10

15

20

25

30

35

Beschreibung

Sigma-Delta-Modulator

Die Erfindung betrifft gemäß dem Oberbegriff des Patentanspruchs 1, d.h. einen Sigma-Delta-Modulator mit einem Signaleingang, an welchem ein auszuwertendes Auswertesignal anliegt, und einem digitalen Ergebnisausgang an welchem ein digitaler Ergebniswert geliefert wird, wobei ein Quantisierer vorgesehen ist, der ein an ihm anliegendes Eingangssignal entsprechend einer oder mehr Schwellspannungen quantisiert und als Ergebniswert am digitalen Ergebnisausgang ausgibt, welchem Quantisierer eingangsseitig eine oder mehr Vorstufen vorgeschaltet sind, wobei eine Vorstufe einen ein Vorstufen-Eingangssignal verarbeiteten Addierer mit einem ihm im Signalweg nachgeschalteten, ein Vorstufen-Ausgangssignal liefernden Integrierer umfasst, wobei dem Addierer ein in Abhängigkeit zum Ergebniswert generiertes Rückkopplungs-Signal zur Addition zum Vorstufen-Eingangssignal zugeführt wird, wobei einer ersten Vorstufe als Vorstufen-Eingangssignal das Auswertesignal anliegt und jeder weiteren Vorstufe als Vorstufen-Eingangssignal das Vorstufen-Ausgangssignal der jeweils im Signalweg vorherigen Vorstufe anliegt, wobei die letzte Vorstufe vor dem Quantisierer diesem das Eingangssignal als Vorstufen-Ausgangssignal liefert.

Die Sigma-Delta Modulation hat in den letzten Jahren zunehmende Bedeutung im Bereich der Analog/Digital (A/D) – und Digital/Analog (D/A) – Umwandlung gewonnen. Dies ist vor allen Dingen auf die geringen Ansprüche an die analogen Komponenten von Signal-Umsetzern zurückzuführen. Digitale Schaltungen gewinnen heutzutage in der Signalverarbeitung immer mehr an Bedeutung. Um Signale aus der analogen Umwelt zu konvertieren und anschließend digital verarbeiten zu können, sind A/D Wandler nötig. Es ist erstrebenswert, Wandler und die übrige digitale Schaltung auf einem einzigen Chip zu integrieren. Da meist der digitale Anteil die Chipfläche dominiert, bestimmt

١,

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Åktenzeichen:

102 39 865.8

Anmeldetag:

29. August 2002

Anmelder/Inhaber:

Infineon Technologies AG, München/DE

Bezeichnung:

Sigma-Delta-Modulator

IPC:

H 03 M 3/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 2. Oktober 2003

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

cent

Ebert

30

dieser auch die Schaltungstechnologie. Digitale Prozesstechnologien erschweren jedoch die Herstellung von präzisen analogen integrierten Schaltungskomponenten, bei denen sehr hohe
Genauigkeiten und geringe Fertigungsschwankungen gefordert
sind. Hier kommt die Einfachheit und Robustheit analoger Komponenten der Sigma-Delta-Modulatoren zum Tragen, die SigmaDelta-Umsetzer für Implementierungen in beispielsweise einer
digitalen VLSI-Technologie prädestinieren.

10 Ein weiterer Vorteil der Sigma-Delta-Modulatoren liegt darin, dass diese weniger Strom als herkömmliche A/D-Wandler benötigen, was sie auch in dem wichtigen Bereich der tragbaren Empfänger qualifiziert. Ebenso zeichnen sie sich durch eine höhere Signal Bandbreite aus, was sie interessant für den Anwendungsbereich in der xDSL-Transceiver-Technik macht.

Problematisch bei Sigma-Delta-Modulatoren ist, gerade zu höheren zu wandelnden Frequenzen hin, dass durch Laufzeitverzögerungen in den einzelnen Komponenten (Excess Loop Delay)

Fehler auftreten, was die Anwendung zu hohen Frequenzen (>1 GHz) hin beschränkt. Siehe zu der Problematik der Excess Loop Delays auch: J. A. Cherry, W. M. Snelgrove, Continuous-Time Detla-Sigma Modulator for High Speed A/D Conversion, Kluwer Academic Publishers 2000, Seite 75-103.

