The group G is isomorphic to the group labelled by [8,2] in the Small Groups library. Ordinary character table of $G \cong C4 \times C2$:

	1a	4a	2a	4b	2b	4c	2c	4d
χ_1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	-1	-1	1	-1	1
χ_3	1	-1	1	-1	1	-1	1	-1
χ_4	1	1	1	1	-1	-1	-1	-1
χ_5	1	-E(4)	-1	E(4)	-1	E(4)	1	-E(4)
χ_6	1	E(4)	-1	-E(4)	-1	-E(4)	1	E(4)
χ_7	1	-E(4)	-1	E(4)	1	-E(4)	-1	E(4)
χ_8	1	E(4)	-1	-E(4)	1	E(4)	-1	-E(4)

Trivial source character table of $G \cong C4 \times C2$ at p = 2:

Thivial source character table of $G = C4 \times C2$ at $p = 2$.								
Normalisers N_i		N_2	N_3	N_4	N_5	N_6	N_7	N_8
p-subgroups of G up to conjugacy in G			P_3	P_4	P_5	P_6	P_7	P_8
Representatives $n_j \in N_i$		1a						
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$		0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$		4	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	4	0	4	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	0	0	4	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	2	2	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$			1	1	1	1	1	1

$$\begin{split} P_2 &= Group([(3,5)(4,6)]) \cong \text{C2} \\ P_3 &= Group([(1,2)]) \cong \text{C2} \\ P_4 &= Group([(1,2)(3,5)(4,6)]) \cong \text{C2} \\ P_5 &= Group([(3,5)(4,6),(3,4,5,6)]) \cong \text{C4} \\ P_6 &= Group([(3,5)(4,6),(1,2)]) \cong \text{C2} \times \text{C2} \\ P_7 &= Group([(3,5)(4,6),(1,2)(3,4,5,6)]) \cong \text{C4} \\ P_8 &= Group([(3,5)(4,6),(3,4,5,6),(1,2)]) \cong \text{C4} \times \text{C2} \end{split}$$

$$N_1 = Group([(1,2),(3,4,5,6)]) \cong C4 \times C2$$

 $N_2 = Group([(1,2),(3,4,5,6)]) \cong C4 \times C2$
 $N_3 = Group([(1,2),(3,4,5,6)]) \cong C4 \times C2$
 $N_4 = Group([(1,2),(3,4,5,6)]) \cong C4 \times C2$

 $P_1 = Group([()]) \cong 1$

$$N_5 = Group([(1,2),(3,4,5,6)]) \cong C4 \times C2$$

$$N_6 = Group([(1,2), (3,4,5,6)]) \cong C4 \times C2$$

 $N_7 = Group([(1,2), (3,4,5,6)]) \cong C4 \times C2$

$$N_8 = Group([(1,2),(3,4,5,6)]) \cong C4 \times C2$$