Inverse Trigonometric Functions Short Answer Type Questions

- 1. Find the principal value of $\cos^{-1}x$, for $x = \frac{\sqrt{3}}{2}$.
- Sol. If $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \theta$, then $\cos\theta = \frac{\sqrt{3}}{2}$.

Since we are considering principal branch, $\theta \in [0, \pi]$. Also, since $\frac{\sqrt{3}}{2} > 0$, θ being in the first quadrant, hence $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$.

2. Evaluate $\tan^{-1} \left(\sin \left(\frac{-\pi}{2} \right) \right)$.

Sol.
$$\tan^{-1}\left(\sin\left(\frac{-\pi}{2}\right)\right) = \tan^{-1}\left(-\sin\left(\frac{\pi}{2}\right)\right) = \tan^{-1}\left(-1\right) = -\frac{\pi}{4}$$

3. Find the value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$.

Sol.
$$\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \cos^{-1}\left(\cos\left(2\pi + \frac{\pi}{6}\right)\right) = \cos^{-1}\left(\cos\frac{\pi}{6}\right)$$
$$= \frac{\pi}{6}.$$

4. Find the value of $\tan^{-1} \left(\tan \frac{9\pi}{8} \right)$.

Sol.
$$\tan^{-1}\left(\tan\frac{9\pi}{8}\right) = \tan^{-1}\tan\left(\pi + \frac{\pi}{8}\right)$$

= $\tan^{-1}\left(\tan\left(\frac{\pi}{8}\right)\right) = \frac{\pi}{8}$.

5. Evaluate $tan(tan^{-1}(-4))$.

Sol. Since
$$tan(tan^{-1}x) = x, \forall x \in R, tan(tan^{-1}(-4)) = -4$$

6. Evaluate: $tan^{-1}\sqrt{3} - sec^{-1}$ (-2).

Sol.
$$tan^{-1}\sqrt{3} - sec^{-1}(-2) = tan^{-1}\sqrt{3} - \left[\pi - sec^{-1}2\right]$$

 $= \frac{\pi}{3} - \pi + \cos^{-1}\left(\frac{1}{2}\right)$
 $= -\frac{2\pi}{3} + \frac{\pi}{3} = -\frac{\pi}{3}$

7. Evaluate:
$$\sin^{-1} \left[\cos \left(\sin^{-1} \frac{\sqrt{3}}{2} \right) \right]$$
.

Sol.
$$\sin^{-1} \left[\cos \left(\sin^{-1} \frac{\sqrt{3}}{2} \right) \right]$$
$$= \sin^{-1} \left[\cos \left(\frac{\pi}{3} \right) \right]$$
$$= \sin^{-1} \left[\frac{1}{2} \right] = \frac{\pi}{6}.$$

Prove that $tan(cot^{-1}x) = cot(tan^{-1}x)$. State with reason whether the equality 8. is valid for all values of x.

Sol. Let
$$\cot^{-1} x = \theta$$
. Then $\cot \theta = x$

Or,
$$\tan\left(\frac{\pi}{2} - \theta\right) = x \Rightarrow \tan^{-1} x = \frac{\pi}{2} - \theta$$

So
$$tan(cot^{-1}x) = tan \theta = cot(\frac{\pi}{2} - \theta)$$

$$=\cot\left(\frac{\pi}{2}-\cot^{-1}x\right)=\cot\left(\tan^{-1}x\right)$$

The equality is valid for all values of x since $tan^{-1}x$ and $cot^{-1}x$ are true for $x \in R$.

9. Find the value of
$$\sec\left(\tan^{-1}\frac{y}{2}\right)$$

Sol. Let
$$\tan^{-1} \frac{y}{2} = \theta$$
, where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. So, $\tan \theta = \frac{y}{2}$, which gives $\sec \theta = \frac{\sqrt{4 + y^2}}{2}$.

Therefore,
$$\sec\left(\tan^{-1}\frac{y}{2}\right) = \sec\theta = \frac{\sqrt{4+y^2}}{2}$$
.

10. Find value of tan (cos⁻¹x) and hence evaluate
$$\tan \left(\cos^{-1} \frac{8}{17}\right)$$

Sol. Let
$$\cos^{-1} x = \theta$$
, then $\cos \theta = x$, where $\theta \in [0, \pi]$

Therefore,
$$\tan(\cos^{-1} x) = \tan \theta = \frac{\sqrt{1 - \cos^2 \theta}}{\cos \theta} = \frac{\sqrt{1 - x^2}}{x}$$

Therefore,
$$\tan(\cos^{-1} x) = \tan \theta = \frac{\sqrt{1 - \cos^2 \theta}}{\cos \theta} = \frac{\sqrt{1 - x^2}}{x}$$

Hence, $\tan(\cos^{-1} \frac{8}{17}) = \frac{\sqrt{1 - \left(\frac{8}{17}\right)^2}}{\frac{8}{17}} = \frac{15}{8}$

11. Find the value of
$$\sin \left[2 \cot^{-1} \left(\frac{-5}{12} \right) \right]$$

Sol. Let
$$\cot^{-1}\left(\frac{-5}{12}\right) = y$$
. Then $\cot y = \frac{-5}{12}$.
Now $\sin\left[2\cot^{-1}\left(\frac{-5}{12}\right)\right] = \sin 2y$

$$= 2\sin y \cos y = 2\left(\frac{12}{13}\right)\left(\frac{-5}{13}\right) \left[\text{ since }\cot y < 0, \text{ so } y \in \left(\frac{\pi}{2}, \pi\right)\right]$$

12. Evaluate
$$\cos \left[\sin^{-1} \frac{1}{4} \sec^{-1} \frac{4}{3} \right]$$

Sol.
$$\cos \left[\sin^{-1} \frac{1}{4} \sec^{-1} \frac{4}{3} \right] = \cos \left[\sin^{-1} \frac{1}{4} + \cos^{-1} \frac{3}{4} \right]$$

 $\cos \left(\sin^{-1} \frac{1}{4} \right) \cos \left(\cos^{-1} \frac{3}{4} \right) - \sin \left(\sin^{-1} \frac{1}{4} \right) \sin \left(\cos^{-1} \frac{3}{4} \right)$
 $= \frac{3}{4} \sqrt{1 - \frac{1}{4}^2} - \frac{1}{4} \sqrt{1 - \frac{3}{4}^2}$
 $= \frac{3}{4} \sqrt{\frac{15}{4}} - \frac{1}{4} \sqrt{\frac{7}{4}} = \frac{3\sqrt{15} - \sqrt{7}}{16}$

Long Answer Type Questions

13. Prove that
$$2\sin^{-1}\frac{3}{5}-\tan^{-1}\frac{17}{31}=\frac{\pi}{4}$$

Sol. Let
$$\sin^{-1}\frac{3}{5} = \theta$$
, then $\sin\theta = \frac{3}{5}$, where $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Thus $\tan\theta = \frac{3}{4}$, which gives $\theta = \tan^{-1}\frac{3}{4}$.
Therefore, $2\sin^{-1}\frac{3}{5} - \tan^{-1}\frac{17}{31}$
 $= 2\theta - \tan^{-1}\frac{17}{31} = 2\tan^{-1}\frac{3}{4} - \tan^{-1}\frac{17}{31}$
 $\tan^{-1}\left(\frac{2\cdot\frac{3}{4}}{1-\frac{9}{16}}\right) - \tan^{-1}\frac{17}{31} = \tan^{-1}\frac{24}{7} - \tan^{-1}\frac{17}{31}$
 $= \tan^{-1}\left(\frac{\frac{24}{7} - \frac{17}{31}}{1+\frac{24}{7} \cdot \frac{17}{31}}\right) = \frac{\pi}{4}$

14. Prove that
$$\cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18 = \cot^{-1} 3$$

Sol. We have
$$\cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18$$

$$= \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{8} + \tan^{-1} \frac{1}{18} \quad \left(\sin \operatorname{ce} \cot^{-1} x = \tan^{-1} \frac{1}{x}, if \ x > 0 \right)$$

$$= \tan^{-1} \left(\frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \times \frac{1}{8}} \right) + \tan^{-1} \frac{1}{18} \left(\sin \operatorname{ce} x. y = \frac{1}{7} \cdot \frac{1}{8} < 1 \right)$$

$$= \tan^{-1} \frac{3}{11} + \tan^{-1} \frac{1}{18} = \tan^{-1} \left(\frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11} \times \frac{1}{18}} \right) \left(\sin \operatorname{ce} xy < 1 \right)$$

$$= \tan^{-1} \frac{65}{195} = \tan^{-1} \frac{1}{3} = \cot^{-1} 3$$

15. Which is greater, tan 1 or tan⁻¹ 1?

Sol. From Fig. we note that tan x is an increasing function in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$,

since
$$1 > \frac{\pi}{4} \Rightarrow \tan 1 > \tan \frac{\pi}{4}$$
. This gives

tan 1>1

$$\Rightarrow \tan 1 > 1 > \frac{\pi}{4}$$

$$\Rightarrow \tan 1 > 1 > \tan^{-1}(1)$$

- 16. Find the value of $\sin\left(2\tan^{-1}\frac{2}{3}\right) + \cos\left(\tan^{-1}\sqrt{3}\right)$
- Sol. Let $\tan^{-1} \frac{2}{3} = x$ and $\tan^{-1} \sqrt{3} = y$ so that $\tan x = \frac{2}{3}$ and $\tan y = \sqrt{3}$

Therefore,
$$\sin\left(2\tan^{-1}\frac{2}{3}\right) + \cos\left(\tan^{-1}\sqrt{3}\right)$$

$$=\sin(2x)+\cos y$$

$$= \frac{2 \tan x}{1 + \tan^2 x} + \frac{1}{\sqrt{1 + \tan^2 y}}$$

$$= \frac{2 \cdot \frac{2}{3}}{1 + \frac{4}{9}} + \frac{1}{1 + \sqrt{\left(\sqrt{3}\right)^2}}$$
$$= \frac{12}{13} + \frac{1}{2} = \frac{37}{26}$$

