Mathematische Bildverarbeitung

Inhaltsverzeichnis

1	Überblick									
	1.1	Techniken der Bildverarbeitung	3							
	1.2	Unser Fokus	3							
	1.3	Verwandte Vorlesungen	3							
	1.4	Literatur	3							
2	Was	Was ist ein Bild?								
	2.1	Definition	4							
	2.2	Umwandlung	4							
	2.3	Beispiel Rotation	5							
3	Histogramme und deren Anwendungen									
	3.1	Histogramme	6							
	3.2	Anwendung: Kontrastverbesserung	7							
	3.3	Anwendung: SW-Konvertierung	9							
4	Einfache Morphographische Operationen									
	4.1	Verknüpfungen von A und B	12							
5	Entrauschen: Filter & Co.									
	5.1	Rauschen	15							
	5.2	Glättungsfilter	16							
	5.3	Frequenzraum-filter	21							
	5.4	Filterbreite und Glättung	27							

5.5	Differenzenfilter	28
5.6	Glättungsfilter und partielle Differentialgleichungen	29
5.7	Isotrope und anisoptrope Diffusion	31

1 Überblick

1.1 Techniken der Bildverarbeitung

- Kontrastverbesserung
- Entrauschen
- Kantendetektion
- Schärfen
- Inpainting
- Segmentierung (Einzlene Objekte detektieren)
- Registrierung (Bilder des selben Objektes in Einklang bringen)

1.2 Unser Fokus

• Mathematische Beschreibung

1.3 Verwandte Vorlesungen

- 3D computervision
- Digitale Bildanalyse
- Mustererkennung und Datenkompression
- Medical imaging

1.4 Literatur

- Bredies, Lorenz : Mathematische Bildverarbeitung
- Aubert, Kornprobst : Mathematical Problems in Image Processing
- Modersitzki : Numerical Methods for Image Registration
- Alt : Lineare Funktionalanalysis

2 Was ist ein Bild?

2.1 Definition

Digitale/diskrete Sicht

Abbildung 1: Diskretes Bild Darstellung als Matrix.

Werkzeuge: Lineare Algebra Vorteile: Endlicher Speicher

Nachteile: Probleme bei zoomen und drehen

Kontinuierlich/analoge Sicht

Abbildung 2: Kontinuierliches Bild Darstelllung als Funktion in zwei Veränderlichen

Werkzeuge: Analysis

Vorteile: Mehr Freiheit (z.b. Kante=Linie

entlang einer Unstetigkeit)

Nachteile: Unendlicher Speicher

Definition. Ein <u>Bild</u> ist eine Funktion $u: \Omega \to F$, wobei $\Omega \subset \mathbb{Z}^d$ (im diskreten Fall) oder $\Omega \subset \mathbb{R}^d$ (im kontinuierlichen Fall).

d=2: Typisches 2D Bild

d=3: 3D-Bild bzw. "Körper" <u>oder</u> Video: 2D Ort + Zeit

F ist der Farbraum, Beispiele:

- F = [0, 1] oder $F = \{0, 1, ..., 255\}$, Graustufen
- $F = \{0, 1\}$ schwarz/weiß
- $F = [0, 1]^3$ oder $F = \{0, 1, ..., 255\}^3$ Farbbilder

2.2 Umwandlung

Kontinuierlich \rightarrow Diskret:

- ullet Ω in Gitter zerlegen
- Jede Box durch nur einen Farbwert approximieren
- Etwa durch den Funktionswert im Mittelpunkt der Box
- oder durch den Mittlewert in der Box: $\frac{1}{|B_i|} \cdot \int_{B_i} u(x) dx$

$Diskret \rightarrow Kontinuierlich:$

- 1. Idee: Jeder Punkt der Box B_i erhält den Funktionswert von B_i aus als diskretem Pixel \Rightarrow Nearest neighbour interpolation
- 2. Idee: Mittelpunkt von Box B_i erhält den Wert von Pixel B_i sonst wird interpoliert. Grauwert g:= Gewichtetes Mittel aus Grauwerten a,b,c,d.

 $g = (1-\alpha) \cdot (1-\beta) \cdot a + \alpha \cdot (1-\beta) \cdot b + (1-\alpha) \cdot \beta \cdot c + \alpha \cdot \beta \cdot d$ Dieses wird **Bilinear interpolation** genannt.

2.3 Beispiel Rotation

1. Fall, kontinuierliches Bild

Sei u das alte Bild und v das neue Bild, dann ist die Drehung gegeben durch eine **Drehmatrix**:

$$D_{\varphi} \in \mathbb{R}^{d \times d}, D_{\varphi} = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Damit folgt, dass
$$D(u) = D_{\varphi}\Omega$$
 und $v(x) = u(\underbrace{D_{\varphi}^{-1}x}) = u(D_{-\varphi}x)$. ($D(u)$ ist die **Domain** von u)

2. Fall, diskretes Bild

Dieses ist problematisch, denn I.A. $x \in \mathbb{Z}^d$, aber $D_{\varphi} x \notin \mathbb{Z}^d$.

Weiterhin ist $v(x)=u(D_{\varphi}^{-1}x)$, wobei der konkrete Wert durch Interpolation bestimmt wird.

3 Histogramme und deren Anwendungen

3.1 Histogramme

Sei $u:\Omega\to F$ ein diskretes Bild, dann heißt die Abbildung

$$H_u: F \to \mathbb{N}_0$$

$$F \ni k \mapsto \#\{x \in \Omega | u(x) = k\}$$

 $\frac{\textbf{Histogramm}}{\mathsf{Damit\ gilt\ auch:}} \ \mathsf{des\ Bildes}\ u. \ \mathsf{Dieses\ gibt\ an,\ wie\ often\ die\ Farbe}\ k\ \mathsf{im\ Bild\ vorhanden\ ist.}$

$$\sum_{k \in F} H_u(k) = |\Omega|$$
 , also die Anzahl der Pixel

Bemerkung. Manchmal betrachtet man die relative Häufigkeit $\tilde{H}_u(k) = \frac{H_u(k)}{|\Omega|}.$

Beispiel:

Für kontinuierliche Bilder wird das allgemeinere Konzept von einem Maß benötigt:

Zusammenhang zum vorherigen: $\mathcal{H}_u(A) = \sum_{k \in A} H_u(k)$. Man sagt dann, dass U_u eine $\underline{\mathbf{Dichte}}$ zum Maß \mathcal{H}_u sei. Diese kann auch im kontinuierlichen existieren:

3.2 Anwendung: Kontrastverbesserung

Problem & Idee: Falls das Bild nur einen kleinen Teil von F nutzt, kann der Kontrast verbessert werden, indem man das Bild auf ganz F verteilt.

Bild mit besserem Kontrast

1. Idee, Kontrastdehnung:

T "lineare" Abbildung, so dass $T(k_{min})=0$ und $T(k_{max})=N$:

$$T(k) = rac{k - k_{min}}{k_{max} - k_{min}} N$$
, Kontinuierlicher Farbraum

$$T(k)=rac{k-k_{min}}{k_{max}-k_{min}}N$$
, Kontinuierlicher Farbraum
$$T(k)=\left[rac{k-k_{min}}{k_{max}-k_{min}}N
ight]$$
, Diskreter Farbraum

Beispiel:

2. Idee nicht-lineare Kontrastdehnung

Diesesmal setzen wir $T(k) = \left\lceil \frac{N}{|\Omega|} \sum_{l=0}^k H_u(l) \right\rceil$ für einen diskreten Farbraum und erhalten:

T lässt sich auch alternativ ausdrücken durch:

$$T(k) = [\mathcal{H}_u(\{0, ..., k\})]$$

Und somit folgt dass für den kontinuierlichen Fall T durch

$$T(k) = \frac{N}{|\Omega|} \mathcal{H}_u((0,k))$$

definiert werden kann. Allgemein heißt der Prozess Histogramm - equalization .

3.3 Anwendung: SW-Konvertierung

Aufgabe: Graustufenbild \rightarrow SW-Bild.

Nützlich etwa bei Objekterkennung/Segmentierung.

ldee: Das Histogramm an einem gewissen **Schwellenwert** t spalten:

Also setze nun für $t \in F$:

$$\mathsf{schwarz} = \{k \in F | k \le t\}$$

$$\mathsf{weiß} = \{k \in F | k > t\}$$

Graustufenbild $u \longrightarrow \text{schwarz/weiß}$ Bild \tilde{u} :

$$\tilde{u}(x) = \begin{cases} 0, \ u(x) \in \text{schwarz} \\ 1, \ u(x) \in \text{weiß} \end{cases} \quad \Rightarrow \ \tilde{F} = \{0,1\}$$

Methoden um diesen Schwellenwert zu wählen:

1. Shape based Methods:

Falls das Histogramm von u **bimodal** ist, also die Form:

hat, dann wähle:

$$t := k_{min}$$
 oder
$$t := \frac{k_{max1} + k_{max2}}{2}$$

2. Otsu's Verfahren (1979):

Vorher einige Definitionen.

Die Masse:

$$m_{\mathsf{schwarz}} := \sum_{k \in \mathsf{schwarz}} H_u(k)$$

$$m_{\mathsf{weiß}} := \sum_{k \in \mathsf{weiß}} H_u(k)$$

Der Mittlewert:

$$\mu_{\text{schwarz}} \coloneqq \frac{\displaystyle\sum_{k \in \text{schwarz}} k \cdot H_u(k)}{\displaystyle\sum_{k \in \text{schwarz}} H_u(k)} = \frac{\displaystyle\sum_{k \in \text{schwarz}} k \cdot H_u(k)}{m_{\text{schwarz}}}$$

$$\mu_{\mathrm{weiß}} := \frac{\displaystyle\sum_{k \in \mathrm{weiß}} k \cdot H_u(k)}{\displaystyle\sum_{k \in \mathrm{weiß}} H_u(k)} = \frac{\displaystyle\sum_{k \in \mathrm{weiß}} k \cdot H_u(k)}{m_{\mathrm{weiß}}}$$

Die Varianz:

$$\begin{split} \sigma_{\text{schwarz}}^2 &= \sum_{k \in \text{schwarz}} (k - \mu_{\text{schwarz}})^2 \cdot H_u(k) \\ \sigma_{\text{weiß}}^2 &= \sum_{k \in \text{weiß}} (k - \mu_{\text{weiß}})^2 \cdot H_u(k) \end{split}$$

Nun lautet Otsu's Methode: $\sigma_{\mathsf{schwarz}}^2 + \sigma_{\mathsf{weiß}}^2 \xrightarrow{t} \mathsf{min}.$

3. Median:

Wähle t so dass $m_{\text{schwarz}} = m_{\text{weiß}}$.

4. Isodata Algorithmus (1970s):

Wähle t so, dass $t = \frac{\mu_{\rm schwarz} - \mu_{\rm weiß}}{2} =: f(t)$.

Diese Gleichung ist bereits eine <u>Fixpunktgleichung</u> und eine Lösung kann, etwa mit einer Fixpunktiteration approximiert werden, das heißt $t_{n+1} := f(t_n)$.

Matlab code:

- 1 u=imread('liftingbody.png');
- 2 t=greythresh(u); %uses Otsu's method
- 3 v=im2bn(u,t);
- 4 imshow(v);

Einige dieser Verfahren können auch erweitert werden, so dass ein Graustufenbild nicht nur in zwei, sondern in M Farben zerlegt werden kann. Im allgemeinen werden dann M-1 thresholds benötigt.

1. Shape based:

2. Otsu's Verfahren:

Farbklassen:

$$F_1 = \{k : k \le t_1\}$$

$$F_2 = \{k : t_1 < k \le t_2\}$$

$$\vdots$$

$$F_M = \{k : t_{M-1} < k\}$$

Und wie zuvor: $\sigma_1^2+\ldots+\sigma_M^2\to \min$

3. Median:

Zerteile F in M Quantile gleicher Masse.

