

Modelling of electrokinetic flow using the lattice-Boltzmann method

Master's thesis presentation

Andreas Bülling

 ${\sf Chalmers\ University\ of\ Technology}$

December 20, 2012

Outline

Outline

Background

Electrokinetics

Basic concepts

Modelling approach

Some electrokinetic phenomena

Outline

Background

Electrokinetics

Basic concepts

 $Modelling\ approach$

Some electrokinetic phenomena

The lattice-Boltzmann method

Introduction

Basic idea

Boundary conditions

Outline

Background

Electrokinetics

Basic concepts

Modelling approach

Some electrokinetic phenomena

The lattice-Boltzmann method

Introduction

Basic idea

Boundary conditions

Some results

Potential and charge distribution

Electroviscous effect

Flow through square array

Outline

Background

Electrokinetics

Basic concepts

Modelling approach

Some electrokinetic phenomena

The lattice-Boltzmann method

Introduction

Basic idea

Boundary conditions

Some results

Potential and charge distribution

Electroviscous effect

Flow through square array

Conclusions

Background

Background

Electrokinetics

Basic concepts

Modelling approac

Some electrokinetic phenomena

The lattice-Boltzmann method

Introduction

Basic idea

Boundary conditions

Some results

Potential and charge distribution

Electroviscous effect

Flow through square array

Conclusions

Background

• Demand from both industry and academy on accurate modelling of electrokinetic systems.

- Demand from both industry and academy on accurate modelling of electrokinetic systems.
- Example of applications: drugs, biological chips, fuel cells...

- Demand from both industry and academy on accurate modelling of electrokinetic systems.
- Example of applications: drugs, biological chips, fuel cells...
- A lattice-Boltzmann code is developed at Chalmers to deal with transport through complicated structures.

- Demand from both industry and academy on accurate modelling of electrokinetic systems.
- Example of applications: drugs, biological chips, fuel cells...
- A lattice-Boltzmann code is developed at Chalmers to deal with transport through complicated structures.
- This work aims to investigate how electric effects may be integrated.

Electrokinetics

Background

Electrokinetics

Basic concepts

Modelling approach

Some electrokinetic phenomena

The lattice-Boltzmann method

Introduction

Basic idea

Boundary conditions

Some results

Potential and charge distribution

Electroviscous effect

Flow through square array

Conclusions

Sample system - a 2D channel

Example of a "simple" electrokinetic system:

The solution contains charges, the walls are charged, external electric/force fields may be present...

Electrical double layers (EDLs)

Ionic solution in contact with a charged object \implies EDL

Involved equations

• The electric potential from the charge presence. Poisson's equation for electrostatics:

$$\nabla^2 \psi = -\frac{\rho_e}{\epsilon_r \epsilon_0} \tag{1}$$

Involved equations

• The electric potential from the charge presence. Poisson's equation for electrostatics:

$$\nabla^2 \psi = -\frac{\rho_e}{\epsilon_r \epsilon_0} \tag{1}$$

 The transport of charges due to diffusion, advection and the presence of electric fields. The Nernst-Planck equation:

$$\frac{\partial c}{\partial t} = \nabla \cdot \left[D\nabla c - c\mathbf{u} + \frac{zq_e D}{k_B T} c\nabla \psi \right]$$
 (2)

Involved equations

• The electric potential from the charge presence. Poisson's equation for electrostatics:

$$\nabla^2 \psi = -\frac{\rho_e}{\epsilon_r \epsilon_0} \tag{1}$$

 The transport of charges due to diffusion, advection and the presence of electric fields. The Nernst-Planck equation:

$$\frac{\partial c}{\partial t} = \nabla \cdot \left[D\nabla c - c\mathbf{u} + \frac{zq_e D}{k_B T} c\nabla \psi \right]$$
 (2)

The flow field, affected by electrokinetic effects. (Incompressible)
 Navier-Stokes equations:

$$\nabla \cdot \mathbf{u} = 0 \tag{3}$$

and

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla \mathbf{P} + \mu \nabla^2 \mathbf{u} + \mathbf{F}$$
 (4)

Figure: Visualisation of the coupling between the three equations present in the model. Poisson's equation (PE), The set of Nernst-Planck equations $(NP_1 \dots NP_n)$ for the different ion species and the Navier-Stokes equations (NS). The dependencies have also be marked with arrows indicating what quantities for a certain equation that are needed from an other.

