Causal Effect of Urban Parks on Children's Happiness

Nayeon Kwon, Chanmin Kim Department of Statistics, Sungkyunkwan University

Motivation

Previous Study

- Residential greenness influences children's emotional and behavioral problems.
- Connectedness to nature has an impact on children's happiness. [2]

Purpose

- Few studies investigated the causal effect of nature, especially urban parks, on children's happiness.
- The purpose of this study is to examine the causal relationships between park area per capita and children's happiness.

Design

Data

- The 7th year (2014) survey from the Panel Study on Korean Children
- Unit: children aged 6

Outcome(Y): Child's Happiness

The Degree of happiness at the time of the 7th survey

Treatment(Z): Park Area per Capita

- Main analysis Z=1: > median(7.7m²), Z=0: \leq median(7.7m²)
- **Sensitivity analysis** $Z=1: > Q4(16.7m^2), Z=0: \leq Q1(5.6m^2)$
- The number of units in each group

	Main	Sensitivity	
Group	# of units		
Treated (Z=1)	441	233	
Control (Z=0)	512	255	
Total	953	488	

Potential Outcomes Framework

Notation

- $Z_i \in \{0, 1\}$: treatment for unit i
- $Y_i(1)$: potential outcome if unit *i* receives a treatment
- $Y_i(0)$: potential outcome if unit *i* doesn't receive a treatment

Stable Unit Treatment Value Assumption (SUTVA) [6]

$$Y_i = Z_i Y_i(1) + (1 - Z_i) Y_i(0)$$
 (1)

Ignorability Assumption [5]

$$(Y_i(1), Y_i(0)) \perp Z_i | X_i$$
 (2)

Average Treatment Effect (ATE)

 $\Delta^{ATE} = E[Y_i(1) - Y_i(0)|X_i] = E[Y_i|X_i, Z_i = 1] - E[Y_i|X_i, Z_i = 0]$ identified by (1) and (2)

Average Treatment effect on the Treated (ATT)

 $\Delta^{ATT} = E[Y_i(1) - Y_i(0)|X_i, Z_i = 1]$

Propensity Score Methods

Propensity Score [5]: $e(x) = P(Z_i = 1|X_i)$ which is the probability of receiving treatment given the observed covariates

Properties of Propensity Score

$$X_i \perp Z_i \mid e(x), \quad (Y_i(1), Y_i(0)) \perp Z_i \mid e(x)$$

Covariate Balancing Propensity Score (CBPS)

- No guarantee of $X_i \perp Z_i \mid \hat{e}(X_i)$ in a given sample due to misspecified the propensity score model
- CBPS is robust to mild misspecification of the propensity score model.

Regression Adjustment

Regression Adjustment

$$\hat{\Delta}_{R}^{ATE} = \frac{1}{N} \sum_{i=1}^{N} m_1 (X_i; \hat{\alpha_1}) - \frac{1}{N} \sum_{i=1}^{N} m_0 (X_i; \hat{\alpha_0}),$$

where $m_z(\mathbf{X_i}; \hat{\alpha_z}) = \mathbb{E}[Y_i \mid Z_i = z, \mathbf{X_i}]$ with regression parameters $\hat{\alpha_z}$.

Matching Methods

Propensity Score Matching (PSM) [5]

(1) Obtain $\delta_{i,j}$ which is the distance between treated unit i and control unit j; (2) Find the function η that indicates who is matched to whom by solving

$$\min_{\eta} \sum_{i} \sum_{j=\eta(i)} \delta_{i,j}, \text{ where } \delta_{i,j} = \left| \hat{e}(x_i) - \hat{e}(x_j) \right|$$

Covariate Balancing Propensity Score Matching (CBPSM)

It applies the same process of matching with PSM but using CBPS.

Propensity Score Caliper Matching (Caliper)

• Define the distance between unit *i* and *j* as

$$d(\mathbf{x_i}, \mathbf{x_j}) = \begin{cases} Rank - Mahalanobis(\mathbf{x_i}, \mathbf{x_j}) & \text{if } \delta_{i,j} \leq w, \\ \infty & \text{if } \delta_{i,j} > w. \end{cases}$$

• A caliper of 20% of the standard deviation of the propensity score is a common choice.

Coarsened Exact Matching (CEM) [3]

Step 1 Begin with the covariates **X** and make a copy, **X***.

Step 2 Coarsen X* as stated by user-defined cutpoints.

Step 3 Create one stratum per unique observation of X^* , and put each observation in a stratum.

Step 4 Assign these strata to the original data, X, and drop any observation whose stratum does not contain at least one treated and one control unit.

Cardinality Matching [7]

Step 1 Set the covariate balance requirements (e.g., mean balance).

Step 2 Find the largest matched sample that satisfies the covariate balance requirements.

Step 3 Rematch the matched sample to minimize covariate distances between matched units.

Confounders

Confounders

- Household income
- Child's literacy
- Father's stress
- Living inside capital area (Y/N)
- Father's education level
- ★ high school and below (4)
- * associate (5)
- ★ bachelor (6)
- ★ post-graduate (7)
- Mother's education level
- ★ high school and below (4)
- * associate (5)
- ★ bachelor (6)
- ★ post-graduate (7)

Covariate Balance Plots

Fig. 1: Absolute SMD before and after matching

Results of The Main Analysis

Methods		ATE/ATT ¹	SD	95% LB	95% UB
Regression Adjustment ²		0.096	0.156	-0.210	0.402
Weighting	IPW	0.040	0.227	-0.394	0.497
	SIPW	0.047	0.168	-0.287	0.372
	DR	0.090	0.159	-0.215	0.408
Matching	PSM	0.155	0.142	-0.185	0.494
	CBPSM	0.158	0.167	-0.181	0.498
	Caliper	0.103	0.170	-0.233	0.440
	CEM	-0.059	0.327	-0.716	0.597
	Cardinality	0.044	0.175	-0.312	0.400

¹ The estimand for matching

Discussion

Conclusion

- To satisfy ignorability (unconfoundedness) assumption, we used all possible data referred to in previous studies. No causal effect of urban parks on children's happiness
- Limitation
- There might be unobserved, important confounders.

Future Study

• Using spatial data, we could study the causal effect of accessibility to urban parks on children's happiness.

Weighting Methods

Inverse probability weighting (IPW) [4]

$$\hat{\Delta}_{IPW}^{ATE} = n^{-1} \sum_{i=1}^{n} \frac{Z_i Y_i}{\hat{e}(X_i)} - n^{-1} \sum_{i=1}^{n} \frac{(1 - Z_i) Y_i}{1 - \hat{e}(X_i)}.$$

Stabilized inverse probability weighting (SIPW)

$$\hat{\Delta}_{SIPW}^{ATE} = \left(\sum_{i=1}^{n} \frac{Z_i}{\hat{e}(X_i)}\right)^{-1} \sum_{i=1}^{n} \frac{Z_i Y_i}{\hat{e}(X_i)} - \left(\sum_{i=1}^{n} \frac{1 - Z_i}{1 - \hat{e}(X_i)}\right)^{-1} \sum_{i=1}^{n} \frac{(1 - Z_i) Y_i}{1 - \hat{e}(X_i)}.$$

Doubly-robust estimation (DR)

$$\hat{\Delta}_{DR}^{ATE} = \sum_{i=1}^{n} \frac{Z_i Y_i - (Z_i - \hat{e}(X_i)) m_1(X_i, \hat{\alpha_1})}{n \hat{e}(X_i)} - n^{-1} \sum_{i=1}^{n} \frac{(1 - Z_i) Y_i + (Z_i - \hat{e}(X_i)) m_0(X_i, \hat{\alpha_0})}{n (1 - \hat{e}(X_i))}.$$

References

- Balseviciene, B., Sinkariova, L., Grazuleviciene, R., Andrusaityte, S., Uzdanaviciute, I., Dedele, A., and Nieuwenhuijsen, M. J. Impact of residential greenness on preschool children's emotional and behavioral problems. International journal of environmental research and public health 11, 7 (2014), 6757–6770.
 - BARRERA-HERNÁNDEZ, L. F., SOTELO-CASTILLO, M. A., ECHEVERRÍA-CASTRO, S. B., AND TAPIA-FONLLEM, C. O. Connectedness to nature: Its impact on sustainable behaviors and happiness in children. Frontiers in psychology 276 (2020).
- BLACKWELL, M., IACUS, S., KING, G., AND PORRO, G. cem: Coarsened exact matching in stata. The Stata Journal 9, 4 (2009), 524-546.
- ROSENBAUM, P. R. Model-based direct adjustment. Journal of the American statistical Association 82, 398 (1987), 387–394.
- ROSENBAUM, P. R., AND RUBIN, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 70, 1 (1983), 41–55.

Rubin, D. B. Randomization analysis of experimental data: The fisher randomization test comment. Journal of the American statistical association 75, 371 (1980), 591–593.

[7] ZUBIZARRETA, J. R., PAREDES, R. D., AND ROSENBAUM, P. R. Matching for balance, pairing for heterogeneity in an observational study of the effectiveness of for-profit and not-for-profit high schools in chile. The Annals of Applied Statistics 8, 1 (2014), 204–231.

² Not only confounders but additional predictors are used (e.g., housing prices).