Finite Automata 204213 Theory of Computation

Jittat Fakcharoenphol

Kasetsart University

July 6, 2021

- Examples
- 2 Formal definitions
- Oesigning finite automata
- 4 Regular operations
- 5 Nondeterminism

An automatic door

• Recall our automatic door example from last time?

An automatic door

- Recall our automatic door example from last time?
- Let's see a simulation.

There are two states:

• There are two states: closed and open

- There are two **states**: closed and open
- There are 4 possible inputs, and the state of the machine changes (or remains) after each input.

- There are two states: closed and open
- There are 4 possible inputs, and the state of the machine changes (or remains) after each input.
- See that in table form:

	neither	front	rear	both
closed	closed	open	closed	closed
open	closed	open	open	open

• This is the **state diagram** of M_1 .

- This is the **state diagram** of M_1 .
- There are 3 states: q_1, q_2, q_3 .

- This is the state diagram of M_1 .
- There are 3 states: q_1, q_2, q_3 .
- q_1 is the **start state**. (see the arrow?)

- This is the state diagram of M_1 .
- There are 3 states: q_1, q_2, q_3 .
- q_1 is the **start state**. (see the arrow?)
- q_2 is the accept state. (see the double circle)

- This is the state diagram of M_1 .
- There are 3 states: q_1, q_2, q_3 .
- q_1 is the **start state**. (see the arrow?)
- q_2 is the accept state. (see the double circle)
- Arrows are transitions.

Formal definition: why?

Formal definition: why?

Formal definition gives

Precision

Formal definition: why?

Formal definition gives

- Precision
- Notation

• The rule for moving.

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state p:

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state p:

$$\delta(q,1)=p$$

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state p:

$$\delta(q,1)=p$$

ullet δ is a function from

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state
 p:

$$\delta(q,1)=p$$

 \bullet δ is a function from the set of states and

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state
 p:

$$\delta(q,1) = p$$

 \bullet δ is a function from the set of states and the set of possible inputs to

- The rule for moving.
- If you are in state q, after receiving 1 as an input, go to state
 p:

$$\delta(q,1) = p$$

ullet δ is a function from the set of states and the set of possible inputs to the set of states.

Definition [finite automaton]

A **finite automaton** is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- ① Q is a finite set called the *states*,
- Σ is a finite set called the alphabet, set w input hims.
- **3** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- $q_0 \in Q$ is the *start state*, and
- **5** $F \subseteq Q$ is the <u>set of accept states.</u>

Formal definition of M_1

Formal definition of M_{1}

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
, where

$$\Sigma = \{0, 1\},$$

 $oldsymbol{\circ}$ δ can be described as

	0	1
q_1	q_1	q_2
q_2	q ₃	q_2
q_3	q_2	q_2

 Q_1 is the start state, and

5
$$F = \{q_2\}.$$

$$\frac{\frac{5}{q_1} | q_1 | q_2}{q_2 | q_1 | q_2}$$

Language of a machine

set of string

• A set *A* of strings is called the **language of machine** *M* if *A* is the set of all strings that *M* accepts.

Language of a machine

• A set A of strings is called the **language of machine** M if A is the set of all strings that M accepts.

- We write L(M) = A.
- We also say that *M* recognizes *A*.

Language of machine M_1

- Let $A = \{w | w \text{ contains at least one 1 and an even number of 0's follow the last 1}\}.$
- $L(M_1) = A$

Language of machine M_1

- Let $A = \{w | w \text{ contains at least one 1 and an even number of 0's follow the last 1}\}.$
- $L(M_1) = A$
- Or, we can say that M_1 recognizes A.

What is the language that M_2 recognizes?

What is the language that M_3 recognizes?

What is the language that M_4 recognizes?

What is the language that M_5 recognizes?

Formal definition of computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string over alphabet Σ . M accepts w if

Formal definition of computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string over alphabet Σ . M accepts w if there exists a sequence of states r_0, r_1, \ldots, r_n in Q such that

Formal definition of computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string over alphabet Σ . M accepts w if there exists a sequence of states r_0, r_1, \ldots, r_n in Q such that

- $\delta(r_i,w_{i+1})=r_{i+1}$ for $i=0,\ldots,n-1$, and r=1
- \circ $r_n \in F$.

((เม้อกเล่

Definition [regular language]

• *M* recognizes language *A* if $A = \{w | M \text{ accepts } w\}$.

