Indian Institute of Technology Kharagpur Department of Mathematics MA11003 - Advanced Calculus Problem Sheet - 5 Autumn 2025

- 1. Find $\frac{df}{dt}$ at t=0 for the following functions:
 - (a) $f(x,y) = x \cos y + e^x \sin y$, where $x(t) = t^2 + 1$, $y(t) = t^3 + t$.
 - (b) $f(x,y,z) = x^3 + xz^2 + y^3 + xyz$, where $x(t) = e^t$, $y(t) = \cos t$, $z(t) = t^3$.
 - (c) $f(x_1, x_2, x_3) = 2x_1^2 x_2x_3 + x_1x_3^2$, where $x_1(t) = 2\sin(t)$, $x_2(t) = t^2 t + 1$, $x_3(t) = 3^{-t}$.
- 2. (a) Using implicit differentiation, find $\frac{dy}{dx}$ from the following:
 - (i) $x^y + y^x = c$
 - (ii) $xy^2 + \exp(x)\sin(y^2) + \tan^{-1}(x+y) = c$
 - (iii) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$
 - (iv) $\ln(x^2 + y^2) + \tan^{-1}(y/x) = 0$
 - (b) Using implicit differentiation, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ from the following:
 - (i) $xy^2z^2 + \sin(yz) \exp(xz^2) = 0$
 - (ii) $x \tan^{-1}(\frac{y}{z}) + y \tan^{-1}(\frac{z}{x}) + z \tan^{-1}(\frac{z}{y}) = 0$
 - (iii) $xy^2 + z^3 + \sin(xyz) = 0$
 - (iv) $x yz + \cos(xyz) x^2z^2 = 1$
- 3. If u = f(r, s, t), where $r = \frac{x}{y}$, $s = \frac{y}{z}$ and $t = \frac{z}{x}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
- 4. If v = f(u), where u is a homogeneous function of x and y of degree n, then prove that

$$x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} = nu\frac{dv}{du}$$

5. Check whether the following functions are homogeneous or not, if so, determine the degree of the function:

1

(a) $\tan^{-1} \frac{y}{x} + \sin^{-1} \frac{x}{y}$

(e) $x^{2/3}y^{4/3} \tan \frac{y}{x}$

(b) $\cos^{-1}(\frac{y}{\sqrt{x^2 + y^2}})$

(f) $\frac{x^{1/4} + y^{1/4}}{x^{1/5} + y^{1/5}}$

(c) $\frac{x^2}{y} + \frac{y^2}{x}$

(g) $x^2y^2 + xy^3 + x^2y + x^3y$

(d) $\frac{x}{y}\sin(\frac{y}{x})$

- (h) $\frac{x^2 + y^2}{x^3 + y^3}$
- 6. If $f(x,y) = \frac{y}{x} + \frac{x}{y}$, then show that $xf_x + yf_y = 0$.

- 7. If $u = \frac{x^2 + y^2}{\sqrt{x + y}}$, $(x, y) \neq (0, 0)$, what should be the value of k so that $xu_x + yu_y = ku$?
- 8. If $y = f(x + ct) + \phi(x ct)$, then show that $y_{tt} = c^2 y_{xx}$.
- 9. If $u = e^{-mx} \sin(nt mx)$, prove that $u_t = \frac{n}{2m^2} u_{xx}$.
- 10. If $x^x y^y z^z = k$ (constant), then show that at the point (x, y, z), where x = y = z,

$$\frac{\partial^2 z}{\partial x \partial y} = -\frac{1}{x \log_e(ex)}.$$

- 11. If $u = x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}$, prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 y^2}{x^2 + y^2}$.
- 12. If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$, then prove that $xu_x + yu_y = \sin 2u$.
- 13. If $u = \sin^{-1} \sqrt{\frac{x^{1/3} + y^{1/3}}{x^{1/2} + y^{1/2}}}$, then show that

$$x^{2}u_{xx} + 2xyu_{xy} + y^{2}u_{yy} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^{2} u}{12}\right).$$

14. If $u(x,y) = x \log\left(\frac{y}{x}\right)$, for $xy \neq 0$, then show that

$$x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 0.$$

15. If $u = \frac{(ax^3 + by^3)^n}{3n(3n-1)} + xf\left(\frac{y}{x}\right)$, then prove that

$$x^{2}u_{xx} + 2xyu_{xy} + y^{2}u_{yy} = \left(ax^{3} + by^{3}\right)^{n}$$

.

16. If $z = x^m f\left(\frac{y}{x}\right) + y^n g\left(\frac{x}{y}\right)$, then show that

$$x^{2}z_{xx} + 2xyz_{xy} + y^{2}z_{yy} + mnz = (m+n-1)\left(x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}\right).$$

- 17. Let f(x,y) and g(x,y) be two homogeneous functions of degree m and n respectively, where $m \neq 0$. Let h = f + g, and $x \frac{\partial h}{\partial x} + y \frac{\partial h}{\partial y} = 0$. Then show that $f = \alpha g$ for some constant α .
- 18. By the transformation $\xi = a + \alpha x + \beta y$, $\eta = b \beta x + \alpha y$, where α, β, a, b are all constants and $\alpha^2 + \beta^2 = 1$, the function u(x, y) is transferred into $U(\xi, \eta)$. Prove that

$$U_{\xi\xi}U_{\eta\eta} - U_{\xi\eta}^2 = u_{xx}u_{yy} - u_{xy}^2.$$

19. If z be a differentiable function of x and y (rectangular cartesian co-ordinates) and let $x = r \cos \theta, y = r \sin \theta$ (r, θ are polar co-ordinates), then show that

(a)
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$
.

(b)
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2}$$
.

20. Given $w = (x_1^2 + x_2^2 + \dots + x_n^2)^k$, for $n \ge 2$. Then, for what values of k, the following relation holds:

$$\frac{\partial^2 w}{\partial x_1^2} + \frac{\partial^2 w}{\partial x_2^2} + \dots + \frac{\partial^2 w}{\partial x_n^2} = 0.$$

21. Let u(x,y) be such that all its second order partial derivatives exist. If $x=r\cos\theta,y=r\sin\theta$, then show that

$$r^{2} \frac{\partial^{2} u}{\partial r^{2}} - \frac{\partial^{2} u}{\partial \theta^{2}} - r \frac{\partial u}{\partial r} = (x^{2} - y^{2}) \left(\frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial^{2} u}{\partial y^{2}} \right) + 4xy \frac{\partial^{2} u}{\partial x \partial y}.$$

22. Let u(x,y) be such that all its second order partial derivatives exists. If $x = \xi \cos \alpha - \eta \sin \alpha$, $y = \xi \sin \alpha + \eta \cos \alpha$, then prove that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2}.$$