Machine Learning

Supervised Learning: Linear Regression

Regression:

Regression is a statistical method used in finance, investing, and other disciplines that attempts to determine the strength and character of the relationship between one dependent variable (usually denoted by Y) and a series of other variables (known as independent variables).

Simple Linear Regression

SLR is a statistical method that allows us to summarize and study the relationship between two continuous(quantitative) variables.

- 1. The first variable denoted by x, is regarded as the predictor, explanatory, or independent variable.
- 2. The second variable, denoted by y, is regarded as the response, outcome, or dependent variable.

Regression

- For classification the output(s) is nominal
- In regression the output is continuous
 - Function Approximation
- Many models could be used Simplest is linear regression
 - Fit data with the best hyper-plane which "goes through" the points

Regression

- ► For classification the output(s) is nominal
- In regression the output is continuous
 - Function Approximation
- Many models could be used Simplest is linear regression
 - Fit data with the best hyper-plane which "goes through" the points
 - For each point the differences between the predicted point and the actual observation is the residue

Regression Line

Linear regression consists of finding the best-fitting straight line through the points. The best-fitting line is called a regression line.

Linear Regression Using Least Squares

Regression Line:
$$y = c + mx$$

 $y = bo + b_1 x$

$$m = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
$$c = \bar{y} - m\bar{x}$$

Here, m and c can also be denoted as b1 and bo.

So,
$$y = bo + b_1 x$$

After computing bo and b1, we can find the new value for ypred for any given x.

Evaluation of Model Estimators

- 1. Karl Pearson's Coefficient of Correlation
- 2. R-Square
- 3. Standard Error of the Estimate

Evaluation of Model Estimators

1. Karl Pearson's Coefficient of Correlation

- ► The Karl Pearson's correlation coefficient (or simply, the Pearson's correlation coefficient) is a measure of the strength of a <u>linear</u> association between two variables and is denoted by r or rxy(x and y being the two variables involved).
- ► Here, x and y are variables and N is the no. of instances we have to compute the coefficient.

Correlation Coefficient Formula

$$\mathbf{r} = \frac{n(\Sigma xy) - (\Sigma x) (\Sigma y)}{\sqrt{\left[n\Sigma x^2 - (\Sigma x)^2\right] \left[n\Sigma y^2 - (\Sigma y)^2\right]}}$$

Continue....

► The value of r always lies between +1 and -1. Depending on its exact value, we see the following degrees of association between the variables-

R value variation

Association	Negative	Positive
Weak	-0.1 to -0.3	0.1 to 0.3
Average	-0.3 to -0.5	0.3 to 0.5
Strong	-0.5 to -1.0	0.5 to 1.0

▶ A value greater than 0 indicates a positive association i.e. as the value of one variable increases, so does the value of the other variable. A value less than 0 indicates a negative association i.e. as the value of one variable increases, the value of the other variable decreases.

Evaluation of Model Estimators

2. R-Square

- ▶ R-squared is a statistical measure of how close the data are to the fitted regression line. It is also known as the coefficient of determination.
- ► R-squared measures the strength of the relationship between your model and the dependent variable on a convenient 0 100% scale.
- ► High value of r-Squared indicates a strong linear relationship.

$$R^{2} = \frac{\sum (ypred - ymean)^{2}}{\sum (y - ymean)^{2}}$$

Evaluation of Model Estimators

3. Standard Error of the Estimate

- ► The standard error of the estimate is a measure of the accuracy of predictions.
- ▶ It is used to check the accuracy of predictions made with the regression line.

