

Digital Pakistan Speed Programing Competition Online Qualifier Round

Instructions

- Do not open the booklet unless you are explicitly told to do so. You can only read these instructions below.
- If you have any question regarding the problems, seek a clarification from the judges using DOMJudge.
- Before submitting a run, make sure that it is executable via command line. For Java, it must be executable via "javac" and for GNU C++ via "g++". Java programmers need to remove any "package" statements and source code's file name must be the same as of main class. C++ programmers need to remove any getch() / system("pause") like statements.
- Do not attach input files while submitting a run, only submit/attach source code files, i.e., *.java or *.cpp or *.py.
- Language supported: C/C++, Java and Python3
- Source code file name should not contain white space or special characters.
- You must take input from Console i.e.: Standard Input Stream (stdin in C, cin in C++, System.in in Java, stdin in Python)
- You must print your output to Console i.e.: Standard Output Stream (stdout in C, cout in C++, System.out in Java)
- Please, don't create/open any file for input or output.
- Please strictly meet the output format requirements as described in problem statements, because your program will be auto judged by computer. Your output will be compared with judge's output byte-by-byte and not tolerate even a difference of single byte. So, be aware! Pay special attention to spaces, commas, dots, newlines, decimal places, case sensitivity etc.
- All your programs must meet the time constraint specified.
- The decision of judges will be absolutely final.

Problem 04: Perfect Cover Drive

Time limit: 1 second

In the sport of cricket, a batter aims to place the ball in the gaps between fielders to score runs. You are given the 2D top-down view of a cricket field, where the batter stands at the origin (0, 0). The batter can hit the ball in **any direction**, and the ball will travel in a straight line indefinitely (no bounce or friction). There are **n** fielders on the field, each at a fixed position. Each fielder has a **circular range of influence** with radius **r**, within which they can stop the ball.

Your task is to determine the **maximum angle of a gap** between any two fielders (i.e., an angular sector not covered by any fielder's circle), such that the batter can safely hit the ball through that sector without it being intercepted.

Input Format

- The first line contains two values an Integer n ($1 \le n \le 11$) denoting the number of fielders, and a Float r ($0 \le r \le 10^5$) denoting the radius of influence of each fielder.
- n subsequent lines follow: each with two floats $x_i y_i$ (-100 $\le x_i$, $y_i \le$ 100) denoting the coordinates of the ith (1 $\le i \le n$) fielder.

Output Format

• A float: The maximum angular gap (in degrees) not covered by any fielder, with at least 6 digits after the decimal.

Constraints

- Fielders may be placed in such a way that their regions overlap.
- You may assume fielders are not located at (0, 0).
- If the field is completely covered, output 0.000000.

Sample input	Sample Output
2 1.0 1.0 0.0 -1.0 0.0	0.000000
3 4.5 -4.5 7.794 -9.0 0.0 -4.5 -7.794	180.000000