J. Mack Robinson College of Business GEORGIA STATE UNIVERSITY Department of Risk Management and Insurance

Life Contingencies' Symbols

lifecon 2.1 User Guide Eddy Trivedi July 27, 2004

Typesetting actuarial symbols especially from the life contingencies are tough in \LaTeX 2_{ε} . Some need imagination whereas for others there is no easy way of doing it. In an attempt to simplify typesetting the symbols I have created a package called lifecon.

The table below lists all the symbols used in Actuarial Mathematics, 2nd Edition (ISBN 0-938959-46-8) along with the \LaTeX 2_{ε} code needed to generate it. This is the complete list as seen in Appendix 3, page 687 of the text. The symbols which are typeset using lifecon are marked. Place this file where \LaTeX 2_{ε} can find it. This can be the folder in which the \LaTeX 2_{ε} file is kept or in the localtexmf folder. Call the file by placing the command \usepackage{lifecon} in the preamble. lifecon 2.0 uses the amsmath package.

Note:

- 1. The code works in *math-mode* only. Place the code between \$ signs as shown below or in displaymath mode.
- 2. To use the command \mathscr{} you need to include the mathrsfs package in the preamble.

Table 1: Life Contingencies' Symbols

Symbol	$ \underline{\text{FT}}_{EX} 2_{\varepsilon} \text{ Code} $	Need
		lifecon?
a	\$a\$	-
a(x)	\$a(x)\$	-
$a_{\overline{K} }$	<pre>\$a_{\lcroof{K}}\$</pre>	Yes
$ar{a}_{\overline{n}}$	<pre>\$\bar{a}_{\lcroof{n}}\$</pre>	Yes
\bar{a}_{P_t}	\$\bar{a}_{P_{t}}\$	-
$ar{a}_{\overline{T} ceil}$	<pre>\$\bar{a}_{\lcroof{T}}\$</pre>	Yes
\bar{a}_x	\$\bar{a}_{x}\$	-
\bar{a}_{W_t}	\$\bar{a}_{W_{t}}\$	-
\ddot{a}_x	<pre>\$\ddot{a}_x\$</pre>	-
$ar{a}^r_h$	\$\bar{a}_{h}^{r}\$	-
\bar{a}_{x+t}^i	\$\bar{a}_{x+t}^{i}\$	-
\bar{a}_{x+t}^r	\$\bar{a}_{x+t}^{r}\$	=

Table 1: Life Contingencies' Symbols (continued)

Symbol		Need lifecon?
$\ddot{a}_{\overline{K+1}}$	\$\ddot{a}_{\lcroof{K+1}}\$	Yes
$\ddot{a}_x^{(m)}$	\$\ddot{a}_{x}^{(m)}\$	-
$\mathring{a}_x^{(m)}$	\$\mathring{a}_{x}^{(m)}\$	-
$\ddot{a}_x^{\{m\}}$	\$\ddot{a}_{x}^{\{m\}}\$	-
$_{j}\ddot{a}_{x}$	\${}_{j}\ddot{a}_{x}\$	-
$_*\ddot{a}_x$	\${}_{*}\ddot{a}_{x}\$	-
$a_{x:\overline{n} }$	<pre>\$a_{x:\lcroof{n}}\$ or</pre>	Yes
	<pre>\$\annimm{x}{n}\$</pre>	Yes
$\bar{a}_{x:\overline{n}}$	$\alpha_{a}_{x:\lcroof{n}}$ or	Yes
	<pre>\$\anncon{x}{n}\$</pre>	Yes
$\ddot{a}_{x:\overline{n}}$	<pre>\$\ddot{a}_{x:\lcroof{n}}\$ or</pre>	Yes
	αx^{n}	Yes
$\ddot{a}_{x:\overline{n}}^{(m)}$	\$\ddot{a}_{x:\lcroof{n}}^{(m)}\$	Yes
$\hat{a}_{x:\overline{n}}^{(m)}$	\$\mathring{a}_{x:\lcroof{n}}^{(m)}\$	Yes
$\dot{a}_{x:\overline{n}}^{\{m\}}$	\$\ddot{a}_{x:\lcroof{n}}^{\{m\}}\$	Yes
$ar{u}_{\overline{x}:\overline{n} }$	<pre>\$\bar{a}_{\overline{x:\lcroof{n}}}\$</pre>	Yes
$2\bar{a}_{x:\overline{n}}$	\${}^{2}\bar{a}_{x:\lcroof{n}}\$	Yes
$a_{ }a_{x}$	\${}_{n }a_{x}\$	-
$a_{ }\bar{a}_{x}$	\${}_{n }\bar{a}_{x}\$	-
$a_{ }\ddot{a}_{x}$	\${}_{n }\ddot{a}_{x}\$	-
$a_{\parallel}\ddot{a}_{x}^{(m)}$	\${}_{n }\ddot{a}_{x}^{(m)}\$	-
$i_{xy z}^1$	\$\bar{a}_{xy z}^{1}\$	-
$\dot{a}_{xy}^{(m)}$	\$\ddot{a}_{xy}^{(m)}\$	-
$i_{xy:\overline{n}}$	<pre>\$\ddot{a}_{xy:\lcroof{n}}\$</pre>	Yes
$\ddot{a}_{xy:\overline{n}}$	\${}^{2}\ddot{a}_{xy:\lcroof{n}}\$	Yes
$ar{u}_{x y}$	\$\bar{a}_{x y}\$	-
$\bar{u}_{\overline{x_1x_2x_3}}$	\$\bar{a}_{\overline{x_{1}x_{2}x_{3}}}\$	-
(aA)(x)	\$(aA)(x)\$	-
$(aA)_t$	\$(aA)_{t}\$	-
$(aC)_t$	\$(aC)_{t}\$	-
$(aF)_t$	\$(aF)_{t}\$	-
$(aU)_t$	\$(aU)_{t}\$	-
(aV)(x)	\$(aV)(x)\$	-

