A.A. 2024 – 2025 Politecnico di Milano Dr. N. Ferro, E. Temellini

Esercitazione 5 Approssimazione di Funzioni e Dati

Approssimazione di funzioni e dati

Interpolazione polinomiale (di Lagrange)

I polinomi vengono rappresentati in Matlab[®] come degli array. In particolare, un generico polinomio di grado n, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ corrisponde ad un array (riga) di n + 1 elementi

$$p = [a_n, a_{n-1}, \dots, a_1, a_0].$$

Supponendo di avere le n+1 coppie di dati $\{(x_i, y_i)\}$, per i=0,...,n, con nodi x_i distinti, il polinomio interpolatore di Lagrange Π_n associato a queste coppie può essere calcolato tramite il comando Matlab[®] polyfit. In particolare, il comando

$$p = polyfit(x, y, n)$$

restituisce i coefficienti di Π_n in p, dove $\mathbf{x} = [x_0, ..., x_n]$ e $\mathbf{y} = [y_0, ..., y_n]$. Una volta calcolato p, il polinomio Π_n può essere valutato in un generico punto z tramite il comando

$$pz = polyval(p, z)$$
.

Il parametro di input z può essere uno scalare, o in generale una matrice. In quest'ultimo caso, la valutazione viene eseguita elemento per elemento. Ad esempio, la valutazione del polinomio $p(x) = x^2 - 1$ nei punti 1 e 2, potrà essere eseguita in Matlab® con il comando polyval ([1 0 -1], [1 2]), che restituirà come output il vettore [0 3].

In questa esercitazione metteremo anche a confronto differenti metodi di approssimazione di funzioni, in particolare: l'interpolazione polinomiale di Lagrange, l'interpolazione lineare a tratti e l'approssimazione nel senso dei minimi quadrati.

Approssimazione nel senso dei minimi quadrati

Nel caso in cui si voglia approssimare nel senso dei minimi quadrati un insieme di coppie $\{(x_i, y_i)\}$, i = 0, ..., n, con x_i distinti, i comandi da utilizzare sono ancora polyfit e polyval. Infatti, dato un numero m < n, il comando

$$p = polyfit(x, y, m)$$

restituisce il polinomio approssimante di grado m nel senso dei minimi quadrati, associato ai punti assegnati. Il funzionamento di polyval è invece del tutto analogo al caso precedente.

Interpolante lineare a tratti

La funzione approssimante non è un polinomio, ma un polinomio a tratti. Al contrario dei polinomi, le due fasi di interpolazione e valutazione, che prima erano distinte, ora risultano accorpate nel comando Matlab[®] nel caso dell'interpolazione lineare a tratti; infatti

$$pz = interp1(x, y, z)$$

genera il polinomio lineare a tratti Π_1^H interpolante le coppie corrispondenti ai vettori $\mathbf{x} = [x_0, \dots, x_n]$ e $\mathbf{y} = [y_0, \dots, y_n]$, e lo valuta in \mathbf{z} , fornendo il risultato della valutazione nel punto $\mathbf{p}\mathbf{z}$.

Esercizio 1

1. Si consideri la funzione

$$f(x) = \frac{x}{2}\cos(x)$$

nell'intervallo [-2, 6] e se ne disegni il grafico.

- 2. Si costruisca il polinomio interpolante di Lagrange $\Pi_n f$ di grado n=2,4,6 relativo ad una distribuzione di nodi equispaziati e se ne disegni il grafico insieme a quello della funzione f(x).
- 3. Si rappresenti graficamente l'andamento dell'errore $\varepsilon(x) = |f(x) \Pi_n f(x)|$ e si calcoli la norma infinito per n = 2, 4, 6, ovvero

$$\parallel \varepsilon \parallel_{\infty} = \max_{x \in [a,b]} |f(x) - \Pi_n f(x)|.$$

Aumentando il grado del polinomio n si riesce ad approssimare meglio la funzione?

