Descriptive Statistics

Tullia Padellini

tulliapadellini.github.io ⊐ tullia.padellini@uniroma1.it घ

Statistics is the art of learning from data

a cheesy introduction

The information we gather with experiments and surveys is collectively called data.

A course in statistics should teach you how to **make sense** of the data.

Two (+ one) elements of statistics:

building blocks of statistical analysis

> **Describe**: formulating an hypothesis

Descriptive statistics refers to methods for **summarizing the collected data** (where the data constitutes either a sample or a population). The summaries usually consist of graphs and numbers such as averages and percentages.

> **Infer**: validating an hypothesis

Inferential statistics refers to methods of **making decisions or predictions** about a population, based on data obtained from a sample of that population.

The step from description to inference is **probability**.

Toy Example

Are movies getting better?

 Descriptive Statistics: there is an increasing trend in the ratings of "good" movies.

Inferential Statistics: can we conclude that movies are getting better or is this trend appearing just by coincidence?

Statistical Variables

the building blocks of statistical analysis

A **variable** y is any characteristic observed in a study.

The data values that we observe for a variable are called **observations**.

Statistical Variables

the building blocks of statistical analysis

A **variable** y is any characteristic observed in a study.

The data values that we observe for a variable are called **observations**.

- > **Unit** *i*: A member of a population
- Population: The collection of all individuals, families, groups, organizations, and units that we are interested in finding out about
- > Sample y_1,\ldots,y_N : The subset of the population we observe.
- > **Modality** x_k : The way the variable is presented on a single statistical unit.

Toy Example

statistical variable in real life

Variable: Grade in Statistics of Torvergata's Students

Observations: 18, 22, 26, 30, 22, 21, ...

> **Unit**: the single student

> **Population**: all students of Torvergata

> **Sample**: a class (e.g. you?)

> **Modalities**: 18 : 30

Types of Variables

a general classification

> Qualitative (Categorical)

Nominal

Ordinal

> Quantitative (Numerical)

Discrete

Continuous

Categorical

variables that are not numbers

A variable is called categorical if **each observation belongs** to one of a **set of distinct categories**.

> **Nominal**: Categories are disconnetted. Examples: *Hair Color*, *Alma Mater*, *McDonald's menu item*

> **Ordinal**: Categories are ranked. Examples: *Amazon's rating, Level of Education*

Examples

your guess!

Boca Junior players:
modalities: Daniele De Rossi, Carlos Tevez, ...

> Basketball roles: modalities: 1, 2, 3, 4, 5

 Netflix Membership Level: modalities: Base, Standard, Premium

WATCH OUT A variable using numbers as labels for its categories is still a categorical variable and is not quantitative.

Examples

your guess!

- » Boca Junior players: Nominal Categorical variable modalities: Daniele De Rossi, Carlos Tevez, ...
- > Basketball roles: Nominal Categorical variable modalities: 1, 2, 3, 4, 5
- > Netflix Membership Level: Ordinal Categorical variable modalities: Base, Standard, Premium

WATCH OUT A variable using numbers as labels for its categories is still a categorical variable and is not quantitative.

Numerical Variable

variables that are numbers

A variable is called **quantitative** if observations on it **take numerical values** that represent different magnitudes of the variable.

- » Discrete: the variable assume values in a countable set ("how many") Examples: Number of episode in a series, Grades
- > Continous: the variable assume values in a continuous set ("how much")

Examples: Time, most physical measurements

Exercise wrapping it up

For the following variables, determine type, modalities and the statistical units on which they are observed.

- > Number of times an Academy Award winner says "Thanks/Thank you" in its acceptance speach.
- > Pro-capita consumption of Alcohol in world countries.
- > Names of the dogs died in space.
- > Your daily screen-time (i.e. the time you spend on your phone)

What do we do with them?

we cannot use all variables in the same way

The objective is to provide insights about the data that **cannot be** quickly **obtained by looking only at the original data**.

What do we do with them?

we cannot use all variables in the same way

The objective is to provide insights about the data that **cannot be** quickly **obtained by looking only at the original data**.

> For categorical variables, a key feature to describe is the **relative number of observations in the various categories**.

