# Μηχανική Μάθηση

**Project A** 

Τσόγκας Ευάγγελος 3150185

## Περιεχόμενα

| 1. Μερικές Παράγωγοι Πίνακα W <sup>(1)</sup> | 3  |
|----------------------------------------------|----|
| 2. Παραδείγματα Εφαρμογής για το MNIST       | 4  |
| 2.1 Αποτελέσματα για M=100 hidden units      | 4  |
| 2.2 Αποτελέσματα για M=200 hidden units      | 6  |
| 2.3 Αποτελέσματα για M=300 hidden units      | 7  |
| 3. Παραδείγματα Εφαρμογής για το CIFAR-10    | )9 |
| 3.1 Αποτελέσματα για M=100 hidden units      | 9  |
| 3.2 Αποτελέσματα για M=200 hidden units      | 11 |
| 3.3 Αποτελέσματα για M=300 hidden units      | 12 |
| 4. Καλύτερα Αποτελέσματα                     | 14 |

### 1. Μερικές Παράγωγοι Πίνακα W<sup>(1)</sup>

Συνάρτηση κόστους:

$$E(w) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} log y_{nk} - \frac{\lambda}{2} ||w||^{2}$$

Έχοντας τα εξής δεδομένα:

- $\alpha = (w_i^{(1)})^T x_n$
- h(α) η συνάρτηση ενεργοποίησης του hidden layer
- $(T-Y)^TZ \lambda W^{(2)}$  οι μερικές παράγωγοι για τις παραμέτρους  $W^{(2)}$

Οι μερικές παράγωγοι για τις παραμέτρους  $W^{(1)}$  δίνονται από την σχέση:

$$h'(\alpha)(T-Y)W^{(2)}X - \lambda W^{(1)}$$

όπου h'(α) είναι η παράγωγος της συνάρτησης ενεργοποίησης h(α), ο T περιέχει τα δεδομένα εξόδου για τα δεδομένα εκπαίδευσης, ο Y τις τιμές των softmax πιθανοτήτων και ο X τα δεδομένα εκπαίδευσης.

Παράδειγμα αποτελέσματος της συνάρτησης gradcheck για το MNIST:

```
The difference estimate for gradient of w1 is : 3.0309401453931795e-07
The difference estimate for gradient of w2 is : 2.686775384397322e-07
```

### 2. Παραδείγματα Εφαρμογής για το MNIST

Σε όλα τα παραδείγματα χρησιμοποιούνται οι εξής παράμετροι:

- Mέγεθος minibatch = 200
- Αριθμός επαναλήψεων = 300
- Learning rate  $\eta = 0.0025 (0.5/\mu \acute{\epsilon} \gamma \epsilon \theta \circ \varsigma \text{ minibatch})$
- $\lambda = 0.03$

Τα κόστη στα διαγράμματα των παραδειγμάτων αποτελούν το άθροισμα των κοστών όλων των minibatches για κάθε επανάληψη.

#### 2.1 Αποτελέσματα για M=100 hidden units

α) Συνάρτηση Ενεργοποίησης  $h(a) = log(1 + e^a)$ 

Επαναλήψεις = 300, η = 0.0025, λ = 0.03

**Error = 2.05%** 



# β) Συνάρτηση Ενεργοποίησης $m{h}(a) = rac{e^a - e^{-a}}{e^a + e^{-a}}$

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

**Error = 1.75%** 



### γ) Συνάρτηση Ενεργοποίησης h(a)=cos(a)

Error = 53.41%



#### 2.2 Αποτελέσματα για M=200 hidden units

#### α) Συνάρτηση Ενεργοποίησης $h(a) = log(1+e^a)$

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

**Error = 1.87%** 



# β) Συνάρτηση Ενεργοποίησης $h(a)=rac{e^a-e^{-a}}{e^a+e^{-a}}$

**Error = 1.68%** 



#### γ) Συνάρτηση Ενεργοποίησης h(a)=cos(a)

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

**Error = 2.55%** 



#### 2.3 Αποτελέσματα για M=300 hidden units

#### α) Συνάρτηση Ενεργοποίησης $h(a) = log(1+e^a)$

**Error = 1.80%** 



## β) Συνάρτηση Ενεργοποίησης $h(a)=rac{e^a-e^{-a}}{e^a+e^{-a}}$

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

**Error = 1.64%** 



#### γ) Συνάρτηση Ενεργοποίησης h(a)=cos(a)

**Error = 1.84%** 



### 3. Παραδείγματα Εφαρμογής για το CIFAR-10

Σε όλα τα παραδείγματα χρησιμοποιείται οι εξής παράμετροι:

- Mέγεθος minibatch = 200
- Αριθμός επαναλήψεων = 300
- Learning rate  $\eta = 0.0025 (0.5/\mu \text{έγεθος minibatch})$
- $\lambda = 0.03$

#### 3.1 Αποτελέσματα για M=100 hidden units

#### α) Συνάρτηση Ενεργοποίησης $h(a) = log(1+e^a)$

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

#### **Error = 88.86%**





# β) Συνάρτηση Ενεργοποίησης $m{h}(a) = rac{e^a - e^{-a}}{e^a + e^{-a}}$

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

Error = 58.28%



#### γ) Συνάρτηση Ενεργοποίησης h(a)=cos(a)

**Error = 89.76%** 



### 3.2 Αποτελέσματα για M=200 hidden units

#### α) Συνάρτηση Ενεργοποίησης $h(a) = log(1+e^a)$

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

**Error = 87.78%** 



# β) Συνάρτηση Ενεργοποίησης $h(a)=rac{e^a-e^{-a}}{e^a+e^{-a}}$

**Error = 57.88%** 



#### γ) Συνάρτηση Ενεργοποίησης h(a)=cos(a)

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

**Error = 88.87%** 



#### 3.3 Αποτελέσματα για M=300 hidden units

#### α) Συνάρτηση Ενεργοποίησης $h(a) = log(1+e^a)$

Error = 89.28%



# β) Συνάρτηση Ενεργοποίησης $m{h}(a) = rac{e^a - e^{-a}}{e^a + e^{-a}}$

Επαναλήψεις = 300, η = 0.0025,  $\lambda$  = 0.03

**Error = 61.50%** 



#### γ) Συνάρτηση Ενεργοποίησης h(a)=cos(a)

**Error = 89.20%** 



## 4. Καλύτερα Αποτελέσματα

#### **MNIST**

Τα καλύτερα αποτελέσματα παρουσιάστηκαν για  ${\bf M}$  = 300 hidden layers και συνάρτηση ενεργοποίησης την  ${\bf h}(a)=\frac{e^a-e^{-a}}{e^a+e^{-a}}$ 

**Error = 1.64%** 

#### **CIFAR**

Τα καλύτερα αποτελέσματα παρουσιάστηκαν για **M = 200 hidden layers** και συνάρτηση ενεργοποίησης την  $h(a)=rac{e^a-e^{-a}}{e^a+e^{-a}}$ 

**Error = 57.88%**