ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине «ИНФОРМАТИКА»

Синтез помехоустойчивого кода

Вариант №409858=95

Выполнил:

Студент группы Р3107

Чусовлянов Максим Сергеевич

Проверил:

Балакшин Павел Валерьевич

кандидат технических наук, доцент факультета ПИиКТ

Содержание

Задание	3
Основные этапы вычисления	4
Задание 1: №79	4
Задание 2: №9	4
Задание 3: №51	5
Задание 4: №91	5
Задание 5: №93	ϵ
Задание 6: $N_{\underline{0}}$ (79 + 9 + 51 + 91 + 93) * 4 = 1292	ϵ
Заключение	8
Список литературы	9

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчете в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчете в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

Задание 1: №79

r_1	r_2	i_1	r_3	i_2	i ₃	i_4
1	0	0	1	1	0	1

$$\begin{split} S_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1 \\ S_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 1 = 1 \\ S_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1 \end{split}$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

Синдром S (S₁, S₂, S₃) = 111 \Rightarrow Ошибка в символе i_4 Исправленное сообщение: 0100

Задание 2: №9

r_1	r ₂	i_1	r ₃	i_2	i ₃	i_4
1	0	0	1	0	0	0

$$\begin{split} S_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1 \\ S_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0 \\ S_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1 \end{split}$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

Синдром S (S₁, S₂, S₃) = $101 \Rightarrow$ Ошибка в символе i_2 Исправленное сообщение: $0\frac{1}{2}$

Задание 3: №51

r_1	r_2	i_1	r_3	i_2	i ₃	i_4
1	0	1	0	0	1	1

$$\begin{split} S_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1 \\ S_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1 \\ S_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \end{split}$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r_3	i_2	i_3	i_4	S
1	X		X		X		X	S_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

Синдром S (S₁, S₂, S₃) = $110 \Rightarrow$ Ошибка в символе i_1 Исправленное сообщение: 0011

Задание 4: №91

\mathbf{r}_1	r_2	i_1	r_3	i_2	i ₃	i_4
0	1	1	1	1	1	0

$$\begin{split} S_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \\ S_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1 \\ S_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1 \end{split}$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X		X		X		X	\mathbf{S}_1
2		X	X			X	X	S_2
4				X	X	X	X	S_3

Синдром S (S₁, S₂, S₃) = 011 \Rightarrow Ошибка в символе i_3

Исправленное сообщение: 1100

Задание 5: №93

\mathbf{r}_1	r_2	i ₁	r ₃	i_2	i_3	i_4	r ₄	i_5	i_6	i ₇	i ₈	i ₉	i ₁₀	i ₁₁
0	0	1	0	1	0	1	1	1	0	1	0	1	0	1

$$\begin{split} S_1 &= r_1 \oplus i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 \oplus i_9 \oplus i_{11} = 0 \oplus 1 = 1 \\ S_2 &= r_2 \oplus i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0 \\ S_3 &= r_3 \oplus i_2 \oplus i_3 \oplus i_4 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 0 \\ S_4 &= r_4 \oplus i_5 \oplus i_6 \oplus i_7 \oplus i_8 \oplus i_9 \oplus i_{10} \oplus i_{11} = 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 = 1 \end{split}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	r_2	i_1	r_3	i_2	i_3	i_4	r_4	i_5	i_6	i_7	i_8	i ₉	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	S_1
2		X	X			X	X			X	X			X	X	S_2
4				X	X	X	X					X	X	X	X	S_3
8								X	X	X	X	X	X	X	X	S_4

Синдром S (S₁, S₂, S₃, S₄) = $1001 \Rightarrow$ Ошибка в символе i₅. Исправленное сообщение: 11010010101

Задание 6: №
$$(79 + 9 + 51 + 91 + 93) * 4 = 1292$$

Информационных разрядов в передаваемом сообщении: 1292 Значит минимальное число проверочных разрядов равно 11, т.к $2^{11} \ge 1292 + 11 + 1$; 2048 > 1304.

Коэффициент избыточности = $r / (i + r) = 11 / (11 + 1292) \approx 0.0084421$

Ответ: минимальное число проверочных разрядов = 11; коэффициент избыточности = 0.0084421

Задание 7:

Исходный код программы на языке программирования Python:

from functools import reduce

BIT_NAMES = ["r1", "r2", "i1", "r3", "i2", "i3", "i4"]
inp = list(map(int, list(input())))

get_syndrom = lambda arr: str(reduce(lambda x, y: x ^ y, (inp[i] for i in arr)))

```
vaneshik@rowlet ~/V/i/lab2 (main)> python <u>hamming74.py</u>
1001101 print(i)
Ошибка в бите с индексом 6
Бит отвечает за i4
Сообщение без ошибок: 0100
```

Рисунок 1. (Пример работы программы для Задания 1)

Заключение

В ходе проделанной работы, я изучил технологию избыточного кодирования, которые позволяют исправлять "битфлипы" при передачи информации — Код Хэмминга. Написал собственную программу на языке Python для проверки сообщения на наличие ошибок.

Список литературы

- 1. Казарин, Лев Сергеевич. Введение в теорию кодирования, сжатия и восстановления информации : учебно-методическое пособие: Яросл. гос. ун-т им. П. Г. Демидова. Ярославль : ЯрГУ, 2020. 112 с.
- 2. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. указания / сост. Д. В. Пьянзин. Саранск : Изд-во Мордов. ун-та, 2009. 16 с