Example: what percentage of days were sunny in a given year?

What do we do with them?

we cannot use all variables in the same way

The objective is to provide insights about the data that **cannot be** quickly **obtained by looking only at the original data**.

For categorical variables, a key feature to describe is the relative number of observations in the various categories.

Example: what percentage of days were sunny in a given year?

> For quantitative variables, key features to describe are the **center and the variability** (sometimes referred to as spread) of the data.

Example: What's a typical annual amount of precipitation? Is there much variation from year to year?

Frequency Distributions

for categorical / numerical discrete variables

Given a sample y_1, \dots, y_N taking values in a set x_1, \dots, x_K we define:

> Absolute (Raw) Frequency n_i : how many times the i-th modality appears in the sample

$$n_i = \sum_{j=1}^N \mathbb{I}(y_j = x_i)$$

> Relative Frequency f_i : proportion of the how many i-th modality appears in the sample

$$f_i = \frac{n_i}{N}$$

Frequency Tables

aggregating observations

Frequency distribution: tabular summary of data showing the frequency of items in each of several modalities of the variable of interest.

$\overline{\text{Modalities } x}$	Absolute Frequency n	Relative Frequency f
$\overline{x_1}$	n_1	f_1
•••	•••	•••
x_K	n_K	f_K

This is the most general formulation and it applies to both quantitative and qualitative data.

Toy Example

Thanksgiving preferences

What pie do you eat for thanksgiving?

> **Sample**: 2238 americans interviewed in 2015

> Population: US citiziens

> Variable: Categorical Nominal

Modalities: Apple, Buttermilk, Cherry, Chocolate, Coconut cream, Key Lime, Peach, Pecan, Pumpkin, Sweet Potato, None, Other

х	n	f
Apple	514	0.23
Buttermilk	35	0.02
Cherry	113	0.05
Chocolate	133	0.06
Coconut cream	36	0.02
Key Lime	39	0.02
Peach	34	0.02
Pecan	342	0.15
Pumpkin	729	0.33
Sweet Potato	152	0.07
None	40	0.02
Other	71	0.03
Sum	2238	1

Cumulative Relative Frequency

adding a column to the table

If the variable is categorical ordinal or numerical discrete we can define **Cumulative Relative Frequency**, as the proportion of observation that take a value

Let x_1, \dots, x_K be the modalities increasingly ordered, then

$$F_i = \sum_{j \leq 1} f_j$$

Example:

 $x_1=\mbox{Very Unsatisfied}, x_2=\mbox{Mildly unsatisfied}, x_3=\mbox{Neutral}, x_4=\mbox{Mildly Satisfied}, x_5=\mbox{Very Satisfied}$

What is the proportion of customer which is not happy with the service? F_3

Toy Example

building a frequency table

Students taking Statistics in the last "appello" passed the exam with the following grades:

18 28 26 20 28 18 22 22 18 28 18 18 28 28 28 20 24 22 26 22 30

Sample: 21 students from last year class

> Population: students of Statistics of Torvergata

> Variable: Numerical Discrete

Toy Example

building a frequency table

Students taking Statistics in the last "appello" passed the exam with the following grades:

18 28 26 20 28 18 22 22 18 28 18 18 28 28 28 20 24 22 26 22 30

> Sample: 21 students from last year class

> Population: students of Statistics of Torvergata

> Variable: Numerical Discrete

	Х	n	f	F
	18	5	0.24	0.24
	20	2	0.1	0.34
	22	4	0.19	0.53
	24	1	0.05	0.58
	26	2	0.1	0.68
	28	6	0.29	0.97
	30	1	0.05	1
Sum		21	1	

Exercise

your turn

Consider the following absolute frequencies table, where the variable observed is the number of shoes Tullia bought each month of the last year:

	Х	n
	0	1
	1	4
	2	3
	3	?
	4	2
Sum		12

- > Describe the data. What kind of variable are we dealing with? What are the units?
- > If possible, fill-in the missing value in the table.
- > Complete the frequency table adding relative and cumulative frequencies.

Frequency table

for continuous numerical variables

When the variable is continuous, we build frequency tables from intervals rather than from the single modalities.

