Devoir surveillé n°06

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Solution 1

- **1.** Supposons X ouvert. On sait que $X \subset \overline{X}$ donc $\mathring{X} \subset \overset{\circ}{A} = \alpha(X)$. Comme X est ouvert, $\mathring{X} = X$ donc $X \subset \alpha(X)$. Supposons X fermé. On sait que $\mathring{X} \subset X$ donc $\beta(X) = \overset{\circ}{X} \subset \overline{X}$. Comme X est fermé, $\overline{X} = X$ donc $\beta(X) \subset X$.
- 2. Comme $\alpha(X)$ est ouvert en tant qu'intérieur, la question précédente permet d'affirmer que $\alpha(X) \subset \alpha(\alpha(X))$. Comme \overline{X} est fermé, la question précédente permet d'affirmer que $\beta(\overline{X}) \subset \overline{X}$ ou encore $\overline{\alpha(X)} \subset \overline{X}$. Par conséquent, $\overline{\alpha(X)} \subset \overline{X}$ ou encore $\alpha(\alpha(X)) \subset \alpha(X)$. Par double inclusion, $\alpha(\alpha(X)) = \alpha(X)$. Comme $\beta(X)$ est fermé en tant qu'adhérence, la question précédente permet d'affirmer que $\beta(\beta(X)) \subset \beta(X)$. Comme $\beta(X)$ est ouvert, la question précédente permet d'affirmer que $\beta(X) \subset \beta(X)$ ou encore $\beta(X) \subset \beta(\beta(X))$. Par double inclusion, $\beta(\beta(X)) = \beta(X)$.
- **3.** On sait que \mathbb{Q} est dense dans \mathbb{R} donc $\overline{\mathbb{Q}} = \mathbb{R}$. On sait également que $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} donc $\mathbb{R} \setminus \mathbb{Q} = \overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$ puis $\mathbb{Q} = \emptyset$.
- **4.** Posons $X = [0, 1[\cup]1, 2[\cup\{3\}\cup([4, 5]\cap\mathbb{Q})]$. Alors, en utilisant la question précédente,

$$\dot{X} =]0, 1[\cup]1, 2[
\overline{X} = [0, 2] \cup \{3\} \cup [4, 5]
\alpha(X) =]0, 2[\cup]4, 5[
\beta(X) = [0, 2]
\alpha(\mathring{X}) =]0, 2[
\beta(\overline{X}) = [0, 2] \cup [4, 5]$$

5. D'une part, $A \cap B \subset A$ donc $\overline{A \cap B} \subset \overline{A}$. D'autre part, $A \cap B \subset B$ donc $\overline{A \cap B} \subset \overline{B}$. Finalement, $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Prenons $A = \{0\} \cup [1, 2]$ et B = [0, 1[. Alors

$$A \cap \overline{B} = (\{0\} \cup [1, 2]) \cap [0, 1] = \{0\}$$

 $\overline{A \cap B} = \emptyset$
 $\overline{A} \cap \overline{B} = (\{0\} \cup [1, 2]) \cap [0, 1] = \{0, 1\}$

Avec le même exemple, A n'est pas ouvert et on a bien $A \cap \overline{B} \not\subset \overline{A \cap B}$.

Solution 2

- **1.** Posons $M_p = \frac{1}{p}I_n$ pour $p \in \mathbb{N}^*$. La suite (M_p) est à valeurs dans $GL_n(\mathbb{R})$ et converge vers la matrice nulle qui n'est pas inversible. Par caractérisation séquentielle, $GL_n(\mathbb{R})$ n'est pas fermé.
- 2. Une matrice de $\mathcal{M}_n(\mathbb{R})$ est inversible si et seulement si son déterminant n'est pas nul. Ainsi $GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R}^*)$. Le singleton $\{0\}$ est fermé donc $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ est ouvert. Comme l'application det est continue sur $\mathcal{M}_n(\mathbb{R})$, $GL_n(\mathbb{R})$ est ouvert comme image réciproque d'un ouvert par une application continue.

