Analyzing the Impact of Car Features on Price and Profitability

Final Project-3

SOWMIYA R | DATA ANALYTICS | 10^{th} AUGUST 2023

PROJECT DESCRIPTION:

The automotive industry has been rapidly evolving over the past few decades, with a growing focus on fuel efficiency, environmental sustainability, and technological innovation. With increasing competition among manufacturers and a changing consumer landscape, it has become more important than ever to understand the factors that drive consumer demand for cars.

In recent years, there has been a growing trend towards electric and hybrid vehicles and increased interest in alternative fuel sources such as hydrogen and natural gas. At the same time, traditional gasoline-powered cars remain dominant in the market, with varying fuel types and grades available to consumers.

This project aims to highlight the transformative potential of car data analysis in revolutionizing the automotive industry. By demonstrating tangible benefits such as reduced maintenance costs, improved safety, and enhanced user experiences, the project seeks to encourage wider adoption of data-driven practices within the automotive ecosystem and beyond.

In today's automotive landscape, vehicles are equipped with an array of sensors, processors, and communication technologies that generate vast amounts of data. This data, if harnessed effectively, holds the potential to revolutionize multiple aspects of the automotive industry. However, to fully realize its benefits, there is a pressing need to understand and address several critical challenges.

Data sources is been used in this are the Microsoft excel and the visualizations of making visual insights using Tableau. And the cleaning technique is done by using the Excel functions.

DATA CLEANING

First of all, I have downloaded the dataset which was given in csv format, then I load the dataset in the excel and done with few auto-fit column and making it clearance. Then I used my Data cleaning strategy to clean the provided dataset with the help of normal excel functions that is I have count the number of blank rows and then removed by using the special function in excel.

And then I have analyzed that the unwanted headers are present there, so I inferred with the specified and useful headers will be left behind. So firstly I found that 11915 rows and 16 headers are present there. So after cleaning the dataset I left with a 11813 rows and 17 header rows including index created headers will be left there.

Makes it as table format and highlighted the header rows, and analyzed throughout the dataset, there inferred impact of car data features with the model of the manufacturer, vehicle type, Cylinder HP, the market price for each one of the model of the position of car, when they produced that is mentioned as year, MPG that is miles per gallons with the engine fuel, number of doors and so on.

I have attached my cleaned data excel file below:

 $\underline{https://docs.google.com/spreadsheets/d/1nC5QFm0UQspbJFhFP0}\\ f2LtrX-$

uMF1WQf/edit?usp=drive link&ouid=103768596710140113695&rt pof=true&sd=true

	F1	▼ (1	£ Engine HP								
1	A	В	С	D	E	F	G	Н	I I	J	
1	Inde: *	Make *	Model	Yea ▼	Engine Fuel Type	Engine H	Engine Cylinde	Transmission Type ▼	Driven_Whee *	Number of Doo	
2	1	BMW	1 Series M	2011	premium unleaded (required)	335	6	MANUAL	rear wheel drive	2	Fac
3	2	BMW	1 Series	2011	premium unleaded (required)	300	6	MANUAL	rear wheel drive	2	
4	3	BMW	1 Series	2011	premium unleaded (required)	300	6	MANUAL	rear wheel drive	2	
5	4	BMW	1 Series	2011	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
6	5	BMW	1 Series	2011	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
7	6	BMW	1 Series	2012	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
8	7	BMW	1 Series	2012	premium unleaded (required)	300	6	MANUAL	rear wheel drive	2	
9	8	BMW	1 Series	2012	premium unleaded (required)	300	6	MANUAL	rear wheel drive	2	
10	9	BMW	1 Series	2012	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
1	10	BMW	1 Series	2013	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
12	11	BMW	1 Series	2013	premium unleaded (required)	300	6	MANUAL	rear wheel drive	2	
13	12	BMW	1 Series	2013	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
4	13	BMW	1 Series	2013	premium unleaded (required)	300	6	MANUAL	rear wheel drive	2	
15	14	BMW	1 Series	2013	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
16	15	BMW	1 Series	2013	premium unleaded (required)	230	6	MANUAL	rear wheel drive	2	
.7	16	BMW	1 Series	2013	premium unleaded (required)	320	6	MANUAL	rear wheel drive	2	
.8	17	BMW	1 Series	2013	premium unleaded (required)	320	6	MANUAL	rear wheel drive	2	
19	18	Audi	100	1992	regular unleaded	172	6	MANUAL	front wheel drive	4	
10	19	Audi	100	1992	regular unleaded	172	6	MANUAL	front wheel drive	4	
!1	20	Audi	100	1992	regular unleaded	172	6	AUTOMATIC	all wheel drive	4	
!2	21	Audi	100	1992	regular unleaded	172	6	MANUAL	front wheel drive	4	
!3	22	Audi	100	1992	regular unleaded	172	6	MANUAL	all wheel drive	4	
14	23	Audi	100	1993	regular unleaded	172	6	MANUAL	front wheel drive	4	
!5	24	Audi	100	1993	regular unleaded	172	6	AUTOMATIC	all wheel drive	4	
!6	25	Audi	100	1993	regular unleaded	172	6	MANUAL	front wheel drive	4	
!7	26	Audi	100	1993	regular unleaded	172	6	MANUAL	front wheel drive	4	
18	27	Audi	100	1993	regular unleaded	172	6	MANUAL	all wheel drive	4	

From the above picture, can see a image of cleaned data and the excel file have been attached above the picture.

APPROACH

Perform statistical analysis to understand the distribution, variability, and basic characteristics of the collected data. Visualize data patterns, correlations, and anomalies using graphs and plots. Identify initial insights that can guide subsequent analysis. Evaluate model performance using metrics like accuracy, precision, recall, and F1-score. Showcase how predictive models can optimize maintenance schedules and reduce downtime.

