Characterization and adsorption potential of Lignosulfonate-based activated carbon fibers

Szu-Han Wang

Feng-Cheng Chang

Outline

- Introduction
- Materials & Methods
- Results & Discussions
- O Future Works

Introduction

• Why lignosulfonte-based activated carbon fiber & adsorption?

○ Goal—Characterize properties → investigate its adsorption potential

Preparation of Activated Carbon Fiber

Materials

O Hardwood lignosulfonate (HLS)
Polyethylene oxide (PEO) (95:5)

 $+dH_2O$

→30 wt% mixture

• @Room Temp, stir until dissolve

Methods—Production of Activated Carbon Fiber

Electrospinning

Preoxidation

Carbonization & Activation

Product

Methods—Production of Activated Carbon Fiber

Electrospinning

Preoxidation

Carbonization & Activation

Product

(1) @ 1 °C/min, 100°C (30 min)

(2) @ 1 °C/min, 300°C (30 min)

Methods—Production of Activated Carbon Fiber

Electrospinning

Preoxidation

Carbonization & Activation

Product

Analytical Methods

Factors influence adsorption ability

- Morphology → affect interactions between adsorbates and adsorbents
- Specific surface area → larger, greater potential
- \bigcirc Pore size distribution \rightarrow adsorb substances with similar diameter
- Surface properties → electrons on the surface are helpful

Methods—Characterization of Activated Carbon Fiber

Physical Characterization

Scanning Electron Microscopy (SEM)

Fiber Morphology

BET Analysis

 $(N_2@77K)$

Pore structure & Surface Area

Quenched solid density functional theory (QSDFT)

Pore Size Distribution

Chemical Characterization

Raman Spectroscopy sp² electron

Results and Discussions

Physical Characterization - Fiber Morphology (SEM)

- Morphology
- 1) Fiber Fusion → diameter varies
 → Various pore size
- Defective nest-like structure →Dispersive forces

Physical Characterization – Structure (BET)

- Pore structure
- 1) IUPAC: Mesopores (Major)
- 2) Bottleneck-like pore connection
- O Specific Surface Area
- $\approx 350 900 (m^2/g)$

Physical Characterization - Pore Size (QSDFT model)

- Pore Size Distribution
- 1) Total Pore Volume
- $\approx 0.21 0.65 \text{ cm}^3/\text{g}$
- 2) Micro/Mesopore (%)
- $\approx 30/70$
- 3) Mainly 1.6 20 nm
- 4) Hydrated metal ions' diameter → within micropore region

Chemical Characterization – π electron on surface

- O Carbon Content (≈ 50%)
- Raman Spectroscopy
- (1) Further investigate C's structure
- (2) I_D (Graphite, C-C, sp³), around 1350 cm⁻¹
- (3) I_G (Graphene, C=C, sp²), around 1580 cm⁻¹
- (4) $I_D/I_G < 1$, though I_G less \rightarrow electron rich regions exist \rightarrow beneficial to adsorption

Conclusions and Future

Conclusions and Future works

- Morphology → fiber structure creates forces to assist adsorption
- Specific surface area → large enough to perform adsorption
- Pore size distribution → similar diameter to adsorbates of interest
- Surface properties → electrons on surface assist adsorption
- LACF is a potential adsorbent!
- Future works: adsorption column test
 - → study adsorption kinetics (metal ions)

107年森林資源永續發展研討會