Continuidad - Aspectos globales

Análisis Matemático 1 Prof. J. Rivera Noriega

ITAM

Primavera de 2020

Otro modo de ver continuidad puntual

Recordemos la definición de continuidad de una función en un punto que funciona en cualquier espacio métrico.

Sean $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ y $a \in D(f)$.

f es continua en a si para toda $\epsilon > 0$ existe $\delta > 0$ tal que

$$x \in D(f) \cap B_{\delta}(a)$$
 implica $f(x) \in B_{\epsilon}(f(a))$

Esta definición puede escribirse usando imágenes inversas:

f es continua en a si para toda $\epsilon > 0$ existe $\delta > 0$ tal que

$$f^{-1}(B_{\epsilon}(f(a))) \supseteq D(f) \cap B_{\delta}(a).$$

Este último punto de vista tiene la ventaja de no hacer referencia a puntos en vecindades, sino sólo al punto de continuidad en cuestión.

Continuidad global

La observación anterior es útil cuando consideramos la continuidad de la función en todo punto de D(f).

Se dice que f es continua en su dominio si es continua en todo punto de D(f).

Teorema (de continuidad global - Versión 1)

Para $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ son equivalentes las siguientes condiciones:

- (a) f es continua en su dominio;
- (b) Si $G \subseteq \mathbb{R}^q$ es abierto, existe $G_1 \subseteq \mathbb{R}^p$ abierto tal que $f^{-1}(G) = D(f) \cap G_1$;
- (c) Si $H \subseteq \mathbb{R}^q$ es cerrado, existe $H_1 \subseteq \mathbb{R}^p$ cerrado tal que $f^{-1}(H) = D(f) \cap H_1$;

Existe también una versión en la que el dominio de f es todo \mathbb{R}^p .

Continuidad global

Teorema (de continuidad global - Versión 2)

Para $f: \mathbb{R}^p \to \mathbb{R}^q$ son equivalentes las siguientes condiciones:

- f es continua en \mathbb{R}^p ;
- Si $G \subseteq \mathbb{R}^q$ es abierto entonces $f^{-1}(G)$ es abierto en \mathbb{R}^p ;
- Si $H \subseteq \mathbb{R}^q$ es cerrado entonces $f^{-1}(H)$ es cerrado en \mathbb{R}^p ;

Debe observarse que este teorema es consecuencia inmediata del anterior, por lo que nos enfocaremos en demostrar la *Versión 1* del teorema.

Demostración del Teorema de Continuidad Global

(a) \Rightarrow (b) Sea $G \subseteq \mathbb{R}^q$ abierto y $a \in f^{-1}(G)$.

Como G es *vecindad* de f(a), sabemos que existe $\epsilon>0$ tal que $B_{\epsilon}(f(a))\subseteq G$,

Por continuidad de f en a existe $\delta_a > 0$ tal que

$$f^{-1}(G)\supseteq f^{-1}ig(B_\epsilon(f(a))ig)\supseteq B_{\delta_a}(a)\cap D(f)$$

Denotemos por $U_a = B_{\delta_a}(a)$ y repitamos el procedimiento para toda $a \in f^{-1}(G)$.

Definimos $G_1 = \bigcup_{a \in f^{-1}(G)} U_a$ que es abierto y que cumple $f^{-1}(G) = G_1 \cap D(f)$:

⊆ es directo por construcción.

 \supseteq Si $x \in G_1 \cap D(f)$ entonces $x \in U_{a_0}$ para algún $a_0 \in f^{-1}(G)$. Pero como se vió antes tendríamos

$$x \in U_{a_0} \cap D(f) \subseteq f^{-1}(G)$$

Demostración del Teorema de Continuidad Global

(b) \Rightarrow (a) Sean $a \in D(f)$ y $\epsilon > 0$, de manera que con $G = B_{\epsilon}(f(a)) \subseteq \mathbb{R}^q$ abierto, por hipótesis existe $G_1 \subseteq \mathbb{R}^p$ abierto tal que $f^{-1}(G) = D(f) \cap G_1$.

Ésto implica que $a\in G_1$, por lo que existe $\delta>0$ tal que $B_\delta(a)\subseteq G_1.$

Pero ésto significa que
$$f^{-1}(B_{\epsilon}(f(a))) = f^{-1}(G) = D(f) \cap G_1 \supseteq D(f) \cap B_{\delta}(a)$$

Se deja de ejercicio probar que (b) es equivalente con (c).

Nótese que este teorema se refiere a imgenes inversas de abiertos y cerrados.

El siguiente ejemplo muestra que las *imágenes directas* de abiertos bajo funciones continuas no siempre dan lugar a un abierto:

$$f(x) = \frac{1}{1+x^2},$$
 $G = (-1,1),$ $f(G) = (1/2,1]$

Cabe entonces preguntar cules propiedades son preservadas a través de imagen directa de funciones continuas.

Preservación de la conexidad

Teorema

Sean $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ y $H \subseteq D(f)$ conexo en \mathbb{R}^p . Si f es continua en H, entonces f(H) es conexo en \mathbb{R}^q .

Para demostrar el teorema consideramos la restricción de f a H, que denotamos por $h = f|_{H}$ es decir que D(h) = H y h(x) = f(x).

Nótese que f(H) = h(H) y h es continua en H.

Si h(H) fuera disconexo en \mathbb{R}^q , existiría (A, B) disconexión de h(H).

