Dominik Wawszczak student id number: 440014 group number: 1

Problem 1

Let

$$V(G) = \{v_1, \dots, v_n\}$$
 and $S_n = \{\sigma : \sigma \in \{1, \dots, n\}^{\{1, \dots, n\}} \land \sigma \text{ is a bijection}\}$.

Define

cutwidth_{\sigma}(i) =
$$|\{(u, v) : u \in \{v_{\sigma_1} \dots v_{\sigma_i}\} \land v \in \{v_{\sigma_{i+1}}, \dots, v_{\sigma_n}\} \land (u, v) \in E(G)\}|$$
,

where $\sigma \in S_n$ is any permutation. The objective is to find a permutation $\sigma \in S_n$ that minimizes the value

$$\max_{i \in \{1, \dots, n-1\}} \operatorname{cutwidth}_{\sigma}(i)$$

and to calculate this minimum.

Define the function

$$\operatorname{out}(X) = |\{(u, v) : u \in X \land v \in V(G) \setminus X \land (u, v) \in E(G)\}|,$$

where X is any subset of V(G). Then

$$\operatorname{cutwidth}_{\sigma}(i) = \operatorname{out}(\{v_{\sigma_1}, \dots, v_{\sigma_i}\}).$$

For any given X, $\operatorname{out}(X)$ can be calculated in time $n^{\mathcal{O}(1)}$.

We will use dynamic programming over subsets. Define

$$\mathrm{dp}(X) \ = \ \min\left\{\max_{i\in\{1,\dots,|X|-1\}}\,\mathrm{cutwidth}_\sigma(i) \ : \ \sigma\in S_n \ \land \ \{v_{\sigma_1},\dots,v_{\sigma_{|X|}}\} = X\right\},$$

where X is any subset of V(G). Then

$$dp(\emptyset) = 0,$$

$$dp(X) = \min\{\max(dp(X \setminus \{x\}), out(X \setminus \{x\})) : x \in X\}.$$

The answer to the problem is $dp(\{1,\ldots,n\})$. To compute dp for all subsets of V(G), we iterate over subsets in non-decreasing order of size. The time complexity of this algorithm is $2^n \cdot n^{\mathcal{O}(1)}$.

Problem 2

<u>Lemma 1</u> A set of points S, in which no three points are collinear, does not form the vertices of a convex polygon if and only if there exist points $A, B, C, D \in S$ such that D lies inside $\triangle ABC$.

<u>Proof of lemma 1</u> The implication "to the left" is obvious, so we only need to prove the implication "to the right". Let $\{H_1, \ldots, H_h\}$ be the convex hull of the set S, with the assumption that these points are ordered counterclockwise along the hull. Let D be any point in S that does not belong to the hull, and let $A = H_1$. There exists exactly one $i \in \{2, \ldots, h-1\}$ such that points H_2, \ldots, H_i lie on one side of the line AD, while points H_{i+1}, \ldots, H_h lie on the other side. Taking $B = H_i$ and $C = H_{i+1}$, we will obtain the desired points.

According to lemma 1, if there exist points $A, B, C, D \in S$ such that D lies inside $\triangle ABC$, then at least of these points must be removed from S. This observation leads to the following algorithm:

Algorithm 1 ConvexDeletion

```
1: procedure ConvexDeletion(S, k)
       if no four points A, B, C, D \in S satisfy that D lies inside \triangle ABC then
 2:
 3:
 4:
       end if
5:
       if k \leq 0 then
           return false
 6:
       end if
 7:
       Choose points A, B, C, D \in S such that D lies inside \triangle ABC
 8:
       return ConvexDeletion(S \setminus \{A\}, k-1) or ConvexDeletion(S \setminus \{B\}, k-1) or
9:
                ConvexDeletion(S \setminus \{C\}, k-1) or ConvexDeletion(S \setminus \{D\}, k-1)
10: end procedure
```

Finding such quadruples of points A, B, C, D can easily be done in $\mathcal{O}(n^4)$ time by examining all quadruples of points, calculating the relevant cross products for each, and comparing their signs. This can also be done in $\mathcal{O}(n \log n)$ time by computing the convex hull using Graham's algorithm and applying the constructive proof of lemma 1.

The depth of the recursion tree from the algorithm 1 is at most k, since with each recursive call, the parameter k decreases by 1. Each node of this tree has at most four children, which gives us an upper bound on the number of nodes in the tree:

$$\sum_{i=0}^{k} 4^{i} = \frac{4^{k+1} - 1}{3} = \mathcal{O}(4^{k}).$$

Therefore, the overall complexity of the algorithm 1 is $\mathcal{O}(4^k) \cdot n^{\mathcal{O}(1)}$.

Problem 3

Let d = 10. We will begin by reducing the size of \mathcal{F} to a polynomial in k.

