Kruskal's Algorithm

Shusen Wang

Kruskal's Algorithm

Basic idea: Maintain a forest, i.e., a collection of trees.

- Initially, there are n trees; every vertex is a tree.
- Each iteration studies one edge; the edge may be chosen so that two trees are merged.
- Stop when there is only one tree.
- The algorithm runs in at most $|\mathcal{E}|$ iterations. (Because there are $|\mathcal{E}|$ edges.)

Preparations

- Build a queue of edges.
- Sort the elements so that the weights are in ascending order.

Edge	Weight
(1, 4)	1
(6, 7)	1
(1, 2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5, 7)	6
(4,5)	7
(4,6)	8
(2,5)	10

Preparations

- Build a queue of edges.
- Sort the elements so that the weights are in ascending order.

Edge	Weight
(1, 4)	1
(6, 7)	1
(1, 2)	2
(3, 4)	2
(2,4)	3
(1, 3)	4
(4, 7)	4
(3, 6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

Preparations

- Build a queue of edges.
- Sort the elements so that the weights are in ascending order.

$\mathcal{T} = \emptyset$.	(Record the se	elected edges.)
-----------------------------	----------------	-----------------

Edge	Weight
(1,4)	1
(6,7)	1
(1, 2)	2
(3,4)	2
(2, 4)	3
(1, 3)	4
(4,7)	4
(3, 6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

 $\mathcal{T} = \emptyset$

Perform dequeue and get the edge (1, 4).

Eage	weight
(1, 4)	1
(6, 7)	1
(1, 2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4, 7)	4
(3,6)	5
(5, 7)	6
(4,5)	7
(4,6)	8
(2,5)	10

Woight

- Perform dequeue and get the edge (1, 4).
- v_1 and v_4 are not in the same tree.
- Thus accept edge (1, 4).

Edge	Weight
(6, 7)	1
(1, 2)	2
(3,4)	2
(2,4)	3
(1, 3)	4
(4, 7)	4
(3, 6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

	r	 d
J		Y.

$$\mathcal{T} = \left\{ e_{1,4} \right\}$$

- Perform dequeue and get the edge (1, 4).
- v_1 and v_4 are not in the same tree.
- Thus accept edge (1, 4).
- Append (1,4) to \mathcal{T} .

Edge	Weight
(6,7)	1
(1, 2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3, 6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10
(2,5)	10

 $\mathcal{T} = \{e_{1,4}\}$

Perform dequeue and get the edge (6, 7).

Edge	Weight
(6, 7)	1
(1, 2)	2
(3,4)	2
(2,4)	3
(1, 3)	4
(4, 7)	4
(3, 6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

- Perform dequeue and get the edge (6, 7).
- v_6 and v_7 are not in the same tree.
- Thus accept edge (6, 7).

Edge	Weight
(1, 2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3, 6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}\}$$

- Perform dequeue and get the edge (6, 7).
- v_6 and v_7 are not in the same tree.
- Thus accept edge (6, 7).
- Append (6,7) to \mathcal{T} .

Edge	Weight
(1, 2)	2
(3,4)	2
(2,4)	3
(1, 3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10
(3,6)(5,7)(4,5)(4,6)	5 6 7 8

Perform dequeue and get the edge (1, 2).

Edge	Weight
(1, 2)	2
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5, 7)	6
(4,5)	7
(4,6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}\}$$

- Perform dequeue and get the edge (1, 2).
- v_1 and v_2 are not in the same tree.
- Thus accept edge (1, 2).

Edge	Weight
(3,4)	2
(2,4)	3
(1, 3)	4
(4,7)	4
(3, 6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10
 (4,7) (3,6) (5,7) (4,5) (4,6) 	4 5 6 7 8

$$\mathcal{T} = \{e_{1,4}, e_{6,7}\}$$

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}\}$$

- Perform dequeue and get the edge (1, 2).
- v_1 and v_2 are not in the same tree.
- Thus accept edge (1, 2).
- Append (1, 2) to \mathcal{T} .

Edge	Weight
(3,4)	2
(2,4)	3
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

Perform dequeue and get the edge (3, 4).

Edge	Weight
(3, 4)	2
(2,4)	3
(1, 3)	4
(4, 7)	4
(3, 6)	5
(5,7)	6
(4, 5)	7
(4, 6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}\}$$

- Perform dequeue and get the edge (3, 4).
- v_3 and v_4 are not in the same tree.
- Thus accept edge(3, 4).

Edge	Weight
(2,4)	3
(1,3)	4
(4,7)	4
(3, 6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}\}$$

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}\}$$

- Perform dequeue and get the edge (3, 4).
- v_3 and v_4 are not in the same tree.
- Thus accept edge (3, 4).
- Append (3,4) to \mathcal{T} .

Edge	Weight
(2,4)	3
(1,3)	4
(4, 7)	4
(3, 6)	5
(5, 7)	6
(4, 5)	7
(4, 6)	8
(2,5)	10

Perform dequeue and get the edge (2, 4).

Edge	Weight
(2,4)	3
(1,3)	4
(4,7)	4
(3, 6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}\}$$

- Perform dequeue and get the edge (2, 4).
- v_2 and v_4 are in the same tree.

Edge	Weight
(1,3)	4
(4, 7)	4
(3, 6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}\}$$

- Perform dequeue and get the edge (2, 4).
- v_2 and v_4 are in the same tree.
- Thus reject edge (2, 4).

