

THE UNIVERSITY OF TEXAS AT AUSTIN

EE381V LARGE SCALE OPTIMIZATION

Problem Set 0

Edited by \LaTeX

Department of Computer Science

STUDENT

Jimmy Lin

xl5224

COURSE COORDINATOR

Sujay Sanghavi

UNIQUE NUMBER

 $\overline{17350}$

RELEASE DATE

September 5, 2014

DUE DATE

September 11, 2014

TIME SPENT

10 hours

September 7, 2014

Table of Contents

1	Mat	tlab and Computational Assignment
	1.1	Sparse Recovery
		1.1.1 Algorithm 1: Least Square
		1.1.2 Algorithm 2: optimization with LASSO
	1.2	Orthogonal Matching Pursuit
2	Line	ear Algebra Review
	2.1	Vector Spaces
	2.2	Linear Operators
	2.3	Independence
	2.4	Linearly Independence
	2.5	Range and Nullspace of Matrices
	2.6	More Range and Nullspace
	2.7	Riesz Representation Theorem
	2.8	Derivatives
	2.9	Rank
	2.10	Surjectivity
A	C	Joe Defeatent
A		des Printout
	A.1	Sparse Recovery
		A.1.1 Algorithm 1: Least Square
		A.1.2 Algorithm 2: optimization with LASSO
	A.2	Orthogonal Matching Pursuit
В	\mathbf{CV}	X Experiment Results: Sparse Recovery
	B.1	Algorithm 1: Least Square
		B.1.1 Small-scale dataset
		B.1.2 Medium-scale dataset
	B.2	
		B.2.1 Small-scale dataset
		B 2.2 Medium-scale dataset

Chapter 1

Matlab and Computational Assignment

1.1 Sparse Recovery

1.1.1 Algorithm 1: Least Square

Small-scale dataset: Succeed

Total CPU time (secs) = 0.18 CPU time per iteration = 0.02 Regression Error: $+1.48902e^{-10}$ Testing Error: 23.058394

Medium-scale dataset: Succeed

Total CPU time (secs) = 43.95 CPU time per iteration = 5.49 Regression Error: $+5.92177e^{-10}$ Testing Error: 19.862394

Large-scale dataset: Failed

The scale of this least-square task is too large.

1.1.2 Algorithm 2: optimization with LASSO

Small-scale dataset: Succeed

Total CPU time (secs) = 0.38CPU time per iteration = 0.02Regression Error: +5.02333Testing Error: 0.144338

Support(non-zeros entries of β): 43

Medium-scale dataset: Succeed

Total CPU time (secs) = 126.66 CPU time per iteration = 4.87 Regression Error: +5.11426Testing Error: 0.078289Support (non-zeros entries of β): 342

Large-scale dataset: Failed

The scale of this least-square task is too large.

1.2 Orthogonal Matching Pursuit

Chapter 2

Linear Algebra Review

- 2.1 Vector Spaces
- 2.2 Linear Operators
- 2.3 Independence
- 2.4 Linearly Independence
- 2.5 Range and Nullspace of Matrices
- 2.6 More Range and Nullspace
- 2.7 Riesz Representation Theorem
- 2.8 Derivatives
- 2.9 Rank
- 2.10 Surjectivity

Appendix A

Codes Printout

A.1 Sparse Recovery

A.1.1 Algorithm 1: Least Square

```
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%%% Scripts invoking cvx least-square routines to
%%% solve problems using our three datasets.
%% solve least-square problem for first dataset
cvx_begin
         variable b1(size(X1,2))
          minimize( norm( X1*b1-y1 ) )
cvx_end
%% apply learned model on testing data
pred1 = X1test * b1;
RegressionError1 = norm( X1*b1-y1 )
TestingError1 = norm(pred1 - y1test)
%% solve least-square problem for second dataset
cvx_begin
         variable b2(size(X2,2))
         minimize( norm( X2*b2-y2 ) )
%% apply learned model on testing data
pred2 = X2test * b2;
RegressError2 = norm( X2*b2-y2 )
TestError2 = norm(pred2 - y2test)
%% solve least-square problem for second dataset
cvx_begin
          variable b3(size(X3,2))
          minimize( norm( X3*b3-y3 ) )
%% apply learned model on testing data
pred3 = X3test * b3;
RegressionError3 = norm( X3*b3-y3 )
TestingError3 = norm(pred3 - y3test)
```