- **17.** Solve for x $\tan^{-1} \left(\frac{1-x}{1+x} \right) = \frac{1}{2} \tan^{-1} x, x > 0$
- Sol. From given equation, we have $2 \tan^{-1} \left(\frac{1-x}{1+x} \right) = \tan^{-1} x$

$$\Rightarrow 2\left[\tan^{-1}1 - \tan^{-1}x\right] = \tan^{-1}x$$

$$\Rightarrow 2\left(\frac{\pi}{4}\right) = 3\tan^{-1}x \Rightarrow \frac{\pi}{6} = \tan^{-1}x$$

$$\Rightarrow x = \frac{1}{\sqrt{3}}$$

- **18.** Find the values of x which satisfy the equation $\sin^{-1} x + \sin^{-1} (1 x) = \cos^{-1} x$.
- Sol. From the given equation, we have

$$\sin(\sin^{-1}x + \sin^{-1}(1-x)) = \sin(\cos^{-1}x)$$

$$\Rightarrow \sin(\sin^{-1} x)\cos(\sin^{-1} (1-x)) + \cos(\sin^{-1} x)\sin(\sin^{-1} (1-x)) = \sin(\cos^{-1} x)$$

$$\Rightarrow x\sqrt{1-(1-x)^2}+(1-x)\sqrt{1-x^2}=\sqrt{1-x^2}$$

$$\Rightarrow x\sqrt{2x-x^2} + \sqrt{1-x^2}(1-x-1) = 0$$

$$\Rightarrow x \left(\sqrt{2x - x^2} - \sqrt{1 - x^2} \right) = 0$$

$$\Rightarrow x = 0$$
 or $2x - x^2 = 1 - x^2$

$$\Rightarrow x = 0$$
 or $x = \frac{1}{2}$

- **19.** Solve the equation $\sin^{-1} 6x + \sin^{-1} 6\sqrt{3}x = -\frac{\pi}{2}$
- Sol. From the given equation, we have $\sin^{-1} 6x = -\frac{\pi}{2} \sin^{-1} 6\sqrt{3}x$

$$\Rightarrow \sin(\sin^{-1}6x) = \sin\left(-\frac{\pi}{2} - \sin^{-1}6\sqrt{3}x\right)$$

$$\Rightarrow 6x = -\cos\left(\sin^{-1}6\sqrt{3}x\right)$$

$$\Rightarrow$$
 6 $x = -\sqrt{1 - 108x^2}$. Squaring, we get

$$36x^2 = 1 - 108x^2$$

$$\Rightarrow 144x^2 = 1$$
 $\Rightarrow x \pm \frac{1}{12}$

Note that $x = -\frac{1}{12}$ is the only root of the equation as $x = \frac{1}{12}$ does not satisfy it.

20. Show that

21. Show that
$$2 \tan^{-1} \left\{ \tan \frac{\alpha}{2} \cdot \tan \left(\frac{\pi}{4} - \frac{\beta}{2} \right) \right\} = \tan^{-1} \frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta}$$
Sol. L.H.S. = $\tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \tan \left(\frac{\pi}{4} - \frac{\beta}{2} \right)}{1 - \tan^2 \frac{\alpha}{2} \cdot \tan^2 \left(\frac{\pi}{4} - \frac{\beta}{2} \right)} \left(\sin \csc 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2} \right)$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \frac{1 - \tan \frac{\beta}{2}}{1 + \tan \frac{\beta}{2}}}{1 - \tan^2 \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}{\left(1 + \tan^2 \frac{\beta}{2} \right) \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}{\left(1 + \tan^2 \frac{\beta}{2} \right) \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}{1 + \tan^2 \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}{1 + \tan^2 \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}{1 + \tan^2 \frac{\beta}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}{1 + \tan^2 \frac{\beta}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

$$= \tan^{-1} \frac{2 \tan \frac{\alpha}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}{1 + \tan^2 \frac{\beta}{2} \cdot \left(1 - \tan^2 \frac{\beta}{2} \right)}$$

Objective Type Questions

Choose the correct answer from the given four options in each of 21 to 41.

 $= \tan^{-1} \left(\frac{\sin \alpha \cos \beta}{\cos \alpha + \sin \beta} \right) = R.H.S$

21. Which of the following corresponds to the principal value branch of tan-1?

(A)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

(B)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(C)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}$$

(D)
$$(0, \pi)$$

Sol. (A) is the correct answer.

22. The principal value branch of sec⁻¹ is

(A)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}$$

(B)
$$[0,\pi] - \left\{ \frac{\pi}{2} \right\}$$

(C)
$$(0, \pi)$$

(D)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Sol. (B) is the correct answer.

23. One branch of cos-1 other than the principal value branch corresponds to

$$\textbf{(A)}\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$$

(B)
$$[\pi, 2\pi] - \left\{ \frac{3\pi}{2} \right\}$$

(C)
$$(0, \pi)$$

(D)
$$[2\pi, 3\pi]$$

Sol. (D) is the correct answer.

24. The value of $\sin^{-1} \left(\cos \left(\frac{43\pi}{5} \right) \right) is$

$$(A)\frac{3\pi}{5}$$

(B)
$$\frac{-7\pi}{5}$$

(C)
$$\frac{\pi}{10}$$

(D)
$$-\frac{\pi}{10}$$

Sol. (D) is the correct answer. $\sin^{-1} \left(\cos \frac{40\pi + 3\pi}{5} \right) = \sin^{-1} \cos \left(8\pi + \frac{3\pi}{5} \right)$

$$= \sin^{-1}\left(\cos\frac{3\pi}{5}\right) = \sin^{-1}\left(\sin\left(\frac{\pi}{2} - \frac{3\pi}{5}\right)\right)$$

$$\sin^{-1}\left(\sin\left(-\frac{\pi}{10}\right)\right) = -\frac{\pi}{10}.$$

- 25. The principal value of the expression cos
 - $(A)\frac{2\pi}{9}$
 - **(B)** $\frac{-2\pi}{9}$
 - (C) $\frac{34\pi}{9}$
 - (D) $\frac{\pi}{9}$
- Sol. (A) is the correct answer. $\cos^{-1}(\cos(680^\circ)) = \cos^{-1}[\cos(720^\circ 40^\circ)]$ = $\cos^{-1}[\cos(-40^\circ)] = \cos^{-1}[\cos(40^\circ)] = 40^\circ = \frac{2\pi}{9}$
- **26.** The value of $cot (sin^{-1}x)$ is
 - $\textbf{(A)} \ \frac{\sqrt{1+x^2}}{x}$
 - **(B)** $\frac{x}{\sqrt{1+x^2}}$
 - (c) $\frac{1}{x}$
 - **(D)** $\frac{\sqrt{1-x^2}}{x}$
- Sol. (D) is the correct answer. Let $sin^{-1}x = \theta$, then $sin\theta = x$

$$\cos ec\theta = \frac{1}{x} \Rightarrow \cos ec^2\theta = \frac{1}{x^2}$$

$$1 + \cot^2 \theta = \frac{1}{x^2} \Rightarrow \cot \theta = \frac{\sqrt{1 + x^2}}{x}$$

- 27. If $\tan^{-1} x = \frac{\pi}{10}$ for some $x \in R$, then the value of $\cot^{-1} x$ is
 - (A) $\frac{\pi}{5}$
 - **(B)** $\frac{2\pi}{5}$
 - (c) $\frac{3\pi}{5}$
 - **(D)** $\frac{4\pi}{5}$

Sol. (B) is the correct answer. We know $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$. Therefore

$$\cot^{-1} x = \frac{\pi}{2} - \frac{\pi}{10}$$

$$\Rightarrow$$
 cot⁻¹ $x = \frac{\pi}{2} - \frac{\pi}{10} = \frac{2\pi}{5}$

28. The domain of $sin^{-1}2x$ is

(C)
$$\left[-\frac{1}{2},\frac{1}{2}\right]$$

(d)
$$[-2,2]$$

Sol. (C) is the correct answer. Let $sin^{-1}2x = \theta$ so that $2x = sin \theta$.

Now $-1 \le \sin \theta \le 1$, i.e., $-1 \le 2x \le 1$ which gives $-\frac{1}{2} \le x \le \frac{1}{2}$.

29. The principal value of $\sin^{-1}\left(\frac{-\sqrt{3}}{2}\right)$ is

(A)
$$-\frac{2\pi}{3}$$

(B)
$$-\frac{\pi}{3}$$

(C)
$$\frac{4\pi}{3}$$

(D)
$$\frac{5\pi}{3}$$

Sol. (B) is the correct answer.

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \sin^{-1}\left(-\sin\frac{\pi}{3}\right) = \sin^{-1}\left(\sin\frac{\pi}{3}\right) = -\frac{\pi}{3}$$

30. The greatest and least values of $(\sin^{-1} x)^2 + (\cos^{-1} x)^2$ are respectively

(A)
$$\frac{5\pi^2}{4}$$
 and $\frac{\pi^2}{8}$

(B)
$$\frac{\pi}{2}$$
 and $\frac{-\pi}{2}$

(C)
$$\frac{\pi^2}{4}$$
 and $\frac{-\pi^2}{4}$

(D)
$$\frac{\pi^2}{4}$$
 and 0

Sol. (A) is the correct answer. We have

$$\left(\sin^{-1} x\right)^{2} + \left(\cos^{-1} x\right)^{2} = \left(\sin^{-1} x + \cos^{-1} x\right)^{2} - 2\sin^{-1} x \cos^{-1} x$$

$$= \frac{\pi^{2}}{4} - 2\sin^{-1} x \left(\frac{\pi}{2} - \sin^{-1} x\right)$$

$$= \frac{\pi^{2}}{4} - \pi \sin^{-1} x + 2\left(\sin^{-1} x\right)^{2}$$

$$= 2\left[\left(\sin^{-1} x\right)^{2} - \frac{\pi}{2}\sin^{-1} x + \frac{\pi^{2}}{8}\right]$$

$$= 2 \left[\left(\sin^{-1} x - \frac{\pi}{4} \right)^2 + \frac{\pi^2}{16} \right]$$

Thus, the least value is $2\left(\frac{\pi^2}{16}\right)$ *i.e.* $\frac{\pi^2}{8}$ and the Greatest value is

$$2\left[\left(\frac{-\pi}{2} - \frac{\pi}{4}\right)^2 + \frac{\pi^2}{16}\right]$$
 , i.e. $\frac{5\pi^2}{4}$

31. Let $\theta = sin^{-1}(sin (-600^{\circ}))$, then value of θ is

(A)
$$\frac{\pi}{3}$$

(B)
$$\frac{\pi}{2}$$

(c)
$$\frac{2\pi}{3}$$

(D)
$$\frac{-2\pi}{3}$$

Sol. (A) is the correct answer.

$$\sin^{-1}\sin\left(-600 \times \frac{\pi}{180}\right) = \sin^{-1}\sin\left(\frac{-10\pi}{3}\right)$$
$$= \sin^{-1}\left[-\sin\left(4\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left(\sin\frac{2\pi}{3}\right)$$
$$= \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right) = \sin^{-1}\left(\sin\frac{\pi}{3}\right) = \frac{\pi}{3}$$

