

Introduction

Klaus C. Schadow

Consultant Strategic Analysis, Inc. 2896 Calle Heraldo San Clemente, CA 92673 UNITED STATES

TEL: 1 949 498 2308

E-MAIL: schadowkc@cox.net

After its emergence in the late eighties, MEMS (Micro-Electro-Mechanical-Systems) or MST (Microsystems Technology) has developed into billion \$ commercial markets, in particular in the automotive, medical, and telecommunication fields. The Lecture Series will address applications in the aerospace field, which encounter unique challenges related to harsh environment conditions and reliability requirements. This Introduction will provide a brief introduction into the MEMS technology, discuss examples of commercial and potential aerospace applications, and introduce the lectures, which will focus on six specific aerospace applications.

MEMS are miniature devices, which integrate actuators, sensors, and processors to form intelligent systems. Functional sub-systems could be electronic, optical, mechanical, thermal or fluidic. MEMS are characterized by their close relationship to integrated-circuit components both in terms of manufacturing techniques and their potential for integration with electronics. One example of a true MEMS system, which will be discussed, is the "Smart Micro Skin" which combines sensors, actuators, and controller to detect and control flow separation at the leading edge of a delta wing.

Several manufacturing techniques are required to develop MEMS, including surface micromachining. In this process mechanical microstructures are fabricated on the surface of a wafer by depositing different types of layers. Deposited layers include structural layers, which form the final structures, and sacrificial layers, which are removed in the final stage of the fabrication through the edging process.

The advantages of MEMS are numerous. They include miniaturization (allowing distributed sensing and actuation coupled with redundancy), reduced cost of fabrication (through the use of microelectronics processing technologies), and real-time control (allowing on-line active process control and health monitoring). In addition, micro devices can control macro systems by using natural physical amplification characteristics of the system. For example, the control of flow separation at the leading edge of delta wings by micro actuators allows the control of the leading-edge-vortex position, which determines lift and moments.

Examples for MEMS commercial applications, which will be discussed, include digital micro mirrors for projectors and micro total analytical systems.

Many MEMS aerospace and military applications are being considered. Examples are micro jet arrays for flow control, IMUs (Inertial Measurement Units) for inertial measurement and navigation, fuze/safety and

Paper presented at the RTO AVT Lecture Series on "MEMS Aerospace Applications", held in Montreal, Canada, 3-4 October 2002; Ankara, Turkey, 24-25 February 2003; Brussels, Belgium, 27-28 February 2003; Monterey, CA, USA, 3-4 March 2003, and published in RTO-EN-AVT-105.

RTO-EN-AVT-105

maintaining the data needed, and of including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 00 FEB 2004		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
Introduction: Rto Lecture Series "Mems Aerospace Applications"					5b. GRANT NUMBER	
					5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER		
					5e. TASK NUMBER	
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Strategic Analysis, Inc. 2896 Calle Heraldo San Clemente, CA 92673 UNITED STATES 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)				
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO See also ADM0016	otes 58., The original do	cument contains col	or images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT SAR	OF PAGES 27	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

arming for munitions, health monitoring of machinery, and telecommunication for pico satellites. The MEMS aerospace applications are confronted with barriers and challenges, which are more severe than for commercial applications. This resulted in slow progress of inserting many of the potential MEMS aerospace applications.

Military MEMS applications are being addressed in the NATO RTO (Research and Technology Organization) MEMS Task Group AVT (Applied Vehicle Technology) –078. This Group is assessing potential applications, determining technology status and R&D needs, discussing barriers for implementation, and developing insertions strategies. The Task Group saw the need to enhance user and MEMS supplier interactions and to increase MEMS awareness as enabling technology for several applications. Because of this need, the Task Group has proposed these Lecture Series, which will provide an introduction into MEMS technology and then focus on six potential applications, namely micro-flow control, IMU, fuze/safety & arming, micro power, gas turbines applications, inventory and health monitoring of munitions. Also an introduction into MOEMS (Micro-Optical-Electro-Mechanical-Systems) will be provided.

