Introduction Requirements Architectural Analysis Iterative Design Summary

Graduate Student Information System (gSIMS) Walkthrough

Kartik Thakore¹

¹Department of Software Engineering University of Western Ontario

23 Nov 2010

- Introduction
 - Project Details
- 2 Requirements
 - Technical Requirements
- Architectural Analysis
 - Analysis
 - Architecture
- Iterative Design
 - Iteration 1

- Introduction
 - Project Details
- Requirements
 - Technical Requirements
- Architectural Analysis
 - Analysis
 - Architecture
- 4 Iterative Design
 - Iteration 1

Project Inception

- Advisor: Dr. Hanif Ladak
- Concerned with managing students in the BioMedical Physics Graduate Student at UWO.
- Current system have the following problem:
 - Calculations and updates can only be done by one person
 - Need to keep the paper copies of meetings
 - Takes lots of time to create reports
 - Hard to track when a student must have a requirement done

Current System

Demo of the Current System.

- Benefits:
 - Faster, less error prone way of tracking graduate program
 - Possibility of expanding to other department
 - Credibility to the graduate program

Project Organization

Two components of the project:

- (ECE4416) Business rules:
 - Graduate program milestones
 - Interface requirements with the user
- (SE4450) Technical requirements:
 - Provide the functionality for the User Interfaces.
 - Adhere to required constraints.
 - Make a pilot for these Business Requirements with expansion in mind.

Proposal

Figure: The proposed system

- Introduction
 - Project Details
- 2 Requirements
 - Technical Requirements
- Architectural Analysis
 - Analysis
 - Architecture
- 4 Iterative Design
 - Iteration 1

System Roles

Figure: Roles of the SIMS system
School of Graduate and Postdoctoral Studies

Interfaces

- Graphical User Interface:
 - The implementation of the Business Rules defined as HTML pages.
- Electrical User Interface:
 - Collect signatures from a Wacom © Tablet and store securely in the DataBase.

Graphical User Interface

Specific requirements for the view of the Web Pages:

 Set of HTML pages that are to be the template of the system.

Figure: Sample GUI provided

School of Graduate and Postdoctoral Studies

Electrical Device Interface

- Provide an interface for the User to sign on the screen.
- On the client side acquire a bitmap of the signature and encrypt the bitmap data.
- The image should be viewable only by the user who signed and the graduate admin.

System Features

- User Administration
- Tracking Data
 - Student Data
 - Student Term and Funding Data
 - Student Program Data
 - Student Advisory Committee Meeting
- Reporting
 - Customized Queries
 - Student Output Reports
- Triggering System

Constraints

- Agile
- Flexibility
- Easy to use
- Roles and Operational Access
- Protocol Security

- Introduction
 - Project Details
- 2 Requirements
 - Technical Requirements
- Architectural Analysis
 - Analysis
 - Architecture
- 4 Iterative Design
 - Iteration 1

Organizing Data

Separate Authentication Data from Critical Data

Figure: 3 general data use cases

School of Graduate and Postdoctoral Studies

Conceptual Model of the Student

 Student can be treated as a ticket, which needs to go through steps to be completed.

Figure: The simple steps of Grad School
School of Graduate and Postdoctoral Studies

Critical Assumptions

- Separation of Data
 - Student Data is kept around even after student has graduated.
- Student as a Bug Ticket
 - Student will be responsible for their own data.
 - Student can only be a student if they have a funded term.
- Data entry will be done manually at this point.

- Introduction
 - Project Details
- 2 Requirements
 - Technical Requirements
- Architectural Analysis
 - Analysis
 - Architecture
- 4 Iterative Design
 - Iteration 1

Hardware

- Clients
- Application Server
- Services Server

Figure: The System Overview

School of Graduate and Postdoctoral Studies

Software

- E-Signature Capture Client
- OpenVPN Server
- Production HTTP server
- Database Server
- Perl Modules

- Introduction
 - Project Details
- 2 Requirements
 - Technical Requirements
- Architectural Analysis
 - Analysis
 - Architecture
- Iterative Design
 - Iteration 1

Rapid Prototyping

- Perl Framework
 - A glue that abstracts the database, and templates the view
 - Controllers are defined as routes
 - Representational State Transfer (REST)
- Database Schema
 - Intrinsic Student Data
 - Role Based Authentication
- E-Signature client

Test Plans

- Unit Tests
 - Demo
- Integration Testing
- System Integration Testing

Summary

- Requirements and Analysis has received direct user feedback.
- Architecture based of the Analysis has been clarified and prototyped.
- The iterative Software Life Cycle has produced useful work quickly and with less effort.
- An emphasis on testing levels is present from the starting.

