HELPING PEOPLE FIND THE BEST NEIGHBOURHOOD TO LIVE IN April 2021

1. Introduction

All over the world, people are constantly moving to different cities. They can move because of work, family, lifestyle, culture, and many other reasons.

When moving, some people may want to live in a neighbourhood similar to where they live today.

However, they may not know the new city they are moving to. **Therefore, we will help them find which neighbourhoods are the best match for them**, by comparing:

- Venues nearby of their current home
- Venues in each neighbourhood of the destination city

For this, we will consider a walking range of half mile (800m).

Of course, there are **many other variables** that may affect this decision, such as cost of living, distance to work, criminality, etc. These **will not be included in this analysis.**

To test the models, we will run two scenarios:

- Scenario 1: Jane currently lives in central London, and has received a job offer in Boston. She doesn't know the city, and wants to know which neighbourhoods are best for her.
- Scenario 2: John lives in New York, and wants to live one year abroad to improve his Spanish. He decided to
 go to Madrid. However, to reduce the culture shock, he wants to live in a neighbourhood similar to the one
 he currently lives (or as similar as possible)

2. Data

2.1. Sources

- Boston neighborhoods: The initial list used was from Boston's government website https://www.boston.gov/neighborhoods
 - However, later we decided to adopt a 'grid' approach for better precision, due to low number of neighbourhoods. This didn't require any data sources
- Madrid neighborhoods: The list used was from Wikipedia
 https://en.wikipedia.org/wiki/List of neighborhoods of Madrid
- Current addresses from our 'clients'

o Jane lives in Rushworth St, London

Latitude: 51.501463Longitude: -0.1020907

John lives in Scholes St, Brooklyn, NY
 Latitude: 40.708179

Latitude: 40.708179Longitude: -73.949628

2.2. APIs and libraries used

Geopy: used to get latitude and longitude from addresses (and addresses from latitude and longitude)

Foursquare: used to fetch nearby venues based on latitude and longitude

Folium: used to generate maps

• Pandas: used to work with dataframes

Numpy: used for simple numeric processingRequests: used to get html data from websites

BeautifulSoup: used to process html data

2.3. Pre-processing

The data from the websites was processed into dataframes using BeautifulSoup and Pandas.

The **Boston data was well structured**, but it was later discarded as we chose another better approach.

The Madrid data was not well structured, and **required pre-processing** to achieve the desired results. The specific code can be found in the notebook.

Example of Madrid neighbourhood data from Wikipedia

3. Methodology

The methodology consisted of six steps. Results from these is in the 'Results' section

- 1. Use **HTML processing** (requests and BeautifulSoup) to get the **list of neighborhoods of each destination city** into dataframes
- 2. Use APIs to get the latitude and longitude of each neighborhood
- 3. For each location, get a **list of nearby venues** and their types (e.g. restaurants, bars, nightclubs, etc) using the **Foursquare API**, and **consolidate by neighborhood**
- 4. Repeat the process for each of our clients' current addresses
- 5. Use some measure of **similarity to identify the best neighborhoods** for our clients(e.g. Euclidean distance)
- 6. Analyze the results and plot on a map using the Folium library

4. Results

4.1. HTML Processing

The initial neighbourhood list for Boston consisted of 24 neighbourhoods, listed and plotted below.

Boston Neighbourhoods

These were later changed (details in section 4.2)

For Madrid, our list contained 131 neighbourhoods across 21 districts. The district data was used only to facilitate the lagitude and longitude collection. All other analysis used only the neighbourhood.

	District	Neighborhood
0	Centro	Palacio
1	Centro	Embajadores
2	Centro	Cortes
3	Centro	Justicia
4	Centro	Universidad
126	Barajas	Alameda de Osuna
127	Barajas	Aeropuerto
128	Barajas	Calle Canal de Suez
129	Barajas	Timón
130	Barajas	Corralejos

Sample Madrid neighbourhoods

4.2. Latitudes and Longitudes

Latitudes and longitudes were extracted using geopy's Nominatim feature. Here's a sample of how you can use it:

```
geolocator = Nominatim(user_agent="coursera-capstone")
location = geolocator.geocode("Eiffel Tower, Paris, France")
print("Location of the Eiffel Tower: Latitude = {}, Longitude = {}".format(location.latitude, location.longitude))
Location of the Eiffel Tower: Latitude = 48.8582602000000004, Longitude = 2.2944990543196795
```

geopy's Nominatim example

The results from Boston were plotted using Folium.

	Neighborhood	Latitude	Longitude
0	Allston	42.355434	-71.132127
1	Back Bay	42.350549	-71.080311
2	Bay Village	42.350011	-71.066948
3	Beacon Hill	42.358708	-71.067829
4	Brighton	42.350097	-71.156442
5	Charlestown	42.377875	-71.061996
6	Chinatown	42.352217	-71.062607
7	Dorchester	42.297320	-71.074495
8	Downtown	42.355431	-71.060500
9	East Boston	42.375097	-71.039217
10	Fenway-Kenmore	42.344224	-71.094444
11	Hyde Park	42.255654	-71.124496
12	Jamaica Plain	42.309820	-71.120330
13	Mattapan	42.267566	-71.092427
14	Mid-Dorchester	42.330786	-71.054750
15	Mission Hill	42.332560	-71.103608
16	North End	42.365097	-71.054495
17	Roslindale	42.291209	-71.124497
18	Roxbury	42.324843	-71.095016
19	South Boston	42.333431	-71.049495
20	South End	42.341310	-71.077230
21	West End	42.363919	-71.063899
22	West Roxbury	42.279265	-71.149497

Wharf District 42.356447 -71.050324

23

Boston neighbourhoods latitude and longitude

It is clear that these are very far apart and would not lead to great results. **Therefore, we adopted a grid approach**, which can be seen below. These contain more datapoints and will lead to better results.

We chose a 12x12 grid, leading to 144 points, similar to Madrid's 131.

Boston datapoints latitude and longitude

For Madrid, the neighbourhood list **already provided us the granularity that we needed**, so we did not need to adopt the grid approach.

Madrid neighbourhoods latitude and longitude

4.3. Nearby venues (destination cities)

The neighbourhood venues were collected and then compiled by neighbourhood, since we are not interested in specific venues, but the overall trend in each neighbourhood.

The free version of the API limits calls to 100 venues. Some neighbourhoods have the maximum. But others, presumably more isolated, do not reach that. Here is the count for some neighbourhoods in Madrid.

	Neighborhood Latitude
Neighborhood	
Abrantes	16
Acacias	100
Adelfas	94
Aeropuerto	15
Alameda de Osuna	36
Ventas	19
Villaverde Alto	7
Vinateros	23
Vista Alegre	30
Zofio	16

Number of venues in Madrid neighbourhoods

We then used one-hot encoding for each neighbourhood (values represented here are zero, but they are not positive in other columns).

	NeighborhoodName	Accessories Store	Airport	Airport Lounge	Airport Service	American Restaurant	Aquarium	Arcade	Argentinian Restaurant	Art Gallery	Video Game Store	Vietnamese Restaurant	Warehouse Store	Watch Shop	Whisky Bar	Wine Bar	Wine Shop	Women's Store
0	Abrantes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	Acacias	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	1	0
2	Adelfas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	Aeropuerto	0	0	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Alameda de Osuna	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
126	Ventas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
127	Villaverde Alto	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
128	Vinateros	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
129	Vista Alegre	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
130	Zofio	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

One-hot encoding for Madrid

Finally, we aggregated the top 10 venues per neighbourhood.

ı	NeighborhoodName	Top 1	Top 2	Тор 3	Top 4	Top 5	Top 6	Top 7	Top 8	Тор 9	Top 10
0	Abrantes	Metro Station	Plaza	Ice Cream Shop	Athletics & Sports	Burger Joint	Nightclub	Tapas Restaurant	Fast Food Restaurant	Park	Gym / Fitness Center
1	Acacias	Bar	Tapas Restaurant	Spanish Restaurant	Coffee Shop	Pizza Place	Art Gallery	Plaza	Indie Theater	Vegetarian / Vegan Restaurant	Market
2	Adelfas	Spanish Restaurant	Grocery Store	Bar	Bakery	Fast Food Restaurant	Gym	Burger Joint	Pizza Place	Supermarket	Hotel
3	Aeropuerto	Airport Lounge	Spanish Restaurant	Coffee Shop	Duty-free Shop	Sporting Goods Shop	Fast Food Restaurant	Breakfast Spot	Airport Service	Diner	French Restaurant
4	Alameda de Osuna	Restaurant	Hotel	Park	Spanish Restaurant	Hotel Bar	Café	Gym	Tapas Restaurant	Bistro	Coffee Shop

Top 10 venues in Madrid neighbourhoods

4.4. Nearby venues (current client homes)

Using the same process as above, we consolidated the results around Jane's and John's current houses.

	NeighborhoodName	American Restaurant	Argentinian Restaurant		Art Museum	Arts & Crafts Store	Asian Restaurant		Bakery	Bar	 Taiwanese Restaurant	Thai Restaurant	Theater	Thrift / Vintage Store
C	Jane's neighborhood	1	2	1	3	0	1	0	1	2	 0	0	3	0
1	John's neighborhood	0	1	0	0	1	0	1	4	9	 1	2	0	1

Jane and John's nearby venues by category

And we also got the top 10 for each of them.

