Assignment 6 Due: 6 pm, Oct 19 (Wed)

Full mark: 14 points

1. (2 points) Find a value of x, where $0 \le x < 37 \times 87$, that solves the following simultaneous congruences:

$$x \equiv 3 \pmod{37}$$
 and $x \equiv 4 \pmod{87}$.

2. (3 points) Find a value of x, where $0 \le x < 7 \times 12 \times 13$, that solves the following simultaneous congruences:

$$x \equiv 5 \pmod{7}$$
, $x \equiv 2 \pmod{12}$ and $x \equiv 8 \pmod{13}$.

- 3. Consider the use of RSA cipher. The public key of Bob is N=55 and e=3.
 - a) (2 points) Alice wants to send the message 16 to Bob. Encrypt the message. Show your steps.
 - b) (2 points) Suppose Alice changes her mind and sends another message to Bob. The ciphertext received by Bob is 21. Decrypt the message. Show your steps.
- 4. Consider the encryption function as follows:

$$E(x) = ax + b \pmod{m}.$$

If the cipher is used to encrypt messages in English (i.e., an alphabet of 26 letters), then *m* is chosen as 26.

- a) (1 points) How can we ensure that decryption can be done?
- b) (1 points) What is the value of $\phi(26)$?
- c) (1 points) How many possible keys are there?
- d) (2 points) Suppose a = 15, b = 6, and the ciphertext (which contains only one single letter) is 21. Find the plaintext.