Space Flight Plasma Data Analysis

K. H. Wright – UAHuntsville

J. I. Minow - NASA/MSFC

Outline of Presentation

- FPMU Description and its implementation on ISS
- FPP analysis
- PIP analysis
- LP analysis
- > ISS charging features
- Equatorial Ionospheric Features
- Extra: LP analysis of Laboratory Plasma Source

Floating Potential Measurement Unit (FPMU)

FPP: Floating Potential Probe

WLP: Wide-sweep Langmuir Probe

NLP: Narrow-sweep Langmuir Probe

PIP: Plasma Impedance Probe

Role:

- > Obtain floating potential and ionosphere plasma measurements for validation of the ISS charging model
- > Assess Photo-Voltaic array variability
- > Interpreting IRI predictions

Sensor	Measured Parameter	Rate (Hz)	Effective Range
FPP	V _F	128	-180 V to +180 V
WLP	N T _e V _F	1	10 ⁹ m ⁻³ to 5x10 ¹² m ⁻³ 500 K to 10,000 K -20 V to 80 V
NLP	N T _e V _F	1	10 ⁹ m ⁻³ to 5x10 ¹² m ⁻³ 500 K to 10,000 K -180 V to +180 V
PIP	N _e	512	1.1·10 ¹⁰ m ⁻³ to 4·10 ¹² m ⁻³

Redundant measurements of each parameter!

FPMU data passes through many "boxes" before capture by the ground station!

Utah State University Presentation

FPP is effectively a high-impedance volt meter acquiring data at 128Hz.

Example of very noisy data:

What is the true signal?

FPP analysis method

Logic

- *Band-pass filter: -25 ≤ fpv ≤ 150*
- Apply median filters
- Iterative process to exclude values > 2σ

Acceptance Criteria

- |fp_sdev/fpv| ≤ 0.2
- no. of surviving points ≥ 51

Recovery rates

- > 98% (in general)
- > 90% (for the noisiest data)

FPP example with analysis result:

PIP measures the self impedance of a short, cylindrical antenna.

Antenna impedance Z as function of applied voltage frequency: The real part is the resistance while the imaginary part is the reactance (or phase). Zero phase occurs at the electron cyclotron frequency (f_c) and the upper hybrid frequency (f_{ub}).

PIP frequency sweep: 0.1 to 20 MHz in 256 steps

PIP Analysis

2007/355/01:47:20

Phase behavior not consistent due to tracking problem!

512-point freq sweep

Peak in MAG always exists!

Upper hybrid resonance:

$$f_{uh}^2 = f_p^2 + f_c^2$$

$$N_{\rm e}(m^{-3}) = 1.24 \times 10^{-2} [f_{uh}^2 - f_c^2]$$

Comparison of PIP and WLP derived density

PIP Analysis

The PIP-derived density is generally lower than the WLP-derived density from the ion ram current.

- A modification to the PIP analysis has been introduced:
 - ✓ During passage through the equatorial region at
 - ~ 2007/355/02:45, a deep ionospheric hole was encountered. The density is $< 1x10^9 \text{ m}^{-3}$. The Magnitude -vs- frequency response in the middle of the hole has been extracted. The response has been curve-fit to the IDL GAUSSFIT function with nterms = 4.

2007/355/01:47:20

PIP analysis: additional refinement

If a peak could not be determined from the residual curve, then the peak from the Magnitude -vs-frequency curve is used with a constant of 0.3 added. This 0.3 factor may change as more days are examined.... Not implemented yet!

