CE 6305 Computer Arithmetic Home Work 6

1. We have a module, M4, that performs the multiply and add function $m = a \times b + d$, for 4 bit quantities a, b, d, producing an 8 bit carry complete result. Show how to connect multiple M4 units to produce a 16 bit by 16 bit multiply and add unit.

Answer:

Answer

Consider the product of 2 degree 3 polynomials:

$$(ax^3 + bx^2 + cx + d) \times (px^3 + qx^2 + rx + s)$$

We get 7 terms in the result and they are stacked as follows:

3333333 444444442222222 55555555333333311111111 6666666444444442222222200000000 55555553333333311111111 444444442222222 33333333

There are 16 multipliers, each producing an 8 bit result. The diagram shows how the 16 results are shifted ready to be added. Each 8 bit result is denoted by the power of 2 of the shift that applies to that block (you don't have to draw it that way, it's just easy to remember).

- 2. A $gb \times gb$ bit multiplier can easily be constructed from $b \times b$ bit multiplier modules. In such designs, each $b \times b$ bit module outputs a 2b bit carry complete result. These results are called partial products in this setting.
 - (a) For this $gb \times gb$ bit multiplier, express the height of the remaining partial product matrix as a function of g.

Answer

The number of partial products is 2g - 1.

(b) Generalize the result of part (a) to a $gb \times hb$ multiplier built from $b \times b$ modules and give the solution for a $6b \times 4b$ multiplier.

Answer:

For a $gb \times hb$ multiplier, if g > h, the height is 2h partial products.

Let's consider an example, a $6b \times 4b$ multiplier.

We can understand the solution by expressing the two operands as polynomials of variable b and multiplying them:

$$(pb^{5} + qb^{4} + rb^{3} + sb^{2} + tb + v) \times (wb^{3} + xb^{2} + yb + z)$$

$$= p^{8}(pw) + p^{7}(px + qw) + p^{6}(py + qx + rw) + b^{5}(pz + qy + rx + sw)$$

$$+b^{4}(qz+ry+sx+tw)+b^{3}(rz+sy+tx+vw)+b^{2}(sz+ty+vx)+b(tz+vx)+vz$$

Clearly the four modules that compute the b^3 term and the four that compute the b^2 term overlap (since each of these modules has 2b outputs) to produce the worst case tree height of 8 modules.

Although there seems to be a contradiction between the answers for parts (a) and (b), there isn't. Consider the tree heights for the following multipliers:

g	h	height
4	1	2
4	2	4
4	3	6
4	4	7
4	5	8
4	6	8

3. Give conditions on the relative values of z and d so that overflow is avoided during integer division.

Answer:

Initially z has 2k bits and d has k bits. The quotient must fit into k bits. If $z = U \times 2^k + V$ where U and V are the two k-bit registers, d > U guarantees that the quotient occupies no more than k bits.

For example, if k = 4, $z = 0101\,0101$ and d = 0101 the result of the division is 0001 0000, remainder 0101. The quotient is too big to fit into 4 bits. If d = 0110, one larger than U, the result is 1110 remainder 0001.

- 4. Show how the division 0110110100÷10011 is performed (a 10 bit dividend is divided by a 5 bit divisor giving a 5 bit quotient and a 5 bit remainder). Represent the integers as binary fractions: 00.0110110100÷0.10011 and show all the steps.
 - (a) when the quotient digit set is $\{-1,1\}$ and $s^{(j)}\in[-d,d)$ as in Figure 1 in the notes on high radix division.

