Prompt

What is a Prompt?

prompt | präm(p)t |

verb [with object]

- 1 (of an event or fact) cause or bring about (an action or feeling): his death has prompted an industrywide investigation of safety violations.
 - cause (someone) to take a course of action: a demonstration by 20,000 people prompted the government to step up security.
- 2 assist or encourage (a hesitating speaker) to say something: [with direct speech]: "And the picture?" he prompted.
 - supply a forgotten word or line to (an actor) during the performance of a play.
 - Computing (of a computer) request input from (a user): the online form prompts users for data.

noun

- 1 an act of assisting or encouraging a hesitating speaker: with barely a prompt, Barbara talked on.
 - a word or phrase spoken as a reminder to an actor of a forgotten word or line.
 - another term for prompter.
 - Computing a message or symbol on a screen to show that the system is waiting for input.

An Intuitive Definition

Prompt is a cue given to the **pre-trained language model** to allow it better understand **human**'s questions

More Technical Definition

Prompting is the technique of making better use of the knowledge from the pre-trained model by adding additional texts to the input.

More Technical Definition

PURPOSE

Prompting is the technique of making better use of the knowledge from the pre-trained model by adding additional text to the input.

METHOD

Task reformulation

Reformulating NLP tasks using prompting

- 1. Prompt Construction
- 2. Answer Construction
- 3. Answer Prediction
- 4. Answer-Label Mapping

Prompting for Sentiment Classification

Task Description:

- **Input**: sentence x;
- Output: emotional polarity of it (i.e., 😌 v.s 😕).

Input: x = I love this movie.

Step 1: Prompt Construction

Transform x into prompt x' through following two steps:

 Defining a template with two slots: [x] and [z]; **Input:** x = I love this movie.

Template: [x] Overall, it was a [z] movie.

Step 1: Prompt Construction

Transform x into prompt x' through following two steps:

 Defining a template with two slots: [x] and [z];

Requires human effort

Input: x = I love this movie.

Template: [x] Overall, it was a [z] movie.

Step 1: Prompt Construction

Transform x into prompt x' through following two steps:

- Defining a template with two slots: [x] and [z];
- Instantiate slot [x] with input text

Input: x = I love this movie.

Template: [x] Ověrall, it was a [z] movie.

Prompting: x' = I love this movie. Overall, it was a [z] movie.

Step 2: Answer Construction

Build a mapping function between answers and class labels.

Input: x = I love this movie.

Template: [x]
Overall, it was a
[z] movie.

Answer: {fantastic: ☺, boring: ౹>;}

Prompting: x' = I love this movie. Overall, it was a [z] movie.

Step 3: Answer Prediction

Given a prompt, predict the answer [z].

 Choose a suitable pretrained language model; **Input:** x = I love this movie.

Answer: {fantastic: ;; boring: ;; }

Prompting: x' = I love this movie. Overall, it was a [z] movie.

Step 3: Answer Prediction

Given a prompt, predict the answer [z]

 Choose a suitable pretrained language model;

Fill in [z] as "fantastic"

Input: x = I love this movie.

Template: [x]
Overall, it was a
[z] movie.

Answer:

{fantastic: ♥ , boring: ♥ }

Prompting: x' = I love this movie. Overall, it was a [z] movie.

Predicting: x' = I love this movie. Overall, it was a fantastic movie.

Step 4: Answer Mapping

Mapping: Given an answer, map it into a class label.

• fantastic => 😌

Input: x = I love this movie.

Template: [x] Overall, it was a [z] movie.

Answer:

{fantastic: ♥ , boring: ♥ }

Prompting: x' = I love this movie. Overall, it was a [z] movie.

Predicting: x' = I love this movie. Overall, it was a fantastic movie.

Mapping: fantastic => ☺️

Prompt Template Engineering

Prompt Template Engineering

Research Question:

How to define appropriate prompt templates

Design Decisions for Prompt Templates

Design Decisions for Prompt Templates

Prompt Shape

- Cloze Template
 - Contain blanks to be filled.
 - Useful for Masked LMs.
 - The capital of ____ is Beijing .

Prompt Shape

- Cloze Template
 - Contain blanks to be filled.
 - Useful for Masked LMs.
 - The capital of ____ is Beijing .

Prefix Template

- Contain a string prefix to be continued.
- Useful for Left-to-right LM and Encoder-Decoder LM.
 - President Joe Biden and three of his European allies face
 TL;DR: ____

Design Decision of Prompt Templates

Manual Template Design

Manual Prompt

The most natural way to create prompts

- I love this movie so much! What's the sentiment of the text? ____ .
- President Joe Biden and three of his European allies face In summary, ____.
- President Joe Biden and three of his European allies face The article is about ____.

Manual Template Design

Manual Prompt

The most natural way to create prompts

• An art that takes time and experience.

One template-answer pair

Task Accuracy

75%

Template: <A movie review> The movie is ___ .

ce. A movie review in a movie is __

Answer: fantastic/terrible

Another template-answer pair

Template: <A movie review> The review is ___. 53%

Answer: positive/negative

Design Decisions for Prompt Templates

Mining

Use a large corpus to mine templates that contain both the **input** and the **gold answer**.

Example

- Fact retrieval for country-capital relationship
- Search through Wikipedia and find strings that contain both "Beijing" and "China" or other pairs.

Input	Gold answer
China	Beijing
Japan	Tokyo
United States	Washington

- Beijing, the capital of China
- The capital of China is Beijing
- 0

Paraphrasing

 Take in an existing seed template and paraphrase it into a set of other candidate templates.

Paraphrasing

- Take in an existing seed template and paraphrase it into a set of other candidate templates.
- Typical methods
 - Back-translation

• Use neural rewriter to rewrite

Gradient-based Search

Stepping through tokens and find ones that can trigger desired outputs.

Gradient-based Search

• Stepping through tokens and find ones that can trigger desired outputs.

Gradient-based Search

• Stepping through tokens and find ones that can trigger desired outputs.

Generation

- Use LM to generate templates.
 - T5

```
Pre-train

Input: Thank you <X> me to the party <Y> week.

Target: <X> = for inviting

<Y> = last
```

Generation

- Use LM to generate templates.
 - T5

```
I love this movie! <X> great <Y>
T5 decode
```

```
<X> = This is a <Y> = .
  <X> = I thought it was a <Y> = one .
...
```

LM Scoring

• Use the LM to choose the templates that achieve high LM probability.

I love this movie! <template> positive.

Sequence	Р
I love this movie! The sentiment of the text is positive.	0.4
I love this movie! Hello world positive	0.09
I love this movie! The text is positive	0.3
••••	

Reference: Davison et al. **Commonsense Knowledge Mining from Pretrained Models**. EMNLP (2019).

Design Decisions for Prompt Templates

Answer Engineering

Answer Engineering

Research Question:

 Given a task (or a prompt), how to define a suitable mapping function between label space and answer space?

Answer Engineering

Research Question:

 Given a task (or a prompt), how to define a suitable mapping function between label space and answer space?

Answer Shape

Single Token

- Useful for most classification tasks
- Examples
 - <A movie review> The movie is fantastic/terrible.
 - <Premise> entails/contradicts <Hypothesis>

Answer Shape

Span

- Useful for classification with long label names, QA, knowledge probing, etc.
- Example
 - Multiple choice QA
 - A student riding a bicycle observes that it moves faster on a smooth road than on a rough road. This happens because the smooth road has
 - (A) less gravity
 - (B) more gravity
 - (C) less friction [gold]
 - (D) more friction

Answer Shape

Sentence(s)

- Useful for generation tasks, like MT or summarization.
- Example

 Translation from English to Chinese Input: Hello, world! Target (gold answer): 你好, 世界!

Answer Space

Bounded

- The space of possible outputs is constrained/finite.
- Example
 - Text classification: health; finance; politics; sports.

Answer Space

Bounded

- The space of possible outputs is constrained/finite.
- Example
 - Text classification: health; finance; politics, sports.

Unbounded

- The space of possible outputs is unconstrained/infinite.
- Example
 - Text summarization: all valid sequence of tokens.

Human Design

The most natural way to create answers 😂

- For generation tasks, we can use identity mapping to map target output directly to gold answer
 - In MT/Summarization, take the target directly as gold answer
- For classification tasks, the label name can also act as gold answer.
 - For example, sports, politics

Human Design

The most natural way to create answers 😂

- For generation tasks, we can use identity mapping to map target output directly to gold answer
 - In MT/Summarization, take the target directly as gold answer
- For classification tasks, the label name can also act as gold answer.
 - For example, sports, politics

An art that takes time and experience.

- For some complicated tasks, it's hard to manually craft answers.
 - For example, relation classification

Design Decisions for Multiple Prompt Learning

Prompt Ensembling

Definition

 using multiple unanswered prompts for an input at inference time to make predictions

Advantages

- Utilize complementary advantages
- Alleviate the cost of prompt engineering
- Stabilize performance on downstream tasks

Prompt Augmentation

Definition

 Help the model answer the prompt with additional answered prompts

Advantage

 make use of the small amount of information that has been annotated

Core step

- Selection of answered prompts
- Ordering of answered prompts

Prompt Decomposition

Definition

 For tasks where multiple predictions should be performed for one sample, handle it individually

Advantages

 Break-down a complicated task into multiple separate ones

Prompt Sharing

Definition

 When prompting method is applied to multiple tasks, domains or languages, prompts can be shared cross different tasks.

Advantage

 Task- or language invariant information can be captured through prompting.

