Big Data

Prof. Leandro Batista de Almeida leandro@utfpr.edu.br

2016

Overview

- Mundo de dados!
- Um pouco de história
- Big data
- Big data systems
- Hadoop
- Map Reduce
- Hive

Um mundo de dados!

Universidade Tecnológica Federal do Paraná - DAINF

Dados demais!

- Bolsa de Valores de New York gera 1 Tb de dados de transações por dia
- Facebook gerencia aproximadamente 10 bi de fotos em mais de 1 Pb de storage
- Internet Archive armazena aproximadamente 2 Pb de dados e cresce 20 Tb por mês
- LHC (Large Hadron Collider) produz aproximadamente 15 Pb por ano

Dados demais!

- Empresas perceberam o tesouro escondido em documentos e dados não estruturados
 - Com crescimento em taxas exponenciais
- Mas...
 - Como armazenar tanta informação? (Pb, Hb)
 - Como acessar essa informação de forma rápida?
 - Como tratar informação em formatos tão diferentes?
 - Seria tão mais fácil se tudo estivesse em tabelas...
 - Como tornar isso escalável, tolerante à falhas e flexível?

Dados demais!

Universidade Tecnológica Federal do Paraná - DAINF

- História sempre repete a si mesma
 - Hierarchical X network X relational
 - Relational X Object oriented
 - Relational X NoSQL
 - NoSQL X NewSQL

— ...

- Questões antigas de SGBDs continuam relevantes hoje em dia
- Muitas das ideias em sistemas atuais não são novas
- Leitura recomendada
 - What goes around comes around
 - Michael Stonebraker & Joseph Hellerstein

• 1960s

- IBM IMS
 - Desenvolvido para tratar as ordens de compra a missão Apollo (NASA)
 - Hierarchical data model
 - Formato de armazenamento definido pelo programador
- 1970s
 - CODASYL
 - Charles Bachman
 - Ganhador do Prêmio Turing
 - Acesso padronizado em COBOL
 - Network data model

Universidade Tecnológica Federal do Paraná - DAINF

- 1970s
 - Modelo Relacional
 - Ted Codd
 - Matemático trabalhando na IBM Research
 - Ganhador do Prêmio Turing
 - Abstração do banco de dados para evitar retrabalho em código
 - Acesso a dados através de linguagem de alto nível
 - Armazenamento físico tratado pela implementação
 - 12 regras de Codd
 - A relational model of data for large shared data banks
 - Communications of the ACM, 1970 e 1983

• 1970s

- Implementações iniciais de SGBDs relacionais
 - System R IBM Research (Jim Gray)
 - INGRES U. C. Berkeley (Michael Stonebraker)
 - Oracle Larry Ellison

Universidade Tecnológica Federal do Paraná - DAINF

- 1980s
 - O modelo relacional vence
 - DB2 da IBM em 1983
 - SQL se torna o padrão
 - Oracle ganha o mercado
 - Stonebraker cria o Postgres

• 1990s

- SGBDs orientados à objeto
 - Final dos anos 80, na realidade
 - Evitar "relational-object impedance mismatch"
 - Quantos OODBMS você lembra hoje?

- OLAP

- DataWarehouse, Bussines Intelligence, DataMining
- Dr. Ralph Kimball
- OLTP x OLAP
- Semi-estruturados

- 2000s
 - The Internet!!
 - BigData
 - NoSQL
 - Schemaless (schema on read)
 - Modelos não-relacionais (document, key-value, etc)
 - Sem ACID
 - APIs específicas

- 2010s
 - NewSQL

- Sistemas híbridos
 - Mesmo desempenho em OLTP e OLAP
 - Hybrid Transactional-Analytical Processing
- MemSQL, Hyper, SAP Hana, H-Store, VoltDB

Sobre a história dos SGBDs

- Existem muitas inovações, e elas se originam da indústria e da academia, ambas:
 - Muitas ideias iniciam na academia, mas poucas completam um SGBD para verificação
 - IBM foi a vanguarda nos anos 1970-1980s, mas agora Google e Facebook são os trendsetters
 - Oracle empresta ideias de todo mundo (Andy Pavlo)
- O modelo relacional venceu (de novo) para SGBDs operacionais
 - E SQL também

Evolução de SGBDs

- Sistemas de informação mudaram desde os anos 1970s
- "One Site Fits All": An idea whose time has come and gone
 - Michael Stonebraker, 2004
 - Problemas
 - Custo
 - Compatibilidade
 - Mercado
 - Linhas de produtos

Evolução de SGBDs

- A Internet!
 - Internet muda tudo
 - Incluindo IoT
 - Dados demais!!!
 - Dados não estruturados
 - Mails, texts, tweets, logs, etc.
 - Complexidade de DW e BI aumentando
 - Porque apenas 24 horas de dados? Porque não o ano todo? Ou dois anos?

Big Data

- Não é simplesmente um monte de dados, um grande volume de dados
 - Big "scope" of data
- Definição precisa muito abrangente e complexa
 - Pontos de vistas de pessoas de engenharia de software, redes, bancos de dados
- Prática comum é descrever usando os "Vs" do Big Data

Os "V"s do Big Data

Os "V"s do Big Data

3Vs of Big Data

Prof. Leandro Batista de Almeida

Os "V"s do Big Data

Universidade Tecnológica Federal do Paraná - DAINF

Os "V"s do Big Data's

- Volume
- Velocity
- Variety
- Veracity
- Value
- Variability
- Volatility
- Visualization
- Resumindo, não é somente um monte de dados...
 - Novos insights de dados existentes
 - Guia para análise de dados futuros
 - Agilidade e competitividade

- Então... Como vamos tratar tamanho volume de dados?
 - Sistemas distribuídos

Não é exatamente uma nova ideia...

Mas com uma abordagem diferente de SGBDs tradicionais

 In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't try to grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of computers.

Rear Admiral Grace Hopper

Big Data e Google

- Google sempre teve problemas com excesso de dados
 - Teve que desenvolver tecnologia, já que não havia nada disponível
- Distribuição de informação em um cluster
 - Google File System
 - The Google File System (2003)
- Processamento distribuído em um cluster
 - Map Reduce (sobre GFS)
 - MapReduce: Simplified Data Processing on Large Clusters (2004)
- Acesso semelhante à tabelas
 - BigTable (sobre GFS)
 - BigTable: A Distributed Storage System for Structured Data (2006)

Big Data e Google

- O principal avanço foi a API MapReduce
 - Sistema distribuído em uma API
- Programadores não precisam mais tratar das questões relativas a distribuição
 - Dados ou processa mento
 - Você simplesmente codifica a sua tarefa

Universidade Tecnológica Federal do Paraná - DAINF

- Abstração inspirada em 'Map' e 'Reduce' do Lisp
- Divide o processamento em duas fases:
 - (1) Map, busca e distribui os dados em múltiplos nós para processamento
 - (2) Reduce, agrega e processa resultados parciais para gerar um resultado final (ou intermediário para outro job MapReduce)
- Maior vantagem é a simplicidade
 - Programadores devem codificar duas funções/métodos
 - Mapper e Reducer

- Contribuições
 - Interface simples e poderosa
 - Paralelização automatizada
 - Computação distribuída em larga escala
 - Alto desempenho em grandes clusters
- Job recebe um conjunto de pares de valores key/values
 - Produz um conjunto de key/values como saída
 - Programador precisa expressar seu processamento nas duas funções, map e reduce

Hadoop

- Implementação open-source do GFS e MapReduce
 - Baseado nos papers originais
 - HDFS e Hadoop MapReduce
 - http://hadoop.apache.org
- Inicialmente desenvolvido pelo Yahoo
- Desempenho otimizado para OLAP
- Largamente usado desde o início
- Deu origem a vários projetos complementares

Hadoop - História

- Criado por Doug Cutting
 - Também o criador do Apache Lucene
- Objetivo principal: construir um indexador para um web search engine
 - Projeto Nutch
 - Iniciou em 2002
 - Logo se percebeu que seria necessária mais escalabilidade do que o previsto
 - Baseado no paper do GFS da Google, implementaram uma versão aberta, chamada NDFS

