```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score,
GridSearchCV
from sklearn import svm
from sklearn.metrics import accuracy score
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
diab dataset = pd.read csv("/content/diabetes.csv")
diab dataset.head()
{"summary":"{\n \"name\": \"diab dataset\",\n \"rows\": 768,\n
\"fields\": [\n {\n \"column\": \"Pregnancies\",\n
\"properties\": {\n \"dtype\": \"number\",\n \"std\":
3,\n \"min\": 0,\n \"max\": 17,\n
\"num_unique_values\": 17,\n \"samples\": [\n 6,\n
1,\n 3\n ],\n \"semantic_type\": \"\",\n
\"description\": \"\"\n }\n {\n \"column\":
\"Glucose\",\n \"properties\": {\n \"dtype\": \"number\",\n
n \"std\": 31,\n \"min\": 0,\n \"max\": 199,\n \"num_unique_values\": 136,\n \"samples\": [\n 151,\101,\n 112\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BloodPressure\",\n \"properties\": {\n \"dtype\": \"dtype\":
                                                                                          151,\n
\"number\",\n\\"std\": 19,\n\\"min\": 0,\n\\"max\": 122,\n\\"num_unique_values\": 47,\n\\"samples\": [\n\\ 86,\n\\\"semantic_type\": \"\",\n\\"
                                                                                85\
\"column\":
\"SkinThickness\",\n \"properties\": {\n \"dtype\":
\"number\",\n \"std\": 15,\n \"min\": 0,\n \"max\": 99,\n \"num_unique_values\": 51,\n [\n 7,\n 12,\n 48\n ],\
                                                                                  \"samples\":
                                                                              ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"Insulin\",\n \"properties\":
{\n \"dtype\": \"number\",\n \"std\": 115,\n \\"min\": 0,\n \"max\": 846,\n \"num_unique_values\": 186,\n \"samples\": [\n 52,\n 41,\n
\"BMI\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7.884160320375446,\n \"min\": 0.0,\n \"max\":
67.1,\n \"num_unique_values\": 248,\n \"samples\": [\n 19.9,\n 31.0,\n 38.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"DiabetesPedigreeFunction\",\n
```

```
\"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3313285950127749,\n \"min\": 0.078,\n \"max\": 2.42,\n
\"num_unique_values\": 517,\n \"samples\": [\n 1.731,\
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"Outcome\",\n \"properties\":
{\n \"dtype\": \"number\",\n \"std\": 0,\n
\"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n
\"samples\": [\n 0,\n 1\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}","type":"dataframe","variable_name":"diab_dataset"}
diab dataset.shape
 (768, 9)
diab dataset.describe()
 {"summary":"{\n \"name\": \"diab_dataset\",\n \"rows\": 8,\n
\"fields\": [\n {\n \"column\": \"Pregnancies\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 269.85223453356366,\n \"min\": 0.0,\n \"max\": 768.0,\n
\"num_unique_values\": 8,\n \"samples\": [\n 3.845052083333335,\n 3.0,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Glucose\",\n \"properties\":
                                 \"dtype\": \"number\",\n \"std\":
 {\n
243.73802348295857,\n \"min\": 0.0,\n \"max\": 768.0,\n
\"num_unique_values\": 8,\n \"samples\": [\n
120.89453125,\n 117.0,\n 768.0\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
n },\n {\n \"column\": \"BloodPressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 252.8525053581062,\n \"min\": 0.0,\n \"max\": 768.0,\n
\"num_unique_values\": 8,\n \"samples\": [\n 69.10546875,\n 72.0,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\\n \\"properties\": \\n \"dtype\": \"number\",\n \"std\": 263.7684730531098,\n \"min\": 0.0,\n \"max\": 768.0,\n \"max\"
\"num_unique_values\": 7,\n \"samples\": [\n 768.6
20.53645833333332,\n 32.0\n ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n }\
                                                                                                     \"samples\": [\n 768.0,\n
n },\n {\n \"column\": \"Insulin\",\n \"properties\":
                                 \"dtype\": \"number\",\n \"std\":
 {\n
```

```
350.26059167945886,\n \"min\": 0.0,\n \"max\": 846.0,\n
79.79947916666667,\n
                        127.25\n
                                     ],\n
\"semantic_type\": \"\",\n
                           \"description\": \"\"\n
n },\n {\n \"column\": \"BMI\",\n \"properties\": {\n
                     \"std\": 262.05117817552093,\n
\"dtype\": \"number\",\n
\"min\": 0.0,\n \"max\": 768.0,\n \"num unique values\":
8,\n
         \"samples\": [\n
                         31.992578124999998,\n
                               \"semantic_type\": \"\",\n
             768.0\n
32.0,\n
                          ],\n
\"dtype\": \"number\",\n \"std\": 271.3005221658502,\n
\"min\": 0.078,\n \"max\": 768.0,\n
\"num unique values\": 8,\n
                            \"samples\": [\n
0.47187630208333325,\n
                          0.3725, n
                                          768.0\n
                                                      ],\n
\"semantic_type\": \"\",\n
                          \"description\": \"\"\n
    \"dtype\": \"number\",\n
                          \"std\": 260.1941178528413,\n
                            \"max\": 768.0,\n
\"min\": 11.760231540678685,\n
\"num unique values\": 8,\n
                           \"samples\": [\n
                         29.0,\n
33.240885416666664,\n
                                       768.0\n
                                                   ],\n
\"semantic_type\": \"\",\n \"description\": \"\"\n
                                                   }\
    },\n {\n \"column\": \"Outcome\",\n \"properties\":
n
       \"dtype\": \"number\",\n \"std\":
{\n
271.3865920388932,\n\\"min\": 0.0,\n
                                     \mbox{"max}": 768.0,\n
\"num_unique_values\": 5,\n \"samples\": [\n 0.3489583333333333,\n 1.0,\n 0.476
                                      0.47695137724279896\n
],\n \"semantic_type\": \"\",\n
                                     \"description\": \"\"\n
     }\n ]\n}","type":"dataframe"}
}\n
# checking for null values
diab dataset.isnull().sum()
Pregnancies
                       0
                       0
Glucose
                       0
BloodPressure
                       0
SkinThickness
                       0
Insulin
                       0
BMI
                       0
DiabetesPedigreeFunction
                       0
Age
                       0
Outcome
dtype: int64
# Visualising Missing data
import missingno as msno
msno.matrix(diab_dataset)
plt.xlabel("Missing Value Matrix")
plt.ylabel("Count")
```

