1. Modellazione

1.1 Processo di Modellazione

1. Identificare le variabili decisionali

- Preferire variabili a singolo indice
- Usare due indici solo se necessario (es. matrici)
- Attenzione a "indipendentemente da" → suggerisce singolo indice

2. Definire la funzione obiettivo

3. Scrivere i vincoli base

- Partire dai vincoli più semplici
- · Aggiungere vincoli specifici gradualmente

4. Aggiungere vincoli speciali

- Vincoli logici → variabili binarie y_i
- Big-M \rightarrow x_i \leq My_i
- Costi fissi → (costo_var · x_i + costo_fisso · y_i)
- Capacità → {x_i ≤ cap_max, x_i ≥ cap_min}
- Budget → Σ x_i ≤ budget

5. Definire i domini

- Di default considerare variabili intere
- Usare reali solo per frazioni/proporzioni

1.2 Pattern Comuni

Vincoli Quantitativi

1. "Almeno k"

```
# Variabili binarie
Σ y_i ≥ k
# Variabili normali
x_i ≥ k
```

2. "Al massimo k"

```
# Variabili binarie
Σ y_i ≤ k
```

```
# Variabili normali
x_i ≤ k
```

3. "Esattamente k"

```
# Variabili binarie
Σ y_i = k
# Variabili normali
x_i = k
```

Modelli Standard

1. Copertura minima

```
min Σ(c_i * x_i)
s.t. Σ a_ij * x_i ≥ b_j ∀j
```

2. Mix ottimo

```
max Σ(p_i * x_i)
s.t. Σ a_ij * x_i ≤ q_j ∀j
```

3. Trasporto

```
min \Sigma_i \Sigma_j (c_ij * x_ij)
s.t. \Sigma_j x_ij \leq 0_i \foralli
\Sigma_i x_ij \geq D_j \forallj
```

2. Metodo del Simplesso

2.1 Forma Standard

- 1. Funzione obiettivo
 - Se max → min(-f.o.)
 - Tutti i termini a sinistra
- 2. Vincoli
 - Tutti di uguaglianza (aggiungere slack)
 - Termini noti ≥ 0
 - Se ≤ → +slack

- Se ≥ → -slack
- 3. Variabili
 - Tutte ≥ 0
 - Se x_i libera → x_i = x_i' x_i", x_i',x_i" ≥ 0
 - Se $x_i \le 0 \to x_i = -x_i'$, $x_i' \ge 0$

2.2 Tableau

```
X1 X2 ... Xn b
-z [costi ridotti] val
  [coefficienti] RHS
```

2.3 Iterazione

- 1. Verifica forma canonica
 - Base = colonne matrice identità
 - Costi ridotti base = 0
- 2. Verifica ammissibilità
 - b̄_i ≥ 0 ∀i
- 3. Verifica ottimalità
 - Costi ridotti ≥ 0
- 4. Verifica illimitatezza
 - Colonna con costo ridotto < 0
 - Tutti coefficienti ≤ 0
- 5. Selezione variabile entrante
 - Min indice tra costi ridotti < 0 (Bland)
- 6. Selezione variabile uscente
 - Min rapporto b

 i/a

 ik > 0
 - Se più minimi → min indice (Bland)

2.4 Soluzione

- 1. Valore f.o.
 - z_max = -z_min
 - Migliora di $\theta \cdot c_r$ ($\theta = \min rapporto$)
- 2. Vincoli
 - Laschi se slack > 0
 - Saturi se slack = 0

2.5 Casi Particolari

1. Base degenere

- Due o più righe stesso rapporto minimo
- Variabile base = 0
- F.o. non migliora

2. Non pivot su elemento

- Non corrisponde a rapporto minimo
- Porterebbe a soluzione non ammissibile

3. Algoritmi Cammini Minimi

3.1 Scelta Algoritmo

- Bellman-Ford se:
 - Costi negativi
 - · Limite massimo archi
 - Complessità: O(|N|·|A|)
- Dijkstra se:
 - Solo costi positivi
 - No limite archi
 - Complessità: $O(|N|^2)$ o O(|A|+|N|log|N|) con heap

3.2 Bellman-Ford

1. Tabella iterazioni

2. Fino a:

- h = |N| iterazioni
- Due righe consecutive identiche

3. Aggiornamento:

- Per nodi aggiornati all'iterazione h-1
- Per archi uscenti da tali nodi
- Se $\pi_{j} > \pi_{i} + c_{ij} \to \pi_{j} = \pi_{i} + c_{ij}$

4. Output:

- Albero: predecessori ultima riga
- Grafo: tutti cammini costo ≤ ottimo
- Ciclo negativo: se aggiornamenti a |N|

3.3 Dijkstra

1. Tabella iterazioni

2. Simbologia

inodo verificato

non migliora

× : già chiuso

vuoto: non controllato

3. Fino a:

• \$ = Ø

4. Output:

Albero: predecessori ultima riga

Grafo: tutti cammini costo ≤ ottimo

4. Branch and Bound

4.1 Struttura

• Minimo: [LB; SA]

• Massimo: [SA; UB]

4.2 Proprietà

1. Monotonia

· Minimo: LB cresce padre-figlio

Massimo: UB decresce padre-figlio

2. Chiusura nodi

Minimo: LB ≥ SA

Massimo: UB ≤ SA

3. Intervallo ottimo

Minimo: [min LB aperti; min SA totale]

Massimo: [max SA totale; max UB aperti]

4.3 Strategie

1. Best Bound First

Minimo: nodo con min LB

Massimo: nodo con max UB

2. Depth First

Nodo più profondo nell'albero

4.4 Ottimalità

- Tutti nodi chiusi, oppure
- Intervallo contiene solo un intero

5. AMPL

5.1 File .mod

5.2 File .dat

5.3 File .run

```
reset;
model file.mod;
```

```
data file.dat;
option solver cplex;
solve;
display z, x;
```