Houghton Snowfall Data Analysis

By: Belee Pandya

Language & Packages

- Language used: R Programming
- Software: R Studio
- Packages Used: ggplot2, datatable, forecast,

neuralnet

History

- It is the 59th snowiest city in the United States.
- Houghton has had an average annual snowfall of 207.7 inches over the last 30 years
- 73% of Houghton's snow fell during the winter months

Goal

Maximum and Minimum snowfall till today.

Prediction of snowfall for current and upcoming years.

Cross validation of various models considering current dataset.

Average snowfall over months

Average Snowfall over months for last 126 years data

Distribution of snowfall over months

Box plot distribution of snowfall over months for last 126 years data

Moving average for October

Moving average for month Oct.

Moving average for November

Moving average for month Nov.

Moving average for December

Moving average for month Dec.

Moving Average of January

Moving average for month Jan.

Moving Average for February

Moving average for month Feb.

Moving average for March

Moving average for month Mar.

Moving average for April

Moving average for month Apr.

Moving average for May

Moving average for month May

Correlation between total snowfall and snowfall in winter (December - March)

Snowfall in inches over multiple seasons

Correlation between total snowfall and snowfall in winter (December - March)

Total snowfall in a season and snowfall in winter are highly correlated

Prediction of snowfall for the current and upcoming seasons

Multiple techniques can be used to predict or forecast the snowfall in future. These techniques can be grouped into two categories :

Statistical Models

- Moving Average (over last n years data)
- Autoregressive Moving Average Model (over last n years data) and so on...

Predictive learning / Regression Models

- Linear Regression (over last n years data and this)
- Neural Nets and so on...

Prediction of snowfall for the current and upcoming seasons

Cross Validation performance of various models considered above

Season | month

Drawbacks of prediction models

- 1. Accuracy over prediction decreases, i.e., for a fixed margin of error, our confidence score for a particular prediction of snowfall decreases when we go further away from current time
- 2. As we predict far away in future, our training data will start containing instances of our own predictions, which will lead to erroneous predictions and degrade model accuracy over time.

Parallel Coordinates

Summary

Characteristics:

- January has maximum snowfall
- May has minimum snowfall
- Average snowfall is 19.5 Inches

Correlation:

- Correlation coefficient is 0.96 between total snowfall in a season and snowfall during winter for last 126 years data.
- Correlation coefficient is 0.36 when considered for fall or spring.

Predictions:

- Highest snowfall in December 75" (2016-2017)
- Highest snowfall in December 92" (2017-2018)

Thank you!