VLSI Assignment 3 Annexure

Priyank Lohariwal BCSE IV Roll-001710501055

1 Describtion

• Design a 4x16 decoder using 2x4 decoders with generate statement. Write test bench using behavioural modelling

2 Block Diagram

Figure 1: Decoder block diagram

3 Truth Table

X(3 - 0)	Y(15 - 0)
0000	00000000000000001
0001	00000000000000010
0010	00000000000000100
0011	0000000000001000
0100	0000000000010000
0101	0000000000100000
0110	0000000001000000
0111	0000000010000000
1000	0000000100000000
1001	0000001000000000
1010	00000100000000000
1011	00001000000000000
1100	00010000000000000
1101	00100000000000000
1110	010000000000000000
1111	10000000000000000

4 Circuit Diagram

5 Code

5.1 Using 2x4 decoders with generate statement

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity a3_ax1 is
    Port ( X : in STD_LOGIC_VECTOR (3 downto 0);
        Y : out STD_LOGIC_VECTOR (15 downto 0));
end a3_ax1;
```


Figure 2: 4x16 circuit diagram

6 Test Bench

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY tb_a3_ax1 IS
```

```
END tb_a3_ax1;
ARCHITECTURE behavior OF tb_a3_ax1 IS
    -- Component Declaration for the Unit Under Test (UUT)
   COMPONENT a3_ax1
    PORT(
         X : IN std_logic_vector(3 downto 0);
         Y: OUT std_logic_vector(15 downto 0)
        );
    END COMPONENT;
   --Inputs
   signal X : std_logic_vector(3 downto 0) := (others => '0');
         --Outputs
   signal Y : std_logic_vector(15 downto 0);
   -- No clocks detected in port list. Replace <clock> below with
   -- appropriate port name
BEGIN
        -- Instantiate the Unit Under Test (UUT)
   uut: a3_ax1 PORT MAP (
         X => X
         Y => Y
        );
   -- Stimulus process
   stim_proc: process
   begin
                                X <= "0000";
                wait for 1 ps;
                X \le "0001";
                wait for 1 ps;
                X \le "0010";
                wait for 1 ps;
                X \le "0011";
                wait for 1 ps;
                X \le "0100";
                wait for 1 ps;
                X \le "0101";
                wait for 1 ps;
                X \le "0110";
                wait for 1 ps;
                X \le "0111";
                wait for 1 ps;
                X <= "1000";
                wait for 1 ps;
                X <= "1001";
                wait for 1 ps;
                X \le "1010";
                wait for 1 ps;
                X \le "1011";
                wait for 1 ps;
```

```
X <= "1100";
wait for 1 ps;
X <= "1101";
wait for 1 ps;
X <= "1110";
wait for 1 ps;
X <= "1111";
wait for 1 ps;
end process;</pre>
```

END;

7 Timing diagram

