(9) BUNDESREPUBLIK
DEUTSCHLAND

Offenlegungsschrift

DE 4313284 A1

⑤ Int. Cl.⁵:

H 01 J 37/32

C 23 C 14/50

// H01L 21/205,31/18

□

284 A 1

DEUTSCHES

PATENTAMT

(21) Aktenzeichen: P 43 13 284.7 (22) Anmeldetag: 23. 4. 93

3 Offenlegungstag: 27. 10. 94

① Anmelder:

Leybold AG, 63450 Hanau, DE

2 Erfinder:

Bräuer, Günter, Dr., 6463 Freigericht, DE; Moses, Gerhard, 6450 Hanau, DE; Teves, Heinz, Dr., 6466 Gründau, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE 33 10 797 A1 DE 33 09 079 A1 DE 33 00 097 A1 US 49 51 602 US 45 93 644

Patents Abstracts of Japan: 62-192580 A. C-475, Feb.12,1988, Vol.12,No.47; 62, 202078 A. C. 477, Feb. 10, 1088, Vol.12 No. 504

62-202078 A. C-477, Feb.19,1988, Vol.12, No.56;

(54) Spaltschleuse für das Ein- oder Ausbringen von Substraten von der einen in eine benachbarte Behandlungskammer

Bei einer Spaltschleuse für das Ein- oder Ausbringen von Substraten von der einen in eine benachbarte Behandlungskammer (3, 4), insbesondere für eine Durchlauf-Vakuumbeschichtungsanlage, mit einer in der die Räume voneinander trennenden Wand (5) vorgesehenen spaltförmigen Durchtrittsöffnung (14) für die Substrate (15, 15', ...) ist die Trennwand (5) im Bereich der die spaltförmige Durchtrittsöffnung (14) begrenzenden Wandpartien (16, 17) mit mindestens zwei einander diametral gegenüberliegenden und zueinander parallelen, sich in einer zur Ebene der Trennwand (5) parallelen Ebene erstreckenden Nuten, Ausnehmungen oder Kanälen (18, 19) versehen, die mit Anschlüssen (20, 21) korrespondieren, über die ein Sperrgas in diese einströmt, das von dort aus den ganzen durch die Durchtrittsöffnung (14) begrenzten Raum füllt und von diesem aus weiter in die benachbarten, an Vakuumpumpen (22, 23) angeschlossenen Kammern (3, 4) strömt.

Beschreibung

Die Erfindung betrifft eine Spaltschleuse für das Einoder Ausbringen von Substraten von der einen in eine benachbarte Behandlungskammer oder vom atmosphärischen Raum in eine mit Prozeßgas gefüllten Kammer und umgekehrt, insbesondere für eine Durchlauf-Vakuumbeschichtungsanlage, mit einer in der die Räume voneinander trennenden Wand vorgesehenen spaltförmigen Durchtrittsöffnung für die Substrate.

Bekannt ist ein Verfahren zum Beschichten von Bändern in einer Vakuumkammer unter Verwendung eines endlosen Trägerbandes (DOS 27 47 061), welches das zu beschichtende Band auf dem Wege von einer Abwickelwalze zu einer Aufwickelwalze mindestens auf dem We- 15 technischen Trennung der Beschichtungsstationen bege durch eine Schleusenvorrichtung der Vakuumkammer begleitet, wobei das zu beschichtende Band sowohl am einlaufenden als auch am auslaufenden Trumm des Trägerbandes schlupffrei anliegend gehalten wird, wobei das zu beschichtende Band innerhalb der Vakuum- 20 kammer über eine begrenzte Weglänge vom Trägerband abgehoben und auf der dem Trägerband zugekehrten Seite beschichtet wird. Die Schleusenvorrichtung besteht in diesem Fall aus einer Vielzahl von parallel zueinander angeordneten Schlitzblenden, wobei jede 25 der einzelnen von den Schlitzblenden getrennten Kammern jeweils mit dem Saugstutzen einer Vakuumpumpe verbunden ist und wobei die Auslegung der einzelnen Pumpensätze so getroffen ist, daß die Drücke in der Reihe vom Zulauf des Substrats in die erste Schleusen- 30 kammer zur Prozeßkammer hin abnehmen.

