Abstract

We begin low-dimensional K-theory, i.e., describe $K_0(-)$, $K_1(-)$, and $K_2(-)$, in various settings. The main sources for this talk are the following.

- \bullet nLab.
- Charles Weibel's The K-book: an introduction to algebraic K-theory. Chapters I and II.
- Eric M. Friedlander's An Introduction to K-theory, Chapter 1.

Definition 1. Recall that the forgetful functor $U : \mathbf{Ab} \to \mathbf{CMon}$ admits a left adjoint $K : \mathbf{CMon} \to \mathbf{Ab}$, called the *group completion* functor. For any commutative monoid (C, +), we call the abelian group K(C) the *Grothendieck group of* G, which is constructed as follows.

Consider $S := {C \times C}/_{\sim}$ where $(a_1, b_1) \sim (a_2, b_2)$ if

$$(a_1 + b_2 + k = b_1 + a_2 + k)$$

for some $k \in C$. Note that $\sim = \sim'$ where $(a_1, b_1) \sim' (a_2, b_2)$ if

$$(a_1 + k_1, b_1 + k_1) = (a_2 + k_2, b_2 + k_2)$$

for some $(k_1, k_2) \in C \times C$. Then set K(C) = (S, +), where + is inherited from C and acts componentwise on equivalence classes. Notice that \sim' makes it clear that $[a_1, b_1]^{-1} = [b_1, a_1]$.

Proposition 1. The inclusion $C \hookrightarrow K(C)$ given by $x \mapsto [x] := [x,0]$ is injective iff C is a cancellation monoid.

Lemma 2. (Universal property of the Grothendieck group) Let B be an abelian group and $f: A \to B$ a monoid homomorphism. Then we have

Proof. Define \tilde{f} by $[a_1, b_1] \mapsto f(a_1) - f(b_1)$.

Lemma 3. $K(C_1 \times C_2) \cong K(C_1) \times K(C_2)$.

Definition 2. A submonoid L of C is *cofinal* if for any $c \in C$, there is some $c' \in C$ such that $c + c' \in L$.

Proposition 4. Let L be cofinal in commutative C.

- 1. Any element of K(C) can be written as [m] [n] for some $m, n \in C$.
- 2. $K(L) \le K(C)$.
- 3. Any element of K(C) can be written as [m] [l] for some $m \in C$ and $l \in L$.
- 4. If [m] = [m'], then m + l = m' + l for some $l \in L$.

Example 3.

- 1. $K(\mathbb{N}) \cong \mathbb{Z}$ via $[a_1, b_1] \mapsto a_1 b_1$.
- 2. $K(\mathbb{Z}^{\times}) \cong \mathbb{Q}^{\times}$ via $[a_1, b_1] \mapsto \frac{a_1}{b_1}$.

Definition 4. Let R be a unital ring. Let $(\mathbf{P}(R), \oplus, \otimes_R)$ denote the semiring of (isomorphism classes of) finitely generated projective R-modules. Then we define $K_0(R) = K(\mathbf{P}(R))$.

Lemma 5. $\mathbf{P}(R_1 \times R_2) \cong \mathbf{P}(R_1) \times \mathbf{P}(R_2)$. Therefore, K_0 can be computed componentwise by Lemma 3.

Remark 1. $K_0(-)$ defines a functor from **Ring** to **Ab**. Let $f: R \to S$ be a ring homomorphism and P be a finitely generated projective R-module. The assignment of f under $K_0(-)$ goes as follows.

- 1. Construct $S \otimes_R P$, the base extension of P. This is the unique S-module $(s', s \otimes p) \mapsto s's \times p$ compatible with the R-module structure on S induced by f. This is also an R-module with $f(r) \cdot t := r \cdot t$ for $t \in S \otimes_R P$. We know that $P \oplus Q$ is free for some R-module Q. Since $S \otimes_R (P \oplus Q) \cong_S (S \otimes_R P) \oplus (S \otimes_R Q)$ and $P \oplus Q$ is free over S via f, it follows that $S \otimes_R P$ is a finitely generated projective S-module.
- 2. We've just defined a monoid homomorphism $\tilde{f}: \mathbf{P}(R) \to \mathbf{P}(S)$.
- 3. Apply the universal property of K to find the filling

$$\mathbf{P}(R) \xrightarrow{\tilde{f}} \mathbf{P}(S)$$

$$\downarrow \qquad \qquad \downarrow \qquad ,$$

$$K(\mathbf{P}(R)) \xrightarrow{f_*} K(\mathbf{P}(S))$$

where we set $K_0(f) = f_*$.

Remark 2. (Eilenberg Swindle) Suppose $P \oplus Q = \mathbb{R}^n$ as R-modules. Then

$$P \oplus R^{\infty} \cong P \oplus (Q \oplus P) \oplus (Q \oplus P) \oplus \cdots \cong (P \oplus Q) \oplus (P \oplus Q) \oplus \cdots \cong R^{\infty}.$$

Therefore, if we added R^{∞} to $\mathbf{P}(R)$, then we would have [P] = 0 for each finitely generated projective P.

Example 5. If R = F is a field, then $\mathbf{P}(R) \cong \mathbb{N}$ and, by Example 3, $K_0(R) \cong \mathbb{Z}$. We can generalize this phenomenon a bit.

Definition 6. A ring R has the *invariant basis property (IBP)* if $R^n \not\cong R^m$ when $n \neq m$. Note that any commutative ring has the IBP.

Definition 7. An R-module P is stably free of rank m-n if $P \oplus R^m \cong R^n$ for some m and n.

Lemma 6. The map $f: \mathbb{N} \to \mathbf{P}(R)$ defined by $n \mapsto R^n$ induces a homomorphism $\phi: \mathbb{Z} \to K_0(R)$.

- 1. ϕ is injective iff R has the IBP.
- 2. Suppose R has IBP. Then $K_0(R) \cong \mathbb{Z}$ iff every finitely generated projective R-module is stably free. Proof.
 - 1. By Proposition 4(4), we know that [P] = [Q] in $K_0(R)$ iff $P \oplus R^m \cong Q \oplus R^m$ for some m.
 - 2. $[P] = [R^n]$ iff P is stably free.

Example 8. Suppose that R is commutative. There is a ring homomorphism $R \to F$ with F a field. Then the induced map $K_0(R) \to K_0(F) \cong \mathbb{Z}$ sends [R] to 1. Also, the map $\phi : \mathbb{Z} \to K_0(R)$ is injective by Lemma 6. Letting $K := \ker(K_0(R) \to \mathbb{Z})$, we get a split exact sequence of abelian groups, so that $K_0(R) \cong \mathbb{Z} \oplus K$.

$$1 \longrightarrow K \longrightarrow K_0(R) \longrightarrow \mathbb{Z} \longrightarrow 1$$

Example 9. A ring R is a *flasque* if there is an R-bimodule M which is also a finitely generated projective on one side along with a bimodule isomorphism $R \oplus M \cong M$. Then since $P \oplus (P \otimes_R M) \cong P \otimes_R (R \oplus M) \cong P \otimes_R M$, we see that $K_0(R) = 0$.

Example 10. A module is *semisimple* if it is the direct sum of simple modules. A ring R is called semisimple if it a semisimple R-module. Notice that any semisimple module is both Noetherian and Artinian and that any module over a semisimple ring is semisimple.

Suppose R is semisimple with summands V_1, \ldots, V_m . Then any finitely generated R-module is $\bigoplus_{i=1}^m V_i^{l_i}$, where the l_i are uniquely determined by Krull-Remak-Schmidt. Hence $\mathbf{P}(R) \cong \mathbb{N}^m$, and $K_0(R) \cong \mathbb{Z}^m$.

Example 11. A ring R is von Neumann regular if $(\forall r \in R)(\exists x_r \in R)(rx_rr = r)$. It turns out that any one-sided ideal in R is generated by an idempotent element. Let E/\sim denote the set of idempotent elements in R under the equivalence $e_1 \sim e_2$ if the two generate the same ideal. Then E/\sim forms a lattice where the join and meet correspond to ideal addition and intersection, respectively.

Kaplansky (1998) proved that any projective R-module is some direct sum of (e) with e idempotent. It follows that E/\sim determines $K_0(R)$.

Proposition 7. Let R be commutative. It can be shown that the following are equivalent.

- 1. $R_{\rm red}$ is a commutative von Neumann regular ring.
- 2. R has (Krull) dimension 0.
- 3. Spec(R) is compact, Hausdorff, and totally disconnected. (This is a very strong condition.)

Lemma 8. If $I \subset R$ is nilpotent, then it's not hard to show that $\mathbf{P}(R/I) \cong \mathbf{P}(R)$, hence $K_0(R) \cong K_0(R/I)$.

Definition 12. Let R be a commutative ring. The rank of a finitely generated projective R-module P at a prime ideal \mathfrak{p} is the function

$$\operatorname{rk}:\operatorname{Spec}(R)\to\mathbb{N}\quad\mathfrak{p}\mapsto\dim_{R_{\mathfrak{p}}}(P\otimes R_{\mathfrak{p}}).$$

Proposition 9. The rank of a finitely generated projective module is

- 1. continuous.
- 2. a semiring homomorphism.

Definition 13. An R-module M is a componentwise free module if we have $R = \prod_{i=1}^{n} R_i$ and $M \cong \prod_{i=1}^{n} R_i^{c_i}$ for some integers c_i . Note that M must be projective in this case.

Lemma 10. Let R be commutative. The monoid L of finitely generated componentwise free R-modules has is isomorphic to $[\operatorname{Spec}(R), \mathbb{N}]$.

Proof. Let $f: \operatorname{Spec}(R) \to \mathbb{N}$ be continuous. By some point-set topology, we see that im f is finite, say $\{n_1, \ldots, n_c\}$. It's also possible to write $R = R_1 \times \cdots \times R_c$. Then $R^f := R_1^{n_1} \times \cdots \times R_c^{n_c}$ is a finitely generated componentwise free R-module. Moreover, $f \mapsto R^f$ has inverse rk restricted to componentwise free modules.

Theorem 11. (Pierce) If R is a 0-dimensional commutative ring, then

$$K_0(R) \cong [\operatorname{Spec}(R), \mathbb{Z}],$$

where [X,Y] denotes the semiring of continuous maps $f:X\to Y$.

Proof. We have that R_{red} is a commutative von Neumann regular ring by Proposition 7. Any ideal (d) in R_{red} where d is idempotent is componentwise free. By Kaplansky, every object X of $\mathbf{P}(R)$ is therefore componentwise free. Therefore, $\mathbf{P}(R_{\text{red}}) \cong [\operatorname{Spec}(R_{\text{red}}), \mathbb{N}]$, giving $K_0(R_{\text{red}}) \cong [\operatorname{Spec}(R_{\text{red}}), \mathbb{Z}]$. By Lemma 8 and the fact that $\operatorname{Spec}(R_{\text{red}})$ is homeomorphic to $\operatorname{Spec}(R)$, it follows that $K_0(R) \cong [\operatorname{Spec}(R_{\text{red}}), \mathbb{Z}] \cong [\operatorname{Spec}(R), \mathbb{Z}]$.

Remark 3. When R is commutative, let $H_0(R) := [\operatorname{Spec}(R), \mathbb{Z}]$. If R is Noetherian, then $H_0(R) \cong \mathbb{Z}^c$ where $c < \infty$ denotes the number of components of $H_0(R)$. If R is a domain, then $H_0(R)$ is connected, implying $H_0(R) \cong \mathbb{Z}$.

The submonoid $L \subset \mathbf{P}(R)$ of componentwise free modules is cofinal, so that $K(L) \leq K_0(R)$. Moreover, $K(L) \cong H_0(R)$ by Lemma 10.

The rank of a projective module induces a homomorphism rank : $K_0(R) \to H_0(R)$. Since rank $(R^f) = f$ for any $R^f \in L$, we see that

$$1 \longrightarrow H_0(R) \cong K(L) \hookrightarrow K_0(R) \xrightarrow{\operatorname{rank}} H_0(R) \longrightarrow 1$$

splits. This implies that

$$K_0(R) \cong H_0(R) \oplus \widetilde{K}_0(R)$$
,

where $\widetilde{K}_0(R)$ denotes ker(rank).

Example 14. The Whitehead group of a group G is the quotient $Wh_0(G) = K_0(\mathbb{Z}[G])/\mathbb{Z}$, where $\mathbb{Z}[G]$ denotes the group ring. The augmentation map $f: \mathbb{Z}[G] \to \mathbb{Z}$ induces a split exact sequence

$$1 \longrightarrow Wh_0(G) \longrightarrow K_0(\mathbb{Z}[G]) \longrightarrow K_0(\mathbb{Z}) = \mathbb{Z} \longrightarrow 1.$$

Hence $K_0(\mathbb{Z}[G]) \cong \mathbb{Z} \oplus Wh_0(G)$. We know due to Swan that if G is finite, then $Wh_0(G) \cong \widetilde{K}_0(\mathbb{Z}[G])$ and $\mathbb{Z} \cong H_0(\mathbb{Z})$.

Definition 15. A functor $F: \mathscr{C} \to \mathscr{D}$ is additive if $F: \mathscr{C}(X,Y) \to \mathscr{D}(FX,FY)$ is a homomorphism of abelian groups for any $X,Y \in \text{ob}\,\mathscr{C}$.

Definition 16. The rings R and S are *Morita equivalent* if there exists an additive equivalence between $\mathbf{Mod}_R R$ and \mathbf{Mod}_S .

Theorem 12. If R and S are Morita equivalent, then $K_0(R) \cong K_0(S)$.

Proof. Click here for a self-contained proof.

Let's move from algebraic to topological K-theory.

Definition 17. Let $f: F \to X$ and $g: G \to X$ be vector bundles. The Whitney sum of f and g is the vector bundle $F \oplus G$ on X whose fiber at $x \in X$ is $F_x \oplus G_x$. The tensor product bundle $F \oplus G$ is defined similarly.

Definition 18. A vector bundle homomorphism between $\phi: E_1 \to X_1$ and $\psi: E_2 \to X_2$ is a pair of maps $f: E_1 \to E_2$ and $g: X_1 \to X_2$ such that the following conditions holds.

1.

$$E_1 \xrightarrow{f} E_2$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$X_1 \xrightarrow{g} X_2$$

2. For each $x \in X_1$, the map $f \upharpoonright_{\phi^{-1}(x)} : \phi^{-1}(x) \to \psi^{-1}(g(x))$ is a linear map.

Definition 19. Let $(Vect_{\mathbb{F}}(X), \oplus)$ denote the abelian monoid of (isomorphism classes of) \mathbb{F} -vector bundles on the paracompact space X. We define

$$KU(X) = K(Vect_{\mathbb{C}}(X))$$
 $KO(X) = K(Vect_{\mathbb{R}}(X)).$

Note that these are commutative rings with identity. We apply the notation $K_{top}(-)$ on topological spaces when we wish to omit the base field.

Remark 4. KU(-) and KO(-) define contravariant functors $\mathbf{Top} \to \mathbf{Ab}$. Let $f: Y \to X$ be a map of spaces and $\phi: E \to X$ be a vector bundle. Define the subspace $f^*E = \{(y,e) \in Y \times E: f(y) = \phi(e)\}$. Define the vector bundle $f^*(\phi): f^*E \to Y$ as the restriction of the projection map $\pi: Y \times E \to Y$. Hence we have a morhism $\phi \mapsto f^*(\phi) \to Vect_{\mathbb{F}}(X)$ to $Vect_{\mathbb{F}}(Y)$ of monoids. The universal property of K induces a unique morphism $f^*: K_{top}(X) \to K_{top}(Y)$.

Lemma 13. If X and Y are homotopy equivalent, then $K(X) \cong K(Y)$.

Proof. Apply the homotopy invariance theorem (HIT), which states that if Y is paracompact and $f, g: Y \to X$ are homotopic, then $f^*E \cong g^*E$ for any vector bundle E over X.

Example 20.

