Liu's Solutions

1.

(a) Let $F = \mathbb{Q}(\xi)$, where $\xi = e^{2\pi i/9}$. Notice that

$$x^9 - 1 = (x - 1)(x^2 + x + 1)(x^6 + x^3 + 1)$$

and we can check that the root of x-1 is 1, the roots of x^2+x+1 are ξ^3,ξ^6 , so roots of x^6+x^3+1 are $\xi,\xi^8,\xi^2,\xi^7,\xi^4,\xi^5$.

In this case, $x^6 + x^3 + 1$ has no roots in \mathbb{Q} , so if it is reducible, it would have rational factor of degree 2 or of degree 3. But if it had a rational factor of degree 2, the factor would have the form

$$(x - \xi^k)(x - \xi^{-k}) = x^2 - 2\cos 2k\pi/9x + 1$$

which is not rational. And if it had a rational factor of degree 3, it must have a real root, which contradicts to what we have known. Therefore, the polynomial $x^6 + x^3 + 1$ is reducible and the extension $[F = \mathbb{Q}(\xi) : \mathbb{Q}] = 6$. Moreover, $F = \mathbb{Q}[\xi]$ is the splitting field of $x^6 + x^3 + 1$ and F/\mathbb{Q} is a Galois extension.

It is not hard for us to get that Galois Group $Gal(F/\mathbb{Q})$ is isomorphic to \mathbb{Z}_6 .

(b) Let $\alpha = \frac{\xi^2 + 1}{2\xi} = \cos \frac{2\pi}{9}$. Then the quadratic polynomial

$$(x - \xi)(x - \xi^{-1}) = x^2 - 2\alpha x + 1$$

is defined over $\mathbb{Q}(\alpha)$. The roots of it are non-real so $x^1 - 2\alpha x + 1$ is irreducible. Thus it is the minimal polynomial of ξ over $\mathbb{Q}(\alpha)$, and the extension $F/\mathbb{Q}(\alpha)$ has degree 2.

- (c) Let β be the real root of x^9-5 , which is obviously irreducible. So $[\mathbb{Q}(\beta):\mathbb{Q}]=9$. Suppose field K satisfies $\mathbb{Q} \subset K \subset \beta$, it must be of degree 3 because $[\mathbb{Q}(\beta):K][K:\mathbb{Q}]=3$. In this case, k/\mathbb{Q} has degree 3, and hence we have $K=\mathbb{Q}(\beta^3)$.
- (d) We know that $[F \cap L : \mathbb{Q}]$ must be 3 or 1, where $L = \mathbb{Q}(\beta)$ in (c). If $[F \cap L : \mathbb{Q}] = 3$, then by we know $F \cap L = K$. But by (b), we would have $\mathbb{Q}(\alpha) = (\beta^3)$, which leads to contradiction. Because $\mathbb{Q}(\alpha)$ contains all the roots of the minimal polynomial of β^3 while $\mathbb{Q}(\beta^3)$ dose not.

In this case, $F \cap L = \mathbb{Q}$. Now, we can clearly see $M = L(\xi) = \mathbb{Q}(\beta, \xi)$. Since $x^6 + x^3 + 1$ is irreducible over L, it is the minimal polynomial of ξ . Therefore, [M:L] = 6 and then $[M:\mathbb{Q}] = [M:L][L:\mathbb{Q}] = 54$.

(e) By (d), [M:F] = 9 and $x^9 - 5$ is irreducible over F. Then $M/\mathbb{Q}, F/\mathbb{Q}$ and M/F are Galois and hence $H = \operatorname{Gal}(M/F)$ is a normal subgroup of $\operatorname{Gal}(M/\mathbb{Q})$ of order 9, which is cyclic referring to the lecture.

Similarly, the extension M/L is Galois of degree 6 with $S = \operatorname{Gal}(M/L) \subset \operatorname{Gal}(M/\mathbb{Q})$ of order 6. Moreover G is clearly non-commutative or every subgroup of G would be normal, which is not true.

(f) E must be a fixed field of an index 2 subgroup N of $G = Gal(M/\mathbb{Q})$. Since subgroups of index 2 are always normal, there must be a surjective homomorphism $G \to \mathbb{Z}_2$ with kernel N. In this case, $\varphi, \psi \in N$ and the subgroup of G generated by φ and ψ^2 has index 2 by (e). Therefore, $N = (\varphi, \psi^2)$.

So, E must be of degree 2 over \mathbb{Q} and fixed by φ and ψ^2 . Since $\xi^3 = \mathrm{e}^{2\pi i/3}$ fixed by φ and ψ^2 has minimal polynomial $x^2 + x = 1$, $E = \xi^{\not\models}$. (g) The E that $\mathbb{Q} \subset E \subset M$ of degree 3 over \mathbb{Q} must be the fixed field of an index normal subgroup N of G. Thus there must be a surjective homomorphism $G \to \mathbb{Z}_3$ with kernel N.

Under this homomorphism, ψ^3 must map to 0 and ψ can not (because the only degree 3 subfield of L is $\mathbb{Q}(\beta^3)$ which is not a Galois group). Therefore we could obtain that $N=<\varphi,\psi^3>$. Since $\varphi\in N$, the fixed field E of N is contained in the fixed field of φ , which is F. E is fixed by ψ^3 , similarly. So we have $E\subset F\cap\mathbb{R}=\mathbb{Q}(\alpha)$, which implies that $E=\mathbb{Q}(\alpha)$.

2.

- (a) We can easily obtain that $X^{p-1} a$ is split in K, which roots together with 0 are roots of $X^p aX$. In characteristic p, the map $X \mapsto X^p aX$ is a homomorphism of \mathbb{F}_p -vector spaces, so its kernel is an \mathbb{F}_p -vector space of dimension one, which is a cyclic group of order p.
- (b) By Kummer theory, this is cyclic of order dividing p-1.
- (c) gx is also a root of P and the difference of two roots of P is 0 or a root of $X^{p-1} a$. We have

$$(gx_1 - x_1) - (gx_2 - x_2) = g(x_1 - x_2) - (x_1 - x_2)$$

where $g \in H$ and x_1, x_2 two roots of P. Notice that $x_1 - x_2 \in L$ and g is identity on L, so the above is zero.

- (d) For $g \in H$, define f(g) = gx x for x a root of P, which is an injective group homomorphism $f: H \to \mathbb{Z}_p$. Since p is a prime, the image of f is either zero and \mathbb{Z}_p .
- (e) The stem field of P over L is also its splitting field. If $H = \mathbb{Z}_p$ then the degree of the stem field of P over L is equal to the degree p of P, meaning that P is irreducible over L. If P was not irreducible over k, then the degree of K would have all its prime divisors less than p. However, it should be divisible by p since P is irreducible over L. Finally, if P is irreducible over k, we obtain that P has P elements by the same divisibility argument.
- (f) $P(X) = X^p TX T$ and $X^{p-1} T$ are irreducible over k, which implies that [L:k] = p 1 and [K:L] = p, so the total degree is p(p-1) and the order of Galois group is the same.