Lec 25: Piecewise Interpolation - Piecewise Linear

Interpolation Problem

Problem Statement

General Interpolation Problem

Given a set of n data points $\{(x_j,y_j) \mid j \in \mathbb{N}[1,n]\}$ with $x_1 < x_2 < \ldots < x_n$, find a function p(x), called the **interpolant**, such that

$$p(x_j) = y_j, \text{ for } j = 1, 2, \dots, n.$$

The ordered pair (x_j, y_j) is called the **data point**.

- x_i is called the **abscissa** or the **node**.
- y_j is called the **ordinate**.

Polynomials

One approach is to find an interpolating polynomial of degree (at most) n-1,

$$p(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_n x^{n-1}.$$

• The unknown coefficients c_1, \ldots, c_n are determined by solving the square linear system $V\mathbf{c} = \mathbf{y}$ where

$$V = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-2} & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-2} & x_2^{n-1} \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n-2} & x_n^{n-1} \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

the matrix V is called the **Vandermonde matrix**; see Lecture 13.

• A polynomial interpolant has severe oscillations as n grows large, unless nodes are special; see illustration in the next slide.

Illustration Runge's Phenomenon

Polynomial Interpolation of 15 data points collected from the same function

$$f(x) = \frac{1}{1 + 25x^2}.$$

Piecewise Polynomials

To handle real-life data sets with large n and unrestricted node distribution:

- An alternate approach is to use a low-degree polynomial between each pair of data points; it is called the piecewise polynomial interpolation.
- The simplest case is **piecewise linear interpolation** (degree 1) in which the interpolant is linear between each pair of consecutive nodes.
- The most commonly used method is cubic spline interplation (degree 3).
- The endpoints of the low-degree polynomials are called breakpoints or knots.
- The breakpoints and the data points almost always coincide.

MATLAB Function: INTERP1

In MATLAB, piecewise polynomials are constructed using interp1 function. Suppose the x and y data are stored in vectors xdp and ydp. To evaluate the piecewise interpolant at x (an array):

• By default, it finds a piecewise linear interpolant.

```
y = interp1(xdp, ydp, x);
```

To obtain a smoother interpolant that is piecewise cubic, use 'spline' option.

```
y = interp1(xdp, ydp, x, 'spline');
```

Demonstration: Piecewise Polynomial Interplation

To interpolate data obtained from ¹

$$f(x) = \frac{1}{1 + 25x^2}.$$

```
% Generate data and eval pts
n = 15:
xdp = linspace(-1,1,n)';
vdp = 1./(1+25*xdp.^2);
x = linspace(-1, 1, 400)';
% PT.
plot(xdp, ydp, 'o'), hold on
plot(x, interpl(xdp,ydp,x))
% Cubic spline
plot(xdp,ydp,'o'), hold on
plot(x, interpl(xdp,ydp,x,'spline'));
```

¹This function is often called the Runge's function.

Demonstration: Piecewise Polynomial Interplation (cont')

Conditioning

Set-up for analysis.

- Let (x_j, y_j) for j = 1, ..., n denote the data points. Assume that the nodes x_j are fixed and let $a = x_1, b = x_n$.
- View the interpolation problem as a mathematical function \mathcal{I} with
 - Input: a vector y (ordinates, or y-data ponits)
 - Output: a function p(x) such that $p(x_j) = y_j$ for all j.

(That is, \mathcal{I} is a black box that produces the interpolant from a data vector.)

• For the interpolation methods under consideration (polynomial or piecewise polynomial), \mathcal{I} is *linear*:

$$\mathcal{I}(\alpha \mathbf{y} + \beta \mathbf{z}) = \alpha \mathcal{I}(\mathbf{y}) + \beta \mathcal{I}(\mathbf{z}),$$

for all vectors \mathbf{y} , \mathbf{z} and scalars α , β .

Conditioning: Main Theorem

Theorem 1 (Conditioning of General Interpolation)

Suppose that $\mathcal I$ is a linear interpolation method. Then the absolute condition number of $\mathcal I$ satisfies

$$\max_{1 \leq j \leq n} \| \mathcal{I}(\mathbf{e}_j) \|_{\infty} \leq \kappa(\mathbf{y}) \leq \sum_{j=1}^{n} \| \mathcal{I}(\mathbf{e}_j) \|_{\infty},$$

where all vectors and functions are measured in the infinity norm.

Conditioning: Notes

The functional infinity norm is defined by

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|,$$

in a manner similar to vector infinity norm.

• The expression $\mathcal{I}(\mathbf{e}_j)$ represents the interpolant p(x) which is on at x_j and off elsewhere, i.e.,

$$p(x_k) = \delta_{k,j} = \begin{cases} 1, & k = j \\ 0, & k \neq j \end{cases}.$$

Such interpolants are known as **cardinal functions**.

• The theorem says that the (absolute) condition number is larger than the largest of $\|\mathcal{I}(\mathbf{e}_j)\|_{\infty}$, but smaller than the sum of these.

Piecewise Linear Interpolation

Piecewise Linear Interpolation

Assume that $x_1 < x_2 < \cdots < x_n$ are fixed. The function p(x) defined piecewise² by

$$p(x) = y_j + \frac{y_{j+1} - y_j}{x_{j+1} - x_j}(x - x_j), \quad \text{for } x \in [x_j, x_{j+1}], 1 \leqslant j \leqslant n - 1$$

- is linear on each interval $[x_j, x_{j+1}]$;
- connects any two consecutive data points (x_j, y_j) and (x_{j+1}, y_{j+1}) by a straight line.

 $^{^2}$ Note the formula changes depending on which interval x lies in.