Text(0, 0.5, 'Count')


```
# Pregnancies
plt.figure(figsize=(15,7))
sns.histplot(diab_dataset["Pregnancies"], facecolor='c', bins=100,
stat="density");
plt.ylabel("Percentage")
plt.title("Pregnancies")

Text(0.5, 1.0, 'Pregnancies')
```



```
# Glucose
plt.figure(figsize=(15,7))
sns.histplot(diab_dataset["Glucose"], facecolor='pink', bins=100,
stat="density");
plt.ylabel("Percentage")
plt.title("Glucose")

Text(0.5, 1.0, 'Glucose')
```



```
# BloodPressure
plt.figure(figsize=(15,7))
sns.histplot(diab_dataset["BloodPressure"], facecolor='purple',
bins=100, stat="density");
plt.ylabel("Percentage")
plt.title("BloodPressure")

Text(0.5, 1.0, 'BloodPressure')
```



```
# SkinThickness
plt.figure(figsize=(15,7))
sns.histplot(diab_dataset["SkinThickness"], facecolor='red', bins=100,
stat="density");
plt.ylabel("Percentage")
plt.title("SkinThickness")
Text(0.5, 1.0, 'SkinThickness')
```


import matplotlib.style as style
style.available

```
style.use('seaborn-pastel')
labels = ["Healthy", "Diabetic"]
diab_dataset['Outcome'].value_counts().plot(kind='pie',labels=labels,
subplots=True,autopct='%1.0f%', labeldistance=1.2,figsize=(9,9))
<ipython-input-16-149fd913f21d>:4: MatplotlibDeprecationWarning: The
seaborn styles shipped by Matplotlib are deprecated since 3.6, as they
no longer correspond to the styles shipped by seaborn. However, they
will remain available as 'seaborn-v0_8-<style>'. Alternatively,
directly use the seaborn API instead.
    style.use('seaborn-pastel')
array([<Axes: ylabel='Outcome'>], dtype=object)
```



```
from matplotlib.pyplot import figure, show

figure(figsize=(8,6))
ax = sns.countplot(x=diab_dataset['Outcome'], data=diab_dataset,
palette="husl")
healthy, diabetics = diab_dataset['Outcome'].value_counts().values
print("Sample of diabetic people: ",diabetics)
print("Sample of healthy people: ",healthy)

<ipython-input-17-fb2b693c6836>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be
removed in v0.14.0. Assign the `x` variable to `hue` and set
```

```
`legend=False` for the same effect.

ax = sns.countplot(x=diab_dataset['Outcome'], data=diab_dataset,
palette="husl")

Sample of diabetic people: 268
Sample of healthy people: 500
```


sns.pairplot(diab_dataset, hue="Outcome", palette="Reds")
<seaborn.axisgrid.PairGrid at 0x7c0a1457b790>


```
matrix = diab_dataset.corr()
f, ax = plt.subplots(figsize=(18, 18))
sns.heatmap(matrix, vmax=.7, square=True, cmap="YlGnBu", annot=True,
linewidths=.5).set_title('Correlation map')
Text(0.5, 1.0, 'Correlation map')
```



```
\"dtype\": \"number\",\n \"sto
\"min\": 109.98,\n \"max\":
\"properties\": {\n
                                                  \"std\":
22.116505963980842,\n
141.25746268656715,\n
                         \"num unique values\": 2,\n
\"samples\": [\n
                       141.25746268656715,\n
                                                  109.98\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n \ \\n \"column\": \"BloodPressure\",\n
\"properties\": {\n
                       \"dtype\": \"number\",\n
                                                   \"std\":
                        \"min\": 68.184,\n
                                                \"max\":
1.8672051632998017,\n
                        \"num_unique_values\": 2,\n
70.82462686567165,\n
\"samples\": [\n 70.82462686567165,\n 68.184\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
}\n },\n {\n
                    \"column\": \"SkinThickness\",\n
                       \"dtype\": \"number\",\n
\"properties\": {\n
                                               \"std\":
                        \"min\": 19.664,\n
1.7678935989570275,\n
                        \"num_unique_values\": 2,\n
22.16417910447761,\n
                       22.16417910447761,\n
                                                 19.664\n
\"samples\": [\n
                                       \"description\": \"\"\n
],\n
         \"semantic_type\": \"\",\n
\"column\": \"Insulin\",\n
                      \"dtype\": \"number\",\n
\"properties\": {\n
                                                  \"std\":
                       \"min\": 68.792,\n \"max\":
22.304849659757796,\n
                       \"num_unique_values\": 2,\n
100.33582089552239,\n
\"samples\": [\n
                       100.33582089552239,\n
                                                  68.792\n
],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
\"min\":
\"num_unique_values\": 2,\n \"samples\": [\n 37.06716417910448,\n 31.19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n
                                                       }\
    }\n ]\n}","type":"dataframe"}
# separating data and labels (drop outcome column)
X = diab dataset.drop(columns = 'Outcome', axis=1) # dropping col,
axis=1; dropping row, axis=0
Y = diab dataset['Outcome']
print(X)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
0	6	148	72	35	0	33.6
1	1	85	66	29	0	26.6
2	8	183	64	0	0	23.3
3	1	89	66	23	94	28.1
4	0	137	40	35	168	43.1
763	10	101	76	48	180	32.9
764	2	122	70	27	0	36.8
765	5	121	72	23	112	26.2
766	1	126	60	0	0	30.1
767	1	93	70	31	0	30.4

	DiabetesPedigreeFunction	Age
0	0.627	50
1	0.351	31
2	0.672	32
3	0.167	21
4	2.288	33
763	0.171	63
764	0.340	27
765	0.245	30
766	0.349	47
767	0.315	23

[768 rows x 8 columns]

print(Y)

