Deformations of space curves lying on a del Pezzo surface

Hirokazu Nasu

Tokai University

June 12, 2025 2025 Algebraic Geometry Conference in Jeonju Hanok Village

Today's slide

Plan of Talk

- Kleppe-Ellia conjecture
- Deformation of curves on del Pezzo surface
- Main result (cf. arXiv:2501.15788)

§1 Kleppe-Ellia conjecture (curves on cubic surface)

the Hilbert scheme

Given a projective scheme X, and given Hilbert polynomial P,

$$\operatorname{Hilb}_P X = \{ C \subset X \mid \text{closed subscheme of } P(C) = P \}$$

is called the Hilbert scheme of *X*. The Hilbert scheme has nice properties:

- fine moduli scheme, i.e. it has a universal family $C \subset X \times \operatorname{Hilb}_P X$ such that every deformation of C in X derived from C.
- 2 projective (Hilb_P $X \hookrightarrow Gr$), and
- lacktriangledown it has nice deformation theory, e.g., if C is a loc. c.i., then $H^0(N_{C/X})$ and $H^1(N_{C/X})$ resp. represent the tang.sp., and obst.sp.

3.1 A criterion for obstructedness3.2 Kleppe-Ellia conjecture

§3 Obstructions to deforming space curves lying on a del Pezzo surface

Primary obstructions

Let X be a projective scheme over k, C a loc. c. i. closed subscheme of X, and $k[\varepsilon] := k[t]/(t^2)$ (the ring of dual numbers).

- A first order (infinitesimal) deformation of C is a deformation \tilde{C} ($\subset X \times \operatorname{Spec} k[\varepsilon]$) of C in X over $k[\varepsilon]$.
- \tilde{C} naturally corresponds to $\alpha \in H^0(C, N_{C/X}) \ (\simeq \operatorname{Hom}(I_C, O_C))$.
- There is an element $ob(\alpha)$ in $H^1(C, N_{C/X})$ (called the primary obstruction of α) such that

$$\operatorname{ob}(\alpha) = 0 \iff \tilde{C}$$
 is liftable to some $\tilde{\tilde{C}}$ over $k[t]/(t^3)$.

• $ob(\alpha)$ can be expressed as a cup product, and

$$ob(\alpha) = \alpha \cup e \cup \alpha$$
 in $Ext^1(I_C, O_C)$

where
$$e := [0 \rightarrow I_C \rightarrow O_X \rightarrow O_C \rightarrow 0].$$

ob(α) ≠ 0 for some α implies that Hilb X is singular at [C] by infinitesimal lifting property of smoothness.

Obstructedness Criterion (with Mukai)

[Mukai-N'09] gave a sufficient condition for $ob(\alpha) \neq 0$ when dim X = 3. Let C be an irreducible curve on a 3-fold X.

Assumption 1

- there exists an intermediate surface $C \subset S \subset X$ s.t. $C \hookrightarrow S$ and $S \hookrightarrow X$ are regular embeddings.
- there exists an irreducible curve $E \neq C$ on S s.t. $[O_S \hookrightarrow O_S(E)] \otimes O_S(mE)$ induces the injection

$$H^1(S, O_S(mE)) \hookrightarrow H^1(S, O_S((m+1)E))$$

for all m > 0. (e.g. $E = (-1) - \mathbb{P}^1$ on S)

Obstructedness Criterion (Continued)

Let $\alpha \in H^0(N_{C/X})$ be a first order deformation of C in X and $\operatorname{ob}(\alpha) \in H^1(N_{C/X})$ its primary obstruction. We consider the "exterior" components

$$\pi_{C/S}(\alpha) := H^0(\pi_{C/S})(\alpha), \qquad \operatorname{ob}_S(\alpha) := H^1(\pi_{C/S})(\operatorname{ob}(\alpha)).$$

by the projection

$$\pi_{C/S}:N_{C/X}\to N_{S/X}\big|_{C}.$$

Assumption 2 -

• Suppose $\pi_{C/S}(\alpha)$ lifts to a global section β of $N_{S/X}(E)$.

Here β is called an infinitesimal deformation with pole:

Obstructedness Criterion (Continued)

Theorem 1 (Mukai-N'09)

 $ob_S(\alpha)$ is nonzero if

- ② Let $\beta|_E$ be the principal part of β along E. Then $\beta|_E \cup k_E \neq 0$ in $H^1(E, O_E(2E))$, where

$$\mathbf{k}_{E} := [\mathbf{0} \longrightarrow N_{E/S} \longrightarrow N_{E/X} \xrightarrow{\pi_{E/S}} N_{S/X} \Big|_{E} \longrightarrow \mathbf{0}]$$

$$\in \operatorname{Ext}_{E}^{1}(N_{S/X} \Big|_{E}, N_{E/S}).$$

① the restriction map $H^0(S, \Delta) \to H^0(E, \Delta|_E)$ is surjective,

Remark 2

In [Mukai-N'09], this criterion was applied to the proof of Thm. ??. We obtained the generically non-reduced components explained in §?? by this criterion.

