

TFG del Grado en Ingeniería de la Salud

título del TFG Documentación Técnica

Presentado por nombre alumno en Universidad de Burgos

22 de abril de 2025

Tutores: nombre tutor – nombre tutor 2

Índice general

Indice general	1
Índice de figuras	iii
Índice de tablas	iv
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Planificación temporal	1
Apéndice B Documentación de usuario	3
B.1. Requisitos software y hardware para ejecutar el proyecto	3
B.2. Instalación / Puesta en marcha	3
B.3. Manuales y/o Demostraciones prácticas	3
Apéndice C Manual del desarrollador / programador / in-	
vestigador.	5
C.1. Estructura de directorios	5
C.2. Compilación, instalación y ejecución del proyecto	5
C.3. Pruebas del sistema	5
C.4. Instrucciones para la modificación o mejora del proyecto	6
Apéndice D Descripción de adquisición y tratamiento de datos	7
D.1. Descripción formal de los datos	7
D.2. Descripción clínica de los datos	9
Apéndice E Manual de especificación de diseño	11
E.1. Planos	11

II	Índice general

E.2. Diseño arquitectónico	11
Apéndice F Especificación de Requisitos	13
F.1. Diagrama de casos de uso	13
F.2. Explicación casos de uso	13
F.3. Prototipos de interfaz o interacción con el proyecto	13
Apéndice G Estudio experimental	15
G.1. Cuaderno de trabajo.	15
G.2. Configuración y parametrización de las técnicas	15
G.3. Detalle de resultados	15
Apéndice H Anexo de sostenibilización curricular	17
H.1. Introducción	17
Bibliografía	19

Índice de figuras

Índice de tablas

D.1.	Parámetros técnicos del stent					7
D.2.	Características técnicas del sensor capacitivo					8
D.3.	Estructura en capas del sensor capacitivo					8
D.4.	Parámetros técnicos del sistema de comunicación					9
F.1.	CU-1 Nombre del caso de uso					14

Apéndice A

Plan de Proyecto Software

A.1. Introducción

Ojo ¹

A.2. Planificación temporal

cronograma cpn la evolucion temporal

Planificación económica

Viabilidad legal

 $^{^1{\}rm Los}$ anexos deben de tener su propia bibliografía, es
o es tan fácil como utilizar referencias igual que en la memoria
 $\cite{referencias}$

Apéndice B

Documentación de usuario

B.1. Requisitos software y hardware para ejecutar el proyecto.

ver os requistos y decidir

- B.2. Instalación / Puesta en marcha
- B.3. Manuales y/o Demostraciones prácticas

Apéndice C

Manual del desarrollador / programador / investigador.

C.1. Estructura de directorios

Descripción de los directorios y ficheros entregados.

C.2. Compilación, instalación y ejecución del proyecto

En caso de ser necesaria esta sección, porque la compilación o ejecución no sea directa.

C.3. Pruebas del sistema

Esta sección puede ser opcional.

Puede tratarse de validación de la interfaz por parte de los usuarios, mediante escuestas o similar o validación del funcionamiento mediante pruebas unitarias.

C.4. Instrucciones para la modificación o mejora del proyecto.

Instrucciones y consejos para que el trabajo pueda ser mejorado en futuras ediciones.

Apéndice D

Descripción de adquisición y tratamiento de datos

D.1. Descripción formal de los datos

Los datos correspondientes a este trabajo son los parámetros técnicos utilizados para el diseño conceptual del stent inteligente.

Stent

Los valores definidos para la estructura del stent se muestran en la Tabla D.1.

Parámetro	Valor
Diámetro expandido	3.55 mm
Longitud total	20 mm
Espesor del hilo	0.1 mm
Tamaño del paso	10 mm
Número de hilos	6 hilos
Material del stent	Nitinol

Tabla D.1: Parámetros técnicos del stent

Sensor capacitivo

Los valores relacionados con el sensor se muestran en la Tabla D.2.

