DC DESIGNFORLØB

Effektforsyningen

Effektforsyningen planlægges med start ved udgangen. Ved en effekt på 30W i 8Ω skal udgangsspændingen være $V_{O\ RMS} = 15,5V$ med amplituden $V_{O} = 22V$. Der skal være plads til to basis-emitter strækninger for udgangstrinnet, noget lignende til den øvrige elektronik og ripple i effektforsyningen og 10% på netspændingen så effektforsyningen bør placeres cirka 5V højere end kravet til V_{O} og det giver værdien til +-27V.

$$P_O \coloneqq 30 \; \boldsymbol{W} \qquad \qquad R_L \coloneqq 8 \; \boldsymbol{\Omega}$$

$$P_O = \frac{{V_{rms}}^2}{R_L} \qquad V_{rms} \coloneqq \sqrt{R_L \cdot P_O} = 15.49 \text{ V}$$

$$V_O := V_{rms} \cdot \sqrt{2} = 21.91 \ V$$

$$V_{CC}\!\coloneqq\!1.1\!\cdot\!22\;\pmb{V}\!+\!2\!\cdot\!0.7\;\pmb{V}\!+\!2\!\cdot\!0.7\;\pmb{V}\!=\!27\;\pmb{V}$$

$$V_{EE}\!\coloneqq\!-V_{CC}\!=\!-27~\textbf{\textit{V}}$$

Strømniveauet

Strømniveauet i udgangstrinnet estimeres. Med 8Ω som den nominelle belastning bør der tages udgangspunkt i $R_L = 6\Omega$. Strømmens spidsværdi bliver $I_{MAX} = 3,65A$ og der må forventes en middelstrøm fra effektforsyningen på $I_{DC} = 1,16A$. Hvis den værdi holder så bliver den tilførte effekt på 67W ved 30W afgivet i nominelt 8Ω og virkningsgraden er 45%.

$$R_L \coloneqq 6 \Omega$$

$$I_{MAX} = \frac{V_O}{R_L} = 3.65 \ \boldsymbol{A}$$

$$I_{DC}\!\coloneqq\!\frac{I_{MAX}}{\pi}\!=\!1.16~{\it A}\qquad {\rm loc}~{\rm half~wave}$$

$$P_{CC}\!\coloneqq\!V_{CC}\!\cdot\!\left(I_{M\!A\!X}\!-\!I_{D\!C}\right)\!=\!67.21~\boldsymbol{W}$$

$$\eta \coloneqq \frac{P_O}{P_{CC}} \cdot 100 = 44.64$$

Effekttabet

Effekttabet i udgangstransistorerne T_9 og T_{10} bliver $V_{CC}V_O/\pi R_L = 32W$ samlet og derfor forventes et tab på 16W i hver transistor. Det danner udgangspunktet for en senere beregning af køleprofilen.

$$P_{CC} \coloneqq \frac{V_{CC} \cdot V_O}{\boldsymbol{\pi} \cdot R_L} = 31.38 \; \boldsymbol{W}$$

-

<u>Forstærkningen</u>

$$A_{CL}\!\coloneqq\!\frac{15.5}{0.5}\!=\!31$$

$$R_5 \coloneqq 1 \ \boldsymbol{k\Omega}$$

$$A_{CL} = 1 + \frac{R_6}{R_5} \xrightarrow{solve, R_6} 30 \cdot k\Omega$$

Forstærkningen indstilles så fuld udstyring på $U_{O\ RMS}=15,5\ V$ opnås ved ved $U_{I\ RMS}=0,5\ V$ på indgangen og indstilles af $A_{CL}=1+R_6/R_5=31$. Et valg af $R_5=1\ k\Omega$ giver $R_6=30\ k\Omega$.

AC DESIGNFORLØB

Den lave grænsefrekvens

$$C_1 \coloneqq 1 \, \mu F$$

$$R_2 \coloneqq 24 \ \boldsymbol{k\Omega}$$

$$f_1\!\coloneqq\!\frac{1}{2~\pmb{\pi}\!\cdot\! R_2\!\cdot\! C_1}\!=\!6.6~\pmb{Hz}$$

$$f_2 \coloneqq \frac{1}{2 \, \pi \cdot 1 \, k\Omega \cdot 100 \, \mu F} = 1.6 \, Hz$$

Den lave grænsefrekvens fastsættes af C_1 og R_2 til 6,6Hz og kondensator C_4 skal blot være "stor" så spændingsvariationen over den bliver "lille" i sammenligning med værdien over R_5 for at holde forvrængningen nede. Det skyldes at en aluminium elektrolyt kondensator ikke er en lineær komponent. En typisk værdi på 100 μ F giver 1,6 Hz.

Transkonduktansen

$$I_E \coloneqq 5 \ \textit{mA}$$

$$U_T \coloneqq 26 \,\, {\color{red} mV}$$

$$g_m := \frac{I_E}{2 \cdot U_T} = 0.096 \ S$$

Transkonduktansen gm i differentialtrinnet T₁ ... T₄ beregnes til 96 mS.

Åben-sløjfe forstærkningen

$$\beta_7 = 100$$

$$\beta_0 = 30$$

$$R_C \coloneqq 5.1 \ \boldsymbol{k\Omega}$$

$$\beta_5\!\coloneqq\!325$$

$$A_{DC} := g_m \cdot \beta_5 \cdot R_C = 159.4 \cdot 10^3$$

Åben-sløjfe forstærkningen beregnes fra transkonduktansen, strømforstærkningen i T_5 og indgangsmodstanden på udgangstrinnet ved basis af T_7 og T_8 der giver et estimat på R_C i formlen. Indgangsmodstanden for en emitterfølger er belastningen R_L gange med den samlede strømforstærkning til R_C = 18k Ω . DC forstærkningen beregnes derefter til A_{DC} = 160 000 ved en belastning på R_L = 6 Ω .

<u>Kompenseringen</u>

$$C_u = 10 \ pF$$

$$f_H \!\coloneqq\! \frac{1}{2 \; \boldsymbol{\pi} \!\cdot\! R_C \!\cdot\! C_u} \!=\! 3.1 \; \boldsymbol{MHz}$$

$$f_0 = \frac{f_H}{A_{DC}} = 19.58 \; Hz$$

$$f_P := A_{CL} \cdot f_0 = 607 \; Hz$$

$$C_C \coloneqq \frac{1}{2 \; \boldsymbol{\pi} \cdot f_P \cdot \beta_5 \cdot R_C} = 158.2 \; \boldsymbol{pF}$$

$$C_C \!\coloneqq\! \frac{1}{2~\boldsymbol{\pi}\!\cdot\! f_0\!\cdot\! \beta_5\!\cdot\! R_C} \!=\! 4.9~\boldsymbol{nF}$$

Kompenseringen skal sikre stabilitet ved at reducere forstærkningen til en ved den laveste af de høje poler der antages givet af Rc og C_{μ} for T_5 , T_7 og T_8 i parallel. Antages værdien til 10 pF findes $f_H = 3,3$ MHz og den dominerende pol findes til $f_0 = f_H/A_{DC} = 20$ Hz. Ved den aktuelle forstærkning på $A_{CL} = 31$ kan den dominerende pol haves til $f_P = A_{CL}f_0 = 607$ Hz som er tilstrækkelig for stabilitet. Herefter beregnes $C_6 = 1/2\pi f_P \beta_5 R_C = 158$ pF.

Slew rate

$$SR \coloneqq \frac{I_E}{C_C} = 1 \frac{V}{\mu s}$$

Slew rate værdien bliver SR = I_E/C_6 = 31 V/ μ s der fuldt tilstrækkelig for musikformal som er begrænset til SR = $2\pi f U_0$ = 2 V/ μ s ved frekvensen 20 kHz.

KØLEPROFIL

Chiptemperaturen

Køleprofilet for udgangstransistorerne beregnes ud fra specifikationen af hvad temperaturen på transistorens chip må være ved 16 W afsat effekt. Det benævnes T_j for junction temperature.

Chiptemperaturen må for 2N3055 maksimalt være 180°C ved 16 W afsat effekt, men man bør aldrig gå til grænsen så her fastsættes værdien konservativt til $T_j = 100$ °C. Med en omgivelsestemperatur pa 25°C skal temperaturstigningen holdes nede på 75°C.

$$\frac{100 - 25}{16} - 1.52 = 3.168$$

Den termiske modstand

 $0.657 \cdot 16 = 10.51$

$$R_K \coloneqq 10.51 - 1.52 \cdot 2 = 7.47$$

Den termiske modstand fra junction til omgivelser ved $P_C = 22$ W er på 10,5°C/W. Den termiske modstand fra junction til monteringsflade er 1,52°C/W ifølge databladet og der må påregnes en lignende værdi for selve montagen på køleprofilet så kravet bliver omkring 7,5°C/W for køleprofilets termiske modstand til omgivelserne (køleprofilets K værdi).

SOA

Maksimum ratings for 2N3055 er 115W, 60V og 15A.

Grænseværdierne bliver derfor:

$$\frac{115 \ W}{60 \ V} = 1.9 \ A$$

$$\frac{115 \ W}{15 \ A} = 7.67 \ V$$