ON GENERATOR AND PARITY-CHECK POLYNOMIAL MATRICES OF GENERALIZED QUASI-CONSTACYCLIC CODES

Sümeyra Bedir

Yıldız Technical University Department of Mathematics

Thesis Report-4

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

meroduction

Overview

Algorithms
The Identical
Equation of 6
The Duality Theorem

Our Stud

Application of the Theory to the Constacyclic Case

uture Studies

Base Study:

This study is based on the following article;

▶ Matsui, H. "On Generator and Parity-check Polynomial Matrices of Generalized Quasi-cyclic Codes", Finite Fields and Their Applications 34 (2015):280-304.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

Introduction

Overview

Definitions and Algorithms
The Identical Equation of 6
The Duality Theorem

Our Stud

Application of the Theory to the

uture Studie

Overview

In the cited work, a complete theory of generator polynomial matrices of GQC codes, including a relation formula between generator polynomial matrices and parity-check polynomial matrices through their equations, is provided. As the author noted; "Background knowledge of this paper is required only on linear codes, cyclic codes and basic polynomial arithmetic over finite fileds."

We extended this work to the constacyclic case, namely; we showed that the facts and the theory for the quasi-cyclic codes obtained from cyclic components, also hold for quasi-codes obtained from constacyclic components. We are trying to prove a similar fact for quasi-cyclic codes obtained from pseudo-cyclic components.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

introduction

Overview

Definitions and Algorithms The Identical Equation of 6 The Duality Theoren

Our Studies Application of the Theory to the

onstacyclic Cas

. .

Matsui shows that each GQC code obtained from l cyclic components, can be described by an upper triangular generator matrix $G = (g_{i,j} \in F_q[x])$ of the form

$$G = \begin{bmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,l} \\ 0 & g_{2,2} & \cdots & g_{2,l} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_{l,l} \end{bmatrix}_{lxl}$$

which satisfies the identical equation of G;

$$AG = diag[x^{n_1} - 1, ..., x^{n_l} - 1]$$

where $A=(a_{i,j})$ is another upper triangular $l\times l$ polynomial matrix. This identical equation generalizes a cyclic code's $ag=x^n-1$ for its generator polynomial g, to the quasi-cyclic case.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

Overview

Definitions and Algorithms The Identical Equation of 6 The Duality Theorem

Our Stud

Application of the Theory to the Constacyclic Case

Future Studies

Further, he generalizes the well known fact $h = x^{\deg h} a(x^{-1})$ for the dual of a cyclic code to the dual of the quasi-cycic code obtained from cyclic components (GQC). He shows that the generator poynomial matrix for the dual GQC code (which is the parity-check polynomial matrix for the GQC code) can be calculated from the matrix A.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

meroducen

Overview

Definitions and Algorithms The Identical Equation of G The Duality Theorem

Our Studie

Application of the Theory to the Constacyclic Case

uture Studies

Definition

Let C be a GQC code, and let $G=(g_{i,j})$ be an lxl matrix whose entries are in $F_q[x]$ and whose rows are codewords of C. If $g_{i,j}=0$ for all $1\leq i,j\leq l$ with i>j, namely, G is of the form

$$G = \begin{bmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,l} \\ 0 & g_{2,2} & \cdots & g_{2,l} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_{l,l} \end{bmatrix}_{lxl}$$

and moreover, for all $1 \leq i \leq l$, $g_{i,i}$ has the minimum degree among all codewords of the form $(0,\ldots,0,c_i,\ldots,c_l) \in C$ with $c_i \neq 0$, then we call G a **generator polynomial matrix** of C. If $g_{i,i}$ is monic for all $1 \leq i \leq l$ and G satisfies $\deg g_{i,j} < \deg g_{j,j}$ for all $1 \leq i \neq j \leq l$, then we say that G is **reduced**.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

