HW_1_Kaushik

KK

September 29, 2015

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

2

Installing all required packages

```
#local({r <- getOption("repos");</pre>
       r["CRAN"] <- "http://cran.r-project.org"; options(repos=r)})
#install.packages("dplyr")
library("dplyr")
## Warning: package 'dplyr' was built under R version 3.2.3
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
       filter, lag
##
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
#install.packages('Hmisc')
library("Hmisc")
## Loading required package: grid
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.3
## Warning: replacing previous import by 'ggplot2::unit' when loading 'Hmisc'
## Warning: replacing previous import by 'ggplot2::arrow' when loading 'Hmisc'
```

```
## Warning: replacing previous import by 'scales::alpha' when loading 'Hmisc'
## Attaching package: 'Hmisc'
##
## The following objects are masked from 'package:dplyr':
##
       combine, src, summarize
##
##
## The following objects are masked from 'package:base':
##
##
       format.pval, round.POSIXt, trunc.POSIXt, units
#install.packages("VIM")
library(VIM)
## Loading required package: colorspace
## Loading required package: data.table
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
       between, last
##
## VIM is ready to use.
   Since version 4.0.0 the GUI is in its own package VIMGUI.
##
##
             Please use the package to use the new (and old) GUI.
##
## Suggestions and bug-reports can be submitted at: https://github.com/alexkowa/VIM/issues
##
## Attaching package: 'VIM'
##
## The following object is masked from 'package:datasets':
##
##
       sleep
#install.packages("mice")
library(mice)
## Loading required package: Rcpp
## Warning: package 'Rcpp' was built under R version 3.2.3
## mice 2.22 2014-06-10
#install.packages("corrplot")
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.2.3
```

```
#install.packages("PerformanceAnalytics")
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
##
##
## Attaching package: 'xts'
##
## The following object is masked from 'package:data.table':
##
##
       last
##
## The following objects are masked from 'package:dplyr':
##
##
       first, last
##
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
       legend
chicago =tbl_df(chicago)
#gives the structure of the data along with the datatypes
str(chicago)
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                6940 obs. of 8 variables:
               : chr "chic" "chic" "chic" "chic" ...
## $ city
                : num 31.5 33 33 29 32 40 34.5 29 26.5 32.5 ...
## $ tmpd
## $ dptp
               : num 31.5 29.9 27.4 28.6 28.9 ...
               : Date, format: "1987-01-01" "1987-01-02" ...
## $ date
## $ pm25tmean2: num NA ...
## $ pm10tmean2: num 34 NA 34.2 47 NA ...
## $ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...
## $ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...
#colnames(chicago)
# tmpd dptp
                        pm25tmean2 pm10tmean2 o3tmean2
                date
                                                            no2tmean2
#visually detecting missing values
#aggr function displays the number of missing values and also the number of collectively missing values
aggr(chicago, prop=FALSE, numbers=TRUE)
```


#Plots a color matrix, representing the values stored in the chicago dataset matrixplot(chicago[,c(2:8)])

```
## Warning in hex(RGB(r, g, b), gamma = gamma, fixup = fixup, ...): 'gamma' is
## deprecated and has no effect

## Warning in hex(RGB(r, g, b), gamma = gamma, fixup = fixup, ...): 'gamma' is
## deprecated and has no effect

## Warning in hex(RGB(r, g, b), gamma = gamma, fixup = fixup, ...): 'gamma' is
## deprecated and has no effect

## Warning in hex(RGB(r, g, b), gamma = gamma, fixup = fixup, ...): 'gamma' is
## deprecated and has no effect

## Warning in hex(RGB(r, g, b), gamma = gamma, fixup = fixup, ...): 'gamma' is
## deprecated and has no effect

## Warning in hex(RGB(r, g, b), gamma = gamma, fixup = fixup, ...): 'gamma' is
## deprecated and has no effect

## Warning in hex(RGB(r, g, b), gamma = gamma, fixup = fixup, ...): 'gamma' is
## deprecated and has no effect
```



```
# We see that there are many missing values. let us get a count of them first sum(is.na(chicago$tmpd)) # 4% of the values are missing
```

```
## [1] 1
```

```
sum(is.na(chicago$dptp))
```

[1] 2

```
sum(is.na(chicago$date))
```

[1] 0

sum(is.na(chicago\$pm25tmean2)) # 60-70% of the values are missing. Which is huge and makes it more inte

[1] 4447

```
sum(is.na(chicago$pm10tmean2)) # 4% of the values are missing
```

[1] 242

```
sum(is.na(chicago$o3tmean2))
## [1] 0
sum(is.na(chicago$no2tmean2))
## [1] O
#Imputing missing values. Let us follow three procedures and choose the best one.
#Procedure_1: Imputing median into the missing values
#Defining a fucntion to impute median into the missing values
median_imputed_data = chicago
impute_median = function (a){
 missing = is.na(a)
 imputed = a
  imputed[missing] = median(a, na.rm=TRUE) # Replace median where the value is missing
 return (imputed)
# Testing the median function
k=as.numeric (c("1", "2", "5", "three", "4"))
## Warning: NAs introduced by coercion
impute median(k)
## [1] 1 2 5 3 4
#Imputing the median by calling the fucntion
median_imputed_data$pm25tmean2 = impute_median(median_imputed_data$pm25tmean2)
median_imputed_data$pm10tmean2 = impute_median(median_imputed_data$pm10tmean2)
median_imputed_data$tmpd = impute_median(median_imputed_data$tmpd)
median_imputed_data$dptp = impute_median(median_imputed_data$dptp)
# Now see if there are missing values. Visually plotting
aggr(median_imputed_data, prop=FALSE, numbers=TRUE)
```



```
#Procedure_2: Imputing missing values using mice package
chicago1 = chicago[,c(2,3,5,6,7,8)]
imp=mice(chicago1, seed=1234)
```

```
##
##
    iter imp variable
          1
                                        pm10tmean2
##
             tmpd
                    dptp
                          pm25tmean2
##
          2
             tmpd
                          pm25tmean2
                                        pm10tmean2
     1
                    dptp
##
     1
          3
             tmpd
                    {\tt dptp}
                          pm25tmean2
                                        pm10tmean2
     1
                          pm25tmean2
                                        pm10tmean2
##
          4
             tmpd
                    dptp
                    dptp
##
     1
          5
             tmpd
                          pm25tmean2
                                        pm10tmean2
##
     2
          1
             tmpd
                    dptp
                          pm25tmean2
                                        pm10tmean2
     2
          2
##
                          pm25tmean2
                                        pm10tmean2
             tmpd
                    dptp
     2
          3
##
             tmpd
                    dptp
                          pm25tmean2
                                        pm10tmean2
     2
##
                                        pm10tmean2
             tmpd
                    dptp
                          pm25tmean2
     2
##
          5
                          pm25tmean2
                                        pm10tmean2
             tmpd
                    dptp
##
     3
         1
             tmpd
                    dptp
                          pm25tmean2
                                        pm10tmean2
##
     3
         2
                          pm25tmean2
                                        pm10tmean2
             tmpd
                    dptp
     3
          3
##
             tmpd
                    dptp
                          pm25tmean2
                                        pm10tmean2
##
     3
         4
                          pm25tmean2
                                        pm10tmean2
             tmpd
                    dptp
##
     3
         5
             tmpd
                    dptp
                          pm25tmean2
                                        pm10tmean2
##
     4
          1
             tmpd
                    dptp
                          pm25tmean2
                                        pm10tmean2
##
     4
          2
                          pm25tmean2
                                        pm10tmean2
             tmpd
                    dptp
##
     4
                          pm25tmean2
                                       pm10tmean2
             tmpd
                    dptp
```

```
##
     4
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
     4
         5
                         pm25tmean2
                                      pm10tmean2
            tmpd
                   dptp
##
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
     5
         2
                         pm25tmean2
                                      pm10tmean2
            tmpd
                   dptp
##
     5
         3
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
     5
                         pm25tmean2
                                      pm10tmean2
            tmpd
                   dptp
                        pm25tmean2 pm10tmean2
##
            tmpd
                   dptp
fit= with(imp,lm(chicago1$pm25tmean2 ~chicago1$pm10tmean2 + chicago1$no2tmean2 ))
pooled = pool(fit)
summary(pooled)
##
                                                                  Pr(>|t|)
                                                               df
                               est.
## (Intercept)
                        0.5061427 0.44121264
                                               1.147163 2485.738 0.2514248
  chicago1$pm10tmean2 0.2784793 0.01022208 27.242919 2485.738 0.0000000
   chicago1$no2tmean2  0.3067993  0.02046048  14.994722  2485.738  0.0000000
##
                             lo 95
                                        hi 95 nmis
                                                           fmi lambda
## (Intercept)
                        -0.3590395 1.3713249
                                                NA 0.00080362
## chicago1$pm10tmean2 0.2584346 0.2985239
                                                NA 0.00080362
                                                                     0
## chicago1$no2tmean2
                         0.2666779 0.3469206
                                                NA 0.00080362
                                                                     0
mice_imputed_data = complete(imp, action=3)
# Imputing values retaining the date
chicago_date=chicago
chicago_date$date <- as.numeric(chicago_date$date)</pre>
chicago_date=chicago_date[,c(2,3,4,5,6,7,8)]
imp=mice(chicago_date, seed=1234)
##
##
    iter imp variable
                                      pm10tmean2
##
            tmpd
                   dptp
                         pm25tmean2
     1
         1
##
                   dptp
                         pm25tmean2
                                      pm10tmean2
            tmpd
##
                         pm25tmean2
                                      pm10tmean2
     1
         3
            tmpd
                   dptp
##
     1
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
                         pm25tmean2
     1
                                      pm10tmean2
            tmpd
                   dptp
                         pm25tmean2
##
     2
         1
            tmpd
                   dptp
                                      pm10tmean2
##
     2
         2
                         pm25tmean2
                                      pm10tmean2
            tmpd
                   dptp
##
     2
         3
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
     2
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
     2
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
     3
                         pm25tmean2
                                      pm10tmean2
         1
            tmpd
                   dptp
            tmpd
##
     3
         2
                         pm25tmean2
                                      pm10tmean2
                   dptp
##
     3
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
     3
                         pm25tmean2
                                      pm10tmean2
         4
            tmpd
                   dptp
##
     3
         5
            tmpd
                         pm25tmean2
                                      pm10tmean2
                   dptp
     4
##
            tmpd
                         pm25tmean2
                                      pm10tmean2
         1
                   dptp
##
                   dptp
                         pm25tmean2
                                      pm10tmean2
            tmpd
##
                         pm25tmean2
     4
         3
            tmpd
                   dptp
                                      pm10tmean2
##
     4
         4
                   dptp
                         pm25tmean2
                                      pm10tmean2
            tmpd
##
     4
         5
            tmpd
                   dptp
                         pm25tmean2
                                      pm10tmean2
##
                         pm25tmean2
                                      pm10tmean2
            tmpd
                   dptp
```

