

Muon Wheel/Disk Alignment Constants from HIP

Jim Pivarski

Alexei Safonov

Károly Banicz

Sergey Senkin

Texas A&M University

US-CMS

12 November, 2008

Outline

- Reminder of method
- Alignment results

Reminder of method

- ▶ Treat 5 barrel wheels and 6 out of 8 endcap disks as 6-dof rigid bodies
- Select CRAFT global cosmic rays passing through tracker and wheel/disk
- ► Fit tracker part, propagate to wheel/disk, align wheel/disk
 - ► ME±4/1 and inner rings (ME±1/1, 2/1, 3/1) are nearly inaccessible (dozens of poor-quality tracks)
 - track-fitting and alignment step are independent, they do not require iteration to resolve any correlation between them
- Every track residual can be converted into 6-dof alignment corrections

Selecting tracks by p_T

- CRAFT offers new ability to reject low-momentum tracks
- ▶ Observe each alignment parameter as a function of curvature (q/p_T)
- Cleanest measurement is above 20 GeV

Jim Pivarski 3/12

- ▶ multiple scattering is symmetric (independent of *q*)
- $ightharpoonup \vec{B}$ errors are antisymmetric with q
- ▶ both depend on track angles and detailed track distribution
- ▶ Taylor-expand around $q/p_T = 0$ up to second order
- ▶ Constant term (p_0) is the misalignment: alignment minimizes p_0
- ▶ Linear term (p_1) is \vec{B} error, sensitive to ± 0.0007 -0.02 T (dep. on η)

- ▶ Barrel and endcap are treated equally
- ► Hits in the same chamber/superlayer on the same track are combined, so that profile-plot error bars are meaningful: fit-uncertainty in p₀ is the alignment uncertainty
- ▶ Wheels internally maintain the relative alignment of chambers
- Disks are aligned with tracks passing through outer ring only (allows them to maintain inner ring correction from hardware measurement)
- ▶ Quality cuts: tracker $\chi^2/N_{\rm dof} <$ 20, $N_{\rm tracker\ hits} \ge 10$, at least 500 tracks per alignable
- $\blacktriangleright \ \ \text{Iterate to verify residual} \, \to \, 0$

All alignment results (1/6)

Jim Pivarski 6/12

- ► Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses last night's final tracker alignment (HIP with survey constraints)
- ► Aligned CMS is *compressed* in *z*

All alignment results (2/6)

Jim Pivarski

7/12

- ▶ Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses last night's final tracker alignment (HIP with survey constraints)
- $lackbox{}\phi_{\it z}$ is the rotation relative to tracker: essential for charge ratio

All alignment results (3/6)

- ► Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses last night's final tracker alignment (HIP with survey constraints)
- x (horizontal) corrections

All alignment results (4/6)

- ► Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses last night's final tracker alignment (HIP with survey constraints)
- $ightharpoonup \phi_{
 m x}$ rotation around the x axis, essentially a z difference between top and bottom

All alignment results (5/6)

Jim Pivarski

10/12

- ▶ Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses last night's final tracker alignment (HIP with survey constraints)
- ▶ *y* is poorly determined by vertical cosmic rays, we weighted the profile plots to prefer tracks with good measurements

All alignment results (6/6)

- ► Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses last night's final tracker alignment (HIP with survey constraints)
- lacktriangle same for ϕ_y (best determined by non-vertical tracks), also weighted

- ▶ Ideal wheel/disk positions (no correction) are known to be wrong by millimeters or milliradians; these corrections are at least a step in the right direction
- ▶ $p \to \infty$ fit emphasizes the highest p_T tracks and removes sensitivity to multiple scattering and \vec{B} field errors
- \triangleright Consistent run-by-run (different \vec{B} field ramp-up periods)
- ▶ There seems to be a good correlation between the two algorithms, HIP and MillePede (we should overlay them, once new tracker alignment is incorporated)
- \triangleright ϕ_z is especially important for charge ratio; getting these constants in the first CRAFT re-processing (with refinements later) will help this analysis to move forward before the second re-processing