Controle e acionamento de motores sem escovas

Rodrigo Alvite Romano - rromano@maua.br

IMT - Instituto Mauá de Tecnologia NSEE - Núcleo de Sistemas Eletrônicos Embarcados

10 de junho de 2014

Outline

- 1 Introdução
- 2 Objetivos
- 3 Controlador de motores BLDC

4 Equipe

Motores sem escovas (brushless)

Introdução

Objetivos

Controlador de motores BLDC

Equipe

- Principais características
 - Alta eficiência
 - Maior vida útil (comparado a motores com escovas)
 - Operação sem ruído
 - ► Capacidade de operação em amplas faixas de velocidades
 - ▶ Bom compromisso entre velocidade e torque

Motores sem escovas (brushless)

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Principais características

- Alta eficiência
- Maior vida útil (comparado a motores com escovas)
- Operação sem ruído
- Capacidade de operação em amplas faixas de velocidades
- ▶ Bom compromisso entre velocidade e torque

Algumas aplicações:

- Veículos elétricos
- Equipamentos médicos
- Aeroespacial

Roda de reação

Motores brushless - aspectos construtivos

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Aspectos construtivos:

▶ Imãs permanentes no rotor e enrolamentos no estator

► A comutação das fases é realizada eletronicamente

Objetivos

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Objetivo central

Desenvolver um dispositivo embarcado em uma FPGA capaz de realizar tanto o acionamento como o controle de motores de corrente contínua sem escovas (BLDC)

Objetivos

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Objetivo central

Desenvolver um dispositivo embarcado em uma FPGA capaz de realizar tanto o acionamento como o controle de motores de corrente contínua sem escovas (BLDC)

Requisitos desejáveis para a aplicação em rodas de reação

- Baixa oscilação de torque
- ► Controle com pouca variabilidade em ampla faixa de velocidades
- ► Flexibilidade para operar em diferentes modos

Diagrama de blocos da arquitetura do sistema

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Módulo de acionamento

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Finalidade

Realizar o acionamento das fases do motor em função de um valor pré-estabelecido

Figura: Inversor trifásico

Módulo de sensoriamento

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Finalidade

Processar sinais de diferentes sensores e disponibilizar informações a outros módulos do sistema

Módulo de controle

Introdução

Objetivos

Controlador de motores BLDC

Equip

Finalidade

Determinar a intensidade do acionamento das fases do motor de acordo com um determinado modo de operação

Modos de operação:

- ► Operação em malha aberta
- Controle de velocidade
- ► Controle de torque

Interface de comunicação

Introdução

Objetivos

Controlador de motores BLDC

Equip

Finalidade

Permitir o monitoramento e a programação do sistema por meio de uma interface de comunicação serial

- ▶ Prover informações sobre o funcionamento do dispositivo:
 - Velocidade de rotação
 - Torque gerado
 - ► Temperatura do estator
 - Configurações do sistema:
 - ► Seleção do modo de operação
 - ▶ Envio de sinais de referência para o módulo de controle
 - Reprogramação de parâmetros de sintonia do sistema de controle

Validação do sistema

Introdução

Objetivos

Controlador de motores BLDC

Equipe

Todos os testes de validação serão realizados considerando a aplicação do sistema no controle de rodas de reação

Cenários de validação:

- ► Simulação híbrida
- ► Mesa com mancal hidrostático (INPE)

Equipe de desenvolvimento

Introduça

Objetivo

Controlador de motores BLDC

Equipe

Profissionais do IMT:

- ▶ MSc. Fernando Martins (hardware e dispositivos de validação)
- ► Eng. Rafael Corsi Ferrão (software)
- Dr. Rodrigo A. Romano (coordenação)
- Dr. Sergio Ribeiro Augusto (hardware de validação) Bolsistas:
- ► Eng. Cauê Garcia Menegaldo (software)
- ► MSc. Cesar Scarpini Rabak (hardware e software)
- ► Eng. Juliano T. A. Laganá Pinto (modelagem e simulação)
- ► Raphael Ballet (software)

Consultores:

- ► Eng. Gerard Epstein (Engenharia de sistemas)
- ▶ Dr. Valdemir Carrara (Aplicação de BLDC em rodas de reação)