Bekannt ist weiterhin (EP 0 106 521) ein Verfahren für die Niederschlagung von Halbleitermaterial durch eine Glimmentladung innerhalb einer Niederschlagsvorrichtung mit mindestens einer ersten und einer zweiten Niederschlagskammer, die über einen Gasdurchlaß miteinander verbunden sind, um Spülgas von einem Spülgaskanal zu erhalten, wobei jede der Kammern eine Kathode und einen Evakuierungskanal enthält, wobei in dem Verfahren ein Substrat durch den Gasdurch- 40 laß von einer der Niederschlagskammern zu der anderen Niederschlagskammer bewegt wird, Prozeßgase in an den Kathoden anliegende Plasmabereiche eingelassen werden, die Gase derart angeregt werden, daß sie in den Plasmabereichen in die Niederschlagsart desoziie- 45 ren, die als Schichten auf eine Oberfläche des Substrats niedergeschlagen werden, wobei das in die erste Kammer eingeführte Prozeßgas Dotierungsprozeßgas und das in die zweite Kammer eingeführte Prozeßgas Eigenleitungsprozeßgas aufweist, wobei nicht verbrauchtes 50 Prozeßgas von den Plasmabereichen durch die Evakuierungsdurchlässe abgezogen werden und Spülgas an den Gasdurchlaß angelegt wird, um eine Kontaminierung der Prozeßgase untereinander in angrenzenden Niederschlagskammern zu verhindern, wobei eine ausreichende Volumendurchflußrate von Spülgas in den an der Seite der zweiten Kammer des Gasdurchlasses anliegenden Spülgaskanal derart gerichtet wird, daß ein im wesentlichen in eine Richtung strömender laminarer Fluß von Spülgas durch den Gasdurchlaß von der zwei- 60 ten Niederschlagskammer zu der ersten Niederschlagskammer über die Oberfläche des Substrats erreicht wird, auf dem eine Schicht von Halbleitermaterial niedergeschlagen worden ist, und um im wesentlichen die Diffusion des Dotierungsprozeßgases von der ersten Kammer zu der zweiten Kammer ein Fluß von Spülgas in die zweite Kammer verhindert wird, so daß das nicht verbrauchte Prozeßgas und die nicht niedergeschlagene

Niederschlagsart in der zweiten Kammer im wesentlichen auf die Nachbarschaft der Kathode und den Evakuierungsdurchlaß begrenzt werden.

Zur Herstellung von Mehrfachschichtsystemen für 5 Datenspeicher, Displays, Solarzellen usw. werden häufig Durchlaufanlagen eingesetzt, in denen die im wesentlichen zweidimensionalen Substrate auf Paletten befestigt sind, die nacheinander verschiedene Beschichtungsstationen passieren. Bei den Beschichtungsprozessen handelt es sich hauptsächlich um nichtreaktive und reaktive Zerstäubungs- und CvD-Prozesse.

Da die einzelnen Verfahren in der Regel genau definierte Prozeßgasatmosphären (Gasart und Partialdruck) erfordern, kommt einer ausreichenden vakuumsondere Bedeutung zu.

Für Anlagen zur Erzeugung von Mehrfachschichtsvstemen eignen sich die oben beschriebenen Vorrichtungen beziehungsweise Verfahren in der Regel nicht, da derartige Vorrichtungen infolge der Vielzahl von hintereinander anzuordnenden Schleusenkammern enorm platzaufwendig sind und darüber hinaus durch die erforderliche Zahl von Pumpensätzen auch sehr kostspielig

Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde eine Spaltschleuse zu schaffen, die die Nachteile der bekannten Schleusen dieses Typs nicht aufweist und die einerseits eine möglichst hohe Durchschleusgeschwindigkeit zuläßt und die andererseits eine gute vakuumtechnische Trennung der Beschichtungsstationen erlaubt.

Erfindungsgemäß wird dies dadurch erreicht, daß die Trennwand im Bereich der beiden langen und zueinander parallelen, die spaltförmige Schleusenöffnung begrenzenden Wandpartien mit mindestens zwei einander diametral gegenüberliegenden und zueinander parallelen sich in einer zur Ebene der Trennwand parallelen Ebene erstreckenden Nuten, Ausnehmungen oder Ausströmkanälen versehen sind, wobei die Nuten, Ausnehmungen oder Ausströmkanäle mit Anschlüssen korrespondieren, über die ein Sperrgas in diese einströmt, das von dort aus den ganzen Spaltraum füllt und von diesem aus weiter in die benachbarten an Vakuumpumpen angeschlossenen Kammern strömt.

Weitere Einzelheiten und Merkmale der Erfindung sind in den anhängenden Patentansprüchen näher beschrieben und gekennzeichnet.

Die Erfindung läßt die verschiedensten Ausführungsmöglichkeiten zu; eine davon ist in der anhängenden Zeichnung schematisch näher dargestellt.

Die Vorrichtung besteht im wesentlichen aus den beiden an Vakuumpumpen 22, 23 angeschlossenen Behandlungskammern 3, 4 die durch die Wand 5 voneinander getrennt sind, den in den Behandlungskammern 3, 4 angeordneten Kathoden 6, 7 bzw. 8, 9 mit den zugehörigen Targets 10, 11 bzw. 12, 13, den durch die Kammern 3, 4 längs eines Schienenwegs 25 bewegbaren Paletten oder Substratträger 24 mit den an ihnen befestigten Substraten 15, 15', ..., den einerseits mit den Sperrgas-Behältern 28, 29 und andererseits mit den Gasanschlüssen 20, 21 verbundenen Druckleitungen 26, 27, den in die Wandpartien 16, 17 eingearbeiteten Nuten oder Kanälen 18. 19 und den die beiden Kammern 3,4 nach beiden Enden zu abschließenden Schleusen 30, 31.

