

Exam 1 Data Analysis

REII 424

by: W Bisschoff 26217406

North-West University Potchefstroom Campus

Lecturer: Prof Alwyn Hoffman

November 12, 2018

Contents

Li	st of	Figures	iv
Li	${ m st}$ of	Tables	\mathbf{v}
1	Que	estion 1	1
	1.1	Question 1 a, b	1
	1.2	Question 1 c	3
	1.3	Question 1 d	4
	1.4	Question 1 e	5
	1.5	Question 1 f	6
2	Que	estion 2	7
	2.1	Question 2 a, b, c	7
	2.2	Question 2 d	9
	2.3	Question 2 e	9
3	Que	estion 3	11
	3.1	Question 3 a	11
	3.2	Question 3 b	11
	3.3	Question 3 c	11
4	Que	estion 4	13
	4.1	Question 4 a	13
	4.2	Question 4 b	13
	4.3	Question 4 c	15
$\mathbf{A}_{]}$	ppen	adices	16
$\mathbf{A}_{]}$	ppen	ndix A Code	16

A.1	Questi	ion 1	16
	A.1.1	Read XML Function	16
	A.1.2	Read All Files	18
	A.1.3	Categorize	19
	A.1.4	Calculate Durations	20
	A.1.5	Generate Output Variables	21
	A.1.6	Count Transactions per Category	23
A.2	Questi	on 2	24
	A.2.1	Fractions of Requests for Additional Documents	24
	A.2.2	Generate Output Variables From Accumulated Document Request Fractions	25
A.3	Questi	ion 4	26
	A.3.1	Predict Values with Varying Thresholds	26

List of Figures

Figure 1.1	The Resulting Dataframe	1
Figure 1.2	The First Entry's CustomsResponses DataFrame	2
Figure 1.3	Number of Customs Responses for the First Ten Entries	2
Figure 1.4	First 20 Entries of the Sorted Dataframe	3
Figure 1.5	First Twenty Entries of the Dataframe with Added Categories	4
Figure 1.6	First Twenty Entries of the Dataframe with Added Output Variables .	5
Figure 1.7	First Six Entries of the Number of Transactions for each Customs Office	6
Figure 1.8 Impor	First Six Entries of the Number of Transactions for each Country of t	6
Figure 1.9	The Number of Sub Categories per Category	7
Figure 2.1	First Five Entries of Monthly Entries by Export Country	7
Figure 2.2	First Five Entries of Fractions of Document Requests by Export Country	8
Figure 2.3 Expor	First Five Entries of Accumulated Fractions of Document Requests by t Country	8
Figure 2.4	List of All Categories that Declarations were Calculated For	8
Figure 2.5	First Ten Entries of Transaction Category Values	9
Figure 2.6	Pearson Correlation Coefficients for each Category	10
Figure 2.7	Bar Graph of Pearson Correlation Coefficients	10
Figure 3.1 SP So	Number of Document Requests vs Fraction of Document Requests of urce	12
Figure 3.2 HS Co	Number of Document Requests vs Fraction of Document Requests of ode	12
Figure 3.3 Expor	Number of Document Requests vs Fraction of Document Requests of t Country	12
Figure 4.1	Prediction Accuracy for Different Targets per Threshold Value	14
Figure 4.2	Plot of Prediction Accuracy for Different Targets per Threshold Value .	14

List of Tables

Table 1.1	File Processing Output	1
Table 4.1	Linear Regression Coefficients	13
Table 4.2	Threshold Values to Predict Specific Target Percentages	15

1 Question 1

1.1 Question 1 a, b

A folder of XML files are read into a Pandas Dataframe. The first level of fields are specified, assnap well as the fields inside the customs responses fields.

The tags are iterated through and placed in temporary dataframes to be later merged into one. Customs responses items are also iterated through and placed into another dataframe to be placed inside the upper dataframe.

This is done with the function in Listing A.1.1.

This function is called for each file and placed in a seperate process to speed up the process in Listing A.1.2.

The output can be seen in Table 1.1.

Table 1.1: File Processing Output					
Time	0:08:40.084965				
Number of files	179				
Number of entries	48520				

The first 5 entries of the dataframe can be seen in Fig. 1.1. There are 25 columns in total, most of which is out of frame.

	CountryExport	CountryImport	CountryOfOrigin	CpcCode	CustomsOffice	CustomsResponses	CustomsValue	DateControlReceived	DateSubmitted	HSCod
0	TW	ZA	TW	11	CTN	StatusCode Messag	423918	2014-09-01 08:16:00	2014-09-01 08:13:19	54076
1	DE	ZA	DE	11	DFM	StatusCode MessageText DateTimeReceived 0	38183	2014-09-01 09:08:00	2014-09-01 09:02:50	84749
2	RO	ZA	RO	11	CTN	StatusCode Messag	125970	2014-09-01 09:41:00	2014-09-01 09:38:21	19021
3	CN	ZA	CN	11	CTN	StatusCode Messag	116406	2014-09-01 08:18:00	2014-09-01 08:14:15	52104
4	CN	ZA	CN	11	CTN	StatusCode Messag	120117	2014-09-02 08:29:00	2014-09-02 08:27:43	52104
5 rows × 25 columns										

Figure 1.1: The Resulting Dataframe

An example of the CustomsResponses dataframe is shown in Fig. 1.2.

	StatusCode	MessageText	DateTimeReceived
0	7	Ready - Cash Payment	2014-09-01 08:17:00
1	13	Query - Supporting documents required	2014-09-01 13:57:00
2	34	Case Closed	2014-09-01 15:36:00
3	1	Release	2014-09-01 15:36:00

Figure 1.2: The First Entry's CustomsResponses DataFrame

The length of the dataframe is calculated as 48215.

The number of customs responses are calculated by applying the len function to the inner dataframe for every row:

csv_data['NoCustomsResponses'] = (csv_data['CustomsResponses']).apply(
len)

	NoCustomsResponses
0	4
1	1
2	3
3	4
4	4
5	2
6	1
7	1
8	1
9	5

Figure 1.3: Number of Customs Responses for the First Ten Entries

1.2 Question 1 c

There were no duplicates found after comparing the length of the dataframe to the length of the dataframe with dropped duplicates.

The dataframe is sorted by the submitted dates. as in Fig. 1.4. Only two columns are shown.

The number of entries did not change.

```
1 xml_data = xml_data.drop_duplicates()
2 xml_data.sort_values(['DateSubmitted'])
3 xml_data[['UniqueNumber', 'DateSubmitted']].head(20)
```

	UniqueNumber	DateSubmitted
0	00008125	2014-09-01 08:13:19
1	00008130	2014-09-01 09:02:50
2	00008131	2014-09-01 09:38:21
3	00008126	2014-09-01 08:14:15
4	00008127	2014-09-02 08:27:43
5	00008134	2014-09-05 07:38:58
6	00008138	2014-09-08 08:05:07
7	00008142	2014-09-08 14:17:15
8	00008143	2014-09-08 14:48:38
9	00008135	2014-09-08 08:23:17
10	00008144	2014-09-09 08:21:45
11	00008145	2014-09-10 08:34:00
12	00008147	2014-09-11 12:03:06
13	00008152	2014-09-15 09:05:07
14	00008154	2014-09-15 12:37:27
15	00008158	2014-09-16 10:40:39
16	00008159	2014-09-16 14:01:56
17	00008155	2014-09-17 08:23:39
18	00008164	2014-09-18 12:53:02
19	00008149	2014-09-18 10:22:44

Figure 1.4: First 20 Entries of the Sorted Dataframe

1.3 Question 1 d

Categories were created for each transaction from the HS codes. A new function was created that takes a code and searches for the appropriate category within a created dictionary with the first two characters of the code.

This was also done with multi processing and the time was measured to compare the processing speed.

The first twenty results of Listing A.1.3 can be seen in Fig. 1.5.

