FBX4025 – Sistemas Digitais I

Objetivos

- Apresentar o conceito de Codificadores e Decodificadores.
- Apresentar circuitos integrados que desempenham essas funcionalidades.

Decodificadores

É um circuito digital que detecta a presença de uma combinação específica de bits (código) em suas entradas indicando a presença desse código através de um nível de saída especificado.

Geralmente apresentam n linhas de entrada para manipular n bits e de uma a 2^n linhas de saída para indicar a presença de uma ou mais combinações de n bits.

Exemplo 01: Decodificador binário básico (1001)

Decodificadores

Exemplo 02: Determine a lógica necessária para decodificar o número binário 1011 produzindo um nível ALTO na saída.

$$X = A_3 \overline{A_2} A_1 A_0 \qquad (1011)$$

Decodificadores

Os decodificadores são usados em muitos tipos de aplicações. Um exemplo é o uso em computadores para seleção de entrada/saída conforme ilustrado no diagrama a seguir.

Decodificadores

Exemplo 03: Decodificador BCD para display de 7 segmentos.

Estabeleça o circuito decodificador BCD – 7 segmentos

Decodificadores

Caracteres	Display	BCD 8421				Código para 7 segmentos							
		A	В	C	D	a	b	c	d	e	f	g	
0	f b c	0	0	0	0	1	1	1	1	1	1	0	
1	b	0	0	0	1	0	1	1	0	0	0	0	
2	a g b	0	0	1	0	1	1	0	1	1	0	1	

Decodificadores

Caracteres	Display	BCD 8421				Código para 7 segmentos						
		A	В	C	D	a	b	c	d	e	f	g
3	a g b d c	0	0	1	1	1	1	1	1	0	0	1
4	f g b c	0	1	0	0	0	1	1	0	0	1	1
5	f g d c	0	1	0	1	1	0	1	1	0	1	1

Decodificadores

Caracteres	Display	BCD 8421				Código para 7 segmentos						
		A	В	C	D	a	b	c	d	e	f	g
6	f g e d c	0	1	1	0	1	0	1	1	1	1	1
7	a b c	0	1	1	1	1	1	1	0	0	0	0
8	f g b e d c	1	0	0	0	1	1	1	1	1	1	1

Decodificadores

Caracteres	Display	BCD 8421			Código para 7 segmentos							
		A	В	C	D	a	b	С	d	e	f	g
9	f g b	1	0	0	1	1	1	1	1	0	1	1

Decodificadores

$$a = A + C + BD + \bar{B}\bar{D}$$

Decodificadores

Decodificadores

$$c = B + \bar{C} + D$$

Decodificadores

$$d = A + \bar{B}\bar{D} + \bar{B}C + C\bar{D} + B\bar{C}D$$

Decodificadores

Decodificadores

Decodificadores

$$g = A + \overline{BC} + \overline{BC} + C\overline{D}$$
$$g = A + B \oplus C + C\overline{D}$$

Decodificadores

Exemplo 03: Decodificador BCD para display de 7 segmentos.

Simule o circuito e verifique se o decodificador funciona conforme esperado.

Implemente um circuito adicional de tal forma que todos os led's sejam apagados quando for fornecido um código BCD inválido.

Decodificadores

Exemplo 03: Decodificador BCD para display de 7 segmentos. Circuito detector de código BCD inválido.

	CD			
AB	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	0	0	1	1

$$BCD_{inv\'alido} = AB + AC$$

Decimal	Binário ABCD	BCD
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Inválido
11	1011	Inválido
12	1100	Inválido
13	1101	Inválido
14	1110	Inválido
15	1111	Inválido

Decodificadores

Exemplo 03: Decodificador BCD para display de 7 segmentos.

Circuito detector de código BCD inválido.

	CD				
AB	00	01	11	10	
00	0	0	0	0	
01	0	0	0	0	
11	1	1	1	1	
10	0	0	1	1	

$$BCD_{inválido} = AB + AC$$

Decodificadores

Circuito integrado <u>74LS47</u> - Driver BCD para 7 segmentos

Decodificadores

Circuito integrado 74LS47 - Driver BCD para 7 segmentos

Supressão de zeros (valores mais significativos)

Decodificadores

Circuito integrado 74LS47 - Driver BCD para 7 segmentos

Supressão de zeros (valores menos significativos – parcela fracionária)

Codificadores

É um circuito lógico que realiza essencialmente a função "inversa" do decodificador.

Um codificador aceita um nível ativo em uma de suas entradas representando um dígito, tal como decimal ou octal, e o converte em uma saída codificada, tal como binário ou BCD.

Codificadores

Codificador Decimal → BCD

and the second second		O BCD		
DÍGITO DECIMAL	A ₃	A ₂	Aı	A ₀
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

$$A_0 = 1 + 3 + 5 + 7 + 9$$

 $A_1 = 2 + 3 + 6 + 7$
 $A_2 = 4 + 5 + 6 + 7$
 $A_3 = 8 + 9$

Codificadores

Circuito integrado 74HC147 – Codificador de prioridade de Decimal para BCD

Referências

- TOCCI, Ronald J.; Widmer, Neal S.; Moss, Gregory L. **Sistemas digitais: princípios e aplicações**, 12ª ed. Editora Pearson, 2018. 1056 p. ISBN 9788543025018. Capítulo 9 Circuitos lógicos MSI
- FLOYD, Thomas. Sistemas Digitais. Grupo A, 2011. E-book. 9788577801077.
- Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788577801077/.
- Acesso em: 28 ago. 2022. Capítulo 6 Funções de lógica combinacional
- IDOETA, Ivan V.; CAPUANO, Francisco G. ELEMENTOS DE ELETRÔNICA
- DIGITAL 42ª edição. Editora Saraiva, 2019. E-book. ISBN 9788536530390.
- Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536530390/.
- Acesso em: 25 set. 2022. Capítulo 5 Circuitos combinacionais 2ª Parte