Domanda 1 Risposta non data
Punteggio max.: 1,00
Suppose you want to compute the normal Convolution by a Convolution Matrix M. Suppose, in addition, you have 2x4 input image I a 2x2 kernel K like this:
5 3 5 7 2 8 1 9
K
3 1 2 4
Stride = 2; padding = 1. Compute the $M_{(5,20)}$
Risposta:
Domanda 2
Risposta non data Punteggio max.: 1,00
Suppose you have an input volume of dimension 32x32x50. Which of the following layer you should use to get an output volume of 16x16x20?
A. A 1x1 Convolutional Layer with 20 filter, stride of 2 and no padding
B. A Convolutional Layer with 20 filter 3x3, stride of 1 and no padding
C. Maxpooling Layer with filter 2x2, stride of 1 and no padding
D. Maxpooling Layer with filter 2x2, stride of 2 and no padding
○ E. A 1x1 Convolutional Layer with 20 filter, stride of 1 and no padding
F. A Convolutional Layer with 20 filter 3x3, stride of 2 and no padding

Suppose your input is a color 50x50 RGB image, and you use the following ConvNet:

- A Convolutional layer with 64 filters that are each 3x3, option "same"
- A Convolution layer with 8 filters that are each 3x3, option "same"
- A Maxpooling layer with stride of 2 and filter size 2
- A Dense layer with 30 units
- An output unit with Sigmoid activation function.

How many parameters does this ConvNet have (including the bias parameters)?

Risposta:

Domanda 4

Risposta non data

Punteggio max.: 1,00

Consider the following neural Network

- $oxed{\hspace{0.5cm}} W^{[2]}$ has shape (3,2)
- $oxed{ } W^{[2]}$ has shape (2,3)
- $b^{[2]}$ has shape (2,1)
- $b^{[4]}$ has shape (2,2)
- $b^{[4]}$ has shape (2,1)
- $oxed{\hspace{0.5cm}} W^{[2]}$ has shape (3,3)

Domanda 5 Risposta non data Punteggio max.: 1,00
Given an intermediate layer $z^{[l]}$ (values before the activation function) of a mini-batch B of size 3: $\frac{1,27}{2,54} \frac{2,54}{2,72} \frac{2,72}{-1,75} \frac{2,13}{2,13} \frac{1,12}{1,12}$ The intermediate layer consists of two units corresponding at the matrix rows of $z^{[l]}$. Compute the normalized $z^{[l]}$ before adding β and γ (two learnable parameters) and insert the normalized value of $z^{[l](1)}_1$ in the form below (note: the $z^{[l](1)}_1$ before the normalization is 1,27 - see table). Epsilon = 0,0001. Round the figure to three digits after the decimal point. Use comma as separator.
Risposta:
Domanda 6 Risposta non data Punteggio max.: 1,00
You are building a Deep Learning system based on Computer Vision for recognizing the quality of tomato. The system has to predict 1 when you have a tomato with top quality (y=1) and -1 in the opposite case (y=-1). Which one of these activation functions would you recommend using for the output layer? A. Tanh B. Sigmoid C. LeakyReLU D. SoftMax E. Relu
Domanda 7 Risposta non data Punteggio max.: 1,00
What is the IoU between these two boxes? The upper-left box is 4x2, and the lower-right box is 4x4. A B B Round the figure to two digits after the decimal point. Use comma as separator.
Risposta: