

Data Sheet August 11, 2015 FN3076.15

Ultra High Frequency Transistor Arrays

The HFA3046, HFA3096, HFA3127 and the HFA3128 are Ultra High Frequency Transistor Arrays that are fabricated from Intersil Corporation's complementary bipolar UHF-1 process. Each array consists of five dielectrically isolated transistors on a common monolithic substrate. The NPN transistors exhibit a f_T of 8GHz while the PNP transistors provide a f_T of 5.5GHz. Both types exhibit low noise (3.5dB), making them ideal for high frequency amplifier and mixer applications.

The HFA3046 and HFA3127 are all NPN arrays while the HFA3128 has all PNP transistors. The HFA3096 is an NPN-PNP combination. Access is provided to each of the terminals for the individual transistors for maximum application flexibility. Monolithic construction of these transistor arrays provides close electrical and thermal matching of the five transistors.

Intersil provides an Application Note illustrating the use of these devices as RF amplifiers. For more information, visit our website at www.intersil.com.

Features

• NPN Transistor (f _T)	8GHz
NPN Current Gain (h _{FE})	130
NPN Early Voltage (V _A)	50V
• PNP Transistor (f _T)	5.5GHz
PNP Current Gain (h _{FE})	60
PNP Early Voltage (V _A)	20V
• Noise Figure (50 Ω) at 1.0GHz	3.5dB
Collector to Collector Leakage	<1pA
Complete Isolation Between Transistors	
• Pin Compatible with Industry Standard 3XXX S	eries

· Pb-Free (RoHS Compliant)

Applications

Arrays

- · VHF/UHF Amplifiers
- · VHF/UHF Mixers
- · IF Converters
- · Synchronous Detectors

Ordering Information

PART NUMBER (Note)	PART MARKING	TEMP. RANGE (°C)	PACKAGE (Pb-free)	PKG. DWG. #
HFA3046BZ	HFA3046BZ	-55 to +125	14 Ld SOIC	M14.15
HFA3096BZ*	HFA3096BZ	-55 to +125	16 Ld SOIC	M16.15
HFA3127BZ*	HFA3127BZ	-55 to +125	16 Ld SOIC	M16.15
HFA3127RZ*	127Z	-55 to +125	16 Ld 3x3 QFN	L16.3x3
HFA3128BZ (No longer available or supported)	HFA3128BZ	-55 to +125	16 Ld SOIC	M16.15
HFA3128RZ (No longer available or supported)	128Z	-55 to +125	16 Ld 3x3 QFN	L16.3x3

^{*}Add "96" suffix for tape and reel.

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Pinouts

Absolute Maximum Ratings

Collector to Emitter Voltage (Open Base) 8V
Collector to Base Voltage (Open Emitter)
Emitter to Base Voltage (Reverse Bias) 5.5V
Collector Current (100% Duty Cycle) 18.5mA at $T_J = +150$ °C
34mA at T_{J} = +125°C
37mA at $T_J = +110^{\circ}\text{C}$
Peak Collector Current (Any Condition) 65mA

Operating Information

	Temperature Range		-55°C to +125°C
--	-------------------	--	-----------------

Thermal Information

Thermal Resistance (Typical)	θ_{JA} (°C/W)	θ _{JC} (°C/W)
14 Ld SOIC Package (Note 1)	120	N/A
16 Ld SOIC Package (Note 1)	115	N/A
QFN Package (Notes 2, 3)	57	10
Maximum Power Dissipation (Any One Tra	ansistor)	0.15W
Maximum Junction Temperature (Die)		+175°C
Maximum Junction Temperature (Plastic P	ackage)	+150°C
Maximum Storage Temperature Range Pb-Free Reflow Profilesee link below	65°	°C to +150°C

http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
- 2. For θ_{JC} , the "case temp" location is the center of the exposed metal pad on the package underside.
- 3. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications T_A = +25°C

