Tyler H. Chang

Argonne National Laboratory Mathematics & Computer Science (MCS) Division 9700 S. Cass Ave, Bldg. 240, Lemont, IL 60439 E-mail: tchang@anl.gov

Website: https://thchang.github.io GitHub: https://github.com/thchang

Technical Skills

Languages: Python, Fortran, C/C++, Java, Matlab

OS: MacOS, Unix/Linux

Markup: HTML/CSS, GNU Make, TeX/LaTeX/bibTeX, Markdown, reStructuredText, YAML, JSON Libraries: numpy, pandas, scipy, matplotlib, keras, pytorch, sklearn, PIL, OpenCV, MPI, OpenMP, CUDA,

BLAS, LAPACK

Tools/Frameworks: pytest, sphinx, PyPI/pip, conda-forge, slurm, git, CI/CD, GitHub Actions, GitFlow

Relevant Experience

Jun 2020 - Present. Postdoctoral appointee: Argonne National Laboratory, MCS Division

- Designed and implemented a Python framework for building and deploying multiobjective optimization solvers
- Deployed optimization solvers for particle accelerator design, chemical design (see projects), and computational physics

Aug 2016 - May 2020. Cunningham fellow: Virginia Tech, Dept. of Computer Science

- Designed parallel algorithms and software for predicive modeling, blackbox optimization, and computational geometry
- Applied solvers to model and tune HPC systems (see projects) to control performance variability

Jun 2019 - Dec 2019. SCGSR awardee: Argonne National Laboratory, MCS Division

• Conducting research in multiobjective optimization software via DOE SCGSR program (see awards)

Feb 2016 - Aug 2016. Research assistant: Old Dominion University, Dept. of Computer Science

• Aided in parallelizing NASA's FUN3D CFD kernel on NVIDIA GPUs using CUDA and MPI

Dec 2015 - Jan 2016. Intern: US Army Research Labs, Computational Science Division May 2015 - Aug 2015. Intern: US Army Research Labs, Computational Science Division

Accelerating software for real-time optimal control (summer) & using AR technology for info viz (winter)

Dec 2014 - Jan 2015. Intern: US Army Research Labs, Guidance Technology Branch May 2014 - Aug 2014. Intern: US Army Research Labs, Guidance Technology Branch

Using OpenCV for real-time sensing (summer) & developing software for embedded systems (winter)

Education

Ph.D., May 2020, Computer Science, Virginia Polytechnic Institute & State University (Virginia Tech)

Thesis: Math. Softw. for Multiobjective Optimization Problems; Outstanding Dissertation Award nominee

B.S., May 2016, Computer Science & Mathematics (double-major), Virginia Wesleyan University

• Summa cum laude; 2x ACM ICPC site champion; 8x Dean's list; 4x all-ODAC (conference) for varsity tennis

Relevant Projects

Oct 2021 - Present. Self-Driving Labs, automating material discovery via continuous-flow chemistry

- Used a Bayesian/active learning framework to steer an automated feed, CFR, and NMR in a user-free feedback loop
- Discovered ideal mixtures/settings to produce the battery electrolyte 2,2,2-TFMC in a continuous-flow reactor (CFR)

Sep 2016 - May 2020. The VarSys Project, NSF-funded study of performance variability in HPC systems

- Member of the math and algorithms team on an interdisciplinary project to model and control performance variability
- Tuned the Linpack solver on the leadership-class HPC Bebop, resulting in a 3x reduction in performance variability

Selected Publications (from over 24 total)

T. H. Chang and S. M. Wild. ParMOO: a Python library for parallel multiobjective simulation optimization. *Submitted to Journal of Open Source Software*, May 2022. JOSS Open Review: https://github.com/openjournals/joss-reviews/issues/4468.

2022. **T. H. Chang**, L. T. Watson, J. Larson, N. Neveu, W. I. Thacker, S. Deshpande, and T. C. H. Lux. Algorithm 1028: VTMOP: Solver for blackbox multiobjective optimization problems. *ACM Transactions on Mathematical Software* 48(3), Article 36, 34 pages.

2020. **T. H. Chang**, J. Larson, and L. T. Watson. Multiobjective optimization of the variability of the high-performance Linpack solver. *Proc. 2020 Winter Simulation Conference (WSC 2020)*, pp. 3081–3092. virtual event.

2020. **T. H. Chang**, L. T. Watson, T. C. H. Lux, A. R. Butt, K. W. Cameron, and Y. Hong. Algorithm 1012: DELAUNAYSPARSE: Interpolation via a sparse subset of the Delaunay triangulation in medium to high dimensions. *ACM Transactions on Mathematical Software* 46(4), Article 38, 20 pages.

2018. **T. H. Chang**, L. T. Watson, T. C. H. Lux, B. Li, L. Xu, A. R. Butt, K. W. Cameron, and Y. Hong. A polynomial time algorithm for multivariate interpolation in arbitrary dimension via the Delaunay triangulation. *Proc. 2018 ACM Southeast Conference (ACMSE '18)*, Article 12, 8 pages. Richmond, KY, USA.

Publicly Available Software

2022. ParMOO: Python library for parallel multiobjective simulation optimization. Release: 0.1.0

Devs: **T. H. Chang** (lead), S. M. Wild, and H. Dickinson Primary Prog. Lang: Python 3

git: https://github.com/parmoo/parmoo

2022. VTMOP: Solver for blackbox multiobjective optimization problems.

Devs: **T. H. Chang** (sole) Primary Prog. Lang: Fortran 2008

git: https://github.com/vtopt/VTMOP

2020. DelaunaySparse: Interpolation via a sparse subset of the Delaunay triangulation.

Devs: T. H. Chang (lead) and T. C. H. Lux Primary Prog. Lang: Fortran 2003

git: https://github.com/vtopt/DelaunaySparse

2019. **QAML**: Quantum annealing math library.

Devs: T. C. H. Lux (lead), T. H. Chang, and S. S. Tipirneni Primary Prog. Lang: Python 3

git: https://github.com/tchlux/qaml

Leadership Activities

Students Advised

Jun 2022 - Aug 2022. Manisha Garg (PhD student at UIUC), intern at Argonne via NSF MSGI program

Jun 2022 - Aug 2022. Hyrum Dickinson (undergrad at UIUC), intern at Argonne via DOE SULI program