

OBJETIVO(S)

Introduzir conceitos de modelagem de dados

Introduzir os conceitos de Cardinalidades

Projetar banco de dados, identificar e abstrair as necessidades

SUMÁRIO

- Atributos
 - O que é?
 - Cardinalidade
- Relacionamentos
 - O que é?
 - Exemplos
 - ☐ Graus de Relacionamento
 - ☐ Tipos de Notação
 - ☐ Tipos de Relacionamento (1.1, 1.N e N.N)

ATRIBUTOS

O QUE É?

- Atributos das Entidades são os tipos de dados que o sistema precisa armazenar a respeito de um conjunto de entidades, ou seja, dados que o sistema precisa armazenar para que ele realize suas tarefas de processamento.
- Uma entidade necessita de pelo menos dois atributos para ser caracterizada como entidade. Uma entidade com um único atributo normalmente é agregada a outra entidade.

EXEMPLO DE ATRIBUTOS PARA O CENÁRIO UNIVERSIDADE
Nome do Aluno
Número da Matrícula do Aluno
Data de Nascimento do Aluno
Nome do Professor
Ementa da Disciplina
Código da Turma

CARDINALIDADE

- Cardinalidade de um atributo define quantos valores deste atributo podem estar associados a uma ocorrência da entidade/relacionamento a qual ele pertence.
- A Cardinalidade do atributo é definida como:
 - Atributo Mandatório: deve ter o seu valor preenchido a cada ocorrência da entidade. Na modelagem é acompanhado por *.
 - Atributo Opcional: pode ficar sem um valor preenchido em cada ocorrência da entidade. Na modelagem é acompanhado por o

CARDINALIDADE

- Cardinalidade de um atributo define quantos valores deste atributo podem estar associados a uma ocorrência da entidade/relacionamento a qual ele pertence.
- A Cardinalidade do atributo é definida como:
 - MINIMAS (0 OU 1):
 - Atributo Mandatório (ou 1): deve ter o seu valor preenchido a cada ocorrência da entidade. Na modelagem é acompanhado por *.
 - Atributo Opcional (ou 0): pode ficar sem um valor preenchido em cada ocorrência da entidade. Na modelagem é acompanhado por O

- MÁXIMAS (1 ou N):
 - Atributo Monovalorado (ou 1): que só pode ter um único valor, isto é, os valores não podem se repetir dentro da entidade.
 - Atributo Multivalorado (ou N): que pode ter mais de um valor para uma mesma entidade, isto é, os valores se repetem dentro da entidade

CARDINALIDADE

EXEMPLOS DE CARDINALIDADE DE ATRIBUTOS

Exemplo 01:

- Campo Nome Completo do Cadastro do Aluno:
 - Todo aluno possui um e apenas um nome.
 - Todo cadastro necessita do nome do Aluno para identificação.
 - Nesse cenário Entendemos que o Atributo tem a Cardinalidade:

EXEMPLOS DE CARDINALIDADE DE ATRIBUTOS

Exemplo 02:

- Campo <u>Telefone(s)</u> do <u>Cadastro do Aluno</u>:
 - Todo aluno pode possuir um ou vários números.
 - Tem situações que o aluno não pode ter nenhum número.
 - Nesse cenário Entendemos que o Atributo tem a Cardinalidade:

RELACIONAMENTOS

O QUE É?

- Um relacionamento é definido como a representação de uma ação ou fato que associa os itens de uma entidade com os itens de outra entidade
- Um relacionamento é representado por uma linha que liga as entidades envolvidas, podendo ser contínua ou não, dependendo do tipo de relacionamento.
 - Além disso, um relacionamento possui dois sentidos: o de ida e o de volta.
 - Cada sentido possui um nome próprio, que descreve a natureza da associação entre as entidade

EXEMPLOS DE LEITURA

SOBRE O RELACIONAMENTO

- Observe que um relacionamento normalmente tem:
 - Um nome normalmente no verbo no infinitivo (que terminam em -ar, er ou ir);
 - Opcionalidade (ou Cardinalidade Mínima) deve acontecer (incondicionalmente) ou pode acontecer (condicionalmente) associação entre as ocorrências que associam as entidades;
 - Grau de Ocorrências (ou Cardinalidade Máxima) Determina a quantidade máxima de linhas (ocorrências) que se associam entre duas entidades, durante a análise de um relacionamento:
 - 1:1 (Um-para-um)
 - 1:N (Um-para-muitos)
 - M:N (Muitos-para-Muitos)

CARDINALIDADES

GRAU DE RELACIONAMENTO ENTRE ENTIDADE

- O grau de relacionamento é o número de entidades que participam de um relacionamento
- Um relacionamento é uma associação entre entidades que expressa uma regra de negócio ou uma dependência lógica entre elas.
- Há diferentes tipos de grau de relacionamento, dependendo da quantidade de entidades envolvidas. Os mais comuns são:
 - Unário (Grau 1)
 - Binário (Grau 2)
 - Ternário (Grau 3)
 - N-ário (Grau N)

UNÁRIO (GRAU 1)

• **GRAU 1:** Trata-se de uma relação recursiva ou auto-relacionamento. Onde uma entidade de associa com ela mesma.

No exemplo acima, podemos ter a situação que um MOTORISTA pode ser supervisionado por outro MOTORISTA

BINÁRIO (GRAU 2)

• GRAU 2: Trata-se de um relacionamento entre duas entidades. Também conhecido como grau binário

No exemplo acima:

Cada MOTORISTA pode ter realizado nenhuma, uma ou várias CORRIDA(S)

TERNÁRIO (GRAU 3)

GRAU 3: Trata-se de um relacionamento entre três entidades. Também conhecido como grau ternário

No exemplo acima:

- Cada MOTORISTA pode ter realizado nenhuma, uma ou várias CORRIDA(S)
- Cada CLIENTE por ter participado de nenhuma, uma ou várias CORRIDA(S)
 - Cada CORRIDA ocorre por um MOTORISTA E CLIENTE

n-Ário (GRAU N)

• GRAU 4: Trata-se de um relacionamento estabelecido entre quatro ou mais entidades. Também conhecido

como grau n-ário.

No exemplo acima:

- Cada MOTORISTA pode ter realizado nenhuma, uma ou várias CORRIDA(S)
- Cada CLIENTE por ter participado de nenhuma, uma ou várias CORRIDA(S)
 - Cada VEÍCULO pode estar em nenhuma, uma ou várias CORRIDA(S)
 - Cada CORRIDA ocorre por um MOTORISTA, VEÍCULO E CLIENTE

I TIPOS DE NOTAÇÃO

• **PETER CHEN:** Notação de destaque, concebida na década de 70, em 1976, pelo cientista de mesmo nome, que trabalhava na IBM. É uma representação simples e de fácil entendimento. Porém, profissionalmente é muito pouco utilizada. Ferramenta brModelo (http://www.sis4.com/brModelo/)..

I TIPOS DE NOTAÇÃO

ENGENHARIA DA INFORMAÇÃO: Notação mais comum e apresenta melhor legibilidade quando se trata de projetos que envolvem muitas entidades e atributos. Foi definida por James Martin em 1980. Esta notação é bastante difundida na área de desenvolvimento de sistemas. Ferramentas: ERWin, DBDesigner, SQL Developer Data Modeler.

I TIPOS DE NOTAÇÃO

• BARKER: Notação criada por Richard Barker em 1981, quando lingressou na Oracle. Esta notação é usada pelas ferramentas de modelagem da Oracle. É uma notação favorecida pela sua legibilidade e uso eficiente de espaço de desenho. Ferramenta: Nomes SQL Developer Data Modeler.

• Exemplo 1:

- Deve possuir um

MAX Cardinalidade Máxima

Um FUNCIONÁRIO pode ter um LOGIN:

Cardinalidade Mínima

- Todos FUNCIONÁRIOs necessita de um LOGIN;
- E para cada LOGIN precisa de um FUNCIONÁRIO;
- Devido a situação e regra acima podemos dizer que esta associação "RELACIONAMENTO" é INCONDICIONAL,
 pois todas as ocorrências serão associadas entre as entidades

Exemplo 1: Representação gráfica através da ferramenta SQL Developer DATA MODELER.

Exemplo 1: Representação gráfica através do brMODELO.

Notação de PeterChen

Atenção ao Utilizar (1:1):

 Apenas no relacionamento 1:1 temos que escolher a entidade onde a chave estrangeira deverá ficar, pois é a única situação onde temos a cardinalidade máxima=1 em ambos os lados do relacionamento

- Este tipo de relacionamento não é comum, vamos encontrar poucas situações na vida real. Podemos citar algumas:
 - Cada candidato só pode se inscrever para o processo seletivo de um cargo;
 - Cada título tem apenas um registro de pagamento;
 - Um hóspede pode ter preferência por um quarto de um hotel.

- Atenção ao Utilizar (1:1) :
- Apenas no relacionamento 1:1 temos que escolher a entidade onde a chave estrangeira deverá ficar, pois é a única situação onde temos a cardinalidade máxima=1 em ambos os lados do relacionamento

- Este tipo de relacionamento não é comum, vamos encontrar poucas situações na vida real.
 Podemos citar algumas:
 - Cada candidato só pode se inscrever para o processo seletivo de um cargo;
 - Cada título tem apenas um registro de pagamento;
 - Um hóspede pode ter preferência por um quarto de um hotel.

- Cada FUNCIONÁRIO pode ter nenhum, um ou mais DENPENDETES;
- Neste exemplo, a possibilidade de um casal trabalhar na mesma empresa é descartado. Portanto, todo
 DENPENDENTE pertence a um único FUNCIONÁRIO;

Sobre Exemplo 2:

- A associação é feita de FUNCIONÁRIO para DENPENDENTE, portanto, a entidade FUNCIONÁRIO
 é considerada como entidade PAI (ou dominante/de origem) e a entidade DENPENDENTE é a
 FILHA (ou dominada/destino);
- A CHAVE PRIMÁRIA da entidade **DEPENDENTE** é composta pela chave estrangeira mais um atributo da entidade FRACA que juntos garantem unicidade de cada ocorrência da entidade **DEPENDENTE**. Temos um relacionamento "CONDICIONAL".

A CHAVE ESTRANGEIRA ficará na entidade FILHA (ou dominada/destino), no exemplo a
 DEPENDENTE;

Exemplo 2: Representação gráfica através da ferramenta SQL Developer DATA MODELER.

Exemplo 2: Representação gráfica através do brMODELO.

Notação de PeterChen

Atenção ao Utilizar (1:N):

- No relacionamento 1:N a chave estrangeira deverá ficar na entidade FRACA
- Este tipo de relacionamento é muito comum, vamos encontrar muitas situações na vida real. Podemos citar algumas:
 - Cada cliente pode realizar compras e adquirir uma ou várias notas fiscais.
 - Cada motorista pode realizar uma ou várias corridas.
 - Cada professor leciona uma ou várias disciplinas.
 - Cada banco pode possuir várias agências.
 - Cada cliente pode possuir vários empréstimos.

RELACIONAMENTOS (M:N) FIMP Pode possuir/ter MIN **PEDIDO PRODUTO** MAX MAX **Deve pertencer** Cardinalidade MAX **Exemplo 3:** Máxima

- Um **PEDIDO** pode possuir vários **PRODUTOS** e Um **PRODUTO** pode ser comercializado em vários **PEDIDOS**:
 - Cada **PEDIDO** deve possuir ao menos um produto e no máximo vários **PRODUTOS**;
 - Um empresa possui vários **PRODUTOS**, mas nem todos os **PRODUTOS** são comercializados a um **PEDIDO**;

Cardinalidade

Mínima

MIN

Sobre Exemplo 3:

 Devido a situação podemos dizer que esta associação "RELACIONAMENTO" é CONDICIONAL, pois só haverá ocorrências associadas, se houver produtos comercializados (existe uma condição para determinar as associações).

• Em razão da multiplicidade, a CHAVE ESTRANGEIRA não pode ser definida em nenhuma das entidades, pois seria multivalorada. Portanto, será criado uma terceira entidade para inclusão das CHAVES ESTRANGEIRAS, conhecida como **ENTIDADE ASSOCIATIVA**

Exemplo 3: Representação gráfica através da ferramenta SQL Developer DATA MODELER.

Exemplo 3: Representação gráfica através do brMODELO.

Notação de PeterChen

Atenção ao Utilizar (M:N):

- No relacionamento M:N as chaves estrangeiras deverão estar na entidade ASSOCIATIVA
- Este tipo de relacionamento é muito comum, entretanto, o mesmo é ainda é considerado umpara-muitos (1:N), principalmente na implementação ao banco de dados relacional.
- Outros Exemplos que podem utilizar M:N:
 - Cada professor pode lecionar uma ou várias disciplinas.
 - Cada disciplina pode ser ministrada por vários professores.
 - Cada médico pode consultar vários pacientes.
 - Cada paciente pode ser consultado por vários médicos.
 - Cada consulta pode prescrever vários medicamentos.
 - Cada medicamento pode ser prescrito em várias consultas

EXERCÍCIO

ESTUDO DE CASO

A empresa "Table Taste" foi criada pelo conglomerado DimDim com foco em atender proprietários de: Bares, Restaurantes, Pizzarias e outros estabelecimentos que atendam clientes.

O objetivo é garantir que qualquer produto ou serviço consumido pelo cliente dentro do estabelecimento seja registrado a uma comanda (com mesa ou não) e no momento do fechamento do pedido solicitado pelo cliente, os itens consumidos sejam apresentados para pagamento e encerramento do atendimento.

Nesse início de projeto vamos analisar o arquivo vendebem.jpg, identificando potenciais informações que podem ser armazenadas.

EXERCÍCIO

Rua 539, 713 - Nossa Senhora Das Gracas São Paulo SP

Comanda: 3273

11 3258 8477

Tempo permanência: 4h32 minutos

Nome: leticia lacerda Atendente: Oliveira Sea: 1283

Valor por pessoa (2):

13/02/2023

Seq: 1203			10,02,2020
CODIGO	DESCRICAO		
	QT	UNIT	TOTAL
12	BUDWEIS	ER	
256	1 UN	12,90	12,90
71	COSTELA	DE BOI	ASSADA C/ M
ANDIOC	1 PC	51,00	51,00
13	HEINEKEN		
	1 UN	11,00	11,00
14	STELLA ARTOIS		
	1 UN	10,00	10,00
TOTAL PRODUT	OS R\$		84,90
TOTAL DESCON	TO R\$		0,00
TOTAL FINAL	R\$		84,90
FORMA DE PAGAMENTO			R\$
Dinheiro			84,90

OBRIGADO, VOLTE SEMPRE !!!

ESTUDO DE CASO

Atualmente temos a versão inicial do **Modelo De Dados Lógico** do sistema da "Table Taste", contendo as Entidades e atributos.

Chegou o momento de implementar os relacionamentos desse projeto, consagrando assim a famosa técnica modelagem de dados entidade relacionamento

planilha Gabarito_Aula_03_Projeto_VendeBem_Estrutura_Dados.xlsx, identifique as Entidades e crie os relacionamentos entre elas, de acordo com as regras de negócio.

Utilize a ferramenta CASE Oracle SQL*DataModeler

REFERÊNCIAS

- MACHADO, Felipe Nery R. Banco de Dados Projeto e Implementação.
 Érica, 2004. Capítulo 3 e 4 p.41 a 104
- HEUSER, C.A. Projeto de Banco de Dados. Série Livros Didáticos, V. 4.
 Bookman, 2009. Capítulo 2 e 3 p. 34 a 117
- SILBERSCHATZ, A; KORTH, H. F.; SUDARSHAN, S. Sistema de Banco de Dados.
 Campus, 2006. Capítulo 6 p. 133 a 174
- ELMASRI, R.; NAVATHE, S.B. Sistemas de Banco de Dados: Fundamentos e Aplicações. Pearson, 2005. Cap. 3 – p. 35 a 59

Copyright © 2024 Prof^o Dr^o Francisco Douglas Lima Abreu

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito ao autor

