COS210 - Theoretical Computer Science Finite Automata and Regular Languages (Part 6)

Regular Expressions: Motivation

Regular languages:

 $L = \{w : \text{start with 0 or 1}, \text{second symbol is 0}, \text{end with zero or more 1's}\}$

Operations on languages:

- union: ∪
- concatenation: ww'
- star: *

Regular Expressions: Motivation

Regular languages:

```
L = \{w : \underbrace{\text{start with 0 or 1}}_{\text{union}}, \underbrace{\text{second symbol is 0}}_{\text{end with zero or more 1's}}\}
```

Operations on languages:

- union: ∪
- concatenation: ww'
- star: *

Regular Expressions: Motivation

Regular languages:

$$L = \{w : \underbrace{\text{start with 0 or 1}}_{0 \cup 1}, \underbrace{\text{second symbol is 0}}_{0}, \underbrace{\text{end with zero or more 1's}}_{1^*}\}$$

Operations on languages:

- union: ∪
- concatenation: ww'
- star: *

Regular expressions:

$$(0 \cup 1)01^*$$

allow to describe regular languages formally

Operations on languages:

- union: ∪ (used as an OR)
- concatenation: ww'
- star: * (zero or more occurrences of a pattern)

Which regular expressions that accept the following languages?

• $L_1 = \{w \in \{0,1\}^* : w \text{ contains exactly two 0s}\}$

Operations on languages:

- union: ∪ (used as an OR)
- concatenation: ww'
- star: * (zero or more occurrences of a pattern)

Which regular expressions that accept the following languages?

• $L_1 = \{w \in \{0,1\}^* : w \text{ contains exactly two 0s}\}$

0 0

Operations on languages:

- union: ∪ (used as an OR)
- concatenation: ww'
- star: * (zero or more occurrences of a pattern)

Which regular expressions that accept the following languages?

•
$$L_1 = \{w \in \{0,1\}^* : w \text{ contains exactly two 0s}\}$$

Operations on languages:

- union: ∪ (used as an OR)
- concatenation: ww'
- star: * (zero or more occurrences of a pattern)

Which regular expressions that accept the following languages?

•
$$L_1 = \{w \in \{0,1\}^* : w \text{ contains exactly two 0s}\}$$

Operations on languages:

- union: ∪ (used as an OR)
- concatenation: ww'
- star: * (zero or more occurrences of a pattern)

Which regular expressions that accept the following languages?

•
$$L_1 = \{w \in \{0,1\}^* : w \text{ contains exactly two 0s}\}$$

Operations on languages:

- union: ∪ (used as an OR)
- concatenation: ww'
- star: * (zero or more occurrences of a pattern)

Which regular expressions that accept the following languages?

•
$$L_1 = \{w \in \{0,1\}^* : w \text{ contains exactly two 0s}\}$$

$$0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1$$

Operations on languages:

- union: ∪ (used as an OR)
- concatenation: ww'
- star: * (zero or more occurrences of a pattern)

Which regular expressions that accept the following languages?

•
$$L_1 = \{w \in \{0,1\}^* : w \text{ contains exactly two 0s}\}$$

• $L_2=\{w\in\{0,1\}^*: w \text{ the first and last symbols of } w \text{ are equal}\}$ $0(0\cup 1)^*0\cup 1(0\cup 1)^*1\cup 0\cup 1$

Regular Expressions: Formal Definition

Definition (Regular Expression)

Let Σ be an alphabet, then

- $oldsymbol{0}$ ϵ is a regular expression,
- \bigcirc \emptyset is a regular expression,
- \odot each $a \in \Sigma$ is a regular expression,
- 4 if R_1 and R_2 are regular expressions, then $R_1 \cup R_2$ is a regular expression,
- \odot if R_1 and R_2 are regular expressions, then R_1R_2 is a regular expression,
- \odot if R is a regular expression, then R^* is a regular expression.

brackets () can be used to give explicit precedence of construction implicit order of precedence is: *brackets, star, concatenation, union*

Regular Expressions: Formal Definition

Definition (Regular Expression)

Let Σ be an alphabet, then

- $oldsymbol{0}$ ϵ is a regular expression,
- \bigcirc \emptyset is a regular expression,
- \odot each $a \in \Sigma$ is a regular expression,
- 4 if R_1 and R_2 are regular expressions, then $R_1 \cup R_2$ is a regular expression,
- \odot if R_1 and R_2 are regular expressions, then R_1R_2 is a regular expression,
- \odot if R is a regular expression, then R^* is a regular expression.

brackets () can be used to give explicit precedence of construction implicit order of precedence is: *brackets, star, concatenation, union*

Regular Expressions: Construction using Formal Definition

Consider:

$$0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1 \cup 0 \cup 1$$
 over $\Sigma = \{0, 1\}$

- 0 is regular
- 1 is regular
- $0 \cup 1$ is regular
- $(0 \cup 1)^*$ is regular
- $0(0 \cup 1)^*$ is regular
- **.** . . .
- $0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1 \cup 0 \cup 1$ is regular

Definition (Language described by a Regular expression)

let Σ be an alphabet, then

- **1** the regular expression ϵ describes the language $\{\epsilon\}$,
- **3** for each $a \in \Sigma$, the regular expression a describes the language $\{a\}$,
- let R_1 and R_2 be the regular expressions that describe the languages L_1 and L_2 respectively, then $R_1 \cup R_2$ describes the language $L_1 \cup L_2$,
- let R_1 and R_2 be the regular expressions that describe the languages L_1 and L_2 respectively, then R_1R_2 describes the language L_1L_2 ,
- o let R be the regular expression that describes the language A, then the regular expression R^* describes the language A^* .

Definition (Language described by a Regular expression)

let Σ be an alphabet, then

- **1** the regular expression ϵ describes the language $\{\epsilon\}$,
- 2 the regular expression \emptyset describes the language \emptyset ,
- **3** for each $a \in \Sigma$, the regular expression a describes the language $\{a\}$,
- let R_1 and R_2 be the regular expressions that describe the languages L_1 and L_2 respectively, then $R_1 \cup R_2$ describes the language $L_1 \cup L_2$,
- let R_1 and R_2 be the regular expressions that describe the languages L_1 and L_2 respectively, then R_1R_2 describes the language L_1L_2 ,
- o let R be the regular expression that describes the language A, then the regular expression R^* describes the language A^* .

Examples:

• $(0 \cup \epsilon)(1 \cup \epsilon)$ describes the language

$$\{01,0,1,\epsilon\}$$

Examples:

• $(0 \cup \epsilon)(1 \cup \epsilon)$ describes the language

$$\{01, 0, 1, \epsilon\}$$

• $(0 \cup \epsilon)1^*$ describes the language

$$\{0,01,011,0111,\ldots,\epsilon,1,11,111,\ldots\}$$

Examples:

• $(0 \cup \epsilon)(1 \cup \epsilon)$ describes the language

$$\{01, 0, 1, \epsilon\}$$

• $(0 \cup \epsilon)1^*$ describes the language

$$\{0,01,011,0111,\ldots,\epsilon,1,11,111,\ldots\}$$

1*∅ describes the language

A =
$$\{\varepsilon, 1, 11, ...\}$$
 (language of 1*)
B = \emptyset (language of \emptyset)

 $(\!/\!)$

 $AB = \{ww' : w \in A \text{ and } w' \in B\} = \emptyset$ because there is no w' to build any ww'

Examples:

• $(0 \cup \epsilon)(1 \cup \epsilon)$ describes the language

$$\{01, 0, 1, \epsilon\}$$

• $(0 \cup \epsilon)1^*$ describes the language

$$\{0,01,011,0111,\ldots,\epsilon,1,11,111,\ldots\}$$

• $1^*\emptyset$ describes the language

 \emptyset

• \emptyset^* describes the language

 $\{\epsilon\}$

For any regular language A, The empty symbol ϵ is contained in A*

Regular Expressions: Equivalence

Definition (Equivalence of Regular Expressions)

Let R_1 and R_2 be regular expressions and let L_1 and L_2 be the languages described by them, respectively.

If
$$L_1 = L_2$$
, then $R_1 = R_2$.

Example:

- \bullet $(0 \cup \epsilon)1^*$ and $01^* \cup 1^*$ are equivalent expressions
- as both describe the language $L = \{0, 01, 011, 0111, \dots, \epsilon, 1, 11, 111, \dots\}$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$\bullet (\epsilon \cup R_1)^* = R_1^*$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$P_1(R_2R_1)^* = (R_1R_2)^*R_1$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$R_1 \cup \emptyset = \emptyset \cup R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

4
$$R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$P_1(R_2R_1)^* = (R_1R_2)^*R_1$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$R_1 \cup R_2 = R_2 \cup R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$P_1(R_2R_1)^* = (R_1R_2)^*R_1$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$\mathbf{0} \quad \epsilon^* = \epsilon$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$P_1(R_2R_1)^* = (R_1R_2)^*R_1$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$P_1(R_2R_1)^* = (R_1R_2)^*R_1$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

$$P_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$Q R_1^* R_2 \cup R_2 = R_1^* R_2$$

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Theorem (Regular Expression Standard Equivalences)

Let R_1 , R_2 , and R_3 be regular expressions. The following equivalences hold:

$$R_1 \epsilon = \epsilon R_1 = R_1$$

$$Q R_1 \cup R_1 = R_1$$

$$(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$R_1(R_2R_3) = (R_1R_2)R_3$$

$$\bullet (\epsilon \cup R_1)^* = R_1^*$$

$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^*$$

$$Q R_1^* R_2 \cup R_2 = R_1^* R_2$$

 $(0 \cup \epsilon)1^*$ and $01^* \cup 1^*$ are equivalent expressions

$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

The following theorem holds:

Theorem (1)

Let L be a language, then:

L is regular

 \Leftrightarrow

there exists a regular expression R that describes L

⇐=:

Theorem (1A)

Every regular expression R describes a language L(M) where M is a finite automaton.

 \Longrightarrow :

Theorem (1B)

For every finite automaton M, the language L(M) can be described by a regular expression R.

Theorem (1A)

Every regular expression R describes a language L(M) where M is a finite automaton.

Proof by induction and construction:

Base cases:

- $R = \epsilon$
- \bullet $R = \emptyset$
- R = a where $a \in \Sigma$

for each R, construct M that accepts language described by R

Inductive steps:

Assume R_1, R_2 describe regular languages L_1, L_2

- $R = R_1 \cup R_2$
- $R = R_1 R_2$
- $R = R_1^*$

First base case:

- \bullet $R = \epsilon$
- language described by R is $L = \{\epsilon\}$
- construction of *M* that accepts *L*:

 \Rightarrow the language $L = \{\epsilon\}$ is regular

Second base case:

- \bullet $R = \emptyset$
- language described by R is $L = \emptyset$
- construction of *M* that accepts *L*:

 \Rightarrow the language $L = \emptyset$ is regular

Third base case:

- R = a where $a \in \Sigma$
- language described by R is $L = \{a\}$
- construction of *M* that accepts *L*:

 \Rightarrow the language $L = \{a\}$ is regular

First inductive step (union):

- Assume R_1, R_2 describe regular languages L_1, L_2 (hypothesis)
- Let $R = R_1 \cup R_2$
- L_1, L_2 regular $\Rightarrow L_1 \cup L_2$ regular (closure of union)
- \Rightarrow R describes a regular language

Second inductive step (concatenation):

- Assume R_1, R_2 describe regular languages L_1, L_2 (hypothesis)
- Let $R = R_1 R_2$
- L_1, L_2 regular $\Rightarrow L_1L_2$ regular (closure of concatenation)
- \Rightarrow R describes a regular language

Third inductive step (star):

- Assume R_1 describes regular language A (hypothesis)
- Let $R = R_1^*$
- A regular $\Rightarrow A^*$ regular (closure of star)
- \Rightarrow R describes a regular language

We can conclude that every regular expression constructed by arbitrary combinations of union, concatenation and star describes a regular language.

(proof of Theorem 1B in the next lecture)

The following theorem holds:

Theorem (1)

Let L be a language, then:

L is regular

 \Leftrightarrow

there exists a regular expression R that describes L

⇐=:

Theorem (1A)

Every regular expression R describes a language L(M) where M is a finite automaton.

 \Longrightarrow :

Theorem (1B)

For every finite automaton M, the language L(M) can be described by a regular expression R.

$$R = (ab \cup a)^*$$
 over $\Sigma = \{a, b\}$

Step 1:

- consider the atomic sub-expressions a, b
- build an NFA for each sub-expressions:

Step 2:

- consider the concatenation ab
- use the construction from proof of *closure of concatenation* to build NFA for *ab*:

Step 3:

- consider the union $ab \cup a$
- use the construction from proof of *closure of union* to build NFA for $ab \cup a$:

$R = (ab \cup a)^*$ over $\Sigma = \{a, b\}$

Closure of the Star Operation

Construction of *M*:

Step 4:

- consider the star $(ab \cup a)^*$
- use the construction from proof of *closure of star* to build NFA for $(ab \cup a)^*$.

