Concetti di base di complessità degli algoritmi

+

Algoritmi di ordinamento

Problemi, algoritmi, programmi

- Problema: il compito da svolgere
 - quali *output* vogliamo ottenere a fronte di certi *input*
 - cioè quale funzione vogliamo realizzare
- Algoritmo: i passi (il processo) da seguire per risolvere un problema
 - un algoritmo prende gli *input* in ingresso ad un problema e li trasforma in opportuni *output*
- Come al solito, un problema può essere risolto da tanti algoritmi
- Un algoritmo è una sequenza di operazioni concrete
 - deve essere eseguibile da una "macchina"
- Un algoritmo deve essere corretto
 - deve calcolare la funzione giusta
 - sappiamo che determinare la correttezza di un algoritmo è un problema indecidibile...
 - ... questo però non vuole dire che non si possa fare niente per cercare di capire se un algoritmo è corretto o no

- Un algoritmo può essere descritto in diversi linguaggi
 - se usiamo un linguaggio di programmazione (C, C++, Java, C#, ecc.)
 abbiamo un *programma*

- Come linguaggio noi usiamo lo pseudocodice
 - non è un vero linguaggio di programmazione, ma ci assomiglia molto
 - facile da tradurre in codice di un linguaggio di programmazione quale C,
 Java, o Python
 - il particolare linguaggio di programmazione con cui un algoritmo è implementato è, dal punto di vista della complessità, un po' come l'hardware: cambia solo le costanti moltiplicative

Primo esempio di problema/algoritmo

- Problema: **ordinamento**
 - *Input*: una sequenza A di n numeri $[a_1, a_2, ... a_n]$
 - _ Output: una permutazione $[b_1, b_2, ... b_n]$ della sequenza di input tale che $b_1 \le b_2 \le ... \le b_n$
- Algoritmo: *insertion sort*

```
INSERTION-SORT(A)
1 for j := 2 to A.length
2   key := A[j]
3   //Inserisce A[j] nella sequenza ordinata A[1..j-1]
4   i := j - 1
5   while i > 0 and A[i] > key
6   A[i + 1] := A[i]
7   i := i - 1
8   A[i + 1] := key
```

pseudocodice

- assegnamento: i := j
 assegnamento multiplo: i := j := e
 - applicato da destra a sinistra
 - cioè è la stessa cosa che scrivere j := e; i := j
- while, for, if-then-else come in C
- // inizia un commento, che termina alla fine della riga
- la struttura a blocchi è data dalla indentazione

```
while i > 0 and A[i] > key
A[i+1] := A[i]
i := i-1
A[i+1] := key

while (i > 0 \text{ and } A[i] > key)
= \begin{cases} A[i+1] := A[i] \\ i := i-1 \end{cases}
A[i+1] := key
A[i+1] := key
```

- Le variabili sono locali alla procedura
- Agli elementi degli array si accede come in C
 - A[j] è l'elemento di indice j dell'array A
 - il primo elemento può avere un indice diverso da 0
- Sottoarray:
 - A[i..j] è il sottoarray che inizia dall'elemento i-esimo e termina all'elemento j-esimo
 - e.g. A[1..5] è il sottoarray con i primi 5 elementi dell'array A

- Dati composti sono organizzati in *oggetti*
- Gli oggetti hanno degli attributi (detti anche campi)
 - per indicare il valore di un attributo attr di un oggetto x, scriviamo x.attr
 - gli array rappresentano dati composti, quindi sono oggetti
 - ogni array ha un attributo *length*, che contiene la lunghezza dell'array
- Una variabile che corrisponde ad un oggetto (es. un array) è un *puntatore* all'oggetto
 - molto simile ai puntatori in C e, sopratutto, al concetto di *reference* in Java
 - per esempio, se abbiamo due variabili x and y, e x punta ad un oggetto con un attributo f, dopo le seguenti istruzioni

```
y := x
 x \cdot f := 3
 si ha che x \cdot f = y \cdot f = 3, in quanto, grazie all'assegnamento y := x, x \cdot e y puntano allo stesso oggetto
```

Un puntatore che non fa riferimento ad alcun oggetto ha valore NIL

- I parametri sono passati per valore
 - la procedura invocata riceve una copia dei parametri passati
 - se una procedura PROC ha un parametro x e dentro a PROC il parametro x riceve il valore di y (x := y), la modifica non è visibile al di fuori della procedura (per esempio al chiamante)
- Quando un oggetto è passato come parametro, ciò che viene passato è il *puntatore* all'oggetto
 - degli attributi non viene fatta una copia, e modifiche a questi sono visibili al chiamante
 - se x è un parametro che è un oggetto con attributo f, gli effetti dell'assegnamento $x \cdot f := 3$ sono visibili al di fuori della procedura
 - questo è il funzionamento di Java.

Modello di computazione

- Quale è la "macchina" sulla quale vengono eseguiti gli algoritmi scritti in pseudocodice?
- La macchina RAM!

