

Jan 20 report

报告人: 王政

中国科学技术大学,近代物理系

2025年1月20日

- 1 Motivation
- 2 Data Sets
- 3 Event Selection
- 4 Background study
- 5 cross section measurement
- 6 Branch Fraction of $J/\psi \to K^+K^-$
- **7** Summary

Motivation:

- ► measure the cross section of $e^+e^- \rightarrow \phi K^+K^-$ via ISR
- study the structure near 2.2324GeV which BaBar and BESIII have observed
- ▶ study the spectrum of $M(K^+K^-)$

Reference to:

- B.Aubert et al.(BaBar Collaboration), PhysRevD.86.012008(2012)
- M.Ablikim et al.(BESIII Collaboration), PhysRevD.100.032009(2019)

- 1 Motivation
- 2 Data Sets
- 3 Event Selection
- 4 Background study
- 5 cross section measurement
- 6 Branch Fraction of $J/\psi \to K^+K^-$
- **7** Summary

- * Data
 - $ightharpoonup \Upsilon(4S): 360.531 fb^{-1}$
 - $ightharpoonup \Upsilon(4S)$ off resonance : $41.424 fb^{-1}$
 - $ightharpoonup \Upsilon(5S): 19.34 fb^{-1}$
 - $\mathcal{L}_{tot} = 421.295 \text{ fb}^{-1} \text{ (BaBar: } 454 \text{ fb}^{-1}\text{)}$
- \star generic MC (MC15rd , $\mathcal{L}_{gMC}=4\mathcal{L}_{data}$)
 - /belle/collection/MC/MC15rd_exp20-26_4S_v2
 - ▶ /belle/collection/MC/MC15rd_exp7-18_4S_v3
- ⋆ SignalMC
 - ▶ 10M run independent events generated by PHOKHARA_EvtGen

- 1 Motivation
- 2 Data Sets
- **3** Event Selection
- 4 Background study
- 5 cross section measurement
- 6 Branch Fraction of $J/\psi \to K^+K^-$
- **7** Summary

Selection Criteria

- * Charged track selection:
 - ightharpoonup dr < 0.5, |dz| < 2
 - $ightharpoonup N_{good} = 4$, $\sum Q = 0$
- * Photon selection:
 - Select photon with highest energy
 - \triangleright E > 3 GeV
- * PID selection:
 - \blacktriangleright binaryPID = $\frac{\mathcal{L}_K}{\mathcal{L}_L + \mathcal{L}_T} > 0.6$
 - Number of good \tilde{k} aon > 3
- * 3C kinematic fit:
 - Event survives 3C fit
 - $\sim v^2 < 40$
- $\star \phi$ mass window:
 - $ightharpoonup 1.00133653 < M_{\kappa + \kappa -} < 1.03766347$
- \star Select combination with minimum χ^2

50 55 55 54 44 45 33 35 35 22 25 20 15

图: cross section

图: effective luminosity

图: estimate entries

- $ightharpoonup N_{estimate} = 1495.38$
- $ightharpoonup N_{generate} = 26350, with \sqrt{s'} < 3 GeV$
- Normalization constant = 0.0567508

图: binaryPID(K^+ from /phi)

图: binaryPID(the other K^+)

图: χ^2

- 1 Motivation
- 2 Data Sets
- 3 Event Selection
- 4 Background study
- 5 cross section measurement
- 6 Branch Fraction of $J/\psi \to K^+K^-$
- **7** Summary

