

Chapter 2

Signals and Spectra

(Part 5 of 5)

Filters

Frequency-selective circuits that can shape and limit the spectrum of signals.

Widely used to process signals

Frequency response, H(f)

The ratio of spectrum of the output signal to the spectrum of the input signal

$$\mathbf{H(f)} = \frac{\mathbf{Y(f)}}{\mathbf{X(f)}} = |\mathbf{H(f)}| \quad \angle \mathbf{H(f)} \quad \text{and} \quad |\mathbf{H(f)}| = \frac{|V_o(f)|}{|V_i(f)|}$$

|H(f)| - Amplitude response, or voltage gain

∠H(f) - Phase response, or phase shift

Ideal Filters

Pass signals at certain sets of frequencies exactly and completely reject the rest.

- There are 4 types of ideal filters:
 - Low Pass
 - High Pass
 - Band Pass
 - Band Stop (not included in this module)

Transition from stopband to passband and vice versa is instantaneous.

- Each type of filter has its own unique frequency response.
- Filter parameters

Passband - The range(s) of frequency that is passed by a filter.

Stopband - The range(s) of frequencies that is rejected by a filter.

Cut-off frequency - mark the transition from passband to stopband, or vice versa.

Amplitude Response (voltage gain) of ideal Low Pass Filter (LPF)

pass low frequency components from -f_c to +f_c and rejects high frequencies beyond \pm f_c.

Amplitude Response (voltage gain) of High Pass Filter (HPF)

pass high frequency components beyond $\pm f_c$ but rejects frequencies from -f_c to +f_c (opposite of LPF).

Opposite of LPF

Amplitude Response (voltage gain) of Band Pass Filter (BPF)

Passes frequencies in the range of $-f_L$ to $-f_U$, f_L to f_U and rejects all frequencies outside this range.

Example 2.16

The amplitude spectrum of the input signal of an ideal LPF is shown below. The LPF has a cut-off frequency of 5 kHz. Determine the amplitude spectrum of the filter output signal.

Solution

Input spectrum

|X(f)|

At
$$f = 0 \text{ kHz}$$
, $|H(f)| = 2$

$$|Y(f)| = |X(f)| \times |H(f)| = 8 \times 2 = 16$$

Output spectrum

|X(f)|

$$|Y(f)| = |X(f)| \times |H(f)| = 10 \times 2 = 20$$

Output spectrum

|X(f)|

At
$$f = \pm 6 \text{ kHz}, |H(f)| = 0$$

$$|Y(f)| = |X(f)| \times |H(f)| = 7 \times 0 = 0$$

Output spectrum

|X(f)|

At f= ±9 kHz,
$$|H(f)| = 0$$

$$|Y(f)| = |X(f)| \times |H(f)| = 6 \times 0 = 0$$

Output spectrum

|Y(f)|

20

Solution

Ideal LPF, cut-off frequency, = f_c 5 kHz.

Practical Filters

Filter parameters of practical filters

Cut-off frequency

- Defined as the frequency at which the filter voltage gain has drop to 1/ $\sqrt{2}$, or 0.707 of its maximum voltage gain, A_v.
- Known as the 3 dB cut-off frequency.

Filter parameters of practical filters

Passband

The range of frequency that the filter will pass with a specified gain, traditionally, $|H(f)| = A\sqrt{\frac{2}{\sqrt{2}}}$ or $0.707A_{v}$.

Filter parameters of practical filters

Stopband

- The band of frequencies in which the voltage gain |H(f)| is below a value y specified by users.
- Frequency components within the stop band will be amplified much less than those frequencies in the passband.
 Practical LPF

Filter parameters of practical filters

Transition band

The band of frequencies between the passband and the stop band and vice-versa

Practical LPF |H(f)| A Transition Band Transition Band

Filter parameters of practical filters

Filter bandwidth band

The width of the passband of positive frequencies for LPF, HPF and BPF

Filter parameters of practical filters

Example 2.17

The amplitude spectrum of the input signal of a LPF is shown below. The LPF has a 3dB cut-off frequency of 20 kHz. Sketch the amplitude spectrum of the filter output signal.

Solution

Input spectrum |X(f)|

Freq response

output spectrum

$$|Y(f)| = |X(f)| \times |H(f)|$$

output

spectrum

$$|Y(f)| = |X(f)| \times |H(f)|$$

Solution

Freq response |H(f)|

output spectrum

$$|Y(f)| = |X(f)| \times |H(f)|$$

End

CHAPTER 2

(Part 5 of 5)

