Laboratorní cvičení č. 2 – Měření napětí - stejnosměrné a střídavé voltmetry

• Autor: Tomáš Vavrinec • Datum měření: 3.10.2022

Úkolv

- 1. Pomocí referenčního multimetru Agilent34401A ověřte přesnost voltmetru laboratorního zdroje GWInstek GPD-3303S v rozsahu 0 až 10 V DC s krokem měření 1V. Vypočtěte absolutní a relativní chyby měření stejnosměrného napětí, korekci K a vykreslete korekční křivku, za předpokladu, že správné hodnoty napětí udává multimetr Agilent 34401A.
- 2. Změřte vstupní odpor Rvst multimetru Keysight 34450A na rozsahu 10 V DC a vstupní odpor Rvst multimetru Agilent (HP) 34401A na rozsahu 1 V DC pomocí napěťového děliče. Jako zdroj ss. napětí použijte funkční generátor Siglent SDG2042X. Naměřené hodnoty porovnejte s údajem od výrobce.
- 3. Změřte frekvenční charakteristiky multimetrů Keysight 34450A a Agilent 34401A pro sinusový signál z generátoru Siglent SDG 2042X s amplitudou 1,5 V v rozsahu 1 kHz až 500 kHz (zvolit minimálně 10 hodnot). Dosažené výsledky graficky zakreslete. Zhodnoťte dosažené výsledky měření na základě informací o frekvenčním rozsahu multimetrů zjištěných ze specifikace přístroje.
- 4. Multimetrem Keysight 34450A změřte efektivní hodnotu výstupních signálů, jejichž zdrojem je generátor Siglent SDG 2042X:
 - Obdélníkový průběh, f =1 kHz, Up-p=3 V
 - Trojúhelníkový průběh, f =100 Hz, Up-p=5 V

Průběhy signálů zakreslete do sešitu a popište. Ověřte výpočtem velikosti efektivních hodnot uvedených signálů, vypočtěte absolutní a relativní chybu měření (správnou hodnotou je hodnota vypočtená) a dosažené výsledky zhodnoťte. Určete velikost absolutních a relativních chyb údaje multimetru Keysight 34450A pro tato měření.

5. U číslicového multimetru Agilent 34401A ve funkci stejnosměrného voltmetru s nastavením rozlišení 4digit/slow a 5digit/slow změřte na rozsahu 1V závislost činitele potlačení sériového rušení H na frekvenci fr rušivého napětí. Frekvenci volte v rozsahu fr=45 až 55 Hz po kroku 1 Hz u rozlišení 4digit/slow a po kroku 0.5 Hz u rozlišení 5digit/slow. Hodnota napětí Uss je nulová (pro zjednodušení).

Příprava

• číslicové (digitální).

Nejčastější měření v elektrotechnice je měření napětí. Voltmetry mohou být rozděleny podle:

1) způsobu měření 2) podle druhu měřeného napětí: 3) podle citlivosti analogové steinosměrné

- voltmetry
- střídavé milivoltmetry
- impulsní mikrovoltmetry
 - nanovoltmetry.

4) podle kmitočtové oblasti (střídavé voltmetry):

- nízkofrekvenční
- vvsokofrekvenční
- širokopásmové
- selektivní (úzkopásmové)

Korekční křivka

Pokud chceme zvýšit přesnost měření konkrétního přístroje můžeme k jeho měření přičítat hodnotu z korekční křivky. Korekční křivku můžeme získat porovnáním měření s přesnějším přístrojem (etalonem) $k=-\delta_x=X_SX_M$ kde X_S je hodnota naměřena na etalonu a X_M je hodnota naměřena na kontrolovaném přístroji.

Figure 1: Příklad korekční křivky

Vstupní odpor voltmetru

Vstupní odpor voltmetru je odpor, který je mezi vstupními vodiči a zemí. Dá se jednoduše určit pomocí zdroje napětí a rezistoru se srovnatelným odporem. $R_{vst} = \frac{U_{vst}}{U_n - U_{vst}} \cdot R_n$

0.1 Měření AC

Běžný frekvenční rozsah se pohybuje od 100kHz do 1MHz. Jeden z parametrů AC voltmetru je způsob měření efektivní hodnoty. Buď měřený signál usměrní, změří jeho střední hodnotu a převede ji na efektivní, tato metoda je však přesná jen pro harmonický signál (střední hodnota se násobí konstantou která souvisí s konkrétním tvarem signálu a pochopitelně se proto

Figure 2: Zapojení pro měření vstupního odporu voltmetru

používá nejběžnější tvar). Druhá možnost je signál měřit pomocí definice efektivní hodnoty, která je vypočítána takto:

$$U_{efe} = \sqrt{\frac{1}{T} \int_0^T U^2(t)dt} \tag{1}$$

0.2 Chyby měření

Absolutní chyba měřícího přístroje se dá spočítat jako:

$$|\Delta_{Px}| = |\Delta_M| + |\Delta_R| = \frac{|\delta_M \cdot X_M| + |\delta_R \cdot X_R|}{100}$$
(2)

Figure 3: Jednotka veličiny X

Chyba měření muže vzniknout také sériovím rušením které je způsobeno především ručením se sítě (50Hz), toto rušení integrační AD převodníky z principu potlačují. Potlačení rušení se dosahuje integrací v časovém úseku který je celočíselným násobkem periody měřeného napětí, pro (50Hz) je to 20ms.

