Tipos de Reasoning Strategies

Reasoning Technique	Short Description
Chain-of-Thought (CoT)	Breaks down a complex problem into intermediate reasoning steps to reach a solution.
Tree-of-Thought (ToT)	Explores multiple reasoning paths in a tree structure to evaluate and select the best.
Self-Consistency	Samples multiple CoT outputs and selects the most consistent or frequent answer.
ReAct (Reason + Act)	Combines reasoning with action by letting the model think and interact with tools.
Reflexion	Uses feedback from previous answers to revise or improve reasoning in future steps.
Least-to-Most Prompting	Starts with easier subtasks and gradually solves harder ones using prior results.
Step-by-Step Prompting	Encourages the model to reason one step at a time before arriving at an answer.
Scratchpad	Allows the model to write and store intermediate computations or thoughts.
Active Prompting	Guides the model through a sequence of questions to stimulate deeper reasoning.

Generated Knowledge Prompting	Injects relevant background knowledge generated by the LLM before reasoning begins.
Answer-Then-Explain	Asks the model to give an answer first, then explain the reasoning behind it.
Explain-Then-Answer	Encourages reasoning first, followed by the final answer for more reliable results.
Multi-Prompt Decoding	Uses diverse prompts to generate multiple answers and aggregates them for consensus.
Verification and Critique	One model (or pass) critiques or verifies another's reasoning for reliability.
Tool-Augmented Reasoning	Integrates external tools (e.g., calculator, search engine) into reasoning workflows.
Deliberation Networks	Emulates a back-and-forth internal debate to refine reasoning and decisions.

Pesquisa dos reasonings dados em aula - Quais são e não são estratégias de reasoning

Categorized Table

Reference	Туре	Definition / Explanation
Fully Supervised Fine-Tuning	X Training Method	Adapts a pre-trained LLM to a task using labeled data. Not a reasoning strategy — it's part of model adaptation.
Prompt & In-Context Learning	✓ Reasoning Strategy	Uses task examples or instructions directly in the prompt to guide the model's reasoning and output.
Rationale Engineering – Chain-of-Thought	✓ Reasoning Strategy	Designs prompts to elicit step-by-step reasoning (Chain-of-Thought, or CoT), improving logical accuracy.
Self-Consistency Sampling	✓ Reasoning Strategy	Generates multiple reasoning paths (e.g., CoT) and selects the most frequent or consistent answer.
Decomposição de Problemas (Problem Decomposition)	✓ Reasoning Strategy	Breaks complex tasks into simpler subproblems to solve sequentially — a core principle in structured reasoning.
Tool-Augmented Reasoning	✓ Reasoning Strategy	Combines reasoning with external tools (e.g., calculator, web search) during inference to improve problem-solving.
Memory and Contextual Reasoning	X Capability / Mechanism	Refers to the model's use of past turns (memory) or large prompt context. Enables reasoning but is not itself a strategy.
MCP – Protocol	X Framework / Methodology	Likely refers to a structured prompting or evaluation protocol . Not a standard reasoning strategy — needs clarification, but likely a meta-approach or framework for task execution.

Summary

Are Reasoning Strategies

- Prompt & In-Context Learning
- Rationale Engineering / Chain-of-Thought
- Self-Consistency Sampling
- Decomposição de problemas (Problem Decomposition)
- Tool-Augmented Reasoning

X Are Not Reasoning Strategies

- Fully Supervised Fine-Tuning → Training Method
- Memory and Contextual Reasoning → Underlying Capability
- MCP Protocol → Likely a Framework, not a direct reasoning technique (needs precise definition)

References Table

Concept	Type	Reference / Source	Notes
Fully Supervised Fine-Tuning	Training Method	Howard & Gugger (2020); Hugging Face Docs	Model training with labeled data; not used during inference.
Prompt & In-Context Learning	Reasoning Strategy	Brown et al. (2020), GPT-3 Paper	Few-shot learning by providing examples in the prompt.
Rationale Engineering / CoT	Reasoning Strategy	Wei et al. (2022), Chain of Thought Prompting	Improves reasoning by prompting step-by-step thought.

Self-Consistency Sampling	Reasoning Strategy	Wang et al. (2022), Self-Consistency Improves Chain of Thought	Samples multiple CoT paths and chooses the most consistent answer.
Decomposição de Problemas	Reasoning Strategy	Zhou et al. (2022), Least-to-Most Prompting; Cobbe et al. (2021)	Breaks down complex tasks into simpler subtasks.
Tool-Augmented Reasoning	Reasoning Strategy	Yao et al. (2022), ReAct: Reason + Act	Combines reasoning with external tools (e.g., calculator, search engine).
Memory & Contextual Reasoning	Model Capability / Mechanism	OpenAl (GPT-4 Memory); LangChain docs	Enables multi-turn understanding and long-context reasoning; not a reasoning strategy.
MCP - Protocol	Framework / Not Standardized	No formal academic source found	Possibly internal or domain-specific method; not recognized as a formal reasoning strategy.