pm25tmean2 pm10tmean2

##

tmpd

dptp

```
##
    5
           tmpd
                dptp
                      pm25tmean2
                                 pm10tmean2
##
    5
        4
                      pm25tmean2
                                 pm10tmean2
           tmpd
                dptp
##
           tmpd
                dptp
                      pm25tmean2
                                 pm10tmean2
fit= with(imp,lm(chicago_date$pm25tmean2 ~chicago_date$pm10tmean2 + chicago_date$no2tmean2 ))
pooled = pool(fit)
summary(pooled)
##
                               est
                                                    t
                                                            df
                                                               Pr(>|t|)
                                          se
  (Intercept)
                         0.5061427 0.44121264
                                              1.147163 2485.738 0.2514248
##
## chicago_date$pm10tmean2 0.2784793 0.01022208 27.242919 2485.738 0.0000000
  hi 95 nmis
                                                        fmi lambda
##
                             lo 95
## (Intercept)
                         -0.3590395 1.3713249
                                              NA 0.00080362
## chicago_date$pm10tmean2  0.2584346  0.2985239
                                              NA 0.00080362
                                                                0
                          0.2666779 0.3469206
                                              NA 0.00080362
## chicago_date$no2tmean2
mice_imputed_data_date = complete(imp, action=3)
# Now see if there are missing values. Visually plotting
aggr(mice_imputed_data, prop=FALSE, numbers=TRUE)
```



```
#Procedure_3: Ignoring and removing the missing values
ignore_missing_data = chicago

# This function removes rows based on Nas in columns
missing_fun = function(data, desiredCols) {
    completeVec = complete.cases(data[, desiredCols])
    return(data[completeVec, ])
}

#Removing rows
ignore_missing_data = missing_fun(chicago, "pm25tmean2")

#Checking for missing values. We still see that there are 1 or 2 values missing. Replacing them median
ignore_missing_data$pm10tmean2 = impute_median(ignore_missing_data$pm10tmean2)
ignore_missing_data$tmpd = impute_median(ignore_missing_data$tmpd)
ignore_missing_data$tmpd = impute_median(ignore_missing_data$tmpd)
ignore_missing_data$dptp = impute_median(ignore_missing_data$tmpd)

# Now see if there are missing values. Visually plotting
aggr(ignore_missing_data, prop=FALSE, numbers=TRUE)
```


Now let us comapre the variation in the variables imputed using the three methods.

#Let us check the box plots to see if any outlier treatment has to be done

old.par = par(mfrow=c(1, 4))

Median Imputed Data Mice Imputed Data PM25 Missing Remove Original Untouched Data


```
par(old.par)

#Checking the how the correlation factors changes on these 3 datasets

mice_cor = cor(mice_imputed_data)
par(oma=c(0,0,2,0)) # Specifying the outer margins

med_imp = cor(median_imputed_data[,c(2,3,5,6,7,8)])
par(oma=c(0,0,2,0))

missing_rem =cor(ignore_missing_data[,c(2,3,5,6,7,8)])
par(oma=c(0,0,2,0))
```

```
#arranging the correlation plots side by side
old.par = par(mfrow=c(1, 3))
corrplot(mice_cor, method = "number",title = 'Mice Imputed Data
                                                                                  Median Imputed Data
## Warning in text.default(pos.xlabel[, 1], pos.xlabel[, 2], newcolnames, srt
## = tl.srt, : "outer" is not a graphical parameter
## Warning in text.default(pos.ylabel[, 1], pos.ylabel[, 2], newrownames, col
## = tl.col, : "outer" is not a graphical parameter
corrplot(med_imp, method = "number",outer=TRUE)
## Warning in text.default(pos.xlabel[, 1], pos.xlabel[, 2], newcolnames, srt
## = tl.srt, : "outer" is not a graphical parameter
## Warning in text.default(pos.ylabel[, 1], pos.ylabel[, 2], newrownames, col
## = tl.col, : "outer" is not a graphical parameter
corrplot(missing_rem, method = "number",outer=TRUE)
## Warning in text.default(pos.xlabel[, 1], pos.xlabel[, 2], newcolnames, srt
## = tl.srt, : "outer" is not a graphical parameter
## Warning in text.default(pos.ylabel[, 1], pos.ylabel[, 2], newrownames, col
## = tl.col, : "outer" is not a graphical parameter
```

Ignore Missing Data

Median Imputed Data

Mice Imputed Data

par(old.par) # One important observation is that after imputing the values the correlation coeffcients are almost th # Looking at the summary stats summary(median_imputed_data) date ## city tmpd dptp ## Length:6940 :-16.00 :-25.62 :1987-01-01 Min. Min. Min. Class : character 1st Qu.: 35.00 1st Qu.: 27.00 1st Qu.:1991-10-01 Mode :character Median : 51.00 Median : 39.88 Median :1996-07-01 ## : 50.31 : 40.34 ## Mean Mean Mean :1996-07-01 ## 3rd Qu.: 67.00 3rd Qu.: 55.75 3rd Qu.:2001-04-01 ## Max. : 92.00 Max. : 78.25 Max. :2005-12-31 pm10tmean2 o3tmean2 no2tmean2 ## pm25tmean2 Min. ## Min. : 1.70 : 2.00 Min. : 0.1528 Min. : 6.158 1st Qu.:14.66 1st Qu.: 22.00 1st Qu.:10.0729 1st Qu.:19.654 Median :14.66 Median : 30.28 Median :18.5218 Median :24.556 Mean :15.22 Mean : 33.77 Mean :19.4355 Mean :25.232 ## 3rd Qu.:14.66 3rd Qu.: 41.86 3rd Qu.:27.0010 3rd Qu.:30.139 ## Max. :61.50 Max. :365.00 Max. :66.5875 Max. :62.480 summary(ignore_missing_data) ## city tmpd dptp date ## Length:2493 Min. :-3.00 Min. :-12.70 Min. :1998-01-05 Class : character 1st Qu.:36.00 1st Qu.: 27.30 1st Qu.:2000-09-17 Median :53.00 Median : 41.90 Mode :character Median: 2002-06-04 ## :51.43 Mean : 41.12 Mean Mean :2002-05-13 ## 3rd Qu.:68.00 3rd Qu.: 56.60 3rd Qu.:2004-03-15 ## Max. :90.00 Max. : 76.60 Max. :2005-12-31 pm10tmean2 ## pm25tmean2 o3tmean2 no2tmean2 Min. : 1.70 Min. : 4.00 : 0.50 : 6.158 ## Min. Min. 1st Qu.: 9.70 1st Qu.:19.00 1st Qu.:11.54 1st Qu.:19.006 ## Median :14.66 Median :26.86 Median :20.17 Median :23.719 Mean :16.23 Mean :29.74 Mean :20.59 Mean :24.256 ## 3rd Qu.:20.60 3rd Qu.:37.50 3rd Qu.:28.39 3rd Qu.:29.062 :97.50 Max. :61.50 Max. Max. :58.84 Max. :57.564 summary(mice_imputed_data) ## pm25tmean2 pm10tmean2 tmpd dptp :-16.00 Min. : 2.00 Min. :-25.62 Min. : 1.70 1st Qu.: 35.00 1st Qu.: 21.50 1st Qu.: 27.00 1st Qu.:10.50 Median : 51.00 Median : 39.88 Median :16.10 Median : 30.15 ## Mean Mean ## : 50.31 Mean : 40.34 Mean :18.10 : 33.89 3rd Qu.: 67.00 3rd Qu.: 55.75 3rd Qu.:23.25 3rd Qu.: 42.00 ## Max. : 92.00 Max. : 78.25 Max. :61.50 Max. :365.00 no2tmean2 ## o3tmean2

##

Min.

: 0.1528

1st Qu.:10.0729 ## Median :18.5218 Min. : 6.158

1st Qu.:19.654

Median :24.556

```
:19.4355
                          :25.232
## Mean
                    Mean
## 3rd Qu.:27.0010 3rd Qu.:30.139
          :66.5875 Max. :62.480
## Max.
summary(chicago)
##
                                                           date
       city
                          tmpd
                                           dptp
                     Min. :-16.00
                                      Min. :-25.62 Min.
##
  Length:6940
                                                             :1987-01-01
## Class :character
                     1st Qu.: 35.00
                                      1st Qu.: 27.00 1st Qu.:1991-10-01
## Mode :character Median : 51.00 Median : 39.88 Median :1996-07-01
##
                     Mean : 50.31
                                     Mean : 40.34 Mean
                                                             :1996-07-01
##
                      3rd Qu.: 67.00
                                      3rd Qu.: 55.75 3rd Qu.:2001-04-01
                           : 92.00
                                           : 78.25 Max. :2005-12-31
##
                     Max.
                                     {\tt Max.}
                                      NA's
##
                     NA's
                           : 1
                                           :2
                    pm10tmean2
##
     pm25tmean2
                                      o3tmean2
                                                      no2tmean2
                                   Min. : 0.1528
## Min. : 1.70
                   Min. : 2.00
                                                    Min. : 6.158
## 1st Qu.: 9.70
                  1st Qu.: 21.50
                                   1st Qu.:10.0729
                                                    1st Qu.:19.654
## Median :14.66
                 Median : 30.28
                                   Median :18.5218
                                                    Median :24.556
## Mean
         :16.23 Mean
                        : 33.90
                                        :19.4355
                                                    Mean
                                                           :25.232
                                  Mean
## 3rd Qu.:20.60
                   3rd Qu.: 42.00
                                   3rd Qu.:27.0010
                                                    3rd Qu.:30.139
                 Max. :365.00
## Max. :61.50
                                   Max. :66.5875
                                                    Max.
                                                           :62.480
## NA's
        : 4447
                   NA's
                         :242
#Chossing the best data set in this case
#From the correlation plot and summary we can infer that mice dataset is closest to the actual data.
#However mice predicts the missing values using a linear relationship and multiple iterations.
#Assumption: The data is missing. Not that missing data is not captured.
#As we see the data b/w 1987 and 1998 for PM25 variable is missing. As PM25 captures 70\% of data we can
#So using the Mice imputed data might be ideal. Imputing median might bias our analysis towards median
#Visualization of a Correlation Matrix.
#On top the (absolute) value of the correlation plus the result of the cor.test as stars. On bottom, th
#chart.Correlation(mice_cor, histogram=TRUE)
"Certain Outlier treatment has been done for 'pm25tmean2' values in the next question after interpretin
'seemingly high' value of PM2.5"
## [1] "Certain Outlier treatment has been done for 'pm25tmean2' values in the next question after inte
##3
```

```
sub_pm25=arrange(mice_imputed_data, desc(pm25tmean2))
head(sub pm25, n = 10)
```

```
tmpd dptp pm25tmean2 pm10tmean2 o3tmean2 no2tmean2
## 1 66.0 47.750
                      61.5
                                 79.0 26.000000 47.05442
## 2 77.0 65.625
                       61.5
                                 79.0 22.191498 32.66848
## 3 62.5 48.625
                      61.5
                                 71.5 15.675084 48.28212
## 4 36.0 32.100
                      61.5
                                57.5 4.812500 41.52778
## 5 61.5 49.875
                      56.5
                                106.0 31.529762 55.41667
## 6 77.5 61.375
                      56.5
                                80.0 47.268914 51.17500
## 7 49.5 33.375
                      56.5
                               106.5 15.115609 40.27065
```

```
56.5
## 8 8.5 2.750
                                    87.0 4.659420 42.88504
## 9 32.0 29.375
                         56.5
                                    77.0 8.666667
                                                    49.01894
                         56.5
                                   116.0 58.886425
## 10 85.0 58.375
                                                    46.27342
summary(mice_imputed_data)
##
         tmpd
                           dptp
                                         pm25tmean2
                                                          pm10tmean2
           :-16.00
                             :-25.62
                                       Min. : 1.70
                                                              : 2.00
##
    Min.
                                                        Min.
                     Min.
    1st Qu.: 35.00
                     1st Qu.: 27.00
                                       1st Qu.:10.50
                                                        1st Qu.: 21.50
    Median : 51.00
                     Median: 39.88
                                       Median :16.10
                                                        Median : 30.15
##
                                                               : 33.89
##
    Mean
           : 50.31
                     Mean
                             : 40.34
                                       Mean
                                              :18.10
                                                        Mean
                     3rd Qu.: 55.75
##
    3rd Qu.: 67.00
                                       3rd Qu.:23.25
                                                        3rd Qu.: 42.00
##
    Max.
           : 92.00
                     Max.
                             : 78.25
                                       Max.
                                               :61.50
                                                        Max.
                                                               :365.00
                        no2tmean2
##
       o3tmean2
##
           : 0.1528
                      Min.
                             : 6.158
    Min.
    1st Qu.:10.0729
                      1st Qu.:19.654
   Median: 18.5218
                      Median :24.556
    Mean
           :19.4355
                      Mean
                              :25.232
##
    3rd Qu.:27.0010
                      3rd Qu.:30.139
    Max.
           :66.5875
                      Max.
                              :62.480
#Checking the quintile distribution
quantile(mice_imputed_data$pm25tmean2,probs=seq(0,1,by=.01)) # checking the quintile distribution
                                                              5%
                                                                         6%
##
          0%
                    1%
                               2%
                                         3%
                                                    4%
##
    1.700000
              4.124339
                         4.800000
                                   5.300000
                                             5.700000
                                                        6.011875
                                                                   6.400000
                    8%
##
          7%
                               9%
                                        10%
                                                   11%
                                                             12%
                                                                  7.885839
##
    6.600000
              6.800000
                         7.050000
                                   7.300000
                                             7.537500
                                                        7.700000
##
         14%
                   15%
                              16%
                                                              19%
                                                                        20%
                                        17%
                                                   18%
##
    8.100000
              8.398125
                         8.600000
                                   8.700000
                                             9.000000
                                                        9.283143
                                                                  9.471429
##
         21%
                   22%
                              23%
                                        24%
                                                   25%
                                                             26%
                                                                        27%
    9.700000
              9.900000 10.100000 10.300000 10.500000 10.800000 10.936984
##
##
         28%
                   29%
                              30%
                                        31%
                                                   32%
                                                             33%
   11.239429 11.407750 11.600000 11.700000 11.900000 12.162500 12.400000
         35%
                   36%
                              37%
                                        38%
                                                   39%
                                                             40%
                                                                        41%
##
  12.700000 12.938000 13.200000 13.443250 13.700000 13.886667 14.150000
                   43%
                              44%
                                        45%
                                                   46%
                                                             47%
##
         42%
   14.400000 14.662500 14.828571 15.046786 15.250000 15.500000 15.764000
         49%
                   50%
                              51%
                                        52%
                                                   53%
                                                             54%
                                                                        55%
  15.900000 16.100000 16.350000 16.669500 16.800000 17.100000 17.400000
         56%
                   57%
                              58%
                                        59%
                                                   60%
                                                             61%
## 17.700000 17.900000 18.100000 18.300000 18.550000 18.800000 19.100000
                   64%
                              65%
                                        66%
                                                   67%
                                                             68%
##
         63%
  19.400000 19.642643 19.800000 20.037500 20.400000 20.600000 21.000000
         70%
                   71%
                              72%
                                        73%
                                                   74%
                                                             75%
                                                                        76%
  21.400000 21.742857 22.162500 22.600000 22.900000 23.250000 23.800000
         77%
                   78%
                              79%
                                        80%
                                                   81%
                                                             82%
                                                                        83%
## 24.300000 24.900000 25.400000 25.600000 26.242000 26.750000 27.300000
         84%
                   85%
                              86%
                                        87%
                                                   88%
                                                             89%
## 27.628571 28.251250 28.900000 29.400000 30.175000 30.900000 31.710000
         91%
                   92%
                              93%
                                        94%
                                                   95%
                                                             96%
```

