International Rectifier

IRLR120NPbF IRLU120NPbF

- Surface Mount (IRLR120N)
- Straight Lead (IRLU120N)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

HEXFET® Power MOSFET

Dage Dage Number	D1 T	Standard Pa	ıck	Oudevelle Deut Neueleu	NI-4-	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	Note	
		Tube	75	IRLR120NPbF		
		Tape and Reel	2000	IRLR120NTRPbF		
IRLR120NPbF	D-Pak	Tape and Reel Left	3000	IRLR120NTRLPbF		
		Tape and Reel Right	3000	IRLR120NTRRPbF	EOL notice # 289	
IBLU120NPbF	IPak	Tube	75	IBLU120NPbF		

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	10	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	7.0	Α
I _{DM}	Pulsed Drain Current ① ©	35	
P _D @T _C = 25°C	Power Dissipation	48	W
	Linear Derating Factor	0.32	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy@6	85	mJ
I _{AR}	Avalanche Current①®	6.0	А
E _{AR}	Repetitive Avalanche Energy①⑥	4.8	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		3.1	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) **		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

		-				
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA
				0.185		V _{GS} = 10V, I _D = 6.0A ⊕
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.225	Ω	V _{GS} = 5.0V, I _D = 6.0A ④
				0.265		V _{GS} = 4.0V, I _D = 5.0A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		2.0	٧	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9fs	Forward Transconductance	3.1			S	V _{DS} = 25V, I _D = 6.0A®
	Drain to Course Leakage Current			25		V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			250	μA	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	- A	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
Qg	Total Gate Charge			20		$I_D = 6.0A$
Q _{gs}	Gate-to-Source Charge			4.6	nC	$V_{DS} = 80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			10		V _{GS} = 5.0V, See Fig. 6 and 13 ⊕ 6
t _{d(on)}	Turn-On Delay Time		4.0			$V_{DD} = 50V$
t _r	Rise Time		35		ns	$I_{D} = 6.0A$
t _{d(off)}	Turn-Off Delay Time		23		115	$R_G = 11\Omega, V_{GS} = 5.0V$
t _f	Fall Time		22			R _D = 8.2Ω, See Fig. 10 ⊕ ⊚
L _D	Internal Drain Inductance		4.5		nН	Between lead,
_D	The state of the s				''''	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact® s
C _{iss}	Input Capacitance		440			$V_{GS} = 0V$
Coss	Output Capacitance		97		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		50			f = 1.0MHz, See Fig. 5©

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			10		MOSFET symbol
	(Body Diode)			10	Α	showing the
I _{SM}	Pulsed Source Current			0.5		integral reverse
	(Body Diode) ① ©			35		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 6.0A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		110	160	ns	$T_J = 25^{\circ}C, I_F = 6.0A$
Q _{rr}	Reverse RecoveryCharge		410	620	nC	di/dt = 100A/µs ⊕ ⑤
t _{on}	Forward Turn-On Time	Intr	insic tu	irn-on ti	me is ne	egligible (turn-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- \bigcirc V_{DD} = 25V, starting T_J = 25°C, L = 4.7mH $R_G = 25\Omega$, $I_{AS} = 6.0A$. (See Figure 12)
- $T_J\!\leq 175^\circ C$
- 4 Pulse width \leq 300 μ s; duty cycle \leq 2%.
- $\ensuremath{\mbox{\sc S}}$ This is applied for I-PAK, L_S of D-PAK is measured between lead and center of die contact

When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- SECTION C-C DMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE WOLD FLASH, WOLD FLASH SHALL NOT EXCEED .006 [0,15] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTWOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION of & of APPLIED TO BASE METAL ONLY.
- A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y	DIMENSIONS					
B	MILLIM	ETERS	INC	HES	0	
0	MIN.	MAX.	MIN.	MAX.	Ë S	
Α	2.18	2.39	.086	.094		
A1	-	0,13	-	.005		
b	0.64	0.89	.025	.035		
ь1	0.64	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
b3	4.95	5.46	.195	.215	4	
С	0,46	0,61	.018	,024		
c1	0,41	0.56	.016	.022	7	
c2	0,46	0.89	.018	.035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Е	6.35	6.73	.250	.265	- 6	
E1	4,32	-	.170	-	4	
e	2.29	BSC	.090 BSC			
Н	9,40	10.41	.370	,410		
L	1.40	1.78	.055	.070		
L1	2.74	BSC	.108	REF,		
L2	0,51	BSC	.020 BSC			
L3	0.89	1,27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1.14	1.52	.045	.060	3	
Ø	0"	10"	0,	10*		
ø1	0,	15"	0"	15*		
ø2	25*	35*	25"	35*		

LEAD ASSIGNMENTS

HEXFET

1,- GATE 2,- DRAIN 3.- SOURCE 4,- DRAIN

IGBT & CoPAK

1.- GATE
2.- COLLECTOR
3.- EMITTER
4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

- NOTES:
 1.- DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- ⚠ DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0,13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- ♠ LEAD DIMENSION UNCONTROLLED IN L3.
- ⚠- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).
- 8.- CONTROLLING DIMENSION : INCHES,

S Y M		N			
В	MILLIM	ETERS	INC	HES	O T E S
0 L	MIN,	MAX,	MIN.	MAX.	E S
Α	2.18	2.39	.086	.094	
A1	0.89	1,14	.035	.045	
b	0.64	0.89	.025	.035	
b1	0.65	0.79	.025	.031	6
ь2	0.76	1,14	.030	.045	
ь3	0.76	1,04	.030	.041	6
b4	4.95	5.46	.195	.215	4
С	0,46	0,61	,018	,024	
c1	0.41	0.56	.016	.022	6
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	3
D1	5.21	-	.205	-	4
E	6.35	6.73	.250	.265	3
E1	4.32	-	.170	-	4
е	2.29	BSC	.090	BSC	
L	8,89	9.65	.350	.380	
L1	1.91	2.29	.045	.090	
L2	0.89	1.27	.035	.050	4
L3	0,89	1,52	,035	,060	5
ø1	0*	15*	0*	15*	
ø2	25"	35"	25"	35"	

LEAD ASSIGNMENTS

<u>HEXFET</u>

- 1,- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES: 1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification information[†]

www.mex.terr miletination					
Ovalification loval	Industria				
Qualification level	(per JEDEC JES D47F ^{††} guidalines)				
Moisture Sensitivity Level	D-Pak	MSL1			
	I-Pak				
RoHS compliant		Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Revision History

Date	Comment
	$ullet$ Updated Electrical parameter table typo on Rdson units from "W" to " Ω " on page2.
	Updated Package outline on page 8 & page 9.
7/9/2014	Added Orderable table on page1.
7/9/2014	Updated datasheet with IR corporate template.
	Updated ordering information to reflect the End-Of-life (EOL notice #289)
	Added Qualification table on page10.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/