INFO90002 Tutorial Week 4

Objectives:

This tutorial will cover:

- I. Review of Normalisation concepts 15 mins
- II. Normalisation exercises 35 mins
- III. Optional extra exercises (homework) approximately 50 minutes

Key Concepts:

NOTE for students: This is a brief summary of some of the concepts taught in lecture 6 'Normalisation'. The lectures contain detailed content related to these and many more concepts. These notes should be considered quick revision instead of a sole resource for the course material.

Anomalies

Consider the following instance of the relation Allocation (CourseNumber, Tutor, Room, Seats):

CourseNumber	Tutor	Room	Seats
INFO20003	Farah	Alice Hoy 109	30
COMP10001	Farah	EDS 6	25
INFO30005	Patrick	Sidney Myer G09	20
COMP20005	Alan	Sidney Myer G09	20

An **update** anomaly is a data inconsistency that results from data redundancy and partial update when one or more instances of duplicated data are updated but not all.

A **deletion** anomaly is an unintentional loss of certain attribute values due to the <u>deletion of other</u> data for other attributes.

An **insertion** anomaly is the **inability to add certain attributes** to a database due to <u>absence of other</u> attributes.

Functional dependency

Determinants

Key and non-key attributes
Partial functional dependency

Transitive functional dependency

Armstrong's Axioms

Normalisation and normal forms

Normalisation is a technique used to iteratively improve relations to <u>remove undesired redundancy</u> by <u>decomposing relations and eliminating anomalies</u>. The process is iterative and can be performed in stages generally referred to as Normal Forms. In <u>First Normal Form (1NF)</u>, the relation is analysed and all repeating groups are identified to be decomposed into new relations. In <u>Second Normal Form (2NF)</u>, all the <u>partial dependencies are resolved/removed</u>. The next stage is <u>Third Normal Form (3NF)</u> where all the transitive dependencies are removed.

Exercises:

1) TASK Consider the relation Diagnosis with the schema Diagnosis (DoctorID, DocName, PatientID, DiagnosisClass) and the following functional dependencies:

DoctorID → DocName
DoctorID, PatientID → DiagnosisClass

Consider the following instance of Diagnosis:

DoctorID	DocName	PatientID	DiagnosisClass
D001	Alicia	P888	Flu
D002	John	P999	Lactose intolerance
D003	Jennifer	P000	Flu
D002	John	P111	Fever

- 2) TASK Identify different anomalies that can arise from this schema using the above instance.
- 3) TASK Consider a relation R (A, B, C, D) with the following FDs:

$$AB \rightarrow C$$
, $AC \rightarrow B$, $BC \rightarrow A$, $B \rightarrow D$

The possible candidate keys of R are AB, AC, and BC, since each of those combinations is sufficient to uniquely identify each record. Let's consider AB for instance. From AB \rightarrow C we see that AB uniquely identifies C, and since B alone uniquely identifies D, AB together have covered CD, i.e. the entire set of attributes.

<u>List all the functional dependencies that violate 3NF.</u> If any, decompose R accordingly. After decomposition, check if the resulting relations are in 3NF, if not decompose further.

4) TASK Consider the following relation StaffPropertyInspection:

StaffPropertyInspection (<u>propertyNo</u>, pAddress, <u>iDate</u>, iTime, comments, staffNo, sName)

The FDs stated below hold for this relation:

propertyNo, iDate \rightarrow iTime, comments, staffNo, sName propertyNo \rightarrow pAddress staffNo \rightarrow sName

From these FDs, it is safe to assume that propertyNo and iDate can serve as a primary key. Your task is to normalize this relation to 3NF. Remember in order to achieve 3NF, you first need to achieve 1NF and 2NF.

END OF TUTORIAL

Optional Exercises

These are optional exercises for you to try if you have time - or complete as homework

5) TASK The following Report table is used by a publishing house to keep track of the editing and design of books by a number of authors:

report_no	editor	dept_no	dept_name	dept_addr	author_id	auth_name	auth_addr
4216	woolf	15	design	argus1	53	mantel	cs-tor
4216	woolf	15	design	argus1	44	bolton	mathrev
4216	woolf	15	design	argus1	71	koenig	mathrev
5789	koenig	27	analysis	argus2	26	fry	folkstone
5789	koenig	27	analysis	argus2	38	umar	prise
5789	koenig	27	analysis	argus2	71	koenig	mathrev

By looking at the data, we see that functional dependencies in the Report table are the following:

```
report_no → editor, dept_no
dept_no → dept_name, dept_addr
author_id → auth_name, author_addr
```

The candidate key for this relation is (report_no, author_id) since we need these two attributes to uniquely identify each record. Thus we have:

Report (<u>report_no</u>, editor, dept_no, dept_name, dept_addr, <u>author_id</u>, auth_name, auth_addr)

- 6) TASK Is the Report table in 2NF? If not, put the table in 2NF.
- 7) TASK Are there any insert, update or delete anomalies with these 2NF relations?
- 8) TASK Consider the following relation:

Class (<u>courseNumber</u>, roomNumber, instructorName, <u>studentNumber</u>, workshopNumber, grade, tutor)

The following functional dependencies hold for this relation:

workshopNumber \rightarrow tutor studentNumber, courseNumber \rightarrow grade, workshopNumber courseNumber \rightarrow roomNumber, instructorName

Normalize this relation into 3NF.