COMP6704 Lecture 1 Advanced Topics in Optimization

Introduction

Fall, 2022 Instructor: WU, Xiao-Ming

Many slides adapted from Internet resources. For internal use only, please do not distribute!

Class Information

- Lectures:
 - Tuesday <6:30 9:20 pm PQ 303>
- Instructor: WU, Xiao-Ming @ Department of Computing
 - Office: PQ725
 - Phone: 27667261
 - Email: csxmwu@comp.polyu.edu.hk
- TA: FAN, Lu
 - Email: complu.fan@connect.polyu.hk

Assessment and Requirements

Coursework

2 individual assignments (10% for each)	20%
Quiz (each class, in group)	25%
1 individual project	55%
Total	100%

- Assignments require programming in Python/matlab.
- Quiz in-class group study of questions and reading materials.

Rules and Regulations: Assignment Submission

- All submissions (homework and project) will be done on Blackboard. Each assignment will be given a deadline by the Blackboard system. The normal cut-off time would be 11:59 pm on the specified date using the Blackboard clock.
- For late submissions, penalty will apply (33% penalty per day).
- You are encouraged to discuss with your teammates/classmates, but you should do the coding and writing independently.

Teaching Plan

• Basic knowledge (5 lectures)

- Least squares, linear programming.
- Convex sets and functions.
- Recognize and formulate convex optimization problems.

• Optimization techniques & case studies in ML (8 lectures)

- Unconstrained optimization. Gradient decent, stochastic gradient decent, Newton's method, logistic regression, neural networks, back propagation, Bayesian optimization.
- Constrained optimization. Lagrange multipliers, support vector machine, duality, KKT conditions, alternating direction method of multipliers (ADMM). Lasso, dimension reduction, PCA, Robust PCA, semi-definite programming.
- Project presentations (1-2 lectures after the normal teaching period)

Focus of the Course

- Recognize optimization problems
- Formulate optimization problems
- Solve optimization problems
 - Basic tools and techniques
- Applications of optimization techniques in Machine Learning

Group Study

- Work with your group mates on a problem set
- Answer questions or present ideas

GROUP FORMATION

www.learnmanagement2.com

Forming

Storming

Norming

Performing

What Is Optimization?

Optimization is Everywhere

Why Optimization Is Important for ML?

Optimization Problems

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

 $Area = 100 \cdot 2200 = 220,000 \text{ ft}^2$

 $Area = 700 \cdot 1000 = 700,000 \text{ ft}^2$

Area = $1000 \cdot 400 = 400,000 \text{ ft}^2$

Optimization Problems

minimize
$$f_0(x_1, ..., x_n)$$

subject to $f_1(x_1, ..., x_n) \le 0$
...
 $f_m(x_1, ..., x_n) \le 0$

- $x = (x_1, x_2, ..., x_n)$ are decision variables
- $f_0(x_1, x_2, ..., x_n)$ gives the cost of choosing x
- Inequalities give constraints that x must satisfy

Optimization is Difficult!

- General optimization problems are intractable
 - Local (non global) minima
 - All kinds of constraints

Local / Global Maximum / Minimum

- **Definition**. A point x^* is called a **local** minimum of f if there exists $\varepsilon > 0$ such that $f(x^*) < f(x)$ for all $||x x^*|| \le \varepsilon$.
- **Definition**. A point x^* is called a **global** minimum of f if $f(x^*) < f(x)$ for all feasible x.

Local maximum: $f(a) \ge f(x)$ for all x **in the interval**

Global maximum: The maximum **over** the entire function.

Local / Global Maximum / Minimum

- **Definition**. A point x^* is called a local minimum of f if there exists $\varepsilon > 0$ such that $f(x^*) < f(x)$ for all $||x x^*|| \le \varepsilon$.
- **Definition**. A point x^* is called a global minimum of f if $f(x^*) < f(x)$ for all feasible x.

Convexity:

A Crucial Matter

- A convex function is one whose graph slopes everywhere toward its minimum value.
- A nonconvex function may have many basins, or local minima.

Image by Amir Ali Ahmadi

History

- 1940s: Linear programming
- 1950s: Quadratic programming
- 1960s: Geometric programming
- 1990s: Semidefinite programming, second-order cone programming, quadratically constrained quadratic programming
 - Around 1990 (Nesterov & Nemirovski): polynominal-time interior-point methods for nonlinear convex programming

Warm-up

- Problem: Suppose we measure a distance four times, and obtain the following results: 72, 69, 70 and 73 units.
- What is the **best estimate** of the correct measurement?
 - Use squared error

$$S = (x - 72)^2 + (x - 69)^2 + (x - 70)^2 + (x - 73)^2$$
$$= 4(x - 71)^2 + 10$$

Statistics Review

Given, $x_1, x_2, ..., x_n$, what are the mean, variance, standard deviation of data?

