1) a.

b. (matplotlib)

In [16]: runfile('/Users/coleconstantino/.spyder-py3/ter
coleconstantino/.spyder-py3')

(n,heads) ⇒ (1,1)
In [18]: runfile('/Users/coleconstantino/.spyder-py3/t
coleconstantino/.spyder-py3')

(n,heads) ⇒ (2,2)
In [19]: runTile('/Users/coleconstantino/.spyder-py3/te
coleconstantino/.spyder-py3')

$(n,heads) \Rightarrow (3,2)$

coleconstantino/.spyder-py3')

 $(n,heads) \Rightarrow (3,3)$

coleconstantino/.spyder-py3')

2) [Java Code will be attached in the zip file]

a.

For this problem I was able to figure out a way to get all the posterior values via JAVA and copy and pasted it to matplotlib in python. [I did this because I am very experienced in Java, and not so much python]

Paste to python and plot:

In [8]: runfile('/Users/coleconstantino/.spyderpy3/temp.py', wdir='/Users/coleconstantino/.spyderpy3')

[h2]

In [19]: runfile('/Users/coleconstantino/.spyderpy3/temp.py', wdir='/Users/coleconstantino/.spyderpy3')


```
py3/temp.py', wdir='/Users/coleconstantino/.spyder-
py3')
```


[h4]

in [21]: runtile('/users/coleconstantino/.spyderpy3/temp.py', wdir='/Users/coleconstantino/.spyderpy3')

*And just like magic, you can see how the algorithm learns which hypothesis it is as n increases

C. While part a) was very useful and very cool, you can see that the distributions are not as uniform as possible. A big reason for this is the sample size of probabilities. If I increase the

datasets and remove my decimal formatting parameters it will make these graphs a lot more precise.[Below are my plots]

[h1]

[h2]

In [25]: runfile('/Users/coleconstantino/.spyderpy3/temp.py', wdir='/Users/coleconstantino/.spyderpy3')

In [26]: runfile('/Users/coleconstantino/.spyderpy3/temp.py', wdir='/Users/coleconstantino/.spyderpy3')

[h4]

In [23]: runfile('/Users/coleconstantino/.spyderpy3/temp.py', wdir='/Users/coleconstantino/.spyderpy3')

In [27]: runfile('/Users/coleconstantino/.spyderpy3/temp.py', wdir='/Users/coleconstantino/.spyderpy3')

3)
$$D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \| \boldsymbol{x}_n - \boldsymbol{\mu}_k \|^2$$

MyMx centers D = Xy Xn HX, - my 1 2 Encled Distance
255 kgn xi to reacest My (1 = mins argument 11xi-Mell? Gradient Gradient = (xi-My) (xi-My) => (xi-My) (xi-My) => (xi-My) (xi-My) => (xi-My) (xi-My) = -2xi+2Mj = (-2x;,2Mj)