Protocol Verification Techniques - Theorem Provers

Design and Verification of Security Protocols and Security Ceremonies

Programa de Pós-Graduacão em Ciências da Computação Dr. Jean Everson Martina

March-June 2018

Attention!

Attention!

This topic will be divided into two lectures. One will deal with automatic theorem provers using FOL and the second will deal with theorem provers using HOL

 Higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and stronger semantics;

- Higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and stronger semantics;
- Higher-order logics semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic;

- Higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and stronger semantics;
- Higher-order logics semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic;
- The term "higher-order logic", abbreviated as HOL;

- Higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and stronger semantics;
- Higher-order logics semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic;
- The term "higher-order logic", abbreviated as HOL;
- HOL is any predicate logic that has greater order than Second-Order Logic;

 Second-Order Logic stands for the possibility of quantifying over sets;

- Second-Order Logic stands for the possibility of quantifying over sets;
- The idea is that you can put a quantifier over other quantifier;

- Second-Order Logic stands for the possibility of quantifying over sets;
- The idea is that you can put a quantifier over other quantifier;
- For example we can say $\forall x \exists P(x, y) \rightarrow y$

- Second-Order Logic stands for the possibility of quantifying over sets;
- The idea is that you can put a quantifier over other quantifier;
- For example we can say $\forall x \exists P(x, y) \rightarrow y$
- Third-Order Logic allows for quantification over Second-Order Logic;

- Second-Order Logic stands for the possibility of quantifying over sets;
- The idea is that you can put a quantifier over other quantifier;
- For example we can say $\forall x \exists P(x, y) \rightarrow y$
- Third-Order Logic allows for quantification over Second-Order Logic;
- Higher-order logic is the union of first-, second-, third-, ..., nth-order logic;

- Second-Order Logic stands for the possibility of quantifying over sets;
- The idea is that you can put a quantifier over other quantifier;
- For example we can say $\forall x \exists P(x, y) \rightarrow y$
- Third-Order Logic allows for quantification over Second-Order Logic;
- Higher-order logic is the union of first-, second-, third-, ..., nth-order logic;
- Higher-order logic admits quantification over sets that are nested arbitrarily deeply.

 First-order logic quantifies only variables that range over individuals;

- First-order logic quantifies only variables that range over individuals;
- Second-order logic, in addition, quantifies over sets;

- First-order logic quantifies only variables that range over individuals;
- Second-order logic, in addition, quantifies over sets;
- Third-order logic also quantifies over sets of sets, and so on;

- First-order logic quantifies only variables that range over individuals;
- Second-order logic, in addition, quantifies over sets;
- Third-order logic also quantifies over sets of sets, and so on;
- From Second-Order Logic on we are allowed to describe mathematical induction;

- First-order logic quantifies only variables that range over individuals;
- Second-order logic, in addition, quantifies over sets;
- Third-order logic also quantifies over sets of sets, and so on;
- From Second-Order Logic on we are allowed to describe mathematical induction;
- $\forall P((0 \in P \land \forall i (i \in P \rightarrow i + 1 \in P)) \rightarrow \forall n (n \in P))$

- First-order logic quantifies only variables that range over individuals;
- Second-order logic, in addition, quantifies over sets;
- Third-order logic also quantifies over sets of sets, and so on;
- From Second-Order Logic on we are allowed to describe mathematical induction;
- $\forall P((0 \in P \land \forall i (i \in P \rightarrow i + 1 \in P)) \rightarrow \forall n (n \in P))$
- This is the definition of the set of Natural Numbers.

 Lawrence Charles Paulson (Larry) is a professor at the University of Cambridge;

- Lawrence Charles Paulson (Larry) is a professor at the University of Cambridge;
- His research is based around the interactive theorem prover Isabelle, which he introduced in 1986;

- Lawrence Charles Paulson (Larry) is a professor at the University of Cambridge;
- His research is based around the interactive theorem prover Isabelle, which he introduced in 1986;
- He has worked on the verification of cryptographic protocols using inductive definitions;

- Lawrence Charles Paulson (Larry) is a professor at the University of Cambridge;
- His research is based around the interactive theorem prover Isabelle, which he introduced in 1986;
- He has worked on the verification of cryptographic protocols using inductive definitions;
- He has also formalized the constructible universe of Kurt Gödel;
 UFSC UNIVERSIDADE DE SANTA CATA

- Lawrence Charles Paulson (Larry) is a professor at the University of Cambridge;
- His research is based around the interactive theorem prover Isabelle, which he introduced in 1986;
- He has worked on the verification of cryptographic protocols using inductive definitions;
- He has also formalized the constructible universe of Kurt Gödel;
 UFSC UNIVERSIDADI DE SANTA CA

 He was one of the most cited researchers on a paper that demonstrated the existence of God by a machine on Gödel's world:

- He was one of the most cited researchers on a paper that demonstrated the existence of God by a machine on Gödel's world;
- He is a deep minded atheist;

- He was one of the most cited researchers on a paper that demonstrated the existence of God by a machine on Gödel's world;
- He is a deep minded atheist;
- He has a page called: "Larry Paulson Portrait of a God";

- He was one of the most cited researchers on a paper that demonstrated the existence of God by a machine on Gödel's world;
- He is a deep minded atheist;
- He has a page called: "Larry Paulson Portrait of a God";
- http://www.geocities.ws/robrich18/Larry.html

Isabelle theorem prover;

- Isabelle theorem prover;
 - General tool;

- Isabelle theorem prover;
 - General tool;
 - Works with protocols since 1997;

- Isabelle theorem prover;
 - General tool:
 - Works with protocols since 1997;
- Many papers describing the Inductive Method he created;

- Isabelle theorem prover;
 - General tool:
 - Works with protocols since 1997;
- Many papers describing the Inductive Method he created;
- Many case studies, including:

- Isabelle theorem prover;
 - General tool;
 - Works with protocols since 1997;
- Many papers describing the Inductive Method he created;
- Many case studies, including:
 - Verification of SET protocol (6 papers)

- Isabelle theorem prover;
 - General tool;
 - Works with protocols since 1997;
- Many papers describing the Inductive Method he created;
- Many case studies, including:
 - Verification of SET protocol (6 papers)
 - Kerberos (3 papers)

- Isabelle theorem prover;
 - General tool;
 - Works with protocols since 1997;
- Many papers describing the Inductive Method he created;
- Many case studies, including:
 - Verification of SET protocol (6 papers)
 - Kerberos (3 papers)
 - TLS protocol

- Isabelle theorem prover;
 - General tool;
 - Works with protocols since 1997;
- Many papers describing the Inductive Method he created;
- Many case studies, including:
 - Verification of SET protocol (6 papers)
 - Kerberos (3 papers)
 - TLS protocol
 - Yahalom protocol, smart cards, etc

Larry's Protocol Verification Time-line

- Isabelle theorem prover;
 - General tool;
 - Works with protocols since 1997;
- Many papers describing the Inductive Method he created;
- Many case studies, including:
 - Verification of SET protocol (6 papers)
 - Kerberos (3 papers)
 - TLS protocol
 - Yahalom protocol, smart cards, etc
- Last work published in 2015: "Verifying multicast-based security protocols using the inductive method. Martina, J.E., Paulson, L.C."

• Starts with an informal protocol description;

- Starts with an informal protocol description;
- Out of that we extract:

- Starts with an informal protocol description;
- Out of that we extract:
 - An inductive abstract trace model;

- Starts with an informal protocol description;
- Out of that we extract:
 - An inductive abstract trace model;
 - Correctness theorem about the traces;

- Starts with an informal protocol description;
- Out of that we extract:
 - An inductive abstract trace model;
 - Correctness theorem about the traces;
- We then add the attacker inference rules;

- Starts with an informal protocol description;
- Out of that we extract:
 - An inductive abstract trace model;
 - Correctness theorem about the traces;
- We then add the attacker inference rules;
- We state the goals ad theorems and lemmas;

- Starts with an informal protocol description;
- Out of that we extract:
 - An inductive abstract trace model;
 - Correctness theorem about the traces;
- We then add the attacker inference rules;
- We state the goals ad theorems and lemmas;
- We prove the theorems inductively to demonstrate correctness.

 Larry Paulson advocates a simple approach (called Inductive Method):

- Larry Paulson advocates a simple approach (called Inductive Method):
 - A protocol in a context describes a set of traces;

- Larry Paulson advocates a simple approach (called Inductive Method):
 - A protocol in a context describes a set of traces;
 - These traces are defined inductively;

- Larry Paulson advocates a simple approach (called Inductive Method):
 - A protocol in a context describes a set of traces;
 - These traces are defined inductively;
 - A specification is again a property of traces;

- Larry Paulson advocates a simple approach (called Inductive Method):
 - A protocol in a context describes a set of traces;
 - These traces are defined inductively;
 - A specification is again a property of traces;
 - Checking requires proving that all the traces satisfy the property, by induction on the construction of the traces;

- Larry Paulson advocates a simple approach (called Inductive Method):
 - A protocol in a context describes a set of traces;
 - These traces are defined inductively;
 - A specification is again a property of traces;
 - Checking requires proving that all the traces satisfy the property, by induction on the construction of the traces;
 - Main point: these proofs are big, uninteresting, and better left to machines;

- Larry Paulson advocates a simple approach (called Inductive Method):
 - A protocol in a context describes a set of traces;
 - These traces are defined inductively;
 - A specification is again a property of traces;
 - Checking requires proving that all the traces satisfy the property, by induction on the construction of the traces;
 - Main point: these proofs are big, uninteresting, and better left to machines;
 - Use a theorem prover (Isabelle)to write the proofs.