- Assunzione di base: ogni istruzione semplice di pseudocodice è tradotta in un numero finito di istruzioni RAM
 - per esempio X := y diventa, se a_x e a_y sono gli l'indirizzi in memoria delle variabili x e y (a_x e a_y sono delle costanti):

LOAD a_y STORE a_x

- Da ora in poi adottiamo il *criterio di costo costante*
 - adatto per gli algoritmi che scriveremo, che non manipoleranno mai numeri né richiederanno quantità di memoria molto più grandi della dimensione dei dati in ingresso
- In conseguenza di ciò abbiamo che ogni istruzione i di pseudocodice viene eseguita in un tempo costante c_i
- Grazie a questa assunzione, da adesso in poi possiamo "dimenticarci" che il modello computazionale dello pseudocodice è la macchina RAM
- Inoltre, da ora in poi ci concentriamo sulla *complessità temporale*, più che su quella spaziale

Costo di esecuzione per INSERTION-SORT

```
INSERTION-SORT(A)
                                                                costo
                                                                        numero
                                                                        di volte
1 for j := 2 to A.length
                                                                \mathcal{C}_1
                                                                        n
     key := A[j]
                                                                c_2 \qquad n-1
3
    //Inserisce A[j] nella sequenza A[1..j-1]
                                                                     n - 1
     i := j - 1
                                                                        n - 1
                                                                C_4
                                                                        \sum_{j=2}^{n} t_{j}
     while i > 0 and A[i] > key
5
                                                                C_5
                                                                      \sum_{j=2}^{n} (t_j - 1)
6
    A[i + 1] := A[i]
                                                                C_7 \qquad \sum_{j=2}^n (t_j - 1)
  i := i - 1
8 \quad A[i + 1] := key
                                                                        n - 1
```

- Note:
 - -n = A.length = dimensione dei dati in ingresso
 - t_2 , t_3 ... t_n = numero di volte che la condizione del ciclo **while** viene eseguita quando j = 2, 3, ... n
- Tempo di esecuzione di INSERTION SORT:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- Se l'array A è già ordinato, $t_2 = ... = t_n = 1$
 - -T(n) = an+b, cioè $T(n) = \Theta(n)$
 - questo è il caso ottimo
- Se A è ordinato, ma in ordine decrescente, $t_2=2$, $t_3=3$, ... $t_n=n$
 - $T(n) = an^2 + bn + c, \operatorname{cioè} T(n) = \Theta(n^2)$
 - questo è il caso pessimo

Un classico problema: l'ordinamento

- L'ordinamento degli elementi di una sequenza è un esempio classico di problema risolto mediante algoritmi
- C'è un gran numero di algoritmi di ordinamento disponibili: insertion sort, bubblesort, quicksort, merge sort, counting sort, ...
- Ne abbiamo appena visto uno di essi: insertion sort
- Abbiamo visto che *nel caso pessimo* $T_{INSERTION-SORT}(n) \grave{e} \Theta(n^2)$
 - possiamo anche scrivere che $T_{INSERTION-SORT}(n) = O(n^2)$, in quanto il limite superiore (che è raggiunto nel caso pessimo) è una funzione in $\Theta(n^2)$
 - è anche $T_{INSERTION-SORT}(n)=\Omega(n)$, in quanto il limite inferiore (raggiunto nel caso ottimo) è $\Theta(n)$
- Possiamo fare di meglio?
 - possiamo cioè scrivere un algoritmo con un limite superiore migliore?

Merge sort

- Idea dell'algoritmo:
 - se l'array da ordinare ha *meno di* 2 elementi, è già ordinato
 - altrimenti:
 - si divide l'array in 2 sottoarray, ognuno con la metà degli elementi di quello originario
 - si ordinano i 2 sottoarray ri-applicando l'algoritmo
 - si fondono (merge) i 2 sottoarray (che ora sono ordinati)
- MERGE SORT è un algoritmo ricorsivo

pseudocodice di MERGE - SORT

```
MERGE-SORT(A, p, r)

1 if p < r

2 q := \lfloor (p + r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

• Per ordinare un array A = [A[1], A[2], ... A[n]] usiamo MERGE-SORT (A, 1, A.length)

- MERGE SORT adotta una tecnica algoritmica classica: divide et impera
- Se il problema da risolvere è grosso:
 - dividilo in problemi più piccoli della stessa natura
 - risolvi (domina) i problemi più piccoli
 - combina le soluzioni
- Dopo un po' che dividiamo il problema in altri più piccoli, ad un certo punto arriviamo ad ottenere problemi "piccoli a sufficienza" per poterli risolvere senza dividerli ulteriormente
 - è una tecnica naturalmente ricorsiva in quanto, per risolvere i "problemi più piccoli", applichiamo lo stesso algoritmo del problema più grosso
- Per completare l'algoritmo dobbiamo definire un sotto-algoritmo MERGE che "combina" le soluzioni dei problemi più piccoli

Fusione (merge) di sottoarray ordinati

- Definizione del problema (input/output)
 - Input: 2 array ordinati A[p..q] e A[q+1..r] di un array A
 - Output: l'array ordinato A[p..r] ottenuto dalla fusione degli elementi dei 2 array iniziali

- Idea dell'algoritmo:
 - 1. si va all'inizio dei 2 sottoarray
 - 2. si prende il minimo dei 2 elementi correnti
 - 3. si inserisce tale minimo alla fine dell'array da restituire
 - 4. si avanza di uno nell'array da cui si è preso il minimo
 - 5. si ripete dal passo 2

pseudocodice

```
MERGE (A, p, q, r)
1 \quad n_1 := q - p + 1
2 n_2 := r - q
3 crea (alloca) 2 nuovi array L[1..n_1+1] e R[1..n_2+1]
4 for i := 1 to n_1
5 L[i] := A[p + i - 1]
6 for j := 1 to n_2
7 \qquad R[j] := A[q + j]
8 L[n_1 + 1] := \infty
9 R[n_2 + 1] := \infty
10 \ i := 1
11 \ j := 1
12 for k := p to r
13 if L[i] \leq R[j]
14 \qquad A[k] := L[i]
i := i + 1
16 else A[k] := R[j]
17 j := j + 1
```

Esempio di funzionamento di Merge-Sort:

42	16	28	36	26	78	84	8
16	42	28	36	26	78	8	84
16	28	36	42	8	26	78	84
8	16	26	28	36	42	78	84

Analisi dell'algoritmo MERGE

- Nell'algoritmo MERGE prima si copiano gli elementi dei 2 sottoarray A[p..q] e A[q+1..r] in 2 array temporanei L e R, quindi si fondono L e R in A[p..r]
- Dimensione dei dati in input: n = r p + 1
- L'algoritmo è fatto di 3 cicli **for**:
 - 2 cicli di inizializzazione (l. 4-7), per assegnare i valori a L e R:
 - il primo è eseguito n_1 volte, il secondo n_2 volte, con $n_1 + n_2 = n$, quindi $\Theta(n_1 + n_2) = \Theta(n)$
- Il ciclo principale (l. 12-17) è eseguito n volte, e ogni linea ha costo costante
- In totale $T_{MERGE}(n) = \Theta(n)$

Complessità di un algoritmo divide et impera

- In generale, un algoritmo *divide et impera* ha le caratteristiche seguenti:
 - si divide il problema in a sottoproblemi, ognuno di dimensione 1/b di quello originale
 - se il sottoproblema ha dimensione n piccola a sufficienza (n < c, con c una costante caratteristica del problema), esso può essere risolto in tempo costante (cioè $\Theta(1)$)
 - indichiamo con D(n) il costo di dividere il problema, e C(n) il costo di ricombinare i sottoproblemi
 - T(n) è il costo per risolvere il problema totale
- Possiamo esprimere il costo T(n) tramite la seguente *equazione di ricorrenza* (o *ricorrenza*):

$$T(n) = \begin{cases} \Theta(1) & \text{se } n < c \\ D(n) + a T(n/b) + C(n) & \text{altrimenti} \end{cases}$$

• Ricorrenza per l'algoritmo MERGE - SORT:

$$a = b = c = 2$$
, $D(n) = \Theta(1)$, $C(n) = \Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{se } n < 2 \\ 2T(n/2) + \Theta(n) & \text{altrimenti} \end{cases}$$

- in realtà dovrebbe essere $T(\lfloor n/2 \rfloor)+T(\lceil n/2 \rceil)$ invece di 2T(n/2), ma l'approssimazione non influisce sul comportamento asintotico della funzione T(n)
- Come risolviamo le ricorrenze? Vedremo tra poco, per ora:

Complessità di MERGE - SORT

• Riscriviamo la ricorrenza di MERGE - SORT:

$$T(n) = \begin{cases} c & \text{se } n < 2\\ 2T(n/2) + cn & \text{altrimenti} \end{cases}$$

• Possiamo disegnare l'*albero di ricorsione* (consideriamo per semplicità il caso in cui la lunghezza *n* dell'array è una potenza di 2)

Totale: $cn \log(n) + cn$

• Sommando i costi dei vari livelli otteniamo $T(n) = cn \log(n) + cn$, cioè $T_{MERGE-SORT}(n) = \Theta(n \log(n))$

Risoluzione di ricorrenze

- Tre tecniche principali:
 - sostituzione
 - albero di ricorsione
 - teorema dell'esperto (master theorem)
- Metodo della sostituzione:
 - formulare un'ipotesi di soluzione
 - sostituire la soluzione nella ricorrenza, e dimostrare (per induzione) che è in effetti una soluzione

- Esempio, cerchiamo un limite superiore per la seguente T(n):
 - $T(n) = 2T(\lfloor n/2 \rfloor) + n$
 - supponiamo $T(n) = O(n \log_2(n))$
 - dobbiamo mostrare che T(n) ≤ cn $\log_2(n)$ per una opportuna costante c > 0 (def. O)
 - (Ip. induttiva) supponiamo che valga per $T(\lfloor n/2 \rfloor)$, cioè $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \log_2(\lfloor n/2 \rfloor)$
 - sostituendo in T(n) abbiamo T(n) ≤ $2c\lfloor n/2 \rfloor \log_2(\lfloor n/2 \rfloor) + n \le cn \log_2(n/2) + n = cn \log_2(n) cn \log_2(2) + n = cn \log_2(n) cn + n \le cn \log_2(n)$
 - basta che $c \ge 1$
 - (Condizione al contorno) dobbiamo inoltre mostrare che la disuguaglianza vale per n = 1; supponiamo che sia T(1) = 1, allora $T(1) = 1 \le c1 \log_2(1) = 0$? No!
 - però T(n) ≤ cn $log_2(n)$ deve valere solo da un certo n_0 in poi, che possiamo scegliere arbitrariamente; prendiamo n_0 = 2, e notiamo che, se T(1) = 1, allora, dalla ricorrenza, T(2) = 4 e T(3) = 5
 - inoltre, per n > 3 la ricorrenza non dipende più dal problematico T(1)
 - ci basta determinare una costante c tale che $T(2) = 4 \le c2 \log_2(2)$ e $T(3) = 5 \le c3 \log_2(3)$
