MINOR PROJECT # READING THE DATASET

```
#TASK 1:EXPLORATORY DATA ANANLYSIS
```

```
import pandas as pd
mpdf=pd.read_csv(r"C:\Users\anany\Downloads\minor project.csv")
mpdf.head()
```

In [4]:

```
#CHECKING THE DATASET FOR ANY NULL OR MISSING VALUES
mpdf.isna().sum()
```

Out[4]:

```
sl no
                    0
gender
                    0
ssc_p
ssc_b
                    0
hsc_p
                    0
hsc_b
                    0
                    0
hsc_s
                    0
degree_p
                    0
degree_t
workex
                    0
etest_p
specialisation
                    0
mba_p
                    0
status
                    0
                   67
salary
dtype: int64
```

In [6]:

Out[6]:

0

In [7]:

```
mpdf.isna().sum()
```

Out[7]:

sl_no 0 gender 0 0 ssc_p 0 ssc_b 0 hsc_p 0 hsc_b 0 hsc_s 0 degree_p degree_t 0 workex 0 etest_p 0 specialisation 0 0 mba_p 0 status 0 salary dtype: int64

In [8]:

mpdf.head()

Out[8]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	spec
0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	
2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	
3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8	
4												•

In [10]:

```
#DISTRIBUTION OF VARIOUS CATEGORICAL VARIABLES
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
sns.countplot(x='gender', hue='status', data=mpdf)
plt.title('Distribution of Placement Status based on Gender')
plt.show()

#ACCORDING TO THE GRAPH FEMALES PLACED ARE RELATIVELY LOW
```


In [12]:

```
plt.figure(figsize=(10, 6))
sns.countplot(x='degree_t', hue='status', data=mpdf)
plt.title('Distribution of Placement Status based on Degree')
plt.show()
#COMMERCE AND MANAGEMENT HAS HIGHEST STUDENTS PLACED
```


In [11]:

```
plt.figure(figsize=(10, 6))
sns.countplot(x='specialisation', hue='status', data=mpdf)
plt.title('Distribution of Placement Status based on Specialisation')
plt.show()
```


In [13]:

```
plt.figure(figsize=(10, 6))
sns.countplot(x='hsc_s', hue='status', data=mpdf)
plt.title('Distribution of Placement Status based on Higher Secondary Course')
plt.show()
```


In [14]:

```
plt.figure(figsize=(10, 6))
sns.countplot(x='workex', hue='status', data=mpdf)
plt.title('Distribution of Placement Status based on Work Experience')
plt.show()
#IT HAS BEEN SENN THAT HIGHER NUMBER OF PEOPLE ARE GETTING PLACED WHO HAVE NO WORK EXPERIENCE.
```


In [15]:

```
correlation = mpdf[['ssc_p', 'hsc_p', 'degree_p', 'workex', 'etest_p', 'mba_p', 'status']].corr()
print("Correlation Matrix:\n", correlation)
```

Correlation Matrix:

```
ssc_p
                   hsc_p degree_p
                                 etest_p
                                           mba_p
        1.000000 0.511472 0.538404 0.261993 0.388478
ssc_p
hsc_p
        0.511472 1.000000 0.434206 0.245113 0.354823
degree_p 0.538404 0.434206
                       1.000000 0.224470
                                        0.402364
etest_p
       0.261993 0.245113
                       0.224470 1.000000 0.218055
mba_p
```

In [16]:

```
plt.figure(figsize=(10, 6))
sns.boxplot(x='status', y='ssc_p', data=mpdf)
plt.title('Distribution of Secondary School Percentage')
plt.show()
```


In [17]:

```
plt.figure(figsize=(10, 6))
sns.boxplot(x='status', y='hsc_p', data=mpdf)
plt.title('Distribution of Higher Secondary School Percentage')
plt.show()
```


In [18]:

```
#distribution of the salary offers for placed students
placed_data = mpdf[mpdf['status'] == 'Placed']
plt.figure(figsize=(10, 6))
sns.histplot(placed_data['salary'], bins=10)
plt.title('Distribution of Salary Offers for Placed Students')
plt.show()
```


In [19]:

```
# minimum, maximum, mean, and median salary values
salary_stats = placed_data['salary'].describe()
print("Salary Statistics:\n", salary_stats)
```

```
Salary Statistics:
             148.000000
 count
mean
         288655.405405
std
          93457.452420
min
         200000.000000
25%
         240000.000000
50%
         265000.000000
         300000.000000
75%
         940000.000000
Name: salary, dtype: float64
```

DATA PREPROCESSING AND NORMALIZATION

```
features = mpdf.drop('status', axis=1)
target = mpdf['status']
```

```
In [23]:
```

```
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42
```

NameError: name 'train_test_split' is not defined

In [24]:

```
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.2, random_state=42
```

In []: