Вероятностные пространства, случайные величины и функции распределения (+ бонус интеграл Римана-Стилтьеса).

Ж. Жуматаев, М. Абрахам

Клуб теории вероятностей ФЭН ВШЭ

8 февраля 2022 г.

Мотивация

- Большинство сегодняшних выкладок, связанные с основами ТВ, скорее всего вам уже знакомы;
- Однако так как мы тут хотим построить более менее строгую теорию, то их все равно надо проговорить и доказать;
- Сегодня постараемся ввести базовые понятия ТВ, используя новый для нас инструментарий теории меры, а также порешать задачи для освоения этих важных тем;

База

Определение (Вероятностное пространство $(\Omega,\,\mathcal{F},\,\mathbb{P})$)

Вероятностным пространством называется измеримое пространство $(X, \Sigma_X, \mu) = (\Omega, \mathcal{F}, \mathbb{P})$ с вероятностной мерой, где:

- Ω Пространство элементарных исходов,
- $m{\mathcal{F}}$ σ -алгебра на Ω ,
- $lacksymbol{3}$ $\mathbb{P}:\mathcal{F} o [0,1]$ вероятностная мера.

Случайная величина

Определение (Случайная величина)

Случайной величиной называется измеримая функция $\xi:\Omega o \mathbb{R}.$

Напомним, что функция f называется измеримой,

если $orall B \in \Sigma_Y$ выполнено $f^{-1}(B) \in \Sigma_X$ или в нашем случае:

если $orall B \in \mathcal{B}(\mathbb{R})$ выполнено $\xi^{-1}(B) \in \mathcal{F}$

Почему именно такой вид?

При таком определении с.в. следующая запись имеет смысл:

$$\mathbb{P}\{\xi^{-1}(B)\} = \mathbb{P}\{\omega \in \Omega : \xi(w) \in B\}$$

Лирическое отступление

Понятие измеримости функции является частным случаем более общего понятия: непрерывного отображения в топологических пространствах.

Определение (Непрерывное отображение)

Пусть (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) - топологические пространства, тогда отображение $f: X \to Y$ называется непрерывным, если $\forall A \in \mathcal{T}_Y$ выполнено $f^{-1}(A) \in \mathcal{T}_X$ (прообраз открытого открыт).

http://mech.math.msu.su/asmish/lecture03.pdf

Функция Распределения

Определение (Функция распределения)

Функция распределения с.в. ξ это функция $F_{\xi}:\mathbb{R}
ightarrow \mathbb{R}$:

$$F_{\xi}(x) = \mathbb{P}(\{\omega \in \Omega : \xi(\omega) \le x\}) = \mathbb{P}\{\xi \le x\}$$

Свойства

- $0 \le F_{\xi}(x) \le 1, \ \forall x \in \mathbb{R}$
- **2** $F_{\xi}(x) \leq F_{\xi}(y)$, если $x \leq y$
- ullet $\lim_{x o -\infty} F_{\xi}(x) = 0$ и $\lim_{x o \infty} F_{\xi}(x) = 1$
- $F_{\xi}(x) = \lim_{h \to 0+} F_{\xi}(x+h)$

Последнее свойство называется непрерывностью справа. В дальнейшем будем предполагать именно её.

Точки разрыва

Определение (Скачок F_{ξ})

Скачком функции F_{ξ} в точке $a \in \mathbb{R}$ называется разность $F_{\xi}(a) - F_{\xi}(a-0)$.

Вопрос: чему равна величина этого скачка? (Подумайте над этим в рамках 4-й задачи)

Утверждение

Ненулевые скачки функции F_{ξ} образуют счетное множество.

Существование вероятностной меры

Утверждение

Пусть функция F удовлетворяет всем свойствам функции распределения, тогда существует вероятностная мера ν на $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ такая, что $F(x) = \nu((-\infty, x]) \ \forall x \in \mathbb{R}$. Более того, такая мера единственна.

Следствие без доказательства:

2
$$\nu((a, b]) = F(b) - F(a+)$$

3
$$\nu((a, b)) = F(b-) - F(a+)$$

$$\nu([a, b)) = F(b-) - F(a-)$$

3
$$\nu([a, b]) = F(b) - F(a-)$$

Мера, связанная таким образом с F называется мерой Лебега-Стилтьеса.

Мера Лебега и существование с.в.

В частности, если $F(x)=x\mathbb{I}_{\{x\in[0,\,1]\}}+\mathbb{I}_{\{x>1\}}$, тогда completed мера, порожденная данной F называется мерой Лебега на $[0,\,1]$. Для этой F мы имеем:

- $\nu((-\infty, 0]) = F(0) = 0,$
- $\nu((1,\infty)) = 1 F(1) = 0,$
- **3** $\nu((a, b)) = \nu([a, b]) = \nu((a, b]) = \nu([a, b]) = b a$ (0 \le a \le b \le 1).

То есть мера Лебега это просто "длина".

Утверждение

Пусть функция F удовлетворяет всем свойствам функции распределения, тогда существует случайная величина ξ такая, что $F=F_{\mathcal{E}}.$

Функция ограниченной вариации

Прежде чем перейти к рассмотрению интеграла Римана-Стилтьеса, необходимо определить понятие функции с ограниченной вариацией.

Определение (вариация)

Вариацией функции F(x) на отрезке [a,b] называется

$$V_{\tau}(F) = \sum_{i=1}^{n} |F(x_i) - F(x_{i-1})|$$
, при заданном разбиении τ .

Определение (полная вариация)

Полной вариацией функции F(x) на отрезке [a,b] называется

$$\bigvee_{a}^{b}(F) = \sup_{\tau} \bigvee_{\tau}(F).$$

Функция ограниченной вариации

Заметим, что для монотонно неубывающих функций $\bigvee_b^b(F)=F(b)-F(a)$, а для монотонно невозрастающих $\bigvee_a^b(F)=|F(b)-F(a)|$.

Утверждение

Произвольную функцию ограниченной вариации F(x), можно представить в виде разности двух монотонно неубывающих функций.

Интеграл Римана-Стилтьеса

Эта часть посвящена обобщению Интеграла Римана, которое позволит нам интегрировать некоторые разрывные функции.

Определение

Пусть в интервале (a,b) определены две функции: g(x) (интегрируемая) и F(x) (интегрирующая), причем F(x) не убывает и является функцией с ограниченной вариацией. Пусть также интервал (a,b) разбит на конечное число частичных интервалов $a=x_0< x_1< ...< x_n=b$. Тогда интегралом Стилтьеса будет называться предел $\lim_{n\to\infty}\sum\limits_{i=1}^n g(\bar{x}_i)[F(x_i)-F(x_{i-1})]=\int\limits_a^b g(x)dF(x).$

Интеграл Римана-Стилтьеса

Важно отметить, что в данном определении не накладывается иных требований к функции F(x), кроме ограниченной вариации (требование о неубывании можно отбросить). В то время, как для интегрируемости по Риману нам было бы необходимо, чтобы $F(x) \in C^{(1)}[a,b]$. В таком случае справедливо следующее равенство $\int\limits_{a}^{b} g(x) dF(x) = \int\limits_{a}^{b} g(x) F'(x) dx$

Утверждение

Интеграл Римана-Стилтьеса по интервалу, сводящемуся к одной точке (a-0,a+0) может быть отличен от нуля.

Полезные применения в Теории Вероятностей:

- ② Распределение двух независимых случайных величин $F(x) = \int F_1(x-z) dF_2(z) = \int F_2(x-z) dF_1(z)$
- **3** Распределение частного ξ_1/ξ_2 :

$$F(x) = \int_{0}^{+\infty} F_1(xz) dF_2(z) + \int_{-\infty}^{0} [1 - F_1(xz)] dF_2(z)$$

Ссылки

- Measure, Integration & Probability, Ivan F Wilde;
- http://mech.math.msu.su/ asmish/lecture03.pdf;
- http://math.phys.msu.ru/data/129/FANII.pdf;