蔡:衰老对大脑功能的影响

结构:

- 1、体积不断缩小,不同脑区程度不同。
- 2、白质密度降低
- 3、神经元损失很小,神经元形态改变。

功能:

- 1、工作记忆、长期记忆、视觉、空间感知能力、口语流利性下降,但是词汇、信息、理解和情绪调节能力变化不大
- 2、不同脑区协调性下降
- 3、脑区代偿
- 4、合成神经递质的酶减少,神经递质减少,突触功能缺陷

分子层面:

- 1、可塑性突触功能有关基因表达量下降,胶质表达量上升
- 2、DNA损伤,神经退行性疾病
- 3、线粒体功能障碍,氧化应激,离子通道功能,影响神经元兴奋性
- 4、衰老导致蛋白质动态平衡下降,蛋白质聚集,神经退行性疾病
- 5、表观遗传修饰,风险基因,异常甲基化和组蛋白修饰
- 6、炎症反应

陈:多能干细胞的特性和应用

定义:

- 1、自我更新
- 2、多能性:能够持续分化为其他类型细胞的潜能

应用:

- 1、类器官模拟发育
- 2、疾病发病机理
- 3、细胞治疗
- 4、药物筛选

徐:轴突导向研究中的热点

Intriguing questions

徐华泰亘古不变的问题:

研究热点?为什么?怎么

How new neurons find a way to make right connections with others in the established environments? (Transplantation/injury/new born neurons in adult stage)

神经平倒原彩

What are the cues for axonal guidance at the microcircuit level? (Important for the formation of neural microcircuits.)

Intriguing questions

关出生cedl,离VZ近; 后出鱼的,远离

- The purpose of inside-out migration pattern?
- · The cell migration pattern in non-layered structures (e.g., thalamus, brainstem, hypothalamus)?

The methods to study Axonal guidance and neuronal migration

要选这颗的同学,是议左 边方法选一两个了解一下 。或搜一篇相关新文献了

- Transwell 体計
- Electroporation 胚胎束發 ; 住 內
- In vitro gradient 玻璃速搬送多.
- Explant 强误缺、
- Genetics manipulation
- Clarity

竺:离子通道的定义与特性

定义:细胞膜上的一类特殊的蛋白质分子,它通过蛋白质分子的变构导致离子通道的开启和关 闭来实现 细胞内、外的离子交换。

离子通道有三个重要的性质(Kandel):

- 1、选择特定类型的离子
- 2、对特定的电信号机械信号或者化学信号响应
- 3、跨膜传递离子

杨辉: CRISPR在神经科学中的应用

(以下选自《CRISPR/Cas9 基因编辑技术在脑科学中的应用策略》科学通报2017)

应用CRISPR/Cas9系统制备基因敲入小鼠是基于HDR机制,有方便、快捷的优点,构建时间从常规方 法的1~2年大大缩短至3~6月. 另外, 利用Cas9酶可以结合不同gRNA的特性, 可以设计同时敲入多个 基因[23]. CRISPR/Cas9技术也可与其他技术手段结合起来, 实现可诱导性(如四环素或他莫昔芬)或 组织特异性 (如 Cre 依赖性) 基因敲除/敲入.

胚 胎 期 脑 部 应 用 CRISPR/Cas9技 术 的 突 出 优 点是: 此时神经前体细胞数量仍然庞大, HDR活性 相对高,因而可获得较高的精准编辑效率。

应用AAV方法在成年小鼠脑实施CRISPR/Cas9基因编辑

CRISPR/Cas9技术如与光遗传学等技术结合,在神经系统实现可诱导的、时空特异性的基因编辑,可 应用于脑神经环路的解析研究

由于CRISPR/Cas9技术有高效、普适的特点,已评被尝试用于编辑某些遗传性或病毒性疾病的致病 基因, 已用于在体水平的治疗尝试

徐春:请简述囊泡回收的几种机制,并分析他们对突触 传递有什么特异的贡献。

Figure 12-10 The synaptic vesicle cycle.

fusion pore. Vesicle retrieval requires only the closure of the

可逆融合孔(reversible fusion pore)重用囊泡的最快机制,无需与细胞膜完全融合。低频率刺激 优先通过kiss-and-run路径回收。

网格蛋白介导(Clathrin mediated)采用次级慢速的回收路径,这种路径在与细胞膜融合后使用 网格蛋白得到囊泡膜。高频率刺激下产生。

批量回收(Bulk retrieval)大量膜内陷。长时间高频率刺激下产生。

杜久林:神经调质的主要类型、介导的信号传递的基本 特点、其可能的神经功能调节。

(神经调质四个标准:

1、突触前神经元合成

- 2、突触前末端出现并且释放后的量足够导致突触后或效应器有反应
- 3、当外部给予适当浓度能够模仿内部递质的行动
- 4、有具体的机制从突触间隙移除该物质。)

神经调质的主要类型:氨基酸类、胆碱类、单胺类、嘌呤类、脂类、气体类、肽类介导信号的特点:

和代谢性受体结合并激活第二信使

调节时间更慢持续事件更长,作用于神经元群,不能被突触前重吸收功能:

通过控制神经递质合成和释放改变神经元信号传导

Neurotransmitter vs Neuromodulator	
Neurotransmitter is a chemical substance released by the neuron to send signals to the next neuron.	Neuromodulator is a chemical substance released by the neuron to alter the effectiveness of the signal transmission.
Role	
Its role is the transmission of chemical signals to the adjacent neuron.	Its role is to alter the signal transmission of neurons by controlling the neurotransmitter synthesis and release.
Releasing Site	
Neurotransmitters are released into the synaptic cleft.	Neuromodulators can be released to any area of the neuron.
Binding Receptors	
They bind to ionotropic receptors.	They bind with metabotropic receptors and activate secondary molecules.
Action	
They act on one presynaptic neuron or an effector cell.	They are effective on groups of neurons.
Speed of Action	
They are moderately fast.	They are moderately low and last for longer periods.
Reuptake	
Presynaptic neurons can reabsorb the neurotransmitter.	They are not reabsorbed by the presynaptic neuron.