Interpretable Machine Learning

Individual Conditional Expectation (ICE) Plot

Learning goals

- ICE curves as local effect method
- How to sample grid points for ICE curves

Interpretable Machine Learning

Learning goals

- ICE curves as local effect method
- How to sample grid points for ICE curves

MOTIVATION

Question: How does varying a single feature of an obs. affect its predicted outcome?

Idea: For a given observation, change the value of the feature of interest, and visualize how prediction changes

Example: On model prediction surface (left), select observation and visualize changes in prediction for different values of x_2 , while keeping x_1 fixed

⇒ local interpretation

MOTIVATION

Question: How does varying a single feature of an observation affect its predicted outcome?

Idea: For a given observation, change the value of the feature of interest, and visualize how prediction changes

Example: On model prediction surface (left), select observation and visualize changes in prediction for different values of x_2 , while keeping x_1 fixed \Rightarrow **local interpretation**

grid points

training data

Interpretable Machine Learning - 1/8

INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

► Goldstein et. al (2013)

Partition each observation ${\bf x}$ into ${\bf x}_S$ (feature(s) of interest) and ${\bf x}_{-S}$ (remaining features)

	^ s	s ^-s		
i	X ₁	X ₂	X ₃	
1	1	4	7	
2	2	5	8	
3	3	6	9	

In practice, $\mathbf{x}_{\mathcal{S}}$ consists of one or two features
(i.e., $ S \le 2$ and $-S = S^{\complement}$).

Formal definition of ICE curves:

- Define grid points $\mathbf{x}_{S}^{*} = \mathbf{x}_{S}^{*(1)}, \dots, \mathbf{x}_{S}^{*(g)}$ to vary \mathbf{x}_{S}
- For each *k* connect point pairs to obtain **ICE curve**
- \rightarrow ICE curves visualize how prediction of *i*-th observation changes after varying its feature values indexed by S using grid points \mathbf{x}_{S}^{*} while keeping all values in -S fixed

INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

► GOLDSTEIN_2013

Partition each observation \mathbf{x} into \mathbf{x}_S (feature(s) of interest) and \mathbf{x}_{-S} (remaining features)

$$\rightarrow$$
 In practice, \mathbf{x}_S consists of one or two features (i.e., $|S| < 2$ and $-S = S^{\complement}$).

Formal definition of ICE curves:

• Plot point pairs
$$\left\{ \left(\mathbf{x}_{S}^{*^{(k)}}, S^{(i)}(\mathbf{x}_{S}^{*^{(k)}})\right) \right\}_{k=1}^{g}$$
 where $S^{(i)}(\mathbf{x}_{S}^{*}) = \hat{f}(\mathbf{x}_{S}^{*}, \mathbf{x}_{-S}^{(i)})$

- For each k connect point pairs to obtain ICE curve
- \sim ICE curves visualize how prediction of *i*-th observation changes after varying its feature values indexed by S using grid points \mathbf{x}_{s}^{*} while keeping all values in -S fixed

1. Step - Grid points:

- Sample grid values $\mathbf{x}_{S}^{*(1)}, \dots, \mathbf{x}_{S}^{*(g)}$ along possible values of feature S(|S|=1)
- For $\mathbf{x}^{(i)} = (\mathbf{x}_S, \mathbf{x}_{-S})$, replace \mathbf{x}_S with those grid values
- \Rightarrow Creates new artificial points for *i*-th observation (here: $\mathbf{x}_s^* = x_1^* \in \{1, 2, 3\}$ scalar)

ICE CURVES - ILLUSTRATION

1. Step - Grid points:

- Sample grid values $\mathbf{x}_S^{*^{(1)}}, \dots, \mathbf{x}_S^{*^{(g)}}$ along possible values of feature S (|S|=1)
- For $\mathbf{x}^{(i)} = (\mathbf{x}_S, \mathbf{x}_{-S})$, replace \mathbf{x}_S with those grid values
- \Rightarrow Creates new artificial points for *i*-th obs. (here: $\mathbf{x}_{S}^{*} = x_{1}^{*} \in \{1, 2, 3\}$ scalar)

For each artificially created data point of *i*-th observation, plot prediction $\hat{t}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{t}_{1,ICF}^{(i)}(x_1^*) = \hat{t}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

ICE CURVES - ILLUSTRATION

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $S^{(i)}(\mathbf{x}_{S}^{*})$ vs. grid values \mathbf{x}_{S}^{*} :

$$1^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

2. Step - Predict and visualize: For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{t}_{1,ICF}^{(i)}(x_1^*) = \hat{t}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

ICE CURVES - ILLUSTRATION

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $S^{(i)}(\mathbf{x}_{S}^{*})$ vs. grid values \mathbf{x}_{S}^{*} :

$$1^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{t}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_{1,ICF}^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

ICE CURVES - ILLUSTRATION

Interpretable Machine Learning - 4/8

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $S^{(i)}(\mathbf{x}_{S}^{*})$ vs. grid values \mathbf{x}_{S}^{*} :

$$1^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

3. Step - Repeat for other observations:

ICE curve for i = 2 connects all predictions at grid values associated to i-th obs.

