1 Morfismi di rivestimento

Definizione 1.1. Dati $p_1: E_1 \to X \ e \ p_2: E_2 \to X$ rivestimenti.

Un morfismo tra p_1 e p_2 è una mappa $\varphi: E_1 \to E_2$ tale che $p_2 \circ \varphi = p_1$ cioè questo diagramma commuta

$$E_1 \xrightarrow{\varphi} E_2$$

$$\downarrow^{p_1} \downarrow^{p_2}$$

$$X$$

Definizione 1.2. Un morfismo φ come sopra è un isomorfismo se $\exists \psi: E_2 \to E_1$ con ψ inversa di φ

Osservazione 1. Composizione di morfismi è un morfismo. Id_E è un morfismo di $p:E\to X$. Dunque

$$Aut(E) = Aut(E, p) = \{ \varphi : E \to E \mid \text{ isomorfismo} \}$$

tale insieme dotato delle composizione è un gruppo

Fissato un rivestimento connesso $p: E \to X$

Teorema 1.1. Valgono i seguenti fatti

- (i) Aut(E) agisce su E in maniera propriamente discontinua
- (ii) Aut(E) agisce sulle fibre di E
- (iii) Se F è una fibra di E, $\tilde{x}_0, \tilde{x}_1 \in F$ allora

$$\exists \varphi \in Aut(E) \ con \ \varphi(\tilde{x}_0) = \tilde{x}_1 \quad \Leftrightarrow \quad p_{\star}(\pi_1(E, \tilde{x}_0)) = p_{\star}(\pi_1(E, \tilde{x}_1))$$

Dimostrazione.

(i) Dato $\tilde{x} \in E$, sia U un intorno ben rivestito e connesso per archi di $p(\tilde{x}) \in X$, si ha dunque che $p^{-1} = \prod V_i$ e sia i_0 tale che $\tilde{x} \in V_{i_0}$.

Basta vedere che se $\varphi \in Aut(E)$ e $\varphi(V_{i_0}) \cap V_{i_0} \neq \emptyset$ allora $\varphi = Id$.

Se $\varphi(V_{i_0}) \cap V_{i_0} \neq \emptyset$ allora sia $z \in V_{i_0}$ tale che $\varphi(z) \in V_{i_0}$.

Poichè $p \circ \varphi = p$ allora $p(\varphi(z)) = p(z)$ ma per definizione di intorno ben rivestito $p_{|V_{i_0}}$ è un omeomorfismo, dunque iniettiva da cui $\varphi(z) = z$.

Ora sia φ sia Id sono sollevamenti di p (a partire da E) che coincidono in un punto, segue per unicità del sollevamento $\varphi=Id$

- (ii) Se $F=p^{-1}(x_0)$ e $\tilde{x}\in F$ allora poichè $p\circ\varphi=p$ allora $p(\varphi(\tilde{x}))=p(\tilde{x})$ dunque $f(\tilde{x})\in F$
- (iii) \Rightarrow Se $\varphi \in Aut(E)$ con $\varphi(\tilde{x}_0) = \tilde{x}_1$ poichè $p \circ \varphi = p$ allora $p_{\star} \circ \varphi_{\star} = p_{\star}$ come mappe $\pi_1(E, \tilde{x}_0) \to \pi_1(X, x_0)$.

In particolare $p_{\star}(\varphi_{\star}(\pi_1(E,\tilde{x}_0))) = p_{\star}(\pi_1(E,\tilde{x}_0)).$

Ora $\varphi_{\star}(\pi_1(E, \tilde{x}_0) = \pi_1(E, \tilde{x}_1))$ in quanto essendo φ omeomorfismo φ_{\star} è isomorfismo.

 \Leftarrow Se $p_{\star}(\pi_1(E,\tilde{x}_0))=p_{\star}(\pi_1(E,\tilde{x}_1))$ applicando il teorema dell'esistenza di sollevamenti a

$$(E, \tilde{x}_1) \downarrow^p$$

$$(E, \tilde{x}_0) \xrightarrow{p} (X, x_0)$$

otteniamo $\varphi: E \to E \text{ con } \varphi(\tilde{x}_0) = \tilde{x}_1 \text{ e tale che } p \circ vp = p.$

Analogamente si ottiene $\psi: E \to E \text{ con } \psi(\tilde{x}_1) = \tilde{x}_0$

Ora $\varphi \circ \psi$ e $\psi \circ \varphi$ sono sollevamenti dell'identità che coincidono in un punto in quanto si ha $\varphi(\psi(\tilde{x}_1)) = \tilde{x}_1$ e $\psi(\varphi(\tilde{x}_0)) = \tilde{x}_0$.

Per unicit del sollevamento si ha $\psi \circ \varphi = \varphi \circ \psi = Id_E$

Teorema 1.2 (Le azioni di monodromia e di Aut(E) commutano). Sia $F = p^{-1}(x_0)$, sia $\forall \varphi \in Aut(E)$, $\alpha \in \pi_1(X, x_0)$, $\tilde{x} \in F$ si ha

$$\varphi(\tilde{x} \cdot \alpha) = \varphi(\tilde{x}) \cdot \alpha$$

Dimostrazione. Sia $\alpha = [\gamma]$.

 $\varphi \circ \widetilde{\gamma}_{\widetilde{x}}$ è un sollevamento di γ (in quanto $p \circ \varphi \circ \widetilde{\gamma}_{\widetilde{x}} = p\widetilde{\gamma}_{\widetilde{x}} = \gamma$) e ha come punto iniziale $\varphi (\widetilde{\gamma}_{\widetilde{x}}(0)) = \varphi(\widetilde{x})$, dunque per unicità del sollevamento si ha $\varphi \circ \widetilde{\gamma}_{\widetilde{x}} = \widetilde{\gamma}_{\varphi(\widetilde{x})}$ da cui

$$\varphi(\tilde{x} \cdot \alpha) = \tilde{\gamma}_{f(\tilde{x})}(1) = \varphi \tilde{\gamma}_{\tilde{x}}(1) = \varphi(\tilde{\gamma}_{\tilde{x}}(1)) = \varphi(\tilde{x} \cdot \alpha)$$

Definizione 1.3. $p:E\to X$ rivestimento connesso si dice **regolare** se $\forall F$ fibra di E, l'azione di Aut(E) su F è transitiva

Teorema 1.3. I sequenti fatti sono equivalenti

- (i) p è rivestimento regolare
- (ii) $\exists F \text{ fibra di } E \text{ tale che l'azione di } Aut(E) \text{ su } F \text{ sia transitiva}$
- (iii) $\forall \tilde{x} \in E \text{ si ha } p_{\star}(\pi_1(E, \tilde{x}) \triangleleft \pi_1(X, p(\tilde{x})))$
- (iv) $\exists \tilde{x} \in E \text{ si ha } p_{\star}(\pi_1(E, \tilde{x}) \triangleleft \pi_1(X, p(\tilde{x})))$

Dimostrazione. • $(iii) \Rightarrow (iv) e(i) \Rightarrow (ii)$ in modo ovvio

• Mostriamo che $(iv) \Rightarrow (iii)$.

Supponiamo che la condizione valga per un fissato \tilde{x} e sia $\tilde{y} \in E$ generico.

Sia $\tilde{\gamma} \in \Omega(\tilde{x}, \tilde{y})$ e poniamo $\gamma = p \circ \tilde{\gamma}$.

Se $x = p(\tilde{x})$ e $y = p(\tilde{y})$ allora $\gamma \in \Omega(x, y)$.

Si vede facilmente che il seguente diagramma commuta ($\tilde{\gamma}_{\sharp}$ e γ_{\sharp} sono isomorfismi)

$$\begin{array}{ccc}
\pi_1(E, \tilde{x}) & \xrightarrow{\tilde{\gamma}_{\sharp}} & \pi_1(E, \tilde{y}) \\
\downarrow^{p_{\star}} & & \downarrow^{p_{\star}} \\
\pi_1(X, x) & \xrightarrow{\gamma_{\sharp}} & \pi_1(X, y)
\end{array}$$

Dunque

$$p_{\star}(\pi_1(E,\tilde{x})) \triangleleft \pi_1(X,x) \quad \Leftrightarrow \quad p_{\star}(\pi_1(E,\tilde{y})) \triangleleft \pi_1(X,y)$$

• $(ii) \Leftrightarrow (iv)$

Sia $F = p^{-1}(x)$, dati $\tilde{x}, \tilde{y} \in F$ abbiamo visto che $\exists \varphi \in Aut(E)$ con $\varphi(\tilde{x}) = \tilde{y}$ se e solo se $p_{\star}(\pi_1(E, \tilde{x})) = p_{\star}(\pi_1(E, \tilde{y}))$.

Inoltre, abbiamo visto, al variare di $\tilde{y} \in F$ i gruppi $p_{\star}(\pi_1(E, \tilde{y}))$ sono tutti e soli i coniugati di $p_{\star}(\pi_1(E, \tilde{x}))$.

Dunque l'azione su F è transitiva se e solo se $p_{\star}(\pi_1(E, \tilde{x}))$ coincide con tutti i suoi coniugati (è dunque normale)