Definition [regular language]

- *M* recognizes language *A* if $A = \{w | M \text{ accepts } w\}$.
- A language is called a regular language if some finite automaton recongnizes it.

Designing finite automata

Tips:

• Pretending that you are the automaton.

Designing finite automata

Tips:

- Pretending that you are the automaton.
- You get one input at a time.

Designing finite automata

Tips:

- Pretending that you are the automaton.
- You get one input at a time.
- Think about what you have to remember to make decision correctly. (That would be a set of states.)

Practice

Language consisting of all strings with an odd number of 1's.

Building more complex finite automata

- Let $\Sigma = \{0, 1, 2\}.$
- Can you build a finite automaton M_3 that accepts all strings whose sums are divisible by 3?

Building more complex finite automata

- Let $\Sigma = \{0, 1, 2\}.$
- Can you build a finite automaton M_3 that accepts all strings whose sums are divisible by 3?
- Can you build a finite automaton M_5 that accepts all strings whose sums are divisible by 5?

Building more complex finite automata

- $\bullet \ \ \mathsf{Let} \ \Sigma = \{0,1,2\}.$
- Can you build a finite automaton M_3 that accepts all strings whose sums are divisible by 3?
- Can you build a finite automaton M_5 that accepts all strings whose sums are divisible by 5?
- Can you build a finite automaton M_5 that accepts all strings whose sums are divisible by 3 or 5?

Construction from smaller building boxes

This is one of important ideas in computer science.

- Operations for "manipulating" languages.
- A toolbox for

- Operations for "manipulating" languages.
- A toolbox for
 - building more complex machines.

- Operations for "manipulating" languages.
- A toolbox for
 - building more complex machines.
 - reasoning about larger (?) classes of machines.

- Operations for "manipulating" languages.
- A toolbox for
 - building more complex machines.
 - reasoning about larger (?) classes of machines.
 - some fun (?).

A set and operations

 A collection of objects is closed under some operation if applying that operation to objects in that set only result in object in that set.

A set and operations

- A collection of objects is closed under some operation if applying that operation to objects in that set only result in object in that set.
- ullet E.g., a set of natural number ${\cal N}$ is closed under multiplication.

Definition [regular operations]

For a language A and B, the regular operations union, concatenation, and star can be defined as follows.

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1 x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in A\}$

Irregular languages?

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?
- How can we answer that? M_{ℓ}

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?
- How can we answer that?
- Go back to the definition of regular languages.
 - **Goal:** to show that there exists a finite automaton recognizing $A_1 \cup A_2$,

- Irregular languages?
 - A language is irregular if there is no finite automaton recognizing it.
- Look at each regular operation, starting with union.
- If A_1 and A_2 are regular, is $A_1 \cup A_2$ regular?
- How can we answer that?
- Go back to the definition of regular languages.
 - **Goal:** to show that there exists a finite automaton recognizing $A_1 \cup A_2$.
 - **Given that:** there are finite automata M_1 and M_2 such that M_1 recognizes A_1 and M_2 that recognizes A_2 .

Theorem,

The class of regular languages is closed under the union operation

Theorem

The class of regular languages is closed under the union operation

Approach for proving it.

• Proof by construction.

Theorem

The class of regular languages is closed under the union operation

Approach for proving it.

- Proof by construction.
- We know that there are finite automata M_1 that recognizes A_1 and M_2 that recognizes A_2 .

Theorem

The class of regular languages is closed under the union operation

Approach for proving it.

- Proof by construction.
- We know that there are finite automata M_1 that recognizes A_1 and M_2 that recognizes A_2 .
- We shall construct M that recognizes $A_1 \cup A_2$.

• Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.
- Let's try again:

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.
- Let's try again: suppose that we want to recognize $A_1 \cup A_2$ and also have M_1 and M_2 standing in front of us.

- Again, pretend that you are a finite automaton trying to recognizes $A_1 \cup A_2$.
 - Arrh.. doesn't seem to help.
- Let's try again: suppose that we want to recognize $A_1 \cup A_2$ and also have M_1 and M_2 standing in front of us.
 - Can we use them to recognize $A_1 \cup A_2$?