Parámetro	Valor
Ubicación	Superficie interna del stent
Dimensiones	$1,05~\mathrm{mm} \times 15~\mathrm{mm}$
Espesor total del sensor	$16~\mu\mathrm{m}$
Número de electrodos	47
Ancho de electrodos	$100~\mu\mathrm{m}$
Separación entre electrodos	$100~\mu\mathrm{m}$

Tabla D.2: Características técnicas del sensor capacitivo

Capas del sensor

Las capas que componen el sensor capacitivo se detallan en la Tabla D.3.

Capa	Material	Espesor
Capa superior	Poliamida (PI)	$2.5~\mu\mathrm{m}$
Electrodo superior	Nanopartículas de plata (AgNP)	$1~\mu\mathrm{m}$
Capa intermedia	Poliamida (PI)	$\int 5 \ \mu \mathrm{m}$
Electrodo inferior	Nanopartículas de plata (AgNP)	$1~\mu\mathrm{m}$
Capa inferior	Poliamida (PI)	$2.5~\mu\mathrm{m}$
Recubrimiento externo	PDMS	$4~\mu\mathrm{m}$

Tabla D.3: Estructura en capas del sensor capacitivo

Sistema de comunicación

La información técnica del sistema de comunicación se basa en el uso de tecnología de acoplamiento inductivo (circuito LC), donde el condensador está constituido por el propio sensor capacitivo, mientras que la bobina presenta las dimensiones recogidas en la Tabla D.4.

Parámetro	Valor
Ubicación	Extremos del stent
Material conductor	Oro
Diámetro exterior de la bobina	0.6 mm
Número de vueltas	12
Espesor del hilo	$100~\mu\mathrm{m}$
Tamaño del paso	$250~\mu\mathrm{m}$

Tabla D.4: Parámetros técnicos del sistema de comunicación

Conexiones

Las pistas conductoras se imprimen directamente sobre la superficie del stent utilizando oro. Estas pistas conectan eléctricamente las bobinas con los electrodos interdigitados del sensor. Para asegurar el aislamiento eléctrico y la biocompatibilidad, se recubren con una capa de poliamida. El espesor total de las conexiones es de 1 μ m.

D.2. Descripción clínica de los datos.

Descripción y explicaciones clinicas del significado o interpretación de los datos.

Apéndice E

Manual de especificación de diseño

Si es necesario.

Planos (Si procede) Diseño arquitectonico (Si procede) Diagrama de clases, diagrama de despliegue

E.1. Planos

Si procede

E.2. Diseño arquitectónico

Si procede.

Diagramas de clases, diagramas de despliegue . . .

Apéndice F

Especificación de Requisitos

Si procede.

F.1. Diagrama de casos de uso

F.2. Explicación casos de uso.

Se puede describir mediante el uso de tablas o mediante lenguaje natural. Una muestra de cómo podría ser una tabla de casos de uso:

F.3. Prototipos de interfaz o interacción con el proyecto.

CU-1	Ejemplo de caso de uso		
Versión	1.0		
Autor	Alumno		
Requisitos	RF-xx, RF-xx		
asociados			
Descripción	La descripción del CU		
Precondición	Precondiciones (podría haber más de una)		
Acciones			
	1. Pasos del CU		
	2. Pasos del CU (añadir tantos como sean necesarios)		
	1100)		
Postcondición	Postcondiciones (podría haber más de una)		
Excepciones	Excepciones		
Importancia	Alta o Media o Baja		

Tabla F.1: CU-1 Nombre del caso de uso.

Apéndice G

Estudio experimental

G.1. Cuaderno de trabajo.

Enumeración de todos los métodos probados con resultados positivos o no.

- G.2. Configuración y parametrización de las técnicas.
- G.3. Detalle de resultados.

Apéndice H

Anexo de sostenibilización curricular

H.1. Introducción

Este anexo incluirá una reflexión personal del alumnado sobre los aspectos de la sostenibilidad que se abordan en el trabajo. Se pueden incluir tantas subsecciones como sean necesarias con la intención de explicar las competencias de sostenibilidad adquiridas durante el alumnado y aplicadas al Trabajo de Fin de Grado.

Más información en el documento de la CRUE https://www.crue.org/wp-content/uploads/2020/02/Directrices_Sosteniblidad_Crue2012.pdf.

Este anexo tendrá una extensión comprendida entre 600 y 800 palabras.

Bibliografía