- 4. Si calcoli ora il polinomio interpolante composito lineare $\Pi_1^H f$ su n=4,8,16,32,64 sottointervalli di [a,b]=[-2,6] di uguale ampiezza H=(b-a)/n (si utilizzi la funzione Matlab[®] interp1) e se ne disegni il grafico insieme a quello della funzione f(x).
- 5. Si calcoli l'errore in norma infinito $\varepsilon_H = \max_{x \in [a,b]} |f(x) \Pi_1^H f|$ in ciascun valore di H di cui al punto 4 e se ne visualizzi l'andamento in funzione di H su un grafico in scala logaritmica su entrambi gli assi. Verificare graficamente che ci sia accordo con la stima teorica dell'errore:

$$\varepsilon_H \le \frac{H^2}{8} \max_{x \in [a,b]} |f''(x)|.$$

6. Nel solo caso n=4, si costruisca un'approssimazione nel senso dei minimi quadrati di grado m=2 della funzione f(x) (si utilizzino opportunamente le funzioni Matlab[®] polyfit e polyval).

Esercizio 2

Si consideri ora il problema dell'approssimazione della funzione di Runge:

$$f(x) = \frac{1}{1+x^2},$$

mediante un'interpolazione polinomiale di Lagrange nell'intervallo I = [-5, 5].

- 1. Si costruiscano i polinomi interpolanti $\Pi_n f$ di grado n=5, 10 della funzione f considerando nodi equispaziati sull'intervallo I. Per ciascun valore di n si rappresenti graficamente l'andamento di $\Pi_n f$ e dell'errore $\varepsilon(x) = |f(x) \Pi_n f(x)|$.
- 2. Si ripeta il punto precedente utilizzando i nodi di Chebyshev–Gauss–Lobatto per la determinazione dei polinomi interpolanti di Lagrange di grado n. Si ricordi che tali nodi possono essere ottenuti sull'intervallo $\hat{I} = [-1, 1]$ nel seguente modo :

$$\hat{x}_i = -\cos\left(\frac{\pi i}{n}\right), \quad i = 0,, n,$$

ed essere riportati sul generico intervallo I = [a, b] tramite la trasformazione:

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\,\hat{x_i}.$$

2

Esercizio 3 - Homework

Nella tabella qui sotto riportata vengono elencati i risultati di un esperimento eseguito per individuare il legame tra lo sforzo σ e la relativa deformazione ε di un campione di un tessuto biologico, in particolare di un disco intervertebrale rappresentato nella figura qui sotto riportata.

test	σ [MPa]	ε [cm/cm]
1	0.00	0.00
2	0.06	0.08
3	0.14	0.14
4	0.25	0.20
5	0.31	0.23
6	0.47	0.25
7	0.60	0.28
8	0.70	0.29

A partire da questi dati (utilizzando opportune tecniche di approssimazione) si vuole stimare la deformazione ε del tessuto in corrispondenza dei valori di sforzo per cui non si ha a disposizione un dato sperimentale.

Le funzioni interpolanti da utilizzare sono le seguenti:

- l'interpolazione polinomiale di Lagrange (polyfit e polyval);
- l'interpolazione polinomiale composita lineare (interp1);
- l'interpolazione polinomiale ai minimi quadrati di grado 1, 2, 4 (polyfit e polyval).

In particolare, si chiede di:

- 1. rappresentare graficamente le singole funzioni interpolanti ed approssimanti a confronto con i dati sperimentali;
- 2. confrontare, in un unico grafico, i dati sperimentali con tutte le interpolanti (per l'approssimante ai minimi quadrati si consideri solo il polinomio di grado 4);
- 3. valutare, per ogni interpolante ed approssimante la deformazione ε in corrispondenza di $\sigma = 0.40$ MPa e $\sigma = 0.75$ MPa; si commentino i risultati ottenuti.

Esercizio 4

tratto dall'ESAME del 12/07/2023

Si vuole approssimare la funzione $f(x) = (9 - (x - 3)^2)\cos(4x)$ sull'intervallo I = [2, 4]. Si scelga l'affermazione corretta:

- l'interpolazione Lagrangiana non presenta il fenomeno di Runge se si selezionano n = 10 nodi equispaziati;
- per n = 10 nodi equispaziati, l'interpolazione lineare composita restituisce una soluzione nei fatti indistinguibile dalla soluzione esatta;
- la scelta di n=3 nodi equispaziati per l'interpolazione Lagrangiana permette di riprodurre esattamente minimi e massimi della funzione su I;
- la presenza del coseno rende l'interpolazione Lagrangiana sempre instabile agli estremi, con oscillazioni spurie che aumentano all'aumentare del numero di nodi;