If $|\mathcal{F}| \leq k^{d+1}$, no reduction is necessary. Otherwise, there exists an element $a_1 \in \bigcup \mathcal{F}$ such that the subset $\mathcal{A}_1 = \{A \in \mathcal{F} : a_1 \in A\}$ has size at least $k^d + 1$. If this were not the case, a hitting set of size k would cover at most k^{d+1} sets. We either include a_1 in the hitting set or exclude it. If we exclude it, then there exists an element $a_2 \in \bigcup \mathcal{F} \setminus \{a_1\}$ such that the subset $\mathcal{A}_2 = \{A \in \mathcal{A}_1 : a_2 \in A\}$ has size at least $k^{d-1} + 1$, and so on.

By repeating this process until it is possible, we obtain a set of l distinct elements $\{a_1, \ldots, a_l\}$ and a corresponding set of families $\{A_1, \ldots, A_l\}$ such that for each $i \in \{1, \ldots, l\}$, $A_{i-1} \supseteq A_i$ (with $A_0 = \mathcal{F}$), $|A_i| \geqslant k^{d+1-i} + 1$, and

$$\forall \forall \forall \forall A \in A_i \ a_i \in A.$$

Suppose, for the sake of contradiction, that l > d. Then $|\mathcal{A}_{d+1}| \geq 2$, and all sets in \mathcal{A}_{d+1} would contain $\{a_1, \ldots, a_{d+1}\}$, which contradicts the assumption that for any two distinct sets $A, B \in \mathcal{F}, |A \cap B| \leq d$.

At least one element from $\{a_1, \ldots, a_l\}$ must be included in the hitting set. This can be verified, as otherwise, to cover the entire family \mathcal{A}_l (which has size at least $k^{d+1-l}+1$), there would need

to be an element a_{l+1} contained in at least $k^{d-l} + 1$ sets from \mathcal{A}_l . This would contradict the fact that the process was repeated until it was possible.

If we include any $a \in \{a_1, \ldots, a_l\}$ in the hitting set, every set $A \in \mathcal{A}_1$ will be covered. Therefore, we can apply the following reduction, until it is possible:

R1: If
$$|\mathcal{F}| > k^{d+1}$$
, find $\{a_1, \ldots, a_l\}$ and $\{\mathcal{A}_1, \ldots, \mathcal{A}_l\}$, then replace \mathcal{F} with $(\mathcal{F} \setminus \mathcal{A}_1) \cup \{\{a_1, \ldots, a_l\}\}$.

Note that after applying R1, the condition that for any two distinct sets $A, B \in \mathcal{F}$, $|A \cap B| \leq d$ still holds, as the newly added set is a subset of one or more sets that were originally in \mathcal{F} .

The sets $\{a_1, \ldots, a_l\}$ and $\{A_1, \ldots, A_l\}$ can be found in polynomial time with respect to the input size. To identify a_i , we iterate through each $a \in \bigcup A_{i-1}$, checking which sets in A_{i-1} contain it.

Applying R1 will require polynomial time overall, as each application of R1 decreases the size of \mathcal{F} by at least $k^d + 1 - 1 = k^d > 0$, so R1 will be applied at most $|\mathcal{F}|$ times.

Once the size of $|\mathcal{F}|$ has been reduced to $\mathcal{O}(k^{d+1})$, we still need to reduce the size of $\bigcup \mathcal{F}$. We apply the following reduction as long as it is possible:

R2: If there exists a set $A \in \mathcal{F}$ such that for every $B \in \mathcal{F} \setminus \{A\}$, $A \cap B = \emptyset$, we replace \mathcal{F} with $\mathcal{F} \setminus \{A\}$, k with k-1, and add any $a \in A$ to the hitting set, unless A is empty, in which case we reject.

Now we assume that for any two distinct sets $A, B \in \mathcal{F}$, $A \cap B \neq \emptyset$, which enables us to apply the next reduction until it is no longer possible:

R3: If there exists an element $a \in \bigcup \mathcal{F}$ that is contained in only one set in \mathcal{F} , replace \mathcal{F} with $\{A \setminus \{a\} : A \in \mathcal{F}\}.$

This reduction is valid, as if a were required in the hitting set, it could be replaced with any other element from the set in \mathcal{F} that contains it, particularly an element included in at least two sets in \mathcal{F} .

After applying R2 and R3, every element in $\bigcup \mathcal{F}$ is contained in at least two sets in \mathcal{F} . Therefore, the size of $\bigcup \mathcal{F}$ is bounded by:

$$\left| \bigcup \mathcal{F} \right| \leqslant \frac{1}{2} \cdot \sum_{A,B \in \mathcal{F} \ \land \ A \neq B} |A \cap B| \leqslant \frac{k^{d+1} (k^{d+1} - 1) d}{2} = k^{\mathcal{O}(1)},$$

which completes the proof.

