CS2040S Data Structures and Algorithms

Welcome!

Sorting Detective

Six suspicious sorting algorithms

• Investigate the mysterious sorting code.

- Identify each sorting algorithm.
- Find the criminal: Dr. Evil!
- Focus on the properties:
 - Asymptotic performance
 - Stability
 - Performance on special inputs

Absolute speed is not a good reason...

Sorting Detective

Six suspicious sorting algorithms

Investigate the mysterious sorting

Identify each sorting algorithm

Find the criminal: Dr. Evil!

It ran the fastest so it must be QuickSort.

operties:

mance

ability erformance on special inputs

Absolute speed is not a good reason...

Sorting Detective

Six suspicious sorting algorithms

Investigate the mysterious sorting

Identify each sorting algorithm

Find the criminal: Dr. Evil!

It ran to est so it must be skSort.

Operties:
mance

ability erformance on special inputs

Absolute speed is not a good reason...

Sorting Detective

Six suspicious sorting algorithms

Investigate the mysterious sorting

- Identify each sorting algorithm
- Find the criminal: Dr. Evil!
- Focus on the properties:
 - Asymptotic performance
 - Stability
 - Performance on special inputs

Report should provide evidence based on testing each algorithm.

I ran algorithm A on these sets of arrays and from the results, I discovered that....

- Absolute speed is not a good reason...

Admin

Recitations start this week!

Tutorials start this week!

- Part 1: Review (more this week)
- Part 2: Harder questions (only one optional this week)
- Check with your tutor on room / Zoom link.
- Do prepare in advance.
- Do have questions.
- Do take advantage of tutorial to get to know your tutor and other students in your class

Contest closes Friday

Postponed...

2D Peak Finding

Peak Finding 2D (the sequel)

Given: 2D array A[1..n, 1..m]

Output: a peak that is not smaller than the (at most) 4 neighbors.

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Key questions:

How to analyze a sorting algorithm?

Invariants

Trade-offs: how to decide which algorithm to use for which problem?

Sorting

Problem definition:

```
Input: array A[1..n] of words / numbers
```

Output: array B[1..n] that is a permutation of A such that:

$$B[1] \le B[2] \le ... \le B[n]$$

Example:

$$A = [9, 3, 6, 6, 6, 4] \rightarrow [3, 4, 6, 6, 6, 9]$$

Sorting

```
public interface ISort{
    public void sort(int[] dataArray);
}
```

Aside: BogoSort

```
BogoSort(A[1..n])
```

Repeat:

- a) Choose a random permutation of the array A.
- b) If A is sorted, return A.

What is the expected running time of BogoSort?

Aside: BogoSort

```
BogoSort(A[1..n])
```

Repeat:

- a) Choose a random permutation of the array A.
- b) If A is sorted, return A.

What is the expected running time of BogoSort?

O(n·n!)

Aside: BogoSort

QuantumBogoSort(A[1..n])

- a) Choose a random permutation of the array A.
- b) If A is sorted, return A.
- c) If A is not sorted, destroy the universe.

What is the expected running time of Quantum BogoSort?

(Remember QuantumBogoSort when you learn about non-deterministic Turing Machines.)

Aside: MaybeBogoSort

MaybeBogoSort(A[1..n])

- 1. Choose a random permutation of the array A.
- 2. If A[1] is the minimum item in A then:

```
MaybeBogoSort(A[2..n])
```

Else

MaybeBogoSort(A[1..n])

What is the expected running time of MaybeBogoSort?