Table 1: Life Contingencies' Symbols (continued)

Symbol	$ \mathbb{A}_{E} X 2_{\varepsilon} \text{ Code} $	Need
		lifecon?
$(aV)_t$	\$(aV)_{t}\$	-
A(h)	\$A(h)\$	-
A_t	\$A_{t}\$	-
A_x	\$A_{x}\$	-
\bar{A}_x	\$\bar{A}_{x}\$	-
$A_x^{(m)}$	\$A_{x}^{(m)}\$	-
\bar{A}_x^{PR}	\$\bar{A}_{x}^{PR}\$	-
$A_{x:\overline{n}}^{1}$	$\frac{A}{x}$ or	Yes
	<pre>\$\termins{x}{n}\$</pre>	Yes
$A_{x:\overline{n}}$	\$A_{x:\lcroof{n}}\$ or	Yes
	∞	Yes
$\bar{A}_{x:\overline{n}}$	$\alpha_{A}_{x:\lcroof{n}}\$ or	Yes
	<pre>\$\insendc{x}{n}\$</pre>	Yes
$A_{x:\overline{n}}$	$\alpha(A){x}{n}$ or	Yes
	<pre>\$\pureend{x}{n}\$</pre>	Yes
$_{j}A_{x}$	\${}_{j}A_{x}\$	-
$_*A_x$	\${}_{*}A_{x}\$	-
$\bar{A}^1_{x:\overline{n}}$	$\displaystyle \frac{A}}{x}{n} $ or	Yes
	<pre>\$\terminsc{x}{n}\$</pre>	Yes
$\tilde{A}^1_{x:\overline{n}}$	$\displaystyle \frac{A}{x}_n$	Yes
${}^{2}A_{x:\overline{n}}$	${}^{2}\location {A}{x}{n}$	Yes
${}^{2}A^{1}_{x:\overline{n}}$	${}^{2}\operatorname{A}_{x}{n}$	Yes
$m \bar{A}_x$	\${}_{m }\bar{A}_{x}\$	-
$m n\bar{A}_x$	\${}_{m n}\bar{A}_{x}\$	-
A_{xy}	\$A_{xy}\$	-
$A_{\overline{xy}}$	\$A_{\overline{xy}}\$	-
$A_{xy}^{(m)}$	\$A_{xy}^{(m)}\$	-
\bar{A}_{xy}^{2}	\$\lcsecond{\bar{A}}{x}{y}\$	Yes
\bar{A}_{xy}^1	\$\lcfirst{\bar{A}}}{x}{y}\$	Yes
$A_{xy:\overline{n}}$	\$A_{xy:\lcroof{n}}\$	Yes
$\bar{A}_{\overline{xy}:\overline{n}}^{1}$	\$\lcterm{\bar{A}}}{\overline{xy}}{n}\$	Yes
${}^2A_{xy:\overline{n}}$	\${}^{2}A_{xy:\lcroof{n}}\$	Yes
\bar{A}_{wxy}^{2}	\$\lcsecond{\bar{A}}{wx}{y}\$	Yes