```
1
766
767
       0
Name: Outcome, Length: 768, dtype: int64
sc = StandardScaler()
sc.fit(X)
standardized data = sc.transform(X)
print(standardized data)
[[ 0.63994726  0.84832379  0.14964075  ...  0.20401277  0.46849198
   1.4259954
 [-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078
 -0.19067191]
 -0.10558415]
               0.00330087  0.14964075  ...  -0.73518964  -0.68519336
 [ 0.3429808
  -0.27575966]
 [-0.84488505 \quad 0.1597866 \quad -0.47073225 \quad \dots \quad -0.24020459 \quad -0.37110101
   1.170732151
 [-0.84488505 - 0.8730192 \quad 0.04624525 \dots -0.20212881 -0.47378505
 -0.87137393]]
X = standardized data
Y = diab dataset['Outcome']
X train, X test, Y train, Y test = train test split(X, Y, test size =
0.2, stratify = Y, random state=2)
print(X.shape, X train.shape, X test.shape)
(768, 8) (614, 8) (154, 8)
classifier = svm.SVC(kernel='linear')
classifier.fit(X train,Y train)
SVC(kernel='linear')
print(sc.transform([[5,166,72,19,175,25.8,0.587,51]]))
print(classifier.predict(sc.transform([[5,166,72,19,175,25.8,0.587,51]
1)))
prediction =
classifier.predict(sc.transform([[5,166,72,19,175,25.8,0.587,51]]))
if prediction[0] == 0:
  print("The person is not diabetic")
else:
  print("The person is diabetic")
[[ 0.3429808
              1.41167241 0.14964075 -0.09637905 0.82661621 -
0.78595734
   0.34768723 1.51108316]]
```

```
[1]
The person is diabetic
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but StandardScaler
was fitted with feature names
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but StandardScaler
was fitted with feature names
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but StandardScaler
was fitted with feature names
 warnings.warn(
Y pred = classifier.predict(X test)
print(np.concatenate((Y_pred.reshape(len(Y_pred),1),
Y test.to numpy().reshape(len(Y test),1)),1))
[[0 0]]
 [0 0]
 [1 0]
 [1 1]
 [0 0]
 [0 0]
 [0 0]
 [1 \ 1]
 [0 0]
 [1 \ 1]
 [1\ 1]
 [0 0]
 [0 1]
 [1 0]
 [0 0]
 [1\ 1]
 [0 0]
 [0 0]
 [0 0]
 [0 1]
 [0 0]
 [0 0]
 [1 \ 1]
 [0 1]
 [0 0]
 [0 0]
 [0 1]
 [1\ 1]
 [0 0]
 [1 \ 0]
```

Γ.Ο.	01	
[0	6]	
[0	0]	
[0	ด1	
[1	11	
[1	1]	
[0	0]	
0]	11	
[0]	ค์	
[0 [0 [0]	01	
Įυ	وا	
[0	0]	
[0 [1 [0	ด1	
[1	ii	
Γ Τ	1]	
Įυ	وا	
[0	0]	
[1	11	
[0]		
[0	0]	
[0	1]	
[0	0]	
0.1	ด1	
[0]	01	
0] 0] 0]		
[0	6]	
[0	0]	
0.1	ดโ	
[1	01	
ΓT		
[0	ម្យ	
[0 [0 [1 [0	1]	
0]	ค์ไ	
0.1	01	
[0		
[0	ម្យ	
[0	1]	
[0	01	
[0]	ii	
[0	11	
[0	اق	
[0	1]	
[0	01	
[1		
Γ Τ	±1 11	
[0	1]	
0]	0]	
[1	11	
[0]	ค่า	
0]	01	
[0 [1 [0	وا	
[1	1]	
0]	01	
[1	01	
[]	01	
[0]	וט	
[1	1]	
[0	01	
[0]	คา	
[0	01	
[0		
0] 0]	1]	

	.1	
[0]	'1	
[0	1	
[0		
[0]	i	
0]	1	
[0	.1	
[0]	.]	
[0] [1 (
0])Î	
[0]	i	
[0	'I 'I	
[1	<u>'</u>	
0 0] 0 0] 0 0]	1	
[0	.]	
[0]		
[1 :	i	
[0	.1 1	
0 1	/] /1	
[0	' <u>l</u>	
[1:	·I	
[0 (0]	
0.1)]	
[0 ([0 (1	
[1	1	
LΙ	· <u>I</u>	
[1 [0	1	
[0]	.]	
[0]]	
[0]	1	
[0]	·‡	
0 0] 0 0] 0 0]	.]	
[0	' <u>l</u>	
[0]	1	
[0		
[0	1]	
0]	i	
[1]	1	
[]	· J	
[0	<u>'</u>	
[0		
[0	0]	
[0]	.1	
[1	i	
[0]	.] .]	
[0		
[1	.]	
[0 [1	.]	
[1]	.1	
0.1	ı İ	
[0]	1	
[0]	1	
[0	1	
[1:	·I	
[1 (
0]	1	
[0]	1	
0]		
[U	T	

