Classification I

GEOG380 FA2018

World population maps

- Russia
- South East Asia

Revisit the histogram

- Divide the range of the data into a series of equal intervals
- Count how many cases lie in each interval

Plot the counts (or frequencies) as vertical bars

Importance of equal interval in histograms

Pennsylvania bear harvest 2003 35 30 25 Number of counties 20 15 10 5 Number of bears killed in county

Equal interval

Irregular interval Q. Why is it problematic?

Think of the map as a spatial histogram

- Things we measure are distributed over space
- A normalized map divides space into a pre-defined enumeration unit E.g., a block group
- Each enumeration unit gets a value
 - E.g. count of bears

FYI, 3D map symbolization

2D map symbolization

- Color or shades replace height of bars in histogram
- ▶ Each enumeration unit is a spatial interval
 - Remember: A histogram requires equal intervals to display correctly
 - Q. Do we have (geographically) equal intervals in maps?

Utmost Rule #1

- Raw totals must be adjusted to account for enumeration size variation
- It is not acceptable to uncritically map total values in mapping
 - Recall the equal interval issue in histogram
- One exception is when enumeration unit size is very similar throughout the map
 - E.g. a county map of Ohio

Statistical Surface on a Map

- Any distribution that is mathematically continuous over an area and is measured on an ordinal, interval, or ratio scale
 - Examples: elevation, population density, temperature...
- Point, line, area, and volume symbols can be used for mapping

"Each dot represents 16.2 hectares (10,000 m²) of land" in potato production in Wisconsin, 1947

Solution: ?

- Normalization: express figures as *ratio*, not as raw values
 - e.g. population/area (or population density)

...or...

as Z-scores (this is also a rate; "how many standard deviations is a value above or below the mean" = deviation/std. dev.)

...or...

- as a proportion (%) or rate of proportions (e.g. location quotient)
- Choropleth mapping (next slides)

Mapping data in pre-defined areal units

- Choropleth mapping
 - After Greek words choros (place), pleth (value)
- "A method of cartographic representation which employs distinctive color or shading applied to areas other than those bounded by isolines. These are usually statistical or administrative areas."
 - ICA (International Cartographic Association)

These regions are often called enumeration units or districts (ex. a census block-group)

http://kendallmaps.blogspot.com/2010/07/choropleth-maps.html

Two Kinds of Choropleth Maps

- Unclassified maps: graded symbology
 - http://fishermaniacsmaps.blogspot.com/2012/03/unclassed-choropleth-maps.html
- high

- Classified maps: range-graded symbology
 - Population vs. population density of counties in CA

Use and Misuse

- A reader may
 - Obtain an actual value of an area
 - Observe the overall spatial pattern
 - Compare to other choropleth maps
- Ideally, phenomena should uniformly distribute within each enumeration unit and only change at the boundaries
 - However, there are not too many examples of the case!
- Likely to have a wrong impression that there is uniformity within the units and that breaks occur in the surface at the unit boundaries

Do NOT use absolute numbers alone!

- We should avoid the direct use of raw-total data
 - Size effect!
- Colors used may give the readers illusion of...
 - The density of the mapped area (even if showing raw values)
 - Size is also an effective visual variable
 - ▶ Q. Regional total which one is better? For what reasons?

Group Activity:

Illusion of regional total and colors

Q.What is the best design for symbology among B, C, and D to correctly represent data in A?

So, do NOT use absolute numbers alone!

- Map readers may perceive the color (value) and the areas of the mapped variable as the density of that variable because the area is completely filled with the color
 - When you use absolute numbers, they are not the density!
 - Ex. the two CA maps
- ▶ The unit of measurement is included to express the amount of the density value
 - Ex. 100mi², 1,000 person/km²
- However, if the areas are more or less similar, a choropleth map of raw data or absolute numbers may be acceptable
 - Ex. the OH map

Group Activity:

Raw data vs. standardized data

Q. Which map is better to show spatial patterns of the phenomena?

Q. Is this a choropleth map?

ALL THE KING'S FANS

- Q. Is this map normalized?
- Q. Unclassified or classified?

Various techniques for thematic mapping

Chorodot mapping: choropleth mapping in 3D

Demonstration

Choropleth mapping with normalization using ArcGIS

Summary

- ▶ Importance of equal interval and normalization in classification
- Choropleth map and classification
 - Use and misuse
- Raw data vs. standardized data
- Other thematic mapping techniques than choropleth mapping

For next time...

- Reading
 - ▶ Ch. 4
- Lab2 (cont.)