Obliczenia

Pomiary

Promienie okręgów *R* obliczyliśmy w następujący sposób:

$$Z = \sqrt{L^2 + A^2},$$

$$\tan \beta = \frac{L}{A}$$

$$\beta = \tan^{-1}\frac{I}{Z}$$

$$\cos(45^\circ + \beta) = \frac{\frac{Z}{2}}{R}$$

$$R = \frac{Z}{2\cos(45^\circ + \beta)}$$

$$Z = \sqrt{40^2 + 80^2}$$
 mm = 89.44 mm

$$\beta = \tan^{-1}\frac{40}{90} \approx 27^{\circ}$$

$$R = \frac{89.44 \text{ mm}}{2\cos(45^\circ + 27^\circ)} = 141.4 \text{ mm}$$

$Z=\sqrt{L^2+A^2},$			
$\operatorname{gdzie} A = 80 \ \mathrm{mm}$			
$\tan\beta = \frac{L}{A}$			6.1/4.0
$\beta = \tan^{-1} \frac{L}{Z}$			9
$\cos(45^\circ + \beta) = \frac{\frac{Z}{2}}{R}$		16	Syll.
$R = \frac{Z}{2\cos(45^\circ + \beta)}$		"SHON	,
Na przykład dla $L=40~\mathrm{m}$	nm,	15/5010	
$Z = \sqrt{40^2 + 80^2} \text{mm} = 8$	89.44 mm		
$\beta = \tan^{-1}\frac{40}{80} \approx 27^{\circ}$	PHILL		
$\beta = \tan^{-1} \frac{40}{80} \approx 27^{\circ}$ $R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$	141.4 mm		
	141.4 mm	I_H , A	
$R = \frac{89.44 \text{ mm}}{2\cos(45^\circ + 27^\circ)} =$	KIZ	I_{H}, A $L = 45 \text{ mm}$	L = 50 mm
	L = 40 mm $R = 141.4 mm$	I_{H}, A $L = 45 \text{ mm}$ $R = 170.2 \text{ mm}$	L = 50 mm $R = 209.8 mm$
$R = \frac{89.44 \text{ mm}}{2\cos(45^\circ + 27^\circ)} =$	L = 40 mm	L = 45 mm	
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV	L = 40 mm $R = 141.4 mm$	L = 45 mm $R = 170.2 mm$	R = 209.8 mm
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4	L = 40 mm $R = 141.4 mm$ 0.446	L = 45 mm R = 170.2 mm 0.359	R = 209.8 mm 0.303
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6	L = 40 mm $R = 141.4 mm$ 0.446 0.455	L = 45 mm $R = 170.2 mm$ 0.359 0.377	R = 209.8 mm 0.303 0.318
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6 2.8	L = 40 mm $R = 141.4 mm$ 0.446 0.455 0.483	L = 45 mm $R = 170.2 mm$ 0.359 0.377 0.388	R = 209.8 mm 0.303 0.318 0.322
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6 2.8 3.0	L = 40 mm $R = 141.4 mm$ 0.446 0.455 0.483 0.503	L = 45 mm $R = 170.2 mm$ 0.359 0.377 0.388 0.394	R = 209.8 mm 0.303 0.318 0.322 0.328
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6 2.8 3.0 3.2	L = 40 mm $R = 141.4 mm$ 0.446 0.455 0.483 0.503 0.511	L = 45 mm $R = 170.2 mm$ 0.359 0.377 0.388 0.394 0.400	R = 209.8 mm 0.303 0.318 0.322 0.328 0.329
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6 2.8 3.0 3.2 3.4	L = 40 mm $R = 141.4 mm$ 0.446 0.455 0.483 0.503 0.511 0.524	L = 45 mm $R = 170.2 mm$ 0.359 0.377 0.388 0.394 0.400 0.416	R = 209.8 mm 0.303 0.318 0.322 0.328 0.329 0.337
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6 2.8 3.0 3.2 3.4 3.6	L = 40 mm $R = 141.4 mm$ 0.446 0.455 0.483 0.503 0.511 0.524 0.543	L = 45 mm $R = 170.2 mm$ 0.359 0.377 0.388 0.394 0.400 0.416 0.422	R = 209.8 mm 0.303 0.318 0.322 0.328 0.329 0.337 0.338
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8	L = 40 mm $R = 141.4 mm$ 0.446 0.455 0.483 0.503 0.511 0.524 0.543 0.567	L = 45 mm $R = 170.2 mm$ 0.359 0.377 0.388 0.394 0.400 0.416 0.422 0.470	R = 209.8 mm 0.303 0.318 0.322 0.328 0.329 0.337 0.338 0.361
$R = \frac{89.44 \text{ mm}}{2\cos(45^{\circ} + 27^{\circ})} =$ U, kV 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0	L = 40 mm $R = 141.4 mm$ 0.446 0.455 0.483 0.503 0.511 0.524 0.543 0.567 0.570	L = 45 mm $R = 170.2 mm$ 0.359 0.377 0.388 0.394 0.400 0.416 0.422 0.470 0.484	R = 209.8 mm 0.303 0.318 0.322 0.328 0.329 0.337 0.338 0.361 0.382

