

NOSITEL VYZNAMENÁNÍ ZA BRANNOU VÝCHOVU I. A II. STUPNĚ

ŘADA PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXVIII/1989 ● ČÍSLO 2

V TOMTO SEŠITĚ

Spolehlivost - jeden ze základních požadavků na moderní výrobu . 41

ZAJÍMAVÁ A PRAKTICKÁ ZAPOJENÍ

Ještě jednou o časovači 555	42
Elektronika kolem nás Zvukové spínače Světelné spínače Nabíječe	49 50 51 52
Čidla a možnosti jejich využití	54
Měřič U ₇ Světelný maják Měřič síly pole Zdroj vn Indikátor tepu Měření impulsů Měření teploty Automatické zalévání Elektrický "proutek" Určení zásoby vody Pohyb tanku Plastimat Elektronická ladička	55 56 56 57 58 59 60 61 61
Indukční snímače přibližování .	63
Určení kmitočtu krystalu Zesilovač pro sluchátka Hledač kovů Přijímač signálů OMA	66 67 67 69
Osobní mikropočítače (dokončení	i

AMATÉRSKÉ RADIO ŘADA B

z AR B1) 75

AMAIERSKE HADIU RADA B

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO. Vladislavova 26, 135 66 Praha 1, tel. 26 06 51–7. Šéfredaktor ing. Jan Klabal, Redakční radu řídí ing. J. T. Hyan. Redaktor L. Kalousek, OK1FAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7. Šéfredaktor linka 354, redaktor linka 353. sekretářka linka 355. Ročně vyjde 6 čísel. Cena vytisku 5 Kčs, pololetní předplatné 15 Kčs, Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Rozšířuje PNS. Informace o předplatném podá a objednávky přijmá každa administrace PNS, pošta, doručovatel a předplatitelská středíska. Objednávky do zahraničí vyřizuje PNS – ústřední expedice a dovoz tisku Praha, administrace vývozu tisku, Kovpakova 26, 160 00 Praha 6. Viastina ulice č. 889/23. Viastina ulice č. 889/23.

Za původnost a správnost příspévku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044.

Toto číslo má vyjít podle plánu 13. 4. 1989. Vydavatelství NAŠE VOJSKO.

Spolehlivost – jeden ze základních požadavků na moderní výrobu

Se stále se zvyšující složitostí jak jednotlivých součástek, tak i jejich sestav vystupuje do popředí nutnost zjišťovat jejich spolehlivost - ať již ide o časovou stálost jejich parametrů ve zvoleném pracovním režimu nebo jejich poruchovost, protože každá oprava kompletního zařízení je složitá, nákladná a obvykle i časově náročná.

Obě dosavadní klasické testovací metody, tj. součástkový test (in-circuit) a funkční test mají svá omezení především právě ve zvyšující se složitosti součástek a systémů, které z nich byly vyrobeny. I když lze stále ještě některé součástky typu LSI a VLSI podrobit s úspěchem součástkovému testu, nelze již obvykle jednoduše testovat jejich vzájemnou součinnost. Proto se stává, že se zjistí chyby při komplexním zkoušení osazených desek s plošnými spoji, i když při testu "in circuit" byly všechny součástky shledány jako funkční.

Zdroje závad při komplexním zkoušení desek s plošnými spoji je třeba hledat především v dynamickém chování složitých součástek, neboť při stále se zvětšující hustotě součástek a při stále vyšších taktovacích kmitočtech nelze dynamické chování součástek dosud běžnými testery "in circuit" postihnout.

Podrobí-li se takové složité obvody funkčním testům, lze přijatelné míry odhalení chyb (pokud je vůbec možné) dosáhnout jen po důkladně promyšleném zkoušení za velmi dlouhou dobu (řadu měsíců). Navíc jsou diagnostické schopnosti funkčního testu silně omezené, neboť obvykle není dobrý přístup k uzlovým bodům desky s plošnými spoji, takže není možné hlášení chyb na úrovni součástek.

Navíc je samozřejmě nutné, aby vadnou desku opravoval pouze specializovaný pracovník a to pouze na speciálním testeru (on-

Z uvedených důvodů se tedy ukázalo jako nutné vyvinout a dát do provozu novou generaci testerů, tzv. multimódových (několikarežimových), které odstraňují slabá místa dosavadních testovacích metod a přístrojů. Jednou z předních světových firem, která takové testery vyrábí, je italská firma SPEA, která se od doby svého založení 1976 prosadila velmi úspěšně na světových trzích a jejíž výrobky v současné době používají přední světoví výrobci jako IBM, Hartmann a Braun, Saba, Olivetti, Philips, Siemens, Westinghouse a další. Multimódová generace testerů SPEA představuje první testovací systémy na trhu, které se opírají o zkušenosti, nasbírané při zkoušení velmi složitých konstrukčních skupin (desek s plošnými spoji).

Typické výrobky firmy - multimódové testery - jsou na protější straně obálky. Základními výrobky firmy jsou testery Digitest 100 AD a Digitest 70. Digitest 100 AD je koncipován tak, aby se s ním mohly testovat desky s plošnými spoji se složitou jak digitální, tak analogovou částí, Digitest 70 je určen k testování složitých digitálních desek s malým podílem analogové části.

Filosofie multimódových testerů vychází z toho, že jedním ze základních požadavků je jakost výrobku; jakost kromě jiného je dána dokonalým testováním, dokonalým testerem. Tester musí přitom splňovat tři hlavní požadavky: zkoušená deska musí být testována za stejných pracovních podmínek, za jakých bude použita v zařízení, test musí poskytnout jasnou a jednoznačnou diagnózu (což má následek v případě potřeby rychlou a jednoznačnou opravu), testování musí být produktivní a co nejdůvěryhod-

Multimódové testery tvoří v protikladu ke kombinovaným testovacím systémům, které se obvykle skládají z hardwarové kombinace (tester "in circuit" + funkční tester), jeden hybridní monolitický systém. Multimódové testery mohou díky své architektuře pracovat ve všech oblastech použití dynamiky. Multimódový test se skládá z těchto fází:

dynamický test analogových a digitálních součástek.

dynamický obvodový test analogových a digitálních funkčních jednotek, automatická kalibrace,

 dvnamický funkční test celé desky (konstrukční skupiny).

Měřicí strategie je založena na poznatku, že 100% odhalení chyb lze dosáhnout dynamickým součástkovým testem analogové a digitální části, po němž následuje dynamický obvodový test analogových a digitálních dílčích funkcí. Odhalené chyby jsou diagnostikovány na úrovní součástek, což umožňuje realizovat případnou opravu mimo tester a navíc pouze zaučenými pracovníky. Celá multimódová testovací strategie je založena na analýze všech teoreticky možných příčin chyb - nejsou-li při testu zjištěny žádné chyby, pracuje testovaná deska bezvad-

Při analýze možných chyb byly zjištěny tři hlavní skupiny chyb:

1. Chyby plošných spojů - zkraty mezi spoji, přerušení spojů. Tyto chyby se zjišťují měřením každého bodu proti všem ostatním.

2. Chyby součástek - chybějící nebo nezapájené součástky, součástky "otočené", mimotoleranční, vadné, jiného druhu nebo typu, s tepelnou vadou, neodpovídající specifikaci. Uvedené chyby zkouší tester u každé součástky zvlášť.

3. Vady obvodů - kritické, mezní, dynamické, možné přetížení, vazba mezi obvody, interference, teplotní. Obvodový test prověřuje dílčími funkčními testy všechny i dílčí funkce každého obvodu především v oblasti jmenovaných chyb a zajišťuje, zda odpovídají požadovaným specifikacím.

Všechny části testu probíhají v reálných časech, při imenovitých proudech a napětích, současně se však testují i mezní parametry – ověřuje se funkce desky při tzv. nejhorších podmínkách, přičemž součástkový a obvodový test mají přísnější podmínky než funkční test, aby se nemohly při funkčním testu vyskytnout žádné chyby.

S téměř exponenciálně rostoucí hustotou integrace digitálních integrovaných obvodů se stává podíl dynamických chyb desek, osazených převážně součástkami LSI a VLSI činitelem, který již nelze zanedbávat. Dynamické chování jednotlivých IO lze však testovat jen při od-povídající konstrukci "jehlové" elektroniky testeru a takové konstrukci systému, který umožní kontaktování zkoušeného obvodu se zanedbatelnými délkami vo-

K nejdůležitějším výkonovým znakům každého multimódového testeru patří vlastnosti digitální elektroniky budičů/ vlastilosti ugitalii elektioliky budicu/ snímačů. Digitesty jsou vybaveny mono-liticky konstruovanými budiči/snímači, které zaručují vzorkovací kmitočet při testu až 10 Mbit/s při strmosti čela impulsů až 500 V/s. Maximální výstupní proud budičů je 1 A. Doby čela signálu na úrovni TTL jsou mezi 8 ns (nezatížený obvod) a 20 ns. Posuv mezi jednotlivými budičí je ±3 ns. Digitální snímače testerů Digitest umožňují paralelně měřit všechny výstupy IO při součástkovém testu, popř. všechny obvodové výstupy při obvodovém a funkčním testú.

Jak již bylo uvedeno, podstatou testerů dynamický režim testování. Dynamický digitální test znamená, že

 testovací systém musí být schopen "zrealizovat" vzorkovací testovací signál minimálně 10 Mbit/s na jehle adaptéru,

testovací systém musí být schopen prověřovat testovaný IO v součástkovém testu, popř. celé zapojení při funkčním testu vzorkovacími testovacími signály s dobou čela při úrovni TTL asi 20 ns,
 reakci IO, popř. celého zapojení na testovací signál musí být nutno změřit po určité době, doba by měla být řádově stejná jako doba zpoždění průchodu signálu při přechodu z jedné logické úrovně do druhé,

 vstupní kapacita snímací elektroniky smí ovlivňovat měřené signály jen do takové míry, která je pod úrovní doby zpoždění signálu při přechodu z jedné logické úrovně do druhé (hradlovací doby)

by).
Všechny tyto požadavky jsou u přístrojů Digitest SPEA splněnv.

Dynamické testování má velkou důležitost nejen u digitálních obvodů, ale i v obvodech analogových, u nichž zajišťuje též možnost úplného zjištění případných závad. Dynamický test v analogové oblasti vyžaduje stimulační a měřicí zařízení, která jsou synchronizovatelná a jejichž časování lze programovat s rozlišením po 1 µs. U přístrojů Digitest je k dispozici k testování osm programovatelných analogových signálů, jimiž lze testovat všechny analogové součástky při reálných měřicích podmínkách, pokud jde o proud, napětí a čas. Díky impulsní měřicí technice se při analogovém testu dosahuje testovací doby takové, která je statistických metodách nedosažitelná, a která je jen zlomkem dříve nutné doby

nutné doby.

Testery SPEA jsou jen jedním z výrobků, které díky výpočetní technice přibližují realizaci snu každého výrobce: dodávat výrobky, které by byly po celou
dobu svého života bez závad, u nichž by
bylo možno použít označení CAQ –
Computer Aided Quality Assurance (jakost zajištěná díky počítači).

ZAJÍMAVÁ A PRAKTICKÁ ZAPOJENÍ

Už vrchní kurát Lacina při usínání v arestantském vagoně prohlásil, že se nic nesmí přepepřit, přepaprikovat, pře . . ., a proto se z dnešní přepočítačové, přemikroprocesorované, přeLSlintegrované elektroniky vraťme trochu zpátky – řekl bych – na zem, k tranzistorům a jednodušším integrovaným obvodům. Ne každý dosáhl již "počítačových" výšin, někteří na ně nikdy ani nedojdou, zůstanou u "úpatí kopce" a ani nechtějí ztéci ty vysoké hory. A jsou stále noví a noví zájemci, a "novorozenci je i nejstarší vtip nový".

Proto jsem vybral převážnou část takových zapojení, o nichž by někdo mohl říci, že již "vyšly z módy". Ale i móda se stále vrací a v šuplíkách se najdou součástky, z nichž lze sestavit leccos zajímavého a užitečného – i když by dnes nad tím leckdo mohl ohrnovat nos. Připočteme-li však k našemu zaostávání za světovým stavem chronický nedostatek moderních součástek a nutnost začínat vždy "při zemi", domnívám se, že výběr dále uvedených zapojení uvítají jak ti, os elektronikou začínají, tak ti, kteří si chtějí oživit dobu, kdy elektronika nebyla ještě "pře...".

Ještě jednou o časovači 555

Již v začátcích vývoje analogových integrovaných obvodů si výrobci uvědomovali, že se jejich vývoj vyplatí jen tehdy, když bude výroba produkovat miliónové série. Také proto byly jedněmi z prvních výrobků operační zesilovače. Kupř. známý obvod 741 se vyrábí od r. 1968, 709 (MAA50.) již od r. 1965 a dnes není možné ani vypočítat, kolik desitek miliónů nebo stamiliónů těchto obvodů bylo vyrobeno.

Po operačních zesilovačích se rodily monolitické stabilizátory typu 723 a současně se objevila i "pětsetpadesátpětka" – známý časovač.

Tento obvod patří dosud k nejúspěšnějším integrovaným obvodům, možnosti jeho použití snad ani nelze bezezbytku vyjmenovat. I u nás byl již obvod popsán v různých časopisech, byla zveřejněna řada zapojení – aby však podrobnější popis obvodu s typickými aplikacemi byl pokaždé po ruce, považuji za účelné shrnout všechny základní údaje.

Obvod 555 vyrábí téměř každá světová firma: Signetic NE555, Motorola MC1555, Silicon General SG555, Intersil NE555, Raytheon RM555, National LM555, v RVHP

Obr. 1. Vnitřní uspořádání integrovaného obvodu 555

ß555 a mnoho dalších výrobců pod různým označením. Totéž platí i o variantě "555" v provedení CMOS, jako Intersil 7555 apod. Jednotlivé typy se mohou vzájemně lišit v nepatrných detailech, ty jsou však prakticky zanedbatelné.

Na obr. 1 je blokové zapojení NE555. Srdcem časovače je klopný obvod R-S, na jeho vstupu R (reset, nulování) je tzv. vypínací komparátor VK, na vstupu S (set, nastavení) je spínací komparátor SK. Komparátory sé skládají z Darlingtonových emitorových sledovačů a jsou téměř stejné. Referenční napětí pro komparátory vytváří dělič s rezistory 5 kΩ. Dělič je zápojen mezi napájecí napětí a zem. Jedna třetina napájecího napětí slouží jako spínací, dvě třetiny napájecího napětí jako vypínací napětí komparátorů (napětí je k dispozici na vývodu 5). Na výstupu klopného obvodu R-S je komplementární koncový stupeň a spínací tranzistory T₁₄ a T₂₅; Ť₁₄ invertuje výstupní signál. Pomocí T₂₅ je možné zvenčí blokovat řídicí signál koncového stupně. Obvod má osm vývodů, je obvykle v plastovém pouzdře Mini-DIP, ale vyrábí se i v pouzdře TO5.

Předpokládejme, že na vývodu *2* (obr. 2), který je vstupem spínacího komparátoru (TRIGGER), je menší napětí než 1/3 *U*_B. V takovém případě výstup komparátoru překlopí klopný obvod R-S, na jeho výstupu Q bude úroveň L. Koncový stupeň (který obrací fázi) bude mít úroveň H a T₁₄ se uzavře. Tento stav je jedním z charakteristických stavů obvodu.

Druhý charakteristický stav nastane tehdy, bude-li na vývodu 6, tedy na vstupu vypínacího komparátoru, THRESHOLD, napětí větší než 2/3 U_B. Signál z komparátoru překlopí KO R-S, na jeho výstupu Q bude úroveň H, napětí na výstupu bude mít úroveň L, T₁₄ vede. To se může stát i tehdy, nezávisle na KO R-S, když do báze T₂₅ – vývod 4 – přivedeme malé napětí. Když z nějakých důvodů nepoužijeme vývod RESET, připojíme ho k napájecímu napětí. Nepoužijeme-

Obr. 3. Základní zapojení 555

vývod 5 (CONTROL VOLTAGE), připojíme jej k zemi přes kondenzátor asi 10 nF.

Na obr. 3 je základní zapojení 555 s minimálním množstvím součástek, obvod pracuje jako monostabilní multivibrátor, tzn. že při spouštěcím signálu na vstupu 2 vvrobí výstupní signál s přesně definovaným časóvým průběhem. Vezmeme kondenzátor. přes rezistor ho nabijeme na úroveň napájecího napětí U_B. Průběh nabíjení lze pozorovat pomocí vypínacího komparátoru. Zvětší-li se napětí na kondenzátoru na 2/3 U_B, vypínací komparátor překlopí KO R-S a přes tranzistor T₁₄ se kondenzátor rychle vybije. KO R-S tuto informaci zachová, T₁₄ zůstává v otevřeném stavu a kondenzátor se nemůže znovu nabíjet. Přivedeme-li však na výstup 2 (tedy na spínací komparátor) záporný impuls, KO R-S se překlopí, uzavře se T₁₄ a kondenzátor se může znovu nabíjet. Nabíjení ukončí znovu již popsaný děj a nastane klidový stav. To je činnost obvodu jako monostabilního multivibrátoru, spouštěného záporným impulsem.

Parametry 555 určují maximální časovou konstantu, které můžeme dosáhnout členem RC. Je jasné, že tranzistorem T₁₄ protéká i v uzavřeném stavu velmi malý kolektorový proud, i v komparátorech protéká malý "zbytkový" proud /_{Ihresh}. = 0,1 až 0,25 μΑ. Το omezuje nabíjecí odpor kondenzátoru na max. 20 MΩ. Rychlost komparátoru určuje nejkratší čas impulsu, který může komparátor překlopit – za pokojové teploty 20 až 60 ns. Impuls na vstupu 2 musí mít velikost 1/3 U_B, aby se přes komparátor překlopil KO R-S. Na obr. 4 je časový diagram spínání.

Obr. 4. Časový diagram spínání 555

Výsledkem jednoho pracovního cyklu bude výstupní úroveň L na vývodu 3, která tam zůstává neomezenou dobu. Na kondenzátoru je napětí blízké nule. Po příchodu záporného impulsu se výstup během 100 ns překlopí na úroveň H a začíná nabíjení kondenzátoru, průběh nabíjení je exponenciální. Rychlost nabíjení závisí na časové konstantě *RC*, nabíjení se ukončí překlopením obvodu R-S. Takto dosažený časový interval, tedy doba vzniku úrovně H na výstupu, je 1,1*RC*, v praxi lze intervaly zjistit z grafu na obr. 5.

Nabíjení kondenzátoru je možné kdykoli přerušit pomocí vstupu RESET. Na vývod 4 je třeba přivést napětí 0,4 až 1 V proti zemi a ihned nastane klidový stav, kondenzátor se vybije. Chceme-li vyloučit tuto možnost, obvykle se na RESET připojuje napájecí napětí.

Napájecí napětí obvodu 555 může být 4,5 až 18 V, ale IO většinou pracují již od 4, dokonce i od 3 V, jsou tedy kompatibilní jak s obvody TTL, tak i CMOS. Na výstupu v součinnosti s obvody TTL bude buď log. 0 nebo log. 1. Bude-li na výstupu úroveň log.

1, máme možnost jej zatížit proudem až 200 mA, napětí bude podle proudu 2,75 až 3,3 V. Při výstupní úrovni log. 0 je možná zátěž také 200 mA, při součinnosti s logikou TTL lze však výstup zatížit jen proudem 5 až 10 mA, napětí pak bude 0,1 až 0,35 V.

Obr. 5. Časové intervaly a závislost na článku RC

Obr. 6. Astabilní režim 555

Dalším základním zapojením s 555 je astabilní multivibrátor podle obr. 6. Nabíjecí rezistor je rozdělen na dva a nabíjení kondenzátoru sledují současně oba komparátory. Vstup RESET nepoužijeme, proto je připojen ke kladnému napájecímu napětí, vývod 7 je připojen na dělicí bod nabíjecího rezistoru. Po zapnutí napájecího napětí se kondenzátor nabíjí přes R_A a R_B. Dosáhne-li napětí na 7 2/3 U_B, vypínací komparátor překlopí KO R-S a sepnutý T₁₄ vybíjí kondenzátor přes R_B. Zmenší-li se napětí na kondenzátoru na 1/3 U_B, spínací komparátor překlopí KO R-S a T₁₄ se uzavře. Cyklus začíná znovu.

Perioda nabíjení bude

t₁ = 0,693(R_A + R_B)C - výstupní úroveň bude H.

perioda vybíjení bude

t₂ = 0,693R_BC - výstupní napětí bude L. Po zapnutí napájecího napětí tento pochod začíná samovolně a neustále se opakuje. Na obr. 7 je časový diagram. Na kondenzátoru je pilovité napětí, na výstupu je napětí pravoúhlého průběhu, celková perioda bude

 $T = t_1 + t_2 = 0.693(R_A + 2R_B)C$ a kmitočet oscilátoru bude

$$f = \frac{1}{T} = \frac{1,44}{(R_A + 2R_B)C}$$

Obr. 7. Časový diagram astabilního režimu 555

Obr. 8. Kmitočet astabilního multivibrátoru s 555

Kmitočet lze zjistit z grafu na obr. 8. Mezivrcholové napětí na kondenzátoru bude 1/3 Us.

U_B. V astabilním režimu bude teoreticky nejvyšší kmitočet asi 300 kHz, vezmeme-li však v úvahu teplotní stabilitu, výrobci doporučují použití jen do 200 kHz. Zahájíme-li provoz impulsem, jeho perioda musí být kratší, než je nastavená perioda. Bude-li na vstupu 2 úroveň L delší dobu, než odpovídá zvolené periodě, výstup bude na úrovní H tak dlouho, pokud vstup zůstává na L. Bude-li na vstupu RESET napětí větší než 1 V, obvod bude pracovat normálně, bude-li menší než 0,4 V, výstup zůstává trvale ve stavu L až do příchodu impulsu na vývod 2.

Časovací doby se mění se změnou napájecího napětí jen nepatrně, typicky 0,1 %/1 V. Změna teploty ovlivňuje přesnost jen nepodstatně: teplotní drift v astabilním režimu je asi 150 ppm/°C.

V uvedeném astabilním režimu je na výstupu poměr signál-mezera téměř 1:1. Chceme-li jej podstatně měnit, použijeme zapojení podle obr. 9. Kondenzátor Č se nabíjí přes R_A a vybíjí přes R_A+R_B.

Obr. 9. Modifikace poměru signál-mezera s 555

Záporný impuls na výstupu způsobí, že obvod bude až do vypnutí napájecího napětí neovladatelný. Po novém připojení napájecího napětí bude stav opět normální. Proto při indukční zátěži obvod chráníme podle obr. 10.

Obr. 10. Ochrana obvodu před poruchou

Kromě vnitřních děličů a členů RC můžeme ovlivnit referenční napětí $U_{\rm REF}$ (obr. 1) a tím i časovací možnosti obvodu ovládáním vývodu 5 (control voltage). V monostabilním režimu se může regulační napětí na tomto vývodu pohybovat od 0,45 do 0,9 $U_{\rm B}$ (vnitřní dělič dává 0,67 $U_{\rm B}$), v astabilním režimu od 1,7 V do $U_{\rm B}$.

Po rozšíření obvodu 555 jeho aplikace dosáhly takových možností, jakých dosud neměl snad žádný obvod. Jeho použití usnadňuje i volba napájecího napětí v širokých mezích.

Obr. 11. Časovací obvod s možností startu a zastavení (Re – indukční zátěž)

Na obr. 11 je 555 v režimu časovacího obvodu s možností startu a zastavení. V klidovém stavu je na výstupu stav L, proto je relé přitaženo. Stiskneme-li tlačítko start,

výstup se překlopí, bude na něm úroveň H a začíná časovací interval, relé bude po tu dobu v klidovém stavu. Po době, určené členem *RC*, relé znovu přitáhne. Chceme-li interval přerušit, stiskneme tlačítko RESET a časovací interval předčasně ukončíme.

Obr. 12. Časovací obvod s jemnou regulací

Na obr. 12 je podobné zapojení, ale s rozdílem, že přes relé v klidovém stavu neteče proud, přitáhne až po stisknutí tlačítka *start*. Dobu intervalu můžeme jemně regulovat napětím, které přivedeme na vývod 5 (CONTROL VOLTAGE).

Obr. 13. Časovač spouštěný dotekem

Na obr. 13 je podobné zapojení, jeho činnost lze řídit "kapacitně", tj. dotykem. Brumový signál, přivedený na vývod 2, překlopí spínací komparátor a uvede obvod do provozního stavu. Ochranný rezistor 27 kΩ chrání obvod proti okolní úrovni brumu ze síťového napětí. Není-li poblíž zdroj rušicího napětí, je možné odpor rezistoru poněkud zvětšit.

Obr. 14. Astabilní multivibrátor ze dvou monostabilních

Na obr. 14 je astabilní multivibrátor sestavený ze dvou obvodů 555. Jeho parametry jsou lepší než parametry astabilního multivibrátoru s jedním obvodem 555. U tohoto zapojení může určit poměr signál-mezera libovolně s rozdílem i několika řádů. Ze dvou výstupů můžeme nezávisle napájet dva spotřebiče, relé nebo pod. Kmitočet výstupního pravoúhlého napětí bude

$$f = \frac{0.91}{(R_A + R_B) C}$$

a poměr signál-mezera

$$k = \frac{R_B}{R_A + R_B}$$

Obvod je necitlivý na impulsy, které přicházejí během časovací doby.

Na obr. 15 je zapojení monostabilního obvodu, na jehož výstupu bude vždy úroveň H, pokud po prvním spouštěcím impulsu přichází další. Bude-li mezi dvěma spouštěcími impulsy mezera větší než původně nastavená, výstup se překlopí do stavu L. Hradly TTL je možné vždy zastavit nabíjení C a tak udržet na výstupu úroveň H. Obvod lze použít např. v hlídacích zařízeních ke kontrole stavu bdělosti hlídače, neboť není-li

Obr. 15. Monostabilní obvod s možností nového spouštění

v určitých intervalech stisknuto kontrolní tlačítko, kterým se přivádí spouštěcí impuls, nastane poplach.

U obvodu 555 je charakteristické, že již jeho základní zapojení umožňuje použít jej k nejrůznějším účelům. Na obr. 16 je v podstatě základní zapojení, u něhož na vývod CONTROL VOLTAGE přivádíme různé řídicí signály. Kmitočet astabilního multivibrátoru ovlivňuje nejen člen RC, ale i řídicí napětí. Jeden vstup komparátorů je připojen na dělič referenčního napětí, který dělí napájecí napětí na třetiny a určuje překlápěcí úroveň obou komparátorů. Přivedeme-li na dělič vnější napětí, změníme tím nastavený poměr děliče napětí a tím i překlápěcí napětí komparátorů.

Obr. 16. Řízení astabilního multivibrátoru externím napětím

Na obr. 17 je diagram pro externě řízený multivibrátor, řídicím napětím je sinusový signál. Mezivrcholové řídicí napětí je sai 3 V, mění se pomalu a vzniká šířkově modulovaný impuls, popř. sled impulsů. Řídicí napětí ovlivňuje především vypinací komparátor, proto se mění napětová úroveň vypinání, mění se časový interval. Obvod je rychlejší, než je řídicí napětí, proto je schopen sledovat změny, které se projeví změnou šířky impulsů.

Obr. 17. Diagram pro řízení astabilního multivibrátoru sinusovým napětím ($U_B=5~V, R_A=3.9~k\Omega, R_B=3~k\Omega, C=10~nF$)

Na obr. 18 je diagram, odpovídající řídicímu napětí trojúhelníkovitého tvaru mezivrcholové velikosti 9 V. Vlivem tohoto napětí se změní činnost obou komparátorů a vznikne modulace nejen šířková, ale i polohová (PPM). Souvislost mezi vstupním řídicím signálem a šířkou výstupního impulsu a čet-ností je značně složitá a souvislosti nejsou lineární. Někdy tento vztah může být i rušivý a pak musíme pozměnit zapojení podle obr. 19. Na vývod 2 připojíme signál, který máme modulovat. Tedy kmitočet a poměr signálmezera je dán, spouštění se uskutečňuje v určených časových intervalech. Na výstu-pu vznikají impulsy podle členu *RC*. Vlivem externího řízení se mění režim vypínacího kondenzátoru a tím i výstupní signál. Diagram je na obr. 20. Výstupní signál je vázán na náběžnou hranu vstupního signálu, ale jeho týlová hrana je závislá na řídicím napětí. Překlopení může nastat i dříve i později, a tak vznikne šířková modulace.

Obr. 18. Diagram pro řízení astabilního multivibrátoru trojúhelníkovitým napětím $(U_B=5~V,~R_A=47~k\Omega,~R_B=100~k\Omega,~C=0,1~\mu F)$

Obr. 19. Modulace šířky impulsů monostabilním obvodem

Obr. 20. Časový diagram modulace

Když chceme pozorovat nějaký děj nebo změnu (vynechání impulsu nebo poruchu pravidelnosti kmitočtu) použijeme zapojení podle obr. 21. Vstupní signál úrovně H tranzistor uzavře, na výstupu bude úroveň L.

Obr. 21. Indikace vynechání impulsu

Vlivem vstupního impulsu bude na výstupu úroveň H. Je-li kmitočet vstupních impulsů vysoký, spouštěcí impuls občas zastaví nabíjení kondenzátoru a nabíjecí doba je krát-ká – napětí na C pak nedosáhne překlápěcí úrovně pro vybíjecí kondenzátor, protože se předčasně vybije přes tranzistor. Mají-li vstupní signály stále stejný kmitočet, napětí na kondenzátoru (tj. pilovité napětí) bude stálé. Opozdí-li se nějaký impuls, pilovité napětí se mění, napětí na kondenzátoru bude větší; bude-li nějaký spouštěcí impuls vynechán, výstup se překlopí a bude na něm

Obr. 22. Diagram vynechaného impulsu $(R_A = 1 \text{ k}\Omega, C = 100 \mu\text{F})$

úroveň L. Při příchodu nového spouštěcího impulsu bude na výstupu opět úroveň H. Diagram je na obr. 22. Pomocí tohoto zapojení můžeme indikovat pohyb, otáčení nebo poruchu provozu.

Je známo, že monostabilní časovací obvody řady TTL (74121, 74123 a další) mají maximální časové konstanty dosti malé, $R_{\rm t}$ může maximálně být 5 až 50 k Ω . I když použijeme v zapojení přídavný tranzistor, maximální $R_{\rm t}$ nemůže překročit 2 M Ω . U obvodu 555 může být $R_{\rm t}$ až desetinásobný –20 M Ω a tak při stejné kapacitě kondenzátoru C může časovací doba dosáhnout desetinásobku.

Obr. 23. Monostabilní obvod s dlouhým časem

Na obr. 23 je zapojení časovače; který je přizpůsoben k logice TTL. Pro velmi dlouhé časy jsou v členech *RC* elektrolytické kondenzátory velkých kapacit nevhodné, protože mají velký svodový proud, čehož důsledkem je nereprodukovatelnost dlouhých spinacích časů. Pro tento účel jsou vhodné kondenzátory s polykarbonátovou fólií. Výstup časovače přizpůsobíme k dalším obvodům hradlem, a jak vstupní, tak výstupní hradlo může současně vykonávat logickou funkci.

Obr. 24. Poměr signál-mezera 50 %

Chceme-li získat na výstupu pravoúhlý signál s přesným poměrem signál-mezera 1:1, použijeme zapojení podle obr. 24. Generátor má nezávisle zvolitelné R_A a R_B. Pro výstupní úroveň H platí:

 $t_1 = 0.693 R_A C$, pro výstupní úroveň L platí:

$$t_2 = \frac{R_A R_B}{R_A - R_B} \quad C \text{ In } \frac{R_B - 2R_A}{2R_B - R_A}$$

a $T=t_1-t_2$

kmitočet bude:

$$f = \frac{1}{t_1 + t_2}$$

Je si třeba uvědomit, že bude-li $R_{\rm B}$ větší než $R_{\rm A}/2$, nebude obvod kmitat, protože se na spínací komparátor nedostane signál potřebné úrovně.

Na obr. 25 je poplašné zařízení, které reaguje na otevírání dveří, tzn. že dveřní kontakty jsou při zavřených dveřích rozpojeny. Po zapnutí ochrany tlačítkem start a spínačem S bude na výstupech obou časovačů úroveň L, protože kondenzátory C_A a C_B budou bez náboje. Za nějaký čas kondenzátory budou nabité, ale výstupy budou trvale na úrovní L, časovací kondenzátory jsou zkratovány vnitřním tranzistorem. Spouštění časovačů je vyvoláno záporným impulsem

Obr. 25. Poplašné zařízení – v klidovém stavu kontakty relé rozpojeny

Obr. 26. Poplašné zařízení s mikropočítači

Obr. 27. Indikátor překročení stanovené rychlosti

na vstupech 2 (TRIGGER). Řidič, když se přesvědčil, že dveře a ostatní jištěná místa jsou uzavřena, zapne zařízení. Před opuštěním vozu stiskne tlačítko Tl. První obvod produkuje na výstup jen kladný impuls, ale ten je zkratován otevřeným tyristorem Ty. Ke konci časového intervalu bude na výstupu IO1 úroveň L, tyristor se uzavře. Perioda prvního časovače (doba uvedení do pohotovostního stavu) má být několik sekund, aby řidič mohl klidně vystoupit a za sebou uzavřít dveře. Otevření jištěných dveří (kromě řidičových) vyvolá spouštěcí signál pro poplach - na výstupu IO2 bude úroveň H a relé zapne např. houkačku. Dobu houkání určíme výběrem R_B-C_B. Chce-li řidič nastoupit do vozu, otevře svoje dveře a má čas několik sekund k tomu, aby vypnul zařízení.

Na obr. 26 je poplašné zařízení, které je aktivováno rozpojením některého z několika spinačů. Mezi výstupy obou 555 je relé s odběrem do 100 mA, jeho kontakty v sepnutém stavu spínají houkačku. Relé může sepnout jen tehdy, bude-li tranzistor T otevřen, tj. tehdy, bude-li na výstupech obou 555 úroveň L. Oba časovače pracují ve stejném režimu. Budou-li časovací kondenzátory (C₁ a C₂ – mají být s pevným dielektrikem, v žádném případě elektrolytické) zkratované, na výstupech bude úroveň H.

Zařízení bude neúčinné, bude-li zablokován první časovač (spínačem S zkratujeme C₁), tranzistor nebude mít napájecí napětí, je možné nastupovat, vystupovat z vozu. Důležité je umístit spínač S na správném místě. Pohotovostní stav nastane při rozpojení kontaktů tohoto spínače, potom ještě máme několik sekund na vystoupení z auta a zavření dveří.

Zapojení druhého časovače je obdobné. Ochranné kontakty, které při zavřených dveřích jsou sepnuté, můžeme montovat na všechny dveře, kryt motoru, zavazadlového prostoru, s úpravou i pro střešní zavazadla, na uzávěr henzinové nádrže atd.

Na obr. 27 je indikátor překročení stanovené rychlosti u auta. V různých státech platí různá rychlostní omezení na různých silnicích. Podle toho se nastaví trimry P₁. P₂, nebo i větší počet trimrů (mohou mít odpor

1 až 10 $M\Omega$). Trimr P_3 určuje výstupní kmitočet signálu pro reproduktor nebo sluchátko. Přepínačem Př volíme dovolenou rychlost, při jejímž překročení se má ozvat varovný signál.

Funkce obou časovačů je stejná. Na vstup IO₁ přivádíme záporné impulsy. Impuls, který přichází během nabíjení C₁, kondenzátor vybije a nabíjení začíná znovu. Impulsy vyvolají na výstupu IO₁ pravoúhlé napětí, odpovídající četnosti impulsů.

Clen RC a IO₂ je zvolen tak, že kontroluje kmitočet pravoúhlého signálu na výstupu IO₁. Týl impulsů, které přicházejí pomalu nebo velmi rychle, vyvolá časovací periodu. Rychle přicházející impulsy způsobí na výstupu IO₁ trvalý stav H, který umožní, aby se kondenzátory nabily a na výstupu IO₂ bude tedy stav L, který trvá až do následujícího spouštěcího impulsu. Protože četnost impulsů odpovídá rychlosti vozidla, vyvolá podle nastavení zvukový signál, který nás upozorní, že máme jet pomaleji. Převod rychlosti vozidla na impulsy je mechanickou záležitostí (impulsy lze odvodit od pohonu tachometru nebo rotujícího magnetu, viz např. AR A2/1977). Diagram signálů je na obr. 28.

Obr. 28. Diagram signálů překročení rychlosti

Obr. 29. Policejní siréna

Na obr. 29 je zapojení sirény, která napodobuje policejní. Její signál může být velmi účinným poplašným signálem v nejrůznějších hlídacích zařízeních.

