硬件手册

1 产品说明

直流电机驱动器 HS-485 可为 6-60V 无刷直流电机和普通直流(有刷)电机 提供最大持续 25A 电流的功率驱动。应用于无刷电机时,采用磁场定向控制(FOC) 进行绕组电流的自动切换,实现无刷直流电机三相绕组的矢量电流控制输出;用 于有刷直流电机时,实现可调节幅值的电压/电流输出。

驱动器内置多种高带宽 PID 闭环,包括电流闭环、速度闭环、位置闭环、以及外部传感闭环(可外部接入力或者力矩传感器),闭环处理频率高达 20KHz。可通过实时数据通信进行反馈和前馈闭环控制。

支持霍尔传感器速度反馈、光电编码器速度/位置反馈、AD/PWM 接口传感 反馈、RS485/RS422 接口外部传感反馈;提供多通道控制接口(TTL 电平串口+RS485 接口+AD/PWM 接口等),可通过上位机软件设置设备 ID、通信波特率、闭环模式、闭环控制参数、保护参数(欠压、过压、过流、过热等)。

图 1

图 2

2 硬件接口描述

2.1 直流输入

直流电源输入为 2P 接口,输入电压范围 5~60V,+为电源正极,-为电源负极,静态功耗约为 0.72W。注意:目前版本内部无防反无保险丝,需要防反和熔断保护时请单独外接处理。

图 3

图 4

2.1 电机输出

驱动板输出电机电源为 3P 接口。在实际使用时,需要注意:无刷电机时 U、V、W 接三相电机线,通常情况下 U、V、W 与分别电机的黄、绿、蓝颜色线对应;有刷电机时 U、V 接两根电机线。

图 5

图 6

2.3 霍尔传感

霍尔传感输入为 5P 接口, Hu、Hv、Hw 以及 5V 和 0V, 含内部上拉电阻。 5V 电源最大输出电流能力为 200mA。

图 7

图 8

2.4 串口 TTL 控制接口

3P接口(Tx, Rx, 0V), 用于参数设置、实时调试及通信控制, 3.3V/5V电平兼容。与上位机进行通讯调试时需要用到该控制接口。

图 9

图 10

2.5 AD/PWM 输入接口

3P接口(3.3V, In, 0V),外部传感器输入接口,用于进行外部传感器输入控制量进行闭环控制。

图 11

2.6 隔离 485 接口

3P接口, 隔离 485接口说明如下:

485 接口说明

485 信号 A	485 信号 B	隔离地
A	В	GND

图 13

图 14

2.7 光电编码器接口

光电编码器为 2*5P 接口,适用于具有差分/单端输出接口的增量式光电编码器进行高精度测速,电气性能满足 RS-422 差分或 TTL 单端标准,包含正交 A、B 通道以及原点 I 通道。用作单端使用时-端悬空,+端输入。

图 15

图 16

2.8 双色 LED 指示

指示灯含义	指示灯状态	处理方式
速度超限保护	绿色快闪(周期 0.2s)	
持续过流保护		
欠压保护		排除故障后,用
位置超限保护		DriverViewer 点击复
外部传感超限保护		位按钮或者发送复位
霍尔错误		指令
过压保护		
去使能 (禁用)	绿色快闪(周期 1s)	正常使用
使能	绿色慢闪(周期 2s)	正常使用
丢失用户固件	绿灯快闪(周期 0.5s)	手动升级固件
硬件故障	红灯亮	重新上电,或者更换
		驱动器

2.9 触摸屏幕

驱动板通过串口通讯与串口品目连接,进行数据的实时通讯。需要注意的是,在使用品目之前,需要在上位机软件中进行如下设置:打开客户端软件,连接上驱动板后,点击"基础设置"->"电路参数",在弹出的窗口中的"驱动器通讯口3的功能设置"中选择"HMI接口"。

图 17

2.10 整体连接示意

如图 18 所示为硬件连接示意图。根据电机功率需求选择直流输入电压,确定好正负极方向正确接入 2P 接口。电机输出 3P 接口连接电机,实现电机电源供电,无刷电机时 U、V、W 接三相电机线,有刷电机时 U、V 接两根电机线。若要对电机进行闭环控制,则需要根据实际所用传感器以及控制目标进行连接(霍尔测速、光电编码器测速、角度传感、力/力矩传感)。使用串口线与 PC 端连接,实现上位机调试。

图 18

2.11 上位机软件

本驱动板自带上位调试软件 DriverViewer.exe 客户端如图 19 所示。其集成功能包括闭环控制模式选择、保护参数设置、闭环控制参数在线调节等功能。与硬件相结合,可为开发人员提供方便的电机调试操作。启动软件后主界面如图 20 所示。主界面可分为: 1)菜单栏、2)曲线绘制、3)通信设置、4)参数设置、5)运行控制等几个区域,其中这几部分下还有不同程度的功能细化,详细介绍可阅读上位机软件使用说明文档。

图 19

图 20

3 应用示例

3.1 有刷直流电机

图 21 为直流无刷电机连接示意图。直流电源正负极接入驱动板,提供供电电压。有刷电机接到 U、V 两根电机输出线,串口线连接 PC 端上位机。完成整体接线后打开电源进行供电,观测驱动板 LED 指示灯状态,若无异常可打开上位机进行调试。

图 21

3.2 无刷有感电机

图 22 为无刷有感电机无刷有感(使用无刷电机自带的 UVW 传感进行换向控制)电机接线示意图。直流电源正负极对好方向接入驱动板电源输入端,无刷电机时 U、V、W 接三相电机线,通常情况下 U、V、W 与分别电机的黄、绿、蓝颜色线对应。由于无刷有感电机自带传感器,如图所示为霍尔传感器。则将霍尔传感 5P 接线端接入驱动板,串口调试线接入并通过转 USB 端口接到 PC 端,同样检查接线无误后可上电,观察 LED 指示灯状态,若无异常可打开上位机进行进一步调试。通过上位机进行

图 22

3.3 无刷无感电机

图 23 为无刷无感电机(使用外部角度传感器,例如本驱动器配套的角度传感板 YS1 和 YS2,进行 FOC 换向控制)连接示意图。直流电源接到驱动板进行供电,电机输出 3P 接口接三相电机线,串口线将驱动板与 PC 相连接,方便使用上位机调试软件进行调试。由于"无感电机"没有自带传感器,因此可通过 2*5P编码器接口外接传感器。检查接线无误后可上电,观察 LED 指示灯状态,若无

异常可打开上位机进行进一步调试。

图 23

3.4 移动式机器人

图 24 为驱动板在移动式机器人上应用的示例。机器人可每个轮子带一块驱动板进行独立控制,采用编码器接口进行电流和速度量的读取。驱动板整体可连接到独立的主控板上进行协同控制,最终实现移动机器人的人控制。

图 24

3.5 倒立摆

图 25 为驱动板在倒立摆应用的示意图。直流电源接入供电,电机输出接倒立摆电机三相线,串口线连接上位机进行调试,此外通过 2*5P 编码器实现电流和速度量的获取。另外输入口连接角度传感器实现角度量的读取。串口线一方面与 PC 端互联实现上位机调试外,还可以与其他控制器进行独立的角度控制。

图 25