インピーダンスとアドミタンス

8. 交流回路 (2)

インピーダンスとアドミタンス

- インピーダンス(impedance)とは、正弦波交流電圧・電流の実効値の比と、位相差を表すベクトル。単位は[Ω](オーム)。
- インピーダンスも複素数表現とフェーザ表現の両方ができる。 $\mathbf{Z} = R + jX = |\mathbf{Z}| \angle \theta_Z$ $\mathbf{z} = \mathbf{z}$
- Zの実部Rは直流抵抗、虚部jXはリアクタンスに相当する。
- アドミタンス(admittance)とは、インピーダンスの逆数のこと。 単位は[S](ジーメンス)

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = G + jB = |\mathbf{Y}| \angle \theta_Y$$

- Yの実部Gはコンダクタンス(conductance)、虚部jBはサセプタンス (susceptance) に相当する。
- 複素数/フェーザ表現されたZ,Yは、とある角周波数 ω を仮定しているので、 ω が変わるとZ,Yも変わることに注意。
- 電圧Vや電流Iとは異なり、Z,Yに対応する正弦波はない。

コンデンサのインピーダンス

電荷Q

支配方程式: $v_c(t) = \frac{1}{c} \int i_C(t) dt$

瞬時值表現

• $i_C(t) = \sqrt{2}I_e \sin(\omega t + \theta_I)$

•
$$v_C(t) = -\frac{1}{\omega C} \sqrt{2} I_e \cos(\omega t + \theta_I)$$

= $\frac{1}{\omega C} \sqrt{2} I_e \sin(\omega t + \theta_I - 90^\circ)$

iに対して、vは90°遅れ位相

 I_C , V_C のフェーザ図 I_C , V_C の瞬時値波形 I_C I_C

フェーザ表現

•
$$I_C = I_e \angle \theta_I$$

•
$$V_C = \frac{1}{\omega C} I_e \angle (\theta_I - 90^\circ)$$

•
$$\mathbf{Z}_C = \frac{\mathbf{V}_C}{I_C} = \frac{1}{\omega C} \angle -90^\circ$$

$$= 0 - j \frac{1}{\omega C}$$

 Z_{C} のフェーザ図

コイルのインピーダンス

支配方程式: $v_L(t) = L \frac{di_L(t)}{dt}$

瞬時值表現

•
$$i_L(t) = \sqrt{2}I_e \sin(\omega t + \theta_I)$$

•
$$v_L(t) = \omega L \sqrt{2} I_e \cos(\omega t + \theta_I)$$

= $\omega L \sqrt{2} I_e \sin(\omega t + \theta_I + 90^\circ)$

iに対して、vは90°進み位相

フェーザ表現

•
$$I_L = I_e \angle \theta_I$$

•
$$V_L = \omega L I_e \angle (\theta_I + 90^\circ)$$

•
$$\mathbf{Z}_L = \frac{\mathbf{V}_L}{I_L} = \omega L \angle 90^\circ$$

= $0 + j\omega L$

抵抗のインピーダンス

支配方程式: $v_R(t) = Ri_R(t)$

瞬時值表現

•
$$i_R(t) = \sqrt{2}I_e \sin(\omega t + \theta_I)$$

•
$$v_R(t) = R\sqrt{2}I_e \sin(\omega t + \theta_I)$$

= $R\sqrt{2}I_e \sin(\omega t + \theta_I)$

iに対して、vは同位相

フェーザ表現

•
$$I_R = I_e \angle \theta_I$$

•
$$V_R = RI_e \angle \theta_I$$

•
$$\mathbf{Z}_R = \frac{\mathbf{V}_R}{\mathbf{I}_R} = R \angle 0^\circ$$

= $R - j0$

 I_R , V_R のフェーザ図

 I_R , V_R の瞬時値波形

 Z_R のフェーザ図

インピーダンス・アドミタンスの性質

• 直列接続

$$Z = Z_1 + Z_2$$

 $Y = Y_1 // Y_2 = \frac{Y_1 Y_2}{Y_1 + Y_2}$

• 並列接続

$$Z = Z_1 // Z_2 = \frac{Z_1 Z_2}{Z_1 + Z_2}$$

 $Y = Y_1 + Y_2$

インピーダンスとアドミタンスの変換

$$Y = \frac{1}{Z} = \frac{1}{R+jX} = \frac{R-jX}{(R+jX)(R-jX)} = \frac{R}{R^2+X^2} + \frac{-jX}{R^2+X^2}$$
$$Z = \frac{1}{Y} = \frac{1}{G+jB} = \frac{G-jB}{(G+jB)(G-jB)} = \frac{G}{G^2+B^2} + \frac{-jB}{G^2+B^2}$$

インピーダンスを用いたAC解析

Q1:

$$Z = 10\sqrt{3} + j10 [\Omega],$$

 $V = 100 \angle 0^{\circ} [V]$ のとき、 I を求めよ。

A1:

$$|Z| = 20$$
, $\theta_z = 30^{\circ}$, : $Z = 20 \angle 30^{\circ}$

$$I = \frac{E}{Z} = \frac{100 \angle 0^{\circ}}{20 \angle 30^{\circ}} = 5 \angle -30^{\circ} [A]$$

Q2:

$$Z = 40 \angle 45^{\circ} [V],$$

 $I = 3 \angle - 15^{\circ}[A]$,のとき、Vを求めよ。

A2:

$$V = ZI = (40 \times 3) \angle (45^{\circ} - 15^{\circ})$$

= 120\angle 30^{\circ} [\Omega]

直流解析と同様にオームの法則をたて、ベクトルの加減乗除で波形が求まる!

まとめ

- インピーダンス〔]とは、正弦波交流電圧・電流の 〕〔]と、〔 〕を表すベクトル。
- アドミタンス[] YとはインピーダンスZの逆数で、単位は[]。Yの実部Gはコンダクタンス []、虚部 jB はサセプタンス[]という。
- 受動回路のAC解析は、〔 〕と同様にオームの法則やキルヒホッフの法則を用いてV, I, Zの方程式をたてれば、微分方程式を解かなくても、ベクトル(フェーザ)の〔 〕で求まる。

8. 演習問題

- 1. 以下の素子に周波数50Hzの正弦波電圧 $V = 100 \angle 0^{\circ}[V]$ を加えた時のインピーダンス Z_R , Z_C , Z_L を複素数(極形式)で求めよ。 さらに、各素子に流れる複素電流 I_R , I_C , I_L をフェーザで求め、フェーザ図を描け。
 - a. 抵抗*R*=25Ω
 - b. コンデンサ*C*=100μF
 - c. コイル*L*=20mH
- 2. インピーダンス $Z = 30 + j40 [\Omega]$ の受動回路に、交流電源E = 100 + j0 [V]を加えたとき、回路に流れる電流Iを求めよ。
- 3. 電圧 $V = 100 \angle 30^\circ$, 電流 $I = 5 \angle 30^\circ$ のとき、インピーダンス Z = V/Iをフェーザおよび直交形式の両方で求めよ。
- 4. インピーダンス $Z_1 = 20 + j30 [\Omega]$, $Z_2 = 15 + j25 [\Omega]$ の直列回路の合成インピーダンスZおよび合成アドミタンスYを求めよ。