1.)

a.)

Proposition. We let F be an Abelian group, with \mathscr{F} the skyscraper sheaf supported at $x \in X$ associated to F and F the constant sheaf F on $\{x\}$. Then, $\mathscr{F} = \iota_* \mathcal{F}$ where ι_* is induced by $\iota : \{x\} \hookrightarrow X$.

Proof. We recall that for $U \subset X$ open, $(\iota_*\mathcal{F})(U) = \mathcal{F}(\iota^{-1}(U))$. We note that

$$\iota^{-1}(U) = \begin{cases} \{x\} & x \in U \\ \emptyset & x \notin U \end{cases}$$

Thus,

$$(\iota_*\mathcal{F})(U) = \mathcal{F}(\iota^{-1}(U)) = \begin{cases} F & x \in U \\ 0 & x \notin U \end{cases} = \mathscr{F}(U)$$

b.)

Proposition. We let X be a scheme, $x \in X$ a closed point, $k(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$ its residue field, and F a k(x)-vector space. Then, there exists a skyscraper sheaf \mathcal{F} with stalk $\mathcal{F}_x = F$ which is quasi-coherent.

Proof. We note that $(\{x\}, \mathcal{O}_X)$ is a closed subscheme of X as $i^{\#}: \mathcal{O}_X \to i_*\mathcal{O}_{\{x\}} = \mathcal{O}_{X,x}$ is surjective. Thus, as $\mathcal{F} = i_* F$, the direct image of the skyscraper sheaf on $\{x\}$, by part 1, \mathcal{F} is quasi-coherent.

2.)

We begin with a lemma; the proposition will follow as a corollary.

Lemma. We let A = k[t] for some field k and $E \subset k[t]$ a multiplicatively closed subset which is finitely generated as a semigroup. We let $A_E := A[E^{-1}]$. Then, k(t) is not of finite rank as an A_E -module (via the natural inclusion $A_E \hookrightarrow k(t)$).

Proof. We note that k(t) is has irredundant generating set as a k[t]-algebra consisting of all elements of the form 1/p(t) where p(t) is prime. We note that for any field k, the set of prime elements of k[t] is an infinite set.¹ Thus, A_E is a finitely generated k[t]-subalgebra of k(t), which is infinitely generated, so if k(t) is a finitely-generated A_E -algebra it must be a finitely generated k[t]-algebra, contradicting the infinitude of prime elements.

Corollary. The skyscraper sheaf \mathscr{F} on $X = \mathbb{A}^1_k$ supported at the generic point with stalk k(t) is not locally of finite rank and hence not coherent.

Proof. We note that any open set in X is of the form D(E) where $E \subset A$. A priori, E need not be a finite set, but we note that $D(E) = D(\langle E \rangle)$, and as k[t] is Noetherian, we have that E has some finite generating set F. Hence, D(E) = D(F), so $\mathcal{O}_X(D(E)) = A[F^{-1}]$ for some finite set $F \subset A$. Thus, by the lemma, we have that for any open set $U = D(E) \subset X$, $k(t) = \mathcal{F}(U)$ is an infinite-rank $\mathcal{O}_X(U)$ -module.

3.)

Proposition. We let X be a scheme and \mathcal{F} , \mathcal{G} quasicoherent \mathcal{O}_X -modules. Then, $\mathcal{F} \otimes \mathcal{G}$ is quasicoherent.

Proof. By definition, we have that there exists an affine open cover $\{U_i\}_{i\in I}$ (resp. $\{U'_j\}$) of X such that on each U_i (resp. U'_j), $\mathcal{F}|_{U_i}\cong M_i^\sim$ (resp. $\mathcal{G}|_{U'_j}\cong M'_j\sim$) for some $\mathcal{O}_X(U_i)$ -module M_i (resp. $\mathcal{O}_X(U'_j)$ -module M'_j). We let W_{ij} be the open subscheme $U_i\cap U'_j$, and let $\{V_{ijk}\}_{k\in K_{ij}}$ be an affine open cover of W_{ij} for some indexing set K_{ij} . We note that as $V_{ijk}\subset U_i$ is an open subscheme of an affine open set on which \mathcal{F} is associated, we have that \mathcal{F} is associated on V_{ijk} with a similar statement holding for \mathcal{G} . Hence, \mathcal{F} and \mathcal{G} are both associated on each V_{ijk} , and thus their tensor product is as well. As $\bigcup_{(i,j)\in I\times J}\{V_{ijk}\}_{k\in K_{ij}}$ is an affine open cover of X, we have completed our proof.

 $^{^{1}}$ As kt is a UFD, this follows from Euclid's argument for the infinitude of the primes.

4.)

a.)

Proposition. A scheme X is quasi-compact if and only if it is a finite union of affine open subsets.

Proof. (\Longrightarrow) We assume X is quasi-compact. By definition of scheme, there exists an affine open set $U_x \ni x$ for all $x \in X$. Then, $\{U_x\}_{x \in X}$ is an open cover of X so there exists some finite subcover $\{U_{x_i}\}_{i=1}^n$.

(\iff) It is a completely trivial exercise in point-set topology that any topological space which can be written as a finite union of quasi-compact sets is itself quasi-compact. As any affine scheme (and hence any affine open subset) is quasi-compact, the proof follows immediately.

b.)

Definition 4.1. A morphism $\pi: X \to Y$ of schemes is quasi-compact if $\pi^{-1}(U)$ is quasi-compact for any quasi-compact $U \subset Y$.

Definition 4.2. A morphism $\pi: X \to Y$ of schemes is quasi-compact if $\pi^{-1}(U)$ is quasi-compact for any open affine $U \subset Y$.

Proposition. Definitions 4.1 and 4.2 are equivalent.

Proof. As all open affine sets are quasi-compact, it is immediately clear that definition 4.1 implies 4.2. On the other hand, we suppose π satisfies definition 4.2 and that $U \subset Y$ is quasi-compact. Then, we may cover U by affine open sets $\{W_i\}_{i\in I}$ and have that there exists a finite subcover $\{W_i\}_{i=1}^n$. Then, $\pi^{-1}(U) = \bigcup_{i=1}^n \pi^{-1}(W_i)$, and by assumption each $\pi^{-1}(W_i)$ is quasi-compact. Part a of this question implies the proposition.

5.)

6.)

Proposition. We let X be a topological space, $U \subset X$ with inclusion $j : U \hookrightarrow X$, and \mathcal{F} a sheaf of sets on X. Then, $j^{-1}\mathcal{F}$ coincides with $\mathcal{F}|_U$.

Proof. We recall that $(j^{-1}\mathcal{F})^{\operatorname{pre}}(U) = \varprojlim_{V \supset U} \mathcal{F}(V)$. We recall as well that sheaves are recoverable from their stalks via sheafification—in particular if the stalks of presheaf \mathcal{G} coincide with the stalks of sheaf \mathcal{F} , then $\mathcal{G}^+ = \mathcal{F}$. We let $p \in X$ and present the following diagram in which the black arrows commute by definition, with explanation of dashed arrows to follow.

We note that each $\mathcal{F}(V_{\alpha})$ has a map $\mathcal{F}(V_{\alpha}) \to (j^{-1}\mathcal{F})^{\mathrm{pre}}(U_a) \to (j^{-1}\mathcal{F})_p$ commuting with $\mathcal{F}(V_{\alpha} \to \mathcal{F}(V_{\beta}))$ by definition of colimit. Thus, $(j^{-1}\mathcal{F})_p$ is a co-cone for $\mathcal{F}(V)$ with $V \ni p$, inducing the map f. We also note that $\{\mathcal{F}(V) : U \subset V\}$ is a subco-cone of $\{\mathcal{F}(V) : p \in V\}$, inducing the maps g_a, g_b in the diagram. Then, the maps g_a, g_b establish \mathcal{F}_p as a co-cone for $(j^{-1}\mathcal{F})^{\mathrm{pre}}(U)$ for all $U \ni p$, inducing the map h. By universality of the colimit construction, we have that f and h are mutual isomorphisms.