Flight deck displays

Content

- Cockpit to flight deck
 - Historical Development
 - 'Basic six' instruments
 - Standard 'T'
 - Flight engineers
- Analogue to digital glass cockpit
 - Modern aircraft flight deck
 - Instruments
 - Navigation display
 - Primary flight display
 - Standby instrument
 - ECAM

Instruments

- What do we need to know to fly?
 - Where we are going?
 - What is the attitude of the aircraft?
 - How are the systems performing?
- Humans have poor situational awareness in the air
 - Even worse in bad weather or at night!
- 'Blind flying' was demonstrated as early as 1929.....

An early aircraft cockpit

Basic instruments, mainly monitoring the engine

Bristol Blenheim

Spitfire

Spitfire

747 (early)

Primary flight Instruments – the Basic Six

■ The 'basic six', defined in 1937 by the RAF, standardised instruments.

Attitude indicator

- The attitude indicator displays pitch and roll
- Also known as an 'artificial horizon'.
- Aircraft represented by stationary symbolic 'wings', while the horizon (earth = brown, sky = blue) rotates behind.
- Russian instruments are reverse!

Turn indication / coordination

- The 'turn coordinator' developed from the 'turn and slip indicator' uses yaw measurement to provide information on the rate and quality of turn, i.e. a good turn is one without side slip.
- Normally used on smaller aircraft. The rate of turn is standardised so a pilot will know how long it will take to turn through a particular angle. Here 2 mins/ 360°

Direction indicator, Horizontal situation indicator

- The direction indicator is normally driven from the inertial instruments and is complementary to a magnetic compass.
- On larger aircraft a more complex 'horizontal situation indicator' is used in place of the direction indicator, providing track information.

Primary flight Instruments – the Basic Six

Inertial

Air-data

The 'basic six', defined in 1937 by the RAF, standardised instruments.

Primary flight Instruments – the Standard 'T'

■ The Standard 'T' arrangement is a subset of the basic six found in nearly every aircraft.

Concorde

The flight engineer

- In addition to primary flight, navigation and system information are needed to operate the aircraft
- As aircraft became more complex it became impossible for the pilot to fly the aircraft alone.
- The post of 'flight engineer' was introduced in the late 1930's into both military and civilian aircraft.
- The flight engineer is responsible for the control and monitoring of the aircraft systems.
- Up until the recent advent of modern computer control systems, civil airliners would have a three-man crew: Captain, First Officer and flight engineer (or Second Officer).

The flight engineer

The Glass cockpit

- Concorde was the 'high water mark' for analogue gauges.
- The complexity of both the installation (e.g. number of cables and connectors) and pilot capability to deal with information was at the limits.
- Information display priority was based on frequency of use, not immediate importance - critical indicators might end up out of sight.
- Since the late 1980's displays employ reconfigurable 'glass cockpits' first based on CRTs and more recently on large area LCD.
- This allows information to be displayed according to relevance e.g. in response to fault or emergency situation the relevant information can be displayed.
- Multi-function displays also provide redundancy.

Experimental CRT-based glass cockpit (1975)

Primary Flight Display

Navigation Display

Courtesy: Malcolm Jukes

A320 CRT flight deck in 1988

Boeing 747 LCD displays in 1995

AVDASI 1 AENG 10001

A380 large area LCD

© University of Bristol

Department of Aerospace Engineering

Primary flight display

Navigation display

The navigation display can show map and weather radar data

A380 navigation and primary flight display

Integrated Standby flight display

- The standby flight display is a back-up instrument providing an independent display of primary flight data.
- It is also uses differing sensors and processors to the main displays, which provides redundancy

A380 ECAM

- The Electronic Centralised Aircraft Monitor provides information on many of the aircrafts systems.
- The system can reduce pilot workload by automatically displaying important information.

Concorde / 787

AVDASI 1 AENG 10001

© University of Bristol **Department of Aerospace Engineering**