Ein bekannter Weg diese durch Laufzeitunterschiede induzierten Fehler auszugleichen der aus P. Benabes, M. Keramat, R. Kielbasa, A methodology for designing continuous-time sigmadelta modulators, IEEE European Design and Test Conference 1997, Seite 45-50 bekannte Ansatz einen zusätzlichen Rückkoppelkreis (inner loop) einzuführen, der durch einen zusätzlichen Addierer zwischen dem Quantisierer und dem letzten davor befindlichen Integrierer gebildet ist.

In Figur 1 ist einen gewöhnlichen zeitkontinuierlichen Sigma-Delta-Modulator zweiter Ordnung mit zwei Vorstufen V_1 und V_2 sowie mit Korrekturmitteln gezeigt. Das am Eingang IN anlie-

gende zu Wandelnde Signal x wird über zwei Integrierer 4_1 und 4_2 , denen jeweils ein Addierer 3_1 bzw. 3_2 zur Verknüpfung mit dem Rückkoppelsignal vorgeschaltet ist, dem Quantisierer 2 an dessen Eingang E_Q zugeführt. Zuvor jedoch wird das zu quantisierende Signal jedoch noch über den Addierer 10 nochmals mit dem Rückkoppelsignal verknüpft. Hierdurch wird der Einfluss der Laufzeit in den einzelnen Komponenten berücksichtigt und ausgeglichen.

- 10 In Figur 2 ist eine aus W. Redman-White, A. M. Durham, A fourth order Converter with self-tuning Continuous Time Noise Shaper, aus Proceedings of ESSCIRC 1991, Seite 249-252 bekannte mögliche Umsetzung eines solchen Konzeptes gezeigt.
- Hierbei kommen als Digital-Analog-Wandler für das Rück-kopplungs-Signal R_i Strom-AD-Wandler 6_1 bis 6_2 zum Einsatz, wobei die Integratoren 4_1 und 4_2 durch Operationsverstärker gebildet sind und auch der Kompensations-Addierer 10 durch einen Operationsverstärker mit vorgeschaltetem Strom-AD-
- Wandler 6_3 ausgebildet ist. Bei dieser Lösung sind die Summierknoten 3_i durch die Eingänge der Operationsverstärker gebildet. Die Summiersignale sind die Ströme, die durch die Eingangswiderstände und in den Stromgeneratoren im jeweiligen Rückkoppelkreis fließen.

Figur 3 zeigt ein Diagramm eines so aufgebauten 3 Bit auflösenden Sigma-Delta-Modulators, bei dem 7 Schwellspannungen angewendet werden.

30 Gemäß der oben angegebenen Anordnung wird die Summe mit dem Rückkoppel-Signal vor dem Quantisierer gebildet. Die Komparatoren i = 1 bis N des Quantisierers müssen daher die Bewertung

$$(V_2-V_{dac3}) > V_{th,i}$$

durchführen (siehe hierzu Figur 4). V_2 ist hierbei der Betrag des Zwischensignals y_2 nach dem zweiten Integrierer 4_2 .

Nachteilig bei dieser Anordnung und Vorgehensweise ist jedoch, dass im Signalweg ein hochgenaues aktives Element (zusätzlicher Addierer) vorzusehen ist, mit all den Schwierigkeiten bezüglich Herstellungsverfahren und -schritten, Layoutdesign und Ausschuss bei der Herstellung und, dass der Stromverbrauch hierdurch erheblich erhöht wird, was die Anwendungsbereiche gerade bei tragbaren und zwingend Stromsparenden Anwendungen beschränkt.

10 Aufgabe der Erfindung ist es daher, einen Sigma-DeltaModulator zur Verfügung zu stellen, bei dem eine Kompensation
der Laufzeiten durch die einzelnen Komponenten erfolgt, wobei
jedoch im Signalweg kein zusätzliches Element vorgesehen ist.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.

Erfindungsgemäß ist vorgesehen, dass der Quantisierer entsprechend der Anzahl der Schwellspannungen Komparatoren aufweist welche das Eingangssignal mit der jeweiligen Schwellspannung vergleichen, wobei die Schwellspannung um eine Korrektur-Spannung verringert oder erhöht ist, welche KorrekturSpannung entsprechend dem am Ergebnisausgang ausgegebenem
Ergebniswert generiert ist.

