1 Section 5.4 Exercises

Exercises with solutions from Section 5.4 of [UA].

Exercise 5.4.1. Sketch a graph of (1/2)h(2x) on [-2,3]. Give a qualitative description of the functions

$$h_n(x) = \frac{1}{2^n} h(2^n x)$$

as n gets larger.

Solution. See Figure 1 for the sketch. Each h_n is a periodic "sawtooth" function; as n gets larger,

Figure 1: (1/2)h(2x)

the "teeth" get more densely packed and the peaks get lower.

Exercise 5.4.2. Fix $x \in \mathbf{R}$. Argue that the series

$$\sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$$

converges and thus g(x) is properly defined.

Solution. Note that for each $n \in \mathbb{N}$ we have $0 \le 2^{-n}h(2^nx) \le 2^{-n}$ since $0 \le h(x) \le 1$. As the series $\sum_{n=0}^{\infty} 2^{-n}$ is convergent (Example 2.7.5), the series $\sum_{n=0}^{\infty} 2^{-n}h(2^nx)$ is also convergent by the Comparison Test (Theorem 2.7.4).

Exercise 5.4.3. Taking the continuity of h(x) as given, reference the proper theorems from Chapter 4 that imply that the *finite* sum

$$g_m(x) = \sum_{n=0}^{m} \frac{1}{2^n} h(2^n x)$$

is continuous on \mathbf{R} .

Solution. The continuity of g_m follows from Theorem 4.3.4 and Theorem 4.3.9.

Exercise 5.4.4. As the graph of Figure 5.7 suggests, the structure of g(x) is quite intricate. Answer the following questions, assuming that g(x) is indeed continuous.

- (a) How do we know g attains a maximum value M on [0,2]? What is this value?
- (b) Let D be the set of points in [0,2] where g attains its maximum. That is $D = \{x \in [0,2] : g(x) = M\}$. Find one point in D.
- (c) Is D finite, countable, or uncountable?

Solution. (a) Since g is continuous on the compact set [0,2], we know it attains a maximum here by the Extreme Value Theorem (Theorem 4.4.2). To find this maximum value M, for each non-negative integer n let $f_n(x) = 2^{-2n}h(2^{2n}x) + 2^{-2n-1}h(2^{2n+1}x)$, so that

$$f_0(x) = h(x) + \frac{1}{2}h(2x), \quad f_1(x) = \frac{1}{4}h(4x) + \frac{1}{8}h(8x), \quad \text{etc.}$$

Thus

$$g(x) = h(x) + \frac{1}{2}h(2x) + \frac{1}{4}h(4x) + \frac{1}{8}h(8x) + \dots = f_0(x) + f_1(x) + \dots$$

(For any given x, such a regrouping of terms is justified since we showed in Exercise 5.4.2 that the series defining g(x) is convergent; see Exercise 2.5.3.)

See Figure 2a for a graph of f_0 on [0,2] and note that $f_0(x) = 1$ on the interval $\left[\frac{1}{2}, \frac{3}{2}\right]$. Furthermore, observe that $f_1(x) = \frac{1}{4}f_0(4x)$, so that on the interval [0,2] the function f_1 is given by four copies of f_0 scaled by a factor of $\frac{1}{4}$. The interval $\left[\frac{1}{2}, \frac{3}{2}\right]$, where f_0 is constant, contains two of the intervals of length $\frac{1}{4}$ where f_1 is also constant; see Figure 2b. On these intervals, we then have $f_0(x) + f_1(x) = 1 + \frac{1}{4}$. Similarly, f_2 is given by $f_2(x) = \frac{1}{16}f_0(16x)$. Furthermore, there are further subintervals of the previous subintervals where f_2 is also constant and thus, on these subintervals, we have $f_0(x) + f_1(x) + f_2(x) = 1 + \frac{1}{4} + \frac{1}{16}$; see Figure 2c.

We can continue arguing in this manner to see that $M \ge 1 + \frac{1}{4} + \frac{1}{16} + \cdots = \frac{4}{3}$. On the other hand, since each f_n satisfies $f_n(x) \le 4^{-n}$ on [0,2], we have

$$g(x) = f_0(x) + f_1(x) + f_2(x) + \dots \le 1 + \frac{1}{4} + \frac{1}{16} + \dots = \frac{4}{3}.$$

We may conclude that $M = \frac{4}{3}$.