Demonstrate how real-time alerts and warnings can be generated for drivers and relevant authorities. Evaluate the potential reduction in accidents and overall enhancement in road safety. Analyze driving patterns and vehicle performance data to uncover factors influencing fuel efficiency. Develop a model to predict fuel efficiency based on driving behavior, road conditions, and vehicle characteristics. Provide actionable recommendations to drivers for improving fuel economy. Quantify potential fuel savings and emissions reduction through optimized driving.

The project aims to provide a comprehensive understanding of the impact of car data analysis on the automotive industry, offering insights, solutions, and guidance for industry stakeholders to harness the power of data for positive transformations.

TECH-STACK USED

I have used Microsoft Excel and Tableau for analyzing the given tasks and gave various insights by using the Tableau Public. Excel is used in various places to make the table as pivot tables and analyzing through the conditional manner. And the Tableau is used for making bar charts, bubble charts and so on and also useful for making dashboards. And Excel is been used for doing regression analysis with the table format of making it clear with one who see this.

DATASET DESCRIPTION:

The dataset contains information on various car models and their specifications, and is titled "Car Features and MSRP". It was collected and made available on Kaggle by Cooper Union, a private college located in New York City.

Here is a brief overview of the dataset:

Number of observations: 11,159

Number of variables: 16

File type: CSV (Comma Separated Values)

The variables in the dataset are:

• **Make:** the make or brand of the car

• **Model:** the specific model of the car

• Year: the year the car was released

• Engine Fuel Type: the type of fuel used by the car (gasoline, diesel, etc.)

• Engine HP: the horsepower of the car's engine

- **Engine Cylinders:** the number of cylinders in the car's engine
- **Transmission Type:** the type of transmission (automatic or manual)
- **Driven_Wheels:** the type of wheels driven by the car (front, rear, all)
- **Number of Doors:** the number of doors the car has
- Market Category: the market category the car belongs to (Luxury, Performance, etc.)
- **Vehicle Size:** the size of the car
- **Vehicle Style:** the style of the car (Sedan, Coupe, etc.)
- Highway MPG: the estimated miles per gallon the car gets on the highway
- **City MPG:** the estimated miles per gallon the car gets in the city

 Popularity: a ranking of the popularity of the car (based on the number of times it has been viewed on Edmunds.com)

• MSRP: the manufacturer's suggested retail price of the car

These are the ones which was descripted for the given dataset and then explained each one of the dataset header rows provided in the form of csv file data.

This dataset could be useful for a variety of data analysis tasks, such as:

• Exploring trends in car features and pricing over time

• Comparing the fuel efficiency of different types of cars

 Investigating the relationship between a car's features and its popularity

 Predicting the price of a car based on its features and market category

TASKS: ANALYSIS

1. How does the popularity of a car model vary across different market categories?

- 2. What is the relationship between a car's engine power and its price?
- 3. Which car features are most important in determining a car's price?
- 4. How does the average price of a car vary across different manufacturers?
- 5. What is the relationship between fuel efficiency and the number of cylinders in a car's engine?

BUILDING THE DASHBOARD:

1. How does the distribution of car prices vary by brand and body style?

- 2. Which car brands have the highest and lowest average MSRPs, and how does this vary by body style?
- 3. How do the different feature such as transmission type affect the MSRP, and how does this vary by body style?
- 4. How does the fuel efficiency of cars vary across different body styles and model years?
- 5. How does the car's horsepower, MPG, and price vary across different Brands?

INSIGHTS AND RESULTS:

1. Insight Required: How does the popularity of a car model vary across different market categories?

Task 1.A: Create a pivot table that shows the number of car models in each market category and their corresponding popularity scores.

The solution for the task 1 of A is that of created a pivot table with the help of showing the number of car models in each market category with respect to the popularity scores which is of creating a make or manufacturers with the popularity scores of maintaining the market category of impact of car trends.

Popularity of a car model vary across	different market categ	jories
	Values	
Market Category	Average of Popularity	Count of Model
Crossover	1545	1110
Crossover, Diesel	873	7
Crossover, Exotic, Luxury, High-Performance	238	1
Crossover, Exotic, Luxury, Performance	238	1
Crossover, Factory Tuner, Luxury, High-Performance	1823	26
Crossover, Factory Tuner, Luxury, Performance	2607	5
Crossover, Factory Tuner, Performance	210	4
Crossover,Flex Fuel	2074	64
Crossover,Flex Fuel,Luxury	1173	10
Crossover,Flex Fuel,Luxury,Performance	1624	6
Crossover,Flex Fuel,Performance	5657	6
Crossover, Hatchback	1676	72
Crossover, Hatchback, Factory Tuner, Performance	2009	6
Crossover, Hatchback, Luxury	204	7
Crossover, Hatchback, Performance	2009	6
Crossover, Hybrid	2563	42
Crossover,Luxury	885	410
Crossover,Luxury,Diesel	2149	34
Crossover,Luxury,High-Performance	1037	9
Crossover,Luxury,Hybrid	631	24

Crossover,Luxury,Performance	1345	113
Crossover,Luxury,Performance,Hybrid	3916	2
Crossover,Performance	2586	69
Diesel	1731	84
Diesel,Luxury	2275	51
Exotic, Factory Tuner, High-Performance	1046	21
Exotic, Factory Tuner, Luxury, High-Performance	518	52
Exotic, Factory Tuner, Luxury, Performance	520	3
Exotic,Flex Fuel,Factory Tuner,Luxury,High-Performance	520	13
Exotic,Flex Fuel,Luxury,High-Performance	520	11
Exotic, High-Performance	1271	261
Exotic,Luxury	113	12
Exotic,Luxury,High-Performance	467	79
Exotic,Luxury,High-Performance,Hybrid	204	1
Exotic, Luxury, Performance	217	36
Exotic,Performance	1391	10
Factory Tuner, High-Performance	1941	106
Factory Tuner,Luxury	617	2
Factory Tuner,Luxury,High-Performance	2133	215
Factory Tuner,Luxury,Performance	1413	31
Factory Tuner, Performance	1696	92
Flex Fuel	2217	872
Flex Fuel,Diesel	5657	16
Flex Fuel, Factory Tuner, Luxury, High-Performance	258	1
Flex Fuel,Hybrid	155	2
Flex Fuel,Luxury	747	39
Flex Fuel,Luxury,High-Performance	879	33
Flex Fuel,Luxury,Performance	1380	28
Flex Fuel,Performance	1680	87
Flex Fuel,Performance,Hybrid	155	2
Hatchback	1319	641
Hatchback,Diesel	873	14
Hatchback,Factory Tuner,High-Performance	1205	13
Hatchback,Factory Tuner,Luxury,Performance	887	9
Hatchback,Factory Tuner,Performance	2159	22
Hatchback,Flex Fuel	5657	7
Hatchback,Hybrid	2121	72
Hatchback,Luxury	1380	46
Hatchback,Luxury,Hybrid	454	3
Hatchback,Luxury,Performance	1566	38
Hatchback,Performance	1040	252
High-Performance	1821	199
Hybrid	2106	123
Luxury	1103	855
Luxury,High-Performance	1668	334
Luxury,High-Performance,Hybrid	569	12
Luxury,Hybrid	674	52
Luxury,Performance	1293	673

