Curved Mirrors

There are two types of curved mirrors:

Predictor Chart for curved mirrors

Locating Images in Concave Mirrors

Write down the rules for locating images formed by concave mirrors and illustrate these rules on the diagram below.

	RAY 1:
1.	
	RAY 2a:
2.	
	or
	RAY 2b:
3.	
3.	

Image Characteristics for Mirrors:

Characteristic (SALT)	Descriptions
(compared to object)	
S – size	smaller, larger, or same
A – attitude	Same or Inverted
L – location	behind or in front of mirror relative to V,F and C (ex. between C &
	F) could be given as a ZONE
T – type	Virtual or real

Summary of Characteristics of Images in Mirrors

Plane Mirrors (flat)	
Size	
Attitude	
Location	
Type	

Concave Mirrors

Images formed in concave (converging light) mirrors have different characteristics depending on the location of the object. *Examples on handout from class*

	Image Characteristics			
Location of object	Size	Attitude	Location	Туре
beyond 'C' (2F)				
Zone 1				
at 'C' (2F)				
between 'C' (2F) and				
'F' – Zone 2				
at 'F'				
between 'F' and 'V'				
Zone 3				

Convex Mirrors

Size	
Attitude	
Location	
Туре	

CURVED MIRROR RAY DIAGRAMS (HOMEWORK)

 used when con 	centrating light to a	is required, also be used to create a
beam of	rays	
- Device	Use of Mirror	
Device	OSE OF IVILITOR	
Uses for diverging miri	rors	
->	than a plane mirror ("mor reasons	re amount of stuff")
Examples:		
	<u>N</u>	<u>Magnification</u>
	used to age can be calculated two wa	objects by increasing or decreasing their size ys
magnif	ication = image height object height	M =
	ication = image distance object distance	M =
	placed 4 cm away from a mir is the magnification of the obj	ror, and the image reflected in a concave mirror is 7.3 cm away ect?
Example 2: A 16 cm ta 0.43X. How tall is the s	-	t lawn. Penny sees its reflection in a mirror that is magnified by
Example 3: A slide proj	ector has a magnification of 60	OX. How tall is the slide if the image on the screen is 97 cm tall?

Refraction

Refraction is the(with a different	of light as it travels from one medium)	into another	
Light isoptically dense mediums.	$_$ (compared to the speed of light in a $oldsymbol{v}$	acuum) by	
The refraction only happens at the two mediums.	ne	between the	otolibr/
Index of Refraction (n) - is a measure of how much light -the larger the refractive index, t	is helight travels		
speed of light in a vacuum: c = _			
Example 1. The speed of light thi	ough an unknown medium is 1.75 x 10	⁸ m/s. What is the index of refraction?	
Example 2. What is the speed of	light in table salt (n=1.51)?		
Homev	vork: Complete the practice problems o	on page 438 (6 of them)	
Predicting the direction that ligh	t will refract:		
	→		
	n where light is travellingow index of refraction), it bends	(high index of refraction) to a medium w	here
If a light ray goes from a medium	n where light is travelling	(low index of refraction) to a medium wh	nere it
is travelling	(high index of refraction), it bends	the normal	

Snell's Law We already know: As light slows down, it bends the normal As light speeds up, it bends the normal θi≠θr HOW MUCH the light bends can be calculated using Snell's Law: In values are θ values are Ex 1. When light passes from air into water at an angle of 60° from the normal, what is the angle of refraction? Ex 2. In an experiment, a block of cubic zirconia is placed in water. A laser beam is pased from the water through the cubic zirconia. The angle of incidence is 50°, and the angle of refraction is 27°. What is the index of refraction of cubic	Dispersion is a special k		ere white light is refracted into _	so a
As light speeds up, it bends the normal As light speeds up, it bends the normal Biller HOW MUCH the light bends can be calculated using Snell's Law: In values are 9 values are Ex 1. When light passes from air into water at an angle of 60° from the normal, what is the angle of refraction? Ex 2. In an experiment, a block of cubic zirconia is placed in water. A laser beam is passed from the water through the cubic zirconia. The angle of incidence is 50°, and the angle of refraction is 27°. What is the index of refraction of cubic zirconia? Homework: Complete the practice problems on pages 441-442 (6 of them) Scenarios where light does NOT refract 1. Both mediums have the same (6; = 0). 3 (6; = 0). 3 occurs - light is "trapped" in the medium because it refracts at an angle of refraction greater than 90° index of refraction to a index of refraction (speeding up bending from the normal) The angle (9c) is the angle of incidence at which total internal reflection first happens (when 9r = 90°) than the critical angle, total internal reflection happens			Snell's Law	
HOW MUCH the light bends can be calculated using Snell's Law: n values are				
n values are	θi≠θr			
Ex 1. When light passes from air into water at an angle of 60° from the normal, what is the angle of refraction? Ex 2. In an experiment, a block of cubic zirconia is placed in water. A laser beam is pased from the water through the cubic zirconia. The angle of incidence is 50°, and the angle of refraction is 27°. What is the index of refraction of cubic zirconia? Homework: Complete the practice problems on pages 441-442 (6 of them) Scenarios where light does NOT refract 1. Both mediums have the same	HOW MUCH the light be	ends can be calculat	ed using Snell's Law:	
Ex 2. In an experiment, a block of cubic zirconia is placed in water. A laser beam is pased from the water through the cubic zirconia. The angle of incidence is 50°, and the angle of refraction is 27°. What is the index of refraction of cubic zirconia? Homework: Complete the practice problems on pages 441-442 (6 of them) Scenarios where light does NOT refract 1. Both mediums have the same				
Homework: Complete the practice problems on pages 441-442 (6 of them) Scenarios where light does NOT refract 1. Both mediums have the same	Ex 1. When light passes	from air into water	at an angle of 60° from the norm	nal, what is the angle of refraction?
Scenarios where light does NOT refract 1. Both mediums have the same 2. The light enters along the occurs - light is "trapped" in the medium because it refracts at an angle of refraction greater than 90° - light must be travelling from a index of refraction to a index of refraction (speeding up bending from the normal) The angle (θc) is the angle of incidence at which total internal reflection first happens (when θr = 90°)	•		•	•
1. Both mediums have the same 2. The light enters along the (θ _i = 0). 3 occurs - light is "trapped" in the medium because it refracts at an angle of refraction greater than 90° - light must be travelling from a index of refraction to a index of refraction (speeding up bending from the normal) The angle (θc) is the angle of incidence at which total internal reflection first happens (when θr = 90°) Occurs	Н	·	, ,	
 2. The light enters along the (θ_i = 0). 3 occurs light is "trapped" in the medium because it refracts at an angle of refraction greater than 90° light must be travelling from a index of refraction to a index of refraction (speeding up bending from the normal) The angle (θc) is the angle of incidence at which total internal reflection first happens (when θr = 90°) At an any θ_i than the critical angle, total internal reflection happens 	1. Both mediums have t			
 light is "trapped" in the medium because it refracts at an angle of refraction greater than 90° light must be travelling from a index of refraction to a index of refraction (speeding up bending from the normal) The angle (θc) is the angle of incidence at which total internal reflection first happens (when θr = 90°) At an any θ_i than the critical angle, total internal reflection happens 				
 light is "trapped" in the medium because it refracts at an angle of refraction greater than 90° light must be travelling from a index of refraction to a index of refraction (speeding up bending from the normal) The angle (θc) is the angle of incidence at which total internal reflection first happens (when θr = 90°) At an any θ_i than the critical angle, total internal reflection happens 				
θ_c	light is "trappedlight must be trans	I" in theavelling from a	medium because it refra	acts at an angle of refraction greater than 90° index of refraction (speeding up
reflection happens	The a	angle (θ c) is the angl		
. 71 /7 11 1911	θ _c	-		than the critical angle, total internal

We can calculate the critical angle using Snell's Law (with $\theta_{\rm r}$ = _ Ex. What is the critical angle of light travelling from water into		
A is formed when light from a distant objegets to our eyes. Lense		peratures of air before it
A lens is a transparent material with a regular s	shape that refracts light in a	way
Most lenses are made of	(come together) or	(spread out)
Converging Lenses:		
F principal axis		
A converging lens is at the centre than at the	ne edges.	
As light travels through a converging lens, they are refracted _	the principal axi	S.
This causes the rays to move toward each other. The light rays		-
The primary focus is on the side	de of the lens as the object.	
Diverging Lenses: (b) F principal F axis		
A diverging lens is in the centre the	han at the edges.	
As light rays pass through a diverging lens, they are refracted_		the principal axis.
This means the light rays diverge and they will	on the other sid	le of the lens.
The primary focus is on the of	the lens as the object	

Predictor Chart for Converging Lenses:

Summary of Characteristics of Images in Lenses

Rules for drawing ray diagrams for Lenses:

In your ray diagrams, assume you are working with a thin lens. All refraction happens at the axis of symmetry

Images formed in converging lenses have different characteristics depending on the location of the object.

