手持读数仪 VH301X 高级应用说明

参数修改工具 SETPTool

对 VH301X 手持设备的手工操作仅可对部分参数进行修改,完整所有参数的获取和修改则可通过将手持设备通过 RS232 接口与上位机连接,使用通讯协议对所有参数进行访问。

VH301X 支持的通讯协议及详细说明见后面章节"通讯协议"介绍,本节主要是对参数配置工具"SETPToo1"进行使用说明。

SETPTool 运行界面如下图所示。

连接设备

将 VH301X 与计算机的 RS232 端口连接, 打开 VH301X 设备即可;

参数读取

VH301X 有两类参数,可保存参数和只读参数。可保存参数的读取可通过点击每个参数右侧的【读取】按钮获取,只计参数的读取可通过勾选【自动读取】复选框由工具自动获取。

参数修改

仅能对可保存参数进行修改,在参数文本框内填写要修改的值后点击【修改】按钮即可。

参数保存

对参数进行修改后,必须进行保存操作,否则参数会在下次开机时恢复。

注:对可保存参数进行操作(读取或修改)时,一定要保证【自动读取】复选框为非选中状态。

各参数(寄存器)说明详见"寄存器说明"小节。

寄存器说明

VH301X 手持读数仪的工作完全依赖于寄存器(参数)值,寄存器是 16 位二进制表示的整数,分为可读可写寄存器与只读寄存器,可以通过 RS232 接口按照通讯协议访问这些寄存器来读取或修改参数,实现控制、交互的目的。

以下汇总表列出了所有寄存器及功能描述。

不同的固件版本对寄存器的定义可能有微小不同,操作寄存器前应确认固件版本是否对应。

附表 1: 寄存器定义(读写寄存器-存储)

地址	符号	去一句 行品 行间 /	说明
0	ADDR	手持设备地址	1~255
1	WIZMD	工 /左 +	0: 手动
1	WKMD	工作模式	1: 自动
			0: 主串口
2	SDMD	发送类型	1: RF (射频)
Z	SDND	及及天生	2: GSM (SMS)
			3: GPRS (TCP)
3	BAUD0	主串口速率	单位: 百 bps (暂未使用)
4	BAUD1	副串口速率	单位: 百 bps (暂未使用)
5	DAT_PRO	数据协议	(暂未使用)
6	SOL_NUM	测量方案	(暂未使用)
7	INTE_STO	自动存储周期	单位:毫秒,自动模式时有效
8	INTE_SND	自动发送周期	单位:毫秒,自动模式时有效
9	AL2MINS	备用自启时间	单位:分钟,1~1440
10	LIGHT_SEC	关闭背光时长	单位: 秒
11	AT_SHDN	自动关机时长	单位: 秒
12	AT_DELP	自动删除百分比	0~99
13	AT_DELM	自动删除几月数据	1~99
14	DBCLICK_MS	按键双击时长	定义双击事件时长,单位:毫秒
15	LPRESS_MS	按键长按时长	定义长按事件时长,单位:毫秒
16	RCD_H	数据记录号	每存储一次自增1

17	RCD_L		
18			
10	CDC DN	CDC 五大學生	0: 关闭 GPS 功能
19	GPS_EN	GPS 开关控制	1: 打开 GPS 功能
20	VM_EXTYPE	振弦M参数	
21	VM_EXPVOL	振弦V参数	详见说明书说明
22	VM_TEMPTYPE	振弦T参数	
23			
24	ADC1_ADDCNT	扩展测量加常数	物理值=
25	ADC1_MULCNT	扩展测量乘常数	(测量值+加常数)*乘常数*0.01
26	ADC1_UNIT	扩展测量单位	2个 ASCII 码字符
27	ADC2_ADDCNT	扩展测量加常数	物理值=
28	ADC2_MULCNT	扩展测量乘常数	(测量+加常数)*乘常数*0.01
29	ADC2_UNIT	扩展测量单位	2个 ASCII 码字符
30	NETWT	等待无线网络	0: 强制等待 TIME1 秒
30	NEIWI	· 守怀儿线网络	1: 智能, 最多等待 TIME1 秒
31	TIME1	等待时长	等待无线网络的注册时长(秒)
32			
33	TIME3	发送时长限制	发送时长限制 (秒)
34~39	RDC_PH1	数据中心号码	11 位手机号码
40~56	RDC_IP1	TCP 服务器地址	字符串,最多32字节
57	RDC_PT1	TCP 服务器端口	0~65535
58~61	APN	移动接入点	CMNET: 中国移动
20 01	171 14	炒	UNINET: 中国联通
62	IPMOD	TCP 地址类型	0: 域名
02	OZ IPMUD	101 地址大笠	1: IP 地址

附表 2: 寄存器定义(读写寄存器-不存储)

