Linear Regression

Prof. Je-Won Kang
Electronic & Electrical Engineering
Ewha Womans University

Machine learning problems

Linear models

• Hypothesis set \mathcal{H} : a set of lines

$$h_w(x) = \theta_0^{2} + \theta_1 x_1 + \dots + \theta_d x_d = \boldsymbol{\theta}^T \boldsymbol{x}$$

θ: model parameter (learnable parameter)

$$h_w(x) = \theta_0 + \theta_1 k_1(x_1) + \dots + \theta_d k_d(x_d) = \boldsymbol{\theta}^T k(\boldsymbol{x})$$
 e.g. $k_n(x) = \boldsymbol{x}^n$

Linear model with a set of arbitrary functions (more general case). Linear in θ , not necessarily in x

- Simplicity: easy to implement and interpret
- Generalization : higher chance $E_{test} \approx E_{train}$
- Solve regression and classification problems

सिट अपि गर्सकार । अधिक (श्यास्त्र) ०२

Feature organization

$$h_w(x) = \theta_0 + \theta_1 \phi(x_1) + \dots + \theta_d \phi(x_d) = \boldsymbol{\theta}^{\mathrm{T}} \phi(\boldsymbol{x})$$

 θ : model parameter (linear combination of features)

$$h_w(x) = \theta_0 + \theta_1 k_1 \phi(x_1) + \dots + \theta_d k_d \phi(x_d) = \boldsymbol{\theta}^{\mathrm{T}} k \phi(\boldsymbol{x})$$

Example: happiness

• Predict real valued output y (happiness) from x when D = (x, y) is given

Life satisfaction	0.43*
Freedom	0.23*
Relevance of	0.09*
religion	
Religious person	0.04*
Gender	0.01*
Marital status	0.07*
Social class	0.18*
Health	0.37*

Happiness

Multivariate problem

८ ति ति ति ति ति

Linear regression framework

Hypothesis function to map from x to y

Which predictor? Hypothesis class

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Univariate linear model

How good is a predictor?

Loss function

$$\frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Minimizing MSE

How to compute the best predictor?
Optimization algorithm

Gradient descent algorithm Normal equation

Linear regression: parameter opt.

Idea:

choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y using our training set

Image from: Andrew NG, Stanford CS229: machine learning

L₂ cost function (Goal : minimizing MSE)

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$ minimize $J(\theta_0, \theta_1)$

 θ_0, θ_1

Image from: Andrew NG, Stanford CS229: machine learning

Optimization

-Matrix representation in data

- m samples $(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})$; d-dimensional features. $X = \begin{bmatrix} -x_1 \\ -x_2 \\ & \cdots \\ -x_N \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ & \cdots \\ y_N \end{bmatrix}$ rows vector: inputs as $\mathbf{x}^m \in \mathbf{R}^{1 \times (d+1)}$
 - - rows vector: inputs as $x^m \in \mathbb{R}^{1 \times (d+1)}$
- Target vector $y \in \mathbb{R}^N$
 - column vectors y^m
- Weight vector $\theta \in \mathbf{R}^{d+1}$
- In-sample error is a function of $\boldsymbol{\theta}$ and data X, y

$$\|y - X\theta\|_2$$

本がない。 ⇒ cost function そ かか をないると 次

-)	offset ∞					
	$\lceil 1 \rceil$	x_1^0	x_2^0	•••	x_d^0	
	1	x_1^1	x_2^1	• • •	x_d^1	
X =	1	x_1^2	x_{2}^{2}	•••	x_d^2	
	•••	•••	• • •	• • •	•••	
		x_1^{N-1}	x_2^{N-1}	•••	x_d^{N-1}	

Optimization -Getting a solution θ

- $\boldsymbol{\theta}^*$: the solution to linear regression
 - Derived by minimizing E_{θ} over all possible $\theta \in \mathbf{R}^{d+1}$

$$\begin{aligned} \mathbf{\theta}^* &= \underset{\mathbf{\theta} \in \mathbf{R}^{d+1}}{\min} E(\mathbf{\theta}) \\ &= \underset{\mathbf{\theta} \in \mathbf{R}^{d+1}}{\min} \frac{1}{N} \| \mathbf{X} \mathbf{\theta} - \mathbf{y} \|_{2}^{2} \\ &= \underset{\mathbf{\theta} \in \mathbf{R}^{d+1}}{\min} \left[\frac{1}{N} (\mathbf{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{\theta} - 2\mathbf{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y}) \right] \end{aligned}$$

• \boldsymbol{E} is continuous, differentiable, and convex

- General optimization techniques
 - Gradient descent

Normal equation (Least Square)

Normal Equation OHS least Square problem

- -Analytic solution of θ
 - $\boldsymbol{\theta}^*$: the solution to linear regression
 - Derived by minimizing E_{θ} over all possible $\theta \in \mathbf{R}^{d+1}$

$$\mathbf{\theta}^* = \underset{\boldsymbol{\theta} \in \mathbf{R}^{d+1}}{\min} E(\mathbf{\theta})$$

$$= \underset{\boldsymbol{\theta} \in \mathbf{R}^{d+1}}{\min} \frac{1}{N} \| \mathbf{X} \mathbf{\theta} - \mathbf{y} \|_2^2$$

$$= \underset{\boldsymbol{\theta} \in \mathbf{R}^{d+1}}{\min} \frac{1}{N} \| \mathbf{X} \mathbf{\theta} - \mathbf{y} \|_2^2$$

$$= \underset{\boldsymbol{\theta} \in \mathbf{R}^{d+1}}{\min} [\frac{1}{N} (\mathbf{\theta}^T \mathbf{X}^T \mathbf{X} \mathbf{\theta} - 2\mathbf{\theta}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y})]$$

$$= 0$$

 $m{E}$ is continuous, differentiable, and convex

Normal equation (Least Square)

