

Contents

• Basic quantities: Charge, Current, voltage and Power.

• Ohm's Law: Resistance and resistivity

Kirchhoff's laws

Resistors in series and parallel

Charge (C)

- Charge conservation: "Neither create nor destroy"
- Two type: +ve (proton) and -ve (electron)
- Electron flow is relevant
- Flow of +ve charge is important in understanding internal operation (Eg: battery, diode, and transistor)
- A single electron has a charge of -1.602×10⁻¹⁹ C

Fig. Bohr's Atomic Model

Current

- Flow of charge leads to "CURRENT", in moving charge from one place to another, we also transfer energy from one point to another.
- Ex: electrical power transmission.
- Further, it is possible to vary the rate at which the charge is transferred in order to communicate or transfer information (Excommunication systems)
- Measure of rate at which charge is moving past a given reference point in a specified direction.

Fig. Several types of current

Fig. Representation of current

Voltage

A DC current is sent into A
 and back out of B, Hence an
 electric voltage exists
 between the two terminals

An example of a two terminal circuit element.

Terminal voltage representation.

Power

- Rate at which the electrical energy is transferred.
- P = VI
- Units: Watt, Joule/sec
- Sign conventions: +10 J/s, -10 J/s

The power absorbed by the element is given by the product of P = VI.

Power

• Compute the power absorbed:

Independent Sources

Voltage source

Dc voltage

Battery

AC voltage

• Current Source

Dependent sources

Current controlled current source

Voltage controlled voltage source

K is a dimensionless scaling factor.

Voltage controlled current source

Current controlled voltage source

g, r are the scaling factor with units A/V and V/A respectively.

Examples:

- If $v_2 = 3 \text{ V}$, determine v_L .
- Ans: $V_L = 15 \text{ V}$.
- Find the power absorbed
 by each element

Ans: (left to right) -56 W; 16 W; -60 W; 160 W; -60 W.

Ohm's Law

- Statement: The voltage across "conducting" material is directly proportional to the current flowing through the material
- V= IR, R constant of proportionality, unit is ohm.
- Power absorption, $P = VI = I^2R = V^2/R$

Resistance and Resistivity

Resistance = Resistivity * length of the bar/Cross-sectional

area of the bar

• $R = \rho I/A$

• Conductivity=1/resistivity; $\sigma = 1/\rho$

Dependency on:

• Temperature: with increase in temp. resistivity increases.

$$R_{t} = R_{0}(1 + \alpha t)$$

- a is called temperature coefficient ($/^{\circ}C$)
- Ex: A resistor has a temperature coefficient of 0.001 /°C. if the resistor has a resistance of 1.5 K Ω at 0°C, determine the resistance at 80°C?

• Ans: 1.62 k Ω

Kirchhoff's Laws: KCL

- Algebraic sum of currents entering the node is zero.
- Ex 1: if the voltage source produces a current 3A, determine i?
- Ans: i = 6 A.

$$i_A + i_B + (-i_C) + (-i_D) = 0$$

KVL

 The algebraic sum of voltages around any closed path is zero.

$$\sum_{n=1}^{N} v_n = 0$$

- Ex 2: Determine v_x and i_x
- Ans: $v_x = -4 \text{ V}$ and $i_x = -400 \text{ mV}$.

Example:

• Determine: v_{r2} and v_x .

• Ans: $v_{r2} = 32 \text{ V}$ and $v_x = 6 \text{ V}$.

• Determine: v_x .

• Ans: $v_x = 8 \text{ V}$.

Single loop and single node circuits

• Compute the power absorbed in each element.

$$p_{120V} = (120)(-8) = -960 \text{ W}$$

 $p_{30\Omega} = (8)^2(30) = 1920 \text{ W}$
 $p_{\text{dep}} = (2v_A)(8) = 2[(-15)(8)](8)$
 $= -1920 \text{ W}$
 $p_{15\Omega} = (8)^2(15) = 960 \text{ W}$

- Find the current, voltage, and power associated with each element.
- Ans: v = 2 V;

```
p_{R1} = 30(2)^2 = 120 \text{ W} and p_{R2} = 15(2)^2 = 60 \text{ W}
p_{120A} = 120(-2) = -240 \text{ W} and p_{30A} = 30(2) = 60 \text{ W}
```


Series and parallel connected sources

Resistors in series

$$v_s = R_1 i + R_2 i + \dots + R_N i = (R_1 + R_2 + \dots + R_N) i$$

$$v_s = R_{eq}i$$

$$R_{\rm eq} = R_1 + R_2 + \cdots + R_N$$

Resistors in parallel

$$i_s = i_1 + i_2 + \cdots + i_N$$

$$i_s = \frac{v}{R_1} + \frac{v}{R_2} + \dots + \frac{v}{R_N}$$
$$= \frac{v}{R_{eq}}$$

$$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

Voltage division

$$v = v_1 + v_2 = iR_1 + iR_2 = i(R_1 + R_2)$$

$$v_2 = \frac{R_2}{R_1 + R_2} v \qquad v_1 = \frac{R_1}{R_1 + R_2} v$$

$$v_k = \frac{R_k}{R_1 + R_2 + \dots + R_N} v$$

Current division

$$i_2 = \frac{v}{R_2} = \frac{i(R_1 || R_2)}{R_2} = \frac{i}{R_2} \frac{R_1 R_2}{R_1 + R_2}$$

$$i_2 = i \frac{R_1}{R_1 + R_2}$$

$$i_1 = i \frac{R_2}{R_1 + R_2}$$

$$i_k = i \frac{\frac{1}{R_k}}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}}$$

