Kapitola 4

Booleovy algebry

4.1 Definice

Definice 4.1 Nechť (X, \preceq) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku $x \in X$ je každý prvek y, pro který platí

$$x \lor y = 1, \quad x \land y = 0.$$

Představu o pojmu komplement poskytuje svaz podmnožin libovolné množiny A, kde komplementem množiny $B \subset A$ je prostě množinový doplněk $A \setminus B$. (Je totiž jasné, že sjednocením množiny B a jejího doplňku je celá množina A, zatímco jejich průnik je prázdný.)

V tomto případě je komplement určen jednoznačně. Obecně tomu tak být nemusí, ale v případech, o které se budeme zajímat, platí, že komplement libovolného prvku je nejvýše jeden:

Tvrzení 4.2 Je-li (X, \preceq) distributivní svaz s 0 a 1, potom každý prvek $x \in X$ má nejvýše jeden komplement.

Důkaz. Nechť $x \in X$ má komplementy y a y'. Podívejme se na prvek

$$p := y \wedge (x \vee y').$$

Na jednu stranu je $x \vee y' = 1$, a tedy p = y. Na druhou stranu z distributivity máme $p = (y \wedge x) \vee (y \wedge y') = 0 \vee (y \wedge y') = y \wedge y'$. Zkrátka a dobře $y = y \wedge y'$, což podle tvrzení 3.2 znamená, že $y \leq y'$. Zcela symetrickým způsobem ale dostaneme $y' \leq y$, takže y = y' a důkaz je u konce. \square

Svazům s 0 a 1, kde každý prvek má nějaký komplement, se říká komplementární svazy.

Definice 4.3 Booleova algebra je distributivní komplementární svaz s prvky 0 a 1. Používá se také pojmu Booleův svaz.

V Booleově algebře má tedy každý prvek x právě jeden komplement, který se značí \bar{x} .

U Booleových algeber je rovněž často přijímána konvence, které se přidržíme i my, totiž značit operaci suprema jako + a operaci infima jako · (přičemž tečka se stejně jako u běžného součinu obvykle vynechává). Přepíšeme-li tedy například definici komplementu v tomto novém značení, dostaneme $x + \bar{x} = 1$ a $x\bar{x} = 0$. Zákony distributivity v novém hávu vypadají takto:

- $x(y+z) = (x \cdot y) + (x \cdot z),$
- $\bullet \ x + (y \cdot z) = (x+y) \cdot (x+z).$

První z nich vypadá jako 'stará známá' distributivita u číselných operací, prosté roznásobení závorky. Druhá rovnost, která neplatí o nic méně, ale u čísel žádnou obdobu nemá.

Cvičení

- ▶ 4.1 Rozhodněte, zda množina $X \subseteq \mathbb{N}$ spolu s uspořádáním daným dělitelností je (1) svaz, (2) distributivní svaz, (3) komplementární svaz, (4) Booleova algebra.
 - (a) $X = \{1, 2, 3, 12, 18, 30, 180\},\$
 - (b) $X = \{1, 2, 4, 6, 7, 10, 60, 420\},\$
 - (c) $X = \{1, 2, 3, 5, 6, 10, 15, 30\}.$
- ▶ 4.2 Ukažte, že následující uspořádané množiny nejsou Booleovy algebry:
 - (a) $\{1,2,3,4,12\}$ s uspořádáním daným dělitelností,
 - (b) svaz dělitelů čísla 90.
 - (c) $X = \{1, 2, 4, 6, 7, 10, 60, 420\},\$
- ▶ 4.3 * Označme množinu všech dělitelů daného čísla n jako D(n). Uvažme množinu D(n) jako uspořádanou relací dělitelnosti. Dokažte, že D(n) je pro libovolné n svazem (nebo si vzpomeňte na cvičení 3.17). Určete, pro která n je D(n):
 - (i) distributivním svazem,
 - (ii) komplementárním distributivním svazem,
- (iii) Booleovou algebrou.
- ▶ 4.4 Nechť $\boldsymbol{u}, \boldsymbol{v}$ jsou prvky lineárního prostoru \mathbf{Z}_2^n nad \mathbf{Z}_2 . Definujme min $(\boldsymbol{u}, \boldsymbol{v})$ jako vektor, jehož i-tá souřadnice je rovna minimu z i-tých souřadnic vektorů \boldsymbol{u} a \boldsymbol{v} . Dokažte, že \mathbf{Z}_2^n je Booleova algebra vzhledem k operacím

$$egin{aligned} oldsymbol{u} \wedge oldsymbol{v} &= \min(oldsymbol{u}, oldsymbol{v}), \ oldsymbol{u} ee oldsymbol{v} &= oldsymbol{u} + oldsymbol{v} + \min(oldsymbol{u}, oldsymbol{v}). \end{aligned}$$

4.2 Booleovské počítání

Věta 4.4 (De Morganovy zákony) V Booleově algebře A platí pro každé $x, y \in A$:

(a)
$$\overline{x+y} = \bar{x} \cdot \bar{y}$$
,

(b)
$$\overline{xy} = \overline{x} + \overline{y}$$
.

