Найти экстремали в задачах поиска минимума функционала I(y) и для них проверить необходимые условия слабого минимума:

1.
$$I(y) = \int_{0}^{1} y_{x}^{2} dx$$
, $y(0) = 0$, $y(1) = 1$. **2.** $I(y) = \int_{1}^{2} (2x - y)y dx$, $y(1) = 1$, $y(2) = 3$.

3.
$$I(y) = \int_{1}^{2} x y_{x}^{2} dx$$
, $y(1) = 1$, $y(2) = 2$. **4.** $I(y) = \int_{0}^{1} (y_{x} + 3x^{2})^{2} dx$, $y(0) = y(1) = 0$.

5.
$$I(y) = \int_{0}^{1} (y_x^2 + xy) dx$$
, $y(0) = y(1) = 0$. **6.** $I(y) = \int_{0}^{1} (y_x^2 + 4y^2) dx$, $y(0) = 1$, $y(1) = e^2$.

7.
$$I(y) = \int_{0}^{1} \sin y_{x} dx$$
, $y(0) = 0$, $y(1) = \pi$. 8. $I(y) = \int_{0}^{\pi} (y_{x} - \cos x)^{8} dx$, $y(0) = y(\pi) = 0$.

9.
$$I(y) = \int_{0}^{\pi} (4y\cos x + y_x^2 - y^2)dx$$
, $y(0) = y(\pi) = 0$.

10.
$$I(y) = \int_{0}^{e} (2y - x^{2}y_{x}^{2})dx$$
, $y(1) = e$, $y(e) = 0$.

11.
$$I(y) = \int_{0}^{1} (y_x^2 + yy_x + 12xy)dx$$
, $y(0) = y(1) = 0$.

12.
$$I(y) = \int_{0}^{1} (e^{y} + xy_{x})dx$$
, $y(0) = 0$, $y(1) = 1$.

13.
$$I(y) = \int_{0}^{1} (y_x^2 + y^2 + xy) dx$$
, $y(0) = y(1) = 0$.

14.
$$I(y) = \int_{0}^{1} (y_x^2 + y^2 + 6y \sinh 2x) dx$$
, $y(0) = y(1) = 0$.

15.
$$I(y) = \int_{0}^{1} (y_x^2 + y^2 + 2ye^x) dx$$
, $y(0) = 0$, $y(1) = 1/2e$.

16.
$$I(y) = \int_{0}^{\ln 2} (y_x^2 + 3y^2)e^{2x}dx$$
, $y(0) = 0$, $y(\ln 2) = 15/8$.

17.
$$I(y) = \int_{0}^{b} (y_x^2 + y^2 - 4y \sin x) dx$$
, $y(0) = 0$, $y(b) = d_2$.

18.
$$I(y) = \int_{0}^{1} (2e^{y} - y^{2}) dx$$
, $y(0) = 1$, $y(1) = e$.

19.
$$I(y) = \int_{0}^{1} (e^{x+y} - y - \sin x) dx$$
, $y(0) = 0$, $y(1) = -1$.

20.
$$I(y) = \int_{-1}^{1} \frac{\sqrt{1 + y_x^2}}{y_x} dx$$
, $y(-1) = 0$, $y(1) = 1$.

21.
$$I(y) = \int_{0}^{3/2} (y_x^3 + 2x) dx$$
, $y(0) = 0$, $y(3/2) = 1$.

22.
$$I(y) = \int_{1}^{1} (xy_x + y_x^2) dx$$
, $y(-1) = 1$, $y(1) = 0$.

23.
$$I(y) = \int_{1}^{2} x^{n} y_{x}^{2} dx$$
, $n \in N \setminus \{1\}$, $y(1) = \frac{1}{1-n}$, $y(2) = \frac{2^{1-n}}{1-n}$.

24.
$$I(y) = \int_{0}^{1} (y - y_x^2) dx$$
, $y(0) = y(1) = 0$.

25.
$$I(y) = \int_{0}^{1} y y_{x} dx$$
, $y(0) = 1$, $y(1) = \sqrt[3]{4}$.

26.
$$I(y) = \int_{0}^{\pi/2} (2y + y^2 - y_x^2) dx$$
, $y(0) = y(\pi/2) = 0$.

