benchmark with sim-outorder 分析调研报告

2014211304 班 D 组

史文翰 2014211218

林宇辰 2014211223

王剑督 2014211228

崔嘉伟 2014211233

杨 莹 2014211238

徐丹雅 2014211243

郝绍明 2014210123

分工情况

史文翰 2014211218:负责 Linux 操作,解决缺少函数库的问题,负责实验报告的编写和整理

林宇辰 2014211223 王剑督 2014211228 崔嘉伟 2014211233

杨 莹 2014211238 徐丹雅 2014211243 郝绍明 2014210123:

负责查阅资料等辅助性工作

一、 用 sim-outorder 运行 tests

1 test-math

```
sim: ** starting performance simulation **
pow(12.0, 2.0) == 144.000000
pow(10.0, 3.0) == 1000.000000
pow(10.0, -3.0) == 0.001000
str: 123.456
x: 123.000000
str: 123.456
x: 123.456000
str: 123.456
x: 123.456000
123.456 123.456000 123 1000
sinh(2.0) = 3.62686
sinh(3.0) = 10.01787
h=3.60555
atan2(3,2) = 0.98279
pow(3.60555,4.0) = 169
169 / \exp(0.98279 * 5) = 1.24102
3.93117 + 5*log(3.60555) = 10.34355
cos(10.34355) = -0.6068, sin(10.34355) = -0.79486
      0.5x
Χ
x0.5
         Χ
x 0.5x
-1e-17 != -1e-17 Worked!
sim: ** simulation statistics **
                                213745 # total number of instructions committed
sim_num_insn
                                 56902 # total number of loads and stores committed
sim_num_refs
                                  34108 # total number of loads committed
sim_num_loads
                           22794.0000 # total number of stores committed
sim_num_stores
sim_num_branches
                                  38605 # total number of branches committed
sim_elapsed_time
                                     1 # total simulation time in seconds
sim_inst_rate
                        213745.0000 # simulation speed (in insts/sec)
                              233115 # total number of instructions executed
sim_total_insn
                               61930 # total number of loads and stores executed
sim_total_refs
sim_total_loads
                               37548 # total number of loads executed
                         24382.0000 # total number of stores executed
sim_total_stores
                               42799 # total number of branches executed
sim_total_branches
                               224349 # total simulation time in cycles
sim_cycle
```

sim_IPC 0.9527 # instructions per cycle sim_CPI 1.0496 # cycles per instruction

sim_exec_BW 1.0391 # total instructions (mis-spec + committed)

per cycle

sim_IPB 5.5367 # instruction per branch IFQ_count 352193 # cumulative IFQ occupancy IFQ fcount 74011 # cumulative IFO full count ifq_occupancy 1.5698 # avg IFQ occupancy (insn's) 1.0391 # avg IFQ dispatch rate (insn/cycle) ifq_rate 1.5108 # avg IFQ occupant latency (cycle's) ifq_latency ifa full 0.3299 # fraction of time (cycle's) IFQ was full RUU_count 1440302 # cumulative RUU occupancy RUU_fcount 45178 # cumulative RUU full count

ruu_occupancy
ruu_rate

ruu_latency

6.4199 # avg RUU occupancy (insn's)

1.0391 # avg RUU dispatch rate (insn/cycle)

6.1785 # avg RUU occupant latency (cycle's)

ruu_full

0.2014 # fraction of time (cycle's) RUU was full

LSQ_count

315260 # cumulative LSQ occupancy
LSQ_fcount

5107 # cumulative LSQ full count

1.4052 # avg LSQ occupancy (insn's)

1.0391 # avg LSQ dispatch rate (insn/cycle)

1.3524 # avg LSQ occupant latency (cycle's)

sim_slip 1965181 # total number of slip cycles

avg_sim_slip 9.1940 # the average slip between issue and retirement

bpred_bimod.lookups 44203 # total number of bpred lookups

bpred_bimod.updates 38605 # total number of updates

bpred bimod.addr hits 34569 # total number of address-predicted hits

bpred_bimod.dir_hits 35160 # total number of direction-predicted hits

(includes addr-hits)

bpred_bimod.misses 3445 # total number of misses

bpred_bimod.jr_hits 3424 # total number of address-predicted hits for JR's

bpred_bimod.jr_seen 3544 # total number of JR's seen

bpred_bimod.jr_non_ras_hits.PP 28 # total number of address-predicted hits

for non-RAS JR's

bpred_bimod.jr_non_ras_seen.PP 41 # total number of non-RAS JR's seen bpred_bimod.bpred_addr_rate 0.8955 # branch address-prediction rate (i.e., addr-

hits/updates)

bpred_bimod.bpred_dir_rate 0.9108 # branch direction-prediction rate (i.e., all-

hits/updates)

bpred_bimod.bpred_jr_rate 0.9661 # JR address-prediction rate (i.e., JR addr-

hits/JRs seen)

non-RAS JR hits/JRs seen)

bpred_bimod.retstack_pushes 3909 # total number of address pushed onto ret-addr stack bpred_bimod.retstack_pops 4536 # total number of address popped off of retaddr stack bpred bimod.used ras.PP 3503 # total number of RAS predictions used bpred_bimod.ras_hits.PP 3396 # total number of RAS hits 0.9695 # RAS prediction rate (i.e., RAS hits/used RAS) bpred bimod.ras rate.PP il1.accesses 256050 # total number of accesses il1.hits 239944 # total number of hits il1.misses 16106 # total number of misses 15595 # total number of replacements il1.replacements il1.writebacks 0 # total number of writebacks il1.invalidations 0 # total number of invalidations 0.0629 # miss rate (i.e., misses/ref) il1.miss rate il1.repl_rate 0.0609 # replacement rate (i.e., repls/ref) il1.wb rate 0.0000 # writeback rate (i.e., wrbks/ref) il1.inv_rate 0.0000 # invalidation rate (i.e., invs/ref) dl1.accesses 56904 # total number of accesses dl1.hits 56353 # total number of hits dl1.misses 551 # total number of misses dl1.replacements 66 # total number of replacements dl1.writebacks 61 # total number of writebacks dl1.invalidations 0 # total number of invalidations dl1.miss_rate 0.0097 # miss rate (i.e., misses/ref) 0.0012 # replacement rate (i.e., repls/ref) dl1.repl_rate dl1.wb_rate 0.0011 # writeback rate (i.e., wrbks/ref) dl1.inv rate 0.0000 # invalidation rate (i.e., invs/ref) 16718 # total number of accesses ul2.accesses ul2.hits 15497 # total number of hits ul2.misses 1221 # total number of misses ul2.replacements 0 # total number of replacements 0 # total number of writebacks ul2.writebacks 0 # total number of invalidations ul2.invalidations 0.0730 # miss rate (i.e., misses/ref) ul2.miss_rate 0.0000 # replacement rate (i.e., repls/ref) ul2.repl_rate ul2.wb_rate 0.0000 # writeback rate (i.e., wrbks/ref) ul2.inv rate 0.0000 # invalidation rate (i.e., invs/ref) itlb.accesses 256050 # total number of accesses 256027 # total number of hits itlb.hits 23 # total number of misses itlb.misses itlb.replacements 0 # total number of replacements 0 # total number of writebacks itlb.writebacks itlb.invalidations 0 # total number of invalidations