Time = 0:00:1.000749

	UniqueNumber	DateSubmitted	HSCode	Category
0	00008125	2014-09-01 08:13:19	540769	Textile
1	00008130	2014-09-01 09:02:50	847490	Machinery
2	00008131	2014-09-01 09:38:21	190219	Food
3	00008126	2014-09-01 08:14:15	521041	Textile
4	00008127	2014-09-02 08:27:43	521041	Textile
5	00008134	2014-09-05 07:38:58	843139	Machinery
6	00008138	2014-09-08 08:05:07	843880	Machinery
7	00008142	2014-09-08 14:17:15	841899	Machinery
8	00008143	2014-09-08 14:48:38	841899	Machinery
9	00008135	2014-09-08 08:23:17	540769	Textile
10	00008144	2014-09-09 08:21:45	611090	Textile
11	00008145	2014-09-10 08:34:00	400510	Plastic
12	00008147	2014-09-11 12:03:06	940360	Miscellaneous
13	00008152	2014-09-15 09:05:07	540769	Textile
14	00008154	2014-09-15 12:37:27	711790	Stone and Glass
15	00008158	2014-09-16 10:40:39	330300	Chemical
16	00008159	2014-09-16 14:01:56	841899	Machinery
17	00008155	2014-09-17 08:23:39	620342	Textile
18	00008164	2014-09-18 12:53:02	030119	Animal
19	00008149	2014-09-18 10:22:44	851190	Machinery

Figure 1.5: First Twenty Entries of the Dataframe with Added Categories

1.4 Question 1 e

The durations were calculated with Listing A.1.4. Entries with invalid durations were removed.

The other fields were generated with Listing A.1.5. Sets of codes for each field was created. From the inner customs response dataframe, a set of codes was generated for every transaction. These codes are then compared to those for the fields to generate the output variables.

The calendar month is also calculated here for future use.

The first twenty entires with the output variables are shown in Fig. 1.6.

UniqueNumber		DateSubmitted	Codes	Not Stopped	Stopped	Inspected	Amended
0	00008125	2014-09-01 08:13:19	{1, 34, 13, 7}	False	False	False	False
1	00008130	2014-09-01 09:02:50	{1}	True	False	False	False
2	00008131	2014-09-01 09:38:21	{34, 4, 13}	False	False	False	False
3	00008126	2014-09-01 08:14:15	{1, 34, 13, 7}	False	False	False	False
4	00008127	2014-09-02 08:27:43	{1, 34, 13, 7}	False	False	False	False
5	00008134	2014-09-05 07:38:58	{1}	True	False	False	False
6	00008138	2014-09-08 08:05:07	{1}	True	False	False	False
7	00008142	2014-09-08 14:17:15	{1}	True	False	False	False
8	00008143	2014-09-08 14:48:38	{1}	True	False	False	False
9	00008135	2014-09-08 08:23:17	{1, 34, 7, 13, 31}	False	False	False	False
10	00008144	2014-09-09 08:21:45	{1, 34, 13}	False	False	False	False
11	00008145	2014-09-10 08:34:00	{1, 7}	True	False	False	False
12	00008147	2014-09-11 12:03:06	{2, 36, 7, 13, 26, 31}	False	True	True	True
13	00008152	2014-09-15 09:05:07	{1, 34, 13, 7}	False	False	False	False
14	00008154	2014-09-15 12:37:27	{2, 34, 4, 36, 7, 13}	False	True	True	False
15	00008158	2014-09-16 10:40:39	{1, 7}	True	False	False	False
16	00008159	2014-09-16 14:01:56	{1}	True	False	False	False
17	00008155	2014-09-17 08:23:39	{34, 4, 13, 7}	False	False	False	False
18	00008164	2014-09-18 12:53:02	{4}	False	False	False	False
19	00008149	2014-09-18 10:22:44	{1, 7}	True	False	False	False

Figure 1.6: First Twenty Entries of the Dataframe with Added Output Variables

1.5 Question 1 f

An array with all the categories is created. Through iterations the dataframe groups by the category and counts the number of transactions as well as the number of categories. The code can be seen in Listing A.1.6.

	Transactions
CustomsOffice	
BBR	116
BFN	11
CTN	6370
DBN	10016
DFM	3791
ELN	35

Figure 1.7: First Six Entries of the Number of Transactions for each Customs Office

	Transactions
CountryImport	
AE	9
AO	64
AR	3
AT	2
AU	4
BE	4

Figure 1.8: First Six Entries of the Number of Transactions for each Country of Import

	Categories
CustomsOffice	25
CpcCode	26
PreviousCpc	16
CountryOfOrigin	153
CountryExport	146
CountryImport	71
TransportCode	5
SPSource	174
HSCode	2675

Figure 1.9: The Number of Sub Categories per Category

2 Question 2

2.1 Question 2 a, b, c

Dictionaries were created to hold the number of transactions, document requests and fractions for each category. The dataframe is manipulated to show grouped info for each calendar month for each sub-category, for each category.

