Разбор задач

Квалификационный тур Уральского регионального чемпионата ICPC

Задача A. Apple Pen

Условие

Ручка стоит X рублей, яблоко стоит Y рублей. Ананас получается из одной ручки и одного яблока. Сколько ананасов можно собрать за N рублей? $1 \le X, Y, N \le 10^9$

Задача A. Apple Pen

Задача A. Apple Pen

Решение

Задача В. Камень-ножницы-бумага-ящерица-Спок

Условие

В игре участвуют 2 человека. Каждый выбрает один из пяти вариантов: Камень, Ножницы, Бумага, Ящерица, Спок. Даны ходы двух игроков. Задача — определить исход.

Задача В. Камень-ножницы-бумага-ящерица-Спок

Задача В. Камень-ножницы-бумага-ящерица-Спок

Решение (1)

Разобрать случаи if-ами

Решение (2)

Заполнить таблицу результатов

Решение (3)

Использовать закономерность.

В порядке [Rock, Lizard, Spock, Scissors, Paper] каждый побеждает следующего и того кто через 2.

Задача С. Найди отличия

Условие

На вход подаётся две ASCII картинки. Задача — посчитать количество отличающихся символов.

В задаче один тест, он напечатан в условии.

Задача С. Найди отличия

Решение

Считать два массива char-ов. Сравнить посимвольно.

Задача С. Найди отличия

Задача D. Напёрстки

Задача D. Напёрстки

Условие

Есть 3 напёрстка, под одним из них лежит приз. Нужно обрабатывать операции — поменять два наперстка местами.

Задача — выдать итоговое положение напёрстка.

Задача D. Напёрстки

Решение

Поддерживать характеристический массив положения приза (1 там где находится приз, 0 в остальных позициях).

Если приз под 2-м напёрстком, то характеристический массив имеет вид: [0,1,0]

При каждом запросе менять местами два элемента.

Условие

Есть массив из n чисел $a_1, a_2, \ldots a_n$ в котором $1 \leq a_i \leq k$

Задача — построить массив $b_1, b_2, \dots b_n$ в котором $0 \leq b_i \leq k$.

Так что для каждого $1 \le i \le n$: есть $j \ge i$ такое, что $b_j = a_i$.

При этом нужно максимизировать количество 0 в массиве b.

Решение

a: 1 2 2 3 1 4 1

Для каждого числа найдём последнее вхождение в а.

Решение

a: 1 2 2 3 1 4 1

Для каждого числа найдём последнее вхождение в а.

Решение

b: 0 0 2 3 0 4 1

Для каждого числа найдём последнее вхождение в а.

Решение

b: 0 0 2 3 0 4 1

Для каждого числа найдём последнее вхождение в а.

Условие

Вам была дана траектория на клетчатом поле, по которой будет катиться кубик.

Когда кубик находится в клетке— его нижняя грань отпечатывается в клетке, перетирая значение, если оно там было.

Задача — расставить на гранях кубика числа 1, 2, 3, 4, 5, 6 так, чтобы сумма отпечатанных чисел была как можно больше.

Решение

Для каждой грани кубика посчитать, сколько раз она будет отпечатана.

Граням, которые отпечатаны больше раз, нужно выдавать большие числа.

Front-Top-Back-Bottom перекатывание вперёд-назад

Left-Top-Right-Bottom перекатывание влево-вправо

Решение

Посчитать, сколько раз встречается каждая грань, можно вручную, а можно с помощью программы.

Написать программу, катающую кубик, можно следующим образом: составить массив из 6 чисел, записанных на гранях.

Тогда перекатывание кубика влево и вправо — это циклический сдвиг чисел, записанных на левой, верхней, правой и нижней гранях; а перекатывание кубика вверх и вних — это циклический сдвиг чисел, записанных на передней, верхней, задней и нижней гранях.

Для развёртки кубика на рисунке массив чисел, записанных на гранях, может иметь вид [1,2,3,4,5,6].

- ▶ Перекатывание вправо приведёт к массиву [4, 1, 2, 3, 5, 6].
- ▶ Перекатывание влево к массиву [2, 3, 4, 1, 5, 6].
- Перекатывание вверх к массиву [1, 6, 3, 5, 2, 4].
- ▶ Перекатывание вних к массиву [1, 5, 3, 6, 4, 2].

G

Условие

Вам дано прямоугольное клетчатое поле. На некоторых клетках препятствия. На некоторых клетках квадратные блинчики. У каждого блинчика одна сторона белая, другая - чёрная.

Изначально блинчики белой стороной вверх.

Разрешённая операция— взять любой блинчик и перекатить на соседнюю клетку, перевернув при этом блинчик.

Задача — сказать, можно ли сделать так, чтобы все блинчики были чёрной стороной вверх. При этом на каждой клетке не больше одного блинчика.

Решение

Решение

Раскрасим клетки в шахматном порядке. Перекатываясь, блинчик меняет цвет клетки, на которой он находится, и свой цвет.

Каждый блинчик должен закончить на любой клетке с цветом не как у начальной.

Надо проверить, что клеток каждого цвета достаточно — не меньше, чем блинчиков, лежащих на клетках другого цвета.

Вопрос

Всегда ли можно перекатить блинчики, если им хватилс конечных клеток?

Решение

Раскрасим клетки в шахматном порядке. Перекатываясь, блинчик меняет цвет клетки, на которой он находится, и свой цвет.

Каждый блинчик должен закончить на любой клетке с цветом не как у начальной.

Надо проверить, что клеток каждого цвета достаточно — не меньше, чем блинчиков, лежащих на клетках другого цвета.

Вопрос

Всегда ли можно перекатить блинчики, если им хватило конечных клеток?

Вопрос

Всегда ли можно перекатить блинчики, если им хватило конечных клеток?

Ответ

Почти — кроме случая двух блинчиков на двух клетках.

Если есть хотя бы 3 клетки. То можно сначала все блинчики собрать на клетке А. Потом по одному раскатывать на нужные позиции. Мешать может только блинчик, который должен в итоге оказаться на клетке А. Его можно каждый раз двигать туда, где он не мешает.

Задача Н. Светофоры

Условие

Даны два числа $1 \le A, B \le 10^9$. Без ограничения общности A > B.

3адача: сколько есть $0 \le x < B$ таких, что A-x делится на B-x?

Задача Н. Светофоры

Решение

$$(A-x)-(B-x)=A-B$$

Условие A - x делится на B - x эквивалентно условию A - B делится на B - x.

Нужно перебрать делители числа A-B. Для каждого проверить, подходит ли он, то есть, не превосходит ли он B.

Делители перебираются за $\mathcal{O}(\sqrt{A-B})$

Задача І. Персеантовка

Условие

Дан искажённый текст и словарь. Для каждого искажённого слова в тексте нужно найти подходящее слово в словаре.

Искажены слова перемешиванием внутренних букв.

Задача І. Персеантовка

Решение

Все слова в тексте и в словаре мы можем нормализовать, отсортировав внутренние буквы.

Слово АВАСАВ нормализуется как АААВСВ.

Утверждение

Слово из текста можно заменить на слово из словаря тогда и только тогда, когда их нормализации совпадают.

Сравнение двух слов происходит за длину меньшего, поэтому можно поддерживать словарь в сбалансированном бинарном дереве. Сложность решения будет $\mathcal{O}(L\log n)$. Где L — это суммарная длина слов.

Условие

Дано прямоугольное клеточное поле. В каждой клетке написано число. Каждое число встречается не более 3 раз.

Задача — обойти все клетки по разу в порядке неубывания чисел.

Размер поля $1 \le n, m \le 100$.

Пример

1	2	2
4	3	3
4	6	8

Пример

Слой — клетки с одинаковыми числами.

Утверждение

Допустим, мы закончили слой A в какой-то клетке. Есть только один вариант посетить клетки следующего слоя B, после которого мы сможем перейти в последующий слой C.

Слой — клетки с одинаковыми числами.

Утверждение

Допустим, мы закончили слой A в какой-то клетке. Есть только один вариант посетить клетки следующего слоя B, после которого мы сможем перейти в последующий слой C.

Решение

Рекурсивный перебор. Сложность решения $\mathcal{O}(nm)$.

Условие

Дан выпуклый многоугольник с целочисленными координатами вершин.

Задача — разрезать его пополам прямой, задаваемой двумя целочисленными точками.

Равенство площадей:

$$S_{red} + S_{APB} = S_{cyan} + (S_{ABC} - S_{APB})$$

Преобразуем:

$$S_{APB} = \frac{S_{cyan} + S_{ABC} - S_{red}}{2}$$

Отсюда получаем отношение

$$\frac{S_{APB}}{S_{ABC}} = \frac{S_{cyan} + S_{ABC} - S_{red}}{2S_{ABC}}$$

У треугольников *ABC* и *APC* общая высота, а значит площади соотносятся как длины оснований.

$$\frac{BP}{BC} = \frac{S_{cyan} + S_{ABC} - S_{red}}{2S_{ABC}}$$

$$\frac{BP}{BC} = \frac{S_{cyan} + S_{ABC} - S_{red}}{2S_{ABC}}$$

Выражаем точку:

$$P = B + \frac{S_{cyan} + S_{ABC} - S_{red}}{2S_{ABC}}BC$$

Получили точку P с рациональными координатами. Домножим вектор AP на $2S_{ABC}$ и получим вектор на прямой с целочисленными координатами.