FisicalOT-Labo: Esercitazione 3

INDICE

- OBIETTIVO DELLA PROVA
- o CONTESTO TEORICO
- o STRUMENTI DI MISURA
- SCHEMA CIRCUITALE
- o ANALISI DATI
- o **CONCLUSIONI**

OBIETTIVO DELLA PROVA

- Analisi dell'andamento della Tensione in un circuito RC alimentato in AC, Corrente Alternata
 - o Tensione Erogata dal Generatore
 - VP = 10V = Tensione di Picco, in entrambi i versi [+10V , -10V]
 - Funzione generatrice = Onda Quadra
 - Duty-Cycle = 50% = rapporto tra Area Positiva e Area Totale della Funzione
 - Frequenza = 50 Hz
 - Periodo = 1/Frequenza = 2ms = intervallo di tempo nel quale la funzione completa un ciclo, +10V -10V
 - Circuito = Resistore e Condensatore in serie
 - Misurazione della tensione ai capi del Resistore
- Una volta misurato l'andamento verificarne la <u>correttezza</u> mediante la formula della Carica/Scarica del Condensatore

CONTESTO TEORICO

Di seguito elencati i macro-argomenti su cui si basa l'analisi della prova effettuata in Laboratorio.

RESISTORI

- È un conduttore ohmico, cioè rispetta la legge di Ohm. Viene costruito con materiali conduttori, e in base al materiale si ottengono diversi valori di Resistenza, grandezza fisica che lo caratterizza. Essa viene definita come un impedimento al passaggio della corrente attraverso un oggetto solido tipicamente cilindrico.
- La tabella a fianco rappresenta il valore della Resistenza a seconda del codice colore di un singolo resistore

Matricola: 157547

CONDENSATORI/CAPACITORI

- Fisicamente è costituito da due armature/elettrodi di materiale conduttivo, separate da uno strato isolante, chiamato dielettrico.
- Le due armature si caricano al passaggio di corrente.

CAPACITÀ

È una proprietà che dipende dal materiale con cui è costruito il condensatore, e si misura in Farad [F].

$$F = \frac{C}{V} = \frac{s^2}{H} = \frac{C^2}{J} = \frac{A^2 \cdot s^2}{N \cdot m} = \frac{s^4 \cdot A^2}{m^2 \cdot kg}$$

- Le armature, caricandosi, generano una differenza di potenziale ai propri capi, proporzionale alla quantità di carica immagazzinata; per questo motivo i condensatori sono noti come capacitori.
 - Idealmente un condensatore mantiene la carica all'infinito, ma ciò non accade nella pratica, infatti pian piano si scarica.

SCARICA DEL CONDENSATORE

- La differenza di potenziale ai suoi capi genera flusso di corrente nel circuito.
- La scarica finisce quando si raggiunge una tensione VC quasi nulla

TEMPORIZZAZIONE

- $v_i \cdot \exp(-t/T) \rightarrow v_i$ = Valore di tensione iniziale
- T = TAU = R * C = 1000 * 1*10^-6 = 0.001s
- Tempo = $5*T = 5ms \rightarrow Tempo$ necessario a completare la carica o la scarica del condensatore
- Prendendo di riferimento questo parametro si imposta il generatore di funzioni con un periodo del segnale almeno di 5ms. Nel nostro circuito il periodo vale 20ms.

SCHEMA CIRCUITALE

STRUMENTAZIONE

COMPONENTI PER IL CIRCUITO

- \circ RESISTORE 1k Ω
- CONDENSATORE $1\mu F$
- BREADBOARD: circuito fisico su cui effettuare i collegamenti
- SIMULATORE online di circuiti

GENERATORE DI FUNZIONI

- o Onda quadra
- Duty cycle = 50%
- Frequenza = 50Hz
- Ampiezza 20V \rightarrow VGEN = [+10V, ...,-10V]
- Offset = 0V
- Riquadro BLU = selezionare onda quadra
- Riquadro Rosso = selezionare la Frequenza
- Riquadro Giallo = selezionare la cifra da variare nel display, e cambiare il valore con la rotella grande a DX

STRUMENTI DI MISURA

o Oscilloscopio

- Riquadro Rosso: sposta l'inizio della funzione rispetto all'asse x (tempo)
- Riquadro Giallo: serve a salvare i dati in formato csv, che poi andranno <u>analizzati</u>
- Riquadro Verde: Modifica la Scala dell'asse Y. Impostata a 5V/div
- Riquadro Azzurro: Modifica la Scala dell'asse X. Impostata a 1ms/div

Questo strumento è in grado di generare una visualizzazione dell'andamento di una grandezza in funzione del tempo: VR(t), tensione ai capi della Resistenza, secondo <u>l'obiettivo posto</u>.

