

Linguagens Formais e Autómatos Correcção da Primeira Frequência 5 de Novembro de 2014

DEPARTAMENTO DE INFORMÁTICA

Exercício 1 Seja L a linguagem das palavras sobre $\{a,b,c\}$, não vazias, em que o primeiro símbolo é também o último. Por exemplo b,aca estão em L enquanto que ab,bca não estão.

- 1. [1,5 valores] Escreva uma expressão regular que represente L;
- 2. [2,5 valores] Defina um autómato finito determinista que reconheça L;

Resolução 1 Uma expressão regular para a linguagem indicada é

$$a \cup b \cup c \cup a(a \cup b \cup c)^*a \cup b(a \cup b \cup c)^*b \cup c(a \cup b \cup c)^*c$$

 $\textit{Um AFD} \ \'e \ A = \left(\left\{q_I,q_a,q_b,q_c,q_1,q_2,q_3\right\},\left\{a,b,c\right\},\delta,q_I,\left\{q_a,q_b,q_c\right\}\right) \ \textit{em que a transição} \ \'e \ \textit{dada por a transica de dada por a tr$

 $\textbf{Exercício 2} \ \ \textit{Considere o AFND} \ A = \left(\left\{q_0, q_1, q_2\right\}, \left\{a, b\right\}, \delta, q_0, \left\{q_0, q_1, q_2\right\}\right) \ \textit{com a transição } \delta \ \ \textit{definida pela tabela seguinte}$

- 1. [2,5 valores] Aplique o algoritmo dado nas aulas para determinar um autómato finito determinista equivalente a A;
- 2. [2 valores] Encontre um autómato finito determinista mínimo equivalente a A;

Resolução 2 Um AFD equivalente ao autómato dado é $A' = (Q, \{a, b\}, \delta', p_I, F)$ em que

isto é:

$$\begin{array}{c|cccc} p & a & b \\ \hline p_I & p_1 & p_2 \\ p_1 & p_1 & p_3 \\ p_2 & p_2 & p_2 \\ p_3 & p_1 & p_3 \end{array}$$

O conjunto dos estados de aceitação é $F = \{p_I, p_1, p_3\}$.

Um autómato mínimo equivalente obtém-se por

estados	partição		partição	
p_I	I	$\in F$	I	$\delta'(p_I, b) \in II$
p_1	I	$\in F$	III	$\delta'(p_1,b) \in I$
p_2	II	$\not\in F$	II	(- , ,
p_3	I	$\in F$	III	$\delta'(p_3, b) \in I$

Portanto $A'' = (\{I, II, III\}, \{a, b\}, \delta'', I, \{I, III\})$ em que δ'' é dada por

$$\begin{array}{c|cccc} P & a & b \\ \hline I & III & II \\ II & II & II \\ III & III & III \end{array}$$

Exercício 3 [2 valores] Seja $A=(Q,\Sigma,\delta,q_I,\{q_f\})$ um AFND "bem preparado", isto é, sem transições para o estado inicial, com um único estado de aceitação q_f e sem transições a partir de q_f . Considere $A'=(Q,\Sigma,\delta',q_f,\{q_I\})$ com estado inicial q_f , um (único) estado final q_I e em que a transição δ' está definida por

$$p \in \delta'(q, a) \iff q \in \delta(p, a) \quad \forall p, q \in Q, a \in \Sigma$$

Supondo que $L = \mathcal{L}(A)$ que linguagem é $\mathcal{L}(A')$? [Sugestão: considere A um autómato simples, por exemplo para reconhecer $\mathcal{L}((ab)^*)$, e encontre o respectivo A'.]

Resolução 3 Fica $\mathcal{L}(A') = \{w^R : w \in L\}$. Para ver que é assim, basta observar que a um passo de uma computação em A, por exemplo $q \stackrel{a}{\to} p$, corresponde um passo em A', "trocando o sentido da seta", $p \stackrel{a}{\to} q$.