 - per ciò basta prendere c ≥ 2

Osservazioni sul metodo di sostituzione

Consideriamo il seguente caso:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

- Proviamo a vedere se T(n) = O(n):
 - $T(n) \le c[n/2] + c[n/2] + 1 = cn + 1$
 - basta prendere c = 1 e siamo a posto?
 - No, perché non abbiamo dimostrato la forma esatta della disuguaglianza!
 - dobbiamo derivare che il tutto è \leq cn, ma cn+1 non è \leq cn
- Potremmo prendere un limite più alto, e dimostrare che T(n) è $O(n^2)$ (cosa che è vera), ma in effetti si può anche dimostrare che T(n) = O(n), dobbiamo solo fare un piccolo aggiustamento.
- Mostriamo che $T(n) \le cn-b$, con b un'opportuna costante
 - se fosse così, allora T(n) = O(n)
 - $T(n) \le c \lfloor n/2 \rfloor -b + c \lceil n/2 \rceil -b + 1 = cn 2b + 1 \le cn b$
 - basta prendere $b \ge 1$

• Altro esempio:

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log_2(n)$$

- poniamo $m = log_2(n)$, quindi $n = 2^m$, otteniamo
- $T(2^m) = 2T(2^{m/2}) + m$
- Ponendo $S(m) = T(2^m)$ abbiamo S(m) = 2S(m/2) + m quindi $S(m) = O(m \log_2(m))$
- Quindi, sostituendo all'indietro: $T(n) = O(\log_2(n) \log_2(\log_2(n))$

Metodo dell'albero di ricorsione

- Un metodo non molto preciso, ma utile per fare una congettura da verificare poi con il metodo di sostituzione
- Idea: a partire dalla ricorrenza, sviluppiamo l'albero delle chiamate, indicando per ogni chiamata la sua complessità
- Esempio: $T(n) = T(\lfloor n/3 \rfloor) + T(\lfloor 2n/3 \rfloor) + O(n)$
 - Prima chiamata:

– Espandiamo:

– fino in fondo:

– Se l'albero fosse completo, sommando i costi livello per livello, a ogni livello avremmo un costo cn, ed il numero di livelli k sarebbe tale che $n(2/3)^k=1$, cioè $k=\log_{3/2}n$.

Albero di ricorsione (2)

- Però l'albero non è completo
 - il ramo più a destra è sì tale che alla fine $n(2/3)^k=1$, ma quello più a sinistra è tale che $n(1/3)^k=1$, cioè $k'=\log_3 n$
- Però possiamo prendere l'altezza dell'albero minore, cioè k', e la maggiore, k.
- Sicuramente T(n) = O(n k) e $T(n) = \Omega(n k')$, cioè $T(n) = O(n \log_{3/2} n)$ e $T(n) = \Omega(n \log_3 n)$.
- Ma il cambio di logaritmo ha un impatto solo sulla costante moltiplicativa, quindi posso direttamente dire $T(n) = \Theta(n \log_2 n)$

Teorema dell'esperto (Master Theorem)

• Data la ricorrenza:

$$T(n) = aT(n/b) + f(n)$$
(in cui $a \ge 1$, $b > 1$, e n/b è o $\lfloor n/b \rfloor$ o $\lceil n/b \rceil$)

- 1. se $f(n) = O(n^{\log_b a \epsilon})$ per qualche $\epsilon > 0$, allora $T(n) = \Theta(n^{\log_b a})$
- 2. se $f(n) = \Theta(n^{\log_b a})$, allora $T(n) = \Theta(n^{\log_b a} \log(n))$
- 3. se $f(n) = \Omega(n^{\log_b a + \epsilon})$ per qualche $\epsilon > 0$, e af(n/b) \leq cf(n) per qualche c ≤ 1 e per tutti gli n grandi a sufficienza, allora $T(n) = \Theta(f(n))$

Osservazioni

- Nota log_ba = (log a)/(log b)
 cioè (log numero sottoproblemi)/(log dimensioni sottoproblemi)
- La soluzione è data dal più grande tra n^{log}ba e f(n)
 - se $n^{\log_b a}$ è il più grande, T(n) è $\Theta(n^{\log_b a})$
 - se f(n) è il più grande, T(n) è $\Theta(f(n))$
 - se sono nella stessa classe secondo la relazione Θ , $T(n) \grave{e} \Theta(f(n)log(n))$
- "Più grande" o "più piccolo" in effetti è "polinomialmente più grande" e "polinomialmente più piccolo"
 - -n è polinomialmente più piccolo di n^2
 - n log(n) è polinomialmente più grande di $n^{\frac{1}{2}}$
- Il teorema dell'esperto non copre tutti i casi!
 - se una delle due funzioni è più grande, ma non polinomialmente più grande...
 - n log(n) è più grande di n, ma non polinomialmente più grande

- Esempio: applichiamo il teorema dell'esperto a MERGE SORT:
 - $T(n) = 2T(n/2) + \Theta(n)$
 - a = b = 2
 - f(n) = n
 - $n^{\log_b a} = n^1 = n$
 - = siamo nel caso 2: $T_{MERGE-SORT}(n) = \Theta(n \log(n))$

Un caso particolare

- Notiamo che l'enunciato del teorema dell'esperto si semplifica un po' se f(n) è una funzione $\Theta(n^k)$, con k una qualche costante:
 - 1. se $k \le \log_b a$, allora $T(n) = \Theta(n^{\log_b a})$
 - 2. se $k = \log_b a$, allora $T(n) = \Theta(n^k \log(n))$
 - 3. se $k > \log_b a$, allora $T(n) = \Theta(n^k)$
 - nel caso 3 la condizione aggiuntiva è automaticamente verificata

Un ulteriore risultato

