COL362/632 Introduction to Database Management Systems

Database Design - Decomposition & Normalization

Kaustubh Beedkar

Department of Computer Science and Engineering Indian Institute of Technology Delhi

Recap

Problems with "bad" schema

ActorFilm						
id	firstname	lastname	dob	title	year	language
1	Priyanka	Chopra	1992	Don	2006	Hindi
1	Priyanka	Chopra	1992	Don-II	2011	Hindi
2	Anthony	Hopkins	1937	MI-IV	2011	English
2	Anthony	Hopkins	1937	Valkyrie	2008	English
3	Bill	Nighty	1949	Valkyrie	2008	English

- Problems
 - Redundancy
 - Update anomalies
 - Delete anomalies

Recap

Functional Dependency (FD)

- ▶ Type of constraint: FD $X \to Y$ holds in relation R, if $\forall t_1, t_2 \in R$ whenever $t_1[X] = t_2[X]$ then $t_1[Y] = t_2[Y]$
- ► Trivial & non-trivial FDs
- ► Inferring FDs Amstrong's Axioms
- ► Closure of FDs
 - Given a set S of FDs, the closure S^+ is set of all FDs that can be derived from S
- ► Closure of attributes (attribute closure method)
 - Given a set S of FDs, can a new FD F be derived from S?

Keys of a Relation

- Superkey
- Candidate key
- Primary attributes
- Primary key

Decomposition

A relation R can be **decomposed** into instances

- $ightharpoonup R_1$ and R_2
- where $[R_1] \cup [R_2] = [R]$
- $ightharpoonup R_1 = \pi_{[R_1]}(R)$
- $ightharpoonup R_2 = \pi_{[R_2]}(R)$

Example

	ActorFilm						
id	firstname	lastname	dob	title	year	language	
1	Priyanka	Chopra	1992	Don	2006	Hindi	
1	Priyanka	Chopra	1992	Don-II	2011	Hindi	
2	Anthony	Hopkins	1937	MI-IV	2011	English	
2	Anthony	Hopkins	1937	Valkyrie	2008	English	
3	Bill	Nighty	1949	Valkyrie	2008	English	

Actor					
id	firstname	lastname	dob		
1	Priyanka	Chopra	1992		
2	Anthony	Hopkins	1937		
3	Bill	Nighty	1949		

ActorldFilm					
id	title	year	language		
1	Don	2006	Hindi		
1	Don-II	2011	Hindi		
2	MI-IV	2011	English		
2	Valkyrie	2008	English		
3	Valkyrie	2008	English		

Is decomposition solving the problems?

Good decomposition should

- 1. Minimize redundancy
- 2. Avoid information loss (lossless-join)
- 3. Preserve functional dependencies (dependency preserving)
- 4. Have reasonable query performance

Information Loss (example)

ActorldFilm				
a_id	title	year	language	
1	Don	2006	Hindi	
1	Don-II	2011	Hindi	
2	MI-IV	2011	English	
2	Valkyrie	2008	English	
3	Valkyrie	2008	English	

Δ	ActorFilmYear		
a₋id	title	year	
1	Don	2006	
1	Don-II	2011	
2	MI-IV	2011	
2	Valkyrie	2008	
3	Valkyrie	2008	

YearLanguage			
year	language		
2006	Hindi		
2011	Hindi		
2011	English		
2008	English		

- ▶ Decompose R(id, title, year, language) into
 - 1. R_1 (id, title, year)
 - 2. R_2 (year, language)
- ► **Problem** Don-II in English or Hindi?Information loss!

Recall A relation R can be **decomposed** into instances

- $ightharpoonup R_1$ and R_2
- where $[R_1] \cup [R_2] = [R]$
- $ightharpoonup R_1 = \pi_{[R_1]}(R)$
- $R_2 = \pi_{[R_2]}(R)$

Lossless-join Decomposition

A schema decomposition is lossless-join if $R_1 \bowtie R_2 \equiv R$

When does a decomposition lead to lossless-join?

- ▶ Given: R and set of F FDs
- \triangleright A decomposition of R into R_1 and R_2 is **lossless-join** iff at least one the following FDs
 - 1. $[R_1] \cap [R_2] \rightarrow [R_1]$
 - 2. $[R_1] \cap [R_2] \to [R_2]$

is in the closure F^+

Example

- ► Consider relation R(A, B, C, D) and FD $F = B \rightarrow CD$ Lossless-join
 - Decomposition into $R_1(A, B, C)$ and $R_2(B, D)$
 - $\{A, B, C\} \cap \{B, D\} = \{B\}$
 - $\overrightarrow{B} \rightarrow \overrightarrow{BD} \in \overrightarrow{F}^+$

Lossy-join

- Decomposition into $R_1(A, B, C)$ and $R_2(D)$
- **Q**: What about decomposition into $R_1(A, B, C)$ and $R_2(AC)$?

Preserving Functional Dependencies

Recall A relation R can be **decomposed** into instances

- $ightharpoonup R_1$ and R_2
- ▶ where $[R_1] \cup [R_2] = [R]$
- ▶ $R_1 = \pi_{[R_1]}(R)$ has FD F_1
- ▶ $R_2 = \pi_{[R_2]}(R)$ has FD F_2
- \blacktriangleright and F_1 and F_2 are computed from some FD F

Dependency Preserving Decomposition

A schema decomposition is dependency preserving if by enforcing F_1 over R_1 and F_2 over R_2 , we can enforce F over R

Example (dependency preserving decomposition)

Employee(e_id, first_name, last_name, dob, retirement_date)

- ▶ e_id → first_name, last_name, dob
- ▶ dob → retirement_date

can be decomposed into

- $ightharpoonup R_1(e_id, first_name, last_name, dob)$
- ► R₂(dob, retirement_date)

Example

R	R_1		
Α	В		
a_1	Ь		
a ₂	Ь		

R_2	
Α	С
a_1	С
a 2	С

R				
Α	В	С		
a_1	Ь	С		
a 2	Ь	С		

Consider R(A, B, C)

- ightharpoonup A
 ightarrow B
- BC → A

can be decomposed into

- $ightharpoonup R_1(A,B)$
- $ightharpoonup R_2(A,C)$
- ▶ But, $R_1 \bowtie R_2$ violates $BC \rightarrow A$

- ▶ 1NF
- ► 2NF
- ► 3NF
- ► BCNF
- ► 4NF

Boyce-Codd normal form (BCNF)

A relation R is in BCNF **iff** for every FD $X \rightarrow Y$, at least one of conditions hold

- ightharpoonup X o Y is trivial FD
- ► *X* is a superkey

Examples

PAN	name	age	account_no
AY101	abc	30	9019
AY101	abc	30	8019
BX201	xyz	23	7218
CZ301	pqr	25	5454

FD: PAN \rightarrow name, age

- ▶ key = {PAN, account_no}
- ▶ Relation is not in BCNF!

PAN	name	age
AY101	abc	30
BX201	xyz	23
CZ301	pqr	25

 $\mathsf{FD} \colon \mathsf{PAN} \to \mathsf{name} \text{, age}$

- $\blacktriangleright \ \mathsf{key} = \{\mathsf{PAN}\}$
- ▶ Relation is in BCNF!

BCNF Decomposition

If R is not in BCNF due to $X \rightarrow Y$, decompose R into

- 1. R_1 such that $[R_1] = X^+$
- 2. R_2 such that $[R_2] = [R] \setminus X^+ \cup X$

repeat recursively on R_1 and R_2 until no BCNF violations

BCNF decomposition example

PAN	name	age	account_no
AY101	abc	30	9019
AY101	abc	30	8019
BX201	xyz	23	7218
CZ301	pqr	25	5454

FD: PAN \rightarrow name, age

Decompose into

- 1. R_1 (PAN, name, age)
- 2. R_2 (PAN, account_no)

PAN	name	age
AY101	abc	30
BX201	xyz	23
CZ301	pqr	25

PAN	account_no	
AY101	9019	
AY101	8019	
BX201	7218	
CZ301	5454	

BCNF decomposition

- removes redundancy (of certain types)
- ▶ is lossless-join
- ▶ is **not always** dependency preserving

Recall previous examples

- ▶ R(A, B, C) with $A \rightarrow B$ decomposes into:
 - 1. $R_1(A, B)$
 - 2. $R_2(A, C)$

Always satisfies the lossless-join criteria

- ▶ R(A, B, C) with $A \rightarrow B$ and $BC \rightarrow A$ decomposes into
 - 1. $R_1(A, B)$ with $A \rightarrow B$
 - 2. $R_2(A, C)$ with no FDs

Consider Films(actor_id, name, film_id, title, genre, length)

- ightharpoonup a_id ightharpoonup name
- ▶ film_id → title, genre, length

Q: Candidate key?

Q: Is Films is BCNF?

Third Normal Form (3NF)

A relation R is in 3NF if whenever $X \rightarrow Y$, one of the following is true

- 1. $X \rightarrow Y$ is trivial FD
- 2. *X* is superkey
- 3. $\forall a \in Y \setminus X$, a is prime attribute

Note: If R is in BCNF \implies it is in 3NF

Consider R(A,B,C) with

- ightharpoonup AB ightharpoonup C
- ightharpoonup C ightharpoonup A

Q: is R in 3NF or BCNF?

Normalization

- ▶ Not always good.
 - Performance loss, if R_1 and R_2 are always used as $R_1 \bowtie R_2$
 - Data warehousing queries typically involve large number of joins
- ▶ But, crucial for a "good" database design
 - 1. Application
 - 2. ER model
 - 3. ER to Relational Schema
 - 4. Normalization: refine schema
 - 5. Populate