REPUBLIQUE TUNISIENNE
MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2011

SESSION DE CONTRÔLE

SECTION: SCIENCES TECHNIQUES

EPREUVE: MATHEMATIQUES DUREE: 3 heures COEFFICIENT: 3

Le sujet comporte 3 pages numérotées de 1/3 à 3/3

Exercice 1 (3 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse correcte vaut 0,75 point, une réponse fausse ou l'absence de réponse vaut 0 point.

- 1) L'équation $(z-i)(z^2+4)=0$ admet dans \square :
 - a) une unique solution
- b) exactement deux solutions
- c) exactement trois solutions.

- 2) Le nombre complexe $(1-i)e^{i\frac{\pi}{4}}$ est égal à :
 - a) 2

b) $\sqrt{2}$

- c) 2i.
- 3) La fonction f définie sur \Box par $f(x) = \int_0^x \ln(1+t^2) dt$ est :
 - a) croissante sur
- b) décroissante sur □
- c) n'est pas monotone sur \square .

- 4) L'intégrale $\int_{-1}^{1} \frac{e^{t} e^{-t}}{e^{t} + e^{-t}} dt$ est égale à :
 - a) $2 \ln(e e^{-1})$

b) 0

c) $2\ln(e + e^{-1})$.

Exercice 2 (5 points)

- 1) Soit la fonction f définie sur $\left[0, \frac{1}{2}\right]$ par $f(x) = \frac{x-1}{4x-3}$.
 - a) Montrer que f est strictement croissante sur $\left[0,\frac{1}{2}\right]$ puis déterminer $f\left(\left[0,\frac{1}{2}\right]\right)$.
 - b) Montrer que, pour tout $x \in \left[0, \frac{1}{2}\right]$, $f(x) x \ge 0$.
- 2) On considère la suite réelle (u_n) définie sur \square par : $\begin{cases} u_0 = 0 \\ u_{n+1} = f(u_n), \ pour \ tout \ n \in \square \end{cases}.$
 - a) Montrer que pour tout $n \in \square$, $0 \le u_n \le \frac{1}{2}$.
 - b) Montrer que la suite (u_n) est croissante.
 - c) En déduire que la suite (u_n) est convergente et calculer sa limite.

Exercice 3 (6points)

L'espace \mathscr{E} est rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$.

On considère les points A(-1, 1, 0), B(1, 0, 1), C(0, 2, -1) et D(-1, 3, 2).

- 1) Montrer que le triangle ABC est rectangle en A.
- 2) Montrer que le vecteur \overrightarrow{AD} est normal au plan (ABC).
- 3) Calculer le volume V du tétraèdre DABC.
- 4) Soit I, J et K les milieux respectifs de [DA], [DB] et [DC].

On considère le plan Q passant par I et parallèle au plan (ABC).

- a) Donner une équation cartésienne du plan Q.
- b) Vérifier que J et Kappartiennent à Q.
- c) On désigne par V ' le volume du tétraèdre DIJK . Montrer que V = 8 V ' .

Exercice 4 (6 points)

Le plan est rapporté à un repère orthonormé.

La courbe (Γ) ci-dessous est celle d'une fonction g définie, continue et dérivable sur $]0, +\infty[$. On sait que (Γ) n'admet aucun extremum.

- 1) a) Par lecture graphique, donner le signe de g sur $]0, +\infty[$.
 - b) En déduire que, pour tout $x \in]0, +\infty[$, $(x-1)g(x) \ge 0$.
- 2) La fonction g est définie sur $]0, +\infty[$ par $g(x) = 2\ln(x) + \frac{x-1}{x}$.

On considère la fonction f définie sur $]0, +\infty[$ par $f(x) = (x-1)^2 \ln(x) + x - 1$, et on désigne par (C_f) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- a) Montrer que, pour tout $x \in]0, +\infty[$, f'(x) = (x-1)g(x) + 1.
- b) Dresser le tableau de variation de f.
- 3) Soit (T) la tangente à la courbe (C_f) au point I d'abscisse 1.
 - a) Vérifier que (T) a pour équation : y = x-1.
 - b) Etudier la position relative de (C_f) et (T).
 - c) Tracer la courbe (C_f) .