

AMENDMENTS TO THE CLAIMS

This listing of claims provided below will replace all prior versions and listings of claims in the application.

1-54. (Canceled).

55. (Original). A compound having the structure of Formula III:

(III)

wherein,

R¹¹ is (C₁-C₁₆) alkyl, branched alkyl, alkenyl or alkynyl;

R¹² is (C₁-C₁₆) alkyl, branched alkyl, alkenyl or alkynyl;

X¹¹ is O, S, or NHC=O;

X¹² is O, S, or NHC=O;

X¹³ is O or S;

n is 0, 1 or 2, and

R¹³ is a therapeutic agent,

wherein, each alkyl, branched alkyl, alkenyl, alkynyl, adenine, thymine, cytosine, guanine, pyrimidine, purine, hypoxanthine, inosine and uracil of R¹¹, R¹², and R¹³ can, optionally, be substituted with 1, 2, 3, or 4 substituents independently selected from the group consisting of halo, nitro, trifluoromethyl, (C₁-C₈) alkyl, (C₁-C₈) alkoxy, aryl, and N(R^a)(R^b)

wherein R^a and R^b are each independently selected from the group consisting of H and (C₁-C₈) alkyl, and

wherein, if n is 1 or 2, the compound is a phospholipase C substrate and is not a phospholipase A substrate, and

further wherein, if n is 1 or 2, the compound is converted to an alkyl lipid and a moiety selected from the group consisting of a nucleoside monophosphate and a nucleoside analogue monophosphate intracellularly in a mammal, and is not converted to an alkyl lipid and a moiety selected from the group consisting of a nucleoside monophosphate and a nucleoside analogue monophosphate extracellularly in a mammal.

56. (Previously Presented). The compound of claim 55,

wherein,

R¹¹ is a C₁₂ alkyl, branched alkyl, alkenyl or alkynyl;

R¹² is C₈H₁₆ alkyl or branched alkyl;

n = 1,

and R¹³ is an anticancer agent selected from the group consisting of gemcitabine, 5-azacytidine, cladribine, fludarabine, fluorodeoxyuridine, cytosine arabinoside and 6-mercaptopurine, wherein the phosphorus atom of the phosphate moiety is covalently linked in a phosphate ester linkage to the oxygen atom of the 5' hydroxyl group of a sugar moiety of R¹³.

57. (Original). A compound having the structure of Formula IV:

(IV)

wherein,

R²¹ is (C₆ to C₁₆) alkyl, branched alkyl, alkenyl, or alkynyl;

R²² is (C₁ to C₁₂) alkyl, branched alkyl, alkenyl, or alkynyl;

X²¹ is O, S, or NHC=O;

X²² is O, S, or NHC=O;

X²³ is O or S;

n is 1 or 2;

R²³ is a therapeutic agent, and

wherein, each alkyl, branched alkyl, alkenyl, alkynyl, adenine, thymine, cytosine, guanine, pyrimidine, purine, hypoxanthine, inosine and uracil of R²¹, R²², and R²³ can, optionally, be substituted with 1, 2, 3, or 4 substituents independently selected from the group consisting of halo, nitro, trifluoromethyl, (C₁-C₈) alkyl, (C₁-C₈) alkoxy, aryl, and N(R^a)(R^b) wherein R^a and R^b are each independently selected from the group consisting of H and (C₁-C₈) alkyl.

58. (Previously Presented). The compound of claim 57,

wherein,

R²¹ is C₁₂ alkyl;

R²² is C₁₀ alkyl;

n = 1, and

R²³ is an anticancer agent selected from the group consisting of gemcitabine, 5-azacytidine, cladribine, fludarabine, fluorodeoxyuridine, cytosine arabinoside and 6-mercaptopurine, wherein the methylene group of the phosphonate moiety is covalently linked to the oxygen atom of the 5' hydroxyl group of a sugar moiety of R²³.

59. (Original). A compound having the structure of Formula V:

wherein,

R^{31} is (C_1 to C_{16}) alkyl, branched alkyl, alkenyl, or alkynyl;

R^{32} is (C_1 to C_{16}) alkyl, branched alkyl, alkenyl, or alkynyl;

X^{31} is O, S, or NHC=O ;

X^{32} is O, S, or NHC=O ;

X^{33} is $-\text{OH}$, $-\text{SH}$, or amino;

R^{33} is a therapeutic agent, and

wherein, each alkyl, branched alkyl, alkenyl, alkynyl, adenine, thymine, cytosine, guanine, pyrimidine, purine, hypoxanthine, inosine and uracil of R^{31} , R^{32} , and R^{33} can, optionally, be substituted with 1, 2, 3, or 4 substituents independently selected from the group consisting of halo, nitro, trifluoromethyl, (C_1 - C_8) alkyl, (C_1 - C_8) alkoxy, aryl, and $\text{N}(\text{R}^{\text{a}})(\text{R}^{\text{b}})$ wherein R^{a} and R^{b} are each independently selected from the group consisting of H and (C_1 - C_8) alkyl.

