Ax = b

Ax = b

Example

7x = 21

$$Ax = b$$

Example

$$7x = 21$$

Two ways:

$$x = \frac{21}{7} = 3$$

$$Ax = b$$

Example

$$7x = 21$$

Two ways:

$$x = \frac{21}{7} = 3$$

or

$$x = 7^{-1} \times 21 = .142857 \times 21 = 2.99997$$

The MATLAB backslash operator:

$$Ax = b$$
 $x = A \setminus b$

The MATLAB backslash operator:

$$Ax = b$$
 $x = A \setminus b$

$$xA = b$$
 $x = b/A$

Example (A 3×3 example)

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$$

$$10x_1 - 7x_2 = 7$$
$$-3x_1 + 2x_2 + 6x_3 = 4$$
$$5x_1 - x_2 + 5x_3 = 6$$

Example

Elimination:

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & -0.1 & 6 \\ 0 & 2.5 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 6.1 \\ 2.5 \end{pmatrix}$$

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.1 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2.5 \\ 6.1 \end{pmatrix}$$

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2.5 \\ 6.2 \end{pmatrix}$$

Example

Back-substitution:

$$6.2x_3 = 6.2$$

$$2.5x_2 + (5)(1) = 2.5$$

$$10x_1 + (-7)(-1) = 7$$

$$x = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

LU factorization

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$$

Example

LU factorization

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 6 \end{pmatrix}$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.3 & -0.04 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.2 \end{pmatrix}$$

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$LU = PA$$

To solve

factor A as

$$Ax = b$$

$$LU = PA$$

To solve

Ax = b

factor A as

LU = PA

Solve

LU = Pb

in two steps:

Ly = Pb by forward substitution

Ux = y by back substitution

To solve

$$Ax = b$$

factor A as

$$LU = PA$$

Solve

$$LU = Pb$$

in two steps:

$$Ly = Pb$$
 by forward substitution
 $Ux = y$ by back substitution

The heavy lifting is the factorization.

PERMUTATION AND TRIANGULAR MATRICES

Example

A permutation matrix

$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$Px = \begin{pmatrix} x_4 \\ x_1 \\ x_3 \\ x_2 \end{pmatrix}$$

PA moves row 4 to row 1, etc.

PERMUTATION AND TRIANGULAR MATRICES

Example

A permutation matrix

$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$Px = \begin{pmatrix} x_4 \\ x_1 \\ x_3 \\ x_2 \end{pmatrix}$$

PA moves row 4 to row 1, etc.

$$P^{-1} = P^T$$

Example

Upper triangular matrix:

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$

Unit lower triangular matrix:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix}$$

LU FACTORIZATION

$$U = M_{n-1}P_{n-1}\cdots M_2P_2M_1P_1A$$

$$L_1L_2\cdots L_{n-1}U=P_{n-1}\cdots P_2P_1A$$

LU FACTORIZATION

$$U = M_{n-1}P_{n-1}\cdots M_2P_2M_1P_1A$$

$$L_1L_2\cdots L_{n-1}U=P_{n-1}\cdots P_2P_1A$$

$$L = L_1 L_2 \cdots L_{n-1}$$
$$P = P_{n-1} \cdots P_2 P_1$$

$$LU = PA$$

Example

$$A = \begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix}$$

Example

$$A = \begin{pmatrix} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \end{pmatrix}$$

$$P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0.3 & 1 & 0 \\ -0.5 & 0 & 1 \end{pmatrix}$$

$$P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0.04 & 1 \end{pmatrix}$$

$$L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.3 & 0 & 1 \end{pmatrix}, \quad L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -0.04 & 1 \end{pmatrix}$$

WHY IS PIVOTING NECESSARY?

Change the last example slightly:

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 3.901 \\ 6 \end{pmatrix}$$

Solution is $x_1 = 0, x_2 = -1, x_3 = 1$, as before.

WHY IS PIVOTING NECESSARY?

Change the last example slightly:

$$\begin{pmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 3.901 \\ 6 \end{pmatrix}$$

Solution is $x_1=0, x_2=-1, x_3=1$, as before. If we proceed without pivoting using 5 significant digits, we have

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 6.001 \\ 2.5 \end{pmatrix}$$
$$(5 + (2500)(6))x_3 = (2.5 + (2500)(6.001))$$
$$(5 + 15000)x_3 = (2.5 + 15002.5)$$
$$15005x_3 = 15004$$

$$x_3 = \frac{15004}{15005} = 0.99993$$

$$-0.001x_2 + (6)(0.99993) = 6.001$$

$$x_2 = \frac{1500}{-1000} = -1.5$$

$$10x_1 + (-7)(-1.5) = 7$$

$$x_1 = -0.35$$

$$x_3 = \frac{15004}{15005} = 0.99993$$

$$-0.001x_2 + (6)(0.99993) = 6.001$$

$$x_2 = \frac{1500}{-1000} = -1.5$$

$$10x_1 + (-7)(-1.5) = 7$$

$$x_1 = -0.35$$

We get

$$x = \begin{pmatrix} -0.35 \\ -1.5 \\ 0.99993 \end{pmatrix}, \quad \text{instead of} \quad x = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

$$x_3 = \frac{15004}{15005} = 0.99993$$

$$-0.001x_2 + (6)(0.99993) = 6.001$$

$$x_2 = \frac{1500}{-1000} = -1.5$$

$$10x_1 + (-7)(-1.5) = 7$$

$$x_1 = -0.35$$

We get

$$x = \begin{pmatrix} -0.35 \\ -1.5 \\ 0.99993 \end{pmatrix}, \quad \text{instead of} \quad x = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

The problem is the large multiplier in the second step: 2500. This caused us to lose a significant digit in the next step and threw the whole computation off. Partial pivoting eliminates this problem.

PARTIAL PIVOTING

At each step switch rows to get the maximal element in the pivot position.

PARTIAL PIVOTING

At each step switch rows to get the maximal element in the pivot position.

In the previous example

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 6.001 \\ 2.5 \end{pmatrix}$$

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.001 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2.5 \\ 6.001 \end{pmatrix}$$

$$(6 + (.0004)(5))x_3 = (6.001 + (.0004)(2.5))$$

$$(6 + 0.002)x_3 = (6.001 + .001)$$

$$6.002x_3 = 6.002$$

PARTIAL PIVOTING

At each step switch rows to get the maximal element in the pivot position.

In the previous example

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 6.001 \\ 2.5 \end{pmatrix}$$

$$\begin{pmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.001 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 2.5 \\ 6.001 \end{pmatrix}$$

$$(6 + (.0004)(5))x_3 = (6.001 + (.0004)(2.5))$$

$$(6 + 0.002)x_3 = (6.001 + .001)$$

$$6.002x_3 = 6.002$$

So we get $x_3 = 1, x_2 = -1, x_1 = 0$, the exact solution.

EFFECT OF ROUNDOFF ERRORS

 x_* – the computed solution.

Error:

$$e = x - x_*$$

Residual:

$$r = b - Ax_*$$

Consider the system:

$$.780x + .563y = .217$$

 $.913x + .659y = .254$

The exact solution is (1,-1). If we compute the solution with partial pivoting using 3 significant digits, we find that the multiplier is

$$\frac{0.780}{0.913} = 0.854$$

Consider the system:

$$.780x + .563y = .217$$
$$.913x + .659y = .254$$

The exact solution is (1,-1). If we compute the solution with partial pivoting using 3 significant digits, we find that the multiplier is

$$\frac{0.780}{0.913} = 0.854$$

One step of elimination gives us

$$\begin{pmatrix} 0.913 & 0.659 \\ 0 & 0.001 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0.254 \\ 0.001 \end{pmatrix}$$

The second equation gives us $x_2 = 1$, and the first gives us

$$0.913x_1 + (0.659)(1) = 0.254$$
 $x_1 = \frac{.254 - .659}{.913} = -.443$

So our computed solution, error and residual are

$$x_* = \begin{pmatrix} -0.443 \\ 1 \end{pmatrix}, \qquad e = \begin{pmatrix} 1.443 \\ -2 \end{pmatrix}, \qquad r = \begin{pmatrix} -0.000460 \\ -0.000541 \end{pmatrix}$$

A small residual, but a huge error!

Notice that this matrix is nearly singular. Its determinant is

$$\det(A) = 10^{-6}$$

Notice that this matrix is nearly singular. Its determinant is

$$\det(A) = 10^{-6}$$

However, it is not just a small determinant that makes a problem ill-conditioned.

Example

Consider

$$A = \begin{pmatrix} .01 & 0 \\ 0 & .01 \end{pmatrix}$$

Then

$$\det(A) = 10^{-4}$$

but A is perfectly well-conditioned. The computation of the solution of Ax = b will be just fine even with a small precision.

Notice that this matrix is nearly singular. Its determinant is

$$\det(A) = 10^{-6}$$

However, it is not just a small determinant that makes a problem ill-conditioned.

Example

Consider

$$A = \begin{pmatrix} .01 & 0 \\ 0 & .01 \end{pmatrix}$$

Then

$$\det(A) = 10^{-4}$$

but A is perfectly well-conditioned. The computation of the solution of Ax = b will be just fine even with a small precision.

We need another measure of "ill-conditioned" than just smallness of the determinant.

NORMS AND CONDITION NUMBERS

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$

$$||x||_{\infty} = \max_{i} |x_i|$$

These are three examples of norms that satisfy

$$\|x\| > 0 \quad \text{if } x \neq 0$$

$$\|0\| = 0$$

$$\|cx\| = |c|\|x\| \quad \text{for all scalars } c$$

$$\|x + y\| \le \|x\| + \|y\| \quad \text{(the triangle inequality)}$$

We define the norm of a matrix in the following way:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

We define the norm of a matrix in the following way:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

 $\|A\|$ is the maximal "stretch" of a vector when A is applied.

We define the norm of a matrix in the following way:

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

 $\|A\|$ is the maximal "stretch" of a vector when A is applied. If A is invertible

$$||A^{-1}|| = \left(\min_{x \neq 0} \frac{||Ax||}{||x||}\right)^{-1}$$

CONDITION NUMBER

We define the condition number κ of a matrix as

$$\kappa(A) = ||A|| ||A^{-1}||$$

CONDITION NUMBER

We define the condition number κ of a matrix as

$$\kappa(A) = ||A|| ||A^{-1}||$$

$$\kappa(A) = \frac{\max\limits_{x \neq 0} \frac{\|Ax\|}{\|x\|}}{\min\limits_{x \neq 0} \frac{\|Ax\|}{\|x\|}}$$

Call

$$M = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}, \qquad m = \min_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

So

$$\kappa(A) = \frac{M}{m}$$

Call

$$M = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}, \qquad m = \min_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

So

$$\kappa(A)=\frac{M}{m}$$

Then, if Ax = b,

$$||b|| = ||Ax|| = \frac{||Ax||}{||x||} ||x|| \le M||x||$$

Call

$$M = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|}, \qquad m = \min_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$

So

$$\kappa(A) = \frac{M}{m}$$

Then, if Ax = b,

$$||b|| = ||Ax|| = \frac{||Ax||}{||x||} ||x|| \le M||x||$$

If $A\delta x = \delta b$

$$\|\delta b\| = \|A\delta x\| = \frac{\|A\delta x\|}{\|\delta x\|} \|\delta x\| \ge m\|\delta x\|$$

$$Ax = b,$$
 $A(x + \delta x)$ $\|b\| \le M\|x\|,$ $\|\delta b\| \ge m\|\delta x\|$

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}$$

$$Ax = b, \qquad A(x + \delta x)$$

$$\|b\| \le M\|x\|, \qquad \|\delta b\| \ge m\|\delta x\|$$

$$\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}$$

Large condition number means ill-conditioned. A small change in b can lead to big changes in x. Bad news! For the A in the previous example,

$$\kappa(A) \approx 10^6$$

$$\kappa(A) \geq 1$$

$$\kappa(P)=1$$

$$\kappa(A) \geq 1$$

$$\kappa(P)=1$$

$$\kappa(cA) = \kappa(A)$$

$$\kappa(A) \geq 1$$

$$\kappa(P) = 1$$

$$\kappa(cA) = \kappa(A)$$

If D is diagonal,

$$\kappa(D) = \frac{\max |d_{ii}|}{\min |d_{ii}|}$$

A small condition number means the matrix is well-conditioned (and hence, numerical results are reliable).	

A small condition number means the matrix is well-conditioned (and hence, numerical results are reliable).

Example

For

$$A = \begin{pmatrix} 0.01 & 0 \\ 0 & 0.01 \end{pmatrix}$$

 $det(A) = 10^{-4}$, but A = 0.01I, so

$$\kappa(A)=1$$

Thus, A is perfectly well-conditioned.

Example

$$A = \begin{pmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{pmatrix}, \quad b = \begin{pmatrix} 4.1 \\ 9.7 \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} 4.11 \\ 9.7 \end{pmatrix}$$

Example

$$A = \begin{pmatrix} 4.1 & 2.8 \\ 9.7 & 6.6 \end{pmatrix}, \quad b = \begin{pmatrix} 4.1 \\ 9.7 \end{pmatrix}, \quad \tilde{b} = \begin{pmatrix} 4.11 \\ 9.7 \end{pmatrix}$$

Then the solutions of Ax = b and $A\tilde{x} = \tilde{b}$ are

$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \tilde{x} = \begin{pmatrix} 0.34 \\ 0.97 \end{pmatrix}$$

$$\|\delta b\| = 0.01, \qquad \|\delta x\| = 1.63$$

$$\frac{\|\delta b\|}{\|b\|} = 0.0007246, \qquad \frac{\|\delta x\|}{\|x\|} = 1.63$$

$$\kappa(A) \ge \frac{1.63}{0.0007246} = 2249.4$$

$$\kappa(A) = 2249.4$$

Some condition numbers can be computed in terms of the entries of the matrix (and its inverse).

$$||A||_1 = \max_j \sum_i |a_{ij}|, \qquad ||A||_{\infty} = \max_i \sum_i |a_{ij}|$$

Some condition numbers can be computed in terms of the entries of the matrix (and its inverse).

$$||A||_1 = \max_j \sum_i |a_{ij}|, \qquad ||A||_{\infty} = \max_i \sum_i |a_{ij}|$$

For others its not so easy. One important condition number is

$$\kappa_2(A) = \frac{\sigma_1}{\sigma_n}$$

cond(A,p)

condest(A)