Математическое моделирование движения руки и поведенческих движений

студент 2 курса магистратуры К. Ю. Егоров научный руководитель — к.ф-м.н., доцент И. В. Востриков

Кафедра системного анализа ВМК МГУ

27 марта 2023 г.

Зачем это всё

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Математическое моделирование

Метод Эйлера-Лагранжа

$$\mathcal{L} = \Pi - K \implies \tau_i = \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_i} \right) - \frac{\partial \mathcal{L}}{\partial \theta_i}$$

Уравнение динамики

$$\tau = M(\theta)\ddot{\theta} + L(\theta,\dot{\theta})$$

- τ_i момент силы, действующей на i-е сочленение
- ullet $M(heta) = M^{\mathrm{T}}(heta) > 0$ матрица инерции
- ullet $L(heta,\dot{ heta})$ вектор центростремительных и корелисовых сил

Трудозатраты

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Формализация энергетических затрат

Затраты
$$=\int_{t_{min}}^{t_{final}} \dot{\tau} dt$$

Задача достижимости

Введем $\mathbf{x} = [\theta \; \dot{\theta} \; \dot{ au}]^{\mathrm{T}}$, тогда

$$\dot{x} = f(x)u + g(x)$$

 $x(t_{start}) = x^{start}$

Задача минимизации функционала:

$$J = \langle x - x^{final}, Q^{final}(x - x^{final}) \rangle + \int_{t_{start}}^{t_{tinal}} \langle u, Ru \rangle dt$$

Дискретизация

$$\dot{x} = f(x, u) \implies x^{k+1} = \Delta t \cdot f(x^k, u^k) + x^k$$

Референсная траектория

Зачем

- Есть разработанная теория для решения линейно-квадратичных задач
- Наша задача не такая
- Но мы можем её линеаризовать
- Но нужно знать, вокруг какой траектории это делать

Построим референсную траекторию заменой задачи на линейную:

$$v = Mu + L \implies$$

Референсная траектория

Метод динамического программирования даёт решение данной задачи:

Hereaformulaebeprovided

Почему она хороша

- Она приводит нас к целевому положению
- Она минимизирует изменение углового ускорения, значит эта траектория возможна
- Но она не имеет никакого отношения к энергии

Будем улучшать

Вдоль референсной траектории (u, x) линеаризуем систему:

$$\delta x^{k+1} = A^k \delta x^k + B^k \delta u^k$$
, где $A^k = \left. \frac{\partial f}{\partial x} \right|_{(x,u)}$

Дифференциальное динамическое программирование

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.