Definition 6.5.1

Let $f(T) = c_n T^n + \cdots + c_1 T + c_0$ be an integer polynomial. Then its derivative is the integer polynomial

$$f'(T) = nc_n T^{n-1} + \cdots + c_1.$$

A root of f(T) in R (either \mathbb{Z} or \mathbb{Z}/m) is called a simple root if it is not a root of f'(T) in R.

N.B. The derivative is <u>formal</u>, not necessarily related to what you learned in Calculus.

Theorem 6.5.2 (Hensel's lifting)

Let f(T) be an integer polynomial, p be a prime, and e be a positive integer. If x is a root of $f(T) \mod p^e$ which descends to a simple root in \mathbb{F}_p , then x can be uniquely lifted to a root \widetilde{x} of $f(T) \mod p^{2e}$.

Remark. One can replace 2e by any integer e' between e and 2e: just reduce $\widetilde{x} \in \mathbb{Z}/p^{2e}$ to $\mathbb{Z}/p^{e'}$.

Example 6.5.3

The polynomial $T^2 - 1$ has no simple roots in \mathbb{F}_2 since its derivative 2T descends to the zero polynomial over \mathbb{F}_2 . As a consequence, one cannot apply the Hensel's lifting. Indeed, The polynomial $T^2 - 1$ has multiple lifting of the duplicate root $\overline{1}$.

SKETCH OF THE PROOF

Let x be a representative of a root of f(T) in \mathbb{Z}/p^e . Then a representative of a lifting of that root can be written as

$$\widetilde{x} = x + t$$
,

where t is some integer divided by p^e .

So our requirement can be interpreted as

$$f(\mathbf{x} + t) \equiv 0 \pmod{\mathbf{p}^{2e}}.$$

SKETCH OF THE PROOF

Now, we need a formal* version of Taylor's expansion:

$$f(x+t) = f(x) + \frac{f'(x)}{1!}t + \frac{f''(x)}{2!}t^2 + \dots + \frac{f^{(n)}(x)}{n!}t^n,$$

where $f^{(k)}(T)$ is the k-th derivative of f(T) and n is the degree of f(T). What we need in particular is that each fraction $\frac{f^{(k)}(x)}{k!}$ is actually an integer. Hence, we have (notice that $p^e \mid t$)

$$f(x+t) \equiv f(x) + f'(x)t \pmod{p^{2e}}.$$

^{*}There is NO continuity or calculus stuff involved.

SKETCH OF THE PROOF

Since x descends to a simple root in \mathbb{F}_p , by theorem 6.4.1, f'(x) is invertible modulo any power of p. Therefore, the linear congruence equation

$$f(x) + f'(x)t \equiv 0 \pmod{p^{2e}}$$

always has a unique solution (up to congruence $\pmod{p^{2e}}$). Substituting this solution back to $\widetilde{x} = x + t$, we get a desired lifting.

We may summarize above by the formula*:

$$[\widetilde{x}]_{p^{2e}} = [x]_{p^{2e}} + [-f(x)]_{p^{2e}} [f'(x)]_{p^{2e}}^{-1}.$$

^{*}Note that those operations are taking in \mathbb{Z}/p^{2e} .

Example 6.5.4

Solve the congruence $x^2 \equiv 7 \pmod{27}$.

Example 6.5.4

Solve the congruence $x^2 \equiv 7 \pmod{27}$.

Let f(T) be the polynomial $T^2 - 7$. Then its derivative is f'(T) = 2T.

Notice that $27 = 3^3$. We start with \mathbb{F}_3 .

Example 6.5.4

Solve the congruence $x^2 \equiv 7 \pmod{27}$.

Let f(T) be the polynomial $T^2 - 7$. Then its derivative is f'(T) = 2T.

Notice that $27 = 3^3$. We start with \mathbb{F}_3 .

Since $T^2 - 7$ descends to $T^2 - \overline{1}$ over \mathbb{F}_3 , we see that $[1]_3$ and $[2]_3$ are two roots of f(T) in \mathbb{F}_3 .

Since $f'(1) = 2 \not\equiv 0 \pmod{3}$ and $f'(2) = 4 \not\equiv 0 \pmod{3}$, both [1]₃ and [2]₃ are simple roots.

Example 6.5.4

Solve the congruence $x^2 \equiv 7 \pmod{27}$.

Let f(T) be the polynomial $T^2 - 7$. Then its derivative is f'(T) = 2T.

Notice that $27 = 3^3$. We start with \mathbb{F}_3 .

Since $T^2 - 7$ descends to $T^2 - \overline{1}$ over \mathbb{F}_3 , we see that $[1]_3$ and $[2]_3$ are two roots of f(T) in \mathbb{F}_3 .

Since $f'(1) = 2 \not\equiv 0 \pmod{3}$ and $f'(2) = 4 \not\equiv 0 \pmod{3}$, both $[1]_3$ and $[2]_3$ are simple roots. Moreover, the multiplicative inverses of f'(1) and f'(2) modulo 3 are 2 and 1 respectively.

Applying theorem 6.4.1, we can lift these multiplicative inverses from modulo $\frac{3}{2}$ world:

$$[f'(1)]_{3}^{-1} = [2]_{3} \implies [f'(1)]_{3^{2}}^{-1} = [2 \cdot (2 - 2 \cdot 2)]_{3^{2}} = [5]_{3^{2}},$$
$$[f'(2)]_{3}^{-1} = [1]_{3} \implies [f'(2)]_{3^{2}}^{-1} = [1 \cdot (2 - 1 \cdot 1)]_{3^{2}} = [1]_{3^{2}}.$$

Applying theorem 6.4.1, we can lift these multiplicative inverses from modulo 3 world to modulo 3^2 world:

$$[f'(1)]_{3}^{-1} = [2]_{3} \implies [f'(1)]_{3^{2}}^{-1} = [2 \cdot (2 - 2 \cdot 2)]_{3^{2}} = [5]_{3^{2}},$$
$$[f'(2)]_{3}^{-1} = [1]_{3} \implies [f'(2)]_{3^{2}}^{-1} = [1 \cdot (2 - 1 \cdot 1)]_{3^{2}} = [1]_{3^{2}}.$$

Applying the Hensel's lemma (theorem 6.5.2, but more precisely, the formula (\star)), we get

[1]₃
$$\stackrel{\text{Hensel}}{\longrightarrow}$$
 [1]₃₂ + [-f(1)]₃₂ [f'(1)]₃₂ = [1 + 6 · 5]₃₂ = [4]₃₂,
[2]₃ $\stackrel{\text{Hensel}}{\longrightarrow}$ [2]₃₂ + [-f(2)]₃₂ [f'(2)]₃₂ = [2 + 3 · 1]₃₂ = [5]₃₂.

Next, we use theorem 6.4.1 again to lift the multiplicative inverses of f'(4) = 8 and f'(5) = 10 from $\mathbb{Z}/3^2$ to $\mathbb{Z}/3^3$:

$$[f'(4)]_{3^{2}}^{-1} = [8]_{3^{2}} \implies [f'(4)]_{3^{3}}^{-1} = [8 \cdot (2 - 8 \cdot 8)]_{3^{3}} = [17]_{3^{3}},$$
$$[f'(5)]_{3^{2}}^{-1} = [1]_{3^{2}} \implies [f'(5)]_{3^{3}}^{-1} = [1 \cdot (2 - 10 \cdot 1)]_{3^{3}} = [19]_{3^{3}}.$$

Next, we use theorem 6.4.1 again to lift the multiplicative inverses of f'(4) = 8 and f'(5) = 10 from $\mathbb{Z}/3^2$ to $\mathbb{Z}/3^3$:

$$[f'(4)]_{3^{2}}^{-1} = [8]_{3^{2}} \implies [f'(4)]_{3^{3}}^{-1} = [8 \cdot (2 - 8 \cdot 8)]_{3^{3}} = [17]_{3^{3}},$$
$$[f'(5)]_{3^{2}}^{-1} = [1]_{3^{2}} \implies [f'(5)]_{3^{3}}^{-1} = [1 \cdot (2 - 10 \cdot 1)]_{3^{3}} = [19]_{3^{3}}.$$

Applying the Hensel's lemma again, we get

$$[4]_{3^2} \xrightarrow{\text{Hensel}} [4]_{3^3} + [-f(4)]_{3^3} [f'(4)]_{3^3}^{-1} = [4 + (-9) \cdot 17]_{3^3} = [13]_{3^3},$$

$$[5]_{3^2} \xrightarrow{\text{Hensel}} [5]_{3^3} + [-f(5)]_{3^3} [f'(5)]_{3^3}^{-1} = [5 + (-18) \cdot 19]_{3^3} = [14]_{3^3}$$

Next, we use theorem 6.4.1 again to lift the multiplicative inverses of f'(4) = 8 and f'(5) = 10 from $\mathbb{Z}/3^2$ to $\mathbb{Z}/3^3$:

$$[f'(4)]_{3^{2}}^{-1} = [8]_{3^{2}} \implies [f'(4)]_{3^{3}}^{-1} = [8 \cdot (2 - 8 \cdot 8)]_{3^{3}} = [17]_{3^{3}},$$
$$[f'(5)]_{3^{2}}^{-1} = [1]_{3^{2}} \implies [f'(5)]_{3^{3}}^{-1} = [1 \cdot (2 - 10 \cdot 1)]_{3^{3}} = [19]_{3^{3}}.$$

Applying the Hensel's lemma again, we get

$$[4]_{3^{2}} \xrightarrow{\text{Hensel}} [4]_{3^{3}} + [-f(4)]_{3^{3}} [f'(4)]_{3^{3}}^{-1} = [4 + (-9) \cdot 17]_{3^{3}} = [13]_{3^{3}},$$

$$[5]_{3^{2}} \xrightarrow{\text{Hensel}} [5]_{3^{3}} + [-f(5)]_{3^{3}} [f'(5)]_{3^{3}}^{-1} = [5 + (-18) \cdot 19]_{3^{3}} = [14]_{3^{3}}$$

Therefore, the solution of $x^2 \equiv 7 \pmod{27}$ is $x \equiv 13$ or 14 $\pmod{27}$.