

# Series de Taylor en arcsin(x)

Ana Gómez Pérez

 $Grupo\ 2J$ 

 $T\'{e}cnicas$  Experimentales.  $1^{er}$  curso.  $2^{do}$  semestre

Lenguajes y Sistemas Informáticos

Facultad de Matemáticas

Universidad de La Laguna

# Índice general

| 1. |       |                                       | 1 |
|----|-------|---------------------------------------|---|
|    | 1.1.  | hjhm                                  | 1 |
|    |       | Sección Dos                           |   |
| 2. |       | damentos teóricos                     | 2 |
|    | 2.1.  | El por qué de el método de Taylor     | 2 |
|    | 2.2.  | Segundo apartado del segundo capítulo | 2 |
| 3. | Pro   | cedimiento experimental               | 4 |
|    | 3.1.  | Descripción de los experimentos       | 4 |
|    |       | Descripción del material              |   |
|    |       | Resultados obtenidos                  |   |
|    |       | Análisis de los resultados            |   |
| 4. | Con   | nclusiones                            | 6 |
| Α. | Títı  | ulo del Apéndice 1                    | 7 |
|    |       | Algoritmo XXX                         | 7 |
|    |       | Algoritmo YYY                         |   |
| в. | Títı  | ulo del Apéndice 2                    | 8 |
|    | B.1.  | Otro apendice: Seccion 1              | 8 |
|    |       | Otro apendice: Seccion 2              |   |
| Bi | bliog | grafía                                | 8 |

# Índice de figuras

| 3.1. | jemplo de figura             | 5 |
|------|------------------------------|---|
| 3.2. | jemplo de figura con gráfico | 5 |

# Índice de cuadros

| 3.1. | Resultados experimentales de tiempo (s) y velocidad (m/s) | 4 |
|------|-----------------------------------------------------------|---|
| 3.2. | Mi primer cuadro de datos                                 | 5 |

# Motivación y objetivos

Los objetivos le dan al lector las razones por las que se realizó el proyecto o trabajo de investigación.

- 1.1. hjhm
- 1.2. Sección Dos

### Fundamentos teóricos

#### 2.1. El por qué de el método de Taylor

La función  $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ , en la que los coeficientes  $a_k$  son constantes, se llama polinomio de grado n.En particular y = ax + b es un polinomio de grado 1, de los más sencillos, por lo que calcular su valor en fácil. Sin embargo, calcular el valor par a otras funciones como  $\log(x)$ ,  $\sin(x)$ ,  $e^X$ , ... es mucho más complicado. Por tanto, se utilizan metodos desarrollados por el análisis matemático, como el método de Taylor.

#### 2.2. Segundo apartado del segundo capítulo

Para poder usar este método deben cumplirse dos condiciones:

- Sea f(x) una función continua en [a,b]
- Sea f(x) derivable en (a,b)

Cuando tengamos un polinomio de primer grado  $p_1(x) = f'(a)(x - a)$  tendrá el mismo valor que f(x) en el punto x=a. Dando la gráfica es una recta tangente a la gráfica de f(x) en el punto a.

Es polisible elegir un polinomio de segundo grado,  $p_2(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2$ , tal que en el punto x=a tenga el mismo valor que f(x) y valores también iguales para su primera y segunda derivadas. Se gráfica en el punto a se acercará a la de f(x) más que la anterior. Es natural esperar que si contruimos un polinomio que en x=a tenga las mismas n primeras derivadas que f(x) en el mismo punto, este polinomio se aproximará más a f(x) en los puntos x próximos a a. Así obtenemos la siguiente igualdad aproximada, que es la fórmula de taylor:

$$f(x) \approx f(a) + f'(a)(x-a) + (\frac{1}{2}!)f''(a)(x-a)^2 + \dots + (\frac{1}{n}!)f^{(n)}(a)(x-a)^n$$

Sin embargo, esto solo se da para polinomios que tengan su derivada hasta n, mientras que para los polinomios que tienen derivada (n+1)-ésima difieren de f(x) en una pequeña cantidad, que denominamos como el error.

Series de Taylor

Por ello añadimos un término más, llamado resto, para que el error sea menor:

$$f(x) = f(a) + f'(a)(x-a) + (\frac{1}{2})!f''(a)(x-a)^2 + \dots + (\frac{1}{n})!f'(n)(a)(x-a)^n + (\frac{1}{(n+1)!})f'(n+1)(c)(x-a)^n + (\frac{1}{n})!f'(n)(a)(x-a)^n + (\frac{1}{n})!f'(n)(a)(x-$$

### Procedimiento experimental

Este capítulo ha de contar con seccciones para la descripción de los experimentos y del material. También debe haber una sección para los resultados obtenidos y una última de análisis de los resultados.

#### 3.1. Descripción de los experimentos

bla, bla, etc.

#### 3.2. Descripción del material

bla, bla, etc.

#### 3.3. Resultados obtenidos

bla, bla, etc.

| Tiempo                     | Velocidad                  |
|----------------------------|----------------------------|
| $(\pm 0.001 \mathrm{\ s})$ | $(\pm 0.1 \mathrm{\ m/s})$ |
| 1.234                      | 67.8                       |
| 2.345                      | 78.9                       |
| 3.456                      | 89.1                       |
| 4.567                      | 91.2                       |

Cuadro 3.1: Resultados experimentales de tiempo (s) y velocidad (m/s)

Series de Taylor 5

#### Overhead in OpenMP Implementations



Figura 3.1: Ejemplo de figura

[!ht]

| Nombre | Edad | Nota |
|--------|------|------|
| Pepe   | 24   | 10   |
| Juan   | 19   | 8    |
| Luis   | 21   | 9    |

Cuadro 3.2: Mi primer cuadro de datos

#### 3.4. Análisis de los resultados

bla, bla, etc.



Figura 3.2: Ejemplo de figura con gráfico

## Conclusiones

bla, bla, bla, etc.

### Apéndice A

### Título del Apéndice 1

#### A.1. Algoritmo XXX

#### A.2. Algoritmo YYY

### Apéndice B

## Título del Apéndice 2

B.1. Otro apendice: Seccion 1

Texto

B.2. Otro apendice: Seccion 2

Texto

### Bibliografía

- [1] Anita de Waard. A pragmatic structure for research articles. In *Proceedings of the 2nd international conference on Pragmatic web*, ICPW '07, pages 83–89, New York, NY, USA, 2007. ACM.
- [2] J. Gibaldi and Modern Language Association of America. *MLA handbook for writers of research papers*. Writing guides. Reference. Modern Language Association of America, 2009.
- [3] G.D. Gopen and J.A. Swan. The Science of Scientific Writing. *American Scientist*, 78(6):550–558, 1990.
- [4] Leslie Lamport. \( \mathbb{P}T\_EX: A Document Preparation System. \) Addison-Wesley Pub. Co., Reading, MA, 1986.
- [5] Coromoto León. Diseño e implementación de lenguajes orientados al modelo PRAM. PhD thesis, 1996.
- [6] Guido Rossum. Python library reference. Technical report, Amsterdam, The Netherlands, The Netherlands, 1995.
- [7] Guido Rossum. Python reference manual. Technical report, Amsterdam, The Netherlands, The Netherlands, 1995.
- [8] Guido Rossum. Python tutorial. Technical report, Amsterdam, The Netherlands, The Netherlands, 1995.
- [9] ACM LaTeX Style. http://www.acm.org/publications/latex\_style/.