Table 1: Life Contingencies' Symbols (continued)

Symbol	$\LaTeX 2_{\mathcal{E}} \operatorname{Code}$	Need
_		lifecon?
$A_{\overline{x_1x_2x_3}}$	$\alpha_{A}_{\sigma}(x_{1}x_{2}x_{3})$	-
$_kAS$	\${}_{k}AS\$	-
$k\widehat{AS}$	${}_{k}\subset AS$	-
$(AS)_{x+h}$	\$(AS)_{x+h}\$	-
(AAI)	\$(AAI)\$	-
b(u)	\$b(u)\$	-
b_j	\$ b_{j}\$	-
b_t	\$b_{t}\$	-
$b_f(t)$	\$b_{f}(t)\$	-
B_t	\$B_{t}\$	-
\hat{B}_{x+k}	\$\hat{B}_{x+k}\$	-
$B_{x+t}^{(3)}$	\$B_{x+t}^{(3)}\$	-
$B_{x+t}^{(j)}$	\$B_{x+t}^{(j)}\$	-
$_{h}BP$	\${}_{h}BP\$	-
c	\$c\$	-
c_k	\$c_{k}\$	-
\hat{c}_k	\$\hat{c}_{k}\$	-
c(t)	\$c(t)\$	-
C_1	\$C_{1}\$	-
C_2	\$C_{2}\$	-
C_3	\$C_{3}\$	-
C_h	\$C_{h}\$	-
$_kCV$	\${}_{k}CV\$	-
$d_x^{(j)}$	\$d_{x}^{(j)}\$	-
$_{n}d_{x}$	\${}_{n}d_{x}\$	-
$_{n}d_{x}^{(j)}$	\${}_{n}d_{x}^{(j)}\$	-
$_{n}d_{x}^{(au)}$	\${}_{n}d_{x}^{(\tau)}\$	-
$_tD_j$	\${}_{t}D_{j}\$	_
$_{k+1}D$	\${}_{k+1}D\$	-
$(DA)^1_{x:\overline{n}}$	\$\lcterm{(DA)}{x}{n}\$	Yes

Table 1: Life Contingencies' Symbols (continued)

Symbol	IATEX 2_{ε} Code	Need lifecon?
$\frac{1}{(D\bar{A})^1_{x:\overline{n} }}$	\$\lcterm{(D\bar{A})){x}{n}\$	Yes
$_{n}\mathscr{D}_{x}$	${{n}\over mathscr{D}_{x}}$	-
$_{n}\mathscr{D}_{x}^{(j)}$	${j}_{n}\mathbb{D}_{x}^{(j)}$	-
$_{n}\mathscr{D}_{x}^{(au)}$	\${}_{n}\mathscr{D}_{x}^{(\tau)}\$	-
e	\$e\$	-
e_{h-1}	\$e_{h-1}\$	-
e_x	\$e_{x}\$	-
\mathring{e}_x	<pre>\$\mathring{e}_{x}\$</pre>	-
\hat{e}_k	\$\hat{e}_{k}\$	-
$\mathring{e}_{x:\overline{n} }$	<pre>\$\mathring{e}_{x:\lcroof{n}}\$</pre>	Yes
e_{xy}	\$e_{xy}\$	-
$e_{\overline{xy}}$	<pre>\$e_{\overline{xy}}\$</pre>	-
Ε	<pre>\$\mathrm{E}\$</pre>	-
E	\$E\$	-
E_0	\$E_{0}\$	-
$_{n}E_{x}$	\${}_{n}E_{x}\$ or	-
	<pre>\$\pureendc{x}{n}\$</pre>	Yes
$(ES)_{x+h+t}$	\$(ES)_{x+h+t}\$	-
ELRA	\$ELRA\$	-
f	\$f\$	-
f(u;t)	\$f(u;t)\$	-
$f_s(s)$	\$f_{s}(s)\$	-
$F_X(x)$	\$F_{X}(x)\$	-
F_t	\$F_{t}\$	-
$F^{(k)}$	\$F^{(k)}\$	-
$F_s(s)$	\$F_{s}(s)\$	-
$_kF$	\${}_{k}F\$	-
y r	\$G\$	-
y r	\$\hat{G}\$	-
$\ddot{G}(b)$	\$G(b)\$	-