I - 2 RTO-EN-AVT-105

INTRODUCTION

KLAUS C. SCHADOW

CONSULTANT

TEL: 949 498 2308

E-MAIL: schadowkc@cox.net

RTO LECTURE SERIES "MEMS AEROSPACE APPLICATIONS"

MONTREAL, CANADA, 3/4 OCTOBER 2002 ANKARA, TURKEY, 24/25 FEBRUARY 2003 BRUSSELS, BELGIUM, 27/28 FEBRUARY 2003 MONTEREY, CA., USA, 3/4 MARCH 2003

OUTLINE

- FROM CURIOSITY TO BILLION \$ MARKETS
- WHAT IS MEMS?
- WHY MEMS?
- EXAMPLES OF COMMERCIAL APPLICATIONS
- POTENTIAL AEROSPACE APPLICATIONS
- BARRIERS AND CHALLENGES FOR IMPLEMENTATION
- SELECTED AEROSPACE APPLICATIONS

FROM CURIOSITY TO BILLION \$ MARKETS

- 1960
 - MICROSENSORS
- 1980
 - MICROACTUATORS
- 1988
 - MEMS
- 2002
 - (INKJETS)
 - AUTOMOTIVE SYSTEMS
 - BIOMEDICAL SYSTEMS
 - TELECOMMINICATION

FIRST MICRO MOTOR

Micro-Electro-Mechanical -System <u>MEMS</u>

Global Market Segments

MEMS Component Sales in 2000: \$3 Billion Projected 5 Year CAGR: 60%

WHAT IS MEMS?

- MICRO-ELECTRO-MECHANICAL-SYSTEMS
 - MINIATURE DEVICES
 - INTEGRATION OF ACTUATOR, SENSOR, CONTROLLER / PROCESSOR
 - ELECTRONIC, OPTICAL, MECHANICAL, THERMAL AND / OR FLUIDIC FUNCTIONALITY
- WAY OF MAKING THINGS (DARPA)
 - INTEGRATED-CIRCUIT (IC) BASED MANUFACTURING TECHNIQUE AND INTEGRATION WITH ELECTRONICS
 - MICROMACHINING
- MICROSYSTEMS TECHNOLOGY

MEMS Components

MEMS-based systems are physically small and integrate electrical and mechanical components.

Actuators

Mechanisms

Sensing and actuation at L.E.

L.E.
Small area - micro transducers
Curved surface

Surface Micromachining

Microsystems Technology Office

Simple Surface-Micromachined Structures

Substrate

Sacrificial layer

Substrate

Structural layer

Cantilever beam

Doubly-supported beam

WHY MEMS?

- MINIATURIZATION
 - DISTRIBUTED SENSING AND ACTUATION COUPLED WITH REDUNDANCY
- REDUCED COST OF FABRICATION
- REAL TIME CONTROL
 - ON-LINE ACTIVE PROCESS CONTROL AND HEALTH MONITORING
- MICRO DEVICES CONTROL MACRO SYSTEM

MEMS Actuators for Aero Control

MEMS Actuator Array on the Leading Edge of Wing of 1/7 Scale Mirage III Fighter

UCLA and Aerovironment

COMMERCIAL APPLICATIONS

- AUTOMOTIVE MEMS SYSTEMS
- OPTICAL MEMS
- MICRO TOTAL ANALYTICAL SYSTEMS (TAS)
- COMMUNICATION / RF MEMS
- BioMEMS
- INSPECTION MEMS

Commercial MEMS-based Products

Digital Micromirrors for Sub-portable Projectors

10 um

PLUS U3-880

- 2.9 lbs
- 1.9" x 9" x 7"
- •SVGA (800 x 600)

Digital Mirror Display (DMD) Texas Instruments, Inc.

