Linear Modeling Methods

Ordinary Least Squares

Carl Friedrich Gauss (1777–1855)

Elastic Net

Hui Zou and Trevor Hastie Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society, 2005

Ordinary Least Squares Requirements

Requirements	If broken
Linear relationship between inputs and targets; normal y, normal errors	Inappropriate application/unreliable results; use a machine learning technique; use GLM
N > p	Underspecified/unreliable results; use LASSO or elastic net penalized regression
No strong multicollinearity	Ill-conditioned/unstable/unreliable results; Use ridge(L2/Tikhonov)/elastic net penalized regression
No influential outliers	Biased predictions, parameters, and statistical tests; use robust methods, i.e. IRLS, Huber loss, investigate/remove outliers
Constant variance/no heteroskedasticity	Lessened predictive accuracy, invalidates statistical tests; use GLM in some cases
Limited correlation between input rows (no autocorrelation)	Invalidates statistical tests; use time-series methods or machine learning technique

Anatomy of GLM

Family/distribution allows for non-constant variance

Distributions / Loss Functions

For **regression** problems, there's a large choice of different distributions and related loss functions:

- •Gaussian distribution, squared error loss, sensitive to outliers
- ·Laplace distribution, absolute error loss, more robust to outliers
- ·Huber loss, hybrid of squared error & absolute error, robust to outliers
- •Poisson distribution (e.g., number of claims in a time period)
- •Gamma distribution (e.g., size of insurance claims)
- Tweedie distribution (compound Poisson-Gamma)
- ·Binomial distribution, log-loss for binary classification

Iteratively Reweighed Least Squares

Iteratively reweighted least squares (IRLS) complements model fitting methods in the presence of outliers by:

- Initially setting all observations to an equal weight
- Fitting GLM parameters (β's)

"Outer loop"
$$\tilde{\beta} = \min_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} * \beta_j \right)^2 \right\} \quad \text{"Inner loop"}$$

- Calculating the residuals of the fitted GLM
- Assigning observations with high residuals a lower weight
- •Repeating until GLM parameters (β's) converge

Regularization (e.g. Penalties)

Coefficients selected by non-penalized model.

Coefficients selected by penalized model. L1 solution will be sparse.

Combining GLM, IRLS and Regularization

 λ controls magnitude of penalties. Variable selection conducted by refitting model many times while varying λ . Decreasing λ allows more variables in the model.

Error function for a GLM.

• Inner loop: Fitting GLM parameters for a given λ and α

- · Outer loop: IRLS until B's converge
- Outermost loop: λ varies from λ_{max} to 0

x tunes balance between L1 and L2 penalties, i.e. elastic net.

Elastic net advantages over L1 or L2:

- Does not saturate at min(p, N)
- ·Allows groups of correlated variables