Ésto quiere decir que A, B son abiertos tales que $A \cap h(H)$ y $B \cap h(H)$ son disjuntos no vacíos, y $(A \cap h(H)) \cup (B \cap h(H)) = h(H)$

Preservación de la conexidad

Por el Teorema de Continuidad Global, existen $A_1, B_1 \subseteq \mathbb{R}^p$ abiertos tales que

$$h^{-1}(A) = A_1 \cap H$$
 $h^{-1}(B) = B_1 \cap H$

Obsérvese que $A_1 \cap H \neq \emptyset$ y $B_1 \cap H \neq \emptyset$ pues $A \cap h(H) \neq \emptyset$ y $B \cap h(H) \neq \emptyset$.

Además $(A_1 \cap H) \cap (B_1 \cap H) = \emptyset$ porque $(A \cap h(H)) \cap (B \cap h(H)) = \emptyset$.

Finalmente $(A_1 \cap H) \cup (B_1 \cap H) = H$ porque $(A \cap h(H)) \cup (B \cap h(H)) = h(H)$

Hemos entonces obtenido una disconexión de H, lo cual era imposible (!!)

La contradicción implica que h(H) = f(H) es conexo.

Teorema del valor intermedio

Como aplicación importante del teorema anterior podemos establecer una propiedad fundamental de las funciones continuas con valores en \mathbb{R} .

Teorema (Bolzano)

Sean $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}$ y $H \subseteq D(f)$ conexo en \mathbb{R}^p , y supóngase que f es continua y acotada en H.

Si $k \in \mathbb{R}$ cumple $\sup \{f(x) : x \in H\} < k < \inf \{f(x) : x \in H\}$ entonces existe $x \in H$ tal que f(x) = k, (es decir $k \in f(H)$).

Suponiendo que $k \notin f(H)$ entonces podríamos dar una disconexión de f(H):

$$A = \{ t \in \mathbb{R} : t < k \}, \qquad B = \{ t \in \mathbb{R} : t > k \}$$

Preservación de la compacidad

Teorema

Sean $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ y $K \subseteq D(f)$ compacto en \mathbb{R}^p , y supóngase que f es continua en K. Entonces f(K) es compacto en \mathbb{R}^q .

Usando la idea de la restricción de f al conjunto K, como se hizo antes, podemos suponer que D(f) = K.

Sea $G = \{G_{\alpha} : \alpha \in A\}$ una cubierta abierta de f(K).

Por el teorema de continuidad global sabemos que existen $C_{\alpha} \subseteq \mathbb{R}^p$ abiertos tales que $f^{-1}(G_{\alpha}) = C_{\alpha} \cap K$.

Nótese que $C = \{C_{\alpha} : \alpha \in A\}$ es cubierta de K:

Dado $x \in K$ se tendrá $f(x) \in f(K)$, o sea que $x \in G_{\alpha_0}$, y entonces $x \in C_{\alpha_0}$.

Por ser K compacto tendremos $K \subseteq C_{\alpha_1} \cup \cdots \cup C_{\alpha_N}$, lo cual implica que $f(K) \subseteq G_{\alpha_1} \cup \cdots \cup G_{\alpha_N}$.

Teorema del máximo y el mínimo

El teorema anterior nos permite establecer otra muy importante propiedad de funciones continuas con valores en \mathbb{R} .

Teorema

Sean $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}$ y $K \subseteq D(f)$ compacto en \mathbb{R}^p , y supóngase que f es continua en K. Entonces existen $x^*, x_* \in K$ tales que

$$f(x^*) = \sup \{f(x) : x \in K\}, \qquad f(x_*) = \inf \{f(x) : x \in K\}$$

Nótese primero que por el teorema anterior f(K) es compacto en \mathbb{R} , por tanto acotado.

Sabemos pues de la existencia de $M = \sup f(K)$,

Por la propiedad del supremo podemos construir (x_n) sucesión en K tal que

$$f(x_n) > M - \frac{1}{n}$$
 para toda $n \in \mathbb{N}$. O sea $M - f(x_n) < \frac{1}{n}$.

Teorema del máximo y el mínimo - 2

Por el Teorema de Bolzano-Weierstrass existe una subsucesión (x'_n) que converge a cierto $x^* \in K$.

Al evaluar en este punto y usar que f es coninua en K obtendremos

$$f(x^*) = \lim f(x'_n) = M$$

Una prueba similar funciona para hallar $x_* \in K$ cumpliendo

$$f(x_*) = \lim f(y'_n) = m := \inf f(K)$$

<u>Teor</u>ema

Sean $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ y $K \subseteq D(f)$ compacto en \mathbb{R}^p , y supóngase que f es continua en K. Entonces existen $x^*, x_* \in K$ tales que

$$||f(x^*)|| = \sup \{||f(x)|| : x \in K\}, \qquad ||f(x_*)|| = \inf \{||f(x)|| : x \in K\}$$

Espacios de funciones continuas y funciones acotadas

Fijando ahora $D \subseteq \mathbb{R}^p$, definimos

$$C_{pq}(D) := \{ f : D \to \mathbb{R}^q \mid f \text{ es continua en } D \}$$

 $BC_{pq}(D) := \{ f : D \to \mathbb{R}^q \mid f \text{ es continua y acotada en } D \}$

No es difícil verificar que $C_{pq}(D)$ y $BC_{pq}(D)$ son espacios vectoriales bajo las operaciones usuales:

$$(f+g)(x) = f(x) + g(x), \quad (cf)(x) = cf(x), \quad \text{para } x \in D$$

Además $BC_{pq}(D)$ es un espacio normado con la norma

$$||f||_{\infty,D} := \sup \{||f(x)|| : x \in D\}$$

Finalmente nótese que si D es compacto entonces $C_{pq}(D) = BC_{pq}(D)$.