Portfolio Risk Forecast

for TD Asset Management

11th Montreal Industrial Problem Solving Workshop

August 27, 2021

The Team

Professors & coordinators

René Garcia

Full Professor, Université de Montréal

Ruslan Goyenko

Associate Professor, McGill University

Manuel Morales

Associate Professor & Fin-ML Program Director, Université de Montréal

Avinash Srikanta Prasad

Postdoctoral Fellow, University of Waterloo

Jean Masson

Managing Director, TD Asset Management

Jean-François Fortin

Vice-President, TD Asset Management

Rheia Khalaf

Director, Collaborative Research & Partnerships, Fin-ML / IVADO

Foulemata Tirera

M. Sc., Polytechnique de Montréal

Participants

Yaroslav Babich

Undergraduate, Mathematics Université Laval

Kiran Deol

Undergraduate, University of Alberta

Mohamed Gueye

Master's Student, Mathematics and Statistics, Université de Montréal

Qi Guo

Ph.D. Student, University of Calgary

Thierry Jean

Master's Student, Computational Medecine, Université de Montréal

Ehsan Rezaei

Ph.D. Student, Polytechnique de Montréal

Javad Roustaei

Master's Student, Financial Mathematics, Concordia University

Myles Sjogren

Master's Student, Mathematics and Statistics University of Calgary

Ernest Tafolong

Master's Student, Decision Science, HEC Montréal

Shiva Zokaee

Master's Student, Industrial Engineering, GERAD, Université de Montréal

Problem Breakdown

Thierry Jean, Myles Sjogren

participants are sorted alphabetically

Problem statement

16

How can we better predict risk and future return?

Fundamental factors

describe the underlying financials, such as <u>earnings</u>, <u>market</u> <u>capitalization</u>, and <u>debt levels</u>.

Historical Stock Data

- Tabular data indexed by stock_id and date
- 1207 individual stocks
- 245 months (from 11-1998 to 03-2019)
- 93 features about <u>fundamental factors</u>
- 4 labels about <u>future/forward total return</u>
 over 1, 3, 6, and 12 months

stock id	date	Advt_3 M Usd	Advt_6 M_Usd	R12M_ Usd
13		0.33	0.27	 -0.041
13		0.32	0.28	 -0.253
13		0.3	0.3	 -0.366
17	2015-03-31	0.64	0.7	 -0.376
17	2015-04-30	0.62	0.66	 -0.113
17	2015-05-31	0.63	0.64	 -0.194
17	2015-06-30	0.62	0.63	 0.309
17	2015-07-31	0.56	0.6	 2.139
17	2015-08-31	0.47	0.57	 0.436
17	2015-09-30	0.41	0.54	 1.398
17	2015-10-31	0.36	0.48	 1
17	2015-11-30	0.37	0.43	 2.933
17	2015-12-31	0.32	0.37	 4.323
17	2016-01-31	0.27	0.32	 4.447
17		0.21	0.3	 4.857
17	2016-03-31	0.31	0.32	 1.737
17	2016-04-30	0.45	0.38	 0.275
17	2016-05-31	0.55	0.42	 0.376
17	2016-06-30	0.61	0.5	 0.22
17	2016-07-31	0.65	0.58	 -0.024
17	2016-08-31	0.7	0.64	 0.467
17	2016-09-30	0.7	0.66	 0.222
17	2016-10-31	0.66	0.66	 0.08
17	2016-11-30	0.67	0.69	 -0.244
17	2016-12-31	0.73	0.71	 -0.143
17	2017-01-31	0.76	0.72	 -0.219
17	2017-02-28	0.86	0.8	 -0.341
17	2017-03-31	0.86	0.81	 -0.153
17	2017-04-30	0.87	0.82	 0.104

Data Exploration Dashboard - Gif

Data Exploration Dashboard – Screenshot 1

Data Exploration Dashboard – Screenshot 2

Data Exploration

Correlation Matrix of Features of a single stock

Data Exploration

Correlation Matrix of Stocks' 1 month returns

Data Exploration – PCA and Clustering of Stocks

Problem Solving Strategy

Strategy

We will try 2 distinct methods to forecast returns

1. Tree-based models:

- Leverages larges datasets with many features
- Discover subsets of important features

2. Autoencoders:

- Allow for a non-linear dimension reduction of features
- Can detect stocks with "anomalous" factors

Tree-based models

Yaroslav Babich, Kiran Deol, Myles Sjogren, Ernest Tafolong

Overview of Tree Models

- Aimed at finding groups of observations that behave similarly
- Trees grow through a branching process which splits data according to certain thresholds/categories of a given predictor.
- At each step "impurity" or other error metrics are minimized

Representation of a tree

One tree isn't Enough, we need a Forest

- Boosting: aggregate forecasts from many simpler trees
- Reduces correlation among different trees in the forest
- XGBoost, LightGBM

Results

Important considerations:

- Train-Validation-Test split
- Model Hyperparameters
 - no. of trees, depth of trees, regularization parameters, etc.
- How long to Train
- Sparsity of Data
- Model generalization

Results

19

SHAP – Feature importance

SHAP – Feature importance interactions

Takeaways

- Stock returns are <u>inherently hard</u> to predict at a certain timescale
- Trees takes some <u>fine tuning</u>
- Parameters and features that perform well for a given stock and time window may not generalize to others

Autoencoder models

Qi Guo, Ehsan Rezaei, Javad Roustaei, Shiva Zokaee

Motivation for using Autoencoders

- The <u>fundamental goal</u> of asset pricing is to understand the <u>behavior of risk premiums</u>.
- The <u>high-dimensional</u> nature of machine learning methods <u>enhances their flexibility</u> relative to more traditional econometric prediction techniques.
- This flexibility brings hope of <u>better approximating the unknown</u> and likely complex data <u>generating process underlying equity</u> risk premiums

A Brief Introduction to Autoencoders

$$x \in \mathbb{R}^n \Rightarrow y \in \mathbb{R}^m \ s.t. \ m \ll n$$

and it is still possible to reconstruct x from y!

Conditional Autoencoders

Cons of AEs:

✓ What if we have <u>more information</u> about x? Can we make even a better \hat{x} using fewer dimensions and these extra information z?

$$\max P(\hat{x}|x) \qquad \qquad \max P(\hat{x}|x,z)$$

✓ Can the model be more interpretable?

$$R = \beta F + U$$
.

Conditional Autoencoders

Model Validation and Testing

Framework

Rolling Window → Train Window (120 months),
 Validation (36 months), Test (12 months)

Models

- Reducing factor dimensions: 94 features → 40.
- Beta Network Inputs: 94 features * N Return of Stocks for each month
- Factor Network Inputs: N
- Network Output: N

Implementation

- More <u>hyperparameters</u> should be tuned and different activation function.
- Predictive R2 is very small which means predict return values directly is very hard.
- Therefore, the task can be reframed as trying to <u>predict the rank of</u> <u>stocks based on future return</u>.
- Then, the information coefficient (IC) becomes the measure of interest.

We tuned 4 models with 2 different hyperparameters:

Model 1: learn rate: 0.01 beta layers size: [80, 40]

Model 2: learn rate: 0.01 beta layers size: [80, 40]

Model 3: learn rate: 0.001 beta layers size: [60,30]

Model 4: learn rate: 0.001 beta layers size: [60,30]

Results explanation

- The 4 ICs show that Model 4 had the best performance and can provide positive cumulative IC.
- We believe a well-tuned model would provide high IC. The <u>beta-autoencoder model</u> appears to be promising for predicting risk premiums.

The standard deviation is decreasing by adding each model

By comparing the mean of each model we can see the progress.

The average of R2 score within each model is getting better by each model.