IO2 po zapnutí napájecího napětí začíná pracovat jako astabilní multivibrátor. Na kladném pólu časovacího kondenzátoru bude napětí pilovitého průběhu, nejvhodněj-ší kmitočet zvolíme volbou kapacity kondenzátoru (až 100 μF). Napětí pilovitého průbě-hu moduluje signál z IO₁, který má kmitočet několik kHz (lze nastavit trimrem P). Výstupní signál zesílíme tranzistory v Darlingtonově zapojení. Zkreslení v tomto případě můžeme zanedbat. Protože výstupní signál má pravoúhlý tvar, bude jeho výkon při napájení 12 V větší než 6 W, což postačí na velmi hlasitý a nepříjemný zvukový efekt.

Obr. 30. Obvod pro signál burst

K různým měřením se často používá signál tzv. burst. Při měření na osciloskopu je důležitým požadavkem, aby byl osciloskop spouštěn tímto signálem. Řídicí impuls spouští osciloskop a signál "burst" vvrobíme obvodem 555. Na obr. 30 první IO na popud vstupního signálu podle členu RC uvede v činnost druhý IO. Časování prvního IO si zvolíme tak, aby z měřicího signálu bylo vytvořeno alespoň deset period. Výstup prvního IO na vstupu druhého IO uzavře astabilní klopný obvod, na jehož výstupu bude pravoúhlý průběh.

Na obr. 31 je zapojení pro zvláštní použití časovačů. Sekvenční (za sebou jdoucí) časování můžeme použít tehdy, když potřebu-jeme vykonat určité úkony v časové posloupnosti, za sebou. Tento případ může nastat kupř. při spouštění topení, otevírání kombinačních zámků, spouštění různých funkcí strojů a zařízení apod. Časovače spouští postupně v závislosti na kapacitě kondenzá-

torů C předcházející časovač, který předtím vytvořil potřebný interval a ukončil ho.

První časovač je spuštěn záporným impulsem, na jeho výstupu bude kladný impuls v trvání asi 10 ms. Ten spustí druhý časovač, který bude mít výstupní impuls délky asi 50 ms. Ten opět spustí třetí časovač (délka impulsu 20 ms), který může spustit další, a tak dále. Poslední – je-li třeba – může opět spustit první a znovu opakovat celý pochod až do vypnutí. Od okamžiku spouštěcího impulsu lze tedy získat signály, kterými můžeme uvést do chodu nějaké zařízení za 10, 60 a 80 ms. Je samozřejmé, že intervaly můžeme zvolit libovolně dlouhé podle potře by, od mikrosekund až do několika minut i více (podle diagramů na obr. 5 a 9.)

Obr. 32. Automatická nabíječka

Na obr. 32 je automatická nabíječka pro tužkové akumulátory NiCd s kapacitou 450 až 500 mA/h. Horní konec vnitřního děliče obvodu 555 je připojen na napájecí napětí, které není stabilizováno. Zenerova dioda s předřadným rezistorem stabilizuje napětí dělicího bodu. Vnitřní komparátory sledují napětí nabíjených akumulátorů. Potenciometry P₁ a P₂ lze ovládat komparátory: zmenší-li se napětí akumulátorů pod určitou mez, překlopí se spínací komparátor podle nastavení P₁ a na výstupu obvodu bude napětí úrovně H - akumulátory se nabíjejí. Dosáhne-li napětí na akumulátorech požadované velikosti, překlopí se vypínací komparátor (podle nastavení P2) a napětí na výstupu bude úrovně L. Dioda nepovede, nabíjení je ukončeno. Tento pochod se stále opakuje, akumulátory budou stále provozuschopné.

Na obr. 33 je zpožďovací obvod, který umožňuje, že vnitřní osvětlení vozu zůstává nějakou dobu svítit i po uzavření dveří.

V klidu, když dveře jsou zavřené a dveřní kontakty rozpojeny, vnitřní osvětlení je vypnuto. Přes žárovku a D₁, R₃ se nabíjí kondenzátor C₁ (tantalový) a přes D₁, R₄ kondenzátor C₂ (tantalový). Člen R₄, C₂ chrání časovač před vlivem falešných impulsů, především od zapalování. Po nabití C1 bude na výstupu časovače napětí úrovně L. V tomto stavu je odběr zařízení asi 10 mA.

> Obr. 31. Sekvenční časovací obvod

Když otevřeme dveře, dveřní spínač se sepné a rozsvítí vnitřní žárovku, C1 se vybije přes R₁, D₂, kondenzátor C₂ se vybije přes R₄ C₁ Zavřeme-li dveře, napájecí napětí bude i na druhém přívodu žárovky, časovač je po nabití C2 napájen potřebným napětím. Nabíjení C₁ probíhá pomaleji, protože proud protéká přes D₁, R₃. Tranzistor T₃ bude otevřen a napájí T2, přes který se napájí i časovač. Otevře se T₁ (nahrazuje na nějaký čas dveřní spínač) a žárovka svítí dále.

Časovač pracuje, C₁ se nabíjí přes R3, až napětí na něm dosáhne 2/3 napájecího napětí a časovací doba končí. Tranzistor T1 se

Obr. 33. Zpožďovací obvod

uzavře, žárovka vnitřního osvětlení zhasne. Uzavřou se i tranzistory T2 a T3, ale to už nehraje žádnou roli, protože časovač je napájen již přes žárovku. C1 se nabíjí dále, ale to nemá vliv na další činnost. Obvod se dostal do klidového stavu. Tedy po uzavření dveří (podle nastavení) žárovka bude svítit ještě 10 až 15 sekund, což postačí na různé úkony: zapnout bezpečnostní pás, vyhledat klíč zapalování, atd. S malou úpravou je zapojení schopné převzít i úlohu zabezpečovacího zařízení.

Obr. 34. Generátor funkcí

Na obr. 34 je generátor funkcí s časovačem 555. V podstatě se jedná o základní zapojení astabilního multivibrátoru. Kondenzátor na vývodech 2 a 6 by se po zapnutí nabíjel přes rezistor exponenciálně. Nahradímé-li rezistor generátorem proudu, nabíje-

ní bude mít lineární průběh.

V uvedeném zapojení se kondenzátor nabíjí i vybíjí přes generátory proudu, které jsou připojeny na výstup DISCHARGE. Po zapojení napájecího napětí bude na kondenzátoru C₁ nulové napětí. Proud tranzistorem T₃ se uzavírá přes \hat{R}_7 a D_4 . Vzhledem ke kolektorovému napětí T3 jsou diody D2 a D5 uzavřeny. Proud generátoru s T₂ začíná přes D₃ nabíjet C1, na němž se napětí zvětšuje lineárně, dosáhne-li 2/3 napájecího napětí, vypínací komparátor se překlopí a kondenzátor se začíná vybíjet. Na výstupu DISCHARGE bude malé napětí, proud T2 přes D2 bude zkratován a D3 s D4 se uzavřou. Takto střídavě spínaná a vypínaná čtveřice diod způsobí, že na kondenzátoru bude napětí trojúhelníkovitého průběhu, které lze regulovat P1, T₁ pracuje jako obraceč fáze (má stejný kolektorový i emitorový odpor). Zapojení řídicího obvodu s potenciometrem P₁ zajistí v obou směrech stejný průběh nabíjení i vybíjení. Dioda D₁ kompenzuje teplotní závislost činnosti T₁

Z kondenzátoru C₁ můžeme přes emitorový sledovač (na obr. 34 není nakreslen) odebírat pilovitý signál. Z vývodu 3 lze odebírat pravoúhlý signál na malé impedanci. Bude-li napájecí napětí 15 V, bude na C₁ mezivrcholové napětí 5 V, na výstupu bude při zatížení do 100 mA mezivrcholové napětí asi 10 V. Potenciometrem můžeme měnit kmitočet v poměru asi 1:10. Lze dosáhnout maximálního kmitočtu až 100 kHz, minimální kmitočet (při změně C_1) je závislý na zbytkovém proudu C_1 .

Na obr. 35 je jiný typ generátoru pilovitého napětí. Časovač pracuje i v tomto zapojení jako astabilní multivibrátor, ale byl doplněn tranzistorem, který je závislý na nabíjení kondenzátoru. Po zapnutí napájecího napětí se začíná C₁ nabíjet přes R₁, R₃. Jak se na kondenzátoru zvětšuje napětí, na rezistorech se úbytky napětí zmenšují a do kondenzátoru přítéká menší proud. T₁ kontroluje napětí na vývodu 7 a změny napětí s malou odchylkou vede přes C₂ na společný bod děliče R₁, R₂. To způsobí, že kondenzátor bude nabíjen konstantním proudem.

Obr. 35. Generátor pilovitého napětí

Toto zapojení pracuje jen za určitých podmínek, měníme-li součástky bez rozmyslu, nebude nabíjecí proud lineární. Pro nizké kmitočty by bylo třeba, aby měl kondenzátor C2 neúměrně velkou kapacitu, při vysokých kmitočtech emitorový sledovač už nebude schopen sledovat rychlé záporné skoky. Z vývodu 3 i nyní odebíráme pravoúhlé napětí, můžeme zatěžovat i výstup pilovitého napětí. Linearita může být i podstatně lepší než 1 %, použijeme-li tranzistor s velkým zesílením.

Obr. 36. Měnič napětí-kmitočet

Na obr. 36 je generátor impulsů, lépe řečeno převodník napětí-kmitočet. Opět se jedná o astabilní multivibrátor, který pracuje v širokém pásmu kmitočtů, popř. napětí. Operační zesilovač typu 741 má na neinvertující vstup přivedeno řídicí napětí, které je přes T_1 zavedeno na invertující vstup. Protože zesilení OZ je velké, pracovní bod T_1 je velmi stabilní. Kolektorový proud T_1 je stabilizován díky T_2 a T_3 , T_4 , takže konverze napětí-proud je velmi lineární. Nejlepších výsledků je možné dosáhnout v kmitočtovém pásmu 100 Hz až 10 kHz. Linearitu dále zlepšuje i vyrovnání ofsetu operačního zesilovače. Na vyšších kmitočtech je možné zmenšit kapacitu kondenzátoru C_1 asi na 2 nF.

Na obr. 37 je jednoduchý analogový měřič kmitočtu, v němž jsou použity dva obvody 555. Na vstup se přivádí pravoúhlé napětí (sinusové nebo pilovité je třeba převést na pravoúhlé), kondenzátorem C₁ se diferencuje, záporné impulsy se zkratují diodou D₁. Na kolektoru T₁ se objeví kladné impulsy, kterými se řídí IO₁, pracující v monostabilním

Obr. 37. Měřič kmitočtu

režimu. Doba, určená R₉, C₃, je 1,1R₉C₃. Impulsy přicházející na vstup spouští časovač. Člen R₇C₄ integruje výstupní impulsy a odpovídající napětí indikuje měřidlo (lineární průběh stupnice). Budou-li vstupní impulsy častější než obvod může zpracovat během nastavené periody, přichází na vstup 2 IO1 spouštěcí impuls i během této doby. Tyto signály jsou však neúčinné, výstup 3 bude ve stavu H a udržuje T2 v otevřeném stavu. Vstupy obou IO jsou však spojeny přes R₄ a impuls neúčinný pro IO₁ spouští IO2. který mění svůj stav a jeho výstup po dobu danou R₁₄, C₆ bude na úrovni H. Začne blikat D2, oznamující, že je vstupní kmitočet vyšší, než může zpracovat IO1. V tom případě má ručka měřidla plnou výchylku a je tedy třeba přepnout přepínač Př na vyšší rozsah.

Přístrojem můžeme měřit kmitočet od několika Hz asi do 50 kHz, tedy v pásmu nf techniky. Přístroj cejchujeme normálovými rezistory R₉ až R₁₂, příp. R₈ tak, že přivádíme na vstup signál známého kmitočtu.

Obr. 38. Generátor pravoúhlého signálu s proměnným činitelem plnění

Na obr. 38 je generátor pravoúhlého napětí, u kterého můžeme nastavovat poměr signál-mezera až 1:1000. Nabíjení a vybíjení časovacího kondenzátoru probíhá odděleně a časy budou proto určeny jen vlastnostmi diod a komparátorů.

Při zapnutí napájecího napětí se nabíjí kondenzátor C přes R_4 , D_1 , P_1 , dioda D_2 je uzavřena. Po dosažení prahového napětí začíná vybíjení. V tomto okamžíku je na vývodu 7 téměř nulové napětí a kondenzátor se vybíjí přes R_3 , D_2 , P_2 , dioda D_1 bude uzavřena. Bude-li $P_1 = P_2 = 10~\text{M}\Omega$ a $R_3 = R_4 = 1~\text{k}\Omega$, dostaneme poměr 10^4 . Změnou P_1 a P_2 se však mění i nastavený kmitočet.

Obr. 39. Generátor pravoúhlého signálu s konstantním kmitočtem

Na obr. 39 je obdobný generátor, jehož kmitočet se při změně poměru signál-mezera nemění. S uvedenými součástkami může mít výstupní signál úroveň H od 0,01 do 99,99 % doby periody podle nastavení P₁. U generátorů (obr. 38 a 39) nemůžeme vypočítat dobu period obvyklým způsobem,

protože diody ovlivňují dobu nabíjení i vybíjení kondenzátoru. V astabilním režimu při napájecím napětí 15 V doba periody *T*= =0,76*RC*, při napájecím napětí 5 V doba periody *T*=1,4*RC*. Vidíme, že v těchto aplikacích napájecí napětí silně ovlivňuje periodu (kmitočet), což může být někdy i na závadu.

U multivibrátorů se časovací kondenzátor nabíjí přes dva a vybíjí přes jeden rezistor.

Obr. 40. Impulsní generátor s činitelem plnění 50 %

To má za následek, že časové konstanty se od sebe liší a liší se i činitel plnění. Podle obr. 40 můžeme dosáhnout činitele plnění(poměr signál-mezera) přesně 50 % při libovolném kmitočtu (i při změně kmitočtu).

Kondenzátor C₁ se nabíjí přes R₁ a tranzistor T₁, který je díky R₂ po dobu nabíjení otevřen. Bude-li na vývodu 7 úroveň L, tranzistor se uzavře, vede dioda D₁. Kondenzátor se vybíjí přes D₁ a přes R₁. Jak při nabíjení, tak i při vybíjení je R₁ zapojen v sérii s jedním přechodem p-n: ve vodivěm stavu při nabíjení je to přechod tranzistoru, při vybíjení dioda. Použije-li se jako T₁ spínací tranzistor, volíme jako D₁ germaniovou nebo Schottkyho diodu.

Obr. 41. Stabilizovaný zdroj záporného napětí

Občas se stává, že v nějakém zapojení dodatečně zjistíme, že potřebujeme i záporné napájecí napětí. Bez velkých komplikací i do hotového zařízení můžeme dodatečně vestavět zdroj záporného napětí podle obr.

41. Časovač 555 pracuje v astabilním režimu, na výstupu bude mít symetrické pravoúhlé napětí s amplitudou rovnou napájecímu napětí. Při čelu impulsu na výstupu časovače se kondenzátory C2 a C4 nabíjejí přes D₁ na velikost napájecího napětí, D₂ nevede. Při týlu impulsu se D₁ uzavře a značná část náboje C₂ přes diodu D₂ protéká do C₃. Po překlopení se nabíjí C₄ přes C₃ a D₃ asi na dvojnásobek napájecího napětí. V následující záporné půlperiodě nabije toto zdvojené napětí přes D₄ kondenzátor C₅ a vznikne výstupní záporné napětí.

Mezi napájecí napětí a zdvojovač napětí jsou připojeny na vstup RESET R₃, R₄ jako děliče. Objeví-li se na výstupu děliče napětí větší než -15 V, časovač přestane pracovat, napětí na výstupu se zmenší, tím se zmenší i napětí na děliči, obvod 555 začíná opět pracovat. Popsaná činnost se do jisté míry podobá činnosti spínaného zdroje. Při uvedených součástkách je výstupní napětí 15 V stabilní v mezích ±1 % do maximální zátěže asi 30 mA. Změnou odporu rezistorů děliče můžeme dosáhnout i jiných výstupních napětí.

555

Obr. 42. Impulsní generátor

Na obr. 42 je generátor signálu s činitelem 50 % s minimálním počtem součástek. Při zapnutí napájecího napětí bude na kondenzátoru C1 nulové napětí, na vývodu 2 bude zároveň L, na výstupu 3 úroveň H. Kondenzátor se začíná nabíjet přes R₁ a když napětí na vnitřním děliči dosáhne 2/3 UB, vypínací komparátor spojený s vývodem 6 překlopí výstup, na vývodu 3 se změní úroveň na L a kondenzátor se začíná vybíjet přes R1 až na napětí 1/3 U_B. Po dosažení tohoto stavu spínací komparátor opět překlopí výstup a děj začíná znovu. Z toho je zřejmé, že nabíjecí i vybíjecí odpor jsou stejné, oba časy tedy budou stejné. Možným nedostatkem je, že minimální výstupní napětí není nikdy nulové a maximální výstupní napětí se také nerovná UB. Ale tyto dvě "chyby" jsou při malých napájecích proudech jednak malé a jednak symetrické. Kupř. při nabíjecímvybíjecím proudu 200 μA bude napěťová chyba asi 2,5 V, minimální $U_{\text{typ}} = 2,5$ V, maximální $U_{\text{typ}} = 15$ V; R₂ slouží ke zmenšení této chyby.

Časovací doba odpovídá obvyklému zapojení 555 v astabilním režimu, časy čela a týlu jsou stejné s tolerancí asi ±1 %. Změna napájecího napětí od 5 do 15 V mění kmitočet o méně než 1 %. R₁ má mít alespoň 10× větší odpor než R₂, jeho výběrem můžeme dosáhnout žádaného činitele plnění 50 %

Na obr. 43 je generátor "pily" s měnitelným tvarem. Bude-li se kondenzátor nabíjet a vybíjet přes zdroj konstantního proudu, pilovité napětí bude mít lineární průběh. Použijeme-li dva zdroje konstantního proudu, nabíjení a vybíjení proběhne nezávisle a bude možné tyto pochody regulovat samostatně. Základním zapojením je astabilní klopný obvod, jeho výstupní signál řídí oba zdroje konstantního proudu - je-li na vývodu

Obr. 43. Generátor "pily" s měnitelným

3 úroveň H, tranzistor T3 se otevře, jeho kolektorové napětí bude malé, proto se přes R₄ otevře dioda D₂ a nabíjecí proud protéká do kondenzátoru C. Malým kolektorovým napětím T₃ se vyřadí z činnosti D₃ a T₂ bude uzavřen. Běhém nabíjení kondenzátoru C překlopí napětí na výstupu 6 komparátor a výstup mění svůj stav na L. Tranzistor T₃ se uzavře, jeho kolektorové napětí vyřadí z činnosti D₂ a otevře se D₃. Zdroj konstantního proudu s T₁ ukončí napájení Č a přes T₂ se kondenzátor vybije. Tento pochod se neustále opakuje. Budou-li proudy obou generátorů stejné, pilovité napětí bude symetrické, činitel plnění bude 50 %. Měníme-li odpor rezistoru R₆, mění se i tvar výstupní "pily", obr. 43.

Další možnost použití časovače je na obr. 44, kde je z převodníku napětí-kmitočet vytvořen obvod pro dělení a odmocňování. Přes operační zesilovač se řídí činnost tranzistoru T₁ - FET, který určuje kmitočet obvodu 555 v astabilním režimu. Kmitočet je úměrný řídicímu napětí operačního zesilovače (nehledě na určitou konstantu provozního režimu FET). Kapacitu časovacího kondenzátoru C1 je možné přizpůsobit rychlostním změnám vstupního signálu, při rychle se měnícím vstupním signálu volíme menší kapacitu, tj. vyšší kmitočet.

Na výstupu časovače bude pravoúhlé napětí a jeho kmitočet bude závislý na vstupním napětí. Na vstupním napětí závisí i am-

plituda výstupního napětí, protože nabíjecí konstanta je úměrná parametrům FET, vybíjecí konstanta závisí na R3. Odpor představovaný tranzistorem FET je nepřímo úměrný řídicímu napětí operačního zesilovače, proto při zvětšování vstupního napětí se bude . výstupní napětí zmenšovat.

Na výstup časovače je přes T₂ připojen další operační zesilovač s jednotkovým zesílením (vůči U1). Výstupní napětí v závislosti

na U_1 a U_2 je $U_{\text{výst}} = k_1 (U_1/U_2)$ a to (nehledě ke konstantě k_1) je výstup analogového děliče. Výstupní signál dělicího obvodu zavedený na vstup (značeno přerušovanou čarou) mění U_{výst} na

 $U_{\text{výst}} = k_2 \sqrt{U_1}$ Překročíme-li (jako u ostatních obvodů pro dělení a odmočňování) provozní napětí, výsledné napětí bude nesprávné. Pro velkou časovou konstantu výstupu můžeme sledovat jen pomalé změny vstupu.

Na obr. 45 je jednoduchý spouštěný generátor pilovitého napětí pro časovou základnu osciloskopu. Spouštěný generátor se liší od synchronního v tom, že bez spouštěcího signálu generátor nedodává vychylovací napětí. Protože spouštěcí signál má souvislost s vychylováním, na obrazovce bude vždy jen žádaný signál, který nezávisí na kmitočtu (v určitých hranicích)

Na vstupy operačního zesilovače přivádíme napětí z vertikálního zesilovače osciloskopu a z potenciometru P₂. V závislosti na nastavení P₁ a P₂ bude na výstupu operačního zesilovače pravoúhlý signál. Diody D₁, D₂ chrání vstup OZ, jeho výstupní signál je členem R₃C₁ diferencován a zápornou část takto vzniklého signálu přivádíme přes diodu D₃ na časovač, který pracuje v monostabil-ním režimu. Záporné impulsy přivedené na vývod 2 (TRIGGER) dávají podněty k nabíjecímu cyklu. Kondenzátor C4 má být buď tantalový nebo s pevným dielektrikem, ostatní časovací kondenzátory mají být také kvalitní, v žádném případě keramické.

Na výstupu je mezivrcholové pilovité napětí 5 V. Když spouštěcí signál přichází během vzniku "pily", nemůže tento pochod narušit, spouštění má účinek jen po dokončení "pily". Výstupní signál odvádíme tak. aby nebyl výstup zatěžován, kupř. emitorovým sledovačem, operačním zesilovačem se zpětnou vazbou apod.

Obr. 44. Analogové dělení a odmocňování

Obr. 45. Spouštěný generátor pilovitého

Potenciometrem P_1 měníme úroveň výstupního signálu, dokud se na výstupu neobjeví pilovitý signál a na obrazovce osciloskopu stopa časové základny. Potom potenciometrem P_2 , příp. i P_1 posuneme spouštěcí bod do žádané polohy. Zhášecí signál pro obrazovku odebíráme z výstupu 3 časovače.

Obr. 46. Jednoduchý regulátor teploty

Na obr. 46 je jednoduchá automatika pro udržování konstantní teploty. Obvodem a jeho přizpůsobením k danému účelu získáme spolehlivý prostředek k automatické regulaci teploty kupř. ústředního topení, horké vody, umělé líhně, pařeniště atd.

Dva komparátory v časovači 555 umožňují sledovat změny odporu teplotního čidla R_1 , kterým je térmistor. Termistor je zapojen do děliče spolu s R_1 , R_2 . Při zvyšování teploty se odpor R_1 zmenšuje a zvětšuje se napětí na vývodu 6. Když úroveň tohoto napětí dosáhne 2/3 napájecího napětí, vypinací komparátor se překlopí a na výstupu 3 bude napětí úrovně L, kterým ovládáme kupř. relé. Protože díky vybíjecímu tranzistoru v obvodu 555 bude napětí na vývodu 2 blíže k bodu překlápění, postačí jen malá změna odporu termistoru, aby se zapínací komparátor dostal do kritického bodu a znovu překlopil výstup obvodu na úroveň H, sniží-li se teplota a zvětší-li tedy termistor opět svůj odpor.

Tři členy děliče zvolíme podle toho, jaký je odpor termistoru, který máme k dispozici. Je lépe zvolit termistor s větším odporem, neboť pak chyba, vyplývající z ohřátí čidla vlastním proudem, bude menší. Dělič navnneme tak, aby při teplotě, kdy má obvod vypnout, na vývod 6 přivedl 2/3 napájecího napětí:

$$\frac{R_{lv} + R_1}{R_{lv} + R_1 + R_2} = 1/3 U_B,$$

kde R_{tv} je odpor termistoru při teplotě, při níž má odvod vypnout.

Regulátor je účelné provozovat s malým napájecím napětím, bude citlivější a termistor se nezahřívá. Bude-li vedení od přístroje k termistoru delší, v přístroji připojíme k přívodu od termistoru kondenzátor takové kapacity (asi 100 nF), který zkratuje rušivé impulsy na vývodu 2.

Obr. 47. Převodník tepla-kmitočet

Pro dálkové sledování teploty slouží zapojení na obr. 47. Jedná se o vylepšené zapojení astabilního klopného obvodu doplněné termistorem. Časovací obvod se skládá ze tří dílů: z rezistoru R s kovovou vrstvou, z měřicího termistoru a ze spínacího tranzistoru.

Spínací tranzistor řídíme z výstupu časovače přes invertor. Na otevřeném tranzistoru je úbytek napětí minimální, přes uzavřený

Obr. 48. Korektor pro vedení s úrovní TTL

tranzistor prakticky proud neprotéká, proto nabíjení a vybíjení kondenzátoru bude záviset jen na termistoru. Použijeme-li jako C polykarbonátový kondenzátor a R kupř. z řady TR 161, bude obvod pracovat s velkou přesností.

Vybereme-li termistor, který má odpor při 25 °C asi 5 k Ω , zapojení bude v rozsahu teplot 0 až 50 °C pracovat s přesností ± 1 °C. Výstupní signál bude udán v Hz a ty odpovídají jednotkám teploty (°F). Signál můžeme vést i na větší vzdálenost; na vedení pak mohou vzniknout brumová napětí; rušivé impulsy apod. Proti těmto rušivým jevům lze vřadit do obvodu zapojení podle obr. 48. Zapojení je vhodné pro pomalu se měnící údaje, výstup má úrovně TTL.

Obr. 49. Zapojení dvojitého časovače 556

Vzhledem k tomu, jak značné jsou možnosti využití časovače 555, uvedli někteří výrobci na trh i dva a dokonce i čtyři obvody 555 v jednom pouzdře. Dvojice časovačů je obvykle značena jako 556, jejich zapojení je na obr. 49. Oba časovače v pouzdře DIL jsou identické, jen přívod napájecího napětí je společný. Pozor ale na IO fy EXAR (XR556), má jiné uspořádání vývodů než ostatní 556. Ve všech zapojeních, v nichž je použit dvojitý obvod 556, jej lze nahradit dvěma obvody 555.

Elektronika kolem nás

Mnohdy potřebujeme jednoduché signalizační zařízení, které hlásí zvukem nebo světlem nějaký děj (např. domovní zvonek, poplašné zařízení). Podle důležitosti a na-

Obr. 50. Tranzistorový zvukový generátor

šich možností si lze vybrat z dále uvedených zapojení.

Na obr. 50 je jednoduchý tranzistorový generátor, hodící se i jako domovní zvonek. K napájení postačí plochá baterie. Pro transformátor můžeme použít feritový hrníček o ∅ asi 25 mm, nebo libovolný malý transformátor s jádrem z plechů nebo z feritu, na který navineme jako L₁ 35, L₂ 60 a L₃ 20 závitů drátu o ∅ asi 0,4 mm. Při stisknutí tlačítka Tl zazní tón z reproduktoru, jeho výšku lze zvolit volbou kapacity kondenzátoru C. Tón je dosti hlasitý, odběr v aktivním stavu dosáhne 150 až 200 mA. Ostatní součástky i tranzistor můžeme použít ze "šuplíkových" zásob.

Na obr. 51 je zapojení pro podobné účely s použitím dvoubázového tranzistoru (UJT), který můžeme nahradit dvěma tranzistory, jak již bylo na stránkách AR mnohokrát popsáno. Zvláštnost tohoto "zvonku" bude v tom, že můžeme použít dvě nebo i několik tlačítek, a na výšce zvuku z reproduktoru poznáme, které z tlačítek bylo stisknuto. Tlačítka mohou být umístěna kupř. u dveří, u zahradních vrátek, u domovních dveří apod. Po stisknutí některého z tlačítek se nabije kondenzátor C. Když napětí na kondenzátoru dosáhne otevíracího napětí UJT, ten se otevře a náboj kondenzátoru se vybije přes reproduktor. Tento děj se opakuje rychle za sebou. Změnou odporu nabíjecích re-

Obr. 51. Domovní zvonek s UJT

zistorů R₁, R₂ se různě dlouhou dobu vybíjí kondenzátor, tón z reproduktoru má proto různý kmitočet, podle jeho výšky poznáme, které tlačítko bylo zmáčknuto.

Na obr. 52 je zvonek se zvukovým efek-tem gongu. Zařízení budeme napájet ze zvonkového transformátoru napětím asi 8 V. které usměrníme a vyhladíme kondenzátorem C₁. Tranzistory T₁ a T₂ pracují jako multivibrátor. Činitel plnění pravoúhlého napětí je možné měnit změnou odporu rezistorů v bázi. Odporovými trimry můžeme nastavit mezi jednotlivými zvukovými efekty mezery až 3 sekundy. Výstupní signál z multivibrátoru vedeme přes emitorový sledovač T₃ na tranzistor T₄, kterým ho zesílíme. Při stisknutí tlačítka TI se tranzistor T3 otevře, otevírá se i T₄ a zazní první zvukový signál. Když se otevře T2, tranzistory T3 a T4 se uzávřou, kladívko zvonku odpadne a po odeznění tónu se děj opakuje a v určitých intervalech za sebou uslyšíme dva tóny. Dioda chrání koncový tranzistor od napěťových špiček.

Obr. 53. Trojhlasý zvonek

Na obr. 53 je zvonek, který podle toho, které tlačítko stiskneme, dává tři různé tóny: při stisknutí Tl₁ tón o kmitočtu asi 2 kHz, u Tl₂ asi 1 kHz a u Tl₃ asi 300 Hz. Výhoda tohoto zapojení je v tom, že k signalizaci postačí jen jeden pár vodičů. V klidovém stavu jsou tranzistory T₁ a T₂ uzavřeny. Po stisknutí některého z tlačítek multivibrátor začíná kmitat na kmitočtu, který je závislý na napětí, přivedeném do báze T₁ a T₂. Napětí jsou určena Zenerovými diodami D₁ a D₂ (Tl₁ popř. bez diody). Výstupní signál multivibrátoru zesílíme tranzistory T₃ a T₄ v Darlingtonově zapojení. Trojhlasý zvonek můžeme použít všude tam, kde chceme rozlišít místa, v nichž jsou umístěna jednotlivá tlačítka.

Občas potřebujeme signální zařízení, které dává zřetelně viditelné světelné znamení. Pro tento účel můžeme použít zapojení podle obr. 56, které poskytuje asi v jedno až dvousekundových intervalech silné světelné záblesky velmi krátkého trvání, viditelné na několik set metrů. Jedná se vlastně o jakýsi elektronický blesk nebo stroboskop.

Zařízení je mobilní, lze je napájet z automobilového akumulátoru 12 V nebo ze síťového zdroje asi 12 V s možností odběru 1 A. Tranzistor pracuje ve spínacím režimu, v okamžiku jeho sepnutí vznikne na L₁ napě-

Obr. 57. Elektronický kalendář

Na obr. 57 je zapojení elektronického kalendáře, který svitem jedné ze sedmi svítivých diod ukazuje příslušný den v týdnu.

Změnu z jednoho dne na druhý řídí fotorezistory R_{f1} a R_{f2}. Náhodné světlo (z ulice, blesk apod.) nemá vliv na funkci.

Oba fotorezistory jsou umístěny v jedné trubce o délce asi 10 cm tak, aby jejich citlivé plochy směřovaly ke kraji trubky, jsou tedy "zády" k sobě.

Obr. 54. Zvonek se zvláštním zvukovým efektem

Obr. 58. Zvukový spínač

Na obr. 54 je zapojení signalizace, která dává zvláštní zvukové efekty. První z časovačů pracuje jako volně běžící multivibrátor, jeho výstup je připojen na vstup druhého časovače, který pracuje jako monostabilní multivibrátor. Kmitočet multivibrátoru lze měnit změnou R₁ a C₁. Monostabilní multivibrátor řídíme potenciometrem R₃; pracuje jako dělič kmitočtu, vytvářející zvláštní zvukové efekty. Hlasitost lze v určitých mezich měnit změnou nastavení R₄. Nahradíme-li R₁ a R₃ fotorezistorem, při změně osvětlení se bude měnit i zabarvení zvuku, můžeme dosáhnout i efektu tremolo apod.

Obr. 55. Imitace gongu

Na obr. 55 je zapojení pro imitaci gongu. Můžeme použít libovolné tranzistory, i germaniové. T₁ a T₂ pracují jako multivibrátor, na diodu přivádíme signál pravoúhlého tvaru o kmitočtu asi 1 kHz. Změnou kapacity kondenzátoru C₁ a C₂ můžeme v širokých mezích měnit zabarvení akustického signálu a činitel plnění pravoúhlého signálu. Kondenzátor C₁ určuje dobu doznívání, C₂ dobu "narůstání" zvuku. Výstupní signál bude třeba zesílit jednoduchým zesilovačem.

ťový impuls, který indukuje vysoké napětí v cívce L₃ – to se usměrní diodami a přivádí na kondenzátor C, na kterém se zvětšuje napětí asi do 250 V (zapalovací napětí výbojky). Výbojka však sama při tomto napětí

Obr. 56. Intenzívní světelná indikace

nezapálí. Výbojku uvedeme do činnosti zapalovacím impulsem, který vzniká na cívce L_3 v okamžíku, kdy usměrněné napětí z cívky L_3 na kondenzátoru dosáhne asi 250 V. Náboj kondenzátoru se rychle vybije přes výbojku a kondenzátor se začne znovu nabíjet. Protože energie výboje je poměrně malá (kupř. při napětí 250 V na kondenzátoru 100 μ F to bude jen 3 Ws(J), můžeme poněkud zvětšit kapacitu kondenzátoru – pak však bude doba mezi záblesky delší.

 $\rm R_2$ bude třeba nastavit podĺe parametrů použitého tranzistoru, bude mít odpor v rozsahu 10 až 200 $\Omega.$

Transformátor Tr vineme na feritový hrníček nebo prstenec o \varnothing asi 25 až 30 mm, L_1 má 20 závitů drátu o \varnothing 0,6 mm, L_2 6 závitů drátu o \varnothing 0,3 mm. L_3 510 závitů drátu o \varnothing 0,1 mm.

Předpokládejme, že je pondělí večer, oba konce trubky jsou ve tmě. Když začíná svítat, R_{f1} i R_{f2} vlivem světla zmenšuje svůj odpor, napětí na kondenzátoru C1 se zvětšuje, v určitém okamžiku se T₁ (dvoubázový tranzistor UJT) překlopí a otevírá tranzistory T₂ a T₃. Kondenzátor C1 se vybije přes R4, C3 se nabije a za několik sekund bude nabit i C4. Tranzistor T₄ se otevře a první impuls z kolektoru T₄ vyvolá změnu na vstupu čítače, na výstupu čítače se rozsvítí LED "úterý". Dokud jsou oba fotorezistory osvětleny, kondenzátory C3 a C4 zůstávají v nabitém stavu a čítač nedostává nový hodinový implus. svítí stále dioda "úterý". Nastává večer. R_{fi} a R_{f2} jsou stále více zastíněny, generátor pracuje stále pomaleji, nabíjení C3 a C4 se značně prodlužuje a další impulsy se přes rezistor T4 na čítač nemohou dostat - stav čítače zůstává nezměněn. Napětí na R2. popř. na C₁ se zmenší a T₁ se nepřeklápí Změna nastane až k ránu, kdy se svítáním opět nastane stav, popsaný výše

Trubku s fotorezistory je třeba umístit tak. aby na obou koncích trubky bylo vždy vhodné denní světlo nebo tma. Fotorezistory můžeme v podstatě použít libovolné, ale mají mít přibližně stejné vlastnosti. Odběr celého "kalendáře" při svitu jedné diody je asi 6 až 8 mA. Použijeme-li k napájení baterie, lze pro úsporu zapojit do přívodu napájecího napětí tlačítko.

"Zvukové spínače"

Zvukové spínače na následujících obrázcích můžeme použít rozmanitým způsobem. K jejich vybuzení postačí slabý zvuk, a tak mohou reagovat i na tiché kroky, tichý hovor, pískot, nebo jiné zvuky.

Na obr. 58 je citlivý zvukový spínač, jeho

citlivost regulujeme potenciometrem P. Transformátor přizpůsobuje mikrofon ke vstupu zesilovače, místo mikrofonu můžeme použít i libovolný reproduktor. Transformátor může být malý výstupní transformátor z vysloužilého tranzistorového rádia, poměr počtu závitů má být asi 1:10. Signál z transformátoru zesílíme tranzistorem T_1 a Schmittovým klopným obvodem s T_2 a T_3 přivádíme na spínací tranzistor T_4 , který ovládá relé. Dioda D může být libovolná germaniová dioda, chrání přechod emitor-báze tranzistoru T_4 .

Obr. 62. Časový spínač s operačním zesilovačem

obrázku) jako spínač s trvale nastavenou dobou sepnutí asi 15 minut, nebo po výměně R_3 za potenciometr (příp. změnou kapacity kondenzátoru C) můžeme získat měnitelné časy asi od jedné sekundy do 20 minut.

Napájecí napětí lze zvolit asi od 9 do 30 V, podle zvoleného napětí si zvolíme i typ relé.

R₁ a R₂ tvoří dělič napětí, získané poloviční napájecí napětí se přivádí na invertující vstup operačního zesilovače. R₄ ve zpětné vazbě zvětšuje vstupní odpor OZ. Relé je v klidovém stavu, tlačítko TI je rozpojené.

Obr. 59. Zvukové relé s krystalovým mikrofonem

Obr. 63. Relé citlivé na světlo

Na obr. 59 je relé (spínané zvukem) s krystalovým mikrofonem. Tranzistor T_1 slouží jako impedanční měnič pro mikrofon. Je-li signál z mikrofonu malý, tranzistor pracuje jako emitorový sledovač. Potenciometrem P nastavujeme práh citlivosti. Přijde-li na tranzistor T_4 záporná půlvlna signálu, otevře se a nabíjí se kondenzátor C_4 . Kapacitu kondenzátoru C_4 si zvolíme podle potřeby od 20 do 1000 μ F. Napětím na tomto kondenzátoru ovládáme tranzistor T_5 . Režim můžeme nastavit tak, že relé přitáhneme jen na dobu znění vstupního signálu, nebo odpadne již po několika sekundách po odeznění vstupního zvuku. Tranzistory mohou být libovolné (co najdeme ve starých zásobách).

Na obr. 61 je zvukové relé, které po sepnutí zůstává v tomto stavu. Hodí se kupř. pro rozsvícení žárovky při zazvonění telefonu nebo domovního zvonku a podobné účely. Jedná se o bistabilní obvod, po prvním zvukovém signálu relé sepne, po druhém se jeho kontakty rozpojí.

Na vstupu je citlivý mikrofon. Po příchodu zvukového signálu (zvonek, hvizd, tleskot, apod.) z mikrofonu projde kondenzátorem 820 pF impuls a dostává se do báze tranzistoru T₁. Kondenzátor se vstupním odporem tranzistoru tvoří filtr, který na další zesilovací stupeň propouští jen signál vyššího kmitottu. Na kolektoru T₁ se objeví impulsy záporné polarity, které přes kondenzátor 39 nF

Stisknutím tlačítka se zkratuje kondenzátor C, na neinvertujícím vstupu operačního zesilovače bude napětí rovné napájecímu napětí, OZ "se překlopí" a relé sepne. Rozpojením tlačítka začíná časovací interval. Kondenzátor se přes R₃ začíná nabíjet, napětí na neinvertujícím vstupu se zmenšuje a když dosáhne určité velikosti, operační zesilovač se opět vrátí do výchozího stavu, kotva relé odpadne, spínací perioda skončila. Nová perioda začne opět po stisknutí tlačítka.

Při zvětšování napětí na kondenzátoru C těsně před okamžikem překlopení OZ by kotva relé mohla kmitat, proto jsou v obvodu zařazeny diody D₁ a D₃.

"Světelné spínače"

Relé řízené světlem můžeme použít v nejrůznějších aplikacích: při počítání kusů výrobků, lidí, jako poplašné zařízení, v automatizačních zařízeních atd. Fotoelektrická relé lze nastavit na žádoucí citlivost, relé mohou reagovat na světlo nebo na zastínění, jejich použití je prostě velmi rozmanité.

Světlem řízené relé na obr. 63 je velmi citlivé, pracuje se Schmittovým klopným obvodem a je tepelně stálé. V zapojení můžeme použít libovolný fotorezistor. Vetmě je odpor R, značný, řádu megaohmů a již při slabém osvětlení (10 lx) se rapidně zmenšuje.

Tranzistory T₁ až T₃ jsou napájeny stabilizovaným napětím asi 6 V. Citlivost zařízení se nastavuje trimrem R₂ hrubě a R₁ jemně. Klopný obvod pracuje velmi rychle, překlápění je jednoznačné, bez "nerozhodného" stavu. Bude-li poslední tranzistor klopného obvodu (T₃) uzavřen, uzavře se i koncový tranzistor T₄, proto na jeho emitoru bude větší napětí než na jeho bázi. Funkce C₁ spočívá v tom, že chrání obvod před překlápěním při krátkých světelných záblescích, jako jsou blesky, reflektory kolemjedoucích

Obr. 60. Citlivé zvukové relé

Na obr. 60 je citlivé zvukové relé. Můžeme ho použít kupř. k indikaci telefonního zvonění někde, kde zvonek neslyšíme. Čárkovaně nakreslené relé můžeme přidat tehdy, potřebujeme-li spínat nějakou zátěž. Na vstupu použijeme krystalový mikrofon. V klidovém stavu při napájecím napětí 6 V je odběr proudu kolem 150 μA, při zvonění – podle druhu použitého zvonku – se může proud zvětšit až na několik set mA. Vstupním potenciometrem nastavíme takovou citlivost, aby okolní zvuky (šum) neuvedly relé v činnost. Tranzistor T₁ zesiluje vstupní signál, který dále přichází na T₂, T₃. Kondenzátory C₁ a C₂ slouží jako filtry.

a diody D_1 a D_2 přicházejí na tranzistory T_2 a T_3 , tvořící bistabilní klopný obvod, který je v tomto okamžiku v klidovém stavu. Je-li T_2 uzavřen, napětí na jeho kolektoru je velké a otevírá T_3 . Rezistor lo $k\Omega$ v bázi T_3 udržuje T_3 v otevřeném stavu, který trvá tak dlouho, dokud nepřijde nový signál, který změní stav tranzistoru. Tehdy i relé mění svůj stav.

Pomocí tohoto obvodu můžeme "dálkově" vypínat a zapínat kupř. TV přijímač nebo jiný spotřebič. Signálem může být např. písknutí nebo tlesknutí.

Na obr. 62 je časový spínač s operačním zesilovačem, který můžeme použít (podle

Obr. 61. Zvukové relé se zpožděným odpadem

Obr. 64. Spínač se síťovým napájením

aut apod. Rychlost překlápění je nezávislá na rychlosti nebo "pomalosti" změny řídicího světla, je konstantní, vždy asi 10 µs.

Na obr. 64 je spínač, který je aktivován soumrakem a při svítání je znovu uveden do klidového stavu. Zátěž – žárovka do 100 W nebo pod. – i zařízení napájíme ze sítě. Pomocný obvod napájíme přes rezistor R a napětí stabilizujeme asi na 10 V Zenerovou diodou D₃. Usměrněné napětí (bez filtrace) přivádíme přes žárovku na tyristor, který je v klidovém stavu uzavřen, žárovka nesvítí. Při setmění se napětí na bázích tranzistorů T₁ a T₂ zvětšuje, tranzistory se otevírají. Kolektorové napětí T₂ se zmenšuje a tranzistor T₃ se postupně uzavírá, jeho zvětšující se kolektorové napětí (přes diodu D₁) otevře tyristor, kterým pak protéká proud do zátěže. Dioda D₂ zmenšuje hysterezi obvodu. Při osvětlení R_f Schmittův klopný obvod mění svůj stav a tyristor se uzavře.

Citlivost obvodu lze nastavit trimrem P. Dbáme na to, aby na R_f nedopadlo světlo žárovky, protože střídavé napětí, kterým je napájena, by způsobilo blikání Ž.

Na obr. 65 je svítící ukazatel směru. Osm svítících diod obdélníkového tvaru + jedna kulatá tvoří šipku, která po zapnutí napájecího napětí začíná ukazovat směr tak, že se postupně rychle rozsvěcuje D_1 do D_9 , tím nejen tvarem, ale i pohybem světla je ukazován zvolený směr. Indikátor je velmi nápadný, zvláště ve tmavém prostředí a může sloužit kupř. v tmavé chodbě k ukázání směru třeba k WC, k východu, nebo pod. Svítivé diody použijeme červené barvy, neboť ty mají nejmenší provozní napětí.

Použijeme napájecí napětí 9 V, při kterém bude odběr asi 50 mA, při napájení 12 V se odběr zvětší na 100 mA a integrovaný obvod zbytečně hřeje. MHB4049 obsahuje šest invertorů, které jsou zapojeny za sebou jako obvody *RC*, kmitající asi v sekundových intervalech. Protože invertory jako multivibrátory jsou zapojeny v sérii, jsou svítivé diody rozsvěcovány postupně. Vzniká tím dojem "pochodujícího" světla. Změnou kapacity kondenzátorů, které mohou být i keramické, můžeme měnit časové konstanty a tím i rychlost "pochodujícího" světla. Začne-li se zmenšovat svit diody D₉ ve špičce šipky, bude třeba vyměnit baterie.

Obr. 67. Tyristorová nabíječka

Obr. 68. Nabíječka na 6 i 12 V

Obr. 66.

Automatická

nabíječka

Nabíječe

Automatické nabíječky akumulátorů mají některé výhody před nabíječkami s konstantním proudem. Můžeme nabíjet akumulátor podle pokynů výrobce, můžeme nabíjet malým proudem dlouhodobě, nebo velkým proudem pro rychlé nabíjení.

U automatických nabíječek použijeme tu vlastnost olověných akumulátorů, že se jejich napětí během nabíjení zvětšuje o 20 až 30 % nad jmenovité napětí. Po skončení nabíjení napětí dosáhne 2,6 až 2,7 V na řlánek

Okamžik ukončení nabíjení nastavíme s připojeným plně nabitým akumulátorem tak, že P₁ nastavíme na minimální odpor a otáčíme běžcem P2 tak dlouho, až na ampérmetru ručka bude ukazovat nulový proud. Napětí na akumulátoru má být 14,5 až 15 V. Dioda D₆ chrání akumulátor i nabíječku před připojením s obrácenou polaritou (v tomto případě protéká diodou velký proud, který přeruší pojistku Po₂). Diody D₁ až D₄ i tranzistor T2 umístíme na chladič, také tranzistor T₁ opatříme menším chladičem. R₁ je vinut z odporového drátu o Ø asi 1 mm. Transformátor vyhovuje asi na 100 VA se sekundárním vinutím pro 4 až 6 A (podle toho, jaký maximální proud chceme odebírat pro nabíjení).

Na obr. 66 je automatická nabíječka pro olověný akumulátor 12 V. Při připojení aku-

mulátoru k nabíječce má mít P_1 maximální odpor, nabíjecí proud je v tomto případě nulový. Potom změníme nastavení P_1 tak, až proud dostoupí žádané velikosti. Minimální odpor P_1 dává maximální nabíjecí proud, v tomto případě jsou tranzistory T_1 , T_2 (Darlingtonovo zapojení) plně otevřené. Při nabíjení se napětí akumulátoru zvětšuje. Bude-li na běžci potenciometru P_2 napětí větší než je součet napětí mezi bází a emitorem T_3 + otevírací napětí D_5 , dosud uzavřený tranzistor T_3 se bude otevírat (tj. v závislosti na zvětšujícím se napětí na akumulátoru). Když T_3 již dostatečně vede, T_1 a T_2 se postupně uzavírají, až se uzavřou úplně. Tím je nabíjení skončeno.

Na obr. 67 je tyristorová nabíječka olově-ných akumulátorů. Střídavé napětí ze sekundárního vinutí transformátoru usměrníme diodami D₁ až D₄, usměrněné napětí se nevyhlazuje. Tyristor Ty vede tehdy, bude-li na jeho řídicí elektrodě napětí o 2 až 3 V větší než na katodě – na kladném pólu akumulátoru. Tyristor se otevře při každé půlperiodě napájecího napětí a povede, dokud se protékající proud ke konci půlperiody nezmenší pod "přídržný" proud. Velikost otevíracího napětí a tím i proud tyristoru lze regulovat potenciometrem P1. S pokračujícím nabíjením se zvětšuje napětí připojeného akumulátoru a nastává okamžik, kdy se kondenzátor C nabije na napětí, při němž začíná vést D₆. Tento proud otevře dosud uzavřený tyristor Ty₂, tím se zmenší napětí na děliči R₁, P₁, R₂ a tyristor Ty₁ se uzavírá, nabíjecí proud se zmenšuje. Napětí akumulátoru se nadále zvětšuje, tyristor Ty2 se dále otevírá a nastává okamžik, kdy se proud Tv₁ zmenší pod velikost "přídržného" proudu - tyristor Ty₁ se uzavře, Ty₂ vede – nabíjení je ukončeno.

Režim nabíjení musíme nastavit při plně nabitém akumulátoru, který má napětí asi 14,6 až 15 V. Potenciometr P₁ nastavíme na plný nabíjecí proud a P₂ tak, aby proud neprotékal. Proud Ty₁ omezuje jen odpor vinutí transformátoru, proto použijeme tyristor s dovoleným proudem 15 A. Transformátor má umožňovat na sekundární straně odběr proudu asi 6 A. Tyristor Ty₁ a diody D₁ až D₄ umístíme na chladič. Dioda D₇ plní funkci ochrany proti připojení akumulátoru s obrácenou polaritou. Je výhodné do výstupní cesty zapojit ampérmetr.

Na obr. 68 je úniverzální nabíječka pro akumulátory 6 V a 12 V. Nabíječka je vlastně

stabilizovaný zdroj proudu, který nabíjí připojený akumulátor proudem, který nastavíme potenciometrem $P_1.\ P_1$ spolu s P_2 tvoří dělič, jeho napětí je stabilizováno diodou $D_5.\ T_1$ a T_2 je modifikované Darlingtonovo zapojení. Proud báze T_1 , kterým řídíme kolektorový proud $T_3,\ T_4$ lze nastavit P_1 a referenčním napětím D_6 až $D_9.\ Zmenší-li se proud tekoucí rezistorem <math display="inline">R_3,\ T_1$ se více otevírá, nabíjecí proud se zvětšuje a obráceně. Zvětší-li se napětí na akumulátoru na maximum, napětí na emitoru T_4 bude o 1,4 V menší než napětí na bázi T_3 , v tom okamžiku je nabíjení ukončeno.

Usměrňovací diody, diody D_7 až D_9 a tranzistor T_4 je třeba umístit na chladič.

z akumulátoru. Akumulátor napájí i elektrické hodiny H, které měří čas. Pro tento účel jsou vhodné nějaké bateriové hodiny, napájené napětím 1,5 V, protože napětí na $R_1,\,D_2,\,D_3,\,D_4$ je asi 1,8 V. Hodiny před zkoušením nastavíme na nulový čas. Proud, kterým napájíme hodiny, je nepatrný, ale započítává se do vybíjecího proudu akumulátoru (do něhož se započítává i proud relé). Akumulátor se začíná vybíjet. Proud protéká tranzistorem T_2 a vybíjejícími odpory. Svítivá dioda D_{10} spolu s R_3 stabilizuje napětí báze T_2 , proto bude vybíjecí proud konstantní. Zatěžovací rezistory R_4 a R_5 vybereme tak, aby jimi skutečně tekl zvolený proud 0,5, popř. 1 A. Tyto rezistory mají být drátové, požado-

nek zapojíme na vstup operačního zesilovače. Referenční napětí na neinvertujícím vstupu operačního zesilovače vytvoříme z R₁, R₂. Vložíme-li termočlánek do plamene, napětí z "kladného" drátu přivedeme na neinvertující vstup, komparátor se překlopí, na výstupu bude napětí úrovně L. Citlivost zařízení lze nastavit trimrem P₁ (upravuje ofset). V tomto stavu, tedy s termočlánkem v plamenu, bude oscilátor s T₁ a T₂ v klidovém stavu. Při zhasnutí plamene komparátor mění stav na výstupu, kde se objeví úroveň H, oscilátor začíná pracovat a ze sluchátka uslyšíme varovný tón. Použijí-li se jako T₁ a T₂ výkonové tranzistory, lze obvodem ovládat relé a spínat jiná poplašná

Obr. 69. Automatické měření kapacity akumulátoru

Obr. 71. Přerušovaná světelná signalizace

Na obr. 69 je zapojení pro automatické měření kapacity akumulátoru. Často je třeba přesvědčit se o skutečné ampérhodinové kapacitě akumulátoru, protože tovární údaj se časem mění a to nekontrolovaně. Jedná se hlavně o niklokadmiové akumulátory pro napájení nejrůznějších přenosných zařízení (modely, vysílače, videokamery, atd.), u nichž může zmenšení kapacity znemožnit plánovaný provoz. I když akumulátor před použitím nabijeme, tak se, má-li zmenšenou kapacitu, během provozu předčasně vybije

Při vybíjení akumulátoru proudem rovným 1/10 nebo 1/20 ampérhodinové kapacity se obvykle také nedozvíme, jak se bude chovat akumulátor při větším zatížení.

Zařízení podle obr. 69 zkouší akumulátor "na ostro" tak, že je zatížen odběrem velkého (nastavitelného) proudu. Výsledek měření ukáže, jak dlouho lze bez podstatného zmenšení napětí odebírat z akumulátoru velký proud. Zařízení je použitelné při zkoumání akumulátorů 12 V při vybíjení proudem 0,5 a 1 A, ale po malé úpravě lze zkoušet parametry libovolného akumulátoru.

Zařízení na obr. 69 je v klidovém stavu, relé není přitaženo, přes klidové kontakty re relé se nabíjí akumulátor. Po nabití akumulátoru na plné napětí chceme změřit jeho skutečnou kapacitu. Zvolíme si vybíjecí proud přepínačem Př (buď 0,5 nebo 1 A, příp. po úpravě zapojení i jiné). Stiskneme-li tlačitko TI, relé v kolektoru T₁ přitáhne, protože napětí akumulátoru je větší než součet napětí na D₁, D₅, D₆, D₉ na přechodu bázemitor tranzistoru T₁. Kontakty re přepnou, zařízení je odpojeno od nabíječe, relé zůstává přitaženo a celé zařízení je nyní napájeno

vaný odpor nastavíme umístěním odboček.

Akumulátor tedy vybíjíme poměrně velkým proudem, jeho napětí se během vybíjení zmenšuje. Zmenší-li se asi pod 11 V, relé odpadne, odpojí napájení od akumulátoru, přepne na režim nabíjení ze sítě. Hodiny se zastaví a ukáží čas, jak dlouho dodával akumulátor nastavený proud. Z tohoto údaje víme, jakou skutečnou kapacitu má akumulátor.

Měření nepotřebuje žádný dozor, akumulátor se samočinně odpojí od měřicího zařízení a bude řádně dále nabíjen. Tranzistor T₂ je třeba umístit na chladič.

Různé

Na obr. 70 je hlídač plamene, který je použitelný všude tam, kde chceme zabezpečit nějaké zařízení s otevřeným plamenem. Při zhasnutí plamene dává přístroj zvukový výstražný signál. Je pravda, že u většiny zařízení tohoto druhu (plynová karma, topení apod.) při zhasnutí plamene se přívod plynu uzavře, přesto je však mnoho možností, kdy podobné zabezpečovací zařízení může zvětšit bezpečnost provozu.

Čidlem, kterým hlídáme plamen, je termoelektrický článek, který se skládá ze dvou vzájemně izolovaných drátů. Jeden z nich bývá z konstantanu a druhý obvykle ze železa, ale jejich materiál může být různý (měď-konstantan apod.). Takový článek můžeme sestavit i sami, hlavní je, aby byly dráty od sebe izolovány. Jeden konec drátů je na tvrdo svařen. Ohříváme-li svařený konec, na druhém konci vznikne termoelektrické napětí řádu milivoltů. Při použití zjistíme, který írádu milivoltů a který "záporný" a se správnou polaritou tento termoelektrický člá-

zařízení. K napájení postačí transformátor do 10 VA.

Někdy můžeme potřebovat silnější přerušované světlo. Zařízení s multivibrátorem a relé působí jiskření na kontaktech, kontakty se opalují a vzniká rušení, proto bude výhodnější použít bezkontaktní spínání. Zapojení je na obr. 71. Žárovku napájíme

Zapojení je na obr. 71. Zárovku napájíme z usměrňovacího můstku přímo síťovým napětím přes tyristor Ty, který je řízen pravoúhlými impulsy. Řídicí impulsy pro tyristor přicházejí z multivibrátoru, který pracuje na kmitočtu 1 až 2 Hz. Tranzistory T₁ a T₂ pracují jako astabilní multivibrátor a pravoúhlé napětí na emitoru T₂ se vede na řídicí elektrodu tyristoru. Kmitočet lze v určitých mezích regulovat potenciometrem R₁; chceme-li dosáhnout odlišného kmitočtu, můžeme měnit i kapacitu kondenzátorů C₁ a C₂. Diody D₁ a D₂ chrání přechod báze-emitor tranzistorů. Dioda D₄ zabezpečuje, že tyristor nezůstane otevřený při průchodu napětí sítě nulou.

U třífázového síťového napětí se stává, že "vypadne" jedna fáze, spotřebič sice běží dále, ale s menším výkonem a může se stát, že se poškodí. Na obr. 72 je zapojení, které signalizuje, že některá z fází vypadla. Výhodou zařízení je, že nepotřebujeme žádný napájecí transformátor, potřebné napájecí napětí odebíráme přímo ze sítě. Tuto skutečnost si musíme uvědomovat při mechanické konstrukci přístroje s ohledem na bezpečnost provozu.

Tři fáze sítě napájejí šest diod D₄ až D₉. Na jejich výstupu je usměrněné, téměř vyhlazené napětí. Jsou-li všechny tři fáze v pořádku,

Obr. 70. Hlídač plamene

Obr. 72. Indikátor výpadku fáze

tranzistor T1 vede, jeho báze dostává otevírací napětí přes R₅, R₆. Zelená LED v kolektorovém obvodu svítí a oznamuje bezporuchový stav, relé je přitaženo. Jeho klidové kontakty, které spínají varovný signál, jsou rozpojeny. Kondenzátor C_1 je nabitý, na R_1 je jen malé brumové napětí, C_2 je také nabitý.

Vypadne-li některá z fází, na výstupu usměrňovače se objeví velké brumové napětí, které kondenzátor C₁ přivede na R₁. Dioda D₁ toto napětí usměrní, nabíjí se kondenzátor C2, tím se na bázi T1 dostane napětí, které jej uzavře. Báze tranzistoru je chráněna diodou D₂. Zelená LED zhasné, relé odpadne a klidové kontakty relé zapojí varovný signál. Obvod varovného signálu (např. zvonku) můžeme napájet i z baterií, abychom nemuseli komplikovat zařízení. Pak varovný signál dostaneme i tehdy, vypadnou-li všechny

Ani v dražších vozech nebývá přístroj, který by kontroloval napětí baterie, tak vlastně snadno nemůžeme zjistit stav baterie ani činnost regulátoru. Je možné - a někteří majitelé vozu to také dělají – vestavět do přístrojové desky ručkové měřidlo, ale otřesy vozu měřidlu neprospívají a jeho indikace je především při jízdě velmi problematická.

Proto je výhodné použít indikaci stavu baterie a činnosti regulátoru. Indikátorem lze zjistit tři stavy: napětí je pod normálem, napětí je v pořádku a napětí je větší, než je dovoleno. Každý stav indikuje LED jedné barvy, informace je tedy přehledná a jednoznačná.

2×KC147 KC308 0+12V R₅ 270 ∐1k5 1330 žluta Ž D. 10k D. ▼ D₅ ▼ R_{4} D_5 IJ1k 10k D₆ ¥ 4×KA261 KC147

Obr. 73. Indikátor mezních stavů akumulátoru

Na obr. 73 je zapojení, které můžeme vestavět do velmi malé krabičky a umístit je v zorném poli řidiče na přístrojové desce. Dioda D₂ je žlutá, svítí tehdy, zmenšilo-li se napětí akumulátoru pod 12 V, což znamená, že akumulátor je buď vybitý, nebo není dobíjen, nebo je ve špatném stavu. Dioda D1 je zelená – oznamuje, že napětí akumulátoru je v oblasti 12 až 14,4 V v klidu nebo při jízdě, tedy že je jak akumulátor, tak regulátor v pořádku. Třetí dioda, D₃, je červená, svým svitem oznamuje, že napětí na akumulátoru je větší, než je dovolené a že tedy něco není v pořádku – hledejme závadu. Tato dioda bude svítit i tehdy, poklesne-li značně hladi-

na elektrolytu v akumulátoru. Napětí na akumulátoru se přes R1 dostane na odporový trimr P1, napětí na jeho běžci řídí tranzistor T₁, který spolu s T₂ tvoří Schmittův klopný obvod. Bistabilní obvod se překlopí, bude-li vstupní napětí větší než zvolené, a vrací se do původního stavu, bude-li vstupní napětí shodné se zvoleným. Aby hystereze byla přijatelná, isou použity diody D₄ až D₆.

Při změně napětí akumulátoru se objeví změna i na běžci P₁. Bude-l<u>i</u> napětí akumulátoru menší než imenovité, T1 bude uzavřen. Na jeho kolektoru bude plné napětí, T2 se otevře a rozsvítí se D2 - svítí varovný signál žlutý, napětí je menší než jmenovité. Rozsvícení žluté diody nastavíme tak, že na vstup zařízení připojíme regulovatelný zdroj napětí, na kterém nastavíme asi 11,8 V a otáčením P₁ rozsvítíme D₂. Zvětšíme-li nyní napětí na 12 V, D2 musí zhasnout a rozsvítí se zelená dioda, D₁, což oznamuje, že napětí je jmenovité. Tranzistor T2 se uzavře, vše se má odehrávat bez přechodových jevů (neměly by svítit obě diody současně)

Dioda D₁ svítí tak dlouho, dokud se neotevře T₄. Při jeho otevření dioda D₃ odvádí proud D₁, která zhasne a rozsvítí se červená dioda, D₃. Sečteme-li napětí kolektor-emitor $T_1 + napětí na D_4, D_5 a D_6, výsledek bude asi$ 2,4 V. Když otevře T₄, na diodě D₁ bude jen 0,6 V, proto dioda zhasne a rozsvítí se D₃. Prahové napětí D₃ nastavíme trimrem P₂ tak, že na vstup přivedeme napětí 14,6 až 14,7 V, opět z regulovatelného zdroje. Pak postup několikrát opakujeme. Celý indikátor lze umístit na desku s plošnými spoji 45×45 mm.

Čidla a možnosti jejich využití

Často se stává, že v moderní elektronice při měření, při regulaci, řízení, hlídání a dalších úkonech potřebujeme přijímat nějaký neelektrický signál. V tomto případě vždy musíme převést neelektrické veličiny na elektrické, např. senzory. Konkrétní zapojení toho nebo onoho senzoru je mimo rámec tohoto článku, chci jen ukázat, jaké jsou možnosti jejich použití v současnosti.

V průmyslové, ale i ve spotřební elektronice potřebujeme dodávat nejrůznějším zaří-

zením množství informací, podle nichž pak pracují. Mohli bychom to porovnat s lidským tělem: vjemy, dodávané našimi smysly, zpracuje mozek, který nejrůznější "hlášení" buď jen registruje, porovnává s do paměti již dříve uloženými údaji, nebo dává příkaz svalům k vykonání určité činnosti. Tento pochod - automatické řízení - stále více proniká do všech dějů kolem nás, a jak vidíme, předpokladem úspěšného rozhodování jsou informace a dostatečné množství vstupních údajů, dat, dodaných senzory.

Senzory mohou být aktivní nebo pasívní. Aktivní jsou takové, které bez dodání energie údaj samy převádějí na napětí, proud nebo náboj (kupř. piezoelektrický tlakový senzor). Pasívními senzory jsou takové, které k činnosti potřebují pomocný zdroj napětí nebo proudu, aby změna jejich vlastností mohla být vyhodnocena (termistor). Jsou senzory jednoduché, které přímo reagují na změnu, jsou senzory složité, u nichž se jednoduchý signál přetvoří na elektrický, a i senzory tzv. inteligentní, které signál zpracovávají, korigují, linearizují apod., obvykle jsou integrovány na jednom čipu s dalšími obvody.

Co vlastně můžeme senzorv měřit, indikovat a vyhodnocovat? Odpověď je jednoznačná, všechno:

polohu, vzdálenost, úhel, odraz. rychlost, zrychlení, rychlost otáčení, sílu, tlak, hmotnost, tvar.

teplotu, zvuk,

záření, absorbci, barvu, hustotu, integraci, vihkost. množství, kusy, průtok

a jiné další, které dávají informaci o tlaku a roztahování, o elektrickém a magnetickém poli, o záření, o pohybu částic, atd., atd., cestou piezoelektrickou, chemickou, změnou odporu, přeměnou mechanického pohybu na elektrickou veličinu, na základě pyroelektrického efektu, Hallova efektu, polarizace, změnou indukce, ionizací, atd

Tedy nekonečná řada možností a použití senzorů, ve všech oborech nejen elektroniky, ale mechaniky, fyziky, chemie, lékařství a dalších. Není možné se v krátkých poznámkách zabývat všemi možnostmi, proto si vybereme jen některé, s nimiž se můžeme setkat častěji.

Odporové senzory. Většinou vycházíme kromě specifického odporu materiálu z jeho délky a průřezu. Každá změna ovlivňuje některou z vlastností, a vhodně vybrané senzory dávají potřebné informace o vlivech, které tuto změnu vyvolají (kupř. tenzometrické senzory, měření teploty kovovými nebo polovodičovými materiály, tlakové senzory apod.). Tenzometrická čidla jsou konstruována tak, že jsou na pružný podklad - třeba jen papír - pevně nalepeny velmi tenké odporové dráty ve formě meandru. Po přilepení nosiče na zkoušený materiál se změnou mechanických vlastností (prodloužení, ohyb) mění i odpor drátů. Místo drátů se používají i tenké fólie.

Dalším velmi používaným drátovým senzorem je platinový drát, u nás ve známých teplotních senzorech PT 100. Velmi tenký platinový drát v keramickém ochranném pouzdře má při 0 °C odpor přesně 100 Ω. Čidlo je použitelné na měření teploty od 250 do +1000 °C (viz AR B4/1986)

Novější jsou tepelné senzory z křemíku (KTY fy Siemens, PTS maďarské výroby); které mají obvykle tvar plastikového tranzistoru. Tató čidlá jsou bez podpůrných obvodů nelineární, k jejich linearizaci existují různá zapojení, v poslední době jsou navíc ve společném pouzdře s integrovaným obvodem, který průběh linearizuje a na výstupu je přímo napětí 10 mV/°K (LM35).

Zatím nejpoužívanějšími odporovými senzory jsou termistory, o nichž již bylo hodně

Dalším druhem senzorů jsou reaktanční senzory, které reagují na změnu indukčnosti nebo kapacity. Změnu indukčnosti lze obvykle vyvolat změnou cívky, změnou vzájemné polohy cívek, změnou polohy jádra; lze měřit zrychlení, délku, vzájemný pohyb. Kapacitní senzory reagují na polohu, velikost, nebo vlastnosti dielektrika, změna dielektrika se používá při měření hladiny kapalin, koncentrace plynů apod. Speciálními kapacitními senzory jsou výrobky Philips a Valvo; např. KHY10 je speciálně určený pro měření vlhkosti vzduchu v rozmezí od 10 do 100 % relativní vlhkosti, přičemž kapacita senzoru se mění od 115 do 150 pF.

Pieżoelektrické senzory pracují na principu krystalové vložky do gramofonu (působí-li se na výbrus určitého krystalu tlakem, vzniká elektrické napětí, přitom mezi tlakem a napětím je lineární závislost). Tyto senzory se v poslední době rozšířily, používají se např. v lékařské elektronice, kde se jimi měří a kontrolují velmi malé tlaky krve, nebo v průmyslu, kdy se jimi snímají obrovské tlaky v servosystémech letadel a nejrůznějších strojů. Senzory tohoto druhu vyrábí také TESLA Rožnov (TM a trojmístné číslo), jsou však velmi drahé.

Hallovy generátory jsou řízeny magnetickým polem, jsou použitelné při indikaci pohybu, otáčení a dalších mechanických veličin. U nás je na trhu několik obvodů s Hallovými generátory (MH1SD1, MH3SD3, MH1SS1. MH3SS3 a MAF100).

Optické senzory jsou velmi rozšířené a známé, jen pro ucelenost vyjmenujeme fotorezistory, fototranzistory, fototyristory, fotodiody, jak v oblasti viditelného, tak i infračerveného záření. Fotoelektrické součástky již ovládají činnost motorů, automobilů, náramkových hodin, ale i elektráren.

Nesmime zapomenout ani na senzory, které *indikují plyny*, alkohol, výpary benzinú, metan, kysličník uhelnatý, atd. Tyto senzory (Figaro 812, 813 apod.) mohou stoprocentně zajistit bezpečnost v nebezpečných provozech, ve výbušném prostředí, v dolech atd., je jen škoda, že se u nás nepoužívají, popř. ani nevyrábějí, přesto že jsou často levné a nenáročné na výrobu.

Velmi málo se u nás používají např. i akustické senzory, pracující v oblasti ultrazvuku jako zabezpečovací zařízení v mnohých oblastech.

Obr. 74. Kontrola pojistek na malé napětí

Na obr. 74 je obvod, který hlídá pojistku v zařízení, které je napájeno malým napětím. Může se používat i v autě pro okamžité upozornění, že pojistka je přerušena (kupř. reflektoru apod.).

Obvod je připojen k pojistce v bodech A a B a ke kostře nebo zápornému napětí. Zapneme-li napájení kontrolovaného zařízení, zároveň napájíme i hlídací obvod. Je-li pojistka Po v pořádku, je otevřen přes R5 a D₁ tranzistor T₃ a vede, napájí LED, která trvale svítí a oznamuje, že přístroj je zapnutý a je v pořádku. Současně kmitá i multivibrátor s tranzistory T₁ a T₂ v rytmu 1 až 2 Hz, na kolektoru T2 bude pravoúhlé napětí, které se přes D₂ dostane i do báze T₃. Diody D₁ a D₂ tvoří logický obvod OR, v bodě B je stálé napětí úrovně H, pravoúhlé napětí nemá vliv

na otevřený tranzistor T₃, LED svítí stále. Přeruší-li se pojistka, v bodu B nebude napětí úrovně H, signál multivibrátoru - který je nadále napájen z bodu A - ovládá tranzistor T3, který bude střídavě otevírán a zavírán, LED v jeho kolektoru bude v rytmu multivibrátoru blikat a oznamovat obsluze, že je

pojistka přerušena.

Víceúčelový kapacitní senzor je na obr. 75. Můžeme ho použít jak pro hlídání (auta... cenných předmětů), tak pro signalizaci dote-kem apod. Senzorová deska má mít velikost a materiál podle použití (kovová deska upevněná izolovaně, hliníková fólie přilepená na skle, kousek kuprextitu apod.)

Po zapnutí napájecího napětí kmitá integrovaný obvod 555 jako astabilní multivibrátor. Časovací kapacitu tvoří kovová deska vůči zemi a vnitřní kapacita obvodu. Na vývodu 3 je pravoúhlý téměř symetrický signál. Na tento výstup je připojen řetěz článků RC, přes který se usměrněný signál přivádí na neinvertující vstup operačního zesilovače, který pracuje jako citlivý komparátor. Usměrněný signál odpovídá střední velikosti signálu multivibrátoru. Operační zesilovač je výrobek NDR, který se prodává i u nás, na vstupu má FET, ale můžeme ho nahradit i jiným typem naší výroby. Pracovní bod komparátoru nastavíme hrubě P1 a jemně P2 tak, aby v klidovém stavu bylo napětí na invertujícím vstupu o několik milivoltů menší, než napětí na vstupu neinvertujícím.

Na výstupu komparátoru bude úrovně H, tranzistor T1 bude uzavřen. Přiblížíme-li nyní ruku k senzorové desce, mění se kmitočet oscilátoru i činitel plnění pravoúhlých impulsů, což postačí ke změně výstupního napětí. Komparátor se jednou nebo vícekrát překlopí, T₁ vede a kotva relé přitáhne. Obvod je možné podle potřeby doplnit tak, aby se po prvním překlopení kontakty relé udržely v sepnutém stavu a signál byl buď nepřetržitý, nebo trval potřebnou dobu

Měřič *U*z

Kdo často potřebuje měřit Zenerovy diody, může použít k tomuto účelu přístroj podle obr. 76, v němž lze nastavit proud zkoušenou Zenerovou diodou. Zenerovo napětí lze pak číst na měřidle. Proud diodou můžeme měnit plynule od nuly do 100 mA, což většinou postačí.

