

Find a vertex cover of no more than truce the optimal number of vertices.

	×	At which I
initialization	^	y visited 0 1 2 3 4 5 FFFFFF
iteration 1	0	
iteration 2	1 -	1 TT F F F F F → break it was visited, so we move to the next vertex
iteration 3	2	
		0 - visited, we move to the next adjacont 1 - visited, we move to the next vertex 5 TTTFFT
iteration 4	3	1 - visited, so we move to the next vertex
iteration 5	4	1 = visited, we go to the next adjacent vertex 5 = visited too, we move to the next vertex
Heration 6	5	- visited and we there aren't more vertices to be processed -> STOP

The vertex cover is formed by the vertices which were visited (visited [x] = True) ->

=> The vertex cover found by the algorithm contains the vertices: 0,1,2,5.

