

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

CIRCUITOS TRIFÁSICOS DESEQUILIBRADOS

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Novembro / 2019

Sumário

1 Objetivos					
2	Inti	roduçã	o teórica	2	
	2.1	Métod	do dos 3 Wattímetros	2	
3	Pre	paraçã	, 10	3	
	3.1	Mater	iais e ferramentas	3	
	3.2	Monta	agem	4	
		3.2.1	Carga em estrela com neutro conectado	4	
		3.2.2	Carga em estrela com neutro isolado	Ę	
		3.2.3	Carga em triângulo desequilibrado	5	
4	Dao	los Ex	perimentais	6	
	4.1	Carga	em estrela com neutro conectado	6	
	4.2	Carga	em estrela com neutro isolado	6	
	4.3	Carga	em triângulo desequilibrado	7	
5	Ana	álise so	obre segurança	7	
6	Cál	culos,	análise dos resultados e questões	8	
	6.1	Anális	se teórica do circuito	8	
		6.1.1	Carga em estrela com neutro conectado	8	
		6.1.2	Carga em estrela com neutro isolado	8	
		6.1.3	Carga em triângulo desequilibrado	8	
	6.2	Anális	se comparativa: experimento vs. teoria	8	
		6.2.1	Sobre a presença do neutro no circuito desequilibrado	8	
		6.2.2	Sobre a ausência do neutro no circuito desequilibrado	8	
		6.2.3	Ilustrando as medidas de tensão e corrente na forma de fasores	Ć	
		6.2.4	Sobre a configuração no medidor $Kron$	11	
7	Sim	ulação	computacional	12	
	7.1	Carga	em estrela com neutro conectado	12	
	7.2	Carga	em estrela com neutro isolado	12	
	7.3	Carga	em triângulo desequilibrado	12	
8	Cor	nclusõe	es	12	

1 Objetivos

Pretende-se investigar-se experimentalmente acerca do efeito da presença do fio neutro em circuitos trifásicos desequilibrados, ligados em estrela.

2 Introdução teórica

Um sistema trifásico equilibrado é o ideal para geração, transmissão e distribuição de energia elétrica em corrente alternada. O uso de tensões e correntes trifásicas igualmente defasadas permite uma transferência de potência de forma igualitária e evita sobrecargas na rede. Entretanto, o desequilíbrio em cirucitos polifásicos é comum e podem ocorrer devido a prensença de cargas trifásicas desequilibradas, distribuição de cargas monofásicas sem planejamento e pela variação nos ciclos de demanda de cada fase, como observa-se na Figura 1.

Figura 1: Distribuição desuniforme de cargas entre as fases [1].

Nesse contexto, é de interesse estudar circuitos elétricos desequilibrados, com o intuito de verficar os efeitos do deslocamento do neutro na rede elétrica.

2.1 Método dos 3 Wattimetros

O método dos 3 wattímetros, no qual é conectado um wattímetro por fase, é pouco comum, a menos que se deseje as potências de cada fase. É aplicável em circuitos onde o fator de potência varia continuamente como, por exemplo, no caso da obtenção das características de um motor síncrono, que graças a seu fator de potência elevado e variável são usados na correção de fator de potência e precisam de uma fonte de corrente contínua ou retificada para sua excitação, além de exigirem um complexo equipamento de controle.

Para circuitos elétricos a 4 Fios (Y com neutro) necessariamente, deve-se utilizar esse método, como no circuito da primeira montagem desse experimento (Figura 8). A medição de potência de cada wattímetro por fase referente a um ponto \mathbf{P} , como mostrado na Figura 2. Ainda é possível provar a indepência da medição de cada wattímetro com o ponto \mathbf{P} , que pode ligar-se a qualquer uma das fases caso não haja neutro (sistema a 3 fios). Assim, o wattímetro correspondente à fase ligada ao ponto \mathbf{P} será desnecessário para a medição da potência trifásica pois medirá com $V_L = 0V$, recaindo se, portanto, no método dos dois wattímetros

Figura 2: Ligação de wattímetros no sistema trifásico [1].

3 Preparação

3.1 Materiais e ferramentas

- 1 **Fonte:** Alimentará todo o circuito. Possui frequência de 60 Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.

