Efficient algorithms, architectures and implementations in internet of things and smart environments

Stéphane Kundig

stephane.kundig@unige.ch

TCS—Sensor Lab
University of Geneva
http://tcs.unige.ch/doku.php

Presentation Outline

- The Syndesi Testbed
- Modelled Testbeds
- Efficient bidirectional search in large scale networks
- Office automation for Syndesi mobile users
- A Raspberry-Pi cluster for distributed edge computing (ongoing work)
- Summary

Syndesi Testbed

- Syndesi is an IoT framework and testbed located at the University of Geneva
- It includes WSN as well as crowdsensed resources exposing them as a service via a REST-ful architecture
- More than 30 IPv6-enabled sensor motes compose its backbone WSN

Zolertia's Z1 Mote

O. Evangelatos, K. Samarasinghe and J. Rolim, "Syndesi: A Framework for Creating Personalized Smart Environments Using Wireless Sensor Networks," 2013 IEEE International Conference on Distributed Computing in Sensor Systems, Cambridge, MA, 2013, pp. 325-330.

Syndesi Testbed

Creating a dataset

- 1. Illuminance
- 2. Temperature
- 3. Humidity

Automatic query for values every ~20min

← Ţ			\triangledown	id	node_name	resource_name	value	unit	pos_x	pos_y	pos_z	timestamp
	<i></i> €dit	≩ i Copy	Delete	22040	SGoAs6	illuminance at SGoAs6	270	lux	2.4	9.05	1.45	2016-03-18 11:20:22
		≩ Copy	Delete	22041	SGoAs5	illuminance at SGoAs5	284	lux	2.4	11.55	3.9	2016-03-18 11:15:38
	<i></i> €dit	≩ Copy	Delete	22042	SGoAs4	illuminance at SGoAs4	315	lux	2.4	13.55	3.9	2016-03-18 11:20:10
		Copy	Delete	22043	SGoAs3	illuminance at SGoAs3	331	lux	2.4	17.6	1.45	2016-03-18 11:17:50
	<i></i> €dit	≩ Copy	Delete	22044	SGoAs2	illuminance at SGoAs2	368	lux	2.4	13.55	0	2016-03-18 11:15:03
	Edit	≩ сору	Delete	22045	SGoAs1	illuminance at SGoAs1	305	lux	2.4	11.55	0	2016-03-18 11:19:09

◆ : Physical Sensor

~300k measurements so far

Modelled Testbeds

- ➤ A modelled testbed (MT) is based on a physical testbed same 3D space, connected sensors appearing in corresponding positions
- ➤ Virtual sensors can be inserted interactively in its GUI

They provide:

- -Very large experiment scale
- -Unlimited number of simultaneous experiments

Kundig S., Angelopoulos C.M., Rolim J. (2018) "Modelled Testbeds: Visualizing and Augmenting Physical Testbeds with Virtual Resources" In: Rocha Á., Guarda T. (eds) Proceedings of the International Conference on Information Technology & Systems (ICITS 2018). ICITS

Experiment accuracy in Modelled Testbeds

- Physical sensors measurement values shown in MTs are close-to-real time.
- Virtual sensors get their values via weighted average on specific physical sensors subsets, derived from association analysis on past data

Physical Sensor

: Virtual Sensor

Evaluation

10-fold Cross-validation

Weighted average over inverse distance												
Sensor:	Illumina	nce(lux)	Tempera	$ture(^{o}C)$	Humidity(%)							
Room	Average RMSE	Average MAPE	Average RMSE	Average MAPE	Average RMSE	Average MAPE						
Office A	9.22 ± 0.55	$3.02 \pm 0.12\%$	0.33 ± 0.01	$1.07 \pm 0.02\%$	0.60 ± 0.02	1.50 ± 0.01%						
Office B	44.4 ± 3.21	6.58 ± 0.20%	0.60 ± 0.01	1.91 ± 0.03%	1.17 ± 0.10	2.61 ± 0.05%						
Weighted average over inverse distance squared												
Sensor:	Illumina	nce(lux)	Tempera	$ture(^{o}C)$	Humidity(%)							
Room	Average RMSE	Average MAPE	Average RMSE	Average MAPE	Average RMSE	Average MAPE						
Office A	9.39 ± 0.60	$3.20 \pm 0.14\%$	0.30 ± 0.01	0.98 ± 0.01%	0.58 ± 0.01	1.42 ± 0.01%						
Office B	43.69 ± 3.41	$6.57 \pm 0.19\%$	0.61 ± 0.02	1.88 ± 0.04%	1.18 ± 0.10	$2.62 \pm 0.06\%$						

• Publish-Subscribe communication patterns

• No routing layer existence is assumed.

• Fully distributed solution

• A random walk (good at balancing the load)

Loop-erased path

• The Laplacian Random walk

Harmonic function *h*:

$$h(x_i) = \frac{\sum_{neihgbors} h(x_j)}{\sum_{neihgbors}}$$

- -choose min h(x)
- -generates loop-erased path!

Simulation-Evaluation

Key results:

- A minimal local knowledge of the network suffices. $(d = 3 \rightarrow 95\% \text{ success})$
- Optimal local values are observed (d = 3, $St_b = 200$, $C_b = 200$).

Stéphane Kundig, Pierre Leone, and José Rolim, 2016, "A Distributed Algorithm Using Path Dissemination for Publish-Subscribe Communication Patterns", in Proceedings of the 14th ACM International Symposium on Mobility Management and Wireless Access (MobiWac '16)

Office Automation — Indoor Location

too expensive!

Office Automation – Indoor Location

S. Kundig, Z. Zhao, B. Carron, J. Carrera, T. Braun and J. Rolim, "Indoor Location for Smart Environments with Wireless Sensor and Actuator Networks," 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 2017, pp. 535-538.

Office Automation

- ***** Sensor
- ***** Sensor-Actuator

Location-based automation

Evaluation

Check Point

A distributed computing cluster on the edge

- -Computationally demanding applications
- -Low-latency demanding applications

Summary/Future work

- A WSN-based framework with diverse modules/utilities:
 - -Environmental monitoring/crowdsensing
 - -Location-based automation
 - -Its modelled 3D-version with virtual resources of realistic values
- A distributed algorithm for bidirectional search in large scale networks

Future work:

- -Benchmark the Raspberry-Pi cluster
- -Test it in some application!

