

Fungsi

A. PENDAHULUAN

- Relasi adalah suatu hubungan perkawanan antara daerah asal dan daerah kawan.
- ► Fungsi (pemetaan) adalah relasi yang memasangkan setiap anggota daerah asal dengan tepat satu anggota daerah kawan.
- 🔪 Istilah-istilah dalam fungsi:
 - 1) Daerah asal/domain (Df)
 - 2) Daerah kawan/co-domain (Cf)
 - 3) Daerah hasil/range (Rf)
- Nentuk penyajian relasi dan fungsi:
 - 1) Diagram panah

2) Pasangan berurutan

$$f = \{(1, a)(2, b)(3, c)(4, d)\}$$

 $Df = \{1, 2, 3, 4\}$

 $Cf = \{a, b, c, d\}$

 $Rf = \{a, b, c, d\}$

 $g = \{(1, a)(2, b)(3, c)(4, c)\}$

 $Dg = \{1, 2, 3, 4\}$

 $Cg = \{a, b, c\}$

 $Rg = \{a, b, c\}$

 $h = \{(2, 1)(2, 2)(3, 2)(4, 4)\}$ (bukan fungsi)

 $Dh = \{2, 3, 4\}$

 $Ch = \{1, 2, 4\}$

 $Rh = \{1, 2, 4\}$

3) Rumus fungsi

Dituliskan dalam bentuk:

$$f: x \rightarrow a$$
 atau $f(x) = a$

4) Grafik fungsi

Pada grafik, sumbu x merupakan domain, dan sumbu y merupakan kodomain.

Grafik yang merupakan fungsi adalah grafik yang tidak membalik sejajar sumbu x (kanan atau kiri).

Grafik di atas bukan fungsi, karena grafik membalik, sehingga ada dua titik yang memiliki nilai x (domain) yang sama.

B. JENIS-JENIS FUNGSI

Jenis fungsi secara umum:

1) Fungsi injektif (satu-satu)

Merupakan fungsi yang anggota kodomainnya hanya mempunyai satu pasangan dari anggota domain.

Pada grafik, fungsi injektif adalah fungsi yang grafiknya tidak membalik.

Df: $x \in R$

2) Fungsi surjektif/onto

Merupakan fungsi yang seluruh anggota kodomainnya terpasang dengan anggota domain (Rf = Cf).

Pada grafik, fungsi surjektif adalah fungsi yang grafiknya tidak berujung.

3) Fungsi bijektif (korespondensi satu-satu)

Merupakan fungsi injektif dan fungsi surjektif.

Pada grafik, fungsi bijektif adalah fungsi yang grafiknya tidak membalik dan tidak berujung.

4) Fungsi into

Bukan fungsi injektif, surjektif maupun bijektif.

Pada grafik, fungsi into adalah fungsi yang grafiknya membalik dan berujung.

Df: $x \in R$

Jenis fungsi lain menurut rumus beserta domain alaminya:

1) Fungsi identitas (I)

$$I = f(x) = x$$

$$f$$

$$y = x$$

2) Fungsi konstan

$$f(x) = k$$
 Df: $x \in R$

3) Fungsi linear

Fungsi dengan pangkat terbesar satu.

$$f(x) = ax + b$$

4) Fungsi kuadrat

Fungsi dengan pangkat terbesar dua.

$$f(x) = ax^2 + bx + c$$

Df: $x \in R$

5) Fungsi pecahan

Fungsi dengan bentuk pecahan.

$$f(x) = \frac{a}{b}$$

b ≠ 0

6) Fungsi polinomial dan eksponen

Fungsi dengan x berpangkat atau pangkat yang mengandung x.

$$f(x) = ax^n$$

x∈R

$$f(x) = a^{x+b}$$

x∈R

7) Fungsi akar kuadrat

Fungsi dengan bentuk akar kuadrat.

$$f(x) = \sqrt{a}$$

a ≥ 0

 $x \in R$

8) Fungsi logaritma

Fungsi dengan x yang berada dalam bentuk logaritma.

$$f(x) = {}^{a}log c$$

 $a \neq 1 \neq 0$

c > 0

9) Fungsi bersyarat

Rumus fungsi tiap nilai x berbeda-beda.

$$f(x) = \begin{cases} x^2 + 1, & \text{jika } x \ge 2 \\ 2x - 5, & \text{jika } -1 \le x < 2 \\ x^3, & \text{jika } x < -1 \end{cases}$$
 $x \in \mathbb{R}$

10) Fungsi modulus

Fungsi dengan x yang berada dalam tanda |x| (mutlak).

$$\mathbf{f(x)} = |\mathbf{a}|$$

$$\mathbf{f(x)} = \begin{cases} -\mathbf{a}, & \text{jika a } < 0 \\ \mathbf{a}, & \text{jika a } \ge 0 \end{cases}$$

$$\mathbf{f(x)} = \begin{bmatrix} \mathbf{a}, \text{ jika a } \mathbf{a} \end{bmatrix}$$

$$\mathbf{g(x)} = |\mathbf{a}| + \mathbf{b}$$

$$\mathbf{g(x)} = \begin{cases} -\mathbf{a} + \mathbf{b}, & \text{jika a } < 0 \\ \mathbf{a} + \mathbf{b}, & \text{jika a } \ge 0 \end{cases}$$

11) Fungsi tangga

Merupakan fungsi yang grafiknya berbentuk interval-interval yang sejajar/tangga.

Merupakan nilai bilangan bulat terbesar sebelum harga di dalam tanda ||x||.

Contoh:

Jika f(x) = ||x||, maka:

$$f(1,20) = 1$$

$$f(4) = 4$$

$$f(-2,35) = -3$$

$$f(3,9) = 3$$

$$f(x) = ||a||$$

$$f(x) = \begin{cases} -2, jika - 2 \le x < -1 \\ -1, jika - 1 \le x < 0 \\ 0, jika 0 \le x < 1 \end{cases}$$

1, jika 1 ≤ x < 2

12) **Fungsi trigonometri** (dipelajari di Matematika 3) **Fungsi sinus**

Fungsi cosinus

Fungsi tangen

Fungsi cosecan

Fungsi secan

Fungsi cotangen

- Domain alami dan range fungsi berbeda-beda tiap fungsi.
- Nomain alami dan range dapat ditentukan dari ketentuan dari masing-masing jenis fungsi, sehingga tidak terbentuk bilangan tidak terdefinisi, tak terhingga atau imajiner.

Contoh:

Tentukan domain alami dan range fungsi berikut:

a.
$$f(x) = \frac{x+4}{x-3}$$

b.
$$f(x) = x^2 + 4x - 1$$

Jawab:

a. Df:
$$x - 3 \neq 0$$
, jadi $x \neq 3$
Rf: $f(x) = y = \frac{x+4}{x-3}$
 $xy - 3y = x + 4$
 $xy - x = 3y + 4$
 $x(y - 1) = 3y + 4$
 $x = \frac{3y+4}{y-1}$, jadi $y \neq 1$

b. Df:
$$x \in R$$

 $x = -\frac{b}{2a} = \frac{4}{-2(1)}$ $x = -2$ (titik puncak)
Rf: $f(x) = y = (-2)^2 + 4(-2) - 1 = -5$
grafik terbuka ke atas, jadi $y \ge -5$

C. NILAI FUNGSI

- 🔌 **Nilai fungsi** dapat dicari dengan mengganti variabel domain dengan harga lain.
- 🔪 **Karena** domain merupakan x, maka seluruh rumus fungsi yang mengandung variabel x juga diubah menjadi harga yang sesuai dengan pengganti domain.

Soal 1: Tentukan nilai fungsi dari $f(x) = x^2 - 9$ berikut:

a.
$$\mathbf{x} = \mathbf{2}$$
 $f(2) = 2^2 - 9$ $f(2) = -5$

b. **f(3 - x)**
$$f(3 - x) = (3 - x)^2 - 9$$

 $f(3 - x) = 9 - 6x + x^2 - 9$
 $f(3 - x) = x^2 - 6x$

Soal 2: Tentukan nilai fungsi dari $g(x) = 2x - 3\sqrt{x}$ berikut!

a. **g(8)**
$$g(8) = 2(8) - 3\sqrt{8}$$

 $g(8) = 16 - 3.2\sqrt{2}$
 $g(8) = 16 - 6\sqrt{2}$

b.
$$g(x^2)$$
 $g(x^2) = 2(x^2) - \sqrt{x^2}$ $g(x^2) = 2x^2 - x$

Soal 3: Jika $f(x) = x^2 + 5$, dan nilai f(a - 1) = 14, tentukan a!

$$f(a - 1) = (a - 1)^{2} + 5 = 14$$

$$a^{2} - 2a + 1 + 5 = 14$$

$$a^{2} - 2a - 8 = 0$$

$$(a + 2) (a - 4) = 0$$

$$a = -2 \quad V \quad a = 4$$

Soal 4: Jika $f(2x - 2) = 4x^2 - 8x + 16$, tentukan f(x)! Kita gunakan permisalan:

$$2x - 2 = b$$
 $x = \frac{b + 2}{2}$

Maka:
$$f(b) = 4\left(\frac{b+2}{2}\right)^2 - 8\left(\frac{b+2}{2}\right) + 16$$

$$f(b) = 4\left(\frac{b^2 + 4b + 4}{4}\right) - 4b - 8 + 16$$

$$f(b) = b^2 + 4b + 4 - 4b - 8 + 16$$

$$f(b) = b^2 + 12, jadi \qquad f(x) = x^2 + 12$$

Soal 5: Jika $f(5 - x^2) = 55 - 20x^2 + 2x^4$, tentukan f(x)!

Kita harus menyamakan domain dengan kodomain:

$$5 - x^2 = 55 - 20x^2 + 2x^4$$

$$(5 - x^2)^2 = 55 - 20x^2 + 2x^4$$
 dipangkat 2

$$2(5 - x^2)^2 = 55 - 20x^2 + 2x^4$$
 dikali 2

$$2(5-x^2)^2 + 5 = 55 - 20x^2 + 2x^4$$
 ditambah 5

sehingga kedua ruas sama.

Dengan mengubah 5 – x² menjadi x, maka: $f(x) = 2x^2 + 5$

FUNGSI GENAP DAN GANJIL

- 🔪 Suatu fungsi disebut fungsi genap apabila:
 - Nilai f(-x) = f(x).
 - Fungsi dengan x berpangkat genap.
 - Fungsi dengan grafik simetris terhadap sumbu y.
 - Fungsi trigonometri berupa cosinus, secan, dan cotangen.

Buktikan bahwa f(x) = $\frac{x^2 + 1}{x^2 - 5}$ adalah fungsi genap!

$$f(1) = \frac{(1)^2 + 1}{(1)^2 - 5} = \frac{2}{-4} = -\frac{1}{2}$$

$$f(-1) = \frac{(-1)^2 + 1}{(-1)^2 - 5} = \frac{2}{-4} = -\frac{1}{2}$$

- 🔪 Suatu fungsi disebut fungsi ganjil apabila:
 - Nilai f(-x) = -f(x).
 - Fungsi dengan x berpangkat ganjil.
 - Fungsi dengan grafik simetris terhadap titik pusat.
 - Fungsi trigonometri berupa sinus, cosecan dan tangen.

Buktikan bahwa $f(x) = 3x - x^3$ adalah fungsi ganjil! $f(1) = 3(1) - (1)^3 = 2$

$$f(-1) = 3(-1) - (-1)^3 = -2$$

- 📏 **Fungsi** dapat bukan merupakan fungsi genap maupun fungsi ganjil apabila:
 - Nilai $f(-x) \neq f(x)$.
 - Nilai $f(-x) \neq -f(x)$.

Buktikan bahwa fungsi berikut bukan fungsi genap maupun ganjil!

a.
$$f(x) = x^3 - x^2$$

b.
$$f(x) = |2x + 4| + 5$$

Jawab:

a.
$$f(1) = (1)^3 - (1)^2 = 0$$

 $f(-1) = (-1)^3 - (-1)^2 = -2$

b.
$$f(1) = |2(1) + 4| + 5 = 11$$

 $f(-1) = |2(-1) + 4| + 5 = 7$