Hadoop – História

Projeto Nutch

- Em 2004, Google publica o paper do MapReduce
- Em 2005, Nutch já tem uma implementação funcional do MapReduce
- Em 2006, o projeto Hadoop foi criado, separado do Lucene, incluindo o Nutch
 - E Doug Cutting foi contratado pelo Yahoo
 - Yahoo forneceu recursos e programadores para manter o Hadoop

Projeto Hadoop

- Em 2008, se torna um projeto Apache top level
- Yahoo mantém um cluster com 10,000 cores
 - Começa a ser usado por Yahoo, Last.fm, Facebook, New York Times e outros
- Em abril de 2008, Hadoop quebra o recorde mundial de classificação de dados
 - Classificou 1 Tb de dados, usando um cluster de 910 nós em 209 segundos
 - Em novembro, Google fez em 68 s
 - Em 2009, Yahho fez em 62 s
- Adotado desde então por muitas empresas
 - Amazon, EMC, IBM, Microsoft, Oracle, Cloudera, MapR, etc

Hadoop

- Distribuições
 - Apache
 - Hortonworks
 - Cloudera
 - Amazon Web Services
 - Intel
 - Hadapt
- YARN
 - Impala
 - MPICH
 - Storm

Hadoop

- Plataforma para armazenamento e processamento distribuídos
 - HDFS + MapReduce (e YARN)
 - Armazenamento (HDFS: NameNode, DataNode)
 - Processamento (TaskTracker/NodeManager)
 - Coordenação (JobTracker/ResourceManager)
- Tolerância à falhas
 - Replication (default 3)
 - Tasks attempts

Releases

- 1.x
 - Versão original, largamente usado
- 2.x
 - Novo gerenciador de recursos
 - YARN
 - Yet Another Resource Negotiator
 - Novo engine MapReduce (MR2)

Questões comuns

- BigData X SGBDs relacionais
 - Ex.: Hadoop X Oracle RAC
- BigData X NoSQL
 - Ex.: Hadoop X MongoDB/Cassandra
- Primeiro e mais importante, problemas são quase sempre diferentes
 - E também as soluções
- Parecido com viajar
 - Em uma viagem, você usaria um carro ou um avião?
 - Qual é o mais rápico?
 - Distância X custo

PIG

- Codificação das classes Mapper e Reducer não é trivial
- PIG roda sobre Hadoop, aceitando comandos em linguagem de fluxo
 - PIG Latin
 - DW
- Cria jobs MapReduce

- Hive
 - Desenvolvido pelo Facebook
 - E colocado em open source
 - Baseado em um dialeto SQL
 - Familiar a programadores
 - Inclui um driver JDBC
 - Sem ACID, sem transações, focado em queries
 - Desempenho escalável (como Hadoop)

- HBase (baseado em Google BigTable)
 - SGBD NoSQL usando HDFS
 - Column family store
 - OLTP e OLAP

Hadoop: The
 Definitive Guide,

 4th ed

- Tom White

Universidade Tecnológica Federal do Paraná - DAINF

...

- Hadoop in Practice
 - Alex Holmes

Universidade Tecnológica Federal do Paraná - DAINF

- Programming Hive
 - Edward Capriolo

Data Warehouse and Query Language for Hadoop

Programming

O'REILLY®

Jason Rutherglen, Dean Wampler & Edward Capriolo

Universidade Tecnológica Federal do Paraná - DAIN

 HBase: The Definitive Guide

- Lars George

Universidade Tecnológica Federal do Paraná - DAINF

Futuro?

- BigData é um tema novo, e em constante mudança
 - Velho oeste, pioneiros
- Muitas oportunidades
 - E muitos erros também.

Universidade Tecnológica Federal do Paraná - DAINF

Futuro?

The best way to predict the future is to invent it.

(Alan Kay)

izquotes.com

Questões

Prof. Leandro Batista de Almeida leandro@utfpr.edu.br