0.0001 # miss rate (i.e., misses/ref)

itlb.miss rate

itlb.repl_rate 0.0000 # replacement rate (i.e., repls/ref) itlb.wb rate 0.0000 # writeback rate (i.e., wrbks/ref) itlb.inv_rate 0.0000 # invalidation rate (i.e., invs/ref) dtlb.accesses 57590 # total number of accesses dtlb.hits 57580 # total number of hits dtlb.misses 10 # total number of misses dtlb.replacements 0 # total number of replacements 0 # total number of writebacks dtlb.writebacks 0 # total number of invalidations dtlb.invalidations dtlb.miss_rate 0.0002 # miss rate (i.e., misses/ref) dtlb.repl rate 0.0000 # replacement rate (i.e., repls/ref) dtlb.wb rate 0.0000 # writeback rate (i.e., wrbks/ref) dtlb.inv_rate 0.0000 # invalidation rate (i.e., invs/ref) 0 # total non-speculative bogus addresses seen sim_invalid_addrs (debug var) Id text base 0x00400000 # program text (code) segment base Id_text_size 91744 # program text (code) size in bytes ld_data_base 0x10000000 # program initialized data segment base 13028 # program init'ed `.data' and uninit'ed `.bss' size Id_data_size in bytes Id_stack_base 0x7fffc000 # program stack segment base (highest address in stack) Id stack size 16384 # program initial stack size Id_prog_entry 0x00400140 # program entry point (initial PC) 0x7fff8000 # program environment base address address Id_environ_base Id_target_big_endian 0 # target executable endian-ness, non-zero if big endian 33 # total number of pages allocated mem.page_count mem.page_mem 132k # total size of memory pages allocated mem.ptab_misses 40 # total first level page table misses 2021633 # total page table accesses mem.ptab_accesses mem.ptab_miss_rate 0.0000 # first level page table miss rate

2 test-fmath

sim: ** starting performance simulation **
q=4 (int)x=12 (int)y=29
z=144
z=841
z=13
z=13
l=6
l=36
*lp=216
z=144.000000

```
q=4 x=12.000000 (int)x=12 y=29.000000 (int)y=29

q=16 x=11.700001 y=23.400000
```

sim: ** simulation statistics **

sim_num_insn 53504 # total number of instructions committed sim_num_refs 16347 # total number of loads and stores committed

sim_num_loads 8635 # total number of loads committed 7712.0000 # total number of stores committed sim_num_branches 10353 # total number of branches committed

sim_elapsed_time 1 # total simulation time in seconds sim_inst_rate 53504.0000 # simulation speed (in insts/sec)

sim_total_insn 58079 # total number of instructions executed sim_total_refs 17481 # total number of loads and stores executed

sim_total_loads 9398 # total number of loads executed sim_total_stores 8083.0000 # total number of stores executed sim_total_branches 11298 # total number of branches executed

sim_cycle 68367 # total simulation time in cycles

sim_IPC 0.7826 # instructions per cycle sim_CPI 1.2778 # cycles per instruction

sim_exec_BW 0.8495 # total instructions (mis-spec + committed)

per cycle

sim_IPB 5.1680 # instruction per branch IFQ count 89586 # cumulative IFO occupancy IFQ_fcount 18917 # cumulative IFQ full count 1.3104 # avg IFQ occupancy (insn's) ifq_occupancy 0.8495 # avg IFQ dispatch rate (insn/cycle) ifq_rate ifq_latency 1.5425 # avg IFQ occupant latency (cycle's) ifq full 0.2767 # fraction of time (cycle's) IFQ was full RUU_count 359514 # cumulative RUU occupancy RUU_fcount 10558 # cumulative RUU full count

ruu_occupancy 5.2586 # avg RUU occupancy (insn's)
ruu_rate 0.8495 # avg RUU dispatch rate (insn/cycle)
ruu_latency 6.1901 # avg RUU occupant latency (cycle's)
ruu_full 0.1544 # fraction of time (cycle's) RUU was full

LSQ_count

85631 # cumulative LSQ occupancy

LSQ_fcount

2148 # cumulative LSQ full count

1.2525 # avg LSQ occupancy (insn's)

lsq_rate

0.8495 # avg LSQ dispatch rate (insn/cycle)

lsq_latency

1.4744 # avg LSQ occupant latency (cycle's)

