Семинар 1.

Задача 1. В вещественном векторном пространстве \mathbb{R}^3 с координатами x_1, x_2, x_3 в стандартном базисе рассмотрим аффинные плоскости (экраны) $U_1=\{x_1=1\}$ и $U_2=\{x_2=1\}$. В плоскости U_1 в качестве координат естественно взять координаты x_2 и x_3 , а в плоскости U_2 - координаты x_1 и x_3 . Эти плоскости U_1 и U_2 , как мы знаем, являются картами для проективной плоскости $\mathbb{P}^2 = \mathbb{P}(\mathbb{R}^3)$. Поэтому любое множество $M\subset \mathbb{P}^2$, задаваемое в карте U_1 каким-то уравнением, будет в карте U_2 также задаваться некоторым уравнением. Возьмем в карте U_1 множества, задаваемые уравнениями:

- а) $ax_2 + bx_3 + c = 0$, где $(a, b, c) \neq (0, 0, 0)$ (уравнение прямой),
- б) $x_2^2 + x_3^2 = 1$ (уравнение окружности), в) $x_2^2 x_3^2 = 1$ (уравнение гиперболы),
- г) $x_2 = x_3^2$ (уравнение параболы).

Найдите уравнения этих кривых в координатах x_1 и x_3 в карте U_2 . Уравнениями каких кривых они являются?

Задача 2. Пусть $f: \mathbb{P}^1 \xrightarrow{\sim} \mathbb{P}'^1$ - проективное отображение. Сколькими парами соответственных точек это отображение определяется однозначно?

