科目	
系 級	
學號	
姓名	P19

F Replace the LHS by

, and integrate

Remarks:

- 1 Method of integrating factor is useful to solve
- 2 Do NOT memorize the math form of integrating factor.

Method of "exact (differential) equations"

& Preliminary: This is a method based on

There are some Ist-order ODEs that can be categorized as "exact (differential) equations, and can be solved by this technique.

Example 1: Solve $x^2y^3dx + x^3y^2dy = 0$

Example 2: Solve 2xydx+(x2-1)dy=0

Idea: If a 1st-order ODE: M(x,y)dx+ N(x,y)dy=0 is an "exact equation"

(D: How to check if a 1st-order ODE is an exact equation?)

For an O:DE (in differential form) $M(x,y) dx + N(x,y) dy = 0 \Rightarrow (df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy)$ $\frac{\partial}{\partial y} M = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}) = \Rightarrow$

General procedures of method of "exact equations":

- O Express the ODE in "differential form".
- @ check if
- 3) If so, find fex.y) such that
- (4) Obtain solution as

或	17	清	華	大	學
---	----	---	---	---	---

科目	
系 級	
學 號	· · · · · · · · · · · · · · · · · · ·
姓名	P21

Then, how to find fixing)?
Redo Example 1: x2y3dx + x3y2dy = 0

Redo Example 2: $2xy dx + (x^2-1) dy = 0$

科目	
系 級	
學 號	
₩ 47	D22

Examples of systems modeled by 1st-order ODEs Cen3) Examples:

Example 1: Series circuit

LR-series circuit

D

L=2H, 100=0

Example 2: Population dynamics

growthst population:

科目		
系 級		
學 號		
姓名	P23	

But, due to limited resources, at some point the growth rate will decrease.

For simplicity, let's assume fcp) and P are related

DE with a form of $\frac{dy}{dt} =$ is called a " and has been used as a good mode! to mathematically formulate

\$ Features of the"