Impactos das mudanças climáticas: *Mismatches* e alterações na distribuição de plantas e morcegos polinizadores

Guilherme de Carvalho Chicarolli Guillermo Florez-Montero Simone Rodrigues de Freitas

22 de Março de 2021

Resumo

A modificação na distribuição geográfica das espécies é um dos inúmeros impactos que as alterações no clima podem causar nas comunidades, comprometendo o funcionamento de ecossistemas e interações ecológicas entre indivíduos. Dessa forma, como resposta às mudanças climáticas, as espécies que a adaptarem sua distribuição a lugares mais adequados serão selecionadas evolutivamente, caso contrário serão extintas. Se a adequação não for acompanhada também pela adaptação das outras espécies com os quais há relações ecológicas importantes, pode ocorrer o chamado mismatch espacial entre elas, que é dada pela não sobreposição geográfica das espécies. O presente projeto buscou compreender como as mudanças climáticas podem impactar a distribuição geográfica da espécie de quiróptero Lonchophylla bokermanni Sazima et al., 1978, e da bromélia Encholirium subsecundum (Baker) Mez, duas espécies que possuem relações ecológicas próximas, sendo L. bokermanni o único polinizador conhecido de E. subsecundum. Utilizando-se de Modelos de Distribuição de Espécies (MDEs) foram criados modelos de distribuição potencial das espécies em dois cenários climáticos projetados para 2050, de RCP 4.5 e 8.5.

Palavras chave: Mudanças climáticas, modelagem, distribuição e sobreposição de espécies.

Área do conhecimento: Ecologia.

Contents

Re	Resumo			
1.	Introdução	3		
2.	Materiais e métodos	4		
	2.1 Espécies estudadas			
	2.2 Ocorrências	5		
	2.3 Modelo de Distribuição	5		
	2.4 Dados ambientais	5		
$\mathbf{A}_{\mathbf{J}}$	pêndice	8		
Re	eferências	13		

1. Introdução

2. Materiais e métodos

2.1 Espécies estudadas

Modelamos a distribuição de 2 espécies: a de quiróptero *Lonchophylla bokermanni* Sazima *et al.*, 1978, e de bromélia *Encholirium subsecundum* (Baker) Mez.

L. bokermanni Sazima et al., 1978 (DIAS e colab., 2013; SAZIMA e colab., 1978) é uma espécie de morcego de porte médio endêmica do Brasil, fazendo parte do gênero Lonchophylla (família Phyllostomidae), que abrange espécies nectarívoras, com focinho alongado e língua comprida (FLEMING e colab., 2009). Com poucas ocorrências no bioma do Cerrado e da Caatiga, em Minas Gerais e Bahia (Tabela 2), o quiróptero possui uma distribuição restrita (CLÁUDIO e colab., 2018). Ainda pouco se conhece sobre a biologia da espécie, porém sabe-se que alimenta-se de pólen, néctar e insetos (DIAS e colab., 2013; MORATELLI, 2013).

Em razão da degradação de seus habitats, a classificação de *L. bokermanni* quanto ao seu grau de ameaça está como "Em perigo" de acordo com a Listade Espécies Ameaçadas da União Internacional para a Conservação da Natureza (IUCN) (CLÁUDIO e colab., 2018) e como "Quase ameaçada" pelo Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, 2018).

Figure 1: Lonchophylla bokermanni Sazima et al., 1978. Imagem retirada da fonte: CLÁUDIO e colab. (2018)

Encholiirum subsecundum (Baker) Mez é uma espécie de bromélia do gênero Encholirium (família Bromeliaceae) que ocorre em formações rochosas, podendo atingir até 2 metros de altura e com um padrão floral quiropterófilo (CAVALLARI, 2004; DIAS e colab., 2013). A espécie é endêmica do Brasil, com ocorrências nos biomas da Caatinga, Mata Atlântica e, principalmente, no Cerrado (CAVALLARI, 2004; FORZZA, 2005; SAZIMA e colab., 1989), nos estados de Minas Gerais e Bahia (Tabela 1). Embora existam outras espécies de morcegos nectarívoros na área de

ocorrência de *E. subsecundum*, *L. bokermanni* é o único polinizador conhecido da bromélia (SAZ-IMA e colab., 1989). *E. subsecundum* não se encontra no Livro Vermelho da Flora do Brasil (MAR-TINELLI e MORAES, 2013) ou na Lista Vermelha da IUCN ("The IUCN Red List of Threatened Species", 2021).

