VinMin = 11.0VVinMax = 13.0VVout = 3.6VVout Sch = 3.6Vlout = 30.0A

Device = TPS546D24ARVFR Topology = Buck Created = 2023-12-27 22:49:32.824 BOM Cost = \$8.46 BOM Count = 31 Total Pd = 6.55W

WEBENCH ® **Design Report**

Design: 15 TPS546D24ARVFR TPS546D24ARVFR 11V-13V to 3.60V @ 30A

Design Alerts

Component Selection Information

The TPS546D24A is a PMBus(TM) device with key features listed below: PMBus(TM) features marked with * are included in WEBENCH(R) Power Designer. - Adaptive Voltage Scaling (AVS) through VOUT_COMMAND*, - Output voltage and current monitoring, - Thermal Shutdown, - Programmable over current protection, - OCP,OV, UV, OT Levels, - Selectable Internal Compensation*, - Selectable Switching Frequency*,

- Turn-On and Turn-Off Delays, UVLO*, Soft-Start*, OCP* and Soft-Stop. Use the Advanced Options on the left side to set the PMBus(TM)
- commands. Please refer to the TPS546D24A datasheet and visit http://www.ti.com/pmbus for more information.

Electrical BOM

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cavin	Taiyo Yuden	TMK212BJ105KG-T Series= X5R	Cap= 1.0 uF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
Cbp1v5	MuRata	GRM188R60J105KA01D Series= X5R	Cap= 1.0 uF ESR= 6.065 mOhm VDC= 6.3 V IRMS= 1.36934 A	1	\$0.01	0603 5 mm ²
Cbst	AVX	08053C104KAT2A Series= X7R	Cap= 100.0 nF ESR= 280.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Cbulk	Panasonic	20SVPF120M Series= SVPF	Cap= 120.0 uF ESR= 25.0 mOhm VDC= 20.0 V IRMS= 3.2 A	1	\$0.57	CAPSMT_62_F61 74 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Cbyp1	Taiyo Yuden	TMK212BJ105KG-T Series= X5R	Cap= 1.0 uF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.03	0805 7 mm ²
Cbyp2	MuRata	GRM155R61E222KA01D Series= X5R	Cap= 2.2 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
Cdiff	Kemet	C0201C101K3GACTU Series= C0G/NP0	Cap= 100.0 pF VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
Cen	MuRata	GRM155R71A104KA01D Series= X7R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
Cin	MuRata	GRM32ER61E226KE15L Series= X5R	Cap= 22.0 uF ESR= 2.0 mOhm VDC= 25.0 V IRMS= 3.67 A	4	\$0.23	1210 15 mm ²
Cinx	MuRata	GRM155R71E472KA01D Series= X7R	Cap= 4.7 nF ESR= 1.0 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
Cout	MuRata	GRM32ER61C476KE15L Series= X5R	Cap= 47.0 uF ESR= 3.037 mOhm VDC= 16.0 V IRMS= 4.59346 A	1	\$0.17	1210_280 15 mm ²
Coutx	Panasonic	16SVPF180M Series= SVPF	Cap= 180.0 uF ESR= 22.0 mOhm VDC= 16.0 V IRMS= 3.3 A	1	\$0.57	CAPSMT_62_F61 74 mm ²
Csnubber	Yageo	CC0805KRX7R9BB102 Series= X7R	Cap= 1.0 nF ESR= 1.0 mOhm VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
Cvdd	MuRata	GRM155R61A475MEAAD Series= X5R	Cap= 4.7 uF ESR= 1.0 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.02	0402_065 3 mm ²
L1	Coilcraft	XAL1010-681MEB	L= 680.0 nH 900.0 μOhm	1	\$1.71	XAL1010 160 mm ²
RSNSN	Vishay-Dale	CRCW040249R9FKED Series= CRCWe3	Res= 49.9 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
RSNSP	Vishay-Dale	CRCW040249R9FKED Series= CRCWe3	Res= 49.9 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Radrb	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Ravin	Vishay-Dale	CRCW040210R0FKED Series= CRCWe3	Res= 10.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rmsel1b	Vishay-Dale	CRCW040282K5FKED Series= CRCWe3	Res= 82.5 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rmsel1t	Yageo	AC0402FR-07205KL Series=?	Res= 205.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Rpg	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rsnubber	Stackpole Electronics Inc	CSR1206FT1R00 Series=?	Res= 1.0 Ohm Power= 500.0 mW Tolerance= 1.0%	1	\$0.04	1206 11 mm ²
Ruvlob	Vishay-Dale	CRCW04021K37FKED Series= CRCWe3	Res= 1.37 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Ruvlot	Vishay-Dale	CRCW040212K7FKED Series= CRCWe3	Res= 12.7 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rvselb	Vishay-Dale	CRCW04024K64FKED Series= CRCWe3	Res= 4.64 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rvselt	Vishay-Dale	CRCW04022K05FKED Series= CRCWe3	Res= 2.05 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
U1	Texas Instruments	TPS546D24ARVFR	Switcher	1	\$4.22	0

Operating Values

-	rating values			
#	Name	Value	Category	Description
1.		31		Total Design BOM count
2.	Total BOM	\$8.465		Total BOM Cost
3.	Cbulk IRMS	3.182 A	Capacitor	Bulk capacitor RMS ripple current
4.	Cbulk Pd	253.2 mW	Capacitor	Bulk capacitor power dissipation
5.	Cin IRMS	10.427 A	Capacitor	Input capacitor RMS ripple current
6.	Cin Pd	54.358 mW	Capacitor	Input capacitor power dissipation
7.	Cout IRMS	1.477 A	Capacitor	Output capacitor RMS ripple current
8.	Cout Pd	6.628 mW	Capacitor	Output capacitor power dissipation
9.	Coutx IRMS	552.95 mA	Capacitor	Output capacitor_x RMS ripple current
10.	Coutx Pd	6.727 mW	Capacitor	Output capacitor_x power loss
11.	Fpi	552.621 kHz	Compensation	Current Loop Pole Frequency
12.	Fpv	212.207 kHz	Compensation	Voltage Loop Pole Frequency
13.	Fzi	14.224 kHz	Compensation	Current Loop Zero Frequency
14.	Fzv	5.305 kHz	Compensation	Voltage Loop Zero Frequency
15.	ILOOP Gain	14.736		Recommended Current Loop Mid-band Gain
16.	VLOOP Gain	996.81 m	•	Recommended Voltage Loop Mid-band Gain
	Zout (Fco)	248.398 mOhm	•	Output Impedance at Crossover Frequency
	Zout (Fsw)	6.007 mOhm		Output Impedance at Switching Frequency
	IC lpk	33.516 A	IC .	Peak switch current in IC
	IC Ti	72.588 degC	IC	IC junction temperature
	ICThetaJA Effective	8.0 degC/W	IC	Effective IC Junction-to-Ambient Thermal Resistance
	lin Avg	8.812 A	IC	Average input current
23.	U1 Pd	5.324 W	IC	IC power dissipation
24.	lpp percentage	23.443 %	Inductor	Inductor ripple current percentage (with respect to average inductor
	the becomenda			current)
25.	L lpp	7.033 A	Inductor	Peak-to-peak inductor ripple current
	L1 Pd	813.71 mW	Inductor	Inductor power dissipation
	CPI	9.6 pF	PMBus	Selectable compensation parameter through pinstrapping
	CPV	37.5 pF	PMBus	Selectable compensation parameter through pinstrapping
	CZI	372.96 pF	PMBus	Selectable compensation parameter through pinstrapping
-	CZV	1.5 nF	PMBus	Selectable compensation parameter through pinstrapping
31.		200.0 µS	PMBus	Selectable compensation parameter through pinstrapping
32.	-	50.0 μS	PMBus	Selectable compensation parameter through pinstrapping
		•	PMBus	PMBus Vout Command
	PMBus Vout Scale	125.0 m	PMBus	PMBus Vout Scale Loop
٠	Loop		243	
35	RVI	30.0 kOhm	PMBus	Selectable compensation parameter through pinstrapping
	RVV	20.0 kOhm	PMBus	Selectable compensation parameter through pinstrapping
	Cbulk Pd	253.2 mW	Power	Bulk capacitor power dissipation
38.	Cin Pd	54.358 mW	Power	Input capacitor power dissipation
	Cout Pd	6.628 mW	Power	Output capacitor power dissipation
	Coutx Pd	6.727 mW	Power	Output capacitor_x power loss
	L1 Pd	813.71 mW	Power	Inductor power dissipation
	Snubber Pd	92.95 mW	Power	Snubber Power Dissipation
43.	Total Pd	6.551 W	Power	Total Power Dissipation
44.		5.324 W	Power	IC power dissipation
45.		2.949 kHz	System	Bode plot crossover frequency
	·		Information	· · · · · · · · · · · · · · · · · · ·
46.	Duty Cycle	28.663 %	System Information	Duty cycle
47.	Efficiency	94.281 %	System	Steady state efficiency
	•		Information	•

#	Name	Value	Category	Description
48.	FootPrint	534.0 mm ²	System Information	Total Foot Print Area of BOM components
49.	Frequency	550.0 kHz	System Information	Switching frequency
50.	Gain Marg	-37.762 dB	System Information	Bode Plot Gain Margin
51.	lout	30.0 A	System Information	lout operating point
52.	Low Freq Gain	89.2 dB	System Information	Gain at 1Hz
53.	Mode	CCM	System Information	Conduction Mode
54.	Phase Marg	63.075 deg	System Information	Bode Plot Phase Margin
55.	Pout	108.0 W	System Information	Total output power
56.	Vin	13.0 V	System Information	Vin operating point
57.	Vin p-p	238.727 mV	System Information	Peak-to-peak input voltage
58.	Vout	3.6 V	System Information	Operational Output Voltage
59.	Vout Tolerance	222.222 m%	System Information	Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable
60.	Vout p-p	42.14 mV	System Information	Peak-to-peak output ripple voltage

Design Inputs

Name	Value	Description	
lout	30.0	Maximum Output Current	
VinMax	13.0	Maximum input voltage	
VinMin	11.0	Minimum input voltage	
Vout	3.6	Output Voltage	
base_pn	TPS546D24A	Base Product Number	
source	DC	Input Source Type	
Та	30.0	Ambient temperature	
Vout Sch	3.6	Output voltage selected	

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 11.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

Design Assistance

- 1. Master key: 330B248541F6394ED110965082F3CA95[v1]
- 2. TPS546D24A Product Folder: http://www.ti.com/product/TPS546D24A: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.