- 5 Amperímetro analógico AC: Instrumento utilizado para acompanhar visualmente o aumento da corrente.
- 6 **Reatores de 200 mH:** Foram utilizados 3, para compor a carga do circuito trifásico. Sendo L=200mH e $R_L=3,8\Omega$.
- 7 **Resistores de** 50Ω : Foram utilizados 3, para compor a carga do circuito trifásico.
- 8 Capacitores de $45,9\mu F$: Foram utilizados 3, para compor a carga do circuito trifásico. Sendo $C=45,9\mu F$. Sendo sua resistência quase nula, portanto desprezível nessa aplicação (Esquenta pouco, logo dissipa menos energia).

3.2 Montagem

3.2.1 Carga em estrela com neutro conectado

A montagem utilizada observa-se na Figura 8, a qual ilustra o circuito na sequência de fases ABC. Pretende-se com este circuito investigar-se acerca do efeito do neutro em circuitos trifásicos desequilibrados. Usou-se TL=0000, TC=TP=1 como configurações no medidor Kron. Aplica-se uma tensão linha $V_L=100V$ com o auxílio do Varivolt, em frequência de 60Hz. Ademais, a carga desequilibrada possui os seguintes parâmetro: $R=50\Omega$, $R_L=3$, 8Ω , L=166mH e C=45, $9\mu F$.

Figura 3: Circuito esquemático da montagem 1.

3.2.2 Carga em estrela com neutro isolado

Com os mesmos parâmetros de impedância e tensão de entrada, porém agora com neutro isolado, mantém-se a configuração do medidor Kron. Entretanto, nessa situação espera-se deslocamento da tensão no neutro, ou seja, $V_{n'n} \neq 0$.

Figura 4: Circuito esquemático da montagem 2.

3.2.3 Carga em triângulo desequilibrado

Agora, na conexão em triângulo e sem neutro, a configuração TL é diferente (TL=0048, 3ϕ sem Neutro). Nessa montagem, tem-se tensão de entrada $V_{AB}=50V$, a fim de evitar-se correntes próximas ou superiores a 1,8A no medidor Kron.

Figura 5: Circuito esquemático da montagem 3.

4 Dados Experimentais

4.1 Carga em estrela com neutro conectado

Dos dados da Tabela 1, ainda tem-se $P_T=115,5{\rm W},~Q_T=61,42{\rm VAr}$ e $S_T=144,24{\rm VA}.$ Enquanto que para sequência de fases CBA (Tabela 2), $P_T=118,16{\rm W},$ $Q_T=60,7{\rm VAr}$ e $S_T=155,79{\rm VA}.$

Tabela 1: Dados experimentais da primeira montagem em sequência ABC.

	V_L (V)	V_F (V)	I_L (A)	P (W)	Q (VAr)	S (VA)	FP	A_N (A)	$V_{N'N}$ (V)
A	96,10	55,89	1,13	63,84	0,30	64,16	1		
В	100,07	56,57	0,62	22,12	27,68	35,58	0,625	0,21	0
С	99,69	58,82	0,76	29,54	33,44	44,50	0,659		

Tabela 2: Dados experimentais da primeira montagem em sequência CBA.

	V_L (V)	V_F (V)	I_L (A)	P (W)	Q (VAr)	S (VA)	FP	A_N (A)	$V_{N'N}$ (V)
A	100,50	57,60	1,096	63,25	0,24	63,51	1		
В	99,25	57,45	0,641	23,94	27,85	36,76	0,652	1,6	0
С	100,70	58,34	0,767	30,57	32,61	55,52	0,683		

4.2 Carga em estrela com neutro isolado

Dos dados da Tabela 3, ainda tem-se $P_T=122,92\mathrm{W},\ Q_T=55,16\mathrm{VAr}$ e $S_T=149,04\mathrm{VA}$. Enquanto que para sequência de fases CBA (Tabela 4), $P_T=125,598\mathrm{W},$ $Q_T=146,509\mathrm{VAr}$ e $S_T=193,813\mathrm{VA}.$

Tabela 3: Dados experimentais da segunda montagem em sequência ABC.

