Professor: James Analitis

Physics 141A: Solid State Physics

MT2 Review

kdeoskar@berkeley.edu

Contents

1	Cha	apter 5: The Periodic Table	2
2	Cha	apter 6: Chemical Bonding	3
	2.1	Ionic Bonding	3
	2.2	Covalent Bonding	3
	2.3	Wan der Vaal's forces	3
	2.4	Metallic Bonding	3
	2.5	Hydrogen Bonding	3

1 Chapter 5: The Periodic Table

- To solve for the dynamics of a quantum mechanical system we need to solve Schroedinger's Equation $\hat{H}\psi = E\psi$ but this is intractable for atoms with a dozen-or-so electrons, let alone solids with 10^{23} particles in them.
- Instead, we try to draw conclusions from simplified models of atoms.
- Recall that an electron in an atom is described by a set of quantum numbers $|n,l,l_z,s_z\rangle$ where

$$n = 1, 2, 3, \cdots$$

$$l = 0, 1, \cdots, n - 1$$

$$l_z = -l, \cdots, 0, \cdots, l$$

$$s_z = \pm \frac{1}{2}$$

- Aufbau Principle:
- Madelung's Rule:
- Effective Nuclear Charge
- Ionization Energy
- Electron Affinity

2 Chapter 6: Chemical Bonding

There are a number of different ways atoms bond together to form molecules and materials.

2.1 Ionic Bonding

- Essentially, the complete transfer of one (or more) electron(s) from one atom to another. Eg. $Na + Cl \rightarrow Na^+ + Cl^- \rightarrow NaCl$
- We define the following:

Ionization Energy = Energy required to remove one electron from a neutral atom Electron Affinity = Energy gain resulting from adding an electron to a neutral atom

• The energy required to transfer an electron from A to B (when the two atoms are far apart) is

$$\Delta_{A+B\to A^++B^-} = (\text{Ionization Energy})_A + (\text{Electron Affinity})_B$$

• However that's not the full story. We also have a **Cohesive Energy** which is a classical result of the coulomb interactions between the two ions as they get closer to each other, which is

Cohesive Energy of AB = Energy gain from
$$A + B \rightarrow A^+ + B^-$$

• Thus,

$$\Delta E_{A+B\to AB} = \Delta E_{A+B\to A^++B^-} + \text{ Energy gain from } A^+ + B^-$$

i.e.

$$\Delta E_{A+B\to AB} = (\text{Ionization Energy})_A - (\text{Electron Affinity})_B - (\text{Cohesive Energy of AB})$$

- An Ionic Bond forms if $\Delta E_{A+B\to AB} < 0$.
- Note: Why $\Delta < 0$? Due to our sign convention.
 - Ionization Energy is energy we put into the system, but we denote it as +ve.
 - Electron Affinity is energy that comes out of the system, but we denote it as -ve.
 - Similarly, Cohesive Energy is energy gain so it's energy that comes out of the system. Thus, just like Electron Affinity, we denote it as -ve.
 - So, when electron affinity overpowers ionization energy i.e. more energy comes out than we put in, we have $\Delta E < 0$ and this is Energetically Favorable.
- 2.2 Covalent Bonding
- 2.3 Wan der Vaal's forces
- 2.4 Metallic Bonding
- 2.5 Hydrogen Bonding