lsq_full

0.0314 # fraction of time (cycle's) LSQ was full

sim_slip 500917 # total number of slip cycles

avg_sim_slip 9.3622 # the average slip between issue and retirement

bpred_bimod.lookups 11563 # total number of bpred lookups

bpred bimod.updates 10353 # total number of updates

bpred_bimod.addr_hits	9123 # total number of address-predicted hits
bpred_bimod.dir_hits	9434 # total number of direction-predicted hits
(includes addr-hits)	·
bpred_bimod.misses	919 # total number of misses
bpred_bimod.jr_hits	792 # total number of address-predicted hits for JR's
bpred_bimod.jr_seen	833 # total number of JR's seen
bpred_bimod.jr_non_ras_hits.P	PP 4 # total number of address-predicted hits
for non-RAS JR's	'
bpred_bimod.jr_non_ras_seen.	PP 19 # total number of non-RAS JR's seen
bpred_bimod.bpred_addr_rate	e 0.8812 # branch address-prediction rate (i.e., addr-
hits/updates)	
bpred_bimod.bpred_dir_rate	0.9112 # branch direction-prediction rate (i.e., all-
hits/updates)	
bpred_bimod.bpred_jr_rate	0.9508 # JR address-prediction rate (i.e., JR addr-
hits/JRs seen)	
bpred_bimod.bpred_jr_non_ra	s_rate.PP 0.2105 # non-RAS JR addr-pred rate (ie,
non-RAS JR hits/JRs seen)	
bpred_bimod.retstack_pushes	942 # total number of address pushed onto
ret-addr stack	
bpred_bimod.retstack_pops	930 # total number of address popped off of ret-
addr stack	
bpred_bimod.used_ras.PP	814 # total number of RAS predictions used
bpred_bimod.ras_hits.PP	788 # total number of RAS hits
bpred_bimod.ras_rate.PP (0.9681 # RAS prediction rate (i.e., RAS hits/used RAS)
il1.accesses	63612 # total number of accesses
il1.hits	59269 # total number of hits
il1.misses	4343 # total number of misses
il1.replacements	3847 # total number of replacements
il1.writebacks	0 # total number of writebacks
il1.invalidations	0 # total number of invalidations
il1.miss_rate	0.0683 # miss rate (i.e., misses/ref)
il1.repl_rate	0.0605 # replacement rate (i.e., repls/ref)
il1.wb_rate	0.0000 # writeback rate (i.e., wrbks/ref)
il1.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)
dl1.accesses	16431 # total number of accesses
dl1.hits	15955 # total number of hits
dl1.misses	476 # total number of misses
dl1.replacements	29 # total number of replacements
dl1.writebacks	22 # total number of writebacks
dl1.invalidations	0 # total number of invalidations
dl1.miss_rate	0.0290 # miss rate (i.e., misses/ref)
dl1.repl_rate	0.0018 # replacement rate (i.e., repls/ref)
dl1.wb_rate	0.0013 # writeback rate (i.e., wrbks/ref)
dl1.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)

ul2.accesses 4841 # total number of accesses ul2.hits 3975 # total number of hits 866 # total number of misses ul2.misses ul2.replacements 0 # total number of replacements ul2.writebacks 0 # total number of writebacks ul2.invalidations 0 # total number of invalidations 0.1789 # miss rate (i.e., misses/ref) ul2.miss rate ul2.repl_rate 0.0000 # replacement rate (i.e., repls/ref) ul2.wb rate 0.0000 # writeback rate (i.e., wrbks/ref) ul2.inv_rate 0.0000 # invalidation rate (i.e., invs/ref) 63612 # total number of accesses itlb.accesses itlb.hits 63592 # total number of hits itlb.misses 20 # total number of misses 0 # total number of replacements itlb.replacements 0 # total number of writebacks itlb.writebacks 0 # total number of invalidations itlb.invalidations itlb.miss_rate 0.0003 # miss rate (i.e., misses/ref) itlb.repl_rate 0.0000 # replacement rate (i.e., repls/ref) 0.0000 # writeback rate (i.e., wrbks/ref) itlb.wb_rate itlb.inv_rate 0.0000 # invalidation rate (i.e., invs/ref) 16595 # total number of accesses dtlb.accesses dtlb.hits 16585 # total number of hits dtlb.misses 10 # total number of misses dtlb.replacements 0 # total number of replacements dtlb.writebacks 0 # total number of writebacks dtlb.invalidations 0 # total number of invalidations dtlb.miss rate 0.0006 # miss rate (i.e., misses/ref) dtlb.repl rate 0.0000 # replacement rate (i.e., repls/ref) dtlb.wb_rate 0.0000 # writeback rate (i.e., wrbks/ref) dtlb.inv_rate 0.0000 # invalidation rate (i.e., invs/ref) 0 # total non-speculative bogus addresses seen sim_invalid_addrs (debug var) 0x00400000 # program text (code) segment base Id_text_base Id_text_size 79920 # program text (code) size in bytes 0x10000000 # program initialized data segment base ld_data_base Id_data_size 12288 # program init'ed `.data' and uninit'ed `.bss' size in bytes Id_stack_base 0x7fffc000 # program stack segment base (highest address in stack) 16384 # program initial stack size Id_stack_size Id_prog_entry 0x00400140 # program entry point (initial PC) Id_environ_base 0x7fff8000 # program environment base address address Id_target_big_endian 0 # target executable endian-ness, non-zero if big endian

mem.page_count 30 # total number of pages allocated

mem.page_mem 120k # total size of memory pages allocated

mem.ptab_misses 34 # total first level page table misses

mem.ptab_accesses 879930 # total page table accesses mem.ptab_miss_rate 0.0000 # first level page table miss rate

3 test-printf

```
sim: ** starting performance simulation **
%.4x:`0012'
%04x:
        `0012'
%4.4x:
        `0012'
%04.4x: `0012'
%4.3x:
      ` 012'
%04.3x: `0012'
%.*x:`0012'
%0*x:
        `0012'
%*.*X:
        `0012'
%0*.*x: `0012'
bad format: "%z"
nil pointer (padded): "
                          (nil)"
decimal negative: "-2345"
octal negative:
                "37777773327"
hex negative: "fffff6d7"
long decimal number: "-123456"
long octal negative:
                    "37777773327"
long unsigned decimal number: "4294843840"
zero-padded LDN:
                    "-000123456"
                    "-123456
left-adjusted ZLDN:
space-padded LDN: "
                        -123456"
                    "-123456
left-adjusted SLDN:
zero-padded string:
                         Hi. Z."
left-adjusted Z string: "Hi, Z.
space-padded string: " Hi, Z."
left-adjusted S string: "Hi, Z.
null string:
            "(null)"
e-style >= 1: "1.234000e+01"
e-style >= .1:"1.234000e-01"
e-style < .1: "1.234000e-03"
e-style
                                                                          big:
    e-style == .1:"1.000000e-01"
f-style >= 1: "12.340000"
f-style >= .1: "0.123400"
f-style < .1: "0.001234"
```

```
g-style >= 1: "12.34"
g-style >= .1:"0.1234"
g-style < .1: "0.00123"
g-style big: "10000000000000000000"
:new test: 99.85:
0.10000
0.10000
x0.5000x
0x1
       0.0000| 0.0000e+00|
                                        0
       1.0000
               1.0000e+00
                                        11
      -1.0000| -1.0000e+00|
                                      -1|
    100.0000| 1.0000e+02|
                                      100|
   1000.0000
                1.0000e+03|
                                     1000
  10000.0000
                1.0000e+04
                                    1e+04|
  12345.0000
                1.2345e+04|
                               1.235e+04|
| 100000.0000| 1.0000e+05|
                                   1e+05|
| 123456.0000| 1.2346e+05|
                               1.235e+05|
Formatted output test
                                           6u
prefix 6d
                60
                         6x
                                  6X
%-+#0 |-123
               |0377
                                       |4294967295 |
                        0xff
                               |OXFF
 %-+# |-123
               10377
                       10xff
                               IOXFF
                                       |4294967295|
 %-+0 |-123
               |377
                       |ff
                               IFF
                                       |4294967295|
  %-+ |-123
               |377
                       |ff
                               IFF
                                       |4294967295|
 %-#0 |-123
              |0377
                       |0xff
                                       |4294967295 |
                              |OXFF
  %-# |-123
              10377
                       10xff
                              IOXFF
                                       |4294967295 |
  %-0 |-123
                              IFF
              |377
                       |ff
                                      |4294967295|
   %- |-123
              |377
                       |ff
                              IFF
                                      |4294967295|
 %+#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
  %+# | -123 | 0377 | 0xff | 0XFF |4294967295 |
  %+0 |-00123 |000377 |0000ff |0000FF |4294967295 |
   %+ | -123 |
                  377 |
                           ff |
                                  FF |4294967295 |
  %#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
   %# | -123 | 0377 | 0xff | 0XFF |4294967295 |
   %0 |-00123 |000377 |0000ff |0000FF |4294967295 |
    % | -123 |
                  377 |
                           ff |
                                  FF |4294967295 |
    (null)
(null)
Formatted output test
prefix 6d
                60
                         6x
                                  6X
                                           6u
%-+#0 |-123
               10377
                        |0xff
                               |OXFF
                                       |4294967295 |
```

