Autor: Juan Manuel Rodríguez Gómez Asignatura: Estadística Multivariante (Prácticas) Tarea Voluntaria 1 (Glaucoma DB) 1. Lectura del Conjunto de Datos Se han eliminado en Excel los valores no numéricos de la celdas del conjunto de datos In [1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns In [2]: # Lectura del conjunto de datos df = pd.read_csv("C:/Users/LENOVO/Desktop/glaucoma.csv", delimiter=";", header=0) # Mostramos el DataFrame df OJO TIPO_GLAUCOMA N_IMPACTOS CUADRANTES ENERGIA_IMPACTO ENERGIA_TOTAL CIRUJIA_PREVIA PIO_PRE_SLT PIO_1_SEMANA PIO_1_MES PIO_3_MES FARMACOS_PRE FARMACOS_1_MES FARMACOS_3_I Out[3]: 0.0 0.0 112 4.0 1.5 174.0 NaN 31 0.0 3.0 0 108 1.2 128.0 1.0 29 23 1.0 NaN 4.0 19.0 24 3.0 2 0.0 1.0 123 4.0 1.1 133.0 1.0 36 30 30.0 30 1.0 4 1.5 0 2.0 131 4.0 191.0 1.0 14 21.0 1.0 0 3 1.0 14 0 4 0.0 2.0 156 4.0 1.2 182.0 1.0 14 0 16.0 17 1.0 116 NaN 16.0 102 4.0 1.4 141.0 NaN 23 0 0 1.0 0 **117** NaN 16.0 107 4.0 1.4 149.0 NaN 26 0 0.0 0.0 118 1.0 1.0 140 4.0 NaN 211.0 NaN 21 0 0.0 0 2.0 0 1.0 198 NaN 235.0 17 0 0.0 0 45019.0 NaN 0.0 119 0.0 0 120 1.0 1.0 135 4.0 1.5 219.0 NaN 22 0 0 0.0 121 rows × 19 columns # Breve información del DataFrame df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 121 entries, 0 to 120 Data columns (total 19 columns): Non-Null Count Dtype # Column -----0 0J0 117 non-null float64 1 TIPO_GLAUCOMA 119 non-null float64 2 N_IMPACTOS 121 non-null int64 3 **CUADRANTES** 118 non-null float64 4 ENERGIA_IMPACTO 107 non-null float64 5 ENERGIA_TOTAL 121 non-null float64 6 CIRUJIA_PREVIA 85 non-null float64 PIO_PRE_SLT 121 non-null 7 int64 121 non-null PIO_1_SEMANA 8 int64 116 non-null float64 9 PIO_1_MES 10 PIO_3_MES 121 non-null int64 FARMACOS_PRE 117 non-null float64 FARMACOS_1_MES 121 non-null int64 13 FARMACOS_3_MES 121 non-null int64 14 DOLOR 61 non-null float64 15 SEX0 60 non-null float64 16 **FDAD** 121 non-null int64 17 PIO_NORMAL 116 non-null float64 18 PIO_NORMAL_CAT 121 non-null int64 dtypes: float64(11), int64(8) memory usage: 18.1 KB 2. Reemplazamiento de Valores Nulos del Conjunto de Datos Vamos a sustituir los valores nulos por la mediana de la columna correspondiente # Vemos las filas del DataFrame que contienen valores nulos df.isna().any() 0J0 True Out[5]: TIPO_GLAUCOMA True N_IMPACTOS False CUADRANTES True **ENERGIA_IMPACTO** True ENERGIA_TOTAL False CIRUJIA_PREVIA True PIO_PRE_SLT False PIO_1_SEMANA False PIO_1_MES True False PIO_3_MES FARMACOS_PRE True FARMACOS_1_MES False FARMACOS_3_MES False DOLOR True SEX0 True **EDAD** False PIO_NORMAL True PIO_NORMAL_CAT False dtype: bool In [6]: # Seleccionamos las filas con valores nulos filas_valores_nulos = df[df.isnull().any(axis=1)] filas_valores_nulos OJO TIPO_GLAUCOMA N_IMPACTOS CUADRANTES ENERGIA_IMPACTO ENERGIA_TOTAL CIRUJIA_PREVIA PIO_PRE_SLT PIO_1_SEMANA PIO_1_MES PIO_3_MES FARMACOS_PRE FARMACOS_1_MES FARMACOS_3_I Out[6]: 0 0.0 0.0 112 174.0 31 0 3.0 0 4.0 1.5 NaN 0.0 1.0 NaN 108 4.0 1.2 128.0 1.0 29 23 19.0 24 3.0 161.0 **21** 1.0 1.0 135 4.0 1.2 NaN 12 14 11.0 0 4.0 4 22 0.0 1.0 98 4.0 1.2 124.0 NaN 12 13 11.0 4.0 0 0.0 0 25 1.0 0.0 NaN 0 0 0 0.0 0.0 0.0 0.0 23 16.0 102 4.0 1.4 141.0 0 0 1.0 0 **116** NaN NaN 0.0 **117** NaN 16.0 107 4.0 1.4 149.0 NaN 26 0.0 140 211.0 21 0 0 2.0 0 118 1.0 1.0 4.0 NaN NaN 0.0 1.0 198 45019.0 NaN 235.0 NaN 0.0 119 0.0 0.0 1.0 135 219.0 22 0 0 0.0 0 120 1.0 4.0 1.5 NaN 0.0 64 rows × 19 columns # Copiamos el conjunto de datos para no alterar el original $df_{copy} = df.copy()$ In [8]: # Rellenamos los valores nulos de cada columna con con la mediana correspondiente # de cada atributo usando la clase Imputer de Sklearn from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy="median") # Se le proporcionan los atributos numéricos (en este caso, todos los atributos del dataframe son numéricos, pero # hay que tener cuidado ya que la clase imputer no admite valores categoricos, solo valores numéricos) # para que calcule los valores imputer.fit(df_copy) SimpleImputer(strategy='median') In [10]: # Rellenamos los valores nulos df_copy_nonan = imputer.transform(df_copy) In [11]: # Transformamos el resultado a un DataFrame de Pandas df_copy = pd.DataFrame(df_copy_nonan, columns=df.columns) df_copy.head(10) In [12]: OJO TIPO_GLAUCOMA N_IMPACTOS CUADRANTES ENERGIA_IMPACTO ENERGIA_TOTAL CIRUJIA_PREVIA PIO_PRE_SLT PIO_1_SEMANA PIO_1_MES PIO_3_MES FARMACOS_PRE FARMACOS_1_MES FARMACOS_3_ME Out[12]: 0.0 0.0 112.0 4.0 1.5 174.0 1.0 31.0 0.0 0.0 0.0 3.0 0.0 0 **1** 1.0 4.0 108.0 4.0 1.2 128.0 1.0 3.0 4.0 29.0 23.0 19.0 24.0 **2** 0.0 1.0 123.0 4.0 1.1 133.0 1.0 36.0 30.0 30.0 30.0 1.0 4.0 2.0 131.0 1.5 191.0 1.0 0.0 21.0 14.0 1.0 0.0 0 1.0 4.0 14.0 2.0 1.2 182.0 1.0 4 0.0 156.0 4.0 1.0 14.0 0.0 16.0 17.0 0.0 0 1.0 125.0 1.4 170.0 2.0 3.0 3 **5** 1.0 4.0 0.0 30.0 0.0 18.0 20.0 249.0 2.0 3 6 0.0 1.0 178.0 4.0 1.4 0.0 36.0 0.0 20.0 19.0 3.0 0 7 0.0 3.0 164.0 4.0 1.9 301.0 0.0 25.0 0.0 18.0 0.0 1.0 0.0 8 0.0 1.0 109.0 4.0 1.0 109.0 1.0 23.0 0.0 10.0 16.0 2.0 2.0 2 0.0 0 9 1.0 1.0 116.0 4.0 2.2 238.0 0.0 22.0 22.0 20.0 20.0 0.0 In [13]: # Comprobamos que el DataFrame ya no tiene valores nulos df_copy.isna().any() 0J0 False Out[13]: TIPO_GLAUCOMA False N_IMPACTOS False CUADRANTES False ENERGIA_IMPACTO False ENERGIA_TOTAL False CIRUJIA_PREVIA False PIO_PRE_SLT False PIO_1_SEMANA False PIO_1_MES False PIO_3_MES False FARMACOS_PRE False FARMACOS_1_MES False FARMACOS_3_MES False **DOLOR** False SEX0 False EDAD False PIO_NORMAL False PIO_NORMAL_CAT False dtype: bool 3. Reemplazamiento de Valores Atípicos del Conjunto de Datos Usamos el método intercuartílico (IQR) para detectar los outliers del dataframe In [14]: def detectar_outliers(df): Detecta y devuelve los valores atípicos en cada columna de un DataFrame utilizando el método IQR. outliers_dict = {} for columna in df.columns: # Calcular el IQR (rango intercuartílico) para la columna actual Q1 = df[columna].quantile(0.25)Q3 = df[columna].quantile(0.75)IQR = Q3 - Q1# Calcular los límites para identificar outliers en la columna actual limite_inferior = Q1 - 1.5 * IQR $limite_superior = Q3 + 1.5 * IQR$ # Identificar los valores atípicos en la columna actual outliers = df[(df[columna] < limite_inferior) | (df[columna] > limite_superior)][columna] # Almacenar los valores atípicos en el diccionario de resultados outliers_dict[columna] = outliers return outliers_dict In [15]: outliers_df_copy = detectar_outliers(df_copy) print(outliers_df_copy) {'OJO': Series([], Name: OJO, dtype: float64), 'TIPO_GLAUCOMA': 89 103 104 15.0 105 15.0 111 16.0 112 16.0 113 16.0 114 16.0 115 16.0 116 16.0 117 16.0 Name: TIPO_GLAUCOMA, dtype: float64, 'N_IMPACTOS': 14 24 202.0 25 0.0 68 246.0 101 0.0 119 198.0 Name: N_IMPACTOS, dtype: float64, 'CUADRANTES': 20 3.0 25 0.0 26 3.5 29 3.5 32 3.0 33 3.0 35 3.0 37 3.0 83 90 3.0 91 3.0 92 3.0 93 3.0 101 0.0 119 45019.0 Name: CUADRANTES, dtype: float64, 'ENERGIA_IMPACTO': 25 75 Name: ENERGIA_IMPACTO, dtype: float64, 'ENERGIA_TOTAL': 7 301.0 307.0 14 17 312.0 326.0 19 24 388.0 25 0.0 68 307.0 71 0.0 74 0.0 101 Name: ENERGIA_TOTAL, dtype: float64, 'CIRUJIA_PREVIA': 5 6 0.0 0.0 7 9 0.0 0.0 10 0.0 14 18 0.0 20 0.0 35 0.0 36 0.0 37 0.0 41 0.0 45 0.0 Name: CIRUJIA_PREVIA, dtype: float64, 'PIO_PRE_SLT': 15 46.0 25 30 46.0 35 39.0 46 40.0 74 0.0 86 PIO_PRE_SLT, dtype: float64, 'PIO_1_SEMANA': Series([], Name: PIO_1_SEMANA, dtype: float64), 'PIO_1_MES': Series([], Name: PIO_1_MES, dtype: float64), 'PIO_3_MES': 46 Name: Name: PIO_3_MES, dtype: float64, 'FARMACOS_PRE': Series([], Name: FARMACOS_PRE, dtype: float64), 'FARMACOS_1_MES': Series([], Name: FARMACOS_1_MES, dtype: float64), 'FARMACOS_1_MES, dtype: float64), 'FARMACOS_2_1_MES, dtype: float64), 'FARMACOS_3_1_MES, dtype: float64), 'FARMACOS_3_3_1_MES, dtype: float64), 'FARMACOS_3_3_1_MES, dtype: float64), 'FARMACOS_3_3_1_MES, dtype: float64, dtype: float S': 1 2 5 3.0 6 3.0 8 2.0 10 14 18 19 20 3.0 27 2.0 28 3.0 30 4.0 31 2.0 32 2.0 33 2.0 34 2.0 35 2.0 48 2.0 49 2.0 51 1.0 Name: FARMACOS_3_MES, dtype: float64, 'DOLOR': 0 0.0 8 0.0 Name: DOLOR, dtype: float64, 'SEX0': 1 2 0.0 0.0 13 0.0 0.0 18 21 0.0 22 0.0 27 0.0 28 0.0 31 0.0 32 0.0 33 0.0 34 0.0 35 0.0 37 0.0 44 0.0 45 0.0 46 0.0 47 0.0 48 0.0 49 0.0 53 0.0 54 0.0 58 0.0 Name: SEXO, dtype: float64, 'EDAD': Series([], Name: EDAD, dtype: float64), 'PIO_NORMAL': Series([], Name: PIO_NORMAL, dtype: float64), 'PIO_NORMAL_CAT': Series([], Name: PIO_NORMAL L_CAT, dtype: float64)} El outlier más a destacar es el de la fila 119 de la columna "CUADRANTES", luego, solo vamos a sustituir dicho outlier por la mediana de la columna correspondiente In [16]: | df_copy.at[119, "CUADRANTES"] = df_copy["CUADRANTES"].median() In [17]: | df_copy OJO TIPO_GLAUCOMA N_IMPACTOS CUADRANTES ENERGIA_IMPACTO ENERGIA_TOTAL CIRUJIA_PREVIA PIO_PRE_SLT PIO_1_SEMANA PIO_1_MES PIO_3_MES FARMACOS_PRE FARMACOS_1_MES FARMACOS_3_I Out[17]: 0 0.0 0.0 112.0 1.5 174.0 1.0 31.0 3.0 0.0 **1** 1.0 4.0 108.0 4.0 1.2 128.0 1.0 29.0 23.0 19.0 24.0 3.0 4.0 **2** 0.0 1.0 123.0 4.0 1.1 133.0 1.0 36.0 30.0 30.0 30.0 1.0 4.0 3 1.0 2.0 131.0 4.0 1.5 191.0 1.0 14.0 0.0 21.0 14.0 1.0 0.0 156.0 1.2 182.0 1.0 4 0.0 2.0 4.0 14.0 0.0 16.0 17.0 1.0 0.0 0.0 102.0 141.0 23.0 116 16.0 4.0 1.4 1.0 0.0 0.0 0.0 1.0 0.0 117 0.0 16.0 107.0 4.0 1.4 149.0 1.0 26.0 0.0 0.0 0.0 0.0 0.0 1.5 211.0 118 1.0 1.0 140.0 4.0 1.0 21.0 0.0 0.0 0.0 2.0 0.0 119 0.0 1.0 198.0 4.0 1.5 235.0 1.0 17.0 0.0 0.0 0.0 0.0 0.0 120 1.0 1.0 135.0 4.0 1.5 219.0 1.0 22.0 0.0 0.0 0.0 0.0 0.0 121 rows × 19 columns 4. Matriz de Correlación Una vez tratados todos los datos del dataframe, visualizamos su matriz de correlación para poder sacar alguna conclusión In [18]: # Matriz de Correlación matriz_corr = df_copy.corr() matriz_corr OJO TIPO_GLAUCOMA N_IMPACTOS CUADRANTES ENERGIA_IMPACTO ENERGIA_TOTAL CIRUJIA_PREVIA PIO_PRE_SLT PIO_1_SEMANA PIO_1_MES PIO_3_MES FARMACOS_PRE FARMACOS_1_N Out[18]: **OJO** 1.000000 0.033 -0.167514 0.091125 0.011817 0.119807 0.061519 -0.072722 0.127733 0.071269 -0.036483 -0.014383 -0.027256 TIPO_GLAUCOMA -0.167514 1.000000 -0.084669 0.146277 -0.046804 -0.050582 0.194776 -0.127291 -0.095710 -0.260416 -0.267442 -0.076669 -0.334**N_IMPACTOS** 0.091125 -0.084669 1.000000 0.489310 0.294747 0.719566 -0.259216 0.200045 -0.006277 0.157316 0.236205 0.049481 0.112 **CUADRANTES** 0.011817 0.146277 0.489310 1.000000 0.218216 0.416060 0.030013 0.131072 0.086378 0.084690 0.042076 -0.009880 0.045 ENERGIA_IMPACTO 0.119807 -0.046804 0.294747 0.218216 0.623847 -0.259178 0.205444 0.071358 0.085472 0.080678 0.115466 -0.051 1.000000 1.000000 ENERGIA_TOTAL 0.061519 -0.050582 0.719566 0.416060 0.623847 -0.235751 0.204123 0.062095 0.155687 0.151153 0.115815 0.016 CIRUJIA_PREVIA -0.072722 0.194776 -0.259216 0.030013 -0.259178 -0.235751 1.000000 -0.204823 -0.062799 -0.336719 -0.401157 -0.249314 -0.397 **PIO_PRE_SLT** 0.127733 -0.127291 0.200045 0.131072 0.205444 0.204123 -0.204823 1.000000 0.166867 0.329483 0.361240 -0.041010 0.218 **PIO_1_SEMANA** 0.071269 -0.095710 -0.006277 0.071358 0.401204 0.222228 0.459 0.086378 0.062095 -0.062799 0.166867 1.000000 0.645000 0.645000 **PIO_1_MES** -0.036483 -0.260416 0.157316 0.084690 0.085472 0.155687 -0.336719 0.329483 1.000000 0.655155 0.213929 0.557 **PIO_3_MES** -0.014383 -0.267442 0.236205 0.042076 0.080678 0.151153 -0.401157 0.361240 0.401204 0.655155 1.000000 0.126318 0.494 FARMACOS_PRE -0.027256 -0.076669 0.049481 -0.009880 0.115466 0.115815 -0.249314 -0.041010 0.222228 0.213929 0.126318 1.000000 0.578 **FARMACOS_1_MES** 0.033726 -0.334635 0.112346 0.218931 0.459330 0.557144 0.494319 0.578539 1.000 0.045985 -0.051138 0.016898 -0.397909 -0.267179 **FARMACOS_3_MES** -0.032198 0.122463 -0.003316 -0.122274 -0.046931 -0.303160 0.311207 0.261183 0.457294 0.695327 0.262714 0.629 **DOLOR** 0.150476 0.124673 -0.035937 0.024400 -0.053863 0.108485 -0.085066 0.176953 0.008433 0.000245 -0.057546 0.027 -0.044630 0.291284 0.012506 **SEXO** 0.009994 -0.047523 -0.010138 -0.084614 0.251098 -0.080761 -0.377146 -0.523678 -0.377150 -0.281299 -0.584**EDAD** 0.005645 -0.383580 0.142094 0.101568 0.079057 0.114027 -0.331514 0.236717 0.455598 0.779466 0.537433 0.287287 0.654 **PIO_NORMAL** -0.036483 -0.260416 0.157316 0.084690 0.085472 0.155687 -0.336719 0.329483 0.645000 1.000000 0.655155 0.213929 0.557 PIO_NORMAL_CAT -0.115876 0.181156 -0.150884 -0.101655 -0.196440 0.273627 -0.373689 -0.122846 -0.352 -0.106993 -0.178382 -0.662403 -0.396379 # Mapa de Calor de la Matriz de Correlación sns.heatmap(matriz_corr, cmap="YlGnBu", vmax=1, vmin=-1) plt.title('Heatmap Matriz de Correlación') plt.show() Heatmap Matriz de Correlación 1.00 TIPO GLAUCOMA - 0.75 N
_IMPACTOS CUADRANTES ENERGIA IMPACTO 0.50 ENERGIA TOTAL CIRUIIA PREVIA - 0.25 PIO PRE SLT PIO_1_SEMĀNA PĪO_1_MES - 0.00 FARMACOS_PRE -0.25FARMACOS_1_MES FARMACOS_3_MES -0.50DOLOR SEXO EDAD -0.75 PIO_NORMAL PIO_NORMAL_CAT --1.00 5. Análisis de la Matriz de Correlación Podemos observar cierta relación entre "N_IMPACTOS", "CUADRANTES", "ENERGIA_IMPACTO" y "ENERGIA_TOTAL", lo cual es totalmente lógico teniendo en cuenta lo que representa cada una de estas variables Vamos a centrarnos en las correlaciones de una variable que parece ser interesante en vista del heatmap: "EDAD" # Correlaciones de la columna "EDAD" ordenadas de mayor a menor correlaciones_edad = matriz_corr["EDAD"].sort_values(ascending=False) # Obtener las 5 columnas más relacionadas con la columna "EDAD" (excluyendo la propia columna "EDAD") mayores_correlaciones_edad = correlaciones_edad.index[1:6] print(mayores_correlaciones_edad) Index(['PIO_1_MES', 'PIO_NORMAL', 'FARMACOS_1_MES', 'PIO_3_MES', 'FARMACOS_3_MES'], dtype='object') df_copy[["EDAD", "PIO_1_MES", "PIO_3_MES", "FARMACOS_1_MES", "FARMACOS_3_MES", "PIO_NORMAL"]].head(10) EDAD PIO_1_MES PIO_3_MES FARMACOS_1_MES FARMACOS_3_MES PIO_NORMAL Out[21]: 0 0.0 0.0 0.0 0.0 0.0 0.0 56.0 19.0 24.0 4.0 4.0 19.0 56.0 30.0 4.0 4.0 30.0 30.0 49.0 21.0 14.0 0.0 0.0 21.0 49.0 17.0 0.0 0.0 16.0 4 16.0 74.0 18.0 20.0 3.0 3.0 18.0 19.0 3.0 3.0 20.0 74.0 20.0 0.0 65.0 18.0 0.0 0.0 18.0 60.0 10.0 16.0 2.0 2.0 10.0 82.0 20.0 20.0 0.0 0.0 20.0 In [22]: | num_filas_edad_mayor_40 = len(df_copy[df_copy['EDAD'] > 40]) print("Número de filas con EDAD mayor a 40 años:", num_filas_edad_mayor_40) Número de filas con EDAD mayor a 40 años: 55 In [23]: num_filas_edad_igual_0 = len(df_copy[df_copy['EDAD'] == 0]) print("Número de filas con EDAD igual a 0 años:", num_filas_edad_igual_0) Número de filas con EDAD igual a 0 años: 61 contador_filas_aumento_pio = (df_copy["PIO_1_MES"] - df_copy["PIO_3_MES"] < 0).sum()</pre> print("Número de personas cuya PIO ha aumentado del 1 Mes al 3 Mes:", contador_filas_aumento_pio) Número de personas cuya PIO ha aumentado del 1 Mes al 3 Mes: 12 In [25]: edades_aumento_pio = df_copy.loc[(df_copy["PIO_1_MES"] - df_copy["PIO_3_MES"] < 0), "EDAD"]</pre> print("Edades de las personas cuya PIO ha aumentado del 1 Mes al 3 Mes:") print(edades_aumento_pio) Edades de las personas cuya PIO ha aumentado del 1 Mes al 3 Mes: 1 56.0 4 49.0 5 74.0 60.0 8 18 64.0 35.0 24 30 60.0 45 49.0 46 49.0 52 59.0 55 25.0 56 25.0 Name: EDAD, dtype: float64 In [26]: contador_filas_aumento_farmacos = (df_copy["FARMACOS_1_MES"] - df_copy["FARMACOS_3_MES"] < 0).sum()</pre> contador_filas_igual_farmacos = (df_copy["FARMACOS_1_MES"] - df_copy["FARMACOS_3_MES"] == 0).sum() print("Número de personas cuya ingesta de fármacos ha aumentado del 1 Mes al 3 Mes tras la operación:", contador_filas_aumento_farmacos) print("Número de personas cuya ingesta de fármacos se ha mantenido del 1 Mes al 3 Mes tras la operación:", contador_filas_igual_farmacos) Número de personas cuya ingesta de fármacos ha aumentado del 1 Mes al 3 Mes tras la operación: 1 Número de personas cuya ingesta de fármacos se ha mantenido del 1 Mes al 3 Mes tras la operación: 94 edad_aumento_farmacos = df_copy.loc[(df_copy["FARMACOS_1_MES"] - df_copy["FARMACOS_3_MES"] < 0), "EDAD"] print("Número de personas cuya ingesta de fármacos ha aumentado del 1 Mes al 3 Mes tras la operación:") print(edad_aumento_farmacos) Número de personas cuya ingesta de fármacos ha aumentado del 1 Mes al 3 Mes tras la operación: Name: EDAD, dtype: float64 In [28]: df.iloc[31] 0.0 Out[28]: TIPO_GLAUCOMA 1.0 N_IMPACTOS 97.0 **CUADRANTES** 4.0 ENERGIA_IMPACTO 1.1 ENERGIA_TOTAL 99.0 CIRUJIA_PREVIA 1.0 PIO_PRE_SLT 25.0 22.0 PIO_1_SEMANA PIO_1_MES 26.0 PIO_3_MES 19.0 FARMACOS_PRE 2.0 FARMACOS_1_MES 1.0 FARMACOS_3_MES 2.0 **DOLOR** 1.0 SEX0 0.0 EDAD 64.0 PIO_NORMAL 26.0 PIO_NORMAL_CAT Name: 31, dtype: float64 6. Conclusiones - Hay una gran relación positiva (mayor que 0) entre las variables "N_IMPACTOS", "CUADRANTES", "ENERGIA_IMPACTO" y "ENERGIA_TOTAL", lo cual es totalmente lógico teniendo en cuenta lo que representa cada una de estas variables. - Un 45.4% de la muestra son personas mayores de 40 años y un 50.4% son personas con 0 años (suponemos que se tratan de bebés recién nacidos). - Hay 12 personas cuya presión intraocular ha aumentado del primer mes al tercer mes tras la operación. De esas 12 personas, 9 de ellas son mayores de 40 años, 2 de ellas tienen 25 años y el restante tiene 35 años. - Hay 94 personas (77.7%) de la muestra que no han tenido que aumentar su ingesta de fármacos del primer al tercer mes tras la operación. - Solo hay una persona que ha tenido que aumentar su ingesta de fármacos del primer al tercer mes tras la operación, pasando de tomar 1 fármaco a tomar 2, y dicha persona tiene 64 años.