Universidade Estadual de Campinas Faculdade de Engenharia Agrícola

CARGAS DE CONTATO E DETERMINAÇÃO DO MÓDULO DE FIRMEZA

Nome: Renan da Silva Guedes

RA: 223979

1 Introdução

O ensaio realizado consiste na determinação do módulo de firmeza (firmness) de diferentes materiais quando submetidos à compressão. Segundo NELSON, MOHSENIN (1968), o termo "firmness" pode ser usado para comparação do módulo de elasticidade de materiais biológicos. É descrito como uma característica elástica desses materiais, e definido por

$$firmness = \frac{E}{1 - \nu^2} \tag{1}$$

sendo E o módulo de elasticidade e ν o coeficiente de Poisson do material.

2 Objetivo

Determinação do Módulo Firmness

3 Materiais e métodos

Os materiais utilizados foram a laranja, esfera e cilindro de silicone, paquímetro digital, Máquina universal de Ensaios e *software* para aquisição de dados.

O procedimento realizado foi baseado no que é visto na fig. 1, sendo requerida sua execução para cada corpo de prova. No caso do cilindro, a aplicação da carga foi feita diametralmente, sendo a velocidade da deformação dos corpos igual a 1 mm/s. Dessa forma, após aferir as medidas iniciais dos corpos e finalizar o ensaio foi obtido os valores presentes na tabela 1. Com o auxilio do software para aquisição de dados chegou-se nos valores de carga máxima aplicada no ensaio de cada corpo (tabela 3).

Em seguida, foi lançado mão das equações (2) e (3) para a obtenção do módulo de *firmness*. A equação (2) foi utilizada com os parâmetros coletados da compressão diametral do cilindro de silicone, enquanto (3) para a laranja e esfera devido suas geometrias.

4 Resultados e discussão

Após substituir os dados nas duas equações mencionadas anteriormente, foram obtidos os valores presentes na tabela 2, onde nota-se grande proximidade entre o *firmness* da esfera e do cilindro (3.02 MPa e 3.03 MPa, respectivamente). No caso da laranja, nota-se um módulo aproximadamente 81.5% menor quando comparado à média dos módulos dos dois primeiros, evidenciando a maior suscetibilidade mecânica da mesma. Isso pode ter ocorrido devido ao fato da laranja ter menor capacidade de deformar antes de romper em relação ao silicone presente na esfera e cilindro, por exemplo.

5 Conclusão

A partir dos ensaios realizados, chega-se que corpos de prova de mesmo material, possuem módulos de *firmness* bem próximos, demonstrando a independência da geometria dos corpos nesse caso. Enquanto que materiais de menor firmness – laranja estudada – são caracterizados pela capacidade de deformação para a mesma carga aplicada quando comparado aos dois outros corpos.

6 Anexos

Figura 1: Procedimentos adotados para os corpos de prova. O exemplo acima foi feita para a laranja como CP.

6.1 Tabelas

	$\varnothing_i(\mathrm{mm})$	$\varnothing_f(\mathrm{mm})$	$l_i(\mathrm{mm})$	$l_f(\mathrm{mm})$
Esfera	56.01	29.53	_	_
Laranja	63.92	43.52	_	_
Cilindro	25.71	15.92	75.52	77.16

Tabela 1: Dados dos CPs antes e depois da compressão. \emptyset_i e \emptyset_f representam os diâmetros antes e depois da deformação dos CPs, enquanto que l_i e l_f se aplicam somente ao cilindro, indicando as alturas antes e depois do ensaio.

	Firmness (MPa)
Esfera	3.02
Laranja	0.56
Cilindro	3.03

Tabela 2: Módulo de firmness para cada CP.

	$F_{\text{máx}} \text{ (kgf)}$
Esfera	47.27273
Laranja	24.63637
Cilindro	94.42425

Tabela 3: Cargas máximas aplicadas em cada corpo na compressão.

6.2 Equações

$$b = \sqrt{\frac{4 F (1 - \nu^2) R}{\pi l E}} \Rightarrow \left(\frac{E}{1 - \nu^2}\right) = \frac{4 F R}{\pi l b^2}$$
 (2)

- b é a metade da largura da área de contato
- l é o comprimento do cilindro (ou da área de contato)
- R é o raio do corpo cilíndrico
- F é a força aplicada (ortogonal ao plano de contato)

$$a = \sqrt[3]{\frac{3F(1-\nu^2)R}{4E}} \Rightarrow \left(\frac{E}{1-\nu^2}\right) = \frac{3FR}{4a^3}$$
 (3)

- $\bullet \;\; a$ é o raio da área de contato
- ullet R é o raio do corpo esférico
- F é a força aplicada (ortogonal ao plano de contato)

7 Referências

MOHSENIN, N. N. **Physical properties of plant and animal materials**. 2.ed. New York: Gordon and Breach, 1986. 891p.