Funciones de Variable Compleja

MA-2113, Guía #3

Preparado, resuelto y tipeado en LATEX por Axel Voza

 ${\cal E}_{
m ste}$ es el último tópico del que se ocupa MA-2113: el Análisis y Cálculo con Funciones de Variable Compleja. Los requisitos: todos los previos (funciones, límites, derivadas, integrales —en una variable y, en algunos casos, en dos variables).

Como siempre, los ejercicios marcados con un asterisco son de Exámenes Departamentales y los marcados con dos son opcionales. Las respuestas aparecen, por razones de tiempo, en algunos de los ejercicios y las soluciones detalladas en los casos de ejemplos más importantes.

- 1. Efectuar las siguientes operaciones con números complejos:
 - (a) $(1+\sqrt{3}i)^3$
 - (b) $\frac{\sqrt{1+x^2}+\sqrt{1-x^2}i}{\sqrt{1+x^2}-\sqrt{1-x^2}i}$, para $-1 \le x \le 1$
 - (c) $(1+i)^n + (1-i)^n$
 - (d) $\frac{1 + \cos \alpha + i \sin \alpha}{1 + \cos \alpha i \sin \alpha}$
- 2. Si $a, b, c, d \in \mathbb{R}$, simplificar las expresiones siguientes:

 - (a) $(a+ib)^2 + (a-ib)^2$ (b) $(1+ib)^4 + (1-ib)^4$ (c) $\frac{a+ib}{c+id} + \frac{a-ib}{c-id}$
 - (d) En todos los casos anteriores, explicar por qué las expresiones simplificadas resultan números reales.
- 3. Hallar y graficar todos los valores de las siguientes raíces:
 - (a) $\sqrt[3]{1}$

(e) $\sqrt{1-i}$

(b) $\sqrt[3]{i}$

(f) $\sqrt{3+4i}$

(c) $\sqrt[4]{-1}$

(g) $\sqrt[3]{-2+2i}$

(d) $\sqrt[6]{-8}$

- 4. Sean z_1, z_2, z_3 tales que $z_1 + z_2 + z_3 = 0$ y $|z_1| = |z_2| =$ 1. Si Re $(\overline{z}_1 z_2) = -1/2$,
 - (a) demostrar que $|z_3 = 1|$ y

- (b) demostrar que el triángulo de vértices z_i (i =1, 2, 3) es equilátero.
- 5. Demostrar las siguientes (des)igualdades, para todos los $z, z_1, z_2 \in \mathbb{C}$:
 - (a) $|z|^2 \ge 2 |\text{Re}(z)| |\text{Im}(z)|$
 - (b) $|z| \le |\text{Re}(z)| + |\text{Im}(z)| \le \sqrt{2}|z|$
 - (c) $|z_1 \pm z_2|^2 = |z_1|^2 + |z_2|^2 \pm \operatorname{Re}(z_1\overline{z}_2)$
 - (d) $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$ (identidad del paralelogramo).
 - (e) $\left| \frac{z}{|z|} 1 \right| \le \arg(z)$, si $z \ne 0$.
 - (f) $|z-1| \le ||z|-1| + |z| |\arg(z)|$
 - (g) $|1 \overline{z}_1 z_2|^2 |z_1 z_2|^2 = (1 |z_1|^2) (1 |z_2|^2)$
 - (h) $|z_1 + z_2| \ge \frac{1}{2} (|z_1| + |z_2|) \left| \frac{z_1}{|z_1|} + \frac{z_2}{|z_2|} \right|$

Solución: Verifiquemos las desigualdades (b) y (f):

(b) Sea z = x + iy. Entonces Re(z) = x, Im(z) = y $y |z| = \sqrt{x^2 + y^2}$. Así:

$$0 \le 2|xy| \implies x^2 + y^2 \le x^2 + 2|xy| + y^2$$
$$\implies \sqrt{x^2 + y^2} \le (|x| + |y|)$$
$$\stackrel{(I)}{\implies} |z| \le |\operatorname{Re}(z) + \operatorname{Im}(z)|.$$

Además, a partir de la desigualdad notable $(|x| + |y|)^2 \ge 0$, tenemos:

$$2|xy| \le x^2 + y^2 \implies x^2 + 2|xy| + y^2 \le 2\left(x^2 + y^2\right)$$

$$\implies (|x| + |y|)^2 \le 2\left(x^2 + y^2\right)$$

$$\implies |x| + |y| \le \sqrt{2}\sqrt{x^2 + y^2}$$

$$\stackrel{(II)}{\implies} |\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2}|z|.$$

Juntando las desigualdades (I) y (II) se obtiene el resultado deseado.

(f) En este caso, representamos z en coordenadas polares, por lo que sean $\theta \in [-\pi, \pi)$ y $\rho \in \mathbb{R}^+$. Entonces

$$\begin{aligned} ||z|-1| &= |\rho\cos\theta + \mathrm{i}\sin\theta - 1| \\ &\stackrel{(a)}{\leq} |\rho\cos\theta - 1| + |\mathrm{i}\rho\sin\theta| \\ &\stackrel{(b)}{\leq} |\rho|\cos\theta - 1| + \rho |\mathrm{sen}\,\theta| \\ &\stackrel{(c)}{\leq} |\rho - 1| + \rho |\theta| \\ &= ||z|-1| + |z| |\mathrm{arg}(z)| \,, \end{aligned}$$

donde en (a) se usa la desigualdad triangular, en (b) la desigualdad $k \leq |k|$ para $x \in \mathbb{R}$ (en particular, para $k = \cos \theta$) y la propiedad del módulo de un producto, y en (c) el hecho de que $|\sin \theta| \leq |\theta|$, para todo $\theta \in [-\pi, \pi)$ (haga un gráfico para convencerse de ésto).

6. **Sean $z, z' \in \mathbb{C}$ tales que $\overline{z}z' \neq 1$. Demostrar que

$$\left| \frac{z - z'}{1 - \overline{z}z'} \right| < 1 \quad \text{si} \quad |z| < 1 \quad \text{y } |z'| < 1$$
$$\left| \frac{z - z'}{1 - \overline{z}z'} \right| = 1 \quad \text{si} \quad |z| = 1 \quad \text{\'o} \quad |z'| < 1 .$$

- 7. Demostrar que $\left(\frac{-1 \pm \sqrt{3}i}{2}\right)^3 = 1$ y $\left(\frac{\pm 1 \pm \sqrt{3}i}{2}\right)^6 = 1$, para todas las combinaciones de signos posibles (*Sugerencia*: en ambos casos, averigüe si los números son las raíces de cierto polinomio con coeficientes reales).
- 8. Resolver la ecuación $\overline{z}=z^{n-1}$, donde $n\neq 2$ es un número natural.
- 9. Demostrar que las siguientes divisiones son exactas:

(a)
$$\frac{(\cos \alpha + x \sin \alpha)^n - \cos n\alpha - x \sin n\alpha}{x^2 + 1}$$

(b)
$$\frac{x^n \sin \alpha - \lambda^{n-1} x \sin n\alpha + \lambda^n \sin(n-1)\alpha}{x^2 - 2\lambda x \cos \alpha + \lambda^2}$$

(Sugerencia: usar en ambos casos la fórmula de De Môivre y notar $x_{1,2} = \pm i$ y $x_{1,2} = \lambda \operatorname{cis} \alpha$ son las raíces de los denominadores).

10. Demostrar el

Teorema 3.1. [Kakeya] Sea P(z) un polinomio con coeficientes reales de la forma

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 ,$$

tal que $a_0 > a_1 > \cdots > a_n > 0$. Entonces todas las raíces de P(z) satisfacen |z| > 1.

- (Sugerencia: usar la desigualdad triangular sobre el polinomio (1-z)P(z)).
- 11. Sean a_1, \ldots, a_n y b_1, \ldots, b_n números complejos tales que los a_i 's son distintos entre sí. Demostrar que existe un único polinomio P(z) tal que $P(a_i) = b_i$, para todo $i = 1, \ldots, n$ (Sugerencia: usar el determinante de Vandermonde visto en MA-1116).
- 12. Sea $\alpha \in \mathbb{C}$ tal que $\alpha^n = 1$ y $\alpha \neq 1$.
 - (a) Demostrar que $1 + \alpha + \alpha^2 + \cdots + \alpha^{n-1} = 0$.
 - (b) Como $\alpha = \alpha_0$ es una raíz n-ésima de la unidad, si $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ son **todas** las raíces de $z^n = 1$, demostrar que $\alpha_0^k = \alpha_k$ si $k = 0, 1, \ldots, n-1$, y como $\alpha_0^n = 1$, deducir de la parte anterior que $1 + \alpha + \alpha_2 + \cdots + \alpha_{n-1} = 0$.
 - (c) Demostrar que $\overline{\alpha}_k = \alpha_{n-k}$, $\forall k = 0, 1, \dots, n-1$, y deducir de las partes anteriores que los puntos α_k son los vértices de un pentágono regular de n lados en el plano complejo.
- 13. Hallar los vértices de un polígono regular de n lados, si su centro se encuentra en z=0 y uno de sus vértices $z=\alpha$ es conocido.
- 14. Sean z_1, z_2 dos vértices adyacentes de un polígono regular de n lados. Hallar el vértice $z_3 \neq z_1$ adyacente a z_2 .
- 15. Un punto variable en \mathbb{R}^2 tiene como coordenadas (2x+3y-1,2y-3x+5). Si se convierte este plano en el plano complejo, hallar $a,b \in \mathbb{C}$ de modo que dicho punto se pueda representar como az+b.
- 16. En este ejercicio se estudia el número $j = \frac{-1 + \sqrt{3}i}{2}$.
 - (a) Obtener relaciones sencillas entre 1, j, j², \bar{j} y 1/j, usando el hecho de que j es raíz cúbica de la unidad.
 - (b) Al igual que ya se habrá hecho con las potencia de i, determinar las potencias j^n según sea n un múltiplo de 3, etc.
 - (c) La identidad $a^3+b^3=(a+b)(a^2-ab+b^2)$ tenía sentido cuando la factorización tenía lugar en \mathbb{R} . Demostrar que j mejora esta identidad en el caso complejo, demostrando que

$$a^{3} + b^{3} = (a + b) (aj + bj^{2}) (aj^{2} + bj)$$
.

- (d) Sea $P(x) = (1 + x + x^2)^n$. Llamemos S_0 (respectivamente S_1 o S_2) a la suma de los coeficientes de P cuya potencia de x es múltiplo de 3 (respectivamente, múltiplo de 3 más 1 o múltiplo de 3 más 2). Sustituyendo x por cada una de las raíces $1,j,j^2$ de la unidad, demostrar que $S_0 = S_1 = S_2 = 3^{n-1}$.
- (e) Demostrar que todo número complejo z = x + iy se puede escribir en la forma $z = \alpha + j\beta$, con $\alpha, \beta \in \mathbb{R}$. Deducir que si z = 0, entonces $\alpha = \beta = 0$.
- (f) Si z = x + jy y z' = x' + jy', las operaciones de suma, producto y cociente se efectúan en la forma

$$\begin{array}{rcl} z+z' & = & x+x'+\mathrm{j}(y+y') \ , \\ zz' & = & xx'-yy'+\mathrm{j}(xy'+x'y-yy') \ , \\ \frac{1}{z} & = & \frac{x-y}{x^2+y^2-xy}+\mathrm{j}\frac{-y}{x^2+y^2-xy} \ . \end{array}$$

¿Qué significado algebráico tiene el denominador $x^2 + y^2 - xy$ en el último caso?

- 17. Demostrar que $\forall a, b, c \in \mathbb{R}$ existe $\alpha \in \mathbb{C}$ tal que la recta $\ell = \{ (x, y) \in \mathbb{R}^2 \mid ax + by + c = 0 \}$ se puede escribir en el plano complejo como $\ell = \{ z \in \mathbb{C} \mid \overline{\alpha}z + \alpha\overline{z} + c = 0 \}$.
- 18. Hallar gráficamente la curva ω determinada por:

(a)
$$\omega = \{ z \in \mathbb{C} \mid \operatorname{Re}(z) = 1/4 \}$$

(b)
$$\omega = \{ z \in \mathbb{C} \mid \text{Im}(z^2) = 2 \}$$

(c)
$$\omega = \left\{ z \in \mathbb{C} \mid \operatorname{Im}\left(\overline{z^2 - \overline{z}}\right) = 2 - \operatorname{Im}(z) \right\}$$

(d)
$$\omega = \left\{ z \in \mathbb{C} \mid z^2 + (\overline{z})^2 = 1 \right\}$$

(e)
$$\omega = \{ z \in \mathbb{C} \mid |z| - 3 \operatorname{Im}(z) = 6 \}$$

(f)
$$\omega = \{ z \in \mathbb{C} \mid 3|z| - \operatorname{Re}(z) = 12 \}$$

(g)
$$\omega = \{ z \in \mathbb{C} \mid 2z\overline{z} + (2+i)z + (2-i)\overline{z} = 2 \}$$

(h)
$$\omega = \{ z \in \mathbb{C} \mid \operatorname{Re}(1+z) = |z| \}$$

(i)
$$\omega = \{ z \in \mathbb{C} \mid \arg(z - 1) = \pi/2 \}$$

(j)
$$\omega = \{ z \in \mathbb{C} \mid |z - 2| = |1 - 2\overline{z}| \}$$

(k)
$$\omega = \{ z \in \mathbb{C} \mid |z + i| + |z - i| = 4 \}$$

Solución: Resolveremos el (d) y el (h):

(d) En primer lugar, si z = x + iy, calculemos z^2 y $(\overline{z})^2$:

$$z^{2} = (x + iy)^{2} = x^{2} + 2ixy - y^{2};$$

$$(\overline{z})^{2} = (x - iy)^{2} = x^{2} - 2ixy - y^{2};$$

de modo que $z^2 + (\overline{z})^2 = 1$ se convierte en $2x^2 - 2y^2 = 1$, es decir, la hipérbola $x^2 - y^2 = 1/2$, como se muestra en la Figura 1(a).

Figura 1. Gráficos de (a) $z^2 + (\overline{z})^2 = 1$ y de (b) Re(1+z) = |z|.

- (h) Es claro que $\operatorname{Re}(1+x+\mathrm{i}y)=1+x$, de modo que $\operatorname{Re}(1+z)=|z|$ queda como $1+x=\sqrt{x^2+y^2}$, es decir, $1+2x+x^2=x^2+y^2$, que representa la parábola de eje horizontal $y^2=1+2x$, mostrada en la Figura 1(b).
- 19. Hallar gráficamente la región Ω determinada por:

(a)
$$\Omega = \{ z \in \mathbb{C} \mid \operatorname{Im}(z^2) > 2 \}$$

(b)
$$\Omega = \{ z \in \mathbb{C} \mid -\pi/2 \le \arg(z+1-i) \le 3\pi/4 \}$$

(c)
$$\Omega = \{ z \in \mathbb{C} \mid |z| + \operatorname{Re}(z) < 1 \}$$

(d)
$$\Omega = \{ z \in \mathbb{C} \mid \operatorname{Re}(z^2) > 0 \}$$

(e)
$$\Omega = \{ z \in \mathbb{C} \mid \text{Im}(1/z) < 0, |1/z| > 1 \}$$

(f)
$$\Omega = \left\{ z \in \mathbb{C} \mid \left| \frac{z-1}{z+1} \right| \le 1 \right\}$$

(g)
$$\Omega = \{ z \in \mathbb{C} \mid 1 \leq |z+2+\mathrm{i}| \leq 2 \}$$

(h)
$$\Omega = \{ z \in \mathbb{C} \mid |z-a| < |1-a\overline{z}| \}, a \in \mathbb{R} \setminus \{1,-1\}$$

(i)
$$\Omega = \{ z \in \mathbb{C} \mid |z| > 2 + \operatorname{Im}(z) \}$$

(j)
$$\Omega = \{ z \in \mathbb{C} \mid 1/4 < \text{Re}(1/z) + \text{Im}(1/z) < 1/2 \}$$

(k)
$$\Omega = \{ z \in \mathbb{C} \mid |2z| > |1+z^2| \}$$

(1)
$$\Omega = \left\{ z \in \mathbb{C} \mid \operatorname{Im}\left(\frac{z-1}{z+2}\right) \le 0 \right\}$$

Solución: Veamos el (e) y el (k):

(e) Si z = x + iy, sabemos que

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{x - iy}{x^2 + y^2}$$
,

por lo que $\text{Im}(1/z) = -y/(x^2 + y^2)$. Así, la primera condición de los puntos de Ω requiere que -y < 0 (ya que $x^2 + y^2 \ge 0$), es decir, y > 0. Pero la segunda dice que |1/z| = 1/|z| > 1, o

sea, $x^2+y^2<1$. Resumiendo, se trata de la semicircunferencia unitaria (por ser $x^2+y^2<1$) del semiplano superior (por ser y>0), como se muestra en la Figura 2(a), cuya región sombreada representa a Ω .

Figura 2. Gráficos de (a) Im(1/z) < 0, |1/z| > 1 y de (b) $|2z| > |1 + z^2|$.

(k) En este caso tenemos que los puntos de Ω satisfacen $2\sqrt{x^2+y^2}>\sqrt{(1+x^2-y^2)^2+(2xy)^2}$. Elevando al cuadrado y simplificando, tenemos:

$$4(x^{2} + y^{2}) > 1 + 2x^{2} - 2y^{2} + x^{4} - 2x^{2}y^{2} + y^{4} + 4x^{2}y^{2}$$

$$4(x^{2} + y^{2}) > 1 + 2x^{2} + 2y^{2} - 4y^{2} + x^{4} + 2x^{2}y^{2} + y^{4}$$

$$4(x^{2} + y^{2}) > 1 + 2(x^{2} + y^{2}) + (x^{2} + y^{2})^{2} - 4y^{2}$$

$$0 > 1 - 2(x^{2} + y^{2}) + (x^{2} + y^{2})^{2} - 4y^{2}$$

$$0 > (x^{2} + y^{2} - 1)^{2} - 4y^{2}$$

$$0 > (x^{2} + y^{2} - 1 - 2y)(x^{2} + y^{2} - 1 + 2y)$$

y estos puntos satisfacen, o bien la condición

$$(I): \left\{ \begin{array}{ll} x^2+y^2-2y-1 & < & 0 \\ x^2+y^2+2y-1 & > & 0 \end{array} \right.,$$

o bien la condición

(II):
$$\begin{cases} x^2 + y^2 - 2y - 1 > 0 \\ x^2 + y^2 + 2y - 1 < 0 \end{cases},$$

La condición (I) dice x + iy se encuentra **dentro** de la circunferencia $x^2 + (y-1)^2 = 2$ y **fuera** de $x^2 + (y+1)^2 = 2$, mientras que la (II) es análoga, pero intercambiando "**dentro**" y "**fuera**". Así, y como estas dos condiciones pueden ocurrir independientemente, los puntos z = x + iy yacen en la unión de estas dos regiones, lo que aparenta la región interior a un "ocho", como lo muestra la zona rayada de la Figura 2(b).

- 20. Sean Ω_1 el conjunto de puntos con argumento $\pi/3$ y Ω_2 el de puntos con radio 3.
 - (a) Analizar qué es gráficamente el conjunto $4\Omega_1$ y $4\Omega_2$, es decir, dibujar los puntos $4z_1$ y $4z_2$, con $z_1 \in \Omega_1$ y $z_2 \in \Omega_2$.
 - (b) Repetir la pregunta anterior reemplazando el "4" por $(1+i)/\sqrt{2}$.
 - (c) Las dos partes anteriores sugieren una generalización: demostrar la siguiente

Proposición 3.1. Sean $f,g:\mathbb{C}\to\mathbb{C}$ definidas como

$$w = f(z) = az$$
, $w = g(z) = (\operatorname{cis} \theta)z$,

con $a \in \mathbb{R}$ y $\theta \in [0, 2\pi)$. Entonces $w_0 = f(z_0)$ es un punto en la misma dirección que z_0 , pero a veces más largo (resp. corto) que z_0 si |a| > 1 (resp. si |a| < 1), y $w_0 = g(z_0)$ es un punto de módulo igual a z_0 , pero rotado con respecto al origen θ radianes.

A f se le llama, claro está, una homotecia, y a g una rotación.

- (d) Si Ω_1 y Ω_2 son como en (a), graficar $(3-3i)\Omega_1$ y $(-2+2\sqrt{3}i)\Omega_2$.
- 21. Hallar los valores de $a, b \in \mathbb{C}$ de modo que la función lineal compleja w = f(z) = az + b mapee $f(\Omega_1) = \Omega_2$ en cada uno de los siguientes casos:
 - (a) $\Omega_1 = \text{semiplano Re}(z) > 0;$ $\Omega_2 = \text{semiplano Re}(w) - \text{Im}(w) > 1$
 - (b) $\Omega_1 = \text{disco de centro } z = 2 \text{i y radio 4};$ $\Omega_2 = \text{disco de centro } w = -1 + \text{i y radio 3}.$
 - (c) $\Omega_1 = \text{semiplano Re}(z) + \text{Im}(z) \ge 1;$ $\Omega_2 = \text{semiplano Im}(w) \ge 0.$
 - (d) $\Omega_1 = \text{disco de centro } z = 1 \text{i y radio 1};$ $\Omega_2 = \text{disco de centro } w = -1 + \text{i y radio } \sqrt{2}.$
- 22. Dada la función w = 1/z, llamada *inversión*, hallar las imágenes de las siguientes curvas y regiones:
 - (a) la familia de circunferencias $|z|^2 = a \operatorname{Re}(z)$;
 - (b) la familia de circunferencias $|z|^2 = b \operatorname{Im}(z)$;
 - (c) el haz de rectas Im(z) = Re(z) + b;
 - (d) el haz de rectas $Im(z) = k \operatorname{Re}(z)$;
 - (e) el haz de rectas que pasan por un punto fijo $z_0 \neq 0$;
 - (f) la parábola $\text{Im}(z) = \text{Re}^2(z)$;

- (g) el círculo $|z-1| \le 1, z \ne 0$;
- (h) el sector $\pi/6 \le \arg(z) \le \pi/3, \ 0 < |z| \le R < 1.$
- 23. Esta pregunta estudia las transformaciones de Möebius o transformaciones fraccionarias lineales

$$w = f(z) = \frac{az+b}{cz+d} .$$

(a) Demostrar que $w = f(z) = \frac{az+b}{cz+d}$, con $ad-bc \neq 0$, es composición de traslaciones, rotaciones u homotecias e inversiones (Sugerencia: usar la identidad

$$\frac{az+b}{cz+d} = \frac{a}{c} + \frac{-(ad-bc)/c}{cz+d} \).$$

- (b) Verificar para la función de la parte anterior que
 - i. si a = 0, f es una traslación, una inversión y una homotecia o rotación;
 - ii. si c = 0, f es sólo una traslación y una homotecia o rotación;
 - iii. si a = d = 0, f es sólo una inversión y una homotecia o rotación; y
 - iv. si b = c = 0, f es sólo una homotecia o rotación.
- (c) Hallar $a, b, c, d \in \mathbb{C}$ de modo que la función fraccional lineal $w = f(z) = \frac{az+b}{cz+d}$ mapee $f(\Omega_1) = \Omega_2$ en cada uno de los siguientes casos:
 - i. $\Omega_1 = \text{semiplano Re}(z) \ge 3;$
 - $\Omega_2 = \operatorname{disco} |w| \le 1.$ $\Omega_2 = \operatorname{disco} |x| \le 1.$
 - ii. $\Omega_1 = \text{disco } |z 3i| < 1;$ $\Omega_2 = \text{semiplano } \text{Im}(w) < 0.$
- (d) Si f es como en (a), pero con la condición ad bc > 0 y $a, b, c, d \in \mathbb{R}$, demostrar que f conserva el semiplano superior, es decir, que f mapea todo punto z con Im(z) > 0 en otro w con Im(w) > 0.
- 24. Dada la transformación $w = f(z) = z^2$,
 - (a) Hallar las imágenes de los conjuntos

$$\Omega_1 = \{ z \in \mathbb{C} \mid \operatorname{Re}(z) = a \},$$

$$\Omega_2 = \{ z \in \mathbb{C} \mid \operatorname{Im}(z) = b \},$$

$$\Omega_3 = \{ z \in \mathbb{C} \mid |z| = r \},$$

$$\Omega_4 = \{ z \in \mathbb{C} \mid \arg(z) = \alpha \},$$

Analizar en cada conjunto $f(\Omega_i)$ todos los casos posibles, con la única restricción $a, b \in \mathbb{R}, r > 0$ y $\alpha \in [0, 2\pi)$.

(b) Concluír la veracidad de los gráficos dados en la Figura 3. Demostrar que f mapea el cuadrilátero hiperbólico formado por dos miembros de la familia xy = K y dos de la familia $x^2 - y^2 = K'$ en un cuadrado (en cierta forma, los lados del cuadrilátero inicial tienen "la mitad" de la curvatura que tienen los lados del cuadrilátero final). Demostrar también que f "duplica" una región, en el sentido que convierte un cuarto de círculo unitario en la mitad.

Figura 3. Gráficos del ejercicio § 24b. En cada caso, los puntos con primas corresponden a transformados por la función (por ejemplo, f(a) = a', etc.)

- (c) Si $\Omega_1 = \{ z \in \mathbb{C} \mid |z| \leq 1, \operatorname{Re}(z) \geq 0 \}$ y $\Omega_1 = \{ w \in \mathbb{C} \mid \operatorname{Re}(w) + \operatorname{Im}(w) \geq 0 \}$, hallar una función w = f(z) de modo que $f(\Omega_1) = \Omega_2$.
- 25. Hallar la imagen de la circunferencia

$$\Omega = \{\ R\operatorname{cis}(t) \ | \ 0 \leq t < \pi\ \}$$

bajo la función $f(z) = z/\overline{z}$.

- 26. Hallar la imagen de la circunferencia unitaria centrada en el origen bajo la función $w = i\frac{1+z}{1-z}$.
- 27. Hallar la imagen de las circunferencias |z|=1 y |z|=2 bajo la transformación $w=f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)$.

28. La función exponencial compleja y sus extensiones.¹ Suponiendo válido el manejo formal de series reales para cualquier variable, usar las series de e^x , sen x y $\cos x$ y sustituír x por it; el resultado al que se llegará sugiere una definición razonable

Definición 3.1. Para $t \in \mathbb{R}$, se tiene $e^{it} := \cos t + i$ $i \operatorname{sen} t$, de modo que para cualquier z = x + i u se tiene

$$e^z = e^x (\cos y + i \sin y)$$
.

Sus partes par e impar, es decir, las funciones hiperbólicas se definen análogamente al caso real.

- 29. Usando la definición anterior, demostrar las siguientes propiedades:
 - (a) $e^{z+w} = e^z \iff w = 2\pi i k, k \in \mathbb{Z}.$
 - (b) $\overline{e^z} = e^{\overline{z}}$, $|e^z| = e^{\operatorname{Re}(z)}$.
 - (c) $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} e^{-iz}}{2i}$.
 - (d) $\sin iz = i \sinh z$, $\cos iz = \cosh z$.
 - (e) Todas las identidades trigonométricas e hiperbólicas que eran válidas en el caso real.
- 30. Deducir que esta definición de exponencial compleja permite representar, de manera no única claro, todo número en el plano, por medio de la relación $z = \rho e^{i\theta}$, donde

$$\rho = |z| \quad \mathbf{y} \quad \theta = \arg(z) \in [-\pi, \pi) \ .$$

Verificar que la determinación de θ se puede hacer por medio de

$$\theta = \begin{cases} \arctan(y/x) &, & x > 0 \\ \pi + \arctan(y/x) &, & x < 0 , y \ge 0 \\ -\pi + \arctan(y/x) &, & x < 0 , y < 0 \\ \pi/2 &, & x = 0 , y > 0 \\ -\pi/2 &, & x = 0 , y < 0 \end{cases}$$

- 31. Sean u, v conocidos. Hallar, usando sistemas (lamentablemente no lineales) de ecuaciones, los valores de x, y de modo que $e^{x+iy} = u + iv$.
- 32. Como sugiere el ejercicio anterior, tenemos

Definición 3.2. Si z = x + iy son arbitrarios, todos los $w=u+\mathrm{i}v\in\mathbb{C}$ que permiten obtener $\mathrm{e}^w=z$ están dados por

$$\operatorname{Lgn} z := \operatorname{lgn} |z| + \mathrm{i} (\operatorname{arg} z + 2k\pi) , \quad k \in \mathbb{Z} .$$

Esto dá lugar a la función logarítmica compleja f(z) = $\operatorname{lgn}_k z = \operatorname{lgn}|z| + \operatorname{i}(\operatorname{arg} z + 2k\pi)$, donde k denota la $rama \ del \ logaritmo^2 \ \mathsf{Para} \ k = 0 \ \mathsf{se} \ \mathsf{obtiene} \ \mathsf{la} \ rama$ principal del lagaritmo, denotada lgn z.

Lógicamente, el resto de las funciones trascendentes se definen por medio del logaritmo, de la siguientes forma:

$$z^{\alpha} = e^{\alpha \operatorname{Lgn} z}$$
, $a^z = e^{z \operatorname{Lgn} a}$, $\alpha, a \in \mathbb{C}$.

Usando estas definiciones (y las de los ejercicios anteriores si hace falta), hallar todos los posibles valores de los siguientes números complejos:

- (f) Lgn(2-3i)(a) $\cos(2+i)$
- (b) $\tan(2-i)$ (g) $(-2)^{\sqrt{2}}$ (c) $\tanh(\lg 3 + i\pi/4)$ (h) $\left(\frac{1-i}{\sqrt{2}}\right)^{1+i}$ (d) $\lg 1$ (i) $i^i i^{-i}$ (e) $\lg \frac{1+i}{\sqrt{2}}$ (j) $(-3+4i)^{1+i}$ (i) $i^{i} - i^{-i}$ (j) $(-3 + 4i)^{1+i}$

Solución: Miremos cómo proceder con los ejercicios (e) y (g).

(e) En primer lugar, como 4 es real positivo, se tiene |z| = 4 y $\arg(z) = 0$. Así, todos los valores de Lgn 4 vienen dados por

$$Lgn 4 = lgn |4| + i (arg(4) + 2k\pi) = 2 (lgn 2 + k\pi i)$$
.

(g) Escribimos $(-2)^{\sqrt{2}} = e^{\sqrt{2} \operatorname{Lgn}(-2)}$, y el ejercicio se reduce a hallar todos los valores de Lgn(-2). Tenemos entonces que

$$Lgn(-2) = |gn| - 2| + i (arg(-2) + 2k\pi)$$

$$= |gn| 2 + i (-\pi + 2k\pi)$$

$$= |gn| 2 + (2k - 1)i\pi$$

$$e^{\sqrt{2} Lgn(-2)} = e^{\sqrt{2} (|gn| 2 + (2k - 1)i\pi)}$$

$$= e^{\sqrt{2} lgn| 2} e^{\sqrt{2} (2k - 1)i\pi}$$

$$= 2^{\sqrt{2}} cis \left[\sqrt{2} (2k - 1)i\pi \right],$$

donde $k \in \mathbb{Z}$.

¹A partir de este ejericio, y hasta el § 38, se exponen herramientas teóricas imprescindibles para continuar el resto de esta guía y las siguientes; se recomienda hacerlos en este mismo orden.

 $^{^{2}}$ La "función" Lgn z definida antes **no asigna un solo valor** de v, por lo que ella no puede ser función; en algunos textos, a este logaritmo y a todas sus extensiones se les llama funciones multiformes.

- 33. La rama principal del logaritmo tendrá, en la parte de funciones analíticas, una utilidad enorme para ejemplificar funciones que no serán de ese tipo. La estudiaremos por un rato.
 - (a) Explicar la falla en el siguiente razonamiento, conocido como la paradoja de Bernoulli: como $(-z)^2 = z^2$, entonces $\operatorname{lgn}(-z)^2 = \operatorname{lgn} z^2$, es decir, $2\operatorname{lgn}(-z) = 2\operatorname{lgn} z$, o sea, $\operatorname{lgn}(-z) = \operatorname{lgn} z$.
 - (b) Calcular $\lg n(-1+i)$ y $\lg n i$ por separado y sumar estos resultados; luego, notando que i(-1+i) = -1 i, calcular $\lg n(-1-i)$. ¿Por qué ambos resultados son distintos?
 - (c) Si denotamos como w, w' los (distintos) resultados de la parte anterior, verificar que $w w' = 2\pi i$.
 - (d) El hecho verificado en la parte anterior no es casual; demostrar que la manera de aplicar el logaritmo a un producto es

$$\operatorname{lgn}(zz') = \operatorname{lgn}|z| + \operatorname{lgn}|z'| + i\phi(\theta, \theta'),$$

- donde $\phi(\theta, \theta')$ se halla como sigue: dividir $\theta + \theta'$ entre 2π y tomar ϕ como el resto de esta división.
- (e) Enunciar y demostrar propiedades análogas a la anterior para "corregir" las identidades $(ab)^{\alpha} = a^{\alpha}b^{\alpha}$ y $a^{\alpha+\beta} = a^{\alpha}a^{\beta}$, cuando $a, b, \alpha, \beta \in \mathbb{C}$.
- 34. Determinar el conjunto solución de las siguientes ecuaciones
 - (a) $e^z + i = 0$
- (f) $e^{iz} = \cos \pi x$
- (b) $4\cos z + 5 = 0$
- (g) $e^{2z} + 2e^z = 3$
- (c) $\cos z = \cosh z$
- (h) $\cosh z = i$
- (d) $\sin z = i\pi$
- (i) lgn(z + i) = 0
- (e) $\cos z = i \sinh 2z$
- (j) lgn(i-z) = 1
- 35. Usando el hecho de que \sqrt{z} tiene dos determinaciones (es decir, es una función biforme), demostrar rigurosamente que para todo $z=x+\mathrm{i} y$ se tiene

$$\sqrt{z} = \pm \left[\sqrt{\frac{|z| + x}{2}} + i(\operatorname{sgn} y) \sqrt{\frac{|z| - x}{2}} \right]$$

- 36. Tomando en consideración los dos valores que toma la raíz compleja, demostrar las siguientes fórmulas para funciones inversas (claramente biformes) e indicar sus dominios de validez:
 - (a) $\arccos z = -i \operatorname{lgn} \left(z + \sqrt{z^2 1} \right)$

- (b) $\arcsin z = -i \operatorname{lgn} \left(iz + \sqrt{1 z^2} \right)$
- (c) $\arctan z = \frac{i}{2} \lg n \frac{i+z}{i-z} = \frac{1}{2i} \lg n \frac{1+iz}{1-iz}$
- (d) $\operatorname{arg} \cosh z = \operatorname{lgn} \left(z + \sqrt{z^2 1} \right)$
- (e) $\operatorname{arg senh} z = \operatorname{lgn} \left(z + \sqrt{z^2 + 1} \right)$
- (f) $\operatorname{arg} \tanh z = \frac{1}{2} \operatorname{lgn} \frac{1+z}{1-z}$
- 37. Verificar los siguientes cálculos:
 - (a) $\arcsin 3 = (2k + 1/2)\pi i \lg (3 \pm \sqrt{8})$.
 - (b) $\operatorname{arg} \tanh(1 i) = \frac{1}{4} \operatorname{lgn} 5 + \left(\frac{1}{2} \arctan 2 + (k + \frac{1}{2})\pi\right) i$.
 - (c) $\arctan(1 + 2i) = \frac{1}{2} \left(\arctan \frac{1}{2} + (2k+1)\pi\right) + \frac{i}{4} \lg 5.$
 - (d) $\arg \cosh 2i = \lg n \left(\sqrt{5} \pm 2 \right) + (2k \pm 1/2)\pi i$.
- 38. Sea $w = f(z) = e^z$.
 - (a) Calcular la imágen por f del conjunto de puntos sobre la recta $k\pi i$, donde $k \in \mathbb{Z}$.
 - (b) Calcular la imágen por f del conjunto de puntos sobre la recta $x_0 \in \mathbb{R}$.
 - (c) Usar las partes anteriores para comprobar que mapea cualquier rectángulo $[a,b] \times [\theta_1,\theta_2]$ en un sector anular de radios mínimo e^a y máximo e^b y ángulo $\theta_2 \theta_1$ (siempre y cuando $\theta_2 \theta_1 < 2\pi$) y, en general, cualquier banda (infinita) de longitud π en todo el semiplano superior.
- 39. Repetir la pregunta anterior (junto con algún estudio adicional, si es necesario) para elbaorar el dibujo de algunos mapeos de la función $w = f(z) = \operatorname{sen} z$.

Respuestas a algunos de los ejercicios

- 1. (a) -8; (b) $x^2 + \sqrt{1-x^4}$ i; (c) $2^{n/2+1}\cos(n\pi/4)$; (d) $\cos\alpha$.
- 2. (a) $2(a^2-b^2)$; (b) $2-12a^2+a^4$; (d) $2\frac{ac+bd}{c^2+d^2}$; (d) Como todas las letras representan números reales, cada una de estas expresiones es real por verse como la suma de dos complejos conjugados.
- 3. (a) $z_0 = 1$ y $z_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}i}{2}$
 - (b) $z_0 = -i y z_{1,2} = \pm \frac{\sqrt{3}}{2} + \frac{i}{2}$
 - (c) $z_k = \pm \frac{1}{\sqrt{2}} (1 \pm i), k = 0, \dots, 3$

(d)
$$z_{0,1} = \pm \sqrt{2}i$$
 y $z_k = \pm \frac{1}{\sqrt{2}} (\sqrt{3} \pm i), k = 2, \dots, 5$

(e)
$$z_{0,1} = \pm \frac{1}{\sqrt{2}} \left(\sqrt{\sqrt{2} + 1} - \sqrt{\sqrt{2} - 1} i \right)$$

(f)
$$z_{0,1} = \pm (2 + i)$$

(g)
$$z_k = \sqrt{2}\operatorname{cis}\frac{(8k+3)\pi}{12}, k = 0, 1, 2$$

(h)
$$z_k = \sqrt[5]{5} \operatorname{cis} \frac{(2k+1)\pi - \arctan(3/4)}{5}, k = 0, \dots, 4$$

8.
$$z_k = \operatorname{cis} \frac{2k\pi}{n}, k = 0, 1, \dots, n-1 \text{ y } z_n = 0$$

13.
$$z_k = \alpha \operatorname{cis} \frac{2k\pi}{n}, k = 0, 1, \dots, n-1$$

14.
$$z_3 = z_2 + (z_2 - z_1) \operatorname{cis} \frac{\pm 2\pi}{2}$$

15.
$$a = 2 - 3i$$
 y $b = 1 + 5i$.

16a. Por ejemplo,
$$j^2 = -1 - j = \bar{j} = 1/j$$
.

17.
$$\alpha = (a + bi)/2$$
.

- 22. (a) La familia de rectas u = 1/a.
 - (b) La familia de rectas v = -1/b.
 - (c) La familia de circunferencias $b(u^2 + v^2) + u + v = 0$, tangentes en el origen de coordenadas a la recta u + v = 0 (para $b \neq 0$) y dicha recta (cuando b = 0).
 - (d) La familia de rectas v = -ku.
 - (e) La familia de circunferencias que pasan por el origen de coordenadas y por $w_0 = 1/z_0$, además de la recta que pasa por dichos puntos.
 - (f) La cisoide de Diocles $u^2 = -\frac{v^2}{v^2 + 1}$.

- (g) El semiplano $Re(w) \ge 1/2$.
- (h) El sector $\pi/6 \le \arg(w) \le \pi/3$, $|w| \ge 1/R > 1$.
- 23a. Si ponemos $w_1 = z + \frac{d}{c}$ (traslación), $w_2 = \frac{1}{z}$ (inversión), $w_3 = -\frac{ad bc}{c^2}z$ (homotecia y/o rotación) y $w_4 = z + \frac{a}{c}$ (otra traslación), entonces $w = f(z) = (w_4 \circ w_3 \circ w_2 \circ w_1)(z)$.

24c.
$$f(z) = \operatorname{cis}(\pi/4) \frac{1+z^2}{1-z^2}$$

25.
$$f(\Omega) = \{ w \in \mathbb{C} \mid |w| = 1 \}$$
, recorrida dos veces.

26.
$$f(\Omega) = \{ w \in \mathbb{C} \mid \operatorname{Im}(w) \ge 0 \}$$

- 27. f(|z|=1) es el segmento $|u\leq 1|$, mientras que f(|z|=2) es la elipse $24u^2+40v^2=15$.
- 32. En este ejercicio, como ya se sabe, k representa cualquier número entero.
 - (a) $\cos 2 \cosh 1 i \sec 2 \sinh 1$
- (b) $\frac{\operatorname{sen} 4 i \operatorname{senh} 2}{\operatorname{cos}^2 2 + \operatorname{senh}^2 1}$

(c) $\frac{40 + 9i}{41}$

(d) $(2k + 1/4)i\pi$

(f)
$$\frac{1}{2} \operatorname{lgn} 13 + \left(2k\pi - \arctan \frac{3}{2}\right) i$$

(h)
$$e^{(2k+1/4)\pi} \frac{1-i}{\sqrt{2}}$$

- (i) $-2e^{2k\pi}\operatorname{senh}(\pi/2)$
- (j) $-5 e^{\alpha + (2k+1)\pi} \operatorname{cis} (\operatorname{lgn} 5 \alpha)$, donde $\alpha = \arctan(4/3)$.
- 36. (a,b,d,f) Para $z \neq \pm 1$ y (c,e) para $z \neq \pm i$.