Introduction

In this class: rings, fields

- Insolvability of ≥ 5 equations in radicals
- Fundamental theorem of algebra

Review

Definition: Recall that a **group** is a set G with operations $o:G\times G\to G$ (multiplication) and $(\cdot)^{-1}:G\times G\to G$ such that:

- 1. If $f, g, h \in G$, then (fg)h = f(gh)
- 2. There exists a unit $e \in G$ such that $e \circ g = g \circ e = g$ and $g \circ g^{-1} = g^{-1} \circ g = e$

Examples:

- 1. $(\mathbb{Z}, +), e = 0, (\cdot)^{-1} = -(\cdot)$
- 2. $D_n = \text{dihedral group group of symmetries of a regular } n\text{-gon}$
 - $\circ \ e = \text{identity transformation}$
- 3. $GL_n(\mathbb{R})=n imes n$ matrices with determinant eq 0

$$\bullet \ e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Definition: G is an **abelian group** if $g\circ h=h\circ g$ (commutativity).

4. $n \times n$ matrices with respect to addition is an abelian group

Rings

Definition: A ring R is a set with two operations addition and multiplication $(+,\cdot)$ such that

- 1. (R,+) is an abelian group
- 2. \cdot is associative: a(bc) = (ab)c
- 3. **Distributivity:** a(b+c)=ab+ac and (a+b)c=ab+ac

Definition: R is a ring with **unit** if there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for any a in the ring.

- $\bullet \;\;$ Unit with respect to addition + is usually denoted by 0
- ullet Unit with respect to multiplication imes is usually denoted by 1

Definition: R is a **commutative ring** if ab=ba for all $a,b\in R$

In this class, we mostly work with commutative rings with unit, so "ring" will mean this.

Examples:

0. The "zero ring" $R = \{0\}$. All the operations are trivial: $0 + 0 = 0 \cdot 0 = 0$. In this case, 1 = 0.

Exercise: if R is a ring such that 1=0, then R is the "zero ring".

- 1. $(\mathbb{Z}, +, \cdot)$ is a ring
- 2. $(\mathrm{Mat}_{n imes n}(\mathbb{R}), +, \cdot)$ is a non-commutative ring with unit $1 = egin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- 3. **Polynomial ring** $(R[x], +, \cdot)$ with coefficients in R, where R is another ring (not necessarily commutative). x is a formal variable. Elements are of the form

$$\sum_{i=0}^N a_i x^i \leftrightarrow (a_0, a_1, \dots, a_N) \quad a_i \in R$$

+ is component-wise. Multiplication is as follows:

$$\left(\sum_{i=0}^N a_i x^i
ight)\cdot \left(\sum_{j=0}^M b_j x^j
ight) = \sum_{k=0}^{N+M} \Biggl(\sum_{i+j=k} a_i b_j\Biggr) x^k$$

4. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are rings

Subrings

Definition: A **subring** of R is a subset closed under +, \cdot and containing 1. We write $R' \leq R$ if R' is a subring of R.

$$\mathbb{Z} \leq R_1 \leq \mathbb{Q} \leq R_2 \leq \mathbb{R} \leq \mathbb{C}$$

Let's construct R_1 by adding 1/2 to \mathbb{Z} .

If $n \in \mathbb{Z}$, then $n+1/2 \in \mathbb{Z}+1/2$, so R must contain all half-integers.

$$n \cdot \frac{1}{2} \in \mathbb{Z} \cup \left(\mathbb{Z} + \frac{1}{2}\right)$$

Also, $1/2 \cdot 1/2 = 1/4 \leadsto 1/2^k$ must be in R, so $n/2^k$ must be in R.

Definition:

$$\mathbb{Z}igg[rac{1}{2}igg] = \Big\{rac{n}{2^k}: n \in Z, k \in \mathbb{Z}_{\geq 0}\Big\}$$

is the minimal subring of ${\mathbb Q}$ containing 1/2.

Proof: $1 \in \mathbb{Z}[1/2] \implies \mathbb{Z} \subset \mathbb{Z}[1/2]$. You can keep multiplying by 1/2 to get the $1/2^k$ factor. Finally, check that it is a ring:

$$rac{n}{2^k} + rac{m}{2^p} = rac{2^p n + 2^k m}{2^{k+p}} \quad rac{n}{2^k} \cdot rac{m}{2^p} = rac{nm}{2^{kp}}$$

More generally, $\mathbb{Z}[1/n] \leq \mathbb{Q}$ is the minimal subring of \mathbb{Q} containing 1/n, where

$$\left| \mathbb{Z} \left| rac{1}{n}
ight| = \left\{ rac{m}{n^k} : m \in \mathbb{Z}, k \in \mathbb{Z}_{\geq 0}
ight\}$$

Exercise: prove that minimal subring containing 1/n and 1/m is $\mathbb{Z}[1/nm]$.

There exists $\mathbb{R}_3 \leq \mathbb{C}$ such that $R_3 \nleq \mathbb{R}$.

Example: The **Gaussian integers** $\mathbb{Z}[i] = \{a+ib: a,b\in\mathbb{Z}\}$. Check this is a ring:

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

 $(a+ib)(c+id) = (ac-bd) + i(ad+bc)$

$$R_2=\mathbb{Q}(\sqrt{2})=\{a+b\sqrt{2}:a,b\in\mathbb{Q}\}$$

Check it's closed under multiplication:

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$$

Proposition: any nonzero element in $\mathbb{Q}(\sqrt{2})$ has an inverse in this ring:

$$rac{1}{a+b\sqrt{2}} = rac{1}{a+b\sqrt{2}} \cdot rac{a-b\sqrt{2}}{a-b\sqrt{2}} = rac{a-b\sqrt{2}}{a^2-2b^2} = rac{a}{a^2-2b^2} - rac{b}{a^2-2b^2}\sqrt{2} \in \mathbb{Q}(\sqrt{2})$$

Definition: A ring R is called a **field** if every nonzero $a \in R$ has a multiplicative inverse.