NETSEC

Capstone By Adhiraj Saharan

A SINGLE ROUTER AND SWITCH

O2. 3 PCS, 3 PRINTERS, 3 ACCESSPOINTS

O3 2 LAPTOPS

2 SMARPHONES

DEVICES ON THE NETWORK

METHOD OF CONNECTION TO THE LAN

All Devices are connected via wireless connection encrypted with WPA2-PSK.

Ethernet cables are avoided to ensure host devices can freely move around when required and guests or interns with laptops or mobiles can be easily accommodated.

A SINGLE SWICH AND ROUTER WILL SEPARATE THE NETWORK CONFIGURED USING A DHCP SERVER

TO ENSURE EASE OF ADMINISTRATION AND REDUCED NETWORK TRAFFIC, EACH SECTOR WILL BE ON A DIFFERENT VLAN

IT IS ENSURED THAT ALL DEVICES IN DIFFERENT SECTORS CAN COMMUNICATE WITH EACH OTHER AND AUTOMATICALLY OPTAIN IP ADDRESSES

IP ADDRESSING SCHEME AND SUBNETTING OVERVIEW

- The base network uses the 192.168.1.0 private address.
- 3 Subnets for the Financial, Admin and Customer Service sectors respectively.
- Number of borrowed bits: 2^n , so 2^n should equal 3 and n = 2.
- Class C Network Subnet mask used (255.255.255.0) since it is ideal for small networks with fewer than 250 hosts.
- To satisfy the network requirements for 3 subnets, we have to borrow 2 bits:

 - Converting back to decimal gives the new subnet mask 255.255.255.192
- The block size on IPV4 will be 64 bits.

1ST SUBNET CONFIGURATION (ADMIN SECTOR)

Network ID: 192.168.1.0

Broadcast ID: 192.168.1.63 (they act like a loop that point to the next subnet)

Host range: 192.168.1.1 - 192.168.1.62 (lies between the network ID and Host ID)

2ND SUBNET CONFIGURATION (FINANCIAL SECTOR)

Network ID: 192.168.1.64 (first ID + block size)

Broadcast ID: 192.168.1.127 (they act like a loop that point to the next subnet)

Host range: 192.168.1.65 - 192.168.1.127 (lies between the network ID and Host ID)

3RD SUBNET CONFIGURATION (CUSTOMER SERVICE SECTOR)

Network ID: 192.168.1.128 (second ID + block size)

Broadcast ID: 192.168.1.192 (they act like a loop that point to the next subnet)

Host range: 192.168.1.129 - 192.168.1.190 (lies between the network ID and Host ID)

SCREENSHOT

.

ADMIN SECTOR (VLAN 10) PCO CONFIG

ADMIN SECTOR (VLAN 10) PRINTERO CONFIG

On

ADMIN SECTOR (VLAN 10) ACCESSPOINT CONFIG

ADMINISECTOR(VLAN 10) SMARTPHONEO CONFIG

THE REMAINING DEVICES ARE SIMILARLTY CONNECTED TO THE ACCESS POINTS IN THE OTHER SECTORS

THE ROUTER CONFIG AND SWITCH CONFIG CAN BE BETTER REVIEWED IN THE PACKET TRACER FILE

THE FOLLOWING SCREENSHOTS ARE PROOF THAT HOST DEVICES CAN COMMUNICATE ACROSS SECTORS AND THE DHCP SERVER IS WORKING

SMARTPHONE IN ADMIN CAN PING CUSTOMER SERVICE SECTOR

PC IN CUSTOMER SERVICE CAN PING DEVICES IN FINANCE

PC IN ADMIN CAN PING DEVICES IN FINANCE

Command Prompt

```
X
```

```
Packet Tracer PC Command Line 1.0
C:\>
ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Request timed out.
Reply from 192.168.1.2: bytes=32 time=60ms TTL=127
Reply from 192.168.1.2: bytes=32 time=57ms TTL=127
Reply from 192.168.1.2: bytes=32 time=34ms TTL=127
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 34ms, Maximum = 60ms, Average = 50ms
C:\>
```