Q²⁵

30

35

20

Die Erfindung schlägt vor, eine Anpassung der Schwellspannungen für die Komparatoren im Quantisierer vorzunehmen und nicht mehr wie bisher eine Anpassung des zu quantisierenden Signals im Signalweg vor dem Quantisierer vorzunehmen. Hierdurch wird das Design der Halbleiterschaltung erheblich einfacher möglich und ist auch nicht mehr so kritisch in der Herstellung, da Toleranzen hier weiter sein dürfen als bei aktiven analogen Elementen direkt im Signalweg. Der zusätzliche Summierer ist eingespart. Eine Anpassung der Schwellspannung kann über einen ganzen Taktzyklus erfolgen, was ausreichend viel Zeit ist. Das ganze System ist stabiler und produziert auch nicht mehr so viel Laufzeitfehler, da ein aktives

15

20

25

30

Element aus dem Signalweg entfernt worden ist. Dies verringert zudem den Stromverbrauch des Sigma-Delta-Modulators und er ist mit weniger Platzverbrauch auf einem Chip realisierbar. Zudem sind höhere Abtastraten realisierbar, da durch die Verringerung der Laufzeitfehler die Abtastrate erhöht ist. Anwendungen im xDSL-Bereich mit den hohen Abtastraten sind leichter realisierbar, der Einsatzbereich der Sigma-Delta-Modulatoren ist vergrößert als bisher denkbar.

10 Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass ein Digital-Analog-Wandler vorgesehen ist, der ein analoges Roh-Signal aus dem digitalen Ergebniswert generiert. Hierdurch kann in einfacher Weise ein Rückkoppel-Signal mit einem Faktor belegt den einzelnen Addierern zugeführt werden.

Bevorzugterweise wird das Roh-Signal entsprechend der Position und der Anzahl der Vorstufen im Signalweg jeweils mit einem vorbestimmten Faktor zum jeweiligen Rückkopplungs-Signal einer Vorstufe multipliziert.

Von Vorteil ist die Korrektur-Spannung eine dem Ergebniswert entsprechende Spannung multipliziert mit einem festen Faktor.

Eine Ausgestaltung der Erfindung sieht vor, dass der Faktor eine einfach gebrochene Zahl ist.

Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass ein digitaler Addierer vorgesehen ist, der zum Ergebniswert den Faktor addiert und eine dem Ergebnis entsprechende vorher generierte Schwellspannung auf die Komparatoren aufschaltet.

Von Vorteil ist ein Digital-Analog-Wandler vorgesehen, der die dem Ergebniswert entsprechende Spannung erzeugt.

Gemäß einer besonders bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass der Sigma-Delta-Modulator von zweiter Ordnung mit zwei Vorstufen ist.

Von Vorteil, und daher bevorzugterweise ist der Sigma-Delta-Modulator ein zeitkontinuierlicher Sigma-Delta-Modulator (continuous time sigma delta modulator).

5

Bevorzugterweise sind Mittel zur Aufbereitung der Ausgangssignale der Addierer vorgesehen sind.

Vorteilhafterweise sind der Auflösung des Quantisierers eine 10 entsprechende Anzahl von Komparatoren vorgesehen, wobei die Komparatoren gleichmäßig gestaffelte Schwellspannungen aufweisen.

9

15

Dem folgend, ist nach einer Ausgestaltung der Erfindung vorgesehen, dass ein Referenzspannungsgenerator vorgesehen ist, welcher Teil-Spannungen liefert aus welchen die Schwellspannungen generiert werden.

Weitere Vorteile, Besonderheiten und zweckmäßige Weiterbil-20 dungen der Erfindung ergeben sich aus den weiteren Unteransprüchen oder deren Unterkombinationen.

Nachfolgend wird die Erfindung anhand der Zeichnung weiter erläutert.

