

planetmath.org

Math for the people, by the people.

de Rham cohomology

Canonical name DeRhamCohomology Date of creation 2013-03-22 14:24:40 Last modified on 2013-03-22 14:24:40

Owner pbruin (1001) Last modified by pbruin (1001)

Numerical id 9

Author pbruin (1001)
Entry type Definition
Classification msc 55N05
Classification msc 58A12

Defines de Rham cohomology group

Let X be a paracompact \mathcal{C}^{∞} differential manifold. Let

$$\Omega X = \bigoplus_{i=0}^{\infty} \Omega^i X$$

denote the graded-commutative \mathbb{R} -algebra of differential forms on X. Together with the exterior derivative

$$d^i \colon \Omega^i X \to \Omega^{i+1} X \quad (i = 0, 1, \ldots),$$

 ΩX forms a chain complex $(\Omega X, d)$ of \mathbb{R} -vector spaces. The $\mathcal{H}^i_{\mathrm{dR}} X$ of X are defined as the homology groups of this complex, that is to say

$$\mathrm{H}^i_{\mathrm{dR}}X:=(\ker d^i)/(\operatorname{im} d^{i-1}) \quad (i=0,1,\ldots),$$

where $\Omega^{-1}X$ is taken to be 0, so $d^{-1}: 0 \to \Omega^0 X$ is the zero map. The wedge product in ΩX induces the structure of a graded-commutative \mathbb{R} -algebra on

$$H_{\mathrm{dR}}X := \bigoplus_{i=0}^{\infty} H_{\mathrm{dR}}^{i}X.$$

If X and Y are both paracompact \mathcal{C}^{∞} manifolds and $f\colon X\to Y$ is a differentiable map, there is an induced map

$$f^* \colon \mathrm{H}_{\mathrm{dR}} Y \to \mathrm{H}_{\mathrm{dR}} X$$

defined by

$$f^*[\omega] := [f^*\omega] \quad \text{for } \omega \in \ker d.$$

Here $[\omega]$ denotes the class of ω modulo im d, and the second f^* is the map $\Omega Y \to \Omega X$ induced by the functor Ω . This action on differentiable maps makes the de Rham cohomology into a contravariant functor from the category of paracompact \mathcal{C}^{∞} manifolds to the category of graded-commutative \mathbb{R} -algebras. It turns out to be homotopy invariant; this implies that homotopy equivalent manifolds have isomorphic de Rham cohomology.