LNG Application in Transportation

LNG Application

LNG Application

LCNG Station, Chiang Mai

LNG for Boat Taxis, Bangkok

LNG in Industrial Sector

Small LNG Plant, Sukhothai

LNG for Canal Taxis

- Family Transportation (2002) Co.Ltd., a boat taxis servicer on Saen Saeb canal, has joined with PTT in using LNG by converting 72 boat taxis to run on LNG/Diesel Dual Fuel
- Each boat taxi is equipped with Cummins engine, 270 hp.
- The project started in November 2009. 26 boats were installed with LNG (DDF) conversion equipments and one boat was installed with dedicated engine.
- LNG replacement is 50 percents.

LNG refueling station for Saen Saeb canel taxis

- Two LNG tanks with capacity of 36,000 liters each
- One hose dispensing 120 liters of LNG per minute

17,000-Liter LNG Truck

LNG production Plant at Sukothai province

Boat Taxis

Boat Machine Using LNG

450-Litre LNG Cylinder

LNG for Canal Taxis

o ptt

LNG Station

LNG Tanks (36,000 Liters x 2)

LNG Pump 120 Liters/minute

LNG One Hose Dispenser

Gas Detector

LNG for Canal Taxis

b ptt

Canal Taxis equipped with LNG conversion kit and cylinder

Diesel Dual Fuel (DDF)
Cummin Engine:
Big Cam 270 HP

LNG Refueling

LNG Cylinder Capacity 450 Liter

Heat exchanger using hot water from the engine

Pressure Regulator

Gas-Air Mixer

อุปกรณ์เติม LNG และอุปกรณ์ LNG ที่ติดตั้งในเรือ

- 1. ตู้จ่าย LNG แบบ 1 หัวเติม
- 2. & 3. หัวรับ LNG แบบเติมด้านบน (Top Fill) เพื่อช่วยให้การเติม LNG ทำได้รวดเร็วขึ้น โดยมีการติดตั้ง Check Valve เพื่อป้องกันแรงดันไหลย้อน
- 4. เกจวัดปริมาณ LNG ในถังเก็บ
- 5. ผู้ผลิตบางรายอาจมีการออกแบบให้มี LNG Vapor Space ในถัง LNG ที่ติดตั้งบนเรือ เพื่อรองรับความดันไอ ของ LNG ในกรณีที่เพิ่มสูงขึ้น และช่วยขยายระยะเวลาในการเก็บ LNG เมื่อไม่มีการใช้งาน
- 6. อุปกรณ์ที่ทำหน้าที่ควบคุมความดันในถังให้อยู่ในระดับความดันในการใช้งานปกติ
- 7. อุปกรณ์เปลี่ยนสถานะ LNG ให้เป็นก๊าช ซึ่งโดยปรกติแล้วจะใช้น้ำร้อนจากเครื่องยนต์ ในการให้ความร้อน
- 8. อุปกรณ์ควบคุมความดันก๊าชก่อนเข้าเครื่องยนต์ไม่ให้สูงเกินกว่าที่ผู้ผลิตเครื่องยนต์กำหนด

Personal Equipment (PPE)

LNG Fuel Dispensers

Unlike diesel, the following Personal Equipment (PPE) MUST be worn when dispensing or offloading LNG in order to protect against accidental exposure to the cold LNG, piping or other cold surfaces.

- Face shield
- Safety glasses
- ☐ Long sleeve shirt or coat
- Cryogenic approved gloves
- ☐ Full length pants without cuffs
- Proper footwear No running shoes!
- ☐ Full length smock without pockets

(For LNG Off-Loading)

Cryogenic Approved Gloves

LNG Application in Industrial Sector (Rubber Industry)

LCNG Station

LCNG Layout

Rubber Oven

CONCENTRATED LATEX STR-20

- In association with Rubber Latex Fund Cooperative
- LNG is used as a fuel for heating in rubber latex factory substitute diesel.
- LCNG supply station comes with LNG storage with the capacity of 17,000 liters
- LNG Consumption 1 TPD

CNG Station

CNG Trailer

LNG

I NG Trailer

COMPRESSOR

CNG Storage and Dispenser Cascade system

200 Bar

200 Bar

Objective:

- 1. Pilot Project to Introduce LCNG Station in Remote Area and also Reduce NGV **Operating Cost**
- 2. Reducing Transportation Cost (due to higher loading capacity of trailer) and Electrical Cost (due to usage of high pressure cryogenic pump instead of compressor)

LCNG Station

LCNG Cryogenic

Pump

Storage

Vessel

Cascade system

Site Location:

NGV Station in Northern Area (Chiang Mai Province)

LNG Supply Source: Sukhothai Boutique LNG Plant

Capacity: per day

Starting Commercial Phase: November 2011

6-8 tons

Landscape of Chiang Mai LCNG Station

LNG & Liquid Nitrogen Vaporizers

LNG Truck Loading to LNG Storage Tank

LNG & Liquid Nitrogen High Pressure Pumps

Super Critical Cabon dioxide

Advantage of LCNG Station:

- Lower Operating & Maintenance Cost
- Lower Power Consumption
- No Lube Oil Contamination Problem in Onboard CNG Tank
- Lower Noise Level

<u>Disadvantage of LCNG Station:</u>

- Gas Loss due to LNG Vaporizing
- LNG Cost Higher Than CNG
- Higher Investment Cost due to Equipment Designed for Cryogenic Condition
- Methane Number is not meet the regulation.

These initially proposed Blue Corridors will also develop with connection to other LNG distribution initiatives as:

- Danube Inland Waters Blue Corridor, from Romania to Viena
- AGRI (Azerbaijan-Georgia-Romania-Interconnection) project to transport LNG from Azerbaijan to the EU through Georgia and Romania.

NGVA Europe is working in the preparation of a European Program to develop the concept of **European LNG Blue Corridors**

The intention is to define four initial pan European routes with strategically placed LNG filling stations that would allow the heavy, long distance truck transport throughout Europe:

- Portugal-Spain to France, Netherlands, UK and Ireland
- Portugal-Spain to France, Germany, Denmark, Sweden
- Mediterranean arch to Italy and with another branch to Croatia
- Ireland-UK to Austria

From the North to the South, from the West to the East, we have to implement the European L-CNG infrastructure that will allow us full gas run mobility across Europe and will also help to reduce oil dependence.

- 2,500 LNG dedicate Trucks/ 16 L-CNG Refueling Staions

Existing LNG stations

LNG Blue Corridors station under construction

L-CNG filling station in Goteborg (Sweden)

L-CNG filling station in Lleida (Spain)

- Existing LNG stations
- LNG Blue **Corridors station** under construction
- Opened LNG **Blue Corridors** station

LNG trucks for long distance transport

Diesel vs CNG & LNG. Autonomy equivalence

CNG 5 litre

-162°C

LNG/LBG 1,8 litre

Hardstaff Mercedes Benz Actros

Volvo FM MethaneDiesel

Iveco Stralis LNG

The Shell LNG Project

Australia - Chart technology. 250 LNG trucks in operation

- Factory-built LNG trucks from Kenworth Australia available today
 - Australian Ratings:
 - 500 578HP @ 1800 RPM
 - 1,650 1,850 lb-ft @ 1200 RPM
 - Dual and Triple Tank LNG configurations
- 95% gas substitution
- Lower operating costs
- ~25% reduction in GHG vs. diesel
- Lower noise
- Full OEM support (ordering, delivery, parts, service, and warranty)
- Helps meet corporate goals for energy security and carbon reductions

Map of LNG filling stations

LNG trucks and busses in USA

Shale gas			
Rank	Country	Trillion cubic feet	
1	China	1,115	
2	Argentina	802	
3	Algeria	707	
4	United States	665	
5	Canada	573	
6	Mexico	545	
7	Australia	437	
8	South Africa	390	
9	Russia	285	
10	Brazil	245	
\sim	World total	7,299	

Schematic geology of natural gas resources

LNG trucks and busses in USA

USA - started 1993, Chart technology 7,000 vehicles 70 public LNG filling stations

In 2020 **175,000 trucks on LNG** 140 LNG Stations and 1,600 CNG **Statons** (mostly long distancetransportation)

Nevada

Texas

LNG trucks and busses in China

582,000 LNG heavy-duty trucks operating in 2020

LNG bus in HangZhou

Sulfur content limit in Fuel

- 0.5%wt Globally, 2020* * Availability of low S fuel will be reviewed by 2018. (If postponed, 2025.)
- 0.1%wt in ECA, 2015

Sulphur Limits Tightened

Planned reduction of maximum Sulphur content in marine bunkers

- □ Applied to both new and existing ships
- ✓ High degree of reduction
- Maker to develop technology
- ✓ Shipowner to make decision

North American Coasts ECA-SO_X
from August 1, 2012

Baltic and North Sea ECA-SO_X

US Caribbean ECA-SO_X from January 1, 2014 Maximum fuel oil sulphur content within all ECAs-SO_x after coming into effect:

Up to December 31, 2014: 1.00%

From January 1, 2015: 0.10%

Revised MARPOL Annex VI – 2008

Sulphur Oxides (SOx) and Particulate Matter (PM)

Sulphur limit of any fuel oil used globally:

- 4.50% m/m S prior to 1 January 2012
- 3.50% m/m S on and after 1 January 2012
- 0.50% m/m S on and after 1 January 2020/25

Sulphur limit of any fuel oil used in designated Emission Control Areas (ECA):

- 1.50% m/m S prior to 1 July 2010
- 1.00% m/m S on/after 1 July 2010
- 0.10% m/m S on/after 1 January 2015

or "alternative technologies" to be used

☐ Use of Low Sulfur Fuel

- CAPEX is negligible, but OPEX will increase considerably.
- ✓ Availability of such low sulfur bunker fuels if refinery industry will be prepared?
- Poor ignition? may damage combustion chamber

□ SOx Scrubber

- ✓ Enables the existing propulsion system burning high sulfur heavy fuel oil.
- ✓ Manufacturers claim that payback time of SOx scrubber installation will be a few years and that the ship operators will obtain economical advantages against use of low sulfur fuels.
- ✓ Turbine back pressure acceptable?

□ LNG-fuelled Vessels

- ✓ No SOx emission and less CO2/NOx emission.
- ✓ Design standards of vessels?
- ✓ Infrastructure and supply-chain?
- ✓ Building cost increase and safe operation of LNG-fuelled vessels?
- ✓ LNG fuel price in future?

Compliance option	LNG	HFO	MDO/MGO
CO2 removal	10-20%	Abatement – technologies –	No
SOx removal	100%		MDO: <2%; MGO: 0.01 -1%
NOx removal	Up to 80-90%		A bate ment
Particulate matter	98 -100%		technologies
Regulation in place	Developing	Yes	Yes
Infrastructure	Early stages	Yes	Yes
Cultural factors	Higher	Established	Established
Cost of use	LNG storage tank size; LNG fuel price uncertain; possible loss of cargo space	Abatement technologies required	
Potential to stretch the technology	Further CO2 reduction	End of cycle	
Challenges	Bunker space/cryogenics /possible	Abatement technologies Varied blends	
/differences	methane slip	of distillates 2020	

การปลอยมลภาวะ ก๊าซธรรมชาติ เทียบกับ MDO (Marine Diesel Oil)

:ลดการปล่อยซัลเฟอร์

: ลดอนุภาคฝุ่นขนาดเล็ก

: ลดการปล่อยก๊าซคาร์บอนไดออกไซด์ 26%

: ลดการปล่อย Nox 80-90%

LNG Project

เรือขนส่ง LNG (ใช้เชื้อเพลิงร่วม LNG+Diesel) Gaz de France Energy

เรือเฟอร์รี่ Norway (ใช้เชื้อเพลิง LNG)

เรือเฟอร์รี่ (ผู้โดยสาร 2,800 คน) Baltic Sea (ใช้เชื้อเพลิงร่วม LNG+Diesel)

Passenger / car ferry MS Ostfriesland – Ship data

Guido. Friederich / LNG als Schiffsbrennstoff 6

Conversion car / passenger ferry Borkum - Emden

Conversion MS Ostfriesland / Machinery Installations

Gas fuelled propulsion system

Fuel consumption system: simple in operation and fully automatic; no pumps in the system.

The Pressure Build Up Vaporizer regulates the pressure in the tank which is driving the LNG to the Fuel Vaporizer. LNG is vaporized to NG which goes to the Fuel Heater. The heater takes the NG to the temperature level required before entering the GRU-Gas Regulating Unit

LNG Locomotive in USA

- □ New LNG powered locomotives are being developed by units of General Electric Co. and Caterpillar Inc.
- ☐ Retrofitting a diesel locomotive and adding the tanker car could add 50% to a locomotive's roughly \$2 million price tag
- ☐ Caterpillar estimates savings on fuel costs could be >50%

LNG Locomotive in Canada

- □ Canadian National Railway Co. retrofitted two locomotives (3,000-horsepower Electro-Motive Diesel SD-40) using conversion kits supplied by Energy Conversions Inc. Running on a mixture of 90% LNG and 10% diesel along the 300mile line between Edmonton and Fort McMurray
- □ Reduce carbon dioxide emissions by 30 per cent and nitrogen oxide emissions by 70 per cent

LNG Locomotive Diagram

ptt LNG Airplane

- The LNG project is named 'SUGAR Freeze'
- **Boeing Delivers LNG-Fuelled Aircraft Concept to NASA**
- The study, complete with technological roadmaps, proposes that combined with all other efficiency measures an LNG fuelled aircraft could reduce fuel burn over current aircraft by as much as 62%. Additionally, LNG is projected to offer lower fuel cost because of abundant supply, even as far out at mid-century, and lower emissions.

Figure 4, - Turbojet engine components (A),

Thank You

LNG Production at Boron

- □ LNG Plant start in November 2008
- □ Clean Energy investment of approximately \$75 million
- □ 180,000 LNG gallons production per day, expandable to 270,000 LNG gallons per day
- □ 1.8 million-gallon LNG storage tank
- □ Two loading scales, plus public LNG fueling, support LNG trucking operation in/out of the Boron Mine Facility