Operationally, given a sample y_1, \dots, y_N , we devide all the possible values modalities in a finite number of classes, e.g. $[l_1, u_1), \dots, [l_K, u_K]$.

> Absolute (Raw) Frequency n_i : how many times the modality appears in the sample

$$n_i = \sum_{j=1}^N \mathbb{I}(y_j \in [l_i, u_i))$$

Frequency Tables for Continuous variables

a general formulation

$\overline{{\rm Class}\ [l,u)}$	Absolute Frequency n	Relative Frequency f
$\overline{[l_1,u_1)}$	n_1	f_1
•••	•••	•••
$[l_K, u_K]$	n_K	f_K

CAVEAT: Classes can have different sizes!

Toy example

Tarantino's movies

Kill Bill Vol.1

- > The observations are the times at which a swearword is said in the movie.
- $>y_i$ is the time of the i-th swearword / blasphemy in the movie
- > Classes are equally sized, 10 minutes interval.

[u,l)	n	f
[0,10)	3	0.02
[10,20)	22	0.18
[20,30)	10	0.08
[30,40)	11	0.09
[40,50)	10	0.08
[50,60)	0	0
[60,70)	9	0.08
[70,80)	7	0.06
[80,90)	46	0.38
[90,100)	1	0.01

Graphical Representation

turning data into pretty pictures

Frequency tables allow us to summarize the data, but they also allow for graphical representation that makes data even more easy to analyse.

> Barplot (Categorical / Discrete variables)

each modality is associated to a bar, whose height corresponds to the absolute frequency

> Histogram (Continuous variables)

each class is associated to a bar whose area correspond to its density

Graphical representation gives us "a feel" for the data, they tell us about the "shape" of the data, their spread and allow us to compare different variables.

Barplot

for categorical data / numerical

Histogram

for continuous variables

Exercise

your turn

Consider the number of shoes that Tullia bought each month of the last year:

	Х	n
	0	1
	1	4
	2	3
	3	2
	4	2
Sum		12

> Represent graphically this frequency table, justifying your choice.

Numerical Summaries

aggregating even more

If we want a more *concise* summary however we can derive numerical summaries (*statistics*), which describes **a feature** of the variable with one number.

The features we focus on are:

- > centrality: describing what is a "typical" value for the observations
- > variability: describing whether the observations take similar values or they are quite different from one another

Measure of Central Tendency

location of the distribution

What is the "typical" value for the observations?

> Mode:

the value that appears more often (it can be more than one!)

> Median:

the value that splits in half the distribution

> Mean:

the balance point of the distribution

These can all be computed from a frequency table!

Mode

a center for all variables

The **mode** is the modality with the highest observed frequency.

$$y_{MODE} = \{x_j \; \text{ such that } f_j \geq f_i \; \forall i \neq j \}$$

This is the most general notion of *center* and applies to **all types of data**, both categorical and numerical data.

If data are **grouped** (that is they are divided into classes), then the notion of mode becomes the *modal class*

WATCH OUT: there could be more than one mode

Toy example

back to Thanksgiving pies

Median

a robust center

The **median** is the middle value of the observations when the observations are ordered (in whichever direction).

Let $y_{(1)}, \dots, y_{(N)}$ be the *ordered* sample.

 \rightarrow if N is odd, the median is the value

$$y_{MED} = y_{(\frac{N+1}{2})}$$

 \rightarrow if N is even, the median is the value

$$y_{MED} = \frac{1}{2} \left(y_{\left(\frac{N}{2}\right)} + y_{\left(\frac{N}{2}+1\right)} \right)$$

Median

little interpretation

The median can be computed for all numerical variable and for categorical ordinable variable.

The median is a *center* in the sense that it splits the data in two, half the data below it and half above it

Example:

- > Original sample: Good, Good, Bad, Medium, Bad, Bad, Bad
- > Ordered sample: Bad, Bad, Bad, Medium, Good, Good

Toy Example

how to compute the Median

18 28 26 20 28 18 22 22 18 28 18 18 28 28 28 20 24 22 26 22 30

- Ordered sample: 18 18 18 18 18 18 20 20 22 22 22 22 24 26 26 28 28 28 28 28 28 30
- >N=21 is odd, take the (N+1)/2=11-th element
- $y_{MED} = y_{(11)} = 22$

Toy Example

how to compute the Median

18 28 26 20 28 18 22 22 18 28 18 18 28 28 28 20 24 22 26 22 30

- Ordered sample: 18 18 18 18 18 18 20 20 22 22 22 22 24 26 26 28 28 28 28 28 28 30
- >N=21 is odd, take the (N+1)/2=11-th element
- $y_{MED} = y_{(11)} = 22$

Х	n	f	F
18	5	0.24	0.24
20	2	0.1	0.34
22	4	0.19	0.53
24	1	0.05	0.58
26	2	0.1	0.68
28	6	0.29	0.97
30	1	0.05	1

The median is the first modality x_k for which $F_k \geq 0.5$

Quartiles

an extension of the Median

The median y_{MED} tell us which is the $\it level$ reached by at least 50% of the population.

Its extension, the **percentile of level p**, tell us which is the level reached by at least p^* 100% of the population, and it is defined as the first modality x_k for which $F_k \geq p$.

The percentiles of level p=0.25 and p=0.75 have a special role and are called **1st** and **3rd quartile** respectively.

Mean

the one and only

The (arithmetic) **mean** is the sum of the observations divided by the number of observations.

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

It is interpreted as the balance point of the distribution because it minimizes the following quantity

$$\bar{y} = \arg\min_{c} \sum_{i=1}^{N} (y_i - c)^2$$

Properties

characterizing the mean

> internality:

$$y_{(1)} \leq \bar{y} \leq y_{(N)}$$

> linearity:

if
$$z_i = ay_i + b$$
 then

$$\bar{z} = a\bar{y} + b$$

> zero-deviation:

$$\sum_{i=1}^{N} (y_i - \bar{y}) = 0$$

> associativity:

if \bar{y}, \bar{x} are the arithmetic mean of two samples of size N and M, respectively, then the mean of the combined sample is

$$\bar{z} = \frac{N \times \bar{y} + M \times \bar{x}}{N + M}$$

From a Frequency distribution

computing/approximating the mean

It is possible to compute the mean **directly from the frequency distribution**, using this alternative definitions:

$$\bar{y} = \frac{1}{N} \sum_{j=1}^{K} x_j n_j = \sum_{j=1}^{K} x_j \frac{n_j}{N} = \sum_{j=1}^{K} x_j f_j$$

Where x_i are the modalities of the variable.

This formulation can be used also when variables are grouped in intervals (l_j,u_j) : it is enough to replace x_j with the center of the interval

$$c_j = (u_j + l_j)/2 \qquad \Rightarrow \bar{y} = \sum_{j=1}^K c_j f_j$$

Toy Example

mean of grouped data

Salaries of NBA players for the season 2017/2018 in 100.000\$:

	Х	С	n	f	F	c*f
	[0.172, 34.8)	17.50	336	0.59	0.59	10.26
	[34.8, 69.5)	52.17	76	0.13	0.72	6.92
	[69.5, 104)	86.84	41	0.07	0.79	6.21
	[104, 139)	121.50	35	0.06	0.85	7.42
	[139, 173)	156.17	30	0.05	0.9	8.18
	[173, 208)	190.83	18	0.03	0.93	5.99
	[208, 243)	225.50	19	0.03	0.96	7.48
	[243, 277)	260.16	9	0.02	0.98	4.09
	[277, 312)	294.83	6	0.01	0.99	3.09
	[312, 347)	329.49	2	0.00	0.99	1.15
Sum			572	0.99	8.70	60.79

WATCH OUT: This is not necessarily equal to the mean of the disaggregated data (in this case 58.58)

Exercise

NBA Salaries

	Х	С	n	f	F	c*f
	[0.172, 34.8)	17.50	336	0.59	0.59	10.26
	[34.8, 69.5)	52.17	76	0.13	0.72	6.92
	[69.5, 104)	86.84	41	0.07	0.79	6.21
	[104, 139)	121.50	35	0.06	0.85	7.42
	[139, 173)	156.17	30	0.05	0.9	8.18
	[173, 208)	190.83	18	0.03	0.93	5.99
	[208, 243)	225.50	19	0.03	0.96	7.48
	[243, 277)	260.16	9	0.02	0.98	4.09
	[277, 312)	294.83	6	0.01	0.99	3.09
	[312, 347)	329.49	2	0.00	0.99	1.15
Sum			572	0.99	8.70	60.79

- > Compute median and mode, and compare them with the value of the mean. What do you notice?
- > Draw the histogram

Mean vs Median

no winner: they measure different things

- > The mean takes into account all observations, including possible anomalous ones!
- > The median takes into account only order of the observations, regardless of their values.

Example:

In the case of the NBA salary data *only very few players* (Stephen Curry, LeBron James) had *very big* pay-checks.

The mean considers them as regular players, while the median does not!

Mean and Median coincide only when the distribution of the variable is **symmetric**

Toy Example

NBA salaries

Numerical Summaries slide reciclying

If we want a more *concise* summary however we can derive numerical summaries (*statistics*), which describes **a feature** of the variable with one number.

The features we focus on are:

- > centrality: describing what is a "typical" value for the observations
- > variability: describing whether the observations take similar values or they are quite different from one another

Variability

how unpredictable is our variable?

When do we consider observations "similar" between each other?

> Ranges:

when they varies in a small interval

> Variance:

when they are all close to the same value (typically the mean)

Ranges

variability in a set

Based on the idea of **variability** as the **size** of the interval in which the observations lay, we can define two measures of spread:

> The (Global) Range of Variation is the difference between the maximum and the minimum value observed in the sample

$$RV = y_{(N)} - y_{(1)}$$

> The Interquartile Range is the difference between the 3rd and the 1st quartile and it gives us the smalles interval in which 50% of the observations lay

$$IQ = y_{Q1} - y_{Q3}$$

This is not affected by anomalous observations.

Variance

variability from a center

The variance is base on the idea that the larger the deviations from the mean $(y_i-\bar{y})$, regardless of their sign, the larger the variability.

Problem: To exploit the idea of **deviation from the center** we cannot use just the average of the deviations

$$\frac{1}{N}\sum_{i=1}^N (y_i - \bar{y})$$

because of the **zero-deviation** property of the mean.

Solution: Square them!

$$s^2 = \frac{\sum_{i=1}^{N} (y_i - \bar{y})^2}{N}$$

Standard deviation

an equivalent index

The **Standard Deviation** is the square root of the variance:

$$s=\sqrt{s^2}=\sqrt{\frac{1}{N}\sum_{i=1}^N(y_i-\bar{y})^2}$$

The standard deviation is on the same scale as the data, making it more interpretable than the variance.

Computing the Variance

with and without frequency tables

- > Strategy 1 Compute directly all the deviations $(y_i \bar{y})^2$, then average them
- > **Strategy 2**: Exploit the alternative definition of the variance

$$s^2 = \frac{1}{N} \sum_{i=1}^{N} y_i^2 - \bar{y}^2$$

In terms of frequency distributions

$$\frac{1}{N}\sum_{i=1}^{N}y_{i}^{2}=\frac{1}{N}\sum_{j=1}^{K}x_{j}^{2}n_{j}=\sum_{j=1}^{K}x_{j}^{2}f_{j}$$

Toy example

Torvergata grades yet again

	x	n	f	F	xf	x^2	x^2f
	18	5	0.24	0.24	4.29	324	77.14
	20	2	0.1	0.34	1.9	400	38.1
	22	4	0.19	0.53	4.19	484	92.19
	24	1	0.05	0.58	1.14	576	27.43
	26	2	0.1	0.68	2.48	676	64.38
	28	6	0.29	0.97	8	784	224
	30	1	0.05	1	1.43	900	42.86
Sum			1.02	4.34	23.43	4144	566.1

$$> S^2 = 566.1 - 23.43^2 = 17.131$$

$$S = \sqrt{17.131} = 4.14$$

Exercise

your turn

Consider (again) the number of shoes that Tullia bought each month of the last year:

	x_i	n_i
	0	1
	1	4
	2	3
	3	2
	4	2
Sum		12

- > Determine the mean, the median and the mode of the observed variable. If not possible, explain why.
- > Plot the data, motivating your choice of graph.
- > Compute interquartile range and sample variance, commenting on the difference between these two measures of variability.