Se $w \in \mathcal{L}(A)$ é porque existe uma computação em A tal que $q_f = \hat{\delta}(q_I, w)$. Portanto, fazendo essa computação "para trás", fica $q_I \in \hat{\delta}'(q_f, w^R)$ isto é $w^R \in \mathcal{L}(A')$.

Exercício 4 [2,5 valores] Mostre que a GIC $G = (\{S, X\}, \{a, b\}, \{S \rightarrow aaX \mid Xbb, X \rightarrow aX \mid bX \mid \lambda\}, S)$ é ambígua.

Resolução 4 A palavra aabb tem duas derivações direitas:

$$S \overset{S \to aaX}{\Rightarrow}_R aaX \overset{X \to bX}{\Rightarrow}_R aabX \overset{X \to bX}{\Rightarrow}_R aabbX \overset{X \to \lambda}{\Rightarrow}_R aabb$$

$$S \overset{S \to Xbb}{\Rightarrow}_R Xbb \overset{X \to aX}{\Rightarrow}_R aXbb \overset{X \to aX}{\Rightarrow}_R aabb$$

Exercício 5 [3 valores] Na notação prefixa as operações escrevem-se antes dos termos. A versão simplificada das expressões aritméticas em notação prefixa usa as operações aritméticas comuns $+,-,\times,\div$ e o símbolo n para representar (quaisquer) números. Por exemplo

notação prefixa	notação infixa ("comum")		
-nn	n-n		
$\div nn$	$n \div n$		
$\times + nnn$	$(n+n) \times n$		
$+ \times nnn$	$n \times n + n$		
$\times n + nn$	$n \times (n+n) \\ n+n \times n$		
$+n \times nn$	$n+n\times n$		

Defina uma GIC para gerar a linguagem das expressões aritméticas simplificadas em notação prefixa.

Resolução 5 Uma GIC adequada é

$$E \rightarrow + E E \mid - E E \mid \times E E \mid \div E E \mid n$$

Exercício 6 Seja L a linguagem $\{a^ib^jc^k: i, j \geq 0, k = i+j\}.$

- 1. [2 valores] Defina um autómato de pilha para reconhecer L;
- 2. [2 valores] Para a demonstração de que L não é regular...
 - que palavra p usaria?
 - que decomposição (ou decomposições) de p = uvw consideraria?
 - como, a partir daí, concluíria que L não é regular?

 $\textbf{Resolução 6} \ \ \textit{Um autómato adequado} \ \ \acute{a} \ A = \left(\left\{p,q,r\right\},\left\{a,b,c\right\},\left\{X\right\},\delta,p,\left\{p,q,r\right\}\right) \ \ \textit{em que a transição} \ \ \acute{e} \ \ \textit{dada por atension} \ \ \emph{dada por atension} \ \ \emph{date atensio$

$$\begin{split} \delta(p,a,\lambda) &= \{(p,X)\} \\ \delta(p,b,\lambda) &= \{(q,X)\} \\ \delta(p,c,X) &= \{(r,\lambda)\} \end{split} \qquad \qquad \delta(r,c,X) = \{(r,\lambda)\} \\ \delta(p,c,X) &= \{(r,\lambda)\} \end{split}$$

Este autómato <u>só</u> aceita quando a pilha está vazia, a palavra foi completamente lida e o estado atingido é de aceitação.

Supondo que L é regular e A um AFD que reconheca L, seja k=|Q| o número de estados de controlo de A.

Uma palavra adeguada para aplicar o pumping lemma será $p = a^k b^0 c^k$.

O pumping lemma garante que existe uma decomposição p=uvw com $|uv| \le k$ e |v|>0 tal que $uv^nw \in L, \forall n \ge 0$. Portanto $u=a^p$, $v=a^q$ e e $w=a^{k-p-q}c^k$ para um certo $0 \le p < k$ e $0 < q \le k$.

Como |v|=q>0 fazendo n=0 o número de a's em uv^0w fica necessariamente menor do que o número de c's. Mas então a condição k=i+j (na definição das palavras de L) já não se verifica. Isto é, $uv^0w \notin L$. Mas isto contradiz o pumping lemma. A contradição resulta da suposição que L é regular, o que tornaria aplicável o pumping lemma.