

Investigating Dominant Word Order on Universal Dependencies with Graph Rewriting

Café TAL

Hee-Soo Choi, Bruno Guillaume, Karën Fort, Guy Perrier

August 31th, 2021

Goal

Determine a dominant word order of **Subject (S), Object (O), Verb (V)** on **74 languages (141 corpora)** of **Universal Dependencies** (UD) using **GREW**, a Graph Rewriting tool and compare our results with other references.

Motivations

Typology and NLP

• Typological feature of dominant word order of Subject, Object and Verb

Typology and NLP

- Typological feature of dominant word order of Subject, Object and Verb
- Utility of linguistic typology in NLP [Bender, 2016, O'Horan et al., 2016]:
 - In language transfer [Naseem et al., 2012, Ahmad et al., 2019]
 - In developping language-independent systems [Bender, 2009]

Typology and NLP

- Typological feature of dominant word order of Subject, Object and Verb
- Utility of linguistic typology in NLP [Bender, 2016, O'Horan et al., 2016]:
 - In language transfer [Naseem et al., 2012, Ahmad et al., 2019]
 - In developping language-independent systems [Bender, 2009]
- Universal annotations of UD allow typological experiments on several languages

Methodology

Taking Corpora as Basis

• Corpus' degree of representativeness of the language

Taking Corpora as Basis

- Corpus' degree of representativeness of the language
- Corpora with fewer than 1,000 sentences eliminated:
 - ightarrow UD 2.7: 104 languages, 183 corpora
 - \rightarrow UD 2.7_{1K}: 74 languages, 141 corpora

Taking Corpora as Basis

- Corpus' degree of representativeness of the language
- Corpora with fewer than 1,000 sentences eliminated:
 - ightarrow UD 2.7: 104 languages, 183 corpora
 - \rightarrow UD 2.7_{1K}: 74 languages, 141 corpora

- Corpus level to observe variations between corpora of a given language:
 - ightarrow 29 languages with more than one corpus
 - \rightarrow 45 languages with only one corpus

Defining a Dominant Word Order

• Count frequencies of the six possibles orders: SVO, SOV, VSO, VOS, OVS, OSV

Defining a Dominant Word Order

- Count frequencies of the six possibles orders: SVO, SOV, VSO, VOS, OVS, OSV
- Two meanings according to WALS [Dryer and Haspelmath, 2013]:
 - \rightarrow the order is **the only possible one** for the language
 - ightarrow the language exhibits several different orders and **one is more frequently used**

Defining a Dominant Word Order

- Count frequencies of the six possibles orders: SVO, SOV, VSO, VOS, OVS, OSV
- Two meanings according to WALS [Dryer and Haspelmath, 2013]:
 - \rightarrow the order is **the only possible one** for the language
 - ightarrow the language exhibits several different orders and **one is more frequently used**
- The most frequent order considered as the dominant order if it is at least twice as frequent as the next most frequent:
 - \rightarrow ratio \geq 2: the most frequent order is the dominant order
 - \rightarrow ratio < 2: No Dominant Order (NDO)

Using Graph Rewriting

GREW: Graph Rewriting Tool

Graph rewriting tool dedicated to NLP applications

- Query corpora using graph patterns
- Count the occurrences of each pattern in each corpus

GREW pattern for SVO order:

```
pattern {
    V [upos=VERB];
    V -[1=nsubj]-> S;
    V -[1=obj]-> 0;
    S << V; V << 0
}</pre>
```


Limits of UD annotations

• A subject can not be linked to several verbs

Limits of UD annotations

- A subject can not be linked to several verbs
- The subject and the object may not be related to the same verb

Enriching UD annotations

Two cases recovered by adding implicit subjects (isubj):

Enriching UD annotations

Two cases recovered by adding implicit subjects (isubj):

· Coordination:

Enriching UD annotations

Two cases recovered by adding implicit subjects (isubj):

Coordination:

Control or raising:

Dominant Word Order in
Multi-Corpora Languages

Intra-language Consistency

Corpora as vectors with the frequencies of the six orders

	SVO	SOV	VSO	VOS	OSV	OVS
Romanian_Nonstandard	38.07%	31.87%	9.66%	3.97%	1.71%	14.72%
Romanian_RRT	85.32%	7.76%	1.12%	0.70%	1.18%	3.91%
Romanian_SiMoNERo	97.61%	0.97%	0.09%	0.09%	0.13%	1.10%

Distribution vectors for the Romanian corpora.

- Computing the cosine between the vectors for each corpus
- Cosine value close to 1 when two corpora display similar distributions

Intra-language Consistency

Cosine values between the three Romanian corpora in UD 2.7 $_{1 \mbox{\scriptsize K}}$.

Intra-language Consistency

Multi-corpora (nb in parenthesis) languages ordered by minimum cosine value.

 $Possible\ explanations\ for\ intra-language\ inconsistency:$

Possible explanations for intra-language inconsistency:

• Different text genres: Romanian-NonStandard, French-FQB

Possible explanations for intra-language inconsistency:

- Different text genres: Romanian-NonStandard, French-FQB
- Different text periods: Latin, Ancient Greek, German-LIT

Possible explanations for intra-language inconsistency:

- Different text genres: Romanian-NonStandard, French-FQB
- Different text periods: Latin, Ancient Greek, German-LIT
- Non-standard annotations: Hindi-HDTB where the object is a verb

Possible explanations for intra-language inconsistency:

- Different text genres: Romanian-NonStandard, French-FQB
- Different text periods: Latin, Ancient Greek, German-LIT
- Non-standard annotations: Hindi-HDTB where the object is a verb
- Language specifics: Arabic-PADT with topicalization

Comparison with other sources

Comparison with WALS

59 languages in common, same dominant word order for 48

Language	UD 2.7 _{1K}	WALS	
Amharic	1 NDO	SOV	
Arabic	1 VSO, 2 NDO	VSO	
Belarusian	1 SVO	NDO	
Estonian	1 SVO, 1 NDO	SVO	
German	2 SOV, 2 NDO	NDO	
Greek	1 SVO	NDO	
Hindi	1 SOV, 1 NDO	SOV	
Mbya Guarani	1 NDO	svo	
Romanian	2 SVO, 1 NDO	SVO	
Slovenian	1 SVO, 1 NDO	SVO	
Urdu	1 NDO	SOV	

Differences with WALS.

