Andrea Virginia Chavarría Guzmán

2009-20081

Modelación y Simulación 1

TAREA # 2

La ventanilla de un banco realiza las transacciones en un tiempo medio de 2 minutos. Los clientes llegan con una tasa media de 20 clientes a la hora. Si se supone que las llegadas siguen un proceso de Poisson y el tiempo de servicio es exponencial

 μ = 1 cliente / 2 minutos -> 0.5 cliente/min

 γ = 20 clientes / horas -> 0.33 clientes/ min

$$\rho = \frac{0.33}{0.5} = 0.67$$

 $\rho_0 = 1-\rho = 0.33 -> 33.33\%$ oscio el sistema

$$Lq = \frac{0.33^2}{0.5(0.5 - 0.33)} = 1.33 - personas en cola$$

Ls = Lq + ρ = 1.33 + 0.67 = 2 personas en el servidor

$$Wq = \frac{0.33}{0.5(0.5-0.33)} = 3.88 \rightarrow 4$$
 -- tiempo de espera en cola

Ws = wq+
$$\frac{1}{u}$$
 = 3.88 + 2 = 5.88 -> 6 tiempo en el servidor

TABLA:

Valores	Teorica	practica
ρ	0.66	0.26
$ ho_0$	0.33	0.60
Lq	1.33	4 max
Ls	2	1
wq	4 min	3.70 – 7.3 min
WS	6 min	3-8 min

CONCLUSION:

POR LO QUE SE PUDO OBSERVAR EL SISTEMA ESTA EN ACTIVIDAD CONSTANTE, POR LO QUE SU PORCENTAJE DE OSCIOCIDAD TIENE UN PROMEDIO DE 0.25 EN LAS 10 CORRIDADAS, EN CUANTO A LA COMPARACION DE DATOS TEORICOS Y PRACTICOS SE ASEMEJAN MUCHO COMO LO PODEMOS VER EN LA TABLA.