3. Si M n'admet pas de valeurs propres strictement positives, alors $\chi_{M}(\lambda) \neq 0$ pour tout $\lambda \in \mathbb{R}_{+}^{*}$. On peut alors choisir $\rho > 0$ de manière arbitraite. Pour tout $\lambda \in]0, \rho[, \chi_{M}(\lambda) \neq 0$ i.e. $M - \lambda I_{n} \in GL_{n}(\mathbb{R})$. Si M admet des valeurs propres strictement positives, on note ρ la plus petite d'entre elles. A nouveau, pour tout $\lambda \in]0, \rho[, \chi_{M}(\lambda) \neq 0$ i.e. $M - \lambda I_{n} \in GL_{n}(\mathbb{R})$. Posons alors $M_{p} = M - \frac{\rho}{p+1}$ pour tout $p \in \mathbb{N}$. La suite (M_{p}) converge vers M et, d'après ce qui précède, est à valeurs dans $GL_{n}(\mathbb{R})$. Par caractérisation séquentielle, $GL_{n}(\mathbb{R})$ est dense dans $\mathcal{M}_{n}(\mathbb{R})$.

4. Première méthode. Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$. Comme $\operatorname{GL}_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$, il existe une suite (A_p) de matrices inversibles convergeant vers A. Soit $\lambda \in \mathbb{R}$. Alors pour tout $n \in \mathbb{N}$, $\lambda I_n - BA_p = A_p^{-1}(\lambda I_n - A_pB)A_p$ donc $\lambda I_n - BA_p$ et $\lambda I_n - A_pB$ sont semblables : elles ont donc même déterminant i.e. $\det(\lambda I_n - BA_p) = \det(\lambda I_n - A_pB)$. Mais $\lim_{p \to +\infty} \lambda I_n - BA_p = \lambda I_n - BA$ et $\lim_{p \to +\infty} \lambda I_n - A_pB = \lambda I_n - AB$ par continuité des endomorphismes $M \mapsto BM$ et $M \mapsto MB$ sur l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$. Comme det est continue, on obtient par caractérisation séquentielle, $\lim_{p \to +\infty} \det(\lambda I_n - BA_p) = \det(\lambda I_n - BA)$ et $\lim_{p \to +\infty} \det(\lambda I_n - A_pB) = \det(\lambda I_n - A_pB)$. Par unicité de la limite, $\det(\lambda I_n - BA) = \det(\lambda I_n - AB)$ i.e. $\chi_{BA}(\lambda) = \chi_{AB}(\lambda)$ pour tout $\lambda \in \mathbb{R}$. Ainsi $\chi_{AB} = \chi_{BA}$.

Deuxième méthode. Soient $B \in \mathcal{M}_n(\mathbb{R})$ et $\lambda \in \mathbb{R}$. Posons $f : A \in \mathcal{M}_n(\mathbb{R}) \mapsto \chi_{AB}(\lambda)$ et $g : A \in \mathcal{M}_n(\mathbb{R}) \mapsto \chi_{AB}(\lambda)$. Pour tout $A \in GL_n(\mathbb{R})$, $BA = A^{-1}ABA$ donc BA et AB sont semblables de sorte que $\chi_{AB} = \chi_{BA}$ i.e. f(A) = g(A). De plus, $\mathcal{M}_n(\mathbb{R})$ est de dimension finie donc les applications $M \in \mathcal{M}_n(\mathbb{R}) \mapsto MB$ et $M \in \mathcal{M}_n(\mathbb{R}) \mapsto BM$ sont continues. Comme det est continue sur $\mathcal{M}_n(\mathbb{R})$, les applications f et g sont continues sur $\mathcal{M}_n(\mathbb{R})$. De plus, elles coïncident sur $GL_n(\mathbb{R})$ qui est dense dans $\mathcal{M}_n(\mathbb{R})$ donc f = g. Ainsi,

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, \ \forall \lambda \in \mathbb{R}, \ \chi_{AB}(\lambda) = \chi_{BA}(\lambda)$$

Comme deux polynômes qui coïncident sur un ensemble infini (en l'occurrence ℝ), sont égaux,

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{R})^2, \ \chi_{AB} = \chi_{BA}$$

Si on considère $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, alors AB = 0 donc $\pi_{AB} = X$ mais $BA = B \neq 0$ donc $\pi_{BA} \neq X = \pi_{AB}$.

