NATIONAL INSTITUTE OF TECHNOLOGY SILCHAR ENGINEERING MECHANICS

First / Second Semester (All Branch)

COURSE NO. ME 101

LTPC 3 10 4

ASSIGNMENT - 1

- 1. A man of weight W = 160 N holds one end of a rope that passes over a pulley vertically above his head and to the other end of which is attached a weight Q = 120 N. Find the force with which the man's feet press against the floor. Ans. 40 N
- 2. A boat is moved uniformly along a canal by two horses pulling with forces $P = 200 \ N$ and $Q = 240 \ N$ acting under an angle $\alpha = 60^{\circ}$ (Fig. A). Determine the magnitude of the resultant pull on the

boat and the angle β and γ as shown in the figure. Ans. R = 382 N, $\beta = 33^{\circ}$, $\gamma = 27^{\circ}$

- 3. What force Q combined with a vertical pull P = 6 N will give a horizontal resultant R = 8 N? Ans. 10 N inclined by $36^{\circ}52$
- 4. To move a boat uniformly along a canal at a given speed requires a resultant force R=400 N. This is accomplished by two horses pulling forces with forces P and Q on tow ropes, as shown in Fig. A. If the angle that the tow ropes make with the axis of the canal are $\beta=35^{\circ}$ and $\gamma=25^{\circ}$, what are the corresponding tensions in the ropes? Ans. P=195 N, Q=265 N
- 5. If, in Fig. A, the horses pull with the forces P = 240 N and Q = 200 N, what must be the angles β and γ to give the resultant R = 400 N? Ans. $\beta = 22^{0}22^{\circ}$, $\gamma = 27^{0}12^{\circ}$
- 6. A small block of weight Q = 10 N is placed on an inclined plane which makes an angle $\alpha = 30^{\circ}$ with the horizontal. Resolve the gravity force Q into two rectangular components Q_t and Q_n acting parallel and normal, respectively, to the inclined plane. Ans. $Q_t = 5N$, $Q_n = 8.66 N$

[Turn over]

7. In level flight, the chord AB of an airplane wing makes an angle $\alpha = 5^{\circ}$ with the horizontal (Fig. B). The resultant wind pressure on the wing for such conditions is defined by its lift and drag components L = 1500 N and D = 200 N, which are vertical and horizontal, respectively, as shown. Resolve

this force into rectangular components X and Y, coinciding with the chord AB and its normal, respectively. Ans. X = 68.5 N, Y = 1511.7 N

8. For the particular position shown in Fig. C the connecting rod BA of an engine exerts a force P = 500N on the crankpin at A. Resolve this into two rectangular components P_h and P_v acting horizontally and vertically, respectively, at A. Ans. $P_h = 468$ N, $P_v = 177$ N

- 9. Resolve the force P in Fig. C into two rectangular components P_r and P_t acting along the radius AO and perpendicular therto, respectively. Ans. P_r = 206 N, P_t = 456 N
- 10. Determine analytically the magnitude and direction of the four forces shown in Fig. D. Ans. R = 418 N, $\theta = 61^{\circ}45^{\circ}$

- 11. Determine graphically the magnitude and direction of the four con-current forces shown in Fig. D if each of the 100 N forces is increased to 150 N.
- ¹². Determine graphically the magnitude and direction of the four con-current forces shown in Fig. D if each of the 100 N forces is reversed in direction.
