数理统计复习题解答

一、填空

解:
$$E\overline{X} = EX = 0$$
, $D\overline{X} = \frac{DX}{n} = \frac{1}{3n}$

2、设 X_1, \cdots, X_n 是来自总体 $X \sim N(\mu, 1)$ 的简单随机样本,则样本均值 $\overline{X} \sim$ ______,

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 \sim$$
 ________,而 $\sum_{i=1}^{n} (X_i - \mu)^2 \sim$ _______,且其期望为______,方

解:
$$\overline{X} \sim N(\mu, \frac{1}{n})$$
, $\sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \chi^2(n-1)$, $\sum_{i=1}^{n} (X_i - \mu)^2 \sim \chi^2(n)$,

$$E\sum_{i=1}^{n} (X_i - \mu)^2 = E\chi^2(n) = n$$
, $D\sum_{i=1}^{n} (X_i - \mu)^2 = D\chi^2(n) = 2n$

3、设
$$T \sim t(n)$$
,若 $P(|T| > \lambda) = \alpha$,则 $P(T \le \lambda) =$ ______。

解:利用t分布的对称性得: $P(T \le -\lambda) = P(T \ge \lambda)$

由
$$P(|T| > \lambda) = \alpha$$
 得 $P(T \ge \lambda) = \frac{\alpha}{2}$
所以 $P(T \le \lambda) = 1 - P(T > \lambda) = 1 - \frac{\alpha}{2}$

4、设 X_1, \dots, X_n 是来自总体 $X \sim b(1, p)$ 的简单随机样本,则参数p的无偏估计为______,实际频数 $n\hat{p} \sim$ ______。

解: 参数 p 的无偏估计为样本均值 \bar{X} , $n\hat{p} = X_1 + \cdots + X_n \sim b(n,p)$

5、设 X_1, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本,其中 μ 未知,则检验假设 $H_0: \sigma = \sigma_0$ 的检验统计量为______,在 H_0 下服从_____。

解: 检验统计量为 $\frac{(n-1)S^2}{\sigma_0^2}$, 在 H_0 下服从 $\chi^2(n-1)$ 。

解:第一类错误是指原假设为真,但是作出的判断是拒绝原假设。

7、设 X_1, \dots, X_n 是来自总体 $X \sim P(\lambda)$ 的简单随机样本,则样本 X_1, \dots, X_n 的联合分布律为____。

解:
$$P(X_1 = x_1, \dots, X_n = x_n) = \frac{\lambda^{x_1 + \dots + x_n}}{x_1 ! \dots x_n !} e^{-n\lambda}$$

8、从某一总体中抽取一样本得观察值为: 15, 25, 30, 40, 50, 则样本均值的观察值为______, 样本方差的观察值为_____。

解:
$$\overline{X} = \frac{1}{5} (15 + 25 + 30 + 40 + 50) = 32$$
, $S^2 = \frac{1}{4} (15^2 + 25^2 + 30^2 + 40^2 + 50^2 - 5 \times \overline{X}^2) = 182.5$

二、设某大公司的员工在上、下班上所化时间 $X \sim N(\mu, 25)$,该公司为了解员工在上、下班上所化平均时间,现抽取了一个简单随机样本 X_1, \dots, X_n ,问应抽取多大样本容量 n 才能以 99%概率保证样本均值与真正均值 μ 的差的绝对值不超过 1 分钟。

解: 因为总体
$$X \sim N(\mu, 25)$$
, 所以 $\overline{X} \sim N\left(\mu, \frac{25}{n}\right)$ 。

$$\mathbb{X}$$
 $P(|\overline{X} - \mu| < 1) = P(\mu - 1 < \overline{X} < \mu + 1) = 2\Phi(\frac{\sqrt{n}}{5}) - 1 > 0.99$

由此得: $\frac{\sqrt{n}}{5} > 2.575$, 即 n > 165.77, 所以至少抽 166 个。

三、设总体 $X\sim N(\mu,25)$,从这总体中抽取二个独立样本,样本容量分别为 20 和 12, \bar{X}_1,\bar{X}_2 分别是这二个样本的样本均值,求 $P(|\bar{X}_1-\bar{X}_2|\geq 1)$ 。

