Quiz Questions: Advanced Counting

- 1. The following relation gives the number a_n of bitstrings of length 2n:
 - A. $a_0 = 0$, $a_n = 4a_{n-1}$
 - B. $a_0 = 1, a_n = 2a_{n-1}$
 - C. $a_0 = 1$, $a_n = 4a_{n-1}$
 - D. $a_0 = 0$, $a_n = 2a_{n-1}$
- 2. The solution to the recurrence relation $a_n = a_{n-1} + 2n$ with initial term $a_0 = 2$ is:
 - A. n(n+1) + 2
 - B. $3n^2$
 - C. 2(1+n)
 - D. 4n + 7
- 3. The recurrence relation $a_n = a_{n-1} + n a_{n-2} + 1$ is:
 - A. linear, but not homogeneous
 - B. homogeneous, but not with constant coefficients
 - C. of degree 1 and linear
 - D. with constant coefficients, but not linear
- 4. The generating function of a sequence a_n
 - A. has roots that are used to construct a closed form solution of the sequence
 - B. is a closed form solution for the sequence
 - C. has the elements a_n as coefficients of x^n in its power series expansion
 - D. recursively computes the elements of the sequence
- 5. The solution to the recurrence relation $a_n = 2a_{n-1} a_{n-2}$ has the following form
 - A. $c_0 2^n + c_1 n$
 - B. $c_0 + c_1 n$
 - C. $2c_0 n$
 - D. $c_0 2^n + nc_1 2^n$
- 6. The characteristic equation of the recurrence relation $a_n = a_{n-1} 2a_{n-2} + 3a_{n-3}$ is
 - A. $r^3 r^2 + 2r 3 = 0$
 - B. $r^2 + 2r 3 = 0$
 - C. $r^3 + r^2 2r + 3 = 0$
 - D. $r^2 2r + 3 = 0$
- 7. The generating function for the sequence $a_n = 2^n$ is:

 - A. $\frac{1}{1-x^2}$ B. $\frac{1}{1+2x}$ C. $(1+2x)^n$ D. $\frac{1}{1-2x}$
- 8. Number of elements in $A_1 \cup A_2 \cup A_3$ if A_1 is subset of A_2 and $|A_2 \cap A_3| = 1$:
 - A. $|A_1| + |A_2| + |A_3| 1$
 - B. $|A_1| + |A_3| 1$
 - C. $|A_2| + |A_3| 1$
 - D. $|A_3| + 1$

Solutions:

- 1. C
- 2. A 3. A 4. C
- 5. B
- 6. A
- 7. D 8. C