%-+# |-123

10377

IOXFF

|0xff

|4294967295 |

```
%-+0 |-123
              |377
                       |ff
                              JFF
                                       |4294967295|
  %-+ |-123
              |377
                              JFF
                       |ff
                                       |4294967295|
%-#0 |-123
              |0377
                                       |4294967295 |
                       |0xff
                              |OXFF
 %-# |-123
              10377
                       |0xff
                              JOXFF
                                       |4294967295 |
 %-0 |-123
                              JFF
              |377
                       |ff
                                      |4294967295|
   %- |-123
              |377
                       |ff
                              |FF
                                      |4294967295 |
%+#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
  %+# | -123 | 0377 | 0xff | 0XFF |4294967295 |
  %+0 |-00123 |000377 |0000ff |0000FF |4294967295 |
   %+ | -123 |
                 377 |
                           ff |
                                  FF |4294967295 |
  %#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
   %# | -123 | 0377 | 0xff | 0XFF |4294967295 |
   %0 |-00123 |000377 |0000ff |0000FF |4294967295 |
    % | -123 |
                 377 |
                          ff |
                                 FF |4294967295 |
    (null)
(null)
```

Formatted output test

prefix	6d	60	6x	6X	6u
%-+#O	-123	0377	0xff	0XFF	4294967295
%-+#	-123	0377	0xff	0XFF	4294967295
%-+O	-123	377	ff	JFF	4294967295
%-+	-123	377	ff	JFF	4294967295
%-#0	-123	0377	0xff	0XFF	4294967295
%-#	-123	0377	0xff	0XFF	4294967295
%-0	-123	377	ff	JFF	4294967295
%-	-123	377	ff	JFF	4294967295
%+#0	-00123	000377	0x00ff	0X00FF	4294967295
%+#	-123	0377	0xff	OXFF	4294967295
%+0	-00123	000377	0000ff	0000FF	4294967295
% +	-123	377	ff	FF -	4294967295
%#0	-00123	000377	0x00ff	0X00FF	4294967295
%#	-123	0377	0xff	OXFF	4294967295
%O	-00123	000377	0000ff	0000FF	4294967295
%	-123	377	ff	FF	1294967295
(n	ull)				
(null)					

Formatted output test

prefix 6d	60	6x	6X	6u
%-+#0 -123	0377	0xff	OXFF	4294967295
%-+# -123	0377	0xff	OXFF	4294967295
%-+0 -123	377	ff	JFF	4294967295
%-+ I-123	1377	lff	IFF	142949672951

```
%-#0 |-123
             |0377
                              |0XFF |4294967295|
                       |0xff
  %-# |-123
              |0377
                      |0xff
                              JOXFF
                                      |4294967295|
  %-0 |-123
              |377
                      |ff
                              [FF
                                      |4294967295|
   %- |-123
             |377
                      |ff
                              IFF
                                      |4294967295|
%+#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
  %+# | -123 | 0377 | 0xff | 0XFF |4294967295 |
  %+0 |-00123 |000377 |0000ff |0000FF |4294967295 |
  %+ | -123 |
                 377 |
                          ff |
                                 FF |4294967295 |
  %#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
   %# | -123 | 0377 | 0xff | 0XFF |4294967295 |
   %0 |-00123 |000377 |0000ff |0000FF |4294967295 |
    % | -123 |
                 377 |
                          ff |
                                 FF |4294967295 |
    (null)
(null)
```

Formatted output test

prefix	6d	60	6x	6X	6u
%-+#0	-123	0377	0xff	0XFF	4294967295
%-+#	-123	0377	0xff	0XFF	4294967295
%-+O	-123	377	ff	FF	4294967295
%-+	-123	377	ff	JFF	4294967295
%-#0	-123	0377	0xff	OXFF	4294967295
%-#	-123	0377	0xff	OXFF	4294967295
%-O -	-123	377	ff	FF	4294967295
%- -	-123	377	ff	FF	4294967295
%+#0	-00123	1000377	0x00f1	f 0X00FF	4294967295
%+#	-123	0377	Oxff	OXFF	4294967295
%+O	-00123	000377	0000ff	10000FF	4294967295
%+	-123	377	ff	FF	4294967295
%#0	-00123	000377	0x00ff	0X00FF	4294967295
%#	-123	0377	0xff	0XFF	4294967295
%O -	-00123	000377	0000ff	0000FF	4294967295
%	-123	377	ff	FF	1294967295
(nu	ıll)				
(null)					

Formatted output test

prefix 6d	60	6x	6X	6u
%-+#0 -123	0377	0xff	0XFF	4294967295
%-+# -123	0377	0xff	0XFF	4294967295
%-+0 -123	377	ff	FF	4294967295
%-+ -123	377	ff	JFF	4294967295
%-#0 -123	0377	0xff	0XFF	4294967295
%-# I-123	10377	I0xff	IOXFF	4294967295

```
%-0 |-123
                                    |4294967295|
             |377
                      |ff
                              |FF
   %- |-123
             |377
                      |ff
                             JFF
                                     |4294967295|
 %+#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
  %+# | -123 | 0377 | 0xff | 0XFF |4294967295 |
  %+0 |-00123 |000377 |0000ff |0000FF |4294967295 |
  %+ | -123 |
                 377 |
                          ff |
                                 FF |4294967295 |
  %#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
   %# | -123 | 0377 | 0xff | 0XFF |4294967295 |
   %0 |-00123 |000377 |0000ff |0000FF |4294967295 |
    % | -123 |
                377 | ff |
                                FF |4294967295 |
    (null)
(null)
```

Formatted output test

prefix	6d	60	6x	6X	6u
%-+#0	-123	0377	0xff	0XFF	4294967295
%-+#	-123	0377	0xff	0XFF	4294967295
%-+0	-123	377	ff	JFF	4294967295
%-+	-123	377	ff	JFF	4294967295
%-#0	-123	0377	0xff	0XFF	4294967295
%-#	-123	0377	0xff	0XFF	4294967295
%-0	-123	377	ff	JFF	4294967295
%-	-123	377	ff	JFF	4294967295
%+#0	-00123	000377	' 0x00f1	0X00FF	4294967295
% + #	-123	0377	0xff	OXFF	4294967295
%+0	-00123	000377	0000f1	0000FF	4294967295
% +	-123	377	ff	FF -	4294967295
%#O	-00123	000377	0x00ff	0X00FF	4294967295
%#	-123	0377	0xff	OXFF	4294967295
%O	-00123	000377	0000ff	0000FF	4294967295
%	-123	377	ff	FF	1294967295
(n	ull)				
(null)					

Formatted output test

prefix 6d	60	6x	6X	6u
%-+#0 -123	0377	0xff	0XFF	4294967295
%-+# -123	0377	0xff	0XFF	4294967295
%-+0 -123	377	ff	JFF	4294967295
%-+ -123	377	ff	JFF	4294967295
%-#0 -123	0377	0xff	OXFF	4294967295
%-# -123	0377	0xff	0XFF	4294967295
%-0 -123	377	ff	FF	4294967295
%- -123	377	ff	FF	4294967295

```
%+#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
  %+# | -123 | 0377 | 0xff | 0XFF |4294967295 |
  %+0 |-00123 |000377 |0000ff |0000FF |4294967295 |
   %+ | -123 |
                  377 |
                           ff |
                                  FF |4294967295 |
  %#0 |-00123 |000377 |0x00ff |0X00FF |4294967295 |
   %# | -123 | 0377 | 0xff | 0XFF |4294967295 |
   %0 |-00123 |000377 |0000ff |0000FF |4294967295 |
    % | -123 |
                 377 |
                           ff |
                                  FF |4294967295 |
    (null)
(null)
1.234568e+06 should be 1.234568e+06
1234567.800000 should be 1234567.800000
1.23457e+06 should be 1.23457e+06
123.456 should be 123.456
1e+06 should be 1e+06
10 should be 10
0.02 should be 0.02
testing parametric fields: 0.7000
sim: ** simulation statistics **
                               1813937 # total number of instructions committed
sim num insn
                                516949 # total number of loads and stores committed
sim_num_refs
                                348604 # total number of loads committed
sim num loads
sim_num_stores
                          168345.0000 # total number of stores committed
                                 401630 # total number of branches committed
sim_num_branches
sim_elapsed_time
                                     2 # total simulation time in seconds
sim_inst_rate
                        906968.5000 # simulation speed (in insts/sec)
                             1984229 # total number of instructions executed
sim total insn
                              560618 # total number of loads and stores executed
sim_total_refs
                              379039 # total number of loads executed
sim_total_loads
                        181579.0000 # total number of stores executed
sim_total_stores
                              450155 # total number of branches executed
sim_total_branches
sim_cycle
                              1395617 # total simulation time in cycles
sim_IPC
                                1.2997 # instructions per cycle
sim_CPI
                                0.7694 # cycles per instruction
sim_exec_BW
                                 1.4218 # total instructions (mis-spec + committed)
per cycle
sim_IPB
                               4.5164 # instruction per branch
                               3424664 # cumulative IFQ occupancy
IFQ_count
                               724198 # cumulative IFQ full count
IFQ_fcount
ifq_occupancy
                               2.4539 # avg IFQ occupancy (insn's)
ifq_rate
                              1.4218 # avg IFQ dispatch rate (insn/cycle)
ifq_latency
                              1.7259 # avg IFQ occupant latency (cycle's)
ifq full
                             0.5189 # fraction of time (cycle's) IFQ was full
```

RUU_count 14061759 # cumulative RUU occupancy
RUU_fcount 558671 # cumulative RUU full count
ruu_occupancy 10.0757 # avg RUU occupancy (insn's)
ruu_rate 1.4218 # avg RUU dispatch rate (insn/cycle)
ruu_latency 7.0868 # avg RUU occupant latency (cycle's)
ruu_full 0.4003 # fraction of time (cycle's) RUU was full

LSQ_count

2777672 # cumulative LSQ occupancy

37082 # cumulative LSQ full count

1.9903 # avg LSQ occupancy (insn's)

1.4218 # avg LSQ dispatch rate (insn/cycle)

1.3999 # avg LSQ occupant latency (cycle's)

1.4218 # avg LSQ occupant latency (cycle's)

