

University of Michigan - Shanghai Jiao Tong University Joint Institute, Summer 2018

Film Recommendation System Trained with Feature Analysis of Film Reviews

Hu Qiaoyu 5143709060 Xu Dewei 5143709248 Zhang Tianjun 5143709070

Abstract

In this work, we present a movie recommendation system that utilize all the film reviews of a certain film to suggest films of this kind. There have been various studies of recommendation systems. However, most of the systems is based on crowded user preference or user history. For example, these systems identify users that share same film preference or user history preference and then suggest film watched by similar users. We notice that beyond user profile that contain user history preference, user written movie reviews carry substantiation amounts of film related features such as description of genre, characters and plots. Applying natural language processing, it is possible to extract useful features from the review. We then use word2vec that transform a paragraph into a vector which is capable to maneuver with. We make predictions based on the similarity of these feature vectors. Experimental results show that our method can be used to find similar recommendations efficiently.

1 Introduction

Recommender systems are important building blocks in many of today's e-commerce applications including targeted advertising, personalized marketing and information retrieval.[2]

With the development of Internet streaming, thousands of movies become available in a click of button. People now can enjoy movies not only from Hollywood, but also from International cinemas, documentaries, media, etc.[1] With so many films in hand, the consumers faces the choice of which film to choose. At the end of one day, people would like to watch a movie that satisfy his taste and style and this is how the recommendation system could help, suggesting movies according to user's taste and preference. In order to recommend movies, the system need to understand movie first. The better the system can understand movie feature, the better recommendation it can provide.

The online movie databases such as IMDB or MovieLens already have some labels or tags for a certain movie. A common label for a movie could be "romantic", "ferocious", "heart-breaking" and etc. These labels are often inputs from the user who watched the film. Some recommendation systems that make predictions according to these labels and the result turn out to be quite well. However, such approach is definitely not scalable when the amount of tags become huge.

For the recommendation system to understand film, it needs more detailed information about a film. For example, feature of main characters, the plot, twist and turns of a story mainly determine how a movie develop but that piece of information cannot be informed from tags or titles. Therefore, user written movie reviews is one important source of features. It carries substantial amount of movie related information such as memorable scene description which help the system better understand the inherent contents of the film.

University of Michigan - Shanghai Jiao Tong University Joint Institute, Summer 2018

Considering that the users written review is composed of both useful words and useless words (i.e. stopwords), some text-preprocessing work is required before we start to maneuver with the reviews. In our work, we choose to apply the method of Natural Language Processing (NLP) to first eliminate those pause words.

With the handful data after preprocessing, we need to convert the reviews into data that carry the feature of reviews. We select the method of Word2Vec, the detail of the algorithm will be discussed in the following section and the method will ultimately yields a mapping betweenwordsand a fixed length vector that can be used directly as input to other algorithms that compare similarity.

Experiments are performed over a medium size of movie datasets to show that our method is efficient.

2 Review of Prior Work

In this section, we will show here the previous studies on mining user aspects, some studies by using movie reviews for recommendation and showing how are they different from our work.

One common way of recommendation system is built by collaborative filtering [3] which is originated from the idea that if you like an item, then you will also like a "similar" item. Based on the user's history customs, a user profile is generated, which is then used to make suggestions to the user. The user models are presented to the users in terms of the most important features and dimensions in their profile. As the user provides more inputs or takes actions on the recommendations, the engine becomes more and more accurate. However, this method is poor to handle cold start problems. cold start problems of prime concern as it makes the system complex by not containing any prior rating history and involves three cases: recommendation for new user, recommendation for new product and recommendation of new product for new user. For example, if Bob and Wendy liked the same movies as you in

the past and they both rated Star Wars highly, you might like it, too. However, recommender systems that employ purely collabo- rative filtering can't recommend an item until sev- eral users have rated it.

There have been some studies about taking into account reviews for recommendation as we did in our approach. It focus on designing systems that produce personalized recommendations in accordance with the available contextual information of users[Feng, 4]. Compared to the traditional systems that mainly utilize users' preference history, context-aware recommender systems provide more relevant results to users. As a demonstration, in collaborative filter recommendation, the system is able to figure out the preference trend of crowded users, then use that trend to predict current user preference. However, the method that we use to mining contextual data from textual reviews are different. Overall, there are three significant differences in our work from others including: (1) in our work, we apply word2vec algorithm to vectorize the review data 2) We optimize the method in prediction therefore our approach is less prone to cold start problem within well supervised data and (3) we empirically apply our approach to the first large collected user reviews for recommendation.

3 Methodology & Framework

Our proposed approach is applying movie recommender system based on the review of the users with Natural Language Processing. This is a relatively new approach since prior approaches either make movie recommendations based on the movies searched by the users or simply clustering reviews into positive or negative. In this section we will introduce two main framework of our system:

• Film Prediction System: we would like to train a model based on a collection of reviews labeled with the film name, and then we will predict the film a new review is talking about based on the trained model.

University of Michigan - Shanghai Jiao Tong University Joint Institute, Summer 2018

• Film Recommendation System: we will build a film recommendation system which could recommend some new films based on the user input.

In the following part we will introduce details about the two systems.

3.1 Film Prediction System

First, we visit the film website with web request and use regular expression to filter the high-ranking films. Then we visit the websites of these films and download the reviews one by one. The film set we chose is marked as F. The review set for the ith film in F is marked as r_i . The text data is stored into a csy file.

Then we divide the reviews into words and use a library called Nltk to remove these useless or irrelevant words. This is completed by the 'stop-word' trained in the library.

Then we take two methods to deal with the reviews. The first one is to split the reviews into words and train a word-to-vector (call word2vec for short) to transform the words into vectors. Then we average and concatenate the vectors to calculate the representation for the film. The formula is listed as below:

$$V_{review} = \frac{1}{n} \sum_{i=1}^{n} V_{word_i} = \frac{1}{n} \sum_{i=1}^{n} G(word)$$

where G is the word2vec model.

Another idea is to apply the document-to-vector transformation, which can convert some text into a single vector. Therefore, V_{review} can be calculated directly. Here we test the accuracy for both of them and the detailed result will be introduced in the next section.

In terms of word2vec model, the model we use is from Google. Figure 1 shows the detailed model It provides an efficient implementation of the continuous bag-of-words and skip-gram architectures for computing vector representations of words. First, in continuous bag-of-words model (CBOW), there is a projection layer that converts a one-hot representation of 4 words previous to and 4 words after a certain center word to a lower dimension matrix. Averaging them up, one can get a prediction of the center word. Parallel, we adopt the continuous skipgram model in which a projection layer project the input of a center words to the prediction of 4 words before it and 4 words after it. With the help of these 2 models, we can successfully converts the words to a certain vector representation.

Figure 1: word2vec model architecture

With the vector input, we are able to complete the last step — a multi-layer perceptron (MLPClassifier). Here we train the network with flim review vector labeled with the film index. And we test different optimizer like adam or sgd, with different iterations and layers. The training data we choose is some fresh review for the ith film in F but not included in r_i . Therefore, it can prove the efficiency and robustness of our system to detect features in different reviews. And the accuracy is up to 78% in our trained model.

University of Michigan - Shanghai Jiao Tong University Joint Institute, Summer 2018

Home Page

Films URL

/movie/wall-e
/movie/jaws
/movie/brave-heart
/movie/ghost-rider

Film Review Web

Film Reviews

1	A	. 8	C	D
1	id	sentiment	review	
2	Avotar	0	just registere	d in IMDb to g
3	Avotar	0	know several	people have a
4	Avetar	0	hate this mo	ve its a ripoff of
5	Avatar	0	his has to be	one of the wor
6	Avatar	0	his is the M.O.	AB The mo
7	Austar	0	inally yesterd.	ey night I got th
0	Austar	0	his will be sho	ort and simple
9	Avatar	0	wen critics of	action and scie
30	Avotar	0	votar may be	the greatest fi

Figure 1: Review Process diagram

Figure 2: The structure of our system

3.2 Film Recommendation System

This is the extended application of our system. As we have evaluated before, the review vector can be calculated by averaging all the vector representations of the words. For the same principle, we can represent the film using the average of its review data.

$$v_{film} = \frac{1}{n} \sum_{i=1}^{n} r_i$$

When we input a new film, we find the reviews and combine them into a vector. By comparing the vector distance in high-dimensional space, we can find the closest films to our target film. The vector distance formula is shown below:

$$D_{v_1, v_2} = \frac{v_1 \cdot v_2}{||v_1|| * ||v_2|| + \epsilon}$$

As you can find in the screen-shot, our system performs a good recommendation. For the animated film Wall-E, all the recommendations are animated film with high quality. And for the film Before-Sunrise, the system recommends the trilogy completed by one director. And Before-Sunrise is exactly one of them. The result proves that word2vec model and doc2vec model is a practical solution to the recommendation problem.