4. Isodata:

Hierzu existiert keine Bekannte Verallgemeinerung auf M Farbklassen.

Matlab code:

```
u=imread('Circles Bright Dark.png');
t=multithresh(u,M-1);
v=imquantize(u,t);
w=label2rgb(u,t);
imshow(w);
```

4 Einfache Morphographische Operationen

S/W Bild:

Strukturelement:

4.1 Verknüpfungen von A und B

$$A+B:=\{a+b:a\in A,b\in B\}$$

Diese wird **dilation** genannt.

Anschaulich wird an jeden schwarzen Punkt des Bildes ${\cal A}$ das Struktur element ${\cal B}$ gelegt.

Bild erzeugt in Matlab durch:

$$A - B := \{a : a + B \subset A\}$$

Diese wird erosion genannt.

Anschaulich werden die schwarzen Bereiche des Bildes gesucht, in die das Strukturelement hinein passt.

Bild erzeugt in Matlab durch:

Es ist schnell zu erkennen das $A \neq (A+B) - B$, deshalb wird eine neue Operation eingeführt:

$$A \bullet B := (A + B) - B$$

Dieses wird <u>schließen</u> genannt und wird etwa genutzt um Löcher, z.b. Rauschen, in einem Bild zu entfernen. Im Beispiel Bild ist zu sehen, dass das obere Fenster nicht mehr vorhanden ist.

Bild erzeugt in Matlab durch:

```
I=imread('Bild1.png');
se=strel('disk',20,8);
I2=imcomplement(imdilate(imcomplement(I),se));
I3=imcomplement(imerode(imcomplement(I2),se));
imshow(I3);
```

Es existiert auch die Umgekehrt Operation:

$$A \circ B := (A - B) + B$$

Diese wird öffnen genannt.

Diesmal mit einem neuen Beispiel:

$$A =$$

$$A \circ B = \left[\begin{array}{c|c} & & & \\ & & & \\ & & & \end{array} \right]$$

Bild erzeugt in Matlab durch:

```
I=imread('Bild2.png');
se=strel('line',10,90);
I2=imcomplement(imerode(imcomplement(I),se));
I3=imcomplement(imerode(imcomplement(I2),se));
imshow(I3);
```

5 Entrauschen: Filter & Co.

5.1 Rauschen

Rauschen: Ungewollte Störungen in einem Bild

- punktweise
- zufällig
- unabhängig
- additiv (bei multiplikativem Rauschen log anwenden)

Notation:

Wie gut das entrauschte Bild u das saubere Bild f_0 beschreibt wird durch Normen gemessen.

$$\begin{split} &||f-f_0||\,,\,\, \mathsf{Rauschen}\\ &||u-f_0||\,,\,\, \underline{\mathsf{Absoluter Fehler}}\\ &\frac{||u-f_o||}{||f-f_0||},\,\, \underline{\mathsf{Relativer Fehler}} \quad \mathsf{im Vergleich zum Rauschen}\\ &\frac{||u-f_o||}{||f_0||},\, \mathsf{Relativer Fehler im Vergleich zum Signal} \end{split}$$

Typischerweise ist die gewählte Norm:

$$||f|| = ||f||_2 = \sqrt{\int_{\Omega} |f(x)|^2 dx}$$

oder im diskreten:

$$||f||_2 = \sqrt{\sum_{x \in \Omega} |f(x)|^2}$$

Eng verwandt ist die Signal to noise ratio (SNR):

$$log(\underbrace{\frac{||f_0||_2}{||u-f_0||_2}}) \in [0,+\infty), \text{ wobei } 0 \text{ schlecht und } +\infty \text{ gut ist.}$$

5.2 Glättungsfilter

Grundidee: (zur Vereinfachung in 1D)

$$u(k) := \alpha \cdot f(k-1) + \beta \cdot f(k) + \gamma \cdot f(k+1)$$
(5.1)

wobei:

$$\alpha + \beta + \gamma = 1 \tag{5.2}$$

Schematisch bedeutet (5.1):

Durch (5.1) ist eine Abbildung $f\mapsto u$ gegeben, wir schreiben kurz:

 $u=m \ {\mathbb E} \ f, \ {\rm dieses} \ {\rm wird} \ \ {\rm {\color{red} Korrelation}} \ \ {\rm genannt}.$

mit:

$$(m \otimes f)(k) = \sum_{i \in supp(m)} m(i)f(k+i)$$
(5.3)

und:

Setzt man nun j:=k+i in (5.1), so ist i=j-k, d.h.

$$(m \otimes f)(k) = \sum_{i \in supp(m)} m(j-k)f(j)$$
(5.4)

Um die Abbildung auf den Rand anzuwenden wird das Bild gespiegel, in 1D:

in 2D:

Formel (5.4) erinnert an die Formel der Faltung:

$$(g*f)(k) = \sum_{j \in \mathbb{Z}} g(\underbrace{k-j}_{\text{Anders als (5.4)}}) \cdot f(j)$$
(5.5)

Setzt man also $g(i) := m(-i) =: \tilde{m}(i)$, was einer Spieglung der Maske entspricht, dann ist

$$m * f = g * f = \tilde{m} * f$$

Eigenschaften der Faltung:

$$\boxed{1} (f * g) * h = f * (g * h), Assoziativität$$

2
$$f * g = g * f$$
, Kommutativität

$$\boxed{\mathbf{3}}$$
 $\widetilde{f}*\widetilde{g}=\widetilde{f*g}$, Kompatibilität mit Spiegelung

Eigenschaften der Korrelation:

$$\boxed{1'} \ f \circledast (g \circledast h) = \widetilde{f} * (\widetilde{g} * h) \overset{\boxed{1}}{=} (\widetilde{f} * \widetilde{g}) * h \overset{\boxed{3}}{=} (\widetilde{f} * g) * h = (f * g) \circledast h \neq (f \circledast g) \circledast h, \text{ nicht assoziativ!}$$

$$\boxed{2'} \ f \circledast g = \tilde{f} * g \stackrel{\boxed{2}}{=} g * \tilde{f} = \tilde{\tilde{g}} * \tilde{f} \stackrel{\boxed{3}}{=} \underbrace{(\tilde{g} * f)} = \underbrace{g \circledast f} \neq g \circledast f, \text{ nicht kommutativ!}$$

$$\boxed{\mathbf{3'}}\ \tilde{f} \circledast \tilde{g} = \tilde{\tilde{f}} * \tilde{g} \stackrel{\boxed{\mathbf{3}}}{=} \underbrace{(\tilde{f} * g)} = \underbrace{f \circledast g}, \text{ Kompatibilität mit Spiegelung}$$

Man kann zeigen (Übung): $f,g\in \ell^1\Rightarrow f*g\in \ell^1$ und $||f*g||_1\leq ||f||_1\cdot ||g||_1$. Wobei oft die Gleichheit gilt.

Alles gilt auch in der Kontinuierlichen Version:

$$L^{1}(\mathbb{R}^{d}) := \{ f : \mathbb{R}^{d} \to \mathbb{R} | \underbrace{\int_{\mathbb{R}^{d}} |f| \, dx}_{:=||f||_{1}} < \infty \}$$

$$f,g \in L^1(\mathbb{R}^d): (g*f)(x) = \int_{\mathbb{R}^d} g(x-y)f(y)dy, \ y,x \in \mathbb{R}^d$$

Beispiel für den kontinueirlichen Fall:

Hierbei gilt $\int_{\mathbb{R}} g(x) dx = 1$

 $g \otimes f =$ gleitendes Mittel .

$$g \otimes g = \tilde{g} * g = g * g = \underbrace{\qquad \qquad }_{-2a}$$

Weitere Eigenschaften der Faltung:

Für alle $f,g\in L^1$ or ℓ^1

$$(g_1+g_2)*f = (g_1*f) + (g_2*g)$$

$$(\alpha g)*f = \alpha (g*f)$$
 = Linearität

Somit ist:

$$g \mapsto f * g$$

ein linearer Operator.

Formt ℓ^1 bzw. L^1 eine Algebra mit neutralem Element δ ?

 ℓ^1 ?:

$$\delta$$
: \cdots 0 0 1 0 0 \cdots Pos 0

Ja!

 L^1 ?: Für ein solches Element muss gelten:

$$\forall f \in L^1: d*f = f$$

$$\forall x \in \mathbb{R} : \int_{\mathbb{R}^d} \underbrace{\delta(x-y)}_{=0 \forall x \neq y} f(y) dy = f(x)$$

Diese Funktion wird **Dirac-Impuls** genannt ist aber kein Element von L^1 .

Nun zu Masken in 2D:

$$u = m \circledast f \text{ mit } m = \boxed{ \begin{array}{c|c} \alpha \\ \beta & \gamma & \delta \\ \hline \epsilon \end{array} }$$

wobei $\alpha+\beta+\gamma+\delta+\epsilon=1$

Kurzschreibweise: $u_{ij}:=u(x)$ wobei $x=\binom{i}{j}\in\mathbb{Z}^2$, analog für f_{ij} .

$$\Rightarrow u_{ij} = \alpha f_{i-1,j} + \beta f_{i,j-i} + \gamma f_{ij} + \delta f_{i,j+1} + \epsilon f_{i+1,j}$$

$$u = m \circledast f = \tilde{m} * f \text{ mit } \tilde{m} = \boxed{ \begin{array}{c|c} \epsilon \\ \hline \delta & \gamma & \beta \\ \hline \alpha & \end{array} }$$

Symmetrischer Fall:

$$u_{ij} = (1 - 4\alpha)f_{ij} + \alpha(f_{i-1,j} + f_{i,j-1} + f_{i,j+1} + f_{i+1,j})$$
(5.6)

Annahme: $f_{ij} = f_{ij} + r_{ij}$ mit $r_{ij} \sim N(0, \sigma^2)$ iid.

 $z.z.: Var(u_{ij}) \leq Var(f_{ij})$

$$Var(f_{ij}) = E(\underbrace{f_{ij} - Ef_{ij}}_{r_{ij}})^2 = \sigma^2$$

$$Var(u_{ij}) = E(u_{ij} - Eu_{ij})^{2} = E((1 - 4\alpha)(\underbrace{f_{ij} - f_{ij}^{0}}_{r_{ij}}) + \alpha(\underbrace{(f_{i-1,j} - f_{i-1,j}^{0})}_{r_{i-1,j}} + \dots + \underbrace{(f_{i+1,j} - f_{i+1,j}^{0})}_{r_{i+1,j}}))^{2}$$

$$= E((1 - 4\alpha)^{2}r_{ij}^{2} + \alpha^{2}(r_{i-1,j}^{2} + r_{i,j-1}^{2} + r_{i,j+1}^{2} + r_{i+1,j}^{2}) + 2(1 - 4\alpha)\alpha r_{ij}r_{i-1,j}\dots)$$

$$= (1 - 4\alpha)^{2}\underbrace{Er_{i,j}^{2}}_{\sigma^{2}} + \alpha^{2}(Er_{i-1,j}^{2} + \dots + Er_{i+1,j}^{2}) + 2(1 - 4\alpha)\alpha\underbrace{E(r_{ij}r_{i-1,j})}_{0} + \underbrace{\dots}_{0})$$

$$= (1 - 4\alpha)^{2}\sigma^{2} + \alpha^{2}4\sigma^{2} = (1 - 8\alpha + 16\alpha^{2} + 4\alpha^{2})\sigma^{2}$$

Da $0 \le \alpha$ und $0 \le 1 - 4\alpha \Rightarrow 0 \le \alpha \le \frac{1}{4}$:

$$(1 - 8\alpha + 16\alpha^{2} + 4\alpha^{2})\sigma^{2} = 1 + \underbrace{20\alpha(\alpha - \frac{2}{5})}_{\leq 1}$$

$$\Rightarrow Var(u_{ij}) \leq Var(f_{ij}) \text{ für } \alpha \in [0, \frac{1}{4}]$$
 Dabei gilt: $Var(u_{ij}) \stackrel{\alpha}{\to} d\min \iff 1 - 8\alpha + 20\alpha^2 \stackrel{\alpha}{\to} \min \iff -8 + 40\alpha = 0 \iff \alpha = \frac{1}{5}$

$$\Rightarrow \text{bester Filter}: \begin{array}{|c|c|c|}\hline \frac{1}{5}\\\hline \frac{1}{5}\\\hline \frac{1}{5}\\\hline \frac{1}{5}\\\hline \end{array}$$

5.3 Frequenzraum-filter

Ansatz: Rauschen = hochfrequente Anteile des Signals. Diese können mittels der **Fouriertransformation** \mathcal{F} gezielt entfernt werden.