	NeighborhoodName	Top 1	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
0	Jane's neighborhood	Coffee Shop	Hotel	Pub	Gym / Fitness Center	Café	Theater	Italian Restaurant	Art Museum	Portuguese Restaurant	Argentinian Restaurant
1	John's neighborhood	Bar	Pizza Place	Coffee Shop	Italian Restaurant	Bakery	Japanese Restaurant	Latin American Restaurant	Wine Shop	Restaurant	Food Truck

Top 10 venue categories for Jane and John

We can see that Jane lives next to coffee shops, hotels, pubs and gyms. John lives next to bars, pizza places, coffee shops and Italian restaurants.

4.5. Compare neighbourhoods

Neighbourhoods were compared using Euclidean distance across all venue categories.

First we compared Jane's current address to all of Boston's datapoints. **The maximum 'distance' between Jane and Boston's neighbourhoods is 25.2and the minimum is 14.4.** Remember that distance, in this case, is the opposite of similarity between neighbourhoods.

	Neighborhood	Distance
0	10, Wooddale Avenue, Mattapan, Boston, Suffolk	19.000000
1	1000, Harvard Street, Boston, Suffolk County,	19.339080
2	104, Reedsdale Road, Milton Center, Milton, No	19.235384
3	1084, Boylston Street, Back Bay, Boston, Suffo	15.842980
4	11, Norway Road, Milton Upper Mills, Milton, N	18.920888
139	The Jewish Advocate, School Street, Downtown C	14.456832
140	United States Postal Service Lot A, A Street,	15.297059
141	Untitled Landscape, Boston HarborWalk, Waterfr	16.673332
142	Walter C. Wood Sailing Pavilion, 134, Memorial	16.000000
143	Williams Street, Jamaica Plain, Boston, Suffol	16.852300

Euclidean distance between venues on Jane's neighbourhood and Boston

We repeated the same for John and Madrid. **The maximum 'distance' between John and Madrid's neighbourhoods is 26.2 and the minimum is 12.5.** Remember that distance, in this case, is the opposite of similarity between neighbourhoods

	Neighborhood	Distance
0	Abrantes	15.905974
1	Acacias	12.529964
2	Adelfas	17.262677
3	Aeropuerto	16.462078
4	Alameda de Osuna	16.062378
126	Ventas	15.459625
127	Villaverde Alto	16.401219
128	Vinateros	14.899664
129	Vista Alegre	14.933185
130	Zofío	17.146428

Euclidean distance between venues on John's neighbourhood and Madrid

Finally, we used the distance to **calculate a 'score'** measure between 0 and 1. The smaller the distance, the better the score.

	Neighborhood	Distance	Score
0	Abrantes	15.905974	0.753229
1	Acacias	12.529964	1.000000
2	Adelfas	17.262677	0.654060
3	Aeropuerto	16.462078	0.712580
4	Alameda de Osuna	16.062378	0.741796

Madrid neighbourhood scored for John

4.6. Analyse and plot results

A **colour code** was used when plotting the results, to facilitate visualization, using the following criteria:

- Score above 0.9: blue
- Score between 0.7 and 0.9: green
- Score between 0.5 and 0.7: yellow
- Score between 0.3 and 0.5: orange
- Score below 0.3: red

First, we mapped **Boston's neighbourhoods based on their compatibility with Jane** (the results will be discussed in the next session).

Map of Boston's neighbourhoods based on compatibility with Jane

We did the same for **Madrid and John**.

Map of Madrid's neighbourhoods based on compatibility with John

5. Discussion and recommendations

We were **successfully** able to find the **best neighbourhoods** for Jane in Boston, and for John in Madrid.

For Jane, we recommend her to move **somewhere close to city center**, especially **Downtown Crossing**, **Back Bay or Seaport District**. However, there are many other places in Boston where she would find herself at home.

For John, we **do not recommend the city center**, especially not around Salamanca. He should move to neighbourhoods **slightly towards the outskirts**, **such as Acacias**, **Opañel and Comillas**.

6. Conclusion

This was a very interesting project. **We were able to find the best fit for two different people in two different cities.**Just as important, we also saw **which neighbourhoods are not a good fit** for them.

As we mentioned in the beginning, venue similarity is only one of multiple factors that should impact people's choice of neighbourhood to live in. Other factors for further analysis and studies are recommended in the 'Next steps' below.

6.1. Next possible steps and further analysis

- Zoom in on selected regions to find the best streets or blocks within neighbourhoods
- Experiment with different clients moving to Boston and Madrid
- Experiment with different cities
- Incorporate distance to workplace into analysis
- Incorporate criminality levels into analysis
- Incorporate cost of living into analysis
- Incorporate personal inputs from clients into analysis