A.1.2 Algorithm 2: optimization with LASSO

```
%%% Scripts invoking cvx least-square routines to
%%% solve LASSO problems using our three datasets.
format short e
%% solve least-square problem for first dataset
cvx_begin
   variable b1(size(X1,2))
   minimize(norm(X1*b1-y1) + norm(b1,1))
cvx_end
%% apply learned model on testing data
pred1 = X1test * b1;
RegressionError1 = norm( X1*b1-y1 )
TestingError1 = norm(pred1 - y1test)
Support1 = sum(((b1 < 10e-5) + (b1 > -10e-5)) < 2)
%% solve least-square problem for second dataset
cvx_begin
   variable b2(size(X2,2))
   minimize ( norm(X2*b2-y2) + norm(b2, 1))
cvx_end
%% apply learned model on testing data
pred2 = X2test * b2;
RegressionError2 = norm( X2*b2-y2 )
TestingError2 = norm(pred2 - y2test)
Support2 = sum(((b2 < 10e-5) + (b2 > -10e-5)) < 2)
%% solve least-square problem for second dataset
cvx_begin
   variable b3(size(X3,2))
   minimize ( norm(X3*b3-y3) + norm(b3, 1) )
%% apply learned model on testing data
pred3 = X3test * b3;
RegressionError3 = norm( X3*b3-y3 )
TestingError3 = norm(pred3 - y3test)
Support3 = sum(((b3 < 10e-5) + (b3 > -10e-5)) < 2)
```

A.2 Orthogonal Matching Pursuit

Appendix B

CVX Experiment Results: Sparse Recovery

B.1 Algorithm 1: Least Square

B.1.1 Small-scale dataset

```
Calling SDPT3 4.0: 551 variables, 50 equality constraints
num. of constraints = 50
dim. of socp var = 51,
                          num. of socp blk = 1
dim. of free var = 500 *** convert ublk to lblk
************************
  SDPT3: Infeasible path-following algorithms
*************************
version predcorr gam expon scale_data
                 0.000 1
          1
                                   prim-obj dual-obj
it pstep dstep pinfeas dinfeas gap
                                                           cputime
0|0.000|0.000|9.5e-01|1.7e+04|1.1e+09| 2.608637e+01 0.000000e+00| 0:0:00| chol 1 1
1|1.000|0.989|1.4e-10|1.9e+02|2.4e+06| 1.929302e+01 3.828915e-04| 0:0:00| chol 1 1
2|0.995|0.990|2.0e-10|2.1e+00|5.2e+03| 2.098412e-01 3.092593e-05| 0:0:00| chol 1 1
3|0.991|1.000|1.8e-11|7.5e-02|3.5e+01| 2.098816e-03 3.804833e-05| 0:0:00| chol 1 1
4|1.000|1.000|5.8e-11|7.5e-03|5.8e-01| 2.682428e-05 2.478894e-05| 0:0:00| chol 1 1
5|1.000|1.000|2.3e-11|7.5e-04|9.8e-03| 4.595280e-07 1.514185e-05| 0:0:00| chol 1 1
6|1.000|1.000|9.1e-12|7.4e-05|2.1e-04| 7.745935e-09 8.345387e-06| 0:0:00| chol 1 1
7|1.000|0.907|5.7e-12|3.2e-06|1.9e-06| 2.420707e-08 2.968077e-06| 0:0:00| chol 1 1
8|0.990|0.988|1.1e-11|3.5e-08|1.3e-08| 2.821459e-10 3.459447e-08| 0:0:00| chol 1 1
9|0.473|0.945|6.0e-12|1.8e-09|2.3e-10| 1.489021e-10 1.919896e-09| 0:0:00|
 stop: max(relative gap, infeasibilities) < 1.49e-08
number of iterations
primal objective value = 1.48902080e-10
      objective value = 1.91989619e-09
gap := trace(XZ)
                   = 2.29e-10
                    = 2.29e-10
relative gap
actual relative gap = -1.77e-09
rel. primal infeas
                    = 6.03e-12
rel. dual
                    = 1.78e-09
           infeas
norm(X), norm(y), norm(Z) = 7.8e-01, 1.1e-10, 1.0e+00
```