Ein wichtiges Instrument ist hierbei die Fouriertransformation:

$$\mathcal{F}: f \mapsto \hat{f}$$

$$\widehat{f}(z) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(x)e^{-i\langle z, x \rangle} dx$$
(5.7)

Wobei $z \in \mathbb{R}^d, f \in L^1(\mathbb{R}^d)$.

Falls auch $\hat{f} \in L^1(\mathbb{R}^d)$ ist ,dann lässt sich f wie folgt mittels der inversen Fouriertransformation aus \hat{f} rekonstruieren:

$$\mathcal{F}^{-1}: \hat{f} \mapsto f$$

$$\hat{f}(z) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(x)e^{i\langle z, x\rangle} dx$$
(5.8)

Wobei $x \in \mathbb{R}^d$.

Man hat also $\mathcal{F}^{-1}\mathcal{F}f$, d.h.

$$f(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \left(\frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(y) e^{-i\langle z, y \rangle} dy \right) e^{i\langle z, x \rangle} dz$$

Sei nun
$$e_z(x):=e^{i\langle z,x\rangle},\ x\in\mathbb{R}^d$$
 mit Parameter $z=\begin{pmatrix}z_1\\\vdots\\z_d\end{pmatrix}.$

Also
$$e_z(x)=e^{i\left\langle \left(egin{array}{c} z_1 \ z_2 \end{array} \right), \left(egin{array}{c} x_1 \ x_2 \end{array} \right)
ight
angle =e^{i(z_1x_1+z_2x_2)}$$

Beispiele in 2D:

(Hier stellen die Linien, Punkte mit konstantem wert dar)

$$\xrightarrow{} x$$

$$z = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, e_z(x) = e^{i(x_1 + x_2)}$$
:

$$f\in L^2(\mathbb{R}^d)=\{f:\mathbb{R}^d\to\mathbb{R}|\int_{\mathbb{R}^d}\left|f\right|^2dx<\infty\}$$
 ist

- ein normierter Raum mit +,
$$\alpha \cdot$$
 und $\left|\left|\cdot\right|\right|_2 := \sqrt{\int_{\mathbb{R}^d} \left|f(x)\right|^2 dx}$

- ein Skalarproduktraum mit $\langle f,g \rangle := \int_{\mathbb{R}^d} f \bar{g} dx$, wobei $||f||_2^2 = \langle f,f \rangle$
- ein vollständiger Raum, also Banachraum

Ein vollständiger normierter Banachraum mit Skalarprodukt heißt Hilbertraum

 $\mathcal F$ kann auch als Abbildung auf $L^2(\mathbb R^d)$ betrachtet werden. Dann gilt:

$$\hat{f} = \mathcal{F}f \in L^2(\mathbb{R}^d)$$

und

$$\left|\left|\hat{f}\right|\right|_{2} = \left|\left|f\right|\right|_{2} \tag{5.9}$$

und sogar

$$\left\langle \hat{f}, \hat{g} \right\rangle_2 = \left\langle f, g \right\rangle_2$$
 (5.10)

für alle $f, g \in L^2(\mathbb{R}^d)$.

Weitere Eigenschaften der Fouriertransformation:

i)
$$f \in L^1(\mathbb{R}^d) \Rightarrow \hat{f}$$
 stetig und $\lim_{|z| \to \infty} \hat{f}(z) = 0$

- ii) $\mathcal{F}:L^1(\mathbb{R}^d)\to C(\mathbb{R}^d)$ ist eine lineare Abbildung
- iii) $\mathcal{F}:L^1(\mathbb{R}^d)\to C(\mathbb{R}^d)$ ist eine beschränkte/stetige Abbildung
- iv) Verschiebung $\overset{\mathcal{F}}{\to}$ Modulation, d.h.

$$g(x) = f(x+a) \Rightarrow \hat{g}(z) = e^{i\langle a, z \rangle} \hat{f}(z)$$

v) Modulation $\stackrel{\mathcal{F}}{\rightarrow}$ Verschiebung, d.h.

$$g(x) = e^{i\langle x, a \rangle} f(x) \Rightarrow \hat{g}(z) = \hat{f}(z - a)$$

vi) Skalierung $\stackrel{\mathcal{F}}{\rightarrow}$ inverse Skalierung, d.h.

$$g(x) = f(cx) \Rightarrow \hat{g}(z) = \frac{1}{|c|} \hat{f}(\frac{z}{|c|})$$

vii) Konjugation: $g(x)=\overline{f(x)}\Rightarrow \hat{g}(z)=\overline{\hat{f}(-z)}$ Folglich: f reelwertig $\Rightarrow \hat{f}(z)=\overline{\hat{f}(-z)}$

viii)

Grundmode:
$$\begin{split} \hat{f}(0) &= \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(x) dx \\ \text{Analog: } f(0) &= \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \hat{f}(x) dx \end{split}$$

ix) Differentiation $\overset{\mathcal{F}}{\to}$ Multiplikation mit Potenzen von z, d.h.

$$g(x) = \frac{\partial^{\alpha_1 + \dots + \alpha_d}}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}} f(x) \Rightarrow \hat{g}(z) = i^{\alpha_1 + \dots + \alpha_d} z_1^{\alpha_1} \cdots z_d^{\alpha_d} \hat{f}(z)$$

x) Umkehrung des letzten Punktes:

$$g(x) = x_1^{\alpha_1} \cdots x_d^{\alpha_d} f(x) \Rightarrow \hat{g}(z) = i^{\alpha_1 + \dots + \alpha_d} \frac{\partial^{\alpha_1 + \dots + \alpha_d}}{\partial x_1^{\alpha_1}} \hat{f}(z)$$

xi)

$$\begin{split} \text{Faltungssatz: } \mathcal{F}(f*g) &= (2\pi)^{\frac{d}{2}}\mathcal{F}(f)\cdot\mathcal{F}(g), \ \widehat{f*g} = (2\pi)^{\frac{d}{2}}\widehat{f}\cdot\widehat{g} \\ \text{Analog: } \mathcal{F}(f\cdot g) &= \frac{1}{(2\pi)^{\frac{d}{2}}}\mathcal{F}(f)*\mathcal{F}(g), \ \widehat{f\cdot g} = \frac{1}{(2\pi)^{\frac{d}{2}}}\widehat{f}*\widehat{g} \end{split}$$

d.h.: Faltung $\overset{\mathcal{F}}{\to}$ Multiplikation und umgekehrt

Zur Erinnerung:

Wie sieht g aus?

$$g = \mathcal{F}^{-1} \left(\frac{1}{(2\pi)^{\frac{d}{2}}} \chi_{[-r,r]} \right)$$
$$\left(\chi_M(z) = \begin{cases} 0, & z \notin M \\ 1, & z \in M \end{cases} \right)$$

$$g(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} (\mathcal{F}^{-1}\chi_{[-r,r]^d})(x)$$

$$= \frac{1}{(2\pi)^{\frac{d}{2}}} \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \chi_{[-r,r]^d}(z) e^{i\langle z, x \rangle} dz$$

$$(d=1) \to = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi_{[-r,r]}(z) e^{izx} dz$$

$$= \frac{1}{2\pi} \int_{r}^{-r} e^{izx} dz$$

$$= \frac{1}{2\pi} \frac{e^{izx}}{ix} \Big|_{z=-r}^{r}$$

$$= \frac{1}{2\pi ix} \left(e^{irx} - e^{-irx} \right)$$

$$= \frac{1}{\pi x} \sin(rx)$$

$$= \sin c \left(\frac{rx}{\pi} \right) \cdot \frac{r}{\pi}$$

Wobei:
$$sinc(\varphi) = \begin{cases} \frac{sin(\pi\varphi)}{\pi\varphi} &, \varphi \neq 0 \\ 1 &, \varphi = 0 \end{cases}$$

g hat auch Masse 1, denn mit den Eigenschaften der Fouriertransformation folgt:

$$\frac{1}{(2\pi)^{\frac{d}{2}}} = \hat{g}(0) = (\mathcal{F}g)(0) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{R^d} g(x) \underbrace{e^{-\frac{\langle x, 0 \rangle}{0}}}_{1} dx = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{R^d} g(x) dx$$
$$\Rightarrow \int_{\mathbb{R}^d} g(x) dx = 1$$

Für d=2 gilt:

$$\begin{split} g(x) &= \frac{1}{(2\pi)^1} (\mathcal{F}^{-1} \chi_{[-r,r]^2})(x) \\ &= \cdots \text{ (Analog zu oben)} \\ &= \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi_{[-r,r]^2} \left(\binom{x_1}{x_2} \right) e^{i(z_1 x_1 + z_2 x_2)} dz_1 dz_2 \\ &= \frac{1}{(2\pi)^2} \int_{-r}^{r} \left(\int_{-r}^{r} e^{iz_1 x_1} e^{iz_2 x_2} dz_1 \right) dz_2 \\ &= \underbrace{\left(\frac{1}{2\pi} \int_{-r}^{r} e^{iz_1 x_1} dz_1 \right)}_{\frac{1}{\pi x_1} \sin(\pi x_1)} \underbrace{\left(\frac{1}{2\pi} \int_{-r}^{r} e^{iz_2 x_2} dz_2 \right)}_{\frac{1}{\pi x_2} \sin(\pi x_2)} \end{split}$$

Es ist zu bemerken, dass g eine Art Tensor Struktur besitzt, was in etwa bedeutet das sich die Funktion in beliebigen Dimensionen als Produkt der Funktion in einer Dimensionen darstellen lässt.

Gauß-Kern:

$$G(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{\frac{-|x|^2}{2}} \Rightarrow G\left(\begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}\right) = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{\frac{-x_1^2 - x_2^2 + \dots + x_d^2}{2}}$$
$$= \left(\frac{1}{(2\pi)^{\frac{1}{2}}} e^{\frac{-x_1^2}{2}}\right) \cdot \dots \cdot \left(\frac{1}{(2\pi)^{\frac{1}{2}}} e^{\frac{-x_d^2}{2}}\right) = G(x_1) \cdot \dots \cdot G(x_d)$$

5.4 Filterbreite und Glättung

	1	1	1	1	1	'glättet mehr als': $\frac{1}{9}$			
	1	1	1	1	1		1	1	1
klar ist: $\frac{1}{25}$	1	1	1	1	1		1	1	1
	1	1	1	1	1		1	1	1
	1	1	1	1	1				

Im Kontinuierlichen: Sei $m \in L^1(\mathbb{R}^d)$ und s > 0. Setze

$$m_s(x) := \frac{1}{s^d} m(\frac{x}{s}), \quad x \in \mathbb{R}^d$$

Bsp (in d = 1):

Bsp: Gauß-Kern $G(x)=\frac{1}{(2\pi)^{\frac{d}{2}}}e^{\frac{-|x|^2}{2}}$ Skalierung mit Faktor s>0

$$\Rightarrow G_s(x) = \frac{1}{s^d} G\left(\frac{x}{s}\right) = \frac{1}{s^d} \frac{1}{(2\pi)^{\frac{d}{2}}} e^{\frac{-|x|}{2}} = \frac{1}{(2\pi s^2)^{\frac{d}{2}}} e^{\frac{-|x|^2}{2s^2}}$$