Hat Functions

Denote by $H_j(x)$ the *j*th *piecewise linear* cardinal function:

$$H_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}}, & x \in [x_{j-1}, x_{j}], \\ \frac{x_{j+1} - x}{x_{j+1} - x_{j}}, & x \in [x_{j}, x_{j+1}], & j = 1, 2, \dots, n. \\ 0, & \text{otherwise}, \end{cases}$$

- The functions H_1, \ldots, H_n are called **hat functions** or **tent functions**.
- ullet Each H_j is globally continuous and is linear inside each interval $[x_j,x_{j+1}]$

Note: The definitions of $H_1(x)$ and $H_n(x)$ require additional nodes x_0 and x_{n+1} for x outside of $[x_1,x_n]$, which is not relevant in the discussion of interpolation.

Hat Functions (cont')

Hat Functions As Basis

- Any linear combination of hat functions is continuous and is linear inside each interval $[x_j, x_{j+1}]$.
- Conversely, any such function is expressible as a unique linear combination of hat functions, i.e.,

$$\sum_{j=1}^n c_j H_j(x), \quad \text{for some choice of } c_1, \dots, c_n.$$

No smaller set of functions has the same properties.

The hat functions form a **basis** of the set of functions that are continuous and piecewise linear relative to ${\bf x}$ (the vector of nodes).

Cardinality Conditions

• By construction, the hat functions are cardinal functions for piecewise linear (PL) interpolation, *i.e.*, they satisfy

$$H_j(x_k) = \delta_{j,k}$$
. (cardinality condition)

• Key consequence of this property is that the piecewise linear interpolant p(x) for the data values in ${\bf y}$ is trivially expressed by

$$p(x) = \sum_{j=1}^{n} y_j H_j(x).$$

Recipe for PL Interpolant

Piecewise Linear Interpolant

The piecewise linear polynomial

$$p(x) = \sum_{j=1}^{n} y_j H_j(x)$$

is the unique such function which passes through all the data points.

Proof: It is easy to check the interpolating property:

$$p(x_k) = \sum_{j=1}^n y_j H_j(x_k) = \sum_{j=1}^n y_j \delta_{j,k} = y_k \quad \text{for every } k \in \mathbb{N}[1,n].$$

To show uniqueness, suppose \widetilde{p} is another such function in the form

$$\widetilde{p}(x) = \sum_{j=1}^{n} c_j H_j(x)$$
.

Then $p(x_k) - \widetilde{p}(x_k) = 0$ for all $k \in \mathbb{N}[1, n]$. This implies that $c_k = y_k$ for all k

Conditioning

Lemma

Let \mathcal{I} is the piecewise linear interpolation operator and $\mathbf{z} \in \mathbb{R}^n$. Then

$$\|\mathcal{I}(\mathbf{z})\|_{\infty} = \|\mathbf{z}\|_{\infty}$$
.

• It follows from the lemma that the absolute condition number of piecewise linear interpolation in the infinity norm equals one.

Conditioning (cont')

Proof of lemma. Let

$$p(x) = \mathcal{I}(\mathbf{z}) = \sum_{j=1}^{n} z_j H_j(x).$$

Let k be the index corresponding to the element of \mathbf{z} with the largest absolute value, that is, $z_k = \|\mathbf{z}\|_{\infty}$. Since $z_k = p(x_k)$, it follows that $|p(x_k)| = \|\mathbf{z}\|_{\infty}$ and so $\|p\|_{\infty} \leq \|\mathbf{z}\|_{\infty}$.

To show the other inequality, note that

$$|p(x)| = \left| \sum_{j=1}^{n} z_j H_j(x) \right| \le \sum_{j=1}^{n} |z_j| H_j(x) \le ||\mathbf{z}||_{\infty} \sum_{j=1}^{n} H_j(x) = ||\mathbf{z}||_{\infty},$$

where the final step uses the fact³ that $\sum_{j=1}^{n} H_j(x) = 1$. It implies that $||p||_{\infty} \leq ||\mathbf{z}||_{\infty}$. Therefore, $||p||_{\infty} = ||\mathbf{z}||_{\infty}$.

³This property is called the *partition of unity*. Confirm it!

Convergence: Error Analysis

Set-up for analysis.

- Generate a set of data points using a "nice" function f on an interval containing all nodes, i.e., $y_j = f(x_j)$. (The *niceness* of a function is described in precise terms below.)
- Then perform PL interpolation of the data to obtain the interpolant p.
- Question. How close is p to f?

Notation (Space of Differentiable Functions)

Let $C^n[a,b]$ denote the set of all functions that are n-times continuously differentiable on [a,b]. That is, if $f \in C^n[a,b]$, then $f^{(n)}$ exists and is continuous on [a,b], where derivatives at the end points are taken to be one-sided derivatives.

Convergence: Error Analysis (cont')

Theorem 2 (Error Theorem for PL Interpolation)

Suppose that $f \in C^2[a,b]$. Let p_n be the piecewise linear interpolant of $(x_j,f(x_j))$ for $j=1,\ldots,n$, where

$$x_j = a + jh$$
 and $h = \frac{b-a}{n-1}$.

Then

$$||f - p_n||_{\infty} \le ||f''||_{\infty} h^2.$$

- The theorem pertains to the interpolation on equispaced nodes.
- The significance of the theorem is that the error in the interpolant is $O(h^2)$ as $h \to 0$. (We say that PL interpolation is second-order accurate.)
- Practical implication: If n is doubled, the PL interpolant becomes about four times more accurate. A log-log graph (loglog) of error against n is a straight line.

Convergence: Error Analysis (cont')