Comparison with Östling [Östling, 2015]

- Word order typology based upon the translated and aligned New Testament
- 52 languages in common, same dominant order for 38

Language	UD 2.7 _{1K}	Östling	
Amharic	1 NDO	SOV	
Ancient Greek	2 NDO	SVO	
Armenian	1 NDO	SVO	
Basque	1 SOV	SVO	
Dutch	2 NDO	SOV	
Estonian	1 SVO, 1 NDO	SVO	
German	2 SOV, 2 NDO	SOV	
Hindi	1 SOV, 1 NDO	SOV	
Hungarian	1 NDO	SVO	
Latin	1 SOV, 3 NDO	SVO	
Mbya Guarani	1 NDO	SVO	
Romanian	2 SVO, 1 NDO	SVO	
Slovenian	1 SVO, 1 NDO	SVO	
Welsh	1 VSO	SVO	

Influence of Implicit Subjects

Comparison with/without isubj

		Without isubj		With isubj		
Language	Согрога	Order	Ratio	Order	Ratio	
Czech	CAC	SVO	4.27	SVO	5.28	
	CLTT	SVO	6.85	SVO	8.18	
	FicTree	NDO (SVO/SOV)	1.97	SVO	2.20	
	PDT	SVO	3.36	SVO	3.96	
	PUD	SVO	6.58	SVO	6.17	
Estonian	EDT	SVO	3.80	SVO	3.19	
	EWT	SVO	2.05	NDO (SVO/SOV)	1.70	
German	GSD	NDO (SOV/SVO)	1.03	NDO (SOV/SVO)	1.03	
	HDT	NDO (SOV/SVO)	1.87	SOV	2.01	
	LIT	SOV	2.30	SOV	2.53	
	PUD	NDO (SOV/SVO)	1.47	NDO (SOV/SVO)	1.62	
Latin	ITTB	NDO (SVO/SOV)	1.22	NDO (SVO/SOV)	1.12	
	LLCT	NDO (OSV/SVO)	1.07	NDO (SOV/SVO)	1.40	
	PROIEL	NDO (SOV/SVO)	1.21	NDO (SOV/SVO)	1.16	
	Perseus	SOV	2.42	SOV	2.17	

Corpora for which the word order changes with/without isubj and associated ratio.

Comparison with/without isubj

Cosine values between the Latin corpora, without isubj on the left, with isubj on the right.

• Results obtained on UD corpora consistent with typology databases

- Results obtained on UD corpora consistent with typology databases
- They can be used to NLP applications or to complete databases:
 - → WALS does not cover dead-languages
 - \rightarrow WALS does not provide feature 81A for six languages: Faroese, Galician, Kazakh, Maltese, Naija and Slovak

- Results obtained on UD corpora consistent with typology databases
- They can be used to NLP applications or to complete databases:
 - → WALS does not cover dead-languages
 - \rightarrow WALS does not provide feature 81A for six languages: Faroese, Galician, Kazakh, Maltese, Naija and Slovak
- GREW useful to query UD corpora and to overcome limits of UD annotations

References

References i

Ahmad, W., Zhang, Z., Ma, X., Hovy, E., Chang, K.-W., and Peng, N. (2019). On difficulties of cross-lingual transfer with order differences: A case study on dependency parsing.

In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2440–2452, Minneapolis, Minnesota. Association for Computational Linguistics.

Bender, E. M. (2009).

Linguistically naïve != language independent: Why NLP needs linguistic typology.

In Proceedings of the EACL 2009 Workshop on the Interaction between Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous?, pages 26–32, Athens, Greece. Association for Computational Linguistics.

References ii

Bender, E. M. (2016).
Linguistic typology in natural language processing.
Linguistic Typology, 20:645–660.

Dryer, M. S. and Haspelmath, M., editors (2013).

WALS Online.

Max Planck Institute for Evolutionary Anthropology, Leipzig.

Naseem, T., Barzilay, R., and Globerson, A. (2012).Selective sharing for multilingual dependency parsing.

In *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics*, pages 629–637, Jeju Island, Korea. Association for Computational Linguistics.

References iii

O'Horan, H., Berzak, Y., Vulić, I., Reichart, R., and Korhonen, A. (2016). **Survey on the use of typological information in natural language processing.** In *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers*, pages 1297–1308, Osaka, Japan. The COLING 2016 Organizing Committee.

Östling, R. (2015).

Word order typology through multilingual word alignment.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 205–211, Beijing, China. Association for Computational Linguistics.

GREW rule for isubj

```
rule conj {
    pattern {
        V1 [upos=VERB]; V2 [upos=VERB];
        V1 -[1=conj]-> V2;
        V1 -[1=nsubj]-> S1;
    }
    without { V2 -[1=nsubj]-> S2; }
    commands { add_edge V2 -[isubj]-> S1; }
}
```

GREW rule adding the isubj relation.