Kuhn-Tucker Theorem

쿠-터커 정리

1 요약

부등식이 제약조건인 최적화문제의 1계조건(First Order Condition)에 대한 정리

2 쿤-터커 정리

다음 최적화 문제를 생각해보자.

Max f(x) subject to $g(x) \ge a$

위 문제는 다음과 같이 쓸 수 있다.

Max f(x) subject to (1) g(x) = b, (2) $b \ge a$ with b as a variable

FOC는 다음과 같다.

- (1) $L(x, \lambda, b) \equiv f(x) \lambda(g(x) b)$
- (2) $\Delta L = \Delta f(x) \lambda \Delta g(x) = 0$
- (3) $\frac{\partial L}{\partial \lambda} = g(x) b = 0$
- $(4) \ \frac{\partial \lambda}{\partial b} = \lambda \le 0$
- $(5) (a b)\lambda = 0$

3 FOC(5)의 의미

- (1) $(a-b)\lambda = 0$; $\Rightarrow a = b$ 또는 $\lambda = 0$
- (2) a = b; ⇒제약식의 경계점에서 극한을 갖는다(the constraint is binding).
- (3) $\lambda = 0$; ⇒제약식이 의미가 없다(the constraint is non-binding).

In sum

부등 제약식을 가진 최적화 문제의 경우

(1)제약식이 구속적인 경우와 (2)그렇지 않은 경우로 나누어 문제를 풀어야 한다.

 $\min f(x) = x^2 + 3$ subject to $g(x) = x \ge 2$

풀이:

라그랑지안; $L(x, \lambda, b) = x^2 + 3 - \lambda(x - 2)$

- (1) $\frac{\partial L}{\partial x} = 2x \lambda = 0$ (2) $\frac{\partial L}{\partial \lambda} = (x 2) = 0$ (3) $\frac{\partial L}{\partial b} = \lambda \le 0$

구속적인 경우; If $a = b \Rightarrow x^* = 2$ and $f(x^*) = 7$ 비구속적인 경우; If $\lambda = 0$; $x^* = 0$ and $f(x^*) = 7$; but 제약조건 불만족 따라서 문제의 답은 $x^* = 2$ and $f(x^*) = 7$

참고자료

[1] Ingersoll, 1987, Theory of Financial Decision Making, Rowman & Littlefield