MAILI4 6/10/21

Vector Space R"

Definition 1-16

A vector in \mathbb{R}^n is a rolumn vector, with n entries $\begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix}$, $x_1, x_2, \dots x_n \in \mathbb{R}$

e.g.
$$n=3$$
 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

$$\mathbb{R}^{n} = \left\{ \begin{pmatrix} x_{i} \\ \dot{x}_{i} \end{pmatrix} \middle| x_{i} \in \mathbb{R} \text{ for all } 1 \leq x \leq n \right\}$$

$$\begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{N} \end{pmatrix} + \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} \alpha_{1} + y_{1} \\ \alpha_{2} + y_{2} \\ \vdots \\ \alpha_{N} + y_{N} \end{pmatrix}$$

$$\lambda \cdot \begin{pmatrix} \alpha_i \\ \alpha_i \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda \alpha_i \\ \lambda \alpha_i \\ \lambda \alpha_n \end{pmatrix}$$

$$\frac{0}{2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in \mathbb{R}^n \quad (some n \in \mathbb{N})$$

Definition 1.18

A linear combination of vectors $u, v \in \mathbb{R}^n$ is an expression of the form $\pi u + \mu v$, π , $\mu \in \mathbb{R}$

Escamples
$$u+v \quad (\lambda, \mu=1)$$

$$0 \quad (\lambda, \mu=0)$$

In fact, we can take linear combination of 3,4,5... vectors e.g. u.v., $w \in \mathbb{R}^n$

 $\lambda u + \mu v + \nu \omega$ is a linear combination of u, v, ω $(\lambda, \mu, \omega \in \mathbb{R})$

Escample

Proposition 1.21 (Properties of vectors addition and ecalor mult)

Any vectors $u, v, w \in \mathbb{R}^n$ and $\lambda, \mu \in \mathbb{R}$

VAO U+UER"

VAI U+0=v=0+V

VAL 3"-v" & R with v+-v=0=(-v)+v

VAS (U+v)+W= U+(v+W)

VAL U+v=V+U

SMO λ·ν ε Rⁿ SMI I·ν = ν SMI λ·(μν) =(λμ)·ν SM3 (λ+μ)·ν = λν + μν SM4 λ(ν+ν) = λν+λν