Datorteknik TSEA82 + TSEA57 Fö3

Talbaser och binär aritmetik

Datorteknik Fö3: Agenda

- Kort repetition
- Talbaser och Binär aritmetik
- LAX-anmälan + LAX_datablad
- Tid för frågor

Repetition

Instruktioner

I databladet för mikrokontrollern finns drygt hundratalet instruktioner. Dessa kan delas in i fem huvudgrupper:

```
• Grupp 1. Instruktioner som flyttar data (ldi, mov, ...)
```

- Grupp 2. Aritmetiska instruktioner (add, sub, subi, ...)
- Grupp 3. Logiska instruktioner (asl, ror, ...)
- Grupp 4. Hoppinstruktioner (jmp, brxx, call, ...)
- Grupp 5. I/O-instruktioner (out, in)

=532 (0x0214)

<u>Instruktioner: Grupp 2. Aritmetiska operationer</u>

Exempel: add, addc

Addera de två 16-bitarstalen som finns i r21:r20 och r17:r16 till r17:r16.

```
add r16,r20; ingen ingående carry adc r17,r21; med carry (om den finns)

11 11 1
r21:r20 000000000:11101000 =232 (0x00E8)
r17:r16 00000001:00101100 =300 (0x012C)
```

r17:r16 00000010:00010100

Talbaser och binär aritmetik

<u>Talbaser</u>

En talbas anger antalet symboler (siffror) som ingår i ett nummersystem. T ex den decimala basen 10 med siffrorna 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

I princip så existerar alla tänkbara talbaser, men i praktiken så används bara ett fåtal. Inom datorteknik så nyttjas de talbaser som har visat sig underlätta hanteringen av de tal som lagras digitalt:

- binär, basen 2 med symbolerna : 0, 1

- decimal, basen 10 med symbolerna : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Hexadecimal, basen 16 med symbolerna: 0..9, A, B, C, D, E, F

I litteraturen kan man även ibland se dem oktala talbasen, basen 8 med symbolerna 0 .. 7. Den är dock inte lika vanligt förekommande längre.

<u>Talbaser</u>

För att veta vilken talbas som används för ett skrivet tal så anges det med en nedsänkt nummer efter talet. T ex:

$$C_{16} = 12_{10} = 1100_2$$

Det nedsänkta numret (16, 10 och 2) anges alltid i basen 10.

Utan angiven talbas vet vi ju inte vad talet 10 betyder, 16_{10} , 10_{10} eller 2_{10} ?

Bas 16	Bas 10	Bas 2
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111
10	16	10000

Addition och ordlängd

Addition i basen 2 fungerar enligt följande: I sista summan får vi en en-talssiffra och en två-talssiffra (carry).

Jfr med en-talssiffra och tio-talssiffra i det decimala talsystemet.

Ordlängden är det antal bitar som används i beräkningen.

```
Exempel:

Addera 01011 och 10111, ordlängd 5.

Addera 01011 och 10111, ordlängd 8.

11111

01011

+10111

100010

carry

Ordlängd 5

Exempel:

Addera 01011 och 10111, ordlängd 8.

11111

00001011

+00010111

00100010

ingen carry Ordlängd 8
```


Basen 2

I talbasen 2 (den binära) har vi endast två symboler, 0 och 1, för att representera olika tal.

Bitarna i ett binärt tal har positionsvikter, där en bit till vänster har dubbelt så stor vikt som biten till höger.

Bitposition: ... 7 6 5 4 3 2 1 0 Positionsvikt: ... $2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$

Exempel: Omvandla det binära talet 10011101 till decimal form:

```
10011101_{2} = 1*2^{7} + 0*2^{6} + 0*2^{5} + 1*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} =
= 128 + 0 + 0 + 16 + 8 + 4 + 0 + 1 = 157_{10}
```


Omvandling från decimal till binär form

Exempel: Omvandla 98₁₀ till ett binärt tal (m h a hjälptabell över tvåpotenser)

$$98 - 2^{6} = 98 - 64 = 34 -> 1$$

$$34 - 2^{5} = 34 - 32 = 2 -> 1$$

$$2 - 2^{4} = 2 - 16 = -14 -> 0$$

$$2 - 2^{3} = 2 - 8 = -6 -> 0$$

$$2 - 2^{2} = 2 - 4 = -2 -> 0$$

$$2 - 2^{1} = 2 - 2 = 0 -> 1$$

$$0 - 2^{0} = 0 - 1 = -1 -> 0 \longrightarrow 1100010_{2}$$

$$Dvs 98_{10} = 1100010_2$$

Omvandling från decimal till binär form

Exempel: Omvandla 98₁₀ till ett binärt tal (m h a division med 2)

```
rest?

98 / 2 = 49.0 nej -> 0

49 / 2 = 24.5 ja -> 1

24 / 2 = 12.0 nej -> 0

12 / 2 = 6.0 nej -> 0

6 / 2 = 3.0 nej -> 0

3 / 2 = 1.5 ja -> 1

1 / 2 = 0.5 ja -> 1
```

$$Dvs 98_{10} = 1100010_2$$

Hexadecimal representation

Tabellen till höger är **mycket bra** att kunna utantill:

Det gör det lätt att omvandla binärt <->hexadecimalt.

Exempel: Omvandla 1110101111, till basen 16

$$1110101111_2 = 0011 1010 1111$$

3 A F = 3AF₁₆

Omvandling hexadecimalt -> decimalt är relativt enkelt.

Exempel: Omvandla 3AF₁₆ till basen 10

$$3AF_{16} = 3_{10}*16^2 + 10_{10}*16^1 + 15_{10}*16^0 =$$

= $3*256 + 10*16 + 15 = 943_{10}$

Dec	Bin	Нех
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

Hexadecimal representation

Omvandling decimalt -> hexadecimalt är lite knepigare, man funkar på samma sätt som decimalt -> binärt, dvs dela med basen (16) och ta hand om resten.

Exempel: Omvandla 943₁₀ till basen 16:

 $Dvs, 943_{10} = 3AF_{16}$

Dec	Bin	Нех
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

2-komplementstal

Ett teckenlöst tal med bitarna x_3 , x_2 , x_1 , x_0 kan skrivas:

$$X = 8*x_3 + 4*x_2 + 2*x_1 + 1*x_0$$

Ett tal med tecken (i 2-komplementsform) kan skrivas:

$$X = -8*x_3 + 4*x_2 + 2*x_1 + 1*x_0$$

Den mest signifikanta biten (teckenbiten x_3 i detta fall) i ett 2-komplemetstal är alltså negativ

Exempel: Tolka 1011₂ som ett 2-komplementstal:

$$1011_2 = -8*1 + 4*0 + 2*1 + 1*1 =$$

= -8 + 0 + 2 + 1 = -5₁₀

Teckenlös	2-komp	Bin
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	-8	1000
9	-7	1001
10	-6	1010
11	-5	1011
12	-4	1100
13	-3	1101
14	-2	1110
15	-1	1111

2-komplementstal

Det är lätt att byta tecken på ett 2-komplementstal, invertera alla bitarna och addera 1, alltså:

$$-X = \overline{X} + 1$$

Exempel: Byt tecken på 2-komplementstalet $3 = 0011_2$ -3 = -0011₂ = $\overline{0011}$ + 1 = 1100 + 1 = 1101₂

Det fungerar åt båda hållen.

$$-(-3) = -1101_2 = \overline{1101} + 1 = 0010 + 1 = 0011_2$$

En annan metod: Invertera alla bitar till vänster om minst signifikant 1:a.

Teckenlös	2-komp	Bin
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	-8	1000
9	-7	1001
10	-6	1010
11	-5	1011
12	-4	1100
13	-3	1101
14	-2	1110
15	-1	1111

2-komplementstal: Addition, subtraktion, flaggor

En ALU har två uppgifter:

Utföra en operation

- Aritmetik add, sub, mul, div
- Logiska operationer and, or, xor, not
- Annan bitmanipulering

Sätta statusflaggor

- Z: Zero flag
- N : Negative flag
- C: Carry flag
- V : Overflow flag
- Andra flaggor

2-komplementstal: Addition, subtraktion, flaggor Z och N

	Bin	2-kompl	Teckenlös	Z	N	4-bitars tal X:
	0000	0	0	1	0	. 210012 001 11
	0001	1	1	0	0	$X = \{x_3, x_2, x_1, x_0\}$
	0010	2	2	0	0	
	0011	3	3	0	0	
	0100	4	4	0	0	Flaggorna Z och N:
	0101	5	5	0	0	
	0110	6	6	0	0	$Z=\overline{x}_3\cdot\overline{x}_2\cdot\overline{x}_1\cdot\overline{x}_0$
	0111	7	7	0	0	NI
_	1000	-8	8	0	1	$N=x_3$
	1001	-7	9	0	1	ALU:n vet inte om talet X är
	1010	-6	10	0	1	
	1011	-5	11	0	1	med eller utan tecken.
	1100	-4	12	0	1	Det bestämmer programmerare
	1101	-3	13	0	1	2 of Montaining programmerator
	1110	-2	14	0	1	Dra Al II.n gön alltid nå samma
	1111	-1	1 5	0	1	Dvs, ALU:n gör alltid på samma

2-komplementstal: Addition, subtraktion, flaggor C och V

Bin	2-kompl	Teckenlös
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	-8	8
1001	-7	9
1010	-6	10
1011	-5	11
1100	-4	12
1101	-3	13
1110	-2	14
1111	-1	15

Talcirkeln: add medurs, sub moturs

C 1-ställs när man passerar röda linjen från 15→0 (vid add), eller 0→15 (vid sub).

V 1-ställs när man passerar röda linjen från 7→-8 eller -8→7 (vid add med lika tecken eller sub med olika tecken).

C har bara betydelse för tal utan tecken.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V har bara betydelse för tal med tecken.

2-komplementstal: Addition, subtraktion, flaggor C och V

Bin	2-kompl	Teckenlös	Exempel	
0000	0	0	2	
0001	1	1	Addition 2K TL	Addition 2K TL
0010	2	2	0011 3 3	0011 3 3
0011	3	3	+1100 -4 12	+0101 5 5
0100	4	4	01111 -1 15	01000 -8 8
0101	5	5	Z:0,N:1,C:0,V:0	Z:0,N:1,C:0,V:1
0110	6	6		
0111	7	7	Culation OV TI	Culatia 21/ TI
1000	-8	8	<u>Subtr. 2K TL</u> 0011 3 3	<u>Subtr. 2K TL</u> 1001 -7 9
1001	-7	9	-0101 5 5	-0100 4 4
1010	-6	10	11110 -2 14	00101 5 5
1011	-5	11	Z:0,N:1,C:1,V:0	Z:0,N:0,C:0,V:1
1100	-4	12	, ,	
1101	-3	13	Carry vid subtraktion mots	
1110	-2	14	egentligen borrow, men fy	uer samma funktion som
1111	_ _1	15		

en lånesiffra och heter ma funktion som carry.

<u>Hårdvara</u>: Addition, flaggor C och V

Hårdvara för att addera kan byggas med hjälp av en fulladderare. Den summerar de inkommande bitarna x och y, samt c_{in} till c_{ut} och s. Kort sagt summeras antal inkommande 1:or.

x	у	c _{in}	c _{ut}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

<u>Hårdvara</u>: <u>Addition</u>, <u>flaggor</u> <u>C</u> <u>och</u> <u>V</u>

För flera bitar så kaskadkopplas flera fulladderare, t ex en 4-bitars:

$$X = \{x_3, x_2, x_1, x_0\}$$

$$Y = \{y_3, y_2, y_1, y_0\}$$

$$S = \{s_3, s_2, s_1, s_0\}$$

Ingående carry (c_{in} längst till höger) är 0. I annat fall skulle vi beräkna X+Y+1. Utgående carry är nu c_3 längst till vänster.

Observera, att konstruktionen fungerar både för teckenlösa tal och 2-komplementstal.

<u>Hårdvara</u>: <u>Addition</u>, <u>flaggor</u> <u>C</u> <u>och</u> <u>V</u>

Hur detekteras overflow (V), spill? När addition av tal med lika tecken, byter tecken.

X ₃	y ₃	C ₂	C ₃	S ₃	V
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

$$V = c_3 \times c_2$$

<u>Hårdvara</u>: Addition och subtraktion, flaggor C och V

Subtraktion då?

$$X - Y = X + (-Y) = X + \overline{Y} + 1$$

Det behövs en styrbar inverterare, dvs en xor-grind:

A	В	M
0	0	0
0	1	1
1	0	1
1	1	0

<u>Fixtal</u>

Hur representerar datorn tal med decimaler? Vad händer när ett tal shiftas åt höger (delas med 2):

Det blir en "decimalpunkt" mellan registret och carry-biten, men i princip kan decimalpunkten placeras var som helst, bara den har en fix position i hela talsystemet. T ex:

Det är då ett fixtal och kan göras beräkningar med precis som tidigare. Enbart tolkningen gör det till ett fixtal.

<u>Flyttal</u>

Hos ett flyttal hamnar decimalpunkten på olika platser beroende på talets storlek. Dvs, decimalpunkten *flyter omkring*.

Ett decimaltal, t ex 0.15625 = 1.5625*10⁻¹, och 1.5625 kallas mantissa och -1 kallas exponent. Talet kan lagras med basen 2 enligt *mantissa**2^{exponent}, men då med andra värden på mantissa och exponent (anpassade till basen 2), och enligt en viss standard. T ex för ett 32-bitars flyttal:

 $V\ddot{a}rdet: s*m*e = (+1) * 1.25 * 2^{-3} = 0.15625$

LAX-anmälan + LAX_datablad

LAX-anmälan + LAX_datablad

- LAX:en går 24/5 samt 25/5, anmälan kan göras nu i Lisam
- Under LAX:en har man tillgång till LAX_datablad.pdf (se under Examination)

Tid för Frågor

Anders Nilsson

www.liu.se