Stable degeneration

Toward a generalization into higher dimensions, we study the deformations of space curves lying on a del Pezzo surface of degree. Let

$$C \subset S \subset X$$

be a flag of algebraic varieties.

Definition 3

We say $C \subset X$ is stably degnerate (or stably contained in S), if every small deformation C' of C in X is contained in a deformation S' of S in X.

If there exists a component $W_{C,S}$ of HF X passing through (C,S) such that the first projection

$$pr_1: W_{C,S} \to \text{Hilb } X, \qquad (C',S') \mapsto [C']$$

is locally surjective at $[C] \in Hilb X$, then $C \subset X$ is stably degenerate.

Kleppe-Ellia conjecture

Conjecture (Kleppe'87, modified by Ellia'87)

Let $C \subset S_3 \subset \mathbb{P}^3$ be a smooth connected curve of degree d and genus g lying on a smooth cubic surface $S_3 \subset \mathbb{P}^3$. Then C is stably degenerate if

- \bigcirc *g* ≥ 3*d* − 18,
- ② C is linearly normal, i.e. $H^1(I_C(1)) = 0$,

Remark 4

- 1 the first two assumptions are necessary for the conclusion.
- The conjecture is known to be true if
 - C is 3-normal, i.e. $H^1(I_C(3)) = 0$ (Kleppe'87),
 - C is not 3-normal and g >> d (Kleppe'87 and Ellia'87), or
 - C is 2-normal, i.e. $H^1(I_C(2)) = 0$ (N'23)

Generalized Kleppe-Ellia conjecture

Conjecture (generalized K-E conj.)

Let $C \subset S_n \subset \mathbb{P}^n$ be a smooth connected curve lying on a smooth del Pezzo surface $S_n \subset \mathbb{P}^n$ of degree $n \geq 3$. Then C is stably degenerate if

- C is linearly normal,
- **3** $\deg(C) > 9$ for n = 3 and $\deg(C) > 2n$ for $n \ge 4$, and C is general in $[C] \in \operatorname{Pic} S_n$.

Remark 5

The first assumption is equivalent to that

$$\dim_{(C,S)} \operatorname{HF} \mathbb{P}^n = \chi(N_{(C,S)/\mathbb{P}^n}) \ge \chi(N_{C/\mathbb{P}^n}) = (\text{exp.dim.of Hilb } X \text{ at } [C]),$$

where
$$N_{(C,S)/X} := N_{C/X} \times_{N_{S/X}|_C} N_{S/X}$$
.

Application

Proposition 6

If the generalized K-E conjecture is true, then

$$\dim_{[C]} \operatorname{Hilb} \mathbb{P}^n = d + g + n^2 + 9 (= \dim_{(C,S)} \operatorname{HF} \mathbb{P}^n).$$

Thus we can determine the dimension of **Hilb** \mathbb{P}^n at (even singular) point [C].

Theorem A (Unobstructedness)

We focus on the case n=4, i.e. $S\simeq S_4$ is a smooth complete intersection $S_{2,2}$ in \mathbb{P}^4 . We say $C\subset \mathbb{P}^4$ is 2-normal if $H^1(I_C(2))=0$, and 2-nonspecial if $H^1(O_C(2))=0$.

Theorem A

Let $C \subset \mathbb{P}^4$ be a smooth connected curve of degree d > 8 and genus g contained in a smooth c.i. $S = S_{2,2} \subset \mathbb{P}^4$. Then

- Such curves C are parametrised by a finite union of locally closed irreducible subsets $W \subset \operatorname{Hilb}^{sc} \mathbb{P}^4$ of the same dimension d+g+25.
- ② If C is 2-normal, then the closure \overline{W} of W in $Hilb^{sc} \mathbb{P}^4$ is a genericaly smooth component of $Hilb^{sc} \mathbb{P}^4$.
- If C is 2-nonspecial, then $\operatorname{Hilb}^{sc} \mathbb{P}^4$ is smooth along W and \overline{W} is a (proper) closed subset of $\operatorname{Hilb}^{sc} \mathbb{P}^4$ of codimension $2h^1(I_C(2))$.

Theorem A (continued)

Theorem A (continued)

4 C is 2-normal (resp. 2-nonspecial) if (d, g) belongs to the region [I] (resp. [IV] except the 6 pairs corresponding to \circ).

