МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота № 1

з дисципліни «Дискретна математика»

Виконав:

студент групи КН-113 Байдич Володимир

Викладач:

Мельникова H. I.

Львів – 2019 р.

Мета роботи:

на практиці ознайомитись із основними поняттями математичної логіки, навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинні значення таблицями істинності, використовувати закони алгебри логіки, освоїти методи доведень.

Постановка завдання

Варіант №2

- 1. Формалізувати речення: Якщо Олег ляже сьогодні пізно, він буде вранці втомлений, якщо він ляже не пізно то він буде бадьорий, отже або Олег буде завтра втомлений або бадьорий.
- 2. Побудувати таблицю істинності для висловлювань:

$$(x \lor \overline{y}) \Rightarrow ((y \land \overline{z}) \Rightarrow (x \lor (y \Leftrightarrow z))$$

3. Побудовою таблиць істинності визначити, чи висловлювання є тавтологією чи протиріччям

$$\left((p \vee q) \wedge \left(q \leftrightarrow r \right) \right) \to (\overline{p} \vee r)$$

4. За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити, чи є тавтологією висловлювання:

$$\left((p \lor q) \land \left(p \to r \right) \land \left(q \to r \right) \right) \to r$$

5. Довести, що формули еквівалентні: $p o (q \wedge r)$ та $(p \wedge q) o (p \wedge r)$

Завдання№1

р – олег втомлений

q – олег лягає пізно

z – олег бадьорий

r – олег лягає рано

$$(q \lor r) \rightarrow (p \lor z)$$

 \overline{Z} f \overline{y} X У Z a b C d e

a-
$$(x \vee \overline{y})$$
; b- $(y \wedge \overline{z})$; c- $(y \Leftrightarrow z)$; d- $(x \vee (y \Leftrightarrow z))$;
e- $\Rightarrow ((y \wedge \overline{z}) \Rightarrow (x \vee (y \Leftrightarrow z))$;
f- $(x \vee \overline{y}) \Rightarrow ((y \wedge \overline{z}) \Rightarrow (x \vee (y \Leftrightarrow z))$.

Завдання№3

0	0	0	1	0	1	0	1	1
0	0	1	1	0	0	0	1	1
0	1	0	1	1	0	0	1	1
1	0	0	0	1	1	1	0	0
1	1	0	0	1	0	0	0	1
1	0	1	0	1	0	0	1	1
0	1	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1

Цей вираз є нейтральною формулою.

Завдання №4

$$\left((p \lor q) \land \left(p \to r \right) \land \left(q \to r \right) \right) \to r$$

Доведення від супротивного. Оскільки імплікація може набувати невірного значення лише коли ліва частина правдива, а права ні. Оскільки ліва частина це кон'юнкція з трьох виразів то вірною вона може бути лише тоді коли кожний вираз вірний. З цього випливає, p=q=r=1, $1\rightarrow 1-8$ вираз є тавтологією.

Завдання№5

Для доведення побудуємо таблиці істинності.

p	q	r	$(q \wedge r)$	$p \to (q \wedge r)$	$(p \land q)$	$(p \wedge r)$	$(p \land q) \to (p \land r)$
0	0	0	0	1	0	0	1
1	0	0	0	0	0	0	1
0	1	0	0	1	0	0	1
0	0	1	0	1	0	0	1
1	0	1	0	0	0	1	1
0	1	1	1	1	0	0	1
1	1	0	0	0	1	0	0
1	1	1	1	1	1	1	1

Додаток 2

Написати на будь-якій відомій студентові мові програмування програму для реалізації програмного визначення значень таблиці істинності логічних висловлювань при різних інтерпретаціях для наступної формули.

$$(x \lor \overline{y}) \Rightarrow ((y \land \overline{z}) \Rightarrow (x \lor (y \Leftrightarrow z))$$

```
#include <iostream>
using namespace std;

int main() {
    int x,y,z;
    cin >> x;
    cin >> y;
    cin >> z;

    if (x==0, y==0, z==0)
        cout << "True";

    else if ( x==1, y==0, z==0)
        cout << "True";

    else if ( x==0, y==1, z==0)
        cout << "True";

    else if ( x==0, y==1, z==0)
        cout << "True";
</pre>
```

```
1
2
3
uncorect
Process returned O (OxO) execution time : 4.388 s
Press any key to continue.
```

```
1
0
1
True
Process returned O (0x0) execution time : 3.818 s
Press any key to continue.
```

```
else if ( x==0, y==1, z==0)
  cout << "True";

else if ( x==0, y==0, z==1)
  cout << "True";

else if ( x==1, y==1, z==0)
  cout << "True";

else if ( x==1, y==0, z==1)
  cout << "True";

else if ( x==0, y==1, z==1)
  cout << "True";

else if ( x==1, y==1, z==1)
  cout << "True";

else if ( x==1, y==1, z==1)
  cout << "True";

else cout << "uncorect";</pre>
```

Оголошуємо 3 змінні типу bool. За допомогою таблиці істинності побудованої раніше, визначаємо істинність значення виразу в залежності від значення змінних x, y, z. Переносимо всі можливі інтерпретації в програму за допомогою оператора if.