#	Функция $S(x), y(x)$	Диапазон	k
1	$S = 1 + \frac{\ln 3}{1!}x + \frac{\ln^2 3}{2!}x^2 + \dots + \frac{\ln^n 3}{n!}x^n$	$0.1 \leqslant x \leqslant 1$	10
	$y = 3^x$		
2	$S = \cos x + \frac{\cos 2x}{2} + \ldots + \frac{\cos nx}{n}$	$\pi/5 \leqslant x \leqslant 9\pi/5$	40
	$y = -\ln 2\sin(x/2) $		
3	$S = x - \frac{x^3}{3!} + \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$0.1 \leqslant x \leqslant 1$	10
	$y = \sin x$		
4	$S = \sin x - \frac{\sin 2x}{2} + \dots + (-1)^{n-1} \frac{\sin nx}{n}$	$\pi/5 \leqslant x \leqslant 4\pi/5$	40
	y = x/2		
5	$S = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!}$	$1 \leqslant x \leqslant 2$	15
	$y = e^x$		
6	$S = 1 + \frac{\cos(\pi/4)}{1!}x + \dots + \frac{\cos(n\pi/4)}{n!}x^n$	$0.1 \leqslant x \leqslant 1$	25
	$y = e^{x\cos(\pi/4)}\cos(x\sin(\pi/4))$		
7	$S = 1 - \frac{x^2}{2!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!}$	$0.1 \leqslant x \leqslant 1$	10
	$y = \cos x$		
8	$S = x \sin \frac{\pi}{4} + x^2 \sin(\frac{2\pi}{4}) + \dots + x^n \sin(\frac{n\pi}{4})$	$0.1 \leqslant x \leqslant 0.8$	40
	$y = \frac{x \cdot \sin(\pi/4)}{1 - 2x \cdot \cos(\pi/4) + x^2}$		
9	$S = x + \frac{x^5}{5} + \ldots + \frac{x^{4n+1}}{4n+1}$	$0.1 \leqslant x \leqslant 0.8$	30
	$y = 0.25 \ln \frac{1+x}{1-x} + 0.5 \arctan x$		
10	$S = 1 + \frac{\cos x}{1!} + \ldots + \frac{\cos nx}{n!}$	$0.1 \leqslant x \leqslant 1$	20
	$y = e^{\cos x} \cos(\sin x)$		
11	n!	$0.1 \leqslant x \leqslant 1$	10
	$y = (1 + 2x^2)e^{x^2}$		
12	$S = \frac{x \cos(\pi/3)}{1} + x^2 \frac{\cos(2\pi/3)}{2} + \dots + \frac{x^n \cos(n\pi/3)}{n}$	$0.1 \leqslant x \leqslant 0.8$	35
	$y = -0.5\ln(1 - 2x\cos(\pi/3) + x^2)$		
13	$S = \frac{x-1}{x+1} + \frac{(x-1)^3}{3(x+1)^3} + \dots + \frac{(x-1)^{2n+1}}{(2n+1)(x+1)^{2n+1}}$	$0.2 \leqslant x \leqslant 1$	10
	$y = 0.5 \ln x$ $\cos(2x) \qquad (1) n \cos(nx)$		
14	$S = -\cos x + \frac{\cos(2x)}{2^2} + \dots + (-1)^n \frac{\cos(nx)}{n^2}$	$\pi/5 \leqslant x \leqslant \pi$	20
	$y = \frac{1}{4}(x^2 - \frac{\pi^2}{3})$ $x^5 + (-1)^{n+1}x^{2n+1}$	0.1 <	90
15	$S = \frac{x^3}{3} - \frac{x^5}{15} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1}$	$0.1 \leqslant x \leqslant 1$	30
1.0	$y = (1+x^2)\frac{\arctan(x)}{2} - \frac{x}{2}$ $C = \sin x + \sin 3x + \sin(2n-1)x$	_/10 < < 0 /10	40