Zur vakuumtechnischen Trennung der beiden Kammern 3, 4 strömt Sperrgas über die Leitungen 26, 27, die Gasanschlüsse 20, 21 und die Nuten 18, 19 in die im wesentlichen von den Wandpartien 16, 17 begrenzte Durchtrittsöffnung 14 ein und von hier aus zwischen den vom Substratträger 24 bzw. den Substraten 15, 15', ... einerseits und den Wandpartien andererseits gebildeten Spalten in die Kammern 3 bzw. 4 aus denen das Sperrgas anschließend von den Pumpen 22, 23 abgesaugt 5 wird, so daß diese fast vollständig mit den Prozeßgasen durchflutet sind die über die Leitungen 32, 33 einlaßbar sind und für den Behandlungsprozeß notwendig sind.

Dadurch, daß das Sperrgas zumindest im Bereich der Durchtrittsöffnung 14 die Paletten 24 und die auf ihnen 10 befestigten Substrate 15, 15', ... vollständig und allseits umspült und auch in den Phasen des Prozesses in denen sich keine Paletten 24 in der Durchtrittsöffnung 14 befinden den von den vier Wandpartien (von denen nur die beiden Partien 16, 17 zeichnerisch dargestellt sind) um- 15 schlossenen Raum vollständig ausfüllt ist gewährleistet, daß keinerlei Prozeßgas aus der einen Kammer 3 in die benachbarte Kammer einsickert bzw. eingespült wird. Voraussetzung dabei ist allerdings, daß das Sperrgas mit einem höheren Druck in die Durchtrittsöffnung 14 ein- 20 strömt, als die Prozeßgase in die Kammern 3 und 4. Schließlich ist klar, daß es sich bei dem Sperrgas um ein Inertgas handeln muß.

Bezugszeichenliste

25 3 Behandlungskammer 4 Behandlungskammer 5 Trennwand 6 Kathode 30 7 Kathode 8 Kathode 9 Kathode 10 Target 11 Target 35 12 Target 13 Target 14 Durchtrittsöffnung 15, 15',... Substrat 16 Wandpartie 17 Wandpartie 18 Kanal, Nut, Ausnehmung 19 Kanal, Nut, Ausnehmung 20 Gasanschluß 21 Gasanschluß 45 22 Vakuumpumpe 23 Vakuumpumpe 24 Substratträger, Palette 25 Schienenweg 26 Druckleitung 50 27 Druckleitung 28 Sperrgasbehälter 29 Sperrgasbehälter 30 Schleuse 31 Schleuse 55 32 Prozeßgasleitung 33 Prozeßgasleitung

Patentansprüche

1. Spaltschleuse für das Ein- oder Ausbringen von Substraten von der einen in eine benachbarte Behandlungskammer (3, 4), oder vom atmosphärischen Raum in eine mit Prozeßgas geflutete Kammer und umgekehrt, insbesondere für eine Durch- 65 lauf-Vakuumbeschichtungsanlage, mit einer in der die Räume voneinander trennenden Wand (5) vorgesehenen spaltförmigen Durchtrittsöffnung (14)

für die Substrate (15, 15', ...), dadurch gekennzeichnet, daß die Trennwand (5) im Bereich der beiden langen und zueinander parallelen, die spaltförmige Durchtrittsöffnung (14) begrenzenden Wandpartien (16, 17) mit mindestens zwei einander diametral gegenüberliegenden und zueinander parallelen, sich in einer zur Ebene der Trennwand (5) parallelen Ebene erstreckenden Nuten, Ausnehmungen oder Kanälen (18, 19) versehen ist die mit Anschlüssen (20, 21) korrespondieren über die ein Sperrgas in diese einströmt das von dort aus den ganzen durch die Durchtrittsöffnung (14) begrenzten Raum füllt und von diesem aus weiter in die benachbarten, an Vakuumpumpen (22, 23) angeschlossenen Kammer (3, 4) strömt.

2. Spaltschleuse nach Anspruch 1, dadurch gekennzeichnet, daß das über die Nuten, Ausnehmungen oder Kanäle (18, 19) in die Durchtrittsöffnung (14) einströmende Sperrgas ein inertes Gas ist und mit einem Druck in die Durchtrittsöffnung (14) eintritt der höher bemessen ist, als die Drücke die die Prozeßgase in den Kammern (3, 4) aufweisen.

Hierzu 1 Seite(n) Zeichnungen

Numme.. Int. Cl.5:

Offenlegungstag:

DE 43 13 284 A1 H 01 J 37/32