	V_L (V)	V_F (V)	I_L (A)	P (W)	Q (VAr)	S (VA)	FP	$V_{N'N}$ (V)
A	96,01	62,03	1,24	77,34	0,30	77,60	1	
В	100,6	54,74	0,59	20,24	25,60	32,78	0,621	0
С	99,51	54,98	0,70	25,34	29,26	38,66	0,654	

Tabela 4: Dados experimentais da segunda montagem em sequência CBA.

	V_L (V)	V_F (V)	I_L (A)	P (W)	Q (VAr)	S (VA)	FP	$V_{N'N}$ (V)
A	100,4	14,18	0,210	3,968	0,069	3,963	1	
В	97,79	81,92	1,002	57,21	72,29	91,69	0,690	42
С	101,4	87,82	1,123	64,42	74,15	98,16	0,655	

4.3 Carga em triângulo desequilibrado

Dos dados da Tabela 5, ainda tem-se $P_T=88,603\mathrm{W},\ Q_T=37,569\mathrm{VAr}$ e $S_T=96,969\mathrm{VA}.$ Enquanto que para sequência de fases CBA (Tabela 6), $P_T=94\mathrm{W},\ Q_T=4,303\mathrm{VAr}$ e $S_T=91,19\mathrm{VA}.$

Tabela 5: Dados experimentais da terceira montagem em sequência ABC.

	I_L (A)	P (W)	Q (VAr)	S (VA)	FP
A	5,63	42,38	17,26	45,82	0,925
В	1,472	39,40	17,75	43,84	0,911
С	0,266	6,823	2,559	7,309	0,934

Tabela 6: Dados experimentais da terceira montagem em sequência CBA.

	I_L (A)	P (W)	Q (VAr)	S (VA)	FP
A	1,018	29,56	3,584	29,81	0,993
В	0,963	28,35	0,628	28,35	1
С	1,21	36,09	0,091	33,03	1

5 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [3]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

6 Cálculos, análise dos resultados e questões

6.1 Análise teórica do circuito

Como o circuito é desequilibrado, a análise deve ser feita fase por fase. No entanto, há uma certeza: as tensões da fonte são equilibradas em módulo e ângulo. Assim, sabendo-se que $V_L = V_F \sqrt{3} \ \angle 30^\circ$, tem-se os seguintes dados:

$$\begin{bmatrix} E_{AB} \\ E_{BC} \\ E_{CA} \end{bmatrix} = 100 \text{V} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix} \quad \text{e} \quad \begin{bmatrix} E_{AN} \\ E_{BN} \\ E_{CN} \end{bmatrix} = 57,74 \text{V} \ \angle -30^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

6.1.1 Carga em estrela com neutro conectado

Primeiramente, é possível descrever as impedâncias como abaixo:

$$\begin{cases} Z_A = 50 \ [\Omega] \\ Z_B = 53, 8 + j \ 62, 58 \ [\Omega] \\ Z_C = 50 - j \ 57, 79 \ [\Omega] \end{cases} \text{ e também } \begin{cases} Y_A = 0, 02 \ [S] \\ Y_B = 0, 0122 \ \angle -49, 31 \ [S] \\ Y_C = 0, 0131 \ \angle 49, 13 \ [S] \end{cases}$$

Como os neutros da fonte e da carga estão conectados, não há deslocamento de neutro, $V_{n'n} = 0$. Portanto, a tensão na carga é a mesma da fonte, como consequência da presença do neutro.

6.1.2 Carga em estrela com neutro isolado

6.1.3 Carga em triângulo desequilibrado

6.2 Análise comparativa: experimento vs. teoria

6.2.1 Sobre a presença do neutro no circuito desequilibrado

Como visto na análise teorica e experimental, a ligação do neutro da fonte com o da carga provocou $V_{n'n}=0$, fazendo com que a tensão fornecida pela fonte seja completamente recaída sobre a carga. Entretanto, o fio neutro tom funciona como fuga para a corrente resultante, sendo $I_N=I_A+I_B+I_C$, já que no circuito desequilibrado as correntes não se anularão.

