Información

Teórica

- ► Profesor: Damián Pinasco
- ▶ Día y horario: Jueves de 19:15 a 22:00 hs.

Consultas

- Docente: Dalia Gutiérrez Valencia
- Día y horario: Sábados de 11 a 13 hs.

Bibliografía

- ► Espacios vectoriales y matrices.
 - Apéndice A de Greene;
 - Apéndice A de Johnston-DiNardo;
 - ► Todos esos temas, y más, están en el libro de Dhrymes.
- ► Series temporales Ecuaciones en diferencias.
 - Primeros capítulos de Hamilton;
 - Capítulo 1 de Enders.
- ► Apunte de la materia (Campus virtual).

Forma de aprobación

Durante el curso los alumnos tendrán que entregar una serie de ejercicios (TP) y rendir un examen final. Para aprobar la materia será necesario que

- La nota del final sea mayor o igual a 40;
- ► La Nota=0.6*(Nota de final)+0.4*(Promedio de los TP) sea mayor o igual que 50.

Fecha del Final: a confirmar

Vectores

Maestría en Econometría–Matemática I

1er Trimestre 2023

Motivación

Supongamos que cierto producto es ofertado por 4 empresas que abastecen, en un alto porcentaje, su demanda. Las cuatro empresas, comercializan el producto bajo 4 marcas diferentes, con nombres A, B, C, y D. Imaginemos que se realiza una encuesta sobre 2000 consumidores de ese producto al comienzo y al final de determinado período de tiempo, obteniéndose los siguientes datos sobre la evolución de sus preferencias por las marcas mencionadas en el período de estudio.

	Consumidores	Aumentos			Disminuciones			Consumidores		
	Iniciales	Α	В	C	D	Α	В	C	D	Finales
Α	475	0	10	5	10	0	5	20	30	445
В	550	5	0	5	5	10	0	5	25	525
С	485	20	5	0	15	5	5	0	10	505
D	490	30	25	10	0	10	5	15	0	525

¿Qué nos dice la encuesta?

Motivación

	Consumidores				
	Iniciales	Α	В	C	D
Α	475	420	5	20	30
В	550	10	510	5	25
С	485	5	5	465	10
D	490	10	5	15	460

Entonces

$$A(1) = \frac{420}{475}A(0) + \frac{10}{550}B(0) + \frac{5}{485}C(0) + \frac{10}{490}D(0)$$

$$B(1) = \frac{5}{475}A(0) + \frac{510}{550}B(0) + \frac{5}{485}C(0) + \frac{5}{490}D(0)$$

$$C(1) = \frac{20}{475}A(0) + \frac{5}{550}B(0) + \frac{465}{485}C(0) + \frac{15}{490}D(0)$$

$$D(1) = \frac{30}{475}A(0) + \frac{25}{550}B(0) + \frac{10}{485}C(0) + \frac{460}{490}D(0).$$

Motivación

Forma matricial

$$\underbrace{\begin{pmatrix} A(1) \\ B(1) \\ C(1) \\ D(1) \end{pmatrix}}_{V(1)} = \underbrace{\begin{pmatrix} \frac{84}{95} & \frac{1}{55} & \frac{1}{97} & \frac{1}{49} \\ \frac{1}{95} & \frac{51}{55} & \frac{1}{97} & \frac{1}{98} \\ \frac{4}{95} & \frac{1}{110} & \frac{93}{97} & \frac{3}{98} \\ \frac{6}{95} & \frac{1}{22} & \frac{2}{97} & \frac{46}{49} \end{pmatrix}}_{M} \underbrace{\begin{pmatrix} A(0) \\ B(0) \\ C(0) \\ D(0) \end{pmatrix}}_{V(0)}$$

Si asumimos que este comportamiento se sostiene en el tiempo tenemos que

$$V(t+1) = MV(t)$$

Lo que implica

$$V(t)=M^tV(0).$$

¿Qué esperamos para tiempo grandes?

Repaso: Los números reales

- $\mathbb{N} := \{1, 2, 3, 4, \dots\}$ los números naturales;
- $\mathbb{Z} := \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ los números enteros;
- $\mathbb{Q} := \left\{ \frac{m}{n} : m \in \mathbb{Z} \text{ y } n \in \mathbb{N} \right\} \text{ los números racionales;}$
- Los números que no son racionales se denominan irracionales. Algunos ejemplos: $-\sqrt{2}, \sqrt{2}, -e, e, -\pi, \pi$.

El conjunto de todos los números racionales e irracionales se denomina conjunto de los números reales y se denota con el símbolo \mathbb{R} .

Repaso: Los números reales

Observación.

Se tienen las siguientes inclusiones: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Recordemos que los números reales se representan gráficamente mediante una recta la cual se denomina la recta de los números reales

Notación.

Utilizaremos el término **escalar** para referirnos a los elementos de \mathbb{R} .

¿Qué es un par ordenado? Sean $a, b \in \mathbb{R}$ (un par de números).

- Como conjunto $\{a,b\} = \{b,a\}$ no importa el orden en el que aparecen los elementos a y b;
- Cuando el orden de a y b si tiene importancia decimos que es un par ordenado y notamos (a, b) y (b, a).

Observación.

Sean $a, b \in \mathbb{R}$. Entonces (a, b) = (b, a) si y solo si a = b.

Ejemplo 1. Para mostrar el edad y el peso de cada estudiante en una clase, se puede formar pares ordenados (e, p), en los que el primer elemento indica la edad en años y el segundo elemento indica el peso en kilos. Ejemplos (42, 84), (60, 75), (75, 60).

El conjunto de todos los pares ordenados (a, b) se denomina plano,

$$\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(a, b) \colon a, b \in \mathbb{R}\}.$$

Al eje x también lo solemos denominar **el eje de las abscisas**, mientras que el eje y también se conoce como **el eje de las ordenadas**.

Si $P = (a, b) \in \mathbb{R}^2$ decimos que a, b son las coordenadas cartesianas del punto P.

Dado un punto $P = (a, b) \in \mathbb{R}^2$ tenemos asociado un segmento de recta dirigida de el origen (es decir el (0,0)) a P. Este segmento se denominara **vector** y se denotara por v = (a,b).

El vector 0 = (0,0) es el único vector que tiene longitud 0 y no tiene dirección.

Observemos que cada punto en el plano tiene asociado un vector y viceversa. Por ese motivo, las nociones de "plano" y conjunto de todos los vectores se suelen intercambiar. Sin embargo para muchas aplicaciones es importante pensar un vector no como un punto sino como un objeto con longitud y dirección.

Gracias a el Teorema de Pitágoras, podemos calcular la longitud o **norma** de un vector v = (a, b) de la siguiente manera

$$||v|| \coloneqq \sqrt{a^2 + b^2}.$$

Ejemplo 2. Calcular la norma de los siguientes vectores

(a)
$$u = (2,1);$$

(b) $v = (\sqrt{9},4);$

n-Vectores

Sea $n \in \mathbb{N}$, un n-punto (o simplemente un punto) P es una n-upla de números reales, es decir,

$$P = (a_1, \ldots, a_n) \quad a_i \in \mathbb{R}.$$

En ese caso el origen es el punto

$$0=(0,\ldots,0).$$

Dado un punto P tenemos asociado un segmento de recta dirigida de el origen a P, este segmento se denominará n-vector (o simplemente vector). Definimos \mathbb{R}^n como el conjunto de todos los n-vectores.

Observación.

Todo vector tiene asociada una longitud y una dirección. El único vector sin dirección es el vector 0 = (0, ..., 0), el que habitualmente se denomina vector nulo.

n—Vectores

Sea $v = (v_1, \dots, v_n)$, un vector en \mathbb{R}^n . Decimos que v_i es la **coordenada** i—**esima** de v y definimos la **norma** (o longitud) de v, de la siguiente manera

$$||v|| = \sqrt{v_1^2 + \cdots + v_n^2}.$$

n—Vectores

Ejemplo 3. Calcular la norma de los siguientes vectores

(a)
$$u = (2,1,3);$$
 (c) $w = (e, -\pi, 1, \sqrt{2}, 8, 35).$ (b) $v = (\sqrt{9}, 4, 7, 5);$

n–Vectores

Definición.

Dos vectores u y v son iguales, si tienen la misma cantidad de coordenadas y la i—esima coordenada de u es igual a la i—esima coordenada de v. En el caso que u y v sean iguales notaremos u = v.

n—Vectores

En algunas ocasiones los n-vectores se escriben como columnas en lugar de filas:

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Tales vectores se denominan vectores columnas.