1 - In-Context Learning (ICL) reasoning strategy

Creating an effective prompt for In-Context Learning (ICL) involves giving a language model examples of the task you want it to perform — directly within the prompt — without updating the model weights. This is commonly used in zero-shot, one-shot, or few-shot learning setups.

Principles of Effective In-Context Learning Prompts

Best Practice Explanation Include task Give clear, concise instructions. instructions **Use structured** Include 1–5 high-quality input/output pairs in the format examples you want. Keep examples Use examples similar in type/format to your target input. relevant ✓ Be consistent in Use the same phrasing, structure, and spacing in all formatting examples. X Avoid ambiguous Don't include unclear or mixed-format samples — they confuse the model. examples

Example: Sentiment Classification (Few-Shot Prompt)

Goal: Classify whether a review is *positive* or *negative*

Classify the sentiment of the following reviews as either Positive or Negative.

Review: "I absolutely loved the new phone. Battery life is great!" Sentiment: Positive

Review: "The food was cold and the service was terrible."

Sentiment: Negative

Review: "I'm really happy with my purchase. Everything works

perfectly."

Sentiment: Positive

Review: "The product broke after two days of use. I'm very

disappointed."

Sentiment:

What happens: The model sees 3 examples and is expected to complete the 4th with Negative.

Prompt Variants for Different Tasks

Task Type	Prompt Structure
Text Classification	Show labeled examples with clear "Input \rightarrow Label" format.
QA (Closed Book)	Provide Q&A examples; end with a new question.
Text Generation	Provide story/completion snippets and let the model continue.
Math Word Problems	Use CoT-style examples with reasoning + answer.

Tips for Optimization

- Try more examples if the model is underperforming (up to 4–6 for GPT-3.5, more for GPT-4).
- Use Chain-of-Thought reasoning if the task requires step-by-step logic.
- For GPT-4 or similar, prefix your prompt with instructions (e.g., "You are a helpful assistant...").

Effective Prompt & In-Context Learning setup tailored for the fiscal domain — specifically, a tax deduction classification task

Example: Tax Deduction Classification (Few-Shot Prompt)text

You are a helpful fiscal assistant. Classify each expense description as either "Deductible" or "Non-Deductible" for tax purposes.

Expense: "Office supplies like pens and paper."

Classification: Deductible

Expense: "Client entertainment at a restaurant."

Classification: Deductible

Expense: "Personal clothing purchases."

Classification: Non-Deductible

Expense: "Travel expenses for business meetings."

Classification: Deductible

Expense: "Home electricity bill." Classification: Non-Deductible

Expense: "Conference registration fees for employees."

Classification:

Result:

Classification: Deductible

Explanation

- The prompt gives clear instructions.
- It shows examples relevant to fiscal domain.
- The format is consistent and easy to follow.
- The model will predict the classification for the last expense.

Complex prompt example for the fiscal domain that combines explanations with classification — this helps the model reason about why an expense is deductible or not, improving accuracy and transparency

Example: Tax Deduction Classification with Explanation (Few-Shot Prompt) text

You are a fiscal assistant. For each expense description, determine if it is "Deductible" or "Non-Deductible" for tax purposes. Also, provide a brief explanation supporting your classification.

Expense: "Office supplies like pens and paper."

Classification: Deductible

Explanation: These are necessary business expenses directly related to

office operations.

Expense: "Client entertainment at a restaurant."

Classification: Deductible

Explanation: Entertainment expenses for clients are deductible when

they are directly related to business activities.

Expense: "Personal clothing purchases."

Classification: Non-Deductible

Explanation: Personal clothing is a personal expense and not related

to business operations.

Expense: "Travel expenses for business meetings."

Classification: Deductible

Explanation: Travel costs for business purposes are deductible as they

are necessary for company operations.

Expense: "Home electricity bill."

Classification: Non-Deductible

Explanation: Home utilities are personal expenses unless a specific

business portion is documented.

Expense: "Conference registration fees for employees."

Classification:

Explanation:

Result:

Classification: Deductible

Explanation: Conference registration fees are considered a business-related expense that supports employee training and professional development, making them deductible under tax regulations.