Background study

rewNo	(decay tree (decay initial-final states)	iDeyTr	iDcylFSts	nEtr.	ACED
1	$e^+e^- \rightarrow K^+K^-\phi\gamma^I, \phi \rightarrow K^+K^-$ $(e^+e^- \cdots K^+K^+K^-K^-\gamma^I)$	166	96	4511	4611
2	$e^+e^- \rightarrow K^+K^-\phi\gamma^i\gamma^i, \phi \rightarrow K^+K^-$ $(e^+e^- \rightarrow K^+K^+K^-K^-\gamma^i\gamma^i)$	165	95	2965	2570
3	$e^+e^- \rightarrow \phi\phi\gamma^I$, $\phi \rightarrow K^+K^-$, $\phi \rightarrow K^+K^-$ $(e^+e^- \rightarrow K^+K^+K^-K^-\gamma^I)$	169	96	1508	9046
4	$e^+e^- \rightarrow \phi \phi \gamma^i \gamma^i, \phi \rightarrow K^+K^-, \phi \rightarrow K^+K^-$ $(e^+e^- \rightarrow K^+K^+K^-K^-\gamma^i \gamma^i)$	171	95	1026	1017
5	$e^+e^- \rightarrow K^+K^-\phi\gamma^l\gamma^l\gamma^l, \phi \rightarrow K^+K^-$ $(e^+e^- \rightarrow K^+K^+K^-K^-\gamma^l\gamma^l\gamma^l)$	167	97	929	1109
6	$e^+e^- \rightarrow K^+K^+K^-K^-\gamma^I$ $(e^+e^- \rightarrow K^+K^+K^-K^-\gamma^I)$	172	96	777	1187
7	$e^+e^- \rightarrow \pi^- \bar{K}^+ K^+ \gamma^I, \bar{K}^+ \rightarrow \pi^+ K^-$ $(e^+e^- \rightarrow \pi^+ \pi^- K^+ K^- \gamma^I)$	5	5	630	1250
8	$e^+e^- \rightarrow \pi^+K^*K^-\gamma^I, K^* \rightarrow \pi^-K^+$ $(e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I)$	31	5	616	1312
9	$e^+e^- \rightarrow \pi^-\bar{K}^*K^+\gamma^I\gamma^I, \bar{K}^* \rightarrow \pi^+K^-$ $(e^+e^- \cdots \pi^+\pi^-K^+K^-\gamma^I\gamma^I)$	19	16	459	1362
10	$e^+e^- \rightarrow K^+K^+K^-K^-\gamma^I\gamma^I$ $(e^+e^- \rightarrow K^+K^+K^-K^-\gamma^I\gamma^I)$	176	95	472	1409
11	$e^+e^- \rightarrow \pi^+K^*K^-\gamma^I\gamma^I, K^* \rightarrow \pi^-K^+$ $(e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma^I)$	20	16	460	1455
12	$e^+e^- \rightarrow \rho^0 K^+ K^- \gamma^I, \rho^0 \rightarrow \pi^+\pi^-$ $(e^+e^- \rightarrow \pi^+\pi^- K^+ K^- \gamma^I)$	190	5	394	1494
13	$e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I$ $(e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I)$	22	5	325	1527
14	$e^+e^- \rightarrow \phi\phi\gamma^i\gamma^i\gamma^i, \phi \rightarrow K^+K^-, \phi \rightarrow K^+K^-$ $(e^+e^- \rightarrow K^+K^+K^-K^-\gamma^i\gamma^i\gamma^i)$	168	97	301	1557
15	$e^+e^- \rightarrow \rho^0 K^+ K^- \gamma^I \gamma^I, \rho^0 \rightarrow \pi^+ \pi^-$ $(e^+e^- \rightarrow \pi^+ \pi^- K^+ K^- \gamma^I \gamma^I)$	174	16	244	1581
16	$e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma^I$ $(e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma^I\gamma^I)$	47	16	225	1604

- 1 Motivation
- 2 Data Sets
- 3 Event Selection
- 4 Background study
- 5 cross section measurement
- 6 Branch Fraction of $J/\psi \to K^+K^-$
- **7** Summary

bin width:

- 25MeV at 2-3GeV
- 35MeV at 3-4.5GeV
- 40MeV at 4.5-7.5GeV

using BW convolution a Guassian fit ϕ to get N_{signal}

- 1 Motivation
- 2 Data Sets
- 3 Event Selection
- 4 Background study
- 5 cross section measurement
- **6** Branch Fraction of $J/\psi \to K^+K^-$
- **7** Summary

- 1 Motivation
- 2 Data Sets
- 3 Event Selection
- 4 Background study
- 5 cross section measurement
- 6 Branch Fraction of $J/\psi \to K^+K^-$
- **7** Summary

* 暂时存在的一些问题:

- Data-Driving 去除本底的方式只适用于 Born 过程,在这里出现的主要峰状本底是 $e^+e^- \to \phi\phi\gamma^I$,此方式并不合适
- ▶ 关于 PID 的优化在与又文讨论后在细节上还存有一点问题,需进一步讨论
- * to do list:
 - ▶ 产生 run-dependent 的 signalMC ?
 - ▶ 搞清 J/φ 分支比验证的流程
 - ▶ 其他能区的分析