Důkaz. Dokažme část (a), tedy že prvek $\bar{x} \cdot \bar{y}$ je komplementem prvku x+y. Nejprve je třeba ukázat, že $(x+y)+(\bar{x}\cdot\bar{y})=1$. K tomu použijeme distributivitu. Ta nám říká, že $p:=(x+y)+(\bar{x}\cdot\bar{y})=(x+y+\bar{x})\cdot(x+y+\bar{y})$. Z definice komplementu ale je $x+\bar{x}=1$, a tedy i $x+\bar{x}+y=1$. Podobně i druhá závorka je rovna jedné, takže $p=1\cdot 1=1$.

Ve druhé polovině důkazu části (a) musíme ukázat, že prvek $q:=(x+y)\cdot(\bar x\cdot\bar y)$ je roven nule. Argument je podobný: z distributivity $q=[x\cdot(\bar x\cdot\bar y)]+[y\cdot(\bar x\cdot\bar y)],$ a protože $x\bar x=y\bar y=0$, jsou obě hranaté závorky nulové a q=0+0=0.

Část (b) se dokazuje symetricky. □

Pravidla počítání v Booleových algebrách shrnuje následující věta:

Věta 4.5 Pro libovolné prvky a, b, c Booleovy algebry B platí:

- $(1) \quad a+a=a,$
- (2) a+b=b+a (komutativita),
- (3) a + (b+c) = (a+b) + c (asociativita),
- (4) a + (ab) = a,
- (5) a(b+c) = (ab) + (ac) (distributivita),
- (6) a+0=a,
- $(7) \quad a \cdot 0 = 0,$
- (8) $\bar{1} = 0$,
- $(9) \quad a + \bar{a} = 1,$
- $(10) \quad \overline{\overline{a}} = a,$
- (11) $\overline{a+b} = \bar{a} \cdot \bar{b}$ (De Morganovy zákony),

a rovněž **duální formy** všech těchto tvrzení (ve kterých zaměníme symboly + a \cdot a symboly 0 a 1).

Důkaz. Většinu těchto tvrzení jsme již dokázali nebo plynou přímo z definic. Část (10) plyne z toho, že definice komplementu je symetrická: je-li \bar{x} komplementem prvku x, je také x komplementem prvku \bar{x} , a tedy $x = \overline{\bar{x}}$. \Box

Cvičení

▶ 4.5 Ukažte, že bod (1) věty 4.5 plyne z bodů (2), (3) a (4).

4.3 Booleovy algebry podmnožin

Důležitým příkladem Booleových algeber jsou již zmíněné svazy podmnožin. Víme, že soubor všech podmnožin množiny X (spolu s uspořádáním inkluzí) tvoří svaz. Je to dokonce svaz distributivní (proč?), a na začátku kapitoly jsme zjistili, že je i komplementární. Jedná se tedy o Booleovu algebru. Budeme ji označovat symbolem $\mathbf{2}^X$. (Pro jistotu upozorněme, že se zde nejedná o umocňování čísla 2.) Nulovým prvkem v této Booleově algebře je prázdná množina \emptyset , prvek 1 je celá množina X.

Podívejme se pro malá n podrobněji na Booleovu algebru tvořenou všemi podmnožinami nějaké zvolené n-prvkové množiny. Tato algebra má 2^n prvků. Obr. 4.1 ukazuje Hasseovy diagramy Booleových algeber $\mathbf{2}^X$, kde X probíhá množiny $\{a\}$, $\{a,b\}$, $\{a,b,c\}$ a $\{a,b,c,d\}$. Pro větší přehlednost u obrázků (c) a (d) vynecháváme množinové závorky. Například zápis bcd tak představuje podmnožinu $\{b,c,d\}$, nikoli součin $b\cdot c\cdot d$ (ten je ostatně nulový).

Je-li množina X jednoprvková, pak Booleova algebra $\mathbf{2}^X$ má pouze dva prvky, totiž 0 a 1. Později uvidíme, že tato algebra, kterou budeme značit symbolem \mathcal{B}_2 , přes svou jednoduchost hraje mezi Booleovými algebrami prominentní úlohu.

Operace součtu, součinu a komplementu v libovolné Booleově algebře můžeme zapsat tabulkou, podobně jako např. u operací v tělese. Ve zmíněné algebře \mathcal{B}_2 je výsledkem tab. 4.1.

+				0			\bar{x}
0	0	1	0	0	0	0	1
1	1	1	1	0	1	1	0

Tabulka 4.1: Operace v Booleově algebře \mathcal{B}_2 : sčítání, násobení a komplement.

Operace ve čtyřprvkové Booleově algebře $2^{\{a,b\}}$ zachycuje tab. 4.2.

+	0	a	b	1		0	a	b	1	\boldsymbol{x}	\bar{x}
0	0	\overline{a}	b	1	0	0	0	0	0	0	1
a	a	a	1	1	a	0	a	0	a	a	
b	b	1	b	1	b	0	0	b	b	b	
1	1	1	1	1	1	0	a	b	1	1	0

Tabulka 4.2: Operace v Booleově algebře $\mathbf{2}^{\{a,b\}}$.