Model is being loaded...
Model has been loaded completely!
Vector dimension: 300
Input a film name:Wall E
Film review of wall-e has been downloaded!
wall-e --- 墙E
up --- 向上的
ratatouille --- 鼠尾草
spirited-away --- 精神恍惚的
sideways --- 侧着

Input a film name:La La Land
Film review of la-la-land has been downloaded!
la-la-land --- 拉拉土地
call-me-by-your-name --- 呼唤你的名字
inside-llewyn-davis --- 里恩-戴维斯内部
once --- 一旦
carol --- 颂歌

Input a film name:Before sunrise
Film review of before-sunrise has been downloaded!
before-sunset --- 日落之前
before-midnight --- 午夜前
her --- 她
boyhood --- 少年时代
eternal-sunshine-of-the-spotless-mind --- 美丽心灵的永恒阳光

Input a film name:

Figure 3: Our recommendation result

3.3 Advantages of our system setup

Comparing to prior approach, this approach mainly improve three aspects. First, previous approaches focus on predicting users' preference of movies based on the search of movies. This would be pretty inaccurate since after watching a certain movie, the user might not like it. Thus, simply predicting preference based on searching results cannot reflect the habit. However, the movie review can accurately reflect those aspects in which a user might

University of Michigan - Shanghai Jiao Tong University Joint Institute, Summer 2018

give bad remarks on some movies they like. Applying this to movie recommendation will greatly model the taste of users. Second, this algorithm doesn't have a cold start problem. Prior approaches try to model the users' preference based on previous actions. So if a new user enters the system, the algorithm will have a cold start. This algorithm doesn't have such problem since it predicts the preference using other user's data. Thirdly, applying Natural Language Processing technique can greatly improve the accuracy. Modeling the similarity between each word using a word2vec rather than doing simple feature extraction is the key to this approach.

In all, the model we used apply a word2vec Natural Language Processing layer before naive bayes model. Applying this on a totally new dataset, we would think that this can greatly improve the performance of movie recommendation system.

4 Results and Discussion

In this section, we are going to provide the experiment setup and the corresponding test result.

4.1 Experiment Setup

For the testing purpose, since there are currently available dataset for recommending similar movies based on the movie reviews, we start downloading the dataset ourselves. A dataset containing popular movies from IMDB is used for the generation of the training and testing dataset. The dataset called " $movie_metadata.csv$ " contains the movie names, directors, actors, website urls, etc.

We write a python program downloading the first 10 movies who have more than 2000 user reviews. The corresponding movies are: Avatar, The Dark Knight Rises, Batman v Superman: Dawn of Justice, Superman Returns, Man of Steel, King Kong, Titanic, Indiana Jones and the Kingdom of the Crystal Skull, The Dark Knight, Interstellar. Figure 2 shows a sample of the collection of data. First column is the movie name, second is the cor-

responding integer representation and third is the raw movie reviews.

