Descrevendo Circuitos Lógicos

CPCX – UFMS Prof. Renato F. dos Santos

3.1 Constantes e variáveis booleanas

- Uma variável booleana é uma quantidade que pode ser, em diferentes momentos, igual a 0 ou 1
- São muitas vezes usadas para representar o nível de tensão presente em uma conexão ou em terminais de entrada/saída de um circuito
 - 0 = tensão entre 0V e 0,8V
 - 1 = tensão entre 2v e 5V
- Variáveis booleanas 0 e 1 representam níveis de tensão, o qual é denominado nível lógico
- Em lógica digital, vários outros termos são usados como sinônimos para os níveis lógicos 0 e 1

3.1 Constantes e variáveis booleanas (Continuação)

Lógico 0	Lógico 1	
Falso	Verdadeiro	
Desligado	Ligado	
Baixo	Alto	
Não	Sim	
Aberto	Fechado	

Tabela 3.1 Termos sinônimos

3.1 Constantes e variáveis booleanas (Continuação)

- A álgebra booleana é um modo de expressar a relação entre as entradas e saídas de um circuito lógico
- As entradas são consideradas variáveis lógicas, que determinam os níveis das saídas
- Ao longo de nossos estudos usaremos letras como símbolos para representar as variáveis lógicas. Por exemplo:
 - A letra A pode ser usada para representar a entrada ou a saída de um determinado circuito digital
 - Teremos A = 0 ou A = 1

3.1 Constantes e variáveis booleanas (Continuação)

- A álgebra booleana é mais fácil de ser manipulada se comparada com a álgebra convencional
- Na álgebra booleana não existem frações, decimais, números negativos, raízes quadradas, raízes cúbicas, logaritmos, números imaginários, e assim por diante
- Tem de fato, apenas três operações básicas:
 - OR(OU), AND(E) e $NOT(N\tilde{A}O)$

3.2 Tabela-verdade

- É uma técnica usada para descrever como a saída de um circuito lógico depende dos níveis lógicos presentes nas entradas do circuito
- Essa tabela representa todas as combinações possíveis para as entradas, resultando na saída x
- Observe que há nas tabelas-verdade:
 - Quatro linhas para duas entradas
 - Oito linhas para três entradas
 - Dezesseis linhas para quatro entradas
- O número combinações de entradas é igual a 2^N para uma tabela-verdade de N entradas

3.3 Operação OR ('OU') e a porta OR

- A operação booleana para a operação OR é
 - x = A + B
- Nessa expressão o sinal '+' não representa a adição convencional; ele representa a operação OR
- A operação lógica OR produz 1 + 1 = 1, não 1 + 1 = 2
- O mesmo é válido para três entradas usando o operador OR.
 - Então teremos x = A + B + C
 - Se considerarmos todas as três entradas em nível 1, teremos
 - x = 1 + 1 + 1 = 1

3.3 Operação OR ('OU') e a porta OR (Continuação)

- A expressão x = A + B é lida como
 - 'x é igual a A OR B'
- Da mesma maneira a expressão x = A + B + C é lida como
 - '*x* é igual a *A* OR *B* OR *C*'
- Poderíamos dizer que x é verdadeiro (1) quando A é verdadeiro (1) OU B é verdadeiro (1) OU C é verdadeiro (1)

Porta OR

- Em circuitos digitais, uma porta OR é um circuito que tem duas ou mais entradas
- A porta OR opera de modo que sua saída será ALTA se a entrada A ou B ou ambas forem nível lógico 1
- A saída será nível BAIXO apenas se todas as entradas forem nível 0
- A idéia é a mesma para quando houver mais de duas entradas

Resumo da operação OR

- Os pontos importantes a serem lembrados em relação à operação OR e às portas OR são:
 - 1. A operação OR gera um resultado (saída) 1 sempre que quaisquer das entradas for 1. Caso contrário a saída é 0.
 - 2. Uma porta OR é um circuito lógico que realiza uma operação OR sobre as entradas do circuito
 - 3. A expressão x = A + B é lida assim: 'x é igual a A OR B'

3.4 Operação AND ('E') e a porta AND

- A expressão booleana para a operação AND é
 x = A . B
- Nessa expressão o sinal (.) representa a operação booleana AND e não a operação de multiplicação
- Entretanto, a operação AND sobre variáveis booleanas equivale à multiplicação convencional
- A expressão $x = A \cdot B$ é lida com
 - '*x* igual a *A* AND *B*'
- -x será 1 somente quando A e B forem, ambas, nível 1
- O sinal '.' normalmente é omitido, e a expressão tornase simplesmente x = AB

FIGURA 3.7

(a) Tabela-verdade para a operação AND; (b) símbolo da porta AND.

Porta AND

- A saída da porta AND é igual ao produto lógico AND das entradas, que é x = AB
- É um circuito que opera de modo que sua saída seja nível ALTO somente quando todas as entradas forem nível ALTO.
- Para todos os outros casos, a saída é nível BAIXO

Ī	Α	В	С	x = ABC	
	0	0	0	0	
	0	0	1	0	FIGURA 3.8
	0	1	0	0	A • Tobolo vondo do o címbolo
	0	1	1	0	$D = V = \Delta RC$
	1	0	0	0	para uma porta AND de três
	1	0	1	0	entradas.
	1	1	0	0	
	1	1	1	1	
Ľ					

Resumo das operações AND

- 1. A operação AND é realizada da mesma maneira que a multiplicação convencional de 1s e 0s
- 2. Uma porta AND é um circuito lógico que realiza uma operação AND sobre as entradas do circuito
- 3. A saída de uma porta AND será 1 somente quando todas as entradas forem 1; para todos os outros casos, a saída será 0
- 4. A expressão x = AB é lida como 'x é igual a A AND B'

3.5 Operação NOT ('NÃO') ou INVERSOR

- A operação NOT, também denominada INVERSOR, é diferente das operações OR e AND
- Pode ser realizada sobre uma única entrada
- Se a variável A for submetida à operação de inversão, o resultado x pode ser expresso como
 - $x = \overline{A}$
- onde a barra sobre o nome da variável representa a operação de inversão
- Essa expressão é lida como
 - 'x é igual a A negado', ou
 - 'x é igual ao inverso de A', ou
 - x é igual ao complemento de A'

3.5 Operação NOT ('NÃO') ou INVERSOR (Continuação)

- A tabela-verdade da figura 3.11(a) esclarece isso para os dois casos: A = 0 e A = 1. Isto é,
 - $0 = \overline{1}$ porque $0 \notin 1$ NEGADO
 - $1 = \overline{0}$ porque 1 é 0 NEGADO
- A operação NOT também é conhecida como inversão ou complemento
- Além da barra, podemos utilizar como indicador de inversão o símbolo apóstrofo ('). Isto é,
 - $A' = \overline{A}$

Circuito NOT (INVERSOR)

- Esse circuito sempre tem apenas uma entrada
- Seu nível lógico de saída é sempre o oposto ao nível lógico de entrada
- Se a entrada for = 0, a saída = 1 e vice-versa

Resumo da operações booleanas

 As regras para as operações OR, AND e NOT podem ser resumidas como segue:

OR	AND	NOT
0 + 0 = 0	0.0=0	0 = 1
0 + 1 = 1	0.1=0	1 = 0
1 + 0 = 1	1.0=0	
1 + 1 = 1	1.1=1	