

DATABASE SYSTEMS COURSE 2021/2022

SESSION 9

SESSION 9

- RELATIONAL DATABASES BASICS
- TABLES RELATIONSHIP
- NORMALIZATION
- RELATIONAL DATABASE CASE 1
- RELATIONAL DATABASE CASE 2
- RELATIONAL DATABASES CONSTRAINTS

RELATIONAL DATABASES BASICS

Definition

- Cares the integrity of the data:
 - Completeness and consistency of the data
 - Safety of the data
- RDBMS manage constraints
 - All related table should have a primary key constraint.
 - All reference to other tables should be specified with a foreign key constraint.
- Any association between two entities is called relationship. There are three types of relationship:
 - One to One
 - One to Many or Many to One
 - Many to Many

SESSION 9

- RELATIONAL DATABASES BASICS
- TABLES RELATIONSHIP
- NORMALIZATION
- RELATIONAL DATABASE CASE 1
- RELATIONAL DATABASE CASE 2
- RELATIONAL DATABASES CONSTRAINTS

One to one

• Such a relationship exists when each record of one table is related to only one record of the other table.

One to Many/Many to One

• Such a relationship exists when each record of one table can be related to one or more than one record of the other table. This relationship is the most common relationship found.

One to Many/Many to One

 A many-to-many relationship can be seen as a two one-to-many relationship which is linked by a 'linking table' or 'associate table'.

One to Many/Many to One (linking table)

• We can have the 'Order' entity as a linking table which links the 'Customer' and 'Product' entity. We can break this many-to-many relationship in two one-to-many relationships.

SESSION 9

- RELATIONAL DATABASES BASICS
- TABLES RELATIONSHIP
- NORMALIZATION
- RELATIONAL DATABASE CASE 1
- RELATIONAL DATABASE CASE 2
- RELATIONAL DATABASES CONSTRAINTS

Definition

- Normalization is a process of organizing the data in database to avoid data redundancy.
- It helps to achieve the integrity of the data.
- There are four normal forms
 - First normal form (1NF)
 - Second normal form (2NF)
 - Third normal form (3NF)
 - Boyce & Codd normal form (BCNF)

First Normal Form (1NF)

- As per the rule of first normal form:
 - An attribute (column) of a table cannot hold multiple values. It should hold only atomic values.

mp_id	emp_name	emp_address	emp_mobile
101	Herschel	New Delhi	8912312390
102	Jon	Kanpur	8812121212 9900012222
103	Ron	Chennai	7778881212
104	Lester	Bangalore	9990000123 8123450987

emp_id	emp_name	emp_address	emp_mobile
101	Herschel	New Delhi	8912312390
102	Jon	Kanpur	8812121212
102	Jon	Kanpur	9900012222
103	Ron	Chennai	7778881212
104	Lester	Bangalore	9990000123
104	Lester	Bangalore	8123450987

Second Normal Form (2NF)

- A table is said to be in 2NF if both the following conditions hold:
 - Table is in 1NF (First normal form)
 - No non-prime attribute is dependent on the proper subset of any candidate key of table.

teacher_id	subject	teacher_age
111	Maths	38
111	Physics	38
222	Biology	38
333	Physics	40
333	Chemistry	40

Candidate Keys:

{teacher_id, subject}

teacher_id	teacher_age
111	38
222	38
333	40

teacher_id	subject
111	Maths
111	Physics
222	Biology
333	Physics
333	Chemistry

Third Normal Form (3NF)

- A table design is said to be in 3NF if both the following conditions hold:
 - Table must be in 2NF
 - Transitive functional dependency of non-prime attribute on any super key should be removed.

Project	ProjetTitle	Manager	Telf
132N4	Manual Star	Garrison	2756
132N6	ISO Procs	Jacanda	2954
132N7	Web Page	Friedman	2846
132P4	Emp. Manual	Jones	3102
132T6	Star Prot.	Garrison	2756
431Y7	New Cat.	Jones	3102
313M6	Star Price	Vance	3022
323H6	System Ord	Jacanda	2954

Project	ProjetTitle	Manager
132N4	Manual Star	Garrison
132N6	ISO Procs	Jacanda
132N7	Web Page	Friedman
132P4	Emp. Manual	Jones
132T6	Star Prot.	Garrison
431Y7	New Cat.	Jones
313M6	Star Price	Vance
323H6	System Ord	Jacanda