Micro flow-diffusion analysis system

Transcutaneous measurement of blood alcohol 20 minutes after drinking of two glasses of champagne

Further application: non-invasive measurements of metabolites as indicators of the physical condition

Precision Delivery of Minute Amount of Liquid

10 micron droplet 30kHz

0.5 pico-litter

- High resolution printing
- Drug delivery

Kim, Ho

AEROSPACE MEMS APPLICATIONS WITH "HIGH-END" FUNCTIONALITY

- Complete inertial and navigation units on a single chip.
- Inertial Measurement Units (IMU) on a chip.
- Distributed sensing systems for monitoring, surveillance and control.
- Miniature and integrated fluidic systems for instrumentation and bio-chemical sensors.
- Embedded sensors and actuators for maintenance and monitoring.
- Identification and tagging systems using integrated micro-optomechanical MEMS.
- Smart structures and components.
- Micro flow control
- Fuze / Safety & Arming
- Micro Power and Propulsion
- Mass storage and novel display technologies.

MEMS for Military Applications

Adaptive Optics Arrays for Target Acquisition & Friend or Foe ID

Microjet Arrays for Airflow Control

Multiple Chip Wafer Fabrication for Graceful Degradation and Cost Reduction

MEMS IMU for Inertial Measurement & Navigation

Chem-Lab on a Chip for Forward Recon & QA

Fuze/safety and arming

Reduced Ship's Crew by Virtual Presence (RSVP) Concept

Internal Ship Situational Awareness

BARRIERS AND CHALLENGES FOR IMPLEMENTATION

- RELIABILITY
- HARSH ENVIRONMENT
- SUPPLY AVAILABILITY
- OBSOLESCENCE
- PACKAGING
- MANUFACTURING
- LACK OF STANDARDS
- SECURITY ASPECTS

NATO RTO/AVT MEMS TASK GROUP

- APPLICATIONS, STATUS, R&D NEEDS, BARRIERS
- 2000 to 2003
 - INTERIM REPORTS, CDs FROM 3 MEETINGS
 - FINAL REPORT, SEPTEMBER 2004
 - RTO SYMPOSIUM, BRUSSELS, APRIL 2003
- FOCUS
 - HEALTH MONITORING
 - GAS TURBINES
 - MUNITIONS
 - IMU
 - MICRO FLOW CONTROL
 - FUZE/SAFETY&ARMING
 - MICRO POWER

RLS "MEMS AEROSPACE APPLICATIONS" First Day

08:15-08:45	Registration		
08:45-09:00	Opening Ceremony, National Authorities		
09:00-09.30	Dr. Klaus C. Schadow, Consultant, US, "Introduction"		
09:30-10:30	Prof. Dr. Mehran Mehregany, Case Western Reserve University US, "Introduction into MEMS Technology (1)"		
10:30-11:00	Break		
11:00-11:30	Prof. M. Mehregany, US, "Introduction into MEMS Technology (2)"		
11:30-12:30	Dr. Clyde Warsop, BAE SYSTEMS, UK, "Micro-Flow Control (1)"		
12:30-14:00	Lunch		
14:00-15:15	Dr. Warsop, UK, "Micro-Flow Control (2)"		
15:15-15:45	Break		
15:45-16:45	Prof. M. Mehregany, US, "Applications to Gas Turbines – Health Monitoring"		
16:45-17:15	Dr. K. Schadow, US, "Micro Power"		

RLS "MEMS AEROSPACE APPLICATIONS" Second Day

08:45-10:00	Dr. Ayman El-Fatatry, BAE STSTEMS, UK, "Inertial Measurement Units - IMU"
10:00-10:30	Break
10:30-11:30	Dr. A. El-Fatatry, UK, "MOEMS"
11:30-12:45	Paul Smith, IHDIV, Naval Surface Warfare Center, US, "Fuze/Safety & Arming"
12:45-14:00	Lunch
14:00-15:00	Paul Smith, US, "Health Monitoring of Munitions"
14:00-14:30	Wrap-Up