

Course Handout (Part-II)

Date: 03/08/2015

In addition to Part I (General Handout for all courses appended to the Time Table) this portion gives further specific details regarding the course.

Course No. : BIO F213

Course Title : CELL BIOLOGY
Instructor-in-charge : VISHAL SAXENA
Instructor : Rajesh Mehrotra

1. Course Description

The course aims to detail fundamental processes of life at cellular and sub-cellular levels, cell environments, membrane transport, cell movements, division and control mechanisms. It will provide the base to understand the physiological properties, structure, intracellular organelles, interactions with microenvironments, division, regulatory mechanisms of a cell, and related experimental procedures to prepare students for developing their understanding into the fundamentals of life.

2. Scope and Objective of the Course:

The discipline of cell biology is both dynamic and evolving constantly. Thus, an advanced understanding of 'the cell' is must for biology students. This course will impart the vast knowledge of animal/ plant cell and mechanisms of cell functioning to students willing to pursue their further knowledge in any related area of study or research.

3. Text Book (TB): *Cell and Molecular Biology* by Phillip Sheeler and Donald E. Bianchi, John Wiley and Sons (3rd Ed).

4. Reference Books (RB):

RB1: The World of Cell by W.M Becker, L.J. Kleinsmith and J. Hardin. Pearson Education (5th Ed).

RB2: Essential Cell Biology by Bruce Albert, Garland Science (2nd Ed).

5. Course Plan:

Lect. #	Learning Objectives	Contents	References*
1-4	Preview of Cell	Brief introduction, overview of cell organelles. The composite animal, plant, bacterial, Mycoplasma cells and viruses	Ch.1(TB), Ch. 4(RB1), Ch. 1 (RB2)
5-6	Microscopy	Light, fluorescent and confocal and electron microscopy. Preparation of sample for microscopy and specialized applications	Ch.1 (TB) Ch. 1 (RB2)
7-10	Cell Membrane and cell-cell junctions	Structure and chemical organizations of plasma membrane. Lipids, carbohydrates and proteins in the membrane. Membrane fluidity and lipid asymmetry. Cellcell junctions and other specialized structures	Ch. 15 (TB) Ch. 7 (RB1) Ch. 11 (RB2)
11-13	Membrane functions	Passive movement through cell membrane, Facilitated diffusion, Active transport, Bulk transport, Endo- and Exo-cytosis. Membrane channels, channel inhibitors and their therapeutic importance	Ch. 15 (TB) Ch. 8 (RB1) Ch. 12, 15 (RB2)

14-17	Endo- membrane system	Membrane-enclosed organelles, protein trafficking and transportation, post translational modifications	Ch. 15 (RB2) Ch. 12 (RB1)
18-20	Cytoskeleton	Cytoplasmic filaments, microtubules, spindle fibers and centriole structures and functions	Ch. 23 (TB) Ch. 17 (RB2)
21-23	Nuclear processes	Nuclear organization, transcription, division and cytokinesis	Ch. 20 (TB), Ch. 7,19 (RB2)
24-27	Ribosome & translation	Eukaryotic and prokaryotic ribosome. Ribosome composition, rRNA operon, translation	Ch. 22 (TB) Ch. 7 (RB2)
28-30	Cell growth	Growth curve and kinetics. Continuous culture of cells. Synchronous cell cultures. Cell quantitation and sorting.	Ch. 2 (TB)
31-34	Cell cycle	Overview of the cell cycle, regulation of cell cycle. Cell cycle and cell division. Growth control and cancer	Ch. 19 (RB1) Ch. 18 (RB2)
35-36	Apoptosis	Mechanism of programmed cell death/apoptosis	Ch. 18 (RB2)
37-39	Cell communication	General principle, signaling molecules, receptors, secondary messengers, signal transduction, receptor-mediated signaling	Ch. 14 (RB1) Ch. 16 (RB2)
40-42	Modern Techniques and Cell Biology Applications	Cell organelles and human diseases, Cloning, Gene therapy, embryonic stem cells. Transgenesis and applications of Cell Biology, Cell biology of aging, Cell biology in forensic science	Class notes

^{*} Class notes will also be included along with mentioned references.

5. Evaluation Scheme:

Components	Duration	Weightage (%)	Date	Time	Venue	Remarks
Mid-Term Test	90 min	30	9/10 2:00 - 3	:30 PM		СВ
Quizzes	15 min	10		Surprise		СВ
Regular tutorials		10				CB/OB
(seminars)						
Assignments		5				
Compre exam	3 hrs	45	1	1/12 FN		CB/OB

CB (Closed book), OB (Open book)

- **6**. **Chamber Consultation Hours:** To be announced in the class.
- 7. **Notices:** Notices concerning the course will be displayed on the notice board at Department of Biological Sciences or Intra BITS.
- **8. Make-up Policy:** Make-up will be granted only during hospitalization or for genuine cases validated by concerned Wardens and/or Medical Officers. No make-up will be considered for quizzes, seminars and assignments.

Instructor-in-charge BIO F213

