APPENDIX

A . System Settings

The 8 fundamental units are presented in Table I. The composition of different systems is shown in Table II.

composition of different systems is shown in Table 11.								
	unit1	unit2	unit3	unit4	unit5	unit6	unit7	unit8
β	16.19	17.26	16.6	16.5	19.7	22.26	27.74	25.92
α	1000	970	700	680	450	370	480	660
<u>P</u>	150	150	20	20	25	20	25	10
$\frac{P}{P}$	455	455	130	130	162	80	85	55
\underline{T}_{on}	8	8	5	5	6	3	3	1
$T_{\rm off}$	8	8	5	5	6	3	3	1
C_{cold}	9000	10000	1100	1120	1800	340	520	60
C_{hot}	4500	5000	550	560	900	170	260	30
$T_{\rm cold}$	5	5	4	4	4	4	2	0
$P_{ m up}$	225	225	50	60	50	60	60	45
$P_{\rm down}$	225	225	50	60	50	60	60	45
P_{start}	150	150	20	20	25	20	25	10
P_{chut}	150	150	20	20	25	20	25	10

TABLE I 8 fundamental units and parameters

system scale	unit1	unit2	unit3	unit4	unit5	unit6	unit7	unit8
60	8	8	8	8	7	7	7	7
80	10	10	10	10	10	10	10	10
132	45	45	8	0	5	0	12	16
1080	260	240	100	140	40	100	80	120

TABLE II System basic composition

B . Input features

Features for *Neural Initial Commitment Prediction* policy as shown in TABLE IIIIII. While the features for the *Neural neighborhood Prediction* policy were added a little bit on this basis, as shown in TABLE IIV.

basis, as shown in TABLE IIV.				
Component	Feature Description			
	normalized coefficient of variables in the			
	objective function			
	degree of variable node in the bipartite			
	representation			
	average coefficient of the variable in all			
	constraints			
Variable	maximum value among all coefficients			
	of the variable			
	minimum value among all coefficients of			
	the variable			
	binary representation to show if the			
	variable is a commitment variable			
	LP solution of the variable			
_	average of all coefficients in the			
	constraint			
	degree of constraint nodes in the			
Constrain	bipartite representation			
	right-hand-side value of the constraint			
	binary representation to show if the			
	constraint is an equation constraint			
TADLE !!!!!	6 11 11 11 10			

TABLE IIIII Input features for Neural Initial Commitment Prediction policy

Component	Feature Description					
-	normalized coefficient of variables in the					
	objective function					
	degree of variable node in the bipartite					
	representation					
	average coefficient of the variable in all					
	constraints					
	maximum value among all coefficients of the					
	variable					
	minimum value among all coefficients of the					
	variable					
	binary representation to show if the variable is					
Variable	a commitment variable					
variable	binary representation to show if the variable					
	a binary variable					
	incumbent solution of the variable					
	Lower bound of the variable					
	upper bound of the variable					
	binary representation of solution value equals					
	lower bound					
	binary representation of solution value equals					
	upper bound					
	Minimum value between upper bound-solution					
	and solution-lower bound					
	Value in incumbent					
	average of all coefficients in the constraint					
	degree of constraint nodes in the bipartite					
	representation					
Constrain	right-hand-side value of the constraint					
Constrain	binary representation to show if the constraint					
	is an equation constraint					
	dual solution of the constraint					
	slack value of the constraint					
ABLE IIV Inp	ut features for Neural neighborhood					

TABLE IIV Input features for Neural neighborhood Prediction policy