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

```
BubbleSort(A, n)

repeat n times:

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```


Example: 8 2 4 9 3 6

Example:

8 2

Example:

8 2 4 9 3 6

2 **8 4** 9 3 6

2 **4 8** 9 3 6

Example:

8 2

-

8 4

3 9

Example:

8 2 4 9 3

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 **9 3** 6

2 4 8 **3 9** 6

Example: 8

Example: 8

Pass 2:

Pass 3:

Pass 4:

```
BubbleSort(A, n)

repeat n times:

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```



```
BubbleSort(A, n)

repeat (until no swaps):

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```


Big-O Notation

How does an algorithm scale?

- For large inputs, what is the running time?
- T(n) = running time on inputs of size n

What is the running time of BubbleSort?

- A. O(log n)
- B. O(n)
- C. O(n log n)
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
- F. $O(2^n)$

Running time:

– Depends on the input!

Example:

2 3

3 4

4 6

Running time:

– Depends on the input!

Best-case:

Already sorted: O(n)

Best-case:

Already sorted: O(n)

Average-case:

Assume inputs are chosen at random.

Worst-case:

Max running time over all possible inputs.

BubbleSort

Best-case:

Already sorted: O(n)

Average-case:

Assume inputs are chosen at random.

Worst-case:

Unless otherwise specified, in CS2040S, we focus on worst-case

Max running time over all possible inputs.

BubbleSort(A, n)

repeat (until no swaps):

for $j \leftarrow 1$ to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])

What is a good loop

invariant for BubbleSort?

```
BubbleSort(A, n)
```

repeat (until no swaps):

for $j \leftarrow 1$ to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])

max item 10

```
BubbleSort(A, n)
  repeat (until no swaps):
      for j \leftarrow 1 to n-1
           if A[j] > A[j+1] then swap(A[j], A[j+1])
Iteration 1:
                                max item
                 10
```

10

```
BubbleSort(A, n)
  repeat (until no swaps):
      for j \leftarrow 1 to n-1
           if A[j] > A[j+1] then swap(A[j], A[j+1])
Iteration 1:
```

```
BubbleSort(A, n)

repeat (until no swaps):

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```

Iteration 2:

Loop invariant:

At the end of iteration j: ???

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Correctness: after n iterations → sorted

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Worst case: n iterations

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Worst case: n iterations \rightarrow O(n²) time

BubbleSort

Best-case: O(n)

Already sorted

Average-case: O(n²)

Assume inputs are chosen at random...

Worst-case: O(n²)

Bound on how long it takes.

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```


Example: 8 2 4 9 3 6

Example: 8 2 4 9 3 6

Example: 8 2 4 9 3 6

2 8 4 9 3 6

Example: 8 2 4 9 3 6

2 8 4 9 **3** 6

Example: 8 2 4 9 3 6

2 8 4 9 **3** 6

2 3 4 9 8 6

Example: 8 2 4 9 3 6

2 8 4 9 **3** 6

2 3 4 9 8 6

Example: 8 2 4 9 3 6
2 8 4 9 3 6
2 3 4 9 8 6

8

Example: 8 2 4 9 3 6
2 8 4 9 3 6
2 3 4 9 8 6
2 3 4 9 8 6

Example: 8 8

What is the (worst-case) running time of SelectionSort?

- A. O(log n)
- B. O(n)
- C. O(n log n)
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
- F. $O(2^{n})$


```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```



```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Running time: n + (n-1) + (n-2) + (n-3) + ...

sorted, all smallest elements

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```


Basic facts

$$n + (n-1) + (n-2) + (n-3) + ... + 1 = (n)(n+1)/2$$

$$=\Theta(n^2)$$

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Running time: O(n²)

What is the BEST CASE running time of SelectionSort?

