Abalone Age Prediction

Assignment -3

Assignment Date	03 October 2022	
Team ID	PNT2022TMID27812	
Project Name	Smart Lender-Application Credibility	
	Prediction for loan Approval	
Student Name	Mugeshraja.M	
Student Roll Number	311519104702	
Maximum Marks	2 Marks	

Question-1. Download dataset

Solution:

1	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	
2	0.365	0.095	0.514	0.2245	0.101	0.15	15	
3	0.265	0.09	0.2255	0.0995	0.0485	0.07	7	
4	0.42	0.135	0.677	0.2565	0.1415	0.21	9	
5	0.365	0.125	0.516	0.2155	0.114	0.155	10	
6	0.255	0.08	0.205	0.0895	0.0395	0.055	7	
7	0.3	0.095	0.3515	0.141	0.0775	0.12	8	
8	0.415	0.15	0.7775	0.237	0.1415	0.33	20	
9	0.425	0.125	0.768	0.294	0.1495	0.26	16	
10	0.37	0.125	0.5095	0.2165	0.1125	0.165	9	
11	0.44	0.15	0.8945	0.3145	0.151	0.32	19	
12	0.38	0.14	0.6065	0.194	0.1475	0.21	14	
13	0.35	0.11	0.406	0.1675	0.081	0.135	10	
14	0.38	0.135	0.5415	0.2175	0.095	0.19	11	
15	0.405	0.145	0.6845	0.2725	0.171	0.205	10	
16	0.355	0.1	0.4755	0.1675	0.0805	0.185	10	
17	0.4	0.13	0.6645	0.258	0.133	0.24	12	
18	0.28	0.085	0.2905	0.095	0.0395	0.115	7	
19	0.34	0.1	0.451	0.188	0.087	0.13	10	
20	0.295	0.08	0.2555	0.097	0.043	0.1	7	
21	0.32	0.1	0.381	0.1705	0.075	0.115	9	
22	0.28	0.095	0.2455	0.0955	0.062	0.075	11	
23	0.275	0.1	0.2255	0.08	0.049	0.085	10	
24	0.44	0.155	0.9395	0.4275	0.214	0.27	12	
25	0.415	0.135	0.7635	0.318	0.21	0.2	9	

Question-2.Load the dataset

Solution:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import sklearn

data = pd.read_csv(r"abalone.csv")

data.head

₽	<bound< th=""><th>met</th><th>hod NDFram</th><th>e.head</th><th>of</th><th>Sex l</th><th>Length [</th><th>)iameter</th><th>Height</th><th>Whole weight</th><th>Shucked</th><th>weight</th></bound<>	met	hod NDFram	e.head	of	Sex l	Length [)iameter	Height	Whole weight	Shucked	weight
_	0	М	0.455	0.365	0.095		0.5140		0.2245			
	1	М	0.350	0.265	0.090		0.2255		0.0995			
	2	F	0.530	0.420	0.135		0.6770		0.2565			
	3	М	0.440	0.365	0.125		0.5160		0.2155			
	4	I	0.330	0.255	0.080		0.2050		0.0895			
	4172	F	0.565	0.450	0.165		0.8870		0.3700			
	4173	М	0.590	0.440	0.135		0.9660		0.4390			
	4174	М	0.600	0.475	0.205		1.1760		0.5255			
	4175	F	0.625	0.485	0.150		1.0945		0.5310			
	4176	М	0.710	0.555	0.195		1.9485		0.9455			
		Visc	era weight									
	0		0.1010		0.1500	15						
	1		0.0485		0.0700							
	2		0.1415		0.2100	ç	9					
	3		0.1140		0.1550							
	4		0.0395		0.0550	7	7					
	4172		0.2390		0.2490	11	1					
	4173		0.2145		0.2605	16	9					
	4174		0.2875		0.3080	g	9					
	4175		0.2610		0.2960	16	9					
	4176		0.3765		0.4950	12	2					

Question-3.Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data[' Diameter'])

sns.histplot(data[' Diameter '])

sns.boxplot(x = data[' Diameter '])

3.2 Bivariate Analysis

Solution:

sns.lineplot(data = data, x = 'Diameter', y = 'Rings')

sns.barplot(data = data, x = 'Diameter',y = 'Height')

plt.figure(figsize=(20,20)) sns.barplot(data = data, x = 'Diameter', y = 'Shell weight)

Solution:

sns.scatterplot(data = data x = 'Shell weight', y = 'Rings', hue = 'Length')

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

	,,
Length Diameter	0.523992 0.407881
Height	0.139516
Whole weight	0.828742
Shucked weight	0.359367
Viscera weight	0.180594
Shell weight	0.238831
Rings	9.933684
dtype: float64	

data.median(numeric_only = True)

Length	0.5450
Diameter	0.4250
Height	0.1400
Whole weight	0.7995
Shucked weight	0.3360
Viscera weight	0.1710
Shell weight	0.2340
Rings	9.0000
dtype: float64	
acype: 110aco	

data['Whole weight'].mode()

```
0 0.2225 dtype: float64
```

data['Length'].mode()

0 0.550 1 0.625 dtype: float64

data['Rings'].unique()

```
array([15, 7, 9, 10, 8, 20, 16, 19, 14, 11, 12, 18, 13, 5, 4, 6, 21, 17, 22, 1, 3, 26, 23, 29, 2, 27, 25, 24])
```

data.std(numeric_only=True)

