Пример 12: Моделиране на движението на асансьор

Реално е възможно един и същ процес да има няколко различни модела с мрежи на Петри, в зависимост от гледната точка на моделиращия и целите, а които ще се използва моделът.

Пример за такава ситуация е модел с мрежа на Петри на използването на асансьор.

На фигура 58 са описани позициите и преходите, ако приемем че маркерът е човекът, който използва асансьора.

фигура 58. Моделиране на работата на асансьор, когато маркерът в мрежата е човекът, който използва асансьора.

Показаният на фигура 59 модел на асансьор е при условие, че маркерът е самата асансьорна кабина. Ако е позициониран на първи етаж (показаната ситуация на фигурата (с един маркер в p_1) то асансьорът може да се движи само нагоре и да сработи преходът t_1 . Ако е в състояние p_2 или p_3 , то тогава може да се движи или нагоре или надолу. В позиция p_4 може да се движи само надолу и да сработи преход t_4 само.

фигура 59. Моделиране на работата на асансьор, когато маркерът в мрежата е асансьорната кабина.

Ако искаме да направим модел, в който маркерите ще представляват броя възможни премествания в двете посоки по вертикалата на асансьора - нагоре и надолу, то той би имал вида, показан на фигура 60. Показаната ситуация съответства на момента, когато асансьора е на първия етаж и може да се качи до четвърти. Ако се качи етаж нагоре, то ще сработи преходът t_1 и в p_1 ще останат два маркера, а в p_2 ще имаме един. Това съответства на ситуацията асансьорът е на втори етаж и може да се качи един етаж нагоре (сработва t_1) или слиза един етаж надолу (сработва t_2).

фигура 60. Моделиране на работата на асансьор, когато маркерите представляват броя възможни премествания в двете посоки на движение на асансьора.

Задача 1: Мрежа на Петри е зададена с таблицата:

Събития	Предусловия	Постусловия
t_1	p_1	p_{2}
t_2	p_1	p_2, p_3
t_3	p_1	p_3
t_4	p_2	p_3
t_5	p_3, p_3	p_4
t_6	p_4	p_1

- а) представете аналитично съответната мрежа на Петри;
- б) представете същата мрежа графично;
- в) постройте дървото на достижимост при начална маркировка $\mu^0 = \big(1,0,0,0\big).$
- г) определете от дървото на достижимост:
 - маркировките, непосредствено достижими от μ^0 ;
 - множеството на достижимост $R(\mu^0)$;
 - броят на възможните изпълнения според това дърво;
 - активните и пасивните преходи;
 - пасивните и дублиращи маркировки.
- д) докажете, че мрежата (не) притежава свойствата безопасност и строга съхранимост.

Решение:

а) аналитично представяне на съответната мрежа на Петри

$$P = \left\{ p_1, p_2, p_3, p_4 \right\}, \ \left| P \right| = 4 \geq 0 \ \$$
е крайно множество от **позиции**;

$$T = \{t_1, t_2, t_3, t_4, t_5, t_6\}, \ \left|T\right| = 6 \ge 0$$
 е крайно множество от **преходи**;

 $I: T \to P^{\infty}$ е **входна** функция, изобразяваща преходите в комплекти от входни позиции;

 $O: T \to P^{\infty}$ е **изходна функция**, изобразяваща преходите в комплекти от изходни позиции.

входна функция $I: T \to P^{\infty}$	изходна функция $O:T \to P^{\infty}$
$I(t_1) = \{p_1\}$	$O(t_1) = \{p_2\}$
$I(t_2) = \{p_1\}$	$O(t_2) = \{p_2, p_3\}$
$I(t_3) = \{p_1\}$	$O(t_3) = \{p_3\}$
$I(t_4) = \{p_2\}$	$O(t_4) = \{p_3\}$
$I(t_5) = \{p_3, p_3\}$	$O(t_5) = \{p_4\}$
$I(t_6) = \{p_4\}$	$O(t_6) = \{p_1\}$
разширена входна функция	разширена изходна функция
$I(p_1) = \{t_6\}$	$O(p_1) = \{t_1, t_2, t_3\}$
$I(p_2) = \{t_1, t_2\}$	$O(p_2) = \{t_4\}$
$I(p_3) = \{t_2, t_3, t_4\}$	$O(p_3) = \{t_5, t_5\}$
$I(p_4) = \{t_5\}$	$O(p_4) = \{t_6\}$

б) графично представяне на същата мрежа е показано на фигура 61.

Фигура 61. Графично представяне на мрежата на Петри от задача 1.

в) дървото на достижимост при начална маркировка $\mu^0 = (1,0,0,0)$ е показано на фигура 62;

Фигура 62. Дърво на достижимост при начална маркировка

$$\mu^0 = (1, 0, 0, 0)$$

- г) определете от дървото на достижимост:
- маркировките, непосредствено достижими от μ^0 :

От μ^0 непосредствено достижими са три маркировки: μ^1 , μ^2 и μ^3 .

• множеството на достижимост $R(\mu^0)$:

$$R(\mu^0) = \{ \mu^1, \mu^2, \mu^3, \mu^4, \mu^5, \mu^6 \}$$

• броят на възможните изпълнения според това дърво:

Мрежата има три възможни изпълнения според това дърво.

• активните и пасивните преходи:

Активните преходи са

 $t_1,\ t_2,\ t_3,\ t_4,\ t_5\$ и t_6 , а пасивни преходи няма.

• пасивните и дублиращи маркировки:

Маркировката (0,0,1,0) е пасивна; тя се дублира $(\mu^3 \mu^4)$.

д) докажете, че мрежата (не) притежава свойствата безопасност и строга съхранимост;

Ако

$$\mu(p_i) \le 1 \quad (i = 1 \div 4)$$

по време на цялото изпълнение на мрежата, то тя е безопасна.

В случая

 $\mu(p_3) = 2 > 1$ за маркировката μ^5 . Следователно, мрежата на Петри **не е** безопасна.

$$\sum_{i=1}^{4} \mu^{0}(p_{i}) = 1, \quad \sum_{i=1}^{4} \mu^{1}(p_{i}) = 1, \quad \sum_{i=1}^{4} \mu^{2}(p_{i}) = 2,$$

$$\sum_{i=1}^{4} \mu^{3}(p_{i}) = 1, \quad \sum_{i=1}^{4} \mu^{4}(p_{i}) = 1, \quad \sum_{i=1}^{4} \mu^{5}(p_{i}) = 2,$$

$$\sum_{i=1}^{4} \mu^{6}(p_{i}) = 1.$$

оезопасна.
$$\sum_{i=1}^{4} \mu^0(p_i) = 1, \quad \sum_{i=1}^{4} \mu^1(p_i) = 1, \quad \sum_{i=1}^{4} \mu^2(p_i) = 2, \\ \sum_{i=1}^{4} \mu^3(p_i) = 1, \quad \sum_{i=1}^{4} \mu^4(p_i) = 1, \quad \sum_{i=1}^{4} \mu^5(p_i) = 2, \\ \sum_{i=1}^{4} \mu^6(p_i) = 1, \quad \sum_{i=1}^{4} \mu^6$$