D. Obsessive String

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Hamed has recently found a string t and suddenly became quite fond of it. He spent several days trying to find all occurrences of t in other strings he had. Finally he became tired and started thinking about the following problem. Given a string s how many ways are there to extract $s \ge 1$ non-overlapping substrings from it such that each of them contains string s as a substring? More formally, you need to calculate the number of ways to choose two sequences s0, s1, s2, s3, s4, s5, s5, s6, s8 satisfying the following requirements:

- *k*≥1
- * t is a substring of string $s_{a_i}s_{a_i+1}...s_{b_i}$ (string s is considered as 1-indexed).

As the number of ways can be rather large print it modulo $10^9 + 7$.

Input

Input consists of two lines containing strings s and t ($1 \le |s|, |t| \le 10^5$). Each string consists of lowercase Latin letters.

Output

Print the answer in a single line.

Examples

input	
baba ba	
output	

input
welcometoroundtwohundredandeightytwo d
output
274201

input	
ddd d	
output	
12	