Theorem B (Obstructedness)

We expect that if $(d, g) \in [II]$ and C is not 2-normal, then \overline{W} corresponds to a generically non-reduced component of $\mathbf{Hilb}^{sc} \mathbb{P}^4$.

Theorem B

Let W be a maximal irreducible family of smooth connected curve $C \subset \mathbb{P}^4$ of degree d and genus g contained in a smooth c.i. $S = S_{2,2} \subset \mathbb{P}^4$. If d > 8, $g \ge 2d - 12$ and $h^1(\mathcal{I}_C(2)) = 1$ (then $(d, g) \in [II]$), then

- lacktriangle every general member C of W is stably degenerate and obstructed,
- ② \overline{W} is a component of $(Hilb^{sc} \mathbb{P}^4)_{red}$, and
- **1** Hilb^{sc} \mathbb{P}^4 is generically non-reduced along \overline{W} .

Corollary 7

Generalized K-E conjecture holds to be true, if n = 4 and $h^1(I_C(2)) = 1$.

Analogy of Mumford's example

Example 1

 $\mathbf{Hilb}^{sc} \mathbb{P}^4$ contains a generically non-reduced irreducible component W whose general member C satisfies

- C is contained in a smooth c.i. $S = S_{2,2} \subset \mathbb{P}^4$,
- ② there exists a line E on S such that C belongs to a complete linear system $\Lambda := |-3K_S + 2E|$ ($\simeq \mathbb{P}^{29}$) on S, and
- **3** dim W = 55, $h^0(C, N_{C/\mathbb{P}^4}) = 57$, and C is of degree 14 and genus 16.

Curves on $S_{2,2} \subset \mathbb{P}^4$ (analogy of Mumford's ex.)

Sketch of Proof of Thm. ??

Let $C \subset S_{2,2} \subset \mathbb{P}^4$ be a smooth connected curve of degree d > 8 and genus g lying on a smooth complete intersection $S_{2,2}$ in \mathbb{P}^4 .

- $S = S_{2,2}$ s.t $C \subset S \subset \mathbb{P}^4$ is uniquely determined by d > 8.
- Since $H^i(N_{C/S}) = H^i(N_{S/\mathbb{P}^4}) = 0$ for i > 0, it follows from an exact sequence

$$0 \longrightarrow N_{C/S} \longrightarrow N_{(C,S)/\mathbb{P}^4} \stackrel{\pi_2}{\longrightarrow} N_{S/\mathbb{P}^4} \longrightarrow 0$$

that $H^i(N_{(C,S)/\mathbb{P}^4}) = 0$ for i > 0, which implies $HF \mathbb{P}^4$ is nonsingular and of expected dimension at (C,S).

There exists another exact sequence

$$0 \longrightarrow N_{S/\mathbb{P}^4}(-C) \longrightarrow N_{(C,S)/\mathbb{P}^4} \stackrel{\pi_1}{\longrightarrow} N_{C/\mathbb{P}^4} \longrightarrow 0,$$

where π_1 induces the tangent map p_1 of $pr_1: \operatorname{HF} \mathbb{P}^4 \to \operatorname{Hilb} \mathbb{P}^4$ at (C,S) and we obtain

$$H^0(N_{(C,S)/\mathbb{P}^4}) \xrightarrow{p_1} H^0(N_{C/\mathbb{P}^4}) \longrightarrow \underbrace{H^1(N_{S/\mathbb{P}^4}(-C))}_{\simeq H^1(T_C(2))\oplus 2} \longrightarrow 0.$$

Sketch of Proof of Thm. ??

• Suppose now that $g \ge 2d - 12$ and $h^1(I_C(2)) = 1$. Then dim coker $p_1 = 2$ and there exists a line E on S such that

$$|C + 2K_S| = |C + 2K_S - E| + E$$
. (Zariski decomp.)

• We note $N_{S/\mathbb{P}^4} \simeq O_S(-2K_S)^{\oplus 2}$ and

$$H^1(N_{S/\mathbb{P}^4}(E-C)) = H^1(-L^{\oplus 2}) = 0,$$

because $L := C + 2K_S - E$ is nef and big (by $g \ge 2d - 12$).

- For every $\alpha \in H^0(N_{C/\mathbb{P}^4}) \setminus \operatorname{im} p_1$, its exterior component $\pi_{C/S}(\alpha)$ in $H^0(N_{S/\mathbb{P}^4}|_C)$ lifts to a global section β of $N_{S/\mathbb{P}^4}(E)$ (after admitting a pole along E).
- Applying a "modification" of the obstructedness criterion to the infinitesimal deformation β with poles, we obtain $ob(\alpha) \neq 0$. This implies

$$\dim_{[C]} \operatorname{Hilb}^{sc} \mathbb{P}^4 = \dim_{(C,S)} \operatorname{HF} \mathbb{P}^4 = d + g + 25,$$

and thereby C is obstructed and stably degenerate.

