

Performance Report

Deliverable-06

Miembros del equipo

Apellidos, Nombre	Correo electrónico	Roles
Páez Páez, Jesús	jespaepae@alum.us.es	Analista Desarrollador Tester Operador

Repositorio: https://github.com/Hesusu-ikie/Acme-Toolkits-ControlCheck

Grupo E2.06

Fecha: 02 de Junio de 2022

Índice

Resumen Ejecutivo	3
Tabla de Revisión	3
Introducción	3
Contenidos	4
Especificaciones	4
Intervalo de confianza	4
Contraste de hipótesis	5
Conclusiones	6
Bibliografía	6

Resumen Ejecutivo

El objetivo de un informe de rendimiento es ver cómo de eficiente puede trabajar la aplicación con peticiones realistas a la misma. Entre otras cosas, sirve para poder ver si cumple los requisitos de rendimiento, y en caso de que no, poder analizar qué parte del código es poco eficiente y refactorizar dicha parte. Sin embargo, no hay este tipo de requisitos a lo largo del todo proyecto, por lo que, se realizará simplemente el análisis para comprobar la eficiencia, sin tener que llevar a cabo la refactorización.

Tabla de Revisión

Versión	Fecha	Descripción
1.0	02/06/2022	Primera versión
1.1	03/06/2022	Documento finalizado

Introducción

En este informe se van a incluir 2 medidas estadísticas:

- Intervalo de confianza
- Contraste de hipótesis

En el caso del intervalo, se realizará en un ordenador, y, al no tener que refactorizar ya que no hay requisitos de rendimiento ni tampoco tener 2 ordenadores para realizar varias muestras, el contraste se realizará con la muestra realizada junto con la muestra añadiéndole un 10% del tiempo medio.

El objetivo es, por tanto, además de ver la eficiencia de la aplicación, el rendimiento que tiene el computador.

En cualquier caso, el porcentaje de confianza será 95% y los cálculos estarán realizados de forma programática a través de los complementos que ofrece la hoja de cálculo de Microsoft, Excel.

Contenidos

Especificaciones

Las características del ordenador con el que se ha probado la aplicación son:

PC

o SO: Microsoft Windows 10 Home

 CPU: Intel(R) Core(™) i5-7200U CPU @ 2.50GHz, 2712 Mhz, 2 procesadores principales, 4 procesadores lógicos

o RAM: DDR4 8GB, 1500 Mhz

o GPU: NVIDIA GeForce 920MX

o Tecnología de almacenamiento: HDD

Intervalo de confianza

Aplicando las herramientas que nos indican en las diapositivas de las lecciones dadas en clase, obtenemos el siguiente intervalo de confianza para el ordenador:

time		
Mean	624 6761	
Standard Error	634,6761 5,516985	
Median	583	
Mode	578	
Standard Deviation	227,538	
Sample Variance	51773,54	
Kurtosis	56,68488	
Skewness	4,849976	
Range	4317	
Minimum	244	
Maximum	4561	
Sum	1079584	
Count	1701	
Confidence Level(95,0%)	10,8208	
Intervalo de confianza	623,8553	645,4969

Figura 1. Intervalo de confianza PC1

Es decir, tenemos el intervalo [623.85, 645.49], por lo que, si el requisito es de 1 segundo, lo cumpliría, ya que el máximo, 645.49 milisegundos, está por debajo. Sin embargo, si fuese 0.6 o 0.5 segundos ya no lo cumpliría, ya que el máximo está por encima.

Al sumarle el 10% de la media del tiempo de la muestra realizada en el paso anterior, obtenemos lo siguiente:

time + 10% average re	quest time	
Mean	698,1430729	
Standard Error	5,516984828	
Median	646,467	
Mode	641,467	
Standard Deviation	227,5380052	
Sample Variance	51773,54383	
Kurtosis	56,68488469	
Skewness	4,849975886	
Range	4317	
Minimum	307,467	
Maximum	4624,467	
Sum	1187541,367	
Count	1701	
Confidence Level(95,0%)	10,82079565	
Intervalo de confianza	687,3222772	708,9639

Figura 2. Intervalo de confianza

Es decir, un intervalo de confianza de [687.32, 708.96] milisegundos.

Contraste de hipótesis

Realizando los pasos descritos en las diapositivas, llegamos a que:

z-Test: Two Sample for Means		
	time	time + 10% average request time
Mean	634,6760729	698,1430729
Known Var	51773,54	51773,54
Observatio	1701	1701
Hypothesia	0	
Z	-8,134506282	
P(Z<=z) on	2,22045E-16	
z Critical o	1,644853627	
P(Z<=z) tw	4,44089E-16	
z Critical tv	1,959963985	

Figura 3. Prueba z

Como el porcentaje de confianza es 95%, tenemos que el alpha para determinar si las medias se pueden comparar es 1 - 0.95 = 0.05, que, como en este caso el valor "P(Z<=z) one-tail" es mucho menor que éste, se pueden comparar perfectamente.

Por tanto, conociendo esto y comparando los intervalos anteriores, podríamos llegar a la conclusión de que la muestra realizada con el ordenador tiene un mejor rendimiento.

Conclusiones

Hemos aprendido a hacer medidas estadísticas con la herramienta que nos ofrece Microsoft, Excel, de forma que podamos medir la eficiencia de las peticiones a la aplicación, reconocer dónde se debe refactorizar, y saber cuándo poder comparar mediciones.

Bibliografía

Intencionadamente en blanco.