

MS211 – Cálculo Numérico (2º Semestre de 2021) Marcos Eduardo Valle

Atividade 12 – Erro na Interpolação Polinomial.

Condições e Datas

O projeto deve ser realizado individualmente utilizando Python. Lembramos que o Python é livre e pode ser instalado, por exemplo, usando o ambiente Conda disponível em https://conda.io. Ele também pode ser acessado online usando o Google Colab através do link https://research.google.com/colaboratory/.

O projeto deve ser entregue no prazo especificado no Google Classroom. O arquivo deve descrever de forma clara os procedimentos adotados e as conclusões. Em particular, responda a(s) pergunta(s) abaixo de forma clara, objetiva e com fundamentos matemáticos. Recomenda-se que os códigos sejam anexados, mas **não serão aceitos trabalhos contendo apenas os códigos**! Pode-se submeter o arquivo .ipynb do Google Colab com os comandos e comentários.

A Tabela 1 fornece os valores da função $f(x) = \sqrt{x}$ para alguns valores de x.

						25	36	49	84
у	0	1	2	3	4	5	6	7	8

Table 1: Função $f(x) = \sqrt{x}$.

Questão 1:

Na mesma figura, apresente o gráfico do polinômio p_8 que interpola os pontos nove pontos tabelados, do polinômio linear por partes Π_1 e o gráfico da função np. sqrt da biblioteca numpy para $x \in [1,64]$. Qual entre p_8 e Π_1 apresenta a melhor aproximação de $f(x) = \sqrt{x}$ para $x \in [1,64]$?

Questão 2:

Apresente um majorante para os erros das aproximações da função $f(x) = \sqrt{x}$ pelo polinômio interpolador p_8 e o polinômio interpolador linear por partes $\Pi(x)$ para $x \in [1,64]$. Os majorantes refletem os gráficos da questão anterior?

Questão 3:

Na mesma figura, apresente o gráfico do polinômio interpolador p_8 , do polinômio linear por partes Π_1 e o gráfico da função np. sqrt da biblioteca numpy mas agora para $x \in [0,1]$. Qual entre p_8 e Π_1 apresenta a melhor aproximação de $f(x) = \sqrt{x}$ para $x \in [0,1]$?