Overview

Definitions and Algorithms The Identical Equation of G The Duality Theorem

> ur Studies opplication o

Theory to the Constacyclic Case

Future Studies

Definition

Let C be a GQC code, and let $H=(h_{i,j})$ be an lxl matrix whose entriees are in $F_q[x]$ and whose rows are codewords of C^\perp . If $h_{i,j}=0$ for all $1\leq i,j\leq l$ with i< j, namely, H is of the form

$$H = \begin{bmatrix} h_{1,1} & 0 & \cdots & 0 \\ h_{2,1} & h_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ h_{l,1} & h_{l,2} & \cdots & h_{l,l} \end{bmatrix}_{lxl}$$

and moreover, for all $1 \leq i \leq l$, $h_{i,i}$ has the minimum degree among all codewords of the form $(c_1,\ldots,c_i,0,\ldots,0) \in C^\perp$ with $c_i \neq 0$, then we call H a **parity-check polynomial matrix** of C.If $h_{i,i}$ is monic for all $1 \leq i \leq l$ and H satisfies $\deg h_{i,j} < \deg h_{j,j}$ for all $1 \leq i \neq j \leq l$, then we say that H is **reduced**.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACCYCLIC
CODES

Sümeyra Bedir

meroduction

Overview

Definitions and Algorithms The Identical Equation of © The Duality Theorem

ar Studies
application of the

Theory to the Constacyclic Case

Future Studies

Fact

For each GQC code, the reduced generator polynomial matrix is uniquely determined, and moreover, the reduced parity-check polynomial matrix is also uniquely determined. From any generator polynomial matrix and parity-check polynomial matrix, we can obtain the reduced ones by elementary row operations of polynomial matrices.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

.....

Overview

Definitions and Algorithms The Identical Equation of 6 The Quality Theorem

Our Studies

Theory to the Constacyclic Cas

Future Studies

▶ We start with the polynomial representation

$$G' = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,l} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,l} \\ \vdots & \ddots & \ddots & \vdots \\ c_{k,1} & \cdots & 0 & c_{k,l} \end{bmatrix}_{kxl}$$

where $c_{i,j} \in F_q[x]$ for $1 \le i \le k$ and $1 \le j \le l$. Let c_i denote the i^{th} row of G' for $1 \le i \le k$. In this algorithm, the following manipulations of the polynomial matrix are carried out inductively.

ON GENERATOR PARITY-CHECK POLYNOMIAL GENERALIZED QUASI-CONSTACYCLIC CODES

Sümeyra Bedir

Definitions and

Overview

Algorithms

1. If $c_{1,1} = \cdots = c_{k,1} = 0$, then set $c_1 = (x^{n_1} - 1, 0, \dots, 0)$ and stop. If $c_{1,1} \neq 0$ and $c_{2,1} = \cdots = c_{k,1} = 0$, then stop.

After the above manipulations, $c_1=(c_{1,1},\ldots,c_{1,l})$ is denoted by $g_1=(g_{1,1},\ldots,g_{1,l})$ and then we have $g_{1,1}=\gcd(c_{1,1},\ldots,c_{k,1})$ from the initial matrix G'.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

itroduction

Overview

Definitions and Algorithms The Identical Equation of 6 The Duality Theorem

ur Studie

Application of the Theory to the Constacyclic Case

Future Studies

- 1. If $c_{1,1} = \cdots = c_{k,1} = 0$, then set $c_1 = (x^{n_1} 1, 0, \dots, 0)$ and stop. If $c_{1,1} \neq 0$ and $c_{2,1} = \cdots = c_{k,1} = 0$, then stop.
- 2. By exchanging c_1 for another row of $c_2, \ldots c_k$ if it is required, we can assume that $c_{1,1}$ has the minimum degree among nonzero $c_{1,1}, \ldots c_{k,1}$.

After the above manipulations, $c_1 = (c_{1,1}, \ldots, c_{1,l})$ is denoted by $g_1 = (g_{1,1}, \ldots, g_{1,l})$ and then we have $g_{1,1} = \gcd(c_{1,1}, \ldots, c_{k,1})$ from the initial matrix G'.

ON GENERATOR AND PARITY-CHECK POLYNOMIAL MATRICES OF GENERALIZED QUASI-CONSTACYCLIC CODES

Sümeyra Bedir

introduction

Overview

Definitions and Algorithms The Identical Equation of 6 The Duality Theorem

ur Studies

pplication of the heory to the onstacyclic Case

Future Studies

- 1. If $c_{1,1} = \cdots = c_{k,1} = 0$, then set $c_1 = (x^{n_1} 1, 0, \dots, 0)$ and stop. If $c_{1,1} \neq 0$ and $c_{2,1} = \cdots = c_{k,1} = 0$, then stop.
- 2. By exchanging c_1 for another row of $c_2, \ldots c_k$ if it is required, we can assume that $c_{1,1}$ has the minimum degree among nonzero $c_{1,1}, \ldots c_{k,1}$.
- 3. Compute $p_i, r_i \in F_q[x]$ such that $c_{i,1} = p_i c_{1,1} + r_i$ with $\deg r_i < \deg c_{1,1}$ for all $2 \le i \le k$ and replace c_i with $c_i p_i c_1$ for all $2 \le i \le k$, and go to step 1.

After the above manipulations, $c_1 = (c_{1,1}, \ldots, c_{1,l})$ is denoted by $g_1 = (g_{1,1}, \ldots, g_{1,l})$ and then we have $g_{1,1} = \gcd(c_{1,1}, \ldots, c_{k,1})$ from the initial matrix G'.

ON GENERATOR AND PARITY-CHECK POLYNOMIAL MATRICES OF GENERALIZED QUASI-CONSTACYCLIC CODES

Sümeyra Bedir

Introduction

Overview

Definitions and Algorithms The Identical Equation of © The Duality Theorem

Application of the Theory to the

Theory to the Constacyclic Case Future Studies

_ .

Now, G' is converted to;

$$G'' = \begin{bmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,l} \\ 0 & c_{2,2} & \cdots & c_{2,l} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & c_{k,2} & \cdots & c_{k,l} \end{bmatrix}_{kxl}$$

where $c_{i,j}$ in G'' is generally unequal to $c_{i,j}$ in G'. Next, we apply the above manipulation to the submatrix;

$$\begin{bmatrix} c_{2,2} & \cdots & c_{2,l} \\ \vdots & \ddots & \vdots \\ c_{k,2} & \cdots & c_{k,l} \end{bmatrix}$$

and continuing recursively we obtian the reduced form G.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

Introduction

Overview

Definitions and Algorithms The Identical Equation of © The Duality Theorem

Our Studi

Theory to the Constacyclic Cas

-uture Studie

The Identical Equation of G

ON GENERATOR AND PARITY-CHECK POLYNOMIAL MATRICES OF GENERALIZED QUASICONSTACYCLIC CODES

Sümeyra Bedir

Fact

As a consequence of the fact that upper triangular matrices over the quotient field of $F_q[x]$ form a group, the matrix A satisfying the equation

$$AG = diag[x^{n_1} - 1, ..., x^{n_l} - 1]$$

is also an upper triangular matrix.

Introduction

Overview

Algorithms
The Identical
Equation of ©
The Duality Theorem

r Studies

heory to the Constacyclic Case

The Duality Theorem

Theorem

Let $G=(g_{i,j})$ be the reduced generator polynomial matrix of a GQC code C, and let A be the polynomial matrix which satisfies $AG=diag[x^{n_1}-1,\ldots,x^{n_l}-1]$. Then

$$H = \begin{bmatrix} x^{\deg a_{1,l}} a_{1,l}^{< n_1 >} & 0 & \cdots & 0 \\ x^{\deg a_{2,2}} a_{1,2}^{< n_1 >} & x^{\deg a_{2,2}} a_{2,2}^{< n_2 >} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ x^{\deg a_{l,l}} a_{1,l}^{< n_1 >} & x^{\deg a_{l,l}} a_{2,1}^{< n_2 >} & \cdots & x^{\deg a_{l,l}} a_{l,l}^{< n_l >} \end{bmatrix}_{lxl}$$

where each $a_{i,j}^{<\omega>}$ is the polynomial with coefficient vector as the first row of transpose of the circulant matrix obtained from $a_{i,j}$, and each column i of H is considered modulo $x^{n_i} - 1$.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASI
CONSTACYCLIC
CODES

Sümeyra Bedir

Overview

Definitions and

Algorithms
The Identical
Equation of 6
The Duality Theorem

pplication of t

Theory to the Constacyclic Case

-uture Studie

Sümeyra Bedir

Overview

Definitions and Algorithms The Duality Theorem

Application of the

Theory to the Constacyclic Case

The proof of the main theorem above was relying mainly on the well-known fact below;

Fact

$$x^{n_i} - 1|x^N - 1$$
 if and only if $n_i|N$.

In order to make use of this fact in the consept of constacyclic codes we prove the following corollary:

Corollary

$$x^{n_i} - \alpha_i | x^N - 1$$
 if and only if $N = \operatorname{lcm}(n_1, \dots, n_l) \cdot \operatorname{lcm}(ord(\alpha_1), \dots, ord(\alpha_l))$, where $\alpha_i \in F_q$.

$$(x^{n_i} - \alpha_i)(\alpha_i^{-1} + \alpha_i^{-2}x^{n_i} + \dots + \alpha_i^{-ord(\alpha_i)}x^{n_iord(\alpha_i)})$$

$$= x^{n_iord(\alpha_i)} - 1$$

$$\iff (x^{n_i} - \alpha_i)|(x^{n_iord(\alpha_i)} - 1)\dots(*)$$

We also have

$$n_{i}ord(\alpha_{i})|\operatorname{lcm}(n_{1},\ldots,n_{l}).\operatorname{lcm}(ord(\alpha_{1}),\ldots,ord(\alpha_{l}))$$

$$\Leftrightarrow (x^{n_{i}ord(\alpha_{i})}-1)|(x^{\operatorname{lcm}(n_{1},\ldots,n_{l}).\operatorname{lcm}(ord(\alpha_{1}),\ldots,ord(\alpha_{l}))}-1)....(**)$$

By
$$(*)$$
 and $(**)$, $\iff x^{n_i} - \alpha_i | x^N - 1$

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

Overview

Definitions and

Algorithms
The Identical
Equation of G
The Duality Theorem

ır Studies

Application of the Theory to the Constacyclic Case

atare otaar

Application of the Theory to the Constacyclic Case

Another base concept to implement is the definition of $a_{i,j}^{<\omega>}$ and the modulo $x^{\omega}-1$ from the duality theorem.

The implementations should consider the fact that we use constacyclic shift instead of cyclic shift.

So we define $a_{i,j}^{<\omega>}$ as follows, for simplicity we denote $a_{i,j}$ simply by a.

Definition

Let $a \in F_q[x]$ with $\deg a < \omega$ have the extended coefficient vector $(a_0, a_1, \ldots, a_{\omega-1})$. The coefficient vector of $a^{<\omega>}$ is the first row of transpose of the α^{-1} – *twistulant* matrix of a.

ON GENERATOR AND PARITY-CHECK POLYNOMIAL MATRICES OF GENERALIZED QUASI-CONSTACYCLIC CODES

Sümeyra Bedir

Overview

Definitions and

Algorithms
The Identical
Equation of 6
The Duality Theorem

Our Studies Application of the

Theory to the Constacyclic Case

Future Studi

In this case: $\alpha^{-1} - twistulant$ matrix of a is

$$\begin{bmatrix} a_0 & a_1 & \cdots & a_{\omega-1} \\ \alpha^{-1}a_{\omega-1} & a_0 & \cdots & a_{\omega-2} \\ \alpha^{-1}a_{\omega-2} & \alpha^{-1}a_{\omega-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \alpha^{-1}a_1 & \cdots & \alpha^{-1}a_{\omega-1} & a_0 \end{bmatrix}$$

so
$$a^{<\omega>} = a_0 + \alpha^{-1}a_{\omega-1}x + \alpha^{-1}a_{\omega-2}x^2 + \dots + \alpha^{-1}a_1x^{\omega-1}$$
.

ON GENERATOR AND PARITY-CHECK POLYNOMIAL MATRICES OF GENERALIZED QUASI-CONSTACYCLIC CODES

Sümeyra Bedir

introduction

Overview

Definitions and Algorithms The Identical Equation of 6 The Quality Theorem

Our Stu

Application of the Theory to the Constacyclic Case

uture Studies

Application of the Theory to the Constacyclic Case

We also implemented the following fact to the constacyclic case;

$$AG = diag[x^{n_1} - 1, ..., x^{n_l} - 1]$$

This time we should have

$$AG = diag[x^{n_1} - \alpha_1, \dots, x^{n_l} - \alpha_l]$$

where each constacyclic component i, is α_i – constacyclic.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

Overview

Algorithms
The Identical
Equation of 6
The Duality Theoren

Our Stud

Application of the Theory to the Constacyclic Case

Future Studies

The Modulo

When we look back at the parity-check matrix

$$H = \begin{bmatrix} x^{\deg a_{1,l}} a_{1,1}^{< n_1 >} & 0 & \cdots & 0 \\ x^{\deg a_{2,2}} a_{1,2}^{< n_1 >} & x^{\deg a_{2,2}} a_{2,2}^{< n_2 >} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ x^{\deg a_{l,l}} a_{1,l}^{< n_1 >} & x^{\deg a_{l,l}} a_{2,1}^{< n_2 >} & \cdots & x^{\deg a_{l,l}} a_{l,l}^{< n_l >} \end{bmatrix}_{lxl}$$

the i^{th} column is considered modulo $x^{n_i} - 1$.

To implement this fact to the constacyclic case, we should be careful that we are talking about the dual code, so we consider each column i modulo $x^{n_i} - \alpha_i^{-1}$.

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

itioductioi

Overview

Definitions and Algorithms The Identical Equation of G The Duality Theorem

Our Stud

Application of the Theory to the Constacyclic Case

Future Studies

The Duality Theorem for Constacyclic Case

Theorem

Let $G = (g_{i,j})$ be the reduced generator polynomial matrix of a generalized quazi constacyclic code C, and let A be the polynomial matrix which satisfies $AG = diag[x^{n_1} - \alpha_1, \dots, x^{n_l} - \alpha_l]$. Then

$$H = \begin{bmatrix} x^{\deg a_{1,l}} a_{1,l}^{< n_1 >} & 0 & \cdots & 0 \\ x^{\deg a_{2,2}} a_{1,2}^{< n_1 >} & x^{\deg a_{2,2}} a_{2,2}^{< n_2 >} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ x^{\deg a_{l,l}} a_{1,l}^{< n_1 >} & x^{\deg a_{l,l}} a_{2,1}^{< n_2 >} & \cdots & x^{\deg a_{l,l}} a_{l,l}^{< n_{l} >} \end{bmatrix}_{lxl}$$

where each $a_{i,j}^{<\omega>}$ is the polynomial with coefficient vector as the first row of transpose of the α_i^{-1} – twistulant matrix obtained from $a_{i,j}$, and each column i of H is considered modulo x^{n_i} – α_i .

ON GENERATOR
AND
PARITY-CHECK
POLYNOMIAL
MATRICES OF
GENERALIZED
QUASICONSTACYCLIC
CODES

Sümeyra Bedir

.......................

Overview

Definitions and Algorithms The Identical Equation of 6 The Duality Theorem

ur Studie

Application of the Theory to the Constacyclic Case

uture Studie:

Future Studies

▶ We aim to find the necessary and sufficient implementations for the quasi-polycyclic case.

ON GENERATOR AND PARITY-CHECK POLYNOMIAL MATRICES OF GENERALIZED QUASI-CONSTACYCLIC CODES

Sümeyra Bedir

IIItioducti

Overview

Algorithms
The Identical
Equation of 6
The Duality Theorem

Our Stu

Application of the Theory to the Constacyclic Case

Future Studies

A. Asamov, N. Aydın, (2007). The database for \mathbb{Z}_4 codes, http://www.asamov.com/Z4Codes/

S. Jitman, (2013). Vector-circulant matrices over finite fields and

related codes, arXiv:1408.2059 [math.RA] S.R. Lopez-Permouth, B.R. Parra-Avila, S. Szabo, (2009). Dual

generalizations of the concept of cyclicity of codes, Adv. in Math. of Com. (2009) 227-234.

William Wesley Peterson, E. J. Jr Weldon, Error Correcting codes: second edition, MIT Press (1972).

D. Radkova, A.J. Van Zanten, Constacyclic codes as invariant subspaces, Linear Algebra and its Applications, 430(2009), 855-864.

M. Wu, Free cyclic codes as invariant submodules over finite chain rings, International Mathematical Forum, 8-37(2013), 1835 - 1838.

V. Gritsenko, A. Maevskiy, (2014). On a construction of optimal codes in term rank metric via n(x)-circulants Fourteenth

QUASI-CONSTACYCLIC CODES Sümeyra Bedir

ON GENERATOR

AND PARITY-CHECK

POLYNOMIAL MATRICES OF

GENERALIZED

Overview Definitions and Algorithms

