# Problem 1.

(a)  $rot\bar{F}_{1} = \left(\frac{\partial F_{z}}{\partial y} - \frac{\partial F_{y}}{\partial z}\right)\hat{n_{x}} + \left(\frac{\partial F_{x}}{\partial z} - \frac{\partial F_{z}}{\partial x}\right)\hat{n_{y}} + \left(\frac{\partial F_{y}}{\partial x} - \frac{\partial F_{x}}{\partial y}\right)\hat{n_{z}} = x^{2}\hat{n_{y}} - y\hat{n_{z}} \neq 0$ 

So  $F_1$  is not conservative.

$$rot\bar{F}_2 = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right)\hat{n_x} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right)\hat{n_y} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)\hat{n_z} = 0$$

So  $F_2$  is conservative.

(b) Choose the path from (-1,0,0) through (-1,1,0), (1,1,0) to (1,0,0).

$$W = 0 + \int_{-1}^{1} -2x dx + 0 = 0$$

It is equal to the value obtained in my previous homework.

(c) Suppose the corresponding potential energy at point (0,0,0) to be zero.

$$U_1 = -\int_0^{-1} -2x dx = 1$$

$$U_2 = -\int_0^1 -2x dx = 1$$

$$U_2 = U_2$$

The corresponding potential energy at two points are the same.

## Problem 2.

(a)



Figure 1:  $F(r) = -\frac{Ay}{x^2+y^2}\hat{n_x} + \frac{Ax}{x^2+y^2}\hat{n_y}$ 

(b)

$$rot\bar{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right)\hat{n_x} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right)\hat{n_y} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)\hat{n_z}$$

$$= \left[\frac{A(x^2 + y^2) - 2Ax^2}{(x^2 + y^2)^2} + \frac{A(x^2 + y^2) - 2Ay^2}{(x^2 + y^2)^2}\right]\hat{n_z}$$

$$= 0$$

when  $x^2 + y^2 \neq 0$  So the field has zero curl at every point of space except the z axis.

(c) Let  $x = \cos \theta$ ,  $y = \sin \theta$ 

$$F = -A\sin\theta \hat{n_x} + A\cos\theta \hat{n_y} = A\hat{n_\varphi}$$

where  $\varphi = \theta + \frac{\pi}{2}$ 

$$W = \int_0^{2\pi} A \hat{n_\varphi} d\varphi \hat{n_\varphi} = 2\pi A$$

(d) No, although the result of (b) suggests that the force field is conservative while the result of (c) shows that the field did work when a particle moved a circle in it, they do not contradicts with each other. It is because the field is not continuous on the z axis, so that the curl can no longer judge whether the field is conservative. From the result of (c) we can know that the field is not conservative.

## Problem 3.

Suppose the corresponding potential energy at point (0,0) to be zero.

(a)

$$F(r) = -\frac{\partial U}{\partial x}\hat{n_x} - \frac{\partial U}{\partial y}\hat{n_y} = -(y^2 + 2xy)\hat{n_x} - (x^2 + 2xy)\hat{n_y}$$

(b)



Figure 2:  $F(r) = -(y^2 + 2xy)\hat{n_x} - (x^2 - 2xy)\hat{n_y}$ 

(c) The figure is symmetrical to the line y = x

The nearer to the origin, the sparser the equipotential lines.

## Problem 4.

Suppose right to be the positive direction.

(a) Suppose the maximum speed occurs when the block is x cm right of the origin equilibrium point.

$$\Delta E_p = \frac{1}{2}k_2(x_0^2 - x^2) + \frac{1}{2}k_1(x_0^2 - x^2)$$

When x = 0,

$$\Delta E_{pmax} = \frac{1}{2}(k_2 + k_1)x_0^2 = 50.625J$$
 
$$\Delta E_{pmax} + \Delta E_{kmax} = 0 \Longrightarrow \frac{1}{2}mv_{max}^2 = 50.625$$
 
$$v_{max} = \frac{3\sqrt{15}}{2}m/s$$

The max speed occurs at the origin equilibrium point.

(b)  $E_{p0} = \frac{1}{2}(k_2 - k_1)x_0^2$   $E_p = \frac{1}{2}(k_2 - k_1)x^2$ 

$$E_{p0} = E_p \Longrightarrow x = -15cm$$

 $F_m = k_1|x| = 375N$ 

## Problem 5.

(a)  $E_p = mg\Delta h = \rho Shg\Delta h = 1000 \cdot 3.0 \times 10^6 \cdot 1 \cdot 9.8 \cdot 149.5 = 4.3953 \times 10^{12} J$ 

(b) 
$$W=0.9\Delta E_p=0.9mg\Delta h=0.9\rho Shg(H-\frac{h}{2})=3.6\times 10^9 J$$
 
$$-\frac{1}{2}h^2+150h-\frac{20}{147}=0$$
 
$$h=9.070^{-4}m$$
 
$$V=Sh=2721.1m^2$$

(c) 
$$E_p = mg\Delta h\rho Shg\Delta h = 1000 \cdot 3.0 \times 10^6 \cdot 150 \cdot 9.8 \cdot 7.5 = 3.3075 \times 10^{14} J = 9.1875 \times 10^7 kWh$$

## Problem 6.

(a)

$$F(r) = -\frac{dU}{dr} = U_0 \left[ \frac{12}{r} \left( \frac{R_0}{r} \right)^{12} - \frac{12}{r} \left( \frac{R_0}{r} \right)^6 \right]$$

The first term is responsible for repulsion and the second term is responsible for attraction.

