Cute Matrix - Large

Assignment 4

Data Structures and Algorithms

Problem Statement: Cute matrices are such matrices which obey:

- A Cute matrix can only be of dimensions N * M, where $N, M \geq 2$.
- The xor of the of 4 corner cell elements equals 0.
- A matrix is Cute only if it's all sub-matrices of dimensions p*q $(2 \le p \le N, 2 \le q \le M)$ are all Cute.

Initially you have an empty matrix of dimensions N * M. You know that matrix can take in values only in the range $(0, 2^{30} - 1)$.

Now there are K queries .Query -(i, j, p)— write p to cell (i, j) .After each such write , you have to find no. of ways of filling the matrix to make it cute .

You need not to output ways after each case . You have to output a hash value defined as $\Pi(x^{ans(i)})$ mod 1e9+7 where ans(i) is the no. of ways of filling the matrix after i-th write for all i's from 1 to K . x is given in input .

Input

First line contains three integers N, M, K and x.

Next K lines contains description of queries.

i-th of the next K lines contains 3 integers i,j,v. which means write the value v to cell (i,j).

Output

Print the hash value.

Constraints

 $2 \le N, M \le 10^9$

 $1 \le K \le min(10^6, N * M - 1)$

 $1 \le x \le 10^8$

 $0 \le v < 2^{30}$

 $1 \le i \le N$

 $1 \le j \le M$

Time Limit: 4 seconds Memory Limit: 256 MB

Sample Test Case

Input	Output	
2 2 3 2	242602424	
1 2 4		
2 2 7		
2 1 3		

Input	Output	
3 3 2 2	132526192	
1 3 4		
2 3 4		

Input	Output
3 3 4 2	598815595
1 1 5	
1 3 7	
2 2 4	
2 3 6	

Explanation

Explanation
In the first sample,
after 1st move number of ways: $a = 2^{60}$ after 2nd move number of ways: $b = 2^{30}$ after 3rd move number of ways: c = 1So, hash $= 2^{a+b+c} mod(1e9+7) = 242602424$