第二节

正项级数及其审敛法

- 一、正项级数收敛的充分必要条件
- 二、比较审敛法
- 三、比值审敛法和根值审敛法

一、正项级数收敛的充分必要条件

1. 定义 正项级数: $\sum_{n=1}^{\infty} u_n \quad (u_n \ge 0)$

问题: 正项级数收 敛的条件?

2. 定理11.1 正项级数 $\sum_{n=1}^{\infty}$ 收敛的充要条件是:

部分和数列 S_n 有上界.

证 (\Rightarrow) 设 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\{S_n\}$ 收敛, 故有界.

(\leftarrow) 由 $u_n \geq 0$,知 $\{S_n\}$ 单调递增,

又知 $\{S_n\}$ 有上界,故 $\{S_n\}$ 收敛, $\sum_{n=1}^{n} u_n$ 也收敛.

二、比较审敛法

1. 引例

例1 判定正项级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + e}$ 的敛散性.

解 由于
$$\frac{1}{3^n + e} < \frac{1}{3^n}$$
,部分和

$$S_n = \frac{1}{3+e} + \frac{1}{3^2+e} + \dots + \frac{1}{3^n+e} < \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n} = \sigma_n$$

由
$$\sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{3}{2}$$
 收敛 ,知 $\sigma_n < \sigma$ 有上界,

从而 $S_n < \sigma_n < \sigma$ 有上界,故级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + e}$ 收敛.

|分析: 欲寻找能控制该级

数部分和 S_n 的新收敛级数

定理11.2 (比较审敛法) 设正项级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$

$$(1) 若 \sum_{n=1}^{\infty} v_n 收敛, u_n \leq v_n, 则 \sum_{n=1}^{\infty} u_n 也收敛;$$

(2) 若
$$\sum_{n=1}^{\infty} v_n$$
 发散, $u_n \geq v_n$, 则 $\sum_{n=1}^{\infty} u_n$ 也发散.

证
$$(1)$$
设 $\sigma = \sum_{n=1}^{\infty} v_n$ 收敛,由 $u_n \leq v_n$,部分和满足:

$$0 \le S_n = u_1 + u_2 + \dots + u_n$$

$$\le v_1 + v_2 + \dots + v_n = \sigma_n < \sigma$$

故 S_n 有界,从而 $\sum_{n=1}^{\infty} u_n$ 收敛.

(2)用反证法:

矛盾!

推论 (比较审敛法) 设正项级数

$$\sum_{n=1}^{\infty} u_n, \quad \sum_{n=1}^{\infty} v_n$$

(i) 若
$$\sum_{n=1}^{\infty} v_n$$
收敛, $u_n \leq c \ v_n \ (n \geq N)$,

则
$$\sum_{n=1}^{\infty} u_n$$
 也收敛;

(ii) 若
$$\sum_{n=1}^{\infty} v_n$$
 发散, $u_n \ge c v_n$ $(n \ge N)$,

则
$$\sum_{n=1}^{\infty} u_n$$
 也发散.

比较法的使用思路:

欲证收敛(发散),则放大(缩小)

例2 判断正项级数 $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n(n+1)}}$ 的敛散性.

$$\frac{2}{\sqrt{n(n+1)}} > \frac{2}{n+1},$$

且
$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$
 发散 : 所给级数发散.

例3 讨论
$$p$$
 -级数 $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ 的敛散性 (常数 $p > 0$).

解 1)
$$p \le 1$$
时, $\frac{1}{n^p} \ge \frac{1}{n}$,

而
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
发散,故 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 发散.

$$p \le 1$$
时, $\frac{1}{n^p} \ge \frac{1}{n}$, $\frac{1}{n^p} \ge \frac{1}{n}$, $\frac{1}{n} \ge \frac{1}{n}$ $\frac{$

2)当
$$p > 1$$
时,

$$\frac{1}{n^p} \le \frac{1}{x^p}, \qquad \int_{n-1}^n \frac{1}{n^p} dx \le \int_{n-1}^n \frac{1}{x^p} dx$$

$$(n-1\leq x\leq n), \qquad (n=2,3,\cdots)$$

$$\frac{1}{n^{p}} = \int_{n-1}^{n} \frac{1}{n^{p}} dx \le \int_{n-1}^{n} \frac{1}{x^{p}} dx \qquad (n = 2, 3, \dots)$$

$$p-$$
级数的部分和

$$S_n = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}$$

$$\leq 1 + \int_{1}^{2} \frac{\mathrm{d} x}{x^{p}} + \int_{2}^{3} \frac{\mathrm{d} x}{x^{p}} + \dots + \int_{n-1}^{n} \frac{\mathrm{d} x}{x^{p}}$$

$$=1+\int_{1}^{n}\frac{1}{x^{p}}dx=1+\frac{1}{p-1}(1-\frac{1}{n^{p-1}})<1+\frac{1}{p-1}(n=2,3,\cdots)$$

p-级数部分和 S_n 有上界,故当p>1时, p-级数收敛.

¥

结论
$$p$$
-级数:
$$\sum_{n=1}^{\infty} \frac{1}{n^p} \left\{ \begin{array}{l} \text{收敛,} & p>1 \\ \text{发散.} & p\leq 1 \end{array} \right.$$

注 常用的比较级数: 等比级数,

调和级数与p-级数.

欲证
$$\sum_{n=1}^{\infty} u_n$$
 发散,

判
$$u_n \ge \frac{1}{n^p}$$
? (某 $p \le 1$)

欲证
$$\sum_{n=1}^{\infty} u_n$$
 收敛,

判
$$u_n \leq \frac{1}{n^p}$$
 (某 $p > 1$)?

例4 判断正项级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)^2}}$ 的敛散性.

$$\mu_n = \frac{1}{\sqrt{n(n+1)^2}} \le \frac{1}{n^{\frac{3}{2}}} = v_n$$

而
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$
 收敛,

$$\therefore \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)^2}} \quad 收敛.$$

定理11.3 (极限形式的比较审敛法)

设正项级数
$$\sum_{n=1}^{\infty} u_n$$
, $\sum_{n=1}^{\infty} v_n$ 满足

$$\lim_{n\to\infty}\frac{u_n}{v_n}=l\quad (0\leq l\leq +\infty),$$

则有

- (1) 当 0 < l < + ∞ 时,两级数同敛散;
- (2) 当 l=0 且 $\sum_{n=1}^{\infty} v_n$ 收敛时, $\sum_{n=1}^{\infty} u_n$ 也收敛;
- (3) 当 $l = +\infty$ 且 $\sum_{n=1}^{\infty} v_n$ 发散时, $\sum_{n=1}^{\infty} u_n$ 也发散.

$$\lim_{n\to\infty} \frac{u_n}{v_n} = l \quad (l \neq +\infty)$$

对 ε > 0,存在N ∈ Z⁺,当n > N时,

$$\left| \frac{u_n}{v_n} - l \right| < \varepsilon$$

$$(l-\varepsilon)v_n \le u_n \le (l+\varepsilon)v_n \quad (n>N)$$

(1) 当
$$0 < l < + \infty$$
时,取 $\varepsilon = \frac{l}{2}$,由定理 11.2 知

$$\sum_{n=1}^{\infty} u_n 与 \sum_{n=1}^{\infty} v_n 同敛散;$$

(2) l = 0 情形, 请自证;

(3) 当
$$l = +\infty$$
时,由 $\lim_{n \to \infty} \frac{u_n}{v_n} = +\infty$, $fN \in \mathbb{Z}^+$,当 $n > N$ 时, $\frac{u_n}{v_n} > 1$, $u_n > v_n$ 由定理11.2知, $\sum_{n=0}^{\infty} v_n$ 发散时 $\sum_{n=0}^{\infty} u_n$ 也发散.

极限形式的 比较审敛法 使用思路:

$$\lim_{n\to\infty} \frac{u_n}{v_n} = l$$
 寻找 u_n 的
$$(0 < l < +\infty),$$
 同阶无穷小

例5 判定级数的敛散性:
$$\sum_{n=1}^{\infty} \ln(1 + \frac{2}{\sqrt[3]{n}})$$
.

分析 寻找
$$u_n = \ln(1 + \frac{2}{\sqrt[3]{n}})$$
 的同阶无穷小.

解 当
$$x \rightarrow 0$$
 时 $\ln(1+x) \sim x$,于是

$$\lim_{n \to \infty} \frac{\ln(1+\frac{2}{3\sqrt{n}})}{\frac{2}{3\sqrt{n}}} = 1, \qquad u_n = O(\frac{1}{n^{1/3}})$$

而
$$p-$$
级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} (p = \frac{1}{3} < 1)$ 发散,

由定理 11.3 知, 级数
$$\sum_{n=1}^{\infty} \ln(1 + \frac{2}{\sqrt[3]{n}})$$
 发散.

例6 判定级数的敛散性 : $\sum_{n=1}^{\infty} \frac{1}{3^n - 2^n}$

$$: \sum_{n=1}^{\infty} \frac{1}{3^n - 2^n}$$

分析 寻找 $u_n = \frac{1}{3^n - 2^n}$ 的等价无穷小. 3^n 起主要作用

解 由于 $u_n = \frac{1}{3^n - 2^n} = \frac{1}{3^n} \cdot \frac{1}{1 - (\frac{2}{3})^n} \sim \frac{1}{3^n} (n \to \infty),$ 即 $u_n \sim \frac{1}{3^n}$,故取 $v_n = \frac{1}{3^n}$,则

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\overline{\frac{3^n - 2^n}{1}}}{\frac{1}{3^n}} = \lim_{n \to \infty} \frac{1}{1 - (\frac{2}{3})^n} = 1.$$

而 $\sum_{n=1}^{\infty} \frac{1}{3^n}$ 收敛,由定理 11.3 知, $\sum_{n=1}^{\infty} \frac{1}{3^n - 2^n}$ 收敛.

例7 判定级数的敛散性 : $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$.

解 由
$$\lim_{n\to\infty}\frac{\ln n}{n}=0$$
,

得
$$u_n = \frac{\ln n}{n^3} = \frac{\ln n}{n} \cdot \frac{1}{n^2} = o(\frac{1}{n^2})$$

 u_n 是 v_n 的高阶无穷小 $(n \to \infty)$.

而
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 收敛,

由定理 11.3 知, $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$ 收敛.

三、比值审敛法和根值审敛法

1. 比值审敛法

定理11.4 (达朗贝尔审敛法)

设正项级数
$$\sum_{n=1}^{\infty} u_n$$
满足: $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$ ($0 \le \rho \le +\infty$),

- 则 (1) 当 ρ < 1 时, 级数收敛;
 - (2) 当 ρ >1 或 ρ = +∞ 时, 级数发散.
 - (3) 当 $\rho=1$ 时,比值审敛法失效。

证 (1)当 ρ <1时,

取
$$\varepsilon > 0$$
, 使 $\rho + \varepsilon < 1$,由 $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho$

有
$$N \in \mathbb{Z}^+$$
, 当 $n > N$ 时, $\frac{u_{n+1}}{u_n} < \rho + \varepsilon < 1$

$$u_{n+1} < (\rho + \varepsilon)u_n$$

$$<(\rho+\varepsilon)^2 u_{n-1}<\cdots<(\rho+\varepsilon)^{n-N} u_{N+1}$$

$$: \sum_{n=1}^{\infty} (\rho + \varepsilon)^n 收敛,$$

$$\therefore$$
 由比较法, $\sum_{n=1}^{\infty} u_n$ 收敛.

(2) 当
$$\rho > 1$$
 或 $\rho = +\infty$ 时,

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho,\quad 有N\in Z^+,$$

从而

$$u_{n+1} > u_n > u_{n-1} > \cdots > u_N$$

因此 $\lim_{n\to\infty} u_n \ge u_N \ne 0$,所以级数发散.

$$(3) \overset{\text{iff}}{=} \rho = 1 \text{ iff}, \quad \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = 1 \text{ iff},$$

级数可能收敛也可能发散.

例如,
$$p-$$
级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$:

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{\frac{1}{(n+1)^p}}{\frac{1}{n^p}} = 1$$

但
$$\begin{cases} p > 1, 级数收敛; \\ p \leq 1, 级数发散. \end{cases}$$

例8 判断级数
$$\frac{1}{1!} + \frac{2^2}{2!} + \cdots + \frac{n^n}{n!} + \cdots$$
的敛散性.

解 因为
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}}$$

$$= \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e > 1, \text{ bw by by by } .$$

小结:通项含n!的级数,

适合用比值法判敛散.

例9 判定级数的敛散性: $\sum_{n=1}^{\infty} \frac{1!+2!+\cdots+n!}{(2n)!}$.

$$\begin{aligned}
& :: u_n = \frac{1! + 2! + \dots + n!}{(2n)!} \\
& \le \frac{n! + n! + \dots + n!}{(2n)!} = \frac{n \cdot n!}{(2n)!} = v_n \\
& = v_n
\end{aligned}$$

$$\overline{||} \quad \lim_{n \to \infty} \frac{v_{n+1}}{v_n} = \lim_{n \to \infty} \frac{\overline{[2(n+1)]!}}{\underline{nn!}} = \lim_{n \to \infty} \frac{(n+1)}{2(2n+1)n}$$

$$= 0 < 1 \qquad (2n)!$$

 $\therefore \sum_{n=1}^{\infty} v_n 收敛, 故原级数收敛.$

例10 判断
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n^2}$$
 的敛散性(x为常数, $x \neq 0$,±1).

