Binary Arithmetic

CS 64: Computer Organization and Design Logic Lecture #2

Ziad Matni Dept. of Computer Science, UCSB

Adding this Class

- The class is still full at 80 people
- Unless others drops, people on the waitlist will not be able to add this class
 - Due to the physical limitation of the classroom
- If you **really** NEED to take this class and you are on the waitlist... be patient... until next week
 - I don't recommend waiting after that

Lecture Outline

- Review of positional notation, binary logic
- Bitwise operations
- Bit shift operations
- Two's complement
- Addition and subtraction in binary
- Multiplication in binary

Positional Notation in Decimal

Continuing with our example... 642 in base 10 positional notation is:

$$6 \times 10^{2} = 6 \times 100 = 600$$

+ $4 \times 10^{1} = 4 \times 10 = 40$
+ $2 \times 10^{0} = 2 \times 1 = 2 = 642$ in base 10

6	4	2
100	10	1

$$642_{\text{(base 10)}} = 600 + 40 + 2$$

Positional Notation

This is how you convert any base number into decimal!

What if "642" is expressed in the base of 13?

$$6 \times 13^{2} = 6 \times 169 = 1014$$

+ $4 \times 13^{1} = 4 \times 13 = 52$
+ $2 \times 13^{0} = 2 \times 1 = 2$

$$642_{\text{(base 13)}} = 1014 + 52 + 2$$
$$= 1068_{\text{(base 10)}}$$

Positional Notation in Binary

11101 in base 2 positional notation is:

$$1 \times 2^{4} = 1 \times 16 = 16$$
 $+ 1 \times 2^{3} = 1 \times 8 = 8$
 $+ 1 \times 2^{2} = 1 \times 4 = 4$
 $+ 0 \times 2^{1} = 1 \times 2 = 0$
 $+ 1 \times 2^{0} = 1 \times 1 = 1$

So, **11101** in base 2 is 16 + 8 + 4+ 0 + 1 = **29** in base 10

Convenient Table...

HEXADECIMAL	BINARY
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

HEXADECIMAL (Decimal)	BINARY
A (10)	1010
B (11)	1011
C (12)	1100
D (13)	1101
E (14)	1110
F (15)	1111

Always Helpful to Know...

N	2 ^N
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024 = 1 kilobits

N	2 ^N	
11	2048 = 2 kb	
12	4 kb	
13	8 kb	
14	16 kb	
15	32 kb	
16	64 kb	
17	128 kb	
18	256 kb	
19	512 kb	
20	1024 kb = 1 megabits	

N	2 ^N
21	2 Mb
22	4 Mb
23	8 Mb
24	16 Mb
25	32 Mb
26	64 Mb
27	128 Mb
28	256 Mb
29	512 Mb
30	1 Gb

Converting Binary to Octal and Hexadecimal

(or any base that's a power of 2)

NOTE THE FOLLOWING:

• Binary is 1 bit

• Octal is 3 bits

Hexadecimal is 4 bits

- Use the "group the bits" technique
 - Always start from the least significant digit
 - Group every 3 bits together for bin \rightarrow oct
 - Group every 4 bits together for bin \rightarrow hex

Converting Binary to Octal and Hexadecimal

Take the example: 10100110

...to octal:

2

4

6

246 in octal

...to hexadecimal:

A6 in hexadecimal

Converting Decimal to Other Bases

Algorithm for converting number in base 10 to other bases

While (the quotient is not zero)

- 1. Divide the decimal number by the new base
- 2. Make the remainder the next digit to the left in the answer
- 3. Replace the original decimal number with the quotient
- 4. Repeat until your quotient is zero

Example: What is 98 (base 10) in base 8?

1/18/18 Matni, CS64, Wi18 11

In-Class Exercise: Converting Decimal into Binary & Hex

Convert 54 (base 10) into binary and hex:

- 54/2 = 27 R O
- 27 / 2 = 13 R 1
- 13 / 2 = 6 R 1
- 6/2 = 3R0
- 3/2 = 1R1
- 1/2 = 0 R 1

```
54 (decimal) = 110110 (binary)
= 36 (hex)
```

```
Sanity check:
110110
= 2 + 4 + 16 + 32
= 54
```

Binary Logic Refresher NOT, AND, OR

X	$\frac{NOT}{X}$
0	1
1	0

X	Y	X AND Y X && Y X.Y
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	X OR Y X Y X + Y
0	0	0
0	1	1
1	0	1
1	1	1

Binary Logic Refresher Exclusive-OR (XOR)

