Outline:

- Machine learning models
- The use of ML in neural engineering
- Homework

Recap: supervised learning

Training Data:

$$S = \{(x_i, y_i)\}_{i=1}^{N}$$

$$x \widehat{\mid} R^{D}$$

$$y \widehat{\mid} \{-1, +1\}$$

Model Class:

$$f(x \mid w, b) = w^T x - b$$

Linear Models

Loss Function:

$$L(a,b) = (a-b)^2$$

Squared Loss

Learning Objective:

$$\underset{w,b}{\operatorname{argmin}} \overset{N}{\underset{i=1}{\overset{N}{\bigcirc}}} L(y_i, f(x_i \mid w, b))$$

Optimization Problem

Recap: Basic Recipe

$$S = \left\{ (x_i, y_i) \right\}_{i=1}^{N}$$
Training Data
$$f(x \mid w, b) = w^T x - b$$

$$L(a, b) = (a - b)^2$$
Loss Function

$$f(x \mid w, b) = w^T x - b$$

$$L(a,b) = (a-b)^2$$

Optimization Problem

Overfitting v. Underfitting

How not to overfit

Two cures:

- Regularization: putting brakes
- Validation: checking the bottom line

Recap: Model training

Objective function

$$Obj(\Theta) = L(\Theta) + \Omega(\Theta)$$

Training Loss measures how well model fit on training data

Regularization, measures complexity of model

Loss on training data: $L = \sum_{i=1}^{n} l(y_i, \hat{y}_i)$

Square loss: $l(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$

Logistic loss: $l(y_i, \hat{y}_i) = y_i \ln(1 + e^{-\hat{y}_i}) + (1 - y_i) \ln(1 + e^{\hat{y}_i})$

Regularization: how complicated the model is?

L2 norm: $\Omega(w) = \lambda ||w||^2$

L1 norm (lasso): $\Omega(w) = \lambda ||w||_1$

Logistic Regression aka "Log-Linear"

Linear models

$$s = \sum_{i=0}^d w_i x_i$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

 x_2 -

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

Linear Model--Perceptron

inputs

First ML Hardware!

Frank Rosenblatt, 1957
Mark I Perceptron at the Cornell Aeronautical Laboratory, hardware implementation of the first Perceptron

Logistic Regression

- sigmoid: soft threshold (uncertainty)
- h(x) is interpreted as probability

Maximum Likelihood Training

• Training set:

$$S = \{(x_i, y_i)\}_{i=1}^{N} \quad x_i \in \mathbb{R}^D$$

Maximum Likelihood:

$$\underset{w,b}{\operatorname{argmax}} \widetilde{\bigcirc} P(y_i \mid x_i, w, b)$$

Each (x,y) in S sampled independently!

Log Loss

$$P(y \mid x, w, b) = \frac{e^{\frac{1}{2}y(w^{T}x - b)}}{e^{\frac{1}{2}y(w^{T}x - b)} + e^{-\frac{1}{2}y(w^{T}x - b)}} = \frac{e^{\frac{1}{2}yf(x|w,b)}}{e^{\frac{1}{2}yf(x|w,b)} + e^{-\frac{1}{2}yf(x|w,b)}}$$

$$\underset{w,b}{\operatorname{argmax}} \widetilde{\bigcirc} P(y_i \mid x_i, w, b) = \underset{w,b}{\operatorname{argmin}} \stackrel{\circ}{\bigcirc} - \ln P(y_i \mid x_i, w, b)$$

$$\underset{i}{\operatorname{Log Loss}}$$

$$L(y, f(x)) = -\ln \begin{cases} \frac{e^{\frac{1}{2}yf(x)}}{e^{\frac{1}{2}yf(x)}} & \vdots \\ \frac{1}{e^{\frac{1}{2}yf(x)}} + e^{-\frac{1}{2}yf(x)} & \vdots \\ e^{\frac{1}{2}yf(x)} & \vdots \end{cases}$$

Solve using Gradient Descent

Support Vector Machines aka Max-Margin Classifiers

Better linear separation

Linearly separable data

Different separating lines

Which is best?

Two questions:

- 1. Why is bigger margin better?
- 2. Which w maximizes the margin?

Max Margin Classifier (Support Vector Machine)

The optimization problem

Maximize
$$\frac{1}{\|\mathbf{w}\|}$$
 subject to $\min_{n=1,2,\dots,N} |\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = 1$ Notice: $|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b| = y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b)$ Minimize $\frac{1}{2} \mathbf{w}^{\mathsf{T}}\mathbf{w}$ subject to $y_n (\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \geq 1$ for $n = 1, 2, \dots, N$

Support vectors

Closest \mathbf{x}_n 's to the plane: achieve the margin

$$\implies y_n\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n+b\right)=1$$

$$\mathbf{w} = \sum_{\mathbf{x}_n \text{ is SV}} \alpha_n y_n \mathbf{x}_n$$

Solve for b using any SV:

$$y_n\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n+b\right)=1$$

Linearly non-separable cases?

