第三章 线性方程组的直接解法 编程实验

孔瑞阳 计科91 2019010175

第三章上机题6:

编程生成 Hilbert 矩阵 H_n (见例 3. 4),以及 n 维向量 $b=H_nx$,其中 x 为所有分量都是 1 的向量. 用 Cholesky 分解算法求解方程 $H_nx=b$,得到近似解,计算残差 $r=b-H_n\widehat{x}$ 和误差 $\Delta x=\widehat{x}-x$ 的 ∞ - 范数.

- (1) 设 n=10, 计算 $||r||_{\infty}$ 、 $||\Delta x||_{\infty}$.
- (2) 在右端项上施加 10^{-7} 的扰动然后解方程组, 观察残差和误差的变化情况.
- (3) 改变 n 的值为 8 和 12 , 求解相应的方程, 观察 $||r||_{\infty}$ 、 $||\Delta x||_{\infty}$ 的变化情况. 通过这个实验说明了什么问题?

思路:

使用C++编程实现。

先按照书中算法 3.10 的伪代码对 H_n 实现 Cholesky 分解 $H_n = LL^T$ 。

再使用高斯消元来解线性方程组: 先按照 $L(L^Tx) = b$ 解出 L^Tx , 再解出 x.

实验结果:

结果分析:

虽然 $||r||_\infty$ 在所有情况下都很小,但当 n=8,10,12 时, $||\Delta x||_\infty$ 随着 n 的增加超线性增加,说明 Hilbert 矩阵随着 n 的增加病态性越严重。同时,当存在 10^{-7} 的扰动时, $||\Delta x||_\infty$ 增加了 50% ,受扰动的影响非常大,也再次说明了 Hilbert 矩阵是一种病态矩阵。