(b)  $U_0$  interprets the minimum potential energy associated with interaction between a pair of neutral atoms or molecules.

 $R_0$  interprets the distance r between a pair of neutral atoms or molecules at the minimum potential energy associated with interaction between them.

(c)

$$F(x) \approx -U''(x_0)(x - x_0) = -U_0 \left[ \frac{156}{R_0^2} \left( \frac{R_0}{R_0} \right)^{12} - \frac{84}{R_0^2} \left( \frac{R_0}{R_0} \right)^6 \right] (x - R_0) = -\frac{72U_0}{R_0^2} (x - R_0)$$

$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{72U_0}{mR_0^2}}$$

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{mR_0^2}{72U_0}}$$

$$x(t) = R_0 + A\cos(\sqrt{\frac{72U_0}{mR_0^2}}t + \varphi)$$

(d) The oscillation near the point  $x = R_0$  is a harmonic oscillation.





Figure 3: graphs of both the potential energy and the force

## Problem 7.

$$\Delta E_k + \Delta E_p = 0 \Longrightarrow \frac{1}{2} m v^2 = E - U(x)$$

$$v = \sqrt{\frac{2[E - U(x)]}{m}} = \frac{dx}{dt}$$

$$dt = \sqrt{\frac{m}{2[E - U(x)]}} dx$$

Do integrals on both sides,

$$t = \int_{x_1}^{x_2} \sqrt{\frac{m}{2[E - U(x)]}} dx$$
 
$$T = 2t = 2 \int_{x_1}^{x_2} \sqrt{\frac{m}{2[E - U(x)]}} dx$$

## Problem 8.

(a)

$$T = 2 \int_{x_1}^{x_2} \sqrt{\frac{m}{2(E - U_0 \tan^2 \alpha x)}} dx$$

$$= \sqrt{2m} \int_{x_1}^{x_2} \cos \alpha x \sqrt{\frac{1}{E \cos^2 \alpha x - U_0 \sin^2 \alpha x}} dx$$

$$= \sqrt{2m} \frac{1}{\alpha} \int_{\sin \alpha x_1}^{\sin \alpha x_2} \sqrt{\frac{1}{E - (E + U_0)u^2}} du \quad (u = \sin \alpha x)$$

$$= \frac{1}{\alpha} \sqrt{\frac{2m}{E + U_0}} \int_{\sin \alpha x_1}^{\sin \alpha x_2} \sqrt{\frac{1}{\frac{E}{E + U_0} - u^2}} du$$

$$= \frac{1}{\alpha} \sqrt{\frac{2m}{E + U_0}} \left[ \arcsin \frac{u}{\sqrt{\frac{E}{E + U_0}}} \right]_{\sin \alpha x_1}^{\sin \alpha x_2}$$

$$= \frac{1}{\alpha} \sqrt{\frac{2m}{E + U_0}} \left( \arcsin \sqrt{\frac{E + U_0}{E}} \sin \alpha x_2 - \arcsin \sqrt{\frac{E + U_0}{E}} \sin \alpha x_1 \right)$$

(b) 
$$F(x) = -U'(x) = -2U_0 \tan \alpha x \frac{1}{\cos^2 \alpha x} \alpha = -2U_0 \alpha \frac{\sin \alpha x}{\cos^3 \alpha x}$$

When F(x) = 0,  $x_0 = 0$ 

$$U''(x_0) = 2U_0 \alpha \frac{\alpha \cos^4 \alpha x_0 + \sin \alpha x_0 (3\alpha \cos^2 \alpha x_0 \sin \alpha x_0)}{\cos^6 \alpha x_0} = 2U_0 \alpha^2 \frac{\cos^2 \alpha x_0 + 3\sin^2 \alpha x_0}{\cos^4 \alpha x_0} = 2U_0 \alpha^2$$
$$F(x) \approx -U''(x_0)(x - x_0) = -2U_0 \alpha^2 x$$
$$T' = 2\pi \sqrt{\frac{m}{k}} = \frac{\pi}{\alpha} \sqrt{\frac{2m}{U_0}}$$

When  $E \to U_0 \tan^2 \alpha x$ ,

$$\arcsin\sqrt{\frac{E+U_0}{E}}\sin\alpha x \to \arcsin\sqrt{\frac{1+tan^2\alpha x}{tan^2\alpha x}}\sin\alpha x = \arcsin\frac{\sin\alpha x}{|\sin\alpha x|}$$

When  $x_2 \to 0^+$ ,

$$\arcsin \frac{\sin \alpha x}{|\sin \alpha x|} \to \frac{\pi}{2}$$

When  $x_1 \to 0^-$ ,

$$\arcsin \frac{\sin \alpha x}{|\sin \alpha x|} \to -\frac{\pi}{2}$$

$$T = \frac{1}{\alpha} \sqrt{\frac{2m}{E + U_0}} \left(\frac{\pi}{2} + \frac{\pi}{2}\right) \to \frac{\pi}{\alpha} \sqrt{\frac{2m}{U_0(1 + \tan^2 \alpha x)}} = \frac{\pi}{\alpha} \sqrt{\frac{2m}{U_0}}$$

So we can concluded that in small oscillations, the approx of T is accurate.

(c)



Figure 4:  $F(x) = -2U_0 \alpha \frac{\sin \alpha x}{\cos^3 \alpha x}$