6.2.2 Sobre a ausência do neutro no circuito desequilibrado

Na ausência do fio neutro a corrente resultante da soma das correntes de linha I_A , I_B e I_C não tem como fugir pelo neutro, além disso manisfesta-se por meio de

uma diferença de potencial $V_{n'n}$, uma vez que o neutro da carga não estará mais conectado ao da fonte (referencial), que neste momento está isolado.

6.2.3 Ilustrando as medidas de tensão e corrente na forma de fasores

A partir do resultado teórico, é interessante verficar a disposição de grandezas de tensão e corrente num diagrama fasorial, assim constatar o desequílibrio visualmente (Figura 6).

Figura 6: Digrama fasorial das montagens 1-3 em (a)-(c).

6.2.4 Sobre a configuração no medidor Kron

Na Figura 7 tem-se a aplicação apropriada para cada configuração TL, logo se a configuração TL=0003 tivesse sido usada na montagem 1, ou seja, em um circuito desequilibrado, não se obteria os valores de interesse, já que o medidor *Kron* assume que a carga seja trifásica e procede os cálculos das grandezas trifásicas, por meio de somente os sinais de tensão e uma corrente. Assim, a impedância de uma fase qualquer é facilmente calculada pela Lei de Ohm, a qual o *Kron* considerará erroneamente como a mesma impedância para as outras duas fases.

Com relação a segunda configuração (TL=0049), para as outras duas montagem, também não é possível, já que nessa configuração assume-se cargas equilibradas, assim o *Kron* fará o cálculo da terceira a partir da aritmética das outras duas obrtidas medainte, o que é erróneo, pois dado que as cargas são desenquilidadas, as corrente também deveriam ser, à tensão de linha equilibrada.

TL 00	Trifásico Equilibrado ou Desequilibrado Estrela (3F + N) 3 elementos 4 fios	
	Medição de circuitos trifásicos estrela (3F + N).	
Aplicação:	O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sisten exceda os limites especificados no capítulo Características Técnicas.	
	É imprescindível que a sequência das fases esteja em sentido horário (R-S-T).	

(a)

TL 03	Trifásico Equilibrado (3F + N) 1 elemento 2 fios
Aplicação:	Medição de circuitos trifásicos estrela (3F + N) em que ocorre equilibrio de tensões e correntes (por exemplo: um motor, pelo fato da impedância de seus enrolamentos ser praticamente igual, é uma carga equilibrada). Desta forma, bastará o medidor receber os sinais de uma tensão e uma corrente para proceder ao cálculo das grandezas trifásicas. O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo <i>Características Técnicas</i> .

(b)

TL 48	Trifásico Desequilibrado Delta (3F) – 3 elementos 3 elementos 3 fios – 2TPs
	Medição de circuitos trifásicos delta (3F), com uso de 3 (três) transformadores de corrente (elementos) e 2 (dois) transformadores de potencial.
Aplicação:	O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo Características Técnicas.
	É imprescindível que a sequência das fases esteja em sentido horário (R-S-T).

(c)

TL 49	Trifásico Equilibrado Delta (3F) – 2 elementos
12.15	2 elementos 3 fios – 2TPs Medição de circuitos trifásicos delta (3F), com uso de 2 (dois) transformadores de corrente (elementos) e 2 (dois) transformadores de potencial.
	O uso de transformadores de corrente e potencial somente é necessário caso a corrente ou tensão do sistema exceda os limites especificados no capítulo <i>Características Técnicas</i> .
	É imprescindível que a sequência das fases esteja em sentido horário (R-S-T).

(d)

Figura 7: Informação do manual do usuário do medidor *Kron* para as configurações de Tipo de Ligação (a) TL00, (b) TL03, (c) TL48 e (d) TL49 [2].

7 Simulação computacional

7.1 Carga em estrela com neutro conectado

Figura 8: Circuito esquemático da montagem 1.

- 7.2 Carga em estrela com neutro isolado
- 7.3 Carga em triângulo desequilibrado
- 8 Conclusões

Referências

- [1] P. H. O. Rezende, "Circuitos Polifásicos Desequilibrados", 2018.
- [2] KRON Instrumentos Elétricos, "Mult-K 05 e Mult-K 120: Medidores de Energia e Transdutores Digitais de Grandezas Elétricas", Kron Medidores., 2018.
- [3] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.