- analytic solution of θ

$$\begin{split} \nabla_{\theta}E &= \nabla_{\theta}(\theta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\theta - 2\boldsymbol{\theta}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}) \\ &= \nabla_{\theta}(\theta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\theta) - 2\nabla_{\theta}(\theta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}) + 0 \\ &= \nabla_{\theta}(\theta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\theta) - 2\nabla_{\theta}(\mathbf{y}^{\mathsf{T}}\mathbf{X}\theta) + 0 \\ &= 0 \\ &\nabla_{\theta}(\theta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\theta) = \nabla_{\theta}(\theta^{\mathsf{T}}\mathbf{B}\theta) = (\mathbf{B} + \mathbf{B}^{\mathsf{T}})\theta \\ &\nabla_{\theta}(\mathbf{y}^{\mathsf{T}}\mathbf{X}\theta) = \nabla_{\theta}(\mathbf{a}^{\mathsf{T}}\theta) = \mathbf{a} \end{split}$$

Normal equation (Least Square)

-Analytic solution of θ

$$\nabla_{\boldsymbol{\theta}} E = \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - 2 \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{y}^{\mathsf{T}} \mathbf{y})$$

$$= \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta}) - 2 \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}) + 0$$

$$= \nabla_{\boldsymbol{\theta}} (\boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta}) - 2 \nabla_{\boldsymbol{\theta}} (\mathbf{y}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta}) + 0$$

$$= 2 \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - 2 \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

$$= 0$$

$$\therefore \boldsymbol{\theta}^* = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} = \mathbf{X}^{+}\mathbf{y} \iff \forall \mathbf{x} \in \mathbf{Y}$$

In practice

- What if the dimension of the input vector hugely increases (huge computational complexity)?
- What if the matrix is *not* invertible (redundant features; linearly dependent)?
- -> Needs iterative algorithm (gradient descent) ← মুমা পার ৬ ৬!

- Gradient: the derivative of vector functions
 - Direction of greatest increase (or decrease) of a function
 - Zero at (local) max/min
- Iteratively set the gradient to zero instead of analytically setting it to zero
- Gradient descent: a very general algorithm
 - Can train many other models with error measures

Two things to decide:

- Which direction?
- How much?

Gradient descent algorithm Method to solve numerically

25 274

Two things to decide:

 Which direction? Steepest gradient descent with a greedy method

• How much? Step size ি মুখলাল গাইগ দ্বালাল লাক্তিয়া প্রাথন প্রাথন লাক্তিয়া লাক্তিয়া প্রাথন লাক্তিয়া ক্রিয়ালা ক্রিয়ালা প্রাথন লাক্তিয়া লাক্তিয় লাক্তিয়া লাক্তিয়া লাক্তিয়া লাক্তিয়ে লাক্তিয়া লাক্তিয়ে লাক্

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Illustration: Error surface

 $E_{train}(\theta)$ in high-dimensional space

Idea: get a step into the direction having the steepest gradient descent Property: local optimum, and the result depends on an initial position.

Gradient descent algorithm Method to solve numerically

Outline: The function \underline{I} is the objective function that we want to optimize. $\underline{\alpha}$: the step size to control the rate to move down the error surface. It is a hyper parameter, which is a positive number (c.f. θ is a learnable parameter)

- Start with initial parameters θ_0 , θ_1
- Keep changing the parameters to reduce J until achieving the minimal cost

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) }
```

Gradient descent algorithm for linear regression

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \boxed{\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)}$$
(for $j = 1$ and $j = 0$)

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial \theta_j} \left(\frac{1}{2N} \sum_{i=1}^N (h_\theta(x^i) - y^i)^2 \right)$$
$$= \frac{\partial}{\partial \theta_j} \left(\frac{1}{2N} \sum_{i=1}^N (\theta_0 + \theta_1 x^i - y^i)^2 \right)$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x^i - y^i) = \frac{1}{N} \sum_{i=1}^{N} (h_\theta(x^i) - y^i)$$
$$j = 1 : \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} (\theta_0 + \theta_1 x^i - y^i) x^i = \frac{1}{N} \sum_{i=1}^{N} (h_\theta(x^i) - y^i) x^i$$

Gradient descent algorithm for linear regression

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0) }

Gradient descent algorithm VS Normal equation

Gradient Descent

- needs a number of iterations.
- works well even when n is large
- all examples (batch) are examined at each iteration
 - Use stochastic gradient descent (SGD) or mini batch
- Several advances such as AdaGrad, RMSProp, Adam for optimization

 Need to compute an inverse matrix and slow if the number of samples is very large

$$(X^TX)^{-1}$$

Local Minima Saddle points

Quiz

What answers are correct? Select all that apply.

A. In linear regression, the solution is interpretable with input features

Correct. The score is computed as a linear combination of input features and weights; the weight explains the importance of an input feature to the final output

B. In linear regression, a hypothesis is not necessarily to be a linear form of learnable parameters

False. Linear regression model may not be a linear form of a raw data but it should be a linear form of parameters

Summary

Linear regression model

$$h(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x})$$

$$e = (y - h(x))^2$$

- Linear regression model
 - Can be readily solved using gradient descent
 - Interpretable and lightweight; worth to try first!

Reference

- Book: Pattern Recognition and Machine Learning (by Christopher M. Bishop)
- Book: Machine Learning: a Probabilistic Perspective (by Kevin P. Murphy)
- https://www.andrewng.org/courses/