Luxury,Performance,Hybrid	2333	11
Performance	1349	601
Performance,Hybrid	155	1
Grand Total	1499	8172

Below the picture, inferred that the market category of car features with the table of creation of pivot table format and calculated with the help of excel pivot functions. Here the values are found about average of popularity scores and count of each and every models.

Here are attached a excel file for **popularity of scores.....**https://docs.google.com/spreadsheets/d/17UcMJqn62H0

3zj962rtX6BfZaAeS7nh6/edit?usp=drive link&ouid=1037

68596710140113695&rtpof=true&sd=true

Task 1.B: Create a combo chart that visualizes the relationship between market category and popularity.

From the above combo chart tasks, I have created with a bar chart and combination of line chart, it varies as colors for both line and bar chart. Here I have insisted that the popularity of car is based on the average of popularity and count of each model.

So this tasks was done using the tableau public tool which is helped me to solve and analyzed by using this type of combo chart with the dataset of impact of car features that is have taken a popularity and count of each model within it.

Above that, only I showed a picture besides that I have attached a tableau public link here....

Tasks analysis for car data | Tableau Public

2. Insight Required: What is the relationship between a car's engine power and its price?

Task 2: Create a scatter chart that plots engine power on the x-axis and price on the y-axis. Add a trend-line to the chart to visualize the relationship between these variables.

The solution for the Task 2 will be the relationship between car's engine and its price as MSRP, found out by separating from the final dataset of cleaned data which help me out to categorize the particular tasks and have been visualized with the trend line chart.

	B1	▼ ()	f _x	MSRP	
	А		В	С	D
1	Engine HP		MSRP		
2	335	\$	46,135	5	
3	300	\$	40,650)	
4	300	\$	36,350		
5	230	\$	29,450)	
6	230	\$	34,500		
7	230	\$	31,200)	
8	300	\$	44,100		
9	300	\$	39,300)	
10	230	\$	36,900)	
11	230	\$	37,200)	
12	300	\$	39,600)	
13	230	\$	31,500)	
14	300	\$	44,400)	
15	230	\$	37,200)	
16	230	\$	31,500)	
17	320	\$	48,250)	
18	320	\$	43,550)	
19	172	\$	2,000)	
20	172	\$	2,000)	
21	172	\$	2,000)	
22	172	\$	2,000)	
23	172	\$	2,000)	
24	172	\$	2,000		

The above picture depicts that the separated data of car's **Engine HP** and **MSRP**, to find the relationship between the car's engine power and its price.

The Excel is attached in the below as a link.....

https://docs.google.com/spreadsheets/d/1i56EwaP-cC-bma22SPcsNItHohyV024i/edit?usp=drive_link&ouid=1037

68596710140113695&rtpof=true&sd=true

From the above picture depicts that the scatter plot and combination of shown trend lines for finding the relationship between Engine HP and MSRP with respect to it.

Then I have taken for finding the visualization of scatter plot and with a trend lines is then taken Engine HP and MSRP to solve the relationship between them.

And also Engine HP will be taken as x-axis and MSRP taken as y-axis and plotting it accordingly and gone through the relation between , in the analysis it will be shown as trend lines - show trend lines and then edit the axis according to it.

Here I have attached Tableau public Link for finding the insights of this tasks....

Tasks analysis for car data | Tableau Public

3. Insight Required: Which car features are most important in determining a car's price?

Task 3: Use regression analysis to identify the variables that have the strongest relationship with a car's price. Then create a bar chart that shows the coefficient values for each variable to visualize their relative importance.

Here I have learned how to solve the regression analysis using the excel data analysis functions, it gives the anova table, summary output with the residual and regression which inferred the regression data of car features on determining a car's price.

Then I have observed the car data with the help of determining the car features by including the header rows are below shown picture of header rows that has the car data within it.

Engine HP Engine Cylinders Number of Doors city mpg highway MPG MSRP

4	А	В	С	D	Е	F	G
	Engine H	Engine Cylinder 🔻	Number of Door ▼	city mpg 🔻	highway MPG 🔻	 MSRP 🔻	
	335	6	2	19	26	\$ 46,135	
	300	6	2	19	28	\$ 40,650	
	300	6	2	20	28	\$ 36,350	
	230	6	2	18	28	\$ 29,450	
,	230	6	2	18	28	\$ 34,500	
•	230	6	2	18	28	\$ 31,200	
	300	6	2	17	26	\$ 44,100	
	300	6	2	20	28	\$ 39,300	
)	230	6	2	18	28	\$ 36,900	
1	230	6	2	18	27	\$ 37,200	
2	300	6	2	20	28	\$ 39,600	
3	230	6	2	19	28	\$ 31,500	
1	300	6	2	19	28	\$ 44,400	
5	230	6	2	19	28	\$ 37,200	
õ	230	6	2	19	28	\$ 31,500	
7	320	6	2	18	25	\$ 48,250	
3	320	6	2	20	28	\$ 43,550	
Э	172	6	4	17	24	\$ 2,000	
)	172	6	4	17	24	\$ 2,000	
1	172	6	4	16	20	\$ 2,000	
2	172	6	4	17	24	\$ 2,000	
3	172	6	4	16	21	\$ 2,000	
1	172	6	4	17	24	\$ 2,000	

Above picture depicts that car features are most important for determining the car's price, so then analyzed with the car features are implied to the car's price which is MSRP. And determined a regression analysis in the excel function of data analysis tool.

. SUMMARY	OUTPUT							
Regression	Statistics							
Multiple R	0.680708139							
R Square	0.46336357							
Adjusted R Square	0.463136297							
Standard Error	44170.77827							
Observations	11812							
1								
0		ANOVA	1					
1	df	SS	MS	F	Significance F			
2 Regression	5	1.98891E+13	3.97782E+12	2038.799457	0			
3 Residual	11806	2.30342E+13	1951057653					
4 Total	11811	4.29233E+13						
5								
6	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
7 Intercept	-101601.736	3684.351697	-27.57655738	2.765E-162	-108823.673	-94379.79896	-108823.673	-94379.79896
8 Engine HP	322.7465574	6.01767382	53.63310924	0	310.9509241	334.5421906	310.9509241	334.5421906
9 Engine Cylinders	6989.177662	439.6449924	15.89732121	2.53591E-56	6127.400961	7850.954363	6127.400961	7850.954363
0 Number of Doors	-4472.158125	465.7180593	-9.602715711	9.35015E-22	-5385.042338	-3559.273912	-5385.042338	-3559.273912
1 Highway MPG	570.1808088	105.7839778	5.390048859	7.17937E-08	362.826764	777.5348535	362.826764	777.5348535
2 City MPG	1163.755457	121.9978136	9.539150113	1.72109E-21	924.61962	1402.891294	924.61962	1402.891294

This is the regression analysis its just a picture demonstration and I have included my excel file below this.

Here I have attached an Excel file.....

https://docs.google.com/spreadsheets/d/1SfVwWAf zncu-QwgNlnrTQ3Gsrx4MR5q/edit?usp=drive_link&ouid=1037 68596710140113695&rtpof=true&sd=true

From the above picture about the regression analysis, that is in the tasks they have ask to make a insight of bar chart for the regression of each coefficient values with respect to it. I have done a regression analysis in the Microsoft excel above it with the help of that taken a coefficient values based on a car data header rows each of the values like engine hp, msrp and so on.

Here I have analyzed that in the bar chart, Engine cylinders have the more coefficient value that is 6989.177 and intercept and the number of rows are getting negative of the coefficient.

And also have attached tableau public link to find the visualization clearly

Tasks analysis for car data | Tableau Public

4. Insight Required: How does the average price of a car vary across different manufacturers?

Task 4.A: Create a pivot table that shows the average price of cars for each manufacturer.

The solution this tasks is that average price of car vary across the different manufacturers that are depicted as make in this header row that calculates the average price car for each make.

So I have insisted on creating a pivot table with the help of manufacturers and MSRP for price of each make. And then created the pivot table with the row labels of make that is manufacturer and MSRP as Average of car price, that are included as pivot table and then insisted as the changing of count to average of car price with the help of value field settings in the pivot table.

Manufacturer	Av	erage of MSRP
Acura	₹	34,887.59
Alfa Romeo	₹	61,600.00
Aston Martin	₹	1,97,910.38
Audi	₹	53,452.11
Bentley	₹	2,47,169.32
BMW	₹	61,546.76
Bugatti	₹	17,57,223.67
Buick	₹	28,206.61
Cadillac	₹	56,231.32
Chevrolet	₹	28,273.36
Chrysler	₹	26,722.96
Dodge	₹	22,390.06
Ferrari	₹	2,37,383.82
FIAT	₹	22,206.02
Ford	₹	27,393.42
Genesis	₹	46,616.67
GMC	₹	30,493.30
Honda	₹	26,629.82
HUMMER	₹	36,464.41
Hyundai	₹	24,597.04
Infiniti	₹	42,394.21
Kia	₹	25,112.39
Lamborghini	₹	3,31,567.31
Land Rover	₹	67,823.22
Lexus	₹	47,549.07
Lincoln	₹	42,494.37
Lotus	₹	69,188.28
Maserati	₹	1,14,207.71
Maybach	₹	5,46,221.88
Mazda	₹	19,719.06
McLaren	₹	2,39,805.00
Mercedes-Benz	₹	71,537.81
Mitsubishi	₹	21,215.47
Nissan	₹	28,513.37
Oldsmobile	₹	11,542.54
Plymouth	₹	3,122.90
Pontiac	₹	19,321.55
Porsche	₹	1,01,622.40
Rolls-Royce	₹	3,51,130.65
Saab	₹	27,413.50
Scion	₹	19,932.50
Spyker	₹	2,13,323.33
Subaru	₹	24,827.50

Grand Total	₹	40,559.94
Volvo	₹	28,541.16
Volkswagen	₹	28,076.20
Toyota	₹	28,946.15
Suzuki	₹	17,900.96

Above the picture depicts that the pivot table of calculated average of car' price as the make as the manufacturer and grand total of total amount of car is been determined.

The excel file for determining the average of car' price tasks is attached here....

https://docs.google.com/spreadsheets/d/1K28K6_t8dE48yUZLqsMBdg-BPzYDGOoU/edit?usp=drive_link&ouid=103768596710140113695&rtpof=true &sd=true

Task 4.B: Create a bar chart or a horizontal stacked bar chart that visualizes the relationship between manufacturer and average price.

From the above pasted picture represents that the horizontal a stacked bar chart for insights of average price of car with respect to the manufacturer. Taking Average of price that is in the header row of MSRP is been taken as x-axis and Manufacturer will be taken as y-axis.

Here my tasks is to find the average of car price with each of the manufacturer in that **Bugatti** has the highest car price.

Also then I have attached a Tableau public link that has the charts which have the tasks is been as follows....

