PH 534 Autumn 2024-2025 – Quantum information and computation Practice problems Set 2

(Dated: September 2024)

- 1. Please answer the following questions:
 - (a) Consider the state, $\rho = \frac{1}{2} \mathbb{I}_2$ and the operator, $\mathcal{E} = |0\rangle\langle 0|$. Ensure \mathcal{E} preserves trace and show that $S(\mathcal{E}(\rho)) < S(\rho)$, where $S(\rho)$ is the von Neumann entropy.
 - (b) Write down two unique purifications for the state $\rho = \frac{1}{2} \mathbb{I}_2$.
 - (c) Write down the un-normalised state, $|vec(\mathbb{I}_2)\rangle$ and the operator, $|vec(\mathbb{I}_2)\rangle\langle vec(\mathbb{I}_2)|$.
- 2. Your friend and you want to exchange classical bits of information using a newly bought optical fiber setup that allows you noiselessly encode, store and send qubits. Say, you want to send two bits of information (labeled i=0,1,2,3) and the states you intend to send to your friend are $\rho_i=\frac{1}{2}(\mathbb{I}_2+\sigma_i)$, where $\sigma_i\in\{\mathbb{I}_2,\sigma_x,\sigma_y,\sigma_z\}$ are the identity operator and the usual Pauli matrices. Say, you encode the information with equal probability.
 - (a) What is the register (a set of distinguishable quantum states) you use to keep track of your classical bits?
 - (b) What is the joint state or density matrix ρ_{AB} shared by you and your friend?
 - (c) Say, the dimension of ρ_{AB} is $d_A \times d_B$, where d_A and d_B are the dimensions of your and your friends Hilbert space, respectively. What is the value of d_A and d_B ?
 - (d) What is the maximum information your friend can retrieve or access? Can they retrieve two bits of information?
- 3. The physics lab has recently purchased a quantum entanglement machine, that can input two qubits and generate a maximally entangled singlet, $|\psi^-\rangle$. However, once in a while with a probability p it creates a highly mixed state, given by the normalized two-qubit identity matrix, $\mathbb{I}_4/4$.

- (a) Write down the state ρ_{AB} produced by the quantum entanglement machine?
- (b) What is the quantum mutual information of these states as a function of p?
- (c) Show that the conditional entropy, defined as $H(A|B) = S(\rho_{AB}) S(\rho_B)$, can actually be negative for some values of p (or not).
- 4. Consider an atomic system with two distinct energy levels, with energies given by $E_0 = \log_e 0.1$ and $E_1 = \log_e 0.2$. Let's say, these energy levels are represented by the orthonormal states $|e_0\rangle$ and $|e_1\rangle$, respectively.
 - (a) Write the energy operator \hat{E} in a spectral form.
 - (b) Assume that a laser shines upon the isolated atom and creates a coherent state, $|\psi\rangle$ with equal superposition between it's energy eigen states. Calculate the expectation value of the energy, $\langle \hat{E} \rangle$, for this state.
 - (c) Now the atom interacts with it's environment at temperature, $T = 1/\beta$, and ends up in a thermal state, given by the density matrix,

$$\rho = \frac{1}{Z} \sum_{i} e^{-\beta E_i} |e_i\rangle\langle e_i|,$$

where, $Z = \sum_i e^{-\beta E_i}$ is the partition function. For $\beta = 1$, calculate $\langle \hat{E} \rangle$.

5. Consider the following communication protocol using qubits: Information is encoded in qubits $|0\rangle$ and $|+\rangle$, with probabilities λ and $1-\lambda$.

Show that there is (or there isn't) a non-zero value of λ for which the von-Neumann entropy is equal to the Shannon entropy.