This is then repeated for only transactions that requested additional documents.

These two new dataframes are then divided to create a fraction of document requests.

A rolling mean is applied to the columns in the new dataframe.

The output of Listing A.2.1 is shown in the following figures.

rows × 146 columns

Figure 2.1: First Five Entries of Monthly Entries by Export Country

	AE	AF	AG	AL	AO	AR	AT	AU	ВА	вв	 UY	VE	VG	VN	vu	YE	ZA	ZM	ZN	
2014 09	0.380952	NaN	NaN	NaN	NaN	0.200000	NaN	0.151515	NaN	NaN	 NaN	NaN	0.375000	0.089744	NaN	NaN	0.142857	1.0	NaN	0.857
2014 10	0.157895	NaN	NaN	NaN	NaN	NaN	NaN	0.062500	NaN	NaN	 NaN	NaN	NaN	0.022989	NaN	NaN	0.028571	NaN	1.0	
2014 11	0.133333	NaN	NaN	NaN	NaN	0.333333	NaN	0.090909	NaN	1.0	 NaN	NaN	0.400000	NaN	NaN	NaN	NaN	NaN	NaN	
2014 12	0.040000	NaN	NaN	NaN	NaN	NaN	0.111111	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN	0.111111	1.0	NaN	1.000
2015 01	0.181818	NaN	NaN	NaN	NaN	NaN	0.125000	0.083333	NaN	NaN	 NaN	NaN	0.333333	NaN	NaN	NaN	NaN	NaN	NaN	0.500
5 rows	5 rows × 146 columns																			

Figure 2.2: First Five Entries of Fractions of Document Requests by Export Country

	AE	AF	AG	AL	AO	AR	AT	AU	BA	ВВ	 UY	VE	VG	VN	VU	YE	ZA	ZM	ZN	ZW
2014 09	0.38	NaN	NaN	NaN	NaN	0.20	NaN	0.15	NaN	NaN	 NaN	NaN	0.38	0.09	NaN	NaN	0.14	1.0	NaN	0.86
2014 10	0.27	NaN	NaN	NaN	NaN	0.20	NaN	0.11	NaN	NaN	 NaN	NaN	0.38	0.06	NaN	NaN	0.09	1.0	1.0	0.86
2014 11	0.22	NaN	NaN	NaN	NaN	0.27	NaN	0.10	NaN	1.0	 NaN	NaN	0.39	0.06	NaN	NaN	0.09	1.0	1.0	0.86
2014 12	0.18	NaN	NaN	NaN	NaN	0.27	0.11	0.10	NaN	1.0	 NaN	NaN	0.39	0.06	NaN	NaN	0.09	1.0	1.0	0.93
2015 01	0.18	NaN	NaN	NaN	NaN	0.27	0.12	0.10	NaN	1.0	 NaN	NaN	0.37	0.06	NaN	NaN	0.09	1.0	1.0	0.79

5 rows × 146 columns

Figure 2.3: First Five Entries of Accumulated Fractions of Document Requests by Export Country

```
['CustomsOffice',
'CpcCode',
'PreviousCpc',
'CountryOfOrigin',
'CountryExport',
'CountryImport',
'TransportCode',
'SPSource',
'HSCode']
```

Figure 2.4: List of All Categories that Declarations were Calculated For

2.2 Question 2 d

Accumulated fractions are allocated to each transaction per category through Listing A.2.2. A new dataframe is created with the values. This is also appended to the main dataframe.

Fig. 2.5 shows the dataframe with category values for the first ten transactions.

v	ral_CustomsOffice	val_CpcCode	val_PreviousCpc	val_CountryOfOrigin	val_CountryExport	val_CountryImport	val_TransportCode	val_SPSource	val_HSC
0	0.352113	0.225593	0.253908	0.175439	0.178571	0.234483	0.314815	0.472222	0.833
1	0.046809	0.225593	0.253908	0.182222	0.172131	0.234483	0.143415	0.472222	N
2	0.352113	0.225593	0.253908	1.000000	1.000000	0.234483	0.314815	0.472222	0.571
3	0.352113	0.225593	0.253908	0.254791	0.278066	0.234483	0.314815	0.472222	1.0000
4	0.352113	0.225593	0.253908	0.254791	0.278066	0.234483	0.314815	0.472222	1.000
5	0.352113	0.225593	0.253908	0.066372	0.079439	0.234483	0.314815	0.472222	N
6	0.046809	0.225593	0.253908	0.066372	0.079439	0.234483	0.143415	0.472222	N
7	0.046809	0.225593	0.253908	0.062500	0.111111	0.234483	0.143415	0.472222	N
8	0.046809	0.225593	0.200000	0.062500	0.111111	0.234483	0.143415	0.472222	N
9	0.352113	0.225593	0.253908	0.254791	0.178571	0.234483	0.314815	0.472222	0.833
4									

Figure 2.5: First Ten Entries of Transaction Category Values

2.3 Question 2 e

The following code is used to calculate the Pearson correlation coefficients. The dataframe's built in corr() function is used.

Fig. 3.3 shows the coefficients for each category. The bar plot is shown in Fig. 2.7

	index	Requested
1	val_CustomsOffice	0.187068
2	val_CpcCode	0.155497
3	val_PreviousCpc	0.150715
4	val_CountryOfOrigin	0.247821
5	val_CountryExport	0.262393
6	val_CountryImport	0.084186
7	val_TransportCode	0.217531
8	val_SPSource	0.480162
9	val_HSCode	0.421181

Figure 2.6: Pearson Correlation Coefficients for each Category

Figure 2.7: Bar Graph of Pearson Correlation Coefficients

3 Question 3

3.1 Question 3 a

Sklearn is used to split data between training sets and testing sets.

3.2 Question 3 b

To ensure a 50:50 split between transactions that request additional documents and those that do not, data needs to be duplicated. Transactions that request documents are added until the number of entries is equal or larger than the non-requests.

3.3 Question 3 c

The correlation coefficients are sorted and the largest three categories are used to plot the number of document requests against the request fraction values. The results of the following snippet is shown in the following figures.

From the graphs it seems that Export Country has the best ability to identify additional document request cases, followed by SP Source and then HS Code.

```
corrcoeff = corrcoeff.sort_values('Requested', ascending=False)
highestcorr = list(corrcoeff['index'].iloc[0:3].str[4:100])
display(highestcorr)

for cat in highestcorr:
    temp = cat_count_month_frac[cat].reset_index().melt(id_vars=['index']).
        set_index(['index', 'variable']).sort_values(['index', 'variable']).
        dropna()

temp2 = xml_data[['Requested', 'Month', cat]].groupby(['Month', cat]).
        count()
temp3 = pd.concat([temp, temp2], axis=1)
temp3.plot.scatter(x='value', y = 'Requested', title=cat)
```


Figure 3.1: Number of Document Requests vs Fraction of Document Requests of SP Source

Figure 3.2: Number of Document Requests vs Fraction of Document Requests of HS Code

Figure 3.3: Number of Document Requests vs Fraction of Document Requests of Export Country

4 Question 4

4.1 Question 4 a

Sklearn is used to create a Linear Regression model. The regression coefficients are shown in Table 4.1.

```
1  X_train = X_train.fillna(0)
2  X_test = X_test.fillna(0)
3  reg = LinearRegression().fit(X_train, y_train)
4  reg.score(X_train, y_train)
5  reg.coef_
```

Table 4.1: Linear Regression Coefficients

Category	Coefficient
CustomsOffice	0.08299145
CpcCode	0.08299145
PreviousCpc	0.55039948
CountryOfOrigin	-0.03845656
CountryExport	0.13658853
CountryImport	0.14750978
TransportCode	0.28401459
SPSource	0.50424546
HSCode	0.52598281
Number of entries	0.39340001

4.2 Question 4 b

Listing A.3.1 iterates through multiple threshold values. Predictions are made with linear regression and converted into binary values with the threshold. A dataframe is then generated that contains the fraction of correct predictions for all observations, observations where the target is 1 and observations where the target is 0, for each threshold value.

Fig. 4.1 shows the first five values of this dataframe.

	All Observations	Target One	Target Zero	Threshold
0	0.507808	0.021213	0.996357	0.00
1	0.508274	0.022516	0.995983	0.01
2	0.510325	0.026610	0.995983	0.02
3	0.515079	0.036565	0.995516	0.03
4	0.520347	0.047079	0.995516	0.04

Figure 4.1: Prediction Accuracy for Different Targets per Threshold Value

The plot of the above data frame can be seen in Fig. 4.2.

