Convector/Dot Product Example

$$\mathcal{L} = \begin{bmatrix} \frac{7}{3} \\ \frac{3}{3} \end{bmatrix}$$

$$\frac{3}{3}$$

$$\mathcal{X} = \begin{bmatrix} 7\\3 \end{bmatrix}$$

$$\mathcal{X} = \begin{bmatrix} -3 & 7 \end{bmatrix}$$

$$\mathcal{X} = \begin{bmatrix} -3 & 7 \end{bmatrix} \begin{bmatrix} 7\\3 \end{bmatrix}$$

$$\mathcal{X} = \begin{bmatrix} -3 & 7 \end{bmatrix} \begin{bmatrix} 7\\3 \end{bmatrix}$$

$$CDS(O) = \frac{\langle a, b \rangle}{||a|| ||b||}$$

$$= \frac{||a|| ||b||}{||a|| ||a||} \langle a, b \rangle$$

$$= \frac{\langle a, b \rangle}{||a|| ||b||}$$

$$A = (x, y) = (reoso, rsing)$$

$$= (b\cos \theta, b\sin \theta)$$

$$= (b\cos \theta - a)^{2} + (b\sin a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)^{2}$$

$$= (b\cos \theta - a)^{2} + (b\cos \theta - a)$$

|
$$||v-w||^2 = \langle v-w, v-w \rangle = \langle v, v-w \rangle - \langle w, v-w \rangle$$
 | bilinearity = $\langle v, v \rangle - \langle v, w \rangle - \langle v, w \rangle + \langle w, w \rangle$ | $= \langle v, v \rangle + \langle w, w \rangle - 2\langle v, w \rangle$ | But

) /v-w/12=////2+///2-2/N/1// w/1205/0)

Analytic Geometry 2/2

Changing our Dimensionality

- In the case of a SVM we work in a dimensionality typically higher than the original data.
- Many visualizations require projecting down into a more manageable dimensionality.
 - ▶ Ideally we want this mapping to preserve as much *information* from the original data as possible.
 - ▶ There are often different aspects of the *information* we might prioritize.

* For example with PCA we try and preserve the data variance as much as possible

Orthogonal Projections from \mathbb{R}^2 to \mathbb{R}

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Projections

Projection

Let V be a vector space and $U \subseteq V$ a subspace of V.

• A linear mapping $\pi: V \to U$ is called a *projection* if $\pi^2 = \pi \circ \pi = \pi$

Since linear mappings can be expressed by transformation matrices we also have that

• \mathbf{P}_{π} is a projection matrix if $\mathbf{P}_{\pi}^2 = \mathbf{P}_{\pi}$.

Projecting onto One-Dimensional Subspaces (Line)

We want to project $\mathbf{x} \in \mathbb{R}^n$ onto a line (one dimensional subspace) through the origin and defined by the basis vector $\mathbf{b} \in \mathbb{R}^n$ where $span[\mathbf{b}] = U \subseteq \mathbb{R}^n$.

• Specifically when we project $\mathbf{x} \in \mathbb{R}^n$ onto U we wish to obtain $\pi_U(\mathbf{x}) \in U$ that is the closest to \mathbf{x} .

(a) Projection of $x \in \mathbb{R}^2$ onto a subspace U with basis vector \mathbf{b} .

Projecting onto One-Dimensional Subspaces (Line)

It is worth being precise in our requirements on π_u :

- The projection $\pi_U(\mathbf{x})$ is closest to \mathbf{x} when
 - ▶ $\|\mathbf{x} \pi_U(\mathbf{x})\|$ is minimal.

This occurs when $\pi_U(\mathbf{x}) - \mathbf{x}$ is orthogonal to U.

- ▶ This orthogonality means that $\langle \pi_U(\mathbf{x}) \mathbf{x}, \mathbf{b} \rangle = 0$
- Since $\pi_U(\mathbf{x})$ maps \mathbf{x} into U there exists a $\lambda \in \mathbb{R}$ such that $\pi_U(\mathbf{x}) = \lambda \mathbf{b}$

We are going to build \mathbf{P}_{π} that maps any $\mathbf{x} \in \mathbb{R}^n$ onto U. This is broken into three steps

- Determine λ coordinate
- Determine $\pi_U(\mathbf{x}) \in U$
- Finally construct \mathbf{P}_{π} .

