МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Кафедра систем штучного інтелекту

Лабораторна робота №1

3 дисципліни

«Дискретна математика»

Виконала:

Студентка КН-113

Пеленська Софія

Викладач:

Мельникова Н.І.

Тема: «Моделювання основних логічних операцій»

Мета: Ознайомитись на практиці із основними поняттями математичної логіки , навчитись будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істинностні значення таблицями істинності , використовувати закони алгебри логіки , освоїти методи доведень .

Варіант №8

Завдання 1

Формалізувати речення. Людину не підкуплять лестощі , якщо розум у людини ϵ .

Нехай : q – підкуплять лестощі ;

p – розум ε ;

$$p \Rightarrow \neg q$$

Завдання 2

Побудувати таблицю істинності для висловлювань:

$$(x \lor (y \lor z)) \Rightarrow (\neg x \lor (\neg y \lor \neg z))$$

X	у	Z	(y ∨ z)	$(x \lor (y \lor z))$	(!y ∨ !z)	$(!x \lor (!y \lor !z)$	$(x \lor (y \lor z)) => (!x \lor (!y \lor z))$
0	0	0	0	0	1	1	1
0	0	1	1	1	1	0	1
0	1	0	1	1	1	0	1
0	1	1	1	1	0	0	1
1	0	0	0	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	0	0	0

Завдання 3

Побудовою таблиці істинності вияснити чи висловлювання ϵ тавтологіями або суперечностями :

$$\neg \left((p \Leftrightarrow q) \lor (q \Leftrightarrow r) \right) \land \neg \left(p \lor r \right)$$

1.
$$p \Leftrightarrow q = A$$

2.
$$q \Leftrightarrow r = B$$

3.
$$p \lor r = C$$

p	q	r	A	В	$A \vee B$! (A ∨ B)	С	!C	!(A ∨ B) ∧ !C
0	0	0	1	1	1	0	0	1	0
0	0	1	1	0	1	0	1	0	0
0	1	0	0	0	0	1	0	1	1
0	1	1	0	1	1	0	1	0	0
1	0	0	0	1	1	0	1	0	0
1	0	1	0	0	0	1	1	0	0
1	1	0	1	0	1	0	1	0	0
1	1	1	1	1	1	0	1	0	0

Отже, висловлювання ϵ нейтральним.

Завдання 4

За означенням без побудови таблиць істинності та виконання еквівалентних перетворень перевірити , чи ϵ тавтологіями висловлювання :

$$((p \Longrightarrow q) \land (q \Longrightarrow q)) \Longrightarrow p$$

Припускаємо , що формула не ϵ тавтологією .Оскільки остання операція , яка виконується , ϵ імплікація , то формула ϵ хибною , коли її ліва частина набуває значення True , а права — False :

$$((p \Rightarrow q) \land (q \Rightarrow q)) = T$$
$$p = F$$

Підставляємо р = F у ліву частину висловлювань, отримаємо :

$$((F \Rightarrow q) \land (q \Rightarrow q));$$

Так як
$$(q => q) = T$$
, то

$$(F \mathop{{=}{>}} q) \land T \mathop{{=}} F \mathop{{=}{>}} q$$
 (за законом тотожності)

 $(F \Rightarrow q) = T$, при будь-якому q, отже ліва частина = True, а права False.

Оскільки T => F = False , ми довели , що формула ε хибною , а отже не ε тавтологією .

Завдання 5

Довести, що формули еквівалентні:

$$q \wedge (p \Longrightarrow r)$$
 to $p \Longrightarrow (q \wedge r)$

q	p	r	(p => r)	$(q \land (p \Rightarrow r))$	$(q \wedge r)$	$(p \Longrightarrow (q \land r))$
0	0	0	1	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	1	1	1	1	1

За допомогою таблиць істинності , ми довели , формули не ϵ еквівалентними .

Додаток 2

Завдання: написати програму для реалізації програмного визначення значень таблиць істинності логічних висловлювань при різних інтерпретаціях , для формули : ($x \lor (y \lor z)$) => (¬ $x \lor (¬y \lor ¬z)$)

```
3 ▶ jint main() {
                   int x , y , z ; // оголошення змінних
  5
                   int x1, y1, z1; // оголошення змінних
                   bool rez; // оголошення змінної булевого типу
                   printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z))\n");
                   printf( format: "Enter x , y and z\n");
                   printf( format: "x = ");
  9
                   x1 = scanf(format: "%d",&x); // ввід користувачем першого числа
  10
                   printf( format: "y = ");
                  y1 = scanf(format: "%d",&y);// ввід користувачем другого числа
  12
                   printf( format: "z = ");
  13
                   z1 = scanf(format: "%d",&z);//ввід користувачем третього числа
  14
  15
```

```
if (((x==0)||(x==1)) && ((y==0)||(y==1)) && ((z==0)||(z==1))){

printf( format: "(y v z)=%d\n x v (y v z)=%d\n (!y v !z)=%d\n (!x v (!y v !z))=%d\n",y||z, x||(y||z),!y||!z ,|x||(!y||!z));

// виведення булевого значення для кожної частини складного висловлення
```

У рядках 19-41 за допомогою оператора if — else ϵ прописанш умови для кінцевого результату виразу та його вивід

```
19
                           if ((x==0) && (y==0) && (z==0)){
                                printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1\n");
20
  21
                           }
                           else if ((x==0) && (y==0) && (z==1)){
  22
  23
                                printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1\n");
  24
                           else if ((x==0) \&\& (y==1) \&\& (z==0)){
  25
                                printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1\n");
  27
                           else if ((x==0) && (y==1) && (z==1)){
  28
                                printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1\n");
  29
   31
                           else if ((x==1) && (y==0) && (z==0)){
  32
                                printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1\n");
                           else if ((x==1) && (y==0) && (z==1)){
                                printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1\n");
  36
  37
                           else if ((x==1) && (y==1) && (z==0)){
                                printf( format: (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1\n");
  39
                           else {printf( format: "(x v (y v z)) \Rightarrow (!x v (!y v !z)) = 0");
  40
                           }
  41
```

Результати:

```
(x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z))
                                                                   (x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z))
Enter x , y and z
                                                                   Enter x , y and z
x =0
 y = 1
                                                                   x = 5
 7 = 1
                                                                    y =0
 (y v z)=1
                                                                    z = 2
 x v (y v z)=1
 (!y v !z)=0
                                                                    Invalid input. Try again
 (!x v (!y v !z))=1
                                                                   n..... raudalia .dali ..da ..da .
(x \lor (y \lor z)) \Rightarrow (!x \lor (!y \lor !z)) = 1
```

Висновок:

Ми ознайомились на практиці із основними поняттями математичної логіки , навчились будувати складні висловлювання за допомогою логічних операцій та знаходити їхні істиностні значення таблицями істинності , використовувати закони алгебри логіки , освоїли методи доведень.