Bias/Variance Tradeoff

Regularized Regression

Outline

- Some Shortcomings of Ordinary Linear Regression
- Terms for discussing model error: Under/ Over-fitting and Bias/Variance
- Ridge/Lasso: tools for balancing these error types
- When to use Ridge, when to use Lasso

Linear Regression Example

- Data: 20 samples x 10 features
- Predict: y

У	x0	хI	x2	x 3	
9.92	8.33	69.39	578.00	4815.4	•••
8.58	2.69	7.26	19.54	52.64	•••
8.07	1.75	3.06	5.35	9.36	•••
8.29	2.11	4.46	9.41	19.86	•••
•••	•••	•••	•••	•••	•••

Recall: Linear Regression

Assume:
$$Y = \beta_0 + \sum_{j=1}^p X_j \beta_j + \epsilon$$

Noise term taken to be $\sim N(0, \sigma^2)$

Generate Model Fits:
$$\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^{P} X_j \hat{\beta}_j$$

or equivalently in matrix form:

$$\hat{Y} = X^T \hat{\beta}$$

(by adding zeroth term for intercept: B₀)

Recall: Linear Regression

Minimize:
$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$$

matrix version:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Subset Selection

- From this morning: Iteratively check combinations of features to eliminate some.
 - In this toy example, let's take it to extremes and eliminate all our features except x0...

Under/Over-Fitting

Source: scott.fortmann-roe.com

Bias/Variance

Source: scott.fortmann-roe.com

Bias/Variance

Trained model: $\hat{y}(x)$ Assuming: $y = f(x) + \epsilon$

where f(x) is the "ground truth" Noise: $\epsilon \sim N(0, \sigma^2)$

New observation: x^\star , $y^\star = f(x^\star) + \epsilon$

Want to understand: $E[(\hat{y}(x^*) - y^*)^2]$

Decomposition of Expected Error

$$\begin{split} E[(\hat{y}(x^\star)-y^\star)^2] &= E[(\hat{y}(x^\star)-\overline{\hat{y}(x^\star)})^2] \qquad \text{variance} \\ &+ (\overline{\hat{y}(x^\star)}-f(x^\star))^2 \qquad \text{bias}^2 \\ &+ E[(y^\star-f(x^\star))^2] \qquad \text{noise}^2 \end{split}$$

By:
$$\overline{Z}=E[Z]$$

$$E[(Z-\overline{Z})^2]=E[Z^2]-\overline{Z}^2$$

Simulated Data

$$y = \frac{10}{1 + e^{-3x/4}} + \epsilon$$

$$\epsilon \sim N(0, \sigma = 0.25)$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2 + \dots + \hat{\beta}_{10} x^{10}$$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Bias/Variance Tradeoff

$$Var(\hat{y}(x^*)) = E[(\hat{y}(x^*) - \overline{\hat{y}(x^*)})^2]$$

 Amount by which \hat{y} would change if we had estimated it using a different training set

$$Bias(\hat{y}(x^*)) = E[(\hat{y}(x^*))] - f(x^*)$$

 Difference between expected prediction of our models and true value we are trying to predict

$Var(\epsilon)$

• Irreducible error, recall: $y = f(x) + \epsilon$

Minimize:
$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Matrix form:
$$(\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta$$

where λ is the regularization parameter

$$\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

where I is the identity matrix (ones on the diagonal, zeros elsewhere)

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

• Intuition: Feature selection equivalent to setting some ß to zero. Instead Ridge imposes a penalty on high (squared) ß-values, to favor ones that are near zero.

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- Amount of penalty set by $\lambda \ge 0$
- $\lambda = 0$: No Regularization
- $\lambda \rightarrow$ "high", $\beta_j \rightarrow 0$ (Note that β_0 is not penalized, so model will return mean observed y value, as the intercept in this case)

Linear Regression

Ridge Regression

Normalized Data

Non-Normalized Data

Single value for λ assumes features are on the same scale!!

Pick λ with Cross Validation

Lasso Regression

Minimize:
$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

(No matrix form)

Same rules as Ridge apply:

Normalize data

Cross validate to pick λ

Lasso Regression

Ridge vs. Lasso

- Neither dominate
- Lasso's tendency to set coefficients exactly equal to zero:
 - Useful for feature selection and/or when response is a function of few predictors

scikit-learn

```
• sklearn.linear_model.LinearRegression(...)
```

```
• ...Ridge(alpha=1.0, ...)
```

```
• ...Lasso(alpha=1.0, ...)
```

Questions

- What is training error? validation error? test error?
- What are the steps to cross-validation?
 - How would you use it to compare say p different models?
- Same question as above, except with K-fold crossvalidation
- What is the Bias-Variance tradeoff?
 - What happens with Bias and Variance at low levels of complexity?
 - What happens with Bias and Variance at high levels of complexity?
- How do Ridge and Lasso attempt to win at the Bias-Variance tradeoff?
 - What's being penalized exactly?