Skalierung $s = \text{Standardabweichung } \sigma$:

5.5 Differenzenfilter

Bisher: Glättung $\widehat{=}$ Mittelwert bilden $\widehat{=}$ Summe/Integrale Jetzt: Schärfen $\widehat{=}$ Differenzen/Kontraste hervorheben $\widehat{=}$ Differenzen/Ableitungen

Diskretisierung von Ableitungen durch Differenzenquotienten

2. Abbleitung:

$$\begin{split} u(h) \approx & \frac{f'(k+1) - f'(k)}{h} \text{(vorwärts)} \\ \approx & \frac{\frac{f(k+1) - f(k)}{h} - \frac{f(k) - f(k-1)}{h}}{h} \text{(rückwärts)} \\ = & \frac{f(k+1) - 2f(k) + f(k+1)}{h^2} \end{split}$$

Also folgt $u:= \fbox{1} \ -2 \ \fbox{1} \ \textcircled{\#} \ f \ \text{und} \ \dfrac{1}{h^2} \fbox{1} \ -2 \ \fbox{1} = \dfrac{1}{h} \fbox{0} \ -1 \ \fbox{1} \ \textcircled{\#} \ \dfrac{1}{h} \fbox{-1} \ \fbox{1} \ 0$ Denn:

$$\begin{split} &\frac{1}{h} \boxed{ -1 \quad | \ 1 \quad | \ 0 \ |} \\ &= \frac{1}{h} \boxed{ 0 \quad | \ 1 \quad | \ -1 \quad | \ * \left(\frac{1}{h} \boxed{ 1 \quad | \ -1 \quad | \ 0 \right) * f } \\ &= \left(\frac{1}{h} \boxed{ 0 \quad | \ 1 \quad | \ -1 \quad | \ * \frac{1}{h}} \boxed{ 1 \quad | \ -1 \quad | \ 0 \right) * f \\ &= \left(\frac{1}{h} \boxed{ -1 \quad | \ 1 \quad | \ 0 \right) \circledast \frac{1}{h} \boxed{ 1 \quad | \ -1 \quad | \ 0 } \right) * f \\ &= \frac{1}{h^2} \boxed{ 1 \quad | \ -2 \quad | \ 1 \quad | \ * f } \\ &= \frac{1}{h^2} \boxed{ 1 \quad | \ -2 \quad | \ 1 \quad | \ * f } \end{split}$$

In 2D:
$$\frac{\partial}{\partial x} = \boxed{0 \quad -1 \quad 1}$$
, $\frac{\partial}{\partial y} = \boxed{0 \quad -1 \quad 1}$, $\frac{\partial^2}{\partial x^2} = \boxed{1 \quad -2 \quad 1}$, $\frac{\partial^2}{\partial y^2} = \boxed{1 \quad -2 \quad 1}$.

Diskreter Laplace Operator:

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \boxed{1 \mid -2 \mid 1} + \boxed{\frac{1}{-2}} = \boxed{0 \mid 1 \mid 0}$$

5.6 Glättungsfilter und partielle Differentialgleichungen

Idee: Rauschen weiter verringern indem man m \boxtimes wiederholt anwendet \Rightarrow Folge von Bildern:

$$\Rightarrow u^{(n+1)} - u^{(n)} = \text{(Unterschied zwischen 'Zeit' Punkt n und $n+1$)}$$

$$= \underbrace{m \otimes u^{(n)}}_{u^{n+1}} - \underbrace{\delta \otimes u^{(n)}}_{u^{(n)}} \text{mit } \delta = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}$$

$$= (m - \delta) \otimes u^{(n)}$$

$$= \begin{pmatrix} 1 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 \end{pmatrix} - \frac{1}{5} \begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & 5 & 0 \\ \hline 0 & 0 & 0 \end{bmatrix} \otimes u^{(n)}$$

$$= \frac{1}{5} \begin{bmatrix} 0 & 1 & 0 \\ \hline 1 & -4 & 1 \\ \hline 0 & 1 & 0 \end{bmatrix} u^{(n)}$$

Somit gilt insgesamt:

$$\underbrace{u^{(n+1)} - u^{(n)}}_{\widehat{\oplus} \frac{\partial u}{\partial t}} = \underbrace{\frac{1}{5}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \\ \widehat{=} \Delta u \tag{5.11}$$

Kontinuierlich: Funktion \boldsymbol{u}

$$u(x,t)$$
 $x \in \mathbb{R}^2$, t Zeit

(5.11) ist eine Diskretisierung (1 Zeitschritt im Eulerverfahren) der partiellen Differentialgleichungen

$$\frac{\partial u}{\partial t} = \Delta u \tag{5.12}$$

Bekannt als Wärmegleichung oder Diffusionsgleichung

Zum Zeitpunkt t = 0 möge die Anfangsbedingung

$$u(x,0) = u^{(0)} = f(x) (5.13)$$

gelten. Vorranschreiten der Zeit t repräsentiert Diffusion.

Für einen stationären Zustand, also keine Änderung $\frac{\partial u}{\partial t}$ dann muss auch $\Delta u=0$ gelten.

Diese wird unteranderem von konstanten Funktionen oder linearen Funktionen $u(x_1, x_2) = ax_1 + bx_2$ erfüllt.

Es existiert auch einen explizite Formel für die Lösung der Diffusionsgleichung (5.12) mit Anfangsbedingung (5.13):

$$u(x,t) = \left(G_{\sqrt{2t}} * u^{(0)}\right)(x)$$

Wobei $\sqrt{2t}$ für eine Skalierung um diesen Wert steht.