Obrázek 4.1: Čtyři Booleovy algebry tvaru $\mathbf{2}^X.$

Cvičení

- ▶ 4.6 Rozhodněte, zda relace S na množině $\mathbf{2}^{\{a,b,c\}}$ je (1) reflexívní, (2) symetrická, (3) antisymetrická, (4) tranzitivní, (5) ekvivalence, (6) uspořádání:
 - (a) $x S y \iff x \subsetneq y$,
 - (b) $x S y \iff x \cap y = \emptyset$,
 - (c) $x S y \iff x \cup y = \{a, b, c\}.$
- ▶ 4.7 Proč množina $\{0, a, b, 1\}$ spolu s operacemi + a · v tab. 4.2 netvoří těleso?
- ▶ 4.8 Napište tabulky operací v Booleově algebře $2^{\{a,b,c\}}$.
- \blacktriangleright 4.9 Buď \mathcal{B} množina všech podmnožin množiny přirozených čísel \mathbf{N} , které jsou konečné nebo mají konečný doplněk v \mathbf{N} . Uspořádání na \mathcal{B} je definováno množinovou inkluzí. Ukažte, že \mathcal{B} je Booleova algebra a určete její atomy.

4.4 Dva pohledy na Booleovu algebru

Definovali jsme Booleovu algebru jako speciální případ svazu, obecněji uspořádané množiny. Z daného uspořádání na této množině jsme teprve dodatečně odvodili operace součtu, součinu a komplementu (pomocí pojmů supremum a infimum). Znalost samotného uspořádání nám poskytuje úplnou informaci o těchto operacích.

K věci bychom ale mohli přistoupit i z druhé strany a definovat Booleovu algebru přímo jako množinu M s binárními operacemi + a \cdot a unární operací komplement, které splňují určitá pravidla. Inspirováni tvrzením 3.3.2 bychom pak mohli definovat uspořádání \leq na množině M předpisem

$$a \prec b$$
, právě když $a \cdot b = a$. (4.1)

Pokud byly podmínky kladené na naše operace vhodně zvoleny, bude množina M s tímto uspořádáním distributivní komplementární svaz — jinými slovy Booleova algebra podle naší staré definice. Cvičení 4.10 ukazuje, že vhodnými předpoklady jsou například podmínky ve větě 4.5.

Cvičení

▶ 4.10 Nechť B je množina s binárními operacemi + a ·, s unární operací komplement (která prvku x přiřazuje prvek \bar{x}) a s určenými prvky 0 a 1. Dokažte, že pokud pro tyto operace a prvky platí podmínky (1) až (11) věty 4.5, pak množina M spolu s uspořádáním daným předpisem (4.1) je Booleova algebra podle naší dosavadní definice.

4.5. Atomy 45

4.5 Atomy

Definice 4.6 Atom Booleovy algebry (A, \preceq) je libovolný prvek $a \in A$ takový, že jediným prvkem $z \in A$, pro který platí $z \prec a$, je prvek z = 0. Množinu všech atomů Booleovy algebry A značíme At(A).

Všimněme si, že ekvivalentně by šlo atomy definovat jako prvky, jejichž bezprostředním předchůdcem je prvek 0. Například Booleova algebra $\mathbf{2}^{\{a,b\}}$ má atomy $\{a\}$ a $\{b\}$.

Snadno se nahlédne, že každá *konečná* Booleova algebra obsahuje aspoň jeden atom: platí dokonce následující silnější tvrzení.

Pozorování 4.7 Pro každý prvek $x \neq 0$ konečné Booleovy algebry A existuje atom $a \in At(A)$ takový, že $a \leq x$.

Důkaz. Není-li x atom, zvolme nějakého jeho bezprostředního předchůdce $x_1 \neq 0$. Není-li ani x_1 atom, zvolme jeho bezprostředního předchůdce $x_2 \neq 0$. Iterací tohoto postupu musíme po konečném počtu kroků narazit na nějaký atom a, a pro ten jistě platí $a \leq x$. \square

Na druhou stranu existují nekonečné Booleovy algebry, které neobsahují ani jeden atom (viz cvičení 4.12).

Cvičení

- ▶ 4.11 Které prvky jsou atomy v následujících Booleových algebrách:
 - (a) v Booleově algebře podmnožin $2^{\{a,b,c\}},$
 - (b) obecněji v algebře $\mathbf{2}^X,$ kde X je nějaká množina,
 - (c) ve svazu dělitelů čísla 30?
- ▶ 4.12 * Uvažujme následující relaci ~ na množině $\mathcal{P}(\mathbf{N})$ všech podmnožin množiny přirozených čísel \mathbf{N} :

 $A \sim B$, právě když symetrický rozdíl $A \triangle B$ je konečná množina.

Dokažte, že \sim je ekvivalence. Na třídách ekvivalence relace \sim definujme operace $\wedge,\,\vee,\,-$ takto:

$$[A]_{\sim} \wedge [B]_{\sim} = [A \cap B]_{\sim},$$

$$[A]_{\sim} \vee [B]_{\sim} = [A \cup B]_{\sim},$$

$$\overline{[A]}_{\sim} = [\overline{A}]_{\sim}.$$

Ukažte, že obdržíme Booleovu algebru, která nemá žádné atomy.

4.6 Stoneova věta o reprezentaci

Definujme nejprve pojem isomorfismu mezi uspořádanými množinami. Obecně řečeno je isomorfismus bijekce, která zachovává 'vše podstatné'. U uspořádaných množin musí zachovávat uspořádání, zatímco například u grup jde o jednotkový prvek a grupovou operaci (viz cvičení 2.2.2).