```
[0 1]
 [0 0]
 [0 0]
 [1\ 1]
 [1\ 1]
 [0 1]
 [0 0]
 [0 1]
 [0 1]
 [0 1]
 [0 0]
 [0 0]
 [0 0]
 [1 \ 1]
 [0 0]
 [0 0]
 [0 0]
 [1 \ 1]
 [0 1]
 [0 0]
 [0 0]
 [0 0]
 [1\ 1]
 [0 0]
 [0 0]
 [0 0]]
X train pred = classifier.predict(X train)
training data accuracy = accuracy score(X train pred,Y train)
print('Accuracy score of the training data: ',training data accuracy)
Accuracy score of the training data: 0.7866449511400652
X test pred = classifier.predict(X test)
test_data_accuracy = accuracy_score(X_test_pred,Y_test)
print('Accuracy score of the test data: ',test data accuracy)
Accuracy score of the test data: 0.7727272727272727
from sklearn.metrics import confusion matrix, accuracy score
cm = confusion_matrix(Y_test, Y_pred)
print(cm)
accuracy_score(Y_test, Y_pred)
[[91 9]
[26 28]]
0.7727272727272727
# Performing k-fold cross-validation
k = 5
```

```
cv scores = cross val score(classifier, X train, Y train, cv=k)
print(f'Cross-Validation Scores: {cv scores}')
print(f'Mean Accuracy: {np.mean(cv scores)}')
# Performing grid search for hyperparameter tuning
param_grid = \{'C': [0.1, 1, 10, 100], 'gamma': [0.1, 0.01, 0.001, ]
0.0001], 'kernel': ['linear', 'rbf', 'poly']}
grid search = GridSearchCV(estimator=classifier,
param_grid=param_grid, cv=k, scoring='accuracy')
grid search.fit(X train, Y train)
# To get the best parameters and best score from grid search
best params = grid search.best params
best score = grid_search.best_score_
print(f'Best Parameters: {best params}')
print(f'Best Score: {best score}')
# Predictions on test set with best parameters
best classifier = grid search.best estimator
Y pred test = best classifier.predict(X test)
test accuracy = accuracy score(Y pred test, Y test)
print(f'Accuracy on Test Set with Best Parameters: {test accuracy}')
Cross-Validation Scores: [0.80487805 0.75609756 0.76422764 0.83739837
0.745901641
Mean Accuracy: 0.7817006530721045
Best Parameters: {'C': 1, 'qamma': 0.1, 'kernel': 'linear'}
Best Score: 0.7817006530721045
Accuracy on Test Set with Best Parameters: 0.7727272727272727
train df = pd.DataFrame(X train, columns=diab dataset.columns[:-1])
train df['Outcome'] = Y train
colors = ['green', 'red']
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.scatterplot(data=train df, x='Glucose', y='BMI', hue='Outcome',
palette=colors, legend='full')
plt.title('SVM Training Set')
plt.xlabel('Glucose')
plt.ylabel('BMI')
Text(0, 0.5, 'BMI')
```



```
test_df = pd.DataFrame(X_test, columns=diab_dataset.columns[:-1])
test_df['Outcome'] = Y_test
colors = ['green', 'red']
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 2)
sns.scatterplot(data=test_df, x='Glucose', y='BMI', hue='Outcome',
palette=colors, legend='full')
plt.title('SVM Test Set')
plt.xlabel('Glucose')
plt.ylabel('BMI')

plt.tight_layout()
plt.show()
```