Tasks analysis for car data | Tableau Public

5. Insight Required: What is the relationship between fuel efficiency and the number of cylinders in a car's engine?

Task 5.A: Create a scatter plot with the number of cylinders on the x-axis and highway MPG on the y-axis. Then create a trendline on the scatter plot to visually estimate the slope of the relationship and assess its significance.

The above picture represents the scatter plot of finding the fuel efficiency versus number of cylinder and with a trend lines for the reference of insisting the correlation of fuel efficiency with each of the cylinders.

It represents that the main cause of using the cylinders for each of the Highway MPG is that shown as the scatter plots with the trend lines about this tasks. Engine cylinder 4 has the highest scattered plots of its MPG.

Also that I have attached a Tableau public Link to view the scattered plot as the clear view.....

Tasks analysis for car data | Tableau Public

Task 5.B: Calculate the correlation coefficient between the number of cylinders and highway MPG to quantify the strength and direction of the relationship.

In this tasks, I found the solution that the correlation of coefficient between number of cylinders and the highway MPG played a role in this tasks. It quantifises the strength of each of the cylinders numbered and a direction of relationship between them.

	Clipboard	Font	[a]		Alignment	[a]
	E6 ▼	f _x				
	Α	В	С	D	Е	F
1	Engine Cylinders	highway MPG				
2	6	26			Correlation, r=	-0.62031
3	6	28				
4	6	28				
5	6	28				
6	6	28				
7	6	28				
8	6	26				
9	6	28				
10	6	28				
11	6	27				
12	6	28				
13	6	28				
14	6	28				
15	6	28				
16	6	28				
17	6	25				
18	6	28				
19	6	24				
20	6	24				
21	6	20				
22	6	24				
23	6	21				
24	6	24				

From the above picture is my analysis of finding the fuel efficiency with the number of cylinders and found out that coefficient values as r=-0.620312551.

This was achieved by the excel correl function for finding the fuel efficiency of correlation value. With this r value I can make use of analyzing the empowerment of number of cylinders with the Highway MPG .

So here I have attached a excel file....

https://docs.google.com/spreadsheets/d/17B5Ee5Y9I2HCl CbClQd2MPq2aEUW4Abs/edit?usp=drive_link&ouid=103 768596710140113695&rtpof=true&sd=true

BUILDING THE DASHBOARD:

Task 1: How does the distribution of car prices vary by brand and body style?

Hints: Stacked column chart to show the distribution of car prices by brand and body style. Use filters and slicers to make the chart interactive. Calculate the total MSRP for each brand and body style using SUMIF or Pivot Tables.

In this dashboard analysis, I have inferred that the distribution of car price with respect to the vehicle style and manufacturer for each of the car. Now here what is the tasks is that to make a stacked column chart for making the

visualizations of finding the distribution of car price based on branch and vehicle style.

The tableau public link is attached here....

dashboardall | Tableau Public

	-		,											DIS	TRIE	BUTION OF CAI	R PR	ICE BY BRANI) AN	D BODY STYLI	E				
Sum of MSRP Brands	_	ly Styles 🔐 Hatchback		SUV	44-1	Hatchback	4dr S	TIN/	c	go Minivan	Cava	- V	Carr	vertible	ı.	nvertible SUV	C		C	u Cab Dialous	Futor	nded Cab Pickup	Dane	nan Minima	n.
Acura	S	4,80,917	Zui	301	Ś	3,57,440	s s	26,63,505	Cdi	go iviinivan	Carg	O Van	COII	vertible	CO	invertible 50 v	Ś	7,93,748	CIE	w Cab Pickup	EXLE	nded Cab Pickup	PdSS	nger iviinivan	r
Alfa Romeo	,	4,00,317			Ş	3,37,440	Ç	20,03,303	Н		-		\$	1,29,800	\vdash		\$	1,78,200							Н
Aston Martin	+		\vdash										Ś	73,21,655	\vdash		\$	96,35,275	Н						H
Audi	Ś	4.000					Ś	26,74,900			\vdash		Ś	32,91,405	H		\$	35,56,290							H
Bentley	,	4,000					Ç	20,14,300			Н		Ś	60,12,870	H		ċ	63,56,760							H
BMW	Ś	80,097			\$	11,44,950	S	31,60,950			-		\$	45,02,671	\vdash		Ś	34,19,051							H
Bugatti	- 3	00,057	\vdash		Ş	11,44,530	Ş	31,00,730	Н				Ş	43,02,071	+		\$	52,71,671	\vdash						H
Buick	+		\vdash				ć	21,41,770			\vdash		Ś	1,79,325	\vdash		ç	18,534					Ś	3,30,065	H
Cadillac	+						ç		-		H		Ś	9,85,607	H		Ş	29,53,574	ć	5,99,150			Ş	3,30,003	H
Chevrolet	Ś	0.000	ς	2 12 210	ċ	12.00.725	ç	71,82,555	ė	4 20 150	ė	70.000	ç		ė	1.00.200	ç		ç			21 17 051	ć	11 70 515	Ś
		8,000	+-	2,13,310	\$	12,09,735	\$	65,69,568	\$	4,20,150	>	78,688	\$	29,53,245	\$	1,06,300	\$	35,04,525	\$	59,27,617	\$	31,17,951	\$	11,78,515	\$
Chrysler	\$	98,805	_	44.000	^	40.000	\$	2,50,545	^	50 500	^	200.00	\$	6,30,105	\vdash		\$	1,14,510	^	22 25 775	_	0.64.470	\$	9,22,295	^
Dodge	- 5	48,000	\$	44,000	5	18,000	\$	25,72,405	\$	60,520	>	Sum of	MSR	2,000	H		\$	32,64,627	5	22,35,775	5	8,64,172	\$	5,57,425	\$
Ferrari	+	2.25.245	⊢		<u> </u>			2 52 225			H	Value: \$	3,38	,497 3,811	\vdash		\$	1,14,18,289	_						H
FIAT	\$	3,25,315			_		\$	3,69,305				Row: Do	dae	7,965	H		_		_						
Ford	\$	36,000	\$	4,79,873	\$	4,80,155	\$	43,70,871	\$	6,80,770	\$	Column:	-	0,007			\$	13,98,144	\$	38,12,353	\$	22,85,584	\$	12,71,330	\$
Genesis	+		١.										Cuit	go van											L.
GMC	٠.		\$	1,44,319			\$	66,41,919	Ş	1,42,750	\$	4,68,085			L		_		Ş	40,62,482	\$	21,83,866	Ş	1,50,630	\$
Honda	\$	4,13,200	_		\$	20,15,270	\$	39,53,209					\$	2,52,135	L		\$	15,88,705	\$	7,87,720			\$	5,53,185	L
HUMMER	1						\$	3,77,490							L				\$	2,42,405					
Hyundai	\$	10,38,050			\$	5,28,880	\$	21,28,890							L		\$	7,24,070					\$	1,33,075	L
Infiniti	\perp		_				\$	43,40,200					\$	9,80,050	L		\$	21,75,750							
Kia	\perp		Ц		ς	4 06 960	۱ ۹ ا	20 49 645	L		_		_		Ļ		ς	1 42 630					ς	4 94 650	L