ICE CURVES - ILLUSTRATION

3. Step - Repeat for other observations:

ICE curve for i = 2 connects all predictions at grid values associated to the i-th observation.

3. Step - Repeat for other observations:

ICE curve for i = 3 connects all predictions at grid values associated to i-th obs.

ICE CURVES - ILLUSTRATION

3. Step - Repeat for other observations:

ICE curve for i = 3 connects all predictions at grid values associated to the *i*-th observation.

ICE CURVES - INTERPRETATION

Example: Prediction surface of a model (left), select observation and visualize changes in prediction for different values of x_2 while keeping x_1 fixed

⇒ local interpretation

ICE CURVES - INTERPRETATION

Example: Prediction surface of a model (left), select observation and visualize changes in prediction for different values of x_2 while keeping x_1 fixed \Rightarrow **local interpretation**

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values **x**_s*; visualized on x-axis
- Three common strategies for grid definition:

• Equidistant grid values within feature range Random samples from observed feature values Quantiles of observed feature values • Marginal realism: Random and quantile grids better reflect the marginal distribution of $x_S \Rightarrow$ reduce unrealistic values along x_S

Grid points for X_S (red) for highlighted observation (blue) equidistant grid

Feature X

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values **x**_S*; shown on x-axis
- Three common strategies for grid definition:
 - Equidistant grid values within feature range
 - Random samples from observed feature values
 - Quantiles of observed feature values
- Marginal realism: Random and quantile grids better reflect the marginal distribution of $x_S \Rightarrow$ reduce unrealistic values along x_S

Interpretable Machine Learning - 7/8 Interpretable Machine Learning - 7/8

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values **x***; visualized on x-axis
- Three common strategies for grid definition:
 - Equidistant grid values within feature range
 - Random samples from observed feature values
 - Quantiles of observed feature values
- Marginal realism: Random and quantile grids better reflect the marginal distribution of $x_S \Rightarrow$ reduce unrealistic values along x_S
- However: For correlated features, extrapolation remains:

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values x*; shown on x-axis
- Three common strategies for grid definition:
 - Equidistant grid values within feature range
 - Random samples from observed feature values
 - Quantiles of observed feature values
- Marginal realism: Random and quantile grids better reflect the marginal distribution of $x_S \Rightarrow$ reduce unrealistic values along x_S
- However: For correlated features, extrapolation remains:

Interpretable Machine Learning - 7 / 8 © Interpretable Machine Learning - 10 (Interpretable Machine Learning - 10 (Interpr

PRACTICAL CONSIDERATIONS

- **Grid resolution** (instances × grid over feature of interest)
 - Too coarse ⇒ may miss sharp nonlinearities or discontinuities
 - Too fine ⇒ high runtime (without gaining much)
 - Fix: cap at $\approx 50 100$ grid points; vectorize predictions by feeding the model a single data frame containing all grid-modified instances
- ICE curves (number of instances/curves visualized)
 - Too few ⇒ hides variability across instances, misses subgroup differences
 - Too many ⇒ visual overload (many overlapping curves), time intensive
 - Fix: Stratified or cluster-based subsample (e.g., 100); facet by subgroup

efault values fo	or popul	ar libraries:	ta 8000 -				
Library	Grid	ICE curves	- 0000 -				
sklearn (Py)	100	1 000 (random)	er of b				
PDPbox (Py)	10	num. rows	g 4000-				
iml (R)	20	num. rows	Predicted				
pdp (R)	51	num. rows	a.				
				ò	10	20	30

ICE curves (black lines) and their point-wise average across the grid (yellow line)

PRACTICAL CONSIDERATIONS

Grid resolution (instances × grid over feature of interest)

- Too coarse ⇒ may miss sharp nonlinearities or discontinuities
- Too fine ⇒ high runtime (without gaining much)
- Fix: cap at $\approx 50 100$ grid points; vectorize predictions by feeding the model a single data frame containing all grid-modified instances

ICE curves (number of instances/curves visualized)

- Too few ⇒ hides instance variability, misses subgroup differences
- Too many ⇒ visual overload (many overlapping curves), time intensive
- Fix: Stratified or cluster-based subsample (e.g., 100); facet by subgroup

Default values for popular libraries:

Library	Grid	ICE curves
sklearn (Py)	100	1 000 (random)
PDPbox (Py)	10	num. rows
iml (R)	20	num. rows
pdp (R)	51	num. rows

ICE curves (black lines) and their point-wise average across the grid (yellow line)

Interpretable Machine Learning - 8 / 8 Interpretable Machine Learning - 8 / 8