Department of Computer Engineering, SVNIT, Surat. Theoretical Computer Science Tutorial – 4

(NFA: Non-deterministic Finite Automata)

- 1. Construct a NFA to accept strings over alphabet $\Sigma = \{0,1\}$
 - a) The third symbol from the right end is 0.
 - b) The first and last digits are same.
 - c) Start with 01 and end with 10.
 - d) Ending with 110.
 - e) 0 as one of the last three character in the string.
- 2. Design a NFA to accept strings over alphabet $\Sigma = \{a, b\}$ ending with aba. Now use this NFA to construct DFA to accepting the same set of string.
- 3. Let $M = \{\{q_1, q_2, q_3\}, \{0,1\}, \{q_1\}, \{q_3\}\} \text{ is NFA, where } \delta \text{ is given as}$ $\delta(q_1, 0) = \{q_2, q_3\} \qquad \delta(q_1, 1) = \{q_1\}$ $\delta(q_2, 0) = \{q_1, q_2\} \qquad \delta(q_2, 1) = \{q_1, q_2\}$ $\delta(q_3, 0) = \{q_2\} \qquad \delta(q_3, 1) = \{q_1, q_2\}$

Construct the transition diagram corresponding to NFA.

Also convert NFA in to equivalent DFA.

4. Construct the transition diagram from given transition table for NFA. Convert a NFA in to equivalent DFA.

	0	1
$\rightarrow q_0$	$\{q_2\}$	Ø
q_1	Ø	$\{q_0, q_1\}$
* q2	$\{q_0, q_1\}$	$\{q_0\}$