Definice 4.8 Isomorfismus uspořádaných množin (X, \preceq) a (Y, \sqsubseteq) je bijekce $f: X \to Y$ taková, že pro každé $a, b \in X$ platí $a \preceq b$ právě když $f(a) \sqsubseteq f(b)$. Tyto uspořádané množiny jsou isomorfní (psáno $(X, \preceq) \simeq (Y, \sqsubseteq)$), pokud mezi nimi existuje isomorfismus.

Jak ukazuje cvičení 4.13, isomorfismus dvou Booleových algeber jakožto uspořádaných množin zachovává i všechny dosud uvažované operace (např. supremum).

Definice 4.9 Nechť $B = \{a_1, \ldots, a_k\}$ je množina prvků svazu (X, \preceq) , který má prvky 0 a 1. Je-li k > 1, definujme supremum množiny B jako

$$\sup B = \left(\dots\left(\left(a_1 \vee a_2\right) \vee a_3\right) \vee \dots\right) \vee a_k.$$

Dále definujme sup $\emptyset = 0$, sup $\{a\} = a$.

Tvrzení 4.10 Ukažte v situaci definice 4.9, že

- (1) $\sup B$ je nejmenší horní závora množiny B, tj. nejmenší prvek $x \in X$ s vlastností $a_i \leq x$ pro každé i,
- (2) ve vzorci pro sup B tedy nezáleží na pořadí prvků a_1, \ldots, a_k ani na jejich uzávorkování (a má tak smysl psát sup $B = a_1 \vee \cdots \vee a_k$).

Důkaz. Cvičení 4.15. □

Věta 4.11 (Stoneova věta) Konečná Booleova algebra (A, \preceq) je isomorfní s Booleovou algebrou $(\mathbf{2}^{\operatorname{At}(A)}, \subseteq)$.

Důkaz. Zkonstruujeme isomorfismus mezi uspořádanými množinami (A, \preceq) a $(2^{At(A)}, \subseteq)$. Konkrétně pro $x \in A$ nechť

$$x^* = \{ a \in At(\mathcal{A}) : a \leq x \}.$$

Zobrazení $x \mapsto x^*$ přiřazuje každému prvku $x \in \mathcal{A}$ množinu atomů algebry \mathcal{A} . Potřebujeme ukázat, že se jedná o bijekci mezi \mathcal{A} a $\mathbf{2}^{\operatorname{At}(\mathcal{A})}$ a že platí $x \leq y$, právě když $x^* \subseteq y^*$. Důkaz rozdělíme do čtyř částí.

(1) Pokud $x \leq y$, pak $x^* \subseteq y^*$.

Toto je nejlehčí část důkazu. Pro každé $a \in x^*$ platí $a \leq x \leq y$ a z tranzitivity je $a \in y^*$. Jinak řečeno, $x^* \subseteq y^*$.

(2) Pokud $x^* \subseteq y^*$, pak $x \preceq y$.

Nechť naopak $x \not\preceq y$. Podle tvrzení 3.2 musí být $xy \neq x$. Všimněme si, že

$$x = x \cdot 1 = x(y + \bar{y}) = xy + x\bar{y},$$

z čehož plyne, že $x\bar{y} \neq 0$. Najděme podle pozorování 4.7 atom $a \leq x\bar{y}$. Z definice infima je $a \leq x$ a tedy $a \in x^*$. Dále je $a \leq \bar{y}$ a tím pádem nemůže být $a \leq y$, protože bychom dostali $a \leq y\bar{y} = 0$; a je však atom. Takže $a \notin y^*$. Atom a tedy dosvědčuje, že x^* není podmnožinou y^* . Tím je požadovaná implikace dokázána.

(3) Zobrazení $x \mapsto x^*$ je prosté.

Vezměme $x \neq y \in \mathcal{A}$. Z antisymetrie musí být buď $x \not\preceq y$ nebo $y \not\preceq x$; nechť platí první varianta. Podle obměny implikace v bodu (2) dostáváme, že x^* není podmnožinou y^* . Speciálně $x^* \neq y^*$ a tvrzení je dokázáno.

(4) Zobrazení $x \mapsto x^*$ je na.

Hledáme vzor libovolné množiny atomů $B = \{a_1, \ldots, a_k\} \subset \operatorname{At}(\mathcal{A})$, tedy takové $b \in \mathcal{A}$, že $b^* = B$. Dokážeme, že tuto vlastnost má prvek $b = \sup B$.

Pro každý atom $a_i \in B$ jistě platí, že $a_i \leq b$. Otázkou je, zda tato nerovnost může platit i pro nějaký atom $c \notin B$. Dejme tomu, že ano, tedy $c \leq b$. Rozepišme sup B s použitím symbolu + a zjištění, že na závorkách nezáleží a můžeme je vynechat:

$$c \cdot b = c \cdot (a_1 + \dots + a_k) = ca_1 + \dots + ca_k = 0 + \dots + 0 = 0,$$

přičemž předposlední rovnost vychází z faktu, že infimum dvou různých atomů je nutně 0. Dokázali jsme, že $c \cdot b \neq c$, a tedy $c \notin b^*$. Z toho již plyne, že $b^* = B$. Důkaz věty je proveden. \square

Důsledek 4.12 Počet prvků konečné Booleovy algebry \mathcal{A} je vždy mocnina čísla 2, konkrétně 2^m , kde $m = |\operatorname{At}(\mathcal{A})|$. \square

Důsledek 4.13 Dvě konečné Booleovy algebry se stejným počtem prvků jsou isomorfní.