(b) Let us show that for every non-negative integer n, we have $h\left(\frac{2^{n+1}}{3}\right) = \frac{2}{3}$. The base case n = 0 is clear. Suppose that the result is true for some n. Observe that

$$h\left(\frac{2^{n+2}}{3}\right) = h\left(\frac{2^{n+2}}{3} - 2^{n+1}\right) = h\left(\frac{2^{n+1}(2-3)}{3}\right) = h\left(-\frac{2^{n+1}}{3}\right) = h\left(\frac{2^{n+1}}{3}\right) = \frac{2}{3},$$

(a) $f_0(x)$ on [0,2]

(b) $f_0(x) + f_1(x)$ on [0, 2]

(c) $f_0(x) + f_1(x) + f_2(x)$ on [0, 2]

Figure 2: Function graphs for Exercise 5.4.4

where we have used our induction hypothesis and the fact that h is an even 2-periodic function. It follows by induction that $h\left(\frac{2^{n+1}}{3}\right) = \frac{2}{3}$ for all non-negative integers n.

Now observe that

$$g\left(\frac{2}{3}\right) = \sum_{n=0}^{\infty} \frac{1}{2^n} h\left(\frac{2^{n+1}}{3}\right) = \frac{2}{3} \sum_{n=0}^{\infty} \frac{1}{2^n} = \frac{4}{3} = M.$$

Thus $\frac{2}{3} \in D$.

(c) We will show that D is uncountable. In fact, we will prove a stronger statement: D is in bijection with \mathbf{R} . To do this, we will inject a space of binary sequences into D; after appealing to results we proved in Section 1.5 and Section 1.6, this will allow us to conclude the desired result.

First, suppose that $b: \{0, 1, 2, \ldots\} \to \{0, 1\}$ satisfies b(0) = 0. We claim that

$$x_b := \sum_{k=0}^{\infty} \frac{(-1)^{b(k)}}{4^k} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{b(k)}}{4^k}$$

belongs to D, i.e. satisfies $x_b \in [0,2]$ and $g(x_b) = M = \frac{4}{3}$. (For the intuition here, see Figure 3. The choice of b(0) = 0 guarantees that $x_b \in [0,2]$; a choice of b(0) = 1 would give us $x_b \in [-2,0]$.) To see this, observe that

$$x_b \le \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{4}{3}$$
 and $x_b \ge 1 - \sum_{k=1}^{\infty} \frac{1}{4^k} = \frac{2}{3}$

and thus $x_b \in [0,2]$. Now let us express g as

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{4^n} f_0(4^n x).$$

(See part (a) for the definition of f_0 and the justification for this expression; also see Figure 2a for a graph of f_0 on the interval [0,2].) Suppose that K is a non-negative integer and $n \ge K + 1$. Observe that

$$4^{n}\left(1+\frac{(-1)^{b(1)}}{4}+\cdots+\frac{(-1)^{b(K)}}{4^{K}}\right)$$

is an even integer and thus by the 2-periodicity of f_0 we have

$$f_0\left(4^n\left(1+\frac{(-1)^{b(1)}}{4}+\cdots+\frac{(-1)^{b(K)}}{4^K}\right)\right)=f_0(0)=0.$$

Figure 3: g on [-2, 2]

Furthermore, observe that

$$4^{K} \left(1 + \frac{(-1)^{b(1)}}{4} + \dots + \frac{(-1)^{b(K)}}{4^{K}} \right)$$

is an odd integer and thus by the 2-periodicity of f_0 we have

$$f_0\left(4^K\left(1+\frac{(-1)^{b(1)}}{4}+\cdots+\frac{(-1)^{b(K)}}{4^K}\right)\right)=f_0(1)=1.$$

Now, if $K \ge 1$, suppose that $0 \le n \le K - 1$. Then

$$4^{n} \left(1 + \frac{(-1)^{b(1)}}{4} + \dots + \frac{(-1)^{b(K)}}{4^{K}} \right)$$

$$= \underbrace{4^{n} + (-1)^{b(1)} 4^{n-1} + \dots + (-1)^{b(n)}}_{\text{odd integer}} + \frac{(-1)^{b(n+1)}}{4} + \dots + \frac{(-1)^{b(k)}}{4^{K-n}}.$$

It follows from the 2-periodicity of f_0 that

$$f_0\left(4^n\left(1+\frac{(-1)^{b(1)}}{4}+\cdots+\frac{(-1)^{b(K)}}{4^K}\right)\right)=f_0\left(1+\frac{(-1)^{b(n+1)}}{4}+\cdots+\frac{(-1)^{b(k)}}{4^{K-n}}\right).$$