 $\langle \Pi_{4}(x) - \times, b \rangle = 0$

Finding the coordinate λ

 $\Rightarrow -|(x-\pi(x),b)=0$ $\Rightarrow < x-\pi(x),b>=0$

• From the orthogonality condition we have that

$$0 = \langle \mathbf{x} - \pi_u(\mathbf{x}), \mathbf{b} \rangle \tag{1}$$

$$= \langle \mathbf{x} - \lambda \mathbf{b}, \mathbf{b} \rangle \tag{2}$$

$$= \langle \mathbf{x}, \mathbf{b} \rangle - \lambda \langle \mathbf{b}, \mathbf{b} \rangle \text{ from the bilinearity if } \langle \cdot, \cdot \rangle$$
 (3)

We can now rearrange to obtain

$$\lambda = \frac{\langle \mathbf{x}, \mathbf{b} \rangle}{\langle \mathbf{b}, \mathbf{b} \rangle}$$

$$\langle b, b \rangle > 0$$
 for $b \neq 0$ (4)

$$= \frac{\langle \mathbf{b}, \mathbf{x} \rangle}{\|\mathbf{b}\|^2}$$

Finding the coordinate λ

• If we use our current context and choose $\langle\cdot,\cdot\rangle$ to be the dot product. Using the dot product we can obtain λ as

$$\lambda = \frac{\mathbf{b}^T \mathbf{x}}{\mathbf{b}^T \mathbf{b}} = \frac{\mathbf{b}^T \mathbf{x}}{\|\mathbf{b}\|^2}$$
 (6)

If $\|\mathbf{b}\| = 1$, then $\lambda = \mathbf{b}^T \mathbf{x}$.

Finding the projection point $\pi_U(\mathbf{x}) \in U$

• Since $\pi_U(\mathbf{x}) = \lambda \mathbf{b}$ it immediately follows that

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \frac{\langle \mathbf{x}, \mathbf{b} \rangle}{\|\mathbf{b}\|^2} \mathbf{b} = \frac{\mathbf{b}^T \mathbf{x}}{\|\mathbf{b}\|^2} \mathbf{b}$$
(7)

• What can we say about $\|\pi_U(\mathbf{x})\|$?

$$\|\pi_U(\mathbf{x})\| = \|\lambda \mathbf{b}\| = |\lambda| \|\mathbf{b}\|. \tag{8}$$

If the dot product is used we can tie in our earlier angle definition

If the dot product is used we can tie in our earlier angle definition

$$\frac{\|\mathbf{b}^{\mathsf{T}}\mathbf{x}\|}{\|\mathbf{b}\|\|\|\mathbf{x}\|} = \cos(\omega) \qquad \|\pi_{\mathcal{U}}(\mathbf{x})\| = \frac{\|\mathbf{b}^{\mathsf{T}}\mathbf{x}\|}{\|\mathbf{b}\|^{2}} \|\mathbf{b}\| \qquad (9)$$

$$= |\cos\omega|\|\mathbf{x}\|\|\mathbf{b}\| \frac{\|\mathbf{b}\|}{\|\mathbf{b}\|^{2}} \qquad (10)$$

$$= |\cos\omega|\|\mathbf{x}\| \qquad (11)$$

where ω is the angle between **x** and **b**.

Finding the projection matrix \mathbf{P}_{π}

- Firstly since the projection is a linear mapping and our domain and co-domain are finite dimensional vector spaces there has to exist a matrix \mathbf{P}_{π} , such that $\pi_{U}(\mathbf{x}) = \mathbf{P}_{\pi}\mathbf{x}$
- Using the dot product we can make the following observation

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \mathbf{b}\lambda \tag{12}$$

$$A \left(\frac{\mathbf{b}}{\mathbf{b}} \right)^{-} \left(\frac{\mathbf{a}}{\mathbf{b}} \right)^{-} \left(\frac{\mathbf{b}}{\mathbf{b}} \right)^{T} \mathbf{x}$$

$$= \frac{\mathbf{b} \mathbf{b}^{T}}{\|\mathbf{b}\|^{2}} \mathbf{x}$$

$$= \frac{\mathbf{b} \mathbf{b}^{T}}{\|\mathbf{b}\|^{2}} \mathbf{x}$$

$$(14)$$

Recall that **b** is a $n \times 1$ matrix and **b**^T is a $1 \times n$ matrix, therefore **bb**^T is a $n \times n$ matrix (and is also symmetric).

▶ It follows that

$$P_{\pi} = \frac{\mathbf{b}\mathbf{b}^{T}}{\|\mathbf{b}\|^{2}} \tag{15}$$

Important Projection Remark

The projection we have been working with produces a vector in \mathbb{R}^n , $\pi_U(\mathbf{x}) \in \mathbb{R}^n$.

• However, we no longer require n coordinates to represent the projection, but only a single one if we want to express it with respect to the basis vector \mathbf{b} that spans the subspace $U: \lambda$.

We now want to generalize from projecting onto a 1-dimensional subspace (a line) to a arbitrary lower dimensional subspace $U \subset \mathbb{R}^n$ with $dim(U) = m \ge 1$.

• Here is an illustration for a projection onto a two-dimensional subspace of \mathbb{R}^3

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Assume that $(\mathbf{b}_1, \dots, \mathbf{b}_m)$ is an ordered basis of U

• We know that for any $\mathbf{x} \in \mathbb{R}^n$ that $\pi_U(\mathbf{x}) \in U$, this means that there are λ_i s in \mathbb{R} such that

$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i \tag{16}$$

A three step procedure will be used again.

Find the coordinates $\lambda_1, \ldots, \lambda_m$ of the projection, such that the linear combination

$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i = \mathbf{B} \lambda, \tag{17}$$

$$\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_m] \in \mathbb{R}^{n \times m}, \ \boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_m]^T \in \mathbb{R}^m$$
 (18)

where $\pi_U(\mathbf{x})$ is the closest point in U to \mathbf{x} .

- This occurs if $\pi_U(\mathbf{x}) \mathbf{x}$ is orthogonal to U.
- Which implies that $\pi_U(\mathbf{x}) \mathbf{x}$ must be orthogonal to all the basis vectors of U.

In order to ensure that $\pi_U(\mathbf{x}) - \mathbf{x}$ is orthogonal to all the basis vectors of U, we must satisfy m simultaneous conditions. Specifically, using the dot product as the inner product we end up with

$$\langle \mathbf{b}_1, \mathbf{x} - \pi_U(\mathbf{x}) \rangle = \mathbf{b}_1^T(\mathbf{x} - \pi_U(\mathbf{x})) = 0$$
 (19)

:

$$\langle \mathbf{b}_m, \mathbf{x} - \pi_U(\mathbf{x}) \rangle = \mathbf{b}_m^T(\mathbf{x} - \pi_U(\mathbf{x})) = 0$$
 (20)

Using equation (17) this system can be more compactly written as

$$\mathbf{b}_{1}^{T}(\mathbf{x} - \mathbf{B}\lambda) = 0 \quad \mathbf{T}_{N}(\mathbf{x}) = \mathbf{B}\lambda \quad (21)$$

:

$$\mathbf{b}_{m}^{T}(\mathbf{x} - \mathbf{B}\lambda) = 0 \tag{22}$$

From which we obtain a homogeneous linear equation system

$$\begin{bmatrix} \mathbf{b}_{1}^{T} \\ \vdots \\ \mathbf{b}_{m}^{T} \end{bmatrix} \underbrace{[\mathbf{x} - \mathbf{B}\lambda]}_{\text{(M)}} = \mathbf{0} \quad \text{(M)}_{\text{(M)}} = \mathbf{0} \quad \text{(23)}$$

$$\iff \mathbf{B}^{T}(\mathbf{x} - \mathbf{B}\lambda) = \mathbf{0} \quad \text{(24)}$$

$$\iff \mathsf{B}^{\,\prime}(\mathsf{x} - \mathsf{B}\lambda) = \mathsf{0} \tag{24}$$

$$\iff \mathbf{B}^{\mathsf{T}}\mathbf{B}\boldsymbol{\lambda} = \mathbf{B}^{\mathsf{T}}\mathbf{x} \tag{25}$$

- Equation (25) is called the normal equation.
- Note that $\mathbf{B}^T \mathbf{B} \in \mathbb{R}^{m \times m}$ is invertible because $\mathbf{b}_1, \dots \mathbf{b}_m$ are linearly independent. This means we can solve for λ

$$\lambda = (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{x} \tag{26}$$

Finding the projection point $\pi_U(\mathbf{x}) \in U$:

• We have from equation (17) and equation (26)

$$\pi_U(\mathbf{x}) = \sum_{i=1}^m \lambda_i \mathbf{b}_i = \mathbf{B} \lambda \tag{27}$$

$$= \mathbf{B}(\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{x} \tag{28}$$

Find the projection matrix \mathbf{P}_{π} :

• From equation (27) we can directly see that the matrix that satisfies

$$\mathbf{P}_{\pi}\mathbf{x} = \pi_U(\mathbf{x}) \tag{29}$$

must be

$$\mathbf{P}_{\pi} = \mathbf{B}(\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \tag{30}$$

Important Projection Remark

The projection we have been working with produces a vector in \mathbb{R}^n , $\pi_U(\mathbf{x}) \in \mathbb{R}^n$.

