2. PRAKTIKA – PROGRAMAZIO LINEALA 2. ARIKETA

2.1 ARIKETA

Enpresa batek bi lehengai erabiliz, egurra eta aluminioa erabiliz, hiru mahai mota desberdin ekoizten ditu. Astero enpresaren ekoizpen-orduak 500 ordu dira eta egurrezko 600 kg eta aluminiozko 900 kg ditu. Bestalde, mahai mota desberdinak egiteko beharrezkoa den denbora (unitateko), lehengai-kantitatea (unitateko) eta mahai mota bakoitzaren irabazi (unitateko) ondorengo taulan laburbiltzen dira:

	Irabazia		Egurra	Aluminioa
	(euro)	Ekoizpen-orduak	(kg)	(kg)
A EREDUA	40	1	2	1
B EREDUA	60	1	2	2
C EREDUA	80	2	2	3

- 1. Enpresaren irabazia maximizatzen duen Programazio Linealeko problema planteatu eta Excel erabiliz ebatzi.
- 2. Zehaztu B mahai motaren irabazi-tasaren tartea (1) puntuan lortutako soluzio optimoa alda ez izan dadin.
- 3. Zehaztu astean erabilgarria den egur kantitatearen goi eta behe borneak (1) puntuan lortutako soluzio optimoa alda ez dadin (B eta C mahai soilik fabrikatzeko).
- 4. Aurreko ataletan lortutako emaitza guztiak kontuan izanik enpresaburuari emateko txosten xehatua idatzi.

2.2 ARIKETA

Herrialde batean A eta B bi ikatz-iturri daude eta K₁, K₂ eta K₃ hiru kontsumo-gune daude. Ikatz-iturriek 26 eta 30 tona ekoizten dituzte hurrenez hurren. Bestalde, kontsumo-guneak 20, 22 eta 14 tonen premia dute hurrenez hurren. Ondorengo taulan garraio-kostuak, ikatz-mehatzetik kontsumo-gunera tona unitate bat garraiatzeak duen kostua, eurotan laburbiltzen dira:

	K ₁	K ₂	K ₃
Α	10	30	10
В	20	10	10

Excel erabiliz kostua minimoa suposatzen duen garraioa zehaztu. Lortutako emaitzak azaldu.

Ohar argigarria: Nola ebatziko luke honako Programazio Linealeko problema hau batxilergoko bigarren mailako irakasle batek?