Section 1.2

Problems: 3ab, 8, 10ac

Problem 3

a). False. We define $A_n = \{n, n+1, n+2, ...\}$ for all $n \in \mathbb{N}$. We see that $A_1 \supseteq A_2 \supseteq A_3 ...$, however $\bigcap_{n=1}^{\infty} A_n = \emptyset$, thus is not infinite. The proof below would establish that $\bigcap_{n=1}^{\infty} A_n$ is indeed empty.

Proof. We will use a proof by contradiction. Assume $a \in \bigcap_{n=1}^{\infty} A_n$, we know that $a \in A_n$ for all $n \in \mathbb{N}$. But wee see that $A_{a+1} = \{a+1, a+2, a+3, \dots\}$, and that $a \notin A_{a+1}$. Thus we have arrived at our contradiction.

b). True.

Problem 8

- a). Example: $f: \mathbb{N} \to \mathbb{N}$, f(x) = x + 1. It is not surjective since no element of the domain maps to 1 in the co-domain.
- b). Example: $f: \mathbb{N} \to \mathbb{N}, f(x) = \lceil \log x \rceil$
- c). Example: $f: \mathbb{N} \to \mathbb{Z}$, $f(x) = (-1)^x \lceil \frac{x}{2} \rceil$

Problem 10

- a). False. If a = b, we see that $a = b < b + \epsilon$ for some $\epsilon > 0$. However, we see that $a \nleq b$, and thus the statement is false.
- c). True.

Proof. We will first establish the forward direction of the proof. We know that $b < b + \epsilon$ for all $\epsilon > 0$, and so $a \le b < b + \epsilon$. Consequently, $a < b + \epsilon$. Now we will show the converse of this statement using contradiction. That is, we assume $a < b + \epsilon$ for all $\epsilon > 0$ and a > b. Because a > b, we know that there exists some $r \in \mathbb{R}$ such that r = a - b. We see that $a > b + \frac{r}{2}$ as $\frac{r}{2} < r$. We now arrived at our contraction because we know that $a < b + \epsilon$ for all $\epsilon > 0$.

Section 1.3

Problems: 2, 6, 8

Problem 2

- a). $A = \{12\}, \text{ inf } B = 12 = \sup B$
- b). It is not possible, as in a finite set, the largest element will be the supremum.
- c). $A = \{x \mid \pi < x < 5\}$

Problem 6

- a). Proof. If $c \in A + B$, we know that c = a + b for some $a \in A$ and $b \in B$. Because $s = \sup A \ge a$ for all $a \in A$, and $t = \sup B \ge b$ for all $b \in B$, therefore $s + t \ge c$ for all $c \in A + B$. And by definition, s + t is an uppper bound for A + B.
- b). Proof. We will use a proof by contradiction. We assume that for all u that is an upper bound for A+B, $a \in A$, and t>u-a. Thus we see t+a>u for all upper bound u. We know that $t+a \le t+s$ since $s=supA \ge a$, and from (a). we know that s+t is an upper bound. We let u=s+t+1, we know that $u>s+t \ge t+a$. However, we assumed that u<a+t, hence we have arrived at our contradiction. \square
- c). Proof. We let $u = \sup(A + B)$. From (b). we know that $t \le u a$ and $s \le u b$. Therefore $t+s \le 2u-a-b$, and so $t+s+(a+b) \le 2u$. We see $t+s+(a+b) \le t+s+u \le 2u$. Consequently, $s+t \le u$, and establishing the fact that Sup(A) + Sup(B) = Sup(A+B).
- d). Proof. We know that $s \epsilon < a$ for some $a \in A$ and $\epsilon > 0$, and $t \epsilon < b$ for some $b \in B$ and $\epsilon > 0$. Thus, we see $s + t 2\epsilon < a + b$, and further more that $(a + b) \in A + B$. We let $\epsilon_1 \equiv 2\epsilon$, and $c \equiv a + b$. And we see that $s + t \epsilon_1 < c$ for all $c \in A + B$ and $\epsilon_1 > 0$. Consequently, by Lemma 1.3.8, this is equivalent to $s + t = \sup(A + B)$. \square

Problem 8

- a). suprema: 1 infima: 0
- b). suprema: 1 infima: -1
- c). suprema: $\frac{1}{3}$ infima: $\frac{1}{4}$
- d). suprema: 1 infima: 0