A	1	C	0	E	F	6	ł			I	1		l	M	N	0	p	Q	R	5	1	U	Υ
letar		O realize la	em probably go	ing to get fla	nes galore f	or this com	nert, and yo	ualhave	theright	ayarap	irion abou	tnyopin	in, but he	, I'm entitl	ed to my op	nion too. A	etar is grade	Accap. That	s right, it's	nap Isaythi	formesimp	le reason: With	hout the special e
lydar		O say this	epic last night:	at the Empir	Leicester Sc	in London,	which is a s	perb veru	einwiid	to view t	tis film. H	uge scree	n, exceler	tsoundaro	an extraoro	irary Coby	3 dinension	l inage. Th	e whole effe	ctis nind bi	wing.This is a	'Must see' no	oie, inovatire, a
letar		O abady dire	ets like James	Cameron, Te	ryeas inth	vorks, and	leey niru	E Was NO	thit.It is	the Star I	Was of th	21st cer	tury. Thou	h the plot	is derivative	and bears s	me pretty c	ose resemb	ance to Dan	es with Web	es and a little	bit of The Last	Sanuai, it doe
leta		O Ok, leet i	t"That's a phr	ase i found n	nyself saying	an avful lo	duing this	21/2 hour	compute	game th	et vas as	painful to	te bain a	sit was to	the eyes Fir	st, let's get	he obvious o	t of the wa	, This film v	vas expensiv	inthat it cos	tso nuch nor	rey to make you
letar		O orgive ne	, I'm going to j	unpiron pr	ofessional to	fan boy for	a while here	. I haven't	hadtheji	tes afte	rafilm the	way he	had for Av	atar in quit	sonetne	lanes Can	eron's Avata	is the most	ertertainin	andenthal	ing cinematic	egeriences of	nylfe tis ico
letar		0 flovit	the scope of Ja	ires Caren	or's Avatar w	as alvays g	oirg to be a	risk both a	tistically	and finan	cially, esp	cialyint	otay's eco	roniceiro	ate. Whethe	ritvilpay	f roetai	is a questi	or only time	Can arewer,	but this viewe	rcan at the ver	ry least attest to
leta		0 actually e	enjoyed this qui	teabit, but	lan giing it	a 1, becaus	elcamoth	ieve that	it deserve	san&A, i	which is n	hat it is g	ting this	eeirg, n	xty appare	tly due to s	spidous rat	ngs from co	ntries lie S	loelia, Irda	and Australia	. Not that I hav	eanjtingagain
letar		O thas been	12 years since	Caneron u	leashed the	pheromeno	nthat was 1	tanicand	real fans	nodáhav	e to look a	s far back	as 1991's	Terrirato	2 fortheir	ast proper o	xe of his in	redbly epic	ación True	lies, while fo	n, really does	r't count). So ti	he anticipation fo
letar		O simply ca	rnot believe h	N OVET-DES	us the users	of this site	ae Actual	ian tw	as eractly	thesame	e for There	Ville	bod and e	very other l	yped film t	ere has ber	recently.S	ned the a	djectives us	ed to describe	Avatar begga	rbelief: The 8	lest Vlovie of All
leta		O am suren	nyconnerty	il be bst in	a sea of blue	bitanyva	s here goes	Justatien	ded the A	danced!	Screening	at ny loca	l'Event Ci	rema' 800	in 30Vovit	is novies	aphics are g	OTĘBOUS, EVE	rything is so	real, the 30	ust adds to di	e effect beauti	fully without dis
letar		Ofcourse	had heard the	ijce oier Av	atar for a lon	gtine, but	ist refused	o believe	tforman	y reasons	ltseeme	leyoe	nated at fi	rstglance,	as it probab	yddtono	t, and I real	dihtae	to see if for	avtile Nov	lan sogladi	hati gave ita	chance, because
leta		O Avatar ^a is	not the next ":	itar Mars' o	r'land of the	Angs." bin	ight be the	rent "Wats	ix," thoug	h.Or, per	taps more	accurate	the rest "	NatixPer	dutions." It	stechnically	goundrea	irg craftna	slippot to	nokon asto	y that was pl	ayed out after '	Retun of the Ki
letar		O isuals: For	ryears Star Tre	k, Star Was	Lord of the R	lings, and a	l sorts of at	ersó-fio	fartasy	novies ha	ne been tr	ing to tal	e us to an	otherworld	This are s	cceeded, ar	itwas sob	eutful la	earthat I fa	dareligious	esperience in	reaction to the	visuals to this m
lystar		O orrytond	tbewiththen	asses on thi	one, but I w	ould classif	nysef as	eigalit	ebitofa	filmbuff	in the sere	e flat l'u	watched	so many m	olies, exent	idotik	ten ard kr	w Ivort, I	stil watc	totofite	rest And this	fin actually n	nade me LOL at n
lydar		O ou put you	rglasses on a	dyaleir.	Lifeast for th	e eyes at le	et for the fi	st hou. 1	ebain, i	oweier, i	enais as	leep. How	stange t	at such an	anbitous e	nterprise co	ld ignore its	nost inpor	tant aspect,	the story. A r	ehash of other	things with di	alogues from a h
lydar		0 eah this n	novie took seve	ral steps for	vard in terre	of chemat	ography and	filmingte	chrology,	but that i	isal that o	an really	esido	e vhat ma	ks tis fir	worth seei	g, Everythin	else that m	aksafin	peat is total	lack luster. T	here is no deep	daracter devel
letar		0 was not b	down away by	tis mode li	keeeryone e	se seems t	obe First, t	re good st	uff. There	are some	goodacto	rsinhere	, especially	theador	vho plays la	le(though)	night be bia	sed, because	he was pre	tyhd), and	heyall comm	it to what they	ledding and ma
lydar		O here have	been so many	reviews and	connents n	ade about f	tisfilm tha	lsinplyh	ad to see	it The far	ns insist th	at everyb	odyshould	see it. So in	ordertoho	nestly judge	this blockbu	teri have v	atched it.Th	at was my fir	t nistake, th	second was n	ot getting up and
leta		Oithabutg	et like this you	vouldtink	that, at the i	ery least, ba	sicelement	of a dece	nt film sh	oddnotb	te lacking,	Wel writ	tenstary, p	assable dia	log, above p	arados, e	Lillel, ne	aneta Hal	wood!!!Th	ose things ha	ie been releg	ated to the pas	t!No more worr
letar		O ou warna	krov sonethi	ng funy? No	teiena jea	ago, early	009,1 was	rathing "	The Direct	os'on f	e Reek O	ramel an	llames Ca	neron was	on.l was ta	king to my	riendandsa	jng how he	isone of m	favorite dire	tos, he has a	n amazing trad	ck record of great
leta		Ofasela	iready voted 1	bit, but lst	il vish IVOb	alows ne	bwte-100	Avataris	te lanes	t moile f	v ever wat	ded.lfy.	u watched	Dancing M	ith Wolves,	which is my	favorite mo	ie by the wa	y, you brow	what lan se	jng. Avatar is	just a sci-fi ve	sion of Dancing
leta		O 2 years ag	p, lames Cam	eron had a vi	sion of Aveta	rinnid.A	vision so ah	ad of its t	ine that (ànem:	shelved his	project in	ordento i	ait for the	technology*	b catch up.	l vision so in	agirative &	ecting tha	the, finally v	ent on to cre	ate the much n	eeded technolog
letar		O VATAR ha	s a soul I saw	WATAR toda	j. twasa bo	iling 40 deş	rees Celsius	in Austral	a lough	tabsar	nd train to	get there.	spert m	nths on a f	orun before	that, Incre	ertal stops	induded a si	riptment, st	ik, a teaser,	a foot, ANATA	R dayand a fu	l tale. Nov e
lystar		O'n speech	lessutterlys	peechless I T	his mode ha	earredho	v nuch war	dvide-ov	er1bilio	r dolars?	Why? The	ysaythe	eareonly	S scripts in	Hillywooda	nd this sure	yarfinsi	Throughout	theentiret	ine In tin	irg Pocahorta	s and believe i	tornot-Fem Gu
letar		O hat a was	te of money, e	rergy, creati	ityard intel	igence. Nei	er before in	hehistory	of marki	nd, were a	we present	ed with s	uch an ero	mous pile	of dong disp	jised as a b	sufful and	oiely rose. A	lad most pe	ople, or shee	,boght i! H	ave people hers	e lost their minds
Notar		Dirst, hega	neussimy,ÁÚ	Alers,Áù th	at Sigourney	Newer bat	ded hard as	Tipley. The	rtealt	hit ,ÁúTe	mireto,	ùthat or	sted a nev	bendina	h for scieno	e fiction and	followed it i	p with the s	nash hit sei	uel ÄlTemi	rator 2: Judgr	rert DayÂù vi	hich initiated ma

Figure 4: Sample Dataset Overview

4.2 Text Processing

For text processing, we use NLTK library. First, we iterate over the full text and tokenize each file, allowing us to analyze the file at text level. We will remove the common punctuation and stopwords - grammatical words which are usually ignored as they do not provide any useful information, i.e, other, there, of, the, are. Using the NLTK's default library, we are able to identify the stopwords that are commonly used in the review.

4.3 Word2vec/Doc2vec and MLP Model Training

For the purpose of converting words and paragraphs to vectors, we explored 2 commonly used techniques. For Word2vec, we used the pre-trained

University of Michigan - Shanghai Jiao Tong University Joint Institute, Summer 2018

Table 1: Test Result

Optimizer	Layer	Iteration	Random	Alpha	Word2vec Accuracy	Doc2vec Accuracy
adam	150,100,60,30,10	100000	0	0.00001	0.51	0.658
adam	100,50,10	100000	0	0.00001	0.49	0.625
adam	80,20	100000	0	0.00001	0.47	0.662
adam	60,20,6	100000	0	0.00001	0.42	0.614
adam	100,	100000	0	0.00001	0.47	0.652
sgd	100,50,10	100000	0	0.00001	0.53	0.607
sgd	80,20	100000	0	0.00001	0.46	0.662
sgd	150,100,60,30,10	100000	0	0.00001	0.5	0.617
sgd	60,20,6	100000	0	0.00001	0.17	0.599
sgd	100,	100000	0	0.00001	0.6	0.717

model Google trained on Wiki dataset. After that, for a paragraph, we took the average of all the unique words to generate a 300 dimension vector. For Doc2vec, we also used the pre-trained model trained on English Wiki dataset. Also, a 300 dimension vector representing the whole paragraph is automatically generated.

The last training step, we applied the MLP algorithm on the generated vectors and fit that to a corresponding movie label.

4.4 Evaluation

For evaluation purpose, we split our dataset into a training set and a testing set. We randomly select 100 movie reviews from each movie and evaluate the trained model on them to see whether they correctly predict the movie name or not.

4.5 Results

For verification, we compare the 2 different models on different MLP architecture. We mainly change the hidden layer and its size of the MLP architecture and hope to find the best result. As a result, our best model shows the accuracy of 71.7%. Table 1 shows the result of our test.

From there, we can see that the doc2vec has a slightly better performance than the word2vec model. From the data, we can see that our model

basically have 60% to 70% accuracy. So we can conclude that the model is pretty good at predicting similar movies. From various models, we can see that the most simple MLP model with only one hidden layer of units 100 performs the best. This is potentially because our model is very simple with the output layer size of 10, so learning the feature of such model does not need a very deep MLP model.

However, there is still some works to do. First, the test dataset is only based on the new reviews for existing movies. We will still don't know how the model is performing on totally new movies. Second, we can train our own doc2vec model labeling with its own movie tag. We would think this can further improve the accuracy of our system. Third, we can further expand the movie size of the system to see how it perform. Currently, the movie size is 10, that is we are recommending 1 out of 10 movies based on the review. Trying to expand the movie size would be a good way to generalize our system.

5 Conclusion

In general, we implemented a system based on NLP training algorithm to recommend to the user the movies they might like based on their reviews to a certain movie. Evaluating such system on the self-generated dataset, we got a performance of 60% to 70% accuracy.

University of Michigan - Shanghai Jiao Tong University Joint Institute, Summer 2018

References

- [1] SUVIR BHARGAV. "Efficient Features for Movie Recommendation Systems". MA thesis. 2014.
- [2] Robin Burke Negar Hariri Bamshad Mobasher and Yong Zheng. "Context-Aware Recommendation Based On Review Mining". maththesis. Uppsala: DePaul University, 2016.
- [3] James Salter and Nick Antonopoulos. "CinemaScreen Recommender Agent: Combining Collaborative and Content-Based Filtering". In: *The Journal of Narrative Technique* (). Excerpt in Roger Matuz, ed. *Contemporary Literary Criticism*. Vol. 61. Detroit: Gale, 1990, pp. 204–208.
- [4] Seong-Bae Park Xuan-Son Vu. "Mining User/Movie Preferred Features Based on Reviews for Video Recommendation System". MA thesis. Cambridge, Mass.: Kyungpook National University, 2017.