2014 数学模拟试卷

共创(合肥工业大学)考研辅导中心

Tel: 0551-62905018

绝密★启用前

2014 年全国硕士研究生入学统一考试

数 学(二)

(科目代码:304)

(模拟试卷1)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

第1页共9页

www.hfutky.net

2014 数学模拟试卷

共创(合肥工业大学)考研辅导中心

Tel: 0551-62905018

绝密★启用前

2014年全国硕士研究生入学统一考试

数学二(模拟一)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时. 答案必须写在答题纸上, 否则成绩无效

一、选择题: (1)~(8)小题,每小题 4分,共 32分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的括号里.

- (A)连续点
- (B)可去间断点
- (C)跳跃间断点 (D)无穷间断点

(2) 设函数
$$g(x)$$
 在 $x = 0$ 处连续, $f(x) = \begin{cases} \frac{g(x)\ln(1+x^2)}{(e^{|x|}-1)\sin^2 x}, & x \neq 0, \\ 1, & x = 0, \end{cases}$ 若 $f(x)$ 在 $x = 0$ 处连续,则().

- (A) g(0) = 0, g'(0) 不存在 (B) g(0) = 0, g'(0) = 1
- (C) g(0) = 1, g'(0) 不存在 (D) g(0) = 1, g'(0) = 1
- (3) 设 f(x) 在[a,b]上可导, f(a) = f(b) = 0,且 f'(a)f'(b) < 0,那么下列说法正确的是().
 - (A) 至少存在一点 $x_0 \in (a,b)$ 使得 $f(x_0) > 0$
 - (B) 至少存在一点 x_0 ∈ (a,b) 使得 $f(x_0)$ < 0
 - (C) 至少存在一点 $x_0 \in (a,b)$ 使得 $f(x_0) = 0$
 - (D) 至少存在一点 $x_0 \in (a,b)$ 使得 $f'(x_0) = 0$
- (4) 设 $k \ge 0$,若方程 $\ln x = kx$ 有无实根,则必有(

设
$$k \ge 0$$
,若方程 $\ln x = kx$ 有无实根,则必有()。

(A) $k > \frac{1}{e}$ (B) $0 < k < \frac{1}{e}$ (C) $k = \frac{1}{e}$ (D) $k = 0$

- (5) 设 f(x) 在 $(-\infty, +\infty)$ 内为可导函数, F(x) 为 f(x) 的一个原函数,则下列说法正确的是 ().
 - (A) 若 f(x) 是奇函数,则 F(x) 与 f'(x) 均为偶函数
 - (B) 若 f(x) 是偶函数,则 F(x) 与 f'(x) 均为奇函数
 - (C) 若 f'(x) 是偶函数,则 F(x) 也是偶函数
 - (D) 若 f'(x) 是奇函数,则 F(x) 也奇函数

(6) 已知函数
$$z = f(x, y)$$
 在点 $(0,0)$ 某领域内有定义,且 $f(0,0) = 0$, $\lim_{\substack{x \to 0 \ y \to 0}} \frac{f(x, y)}{x^2 + y^2} = 1$,则 $f(x, y)$ 在

点(0,0)处().

(A) 连续且可微

(B) 连续但不可微

(C) 可微但不连续

(7)
$$abla A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix}, M A = B ()$$

- (B) 相似不合同 (C)合同且相似 (D) 不相似也不合同

第2页共9页

2014 数学模拟试卷

共创(合肥工业大学)考研辅导中心

Tel: 0551-62905018

- (8) 设**A**与**B**为3阶非0矩阵,满足**AB**=**0**,其中**B**= $\begin{pmatrix} 1 & -1 & 1 \\ 2a & 1-a & 2a \\ a & -a & a^2-2 \end{pmatrix}$,则().
 - (A) a = -1 时,必有 r(A) = 1
- (B) $a \neq -1$ 时,必有 r(A) = 2

- (C) a = 2 时, 必有 r(A) = 1
- (D) $a \neq 2$ 时, 必有 r(A) = 2
- 二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。
- (9) 设 p 是满足一定条件的常数,且 $\lim_{x \to +\infty} x^p (e^{\frac{1}{x}} e^{\frac{1}{x+1}}) = 1$,则 $p = \underline{\hspace{1cm}}$.
- (10) 设 y = f(x) 在 x = 0 处连续,且 $\lim_{x\to 0} \frac{f(x) + \cos x}{\sqrt{1+2x}-1} = 1$,那么曲线 y = f(x) 在 x = 0 处切线方程

- (12) 积分 $\int_{-1}^{1} dy \int_{1+\sqrt{1-y^2}}^{\sqrt{2-y^2}} (\sqrt{x^2+y^2} + \sin^3 y) dx = \underline{\hspace{1cm}}$
- (13) 方程 $y' = \frac{1}{xy + y^3}$ 的通解为______.
- (14) 设矩阵 $\mathbf{B} = \begin{pmatrix} 1 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$, 矩阵 \mathbf{A} 满足 $\mathbf{B}^{-1} = \mathbf{B}^* \mathbf{A} + \mathbf{A}$, 则 $\mathbf{A} = \underline{\qquad}$.
- 三、解答题: 15~23 小题, 共94 分。解答应写出文字说明、证明过程或演算步骤。

(15) (本小题满分 10 分) 设
$$y = y(x)$$
 由
$$\begin{cases} x = \ln(t + \sqrt{1 + t^2}), \\ \int_0^y \cos u^2 \, \mathrm{d}u + \int_t^1 \frac{e^u}{\sqrt{1 + u^2}} \, \mathrm{d}u = 0 \end{cases}$$
 确定,求 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.

(16) (本小题满分 10 分) 求函数 $f(x,y) = x^2 + 4y^2 + xy + 2$ 在区域

$$D = \{(x, y) \mid \frac{x^2}{4} + y^2 \le 1, y \ge \frac{1}{2}x - 1\}$$

上的最大值与最小值.

(17) (本小题满分 10 分) 计算二重积分 $I = \iint\limits_{D}\sin x \sin y \cdot \max\{x,y\} \,d\sigma \;, \qquad \mbox{其中} \; D: 0 \leq x \leq \pi, 0 \leq y \leq \pi \;.$

2014 数学模拟试卷

共创(合肥工业大学)考研辅导中心

Tel: 0551-62905018

- **(18)** (本小题满分 10 分) 已知函数 y = f(x) 在 $[0,+\infty)$ 上单增,曲线 y = f(x) 过点 $(0,\frac{1}{2})$,且对 $\forall t \in (0,+\infty)$,曲线 y = f(x) 在区间 [0,t] 上的一段弧的弧长等于它与 x 轴与 y 轴及直线 x = t 围成图形面积的两倍. (I) 求函数 y = f(x) 的表达式; (II) 求曲线 y = f(x) 与 x 轴, y 轴及直线 x = 1 围成的平面图形绕 x 旋转一周所形成立体的表面积.
- (19) (本小题满分 10 分) 设 f(x) 是单调可导函数, $f(-\frac{\pi}{2}) = 0$, $f(\frac{\pi}{2}) = 1$, g(x) 是 f(x) 的反函数, 且 f(x) 满足 $\int_0^{f(x)} g(t) dt = \int_0^x (\frac{1}{1+e^{\pi}} + \frac{\sin t}{1+e^t}) \sin t dt$, 求积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) dx$ 的值.
- **(20)** (本小题满分 11 分) 设 $\{x_n\}$ 满足条件 $x_1 = 2$, $x_{n+1} = \frac{x_n(x_n^2 + 3)}{3x_n^2 + 1}$ $(n = 1, 2, \cdots)$,证明 $\lim_{n \to \infty} x_n$ 存在并求它的值.
- (21) (本小题满分 11 分) 证明: 当x > 0时,有 $(x^2 1) \ln x \ge (x 1)^2$.
- (22) (本小题满分 11 分) 已知矩阵 $A = \begin{pmatrix} 1 & 3 & 9 \\ 2 & 0 & 6 \\ -3 & 1 & -7 \end{pmatrix}$, B 为三阶非零阵, 向量

 $m{eta}_1 = (0,1,-1)^T, m{eta}_2 = (a,2,1)^T, m{eta}_3 = (b,1,0)^T, m{eta}_2 = (a,2,1)^T, m{eta}_3 = (b,1,0)^T$ 是齐次方程组 $m{Bx} = m{0}$ 的 3 个解向量,且方程组 $m{Ax} = m{eta}_3$ 有解.(I) 求常数 a,b 的值;(II)求 $m{Bx} = m{0}$ 通解

(23) (本小题满分 11 分) 已知三元二次型 $f(x_1,x_2,x_3) = \mathbf{x}^T A \mathbf{x}$ 经过正交变换 $\mathbf{x} = \mathbf{P} \mathbf{y}$ 化为标准形 $y_1^2 - y_2^2 + 2y_3^2$. (I) 求行列式 $\left| \mathbf{A}^* - 2 \mathbf{A}^{-1} \right|$; (II) 求 $\mathbf{A}^3 - 2 \mathbf{A}^2 - \mathbf{A} + 4 \mathbf{E}$.

绝密★启用前

2014 年全国硕士研究生入学统一考试

数 学(二)

(科目代码:304)

(模拟试卷 2)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

绝密★启用前

2014年全国硕士研究生入学统一考试

数学二(模拟二)

在每小题给出的[个选项符合要求,将所选项前		•
(1) 设 $\lim_{n\to\infty} x_n$ 与	$ \int_{n\to\infty} \lim_{n\to\infty} y_n $ 均个存在,	那么下列命题正确的是(•	
(A) 若 $\lim_{n\to\infty} (x)$	$(x_n + y_n)$ 不存在,则	$\lim_{n\to\infty}(x_n-y_n)$ 必也不存在		
(B) 若lim(x	$(x_n + y_n)$ 存在,则 $\lim_{n \to \infty}$	$\mathbf{n}(x_n - y_n)$ 必也存在		
	$(x_n + y_n) = \lim_{n \to \infty} (x_n - y_n)$			
		y_n) 中只要有一个存在,另	一个必定不存在	
(2) 设 $f(u)$ 为 $$	n→∞ 可导函数,曲线 y = _.	$f(e^x)$ 的过点 $(1,2)$,且它 0.1 时相应的函数值增量的	E点(1,2)处的切线过点(0,	0),那么函数
(A) 0.02	(B) $\frac{0.02}{e}$	$(C) - \frac{0.02}{e}$	(D) -0.02	
(3) 设函数 f(x)) 在 (-∞,+∞) 内连续		-t)dt,若 $f(x)$ 是单调增	加的奇函数,
(A)单调	周增加的奇函数	(B)单调减少的奇函	数	
常数)是该方程[(A) y ₁ (x)y ₁ (C) y ₁ (x)y	$y_2(x)$ 是方程 $y'' + p(y_2(x))$ 是方程 $y'' + p(y_2(x))$ 是方程 $y'_2(x) = y'_2(x) - y_1(x) y'_2(x) = y'_2(x) + y'_2(x) + y'_2(x) + y'_2(x) + y'_2(x) = y'_2(x) + y'_2(x) $	0 (B) y_1 (0 (D) y_2 ($x)y_1'(x) - y_2(x)y_2'(x) \neq 0$ $x)y_2'(x) - y_1(x)y_2'(x) \neq 0$	
(4) 设 y ₁ (x), y 常数) 是该方程[(A) y ₁ (x)y ₁ (C) y ₁ (x)y ₂ (5) 设 f(x, y) =	$y_2(x)$ 是方程 $y'' + p(y_2(x))$ 是方程 $y'' + p(y_2(x))$ 是方程 $y'_2(x) = y'_2(x) - y_1(x) y'_2(x) = y'_2(x) + y'_2(x) + y'_2(x) + y'_2(x) + y'_2(x) = y'_2(x) + y'_2(x) $	(x)y' + q(x)y = 0的两个特 是是 (). 0 (B) y_1 ($x)y_1'(x) - y_2(x)y_2'(x) \neq 0$ $x)y_2'(x) - y_1(x)y_2'(x) \neq 0$	
(4) 设 y ₁ (x), y 常数) 是该方程[(A) y ₁ (x)y ₁ (C) y ₁ (x)y ₂ (5) 设 f(x, y) =	$y_2(x)$ 是方程 $y'' + p(y_2(x))$ 是方程 $y'' + p(y_2(x))$ 是一个, $y_2(x)$ 是一个	(x)y' + q(x)y = 0的两个特 是 (). 0 (B) y_1 (0 (D) y_1 ($x)y_1'(x) - y_2(x)y_2'(x) \neq 0$ $x)y_2'(x) - y_1(x)y_2'(x) \neq 0$ 则 $g(0,0) = 0$ 是 $f_x'(0,0)$ 和	
(4) 设 y ₁ (x), y 常数)是该方程[(A) y ₁ (x)y ₁ (C) y ₁ (x)y ₂ (5) 设 f(x, y) = 的(). (A) 充分非必 (C) 充分必要	$y_2(x)$ 是方程 $y'' + p(y_2(x))$ 是方程 $y'' + p(y_2(x))$ 是一个, $y_2(x)$ 是一个	(x) y' + q(x) y = 0 的两个特定是(). (B) y ₁ (0 (D) y ₁ (0 (D) 处连续, (B) 必要非充分(D) 既然非充分	$x)y_1'(x) - y_2(x)y_2'(x) \neq 0$ $x)y_2'(x) - y_1(x)y_2'(x) \neq 0$ 则 $g(0,0) = 0$ 是 $f_x'(0,0)$ 和	
(4) 设 y ₁ (x), y 常数)是该方程[(A) y ₁ (x)y ₁ (C) y ₁ (x)y ₂ (5) 设 f(x, y) = 的(). (A) 充分非必 (C) 充分必要	$y_2(x)$ 是方程 $y'' + p(y_2(x))$ 是方程 $y'' + p(y_2(x))$ 是一个 $y_2(x)$ 是一	(x) y' + q(x) y = 0 的两个特定是(). (B) y ₁ (0 (D) y ₁ (0 (D) 处连续, (B) 必要非充分(D) 既然非充分	$x)y_1'(x) - y_2(x)y_2'(x) \neq 0$ $x)y_2'(x) - y_1(x)y_2'(x) \neq 0$ 则 $g(0,0) = 0$ 是 $f_x'(0,0)$ 和 条件 也非必要条件	
(4) 设 y ₁ (x), y 常数)是该方程[(A) y ₁ (x)y ₁ (C) y ₁ (x)y ₂ (5) 设 f(x, y) = 的(). (A) 充分非必 (C) 充分必要 (6) 设 D: x + .	$y_2(x)$ 是方程 $y'' + p(x)$ 同解的充分必要条件 $y_1'(x) - y_2(x)y_2'(x) = y_2'(x) - y_1(x)y_2'(x) = y_2'(x) - y_1(x)y_2'(x) = y_2'(x) - y_1(x)y_2'(x) = y_2'(x) + y_1(x)y_2'(x) = y_2'(x)y_2'(x) = y_2'($	(x)y' + q(x)y = 0的两个特 是 (). 0 (B) y_1 (0 (D) y_1 (0) (D) y_2 (0) 处连续, (B) 必要非充分 (D) 既然非充分	$x)y_1'(x) - y_2(x)y_2'(x) \neq 0$ $x)y_2'(x) - y_1(x)y_2'(x) \neq 0$ 则 $g(0,0) = 0$ 是 $f_x'(0,0)$ 和 条件 也非必要条件	

(A)
$$A^2\alpha + 2A\alpha - 3\alpha$$
 (B) $A^2\alpha + 3A\alpha$ (C) $A^2\alpha - A\alpha$

(B)
$$A^2\alpha + 3A\alpha$$

(C)
$$A^2 \alpha - A \alpha$$

得分	评卷人

二、填空题:(9)~(14)小题,每小题 4分,共24分.把答案填在题中的横线上.

(9)
$$\lim_{n \to \infty} \left(\cos \frac{\ln 3}{3} + \cos \frac{\ln 4}{4} + \dots + \cos \frac{\ln(n+2)}{n+2} \right)^{\frac{1}{n}} = \underline{\qquad}$$

(10)
$$\[\] \[\mathcal{G}'(u) = \ln(1+u^2), \[g(x) = f(\frac{2x-1}{2x+1}) \] \] \[\] \[$$

(12) 设曲线的参数方程为
$$\begin{cases} x = \sin t, \\ y = \ln \tan t + \cos t, \end{cases}$$
则对应于 $t \in [\frac{\pi}{6}, \frac{\pi}{2}]$ 的曲线弧长是______.

(13) 积分
$$\int_{-1}^{1} dy \int_{\sqrt{2-y^2}}^{1+\sqrt{1-y^2}} (\sqrt{x^2+y^2} + \sin^3 y) dx = \underline{\qquad}$$

(14) 已知三阶方阵 A,B 满足关系式 E+B=AB ,且 A 的三个特征值分别为 3,-3,0 则

三、解答题: (15)~(23)小题, 共 94 分.解答应写出必要的文字说明、证明过程或演算步骤。

(15) (**本题满分 10 分**) 设
$$f(x) = \begin{cases} e^x, x \le 0, \\ x^2, x > 0 \end{cases}$$
, 求极限 $\lim_{x \to 0^+} \left(\int_{-\infty}^x f(t) dt \right)^{\frac{1}{\tan x - \sin x}}$.

(16) (**本题满分 10 分**) 设曲线 y = y(x) 与直线 4x - 4y = 3 在点 $(1, \frac{1}{4})$ 处相切,且 y = y(x) 满足方程 $y'' = 6\sqrt{y}$, 求曲线 y = y(x) 在相应于 $x \in [-1,1]$ 的点 (x,y) 处的曲率.

(17)(**本题满分 10 分**) 设 f(u,v) 具有二阶连续偏导数,且 $z = f(xy, \frac{1}{2}(x^2 - y^2))$,求证关系式 $\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} = 1 \, \vec{\lambda} \vec{\Sigma}$.

(18) (**本题满分 10 分**) 由抛物线 $y = x^2$ 及直线 y = 0, x = 4 围成一个曲边三角形,在曲边 $y = x^2$ 上任 取一点 P, 过 P 作抛物线的切线,设切线与抛物线 $y = x^2$ 、直线 x = 4 及 x 轴所围成的面积为 A. (I) 求出点P的坐标使面积A取值最小,并求这个最小值:(II)求面积最小时的平面图形绕x轴旋转一周 所形成的立体体.

(19) (**本题满分 10 分**) 设函数 y = y(x) 是初值问题 $xy' - (2x^2 - 1)y = x^3$, y(1) = a 的解. (I) 求函 数 y(x) 的表达式; (II) 是否存在常数 a, 使得极限 $\lim_{x\to +\infty} \frac{y(x)}{x}$ 存在有限极限值, 若存在, 试求该极限 值.

(20) (**本题满分 11 分**) 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 $f(0)f(1) > 0, f(0)f(\frac{1}{2}) < 0$,证明: (I) 在(0,1) 内存在两个不同的点 ξ,η 使得

 $f(\xi) = f(\eta) = 0$; (II) $\exists \zeta \in (0,1)$ 使得 $f'(\xi) + \xi f(\xi) = 0$.

(21) (**本题满分 11 分**) 计算二重积分 $\iint_D x(y+1)d\sigma$, 其中积分区域 D 由 y 轴与曲线 $y=\sqrt{4-x^2}$, $y=\sqrt{2x-x^2}$ 围成.

(22)(**本題满分11分**)设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} a & 4 & 0 \\ -1 & 0 & c \\ 1 & b & 1 \end{pmatrix}$,(I)问 a,b,c 为何值时,矩阵方程 $\mathbf{A}\mathbf{X} = \mathbf{B}$

有解? (II) 有解时求出全部解.

(23) **(本题满分 11 分)**(I) 已知三元二次型 $\mathbf{x}^T A \mathbf{x}$ 的平方项系数均为 0,设 $\boldsymbol{\alpha} = (1,2,-1)^T$,且满足 $A \boldsymbol{\alpha} = 2 \boldsymbol{\alpha}$.(I) 求该二次型表达式; (II) 求正交变换 $\mathbf{x} = Q \mathbf{y}$ 化二次形为标准型,并写出所用坐标变换; (III) 若 $\mathbf{A} + \mathbf{k} \mathbf{E}$ 正定,求 \mathbf{k} 的取值范围.

2014 数学模拟试卷

合肥工业大学(共创)考研辅导中心 Tel: 0551-62905018

绝密★启用前

2014 年全国硕士研究生入学统一考试

数 学(二)

(科目代码:304)

(模拟试卷3)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

第1页共8页

www.hfutky.ent

2014 数学模拟试卷

合肥工业大学(共创)考研辅导中心

绝密★启用前

2014年全国硕士研究生入学统一考试

数学二(模拟三)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时. 答案必须写在答题纸上, 否则成绩无效

一、选择题: (1) ~ (8) 小题,每小题 4 分,共 32 分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的括号里.

- (1) 函数 $f(x) = \frac{x(1+x)e^{-\frac{1}{x^2}}}{\ln|x|}$ 的可去断点个数为().
- (2)设函数 y = f(x) 在 x = 1 处取得增量 Δx 时相应的函数值增量 $\Delta y = \Delta x + o(\Delta x)$,且 f(1) = 0,则当 $x \to 0$ 时 $\int_{0}^{e^{x^{2}}} f(t) dt$ 是 $\ln(1+x^{4})$ 的 ()。

- (A) 高阶无穷小 (B) 低阶无穷小 (C) 等价无穷小 (D) 同阶而非等价无穷小

Tel: 0551-62905018

- (3) 设 f(x) 在 x = 0 的某个邻域内二阶导数连续,且 f'(0) = 0, $\lim_{x \to 0} \frac{f'(x) + f''(x)}{\sin x} = 2$,则有()。
- (A) f(0) 是 f(x) 的极小值, 但点 (0, f(0)) 不是曲线 y = f(x) 的拐点
- (B) f(0) 是 f(x) 的极大值,但点 (0, f(0)) 不是曲线 y = f(x) 的拐点
- (C) f(0) 不是 f(x) 的极值, 但点 (0, f(0)) 是曲线 y = f(x) 的拐点
- (D) f(0) 不是 f(x) 的极值,且点 (0, f(0)) 也不是曲线 y = f(x) 的拐点
- (4) 设f(x)在 $(0,+\infty)$ 内为单调可导函数,它的反函数为 $f^{-1}(x)$,且f(x)满足等式

$$\int_{2}^{f(x)} f^{-1}(t) dt = \frac{1}{3} x^{\frac{3}{2}} - 9, \quad \text{If } f(x) = ()_{\circ}$$
(A) $\sqrt{x} - 1$ (B) $\sqrt{x} + 1$ (C) $2\sqrt{x} - 1$ (D) $2\sqrt{x} + 1$

- (5) 设在全平面上有 $\frac{\partial f(x,y)}{\partial x}$ < 0, $\frac{\partial f(x,y)}{\partial y}$ > 0,则保证不等式 $f(x_1,y_1)$ < $f(x_2,y_2)$ 成立的条件是

(A) $x_1 > x_2, y_1 < y_2$

(C) $x_1 > x_2, y_1 > y_2$

- (D) $x_1 < x_2, y_1 > y_2$
- (6) 设平面区域 $D: x^2 + y^2 = 1$, 记 $I_1 = \iint_D (x + y)^3 \, dx \, dy$, $I_2 = \iint_D \cos x^2 \cos y^2 \, dx \, dy$,

 $I_3 = \iint_{\Sigma} [e^{-(x^2+y^2)} - 1] dx dy$, 则有 (). $\text{(A)} \ I_1 < I_2 < I_3 \qquad \qquad \text{(B)} \ I_2 < I_1 < I_3 \qquad \qquad \text{(C)} \ I_3 < I_1 < I_2 \qquad \qquad \text{(D)} \ I_3 < I_2 < I_1 < I_2$

- (7) 设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是()

 - (A) $C^{T}AC$ (B) $A^{-1}+B^{-1}$ (C) $A^{*}+B^{*}$ (D) A-B

第2页共8页

www.hfutky.ent

2014 数学模拟试卷

合肥工业大学(共创)考研辅导中心

(8) 已知 5×4 矩阵 $\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4)$,若 $\boldsymbol{\eta}_1 = \begin{pmatrix} 3 & 1 & -2 & 1 \end{pmatrix}^T$, $\boldsymbol{\eta}_2 = \begin{pmatrix} 0 & 1 & 0 & 1 \end{pmatrix}^T$ 是齐次线性方 程组 Ax = 0 的基础解系,现有下列四个命题:

- (1) $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3$ 线性无关.
- (2) $\boldsymbol{\alpha}_1$ 可由 $\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性表出.
- (3) $\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 线性无关. (4) 秩 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1, +\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 \boldsymbol{\alpha}_4) = 3$.

上述四个命题中正确的是().

- (A) (1) (3) (B) (2) (4) (C) (2) (3) (D) (1) (4) \setminus

Tel: 0551-62905018

评卷人

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

(9)
$$\lim_{x \to +\infty} \left(\frac{x + \ln x}{x - 2 \ln x} \right)^{\frac{x}{\ln x}} = \underline{\qquad}.$$

(10) 设 y = y(x) 由 $(\cos x)^y = (\sin y)^x$ 确定,则 d y =_____.

(11) 设
$$x > 1$$
,那么曲线 $y = \frac{x^2 + x + 1}{\sqrt{x^2 - 1}}$ 的斜渐近线是______.