Automated support for proof development, which supports:

- Automated support for proof development, which supports:
 - Higher-order logic;

- Automated support for proof development, which supports:
 - Higher-order logic;
 - Serves as a logical framework;

- Automated support for proof development, which supports:
 - Higher-order logic;
 - Serves as a logical framework;
 - Supports ZF set theory and HOL;

- Automated support for proof development, which supports:
 - Higher-order logic;
 - Serves as a logical framework;
 - Supports ZF set theory and HOL;
 - Generic treatment of inference rules;

- Automated support for proof development, which supports:
 - Higher-order logic;
 - Serves as a logical framework;
 - Supports ZF set theory and HOL;
 - Generic treatment of inference rules;
- Powerful simplifier, classical reasoner and connected tools;

- Automated support for proof development, which supports:
 - Higher-order logic;
 - Serves as a logical framework;
 - Supports ZF set theory and HOL;
 - Generic treatment of inference rules;
- Powerful simplifier, classical reasoner and connected tools;
- Strong support for inductive definitions.

 There are several files to support security protocol verification in Isabelle:

- There are several files to support security protocol verification in Isabelle:
 - Message.thy, which specifies how the messages exchanged in security protocols are constructed, as well as the main operators we use within the method;

- There are several files to support security protocol verification in Isabelle:
 - Message.thy, which specifies how the messages exchanged in security protocols are constructed, as well as the main operators we use within the method;
 - Event.thy, which inherits from Message.thy and accounts for the specification of the communication layer with the sending, receiving and noting events;

- There are several files to support security protocol verification in Isabelle:
 - Message.thy, which specifies how the messages exchanged in security protocols are constructed, as well as the main operators we use within the method;
 - Event.thy, which inherits from Message.thy and accounts for the specification of the communication layer with the sending, receiving and noting events;
 - Public.thy which inherits from Event.thy, which despite the narrowly chosen name, accounts for the specification of symmetric and asymmetric cryptographic primitives;

- There are several files to support security protocol verification in Isabelle:
 - Message.thy, which specifies how the messages exchanged in security protocols are constructed, as well as the main operators we use within the method;
 - Event.thy, which inherits from Message.thy and accounts for the specification of the communication layer with the sending, receiving and noting events;
 - Public.thy which inherits from Event.thy, which despite the narrowly chosen name, accounts for the specification of symmetric and asymmetric cryptographic primitives;
 - We also have some other specialised theories for Smart-Cards, Threshold Cryptography and Multicast communication.

Definition

Agent datatype definition

datatype

Definition

Agent datatype definition

datatype

• First we have the definition of a friendly agent by the bijection explained above;

Definition

Agent datatype definition

datatype

- First we have the definition of a friendly agent by the bijection explained above;
- The second category regards the trusted third party;

Definition

Agent datatype definition

datatype

- First we have the definition of a friendly agent by the bijection explained above;
- The second category regards the trusted third party;
- Finally we have the attacker, which is categorised separately.

Definition

```
shrK function definition
```

```
consts
```

```
shrK :: "agent => key"
specification (shrK)
inj_shrK: "inj shrK"
```

Definition

shrK function definition

consts

```
shrK :: "agent => key"
specification (shrK)
inj_shrK: "inj shrK"
```

 The specification of cryptographic keys in the Inductive Method starts with the introduction of a free type key as a derivation of the type nat;

Definition

shrK function definition

```
consts
```

```
shrK :: "agent => key"
specification (shrK)
inj_shrK: "inj shrK"
```

- The specification of cryptographic keys in the Inductive Method starts with the introduction of a free type key as a derivation of the type nat;
- A shared key is specified as an injective function taking an agent and returning a key.