			DIE		SOIC, QFN			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DC NPN CHARACTERISTICS		•						
Collector to Base Breakdown Voltage, V _{(BR)CBO}	I _C = 100μA, I _E = 0	12	18	-	12	18	-	V
Collector to Emitter Breakdown Voltage, V _{(BR)CEO}	I _C = 100μA, I _B = 0	8	12	-	8	12	-	V
Collector to Emitter Breakdown Voltage, V _{(BR)CES}	I _C = 100μA, Base Shorted to Emitter	10	20	-	10	20	-	V
Emitter to Base Breakdown Voltage, V _{(BR)EBO}	I _E = 10μA, I _C = 0	5.5	6	-	5.5	6	-	V
Collector-Cutoff-Current, I _{CEO}	V _{CE} = 6V, I _B = 0	-	2	100	-	2	100	nA
Collector-Cutoff-Current, I _{CBO}	V _{CB} = 8V, I _E = 0	-	0.1	10	-	0.1	10	nA
Collector to Emitter Saturation Voltage, V _{CE(SAT)}	I _C = 10mA, I _B = 1mA	-	0.3	0.5	-	0.3	0.5	V
Base to Emitter Voltage, V _{BE}	I _C = 10mA	-	0.85	0.95	-	0.85	0.95	V
DC Forward-Current Transfer Ratio, h _{FE}	I _C = 10mA, V _{CE} = 2V	40	130	-	40	130	-	
Early Voltage, V _A	I _C = 1mA, V _{CE} = 3.5V	20	50	-	20	50	-	V
Base to Emitter Voltage Drift	I _C = 10mA	-	-1.5	-	-	-1.5	-	mV/°C
Collector to Collector Leakage		-	1	-	-	1	-	pA

Electrical Specifications T_A = +25°C

		DIE			5			
PARAMETER	TEST CONDITIONS	MIN TYP MAX			MIN	TYP	MAX	UNITS
DYNAMIC NPN CHARACTERISTICS								
Noise Figure	$f = 1.0GHz$, $V_{CE} = 5V$, $I_C = 5MA$, $Z_S = 50\Omega$	-	3.5	-	-	3.5	-	dB
f _T Current Gain-Bandwidth	I _C = 1mA, V _{CE} = 5V	-	5.5	-	-	5.5	-	GHz
Product	I _C = 10mA, V _{CE} = 5V	-	8	-	-	8	-	GHz

3 intersil FN3076.15
August 11, 2015

Electrical Specifications $T_A = +25$ °C (Continued)

		DIE		SOIC, QFN				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Power Gain-Bandwidth Product, fMAX	I _C = 10mA, V _{CE} = 5V	-	6	-	-	2.5	-	GHz
Base to Emitter Capacitance	V _{BE} = -3V	-	200	-	-	500	-	fF
Collector to Base Capacitance	V _{CB} = 3V	-	200	-	-	500	-	fF

Electrical Specifications $T_A = +25$ °C

		DIE			SOIC, QFN			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DC PNP CHARACTERISTICS		•	·	'		'	'	•
Collector to Base Breakdown Voltage, V _{(BR)CBO}	I _C = -100μA, I _E = 0	10	15	-	10	15	-	V
Collector to Emitter Breakdown Voltage, V _{(BR)CEO}	I _C = -100μA, I _B = 0	8	15	-	8	15	-	V
Collector to Emitter Breakdown Voltage, V _{(BR)CES}	I _C = -100μA, Base Shorted to Emitter	10	15	-	10	15	-	V
Emitter to Base Breakdown Voltage, V _{(BR)EBO}	I _E = -10μA, I _C = 0	4.5	5	-	4.5	5	-	V
Collector Cutoff Current, I _{CEO}	V _{CE} = -6V, I _B = 0	-	2	100	-	2	100	nA
Collector Cutoff Current, I _{CBO}	V _{CB} = -8V, I _E = 0	-	0.1	10	-	0.1	10	nA
Collector to Emitter Saturation Voltage, V _{CE(SAT)}	I _C = -10mA, I _B = -1mA	-	0.3	0.5	-	0.3	0.5	V
Base to Emitter Voltage, V _{BE}	I _C = -10mA	-	0.85	0.95	-	0.85	0.95	V
DC Forward-Current Transfer Ratio, h _{FE}	I _C = -10mA, V _{CE} = -2V	20	60	-	20	60	-	
Early Voltage, V _A	I _C = -1mA, V _{CE} = -3.5V	10	20	-	10	20	-	V
Base to Emitter Voltage Drift	I _C = -10mA	-	-1.5	-	-	-1.5	-	mV/°C
Collector to Collector Leakage		-	1	-	-	1	-	рА

Electrical Specifications $T_A = +25^{\circ}C$

		DIE SOIC				SOIC, QF	IC, QFN	
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DYNAMIC PNP CHARACTERIST	ICS							
Noise Figure	f = 1.0GHz, V_{CE} = -5V, I_{C} = -5mA, Z_{S} = 50Ω	-	3.5	-	-	3.5	-	dB
f _T Current Gain-Bandwidth	I _C = -1mA, V _{CE} = -5V	-	2	-	-	2	-	GHz
Product	I _C = -10mA, V _{CE} = -5V	-	5.5	-	-	5.5	-	GHz
Power Gain-Bandwidth Product	I _C = -10mA, V _{CE} = -5V	-	3	-	-	2	-	GHz
Base to Emitter Capacitance	V _{BE} = 3V	-	200	-	-	500	-	fF
Collector to Base Capacitance	V _{CB} = -3V	-	300	-	-	600	-	fF

4 intersil FN3076.15
August 11, 2015

Electrical Specifications $T_A = +25$ °C (Continued)

		DIE SOIC, QFI					N		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
DIFFERENTIAL PAIR MATCHING CHARACTERISTICS FOR THE HFA3046									
Input Offset Voltage	I _C = 10mA, V _{CE} = 5V	-	1.5	5.0	-	1.5	5.0	mV	
Input Offset Current	I _C = 10mA, V _{CE} = 5V	-	5	25	-	5	25	μA	
Input Offset Voltage TC	I _C = 10mA, V _{CE} = 5V	-	0.5	-	-	0.5	-	μV/°C	
S-Parameter and PSPICE model da	ata is available from Intersil Sales Offices,	and Inters	il Corpora	tion's web	site.				

Common Emitter S-Parameters of NPN 3µm x 50 µm Transistor

FREQ. (Hz)	S ₁₁	PHASE(S ₁₁)	S ₂₁	PHASE(S ₂₁)	S ₁₂	PHASE(S ₁₂)	S ₂₂	PHASE(S ₂₂)
V _{CE} = 5V and I	_C = 5mA			,				
1.0E+08	0.83	-11.78	11.07	168.57	1.41E-02	78.88	0.97	-11.05
2.0E+08	0.79	-22.82	10.51	157.89	2.69E-02	68.63	0.93	-21.35
3.0E+08	0.73	-32.64	9.75	148.44	3.75E-02	59.58	0.86	-30.44
4.0E+08	0.67	-41.08	8.91	140.36	4.57E-02	51.90	0.79	-38.16
5.0E+08	0.61	-48.23	8.10	133.56	5.19E-02	45.50	0.73	-44.59
6.0E+08	0.55	-54.27	7.35	127.88	5.65E-02	40.21	0.67	-49.93
7.0E+08	0.50	-59.41	6.69	123.10	6.00E-02	35.82	0.62	-54.37
8.0E+08	0.46	-63.81	6.11	119.04	6.27E-02	32.15	0.57	-58.10
9.0E+08	0.42	-67.63	5.61	115.57	6.47E-02	29.07	0.53	-61.25
1.0E+09	0.39	-70.98	5.17	112.55	6.63E-02	26.45	0.50	-63.96
1.1E+09	0.36	-73.95	4.79	109.91	6.75E-02	24.19	0.47	-66.31
1.2E+09	0.34	-76.62	4.45	107.57	6.85E-02	22.24	0.45	-68.37
1.3E+09	0.32	-79.04	4.15	105.47	6.93E-02	20.53	0.43	-70.19
1.4E+09	0.30	-81.25	3.89	103.57	7.00E-02	19.02	0.41	-71.83
1.5E+09	0.28	-83.28	3.66	101.84	7.05E-02	17.69	0.40	-73.31
1.6E+09	0.27	-85.17	3.45	100.26	7.10E-02	16.49	0.39	-74.66
1.7E+09	0.25	-86.92	3.27	98.79	7.13E-02	15.41	0.38	-75.90
1.8E+09	0.24	-88.57	3.10	97.43	7.17E-02	14.43	0.37	-77.05
1.9E+09	0.23	-90.12	2.94	96.15	7.19E-02	13.54	0.36	-78.12
2.0E+09	0.22	-91.59	2.80	94.95	7.21E-02	12.73	0.35	-79.13
2.1E+09	0.21	-92.98	2.68	93.81	7.23E-02	11.98	0.35	-80.09
2.2E+09	0.20	-94.30	2.56	92.73	7.25E-02	11.29	0.34	-80.99
2.3E+09	0.20	-95.57	2.45	91.70	7.27E-02	10.64	0.34	-81.85
2.4E+09	0.19	-96.78	2.35	90.72	7.28E-02	10.05	0.33	-82.68
2.5E+09	0.18	-97.93	2.26	89.78	7.29E-02	9.49	0.33	-83.47
2.6E+09	0.18	-99.05	2.18	88.87	7.30E-02	8.96	0.33	-84.23
2.7E+09	0.17	-100.12	2.10	88.00	7.31E-02	8.47	0.33	-84.97
2.8E+09	0.17	-101.15	2.02	87.15	7.31E-02	8.01	0.33	-85.68
2.9E+09	0.16	-102.15	1.96	86.33	7.32E-02	7.57	0.33	-86.37
3.0E+09	0.16	-103.11	1.89	85.54	7.32E-02	7.16	0.33	-87.05

5 intersil FN3076.15
August 11, 2015

Common Emitter S-Parameters of NPN 3 µm x 50 µm Transistor (Continued)

FREQ. (Hz)	S ₁₁	PHASE(S ₁₁)	S ₂₁	PHASE(S ₂₁)	S ₁₂	PHASE(S ₁₂)	S ₂₂	PHASE(S ₂₂)	
V _{CE} = 5V and I _C = 10mA									
1.0E+08	0.72	-16.43	15.12	165.22	1.27E-02	75.41	0.95	-14.26	
2.0E+08	0.67	-31.26	13.90	152.04	2.34E-02	62.89	0.88	-26.95	
3.0E+08	0.60	-43.76	12.39	141.18	3.13E-02	52.58	0.79	-37.31	
4.0E+08	0.53	-54.00	10.92	132.57	3.68E-02	44.50	0.70	-45.45	
5.0E+08	0.47	-62.38	9.62	125.78	4.05E-02	38.23	0.63	-51.77	
6.0E+08	0.42	-69.35	8.53	120.37	4.31E-02	33.34	0.57	-56.72	
7.0E+08	0.37	-75.26	7.62	116.00	4.49E-02	29.47	0.51	-60.65	
8.0E+08	0.34	-80.36	6.86	112.39	4.63E-02	26.37	0.47	-63.85	
9.0E+08	0.31	-84.84	6.22	109.36	4.72E-02	23.84	0.44	-66.49	
1.0E+09	0.29	-88.83	5.69	106.77	4.80E-02	21.75	0.41	-68.71	
1.1E+09	0.27	-92.44	5.23	104.51	4.86E-02	20.00	0.39	-70.62	
1.2E+09	0.25	-95.73	4.83	102.53	4.90E-02	18.52	0.37	-72.28	
1.3E+09	0.24	-98.75	4.49	100.75	4.94E-02	17.25	0.35	-73.76	
1.4E+09	0.22	-101.55	4.19	99.16	4.97E-02	16.15	0.34	-75.08	
1.5E+09	0.21	-104.15	3.93	97.70	4.99E-02	15.19	0.33	-76.28	
1.6E+09	0.20	-106.57	3.70	96.36	5.01E-02	14.34	0.32	-77.38	
1.7E+09	0.20	-108.85	3.49	95.12	5.03E-02	13.60	0.31	-78.41	
1.8E+09	0.19	-110.98	3.30	93.96	5.05E-02	12.94	0.31	-79.37	
1.9E+09	0.18	-113.00	3.13	92.87	5.06E-02	12.34	0.30	-80.27	
2.0E+09	0.18	-114.90	2.98	91.85	5.07E-02	11.81	0.30	-81.13	
2.1E+09	0.17	-116.69	2.84	90.87	5.08E-02	11.33	0.30	-81.95	
2.2E+09	0.17	-118.39	2.72	89.94	5.09E-02	10.89	0.29	-82.74	
2.3E+09	0.16	-120.01	2.60	89.06	5.10E-02	10.50	0.29	-83.50	
2.4E+09	0.16	-121.54	2.49	88.21	5.11E-02	10.13	0.29	-84.24	
2.5E+09	0.16	-122.99	2.39	87.39	5.12E-02	9.80	0.29	-84.95	
2.6E+09	0.15	-124.37	2.30	86.60	5.12E-02	9.49	0.29	-85.64	
2.7E+09	0.15	-125.69	2.22	85.83	5.13E-02	9.21	0.29	-86.32	
2.8E+09	0.15	-126.94	2.14	85.09	5.13E-02	8.95	0.29	-86.98	
2.9E+09	0.15	-128.14	2.06	84.36	5.14E-02	8.71	0.29	-87.62	
3.0E+09	0.14	-129.27	1.99	83.66	5.15E-02	8.49	0.29	-88.25	

Common Emitter S-Parameters of PNP 3 μ m x 50 μ m Transistor

FREQ. (Hz)	S ₁₁	PHASE(S ₁₁)	S ₂₁	PHASE(S ₂₁)	S ₁₂	PHASE(S ₁₂)	S ₂₂	PHASE(S ₂₂)	
V _{CE} = -5V and	V _{CE} = -5V and I _C = -5mA								
1.0E+08	0.72	-16.65	10.11	166.77	1.66E-02	77.18	0.96	-10.76	
2.0E+08	0.68	-32.12	9.44	154.69	3.10E-02	65.94	0.90	-20.38	
3.0E+08	0.62	-45.73	8.57	144.40	4.23E-02	56.39	0.82	-28.25	
4.0E+08	0.57	-57.39	7.68	135.95	5.05E-02	48.66	0.74	-34.31	
5.0E+08	0.52	-67.32	6.86	129.11	5.64E-02	42.52	0.67	-38.81	

Common Emitter S-Parameters of PNP 3 μ m x 50 μ m Transistor (Continued)

FREQ. (Hz)	S ₁₁	PHASE(S ₁₁)	S ₂₁	PHASE(S ₂₁)	S ₁₂	PHASE(S ₁₂)	S ₂₂	PHASE(S ₂₂)
6.0E+08	0.47	-75.83	6.14	123.55	6.07E-02	37.66	0.61	-42.10
7.0E+08	0.43	-83.18	5.53	118.98	6.37E-02	33.79	0.55	-44.47
8.0E+08	0.40	-89.60	5.01	115.17	6.60E-02	30.67	0.51	-46.15
9.0E+08	0.38	-95.26	4.56	111.94	6.77E-02	28.14	0.47	-47.33
1.0E+09	0.36	-100.29	4.18	109.17	6.91E-02	26.06	0.44	-48.15
1.1E+09	0.34	-104.80	3.86	106.76	7.01E-02	24.33	0.41	-48.69
1.2E+09	0.33	-108.86	3.58	104.63	7.09E-02	22.89	0.39	-49.05
1.3E+09	0.32	-112.53	3.33	102.72	7.16E-02	21.67	0.37	-49.26
1.4E+09	0.30	-115.86	3.12	101.01	7.22E-02	20.64	0.36	-49.38
1.5E+09	0.30	-118.90	2.92	99.44	7.27E-02	19.76	0.34	-49.43
1.6E+09	0.29	-121.69	2.75	98.01	7.32E-02	19.00	0.33	-49.44
1.7E+09	0.28	-124.24	2.60	96.68	7.35E-02	18.35	0.32	-49.43
1.8E+09	0.28	-126.59	2.47	95.44	7.39E-02	17.79	0.31	-49.40
1.9E+09	0.27	-128.76	2.34	94.29	7.42E-02	17.30	0.30	-49.38
2.0E+09	0.27	-130.77	2.23	93.19	7.45E-02	16.88	0.30	-49.36
2.1E+09	0.26	-132.63	2.13	92.16	7.47E-02	16.52	0.29	-49.35
2.2E+09	0.26	-134.35	2.04	91.18	7.50E-02	16.20	0.28	-49.35
2.3E+09	0.26	-135.96	1.95	90.24	7.52E-02	15.92	0.28	-49.38
2.4E+09	0.25	-137.46	1.87	89.34	7.55E-02	15.68	0.28	-49.42
2.5E+09	0.25	-138.86	1.80	88.48	7.57E-02	15.48	0.27	-49.49
2.6E+09	0.25	-140.17	1.73	87.65	7.59E-02	15.30	0.27	-49.56
2.7E+09	0.25	-141.39	1.67	86.85	7.61E-02	15.15	0.26	-49.67
2.8E+09	0.25	-142.54	1.61	86.07	7.63E-02	15.01	0.26	-49.81
2.9E+09	0.24	-143.62	1.56	85.31	7.65E-02	14.90	0.26	-49.96
3.0E+09	0.24	-144.64	1.51	84.58	7.67E-02	14.81	0.26	-50.13
V _{CE} = -5V, I _C =	-10mA							1
1.0E+08	0.58	-23.24	13.03	163.45	1.43E-02	73.38	0.93	-13.46
2.0E+08	0.53	-44.07	11.75	149.11	2.58E-02	60.43	0.85	-24.76
3.0E+08	0.48	-61.50	10.25	137.78	3.38E-02	50.16	0.74	-33.10
4.0E+08	0.43	-75.73	8.88	129.12	3.90E-02	42.49	0.65	-38.83
5.0E+08	0.40	-87.36	7.72	122.49	4.25E-02	36.81	0.58	-42.63
6.0E+08	0.37	-96.94	6.78	117.33	4.48E-02	32.59	0.51	-45.07
7.0E+08	0.35	-104.92	6.01	113.22	4.64E-02	29.39	0.47	-46.60
8.0E+08	0.33	-111.64	5.39	109.85	4.76E-02	26.94	0.43	-47.49
9.0E+08	0.32	-117.36	4.87	107.05	4.85E-02	25.04	0.40	-47.97
1.0E+09	0.31	-122.27	4.44	104.66	4.92E-02	23.55	0.37	-48.18
1.1E+09	0.30	-126.51	4.07	102.59	4.97E-02	22.37	0.35	-48.20
1.2E+09	0.30	-130.21	3.76	100.76	5.02E-02	21.44	0.33	-48.11

Common Emitter S-Parameters of PNP 3 µm x 50 µm Transistor (Continued)

FREQ. (Hz)	S ₁₁	PHASE(S ₁₁)	S ₂₁	PHASE(S ₂₁)	S ₁₂	PHASE(S ₁₂)	S ₂₂	PHASE(S ₂₂)
1.3E+09	0.29	-133.46	3.49	99.14	5.06E-02	20.70	0.32	-47.95
1.4E+09	0.29	-136.33	3.25	97.67	5.09E-02	20.11	0.31	-47.77
1.5E+09	0.28	-138.89	3.05	96.33	5.12E-02	19.65	0.30	-47.58
1.6E+09	0.28	-141.17	2.87	95.10	5.15E-02	19.29	0.29	-47.39
1.7E+09	0.28	-143.21	2.70	93.96	5.18E-02	19.01	0.28	-47.23
1.8E+09	0.28	-145.06	2.56	92.90	5.21E-02	18.80	0.27	-47.09
1.9E+09	0.27	-146.73	2.43	91.90	5.23E-02	18.65	0.27	-46.98
2.0E+09	0.27	-148.26	2.31	90.95	5.26E-02	18.55	0.26	-46.91
2.1E+09	0.27	-149.65	2.20	90.05	5.28E-02	18.49	0.26	-46.87
2.2E+09	0.27	-150.92	2.10	89.20	5.30E-02	18.46	0.25	-46.87
2.3E+09	0.27	-152.10	2.01	88.37	5.33E-02	18.47	0.25	-46.90
2.4E+09	0.27	-153.18	1.93	87.59	5.35E-02	18.50	0.25	-46.97
2.5E+09	0.27	-154.17	1.86	86.82	5.38E-02	18.55	0.24	-47.07
2.6E+09	0.26	-155.10	1.79	86.09	5.40E-02	18.62	0.24	-47.18
2.7E+09	0.26	-155.96	1.72	85.38	5.42E-02	18.71	0.24	-47.34
2.8E+09	0.26	-156.76	1.66	84.68	5.45E-02	18.80	0.24	-47.55
2.9E+09	0.26	-157.51	1.60	84.01	5.47E-02	18.91	0.24	-47.76
3.0E+09	0.26	-158.21	1.55	83.35	5.50E-02	19.03	0.23	-48.00

Typical Performance Curves

FIGURE 1. NPN COLLECTOR CURRENT vs COLLECTOR TO EMITTER VOLTAGE

FIGURE 2. NPN COLLECTOR CURRENT AND BASE CURRENT vs BASE TO EMITTER VOLTAGE

FN3076.15 August 11, 2015

Typical Performance Curves (Continued)

FIGURE 3. NPN DC CURRENT GAIN vs COLLECTOR CURRENT

FIGURE 5. PNP COLLECTOR CURRENT vs COLLECTOR TO **EMITTER VOLTAGE**

FIGURE 7. PNP DC CURRENT GAIN vs COLLECTOR **CURRENT**

FIGURE 4. NPN GAIN BANDWIDTH PRODUCT vs COLLECTOR **CURRENT (UHF 3 x 50 WITH BOND PADS)**

FIGURE 6. PNP COLLECTOR CURRENT AND BASE **CURRENT vs BASE TO EMITTER VOLTAGE**

FIGURE 8. PNP GAIN BANDWIDTH PRODUCT vs COLLECTOR **CURRENT (UHF 3 x 50 WITH BOND PADS)**

intersil FN3076.15 August 11, 2015

Die Characteristics

DIE DIMENSIONS:

53 mils x 52 mils 1340μm x 1320μm

METALLIZATION:

Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: $8k\mathring{A} \pm 0.4k\mathring{A}$ Type: Metal 2: AlCu(2%)

Thickness: Metal 2: 16kÅ ±0.8kÅ

PASSIVATION:

Type: Nitride

Thickness: 4kÅ ±0.5kÅ

PROCESS:

UHF-1

SUBSTRATE POTENTIAL: (POWERED UP)

Unbiased

Metallization Mask Layout

HFA3096, HFA3127, HFA3128

HFA3046

Pad numbers correspond to SOIC pinout.

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
August 11, 2015	FN3076.15	Added Revision History beginning with Rev 15. Updated ordering information table with "No longer available or supported" next to HFA3128 part numbers

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.

You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.

Reliability reports are also available from our website at www.intersil.com/support

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

intersil FN3076.15 August 11, 2015

Package Outline Drawing

M14.15
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 1, 10/09

0.22±0.03

NOTES:

- Dimensions are in millimeters.
 Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.
- 3. Datums A and B to be determined at Datum H.
- Dimension does not include interlead flash or protrusions.
 Interlead flash or protrusions shall not exceed 0.25mm per side.
- 5. The pin #1 indentifier may be either a mold or mark feature.
- 6. Does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm total in excess of lead width at maximum condition.
- 7. Reference to JEDEC MS-012-AB.

Small Outline Plastic Packages (SOIC)

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

	INC	HES	MILLIN		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
В	0.013	0.020	0.33	0.51	9
С	0.0075	0.0098	0.19	0.25	-
D	0.3859	0.3937	9.80	10.00	3
Е	0.1497	0.1574	3.80	4.00	4
е	0.050	BSC	1.27	-	
Н	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	16		1	6	7
α	0°	8°	0°	8°	-

Rev. 1 6/05

Package Outline Drawing

L16.3x3

16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
Rev 2, 4/07

TYPICAL RECOMMENDED LAND PATTERN

NOTES:

- Dimensions are in millimeters.
 Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
- 3. Unless otherwise specified, tolerance : Decimal ± 0.05
- 4. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip.
- 5. Tiebar shown (if present) is a non-functional feature.
- The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 indentifier may be either a mold or mark feature.