35. Extend \overrightarrow{OF} to int. l' at G and let H be the int. of l and l'. $m \angle F'GO = 90 - x$ so $m \angle GHF = 90 - (90 - x) = x$. 37. a. $\mathcal{R}_{C, 90}$ b. \overrightarrow{AD} is the image of \overrightarrow{BE} under an isom. c. If a rotation of 90° maps \overrightarrow{BE} to \overrightarrow{AD} , then one of the \triangle between \overrightarrow{BE} and \overrightarrow{AD} has meas. 90. (Result from Ex. 35.) 39. Locate X and Z as you did B and C in Ex. 38, using $\mathcal{R}_{A, 90}$ instead of $\mathcal{R}_{A, 60}$. With ctrs. X and Z and radius AX, draw arcs int. at Y.

Mixed Review Exercises, Page 592

1. ODE, OFG **2.** 2:3 **3.** $x = \frac{9}{2}$, $y = \frac{10}{3}$, z = 5, $w = \frac{9}{2}$ **4.** 3:5 **5.** 4:9 **6.** 9:25 **7.** 4:25

Written Exercises, Pages 596-597

1. A'(12, 0), B'(8, 4), C'(4, -4) 3. A'(3, 0), B'(2, 1), C'(1, -1) 5. A'(-12, 0), B'(-8, -4), C'(-4, 4) 7. A'(6, 0), B'(7, -1), C'(8, 1) 9. 4; expansion 11. $\frac{1}{3}$; contraction 13. 4; expansion 15. b, d 17. a, b, c 19. 3:2, 9:4 21. 2:1, 4:1 23. a. 16:9 b. 64:27 25. a. Slope of

 $\overline{PQ} = \frac{y_2 - y_1}{x_2 - x_1} = \text{slope of } \overline{P'Q'}.$ **b.** || **27.** (4, 2), k = 3

Self-Test 1, Page 597

1. An isom. is a one-to-one mapping from the whole plane onto the whole plane that maps every seg. to $a \cong \text{seg.}$ 2. -1, 3 3. (1, -2), (-1, 2) 4. a. (3, -5) b. (-3, 5) c. (5, 3) 5. a, b 6. Answers may vary; for example, $\Re_{O, 330}$ 7. B 8. C 9. \overline{AB} 10. \overline{OB} 11. M 12. \overline{AO} 13. L 14. NDO 15. C 16. Q 17. C 18. L

Written Exercises, Pages 603-605

1. a. 1 b. $2x^2 - 7$ c. 9 d. $(2x - 7)^2$ 3. a. 8 b. 27 c. $\left(\frac{x+1}{2}\right)^3$ d. 14 e. 63 f. $\frac{x^3+1}{2}$

11. a. Q b. S c. M d. Q e. Q 13. b 15. a, b, c, d 17. (-3, -1) 19. (9, 2)

21. (4, -8) 23. (3, -3) 25. a. Q(-2, 5) b. 90 c. slope of $\overline{OP} = \frac{2}{5}$, slope of $\overline{OQ} = -\frac{5}{2}$;

 $\frac{2}{5}\left(-\frac{5}{2}\right) = -1 \quad \mathbf{d.} \ (-y, x), \ (y, -x)$ 27. Construct B' so that k is the \perp bisector of $\overline{BB'}$. Construct line j, the \perp bis. of $\overline{AB'}$. 29. translation

Written Exercises, Pages 607-608

1. $\frac{1}{4}$ 3. $\frac{3}{2}$ 5. C 7. A 9. C 11. A 13. C 15. I 17. H_o 19. (x + 6, y - 8)

21. S^{-1} : $(x, y) \rightarrow (x - 5, y - 2)$ **23.** S^{-1} : $(x, y) \rightarrow \left(\frac{1}{3}x, -2y\right)$ **25.** S^{-1} : $(x, y) \rightarrow \left(x + 4, \frac{1}{4}y\right)$

27. $T:(x, y) \to \left(x + 2, y - \frac{1}{2}\right)$ 29. a. 2 units rt., 2 units left

Written Exercises, Pages 612-614

1. a. 5 **b.** No **c.** $\mathcal{R}_{O, 72}$, $\mathcal{R}_{O, 144}$, $\mathcal{R}_{O, 216}$, $\mathcal{R}_{O, 288}$ **3. a.** 4 **b.** Yes **c.** $\mathcal{R}_{O, 90}$, $\mathcal{R}_{O, 180}$, $\mathcal{R}_{O, 270}$ **5.** A, B, C, D, E, K, M, T, U, V, W, Y **7.** H, I, N, O, S, X, Z

19. a. The ellipse has line symm. about two axes and pt. symm. about the int. of the axes. b. If a = b, the ellipse becomes a \odot and the solid formed is a sphere with vol. $\frac{4}{3}\pi a^3$. c. The ellipsoid has plane symm. about the