Note that

$$\frac{2}{3} = 1 - \sum_{k=0}^{\infty} \frac{1}{4^k} \le 1 + \frac{(-1)^{b(n+1)}}{4} + \dots + \frac{(-1)^{b(k)}}{4^{K-n}} \le \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{4}{3}.$$

Since $f_0(x) = 1$ on the interval $\left[\frac{2}{3}, \frac{4}{3}\right]$, we see that

$$f_0\left(1 + \frac{(-1)^{b(n+1)}}{4} + \dots + \frac{(-1)^{b(k)}}{4^{K-n}}\right) = 1.$$

To summarize our findings, for each non-negative integer K we have

$$f_0\left(4^n \sum_{k=0}^K \frac{(-1)^{b(k)}}{4^k}\right) = \begin{cases} 1 & \text{if } 0 \le n \le K, \\ 0 & \text{if } n > K. \end{cases}$$
 (1)

We can now show that $g(x_b) = \frac{4}{3}$:

$$g(x_b) = g\left(\lim_{K \to \infty} \sum_{k=0}^{K} \frac{(-1)^{b(k)}}{4^k}\right)$$

$$= \lim_{K \to \infty} g\left(\sum_{k=0}^{K} \frac{(-1)^{b(k)}}{4^k}\right) \qquad \text{(since } g \text{ is continuous)}$$

$$= \lim_{K \to \infty} \sum_{n=0}^{\infty} \frac{1}{4^n} f_0\left(4^n \sum_{k=0}^{K} \frac{(-1)^{b(k)}}{4^k}\right)$$

$$= \lim_{K \to \infty} \sum_{n=0}^{K} \frac{1}{4^n}$$

$$= \sum_{n=0}^{\infty} \frac{1}{4^n}$$

$$= \frac{4}{3}.$$

If we let B be the following space of binary sequences

$$B := \{b : \{0, 1, 2, \ldots\} \to \{0, 1\} \text{ such that } b(0) = 0\},\$$

and define a function $\Psi: B \to D$ by $\Psi(b) = x_b$, we have now shown that Ψ is well-defined and maps into D. Our next claim is that Ψ is injective. To see this, suppose that $a, b \in B$ and $a \neq b$. Let

$$K:=\min\{k\geq 0: a(k)\neq b(k)\};$$

without loss of generality, we may assume that a(K) = 1 and b(K) = 0. Thus

$$x_a = 1 + \frac{(-1)^{a(1)}}{4} + \frac{(-1)^{a(2)}}{16} + \dots - \frac{1}{4^K} + \frac{(-1)^{a(K+1)}}{4^{K+1}} + \dots,$$

$$x_b = 1 + \frac{(-1)^{a(1)}}{4} + \frac{(-1)^{a(2)}}{16} + \dots + \frac{1}{4^K} + \frac{(-1)^{b(K+1)}}{4^{K+1}} + \dots.$$

It follows that

$$x_b - x_a = \frac{2}{4^K} + \frac{(-1)^{b(K+1)} - (-1)^{a(K+1)}}{4^{K+1}} + \frac{(-1)^{b(K+2)} - (-1)^{a(K+2)}}{4^{K+2}} + \cdots$$

and hence that

$$4^{-K}(x_b - x_a) - 2 = \frac{(-1)^{b(K+1)} - (-1)^{a(K+1)}}{4} + \frac{(-1)^{b(K+2)} - (-1)^{a(K+2)}}{16} + \cdots$$

$$\geq -2\left(\frac{1}{4} + \frac{1}{16} + \cdots\right)$$

$$= -\frac{2}{3}.$$

Thus $4^{-K}(x_b - x_a) \ge \frac{4}{3} > 0$, which implies that $x_b > x_a$ and hence Ψ is injective.

It is straightforward to show that the map $B \to P(\mathbf{N})$, where $P(\mathbf{N})$ is the power set of \mathbf{N} , given by

$$b \mapsto \{n \in \mathbf{N} : b(n) = 1\}$$

has an inverse given by

$$A \subseteq \mathbf{N} \mapsto \left(n \mapsto \begin{cases} 1 & \text{if } n \in A, \\ 0 & \text{if } n \notin A, \end{cases} \right)$$

so that B is in bijection with $P(\mathbf{N})$. As we showed in Exercise 1.6.9, $P(\mathbf{N})$ is in bijection with \mathbf{R} . The inclusion $D \hookrightarrow \mathbf{R}$ thus provides us with an injection $D \to B$. The Schröder-Bernstein Theorem (see Exercise 1.5.11) allows us to conclude that D is in bijection with \mathbf{R} and hence is uncountable.

