Univariate Linear Regression

Regression and machine learning

- Regression is a process of estimating the relationship between a dependent variable (or outcome variable) and independent variables (or features, predictors...)
- Linear regression the dependent variable relates to the independent variables linearly.
- In the context of machine learning, regression is used for prediction/forecasting.

Supervised learning

Given data pairs (size, price), create parameterized models by supervised learning

Simplest such model, univariate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Regression problem

Predict real valued output (price) given the size of a house just put on market

Classification problem

Predict discrete valued output (top moon/bottom moon) given the coordinates of a data point

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(1 01 111111111111111111111111111111111	1534	315
	852	178

Notation:

m: number of training examples

x: input variable or input feature or feature

y: output variable

Hypothesis / predictive model

To represent h – need a structure/model & model parameters

Univariate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

x: size of house

θ: parameter of model

How to choose model parameters θ_0 and θ_1 ?

Goal: to make $h_{\theta}(x)$ as close to real house price (y) as possible (using the training data)

Problem formulation by first defining a cost function, $J(\theta_0, \theta_1)$:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Choose θ_0 and θ_1 so that is $J(\theta_0, \theta_1)$ minimized

Let's use examples to gain some intuition about the cost function $J(\theta_0, \theta_1)$ As a function of the parameters θ_0 and θ_1

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters: θ_0 , θ_1

Cost function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

Outline of learning procedure:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Update parameters θ_0 and θ_1 using gradient descent until convergence

Simultaneously update θ_0 and θ_1 according to

$$\theta_0 \coloneqq \theta_0 - \eta \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 \coloneqq \theta_1 - \eta \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

η is a positive number, which is called the learning rate — too small, slow learning; too large, divergence

Exercise – derive the two gradients

- notice this derivation is a "batch" learning algorithm
- "online" learning the LMS algorithm

How to optimize (minimize) a cost/loss function by tuning neural network weights for a predicted value to approach an actual value?

- Stochastic gradient descent (such as the LMS by Widrow and Hoff)
- Batch gradient descent as in linear regression, quadratic problem with least squares solution in closed form (may not be the best for large data set)
- Mini-batches (as in many deep networks)

Insights on SGD (using Widrow-Hoff LMS setting)

- When far from convergence, behaves similarly as ordinary GD but less computation (1/m, m is the # of samples)
- When near convergence, gradient decent for one learning sample may be an ascent for another sample. A diminishing step size is required, e.g., the Robbins-Monro condition (e.g., $\eta=1/n$, n is # of learning iteration)