27.
$$I(y) = \int_{0}^{1} \sqrt{y(1+y_x^2)} dx$$
, $y(0) = y(1) = \sqrt{2}/2$.

28.
$$I(y) = \int_{0}^{2\pi} (y_x^2 - y^2) dx$$
, $y(0) = 1$, $y(2\pi) = 1$.

29.
$$I(y) = \int_{0}^{3} (y_x e^x + 16y^4) dx$$
, $y(0) = 1/4$, $y(3) = 0$.

30.
$$I(y) = \int_{0}^{b} \sqrt{(y+k)(1+y_x^2)} dx$$
, $y(0) = 0$, $y(b) = k$.

31.
$$I(y) = \int_{0}^{b} (y_x^2 + 9y^2 - 3x) dx$$
, $y(0) = y(b) = 0$.

32.
$$I(y) = \int_{0}^{1} (y_x^2 - yy_x^3) dx$$
, $y(0) = y(1) = 0$.

33.
$$I(y) = \int_{0}^{1} e^{x} (y^{2} + \frac{1}{2} y_{x}^{2}) dx$$
, $y(0) = 1$, $y(1) = e$.

34.
$$I(y) = \int_{1}^{2} \frac{x^3}{y_x^2} dx$$
, $y(1) = 1$, $y(2) = 4$.

35.
$$I(y) = \int_{-1}^{1} (y_x^3 + y_x^2) dx$$
, $y(-1) = -1$, $y(1) = 3$.

36.
$$I(y) = \int_{1}^{2} (xy_x^4 - 2yy_x^3) dx$$
, $y(1) = 0$, $y(2) = 1$.

37.
$$I(y) = \int_{0}^{1} (4y - y_x^2 + 12y_x) dx$$
, $y(0) = 1$, $y(1) = 4$.

38.
$$I(y) = \int_{0}^{\ln 2} (y_x^2 + 2y^2 + 2y)e^{-x}dx$$
, $y(0) = y(\ln 2) = 0$.

39.
$$I(y) = \int_{1}^{2} (3xy_x^5 - 5yy_x^4) dx$$
, $y(1) = 1$, $y(2) = 4$.

40.
$$I(y) = \int_{0}^{\pi/18} (y_x^2 - 37yy_x - 81y^2) dx$$
, $y(0) = 1$, $y(\pi/18) = -1$.

41.
$$I(y) = \int_{0}^{2} (y_x^4 + y_x^3) dx$$
, $y(0) = 0$, $y(2) = 4$.

42.
$$I(y) = \int_{\pi/6}^{\pi/2} (y^2 \cos x + 2yy_x \sin x) dx$$
, $y(\pi/6) = 1$, $y(\pi/2) = 2$.

43.
$$I(y) = \int_{0}^{\pi/6} (9y^2 + 2yy_x - y_x^2) dx$$
, $y(0) = 1$, $y(\pi/6) = 0$.

44.
$$I(y) = \int_{0}^{a} (6y_x^2 - y_x^4 + yy_x) dx$$
, $y(0) = 0$, $y(a) = b$.

45.
$$I(y) = \int_{0}^{\pi/6} (y_x^2 - 9y^2 + 12y\cos 3x) dx$$
, $y(0) = -1$, $y(\pi/6) = 1 + \pi/6$.

46.
$$I(y) = \int_{1}^{5} \frac{2y_x^3 + y_x^2}{y_x^4 + 2} dx$$
, $y(1) = 2$, $y(5) = 14$.

47.
$$I(y) = \int_{1}^{2} \frac{\sqrt{1 + y_{x}^{2}}}{y_{x}^{3}} dx$$
, $y(1) = -3$, $y(2) = -8$.

48.
$$I(y) = \int_{1}^{2} \frac{x^2 y_x^2}{2x^3 + 1} dx$$
, $y(1) = 0$, $y(2) = 7/2$.

49.
$$I(y) = \int_{2}^{7} (\cos x + 3x^{2}y + (x^{3} - y^{2})y_{x})dx$$
, $y(2) = 3$, $y(7) = 0$.

50.
$$I(y) = \int_{0}^{2} (xy_x^3 - 3yy_x^2) dx$$
, $y(0) = 4$, $y(2) = 6$.