Grandeurs molaires partielles - Potentiel chimique

T1 – Thermochimie – Chapitre 1

I. Mélange

Mélange: ensemble d'espèces chimiques.

Homogène: 1 phase / Hétérogène: plusieurs phases.

Paramètres de composition II.

Paramètre de composition : grandeur intensive permettant de caractériser les proportions des différents constituants d'un mélange homogène.

Fraction molaire	Pression partielle	Fraction molaire	Concentration
$x_i = rac{n_i}{n}$ $y_i = rac{n_i}{n}$ phase gaz condensée	$P_i = y_i P$	$w_i = \frac{m_i}{m}$	$c_i = \frac{n_i}{V}$

III. Grandeurs molaires partielles

$$\overline{X_m = \frac{X}{n}}$$
 pour un corps pur à T, P $\overline{X_l} = \left(\frac{\partial X}{\partial n_l}\right)_{T, P, n_{j \neq l}}$

$$\overline{X_{l}} = \left(\frac{\partial X}{\partial n_{l}}\right)_{T,P,n_{j \neq l}}$$

$$X = \sum n_i \overline{X}_i$$

Remarque : Pour un mélange idéal (GP ou constituants proches), on a \overline{H}_{ν} , \overline{V}_{ν} , \overline{V}_{ν} = X_m

IV. Potentiel chimique

1. Potentiel et énergie de Gibbs

$$\boxed{\mu_i = \overline{G_i}} \qquad \qquad G = \sum n_i \mu_i \qquad \qquad \left(\frac{\partial \frac{G}{T}}{\partial T}\right) = -\frac{H}{T^2} \qquad SdT - VdP + \sum_{\text{Gibbs-Duhem}} n_i \mu_i = 0$$

2. Influence de T et P

$$\begin{array}{lll} \overline{V_l} = \left(\frac{\partial \mu_l}{\partial P}\right)_{T,n_{j \neq i}} & \text{et} & \overline{S_l} = -\left(\frac{\partial \mu_l}{\partial T}\right)_{P,n_{j \neq i}} \\ V_{m,cd} \ll V_{m,gaz} & \overline{S_{l,s}} < \overline{S_{l,l}} \ll \overline{S_{l,gaz}} \end{array} \quad \Rightarrow \quad \begin{array}{ll} \text{corps cond.}: & T,P \text{ peu influents} \\ \text{gaz:} & T,P \text{ très influents} \end{array}$$

3. Potentiels chimiques

GP pur	GP en mélange	Soluté	Solide ou liquide en mélange	Solide ou liquide pur
$a_i = \frac{P}{P^0}$	$a_i = \frac{P_i}{P^0}$	$a_i = \frac{c_i}{c^0}$ ou $\gamma_i \frac{c_i}{c^0}$	$a_i = x_i$ ou $\gamma_i x_i$	$a_i = 1$
$\mu_i(T, P) = \mu_i^0(T) + RT \ln a_i$ $\mu_i^0(T) = \mu_i(T, P^0)$				$\mu_i = \mu_i^0 + V_m (P - P^0)$

4. Intérêt

A l'équilibre, on a $G=\sum n_i\mu_i$ minimal si $P_{ext}=cst$.

Grandeurs molaires partielles - Potentiel chimique

T1 – Thermochimie – Chapitre 1

V. Variance

1. Définitions

Facteur d'équilibre : paramètres intensif dont la modification entraine un déplacement ou une rupture de l'équilibre du système.

Variance : Nombre de facteurs d'équilibre qu'il est nécessaire et suffisant de fixer pour déterminer entièrement l'état d'équilibre du système.

2. Calcul direct

v = nbr facteur d'eq - nbr relations les liants

3. Règle de Gibbs

N: nombre de constituants à l'équilibre $v = N + 2^* - Re - \varphi - q$ $2^* : \text{ nombre de fact. d'eq. parmi T et P}$ Re : nombre de réactions $\varphi : \text{ nombre de phases à l'équilibre.}$

q: nombre de relations entre fractions molaires liés aux c.i.

v1