Assignment: Writing Assignment 3

Name: Oleksandr Yardas

Due Date: 02/23/2018

List You	r Collaborators:
• Probler	m 1: None
• Probler	m 2: None
• Probler	m 3: None
• Probler	m 4: Not Applicable
• Probler	m 5: Not Applicable
• Probler	m 6: Not Applicable

Problem 1: Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x - y \\ x + y \end{pmatrix}.$$

Is T injective? Justify your answer carefully.

Solution: Let $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in \mathbb{R}^2$ be arbitrary vectors. If T is injective, then whenever $T(\vec{v}) = T(\vec{w})$, we have that $\vec{v} = \vec{w}$. That is, T is injective if whenever $T(\vec{v}) = T(\vec{w})$ implied that $\vec{v} = \vec{w}$. We assume that T is injective. So we have:

$$T(\vec{v}) = T(\vec{w})$$

$$\begin{pmatrix} v_1 - v_2 \\ v_1 + v_2 \end{pmatrix} = \begin{pmatrix} w_1 - w_2 \\ w_1 + w_2 \end{pmatrix}$$
 (by the definition of T)

We solve for v_1, v_2 . Taking the first component, we manipulate to express v_1 in terms of v_2, w_1, w_2 :

$$v_1 - v_2 = w_1 - w_2$$
$$v_1 = w_1 - w_2 + v_2,$$

and substitute for v_1 in the bottom component:

$$v_1 + v_2 = w_1 + w_2$$

$$(w_1 - w_2 + v_2) + v_2 = w_1 + w_2$$

$$w_1 - w_2 + 2v_2 = w_1 + w_2$$

$$2v_2 = w_1 + w_2 - (w_1 - w_2)$$

$$2v_2 = 2w_2$$

$$v_2 = w_2$$

So $v_2 = w_2$. Substituting back in for v_2 in the top component, we have:

$$v_1 - (w_2) = w_1 - w_2$$
$$v_1 = w_1$$

Our assumption has lead us to the conclusion that $v_1 = w_1, v_2 = w_2$. So $\vec{v} = \vec{w}$, therefore T is injective by definition. Because \vec{v}, \vec{w} were arbitrary, the result follows.

Problem 2: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Recall that

range
$$(T) = {\vec{w} \in \mathbb{R}^2 : \text{There exists } \vec{v} \in \mathbb{R}^2 \text{ with } \vec{w} = T(\vec{v})}.$$

Notice that $\vec{0} \in \text{range}(T)$ because we know that $T(\vec{0}) = \vec{0}$ by Proposition 2.4.2.

a. Show that if $\vec{w_1}, \vec{w_2} \in \text{range}(T)$, then $\vec{w_1} + \vec{w_2} \in \text{range}(T)$.

Solution: Let $\vec{v_1}, \vec{v_2} \in \mathbb{R}^2$ be arbitrary. We fix vectors $\vec{w_1}, \vec{w_2}, \vec{v} \in \mathbb{R}^2$ by letting $T(\vec{v_1}) = \vec{w_1}, T(\vec{v_2}) = \vec{w_2}, \vec{v_1} + \vec{v_2} = \vec{v}$. So $\vec{w_1}, \vec{w_2} \in \text{range}(T)$ by definition. Notice that:

$$T(\vec{v}) = T(\vec{v_1} + \vec{v_2})$$

= $T(\vec{v_1}) + T(\vec{v_2})$ (by definition of linear transformation)
= $\vec{w_1} + \vec{w_2}$

So $T(\vec{v}) = \vec{w_1} + \vec{w_2}$. Because, $\vec{w_1} + \vec{w_2} \in \mathbb{R}^2$, $\vec{w_1} + \vec{w_2} \in \text{range}(T)$ by definition. Because $\vec{v_1}, \vec{v_2}$ were arbitrary, the result follows.

b. Show that if $\vec{w} \in \text{range}(T)$ and $c \in \mathbb{R}$, then $c\vec{w} \in \text{range}(T)$.

Solution: Let $\vec{v} \in \mathbb{R}^2$, $c \in \mathbb{R}$ be arbitrary. We fix a vector $\vec{w} \in \mathbb{R}^2$ by letting $T(\vec{v}) = \vec{w}$. So $\vec{w} \in \text{range}(T)$ by definition. Notice that:

$$T(c\vec{v}) = c \cdot T(\vec{v})$$
 (by definition of linear transformation)
= $c \cdot \vec{w}$
= $c\vec{w}$

So $T(c\vec{v}) = c\vec{w}$. Because, $c\vec{w} \in \mathbb{R}^2$, $c\vec{w} \in \text{range}(T)$ by definition. Because \vec{w}, c were arbitrary, the result follows.

Problem 3: We defined linear transformations from \mathbb{R}^2 to \mathbb{R}^2 , but we can also define them from \mathbb{R} to \mathbb{R} as follows. A linear transformation from \mathbb{R} to \mathbb{R} is a function $f: \mathbb{R} \to \mathbb{R}$ with both of the following properties:

- f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
- $f(c \cdot x) = c \cdot f(x)$ for all $c, x \in \mathbb{R}$.

a. Let $r \in \mathbb{R}$. Show that the function $g_r : \mathbb{R} \to \mathbb{R}$ given by $g_r(x) = rx$ is a linear transformation.

Solution: We check to see if $g_r : \mathbb{R} \to \mathbb{R}$ given by $g_r(x) = rx$ satisfies the above conditions. Let $x, y \in \mathbb{R}$ be arbitrary. Note that:

$$g_r(x+y) = r(x+y)$$
 (by definition of g_r)
 $= rx + ry$
 $= g_r(x) + g_r(y)$ (by definition of g_r)

So for arbitrary $x, y \in \mathbb{R}$, we have $g_r(x+y) = g_r(x) + g_r(y)$. So g_r satisfies the first condition. Now we test the second condition. Let $c \in \mathbb{R}$ be arbitrary. Note that:

$$g_r(c \cdot x) = r(c \cdot x)$$
 (by definition of g_r)
 $= crx$
 $= c \cdot (rx)$
 $= c \cdot q_r(x)$ (by definition of q_r)

So for arbitrary $c \in \mathbb{R}$, we have $g_r(c \cdot x) = c \cdot g_r(x)$. So g_r satisfies the second condition. We have shown both conditions to be satisfied for $g_r : \mathbb{R} \to \mathbb{R}$ given by $g_r(x) = rx$, so g_r is a linear transformation by definition.

b. Show that if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both linear transformations, and f(1) = g(1), then f = g.

Solution: Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be arbitrary linear transformations. Let $c \in \mathbb{R}$ be arbitrary. Notice that:

$$f(c) = f(c \cdot 1) = c \cdot f(1)$$
 (by definition of linear transformation from $\mathbb{R} \to \mathbb{R}$)
 $= c \cdot g(1)$ (by assumption)
 $= g(c)$ (by definition of linear transformation from $\mathbb{R} \to \mathbb{R}$)

So for arbitrary $c \in \mathbb{R}$, f(c) = g(c). So f = g. Because $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$ were arbitrary linear transformations, the result follows.