Definition

```
invKey function definition
```

```
consts
```

```
invKey :: "key => key"
specification (invKey)
  invKey [simp]: "invKey (invKey K) = K"
  invKey_symmetric: "all_symmetric --> invKey = id"
```

Definition

invKey function definition

consts

```
invKey :: "key => key"
specification (invKey)
invKey [simp]: "invKey (invKey K) = K"
invKey_symmetric: "all_symmetric --> invKey = id"
```

The function invKeyis a function from data type key to key specified by two rules:

Definition

invKey function definition

```
consts
```

```
invKey :: "key => key"
specification (invKey)
invKey [simp]: "invKey (invKey K) = K"
invKey_symmetric: "all_symmetric --> invKey = id"
```

- The function invKeyis a function from data type key to key specified by two rules:
 - The first rule is a simplification one that says that the double application of the function brings us back to the original value;

 UFSC UNIVERSIDADE SANTA CONTROLL

Definition

invKey function definition

```
consts
```

```
invKey :: "key => key"
specification (invKey)
  invKey [simp]: "invKey (invKey K) = K"
  invKey_symmetric: "all_symmetric --> invKey = id"
```

- The function invKeyis a function from data type key to key specified by two rules:
 - The first rule is a simplification one that says that the double application of the function brings us back to the original value;
 The second rule establishes true if the function in Key is

Definition

```
symKeys set definition
```

constdefs

```
symKeys :: "key set"
"symKeys == K. invKey K = K"
```

Definition

symKeys set definition

constdefs

```
symKeys :: "key set"
"symKeys == K. invKey K = K"
```

 The symmetric key set is defined as containing all keys where the inverse of the key by the application of the function invKey is itself;

Definition

symKeys set definition

constdefs

```
symKeys :: "key set"
"symKeys == K. invKey K = K"
```

 The symmetric key set is defined as containing all keys where the inverse of the key by the application of the function invKey is itself;

Definition

symKeys set definition

constdefs

```
symKeys :: "key set"
"symKeys == K. invKey K = K"
```

By stating K ∈ symKeys ∧ K ∉ range shrK we can create a second class of symmetric keys that are not long-term so that it represents sessions keys in our protocols being verified.

Definition

Axiom for symmetric usage of shared keys

axioms

```
sym\_shrK [iff]: "shrK X \in symKeys"
```

Definition

Axiom for symmetric usage of shared keys

axioms

```
\verb"sym_shrK [iff]: "shrK X \in \verb"symKeys""
```

Establishs that our long-term keys are symmetric with an axiom.


```
publicKey definition
datatype
  keymode = Signature | Encryption
consts
  publicKey :: "[keymode,agent] => key"
specification (publicKey)
  injective_publicKey:
   "publicKey b A = publicKey c A' ==> b=c & A=A'"
```

```
publicKey definition
datatype
  keymode = Signature | Encryption
consts
  publicKey :: "[keymode,agent] => key"
specification (publicKey)
  injective_publicKey:
   "publicKey b A = publicKey c A' ==> b=c & A=A'"
```

Definition

```
privateKey axiom definition
```

axioms

```
privateKey_neq_publicKey [iff]: 
 "privateKey b A \neq publicKey c A'"
```


Definition

```
privateKey axiom definition
```

axioms

```
privateKey_neq_publicKey [iff]: 
 "privateKey b A \neq publicKey c A'"
```


Definition

Public Key abbreviations

abbreviation

```
pubEK :: "agent => key" where
"pubEK == publicKey Encryption"
pubSK :: "agent => key" where
"pubSK == publicKey Signature"
privateKey :: "[keymode, agent] => key" where
"privateKey b A == invKey (publicKey b A)"
priEK :: "agent => key" where
"priEK A == privateKey Encryption A"
priSK :: "agent => key" where
"priSK A == privateKey Signature A"
```

Inductive Method Details - Compromised Agents

Definition

bad set definition

```
consts
  bad :: "agent set"
specification (bad)
  Spy_in_bad [iff]: "Spy ∈ bad"
  Server_not_bad [iff]: "Server ∉ bad"
```

Inductive Method Details - Messages

Definition

```
msg datatype definition
```

datatype

Inductive Method Details - Events

Definition

```
event datatype definition
```

datatype

Inductive Method Details - Initial Knowledge

Definition

initState definition

consts

```
initState :: "agent => msg set"
```

Inductive Method Details - Initial Knowledge

```
Spy agent initial knowledge definition

primrec
  initState_Spy:
    "initState Spy =
    (Key ` invKey ` pubEK ` bad) \(\text{(Key ` invKey ` pubSK ` bad)} \(\text{(Key ` invKey ` pubSK ` bad)} \(\text{(Key ` shrK ` bad)} \(\text{(Key ` range pubSK)} \('\text{"}\)
```

