人工智能基础作业 6

张磊 2017K8009922027

8.3 解: $\exists x, y \ x = y$ 是有效的;

对任意论域, $\mathbf{p} \times \mathbf{y} = \mathbf{y}$,或 $\mathbf{y} = \mathbf{x}$,即可得到上式恒真,所以有效;

8.6 解:

a. $(\exists x \ x = x) = (\forall y \exists z \ y = z)$ 是有效的;

如果 a 是有效的,则前提为真时,结论必定为真;同时,结论只需取 z 等于 y 本身即可成立,因此是有效的;

b. $\forall x P(x) \lor \neg P(x)$ 是有效的;

对于任意 x, 谓词 P(x)要么为真, 要么为假, 所以上式恒真, 是有效的;

c. $\forall x \, Smart(x) \lor (x = x)$ 是有效的;

对于任意 x, (x = x)是真的,所以上式是恒真的,所以是有效的;

- 8.7 解:
- a. (i) 不合语法所以无任何意义;
 - (ii) 真实表达了语句含义;
 - (iii) 符合语法但是并未表达出语句真实含义;

b. (i)	真实表达了语句含义;
(ii)	符合语法但是并未表达出语句真实含义;
(iii)	不合语法所以无任何意义;
(iv)	不合语法所以无任何意义;
c. (i)	真实表达了语句含义;
(ii)	真实表达了语句含义;
(iii)	符合语法但是并未表达出语句真实含义;
(iv)	符合语法但是并未表达出语句真实含义;
d (i)	真实表达了语句含义;
u. (I)	县头农处」后9台人,
(ii)	
(ii)	
(ii)	真实表达了语句含义;
(ii) (iii) (iv)	真实表达了语句含义; 符合语法但是并未表达出语句真实含义;
(ii) (iii) (iv)	真实表达了语句含义; 符合语法但是并未表达出语句真实含义; 真实表达了语句含义; 真实表达了语句含义;
(ii) (iii) (iv) e. (i) (ii)	真实表达了语句含义; 符合语法但是并未表达出语句真实含义; 真实表达了语句含义; 真实表达了语句含义;

```
8.10 解:
```

```
a. (Occupation(Emily, Doctor) \land Occupation(Emily, Lawyer)) \lor
(Occupation(Emily, Doctor) ∧ Occupation(Emily, Lawyer));
b. Occupation(Joe,Actor) \land ((Occupation(Joe,Doctor) \lor
(Occupation(Joe,Surgeon) ∨ (Occupation(Joe,Lawyer)));
c. \forall x \ Occupation(x, Surgeon) => Occupation(x, Doctor);
d. \forall x \ Occupation(x, Lawyer) =  \neg Customer(Joe, x);
e. \exists x \, Boss(x, Emily) \land (Occupation(x, Lawyer);
f. \exists x \forall y \ (Occupation(x, Lawyer) \land Customer(y, x) => (Occupation(y, Doctor);
q. \forall x \exists y \ (\text{Occupation}(x, \text{Surgeon}) => (\text{Occupation}(y, \text{Lawyer}) \land \text{Customer}(x, y);
8.11 解:
```

- a. any two people who speak the same language can understand each other well;
- b. 如果 a 为真,则 a 的结论必定为真,所以 Understand(x,y)为真且 Understand(y,x)也为真,所以 b 为真,所以可以导出 b;
- c. (i) $\exists x \exists y \ Understand(x,y) \land Understand(y,x) => Friendship(x,y)$;
 - (ii) $\forall x \forall y \forall z \ Friendship(x,y) \land Friendship(y,z) => Friendship(x,z);$