60. (Original). The compound of claim 59,

wherein,

R^{31} is (C_6 - C_{16}) alkyl, branched alkyl, alkenyl or alkynyl;

R^{32} is (C_1 - C_8) alkyl, branched alkyl, alkenyl or alkynyl, and

R^{33} is an anticancer agent selected from the group consisting of mitoxanthrone, methotrexate and CPT-11, and is covalently linked via an ester, amido or carbamate linkage to the $-\text{SH}$, OH or amino group of X^{33} .

61. (Original). The compound of claim 55, wherein said compound is suspended in a pharmaceutically acceptable carrier and is present in an amount effective to combat a cancer in a mammal.

62. (Original). The compound of claim 61, wherein said cancer is a cancer selected from the group consisting of a carcinoma, a sarcoma, a neuroblastoma, a leukemia, a lymphoma and a solid tumor.

63. (Original). The compound of claim 55, wherein said compound is present in an amount effective to facilitate delivery of a therapeutic agent to a mammalian cell.

64. (Original). The compound of claim 63, wherein said therapeutic agent is an anticancer agent.

65. (Original). The compound of claim 63, wherein the cell is in a mammal.

66. (Original). The compound of claim 65, wherein the cell is a cell selected from the group consisting of a CNS cell and a lymphoid cell.

67. (Original). The compound of claim 66, wherein the CNS cell is an astrocyte or a glial cell.

68. (Original). A pharmaceutically acceptable salt of the compound of claim 55.

69. (Original). The pharmaceutically acceptable salt of claim 68, wherein the compound is present in an amount effective to facilitate delivery of a therapeutic agent to a mammalian cell.

70. (Original). The pharmaceutically acceptable salt of claim 69, wherein the cell is in a mammal.

71. (Original). The pharmaceutically acceptable salt of claim 70, wherein the cell is a cell selected from the group consisting of a CNS cell and a lymphoid cell.

72. (Original). The pharmaceutically acceptable salt of claim 68, wherein said compound is present in an amount effective to combat a cancer in a mammal.

73. (Original). A pharmaceutically acceptable salt of the compound of claim 56.

74. (Original). The pharmaceutically acceptable salt of claim 73, wherein said compound is present in an amount effective to facilitate delivery of a therapeutic agent to a mammalian cell.

75. (Original). The pharmaceutically acceptable salt of claim 74, wherein said therapeutic agent is an anticancer agent.

76. (Original). The pharmaceutically acceptable salt of claim 74, wherein said cell is in a mammal.

77. (Original). The pharmaceutically acceptable salt of claim 74, wherein said cell is a cell selected from the group consisting of a CNS cell and a lymphoid cell.

78. (Original). The pharmaceutically acceptable salt of claim 68, wherein said compound is present in an amount effective to combat a cancer in a mammal.

79. (Original). A drug delivery agent comprising a pharmaceutical composition, said composition comprising a compound of claim 55 or a pharmaceutically acceptable salt thereof, in an amount effective to facilitate delivery of a therapeutic agent to a mammalian cell.

80. (Original). The drug delivery agent of claim 79, wherein said therapeutic agent is an anticancer agent.

81. (Original). The drug delivery agent of claim 79, wherein said cell is in a mammal.

82. (Original). The drug delivery agent of claim 79, wherein said cell is a cell selected from the group consisting of a CNS cell and a lymphoid cell.

83. (Original). A drug delivery agent comprising a pharmaceutical composition, said composition comprising a compound of claim 55 or a pharmaceutically acceptable salt thereof, in an amount effective to combat a cancer in a mammal.

84. (Original). The drug delivery agent of claim 83, wherein said cancer is a cancer selected from the group consisting of a carcinoma, a sarcoma, a neuroblastoma, a leukemia, a lymphoma and a solid tumor.

85. (Original). A drug delivery agent comprising a pharmaceutical composition, the composition comprising a compound of claim 56 or a pharmaceutically acceptable salt thereof, in an amount effective to facilitate delivery of a therapeutic agent to a mammalian cell.

86. (Original). The drug delivery agent of claim 85, wherein the cell is in a mammal.

87. The drug delivery agent of claim 85, wherein said cell is a cell selected from the group consisting of a CNS cell and a lymphoid cell.

88. (Original). A drug delivery agent comprising a pharmaceutical composition, said composition comprising a compound of claim 56 or a pharmaceutically acceptable salt thereof, in an amount effective to combat a cancer in a mammal.

89. (Original). The drug delivery agent of claim 88, wherein said cancer is a cancer selected from the group consisting of a carcinoma, a sarcoma, a neuroblastoma, a leukemia, a lymphoma and a solid tumor.

90. (Original). A method of facilitating delivery of a therapeutic agent to a mammalian cell, said method comprising administering to said cell a pharmaceutical composition comprising a compound of claim 55 or a pharmaceutically acceptable salt thereof, in an amount effective to facilitate delivery of said therapeutic agent to said cell.

91. (Original). The method of claim 90, wherein said therapeutic agent is an anticancer agent.

92. (Original). The method of claim 90, wherein said cell is in a mammal.

93. (Original). The method of claim 90, wherein the cell is a cell selected from the group consisting of a CNS cell and a lymphoid cell.

94. (Original). A method of facilitating delivery of a therapeutic agent to a cell, said method comprising administering to said cell a pharmaceutical composition comprising a compound of claim 56 or a pharmaceutically acceptable salt thereof, in an amount effective to facilitate delivery of said therapeutic agent to said cell.

95. (Original). The method of claim 94, wherein said cell is in a mammal.

96. (Original). The method of claim 94, wherein said cell is a cell selected from the group consisting of a CNS cell and a lymphoid cell.

97. (Original). A method of combating a cancer in a mammal comprising administering to said mammal a pharmaceutical composition comprising a compound of claim 55 or a pharmaceutically acceptable salt thereof, in an amount effective to combat a cancer in the mammal.

98. (Original). The method of claim 97, wherein said cancer is a cancer selected from the group consisting of a carcinoma, a sarcoma, a neuroblastoma, a leukemia, a lymphoma and a solid tumor.

99. (Original). A method of treating a disease in a mammal, said method comprising administering to said mammal a pharmaceutical composition comprising a compound of claim 55, or a pharmaceutically acceptable salt thereof, in an amount effective to facilitate delivery of a therapeutic agent to a cell in said mammal, thereby treating said disease.

100. (Original). The method of claim 99, wherein said disease is a disease selected from the group consisting of a brain disease, a CNS disease, a lymphatic system disease, a reproductive system disease, a cardiovascular disease, a kidney disease and a liver disease.

101. (Original). A kit for combating a cancer in a mammal, said kit comprising
a) a composition selected from the group consisting of a compound of claim 55, a pharmaceutically acceptable salt thereof, and a pharmaceutical composition comprising a compound of claim 55, and
b) an instructional material.

102. (Original). A kit for facilitating delivery of a therapeutic agent to a mammalian cell, said kit comprising

a) a composition selected from the group consisting of a compound of claim 55, a pharmaceutically acceptable salt thereof, and a pharmaceutical composition comprising a compound of claim 55, and
b) an instructional material.

103. (Original). The kit of claim 102, wherein said therapeutic agent is an anticancer agent.

104. (Previously Presented) A method for overcoming cancer resistance from cellular transport resistance mechanisms comprising administering an effective amount of a compound of claim 55, or a pharmaceutically acceptable salt or prodrug thereof.

105. (Previously Presented) The compound of claim 55,
wherein,

R¹¹ is a C₁₂ alkyl, branched alkyl, alkenyl or alkynyl;

R¹² is C₈H₁₆ alkyl or branched alkyl;

n = 1,

and R¹³ is an anticancer agent selected from the group consisting of gemcitabine, 5-azacytidine, cladribine, fludarabine, fluorodeoxyuridine, cytosine arabinoside, 6-mercaptopurine, 6-thioguanine, 5-deoxyfluorouridine, ftorafur, capecitabine, 5-deoxy-5-fluorocytidine, 5-aza-cystine arabinoside, troxacicabine, and pentostatin, wherein the phosphorus atom of the phosphate moiety is covalently linked in a phosphate ester linkage to the oxygen atom of the 5' hydroxyl group of a sugar moiety of R¹³.

106. (Previously Presented) The compound of claim 57,
wherein,

R²¹ is C₁₂ alkyl;

R²² is C₁₀ alkyl;

n = 1, and

R²³ is an anticancer agent selected from the group consisting of gemcitabine, 5-azacytidine, cladribine, fludarabine, fluorodeoxyuridine, cytosine arabinoside, 6-mercaptopurine, 6-thioguanine, 5-deoxyfluorouridine, ftorafur, capecitabine, 5-deoxy-5-fluorocytidine, 5-aza-cytidine arabinoside, troxacicabine, and pentostatin, wherein the methylene group of the phosphonate moiety is covalently linked to the oxygen atom of the 5' hydroxyl group of a sugar moiety of R²³.

107. (Previously Presented) The compound of claim 59,
wherein,

R³¹ is (C₆ –C₁₆) alkyl, branched alkyl, alkenyl or alkynyl;

R³² is (C₁ –C₈) alkyl, branched alkyl, alkenyl or alkynyl, and

R³³ is an anticancer agent selected from the group consisting of mitoxanthrone, doxorubicin, idarubicin, epirubicin, daunorubicin, mitomycin, methotrexate, CPT-11, SN-38, camptothecin, topotecan, 9-nitrocamptothecin, and 9-aminocamptothecin, and is covalently linked via an ester, amido or carbamate linkage to the –SH, OH or amino group of X³³.