[3]

0606/21/M/J/19

1. a) Sketch the graph of y = |5x - 3|, showing the coordinates of the points where the graph meets the coordinate axes.

b) Solve the equation |5x - 3| = 2 - x.

$$5x-3 = 2-x$$

$$5x+x = 2+3$$

$$6x = 5$$

$$x = \frac{5}{6}$$

$$5x-3=-2+\infty$$

$$5x-x=-2+3$$

$$4x=1$$

$$x=\frac{1}{4}$$

$(x+q)(x+q) = x^2 + 2qx + q^2$

0606/22/M/J/19

2. (i) Expres
$$(5x^2 - 15x + 1)$$
 in the form $p(x + q)^2 + r$, where p, q and r are constants $(7x + 15x + 1) = p(x + q) + r$ $(7x + q) = p(x + q) + r$ $(7x + q) = p(x +$

3. (a) The functions f and g are defined by

$$f(x) = 5x - 2$$
 for $x > 1$,
 $g(x) = 4x^2 - 9$ for $x > 0$

(i) State the range of g.
$$g(x) = 4(0)^{3} - 9$$

$$= -9 \quad y > -9$$
[1]

(ii) Find the domain of
$$gf$$
.

 $c>1$
 $f(x) = \bar{g}(y)$

(iii) Showing all your working, find the exact solutions of
$$gf(x) = 4$$
.

(i) State the geometrical relationship between the graphs of y = h(x) and $y = h^{-1}(x).$

reflection in
$$x=y$$
 [1]

$$hcx = \sqrt{x^2-1}, x \leq -1$$

$$y = \sqrt{x^2 - 1}$$

(ii) Find an expression for $h^{-1}(x)$.

$$x = \sqrt{y^2 - 1}$$

$$x^2 = y^2 - 1$$

$$x^2+1=y^2$$

$$\int_0^1 (x) = -\sqrt{x^2 + 1}$$

0606/12/O/N/19

4. It is given that

$$f: x \to \sqrt{x}$$
 for $x \ge 0$,
 $g: x \to x + 5$ for $x \ge 0$

$$f: x \to \sqrt{x}$$
 for $x \ge 0$,
 $g: x \to x + 5$ for $x \ge 0$

$$f(x) = x^2$$

$$g'(x) = x - 5$$

Identify each of the following functions with one of f^{-1} , g^{-1} , fg, gf, f^2 , g^2 .

(i)
$$\sqrt{x+5}$$
 fg(x)

[1]

(ii)
$$x - 5$$

[1]

(iii)
$$x^2$$

[1]

(iv)
$$x + 10$$

[1]

0606/21/O/N/19

5. (i) Draw the graph of y = |2x - 3|.

$$y=0, 0 = 2x-3$$

 $x=0, \frac{3}{2}$
 $y=-3$

 $(\frac{3}{4},0)$

(ii) Solve the equation 7 = |2x - 3| = 0.

OY

$$|\xi - z| = -3$$

$$|\xi - x| = -3$$

$$2x-3=7$$

$$2x = 10$$
$$x = 5$$

or
$$2x-3=-7$$

 $2x=-4$
 $x=-2$

0606/23/O/N/19

6. Solve
$$|3x + 2| = x + 4$$
.

$$3x - x = 4 - 2$$
$$2x = 2$$
$$x = 1$$

$$3x+2 = -x - 4$$

$$3x + x = -4 - 2$$

$$4x = -6$$

$$x = -\frac{3}{2}$$

[3]

7. (i) Given that $y = 2x^2 - 4x - 7$, write y in the form $a(x - b)^2 + c$, where a, b and c are constants.

2x - 12 - 7 =
$$a(x-b)+C$$

= $a(x^2-abx+b^2)+C$

= $ax^2-abx+ab^2+C$

2x - 4x - 7 = $ax^2-abx+ab^2+C$
 $a=2$
 $a=2$
 $a=2$

(ii) Hence write down the minimum value of y and the value of x at which it

occurs.

stationary pt = (1,-9)

(2-1)²=0

minimum value of
$$y = -9$$

value, of $x = 1$