Problem 4

We will apply the iterative compression technique. Let

$$V(G) = \{v_1, \dots, v_n\}$$
 and $G_i = G[\{v_1, \dots, v_i\}],$ for any $i \in \{1, \dots, n\},$

where G[S] represents the induced subgraph of G on S. Assume we have already identified a subset $X_i \subseteq V(G_i)$ of size at most k such that $G_i \setminus X_i$ is a split graph. If no such subset exists for some $i \in \{1, \ldots, n\}$, we can already reject. Initially, let $X_1 = \emptyset$. Our objective is to find a subset $X_{i+1} \subseteq V(G_{i+1})$ of size at most k such that $G_{i+1} \setminus X_{i+1}$ is a split graph.

Let $X'_{i+1} = X_i \cup \{v_{i+1}\}$. If $|X'_{i+1}| \leq k$, we can simply set $X_{i+1} = X'_{i+1}$. Otherwise, $|X'_{i+1}| = k+1$. We then iterate over each subset $Y \subset X'_{i+1}$, treating Y as $X_{i+1} \cap X'_{i+1}$. Define $Z = X'_{i+1} \setminus Y$,

 $W = V(G_{i+1}) \setminus X'_{i+1}$, and l = k - |Y|. The task is to determine if we can remove at most l vertices from W to obtain W' such that $G_{i+1}[Z \cup W']$ is a split graph.

Since the class of graphs that can be partitioned into a clique and an independent set is closed under taking subgraphs, $G_{i+1}[Z]$ must be a split graph. $G_{i+1}[W] = G_i[W]$ is also a split graph, because X_i is a solution for G_i . Note that we can verify if a graph is a split graph in linear time, as well as find its (C, I)-partition, where C is a clique and I is an independent set.

Let (C_Z, I_Z) be the (C, I)-partition of $G_{i+1}[Z]$. If no such partition exists, we move to the next subset of X'_{i+1} . The partition is not necessarily unique; this ambiguity arises when there are no edges within Z in G_{i+1} . In this case, we consider every possible choice of the clique in $G_{i+1}[Z]$ (a single vertex or an empty set), which adds a factor of $\mathcal{O}(k)$ to the time complexity. However, this factor is at most polynomial in n, so it does not affect the overall complexity. Henceforth, we assume (C_Z, I_Z) is unique.

Let (C_W, I_W) denote the (C, I)-partition of $G_{i+1}[W]$. Uniqueness here is irrelevant. Let (C^*, I^*) be the (C, I)-partition of $G_{i+1}[Z \cup W']$ that we seek. Since (C_Z, I_Z) is unique, it must hold that $C_Z \subseteq C^*$ and $I_Z \subseteq I^*$. Thus, for each $v \in W$, we have three choices:

- 1. add v to C^* ,
- 2. add v to I^* ,
- 3. remove v.

Suppose, for the sake of contradiction, that two distinct vertices $c_1, c_2 \in C_W$ were added to I^* . Then $G_{i+1}[I^*]$ would not be an independent set, as c_1 and c_2 would be connected by an edge, which is a contradiction. Therefore, at most one vertex in C_W can be added to I^* , while every other vertex in C_W must either be added to C^* or removed.

Similarly, at most one vertex in I_W can be added to C^* , while every other vertex in I_W must either be added to I^* or removed.

We can iterate through every option of adding a vertex $v \in C_W$ to I^* (one of these options is to add no such vertex). A particular $v \in C_W$ can be considered for addition to I^* only if $I_Z \cup \{v\}$ forms an independent set in G_{i+1} .

Similarly, we can iterate through every option of adding a vertex $v \in I_W$ to C^* (again, one of these options is to add no such vertex). A specific $v \in I_W$ can be considered for addition to C^* only if $G_{i+1}[C_Z \cup \{v\}]$ is a clique.

There are $\mathcal{O}(|W|^2)$ such options in total, each requiring a polynomial number of edge checks. Since $|W| \leq n$, this factor can be ignored in the complexity analysis. Now, we assume that every $v \in C_W$ will either be removed or added to C^* , and similarly, every $v \in I_W$ will either be removed or added to I^* .

Let C'_W be any subset of C_W . Then $G_{i+1}[C_Z \cup C'_W]$ is a clique if and only if

$$\forall_{u \in C_Z} \forall_{v \in C_W'} (u, v) \in E(G_{i+1}).$$

This holds if $G_{i+1}[C_Z \cup C_W']$ is indeed a clique. Conversely, if all such edges exist, then $G_{i+1}[C_Z \cup C_W']$ must be a clique, as both $G_{i+1}[C_Z]$ and $G_{i+1}[C_W']$ are cliques. Thus, for each vertex $v \in C_W$, we can independently decide whether to add it to C^* , based on its connectivity to all vertices in C_Z .

Similarly, for each vertex $v \in I_W$, we add it to I^* only if it has no neighbors in I_Z . If, in the end, we have removed at most l vertices from W, we have found a valid solution $X_{i+1} = Y \cup (W \setminus W')$ for G_{i+1} .

The total time complexity is $2^k \cdot n^{\mathcal{O}(1)}$.