

Data Handling and Data Mining

FIXING THE SPARROW DATA SET

BASIC STATISTICS FOR BIOLOGISTS

 $PhD\ Student$ Aarhus University Department of Bioscience Section for Ecoinformatics & Biodiversity Center for Biodiversity and Dynamics in a Changing World (BIOCHANGE) Ny Munkegade 116, Building 1540

8000 Aarhus

Denmark

Erik Kusch

email: erik@i-solution.de

Summary:

These are the solutions to the exercises contained within the handout to A Primer For Statistical Tests which walks you through the basics of variables, their scales and distributions. Keep in mind that there is probably a myriad of other ways to reach the same conclusions as presented in these solutions.

Contents

1	Loa	ding the R Environment Object	2
2	Var	iables	2
	2.1	Finding Variables	2
	2.2	Colour	
	2.3	Depth	3
	2.4	IndividualsPassingBy	4
	2.5	Length	5
	2.6	Reproducing	6
	2.7	Sex	7
	2.8	Size	8
	2.9	Temperature	6
3	Dist	tributions	10
	3.1	Length	10
	3.2	Reproducing	
	3.3	IndividualsPassingBy	
	3.4	Depth	

1. Loading the R Environment Object

```
load("Data/Primer.RData") # load data file from Data folder
```

2. Variables

2.1 Finding Variables

2.2 Colour

```
class(Colour) # mode

## [1] "character"
barplot(table(Colour)) # fitting?
```


Question	Answer
	character
Which scale?	Nominal
What's implied?	Categorical data that can't be ordered
Does data fit scale?	Yes

2.3 Depth

```
class(Depth) # mode

## [1] "numeric"

barplot(Depth) # fitting?
```


Question	Answer
Mode?	numeric
Which scale?	Interval/Discrete
What's implied?	Continuous data with a non-absence point of origin
Does data fit scale?	Debatable (is 0 depth absence of depth?)

2.4 IndividualsPassingBy

```
class(IndividualsPassingBy) # mode

## [1] "integer"

barplot(IndividualsPassingBy) # fitting?
```


Question	Answer
Mode?	integer
Which scale?	Integer
What's implied?	Only integer numbers with an absence point of origin
Does data fit scale?	Yes

2.5 Length

```
class(Length) # mode

## [1] "numeric"

barplot(Length) # fitting?
```


Question	Answer
Which scale?	numeric Relation/Ratio Continuous data with an absence point of origin Yes

2.6 Reproducing

```
class(Reproducing) # mode

## [1] "integer"
barplot(Reproducing) # fitting?
```


Question	Answer
Mode?	integer
Which scale?	Integer
What's implied?	Only integer numbers with an absence point of origin
Does data fit scale?	Yes

2.7 Sex

```
class(Sex) # mode

## [1] "factor"

barplot(table(Sex)) # fitting?
```


Question	Answer
Mode?	factor
Which scale?	Binary
What's implied?	Only two possible outcomes
Does data fit scale?	Yes

2.8 Size

```
class(Size) # mode

## [1] "character"

barplot(table(Size)) # fitting?
```


Question	Answer
Which scale?	Categorical data that can be ordered

2.9 Temperature

```
class(Temperature) # mode

## [1] "numeric"

barplot(Temperature) # fitting?
```


Question	Answer
Mode?	numeric
Which scale?	Interval/Discrete
What's implied?	Continuous data with a non-absence point of origin
Does data fit scale?	Yes (the data is clearly recorded in degree Celsius)

3. Distributions

3.1 Length

```
plot(density(Length)) # distribution plot
```

density.default(x = Length)


```
shapiro.test(Length) # normality check
```

```
##
## Shapiro-Wilk normality test
##
## data: Length
## W = 1, p-value = 0.4
```

The data is **normal distributed**.

3.2 Reproducing

```
plot(density(Reproducing)) # distribution
```

density.default(x = Reproducing)

shapiro.test(Reproducing) # normality check

```
##
## Shapiro-Wilk normality test
##
## data: Reproducing
## W = 1, p-value = 0.3
```

The data is **binomial distributed** (i.e. "How many individuals manage to reproduce") but looks **normal distributed**. The normal distribution doesn't make sense here because it implies continuity whilst the data only comes in integers.

3.3 IndividualsPassingBy

```
plot(density(IndividualsPassingBy)) # distribution
```

density.default(x = IndividualsPassingBy)

shapiro.test(IndividualsPassingBy) # normality check

```
##
## Shapiro-Wilk normality test
##
## data: IndividualsPassingBy
## W = 1, p-value = 0.02
```

The data is **poisson distributed** (i.e. "How many individuals pass by an observer in a given time frame?").

3.4 Depth

```
plot(density(Depth)) # distribution
```

density.default(x = Depth)

The data is **uniform distributed**. You don't know this distribution class from the lectures and I only wanted to confuse you with this to show you that there's much more out there than I can show in our lectures.