How this helps:

- The explanation forces the model to "think" and justify the classification.
- It improves transparency and can be used for audit or review.
- Encourages more accurate and confident predictions.

Chain-of-Thought Prompt for Tax Deduction Classification text

You are a fiscal assistant helping classify expenses for tax deduction. For each expense, think through the reasoning step-by-step before giving the final classification as "Deductible" or "Non-Deductible."

Expense: "Office supplies like pens and paper."

Step 1: These supplies are used directly in the business.

Step 2: Business-related office supplies are usually deductible.

Final Classification: Deductible

Expense: "Client entertainment at a restaurant."

Step 1: Entertaining clients is related to business activities.

Step 2: Such entertainment expenses are generally deductible under tax

laws.

Final Classification: Deductible

Expense: "Personal clothing purchases."

Step 1: This expense is for personal items, not business use.

Step 2: Personal expenses are not deductible.

Final Classification: Non-Deductible

Expense: "Travel expenses for business meetings."

Step 1: Travel is necessary for attending business meetings.

Step 2: Business travel costs are deductible.

Final Classification: Deductible

Expense: "Home electricity bill."

Step 1: Electricity is a utility expense for the home.

Step 2: Unless a portion is explicitly for business, it is personal.

Final Classification: Non-Deductible

Expense: "Conference registration fees for employees."

Step 1: This is a business-related professional development expense.

Step 2: Such fees are deductible as they support work.

Final Classification:

Result:

Final Classification: Deductible

Benefits of this approach:

- The model explicitly walks through the reasoning.
- Helps handle complex or borderline cases.
- Great for auditability and explanations.

Creating an **effective Self-Consistency Sampling** reasoning strategy involves using **Chain-of-Thought (CoT) prompting** combined with **multiple diverse outputs** for the same input. You then **aggregate the final answers** to choose the most consistent or likely correct outcome.

What is Self-Consistency?

Self-Consistency is a reasoning strategy where a language model:

- 1. Is prompted with a Chain-of-Thought format (i.e., explains step-by-step reasoning),
- 2. Is **sampled multiple times** (e.g., using temperature $\approx 0.7-1.0$),
- 3. Then **selects the most frequent or consistent answer** from those multiple generations.

It was introduced by <u>Wang et al., 2022</u> to improve reasoning on complex tasks like math and logic.

X Steps to Apply Self-Consistency

Step	What You Do
1. V Use CoT prompting	Ask the model to "think step-by-step."
2. Sample multiple outputs	Use temperature > 0 and generate several completions (e.g., 5–20).
3. Aggregate results	Choose the most common final answer across all completions.

Example: Arithmetic Reasoning

Prompt (Chain-of-Thought style):

text

Q: If there are 3 cars and each car has 4 wheels, how many wheels are there in total?

A: Let's think step-by-step.

Sample Outputs:

Output 1:

```
Each car has 4 wheels. There are 3 cars. So, 3 \times 4 = 12 wheels. Answer: 12
```

Output 2:

```
There are 3 cars. Each has 4 wheels. 3 times 4 is 12.
Answer: 12
```

Output 3:

```
Each car has 4 wheels, but including a spare tire, that's 5 per car. 5 \times 3 = 15.

Answer: 15
```

Output 4:

makefile

```
3 cars × 4 wheels = 12.
Answer: 12
```

Output 5:

```
Thinking step-by-step: 3 \times 4 = 12. Answer: 12
```

▼ Final Self-Consistent Answer:

From 5 samples:

- 12 appears 4 times,
- 15 appears once.

Final Answer: 12 (by majority vote = self-consistent outcome).

When to Use Self-Consistency?

- Complex math or logic problems
- Reasoning over multi-step decisions
- Cases where single-shot CoT is unreliable

Great! Let's apply Self-Consistency Sampling to the fiscal domain, specifically for reasoning about whether an expense is tax-deductible, using Chain-of-Thought (CoT) style reasoning + multiple sampled outputs.

Objective: Tax Deduction Classification with **Self-Consistency Sampling**

We'll:

- 1. Prompt the model to **think step-by-step**.
- 2. Generate multiple completions (using temperature > 0).
- 3. **Aggregate the answers** and select the most common as the final classification.

Example Prompt (CoT Style in Fiscal Domain)

text

CopiarEditar

You are a fiscal assistant helping determine whether a business expense is tax-deductible. Think through the classification step-by-step and then give the final answer as "Deductible" or "Non-Deductible".

Expense: "Monthly coworking space membership used to meet clients and work remotely."

A: Let's think step-by-step.

Output 1

rust

CopiarEditar

The coworking space is used for business operations and client meetings.