Edge	Weight
(1,3)	4
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$\mathcal{T} = \{$	$\{e_{1,4},e_{6,7},e_{1,2},e_{3,4}\}$
--------------------	---------------------------------------

Perform dequeue and get the edge (1, 3).

Edge	Weight
(1, 3)	4
(4, 7)	4
(3,6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}\}$$

- Perform dequeue and get the edge (1, 3).
- v_1 and v_3 are in the same tree.

Edge	Weight
(4, 7)	4
(3,6)	5
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

- Perform dequeue and get the edge (1, 3).
- v_1 and v_3 are in the same tree.
- Thus reject edge (1, 3).

Edge	Weight
(4,7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$\mathcal{T} = \frac{1}{2}$	$\{e_{1,4},e_{6,7},e_{1,2},e_{3,4}\}$
-----------------------------	---------------------------------------

• Perform dequeue ueue and get the edge (4, 7).

Edge	Weight
(4, 7)	4
(3,6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

- Perform dequeue and get the edge (4, 7).
- v_4 and v_7 are not in the same tree.
- Thus accept edge (4, 7).

Edge	Weight
(3,6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}\}$$

- Perform dequeue and get the edge (4, 7).
- v_4 and v_7 are not in the same tree.
- Thus accept edge
 (4, 7).
- Append (4,7) to \mathcal{T} .

Edge	Weight
(3,6)	5
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

• Perform dequeue and get the edge (3, 6).

Edge	Weight
(3,6)	5
(5,7)	6
(4, 5)	7
(4, 6)	8
(2,5)	10

$\mathcal{T} = \frac{1}{2}$	$\{e_{1,4},e_{6,7},e_{1,2},e_{3,4},e_{4,7}\}$
-----------------------------	---

- Perform dequeue and get the edge (3,6).
- v_3 and v_6 are in the same tree.

Edge	Weight
(5,7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

= $\{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}\}$

- Perform dequeue and get the edge (3,6).
- v_3 and v_6 are in the same tree.
- Thus reject edge (3, 6).

Edge	Weight
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$\mathcal{T} = \{ e^{i t} \}$	$\{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}\}$
-------------------------------	---

Perform dequeue and get the edge (5, 7).

Edge	Weight
(5, 7)	6
(4,5)	7
(4, 6)	8
(2,5)	10

$\mathcal{T} = \{$	$\{e_{1,4},e_{6,7},e_{1,2},e_{3,4},e_{4,7}\}$
--------------------	---

- Perform dequeue and get the edge (5, 7).
- v_5 and v_7 are not in the same tree.
- Thus accept edge (5, 7).

Edge	Weight
(4,5)	7
(4, 6)	8
(2,5)	10

$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}\}$

$$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}, e_{5,7}\}$$

- Perform dequeue and get the edge (5, 7).
- v_5 and v_7 are not in the same tree.
- Thus accept edge (5, 7).
- Append (5,7) to \mathcal{T} .

Edge	Weight
(4,5)	7
(4, 6)	8
(2,5)	10

End of Procedure

- All the vertices are connected.
- Return the edges \mathcal{T} .

Edge	Weight
(4,5)	7
(4,6)	8
(2,5)	10

$\mathcal{T} = \{e_{1,4}, e_{6,7}, e_{1,2}, e_{3,4}, e_{4,7}, e_{5,7}\}$
--

Kruskal's Algorithm

- 1. Put all the edges of the input graph into a queue.
- 2. Sort the queue so that the weights are in ascending order.
- 3. Let set \mathcal{T} (which stores the selected edges) be the empty set.

Kruskal's Algorithm

- 1. Put all the edges of the input graph into a queue.
- 2. Sort the queue so that the weights are in ascending order.
- 3. Let set \mathcal{T} (which stores the selected edges) be the empty set.
- 4. While $|\mathcal{T}| \leq n-1$:
 - a. Get an edge: $e_{uv} \leftarrow \text{dequeue}()$.
 - b. If u and v are in different trees, then add e_{uv} to \mathcal{T} and merge the two trees.
- 5. Return \mathcal{T} .

How to maintain the forest?

Question 1: How to decide whether two vertices are in the same tree?

Question 1: How to decide whether two vertices are in the same tree?

• Are v_2 and v_4 in the same tree?

Question 1: How to decide whether two vertices are in the same tree?

• Are v_4 and v_7 in the same tree?

Question 1: How to decide whether two vertices are in the same tree?

- Using disjoint sets data structure.
- Put vertices of a tree in the same set.

Question 1: How to decide whether two vertices are in the same tree?

- Using disjoint sets data structure.
- Put vertices of a tree in the same set.
- Deciding whether two vertices belong to the same set costs near O(1) time.

Question 2: How to merge two trees?

Question 2: How to merge two trees?

• Union the two sets.

Question 2: How to merge two trees?

- Union the two sets.
- Union costs near O(1) time.

Time Complexity

Overall time complexity is $O(m \cdot \log m)$. (m = #edges.)

• Sorting the edges: $O(m \cdot \log m)$ time complexity.

Time Complexity

Overall time complexity is $O(m \cdot \log m)$. (m = # edges.)

- Sorting the edges: $O(m \cdot \log m)$ time complexity.
- At most *m* iterations.
- Per-iteration time complexity is $\tilde{O}(1)$.
 - Decide whether two vertices belong to the same tree: $\tilde{O}(1)$ time.
 - Merge two trees: $\tilde{O}(1)$ time.
- Overall time complexity: $O(m \cdot \log m) + m \cdot \tilde{O}(1)$.

Thank You!