25 V**.**

30

Dabei zeigt:

- Fig. 1 einen zeitkontinuierlichen Sigma-Delta-Modulator nach dem Stand der Technik,
- Fig. 2 eine konkrete Ausführung des zeitkontinuierlichen Sigma-Delta-Modulators aus Figur 1,
- Fig. 3 ein schematisches Diagramm der Quantisierungsschritte über der analogen Eingangsspannung,
- Fig. 4 einen Ausschnitt aus Figur 1, wobei die Signale verdeutlicht sind,
- 35 Fig. 5 einen erfindungsgemäßen Quantisierer schematisch mit den einzelnen Signalen, entsprechend dem Ausschnitt aus Figur 4,

- Fig. 6 einen erfindungsgemäßen zeitkontinuierlichen Sigma-Delta-Modulator, und
- Fig. 7 eine schematische Darstellung eines konkreteren Aufbaus eines erfindungsgemäßen Quantisierers.
- 5 In den Figuren gleiche Bezugszeichen bezeichnen gleiche oder gleich wirkende Elemente.

Die Figur 5 zeigt deutlich den Unterschied zu bisher bekannten Ansätzen (siehe hierzu Figur 4). Die Komparatoren i = 1 bis N des Quantisierers haben nicht mehr die Bewertung

 $(V_{\text{Eingang}} - V_{\text{dac3}}) > V_{\text{th,i}}$

durchführen, sondern

 $V_{\text{Eingang}} > V_{\text{th,i}} + V_{\text{dac3}}$.

Demnach muss auch keine Signalverschiebung mehr im Signalweg vor den Komparatoren erfolgen.

Das neue Prinzip ist die Summation des Rückkoppelsignals zu den Schwellspannungen der Komparatoren.

20 Eine unkritische Anpassung der Schwellspannungen der Komparatoren im Quantisierer ist ausreichend. Die Wandlung des digitalen Ergebnisses y_Q in eine eigene analoge Spannung ist nicht notwendig. Eine digitale Addition der Werte mit nachfolgender entsprechender Aufschaltung einer Referenzspannung ist einfach möglich (siehe hierzu auch Figur 7).

Figur 6 zeigt den erfindungsgemäßen Ansatz.

Konkret ist die Summation der Schwellspannungen y_{th,i} zu der Korrektur-Spannung y_{dac3} (= b3 * y_Q) sehr einfach möglich, da der Faktor b₃ zumeist ein einfacher gebrochener Wert (beispielsweise 1/2, 3/4, ...) ist. Hierdurch kann die Schwellspannung y_{th,i} schnell und dynamisch erfolgen, ohne in die bekannten und bewährten Strukturen der die Schwellspannungen leiernden Schaltungen eingreifen zu müssen. Dies gilt für den digitalen als auch für den analogen Bereich, auch mit Stromoder Spannungsreferenz.

Der erfindungsgemäße Ansatz hat keine festen Schwellspannungen $y_{th,i}$ mehr, sondern passt diese jeweils um die aktuelle Korrektur-Spannung $y_{dac3} = b3 * y_Q$ an.

5

10

15

In Figur 7 ist schematisch eine Realisierung eines erfindungsgemäßen Sigma-Delta-Modulators gezeigt, wobei nur der Bereich der digitalen Summation und damit Korrektur der Schwellspannungen gezeigt ist. Entsprechend dem Ergebnis der Summation werden Teil-Spannungen 1/14 * Yref, 2/14 * Yref, ... zur Schwellspannung Y_{th} durch Öffnen und Schließen von Schaltern aufsummiert und auf die Komparatoren geschaltet.

Im dargestellten Beispiel ist $b_3 = 1/2$ und 8 Schwellen sind realisiert.

Es wird demnach nicht einmal ein D/A-Wandler für die Generierung der Korrektur-Spannung benötigt.

20 D

Die sieben statischen Schwellspannungen der Komparatoren sind bezüglich Yref:

+6/7, +4/7, +2/7, 0, -2/7, -4/7, -6/7

25

Bei jedem Taktzyklus wird entsprechend dem tatsächlichen und augenblicklichen Wert vom Ergebniswert y_Q vom digitalen Addierer 7 einer der folgenden Werte hinzusummiert:

+7/14, +5/14, +3/14, +1/14, -1/14, -3/14, -5/14, -7/14

30

die sich daraus ergebenden 7 Signale werden mit dem Eingangssignal E_Q des Quantisierers 2 durch die sieben Komparatoren 5_1 bis 5_7 vergleichen, wodurch das nächste digitale Ergebnis generiert wird.

35

Bezugszeichenliste

	1	Sigma-Delta-Modulator .
5	2	Quantisierer
	3_{i}	Addierer
	4 _i	Integrierer
	5 _i	Komparatoren
	6	Digital-Analog-Wandler
10	7	digitaler Addierer
	8	Verstärker
	9	Referenzspannungsgenerator
	10	Kompensations-Addierer
	11	Multiplizierer
15	IN	Signaleingang
	OUT	Ergebnisausgang
	х	Auswertesignal
	УQ	Ergebniswert
	У1, У2	Zwischensignale
20	E_{Q}	Eingangssignal
	Yth,i	Schwellspannung
	Ydac3	Korrektur-Spannung
	$V_{\mathtt{i}}$	Vorstufe
	Ei	Vorstufen-Eingangssignal
25	Ai	Vorstufen-Ausgangssignal
\	Ri	Rückkopplungs-Signal
	RS	Roh-Signal

Patentansprüche

- 1. Sigma-Delta-Modulator (1) mit einem Signaleingang (IN), an welchem ein auszuwertendes Auswertesignal (x) anliegt, und einem digitalen Ergebnisausgang (OUT), der einen digita-
- 5 und einem digitalen Ergebnisausgang (OUT), der einen digitalen Ergebniswert (y_Q) ausgibt,

wobei ein Quantisierer (2) vorgesehen ist,

der ein an ihm anliegendes Eingangssignal (E_Q) entsprechend mindestens einer Schwellwertspannungen ($y_{th,i}$) quantisiert und

10 als Ergebniswert (y_Q) an dem digitalen Ergebnisausgang (OUT) ausgibt,

wobei dem Quantisierer (2) eingangsseitig mindestens eine Vorstufe (Vi) vorgeschaltet ist,

die einen ein Vorstufen-Eingangssignal (E_i) verarbeiteten Addierer (3_i) mit einem dem Addierer im Signalweg nachgeschalteten, ein Vorstufen-Ausgangssignal (A_i) liefernden Integrierer (4_i) umfasst, wobei dem Addierer (3_i) ein in Abhängigkeit zum Ergebniswert (y_Q) generiertes Rückkopplungs-Signal (R_i) zur Addition zum Vorstufen-Eingangssignal (E_i) zugeführt

20 wird,

25

wobei an einer ersten Vorstufe (V_1) als Vorstufen-Eingangssignal (E_1) das Auswertesignal (x) anliegt und an jeder weiteren Vorstufe (V_n) als Vorstufen-Eingangssignal (E_n) das Vorstufen-Ausgangssignal (A_{n-1}) der jeweils im Signalweg vorherigen Vorstufe (V_{n-1}) anliegt,

wobei die letzte Vorstufe (V_m) vor dem Quantisierer (2) dem Quantisierer das Eingangssignal (E_Q) als Vorstufen-Ausgangssignal (A_m) liefert,

dadurch gekennzeichnet,

- dass der Quantisierer (2) eine der Anzahl (j) von Schwell-wertspannungen $(y_{th,j})$ entsprechende Anzahl von Komparatoren (5_j) aufweist, die das Eingangssignal (E_Q) mit der jeweiligen Schwellwertspannung $(y_{th,j})$ vergleichen, wobei die Schwell-wertspannung um eine Korrektur-Spannung (y_{dac3}) verringert o-
- der erhöht ist, wobei die Korrektur-Spannung entsprechend dem an dem Ergebnisausgang (OUT) ausgegebenem Ergebniswert (y_Q) generiert wird.