Business-use office spaces are considered deductible.

Final Answer: Deductible

Output 2

sql

CopiarEditar

The coworking membership supports business work and client interactions.

Such spaces fall under office expenses, which are deductible.

Final Answer: Deductible

Output 3

rust

CopiarEditar

If the space is used primarily for business, then it's deductible. However, if also used for personal purposes, it may be partially deductible.

Final Answer: Deductible

Output 4

vbnet

CopiarEditar

Since the coworking space is used to meet clients and conduct business activities, it qualifies as a business expense.

Final Answer: Deductible

Output 5

vbnet

CopiarEditar

Because the space is rented for work and client interaction, it's aligned with deductible business costs.

Final Answer: Deductible

✓ Self-Consistent Result:

All 5 responses \rightarrow "Deductible"

 $\rightarrow \textbf{Final classification: Deductible}$

Use Cases in Fiscal Domain

Use Case	Why Self-Consistency Helps
Grey areas (e.g., home office expenses)	Helps surface the dominant interpretation
Deduction eligibility with nuanced criteria	Allows reasoning diversity before consensus
Audit preparation (documenting logic)	Outputs rationales + agreement improves traceability

3 - Rationale Engineering - Chain of Thought reasoning strategy

Rationale Engineering using the Chain-of-Thought (CoT) strategy is one of the most effective techniques for guiding large language models (LLMs) through complex reasoning tasks.

What Is Rationale Engineering (Chain-of-Thought)?

Rationale Engineering is the practice of designing intermediate reasoning steps (rationales) that help LLMs arrive at more accurate, robust, or explainable answers.

Chain-of-Thought (CoT) is a specific type of rationale engineering that:

- Instructs the model to think step-by-step,
- Mimics how humans break down problems,
- Helps handle multi-step logical, mathematical, or classification tasks.

When to Use It?

Use CoT when:

- The task involves multi-step reasoning.
- Answers depend on conditions or rules.
- You want **explainability or traceability** in the model's reasoning.

Steps to Create Effective Rationale Engineering (CoT)

Step

Description

1. Choose a task that benefits from reasoning

e.g., tax deduction, legal classification, fraud detection

2. S Break it into logical steps	Define how a human would reason to the answer
3. Craft the prompt to think step-by-step	Include "Let's think step-by-step" or similar
4. Use examples (few-shot or zero-shot)	To show the model <i>how</i> to reason
5. Test with edge cases	See if the rationale generalizes

Example: Fiscal Domain (Tax Deduction – Chain-of-Thought Prompt)

Task: Classify whether an expense is deductible or not and explain the rationale.

text

CopiarEditar

You are a fiscal assistant. For each expense, think step-by-step and determine if it is tax-deductible. Explain the reasoning and give the final classification.

Expense: "Lunch with a potential client to discuss a business proposal."

Step 1: The lunch was with a potential client, indicating a business purpose.

Step 2: Business meals related to client discussions are generally deductible under tax rules.

Step 3: As long as the meal was not lavish and documentation exists, it qualifies.

Final Classification: Deductible

Design Tips for Better CoT Rationale Engineering

Technique

How It Helps

Makes parsing and logic clearer Use consistent formatting (Step 1:, Step

2:)

Include both positive and negative examples Helps the model generalize

reasoning

Add uncertainty conditions (e.g., "unless...") Encourages deeper reasoning

Use domain-specific terms (e.g., "Section 162") Anchors logic to real-world rules

Comparison: Without vs. With CoT

Without CoT

text

CopiarEditar

Expense: Lunch with a client Classification: Deductible

With CoT (Rationale Engineering)

text

CopiarEditar

Step 1: The lunch is with a client, so it's related to business.

Step 2: The IRS allows deductions for meals related to business discussions.

Step 3: As long as it is not lavish and properly documented, it qualifies.

Final Classification: Deductible

Outcome: With CoT, the model performs better on ambiguous or complex. inputs.

4 - Problem Decomposition reasoning strategy

Problem Decomposition is a powerful reasoning strategy for large language models (LLMs), especially when tackling complex tasks. It involves **breaking a large, difficult problem into smaller, manageable subproblems**, solving each one, and combining the results for a final answer.

What Is Problem Decomposition?

Problem Decomposition is a reasoning technique where a task is split into smaller subtasks that are easier to solve individually.

This mirrors how humans approach complexity: divide \rightarrow conquer \rightarrow combine.

When to Use Problem Decomposition

Use it when:

- The original task is too broad or ambiguous.
- Multiple decision steps or types of knowledge are involved.
- You want to **improve accuracy** by isolating logic steps.

