Arrays in Java

Klasgroep 1EO-ICT

Opleiding Bachelor Elektronica-ICT

Lokaal Groot Auditorium

Tijdstip maandag lestijd 3

Docent Katja Verbeeck

Contact katja.verbeeck@odisee.be

Handboek hfst 5 - p 135 - p 166

Introductie 2 / 2

Inhoud

Arrays in meerdere dimensies

- 2 dimensies
- 3 dimensies

Ongeordend elementen

Geordende elementen

Alle elementen in de rij van zelfde type

meerdere dimensies

Declaratie, instantiatie, initialisatie

```
//1) declaratie van een array
int[] balRij;
//2) instantiatie van een array
balRij = new int[6];
//3) initialisatie van de array
for (int i = 0; i < balRij.length; i++) {
  balRij[i] = (int)(Math.random() * 45) + 1;
```

Ordenen in meerdere dimensies

Ordenen in 2 dimensies : rijen en kolommen


```
boolean[][] krat; //declaratie van een 2-dimensionale array
krat = new boolean[4][6]; //aanmaken van het array object

//opvullen met flesjes
for (int rij = 0; rij < 4; rij++) { //vul de rijen
    for (int kol = 0; kol < 6; kol++) { //vul elk elem
        krat[rij][kol] = true;
    }
}</pre>
```

mijnFlesje

//neem een blikje uit het krat
boolean mijnFlesje = krat[3][4];

```
final int RIJEN = 4;
final int KOLOMMEN = 6;

boolean[][] krat;
krat = new boolean[RIJEN][KOLOMMEN];

for (int rij = 0; rij < RIJEN; rij++) {
   for (int kol = 0; kol < KOLOMMEN; kol++) {
      krat[rij][kol] = true;
   }
}</pre>
```

Ordenen in 2 dimensies

Gestructureerd breken van eitjes Via een java programma houden we de status van de eitjes bij :

```
• Gebroken (true)
• Niet gebroken (false)

doos
```

```
final int RIJEN = 2;
final int KOLOMMEN = 4;

boolean[][] doos;
doos = new boolean[RIJEN][KOLOMMEN];
```

Ordenen in 2 dimensies

Bij het aanmaken van een nieuw 2dim array object krijgen alle elementen een default waarde : voor boolean is die default waarde false er is nog geen enkel eitje gebroken

doos

```
for (int i = 0; i < RIJEN; i++) {
    for (int j = 0; j < KOLOMMEN; j++) {
        System.out.print(doos[i][j] + ' ');
    }

    System.out.println();
}</pre>
```

Uitvoer:

false false false false false

Ordenen in 2 dimensies


```
//Breek het ei
linksonder
doos[1][0] = true;
```


Voorstelling in het geheugen


```
boolean isGebroken;
isGebroken = doos[0][0]; //geeft false
isGebroken = doos[1][0]; //geeft true
```

Lengte van een 2dim array


```
int lengte = doos.length; //uitvoer ?
```

2!

De lengte van een tweedimensionele array geeft het aantal rijen terug (de eerste dimensie van de 2dim array)

een tweedimensionale array bestaat eigenlijk uit 2 enkelvoudige rijen

Een 2 dim array is eigenlijk 2 x een 1 dim array

Als je van een tweedimensionele array slechts 1 dimensie opvraagt dan verkrijg je een eendimensionele array

```
boolean[] eersteRij = doos[0];
boolean[] tweedeRij = doos[1];
```

```
boolean isGebroken;
isGebroken = eersteRij[0]; //geeft false
isGebroken = tweedeRij[0]; //geeft true
```


Tel het aantal eitjes dat gebroken is


```
int aantalGebroken = 0;
for (int i = 0; i < doos.length; i++) {
   for (int j = 0; j < ? ; j++) {
         if (doos[i][j] == true) {
                aantalGebroken++;
System.out.println("Er zijn " + aantalGebroken
             + " eitjes gebroken");
```

Tel het aantal eitjes dat gebroken is

```
int aantalGebroken = 0;
for (int i = 0; i < doos.length; i++) {
      for (int j = 0; j < doos[i].length; j++) {</pre>
             if (rij[i][j] == true) {
                    aantalGebroken++;
System.out.println("Er zijn " + aantalGebroken +
             " eitjes gebroken");
```

De derde dimensie

Grondplan van een appartementsgebouw

app1	app2	арр3	app4	app5	app6	арр7	app8	app9	арр10
app11	app12	app13	app14	app15	app16	app17	app18	app19	app20

De klasse Appartement houdt per appartement het aantal bewoners bij

```
public class Appartement {
   final int HOOGTE = 8;
   final int DIEPTE = 2;
   final int BREEDTE = 10;
   int[][][] appt = new int[HOOGTE][DIEPTE][BREEDTE];
   public void voegNieuweHuurderToe() {...}
   public void geefApptStatusOverzicht() {...}
   public int telAantalBewoners()
```

```
public void voegNieuweHuurderToe() {
   Scanner scan = new Scanner(System.in);
   System.out.println("\nOp welke verdieping komt de nieuwe huurder [0, "
                               + (HOOGTE - 1) + "] ?");
   int verdieping = scan.nextInt();
   System.out.println("Kies een appartement [1, " + (DIEPTE * BREEDTE) + "]");
   int keuzeAppt = scan.nextInt() - 1;
   int rij = keuzeAppt / BREEDTE;
   int kol = keuzeAppt % BREEDTE;
   if (appt[verdieping][rij][kol] == 0) {
        System.out.println("Met hoeveel komt men hier wonen ?");
        appt[verdieping][rij][kol] = scan.nextInt();
   else {
    System.out.println("Hier woont al iemand...");
```

```
Op welke verdieping komt de nieuwe huurder [0, 7] ?

1
Kies een appartement [1, 20]
15
Met hoeveel komt men hier wonen ?
12
```

```
public void geefApptStatusOverzicht() {
       for (int i = 0; i < HOOGTE; i++) {</pre>
             System.out.println("Overzicht voor verdieping " + i);
             for (int j = 0; j < DIEPTE; j++) {
                    for (int k = 0; k < BREEDTE; k++) {
                          System.out.print("\t" + appt[i][j][k]);
                   System.out.println();
            System.out.println();
```

Overzicht voor verdieping_0										
0	0	0	0	0	0	0	0	0	0	
0	0	0	0		0	0	0	0	0	
Overzicht voo	r verdie	eping_1								
0	0	0	0	0	0	0		0	0	
0	0	0	0	12	0	0	0	0	0	
Overzicht voo	r verdie	eping_2								
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

3 geneste for lussen!

```
public int telAantalBewoners() {
   int teller = 0;
   for (int i = 0; i < appt.length; i++) {</pre>
    for (int j = 0; j < appt[i].length; <math>j++) {
       for (int k = 0; k < appt[i][j].length; <math>k++) {
           teller += appt[i][j][k];
   return teller;
```