Length	0.120093
Diameter	0.099240
Height	0.041827
Whole weight	0.490389
Shucked weight	0.221963
Viscera weight	0.109614
Shell weight	0.139203
Rings	3.224169
dtype: float64	

data.describe()

data['Whole weight'].value_counts()

```
0.2225
          8
1.1345
0.9700
0.4775
0.1960
0.0475
          1
1.8930
          1
1.8725
          1
2.1055
          1
1.9485
          1
Name: Whole weight, Length: 2429, dtype: int64
```

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

Sex	False
Length	False
Diameter	False
Height	False
Whole weight	False
Shucked weight	False
Viscera weight	False
Shell weight	False
Rings	False
dtype: bool	

data.isnull().sum()

aatansnan(),sann()	
Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
Rings	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

Solution:

q = data.quantile([0.75,0.25])

Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0.615 0.75 0.48 0.450 0.4415 0.0935 0.25 0.115

iqr = q.iloc[0] - q.iloc[1]

igr

7		
Length	0.1650	
Diameter	0.1300	
Height	0.0500	
Whole weight	0.7115	
Shucked weight	0.3160	
Viscera weight	0.1595	
Shell weight	0.1990	
Rings	3.0000	
dtype: float64		

u = q.iloc[0] + (1.5*iqr)

Length 0.86250 Diameter 0.67500 Height 0.24000 Whole weight 2.22025 Shucked weight 0.97600 Viscera weight 0.49225 Shell weight 0.62750 Rings 15.50000 dtype: float64

I = q.iloc[1] - (1.5*iqr)

Length 0.20250 Diameter 0.15500 Height 0.04000 Whole weight -0.62575 Shucked weight -0.28800 Viscera weight -0.14575 Shell weight -0.16850 Rings 3.50000 dtype: float64

data['Rings'] = np.where(np.logical_or(data['Rings']>15, data['Rings']<4), 9, data['Rings'])
sns.boxplot(x = data['Rings'])</pre>

Question-7. Check for Categorical columns and perform encoding

Solution:

data['Age'] = data['Rings'] + 1.5
data['Sex'].value_counts()

M 1528 I 1342 F 1307 Name: Sex, dtype: int64

 $from \ sklearn. preprocessing \ import \ Label Encoder, \ One Hot Encoder$

le = LabelEncoder()

data = pd.get_dummies(data)

data.head()

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

y = data['Age']
data = data.drop(['Rings','Age'], axis=1)
x = data

data.head


```
0
        16.5
        8.5
2
        10.5
3
        11.5
4
        8.5
4172
       12.5
4173
       11.5
4174
       10.5
4175
       11.5
4176
       13.5
Name: Age, Length: 4177, dtype: float64
```

Question-9. Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled

```
array([[-0.57455813, -0.43214879, -1.06442415, ..., -0.67483383, -0.68801788, 1.31667716],
[-1.44898585, -1.439929 , -1.18397831, ..., -0.67483383, -0.68801788, 1.31667716],
[ 0.05003309, 0.12213032, -0.10799087, ..., 1.48184628, -0.68801788, -0.75948762],
...,
[ 0.6329849 , 0.67640943, 1.56576738, ..., -0.67483383, -0.68801788, 1.31667716],
[ 0.84118198, 0.77718745, 0.25067161, ..., 1.48184628, -0.68801788, -0.75948762],
[ 1.54905203, 1.48263359, 1.32665906, ..., -0.67483383, -0.68801788, 1.31667716]])
```

Solution:

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
x train

x_train.shape

(2923, 10)

x_test

x_test.shape

(1254, 10)

```
y_train
```

```
1376
      11.5
1225
       6.5
2722
       8.5
3387
      10.5
      12.5
2773
1033
      11.5
3264
      13.5
1653
      11.5
      10.5
2607
2732
       9.5
Name: Age, Length: 2923, dtype: float64
```

y_test

```
14.5
668
1580
       9.5
3784
       12.5
463
        6.5
2615
       13.5
       13.5
1052
3439
       9.5
1174
       10.5
2210
       10.5
2408
       16.5
Name: Age, Length: 1254, dtype: float64
```

Question-11. Build the model

Solution:

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
LinearRegression()
```

```
predict = Ir.predict(x_test)
predict
```

```
array([12.32892845, 10.26905996, 11.99728864, ..., 11.36906433, 13.83936664, 11.45100404])
```

Question-12. Train the model

Solution:

y_train

```
11.5
1376
1225
      6.5
2722
       8.5
3387
     10.5
2773
      12.5
     11.5
1033
3264
      13.5
1653
      11.5
2607
      10.5
2732
       9.5
Name: Age, Length: 2923, dtype: float64
```

Question-13. Test the model

Solution:

y_test

```
14.5
668
1580
       9.5
3784
       12.5
463
       6.5
2615
      13.5
1052
      13.5
3439
       9.5
1174
      10.5
2210
       10.5
2408
       16.5
Name: Age, Length: 1254, dtype: float64
```

Question-14. Measure the performance using Metrics

Solution:

```
from sklearn.metrics import r2_score, mean_squared_error
mse = mean_squared_error(y_test, predict)
rmse = np.sqrt(mse)
print("mse = ", mse)
print("rmse = ", rmse)
r2_score(y_test,predict)
```

mse = 2.9684942599827626 rmse = 1.7229318790894672 0.4607933491755676