- A. O(log n)
- B. O(n)
- C. O(n log n)
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
- F. $O(2^n)$


```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Running time: $O(n^2)$ and $\Omega(n^2)$

SelectionSort(A, n)

for $j \leftarrow 1$ to n-1:

What is a good loop invariant for SelectionSort?

find minimum element A[j] in A[j..n]

swap(A[j], A[k])

SelectionSort Analysis

Loop invariant:

At the end of iteration j: the smallest j items are correctly sorted in the first j positions of the array.

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Insertion Sort

InsertionSort(A, n)

for
$$j \leftarrow 2$$
 to n

$$key \leftarrow A[j]$$

Insert key into the sorted array A[1..j-1]

Illustration:

Insertion Sort

```
InsertionSort(A, n)
      for j \leftarrow 2 to n
               key \leftarrow A[j]
              i \leftarrow j-1
               while (i > 0) and (A[i] > key)
                       A[i+1] \leftarrow A[i]
                       i \leftarrow i-1
              A[i+1] \leftarrow key
```


Example: 8 2 4 9 3 6
2 8 9 3 6

Example: 8 2 4 9 3 6
2 8 4 9 3 6
2 4 8 9 3 6

Example:

Example:

Example: 8 8

What is the (worst-case) running time of InsertionSort?

- A. O(log n)
- B. O(n)
- C. O(n log n)
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
- F. $O(2^{n})$

What is the max distance that the key needs to be moved?

Insertion-Sort(A, n)

for
$$j \leftarrow 2$$
 to n

$$key \leftarrow A[j]$$

Insert key into the sorted array A[1..j-1]

Insertion Sort Analysis