With the help of making pivot tables in the Excel sheet can analyzed with the column stacked chart. Here I have attached dashboard excel file contains pivot tables for calculating the dashboard visualization....

https://docs.google.com/spreadsheets/d/1b1wxdIAMs2my
BUJ_JBz9xwXdu4xoHt3t/edit?usp=drive_link&ouid=10376
8596710140113695&rtpof=true&sd=true

Task 2: Which car brands have the highest and lowest average MSRPs, and how does this vary by body style?

Hints: Clustered column chart to compare the average MSRPs across different car brands and body styles. Calculate the average MSRP for each brand and body style using AVERAGEIF or Pivot Tables.

For this dashboard analysis, I have insisted on finding the average price car based on both body and style position. So I have created a column chart to visualize the values here I have done both the body and style together with each of the brand with its price that is MSRP.

Here I have attached a Tableau public link for find this column chart....dashboardall | Tableau Public

								DIEGGE DELITE O								
Body Styles 🔻	i					AVERAG	E MSRP ACROSS I	DIFFERENT CA	ARS BRANDS AND B	ODY STYLE						
2dr Hatchback		4dr Hatchback	4dr SUV	Cargo Minivan	Cargo Van	Convertible	Convertible SUV	Coupe	Crew Cab Pickup	Extended Cab Pickup	Passenger Minivan	Passenger Van	Regular Cab Pickup	Sedan	Wagon	Grand Total
17,176		\$ 51,063	\$ 42,960					\$ 39,687						\$ 33,292	\$ 33,560	\$ 34,888
						\$ 64,900		\$ 59,400								\$ 61,600
						\$ 2,03,379		\$ 1,92,706						\$ 2,06,962		\$ 1,97,910
2,000			\$ 48,635			\$ 70,030		\$ 93,587						\$ 44,462	\$ 33,894	\$ 53,452
						\$ 2,50,536		\$ 2,54,270						\$ 2,36,836		\$ 2,47,163
26,699		\$ 54,521	\$ 58,536			\$ 63,418		\$ 51,804						\$ 70,702	\$ 43,267	\$ 61,547
								\$ 17,57,224								\$ 17,57,224
			\$ 33,996			\$ 25,618		\$ 2,059			\$ 30,006			\$ 27,947	\$ 2,053	\$ 28,207
			\$ 72,551			\$ 70,401		\$ 45,440			e of MSRP			\$ 50,913		
2,000	\$ 8,888	\$ 18,329	\$ 32,847	\$ 20,007	\$ 7,153	\$ 62,835	\$ 17,717	\$ 38,939	\$ 39,256	Value: N	No value	24,307	\$ 19,825	\$ 19,799	\$ 15,825	\$ 28,273
32,935			\$ 35,792			\$ 24,235		\$ 19,085						\$ 26,104	\$ 26,372	\$ 26,723
2,000	\$ 2,000	\$ 2,000	\$ 30,993	\$ 20,173	\$ 12,537	\$ 2,000		\$ 45,981	\$ 31,052	s Row: B	uick	14,142	\$ 9,343	\$ 21,780	\$ 24,783	\$ 22,390
						\$ 2,14,719		\$ 2,48,224		Column	n: Extended Cab P	ickup				\$ 2,37,384
19,136			\$ 24,620			\$ 23,426									\$ 22,121	\$ 22,208
2,000	\$ 13,711	\$ 18,468	\$ 42,028	\$ 21,274	\$ 17,698	\$ 34,762		\$ 34,101	\$ 41,439	\$ 23,808	\$ 23,115	\$ 32,425	\$ 17,798		\$ 27,259	
														\$ 46,617		\$ 46,617
	\$ 5,551		\$ 36,696	\$ 23,792	\$ 18,723				\$ 39,062	\$ 26,633	\$ 25,105	\$ 26,247	\$ 21,070			\$ 30,493
17,217		\$ 25,837	\$ 28,856			\$ 36,019		\$ 21,763			\$ 36,879			\$ 26,001		\$ 26,630
			\$ 37,749						\$ 34,629							\$ 36,464
18,537		\$ 17,629	\$ 30,413					\$ 20,688			\$ 26,615			\$ 27,102		\$ 24,597
			\$ 45,686			\$ 46,669		\$ 40,292						\$ 40,588		\$ 42,394
		\$ 19,379	\$ 31,533					\$ 20,376			\$ 32,977			\$ 23,298	\$ 18,217	
						\$ 3,36,402		\$ 3,28,292								\$ 3,31,567
	\$ 39,700		\$ 70,911				\$ 48,577									\$ 67,823
		\$ 31,567				\$ 52,452		\$ 50,824						\$ 48,865		-
			\$ 50,332					\$ 2,112						\$ 41,665	\$ 44,951	
						\$ 51,658		\$ 75,867								\$ 69,188
			\$ 77,500			\$ 1,30,165		\$ 1,16,017						\$ 1,02,562		\$ 1,14,200
						\$ 13,81,375								\$ 4,26,914		\$ 5,46,222
2,000	\$ 2,000	\$ 20,809	\$ 27,080			\$ 28,081		\$ 2,000		\$ 11,601	\$ 23,323		\$ 9,155	\$ 19,739	\$ 16,675	
						\$ 2,80,225		\$ 2,29,700								\$ 2,39,805
		¢ 40.933	c ,68,400	t 20.950		104610		e 109.714	I	L	e 22 500			¢ 49.100	\$ A4 900	e 7153

With the making the suggested pivot tables, I have done here that body style and the brand of the price I have insisted. With this pivot table I can easily make a column chart to compare body styles with the brands.

