

دانشگاه علم و صنعت دانشکده مهندسی کامپیوتر

استدلال احتمالاتي

«هوش مصنوعی: رهیافتی نوین»، فصل ۱۴ مدرس: آرش عبدی هجراندوست نیمسال دوم ۱۴۰۱–۱۴۰۲

شبکه بیز

- ابزاری برای بازنمایی توزیع احتمالاتی توام
 - 💠 نام های دیگر:
 - Selief Network − شبکه باور
- Probability Network − شبکه احتمالاتی
 - Causal Network شبکه علی
 - Knowledge Map نگاشت دانش

تعریف شبکه بیز

- * شبکه بیز یک گراف جهتدار است که در آن:
 - 💠 هر گره متناظر با یک متغیر تصادفی است.
- ❖ تعدادی یال جهت دار بین گرهها وجود دارد. اگر از X به Y یال وجود داشته باشد، X والد Y خوانده می شود.
 - 💠 گراف حلقه جهت دار ندارد
- هر گره X_i دارای توزیع احتمالاتی شرطی به شکل $P(X_i|Parents(X_i))$ است که تاثیر والدها بر روی گره را مشخص می کند
 - معنی هر یال آن است که والد تاثیر مستقیم روی فرزند دارد.
 - Cause است. Effect
 - 💠 برای فرد خبره کار سادهای است که روابط علی مستقیم را بین متغیر ها تعیین کند
 - 💠 تعیین توپولوژی، صرف نظر از تعیین احتمال هر یک
- ♦ اگر احتمالات شرطی مربوطه هم مشخص شود، با شبکه بیز می توان توزیع توام کامل تمام متغیرها را مشخص کرد

مثالی از شبکه بیز

مثالی دیگر

- 💠 زنگ دزدگیر جدید در خانه
- 💠 حساسیت زنگ، به دزد و نیز زمین لرزه
- ♦ دو همسایه با نامهای John و Mary
- ❖ قول دادهاند اگر صدای زنگ را شنیدند، تماس بگیرند و خبر دهند (وقتی خانه نیستی)
- ❖ John تقریبا هر وقت صدای زنگ را بشنود، تماس می گیرد، اما گاهی صدای تلفن را با زنگ اشتباه می گیرد.
 - ♦ Mary مدای بلند موسیقی را دوست دارد و خیلی وقتها صدای زنگ را نمیشنود!

❖ سوال ۱: آیا متغیر زنگ و تماس جان، از هم مستقلند؟

❖ چرا در جدول احتمالات زنگ، حرفی از تماس جان زده نشده؟

❖ سوال ۲: احتمال زنگ نخوردن چقدر است (در حالت های مختلف)؟

توزیع توام کامل از شبکه بیز

است. منا الله الله بيز، توزيع توام كامل بدين شكل قابل بيان است.

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- 💠 حروف کوچک: مقدار خاص برای متغیر
 - 💠 حروف بزرگ: متغیر تصادفی
- . مقادیری از متغیرهای والد متغیر X_i که در x_1, x_2, \ldots, x_n ظاهر شدهاند. $parents(X_i)$
 - 💠 چرا رابطه فوق صحیح است؟

$$\begin{array}{ll} P(j,m,a,\neg b,\neg e) \ = \ P(j\,|\,a)P(m\,|\,a)P(a\,|\,\neg b \wedge \neg e)P(\neg b)P(\neg e) \\ \\ = \ 0.90\times 0.70\times 0.001\times 0.999\times 0.998 = 0.000628 \end{array}$$

قاعده زنجيره

Product Rule

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$

Chain Rule:

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1} | x_{n-2}, \dots, x_1) \cdots P(x_2 | x_1) P(x_1)$$
$$= \prod_{i=1}^n P(x_i | x_{i-1}, \dots, x_1) .$$

:عيجه ميدهد
$$P(x_1,\ldots,x_n)=\prod_{i=1}^n P(x_i\,|\,parents(X_i))$$
 نتيجه ميدهد 🌣

$$\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$$

$$Parents(X_i) \subseteq \{X_{i-1}, \dots, X_1\}$$
 به فرض آنکه داشته باشیم: ا

 $\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$

 $Parents(X_i) \subseteq \{X_{i-1}, \dots, X_1\}$

برای تامین فرض مذکور باید شماره گذاری گره ها به ترتیبی باشد که در گراف بیز تعیین شده است.