- 5. Si on pose $A = I_n$ et $B = \begin{pmatrix} -1 & 0 \\ \hline 0 & I_{n-1} \end{pmatrix}$, alors $\det(A) = 1$ et $\det(B) = -1$. Notamment, A et B appartiennent à $GL_n(\mathbb{R})$.
 - Si $GL_n(\mathbb{R})$ était connexe par arcs, $\det(GL_n(\mathbb{R}))$ serait un connexe par arcs de \mathbb{R} , c'est-à-dire un intervalle, car det est continue sur $\mathcal{M}_n(\mathbb{R})$. Mais, d'après ce qui précède, cet intervalle contiendrait -1 et 1 et donc également 0. Ceci est absurde puisque les matrices inversibles sont de déterminants non nuls. Ainsi $GL_n(\mathbb{R})$ n'est pas connexe par arcs.

Solution 3

1. Tout d'abord, $u_n(0) = 0$ donc $\sum u_n(0)$ converge. Soit $x \in \mathbb{R}^*$. Alors $u_n(x) \underset{n \to +\infty}{\sim} \frac{1}{n^2 x^2}$ donc $\sum u_n(x)$ converge par comparaison à une série de Riemann convergente. La série $\sum u_n$ converge donc simplement sur \mathbb{R} .

2. Soit $n \in \mathbb{N}^*$. Alors u_n est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ u_n'(x) = \frac{1}{n} \cdot \frac{(1 + nx^2) - 2nx^2}{(1 + nx^2)^2} = \frac{1 - nx^2}{n(1 + nx^2)^2}$$

On en déduit les variations de u_n sur \mathbb{R}_+ .

x	$0 \qquad \frac{1}{\sqrt{n}} \qquad +\infty$
$u'_n(x)$	+ 0 -
$u_n(x)$	$u_n\left(\frac{1}{\sqrt{n}}\right) \qquad 0$

Comme u_n est impaire et positive sur \mathbb{R}_+ ,

$$||u_n||_{\infty} = u_n \left(\frac{1}{\sqrt{n}}\right) = \frac{1}{2n\sqrt{n}} = \frac{1}{2n\frac{3}{2n}}$$

On en déduit que $\sum \|u_n\|_{\infty}$ converge i.e. $\sum u_n$ converge normalement sur \mathbb{R} . A fortiori, $\sum u_n$ converge uniformément sur \mathbb{R} et les fonctions u_n sont toutes continues sur \mathbb{R} donc S est continue sur \mathbb{R}

3. Les fonctions u_n sont toutes de classe \mathcal{C}^1 sur \mathbb{R} . On a déjà montré que $\sum u_n$ convergeait simplement sur \mathbb{R} . Soit a > 0. Pour tout $x \in [a, +\infty[$, par inégalité triangulaire,

$$|u'_n(x)| \le \frac{1 + nx^2}{n(1 + nx^2)^2} = \frac{1}{n(1 + nx^2)} \le \frac{1}{n(1 + na^2)}$$

Ainsi

$$||u_n'||_{\infty,[a,+\infty[} \le \frac{1}{n(1+na^2)}$$

Comme $\frac{1}{n(1+na^2)} \underset{n \to +\infty}{\sim} \frac{1}{n^2a^2}$, $\sum \frac{1}{n(1+na^2)}$ converge par comparaison à une série de Riemann puis $\sum \|u_n'\|_{\infty,[a,+\infty[}$ converge. Ainsi $\sum u_n'$ converge normalement et donc uniformément sur $[a,+\infty[$. Ceci étant valable pour tout a>0, S est de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Mais comme S est impaire, S est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .

4. Soit $N \in \mathbb{N}^*$. Posons $\alpha_N = \frac{1}{\sqrt{N}}$. Soit $x \in]0, \alpha_N]$. Pour tout $n \in [[1, N]]$,

$$0 < 1 + nx^2 < 1 + Nx^2 < 2$$

donc

$$\frac{u_n(x)}{x} \ge \frac{1}{2n}$$

Ainsi

$$\frac{\mathrm{S_N}(x)}{x} \ge \frac{1}{2} \sum_{n=1}^{\mathrm{N}} \frac{1}{n}$$