Zu zeigen ist: $\frac{\partial u}{\partial t} = \Delta u$

$$\begin{split} \frac{\partial}{\partial t} \left(G_{\sqrt{2t}} * u^{(0)} \right) &= \Delta \left(G_{\sqrt{2t}} * u^{(0)} \right) \\ \stackrel{\text{mit Satz}}{\Longrightarrow} \left(\frac{\partial}{\partial t} G_{\sqrt{2t}} \right) * u^{(0)} &= \left(\Delta G_{\sqrt{2t}} \right) * u^{(0)} \end{split}$$

Es bleibt somit z.z.: $\frac{\partial}{\partial t}G_{\sqrt{2t}}=\Delta G_{\sqrt{2t}}.$

t=0:

Bemerkenswert ist das, für t=0 die Funktion nicht stetig ist, aber für alle t>0 die Funktion beliebig oft differenzierbar ist.

Insgesamt lässt sich die Idee darstellen als:

5.7 Isotrope und anisoptrope Diffusion

Wir haben gesehen: Glättung/Diffusion verringert Rauschen.

Aber: Auch Kanten/Details werden verwischt.

Ausweg: Diffusion steuern, so dass sie an Kanten (also Stellen mit großer Änderungsrate) weniger

stark glättet.

Der Plan lautet also:

$$\nabla u = \left| \left| \left(\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} \right) \right| \right|^2 = \begin{cases} \text{groß} & \Rightarrow \text{wenig Diffusion} \\ \text{klein} & \Rightarrow \text{Diffusion normal} \end{cases}$$

Diffusionsgleichung:

$$\frac{\partial u}{\partial t} = \Delta u = \frac{\partial}{\partial x} \frac{\partial}{\partial x} u + \frac{\partial}{\partial y} \frac{\partial}{\partial y} u = \underbrace{\left(\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right)}_{div} \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} u\right) = div(\nabla u) \tag{5.14}$$

Um diese Gleichung zu regulieren setzen wir einen $\underline{\mathbf{Diffusionstensor}}$ M in die Gleichung in.

$$\Delta u = div(M\nabla u) = div((\begin{subarray}{c} * *) \nabla u)$$

Ansätze für M:

a)
$$M=I=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \Rightarrow$$
 übliche Diffusion

b)
$$M = g(||\nabla u(x, y)||) * I$$

$$g_{\kappa}(s) = \frac{1}{1 + \left(\frac{s}{\kappa}\right)^2} \qquad \frac{1}{2}$$

Diese Methode geht zurück auf Perona & Malik.

- \bullet Kanten mit $||\nabla u||<\kappa$ werden mehr geglättet
- • Kanten mit $||\nabla u|| \ge \kappa$ werden weniger geglättet

c)
$$\mathsf{M} = \begin{pmatrix} g(\left|\frac{\partial u}{\partial x}(x,y)\right|) & 0\\ 0 & g(\left|\frac{\partial u}{\partial y}(x,y)\right|) \end{pmatrix}$$

Diese art der Diffusionstensoren ist anisoptrop also richtungsabhängig.

Im Diskreten Fall gilt:

Für $oldsymbol{x} \in \mathbb{Z}^2$ und $oldsymbol{x}_W = oldsymbol{x} + \left(egin{array}{c} -1 \\ 0 \end{array}
ight)$ usw.

Für
$$M=\begin{pmatrix} c_1(m{x}) & 0 \\ 0 & c_2(m{x}) \end{pmatrix}$$
 gilt:

$$div(M \cdot \nabla u(\boldsymbol{x})) = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{pmatrix} \begin{bmatrix} c_1(\boldsymbol{x}) & 0 \\ 0 & c_2(\boldsymbol{x}) \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial x}(\boldsymbol{x}) \\ \frac{\partial u}{\partial y}(\boldsymbol{x}) \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{pmatrix} \begin{pmatrix} c_1(\boldsymbol{x}) \frac{\partial u}{\partial x}(\boldsymbol{x}) \\ c_2(\boldsymbol{x}) \frac{\partial u}{\partial y}(\boldsymbol{x}) \end{pmatrix}$$

$$\approx \begin{pmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{pmatrix} \begin{pmatrix} c_1(\boldsymbol{x})(u(\boldsymbol{x}_O) - u(\boldsymbol{x})) \\ c_2(\boldsymbol{x})(u(\boldsymbol{x}_S) - u(\boldsymbol{x})) \end{pmatrix}$$

$$\approx c_1(\boldsymbol{x})(u(\boldsymbol{x}_O) - u(\boldsymbol{x})) - c_1(\boldsymbol{x}_W)(u(\boldsymbol{x}_N) - u(\boldsymbol{x}_W))$$

$$+ c_2(\boldsymbol{x})(u(\boldsymbol{x}_S) - u(\boldsymbol{x})) - c_2(\boldsymbol{x}_N)(u(\boldsymbol{x}) - u(\boldsymbol{x}_N))$$

Index

öffnen, 14

bimodal, 9

Absoluter Fehler, 15 anisoptrop, 32

Banachraum, 24 Bild, 4 Bilinear interpolation, 5

Dichte, 7 Diffusionsgleichung, 30 Diffusionstensor, 31

dilation, 12 Dirac-Impuls, 20

Diskreter Laplace Operator, 29

Domain, 6 Drehmatrix, 5

erosion, 13

Faltung, 18
Farbraum, 4
Fixpunktgleichung, 10
Fixpunktiteration, 10
Fouriertransformation, 21
Frequenzbereich, 25
Frequenzraumfilter, 21

Gauß-Kern, 27 gleitendes Mittel, 19

Hilbertraum, 24 Histogramm, 6 Histogramm - equalization, 8

Isodata Algorithmus, 10 Isotrop, 32

Korrelation, 17

Maß, 7 Maske, 17 Masse, 9 Median, 10 Mittlewert, 10 Morphographische Operationen, 11

Nearest neighbour interpolation, 5

Otsu's Verfahren, 9

Rauschen, 15

Relativer Fehler, 15

schließen, 13 Schwellenwert, 9 Shape based Methods, 9 Signal to noise ratio, 16 Strukturelement, 12

Varianz, 10

Wärmegleichung, 30

Zeitbereich, 25