- طبق رابطه فوق: شبکه بیز و تفسیرش از متغیرها صحیح است اگر:
- ❖ هر متغیر، به شرط داشتن وضعیت والدهایش، از سایر متغیرهای پیشین خود (طبق ترتیب شماره گذاری متغیرها) مستقل باشد.
 - برای تامین این شرط، در ساختن شبکه بیز باید به آن دقت کرد.

ساختن شبکه بیز

- 💠 گام ۱: تعیین متغیرها و مرتب کردن آنها
 - 🍫 هر نوع ترتيبي قابل قبول است
- ♦ اگر ترتیب به گونهای باشد که متغیرهای علت قبل از متغرهای معلول قرار گیرند، شبکه کوچکتر/فشرده تر خواهد شد.
 - \cdot (i=1,...,۱) X_i گام ۲: تعیین یالها. برای هر متغیر \star
- در مجموعه متغیرهای پیشین (از X_1 تا X_{i-1})، کوچکترین مجموعه والدهای X_i را پیدا کن، به گونهای $\mathbf{P}(X_i \mid X_{i-1}, \dots, X_1) = \mathbf{P}(X_i \mid Parents(X_i))$ که
 - برای هر والد، یالی از والد به فرزند وصل کن
 - $\mathbf{P}(X_i|Parents(X_i))$:خ جدول احتمال شرطی متغیر را ایجاد کن
 - ❖ به صورت شهودی: والدهای هر متغیر باید متغیرهایی باشند که تاثیر مستقیم روی این متغیر دارند

خصوصیات شبکه بیز

- 🍫 فشرده بودن (نسبت به توزیع توام کامل)
 - Sparsity �
 - 🌣 ساختارمحلي
- بخ می توان فرض کرد هر متغیر در عمل از k متغیر دیگر تاثیر مستقیم می پذیرد.
 - 2^k اندازه جدول احتمال هر متغیر life life hinspace hinspa
 - $n2^k$ اندازه جدولهای کل شبکه: 🌣
 - 2^n اندازه جدول توزیع توام کامل (بدون بیز): \clubsuit
- این امکان وجود دارد که روابط ضعیف بین متغیرها حذف شود و مدل کوچکتر شود:
- الله عنه بنال ونگ دودگیر: ارتباط مستقیم بین زمین لرزه و تماس ماری و جان در نظر گرفته نشده.
- اگر زمین لرزه را احساس کنند، حدس میزنند که صدای زنگ بابت دزد نیست، و ممکن است تماس نگیرند.

اهمیت ترتیب گرهها

اگر ترتیب مشاهده گرهها چنین باشد:

♦ Marry→John→Allarm→Burglary→Earthquake

- با دانستن وضعیت زنگ، تماس ماری و جان اطلاعاتی درباره صدای موسیقی و صدای تلفن میدهد، نه درباره دزد
- ❖ وجود یا عدم وجود دزد، با دانستن وضعیتزنگ، احتمال زمین لرزه را بیشتر/کمتر می کند!
 - 💠 نتیجه: دو یال بیشتر در شبکه
 - ❖ ترتیب تشخیصی در گرهها ← شلوغی بیشتر
 - ❖ ترتیب عِلی در گرهها ← خلوتی بیشتر گراف

- اگر تریب گرهها بدتر باشد:
- ❖ Mary→John→Earthquake→Burglary→Alarm
 - مكن الله المكن ممكن المكن
 - ❖ هم اندازه جدول توزیع توام کامل
 - ❖ ۳۱ احتمال مجزا

- MaryCalls **JohnCalls** Earthquake Burglary Alarm
- ❖ هم این شبکه و هم شبکه قبلی، توزیع توامکامل یکسانی نسبت شبکه اصلی (درست)تولید میکنند
- ❖ دو شبکه اخیر، نتوانستهاند روابط استقلال شرطی را کامل احصا کنند.