2.2 Ocorrências

Para o processo de Modelagem de Distribuição são necessários registros georreferenciados das espécies. Assim, foram coletados os registros de ocorrências de *Encholirium subsecundum* e *Lonchophylla bokermanni* em 3 bancos de registros onlines: Specielink, GBIF e SiBBr, que reunem registros de coleções de espécies. Também foram utilizados registros de artigos que fizeram coletas de espécies.

Foram reunidos 24 registros ao todo da espécie *L. bokermanni*, com o único parâmetro prévio de possuírem coordenadas georreferenciadas. Em seguida, os registros com coordenadas geográficas duplicadas foram retirados da base de dados, sobrando apenas uma ocorrências entre as duplicadas. Então, um *buffer* com raio de 5 km foi criado ao redor de cada registro e foram selecionados apenas uma ocorrência dentro de cada *buffer*, a fim de diminuir o viés amostral na seleção de ocorrências pelo modelo (HIJMANS e SPOONER, 2001). Por fim, sobraram 8 registros, os quais foram utilizados para as modelagens (Ver tabela 2).

O mesmo método de limpeza e tratamento dos registros de ocorrência foram utilizados com os dados da *E. subsecundum*, inicialmente com 82 registros e após a retirada de registros duplicados e seleção de um registro por *buffer*, restaram 37 ocorrências de localidade da espécie (Ver tabela 1) que foram utilizados nas modelagens.

Todos as ocorrências restantes tiveram a descrição de município e localidades dos registros confrontados com os pontos de georreferenciamento (latitude e longitude), com o objetivo de verificar se estavam de acordo. Nenhum registro restante possuía descrição de localidade que não estivesse de acordo com a posição geográfica descrita.

2.3 Modelo de Distribuição

2.4 Dados ambientais

Para produzir os modelos de distribuição potencial das espécies utilizamos camadas ambientais obtidas do projeto WorldClim (FICK e HIJMANS, 2017), com resolução espacial de 2.5 arc-minutos (aproximadamente 4.5 km no equador) e representando o clima atual, correspondendo à média das observações de 1970 a 2000. As 19 variáveis bioclimáticas (Tabela 3) derivam de dados de temperatura e precipitação, repesentando tendências anuais, condições extremas e sazionalidade (FICK e HIJMANS, 2017).

Para as predições de distribuições futuras, utilizamos camadas projetadas do clima global para o ano de 2050 (média de 2041 a 2060) de acordo com o Quinto Relatório de Avaliação do Painel Inter-

Figure 2: Gráfico das localidades de L. bokermanni (à esquerda) e E. subsecundum (à direita).

governamental sobre Mudanças Climáticas (AR5) do Painel Intergovernamental sobre Mudanças Climáticas (IPCC, 2013), obtidas também através do projeto WorldClim (FICK e HIJMANS, 2017). São camadas de 19 biovariáveis (Tabela 3) projetadas para o futuro, com resolução de 2.5 arc-minutos e usando o modelo de circulação ACCESS1, representando dois cenários distintos de emissão de gases do efeito estufa conforme o Representative Concentration Pathways (RCPs), o de RCP 45 (cenário no qual as emissões de CO_2 começam a diminuir a partir de 2045) e de RCP 85 (as emissões de gases continuam a crescer ao longo do século 21) (VUUREN e colab., 2011).

Diversos autores apontaram problemas de multicolinearidade de variáveis climáticas em modelagens de distribuição (BRAUNISCH e colab., 2013; CRUZ-CÁRDENAS e colab., 2014), afetando diretamente os resultados e performance dos modelos. A fim de avaliar a gravidade da colinearidade entre os pontos de ocorrências das duas espécies e o conjunto de biovariáveis do clima atual, medimos o Fator de Inflação da Variância (VIF) das camadas ambientais. Para os dados de ocorrência da planta *E. subsecundum*, o teste resultou em 13 (de 19) variáveis bioclimáticas com problemas de colinearidade (Tabela 4). Enquanto que para o morcego *L. bokermanni*, 17 variáveis apresentaram alto grau de colinearidade (Tabela 5). Valores de VIF maiores que o limiar 10 já indicam problema de colinearidade.

Figure 3: Matriz de correlação entre as variáveis bioclimáticas para a espécie E. subsecundum (à esquerda) e L. bokermanni (à direita)

Apêndice

 Tabela 1: Pontos de ocorrências de ${\it Encholirium~subsecundum}$ (Barker Mez)

Estado	Município	Longitude	Latitude	Referência
Minas	Belo Horizonte	-	-	Fundação Zoo-Botânica de Belo Horizonte
Gerais		43.93780	19.92080	
Minas	Santana do	-	-	Fundação Zoo-Botânica de Belo Horizonte
Gerais	Riacho	43.71440	19.16890	
Minas	Conceição do	-	-	Fundação Zoo-Botânica de Belo Horizonte
Gerais	Mato Dentro	43.42500	19.03720	
Minas	Serro	-	-	Coleção da Escola Superior de Agronomia
Gerais		43.37940	18.60470	Luiz de Queiroz - USP
Minas	Serro	-	-	Herbário do Museu Nacional
Gerais		43.44500	18.47250	
Minas	Jequitaí	-	-	Coleção da Universidade Federal de
Gerais		44.44560	17.23560	Viçosa
Minas	Buenópolis	-	-	Coleção da Universidade Federal de
Gerais		44.18000	17.87330	Viçosa
Minas	Buenópolis	-	-	Coleção da Universidade Federal do
Gerais		44.23389	17.92389	Maranhão
Minas	Buenópolis	-	-	Coleção da Universidade Federal do
Gerais		44.24944	17.90917	Maranhão
Minas	Santana do	-	-	Coleção da Universidade Federal de
Gerais	Riacho	43.71440	19.16890	Viçosa
Minas	Mariana	-	-	Coleção da Universidade Federal de
Gerais		43.41610	20.37780	Viçosa
Minas	Datas	-	-	Herbário do Museu Botânico Municipal
Gerais		43.65580	18.44560	
Minas	Joaquim Felício	-	-	Coleção da Universidade Estadual de
Gerais		44.17220	17.75750	Feira de Santana
Minas	Joaquim Felício	-	-	The New York Botanical Garden
Gerais		44.29190	17.69890	
Minas	Joaquim Felício	-	-	Herbário da Universidade Estadual de
Gerais		44.17220	17.75750	Feira de Santana
Minas	Santana do	-	-	Instituto de Botânica
Gerais	Riacho	43.71440	19.16890	

Estado	Município	Longitude	Latitude	Referência
Minas	Penha da França	-	-	Coleção da Universidade de Brasília
Gerais		43.83333	18.83333	
Minas	Montes Claros	-	-	Coleção da UNICAMP
Gerais		43.86170	16.73500	
Minas	Santo Antônio do	-	-	Herbário da UFMG
Gerais	Itambé	43.33944	18.45694	
Minas	Pedro Leopoldo	-	-	Herbário da UFMG
Gerais		44.04310	19.61810	
Minas	Itacambira	-	-	Herbário da UFMG
Gerais		43.30890	17.06470	
Minas	Dom Joaquim	-	-	Herbário do Museu do Jardim Botânico
Gerais		43.23333	18.86667	do Rio de Janeiro
Minas	Mato Verde	-	-	Herbário do Museu do Jardim Botânico
Gerais		42.77889	15.38667	do Rio de Janeiro
Minas	Santana de	-	-	Herbário do Museu do Jardim Botânico
Gerais	Pirapama	43.75556	19.00611	do Rio de Janeiro
Minas	Diamantina	-	-	Herbário do Museu do Jardim Botânico
Gerais		43.55278	18.35500	do Rio de Janeiro
Minas	Diamantina	-	-	Herbário do Museu do Jardim Botânico
Gerais		43.62806	18.19194	do Rio de Janeiro
Minas	Presidente	-	-	MOURA (2014)
Gerais	Kubitschek	43.55722	18.65389	
Minas	Santana do	-	19.25000	Herbário da UFMG
Gerais	Riacho	43.51667		
Bahia	Itatim	-	-	Instituto de Botânica
		39.69810	12.71190	
Minas	Jaboticatubas	-	-	The New York Botanical Garden
Gerais		43.74500	19.51360	
Minas	Jaboticatubas	-	-	Herbário do Museu Nacional
Gerais		43.58333	19.16667	

Tabela 2: Pontos de ocorrências de $Lonchophylla\ bokermanni$ (Sazima, Vizotto & Taddei)

Estado	Município	Longitude	Latitude	Referência
Minas	Jaboticatubas	-43.74472	-19.51361	Coleção de Mamíferos do Museu de
gerais				Zoologia da UNICAMP
Minas	Jaboticatubas	-43.74540	-19.52210	Coleção de Quirópteros da UNESP
gerais				
Minas	Serra do Cipó	-43.60000	-19.26667	Coleção de Mamíferos do Museu de
gerais				Zoologia da UNICAMP
Minas	Itambé do Mato	-	-	NASCIMENTO e colab. (2013)
gerais	Dentro	43.349444	19.410278	
Minas	Diamantina	-	-	DIAS e colab. (2013)
gerais		43.516667	18.383333	
Minas	Diamantina	-	-	ALMEIDA e colab. (2016)
gerais		43.383333	18.383333	
Bahia	Caetité	-	-	CLÁUDIO e colab. (2018)
		42.500000	14.266667	
Bahia	Ourolândia	-	-	CLÁUDIO e colab. (2018)
		41.083333	11.083333	

 ${\bf Tabela~3:}~{\bf Descrição}~{\bf das}~{\bf variáveis}~{\bf bioclimáticas}~{\bf derivadas}~{\bf de}~{\bf valores}~{\bf de}~{\bf temperatura}~{\bf e}~{\bf pluviosidade}~({\bf FICK}~{\bf e}~{\bf HIJMANS},~2017)$

Variáveis bioclimáticas	Descrição
Bio 1	Temperatura média anual
Bio 2	Intervalo médio diurno (Média mensal (máx. temp mín temp.))
Bio 3	Isotermalidade
Bio 4	Sazonalidade de Temperatura (desvio padrão *100)
Bio 5	Temperatura máxima do mês mais quente
Bio 6	Temperatura mínima do mês mais frio
Bio 7	Intervalo da temperatura anual
Bio 8	Média do quarto de ano mais úmido
Bio 9	Média do quarto de ano mais seco
Bio 10	Média do quarto de ano mais quente
Bio 11	Média do quarto de ano mais frio
Bio 12	Precipitação anual
Bio 13	Precipitação do mês mais frio
Bio 14	Precipitação do mês mais seco
Bio 15	Sazonalidade de precipitação (Coeficiente de variação)
Bio 16	Precipitação do quadrimestre mais úmido
Bio 17	Precipitação do quadrimestre mais seco
Bio 18	Precipitação do quadrimestre mais quente
Bio 19	Precipitação do quadrimestre mais frio

Tabela 4: Valores VIF das variáveis sem problema de colinearidade (VIF < 10) da espécie ${\it E. subsecundum}$

VIF
2.852144
6.405928
9.101937
6.039373
4.576259
4.025089

Tabela 5: Valores VIF das variáveis sem problema de colinearidade (VIF < 10) da espécie $L.\ bokermanni$

VIF
1.002012
1.002012

Referências

ALMEIDA, Brunna e colab. Karyotype of three Lonchophylla species (Chiroptera, Phyllostomidae) from Southeastern Brazil. Comparative Cytogenetics, v. 10, n. 1, p. 109–115, 2016. Disponível em: https://doi.org/10.3897/CompCytogen.v10i1.6646.

BRAUNISCH, Veronika e colab. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography, v. 36, Set 2013.

CAVALLARI, Marcelo Mattos. Estrutura genética de populações de Encholirium (Bromeliaceae) e implicações para sua conservação. 2004. mathesis – Escola Superior de Agricultura Luiz de Queiroz (USP), 2004.

