TRACK II

ADVANCED DISTRIBUTED-MEMORY
PROGRAMMING

HANDS ON EXERCISES
2024 IHPCSS

DERIVED DATA TYPES

A[4][4]

Four Programs

- ✓ ddt.1.contiguous
- ✓ ddt.2.vector
- ✓ ddt.3.indexed
- √ ddt.4.struct

1.0	2.0	3.0	4.0
5.0	6.0	7.0	8.0
9.0	10.0	11.0	12.0
13.0	14.0	15.0	16.0

EXERCISE.1 ddt.1.contiguous DERIVED DATA TYPES

EXERCISE.1 ddt.2.vector

DERIVED DATA TYPES

ddt.3.indexed

DERIVED DATA TYPES

```
int MPI_Type_indexed(
  int count,
  int *array_of_blocklens,
  int *array_of_displacements,
  MPI_Datatype oldtype,
  MPI_Datatype *newtype);
```

Rank O

A[16]

- 1 2 3 4 5 <mark>6 7 8 9 10 11 12 13 14 15 16</mark>
- **▶**Block Count
- ➤ Block Lengths
- ➤ Displacements =

DERIVED DATA TYPES

```
int MPI_Type_create_struct(
        int count,
        int *array_of_blocklens,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype);
```

```
typedef struct {
    float x, y, z, velocity;
    int n, type;
} Particle;
Particle particles[NELEM];
```

f f f i i

...

f f f i i

DERIVED DATA TYPES

Four Programs

- √ ddt.1.contiguous
- ✓ ddt.2.vector
- ✓ ddt.3.indexed
- ✓ ddt.4.struct

Step 1: cp - r / jet/home/akirby/IHPCSS2024-mpi/exercises ~/.

Step 2: cd exercises/Exercise.1-DerivedDataTypes/{c or f90}

Step 3: Complete the "TODO" tasks in each of the programs.

50LUTIONS: cd exercises/Exercise.1-DerivedDataTypes/.soln ⁷

CARTESIAN VIRTUAL TOPOLOGIES

Step 1: cd exercises/Exercise.2-CartesianTopology/{c or f90}

Step 2: Complete the "TODO" tasks in stencil_cart_shift.{c or f90}

ΓX

CARTESIAN VIRTUAL TOPOLOGIES

Step 1: cd exercises/Exercise.2-CartesianTopology/{c or f90}

Step 2: Complete the "TODO" tasks in stencil_cart_shift.{c or f90}

$$-\Delta u(x,y)=f$$

CARTESIAN VIRTUAL TOPOLOGIES

Step 1: cd exercises/Exercise.2-CartesianTopology/{c or f90}

Step 2: Complete the "TODO" tasks in stencil_cart_shift.{c or f90}

DISTRIBUTED GRAPH TOPOLOGIES

Every MPI process may specify 0, 1 or more edges. The edges specified do not have to contain the MPI process that passes them.

DISTRIBUTED GRAPH TOPOLOGIES

Step 1: cd exercises/Exercise.3-GraphTopology/{c or f90}

Step 2: Complete the "TODO" tasks in mpi_dist_graph_create.{c or f90}

MPI Process 0

MPI Process 2

Look at the new rank reordering.

Does it make sense? Why?*

20 Minutes

* May not reorder due to MPI Vendor implementation.

NEIGHBORHOOD COLLECTIVES

Step 1: cd exercises/Exercise.4-NeighborhoodCollectives/{c or f90}

Step 2: Complete the "TODO" tasks in stencil_mpi_carttopo_neighcolls.{c or f90}

$$-\Delta u(x,y)=f$$

4 Neighbors
Typical Communication Pattern

MPI_Ineighbor_alltoallv **NEIGHBORHOOD COLLECTIVES**

Step 1: cd exercises/Exercise.4-NeighborhoodCollectives/{c or f90}

Step 2: Complete the "TODO" tasks in stencil_mpi_carttopo_neighcolls.{c or f90}

North

South

GRAPH PARTITIONING WITH METIS

```
Step 1: cd exercises/Exercise.5-METIS/c
Step 2: Execute the Demos Programs in
          ✓ Build METIS (./build-metis.sh)
          ✓ cd demo.1.box
             >> make; ./MetisDemo

✓ cd demo.2.mesh

             >> make; ./MetisDemo <MeshID> <nparts>
Step 3: Visualize the partitioned meshes (*.vtu) in Visit/Paraview.
Step 4: Examine the source codes for METIS API calls.
```