32. The domain of the function $y = sin^{-1}(-x^2)$ is

(D)
$$\phi$$

Sol. (C) is the correct answer.
$$y = sin^{-1}(-x^2) \Rightarrow siny = -x^2$$

i.e. $-1 \le -x^2 \le 1$ (since $-1 \le \sin y \le 1$)

$$\Rightarrow 1 \ge x^2 \ge -1$$

$$\Rightarrow 0 \le x^2 \le 1$$

$$\Rightarrow |x| \le i.e. -1 \le x \le 1$$

33. The domain of $y = \cos^{-1}(x^2 - 4)$ is

- (A) [3, 5]
- (B) $[0, \pi]$

(C)
$$\left[-\sqrt{5}, -\sqrt{3}\right] \cap \left[-\sqrt{5}, \sqrt{3}\right]$$

(D)
$$\left[-\sqrt{5}, -\sqrt{3}\right] \cup \left[\sqrt{3}, 5\right]$$

Sol. (D) is the correct answer. $y = cos^{-1}(x^2 - 4) \Rightarrow cosy = x^2 - 4$

i.e.
$$-1 \le x^2 - 4 \le 1 \text{ (since } -1 \le \cos y \le 1\text{)}$$

$$\Rightarrow 3 \le x^2 \le 5$$

$$\Rightarrow \sqrt{3} \le |x| \le \sqrt{5}$$

$$\Rightarrow x \in \left[-\sqrt{5}, -\sqrt{3}\right] \cup \left[\sqrt{3}, \sqrt{5}\right]$$

34. The domain of the function defined by $f(x) = sin^{-1}x + cosx$ is

- (A)[-1,1]
- (B) $[-1, \pi + 1]$
- (C) $(-\infty,\infty)$
- **(D)** ϕ

Sol. (A) is the correct answer. The domain of \cos is R and the domain of \sin^{-1} is [-1,

1]. Therefore, the domain of $\cos x + \sin^{-1} x$ is $R \cap [-1,1]$ i.e. [-1,1]

35. The value of $\sin(2 \sin^{-1}(.6))$ is

- (A) .48
- (B).96
- (C) 1.2
- (D) sin 1.2

Sol. (B) is the correct answer. Let $\sin^{-1}(.6) = \theta$, i.e., $\sin \theta = .6$.

Now $\sin (2\theta) = 2 \sin \theta \cos \theta = 2$ (.6) (.8) = .96.

36. If $sin^{-1}x + sin^{-1}y = \frac{\pi}{2}$, then value of $cos^{-1}x + cos^{-1}y$ is

- (A) $\frac{\pi}{2}$
- (B) π
- (C) 0
- **(D)** $\frac{2\pi}{3}$

Sol. (A) is the correct answer. Given that
$$sin^{-1}x + sin^{-1}y = \frac{\pi}{2}$$

Therefore,
$$\left(\frac{\pi}{2} - \cos^{-1} x\right) + \left(\frac{\pi}{2} - \cos^{-1} y\right) = \frac{\pi}{2}$$

$$\Rightarrow \cos^{-1} x + \cos^{-1} y = \frac{\pi}{2}$$
.

37. The value of
$$\tan \left(\cos^{-1} \frac{3}{5} + \tan^{-1} \frac{1}{4} \right)$$
 is

(A)
$$\frac{19}{8}$$

(B)
$$\frac{8}{19}$$

(c)
$$\frac{19}{12}$$

(D)
$$\frac{3}{4}$$

Sol. (A) is the correct answer.
$$\tan \left(\cos^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{4}\right) = \tan \left(\tan^{-1}\frac{4}{3} + \tan^{-1}\frac{1}{4}\right)$$

$$= \tan \tan^{-1} \left(\frac{\frac{4}{3} + \frac{1}{4}}{1 - \frac{4}{3} \times \frac{1}{4}} \right) = \tan \tan^{-1} \left(\frac{19}{8} \right) = \frac{19}{8}$$

38. The value of the expression
$$sin \left[cot^{-1} \left(cos \left(tan^{-1} 1 \right) \right) \right]$$
 is

(C)
$$\frac{1}{\sqrt{3}}$$

(D)
$$\sqrt{\frac{2}{3}}$$

$$\sin\left[\cot^{-1}\left(\cos\frac{\pi}{4}\right)\right] = \sin\left[\cot^{-1}\frac{1}{\sqrt{2}}\right] = \sin\left[\sin^{-1}\sqrt{\frac{2}{3}}\right] = \sqrt{\frac{2}{3}}$$

39 The equation
$$\tan^{-1} x - \cot^{-1} x = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$$
 has

(D) two Solutions

Sol. (B) is the correct answer. We have $\tan^{-1} x - \cot^{-1} x = \frac{\pi}{6}$ and $\tan^{-1} + \cot^{-1} x = \frac{\pi}{2}$

Adding them, we get $2tan^{-1}x = \frac{2\pi}{3}$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{3} i.e. x = \sqrt{3}$$

40. If $\alpha \le 2sin^{-1}x + cos^{-1}x \le \beta$, then

(A)
$$\alpha = \frac{-\pi}{2}, \beta = \frac{\pi}{2}$$

(B)
$$\alpha = 0$$
, $\beta = \pi$

(C)
$$\alpha = \frac{-\pi}{2}, \beta = \frac{3\pi}{2}$$

(D)
$$\alpha = 0$$
, $\beta = 2\pi$

Sol. (B) is the correct answer. We have $\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$

$$\Rightarrow \frac{-\pi}{2} + \frac{\pi}{2} \le \sin^{-1} x + \frac{\pi}{2} \le \frac{\pi}{2} + \frac{\pi}{2}$$

$$\Rightarrow 0 \le \sin^{-1} x + \left(\sin^{-1} x + \cos^{-1} x\right) \le \pi$$

$$\Rightarrow 0 \le 2 \sin^{-1} x + \cos^{-1} x \le \pi$$

- **41.** The value of tan $\tan^2(\sec^{-1}2) + \cot^2(\cos ec^{-1}3)$ is
 - (A) 5
 - (B) 11
 - (C) 13
 - (D) 15
- Sol. (B) is the correct answer.

$$\tan^{2}(\sec^{-1}2) + \cot^{2}(\cos ec^{-1}3) = \sec^{2}(\sec^{-1}2) - 1 + \cos ec^{2}(\cos ec^{-1}3) - 1$$
$$= 2^{2} \times 1 + 3^{3} - 2 = 11.$$

Inverse Trigonometric Functions <u>Objective Type Questions</u>

Choose the correct answers from the given four options in each of the Exercises from 20 to 37 (M.C.Q.)

20. Which of the following is the principal value branch of $cos^{-1}x$?

(a)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

(b)
$$(0,\pi)$$

(c)
$$[0,\pi]$$

(d)
$$(0,\pi) - \left\{ \frac{\pi}{2} \right\}$$

Sol. (c) We know that, the principal value branch of $cos^{-1}x$ is $[0,\pi]$

21. Which of the following is the principal value branch of $cosec^{-1} x$?

(a)
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

(b)
$$[o,\pi] - \left\{ \frac{\pi}{2} \right\}$$

(c)
$$\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(d)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \left[0\right]$$

Sol. (d) We know that, the principal value branch of $cosec^{-1}$ x is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - [0]$

- **22.** If $3 \tan^{-1} x + \cot^{-1} x = \pi$, then x equals to
 - (A) 0
 - (B) 1
 - (C) -1
 - **(D)** $\frac{1}{2}$
- Sol. (B) Given that, $3 \tan^{-1} x + \cot^{-1} x = \pi$ (*i*)

$$\Rightarrow$$
 2 tan⁻¹ x + tan⁻¹ x + cot⁻¹ $x = \pi$

$$\Rightarrow 2 \tan^{-1} x = \pi - \frac{\pi}{2} \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$$

$$\Rightarrow 2 \tan^{-1} x = \frac{\pi}{2}$$

$$= \tan^{-1} \frac{2x}{1 - x^2} = \frac{\pi}{2} \left[\because 2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}, \forall x \in (-1, 1) \right]$$

$$\Rightarrow \frac{2x}{1-x^2} = \tan \frac{\pi}{2}$$

$$\Rightarrow \frac{2x}{1-x^2} = \frac{1}{0} \Rightarrow 1-x^2 = 0$$

$$\Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \Rightarrow x = 1$$

Hence, only x=1 Satisfies the given equation.

Note Here, putting x=-1 in the given equation, we get

$$3 \tan^{-1} (-1) + \cot^{-1} (-1) = \pi$$

$$\Rightarrow 3 \tan^{-1} \left[\tan \left(\frac{-\pi}{4} \right) \right] + \cot^{-1} \left[\cot \left(\frac{-\pi}{4} \right) \right] = \pi$$

$$\Rightarrow 3 \tan^{-1} \left[-\tan \frac{\pi}{4} \right] + \cot^{-1} \left(-\cot \frac{\pi}{4} \right) = \pi$$

$$\Rightarrow 3 \tan^{-1} \left(\tan \frac{\pi}{4} \right) + \pi - \cot^{-1} \left(\cot \frac{\pi}{4} \right) = \pi$$

$$\Rightarrow -3\frac{\pi}{4} + \pi - \frac{\pi}{4} = \pi$$

$$\Rightarrow -\pi + \pi = \pi \Rightarrow 0 \neq \pi$$

Hence, x=-1 does not satisfy the given equation.

- 23. The value of $\sin^{-1} \left[\cos \left(\frac{33\pi}{5} \right) \right]$ is
 - (a) $\frac{3\pi}{5}$
 - **(b)** $\frac{-7\pi}{5}$
 - (c) $\frac{\pi}{10}$
 - (d) $\frac{-\pi}{10}$
- Sol. (d) We have

$$\sin^{-1}\left[\cos\left(\frac{33\pi}{5}\right)\right] = \sin^{-1}\left[\cos\left(6\pi + \frac{33\pi}{5}\right)\right]$$

$$=\sin^{-1}\left[\cos\left(\frac{3\pi}{5}\right)\right]\left[\because\cos\left(2n\pi+\theta\right)=\cos\theta\right]$$

$$= \sin^{-1} \left[\cos \left(\frac{\pi}{2} + \frac{\pi}{10} \right) \right] = \sin^{-1} \left(-\sin \frac{\pi}{10} \right)$$

$$=-\sin^{-1}\left(\sin\frac{\pi}{10}\right) \left[\because \sin^{-1}\left(-x\right)=-\sin^{-1}x\right]$$

$$= -\frac{\pi}{10} \left[\because \sin^{-1}(\sin x) = x, x \in \left(\frac{-\pi}{2}, \frac{\pi}{2} \right) \right]$$