Exercise 5.4.5. Show that

$$\frac{g(x_m) - g(0)}{x_m - 0} = m + 1,$$

and use this to prove that g'(0) does not exist.

Solution. For any $m \in \{0, 1, 2, \ldots\}$, we have

$$h(2^{n-m}) = \begin{cases} 2^{n-m} & \text{if } 0 \le n \le m, \\ 0 & \text{if } n > m. \end{cases}$$

(In the $0 \le n \le m$ case we have $0 < 2^{n-m} \le 1$ and in the n > m case we have that 2^{n-m} is an even integer; the 2-periodicity of h then implies that $h(2^{n-m}) = h(0) = 0$.) Thus

$$g(x_m) = \sum_{n=0}^{\infty} \frac{1}{2^n} h(2^{n-m}) = \sum_{n=0}^{m} \frac{1}{2^m} = \frac{m+1}{2^m},$$

which gives us

$$\frac{g(x_m) - g(0)}{x_m} = 2^m g(x_m) = m + 1.$$

Since $\lim_{m\to\infty} x_m = 0$ and

$$\lim_{m \to \infty} \frac{g(x_m)}{x_m} = \lim_{m \to \infty} m + 1 = +\infty,$$

it follows that the limit $\lim_{x\to 0} \frac{g(x)}{x}$ does not exist, i.e. g'(0) does not exist.

Exercise 5.4.6. (a) Modify the previous argument to show that g'(1) does not exist. Show that g'(1/2) does not exist.

(b) Show that g'(x) does not exist for any rational number of the form $x = p/2^k$ where $p \in \mathbf{Z}$ and $k \in \mathbf{N} \cup \{0\}$.

Solution. (a) These are both special cases of the result in part (b); for the sake of brevity, we omit these proofs.

(b) Let (x_m) be the sequence defined by $x_m = x + 2^{-m} = p2^{-k} + 2^{-m}$. Since we are interested in the limiting behaviour as $m \to \infty$, we may assume that m > k. Suppose $n \in \{0, 1, 2, ...\}$ is such that n > m > k. Then $p2^{n-k} + 2^{n-m}$ is an even integer and thus by the 2-periodicity of h we have

$$h(2^n x_m) = h(p2^{n-k} + 2^{n-m}) = h(0) = 0.$$

Now suppose that $k < n \le m$. Then $p2^{n-k}$ is an even integer and $0 < 2^{n-m} \le 1$, so

$$h(2^n x_m) = h(p2^{n-k} + 2^{n-m}) = h(2^{n-m}) = 2^{n-m}.$$

Finally, suppose that $0 \le n \le k < m$. Using Euclidean division, we can find integers q and r such that

$$p2^{n-k} = q + r2^{n-k}$$
 and $0 \le r2^{n-k} \le \frac{1}{2}$.

Suppose q is even. Note that $0 < 2^{n-m} \le \frac{1}{2}$, so that $0 < r2^{n-k} + 2^{n-m} \le 1$. It follows that

$$h(2^{n}x_{m}) = h(p2^{n-k} + 2^{n-m}) = h(q + r2^{n-k} + 2^{n-m})$$
$$= h(r2^{n-k} + 2^{n-m}) = r2^{n-k} + 2^{n-m} = h(p2^{n-k}) + 2^{n-m} = h(2^{n}x) + 2^{n-m}.$$

Now suppose q is odd. Then $-1 < -1 + r2^{n-k} + 2^{n-m} \le 0$, so

$$h(2^{n}x_{m}) = h(p2^{n-k} + 2^{n-m}) = h(q + r2^{n-k} + 2^{n-m})$$

= $h(-1 + r2^{n-k} + 2^{n-m}) = 1 - r2^{n-k} - 2^{n-m} = h(p2^{n-k}) - 2^{n-m} = h(2^{n}x) - 2^{n-m}.$

In either case, we have

$$h(2^n x_m) = h(2^n x) \pm 2^{n-m},$$

with the sign depending on the integer p (the sign will not be important in what follows). To summarize:

$$h(2^{n}x_{m}) = \begin{cases} h(2^{n}x) \pm 2^{n-m} & \text{if } 0 \le n \le k < m, \\ 2^{n-m} & \text{if } k < n \le m, \\ 0 & \text{if } n > m > k. \end{cases}$$

