Aula 15 Métodos potenciométricos

Jiří Borecký **CCNH** 2014

Introdução

- Os métodos potenciométricos são baseados na medida do potencial da célula eletroquímica na ausência de correntes
 - Métodos que envolvem a utilização de equipamento simples e pouco dispendioso:
 - Elétrodo de referência (ânodo)
 - Elétrodo indicador (cátodo)
 - Potenciômetro
 - O elétrodo de referência deveria ter um potencial constante e completamente independente da solução a analisar
 - O elétrodo indicador é seletivo para um determinado íon, tornando possível a obtenção da concentração desse íon através do valor de potencial medido

Elétrodo de referência

ersidade Federal do ABC BC-1308 Biofísica

- ▶Para poder correlacionar o potencial da célula com a concentração do íon a analisar é necessário para um dos elétrodos:
 - conhecer com exatidão o potencial
 - que esse potencial seja constante e completamente independente da solução a analisar
- ▶Idealmente um elétrodo de referência:
 - É construído com base numa reação reversível
 - Obedece à equação de Nernst
 - O seu potencial é constante ao longo do tempo
 - Regressa ao seu potencial após ser sujeito a pequenas correntes
 - É relativamente independente da temperatura
 - Não sofre histerese com ciclos de temperatura
- >Exemplos:
 - Elétrodo saturado de calomelanos
 - Elétrodo de prata/cloreto de prata

Elétrodo saturado de calomelanos

Métodos potenciométricos

Calomel ≡ cloreto mercuroso

$$Hg_2Cl_2(s) + 2e^- \leftrightarrow 2Cl^- + 2Hg(l)$$

 $Hg \mid Hg_2Cl_2(sat), KCl(x M) \mid l$

- È normal utilizar uma solução saturada de KCI (3,7 M − 20°C) devido à facilidade de construção, no entanto:
 - estabelecimento do novo equilíbrio de solubilidade.
 - Coeficiente de temperatura elevado
 - Longo tempo de estabilização após mudança da temperatura devido ao estabelecimento do novo equilíbrio de solubilidade.

	Electrode Potential (V), vs. SHE				
Temperature, °C	0.1 M ^c Calomel ^a	3.5 M ^c Calomel ^b	Saturated ^c Calomel ^a	3.5 M ^{b,c} Ag/AgCl	Saturated Ag/AgCl
10		0.256		0.215	0.214
12	0.3362		0.2528		
15	0.3362	0.254	0.2511	0.212	0.209
20	0.3359	0.252	0.2479	0.208	0.204
25	0.3356	0.250	0.2444	0.205	0.199
30	0.3351	0.248	0.2411	0.201	0.194
35	0.3344	0.246	0.2376	0.197	0.189
38	0.3338		0.2355		e e
40		0.244	20.10.11.20	0.193	0.184

Elétrodo saturado de calomelanos

- ➢Os elétrodos de calomelanos são sempre saturados em Hg₂Cl₂
- ➤ Se forem saturados em KCl chamam-se elétrodos saturados de calomelanos (ESC)

Elétrodo de prata/cloreto de prata

AgCl (s) +
$$e^- \leftrightarrow Cl^- + Ag$$
 (s)
Ag | AgCl (sat), KCl (xM) ||

- Normalmente preparado em soluções de KCl saturadas ou com uma concentração igual a 3,5 M
- Apresentam algumas vantagens:
 - Podem ser utilizados a temperaturas superiores a 60 °C
 - Menos problemáticos em termos ambientais
- Pode ser mais reativo que o elétrodo de calomelanos (proteínas)

Precauções na utilização de elétrodos de referência

versidade Federal do ABC BC-1308 Biofísica

- Entupimento da junção (membrana porosa) e contaminações da solução do elétrodo
- ➤ Manter o nível interno de KCl superior ao nível da solução a analisar para garantir que o efluxo do KCl é maior que o influxo da solução analisada
- ➤ Possível contaminação da solução a analisar:
 - contaminação desprezível
 - contaminação significativa, que é resolvida com recurso a uma ponte salina
- Determinação de íons Cl⁻, K⁺ → ponte salina com KNO₃ ou Na₂SO₄.

Elétrodos indicadores

Métodos potenciométricos

➤ Metálicos

- 1^a ordem
- 2^a ordem
- 3^a ordem
- Redox
- **≻**Membrana
- ➤ Transistores de efeito de campo seletivos (ion-selective fieldeffect transistors - ISFETs)
- ➤ "Elétrodos" para gases
- ➤ Biossensores

Elétrodos de 1ª ordem

lade Federal do ABC BC-1308 Biofísica

- Elétrodos que estão em equilíbrio direto com o seu cátion em solução
- ➤ Reação única e reversível, por exemplo:

$$Cu^{2+} + 2e^{-} \leftrightarrow Cu$$
 (s)

$$E_{ind} = E_{Cu^{2+}/Cu}^{0} - \frac{0,0592}{2} \log \left(\frac{1}{a_{Cu^{2+}}} \right) \qquad E_{ind} = E_{Cu^{2+}/Cu}^{0} - \frac{0,0592}{2} pCu$$

- ➤ Sistemas pouco utilizados porque:
 - São pouco seletivos: íons com E₀ mais positivos podem ser também reduzidos (caso de Cu, são íons de Hg, Pt, Pd)
 - Os eletrodos metálicos (Zn, Cu) só podem ser utilizados em soluções neutras ou básicas
 - Alguns metais são facilmente oxidáveis
 - Em muitos casos, o declive de E_{ind} vs pMe não é o esperado (Ni, Co, Fe, Cr)
- ➢Sistemas cuja utilização é conhecida:
 - Ag/Ag⁺ Hg/Hg²⁺ Cu/Cu²⁺ Zn/Zn²⁺ Cd/Cd²⁺ Bi/Bi³⁺ Tl/Tl³⁺ Pb/Pb²⁺

Elétrodos de 2ª ordem

versidade Federal do ABC BC-1308 Biofísica

- Elétrodo de metal, sensível a um ânion que forma precipitado ou complexo solúvel estável com cátion do metal
- >Exemplos:

AgCl (s) +
$$e^{-} \leftrightarrow$$
 Ag (s) + Cl⁻

$$E_{ind} = E_{AgCl/Ag}^{0} - 0.0592 \log(a_{Cl}) = E_{AgCl/Ag}^{0} - 0.0592 pCl$$

- ➤ Sistemas muito utilizados
- ➤ Sistemas cuja utilização é conhecida:
 - Ag|AgCl|Cl- ou Hg|Hg₂Cl₂|2Cl-

Elétrodos de 3ª ordem

- ➤O elétrodo é sensível a um cátion que não é o seu, via sais insolúveis ou complexos solúveis estáveis
- Exemplo: utilização do elétrodo de mercúrio para determinação da concentração de Ca²⁺ via complexos estáveis destes cátions com EDTA (Y):

$$Hg^{2+} + Y^{4-} \leftrightarrow HgY^{2-}$$
 $HgY^{2-} \leftrightarrow Hg^{2+} + Y^{4-}$
 $Ca^{2+} + Y^{4-} \leftrightarrow CaY^{2-}$
 $Hg \mid HgY^{2-} \mid CaY^{2-} \mid Ca^{2+} \ (x M) \mid |$

Elétrodos redox

Métodos potenciométricos

- Elétrodos metálicos inertes (Au, Pt, Pd) servem como elétrodos indicadores num sistema de oxidação-redução
- As vezes chamados de eletrodos de ordem 0 (praticamente não são em equilíbrio com seu íon)
- **≻**Exemplo:

$$Ce^{4+} + e^{-} \leftrightarrow Ce^{3+}$$

> Problemas:

Por vezes o processo de transferência eletrônica não é reversível e os elétrodos não respondem de maneira previsível

Elétrodos de membrana

- Funcionalmente diferentes dos elétrodos metálicos
- O potencial não é devido a uma reação de oxidação-redução que ocorre na superfície do elétrodo, mas sim a um tipo de potencial de junção que se desenvolve entre as superfícies da membrana
- ▶Têm uma alta seletividade
- ➤ Tipos de membrana
 - Cristalina
 - Cristal único (LaF₃)
 - Policristalina ou cristal misto (Ag₂S)
 - Não-cristalina
 - Vidros
 - Líquidas
 - "Líquidas" imobilizadas num polímero rígido

Elétrodos de membrana

- ➤ Solubilidade mínima
 - Vidros de sílica
 - Resinas poliméricas
 - Compostos inorgânicos de baixa solubilidade (haletos de prata)
- Condutividade elétrica
 - Normalmente conseguida devido a migração de íons monovalentes
- Reatividade (ligação) seletiva para o íon de interesse
 - Troca iônica
 - Cristalização
 - Complexação

Métodos potenciométricos

➤O primeiro eletrodo de membrana a ser desenvolvido e utilizado

Métodos potenciométricos

- Na célula (elétrodos conjugados), existem dois eléctrodos de referência
 - elétrodo de Ag/AgCl, ou calomelano, externo (Ref. 1)
 - elétrodo de Ag/AgCl interno (Ref. 2)
- ➤ Esquematicamente

```
Solução do
eletrodo externo -
      Ref 1
```

Solução medida

Ag | AgCl (sat), [Cl-] = 1.0 M | $| [H_3O^+] = a_1 |$ Membrana de vidro | $|[H_3O^+] = a_2 + [Cl^-] = 1.0 \text{ M}, AgCl (sat) | Ag$

> Solução do eletrodo interno -Ref 2

Métodos potenciométricos

➤A membrana tem composição variável

- **≻**Exemplo:
 - Corning 015
 - _ 22% Na₂O
 - 6% CaO
 - 72% SiO₂

- ➤A membrana é higroscópica (50 mg/cm³)
- A hidratação da membrana é necessária para bom funcionamento do eletrodo:

$$H^+ + Na^+Gl^- \leftrightarrow Na^+ + H^+Gl^-$$

- ➤No processo apenas os íons monovalentes estão envolvidos, pois os cátions di- e trivalentes são fortemente retidos pela estrutura de silicatos
- A constante de hidratação é tão elevada que normalmente a superfície do elétrodo é constituída por ácido silícico (H+Gl-)

Métodos potenciométricos

A condução na membrana é efetuada:

- no seu interior pelos íons Na+
- nas interfaces com as soluções pelos processos seguintes:

- Cada equilíbrio depende da atividade dos íons H⁺ em solução
- A superfície, na qual existir maior dissociação vai tornar-se mais negativa em comparação com a superfície oposta
- >Cria-se assim um potencial (E,)
- Existe ainda um potencial de origem desconhecida potencial de assimetria

versidade Federal do ABC BC-1308 Biofísica

Métodos potenciométricos

- Cada equilíbrio depende da atividade dos íons H⁺ em solução
- ➢A superfície, na qual existir maior dissociação vai tornar-se mais negativa em comparação com a superfície oposta
- ➤ Cria-se assim um potencial (E_b)
- Existe ainda um potencial de origem desconhecida potencial de assimetria

$$E_1 = j_1 - \frac{0.0592}{n} \log \left(\frac{a'_1}{a_1} \right)$$

$$E_2 = j_2 - \frac{0.0592}{n} \log \left(\frac{a'_2}{a_2} \right)$$

Ambos os lados da membrana contêm o mesmo número de resíduos negativos, logo as constantes $j_1 = j_2$ e atividades no vidro $a_1' = a_2'$

$$E_b = E_1 - E_2 = \frac{0.0592}{n} \log \left(\frac{a_1}{a_2} \right)$$

Erros de elétrodos de pH

- ➤O erro ácido acontece a valores de pH inferiores a 0,5 e a sua magnitude depende de diversos factores, não sendo normalmente reprodutível
- ➤A magnitude do erro alcalino (interferência de íons Na⁺) depende da natureza da membrana de vidro

O elétrodo de membrana líquida

Métodos potenciométricos

- Elétrodo de ionóforo com relevância biológica é o eléctrodo específico de K+
- >Exemplos:
 - Membrana líquida com valinomicina sensibilidade 10⁴x superior para o K⁺ vs Na⁺
 - Resinas com ionóforos sensíveis a Ca, K Na, Cl

MEPP – potenciais miniatures da sinapse neuromuscular