Given

We have to be formal:

Given

We have to be formal:

- Machine $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizing A_1
- Machine $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizing A_2

Machine $M=(Q,\Sigma,\delta,q_0,F)$, such that $Q=Q_1 imes Q_2$,

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

- $Q = Q_1 \times Q_2$,
- \bullet Σ remains the same,

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

- $Q = Q_1 \times Q_2$,
- \bullet Σ remains the same,
- ullet δ is defined as

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)),$$

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

- $Q = Q_1 \times Q_2$,
- \bullet Σ remains the same,
- ullet δ is defined as

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)),$$

•
$$q_0 = (q_1, q_2),$$

Machine $M = (Q, \Sigma, \delta, q_0, F)$, such that

• $Q = Q_1 \times Q_2$

Outline

- \bullet Σ remains the same,
- ullet δ is defined as

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)), \quad \text{state } \tilde{\delta} \cap \{0\}$$

- $q_0 = (q_1, q_2),$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Other regular operations

coneute note

• Can we use the same technique to prove that $A_1 \circ A_2$ is regular?

• We prove Theorem 1 by simulating two finite automata with one finite automaton.

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?
 - For string $w \in A_1 \circ A_2$, there exists a pair x and y such that w = xy and $x \in A_1$ and $y \in A_2$.

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?
 - For string $w \in A_1 \circ A_2$, there exists a pair x and y such that w = xy and $x \in A_1$ and $y \in A_2$.
 - To construct a finite automaton M for $A_1 \circ A_2$ from M_1 and M_2 that recognize A_1 and A_2 we need to simulate M_1 to the end of x and start simulating M_2 right after that.

- We prove Theorem 1 by simulating two finite automata with one finite automaton.
- This approach cannot be used directly to prove that the set of regular languages is closed under concatenation. Why?
 - For string $w \in A_1 \circ A_2$, there exists a pair x and y such that w = xy and $x \in A_1$ and $y \in A_2$.
 - To construct a finite automaton M for $A_1 \circ A_2$ from M_1 and M_2 that recognize A_1 and A_2 we need to simulate M_1 to the end of x and start simulating M_2 right after that. **And it is hard to "tell" where** x **ends.**

• Suppose that our machine can guess where *x* ends.

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?
 - Ummm...

- Suppose that our machine can guess where *x* ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?
 - Ummm.. it definitely can,

- Suppose that our machine can guess where x ends.
- It can
 - simulate M_1 on the input string up to the end of x,
 - jump to the start state in M_2 right after x ends, and
 - accept string w = xy when the machine stops at some accept state in M_2 .
- Can machine guess?
 - Maybe?
 - But guess correctly?
 - Ummm.. it definitely can, in theory.

Example: Nondeterministic Finite Automaton N_1

Note: e in the figure is ε .

Differences

- Duplicate symbols
- Missing symbols
- ullet Empty string: arepsilon

• Previously, we only consider finite automata whose next states are **determined** by their input alphabet and their current states.

- Previously, we only consider finite automata whose next states are determined by their input alphabet and their current states.
- Computation where each next step is fully determined is called **deterministic** computation.

- Previously, we only consider finite automata whose next states are determined by their input alphabet and their current states.
- Computation where each next step is fully determined is called deterministic computation.
- On the other hand, in **nondeterministic** computation, many choices may exist.

- Previously, we only consider finite automata whose next states are determined by their input alphabet and their current states.
- Computation where each next step is fully determined is called deterministic computation.
- On the other hand, in **nondeterministic** computation, many choices may exist.
- Therefore, we have deterministic finite automata (**DFA**) and nondeterministic finite automata (**NFA**).

How does N_1 compute?

At any point where there are many choices for the next step, the machine **splits** itself into many copies and follow all possible steps in parallel.

How does N_1 compute?

At any point where there are many choices for the next step, the machine **splits** itself into many copies and follow all possible steps in parallel.

Think about Kage Bunshin no Jutsu!.

How does N_1 compute?

At any point where there are many choices for the next step, the machine **splits** itself into many copies and follow all possible steps in parallel.

Think about *Kage Bunshin no Jutsu!*. See simulation.

• If there are many choices, split.

- If there are many choices, split.
- Copies die if they can't move according to the input.

- If there are many choices, split.
- Copies die if they can't move according to the input.
- When to accept a string:

- If there are many choices, split.
- Copies die if they can't move according to the input.
- When to accept a string:
 - At the end of the input, if any of the copies is in an accept state, it accept the input.

N_1 on 010110

N_1 on 010110

NFA N_2 : what are the strings accepted by N_2 ?

NFA N_3 : what are the strings accepted by N_3 ?

Let $\{0\}$ be the alphabet for N_3 .