Comme les u_n sont positives sur \mathbb{R}_+ ,

$$\forall x \in]0, \alpha_N], \ \frac{S(x)}{x} \ge \frac{S_N(x)}{x} \ge \frac{1}{2} \sum_{n=1}^N \frac{1}{n}$$

Mais comme les fonctions $x \mapsto \frac{S(x)}{x}$ et $x \mapsto \frac{S_N(x)}{x}$ sont impaires, on obtient pour tout $x \in \mathbb{R}$ tel que $0 < |x| \le \alpha_N$,

$$\frac{S(x)}{x} \ge \frac{S_N(x)}{x} \ge \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n}$$

On sait que la série $\sum \frac{1}{n}$ diverge vers $+\infty$. Fixons $M \in \mathbb{R}_+$. Il existe alors N tel que $\frac{1}{2}\sum_{n=1}^N \frac{1}{n} \ge M$. Mais alors, pour tout $x \in \mathbb{R}^*$ tel que $|x| \le \alpha_N$, $\frac{S(x)}{x} \ge M$. Par définition de la limite, $\lim_{x \to 0^+} \frac{S(x)}{x} = +\infty$.

tout $x \in \mathbb{R}^*$ tel que $|x| \le \alpha_N$, $\frac{S(x)}{x} \ge M$. Par définition de la limite, $\lim_{x \to 0^+} \frac{S(x)}{x} = +\infty$.

Comme S(0) = 0, $\lim_{x \to 0} \frac{S(x) - S(0)}{x - 0} = +\infty$. La fonction S n'est donc pas dérivable en 0. On peut cependant affirmer que la courbe de S admet une tangente verticale au point d'abscisse 0.

Solution 4

- 1. Soit $x \in J$. Puisque x > 0, la suite de terme général $\frac{1}{\sqrt{1+nx}}$ est décroissante et de limite nulle. D'après le critère spécial des séries alternées, $\sum f_n(x)$ converge. Ainsi $\sum f_n$ converge simplement sur J.
- **2.** Pour tout $n \in \mathbb{N}$.

$$||f_n||_{\infty,J} = \sup_{x \in J} \frac{1}{\sqrt{1+nx}} = \frac{1}{\sqrt{1+n}} \sim \frac{1}{\sqrt{n}}$$

Or la série $\sum \frac{1}{\sqrt{n}}$ est une série à termes positifs divergente donc $\sum \|f_n\|_{\infty,J}$ diverge également. Autrement dit, $\sum f_n$ ne converge pas normalement.

3. Comme la série $\sum f_n$ converge simplement sur J, il suffit de montrer que la suite de ses restes converge uniformément vers la fonction nulle sur J. Posons $R_n = \sum_{k=n+1}^{+\infty} f_n$. D'après le critère spécial des séries alternées,

$$\forall x \in J, |R_n(x)| \le \frac{1}{\sqrt{1 + (n+1)x}} \le \frac{1}{\sqrt{n+2}}$$

Ainsi

$$\|\mathbf{R}_n\|_{\infty,\mathbf{J}} \le \frac{1}{\sqrt{n+2}}$$

On en déduit que $\lim_{n\to+\infty}\|\mathbf{R}_n\|_{\infty,\mathbf{J}}=0$ i.e. (\mathbf{R}_n) converge uniformément vers la fonction nulle sur J. Par conséquent, $\sum f_n$ converge uniformément sur J.

4. Pour tout $n \in \mathbb{N}^*$, $\lim_{\substack{+\infty \\ +\infty}} f_n = 0$ et $\lim_{\substack{+\infty \\ +\infty}} f_0 = 1$. Comme $\sum_{\substack{+\infty \\ +\infty}} f_n$ converge uniformément sur $J = [1, +\infty[$, on peut utiliser le théorème d'interversion série/limite :

$$\lim_{+\infty} \varphi = \sum_{n=0}^{+\infty} \lim_{+\infty} f_n = 1$$

- 5. a. Il s'agit à nouveau du critère spécial des séries alternées.
 - b. Remarquons que

$$\forall x \in J, \ \varphi(x) - \ell - \frac{a}{\sqrt{x}} = \sum_{n=1}^{+\infty} (-1)^n \left(\frac{1}{\sqrt{1+nx}} - \frac{1}{\sqrt{nx}} \right)$$

