## **Assignment: MATH 3490 Numerical Analysis**



**Instructor: Dr. Puneet Rana** 

**Issue Date: Sept 24, 2021 Deadline: Sept 30, 2021** 

## **UNIT 2: AS 1 Solution of Nonlinear Equation (30 Points)** *Note: All questions are of equal marks*

**Question 1:** (a) From Descartes's rule of signs, conclude that the equation  $x^{2n} - 1 = 0$  has 2n-2 imaginary roots.

(b) Without actually obtaining the roots, show that  $x^6 - 5x^5 - 7x^2 + 8x + 20 = 0$  possess imaginary roots.

**Question 2:** The equation  $f(x) = x^2 - 2e^x = 0$  has a solution in the interval [-1,1].

- (a) With  $p_0 = -1$  and  $p_1 = 1$ , calculate  $p_2$  using the Secant method.
- (b) With  $p_2$  from part (a), calculate  $p_3$  using Newton's method.

**Question 3:** The equation  $f(x) = 2 - x^2 \sin x = 0$  has a solution in the interval [-1,2].

- (a) Verify that the Bisection method can be applied to the function f(x) on [-1,2].
- (b) Using the error formula for the Bisection method, find the number of iterations needed for accuracy  $10^{-7}$ .
- (c) Compute  $p_3$  for the Bisection method.

**Question 4:** The following refer to the fixed-point problem:

- (a) State the theorem which gives conditions for a fixed-point sequence to converge to a unique fixed point.
- (b) Given  $g(x) = \frac{2-x^3+2x}{3}$ , use the theorem to show that the fixed-point sequence will converge to the unique fixed-point of g(x) for any  $p_0$  in [-1,1.1].
- (c) With  $p_0 = 0.5$  generate  $p_3$ .
- **Question 5:** What is the main difference between secant and regula falsi method? Compute the root of the equation  $x^2e^{-x/2} = 1$  in the interval [0, 2] correct to three decimal places using both secant method and regula falsi method.
- **Question 6:** (a) Suppose the function f(x) has a unique zero p in the interval [a, b]. Further, suppose f''(x) exists and is continuous on the interval [a, b]. Under what conditions, Newton's method give a quadratically convergent sequence to p?
  - (b) Using Newton's method, construct an iterative formula to find  $\sqrt[k]{N}$  *i.e.*  $k^{th}$  root of any number N.

\*\*\*\*