32.549000 33.700000 34.740500 36.749000 38.100000 39.512500 40.900000

98%

99%

44.957143 49.471429 61.500000

```
#Spotting the outliers in PM25 using a box plot
\verb|#boxplot(mice_imputed_data$pm25tmean2, mice_imputed_data$pm10tmean2, \\
         names=c("PM25"),col=c("tomato","blue"),name="PM25 and PM10")
#mean_1 = mean(mice_imputed_data$pm25tmean2)#mean is 18.1
\#sd_1 = sd(mice_imputed_data\$pm25tmean2) \#sd is 9.95
#There are certain observations which are 4 sds greater than mean, they can be replaced with median ins
# However since 61.5 is not very far off from 56.5, we can retain these values without making any chang
\#mice_imputed_data\$pm25tmean2[mice_imputed_data\$pm25tmean2>(mean_1 + 4*sd_1)] = median(mice_imputed_data\$pm25tmean2)
# Now look at the top 10 values of PM10
a=arrange(mice_imputed_data, desc(pm10tmean2))
head(a,n = 10)
      tmpd
            dptp pm25tmean2 pm10tmean2 o3tmean2 no2tmean2
## 1 67.5 53.250
                  49.47143
                                   365 48.80556 12.24955
## 2 54.0 34.250
                  49.47143
                                   193 14.18342 29.03333
## 3 76.0 52.750 40.90000
                                   148 50.90476 39.35218
## 4 76.5 54.000
                  49.47143
                                   142 49.20168 44.59664
## 5 64.5 52.500 40.90000
                                   141 32.91735 25.35833
## 6 79.0 51.125
                  38.90000
                                   139 54.17857 34.67977
                                   131 39.51852 55.48958
## 7 83.5 65.750 56.50000
## 8 47.0 33.125 40.90000
                                   131 20.07955 31.56944
## 9 67.0 56.875
                   38.90000
                                   129 17.25928 35.67500
## 10 64.0 48.500 40.90000
                                    128 33.61286 34.27273
#Let us also look at PM10
mean_2 = mean(mice_imputed_data$pm10tmean2) #mean is 33.89
sd_2 = sd(mice_imputed_data$pm10tmean2) #sd is 17.95
quantile(mice_imputed_data$pm10tmean2,probs=seq(0,1,by=.05)) # checking the quintile distribution
##
          0%
                   5%
                            10%
                                      15%
                                                 20%
                                                          25%
                                                                     30%
##
     2.00000 12.00000
                      15.49000 17.50000 19.50000 21.50000
                                                               23.50000
         35%
                   40%
                            45%
                                       50%
                                                 55%
                                                          60%
                                                                     65%
##
   25.00000
             27.00000
                       28.50000
                                 30.14583
                                           32.25000
                                                     34.50000
                                                               36.86339
##
         70%
                   75%
                            80%
                                       85%
                                                90%
                                                          95%
                                                                    100%
                      46.00000 50.68667 57.01429 67.50000 365.00000
   39.00000 42.00000
#Replacing the top two observations (treat them as outleirs) which are way away more than 10 standard d
mice_imputed_data_date$pm10tmean2[mice_imputed_data_date$pm10tmean2>(150)] = median(mice_imputed_data_d
#Cross Check PM10 now
a=arrange(mice_imputed_data_date, desc(pm10tmean2))
head(a,n = 10)
            dptp date pm25tmean2 pm10tmean2 o3tmean2 no2tmean2
## 1 76.0 52.750 6725
                        34.20000
                                        148 50.90476 39.35218
## 2 76.5 54.000 6726
                        34.20000
                                         142 49.20168 44.59664
## 3 61.5 48.250 6842
                        49.47143
                                        142 23.78551 39.39881
## 4 64.5 52.500 8156
                        34.20000
                                        141 32.91735 25.35833
```

