Jaeheon Kwak (곽재헌)

Postdoctoral Researcher at KAIST

Phone: +82-10-2140-0938 Homepage: https://ojaehunny0.github.io
E-mail: ojaehunny0@kaist.ac.kr
LinkedIn: https://www.linkedin.com/in/jaehunny

EDUCATION & EXPERIENCE

Postdoc. in Computer science, KAIST	2024 – Now
Department: Information & Electronics Research Institute	
Advisor: Insik Shin	
Ph.D in Computer science, KAIST	2019 – 2024
Thesis: Alleviating the low-battery experience of mobile users through heterogeneous batteries and their	scheduling
Advisor: Insik Shin	
M.S. in Computer science, Sungkyunkwan University	2017 – 2019
Thesis: Battery scheduling for maximizing operational time in real-time systems	
Advisor: Jinkyu Lee	
B.S. in Computer science, Sungkyunkwan University	2014 – 2017
Advisor: Jinkyu Lee	
Internship at Entrue consulting, LG CNS	2023 – 2023
Role: Development of a generative Al consulting program and a demo chatbot	
Lecturer at Hanbom High School	2017 – 2018
Role: Python and data analysis lecturer	
Field placement at Dexta (KR)	2016 – 2016
Role: Development of the k-th shortest path algorithm for smart factories	

RESEARCH INTERESTS & SKILLS

Battery Systems:

Battery modeling, battery scheduling, heterogeneous battery systems, battery usage pattern

Mobile / Embedded / Real-Time Systems:

Android AOSP & kernel, user experience, DVFS / PMIC, voltage regulation, DVFS / real-time scheduling

Deep Learning / Reinforcement Learning / Data Analysis / Optimization:

PyTorch, soft-actor critic, TensorFlow, XGBoost, convex optimization, feature engineering

AWARDS & GRANTS

Post-Doctoral Domestic Training from National Research Foundation of Korea	2024-2025
Research funding for domestic postdoctoral researchers	
Outstanding Dissertation Award from KAIST	2024
An award celebrating superb doctoral dissertations	
Dean's List from Sungkyunkwan University	2016-2017
A reward for students who got obvious academic performance	
The National Scholarship for Science and Engineering from Korean Government	2014-2017
A scholarship supports undergraduates who have outstanding Korean SAT scores in math and science	2

MAJOR RESEARCH ACHIEVEMENT

Submitted/published papers on mobile low-battery anxiety to top-tier publications (MobiSys & others)	
Alleviated low-battery experience by utilizing heterogeneous battery systems in mobile systems	[2, 6]
Developed a power consumption prediction system to alleviate the low-battery anxiety of mobile users	[4]
Published papers on battery scheduling and real-time scheduling to top-tier publications (RTSS & others)	
Proposed novel real-time scheduling frameworks by applying physical characteristics of battery systems [1	1, 5, 7]
Developed the first multi-processor non-preemptive non-work-conserving real-time scheduling algorithm	[8]

PUBLICATIONS

- [1] (Anonymized title) Reinforcement learning-based DVFS for mobile systems 1st author
- [2] (Anonymized title) Heterogeneous battery systems for alleviating low-battery anxiety in mobile systems <u>1st author</u>
- [3] (Anonymized title) Cache-aware CPU affinity management for concurrent workloads 1st author
- [4] (To appear) Scheduling EV Battery Swap/Charge Operations <u>Jaeheon Kwak*</u>, Seongtae Lee*, Kang G. Shin and Jinkyu Lee IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2025 * co-first authors
- [5] RAC+: Supporting Reconfiguration-Assisted Charging for Large-Scale Battery Systems Kyunghoon Kim, Jaeheon Kwak, and Jinkyu Lee
 IEEE Transactions on Industrial Informatics (TII), 2024
- [6] Serenus: Alleviating Low-Battery Anxiety Through Real-time Accurate and User-Friendly Energy Consumption Prediction of Mobile Applications

 Sera Lee*, Dae R. Jeong*, Junyoung Choi, Jaeheon Kwak, Seoyun son, Jean Y. Song, Insik Shin

 ACM Symposium on User Interface Software and Technology (UIST), 2024

 * co-first authors
- [7] Battery-aging-aware run-time slack management for power-consuming real-time systems <u>Jaeheon Kwak</u>, Kyunghoon Kim, Youngmoon Lee, Insik Shin, Jinkyu Lee Journal of Systems Architecture, 2024
- [8] MixMax: Leveraging Heterogeneous Batteries to Alleviate Low Battery Experience for Mobile Users <u>Jaeheon Kwak</u>, Sunjae Lee, Dae R. Jeong, Arjun Kumar, Dongjae Shin, Ilju Kim, Donghwa Shin, Kilho Lee, Jinkyu Lee, and Insik Shin ACM International Conference on Mobile Systems, Applications, and Services (MobiSys), 2023
- [9] Battery aging deceleration for power-consuming real-time systems <u>Jaeheon Kwak</u>, Kilho Lee, Taehee Kim, Jinkyu Lee and Insik Shin IEEE Real-Time Systems Symposium (RTSS), 2019

[10] Non-preemptive real-time multiprocessor scheduling beyond work-conserving Hyeongboo Baek, <u>Jaeheon Kwak</u> and Jinkyu Lee IEEE Real-Time Systems Symposium (RTSS), 2020

[11] Minimizing capacity degradation of heterogeneous batteries in a mobile embedded system <u>Jaeheon Kwak</u> and Jinkyu Lee IEEE Embedded Systems Letters, 2019

[12] Covert timing channel design for uniprocessor real-time systems
<u>Jaeheon Kwak</u> and Jinkyu Lee
International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2019