Exercise 3.1 MLE for the Bernoulli/ binomial model

$$\frac{d}{d\theta}p(D|\theta) = \frac{d}{d\theta}(\theta^{N_1}(1-\theta)^{N_0}) \tag{1}$$

$$= N_1 \theta^{N_1 - 1} (1 - \theta)^{N_0} - N_0 \theta^{N_1} (1 - \theta)^{N_0 1}$$
(2)

$$= \theta^{N_1 - 1} (1 - \theta)^{N_0 - 1} (N_1 (1 - \theta) - N_0 \theta) \tag{3}$$

$$= \theta^{N_1 - 1} (1 - \theta)^{N_0 - 1} (N_1 - N\theta) \tag{4}$$

$$\therefore \theta_{\text{MLE}} = \frac{N_1}{N} \tag{5}$$

Exercise 3.2 Marginal likelihood for the Beta-Bernoulli model

$$p(D) = \frac{[(\alpha_1)\cdots(\alpha_1+N_1-1)][(\alpha_0)\cdots(\alpha_0+N_0-1)]}{(\alpha)\cdots(\alpha+N-1)}$$
(6)

$$= \frac{[(\alpha_1)\cdots(\alpha_1+N_1-1)][(\alpha_0)\cdots(\alpha_0+N_0-1)]}{(\alpha_1+\alpha_0)\cdots(\alpha_1+\alpha_0+N-1)}$$
(7)

$$= \frac{\Gamma(\alpha_1 + \alpha_0)}{\Gamma(\alpha_1 + \alpha_0 + N)} [(\alpha_1) \cdots (\alpha_1 + N_1 - 1)] [(\alpha_0) \cdots (\alpha_0 + N_0 - 1)]$$
(8)

$$= \frac{\Gamma(\alpha_1 + \alpha_0)}{\Gamma(\alpha_1 + \alpha_0 + N)} \frac{\Gamma(\alpha_1 + N_1)}{\Gamma(\alpha_1)} \frac{\Gamma(\alpha_0 + N_0)}{\Gamma(\alpha_0)}$$
(9)

$$= \frac{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_0 + N_0)}{\Gamma(\alpha_1 + \alpha_0 + N)} \frac{\Gamma(\alpha_1 + \alpha_0)}{\Gamma(\alpha_1)\Gamma(\alpha_0)}$$
(10)

Exercise 3.3 Posterior prdictive for Beta-Binomial model

$$Bb(1|\alpha'_1, \alpha'_0, 1) = \frac{B(1 + \alpha'_1, 1 - 1 + \alpha'_0)}{B(\alpha'_1, \alpha'_0)} \begin{pmatrix} 1\\1 \end{pmatrix}$$
(11)

$$=\frac{B(1+\alpha_1',\alpha_0')}{B(\alpha_1',\alpha_0')}\tag{12}$$

$$= \frac{\Gamma(\alpha'_1 + \alpha'_0)}{\Gamma(\alpha'_1)\Gamma(\alpha'_0)} \frac{\Gamma(1 + \alpha'_1)\Gamma(\alpha'_0)}{\Gamma(1 + \alpha'_1 + \alpha'_0)}$$
(13)

$$= \frac{\Gamma(\alpha_1' + \alpha_0')}{\Gamma(\alpha_1')\Gamma(\alpha_0')} \frac{\alpha_1'\Gamma(\alpha_1')\Gamma(\alpha_0')}{(\alpha_1' + \alpha_0')\Gamma(\alpha_1' + \alpha_0')}$$
(14)

$$=\frac{\alpha_1'}{\alpha_1'+\alpha_0'}\tag{15}$$