Telf
2756
2954
2846
3102
3022

Boyce Codd Normal Form (BCNF)

• BCNF is stricter than 3NF. A table complies with BCNF if it is in 3NF and for every functional dependency X->Y, X should be the super key of the table.

emp_id	emp_country	emp_dept	dept_type	dept_no_of_emp
1001	Austrian	Production and planning	D001	200
1001	Austrian	stores	D001	250
1002	American	design and technical support	D134	100
1002	American	Purchasing department	D134	600

Boyce Codd Normal Form (BCNF)

SESSION 9

- RELATIONAL DATABASES BASICS
- TABLES RELATIONSHIP
- NORMALIZATION
- RELATIONAL DATABASE CASE 1
- RELATIONAL DATABASE CASE 2
- RELATIONAL DATABASES CONSTRAINTS

- An International Brand wants to build a Relational Model for its **sales**.
- The Brand owns several **shops** which are the only way to sell by the moment.
- They want to register all the **employees** and their hiring dates.
- They want to register all the **sales** done in each **shop** and also they want record the **seller** of each sale.
- They also want to register all the offered **products** and the **suppliers** that supply each product.

• Structure the data into entities

Shop	Supplier	Product	Employee	Sale
ShopName	SupplierName	ProductName	EmployeeName	ProductName
Address	DocumentID	ProductType	EmployeeLastName	EmployeeName
Telephone	Telephone	Unit	HiringDate	EmployeeLastName
Homepage	Address	Price	DocumentID	ShopName
OpenningDate		SupplierName		Date
				Quantity

• Primary Key: For each Table, stablish the column(s) that will identify one record

Shop	Supplier	Product	Employee	Sale
ShopID	SupplierID	ProductID	EmployeeID	SaleID
ShopName	SupplierName	ProductName	EmployeeName	ProductName
Address	DocumentID	ProductType	EmployeeLastName	EmployeeName
Telephone	Telephone	Unit	HiringDate	EmployeeLastName
Homepage	Address	Price	DocumentID	ShopName
OpenningDate		SupplierName		Date
				Quantity

• Foreign Key: For each Table, stablish the column(s) that can be reference for a Primary key from another tables

Shop	Supplier	Product	Employee	Sale
ShopID	SupplierID	ProductID	EmployeeID	SaleID
ShopName	SupplierName	ProductName	EmployeeName	ProductID
Address	DocumentID	ProductType	EmployeeLastName	EmployeeID
Telephone	Telephone	Unit	HiringDate	ShopID
Homepage	Address	Price	DocumentID	Date
OpenningDate		SupplierID		Quantity

• Establish the relations. (1-N)

SESSION 9

- RELATIONAL DATABASES BASICS
- TABLES RELATIONSHIP
- NORMALIZATION
- RELATIONAL DATABASE CASE 1
- RELATIONAL DATABASE CASE 2
- RELATIONAL DATABASES CONSTRAINTS

SESSION 9

- RELATIONAL DATABASES BASICS
- TABLES RELATIONSHIP
- NORMALIZATION
- RELATIONAL DATABASE CASE 1
- RELATIONAL DATABASE CASE 2
- RELATIONAL DATABASES CONSTRAINTS

ALTER TABLE - PRIMARY KEY Syntax

MySQL/Oracle

ALTER TABLE table **ADD CONSTRAINT** ContraintName **PRIMARY KEY** (PKField1, PKField2,...)

MySQL/Oracle

ALTER TABLE table ADD PRIMARY KEY (PKField1, PKField2,...)

ALTER TABLE - PRIMARY KEY Example

MySQL/Oracle SELECT * FROM moviesmall;

\$ ID ₹	NAME			⊕ RANK	
10920	Aliens		1986	8.2	
17173	Animal	House	1978	7.5	

MySQL/Oracle

INSERT INTO moviesmall VALUES (10920, 'Aliens',1990,7.6);
ROLLBACK;

∯ ID	♦ NAME	∜ YEAR	∯ RANK
10920	Aliens	1986	8.2
10920	Aliens	1990	7.6

MySQL/Oracle

ALTER TABLE moviesmall ADD CONSTRAINT pk moviesmall PRIMARY KEY (ID);

MySQL/Oracle

INSERT INTO moviesmall VALUES (10920, 'Aliens',1990,7.6);

INSERT INTO moviesmall VALUES (10920, 'Aliens',1990,7.6)
Informe de error -

ORA-00001: restricción única (PAVEL.PK_MOVIESMALL) violada

CREATE TABLE - PRIMARY KEY Syntax

Oracle

CREATE TABLE table (PkField1 DataType CONSTRAINT ContraintName PRIMARY KEY,

Field2 DataType, Field3 DataType);

MySQL/Oracle

CREATE TABLE table (PkField1 DataType **PRIMARY KEY**, Field2 DataType, Field3 DataType);

MySQL/Oracle

CREATE TABLE table (PkField1 DataType, Field2 DataType, Field3 DataType, PRIMARY KEY (PkField1));

MySQL/Oracle

CREATE TABLE table (PkField1 DataType, Field2 DataType, Field3 DataType, CONSTRAINT ContraintName PRIMARY KEY (PkField1));

CREATE TABLE - PRIMARY KEY Example

```
CREATE TABLE car (
make VARCHAR(50),
model VARCHAR(100),
category VARCHAR(100),
year INTEGER,
CONSTRAINT pk_car PRIMARY
KEY (make, model));
```

Oracle -

```
CREATE TABLE car (
make VARCHAR2(50),
model VARCHAR2(100),
category VARCHAR2(100),
year NUMBER,
CONSTRAINT pk_car PRIMARY
KEY (make, model));
```


CREATE TABLE - PRIMARY KEY Example

MySQL/Oracle

INSERT INTO car VALUES ('Fiat', '124 Spider', 'Convertible', 2019);

MAKE	∯ MC	DDEL	♦ CATEGORY	∜ YEAR
Fiat	124	Spider	Convertible	2019

MySQL/Oracle

INSERT INTO car VALUES ('Fiat', '124 Spider', 'Convertible', 2020);

```
INSERT INTO car VALUES ('Fiat','124 Spider','Convertible',2020)
Informe de error -
ORA-00001: restricción única (PAVEL.PK_CAR) violada
```


ALTER TABLE - FOREIGN KEY Syntax

MySQL/Oracle

ALTER TABLE table

ADD FOREIGN KEY (FKField) REFERENCES RefTable (RefField)

MySQL/Oracle

ALTER TABLE table

ADD CONSTRAINT ConstraintName

FOREIGN KEY (FKField) REFERENCES refTable (RefField)

ALTER TABLE - FOREIGN KEY Example

MySQL **CREATE TABLE** car (make **VARCHAR** (50), model VARCHAR (100), idcategory INTEGER, year **INTEGER**, **CONSTRAINT** pk car **PRIMARY KEY** (make, model)); **CREATE TABLE** category (id **INTEGER**, description VARCHAR (100), CONSTRAINT pk category PRIMARY KEY (id));

Oracle

```
CREATE TABLE car (
make VARCHAR2(50),
model VARCHAR2(100),
idcategory NUMBER,
year NUMBER,
CONSTRAINT pk_car PRIMARY KEY
(make, model));

CREATE TABLE category (
id NUMBER,
description VARCHAR2(100),
CONSTRAINT pk_category PRIMARY KEY (id));
```


ALTER TABLE - FOREIGN KEY Example

```
INSERT INTO category VALUES (1,'Convertible')
INSERT INTO category VALUES (2,'Pickup')

INSERT INTO car VALUES ('Fiat','124 Spider',1,2019);
INSERT INTO car VALUES ('Ram','1500 Classic Crew Cab',2,2019);
INSERT INTO car VALUES ('BMW','1 Series',3,2008);
```


Category

∯ MAKE	MODEL		∜ YEAR
Fiat	124 Spider	1	2019
Ram	1500 Classic Crew Cab	2	2019
BMW	1 Series	3	2008

Car

ALTER TABLE - FOREIGN KEY Example

MySQL/Oracle

ALTER TABLE car ADD CONSTRAINT fk idcategory

FOREIGN KEY (idcategory) REFERENCES category(id);

```
ALTER TABLE car

ADD CONSTRAINT fk_idcategory

FOREIGN KEY (idcategory) REFERENCES category(id)

Informe de error -

ORA-02298: no se puede validar (PAVEL.FK_IDCATEGORY) - claves principales no encontradas

02298. 00000 - "cannot validate (%s.%s) - parent keys not found"

*Cause: an alter table validating constraint failed because the table has child records.

*Action: Obvious
```

MySQL/Oracle

ROLLBACK;

ALTER TABLE - FOREIGN KEY Example

```
MySQL/Oracle

ALTER TABLE car ADD CONSTRAINT fk_idcategory

FOREIGN KEY (idcategory) REFERENCES category(id);
```