解: 因为总体
$$X \sim N(\mu, 25)$$
,所以 $\overline{X}_1 \sim N(\mu, \frac{25}{20})$, $\overline{X}_2 \sim N(\mu, \frac{25}{12})$ 。

因此
$$\overline{X}_1 - \overline{X}_2 \sim N(0, \frac{10}{3})$$
。

$$P(|\overline{X}_1 - \overline{X}_2| \ge 1) = 1 - P(|\overline{X}_1 - \overline{X}_2| < 1) = 2 - 2\Phi(\frac{\sqrt{30}}{10})$$

四、设总体 X 的密度函数为 f(x) = $\begin{cases} \theta(\theta+1)x^{\theta-1}(1-x) & 0 < x < 1 \\ 0 & other \end{cases}, X_1, \cdots, X_n$ 是来自其的简单随机样本,求参数 θ 的矩估计。

解: 因为
$$EX = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{1} \theta(\theta+1) x^{\theta} (1-x) dx = \frac{\theta}{\theta+2}$$
, 所以 $\theta = \frac{2EX}{1-EX}$. 从而参数 θ 的矩估计为 $\hat{\theta} = \frac{2\bar{X}}{1-\bar{X}}$ 。

五、设总体 X 的密度函数为 $f(x) = \begin{cases} 2\theta x e^{-\theta x^2} & x>0 \\ 0 & x\leq 0 \end{cases}$, X_1, \dots, X_n 是来自其的简单 随机样本,求参数 θ 的最大似然估计。

解: 似然函数为 $L(\theta) = f(x_1) \cdots f(x_n) = 2\theta x_1 e^{-\theta x_1^2} \cdots 2\theta x_n e^{-\theta x_n^2} = 2^n \theta^n x_1 \cdots x_n e^{-\theta (x_1^2 + \cdots + x_n^2)}$ 对数似然函数为

$$\ln L(\theta) = n \ln 2 + n \ln \theta + \ln x_1 + \dots + \ln x_n - \theta(x_1^2 + \dots + x_n^2)$$

所以
$$\frac{\partial \ln L(\theta)}{\partial \theta} = \frac{n}{\theta} - (x_1^2 + \dots + x_n^2) = 0$$

从而参数 θ 的最大似然估计为 $\hat{\theta} = \frac{n}{x_1^2 + \dots + x_n^2}$

六、设 X_{i1},\cdots,X_{in_i} 是来自总体 $X_i\sim N(\mu_i,\sigma_i^2)$ 的简单随机样本(i=1,2), \bar{X}_i,S_i^2

$$(i=1,2)$$
是这二个样本的样本均值和样本方差, $S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}$ 。如

果 $\sigma_1 = \sigma_2 = \sigma$,证明(1) S_1^2, S_2^2, S_w^2 都是参数 σ^2 的无偏估计;(2) S_w^2 比 S_1^2, S_2^2 都有效。

证明: (1) 因为 $ES_1^2 = DX = \sigma^2$, $ES_2^2 = DX = \sigma^2$,

$$ES_{w}^{2} = \frac{(n_{1} - 1)ES_{1}^{2} + (n_{2} - 1)ES_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{(n_{1} - 1)\sigma^{2} + (n_{2} - 1)\sigma^{2}}{n_{1} + n_{2} - 2} = \sigma^{2}$$

所以 S_1^2, S_2^2, S_w^2 都是参数 σ^2 的无偏估计。

(2) 注意到
$$\frac{(n_1-1)S_1^2}{\sigma^2}$$
 ~ $\chi^2(n_1-1), \frac{(n_2-1)S_2^2}{\sigma^2}$ ~ $\chi^2(n_2-1)$ 及 S_1^2, S_2^2 独立,则

$$\frac{(n_1 + n_2 - 2)S_w^2}{\sigma^2} = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2)$$
从而 $D\left[\frac{(n_1 - 1)S_1^2}{\sigma^2}\right] = 2(n_1 - 1), D\left[\frac{(n_2 - 1)S_2^2}{\sigma^2}\right] = 2(n_2 - 1)$

$$D\left[\frac{(n_1 + n_2 - 2)S_w^2}{\sigma^2}\right] = 2(n_1 + n_2 - 2)$$
由此得: $D\left(S_1^2\right) = \frac{2}{(n_1 - 1)}\sigma^4, D\left(S_2^2\right) = \frac{2}{(n_2 - 1)}\sigma^4, D\left(S_w^2\right) = \frac{2}{(n_1 + n_2 - 2)}\sigma^4$
因此 $D\left(S_w^2\right) < D\left(S_1^2\right), D\left(S_2^2\right), \quad \text{即 } S_w^2 \text{ 比 } S_1^2, S_2^2 \text{ 都有效}.$

七、设钢轴的直径 $X \sim N(\mu, 0.012^2)$,根据设计要求钢轴的直径应该是 0.15,现 抽检了 75 件,测得均值为 0.154,问 $\alpha = 0.1$ 下这批产品是否合格?

解: 已知 n = 75, $\overline{X} = 0.154$

需要检验的假设是: $H_0: \mu = 0.15$, v.s. $H_1: \mu \neq 0.15$

由于方差已知,所以检验统计量为 $U = \frac{\bar{X} - 0.15}{0.012} \sqrt{75} \stackrel{H_0}{\sim} N(0,1)$

检验的拒绝域是 $W = \{|U| > u_{0.05} = 1.645\}$

检验统计量的值为
$$U = \frac{0.154 - 0.15}{0.012} \sqrt{75} = \frac{5\sqrt{5}}{3} \in W$$
,

所以拒绝原假设, 即认为这批产品不合格。

八、某种片剂药物中成份 A 的含量规定为 10%,现抽检 5 个片剂,测得成份 A 的含量,经计算得: $\bar{X}=0.1005, S=0.0059$,设成份 A 的含量 $X\sim N\left(\mu,\sigma^2\right)$,问在 $\alpha=0.05$ 下成份 A 的含量是否符合标准?

解: $H_0: \mu = 0.1$, v.s. $H_1: \mu \neq 0.1$

由于方差未知,所以检验统计量为 $T = \frac{\bar{X} - 0.1}{S} \sqrt{5} \stackrel{H_0}{\sim} t(4)$

检验的拒绝域是 $W = \{|T| > t_{0.025}(4) = 2.7764\}$

检验统计量的值为
$$T = \frac{0.1005 - 0.1}{0.0059} \sqrt{5} = 1.895 \notin W$$
,

所以接受原假设,即认为这批产品符合标准。

九、某自动机床加工同类型的轴承,现从两个不同班次的产品中各抽检了5根轴承,并测定它们的直径,经计算得:

A 班:
$$X \sim N(\mu_1, \sigma_1^2)$$
, $\overline{X} = 2.0648$, $S_1^2 = 1.07 \times 10^{-5}$

B 班:
$$Y \sim N(\mu_2, \sigma_2^2)$$
, $\overline{Y} = 2.0594$, $S_2^2 = 5.3 \times 10^{-6}$

试根据抽样结果说明两个班次生产的产品直径有无显著差异?

解:(1) 先检验方差是否相等

$$H_0: \sigma_1^2 = \sigma_2^2$$
 v.s. $H_1: \sigma_1^2 \neq \sigma_2^2$

检验统计量为
$$F = \frac{S_1^2}{S_2^2} \stackrel{H_0}{\sim} F(4,4)$$

拒绝域为
$$W = \{F > F_{0.025}(4,4) = 9.6045\} \cup \{F < F_{0.975}(4,4) = 1/F_{0.025}(4,4)\}$$

检验统计是的值为 $F = 2.0189 \notin W$,即认为方差相等。

(2) 在方差相等基础上检验均值是否相等

$$H_0: \mu_1 = \mu_2$$
 v.s. $H_1: \mu_1 \neq \mu_2$

检验统计量为
$$T = \frac{\overline{X} - \overline{Y}}{S_w} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \stackrel{H_0}{\sim} t(8)$$

拒绝域为
$$W = \{ |T| > t_{0.025}(8) = 2.3060 \}$$

检验统计是的值为 $T = 3.8184 \in W$,

即认为两个班次生产的产品直径有显著差异。