Přístroj se skládá ze zdroje proudu, z generátoru konstantního proudu a z měřicí části. Je použit malý transformátor se sekundárním napětím kolem 50 V se zatížeností asi 100 mA. Můžeme tedy měřit Zenerovo napětí asi do 60 V. Zenerovu diodu měříme konstantním proudem, generátor je sestaven z tranzistorů T_1 a T_2 . Referenční napětí pro generátor odebíráme z katody diody D5 (libovolná LED), sloužící zároveň jako indikátor zapnutí přístroje. Odporový trimr P₁ nastavíme tak, aby měřidlo ukázalo 100 mA při běžci potenciometru P₂ v krajní poloze.

Trimry P₃, P₄, R₃ a D₆ tvoří voltmetr, popř. předřadné rezistory k voltmetru, který měří napětí na zkoušené Zenerově diodě. Přepínač má dvě polohy: měření do 10 a do 100 V. Měřidlo Mo má stupnici 100 dílků (můžeme použít pro tento účel Propisot), cejchujeme jej trimrem P_3 , popř. P_4 srovnáním s přesným měřidlem. Miliampérmetr M_1 , kterým měříme proud protékající Zenerovou diodou, má jen jednu stupnici s dělením na 100 dílků a plnou výchylku ručky při 100 mA. Dioda D₆ chrání měřidlo před přetížením.

Jsou možné další varianty uspořádání. Chce-li někdo ušetřit vestavěný voltmetr a měřit externím DVM nebo Avometem, pak v bodech A-B-C odpojí voltmetr a externě měří napětí v bodech A-C. Měření lze však také vylepšit vestavěným digitálním voltmetrem. Pro ten účel vyhovuje DVM popsaný vícekrát na stránkách AR s obvodem C520D se vstupním děličem do 100 V, který bez přepínání bude ukazovat Zenerovo napětí s přesností na desetinu voltu. Také v tomto případě vynecháme vnitřní voltmetr podle obrázku a na body A-C připojíme vstup DVM. Na transformátoru pak však budeme potřebovat ještě sekundární vinutí asi 8 až 9 V, z něhož získáme stabilizované napětí 5 V k napájení DVM.

Přístrojem můžeme měřit i napětí na usměrňovacích diodách při různém zatížení v propustném směru, jak je naznačeno čárkovaně na schématu.

Světelný maják

Často potkáváme vozidla, která jsou vybavena světelným majákem: záchranná služba, odvoz smetí, požárníci, neboli hasiči, VB apod. Signalizace - rotující světlo - je nápadná: v barevném krytu svítí silná žárovka, kolem ní rotuje reflektor a odráží světlo na všechny strany.

Tentó efekt můžeme napodobit čistě elektronicky – zařízení bylo popsáno např. v AR 9/1987. Zapojení na obr. 77 je však jednodušší a nepotřebuje stabilizovaný zdroj 5 V pro napájení obvodů TTL, celé zařízení je napájeno z jednoho zdroje. Může sloužit jako výstražná signalizace při různých zabezpečovacích zařízeních, nelze jej však použít na vozidle!!

Generátor s tranzistorem UJT (náhradu viz AR 9/1987, str. 345) vyrábí impulsy v pra-videlných časových intervalech, které můžeme měnit trimrem P₁. Když se zvětší napětí na C1 na určitou velikost, tranzistor se otevře a náboj kondenzátoru se vybije přes R4. Krátký kladný impuls otevře tranzistor T1, který jej zformuje a přivádí na čítač IO1, který je typu CMOS. Čítač umí čítat do deseti, je-li vývod 15 připojen na zem, ale v našem případě potřebujeme čítat jen do šesti, proto vývod 15 propojíme s vývodem 5. Šestý impuls čítač vynuluje a čítání začíná znovu. Čítač je ovládán čely impulsů.

Jednotlivé výstupní signály IO, dosáhnouli úrovně H, otevírají postupně tranzistory T2

B081 KA261 KC149 +12 V R₉ 12k 15k R_2 5k6 Ra 102 10M| 10k C₅<u>↓</u> 555 C4 R, 470nT 100n nebo fólie

Obr. 75. Kapacitní senzor

až T7, které budí v tomto pořadí výkonové tranzistory T₈ až T₁₃ – ty napájejí výkonné žárovky. Výkonové tranzistory není třeba chladit, neboť při napájení žárovek impulsy nejsou tranzistory zatěžovány trvale. Odběr proudu je jen asi 1 A. Při použití všech výstupů integrovaného obvodu můžeme po-

Obr. 77. Elektronický maják

KY199 KA206 KY190 D. G№ +1,5 V 50 Ω 100n C3 /630 V R. 50u /15 V M22 KF508 2×KC507

Obr. 78. Jednoduchý Geiger-Müllerův indikátor záření

Obr. 79. Měřič síly pole

čet žárovek zvětšit až na deset. Účinnějšího světelného efektu dosáhneme, umístíme-li žárovky do malých reflektorů.

Geiger-Müllerův čítač

Na obr. 78 je jednoduchý Geiger-Müllerův čítač, který indikuje již slabé záření beta a gamma. Jediným problémem je získání trubice GM, které se běžně u nás nevyskytují. Pro tento účel se však hodí i trubice GM sovětské výroby, která se vyrábí již přes třicet let, je dlouhá 113 mm, má průměr 12 mm a je kovová, jde o typ STS-5, který pracuje již od napětí 400 V. Ze zahraničních lze použít typy Philips ZP1400, ZP1310 nebo ZP1320, které jsou modernější, citlivější, ale i značně drahé – 60 až 120 dolarů.

Celé zařízení je napájeno z jedné tužkové baterie 1,5 V, odběr je max. 10 mA. Z napětí baterie se měničem získává -12 V pro napájení zesilovače a vysoké napětí pro napájení trubice GM. Transformátor měniče je navinut na feritovém hrníčku o Ø asi 25 mm, vinutí L₁ má 15 závitů drátu o Ø 0,25 mm, L₂ 45 závitů stejného drátu a L₃ 550 závitů drátu o Ø 0,1 mm. Začátky vinutí jsou ve schématu označeny tečkami. Měnič pracuje jako blokovací oscilátor, na sekundárním vinutí při vypínání vzniká vysoké napětí, které se usměrňuje rychlou diodou D₃. Obyčejná usměrňovací dioda je nepoužitelná, protože impulsy jsou velmi krátké a kmitočet vysoký. Je-li trubice GM mimo prostor záření, na jejím vstupu není napětí a zesilovač je v klidu. Dopadne-li částečka záření beta nebo gamma na trubici, ionizuje náplň trubice a na výstupu se objeví impuls, který vybudí zesilovač a z reproduktoru – telefonního sluchátka - se ozve praskot a LED (D1) blikne. V prostoru bez záření se ozývají praskoty asi po sekundách a LED bliká také, to je reakce trubice na kosmické záření. Přiblížíme-li trubici – která je v izolovaném pouzdře – k zářícímu předmětu (starší typy svíticích ciferníků hodin s "fosforem", stupnice leteckého pří-stroje z války apod.), praskot bude častější a nakonec uslyšímé souvislý šum a LED bude stále svítit. Podle toho můžeme usoudit na četnost dopadu částic, tedy intenzitu zá-ření. Indikace je velmi citlivá, přístroj indikuje sebemenší záření.

Přístroj byl doplněn i ručkovou indikací. Ze signálu do sluchátka přes kondenzátor C₅ odebíráme střídavé napětí, které zdvojuje-

me germaniovými diodami (mohou být libovolné) a po vyhlazení kondenzátorem C_6 a regulačním trimrem P přivádíme na citlivé měřidlo. Trimr nastavíme tak, aby se ručka při silném záření nevychylovala "za roh", a při nepatrném signálu již začala ukazovat. Porovnáním s laboratorním přístrojem by bylo možné měřidlo i ocejchovat.

Zařízení bylo konstruováno na jedné desce s plošnými spoji a vestavěno do skříňky velikosti 150×90×40 mm. Trubice byla uzavřena do kovového pouzdra a spojena se skříňkou stíněným kabelem a reproduktorovým konektorem.

Měřič síly pole

Na obr. 79 je jednoduchý měřič síly pole ke kontrole vyzařování antén, popř. přítomnosti vf signálu. Krátká anténa A přijímá vysíla-čem vyzařovaný signál. Přepínatelné cívky L₁ a L₂ spolu s kondenzátorem C₂ tvoří laditelný paralelní rezonanční obvod v rozsahu kolem 60 MHz. Obvod je selektivní, ladicím kondenzátorem se nastavuje kmitočet přijímaného signálu (měřidlo ukáže maximální výchylku). Dioda D je libovolná germaniová dioda, která detekuje vf signál. Nf signál se přivádí na vstup operačního zesilovače. Citlivost můžeme regulovat trimrem P₁. Přístrojem lze měřit i signál vlastního vysílače. Zapojíme-li sluchátko s velkou impedancí podle obrázku, pak měřič síly pole může posloužit i jako monitor, na kterém slyšíme demodulovaný signál vlastní nebo

Zdroj vn

Na obr. 80 je laboratorní zdroj vysokého napětí. Základní zapojení je na obr. 80a, na němž je vlastní měnič, druhá část s usměrňovačem má dvě varianty. Podle obr. 80b je možné odebírat napětí od nuly do 3 kV, podle obr. 80c od 0 do 10 kV.

Před stavbou je třeba si uvědomit, že se jedná o vysoké napětí, které při doteku může způsobit smrtelný úraz, proto je třeba pečlivě dodržovat bezpečnostní předpisy a zásady.

Vysoké napětí získáváme ze zdroje 30 V. K regulaci výstupního napětí se používá operační zesilovač IO₂ a výkonový tranzistor T₃. Zenerovo napětí na neinvertujícím vstupu IO₂ pomocí P₁ řídí výkonový tranzistor T₃, kterým napájíme transformátor. Odběr naprázdno z napájecího zdroje je asi 50 mA, při zátěži 2 až 3 W se zvětší asi na 350 mA.

Integrovaný obvod IO_1 je zapojen jako astabilní multivibrátor a kmitá na kmitočtu asi 20 kHz. Výstupní pravoúhlé napětí výkonově zesílíme Darlingtonovým párem tranzistorů T_1 , T_2 a přivádíme je na primární vinutí transformátoru, který je navinutý ve feritovém hrníčku o \emptyset asi 35 mm bez vzduchové mezery (s co největším A_L). Vinutí L_1 má 25

Obr. 80. Zdroj vysokého napětí

závitů drátu o \emptyset 0,75 až 1 mm, sekundární vinutí L_2 500 závitů drátu o \emptyset 0,2 až 0,3 mm. Tranzistory T_1 a T_2 přes R_4 nejsou otevírány do saturace, velmi rychle se uzavírají a na primárním vinutí proto vznikají velmi rychlé impulsy napětí až 300 V, které na sekundární straně dávají požadované vysoké napětí. Na transformátoru musíme velmi dobře izolovat primární vinutí od sekundárního, aby napěťové špičky neprorazily vinutí.

Rezistory, na nichž je vysoké napětí, R_6 a R_7 , musíme složit z rezistorů o odporu 10 $M\Omega$, aby nenastaly přeskoky vysokého napětí. Diody bude třeba použít vysokonapěťové (nebo vn usměrňovací bloky), asi na 1200 až 1500 V, kondenzátory 10 nF na 3 kV.

Indikátor tepu

Na obr. 81 je indikátor tepové frekvence. Ke zhotovení přístroje mi dalo popud vlastní srdce, když najednou místo pravidelného rytmu začalo bláznivě vyťukávat něco, co se podobalo morseovce, kterou dává úplný začátečník. Poznal jsem, jak je těžké sledovat vlastní tep, který je nepravidelný a občas i nějaký úder vynechává. Přístroj slouží k vizuálnímu sledování srdečních tepů, při každém tepu se rozsvítí LED a pravidelnost nebo nepravidelnost lze pozorovat vizuálně. Kromě toho přístroj integruje počet tepů a ukazuje na měřidle průměrný počet za minutu.

Podotýkám, že přístroj není laboratorní, slouží jen k laické vizuální kontrole při srdeční arytmii, indikace tepů je však absolutně přesná, indikace průměrného počtu tepů srdce je přibližná.

Z počátku jsem měl obavy ze složitosti snímání tepů, při zkouškách se však ukázalo, že to půjde bez problémů, konstrukce snímače vyžaduje ovšem trochu mechanické zručnosti. Snímat tep můžeme na prstech nebo na ušním lalůčku. Na obou místech je jemná a hustá síť vlásečnic, přes které proudí krev, kterou "pumpuje" srdce do krevního oběhu, v tom okamžiku tepu je "příval" krve největší. V tomto okamžiku se mění průhlednost vlásečnic – tuto skutečnost použijeme ke snímání tepu. Malou žárovkou se stejnosměrným napájením prosvěcujeme prst nebo ušní lalůček. Přesně naproti žárovce je umístěn fotorezistor, který i při těchto relativně nepatrných změnách průsvitnosti mění - také nepatrně - svůj odpor. Změny odporu se zesilují, upravují a zesilené zpracovávají a potom indikují. Podotýkám, že kdo má na prstech mozoly, tj. tvrdou a zbarvenou kůži, měl by tep snímat z ušního lalůčku, protože prst bude neprůhledný

V přístroji podle obr. 81 byla použita dvě pouzdra se čtyřmi operačními zesilovači, jsou to Nortony zesilovače, řízené nikoli napětím, ale proudem. Nortonový OZ jsou v zahraničí běžné, u nás se nevyrábějí, a ani je

Obr. 83. Konstrukce snímače indikátoru tepu (Ž – 2,5 V/100 mA)

nelze jednoduchým způsobem u nás běžnými operačními zesilovači nahradit.

IO₁/1 a IO₁/2 pracují jako snímače a stabilizátor. Přes R_f protéká konstantní proud, stejný proud teče i přes R₁. IO₁/2 působí, že na výstupu IO₁/1 bude napětí asi 4 V a přes R₂ a R₃ protékají stejné proudy. Kondenzátor C₂ zabraňuje rychlým změnám proudu přes R₁ při tepu, který působí rychlé změny odporu R_f. Protože na výstupu IO₁/1 je velmi malý signál, zesiluje se IO₁/3 a IO₁/4, celkem o 40 dB. Kromě zesilování pracuje IO₁/3 jako horní popust, omezuje nejvyšší počet tepů, který může být asi 250/min. Dolní propustí je IO₁/4, který ořezává kmitočty pod 30 tepů za minutu. Tyto filtry zároveň omezují i vliv kmitočtu sítě a všechny parazitní signály těla, které by mohly rušit měřené údaje. Protože užitečný signál se může lišit u různých osob i o více než 20 dB, IO2/1 signál ještě zesiluje o 26 dB. Výstupní signál je upraven Schmittovým klopným obvodem na pravoúhlý tvar pomocí IO₂/2(R₁₇ závádí kladnou zpětnou vazbu). Oba výstupy mají předpětí z výstupu IO2/1. Na výstupu IO2/2 je LED, který se při každém tepu rozsvítí a indi-kuje četnost tepů. Pravoúhlý signál z výstupu IO₂/2 se mění na napětí, úměrné průměru počtu tepů (IO₂/3). Vždy, když je na výstupu IO₂/2 úroveň H, nabije se C₁₂ přes R₁₉ a na neinvertujícím vstupu IO₂/3 bude záporné

Obr. 82. Deska s plošnými spoji pro indikátor tepu

napětí. Bude-li na výstupu $IO_2/3$ úroveň H, nabije se částečně C_{13} a při záporném napětí na výstupu $IO_2/2$ se kondenzátor vybije do invertujícího vstupu $IO_2/3$. R_{20} zabezpečuje, že se C_{13} vybije při každém vstupním impulsu, protože omezuje jeho napětí. Tím je dosaženo, že napětí bude úměrné počtu tepů.

Změny napětí jsou určeny časovou konstantou R₂₀, C₁₃ (jsou zvoleny jako kompromis). Zenerova dioda D₃ stabilizuje výstupní napětí IO₂/2 při změnách napájecího napětí. IO₂/4 je oddělovacím zesilovačem, na jeho výstup je připojeno měřídlo. Diody D₁ a D₂ stabilizují napětí při změně napájecího napětí při nastavení nuly, protože na výstupu IO₂/4 není nulové napětí, ale asi 0,8 V. Spínačem S a R₂₃ se mění zesilení IO₂/4 a tím i rozsah měření na 100 nebo 200 úderů za minutu.

A nyní ke konstrukci přístroje. Všechny součástky kromě snímače jsou na jedné desce s plošnými spoji velikosti 90×65 mm. Oba čtyřnásobné operační zesilovače jsou LM3900 nebo 2900, které – jak již bylo zdůrazněno – nelze nahradit běžnými OZ. Použijeme dva zdroje: devítivoltovou destičkovou baterii pro napájení přistroje a dva tužkové články 3 V pro napájení žárovky 2,5 V/100 mA. Deska s plošnými spoji pro přístroj je na obr. 82.

Konstrukce snímače je na obr. 83. Nejlépe se hodí kolíček na prádlo z plastické hmoty. Oba díly kolíčku na jedné straně prodloužíme kouskem organického skla nebo novo-duru, na konec jednoho dílu vyvrtáme díru, do které umístíme žárovku 2,2 až 2,5 V/100 až 200 mA. Na protější díl přesně naproti žárovce vyvrtáme díru o velikosti použitého fotorezistoru (nejlépe některý z typů WK650 až 75. Jsou to fotorezistory napařované, velikosti přibližně tranzistorů KF508, jenom plošší s okénkem). Do vyvrtané díry "usadíme" fotorezistor, na který bude svítit žárovka. Rozevřením kolíčku nasadíme celý přípravek na některý z prstů nebo na ušní lalůček a kolíček se žárovkou s fotorezistorem zůstane na tomto místě upevněn. Ke spojení snímače s přístrojem použijeme čtyřpramenný kablík a čtyřpólový modelářský konektor.

Úvedení do chodu je jednoduché. Použijeme spínač, který najednou zapne napájení přístroje i žárovky. Po zapojení napájecího napětí počkáme 20 až 30 sekund, než se poměry ustálí (nabijí se kondenzátory) a po této době by LED měl začít blikat. Pravidelnost blikání kontrolujeme mechanickým srovnáním četnosti tepů. Potom si změříme stopkami počet tepů srdce za minutu. Sejmeme spínač z prstu (ucha) a na měřidle trimrem nastavíme nulu, potom znovu spínač nasadíme a trimrem P2 nastavíme údaj,

získaný při měření času stopkami. Sepnutím S by měla být výchylka měřidla poloviční. Korekci – bude-li třeba – zabezpečí úprava

Měřidlo použijeme s citlivostí asi 100 μA s dělením na 100 dílků. Počet tepů tedy měříme na stupnici do 100 nebo 200/min. Trimrem P₁ nastavíme optimální zesílení.

Měření impulsů

Na obr. 85 je přístroj k měření špičkového napětí krátkých impulsů. V amatérské i profesionální praxi často používáme indukční zátěž, cívky, na nichž zvláště při odpojení zátěže vznikají velké napěťové špičky, které mohou poškodit nebo zničit další součástky – kupř. spínací tranzistor koncového relé. Popisovaným přístrojem je možné měřit napětí impulsů nejen při odpínání indukční zátěže, ale i špičky šumového napětí apod.

Základním principem měření je určitá modifikace zapojení tzv. sample and hold, vzorkovacího obvodu s pamětí. Střídavé napětí, popř. impuls přivádíme přes kmitočtově kompenzovaný dělič na operační zesilovač IO1. Jeho výstupní napětí nabije kondenzátor C6 na kladnou špičkovou hodnotu vstupního napětí. Kondenzátor C₆ má poměrně malou kapacitu a spolu s poměrně rychlou reakcí IO1 zabezpečuje, že i krátký impuls nabije kondenzátor na maximum. Kondenzátor ovšem svůj náboj udrží jen krátkou dobu, pro udržení náboje slouží další operační zesilovač IO2, který pracuje obdobně jako IO1, jen kapacita stejně zapojeného kondenzátoru na jeho výstupu je tisíckrát větší, C₈ má tedy podstatně větší náboj, který se udrží delší čas. Jen tak se dají spojit dva protichůdné požadavky: rychlost a setrvačnost. Třetí operační zesilovač, IO3, pracuje jako napěťový sledovač a napájí měřid-

Přístroj lze nastavit a cejchovat víceméně experimentálně. K nastavení vstupního děliče potřebujeme generátor pravoúhlých kmitů a osciloskop. Signál přivádíme na R1 až R4 a průběh kontrolujeme v bodě X. Místo C1 použijeme parazitní kapacitu R, a jeho přívodů a kompenzaci nastavíme kondenzátorem C₅ zkusmo. Potom zkusíme nastavit C₂ a C₄ také experimentálně. R₁ až R₅ použijeme na větší napětí, nebo je složíme z několika kusů. Vstupy bude výhodnější vyvést na samostatné svorky, přepínač by mohl přidat nežádoucí kapacity a mohl by způsobit i průraz vysokým napětím. Kondenzátor kmitočtové kompenzace u IO₁ (C₇) určuje v podsta-tě vlastnosti přístroje. Kapacita asi do 3 pF sice zajišťuje potřebnou rychlost, ale chyby měření mohou dosáhnout i 50 % v důsledku zakmitání obvodu. Větší kapacita zmenšuje chybu ale i rychlost, je třeba zvolit nějaký rozumný kompromis. Druhý stupeň s IO₂ již nemá žádné záludnosti. Tlačítko Tl slouží k vybití kondenzátoru C₈ – tím se vynuluje měřidlo.

Na některý ze vstupů přivedeme stejnosměrné napětí, kupř. 20 V na vstup pro 30 V. Měřicí přístroj má ukázat odpovídající výchylku, tj. asi dvoutřetinovou. Je-li výchylka větší, měřidlo tlačítkem vynulujeme, je-li výchylka stále větší, je třeba upravit odpory rezistorů na vstupu.

Potom následuje test na rychlost a zákmity pomocí přípravku na obr. 85b. Kondenzátor C má kapacitu asi 100 μ F. Přepnutí kondenzátoru na vybíjení vyvolá impuls na R, který přivedeme na vstup. Kapacitu kompenzačního kondenzátoru C_7 zvětšujeme od nuly tak, až výchylka měřidla po každém vybití překročí správný údaj. Pak zmenšujeme kapacitu kondenzátoru C, až se záporná odchylka také zmenší na minimum. Z takto zjištěných hodnot R a C obdržíme údaje, jak krátké impulsy můžeme ještě měřit.

Měření teploty

Na obr. 86 je jednoduchý přípravek, který připojený k digitálnímu voltmetru slouží k měření teploty v rozsahu od –20 do +120 °C. Na DVM měříme na rozsahu 2 V a desetinnou tečku nebudeme brát v úvahu. Výsledek měření je 10 mV/°C v uvedeném rozsahu s dobrou linearitou.

Přípravek napájíme z devítivoltové baterie. Dvojitý operační zesilovač nepotřebuje stabilizaci napájecího napětí, jen referenční napětí stabilizujeme zdvojenou Zenerovou diodou. Za sondu použijeme křemíkovou diodu, vyhovuje kupř. varikap KB205, KB213, příp. i jiné. Senzor upravíme podle obrázku tak, že do zúženého konce mosazné trubičky připájíme jeden vývod diody, druhý připojíme k vnitřnímu vodiči stíněného kabelu. Stínění připájíme k mosazné trubičce.

Cejchování je jednoduché. Sondu umístíme do rozdrceného ledu, ke kterému jsme přídali trochu vody – tající led má přesně 0 °C, kontrolujeme přesným teploměrem. DVM nastavíme na rozsah 2 V a trimrem P₁ nastavíme na DVM 0,000. Potom sondu dáme do vařicí vody a trimrem P₂ nastavíme na měřidle 1,000, tj. 100 °C. Cejchování není sice úplně přesné, ale v praxi rozdíly můžeme zanedbat. Tento postup několikrát opakujeme, až se údaje již nemění.

Generátor zvuku

Na obr. 87 je generátor zvuku. který vydává velmi intenzívní a nepříjemný zvuk, připomínající policejní sirénu, ale mnohem nápadnější. Může se hodit především pro poplachová zařízení, ale i na plašení zvěře.

Obr. 87. Generátor nápadných zvuků

ptáků apod., všude tam, kde je třeba využít velké hlasitosti a momentu překapení.

Zapojení se skládá ze čtyř částí: binární čítač s obvodem 4040, převodník D/A, VCO (napětím řízený oscilátor) a výstupní zesilovač

Počáteční kmitočet signálu je závislý na nastavení R₁₁, invertor začíná kmitat na poměrně nizkém kmitočtu. Kmity postupují na binární čítač a na převodník D/A, který je složen z rezistorů R₁ až R₈. Když čítač přes konvertor dává postupně signály na tranzistor T₁, oscilátor mění svůj kmitočet a vytváří zvukové efekty i pomocí diodového můstku, který pracuje jako napětím řízený odpor. Signál takto vytvořený je pak zesílen invertory obvodu 4049 a dává velmi intenzívní a nepříjemně znějící zvuk. V případě potřeby na výstupu můžeme použít výkonový zesilovač.

Automatické zalévání

Pravidelné zalévání patří ke stálému programu každého zahrádkáře i chalupníka. Ale ta pravidelnost mnohdy utrpí pro nepřítomnost nebo z jiných důvodů. Proto by měla i zde nastoupit elektronika, která tuto funkci může bezpečně zastat. Předpokladem je samozřejmě přítomnost vody buď z vodovodu nebo ze studně, příp. z rezervoáru a síťové napětí. Máme-li k dispozici vodovod, nepotřebujeme čerpadlo, použijeme elektromagnetický ventil, jaké bývají na automatic-kých pračkách, který otevřeme na určitou dobu a buď rozprašováním, nebo proudem vody, příp. jiným způsobem zavlažíme půdu. Máme-li jen studnu, budeme potřebovat spustit elektrické čerpadlo a vodu rozvádět. jako v předešlém případě. U vodní nádrže leží-li dosti vysoko – postačí elektromag-netický ventil, leží-li nízko, pak také potřebujeme vodní čerpadlo.

Důležíté je, jak chceme zalévat. To závisí jednak od pěstovaných druhů rostlin, jednak od toho, je-li zalévaná plocha volná nebo ve skleníku. Proto budou popsány dvě varianty: jedna, při níž lze zalévat podle toho, jak je vlhko ve skleníku nebo jak je vyschlá půda, druhý způsob je řízen jen časem, závlaha bude pravidelná podle nastavení (každých 6, 12 nebo 24 hodin), nehledě na počasí. Každý způsob má své výhody i nevýhody, a který způsob si zvolit, může rozhodnout jen majitel skleníku nebo zahrady.

První varianta automatického zalévání je na obr. 88. Je určena v první řadě do sklení-ků, ale hodí se i pro venkovní použití. Zařízení zkoumá vlhkost půdy a usoudí-li podle nastavení jeho čidlo, že je půda vyschlá, spustí zalévací systém na určitou dobu. Zařízení je doplněno dalším pomocným čidlem, které zalévání dovolí jen ve dne.

Čidlo, které indikuje vlhkost půdy, může být – aby nekorodovalo – z uhlíků tužkové baterie nebo z nerezových drátů, jaké se používají v zubařství. Dva uhlíky upevníme na společný držák z izolantu ve vzdálenosti 30 až 50 mm a zapíchneme je do země, kde snímáme vlhkost; na toto místo nesmí dopa-

dat přímý proud vody při zalévání, protože čidlo by ihned zjistilo, že je půda vlhká a přerušilo by zalévání. Čidlo spojíme s přístrojem delším vedením, případné rušení omezíme čárkovaně nakresleným kondenzátorem. Je samozřejmé, že celý přístroj musí být na chráněném místě, nejlépe někde v domě.

Čidlo je připojeno na komparátor s velkým vstupním odporem. Přístroj dává stále vizuální informaci o stavu půdy: když je sucho, pak má svítit D₂, ale zároveň by měla svítit i D₃, oznamující, že půda je již zalévána. Výstup komparátoru řídí přívod vody přes jednoduchý časový spínač. Po zahájení zalévání půda kolem čidla bude vlhká, ale přísun vody trvá dále po dobu, kterou nastavíme P₂. Podle mistních podmínek tuto dobu můžeme prodlužovat nebo zkracovat změ-

nou kondenzátoru C₂, který nemá být elektrolytický.

K odstranění brumového napětí na vstupu komparátoru slouží filtr ve složení R_1 , R_2 , C_1 . Změnou R_3 měníme hysterezi, P_1 slouží k nastavení citlivosti – při jaké vlhkosti půdy má začít zalévání. Zpožďovací obvod s kondenzátorem (C_2 , P_2 , T_3 , T_4) určuje dobu, po kterou poteče ještě voda po rozhodnutí čidla, že je "mokro". Ve tmě vedou tranzistory T_1 a T_2 a vstup komparátoru dostává informaci, že je "mokro" a nedovolí zalévání. Oba tranzistory uzavře teprve osvětlený R_1 . Fotorezistor může být libovolného typu.

Rele v kolektoru T_4 spíná elektromagnetický ventil nebo čerpadlo. Jeho spínací kontakty bezpodmínečně musíme přemostit kondenzátorem, jinak by indukční špičky znovu a znovu zapínaly čerpadlo nebo ventil. Tlačítko tl použijeme, chceme-li z nějakých důvodů zalévat ručně, bez automatiky

Protože pracujeme v mokrém prostředí, bezpečnostním zásadám věnujeme mimořádnou pozornost.

Druhá varianta automatického zalévání je na obr. 89. U tohoto systému nepoužíváme žádnou sondu, ale stanovíme podle potřeby pevnou dobu zalévání: po šesti, dvanácti nebo čtyřiadvaceti hodinách. Ve stanovené době poteče voda po dobu, kterou lze nastavit potenciometrem P; dobu můžeme zvolit v rozmezí asi 5 až 15 minut. Zalévací dobu zvolíme přepínačem Př.

Obr. 88. Automatické zalévání I

Na první pohled je zařízení složité, ale jedná se jen o několik čítačů-děličů, které odpočítávají potřebné dlouhé časy.

Zařízení napájíme ze sítě (transformátor asi 15 VA), sekundární vinutí Tr má 8 až 10 V, odběr je asi 1 A. Po usměrnění použijeme k napájení logiky s obvody TTL i časovače monolitický stabilizátor 5 V. Stabilizátor umístíme na chladič.

Střídavé napětí ze sekundárního vinutí po omezení Zenerovou diodou přivedeme na IO2, kde je tvarováno na "obdélníky", jimiž řídíme naše "hodiny". Protože se tedy nejedná o žádný chronometr, přesnost kmitočtu síťového napětí plně postačí.

Síťový kmitočet 50 Hz dělíme padesáti IO₃ a IO₄ a dostaneme sekundové impulsy, které přes tranzistor T₁ rozsvěcují LED pro kontrolu chodu zařízení.Potom následuje řada děličů, které dělením 21 600 dávají interval 6 hodin, 43 200 interval 12 hodin a 86 400 interval 24 hodin. Po skončení zvoleného intervalu se dostane přes přepínač na vstup časovače impuls, výstup časovače se překlopí, relé přitáhne a zapojí čerpadlo. Čerpadlo se vypne po zvolené době. Ale v okamžiku příchodu impulsu na časovač čítač znovu začíná čítat čas a po přesně stejné době se odehrává znovu již popsaný děj, relé sepne, atd. Přepínačem si volíme čas při vypnutém napájecím napětí, abychom vyloučili vliv přechodových jevů na jeho kontaktech.

V zapojení nejsou žádné záludnosti. Spínací kontakty relé (jako u předešlého zapojení) musíme blokovat kondenzátorem C.

Zařízení podobného typu můžeme použít všude tam, kde v určitých časových intervalech máme spouštět nějaké zařízení na určitou dobu. Kupř. obdobné zařízení je v provozu u mrazničky, kde termostat již agregát nevypínal. Byl nastaven čas 40 minut chodu agregátu a 30 minut klidu. Zařízení je v chodu již rok, teplota místo –18 °C v mrazničce se udržuje na –15 °C.

Elektronický proutek

Určitě každý už slyšel o hledání vody proutkem, ale málokdo ví o tom, že vodu lze hledat také pomocí elektroniky. O takovém "elektrickém proutku" zveřejnil článek známý časopis Elektor v r. 1986. Zapojení u nás nebylo vyzkoušeno, časopis však uveřejnil i fotografii hotového přístroje.

Je všeobecně známé, že člověk – dosud neúplně objasněno jak a proč – vnímá elektrické (nebo magnetické) pole, ve kterém se pohybuje. Tato vlastnost není u všech lidí stejná, někdo vnímá lépe, někdo vůbec ne. Popsaným přístrojem lze registrovat změny elektrického pole, proto je jej možné používat i k vyhledávání elektrického vedení, jako měřiče, popř. indikátoru koncentrace iontů, indikátoru elektromagnetického pole i detektoru záření. Lze jej použít i k detekci podzemních vod a dokonce určit směr toku této vody.

Měřit lze mnoho veličin, protože kolem nás jsou různá pole: elektrické, elektromagnetické, pole zemského magnetismu, nemluvě již o kosmickém záření, slunečním záření atd. Teoretici tvrdí, že některá, především "umělá" záření jsou škodlivá. V New Yorku zjistili, že u zvířat, která trvale žila v silném elektromagnetickém poli, vznikl chronický stres, změnil se jejich krevní obraz, obsah hormonů, zmenšovala se hmotnost. V jedné sovětské studii jsou popsány poruchy centrálního nervového systému u pracovníků na vedení vysokého napětí. Do jaké míry se projevují tyto poruchy v přítomnosti slabších polí, dosud není známo.

Vodní prameny lze zjistit proto – podle teorie proutkařů – že pohyb iontů ve vodě ruší okolní magnetické pole země. Postupuje-li se při používání elektrického proutku "křížově", lze prý určit i směr toku.

Tolik teorie, a nyní konkrétně k zapojení podle obr. 90. Jako detektor kladných nebo záporných iontů použijeme prutovou anténu nebo kovovou desku. Přijímaný signál shromáždíme" obvodem IO₁ a zesílíme IO₂. Přicházejí-li z okolí impulsy, tj. jednotlivé ionty příliš rychle, znamená to, že se pohybujeme v silném poli, přijímač může být zahlcen. Aby se tomu předešlo, náboj je v pravidelných intervalech odváděn přes elektronický spínač na zem. Spínač je ovládán časovačem 555 (v provedení CMOS, lze však použít i obyčejný časovač 555), který je zapojen jako generátor pravoúhlých kmitů. Kmitočet lze nastavit trimrem P4, čímž určíme citlivost: čím nižší je kmitočet, tím větší bude citlivost. Spínač S₁ přepíná kmitočet, v sepnuté poloze, má-li P4 maximální odpor, má přístroj maximální citlivost, protože náboj vybíjen v delších časových intervalech a "slabší náboje mají dostatek času k nashromáždění". Dělič R₆, R₇ a P₃ je určen k nastavení ofsetu.

Aby bylo možné pohodlně číst výchylku ručky měřidla (bez kmitání), je použit kondenzátor C₉, který krátce udrží konstantní výstupní napětí IO₁. Protože se jedná o malé napětí, kondenzátor musí být velmi jakostní.

Signál je zesílen IO₂, zesílení lze nastavit potenciometrem P₁.

Přístroj má vlastně jen jeden nastavovací prvek, a to P₂, který nastavíme tak, aby ručka měřidla (s nulou uprostřed) nebyla na dorazu ani vlevo, ani vpravo. Přitom zesílení IO₂ nastavíme na maximum a P₃ na doraz vlevo nebo vpravo.

Použití přístroje je věcí zkušenosti. Můžeme jej vestavět do libovolné krabičky, z níž pak bude vyčnívat "anténa".

Hledáme-li vedení ve zdi, kmitočet oscilátoru má být vysoký; P₄ nastavíme na minimální odpor a S₁ bude otevřen. Anténou pohybujeme podél stěny, v místě, kde je vedení, bude ve sluchátku silný šum. Poloha S₂ při tom není důležitá. Při použití přístroje uvnitř místnosti je třeba nastavit malou citlivost, aby nejrůznější pole neovlivňovala měření. Ve volném prostoru (nebudeme se pohybovat pod vedením vn) by přístroj měl být nastaven na maximální citlivost: S₁ a S₂ sepnuty a P4 maximální odpor. Při vyhledávání spodní vody přecházíme opakovaně zvoleným územím, podélně i kolmo, je-li pod námi vodní pramen, přístroj by měl ukázat výchylku a víme, že voda teče v úhlu 90° na anténu. Radioaktivní záření by měl přístroj také indikovat, vyzkoušíme to pomocí starého ciferníku (s "fosforem") svítících hodin nebo válečných leteckých přístrojů.

Zařízení pro poněkud odlišné použití, ale na podobných principech bylo popsáno v AR B2/1987.