- **24.** The domain of the function $\cos^{-1}(2x-1)$ is
 - (A) [0, 1]
 - (B) [-1, 1]
 - (C) (-1, 1)
 - (D) $[0, \pi]$
- Sol. (A) we have, $f(x) = \cos^{-1}(2x-1)$
 - $\because -1 \le 2x 1 \le 1$
 - $\Rightarrow 0 \le 2x \le 2$
 - $\Rightarrow 0 \le x \le 1$
 - $\therefore x \in [0,1]$
- **25.** The domain of the function defined by $f(x) = sin^{-1}\sqrt{x-1}$ is
 - (A) [1, 2]
 - (B) [-1, 1]
 - (C) [0, 1]
 - (D) none of these
- Sol. (A) :: $f(x) = \sin^{-1} \sqrt{x-1}$

$$\Rightarrow 0 \le x-1 \le 1 \ [\because \sqrt{x-1} \ge 0 \ and \ -1 \le \sqrt{x-1} \le 1]$$

$$\Rightarrow 1 \le x \le 2$$

$$\therefore x \in [1,2]$$

26. If
$$\cos \left(\sin^{-1} \frac{2}{5} + \cos^{-1} x \right) = 0$$
 then x is equal to

(a)
$$\frac{1}{5}$$

(b)
$$\frac{2}{5}$$

Sol. (b) We have
$$\cos \left(\sin^{-1} \frac{2}{5} + \cos^{-1} x \right) = 0$$

$$\Rightarrow \sin^{-1}\frac{2}{5} + \cos^{-1}x = \cos^{-1}0$$

$$\Rightarrow \sin^{-1}\frac{2}{5} + \cos^{-1}x = \cos^{-1}\cos\frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}\frac{2}{5} + \cos^{-1}x = \frac{\pi}{2}$$

$$\Rightarrow \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} \frac{2}{5}$$

$$\Rightarrow \cos^{-1} x = \cos^{-1} \frac{2}{5} \left[\because \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \right]$$

$$\therefore x = \frac{2}{5}$$

27. The value of
$$sin[2 tan^{-1}(.75)]$$
 is equal to

Sol. (C) We have,
$$sin\left[2 tan^{-1}(.75)\right] = sin\left(2 sin^{-1} \frac{3}{4}\right) \left[\because 0.75 = \frac{75}{100} = \frac{3}{4}\right]$$

$$= \sin \left(\sin^{-1} \frac{2 \cdot \frac{3}{4}}{1 + \frac{9}{16}} \right) = \sin \left[\sin^{-1} \frac{3/2}{25/16} \right]$$

$$= \sin \left[\sin^{-1} \left(\frac{48}{50} \right) \right] = \sin \left[\sin^{-1} \left(\frac{24}{25} \right) \right] = \frac{24}{25} = 0.96$$

28. The value of
$$\cos^{-1} \left(\cos \frac{3\pi}{2} \right)$$
 is equal to

(A)
$$\frac{\pi}{2}$$

(B)
$$\frac{3\pi}{2}$$

(c)
$$\frac{5\pi}{2}$$

(D)
$$\frac{7\pi}{2}$$

Sol. (A) We have,
$$\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$$

$$= \cos^{-1} \cos \left(2\pi - \frac{\pi}{2}\right) \left[\because \cos \left(2\pi - \frac{\pi}{2}\right) = \cos \frac{\pi}{2} \right]$$
$$= \cos^{-1} \cos \left(\frac{\pi}{2}\right) = \frac{\pi}{2} \qquad \left\{ \because \cos^{-1} \left(\cos x\right) = x, x \in [0, \pi] \right\}$$

Note Remember that,
$$\cos^{-1} \left(\cos \frac{3\pi}{2} \right) \neq \frac{3\pi}{2}$$

$$\because \frac{3\pi}{2} \notin (0,\pi)$$

29. The value of the expression
$$2 \sec^{-1} 2 + \sin^{-1} \left(\frac{1}{2}\right) is$$

(A)
$$\frac{\pi}{6}$$

(B)
$$\frac{5\pi}{6}$$

(C)
$$\frac{7\pi}{6}$$

Sol. (B) We have,
$$2\sec^{-1} 2 + \sin^{-1} \left(\frac{1}{2}\right) = 2\sec^{-1} \sec \frac{\pi}{3} + \sin^{-1} \sin \frac{\pi}{6}$$

$$= 2.\frac{\pi}{3} + \frac{\pi}{6} \qquad \left[\because \sec^{-1}(\sec x) = x \text{ and } \sin^{-1}(\sin x) = x \right]$$
$$= \frac{4\pi + \pi}{6} = \frac{5\pi}{6}$$

30. If
$$\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$$
, then $\cot^{-1} x + \cot^{-1} y$ equals to

(A)
$$\frac{\pi}{5}$$

(B)
$$\frac{2\pi}{5}$$

(c)
$$\frac{3\pi}{5}$$

Sol. (A) We have,
$$\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$$
,

$$\Rightarrow \frac{\pi}{2} - \cot^{-1} x + \frac{\pi}{2} - \cot^{-1} y = \frac{4\pi}{5}$$

$$\Rightarrow -(\cot^{-1} x + \cot^{-1} y) = \frac{4\pi}{5} - \pi \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$$

$$\Rightarrow$$
 cot⁻¹ $x + \cot^{-1} y = -\left(-\frac{\pi}{5}\right)$

$$\Rightarrow$$
 cot⁻¹ $x +$ cot⁻¹ $y = \frac{\pi}{5}$

31. If
$$\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$$
, where $a, x \in [0,1]$ then the value

of x is

(B)
$$\frac{a}{2}$$

(D)
$$\frac{2a}{1-a^2}$$

Sol. (D) We have,
$$\sin^{-1} \left(\frac{2a}{1+a^2} \right) + \cos^{-1} \left(\frac{1-a^2}{1+a^2} \right) = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$$

Let
$$a = \tan \theta \Rightarrow \theta = \tan^{-1} a$$

$$\therefore \sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right) + \cos^{-1}\left(\frac{1-\tan^2\theta}{1+\tan^2\theta}\right) = \tan^{-1}\frac{2x}{1-x^2}$$

$$\Rightarrow \sin^{-1}\sin 2\theta + \cos^{-1}\cos 2\theta = \tan^{-1}\frac{2x}{1-x^2}$$

$$\Rightarrow 2\theta + 2\theta = \tan^{-1} \frac{2x}{1 - x^2}$$

$$\Rightarrow 4 \tan^{-1} a = \tan^{-1} \frac{2x}{1 - x^2}$$

$$\Rightarrow 2.2 \tan^{-1} a = \tan^{-1} \frac{2x}{1 - x^2}$$

$$\Rightarrow 2.\tan^{-1}\frac{2a}{1-a^2} = \tan^{-1}\frac{2x}{1-x^2} \left[\because 2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2} \right]$$

$$\Rightarrow \tan^{-1} \frac{2 \cdot \left(\frac{2a}{1-a^2}\right)}{1 - \left(\frac{2a}{1-a^2}\right)} = \tan^{-1} \left(\frac{2x}{1-x^2}\right)$$

$$\therefore x = \frac{2a}{1 - a^2}$$

32. The value of $\cot \left[\cos^{-1}\left(\frac{7}{25}\right)\right]$ is

(a)
$$\frac{25}{24}$$

(b)
$$\frac{25}{7}$$

(c)
$$\frac{24}{25}$$

(d)
$$\frac{7}{24}$$

Sol. (d) We have, $\cot \left[\cos^{-1} \left(\frac{7}{25} \right) \right]$

Let
$$\cos^{-1} \frac{7}{25} = x$$

$$\Rightarrow \cos x = \frac{7}{25}$$

$$\therefore \sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \left(\frac{7}{25}\right)^2}$$

$$=\sqrt{\frac{625-49}{625}}=\frac{24}{25}$$

$$\therefore \cot x = \frac{\cos x}{\sin x} = \frac{\frac{7}{25}}{\frac{24}{25}} = \frac{7}{24}$$

$$\Rightarrow x = \cot^{-1}\left(\frac{7}{24}\right) = \cos^{-1}\left(\frac{7}{25}\right)$$

$$\therefore \cot\left(\cos^{-1}\frac{7}{25}\right) = \cot\left(\cot^{-1}\frac{7}{24}\right) = \frac{7}{24} \quad \left[\because \cot^{-1}\frac{7}{24} = \cos^{-1}\frac{7}{25}\right]$$

33. The value of the expression
$$\tan\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right)$$
 is

(a)
$$2+\sqrt{5}$$

(b)
$$\sqrt{5} - 2$$

(c)
$$\frac{\sqrt{5}+2}{2}$$

(d)
$$5 + \sqrt{2}$$

Sol. (b) We have,
$$\tan\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right)$$

$$\Rightarrow Let \quad \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}} = \theta$$

$$\Rightarrow \cos^{-1}\frac{2}{\sqrt{5}} = 2\theta \Rightarrow \cos 2\theta = \frac{2}{\sqrt{5}}$$

$$\therefore \left(1 - 2\sin^2\theta\right) = \frac{2}{\sqrt{5}}$$

$$\Rightarrow 2\sin^2\theta = 1 - \frac{2}{\sqrt{5}}$$

$$\Rightarrow \sin^2 \theta = \frac{1}{2} - \frac{1}{\sqrt{5}}$$

$$\Rightarrow \sin \theta = \sqrt{\frac{1}{2} - \frac{1}{\sqrt{5}}}$$

$$\therefore \cos^2\theta = 1 - \sin^2\theta$$

$$=1-\frac{1}{2}+\frac{1}{\sqrt{5}}=\frac{1}{2}+\frac{1}{\sqrt{5}}$$

$$\Rightarrow \cos \theta = \sqrt{\frac{1}{2} + \frac{1}{\sqrt{5}}}$$

$$\therefore \tan \theta = \sqrt{\frac{\frac{1}{2} - \frac{1}{\sqrt{5}}}{\frac{1}{2} + \frac{1}{\sqrt{5}}}} = \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}} \quad \left[\because \tan \theta = \frac{\sin \theta}{\cos \theta} \right]$$

$$\Rightarrow \theta = \tan^{-1} \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}} = \frac{1}{2} \cos^{-1} \frac{2}{\sqrt{5}}$$

$$\therefore \tan\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right) = \tan\tan^{-1}\sqrt{\frac{\sqrt{5}-2}{\sqrt{5}+2}}$$

$$= \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2} \cdot \frac{\sqrt{5 - 2}}{\sqrt{5} - 2}}$$

$$=\sqrt{\frac{\left(\sqrt{5}-2\right)^2}{5-4}}=\sqrt{5}-2$$

- **34.** If $|\mathbf{x}| \le 1$, then $2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1 + x^2} \right)$ is equal to
 - (a) $4 \tan^{-1} x$
 - (b) 0
 - (c) $\frac{\pi}{2}$
 - (d) π
- Sol. (a) We have, $2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1+x^2} \right)$

