8 内排序

• 内排序:整个排序过程在内存中完成

• 稳定性: 存在多个具有相同排序码的记录, 排序后这些记录的相对次序保持不变

算法一览

排序种类	名称	思路	时间代价			南沟体体	拉户州	ゲロエ	de 🗠
			最优	最坏	平均	空间代价	稳定性	适用于	备注
插入排序	直接插入	每次连续地把a[i]向前插, 顺序遍历完即可	n	n^2	n^2	1	稳定	短序列,已经有序的序列	
	shell排序	选取间隔序列, 每次对间隔为n的子序列直接插入排序, 直到间隔为1	Hibbard增量序列 n^{3/2}, 可进一步减 少	n^2	增量除2递减:n^2	1	不稳定		
选择排序	直接选择	每次直接选最小的	n^2	n^2	n^2	1	不稳定		
	堆排序	利用最小堆实现输出, 一次建堆(n), n次删除堆顶(log n)	nlogn	nlogn	nlogn	1	不稳定		
交换排序	冒泡排序	起点从0到n-1遍历, 每次遍历地交换相邻元素. 假如某次冒泡没有发生交换就表明已完成排序	n	n^2	n^2	1	稳定		
	快速排序	分治算法, 选择轴值pivot并划分比之大和比之小的子 序列	nlogn	n^2	nlogn	时间代价 的1/n	不稳定		划分方法采用双指针 实现的所谓分割函数
归并排序	归并排序	分治算法,直接分成两个子序列,排序完用双指针归并	nlogn	nlogn	nlogn	n	稳定		
	R.Sedgewick 优化	小序列改成插入排序, 归并时对右序列颠倒	同上	同上	同上	同上			
分配排序 和基数排 序	桶排序	将相同值的元素放一起, 然后按编号依次从桶中取出	n+m	n+m	n+m	n+m	稳定	m< <r< td=""><td>m是值的数量</td></r<>	m是值的数量
	基数排序	将值拆分为多个部分进行桶排序	d(n+r)	d(n+r)	d(n+r) (实质还是 nlogn)		稳定		r个计数器,d次桶排序, 用静态链实现无需移 动元素

- 索引排序
- 对时间复杂度的理解
 - 。 序列平均有 $\frac{1}{2}\binom{n}{2}$ 对逆序
 - ullet 任何一种只对相邻记录进行比较的排序算法的平均时间代价都是 $\Theta(n^2)$
 - 。 n 很小或基本有序时插入排序比较有效
 - 。 Shell 排序选择增量以3的倍数递减
 - 需要保证最后一趟增量为1
 - 。综合性能快速排序最佳
 - 。 排序问题的时间复杂度下限, 也即判定树的最小深度: $\Omega(\log n!) = \Omega(n \log n)$