The output is "1" only if the inputs are opposite

X	Y	X XOR Y X ⊕ Y
0	0	0
0	1	1
1	0	1
1	1	0

14

Bitwise NOT

 Similar to logical NOT (!), except it works on a bit-by-bit manner

• In C/C++, it's denoted by a tilde: ~

$$\sim (1001) = 0110$$

Exercises

 Sometimes hexadecimal numbers are written in the **0xhh** notation, so for example:

The hex 3B would be written as 0x3B

- What is ~(0x04)?
 - Ans: 0xFB
- What is ~(0xE7)?
 - Ans: 0x18

Bitwise AND

 Similar to logical AND (&&), except it works on a bit-by-bit manner

In C/C++, it's denoted by a single ampersand: &

$$(1001 \& 0101) = 1 0 0 1$$

 $\& 0 1 0 1$

Exercises

What is (0xFF) & (0x56)?

- Ans: 0x56

What is (0x0F) & (0x56)?

- Ans: 0x06

What is (0x11) & (0x56)?

- Ans: 0x10

Note how & can be used as a "masking" function

Bitwise OR

 Similar to logical OR (||), except it works on a bitby-bit manner

In C/C++, it's denoted by a single pipe: |

```
(1001 \mid 0101) = 1 0 0 1
\mid 0 1 0 1
```

Exercises

- What is (0xFF) | (0x92)?
 - Ans: 0xFF
- What is (0xAA) | (0x55)?
 - Ans: 0xFF

- What is (0xA5) | (0x92)?
 - Ans: B7

Bitwise XOR

Works on a bit-by-bit manner

• In C/C++, it's denoted by a single carat: ^

$$(1001 ^ 0101) = 1 0 0 1$$
 $^ 0 1 0 1$

Exercises

What is (0xA1) ^ (0x13)?

- Ans: 0xB2

What is (0xFF) ^ (0x13)?

- Ans: 0xEC

Note how (1^h) is always ^h
 and how (0^h) is always b

Bit Shift *Left*

- Move all the bits N positions to the left
- What do you do the positions now empty?
 - You put in N 0s
- Example: Shift "1001" 2 positions to the left 1001 << 2 = **100100**
- Why is this useful as a form of multiplication?

Multiplication by Bit Left Shifting

- Veeeery useful in CPU (ALU) design
 - Why?

- Because you don't have to design a multiplier
- You just have to design a way for the bits to shift

Bit Shift Right

- Move all the bits N positions to the *right*, subbing-in either N Os or N 1s on the left
- Takes on two different forms
- Example: Shift "1001" 2 positions to the right 1001 >> 2 = either **0010** or **1110**
- The information carried in the last 2 bits is <u>lost</u>.
- If Shift Left does multiplication, what does Shift Right do?
 - It divides, but it truncates the result

Two Forms of Shift Right

- Subbing-in Os makes sense
- What about subbing-in the leftmost bit with 1?
- It's called "arithmetic" shift right:
 1100 (arithmetic) >> 1 = 1110
- It's used for twos-complement purposes
 - What?

Negative Numbers in Binary

- So we know that, for example, $6_{(10)} = 110_{(2)}$
- But what about $-6_{(10)}$???
- What if we added one more bit on the far left to denote "negative"?
 - i.e. becomes the new MSB
- So: **110** (+6) becomes **1110** (-6)
- But this leaves a lot to be desired
 - Bad design choice...

Twos Complement Method

- This is how Twos Complement fixes this.
- Let's write out -6₍₁₀₎ in 2s-Complement binary in 4 bits:

First take the unsigned (abs) value (i.e. 6)

and convert to binary:

Then negate it (i.e. do a "NOT" function on it): 1001

Now add 1: 1010

0110

So,
$$-6_{(10)} = 1010_{(2)}$$

Let's do it Backwards... By doing it THE SAME EXACT WAY!

2s-Complement to Decimal method is the same!

- Take 1010 from our previous example
- Negate it and it becomes 0101
- Now add 1 to it & it becomes **0110**, which is $6_{(10)}$

Another View of 2s Complement

NOTE:

In Two's Complement, if the number's MSB is "1", then that means it's a negative number and if it's "0" then the number is positive.

YOUR TO-DOs

- Assignment #1
 - Due on Friday, 1/19, by 11:59 PM
 - Submit it via turnin as shown in the lab

- Next week, we will discuss more Arithmetic topics and start exploring Assembly Language
 - Read Ch. 2 in the book: sections 1 thru 4 only