LP analysis: Probe design

<u>WLP voltage sweep:</u>

1-sec for -20 to +80 V

1-sec +80 V to -20 V

Voltage step size:

250 mV from -20 V to 0 25 mV from 0 to 50 V 250 mV from 50 V to 80 V

Implication for Te measurement:

△V _{step} (V)	Т _е (К)	No. of points/ decade current change	No. of points/ 1 e-fold current change
0.025	800	6	3
0.025	500	4	2

NLP voltage sweep:

1-sec for -4.85 to +4.85 V

1-sec +4.85 V to -4.85 V

Voltage step size:

constant 12 mV

<u>Implication for Te measurement</u>:

ΔV _{step} (V)	Т _е (К)	No. of points/ decade current change	No. of points/ 1 e-fold current change
0.012	800	13	6
0.012	500	8	4

Probe radius/Debye length (≡ Debye ratio) ~ 2 – 22

Probe radius/electron gyroradius ~ 2.

Not OML!

Typical Langmuir Probe I-V Curve

LP analysis

- > The "graphical method" has been employed each section fit separately
- Much filtering and logic used to overcome noise in telemetry
- Fitting sequence:
 - Locate floating potential V_{flt} [from $I_{total} = \theta$]
 - If day, adjust for photoelectron current (not used at present)
 - Ion saturation region [fit to linear equation]
 - Determine electron current $[I_e = I_{total} I_{ion}]$
 - ullet Estimate space potential V_{sp} [voltage at maximum of dI_e/dV]
 - Electron retarding region [linear fit for $log_{10}(I_e)$] Acceptance criteria: (Δ slope/slope) \leq 10.0
 - Electron saturation region [fit to OML-like equation over a few volts \geq initial guess for V_{sp}]
 - ullet Determine V_{sp} via intersection of curves from electron retarding and saturation regions
 - If V_{sp} different from its initial guess by > 0.5 V, then iterate once on the electron retarding and saturation regions
 - Derive ionospheric properties using standard equations

LP analysis: "good" data

Ground processing generates NLP sweep at +/- 5 V centered on FPP value. If FPP data word is corrupted, then sweep values are corrupted. However, Ni and Te values are OK because measured currents are passed in telemetry and Te depends only on slope (dl/dV where dV is known).

LP analysis: relationship between Vsp and Vflt

Theory says that Vsp - Vflt ~ few*kTe

LP analysis: what to use for collecting area to derive Ne?

Answer is not straightforward.

LP analysis: Disagreement between NLP-Te and WLP-Te

Utah State University Presentation

LP analysis: Disagreement between NLP-Te and WLP-Te

LP analysis: Time history of differences of WLP-Te with NLP-Te

Feb-27-2008

Utah State University Presentation

Feb-27-2008

Utah State University Presentation

Feb-27-2008

Utah State University Presentation

For NCEs in general: at a given density, the lower the Te the greater the charging amplitude

Rapid because leading and trailing edge occurs much faster: rise times generally ≤ 5 secs and decay time ~ 10 – 30 secs.

Equatorial lonosphere Observations from March 9, 2008

Feb-27-2008

Utah State University Presentation

Extra:
LP analysis
of
LEO plasma simulation source

Colorado State University LEO plasma simulation source

Courtesy of John Williams

(a) Plasma Source CAD model: 1– Discharge chamber outer wall (anode), 2– hollow cathode, 3–inner part of the magnetic filter, 4- neutral density grids, 5– Sm-Co magnets, 6– outer part of the magnetic filter, 7- coaxial plasma expansion region. (b) Photograph of Plasma source during operation

Submitted to Plasma Sources, Science, and Technology

Concluding remarks:

- The thrust of this presentation was to highlight real world data and its complications.
- Noise is usually present.
- Theoretical probe response guides analysis logic, acceptance criteria, etc.
- Refinements to logic, acceptance criteria, etc. based on previous experience.
- Hopefully hardware operation and choice of downlinked data is robust in order to give options for analysis.
- Be wary of your software logic:
 - continually review it to make sure that all quirks in data are handled reasonably.
 - the computer logic is only as smart as you make it continually "eyeball" data with curve-fits.
- Reach out to colleagues

We at MSFC are very much in debt to C. Swenson, C. Fish, A. Barjatya, and D. Thompson for many discussions concerning the FPMU!