Standard Error of the Estimate =
$$\sqrt{\frac{\sum (ypred - y)^2}{n-2}}$$

Supervised Learning: Linear Regression Example

Example:

	1	i 1		1	5	r.	
Independent Variable	Dependent- Variable	2-71	4-4	(2-x)2	(4-4)2	(2-17)(4-47)	
1	20	-2	-2	4	4	4	
2	4	-1	0	1	0	Ð	
3	5	0	1	0	F	0	
4	4	1	0	1	0	0	
5	5	2	1	4	1	2	
$\overline{2}=3$	Y=4			10		6	

$$b_1 = \frac{2(x-x)(y-y)}{2(x-x)^2} = \frac{6}{10} = 0.6$$

$$\hat{Y} = b_0 + b_1 \hat{x}$$
 $4 = b_0 + 0.6(3)$
 $b_0 = 4 - 1.8$
 $= 2.2$

1
 = 2.2 + 0.6 \times

L.S QUIM	KEV_			Predicted	ρ.	
χ	y	4-4	(4- 4)2	9	9-4	$(\hat{9}-\bar{9})^2$
ľ	2,	-2	4	2.8	-1.2	1.44
2	4	0	0	3.4	3004-0.6	0.36
3	5	1	1	4	O	O
9	4	0	0	4.6	0.6	0.36
5	5	1	1	5.2	1.2	1.44
			6		0	3.60

$$R^{2} = 2(9-9)^{2} = 3.6 = 0.6$$

$$2(9-9)^{2} = 6$$

R2 Coefficient for multiple determination.

1

Coefficient Correlation
$$\Upsilon = N \sum_{xy} - \sum_{x} \sum_{y} \sqrt{\left[n \sum_{y}^{2} - (\sum_{y})^{2} \right] \left[n \sum_{y}^{2} - (\sum_{y})^{2} \right]} .$$

$$\gamma = \frac{(5 \times 66) - (15 \times 20)}{\sqrt{(5 \times 55 - 225)(5 \times 86 - 400)}}$$

$$= 330 - 300$$

$$\sqrt{(275 - 225)(430 - 410)}$$

$$= \frac{30}{\sqrt{50\times30}} = \frac{30}{38.729} = 0.9762$$

Standard Error of the Estimate

Estimated natures are compared to the actual value. Distance between estimated & arteral is comor. le have to minimpe the error.

Estimate

Standard

Enter of the = \(\frac{2}{n-2} \)

001.			1		
x	7	9	ý-y	(9-4)2	_
1	2	2.8	0.8	0.64	
2	4	3.4	-0.6	0.36	
3	5	4	-	1	
4	4	4.6	0.6	0.36	,
5	5	5.2	0.2	0.04	
		1		2.4	-

Standard Error of
$$= \frac{2 \cdot 4}{1 - 2}$$

The estimate $= \frac{2 \cdot 4}{5 - 2} = \frac{2 \cdot 4}{3}$
 $= \sqrt{0.8} = 0.89$

Example 2: Create the relationship model for the given dataset to find the relation between height and weight parameters. Predict Y for X=154,161,178

Sr No.	Height(X)	Weight(y)
1	151	63
2	174	81
3	138	56
4	186	91
5	128	47
6	136	57
7	179	76
8	163	72
9	152	62
10	131	48

Coefficient Computation

Sr No.	Height(X)	Weight(Y)	$(X - \bar{X})$	$(Y - \overline{Y})$	$(X - \overline{X})(Y - \overline{Y})$	$(X - \bar{X})$
1	151	63	-2.8	-2.3	6.44	7.84
2	174	81	20.2	15.7	317.14	408.0
3	138	56	-15.8	-9.3	146.94	249.6
4	186	91	32.2	25.7	827.54	1036.8
5	128	47	-25.8	-18.3	472.14	665.6
6	136	57	-17.8	-8.3	147.74	316.8
7	179	76	25.2	10.7	269.64	635.0
8	163	72	9.2	6.7	61.64	84.64
9	152	62	-1.8	-3.3	5.94	3.24
10	131	48	-22.8	-17.3	394.44	519.8
	^x 153.8	^y 65.3			2649.6	3927.
	b1=	0.67461				
	b0=	-38.4535				
	Regression	Line: y=-	38.45348 +	- 0.674 x		

Karl Pearson coefficient

Sr No.	Height(X)	Weight(Y)	\mathbf{X}^2	\mathbf{Y}^2	XY
1	151	63	22801	3969	9513
2	174	81	30276	6561	14094
3	138	56	19044	3136	7728
4	186	91	34596	8281	16926
5	128	47	16384	2209	6016
6	136	57	18496	3249	7752
7	179	76	32041	5776	13604
8	163	72	26569	5184	11736
9	152	62	23104	3844	9424
10	131	48	17161	2304	6288
	1538	653	240472	44513	103081
	r=	0.97713			

Standard Error of Estimate

						Ι,
					-	
Sr No.	Height(X)	Weight(Y)	\hat{Y}	$\hat{Y} - Y$	$(\widehat{Y} - Y)^2$	
1	151	63	63.3205	0.3205	0.10272025	
2	174	81	78.8225	-2.1775	4.74150625	
3	138	56	54.5585	-1.4415	2.07792225	
4	186	91	86.9105	-4.0895	16.72401025	
5	128	47	47.8185	0.8185	0.66994225	
6	136	57	53.2105	-3.7895	14.36031025	
7	179	76	82.1925	6.1925	38.34705625	
8	163	72	71.4085	-0.5915	0.34987225	
9	152	62	63.9945	1.9945	3.97803025	
10	131	48	49.8405	1.8405	3.38744025	
				-0.923	84.73881	

Standard Error of Estimate = 3.25459

R Square

	R-SQ	UARE					
Sr No.	Height(X)	Weight(Y)	Ŷ	$\hat{Y} - Y$	$(\widehat{Y} - Y)^2$	$(Y - \overline{Y})$	$(Y - \overline{Y})(Y - \overline{Y})$
1	151	63	63.3205	-11.9795	3.91842025	-2.3	5.29
2	174	81	78.8225	1/3.53/25	182.8580063	15.7	246.49
3	138	56	54.5585	- ₽0 -7 4 15	115.3798223	-9.3	86.49
4	186	91	86.9105	2 /1.61/ 05	467.0137103	25.7	660.49
5	128	47	47.8185	- ₽7 -4 / 815	305.6028423	-18.3	334.89
6	136	57	53.2105	- ₽2 ₊0 89 5	146.1560103	-8.3	68.89
7	179	76	82.1925	1 16 .8 925	285.3565563	10.7	114.49
8	163	72	71.4085	6.108 5	37.31377225	6.7	44.89
9	152	62	63.9945	- ¼.3% 55	1.70433025	-3.3	10.89
10	131	48	49.8405	-\$5₊4595	238.9961403	-17.3	299.29
				-0.923	1784.2996		1872.1
		R-SQUARE=	0.9531006				

Plotting of Independent and Dependent Variable

X	Υ
154	65.34252
161	70.06052
178	81.51852

Example 3: Create the relationship model for the given dataset to find the relation between x and y parameters. Predict the value of Y for X = 24,13,32.

Sr No.	X	Y
1	17	94
2	13	73
3	12	59
4	15	80
5	16	93
6	14	85
7	16	66
8	16	79
9	18	77
10	19	91

Example 4: Create the relationship model for the given dataset to find the relation between x and y parameters. Predict the value of Y for X = 68,75,89.

Sr No.	X	Y
1	65	105
2	65	125
3	62	110
4	67	120
5	69	140
6	65	135
7	61	95
8	67	130

LOGISTIC REGRESSION

Logistic regression is the appropriate regression analysis to conduct when the dependent variable is dichotomous (binary).

Like all regression analyses, the logistic regression is a predictive analysis.

Logistic regression is used to describe data and to explain the relationship between one dependent binary variable and one or more nominal, ordinal, interval or ratio-level independent variables.

Use of Logistic Regression

There are many important topics for which the dependent variable is "limited."

For example:

- a) whether or not a mail is spam,
- b) tumor is malignant or benign
- c) student takes ML as a course or not.
- d) How does the probability of getting lung cancer (yes vs. no) change for every additional pound a person is overweight and for every pack of cigarettes smoked per day?
- e)Do body weight, calorie intake, fat intake, and age have an influence on the probability of having a heart attack (yes vs. no)?

For these the outcome is not continuous or distributed normally.

Binary Logistic Regression major assumptions

- ► The dependent variable should be dichotomous in nature (e.g., presence vs. absent).
- ▶ There should be no outliers in the data.
- ► There should be no high correlations (multicollinearity) among the predictors.

Logistic regression predicts whether something is **True** or **False**, instead of predicting something continuous like **size**.

...also, instead of fitting a line to the data, logistic regression fits an "S" shaped "logistic function".

LOGISTIC REGRESSION

Steps of Logistic Regression

Assume initial coefficients value as bo=b1=b2=0

Step 1: Calculate Prediction.

$$h(x) = \frac{1}{1 + e^{-x}}$$

Step 2: Calculate new coefficients.

Step 3: Repeat the process.

Step 4: Make Predictions

Steps of Logistic Regression

1. Assume initial coefficients value as bo=b1=b2=0

$$prediction = \frac{1}{1 + e^{-(B0 + B1 \times X1 + B2 \times X2)}}$$

3. $b(new) = b(old) + \alpha* (y-pred) * pred * (1-pred) *x$

i.e bo(new) = bo(old) +
$$\alpha$$
* (y-pred) * pred * (1-pred)
b1(new) = b1(old) + α * (y-pred) * pred * (1-pred) *x1

$$b_2(new) = b_2(old) + \alpha* (y-pred) * pred * (1-pred) *x_2$$

Where α is learning rate.

Example of Logistic Function

Example of Logistic Regression

·				
	X1	X2	Υ	
	2.7	2.5	0	
	1.4	2.3	0	
	3.3	4.4	0	
	3.06	3.05	0	
	5.3	2.75	1	

Step 1: b0=b1=b2=0

Step 2:
$$prediction = \frac{1}{1 + e^{-(B0 + B1 \times X1 + B2 \times X2)}}$$

20										\sim					
21	Iteration	Bias	X1	X2	Y	В0	B1	B2	Prediction	B0(t+1)	B1(t+1)	B2(t+1)	Sharp Prediction	Squared Error	Error
22	1	1	2.7	2.5	0 /	0	0	0	0.5	-0.0375	-0.10125	-0.09375	1 2	0.25	1
23	1.1	1	1.4	2.3	0~	-0.0375	-0.10125	-0.09375	0.402544	-0.06654	-0.14191	-0.16055	0 🗸	0.162042	0~
24	1.2	1	3.3	4.4	0	-0.06654	-0.14191	-0.16055	0.224214	-0.07824	-0.18052	-0.21203	0	0.050272	0
25	1.3	1	3.06	3.05	0	-0.07824	-0.18052	-0.21203	0.218004	-0.08939	-0.21464	-0.24604	0	0.047526	0
26	1.4	1	5.3	2.75	1	-0.08939	-0.21464	-0.24604	0.129703	-0.05992	-0.05844	-0.16499	0	0.757416	1
										_		_		_	

Sharp Prediction = 1 if prediction >= 0.5 Sharp Prediction = 0 if prediction < 0.5

Squared Error = (prediction – Y)*(prediction – Y)

Error = 1 if Y not equal to sharp prediction Error = 0 if Y equal to sharp prediction

Example of Logistic Regression

Dataset		
X1	X2	Y
2.7810836	2.550537	0
1.4654894	2.3621251	0
3.3965617	4.4002935	0
1.3880702	1.8502203	0
3.0640723	3.005306	0
7.6275312	2.7592622	1
5.3324412	2.0886268	1
6.9225967	1.7710637	1
8.6754187	-0.242069	1
7.6737565	3.508563	1
Learning R		
0.3		