Obliczenie wartości indukcji pola magnetycznego

$$B = kI_H$$
,

gdzie

$$k = \left(\frac{4}{5}\right)^{\frac{3}{2}} \mu_0 \frac{N}{R_H} = 0.0034669 \frac{T}{A}$$

 μ_0 – bezwzględna przenikalność magnetyczna próżni,

N – liczba zwojów w cewkach Helmholtza,

 R_H – promień cewek (równy odległości między cewkami)

U,kV	B,mT		
υ,κν	R = 141.4 mm	R = 170.2 mm	R = 209.8 mm
2.4	1.546	1.245	1.050
2.6	1.577	1.307	1.102
2.8	1.675	1.345	1.116
3.0	1.744	1.366	1.137
3.2	1.772	1.387	1.141
3.4	1.817	1.442	1.168
3.6	1.883	1.463	1.172
3.8	1.966	1.629	1.252
4.0	1.976	1.678	1.324
4.2	2.035	1.688	1.300
4.4	2.070	1.779	1.362
4.6	2.118	1.827	1.373

Zależność między napięciem U, przyspieszającym elektrony a indukcją B pola magnetycznego

$$eU = \frac{1}{2}mv^2 \Rightarrow \frac{e}{m} = \frac{1}{U} \cdot \frac{v^2}{2}$$

$$\frac{mv^2}{R} = evB \Rightarrow v = \frac{e}{m}RB$$

$$\frac{e}{m} = \frac{1}{U} \cdot \frac{\left(\frac{e}{m}RB\right)^2}{2} \Rightarrow U = \frac{eR^2B^2}{2m}$$

$$B = \sqrt{\frac{2mU}{eR^2}}$$

Zależność indukcji B pola magnetycznego od napięcia U, przyspieszającego elektrony

Zależność $U(R^2B^2)$ dla wszystkich promieni

6

Współczynniki kierunkowe prostych wyznaczone metodą regresji liniowej

R, mm	$a, \frac{V}{m^2T^2}$	$u(a), \frac{V}{m^2T^2}$
141.4	$5.135 \cdot 10^{10}$	$1.343 \cdot 10^9$
170.2	$3.992 \cdot 10^{10}$	$2.844 \cdot 10^{9}$
209.8	$5.925 \cdot 10^{10}$	$4.811 \cdot 10^9$

Zapisy skrócone

R = 141.4 mm	$a = 5.13(13) \cdot 10^{10} \frac{\text{V}}{\text{m}^2\text{T}^2}$
R = 170.2 mm	$a = 3.99(28) \cdot 10^{10} \frac{\text{V}}{\text{m}^2\text{T}^2}$
R = 209.8 mm	$a = 5.93(48) \cdot 10^{10} \frac{\text{V}}{\text{m}^2\text{T}^2}$