Figure 4.2: Plot of Prediction Accuracy for Different Targets per Threshold Value

4.3 Question 4 c

```
df_frac.loc[(df_frac['Target One']-0.5).abs().argsort()[:1]]
df_frac.loc[(df_frac['Target One']-0.8).abs().argsort()[:1]]
df_frac.loc[(df_frac['Target One']-0.9).abs().argsort()[:1]]
df_frac.loc[(df_frac['Target One']-0.95).abs().argsort()[:1]]
```

Table 4.2: Threshold Values to Predict Specific Target Percentages

Threshold	All Observations	Target Value 1	Target Value 0
0.29	0.710856	0.506048	0.916488
0.49	0.776069	0.802382	0.749650
0.61	0.745910	0.901842	0.589351
0.69	0.714446	0.947525	0.480430
			-

Appendices

Appendix A Code

A.1 Question 1

A.1.1 Read XML Function

```
def readxml(filename):
       file = os.path.join(path, filename)
       doc = et.parse(file)
3
       inner_data = pd.DataFrame()
4
       fields = ['MRN', 'LRN', 'ISVOC', 'UniqueNumber', 'CustomsOffice', '
          CpcCode', 'PreviousCpc', 'TransportCode', 'CountryExport','
          CountryImport', 'TotalEntryLines', 'TotalWeight', 'TotalPackages', '
          ServiceProvider', 'SPSource', 'HSCode', 'HasPermit', 'CustomsValue',
          'TradeAgreement', 'StatsQuantity', 'StatsUOM', 'CountryOfOrigin', DateSubmitted', 'DateControlReceived', 'CustomsResponses']
       cusfields = ['StatusCode', 'MessageText', 'DateTimeReceived']
6
       for elem in doc.findall('.//BOEHeader'):
7
           inner_dict = pd.Series()
           df = pd.DataFrame(columns=fields)
           i = 0
10
           for item in elem.findall('.//*'):
11
                if item.tag in fields:
                    inner_dict[item.tag] = item.text
13
                    if item.tag == 'DateSubmitted':
14
                         if item.text == '0000-00-00.00.00';
15
                             inner_dict[item.tag] = None
16
17
                             inner_dict[item.tag] = dt.strptime(item.text, '%Y-%
18
                                m - %d - %H.%M.%S')
                    if item.tag == 'DateControlReceived':
19
                         if item.text == '0000-00-00.00.00';
20
                             inner_dict[item.tag] = None
21
                         else:
22
                             inner_dict[item.tag] = dt.strptime(item.text, '%Y-%
                                m - %d - %H . %M . %S')
                    if item.tag == 'CustomsResponses':
24
                         cus_data = pd.DataFrame(columns = cusfields)
25
                         for cus in item.findall('.//CustomsResponse'):
26
                             cus_dict = pd.Series()
27
                             for res in cus.findall('.//*'):
28
29
                                  cus_dict[res.tag] = res.text
```



```
if res.tag == 'StatusCode':
31
                                     cus_dict[res.tag] = int(res.text)
^{32}
                                 if res.tag == 'DateTimeReceived':
                                     if item.text == '0000-00-00.00.00':
34
                                          cus_dict[res.tag] = None
35
                                     else:
36
                                          cus_dict[res.tag] = dt.strptime(res.
37
                                             text, '\%Y - \%m - \%d - \%H . \%M . \%S')
                             cus_data = cus_data.append(cus_dict, ignore_index=
38
                                True)
                        inner_dict['CustomsResponses'] = cus_data.sort_values([
39
                            'DateTimeReceived'])
40
           inner_data = inner_data.append(inner_dict, ignore_index=True)
41
       return inner_data
```


A.1.2 Read All Files

```
1 path = "/media/werner/Google Drive/Google Drive/University/Year 4/REII424 -
      Data Analysis/Exam 1/Small/"
  xml_data = pd.DataFrame()
2
  if __name__ == '__main__':
4
      filenames = os.listdir(path)
5
      p = mp.Pool(processes = 8)
6
       start = time.time()
       splitfiles = np.array_split(filenames,8)
8
       async_result = p.map(readxml, filenames)
9
10
       xml_data = xml_data.append(async_result, ignore_index=True, sort=True)
      p.close()
11
      p.join()
12
      end = time.time()
13
      m, s = divmod(end-start, 60)
      h, m = divmod(m, 60)
15
       print("Time = %d:%02d:%f"%(h,m,s))
16
^{17}
  print("Number of files = %d"%len(filenames))
  print("Number of entries = %d"%len(xml_data))
```