```
Insertion-Sort(A, n)
      for j \leftarrow 2 to n
              key \leftarrow A[j]
              i \leftarrow j-1
              while (i > 0) and (A[i] > key)
                                                                Repeat at most
                        A[i+1] \leftarrow A[i]
                        i \leftarrow i-1
              A[i+1] \leftarrow key
```

Basic facts

$$1 + 2 + 3 + \dots + (n-2) + (n-1) + n = (n)(n+1)/2$$

$$=\Theta(n^2)$$

Insertion-Sort(A, n)

for
$$j \leftarrow 2$$
 to n

$$key \leftarrow A[j]$$

Insert key into the sorted array A[1..j-1]

Running time: O(n²)

Insertion-Sort(A, n)

for
$$j \leftarrow 2$$
 to n

$$key \leftarrow A[j]$$

What is a good loop invariant for InsertionSort?

Insert key into the sorted array A[1..j-1]

Loop invariant:

At the end of iteration j: the first j items in the array are in sorted order.

Best-case:

Average-case:

Random permutation

Worst-case:

Best-case:

- Already sorted: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Average-case:

– Random permutation?

Worst-case:

- Inverse sorted: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Best-case: O(n)
Very fast!

- Already sorted: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Average-case:

– Random permutation?

Worst-case: O(n²)

- Inverse sorted: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Insertion Sort Analysis

Average-case analysis:

On average, a key in position j needs to move j/2 slots backward (in expectation).

Assume all inputs equally likely

$$\sum_{j=2}^{n} \Theta\left(\frac{j}{2}\right) = \Theta(n^2)$$

- In expectation, still $\theta(n^2)$

Insertion Sort Analysis

Average-case analysis:

On average, a key in position j needs to move j/2 slots backward (in expectation).

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Puzzle: Slowest Sorting Algorithm

What is the *slowest* sorting algorithm you can think of?

Slower than BogoSort...
But must always sort correctly...

Hint: recursion can be a powerful source of slowness!

Alice

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 51% chance of winning.
- On win: +1On lose: -1

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 49% chance of winning.
- On win: +1
 On lose: -1

<u>Alice</u>

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 51% chance of winning.
- On win: +1
 On lose: -1

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 49% chance of winning.
- On win: +1
 On lose: -1

Alas, both Alice and Bob lose all their money (gambling at two different tables). Who is more likely to go bankrupt first?

<u>Alice</u>

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 51% chance of winning.
- On win: +1
 On lose: -1

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 49% chance of winning.
- On win: +1
 On lose: -1

Alas, both Alice and Bob lose all their money (gambling at two different tables). Who is more likely to go bankrupt first?

Alice

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 51% chance of winning.
- On win: +1
 On lose: -1

Hints:

- Bayes Rule!
- Alice eventually goes bankrupt w.p. (0.49/0.51)¹⁰⁰.
- For every sequence where Alice loses, you can construct an inverted sequence where Bob loses.

- Begins with \$100
- Bets \$1 each time.
- Each bet has a 49% chance of winning.
- On win: +1
 On lose: -1

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Time complexity

• Worst case: O(n²)

Sorted list:

Time complexity

Worst case: O(n²)

Sorted list: BubbleSort

SelectionSort

InsertionSort

How expensive is it to sort:

[1, 2, 3, 4, 5, **7, 6**, 8, 9, 10]

How expensive is it to sort:

[1, 2, 3, 4, 5, **7**, **6**, 8, 9, 10]

BubbleSort and InsertionSort are fast.

SelectionSort is slow.

Another daily challenge:

Find a permutation of [1..n] where:

- BubbleSort is slow.
- InsertionSort is fast.

Or explain why no such sequence exists.

Moral:

Different sorting algorithms have different inputs that they are good or bad on.

All $O(n^2)$ algorithms are not the same.

Space complexity

Worst case: O(n)

How much space does a sorting algorithm need?

Space complexity

- Worst case: O(n)
- In-place sorting algorithm:
 - Only O(1) extra space needed.
 - All manipulation happens within the array.

So far:

All sorting algorithms we have seen are in-place.

Subtle issue:

How do you count space?

- Maximum space every allocated at one time?
- Total space ever allocated.

(I don't want to get into memory allocators, garbage collection, stack frames, etc.)

(Exercise: Come up with some examples of where this is obviously the wrong way to measure space!)

Stability

What happens with repeated elements?

Key	1	2	5	3	4	5	6	7	8	9
Value	а	b	O	g	h	D	j	k	1	m

Databases often contain (key, value) pairs.

The key is an index to help organize the data.

Properties of Sorting Algorithms

Stability

What happens with repeated elements?

Properties of Sorting Algorithms

Stability

What happens with repeated elements?

Key	1	2	5	3	4	5	6	7	8	9		
Value	а	b	C	g	h	D	j	k	_	m		
	J UNSTABLE											
Key	1	2	3	4	5	5	6	7	8	9		
Value	а	b	g	h	D	С	j	k	I	m		

Properties of Sorting Algorithms

Stability: preserves order of equal elements

What happens with repeated elements?

Key	1	2	5	3	4	5	6	7	8	9	
Data	а	b	C	g	h	D	j	k	Ι	m	
	J STABLE										
Key	1	2	3	4	5	5	6	7	8	9	
Data	а	b	g	h	С	D	j	k	I	m	

- A. BogoSort
- B. BubbleSort
- C. SelectionSort
- D. InsertionSort

A. BogoSort

B. BubbleSort

C. SelectionSort

Not stable:
Random permutation
may swap elements!

D. InsertionSort

- A. BogoSort
- B. BubbleSort
- C. SelectionSort
- D. InsertionSort

Stable:

Only swap elements that are different.

- A. BogoSort
- B. BubbleSort
- C. SelectionSort •
- D. InsertionSort

Not stable:

Swap elements while ignoring in between.

SelectionSort

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Not stable: swap changes order

SelectionSort

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Not stable: swap changes order

- A. BogoSort
- B. BubbleSort
- C. SelectionSort
- D. InsertionSort •

Stable:

Do not swap identical elements.

InsertionSort

```
Insertion-Sort(A, n)
      for j \leftarrow 2 to n
               key \leftarrow A[j]
               i \leftarrow j-1
               while(i > 0) and(A[i] \rightarrow key)
                        A[i+1] \leftarrow A[i]
                        i \leftarrow i-1
                        A[i+1] \leftarrow key
```

Stable as long as we are careful to implement it properly!

Sorting Analysis

Summary:

BubbleSort: O(n²)

SelectionSort: O(n²)

InsertionSort: O(n²)

Properties: time, space, stability

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability