WHAT IS CLAIMED IS:

1	1. A micromachined device for receiving and retaining a liquid
2	droplet at a desired site, the device comprising:
3	a substrate having an upper surface; and
4	a three-dimensional, thin film well patterned at the upper surface of
5	the substrate wherein the well is capable of receiving and retaining a known quantity
6	of liquid at the desired site through surface tension.
1	2. A micromachined device for receiving and retaining at least
2	one liquid droplet at a desired site, the device comprising:
3	a substrate having an upper surface;
4	a first three-dimensional, thin film well patterned at the upper surface
5	of the substrate wherein the first well is capable of receiving and retaining a first
6	known quantity of liquid at the desired site through surface tension; and
7	a second three-dimensional, thin film well patterned at the upper
8	surface of the substrate wherein the second well is patterned outside and concentric
9	to the first well wherein the second well is capable of receiving and retaining a
10	second known quantity of liquid at the desired site through surface tension.
1	 A micromachined device for receiving and retaining a plurality
2	of separate liquid droplets at desired sites, the device comprising:
3	a substrate having an upper surface; and
4	an array of three-dimensional, thin film wells patterned at the upper
5	surface of the substrate wherein each of the wells is capable of receiving and
6	retaining a known quantity of liquid at one of the desired sites through surface
7	tension.
1	 A micromachined device for receiving and retaining a plurality
2	of separate liquid droplets at desired sites, the device comprising:
3	a substrate having an upper surface;
4	a first array of three-dimensional, thin film wells patterned at the
5	upper surface of the substrate wherein each of the wells is capable of receiving and

1

2

6	retaining a kno	own o	quantity of liquid at one of the desired sites through surface	
7	tension; and			
8	:	a seco	and array of three-dimensional, thin film wells patterned at the	
9	upper surface of the substrate wherein each well of the second array of wells			
10	patterned outside and concentric to one well of the first array of wells to receive and			
11	retain a second	knov	n quantity of liquid at the desired site through surface tension	
1	:	5.	The device as claimed in claim 3 wherein each of the wells is	
2	a ring.			
1	,	6.	The device as claimed in claim 3 wherein the device is a	
2	microsensor an	ıd wh	erein each of the desired sites is a sensing site.	

- The device as claimed in claim 6 wherein the microsensor is a solid-state, liquid chemical sensor.
- 1 8. The device as claimed in claim 6 wherein the microsensor is 2 a gas sensor.
- 9. The device as claimed in claim 6 wherein the microsensor is
 an optical sensor.
- 1 10. The device as claimed in claim 3 wherein the device is a 2 biomedical test plate.
- 11. The device as claimed in claim 3 wherein each of the wells is
 2 made of a photo-patternable material.
- 1 12. The device as claimed in claim 11 wherein the photo-2 patternable material is a negative photo-patternable material.
- 13. The device as claimed in claim 12 wherein the negative photo patternable material is a polymer.

1

2

polyimide.

14.

1	15. The device as claimed in claim 12 wherein the negative photo-		
2	patternable material is an epoxy.		
1	16. The device as claimed in claim 15 wherein the epoxy is SU8.		
1	17. The device as claimed in claim 3 wherein the substrate is a		
2	semiconductor substrate.		
1 2	18. The device as claimed in claim 17 wherein the semiconductor substrate includes a silicon wafer.		
1	19. The device as claimed in claim 18 wherein the semiconductor		
2	substrate further includes a layer of insulating material on which the wells are		
3	patterned.		
1	20. The device as claimed in claim 3 wherein the substrate is made		
2	of a material other than a semiconductor material.		
1	21. The device as claimed in claim 3 wherein the device is a		
2	potentiometric liquid chemical sensor and wherein each desired site is a sensing site.		
1	22. The device as claimed in claim 3 wherein the device is an		
2	integrated ion sensor and wherein each desired site is a sensing site.		
1	23. The device as claimed in claim 3 wherein each of the wells		
2	includes a side wall having an outside corner with a small radius to prevent its liquid		
3	droplet from flowing down outside the side wall.		

The device as claimed in claim 13 wherein the polymer is a

1	24. A method of making a micromachined device which is capable		
2	of receiving and retaining at least one liquid droplet, the method comprising:		
3	providing a substrate having a layer of radiation-sensitive material		
4	formed thereon; and		
5	patterning at least one three-dimensional, thin film well from the layer		
6	of material wherein the at least one well is capable of receiving and retaining a		
7	known quantity of liquid through surface tension.		
1	25. The method as claimed in claim 24 further comprising		
2	patterning a three-dimensional, thin film well from the layer of material outside and		
3	concentric to the at least one well at the same time as patterning the at least one well.		
1	26. The method as claimed in claim 24 wherein the layer of		
2	material is photo-patternable.		
1	27. A method of using the device as claimed in claim 1, the		
2	method comprising:		
3	dispensing a membrane solution droplet into the well.		
1	28. The method as claimed in claim 27 wherein the membrane		
2	solution is a polymeric membrane solution.		

- 1 29. The method as claimed in claim 27 wherein the membrane solution is an aqueous solution.
- 30. The method as claimed in claim 27 wherein the membrane
 solution is a solvent-based solution.
- 31. The method as claimed in claim 27 wherein the membrane is
 an optical membrane.
- 32. A method of using the device as claimed in claim 2, the
 method comprising:

6

3	dispensing a first membrane solution droplet into the first well; and			
4	dispensing a second membrane solution droplet over the first			
5	membrane solution droplet and into the second well.			
1	33. The method as claimed in claim 32 wherein the first membrane			
2	solution is an internal filling solution.			
1	34. The method as claimed in claim 32 wherein the second			
2	membrane solution is an external binding layer.			
1	35. The method as claimed in claim 32 wherein the second			
2	membrane solution has enzymes, antibodies or functional groups trapped therein.			
1	36. A method of using the device as claimed in claim 3, the			
2	method comprising:			
3	dispensing a membrane solution droplet into each of the array of			
4	wells.			
1	37. A method of using the device as claimed in claim 4, the			
2	method comprising:			
3	dispensing a first membrane solution droplet into each of the first			
4	array of wells; and			
5	dispensing a second membrane solution droplet over each of the first			

membrane solution droplets and into each of the second array of wells.