Тощев Александр Сергеевич

Разработка эффективного подхода обработки производственных задач прикладного характера в области обслуживания программного обеспечения и информационной инфраструктуры предприятия на основе стохастического поиска, вероятностно-логических рассуждений и машинного обучения

Специальность 05.13.01 — «Системный анализ, управление и обработка информации (информационные технологии)»

Автореферат

диссертации на соискание учёной степени Кандидат технических наук

Работа выполнена в Казанский (Приволжский) Федеральный Университет

Научный руководитель: доктор физико-математических наук, профессор

Елизаров А.М.

Официальные оппоненты: Фамилия Имя Отчество,

доктор физико-математических наук, профессор, Не очень длинное название для места работы,

старший научный сотрудник

Фамилия Имя Отчество,

кандидат физико-математических наук,

Основное место работы с длинным длинным длин-

ным длинным названием,

старший научный сотрудник

Ведущая организация: Федеральное государственное бюджетное образо-

вательное учреждение высшего профессионального образования с длинным длинным длинным длинным

названием

Защита состоится DD mmmmmmm YYYY г. в XX часов на заседании диссертационного совета NN на базе Название учреждения по адресу: Адрес.

С диссертацией можно ознакомиться в библиотеке Название библиотеки.

Автореферат разослан DD mmmmmmmm YYYY года.

Ученый секретарь диссертационного совета

Sign

NN, д-р физ.-мат. наук

Фамилия Имя Отчество

Общая характеристика работы

Актуальность темы. В настоящее время в области ІТ набрало большую популярность системы удаленной поддержки информационной инфраструктуры, так называемый «Аутсорсинг». Ввиду развития рынка компаниям становится невыгодно держать свой штат службы поддержки, и они отдают свою инфраструктуру сторонней компании. Ввиду возросшей интенсивности данного бизнеса возникла потребность автоматизации работы. В данном контексте рассматривается автоматизация обработки инцидентов, начиная с разбора инцидентов на естественном языке и заканчивая поиском решения и применением решения. Главными требованиями к системе являются:

- 1. Обработка запросов на естественном языке
- 2. Возможность обучения
- 3. Общение со специалистом
- 4. Проведение логических рассуждений: аналогия, дедукция, индукция
- 5. Умения абстрагировать решение и экстраполировать его на другие решения
- 6. Способность решить запрос пользователя

На данный момент многие компании ведут разработку подобных систем. Примером такой системы является набирающая популярность система IBM Watson. Подобный класс систем также называют вопросно-ответными системами, например, Wolfram Alpha. В данной работе была исследована целевая область и построена ее модель. В данной работе был сделан акцент на попытку создания мыслящий системы на основе модели мышления Марвина Мински для решения широкого круга проблем, а не специфичных.

Целью данной работы является исследование целевой области, создание ее модели, выработка проблем области, оценка подходов к решению проблем, создание архитектуры и реализация базового прототипа программного комплекса обеспечивающего разбор и формализацию входного запроса пользователя и поиск решения данной проблемы.

Для достижения поставленной цели необходимо было решить следующие задачи:

1. Провести теоретико-множественный и теоретико-информационный анализ сложных систем в области поддержки информационной инфраструктуры

- 2. Вычислить возможность автоматизации целевой области
- 3. Создать модель целевой области
- 4. Исследовать модель мышления Марвина Мински
- 5. На основе модели мышления Мински разработать модель проблемноориентированной системы управления, принятия решений и оптимизации технических объектов в области обслуживания IT
- 6. Создать архитектуру приложения на основе модели
- 7. Реализовать прототип на основе архитектуры
- 8. Провести апробацию прототипа на тестовых данных

Основные положения, выносимые на защиту:

- 1. Теоретико-множественный и теоретико-информационный анализ сложных систем в области поддержки информационной инфраструктуры
- 2. Модель проблемно-ориентированной системы управления, принятия решений и оптимизации технических объектов в области обслуживания IT
- 3. Прототип программной реализации модели проблемноориентированной системы управления, принятия решений и оптимизации технических объектов в области обслуживания IT
- 4. Апробация системы на контрольных примерах

Научная новизна:

- 1. Была создана модель проблемно-ориентированной системы управления, принятия решений и оптимизации технических объектов в области обслуживания IT на основе модели мышления Марвина Мински
- 2. Была представлена новая модель данных для модели мышления и оригинальный способ хранения
- 3. Было выполнено оригинальное исследование модели мышления

Практическая значимость Система, разрабатываемая в рамках данной работы носит значимый практический характер. Идея работы зародилась из производственных проблем в ІТ отрасли, с которыми автор сталкивался каждый день. Только глубокое понимание проблем помогло выбрать правильное решение. Более подробное описание представлено в Главе 1. **Достоверность** полученных результатов обеспечивается результатами выполнения тестов на контрольных примерах. Результаты находятся в соответствии с результатами,

полученными другими авторами, экспертными системами и специалистами.

Апробация работы. Основные результаты работы докладывались на:

- RCDL-2014
- AINL-2013
- WCIT-2012
- AMSTA-2015

<u>Личный вклад.</u> Автор принимал активное участие в исследовании целевой области, разработке архитектуры приложения, реализации прототипа, проработки теории, тестировании.

Публикации. Основные результаты по теме диссертации изложены в 6 печатных изданиях [1], [2], [3], [4], [5], [6], 2 из которых изданы в журналах Scopus, 1 в журнале РИНЦ [5], [3], [6] 3 в тезисах докладов [1], [2], [4], [5].

Содержание работы

Во введении обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, дается общая характеристика работы. Первая глава посвящена постановки задачи. Проводится обзор целевой области и обосновывается возможность ее автоматизации. В главе обосновывается состав команд поддержки информационной структуры предприятия. На Диаграмме 1 представлен качественно процентный состав в команд с точки зрения квалификации специалистов.

Рис. 1 — Диаграмма состава команд

В главе приведены резльтатапы анализа категорий проблем, которые решают специалисты 2.

Рис. 2 — Диаграмма соотношений типов проблем

Вторая глава посвящена исследованию подходов обработки естественного языка в применение к целевой области. В главе выработан набор тестовых данных, разработаны критерии оценки работы подходов обработки естественного языка, представленных в Таблице 1.

Таблица 1 — Таблица метрик

Метрика	Описание	Формула
Аккуратность	Понимание текста обработчиком	$Ac = \frac{1-x}{y}$ где х- количество нераспознанных слов,
		у количество распо-
Успешно обработан- ные	Успешно обработан- ные инциденты	$P = \frac{x}{100}$
		где х успешно обрабо- танные
Не успешно обработанные	Неуспешно обработан-	$N = \frac{y}{100}$ где у неуспешные инциденты
Результативность	Общая результатив- ность обработчика	$R = \frac{P}{N}$
Общий бал	Общая оценка обра- ботчика	T = Ac + R

На основе данных критериев был проведен анализ существующих подходов, результаты которого приведены на Диаграмме 3. По итогам главы был сделан вывод, что наиболее эффективен подход, использующийся в комплексе OpenCog Relex.

Рис. 3 — Результаты обработки текстов

Третья глава посвящена исследованию

В четвертой главе приведено описание

В <u>заключении</u> приведены основные результаты работы, которые заключаются в следующем:

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

Публикации автора по теме диссертации

- 1. Тощев А. С. К новой концепции автоматизации программного обеспечения // Труды Математического центра имени Н.И. Лобачевского. Материалы Десятой молодежной научной школы-конференции 'Лобачевские чтения 2011. Казань, 31 октября 4 ноября 2011'. 2011. Vol. 44. 2 pp.
- 2. Toshchev A. Talanov M. Krehov A. Khasianov A. Thinking-Understanding approach in IT maintenance domain automation // Global Journal on Technology, Vol 3 (2013): 3rd World Conference on Information Technology (WCIT-2012).
 2013. Т. 3. Режим доступа: http://www.world-education-center.org/index.php/P-ITCS/issue/view/96.
- 3. *Toshchev A*. Thinking model and machine understanding in automated user request processing // *CEUR Workshop Proceedings*. 2014. T. 1297.
- 4. *Toshchev A. Talanov M.* Thinking model and machine understanding of English primitive texts and it's application in Infrastructure as Service domain // *Proceedings of AINL-2013.* 2013. Режим доступа: hhttp://ainlconf.ru/material201303.
- 5. Toshchev A. Talanov M. ARCHITECTURE AND REALIZATION OF INTELLECTUAL AGENT FOR AUTOMATIC INCIDENT PROCESSING USING THE ARTIFICIAL INTELLIGENCE AND SEMANTIC NETWORKS // Ученые записки ИСГЗ 2078-6980. 2014. Т. 2. Режим доступа: hhttp://ainlconf.ru/material201303.

6. Toshchev A. Talanov M. Thinking Lifecycle as an Implementation of Machine Understanding in Software Maintenance Automation Domain // Agent and Multi-Agent Systems: Technologies and Applications: 9th KES International Conference, KES-AMSTA 2015 Sorrento, Italy, June 2015, Proceedings (Smart Innovation, Systems and Technologies). — 2015.