

固体压强变化

日期:	时间:	姓名:	
Date:	Time:	Name:	_

初露锋芒

1. 固体压强变化问题

&

2. 不同问题中两种公式的选择及压强变化的判断

重难点

1. 固体压强变化的判断

2. 不同问题中公式的选择和压强变化的判断

系,

固体压强变化		
知识点一: 柱形固体压	强计算基本公式	
1、使用 P=F/S=ρgh 计算	基固体压强的条件	
①物体自然放置在水平	面上,且底面积与水平面充分接触,此时物体对水平面产生的压力大小	
(选填"大于"、"等于"	"或"小于")物体的重力,即: FG;	
②物体质量	,即密度均匀,物体质量可以用计算;	
③物体上下	,即物体体积可以用计算。	
练习:请写出 P=F/S=ρg	gh 的具体推到步骤并说明每一步需满足的相关条件	
柱形固体切割压强判	川路行	
知识点一:竖直切割		
	2括切去质量、体积、厚度等),由 ,压强变化量为零	,所以
压强。		
知识点二:水平切割		
1、水平切相同高度,判	J断出物体密度之间的大小关系,由	_间的关
进而由	判断切过之后的物体压强大小关系;	
2、常见的几种水平切割	J:	
①两个物体原来压强相邻	等,水平切相同高度(或、、)之后,剩余部分的压强一定	是大物
体的压强(选填	"大于"、"等于"或"小于")小物体的压强。	
②两个物体原来质量(或压力)相等,沿水平切相同体积(或相同高度),剩余部分压强有	_种情况
	。从开始切到小物体切完之前存在压强的情况。	
③质量(或压力)相等,	,水平切去相同质量,压强的符号跟原来,即原来哪个物体的原	玉强大,
切过之后剩余部分压强证	还是哪个物体的大。	

枝繁叶茂

-、固体压强变化

知识点一: 柱形固体压强计算基本公式

【例1】如图是小敏同学在探究甲、乙两种不同的固体物质的质量和体积的关系时得出的图象。如果用上 述两种物质做成甲、乙两个质量相同的实心正方体,把它们放在水平面上,则根据图象可知,甲、乙两物

B.
$$P_{\#}:P_{\angle}=4:1$$

C.
$$P_{\#}:P_{Z}=2:1$$

【例2】如图所示,将一块砖平放、立放、侧放时,它对地面的压强(

- A. 平放时最大
- B. 立放时最大
- C. 侧放时最大
- D. 平放、立放、侧放时,一样大

【例 3】如图所示,两个完全相同的装满豆浆的密闭杯子,以下列四种不同的方式放在水平桌面上,若杯 子上表面面积是下表面面积的 2 倍,它们对桌面的压强大小分别是 P_{H} 、 P_{Z} 、 P_{B} 、 P_{T} ,则 (

- A. $P \neq P \leq P \leq P \neq T$
- B. $P \angle P \neq P \angle P \neq$
- C. $P_{\mathbb{Z}} < P_{\mathbb{P}} = P_{\mathbb{T}} < P_{\mathbb{P}}$
- D. $P \neq P \leq P \leq P \neq P = P \neq P$

【例 4】甲、乙两个正方体放在水平地面上,它们对地面的压强相等,甲、乙密度之比是 1:2,则甲、乙的 底面积之比是 ()

- A. 1:2 B. 2:1
- C. 1:4
- D. 4:1

二、固体切割压强判断

知识点一:竖直切割

【例1】如图所示,实心均匀正方体甲、乙对水平地面的压力相同. 现沿竖直方向切去相同厚度,并将切 () 去部分放置在对方剩余部分的上表面,若此时它们对地面的压强为 P_{\parallel} 、 P_{z} ,则

- A. P_{\parallel} 一定大于 P_{Z}
- B. P_{\parallel} 可能小于 P_{Z}
- C. P_{\parallel} 一定等于 P_{Z}
- **D. P** □可能等于 **P** _Z

【例 2】如图所示,甲、乙两个实心均匀正方体分别放在水平地面上,两个正方体的边长分别为 \mathbf{h}_{\parallel} 和 \mathbf{h}_{\perp} (\mathbf{h}_{\parallel} > \mathbf{h}_{\perp}),它们对地面的压强相等。若在两个正方体的上部沿水平方向分别截去相同的质量,则截去的高度之比 $\Delta \mathbf{h}_{\parallel}$: $\Delta \mathbf{h}_{\perp}$ 为

【例 3】如图所示,质量相同的甲、乙两个均匀实心正方体放在水平地面上。若分别沿竖直方向截去厚度相等的部分后,则剩余部分对水平地面的压强 $\mathbf{P}_{\scriptscriptstyle \parallel}$ 和 $\mathbf{P}_{\scriptscriptstyle Z}$ 的关系为 ()

A. $P \neq P_{Z}$

B. $P = P_{\mathbb{Z}}$

- C. $P = P_Z$
- D. 不确定

【例 4】如图所示,甲、乙两个实心均匀正方体放在水平地面上,它们对地面的压强相等。若沿竖直方向分别在两个正方体右侧截去一部分,使甲、乙剩余部分对地面的压力相等。则甲、乙正方体(

- A. 剩余部分的底面积 S'_₩=S'_Z
- B. 剩余部分的体积 V'艸=V'∠
- C. 对地面压力的变化量 $\Delta F = \Delta F_z$
- D. 对地面压强的变化量 $\Delta P_{\parallel} < \Delta P_{Z}$

知识点二: 水平切割

【例 1】如图所示,甲、乙两个均匀的实心正方体放在水平地面上,它们各自对地面的压强相等。若分别在甲、乙上沿水平方向截去高度相等的部分后,则剩余部分的 ()

- A. 甲的体积可能等于乙的体积
- B. 甲的质量可能小于乙的质量
- C. 甲对地面压强一定等于乙对地面的压强
- D. 甲对地面压力一定大于乙对地面的压力

【例 2】如图所示,甲、乙两个实心正方体物块放置在水平地面上,甲的边长小于乙的边长,以下做法中,有可能使两物体剩余部分对地面的压强相等的做法是 ()

- A. 如果它们的密度相等,将它们沿水平方向切去相等高度
- B. 如果它们的密度相等,将它们沿水平方向切去相等质量
- C. 如果它们的质量相等,将它们沿水平方向切去相等高度
- D. 如果它们的质量相等,将它们沿水平方向切去相等质量

随堂检测

1、已知三个实心正方体对水平地面的压强相等,它们的密度分别为 ρ_1 、 ρ_2 、 ρ_3 ,且 ρ_1 < ρ_2 < ρ_3 ,现从它们的上表 面分别均匀地切去一层,切去的厚度分别为 h_1 、 h_2 、 h_3 。为了使切去之后它们对水平地面的压强仍相等,应该 使 ()

- A. h₁<h₂<h₃ B. h₁>h₂>h₃ C. h₁=h₂=h₃ D. 无法确定

2、如图所示,甲、乙两个质量相等的均匀实心正方体在水平地面上,可能是甲和乙对地面压强相等的方法是

- A. 将质量相等的铜块和铁块分别放在甲、乙的上面
- B. 将体积相等的铜块和铁块分别放在甲、乙的上面
- C. 沿水平方向分别截去质量相等的部分
- D. 沿水平方向截去体积相等的部分

3、甲、乙、丙三个实心长方体放在水平地面上,若从它们的右侧沿图中虚线方向各切去底部相同长度的部分, 三个长方体剩下部分对地面的压强恰好相等,则三个长方体原来对水平地面的压强(

- A. $P = \langle P \rangle \langle P \rangle$
- B. $P = P_z > P_{\overline{z}}$
- C. $P = P_Z = P_B$
- D. 以上均有可能

4、甲、乙两个实心正方体分别放在水平地面上,它们对水平地面的压强相等,且 $\rho_{\mathbb{H}} > \rho_{\mathbb{Z}}$ 。若在它们上部沿水平 方向分别切去相同体积,则它们对地面压强变化量 $\Delta P_{\mathbb{H}}$ 、 $\Delta P_{\mathbb{Z}}$ 的大小关系是 $\Delta P_{\mathbb{H}}$ $\Delta P_{\mathbb{Z}}$ (选填"大于"、"等 干"或"小干")。

5、如图所示,甲、乙两个实心均匀正方体分别放在水平地面上,它们对地面的压力相等。若在两个正方体的 上部,沿水平方向分别截去相同高度的部分,则剩余部分对地面的压强关系是

- A. $P \neq P_Z$
- B. $P = P_{Z}$
- C. $P \neq P_{Z}$
- D. 以上情况均有可能

6、如图所示,放在水平地面上的均匀正方体甲、乙对地面的压力相等,若在两物体上部沿水平方向切去一定 的厚度,使剩余部分的高度相等,则剩余部分对地面的压力 $\mathbf{F}_{\mathbf{n}}$ '和 $\mathbf{F}_{\mathbf{z}}$ '、压强 $\mathbf{P}_{\mathbf{n}}$ '和 $\mathbf{P}_{\mathbf{z}}$ '的关系是()

- A. $F_{\#}'>F_{Z}'$, $P_{\#}'>P_{Z}'$ B. $F_{\#}'=F_{Z}'$, $P_{\#}'=P_{Z}'$
- C. $F_{\#}' < F_{Z'}$, $P_{\#}' > P_{Z'}$ D. $F_{\#}' = F_{Z'}$, $P_{\#}' > P_{Z'}$

D. 甲对地面压力一定大于乙对地面的压力

8、甲、乙两个圆柱体(ρ_{Ψ} < ρ_{Z})分别置于水平地面上,它们的底面积分别为 S_{Ψ} 和 S_{Z} ,高度分别为 h_{Ψ} 和 h_{Z} 。若均沿水平方向,将两圆柱体截去相等的质量,使剩余部分对地面的压强 P_{Ψ} > P_{Z} ,则甲、乙两个圆柱体被截去前的情况可能是图中的 (

9、如图所示的圆柱体甲和乙分别放在水平地面上,已知 $\mathbf{m}_{\parallel}=\mathbf{m}_{\text{Z}}$, $\rho_{\parallel}>\rho_{\text{Z}}$ 。现准备分别在它们上部沿水平方向截去部分物体后,再叠放在对方剩余部分上表面。以下截法中,有可能使它们对水平地面的压强相等的方法是

()

- A. 水平截去相同的高度
- B. 水平截去相同的体积
- C. 水平截去相同的质量
- D. 按原来高度的比例, 水平截去相等比例的部分高度

10、如图所示,甲、乙两个实心均匀正方体分别放在水平地面上,它们对水平地面的压强相等。则甲、乙密度 $\rho_{\text{\tiny H}}\!\!<\!\!\rho_{\text{\tiny Z}}$,若在两个正方体的上部,沿水平方向分别截去相同高度的部分,则剩余部分对水平地面的压强 $P_{\text{\tiny H}}$

11、一实心正方体放在水平地面上,地面受到的压强为 P, 若把此物块切一半拿走,则剩余部分对地面的压强 ()

A. 一定为 1/2P

B. 一定为 P

C. 可能为 1/3P

D. 可能为 2P

B

12、如图所示,边长分别为 0.2 米和 0.1 米的实心正方体 A、B 放置在水平地面上,物体 A 的质量是 2 千克,物体 B 的密度为 1×10^3 千克/米 3 。

求: ①物体 A 的密度ρ_A。

- ②物体 B 所受重力的大小 GB。
- ③若在两正方体上部沿水平方向切去体积均为 ΔV 的部分后,两正方体对地面压强的变化量之比 ΔP_{A} : ΔP_{B} 。

13、如图所示,边长分别为 0.2 米和 0.3 米的实心正方体 A、B 放置在水平地面上,物体 A 的密度为 2×10^3 千克/米 3 ,物体 B 的质量为 13.5 千克。求:

- (1)物体B的密度。
- (2)物体 A 对水平地面的压强。
- (3) 若在正方体 $A \times B$ 上沿水平方向分别截去相同的体积 $V = A \times B$ 剩余部分对水平地面的压强为 P_{A} 和 P_{B} ,请通过计算比较它们的大小关系及其对应的 V 的取值范围

瓜熟蒂落

- 1、甲、乙两个实心正方体分别放在水平地面上,它们对水平地面的压强相等,且 $ho_{\mathbb{P}} >
 ho_{\mathbb{Z}}$ 。若在它们右侧沿竖直 方向分别切去一部分,且切去部分的体积相同,则它们对地面压力变化量 ΔF_{μ} 、 ΔF_{z} 的大小关系和它们对地面 压强变化量 ΔP_{\parallel} 、 ΔP_{Z} 的大小关系分别是(
 - A. $\Delta F = \Delta F_{Z}$, $\Delta P = \Delta P_{Z}$
 - B. $\Delta F \neq \Delta F_{Z}$, $\Delta P \neq \Delta P_{Z}$
 - C. $\Delta F = \Delta F_{Z}$, $\Delta P = \Delta P_{Z}$
 - D. $\Delta F = \Delta F_{Z}$, $\Delta P = \Delta P_{Z}$
- 2、如图所示,甲、乙两个均匀的实心正方体放在水平地面上,它们质量相等。若分别在甲、乙上沿水平方向 截去高度相等的部分后,则剩余部分的 (
 - A. 甲的体积可能等于乙的体积
 - B. 甲的质量可能小于乙的质量
 - C. 甲对地面压强可能等于乙对地面的压强
 - D. 甲对地面压力可能大于乙对地面的压力

- 3、如图所示,质量相同的甲、乙两个均匀实心正方体放在水平地面上。若分别沿竖直方向截去厚度相等的部 分后,则剩余部分对水平地面的压强 P_{\parallel} 和 P_{Z} 的关系为 ()
 - A. $P \neq P_Z$
- B. $P = P_{Z}$
- C. $P = P_{Z}$

D. 以上都有可能

- 4、甲、乙两个实心正方体分别放在水平地面上,它们对地面的压强相等,已知ρ_Ψ<ρ_Z。若在两个正方体的右侧, 沿竖直方向截去相同质量的部分,则剩余部分对水平地面的压强关系中正确的是 (
- A. $P_{\#} < P_{Z}$ B. $P_{\#} = P_{Z}$ C. $P_{\#} > P_{Z}$
- D. 无法判断
- 5、如图,甲、乙两个正方体分别放置在水平地面上,且各自对地面的压强相等。若分别在两个正方体的上部, 沿水平方向截去相同高度,则甲、乙的剩余部分对地面压强 P 以及剩余部分质量 m 的大小关系为 ()
 - A. $P \neq P_Z$; $m \neq m_Z$
- B. $P_{\#} < P_{Z}$; $m_{\#} > m_{Z}$
- C. $P_{\parallel} > P_{\perp}$; $m_{\parallel} > m_{\perp}$
- D. $P \neq P_{Z}$; $m \neq m_{Z}$

6、如图两个实心圆柱体放置			以上 部相问局度后	,剩余部分对水半地面的
压强相等,则他们原来对水 A. $P_{\Psi}=P_{Z}$		$($ $)$ $P_{\parallel}>P_{\perp}$		
C. $P_{\parallel} < P_{\perp}$		不能确定		7
O. 1 # 4 Z	Б.	1 HE HILL	(T) (<u>.</u>
7、甲、乙两个实心正方体特	勿块放置在水平地面上	1,甲的边长小于乙	之 之的边长。以下做:	法中,有可能使两物体剩
余部分对地面的压强相等的	做法是 ()			
A. 如果它们的密度相邻	等,将它们沿水平方向	可切去相等高度		
B. 如果它们的密度相邻	等,将它们沿水平方向]切去相等质量		_
C. 如果它们的质量相邻	等,将它们沿水平方向	门切去相等高度		Z L
D. 如果它们的质量相等	等,将它们沿水平方向	可切去相等质量	,,,,,,,,	,,,,,
8、甲、乙、丙三个实心正为	方体分别放在水平地面	1上,它们对水平均	也面的压力相等。	己知ρᡎ<ρζ<ρὰ。若沿水平
方向分别在甲、乙、丙三个	正方体上部切去一块,	使三个正方体的刺	割余部分对水平地	面的压强相等,则切去部
分的质量关系为 ()			
A. $\Delta m = \Delta m_z = \Delta m_{\bar{i}}$	对	B. Δm _Ψ <Δ	m ∠<∆m _⋈	
C. $\Delta m \neq \Delta m \geq \Delta m \neq 0$		D. $\Delta m \neq \Delta$	$m \neq \Delta m_{Z}$	
9、如图所示,甲、乙两个原	目同种材料制成的均匀	实心正方体放在力	(平地面上,可能	使甲和乙对地面的压强相
等的方法是 ()				
A. 沿水平线截去质量	相同的部分			
B. 沿水平线截去高度	相同的部分			<u>z</u>
C. 将质量相同的物体。	分别放在甲、乙的上面	Ī		
D. 分别以甲、乙物体.	上表面的面积大小加上	上相同高度的该种特	勿质	
10、甲、乙、丙三个实心正				
为 $ρ_{\mathbb{P}} > \rho_{\mathbb{Z}} > \rho_{\mathbb{R}}$,若把它们都沿	竖直方向切去质量相等	等的部分,则三个 正	E方体剩下部分对	水平地面的压强大小关系
()				
A. $P = P_Z = P_{\overline{B}}$	B. $P_{\parallel} < P_{\angle} < P_{\Box}$	C. $P_{\parallel} > P_{\perp} > P_{\boxtimes}$	D. 以上都	有可能
ᆥᆒᄼ				선다. [대중대 시작대사 국사 대중 대]
11、如图所示它们对地面的		二月仰沿竖旦月回分	了别截去相问的体	积,则剩余部分对水半地
面的压强关系正确的是		∕n		
A. $P_{\parallel} > P_{\perp}$	B. P _甲 <	_	甲	乙
C. $P = P_{\mathbb{Z}}$	D. 无法	ンナリ四川	mmmi	nhimin

- A. 对地面的压强不变
- B. 对地面的压力不变
- C. 砖的密度减小一半
- D. 砖受到地面的支持力不变

13、甲、乙、丙三个实心正方体分别放在水平地面上,它们对水平地面的压强相等,它们的密度 $\rho_{\text{\tiny H}} < \rho_{\text{\tiny Z}} < \rho_{\text{\tiny R}}$ 。若在正方体上方截去质量相同的部分,则剩余部分对水平地面的压强关系为

- A. $P \neq P \leq P \leq P \neq$
- B. $P = P_Z = P_B$
- C. $P \neq P \geq P \neq P$
- D. 无法判断

15、放置在水平地面上的两个物体 A 和 B 均为质量分布均匀的实心正方体,正方体 A 的边长为 0.1 米,密度为 0.8×10^3 千克/米 3 ,正方体 B 的边长为 0.2 米,密度为 0.5×10^3 千克/米 3 。求:

①正方体 A 对水平地面的压强;

②在保持正方体 A、B 原有放置方式的情况下,若沿竖直方向或者水平方向截取物体,使它们对水平地面的压强相等。下面有两种方案,请判断这两种方案是否可行,若认为可行,计算所截取的长度(或厚度)。

方案一: 从正方体 A 的侧壁竖直截取一部分 (选填"行"或"不行");

方案二: 从正方体 B 的上方水平截取一部分 (选填"行"或"不行")。

16、如图所示,边长分别为 0.2 米和 0.3 米的实心正方体 A、B 放置在水平地面上,物体 A 的密度为 2×10^3 千 克/米 3 ,物体 B 的质量为 13.5 千克。求:

- (1) 物体 A 对水平地面的压强。
- (2) 物体 B 的密度。
- (3) 在保持物体 $A \times B$ 原有放置方式的情况下,为了使 $A \times B$ 对地面的压强相等,甲同学的方案是:在两个正方体上方均放置一个重力为 G 的物体,乙同学的方案是:在两个正方体上方沿水平方向截取相同高度 Δh 。
- ①你认为 同学的方案是可行的。
- ②确定方案后,请计算该方案下所放置的物体重力 G 或截取的相同高度 Δh 。

