

PROGRAMMIERUNG

Übung 12: Hoare-Kalkül

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 05. Juli 2019

HOARE-Kalkül

- ▶ Beweis / Verifikation von Programmeigenschaften
- ► Verifikationsformeln der Form {*P*}A{*Q*}
 - ▶ P und Q sind Zusicherungen (prädikatenlogische Ausdrücke)
 - ▶ P heißt Vorbedingung, Q heißt Nachbedingung
 - Beschreibung der Veränderung von Zusicherungen
 - ▶ Bedeutung: Wenn die Variablenwerte vor Ausführung von A die Zusicherung P erfüllen und A terminiert, dann erfüllen die Variablen nach Ausführung von A die Zusicherung Q
- ► Aufstellen eines Beweisbaumes mit zur Verfügung stehenden Regeln

Eric Kunze, 05. Juli 2019 Programmierung Folie 2 von 7

Hoare-Kalkül - Regeln

- ► Zuweisungsaxiom
- ▶ Sequenzregel
- ▶ CompRegel
- Iterationsregel
- ► (erste und zweite) Alternativregel
- ► Konsequenzregeln

Eric Kunze, 05. Juli 2019 Programmierung Folie 3 von 7

Schleifeninvariante

Für die Iterationsregel benötigen wir die Schleifeninvariante SI. In den meisten unserer Fälle ist diese von der Form $SI = A \wedge B$, wobei

- ▶ A den Zusammenhang zwischen Zählvariable und Akkumulationsvariablen beschreibt. Führe dazu einige Iterationen der Schleife durch und leite daraus einen Zusammenhang her.
- ▶ B die abgeschwächte Schleifenbedingung ist. Dabei nehmen wir die letztmögliche Variablenbelegung, für die die Schleifenbedingung π noch wahr ist und führen den Schleifenrumpf noch einmal darauf aus $(\to \pi')$.

$$\Rightarrow B = \pi \cup \pi'$$
.

Eric Kunze, 05. Juli 2019 Programmierung Folie 4 von 7

Aufgabe 1

Verfikationsformel:

$$\{(x \ge 0) \land (x = x1) \land (z = 0) \land (y \ge 0)\}$$
 while $(x1 > 0)$ $\{x1 = x1-1; z = z+y;\}$ $\{(z = y \cdot x)\}$

Schleifeninvariante:

$ \begin{array}{c cccc} # & x1 & z \\ \hline 0 & x & 0 \\ 1 & x-1 & y \\ 2 & x-2 & 2y \\ N & x-N & Ny \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccc} 1 & x-1 & y \\ 2 & x-2 & 2y \end{array} $	$ \begin{array}{cccc} 1 & x-1 & y \\ 2 & x-2 & 2y \end{array} $	
2 x-2 2y	2 x-2 2y	
N x - N Ny	N x - N Ny	
	$\begin{vmatrix} x1 = x - N \\ z = N * y \end{vmatrix}$	

abgeschwächte Schleifenbedingung:

- ► Schleifenbedingung $\pi = (x1 > 0)$
- ► Schleifenbedingung letztmalig wahr für x1 = 1
- ▶ Wert nach nochmaligem Schleifendurchlauf: $\pi' = (x1 = 0)$
- $\blacktriangleright B = \pi \cup \pi' = (\mathtt{x} 1 \ge \mathtt{0})$

$$\Longrightarrow SI = A \wedge B = (z=(x-x1)*y) \wedge (x1 \geq 0)$$

Aufgabe 1

Verfikationsformel:

$$\{(x \ge 0) \land (x = x1) \land (z = 0) \land (y \ge 0)\}$$
 while $(x1 > 0)$ $\{x1 = x1-1; z = z+y;\}$ $\{(z = y \cdot x)\}$

Sei $SI = A \wedge B = (z=(x-x1)*y) \wedge (x1 \ge 0)$ und $\pi = x1 > 0$.

$$A = C = D = G = SI$$

$$B = SI \land \neg \pi = (z = (x - x1) * y) \land (x1 \ge 0) \land \neg (x1 > 0)$$

$$E = SI \land \pi = (z = (x - x1) * y) \land (x1 \ge 0) \land (x1 > 0)$$

Eric Kunze, 05. Juli 2019 Programmierung Folie 6 von 7

Aufgabe 2

$$A = \text{true } \wedge \ (y < 0)$$

$$G = E$$

$$B = \text{true } \wedge \neg (y < 0)$$

$$H = -x + 1 \ge 0$$

$$G = A$$

$$J = H$$

$$D = A$$

$$K = (y \ge 0)$$

$$E = -(3 \cdot y) + 1 \ge 0$$

$$L = \text{stärkere Vorbedingung}$$

$$F = E$$

$$M = \text{Sequenzregel}$$

zu zeigen: true
$$\land$$
 $(y < 0) \Rightarrow (-3 \cdot y + 1 \ge 0)$

$$true \land (y < 0) \Rightarrow y < 0$$

$$\Rightarrow -3 \cdot y > 0$$

$$\Rightarrow -3 \cdot y + 1 > 1$$

$$\Rightarrow -3 \cdot y + 1 \ge 0$$

Eric Kunze, 05. Juli 2019 Programmierung Folie 7 von 7