$$F(x) = \frac{1}{2} \int_{x_{1}}^{x_{2}} \int_{x_{2}}^{x_{3}} \int_{x_{1}}^{x_{2}} \int_{x_{2}}^{x_{3}} \int_{x_{1}}^{x_{3}} \int_{x_{2}}^{x_{3}} \int_{x_{1}}^{x_{3}} \int_{x_{2}}^{x_{3}} \int_{x_{1}}^{x_{3}} \int_{x_{1}}^{x_{2}} \int_{x_{2}}^{x_{3}} \int_{x_{1}}^{x_{2}} \int_{x_{1}}^{x_$$

c)
$$f: R \to R$$
, $f(x) = cob(ax+b)$; $cos \theta = him(\theta + \frac{1}{2})$
 $f'(x) = (ax+b) \cdot (-him(ax+b)) = -ahim(ax+b) = \frac{1}{2}$
 $f''(x) = -a \cdot (ax+b+\frac{1}{2})$
 $f''(x) = (-1)^{man} cos(ax+b+m\frac{1}{2})$
 $f''(x) = (-1)^{man} cos(ax+b+m\frac{1}{2})$

14.12.20/2 Homework 9, week 11

Ex3

a)
$$(x^{x})^{2} = x^{x} \cdot \ln x \cdot x^{2} + x \cdot x^{x-1} \cdot x^{2} = x^{x} \cdot \ln x + x^{x} = x^{x} \cdot (\ln x + 1)$$

b) $f(0, \infty) \rightarrow \mathbb{R}$, $f(x) = x^{\frac{1}{x}}$
 $f(x) = (x^{\frac{1}{x}})^{2} = (\frac{1}{x})^{2} \cdot \ln x \cdot x^{x-1} + x^{2} \cdot \frac{1}{x} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}}$
 $= (x^{-1})^{2} \ln x \cdot x^{\frac{1}{x}} + \frac{1}{x} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} + \frac{1}{x^{2}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} + \frac{1}{x^{2}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} + \frac{1}{x^{2}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} + \frac{1}{x^{2}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} + \frac{1}{x^{2}} \cdot x^{\frac{1}{x}} = x^{\frac{1}{x}} \cdot x^{\frac{1}{x}} = x$