CLÁUDIO, Vinícius e colab. First record of Lonchophylla bokermanni (Chiroptera, Phyllostomidae) for the Caatinga biome. Mastozoologia Neotropical, v. 25, Jul 2018.

CRUZ-CÁRDENAS, Gustavo e colab. **Potential species distribution modeling and the use of principal component analysis as predictor variables**. Revista Mexicana de Biodiversidad, v. 85, n. 1, p. 189–199, 2014. Disponível em: https://www.sciencedirect.com/science/article/pii/S1870345314707444.

DIAS, Daniela e ESBÉRARD, Cel e MORATELLI, Ricardo. A new species of Lonchophylla (Chiroptera, Phyllostomidae) from the Atlantic Forest of southeastern Brazil, with comments on L. bokermanni. Zootaxa, v. 3722, p. 347–360, Out 2013.

FICK, Stephen E. e HIJMANS, Robert J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, v. 37, n. 12, p. 4302–4315, 2017. Disponível em: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086.

FLEMING, Theodore e GEISELMAN, Cullen e KRESS, W. The evolution of bat pollination: A phylogenetic perspective. Annals of botany, v. 104, p. 1017–43, Set 2009.

FORZZA, Rafaela Campostrini. **REVISÃO TAXONÔMICA DE ENCHOLIRIUM MART. EX SCHULT. & SCHULT. F. (PITCAIRNIOIDEAE - BROMELIACEAE)**. Boletim de Botânica da Universidade de São Paulo, v. 23, n. 1, p. 1–49, 2005. Disponível em: http://www.jstor.org/stable/42871669.

HIJMANS, Robert e SPOONER, David. Geographic Distribution of Wild Potato Species. American journal of botany, v. 88, p. 2101–12, Nov 2001.

IPCC. Summary for Policymakers. STOCKER, T. F. e colab. (Org.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, 2013. p. 1–30.

Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. [S.l.]: ICMBio/MMA, 2018. v. 1.

MARTINELLI, Gustavo e MORAES, Miguel Avila. Livro vermelho da flora do Brasil. [S.l.]: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, 2013. v. 1. p. 1100

MORATELLI, Ricardo. Nova espécie de morcego da Mata Atlântica homenageia o Dr. Adriano Peracchi e revela outra espécie do Cerrado que pode estar criticamente ameaçada. Disponível em: https://sbeq.wordpress.com/2013/10/22/nova-especie-de-morcego-da-mata-atlantica-homenageia-o-dr-adriano-peracchi-e-revela-outra-especie-do-cerrado-que-pode-estar-criticamente-ameacada/.

MOURA, Mariana Neves. Hipóteses filogenéticas baseadas em caracteres moleculares e estudos do tamanho do genoma em Dyckia Schult. & Schult.f. e Encholirium Mart. ex Schult. & Schult.f. (Bromeliaceae). 2014. mathesis – Universidade Federal de Viçosa, 2014.

NASCIMENTO, Maria Clara e colab. Rediscovery of Lonchophylla bokermanni Sazima, Vizotto and Taddei, 1978 (Chiroptera: Phyllostomidae: Lonchophyllinae) in Minas Gerais, and new records for Espírito Santo, southeastern Brazil. Check List, v. 9, p. 1046–1049, Out 2013.

SAZIMA, Ivan e VIZOTTO, Luiz e TADDEI, Antonio. Uma nova espécie de Lonchophylla da Serra do Cipó, Minas Gerais, Brasil (Mammalia, Chiroptera, Phyllostomidae). Revista Brasileira de Biologia, v. 38, p. 81–89, Jan 1978.

SAZIMA, Ivan e VOGEL, Stefan e SAZIMA, Marlies. **Bat pollination of Encholirium glaziovii, a terrestrial bromeliad**. Plant Systematics and Evolution, v. 168, p. 167–179, Ago 1989.

The IUCN Red List of Threatened Species. Disponível em: https://www.iucnredlist.org.

 $\label{eq:VUUREN} VUUREN, Detlef P. \ Van e \ colab. \ \textbf{The representative concentration pathways: an overview}.$ Climatic Change, v. 109, 2011.