• However, we no longer require n coordinates to represent the projection, but only a dim(U) = m coordinates with respect to the basis vectors $\mathbf{b}_1, \dots, \mathbf{b}_m$ that spans the subspace $U : \lambda_1, \dots, \lambda_m$.

Projection and a Orthonormal Basis

If we are projecting using an **orthonormal basis** for U can be simplified as follows

$$\pi_U(\mathbf{x}) = \mathbf{B}\lambda \tag{31}$$

$$= \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathsf{T}}\mathbf{x} \tag{32}$$

$$= \mathbf{B}\mathbf{I}^{-1}\mathbf{B}^{T}\mathbf{x} \qquad \text{since } \mathbf{B}^{T}\mathbf{B} = \mathbf{I}$$
 (33)

$$= \mathbf{B}\mathbf{B}^{\mathsf{T}}\mathbf{x} \tag{34}$$

This is a much faster computation as it avoids the costly inverse operation.

Projection and Inhomogeneous Systems

Recall that if

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{35}$$

has no solution it means that **b** is not in the span of **A**.

- But we can try and find the $x \in span(A)$ that is closest to b (as an approximate solution)
- Specifically, we try solve

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

$$\mathbf{x} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{b}$$
(36)

where the \mathbf{x} if it exists, is the *least-squares solution*.

Gram-Schmidt Orthogonalization

Working with a orthonormal basis comes with many advantages. A question worth asking is:

- If I have a ordered basis $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a *n*-dimensional vector space V. Is there a equivalent orthonormal basis? Furthermore, can we build from a orthonormal basis from the given basis?
 - ▶ The answer is yes, there always is a orthonormal basis $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ such that $span[\mathbf{b}_1, \dots, \mathbf{b}_n] = span[\mathbf{u}_1, \dots, \mathbf{u}_n]$
 - ★ See Liesen, Jörg, and Mehrmann, Volker. 2015. Linear Algebra. Springer
 - The answer to the second question also yes, via the Gram-Schmidt orthogonalization method.

Gram-Schmidt Orthogonalization

The Gram-Schmidt orthogonalization method constructs an orthogonal basis $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ from any basis $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ of V as follows:

$$\begin{array}{l} \mathbf{u}_{1} := \mathbf{b}_{1} & \text{NK } \perp \left\{ \mathbf{U}_{1} \dots \mathbf{U}_{k-1} \right\} \longrightarrow \mathbf{U}_{K} \perp \text{Span}[\mathbf{U}_{k}, \mathbf{U}_{k-1}] \\ \mathbf{u}_{k} := \mathbf{b}_{k} - \pi_{span}[\mathbf{u}_{1}, \dots, \mathbf{u}_{k-1}](\mathbf{b}_{k}), \ k = 2, \dots, n \end{array} \tag{38}$$

Let us deep dive into equation (38)

- the kth basis vector \mathbf{b}_k is projected onto the subspace spanned by the first k-1 constructed orthogonal vectors $\mathbf{u}_1, \dots, \mathbf{u}_{k-1}$
- ullet This projection is then subtracted from $oldsymbol{b}_k$ and yields a vector $oldsymbol{u}_k$
 - ▶ that is orthogonal to the k-1-dimensional subspace spanned by $\mathbf{u}_1, \dots, \mathbf{u}_{k-1}$
- Repeating this procedure for all n basis vectors yeilds orthogonal basis.
 - If we go step further and rather use $\hat{\mathbf{u}}_k = \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}$ we have a orthonormal basis!

Gram-Schmidt Orthogonalization

Visual illustration:

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Projection onto Affine Subspaces

Up until now we have been restricted to projecting onto a vector subspace.

• Can we extend our approach to allow for an affine subspace?

Projection onto Affine Subspaces

Let $L = \mathbf{x}_0 + U$ be our affine space where \mathbf{x}_0 is our support vector and U is the vector subspace of V spanned by the basis vectors $\mathbf{b}_1, \mathbf{b}_2$.

- We want to find the orthogonal projection $\pi_L(\mathbf{x})$ of $\mathbf{x} \in V$ onto L
- In order to do this we transform our problem to an easier context to perform the projection and then undo the original transformation.
 Specifically:
 - ▶ Consider the point $\mathbf{x} \mathbf{x}_0$ and $L \mathbf{x}_0 = U$
 - We already know how to project $\mathbf{x} \mathbf{x}_0$ onto U. Specifically using $\pi_U(\mathbf{x} \mathbf{x}_0)$

(b) Reduce problem to projection π_U onto vector subspace.

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Projection onto Affine Subspaces

All that is left to do is to undo our initial transformation. Specifically,

We only need to add the support vector back, leading to

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Rotations

A rotation is an automorphism $\mathbf{R}:V\to V$, in our context V is typically a Euclidean vector space.

