Лекция 10 от 14.11.2016 Предел по базе. Перестановка пределов

В прошлый раз мы узнали, что такое база множества и понятие предела по базе, и теперь будем продолжать работать с этим.

Проблема равенства двойного предела

Рассмотрим такую задачу

Задача 1. Пусть X и Y — непустые множества c базами \mathcal{B} и \mathcal{D} соответственно. Рассмотрим некоторую функцию $h\colon X\times Y\to\mathbb{R}$. Пусть про неё известно, что

$$\forall x \in X \; \exists \lim_{\mathcal{D}} h(x,y) = f(x)$$
$$\forall y \in Y \; \exists \lim_{\mathcal{B}} h(x,y) = g(y)$$

Требуется узнать, равны ли пределы $\lim_{\mathcal{B}} f(x)$ и $\lim_{\mathcal{D}} g(x)$. То есть верно ли, что

$$\lim_{\mathcal{B}} \lim_{\mathcal{D}} h(x,y) = \lim_{\mathcal{D}} \lim_{\mathcal{B}} h(x,y)?$$

Возможно, некоторые скажут, что эти пределы равны всегда, но это отнюдь не так. Хороший контрпример — функция

$$h(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{если } (x,y) \neq (0,0); \\ 0, & \text{иначе.} \end{cases}$$

Для неё легко посчитать повторные пределы в нуле и показать, что они не равны. Действительно,

$$\lim_{y \to 0} h(x,y) = \begin{cases} 1, & \text{если } x \neq 0; \\ -1, & \text{иначе.} \end{cases}$$

Тогда легко понять, что $\lim_{x\to 0}\lim_{y\to 0}h(x,y)=1$. Аналогично показывается, что $\lim_{y\to 0}\lim_{x\to 0}h(x,y)=-1$.

Что же поможет нам идентифицировать такие ситуации?

Критерий Гордона

Теорема 1 (Критерий Гордона). Следующие утверждения эквивалентны (внимание: здесь используются обозначения, аналогичные введённым ранее):

- 1. повторные пределы $\lim_{\mathcal{B}} f(x)$ и $\lim_{\mathcal{D}} g(y)$ существуют и равны;
- 2. $\forall \varepsilon > 0 \ \exists B_{\varepsilon} \in \mathcal{B} \colon \ \forall x \in B_{\varepsilon} \ \exists D \in \mathcal{D} \colon \ \forall y \in D \ |h(x,y) g(y)| < \varepsilon.$

Доказательство.

$$[(1) \Rightarrow (2)]$$
 Пусть $\lim_{\mathcal{B}} f(x) = \lim_{\mathcal{D}} g(y) = A$.

Зафиксируем произвольное $\varepsilon > 0$, $\varepsilon_1 = \varepsilon/3$. Тогда:

- $\exists B_0 \in \mathcal{B} \colon \forall x \in B_0 |f(x) A| < \varepsilon_1;$
- $\exists D_0 \in \mathcal{D} \colon \forall y \in D_0 |g(y) A| < \varepsilon_1.$

В качестве B_{ε} возьмём B_0 . Тогда

$$\forall x \in B_0 \; \exists \widetilde{D}_x \in \mathcal{D} \colon \forall y \in \widetilde{D}_x \; |h(x,y) - f(x)| < \varepsilon_1,$$
$$\exists D_x \in \widetilde{D}_x \cap D_0.$$

Тогда

$$\forall y \in D_x |h(x,y) - g(y)| \leq |h(x,y) - f(x)| + |f(x) - A| + |A - g(y)| < \varepsilon_1 + \varepsilon_1 + \varepsilon_1 = \varepsilon.$$

Получили требуемое.

 $[(2) \Rightarrow (1)]$ Докажем для начала, что пределы есть. Зафиксируем произвольное $\varepsilon > 0$, $\varepsilon_1 = \varepsilon/4$. Перепишем условие второго пункта:

$$\exists B_{\varepsilon_1} \in \mathcal{B} \ \forall x \in B_{\varepsilon_1} \ \exists D_x \in \mathcal{D} \colon \ \forall y \in \mathcal{D}_x \ |h(x,y) - g(y)| < \varepsilon_1.$$

Пусть $x_1, x_2 \in B_{\varepsilon_1}$ — произвольные. Рассмотрим следующие элементы:

$$\exists D_{x_1} \in \mathcal{D} \colon \forall y \in D_{x_1} \colon |h(x_1, y) - g(y)| < \varepsilon_1;$$

$$\exists D_{x_2} \in \mathcal{D} \colon \forall y \in D_{x_2} \colon |h(x_2, y) - g(y)| < \varepsilon_1;$$

$$\exists \widetilde{D}_{x_1} \in \mathcal{D} \colon \forall y \in \widetilde{D}_{x_1} \colon |h(x_1, y) - f(x_1)| < \varepsilon_1;$$

$$\exists \widetilde{D}_{x_2} \in \mathcal{D} \colon \forall y \in \widetilde{D}_{x_2} \colon |h(x_2, y) - f(x_2)| < \varepsilon_1.$$

Возьмём произвольное $y \in D_{x_1} \cap D_{x_2} \cap \widetilde{D}_{x_1} \cap \widetilde{D}_{x_2}$. Тогда:

$$|f(x_1) - f(x_2)| \le |f(x_1) - h(x_1, y)| + |h(x_1, y) - g(y)| + |g(y) - h(x_2, y)| + |h(x_2, y) - f(x_2)| < \varepsilon_1 + \varepsilon_1 + \varepsilon_1 + \varepsilon_1 = \varepsilon.$$

Следовательно, по критерию Коши $\exists \lim_{\mathcal{B}} f(x) = A$. Докажем, что $\exists \lim_{\mathcal{D}} g(y) = A$.

Зафиксируем произвольное $\varepsilon > 0$. Найдём $B_0 \in \mathcal{B}$ такое, что $\forall x \in B_0 \mid f(x) - A \mid < \varepsilon/3$. Найдём такое $B_{\varepsilon/3} \in \mathcal{B}$, что:

$$\forall x \in B_{\varepsilon/3} \ \exists D_x \in \mathcal{D} \colon \ \forall y \in D_x \ |h(x,y) - g(y)| < \varepsilon/3.$$

Зафиксируем $x \in B_0 \cap B_{\varepsilon/3}$. Рассмотрим следующие элементы:

$$\exists D_x \in \mathcal{D} \colon \forall y \in D_x |h(x,y) - g(y)| < \varepsilon/3;$$

$$\exists \widetilde{D}_x \in \mathcal{D} \colon \forall y \in \widetilde{D}_x |h(x,y) - f(x)| < \varepsilon/3.$$

Тогда:

$$\exists D \in \mathcal{D}, \ D \subset D_x \cap \widetilde{D}_x \colon \ \forall y \in D;$$
$$|g(y) - A| \leqslant |g(y) - h(x,y)| + |h(x,y) - f(x)| + |f(x) - A| < \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$$

Получили требуемое.

Следствия

Теорема 2. Пусть $X \subset \mathbb{R}$, x_0 — его предельная точка (конечная или бесконечная). Пусть

$$\forall n \in \mathbb{N} \ \exists \lim_{X \ni x \to x_0} f_n(x) = a_n,$$

а также $f_n(x) \overset{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$. Тогда существуют и равны пределы $\lim_{n \to \infty} a_n$ и $\lim_{X \ni x \to x_0} f(x)$.

Доказательство. Так как $f_n(x) \stackrel{X}{\underset{n \to \infty}{\Longrightarrow}} f(x)$, то

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ \forall x \in X \ |f_n(x) - f(x)| < \varepsilon.$$

Для существования предела необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ \exists \delta > 0 \ \forall x \in \delta(x_0) \cap X \ |f_n(x) - f(x)| < \varepsilon.$$

Применяя критерий Гордона, получаем требуемое

Следствие 1. Пусть I — невырожденный промежуток на \mathbb{R} и для последовательности функций $f_n(x)$ известно, что $f_n(x) \in C(I)$ и $f_n(x) \stackrel{I}{\underset{n \to \infty}{\Longrightarrow}} f(x)$ Тогда $f(x) \in C(I)$.