# A 1.4GHz 0.12pJ 4-bit Absolute-Value Detector for use in Neural Spike Sorting

Devyan Biswas, Puvali Chatterjee, Atharva Deo, 804988161 504822474 405350595



#### **Design Summary**

#### Mixed design with PTL and Static CMOS

- Reason: Minimum # of transistors, optimizes delay-energy metric
- Stage 1 (absolute value calculation):
  - |X| + ~T = |X| -T -1 ← nonnegative if |X| > T
  - MUX selector is X<sub>3</sub>; determines whether X is positive or negative then |X| is sent to stage 2
  - T is inverted and sent to stage 2

#### - Stage 2 (comparator):

- Optimized ripple-carry adder carry-out logic (using inversion property) with mirror adders to calculate 2<sup>nd</sup>-last C<sub>out</sub> (i.e. C<sub>2</sub>)
- $C_{in} = X_3$
- $C_2 = 1 --> |X| > T$
- $C_2 = 0 --> |X| <= T$

#### **Sizing and Optimization**

- Unit inverter:  $w_p = 650 \text{ nm}, w_p = 430 \text{ nm}$
- 0.5x inverter:  $w_p = 325 \text{ nm}, w_n = 215 \text{ nm}$
- $4x \text{ inverter:} \quad w_p = 2.6 \, \mu\text{m}, \, w_n = 1.72 \, \mu\text{m}$
- We initially tried logical effort sizing and using 0.5x inverters in the critical paths, 1x inverters in the non-critical paths and 4x inverter closest to the load
- We later found that using 0.5x inverters everywhere and a 4x inverter closest to output (to invert C<sub>2</sub> from last mirror adder) offers the best balance of minimized delay and energy

#### **Full Absolute Value Detector**





## **Stage 1: Absolute Value Calculation**





## **Stage 2: Comparator**





## Mirror Adder (carryout only)





## Multiplexor (2X1MUX)





#### **0.5X Inverter**





#### **4X Inverter**





UCLA

11

#### Critical Path, Delay and Energy

The input vectors associated with the 3 worst delay paths are X<sub>0</sub>, X<sub>1</sub> and X<sub>3</sub>



- Final V<sub>DD</sub> (post-layout): 674 mV
- Minimum energy (post-layout): 205.15 fJ
- **NOTE:** Critical paths used line up with critical paths given in original testbench



| Schematic                                                                                                                                               | Layout size                                                                       | Energy                                                                                                 | Verification                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|
| $V_{DD} = 571 \text{ mV}$ $t_{p_{-}X(0)\to OUT} = 685.2 \text{ ps}$ $t_{p_{-}X(1)\to OUT} = 663.4 \text{ ps}$ $t_{p_{-}X(2)\to OUT} = 570.9 \text{ ps}$ | X= 69.73 µm<br>Y= 77.4 µm<br>A = 5397.1 µm <sup>2</sup><br>Aspect Ratio =<br>1.11 | Sch E = 119.3 fJ<br>Layout E = 205.15 fJ<br>$V_{DD-S} = 571 \text{ mV}$<br>$V_{DD-L} = 674 \text{ mV}$ | Func: Y<br>DRC: Y<br>LVS: Y |

## Most critical path: X<sub>0</sub> (Schematic)





## Most critical path: X<sub>0</sub> (Layout)



$$V_{DD} = 1 V$$



$$V_{DD} = 674 \text{ mV}$$

## 2<sup>nd</sup> most critical path: X<sub>1</sub> (Schematic)





## 2<sup>nd</sup> most critical path: X<sub>1</sub> (Layout)



$$V_{DD} = 1 V$$



$$V_{DD} = 674 \text{ mV}$$

## 3<sup>rd</sup> most critical path: X<sub>3</sub> (Schematic)





# 3<sup>rd</sup> most critical path: X<sub>3</sub> (Layout)



$$V_{DD} = 1 V$$



$$V_{DD} = 674 \text{ mV}$$

## **Output (Schematic)**



$$V_{DD} = 1 V$$



$$V_{DD} = 571 \text{ mV}$$

## **Output (Layout)**



$$V_{DD} = 1 V$$



### Post-Layout Outputs for VDD = 1 V



#### Post-Layout Outputs for VDD = 674 mV



## **Delay and Energy**

| Schematic                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           | Layout                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $V_{DD} = 1 V$<br>E = 403.12 fJ                                                                                                                                                                                                                                                                                                                                                                         | V <sub>DD</sub> = 571 mV<br>E = 119.3 fJ                                                                                                                                                                                                  | V <sub>DD</sub> = 1 V<br>E = 485.41 fJ                                                                                                                                                                                                    | V <sub>DD</sub> = 674 mV<br>E = 205.15 fJ                                                                                                                                                                                                                                                                                                                                                                 |
| $t_{p_{-}X(0)\to OUT} = 244.3 \text{ ps}$ $t_{plh_{-}X(0)\to OUT} = 246.5 \text{ ps}$ $t_{phl_{-}X(0)\to OUT} = 242.0 \text{ ps}$ $t_{p_{-}X(1)\to OUT} = 240.4 \text{ ps}$ $t_{plh_{-}X(1)\to OUT} = 243.9 \text{ ps}$ $t_{phl_{-}X(1)\to OUT} = 236.9 \text{ ps}$ $t_{phl_{-}X(3)\to OUT} = 203.3 \text{ ps}$ $t_{plh_{-}X(3)\to OUT} = 174.1 \text{ ps}$ $t_{phl_{-}X(3)\to OUT} = 232.5 \text{ ps}$ | $t_{phl_X(0)->OUT} = 699.9 \text{ ps}$ $t_{p_X(1)\to OUT} = 663.4 \text{ ps}$ $t_{plh_X(1)->OUT} = 637.6 \text{ ps}$ $t_{phl_X(1)->OUT} = 689.2 \text{ ps}$ $t_{phl_X(1)->OUT} = 570.9 \text{ ps}$ $t_{plh_X(3)->OUT} = 463.3 \text{ ps}$ | $t_{phl_X(0)->OUT} = 334.4 \text{ ps}$ $t_{p_X(1)\to OUT} = 353.2 \text{ ps}$ $t_{plh_X(1)->OUT} = 357.6 \text{ ps}$ $t_{phl_X(1)->OUT} = 348.8 \text{ ps}$ $t_{p_X(3)\to OUT} = 310.2 \text{ ps}$ $t_{plh_X(3)->OUT} = 266.9 \text{ ps}$ | $t_{p_{-}X(0)\to OUT} = 648.0 \text{ ps}$ $t_{plh_{-}X(0)\to OUT} = 643.3 \text{ ps}$ $t_{phl_{-}X(0)\to OUT} = 652.7 \text{ ps}$ $t_{phl_{-}X(0)\to OUT} = 671.0 \text{ ps}$ $t_{plh_{-}X(1)\to OUT} = 655.1 \text{ ps}$ $t_{phl_{-}X(1)\to OUT} = 686.8 \text{ ps}$ $t_{phl_{-}X(1)\to OUT} = 600.1 \text{ ps}$ $t_{plh_{-}X(3)\to OUT} = 501.1 \text{ ps}$ $t_{phl_{-}X(3)\to OUT} = 699.2 \text{ ps}$ |

#### **Discussion**