Chapitre 3

Relations binaires

3.1 Généralité

En mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien $E \times F$, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée une partie du graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont représentées par une relation noté R par exemple. Aussi, une relation binaire est parfois appelée correspondance entre les éléments des deux ensembles E et F. De manière informelle, une relation entre deux ensembles est une proposition qui lie certains éléments du premier ensemble avec d'autres éléments du second ensemble.

3.2 Relations binaires

Définition 3.2.1

Une relation binaire R d'un ensemble E vers un ensemble F est définie par une partie G de $E \times F$ appelé graphe de la relation R. Plus précisément si $(x,y) \in G$ on dit que x est en relation avec y et l'on note xRy. Si E = F la relation est dite binaire.

Exemple 1

```
1-\forall (x,y) \in \mathbb{R}, \ xRy \Leftrightarrow x \leq y2-\forall \ A, \ B \in P(E), \ ARB \Leftrightarrow A \subset B.
```

3.2.1 Propriétés des relations binaires

Soient R une relation binaire dans l'ensemble E et $x, y, z \in E$, on dit que R est une relation

1-Réflexive : $\forall x \in E \text{ on a : } xRx.$

2-Symétrique : $\forall x, y \in E \text{ si } xRy \Rightarrow yRx$

3-Antisymétrique : $\forall x, y \in E \text{ si } xRy \text{ et } yRx \Rightarrow x = y$

4-Transitive: $\forall x, y, z \in E \text{ si } xRy \text{ et } yRz \Rightarrow xRz.$

Définition 3.2.2

Une relation R est dite relation d'équivalence si elle est réflexive, symétrique et transitive.

3.2.2 Classe d'équivalence

Définition 3.2.3

Soit \Re une relation d'équivalence, on appelle classe d'équivalence d'un élément $x \in E$ l'ensemble noté cl(x) définit par :

$$cl(x) = \{ y \in E : x\Re y \}$$

Exemple d'une relation d'équivalence

Soit dans R la relation suivante :

$$\forall x, y \in \mathbb{N}, xRy \Leftrightarrow x^2 - y^2 = x - y.$$

1-Montrons que Cette relation est une relation d'équivalence a-La réflexivité :

Soit $x \in \mathbb{R}$, alors on a : $x^2 - x^2 = x - x$. D'où la réflexivité

b- La symétrie

Soit $x, y \in \mathbb{R}$, alors si $xRy \Leftrightarrow x^2 - y^2 = x - y$, multiplions par (-1), on obtient $y^2 - x^2 = y - x$. D'où yRx.

c- La transitivité

Soit $x, y, z \in \mathbb{R}$, alors si xRy et $yRz \Leftrightarrow$

$$\begin{cases} x^2 - y^2 = x - y \\ \text{et} \\ y^2 - z^2 = y - x \end{cases}$$

par sommation on obtient : $x^2 - z^2 = x - z \Rightarrow xRz$. D'où la transitivité. Ainsi, de a, b et c on déduit que R est une relation d'équivalence.

2-Claculer la classe d'équivalence d'un élément $x \in \mathbb{R}$ Par définition :

$$cl(x) = \{y \in \mathbb{R} : xRy\}$$

$$= \{y \in \mathbb{R} : x^2 - y^2 = x - y\}$$

$$= \{y \in \mathbb{R} : (x^2 - y^2) - (x - y) = 0\}$$

$$= \{y \in \mathbb{R} : (x - y)(x + y) - (x - y) = 0\}$$

$$= \{y \in \mathbb{R} : (x - y)[(x + y) - 1] = 0\}$$

$$= \{y \in \mathbb{R} : y = x \text{ ou } y = 1 - x = 0\}$$

$$= \{x, 1 - x\}.$$

Proposition 3.2.4.

Soit x un élément de E, alors on a :

$$x \in cl(x)$$
.

Proposition 3.2.5

Soit x, y des éléments de E, alors on a :

$$cl(x) = cl(y)$$
.

3.2.3 Relation d'ordre

Définition 3.2.6

Une relation binaire R entre éléments d'un ensemble E est une relation d'ordre si elle est réflexive, antisymétrique et transitive. Dans ce cas, on dit que E est un ensemble ordonné par la relation R.

Définition 3.2.7

On dit qu'une relation d'ordre R définit sur E une relation d'ordre total si tous ces éléments sont comparables entre eux, autrement dit :

$$\forall x, y \in E : xRy \text{ ou } yRx.$$

Définition 3.2.8

On dit q'une relation d'ordre R est une relation d'ordre partiel si l'ordre n'est pas total, c'est à dire :

 $\exists x, y \in E$ tel que x n'est pas en relation avec y et y n'est pas en relation avec x

Dans ce cas, on dit que E est un ensemble partiellement ordonnée et que x et y ne sont pas comparables

Exemple

Soit E un ensemble et P(E) l'ensemble des parties de E, on définit sur la relation binaire suivante :

$$\forall A, B \in P(E) : A \Re B \Leftrightarrow A \subset B$$

Cette relation est une relation d'ordre car :

a. La réflexivité:

Soit $A \in P(E)$, alors on a toujours $A \subset A$, d'où $A \Re A$.

b. L'antisymétrie

Soient A et B dans P(E), alors si $A\Re B$ et $B\Re A$ on a : $A \subset B$ et $B \subset A \Rightarrow A = B$, d'où l'antisymétrie de la relation \Re

c. La transitivité

Soient A, B et C dans P(E), si $A\Re B$ et $B\Re C \Leftrightarrow A \subset B$ et $B \subset C \Rightarrow A \subset C \Leftrightarrow A\Re C$. De a, b et c on déduit que \Re la relation est une relation d'ordre.

3.2.4 Eléments remarquables d'un ensemble ordonné ou d'une partie d'un ensemble ordonné

Définition 3.2.9

Soient (E, \Re) un ensemble ordonné et A une partie non vide de E.

- a). On dit qu'un élément $a \in E$ est un majorant (resp. un minorant,) de A, si $x\Re a$ (resp. $a\Re x$) pour tout $x \in A$.
- b). On dit que A est majorée (resp. minorée) si A admet des majorants (resp. des minorants).
 - c). Si A est majorée et minorée, on dit que A est une partie bornée.
- d) Le plus petit des majorants (resp. le plus grand des minorants) de A, s'il existe, s'appelle la borne supérieure (resp. la borne inférieure) de A et se note sup(A) (resp. inf(A)).

Exemple

Soit l'ensemble ordonné donné par (\mathbb{Q} , \leq), où " \leq " est l'inégalité habituelle, et soit

$$A = \{x \in \mathbb{Q} : x > 0 \text{ et } x^2 < 2\},$$

alors l'ensemble A est minoré par n'importe quel nombre rationnel négatif ou nul. Mais le plus petit des minornat est $0 \in \mathbb{Q}$. Donc, On a inf(A) = 0. Maintenant, il est évident que A est majoré par n'importe quel nombre supérieure à $\sqrt{2}$, mais il n'admet pas de borne supérieure dans \mathbb{Q} puisque $\sqrt{2} \notin \mathbb{Q}$.

a material and the state of the state of