2. Základní pojmy

2.1. Deformace tělesa

Při deformaci tělesa se mění poloha bodů tělesa vzhledem ke vztažnému souřadnicovému systému, včetně jejich vzájemných vzdáleností. Tím se mění i tvar tělesa a jeho částí.

 y_G X_G X_G X_G X_G

To je principiální rozdíl od Statiky, která vyšetřovala pouze pohyb tělesa jako tuhého celku, beze změny vzájemných vzdáleností bodů.

Pro pohyb tuhého tělesa tak stačily pouze tři (šest) nezávislých složek posuvů v rovině (v prostoru). Pro deformovatelné těleso je to vždy nekonečný počet posuvů, bez ohledu na dimenzi problému.

Deformace tělesa je matematicky popsána dvěma způsoby:

- a) **posuvy** $\vec{u}(u,v,w)$ ve všech bodech tělesa, vektorové pole posuvů tedy určuje přemístění všech bodů tělesa
- b) **poměrnou deformací** všech částí (prvků, elementů) tělesa, kterou v našich přednáškách budeme označovat jako **přetvoření**. Určuje, jak se změnily rozměry a tvar tělesa a jeho prvků relativně vzhledem k výchozímu tvaru. Ukažme to na příkladu relativní deformace jednorozměrného tělesa.

Postupným zmenšováním délky vztažného úseku přejdeme až k přetvoření elementárního prvku = \mathbf{p} řetvoření v bodě:

^{*2.0 [}PPI, 15 - 30]

Přetvoření v bodě tělesa je přetvoření elementárního prvku tělesa, který tento bod tělesa obsahuje.

Přetvoření v bodě tělesa – lokální charakteristika.

Deformace tělesa

- homogenní ve všech bodech stejné přetvoření,
- nehomogenní v různých bodech různé přetvoření, celkové přetvoření získáme integrací.

Vymezení deformace ve vztahu k prvku tělesa:

Jestliže je okolní materiál značně tuhý, mohou být změny tvaru a rozměrů tělesa zanedbatelné, i když dochází k deformačním posuvům některých vnitřních bodů vlivem zatížení polem objemových sil (síly gravitační, odstředivé, elektromagnetické apod.)

Deformace tělesa je změna tvaru a rozměrů tělesa a změna tvaru a rozměrů každého jeho prvku vymezeného ve výchozím stavu.

Prvek tělesa je každá jeho oddělitelná souvislá část.

Prvek

- konečný (Ω_0)
- jednonásobně elementární (Ω_1)
- dvojnásobně elementární (Ω_2)
- trojnásobně elementární (Ω_3)

Přetvoření v bodě jsme si vysvětlili na 1D případu. Nyní ho můžeme zobecnit na prostorový případ.

Na trojnásobně elementárním prvku definujeme poměrné změny rozměrů a tvaru:

Pro deformaci v ose x je změna rozměru dx popsána **délkovým přetvořením**

$$\varepsilon_x = \frac{\mathrm{d}x' - \mathrm{d}x}{\mathrm{d}x}$$

a změna tvaru je popsána změnou pravého úhlu mezi osami x,y úhlovým přetvořením (zkosem)

$$\gamma_{xy} = \frac{\pi}{2} - \varphi_{xy}$$

Zobecníme pro prostorový případ deformace:

- délková přetvoření: $\varepsilon_x = \frac{\mathrm{d}x' \mathrm{d}x}{\mathrm{d}x}, \quad \varepsilon_y = \frac{\mathrm{d}y' \mathrm{d}y}{\mathrm{d}y}, \quad \varepsilon_z = \frac{\mathrm{d}z' \mathrm{d}z}{\mathrm{d}z}$
- úhlová přetvoření (zkosy): $\gamma_{xy} = \frac{\pi}{2} \varphi_{xy}, \quad \gamma_{xz} = \frac{\pi}{2} \varphi_{xz}, \quad \gamma_{yz} = \frac{\pi}{2} \varphi_{yz}$

 $Kladn\'e\ hodnoty$ délkových přetvoření představují $prodloužen\'i\ element$ árního úseku, $kladn\'e\ hodnoty$ zkosu pak změnu pravého úhlu v $ostr\acutey$ úhel a naopak.

Poznámka:

výše uvedená vyjádření jednotlivých složek přetvoření platí pro malá přetvoření $\varepsilon, \gamma < 0,05$.

Deformace v obecném bodě tělesa je popsána deformací elementárního prvku, který tento bod obsahuje. Je určena **tenzorem přetvoření** T_{ε} .

$$T_{arepsilon} = \left(egin{array}{ccc} arepsilon_{x} & rac{\gamma_{xy}}{2} & rac{\gamma_{xz}}{2} \\ rac{\gamma_{xy}}{2} & arepsilon_{y} & rac{\gamma_{yz}}{2} \\ rac{\gamma_{xz}}{2} & rac{\gamma_{yz}}{2} & arepsilon_{z} \end{array}
ight)$$

symetrický tenzor druhého řádu, obsahuje 6 nezávislých prvků.

Deformace tělesa

- homogenní ve všech bodech stejný T_{ε} ,
- **nehomogenní** v různých bodech různý T_{ε} .

Shrnutí

Deformace tělesa je určena

- vektorovým polem posuvů $\vec{u}(u,v,w)$, vyjadřujícím přemístění všech bodů tělesa. Ve 3D prostoru jde o tři nezávislé složky posuvů u,v,w, které jsou funkcemi proměnných x,y,z, případně t. Fyzikální rozměr [m]
- tenzorovým polem přetvoření T_{ε} , které vyjadřuje změnu tvaru a rozměrů elementárních prvků ve všech bodech tělesa. Ve 3D prostoru má tenzor T_{ε} šest nezávislých složek $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{xy}, \gamma_{yz}, \gamma_{xz}$, které jsou funkcemi proměnných x, y, z, případně t. Fyzikální rozměr [-]
- mezi složkami posuvů a přetvoření existují vztahy, které budou odvozeny v následujících přednáškách

2.2. Napjatost v bodě tělesa

Ve statice se neuvažuje deformace těles a řeší se pouze síly působící mezi tělesy navzájem.

Při uvolňování prvků (částí) těles v **pružnosti** musíme zavést pojem **vnitřní síly** – síly působící v řezu, kterým uvolňujeme část tělesa od jeho zbytku.

Těleso Ω zatížené silovou soustavou Π je ve SR.

Myšleně vedeme řez - uvolnění prvku – silové působení mezi prvky má charakter rozloženého působení, které lze popsat měrnými plošnými silami. Na plošku dS působí elementární síla

$$d\vec{F} = \vec{f} dS$$

 \vec{f} – měrná plošná síla, **obecné napětí v řezu**

$$\vec{f} = \sigma \vec{e_n} + \tau \vec{e_t}$$

$$\sigma = \vec{f} \vec{e_n}$$

$$\tau = \sqrt{f^2 - \sigma^2}$$

$$[f] = [\sigma] = [\tau] = dF/dS = Pa = Nm^{-2}$$

Určení orientace napětí: normálového: tahové,

 $\sigma < 0$ tlakové,

smykového: volí se smluvně

Vektor obecného napětí a tím i jeho složky samozřejmě závisejí na poloze vztažného bodu v tělese. Zamysleme se nad tím, jak souvisejí s konkrétním řezem, který daným bodem vedeme.

$$S_{\alpha} = \frac{S}{\cos \alpha}$$

$$\sum F_{x} = 0: \qquad -\sigma S + f_{\alpha} S_{\alpha} = 0$$

$$f_{\alpha} = \frac{S}{S_{\alpha}} \sigma = \sigma \cos \alpha$$

$$\sigma_{\alpha} = f_{\alpha} \cos \alpha = \sigma \cos^2 \alpha = \frac{\sigma}{2} (1 + \cos 2\alpha),$$

$$\sigma_{\alpha} = f_{\alpha} \cos \alpha = \sigma \cos^2 \alpha = \frac{\sigma}{2} (1 + \cos 2\alpha), \qquad \tau_{\alpha} = f_{\alpha} \sin \alpha = \sigma \sin \alpha \cos \alpha = \frac{\sigma}{2} \sin 2\alpha$$

Vektor obecného napětí tedy závisí i na řezu, který daným bodem vedeme (přesněji na normále tohoto řezu v bodě A). Zavádíme proto veličinu, která je obecnější a zahrnuje všechna obecná napětí v daném bodě. Touto veličinou je napjatost v bodě.

Napjatost v bodě tělesa je množina obecných napětí ve všech řezech, které lze tímto bodem vést.

Napjatost tělesa je množina napjatostí ve všech jeho bodech.

Napjatost v bodě je (podobně jako deformace v bodě) určena tenzorem napětí T_{σ} . Jeho maticový zápis:

$$T_{\sigma} = \left(egin{array}{ccc} \sigma_x & au_{xy} & au_{xz} \ & & & & & & & & \\ au_{xy} & \sigma_y & au_{yz} & & & & \\ au_{xz} & au_{yz} & \sigma_z \end{array}
ight)$$

Složky T_{σ} fyzikálně představují normálová a smyková napětí na stěnách elementárního hranolu

 $\sigma_i(i=x,y,z)$ – normálové napětí, $\tau_{ij}(i,j=x,y,z;i\neq j)$ – smykové napětí, $i-\text{směr normály roviny, ve které napětí působí,}\\ j-\text{směr působení }\tau_{ij}.$

 T_{σ} je symetrický tenzor druhého řádu se šesti nezávislými složkami,
neboť platí zákon o sdružených smykových napětích (bude odvozeno později).

$$\tau_{xy} = \tau_{yx}, \, \tau_{xz} = \tau_{zx}, \, \tau_{yz} = \tau_{zy}$$

Věta o sdruženosti smykových napětí.

Smyková napětí působící ve vzájemně kolmých elementárních řezech kolmo k jejich průsečnici jsou stejně veliká a orientovaná buď k průsečnici nebo od ní.

Pro danou normálu řezu v bodě A můžeme vektor obecného napětí vyjádřit v maticovém tvaru součinem

$$\{f_A\} = [T_\sigma]\{\alpha\},\,$$

kde $\{\alpha\}$ je vektor směrových kosinů normály. Vztah bude odvozen později.

Shrnutí

Napjatost tělesa je určena

- polem tenzorů napětí T_{σ} , vyjadřujícím normálová a smyková napětí na povrchu uvolněných elementárních prvků ve všech bodech tělesa. Ve 3D prostoru jde o šest nezávislých složek $\sigma_x, \sigma_y, \sigma_z, \tau_{xy}, \tau_{yz}, \tau_{xz}$, které jsou funkcemi proměnných x, y, z, případně t. Rozměr [Pa, MPa]
- Napjatost v tělese je **homogenní**, pokud je ve všech bodech tělesa stejná, tzn. že ve všech bodech tělesa je tenzor napětí T_{σ} stejný.
- Napjatost v tělese je nehomogenní, je-li v různých bodech různá. Napjatost může být i po částech nehomogenní.

2.3. Přímá úloha pružnosti a její řešení

Přímá úloha pružnosti: Pro těleso se známou geometrií, zatížením, vazbami a materiálem určete jeho napjatost a deformaci.

Musíme být schopni určit

- -3 složky pole posuvů $\vec{u}(u,v,w)$,
- -6 složek tenzoru přetvoření $\varepsilon_x, \varepsilon_y, \varepsilon_z, \gamma_{xy}, \gamma_{yz}, \gamma_{xz},$
- -6 složek tenzoru napětí $\sigma_x, \sigma_y, \sigma_z, \tau_{xy}, \tau_{yz}, \tau_{xz},$

obecně 15 neznámých funkcí souřadnic x, y, z a případně t (dynamický problém).

Máme dvě možnosti řešení:

- a) **Obecná pružnost** k neznámým funkcím sestavuje vhodně formulované matematické podmínky, které navzájem váží tyhle skupiny neznámých mezi sebou.
 - geometrické (kinematické) vztahy vztahy mezi složkami posuvů a přetvoření, jak souvisí pole
 posuvů s přetvořením bez ohledu na nějaké síly,
 - rovnice rovnováhy vztahy mezi složkami T_{σ} , formulují podmínky statické rovnováhy elementárního prvku,
 - konstitutivní vztahy vztahy mezi T_{σ} a T_{ε} , vztahy mezi napjatostí a deformací tělesa.

Nejčastěji mají tyto vztahy podobu parciálních diferenciálních a algebraických rovnic. Ty se následně využívají k řešení konkrétního případu vhodným použitím metod matematické analýzy, případně metod numerických.

b) Prostá pružnost – pro konkrétní třídu úloh (pruty, desky apod.) nejprve vysloví pracovní hypotézy
 - zjednodušující předpoklady - které umožní zpravidla omezit počet dimenzí problému, z obecného problému se můžeme dostat na problém rovinný případně až jednorozměrný, což vede na podstatné snížení výpočtové složitosti úlohy při zachování souladu všech podstatných výsledků s plně obecným řešením.

Poznámka k významu prosté pružnosti

Dva podstatné důvody, proč věnovat tolik pozornosti prosté pružnosti, když moderní programy a počítače dnes vše zvládnou ve vší obecnosti:

- 1. Předpoklady (pracovní hypotézy) o charakteru napjatosti a deformace základních typů těles jako jsou pruty, stěny, desky a skořepiny, jsou obecně platné. Jejich osvojení je proto základem, bez něhož nemůže konstruktér navrhovat ani výpočtář odpovědně hodnotit žádnou strojní část ani celek. I nejsložitější problém pružnosti lze v prvním přiblížení vždy vidět a řešit právě jako soustavu vzájemně vázaných základních těles prosté pružnosti. Kdo není schopen takového pohledu, pro toho jsou výsledky náročných numerických výpočtů pomocí MKP jen draze zaplacenými barevnými obrázky.
- 2. I při tvorbě numerických modelů pomocí MKP uživatel vybírá mezi různými typy konečných prvků, vhodných pro danou úlohu. Je dobré vědět, že mezi těmi nejčastěji používanými jsou i prutové a skořepinové prvky, jejichž formulace je postavena právě na předpokladech prosté pružnosti. Jejich adekvátní použití je proto bez znalostí prosté pružnosti nemožné.