The electroviscous effect

$$\mathbf{J} = -\sigma \nabla \phi \tag{5}$$

$$\mathbf{F} = -\rho_e \nabla \phi \tag{6}$$

Streaming potential

Electroosmosis

Boundary conditions at (charged) walls, Γ

ullet Poisson's equation: fixed surface charge, σ

$$\nabla \psi(\mathbf{x}) \cdot \mathbf{n} = -\frac{\sigma(\mathbf{x})}{\epsilon_0 \epsilon_r} , \quad \mathbf{x} \in \Gamma$$
 (8)

Boundary conditions at (charged) walls, Γ

 \bullet Poisson's equation: fixed surface charge, σ

$$\nabla \psi(\mathbf{x}) \cdot \mathbf{n} = -\frac{\sigma(\mathbf{x})}{\epsilon_0 \epsilon_r} , \quad \mathbf{x} \in \Gamma$$
 (8)

Nernst-Planck: zero flux through wall

$$\mathbf{J}(\mathbf{x}) \cdot \mathbf{n} = 0 \; , \; \; \mathbf{x} \in \Gamma$$

Boundary conditions at (charged) walls, Γ

ullet Poisson's equation: fixed surface charge, σ

$$\nabla \psi(\mathbf{x}) \cdot \mathbf{n} = -\frac{\sigma(\mathbf{x})}{\epsilon_0 \epsilon_r} , \quad \mathbf{x} \in \Gamma$$
 (8)

Nernst-Planck: zero flux through wall

$$\mathbf{J}(\mathbf{x}) \cdot \mathbf{n} = 0 \; , \; \; \mathbf{x} \in \Gamma$$

Navier-Stokes: no-slip

$$\mathbf{u}(\mathbf{x}) = 0 \; , \; \; \mathbf{x} \in \Gamma \tag{10}$$

The lattice-Boltzmann method

Background Electrokinetic

Modelling approach

Some electrokinetic phenomena

The lattice-Boltzmann method

Introduction

Basic idea

Boundary conditions

Some results

Potential and charge distribution

Electroviscous effect

Flow through square array

Conclusions

Historical overview

• Lattice gas automata (LGA) methods 70's, 80's

Historical overview

Lattice gas automata (LGA) methods 70's, 80's

Basic idea

 \bullet Discretisation of phase space \implies the lattice, example D2Q9:

Basic idea

ullet Discretisation of phase space \Longrightarrow the lattice, example D2Q9:

• The distribution function $f_i(\mathbf{x}, t)$ - probability of finding a particle at \mathbf{x} , t with velocity \mathbf{c}_i .

Basic idea

• Evolution of f_i , the lattice-Boltzmann equation:

$$f_i(\mathbf{x} + \mathbf{c}_i \delta_t, t + \delta_t) - f_i(\mathbf{x}, t) = \Omega_{ij}(\mathbf{x}, t)$$
 (11)

Basic idea

• Evolution of f_i , the lattice-Boltzmann equation:

$$f_i(\mathbf{x} + \mathbf{c}_i \delta_t, t + \delta_t) - f_i(\mathbf{x}, t) = \Omega_{ij}(\mathbf{x}, t)$$
 (11)

• A popular choice is the BGK collision operator:

$$\Omega_{ij} = \Omega_i = -\omega \left[f_i(\mathbf{x}, t) - f_i^{(eq)}(\mathbf{x}, t) \right]$$
(12)