Answer:

z = 0.01000101, d = 0.10011						
\overline{z}	0 01101	10100				
d	0 10011					
-d	1 01101					
$s^{(0)}$	0 01101	10100				
$2s^{(0)}$	0 11011	01000	$\geq 0 \text{ so set } q_{-1} = 1$			
+(-d)	1 01101 0 01000		subtract			
		01000				
$2s^{(1)}$	0 10000	10000	> 0 so set $q_{-2} = 1$			
+(-d)	1 01101 1 11101		subtract			
s^2	1 11101	10000				
	1 11011	00000	$< 0 \text{ set } q_{-3} = -1$			
+(d)	0 10011 0 01110					
$s^{(3)}$	0 01110	00000				
$2s^{(3)}$	0 11100	00000	$> 0 \text{ set } q_{-4} = 1$			
+(-d)	1 01101 0 01001		subtract			
	0 01001	00000				
$2s^{(4)}$	0 10010	00000	> 0 so set $q_{-5} = 1$			
+(-d)	1 01101		subtract			
$s^{(5)}$	1 11111	00000	< 0 add back, reduce q by 1			
+(d)	0 10011 0 10010					
s	0 10010	00000	$rem = 18_{10}$			
q	0 11T10		BSD value			
q	0 10110		$q = 22_{10}$			

(b) when the quotient digit set is $\{-1,0,1\}$ and $s^{(j)}\in[-d,d)$ as in Figure 2 in the notes on high radix division.

Answer:

z = 0.01000101, d = 0.10011					
\overline{z}	0 01101	10100	$z \in [-1/2, 1/2)$, no normalization necessary		
d	0 10011		$d \in [1/2, 1)$, no normalization necessary		
	1 01101				
	0 01101	10100			
$2s^{(0)}$	0 11011	01000	$> d \sec q_{-1} = 1$		
+(-d)	1 01101 0 01000				
	0 01000	01000			
$2s^{(1)}$	0 10000	10000	$< d \text{ set } q_{-2} = 0$		
	0 10000				
$2s^{(2)}$	1 00001	00000	$> d \sec q_{-3} = 1$		
	1 01101 0 01110				
		00000			
$2s^{(3)}$	0 11100	00000	$> d \sec q_{-4} = 1$		
+(-d)	1 01101 0 01001				
	0 01001	00000			
$2s^{(4)}$	0 10010	00000	$< d \text{ so set } q_{-5} = 0$		
s	0 10010	00000	$rem = 18_{10}$		
q	0 10110		$q = 22_{10}$		

(c) when $d \in [1/2,1)$, the quotient digit set is $\{-1,0,1\}$ and $s^{(j)} \in [-1/2,1/2)$ as in Figure 3 in the notes on high radix division.

Answer:

Allswer	•	z = 0.01000101, d = 0.10011		
\overline{z}	0.01101	10100	$z \in [-1/2, 1/2)$, no normalization necessary	
d	0.10011		$d \in [1/2, 1)$, no normalization necessary	
-d	1.01101			
$s^{(0)}$	0.01101	10100		
$2s^{(0)}$	0.11011	01000	$> 0.5 \text{ set } q_{-1} = 1$	
+(-d)	1.01101 0.01000			
$s^{(1)}$	0.01000	01000		
$2s^{(1)}$	0.10000	10000	$> -0.5 \text{ set } q_{-2} = 1$	
$\frac{+(-d)}{s^{(2)}}$	1.01101			
$s^{(2)}$	1.11101	10000		
$2s^{(2)}$	1.11011	00000	$-0.5 < 2s^{(2)} < 0.5 \text{ set } q_{-3} = 0$	
$s^{(3)}$	1.11011	00000		
$2s^{(3)}$	1.10110	00000	$-0.5 < 2s^{(3)} < 0.5 \text{ set } q_{-4} = 0$	
$s^{(4)}$	1.10110	00000		
$2s^{(4)}$	1.01100	00000	$2s^{(4)} < -0.5 \text{ set } q_{-4} = -1$	
+d	0.10011			
$s^{(5)}$	1.11111	00000	Add, reduce q by 1	
s	0.10010	00000	$rem = 18_{10}$	
q	$0.1100 \mathrm{T}$ -1			
q	0.10010		$q = 22_{10}$	

The add, $s^{(5)}+d$ is necessary to make the remainder sign the same as the sign of the dividend.