30

- 2. Sigma-Delta-Modulator nach Anspruch 1,
 d a d u r c h g e k e n n z e i c h n e t,
 dass ein Digital-Analog-Wandler (6) vorgesehen ist, der ein
 analoges Roh-Signal (RS) aus dem digitalen Ergebniswert (y_Q) generiert.
 - 3. Sigma-Delta-Modulator nach Anspruch 2, dadurch gekennzeichnet,
- dass das Roh-Signal (RS) entsprechend der Position (i) und der Anzahl der Vorstufen (V_i) im Signalweg jeweils mit einem vorbestimmten Faktor (b_i) zum jeweiligen Rückkopplungs-Signal (R_i) einer Vorstufe (V_i) multipliziert wird.
- 4. Sigma-Delta-Modulator nach einem der Ansprüche 1 bis 3, dad urch gekennzeichnet, dass die Korrektur-Spannung (y_{dac3}) eine dem Ergebniswert (y_Q) entsprechende Spannung multipliziert mit einem festen Faktor (b_3) ist.
 - 5. Sigma-Delta-Modulator nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, dass der Faktor (b₃) eine einfach gebrochene Zahl ist.
- 6. Sigma-Delta-Modulator nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet,
 dass ein Digital-Analog-Wandler (6) vorgesehen ist, der die
 dem Ergebniswert entsprechende Spannung erzeugt.
 - 7. Sigma-Delta-Modulator nach einem der vorhergehenden Ansprüche, dad urch gekennzeichnet, dass ein digitaler Addierer (7) vorgesehen ist, der zum Ergebniswert (y_Q) den Faktor (b₃) addiert und eine dem Ergebnisentsprechende vorher generierte Schwellwertspannung (y_{th,i}) auf die Komparatoren (5_i) aufschaltet.

weisen.

8. Sigma-Delta-Modulator nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

- 5 dass der Sigma-Delta-Modulator von zweiter Ordnung mit zwei Vorstufen ist.
 - 9. Sigma-Delta-Modulator nach einem der vorhergehenden Ansprüche,
- 10 dadurch gekennzeichnet,
 dass der Sigma-Delta-Modulator ein zeitkontinuierlicher Sig ma-Delta-Modulator (continuous time sigma delta modulator)
 ist.
- 15 10. Sigma-Delta-Modulator nach einem der vorhergehenden Ansprüche,

d a d u r c h g e k e n n z e i c h n e t, dass eine Einrichtung (8) zur Aufbereitung der Ausgangssignale der Addierer (3_i) vorgesehen sind.

11. Sigma-Delta-Modulator nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass eine der Auflösung des Quantisierers (2) entsprechende Anzahl von Komparatoren (5_i) vorgesehen sind, wobei die Kom-

paratoren gleichmäßig gestaffelte Schwellwertspannungen auf-

- 12. Sigma-Delta-Modulator nach einem der vorhergehenden An-30 sprüche,
 - d a d u r c h g e k e n n z e i c h n e t, dass ein Referenzspannungsgenerator (9) vorgesehen ist, der Teil-Spannungen liefert aus welchen die Schwellwertspannungen $(y_{th,i})$ generiert werden.

Zusammenfassung

Sigma-Delta-Modulator

5 Die Erfindung betrifft einen Sigma-Delta-Modulator (1) mit einem Signaleingang (IN), an welchem ein auszuwertendes Auswertesignal (x) anliegt, und einem digitalen Ergebnisausgang (OUT) an welchem ein digitaler Ergebniswert (yo) geliefert wird, wobei ein Quantisierer (2) vorgesehen ist, der ein an ihm anliegendes Eingangssignal (Eo) entsprechend einer oder 10 mehr Schwellspannungen (yth.i) quantisiert und als Ergebniswert (y_0) am digitalen Ergebnisausgang (OUT) ausgibt, welchem Quantisierer eingangsseitig eine oder mehr Vorstufen (Vi) vorgeschaltet sind, wobei eine Vorstufe (V_i) einen ein Vor-15 stufen-Eingangssignal (E_i) verarbeiteten Addierer (3_i) mit einem ihm im Signalweg nachgeschalteten, ein Vorstufen-Ausgangssignal (A_i) liefernden Integrierer (4_i) umfasst, wobei dem Addierer ein in Abhängigkeit zum Ergebniswert (y_Q) generiertes Rückkopplungs-Signal (Ri) zur Addition zum Vor-20 stufen-Eingangssignal (Ei) zugeführt wird, wobei einer ersten Vorstufe (V_1) als Vorstufen-Eingangssignal (E_1) das Auswertesignal (x) anliegt und jeder weiteren Vorstufe (V_n) als Vorstufen-Eingangssignal (E_n) das Vorstufen-Ausgangssignal (A_{n-1}) der jeweils im Signalweg vorherigen Vorstufe (V_{n-1}) anliegt, wobei die letzte Vorstufe (V_m) vor dem Quantisierer (2) diesem das Eingangssignal (E_Q) als Vorstufen-Ausgangssignal (A_m) liefert.

30 Fig. 6

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 7