Case 1

Margin violation:
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \geq 1$$
 fails

Quantify:
$$y_n(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{x}_n+b)\geq 1-\xi_n$$
 $\xi_n\geq 0$

Total violation
$$=\sum_{n=1}^N \xi_n$$

The new optimization

Minimize
$$\frac{1}{2}\,\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{w} + C\sum_{n=1}^N \xi_n$$
 subject to $y_n\,(\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{x}_n + b) \geq 1 - \xi_n$ for $n=1,\ldots,N$ and $\xi_n \geq 0$ for $n=1,\ldots,N$

Nonlinear SVMs

 General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$

SVMs: Pros and cons

Pros

- Many publicly available SVM packages
- Kernel-based framework is very powerful, flexible
- SVMs work very well in practice, even with very small training sample sizes

Cons

- Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems
- Linear kernel SVMs are similar to linear perceptrons (just with added regularization) if trained with SGD

Decision Trees

(Binary) Decision Tree

Don't overthink this, it is literally what it looks like.

Person	Age	Male?	Height > 55"
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	10	0	0
	X		y

(Binary) Decision Tree

Input:

Alice

Gender: Female

Age: 14

Prediction: Height > 55"

Every **internal node** has a **binary** function q(x).

Every **leaf node** has a prediction, e.g., 0 or 1.

Prediction starts at **root node**.

Recursively calls query function.

Positive response → Left Child.

Negative response → Right Child.

Repeat until Leaf Node.

Decision Trees vs Linear Models

Decision Trees are NON-LINEAR Models!

Example:

No Linear Model
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

Decision Trees v. Linear Models

Decision Trees are NON-LINEAR Models!

Example:

No Linear Model
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

More Extreme Example

Decision Trees v. Linear Models

- Decision Trees are often more accurate!
- Non-linearity is often more important
 - Just use many axis-aligned boundaries to approximate diagonal boundaries
- Catch: individual trees easily overfit
 - requires sufficient training data
 - Ensemble methods can fix this.

Decision Trees

Can get much larger!

Training Decision Trees (Top-Down)

- Every intermediate step is a decision tree
 - You can stop any time and have a model
- Greedy algorithm
 - Doesn't backtrack
 - Cannot reconsider different higher-level splits.

When to Stop?

- In kept going, can learn tree with zero training error.
 - But such tree is probably overfitting to training set.
- How to stop training tree earlier?
 - I.e., how to regularize?

Which one has better test error?

Stopping Conditions (Regularizers)

- Minimum Size: do not split if resulting children are smaller than a minimum size.
 - Most common stopping condition.
- Maximum Depth: do not split if the resulting children are beyond some maximum depth of tree.
- Maximum #Nodes: do not split if tree already has maximum number of allowable nodes.
- Minimum Reduction in Impurity: do not split if resulting children do not reduce impurity by at least $\delta\%$.

• • •

Ensemble Methods

The idea

- It is often a good idea to combine several learning methods
- We want diverse classifiers, so their errors cancel out
- Base learner: Arbitrary learning algorithm which could be used on its own
- Ensemble: A learning algorithm composed of a set of base learners. The
- base learners may be organized in some structure

Constructing Ensembles

Averaging (Voting)

Stacking

Feed-Forward Neural Networks

1 Layer Neural Network

- 1 Neuron
 - Takes input x
 - Outputs y

- ~Logistic Regression!
 - Gradient Descent

2 Layer Neural Network

- 2 Layers of Neurons
 - 1st Layer takes input x

2nd Layer takes output of 1st layer

Non-Linear!

- Can approximate arbitrary functions
 - Provided hidden layer is large enough
 - "fat" 2-Layer Network

Deep Neural Networks

Start here: playground.tensorflow.org

HW1

Overview

Intracranial EEG, multichannel

- varying numbers of electrodes
- sampled at 500 Hz or 5000 Hz

The temporal dynamics of brain activity can be classified into 4 states:

- Interictal (between seizures, or baseline)
- Preictal (prior to seizure)
- Ictal (seizure)
- Post-ictal (after seizures)
- The primary challenge in seizure forecasting is differentiating between the preictal and interictal states.

Seizure Detection Time Frame

- The time of the earliest detectable changes and the onset of disabling clinical symptoms: few seconds up to 30 seconds
- Closed-loop therapy must be delivered within that time frame to provide optimum benefit to the patient

Data preprocessing, feature extraction

- Different mathematical techniques can be applied to pre-process the data – Noisy data
- Magnitudes of different frequencies: a good source of features
- Frequency range chosen based on literature, and trial and error
- Time-domain features (biomarkers)
- Combinations of multiple features to be used in classification
- Features kept or discarded based on cross-validation performance
- The features from all channels concatenated, used for training

How to improve? try more complex features:

- Correlation coefficients
- **-** ...

Classification

Choose a model for classification:

- Each run gives a cross-validation score
- Find combinations of feature set and classifier giving higher scores
- scikit-learn python machine learning library
- Many different classifiers can be easily substituted in the code
- Many classifiers ranging from logistic regression to decision trees or support vector machines, ...
- Optimize classifier parameters

Cross Validation

Cross-validation:

- Split the ictal training data based on whole seizures
 - For example for a ratio of 0.25 and 4 seizures, 1
 entire seizure split out leaving the other 3 to train on
 - Or use k-fold cross-validation, takes much longer training time

Machine learning cycle:

Train your model and check your cross-validation score

Ensemble!

Last but not least, ensemble:

- Individual models
- Other team member's models