ANALISI DEI DATI

- Il circuito deve rispettare le leggi delle maglie di Kirchhoff, cioè la somma delle tensioni nella maglia deve essere nulla, perciò VG + VR + VC = 0 in qualsiasi istante di tempo
- Linea BLU = VR(t) → resistore
- Linea Rossa = VC(t) → condensatore
- Scala (V) asse Y = 10V/div
- Scala (T) asse X = 5ms/div = Tau/div
 - o 4 caselle formano il periodo di VG
- VR ha un picco di 20V, nel momento in cui VC ha il minimo, -10V... Nello stesso istante VG vale anch'esso -10V, perciò VG+ VR +VC = -10 +20 -10 = 0V

DATI RILEVATI

- I dati rilevati sono stati presi dall'oscilloscopio, premendo il <u>pulsante</u> "save/recall", il quale genera un file waveform.csv
- I dati sono stati inseriti in una tabella excel e sono stati inseriti in un grafico
- I valori considerati sono stati presi in un intervallo tra [1.5, 20V]
- La figura affianco mostra il grafico generato dall'oscilloscopio

GRAFICO

Realizzato tramite i valori ottenuti nel file waveform.csv

- Azzurro = VR(t) misurata dall'oscilloscopio
- Arancio = VR_Cal(t) = usando la formula della scarica del condensatore

Vi * exp(-t/Tau) = 20V * exp(-t/0.001)

t è l'istante di tempo nel quale effettuare la misura... il suo valore è presente nella tabella generata nel waveform.csv

GRAFICO 2 ERRATO [Tau = 2ms]

FORMULE EXCEL

Dato il file waveform.csv a lato

- Time = Asse X dell'oscilloscopio
- Channel1 = VR(t)
- EXP = VR_Cal(t)

Vi * exp(- t/Tau)

\$H\$12 = Vi = giallo

G\$12 = ti = tempo iniziale VR(ti) = Vi

G12= istante di tempo progressivo

\$E\$2 = Tau = R*C

Le celle con il \$ sono bloccate, in quanto parametri fissi per il calcolo di VR_Cal(t)

Δ	Α	В	С	D	E	F	G	Н	1
1	R[Ω]	C [µF]	F [Hz]	T [ms]	TAU [s]		Time	Channel1	EXP
2	1000	1	50	20	0,001		-0,005	-0,17096	
3							-0,00498	-0,17096	
4							-0,00496	-0,17096	
5							-0,00494	-0,17096	
6							-0,00492	0	
7							-0,0049	-0,34192	
8							-0,00488	-0,17096	
9							-0,00486	0	
10							-0,00484	-0,17096	
11							-0,00482	-0,17096	
12							-0,0048	20,00244	20,00244
13	VR_Ca	ıl = \$H\$	12*EXP	(-(G12-	\$G\$12)/	/\$E\$2)	-0,00478	19,48955	19,60636
14							-0,00476	19,31859	19,21813
15							-0,00474	18,80571	18,83759
16							-0,00472	18,12187	18,46458
17							-0,0047	17,77994	18,09895
18							-0,00468	17,43802	17,74057
19							-0,00466	17,43802	17,38928
20							-0,00464	16,92514	17,04495
21							-0,00462	16,58322	16,70744
22							-0,0046	16,41226	16,37661
23							-0,00458	16,07033	16,05233
24							-0,00456	15,72841	15,73447
25							-0,00454	15,55745	15,42291
26							-0,00452	15,21553	15,11752
27							-0,0045	15,21553	14,81817
28							-0,00448	14,87361	14,52475
29							-0,00446	14,18976	14,23714
30							-0,00444	14,0188	13,95523
31							-0,00442	13,84784	13,67889
32							-0,0044	13,33496	13,40803

CONCLUSIONI

- Confrontando i grafici ottenuti si è verificato che il valore ideale per il calcolo di VR_Cal(t) è Tau = 1ms = R*C = 1000 * 0.000001... che corrisponde con i valori dei componenti utilizzati
- Modificando questo parametro si incorre in distorsioni del segnale, e quindi in uno scostamento tra i due grafici, come mostrato nel grafico2.
- VR(t) possiede lo stesso andamento esponenziale della VC(t), solamente opposto, infatti quando
 il condensatore si carica la corrente circolante nel circuito RC è quasi nulla perché le Cariche sono
 state immagazzinate nelle <u>due armature</u> del capacitore, mentre quando si scarica genera tanta
 corrente, che genererà una VR grande in quanto VR = R*IR