139 54.17857 34.67977

5 79.0 51.125 6732

38.90000

```
34.20000
## 6 83.5 65.750 7883
                                         131 39.51852 55.48958
## 7
     47.0 33.125 8859
                         56.50000
                                         131 20.07955
                                                       31.56944
                         40.90000
## 8 67.0 56.875 8331
                                         129 17.25928
                                                       35.67500
## 9 64.0 53.000 6317
                         33.00000
                                                       45.15972
                                         128 32.83929
## 10 64.0 48.500 9597
                         38.90000
                                         128 33.61286
                                                       34.27273
#All other variables look fine without any outliers. Hence we can further proceed with our analysis.
##4
#Looking and at the correlation plot to find dependencies
corrplot(mice_cor, method = "number",title = 'Mice Imputed Data', outer=TRUE)
## Warning in text.default(pos.xlabel[, 1], pos.xlabel[, 2], newcolnames, srt
## = tl.srt, : "outer" is not a graphical parameter
## Warning in text.default(pos.ylabel[, 1], pos.ylabel[, 2], newrownames, col
## = tl.col, : "outer" is not a graphical parameter
```

Mice Imputed Data

 $\#From\ the\ correlation\ plot\ we\ see\ that\ for\ high\ values\ of\ PM25,\ PM10\ and\ NO2\ values\ are\ also\ high\ (all\ head(sub_pm25,n=10)$

```
## tmpd dptp pm25tmean2 pm10tmean2 o3tmean2 no2tmean2
## 1 66.0 47.750 61.5 79.0 26.000000 47.05442
## 2 77.0 65.625 61.5 79.0 22.191498 32.66848
```

```
## 3 62.5 48.625
                                  71.5 15.675084 48.28212
                       61.5
## 4 36.0 32.100
                       61.5
                                  57.5 4.812500 41.52778
    61.5 49.875
                       56.5
                                 106.0 31.529762 55.41667
## 5
## 6 77.5 61.375
                                 80.0 47.268914 51.17500
                       56.5
## 7
     49.5 33.375
                       56.5
                                 106.5 15.115609 40.27065
## 8
     8.5 2.750
                       56.5
                                 87.0 4.659420 42.88504
## 9 32.0 29.375
                       56.5
                                  77.0 8.666667 49.01894
## 10 85.0 58.375
                       56.5
                                 116.0 58.886425 46.27342
#Top 10 values of No2
sub_no2=arrange(mice_imputed_data, desc(no2tmean2))
head(sub no2, n = 10)
##
            dptp pm25tmean2 pm10tmean2 o3tmean2 no2tmean2
      tmpd
## 1
     82.5 60.625
                   38.90000 116.00000 55.086119 62.47998
## 2
     62.5 45.750
                   49.47143
                              91.87500 11.041667 59.51562
     27.0 15.400
## 3
                   46.20000
                              62.50000 8.775362 57.56439
## 4 50.0 28.500
                   36.90000
                            78.28571 15.401042 57.52542
## 5 62.5 42.875
                  19.80000 66.50000 18.053571 56.23007
## 6 70.5 62.250
                   56.50000 96.00000 31.119188 55.90522
## 7 83.5 65.750
                  56.50000 131.00000 39.518519 55.48958
## 8 61.5 49.875
                  56.50000 106.00000 31.529762 55.41667
## 9 30.5 32.000
                   49.47143
                              68.75000 8.650815 53.89485
## 10 67.0 46.875
                   19.40000
                              87.50000 21.648148 53.13333
#Top 10 values of PM10
sub_pm10=arrange(mice_imputed_data, desc(pm10tmean2))
head(sub pm10, n = 10)
##
     tmpd
            dptp pm25tmean2 pm10tmean2 o3tmean2 no2tmean2
## 1
     67.5 53.250
                   49.47143
                                   365 48.80556 12.24955
## 2 54.0 34.250
                   49.47143
                                   193 14.18342 29.03333
## 3 76.0 52.750
                   40.90000
                                   148 50.90476 39.35218
## 4 76.5 54.000
                   49.47143
                                   142 49.20168 44.59664
## 5 64.5 52.500
                   40.90000
                                   141 32.91735 25.35833
## 6
    79.0 51.125
                   38.90000
                                   139 54.17857
                                                34.67977
## 7
    83.5 65.750
                  56.50000
                                   131 39.51852 55.48958
## 8 47.0 33.125
                   40.90000
                                   131 20.07955 31.56944
## 9 67.0 56.875
                                   129 17.25928 35.67500
                   38.90000
## 10 64.0 48.500
                   40.90000
                                   128 33.61286 34.27273
quantile(mice imputed data$pm10tmean2,probs=seq(0,1,by=.05))
##
         0%
                            10%
                                                         25%
                                                                   30%
                   5%
                                      15%
                                                20%
##
    2.00000
             12.00000
                       15.49000 17.50000
                                           19.50000
                                                    21.50000
                                                              23.50000
##
        35%
                  40%
                            45%
                                      50%
                                                55%
                                                         60%
                                                                   65%
##
   25.00000
             27.00000
                       28.50000
                                 30.14583
                                           32.25000
                                                    34.50000
                                                              36.86339
##
        70%
                  75%
                            80%
                                      85%
                                                90%
                                                         95%
                                                                  100%