Los vectores columnas puede transformarse en vectores filas y viceversa a través de la **operación transposición**. Esta operación sera denotada con un superindice t.

$$(v_1,\ldots,v_n)^t = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \qquad \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}^t = (v_1,\ldots,v_n)^t.$$

n–Vectores

Ejemplo 4.

$$(1,2,3)^t=egin{pmatrix}1\\2\\3\end{pmatrix},\qquad egin{pmatrix}e\\\sqrt{2}\\\pi\\4\\7\end{pmatrix}^t=(e,\sqrt{2},\pi,4,7).$$

Observación.

Si v es un vector (fila o columna) entonces $(v^t)^t = v$.

n—Vectores

Ejemplo 5. Observemos que los siguientes vectores

$$v = egin{pmatrix} e \ \sqrt{2} \ \pi \ 4 \ 7 \end{pmatrix} \quad w = (e, \sqrt{2}, \pi, 4, 7)$$

no son iguales ya que v es un vector columna mientras que w es un vector fila. Notemos que $v^t = w$ y que $w^t = v$.

Sean $u=(u_1,\ldots,u_n)$ y $v=(v_1,\ldots,v_n)$ dos vectores en \mathbb{R}^n y $k\in\mathbb{R}$. Definimos:

$$u+v\coloneqq (u_1+v_1,\ldots,u_n+v_n).$$

Regla del paralelogramo.

Sean $u = (u_1, \dots, u_n)$ y $v = (v_1, \dots, v_n)$ dos vectores en \mathbb{R}^n y $k \in \mathbb{R}$. Definimos:

$$u+v\coloneqq (u_1+v_1,\ldots,u_n+v_n).$$

Regla del paralelogramo.

Sean $u = (u_1, ..., u_n)$ y $v = (v_1, ..., v_n)$ dos vectores en \mathbb{R}^n y $k \in \mathbb{R}$.

$$u+v\coloneqq (u_1+v_1,\ldots,u_n+v_n).$$

Regla del paralelogramo.

$$u-v\coloneqq (u_1-v_1,\ldots,u_n-v_n).$$

$$u-v\coloneqq (u_1-v_1,\ldots,u_n-v_n).$$

$$u-v\coloneqq (u_1-v_1,\ldots,u_n-v_n).$$

$$u-v\coloneqq (u_1-v_1,\ldots,u_n-v_n).$$

$$u-v:=(u_1-v_1,\ldots,u_n-v_n).$$

Regla del paralelogramo.

$$kv = (kv_1, \ldots, kv_n).$$

Observar que u + v, u - v, y kv también pertenecen a \mathbb{R}^n . Definimos, además

$$-v := -1v$$
.

Propiedad.

Sean $u, v, w \in \mathbb{R}^n$ vectores y α, β escalares. Entonces

- (I) u+v=v+u; (II) (u+v)+w=u+(v+w); (III) El 0 es el único elemento neutro para la suma;

Operaciones vectoriales

Ejemplo 6. Sean u = (1,1) y v = (-2,3) dos vectores. Encuentre

(a)
$$u + v$$
; (b) $u - v$; (c) $2v$; (d) $-2u$; (e) $\frac{1}{2}u$; (f) $3u + 2v$.

Graficar los vectores encontrados.

Operaciones vectoriales

Propiedad.

Sean $v \in \mathbb{R}^n$ y $k \in \mathbb{R}$. Entonces ||kv|| = |k|||v||.

Ejemplo 7. Sea
$$v = (1, 1, -1)$$
 y $k = -3$. Entonces

$$||-3\nu|| = ||(-3, -3, 3)||$$

$$= \sqrt{(-3)^2 + (-3)^2 + 3^2}$$

$$= \sqrt{27}$$

$$= 3\sqrt{3}$$

$$= |-3|||\nu||.$$

Operaciones vectoriales

Un vector v se denomina unitario si ||v|| = 1. Observemos que si $v \neq 0$ entonces el vector

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

es un vector unitario que tiene la misma dirección de v. El proceso por el cual hallamos \hat{v} se denomina **normalización** de v.

Ejemplo 8. Consideremos el vector v = (2, -3, 8, -5). Entonces la normalización de v nos arroja el siguiente vector

$$\hat{\mathbf{v}} = \left(\frac{2}{\sqrt{102}}, -\frac{3}{\sqrt{102}}, \frac{8}{\sqrt{102}}, -\frac{5}{\sqrt{102}}\right).$$

Ejemplo 9. Supongamos que una fabrica produce cuatro artículos y que su demanda esta dada por el vector demanda d=(30,20,40,10). El precio por unidad que recibe el fabricante por los artículos está dada por el vector precio p=(\$20,\$15,\$18,\$40). Si se cumple la demanda, ¿cuánto dinero recibirá el fabricante?

Definición.

Sean $u = (u_1, \dots, u_n)$ y $v = (v_1, \dots, v_n)$ dos vectores en \mathbb{R}^N . Definimos el **producto interno o escalar** de u y v de la siguiente manera

$$u \cdot v := \sum_{i=1}^n u_i v_i.$$

Observemos que para poder realizar el producto interno entre dos vectores u y v es necesario que u y v tengan el mismo número de coordenadas.

En el caso que u y v son dos vectores columnas que poseen la misma cantidad de coordenadas definimos el **producto interno** entre u y v de la siguiente manera

$$u \cdot v := u^t \cdot v^t$$
.

Por ultimo en el caso que $u=(u_1,\ldots,u_n)$ y $v=\begin{pmatrix}v_1\\\vdots\\\ddots\end{pmatrix}$, definimos el producto escalar entre u

y v de la siguiente manera

$$u \cdot v = (u_1, \ldots, u_n) \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \sum_{i=1}^n u_i v_i.$$

Teorema.

Sean u, v, w tres vectores en \mathbb{R}^n y $k \in \mathbb{R}$. Entonces

- I) $u \cdot 0 = 0$;
- II) $u \cdot v = v \cdot u$;
- III) $(u+v)\cdot w = u\cdot w + v\cdot w;$
- IV) $(ku) \cdot v = k(u \cdot v)$;
- v) $u \cdot u \ge 0$ y $u \cdot u = 0$ si solo si u = 0.

Observación.

- Para todo vector u en \mathbb{R}^n tenemos que $||u|| = \sqrt{u \cdot u}$.
- $u \cdot v = 0$ no implica que u = 0 o que v = 0.

Teorema (Desigualdad de Cauchy-Schwarz).

Sean u y v dos vectores en \mathbb{R}^n entonces

$$|u\cdot v|\leq \|u\|\|v\|.$$

Teorema (Desigualdad triangular).

Sean u y v dos vectores en \mathbb{R}^n entonces

$$||u+v|| \le ||u|| + ||v||.$$

Luego hemos visto que la norma de un vector tiene la siguientes propiedades.

Propiedad.

Sean u y v dos vectores en \mathbb{R}^n , entonces

- I) ||v|| = 0 si y solo si v es el vector nulo;
- II) $\|kv\| = |k|\|v\|$ para todo $k \in \mathbb{R}$; III) $\|u+v\| \le \|u\| + \|v\|$.

Ángulo entre vectores

Teorema.

Sean u y v dos vectores no nulos. Si φ es el ángulo entre ellos entonces

$$\cos(\varphi) = \frac{u \cdot v}{\|u\| \|v\|}.$$

Ángulo entre vectores

Observar que Si φ es el ángulo entre dos vectores no nulos entonces $\varphi \in [0, \pi]$. Por lo tanto, $\arccos(\cos(\varphi)) = \varphi$.

Ejemplo 10. Encuentre el ángulo entre los u = (2,3) y v = (-7,1).

Ángulo entre vectores

Definición.

Sean u y v dos vectores no nulos. Decimos que u y v son **ortogonales** (o perpendiculares) si $u \cdot v = 0$ (es decir el ángulo entre ellos es $\pi/2$). Si además ||u|| = ||v|| = 1, decimos que u y v son ortonormales.

Ejemplo 11. Mostrar que los siguientes vectores son ortogonales u = (1, -2, 3, -4) y w = (5, -4, 5, 7).

Distancia entre puntos

Dados dos puntos $A, B \in \mathbb{R}^n$. Definimos la **distancia** entre A y B de la siguiente manera

$$d(A,B) = \|u - v\|.$$

donde u y v son los vectores asociados a A y B respectivamente.

Ejemplo 12. Calcular la distancia entre los siguientes dos vectores A = (1, 5, 2) y B = (-4, 3, 7).

Distancia entre puntos

Propiedad.

Sean $A, B, C \in \mathbb{R}^n$ puntos y k un escalar. Entonces

- (I) d(A, B) = d(B, A);

- (1) d(A, B) = d(B, A), (II) $d(A, B) \ge 0$; (III) $d(A, B) = 0 \Leftrightarrow A = B$; (IV) d(kA, kB) = |k|d(A, B); (V) $d(A, B) \le d(A, C) + d(C, B)$.