Table 1: Life Contingencies' Symbols (continued)

Symbol $\LaTeX 2_{\varepsilon}$ Code		Need
		lifecon?
$G(x:\alpha,\beta)$	\$G(x\colon\alpha,\beta)\$	-
h(x)	\$h(x)\$	-
H(r)	\$H(r)\$	-
$H(x:\alpha,\beta,x_0)$	\$H(x\colon\alpha,\beta,x_{0})\$	-
$u(hp)_{x+t}^{(\tau)}$	\${}_{u}(hp)_{x+t}^{(\tau)}\$	-
$(h\mu)_{x+t}^{(j)}(u)$	\$(h\mu)_{x+t}^{(j)}(u)\$	-
$i_{k+1}^{'}$	\$i_{k+1}^{'}\$	-
$\hat{\imath}_{k+1}$	\$\hat{\imath}_{k+1}\$	-
i(s, s+t)	\$i(s,s+t)\$	-
I_k	\$I_{k}\$	=
I_d	\$I_{d}\$	=
$I_d(x)$	\$I_{d}(x)\$	-
$_{j}i_{k}$	\${}_{j}i_{k}\$	-
$(IA)_x$	\$(IA)_{x}\$	-
$(Iar{A})_x$	\$(I\bar{A})_{x}\$	-
$ar{I}ar{A})_x$	\$(\bar{I}\bar{A})_{x}\$	-
$I^{(m)}\bar{A})_x$	\$(I^{(m)}\bar{A})_{x}\$	-
$(IA)^1_{x:\overline{n}}$	$\left(IA\right)_{x}_{n}$	Yes
J	\$ J \$	-
f(s, s+t, s+u)	\$j(s,s+t,s+u)\$	-
$ar{k}_x$	\${}_{t}\bar{k}_{x}\$	-
K	\$K\$	-
K(x)	\$K(x)\$	-
K(xy)	\$K(xy)\$	-
$K(\overline{xy})$	<pre>\$K(\overline{xy})\$</pre>	-
x	\$1_{x}\$	-
[x]+k	\$1_{[x]+k}\$	-
$\stackrel{(au)}{x}$	\$1_{x}^{(\tau)}\$	-

Table 1: Life Contingencies' Symbols (continued)

Symbol LATEX 2_{ε} Code		Need
		lifecon?
l(x, u)	\$1(x,u)\$	-
$l_f(x,u)$	\$1_{f}(x,u)\$	-
L	\$L\$	-
L_1	\$L_{1}\$	-
L_x	\$L_{x}\$	-
L(h)	\$L(h)\$	-
$_{t}L$	\${}_{t}L\$	-
$_{t}L^{2}$	${t}_{t}^{\prime}$	-
$_{t}L_{e}$	\${}_{t}L_{e}\$	-
$_{t}L_{\overline{e}}^{2}$	${t}_{e}^{\displaystyle t}L_{e}^{\displaystyle c}$	-
$\mathscr{L}(x)$	<pre>\$\mathscr{L}(x)\$</pre>	-
$\mathscr{L}_{x}^{(au)}$	$\mathrm{L}_{x}^{(\tau)}$	-
m(x)	\$m(x)\$	-
m_x	\$m_{x}\$	-
$m_x^{(j)}$	\$m_{x}^{(j)}\$	-
$m_x^{(au)}$	\$m_{x}^{(\tau)}\$	-
$m_x^{'(j)}$	\$m_{x}^{'(j)}\$	-
$M_x(t)$	\$\mathrm{M}_{x}(t)\$	-
M(x)	\$M(x)\$	-
n(u)	\$n(u)\$	-
N	\$N\$	-
N(t)	\$N(t)\$	-
p(j)	\$ p(j) \$	-
p(x)	\$p(x)\$	-
p_k	\$p_{k}\$	-
$p_{[x]+r}$	\$p_{[x]+r}\$	-
$p^{*n}(x)$	\$p^{*n}(x)\$	-
$_{t}p_{x}$	\${}_{t}p_{x}\$	-
$_{t}p_{x}^{(au)}$	\${}_{t}p_{x}^{(\tau)}\$	-
$_{t}p_{x}^{^{\prime}(j)}$	\${}_{t}p_{x}^{'(j)}\$	-

Table 1: Life Contingencies' Symbols (continued)

Symbol	IFTEX $2_{\mathcal{E}}$ Code	Need
		lifecon?
p_{xy}	\${}_{t}p_{xy}\$	-
$p_{\overline{xy}}$	${t}_{t}_{v}={v}$	_
$p_{\overline{xy}+t}$	${t}_{t}p_{\operatorname{vy}+t}$	-
$p_{\overline{x_1x_2x_3}}$	\${}_{t}\lcsecond[k]{p}{\overline{x_{1}x_{2}}} {\overline{x_{3}}}\$	Yes
P(x)	\$P(x)\$	-
P(s,t)	\$P(s,t)\$ pp (+)p	-
Γ_t	\$P_{t}\$ •()^(T)D_(+)•	-
Γ _t ⊃a	\${}^{T}P_{t}\$	-
	\$P^{a}\$	-
P_x	\$P_{x}\$	-
P_x	\${}_{j}P_{x}\$	-
P_x	\${}_{*}P_{x}\$	- V
$\overset{DA}{x:\overline{n}}$	\$\lctermadj{P}{x}{n}\$	Yes
$\sum_{x:\overline{n}}$	\$P_{x:\lcroof{n}}\$	Yes
$\frac{D}{xy}$	\$P_{\overline{xy}}\$	-
$\begin{array}{c} D1 \\ x:\overline{n} \end{array}$	\$\lcterm{P}{x}{n}\$	Yes
$\sum_{x:\overline{n} } \frac{1}{x}$	\$\lcend{P}{x}{n}\$	Yes
$\sum_{x:\overline{n}} 1$	\$\lcterm{\tilde{P}}{x}{n}\$	Yes
$P^{*n}(x)$	\$P^{*n}(x)\$	-
P_x	\${}_{h}P_{x}\$	- 37
$P^1_{x:\overline{n} }$	\${}_{h}\lcterm{P}{x}{n}\$	Yes
Pa)(x)	\$(Pa)(x)\$	-
$(Pa)_t$	\$(Pa)_{t}\$	- 3.7
$P(\bar{A}_{x:\overline{n} }^1)$	\$P(\lcterm{\bar{A}}{x}{n})\$	Yes
$P(n \ddot{a}_x)$	\$P({}_{n }\ddot{a}_{x})\$	_
$\bar{P}(n \bar{a}_x)$	\$\bar{P}({}_{n }\bar{a}_{x})\$	_
$P(\bar{A}_x)$	\$\bar{P}(\bar{A}_{x})\$	=
$P^{(m)}(\bar{A}_x)$	\$P^{(m)}(\bar{A}_{x})\$	=
$P^{\{m\}}(\bar{A}_x)$	\$P^{\{m\}}(\bar{A}_{x})\$	-
$P(\bar{A}_x^{PR})$	\$P(\bar{A}_{x}^{PR})\$	-
$\bar{P}(\bar{A}_{x:\overline{n}})$	\$\bar{P}(\bar{A}_{x:\lcroof{n}})\$	Yes
$\bar{P}(\bar{A}^1_{x:\overline{n}})$ $\bar{P}(\bar{A}^1_{x:\overline{n}})$	\$\bar{P}(\lcterm{\bar{A}}{x}{n})\$	Yes
$\bar{P}(\bar{A}_{x:\overline{n} })$	\$\bar{P}(\lcend{\bar{A}}{x}{n})\$	Yes

Table 1: Life Contingencies' Symbols (continued)

Symbol I	$AT_{EX} 2_{\varepsilon}$ Code	Need lifecon?
$P^{(m)}(\bar{A}_{x:\overline{n} })$	\$\bar{P}(\bar{A}_{x:\lcroof{n}})\$	Yes
$P^{(m)}(\bar{A}^1_{x:\overline{n}})$	\$\bar{P}(\lcterm{\bar{A}}{x}{n})\$	Yes
$_{h}ar{P}(ar{A}_{x})$	\${}_{h}\bar{P}(\bar{A}_{x})\$	-
$_{n}ar{P}(ar{A}_{x:\overline{n} })$	${h}\bar{P}(\left(\frac{A}{x}{n}\right)$	Yes
$P^{(m)}(ar{A}_x)$	\${}_{h}P^{(m)}(\bar{A}_{x})\$	-
$_{n}P^{(m)}(\bar{A}_{x:\overline{n} })$	\${}_{h}P^{(m)}(\bar{A}_{x:\lcroof{n}})\$	Yes
$_{n}P^{\{m\}}(\bar{A}_{x:\overline{n} })$	${h}P^{{m}}(\bar{A}_{x:\underline{n}})$	Yes
$P(\bar{A}_{\overline{x}\overline{y}\overline{z}})$	<pre>\$P(\lcsecond{\bar{A}}{\overline{xy}} {\overline{z}})\$</pre>	Yes
$P(\bar{A}_{xyz}^{2})$	$P(\comptwo{\bar{A}}{x}{y}{z})$	Yes
${ ilde{P}}_{x:\overline{n} }^{1}$	$\left(\frac{P}}{x}\right)$	Yes
$q_{[x]+r}$	\$q_{[x]+r}\$	-
$q_x^{(d)}$	\$q_{x}^{(d)}\$	-
$q_x^{(i)}$	\$q_{x}^{(i)}\$	-
$q_x^{(r)}$	\$q_{x}^{(r)}\$	-
$q_x^{(w)}$	\$q_{x}^{(w)}\$	-
$\hat{q}_{x+k}^{(j)}$	$\hat{q}_{x+k}^{(j)}$	-
q_{xy}	\$q_{xy}\$	-
$_{k }q_{x}$	\${}_{k }q_{x}\$	-
eq_x	\${}_{t}q_{x}\$	_
$e^{(j)}$	\${}_{t}q_{x}^{(j)}\$	-
$q_x^{(au)}$	${t}_{x}^{(\tau)}$	-
$_{t}q_{x}^{^{\prime}(j)}$	\${}_{t}q_{x}^{'(j)}\$	-
$t _{u}q_{x}$	\${}_{t u}q_{x}\$	_
q_{xy}^1	${n}\left(n\right) = {n}\left(x\right)$	Yes
q_{xy}^{-2}	${n}\\c {n}\$	Yes
$_{k }q_{xy}$	\${}_{k }q_{xy}\$	-
q_{xyz}^{2}	${n}\location {q}{x}{y}{z}$	Yes
$q_{wxyz}^{1} \atop 12$	${\left(\frac{y}{z}\right)}$	Yes
r	\$r\$	-
r_C	\$r_{C}\$	-

Table 1: Life Contingencies' Symbols (continued)

Symbol $\LaTeX 2_{\varepsilon}$ Code		Need	
		lifecon?	
F	\$r_{F}\$	-	
'N	\$r_{N}\$	-	
$rA)_t$	\$(rA)_{t}\$	-	
$(rF)_t$	\$(rF)_{t}\$	-	
$(rV)_t$	\$(rV)_{t}\$	-	
?	\$R\$	-	
Ĩ	<pre>\$\tilde{R}\$</pre>	-	
R(x, h, t)	\$R(x,h,t)\$	-	
$\mathbf{r}(x)$	\$s(x)\$	-	
\overline{n}	\$\ddot{s}_{\lcroof{n}}\$	Yes	
(x, u)	\$s(x,u)\$	-	
$x:\overline{n}$	<pre>\$\bar{s}_{x:\lcroof{n}}\$</pre>	Yes	
$x:\overline{n}$	<pre>\$\ddot{s}_{x:\lcroof{n}}\$</pre>	Yes	
S	\$S\$	-	
S(t)	\$S(t)\$	-	
S_n	\$S_{n}\$	-	
S_y	\$S_{y}\$	-	
SC	\${}_{k}SC\$	-	
	\$ T \$	-	
ñ	<pre>\$\tilde{T}\$</pre>	-	
$\Gamma(x)$	\$T(x)\$	-	
\overline{x}	\$T_{x}\$	-	
$\Box xy$	\$T{xy}\$	-	
\overline{xy}	<pre>\$T_{\overline{xy}}\$</pre>	-	
u(w)	\$u(w)\$	_	
J(h)	\$U(h)\$	-	
I(t)	\$U(t)\$	-	
J_t	\$U_{t}\$	-	
J_n	\$U_{n}\$	-	
\hat{J}_n	\$\hat{U}_{n}\$	-	

Table 1: Life Contingencies' Symbols (continued)

Symbol	$ \underline{\text{FTEX}} 2_{\varepsilon} \text{ Code} $	Need
		lifecon?
	\$v_{t}\$	_
i	\$\tilde{v}_{n}\$	_
i	\$V_{i}\$	_
- t	\$V_{t}\$	_
V_x	\${}_{k}V_{x}\$	_
$V_{x:\overline{n}}$	${}_{k}V_{x:\lcroof{n}}$	Yes
$V_{x:\overline{n}}^{1}$	${{k}\setminus {k} \setminus {v}_{n}}$	Yes
$V_{x:\overline{n}}$	${}_{k}\leq V_{x}_{n}$	Yes
V_x^{FPT}	\${}_{k}V_{x}^{FPT}\$	-
		Yes
V_x	\${}_{k}^{h}V_{x}\$	_
$V^1_{x:\overline{n}}$	${}_{k}^{h}\operatorname{U}_{x}_{n}$	Yes
$V_{x:\overline{n} }^{(m)}$	\${}_{k}^{h}V_{x:\lcroof{n}}^{(m)}\$	Yes
$V_{x:\overline{n}}^{Mod}$	\${}_{k}^{h}V_{x:\lcroof{n}}^{Mod}\$	Yes
$V(n \ddot{a}_x)$	${{k}V({}_{n }\dot{a}_{x})}$	-
$V(n ar{a}_x)$	\${}_{k}\bar{V}({}_{n }\bar{a}_{x})\$	-
$ar{V}(ar{A}_x)$	\${}_{t}\bar{V}(\bar{A}_{x})\$	_
$V(\bar{A}_{x:\overline{n} })$	\${}_{t}\bar{V}(\bar{A}_{x:\lcroof{n}})\$	Yes
$V(\bar{A}^1_{x:\overline{n}})$	\${}_{t}\bar{V}(\lcterm{\bar{A}}{x}{n})\$	Yes
$V(\bar{A}_{x:\overline{n}})$	${}_{t}\left(\left(\frac{A}{x}{n}\right)\right)$	Yes
$V(ar{A}_x)^{Mod}$	\${}_{t}\bar{V}(\bar{A}_{x})^{Mod}\$	-
$V(\bar{A}_{\overline{xy}})$	${t}V(\bar{A}_{\sigma}(xy))$	-
$\mathcal{F}^{\{1\}}(\bar{A}_{\overline{xy}})$	${t}V^{{1}}(\bar{A}_{\overline{xy}})$	_
$V(\bar{A}_x^{PR})$	\${}_{k}V(\bar{A}_{x}^{PR})\$	-
$V(\bar{A}^1_{x:\overline{n}})$	${{k}^{h}V(\left({x}^{A}\right) }$	Yes
$\bar{V}(\bar{A}x)$	\${}_{t}^{h}\bar{V}(\bar{A}{x})\$	-
$V(ar{A}_{x:\overline{n}})$	\${}_{t}^{h}\bar{V}(\bar{A}_{x:\lcroof{n}})\$	Yes
$V^{\{m\}}(\bar{A}_{x:\overline{n} })$	${}_{k}^{h}V^{{m}}(\bar{A}_{x:\lceil n})$	Yes
(x)	\$w(x)\$	_
V_i	\$W_{i}\$	-
V_t	\$W_{t}\$	_

Table 1: Life Contingencies' Symbols (continued)

Symbol E	$\operatorname{AT}_{\operatorname{EX}} 2_{\varepsilon} \operatorname{Code}$	Need
		lifecon?
$_kW$	\${}_{k}W\$	_
$_kW_x$	\${}_{k}W_{x}\$	-
$_{k}W_{x:\overline{n}\cap }$	${k}_{k}W_{x:\lcroof{n}}$	Yes
$^{1}_{x}W_{x}$	${}_{k}^{h}W_{x}$	-
$(Wa)_t$	\$(Wa)_{t}\$	-
$_{k}ar{W}(ar{A}_{x})$	\${}_{k}\bar{W}(\bar{A}_{x})\$	-
$_{k}ar{W}(ar{A}_{x:\overline{n}})$	\${}_{k}\bar{W}(\bar{A}_{x:\lcroof{n}})\$	Yes
${}^h_kar{W}(ar{A}_x)$	\${}_{k}^{h}\bar{W}(\bar{A}_{x})\$	-
(x)	\$(x)\$	-
$(x_1x_2\ldots x_m)$	$(x_{1}x_{2}\cdot x_{m})$	-
$(\overline{x_1x_2\dots x_m})$	$(\operatorname{x_{1}x_{2}\cdot x_{m}})$	-
$\frac{k}{x_1 x_2 \dots x_m}$	$\sum_{k}{x}{m}$	Yes
$\frac{[k]}{x_1 x_2 \dots x_m}$	$\displaystyle \frac{k}{x}{m}$	Yes
X_i	\$X_{i}\$	-
$X(\theta)$	<pre>\$X(\theta)\$</pre>	-
Y	\$Y\$	-
y(s, s+m)	\$y(s,s+m)\$	-
Y(t,n)	\$Y(t,n)\$	-
z_t	\$z_{t}\$	-
Z	\$Z\$	-
$_{m}Z_{y}$	\${}_{m}Z_{y}\$	-
α	<pre>\$\alpha\$</pre>	-
$\alpha(m)$	<pre>\$\alpha(m)\$</pre>	-
$ar{lpha}$	<pre>\$\bar{\alpha}\$</pre>	-
α^{CRVM}	<pre>\$\alpha^{CRVM}\$</pre>	-
β	<pre>\$\beta\$</pre>	-
$\beta(m)$	<pre>\$\beta(m)\$</pre>	_

Table 1: Life Contingencies' Symbols (continued)

Symbol $\LaTeX 2_{\varepsilon}$ Code		Need lifecon?
CRVM	<pre>\$\beta^{CRVM}\$</pre>	-
(x, u)	<pre>\$\beta(x,u)\$</pre>	-
(α)	\$\Gamma(\alpha)\$	-
	<pre>\$\delta\$</pre>	-
	<pre>\$\delta_{t}\$</pre>	-
	<pre>\$\theta\$</pre>	-
(t)	<pre>\$\lambda(t)\$</pre>	-
(t,n)	<pre>\$\lambda(t,n)\$</pre>	-
	\$\Lambda\$	-
h	\$\Lambda_{h}\$	
(x)	\$\mu(x)\$	-
$_{x}(t)$	\$\mu_{x}(t)\$	-
$\stackrel{(d)}{x}$	\$\mu_{x}^{(d)}\$	-
$\stackrel{(i)}{x}$	\$\mu_{x}^{(i)}\$	-
x = x	\$\mu_{x}^{(w)}\$	-
$_{x}^{(j)}(t)$	\$\mu_{x}^{(j)}(t)\$	-
$_{xy}(t)$	\$\mu_{xy}(t)\$	-
$\overline{xy}(t)$	<pre>\$\mu_{\overline{xy}}(t)\$</pre>	-
(x, u)	\$\mu(x,u)\$	-
h	\$\pi_{h}\$	-
t	\$ \pi_{t}\$	-
	\$\rho\$	-
	\$\tau\$	

Table 1: Life Contingencies' Symbols (continued)

Symbol	$ ext{AT}_{ ext{EX}} 2_{arepsilon} ext{Code}$	Need
		lifecon?
$\phi(x)$	%\phi(x) \$	-
$\phi(x,u)$	%\phi(x,u) \$	-
$\psi(u)$	\$\psi(u)\$	-
$ ilde{\psi}(u)$	$\tilde{\omega}(u)$	-
$\psi(u,t)$	\$\psi(u,t)\$	-
$\psi(u;w)$	\$\psi(u;w)\$	-
$\tilde{\psi}(u,w)$	<pre>\$\tilde{\psi}(u,w)\$</pre>	-
ω	<pre>\$\omega\$</pre>	-