MySQL/Oracle

```
INSERT INTO category VALUES (1,'Convertible')
INSERT INTO category VALUES (2,'Pickup')

INSERT INTO car VALUES ('Fiat','124 Spider',1,2019);
INSERT INTO car VALUES ('Ram','1500 Classic Crew Cab',2,2019);
```

Category

Car

MAKE			∜ YEAR
Fiat	124 Spider	1	2019
Ram	1500 Classic Crew Cab	2	2019

ALTER TABLE - FOREIGN KEY Example

	∯ ID	
Category	1	Convertible
	2	Pickup

	♦ MAKE			∜ YEAR
Car	Fiat	124 Spider	1	2019
	Ram	1500 Classic Crew Cab	2	2019

MySQL/Oracle

INSERT INTO car VALUES ('BMW','1 Series',3,2008);

```
INSERT INTO car VALUES ('BMW','1 Series',3,2008)
Informe de error -
ORA-02291: restricción de integridad (PAVEL.FK_IDCATEGORY) violada - clave principal no encontrada
```


CREATE TABLE - FOREIGN KEY Syntax

Oracle

CREATE TABLE table (Field1 DataType PRIMARY KEY, Field2 DataType CONSTRAINT ConstraintName REFERENCES RefTable(RefField), Field3 DataType)

MySQL/Oracle

```
CREATE TABLE table (Field1 DataType PRIMARY KEY, Field2 DataType, ...,
FOREIGN KEY (Field2) REFERENCES RefTable(RefField))
```

MySQL/Oracle

```
CREATE TABLE table (Field1 DataType, Field2 DataType, ...,

CONSTRAINT Constraint1Name PRIMARY KEY (Field1),

CONSTRAINT Constraint2Name FOREIGN KEY (Field2) REFERENCES RefTable(RefField ))
```


CREATE TABLE - FOREIGN KEY Example

MySQL

```
CREATE TABLE mom (id INTEGER,
name VARCHAR(30),
CONSTRAINT pk_mom PRIMARY KEY (id));

CREATE TABLE child (id INTEGER,
momid INTEGER,
name VARCHAR(30),
CONSTRAINT pk_child PRIMARY KEY (id),
CONSTRAINT fk_mom FOREIGN KEY (momid)
REFERENCES mom(id));
```

Oracle

```
CREATE TABLE mom (id NUMBER,
name VARCHAR2(30),
CONSTRAINT pk_mom PRIMARY KEY (id));

CREATE TABLE child (id NUMBER,
momid NUMBER,
name VARCHAR2(30),
CONSTRAINT pk_child PRIMARY KEY (id),
CONSTRAINT fk_mom FOREIGN KEY (momid)
REFERENCES mom (id) );
```


CREATE TABLE - FOREIGN KEY Example

```
INSERT INTO mom VALUES (1, 'Adele');
INSERT INTO mom VALUES (2, 'Amy');
INSERT INTO child VALUES (1,1,'George');
INSERT INTO child VALUES (2,1,'Bruce');
INSERT INTO child VALUES (3,2,'Bob');
```


Child

∯ ID	⊕ MOMID	♦ NAME
1	1	George
2	1	Bruce
3	2	Bob

MySQL/Oracle

INSERT INTO child VALUES (4,3,'John');

INSERT INTO child VALUES (4,3,'John')
Informe de error ORA-02291: restricción de integridad (PAVEL.FK_MOM) violada - clave principal no encontrada

ACTIVATE/DEACTIVATE CONSTRAINTS

```
MySQL - Unique KEYS

SET unique_checks=0;
SET unique_checks=1;

SET foreign_key_checks=0;
SET foreign_key_checks=1;
```

Oracle

```
ALTER TABLE table
DISABLE CONSTRAINT ConstraintName;

ALTER TABLE table
ENABLE CONSTRAINT ConstraintName;
```


DROP PRIMARY KEY CONSTRAINT Syntax

MySQL/Oracle —

ALTER TABLE table

DROP PRIMARY KEY

Oracle -

ALTER TABLE table **DROP CONSTRAINT** ConstraintName

DROP FOREIGN KEY CONSTRAINT Syntax

MySQL

ALTER TABLE table

DROP FOREIGN KEY ConstraintName

Oracle

ALTER TABLE table **DROP CONSTRAINT** ConstraintName