DCC192

UFMG

2025/1

Desenvolvimento de Jogos Digitais

A15: Áudio I — Síntese

Prof. Lucas N. Ferreira

Plano de aula

- Sinais de Áudio
 - Propriedades: amplitute, frequência e fase
 - Analógico vs. Digital
 - Sistemas de Reprodução
- Ondas Senoidais e Não-Senoidais
- Espectrogramas
- Soma de Sinais
- Sintetizando Músicas com Sequenciadores

Sinais de Áudio

Um sinal de áudio é uma representação elétrica ou digital de ondas sonoras ao longo do tempo:

Eixo y: amplitude — deslocamento de moléculas de ar (entre -1 e +1)

A amplitude está relaciona com o volume do som:

- Quanto maior a amplitude, mais alto você irá escutar o som
- Quanto menor a amplitude, mais baixo você irá escutar o som

Além da amplitude, duas propriedades importantes do sinal de áudio são a **frequência** e a **fase**

Frequência

A **frequência** de um sinal de áudio mede (em Hz) quantas vezes ele se repete em um determinado período de tempo.

Frequência = 2Hz

2 periodos por segundo

A frequência está relaciona com a altura do do som:

- Quanto maior a frequência, mais agudo você irá escutar o som
- Quanto menor a frequência, mais grave você irá escutaro som

Fase

A fase é o deslocamento de um sinal, medido em graus ou radianos. Por exemplo, se um sinal está 180° fora de fase, isso significa que ele está atrasada em 50% do seu período:

- **► Fase =** 0°
- ► Fase = 90°
- ► Fase = 180°

A fase se tora impotante quando dois ou mais sinais são tocados ao mesmo tempo.

- ▶ Quando dois sinais estão em fase, eles atingem seus pontos de pico e vale no mesmo tempo, resultando em uma soma construtiva.
- Se estiverem fora de fase, os sinais se anulam parcialmente ou completamente, dependendo da diferença de fase.

Analógico vs Digital

Um sinal de áudio pode ser analógico ou digital:

Analógico

Um sinal de áudio analógico é um sinal contínuo representado por uma tensão ou corrente elétrica.

Conversor Analógico-Digital (ADC)

Amostragem ao longo do tempo

Digital

A representação digital expressa a forma de onda de áudio como uma sequência finita de amostras do sinal analógico

Sistemas de Reprodução de Áudio Digital

As amplitudes de um sinal de áudio digital são convertidos em tensões em um processo de conversão analógica-digital (DAC), as quais fazem o alto-falante vibrar:

Conversor Digital-Analógico (DAC)

Sinais Mono Vs. Stereo

Um sinal de áudio pode ser mono ou estéreo:

Mono

- O sinal mono representa uma única onda sonora.
- ► Todos os elementos sonoros (instrumentos, vocais, etc) são misturados em um único sinal e reproduzidos igualmente em ambos os alto-falantes.

Estéreo

- ▶ O sinal estéreo representa duas ondas sonoras: um para o canal esquerdo e outra para o canal direito.
- ▶ É possível ouvir instrumentos ou vocais posicionados à esquerda, à direita ou no centro

Ondas Senoidais

As **ondas senoidais** são as ondas sonoras periódicas mais simples e por isso também são chamadas de ondas fundamentais:

Podemos gerar ondas senoidais com a seguinte fórmula:

$$y(t) = A \sin(2\pi f t + \phi)$$

- lacktriangleright A é a amplitude
- ▶ *t*: tempo em segundos
- \blacktriangleright f: frequência (número de ciclos por segundo)
- $m{\phi}$: fase (em graus ou radianos)

Ondas Não-senoidais

Outros formatos de onda comuns não-senoidais que podemos sintetizar matematicamente com facilidade incluem:

Onda Quadrada

 $y(t) = A sgn(sin(2\pi ft + \phi))$

$$y(x) = \frac{4A}{p} \left[\left(\left(x + \frac{\phi}{2\pi} - \frac{p}{4} \right) \bmod A \right] \right]$$

Onda dente de serra

$$y(x) = \frac{4A}{p} \left| \left(\left(x + \frac{\phi}{2\pi} - \frac{p}{4} \right) \bmod p \right) - \frac{p}{2} \right| - A \qquad y(x) = \frac{2A}{p} \left(\left(x + \frac{\phi}{2\pi} \right) \bmod p - \frac{p}{2} \right)$$

Onda Triangular

$$y(x) = \frac{2A}{p} \left(\left(x + \frac{\phi}{2\pi} \right) \bmod p - \frac{p}{2} \right)$$

Sintetizando sinais de áudio em SDL

Para gerar e reproduzir sinais de áudio em SDL, podemos usar a função SDL_OpenAudioDevice:

```
// Áudio callback que gera uma senoide contínua
void sinusoidal(void* userdata, Uint8* stream, int len) {
    static double phase = 0.0;
    float* buffer = reinterpret_cast<float*>(stream);
    int length = len / sizeof(float);
    for (int i = 0; i < length; ++i) {
        buffer[i] = amplitude * std::sin(phase);
        phase += 2.0 * PI * frequency / SAMPLE_RATE;
        if (phase >= 2.0 * PI)
            phase -= 2.0 * PI;
 // Configurar o áudio
 SDL_AudioSpec desiredSpec;
 SDL_zero(desiredSpec);
 desiredSpec.freq = SAMPLE_RATE;
 desiredSpec.format = AUDIO_F32SYS;
 desiredSpec.channels = 1;
 desiredSpec.samples = 1024;
 desiredSpec.callback = sinusoidal;
 SDL_AudioSpec obtainedSpec;
 SDL_AudioDeviceID deviceId = SDL_OpenAudioDevice(nullptr, 0, &desiredSpec, &obtainedSpec, 0);
 SDL_PauseAudioDevice(deviceId, 0); // começar o áudio
```

Espectrogramas

O sinal de áudio carrega informações de **amplitude** ao longo do tempo, mas não de **frequência.** Para visualizar a frequência de um sinal, podemos aplicar uma Transformada de Fourrier:

Somando Sinais de Áudio

Quando dois ou mais sinais de áudio são tocados ao mesmo tempo, eles são **somados formando um único sinal:**

Somando Sinais de Áudio

Quando dois ou mais sinais de áudio são tocados ao mesmo tempo, eles são **somados formando um único sinal:**

Envelopes

Um **envelope** é uma curva que controla o valor de amplitude (ou outros parâmetros) de um sinal de áudio ao longo do tempo. Geralmente, um envelope divide o sinal de áudio em 4 etapas:

- ▶ Attack (A): A fase inicial em que o volume do som sobe de zero até seu nível máximo.
- ▶ **Decay (D)**: Período em que o volume do som diminui do nível de pico para o nível de sustentação.
- ▶ Sustain (S): O nível em que o volume do som permanece enquanto uma nota é mantida.
- ▶ Release (R): A fase em que o volume do som diminui de volta a zero após a nota ser liberada.

Envelopes são usados para sintetizar timbres diferentes!

Sintetizando notas musicais

As notas musicais são símbolos que representam alturas (frequências) específicas, sendo o alfabeto fundamental da música. No sistema ocidental, temos 12 notas:

Naturais: C, D, E, F, G, A, B

Acidentais: C#, D#, F#, G#, A#

As frequências das notas dobram de um oitava para a outra! Por isso nós as percebemos como o mesmo som, apesar das frequências diferentes!

Sequenciadores

Uma forma de sintetizar músicas é usando um **sequenciador**, que sintetiza uma sequência de notas alterando a frequência f de uma onda senoide em intervalos de tempo constantes:

Melodia: "C4 C4 G4 G4 G4 A4 A4 G4 F4 F4 E4 E4 D4 D4"

$$y(t) = A \sin(2\pi f t + \phi)$$

Sequenciadores MIDI

A maioria dos programas de produção musical, chamdas de Digital Audio Workstaions (DAWs) possuem um sequenciador MIDI, ou seja, a sequência de notas é definida pelo protocolo MIDI:

MIDI suporta:

- Diferentes durações
- Diferentes velocidades
- Múltiplos canais (instrumentos)
- Harmonias: notas simultâneas

Próxima aula

A16: Áudio II — Reprodução

- Efeitos Sonoros
- Problemas de Repetição
- Músicas de Fundo
- Sistemas de Gerenciamento de Sons
- Filtros
- Música Adaptativa