1. Prepričaj se, da je zaporedje s predpisom

$$a_n = \frac{2n-1}{n+3}$$

konvergentno in izračunaj njegovo limito a. Od katerega n dalje ležijo vsi členi tega zaporedja znotraj intervala $\left(a-\frac{1}{4},a+\frac{1}{4}\right)$?

2. Zaporedje (a_n) je dano rekurzivno

$$a_0 = 3$$
, $a_{n+1} = \sqrt{2 + a_n}$.

- (a) Preveri, da je zaporedje (a_n) padajoče in velja $a_n \ge 2$ za vsako naravno število n.
- (b) Koliko je $\lim_{n\to\infty} a_n$?

3. Rekurzivno zaporedje (a_n) je dano z

$$a_0 = 2$$
, $a_{n+1} = \frac{1}{2 + a_n}$.

- (a) Zapiši prve 3 člene tega zaporedja; a_0 , a_1 in a_2 .
- (b) Prepričaj se, da je zaporedje členov z lihimi indeksi (a_{2k+1}) naraščajoče.
- (c) Poišči limito zaporedja (a_n) .

4. Izračunaj spodnje limite:

(a)
$$\lim_{n\to\infty}\frac{n+1}{2n-1}$$
,

(d)
$$\lim_{n\to\infty} \frac{2^{n+1}+3^n}{2^n-3^{n-1}}$$
,

(b)
$$\lim_{n\to\infty} \frac{n^2 + 2n + 2}{1 - 2n^2}$$
,

(e)
$$\lim_{n \to \infty} \frac{\sqrt{2^n + 2}}{2^n + 1}$$
,

(c)
$$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right)$$
,

(f)
$$\lim_{n\to\infty}\frac{\sqrt{4^n+4}}{2^n+1}.$$

5. Poišči spodnje limite, če veš, da je $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e = 2.71828\dots$

(a)
$$\lim_{n\to\infty} \left(1+\frac{2}{n+1}\right)^n$$
,

(d)
$$\lim_{n\to\infty} \left(\frac{n-1}{2n}\right)^n$$
,

(b)
$$\lim_{n\to\infty} \left(1 + \frac{3}{2-n}\right)^n$$
,

(e)
$$\lim_{n\to\infty} \left(\frac{2n-1}{2n}\right)^{n+2}$$
.

(c)
$$\lim_{n\to\infty} \left(\frac{\sqrt{n^2+1}}{n+1}\right)^{n-1},$$