Wyznaczenie ładunku właściwego elektronu

$$U = \frac{eR^2B^2}{2m}$$

$$U = a \cdot R^2 B^2$$

$$a = \frac{e}{2m}$$

$$\frac{e}{m} = 2a$$

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u\left(\frac{e}{m}\right) = \sqrt{\left(\frac{\partial \frac{e}{m}}{\partial a}u(a)\right)^2} = \sqrt{\left(2u(a)\right)^2}$$

$$\frac{V}{m^2 T^2} = \frac{\frac{kg \cdot m^2}{A \cdot s^3}}{m^2 \cdot \left(\frac{kg}{s^2 \cdot A}\right)^2} = \frac{A \cdot s}{kg} = \frac{C}{kg}$$

$a = \frac{e}{2m}$		
$\frac{e}{m} = 2a$		1/3
Niepewność ładunku właściwego	elektronu z prawa propagacji niep	ewności
$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$		ewności
$u\left(\frac{e}{m}\right) = \sqrt{\left(\frac{\partial \frac{e}{m}}{\partial a}u(a)\right)^2} = \sqrt{(2u^2)^2}$		
Rachunek jednostek:		
Rachunek jednostek: $\frac{V}{m^2T^2} = \frac{\frac{kg \cdot m^2}{A \cdot s^3}}{m^2 \cdot \left(\frac{kg}{s^2 \cdot A}\right)^2} = \frac{A \cdot s}{kg} =$		
	$\frac{C}{kg}$ $\frac{e}{m'}\frac{C}{kg}$	$u\left(\frac{e}{m}\right), \frac{C}{kg}$
$\frac{V}{m^2T^2} = \frac{\frac{kg \cdot m^2}{A \cdot s^3}}{m^2 \cdot \left(\frac{kg}{s^2 \cdot A}\right)^2} = \frac{A \cdot s}{kg} =$	$\frac{\frac{\text{C}}{\text{kg}}}{\frac{e}{m'}\frac{\text{C}}{\text{kg}}}$ $1.027 \cdot 10^{11}$	$2.685 \cdot 10^9$
$\frac{V}{m^2T^2} = \frac{\frac{kg \cdot m^2}{A \cdot s^3}}{m^2 \cdot \left(\frac{kg}{s^2 \cdot A}\right)^2} = \frac{A \cdot s}{kg} =$ R, mm	$\frac{C}{kg}$ $\frac{e}{m'}\frac{C}{kg}$	

R = 141.4 mm	$\frac{e}{m} = 1.027(27) \cdot 10^{11} \frac{C}{\text{kg}}$
R = 170.2 mm	$\frac{e}{m} = 7.98(57) \cdot 10^{10} \frac{C}{kg}$
R = 209.8 mm	$\frac{e}{m} = 1.185(96) \cdot 10^{11} \frac{C}{\text{kg}}$

Obliczenie ładunku właściwego elektronu

Średnią ważoną współczynnika ładunku właściwego elektronu obliczyliśmy korzystając ze wzoru:

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i w_i}{\sum_{i=1}^{N} w_i}, \quad \text{gdzie} \quad w_i = \frac{1}{u^2(x_i)}, \quad u(\bar{x}) = \sqrt{\frac{1}{\sum_{i=1}^{N} w_i}}$$

dla naszych danych:

$$\left(\frac{e}{m}\right)_{sr} = 9.973 \cdot 10^{10} \frac{C}{kg}$$

$$u\left(\left(\frac{e}{m}\right)_{ST}\right) = 2.354 \cdot 10^9 \, \frac{C}{\text{kg}}$$

Zapis skrócony:

$$\left(\frac{e}{m}\right)_{sr} = 9.97(24) \cdot 10^{10} \frac{\mathrm{C}}{\mathrm{kg}}$$