De plus,

$$\left| \frac{1}{\sqrt{1+nx}} - \frac{1}{\sqrt{nx}} \right| = \frac{1}{\sqrt{nx}} - \frac{1}{\sqrt{1+nx}} = \frac{\sqrt{1+nx} - \sqrt{nx}}{\sqrt{nx}\sqrt{1+nx}} = \frac{1}{\left(\sqrt{1+nx} + \sqrt{nx}\right)\sqrt{nx}\sqrt{1+nx}} \le \frac{1}{2(nx)^{3/2}}$$

Ainsi, par inégalité triangulaire,

$$\forall x \in J, \ \left| \varphi(x) - \ell - \frac{a}{\sqrt{x}} \right| \le \sum_{n=1}^{+\infty} \left| \frac{1}{\sqrt{1 + nx}} - \frac{1}{\sqrt{nx}} \right| \le \sum_{n=1}^{+\infty} \frac{1}{2(nx)^{3/2}} = \frac{K}{x^{3/2}}$$

en posant K = $\frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^{3/2}}$. On en déduit bien que

$$\varphi(x) \underset{x \to +\infty}{=} \ell + \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x^{3/2}}\right)$$

Solution 5

1. a. Première méthode. D'après le théorème du rang dim $Ker(p) + \dim Im(p) = \dim E$. Soit $x \in Ker(p) \cap Im(p)$. Alors $p(x) = 0_E$ et il existe et $a \in E$ tel que x = p(a). Ainsi $p^2(a) = p(x) = 0_E$. Mais comme $p^2 = p$, $x = p(a) = p^2(a) = 0_E$. Par conséquent, $Ker(p) \cap Im(p) = \{0_E\}$. On en déduit que $E = Ker(p) \oplus Im(p)$. **Deuxième méthode.** Comme $X \wedge (X-1) = 1$ et X(X-1) annule p, le lemme des noyaux donne

$$E = Ker(p^2 - p) = Ker(p) \oplus Ker(p - Id_E)$$

Comme $(p - Id_E) \circ p = 0$, $Im(p) \subset Ker(p - Id_E)$. On sait de plus que dim $E = \dim Ker(p) + \dim Ker(p - Id_E)$ et le théorème du rang donne dim $E = \dim Ker(p) + \dim Im(p)$ donc $\dim Ker(p-Id_E) = \dim Im(p)$ puis $Ker(p-Id_E) =$ $\operatorname{Im}(p)$ grâce à l'inclusion précédente. On en déduit que $\operatorname{E} = \operatorname{Ker}(p) \oplus \operatorname{Im}(p)$.

- **b.** Dans une base adaptée à la décomposition en somme directe $E = \operatorname{Im} p \oplus \operatorname{Ker} p$, la matrice de p est $\left(\frac{\operatorname{I}_r \mid 0}{0 \mid 0}\right)$ où r = rg(p). On en déduit que tr(p) = r = rg(p).
- c. Si rg(u) = tr(u), u n'est pas nécessairement un projecteur. Considérons par exemple l'endomorphisme u de \mathbb{R}^2 canoniquement associé à la matrice $A = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$. Il est clair que tr(A) = rg(A) = 2 donc tr(u) = rg(u) mais $A^2 = \begin{pmatrix} 9 & 0 \\ 0 & 1 \end{pmatrix} \neq A$ donc $u^2 \neq u$ et u n'est pas un projecteur.

2. Posons $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Alors rg(A) = 1 et A est diagonale donc diagonalisable. Posons $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Alors rg(B) = 1. On a clairement $\chi_B = X^3$. Si B était diagonalisable, π_B serait scindé à racines simple.

simples mais, comme π_B divise χ_B , on aurait $\pi_B = X$ puis B = 0, ce qui n'est pas. Ainsi B n'est pas diagonalisable.

- 3. a. Soit S un supplémentaire de Ker u dans E. Comme rg u=1, dim Ker u=n-1 d'après le théorème du rang et $\dim S = 1$. Dans une base adaptée à la décomposition $E = \operatorname{Ker} u \oplus S$, la matrice de u est bien de la forme voulue.
 - **b.** On notera $m_{\lambda}(u)$ la multiplicité d'une valeur propre λ dans χ_u et $E_{\lambda}(u)$ le sous-espace propre associé à la valeur propre λ.