1.3999 # avg LSQ occupant latency (cycle's)

sim_slip 18575793 # total number of slip cycles

avg_sim_slip 10.2406 # the average slip between issue and retirement

bpred_bimod.lookups 464071 # total number of bpred lookups bpred bimod.updates 401630 # total number of updates

bpred_bimod.addr_hits 377941 # total number of address-predicted hits

bpred_bimod.dir_hits 380425 # total number of direction-predicted hits

(includes addr-hits)

bpred_bimod.misses 21205 # total number of misses

bpred_bimod.jr_hits 29956 # total number of address-predicted hits for JR's

bpred_bimod.jr_seen 31999 # total number of JR's seen

bpred_bimod.jr_non_ras_hits.PP 363 # total number of address-predicted

hits for non-RAS JR's

bpred_bimod.jr_non_ras_seen.PP 2198 # total number of non-RAS JR's seen bpred_bimod.bpred_addr_rate 0.9410 # branch address-prediction rate (i.e., addr-

hits/updates)

bpred_bimod.bpred_dir_rate 0.9472 # branch direction-prediction rate (i.e., all-

hits/updates)

bpred_bimod.bpred_ir_rate 0.9362 # JR address-prediction rate (i.e., JR addr-

hits/JRs seen)

non-RAS JR hits/JRs seen)

bpred_bimod.retstack_pushes 34915 # total number of address pushed onto

ret-addr stack

bpred_bimod.retstack_pops 31690 # total number of address popped off of

ret-addr stack

bpred_bimod.used_ras.PP 29801 # total number of RAS predictions used

bpred_bimod.ras_hits.PP 29593 # total number of RAS hits

bpred_bimod.ras_rate.PP 0.9930 # RAS prediction rate (i.e., RAS hits/used RAS)

il1.accesses
2116704 # total number of accesses
il1.hits
2054684 # total number of hits
il1.misses
62020 # total number of misses

il1.replacements 61510 # total number of replacements

il1.writebacks	0 # total number of writebacks
il1.invalidations	0 # total number of invalidations
il1.miss_rate	0.0293 # miss rate (i.e., misses/ref)
il1.repl_rate	0.0291 # replacement rate (i.e., repls/ref)
il1.wb_rate	0.0000 # writeback rate (i.e., wrbks/ref)
il1.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)
dl1.accesses	524334 # total number of accesses
dl1.hits	523762 # total number of hits
dl1.misses	572 # total number of misses
dl1.replacements	77 # total number of replacements
dl1.writebacks	73 # total number of writebacks
dl1.invalidations	0 # total number of invalidations
dl1.miss_rate	0.0011 # miss rate (i.e., misses/ref)
dl1.repl_rate	0.0001 # replacement rate (i.e., repls/ref)
dl1.wb_rate	0.0001 # writeback rate (i.e., wrbks/ref)
dl1.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)
ul2.accesses	62665 # total number of accesses
ul2.hits	61524 # total number of hits
ul2.misses	1141 # total number of misses
ul2.replacements	0 # total number of replacements
ul2.writebacks	0 # total number of writebacks
ul2.invalidations	0 # total number of invalidations
ul2.miss_rate	0.0182 # miss rate (i.e., misses/ref)
ul2.repl_rate	0.0000 # replacement rate (i.e., repls/ref)
ul2.wb_rate	0.0000 # writeback rate (i.e., wrbks/ref)
ul2.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)
itlb.accesses	2116704 # total number of accesses
itlb.hits	2116685 # total number of hits
itlb.misses	19 # total number of misses
itlb.replacements	0 # total number of replacements
itlb.writebacks	0 # total number of writebacks
itlb.invalidations	0 # total number of invalidations
itlb.miss_rate	0.0000 # miss rate (i.e., misses/ref)
itlb.repl_rate	0.0000 # replacement rate (i.e., repls/ref)
itlb.wb_rate	0.0000 # writeback rate (i.e., wrbks/ref)
itlb.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)
dtlb.accesses	528808 # total number of accesses
dtlb.hits	528798 # total number of hits
dtlb.misses	10 # total number of misses
dtlb.replacements	0 # total number of replacements
dtlb.writebacks	0 # total number of writebacks
dtlb.invalidations	0 # total number of invalidations
dtlb.miss_rate	0.0000 # miss rate (i.e., misses/ref)
dtlb.repl_rate	0.0000 # replacement rate (i.e., repls/ref)

0.0000 # writeback rate (i.e., wrbks/ref) dtlb.wb_rate dtlb.inv rate 0.0000 # invalidation rate (i.e., invs/ref) sim_invalid_addrs 0 # total non-speculative bogus addresses seen (debug var) Id_text_base 0x00400000 # program text (code) segment base Id_text_size 74640 # program text (code) size in bytes Id data base 0x10000000 # program initialized data segment base Id_data_size 13636 # program init'ed `.data' and uninit'ed `.bss' size in bytes Id_stack_base 0x7fffc000 # program stack segment base (highest address in stack) Id_stack_size 16384 # program initial stack size Id_prog_entry 0x00400140 # program entry point (initial PC) 0x7fff8000 # program environment base address address Id_environ_base Id_target_big_endian 0 # target executable endian-ness, non-zero if big endian mem.page_count 29 # total number of pages allocated mem.page_mem 116k # total size of memory pages allocated 67 # total first level page table misses mem.ptab_misses mem.ptab_accesses 12667224 # total page table accesses mem.ptab_miss_rate 0.0000 # first level page table miss rate

二、 构建 automotive 包

下载并解压 automotive.tag.gz 修改 makefile 文件如下:

进行在 GCC 交叉编译器下 make:

```
shiwenhan@ubuntu:~/shiwenhan/automotive/basicmath$ make
-/shiwenhan/simplescalar/sslittle-na-sstrix/bin/gcc -static -0 basicmath_small.c
    rad2deg.c cubic.c isqrt.c -o basicmath_small -lm
/tmp/ccfsccot.s: Assembler messages:
/tmp/ccfsccot.s:56: Warning: Bignum truncated to 4 bytes
/tmp/ccfsccot.s:60: Warning: Bignum truncated to 4 bytes
/tmp/ccfsccot.s:64: Warning: Bignum truncated to 4 bytes
/tmp/ccfsccot.s: Assembler messages:
/tmp/ccfsccot.s:17: Warning: Bignum truncated to 4 bytes
/tmp/ccfsccot.s:25: Warning: Bignum truncated to 4 bytes
/tmp/ccfsccot.s:17: Warning: Bignum truncated to 4 bytes
/tmp/ccfsccot.s:17: Warning: Bignum truncated to 4 bytes
/tmp/ccfsccot.s:21: Warning: Bignum truncated to 4 bytes
/home/shiwenhan/shiwenhan/simplescalar//sslittle-na-sstrix/bin/ld: cannot find -
lm
Makefile:7: recipe for target 'basicmath_small' failed
make: *** [basicmath_small] Error 1
```

