Geoexploration

MOVIE SCIENCE MONTAGE

Ricerca di sorgenti di *raw materials* (es. metalli quali Co, Ni, Ta, ecc.) necessari per l'industria.

Approccio *standard*: squadre di geologi eseguono carotaggi (tipicamente in luoghi remoti); le carote vengono analizzate per determinare la composizione chimica (cioè la presenza di elementi di interesse) e le fasi minerali in cui sono presenti (per determinare la facilità di estrazione).

Problema: analisi di spettri Raman per determinare la composizione di campioni geologici.

da XKCD (CC BY-SA 2.5), https://xkcd.com/683/ Science Montage,

Spettri Raman?

Wavenumber
$$\tilde{v} = \frac{1}{\lambda} = \frac{v}{c}$$

- \checkmark λ la lunghezza d'onda della luce diffusa
- $\checkmark v$ la frequenza della luce diffusa
- \checkmark c la velocità della luce

- ✓ Faccio incidere luce monocromatica sul campione.
 - La luce viene diffusa dal campione.
- ✓ Raccolgo e analizzo la luce diffusa.

La distribuzione in frequenza della luce diffusa sarà caratterizzata da picchi a frequenza diversa rispetto al fascio incidente (scattering anelastico). Queste frequenze corrispondenza alle vibrazioni tipiche delle molecole nel materiale. Queste permettono di identificare il materiale stesso.

Mineral phases

Siderite FeCO₃

Goethite FeO(OH)

Hematite* Fe₃O₃

Problema

121 spettri Raman acquisiti su una campione rappresentativo del materiale. Ogni spettro è acquisito su una porzione micrometrica. I punti corrispondono ad una griglia 11x11 fissata. Ogni spettro può contenere una o più fasi pure.

- ✓ Identificare regioni simili del materiale
- ✓ Identificare gli spettri confrontandoli con un database di spettri di minerali pure.