Here I have attached a excel file link to get full view of including total of each of the brands in pivot table....

https://docs.google.com/spreadsheets/d/1M7zOZuTGB9XstFaLoxuRe7oJbT4bwJj/edit?usp=drive_link&ouid=103768596710140113695&rtpof=true&s
d=true

Task 3: How do the different feature such as transmission type affect the MSRP, and how does this vary by body style?

Hints: Scatter plot chart to visualize the relationship between MSRP and transmission type, with different

symbols for each body style. Calculate the average MSRP for each combination of transmission type and body style using AVERAGEIFS or Pivot Tables.

For this dashboard analysis, I have inferred that the transmission type of vehicle styles as a feature that affects the MSRP of car to shown below the pivot tables. Here I have taken vehicle style as x-axis and msrp as y-axis to get the designed scatter plot to visualize the relationship between the msrp and vehicle style, and also legends shown as for the reference of each of the color given to vehicle styles.

Here I have attached a tableau public link to find this dashboard... dashboardall | Tableau Public

2																									
3	Average of MSRP	Veh	icle style 📝																						
4	Transmission Type	⊋ 2dr	Hatchback	2dr	SUV	4dr Hatchb	ack 4	4dr SUV	Cargo	o Minivan	Carg	o Van	Con	vertible	Con	vertible SUV	Cou	ipe	Crew Cab Pick	up E	Extended Cab Pickup	Passenger M	inivan	Passe	enger Var
5	AUTOMATED_MANUA	AL \$	27,181			\$ 29,2	49	\$ 40,451					\$	1,21,257			\$	2,45,588							
6	AUTOMATIC	\$	20,926	\$	18,615	\$ 23,8	34	\$ 41,555	\$	20,911	\$	15,280	\$	90,637	\$	38,926	\$	63,852	\$ 37,7	44	\$ 30,637	\$ 26	6,392	\$	29,015
7	DIRECT_DRIVE					\$ 34,5	12																		
8	MANUAL	\$	13,354	\$	6,304	\$ 17,5	94	\$ 15,426					\$	62,358	\$	9,233	\$	51,070	\$ 28,3	61	\$ 10,884	\$	4,405		
9	UNKNOWN	\$	7,362	\$	2,371								\$	5,784			\$	2,000							
.0	Grand Total	\$	16,779	\$	10,115	\$ 22,0	86	\$ 40,427	\$	20,911	\$	15,280	\$	84,224	\$	17,424	\$	76,901	\$ 37,2	20	\$ 22,489	\$ 25	5,592	\$	29,015
.1																									
.2																									
13]																			
4				П																					
.5																									
.6																									
.7																									
.8																									

I have used pivot table for finding the transmission type of each of the vehicles and its price. Calculated the average MSRP for each combination of transmission type and body style.

Here I have attached a excel file link....

https://docs.google.com/spreadsheets/d/1I-vjfIiHnR6ukFZhk4400I9Wbh8fkO-

1/edit?usp=drive link&ouid=103768596710140113695&rtp

of=true&sd=true

Task 4: How does the fuel efficiency of cars vary across different body styles and model years?

Hints: Line chart to show the trend of fuel efficiency (MPG) over time for each body style. Calculate the average MPG for each combination of body style and model year using AVERAGEIFS or Pivot Tables.

For this dashboard analysis, it is make a Line chart to show the trend of fuel efficiency (MPG) over time for each body style. It represents that the fuel efficiency of finding the average number of highway MPG with respect to the year.

And calculated the average MPG for each combination of body style and model year with the visualization of line chart with the trend lines.

Here I have attached a tableau public link....

dashboardall | Tableau Public

						AV	ERAGE MSRI	P FOR EACH COM	BINATIC	N OF BODY STYL	E AND MODEL YEAR						
Average of highway MPG	vehicle styles -7																
Year ,7	2dr Hatchback	2dr SU\	4dr Hatchback	4dr SUV	Cargo Minivan	Cargo Van	Convertible	Convertible SUV	Coupe	Crew Cab Pickup	Extended Cab Pickup	Passenger Minivan	Passenger Van	Regular Cab Pickup	Sedan	Wagon	Grand To
1990	30	2	0 3	1	20		24		25		22	19		22	24	24	
1991	30	1	6	15			23		26		16	18		17	24	23	
1992	30	1	7 2	3 2			26		27		16			18	25	24	
1993	25	1	8 2	7 2	I		24	26	28		17			18	25	24	
1994	27	1	8 2	7 20	21	19	26	26	27		20	21	16	22	25	24	
1995	30	1	6 2	В	22	19	25	26	26		20	20	15	21	24	24	
1996	25	2	0 2	22	23	15	24	24	27		20	21	15	22	26	25	
1997	26	2	2 2	7 20	21	17	25	21	27		18	21	17	19	25	24	
1998	23	2	6 2	5 22		17	24	24	26		19	23	17	19	27	23	
1999	30	1	9	18		17	22		28		18	22		18	27		
2000	30	1	9	16		16	25		24		21	23	15	21	27	31	
2001	25	1	9	15	22	16	23		20		19	21	15	23	27	31	
2002	25	1	9	20	21	15	24	23	24	17	20	22	15	22	26	29	
2003	30	1	9	15	21	15	20	23	24	18	21	22		24	27	24	
2004	30	1	9 3	4 15	20		20		25	22	18	22		18	26	23	
2005	30	1	9 3	1 15	21		21		26	23		22		18	26	24	
2006	27	1	2	9 20	23		23		24	19		23		18	25	25	
2007	26		2	3 2	23		23		25	18	18	23		20	25	25	
2008	27		2	3 2	23		24		25	18	19	23		18	27	25	
2009	25		3	1 23			24		24	19	20			22	27	27	
2010	26		3	23			25		24	19	21	24		21	26	28	
2011	28		2	9 24			24		23	21	22	25		27	27	29	
2012	3		3	3 23		17	24	22	22	21	23	25	15	24	28	31	
2013	32		3.	2 24		17	23	22	25	21		28	15		30	30	
2014	35		3	9 24		17	27	22	23	19	17	26	16		30	29	
2015	34	3	0 3	8 26	28	17	28		26	22	22	26	18	23	32	31	
2016	34	3	0 3	9 26	28	16	28		27	22	22	26	18	23	32	30	
2017	33	2	9 3	8 26	27		28	28	28	22	21	26	19	23	33	31	
Grand Total	31	1:	3	24	25	17	26	24	26	21	20	24	17	21	30	28	

