3.3 Regular languages and grammars

[Linz §3.3]

- **Q**. What is the relation between **regular** languages and languages generated by **grammars**?
- A. We will see: Every **regular** language can be generated by a **grammar**, but **not conversely**!

To get an equivalence, we need a **special kind** of grammar.

Definition:

(1) A grammar $G = (V, \Sigma, S, P)$ is **right-linear** (**RL**) if all its productions are of the form:

$$A \longrightarrow xB$$

$$A \longrightarrow x$$

where $x \in \Sigma^*$.

(2) G is **left-linear** (LL) if all its productions are of the form:

$$A \longrightarrow Bx$$

$$A \longrightarrow x$$

(3) G is **linear** if it is either **RL** or **LL**.

Note: Linz (Def. 3.3) calls such grammars "regular".

$$3 - 13$$

Theorem: Let G be an **RLG**.

Then L(G) is **regular**.

Proof: Given an RLG G, we will show how to **construct** an **NFA** M that accepts L(G).

M is constructed as follows,

Non-terminals represent **nodes**,

Terminals represent **edges**.

(Start with production $S \longrightarrow \dots$)

Take a production $A \longrightarrow \dots$

where A = S, or you already have a node labeled A,

<u>Case 1</u> Production is $A \longrightarrow a_1 \dots a_k B$ $(k \ge 1)$

Construct:

<u>Case 2</u> Production is $A \longrightarrow B$.

Construct:

<u>Case 3</u> Production is $A \longrightarrow a_1 \dots a_k$ $(k \ge 1)$

Construct:

Case 4 Production is $A \longrightarrow \lambda$

Construct:

OR make (A) a final node.

Note:

If production is $A \longrightarrow xB$, where you have already encountered B, i.e. there already is a node B, then **loop back** to node B.

In this way, you construct an **nfa** M s.t. L(M) = L(G).

Examples: Construct **nfa's** from RLG's

 $(\Sigma = \{a, b\})$

 $1) S \longrightarrow abS \mid a$

2) $S \longrightarrow abS \mid \lambda$

Conversely,

[L, Theorem 3.4]

Theorem: For any **nfa** M, we can construct an RLG G s.t.

$$L(G) = L(M).$$

.

Proof: (outline)

Again, the **non-terminals** of G are the **nodes** of M, and the **terminals** of G are the **edges** of M.

Cases

- For each edge $A \longrightarrow B$ of M, add to G the prod. $A \longrightarrow B$.
- For each **final node** in M, add the production $A \longrightarrow \lambda$. \square

Corollary: For each regular expression r, \exists RLG G s.t.

$$L(G) = L(r).$$

Proof: Combine Theorems on p. 3-7 and above. \Box