Compactification de Stone-Cech

Jean Pierre Mansour

29 Janvier 2022

Définition Soit X un espace topologique. Une compactification de Stone-Cech de X est un couple $(\beta, \beta X)$ tel que $\beta: X \to \beta X$ soit un plongement et $\beta(X)$ dense dans βX qui est compact. (Un plongement est un homéomorphisme entre l'espace de départ et l'ensemble de ses images)

Notation Soit X un espace topologique. $C_B(X, \mathbb{R}) = \{ \phi : X \to \mathbb{R}, \phi \text{ est continue et bornée dans } \mathbb{R} \}$

Proposition. Soit X un espace topologique de Tychonoff. On correspond à chaque application de $E = C_B(X, \mathbb{R})$, un intervalle I_{ϕ} compact de \mathbb{R} / I_{ϕ} soit le plus petit recouvrement de $\phi(X)$. Alors il existe un plongement

$$p: X \to \prod_{\phi \in E} I_{\phi} / x \in X \longrightarrow (\phi(x))_{\phi \in E}$$
 uplet indexé par E.

Théorème Si X est un espace de Tychonoff alors il admet un compactification de Stone-Cech $(\beta, \beta X)$.

Preuve. On considère le même plongement $\beta: X \to \prod_{\phi \in E} I_{\phi}$,

On a $\beta X = \overline{\beta(X)} \subset \prod_{\phi \in E} I_{\phi}$, $(\prod_{\phi \in E} I_{\phi}$ muni de la topologie initiale donc fermé, et compact par le théorème de Tychonoff)

Donc $\overline{\beta(X)}$ est compact car il est contenu dans compact qui est un produit quelconque de Hausdorff donc Hausdorff. De plus, $\beta(X)$ est dense dans βX , donc le couple $(\beta, \beta X)$ est une compactification de Stone-Cech de X.