$S_{2,2}$ -maximal families of curves in \mathbb{P}^4

Let $C \subset S \subset X$ be a flag of algebraic varieties. We say an irreducible closed subset W of $\mathbf{Hilb}^{sc} X$ is S-maximal if there exists an irreducible component $W_{C,S}$ of $\mathbf{HF}^{sc} X$ (:= $pr_1^{-1}(\mathbf{Hilb}^{sc} X)$) passing through (C,S) and $pr_1(W_{C,S}) = W$.

If d > 8, then there exists a natural 1-to-1 correspondence between the set of $S_{2,2}$ -maximal families in $\operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^4$ and the set of 6-tuples of integer $(a;b_1,\ldots,b_5)$ satisfying

$$a > b_1 \ge \dots \ge b_5 \ge 0$$
 and $a \ge b_1 + b_2 + b_3$ (1)

and

$$d = 3a - \sum_{i=1}^{5} b_i \quad \text{and} \quad g = \frac{(a-1)(a-2)}{2} - \sum_{i=1}^{5} \frac{b_i(b_i-1)}{2}, \quad (2)$$

by coordinates in $\operatorname{Pic} S_{2,2} \simeq \mathbb{Z}^6$, i.e.,

$$[C] = a[\varepsilon^* O_{\mathbb{P}^2}(1)] - \sum_{i=1}^5 b_i e_i \longleftrightarrow (a; b_1, \dots, b_5).$$

Theorem C (Criterion)

Theorem C

Let $W:=W(a;b_1,\ldots,b_5)\subset \operatorname{Hilb}_{d,g}^{sc}\mathbb{P}^4$ be the $S_{2,2}$ -maximal family of smooth connected curves of degree d and genus g in \mathbb{P}^4 corresponding to $(a;b_1,\ldots,b_5)$. Suppose that d>10 and $g\geq 2d-12$. Then

- If $b_5 \ge 2$, then W is an irreducible component of $\operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^4$ and $\operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^4$ is generically smooth along W.
- ② If $b_5 = 1$ and $b_4 \ge 2$, then W is an irreducible component of $(\operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^4)_{\operatorname{red}}$ and $\operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^4$ is generically non-reduced along W.
- ③ If $b_5 = 0$, then W is not an irreducible component of $(\mathbf{Hilb}^{sc}_{d,g} \mathbb{P}^4)_{\mathrm{red}}$, i.e., there exists an irreducible component of $V \supsetneq W$.

Examples

Table: $S_{2,2}$ -maximal families in $\mathbf{Hilb}^{sc}_{d,g}\,\mathbb{P}^4$

(d,g)	$(a; b_1, b_2, b_3, b_4, b_5)$	$W(a;b_1,b_2,b_3,b_4,b_5)$
(14, 16)	(8; 2, 2, 2, 2, 2)	gen. smooth component
(14, 16)	(9;4,3,2,2,2)	gen. smooth component
(14, 16)	(9;3,3,3,3,1)	gen. non-reduced component
(15, 18)	(9; 4, 2, 2, 2, 2)	gen. smooth component
(15, 18)	(9; 3, 3, 3, 2, 1)	gen. non-reduced component
:	:	:
(18, 24)	(9; 2, 2, 2, 2, 1)	gen. non-reduced component
(18, 24)	(10; 4, 3, 3, 1, 1)	$unknown (h^1(I_C(2)) = 2)$
(18, 24)	(10; 3, 3, 3, 3, 0)	non-component $(h^1(I_C(2)) = 3)$
(18, 24)	(11; 6, 3, 2, 2, 2)	gen. smooth component
	:	:

References

D. Mumford.

Further pathologies in algebraic geometry. *Amer. J. Math.*, 84:642–648, 1962.

S. Mukai and H. Nasu

Obstructions to deforming curves on a 3-fold, I: A generalization of Mumford's example and an application to Hom schemes.

J. Algebraic Geom., 18(4):691-709, 2009.

H. Nasu.

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold,

Annales de L'Institut Fourier, 60(2010), no. 4, 1289-1316.

H. Nasu.

Obstructions to deforming curves on a 3-fold, III: Deformations of curves lying on a K3 surface. Internat. J. Math., 28(13):1750099, 30, 2017.

H. Nasu.

Obstructions to deforming curves on a prime Fano 3-fold, Mathematische Nachrichten, 292(2019), no. 8, 1777–1790.

H. Nasu.

Obstructions to deforming curves on an Enriques-Fano 3-fold.

J. Pure Appl. Algebra, 225(9):106677, 15, 2021.