Basic idea

In the case with Navier-Stokes we have:

$$f_i^{(eq)} = w_i \rho \left[1 + \frac{\mathbf{c}_i \cdot \mathbf{u}}{c_s^2} + \frac{(\mathbf{c}_i \cdot \mathbf{u})^2}{2c_s^4} - \frac{\mathbf{u}^2}{2c_s^2} \right]$$
(13)

The macroscopic quantities ρ and ${\bf u}$ are obtained from f_i through:

$$\rho = \sum_{i} f_{i} \tag{14}$$

and

$$\rho \mathbf{u} = \sum_{i} f_i \mathbf{c}_i. \tag{15}$$

Coupled scheme

Boundary conditions

• Bounce back $(\mathbf{u} = 0)$

- Bounce back $(\mathbf{u} = 0)$
- Mirror reflection $({\bf J}_{ion}\cdot{\bf n}=0$ and $\nabla\psi\cdot{\bf n}=-\sigma_s/\epsilon_0\epsilon_r)$

Some results

Background
Electrokinetics
Basic concepts
Modelling approach
Some electrokinetic phenomen
The lattice-Boltzmann method
Introduction
Basic idea

Some results

Potential and charge distribution Electroviscous effect Flow through square array

Conclusions

Charge distribution in 2D channel

Thin channel, no flow, steady state:

Figure: Computed positive (solid) and negative (dashed) charge distribution across a channel of width $d=10\mu\text{m}$. The solution in the channel is a KCl solution defined by parameters in table $\ref{eq:constraint}$. The channel walls are negatively charged.

Electroviscous effect in 2D channel

Flow driven by a pressure gradient, walls of channel charged.

Figure: Computed velocity profiles across a 2D channel of width $d=1\mu\mathrm{m}$. The flow is driven by a pressure gradient and the flow is slowed down due to the electroviscouos effect, this effects dependence on the surface charge σ_s is here illustrated. The solution in the channel is a KCl solution defined by parameters in table $\ref{thm:equiv}$. In this simulation, $\sigma_0=0.89\mu\mathrm{C/m^2}$, $\partial_x P=1~\mathrm{kPa/m}$ and $u_0=10~\mathrm{mm/s}$.

Comparison with "traditional" approach

Figure: Comparison between velocity profiles computed using a mean current (dotted) and by using the actual local current (dashed) for the streaming potential. The solution in the channel is a KCl solution defined by parameters in table $\ref{locality}$. In this simulation, $\sigma_0=0.89\mu\text{C/m}^2$, $\partial_xP=1$ kPa/m and $u_0=10$ mm/s.

Flow through square array

Flow through square array

(a) Uncharged

(b) Charged

Flow through square array

Figure: Velocity profiles across the square array at x=d/2 in the cell. The sides of the squares are varied between 0.3d, 0.5d and 0.7d where $d=10\mu\mathrm{m}$ is the length of the cell. The flow is driven by a pressure gradient and the uncharged (dashed) and charged (solid) squares are compared. In this simulation, $\sigma_s=1.78\mu\mathrm{C/m}^2$ (solid), $\partial_x P=0.5$ kPa/m and $u_0=1$ mm/s.

Conclusions

Background Electrokinetic

Basic concepts

Modelling approach

Some electrokinetic phenomena

The lattice-Boltzmann method

Introduction

Basic idea

Boundary conditions

Some results

Potential and charge distribution

Electroviscous effect

Flow through square array

Conclusions

CHALMERS

Main conclusions

 The LBM is a computational alternative in the modelling of electrokinetics.

Main conclusions

- The LBM is a computational alternative in the modelling of electrokinetics.
- The traditional way of computing the streaming potential does not give accurate results in thin channels.

Main conclusions

- The LBM is a computational alternative in the modelling of electrokinetics.
- The traditional way of computing the streaming potential does not give accurate results in thin channels.
- The electrovicous effect decreases the permeability of charged structures.

Thanks for listening! Questions?