Notice that

$$g(x) = g(p2^{-k})$$

$$= h(p2^{-k}) + 2^{-1}h(p2^{1-k}) + \dots + 2^{-k}h(p) + 2^{-k-1}h(2p) + 2^{-k-2}h(2^{2}p) + \dots$$

$$= h(p2^{-k}) + 2^{-1}h(p2^{1-k}) + \dots + 2^{-k}h(p)$$

$$= \sum_{n=0}^{k} 2^{-n}h(p2^{n-k})$$

$$= \sum_{n=0}^{k} 2^{-n}h(2^{n}x).$$

It follows that

$$g(x_m) = \sum_{n=0}^{\infty} 2^{-n} h(2^n x_m) = \sum_{n=0}^{k} 2^{-n} h(2^n x) \pm 2^{-m} + \sum_{n=k+1}^{m} 2^{-m}$$
$$= g(x) + (k+1)(\pm 2^{-m}) + (m-k)(2^{-m}).$$

Thus

$$\frac{g(x_m) - g(x)}{x_m - x} = (k+1)(\pm 1) + m - k = m + K,$$

where $K = (k+1)(\pm 1) - k$ is some integer which depends only on x. Since $\lim_{m\to\infty} x_m = x$ and

$$\lim_{m \to \infty} \frac{g(x_m) - g(x)}{x_m - x} = \lim_{m \to \infty} m + K = +\infty,$$

it follows that the limit $\lim_{t\to x} \frac{g(t)-g(x)}{t-x}$ does not exist, i.e. g'(x) does not exist.

Exercise 5.4.7. (a) First prove the following general lemma: Let f be defined on an open interval J and assume f is differentiable at $a \in J$. If (a_n) and (b_n) are sequences satisfying $a_n < a < b_n$ and $\lim a_n = \lim b_n = a$, show

$$f'(a) = \lim_{n \to \infty} \frac{f(b_n) - f(a_n)}{b_n - a_n}.$$

(b) Now use this lemma to show that g'(x) does not exist.

Solution. (a) Let us first prove an auxiliary result. Suppose $(x_n), (y_n)$, and (λ_n) are sequences such that $\lim x_n = \lim y_n = x$ and $|\lambda_n| \leq B$ for all $n \in \mathbb{N}$ and some $B \geq 0$. We claim that $\lim (\lambda_n x_n + (1 - \lambda_n) y_n) = x$. To see this, observe that

$$|\lambda_n x_n + (1 - \lambda_n) y_n - x| = |\lambda_n (x_n - x) + (1 - \lambda_n) (y_n - x)|$$

$$\leq |\lambda_n| |x_n - x| + |1 - \lambda_n| |y_n - x|$$

$$\leq (1 + B) (|x_n - x| + |y_n - x|).$$

Since $(1+B)(|x_n-x|+|y_n-x|)\to 0$, the Squeeze Theorem proves our claim.

Returning to the exercise, Theorem 4.2.3 implies that

$$\lim_{n \to \infty} \frac{f(a_n) - f(a)}{a_n - a} = \lim_{n \to \infty} \frac{f(b_n) - f(a)}{b_n - a} = f'(a).$$

Note that for each $n \in \mathbb{N}$ we have

$$1 - \frac{a_n - a}{a_n - b_n} = \frac{b_n - a}{b_n - a_n} \quad \text{and} \quad \left| \frac{a_n - a}{a_n - b_n} \right| < 1.$$

Furthermore,

$$\frac{f(b_n) - f(a_n)}{b_n - a_n} = \frac{a_n - a}{a_n - b_n} \frac{f(a_n) - f(a)}{a_n - a} + \frac{b_n - a}{b_n - a_n} \frac{f(b_n) - f(a)}{b_n - a}$$

for each $n \in \mathbb{N}$. It follows from our auxiliary result, taking

$$x_n = \frac{f(a_n) - f(a)}{a_n - a}, \quad y_n = \frac{f(b_n) - f(a)}{b_n - a}, \quad \text{and} \quad \lambda_n = \frac{a_n - a}{a_n - b_n},$$

that

$$f'(a) = \lim_{n \to \infty} \frac{f(b_n) - f(a_n)}{b_n - a_n}.$$

(b) Recall that for each $n \in \{0, 1, 2, ...\}$, the function $h_n : \mathbf{R} \to \mathbf{R}$ is given by $h_n(x) = h(2^n x)$. Each h_n is a piecewise linear function which has corners, i.e. fails to be differentiable, at each dyadic rational $a2^{-n}$. Note that h_n is linear on each interval of the form $[a2^{-n}, (a+1)2^{-n}]$; in particular, h_n is differentiable on $(a2^{-n}, (a+1)2^{-n})$, with slope given by ± 1 . Recall also that for each $m \in \{0, 1, 2, ...\}$, the function $g_m : \mathbf{R} \to \mathbf{R}$ is defined as