- 1. $K_{top}(*) = \mathbb{Z}$.
- 2. If X is contractible, then the HIT implies $KO(X) = KU(X) = \mathbb{Z}$
- 3. We compute the following groups. See I.4.9 of *The K-book* for a justification.

$$KO(S^1) \cong \mathbb{Z} \times C_2 \quad KU(S^1) \cong \mathbb{Z}$$

 $KO(S^2) \cong \mathbb{Z} \times C_2 \quad KU(S^2) \cong \mathbb{Z} \times \mathbb{Z}$
 $KO(S^3) \cong KU(S^3) \cong \mathbb{Z}$
 $KO(S^4) \cong KU(S^4) \cong \mathbb{Z} \times \mathbb{Z}$

Definition 21. The *dimension* of bundle E over X is the continuous homomorphism $\dim(E): X \to \mathbb{N}$ given by $x \mapsto \dim(E_x)$.

Definition 22. A vector bundle $p: E \to X$ is a componentwise trivial bundle if we can write $X = \coprod X_i$ such that each X_i is a component of X and $p \upharpoonright_{p^{-1}(X_i)}$ is trivial.

Lemma 14. The submonoid of componentwise trivial bundles over X is isomorphic to $[X, \mathbb{N}]$.

Proof. Send a given map $f: X \to \mathbb{N}$ to $T^f := \coprod_{i \in \mathbb{N}} (f^{-1}(i) \times \mathbb{F})$. Conversely, if E be a componentwise trivial bundle, then $E \cong T^{\widehat{\dim}(E)}$.

Remark 5. Thus, the sub-monoid of trivial bundles and the sub-monoid of componentwise trivial bundles are naturally isomorphic to \mathbb{N} and $[X, \mathbb{N}]$, respectively. When X is compact, these are cofinal in $Vect_{\mathbb{F}}(X)$ by the subbundle theorem (proven using Riemannian geometry), giving $\mathbb{Z} \leq [X, \mathbb{Z}] \leq K_{top}(X)$.

Remark 6. We get a split exact sequence.

$$1 \longrightarrow \widetilde{K}_{top}(X) \longrightarrow K_{top}(X) \xrightarrow{\widehat{\text{dim}}} [X, \mathbb{Z}] \longrightarrow 1 ,$$

where $\widetilde{K}_{top}(X)$ denotes $\ker(\widehat{\dim})$.

Remark 7. The map of monoids $Vect_{\mathbb{R}}(X) \to Vect_{\mathbb{C}}(X)$ given by $[E] \mapsto [E \otimes \mathbb{C}]$ extends by universality to a homomorphism $KO(X) \to KU(X)$. Likewise, the forgetful functor $Vect_{\mathbb{C}}(X) \to Vect_{\mathbb{R}}(X)$ extends to a homomorphism $KU(X) \to KO(X)$.

Theorem 15. (Swan) Here is a nice early connection between algebraic and topological K-theory. Let X be a compact Hausdorff space and $\mathcal{C}(X,\mathbb{F})$ denote the ring of continuous functions $X \to \mathbb{F}$. For any $E \in Vect_{\mathbb{F}}(X)$, set $\Gamma(X,E) = \{s : X \to E : p \circ s = \operatorname{Id}_X\}$, the vector space of global sections of E. Then the map $E \mapsto \Gamma(X,E)$ induces isomorphisms $KO(X) \cong K_0(\mathcal{C}(X,\mathbb{R}))$ and $KU(X) \cong K_0(\mathcal{C}(X,\mathbb{C}))$.

Definition 23. Our results thus far can be extended to symmetric monodical categories because these come equipped with a notion of direct sum that enabled our Grothendieck construction. A *symmetric monoidal category* S is equipped with a functor $\square: S \times S \to S$, a base object e, and four natural isomorphisms expressing commutativity, associativity, and that e acts as an identity. These four must also satisfy coherence properties.

Example 24. The following are examples of symmetric monoidal category .

- 1. k-vector spaces with \otimes_k .
- 2. Any category with finite coproducts where $s\Box t := s \coprod t$.
- 3. The category of pointed topological spaces where $s\Box t \coloneqq s \wedge t$ and $e \coloneqq S^0$.

Definition 25. Suppose that the class of isomorphism classes of objects of a category S is a set, called S^{iso} . If S is symmetric monoidal, then $(S^{\text{iso}}, \square)$ is an abelian monoid with identity element e. Then we define the Grothendieck group of S as $K_0(S)$.