10	$S = \sin x + \frac{\sin 3x}{3} + \dots + \frac{\sin(2n-1)x}{2n-1}$	$\pi/10 \leqslant x \leqslant 9\pi/10$	40
	$y = \pi/4$		

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
17	$S = 1 + \frac{x^2}{2!} + \ldots + \frac{x^{2n}}{(2n)!}$	$0.1 \leqslant x \leqslant 1$	10
	$y = \frac{e^x + e^{-x}}{2}$		
18	$S = \frac{\cos(2x)}{3} + \frac{\cos(4x)}{15} + \ldots + \frac{\cos(2nx)}{4n^2 - 1}$	$0.1 \leqslant x \leqslant 0.8$	50
	$y = \frac{1}{2} - \frac{\pi \sin x }{4}$		
19	$S = 1 + \frac{2x}{1!} + \ldots + \frac{(2x)^n}{n!}$	$0.1 \leqslant x \leqslant 1$	20
	$y = e^{2x}$		
20	$S = 1 + 2 \cdot \frac{x}{2} + \ldots + (\frac{n^2 + 1}{n!}) \cdot \frac{x^n}{2^n}$	$0.1 \leqslant x \leqslant 1$	30
	$y = (\frac{x^2}{4} + \frac{x}{2} + 1)e^{x/2}$		
21	$S = x - \frac{x^3}{3} + \ldots + (-1)^n \frac{x^{2n+1}}{2n+1}$	$0.1 \leqslant x \leqslant 0.5$	40
	$y = \operatorname{arctg} x$		
22	$S = 1 - \frac{3}{2}x^2 + \ldots + (-1)^n \frac{2n^2 + 1}{(2n)!} x^{2n}$	$0.1 \leqslant x \leqslant 1$	35
	$y = (1 - 0.5x^2)\cos x - 0.5x \cdot \sin x$		
23	$S = -\frac{(2x)^2}{2} + \frac{(2x)^4}{24} - \dots + (-1)^n \frac{(2x)^{2n}}{(2n)!}$	$0.1 \leqslant x \leqslant 1$	15
	$y = 2(\cos^2 x - 1)$		
24	$S = -(1+x)^2 + \frac{(1+x)^4}{2} - \dots + (-1)^n \frac{(1+x)^{2n}}{n}$	$-2 \leqslant x \leqslant -0.1$	40
	$y = \ln \frac{1}{x^2 + 2x + 2}$		
25	$S = x + \frac{x^3}{3!} + \ldots + \frac{(x)^{2n+1}}{(2n+1)!}$	$0.1 \leqslant x \leqslant 1$	20
	$y = \frac{e^x - e^{-x}}{2}$		
26	$S = \frac{x}{3!} + \frac{4x^2}{5!} + \ldots + \frac{n^2}{(2n+1)!}x^n$	$0.2 \leqslant x \leqslant 0.8$	20
	$y = \frac{1}{2} \left(\frac{x+1}{\sqrt{x}} \operatorname{sh} \sqrt{x} - \operatorname{ch} \sqrt{x} \right)$		
27	$S = x \cos(\pi/4) + x^2 \cos(2\pi/4) + \dots + x^n \cos(n\pi/4)$	$0.1 \leqslant x \leqslant 0.8$	40
	$y = \frac{x\cos(\pi/4) - x^2}{x^2 - 2x\cos(\pi/4) + 1}$		
28	$S = 3x + 8x^2 + \ldots + n(n+2)x^n$	$0.1 \leqslant x \leqslant 0.8$	40
	$y = \frac{x(3-x)}{(1-x)^3}$		
29	$S = \cos x + \frac{\cos 3x}{3^2} + \dots + \frac{\cos((2n-1)x)}{(2n-1)^2}$	$\pi/5 \leqslant x \leqslant \pi$	40
	$y = \frac{\pi^2}{8} - x \frac{\pi}{4}$		
30	$S = \frac{x^2}{2} - \frac{x^4}{12} + \ldots + (-1)^{n+1} \frac{x^{2n}}{2n(2n-1)}$	$0.1 \leqslant x \leqslant 0.8$	10
	$y = x \arctan x - \ln \sqrt{1 + x^2}$		