Remarquons que $\chi_u = X^{n-1}(X - a_n)$. Si $tr(u) = a_n = 0$, alors $\chi_u = X^n$ et u n'est pas diagonalisable $m_0(u) = n \neq 0$ $n-1 = \dim \operatorname{Ker}(u) = \dim \operatorname{E}_0(u)$.

Supposons que $\operatorname{tr}(u) = a_n \neq 0$. Comme $\chi_u = \operatorname{X}^{n-1}(\operatorname{X} - a_n)$, $\operatorname{Sp}(u) = \{0, a_n\}$. De plus, $m_0(u) = \dim \operatorname{E}_0(u) = n-1$ et $1 \leq \dim \operatorname{E}_{a_n}(u) \leq m_{a_n}(u) = 1$ donc $\dim \operatorname{E}_{a_n}(u) = m_{a_n}(u) = 1$. Ainsi u est diagonalisable. Finalement, u est diagonalisable si et seulement si $tr(u) \neq 0$.

- c. Puisque $tr(u) = 1 \neq 0$, u est diagonalisable d'après la question précédente. Ceci signifie que π_u est scindé à racines simples. De plus, $\chi_u = X^{n-1}(X-1)$ donc $Sp(u) = \{0,1\}$. On en déduit que $\pi_u = X(X-1)$. Comme π_u annule u, $u^2 = u$ et u est un projecteur.
- **d.** Notons u l'endomorphisme canoniquement associé à A. On vérifie que $A^2 = A$ donc $u^2 = u$ et u est un projecteur. De plus, Ker A = vect $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et Im A = vect $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ donc u est le projecteur sur vect((1,1,1)) parallèlement à vect((1,-1,0),(1,0,1)

Solution 6

- 1. a. On vérifie que $U^2 = V^2 = I_4$ donc $u^2 = v^2 = Id$. De même, UV = -VU donc $u \circ v = -v \circ u$.
 - **b.** On trouve $\operatorname{tr}(u) = \operatorname{tr}(U) = 0$. De plus, le polynôme scindé à racines simples $X^2 1 = (X 1)(X + 1)$ annule u donc u est diagonalisable et $\operatorname{Sp}(u) \subset \{-1, 1\}$. Comme u est diagonalisable, $1 \times \dim E_1(u) + (-1) \times \dim E_{-1}(u) = \operatorname{tr}(u) = 0$ et $\dim E_1(u) + \dim E_{-1}(u) = 4$ donc $\dim E_1(u) = \dim E_{-1}(u) = 2$. Pour les mêmes raisons, $\dim E_1(v) = \dim E_{-1}(v) = 2$.
 - c. On calcule

$$\dim E_1(U) = \operatorname{vect}\left(\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\-2\\-1 \end{pmatrix} \right)$$

donc $E_1(u) = \text{vect}(e_1, e_2)$ avec $e_1 = b_2$ et $e_2 = 3b_1 - 2b_3 - b_4$.

On pourrait vérifier par le calcul que (e_3, e_4) est bien une base de $E_{-1}(u)$. Mais plus simplement, comme $u \circ v = -v \circ u$,

$$u(e_3) = u \circ v(e_1) = -v \circ u(e_1) = -v(e_1) = -e_3$$

 $u(e_4) = u \circ v(e_2) = -v \circ u(e_2) = -v(e_2) = -e_4$

Ainsi e_3 et e_4 appartiennent à $E_{-1}(u)$. De plus, v est un isomorphisme en tant que symétrie donc (e_3, e_4) est libre en tant qu'image de la famille libre (e_1, e_2) par v. Comme dim $E_{-1}(u) = 2$, (e_3, e_4) est une base de $E_{-1}(u)$. On sait que (e_1, e_2) et (e_3, e_4) sont des bases respectives de $E_1(u)$ et $E_{-1}(u)$. Comme u est diagonalisable et $Sp(u) = \{-1, 1\}$, $E = E_1(u) \oplus E_{-1}(u)$. On en déduit que \mathcal{E} est une base de E. Il est alors clair que

$$mat_{\mathcal{E}}(u) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Par définition, $v(e_1) = e_3$ et $v(e_2) = e_4$. Comme $v^2 = \operatorname{Id}$, $v(e_3) = e_1$ et $v(e_4) = e_2$ donc

$$mat_{\mathcal{E}}(v) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2. On sait que $\operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u)$ et que tr est linéaire. Comme $u \circ v = v \circ u$, $2\operatorname{tr}(u \circ v) = 0$ puis $\operatorname{tr}(u \circ v) = 0$.