Conclusion

- Both <u>Tree-based</u> and <u>Autoencoder</u> models were developed to forecast <u>future return</u> of securities based on their <u>fundamental</u> <u>factors</u>
- We highlighted the importance of adequate training and validation to prevent "Look-ahead" bias
- <u>Autoencoder</u> models can model <u>multiple</u> <u>covarying latent factors</u> and are less reliant on historical data

Future development

- Forecast models developed could be expanded to <u>portfolio composition</u> and <u>portfolio performance forecast</u>
- Smart Beta Exchange-Traded Funds (ETFs) are rising in popularity among investors
- They can provide a variety of <u>investment and risk-management</u> <u>strategies</u> at <u>lower fees</u>

Thanks!

Any questions?

Sources

- Coqueret, G. & Guida, T. (2021). *Machine Learning for Factor Investing*. http://www.mlfactor.com/
- Coqueret, G. & Guida, T. (2019). Machine Learning for Factor Investing. [Data set]. https://github.com/shokru/mlfactor.github.io/tree/master/material
- Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. *Journal of Econometrics* 222:429-450
- Gu, S., Kelly, B., & Xiu, D. (2018). Empirical Asset Pricing via Machine Learning *The Review of Financial Studies* 33:2223-2273

Python packages and libraries

Numpy

- Scikit-learn
- Matplotlib

• Pandas

Xgboost

Seaborn

Scipy

- LightGBM
- Plotly

• MKL

• Optuna

• Dash

- Bottleneck
- SHAP

Appendices

Appendix I – Fundamental Factors

verage daily volume in amount in	
SD over 12 months	
verage daily volume in amount in	
SD over 3 months	
verage daily volume in amount in	
SD over 6 months	
total sales on average assets	
uyback yield	
ook value	
apital expenditure on price to sale	
ash flow	
apital expenditure on sales	
ash dividends cash flow	
ash per share	
ash flow per share	
ebt to equity	
ividend yield	
ividend per share	
BIT on book value	
BIT on non operating asset	
BIT on operating asset	
BIT on total asset	
BITDA margin	

20	earnings per share
21	earnings per share basic
21 22	earnings per share growth
23	earnings per share continuing
	operations
24 25 26	earnings per share diluted
25	enterprise value
26	enterprise value on EBITDA
27	fixed assets on common equity
28	free cash flow
29	free cash flow on book value
30	free cash flow on capital employed
31	free cash flow margin
32	free cash flow on net operating assets
33	free cash flow on operating assets
34	free cash flow on total assets
35	free cash flow on tangible book value
36	free cash flow on total operating assets
37	free cash flow yield
38	free cash flow on price sales
39	intangibles on revenues
40	interest expense coverage
41	average market capitalization over 12
	months in USD
42	average market capitalization over 3
	months in USD
43	average market capitalization over 6
	months in USD

44	price momentum 12 - 1 months in USD
45	price momentum 6 - 1 months in USD
46	price momentum 12 - 1 months in USD
	divided by volatility
47	price momentum 6 - 1 months in USD
	divided by volatility
48	net debt on EBITDA
49	net debt
50	net debt on cash flow
51	net margin
52	net debt yield
53	net income
54	net income available margin
55	net income on operating asset
56	net income on total operating asset
57	net operating asset
58	operating asset
59	operating cash flow
60	operating cash flow on book value
61	operating cash flow on capital employed
62	operating cash flow margin
63	operating cash flow on net operating assets
64	operating cash flow on operating assets
65	operating cash flow on total assets
66	operating cash flow on tangible book value
67	operating cash flow on total operating assets
68	operating margin

69	net margin 1Y growth
70	cash flow from operations per share net
71	price to book
72	price earnings
73	margin pretax
	reccuring earnings on total assets
	return on capital
76	revenue
77	return on assets
	return on capital
	return on capital employed
	return on equity
81	price to sales
82	average share turnover 12 months
_	average share turnover 3 months
_	average share turnover 6 months
85	total assets
86	total assets total enterprise value less market
	capitalization
_	total debt on revenue
	total capital
	total debt
	total debt on capital
	total liabilities on total assets
92	volatility of returns over one year
93	volatility of returns over 3 years