• Data la ricorrenza (in cui i coefficienti a_i sono interi ≥ 0)

$$T(n) = \begin{cases} \Theta(1) & \text{se } n \le m \le h \\ \sum_{1 \le i \le h} a_i T(n-i) + c n^k & \text{se } n > m \end{cases}$$

- in cui poniamo $a = \sum a_i$
- allora abbiamo che: $1 \le i \le h$
 - se a = 1, allora $T(n)=O(n^{k+1})$
 - se $a \ge 2$, allora $T(n)=O(a^n n^k)$
- Per esempio, data la ricorrenza $T(n) = T(n-1) + \Theta(n)$, otteniamo $T(n) = O(n^2)$
 - questa è la ricorrenza che otterremmo con una versione ricorsiva di INSERTION-SORT

Grafi (richiamo)

- Un *grafo* è una coppia (V, E) in cui V è un insieme finito di *nodi* (detti anche *vertici*), e $E \subseteq V \times V$ è una relazione binaria su V che rappresenta gli *archi* del grafo
 - se u e v sono nodi del grafo, la coppia (u,v) è un arco, ed è rappresentata graficamente come:

in questo caso l'arco è *orientato*, in quanto c'è un ordine tra i nodi, prima u, poi v

- se non c'è un ordine tra i nodi (che quindi sono solo un insieme, $\{u,v\}$) allora diciamo che l'arco è *non orientato*:

- Un grafo è orientato se i suoi archi lo sono, non orientato altrimenti
 - esempio di grafo non orientato:

- Un *cammino* è una sequenza di nodi v_0 , v_1 , v_2 , ..., v_n tali che tra ogni coppia di nodi della sequenza (v_i, v_{i+1}) c'è un arco
 - i nodi v₀, ... v_n appartengono al cammino
 - la lunghezza del cammino è data da n (numero di vertici -1)
- In un grafo non orientato, il cammino forma un ciclo se $v_0 = v_n$
 - Un grafo che non ha cicli è aciclico
- Un grafo non orientato è *connesso* se tra ogni coppia di nodi esiste un cammino

Alberi (richiamo)

- Un *albero* è un grafo connesso, aciclico, non orientato
 - un albero è *radicato* se un nodo viene indicato come la *radice*

- Ogni nodo dell'albero è raggiungibile dalla radice tramite un cammino (che è unico, in quanto il grafo è aciclico).
- Chiamiamo foglie gli ultimi nodi dei cammini dalla radice.

• Ogni nodo ha un *padre* (a parte la radice) e uno o più *figli* (a parte le foglie).

• Chiamiamo:

- nodi interni: tutti i nodi dei cammini tra la radice e le foglie
- − profondità (di un nodo N): la distanza di N dalla radice
- altezza (dell'albero): la distanza massima tra la radice e una foglia
- antenato (di un nodo N): ogni nodo che precede N sul cammino dalla radice a N
- padre (di un nodo N): il nodo che immediatamente precede N lungo il cammino dalla radice a N
- − figlio (di un nodo N): ogni nodo di cui N è padre
- fratelli (di un nodo N): i nodi che hanno lo stesso padre di N
- Un albero è binario se ogni nodo ha al più 2 figli

HEAPSORT

- MERGE SORT è efficiente dal punto di vista del tempo di esecuzione, ma non è ottimale dal punto di vista dell'uso della memoria
 - ogni MERGE richiede di allocare 2 array, di lunghezza $\Theta(n)$
 - usa una quantità di memoria aggiuntiva rispetto all'array da ordinare che non è costante, cioè non ordina sul posto
- HEAPSORT, invece, non solo è efficiente (ordina in tempo $\Theta(n \log(n))$), ma ordina sul posto
- L'idea alla base di HEAPSORT è che un array può essere visto come un albero binario:
 - -A[1] è la radice
 - per ogni elemento A[i], A[2i] e A[2i+1] sono i suoi figli, e $A[\lfloor i/2 \rfloor]$ è il padre

• Esempio:

1	2	3	4	5	6	7	8	9	10	11	12
\mathbf{a}_{1}	\mathbf{a}_2	a_3	a_4	a_5	a_6	a ₇	a_8	a_9	a ₁₀	a ₁₁	a ₁₂

Gli heap (mucchi)

- Uno heap binario è un albero binario quasi completo
 - quasi completo = tutti i livelli sono completi, tranne al più l'ultimo, che potrebbe essere completo solo fino a un certo punto da sinistra
 - l'albero binario che deriva dall'interpretazione di un array come albero è quasi completo
- Un **max-heap** è uno heap tale che, per ogni nodo x dell'albero, il valore contenuto nel padre di x è \geq del contenuto di x
 - usando la corrispondenza albero-heap, questo vuole dire che $A[\lfloor i/2 \rfloor] \ge A[i]$
- Il concetto di min-heap è perfettamente duale
- Gli heap sono una struttura dati utilizzata per varie cose, a parte l'ordinamento, ad esempio sono comode ed efficienti per gestire *code a priorità*

• Esempio:

						7					
9	8	7	5	7	4	0	4	3	6	1	2

- Si noti che in un max-heap l'elemento massimo è nella radice
 - dove è il minimo?

Alcune operazioni sugli heap

Operazioni di base:

```
PARENT(i)
1 return [i/2]
```

```
LEFT(i)
RIGHT(i)
1 return 2*i
1 return 2*i+1
```

- Quindi, in un max-heap abbiamo che $A[PARENT(i)] \ge A[i]$
 - esistono anche i min-heap, per le quali $A[PARENT(i)] \le A[i]$
- Per realizzare l'ordinamento usiamo i max-heap
- Ogni array A che rappresenta uno heap ha 2 attributi:
 - A.length, che rappresenta il numero totale di elementi dell'array
 - A.heap-size, che rappresenta il numero di elementi dello heap
 - A.heap-size ≤ A.length, e solo gli elementi fino a A.heap-size hanno la proprietà dello heap
 - l'array potrebbe contenere elementi dopo l'indice *A.heap-size*, se
 A.heap-size < *A.length*

Algoritmi di supporto

• Un algoritmo che, dato un elemento di un array tale che i suoi figli sinistro e destro sono dei max-heap, ma in cui A[i] (la radice del sottoalbero) potrebbe essere < dei suoi figli, modifica l'array in modo che tutto l'albero di radice A[i] sia un max-heap

```
MAX-HEAPIFY(A, i)
1 \quad l := LEFT(i)
2 \quad r := RIGHT(i)
3 if l \le A.heap-size and A[l] > A[i]
4
    max := 1
5 else max := i
   if r \le A.heap-size and A[r] > A[max]
     max := r
   if max \neq i then
9
     swap A[i] \leftrightarrow A[max]
10
     MAX-HEAPIFY(A, max)
```

- $T_{\text{MAX-HEAPIFY}} = O(h)$, dove h è l'altezza dell'albero, che è $O(\log(n))$, poiché l'albero è quasi completo
 - quindi, $T_{MAX-HEAPIFY} = O(log(n))$
- Questo si sarebbe anche potuto mostrare usando il teorema dell'esperto per la seguente ricorrenza, che rappresenta il tempo di esecuzione di MAX-HEAPIFY nel caso pessimo: $T(n) = T(2n/3) + \Theta(1)$
 - nel caso pessimo l'ultimo livello dell'albero è esattamente pieno a metà, e l'algoritmo viene applicato ricorsivamente sul sottoalbero sinistro, che risulta quindi il più grande possibile.

Da array a heap

- Algoritmo per costruire un max-heap a partire da un array
 - idea: costruiamo il max-heap bottom-up, dalle foglie, fino ad arrivare alla radice
 - osservazione fondamentale: tutti gli elementi dall'indice A.length/2 in poi sono delle foglie, quelli prima sono dei nodi interni
 - i sottoalberi fatti di solo foglie, presi singolarmente, sono già dei max-heap, in quanto composti da un unico elemento

```
BUILD-MAX-HEAP(A)

1 A.heap-size := A.length

2 for i := A.length/2 downto 1

3 MAX-HEAPIFY(A, i)
```

- Costo di BUILD-MAX-HEAP?
 - ad occhio, ogni chiamata a MAX-HEAPIFY costa O(log(n)), e vengono fatte n chiamate (con n che è A.length), quindi il costo è O(n log(n))
 - ma in realtà questo limite non è stretto...

- Osserviamo che:
 - l'altezza di un albero quasi completo di n nodi è $\lfloor \log_2(n) \rfloor$
 - se definiamo come "altezza di un nodo di uno heap" la lunghezza del cammino più lungo che porta ad una foglia, il costo di MAX-HEAPIFY invocato su un nodo di altezza h è O(h)
 - il numero massimo di nodi di altezza h di uno heap è $\lceil n/2^{h+1} \rceil$
- Quindi MAX-HEAPIFY viene invocato [n/2^{h+1}] volte ad ogni altezza h, quindi il costo di BUILD-MAX-HEAP è

$$\sum_{h=0}^{\lfloor \log n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right)$$

• cioè O(n), in quanto è noto che $\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$

HEAPSORT

• Possiamo a questo punto scrivere l'algoritmo di HEAPSORT:

```
HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 for i := A.length downto 2
3  swap A[1] ↔ A[i]
4  A.heap-size := A.heap-size - 1
5  MAX-HEAPIFY(A,1)
```

- idea: a ogni ciclo piazziamo l'elemento più grande (che è il primo dell'array, in quanto questo è un max-heap) in fondo alla parte di array ancora da ordinare (che è quella corrispondente allo heap)
- La complessità di HEAPSORT è O(n log(n)), in quanto
 - BUILD-MAX-HEAP ha costo O(n)
 - MAX-HEAPIFY è invocato n volte, e ogni sua chiamata ha costo O(log(n))

esempio funzionamento

$$A = [4, 1, 3, 2, 16, 9, 10, 14, 8, 7]$$

heap A ad ogni passo dopo MAX-HEAPIFY:

```
[16, 14, 10, 8, 7, 9, 3, 2, 4, 1] max-heap [14, 8, 10, 4, 7, 9, 3, 2, 1, 16] [10, 8, 9, 4, 7, 1, 3, 2, 14, 16] [9, 8, 3, 4, 7, 1, 2, 10, 14, 16] [8, 7, 3, 4, 2, 1, 9, 10, 14, 16] [7, 4, 3, 1, 2, 8, 9, 10, 14, 16] [4, 2, 3, 1, 7, 8, 9, 10, 14, 16] [3, 2, 1, 4, 7, 8, 9, 10, 14, 16] [2, 1, 3, 4, 7, 8, 9, 10, 14, 16] [1, 2, 3, 4, 7, 8, 9, 10, 14, 16]
```

QUICKSORT

- QUICKSORT è un algoritmo in stile divide-et-impera
 - ordina sul posto
- Nel caso pessimo (vedremo) ha complessità $\Theta(n^2)$
- Però in media funziona molto bene (in media ha complessità $\Theta(n \log(n))$)
 - inoltre ha ottime costanti
- Idea di base del QUICKSORT: dato un sottoarray A[p..r] da ordinare:
 - (dividi) riorganizza in A[p..r] 2 sottoarray A[p..q-1] e A[q+1..r] tali che tutti gli elementi di A[p..q-1] sono ≤ A[q] e tutti gli elementi di A[q+1..r] sono ≥ A[q]
 - NB: A[q] è già al suo posto, quindi non verrà più spostato
 - (impera) ordina i sottoarray A[p..q-1] e A[q+1..r] riutilizzando QUICKSORT
 - (combina) nulla! L'array A[p..r] è già ordinato