   39.00000
             42.00000
                       46.00000
                                50.68667
                                          57.01429 67.50000 365.00000
```

```
quantile(mice_imputed_data$no2tmean2,probs=seq(0,1,by=.05))
##
          0%
                    5%
                             10%
                                       15%
                                                  20%
                                                            25%
                                                                      30%
##
   6.158333 12.983125 15.423314 17.055015 18.515833 19.653819 20.756647
##
         35%
                   40%
                             45%
                                       50%
                                                  55%
                                                            60%
## 21.779858 22.709074 23.604167 24.555556 25.556453 26.566350 27.666196
                             80%
                   75%
                                       85%
                                                  90%
                                                            95%
                                                                     100%
## 28.868795 30.139040 31.540336 33.260938 35.563750 39.547222 62.479984
##5
#Z score normalization
y = mice_imputed_data_date$pm25tmean2
mice_imputed_data_N_PM25 = mice_imputed_data_date
#Normalized Data
mice_imputed_data_N_PM25pm25_N = (y-mean(y))/(sd(y))
#min-max normalization
x = mice_imputed_data_date$pm10tmean2
#Normalized Data
mice_imputed_data_N_PM25$pm10_N = (x-min(x))/(max(x)-min(x))
mice_imputed_data_N =mice_imputed_data_N_PM25
##6
#year = as.POSIXlt(chicago_new_N$date)$year + 1900
mice_imputed_data_N$date <- as.Date(mice_imputed_data_N$date)</pre>
mice_imputed_data_N[c("year")] = as.POSIX1t(mice_imputed_data_N$date)$year + 1900
##7
aggregate(cbind(dptp,tmpd,pm10tmean2,o3tmean2,no2tmean2)~year,
          data = mice_imputed_data_N,
          FUN=function(x){summary(x)})
      year dptp.Min. dptp.1st Qu. dptp.Median dptp.Mean dptp.3rd Qu.
##
## 1
     1987
             -12.250
                           27.750
                                       39.000
                                                  41.740
                                                               58.000
## 2 1988
                           25.560
                                       36.190
                                                  37.320
                                                               51.840
            -15.880
## 3 1989
            -23.000
                           24.380
                                       37.750
                                                  38.200
                                                               54.880
## 4 1990
             -7.875
                           28.880
                                       41.620
                                                  42.100
                                                               56.880
## 5 1991
             -6.250
                           28.000
                                       40.620
                                                  41.130
                                                               57.000
## 6 1992
             -9.625
                           29.410
                                       38.500
                                                  40.110
                                                               52.090
## 7 1993
             -5.750
                           27.500
                                       38.750
                                                  40.860
                                                               56.120
```

38.880

39.000

40.000

38.750

46.200

41.000

41.150

42.200

39.380

39.500

39.920

39.930

44.270

40.990

40.250

41.310

54.880

55.250

57.120

54.380

58.000

55.200

56.270

55.400

8 1994

9 1995

10 1996

11 1997

12 1998

13 1999

14 2000

15 2001

-25.620

-13.250

-21.000

-10.380

-6.000

-6.900

-7.100

-1.700

27.120

25.380

25.500

27.250

31.100

27.400

25.450

28.000

##	16	2002 -0	0.600	26.500		37.800	11.410	58.100
##	17	2003 -9.300		23.800		39.800	38.340	53.300
##	18	2004 -12.700		26.830		43.150	10.010	54.080
##	19	2005 -7	7.800	26.100		38.800	39.730	56.100
##		dptp.Max.	<pre>tmpd.Min.</pre>	tmpd.1s	t Qu.	tmpd.Media	n tmpd.Mean	tmpd.3rd Qu.
##	1	75.880	2.00	;	36.50	51.00	52.13	69.00
##	2	76.620	-6.50	;	34.50	49.2	49.94	68.25
##	3	77.000	-6.50	;	32.00	50.50	48.37	66.00
##	4	75.880	3.50	;	38.00	52.00	51.67	67.00
##	5	71.750	6.50	;	34.50	50.50	51.40	70.00
##	6	77.250	5.50	;	35.00	48.7	48.81	63.50
##	7	78.120	5.00	;	34.50	48.50	48.72	64.50
##	8	74.000	-16.00	;	36.50	52.00	50.08	66.50
##	9	76.380	0.50	;	33.00	49.50	50.21	68.50
##	10	78.250	-12.00	;	32.00	47.50	47.39	65.00
##	11	75.750	-3.00	;	34.00	48.50	48.71	65.00
##	12	72.900	7.00	;	39.00	55.00	53.78	70.00
##	13	77.100	-2.00	;	37.00	52.00	51.46	66.00
##		70.700	-1.00	;	34.00	53.00	50.04	67.00
##	15	75.100	5.00	;	36.00	53.00		
##	16	74.900	6.00	;	35.00	48.00		
##		71.600	4.00	;	34.00	50.00	49.23	66.00
##	18	72.800	-3.00		36.25	53.00		66.00
##	19	71.400	5.00		34.00	52.00		71.00
##		<pre>tmpd.Max.</pre>	pm10tmean2	_	n10tm	ean2.1st Qu		2.Median
##		87.00		3.000		27.14		37.000
##		89.50		6.000		27.51		37.000
##		86.50		9.375		27.000		37.500
##		86.50		4.000		24.00		31.000
##		88.00		2.000		25.000		33.500
##		80.00		2.000		25.50		34.000
	7	84.00		3.000		24.000		34.000
##		86.00		3.000		24.86		35.500
##		92.00		7.500		22.50		33.000
##		83.00		8.000		21.00		28.670
##	11	85.50		6.000		20.50		28.000
##		85.00		4.500		21.50		29.000
##		90.00		4.500		19.000		28.570
	14	82.00		4.500		20.000		27.500
##	15	85.00		5.000		20.50		29.000
##	16	87.00		4.000		17.50		25.000
##	17	84.00		6.500		17.50		24.000
##	18	83.00		5.000		17.20		25.000
	19	90.00		5.000		18.500		25.500
##	,	-	-	otmean2.		u. pm10tmea		
##	1		39.920		49.0		128.000	2.1250
##			12.390		52.8		148.000	2.3750
##			10.550		50.0		115.000	2.0000
##			35.250		44.0		104.600	2.1250
##			36.540		43.7		131.000	2.0000
##			38.600		45.3		141.000	2.0000
##			36.630		45.0		107.000	0.4271
##			39.500		47.8		131.000	0.1528
##	9	3	35.620		44.0	00	92.500	0.5169