Mean:
$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Variance:
$$\sigma_x^2 = \frac{1}{N} \sum_{n=1}^{N} (x_i - \bar{x})^2$$

Standard deviation:
$$\sigma_{x} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_{i} - \bar{x})^{2}}$$

Error Measurement

Why not consider other measurement such as ...?

$$\frac{1}{N}\sum_{n=1}^{N}(x_n-\bar{x})$$

$$\frac{1}{N}\sum_{n=1}^{N}|x_n-\bar{x}|$$

Least Square Regression

Carl Friedrich Gauss, 1794

DA	DATA MODEL	
x	y	y' = ax + b
2	2	2.42857
4	4	3.25714
6	4	4.08571
8	5	4.91429
10	5	5.74286
12	7	6.57143
14	??	7.4

Find the line that best fits the data

Meaning of the Best Fit

• What is the meaning of best fit?

$$\{(x_1, y_1), \dots, (x_N, y_N)\}\$$

 $y = ax + b$

• Minimize the squared error

$$E(a,b) = \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$

Solving Least Squares

$$E(a,b) = \sum_{n=1}^{N} (y_n - (ax_n + b))^2$$

$$\frac{\partial E}{\partial a} = 0, \qquad \frac{\partial E}{\partial b} = 0$$

$$\frac{\partial E}{\partial a} = \sum_{n=1}^{N} 2(y_n - (ax_n + b)) * (-x_n)$$

$$\frac{\partial E}{\partial b} = \sum_{n=1}^{N} 2(y_n - (ax_n + b)) * 1$$

Solving Least Squares

$$\binom{a}{b} = \begin{pmatrix} \sum_{n=1}^{N} x_n^2 & \sum_{n=1}^{N} x_n \\ \sum_{n=1}^{N} x_n & \sum_{n=1}^{N} 1 \end{pmatrix}^{-1} \begin{pmatrix} \sum_{n=1}^{N} x_n y_n \\ \sum_{n=1}^{N} y_n \end{pmatrix} \begin{bmatrix} x_n \\ y_n \\ y_n \end{bmatrix}^{10}$$

$$\det \mathbf{M} = N \sum_{n=1}^{N} x_n^2 - (N\bar{x})^2$$

$$= N^2 \left(\frac{1}{N} \sum_{n=1}^{N} x_n^2 - \bar{x}^2 \right)$$

$$= N^2 * \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2$$

Least Squares in Matrix Form

• Note that the notations are different from previous slides

 $A \in \mathbb{R}^{k \times n}$ (with $k \ge n$), a_i^T are the rows of A, and the vector $x \in \mathbb{R}^n$

minimize
$$f_0(x) = ||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$
.

The Transportation Problem

• Minimize the cost

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

- Constraints
 - $\sum_{j=1}^{m} x_{ij} \leq s_i, \forall i = 1, \dots, m$
 - $\sum_{i=1}^{n} x_{ij} \ge d_j$, $\forall j = 1, \dots, n$
 - $x_{ij} \geq 0, \forall i, j$

Linear Programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, ..., m$

- Solving linear programs
 - No analytical formula for solution
 - Reliable and efficient algorithms and software
 - Computation time proportional to n^2m if $m \ge n$; less with structure
 - A mature technology

- 1700s, Fourier invented Fourier-Motzkin elimination method.
- 1930s, Kantorovich and Koopmans, optimal allocation of scarce resources.
- 1947, Dantzig invented the first practical algorithm for solving LPs: the simplex method.
- 1979, Khachiyan showed that LPs were solvable in polynomial time using the "ellipsoid method", theoretical breakthrough.
- 1984, Karmarkar developed the "interior point method", Along with the simplex method, this is the method of choice today for solving LPs.

History Solving systems of linear inequalities

Solving an LP

maximize
$$x_1 + 6x_2$$

s.t. $x_1 \le 200$
 $x_2 \le 300$
 $x_1 + x_2 \le 400$
 $x_1, x_2 \ge 0$

Level Sets

Case 1

minimize $x_1 + x_2$

$$x_1 + 2x_2 \le 8$$

$$3x_1 + 2x_2 \le 12$$

$$x_1 + 3x_2 \ge 13$$

$$x_1 \ge 0$$

Infeasible

Case 2

minimize
$$2x_1 - x_2$$

s.t. $x_1 - x_2 \le 1$
 $2x_1 + x_2 \ge 6$

Unbounded

Case 3

maximize $2x_1 + 2x_2$ s.t. $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 \ge 0$

Infinite number of optimal solutions

Looking at Extreme Points?

Too many Extreme Points

- consider the constraints $-1 \le x_i \le 1$, i = 1, ..., n
- Then we have in general 2n inequalities, but 2^n extreme points.