例10 判断
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n^2}$$
 的敛散性(x 为常数 , $x \neq 0$,±1).

解 因为 $\rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)^2}{x^{2n}}$

$$=\lim_{n\to\infty}\frac{n^2}{(n+1)^2}x^2=x^2$$

由比值法知,
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n^2} \begin{cases} \psi \otimes , 0 < |x| < 1 \\ \xi \otimes , |x| > 1 \end{cases}$$

 $^{\prime\prime}$ 小结: 通项含 a^n 的级数,适合用比值法判敛散.

2. 根值审敛法

定理11.5 (柯西审敛法)

证明与比 值法类似

设
$$\sum_{n=1}^{\infty} u_n$$
为正项级数,且 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$,则

- (1)当 ρ <1时,级数收敛;
- (2)当 $\rho > 1$ 或 $\rho = +\infty$ 时,级数发散.
- (3) 当 $\rho=1$ 时,根值审敛法失效.

如
$$p$$
 — 级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$: $\sqrt[n]{u_n} = \left(\frac{1}{\sqrt[n]{n}}\right)^p \to 1 \ (n \to \infty)$

但 p > 1,级数收敛; $p \le 1$,级数发散.

例11 判别下列级数的收敛性: $\sum_{n=1}^{\infty} 2^{-n-(-1)^n}$.

解 (方法1) 根值法

(方法2) 比较法
$$u_n = 2^{-n-(-1)^n} = 2^{-n} \cdot 2^{(-1)^{n+1}}$$

$$\leq 2^{-n} \cdot 2 = \frac{1}{2^{n-1}} \quad (n \geq 1)$$

$$\therefore \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} 收敛, \therefore 原级数收敛.$$

注 对于
$$\sum_{n=1}^{\infty} 2^{-n-(-1)^n}$$
, 比值法失效!

$$\therefore a_n = \frac{u_{n+1}}{u_n} = \frac{2^{-(n+1)-(-1)^{n+1}}}{2^{-n-(-1)^n}} = 2^{-1+2(-1)^n} = \begin{cases} 2, & n \text{ if } \\ \frac{1}{8}, & n \text{ if } \\ \frac{1}{8}, & n \text{ if } \end{cases}$$

$$\lim_{n\to\infty} a_{2n} = 2 \neq \lim_{n\to\infty} a_{2n+1} = \frac{1}{8}$$

故比值法失效.

内容小结

1.判断正项级数敛散性的一般程序:

比较审敛法或部分和极限法

比值法、根值法 失效!

2. 级数发散与一般项极限不为零的关系

如: 调和级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 但 $\lim_{n\to\infty} u_n = 0$.

3. 比值法和根值法的关系:

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho \implies \lim_{n\to\infty}\sqrt[n]{u_n}=\rho \quad (0\leq \rho\leq +\infty)$$

这表明: (1)若 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$,则用比值法和

根值法判断的结论一致;

(2)从理论上看,根值法较 比值法适用的范围更广.

4.
$$\sum_{n=1}^{\infty} u_n \ (u_n > 0)$$
收敛 $\Rightarrow \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho < 1$

思考题 判定
$$\sum_{n=1}^{\infty} \frac{n^3 \left[\sqrt{2} + (-1)^n \right]^n}{3^n}$$
 的敛散性.

分析
$$u_n = \frac{n^3 \sqrt{2} + (-1)^n}{3^n}$$

因
$$\lim_{n\to\infty} \sqrt[n]{u_n}$$

$$=\lim_{n\to\infty}\frac{\binom{n/n}{3}\sqrt{2}+(-1)^n}{3}$$
 不存在,

根值法失效.

判定
$$\sum_{n=1}^{\infty} \frac{n^3 \left[\sqrt{2} + (-1)^n \right]^n}{3^n}$$
 的敛散性.

又因
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n}$$

$$= \lim_{n\to\infty} \frac{(n+1)^3 [\sqrt{2} + (-1)^{n+1}]^{n+1}}{3^{n+1}} \cdot \frac{3^n}{n^3 [\sqrt{2} + (-1)^n]^n}$$

$$= \lim_{n \to \infty} \frac{1}{3} \left(\frac{n+1}{n} \right)^3 \left[\frac{\sqrt{2} - (-1)^n}{\sqrt{2} + (-1)^n} \right]^n \left[\sqrt{2} - (-1)^n \right]$$
 不存在,

比值法失效.

判定
$$\sum_{n=1}^{\infty} \frac{n^3 \left[\sqrt{2} + (-1)^n \right]^n}{3^n}$$
 的敛散性.

解用比较法

$$u_n = \frac{n^3 \left[\sqrt{2} + (-1)^n \right]^n}{3^n} \le \frac{n^3 \left[\sqrt{2} + 1 \right]^n}{3^n} = v_n$$

$$\overline{\prod} \lim_{n \to \infty} \sqrt[n]{v_n} = \lim_{n \to \infty} \left(\sqrt[n]{n}\right)^3 \frac{\left(\sqrt{2} + 1\right)}{3} = \frac{\sqrt{2} + 1}{3} < 1$$

$$\left(\overline{g}\lim_{n\to\infty}\frac{v_{n+1}}{v_n}=\frac{\sqrt{2}+1}{3}<1\right)\sum_{n=1}^{\infty}v_n收敛, 故原级数收敛.$$

备用题

例2-1 判断正项级数
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)}}$$
 的敛散性

m 由 $n(n+2) \leq (n+2)^2$,

得
$$\frac{1}{\sqrt{n(n+2)}}$$
> $\frac{1}{n+2}$

而
$$\sum_{n=1}^{\infty} \frac{1}{n+2} = \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n+2} + \dots$$
 发散,

由比较法知,原级数发散.

例2-2 讨论下列级数的敛散性 : $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n(n+1)}}$

解 因为
$$\frac{1}{\sqrt[3]{n(n+1)}} \ge \frac{1}{(n+1)^{2/3}}$$
 $(n=1,2,\cdots)$

而
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2/3}} = \sum_{n=2}^{\infty} \frac{1}{n^{2/3}} \left(p = \frac{2}{3} < 1 \right)$$
 发散

由比较法知, $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n(n+1)}}$ 发散.

例2-3
$$\sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{3^n}$$

解 由 $\sin x < x \left(0 < x < \frac{\pi}{2} \right)$ 知,

$$0 \le 2^n \sin \frac{\pi}{3^n} \le 2^n \cdot \frac{\pi}{3^n} = \pi \left(\frac{2}{3}\right)^n$$

而等比级数
$$\sum_{n=1}^{\infty} \pi \left(\frac{2}{3}\right)^n \left(r = \frac{2}{3} < 1\right)$$
收敛,

由比较审敛法知, $\sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{3^n}$ 收敛.

例5-1 判别级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n}$$
; (2) $\sum_{n=1}^{\infty} \ln \left[1 + \frac{1}{n^2}\right]$.

$$\sin\frac{1}{n} \sim \frac{1}{n}$$

解 (1) 因
$$\lim_{n\to\infty} \frac{\sin(\frac{1}{n})}{\frac{1}{n}} = 1$$

由比较法知, $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 发散.

$$\ln(1+\frac{1}{n^2}) \sim \frac{1}{n^2}$$

由比较法知,
$$\sum_{n=1}^{\infty} \ln \left[1 + \frac{1}{n^2}\right]$$
收敛.

例5-2 判定级数的敛散性:

$$p-级数: \sum_{n=1}^{\infty} \frac{1}{n^p}$$

(1)
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$$
; (2) $\sum_{n=1}^{\infty} \frac{1}{n^n \sqrt{n}}$. 不是 p —级数

$$\mathbf{prime}$$
 \mathbf{prime} \mathbf

(2) :
$$\lim_{n\to\infty}\frac{1}{n\sqrt[n]{n}}\bigg/\frac{1}{n}=\lim_{n\to\infty}\frac{1}{\sqrt[n]{n}}=1$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散,故原级数发散.

例5-3 判定下列级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + a^2}}$$
; (2) $\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^3}\right)$.

解 (1) 因
$$\lim_{n\to\infty} \frac{\sqrt{n^3+a^2}}{n^{-\frac{3}{2}}} = 1,$$

而级数
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
收敛,

由定理 11.3知,
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + a^2}}$$
 收敛.

$$(2) \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^3}\right)$$

而
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
 收敛,

故
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^3}\right)$$
 收敛.

例8-1 讨论
$$\sum_{n=1}^{\infty} n x^{n-1} (x > 0)$$
 的敛散性.

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\frac{(n+1)x^n}{nx^{n-1}}=x$$

由定理11.4, 当0 < x < 1时, 级数收敛;

当x > 1时,级数发散;

当
$$x = 1$$
时,级数 $\sum_{n=1}^{\infty} n$ 发散.

例8-2 判定下列级数的敛散性 : $\sum_{n=1}^{\infty} \frac{a^n}{n} (a > 0)$.

$$= \lim_{n \to \infty} \frac{n}{n+1} \cdot a = a \, , \quad \text{由比值法知} \, ,$$

当0 < a < 1时,级数收敛;

当a > 1时,级数发散;

当a=1时,为调和级数,发散.

例8-3 判定下列级数的敛散性 : $\sum_{n=1}^{\infty} \frac{n!}{5^n}$

解 由于
$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n} = \lim_{n\to\infty}\frac{(n+1)!}{5^{n+1}}\cdot\frac{5^n}{n!}$$

$$=\lim_{n\to\infty}\frac{n+1}{5}=+\infty$$

由比值法知, $\sum_{n=1}^{\infty} \frac{n!}{5^n}$ 发散.

例8-4 判定下列级数的敛散性 : $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\frac{(n+1)!}{(n+1)^{n+1}}\cdot\frac{n^n}{n!}$$

$$= \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \lim_{n\to\infty} \frac{1}{\left(1+\frac{1}{n}\right)^n} = \frac{1}{e} < 1$$

由比值法知, $\sum_{n=1}^{\infty} \frac{n}{n!}$ 收敛.

例10-1 判定级数的敛散性:

$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n} \quad (常数a > 0)$$

$$\mu_n = \frac{a^n n!}{n^n}$$

$$\therefore \frac{u_{n+1}}{u_n} = \frac{a^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{a^n n!} = \frac{a}{(1+\frac{1}{n})^n}$$

$$\therefore \rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{a}{(1+\frac{1}{n})^n} = \frac{a}{e}$$

$$\therefore \rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{u}{(1+\frac{1}{n})^n} = \frac{u}{e}$$

故当0 < a < e时, $\rho < 1$, 原级数收敛;

当a > e时, $\rho > 1$, 原级数发散;

当a = e时, $\rho = 1$, 比值法失效,

此时,由
$$\frac{u_{n+1}}{u_n} = \frac{e}{(1+\frac{1}{n})^n} > 1$$

得 $u_n > u_{n-1} > \cdots > u_1 = e$, $\lim_{n \to \infty} u_n \neq 0$

故原级数发散.

例11-1 判定级数的敛散性: $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{2^n}$.

解 (方法1) 比较法

$$u_n = \frac{2 + (-1)^n}{2^n} \le \frac{3}{2^n} = v_n,$$

而
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{3}{2^n}$$
 收敛,

$$\therefore \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n}$$
收敛.

(方法2)利用性质

$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n} = \sum_{n=1}^{\infty} \left[\frac{2}{2^n} + (-\frac{1}{2})^n \right],$$

(方法3) 根值法

$$\lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \frac{[2 + (-1)^n]^{\frac{2}{n}}}{2} = 2^{-1} < 1$$

: 原级数收敛.

注 对于 $\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n}$, 比值法失效!

$$\therefore \frac{u_{n+1}}{u_n} = \frac{2 + (-1)^{n+1}}{2(2 + (-1)^n)} = a_n,$$

$$\lim_{n\to\infty} a_{2n} = \frac{1}{6}, \quad \lim_{n\to\infty} a_{2n+1} = \frac{3}{2},$$

$$\therefore \lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}a_n$$
 不存在(且 \neq +\infty).

例11-2 判定下列级数的敛散性:

(1)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}; \quad (2) \quad \sum_{n=1}^{\infty} \frac{3+(-1)^n}{3^n}.$$

解 (1) 因
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \frac{1}{\ln n} = 0 < 1,$$

由根值法知, $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$ 收敛.

(2)
$$\boxplus \lim_{n\to\infty} \sqrt[n]{u_n} = \lim_{n\to\infty} \frac{1}{3} \sqrt[n]{3 + (-1)^n} = \frac{1}{3} < 1$$

由根值法 知, $\sum_{n=1}^{\infty} \frac{3+(-1)^n}{3^n}$ 收敛.