School of Mathematics and Statistics

MT5836 Galois Theory

Handout III: Splitting Fields and Normal Extensions

3 Splitting Fields and Normal Extensions

Splitting fields

Let F be a field and consider a polynomial f(X) over the field F. Suppose that there is an extension L of F such that, when f(X) is viewed as a polynomial over L, we can factorize it as a product of linear factors:

$$f(X) = c(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n).$$

We shall then say that f(X) splits over L. Necessarily, in such a situation, then the roots $\alpha_1, \alpha_2, \ldots, \alpha_n$ of f(X) are elements of the field L.

Definition 3.1 Let f(X) be a polynomial over some field F. We say that a field K is a *splitting field* for f(X) over F if K is an extension of F satisfying the following properties:

- (i) f(X) splits into a product of linear factors over K, and
- (ii) if $F \subseteq L \subseteq K$ and f(X) splits over L, then L = K.

Thus, a splitting field for a polynomial f(X) over a field F is an extension K of F in which f(X) splits over K but such that f(X) does not split over any proper subfield of K; that is, K is a minimal field over which f(X) splits.

Lemma 3.2 Let f(X) be a polynomial over a field F and suppose there is some extension L of F such that f(X) splits over L with roots $\alpha_1, \alpha_2, \ldots, \alpha_n$. Then

$$K = F(\alpha_1, \alpha_2, \dots, \alpha_n)$$

is a splitting field for f(X) over F.

In particular, in the case of a polynomial f(X) over $F = \mathbb{Q}$, we know that $L = \mathbb{C}$ is a suitable extension to use in the lemma since we know from the Fundamental Theorem of Algebra (proved in *Complex Analysis*) that every polynomial over \mathbb{Q} has roots in \mathbb{C} and hence splits over \mathbb{C} . We then obtain a splitting field for f(X) over \mathbb{Q} as $\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n)$ where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of f(X) in \mathbb{C} .

Existence of splitting fields

Theorem 3.4 (Existence of Spitting Fields) Let f(X) be a polynomial of degree n over a field F. Then there is a splitting field K for f(X) over F with degree |K:F| dividing n!.

Uniqueness of splitting fields and related isomorphisms

Lemma 3.5 Let $\phi: F_1 \to F_2$ be an isomorphism between two fields. Let f(X) be an irreducible polynomial in $F_1[X]$ and write $f^{\phi}(X)$ for the polynomial over F_2 obtained by applying ϕ to the coefficients in f(X). Let α be a root of f(X) and β be a root of $f^{\phi}(X)$ in some extensions of F_1 and F_2 , respectively. Then there exists an isomorphism $\psi: F_1(\alpha) \to F_2(\beta)$ which extends ϕ and maps α to β .

To say that ψ extends ϕ means that $a\psi = a\phi$ for all $a \in F_1$; that is, the restriction $\psi|_{F_1}$ of ψ to F_1 is the isomorphism ϕ we started with.

Theorem 3.6 Let $\phi: F_1 \to F_2$ be an isomorphism between two fields. Let f(X) be any polynomial in $F_1[X]$ and write $f^{\phi}(X)$ for the polynomial over F_2 obtained by applying ϕ to the coefficients in f(X). Let K_1 be a splitting field for f(X) over F_1 and K_2 be a splitting field for $f^{\phi}(X)$ over F_2 . Then there exists an isomorphism $\theta: K_1 \to K_2$ which extends ϕ .

To establish uniqueness of splitting fields, we take $F_1 = F_2 = F$ and ϕ to be the identity map in the above theorem. We phrase this uniqueness in terms of the following definition:

Definition 3.7 Let F be a field and let K_1 and K_2 be extensions of F. An F-isomorphism from K_1 to K_2 is a field isomorphism $\psi \colon K_1 \to K_2$ such that

$$a\psi = a$$
 for all $a \in F$.

We then say K_1 and K_2 are F-isomorphic.

Corollary 3.8 (Uniqueness of Splitting Fields) Let f(X) be a polynomial over a field F. Any two splitting fields for f(X) over F are F-isomorphic.

Definition 3.9 (i) An automorphism of a field F is an isomorphism from F to itself.

(ii) Let K be an extension of the field F. An F-automorphism of K is an F-isomorphism from K to itself.

Normal extensions

Definition 3.11 An extension K of a field F is a normal extension if every irreducible polynomial over F that has at least one zero in K splits over K.

Theorem 3.13 A finite extension K of a field F is a normal extensions if and only if K is the splitting field of some polynomial over F.