norm(A), norm(b), norm(C) = 2.2e+02, 1.9e+01, 2.0e+00

```
Total CPU time (secs) = 0.18
CPU time per iteration = 0.02
termination code
DIMACS: 1.6e-11 0.0e+00 1.8e-09 0.0e+00 -1.8e-09 2.3e-10
______
Status: Solved
Optimal value (cvx_optval): +1.48902e-10
Testing Error: 23.058394
B.1.2 Medium-scale dataset
   Calling SDPT3 4.0: 5501 variables, 500 equality constraints
num. of constraints = 500
\dim. of socp var = 501,
                          num. of socp blk = 1
dim. of free var = 5000 *** convert ublk to lblk
*************************
  SDPT3: Infeasible path-following algorithms
*************************
 version predcorr gam expon scale_data
          1
                0.000
                        1
it pstep dstep pinfeas dinfeas gap
                                    prim-obj
                                                 dual-obj
                                                            cputime
0|0.000|0.000|9.8e-01|5.2e+03|1.0e+08| 1.077392e+02 0.000000e+00| 0:0:05| chol 1
 1|1.000|0.989|2.0e-11|5.7e+01|2.3e+05| 9.823617e+01 6.299850e-05| 0:0:10| chol 1
 2|1.000|0.992|1.6e-11|6.1e-01|4.9e+02| 3.633210e+00 3.969663e-05| 0:0:15| chol 1
3|0.989|1.000|7.9e-11|1.5e-02|2.3e+00|3.834024e-022.056260e-05|0:0:20|chol 1
 4|0.989|1.000|8.3e-11|1.5e-03|3.8e-02| 4.202595e-04 1.294517e-05| 0:0:25| chol 1
5|0.989|1.000|3.4e-11|9.2e-05|4.4e-04| 4.617135e-06 7.465648e-06| 0:0:30| chol 1 1
6|0.982|0.858|3.1e-11|3.5e-06|1.6e-06| 9.312820e-08 3.340703e-06| 0:0:34| chol 1 1
7|0.988|0.988|1.2e-10|4.0e-08|4.5e-09| 1.122080e-09 4.025133e-08| 0:0:39| chol 1 1
8|0.472|0.945|6.3e-11|2.2e-09|6.1e-10| 5.921772e-10 2.233900e-09| 0:0:44|
 stop: max(relative gap, infeasibilities) < 1.49e-08
number of iterations
                    = 8
primal objective value = 5.92177202e-10
      objective value = 2.23390030e-09
dual
                   = 6.08e-10
gap := trace(XZ)
relative gap
                     = 6.08e-10
actual relative gap = -1.64e-09
rel. primal infeas
                    = 6.30e-11
                     = 2.23e-09
rel. dual
           infeas
norm(X), norm(y), norm(Z) = 7.2e-01, 4.6e-11, 1.0e+00
norm(A), norm(b), norm(C) = 2.2e+03, 5.2e+01, 2.0e+00
Total CPU time (secs) = 43.95
CPU time per iteration = 5.49
termination code
DIMACS: 3.4e-10 0.0e+00 2.2e-09 0.0e+00 -1.6e-09 6.1e-10
```