```
QUICKSORT(A, p, r)
1 if p < r
2    q := PARTITION(A, p, r)
3    QUICKSORT(A, p, q-1)
4    QUICKSORT(A, q+1, r)</pre>
```

• Per ordinare un array A: QUICKSORT(A, 1, A.length)

• La parte più difficile di QUICKSORT è il partizionamento:

```
PARTITION(A, p, r)
1 \times := A[r]
2 i := p - 1
3 \text{ for } j := p \text{ to } r - 1
4 if A[j] \leq x
5 i := i + 1
6 swap A[i] \leftrightarrow A[j]
7 swap A[i+1] \leftrightarrow A[r]
8 \text{ return i} + 1
- l'elemento x (cioè A[r] in questa implementazione) è il pivot (o perno)
- da p a i (inclusi): partizione con elementi ≤ x
- da i+1 a j-1: partizione con elementi > x
   [[p (≤x) i][ (>x) ]j
                                               r]
```

• Complessità di PARTITION: $\Theta(n)$, con n = r - p + 1

esempio funzionamento

Quicksort su 99, 4, 88, 7, 5, -3, 1, 34, 11

```
1 2 3 4 5 6 7 8 9
[99,4, 88, 7, 5, -3, 1, 34, 11] p: 1, r: 9
[4, 7, 5, -3, 1, 11, 88, 34, 99] p: 1, q: 6, r: 9
[-3, 1, 5, 4, 7, 11, 88, 34, 99] p: 1, q: 2, r: 5
[-3, 1, 5, 4, 7, 11, 88, 34, 99]
                                p: 3, q: 5, r: 5
[-3, 1, 4, 5, 7, 11, 88, 34, 99] p: 3, q: 3, r: 4
[-3, 1, 4, 5, 7, 11, 88, 34, 99] p: 7, q: 9, r: 9
[-3, 1, 4, 5, 7, 11, 34, 88, 99] p: 7, q: 7, r: 8
                    pq
```

Complessità di QUICKSORT

- Il tempo di esecuzione di QUICKSORT dipende da come viene partizionato l'array
- Se ogni volta uno dei 2 sottoarray è vuoto e l'altro contiene *n*-1 elementi si ha il caso pessimo
 - la ricorrenza in questo caso è:

$$T(n) = T(n-1) + \Theta(n)$$

- abbiamo visto che la soluzione di questa ricorrenza è $O(n^2)$
- si può anche dimostrare (per esempio per sostituzione) che è anche $\Theta(n^2)$
- un caso in cui si ha sempre questa situazione completamente sbilanciata è quando l'array è già ordinato

Complessità di QUICKSORT

- Nel caso ottimo, invece, i 2 array in cui il problema viene suddiviso hanno esattamente la stessa dimensione n/2
 - la ricorrenza in questo caso è: $T(n) = 2T(n/2) + \Theta(n)$
 - è la stessa ricorrenza di MERGE SORT, ed ha quindi la stessa soluzione $\Theta(n \log(n))$
- Notiamo che se la proporzione di divisione, invece che essere n/2 ed n/2, fosse n/10 e 9n/10, comunque la complessità sarebbe $\Theta(n \log(n))$
 - solo, la costante "nascosta" dalla notazione Θ sarebbe più grande
 - abbiamo già visto qualcosa di molto simile per la suddivisione n/3 e 2n/3

QUICKSORT nel caso medio (solo intuizione)

- In media ci va un po' bene ed un po' male
 - bene = partizione ben bilanciata
 - male = partizione molto sbilanciata
- Qualche semplificazione:
 - ci va una volta bene ed una volta male
 - quando va bene: ottimo
 - n/2 e n/2
 - quando va male: pessimo
 - n-1 e 0

• Albero di ricorsione in questo caso (ogni divisione costa n):

- costo di una divisione "cattiva" + una divisione "buona" = $\Theta(n)$
 - è lo stesso costo di una singola divisione "buona"
- dopo una coppia "divisione cattiva" "divisione buona" il risultato è una divisione "buona"
- quindi alla fine il costo di una coppia "cattiva buona" è lo stesso di una divisione "buona", ed il costo di una catena di tali divisioni è la stessa.
- rispetto al caso ottimo, l'albero praticamente raddoppia come altezza
- quindi: $\Theta(n \log(n))$
 - le costanti moltiplicative peggiorano, ma il comportamento asintotico rimane lo stesso del caso ottimo

Limite inferiore per ordinamento

- Quanto veloce può andare un algoritmo di ordinamento? Possiamo far meglio di *n log n*?
- Partiamo col concetto di *ordinamento per confronto*: supponiamo di poter ordinare esclusivamente confrontando il valore di coppie di elementi (quello che abbiamo sempre fatto)
- Limiti inferiori: $\Omega(n)$ per forza dobbiamo leggere gli elementi!
- però per ora tutti gli ord. che abbiamo visto sono $\Omega(n \log n)$
- proviamo ad astrarre il problema dell'ordinamento per confronto:

contiamo esclusivamente i confronti:

• otteniamo un albero di decisione (esempio InsertSort):

• quante foglie ci sono? Tutte le permutazioni sono n!, però la stessa perm. potrebbe apparire più volte... ergo: > n!

- Posso costruire, dato un n, un albero simile per qualsiasi ordinamento per confronto (si confrontano x e y: solo due possibili risultati: $x \le y$ (siamo già a posto) oppure x > y)
- qual'è la lunghezza massima dalla radice a una foglia? Dipende dall'algoritmo di ordinamento: es. InsertionSort: Θ(n²),
 MergeSort: Θ(n log n)...
- Sfrutto il seguente Lemma:

L1: Ogni albero binario di altezza h ha un numero di foglie al più 2^h

- (dim banale per induzione)
- A questo punto:

Teorema:

Ogni albero di decisione di ordinamento di n elementi ha altezza $\Omega(n \log n)$.

Dim:

Sia f il numero di foglie. Abbiamo visto prima che $f \ge n!$

Per L1: $n! \le f \le 2^h$, cioè $2^h \ge n!$

Questo vuol dire: $h \ge \log(n!)$

Sfruttiamo l'approssimazione di Stirling: $n! > (n/e)^n$

Ne segue:

 $h \ge \log((n/e)^n) = n \log(n/e) = n \log n - n \log e = \Omega(n \log n)$

COUNTING-SORT

- Ipotesi fondamentale: i valori da ordinare sono tutti numeri naturali compresi tra 0 e una certa costante k
- Idea di base: se nell'array ci sono m_e valori più piccoli di un certo elemento e (il cui valore è v_e) nell'array ordinato l'elemento e sarà in posizione m_e+1
 - quindi, basta contare quante "copie" dello stesso valore v_e sono contenute nell'array
 - usiamo questa informazione per determinare, per ogni elemento e (con valore v_e tale che $0 \le v_e \le k$), quanti elementi ci sono più piccoli di e
 - dobbiamo anche tenere conto del fatto che nell'array ci possono essere elementi ripetuti, es. [2, 7, 2, 5, 1, 1, 9]

pseudocodice

- parametri: A è l'array di input (disordinato), B conterrà gli elementi ordinati (cioè è l'output), e k è il massimo tra i valori di A
 - A e B devono essere della stessa lunghezza n

