1 Vorübung 1

a) Aus der Kleinwinkelnäherung folgt:

$$B = 2 \cdot \sin \frac{\phi}{2} \cdot f = 2 \cdot \frac{\phi}{2} \cdot f = f \cdot \phi. \tag{1}$$

b) Der vom Spalt "umspannte" Winkelbereich $\Delta \alpha$ beträgt nach der in a) gezeigten Formel

$$\Delta \alpha = \frac{b}{f_{koll}}. (2)$$

c) (10.1) lautet

$$d(\sin\alpha + \sin\beta) = n \cdot \lambda. \tag{3}$$

Als Ableitung nach α ergibt sich:

$$\frac{d\lambda}{d\alpha} = \frac{d}{n} \cdot \cos \alpha. \tag{4}$$

d) Für hinreichend kleine α gilt diese Näherung. Somit ergibt sich unter dieser Bedingung:

$$\Delta \lambda = \frac{d\lambda}{d\alpha} \cdot \Delta \alpha = \frac{d}{n} \cdot \cos \alpha \cdot \frac{b}{f_{koll}}.$$
 (5)

2 Vorübung 2

Entsprechend der Vorübung 2 in Kapitel 7 ergibt sich eine Ausdehnung von 139 μm in der Fokalebene. Ein Wert von etwa 140 μm wäre also der kleinste mögliche Wert mit voller Lichteinstrahlung und somit der ideale Wert für die Blendenöffnung.