发生了-Im 找不到的情况,上网搜索可知,这是交叉编译器缺少 math 库造成的。math 库是 libm.a,可以在任何一个 gcc 中找到,之后利用产品命令将 libc 复制到交叉编译器的 lib 中。

cp libm.a /home/shiwenhan/shiwenhan/simplescalar/sslittle-na-sstrix/lib

```
shiwenhan@ubuntu:~/shiwenhan$ su
Password:
root@ubuntu:/home/shiwenhan/shiwenhan# ^C
root@ubuntu:/home/shiwenhan/shiwenhan# cp libm.a ~/shiwenhan/simplescalar/sslitt
le-na-sstrix/lib
cp: cannot create regular file '/root/shiwenhan/simplescalar/sslittle-na-sstrix/
lib': No such file or directory
root@ubuntu:/home/shiwenhan/shiwenhan# cp libm.a /home/shiwenhan/shiwenhan/simpl
escalar/sslittle-na-sstrix/lib
root@ubuntu:/home/shiwenhan/shiwenhan#
```

之后即可成功 make:

```
shiwenhan@ubuntu:~/shiwenhan/automotive/basicmath$ make
~/shiwenhan/simplescalar/sslittle-na-sstrix/bin/gcc -static -0 basicmath_small.c
    rad2deg.c cubic.c isqrt.c -o basicmath_small -lm
/tmp/ccmFDqN6.s: Assembler messages:
/tmp/ccmFDqN6.s:56: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:60: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:64: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:17: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:17: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:25: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:17: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:17: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:21: Warning: Bignum truncated to 4 bytes
/tmp/ccmFDqN6.s:21: Warning: Bignum truncated to 4 bytes
~/shiwenhan/simplescalar/sslittle-na-sstrix/bin/gcc -static -0 basicmath_large.c
    rad2deg.c cubic.c isqrt.c -o basicmath_large -lm
/tmp/ccgigVIz.s: Assembler messages:
/tmp/ccgigVIz.s:55: Warning: Bignum truncated to 4 bytes
/tmp/ccgigVIz.s:59: Warning: Bignum truncated to 4 bytes
/tmp/ccgigVIz.s:63: Warning: Bignum truncated to 4 bytes
/tmp/ccgigVIz.s:67: Warning: Bignum truncated to 4 bytes
/tmp/ccgigVIz.s:67: Warning: Bignum truncated to 4 bytes
/tmp/ccgigVIz.s:71: Warning: Bignum truncated to 4 bytes
```

生成了如下两个.dat 文件:

Name	Size	Type ▲	Modified
basicmath_large	247.0 kB	Program	04:36
basicmath_small	247.0 kB	Program	04:36

三、测试 benchmark

修改 shell 程序如下:

这里仍然以 basicmath_small 为例,执行相应的 shell 脚本 rumme_small.sh:

```
shiwenhan@ubuntu: ~/shiwenhan/automotive/basicmath
                                                                                                          sim: ** starting performance simulation **
          sim: ** simulation statistics **
         sim_num_insn
                                                     3074365 # total number of instructions committed
                                                                    total number of loads and stores committed total number of loads committed
         sim_num_refs
sim_num_loads
                                                       496558 #
                                                       312930 #
         sim_num_stores
sim_num_branches
sim_elapsed_time
                                               183628.0000 #
                                                                     total number of stores committed
                                                       594683 #
                                                                     total number of branches committed
                                                                     total simulation time in seconds
         sim_inst_rate
sim_total_insn
                                              1024788.3333 #
                                                                     simulation speed (in insts/sec)
                                                                    total number of instructions executed
total number of loads and stores executed
total number of loads executed
                                                     3428578 #
        sim_total_insh
sim_total_refs
sim_total_loads
sim_total_stores
sim_total_branches
sim_cycle
sim_IPC
sim_CPI
                                                       565440 #
                                                       363980 #
                                               201460.0000 #
                                                                     total number of stores executed
                                                                     total number of branches executed
                                                       660825 #
                                                     2497114 #
                                                                     total simulation time in cycles
                                                      1.2312 # instructions per cycle
0.8122 # cycles per instruction
1.3730 # total instructions (mis-spec + committed)
         sim_exec_BW
         per cycle
sim_IPB
                                                       5.1698 # instruction per branch
         IFQ_count
IFQ_fcount
                                                                    cumulative IFQ occupancy cumulative IFQ full count
                                                     7475086 #
                                                     1669104 #
                                                      2.9935 # avg IFQ occupancy (insn's)
1.3730 # avg IFQ dispatch rate (insn/cycle)
2.1802 # avg IFQ occupant latency (cycle's)
0.6684 # fraction of time (cycle's) IFQ was full
         ifq_occupancy
ifq_rate
         ifq_latency
ifq_full
RUU_count
RUU_fcount
                                                                    cumulative RUU occupancy cumulative RUU full count
                                                    30209394 #
                                                     1457758
                                                                 #
                                                     12.0977 #
          ruu occupancy
                                                                     avg RUU occupancy (insn's)
                                                       1.3730 # avg RUU dispatch rate (insn/cycle)
8.8111 # avg RUU occupant latency (cycle's)
          ruu_rate
ruu_latency
```

具体内容为:

sim: ** starting performance simulation **

```
sim: ** simulation statistics **
sim_num_insn
                               3074365 # total number of instructions committed
                                496558 # total number of loads and stores committed
sim_num_refs
sim_num_loads
                                312930 # total number of loads committed
                          183628.0000 # total number of stores committed
sim num stores
                                 594683 # total number of branches committed
sim_num_branches
                                     3 # total simulation time in seconds
sim_elapsed_time
                       1024788.3333 # simulation speed (in insts/sec)
sim_inst_rate
sim_total_insn
                             3428578 # total number of instructions executed
                              565440 # total number of loads and stores executed
sim_total_refs
                              363980 # total number of loads executed
sim total loads
                        201460.0000 # total number of stores executed
sim total stores
```

sim_total_branches	660825 # total number of branches executed
sim_cycle	2497114 # total simulation time in cycles
sim_IPC	1.2312 # instructions per cycle
sim_CPI	0.8122 # cycles per instruction
sim_exec_BW	1.3730 # total instructions (mis-spec + committed)
per cycle	
sim_IPB	5.1698 # instruction per branch
IFQ_count	7475086 # cumulative IFQ occupancy
IFQ_fcount	1669104 # cumulative IFQ full count
ifq_occupancy	2.9935 # avg IFQ occupancy (insn's)
ifq_rate	1.3730 # avg IFQ dispatch rate (insn/cycle)
ifq_latency	2.1802 # avg IFQ occupant latency (cycle's)
ifq_full	0.6684 # fraction of time (cycle's) IFQ was full
RUU_count	30209394 # cumulative RUU occupancy
RUU_fcount	1457758 # cumulative RUU full count
ruu_occupancy	12.0977 # avg RUU occupancy (insn's)
ruu_rate	1.3730 # avg RUU dispatch rate (insn/cycle)
ruu_latency	8.8111 # avg RUU occupant latency (cycle's)
ruu_full	0.5838 # fraction of time (cycle's) RUU was full
LSQ_count	2674964 # cumulative LSQ occupancy
LSQ_fcount	14199 # cumulative LSQ full count
lsq_occupancy	1.0712 # avg LSQ occupancy (insn's)
lsq_rate	1.3730 # avg LSQ dispatch rate (insn/cycle)
lsq_latency	0.7802 # avg LSQ occupant latency (cycle's)
lsq_full	0.0057 # fraction of time (cycle's) LSQ was full
sim_slip	35350244 # total number of slip cycles
avg_sim_slip	11.4984 # the average slip between issue and retirement
bpred_bimod.lookups	680081 # total number of bpred lookups
bpred_bimod.updates	594683 # total number of updates
bpred_bimod.addr_hits	552232 # total number of address-predicted hits
bpred_bimod.dir_hits	552475 # total number of direction-predicted hits
(includes addr-hits)	
bpred_bimod.misses	42208 # total number of misses
bpred_bimod.jr_hits	27583 # total number of address-predicted hits for JR's
bpred_bimod.jr_seen	29601 # total number of JR's seen
bpred_bimod.jr_non_ras_hit	s.PP 5 # total number of address-predicted hits
for non-RAS JR's	
bpred_bimod.jr_non_ras_se	en.PP 2014 # total number of non-RAS JR's seen
bpred_bimod.bpred_addr_r	ate 0.9286 # branch address-prediction rate (i.e., addr-
hits/updates)	
bpred_bimod.bpred_dir_rat	e 0.9290 # branch direction-prediction rate (i.e., all-
hits/updates)	
bpred_bimod.bpred_jr_rate	0.9318 # JR address-prediction rate (i.e., JR addr-
hits/JRs seen)	

bpred_bimod.bpred_jr_non_ras_rate.PP 0.0025 # non-RAS JR addr-pred rate (ie, non-RAS JR hits/JRs seen) bpred_bimod.retstack_pushes 30658 # total number of address pushed onto ret-addr stack bpred_bimod.retstack_pops 30614 # total number of address popped off of ret-addr stack bpred bimod.used ras.PP 27587 # total number of RAS predictions used 27578 # total number of RAS hits bpred_bimod.ras_hits.PP bpred_bimod.ras_rate.PP 0.9997 # RAS prediction rate (i.e., RAS hits/used RAS) il1.accesses 3607658 # total number of accesses il1.hits 3543970 # total number of hits il1.misses 63688 # total number of misses il1.replacements 63244 # total number of replacements 0 # total number of writebacks il1.writebacks il1.invalidations 0 # total number of invalidations 0.0177 # miss rate (i.e., misses/ref) il1.miss rate il1.repl_rate 0.0175 # replacement rate (i.e., repls/ref) il1.wb_rate 0.0000 # writeback rate (i.e., wrbks/ref) 0.0000 # invalidation rate (i.e., invs/ref) il1.inv_rate dl1.accesses 494096 # total number of accesses dl1.hits 493493 # total number of hits dl1.misses 603 # total number of misses dl1.replacements 91 # total number of replacements dl1.writebacks 88 # total number of writebacks dl1.invalidations 0 # total number of invalidations dl1.miss_rate 0.0012 # miss rate (i.e., misses/ref) dl1.repl_rate 0.0002 # replacement rate (i.e., repls/ref) dl1.wb rate 0.0002 # writeback rate (i.e., wrbks/ref) dl1.inv_rate 0.0000 # invalidation rate (i.e., invs/ref) ul2.accesses 64379 # total number of accesses ul2.hits 63584 # total number of hits 795 # total number of misses ul2.misses ul2.replacements 0 # total number of replacements ul2.writebacks 0 # total number of writebacks ul2.invalidations 0 # total number of invalidations ul2.miss_rate 0.0123 # miss rate (i.e., misses/ref) ul2.repl rate 0.0000 # replacement rate (i.e., repls/ref) ul2.wb rate 0.0000 # writeback rate (i.e., wrbks/ref) 0.0000 # invalidation rate (i.e., invs/ref) ul2.inv_rate 3607658 # total number of accesses itlb.accesses itlb.hits 3607639 # total number of hits 19 # total number of misses itlb.misses 0 # total number of replacements itlb.replacements 0 # total number of writebacks itlb.writebacks

itlb.invalidations	0 # total number of invalidations
itlb.miss_rate	0.0000 # miss rate (i.e., misses/ref)
itlb.repl_rate	0.0000 # replacement rate (i.e., repls/ref)
itlb.wb_rate	0.0000 # writeback rate (i.e., wrbks/ref)
itlb.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)
dtlb.accesses	517999 # total number of accesses
dtlb.hits	517989 # total number of hits
dtlb.misses	10 # total number of misses
dtlb.replacements	0 # total number of replacements
dtlb.writebacks	0 # total number of writebacks
dtlb.invalidations	0 # total number of invalidations
dtlb.miss_rate	0.0000 # miss rate (i.e., misses/ref)
dtlb.repl_rate	0.0000 # replacement rate (i.e., repls/ref)
dtlb.wb_rate	0.0000 # writeback rate (i.e., wrbks/ref)
dtlb.inv_rate	0.0000 # invalidation rate (i.e., invs/ref)
sim_invalid_addrs	0 # total non-speculative bogus addresses s
(debug var)	
ld_text_base	0x00400000 # program text (code) segment base
ld_text_size	90640 # program text (code) size in bytes
ld_data_base	0x10000000 # program initialized data segment base
ld_data_size	12608 # program init'ed `.data' and uninit'ed `.bss'
in bytes	
ld_stack_base	0x7fffc000 # program stack segment base (highest add
in stack)	
ld_stack_size	16384 # program initial stack size
ld_prog_entry	0x00400140 # program entry point (initial PC)
Id_environ_base	0x7fff8000 # program environment base address addre
ld_target_big_endian	0 # target executable endian-ness, non-zero i
endian	
mem.page_count	33 # total number of pages allocated
mem.page_mem	132k # total size of memory pages allocated
mem.ptab_misses	53 # total first level page table misses
mem.ptab_accesses	18289774 # total page table accesses
mem.ptab_miss_rate	0.0000 # first level page table miss rate
	* -