```
COUNTING-SORT (A, B, k)
1 for i := 0 to k
    C[i] := 0
3 for j := 1 to A.length
    C[A[j]] := C[A[j]] + 1
5 //C[i] ora contiene il numero di elementi uguali a i
6 for i := 1 to k
    C[i] := C[i] + C[i - 1]
  //C[i] ora contiene il numero di elementi \leq i
9
  for j := A.length downto 1
10 B[C[A[j]]] := A[j]
11 C[A[j]] := C[A[j]] - 1
```

esempio di COUNTING-SORT

- Se A = [2,5,3,0,2,3,0,3]
 - A.length = 8
 - B deve avere lunghezza 8
- Se eseguiamo COUNTING SORT(A, B, 5)
 - prima di eseguire la linea 5 (cioè alla fine del loop 3-4) C = [2,0,2,3,0,1]
 - prima di eseguire la linea 8 C = [2,2,4,7,7,8]
 - dopo le prime 3 iterazioni del ciclo 9-11 abbiamo

1. B =
$$[_,_,_,_,_,3,_]$$
, C = $[2,2,4,6,7,8]$

2. B =
$$[_,0,_,_,_,3,_]$$
, C = $[1,2,4,6,7,8]$

3. B =
$$[_,0,_,_,3,3,_]$$
, C = $[1,2,4,5,7,8]$

- alla fine dell'algoritmo B = [0,0,2,2,3,3,3,5], C = [0,2,2,4,7,7]

complessità di COUNTING-SORT

- La complessità di COUNTING SORT è data dai 4 cicli for:
 - il ciclo **for** delle linee 1-2 ha complessità $\Theta(k)$
 - il ciclo for delle linee 3-4 ha complessità(n)
 - il ciclo for delle linee 6-7 ha complessità(k)
 - il ciclo for delle linee 9-11 ha complessità(n)
- La complessità globale è $\Theta(n + k)$
- Se $k \in O(n)$, allora il tempo di esecuzione $\in O(n)$
 - lineare!
- COUNTING-SORT è "più veloce" (cioè ha complessità inferiore) di MERGE-SORT e HEAPSORT (se k è O(n)) perché fa delle assunzioni sulla distribuzione dei valore da ordinare (assume che siano tutti \leq k)
 - sfrutta l'assunzione: è veloce se k è O(n), altrimenti ha complessità maggiore (anche di molto) di MERGE-SORT e HEAPSORT

Nota bene:

- si può ottenere una versione più semplice dell'algoritmo senza usare l'array B (come?)
- la versione che abbiamo appena visto è però stabile
- questo vuol dire che, se nell'array da ordinare ci sono più elementi con lo stesso valore, questi appariranno nell'array ordinato mantenendo il loro ordine relativo iniziale
- es: supponiamo che in A ci siano due 35, il primo lo chiamiamo 35_a e il secondo 35_b. Dopo l'ordinamento 35_a apparirà sicuramente prima di 35_b.
- Questa proprietà non è particolarmente interessante se ci limitiamo ad ordinare numeri. Lo diviene se stiamo ordinando dei *dati complessi* (oggetti), utilizzando un valore per es. dei loro attributi come *chiave*.