A.1.3 Categorize

```
def category(code):
1
       var = int(code[0:2]) if not code == None else code
2
       values = [-1, 5, 15, 24, 27, 38, 40, 43, 49, 63, 67, 71, 83, 85, 89,
3
          97, 99]
       cat = ['Animal', 'Vegetable', 'Food', 'Mineral', 'Chemical', 'Plastic'
              'Hide', 'Wood', 'Textile', 'Footwear', 'Stone and Glass', 'Metal
             'Machinery', 'Transport', 'Miscellaneous', 'Service']
6
       dict = \{\}
7
8
       for i in range(len(cat)):
           dict.update(dict.fromkeys(list(range(values[i]+1, values[i+1]+1)),
              cat[i]))
10
       return dict.get(var,"Other")
11
12
  HS = xml_data['HSCode']
13
  HS = HS.str.strip()
14
  HS[HS == ""] = None
  cat = []
16
17
18 start= time.time()
19 xml_data['Category'] = HS.apply(category)
20 end = time.time()
21 m, s = divmod(end-start, 60)
_{22} h, m = divmod(m, 60)
23 print("Time = %d:%02d:%f"%(h,m,s))
24 xml_data[['UniqueNumber', 'DateSubmitted', 'HSCode', 'Category']].head(20)
```


A.1.4 Calculate Durations

```
duration = pd.DataFrame()
2 firstdate = pd.DataFrame()
3 lastdate = pd.DataFrame()
4 for index, row in xml_data.iterrows():
      temp = row['CustomsResponses']['DateTimeReceived'].max()
      if temp == np.nan:
6
           temp = row['DateControlReceived']
      lastdate = lastdate.append([temp], ignore_index=True)
8
      firstdate = firstdate.append([row['DateSubmitted']], ignore_index=True)
9
10
11 xml_data['FirstDate'] = firstdate
  xml_data['LastDate'] = lastdate
  for index, row in xml_data.iterrows():
13
      duration = duration.append([row['LastDate']-row['FirstDate']],
14
          ignore_index=True)
15
16 duration
17 xml_data['Duration'] = duration
18 xml_data = xml_data[~xml_data['Duration'].isnull()]
```


A.1.5 Generate Output Variables

```
statuscodes = pd.DataFrame()
2 not_stopped = pd.DataFrame()
3 stopped = pd.DataFrame()
4 inspected = pd.DataFrame()
5 amended = pd.DataFrame()
6 months = pd.DataFrame()
7 requested = pd.DataFrame()
  notstopcodes = set([2, 4, 13, 31, 36])
9 stopcodes = set([2])
inspectcodes = set([36])
amendcodes = set([6, 26])
  requestedcodes = set([13, 31])
13
14
  def processcodes(row):
15
       codes = set(row['CustomsResponses']['StatusCode'])
16
       row['Codes'] = codes
17
       row['Stopped'] = not not codes & stopcodes
18
       row['Not Stopped'] = not codes & notstopcodes
19
       row['Inspected'] = not not codes & inspectcodes
20
       row['Amended'] = not not codes & amendcodes
21
       row['Requested'] = not not codes & requestedcodes
22
       row['Month'] = date.strftime(row['FirstDate'],"%Y %m")
       return(row)
24
25
  def process(df):
26
       res = df.apply(processcodes, axis=1)
       return res
28
29
  start= time.time()
30
31
  if __name__ == '__main__':
32
      p = mp.Pool(processes=8)
33
       split_dfs = np.array_split(xml_data,8)
34
       pool_results = p.map(process, split_dfs)
35
      p.close()
36
      p.join()
37
       # merging parts processed by different processes
39
       xml_data = pd.concat(pool_results, axis=0)
40
41
42
  end = time.time()
44 m, s = divmod(end-start, 60)
_{45} h, m = divmod(m, 60)
  print("Time = %d:%02d:%f"%(h,m,s))
```



```
48 xml_data = xml_data[~xml_data['Codes'].isnull()]
49 xml_data[['UniqueNumber', 'DateSubmitted', 'Codes', 'Not Stopped', 'Stopped
', 'Inspected', 'Amended']].head(20)
```


A.1.6 Count Transactions per Category

A.2 Question 2

A.2.1 Fractions of Requests for Additional Documents

```
1 cat_count_month = {}
2 cat_count_month_req = {}
3 cat_count_month_frac = {}
4 for category in categories:
      monthly = xml_data.groupby([category, 'Month']).size().reset_index().
          pivot(values=0, index='Month', columns=category)
      monthly_req = xml_data[xml_data['Requested'] == True].groupby([category
6
          , 'Month']).size().reset_index().pivot(values=0, index='Month',
          columns = category)
      monthly_frac = (monthly_req/monthly)
7
      cat_count_month["{0}".format(category)] = monthly
      cat_count_month_req["{0}".format(category)] = monthly_req
      cat_count_month_frac["{0}".format(category)] = monthly_frac
10
11
  cat_count_month = pd.concat(cat_count_month.values(), axis=1, keys=
     cat_count_month.keys(), sort=True)
  cat_count_month_req = pd.concat(cat_count_month_req.values(), axis=1, keys=
     cat_count_month_req.keys(), sort=True)
  cat_count_month_frac = pd.concat(cat_count_month_frac.values(), axis=1,
     keys=cat_count_month_frac.keys(), sort=True)
  cat_count_month_frac_acc = cat_count_month_frac.rolling(100, min_periods=1)
     .mean()
display(cat_count_month['CountryExport'].head())
17 display(cat_count_month_req['CountryExport'].head())
18 display(cat_count_month_frac['CountryExport'].head())
19 display(cat_count_month_frac_acc['CountryExport'].head().round(2))
20 display(list(cat_count_month.columns.levels[0]))
```


A.2.2 Generate Output Variables From Accumulated Document Request Fractions

```
def getval(row):
       new = pd.Series()
2
       for category in categories:
           if not row[category] == None:
4
                new["val_{0}".format(category)] = (cat_count_month_frac_acc[
5
                   category][row[category]][date.strftime(row['DateSubmitted'],
                   "%Y %m")])
6
           else:
                new["val_{0}".format(category)] = 0
       return(new)
8
10
  def process(df):
11
       res = df.apply(getval, axis=1)
12
       return res
13
14
15
  val_names = list("val_{0}".format(category) for category in categories)
16
  start= time.time()
^{17}
  if __name__ == '__main__':
18
       p = mp.Pool(processes=8)
19
       split_dfs = np.array_split(xml_data,8)
20
       pool_results = p.map(process, split_dfs)
21
       p.close()
22
       p.join()
23
^{24}
       cat_val = pd.concat(pool_results, axis=0)
25
26
27 data_with_val = pd.concat([xml_data, cat_val], axis=1)
28 end = time.time()
29 m, s = divmod(end-start, 60)
30 \text{ h, m} = \text{divmod}(m, 60)
31 print("Time = %d:%02d:%f"%(h,m,s))
```


A.3 Question 4

A.3.1 Predict Values with Varying Thresholds

```
def getval(row):
1
       new = pd.Series()
2
       for category in categories:
3
           if not row[category] == None:
               new["val_{0}".format(category)] = (cat_count_month_frac_acc[
5
                   category][row[category]][date.strftime(row['DateSubmitted'],
                   "%Y %m")])
           else:
6
               new["val_{0}".format(category)] = 0
       return(new)
8
10
  def process(df):
11
       res = df.apply(getval, axis=1)
12
13
       return res
14
15
  val_names = list("val_{0}".format(category) for category in categories)
16
  start= time.time()
^{17}
  if __name__ == '__main__':
18
       p = mp.Pool(processes=8)
19
       split_dfs = np.array_split(xml_data,8)
20
       pool_results = p.map(process, split_dfs)
^{21}
22
       p.close()
       p.join()
23
24
       cat_val = pd.concat(pool_results, axis=0)
25
26
27 data_with_val = pd.concat([xml_data, cat_val], axis=1)
28 end = time.time()
29 m, s = divmod(end-start, 60)
30 h, m = divmod(m, 60)
31 print("Time = %d:%02d:%f"%(h,m,s))
```