With the help of this pivot table in excel I can make a line chart for finding the average msrp with the body style of each year. I have calculated a average MPG for each combination of body style and model year.

Here I have attached a excel link....

https://docs.google.com/spreadsheets/d/1FiZn8qYeWuLO vuhWMKEsA6gzyoNZy4cp/edit?usp=drive link&ouid=10 3768596710140113695&rtpof=true&sd=true

Task 5: How does the car's horsepower, MPG, and price vary across different Brands?

Hints: Bubble chart to visualize the relationship between horsepower, MPG, and price across different car brands. Assign different colors to each brand and label the bubbles

with the car model name. Calculate the average horsepower, MPG, and MSRP for each car brand using AVERAGEIFS or Pivot Tables.

For this dashboard analysis, I have insisted on making a bubble chart with the help of relationship between horsepower, MPG, and price across different car brands. Assign different colors to each brand and label the bubbles with the car model name. And have calculated the average horsepower, MPG, and MSRP for each car brand.

Here I have attached a tableau public link to find the fullscreen view of my dashboard analysis....

dashboardall | Tableau Public

AVERAGE OF ENGINE HP, MPG & MSRP FOR EACH CAR BRAND											
values											
Brands	Average of Engine HP	Average of highway MPG	Average of MSRP								
Acura	245	28	\$ 34,888								
Alfa Romeo	237	34	\$ 61,600								
Aston Martin	484	19	\$ 1,97,910								
Audi	278	29	\$ 53,452								
Bentley	534	19	\$ 2,47,169								
BMW	327	29	\$ 61,547								
Bugatti	1001	14	\$ 17,57,224								
Buick	219	27	\$ 28,207								
Cadillac	332	25	\$ 56,231								
Chevrolet	247	26	\$ 28,273								
Chrysler	229	26	\$ 26,723								
Dodge	244	22	\$ 22,390								
Ferrari	510	16	\$ 2,37,384								
FIAT	144	34	\$ 22,206								
Ford	243	24	\$ 27,393								
Genesis	347	25	\$ 46,617								
GMC	260	21	\$ 30,493								
Honda	196	32	\$ 26,630								
HUMMER	261	17	\$ 36,464								
Hyundai	202	30	\$ 24,597								
Infiniti	310	25	\$ 42,394								
Kia	207	29	\$ 25,112								
Lamborghini	614	18	\$ 3,31,567								
Land Rover	322	22	\$ 67,823								
Lexus	277	26	\$ 47,549								
Lincoln	285	24	\$ 42,494								
Lotus	276	27	\$ 69,188								
Maserati	421	20	\$ 1,14,208								
Maybach	591	16	\$ 5,46,222								
Mazda	169	28	\$ 19,719								
McLaren	610	22	\$ 2,39,805								
Mercedes-Benz	350	25	\$ 71,538								
Mitsubishi	174	27	\$ 21,215								
Nissan	240	26	\$ 28,513								
Oldsmobile	177	26	\$ 11,543								
Plymouth	132	28	\$ 3,123								
Pontiac	190	27	\$ 19,322								
Porsche	393	25	\$ 1,01,622								
Rolls-Royce	488	19	\$ 3,51,131								
Saab	221	26	\$ 27,414								
Scion	154	32	\$ 19,933								

Spyker	400	18	\$ 2,13,323
Subaru	197	29	\$ 24,828
Suzuki	160	26	\$ 17,901
Toyota	236	26	\$ 28,946
Volkswagen	190	32	\$ 28,076
Volvo	231	27	\$ 28,541
Grand Total	250	26	\$ 40,560

With the help of suggested pivot table, I had created a bubble for engine hp, highway mpg and msrp with respect to the each of the brands. And have calculated the average horsepower, MPG, and MSRP for each car brand using excel pivot table functions.

Here I have attached a excel file link....

https://docs.google.com/spreadsheets/d/1Byc9Qo5Bw2EbPvsBZyZJZBT7GC29777/edit?usp=drive_link&ouid=10376859671014011 3695&rtpof=true&sd=true

DASHBOARD(overall)

Link: dashboardall | Tableau Public

RESULT

In this project, I have learnt how to make a analysis of each of the dashboards, I was very thrilled to making a beautiful insights as a data analyst. I have used tableau public and excel to find the tasks and dashboard analysis.

Future directions continue to be improvements in software and algorithms. Increasing the level of parallelism is desired for dealing with large scale computational and memory requirements.

Limitations:

Many advanced car features can significantly increase the cost of the vehicle. This can make the car less affordable for some consumers. Advanced features often require specialized maintenance and repairs, which can be more expensive and may require specific expertise not readily available at all repair shops.

DRIVE LINK

https://drive.google.com/drive/folders/1teT0DcMzWfX iVx_33PFkRoUtyh_v9gJK?usp=drive_link