Důkaz. Nechť \mathcal{A}, \mathcal{B} jsou Booleovy algebry (s uspořádáním, které nebudeme výslovně zmiňovat) a $|\mathcal{A}| = |\mathcal{B}| = n$. Víme, že $\mathcal{A} \simeq \mathbf{2}^{\operatorname{At}(\mathcal{A})}$ a $\mathcal{B} \simeq \mathbf{2}^{\operatorname{At}(\mathcal{B})}$, kde uvažované algebry podmnožin jsou uspořádány inkluzí. Ovšem množiny $\operatorname{At}(\mathcal{A})$ a $\operatorname{At}(\mathcal{B})$ jsou stejně velké (jejich velikost je $\log_2 n$), takže můžeme zvolit nějakou bijekci $g: \operatorname{At}(\mathcal{A}) \to \operatorname{At}(\mathcal{B})$. Tato bijekce podle cvičení 4.16 indukuje isomorfismus $\mathbf{2}^g$ mezi Booleovými algebrami $\mathbf{2}^{\operatorname{At}(\mathcal{A})}$ a $\mathbf{2}^{\operatorname{At}(\mathcal{B})}$. Celkem vzato dostáváme

$$\mathcal{A} \simeq \mathbf{2}^{\operatorname{At}(\mathcal{A})} \simeq \mathbf{2}^{\operatorname{At}(\mathcal{B})} \simeq \mathcal{B}$$

a složením těchto tří isomorfismů je isomorfismus mezi \mathcal{A} a \mathcal{B} . \square

Cvičení

▶ 4.13 Ukažte, že jsou-li dvě Booleovy algebry isomorfní (jako uspořádané množiny), pak příslušný isomorfismus zachovává i operace suprema, infima a komplementu, tedy například

$$f(x+y) = f(x) + f(y)$$

(kde se ovšem symbol + na každé straně rovnice vztahuje k jiné Booleově algebře!)

- ▶ 4.14 Automorfismus Booleovy algebry \mathcal{B} je isomorfismus \mathcal{B} na \mathcal{B} . Ukažte, že bijekce $f: \mathcal{B} \to \mathcal{B}$ splňující $f(x \vee y) = f(x) \vee f(y)$ a $f(\bar{x}) = \overline{f(x)}$ pro všechna $x, y \in \mathcal{B}$ je automorfismus.
- ▶ 4.15 Dokažte tvrzení 4.10.
- ▶ 4.16 Nechť $g:Y\to Z$ je bijekce mezi konečnými množinami. Zobrazení g indukuje zobrazení $\mathbf{2}^g:\mathbf{2}^Y\to\mathbf{2}^Z,$ dané předpisem

$$\mathbf{2}^g(A) = \{g(a) : a \in A\}$$

pro libovolné $A\subseteq Y$. Ukažte, že $\mathbf{2}^g$ je isomorfismus Booleových algeber $(\mathbf{2}^Y,\subseteq)$ a $(\mathbf{2}^Z,\subseteq)$.

- ▶ 4.17 Ukažte, že jsou-li $g: X_1 \to X_2$ a $h: X_2 \to X_3$ isomorfismy uspořádaných množin (X_1, \preceq_1) a (X_2, \preceq_2) , resp. (X_2, \preceq_2) a (X_3, \preceq_3) , potom složení $h \circ g: X_1 \to X_3$ je isomorfismem uspořádaných množin (X_1, \preceq_1) a (X_3, \preceq_3) .
- ▶ 4.18 (a) Najděte všechny navzájem neisomorfní tříprvkové uspořádané množiny.
 - (b) Dokažte, že stejně velké konečné lineárně uspořádané množiny jsou isomorfní.
 - (c) Najděte dvě neisomorfní lineární uspořádání množiny všech přirozených čísel.

4.7 Direktní součin

Důsledkem Stoneovy věty je, že Booleovy algebry podmnožin jsou vlastně (až na isomorfismus) jedinými představiteli konečných Booleových algeber. Uvidíme, že s pomocí následujícího pojmu lze tento fakt vyjádřit v ještě minimalističtější podobě.

Definice 4.14 Direktní součin Booleových algeber (A_1, \leq_1) a (A_2, \leq_2) je kartézský součin $A_1 \times A_2$ s uspořádáním \leq definovaným 'po složkách':

$$(b_1, b_2) \le (c_1, c_2)$$
, pokud $b_1 \le_1 c_1$ a $b_2 \le_2 c_2$,

kde (b_1, b_2) a (c_1, c_2) jsou prvky součinu $\mathcal{A}_1 \times \mathcal{A}_2$. Je-li $\mathcal{A}_1 = \mathcal{A}_2$, mluvíme také o direktní mocnině Booleovy algebry \mathcal{A}_1 .

Direktní součin Booleových algeber je sám Booleovou algebrou. Abychom toto tvrzení dokázali, musíme z definic ověřit, že je to komplementární distributivní svaz. Především je snadné si všimnout, že v součinu $\mathcal{A}_1 \times \mathcal{A}_2$ existují suprema: supremem dvojic (b_1, b_2) a (c_1, c_2) je dvojice $(b_1 \vee c_1, b_2 \vee c_2)$. (Dokažte.) Podobně je tomu s infimy, takže $\mathcal{A}_1 \times \mathcal{A}_2$ je svaz. Má prvek 0, jehož složky jsou nulové prvky v \mathcal{A}_1 resp. \mathcal{A}_2 , a podobně definovaný prvek 1. Distributivita a komplementárnost plynou z faktu, že tyto vlastnosti mají algebry \mathcal{A}_1 resp. \mathcal{A}_2 . Podrobný důkaz necháváme na cvičení 4.19.

Příklad 4.15 Uvažme dvouprvkovou Booleovu algebru $\mathcal{B}_2 = \{0, 1\}$ z obr. **4.1(a)**. Direktní mocnina \mathcal{B}_2^2 sestává ze všech dvojic prvků 0 a 1. Má tedy 4 prvky, které lze psát jako 00, 01, 10 a 11. Obecně n-tou direktní mocninu \mathcal{B}_2^n Booleovy algebry \mathcal{B}_2 lze ztotožnit s množinou všech slov, tvořených n-ticí symbolů 0 a 1. Tato slova jsou uspořádána 'po složkách', tj. $(a_1 a_2 \dots a_n) \leq (b_1 b_2 \dots b_n)$, pokud $a_i \leq b_i$ pro každé i.

Tvrzení 4.16 Je-li X n-prvková množina, pak $2^X \simeq \mathcal{B}_2^n$.

Důkaz. Bez újmy na obecnosti (díky cvičení 4.16) můžeme předpokládat, že $X = \{1, ..., n\}$. Pro $i \in X$ uvažme 'slovo' $w_i = (0...010...0)$ s jedničkou právě na i-tém místě. Isomorfismus $f : \mathbf{2}^X \to \mathcal{B}_2^n$ je pak dán předpisem

$$f(Y) = \sum_{i \in Y} w_i,$$

kde $Y \in \mathbf{2}^X$ a symbol \sum označuje sčítání v Booleově algebře \mathcal{B}_2^n . Je snadné nahlédnout, že f je opravdu isomorfismus. \square

Důsledek 4.17 Každá konečná Booleova algebra je isomorfní s Booleovou algebrou \mathcal{B}_2^n pro nějaké n.

Důkaz. Plyne přímo ze Stoneovy věty a tvrzení 4.16. □

Cvičení

▶ 4.19 Ukažte podrobně, že direktní součin Booleových algeber je Booleova algebra. Jaké jsou její atomy?

4.8 Booleovské funkce

Definice 4.18 Booleovská funkce n proměnných je libovolná funkce $f: \mathcal{B}_2^n \to \mathcal{B}_2$.

Příkladem booleovské funkce 2 proměnných je funkce +, kterou už známe. Její hodnoty ukazuje první část tab. 4.1.

Obvyklejší tvar tabulky má jeden řádek pro každou kombinaci hodnot proměnných, jako v tab. 4.3, která ukazuje kromě funkce + i funkce \cdot a komplement. Jedná se o tzv. pravdivostní tabulky.

x	y	x + y		x	y	$x \cdot y$		
0	0	0	•	0	0	0	\boldsymbol{x}	\bar{x}
0	1	1		0	1	0	0	1
1	0	1		1	0	0	1	0
1	1	1		1	1	1		ı

Tabulka 4.3: Hodnoty booleovských funkcí +, \cdot a komplement.

Tvrzení 4.19 Množina F_n všech booleovských funkcí n proměnných s uspořádáním $\leq daným$ předpisem

$$f \leq g$$
, pokud $f(x) \leq g(x)$ pro každé $x \in \mathcal{B}_2^n$

je Booleova algebra.

Důkaz. Cvičení 4.22.

Základní booleovské funkce je možné kombinovat do funkcí složitějších (třeba $x\bar{y}+\bar{x}y$). To je idea booleovských polynomů, definovaných následujícím rekurentním způsobem.

Definice 4.20 (1) Výrazy 0, 1 a x_i (pro libovolné $i=1,\ldots,n$) jsou booleovské polynomy v proměnných x_1,\ldots,x_n .

- (2) Jsou-li f a g booleovské polynomy v proměnných x_1, \ldots, x_n , pak výrazy $(f+g), (f\cdot g)$ a \bar{g} rovněž.
- (3) Dva booleovské polynomy v proměnných x_1, \ldots, x_n jsou si rovny, pokud určují stejnou booleovskou funkci.

Příklad 4.21 Výraz $x \oplus y := \bar{x}y + x\bar{y}$ je booleovský polynom v proměnných x, y. Platí ovšem také $x \oplus y = (x+y)(\bar{x}+\bar{y})$. Můžeme se o tom přesvědčit pravdivostní tabulkou (tab. 4.4).

Další možností je přímý výpočet podle booleovských zásad. Z distributivity totiž máme

$$(x+y)(\bar{x}+\bar{y}) = x\bar{x} + x\bar{y} + y\bar{x} + y\bar{y}$$
$$= 0 + x\bar{y} + y\bar{x} + 0$$
$$= \bar{x}y + x\bar{y}. \square$$

\boldsymbol{x}	y	$x \oplus y$	$(x+y)(\bar{x}+\bar{y})$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Tabulka 4.4: Booleovské polynomy se stejnou pravdivostní tabulkou.

Cvičení

- ▶ 4.20 Sestrojte pravdivostní tabulky následujících booleovských funkcí dvou proměnných:
 - (a) $\bar{x} + y$ (tzv. implikace $x \to y$),
 - (b) $y + x\bar{y}$.
- \blacktriangleright 4.21 Je výraz $x_2+x_2+x_2$ boole
ovským polynomem v proměnných $x_1,\ldots,x_5?$ Je roven boole
ovskému polynomu $x_2?$
- \blacktriangleright 4.22 Dokažte tvrzení 4.19. Popište suprema, infima a komplementy v Booleově algebře $F_n.$
- ▶ 4.23 Kolik prvků má množina F_2 všech Booleovských funkcí $B_2^2 \to B_2$?
- \blacktriangleright 4.24 Buďte sa pdvě funkce $B_2^2 \to B_2$ definované tabulkou

Ukažte, že komplement, spojení a průsek libovolných dvou prvků z B_2^2 je možné vyjádřit jen pomocí s, resp. p. Poznamenejme, že s je tzv. Shefferova funkce (značí se |) a p je Peirceova funkce ($\cdot|\cdot$) (Je např. $x\vee y=(x|x)|(y|y)$.)

4.9 Součtový a součinový tvar

Definice 4.22 Literál v proměnných x_1, \ldots, x_n je libovolný booleovský polynom ve tvaru x_i nebo $\bar{x_i}$, kde $i = 1, \ldots, n$. Booleovský polynom p je v součtovém tvaru, je-li zapsán jako součet polynomů, z nichž každý je součinem literálů. Podobně p je v součinovém tvaru, pokud je zapsán jako součin součtů literálů.

Příklad 4.23 Polynom $x_1x_2 + x_1\bar{x_3}$ je zapsán v součtovém, nikoli však součinovém tvaru. Polynom $x_1(x_2 + \bar{x_3})$, který je mu roven, je zapsán v součinovém tvaru. Polynom $x_1(x_2 + \bar{x_3}) + x_1x_2$ není ani v jednom z těchto tvarů.

Naskýtá se otázka, zda každou booleovskou funkci je možné vyjádřit booleovským polynomem v součtovém tvaru. Uvidíme, že platí mnohem víc.

Definice 4.24 Booleovský polynom p v proměnných x_1, \ldots, x_n je v úplném součtovém tvaru, jestliže je v součtovém tvaru a každý ze sčítanců obsahuje pro každé $i = 1, \ldots, n$ buďto literál x_i nebo literál \bar{x}_i (ne však oba). Symetricky: p je v úplném součinovém tvaru, jestliže je v součinovém tvaru a každý z činitelů obsahuje pro každé $i = 1, \ldots, n$ literál x_i nebo \bar{x}_i .

Příklad 4.25 Polynom $\bar{x}y+x\bar{y}$ v proměnných x,y je zapsán v úplném součtovém tvaru. Jeho alternativní zápis, $(x+y)(\bar{x}+\bar{y})$, je v úplném součinovém tvaru.

Věta 4.26 Každou nekonstantní booleovskou funkci n proměnných lze zapsat booleovským polynomem n proměnných v úplném součtovém (úplném součinovém) tvaru.

Důkaz. Dokážeme nejprve část o úplném součtovém tvaru. Uvažme libovolné $a = (a_1, \ldots, a_n) \in \mathcal{B}_2^n$. Nechť p_a je součin literálů x_i přes všechna i taková, že $a_i = 1$, a literálů \bar{x}_i přes všechna i taková, že $a_i = 0$. Každé p_a je tedy booleovský polynom v úplném součtovém tvaru, který je navíc nenulový jen pro jediné $z \in \mathcal{B}_2^n$ (totiž z = a).

Mějme nyní booleovskou funkci f, kterou chceme reprezentovat booleovským polynomem v úplném součtovém tvaru, a nechť $A \subset \mathcal{B}_2^n$ je množina všech $z \in \mathcal{B}_2^n$, pro něž je f(z) = 1. Položíme-li

$$p_f = \sum_{a \in A} p_a,$$

pak p_f je booleovský polynom v úplném součtovém tvaru a očividně nabývá stejných hodnot jako funkce f. Vzhledem k tomu, že f není konstantní nulová funkce, není součet v definici polynomu p_f prázdný.

Pokud jde o vyjádření v úplném součinovém tvaru, stačí vyjádřit (nekonstantní) funkci \bar{f} polynomem $p_{\bar{f}}$ v úplném součtovém tvaru a upravit komplement $\bar{p}_{\bar{f}}$ podle de Morganova pravidla do součinového tvaru. \Box

¹Místo 'součtový tvar' se také používá o něco odtažitější termín disjunktivní normální forma (DNF); místo 'součinový tvar' pak konjunktivní normální forma (KNF).

Příklad 4.27 Vyjádříme v úplném součtovém a součinovém tvaru booleovskou funkci f v proměnných x, y, z, zadanou pravdivostní tabulkou 4.5.

\boldsymbol{x}	y	z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Tabulka 4.5: Pravdivostní tabulka funkce f.

Řádky tabulky, které v důkazu věty 4.26 odpovídají množině A, jsou znázorněny tučně. První z nich např. odpovídá prvku $(010) \in \mathcal{B}_2^3$, takže příslušný polynom $p_{(010)}$ je $\bar{x}y\bar{z}$. (Ověřte, že $\bar{x}y\bar{z}$ nabývá nenulové hodnoty právě pro tento jediný prvek.) Podobné členy přispějí i zbylé dva tučné řádky, takže vyjádření funkce f v úplném součtovém tvaru je

$$p_f = \bar{x}y\bar{z} + \bar{x}yz + xy\bar{z}.$$

Vyjádříme f ještě v úplném součinovém tvaru. Funkce \bar{f} má hodnotu 1 všude tam, kde f má hodnotu 0. Snadno tedy vidíme, že

$$p_{\bar{f}} = \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + x\bar{y}\bar{z} + x\bar{y}z + xyz.$$

(Každý z pěti členů zde odpovídá jednomu netučnému řádku.) Nás ale zajímá součinový tvar pro funkci f. Vezmeme tedy komplement $\overline{p_f}$:

$$\overline{p_{\bar{f}}} = \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}z + x\overline{y}\overline{z} + x\overline{y}z + xyz
= \overline{x}\overline{y}\overline{z} \cdot \overline{x}\overline{y}z \cdot \overline{x}\overline{y}\overline{z} \cdot \overline{x}\overline{y}z \cdot \overline{x}yz
= (x + y + z)(x + y + \overline{z})(\overline{x} + y + z)(\overline{x} + y + \overline{z})(\overline{x} + \overline{y} + \overline{z})$$

Příklad 4.28 Upravíme do úplného součtového tvaru polynom

$$f(x,y) = (\overline{(\bar{x}y)} \cdot \bar{x}) + y.$$

Mohli bychom sestrojit tabulku a postupovat stejně jako v minulém příkladu, ale ukážeme řešení s využitím booleovského počítání.

Nejprve se zbavíme komplementu v první závorce:

$$f(x,y) = ((\overline{x} + \overline{y}) \cdot \overline{x}) + y = (x + \overline{y})\overline{x} + y$$
$$= x\overline{x} + \overline{y}\overline{x} + y = \overline{x}\overline{y} + y.$$

Výsledný polynom je sice v součtovém tvaru, ne však v úplném součtovém tvaru, protože druhý sčítanec neobsahuje žádný literál proměnné x. Použijeme trik: vynásobíme tento sčítanec výrazem $x + \bar{x} = 1$ a upravíme. Hodnoty funkce se tím nezmění.

$$f(x,y) = \bar{x}\bar{y} + y = \bar{x}\bar{y} + y(x+\bar{x}) = \bar{x}\bar{y} + xy + \bar{x}y,$$

a to je také hledané vyjádření polynomu f v úplném součtovém tvaru.

Cvičení

▶ 4.25 Rozhodněte, zda jsou následující booleovské polynomy v součtovém resp. součinovém tvaru:

(a)
$$x_1x_2 + \overline{x_3x_4}$$
,

(b)
$$x_1 + x_2 x_4$$
,

(c)
$$x_1\overline{x_2}x_3\overline{x_4}$$
.

▶ 4.26 Vyjádřete booleovské funkce f(x, y, z) a g(x, y, z) polynomem (a) v úplném součtovém a (b) v úplném součinovém tvaru.

x	y	z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

x	y	z	g(x,y,z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

ightharpoonup 4.27 Booleovské funkce \oplus a ightharpoonup jsou definovány předpisem

$$x \to y = \bar{x} + y$$
$$x \oplus y = \bar{x}y + x\bar{y}.$$

Převeďte booleovské polynomy

$$f_1(x, y, z) = x \rightarrow ((y + \bar{x}z) \oplus \bar{z}),$$

 $f_2(x, y, z) = (x\bar{y} \oplus y\bar{z}) \oplus z\bar{x}$

do úplného součinového tvaru, a to (a) pomocí booleovského kalkulu, (b) pomocí tabulky.

 \blacktriangleright 4.28 Platí věta 4.26 i pro *konstantní* booleovské funkce? Ukažte, že funkci s konstantní hodnotou 1 (v n proměnných) lze zapsat v úplném součtovém tvaru, ale nikoli v úplném součinovém tvaru. Odvoďte podobný výsledek pro funkci s konstantní hodnotou 0.

- \blacktriangleright 4.29 Najděte 2 různá vyjádření v součtovém tvaru pro Booleovský polynom $x(\overline{y+z}).$
- ▶ 4.30 Převeďte následující polynomy do součtového tvaru pomocí Booleova kalkulu:
 - (a) $\bar{x} + y$ (implikace $x \to y$),
 - (b) $(x + y\bar{z})(y \rightarrow \bar{z})$.
- \blacktriangleright 4.31 Převeďte následující polynomy do úplného součinového tvaru pomocí Booleova kalkulu:
 - (a) $\bar{x}y + x\bar{y}$ (symetrická diference $x \oplus y$),
 - (b) $x \oplus (y \to z)$.
- ▶ 4.32 Převeďte do úplného součtového a úplného součinového tvaru:
 - (a) $x \to (y \to x)$ (2 proměnných),
 - (b) $\overline{y(x+\bar{y}z)}$,
 - (c) $(\bar{x}y \oplus z)(xz \to y)$.
- \blacktriangleright 4.33 Kolik je Booleovských funkcí n proměnných, jejichž úplný součinový tvar je zároveň tvarem součtovým?
- \blacktriangleright 4.34 * Dokažte, že pro každou Booleovskou funkci je zápis v *úplném* součtovém tvaru jednoznačný.