P13 1X 4:	们衣 2: 可付船足入(医与可付船 个付個)					
地址	符号	名称	说明			
64	SYSERR	运行错误码	暂未使用			
65	RTC_YM	实时时钟-年月	BCD 码			
66	RTC_DH	实时时钟-日时	BCD 码			
67	RTC_MS	实时时钟-分秒	BCD 码			
			0: 不透传			
68	CTT NUM	透明传输 UART 号	1: UARTO 与 UART1 透传			
00	STT_NUM	透明传制 UAKI 与	2: UARTO 与 UART2 透传-振弦模块			
			3: UARTO与 UART3 透传-GPS			
STT_NUM	参数每次开机后!	自动复位为 0,在运行这	过程中可修改。			

附表 3: 寄存器定义(只读寄存器)

113 00 - 1	14 14 HB/C/	/ 1.7/ . 4 14 00 /	
地址	符号	名称	说明
69	VIN	电池电压	单位:毫伏
70	DISK_SIZE	内部存储空间大小	单位: kByte

71	DISK_FREE	内部存储剩余空间	单位: kByte
72	DISK_USEDP	存储空间使用率	单位: %
73			
74			
75	STA01	设备状态	设备内部各功能芯片状态 0:正常;1:异常 详见"功能状态码"说明
76	STA02	无线状态	暂未使用
77	SINGAL	信号强度	0 [~] 31
78 [~] 99			
100~123	CH01~CH24	通道 01~24 实时值	详见说明书说明

功能状态码说明

位	功能芯片	位	功能芯片
Bit0	时钟芯片	Bit8	振弦模块芯片
Bit1	机器码芯片	Bit9	温湿度芯片
Bit2	内部存储芯片	bit10	大气压芯片
Bit3	外部U盘芯片	bit11	空气质量芯片
Bit4	中文字库芯片	bit12	外部 ADC01 芯片
Bit5	定位芯片	bit13	外部 ADCO2 芯片
Bit6	方位角芯片	bit14	
Bit7	双轴倾斜芯片	bit15	

通讯协议

通讯协议是上位机通过数字接口完成与 VH301X 设备信息交互的数据格式、传输步骤、通讯速率等的一系列预先约定。上位机必须按照本节描述的通讯协议规则来完成与 VH301X 的数据交互工作。

寄存器机制

VH301内部维护有若干寄存器(参数),模块在寄存器参数值的控制下完成测量工作。 寄存器的值总是以整数形式存在,基本操作单位为"字"(2字节整数),有掉电保存和掉 电丢失两种类型(对应"读/写"和"只读"两种属性)。通过模块的数字接口可完成对寄 存器的读取和写入(修改)操作。寄存器写(修改)寿命典型值为10万次,读取次数没有 限制。

数据模式

寄存器数据值采用大端模式,数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,数据帧传输时先传输低地址字节后传输高字节。每个寄存器对应两个字节,则单个*寄存器的值=低字节值*256+高字节值*。

VH301X 支持标准的工业 MODBUS 通讯协议(03、06 指令码)、自定义的简单 AABB 协议

以及字符串形式的自定义\$指令集。前两种协议均支持基于设备地址和总线连接的一主多从应用结构,在总线中,VM3XX 模块始终作为从机使用。

(一) MODBUS 通讯协议

在 MODBUS 协议下, VH301X 内部所有寄存器被定义为"保持寄存器"(详见 MODBUS 通讯协议标准说明),模块支持基于 MODBUS 协议的多个连续寄存器读取、单个寄存器写入两种指令,对应指令码分别为 0x03、0x06。下面逐一说明每种指令码的指令和返回数据帧格式。

(1) 03 (0x03) 指令码: 读取多个连续的寄存器数据,指令格式如下

指令数据帧结构

地址码	功能码 0x03	开始地址	寄存器数量	CRC 校验
1字节	1字节	2 字节	2字节	2字节

返回数据帧结构

地址码	功能码 0x03	数据长度	数据	CRC 校验
1字节	1字节	2 字节	n 字节	2字节

例:读取设备地址为 0x01 的寄存器值,寄存器开始地址为 0,连续读取 10 个寄存器

主机发送指令: 0x01 0x03 0x00 0x00 0x00 0x0A OxC5 OxCD

读取多个连续寄存器时,单次读取不要超过64个寄存器。

(2) 06 (0x06) 指令码: 修改单个寄存器的值, 指令格式如下

指令数据帧结构

地址码	功能码 0x06	寄存器地址	寄存器值	CRC 校验
1字节	1字节	2 字节	2 字节	2 字节

返回数据帧结构

地址码	功能码 0x06	寄存器地址	寄存器值	CRC 校验
1字节	1字节	2 字节	2 字节	2字节

例: 将设备地址为 0x01 中的寄存器 8 的值修改为 100

主机发送指令: 0x01 0x06 0x00 0x08 0x00 0x64 0x09 0xE3

从机返回应答: 0x01 0x06 0x00 0x08 0x00 0x64 *0x09 0xE3*

(二) AABB 通讯协议

AABB 通讯协议是一种非标准自定义协议,相较于 MODBUS 通讯协议,结构更简单,指

令生成方法更容易,便于进行快速测试。AABB通讯协议支持单寄存器读写两种指令。

(1) 读取单个寄存器

指令数据帧结构

指令头 OxAA OxBB	地址码	寄存器地址	和校验
2字节	1 字节	1字节	1 字节

返回数据帧结构

指令头 OxAA OxBB	地址码	寄存器地址	寄存器值	和校验
2字节	1字节	1字节	2字节	1字节

指令头: 固定为 16 进制 AABB

地址码: VH301X 的设备地址(1^2 255,其中地址 255 为通用地址,详见后续"通用模块地址"说明)

寄存器地址: 要访问的寄存器地址($0^{\sim}63$),寄存器地址字节最高位是读写标志位,为0时表示读寄存器,为1时表示写寄存器。

和校验: 之前所有数据之和,0xAA+0xBB+地址码+寄存器地址,校验和超过 255 时,仅使用低字节。如下例中,校验和=<math>0xAA+0xBB+0x01+0x08=0x016E,则只使用 0x6E 作为最终和校验码。

例:读取设备地址为 0x01 的寄存器值,寄存器地址为 8

主机发送指令: 0xAA 0xBB 0x01 0x08 0x6E

从机返回应答: 0xAA 0xBB 0x01 0x08 0x00 0x60 0xCE

(2) 修改单个寄存器

指令数据帧结构

指令头 OxAA OxBB	地址码	寄存器地址 0x80	寄存器值	和校验
2字节	1字节	1字节	2字节	1字节

写寄存器指令中,寄存器地址字节的最高位应为1,即地址值与0x80做"或"运算。

返回数据帧结构

指令头 OxAA OxBB	地址码	寄存器地址	寄存器值	和校验
2 字节	1字节	1字节	2字节	1 字节

例:修改设备地址为 0x01 的寄存器值,寄存器地址为 8,修改值为 100

主机发送指令: 0xAA 0xBB 0x01 0x88 0x00 0x64 0x52

从机返回应答: 0xAA 0xBB 0x01 0x08 0x00 0x64 0xD2

(3) 通用模块地址

AABB 通讯协议支持模块通用地址,无论模块的当前地址为何值,使用 0xFF 作为地址 对模块发送读写指令,均可得到模块正确应答。 例:使用通用地址,读取任一设备的寄存器8

主机发送指令: OxAA OxBB OxFF OxO8 Ox6C

从机返回应答: 0xAA 0xBB 0x01 0x08 0x00 0xC8 0x36

注: 当总线上连接有多台设备时(通常为 RS485 总线),使用通用地址时总线上所有模块均会响应指令,导致指令无法正常使用。

注: 严禁在连接有多台 VH301X 设备的总线中使用通用地址修改模块地址。

(三)字符串\$指令集

- (1) 读取寄存器值: \$GETP=寄存器地址\r\n
- (2) 修改寄存器值: \$SETP=寄存器地址, 寄存器值\r\n

注: \r\n 为回车符号,所有符号、字符必须为英文格式,当要修改的寄存器值为字符串类型时,请使用'#'符号代替回车符。

- (3)保存寄存器值\$SAVE:使用\$指令集修改寄存器值后,必须使用此指令进行保存操作,否则设备断电后修改的寄存器不能保存。
 - (4) 输出版本信息\$INFO
 - (5) 设备关机\$STDN
 - (6) 日期时间修改@SETDT:YYYY/MM/DD HH:MM:SS

(四)校验码算法

无论是向模块发送指令还是接收模块返回的答应数据,均应严格进行数据校验。极少情况下,模块返回的应答数据会存在错误,通过数据帧的校验码验证可完全避免读取到错误的数据。

(1) CRC16-MODBUS 算法

```
unsigned int crc16(unsigned char *dat, unsigned int len)
{
  unsigned int crc=0xfffff;
  unsigned char i;

  while(len!=0)
  {
    crc^=*dat;
    for(i=0;i<8;i++)
    {
       if((crc&0x00001)==0)</pre>
```

```
crc=crc>>1;
else
{
    crc=crc>>1;
    crc^=0xa001;
}
len-=1;
dat++;
}
return crc;
}

(2) 和校验算法
unsigned char AddCheck(unsigned char *dat, unsigned char count)
{
    unsigned char i, Add=0;
    for (i=0;i<count;i++)
        Add+=dat[i];
    return Add;
}
```

应用场景

全自动定时测量

修改读数仪工作模式为"自动"(可直接操作手持仪修改或使用 SETPTool 工具),在自动工作模式下,读数仪会按照预设的参数定时启动,采集并发送测量数据。(默认参数分别为:每小时启动一次存储数据;每两小时启动一次发送数据;数据格式为字符串;数据通过串口发送)

若需修改自动工作相差参数,必须使用 SETPTool 工具或者根据通讯协议向设备发送特定指令。(此步骤为非必须,可根据需要修改或使用默认值)。

更多振弦测量参数修改

本手持读数仪使用了我公司的专用振弦测量模块 VM301, VM301 具有众多参数 (手持读数仪仅管理了 3 个参数),若有模块参数修改的需要,则可通过手持机的透传功能实现振弦模块与计算机的直接连接功能(由手持机完成计算机与振弦模块之间的数据转发)。

向手持机发送透传指令"\$SETP=68,2",读数仪返回"OK";

打开振弦模块测试工具"VMTool",直接对振弦模块进行参数修改的测试;