Určení zásoby vody

Někdy potřebujeme určit, jaká je zásoba vody ve studní, v rezervoáru, v nádrži. Jednoduchým zařízením bez aktivních elektronických součástek můžeme mít o tomto údají stálou informaci na prakticky neomezenou vzdálenost, na pozorovacím stanovišti budeme potřebovat jen panelové měřidlo se stupnicí s 10 nebo 100 dílky, které ukáže stav vody po deseti procentech obsahu. Měření není kontinuální, měřidlo ukáže stav jen při stisknutí tlačítka a tak nevybíjíme zbytečně baterii.

Zapojení je na obr. 91. Napájecí napětí 9 V – nejlépe dvě ploché baterie – stabilizujeme Zenerovou diodou asi na 6 až 7 V.

Obr. 90. Elektronický proutek

Obr. 91. Dálkové měření výšky vodního sloupce

Měřicí napětí s indikačním měřidlem a odporovými členy jsou v modifikovaném můstkovém zapojení tak, že vodní sloupec při změně o 10 % spojí příslušný kontakt, čímž se zvětší nebo zmenší o 10 % proud tekoucí měřidlem.

Záporný pól baterie je připojen na tyč z vodivého materiálu (který nerezaví a nekoroduje), tyč dosahuje až na dno. Je-li nádrž kovová, může tyč nahradit její stěna. Vývody deseti rezistorů stejného odporu (680 k Ω) jsou upraveny ve svazek tak, aby se konec každého dotýkal vody v určité výši. Nemusi to být samozřejmě vývod rezistoru, ale jeho prodloužení nekorodujícím drátem. Tyto vývody jsou rozmístěny tak, že vývod R $_4$ je v hloubce, odpovídající minimu hladiny a vývod R $_{13}$ ve výšce maxima hladiny. Je-li kupř. vodní hladina poloviční, pak R $_4$ až R $_8$ se spojí paralelně a měřidlem protéká proud 50 μA a měřidlo ukáže, že v nádrži je 50 % vody.

Vývody R₄ až R₁₃ je nejlépe spojit ve svazek z dobře izolovaného drátu, který spojíme silikonovým tmelem, aby se voda vzlínáním nedostala do svazku. Přístroj ocejchujeme tak, že ručku měřidla při maximálním stavu vody (můžeme imitovat spojením vývodu 13 s tyčí) nastavíme trimrem R₃ na plnou výchylku – 100 %.

Přepínač Př a rezistor RM slouží ke kontrole napětí baterie, RM zvolíme tak, aby měřidlo při přepnutí ukázalo napájecí napětí.

Pohyb tanku Plastimat

Když vyvoláváme film v uzavřeném tanku Plastimat, během vyvolávání je třeba tankem občas pohybovat, otáčet, aby se film vyvolával stejnoměrně. Pohyb o otáčení může za nás obstarat jednoduché a levné zařízení, které si můžeme zhotovit sami.

Do tanku založíme film, nalijeme potřebné množství vývojky a pak tank položíme do mírně nakloněné polohy na podstavec, kterým je základní deska se čtyřmi kolečky. Páté kolečko je poháněno motorkem. Vyvolávací tank leží tedy mírně nakloněn na čtyřech kolečkách, páté ho otáčí (dotýká se zezadu, aby tank zůstal stále ve stejné poloze). Jednoduchá elektronika pravidelně mění směr otáčení motorku, tank se tedy otáčí chvíli doleva, chvíli doprava, a proto vývojka v tanku smáčí film rovnoměrně.

Na základní desku podle velikosti tanku upevníme (podle obr. 92a,b) kolečka. Můžeme použít kolečka v plechovém držáku, která se používají pod lehčí nábytek, nebo kolečka s pryžovou obroučkou z dětských autíček (ta jsou nejlepší). Tank leží na mírně nakloněné desce na čtyřech kolečkách – 2 až 5, zadní, nejníže položená strana tanku se opírá o kolečko 1. Hnacím kolečkem je 5, když se otáčí, tank se točí také a ve své poloze je udržován ostatními kolečky. Vzájemnou vzdálenost a výšku koleček určí-

1až4 – opěrná kolečka , 5 – poháněcí kolečko M – motorek s převodem

Obr. 92. Vyvolávací tank s motorovým pohonem

Obr. 93. Elektrický pohon tanku

me podle velikosti použitého vyvolávacího tanku.

Poháněcí kolečko 5 je stejného provedení jako ostatní, je poháněno malým elektromotorkem 4,5 V z dětských hraček. Můžeme použít i převod do pomala, když ho nemáme, na hřídel motorku nastrčíme kousek "gumičky" z ventilu na kola, a hřídel přitlačíme k některému z koleček. Motorek díky přilnavosti hřídele bude pomalu otáčet kolečkem a tím i vyvolávacím tankem. Za minutu se má tank otočit asi 6 až 8krát.

Abychom dosáhli oboustranného pohybu tanku, přepínáme polaritu napájecího napětí motorku. K tomuto účelu použijeme pomaluběžící multivibrátor podle obr. 93, jeho kmitočet trimrem P upravíme tak, aby relé spínalo a rozpínalo asi v 6 až 10sekundových intervalech. Dva přepínací kontakty relé přitom mění polaritu napájecího napětí motorku, který se bude točit jednou zleva do prava,

f Hz Tón Oktáva f Hz Tón Oktáva c¹ 16 35 1-čárko-261 63 subkor Cis₂-Des tra 17.32 cis1-des vaná 277 14 18.35 d1 293.67 Dis₂-Es₂ 19 44 dis1-es1 311.13 20.60 e¹ 329.63 Eis₂-F₂ 21.83 eis1-f1 349.25 23,13 fis1-ges 370,00 Fis₂-Gis₂ 24,50 392,00 Gis₂-As₂ 25,96 gis1-as1 415,31 27,50 440,00 29,13 Ais₂-Hes₂ ais1-hes 466.16 493,87 30.87 H₂ kontra 32,70 2-čárko-523,25 Cis₁-Des 34.64 cis2-des2 vaná 554,37 36,70 587,34 Dis₁-Es₁ 38,89 dis2-es2 622,25 41,20 659,25 Eis,-F, eis²-f² 698,50 43.65 46.25 fis2-ges 740.00 Fis. Ges 49.00 784.00 gis2-as2 830.63 Gis₁-As 51.91 55.00 880.00 ais²-hes Ais₁-Hes 58.26 932.31 61.73 987 75 velká 65.41 3-čárko-1046,50 cis3-des3 Cis-Des 69 28 vaná 1108.75 73,41 1174.67 Dis-Es 77,78 dis3-es3 1244,50 82,41 1318.50 eis³-f³ Eis-F 87,31 1397,00 Fis-Ges 95.50 fis3-ges3 1480,00 1568,00 98,00 gis³-as³ 1661,25 Gis-As 103,83 1760,00 110.00 Ais-Hes 116,54 ais3-hes3 1864.63 123,46 1975,50 malá 130,82 4-čárko-2093,00 138,57 cis4-des 2217,50 cis-des vaná 146,83 2349,35 155,56 dis4-es4 2489,00 dis-es 2637,00 164.81 eis4-f4 eis-f 174.63 2794.00 fis4-ges4 2960.00 185.00 fis-ges 3136.00 196.00 3322.50 gis-as 207 65 *-ges 220.00 3520.00 ais4-hes ais-hes 233.08 3729.25 246,93 3951.00 5-čárko 4186,00

vaná

potom obráceně. Pro napájení multivibrátoru použijeme např. 9 V – dvě ploché baterie, pro pohon motoru napájecí napětí podle potřeby. Multivibrátor a baterie můžeme umístit pod základní desku.

Elektronická ladička

Naše elektronická ladička se nebude podobat japonské, protože "neslyší" a nesrovnává přijímaný kmitočet s ideálním, umí jen vydávat zvuky, pro srovnávání. "Umí" celých osm oktáv od subkontra až ke "čtyřčárkovému "h"" – i když subkontra je iluzorní, protože žádný dosažitelný reproduktor takový kmitočet nepřenese. Tedy: od kmitočtu 16,35 Hz do 3951 Hz bez nastavení si můžeme zvolit libovolný tón v osmi oktávech po dvanácti tónech podle tabulky absolutních výšek v temperovaném ladění. Získáme tak zdroj normálových kmitočtů.

Tabulka udává tóny s přesností setin Hz. Náš přístroj má maximální odchylku od ideálního kmitočtu v mezích ±0,0038 až 0,01 % v závislosti na použitém krystalu.

Popis používání ladičky v hudební praxi není úkolem tohoto článku, zaměříme se jen na funkci a konstrukci přístroje. Celé zapojení je složeno z běžných obvodů TTL, které by měly být v každé prodejně.

Na obr. 94 je blokové schéma ladičky.

V oscilátoru – a to je jednou z výhod ladičky – můžeme použít libovolný krystal s kmitočtem asi od 3 do 6 MHz (za cenu zvětšení počtu integrovaných obvodů lze použít i krystal s nižším nebo vyšším kmitoč-

Obr. 94. Blokové schéma elektronické ladičky

Obr. 95. Zdroj pro ladičku

Obr. 96. Krystalový oscilátor pro ladičku

tem). Signál z krystalového oscilátoru přivádíme na skupinu čítačů (v kódu BCD). Jejich výstupy napájejí skupinu převodníků z kódu BCD na kód jedna z deseti. Na jejich výstupech budou k dispozici čísla 0 až 9. Pomocí hradel NOR naprogramujeme dělení podle kmitočtu použitého krystalu. Signál žádaného kmitočtu pak bude na výstupu příslušného hradla, lze jej dále tvarovat, dělit, případně násobit podle potřeby. Na vstup zesilovače už přivádíme signál pevného kmitočtu podle tabulky a z reproduktoru uslyšíme zvolený tón.

A nyní k jednotlivým funkčním celkům: Zdroj podle obr. 95 je obvyklého provedení, použijeme monolitický stabilizátor MA7805. Čelkový odběr proudu bude asi 500 mA, proto stabilizátor montujeme na chladič. Kondenzátory C₂ a C₃ jsou keramické (zamezují případnému kmitání). Z výstupu stabilizátoru odebíráme 5 V pro napájení logiky a přímo z kondenzátoru C₁ nestabilizované napětí asi 11 V, které se při zatížení zmenší asi na 8 V, tímto napětím se napájí koncový zesilovač. Transformátor postačí pro příkon asi 10 až 15 VA.

Oscilátor na obr. 96 je obvyklého provedení s hradly NAND, o použitém krystalu se zmíníme v dalším popisu.

Na obr. 97 je zapojení čítače s převodníky a programování s hradly NOR. Signál oscilátoru přivádíme na čítače IO₃ až IO₆, které jsou stejně zapojeny (dělí deseti). Na výstupech čítačů jsou připojeny vstupy převodní-

ků IO₇ až IO₁₀. Jejich výstupy jsou podle pravdivostní tabulky obvodu 7442 na log. úrovni 0 nebo 1, ale v číslicové formě od 0 do 9. Na tyto výstupy pak připojíme vstupy hradel dvanácti IO – upravených na čtyřvstupová hradla NOR (které na trhu nejsou), podle číselného výsledku dělení kmitočtu oscilátoru s kmitočtem jednotlivých tónů.

Kmitočet krystalu – ják jsme již řekli – se může pohybovat ve velmi širokých mezích. V bazarech i po šuplíkách se najdou všelijaké krystaly, z nichž se určitě některý bude hodit. Ve vzorku byl použit krystal 3,580 MHz, z něhož lze odvodit s velkou přesností signály kmitočtů podle tabulky (kromě "c⁵", který nepoužijeme).

Dělicí poměr dostaneme tak, že kmitočet

Dělicí poměr dostaneme tak, že kmitočet krystalu dělíme kmitočtem příslušného tónu: $d = \frac{Q}{f}$, kde d je dělicí poměr, Q je kmitočet krystalu a f žádaný kmitočet.

Příklad:

Tón	c ³	cis ³	atd.		
kmitočet f Hz		1108,75	viz tab.		
dělicí poměr d		3229	atd.		
odchylka Hz		0,05	atd.		

Kmitočet krystalu Q = 3,580 000 Hz.

Na výstupu IO₁₁ bude tedy kmitočet "c³", na IO₁₂ bude "cis³", atd. Jednotlivé vstupy hradel NOR spojíme s odpovídajícími výstupy převodníků IO₇ až IO₁₀. Tedy čtyři vstupy hradla NOR budou zapojeny při dělicím poměru 3421 takto: první vstup na výstup 3 107. druhý vstup na výstup 4 IO₈, třetí na výstup $2 \log_9$ a čtvrtý na výstup $1 \log_{10}$. Na výstupu hradla NOR \log_{11} bude kmitočet 1046,47 Hz. Vidíme, že odchylka je tak nepatrná, že ji klidně můžeme nebrat v úvahu. Takto bude třeba - pracně - propojit všech dvanáct hradel NOR (nahrazeny obvodem 7453) podle potřebného dělicího poměru (je závislý na kmitočtu použitého krystalu). Protože ani na oboustranné desce s plošnými spoji takové propojení nemůžeme realizovat, musíme tyto spoje realizovat jednotlivě tenkým izolovaným drátem nebo kablíkem (celkem $12 \times 4 = 48$ spojů). Předem zjistíme, na které vývody IO7 áž IO10 kolik drátů povedeme a na příslušných výstupech - bude-li třeba - zapájíme pájecí sloupky.

Na výstupy IO₁₁ až IO₂₂ jsou připojeny spínače – buď s Isostaty nebo dvanáctipolohový otočný přepínač – tak, že vždy je sepnut jen jeden z nich, a každá poloha znamená tedy jeden tón v oktávě. Budou-li na všech čtyřech vstupech hradla NOR log. 0 – tedy naprogramované číslo – na výstupu se objeví log. 1, tím se čítače IO₃ až IO₆ vynulují a čítání se stále opakuje, a zároveň bude k dispozici zvolený tón tříčárkové oktávy.

Na běžném osciloskopu s mezním kmitočtem 5 až 10 MHz impulsy sledovat nelze, protože jsou velmi krátké: kmitočet výstupního signálu lze indikovat pouze dobrým čítačem. Proto signál musíme dál upravovat podle obr. 98.

Použijeme-li krystal vyššího kmitočtu, pak jeho kmitočet dělíme na kmitočty čtyřčárkové oktávy, odpadne tedy násobič dvěma (IO₂₇) a podle toho upravíme i přepínač oktáv podle obr. 94. Musíme však v každém případě ponechat IO₂₆, monostabilní multivibrátor, který úzké impulsy na výstupu zpracuje na impulsy s konstantní šířkou. Stejnou funkci v řadě děličů zastává i první polovina IO₂₃, který formuje vstupní impuls před vydělením. Řada děličů vytvoří tóny všech osmi oktáv, které přepínáme podle potřeby (obr. 94) přepínačem Př₁ (Isostat nebo osmipolohový otočný přepínač). Nepoužijeme-li násobič kmitočtu, musíme použít ještě jednu polovinu obvodu 7474, protože potřebujeme dělit 128krát pro oktávu "subkontra".

I když výstupní signál ladičky na výstupech je v logické úrovni, bude třeba použít koncový zesilovač. Nejvýhodnější je použít monolitický zesilovač podle obr. 99 (obvod MBA810 libovolného typu, příp. MDA2010 nebo 2020). Ve vzorku byl použit MBA810DAS, který je napájen napětím 8 V, tedy zdaleka není plně zatížen a ani nepotřebuje chladič

Byly vyzkoušeny různé reproduktory: hluboko i středotónové, domácí i cizí, ale tóny "subkontra" nepřenáší žádný, tóny "kontra" lze při "dobré vůli" jakž takž rozeznat.

tra" lze při "dobré vůli" jakž takž rozeznat. Celá ladička je na třech deskách s plošnými spoji. Na jedné je zdroj, který neuvádím, protože rozměr desky bude záviset na použitém transformátoru a tvaru chladiče pro IO₁.

Na druhé desce je celé zařízení kromě koncového zesilovače. Velikost desky je 190 × 115 mm (obr. 100). Desku s plošnými spoji pro koncový zesilovač také neuvádím, lze použít již publikované zapojení.

Obr. 98. Děliče a násobiče ladičky

Obr. 97.

Celá ladička kromě reproduktoru byla dřevěné krabici 200×200×80 mm. Reproduktor se připojuje konektorem. Volba tónů a oktávů je řešeno Isostaty. Neoznačené kondenzátory na desce s plošnými spoji jsou keramické 68 až 100 nF.

Seznam souč	astek
-------------	-------

Obr. 95.	
IO ₁	MA7805
D₁ až D₄	KY123/80
C ₁	TE 674, 2000 µF
C ₂ , C ₃	100 nF - keram.
Tr	viz text
Obr. 96.	
IO ₂	7400
R_1, R_2	TR 211, TR 191, 470 Ω
C ₄	WN70419, dolaďovací kond.
	(příp. starší typ)
	5 až 60 pF
krystal	viz text
- '	

001.07.	
IO ₃ až IO ₆	4× 7490
IO ₇ až IO ₁₀	4× 7442
IO ₁₁ až IO ₂₂	12× 7453
Obr. 98.	
R_2	10 kΩ
R ₄ , R ₅	΄330 Ω
R_6, R_7	100 Ω
(všechny TR 2	11 nebo TR 191)
C ₅	47 nF
C ₆ , C ₇	100 nF
C ₈ , C ₉	10 nF
C ₁₀	1 nF
IO ₂₃ až IO ₂₅	3× 7474
1O ₂₆	UY74121
1O ₂₇	7400
Obr. 99.	
R ₈	100 Ω
R ₉	150 Ω (TR 211, TR 191)

 R_{10} 1 Ω (TR 211) C_{11} , C_{14} , C_{17} 100 nF, keram.

1 Ω (TR 211)

Obr. 99. Koncový zesilovač ladičky

C ₁₅	6,8 nF
C ₁₆	1,5 nF
C ₁₂ , C ₁₃ , C ₁₄	TE 981, 100 μF
C ₁₈	TE 982, 1000 μF
Р	TP 160, 500 kΩ/G
IO ₂₈	MBA810
Ohr 100	

Neoznačené kondenzátory 68 až 100 nF, keram.

Indukční snímače přibližování

V průmyslové automatizaci mají velmi dů-ležité místo koncové spínače. Vyhodnocují polohu pohybujících se součástí strojů a je-jich spolehlivost je mimořádně důležitá, pro-tože porouchaný kontakt může nejen zničit celý drahý stroj, ale ohrozit i život obsluhy. Až do nedávna byly koncové spínače me-chanické (většinou mikrospínače různé kon-strukce) dosti často poruchové a málo spostrukce), dosti často poruchové a málo spolehlivé. Dalším problémem u mechanických koncových spínačů je prostředí, ve kterém

pracují. I hermeticky uzavřené mikrospínače mohou v prašném, chemickými parami prosyceném, nebo dokonce ve výbušném prostředí vypovědět službu a ohrozit okolí. U mechanických spínačů se projeví i opotřebování a únava materiálu, zmenšuje se jejich přesnost, která málokdy přesáhne 0,1 mm.

Proto byly vyvinuty koncové spínače elektronické, které reagují na přibližení. V odborné literatuře se jejich název ustálil: proximity switch, německy Näherungsschalter. Těchto spinačů je velmi mnoho druhů, pro jejich elektrické, elektronické i mechanické parametry byly vypracovány mezinárodní normy, ale u nás tento obor poněkud zaostal. Bez větší odezvy proběhla speciální výstava švédské firmy Svenska Sensoren Elektronic (SSE) v r. 1981 (ST 8/1982), která tyto součástky vyrábí.

Indukční spínače přibližování jsou kompaktními senzorovými hlavami, které obsahují citlivou snímací cívku a elektronický vyhodnocovací obvod, které velmi dobře reagují na přiblížení kovových, příp. i nekovových předmětů a na výstupu dávají signál buď analogový nebo logický pro koncový stupeň, který patřičně reaguje na daný povel. Je velmi mnoho variant uspořádání těchto prvků, nejrozšířenější konstrukce je schematicky znázorněna na obr. 101.

Na vstupu (tedy vlastním čidlem) je polovina feritového hrníčku s cívkou 1, pracující jako součást oscilátoru 2, který je napájen stabilizovaným napětím. Kmitočet tohoto obvodu LC může být od 20 do 200 kHz. Magnetické pole cívky závisí,na mnoha činitelich, je žádoucí, aby pole bylo co největší. Když se do magnetického pole cívky dostane vodič, je odsána část energie kmitavého obvodu, zmenši se jakost Q oscilátoru i amplituda sinusového signálu. Změna amplitudy na výstupu demodulátoru 3 se projeví změnou úrovně signálu a komparátor 4 tuto změnu předává spínacímu stupni 5, který sepne nebo rozpojí zařízení. Je-li napájecí napětí oscilátoru dostatečně stabilní a demodulátor s komparátorem jsou správně teplotně vy-

kompenzovány, lze dosáhnout při axiálním přiblížení předmětu přesnosti 0,01 mm, při radiálním přiblížení 0,05 mm. Evropské požadavky tohoto druhu obsahují normy DIN EN 50010 a DIN EN 50040, které stanoví velmi podrobně parametry indukčních detektorů přiblížení, kupř. aktivní plochy, skutečnou spínací vzdálenost, hysterezi, napětí, teplotní stálost atd. Normy stanoví i druhy materiálů, na které má být čidlo nejcitlivější, a stanoví i koeficienty různých materiálů, u kterých se mění ztráta vířivými proudy a proto je třeba vzdálenost korigovat:

slitiny chromniklové 0,9, slitiny bronzu 0,5, hliník, měď 0,4.

Průmyslové výrobky většinou používají tříbodové zapojení oscilátoru, které má při střední stabilitě minimální teplotní závislost a minimální počet součástek. Toto hledisko je důležité, protože pro obvod je mnohdy velmi málo místa. Není zanedbatelná ani malá spotřeba oscilátoru. Výpočet závislosti amplitudy na materiálu feritu je velmi složitý, a je i tak jen přibližný, proto je účelnější k danému jádru počet závitů a kapacitu stanovit pokusně. Na obr. 102 je vyzkoušené základní zapojení, které se v praxi ukázalo jako optimální.

Změny výstupního napětí v závislosti na přibližování kovové destičky ukazuje graf na obr. 103. Výsledky byly ziskány měřením při napájecím napětí 6 V. Vidíme, že do vzdálenosti asi 10 až 12 mm není změna výstupního napětí poznatelná. Dalším zkracováním vzdálenosti se napětí nejprve pomalu a potom velmi rychle zmenšuje, při dosažení vzdálenosti asi 3 mm oscilátor přestane pracovat vůbec. V praxi je možné dosáhnout vzdálenost asi 10 mm s dobrou opakovatelnosti

Velmi záleží na materiálu feritu. Nejlepší výsledky dávají materiály s největší permeabilitou (M2000, N22). Zvětšováním rozměrů hrníčku roste i použitelná vzdálenost. Na obr. 102 (ke kterému se vztahuje graf na obr. 103) byl použit hrníček o ∅ 22 mm z mate-

Obr. 101. Konstrukce detektoru přiblížení

Obr. 102. Zapojení oscilátoru pro detektor přiblížení

Obr. 103. Závislost výstupního napětí při měření

riálu N22, a cívka L_1 s 25, L_2 se 75 závity vf lankem 10×0.05 mm. Při použití feritu o \emptyset 46 mm z materiálu M2000 (15+45 závitů lankem 30×0.08 mm) se vzdálenost zvětšila na 35 mm. S jádrem – hrníčkem o \emptyset 6 mm neznámého původu (20+60 závitů drátu o \emptyset 0,08 mm) a s kondenzátorem 10 nF se použitelná vzdálenost zmenšila na 3 mm. U cívky je třeba dosáhnout co největší jakosti Q a použít kvalitní kondenzátor C_1 s dielektrikem z plastických hmot. Typ tranzistoru je lhostejný, jen zesílení má mit alespoň sto. Trimrem nastavíme optimální pracovní bod oscilátoru. Na obr. 102 oscilátor pracoval beze změny s napájecím napětím od 2,5 do 25 V, kmitočet je kolem 50 kHz.

V následujícím ukážeme několik zapojení, které je možné aplikovat pro nejrůznější použití v amatérské nebo profesionální praxi. Pro zjednodušení výkresů ve všech zapojeních použijeme jako symbol pro oscilátor znak uvedený na pravé straně obr. 102. Pokud bude nějaká změna v základním zapojení, bude uvedena jmenovitě.

Obr. 104. Kapacitní senzor l

Na obr. 104 je jednoduché zapojení, nenáročné na součástky. Po oscilátoru následuje dioda D₁ jako demodulátor a spínací stupeň s otevřeným kolektorem, který může ovládat další spínací logický obvod. Na výstupu je v klidovém stavu úroveň log. 0, při přiblížení kovového předmětu se překlopí na log. 1, kterým můžeme ovládat třeba Schmittův-klopný obvod (7414). Slabou stránkou tohoto zapojení je, že napětí diody D₁ je teplotně nestálé a je třeba tento jev kompenzovat diodami D₂ a D₃.

Obr. 105. Kapacitní senzor II

Na obr. 105 je zapojení, které je určeno pro provoz s relé. Napájecí napětí se může pohybovat od 12 do 24 V, výstupní proud je max. 100 mA. Signál sériového demodulátoru zpracovává Schmittův klopný obvod, diody D_2 a D_3 ve zpětné vazbě slouží k teplotní kompenzaci. Spínací část tvoří tranzistor T_3 s otevřeným kolektorem. Zenerova dioda D_6 – typ určíme podle napájecího napětí – stabilizuje napájecí napětí oscilátoru. Výstup je krátkou dobu odolný i proti zkratu (díky R_8). Dioda D_5 chrání obvod před přepólováním napájecího napětí, D_4 při použití relé chrání tranzistor T_3 .

Na výstupu můžeme použít – po příslušné úpravě – systémy DTL, TTL nebo CMOS.

Spinací úroveň je log. 1, vyměníme-li tranzistor T_3 na typ n-p-n, pak v klidovém stavu bude výstup na úrovni log. 1.

Na obr. 106 je indukční spínač téměř profesionální úrovně. Známý stabilizátor napětí MAA723CN (v pouzdře DIL – protože je použita vnitřní Zenerova dioda, která v typu v kovovém pouzdře není) zde používáme jako přesný komparátor. Referenční napětí

Obr. 106. Kapacitní senzor III

na vývodu 6 (7 V) napájí oscilátor a dělič R2, R₃. Výstupní signál demodulátoru přivedeme na invertující vstup komparátoru, napětí z děliče přes diodu teplotní kompenzace na neinvertující vstup. Jako demodulátor a kompenzační diodu použijeme dvojitý tranzistor, tranzistory zapojíme jako diody. Dokud je napětí na invertujícím vstupu větší než napětí na neinvertujícím vstupu, výstupní tranzistor T1 je uzavřen. Jak se zmenšuje napětí demodulátoru na úroveň referenčního napětí, komparátor se překlopí a T1 se otevře. Přeměníme-li na IO1 vývody 4 a 5. funkce bude obrácená, v klidovém stavu T1 povede, po aktivizaci bude uzavřen. Pomocí R₅, R₆, ZD a LED lze vizuálně kontrolovat stav senzoru. Stabilizátor v pouzdře DIL můžeme nahradit i obvyklým stabilizátorem v kovovém pouzdře tak, že Zenerovu diodu 7 V přidáme externě.

Napájecí napětí se může pohybovat od 10 do 35 V.

Obr. 107. Kapacitní senzor IV

Zapojení na obr. 107 má zvlášť malou spotřebu a pracuje již od napětí 0,8 V do 6 V. Jeho spotřeba při napájecím napětí 1 V je jen 0,4 mA. V zapojení oscilátoru (obr. 102) je místo bázového odporu 330 kΩ použit rezistor s odporem 47 kΩ. Signál je demodulován tranzistorem T₁. Kondenzátor C₂ má důležitou funkci: bez tohoto kondenzátoru by se objevily na kolektoru T₁ záporné impulsy. Kondenzátor napětí vyhlazuje, C₂ je nabíjen na několik desetin V kladného napětí, které je menší než otevírací napětí tranzistoru T₂, který takto zůstává uzavřen, T₃ je přes R₅ otevřen a výstup bude na zemním potenciálu.

Po přiblížení kovového předmětu do elektromagnetického pole oscilátoru se amplituda záporných impulsů na kolektoru T₁ zmenší. Kondenzátor C₂ se přes R₂ nabije na otevírací napětí T₂, který se otevře, T₃ se uzavře. Zpětná vazba pomocí R₄ přepínání

Podobným způsobem pracuje i zapojení podle obr. 108. Signál oscilátoru přichází na první Schmittův klopný obvod H₁, na jeho výstupu bude symetrické pravoúhlé napětí, které přes H₂ nabiji asi na poloviční napájecí napětí kondenzátor C₂ a obvod H₂ se proto nemůže překlopit, jeho výstup bude na úrovni H. Zmenší-li se amplituda kmitů oscilátoru, zmenší se šířka impulsů na výstupu H₁, zvětší se napětí na kondenzátoru a kdyždosáhne otevíracího napětí H₂ ten se překlopí spolu s H₃ a výstupy budou invertovány; H₇ pak aktivuje LED.

Senzor je určen především pro buzení vstupů obvodů s IO CMOS nebo TTL, napájení podle toho může být 15 nebo 5 V. Má malou spotřebu a tepelná stabilita je velmi dobrá. Pro přímé použití je zapojení možné doplnit tranzistorovým spínacím stupněm

v Darlingtonově zapojení.

Dosud popsaná zapojení byla složena z diskrétních součástek – pokud jde o oscilátor. V zahraničí byly vyvinuty obvody, které jsou speciálně určeny pro tyto účely. Kupř. firma Siemens vyvinula obvod TCA205A, který potřebuje jen minimální počet externích součástek, protože obsahuje stabilizátor napětí, komparátor, spinací obvody i zpožďovač. Jeho zapojení je na obr. 109.

Obr. 109. Zapojení senzoru s TCA205A (L₁ = polovina ferit. hrníčku o Ø 25 mm, mat. N22, 70 závitů vf lankem 20 × 0,05 mm)

Napájecí napětí se může pohybovat od 4,75 do 30 V. Zpožďovací obvod eliminuje vznik nežádoucího výstupního signálu při zapnutí (závisí na kondenzátoru C3). Doba zpoždění je 200 ms/μF. Oscilační cívka je bez odbočky. Integračním kondenzátorem je C2, jeho volbou určíme kmitočet. S kondenzátorem podle schématu bude kmitočet oscilátoru asi 180 kHz. Pomocí P1 regulujeme vzdálenost, P₂ určuje hysterezi. Maximální vzdálenost předmětu je 0,6 × průměr cívky, hystereze může být minimálně 3 % této vzdálenosti. Jmenovitá vzdálenost s udanými hodnotami je 13 mm, závislost na teplotě je 0,1 %/K. Výstup na diody D₁ a D₂ je Q a Q. Je samozřejmé, že výstup může ovládat logiku, spínací tranzistory nebo tyristor, popř. triak. Spotřeba obvodu v klidovém stavu je max. 5 mA, v miniaturním provedení (TCA205WI nebo VII) 1 mA. Výstup je možné zatížit max. 50 mA.

Obdobný integrovaný obvod je i na našem trhu, jde o výrobek NDR – A301D, A302D – jejich popis viz AR-B5 a 6/1980.

Kromě uvedených obvodů vyrábí např. firma Philips obvod podobného určení

urychluje. Zapojení je schopno i přímo napájet indikační obvod, zapojený mezi výstup a kladné napájecí napětí. - v hybridním provedení (OM286 a 287), ke kterému se připojí jen cívka a maximální zátěž může být až 250 mA. Hystereze je 3 až 10 %, spínací kmitočet až 5 kHz – tím je možné i přímo sledovat rychle se točící hřídel stroje a přímo pomoci čítači rychlost otáčení vyhodnocovat nebo regulovat.

Dosud popsané senzory potřebovaly samostatné napájecí napětí. Tento požadavek v určitých případech ztěžuje nebo i znemožňuje jejich využití, hlavně v těžkých průmyslových provozech. Proto byly vyvinuty a jsou používány senzory, které nepotřebují samostatné napájecí napětí, jsou uspořádány tak, že jejich napájení je odvozeno od sítě, ke které jsou připojeny. Senzory se zapojí přímo místo dřívějších mikrospínačů u starších zařízení.

Zapojení jednoho druhu senzoru již vzpomínané švédské firmy SSE, který pracuje se použít mnohostranně, např. hledáme-li na neznámém velkém parkovišti svůj vůz nebo při různých hrách apod. Jedná se o jednoduchý vysílač-přijímač na velmi dlouhých vlnách. Dosah je malý. Vysílač – obr. 111 – umístíme v autě nebo v hledaném předmětu při hře. Obvod 555 pracuje v režimu astabilního multivibrátoru a vyrábí pravoúhlé napětí o kmitočtu 10 až 30 kHz. Výstup budí rezonanční obvod, který kmitá na vlastním kmitočtu a je modulován kmity astabilního multivibrátoru. Připojíme-li k rezonančnímu obvodu přes kondenzátor C₃ anténu, modulovaný signál bude vysílán. Anténa může být teleskopická, umístěna ve vodorovné poloze, protože velmi dlouhé vlny se šíří těsně

nad povrchem země.

Malý zdroj signálu

Zapojení podle obr. 111 a 112 můžeme

oscilátor spinací spinací zesilovač zesilovač Re

střídavým napětím 20 až 220 V, je na obr. 110. Na vstupu je obvod chráněn varistorem, který kompenzuje rušivá napětí při spínání. Síť nebo menší střídavé napětí napájí usměrňovací můstek, který je přemostěn tyristorem. Samotný senzor, oscilátor, je napájen stabilizovaným napětím. Spínací zesilovač při aktivování senzoru otevírá tyristor a napájí zátěž přímo připojeným střídavým napětím. Senzor tohoto druhu (viz fotografie na obálce) je zalit do plastické hmoty, je to válec se závitem pro upevňování o Ø 30 mm a délce 80 mm, může spínat buď relé nebo jinou zátěž s odběrem trvale 0,5 A nebo impulsně 2,2 A.

Podobných senzorů je velmi mnoho typů, pracují v mnoha průmyslových oborech a aplikacích, zaručují větší bezpečnost, chrání cenná zařízení a životy obsluhy. Nemalou mírou přispívají k robotizaci a modernizaci současného průmyslu.

Obr. 111. Hledací vysílač

Obr. 112. Hledací přijímač

Přijímač - obr. 112 - má přibližně stejnou anténu, která je připojena k podobnému rezonančnímu obvodu. Signál z obvodu se předává operačnímu zesilovači s velkým zesílením. Míru potřebného zesílení lze řídit potenciometrem P₁. Indikace přijímaného signálu je neobvyklá: pět svítivých diod. Vodorovnou anténú přijímače otáčíme o 360° a podle počtu rozsvícených diod usuzujeme, ze kterého směru přichází signál. Čím silnější je signál, tím více diod bude svítit. Přibližováním nebo vzdalováním přijímače od zdroje signálu se rozsvěcuje více nebo méně diod. Ladicím kondenzátorem C2 u vysílače i u přijímače nastavíme takový kmitočet, aby signál bylo možno přijímat na tranzistorovém přijímačí na dlouhých vlnách, kde nepracuje žádný vysílač. Přijímač napájíme symetrickým napájecím napětím, postačí dvě devítivoltové destičkové baterie v sérii.

Kontrola stavu hladiny

Velmi účelné zařízení na kontrolu hladiny chladicí tekutiny je na obr. 113. Indikace je třístavová: nízký stav, normální stav a přebytek chladicí směsi.

Přípravek má dvě izolované sondy, které jsou vhodným způsobem upraveny tak, že jedna se dotýká tekutiny tehdy, když je stav kapaliny nad normálem, druhá tehdy, když kapalina klesne pod normál. Při nedostatku chladicí kapaliny svítí červená dioda, při normálním stavu zelená, při překročení maximální hranice žlutá, svítí tedy vždy jen jedna dioda, tedy indikace je jednoznačná.

jedna dioda, tedy indikace je jednoznačná. Zařízení pracuje takto: Při nedostatku kapaliny jsou obě sondy suché, tranzistor T₁ je otevřen proudem přes R1. Tranzistor zkratuje žlutou diodu, která tedy nemůže svítit. Stejným způsobem vede i tranzistor T₃ s R₅, ten napájí červenou diodu, která oznamuje, že kapalina klesla pod minimální mez. Napětí LED3 je přes R8 a D4 přivedeno do báze T2, který je otevřen, D3 je uzavřena. Tranzistor T2 zkratuje zelenou diodu, která tedy nemůže svítit. Je-li voda v nádrži v normálních mezích, druhé čidlo je v doteku s ní, bude svítit zelená dioda, tekutina vede mezi sondou a zemí a tím se uzavírá tranzistor T₃, LED₃ nesvítí a nemůže napájet ani tranzistor T2, který zůstává uzavřen a paralelně připojená zelená dioda LED_2 svítí, protože je napájena přes R_4 . Je-li hladina tekutiny nad normálem, dotýká se prvního čidla, tranzistory T₁ a T₃ se uzavřou, rozsvítí se žlutý LED₁, který je napájen přes R₂. Přes D₃ sé otevře T2, který zkratuje zelenou diodu, která tedy nesvítí. Kondenzátory C1 a C2, nakreslené čárkovaně, chrání při delším vedení k sondám báze tranzistorů od rušivých napětí. Celé zařízení může být umístěno na malé destičce rozměrů 20 × 65 mm, aby se vešlo např. za palubní desku automobilu.

Určení kmitočtu krystalu

Často se stává, že se nám dostane do rukou krystal, o kterém nevíme ani na jakém kmitočtu kmitá, ani zda vůbec kmitá. Pokaždé sestavovat nějaký přípravek pro zkoušení je zdlouhavé a ani nevíme, zda bude krystal v použitém zapojení pracovat. Proto je výhodnější udělat si zkoušečku, která bude pracovat v širokém rozsahu kmitočtů a v níž se krystal spolehlivě rozkmitá.

Zapojení na obr. 114 pracuje ve dvou pásmech. Přepínač v poloze "nízké" rozkmitá již krystal asi od 50 kHz, v poloze "vysoké" řádově od megahertzů.

V poloze "vysoké" tranzistor T₂ oscilátoru pracuje v zapojení Clappova oscilátoru a rozkmitá krystal v sériovém zapojení. Signál odebíráme z emitoru T₂ a germaniovými diodami zdvojujeme a měříme nějakým měřidlem, které může být vestavěné nebo externí. Výchylka ručky měřidla ukazuje, jak "ochotně" krystal kmitá.

Přepneme-li přepínač do polohy "nízké", oba tranzistory pracují a tvoří Buttlerův oscilátor, pracující také v sériové rezonanci. Indikace je stejná jako v předešlém případě. Tlumivka L je bez jádra.

Obr. 113. Indikace stavu vody v chladiči

Obr. 115. Malý vysílač

Praktická pomůcka

Zapojení podle obr. 115 není podle všech "foršriftů". Ale uvažte: ležíte u jezera, málo lidí, slunce hřeje . . . a je božský klid. Najednou pár metrů od vás začne vyřvávat rádio – a je po klidu. Ani vaše prosba o klid není nic platná. Tak spustíte malé zařízení a sousedovi se ozývá z rádia kočičí koncert, takže ho raději vypne – znovu je klid.

Jedná se tedy o jakousi rušičku na středních vlnách s dosahem několika metrů, kterou kondenzátorem C₅ naladíme na kmitočet stanice přijímané nepříjemným sousedem. Nikoho jiného nerušíte, protože přípravek

má velmi malý dosah.

Tranzistory T_1 , T_2 jsou zapojeny jako astabilní multivibrátor, který kmitá na kmitočtu asi 800 Hz – změnou kapacity kondenzátorů můžeme kmitočet měnit podle libosti. Signálem multivibrátoru modulujeme předzesilovač s T_3 a modulátor T_4 a vf oscilátor s T_5 . Předzesilovač je stabilizován rezistory v bázi T_1 , R_1 a R_2 . Zesílení T_1 a T_2 by mělo být větší, proto tranzistory vybíráme. Modulátor T_2 je polarizován v bázi pomocí R_4 , modulační signál se přivádí přímo na emitor vf tranzistoru. Modulace je tedy amplitudová.

Kmitočet vf stupně je závislý na obvodu LC₅, činnost T₃ zajišťují R₅, C₄. Cívka L je navinuta na feritové tyčce, postačuje délka asi 10 cm a průměr asi 10 mm, ale může být v podstatě libovolná, cívka L má mít asi 75 závitů vf lanka nebo drátu o Ø 0,2 mm. Je možné (bude to záviset na jakosti feritu), že nebudeme potřebovat ani anténu, že potřebného efektu dosáhneme pouze natáčením přípravku. Pokud potřebujeme anténu, pak postačuje teleskopická. Přípravek vyzkoušíme ve spojení s nějakým tranzistorovým přijímačem a zjistíme, jaké pásmo můžeme pokrýt otáčením kondenzátoru C₅ a směrováním cívky L nebo teleskopické antény.

Zesilovač pro sluchátko

Na obr. 116 je zesilovač pro sluchátko, který svými parametry dosahuje úrovně hi-fi. Lze jej použít pro různá zařízení, k monitorování, jako vstupní jednotku nejrůznějších přístrojů apod. Zesilovač je použitelný i v provedení stereo. K jeho přednostem patří i to, že jej lze použít i pro sluchátka s malou impedancí. Při použití sluchátka 8 Ω bude výstupní výkon asi 1 W, což pro uvedené účely bohatě postačuje. Zesilovač lze použít i k napájení reproduktoru, nepotřebujeme-li větší výkon. Jeho jakost umožňuje, aby byl použit i jako budicí zesilovač pro aktivní bedny.

Obr. 116. Hifi zesilovač pro sluchátka

Konstrukce zesilovače je jednoduchá, operační zesilovač budí komplementární koncový stupeň. Vstupní signál přivádíme na neinvertující vstup operačního zesilovače. Na vstupu je použita dolní propust R₁, C₂, která omezuje přenos v oblasti vysokých kmitočtů, u rychlého operačního zesilovače tím dosáhneme malého intermodulačního zkreslení. Místo uvedeného typu operačního zesilovače můžeme použít i jiný podobný na vstupu s FET, kupř. B081.

Pracovní bod operačního zesilovače nastavíme trimrem R_2 . Napájecí napětí je symetrické, ± 6 až ± 10 V. Výstup zesilovače bez signálu je na zemním potenciálu. Citlivost, popř. napěťové zesílení určuje zpětnovazební dělič R_3 , R_4 . Napěťové zesílení je asi 5 1/2, tj. 15 dB. K dosažení výstupního výkonu 1 W při zátěži 8 Ω potřebuje zesilovač vstupní signál asi 500 mV, při použití sluchátek však obvykle podobný výkon nepotřebujeme. Dolní hranici přenosu nízkých kmitočtů určuje člen R_3 , C_2 , popř. kapacita vstupního kondenzátoru C_1 .

Zesíleným signálem z výstupu operačního zesilovače se budí báze komplementárních tranzistorů T₁, T₂, které pracují ve třídě AB. Klidový pracovní bod je nastaven rezistory R₅, R₆, diodami D₁ a D₄ a emitorovými rezistory R₇, R₈. Otevírací napětí diod posune napětí báze tranzistorů a takto nastavený pracovní bod spolu s rezistory v emitorech tranzistorů zajistí malé zkreslení, které je menší než 0,1 % v celém kmitočtovém pásmu. Pro výstupní výkon 1 W a pro –3 dB je přenášená šířka pásma 10 Hz až 30 kHz. Odběr koncového stupně v klidovém stavu je kolem 30 mA, vstupní odpor zesilovače je asi 100 kΩ.

Zesilovač je na jedné desce s plošnými spoji, tranzistory jsou izolovaně montovány na společný chladič.

Napájení může být i bateriové, postačí čtyři ploché baterie (nebo obvyklý síťový zdroj).

Hledač kovů

V posledních letech se jedním z nejmódnějších elektronických přístrojů stal hledač kovů. Přišly ke cti i staré minohledačky z války a objevují se stále nové a nové konstrukce s moderními součástkami. Hledají se starožitnosti, předměty ukryté za války, zlaté valouny v Austrálii, ztracené předměty na plážích, ve vodě apod. Přístroje jsou velmi rozmanité – od nejjednodušších, které jsou málo citlivé, až k nejmodernějším, které rozeznávají i druh kovu a drobnou minci až na vzdálenost jednoho metru – a podle toho jsou i značně drahé – až 4000 DM.

Nejpoužívanějšími současnými systémy detektorů jsou: a) systém BFO (Beat Frequency Oscillator – záznějový oscilátor), při kterém se směšuje signál pevného kmitočtu se signálem proměnného kmitočtu. Při změně indukčnosti hledací cívky v blízkosti kovového předmětu se mění nastavený kmitočet a pruduktem směšování je zázněj, jehož kmitočet odpovídá blízkosti předmětu.

b) TR-IB (Transmit Receiver – Induction Balance – přijímač vysílač – vyvážená indukčnost). U tohoto systému jsou použity dvě cívky: vysílací a přijímací. Při blízkosti kovového předmětu se změní indukční vazba mezi cívkami a mění se signál oscilátoru.

c) PI (Pulse Induction – pulsní indukce). U tohoto systému slouží jako hledací signál impulsy, které se při dopadu na kovový předmět odrážejí, přitom však mění svůj tvar a intenzitu a tyto změny se vyhodnocují.

Každý uvedený (a ještě i další) způsob má své přednosti i nedostatky. Dobrý a účinný detektor není snadné postavit, je vhodné kombinovat přednosti různých systémů a to není snadná záležitost, proto jsou účinné detektory velmi drahé. Srdcem a nejdůležitějším prvkem každého hledače je hledací cívka, proto jí vždy musíme věnovat snad neivětší pozornost.

Na obr. 118 je hledač kovů střední jakosti, který je poměrně jednoduchý. Pracuje systémem TR-IB, proto má dvě hledací cívky. Obsahuje jeden oscilátor a jeden detektor.

Různé kovy (popř. i jiné materiály) mají různý vliv na indukčnost cívky a samozřejmě i na indukční vazbu dvou cívek. Tento vliv může působit kladně, nebo záporně, tj. zvětšovat nebo zmenšovat indukčnost, podle toho, jaká je relativní permeabilita materiálu. Běžné materiály se dělí na

paramagnetické	diamagnetické	feromagnetické				
hliník křemík platina paládium vzduch	stříbro měď sklo voda	kobalt nikl železo ocel ferit				

U diamagnetických materiálů je relativní permeabilita menší než 1, u paramagnetických je větší než 1 a u feromagnetických je mnohem větší než 1. Podle materiálu se také mění intenzita magnetických polí vířivými proudy – a tím i jejich vliv na hledací signály. Proto je tak obtížná volba hledacího systému a konstrukce hledačů kovů.

A nyní ke stavbě. Na první pohled vypadá detektor na obr. 117 celkem jednoduše. Oscilátor se skládá z jednoho tranzistoru (pracuje jako relaxační oscilátor) a vytváří dva druhy kmitů: vyššího a nižšího kmitočtu. Vyšší kmitočet je "modulován" nižším a tak vzniká tvar podle obr. 118, na kterém vidíme, že náběžná hrana je strmější než týlová. Zapínání a vypínání je určeno součástkami D₁, C₁, R₁. Během oscilací se nabíjí C₁ přes diodu D₁. Dosáhne-li napětí určité velikosti, tranzistor T₁ přestane kmitat. Kondenzátor se vybíjí přes R₁ a po uplynutí určitého času T₁ oscilace opět "nasadí" a děj se stále opakuje. Činnost se poněkud podobá činnosti superreakčního vysílače.

Mezi kolektorem a bází T₁ jsou "vysílací" cívky L₁, L₂ a L₃. Jejich uspořádání je takové, aby se vzájemně rušily vlastní kapacity cívek, čímž je obvod stabilní. Kondenzátor C₅ určuje spolu s cívkami kmitočet oscilátoru. Aby se vyloučil i vliv kapacity kabelu, je C₅ umístěn přímo na hledací cívku. Cívky L₄ a L₅ tvoří společně vazební vinutí, které je umístěno na hledací cívce. Ladicím kondenzátorem C₆ lze vykompenzovat zbytkový signál do L₄ a L₅ po definitivním nastavení

cívek. Signál snímaný cívkami L_4 a L_5 postupuje přes C_8 na komparátor IO_1 . Tam je porovnáván se stejnosměrným napětím, které je hrubě nastaveno potenciometrem P_1 a jemně P_2 . Toto stejnosměrné napětí určuje citiivost detektoru. Dioda D_2 zabezpečuje, aby na komparátor přicházela jen kladná část signálu, protože komparátor nemůže zpracovávat záporné napětí. Je-li vstupní napětí větší než nastavené stejnosměrné napětí na neinvertujícím vstupu, výstup komparátoru se překlopí do stavu L, tranzistor T_2 se otevře a ozve se tón z reproduktoru.

Přiblížíme-li hledací cívku ke kovovému předmětu, jsou slyšitelné jen špičky impulsů, jak je naznačeno na obr. 118 přerušovanou čarou. Měni-li se nyní indukční vazba vinutí, mění se i šířka impulsů a tím i slyšitelný tón. Výstupní signál z tranzistoru T₂ je dále usměrněn diodou D₃, R₇ a C₁₂, jeho záporná část je přivedena na operační zesilovač jako zpětná vazba. Tím se vytváří automatická regulace úrovně a jsou potlačeny větší změny úrovně signálu.

Na výstup je připojen i ručkový indikátor (tlačítkem můžeme kontrolovat i napětí napájecí baterie).

Dobrá funkce celého přístroje spočívá ve správném zhotovení hledací cívky, jejíž kon-

Obr. 118. Tvary kmitů oscilátoru

Obr. 117. Hledač kovových předmětů

strukci je třeba věnovat zvláštní pozornost a pečlivě dodržet postup její výroby. Obr. 119 ukazuje tvar a konstrukci cívky. Obě části tělesa vyřízneme z organického skla nebo novoduru, tloušťka desek má být asi 10 mm, v nouzi je můžeme slepit z tenčích desek. Na obvodu obou desek vyfrézujeme drážky hluboké asi 2 až 3 mm pro uložení které bude z lakovaného drátu o Ø 0,3 mm. Začátek L₁ bude na desce 1 v bodě A a vineme 22 závitů doprava - ve směru hodinových ruček. Vinutí ukončíme také v bodě A, drát upevníme, ale neodstříhneme. Oba konce vinutí stočíme v délce asi 10 cm. Nyní vineme L₃, začátek označíme a upevníme v bodě A. Vineme 4 závity doleva - proti směru hodinových ruček. Konec upevníme také v bodě A. Dále pokračujeme drátem cívky L₁, vineme 22 závitů opět doprava jako u L1, konec bude v bodě A. Tím je deska 1 hotová. Na desce 2 bude L₄ - 36 závitů směrem doprava – začátek v bodě B, začátek a konec vinutí stočíme v délce 10 cm. Cívku L5 vineme jako L4, bude mít 36 závitů. Kondenzátory C₅ a C₇ – styroflexové připájíme na vývody cívek a přilepíme je k desce. Vinutí omotáme páskem z plastické hmoty, aby byla chráněna proti poškození.

Dvě desky jsou podle obr. 119 stavitelné. Stavěcí a upevňovací šrouby nemohou být z kovu, musí být ze silonu nebo podobného materiálu, aby neovlivňovaly indukčnost cívek. Cívku připevníme na nosnou tyč (také z plastické hmoty) vhodné délky též nekovovými úchyty. Na horním konci tyče upevníme krabičku, kde bude elektronika a napájecí baterie. Přívody od cívek mají být stíněné. Po nastavení přistroje dáme cívky do ochranného krytu z novoduru, příp. je přestříkneme polyuretanovou pěnou a vytvarujeme

Nejprve roztáhneme cívky od sebe, jak dovoluje stavěcí šroub. Body I a II na plošném spoji zatím nepropojujeme. Po zapnutí napájecího napětí by se měl po nastavení P₁ a P₂ ozývat z reproduktoru tón. Pomalu přibližujeme cívky k sobě, zvuk by měl slábnout – samozřejmě v blízkosti cívky nemáme žádný kovový předmět. Potom manipulací s P₁ a P₂ a rozevíráním a přibližováním cívek hledáme minimum zvuku. Tento pochod několikrát opakujeme. Po skončení nastavování cívky vzdálíme od sebe asi na 8 mm a jejich vzájemnou polohu zafixujeme silonovým šroubem.

Nyní zapojíme bod I na desce s plošnými spoji (značeno čárkovaně) a změnou C₆ se snažíme dosáhnout toho, aby tón nebyl slyšet. Když se to nepodaří, rozpojíme bod

I a zapojime bod II. Kdyby se to nepodařilo ani tam, cívka bude silně rozladěna. Připojíme paralelně k C₆ kondenzátor 470 pF a znovu zkusíme propojovat body I nebo II. V případě nezdaru znovu nastavujeme cívky, jak již bylo popsáno.

Napájecí napětí je přesně 9 V, potenciometry P₁ a P₂ nastavíme citlivost tak, aby v reproduktoru nebylo slyšet žádný tón. Stiskneme tlačítko Tl a trimrem P₄ nastavíme plnou výchylku ručky měřidla. Zmenšíme napájecí napětí na 7 V a výchylku ručky měřidla označíme červeně – to bude minimální napětí baterie.

Odporový trimr P_3 určuje citlivost měřidla, nastavíme jej podle potřeby. V oscilátoru může interferencí kmitočtů vznikat modulace ve formě brumu 100 až 150 Hz, který můžeme potlačit tak, že podle obr. 117 místo R_1 zapojíme odporový trimr 50 k Ω , kterým nastavíme jiný bod synchronizace.

Na přední panel budou vyvedeny: C₆, P₁, P₂, příp. "synchronizační" potenciometr 50 kO

Dříve než začneme pracovat s hledačkou, vyzkoušíme různá nastavení ladicího kondenzátoru C₆. Detektor je nejcitlivější tehdy, když tón začíná být právě slyšitelný, v tom případě reaguje na velmi malé změny indukčnosti cívek. Podle nastavení C₆ (vlevo nebo vpravo od středu stupnice) můžeme rozlišovat i materiál nalezeného předmětu (zda se jedná o para, dia nebo feromagnetický materiál). Tvar a rozměr předmětu má velký význam při hledání. S určitými zkušenostmi a dobře nastaveným detektorem Ize nalézt i malé předměty. Nejcitlivějším místem hledací cívky je její střed, kde se obě cívky vzájemně překrývají. Při pokusech se podařilo najít i nevelké předměty v zemi v hloubce 15 cm.

Náhrada klimatizace v autě

V našich vozech nebývá vestavěna klimatizace, proto je obtížné v létě nebo v zimě dosáhnout konstantní teploty ve vozovém prostoru, často bývá moc teplo nebo naopak zima. Nastavování větrání, intenzity topení, otevírání a zavírání oken, zapínání ventilátoru může odvádět pozornost řidiče od pozorování dopravní situace. Nevhodná teplota uvnitř vozu má také neblahý vliv na únavu řidiče. Zařízení podle obr. 120 může do určité míry nahradit neexistující klimatizaci v tom, že zabezpečuje stálou teplotu především při delších cestách, reguluje motor ventilátoru, který v létě dodává čerstvý, v zimě ohřátý vzduch do prostoru pro cestující.

Zařízení není obvyklou dvoupolohovou regulací, která spíná a vypíná ventilátor, ale reguluje množství vzduchu nasáté ventilátorem podle vnitřní teploty cestou změny rychlosti otáčení motoru ventilátoru.

První dva operační zesilovače A a B tvoří generátor signálu pilovitého průběhu. Společné referenční napětí (invertující vstup u A a neinvertující u B) se odebírá z děliče. Zesilovač A pracuje jako Schmittův klopný obvod, B jako integrátor a na výstupu 8 je signál pravoúhlého průběhu a na výstupu 14 trojúhelníkovitého průběhu.

Signál trojúhelníkovitého průběhu srovnává komparátor C se stejnosměrným napětím, které je určeno stavem termistoru. Je-li vnitřní teplota ve voze vyšší než jmenovitá, odpor termistoru se zmenšuje a napětí na invertujícím vstupu operačního zesilovače C bude menší. Pilovité napětí na neinvertujícím vstupu bude větší, a proto na výstupu operačního zesilovače C budou kladné impulsy řádu kHz.

Kľadné impulsy pravoúhlého tvaru, jejichž šířka je závislá na teplotě, je-li přepínač Př v poloze L (léto), se dostanou do báze tranzistoru T₂, který je spínán v rytmu kmito-

Obr. 120. Klimatizace vnitřku vozu

čtu přicházejícího signálu. Když se teplota snižuje, zvětšuje se odpor termistoru a tím i napětí na invertujícím vstupu zesilovače A a malé napětí na výstupu zesilovače C bude po delší dobu, kladné impulsy budou kratší a motor ventilátoru se bude točit pomaleii.

Regulace trvá tak dlouho, dokud se teplota uvnitř vozu neustálí na velikosti, kterou isme nastavili potenciometrem P. V blízkosti nastavené teploty jsou impulsy již velmi krátké, na bázi T₂ se již neuplatní, protože zesilovač D, který pracuje jako klopný obvod, impulsy ještě zkracuje. Jeho výstup, který "ořeže" začátek impulsu přes diodu, je v době mezi impulsy ve stavu L. Při příchodu kladného impulsu se úroveň na výstupu mění na H (když se připojený kondenzátor _1 μF nabije), uzavře se výstupní dioda a T₂ zůstává do konce impulsu otevřen. Krátké impulsy na činnost obvodu nemají vliv, proto ke konci impulsu se motor zastaví a nerozběhne, dokud se nezmění odpor termistoru a tedy teplota interiéru vozu zůstává na jmenovité velikosti. Přesnost nastavení je asi 2 až 3 °C. Potenciometrem můžeme teplotu regulovat asi mezi 18 až 28 °C

V zimě je regulace obrácená. Po přepnutí přepínače Př do polohy Z (zima) ventilátor vhání ohřátý vzduch do prostoru vozu. Je-li uvnitř zima, ventilátor vhání více teplého vzduchu. Přepínačem Př se vlastně zařazuje stupeň, který obrací fázi, a tím funkci regulátoru. Zenerova dioda na vstupu chrání zařízení proti možným napěťovým špičkám, stejnému účelu slouží i diody na vstupu operačního zesilovače.

Termistor umístíme někde v cestovním prostoru tak, aby ho proud vzduchu z ventilátoru nemohl přímo chladit nebo ohřívat. Proto by bylo vhodné použít perličkový termistor, který rychle reaguje na tepelné změny, hmotové jsou velmi pomalé.

Hledač kovů

Hledač kovů na obr. 121 pracuje tak, že hledací cívka je součástí oscilátoru, který kmitá na stanoveném kmitočtu. Blízkost kovového předmětu mění indukčnost cívky a tím i kmitočet oscilátoru, změna kmitočtu se pak vyhodnocuje.

Kondenzátory C₁ a C₂ spolu s hledací cívkou určují pracovní kmitočet oscilátoru, jehož aktivním členem je tranzistor T₁. Při změně indukčnosti cívky se projeví vliv para, dia a feromagnetických materiálů, jak již bylo dříve vysvětleno. Feromagnetický materiál zvětšuje indukčnost cívky a tím zvyšuje kmitočet oscilátoru, u ostatních materiálů jsou indukčnost i kmitočet snižovány. Tento jev je výrazný jen při velmi nízkých kmitočtech, při nich se ovšem již neprojeví výrazně vliv vířivých proudů. Kolem kmitočtu 200 Hz se vliv vířivého proudu již jeví jako zkrat jednoho vinutí, vlastní indukčnosť hledací cívky se zmenšuje. Protože při nižších kmitočtech vychází cívka velmi objemná, byl navržen oscilátor s kmitočtem kolem 300 kHz, pro který postačuje jediný závit o průměru 440 mm z tlustšího souosého kabelu, který bude mít rozdělené stínění.

Mezivrcholové napětí na cívce dosahuje asi 500 mV (tj. efektivní napětí asi 170 mV). Na kolektoru T₁ je napětí asi 4 V (mv), jímž se ovládá činnost operačního zesilovače IO₂. Fázový závěs s IO₁ zde pracuje jako měnič kmitočet-napětí. Jelikož je použít digitální vstup, obvod PLL zůstává stabilní. Aby obvod správně pracoval, je třeba použít rychlý operační zesilovač IO₂.

Odporovým trimrem se nastaví střední kmitočet PLL, potenciometr je v takové poloze, kdy ručka měřidla nemá výchylku. Trimrem P_2 se nastavuje jemně a P_3 hrubě citlivost. Důležitá je při konstrukci velikost hledací cívky, použijeme-li menší cívku, bude třeba zvětšit počet závitů.

Přijímač signálů OMA

OMA je vysílač časových značek s výkonem 1 kW v Liblicích. Na rozdíl od ostatních podobných vysílačů (DCF77, HBF), je OMA modulován jen amplitudově. Vysílá sekundové impulsy 59krát krátce a šedesátý impuls je delší, což usnadňuje použít signál OMA k řízení kmitočtu hodin nebo podobných zařízení, u nichž potřebujeme přesné sekundové impulsy.

Přijímač těchto značek je na obr. 122. Tranzistor T_1 se vstupním obvodem tvoří velmi selektivní filtr 2,5 MHz s Q asi 1000, šířka pásma $B_{-3~dB}=2,5$ kHz. Po zesílení tranzistory T_2 a T_3 je do cesty signálu zařazen krystalový filtr s T_4 a krystalem se šířkou pásma (-3~dB) 500 Hz. Napájení přes svodový kabel umožňuje montáž (pod nebo nad střechou) v oblasti menšího rušení.

Cívka L_1 je transformátor, který je navinut na prstencové feritové jádro (v originálu T50), primární vinutí má 2 a sekundární 50 závitů drátu o \emptyset 0,3 mm. Krystal 2,5 MHz má mít na tomto kmitočtu sériovou rezonanci. Při montáži dbáme na krátké spoje a dobré stínění.

Přístroj se naladí signálem 2,5 MHz (10 mV), který přivedeme na kondenzátor C₁. Osciloskopem nastavíme amplitudu signálu na R₁ na maximum, příp. měníme počet závitů sekundárního vinutí tak, abychom dosáhli rezonance na 2,5 MHz. Nastavení přezkoušíme rozladěním generátoru. Potom zmenšíme amplitudu budicího signálu a opakujeme ladění. Pak místo generátoru připojíme anténu, osciloskop nebo vf milivoltmetr připojíme na výstup a kondenzá-

Obr. 122. Přijímač sekundových impulsů OMA-2500

torem C₅ nastavíme maximální amplitudu, nejvíce však 500 mV.

Protože u T₁ se jedná o rezonanční stupeň, ovlivňují se navzájem nastavení C₂ a C₅. Pro stabilní signál na T₃ je nutné nastavení několikrát opakovat. To může být nutné i tehdy, je-li signál velmi silný a přijímač je přebuzen.

Odběr ze zdroje je jen 10 mA. Anténa má být delší drátová. Signály (sekundové impul-

Obr. 121. Detektor kovových předmětů

sy) na výstupu zpracujeme podle potřeby Schmittovým klopným obvodem nebo pod.

Poplachové zařízení

Na obr. 123 je přenosné poplachové zařízení, které je možno provozovat i jako stabilní. Nejobvyklejším použitím je připojení dotekové plochy - postačí i holý drát - ke klice u dveří, která musí být kovová - uchopí-li někdo kliku do ruky, ozve se poplašný signál. Dotekovou plošku můžeme připojit k jakémukoli kovovému předmětu, předmět však nesmí být uzemněn. Dotekem přivádíme na chráněný předmět brumové napětí, které postačuje k tomu, aby se obvod 555 překlopil a tak změnil stav svého výstupu. Nezapomeňme, že přístroj může pracovat jen tam, kde je v blízkosti síťové napětí; v lese kupř., kde bydlíme ve stanu a široko daleko není elektrické vedení, pracovat nebude. Obráceně: při bouřce se může stát, že bez doteku bude vyvolán poplach působením blesku (statické elektřiny).

Obr. 123. Poplachové zařízení

V klidovém stavu je na výstupu 555 kladné napětí, které udržuje tranzistor T1 v otevřeném stavu. Jeho kolektor udržuje řídicí elektrodu tyristoru na zemním potenciálu, tedy tyristor nevede. Přivedeme-li na dotekovou plošku brumové napětí, výstup obvodu se překlopí, tranzistor se uzavře a přes trimr R₃ dostane řídicí elektroda kladný impuls, kterým se tyristor otevře a sepne zvukovou signalizaci. Stav otevřeného tranzistoru trvá jen asi 1,5 sekundy, potom tranzistor přestane vést, na řídicí elektrodě tyristoru bude opět zemní potenciál, tyristor však i nadále zůstává otevřen, poplašný signál stále zní, přerušit ho můžeme jen přerušením napájecího napětí. Citlivost zařízení nastavíme trimrem R₃.

Pro napájení budou nejvhodnější dvě ploché baterie v sérii a malý bzučák nebo zvonek (třeba z dětských stavebnic).

Řízení světlem

Na obr. 124 je světlem řízený vozík, jehož řízení spočívá v tom, že zadní kola jsou samostatně poháněna motorky, rychlost otáčení každého z motorků je závislá na osvětlení jednoho fototranzistoru, proto se vozidlo může otáčet doprava nebo doleva, příp. kolem dokola podle řídicího světla. Poháněcí napětí motorků je impulsní, vozidlo s takovým řízením (a nejen vozidlo) se hodí pro nejrůznější účely, hračkou počínaje a konče robotem.

Zapojení obsahuje tři časovače 555. První z nich pracuje jako astabilní multivibrátor na kmitočtu asi 150 Hz. Těmito impulsy řídíme IO₂ a IO₃, které přes koncové stupně T₃, T₅, popř. T₄, T₆ řídí oba poháněcí motory. IO₂ a IO₃ pracují v monostabilním režimu. Když na jejich vstup - vývod 2 - přichází z IO1 záporný impuls, na jejich výstupu se objeví řídicí napětí, které vybudí výkonový stupeň a motory se připojí na napájecí napětí. Na vývod 5 časovačů IO2 a IO3 jsou připojeny fototranzistory, jejich osvětlením ovlivňuje-me výstupní impulsy, tedy řídicí napětí pro motory. Osvětlením měníme šířku pravoúhlého napětí na výstupu, tedy motory jsou řízeny šířkově modulovaným signálem. Přepínačem měníme režim motorů, jednak reakci na režim světlo-tma, jednak směr jejich

Na fotografii na obálce je vidět uspořádání vozidla. Na základní desce je umístěna deska s plošnými spoji se všemi součástkami, pod ní je zdroj – baterie 4,5 nebo 9 V, jedna nebo dvě ploché baterie podle typu použitých motorků. Zadní kola jsou veliká, o ∅ as

50 až 60 mm, byly použity modelářské pneumatiky z letadel. Vpředu je pod deskou jen jedno kolečko, které se může otáčet kolem svislé osy (jako kolečka pod pojízdným stol-kem). Oba poháněcí motory jsou stejné (MO₁, MO₂). Můžeme použít japonský motorek z hraček nebo pod. Ve vzorku byly použity vyřazené motory 9 V z magnetofonů Uran z bazaru, proto bylo použito napájení 9 V. Motory mají na hřídelích pryžová poháněcí kolečka, která jsou přitlačována na obvod zadních kol a tak slouží jako poháněcí třecí ústrojí a zároveň i jako vhodný převod do pomala.

Oba fototranzistory jsou umístěny vpředu jako reflektory, aby je bylo možné podle potřeby osvětlovat zvlášť. Můžeme je dát odděleně do malých trubiček a tak řídit rychlost jednoho nebo druhého motorku, měnit směr jízdy vozidla, otáčet ho na obě strany. Tímto způsobem můžeme ovládat i nejrůznější servomechanismy k řízení složitých mechanických dějů.

Samočinné osvětlení

Zařízení, které automaticky rozsvítí žárovku při setmění a zhasne při rozednění, je na obr. 125. Můžeme ho používat při osvětlení dvorku, schodiště, ulice, vchodu do domu apod., kde potřebujeme, aby byl celou noc objekt osvětlen a tím i chráněn proti nežádoucím návštěvám. Celé zařízení lze umístit do malé krabice, nepotřebuje žádné ošetřování, jen okénko fotorezistoru musíme občas vyčistit od prachu. Okénko je třeba při instalaci zařízení umístit tak, aby intenzita světla, které dopadá na jeho citlivou vrstvu, splňovala naše požadavky na rozsvěcení a zhášení světla. Zařízení nepotřebuje napájecí transformátor, je napájeno přímo ze sítě, proto musíme věnovat velkou pozornost izolaci a ochraně proti doteku nepovolanou osobou.

Přípravek tedy napájíme přímo ze sítě, diody D₁ až D₄ usměrňují síťové napětí, z něhož přes R₁ odebíráme napájecí napětí, které upravíme Zenerovou diodou D₅ asi na 10 V. Úsměrněným síťovým napětím lze napájet žárovku nebo žárovky do celkového příkonu asi 200 W, které budou spínány tyristorem. R₂ a R₃ tvoří dělič, z něhož se odebírá referenční napětí pro komparátor. Trimrem P nastavíme napětí na invertujícím vstupu operačního zesilovače tak, aby v okamžiku zvoleného zatemnění R, se jeho výstup stal záporným, přičemž T1 se uzavře, na řídicí elektrodu tyristoru se dostane přes R_s kladné napětí, tyristor se otevře a napájí žárovku. Větším osvětlením R, se mění stav na výstupu operačního zesilovače, tranzistor na řídicí elektrodu tyristoru přivádí záporné napětí, tím se tyristor uzavře, protože je napájen tepavým napětím 100 Hz, žárovka zhasne. Kdyby regulace světlo-tma nebyla dostatečná, lze zvětšit odpor P až na 1 MΩ.

Amatérske! AD 11 B/2

Obr. 124. Světlem řízené vozidlo (prototyp)

Obr. 126. Hledač kovů

Pro R_f vyhovuje v podstatě každý typ. Přepínačem Př v případě potřeby můžeme obrátit funkci celého zařízení tak, že tyristor bude napájet žárovku při osvětlení. Když neuvažujeme o takovém režimu práce, přepínač můžeme vynechat. Tyristor opatříme chladičem.

Hledač kovů

Na obr. 126 je hledač kovů, který pracuje na principu záznějového oscilátoru (Beat Frequency Oscillator), BFO. Má jednu hledací cívku a krystalem řízený oscilátor; když se rozladí hledací oscilátor, přistroj indikuje změnu kmitočtu.

Při ovládání použijeme tři ovládací prvky:

nastavení kmitočtu hrubě, jemně a zesílení.
Nastavením "hrubě kmitočet" kompenzujeme různé činitele, působící změnu kmitočtu oscilátoru (teplota, napětí baterie), jemným řízením kmitočtu kompenzujeme vliv složení a stav půdy, nad kterou se pohybujeme s cívkou hledacího oscilátoru.

Nejdůležitějším prvkem, který určí použitelnost zařízení, je štabilita obou oscilátorů a rychlá reakce hledacího oscilátoru při nalezení kovu. Pro splnění těchto požadavků byly použity integrované obvody CMOS pro zapojení referenčního i Colpittsova oscilátoru. Civka oscilátoru je zapojena do kolektoru tranzistoru T₁. Kondenzátory oscilátoru C₂ a C₃ mají být stabilní, nejlépe polystyrenové (TGL), protože určují stabilitu kmitočtu. Měnit kmitočet oscilátoru v malé míře můžeme potenciometrem P₁, ve větší míře pomocí P₂. změnou napájecího napětí báze tranzistoru T₁. Jemné ladění s P₁ je asi desetinou hrubého ladění.

Signál oscilátoru (s hledací cívkou) je veden přes C₅ na Schmittův klopný obvod, složený ze dvou hradel IO₁ (a, b). Za ním následují dvě hradla pro tvarování a inverzi signálu, pravoúhlý signál pak přichází do směšovače iO₄.

Referenční oscilátor je řízen krystalem. jeho zapojení je klasické s jedním hradlem. Použíjeme krystal kolem 3,5 MHz. na absolutním kmitočtu celkem nezáleži, hlavní je jeho stabilita. Obvod IO₃ dělí kmitočet oscilatoru 4krát a do směšovače přivádíme signál o kmitočtu asi 900 kHz. Přivádíme-li z hledacího oscilátoru signál asi 120 kHz na vstup CK jako hodinové impulsy a na vstup D asi 900 kHz, pak při změně kmitočtu hledacího oscilátoru o 1 Hz se na výstupu směšovače mění kmitočet o 8 Hz. Protože neslyšíme kmitočet ani jednoho oscilátoru. budeme slyšet jen změnu. vyvolanou rozladěním hledací cívky blízkostí kovu, která bude zesílena tranzistorem T₂. Tedy již nepatrná změna. vyvolaná skyrtým kovovým předmětem.

dává slyšitelný signál – i když k tomu potřebujeme kmitočet alespoň 30 až 40 Hz, tj. změnu 4 až 6 Hz hledacího oscilátoru.

Je znovu třeba zdůraznit důležitost správné konstrukce hledací cívky, u níž je hlavní její velikost. Vlastní indukčnost cívky nemá na citlivost velký vliv. Čím je průměr cívky větší, tím větší je vliv ukrytého kovového předmětu na pole cívky, ale zároveň tím je přístroj méně citlivý na malé předměty. Obecně platí, že průnik do hloubky půdy odpovídá průměru cívky. Citlivost je úměrná velikosti předmětu, a je v obráceném poměru šesté mocniny vzdálenosti mezi hledaným objektem a cívkou. Zmenší-li se velikost hledaného předmětu v zemi na polovinu, citlivost se zmenší osmkrát, zdvojnásobí-li se hloubka uložení předmětu, citlivost se zmenší na 1/64. Proto se používají hledací cívky velkého průměru od 150 do 300 až 400 mm. Zdvojnásobí-li se průměr hledací cívky, aby bylo dosaženo větší hloubky, citlivosť na malé předměty se zmenší na 1/8.

Podle těchto úvah byla zvolena cívka o průměru 150 mm, aby byla účinná i pro hledání menších předmětů. Kdyby někdo chtěl, aby přístroj pracoval do větší hloubky, musel by zvětšit počet závitů cívky tak, aby se rezonanční kmitočet pohyboval kolem uvedených 120 kHz.

Když pohybujeme cívkou těsně nad povrchem země, mění se i kapacita mezi zemí a cívkou, a tato změna dosti ovlivňuje kmitočet oscilátoru a dokonce může rozladit oscilátor tak, že ohrozí i funkci směšovače. Proto musíme tento vliv kompenzovat, a to tak, že cívku dokonale odstíníme.

Vezmeme nějakou misku nebo kanalizační trubku z plastické hmoty o průměru asi 150 mm. kterou omotáme kvalitní izolační páskou, na které bude ležet vinutí hledací cívky. Na tento podklad navineme 70 závitů lakovaného drátu o © 0.4 mm. Navinutou cívku i s podloženou izolační páskou sejmeme z formy, izolační pásku přehneme přes dráty a ještě dvakrát omotáme dráty izolací, takže dostaneme dosti tuhý kulatý svazek drátů. Pro pevnost můžeme toto "kolo" natřít tlustší vrstvou epoxidu. Po zaschnutí nastříháme z hliníkové fólie - alobalu - asi 15 mm široké pásky, kterými dvakrát obalíme celé kolo tak, že u vývodů ponecháme mezeru asi 10 mm. Pod hliníkové stínění dáme holý drát, který bude sloužit jako vývod stínění - drát případně připájíme. Kolo znovu obalíme izolační páskou, pak nasuneme na nějakou tuhou formu z izolační hmoty a potřeme epoxidem. Po zaschnutí máme k dispozici plochou cívku jako disk. Na tuto hledací cívku připevníme tyč odpovídající délky také z plastické hmoty, na tyč upevníme krabičku s elektronikou a baterií, kterou spojíme s hledací cívkou stíněným kabelem. Upevnění tyče k cívce má být bez feromagnetických dílů.

Po změření a nastavení kmitočtů oscilátorů nastavíme nulový zázněj a zkusíme cívku přiblížit ke kovovému předmětu, při dosažení určité vzdálenosti uslyšíme zázněj, který se při přibližování nebo vzdalování od předmětů má měnit. Nulový zázněj v klidovém stavu označíme na ovládacích knoflících regulačních prvků, při začátku hledání vždy nastavíme nulový zázněj.

Detektor Iži

Na obr. 127 je detektor lži. Princip podobných detektorů je dosti známý: spočívá v tom, že vzrušení, vyvolané nějakým podnětem, vyvolává kromě bušení srdce, chvění hlasu, návalu krve i větší sekreci potních žláz, tj. vlhnutí pokožky ruky, čímž se mění i její odpor. Na tuto změnu reaguje náš detektor, který má dvě možná použití: přímé zjišťování reakce osob na jim dané otázky a stanovení celkového stavu, který se zjišťuje měřením odporu pokožky během delšího časového úseku.

Jako snímač použijeme dva holé ohebné dráty, které omotáme kolem dvou prstů nebo kolem prstu a zápěstí. Přístroj je napájen ze dvou destičkových baterií 9 V.

Signál z elektrod postupuje přes IO₁, který je zapojen jako sledovač. Měřidlo reaguje na každou změnu odporu kůže. Kondenzátor na vstupu má za účel potlačit brumové napětí. Operační zesilovač IO₂ pracuje jako integrátor, který se nastaví automaticky na střední odpor pokožky "vyšetřované" osoby. Doba potřebná pro toto nastavení je dána členem R₅, C₂ a C₃. Ke kontrole použijeme libovolné měřidlo – Avomet – na výstupu. Antiparalelní zapojení diod D₁, D₂ slouži k tomu, aby se měřená veličina rychle ustalila. Strmost Ize nastavit trimrem P₁. Protože odpor pokožky u různých osob se dosti podstatně liší, může se stát. že bude třeba R₁ změnit. U osob, které mají obvykle mokré ruce, má být R₁ menší, aby výsledky nebyly zkreslené, proto je R₁ možné nahradit potenciometrem.

Reakce rostlin

Mnozí z milovníků květin tvrdí, že i rostliny mají "duši" a dovedou reagovat na nejrůznější vnější vlivy. Pro důkaz schopnosti reakce rostlin byl vyzkoušen popsaný přístroj podle obr. 128, kterým lze naměřit neperiodické signály v rozsahu 1 až 40 Hz s amplitudou několiká milivoltů.

Nelze sice s určitostí vždy stanovit vztah mezi signálem a aktivitou rostliny, často neisou osciloskopem snímané veličiny v přímé souvislosti s manipulací s rostlinou, ale otevírá se široké pole možností a pokusů pro milovníky tohoto oboru. Na počátku pokusů vždy byla pozorována výrazná reakce, potom se ustálil tvar křivky podle obr. 128. Každopádně je k pozorování těchto jevů nezbytný zesilovač s velkým potlačením rušivých signálů. Výhodu to má, že stejný speciální zesilovač můžeme použít i k pozorování jiných biologických jevů, jako kupř. srdečních nebo mozkových aktivit apod.

Na vstupy A - B je připojen zesilovač s velkým vstupním odporem 1 M Ω (R₁, R₂). Signál postupuje na rozdílový zesilovač A3, kde bude zesílen desetkrát. Toto malé zesílení je zvoleno proto, aby příp. ofsetové napětí operačního zesilovače nepřivedlo výstup do limitace. Z tohoto signálu se snažíme odfiltrovat síťové brumové napětí a signály vysokých kmitočtů dolní propustí - A4, jejíž dolní mezní kmitočet je nižší než 50 Hz. Pasívní horní propust s C₃, R₁₃ vyfiltruje signál od stejnosměrné složky, která prošla dolní propustí. Mezní kmitočet horní propusti je asi 1 Hz. Takto vyfiltrovaný signál postupuje na neinvertující zesilovač se zesílením 1000. Víme, že každý zesilovací stupeň přidává k signálu šum i brum, proto i zde následuje horní a dolní propust k vyfiltrování zesíleného signálu. Citlivým osciloskopem pak lze na C₆, R₁₉ "něco" změřit. Chceme-li použít zapisovač nebo méně citlivý osciloskop, signál ještě musíme zesílit. K tomuto účelu slouží operační zesilovač A7. Celkové zesílení můžeme měnit P₁ v rozsahu od 2.10⁴ do 10⁶. Při největším zesílení signál 1 μV vyvolá na výstupu 1 V

Aby síťového brumu proniklo do zařízení co možno nejméně, je použito bateriové napájení. Aby byly vyloučeny i vlivy přívodů sítě (osciloskop, zapisovač) je použit optický

vazební člen R_f-D₁.

Chceme-li dosáhnout vyrovnaných výsledků, musíme měřit dlouhodobě, i např. v naší nepřítomnosti. K tomu již nepostačuje jen osciloskop, bude třeba použít i zapisovač. Jako náhrada za zapisovač může posloužit VCO (napětím řízený oscilátor), jehož signál v naší nepřítomnosti lze nahrát na magnetofon.

K obr. 124. Šasi světlem řízeného vozíku. Na obrázku je vidět, že každé kolo je řízeno zvláštním motorkem (motorek je z magnetofonu Uran). V přední části vozíku je deska elektroniky, která má v předních rozích umístěny fototranzistory

K měření potřebujeme snímače - elektro-Nejdostupnější jsou zlacené kontakty objímky pro integrované obvody, nebo kontakty z konektorů FRB, příp. můžeme použít zlacené plošky z "vysloužilých" desek počítačů. Tyto elektrody potíráme vodivou vazelínou (používá se např. u EKG).

Potřebujeme tři elektrody-snímače, prostřední se připojí na stínění, dvě krajní jsou připojeny na vstupy A a B. Obě vedení musí mít samostatná stínění. Snímače nemají být vzdáleny od sebe více než asi 30 mm (obr. 128c). Připojený registrační přístroj nebo osciloskop musí být uzemněn, všechna vedení musí být co neikratší.

Pracuje-li zapojení správně, výstupní signál se bude podobat obr. 128b, který dává informaci o změnách napětí rostliny. Podržíme-li na chvíli plamen zapalovače pod nejbližším listem, uvidíme, jak se mění napětí na elektrodách, jak zásah rostlinu "bolí"

Seznam literatury

Rádiótechnika, ročníky 1982 až 1988.

Ročenky Rádiótechniky 1977, 1984 až 1988. Elektronika v domácnosti, Bp., 1983. Australian Electronics 8/1987 Funkschau č. 20/1986, č. 22/1985. Radioelektronika č. 12/1986. Das Elektron č. 12/1980. RFE č. 2/1986. Electronics Australia č. 1, 3/1988. ETI č. 12/1976. Funkamateur č. 6/1987. Radio Electronics č. 6/1987. Ezermester č. 7-8/1988. Elektor č. 10/1986, č. 7–8/1985, č. 7–8/1988. Revista Espanola č. 6/1986. Électronique pratique č. 1484.

MĚŘIČ KAPACIT A INDUKČNOSTÍ

Měřicích metod pro měření kapacit a indukčností je známa celá řada. Jednou z nich je metoda, která vyhodnocuje měřenou veličinu z derivace pravoúhlých impulsů. Princip je znázorněn na obr. 1. Cívce nebo kondenzátoru je přiřazen měřicí rezistor R_m, který spolu s C_x a L_x tvoří obvod, který derivuje pravoúhlé impulsy. Integrací takto získaných jehlových impulsů (kladných i záporných) získáme napětí, které je úměrné měřené indukčnosti nebo kapacitě.

Obr. 1. Princip měření Cx a Lx

Přístroj má sedm rozsahů pro měření kapacity a šest rozsahů pro měření indukčnosti. Rozsah měření kapacit je od 0,1 pF do 200 μF a rozsah měření indukčnosti je od 0,1 μH do 20 H. Jednotlivé rozsahy s příslušnými měřicími a taktovacími kmitočty jsou v tab. 1.

Přístroj se skládá ze tří hlavních dílů. Jsou to oscilátor s děličem kmitočtu, vlastní měřicí obvody a převodník A/D spolu s displejem.

Oscilátor (obr. 2) vyrábí kmitočet 3 MHz. Musí být řízen krystalem, protože změny kmitočtu by ovlivňovaly

přesnost měření. Dělicí poměry se programují přepínačem. IO₅ dává z výstupu 11 symetrické pravoúhlé impulsy do měřicího obvodu. K taktování ICL7106 se hodí i nesymetrické signály. Ty získáváme z čítače IO1, který je zapojen jako monostabilní klopný obvod.

Signál "měřicí kmitočet 1" je zpožděn dvěma invertory a členem *RC* asi o 1 µs a přiveden jako "měřicí kmitočet 2" na analogový přepínač 4051.

Navrhování měřicích odporů pro měření indukčnosti se řídí podle příslušných kmitočtů. Čím vyšší kmitočet (a tím i $R_{\rm m}$), tím menší je přesnost vlivem sériového odporu měřené cívky. Čím nižší je kmitočet, tím méně je měření ovlivněno vlastní kapacitou cívky. Při příliš vysokých kmitočtech se mohou projevit dokonce i rezonance.

Pro měření kapacit naproti tomu nejsou měřicí kmitočty v širokém rozsahu kritické. Jsou voleny pokud možno nízké, aby potom velký R_m zmenšoval spotřebu.

Zapojení

V měřicím obvodu (obr. 3) je zapojen omezovač rychlosti přeběhu (OZ CA3130) na maximálně 10 V/μs. To je nutné, protože impedanční převodník následující za měřicím obvodem je osazen operačním zesilovačem s malou spotřebou (LF351), který má rychlost přeběhu minimálně 13 V/μs.

Na rozsahu 200 μF je rychlost přeběhu omezena na 100 $\mu V/\mu s$, aby se zmenšil špičkový proud zkoušeného kondenzátoru. To zjednodušuje výkonové dimenzování spínacích stupňů (tranzistory BC338, BC328) a stabilizátoru 5 V. Rychlost přeběhu se přepíná přepínači G a H. Aby se zkrátil čas zotavení CA3130 z přebuzeného stavu, byla zvolena poněkud neobvyklá fázová kompenzace (4,7 pF, 100 pF + 1 k Ω , dělič 47 k Ω + 10 k Ω). Obě diody 1N4148 mají za úkol tento čas ještě zkrátit.

Takto získané mírně lichoběžníkovité napětí je omezeno přesně na +5 V a 0V přebuzeným protitaktním emitorovým sledovačem. Potom je vedeno na měřicí obvod (skládá se z měřené součástky a příslušného měřicího rezistoru) a derivováno.

Bude-li měřicí obvod zapojen proti zemi (obr. 4a), pak by po skončení derivace kladného impulsu ss proud tranzistorem n-p-n, měřicím rezistorem a cívkou vyvolal úbytek napětí na činném odporu cívky. Tento úbytek Ur by ovšem zkreslil výsledek měření. Východiskem by bylo zpracovat derivaci záporné půlvlny. Protože přístroj nemá záporné napájecí napětí pro následný budící zesilovač, není to možné. Z těchto důvodů je měřicí obvod připojen na +5 V (obr. 4b). Tím je dosaženo, že kladné půlvlny neobsahují žádné chybové ss napětí, proto mohou být dále zpracovány budicím zesilovačem a spínačem LF351. Jeho napájecí napětí je +15 V a proto nikterak neovlivňuje přenos signálu.

Činný odpor cívky způsobuje, že se výsledné napětí zmenšuje. Měřicí od-

Obr. 3. Schéma zapojení analogové části

por je však dimenzován tak, že tato chyba může být zanedbána.

Velkým vstupním odporem OZ LF351 není měřicí obvod prakticky vůbec zatěžován. Tři diody 1N4148 chrání OZ před poškozením a přebuzením.

Analogový spínač (4051) je řízen impulsy "měřicího kmitočtu 2" tak, že propouští kladné půlvlny signálu a záporné signály zadržuje. K tomu musí "měřicí kmitočet 2" způsobit přepnutí vždy krátce před příchodem náběžné hrany užitečného signálu. Signál "měřicí kmitočet 1" je po průchodu IO CA3130 zpožděn asi o 1 až 1,5 µs. Tento předstih by ale byl na rozsahu 200 µH příliš velký (měřicí kmitočet 100 kHz – půlperioda je 5 µs). Proto je "měřicí kmitočet 2" proti "měřenému kmitočtu 1" zpožděn o 1 µs.

Střední hodnota měřeného napětí je úměrná měřené veličině. V nejjednodušším případě by mohlo být toto napětí filtrováno členem RC a přivedeno na převodník A/D. Takový filtrační způsobil rozsahu by na, 200 μF (3,333 Hz) rušivě dlouhé integrační časy. Proto byla zvolena jiná metoda. Hodinový kmitočet převodníku A/D ie na všech rozsazích zvolený tak, aby během integrace signálu proběhl vždy přesně celistvý počet period měřicího kmitočtu. Převodník tak potlačuje měřicí kmitočet a jeho vyšší harmonické a ukazuje proto stejnosměrnou složku měřeného napětí. Z tohoto důvodu musí být taktovací kmitočet 200 μF snížen na rozsahu 200 μF na 13,333 kHz. Četnost měření je na tomto rozsahu 0,833 měření/s, zatímco u ostatních měření je 2,5 měření/s.

Člen RC, který se skládá z rezistoru 100 k Ω a kondenzátoru 0.47 Ω F, na

Obr. 4. Zapojení měřeného obvodu (a – připojen proti zemi; b – připojen na napájecí napětí)

Obr. 5. Průběh signálu v bodu MP1

Obr. 6. Schéma zapojení náhrady LM10

vstupu převodníku má vyfiltrovat měřené napětí jen tak, aby špičková a střední hodnota se příliš nelišily. Tím získáme velkou odolnost proti rušivým impulsům.

Pro kompenzaci kapacit a indukčností přívodních vodičů můžeme display vynulovat potenciometrem "offset" (při měření L — zkratované přívody). Jako referenční napětí pro převodník A/D (ICL7106) slouží napájecí napětí +5 V. Dlouhodobá nebo teplotní změna tohoto napětí se neuplatní, protože je od něho současně odvozena i amplituda výkonového spínacího stupně a amplituda měřicího napětí na vstupu převodníku.

Nastavení

Nastavování všech rozsahů začíná kompenzací nuly IO11 LF351 potenciometrem 10 kΩ (napětí mezi vývody 2, 3 má být menší než 0,1 mV). Pro dosažení co největší přesnosti by měla být přesnost měřicích rezistorů lepší než 1 %. Potom přepneme přístroj na rozsah 200 µH (nejvyšší kmitočet), připo-jíme indukčnost 50 až 200 µH a na vývod 3 IO₁₂ (4051 — bod MP1) zapojíme osciloskop. Na osciloskopu je 5. průběh z obr. Potenciometr 25 kΩ ve zpožďovacím stupni (mezi dvěma invertory 4069) nastavíme tak, průběh odpovídal spodnímu obrázku, (křivka musí začínat přesně na nulové čáře).

Nakonec nastavíme trimr 10 kΩ (kalibrace) tak, aby displej přesně ukazoval indukčnost měřené referenční cívky.

Přístroj v uvedeném zapojení může být napájen jak ze tří baterií 9 V, tak ze síťového zdroje. Zmenší-li se napětí pod minimální mez, reaguje komparátor (TL081) a na displeji se signalizuje pokles napětí tak, že zapojená desetinná tečka zhasne a ostatní se aktivují. Pokud máme na displeji přímo nápis "Low batery" nebo šipku, můžeme komparátorem přímo ovládat hradlo EX-OR a jím aktivovat tuto signalizaci. Úroveň spínání signalizace nastavíme potenciometrem 500 k Ω tak, aby se spínala asi při 15 V.

Jako tlačítkovou soupravu lze použít přepínače Isostat se sedmi závislými a jedním nezávislým tlačítkem. Každé tlačítko má šest přepínacích kontaktů.

K použitým součástkám

Použité číslicové obvody CMOS se u nás vyrábějí. Pouze invertory 4069 v naší řadě CMOS nejsou, ale jdou samozřejmě nahradit obvodem MHB4049. Obvod 4070 je úplně stejný jako obvod MHB4030. Převodník A/D ICL7106 se již má u nás vyrábět pod označením MHB7106. Operační zesilovače CA3130 a LF351 by bylo možné po menších úpravách nahradit operačním zesilovačem z NDR B081, který je shodný s OZ TL081. Diody 1N4148 odpovídají našim diodám KA206. Stabilizátor LM340-15 odpovídá stabilizátoru MA7815 (pouze se liší pouzdro). Operační zesilovač LM10 má vestavěný referenční zdroj. V přístroji slouží jako zdroj +5 V. Můžeme ho nahradit zapojením podle obr. 6 s obvodem MAA723.

Literatura

- [1] Funkschau 11/86
- [2] Rádiótechnika 5/88

OSOBNÍ MIKROPOČÍTAČE

(Dokončení z

Vážení přátelé, doplňte si do AR B1/89 u obr. 34 k výstupům IO₃₅ (D0 až D7) rezistory takto

k obr. 48 je třeba za C₁₄ zapojit invertor

k obr. 44 je třeba ke vstupům D0, D1 a D2 IO₁₁₄ zapojit součástky podle obrázku

Tab. 1. Tabulka rozsahů a kmitočtů

Rozsah	Měřicí kmitočet	Taktovací kmitočet
200 μΗ	100 kHz	40 kHz
2 mH	30 kHz	40 kHz
20 mH	3 kHz	40 kHz
200 mH	1 kHz	40 kHz
2 H	100 Hz	40 kHz
20 H	30 Hz	40 kHz
200 pF	30 kHz	40 kHz
2 nF	3 kHz	40 kHz
20 nF	3 kHz	40 kHz
200 nF	300 Hz	40 kHz
2 μF	30 Hz	40 kHz
20 μF	10 Hz	40 kHz
200 μF	3,333 Hz	13,333 kHz

NA ŽÁDOST ČTENÁŘŮ

uveřejňujeme dny, v nichž by měla vyjít ďalší čísla Amatérského radia řády B (pro konstruktéry):

č. 2, Zajímavá a praktická zapo-jení, 13. 4., č. 3, Integrované obvody zemí

RVHP VII, 8. 6., č. 4, Rozhlasové přijímače do auta, 3. 8.,

č. 5, (Příjem signálů z družic), 12. 10.,

č. 6, (Základy výpočetní techniky), 7. 12.,

u titulů v závorkách nejsou zatím v redakci k dispozici smluvně zajištěné rukopisy.

Dále upozorňujeme čtenáře, že podmínky dalšího ročníku kon-kursu AR na nejlepší amatérské konstrukce byly uveřejněny v AR A4, výsledky loňského ročníku konkursu byly uveřejněny v AR A3/89.

	*									182	
Obr. 93. \	/ýpis změ	in v paměti	·		36 5C	aftek 3E 3E	2B Ø1	F9 D3	#123 2B FE	2B 21	4664 22 00
Začátek 32 3B	změny: 5C 18	#0002 =	5		22 5C 21 3E	36 11 AF ØE	5C 86 15 32	50 50 01 80	56 ED 15	F1) 53 00	2 1 4F ED
Začátek 2A 10	změny: 5C 18	#0013 = 0D	19		Zač 32 05 35	atek SF 22 CA	21 50 89 21	ny : 50	#126 48 FD	5 = 5C 35	47 0 9 21 CG
Začátek 26 18	změny: 03	#0025 =	37			atek		ny:	#127	· g ::	4729
Začátek 3E Ø7	změny: C3 AA	#002E =	43		15 BØ	1 1 FB	10 FD	S C CB	Ø 1 Ø 1	ØE	Ø Ø
Začatek C3 C0	39 18	#0051 = C7	97		DE AF CB 3C	FD 11 07	36 40 EE	CI) 3 8 3 1	15 (1 CD 13 (1)	0 A 16	6B 0C C3
Začatek CS DS CS DS	změny: E5 DD C3 80	#0067 = E5 PD 3B	103 ES	D	Zač 2A	stek SF	2m è 5 C	ss un:	#12E 5B	5C	4797
Začatek D3 FE 11 FF	změny: 7C BS FF C3	#04AA = CA 35 CB 11	1194 12 FE	AF	Zač FB	a't e k	změ	uñ:	#130	3 =	4867
CZ 8A	1C F1	E3 C1	3 8	00	50	aitek 62	65	пу: 7 А	#139	2 Ø	5017 46
Začátek 00 15 Začátek		#0407 =	1223		6 1	50 20	72 20	5F 5E	6 D 6 S	65 6E	6E 69
DE Začátek		#072C =	1836		2ac 6E 43	aftek 61 63	změ 60 79	114 55 52	#13E 7A 5E	65 79	5041 6E
CD A2		#0791 ==	1937		Zač 69 6F	a't ek 610 20	změ 64 70	65	#13C F8	20 ± 4□	5056 69
18 1D 19 06 80 4F	DD ES 0A 7E 13 1A	D1 21 3C 20 BE 23	FØ 03	FF 79 01		atek	zně		#130		5070
ØC 137	10 F6	C3 F3	38	01	20 A0	20 6F 43	20 62 69	A0 72 73	4D 61 6C	69 7A 5F	50 50 21)
Začátek CD 6E 0E F6	změny: DD 3E DD 7E	#0971 = PD CD 00 CD	01	15	65 52	20 45	20 54	76 55	55 52	5 C 4 E	68 20
FD CB	02 EE	DD ES	ΑS	09	52 55 20	55 42 2H	7A AØ	20 48	20 6F	47 6E	4F 65
Začatek 11 00 06 19 DD 56 C2 04	AF CD 76 10 0C 3E	#0988 = C2 04 FD DD FF DD	2440 DD 5E E1	E1 0B C3	Zač 70	atek 72	změ 69	ny : 68	51	7.A	5137
Začátek SC FS		#09A9 = 12 ED	107 2473 46	3A 45	2ač 5D 20	aítek AØ	změ 53	ny: 70	#141 51	8 = 74	5144 5E
5C CD 4E ØD CD 39	18 1A 05 00 15 F1	3E 3A CD 1B 11 D7	D7 1A 09	FD F1 CD	Zač 43 74	aítek 65 20	zmé 6C 6D	ny : 61 69	#142 20 6D	A = 63 5F	5162 61
ØA ØC 31 30 72 5F Začátek	25 3F 57 72 2měny:	93 07 3F 0A	53 80	4A 50	Zač 5F	aftek 7A	změ 73				5178
5D BA	41 72	#09DE = 72 61	79	BA	65	73	změ 50	79	#143 73		5183 20
Začatek 72 61	změny: 79 20			79	20 7=*	42 atek	41	53	49	43	75
74 65 Začátek	73 BA změnu:		26.11		6F	70 6D	61 6F	6.E 20		5A 41	5212 E5 54
19					Zač	a't ek	změ	ny:	#146	C =	5228
Začatek 38 ØC					2 0 65	50	AØ	43	58	79	62
Začátek 50 SF	73 75	6E 20			Zač 5A 59	aftek 6D 20	změ 55 50	ny : 6E 69	#147 EF 73	5 = 4E 74	5238 65
Začátek 01 00	Ø Ø	#0FDB =			2ač 20	atek 70					5253
58 Začatek					Zač 20	aitek 72	změ 61	ny: 64	#148 65	9 = EB	5257
00 00 Začátek	00					a'tek 20	změ 49		#149 50		5268 54
CD 6E	38.		4089			aítek 65	zně 7A	ny:	#14A 4E		5280
Začátek CD A1	změny: 38	#105E =	4190		43 4F	68 20	79 70	52 65	61 72	45 20 69	58 49 66
Začatek F3 47		#11CB = ED 47	4555 52	6B	72 20	69 76	20	43 62	68 61	79 72	62 76
36 Ø2	25 BC	20 FA	A7.	ED 03	42 59	52	45	41	4B	20	70
35 28 5C ED	F3 25 53 38	09 ED	43 7B	84 5C	Za č. 70	atek 72	změ: 6F	ny: 67	#140		
D9 04 BE 3A	28 19 01 A8	22 B4	SC ED	11	43 76	68 6F	79 60	62 65	72 5E 6E	65	5 G 2 D
EB 23 1E ED 21 CA	22 7B 43 38 5C 22	5C 25 5C 22 57	01 B2	1E 5C		_,		ua	a E	(H	20
Začátek 23 22	změny: 53 50	#1219 = 22 46	4633 5C		$\frac{B/2}{89}$	Ama	térsk	R	DI	⊕	7

3D 3C 3A 5C 5C

ED EB FD 7E

4F 6E

E1

6 D

5F 5A E5

53

76

40

6E

75

6B 51	54 4F DØ 50 7A změnu: #14F5 =		CD 95 3A 3E 0F CD	17 CD 00 CD 17 1B FD CB	BØ 16 Ø1 16 FD CB 3Ø 66	CD E4 CD 2C 00 7E 28 40	Začátek změny: #3D18 = 15640 14 14 Začátek změny: #3D16 = 15643
7A 74 58 79 6F 75 7A 20	72 51 63 65 62 6E 79 20 E4 46 4E 20 44 45 C6 43 79 20 70 51	EE 43 2 70 72 9 62 65 68 79 2	ZA 59 Začátek 18 DD	SC CD	A7 11	FD 36	28 FC 50 50 Začátek změny: #3D21 = 15649 7C 50 7C 14 54 7C 10 42 A4 48 10 24 4A 84
62 6E 60 65	74 F2 43 58	79 62 6	CD FB FE ØD	2A 59 19 78 20 BE	5C 22 B1 20 CF 08	5D 5C 07 DF ED 43	HEXA vypis Eprom MISTRUM str.61
20 5E	změný: #1527 = 51 20 5D změny: #152D =	: E	49 5C 15 ES 25 50 2D B8	2A 5D 2A 61 69 CD 19 CD	5C EB 5C 37 6E 19 E8 19	21 55 ED 52 20 06	3D00 00 00 00 00 00 00 00 00 3D05 00 10 10 10 10 00 10 00
Začátek 57 5E F5 AØ Začátek	55 74 6F 66	6F 6E 3	3D B0 33 2B 55 16	28 28 ED 5B E1 00	E8 19 C5 03 53 5C 00 C3	C1 79 03 03 D5 CD C7 3A	3D10 00 24 24 00 00 00 00 00 00 3D18 14 14 75 28 FC 50 50 00 3D20 00 7C 50 7C 14 54 7C 10 3D28 42 84 48 84 00
21 CF ØC DD	09 85 6F 7E E5 E1 C5 CD	C3 10 2	1C 3C 28 10	42 40 3C 40	40 42 40 40	3C 00 3C 00	3D30 00 10 28 10 2A 44 3A 00 3D38 00 08 10 00 00 00 00 3D40 00 18 20 20 20 20 18 00
CD 2B Začstek 00 00 18		6250 C1	01 06 04 08 1C 7C 1C 3E 08 54	04 3C 38 44 42 42 40 3C	44 44 7C 40 7C 44 02 42	3C 00 3C 00 42 00 3C 00	3D48 00 30 08 08 08 08 30 00 3D50 00 00 14 08 3E 08 14 00 3D58 00 00 08 08 3E 08 00 3D60 00 00 00 00 08 08 10
Začátek 22	změny: #1930 =	5451	06 54 08 10 14 08 0C 3C	44 44 30 10 38 44 42 42	44 44 10 10 7C 40 42 42	35 00 36 00 3C 00 3C 00	3D68 00 00 00 00 3E 00 00 00 3D70 00 00 00 00 00 18 18 00 3D78 02 04 08 10 20 40 80 00
Začátek 03 3A	změny: #1AC5 = 1F 00	6853 3	08 10 1C 7E 14 08	44 44 04 08 78 44 36 44	44 44 10 20 44 44 44 44	38 00 7E 00 44 00 36 00	3D80 00 7C 4C 54 54 64 7C 00 3D86 00 18 28 08 08 08 3E 00 3D90 00 7C 44 04 38 40 7C 00 3D98 00 7C 44 18 04 44 7C 00
Začátek C1 38	změny: #1847 =	6983	78 10 14 08	44 44 7E Ø4 1C 20	44 3C 18 20 20 20	04 38 7E 00	3DA0 00 18 28 48 7E 08 1C 00 3DA8 00 7C 40 7C 04 44 7C 00 3D80 00 7C 40 7C 44 44 7C 00
Začátek 07	změny: #1E66 =	7782	14 Ø8 ØA 24 10 28	3C 40 78 20 54 44	38 04 20 20 44 44	78 00 18 00 38 00	3D88 00 7C 44 08 10 10 10 00 3DC0 00 7C 44 38 44 44 7C 00 3DC8 00 7C 44 44 7C 04 7C 00
Začátek CB 7C	změny: #1666 = C2 EC 18	7790	00 00 22 53 5C 2E	5C C1	00 C3 C5 13 B8 2A	99 39 2A 51 49 5C	3000 00 00 00 10 00 00 10 00 3008 00 00 10 00 00 10 10 20 3080 00 00 04 08 10 08 04 00
Začátek C9 FF	změny: #257D = FF	9597	EB C1 72 F1 01 05	70 2B C3 99	71 2B 39 2A 5A 15	73 2B 59 5C 3E 20	3DE8 00 00 00 3E 00 3E 00 00 3DF0 00 00 10 08 04 08 10 00 3DF8 00 7C 44 1C 10 00 10 00
CD 38	změny: #2E24 = 32	:	12 ED 5C 2A 06 5B	53 18 06 5B ED 5B	56 ED CD ØA Ø8 56	53 5B 3B 2A 19 22	HÉXA vypis Eprom MISTRUM str.62
CD 25	změny: #3032 = 32		06 5B 03 CD 3C 11	C9 11 1B 3C 84 03	28 23 06 04 01 64	01 E8 CD 2B	3E00 3C 42 BD 85 BD A5 BE 78 3E08 00 3C 42 42 7E 42 E7 00
18	změny: #3223 =		16 3C 5A 00 06 02	06 03 01 0A CD 2B	00 CD 3C 11	3C 11 1B 3C	3E10 00 FC 42 7C 42 42 FC 00 3E18 00 7E 42 40 40 42 7E 00 3E20 00 FE 42 42 42 FE 00
F5 3C	změny: #3225 = 62 63 20 08 změny: #322C =		01 01 CD 2B Začátek	3C C9	1B 3C #3B50 =	06 01	3E28 00 FE 42 78 40 42 FE 00 3E30 00 FE 42 78 40 40 E0 00 3E38 00 7E 42 40 4E 42 7E 00 3E40 00 E7 42 7E 42 42 E7 00
35 91 Začátek	23 F1		24Cater 00 ED 11 0A 5C AF	změny: 68 53 00 D5 ED 52	5C 01 E5 ED E1 D1	15184 0A 00 5B 4B CA A2	3E46 00 E7 42 7E 42 42 E7 00 3E46 00 7C 10 10 10 10 7C 00 3E50 00 78 08 08 08 48 78 00 3E58 00 E6 48 70 58 44 E6 00
F5 F1 E2 38	77 23 73 C9 C9 12 01	EF 02	12 C5 21 00 26 2D	72 23 00 ED CD E3	73 C3 42 E5 2D C3	F3 3C C1 CD AC 12	3E50 00 E0 40 40 42 42 FE 00 3E58 00 C3 56 5A 42 42 E7 00 3E70 00 C7 62 52 4A 46 E7 00
Začátek CD ØC C9 C1	změny: #385E = 10 20 04 21 06 00 CD 85	14446 1 49 5C	E5 08 B0 5C D9 FD	F5 21 E9 F1 E1 DD	88 38 08 E1 E1 E1	E5 2A D1 C1	3E78 00 7E 42 42 42 42 7E 00 3E80 00 FE 42 42 7E 40 E0 00 3E88 00 7E 42 42 42 52 7E 08
58 CØ Ø4 D5 38 22	CD 0C 10 20 A5 D8 05 D9	F5 C9 21 9F	F1 ED 3C 5C	45 CD 2A 4B	68 0D 5C 7E	AF 32 FE 80	3E90 00 FE 42 42 7E 44 E7 00 3E98 00 7E 40 7E 02 42 7E 00
CD 01 C9 98	16 D9 C9 D9 38 37 CD 95	04 D9 11 ED :	CA 03 7E 23 FE 40	13 E5 E6 E0 28 20	1F C6 FE E0 FE A0	60 D7 28 19 28 25	3EA0 00 FE 92 10 10 10 38 00 3EA8 00 CE 44 44 44 46 7E 00 3EB0 00 E7 42 42 42 24 18 00
.52 19 C9 C1 C1 D8	23 30 04 2A 06 00 CS CD 7E CD 86 38	07 10	FE C0 01 05 D4 3E	28 2C 00 09 EB D7	FE 80 3E 0D 3E F3	28 28 D7 18 D7 01	SEBS 00 D7 92 92 92 92 6C 00 SEC0 00 EE 44 38 28 44 EE 00 SECS 00 EE 44 28 10 10 38 00
28 F2 FE 56	C9 FE 53 CA CA 8D 39 FE	B1 04 57 CA	12 ØØ 23 46	16 EF 23 18	3E 24 E6 7E	D7 4E E6 7F	3EDØ 00 7E 44 Ø8 10 22 7E Ø0 3ED8 00 1C 10 10 10 10 1C Ø0
BF 3A FE 55 2C CD	FE 72 C3 65 C2 8A 1C DF 99 1E CB B8	CD 9B	D7 CB 3E 24 46 23	7E 23 D7 3E 09 E5	28 F7 28 D7 ED 42	18 D8 4E 23 45 C5	SEE0 00 00 40 20 10 08 04 00 SEE8 00 28 08 08 08 08 38 00 SEF0 00 10 38 54 10 10 10 00
28 04 0F E1 A7 C8	ED 43 49 5C C3 AC 12 3A C5 FD 7E	CD A9 74 SC	23 4E CD E3 10 ED	23 45 20 3E E1 3E	E5 CD 2C D7 08 D7	28 2D E1 C1 3E 29	3EF8 00 00 00 00 00 00 00 FF
Začátek	: změny: #38FC ;=	14588	107 18 11 0 19	B1 3E EB A7	09 A7 ED 42	ED 52 EB 30	HEXA Vypis Eprom MISTRUM str.63
A7 28 DD 7E 3E D7	42 3E 03 32 00 F5 3E 0D 3E 2B CD 10	D7 3E 0C 3E	20 F3 5B 1B 00 40	C9 C6 10 FD DD 21	30 ED 12 C9 00 90	5B 18 F3 11 37 3E	SF00 00 3C 24 70 20 20 7C 00 3F08 00 00 7C 04 7C 44 7E 00 3F10 00 C0 40 7C 44 44 7C 00
3A D7 15 F1 7E 20	F1 F5 C6 Ø4 A7 20 Ø6 DD 1E FE Ø1 28	CB ØE	Začátek CD 55	změny: 05 11	#3C41 =	15425 21 52	3F18
02 20 3E 00	05 3E 24 D7 CD 42 15 3E	18 05 20 D7	3C 01 80 3B	12 00 80 D3	ED 80 7E 11	C3 00	3F30 00 3C 24 70 20 20 70 00 3F38 00 00 7C 44 44 7C 04 7C
3E 0B 1F 3E 80 11	CD 42 15 C1 1E CD 10 0C 02 20 11 06	18 ED	21 00 DB 7E	90 01 C7	00 40	ED BØ	3F40 00 C0 40 7C 44 44 E5 00 3F48 10 00 70 10 10 10 7C 00 3F50 00 08 00 38 08 08 48 78
04 20 7F 20	11 05 20 11 27 38 38 20	01 20 53 5 9	Začátek		#3065 =		3F58 00 C0 40 4C 50 58 CC 00 3F50 00 10 10 10 10 10 1C 00
5E 63 73 20 52 55	6C 61 69 72 20 20 4D 49 4D 0D 0D 0D	53 54	CA 51 FE 59 A2 12	36 FE 28 0 3 11 CB	C3 D5	3 8 C 3	3F68 00 00 FC 54 54 54 D6 00 3F70 00 00 FC 44 44 44 E5 00
0D 0D 52 41	40 00 00 17 40 80		C7 CD	1A 1F		3B	3F78
Začátek 21 ØA ED 53	změny: #398D = 00 22 06 58 08 58 FD 36	E5 D1	Začatek E7 CD 69 CD	změny: 82 10 66 19	CD 99	1E 50	3F98 00 00 7C 40 7C 04 FC 00 3FA0 00 20 78 20 20 20 38 00
		56	1C CD 6E 19	99 1E	50 69	gs CD	3FB0 00 00 CE 44 44 28 38 00
70	(A	B/2	Začátek 23 4E	změny: 23 46		156 03 EB C1	3FC8
76	Amatérské!	89	09 EE	C3 5E			SPE0 00 08 08 08 08 08 00

nritsu Instruments

Optical Fiber Measurement Technology Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 69 22 906

elainco

SFE8	00 70 10 0C 10 10 70 20 00 14 28 00 00 00 00 00	Obr.	96. V	ýpis prog	gramu	ZAVAD-ZX	0083	850 870		3R	Marker
3FFØ 3FF6	00 14 28 00 00 00 00 00 3C 42 BD A1 A1 BD 42 3C						0085 0085		LOOP:	EX	AF,AF
Obr. 94	. Výpis programu ZAVADEC ZX-			CO HIST		963,4	8898	900)R NOP	NZ,FLAG
	BASIC			rs: 00			0089 Rify	910		NOP	; JR NC, VE
HI 501	T GENSSM2 ASSEMBLER						008A 008D	930		LD	(IX+D),L NEXT
	ZK SPECTRUM		10	*C- ;****			008F 0091	940	FLAG:	RL XOR	C
	ght (C) HISOFT 1983,4		20 30	;*** Z3	K-BA5:	IC ****	0092 0093	950		RET	NZ
All fr	ghts reserved	0000	40 50	;	ORG	ø	0094	980		LD RRA	A,C
Pass :	l errors: 00	0000 8801	5 0	ZAC:	DI LD	SP,#F000	0095 0096	990 1000		LD	C.A DE
	1 *C- 10 ; *************	0004	80		LD	DE,#4000	0097	1010		JR	DEC
	20 ; * ZAVAD-ZX *	0007 0008	9 D 1 0 O		LD SCF	IX,#8666 ;LOAD	0099	1030	VERIFY		A,CIX+00
	30 , ***********************************	200C ZHL	110		LB	A,#FF ;BE	003D	1040 1050		RET	L NZ; NEUYU
3036	50 ; 60 DRG #3C36	000E	120		CALL	LOAD ;#55	ZITO	1060	;		
3036	70 ZAC DI	0011	138)R	NC,ZAC ;E	009E 00A0	1070	NEXT:	INC	IX DE
3C37 3C3A	80 LD DE,#4000 90 LD IX,#9000	RR	140	;			66A1	1090	DE IS	EX	AF AF
303E 303F	100 SCF ;LOAD 110 LD A,#FF	0013	150 160	;	PRES	UN DE,#8660	00A? 00A4	1100 1110	MARKER	ro	B,#B2 L,#01
	120 BEZ HLAUICKY	; KAM 9015	170		LD	HL, ZAVAD	00A5	1120	BIT58	CALL	EDGE2
3041	130 CALL #556 140 ;	; 00					00A9 00AA	1140		RET LD	NC A,#CB
3044	150 ; 160 PRESUN LD DE,#8000	0019 AVAD	180		LD	BC,KONZ-Z	ØØAC	1150		CP	B
3047	170 LD HL, ZAU	001C 001E	190		LDIR	; PRESUN #8000	00AD 00AF	1170		LD RL	L B,#80
304A 3040	180 LU BC,K-ZAV 190 LDIR;PRESUN		210	;		DEC ***	0051 0054	1.190 1200		I'D 16	NC.BIT58 A.H
3 C 4 F	200 JP #8000 210 ;	0021	530	ZAVÁD	LD	A,128	00D5	1210		KOR	L H.A
	220	Ø Ø 2 3 BOOT	240		OUT	(126),A ;		1230	;		
3052	230 ; *** ZAVADEC *** 240 ZAV LD A.128	0025 AM	250		LD	DE,Ø ;K	0067 0068	1240 1250		LD.	A.D E
3054	250 OUT (126),A 260, BOOT=1	0028	260		LD	HIL,#9000;	0089 0086	1250 1270		lD JR	NZ.LOOP A.H
3C56 3C59	270 LD DE.0 280 LD HL,#9000	00213	270		LD	BC,#4000	2600	1280		CP	#01
3050	290 LD BC,#4000		5 8 Q	;	LDIR	;DO RAM Ø	00BE		:	HE:	
305F 3061	300 LDIR :DO RAM 310 IN A : (126)	0030 WRNON	300		IN	A,(126);	OOBF	1310 1320	EDGE2	CALL	EDGE 1
3063	320 ; BLOK ZAPISU 300 RST 0	0032	310	×	RST	#0	00C2	1330 1340	EDGE1:	RET LD	NC A.#15
	340 JINICIALIZACE ZX	0033	330	KONZ:	NOP		00C5	1350	DELAY	DEC	A NZ DELAY
3C64	350 K: NOP	PECTRA	340 ADR		A LD-	BYTES ZE S	00C6 00C8	1350		HVIII	A . DELAT
Pass	2 errors. 00	0034	350 350	LOAD:	INC	D	00C9	1380 1390	SAMPLE		E
K ZAC	3C64 PRESUN 3C44 3C36 ZAV 3C52	0035 0036	370 380		EX DEC	ar,ar	00CA 00CB	1400 1410		RET LD	ス ⊖ .#7万
ZHU	3636 250 3632	0037	390		пı		00CD	1420 1430		IN RRA	A.(#FE)
Табіе	used 54 from 163	0038 003A	400 410		LD OUT	A,#0F (#FE),A	6600	1440		RET	ИС
3036	F3 11 00 40 DD 21 00 90 37 38 FF CD 56 05 11 00	003C 003D	420 430		NOP NOP		0001 0002	1450 1460		ADK COAA	#20 C
3046	80 21 52 3C 01 12 00 ED	003E 003F	440 450		NOP NOP		00114	147E 1480		JR	Z, SAMPLE
304E 3056	F0 C3 00 80 3E 30 D3 7E 11 00 00 21 00 90 01 00	0040 0042	450 470		IN RRA	A,(#FE)	00D6 00D7	1490 1500		LD CPL	A.C
305E	40 EU 60 DB ?E C7 FF CA	0043	480		AND	#20	0008	1510		LD	口,A 参数字
		0045 0047	490 500		LD	C'8 485	0 0 DB	1520 1530		OR RO	#៣១
Ohr 9	95. Hexa výpis programu ZAVA	.0048	510 520	;	CP	A	00DD 00DF	1540 1550		out scr	(#FE).A
0.0	DEC ZX-BASIC	0049 004A	530	BREAK:		NZ EDGE 1	00E0	1550		RET	
		0041	550		LD	HL,#0415	Pass	S Ett	ors: 00	ŀ	
9000 9008	F3 31 00 F0 11 00 40 00 21 00 90 37 36 FF CO 34	0050 0052	560 570	WAIT	DEC	WAIT HL	BITSE			REAK	0049
9010 9015	00 30 EH 11 00 80 E1 21	0053 0054	580 590		LD OR	A,H L	DEC EDGE 1	88A 88C	3 EI	IGE2	ស្ត្រាច គួសាទ្ទា
8030	80 35 80 D3 76 11 00 00	0055 0057	600 610		JR CALL	NZ,WAIT EDGE2	FLAG LEADE	800 8005		INZ IAD	0033 0034
9038 9030	21 00 90 01 00 40 EH B0 DB 7E C7 00 14 08 15 F3	005A 005C	620	LEADER	JR	NC, BREAK B,#9C	LOOP NEXT	008 009	5 MA	RKER MPLE	
9038 9040	35 0F 03 F5 00 00 00 00 05 F5 1F 55 20 F5 02 4F	005E	540	BEABER	CALL	EDGE2	START	2014	A 51	INC	00513
9048 9050	BF CM CC C3 00 21 15 04 10 FB 2B 7C B5 20 F9 CD	0061 0063	650 660		J R	NC, BREAK A,#C6	VERIF ZAC	Y 009		AUAN	0050 0021
9058	5F 00 30 ED 06 9C CD 5F	0055 0055	670 680		CP JR	B NC,5TART					
9060 9063	ପଣ ସହ ଅଟେ ଓଡ଼େ ଅଟେ ଓଡ଼ିଆ ଅଟି ଅଧି ଅହା ମଧ୍ୟ ହିଟି ଓଡ଼ିଆମ ଓଡ଼ିଆ	0058 0059	590 700		INC	H NZ,LEADER	Tabie	นระเ	: 246	5 fr	nm 334
9070 9078	30 D7 78 FE D4 30 F4 CD D3 00 D0 79 58 03 47 36		710				Obr. 9	7. Výp	is progra	amu ka	arta EPROM
9080 9088	00 05 60 16 F 05 20 07. 00 00 1111 75 00 15 0F 15	006B 006D	730	SYNC:		B,#C9 EDGE1			-		
9090	11 AD C0 79 1F 4F 13 18	0070 0072	740 750		LD JR	NC, BREAK A, B	*HISC		NS3M2		BLER*
9098 9080	07 DD 78 00 AD C0 DD 23 18 08 06 B2 28 01 CU BF	0073 0075	750		CP	#D4 NC, SYNC			SPECTR		
90A8 90B0	00 00 38 CB 88 CB 15 06 80 02 A6 00 7C AD 67 7A	0077	780		CULL	EDGE 1			.c) HI:		1983,4
9088	BS 20 CA 7C FE 01 C9 CD CS 00 D0 SE 16 SD 20 FD	007A	790 800	;	RET	NC					
9008	A7 04 C8 3E 7F UB FE 1F	0075 007C	8 1 Ø 8 2 Ø		XOR LD	A,C #03					
90D8	00 A9 E6 20 28 F3 79 26 4F E6 07 F6 08 D3 FE 37	007E	830		LD	C,A H,#00	P/3		^		
90E0 90E8	୍ରକୁ ନହା ସହା ସହା ସହା ସହା ସହା ସହା ଅତ୍ୟ ସହା ସହା ସହା ସହା ସହା ମହା	0081	850		LD	B,#80	$\frac{B/2}{89}$	lmaté	usket A	DIA	9 77
							-				

Dass	1 err	ors 00 ,	,	VCE				,	нь		
. 4		*C-							SAE4 SAE5	195 196	
	٠ ء	; * * * * * * * * * * *		390B	104		INC	L	SAEG	.197	EX DE HL
	3 4	; * EPROM-	-KARTA *	39 CE			LD	A,#0D	SAE7 SAE8	198 199	
0007	. 5 6	Repute Pour	#07	39D1	107 108		RST LD	#10 A,DELHLA-	STARTU		; WLOZIT ADR. ADRESY
២២25 ២២២០	7	DELHLA EQU DELNAZ EQU		DELNAZ 3903	109		ano		SAE9 , SAMA	201	T. C. C. C.
5080	9	MIINO , EQU	#:3LGU	39114	110		LU	L,A	SAEL	ន្ធន	РИБН НЬ
5C48 0D58	1,1	CLS EQU	#5048 #01168	ICKU				EN NA HLAV	но	204	PRESUM SOUBORU DAME
5800 028E			#628E	PROGRA	n.i		ADNEH	O DALSIKO	3AEC		; PROGRAMU: LDFILE POP HL
5CB2			#5CB2 #1501	3905			JR.	TEST	SAED SAEE	207	LD C,(HL)
5C3B			#5C3B						3 February	500	INC L LD B.(HL) ; V BC JE DELKA SOUBO
0056	18		#0056	UYBER	115	TEST	KLAU	ESNICE PRO	RU		
0066	20	PUSH	AF		117			N) Z MENTI			TEST ZDA SOUBOR EXI
0057 0058	55 51	PUSH	DE	: N,5,4	(3			YCH FUNKCI	u cm #		; T.J. MÁ DELKU RŮZNO
0059 005A	23 24		IX	39DA	150		INC		SAFA SAF1	213	10 00
006C 006E	25 25	FWW		39DB 0008	122			Z,UYBER A,E	SAFS	215 216	
005F 0070	27	PUSH	BC DE #3880	39DE 39 E Ø	123 124			E,#00 #25	3AF5 3AF6	217 218	DEC EC
0071	29	3P	#3580	3952	195		JR	z,zprac		2 19	, NASTAVENI ADRESY SO
		14		39E4	125		INC	B			; EPROMU, ADRESA TEZ
3580	31 32	ORG		, "z"	127		CP		U DE SAF?	221	
3880 3881	33 34		AF, AF		129		INE	E	SAFÉ SHPA	553 555	OUT (#7F),A
3B82 3B83	35 36	Push Lo	AF HL NAVRAT		130		Ch	#15	SAFB SAFD	224 225	INC L
3586 3587	37 38	PUSH			131 132		JR INC	Z,ZPRAC B	SAFT	225	OUT (#SF),A
3888	39	. 3P	#3999	SSEF	133		CP	# @ D	3800	558	PUSH DE
		,		39F1	134		JR	Z,ZPRAC	CJ1·1		; USCHOUAT ADRESU EPR
3888		NAVRAT POP	af	39F3 39F4	135 135		CP I NC	15 #05	3502	23 0	LD E,(HL)
368C 368D	43	ex eoe	AF,AF HL	; "5" 39F6	137		J R	z,zprac	3803 38 04	533 535	
358E 358F	45 45		BC	39F9	138 139		INC CP	B #04	мэвч		: ADRESA SOUBORU V RA
3890 3891	47 48	FVV	IY	, "6" 39FB	140		J FR	Z,ZPRAC	зния	235	INC L ; ULOZI SE ADRESA PAR
3893	49	POP	IX		141			R. MIZE OB	AMETRU		NASLEDUJICIHO SOUBO
	50 51		DE	SAHOVAT				E 6 POLOZE	RU. 3806	238	
3897 3898	52 53	605 605		K PO	144			h. KAZDA P	3807 3808	239	LD H.D
3899	54 55	RETN		OLOZKA				AHOVAT AZ		241	; ADRESA SOUBORU U RA
	56			3 5008		,			M JE U -3809 3808	242	INC SP
3999		ORG ; UYCISTENI		NKCI:		; TEST	SPEC	IALNICH FU	3B0B	243	POP DE
PRO 1	17430M 9 2	10		39FD	148		CP	#09	ROM JE	ប្រ	
399A 399C	5 Ø	LI	A.BARVA (ATTRP) A (BORNOR)	39FF			JR	NZ,LL1	B C0		; (DELKA SOUBDRU JE V
399F	6.5			3AØ1)				HL,(#5CBØ	380C 380D	247	mme en
39.42	63	CALL ; NASTAU KAN	CLS		152			(HIL)	SBUE SBUF	249 250	
39A5	6,5	ᄓ			153				ORU Z	251	; VLASTNI PRESUN SOUB
39A7		; NASTAU RE		3 90 5 ; "5"	154	LL 1	CP.	#1F	35)0	252 253	, EPROM DO RAM: PRESUN IN A,(#3F)
39AA	68		A,#CD	3A07 3A0A	155 156		OP OP	2,#3C35 #0E	3B12. 3B13	254 255	← LD (HL), A
39AC	. 69 70		(FLAG5),A	; "R" 3AØC	157		JR	Z ZPET	3B14 3B15	256	DEC BC
DO		FPROM DIR		KLAUES		; BYLA	STIS	ANIC ATUNA	35:16	258	TEST ZDA JIZ BC=0
39AF	72 73		Ĥ	380E				N, S, R UYBER	3517	ខេត្ត	e, A CL C Ho
3980 3982	74 75	OUT	(#3F);H (#7F);H		151				E		POKUD EC=0, ZACNE 5
3984 3987		LD	HL, PHTBUF		152				UEDR:	262	; PRESUNDUAT DALSI SO
3988 398A	78 79	LD	C,#3F	3A10	154	ZPRAC		#3AC7	3B18 3B1A	263 264	
Jabu	80		700 E000M		165				3B1B 3B1C	265 266	OR A JR NZ,PRESUN
DIR.		KONTROLA		AMU U	166	, urce	ні ні	BESY PROGR	TAUIT		NYNI JE POTREBA NAS
ZKY		; OBSAHUJE I			167 168	: EPRO			PROM	268	; UYSSI BYTE ADRESY E
39BC 39BD	84	TEST LD	H B,DELNAZ	SACV	169		ORG LD	#SAC7 HL,PRTBUF	3B1E	269 27 0	INC D
39BF		LD ; TEST ZDA !	A,(ML) PRVNI ZNAK	SACA SACB	171		LD	A_{1}, D_{2}	3620	271	LD A,D DUT (#SF),A
3900		; HLAUTCKY 1	NENI #FF:	SACC	173			Z LL3	3822	272 273	JR PRESUN
39C1 39C3	89	J R	NZ,TISK A,L	BULAE	175		ADD	A.DELHLA H.L		274	
3904	9 1		A	SAD2 SAD1	177			7 PPS P'H	тимиг	275	; PROGRAM JE CELY PRE
LE ME	เทบ	, NEBO ZDA		3 AD 4 3 AD 5	17.9		1.10	A	NA		; A JE INICIALIZOVAN
PRAZ 3905	93 :AMG: 94		NZ, UYBER	OVERHO	EHO	•		HLAUICKA	3B24	278	; STARTOVNI ADRESE: START POP HL
	34	: EPROM JE		14-4	181	, PROG	THE LITTLE	NENI PRAZD			POP HIL
				3 HD6	182 183		JP LD	Z,UYBER H,DELNAZ	3527	281	INC L
BO NE	. 96	; PRIPOJENA	:	3 AD 9				H. Ja			and District
	NI 96 97	ZPET EI RET		SADE	184 185				3329	283	
BO NE 39C7 39C8	2NI 96 97 98	ZPET EI		SADE	185		LiD	L.A TEN NA PARA	3828	284 285	LD L.C ; STARTOUNI ADRESA DE
BO NE	2NI 96 97 98 99	ZPET EI RET		SADE	185 186 187	; HL N	ьв Автач Амене	t,A TEN NA PARA 1 PROGRAMO	382A U BC 382B	284 285 H HL 286	DD L)C ; STARTOVNI ADRESA DE EI
BO NE 39C7 39C8	2NI 96 97 98 99	ZPET EI RET		SADAS OGAS VATEM GGAS	185 186 187 188 189	; HL N ; UYBR ; EPRON	LD ASTAU ANEHU 1 DIR LD	L,A PEN NA PARA 1 PROGRAMU E,(HL)	ASBE U BC BEBE DSBE	284 285 H ML 286 287	LO L)C ; STARTOUNI ADRESA DE EI DP (HL)
BO NE 39C7 39C8	ONI 96 97 98 99 100	ZPET EI RET	NA OBRAZO	SADD SADD SADD SADD SADD SADD	185 186 187 188 189 190 191	; HL N ; UYBR ; EPROY	LD ASTAL AMEHI 1 DIR LD INC LD	L,A THE NA PARA PRUGRAMU E,(HL) L D,(HL)	382A U BU 382B 382C Pass 2	284 285 286 287 287	LO L)C ; STARTOUNI ADRESA DE EI JP (HL)
BO NE 39C7 39C8	ONI 96 97 98 99 100	ZPET EI RET	NA OBRAZO	SADD SADD SADD SADD SADD SADD	185 186 187 188 189 190 191 192	; HL N ; UYBR ; EPROY	LD ASTAL AMEHI 1 DIR LD INC LD LD EX	L,A TH NA PARA PROGRAMO E,(ML) L	U BC SESE SESC Pass S ATTRP BORDCR	284 285 4 ML 285 287 erro 5C81	LO L)C STARTOUNI ADRESA DE EI JP (HL) DIS 00 BARUA 0007 CHANDP 1601
BO NE 39C7 39C8	ONI 96 97 98 99 100	ZPET EI RET	NA OBRAZO	SADD SADD SADD SADD SADD SADD	185 186 187 188 189 190 191 192	; HL N ; UYBR ; EPRON	LD ASTAU AMEHI 1 DIR LD INC LD EX JE H	L.A TON NA PARA PRUGRAMU . E.(HL) L.(HL) DE.(HL)	U BC 3B2B 3B2C Pass 2 ATTRP BORDCR CLS	284 285 A MU 286 287 erro 5080 5048	LO L)C ; STARTOUNI ADRESA DE EI JP (HL) DIS 00 BARVA 0007 CHANDP 1601 DELHIA 0025

or in Quality. i dass in Performance!

KEYSON LL.1 LL3 PRESUN RAMTOP TEST UYBER	028E 3A05 3A04 3B10 5CB2 3960 3907	LDFILE LL2 NAVRAT PRTSUF START TISK ZPET	3AEC 3ACE 3B8B 5B00 3B24 39C9 39C7
ZPRAC	3907 3810	ZPET	39C7

Table used

555

Obr. 98. Hexa výpis programu karta **EPROM**

0066	F'5	C5	បាទ	E5	ממ	E5	FD	£:S
0066	D9	0.5	115	C/3	ខាថ	3B	28	ទប
3560	E. 54	08	F5	2.1	3 B	SE	ES	00
3888	1213	99	39	F 1	0/8	E1	D1	Cl
3690	D9	FD	E1		E 1	E: 1	13.1	Cl
3898	Γ^{-1}	EU	45	CO	6 E	ØD	ΑF	32
3999	FЗ	3 E	07	33	80	5 C	32	43
39A1	5 C	CD	6 E	ØD	ΞE	PE	CD	O 1.
39A9	16	3 E:	$E(\mathbf{I})$	32	3D	SC	AF	133
34H1	36	DЗ	7 F	21	00	5 E	47	ØĐ
3959	ЗF	ED	B2	25	Ø fa	Ø D	7 E	3 C
39C1	3 0	0.6	7 13	67	30) Ø	FB	C9
3909	7 E	D7	80	10	$\mathbf{F}^{*}\mathbf{F}^{*}$	ЗE	Ø D	D7
3901	30	18	85	6F	18	E 6	CD	8E
3909	0.5	$T \subseteq$	5.8	$\mathbf{F}\mathbf{A}$	$7 \mathrm{B}$	06	Ø Ø	FE
39E:1	2.5	28	2 C	04	FE	110	28	27
39E9	04	FE	15	28	22	04	FE	ØD
39F1	28	113	04	FE	0 5	28	18	04
39F9	FE	04	28	13	FE	09	20	04
SAUL	$3\mathbf{A}$	$\mathbf{B}\mathbf{Z}$	SC	E9	FE	1.F	CH	36
3699	30	FE	ØE	28	18.9	18	C7	QЗ
3A11	C?	3H	ØØ	00	00	ØØ	01	0.2
SAC7	21	ØØ	SB	78	B7	28	05	ЗE
GACT	25	85	6 F	10	FA	7E	30	CA
3AD7	117	39	ЗE	Ø 13	85	6F	5 E.	3 C

3 ADF	56	EB	22	62	5 C	26	$\mathbf{r}\mathbf{q}$	EВ
3AE7	5 C	ES	2 C	50	E:5	E1	4 E	2 C
SAME	46	Ø 3	78	B 1	38	2 F.	ØÐ	2 C
3 A0117	7 E	DS	7 F	5F	3.0	7 E	D 3	3 F
3 AFF	57	D 5	2 C	5 E	3 C	56	3.0	E5
3807	ñΞ	G E	33	33	\Box 1	3 E	35	3B
38 0 F	3B	OB	3F	77	23	ØE	10	78
3B17	B 1	28	пs	7 B	B 7	50	F2	14
361F	7 A	D3	3 F	18	EC	E 1	E 1	4E
3527	3 C	46	60	59	FB	E9	øø	Ø Ø
3B2F	00	Ø Ø	ØØ	00	ର ପ	00	00	00

Obr. 99. Tabulka vektorů přerušení pro ZX Spectrum

_/, opoon							
Adresy	rutin	pro RO	M-Spectru				
I = 0	Adr.=	20430	#4FCE				
I = 1	Adr.=	52816	#CE52				
I = 2	Adr. =	22269	#56FD				
I = 3	Adr.=	39020	#986C				
I = 4	Adr.=	10419	#28B3				
I = 5	Adr.=	2294	#08F6				
I = 6	Adr.=	29149	#7100				
I = 7	Adr.=	16039	#3EA7				
I = 8	Adr.=	2088	#0828				
I = 9	Adr.=	65129	#FE69				
I = 10	Adr.=	32802	#8022				
I = 11	Adr. =	58888	#E508				
I = 12	Adr. =	53183	#CFBF				
I = 13	Adr.=	52503	#CD17				
I = 14	Adr.=	14367	#381F				
I = 15	Adr. =	27928	#6018				
I = 16	Adr.=	51984	#CB10				
I = 17	Adr.=	8729	#2219				
I = 18	Adr.=	52481	#CDØ1				
I = 19	Adr.=	49749	#C255				
I = 20	Adr. =	25705	#6469				
I = 21	Adr.=	51573	#C9D9				
I = 22	Adr.=	51568	#0976				
I = 23	Adr.=	12493	#30CD				

I =	29	Adr.=	2344	#R350
I =	30	Adr.=	26573	#67CD
I =	31	Adr. =	3360	#0020
I =	32	Adr. =	52513	#CD21
I =	33	Adr. =	33485	#82CD
I =	34	Adr. =	544	#0220
I=	35	Adr.=	49537	#C181
I=	36	Adr. =	8527	#214F
I=	37	Adr.=	23670	#5075
I=	38	Adr.=	20444	#4FDC
I=	39	Adr.=	288	#0120
I=	40	Adr.=	32348	#7E5C
I =	41	Adr.=	58154	#E32A
I =	42	Adr.=	19754	#4D2A
I =	43	Adr.=	23653	#5C65
I =	44	Adr. =	7117	#1BCD
I=	45	Adr.=	55781	#09ES
I =	46	Adr.=	23713	#5CA1
I=	47	Adr.=	4559	#1109
I =	48	Adr.=	60208	#EB30
I =	49	Adr.=	57540	#E128
I =	50	Adr.=	13527	#3538
I=	51	Adr.=	13256	#3368
I =	52	Adr.=	1560	#0518
I =	53	Adr.=	57124	#DF24
I =	54	Adr.=	34307	#8603
I =	55	Adr.=	41231	#A10F
I =	56	Adr.=	65535	#FFFF
I =	57	Adr.=	65535	#FFFF
I =	58	Adr.=	65535	#FFFF
I =		Adr.=	65535	#FFFF
I =		Adr.=	255	#00FF
I =	61	Adr.=	Ø	#0000
I=	52	Adr.=	255	#00FF
I =	63	Adr.=	50	#003C

23842 13824 7306

Adr. = 7305 Adr. = 49947 Adr. = 2344

#5022 #3500 #1C8A

#C31B #0928 #67CD #0020

Adr. =

INZERCE

Inzerci přijímá osobně s poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 30. 1. 1989, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodeiní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybâm vznikajícím z nečitelnosti předlohy.

PRODEJ

IO AY-3-8500: NE555 (250, 25), M. Hubka, 270 35

Video-tuner Bosch VTU 25 s dálkovým ovládáním (2700). J. Dobřanský, nám. Českých bratří 13, 320 22 Plzeň, tel. 27 29 79.

Socialistická organizacé

koupí ihned videokameru systém VHS.

Tel. Pardubice, 39 44 11, 39 44 12.

CF 300 (200). D. Letaši, 020 54 Lysá p. Mak. 46. BFT, BFR90, 91, 96 (140, 70, 80, 75), UHF ant. zes. TAPT 31+33k. 15 dB (360). E. Řádek, Londýnská 7, 120 00 Praha 2

Výbojky IFK 120 (90). J. Kůra, Konrádova 11, 628 00

Eprom 2708 (100), MH8224 (30). K. Hanák, Vodní 21, 789 85 Mohelnice.

Děrovač a snímač děrné pásky Consul (1200, 1000); kazety s programy na ZX Spectrum (à 200); gramošasi amat. (600); osazené a část. oživené desky na počítač podle ARB 6/83 (2000); čas. relé TM10 220 V/120 s (50); UB855D (100); digitrony 3× Z574M (60); 9× KPX81, MH3205; 2× K155LP8, 74S74, 74S00, další IO, tranz., vcelku (400). J. Cibulka, Kyselská 316/23, 418 01 Bílina.

Konc. stupeň $2 \times 150 \text{ W/4 }\Omega$ so zdrojom (2000); Crossover 3 pásma, 18 dB/okt. s FET IO (1300); video zos. so zdrojom – 3 výstupy pre nahrávanie (400); modul VKV IOR-CCIR stereo 1,5 μ V/26 dB (500). A. Erent, Mýtna 31, 917 01 Trnava.

ICL7126 (600); CIC8035 (200); SAA1057 (500); CD4059 (80); K561KT3 (4066) (25); CD4046 (45); CD4047 (50); HEF4060 (50); CD4030 (20); XR2206 (350); TDA1029 (300); LM3900 (90); LF356 (60); CA3130 (100); CA3140 (120); NE556 (80); L7915 (60); TLO84 (90). E. Šauman, Jabloňová 518/2, 031 01 Liptovský Mikuláš.

Elektronické prístroje a rôzne súčiastky po zrušení elektronickej dielne. Najradšej všetko spolu. Hodnota cez 10 000 Kčs. Zoznam proti známke. M. Boldišová, Mlynská ul., 925 22 Veľke Ulany, okr. Galanta, tel. 07 36 17 51, s. Takacs.

Programy pre Commodore C64 a Sinclair ZX Spectrum - (a 5-20). Alebo vymením. Zoznam proti znamke. M. Kocúr, Jesenského 1234/25, 024 01 Kysucké Nové Mesto.

BFR91 4 ks. BFR96 3 ks, BFT66 4 ks (305, 225, 540). L. Šťastna, Na Libuši 826, 391 65 Bechyně

Indikátor dobíjania autobatérie počas jazdy (10× svet. diody) (200). J. Volkomer ml., Komsomolská 24, 960 01 Zvolen.

KOUPĚ

Kryštály 1 MHz, 10 MHz, 14 MHz, 35 MHz, priechodkové kondenzátory 1 nF a 2n2, sklenené priechodky, BPYP46, MDA4431, BFR90, 91, 96, BF245C, vf kuprextit, bezvývodové kondenzátory malých kapacit. RNDr. J. Dlugoš, Prostějovská 5, 080 01 Prešov, tel. 09 14 29 78 večer.

Tranzistory do PA stupňů VHF řady KT900, BFR90A, BFR91A, BFG65, BFQ69, BFW93 a jiné na SAT. L. Skalický, Kunčice 76, 561 51 p. Letohrad.

IR LEDy. K. Gigal, 783 85 Sumvald 91.

LM1035, 1036, 1040, U806, dekoder teletextu, osc. Cl-94, BPW41, 34, CQY98, 99. M. Šeda, Výpustky 50, 622 00 Brno.

Osobní mikropočítač + přísl. Stav + popis, cena – písemně. M. Toman, 756 51 Zašová 35. **Počítač Atari 130 XE** + datasset XC 12. R. Strouhal,

Křížkovského 6, 789 01 Zábřeh

Na Commodore VC-20 a ZX-81 programování ve strojovém kódu a jiné doplňky, moduly. Osciloskop 10 MHz. Nabidněte cenu. R. Sigmund, 753 56 Opatovi-

PU 310. J. Krejcárek, Vodslivy 9, 257 24 Chocerady.

VÝMĚNA

Hry na Sharp MZ-800 nebo koupím. M. Šenk, Fügnerovo nábř. 410, 664 01 Bilovice n. Svitavou.

ČKD Praha, kombinát

Na trase metra C Stanice: Mládežnická Budějovická

Chcete pracovat v novém atraktivním prostředí? Chcete pracovat na nejmodernější výpočetní technice?

Chcete vidět jak se chová Vaše technické dílo? Chcete se podílet na programu automatizace? Čekáme na Vás - informujte se přímo v závodě!!! Možnost získání bytu!

ČKD POLOVODIČE, Budějovická 5, Praha 4 - Nusle.

Informace: tel. 412 2203, 412 2215, 412 2225

Přijímáme:

programátory, systémové ing., prog. – analytiky, projektanty, teoret, kybernetiky a ing. silnoproudé i slaboproudé elektrotechniky pro vývoj složitých automatických systémů řízení dodávaných do tuzemska i na export.

Přijímáme absolventy i příbuzných oborů ochotné se podílet na tomto programu, ať již v oblasti vývoje HW a SW automat, prostředků vyráběných a vyvíjených v ČKD POLOVODIČE, tak v oblasti projektování a návrhů systémů automatizovaného řízení technologických procesů a tech. objektů pro oblast teplých a studených válcoven, hutního a slévárenského průmyslu, cementáren, úpraven rud a dalších.

prodejna Radioamatér Žitná 7 Praha

8.30-18.00 5, 20 19 45 ne: po–pá 8 : 20 19 46, : Otevřeno máme: Naše tel. číslo: 20 Nabízíme zákazníkům za hotové a socialistickým organizacím na fakturu:

INTEGROVANÉ OBVODY

MH5440, MH5450, MH5460, MH7460, MH7472, MHB4032, MAA225, MAA345, MBA225

GS502, GC500, GD608, GD609, GD617, GD619, GF501, GF502, GF503, GF504, GF506, KC148, KC149, KD616, SF240, KF124, KF503, KF504, KF506, KF507, KF508, KF517, KF621, KC507, KC508, KC509

ELEKTRONKY

6P1P, 6C10P, PCF200, EL500

DIODY

33NQ52, 40NQ70, KA202, KA203, KA223, KA224, KY702R, KY703R, KY704R, KT206/400, KT207/200 KT704 KT713, KT730/800, KT782, KY701, KY702, KT703, KT704, KX206, KA207 KY717, KY718, KY719, KY721, KY722, KY723, KY724, KA206, KA207 Zboží na dobírku nezasíláme! KT713, KT730/800, KT782, KY701, KY702, KY703, KY704, KY705, KY706, KY710, KYT11, KY712, KY715,

O jednotlivých druzích součástek - integrovaných obvodech, tranzistorech, diodách, tyristorech i o dalších druzích prodávaného sortimentu – odporech, kondenzátorech, odporových trimrech, kondenzátorových trimrech, potenciometrech, konstrukčních součástkách, například přepínačích, konektorech, knoflicích a náhradních dílech atd. – o cenách a podmínkách dodání se informujte přímo ve specializované prodejně.

Mezinárodní a meziměstská telefonní a telegrafní ústředna

v Praze 3, Olšanská 6

přilme

techniky - inženýry pro vývoj a údržbu SW telekomunikačních zařízení.

Platové zařazení: podle ZEUMS II, podle dosaženého vzdělání a praxe, tř. 10-12 + osobní ohodnocení + prémie.

Pro mimopražské pracovníky zajistíme ubytování.

Informace osobně, písemně i telefonicky na č. telefonu 714 26 75, 27 28 53.

AZNP státní podnik Mladá Boleslav

přijme špičkové odborníky systémové inženýry a programátory

pro zajištění mimořádných úkolů a řešení problémů z oblasti řídicích systémů a jejich programování.

Nabízíme: — výjimečné pracovní podmínky

roční hrubý příjem až 75 000 Kčs (podle pracovních

- možnost přidělení bytu

Nabídky s uvedením osobních údajů zasílejte kádrovému odboru AZNP s. p. Mladá Boleslav, PSČ 293 60. Dotazy na telefonu 0326 61 39 83.