Luke Palmer MATH 5000 Homework 3

(1) Let (A, <) be a well ordering. For each $a \in A$ let f(a) be the unique ordinal α such that $\alpha \cong A_{<a}$. Then rng f is an ordinal.

Proof. Clearly, rng f is a set of ordinals, so it suffices to show that rng f is transitive.

Suppose $\beta \in \alpha \in \operatorname{rng} f$. Then there is some $a \in A$ such that $\alpha \cong A_{< a}$. β is an ordinal $< \alpha$, so there must be a $b \in A$ with $\beta \cong A_{< b}$. But $\beta = f(b)$, so $\beta \in \operatorname{rng} f$.

(2) ω is an ordinal.

Proof. ω is a set of ordinals, so it suffices to show that ω is transitive.

If ω weren't transitive, then we could take the least $\alpha \in \omega$ where $\alpha \not\subseteq \omega$. α couldn't be \emptyset , so there must be some $\beta \in \omega$ such that $\alpha = S\beta = \beta \cup \{\beta\}$. Then either $\beta \not\subseteq \omega$ (impossible because $\alpha > \beta$ and α was the least) or $\beta \not\in \omega$ (also impossible).

(3) Given a functional $\varphi(x,y)$, the $f:\alpha\mapsto B$ defined by recursion by φ is unique.

Proof. Trivial. f ends up being a union of approximation functions; there can't be two different values for that union (read: I apparently don't understand what I'm proving and it is too late to ask:-/).

(4) (i) m+1 = Sm

Proof.
$$1 = S0$$
, so $m + S0 = S(m + 0) = Sm$

(ii) 0 + m = m

Proof.
$$0+0=0$$
. Suppose $0+m=m$: $0+Sm=Sm$ iff $S(0+m)=Sm$ iff $Sm=Sm$.

(iii) Sm + n = S(m + n)

Proof.
$$Sm + 0 = S(m + 0) = Sm$$
. Suppose $Sm + n = S(m + n)$: $Sm + Sn = S(Sm + n) = SS(m + n) = S(m + Sn)$.

(iv) m + n = n + m

Proof.
$$m + 0 = 0 + m = m$$
. Suppose $m + n = n + m$: $m + Sn = S(m + n) = S(n + m) = Sn + m$.

(v) m + (n+p) = (m+n) + p

Proof. m + (n+0) = (m+n) + 0 = m+n. Suppose m + (n+p) = m + (n+p):

$$m + (n + Sp) = m + S(n + p)$$
$$= S(m + (n + p))$$
$$= S((m + n) + p)$$
$$= (m + n) + Sp$$

(5) (i) $m \cdot 1 = m$

Proof.
$$1 = S0$$
 so $m \cdot S0 = m \cdot 0 + m = m$.

(ii) $0 \cdot m = 0$

Proof.
$$0 \cdot 0 = 0$$
. Suppose $0m = 0$: $0 \cdot Sm = 0m + 0 = 0$.

(iii) $Sm \cdot n = mn + n$

Proof. $Sm \cdot 0 = m \cdot 0 + 0 = 0$. Suppose $Sm \cdot n = mn + n$:

$$Sm \cdot Sn = Sm \cdot n + Sm$$

= $mn + n + Sm$
= $mn + m + Sn$
= $m \cdot Sn + Sn$

(iv) mn = nm

Proof. $m \cdot 0 = 0m = 0$. Suppose mn = nm: $m \cdot Sn = mn + m = nm + m = Sn \cdot m$.

(v) m(n+p) = mn + mp

Proof. $m(n+0) = mn + m \cdot 0 = mn$. Suppose m(n+p) = mn + mp:

$$m(n + Sp) = m \cdot S(n + p)$$

$$= m(n + p) + m$$

$$= mn + mp + m$$

$$= mn + m \cdot Sp$$

(vi) m(np) = (mn)p

Proof. $m(n \cdot 0) = (mn) \cdot 0 = 0$. Suppose m(np) = (mn)p:

$$m(n \cdot Sp) = m(np + n)$$

$$= m(np) + mn$$

$$= (mn)p + mn$$

$$= (mn) \cdot Sp$$

(6) There is a unique function $f: \omega \times \omega \mapsto \omega$ such that for all $m, n \in \omega$: f(m, 0) = 1 and $f(m, Sn) = f(m, n) \cdot m$.

Proof. Given any $m \in \omega$, we can construct the unique function $g: \omega \mapsto \omega$ by recursion: g(0) = 1 and $g(Sn) = g(n) \cdot m$. Let $f': \omega \mapsto (\omega \mapsto \omega)$ be the function that takes this m to this g. Then let $f = \{((m,n),g)|(m,(n,g)) \in f'\}$.

(7) Let $A = \{a_1, a_2, \dots, a_n\}$ be a finite set. $x \in \triangle A$ iff $\{a \in A | x \in a\}$ has an odd number of elements.

Proof. If n = 1 then $\{a \in A | x \in a\}$ has an odd number of elements iff x is in the only member of A.

Suppose $b \notin A$. $x \in \triangle(A \cup \{b\})$ iff $x \in (\triangle A) \triangle b$. Case 1: If $x \in \triangle A$ and $x \notin b$, then x is in an odd number of the elements of A, so x is in an odd number of the elements of $A \cup \{b\}$ (converse similar). Case 2: If $x \notin \triangle A$ and $x \in b$, then x is in an even number of the elements of A, so x is in an odd number of the elements of $A \cup \{b\}$ (converse similar).