1 Měření

1.1 Použité přístroje

- $\bullet\,$ Multimetr Keysight 34450A
- Multimetr Agilent 34401A
- Stabilizovaný zdroj napětí GW Instek GPD-3303S Generátor Siglent SDG2042X
- Odporová dekáda

1.2 Úkol 1

GWInstek GPD-3303S	Agilan 34401A (etalon)	Odchilka
V	V	mV
0.0	0.0007	0.7
1.0	1.0044	4.4
2.0	2.0042	4.2
3.0	3.0038	3.8
4.0	4.0036	3.6
5.0	5.0034	3.4
6.0	6.0044	4.4
7.0	7.0041	4.1
8.0	8.0036	3.6
9.0	9.0047	4.7
10.0	10.0044	4.4

Table 1: Nastavení obvodu

Úkol 2 1.3

Agilent 34401A

• $R_n = 100k\Omega$

•
$$R_n = 100k\Omega$$

• $U_n = 1.0032V$
$$R_{vst} = \frac{U_{vst}}{U_n - U_{vst}} \cdot R_n = \frac{0.9933}{1.0032 - 0.9933} \cdot 100 * 10^3 = 10.033[k\Omega]$$
(3)

 $U_{vstup} = 0.9933V$

Podle katalogového listu přístroje Agilent 34401A je jeho vstupní odpor $10M\Omega$ odchylka našeho měření je tady $33k\Omega$

Keysight 34450A

• $R_n = 100k\Omega$

•
$$R_n = 100k\Omega$$

• $U_n = 1.0027V$
$$R_{vst} = \frac{U_{vst}}{U_n - U_{vst}} \cdot R_n = \frac{0.9928}{1.0027 - 0.9928} \cdot 100 * 10^3 = 10.028[k\Omega]$$
(4)

• $U_{vstup} = 0.9928V$

Podle katalogového listu přístroje Keysight 34450A je jeho vstupní odpor $10M\Omega$ odchylka našeho měření je tady $28k\Omega$

Úkol 3 1.4

Pomocí generátoru jsme vytvářeli harmonický signál o amplitudě 1[V] kterému jsme měnili frekvenci v rozsahu 1[kHz]-500[kHz].

	1 [KHz]	2 [KHz]	5 [KHz]	10 [KHz]	20 [KHz]	50 [KHz]	100 [KHz]	200 [KHz]	350 [KHz]	500 [KHz]
Silent SDG 2042 [V]	1	1	1	1	1	1	1	1	1	1
Agilan 34401A [V]	1,05932	1,0537	1,05556	1,05977	1,05920	1,05441	1,04235	1,0158	0,9250	0,71208
Keysight 34450A [V]	1,0588	1,0589	1,0591	1,0592	1,0592	1,0576	1,0536	1,0464	1,0341	1,0186

Table 2: Měření frekvenčního rozsahu

korekční křivka voltmetru GWInstek GPD-3303S

1.5 Úkol 4

Multimetrem Keysight 34450A jsme změřili nejprve obdélníkoví $(U_{pp}=3[V];f=1[kHz])$ signál a následně trojúhelníkoví $(U_{pp}=5[V];f=100[Hz])$

- obdélníkový signál $U_{EF} = 1.4850[V]$
- trojúhelníkoví signál $U_{EF} = 1.4411[V]$

Elektivní hodnota obdélníkového signálu $(U_{pp}=3[V];f=1[kHz])$ je:

$$\begin{split} &U_{EF} = \sqrt{\frac{1}{T}(\int_{0}^{T}U^{2}(t)dt} = \\ &= \sqrt{\frac{1}{\frac{1}{1000[Hz]}} \left(\int_{0}^{\frac{1}{1000[Hz]}} 1.5^{2}dt + \int_{0}^{\frac{1}{1000[Hz]}} (-1.5)^{2}dt\right)} = \\ &= \sqrt{1000 \cdot 2 \int_{0}^{0.0005} 2.25dt} = \\ &= \sqrt{1000 \cdot 2 \cdot \left[2.25t\right]_{0}^{0.0005}} = \sqrt{1000 \cdot 2 \cdot 0.001125} = 1.5[V] \\ &\text{Měření tedy oproti teorii vykazuje odchylku } 15[mV] \end{split}$$

Elektivní hodnota trojúhelníkového signálu $(U_{pp}=5[V];f=100[Hz])$ je:

