

MULTIMEDIA & COMPUTER GRAPHICS

Dr. Arturo Jafet Rodríguez Muñoz Ing. Bernardo Moya de la Mora

RAY TRACING

RAYTRACER VO.1

Objective:

Render flat spheres

RAYTRACER v0.1

Intersection ray – sphere

Analytic solution

Geometric solution

ANALYTIC SOLUTION

Ray equation

$$O + tD = Point$$

Origin of the ray

Direction of the ray

Distance

Sphere equation

$$x^2 + y^2 + z^2 = R^2$$

Point in position x, y, z

Radius

ANALYTIC SOLUTION

[1]
$$O + tD$$
 [2] $x^2 + y^2 + z^2 = R^2$

$$P^2 - R^2 = 0$$

$$|O + tD|^2 - R^2 = 0$$
 [3] $O^2 + (tD)^2 + 2OtD - R^2 = O^2 + t^2D^2 + 2OtD - R^2O$

Which follow the form of $f(x) = ax^2 + bx + c$

$$a = D^2$$
 $b = 20D$ $c = O^2-R^2$ which is solved by $x = (-b \pm \sqrt{b^2 - 4ac}) / 2a$

GEOMETRIC SOLUTION

GEOMETRIC SOLUTION

Equation

$$O + t_0D = Point_0$$

$$O + t_1D = Point_1$$

Origin of the ray

Direction of the ray

Distance

Center of the Sphere

$$L = C - O$$

$$t_{ca} = L \cdot D$$

 $if(t_{ca} < 0)$ no collision

$$d^2 + t_{ca}^2 = L^2$$

$$d = \sqrt{L^2 - t_{ca}^2} = \sqrt{L - t_{ca} - t_{ca}}$$

if(d < 0) no collision

GEOMETRIC SOLUTION

$$d^2 + t_{hc}^2 = radius^2$$

$$t_{hc} = \sqrt{radius^2 - d^2}$$

$$t_0 = t_{ca} - t_{hc}$$

$$t_1 = t_{ca} + t_{hc}$$

SOLUTION

Collision in front is positive t

Collision behind is negative t

RAYTRACER v0.1

Classes required:

Vector3D

Intersection

Ray

Object3D

Camera

Sphere

Scene

Raytracer

HW

Objective:

Render flat spheres

REFLECTION