Steps to Create an Effective Problem Decomposition Strategy

Step	Description
1. Q Identify the main problem	Define the overall question or task
2. ** Break it into subproblems	Divide it into simpler questions or logic chunks

 Solve each subproblem independently 	Each should be clearly answerable
4. S Combine sub-results	Synthesize final conclusion based on prior steps
5. V Justify the final answer	Optional but helps with explainability

Example: Fiscal Domain – Expense Deductibility (Problem Decomposition)

Task: Determine if a home internet expense is deductible for tax purposes.

Prompt Using Problem Decomposition:

text

CopiarEditar

You are a fiscal assistant. For each expense, break down the problem into sub-questions to decide if it's tax-deductible.

Expense: "Home internet service used partially for remote work."

Step 1: Is the expense related to business activity?

→ Yes, part of the internet usage is for remote work.

Step 2: Is the expense mixed (personal and business)? \rightarrow Yes, it is used both for personal and business purposes.

Step 3: Is there a method to separate the business portion? \rightarrow If a reasonable method (e.g., percentage based on time or data) is used, the business portion can be isolated.

Step 4: Are mixed-use expenses partially deductible? \rightarrow Yes, when documented properly, the business-use portion is deductible.

▼ Final Classification: Partially Deductible (business portion only)

Why This Works

Problem Decomposition helps the model:

- Avoid oversimplified yes/no answers.
- Handle **gray areas**, like mixed-use expenses.
- Explain **reasoning transparently**, ideal for audits or legal justifications.

5 - Tool-Augmented reasoning strategy

Tool-Augmented Reasoning is a powerful strategy where a Large Language Model (LLM) uses external tools—such as calculators, search engines, APIs, databases, or even other models—to enhance its reasoning capabilities.

What Is Tool-Augmented Reasoning?

Tool-Augmented Reasoning is the process of delegating subtasks (like calculations, lookups, or verifications) to external tools, while the LLM handles coordination, logic, and synthesis.

The LLM acts as a controller that uses tools to extend its abilities beyond text generation alone.

When to Use It

Use this strategy when:

- The task requires real-time data (e.g., currency rates, tax thresholds).
- You need high accuracy (e.g., math, financial computation).
- You want to automate workflows (e.g., document classification, data extraction).
- The model alone may hallucinate or be unsure.

Steps to Create an Effective Tool-Augmented Reasoning Strategy

Step Description

1. O Define the problem What is the user trying to solve?

3. \ Choose the tools Calculator, tax API, web search, spreadsheet, etc.

4. See Let LLM orchestrate

Use the model to break down the problem, call

tools, and reason

5. 🖈 Synthesize result Combine tool results with reasoning to form a final

answer

Example: Fiscal Domain – Deduction Calculation (Tool-Augmented)

Calculate the deductible portion of a home internet bill used partially for business purposes.

Q LLM Reasoning Flow:

text

CopiarEditar

Task: "Is the internet bill of \$80/month deductible if 40% is used for business?"

Step 1: Determine the percentage used for business.

→ 40%

Step 2 (tool call): Calculate 40% of \$80.

→ Use calculator tool → \$32

Step 3: Verify if partial internet use qualifies for deduction. $\ \ \rightarrow$ Yes, based on IRS rules, mixed-use expenses are deductible for the

business portion.

▼ Final Answer: \$32 is deductible per month.

Tool Used:

• A calculator to compute \$80 × 0.4 = \$32.

In practice, this could be handled by:

- A Python or Excel formula.
- A built-in calculator tool in an LLM agent system.
- A call to a fiscal rule API or database.

Example (Pseudocode in Python)

python CopiarEditar

```
internet_cost = 80
business_percent = 40

deductible = internet_cost * (business_percent / 100)
print(f"Deductible portion: ${deductible:.2f}")
```

LLM might generate the reasoning and then delegate the computation to code like the above.

Tool-Augmented Reasoning in Systems (Examples)

Tool Purpose

Calculator Financial math / API percentages

Tax Rule API Validate eligibility / limits

Web Search Check current deduction

limits

SQL/Databas Lookup expense records

е

Spreadsheet Visualize or audit

breakdowns

Why This Strategy Matters

Without tools, LLMs:

- May hallucinate tax rates or make math errors.
- Struggle with up-to-date or structured data.

With tools:

- Outputs are more reliable and precise.
- LLMs behave like fiscal analysts, not just writers.

Summary

Component Role

LLM Reasoning, decomposition, orchestration

External Tool (e.g., Performs the accurate subtask (math,

calculator) lookup)

Final Output Combines tool results + explanation