Task-02

Pixel

Manipulation

for Image

Encryption

BY: OMAR MAHMOOD

Table of Contents

Introduction:

- Purpose of the tool
- Features

Getting Started

- Prerequisites
- Installation

Usage Instructions:

- Running the tool
- Input parameters

Tool Overview:

- Pixel Manipulation Techniques
- Encryption Process
- Decryption Process

Technical Details:

- Libraries Used
- Encryption/Decryption Key
- Image Processing

Sample Output

Screenshots of tool execution

Conclusion

- Summary
- Acknowledgments

1. INTRODUCTION

Purpose of the Tool

- The Image Encryption Tool serves the purpose of providing a straightforward image encryption solution using pixel manipulation.
- It offers various pixel manipulation techniques to enhance image

Features

- Pixel manipulation for image encryption.
- Swapping pixel values and applying basic mathematical operations.
- Command-line interface for user interaction.

2. GETTING STARTED

Prerequisites

- Ensure the following libraries are installed:
- Pillow (PIL)
- NumPy
- tqdm
- colorama

Install the libraries using the provided script or manually using pip.

Installation

Run the following command to install the required libraries:

Kali:\$ pip install Pillow numpy tqdm colorama

3. USAGE INSTRUCTION

Running the Tool

Execute the tool using the following command:

Kali:\$ python image_encryption_tool.py

Input Parameters

- Encryption/Decryption Choice: 'e' for encrypt, 'd' for decrypt.
- Image Path: Path to the target image file.
- Output Path: Path to save the result.
- Encryption/Decryption Key: Integer value for the encryption/decryption process.

4. TOOL OVERVIEW

Pixel Manipulation Techniques

The tool offers pixel manipulation techniques, including swapping pixel values and applying basic mathematical operations.

Encryption Process

The encryption process involves selected pixel manipulation techniques based on user input, enhancing image security.

Decryption Process

Decryption reverses the selected pixel manipulation, restoring the original image.

5. TECHNICAL DETAILS

Libraries Used

- Pillow (PIL): Image processing library.
- NumPy: Numerical computing library.
- tqdm: Progress bar library.
- colorama: Terminal color library for ASCII art.

Encryption/Decryption Key

The key is a user-provided integer used to seed the random number generator for pixel manipulation.

Image Processing

The tool utilizes NumPy to convert images to arrays, apply pixel manipulations, and save the processed images.

6. SAMPLE OUTPUT

7. CONCLUSION

Summary

The Image Encryption Tool provides a simple yet effective solution for image encryption using pixel manipulation. It offers various techniques for enhanced image security.

Acknowledgments

I thank the Prodigy Infotech for making me work onto my programming skills and achieve this task.