Let $x = \tan \theta$

$$\therefore 2 \tan^{-1} \tan \theta + \sin^{-1} \frac{2 \tan \theta}{1 + \tan^2 \theta} \left[\because \tan^{-1} (\tan x) = x \right]$$

$$= 2\theta + \sin^{-1}\sin 2\theta \left[\because \sin 2\theta = \frac{2\tan \theta}{1 + \tan^2 \theta} \right]$$

$$=2\theta+2\theta\left[\because\sin^{-1}(\sin x)=x\right]$$

$$=4\theta\left[\because \theta=\tan^{-1}x\right]$$

$$= 4 \tan^{-1} x$$

35. If $\cos^{-1}\alpha + \cos^{-1}\beta + \cos^{-1}\gamma = 3\pi$, then $\alpha(\beta + \gamma) + \beta(\gamma + \alpha) + \gamma(\alpha + \beta)$

equals

- (A) 0
- (B) 1
- (C) 6
- (D) 12
- Sol. (C) We have $\cos^{-1}\alpha + \cos^{-1}\beta + \cos^{-1}\gamma = 3\pi$,

We know that, $0 \le \cos^{-1} x \le \pi$

$$\Rightarrow \cos^{-1}\alpha + \cos^{-1}\beta + \cos^{-1}\gamma = 3\pi$$

If and only if, $\cos^{-1}\alpha = \cos^{-1}\beta = \cos^{-1}\gamma = \pi$

$$\Rightarrow \cos \pi = \alpha = \beta = \gamma$$

$$\Rightarrow$$
 $-1 = \alpha = \beta = \gamma$

$$\Rightarrow \alpha = \beta = \gamma = -1$$

$$\therefore \qquad \alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)$$

$$=-1(-1-1)-1(1-1)-1(-1-1)$$

$$= 2 + 2 + 2 = 6$$

36. The number of real Solution of the equation

$$\sqrt{1+\cos 2x} = \sqrt{2}\cos^{-1}(\cos x)in\left[\frac{\pi}{2},\pi\right]$$
 is

- (A) 0
- (B) 1
- (C) 2
- **(D)** ∞

Sol. (a) We have,
$$\sqrt{1 + \cos 2x} = \sqrt{2} \cos^{-1} (\cos x), \left[\frac{\pi}{2}, \pi \right]$$

$$\Rightarrow \sqrt{1 + 2\cos^2 x - 1} = \sqrt{2}\cos^{-1}(\cos x)$$

$$\Rightarrow \sqrt{2}\cos = \sqrt{2}\cos^{-1}(\cos x)$$

$$\Rightarrow \cos x = \cos^{-1}(\cos x)$$

$$\Rightarrow \cos x = x$$
 $\left[\because \cos^{-1}(\cos x) = x\right]$

Which is not true for any real value of x.

Hence, there is no solution possible for the given equation.

37. If $\cos^{-1} x > \sin^{-1} x$, then

(a)
$$\frac{1}{\sqrt{2}} < x \le 1$$

(b)
$$0 \le x < \frac{1}{\sqrt{2}}$$

(c)
$$-1 \le x < \frac{1}{\sqrt{2}}$$

(d)
$$x > 0$$

Sol. (c) We have,
$$\cos^{-1} x > \sin^{-1} x$$
 where $x \in [-1,1]$

$$\Rightarrow x < \cos(\sin^{-1} x)$$

$$\Rightarrow x < \cos\left[\cos^{-1}\sqrt{1-x^2}\right] \quad \left[let \sin^{-1} x = \theta \Rightarrow \sin \theta = \frac{x}{1}\right]$$

$$\left[\because \cos\theta = \sqrt{1 - \sin^2\theta} = \sqrt{1 - x^2} \Rightarrow \theta = \cos^{-1}\sqrt{1 - x^2}\right]$$

$$\Rightarrow x < \sqrt{1-x^2}$$

$$\Rightarrow x^2 < 1 - x^2 \Rightarrow 2x^2 < 1$$

$$\Rightarrow x^2 < \frac{1}{2} \Rightarrow x < \pm \left(\frac{1}{\sqrt{2}}\right) \dots (i)$$

Also
$$-1 \le x \le 1$$
 ...(ii)

Alternate Method

$$\frac{\pi}{2} - \sin^{-1} x > \sin^{-1} x$$

$$\frac{\pi}{2} > 2\sin^{-1}x \Longrightarrow \frac{\pi}{4} > \sin^{-1}x$$

$$\frac{1}{\sqrt{2}} > x \Rightarrow \frac{1}{\sqrt{2}} < x \le 1$$

We know that, $\sin^{-1} x \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$

Fill in the blanks in each of the Exercises 38 to 48.

38. The principal value of
$$\cos^{-1}\left(-\frac{1}{2}\right)$$
 is_____.

Sol.
$$:: 0 \le \cos^{-1} x \le \pi$$

$$\cos^{-1}\left(-\frac{1}{2}\right) = \cos^{-1}\left(\cos\frac{2\pi}{3}\right) = \frac{2\pi}{3}$$

39. The value of
$$\sin^{-1} \left(\sin \frac{3\pi}{5} \right)$$
 is

Sol.
$$\because -\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$$

$$\therefore \sin^{-1}\left(\sin\frac{3\pi}{5}\right) = \sin^{-1}\sin\left(\pi - \frac{2\pi}{5}\right)$$

$$=\sin^{-1}\left(\sin\frac{2\pi}{5}\right)=\frac{2\pi}{5}$$

40. If
$$\cos(\tan^{-1} x + \cot^{-1} \sqrt{3}) = 0$$
, then the value of x is

Sol. We have,
$$\cos(\tan^{-1} x + \cot^{-1} \sqrt{3}) = 0$$

$$\Rightarrow \tan^{-1} x + \cot^{-1} \sqrt{3} = \cos^{-1} 0$$

$$\Rightarrow \tan^{-1} x + \cot^{-1} \sqrt{3} = \cos^{-1} \cos \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} x + \cot^{-1} \sqrt{3} = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{2} - \cot^{-1} \sqrt{3}$$

$$\Rightarrow \tan^{-1} x = \tan^{-1} \sqrt{3} \quad \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$$

$$\therefore x = \sqrt{3}$$

41. The set of values of
$$\sec^{-1} \frac{1}{2}$$
 is_____.

Sol. Since, domain of
$$\sec^{-1} \frac{1}{2}$$
 is $R - (-1,1)$

$$\Rightarrow (-\infty, -1) \cup [1, \infty)$$

So, there is no set of values exist for $\sec^{-1}\frac{1}{2}$.

So, ϕ is the answer.

42. The principal value of $tan^{-1}\sqrt{3}$ is_____.

43. The value of $\cos^{-1} \left(\cos \frac{14\pi}{3} \right)$ is_____.

Sol. We have
$$\cos^{-1}\left(\cos\frac{14\pi}{3}\right) = \cos^{-1}\cos\left(4\pi + \frac{2\pi}{3}\right)$$
$$= \cos^{-1}\cos\frac{2\pi}{3}\left[\because\cos\left(2n\pi + \pi\right) = \cos\theta\right]$$
$$= \frac{2\pi}{3}\left\{\because\cos^{-1}\left(\cos x\right) = x, x \in [0, \pi]\right\}$$

Note Remember that, $\cos^{-1} \left(\cos \frac{14\pi}{3} \right) \neq \frac{14\pi}{3}$

Since, $\frac{14\pi}{3} \notin [0,\pi]$

44. The value of $cos(sin^{-1}x + cos^{-1}x)$, where $|x| \le 1$, is

Sol.
$$\cos(\sin^{-1} x + \cos^{-1})$$

= $\cos\frac{\pi}{2} = 0$ $\left[\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}\right]$

45. The value of $\tan \left(\frac{\sin^{-1} x + \cos^{-1} x}{2} \right)$, when $x = \frac{\sqrt{3}}{2}$, is

Sol.
$$\therefore \tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right) = \tan\left(\frac{\pi/2}{2}\right) \left[\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right]$$
$$= \tan\frac{\pi}{4} = 1$$

46. If $y = 2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1+x^2} \right)$, then < y <

Sol. We have,
$$y = 2 \tan^{-1} x + \sin^{-1} \frac{2x}{1+x^2}$$

$$\therefore y = 2 \tan^{-1} \tan \theta + \sin^{-1} \frac{2 \tan \theta}{1 + \tan^{2} \theta} \left[let \ x = \tan \theta \right]$$

$$\Rightarrow y = 2\theta + \sin^{-1} \sin 2\theta \left[\because \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^{2} \theta} \right]$$

$$\Rightarrow y = 2\theta + 2\theta = 4\theta \left[\because \theta = \tan^{-1} x \right]$$

$$\Rightarrow y = 4 \tan^{-1} x$$

$$\because -\pi/2 < \tan^{-1} x < 4\pi/2$$

$$\therefore -\frac{4\pi}{2} < 4 \tan^{-1} x < 2\pi$$

$$\Rightarrow -2\pi < 4 \tan^{-1} x < 2\pi$$

$$\Rightarrow -2\pi < y < 2\pi$$

$$\Rightarrow -2\pi < y < 2\pi$$

$$\because y = 4 \tan^{-1} x$$

- 47. The result $\tan^{-1} x \tan^{-1} y = \tan^{-1} \left(\frac{x y}{1 + xy} \right)$ is true when value of xy is ____
- Sol. We know that $\tan^{-1} x \tan^{-1} y = \tan^{-1} \left(\frac{x y}{1 + xy} \right)$ Where, xy > -1
- **48.** The value of $\cot^{-1}(-x)x \in R$ in terms of $\cot^{-1}x$ is
- Sol. We know that $\cot^{-1}(-x) = \pi \cot^{-1} x, x \in R$

State True or False for the statement in each of the Exercises 49 to 55.

- 49. All trigonometric functions have inverse over their respective domains.
- Sol. False
 We know that, all trigonometric functions have inverse over their restricted domains.
- **50.** The value of the expression $(\cos^{-1} x)^2$ is equal to $\sec^2 x$.
- Sol. False

$$\therefore \left[\cos^{-1} x\right]^2 = \left[\sec^{-1} \frac{1}{x}\right]^2 \neq \sec^2 x$$

- 51. The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
- Sol. True

 We know that, the domain of trigonometric functions are restricted in their domain to obtain their inverse functions.
- 52. The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
- **Sol.** True

We know that, the smallest numerical value, either positive or negative of θ is called the principal value of the function.

- 53. The graph of inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging x and y-axes.
- Sol. True

We know that, the graph of an inverse function can be obtained from the corresponding graph of original function as a mirror image (i.e. reflection) along the line y=x.

- 54. The minimum value of n for which $\tan^{-1} \frac{n}{\pi} > \frac{\pi}{4}$, $n \in \mathbb{N}$ is valid is 5.
- **Sol.** False

So, the minimum value of n is 4. $[\because n \in N \text{ and } \pi = 3.14.....]$

- **55.** The principal value of $\sin^{-1} \left[\cos \left(\sin^{-1} \frac{1}{2} \right) \right]$ is $\frac{\pi}{3}$.
- Sol. True

Given that,
$$\sin^{-1} \left[\cos \left(\sin^{-1} \frac{1}{2} \right) \right] = \sin^{-1} \left[\cos \sin^{-1} \left(\sin \frac{\pi}{6} \right) \right]$$

$$= \sin^{-1} \left[\cos \frac{\pi}{6} \right] \quad \left[\because \sin^{-1} \left(\sin x \right) = x \right]$$

$$= \sin^{-1} \frac{\sqrt{3}}{2}$$

$$= \sin^{-1} \sin \frac{\pi}{3} = \frac{\pi}{3}$$

Inverse Trigonometric Functions <u>Short Answer Type Questions</u>

1. Find the value of
$$\tan^{-1} \left(\tan \frac{5\pi}{6} \right) + \cos^{-1} \left(\cos \frac{13\pi}{6} \right)$$

Sol. We know that,
$$\tan^{-1} \tan x = x; x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\cos^{-1} \cos x = x; x \in \left[0, \pi\right]$

$$\therefore \tan^{-1}\left(\tan\frac{5\pi}{6}\right) + \cos^{-1}\left(\cos\frac{13\pi}{6}\right)$$

$$= \tan^{-1}\left[\tan\left(\pi - \frac{\pi}{6}\right)\right] + \cos^{-1}\left[\cos\left(\pi + \frac{7\pi}{6}\right)\right]$$

$$= \tan^{-1}\left(\tan\frac{\pi}{6}\right) + \cos^{-1}\left(-\cos\frac{7\pi}{6}\right)\left[\because\cos\left(\pi + \theta\right) = -\cos\theta\right]$$

$$= -\tan^{-1}\left(\tan\frac{\pi}{6}\right) + \pi - \left[\cos^{-1}\cos\left(\frac{7\pi}{6}\right)\right]$$

$$\{\because \tan^{-1}(-x) = -\tan^{-1}x; x \in R \text{ and } \cos^{-1}(-x) = \pi - \cos^{-1}x; x \in [-1,1] \}$$

$$= -\tan^{-1}\left(\tan\frac{\pi}{6}\right) + \pi - \cos^{-1}\left[\cos\left(\pi + \frac{\pi}{6}\right)\right]$$

$$= -\tan^{-1}\left(\tan\frac{\pi}{6}\right) + \pi - \cos^{-1}\left[\cos\left(\pi + \frac{\pi}{6}\right)\right]$$

$$= -\tan^{-1}\left(\tan\frac{\pi}{6}\right) + \pi - \left[\cos^{-1}\left(-\cos\frac{\pi}{6}\right)\right]\left[\because\cos(\pi + \theta) = -\cos\theta\right]$$

$$= -\tan^{-1}\left(\tan\frac{\pi}{6}\right) + \pi - \pi + \cos^{-1}\left(\cos\frac{\pi}{6}\right) \left[\because \cos^{-1}(-x) = \pi - \cos^{-1}x\right]$$

$$=-\frac{\pi}{6}+0+\frac{\pi}{6}=0$$

Note Remember that,
$$\tan^{-1} \left(\tan \frac{5\pi}{6} \right) \neq \frac{5\pi}{6}$$
 and $\cos^{-1} \left(\cos \frac{13\pi}{6} \right) \neq \frac{13\pi}{6}$

Since,
$$\frac{5\pi}{6} \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and $\frac{13\pi}{6} \notin \left[0, \pi\right]$

2. Evaluate
$$\cos \left[\cos^{-1} \left(\frac{-\sqrt{3}}{2} \right) + \frac{\pi}{6} \right]$$

Sol. We have,
$$\cos \left[\cos^{-1} \left(\frac{-\sqrt{3}}{2} \right) + \frac{\pi}{6} \right]$$

$$=\cos\left[\cos^{-1}\left(\cos\frac{5\pi}{6}\right)+\frac{\pi}{6}\right] \left[\because \cos\frac{5\pi}{6}=\frac{-\sqrt{3}}{2}\right]$$

$$=\cos\left(\frac{5\pi}{6} + \frac{\pi}{6}\right) \left\{\because \cos^{-1}\cos x = x; x \in [0,\pi]\right\}$$

$$= \cos\left(\frac{6\pi}{6}\right)$$
$$= \cos(\pi) = -1$$

3. Prove that
$$\cot \left(\frac{\pi}{4} - 2 \cot^{-1} 3 \right) = 7$$
.

Sol. We have to prove,
$$\cot\left(\frac{\pi}{4} - 2\cot^{-1}3\right) = 7$$

$$\Rightarrow \left(\frac{\pi}{4} - 2\cot^{-1}3\right) = \cot^{-1}7$$

$$\Rightarrow (2\cot^{-1}3) = \frac{\pi}{4} - \cot^{-1}7$$

$$\Rightarrow 2 \tan^{-1} \frac{1}{3} = \frac{\pi}{4} - \tan^{-1} \frac{1}{7}$$

$$\Rightarrow 2\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{2/3}{1+(1/3)^2} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{2/3}{8/9} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{7} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{(21+4)/28}{(28-3)/28} = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1}\frac{25}{25} = \frac{\pi}{4}$$

$$\Rightarrow 1 = \tan \frac{\pi}{4}$$

$$1 = 1$$

4. Find the value of
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left[\sin\left(\frac{-\pi}{2}\right)\right]$$
.

Sol. We have,
$$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) + \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left[\sin\left(-\frac{\pi}{2}\right)\right]$$
.

$$= \tan^{-1}\left(\tan\frac{5\pi}{6}\right) + \cot^{-1}\left(\cot\frac{\pi}{3}\right) + \tan^{-1}\left(-1\right).$$

$$= \tan^{-1} \left[\tan \left(\pi - \frac{\pi}{6} \right) \right] + \cot^{-1} \left[\cot \left(\frac{\pi}{3} \right) \right] + \tan^{-1} \left[\tan \left(\pi - \frac{\pi}{4} \right) \right]$$

$$= \tan^{-1} \left(-\tan \frac{\pi}{6} \right) + \cot^{-1} \left(\cot \frac{\pi}{3} \right) + \tan^{-1} \left(-\tan \frac{\pi}{4} \right)$$

$$\therefore \tan^{-1} \left(\tan x \right) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right),$$

$$\cot^{-1} \left(\cot x \right) = x, x \in \left(0, \pi \right)$$

$$and \tan^{-1} \left(-x \right) = -\tan^{-1} x$$

$$= -\frac{\pi}{6} + \frac{\pi}{3} - \frac{\pi}{4} = \frac{-2\pi + 4\pi - 3\pi}{12}$$

$$= \frac{-5\pi + 4\pi}{12} = \frac{-\pi}{12}$$

5. Find the value of $\tan^{-1} \left(\tan \frac{2\pi}{3} \right)$.

Sol. We have,
$$\tan^{-1}\left(\tan\frac{2\pi}{3}\right) = \tan^{-1}\tan\left(\pi - \frac{\pi}{3}\right)$$

$$= \tan^{-1}\left(-\tan\frac{\pi}{3}\right) \qquad \left[\because \tan^{-1}\left(-x\right) = -\tan^{-1}x\right]$$

$$= \tan^{-1}\tan\frac{\pi}{3} = -\frac{\pi}{3} \qquad \left[\because \tan^{-1}\left(\tan x\right) = x, x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right]$$

Note Remember that, $\tan^{-1} \left(\tan \frac{2\pi}{3} \right) \neq \frac{2\pi}{3}$

Since, $\tan^{-1}(\tan x) = x$, if $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\frac{2\pi}{3} \notin \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

6. Show that $2 \tan^{-1}(-3) = \frac{-\pi}{2} + \tan^{-1}(\frac{-4}{3})$

Sol.
$$LHS = 2 \tan^{-1}(-3) = -2 \tan^{-1} 3 \quad \left[\because \tan^{-1}(-x) = -\tan^{-1} x, x \in R\right]$$

 $= -\left[\cos^{-1}\frac{1-3^2}{1+3^2}\right] \quad \left[\because 2 \tan^{-1} x = \cos^{-1}\frac{1-x^2}{1+x^2}x \ge 0\right]$
 $= -\left[\cos^{-1}\left(\frac{-8}{10}\right)\right] = -\left[\cos^{-1}\left(\frac{-4}{5}\right)\right]$
 $= -\left[\pi - \cos^{-1}\left(\frac{4}{5}\right)\right] \left\{\because \cos^{-1}(-x) = \pi - \cos^{-1} x, x \in [-1,1]\right\}$
 $= -\pi + \cos^{-1}\left(\frac{4}{5}\right)\left[\operatorname{let}\cos^{-1}\left(\frac{4}{5}\right) = \theta \Rightarrow \cos\theta = \frac{4}{5} \Rightarrow \tan\theta = \frac{3}{4} \Rightarrow \theta = \tan^{-1}\frac{3}{4}\right]$

$$= -\pi + \tan^{-1}\left(\frac{3}{4}\right) = -\pi + \left[\frac{\pi}{2} - \cot^{-1}\left(\frac{3}{4}\right)\right]$$

$$= -\frac{\pi}{2} - \cot^{-1}\frac{3}{4} = -\frac{\pi}{2} - \tan^{-1}\frac{4}{3}$$

$$= -\frac{\pi}{2} + \tan^{-1}\left(\frac{-4}{3}\right) \quad \left[\because \tan^{-1}(-x) = -\tan^{-1}x\right]$$
= RHS (Hence Proved)

7. Find the real Solution of the equation

$$\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + x} = \frac{\pi}{2}$$

Sol. We have,
$$\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{2}$$
 ...(i)
Let $\sin^{-1} \sqrt{x^2 + x + 1} = \theta$

$$\sqrt{-x^2 + x + 1}$$

$$\Rightarrow \sin \theta \sqrt{\frac{x^2 + x + 1}{1}}$$

$$\Rightarrow \tan \theta = \frac{\sqrt{x^2 + x + 1}}{\sqrt{-x^2 - x}}$$

$$\because \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\because \theta = \tan^{-1} \frac{\sqrt{x^2 + x + 1}}{\sqrt{-x^2 - x}}$$

$$= \sin^{-1} \sqrt{x^2 + x + 1}$$

On putting the value of θ in Eq. (i), we get

$$\tan^{-1} \sqrt{x(x+1)} + \tan^{-1} \frac{\sqrt{x^2 + x + 1}}{\sqrt{-x^2 - x}} = \frac{\pi}{2}$$

We know that, $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$, xy < 1

$$\therefore \tan^{-1} \left[\frac{\sqrt{x(x+1)}\sqrt{\frac{x^2+x+1}{-x^2-x}}}{1-\sqrt{x(x+1)}\sqrt{\frac{x^2+x+1}{-x^2-x}}} \right] = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} \left[\frac{\sqrt{x^2 + x} \sqrt{\frac{x^2 + x + 1}{-1(x^2 + x)}}}{1 - (\sqrt{x^2 + x}) \cdot \frac{(x^2 + x + 1)}{-1(x^2 + x)}} \right] = \frac{\pi}{2}$$

$$\Rightarrow \frac{x^2 + x + \sqrt{-(x^2 + x + 1)}}{\left[1 - \sqrt{-(x^2 + x + 1)} \sqrt{(x^2 + x)} \right]} = \tan \frac{\pi}{2} = \frac{1}{0}$$

$$\Rightarrow \left[1 - \sqrt{-(x^2 + x + 1)} \right] \sqrt{(x^2 + x)} = 0$$

$$\Rightarrow -(x^2 + x + 1) = 1 \text{ or } x^2 + x = 0$$

$$\Rightarrow -x^2 - x - 1 = 1 \text{ or } x(x + 1) = 0$$

$$\Rightarrow x^2 + x + 2 = 0 \text{ or } x(x + 1) = 0$$

$$\therefore x = \frac{-1 \pm \sqrt{1 - 4 \times 2}}{2}$$

$$\Rightarrow x = 0 \text{ or } x = -1$$
For real solution, we have $x = 0, -1$.

