Варианты задания

Варианты задания на весенний семестр 2020/2021 уч.года Вариант 1. Двухканальная передающая ячейка с управляемым усилением в каналах и фильтрацией в соседних каналах.

Рис.1.1 - Базовая структурная схема.

Таблица 1.1 - Пофамильное распределение вариантов

№	1.1	1.2	1.3	1.4	1.5	1.6	1.7		
ФИО	Абрамов Михаил Юрьевич	Шаврин Михаил Вячеславович	Соколов Александр Андреевич	Тумольский Егор Дмитриевич	Ершов Андрей Романович	Давлетгареева Милена Эдуардовна	Могилин Никита Васильевич		
<i>Fc</i> , ГГц	3,6	6,6	8,1	3,5	6,1	4,3	5,8		
Кр, дБ, не менее	45	37	39	37	34	41	38		
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,2	0,4	0,48	0,32	0,35	0,26	0,35		
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3		
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	3,13,3	5,76,1	7,07,5	3,03,2	5,25,6	3,74,0	5,05,35		
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	3,84,1	7,17,5	8,79,2	3,754,0	6,66,9	4,64,9	6,26,6		
ΔA_{stop} , дБ, не менее	27	33	33	30	32	30	25		
P1dBout, дБмВт, не менее	27	30	28	27	29	28	27		
Диапазон управления аттенюатора, дБ, не менее	23	24	27	20	16	19	17		

Рис. 1.2 – Пояснение к ТЗ на АЧХ канала

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Аттенюатор должен быть аналоговым или иметь шаг перестройки не более 1 дБ.
- 3. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение Т3.
- 4. Усилители УМ1 и УМ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 5. При невозможности удовлетворить требования на P1dBOut (из-за возможных потерь на фильтре Φ 1), фильтр Φ 1 и выходной усилитель мощности УМ2 можно поменять местами.
- 6. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.

Вариант 2. Двухканальная передающая ячейка с управляемым фазовым сдвигом в каналах и фильтрацией в соседних каналах.

Рис.2.1 - Базовая структурная схема.

Таблица 2.1 - Пофамильное распределение вариантов

No	2.1	2.2	2.3	2.4	2.5	2.6	2.7
ФИО	Менщиков Иван Валерьевич	Исмаилов Рустам Магомедович	Лысак Александр Владимирович	Володько Семён Денисович	Савельев Максим Владиславович	Зайцева Анастасия Сергеевна	Бурдун Артемий Александрович
Fc , $\Gamma\Gamma$ ц	4,1	7,4 43	6,0	7,5 37	11,0	3,7	4,6
Кр, дБ, не менее	33	43	37	37	39	36	34
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,25	0,45	0,35	0,45	0,66	0,2	0,26
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	3,53,8	6,46,8	5,25,5	6,56,9	9,510,1	3,23,4	4,04,2
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	4,44,7	8,08,4	6,56,8	8,18,5	11,812,5	4,04,2	5,05,2
ΔA_{stop} , дБ, не менее	31	28	32	30	28	35	35
Р1dBout, дБмВт, не менее	28	30	32	32	30	32	29
Шаг фазы фазовращателя, град, не более	12	6	12	12	6	12	6

Рис. 2.2 – Пояснение к ТЗ на АЧХ канала

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Фазовращатель должен быть аналоговым или дискретным с шагом фазы не более заданного. Полный диапазон перестройки должен быть в 360°.
- 3. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение Т3.
- 4. Усилители УМ1 и УМ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 5. При невозможности удовлетворить требования на P1dBOut (из-за возможных потерь на фильтре Φ 1), фильтр Φ 1 и выходной усилитель мощности УМ2 можно поменять местами.
- 6. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.

Вариант 3. Двухканальная приемная ячейка с управляемым усилением в каналах и фильтрацией в соседних каналах.

Рис.3.1 - Базовая структурная схема.

Таблица 3.1 - Пофамильное распределение вариантов

3.0	2.1	2.2	2.2	2.4	2.5	2.6	2.7
№	3.1	3.2	3.3	3.4	3.5	3.6	3.7
ФИО	Мацеенок Олег Игоревич	Кожуховский Антон Валерьевич	Сергеев Руслан Валерьевич	Сабыров Равшан Тазебаевич	Власенков Данила Сергеевич	Сирик Александр Владимирович	Шишонков Антон Станиславович
<i>Fc</i> , ГГц	3,9	6,9	4,5	6,8	7,5	10,3	7,4
Кр, дБ, не менее	33	38	41	39	43	37	34
$\Delta F_{-3\mathrm{dB}}$, $\Gamma \Gamma$ ц, не менее	0,2	0,4	0,27	0,4	0,45	0,62	0,45
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	3,33,6	6,06,4	3,94,1	5,86,3	6,56,9	8,99,5	6,46,8
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	4,24,4	7,47,8	4,85,1	7,37,7	8,18,5	11,111,7	7,98,4
ΔA_{stop} , дБ, не менее	27	25	29	28	31	24	34
Кш, дБ, не более	2,3	3,4	2,9	2,4	3,4	3,0	2,7
Диапазон управления аттенюатора, дБ, не менее	21	17	25	20	17	27	18

Рис. 3.2 – Пояснение к ТЗ на АЧХ канала

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Аттенюатор должен быть аналоговым или иметь шаг перестройки не более 1 дБ.
- 3. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение ТЗ.
- 4. Усилители МШУ1 и МШУ1 не обязательно должны быть одним устройством, могут являться каскадными.
- 5. Предпочтительно чтобы первым устройством был фильтр Ф1, однако, если из-за потерь на фильтре Ф1 невозможно удовлетворить на Кш, то первый МШУ с минимальным коэффициентом шума можно поставить первым.
- 6. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.
- 7. При расчете Кш канала строить упрощенную модель (только в один канал, при задании свойств сумматора учитывать только омические потери, без потерь на деление).

Вариант 4. Двухканальная приемная ячейка с управляемым фазовым сдвигом в каналах и фильтрацией в соседних каналах.

Рис.4.1 - Базовая структурная схема.

Таблица 4.1 - Пофамильное распределение вариантов

№	4.1	4.2	4.3	4.4	4.5	4.6	4.7
ФИО	Кретов Вячеслав Валерьевич	Дмитриев Матвей Валентинович	Коржук Игорь Олегович	Салихов Махмуд Магомедович	Тарасова Алена Анатольсвна	Смагин Михаил Александрович	Муренков Ярослав Андреевич
<i>Fc</i> , ГГц	3,4	5,2	4,1	7,0	8,4	10,3	8,9
Кр, дБ, не менее	39	35	42	37	41	34	38
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,2	0,3	0,25	0,4	0,5	0,62	0,53
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	2,93,1	4,54,8	3,53,8	6,06,45	7,27,8	8,99,5	7,78,2
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	3,73,9	5,65,9	4,44,7	7,58,0	9,09,5	11,111,7	9,610,1
ΔA_{stop} , дБ, не менее	33	33	25	35	35	29	35
Кш, дБ, не более	2,3	3,2	2,9	2,9	2,7	3,5	2,9
Шаг фазы фазовращателя, град, не более	6	12	6	6	12	6	12

Рис.4.2 – Пояснение к ТЗ на АЧХ канала

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Фазовращатель должен быть аналоговым или дискретным с шагом фазы не более заданного. Полный диапазон перестройки должен быть в 360°.
- 3. Для общей финальной схемы с помощью анализа выхода годных (Yield) необходимо перебрать достаточно большое количество состояний аттенюаторов (не менее 250) и показать выполнение Т3.
- 4. Усилители МШУ1 и МШУ1 не обязательно должны быть одним устройством, могут являться каскадными.
- 5. Предпочтительно чтобы первым устройством был фильтр Ф1, однако, если из-за потерь на фильтре Ф1 невозможно удовлетворить на Кш, то первый МШУ с минимальным коэффициентом шума можно поставить первым.
- 6. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.
- 7. При расчете Кш канала строить упрощенную модель (только в один канал, при задании свойств сумматора учитывать только омические потери, без потерь на деление).

Вариант 5. Приемная ячейка усиления и фильтрации с детектированием мощности.

Рис. 5.1 - Базовая структурная схема.

Таблица 5.1 - *Пофамильное распределение вариантов*

№	5.1	5.2	5.3	5.4	5.5	5.6	5.7
ФИО	Кравченко Виктор Евгеньевич	Капицына Екатерина Сергеевна	Кузнецов Данила Владимирович	Семенов Глеб Сергеевич	Черепов Игорь Кириллович	Лазба Филипп Борисович	Зотова Полина Васильевна
<i>Fc</i> , ГГц	6,3	5,2	9,5	6,7	5,4	8,5	11,4
Кр, дБ, не менее	43	36	40	36	42	39	39
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,35	0,3	0,6	0,4	0,3	0,5	0,7
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{s1}F_{s2}$, $\Gamma\Gamma$ ц	5,45,8	4,54,8	8,28,8	4,86,2	4,75,0	7,3.7,85	9,810,5
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	6,87,2	5,65,9	10,210,8	7,27,6	5,86,2	9,19,6	12,212,9
ΔA_{stop} , дБ, не менее	33	34	34	31	33	31	31
Кш, дБ, не более	3,5	2,3	2,9	2,5	3,3	3,0	3,5
Диапазон ожидаемых входных мощностей, Рin, дБмВт	-4010	-4315	-4010	-4517	-4215	-4312	-4010

Рис. 5.2 – Пояснение к ТЗ на АЧХ канала

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Усилители МШУ1 и МШУ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 3. Предпочтительно чтобы первым устройством был фильтр Ф1, однако, если из-за потерь на фильтре Ф1 невозможно удовлетворить на Кш, то первый МШУ с минимальным коэффициентом шума можно поставить первым.
- 4. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.
- 5. Ячейка должна быть способна корректно измерять возможные значения входной мощности Pin. Это означает, что данный диапазон возможной входной мощности с учетом прохождения через канал (МШУ, ППФ, ответвление в вторичное плечо НО) должен попадать в динамический диапазон измеряемой мощности детектора мощности в рабочей полосе частот.