Two-variables

a more interesting setting

So far we have only dealt with how to describe, represent and summarize **a** single variable.

In real life, however, we usually have more than one variable measured on each unit, that **may or may not** be related.

Examples: weight and height of a subject, length and budget of a movie, hair color and first name of a subject.

CAVEAT: We focus on the case of both variables being numerical (although association measures exist for categorical and mixed type variables as well).

Scatterplot

graphical representation of two dimensional variables

A two dimensional variable (X_1,X_2) is usually represented through a **scatterplot**:

 \rightarrow each axis correspond to one of the two variables X,Y

 each point represent a units and its coordinates correspond to values of the two variables observed on it

Toy Example

back to Tarantino

movie	SW	kills
Django Unchained	262	47
Inglorious Basterds	58	48
Jackie Brown	368	4
Kill Bill: Vol. 1	57	63
Kill Bill: Vol. 2	69	11
Pulp Fiction	469	7
Reservoir Dogs	421	10

Association

formalizing dependency

When we have more than one variable at hand, we typically want to know whether there is a relationship between them.

- > **Positive** Association: as x goes up, y tends to go up.
- > **Negative** Association: as x goes up, y tends to go down.

The **covariance** is an indicator measuring the strength of the association between two variables:

$$cov_{x,y} = \frac{1}{N}\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})$$

Limits of the Covariance:

it is not all fun and games

> the covariance measure linear association, i.e. the case where the relationship between the two variables \boldsymbol{x} and \boldsymbol{y} is of the type

$$y_i = ax_i + b$$

> the covariance depends on the scale of the data. We have no general reference to determine if the observed covariance is large or small

Correlation

a more interpretable measure

The **correlation** is a rescaled version of the covariance:

$$r_{x,y} = \frac{cov_{x,y}}{s_x s_y}$$

- > the correlation is between -1 and 1; the closer $|r_{x,y}|$ is to 1, the stronger the linear association in the observations
- > correlation does not depend on the variables' unit, i.e. it is not affected by the scale of the observations
- > correlation is **symmetric** with respect to the two variables, i.e. it does not treat favorably one variable over the other

Limit of Correlation

it is still not all fun and games

- > Correlation still measure **only linear dependence**. That is $|r_{x,y}|=1$ when data lay on a straight line. However, if there is some more complicated form of dependence, even something simple like $y_i=ax_i^2+b$, correlation may not capture it.
- Correlation does not mean causation! There may be a strong correlation between two variables even when there is no relation between them.

Datasaurus

Correlation still measure only linear dependence

Datasaurus

Correlation still measure only linear dependence

Datasaurus

Correlation still measure only linear dependence

Spurious Correlation

Correlation does not mean causation

X = People who died by falling out of their bed

> Y = Lawyers in Puerto Rico

 $r_{x,y} = 0.957087$

Exercise

Does LSD help with math?

> X: Tissue Concentration of
Lysergic Acid Diethylamide (LSD)

	v.	Math	Toct	Scores
>	Y:	matn	rest	Scores

? Compute the covariance and the correlation between X and Y

X	Υ
1.17	78.93
2.97	58.20
3.26	67.47
4.69	37.47
5.83	45.65
6.00	32.92
6.41	29.97

Solution I

getting an idea of what are we dealing with

Solution

doing all the math

	X	Y	X^2	Y^2	XY
	1.17	78.93	1.37	6229.94	1.37
	2.97	58.20	8.82	3387.24	8.82
	3.26	67.47	10.63	4552.20	10.63
	4.69	37.47	22.00	1404.00	22.00
	5.83	45.65	33.99	2083.92	33.99
	6.00	32.92	36.00	1083.73	36.00
	6.41	29.97	41.09	898.20	41.09
Sum	30.33	350.61	153.89	19639.24	153.89

$$\begin{array}{ll} \bar{X} = 4.3 & \bar{Y} = 50.1 \\ s_X = 1.66 & s_X = 15.95 \\ cov_{x,y} = -28.92 & r_{x,y} = -0.936 \end{array}$$