

Guzmán Favila Gabriela, Hernández Luna Nora Hilda, Rosas Paz Miguel Ángel

INTRODUCCIÓN

El microbioma intestinal es uno de los más estudiados debido a su diversidad y relación con la salud. Este está constituido principalmente por especies de los phyla Firmicute, Bacteroidetes, Actinobacteria y Verrucomicrobia, cuya proporción de especies varía dependiendo del individuo y siendo los dos primeros taxa los más abundantes (Tuddenham y Sears, 2015). Así pues, se estima que presenta más de 3500 especies y se han identificado más de 1 millón de genes bacterianos con funciones no redundantes (Manasa-Jandhyala et al., 2015).

Diversos factores pueden generar variación en las poblaciones de la microbiota, entre ellos la dieta, edad, la ingesta de antibióticos, la genética y el sistema inmune de la persona (Tuddenham y Sears, 2015).

El enfoque de la metagenómica nos permite vislumbrar la composición de las comunidades microbióticas.

Este estudio plantea usar el enfoque de teoría de grafos para evaluar el comportamiento de las interacciones de la microbiota gastrointestinal humana bajo condiciones de salud y bajo condiciones patológicas.

FENOTIPOS

La microbiota intestinal considerado un «órgano metabólico», con funciones en la nutrición, la regulación de la inmunidad y la inflamación sistémica.

DIARREA

La Diarrea es un síntoma representado por el aumento en el líquido de las deposiciones y en la frecuencia de las mismas.

CÁNCER COLORRECTAL

El cáncer colorrectal es una neoplasia del colon que tiene una fuerte incidencia mundial y cuyos factores de riesgo incluyen la genética, el ambiente y el estilo de vida.

COLITIS ULCEROSA

La colitis ulcerosa es una enfermedad inflamatoria intestinal crónica que afecta a la mucosa del colon.

Objetivos generales

Comparar las redes de coexistencia de la microbiota gastrointestinal humana.

Objetivos particulares

- Identificar la composición taxonómica del metagenoma gastrointestinal humano en un fenotipo saludable, otro con cáncer colorrectal, uno con diarrea y otro con colitis.
- Realizar un análisis de co-ocurrencia con base en las abundancias relativas de las especies para cada fenotipo.
- Realizar un análisis de redes de co-ocurrencia .

Hipótesis

El microbioma del fenotipo de personas sanas muestra mayor abundancia de especies que aquellos correspondientes a padecimientos, lo cual se ve representado en una red con más nodos y grado de conectividad alto.

Las redes correspondientes a las enfermedades muestran interacciones negativas entre organismos que en condiciones de buena salud interactúan positivamente, lo cual se refleja en la pérdida de diversidad.

Cálculo de abundancias de

todo el metagenoma

import requests import json from pandas.core.frame import DataFrame

Get relative species/genus abundances for a sample/run

10 Corridas para cuatro fenotipos 50% mujeres:50%

hombres

Edades: 16-80 años

] import requests as requests import json as json import pandas as pd from pandas.core.frame import DataFrame import numpy as np from google.colab import files

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import numpy as np
import cv2
from collections import Counter
from skimage.color import rgb2lab, deltaE_cie76
import os

import pandas as pd

%matplotlib inline
from google.colab import files
import networkx as nx

Histogramas de abundancia. Redes de co-ocurrencia. Correlogramas Gráficos de distribución de grado.

Redes de modulación Redes de medidas de centralidad

DISEÑO DE UNA PÁGINA WEB

BIOCOMPU

INTRODUCCIÓN

OBJETIVOS

HIPOTESIS

METODOLOGÍA

RESULTADOS

REFERENCIAS

Estudio comparativo de las redes de coexistencia de la microbiota gastrointestinal humana en cuatro condiciones de salud.

VER MAS→

© 2020 Todos los derechos reservados

Resultados

n= 426, m= 21140, <k>= 99.25

n= 604, m= 45552 y <k>= 150.8

$$n = 104, m = 1640, < k > = 31.54.$$

Componentes

Figura 6. Componentes de red de correlación positiva. a) Fenotipo sano 0.746. b) Cáncer colorrectal. 0.825, c) Diarrea. 0.784. d) Colitis 0.85

Betweenneess

Fenotipo:	Sano	Fenotipo: Cá	incer colorrectal
Especie	Betweenneess	Especie	Betweenneess
Bifidobacterium tsurumiense	0.0333	[Clostridium] innocuum	0.0707
Streptococcus mitis	0.03164	Anaerocolumna aminovalerica	0.0362
Bacteroides helcogenes	0.0284	Barnesiella viscericola	0.0333
Actinomyces sp.	0.0284	Bifidobacterium scardovii	0.0312
Cellulosilyticum <u>lentocellum</u>	0.0275	Blautia producta	0.0309
Fenotipo: I	Diarrea	Fenoti	po:Colitis
Especie	Betweenneess	Especie	Betweenneess
Unknown'	0.317	Peptostreptococcus anaerobius	0.0195
Caldilinea aerophila	0.0175	Sutterella sanguinus	0.0195
Bacteroides rodentium	0.0158	Ralstonia pickettii	0.0195
Clostridium tertium	0.0157	Sutterella parvirubra	0.0177
Nubsella zeaxanthinifaciens	0.0152	Mesorhizobium huakuii	0.0176

Closeness

Fenotipo: Sano		Fenotipo: Cáncer colorrectal		
Especie	Closeness	Especie	Closeness	
Veillonella dispar	0.5387	[Clostridium] innocuum	0.7311	
Veillonella atypica	0.5351	Anaerocolumna aminovalerica	0.7302	
Streptococcus suis	0.5351	Barnesiella viscericola	0.7302	
Rikenella microfusus	0.5351	Bifidobacterium scardovii	0.7302	
Paraclostridium bifermentans	0.5351	Blautia producta	0.7302	
Fenotipo: Diarrea		Fenotipo: Colitis		
Especie	Closeness	Especie	Closeness	
Unknown'	0.9277	Peptostreptococcus anaerobius	0.6470	
Caldilinea aerophi <mark>l</mark> a	0.6916	Sutterella sanguinus	0.6470	
Bacteroides rodentium	0.6871	Ralstonia pickettii	0.6470	
Clostridium tertium	0.6849	Sutterella parvirubra	0.6374	
Blautia obeum	0.6827	Mesorhizobium huakuii	0.6100	

Conclusiones

- Sí existe una desrregulación en el número de especies y su abundacia relativa a causa de los padecimientos.
- Aumento en la abundancia relativa de especies patógenas
- Mayor número de interracciones positivas entre especies patógenas.
- No podemos asumir interacciones directas o causales
- Es necesario el uso de herramientas para análisis masivos para identificar nodos importantes