روابط استقلال شرطی در شبکه بیز

- خ در شبکه بیز، هر متغیر، به شرط داشتن وضعیت والدهایش، از سایر متغیرهای پیشین خود (طبق ترتیب شماره گذاری متغیرها) مستقل است.
 - طبق توپولوژی شبکه بیز، می توان گفت:
 - هر متغیر، به شرط داشتن وضعیت والدهایش، از متغیرهای غیر فرزند خود مستقل است.
 - به فرزندان وابسته است
 - مثلا وضعیت تماس ماری، احتمال صدای زنگ را بیشتر می کند

★ X از متغیرهای Z مستقل است، اگر وضعیت والدها (متغیرهای U) را بدانیم.

💠 طبق توپولوژی شبکه بیز:

هر متغیر، به شرط داشتن وضعیت والدها، فرزندان و والدهای فرزندان، از همه متغیرهای دیگر مستقل است.

مجموعه فوق را لايه ماركف (Markov Blanket) مي گويند.

استنتاج دقیق در شبکه بیزی

- وظیفه اصلی هر سیستم استنتاج احتمالاتی (مانند شبکه بیز) آن است که احتمال پسین برخی از متغیرها را به شرط دانستن برخی دیگر، تعیین کند.
 - ❖ برخی اول را متغیرهای پرسش (query) مینامیم
 - برخی دوم را وقایع (events) مشاهده شده یا متغیرهای مشاهده شده (evidence) می گوییم
 - 💠 X: متغیر پرسش
 - $(E_1,E_2,\ldots E_m)$ متغیرهای مشاهده E
 - 💠 e: یک مشاهده مشخص
 - $(Y_1,\ldots Y_l)$ سایر متغیرها (نه مشاهده شده، نه پرسش شده: Y
 - 💠 متغیرهای پنهان
 - P(X|e) :کیرسش تیپیک \diamondsuit

استنتاج با سرشماری

المحمد الميتوان با كمك جمع تعدادى توزيع توام كامل نوشت:

$$\mathbf{P}(X \mid \mathbf{e}) = \alpha \, \mathbf{P}(X, \mathbf{e}) = \alpha \, \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$$

- چرا برحسب توزیع کامل؟
- انه! وزیرا با شبکه بیز، توزیع کامل را به راحتی داریم، اما توزیع ناقص(!) مورد درخواست را نه!
 - 💠 با شبکه بیز، توزیع کامل بر حسب ضرب توزیعهای شرطی قابل بیان است.

همچنان استنتاج با سرشماری

ال: مثال:

 $P(Burglary \mid JohnCalls = true, MaryCalls = true)$

$$\mathbf{P}(B \mid j, m) = \alpha \, \mathbf{P}(B, j, m) = \alpha \, \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a,)$$

: Burglary= true مثلا براى الم

$$P(b | j, m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a | b, e)P(j | a)P(m | a)$$

ب و برای کاهش بار محاسباتی:

$$P(b | j, m) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a | b, e) P(j | a) P(m | a)$$

استنتاج تقريبي

- استنتاج دقیق، ممکن است خیلی هزینه بر باشد
 - 💠 برحسب شبکه و پرسش
- ❖ تعداد متغیرهای پنهان بیشتر ← تعداد سرشماری های تودرتوی بیشتر ← هزینه بالاتر
- ❖ گرچه با کمک شبکه بیز، محاسبه هر توزیع توام کامل کم هزینه شده است، ولی تعداد محاسبات ممکن است بر حسب پرسش، خیلی بالا باشد.
 - 💠 نیاز به روشهایی کم هزینهتر
 - 💠 گرچه کم دقت تر
 - 💠 روشهای نمونهبرداری (تولید نمونه تصادفی)
 - ❖ دقت وابسته به تعداد نمونهها

الگوريتم نمونهبرداري مستقيم

- ❖ تولید نمونه از روی یک توزیع احتمال مشخص
- ❖ مثلا متغیر تصادفی سکه، دارای دو حالت با احتمال <0.5, 0.5> است (توزیع احتمال)
 - ❖ تولید نمونه برای این توزیع احتمال، شبیه به پرتاب سکه به دفعات مکرر است.
- ♦ اگر منبعی برای تولید عدد تصادفی با توزیع یکنواخت بین بازه [0, 1] داشته باشیم، میتوان برای هر تک متغیر دارای هر نوع توزیعی، نمونه تصادفی تولید کرد
 - ❖ گسسته: تقسیم کردن بازه ۰ تا ۱ به بخشهایی با طول متناسب با احتمال مربوطه به هر خروجی برای متغیر
 - 💠 پیوسته: همین رویکرد با توجه به انتگرال (مساحت) زیر نمودار تابع چگالی احتمال
 - 💠 مساحت زیر نمودار = ۱
 - ❖ نمونه تصادفی تولید شده، نقطهای روی محور X خواهد بود
 که انتگرال (مساحت) نمودار تا آنجا برابر با عدد تصادفی
 تولید شده باشد.
 - ❖ احتمال تولید نمونه در بازههای دارای چگالی بیشتر بیشتر است

تولید عدد تصادفی

- 💠 تمرین: تابعی بنویسید که یک عدد تصادفی تولید کند.
 - محدد شبه تصادفی
 - * مثلا روش middle-square method
- ❖ یک عدد مثلا ۵ رقمی اولیه به عنوان Seed اولیه در نظر می گیرد
- ♦ Seed را به توان ۲ میرساند، ۱۰ رقمی میشود (اگر نشد صفر اضافه میکند تا بشود)
 - ❖ سپس ۵ رقم وسط را به عنوان عدد تصادفی تولید شده ارائه می کند
 - ❖ همان ۵ رقم را به عنوان seed برای تولید عدد تصادفی بعدی در نظر می گیرد.
 - ♦ Seed اولیه را هم مثلا از روی ساعت سیستم می توان پیدا کرد یا ...

ادامه الگوريتم نمونهبرداري مستقيم

- الگوریتم اولیه نمونهبرداری برای شبکه بیز (بدون در نظر گرفتن مشاهدات احتمالی)
 - 💠 تولید مقدار تصادفی برای هر متغیر، به ترتیب توپولوژیک شبکه (بالا به پایین)

❖ الگوريتم:

- از بالای شبکه بیز شروع کن.
- ❖ متغیر اول دارای احتمال پیشین است، با همان احتمال یک مقدار تصادفی برایش تولید کن.
- برای متغیرهای پایین تر، توزیع احتمال هر متغیر را به شرط آنکه والدهایشان مقادیر قبلا تولید شده را داشته باشنک در نظر بگیر
 - طبق همان توزیع احتمال، برایشان عدد تصادفی تولید کن
 - ❖ برای تمام متغیرها این کار را انجام بده ← یک نمونه تصادفی کامل شامل کل متغیرها تولید شده است.
 - با همین روش می توان مثلا ۱۰۰۰ نمونه تصادفی تولید کرد
 - المحنف فراواني هر نمونه متناسب با احتمال واقعى توليد همان نمونه خواهد بود، تقريبا.
 - با مجموعه نمونههای تولید شده، می توان توزیع توام کامل را برای مقادیر مختلف متغیرها تقریب زد

الگوریتم تولید نمونه تصادفی از شبکه بیزی

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn inputs: bn, a Bayesian network specifying joint distribution $\mathbf{P}(X_1, \ldots, X_n)$

 $\mathbf{x} \leftarrow$ an event with n elements

foreach variable X_i in X_1, \ldots, X_n do

 $\mathbf{x}[i] \leftarrow \text{a random sample from } \mathbf{P}(X_i \mid parents(X_i))$

return x

♦ مثال:

- 1. Sample from P(Cloudy) = (0.5, 0.5), value is true.
- 2. Sample from $P(Sprinkler \mid Cloudy = true) = \langle 0.1, 0.9 \rangle$, value is false.
- 3. Sample from $P(Rain \mid Cloudy = true) = (0.8, 0.2)$, value is true.
- 4. Sample from $P(WetGrass \mid Sprinkler = false, Rain = true) = (0.9, 0.1)$, value is true.

در این مورد، الگوریتم نمونه [true, false, true, true] را تولید کرده است.