$$g_m(x) = \sum_{n=0}^{m} 2^{-n} h_n(x) = \sum_{n=0}^{m} 2^{-n} h(2^n x).$$

Each g_m is a linear combination of piecewise linear functions and hence is itself a piecewise linear function. Consider two adjacent dyadic rationals $p2^{-m}$ and $(p+1)2^{-m}$. By our previous discussion, for each $0 \le n \le m$, the function h_n is linear on $[p2^{-m}, (p+1)2^{-m}]$ and hence differentiable on $(p2^{-m}, (p+1)2^{-m})$. It follows that g_m is linear on $[p2^{-m}, (p+1)2^{-m}]$ and hence differentiable on $(p2^{-m}, (p+1)2^{-m})$, with slope given by

$$g'_m(x) = \frac{g_m((p+1)2^{-m}) - g_m(p2^{-m})}{2^{-m}}$$

for $x \in (p2^{-m}, (p+1)2^{-m})$.

Let $x, (x_m)$, and (y_m) be defined as in the textbook. Given the previous discussion, for each $m \in \{0, 1, 2, \ldots\}$ we have

$$g'_m(x) = \frac{g_m(y_m) - g_m(x_m)}{y_m - x_m}.$$

In fact, since $h_n(x_m) = h_n(y_m) = 0$ for all n > m, we actually have $g(y_m) = g_m(y_m)$ and $g(x_m) = g_m(x_m)$, so that

$$\frac{g(y_m) - g(x_m)}{y_m - x_m} = \frac{g_m(y_m) - g_m(x_m)}{y_m - x_m} = g'_m(x).$$

Now observe that

$$g_{m+1}(t) - g_m(t) = 2^{-m-1}h_{m+1}(t).$$

As we noted earlier, each of the functions g_{m+1}, g_m , and h_{m+1} is differentiable at x since x is not a dyadic rational. It follows from the usual rules of differentiation that

$$|g'_{m+1}(x) - g'_m(x)| = |h'_{m+1}(x)| = |\pm 1| = 1.$$

This implies that the sequence $(g'_m(x))_{m=0}^{\infty}$ is not convergent, i.e. the sequence

$$\frac{g(y_m) - g(x_m)}{y_m - x_m}$$

does not converge. By the contrapositive of the result proved in part (a), we see that g is not differentiable at x.

Exercise 5.4.8. Review the argument for the nondifferentiability of g(x) at nondyadic points. Does the argument still work if we replace g(x) with the summation $\sum_{n=0}^{\infty} (1/2^n)h(3^nx)$? Does the argument work for the function $\sum_{n=0}^{\infty} (1/3^n)h(2^nx)$?

Solution. Let $g(x) = \sum_{n=0}^{\infty} 2^{-n}h(3^nx)$ and $g_m(x) = \sum_{n=0}^{m} 2^{-n}h(3^nx)$. The argument from Exercise 5.4.7 (b) should be repeated considering 3-adic rational numbers, i.e. rationals of the form $p3^{-k}$ for some $p \in \mathbf{Z}$ and $k \in \{0, 1, 2, \ldots\}$. The argument still works, with one small difference. If x is not a 3-adic rational number then similar reasoning shows that g_m is differentiable at x. The difference this time is that

$$|g'_{m+1}(x) - g'_m(x)| = \left(\frac{3}{2}\right)^{m+1}$$
.

Since this does not converge to zero, we see that the sequence $(g'_m(x))_{m=0}^{\infty}$ is not convergent and we may conclude that g'(x) does not exist.

Now let $g(x) = \sum_{n=0}^{\infty} 3^{-n} h(2^n x)$ and $g_m(x) = \sum_{n=0}^{m} 3^{-n} h(2^n x)$. We again consider dyadic rationals and arrive at

$$\left| g'_{m+1}(x) - g'_{m}(x) \right| = \left(\frac{2}{3}\right)^{m+1}$$

for an x which is not a dyadic rational number. Since this does converge to zero, our argument breaks down here. In fact, Theorem 6.4.3 implies that g is differentiable at every such x.

[UA] Abbott, S. (2015) Understanding Analysis. 2nd edition.