Junpeng Jing

Curriculum Vitae

EDUCATION

2020.9 - Master, Dept. of Cyber Science and Technology, Beihang University, C.N..

Present • GPA: 3.85/4.0 (1/26)

- o Group: Multimedia Computing Towards Communications (MC2 Lab)
- o Topics: Stereo Image Super-Resolution, Reversible Image Conversion, Compression
- o Advisor: Prof. Zhenyu Guan, Prof. Mai Xu, and Prof. Xin Deng

2016.9 - **Bachelor**, *Dept. of Electronic Information Engineering*, Beihang University, C.N.. 2020.7

INTERNSHIP EXPERIENCE

2022.5 - **Research Intern**, *IS Group*, Megvii Research (also known as Face++ until July, 2016).

Present o Topic: Stereo Matching

o Advisor: Jiankun Li, Jiangyu Liu, and Prof. Shuaicheng Liu

RESEARCH INTERESTS

Stereo Matching, Optical Flow, Reversible Image Conversion.

PUBLICATIONS

The publications are also listed in my Google Scholar Page.

- 2022 [1] Junpeng Jing, Jiankun Li, Lai Jiang, Mai Xu, Jiangyu Liu, Shuaicheng Liu, Leonid Sigal. Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo Matching. Under Review.
- 2022 [2] **Junpeng Jing**¹, Zhenyu Guan¹, Xin Deng, Mai Xu, Lai Jiang, Zhou Zhang, Yipeng Li. *DeepMIH: Deep Invertible Network for Multiple Image Hiding*. IEEE Transactions on Pattern Analysis and Machine Intelligence (**TPAMI**). (*Paper*) (*Code*)
- 2021 [3] **Junpeng Jing**¹, Xin Deng¹, Mai Xu, Jianyi Wang, Zhenyu Guan. *HiNet: Deep Image Hiding by Invertible Network*. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). (*Paper*) (<u>Code</u>)

COMPETITIONS

- 2022 [1] Winner (1st) at Robust Vision Challenge 2022, ECCV Workshop. (<u>Certificate</u>)
 - Stereo Matching Track

1st Author

- 2022 [2] 6th place at NTIRE Challenge 2022, CVPR Workshop
 - Stereo Image Super-Resolution Track

1st Author

PATENT

2022 [1] An Image Hiding Technology and Method. C.N. 202011290006.9

RESEARCHES

Reversible Image Conversion

- 2020.7 HiNet: Deep Image Hiding by Invertible Network, ICCV2021.
- 2020.12 We proposed a novel image hiding network, namely HiNet, based on invertible neural network for the task of large-capacity image hiding.
 - We designed two concealing and revealing modules with differentiable and invertible property, aiming to make the image hiding process fully reversible.
 - o We proposed a low-frequency wavelet loss to control the distribution of secret information in different frequency bands, which significantly improves the hiding security.
- 2021.1 DeepMIH: Deep Invertible Network for Multiple Image Hiding, TPAMI2022.
 - 2022.1 We proposed a novel invertible multiple image hiding framework, to hide multiple secret images into the same cover image in a new manner.
 - We investigated two important findings about image hiding, which laid solid foundation for the network and loss function design for multiple image hiding.
 - We proposed an importance map module to guide the current image hiding with the results of previous image hiding and to fully utilize the hiding potential of cover image.
 - We developed a new multi-stage training strategy with designed stage losses, to improve the training stability and the performance of multiple image hiding.

Stereo Image Process

- 2022.1 StereoSRT: A Stereo Image Super-Resolution Transformer, NTIRE2022 Challenge.
 - 2022.4 We proposed a transformer-based architecture for stereo image super-resolution, simultaneously leveraged the self and cross information between stereo image pairs.
 - o We introduced a 2-stage training strategy and designed a U-Net based backbone, which re-used the original input to further enhance the output from super-resolution.
- 2022.5 CREStereo++: Cascaded Recurrent Network for Robust Stereo Matching.
- Present We proposed a new prospective to calculate correlation dynamically for robust stereo matching.
 - We introduced an uncertainty guided adaptive warping module to adapt the same model for different scenarios, which is also valuable in general matching task.
 - o Our method ranked 1st on ETH3D and Middlebury, and ranked 2nd on KITTI2015, achieving an overall 1st rank in the stereo matching task.
 - The lite version model achieves SoTA on KITTI benchmarks compared with existing real-time methods.
 - o In preparation for CVPR 2023.

SCHOLARSHIPS

2022	Top-10 Graduate Students	Top 0.5%, 10,000¥
	 Highest Honor for the Graduates in Beihang University 	
2021	National Scholarship	Top 1%, 20,000¥
	 Awarded by the National Ministry of Education 	
2021	Postgraduate Academic Scholarship	1st Prize, 7,500¥
2020	Postgraduate Academic Scholarship	2nd Prize, 5,000¥
2018	Science and Technology Scholarship of Beihang University	1st Prize, 2,000¥
2017	Science and Technology Scholarship of Beihang University	2nd Prize, 1,000¥

HONORS & AWARDS

2021	Outstanding Graduate Student	Top 5%
2021	Merit Student	Top 5%
2019	National College-student Electronics Design Contest	1st Author & 2nd Prize
2019	29th Feng Ru Cup on "Nokia" Innovation Competition	1st Author & 2nd Prize
2018	Beijing College-student Electronics Design Contest	1st Author & 2nd Prize
2018	COMAP's Mathematical Contest in Modeling	Honorable Winner
2017	27th Feng Ru Cup on Innovation Competition	1st Author & 3rd Prize

PROJECT

 $2018-2019\,$ National College Student Innovation and Entrepreneurship Training Program

- Autonomous Tracking UAV Based on Deep Learning

1st Author

SKILLS

Programming: Matlab, Python (PyTorch)

Others: LaTeX, Microsoft Office, Adobe Illustrator

Languages: Chinese (Native), English (Proficient, IELTS: 7)

Interests: Chess, Basketball, Bodybuilding