Вариант 6. Передающая ячейка усиления и фильтрации с детектированием уровня выходной мощности.

Рис. 6.1 - Базовая структурная схема.

Таблица 6.1 - Пофамильное распределение вариантов

№	6.1	6.2	6.3	6.4	6.5	6.6	6.7
ФИО	Иванова Анастасия Витальевна	Ежов Егор Сергеевич	Григорьев Андрей Алексеевич	Токмаков Артемий Сергеевич	Неретин Кирилл Сергеевич	Кондратьев Максим Вячеславович	Дольников Дмитрий Сергеевич
Fc , $\Gamma\Gamma$ ц	4,8	10,6	11,5	9,3	3,9	5,2	8,6
Кр, дБ, не менее	42	36	37	35	35	40	38
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,28	0,64	0,7	0,55	0,2	0,3	0,5
ΔA_{pass} , дБ, не более	3	3	3	3	3	3	3
Нижний диапазон запирания, $F_{sl}F_{s2}$, $\Gamma\Gamma$ ц	4,14,4	9,29,8	9,910,6	8,08,6	3,43,6	4,54,8	7,47,9
Верхний диапазон запирания, $F_{s3}F_{s4}$, $\Gamma\Gamma$ ц	5,25,4	11,412,	12,413,	10,010,	4,24,4	5,65,9	9,29,8
ΔA_{stop} , дБ, не менее	28	28	33	25	25	25	27
P1dBout, дБмВт, не менее	29	29	32	31	33	30	28
Динамический диапазон выходной мощности, Сдин, дБ	22	23	25	24	24	25	22

Рис. 6.2 – Пояснение к ТЗ на АЧХ канала

- 1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.
- 2. Усилители УМ1 и УМ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 3. При невозможности удовлетворить требования на P1dBOut (из-за возможных потерь на фильтре Φ 1), фильтр Φ 1 и выходной усилитель мощности УМ2 можно поменять местами.
- 4. Рабочий диапазон частот $F_{p1}...F_{p2}$ определяется как размах ΔF_{-3dB} относительно центральной частоты Fc, т.е. $F_{p1}=F_c-0.5\Delta F_{-3dB}$ и $F_{p2}=F_c+0.5\Delta F_{-3dB}$.
- 5. Ячейка должна быть способна измерять значения выходной мощности в диапазоне от (P1dBout-Cдин) до P1dBout. Это означает, что диапазон возможной выходной мощности с учетом переходного ослабления направленного ответвителя должен попадать в динамический диапазон измеряемой мощности детектора мощности в рабочей полосе частот.

Вариант 7. Ячейка антенного ключа с фильтрацией в приемном канале.

Таблица - Пофамильное распределение вариантов

№	7.1	7.2	7.3	7.4	7.5	7.6
ФИО	Вилков Евгений Станиславович	Лапатков Дмитрий Викторович	Белов Алексей Михайлович	Блиндовский Станислав Васильевич		
Fc, ГГц	9,4	7,9	5,7	9,9	2,7	8,9
$\Delta F_{-3\mathrm{dB}}$, ГГц, не менее	0,45	0,48	0,22	0,6	0,15	0,45
Полоса запирания ППФ, $\Delta F_{\Pi\Pi\Phi-20{ m dB}}$, ГГц, не более	1,1	1,2	0,6	1,4	0,4	1,1
КрТх передающего канала, дБ, не менее	43	30	33	31	27	34
P1dBoutTx передающего канала, дБмВт, не менее	27	26	32	25	30	27
КрRх приемного канала, дБ, не менее	29	33	29	30	32	30
NfRx приемного канала, дБ, не более	3,4	2,7	2,9	2,6	6,4	3,3

Общие условия:

1. Модель необходимо проверять отдельно для двух состояний – режим передачи и режим приема.

- 2. Требование на полосу пропускания фильтра $\Delta F_{\Pi\Pi\Phi-3\mathrm{dB}}$ совпадает с требованием на рабочий диапазон ячейки $\Delta F_{-3\mathrm{dB}}$.
- 3. КСВН для обоих состояний ячейки не должен превышать 1,5 во включенном канале в рабочей полосе частот.
- 4. КрТх и P1dBoutTx (параметры передающего канала) проверяются, когда ключ К1 включен на режим передачи.
- 5. KpRx и NfRx (параметры приемного канала) проверяются, когда ключ K1 включен на режим приема.
- 6. В параметры как передающего, так и приемного каналов необходимо учитывать влияние свойств ключа К1 (потери на проход во включенном состоянии и P1dB).