Optimization for Training Deep Models

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Optimization

- Role of Optimization in Deep Learning
- How learning differs from optimization
 - Risk, empirical risk and surrogate loss
 - Batch, minibatch, data shuffling
- Challenges in neural network optimization
- Basic Algorithms
- Parameter initialization strategies
- Algorithms with adaptive learning rates
- Approximate second-order methods
- Optimization strategies and meta-algorithms²

Optimization is essential for DL

- All Deep Learning is an instance of a recipe:
 - 1. Specification of a dataset
 - 2. A cost function
 - 3. A model
 - 4. An optimization procedure
- The recipe for linear regression
 - 1. Data set : X and y
 - 2. Cost function: $J(\boldsymbol{w}) = -E_{x,y \sim \hat{p}_{data}} \log p_{\text{model}}(y \mid \boldsymbol{x}) + \lambda \left\| \boldsymbol{w} \right\|_{2}^{2}$ Includes regularization
 - 3. Model specification: $p_{\text{model}}(y \mid \boldsymbol{x}) = N(y; \boldsymbol{x}^T \boldsymbol{w} + \boldsymbol{b}, 1)$
 - 4. Optimization algorithm
 - solving for where the cost is minimal

Our focus is on one case of optimization

- To find parameters θ of a neural network that significantly reduces a cost function J(θ)
 - It typically includes:
 - a performance measure evaluated on an entire training set as well as an additional regularization term

Optimization in Deep Learning

- There are many contexts for optimization in DL
 - 1. Inference with PCA requires optimization
 - Encoding: f(x)=c, Decoding: $x \approx g(f(x))$, g(c)=Dc
 - Optimal $c^*=\operatorname{argmin}_c ||x-g(c)||_2$, Reconstruction: $g(f(x))=DD^Tx$
 - 2. Analytical Optimization to write proofs/design algorithms
 - Squared error objective is same as maximum likelihood
 - 3. Neural network training
 - Most difficult optimization of all is neural network training
 - Weight decay minimization:

$$J(\boldsymbol{w}) = -E_{\boldsymbol{x}, \boldsymbol{y} \sim \widehat{\boldsymbol{p}}_{data}} \log p_{\text{model}}(\boldsymbol{y} \,|\, \boldsymbol{x}) + \lambda \left\| \boldsymbol{w} \right\|_2^2$$

Importance of Optimization

- Common to invest days to months of time on 100s of machines to solve a single instance of neural network training problem
- Because the problem is so important and so expensive
 - Specialized optimization techniques have been developed for solving it

Deep Learning Plan of Discussion of Optimization

- 1. How training optimization differs from pure optimization
- 2. Challenges that make optimization of neural networks difficult
- 3. Several practical algorithms including
 - 1. Optimization algorithms
 - 2. Strategies for initializing parameters
 - Most advanced algorithms
 - adapt learning rates or
 - leverage second derivatives of cost function
- 4. Combine simple optimization algorithms into higher-level procedures

DL Frameworks include Optimization

Frameworks offer building blocks

 For designing, training, validating deep nets through a high level programming interface

Optimized for performance

Provide parallelization for GPUs

Visualization of network modeling & interface

Example: Keras

- An open source neural network library written in Python
- It is capable of running on top of TensorFlow
- Contains implementations of building blocks, such as
 - 1. Layers
 - 2. Objectives
 - 3. Activation functions
 - Optimizers
 - 5. Tools to make working with image and text data easier

Srihari

Keras for MNIST Neural Network

- # Neural Network
- import keras
- from keras.datasets import mnist
- from keras.layers import Dense
- from keras.models import Sequential
- (x_train, y_train), (x_test, y_test) = mnist.load_data()
- num_classes=10
- image vector size=28*28
- x_train = x_train.reshape(x_train.shape[0], image_vector_size)
- x_test = x_test.reshape(x_test.shape[0], image_vector_size)
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- image_size = 784 model = Sequential()
- model.add(Dense(units=32, activation='sigmoid', input_shape=(image_size,)))
- model.add(Dense(units=num_classes, activation='seftmax'))
- model.compile(optimizer='sgd', lossz-categorical_crossentropy',metrics=['accuracy'])
- history = model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=False,validation_split=.1)
- loss,accuracy = model.evaluate(x_test, y_test, verbose=False)

Summary of Optimization Methdos

Movies:

http://hduongtrong.github.io/2015/11/23/coordinate-descent/

Gradient Descent

$$\boxed{ \begin{split} \boldsymbol{g} = \frac{1}{M} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{M} L \Big(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta} \Big) \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \varepsilon \boldsymbol{g} \end{split} }$$

Coordinate Descent

Minimize f(x) wrt a single variable, x_i , then wrt x_i etc

SGD

$$\boxed{\boldsymbol{g} = \frac{1}{m'} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{m'} L \Big(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta} \Big)}$$

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} - arepsilon oldsymbol{g}$$