(12) 设
$$A > 0$$
, 点 a_n 满足等式 $\int_{a_n}^{+\infty} \frac{\mathrm{d} x}{x(\ln x)^{n+1}} = A(n = 1, 2, \cdots)$, 则 $\lim_{n \to \infty} a_n = \underline{\qquad}$.

(13) 微分方程
$$y'' + a^2 y = \frac{1}{2} \sin ax \ (a > 0)$$
 的通解是______.

(14)设 4 维向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\beta_1, \beta_2, \beta_3, \beta_4$ 均为非零向量,且均与 $\alpha_1, \alpha_2, \alpha_3$ 正交,则 $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\beta}_4) = \underline{\hspace{1cm}}$

三、解答题: 15~23 小题, 共94 分。解答应写出文字说明、证明过程或演算步骤。

(15) (本小题满分 10 分) 设函数 f(x) 在 x = 0 处二阶可导,且 $\lim_{x \to 0} \frac{\ln[1 + \sin \frac{f(x)}{x}]}{\sqrt{1 + 2x} - 1} = 1$,求 f''(0) 的 值.

(16) (本小题满分 10 分) 求
$$\int \frac{x \ln(x + \sqrt{1 + x^2})}{(1 - x^2)^2} dx$$
.

(17) (本小题满分 10 分) 设 f(x) 在 [0,1] 上有连续的导数,且 f(0)=1,证明: $\exists \eta \in [0,1]$ 使得 $f'(\eta) = 2 \int_0^1 f(x) dx - 2$.

(本小题满分 10 分) 高温物体的冷却速度遵循所谓的冷却定理: "物体冷却速度与该物体与周 围介质的温度差成正比". 设某物体开始温度为 $100^{\circ}C$,放在 $20^{\circ}C$ 的空气中,经过600秒后下降到 $60^{\circ}C$, 问从 $100^{\circ}C$ 下降到 $25^{\circ}C$ 需要多少时间?

(19) (本小题满分 10 分)设 $f(x,y) = 3x + 4y - ax^2 - 2ay^2 - 2bxy$, 试问参数 a,b 分别满足什么条件 时, f(x, y)有唯一极大值? f(x, y)有唯一极小值?

第3页共8页

2014 数学模拟试卷

合肥工业大学(共创)考研辅导中心

(20)(本小题满分11分)计算二重积分 $\iint_D (x+y)^2 \, \mathrm{d} \, x \, \mathrm{d} \, y$,其中 D 是由不等式 $x^2+y^2 \le 4$, $x^2+y^2 \ge 2y$ 确定的区域.

- (21) (本小题满分 11 分) 设 $f(x) = \int_0^{2x} \sqrt{2xt t^2} dt + \int_0^1 |x t| dt (x \ge 0)$ 。
- (I) 求 f(x) 在[0,+∞) 内的最小值; (II) 问 f(x) 在(0,+∞) 内是否有最大值? 为什么?
- (22)(本小题满分11分)已知1是3阶实对称矩阵A的一个特征值,且

$$A \begin{pmatrix} 1 & 2 \\ 2 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -4 \\ 0 & 4 \\ 0 & -2 \end{pmatrix}$$

- (I) 求矩阵 \boldsymbol{A} 的特征值和特征向量;(II)如果 $\boldsymbol{\beta} = \left(1,-1,5\right)^{\mathrm{T}}$,求 $\boldsymbol{A}^{n}\boldsymbol{\beta}$
- (23) (本小题满分 11 分) 已知齐次方程组 Ax = 0 为

$$\begin{cases} x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 = 0 \\ a_1 x_1 + 4 x_2 + a_2 x_3 + a_3 x_4 = 0 \\ 2 x_1 + 7 x_2 + 5 x_3 + 3 x_4 = 0 \end{cases},$$

又矩阵 \boldsymbol{B} 是 2×4 矩阵, $\boldsymbol{B}\boldsymbol{x} = \boldsymbol{0}$ 的基础解系为 $\boldsymbol{\alpha}_1 = (1, -2, 3, -1)^T$, $\boldsymbol{\alpha}_2 = (0, 1, -2, 1)^T$;

(I)求矩阵 \boldsymbol{B} ; (II)若 $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$ 与 $\boldsymbol{B}\boldsymbol{x}=\boldsymbol{0}$ 同解,求 a_1,a_2,a_3,a_4 的值 ; (III)求方程组 $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{0}$ 满足 $x_3=-x_4$ 所有解。

Tel: 0551-62905018