Find the value of $\sin \left(2 \tan^{-1} \frac{1}{3} \right) + \cos \left(\tan^{-1} 2\sqrt{2} \right)$
We have, $\sin \left(2 \tan^{-1} \frac{1}{3} \right) + \cos \left(\tan^{-1} 2\sqrt{2} \right)$

$$= \sin \left[\sin^{-1} \left\{ \frac{2 \times \frac{1}{3}}{(1)^2} \right\} \right] + \cos \left(\cos^{-1} \frac{1}{3} \right) \quad \because \tan^{-1} x = \cos^{-1} x = \cos^{-1}$$

8.

Sol. We have,
$$\sin\left(2\tan^{-1}\frac{1}{3}\right) + \cos\left(\tan^{-1}2\sqrt{2}\right)$$

$$= \sin\left[\sin^{-1}\left\{\frac{2\times\frac{1}{3}}{1+\left(\frac{1}{3}\right)^{2}}\right\}\right] + \cos\left(\cos^{-1}\frac{1}{3}\right) \left[\because \tan^{-1}x = \cos^{-1}\frac{1}{\sqrt{1+x^{2}}}\right]$$

$$\left[\because 2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^{2}}, -1 \le x \le 1 \text{ and } \tan^{-1}\left(2\sqrt{2}\right) = \cos^{-1}\frac{1}{3}\right]$$

$$= \sin\left[\sin^{-1}\left(\frac{2}{3}\right)\right] + \frac{1}{3} \left\{\because \cos\left(\cos^{-1}x\right) = x; x \in [-1,1]\right\}$$

$$= \sin\left[\sin^{-1}\left(\frac{2\times9}{3\times10}\right)\right] + \frac{1}{3} = \sin\left[\sin^{-1}\left(\frac{3}{5}\right)\right] + \frac{1}{3} \left[\because \sin\left(\sin^{-1}x = x\right)\right]$$

$$= \frac{3}{5} + \frac{1}{3} = \frac{9+5}{15} = \frac{14}{15}$$

9. If
$$2\tan^{-1}(\cos\theta) = \tan^{-1}(2\cos ec\theta)$$
, then show that $\theta = \frac{\pi}{4}$, where n is any integer.

Sol. We have,
$$2 \tan^{-1} (\cos \theta) = \tan^{-1} (2 \cos ec\theta)$$
,

$$\Rightarrow \tan^{-1}\left(\frac{2\cos\theta}{1-\cos^2\theta}\right) = \tan^{-1}\left(2\cos ec \theta\right)$$

$$\left[\because 2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) \right]$$

$$\Rightarrow \left(\frac{2\cos\theta}{\sin^2\theta}\right) = \left(2\cos ec\,\theta\right)$$

$$\Rightarrow$$
 $(\cot \theta. 2 \cos ec\theta) = (2 \cos ec\theta) \Rightarrow \cot \theta = 1$

$$\Rightarrow \cot \theta = \cot \frac{\pi}{4} \Rightarrow \theta = \frac{\pi}{4}$$

10. Show that
$$\cos\left(2\tan^{-1}\frac{1}{7}\right) = \sin\left(4\tan^{-1}\frac{1}{3}\right)$$

Sol. We have,
$$\cos \left(2 \tan^{-1} \frac{1}{7} \right) = \sin \left(4 \tan^{-1} \frac{1}{3} \right)$$

$$\Rightarrow \cos \left[\cos^{-1} \left(\frac{1 - \left(\frac{1}{7} \right)^2}{1 + \left(\frac{1}{7} \right)^2} \right) \right] = \sin \left(2.2 \tan^{-1} \frac{1}{3} \right) \quad \left[\because 2 \tan^{-1} x = \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right]$$

$$\Rightarrow \cos \left[\cos^{-1} \left(\frac{\frac{48}{49}}{\frac{50}{49}} \right) \right] = \sin \left[2 \cdot \left(\tan^{-1} \frac{\frac{2}{3}}{1 - \left(\frac{1}{3} \right)^2} \right) \right] \left[\because 2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) \right]$$

$$\Rightarrow \cos \left[\cos^{-1}\left(\frac{48\times49}{50\times49}\right)\right] = \sin \left[2\tan^{-1}\left(\frac{18}{24}\right)\right]$$

$$\Rightarrow \cos \left[\cos^{-1}\left(\frac{24}{25}\right)\right] = \sin \left(2\tan^{-1}\frac{3}{4}\right)$$

$$\Rightarrow \cos\left[\cos^{-1}\left(\frac{24}{25}\right)\right] = \sin\left[\sin^{-1}\frac{2\times\frac{3}{4}}{1+\frac{9}{16}}\right] \left[\because 2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2}\right]$$

$$\Rightarrow \frac{24}{25} = \sin\left(\sin^{-1}\frac{3/2}{25/16}\right)$$

$$\frac{25}{24} = \frac{48}{50} \Rightarrow \frac{24}{25} = \frac{24}{25}$$

$$\therefore$$
 LHS = RHS (Hence proved)

11. Solve the following equation $\cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4})$.

Sol. We have,
$$\cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4})$$
.

$$\Rightarrow \cos\left(\cos^{-1}\frac{1}{\sqrt{x^2+1}}\right) = \sin\left(\sin^{-1}\frac{4}{5}\right)$$

Let
$$\tan^{-1} x = \theta_1$$
 $\Rightarrow \tan \theta_1 = \frac{x}{1}$

$$\Rightarrow \cos \theta_1 = \frac{1}{\sqrt{x^2 + 1}} \Rightarrow \theta_1 = \cos^{-1} \frac{1}{\sqrt{x^2 + 1}}$$

And
$$\cot^{-1} \frac{3}{4} = \theta_2 \implies \cot \theta_2 = \frac{3}{4}$$

$$\Rightarrow \sin \theta_2 = \frac{4}{5} \Rightarrow \theta_2 = \sin^{-1} \frac{4}{5}$$

$$\Rightarrow \frac{1}{\sqrt{x^2+1}} = \frac{4}{5}$$

$$\{\because \cos(\cos^{-1}x) = x, x \in [-1,1] \text{ and } \sin(\sin^{-1}x) = x, x \in [-1,1]\}$$

On squaring both sides, we get

$$\Rightarrow 16(x^2+1) = 25$$

$$\Rightarrow 16x^2 = 9$$

$$\Rightarrow x^2 = \left(\frac{3}{4}\right)^2$$

$$\therefore x = \pm \frac{3}{4} = \frac{-3}{4}, \frac{3}{4}$$

Inverse Trigonometric Functions <u>Long Answer Type Questions</u>

12. Prove that
$$\tan^{-1} \left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{-1} x^2$$
.

Sol. We have.

Find the simplified form of

= RHS Hence proved.

13.

$$\cos^{-1}\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right), \text{ where } x \in \left[\frac{-3\pi}{4}, \frac{\pi}{4}\right]$$
$$\cos^{-1}\left(\frac{3}{5}\cos x + \frac{4}{5}\sin x\right), x \in \left[\frac{-3\pi}{4}, \frac{\pi}{4}\right]$$

Let
$$\cos y = \frac{3}{5}$$

$$\Rightarrow \sin y = \frac{4}{5}$$

$$\Rightarrow y = \cos^{-1} \frac{3}{5} = \sin^{-1} \frac{4}{5} = \tan^{-1} \left(\frac{4}{3}\right)$$

 $\therefore \cos^{-1} [\cos y \cdot \cos x + \sin y \cdot \sin x]$

$$= \cos^{-1} \left[\cos \left(y - x \right) \right] \quad [\because \cos(A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B]$$

$$= y - x = \tan^{-1} \frac{4}{3} - x \quad \left[\because y = \tan^{-1} \frac{4}{3} \right]$$

14. Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{77}{85}$.

Sol. We have,
$$\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{77}{85}$$
.

$$\therefore LHS = \sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5}$$

$$= \tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$$

Let
$$\sin^{-1}\frac{8}{17} = \theta_1 \Rightarrow \sin \theta_1 = \frac{8}{17}$$

$$\Rightarrow \tan \theta_1 = \frac{8}{15} \Rightarrow \theta_1 = \tan^{-1} \frac{8}{15}$$

And
$$\sin^{-1}\frac{3}{5} = \theta_2 \Rightarrow \sin\theta_2 = \frac{3}{5}$$

$$\Rightarrow \tan \theta_2 = \frac{3}{4} \Rightarrow \theta_2 = \tan^{-1} \frac{3}{4}$$

$$= \tan^{-1} \left[\frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}} \right] \left[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x + y}{1 - xy} \right) \right]$$

$$= \tan^{-1} \left[\frac{\frac{32+45}{60}}{\frac{60-24}{60}} \right] = \tan^{-1} \left(\frac{77}{36} \right)$$

Let
$$\theta_3 = \tan^{-1} \frac{77}{36} \Rightarrow \tan \theta_3 = \frac{77}{36}$$

$$\Rightarrow \sin \theta_3 = \frac{77}{\sqrt{5929} + 1296} = \frac{77}{85}$$

$$\therefore \theta_3 = \sin^{-1} \frac{77}{85}$$

$$=\sin^{-1}\frac{77}{85} = RHS$$
 Hence proved.

Alternate Method

To Prove,
$$\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{77}{85}$$

Let
$$\sin^{-1} \frac{8}{17} = x$$

$$\Rightarrow \sin x = \frac{8}{17}$$

$$\Rightarrow \cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \left(\frac{8}{17}\right)^2}$$

$$=\sqrt{\frac{289-64}{289}}=\sqrt{\frac{225}{289}}=\frac{15}{17}$$

Let
$$\sin^{-1}\frac{3}{5} = y$$

$$\Rightarrow \sin y = \frac{3}{5} \Rightarrow \sin^2 y = \frac{9}{25}$$

$$\therefore \cos^2 y = 1 - \frac{9}{25}$$

$$\Rightarrow \cos^2 y = \left(\frac{4}{5}\right)^2 \Rightarrow \cos y = \frac{4}{5}$$

Now, $\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y$

$$=\frac{8}{17}.\frac{4}{5} + \frac{15}{17}.\frac{3}{5}$$

$$=\frac{32}{85} + \frac{45}{85} = \frac{77}{85}$$

$$\Rightarrow (x+y) = \sin^{-1}\left(\frac{77}{85}\right)$$

$$\Rightarrow \sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{77}{85}$$

15. Show that
$$\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} = \tan^{-1} \frac{63}{16}$$
.

Sol. We have,
$$\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} = \tan^{-1} \frac{63}{16}$$
 (i)

Let
$$\sin^{-1} \frac{5}{13} = x$$

$$\Rightarrow \sin x = \frac{5}{13}$$

And
$$\cos^2 x = 1 - \sin^2 x$$

$$=1-\frac{25}{169}=\frac{144}{169}$$

$$\Rightarrow \cos x = \sqrt{\frac{144}{169}} = \frac{12}{13}$$

$$\therefore \tan x = \frac{\sin x}{\cos x} = \frac{5/13}{12/13} = \frac{5}{12} (ii)$$

$$\Rightarrow$$
 tan x=5/12 (iii)

Again, let
$$\cos^{-1} \frac{3}{5} = y \Rightarrow \cos y = \frac{3}{5}$$

$$\therefore \sin y = \sqrt{1 - \cos^2 y}$$

$$= \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}}$$

$$\sin y = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

$$\Rightarrow \tan y = \frac{\sin y}{\cos y} = \frac{4/5}{3/5} = \frac{4}{3}(iii)$$

We know that,

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \cdot \tan y}$$

$$\Rightarrow \tan(x+y) = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \cdot \frac{4}{3}} \Rightarrow \tan(x+y) = \frac{\frac{15+48}{36}}{\frac{36-20}{36}}$$

$$\Rightarrow \tan(x+y) = \frac{63/36}{16/36}$$

$$\Rightarrow \tan(x+y) = \frac{63}{16}$$

$$\Rightarrow x + y = \tan^{-1} \frac{63}{16}$$

$$\Rightarrow \tan^{-1}\frac{5}{12} + \tan^{-1}\frac{4}{3} = \tan^{-1}\frac{63}{16}$$
 Hence proved.

16. Prove that
$$\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \sin^{-1}\frac{1}{\sqrt{5}}$$

Sol. We have,
$$\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \sin^{-1} \frac{1}{\sqrt{5}}$$

$$Let \tan^{-1} \frac{1}{4} = x$$

$$\Rightarrow \tan x = \frac{1}{4}$$

$$\Rightarrow \tan^2 x = \frac{1}{16}$$

$$\Rightarrow$$
 sec² $x-1=\frac{1}{16}$

$$\Rightarrow \sec^2 x = 1 + \frac{1}{16} = \frac{17}{16}$$

$$\Rightarrow \frac{1}{\cos^2 x} = \frac{17}{16}$$

$$\Rightarrow \cos^2 x = \frac{16}{17}$$

$$\Rightarrow \sin^2 x = 1 - \cos^2 x = 1 - \frac{16}{17} = \frac{1}{17}$$

$$\Rightarrow \sin x = \frac{1}{\sqrt{17}} \dots (ii)$$
Again, let $\tan^{-1} \frac{2}{9} = y$

$$\Rightarrow \tan y = \frac{2}{9} \Rightarrow \tan^2 y = \frac{4}{81}$$

$$\Rightarrow \sec^2 y - 1 = \frac{4}{81}$$

$$\Rightarrow \sec^2 y = \frac{4}{81} + 1 = \frac{85}{81}$$

$$\Rightarrow \cos^2 y = \frac{81}{85} \Rightarrow \cos y = \frac{9}{\sqrt{85}}$$

$$\Rightarrow \sin^2 y = 1 - \cos^2 y = 1 - \frac{81}{85} = \frac{4}{85}$$

$$\Rightarrow \sin y = \frac{2}{\sqrt{85}} \dots (iii)$$

We know that, $\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y$

$$= \frac{1}{\sqrt{17}} \cdot \frac{9}{\sqrt{85}} + \frac{4}{\sqrt{17}} \cdot \frac{2}{\sqrt{85}}$$

$$= \frac{17}{\sqrt{17} \cdot \sqrt{85}} = \frac{\sqrt{17}}{\sqrt{17} \cdot \sqrt{5}} = \frac{1}{\sqrt{5}}$$

$$\Rightarrow (x+y) = \sin^{-1} \frac{1}{\sqrt{5}}$$

$$\Rightarrow \tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \sin^{-1} \frac{1}{\sqrt{5}} \text{ Hence proved.}$$

17. Find the value of $4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239}$.

Sol. We have,
$$4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239}$$

= $2.2 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{239}$

$$= 2 \cdot \left[\tan^{-1} \frac{\frac{2}{5}}{1 - \left(\frac{1}{5}\right)^{2}} \right] - \tan^{-1} \frac{1}{239} \left[\because 2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^{2}} \right) \right]$$

$$= 2 \cdot \left[\tan^{-1} \left(\frac{\frac{2}{5}}{1 - \frac{1}{25}} \right) \right] - \tan^{-1} \frac{1}{239}$$

$$= 2 \cdot \left[\tan^{-1} \left(\frac{\frac{2}{5}}{24/25} \right) \right] - \tan^{-1} \frac{1}{239}$$

$$= 2 \cdot \tan^{-1} \left(\frac{\frac{2}{5}}{1 - \frac{1}{25}} \right) - \tan^{-1} \frac{1}{239}$$

$$= \tan^{-1} \left(\frac{5}{12} \right)^{2} - \tan^{-1} \frac{1}{239} \right[\because 2 \cdot \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^{2}} \right) \right]$$

$$= \tan^{-1} \left(\frac{\frac{5}{6}}{1 - \frac{25}{144}} \right) - \tan^{-1} \frac{1}{239}$$

$$= \tan^{-1} \left(\frac{144 \times 5}{19 \times 6} \right) - \tan^{-1} \frac{1}{239}$$

$$= \tan^{-1} \left(\frac{120}{199} \right) - \tan^{-1} \frac{1}{239}$$

$$= \tan^{-1} \left(\frac{120}{119} - \frac{1}{239} \right) \left[\because \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right) \right]$$

$$= \tan^{-1} \left(\frac{120 \times 239 - 119}{119 \times 239 + 120} \right)$$

$$= \tan^{-1} \left(\frac{28680 - 119}{28441 + 120} \right) = \tan^{-1} \frac{28561}{28561}$$

$$= \tan^{-1} \left(1 \right) = \tan^{-1} \left(\tan \frac{\pi}{4} \right) = \frac{\pi}{4}$$

18. Show that $\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$ and justify why the other value $\frac{4+\sqrt{7}}{3}$ is ignored?

Sol. We have,
$$\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$$

$$\therefore LHS = \tan\left[\frac{1}{2}\sin^{-1}\left(\frac{3}{4}\right)\right]$$

Let
$$\frac{1}{2}\sin^{-1}\frac{3}{4} = \theta \Rightarrow \sin^{-1}\frac{3}{4} = 2\theta$$

$$\Rightarrow \sin 2\theta = \frac{3}{4} \Rightarrow \frac{2 \tan \theta}{1 + \tan^2 \theta} = \frac{3}{4}$$

$$\Rightarrow$$
 3+3 tan² θ = 8 tan θ

$$\Rightarrow 3 \tan^2 \theta - 8 \tan \theta + 3 = 0$$

Let $\tan \theta = y$

$$\therefore 3y^2 + 8y + 3 = 0$$

$$\Rightarrow y = \frac{+8 \pm \sqrt{64 - 4 \times 3 \times 3}}{2 \times 3} = \frac{8 \pm \sqrt{28}}{6}$$

$$=\frac{2\left[4\pm\sqrt{7}\right]}{2.3}$$

$$\Rightarrow \tan \theta = \frac{4 \pm \sqrt{7}}{3}$$

$$\Rightarrow \theta = \tan^{-1} \left[\frac{4 \pm \sqrt{7}}{3} \right]$$

$$\left\{ but \, \frac{4+\sqrt{7}}{3} > \frac{1}{2} \cdot \frac{\pi}{2}, \sin ce \, \max \left[\tan \left(\frac{1}{2} \sin^{-1} \frac{3}{4} \right) \right] = 1 \right\}$$

$$\therefore LHS = \tan \tan^{-1} \left(\frac{4 - \sqrt{7}}{3} \right) = \frac{4 - \sqrt{7}}{3} = RHS$$

Note Since,
$$-\frac{\pi}{2} \le \sin^{-1} \frac{3}{4} \le \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{4} \le \frac{1}{2} \sin^{-1} \frac{3}{4} \le \frac{\pi}{4}$$

$$\therefore \tan\left(\frac{-\pi}{4}\right) \le \tan\frac{1}{2} \left(\sin^{-1}\frac{3}{4}\right) \le \tan\frac{\pi}{4}$$

$$\Rightarrow -1 \le \tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) \le 1$$

19. If $a_1, a_2, a_3, \dots, a_n$ is an arithmetic progression with common difference d, then evaluate the following expression.

$$\tan \left[\tan^{-1} \left(\frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{d}{1 + a_2 a_3} \right) + \tan^{-1} \left(\frac{d}{1 + a_3 a_4} \right) + \dots + \tan^{-1} \left(\frac{d}{1 + a_{n-1} a_n} \right) \right]$$

Sol. We have,
$$a_1 = a_1 a_2 = a + d$$
, $a_3 = a + 2d$
And $d = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \dots = a_n - a_{n-1}$
Given that,

$$\tan \left[\tan^{-1} \left(\frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{d}{1 + a_2 a_3} \right) + \tan^{-1} \left(\frac{d}{1 + a_3 a_4} \right) + \dots + \tan^{-1} \left(\frac{d}{1 + a_{n-1} a_n} \right) \right]$$

$$= \tan \left[\tan^{-1} \frac{a_2 - a_1}{1 + a_2 \cdot a_1} + \tan^{-1} \frac{a_3 - a_2}{1 + a_3 \cdot a_2} + \dots + \tan^{-1} \frac{a_n - a_{n-1}}{1 + a_n \cdot a_{n-1}} \right]$$

$$= \tan \left[\left(\tan^{-1} a_2 - \tan^{-1} a_1 \right) + \left(\tan^{-1} a_3 - \tan^{-1} a_2 \right) + \dots + \left(\tan^{-1} a_n - \tan^{-1} a_{n-1} \right) \right]$$

$$= \tan \left[\tan^{-1} \frac{a_n - a_1}{1 + a_n \cdot a_1} \right] \left[\because \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right) \right]$$

$$= \frac{a_n - a_1}{1 + a_n \cdot a_1} \left[\because \tan \left(\tan^{-1} x \right) = x \right]$$