

TricycleGAN

A Temporally Consistent CycleGAN for Unpaired Video-to-Video Translation

Master's Thesis Presentation

Author: Jonas Mayer

Supervisor: Prof. Dr. Nils Thuerey

Advisor: Mengyu Chu

Garching, 28th August 2019

Motivation: Video-to-Video Translation

- Style Transfer
- Object-to-Object Translation
- Face-to-Face Translation
- Etc...

Motivation: Unpaired Data

- Mappin between the two domains is unclear
- Data with matching inputoutput pairs is not available

CycleGAN: Unpaired Image-to-Image Translation

CycleGAN: Unpaired Image-to-Image Translation

Problem: Temporal Inconsistency

TricycleGAN

- Solution for Video-to-Video Translation
- Using unpaired Data
- Based on a cycleGAN

Recap: cycleGAN

TricycleGAN

Frame-Recurrent Generator

- Manually fed with last frame
- Motion compensation with FNet

Temporal Discriminator

- Feed three consecutive frames
- Motion compensation with FNet

Ping-Pong Loss

Long-term consistency

Premise: Result independent of frame ordering

Problem: Training Time

- Typically convergence after ~30 hours
- Speeding up iterations only at cost of quality

• Approach: Speed up convergence by constraining training

Latent Space Consistency Loss

Based on Encoder-Decoder
Structure of Generators

 Constraint: Equal latent space representations

Discriminator Style Loss

- Idea: Generate same features as real data in discriminators
 - → Feature loss using discriminators

- Due to unpaired data: spatial awareness not useful
 - → Compute gram matrices instead

Results: Low-Res to High-Res Simulation

Results: Comparison CycleGAN

Results: Ablation Study

Frame Differences

Results: Simulation to Real Smoke

Results: Ping-Pong Loss

Results: Obama to Trump

Results: Trump to Obama

Results: Horse to Zebra

Limitations

- Generators and discriminators too simple
- Data quality
- L2 norm in Ping-Pong loss
- No domain-specific spatio-temporal properties

Conclusion

- Temporal Consistent CycleGAN
 - Temporal discriminator and frame-recurrent generators
 - Ping-Pong loss for long-term consistency
 - Novel discriminator style loss
- Generalizable Approach

Questions?

Appendix

Temporal Consistency: Previous Work

- Use optical flows to compensate for motion
- Compute pixelwise loss between frames

Problem: produces blurry results

Implementation Details

- Implemented in Python/TensorFlow
- Trained on Nvidia Titan RTX