MA 126 — Spring 2017 — Prof. Clontz — Readiness Quizzes

- Which of these is a definition of a^x for all positive numbers a and all real numbers x? (2017-01-11, 1.1, practice)
 - A. $\ln(x \cdot e^a)$
 - B. a multiplied by itself x times
 - C. the unique function for which $\frac{d}{dx}[a^x] = a^x$
 - D. $\exp(x \ln a)$
- Which of these statements is false? (2017-01-11, 1.1, practice)
 - A. $\ln(abc) = \ln(a) + \ln(b) + \ln(c)$
 - B. $\frac{d}{dx}[\ln x] = \frac{1}{|x|}$ for all nonzero numbers x
 - C. $y = \exp(x)$ if and only if $x = \ln(y)$
 - D. $e^x = \exp(x)$

- 1. The Substitution Rule is the opposite of which derivative rule? (2017-01-19, 2.1)
 - A. Chain Rule
 - B. Product Rule
 - C. Quotient Rule
 - D. Power Rule
- 2. What is incorrect about the following attempt at using the Substitution Rule?

$$\int_0^1 (3-2x)^5 dx = \int_0^1 u^5 \left(-\frac{1}{2}du\right)$$

(2017-01-19, 2.1)

- A. dx should have been replaced with $+\frac{1}{2} du$.
- B. u shouldn't be raised to the 5th power.
- C. dx should have been replaced with -2 du.
- D. The bounds are incorrect.

3. Which of these formulas would be most useful in finding $\int \sin^4 \theta \cos^2 \theta \, d\theta$? (2017-01-25, 2.2)

A.
$$\sin^2(\theta) = \frac{1}{2} + \frac{1}{2}\sin(2\theta)$$

B.
$$\cos^2(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$$

C.
$$\cos^2(\theta) = 1 - \sin^2(\theta)$$

D.
$$\sin^2(\theta) = 1 - \cos^2(\theta)$$

4. Which of these formulas would be most useful in finding $\int \sec^4(\theta) d\theta$? (2017-01-25, 2.2)

A.
$$\sec^2(\theta) = 1 + \tan^2(\theta)$$

B.
$$\sec^2(\theta) = 1 - \tan^2(\theta)$$

C.
$$\tan^2(\theta) = 1 + \sec^2(\theta)$$

D.
$$\tan^2(\theta) = 1 - \sec^2(\theta)$$

- 5. Which of these substitutions would be most useful in finding $\int \frac{1}{25x^2+9} dx$? (2017-01-27, 2.3)
 - A. Let $25x^2 + 9 = 25\sec^2\theta + 25$.
 - B. Let $25x^2 + 9 = 9\sin^2\theta + 9$.
 - C. Let $25x^2 + 9 = 9\tan^2\theta + 9$.
 - D. Let $25x^2 + 9 = 25\cos^2\theta + 25$.
- 6. Which of these substitutions would be most useful in finding $\int \frac{1}{x\sqrt{4-16x^2}} dx$? (2017-01-27, 2.3)
 - A. Let $4 16x^2 = 16 16\cos^2\theta$.
 - B. Let $4 16x^2 = 4 4\sin^2\theta$.
 - C. Let $4 16x^2 = 4 + 4\tan^2\theta$.
 - D. Let $4 16x^2 = 16 + 16\sec^2\theta$.
- 7. Which of these substitutions would be most useful in finding $\int_3^5 \frac{1}{\sqrt{x^2-9}} dx$? (2017-01-27, 2.3)
 - A. Let $x^2 9 = 9\sin^2\theta + 9$.
 - B. Let $x^2 9 = \tan^2 \theta 1$.
 - C. Let $x^2 9 = \cos^2 \theta + 1$.
 - D. Let $x^2 9 = 9\sec^2\theta 9$.

8. Which of these sums is the first step in expanding $\frac{4x^2+16x+17}{(x+2)^2(x^2+1)^2}$ into partial fractions? (2017-02-01, 2.4)

A.
$$\frac{A}{x+2} + \frac{Bx}{x+2} + \frac{C}{(x^2+1)^2}$$

B.
$$\frac{A}{x+2} + \frac{Bx}{(x+2)^2} + \frac{Cx+D}{(x^2+1)^2}$$

C.
$$\frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2}$$

D.
$$\frac{Ax+B}{(x+2)^2} + \frac{Cx+D}{(x^2+1)^2}$$

- 9. Why must $\frac{3+5x^5}{(x+1)(x+3)^2}$ first be simplifed using long polynomial division before using the method of partial fractions? (2017-02-01, 2.4)
 - A. It is a rational function of x.
 - B. The degree of its numerator is odd, while the degree of its demoninator is even.
 - C. The degree of its numerator is greater than or equal to the degree of its denominator.
 - D. It is an irrational function of x.

- 10. Which of these techniques is most appropriate as the first step to find $\int z^2 \sin(z^3) dz$? (2017-02-09, 2.6)
 - A. Integration by Substitution
 - B. Integration by Parts
 - C. Method of Partial Fractions
 - D. Trigonometric Identities
- 11. Which of these techniques is most appropriate as the first step to find $\int \frac{t^2+3t+1}{t^3+t} dt$? (2017-02-09, 2.6)
 - A. Method of Partial Fractions
 - B. Trigonometric Substitution
 - C. Trigonometric Identities
 - D. Integration by Substitution

- 12. Which of these integrals represents the area bounded by the curves $x=y^2$ and x=4? (2017-02-13, 3.1)
 - A. $\int_0^4 ((\sqrt{x}) (-\sqrt{x})) dx$
 - B. $\int_0^2 ((x^2) (4)) dx$
 - C. $\int_2^4 ((x^2) (-x^2)) dx$
 - D. $\int_{2}^{0} ((x^{2}) (\sqrt{x})) dx$

Answer the following questions about the solid of revolution obtained by rotating the triangle with vertices (1, 1), (2, 2), (2, 3) around the line y = -1.

- 13. Which of these curves should be used to find the outer radius R(x)? (2017-02-16, 3.3)
 - A. $y = \frac{1}{2}x$
 - B. y = 2x 1
 - C. y = -2x + 2
 - D. $y = -\frac{1}{2}x + 1$
- 14. What formula should be used for R(x)? (2017-02-16, 3.3)
 - A. R(x) = 2x
 - B. R(x) = 1 2x
 - C. $R(x) = 2 \frac{1}{2}x$
 - D. $R(x) = \frac{1}{2}x 1$
- 15. What are the correct bounds for the washer method integral? (2017-02-16, 3.3)
 - A. $\pi \int_{-1}^{3} ([R(x)]^2 [r(x)]^2) dx$
 - B. $\pi \int_2^3 ([R(x)]^2 [r(x)]^2) dx$
 - C. $\pi \int_{1}^{2} ([R(x)]^{2} [r(x)]^{2}) dx$
 - D. $\pi \int_0^2 ([R(x)]^2 [r(x)]^2) dx$

- 16. In the work integral $\int_a^b F(x) dx$, the function F(x) represents... (2017-02-24, 3.5)
 - A. Friction
 - B. Speed
 - C. Force
 - D. Mass
- 17. When computing the work done in pumping water out of a container, the video suggests using which formula? $(2017-02-24,\ 3.5)$
 - A. $\int_{y=c}^{y=d} dW$
 - B. $\int_a^b F(x) dx$
 - C. $\int_a^b \frac{W(x)}{x} dx$
 - D. $\int_{y=c}^{y=d} y F(y) \, dy$

- 18. The equations $x=3+4\cos(t), y=-2+4\sin(t)$ for $0\leq t\leq 2\pi$ parametrize which kind of curve? (2017-03-01, 4.1)
 - A. A parabola
 - B. A line segment
 - C. A circle oriented counter-clockwise
 - D. A circle oriented clockwise
- 19. The equations x=3+4t, y=-2+4t for $0\leq t\leq 2\pi$ parametrize which kind of curve? (2017-03-01, 4.1)
 - A. A parabola
 - B. A line segment
 - C. A circle oriented counter-clockwise
 - D. A circle oriented clockwise

- 20. The formula $\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$ for computing the slope of a tangent line to a curve defined by parametric equations is a result of the... (2017-03-02, 4.2)
 - A. Product Rule
 - B. Pythagorean Theorem
 - C. Method of Partial Fractions
 - D. Chain Rule
- 21. The formula $L=\int_a^b\sqrt{[dx/dt]^2+[dy/dt]^2}\,dt$ for computing arclength is a result of the... (2017-03-02, 4.2)
 - A. Product Rule
 - B. Pythagorean Theorem
 - C. Method of Partial Fractions
 - D. Chain Rule

- 22. Find the first few terms of the sequence defined recursively by $a_0=1,\ a_1=2,\ a_{n+2}=2a_n+a_{n+1}.$ (2017-03-22, 5.1)
 - A. $\langle 1, 2, 3, 4, 5, \ldots \rangle$
 - B. (1, 2, 3, 5, 8, ...)
 - C. $\langle 1, 2, 4, 8, 16, \ldots \rangle$
 - D. $\langle 1, 2, 4, 7, 15, \ldots \rangle$
- 23. The limit $\lim_{n\to\infty} \frac{n}{1+n^2}$ is equal to which of the following limits? (2017-03-22, 5.2)
 - $A. \lim_{n \to 0} \frac{1 + n^2}{n}$
 - B. $\lim_{x \to \infty} \frac{x}{1 + x^2}$
 - C. $\lim_{x \to 0} \left(x + \frac{1}{x} \right)$
 - D. $\lim_{n \to \infty} \left(n + \frac{1}{n} \right)$
- 24. Which of the following describes the sequence $\langle (-\frac{2}{3})^n \rangle_{n=0}^{\infty} = \langle 1, -\frac{2}{3}, \frac{4}{9}, -\frac{8}{27}, \ldots \rangle$? (2017-03-22, 5.2)
 - A. It is bounded and monotonic, and therefore convergent by the Monotonic Sequence Theorem.
 - B. It is bounded and convergent, but not monotonic.
 - C. It is monotonic, but not bounded nor convergent.
 - D. It is convergent and monotonic, but not bounded.