

XXV EVENTO NACIONAL ESTUDIANTIL DE CIENCIAS. ENEC 2018.

FORMULARIO DE CIENCIAS BÁSICAS

FÍSICA

TECNOLÓGICO NACIONAL DE MÉXICO

Secretaría Académica, de Investigación e Innovación Dirección de Docencia e Innovación Educativa

CINEMÁTICA

$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$	
$\vec{v} = \frac{d\vec{r}}{dt}$	
$\vec{a} = \frac{d\vec{v}}{dt}$	
$\vec{a} = \frac{dv}{dt}\hat{u}_t + \frac{v^2}{\rho}\hat{u}_n \qquad , \qquad \vec{v} = v\hat{u}_t$	
$\vec{v} = \dot{r}\hat{u}_r + r\dot{\theta}\hat{u}_{\theta}$	
$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{u}_{\theta}$	

Movimiento en una dimensión

$x = x_0 + vt$
$\overline{v} = \frac{1}{2} \left(v + v_0 \right)$
$v = v_0 + at$
$x = x_0 + v_0 t + \frac{1}{2} a t^2$
$v^2 = v_0^2 + 2a(x - x_0)$
$X_{B/A} = X_B - X_A$
$V_{B/A} = V_B - V_A$
$a_{B/A} = a_B - a_A$

ESTÁTICA

$$\vec{F} = F_x \hat{i} + F_y \hat{j}$$
 Componentes rectangulares de \vec{F} en el plano
$$F_x = F \cos \theta, \ F_y = F \sin \theta$$

$$F = \sqrt{F_x^2 + F_y^2}$$

$$\tan \theta = \frac{F_y}{F_x}$$
 Componentes rectangulares de \vec{F} en el espacio
$$F_x = F \cos \theta_x, \ F_y = F \cos \theta_y, \ F_z = F \cos \theta_z$$

$$\cos^2 \theta_x + \cos^2 \theta_y + \cos^2 \theta_z = 1$$

$$\cos \theta_x = \frac{d_x}{d}, \cos \theta_y = \frac{d_y}{d}, \cos \theta_z = \frac{d_z}{d} \qquad \text{si} \qquad \vec{F} = F \hat{\lambda} = \frac{F}{d} \left(d_x \hat{i} + d_y \hat{j} + d_z \hat{k} \right)$$

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2}$$
 Momento de F con respecto a G

$$\vec{M}_O = \vec{r} \times \vec{F}$$
 Momento de F con respecto a O $\vec{M}_B = \vec{r}_{A/B} \times \vec{F} = (\vec{r}_A - \vec{r}_B) \times \vec{F}$ Momento de F aplicada en A relativo a B $M_{OL} = \hat{\lambda} \cdot \vec{M}_O = \hat{\lambda} \cdot (\vec{r} \times \vec{F})$ Momento de F respecto a un eje

$$\vec{r} \times (\vec{F}_1 + \vec{F}_2 + \cdots) = \vec{r} \times \vec{F}_1 + \vec{r} \times \vec{F}_2 + \cdots$$
Teorema de Varignon
$$\sum \vec{F} = \sum \vec{F}'$$
Condiciones de sistemas equivalentes
$$\sum \vec{M}_o = \sum \vec{M}_o'$$

$$\vec{R} = \sum \vec{F} = 0$$
Condiciones de equilibrio

$$R = \sum F = 0$$
 Condiciones de equilibrio $\vec{M}_O^R = \sum \vec{M}_O = \sum (\vec{r} \times \vec{F}) = 0$

DINÁMICA

$$\vec{F} = m\vec{a} = \left(\frac{W}{g}\right)\vec{a} \qquad W : \text{peso}$$

$$F = G\frac{mM}{r^2}$$

$$\sum F = m\frac{dv}{dt}$$

TECNOLÓGICO NACIONAL DE MÉXICO

TRABAJO, ENERGÍA Y CONSERVACIÓN DE LA ENERGÍA

$U = \vec{F} \cdot \vec{r}$	
$P = \frac{U}{t} = \frac{\vec{F} \cdot \vec{r}}{t} = \vec{F} \cdot \vec{v}$	P: potencia
$\eta = rac{P_{sal}}{P_{ent}}$	η : eficiencia
$U = \Delta K = K_f - K_i$	
$K = \frac{1}{2} m v^2$	K:energía cinética
$W = -\Delta V = V_f - V_i$	V: energía potencial
V(y) = mgy	
$V_e = \frac{1}{2}kx^2$	

IMPULSO E ÍMPETU

$$\vec{I} = \int \vec{F} \ dt$$
 $\Delta \vec{p}$: impulso $\vec{I} = \Delta \vec{p} = \vec{p}_f - \vec{p}_i$ $\vec{p} = m\vec{v}$ p : impetu

ELECTRICIDAD Y MAGNETISMO

Capacitancia

q = CV	C: capacitancia
$C = \kappa \varepsilon_o \frac{A}{d}$	Capacitor de placas paralelas
$C = \varepsilon \frac{A}{d} \qquad \varepsilon = k\varepsilon_0$	k : constante dieléctrica
$C = \kappa \varepsilon_o \frac{2\pi l}{\ln(b/a)}$	Capacitor cilíndrico
$U = \frac{q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}qV$	U : energía almacenada en un capacitor
$u = \frac{1}{2} \kappa \varepsilon_o E^2$	<i>u</i> : densidad de energía

Corriente, resistencia y fuerza electromagnética

$i = \frac{dq}{dt}$	<i>i</i> : corriente eléctrica
i = nqvA	
$j = \frac{i}{A} = \sum_{i} n_{i} q_{i} v_{i}$	<i>j</i> : densidad de corriente
	A : área
$\rho = \frac{E}{j}$	ho : resistividad
$R = \frac{V}{i} = \rho \frac{l}{A}$	R: resistencia
$R = R_0 \left(1 + \alpha \Delta t \right)$	Variación de R con la temperatura
$V_{ab} = \sum IR - \sum \varepsilon$	
$\sum i_{ent} = \sum i_{sal}$	
$\sum Elev.\ de\ potencial = \sum ca$	uídas de potencial $\sum v_i = 0$
$P = iV = i^2 R = \frac{V^2}{R}$	P: potencia eléctrica

Magnetismo

$\vec{F} = q\vec{v} \times \vec{B} = qvB \operatorname{sen}\alpha$	\vec{v} : velocidad
$\vec{F} = i\vec{l} \times \vec{B} = liB \operatorname{sen} \alpha$	\vec{B} : campo magnético
	\vec{l} : elemento de longitud
$\tau = NiAB \operatorname{sen} \theta$	
$ \oint \vec{B} \cdot d\vec{l} = \mu_o i $ $ \Phi = \int \vec{B} \cdot d\vec{A} $	
$\Phi = \int \overrightarrow{B} \cdot d\overrightarrow{A}$	
$B = \frac{\mu_o i}{2\pi r}$	r: distancia
$B = \frac{\mu_o i}{2a}$	a:radio
$B = \frac{\mu_o Ni}{2\pi r}$	N : número de vueltas
$dB = \frac{\mu_o i}{4\pi a} \sin\theta d\theta$	
$B = \frac{i}{4\pi a} (\cos \theta_1 - \cos \theta_2)$	
$\varepsilon = -\frac{d\Phi_{\scriptscriptstyle B}}{dt}$	arepsilon : fuerza electromagnética
$\varepsilon = -vBl$	

TERMODINÁMICA

$\eta = 1 - \frac{T_F}{T_C}$	η : eficiencia
$\eta = \frac{W_S}{Q_E}$	
$Q = mC_p \Delta T$	
$\Delta L = \alpha L_0 \Delta T$	
PV = mRT	
$R = \frac{\overline{R}_u}{\overline{M}}$	

Primer Principio de la Termodinámica

$W = -\int p dv$	Trabajo
$Q = \Delta U + W$	Sistemas cerrados
$Q = \Delta H + W_u$	Sistemas abiertos
H = U + PV	Entalpía
$q_{V} = -\Delta U$	
$q_P = -\Delta H$	
$\Delta H = \Delta U + RT \Delta n_{gas}$	
$\Delta H_r^0 = \Delta H_{r_{productos}}^0 - \Delta H_{r_{reactivos}}^0$	
$C = C_p m$	Capacidad calorífica

Segundo Principio de la Termodinámica

Relaciones entre funciones termodinámicas

dU = TdS - PdV
dH = TdS + VdP
dF = -SdT - PdV
dG = -SdT + VdP

Ley de Hess

$$\Delta H_r^0 = \Delta H_{f.n}^0 - \Delta H_{f.r}^0$$

Funciones Termodinámicas

$$F = U - TS$$
$$G = H - TS$$

Ecuación de Clapeyron

$$\frac{dP}{dT} = \frac{\Delta H_0}{T\Delta V_m} = \frac{\Delta S}{\Delta V}$$

Ecuación de Clausius-Clapeyron

$$\ln \frac{P_2}{P_1} = \frac{\Delta H_0}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

Electroquímica

$$m = \frac{MIt}{zF}$$

$$z: \text{ número de electrones transferidos}$$

$$I: \text{ intensidad de corriente}$$

$$\Delta G^0 = -nFE^0_{celda} = -RT \ln k_{eq}$$

$$E = E^0 - \frac{0.0592}{n} \log k$$

$$E = E^0 - \frac{2.303RT}{nF} \log k$$

ÓPTICA

$n_1 \sin \theta_1 = n_2 \mathrm{s}$	$\operatorname{in} heta_2$
$n = \frac{c}{v}$	n: índice de refracción
,	c: velocidad de la luz en el vacío

MECÁNICA DE FLUIDOS

$P = P_0 + \rho g h$	ρ : densidad del fluido
$P = \frac{F}{A}$	
$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$	ecuación de Bernoulli
Q = vA	Q: gasto
$v_1 A_1 = v_2 A_2$	ecuación de continuidad

CONSTANTES

Carga electrón	$-1.6022 \times 10^{-19} C$
Carga protón	$+1.6022\times10^{-19}$ C
Masa electrón	$m_e = 9.1095 \times 10^{-31} \ kg$
Masa protón	$m_p = 1.67252 \times 10^{-27} \ kg$
Masa neutrón	$m_n = 1.679 \times 10^{-27} \ kg$
Constante de Planck	$h = 6.626 \times 10^{-34} \ J \cdot s = 6.626 \times 10^{-27} \ erg \cdot s$
Constante de Rydberg	$R_H = 2.179 \times 10^{-18} \ J = 2.179 \times 10^{-11} \ erg$
Constante de Coulomb	$k = 9 \times 10^9 \ N \cdot m^2 / C^2$
Constante dieléctrica	$\varepsilon_0 = 8.85 \times 10^{-12} \ C^2 / (N \cdot m^2) = 8.85 \times 10^{-12} \ F/m$
o de permisividad del vacío	
Constante de Faraday	$F = 96484556 \ C/mol$
Constante de Boltzmann	$k = 1.3806 \times 10^{23} \ J/K$
Constante de Stefan-Boltzmann	$\sigma = 5.67 \times 10^{-8} \ W / (m^2 K^4)$
Constante gravitacional	$G = 6.672 \times 10^{-11} \ N \cdot m^2 / kg^2$
Constante de permeabilidad	$1.26 \times 10^{-6} \ H/m$
Constante universal de los gases	$R = 8.314 \frac{J}{mol \cdot K} = 8.314 \frac{Pa \cdot m^3}{mol \cdot K} = 0.0821 \frac{L \cdot atm}{mol \cdot K}$
Permeabilidad magnética del vacío	$\mu_0 = 4\pi \times 10^{-7} \ T \cdot m = 1.2566 \times 10^{-6} \ H/m$
Magnetón de Bohr	$\mu_B = 9.274 \times 10^{-27} \ J/T$
Electrón-volt	eV=1.60×10 ⁻¹⁹ J
Unidad de masa atómica (uma)	$u = 1.6605 \times 10^{-27} \ kg$
Número de Avogadro	$N_A = 6.023 \times 10^{23}$
Volumen molar	$V_m = 22.4 L$
Punto triple del agua	$T_{\pi} = 273.15 \ K$
Velocidad de la luz	$c = 3 \times 10^8 \ m/s$
Radio medio de la Tierra	$r_{mT} = 6.37 \times 10^6 \ m$
Distancia de la Tierra a la Luna	$d_{T-L} = d3.84 \times 10^8 \ m$
Masa de la Tierra	$m_t = 5.976 \times 10^{24} \ kg$
Masa de la Luna	$m_l = 7.36 \times 10^{22} \ kg$
Aceleración gravitacional en la Tierra	$g = 9.81 \ m/s^2$
Aceleración gravitacional en la Luna	$g_1 = 1.62 \ m/s^2$

FACTORES DE CONVERSIÓN

$1 N = 0.2248 \ lb = 10^5 \ dina$
$1 \ kcal = 4186.8 \ J = 3.97 \ Btu = 3087.5 \ lb \cdot pie$
$=1.56\times10^{-3} \ Hph = 632.18 \ CVh$
$1 Btu = 0.252 \ kcal = 778 \ lb \cdot pie$
1 Hph = 1.014 CVh
$1 W = 0.860 \ kcal/h$
$\int 1 J = 2.778 \times 10^{-7} \ kWh = 9.481 \times 10^{-4} \ Btu$
$=10^7 \ erg = 6.242 \times 10^{18} \ \text{eV} = 0.2389 \ cal$
$1 \text{ eV} = 1.6 \times 10^{-12} \text{ erg}$
$1 Hp = 550 lb \cdot pie/s = 745.7 W$
$= 2545 \; Btu/h = 178.1 \; kcal/s$
$1 T = 10^5 G$
1 mi = 1609 m
1 pie = 30.48 cm
$1 \ bar = 10^5 \ Pa = 14.5 \ lb/in^2$
$1 lb_m = 454 g$
$1 atm = 14.7 \ lb/in^2 = 1.013 \times 10^5 \ Pa = 760 \ mm \ Hg$
$1 \text{ Å} = 10^{-10} \text{ m} = 10^{-8} \text{ cm} = 10 \text{ nm}$
$1 \text{ nm} = 10^{-9} m$
$K = {}^{\circ}C + 273.15$