Inductive Method Details - Knows

```
knows function definition
consts knows :: "agent => event list => msg set"
primrec
  knows Nil: "knows A [] = initState A"
  knows Cons:
    "knows A (ev # evs) =
    (if A = Spy then
    (case ev of
      Says A' B X => insert X (knows Spy evs)
      | Gets A' X => knows Spy evs
      | Notes A' X =>
        if A' \in bad then insert X (knows Spy evs)
          else knows Spy evs)
```

Inductive Method Details - Knows

Definition

knows function definition

```
consts
    else
    (case ev of
      Says A' B X =>
        if A'=A then insert X (knows A evs) else knows
A evs
      | Gets A' X =>
        if A'=A then insert X (knows A evs) else knows
A evs
      | Notes A' X =>
        if A'=A then insert X (knows A evs) else knows
A evs))"
```

```
parts inductive set definition
```

```
inductive_set
```

```
parts :: "msg set => msg set"
for H :: "msg set"
where
    Inj [intro]: "X ∈ H ==> X ∈ parts H"
    | Fst: "{|X,Y|} ∈ parts H ==> X ∈ parts H"
    | Snd: "{|X,Y|} ∈ parts H ==> Y ∈ parts H"
    | Body: "Crypt K X ∈ parts H ==> X ∈ parts H"
```

Definition

analz inductive set definition

 $X \in analz H''$

```
inductive_set
```

Definition

```
synth inductive set definition
```

 $\{|X,Y|\} \in \text{synth } H''$

```
inductive_set
  synth :: "msg set => msg set"
  for H :: "msg set"
  where
        Inj [intro]: "X \in H \Longrightarrow X \in \text{synth } H"
        | Agent [intro]: "Agent agt \in synth H"
        | Number [intro]: "Number n \in synth H"
        | Hash [intro]: "X \in \text{synth } H \Longrightarrow \text{Hash } X \in \text{synth}
Η"
        | MPair [intro]: "[|X \in \text{synth } H; Y \in \text{synth } H]
==>
```

Definition

used function definition

```
consts
```

Dummy Protocol

```
        1. A \rightarrow B :
        \{|A, B, Na|\}_{K_B}

        2. B \rightarrow A :
        \{|Na, Nb, K_{AB}|\}_{K_A}

        3. A \rightarrow B :
        \{|Nb\}_{K_{AB}}

        \{|Nb\}_{K_{AB}}

        \{|Nb\}_{K_{AB}}
```

Figure: Example protocol

Definition

inductive definition of example protocol

```
inductive_set example :: "event list set"
where
    Nil: "[] \in example"
    |Fake:"[|evsf \in example; X \in synth(analz (knows
Spy evsf))|]
     \Rightarrow Says Spy B X # evsf \in example"
    |EX1: "[|evs1 ∈ example; Nonce NA ∉ used evs1|]
     \RightarrowSays A B (Crypt (pubK B){|Agent A, Agent B,
Nonce NAI}) #
     evs1 \in example"
```

```
|EX3: "[|evs3 \in example;
       Says A B (Crypt (pubK B) { | Agent A, Agent B,
Nonce NAI})
       \in set evs3:
       Says B A (Crypt (pubK A) { | Nonce NA, Nonce NB,
Key AB|})
       ∈ set evs3 |1
     \RightarrowSays A B (Crypt (Key AB){| Nonce NB|}) # evs3 \in
example"
```

We describe the protocol goals as Theorems and Lemmas;

- We describe the protocol goals as Theorems and Lemmas;
- We prove these inductively with the assistance of Isabelle;

- We describe the protocol goals as Theorems and Lemmas;
- We prove these inductively with the assistance of Isabelle;
- Proof tactics are known for most of the usual goals;

- We describe the protocol goals as Theorems and Lemmas;
- We prove these inductively with the assistance of Isabelle;
- Proof tactics are known for most of the usual goals;
- The problem starts when you want to prove a new goal....

Training someone to use it proficiently takes 2 years;

- Training someone to use it proficiently takes 2 years;
- Understanding Isabelle cryptic messages is painful

- Training someone to use it proficiently takes 2 years;
- Understanding Isabelle cryptic messages is painful
- The person carrying the verification need to be clever and seasoned with the tool, otherwise there will be pain;

- Training someone to use it proficiently takes 2 years;
- Understanding Isabelle cryptic messages is painful
- The person carrying the verification need to be clever and seasoned with the tool, otherwise there will be pain;
- Too much freedom and power are sometimes difficult to use.

Discussion

What else can you foresee modelled using this strategy?

Discussion

- What else can you foresee modelled using this strategy?
- Can this be extended?

Discussion

- What else can you foresee modelled using this strategy?
- Can this be extended?
- What this strategy can not do?

Questions????

creative commons

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