- ullet We typically discuss the rotation in term of angle heta around an axis
- ullet The angle heta refers to the counterclockwise movement.

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

If we have the standard coordinate system in \mathbb{R}^2 , with the corresponding basis $(\mathbf{e}_1, \mathbf{e}_2)$.

ullet How can we rotate each of these vector by eta as seen in the diagram below?

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

The two vectors form our new basis

$$\Phi(\mathbf{e}_1) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \cdot \Phi(\mathbf{e}_2) = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} . \tag{40}$$

from which we can concatenate them to form our change of basis matrix

$$\mathbf{R}(\theta) = \begin{bmatrix} \Phi(\mathbf{e}_1) & \Phi(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
(41)

$$\left[\bar{e}_1 \; \bar{e}_2\right] = F\left[e_1 \; e_2\right]$$

When we move to \mathbb{R}^3 we can rotate any two-dimensional plane about a one-dimensional axis.

For which there are three choices

The easiest way to specify the general rotation matrix is to specify how the images of the standard basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are supposed to be rotated while ensuring that

• Re₁, Re₂, Re₃ remain orthonormal to each other.

Source: M.P. Deisenroth et al, Mathematics for Machine Learning (First Edition)

• Rotation about the e1-axis

$$\mathbf{R}_{1}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$
(42)

Here, the \mathbf{e}_1 coordinate is fixed, and the counterclockwise rotation is performed in the $\mathbf{e}_2\mathbf{e}_3$ plane.

• Rotation about the e2-axis

$$\mathbf{R}_{2}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$
 (43)

If we rotate the e_1e_3 plane about the e_2 axis, we need to look at the e_2 axis from its "tip" towards the origin.

• Rotation about the e₃-axis

$$\mathbf{R}_{3}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(44)

The generalization of rotations from 2D and 3D to n-dimensional Euclidean vector spaces can be described as

- Fixing n-2 dimensions and restrict the rotation to a two-dimensional plane in the n-dimensional space.
- This type of rotation in a *n*-dimensional space is called a Givens rotation. Other do exist.

Givens Rotation

Let V be a n-dimensional Euclidean vector space and $\mathbf{R}_{ij}:V\to V$ an automorphism with transformation matrix

$$\mathbf{R}_{ij}(\theta) = \begin{bmatrix} \mathbf{I}_{i-1} & \mathbf{0} & \cdots & \cdots & \mathbf{0} \\ \mathbf{0} & \cos \theta & \mathbf{0} & -\sin \theta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I}_{j-i-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \sin \theta & \mathbf{0} & \cos \theta & \mathbf{0} \\ \mathbf{0} & \cdots & \cdots & \mathbf{0} & \mathbf{I}_{n-j} \end{bmatrix}$$
(45)

for $1 \le i < j \le n$ and $\theta \in \mathbb{R}$. Then \mathbf{R}_{ij} is a Givens rotation

ullet Essentially, ${f R}_{ij}$ is the identity matrix ${f I}_n$ with

$$r_{ii} = \cos \theta$$
, $r_{ij} = -\sin \theta$, $r_{ji} = \sin \theta$, $r_{jj} = \cos \theta$. (46)

Properties of Rotations

Rotations have a number of useful properties (which follows from them being orthogonal matrices)

- Rotations preserve distances
- Rotations preserve angles

That said rotation matrices are still not generally commutative (in 3 and more dimensions), so the order of application must be considered.

$$-\left[\frac{2}{3}\right] - \frac{2}{12}$$

$$= \begin{bmatrix} 1 \\ - \end{bmatrix} - \frac{5}{13} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$=\frac{1}{13}\begin{bmatrix}3\\-1\end{bmatrix}$$

$$P_{1} = \frac{1}{\left[13\right]\left[\frac{1}{3}\right]} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$= \frac{1}{\left[13\right]} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$$

$$P_{2} = \sqrt{\frac{1}{13}[3-2]} \cdot \frac{1}{13}[3]$$

$$= \sqrt{\frac{13}{13}} \cdot \frac{1}{13}[3]$$

$$= -\frac{13}{13}[3]$$

$$= -\frac{1}{13}[3]$$

$$II_{1}(x) = \frac{b}{|b|} x \qquad b = \frac{1}{|3|} [\frac{2}{3}] = U_{1}$$

$$|b||^{2} x = [\frac{1}{3}] = V_{2}$$

$$\frac{1}{160} = \frac{1}{13} \frac{1}{13$$

$$U_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{1}{13} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$U_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{1}{13} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$