3.

$$\operatorname{tr}(u) = \operatorname{tr}(u \circ v^2)$$
 car $v^2 = \operatorname{Id}$
 $= \operatorname{tr}(v \circ u \circ v)$ par propriété de la trace
 $= \operatorname{tr}(-u \circ v \circ v)$ car $v \circ u = -u \circ v$
 $= -\operatorname{tr}(u \circ v^2)$ par linéarité de la trace
 $= -\operatorname{tr}(u)$

Ainsi tr(u) = 0. De la même manière, tr(v) = 0.

4. Comme $u^2 = \operatorname{Id}_{X^2} - 1 = (X - 1)(X + 1)$ annule u. Comme $(X - 1) \land (X + 1) = 1$, on a d'après le lemme des noyaux :

$$E = Ker(u^2 - Id) = Ker(u - Id) \oplus Ker(u + Id) = E_1(u) \oplus E_{-1}(u)$$

Soit $x \in E$. Comme $u^2 = \operatorname{Id}, \frac{1}{2}(x + u(x)) \in E_1(u)$ et $\frac{1}{2}(x - u(x)) \in E_{-1}(u)$. De plus, $x = \frac{1}{2}(x + u(x)) + \frac{1}{2}(x - u(x))$.

5. Le polynôme scindé à racines simples $X^2 - 1 = (X - 1)(X + 1)$ annule u donc u est diagonalisable. Notamment, $tr(u) = \dim E_1(u) - \dim E_{-1}(u)$. Or tr(u) = 0 donc $\dim E_1(u) = \dim E_{-1}(u)$. Enfin, $E = E_1(u) \oplus E_{-1}(u)$ donc $\dim E = 2k$ avec $k = \dim E_1(u) = \dim E_{-1}(u)$. Notamment, la dimension de E est paire.

6. Soit $x \in E_1(u)$. Alors $v(x) = v \circ u(x) = -u \circ v(x)$ donc $v(x) \in E_{-1}(u)$. Ainsi $v(E_1(u)) \subset E_{-1}(u)$. Mais v est un isomorphisme donc $\dim v(E_1(u)) = \dim E_1(u)$. Or on a vu à la question précédente que $\dim E_1(u) = \dim E_{-1}(u)$. Ainsi $v(E_1(u)) \subset E_{-1}(u)$ et $\dim v(E_1(u)) = \dim E_{-1}(u)$ donc $v(E_1(u)) = E_{-1}(u)$. On prouve de la même manière que $v(E_{-1}(u)) = E_1(u)$.

7. Notons (e_1, \ldots, e_k) une base de $E_1(u)$. Posons ensuite $e_{k+i} = v(e_i)$ pour $i \in \llbracket 1, n \rrbracket$. Comme v est un isomorphisme, $(e_{k+1}, \ldots, e_{2k}) = (v(e_1), \ldots, v(e_k))$ est une base de $v(E_1(u)) = E_{-1}(u)$. On sait également que $E = E_1(u) \oplus E_{-1}(u)$ donc $C = (e_1, \ldots, e_k, e_{k+1}, \ldots, e_{2k})$ est une base de $E_1(u)$ et $E_1(u)$ et

$$\mathrm{mat}_{\mathcal{B}}(u) = \left(\begin{array}{c|c} \mathrm{I}_k & 0 \\ \hline 0 & -\mathrm{I}_k \end{array}\right)$$

De plus, $v(e_i) = e_{k+i}$ et $v(e_{k+i}) = v^2(e_i) = e_i$ pour tout $i \in [[1, n]]$ donc

$$\operatorname{mat}_{\mathcal{C}}(v) = \left(\begin{array}{c|c} 0 & \operatorname{I}_k \\ \hline \operatorname{I}_k & 0 \end{array}\right)$$