	Image Characteristics			
Location of object	Size	Attitude	Location	Туре
beyond 2F'				
(Zone 1')				
at 2F'				
between 2F' and F'				
(Zone 2')				
at F'				
between F' and lens				
(Zone 3')				

Diverging Lens

Size			
Attitude			
Location	2 F	F F'	2F'
Туре			

LOCATING IMAGES IN LENSES

For each of the following Lenses, Locate the image and draw it as an arrow from the Principal Axis. Describe the image using the SALT characteristics.

Uses for Lenses:			
Converging Lenses are usefu	I because they can be used	to create a	on a screen.
Distance form alicette	T of : of of	Hann	

Distance from object to lens	Type of image formed	Uses
Beyond 2F' (zone 1') - converging		
Between F' and 2F' (zone 2') - converging		
Between F' and the converging lens		
Diverging lenses - All distances		

Thin Lens Equation:

To use this equation you must be very careful about the sign (+ or -) that you assign to each value.

FOCAL LENGTH
The focal length for a converging lens is ALWAYS
The focal length for a <u>diverging lens</u> is ALWAYS
OBJECT DISTANCE
The OBJECT DISTANCE is always
IMAGE DISTANCE – Virtual vs. Real
If the image is REAL the distance is always

If the image is **VIRTUAL** the distance is always _____

Ex 1. A converging lens of a magnifying glass is held 2.00 cm above a page to magnify the print. If the image produced by the lens is 3.60 cm away and virtual, what is the focal length of the magnifying glass?

Ex 2. A converging lens has a focal length of 60.0 cm. A candle is placed 50 cm from the lens. What type of image is formed, and how far is the image from the lens?

Ex 3. A camera with a 200-mm lens makes a real image of a bird on film. The film is located 201 mm behind the lens. Determine the distance from the lens to the bird.

Homework: Practice problems 1-3 on pages 455-457 (9 of them) Read section 12.2 (Pg 482-492)

OPTICS LAB 2: THIN LENSES

PURPOSE

You will observe the location of images produced by thin convex (positive, converging) lenses, and verify the thin lens equation for several different object positions.

APPARATUS

Metre stick and supports (x2), object/source light (candle and mount), screen (and mount), converging lens (and mount).

PROCEDURE:

- 1. Determine the focal length, f, of a convex lens in air using a distant object or light source. (Distant means at least 10 meters away if possible, the farther the better). You will use this value for f to set up the apparatus as outlined in step 2. This will be done as a class. f =
- 2. Set up the apparatus listed above (with instructions from your teacher) and measure i) the distance of the object (d_o) , ii) the height of the object candle flame (h_o) , iii) the image distance (d_i) and iv) the image height (h_i) for each of the cases below. Place your data in the chart below. Also determine whether the images in these cases are real or virtual; upright or inverted.

OBSERVATIONS:

TITLE:

Case	d _{o (cm)}	h _{o (cm)}	d _{i (cm)}	h _{i (cm)}	real/virtual	upright/inverted
1. d _o = 3 f						
2. d _o = 2 f						
3. d _o = 1.5 f						
4. d _o = 1.0 f						
5. d _o = 0.5 f						

ANALYSIS:	Answer these	questions in	the space	provided
AITALI SIS.	Allowel these t	questions in	the space	provide

- 1. For a converging lens, where does the object have to be placed (in relation to f) to create an image that is:
 - a) smaller and real
 - b) larger and virtual
 - c) same size and real
 - d) larger and real
- 2. Using the thin lens equation, and your measured distances for the object (d_o) and the image (d_i) , calculate an experimental value for the focal length (f) in each of the cases. Show your calculations below for each case (3 calculations for f).
- 3*f*: 2*f*: 1.5*f*:

- 3. How did your calculated value for **f** compare with the focal length you got using a 'distant' object?
- 4. Using the equation for magnification given above, compare calculated values of magnification (\mathbf{M}) based on i) your measured \mathbf{d}_i and \mathbf{d}_o with ii) your results for \mathbf{h}_i and \mathbf{h}_o . Use a table like the one below.

Case	$\mathbf{M}_{d} (d_{i} \div d_{o})$	$M_h (h_i \div h_o)$	Percent difference $(M_d - M_h) \div M_d \times 100$
1			
2			
3			
4			
5			

5. Describe two sources of error that would create discrepancies in focal length and magnification (from the true value).

The Human Eye (pg. 468-477)

Part of the eye	Function
Iris	
Pupil	
Lens	
Cornea	
Retina	
Rods	
Cones	
Optic nerve	

Correcting Vision

In good eyesight, images are focus	sed on the	at the back of the eye. Light is
refracted through the	and the	so that the light rays
converge on the retina	nd relax to reshape the lens which	
focuses the image onto the retina.	When you are seeing	nearby objects, the lens is
When you ar	e seeing far away obj	ects, the lens is
The blind spot is		·
A person who is far-sighted can se	e objects that are	clearly but cannot see
objects. The imag	ge is focussed	A
lens can be us	sed to correct vision.	
Draw a picture to i	llustrate far-sightedness	and how it is corrected:
objects. The image	ge is focussed sed to correct vision.	
An is caused b		ed cornea. Vision is blurry and can cause
Laser eye surgery corrects vision b	У	
Compare the positives and	l negatives of laser ex	ye surgery (Hint: read pg. 480)
Positives		Negatives

HW: Pg 481 Q. 4-10,

Light & Optics Review

- 1. Define the law of reflection. Using diagrams, explain how diffuse reflection is different from regular reflection.
- 2. Explain the difference between transparent, translucent and opaque objects.
- 3. Light can be produced many different ways explain incandescence, chemiluminescence, and fluorescence.
- 4. Light has a wavelength of 580 nm and travels at the speed of light. What is the frequency?
- 5. Draw a ray diagram to find the image of an object that is 2.0 cm from a concave mirror. The center of curvature is 3 cm. Be sure to include at least 2 light rays, and describe the image using SALT (yes you should be drawing this with a ruler).
- 6. Draw a ray diagram to find the image of an object that is 4.0 cm from a **convex mirror**. The center of curvature is 5 cm. Be sure to include at least 2 light rays, and describe the image using SALT.
- 7. If water has an index of refraction of 1.33, how fast does light travel through it?
- 8. As light travels from water to salt, it bends towards the normal. If the incoming rays are at 52° from the normal, what is the angle of the refracted rays? ($n_{\text{water}}=1.33$, $n_{\text{salt}}=1.54$)
- 9. Light refracts at 52° to the normal as it **exits** a glass of milk. What is the angle of incidence of the incoming rays? ($n_{air}=1.0003$, $n_{milk}=1.35$)
- 10. A 4.5 cm object is placed 19 cm in front of a concave mirror and a real image that is 1.5 cm tall is produced. Determine the distance from the mirror to the image. (Hint: this is a magnification question)
- 11. Locate the images in the lenses below. Calculate the magnification of each image.

- 12. A magnifying glass of focal length 12 cm is used to magnify print. Where is the image seen if the lens is held 15 cm above the paper?
- 13. An object is in front of a diverging lens that has a focal length of 12 cm. How far in front of the lens should the object be placed so that the image is 4 cm from the lens? If the image is 3 cm tall, how tall is the object? (tough question!)
- 14. A 19-cm tall object is placed 21 cm from a converging lens that has a focal length of 14 cm. How far from the lens will the image be formed? How tall is the image? Describe the characteristics of the image. (tough question!)
- 15. Determine the critical angle for sapphire (use air as the second medium). What does this mean?

Other topics that we have covered this unit and will be on the test:

- ✓ Properties of the Wave (Diagram)
- ✓ Electromagnetic Spectrum
- ✓ Sources of Light
- ✓ Transparent, Translucent, Opaque Objects
- ✓ The ray model of light
- √ Shadows
- ✓ Universal Wave Equation Problems
- ✓ Law of Reflection
- ✓ Locating Images in Plane Mirrors
- ✓ Curved mirror terminology (concave, convex, focal point, focal length, centre of curvature, principal axis, object, image...)
- ✓ Locating Images in Concave and Convex Mirrors
 - Describe these using SALT
 - o know which side of the mirror F is on
- ✓ Uses of Mirrors
- ✓ Calculating Magnification
- ✓ Refraction
- ✓ Calculating Refractive Index
- ✓ Snell's Law
- ✓ Total Internal Reflection
- ✓ Solving for Critical Angle
- ✓ Locating Images in Converging and Diverging Lenses
 - o Describe these using SALT
- ✓ Thin Lens Equation
- ✓ Human Eye

More review questions from the textbook: p 504-507 # 3, 5-7, 11-15, 17, 18-21, 23-32, 36-38