Test zgodności z wartością tablicową

Warunek zgodności pomiaru z wartością dokładną

$$|y - y_0| < U(y)$$

Niepewność rozszerzona

$$U(y) = k \cdot u(y)$$

$$k = 2$$

$$U(e/m) = 4.708 \cdot 10^9 \, \frac{\text{C}}{\text{kg}}$$

Wartość tablicowa ładunku właściwego elektronu

$$e = 1.602176634 \cdot 10^{-19} \,\mathrm{C}$$

$$m = 9.10938291 \cdot 10^{-31} \text{ kg}$$

$$e/m = 1.759 \cdot 10^{11} \frac{\text{C}}{\text{kg}}$$

Porównanie naszego wyniku z wartością tablicową

$$e/m = 0.997 \pm 0.047 \cdot 10^{11} \frac{\text{C}}{\text{kg}}$$
 $e/m = 1.759 \cdot 10^{11} \frac{\text{C}}{\text{kg}}$

$$|0.997 - 1.759| \cdot 10^{11} = 0.762 \cdot 10^{11} > 0.047 \cdot 10^{11}$$

Otrzymany przez nas wynik nie jest zgodny z wartością tablicową ładunku właściwego elektronu. Rząd wielkości naszego wyniku to 10^{11} , co odpowiada rzędowi wielkości wartości tablicowej. To sugeruje, że nasze założenia eksperymentalne były prawidłowe, ale mogliśmy popełnić błędy w trakcie pk obliczę
"iu indukcji
"ednak może się or
"ednak może się or odczytywania, zapisywania pomiarów lub podczas wykonywania obliczeń. Być może błędnie przyjęliśmy $k=0.0034669~{{
m T}\over {
m A}}$ we wzorze $B=kI_H$ przy obliczaniu indukcji pola magnetycznego. Przyjęliśmy taką wartość k na postawie instrukcji do ćwiczenia, jednak może się ona różnić w zależności od używanego podczas eksperymentu sprzętu.

Zestawienie wyników końcowych

współczynnik kierunkowy prostej dopasowania do wykresu $U = f(R^2B^2)$ dla $R = 141.4 \ mm$	$a = 5.13(13) \cdot 10^{10} \frac{\text{V}}{\text{m}^2 \text{T}^2}$
współczynnik kierunkowy prostej dopasowania do wykresu $U = f(R^2B^2)$ dla $R = 170.2 \ mm$	$a = 3.99(28) \cdot 10^{10} \frac{\text{V}}{\text{m}^2 \text{T}^2}$
współczynnik kierunkowy prostej dopasowania do wykresu $U = f(R^2B^2)$ dla $R = 209.8 \ mm$	$a = 5.93(48) \cdot 10^{10} \frac{\text{V}}{\text{m}^2\text{T}^2}$
ładunek właściwy elektronu	$e/m = 0.997(24) \cdot 10^{11} \frac{\text{C}}{\text{kg}}$

Wnioski

Otrzymany wynik, choć niezgodny z wartością tablicową ładunku właściwego elektronu, ma ten sam rząd wielkości (10^{11}). To wskazuje na ogólną poprawność podejścia metodologicznego. Rozbieżność pomiędzy wynikiem eksperymentalnym a wartością tablicową sugeruje możliwość wystąpienia błędów w trakcie odczytywania i zapisywania pomiarów. Należy zwrócić uwagę na dokładność użytych przyrządów pomiarowych, gdyż mogły one wpłynąć na końcowy wynik. Warto upewnić się, że odczyty zasilania lampy Thomsona są poprawne. Być może w błędny sposób wyznaczyliśmy promienie okręgów R lub zależność między napięciem U, przyspieszającym elektrony a indukcją B pola magnetycznego. Należy upewnić się, że przyjęcie wartości $k=0.0034669\,\frac{\mathrm{T}}{\mathrm{A}}$ jest właściwe dla dostępnego w laboratorium układu Helmholtza. Warto również porównać nasze wyniki z wynikami otrzymanymi przez inne grupy, które podjęły się przeprowadzenia doświadczenia. Pomimo występujących rozbieżności, eksperyment ten ma istotne znaczenie dydaktyczne i praktyczne, umożliwiając głębsze zrozumienie zjawisk związanych z elektronami i ich oddziaływaniem z polem magnetycznym.