f'(x_1) = x_2 * f'(x_1)$$

$$x_2 * f'(x_1) = f(x_1) - x_1 * f'(x_1)$$

$$\frac{x_2 * f'(x_1)}{f'(x_1)} = \frac{f(x_1)}{f'(x_1)} - \frac{x_1 * f'(x_1)}{f'(x_1)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Now what?!

Newton's Method

Guess the

Derivatives

General Equation

 $\begin{array}{c} {\rm Simple} \\ {\rm Example:} \ \ x^2 \end{array}$

Automate with Python

We use this equation to approx values of roots

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

General approx. for root x_{n_1} from approx. root x_n

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(n)}$$

Let's find the square root for a number

Recall that Newtons method finds an approximate root of f(x) = 0

Newton's Method

Guess the root

Derivatives

General Equation

Simple Example: x^2

Definitions

Automate with Python

Define f(x)

$$f(x) = x^{2} - a$$

$$x^{2} = a$$

$$x = \sqrt{a}$$
 (find positive root, a)
$$x = -\sqrt{a}$$

Define the derivative of f(x), f'(x), using calculus

$$f'(x) = 2x$$

Note: a in f(x) is the initial guess!

$$f(x) = x^2 - a$$
$$f'(x) = 2x$$

The root to find

 $a = x_r$

The initial guess of root (to start the method)

$$x_1 = 1.0$$

General approx. for root x_n from approx. root x_n

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(n)}$$

Substitute into Equation

Finding square root of a

Knowns

$$a=2$$
 (find sqrt of a) $f(x)=x^2-2$ (function) $x_1=1.0$ (guess) $f'(x)=2x$ (derivative)

$$x_1 = 1.0 - \frac{f(1.0)}{f'(1.0)}$$

$$= 1.0 - \frac{(1.0)^2 - 2}{2 * (1.0)}$$

$$= 1.0 - \frac{1.0 - 2}{2}$$

$$= 1.0 - \frac{-1.0}{2}$$

$$= \frac{3.0}{2}$$

$$= 1.5$$

Newton's Method Guess the root

Derivatives

General Equation

Simple Example: x^2

Definitions

Table of Iterations

Finding square root of \boldsymbol{a}

Newton's Method

Guess the

Derivatives

General Equation

Simple Example: x^2

Definitions Automate

Automate with Python

Calculations

Guess			Approx. root
x_n	$f(x) = x_n^2 - 2$	$f'(x_n) = 2x$	$x_n - \frac{f(x_n)}{f'(x_n)}$
1	-1	2	$1 - \frac{-1}{2} = \frac{3}{2} = 1.5$
$\frac{3}{2}$	$\frac{1}{4} = 0.25$	3.0	$\frac{3}{2} - \frac{(\frac{1}{4})}{3} = \frac{17}{12} = 1.4167$
$\frac{17}{12}$	$\frac{1}{144}$	$\frac{17}{6}$	$\frac{17}{6} - \frac{\frac{1}{144}}{\frac{17}{6}} = \frac{577}{408} = 1.4142$

Python to the rescue

>>> math.sqrt(2)

1.4142135623730951

Automate with Python

Finding square root of \boldsymbol{a}

Newton's Method

Guess the root

Derivatives

General Equation

 $\begin{array}{l} {\rm Simple} \\ {\rm Example:} \ x^2 \end{array}$

```
vim newtonsMethod.py
n = 2.0 # the number from which to find square root.
guess = 1.0 # initial value for approx
print(" Initial values: n = ",n, "guess = ",guess)
while abs(n - guess*guess) > .0001:
   #find x_n - \frac{f(x_n)}{f'(x_n)}
   guess = guess - (guess*guess - n)/(2*guess)
  print(" *Current guess: ",guess)
root = guess
print(" Result :",root)
```


Put This Script Into a Function

vim newtonsMethodFunction.py

Finding square root of a

Newton's Method

Guess the

Derivatives

General Equation

Simple Example: x^2

Automate with Python

```
def NM(n, guess):
    print(" Initial values: n = ",n, "guess = ",guess)
    while abs(n - guess*guess) > .0001:
       #find x_n - \frac{f(x_n)}{f'(x_n)}
        guess = guess - (guess*guess - n)/(2*guess)
        print(" *Current guess: ",guess)
       root = guess
    return root
#end of NM()
#get parameters to call function NM()
n = 2 # the number from which to find square root.
guess = 1.0 # initial value for approx
print(" Finding root : ",n)
print(" Approx guess : ", guess)
print(" Result : ",NM(n, guess))
```

←□ → ←□ → ←□ →