Status: Solved

Optimal value (cvx_optval): +5.92177e-10

Testing Error: 19.862394

B.2 Algorithm 2: Optimization with LASSO

B.2.1 Small-scale dataset

```
Calling SDPT3 4.0: 1051 variables, 50 equality constraints
num. of constraints = 50
 dim. of socp
             var = 1051,
                             num. of socp blk = 501
*************************
   SDPT3: Infeasible path-following algorithms
*************************
 version predcorr gam expon scale_data
   NT
           1
                  0.000
                         1
                                  0
                                                    dual-obj
it pstep dstep pinfeas dinfeas gap
                                       prim-obj
                                                                cputime
 0|0.000|0.000|9.5e-01|2.3e+01|1.8e+04|7.142482e+020.000000e+00|0:0:00| chol 1
 1|1.000|1.000|2.7e-08|9.6e-02|7.2e+02| 6.546504e+02 9.246345e-01| 0:0:00| chol
 2|0.909|1.000|1.5e-07|9.6e-03|6.4e+01| 6.512372e+01
                                                   1.712575e+00| 0:0:00| chol 1
 3|0.934|0.434|4.6e-08|5.8e-03|1.8e+01| 2.184844e+01
                                                   3.858190e+00| 0:0:00| chol 1
 4|0.617|0.405|2.3e-08|3.5e-03|9.6e+00| 1.417260e+01
                                                   4.579879e+00| 0:0:00| chol
 5|0.536|0.728|1.1e-08|9.6e-04|5.0e+00| 9.606566e+00
                                                   4.625332e+00| 0:0:00| chol
                                                   4.988527e+00| 0:0:00| chol
 6|0.960|0.903|4.7e-10|9.4e-05|3.7e-01| 5.359583e+00
                                                                             1
 7|0.845|0.966|2.0e-10|3.3e-06|9.5e-02| 5.109067e+00
                                                    5.014546e+00| 0:0:00| chol
                                                                              1
                                                   5.019026e+00| 0:0:00| chol
 8|0.780|0.478|7.7e-09|1.7e-06|3.6e-02| 5.054972e+00
                                                                             1
 9|0.813|0.679|3.0e-09|5.6e-07|1.3e-02| 5.034443e+00
                                                   5.021832e+00| 0:0:00| chol
                                                                              2
10|0.736|0.767|8.0e-10|1.3e-07|5.2e-03| 5.027999e+00
                                                   5.022809e+00| 0:0:00| chol
                                                   5.023155e+00| 0:0:00| chol
11|0.749|0.738|2.0e-10|3.4e-08|2.0e-03| 5.025198e+00
                                                                              2
12|0.584|0.623|8.4e-11|1.3e-08|1.0e-03| 5.024263e+00
                                                    5.023252e+00| 0:0:00| chol 2 2
                                                   5.023305e+00| 0:0:00| chol
13|0.806|0.752|1.9e-11|3.2e-09|3.0e-04| 5.023601e+00
14|1.000|0.805|3.3e-11|6.3e-10|4.9e-05| 5.023373e+00
                                                   5.023324e+00| 0:0:00| chol 2
                                                                                 2
15|0.743|0.923|1.4e-11|5.4e-11|1.4e-05| 5.023343e+00
                                                    5.023329e+00| 0:0:00| chol 2
16|0.811|0.924|6.5e-11|6.9e-12|4.3e-06| 5.023334e+00
                                                    5.023330e+00| 0:0:00| chol
17|0.627|0.727|1.6e-09|6.2e-12|2.3e-06| 5.023332e+00
                                                    5.023330e+00| 0:0:00| chol 2 2
                                                    5.023330e+00| 0:0:00| chol
18|0.601|1.000|6.6e-10|6.4e-12|1.2e-06| 5.023331e+00
19|0.605|1.000|2.7e-10|9.6e-12|6.7e-07| 5.023331e+00
                                                    5.023330e+00| 0:0:00| chol 2 2
20|0.588|1.000|1.2e-10|1.4e-11|3.7e-07| 5.023330e+00
                                                    5.023330e+00| 0:0:00| chol 2 2
21|0.590|1.000|5.6e-11|2.2e-11|2.0e-07| 5.023330e+00
                                                    5.023330e+00| 0:0:00| chol
22|0.594|1.000|3.1e-11|1.1e-11|1.1e-07| 5.023330e+00
                                                    5.023330e+00| 0:0:00|
  stop: max(relative gap, infeasibilities) < 1.49e-08
 number of iterations
 primal objective value = 5.02332996e+00
       objective value = 5.02332985e+00
 gap := trace(XZ)
                      = 1.12e-07
 relative gap
                      = 1.01e-08
 actual relative gap
                     = 1.01e-08
 rel. primal infeas
                      = 3.09e-11
 rel. dual
                      = 1.12e-11
            infeas
 norm(X), norm(y), norm(Z) = 3.2e+00, 5.8e-01, 2.5e+01
```

norm(A), norm(b), norm(C) = 1.6e+02, 1.9e+01, 2.3e+01

1

```
Total CPU time (secs) = 0.38
CPU time per iteration = 0.02
termination code
DIMACS: 8.2e-11 0.0e+00 1.3e-10 0.0e+00 1.0e-08 1.0e-08
______
Status: Solved
Optimal value (cvx_optval): +5.02333
Testing Error: 0.144338
Support: 43
B.2.2
       Medium-scale dataset
Calling SDPT3 4.0: 10501 variables, 500 equality constraints
num. of constraints = 500
dim. of socp var = 10501,
                              num. of socp blk = 5001
*************************
  SDPT3: Infeasible path-following algorithms
*************************
 version predcorr gam expon scale_data
                  0.000
           1
                         1
it pstep dstep pinfeas dinfeas
                              gap
                                      prim-obj
                                                    dual-obj
                                                               cputime
0|0.000|0.000|9.8e-01|7.2e+01|5.2e+05| 7.093451e+03
                                                   0.000000e+00| 0:0:02| chol
                                                                              1
 1|1.000|0.996|1.0e-08|3.7e-01|9.5e+03| 6.888375e+03
                                                   7.852670e-01| 0:0:05| chol
                                                                              1
 2|0.999|1.000|2.0e-08|9.9e-03|5.1e+02| 5.111069e+02
                                                   1.218548e+00| 0:0:10| chol 1
3|0.908|0.410|5.7e-08|6.2e-03|1.5e+02| 1.538825e+02
                                                   4.537091e+00| 0:0:15| chol
 4|0.714|1.000|1.5e-08|9.9e-05|5.9e+01| 6.176855e+01
                                                   2.879723e+00| 0:0:20| chol
5|0.986|0.908|2.2e-10|1.8e-05|1.1e+01| 1.607598e+01
                                                   4.876689e+00| 0:0:25| chol
                                                                              1
6|0.912|0.981|4.0e-11|1.3e-06|9.8e-01| 5.994558e+00
                                                   5.010259e+00| 0:0:30| chol
                                                                             1
                                                   5.059905e+00| 0:0:35| chol
7|0.987|0.525|6.2e-09|6.7e-07|2.5e-01| 5.312589e+00
                                                                             1
8|0.702|0.572|2.4e-09|2.9e-07|1.2e-01| 5.215894e+00
                                                   5.095218e+00| 0:0:39| chol
                                                                             1
                                                                                 1
 9|0.738|0.553|2.0e-10|1.3e-07|5.1e-02| 5.156974e+00
                                                   5.105812e+00| 0:0:44| chol
                                                   5.110765e+00| 0:0:49| chol
10|0.694|0.597|6.3e-11|5.3e-08|2.2e-02| 5.133150e+00
                                                                              1
11|0.644|0.670|4.8e-11|1.8e-08|1.1e-02| 5.123456e+00
                                                   5.112953e+00| 0:0:54| chol
                                                                              2
                                                   5.113733e+00| 0:0:58| chol
12|0.687|0.655|2.0e-11|6.1e-09|4.7e-03| 5.118430e+00
                                                                              2
                                                                                2
13|0.704|0.670|2.3e-11|2.0e-09|2.0e-03| 5.116103e+00
                                                   5.114053e+00| 0:1:03| chol
                                                                             2
                                                                                2
14|0.663|0.725|3.1e-11|5.6e-10|1.0e-03| 5.115217e+00
                                                   5.114186e+00| 0:1:08| chol
15|0.779|0.678|9.0e-11|1.9e-10|3.8e-04| 5.114611e+00
                                                   5.114232e+00| 0:1:13| chol
16|0.868|0.752|2.2e-10|5.5e-11|1.1e-04| 5.114364e+00
                                                   5.114253e+00| 0:1:18| chol
17|0.795|0.810|4.3e-10|2.4e-11|3.7e-05| 5.114298e+00
                                                   5.114261e+00| 0:1:23| chol
                                                                              2
18|0.607|0.787|3.5e-10|2.6e-11|2.0e-05| 5.114282e+00
                                                   5.114263e+00| 0:1:28| chol 2
                                                                                3
19|0.595|1.000|1.8e-10|3.1e-11|1.0e-05| 5.114274e+00
                                                   5.114264e+00| 0:1:33| chol
                                                                             3
                                                   5.114264e+00| 0:1:38| chol
20|0.597|1.000|2.0e-10|3.6e-11|5.7e-06| 5.114269e+00
                                                                              3
                                                                                 3
21|0.601|1.000|1.9e-10|4.1e-11|3.1e-06| 5.114267e+00
                                                   5.114264e+00| 0:1:43| chol
                                                                                3
                                                   5.114264e+00| 0:1:47| chol
22|0.605|1.000|1.5e-10|3.9e-11|1.7e-06| 5.114266e+00
                                                                              2
                                                                                3
23|0.607|1.000|1.2e-10|3.1e-11|9.0e-07| 5.114265e+00
                                                                             3
                                                                                3
                                                   5.114264e+00| 0:1:52| chol
24|0.610|1.000|1.1e-10|2.4e-11|4.8e-07| 5.114264e+00
                                                   5.114264e+00| 0:1:57| chol 3 3
25|0.612|1.000|9.7e-11|2.3e-11|2.6e-07| 5.114264e+00
                                                   5.114264e+00| 0:2:02| chol 2
26|0.613|1.000|8.6e-11|1.9e-11|1.4e-07| 5.114264e+00
                                                   5.114264e+00| 0:2:07|
 stop: max(relative gap, infeasibilities) < 1.49e-08
```

```
number of iterations = 26
primal objective value = 5.11426403e+00
     objective value = 5.11426389e+00
gap := trace(XZ)
                     = 1.38e-07
relative gap
                     = 1.23e-08
actual relative gap
                   = 1.23e-08
rel. primal infeas = 8.56e-11
rel. dual
           infeas
                     = 1.95e-11
norm(X), norm(y), norm(Z) = 3.2e+00, 6.2e-01, 8.1e+01
norm(A), norm(b), norm(C) = 1.6e+03, 5.2e+01, 7.2e+01
Total CPU time (secs) = 126.66
CPU time per iteration = 4.87
termination code
DIMACS: 4.6e-10 0.0e+00 7.0e-10 0.0e+00 1.2e-08 1.2e-08
```

Status: Solved

Optimal value (cvx_optval): +5.11426

Testing Error: 0.078289

Support: 342