DE

DEUTSCHES PATENTAMT ② Aktenzeichen: ② Anmeldetag:

188 28 705.7

Offenlagungstag:

8. 7.86 15. 1.88

Anmelder:

Fresenius AG, 81440 Oberursel, DE

W Vertreter:

Uexküll & Stolberg, 22607 Hamburg

@ Erfinder:

Sommermeyer, Klaus, Dr., 81191 Rosbach, DE; Elchner, Wolfram, Dr., 35510 Butzbach, DE

Neue Sauerstoff-Transport-Mittel, diese enthaltende Hämoglobin-Hydroxyathylstärke-Konjugate, Verfahren zu deren Herstellung, sowie deren Verwendung als Blutersatzstoffe

Beschreibung

Die vorliegende Erfindung betrifft neue Sauerstoff-Transport-Mittel, die Hämoglobin-Hydroxyethylstärke-Konjugate enthalten, sowie Verfahren zu deren Herstellung. Die Erfindung betrifft ferner die Verwendung der Sanerotoff-Transport-Wittel als Blutersatzstoff, Plasma-Expander, Perfusionsmittel, Hämodilutionsmittel und/oder kardioplegische Lösung.

Die Entwicklung von stromsfreien Hämoglobin-Lösungen, sogenannten Hamoglobin-Based-Oxygen Carriers' (HOBC's), die als Blutersatzstoff verwendbar sind, ist seit langem ein vordringliches Ziel der pharmazeuti-

schen Forschung und Entwicklung.

Blutverlust, beispielsweise als Folge eines Unfalls 15 oder einer Operation, wird in den meisten Fällen mit einer allogenen Blutspende behandelt. Die damit assoziierten Probleme des unkontrollierten Transfers von pathogenen Organismen, insbesondere von Viren wie HIV oder Hepatitis-Erregern, sowie die Notwendigkeit der 20 Blutgruppentypisierung vor der Transfusion sind dem Fachmann seit langem bekannt und in der Literatur umfassend beschrieben.

Ein als vollwertiger Blutersatz verwendbares HBOC-Produkt würde nicht nur diese Probleme lösen, sondern 25 könnte darüber hinaus als Plasma-Expander, Perfusionsmittel, Hämodilutionsmittel und/- oder kardiople-

gische Lösung verwendet werden.

Obgleich der Bedarf an einem derartigen Produkt bereits frühzeitig erkannt wurde (vgl. Rabiner, J. Exp. Med. 126, (1987) 1127), hat bisher keines der bekannten HBOC-Produkte den Status eines zugelassenen Arzneimittels erreicht.

Das natürliche Sauerstoff-Transport-Mittel ist der Blutfarbstoff Hämoglobin, eln Chromoprotein mit elnem Molekulargewicht (MG) von 64 Kilodalton (kDa). Das Protein besteht aus zwei α- und β-Peptidketten, die als prosthetische Gruppe jeweils ein Häm gebunden haben. Dabei handelt es sich um einen Porphyrin-Ring mit zentralem Eisen-Atom. Isolierte Hümoglobin-Molehille sind sehr instabil und zerfallen rasch in die stabileren aß-Dimere (MG 32 kDa). Die biologische Halbwertszeit von isoliertem Hämoglobin im Bluthreislauf llegt bei etwa 1 Stunde, da die Dimere schnell über die Nieren ausgeschieden werden. Dabei erzeugen die Di- 45 gebunden wird. mere nephrotoxische Nebenwirkungen (vgl. Bunn & Jandl, J. Exp. Med. 129, (1967) 925-934).

Die zunächst entwickelten HBOC-Produkte besaßen zudem ein nephrotoxisches Potential, das auf Verunreinigungen der Produkte mit zellulären Bestandteilen zu- 50 rückgeführt wurde (vgl. Relihan, Ann. Surg. 176, (1972)

700).

٠..

Ferner fehlt einer isolierten Hämoglobin-Zusammensetzung das 2,3-Diphosphoglycerat (2,3-DPG), welches den natürlichen, allosterischen Aktivator der Sauer- 33 stoffbindung darstellt. Daraus resultiert eine gesteigerte Sauerstoff-Bindungsaffinität des isolierten Hämoglobins und, damit einhergehend, ein verringertes Sauerstoff-Freisetzungsvermögen derartiger Zusammensetzingen.

Entwicklungsarbeiten an derivatisierten Hämoglobin-Molekillen waren daher in erster Linie darauf gerichtet, deren Sauerstoffsbertragungseigenschaften zu verbessern, sowie die nephrotoxischen Symptome zu umgehen. Dabei wurde Hilmoglobin intramolekular 69 vernetzt, zur Bildung von polymeren HBOC-Formen intermolekular verknilpft und/oder an Polymere gekoppelt, um konjugierte HBOC-Formen zu schaffen.

Die Vernetzung von Hämoglobin mittels bi- oder polyfunktionaler Vernetzungsmittel kann selektiv oder nicht-selektiv erfolgen. Bei einer Form der selektiven Vernetzung werden zwei Proteinketten des Hämoglobins intramolekular miteinander verbunden, wodurch die natürliche tetramere Form des isolierten Hämoglobin-Molekfils stabilisiert wird. Durch Auswahl eines geeigneten Vernetzungsmittels kann die Sauerstoff-Affinitilt des Hämoglobins ferner so eingestellt werden, daß vernetztes Hilmoglobin unter physiologischen Bedingungen Sauerstoff reversibel binden kann. Beispiele für derartige Vernetzungsmittel sind Pyridoxalphosphat und Diaspirin sowie deren Derivate. Verfahren zur Vernetzung von Hämoglobin werden beispielsweise in Benesch (Meth. Enzymol, Vol. 231 (1994), 267-274), Keipert et al (Transfusion, Vol. 29 (1989), 767-773), Snyder et al (Proc. Natl Acad Sci. USA, 84 (1987), 7280-7284) und in Rogers et al. (Biochim. et Biophys. Acta, 1248 (1995), 135—142) beschrieben.

Bei einer nicht-selektiven Vernetzung entstehen intermolekular vernetzte, połymere HBOC-Produkte. Entsprechende Vernetzungsmittel und Verfahren zu deren Verwendung werden beispielsweise in DE-26 07 706, EP-0 646 130 und Hai et al (Art. Cells, Blood Subs. and Immob. Biotech, 22(3) (1994), 923-931) beschrieben. Einen Überblick über verschiedene Hamoglobin-Derivate und die mit dem klinischen Einsatz verbundenen Probleme geben die Veröffentlichungen von Gould et al., Transfus. Sci. 16, (1995) 5-17, und Chang et al, Biomat, Art. Cells & Immob. Biotech, 20, (1992)

159—179.

Bekannte Hämoglobin-Konjugate werden umfassend in Xue und Wong (Meth. in Enzymol, 231 (1994), S. 308-322) und beispielsweise in DE 26 16 086 oder DE 26 46 854 beschrieben. Letztere offenbart Verfahren mittels derer Hämoglobin an Hydroxyethylstärke gebunden wird, indem Hydroxyethylstürke zunächst mit Natriumperiodat umgesetzt wird. Dabei entstehen Dialdehyde, an die Hilmoglobin gebunden wird. Demgegenüber beschreibt die DE 26 16 086 die Kopplung von Hämoglobin an Hydroxyethylstärke nach einem Verfahren, bei dem zunächst ein Vernetzungsmittel (z. B. Bromcyan) an die Hydroxyethylstärke gebunden wird und anschließend Hämoglobin an das Zwischenprodukt

Die Sauerstoff-Bindungsaffinität der Hämoglobin-Derivate hängt neben der Auswahl von geeigneten Vernetzungs- und/oder Polymerisationsmitteln auch vom Liganden der Häm-Gruppe während der Vernetzung und/oder Polymerisation ab. Oxy-Hamoglobin oxidiert schnell zu Met-Hämoglobin (Fe-III), welches eine zu hohe Sauerstoff-Bindungsaffinität besitzt, um als Sauerstoff-Transport-Mittel geeignet zu sein. Daher wurden die genannten Verfahren zur Herstellung von HBOC-Derivaten auch mit Desoxy-Hämoglobin durchgeführt

(vgl Benesch, R. E. a.a.O.)

Die bisherigen Verfahren zur Herstellung von vernetzten und/oder konjugierten HBOC-Produkten ermöglichten jedoch keine selektive Bindung von Hämoglobin an das jeweilige Polymer. Es entstand in allen Verfahren ein Gemisch von Co-Polymeren, dessen Bestandteile unterschiedliche biologische Aktivitilten aufwiesen. Das Reaktionsprodukt, bzw. die Zusammensetzung der Mischung konnte bislang nur grob charakterisiert werden. Sowohl die höhermolekularen Produkte (MG > 500 kDa) als such residuale, tetramere Formen führten zu toxischen Nebenwirkungen. Die Entfernung der jeweiligen nieder- und/oder hochmolekularen An-

4

teile aus den HBOC-Produkten, zum Beispiel durch zusätzliche Filtrationsschritte, bedingt beträchtliche Ausbeuteverluste, wodurch die Wirtschaftlichkeit der Herstellungsverfahren erheblich verschlechtert wird.

Die bisher getesteten HBOC-Produkte wiesen zusätzlich vaskuläre Nebenwirkungen auf, die nach neuesten klinischen Studien auf niedermolekulare, d. h. im wesentlichen tetramere HBOC-Formen zurückzuführen sind (vgl. Gould et al. a.a.O., und Alayash & Cashon, Molecular Medicine Today, 1, (1995) 122-127). Diese niedermolekularen HBOC-Formen sind in der Lage, aus dem Blutkreislauf in die endothelialen Zellagen der Blutgefäße überzutreten. Die hohe Bindungsaffinität des Hāmoglobin für das Stickoxid (NO, auch bekannt als Endothelial-Derived Relaxing Factor, EDRF) führt dazu, daß sich die frei verfügbare NO-Menge in diesem Gewebe nach Applikation von HBOC-Derivaten drastisch reduziert. Als Folge der lokalen Verringerung der NO-Konzentration entsteht eine systemische Vasokonstriktion, die zu Hypertonie führt.

Jia et al. (Nature, 380, (1996) 221—226) schreiben dem Hämoglobin sogar eine zentrale Rolle in der Regulation des NO-Kreislaufs zu. Demnach wird Hämoglobin in der Lunge kooperativ oxygeniert und S-nitrosiliert. Die NO-Gruppe wird während des arterio-venösen Übergangs auf andere Proteine übertragen, welche dadurch eine NO-ähnliche, gefäßerweiternde Aktivität erlangen. Vernetzte HBOC-Produkte besitzen jedoch in der Re-

gel keine kooperativen Eigenschaften mehr.

÷...

Filne weitere toxische Aktivität der bisher getesteten HBOG-Produkte wurde u. z. von Alayash und Cashom beschrieben (vgl. Molec. Med. Today, (1995) a.a.O.). Demnach sind Hämoglobin-Moleküle außerhalb der Erythrozyten an Redoxreaktionen beteiligt, in deren Verlauf hochreaktive Hämoglobin- und Sauerstoff-Spezies entstehen, die u. a. für Lipid-Peroxidation verantwortlich gemacht werden.

Um die toxischen Nebenwirkungen der bislang getesteten HBOC-Produkte zu unterbinden, wurden Applikationsformen entwickelt, bei denen Hämoglobin in Liposomen verpackt wird, wodurch künstliche, Erythrozyten-ähnliche Transportorganellen für Hämoglobin entstehen (vgl. Rudolph et al., Crit. Care Med. 22, (1994)

142—150). Der hohe Eintrag von Phospholipiden in den Blutkreislauf ist jedoch mit einem weiteren Risiko für die Patienten verbunden.

Zusammenfassend kann sestgehalten werden, daß die bisher getesteten HBOC-Produkte keine Arzneimittelzulassung erhalten haben, da deren klinische Verwendung als Sauerstoff-Transport-Mittel bisher durch eine so unzureichende Verträglichkeit verhindert wurde.

Aufgabe der vorliegenden Erfindung war es daher, ein Sauerstoff-Transport-Mittel zur Verfügung zu stellen, welches als Blutersatzutoff klinisch verwendbar ist. Eine weitere Aufgabe dieser Erfindung liegt in der Bereitstellung eines geeigneten Herstellungsverfahrens für das erfindungsgemäße Sauerstoff-Transport-Mittel

Diese Aufgabe wird durch ein Sauerstoff-Transport-Mittel gelöst, welches ein Hämoglobin-Hydroxyethylstärke-Konjugat enthält, in dem Hämoglobin und die Hydroxyethylstärke selektiv über Amidbindungen zwischen freien Aminogruppen des Hämoglobins und in oxidierter Form vorliegenden reduzierenden Endgruppen der Hydroxyethylstärke miteinander verknüpft sind.

Es hat sich überraschenderweise gezeigt, daß erfindungsgemäße Hämoglobin-Hydroxyethylstärke-Konjugate hervorragend als Sauerstoff-Transport-Mittel

geeignet sind, da diese besonders gut verträglich sind. Das Mittel weist eine Sauerstoffbindungsaffinität auf, die eine reversible Sauerstoff-Bindung unter physiologischen Bedingungen ermöglicht (Pso von 20 bis 50 mm Hg). Das Hämoglobin-Hydroxyethylstärke-Konjugat ist zu groß, um in die endothelialen Zellagen der Blutgefäße einzudringen, und verursacht daher keine hypertonischen Nebenwirkungen. Das Sauerstoff-Transport-Mittel enthalt weder antigene noch pyrogene Bestandteile und verursacht auch keine nephrotoxischen Nebenwirkungen.

Erfindungsgemäß wurde überraschenderweise sestellt, daß die vorteilhaften rheologischen Eigenschaften, die Hydroxyethylstärke zu einem bevorzugten Mittel für die Hämodilution und zum Volumenersatz gemacht haben (vgl. Weidler et al., Arzneim-Forschung/Drug Res., 41, (1991) 494—498), in dem Konjugat erhalten bleiben. Die gute Verträglichkeit des Sauerstoff-Transport-Mittels begründet sich somit auch durch eine überraschende Kombination der vorteilhaften Sauerstoff-Transport-Eigenschaften des Hämoglobins und der Hämodilutions-Eigenschaften der Hydroxyethylstärke.

Das Sauerstoff-Transport-Mittel weist eine lange vaskuläre Persistenz auf und die Molekülobersläche des
Hämoglobins wird durch Substituenten abgeschirmt.
Überraschenderweise wurde festgestellt, daß das Hämoglobin im erfindungsgemäßen Hämoglobin-Hydroxyethylstärke-Konjugat durch diesen Abschirmeffekt daran gehindert wird, an toxischen Redoxreaktionen teilzunehmen.

Ein weiterer Vorteil des erfindungsgemäßen Sauerstoff-Transport-Mittels besteht darin, daß Hydroxyethylstärke und Hämoglobin als Konjugat gleichzeltig in hohen Konzentrationen verabreicht werden können, ohne daß dadurch der kolloid-osmotische Druck erhöht wird.

Das Sauerstoff-Transport-Mittel enthält das Hämoglobin-Hydroxyethylstärke-Konjugat in einer Konzentration zwischen 2 und 20 g/dL, bevorzugt in einer Konzentration zwischen 5 und 15 g/dL und besonders bevorzugt in einer Konzentration von 10 g/dL. Das Sauerstoff-Transport-Mittel kann ferner bekannte physiologisch verträgliche Träger, Verdünnungsmittel oder Exzipienten enthalten.

Im Rahmen der vorliegenden Erfindung wird zur Herstellung des Hämoglobin-Hydroxyethylstärko-Konjugates bevorzugt stroma-freies, gereinigtes und pasteurisiertes Hämoglobin verwendet, das nach im Stand der Technik umfassend beschriebenen Verfahren gewonnen werden kann. Das Hämoglobin kann vernetzt und/oder polymerisiert sein. Das Hämoglobin kann menschlichen, tierischen oder rekombinanten Ursprungs sein. Im Rahmen der vorliegenden Erfindung wurde überraschenderweise festgestellt, daß die Abschirmeffekte der Hydroxyethylstärke immunologische Komplikationen verhindern, die bei der Verwendung von tierischem Hämoglobin zu erwarten wären. Eine bevorzugte Ausführungsform der Erfindung betrifft daher ein Sauerstoff-Transport-Mittel, welches ein Hämoglobin-Hydroxyethylstärke-Konjugat enthält, in dem das Hämoglobin tierischen Ursprungs ist. Das Hämoglobin kann beisplelsweise bovinen, porcinen oder equinen Ursprungs sein. Gemäß einer besonders bevorzugten Ausführungsform der Erfindung wird für die Herstellung des Hämoglobin-Hydroxyethylstärke-Konjugates bovines Hamoglobin verwendet, das in isolierter Form auch ohne Vernetzung die bevorzugte Sauerstoff-

6

Bindungsaffinität aufweist.

Sofern humanes Hamoglobin verwendet wird, sollte dieses mittels Vernetztung und/oder Polymerisation in der tetrameren Form stabilisiert werden. Durch Vernetzung und/oder Polymerisation wird humanes Hāmoglobin gleichzeitig zur reversiblen Sauerstoff-Bindung unter physiologischen Bedingungen befähigt. Dem Fachmann sind eine Vielzahl von Verfahren zur Vernetzung oder Polymerisation bekannt. Erfindungsgemäß kann ein beliebiges Verfahren verwendet werden, sofern das 10 Hämogiobin dabei stabilisiert wird und die gewünschte Sauerstoff-Afflnität (Pso von 20 bis 50 mm Hg) erhält. Bevorzugte Vernetzingsverfahren umfassen die intramolekulare Vernetzung mit bis-pyridoxal-Tetraphosphat (vgl. Keipert et al, Transfusion, Vol. 29 (1989), 15 767-773) odar Diaspirin (vgl. Snyder et al., Proc. Natl. Acad Sci USA, 84 (1987), 7280-7284) oder eine Vernetzung und Polymerisation mit Raffinose (vgl. EP-0 646 130).

Gemäß einer besonders bevorzugten Ausführungs- 20 form der Erfindung liegt das Hämoglobin vor der Kopplung an die Hydroxyethylstärke in desoxygenierter oder teilweise desoxygenierter Form vor. Bei teilweise desoxygenierten Formen sind Zusammensetzungen bevorzugt, die zu 50 bis 80% aus Desoxy-Hämoglobin und 25 zu 20 bis 50% aus Oxy-Hämoglobin bestehen.

Für die Herstellung des Konjugates wird vorzugsweise Hydroxyethylstärke verwendet, die ein mittleres Molekulargewicht von 5 bis 40 kDa aufweist, wobei Hydroxyethylstärke mit einem mittleren Molekulargewicht von 5 bis 20 kDa besonders bevorzugt ist. Bevorzugte Hydroxyethylstärke ist ferner durch einen molaren Substitutionsgrad von 0,1 bis 0,8 und ein Verhältnis von C2:C6-Substitution im Bereich von 2 bis 20 charakterisiert.

Erfindungsgemäß bevorzugte Hydroxyethylstärke kann durch Säurehydrolyse, beispielsweise mit HCl, aus einer im Handel (Sigma) erhältlichen Hydroxyethylstärke mit vergleichsweise höherem Molekulargewicht gewonnen werden. Die Hydroxyethylstärke wird anschließend mittels Acetonfällung gereinigt.

Das Molekulargewicht des erstedungsgemäßen Hämoglobin-Hydroxyethylstärke-Konjugates hängt von
dem Molekulargewicht oder der Molekulargewichtsverteilung des eingesetzten Hämoglobins, der Molekulargewichtsverteilung der eingesetzten Hydroxyethylstärke und der Auswahl der Reaktionsbedingungen ab.
Brindungsgemäß werden Hämoglobin-Hydroxyethylstärke-Konjugate bevorzugt, deren Molekulargewicht
zwischen 100 und 700 kDa liegt, wobei ein Molekulargewicht zwischen 200 und 300 kDa besonders bevorzugt
ist.

Im Rahmen der vorliegenden Erfindung wurde festgestellt, daß die bekanntermaßen stabilisierende Wirkung von Sacchariden auf Hämoglobin (vgl. Rudolph, 55
Cryobiology, 25, (1988) 1—8) auch von der Hydroxyethylstärke des Konjugates ausgeht, wenn kurzkettige
Hydroxyethylstärke verwendet wird. Erfindungsgemäße Sauerstoff-Transport-Mittel weisen gegenüber unmodifizierten HBOC-Produkten somit eine verbesserte so
Lagerstabilität bei 4°C und bei Raumtemperatur auf.
Damit ist das Sauerstoff-Transport-Mittel überraschenderweise selbst zum Träger der vorteilhaft stabilisierenden Eigenschaften der Saccharide geworden.

Gegenstand der vorliegenden Erfindung sind auch die 65 Verfahren zur Herstellung der Sanerstoff-Transport-Mittel, die ein Hämoglobin-Hydroxyethylstärke-Konjugat enthalten. Diese Verfahren ermöglichen erstmals

eine selektive Bindung von Hämoglobin an Hydroxyethylstärke, wodurch ein Sauerstoff-Transport-Mittel entsteht. Das Konjugat wird in einem mehrstufigen Verfahren hergestellt, bei dem man die reduzierenden Endsgruppen von Hydroxyethylstärke zunächst oxidiert und
anschließend Hämoglobin über freie Aminogruppen
mittels Amidbindungen an die oxidierten Endgruppen
der Hydroxyethylstärke koppelt.

Als Ausgangsmaterial für das Verfahren wird vorzugsweise Hydroxyethylstärke mit einem mittleren Molekulargewicht von 5 bis 40 kDa verwendet, besonders bevorzugt ist Hydroxyethylstärke mit einem mittleren Molekulargewicht von 5 bis 20 kDa. Bevorzugte Hydroxyethylstärke ist ferner durch einen molaren Substitutionsgrad von 0,1 bis 0,8 und ein Verhältnis von C2:C6-Substitution im Bereich von 2 bis 20 charakterisiert.

Im Rahmen der Erfindung wird für die Herstellung des Sauerstoff-Transport-Mittels bevorzugt stromafreies, gereinigtes, pasteurisiertes, vernetztes und/oder polymerisiertes Hämoglobin verwendet. Das Hämoglobin kann dabei menschlichen, tierischen oder rekombinanten Ursprungs sein. Im Rahmen der vorliegenden Erfindung wird bovines Hämoglobin bevorzugt, da es in isolierter Form eine Sauerstoff-Bindungsaffmität aufweist, die eine reversible Sauerstoff-Bindung unter physiologischen Bedingungen ermöglicht.

Nach einem bevorzugten Verfahren der Ersindung werden die reduzierenden Endgruppen der Hydroxyethylstärke oxidiert, indem man die Hydroxyethylstärke zunächst mit einer Iod enthaltenden Lösung vermischt und danach Kaliumhydroxyd-Lösung dazugibt.

Nach einem weiteren bevorzugten Verfahren der Erfindung wird das Hämoglobin in einem zweiten Schritt an die oxidierten Endgruppen von Hydroxyethylstärke gebunden. Die Reaktion kann beispielsweise durch Vermischen der Einzelkomponenten bei 40°C durchgeführt werden. Dabei kommt es zu einer nukleophilen Substitutionsreaktion zwischen einer freien Aminogruppe des Hämoglobins und dem Lacton der Hydroxyethylstärke, wobei eine Amidbindung entsteht, durch die Hämoglobin an die oxidierte reduzierende Endgruppe der Hydroxyethylstärke gebunden wird.

Erfindungsgemäß hat es sich demgemäß überraschenderweise gezeigt, daß nach dem Verfahren von Hashimoto et al. (Kunststoffe, Kantschuk, Fasern, 9, (1992) 1271—1279) zur Herstellung von Block-Copolymeren aus Polysacchariden und Polyamiden, Hämoglobin so an oxidierte Hydroxyethylstärke gebunden werden kann, daß ein besonders verträgliches Sauerstoff-Transport-Mittel entsteht. Unter Verwendung der erfindungsgemäßen Lehre läßt sich die Synthese eines Hämoglobin-Konjugates enstmals soweit kontrollieren, daß tetramere Hämoglobin-Formen an Hydroxyethylstärke gebunden werden, ohne daß ein nennenswerter Anteil an hochmolekularen Hämoglobin-Formen entsteht.

Gemäß einer bevorzugten Ausführungsform der Erfindung werden die Reaktionsbedingungen so ausgewählt, daß ein Hämoglobin-Hydroxyethylstärke-Konjugat entseht, das ein Molekulargewicht zwischen 100 und
500 kDa aufweist, wobei ein Molekulargewicht zwischen 200 und 300 kDa besonders bevorzugt ist.

Nach dem erfindungsgemäßen Herstellungsverfahren erfolgt eine annähernd quantitative Umsetzung des Hämoglobins mit der Hydroxyethylstärke. Es verbleiben somit auch kaum niedermolekulare Hämoglobin-Formen im Reaktionsansatz, wobei ein Gehalt von we-

niger als 5% an nicht konjugierten Hämoglobin-Formen bevorzugt ist. Demgemäß werden in einer weiteren bevorzugten Ausführungsform der Erfindung nach der Kopplung von Hämoglobin und Hydroxyethylstürke keine aufwendigen Reinigungsverfahren benötigt, um

das gewünschte Reaktionsprodukt zu isolieren. Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung liegt das Hämoglobin vor der Kopphing an die Hydroxyethylstlirke entweder in vollständig desoxygenierter oder teilweise desoxygenierter Porm vor. Bei einer teilweise desoxygenierten Form sind Zusammensetzungen bevorzugt, die zu 50 bis 80% aus Desoxy-Hāmoglobin und zu 20 bis 50% aus Oxy-Hāmoglobin bestehen. Die Desoxygenierung des Hämoglobins kann mittels belieblger chemischer oder physikalischer Verfahren erfolgen. Dabei wird Hämoglobin entweder mit chemischen Reduktionsmitteln wie Na-Ascorbat, Glutation, N-Acetyl-Cystein oder N-Acetyl-Methionin versetzt oder mittels einer Gas-durchiässigen Membran gegen mertes Gas, wie N2 He oder Ar, 20

In einem besonders bevorzugten Verfahren wird Cystein als Reduktionsmittel verwendet. Die Reduktion wird durchgeführt, bis der Oxy-Hämoglobin-Gehalt weniger als 5% beträgt, wobei ein Gehalt von weniger als 25 1% bevorzugt ist. Der Gehalt an Met-Hämoglobin sollte weniger als 3% betragen, wobei ein Gehalt von weniger als 0,5% bevorzugt ist.

Gemäß einer weiteren besonders bevorzugten Ausführungsform der Erfindung wird für die Herstellung 30 des Hamoglobin-Hydroxyethylstärke-Konjugates eine Hämoglobin-Lösung verwendet, in der das Hämoglobin zu 50 bis 80% aus Desony-Hämoglobin und zu 20 bis 50% aus Oxy-Hämogiobin besteht. Zur Herstellung einer derartigen Hilmoglobin-Lösung kann Oxy-Hämo- 35 vorzugt. globin teilweise desoxygeniert werden oder Desoxy-Hamogiobin teilweise oxygeniert werden. Der Gas-Austausch kann dabei nach beliebigen Stand der Technik beschriebenen Verfahren durchgeführt werden. Bevorzugte Verfahren umfassen die Begasung einer De- 40 soxy-Hamoglobia-Lösung mit Sauerstoff oder mit einem Gan, das Sauerstoff enthält, oder eine chemische Teil-Reduktion des Oxy-Hämoglobins mit einem Reduktionsmittel, wie beispielsweise Na-Dithionat, Na-Ascorbat oder Na-Bisuifith

Nach Abschluß der Reaktion kann des Reduktionsmittel beispielsweise durch Ultrafiltration abgetrennt werden. In einer bevorzugten Ausführungsform der Erfindung wird die Ultrafiltration mittels einer Membran mit einer Ausschlußgrenze von 30 bis 50 kDa durchgeführt, so daß gleichzeitig mit dem Cystein dimerisierte Hämoglobin-Moleküle entfernt werden.

Nach einem besonders bevorzugtem Verfahren der Erfindung wird das Hāmoglobin anschließend unter Nz-Begasung lyophilislert

In einer weiteren besonders bevorzugten Ausführungsform der Erfindung wird Hydroxyethylstärke an den reduzierenden Endgruppen selektiv oxidiert, indem eine wäßrige Lösung aus fraktionierter Hydroxyethyistärke (MG ≤ 10 kDa) zunächst mit einer 0.1 N lodlö- 80 Verwendung der erfindungsgemäßen Sauerstoff-Transratur (RT) 0.1 N KOH Lösung zugegeben, bis die vom Jod stammende Purbe verschwindet. Dieser Schritt wird einmal wiederholt und die Mischung anschließend für weitere 30 min gerührt. Danach wird die Lösung einer 63 Dialyse unterworfen, wobei die Dialysemembran ein Ausschlußvolumen von etwa 9 kDa aufweist. Nach chromatographischer Reinigung durch eine Kationen-

Austauscher Säule wird die Lösung lyophilisiert. Gemäß einer weiteren besonders bevorzugten Ausführungsform der Erfindung erfolgt die Bindung des Hamoglobins on die selektiv oxidierte Hydroxyethylstärke, indem Hämogiobin zunächst in DMSO aufgenommen und in eine Dreihals-Rundbodenflasche überführt wird. Dazu wird bei 40°C langsam eine in DMSO aufgenommene Lösung zu einer nach obigen Verfahren oxidierten Hydroxyethylstärke gegeben. Nach 25-stündigem Rühren bei 40°C wird der Rückstand über Gelpermeationschromatographie (GPC) und Ultrafiltration gereinigt und so vom Lösungsmittel befreit. Die MG-Zunahme der Hämoglobinpraparationen wurde mit Hilfe der GPC anhand von gebräuchlichen Standards dokumentiert.

Die Erfindung betrifft ebenfalls Sauerstoff-Transport-Mittel, die Hydroxyethylstärke-Hämoglobin-Konjugate und Albumin enthaiten. Das Albumin kann dabei menschlichen, tierischen oder rekombinanten Ursprungs sein und wird bevorzugt als wäßrige Lösung eingesetzt. Das Sauerstoff-Transport-Mittel enthält Albumin bevorzugt in einer Konzentration von zwischen 2 und 20 g/dL, wobei Konzentrationen zwischen 5 und 15 g/dL bevorzugt sind.

In arfindungsgemil bevorzugten Sauerstoff-Transport-Mitteln kann das Gewichtsverhältnis von dem Hämoglobin-Hydroxyethylstärke-Konjugat zu Albumin von 1:10 bis 4:1 betragen. Da das Albumin wesentlich preiswerter ist els das Konjugat und zur Erzielung des gewünschten osmotischen Druckes in dem Sauerstoff-Transport-Mittel verwendet werden kann, sind Sauerstoff-Transport-Mittel mit einem vergleichsweise hohen Anteil an Albumin und einem geringen Anteil an Hämoglobin-Hydroxyethylstärke-Konjugaten besonders be-

Die Erfindung betrifft ferner Sauerstoff-Transport-Mittel, die Hämoglobin-Hydroxyethylstärke-Konjugate und Albumin enthalten, und eine besonders gute vaskuläre Verträglichkeit aufweisen. Gemäß einer besonders bevorzugten Ausführungsform der Erfindung werden dafür die beschriebenen Konjugate mit Albumin, vorzugsweise mit humanem Serumalbumin vermischt, welches zuvor mit Stickstoffmonoxid gesüttigt wurde. Hämoglobin und Albumin besitzen die Eigenschaft NO in N-Nitroso-Form zu komplexieren (vgl. Keaney et al., J. Clin. Invest., 91, (1993) 1582—1589). Vernetzte HBOC-Produkte besitzen in der Regel keine kooperativen Eigenschaften mehr. Daher fehlt ihnen die Fähigkeit zur kooperativen NO-Bindung. Im Rahmen der vorliegenden Erfindung wurde überraschenderweise gefunden, daß dieser Mangel der Hämoglobin-Hydroxyethylstärke-Konjugate kompensiert werden kann, indem ein Sauerstoff-Transport-Mittel verwendet wird, das neben dem Konjugat eine Albuminlösung enthält, die NO 55 komplexiert hat. Dabei erfolgt die Sättigung von Albumin mit NO durch Begasen einer Albuminlösung mit NO unter Sauerstoff-Ausschluß, Die vaskuläre Verträglichkeit des Produkts wird dadurch weiter verbessert.

Die vorliegende Erfindung betrifft insbesondere die portmoleküle und der Zusammensetzungen aus den Hämoglobin-Hydroxyethylsturke-Konjugaten und Albumin als Blutersatzstoff, Plasma-Expander, Perfusionsmittel, Hämodilutionsmittel und/oder als kardioplegische Lösung.

5

Herstellung eines Hämoglobin-Hydroxyethylstärke Konjugates

A. Oxidation der reduzierenden Endgruppen von Hydroxyethylstilrke

Zu einer in weniger als 3 ml deionisiertem Wasser aufgenommenen Lösung fraktionierter Hydroxyethyl- 10 stärke (MG ≤ 10 kDa; ca. 5 g) wurden zunächst tropfenweise 2 ml einer 0.1 N lodlösung gegeben. Anschließend wurde bei Raumtemperatur (RT) 0.1 N KOH Lösung zugegeben, bis die vom Jod stammende Farbe verschwand Durch Wiederholung des o.a. Schrittes wurden 15 14 ml Jodlösung und 23 ml KOH-Lösung zu dem Reaktionsansatz gegeben und die Mischung anschließend für weitere 30 min gerührt. Danach wurde die Lösung einer Dialyse mit einem Ausschlußvolumen der Dialysemembran von etwa 9 kDa unterworfen. Nach chromatogra- 20 phischer Reinigung an einer Kationen-Austauscher Säule (Amberlite IR-120) wurde die Lösung lyophilisiert. Die Ausbeute lag in einer Größenordnung von

R.1 Desoxygenierung von Hämoglobin durch Begasen

Bovines Hämoglobin (Biopure, Boston, USA) in einer Konzentration von 6 g/dL in 0,5 M NaCl, 0,1 M Na₂HPO₄ and 0,05 M NaHCO₃ wurde durch Begasen 30 desoxygeniert. Das Hämoglobin lag zunächst zu 94 bis 95% in Form von Oxy-Hilmoglobin vor. Die Desoxygenierung erfolgte in einem geschlossenen Behälter, in dem die Hämoglobin-Lösung über einen Gasaustauscher zirkuliert wurde, während die Membran kontinu- 35 ierlich mit N2 bai einem Druck von 10 psi. begast wurden. Bei einem Gehalt von 70% Desoxy-Hämoglobin wurde die Desoxygenierung beendet. Anschließend wurde das Hämoglobin unter Nz-Begasung lyophilisiert.

B.2 Desoxygenierung von Hämoglobin mittels chemischer Reduktionsmittel

Bovines Hämoglobin (Biopure, Boston, USA) in einer Konzentration von 6 g/dL in 0,5 M NaCl, 0,1 M 45 No₂HPO₄ und 0,05 M NaHCO₃ wurde chemisch reduziert. Dafür wurde die Hämoglobin-Lösung mit 100 mM Na-Disulfit versetzt. Nach einer Stunde bestand die resultierende Lösung zu 75% Desoxy-Hämoglobin. Das Na-Disulfit wurde mittels Ultrafiltration bei einer Mem- 50 bran-Ausschlußgrenze von 50 kDs abgetrennt. Anschließend wurde das Hämoglobin unter Nz-Begasung lyophilisiert.

C. Kopplung von Hämoglobin an die oxidierten Endgruppen von Hydroxyethylstärke

Jeweils etwa 1 g des in den Schritten B.1 und B.2 hergestellten Hämoglobins wurde in 15 ml DMSO aufgenommen und in eine 100 ml Dreihals-Rundbodenfla- eo sche überführt. Hierzu wurde bei 40°C langsam eine in 0.5 ml DMSO aufgenommene Lösung von gemäß A. oxidierter Hydroxyethylstärke gegeben. Nach 25-stündigem Rühren bei 40°C wurde der Rückstand über Gelpermeationschromatographie (GPC) und Ultrafiltration 65 aufgereinigt und damit vom Lösungsmittel befreit. Die MG-Zunahme der Hamoglobinpraparationen wurde mit Hilfe der GPC anhand von gebräuchlichen Stan-

Patentansprüche

1. Sauerstoff-Transport-Mittel enthaltend ein Hämoglobin-Hydroxyethylstärke-Konjugat, dedurch gekenmeichnet, daß das Hämoglobin und die Hydroxyethylstärke in dem Konjugat selektiv über Amidbindungen zwischen freien Aminogruppen des Hämoglobins und in oxidierter Form vorliegenden reduzierenden Endgruppen der Hydroxyethylstilrke miteinander verknilpft sind.

2. Sauerstoff-Transport-Mittel nech Anspruch 1, dadurch gekennzeichnet, daß das Hämoglobin-Hydroxyethylstärke-Konjugat im Sauerstoff-Transport-Mittel in einer Konzentration zwischen 2 und

20 g/dL vorliegt.

3. Sauerstoff-Transport-Mittel nach Auspruch 2, dadurch gehennzeichnet, daß das Himoglobin-Hydroxyethylstärke-Konjugat im Sauerstoff-Transport-Mittel in einer Konzentration zwischen 5 und 15 g/dL vorliegt.

4. Sauerstoff-Transport-Mittel nach einem der Anspriiche 1 bis 3, dadurch gekennzeichnet, daß das Hämoglobin menschlichen, tierischen oder rekom-

binanten Ursprungs ist.

5. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Himoglobin bovinen Ursprungs ist.

6. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Hamoglobin vor der Kopplung an die Hydroxyethylstärke als Desoxy-Hämoglobin vorliegt.

7. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Hämoglobin vor der Kopplung an die Hydroxyethyistärke als Mischung von Desoxy-Hämoglobin und Oxy-Hämoglobin vorliegt, wobei der Anteil von Desoxy-Hämoglobin 50 bis 80% und der Anteil von Oxy-Himoglobin 20 bis 50% beträgt.

8. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Hämoglobin vernetztes und/oder polymerisiertes

Hamoglobin ist.

55

9. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Hydroxyethylstärke ein mittleres Molekulargewicht von 5 bis 40 kDa aufwelst.

10. Sauerstoff-Transport-Mittel nach Anspruch 10, dadurch gekennzeichnet, daß die Hydroxyethylstärke ein mittleres Molekulargewicht von 5 bis 20 kDa aufweist.

11. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Hydroxyethylutärke einen molaren Substitutionsgrad von 0,1 bis 0,8 und ein Verhältnis von C₂:C₆-Substitution im Bereich von 2 bis 20, jeweils bezogen auf die Hydroxyethylgruppen aufweist.

12. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß

das Mittel ferner Albumin enthält.

13. Sauerstoff-Transport-Mittel nach Anspruch 12, dadurch gekennzeichnet, daß das Albumin Serumalbumin menschlichen, tierischen oder rekombinanten Ursprungs ist.

14. Sauerstoff-Transport-Mittel nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß das Albumin in einer Konzentration zwischen 2

und 20 g/dL vorliegt

15. Sauerstoff-Transport-Mittel nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß das Gewichtsverhältnis von dem Hämoglobin-Hydroxyethylstärke-Konjugat zu Albumin im Bereich 5 von 1:10 bis 4:1 liegt.

16. Sauerstoff-Transport-Mittel nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß das Albumin vor Zugabe zu dem Konjugat in wäßriger Lösung mit Stickstoffmonoxid (NO) gesättigt 10 vorliegt.

17. Sauerstoff-Transport-Mittel nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Mittel als wäßrige Lösung oder als Lyophilisat vorliegt.

18. Verfahren zur Herstellung eines Sauerstoff-Transport-Mittels enthaltend ein Hämoglobin-Hydroxyethylstärke-Konjugat, dadurch gekennzeichnet, daß man die reduzierenden Endgruppen von Hydroxyethylstärke zunächst oxidiert und anschließend Hämoglobin über freie Aminogruppen mittels Amidbindungen an die oxidierten Endgruppen der Hydroxyethylstärke koppelt.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man die Oxidation der reduzierenden 25 Endgruppen der Hydroxyethylstärke durchführt, indem man Hydroxyethylstärke zunächst mit einer lod enthaltenden Lösung vermischt und danach Kallumhydroxyd-Lösung zugibt.

20. Verfahren nach einem der Ansprüche 18 oder 30
19, dadurch gekennzeichnet, daß man die Verknüpfung der freien Aminogruppen des Hämoglobins mit den in oxidierter Form vorliegenden reduzierenden Endgruppen der Hydroxyethylstärke durchführt, indem man die Einzelkomponenten bei 35
40°C vermischt.

21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß das Hämoglobin menschlichen, tierischen oder rekombinanten Ursprungs ist.

22. Verfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, daß das Hämoglobin bovinen Ursprungs ist.

23. Verfahren nach einem der Ansprüche 18 bis 22, dadurch gekennzeichnet, daß das Hämoglobin vor 45 der Kopplung an die Hydroxyethylstärke als Desoxy-Hämoglobin vorliegt.

24. Verfahren nach einem der Ansprüche 18 bis 23, dadurch gekennzeichnet, daß das Hämoglobin vor der Kopplung an die Hydroxyethylstärke als Mischung von Desoxy-Hämoglobin und Oxy-Hämoglobin vorliegt, wobei der Anteil von Desoxy-Hämoglobin 50 bis 80% und der Anteil von Oxy-Hämoglobin 20 bis 50% beträgt.

25. Verfahren nach einem der Ansprüche 18 bis 24, 45 dadurch gekennzeichnet, daß das Hämoglobin vernetztes und/oder polymerisiertes Hämoglobin ist. 26. Verfahren nach einem der Ansprüche 18 bis 25, dadurch gekennzeichnet, daß die Hydroxyethyistärke ein mittleres Molekulargewicht von 5 bis 40 60 kDa, einen molaren Substitutionsgrad von 0,1 bis 0,8 und ein Verhältnis von C2:C6-Substitution im Bereich von 2 bis 20, jeweils bezogen auf die Hydroxyethylgruppen, aufweist.

27. Verwendung eines Sauerstoff-Transport-Mittels nach den Ansprüchen 1 bis 17 oder hergestellt nach den Ansprüchen 18 bis 25 als Blutersatzstoff, Plasma-Expander, Perfusionsmittel, Hämodilu-

tionsmittel und/oder kardioplegische Lösung.

w <u>j</u>

.: