Zentralinstitut für Seelische Gesundheit

# AutonoMouse 2

Bedienungsanleitung, Version 1.0

Letzte Aktualisierung: 25.3.2019 Von Bram, Michael

Kontakt: michael.bram@ipa.fraunhofer.de michael.bram@zi-mannheim.de Die "AutonoMouse 2 - Bedienungsanleitung" dient als Hinweise, wie man die Software von AutonoMouse 2 bedienen kann. Für Software -Referenzen, bitte beachten Sie die "AutonoMouse 2 – Software-Dokumentation"

#### Inhaltsverzeichnis

| Schedule Generator                  | 2  |
|-------------------------------------|----|
| Starten des Moduls                  | 2  |
| Komponente                          | 2  |
| Valve Valence Map Widgets           | 2  |
| Beast Schedule Widgets              | 4  |
| Erstellen eines Schedules           | 5  |
| Speicherung des Schedules           | 5  |
| AutonoMouse 2 Control               | 5  |
| Starten des Moduls                  | 5  |
| Speichern und Laden des Experiments | 6  |
| Starten des Experiments             | 6  |
| Hardware Preferences                | 7  |
| Animal List                         | 8  |
| Analyse Experiment                  | 9  |
| Mailing List                        | 10 |
| Video Control                       | 11 |

# Bedienungsanleitung

## **Schedule Generator**

#### Starten des Moduls

- 1. Zum Starten des Moduls führen Sie Spyder.exe<sup>1</sup> von Desktop aus.
- 2. Wenn die Datei "scheduleMain.py" noch nicht geöffnet wird, öffnen Sie die Datei "scheduleMain.py" in Spyder. Die Datei befindet sich in dem Ordner "Beast" → "schedulegenerator(BEAST)"<sup>2</sup>
- 3. Nachdem die Datei in Spyder geöffnet wird, führen Sie die Datei mit dem "run"-Knopf (oben, grünes Dreieck) oder F5 aus.



Abbildung 1: Starten des Moduls

#### **Komponente**

### Valve Valence Map Widgets

In Valve Valence Map Widgets (links oben in MainWindow, siehe Abbildung 2) geben wir ein, welche Odour/Duftstoff zu welchen Valve/Ventil eingesetzt wird. Odours wird mit Nummer kodiert. Die Namen der Spalte entsprechen die Namen der Ventile.

Beispiel: Wenn 2 Odours eingesetzt werden sollen, dann kodieren wir der erste Odour mit der Nummer 1 und der zweite Odour mit der Nummer 2. Wenn der erste Odour in Ventil 1 eingesetzt wird, dann

<sup>&</sup>lt;sup>1</sup> Es kann theoretisch andere Python-DIE eingesetzt werden. Hier werden nur auf die Anwendung mit Spyder beschrieben.

<sup>&</sup>lt;sup>2</sup> Es wird in der nächsten Aktualisierung geändert.

soll unter der Spalte "1" die Zahl 1 eingegeben werden. Wenn der erste Odour in Ventil 2 eingesetzt wird, dann soll unter der Spalte "2" die Zahl 1 eingegeben werden.

#### Hinweis zur Nummerierung: Hier soll erstmal nur Nummer 1-7 angewendet werden.

Die Anzahl der angewendeten Ventile kann in "number of valves" geändert werden.



Abbildung 2: Schedule Generator MainWindow



Abbildung 3:Drop-Down Liste

4

#### Beast Schedule Widgets<sup>3</sup>

Um das Beast-Schedule Widgets zu rufen. Klicken Sie die Leister in der Mitte. Es wird eine Drop-Down Liste angezeigt. Wählen Sie das BeastScheduleWidget von der Auswahlliste.

Ein Trial hat eine folgende Reihenfolge:

- 1. Durchbruch der Lichtschranke
- 2. 0,5 s Durchlauf des Odours
- 3. Präsentation des Odours mit der Dauer von "Trial Length"
- 4. Abgabe des Wassers, wenn ein Trial für ein belohntes Odour richtig durchgeführt wird

Durchbruch → Durchlauf des Odours → Präsentation des Odours → Abgabe des Wassers



Abbildung 4: Parameter

| Parameter        | Beschreibung                                        |
|------------------|-----------------------------------------------------|
| Number of Trials | Die Anzahl des generierten Trials in einem Schedule |
| Trial Length     | Die Dauer der Präsentation des Odours in dem Trial  |
| Trial Onset      | Onset vor dem Trial                                 |
| Trial Offset     | Offset nach dem Trial                               |

<sup>&</sup>lt;sup>3</sup> Es wird in der nächsten Aktualisierung geändert.

| Lick Fraction⁴  | obsolet                                                                                                                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reverse Valence | Wenn gecheckt, ist die belohnte Odours mit der nicht belohnte<br>Odours umgetauscht und andersrum                                                                                                                                   |
| Pretraining     | Wenn gecheckt, wird die Reihenfolge eines Pretraining-Trials durchgeführt.  Reihenfolge:  Durchbruch → Abgabe des Wassers                                                                                                           |
| Wait Training⁵  | Wenn gecheckt, wird die Reihenfolge eines Wait-Training-Trials durchgeführt.  Reihenfolge:  Durchbruch → Durchlauf des Odours → Präsentation des Odours  → Abgabe des Wassers bei den belohnten Odours ohne Prüfung der Korrektheit |
| Number of Odors | Die Anzahl des eingesetzten Odours                                                                                                                                                                                                  |
| Reward Map      | Die Zuordnung des Odours, ob es belohnt wird. "0" = nicht belohnt "1" = belohnt                                                                                                                                                     |

#### **Erstellen eines Schedules**

Nachdem die Parameter eingestellt werden, die Schedule soll mit dem Drucken des Knopfs "*Generate*" generiert werden. Die erzeugte Schedule wird rechts angezeigt.

#### Speicherung des Schedules

- 1. Klicke auf "File" → "Save"
- 2. Der Name des Schedules eingeben und auf "Speichern" klicken

#### **AutonoMouse 2 Control**

#### Starten des Moduls

1. Zum Starten des Moduls führen Sie Spyder.exe von Desktop aus.

<sup>4</sup> Es wird in dem Python Skript nicht mehr verwendet.

<sup>5</sup> Der Name "Wait Training" ist aus der vorherigen Version der AutonoMouse 2. Es ist irreführend, da es in der Implementation kein Wait-Training durchgeführt, sondern ein Odor-Training. Es wird in der nächsten Aktualisierung entsprechend geändert.

- 2. Wenn die Datei "main.py" noch nicht geöffnet wird, öffnen Sie die Datei "main.py" in Spyder. Die Datei befindet sich in dem Ordner "Beast" 🛭 "autonomouse-control(BEAST )"
- 3. Nachdem die Datei in Spyder geöffnet wird, führen Sie die Datei mit dem "run"-Knopf (oben, grünes Dreieck) oder F5 aus (siehe Abbildung 1)



Abbildung 5: AutonoMouse 2 Control

### Speichern und Laden des Experiments

Bevor das Experiment gestartet werden, muss das Experiment gespeichert werden.

Zum Speichern klicken Sie "File" → "Save Experiment".

Zum Laden eines Experiments klicken Sie "File" → "Load Experiment".

#### **Starten des Experiments**

Zum Starten des Experiments muss das Experiment erstmal gespeichert werden oder geladen werden. Klicken Sie auf "Start", um das Experiment zu starten und auf "Stop", um das Experiment zu stoppen.

<sup>6</sup> Der Name wird in der nächsten Aktualisierung geändert werden.

6



Abbildung 6: Hardware-Preferences-Fenster

#### **Hardware Preferences**

Die Hardware Preferences beinhaltet alle Einstellungen für das NI-Bord und die Durchlaufdauer des Odours vor der Präsentation des Odours zu der Maus. Zum Öffnen des Hardware-Preference-Fensters klicken Sie "Hardware"  $\rightarrow$  "Hardware Preferences".

| Parameter                          | Beschreibung                                                                        |
|------------------------------------|-------------------------------------------------------------------------------------|
| Analog Input Devices               | Die analogen Kanäle für die Messung verschiedener Eingänge.                         |
| Analog Input Channels              | Die Anzahl der analogen Eingänge.                                                   |
| Odour Output Devices               | Die digitalen Ausgänge für die Steuerung des Ventils des Olfaktometers              |
| Odour Output Channels <sup>7</sup> | Es muss "8" bleiben. Die Anzahl des Ventils im Olfaktometer                         |
| NI-USB 6216 BNC <sup>8</sup>       | Es muss eingecheckt bleiben. Wenn gecheckt, wird in das NI-Bord statisch gesteuert. |
| Final Valve Output<br>Device       | Der digitale Ausgang für das Final Valve                                            |
| Reward Output Device 1             | Der digitale Ausgang für das erste Wasser-Valve.                                    |

<sup>&</sup>lt;sup>7</sup> Anwendung bei einer anderen Anzahl des Ventils ist noch nicht implementiert.

7

<sup>&</sup>lt;sup>8</sup> Eine nicht statische Steuerung ist noch nicht implementiert.

| Reward Output Device 2             | Der digitale Ausgang für das zweite Wasser-Valve. <u>Noch nicht implementiert.</u> |
|------------------------------------|------------------------------------------------------------------------------------|
| Synchronisation Clock <sup>9</sup> | Der Synchronisation Clock des digitalen Outputs.                                   |
| Sampling Rate                      | Die Baud-Rate für die Messung an den analogen Eingängen                            |
| RFID Port                          | Der Port, wo der RFID Leser angeschlossen werden soll                              |
| Final Valve Delay                  | Die Dauer der Durchlauf des Odours                                                 |
| Thorax Monitor Delay               | Die Dauer der Messung an analogen Eingängen nach dem durchgeführten Trial          |
| Lick Monitor Delay                 | Die Dauer der Messung an analogen Eingängen nach dem "Thorax Monitor Delay"        |
| Lick Rate Limit                    | Die Mindestanzahl des Durchschnittleckens in den letzten zwölf Stunden.            |
| Beam Channels                      | Der Kanal der Lichtschranke                                                        |
| Lick Channels                      | Der Kanal des Leck-Sensor                                                          |
| IQ-Demod / I-Channel               | Der Kanal des I-Kanal für das Thorax-Sensor                                        |
| IQ-Demod/ Q-Channel                | Der Kanal des Q-Kanals für das Thorax-Sensor                                       |
| Timeout                            | Wie lange das Timeout dauert, wenn die falsche Antwort gegeben wird.               |

# **Animal-List-Fenster**

Zum Öffnen des Animal-List-Fensters klicken Sie "Animal"  $\rightarrow$  "Animal List". Animal-List-Fenster besteht aus drei Hauptkomponenten (siehe Abbildung 7):

- 1. Animal List Table (links)
- 2. Schedule Table (mittig)
- 3. Trial Table (rechts)

<sup>&</sup>lt;sup>9</sup> Bei manchen Trials mit NI-USB 6216 BCN wird es nicht angewendet.



Abbildung 7: Animal-List-Fenster

Das Animal-List-Table selbst besteht aus zwei Spalten. Die erste Spalte beinhaltet der RFID Tags der Tiere. Die zweite Spalte beinhaltet die Dauer in Sekunde, wie lange das Wasser-Valve bei Wasserabgabe geöffnet werden soll.

| Knöpfe          | Beschreibung                                                                                     |
|-----------------|--------------------------------------------------------------------------------------------------|
| Plus (+)        | Eine neue Reihe in dem Animal-List-Table hinzufügen.                                             |
| Minus (-)       | Die ausgewählte Reihe in dem Animal-List-Table löschen.                                          |
| Add Schedule    | Ein neues Schedule hinzufügen. Ein Tier soll in dem Animal-List-<br>Table ausgewählt werden.     |
| Remove Schedule | Ein ausgewähltes Schedule löschen. Ein Tier soll in dem Animal-List-<br>Table ausgewählt werden. |

# Analyse-Fenster<sup>10</sup>

Bei dem Auswählen eines Tiers wird das Performance-Diagramm des Tiers unten angezeigt. Zum Öffnen des Analyse-Fenster klicken Sie "Analysis" → "Analyse Experiment"

-

<sup>&</sup>lt;sup>10</sup> Es ist wird der Mittelwert der prozentuellen richtig durchgeführten sp- und sn -Trials gebildet. Es wird in der nächsten Aktualisierung eher mit d'-Test dargestellt.



Abbildung 8: Analyse-Fenster

# **Mailing List**

Mailingliste für die Totmannmeldung. In der Totmannmeldung wird einen Überblick<sup>11</sup> der in den letzten 12 Stunden durchgeführten Trials angehängt.



Abbildung 9: Mailing-List-Fenster

<sup>11</sup> In der E-Mail wird der d'-Wert angehängt, statt der Mittelwert der prozentuellen richtig durchgeführten spund sn-Trials.

#### Video Control

Video Control zeigt das Video-Feedback. "Set Cameras" stellt die Zuordnung welcher Kamera in welchem Monitor ein. "Adjust Cameras" stellt die Einstellung der Kameras ein. "Resolution" stellt die Resolution der Kameras ein.



Abbildung 10: Video-Control-Fenster