

Very Large Scale Integration II - VLSI II Introduction to Digital World

Prof. Dr. Berna ÖRS

ITU VLSI Laboratories
Istanbul Technical University

Syllabus (Tentative)

- Week 1 (Project 1: OpenLane Installation and First Try)
 - Introduction to Digital World
 - Digital Design Methodology
- Week 2
 - Verilog Basics
- Week 3 (Project 2: Combinational Circuit RTL Design)
 - Verilog Basics
- · Week 4
 - Functional Verification
- Week 5 (Project 3: Sequential Circuit RTL Design and Verification)
 - Synthesis
 - Place and Route
- Week 6
 - Layout
- Week 7 (Project 4: Sequential Circuit RTL to GDS and Verification)I
 - Instruction Set Architecture
 - RISCV Instruction Set Architecture

Syllabus (Tentative)

- Week 8
 - Memory Structures
 - Cache Hierarchies
- Week 9 (Project 5: Memory Design, Synthesis)
 - Hardware Arithmetic
- Week 10
 - RF & Datapath & Single Cycle Control
- Week 11 (Project 6: ALU Design)
 - Basic Pipelining
- Week 12
 - Hazard Handling
- Week 13 & 14 (Project 7: Pipeline Design)
 - Q&A
- Final Project: Implementation of hazard handling, writing an application and test

Text Books

- Morris Mano, Charles Kime, Tom Martin, Logic and Computer Design Fundamentals, Pearson Education Limited, 5th Edition, 2015.
- John L. Hennessy, David A. Patterson, Computer Architecture:
 A Quantitative Approach, Morgan Kaufmann, 6th Edition, 2017.
- Frank Vahid, Digital Design with RTL Design, Verilog and VHDL, Wiley, 2nd Edition, 2010.
- Frank Vahid, Tony Givargis, Embedded System Design: A Unified Hardware/Software Introduction, John Wiley & Sons, 2002.

4

Grading

- Average of first 5 homeworks will be grade for midterm
- Average of last 3 will be grade for final
- Term grade=midterm*0,6+final*0,4

Outline

- Why Digital?
- Why NOT Digital?
- Considerations of Digital Technology
- Limitations of Digital Technology

ENGINEERING THE FUTURE

Why Digital?

- Ease of Design
 - Low Idea-to-Product Time

Why Digital?

- Ease of Design
 - Portability

Why Digital?

- Ideal World
 - Immunity to Noise

Why Digital?

- Ideal World
 - Only mathematical and logical operations
 - Zero error for some operations
 - Customizable precision

10

Why Digital?

- Ideal World
 - Easy Signal Processing

INNOVATION • QUALITY • RELIABILITY

11

www.vlsi.itu.edu.tr 11.02.2024

ENGINEERING THE FUTURE

Why Digital?

- Programmability
 - Can be programmable on the fly
 - Can change the behavior completely

Why Digital?

Technology (scaling) driven

Why NOT Digital?

- Sound
- Electromagnetic Waves
 - Light etc.
- All other sensory data
 - Pressure
 - Temperature
 - Humidity etc.
- Short, The World is ANALOG

14

ENGINEERING THE FUTURE

Considerations of Digital Technology

Trade-off Triangle

ENGINEERING THE FUTURE

Limitations of Digital Technology

Total Power = Dynamic Power + Static Power

Dynamic Power → C.f.V_{DD}²

Static Power → Leakage Currents

Limitations of Digital Technology

Power Density = Power Consumption per Unit Area

17

INNOVATION • QUALITY • RELIABILITY

www.vlsi.itu.edu.tr 11.02.2024

Limitations of Digital Technology

Subthreshold Leakage Currents

INNOVATION • QUALITY • RELIABILITY

18

www.vlsi.itu.edu.tr 11.02.2024

Limitations of Digital Technology

- Gate Leakage
 - Thinner gates → faster transistors but more leakage

ENGINEERING THE FUTURE

References

- http://download.intel.com/pressroom/kits/45nm/pin.jpg
- http://www.clipartheaven.com/show/clipart/tools_&_hardware/wheelb arrow-gif.html
- http://www.topnews.in/health/files/Aircraft-noise.jpg
- http://www.ami.ac.uk/courses/ami4822_dsi/u02/index.asp
- http://en.wikipedia.org/wiki/Digital_signal_processor
- http://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Digital.signal.svg/567px-Digital.signal.svg.png
- http://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png
- http://ixbtlabs.com/articles2/intel-65nm/
- http://www.tomshardware.com/reviews/cheap-thrills,1335.html

20