##	10	31.670	38.00	00 128.	000 1.1670
##	11	30.790	37.50		
##	12	30.930	38.00	00 91.	000 0.5556
##	13	31.260	39.50	00 91.	000 0.8542
##	14	30.480	37.92	20 85.	000 1.0420
##	15	32.400	39.50	97.	500 0.5000
##	16	29.340	38.00	00 95.	000 2.0960
##	17	27.510	34.80		000 1.0980
##	18	27.860	35.50		000 2.1970
##	19	28.650	37.00		000 1.7710
##		o3tmean2.1st Qu.			
##	1	10.3500	18.8300	20.5000	28.9700
##	2	10.5900	20.3900	22.2500	30.5100
##	3	11.3900	19.2900	20.8100	28.1100
##	4	11.2400	18.9800	19.7300	26.2800
	5	10.7100	18.3800	20.0100	27.8400
##	6	7.5940	15.1600	16.0600	22.4300
##	7	7.7500	14.9900	15.8000	23.5200
##	8	9.2660	16.0100	17.3200	24.8100
##		8.1220	16.7800	18.1400	25.6900
	10 11	7.0720	15.8200	16.7500	23.6800
	12	10.0200 8.4250	18.1800 20.1600	18.6000 19.2700	26.6200 28.3400
	13	10.7600	20.1800	20.4700	28.8800
	14	10.1800	18.1500	18.5300	25.8500
	15	10.4500	18.7500	19.3500	26.8700
##	16	11.7900	19.8900	20.9900	28.1800
##	17	12.3100	19.5400	20.9800	29.5500
##	18	12.9700	20.6600	20.5400	27.4800
##	19	12.4100	23.1200	23.1900	32.4100
##		o3tmean2.Max. no2			no2tmean2.Median
##	1	62.9700	7.867	19.260	23.490
##	2	61.6800	7.733	19.630	24.520
##	3	59.7300	9.581	21.180	26.140
##	4	52.2300	6.726	17.540	22.600
##	5	63.1000	6.385	16.790	21.380
##	6	50.8300	9.962	20.970	24.790
##	7	44.3000	10.260	21.230	25.770
	8	52.1800	10.940	23.000	28.480
##		66.5900	8.925	22.050	27.260
	10	58.4000	10.460	22.070	26.390
##	11	56.5400	7.729	19.910	25.480
##	12	50.6600	8.800	20.040	24.590
##	13	57.4900	7.642	19.790	24.670
##	14	55.7600	6.158	17.960	23.460
##	15	51.8200	8.650	20.570	25.070
##	16	54.8800 56.1700	7.802	18.640	22.740
##	17	56.1700	7.698	19.540	24.620
## ##	18 19	44.4800	7.552	18.800	23.390
##	19	58.8400 no2tmean2.Mean no	8.833	18.060	22.620
	1	25.290	30.750	57.530	
	2	25.340	30.730	62.480	
##		27.360	32.270	59.520	
	_	21.000	02.210	00.020	•

```
## 4
               23.060
                                  27.720
                                                  46.190
## 5
                                                  55.490
               21.920
                                  26.260
## 6
              25.860
                                                  49.780
                                  29.770
## 7
              26.130
                                  30.230
                                                  48.900
## 8
               29.100
                                  34.580
                                                  53.890
## 9
              27.950
                                  33.100
                                                  53.130
## 10
              26.980
                                  31.760
                                                  52.690
## 11
              25.760
                                  31.010
                                                  53.010
## 12
              24.740
                                  29.350
                                                  47.820
## 13
              24.930
                                  29.680
                                                  49.550
## 14
              24.070
                                  29.970
                                                  50.810
              25.390
                                                  48.720
## 15
                                  29.630
## 16
              23.670
                                                  47.760
                                  27,920
## 17
              25.240
                                  29.890
                                                  57.560
## 18
              23.440
                                  27.650
                                                  44.980
## 19
              23.170
                                  27.340
                                                  48.600
```

```
## Source: local data frame [10 x 2]
##
##
      pm25.quint avg_o3tmean2
##
                         (db1)
          (fctr)
## 1
                      21.19265
            0-10
## 2
                      18.91545
           10-20
## 3
           20-30
                      18.68522
## 4
           30-40
                      19.21478
## 5
           40-50
                      18.34046
## 6
                      18.64571
           50-60
## 7
           60-70
                      18.88857
## 8
           70-80
                      19.31650
## 9
           80-90
                      19.41127
## 10
          90-100
                      21.68362
```