Quiz 7

Chemistry 3BB3; Winter 2006

1-3.	List three	things	that are	favorable	for	covalent h	onding
1-3.	List timee	unngs	mai are	Tavorable	101	covarent b	onumg.

- 4. Consider the π -bonding and π -antibonding orbitals in O_2 . Along the internuclear axis (the line between the two atomic nuclei that represents the "bond"), the amount of electron density in a π -antibonding orbital is ______ the amount of electron density in the associated π -bonding orbital.
 - (a) greater than
 - (b) less than
 - (c) the same as
- 5. Consider the σ -bonding and σ -antibonding in the Helium molecule cation, He_2^+ . Along the internuclear axis (the line between the two atomic nuclei that represents the "bond"), the amount of electron density in a σ -antibonding orbital is ______ the amount of orbital density in the associated σ -bonding orbital.
 - (a) greater than
 - (b) less than
 - (c) the same as
- 6-10. Label the following approximate (unnormalized) molecular orbitals using the σ,π,δ , u,g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as ψ_{1s}^{l} r, with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
	$\psi^{\;l}_{3d_{xz}}\;\;oldsymbol{r}\;-\psi^{\;r}_{3d_{xz}}\;\;oldsymbol{r}$
	$\psi^{\;l}_{3d_{yz}}\;m{r}\;+\psi^{\;r}_{3d_{yz}}\;m{r}$
	$\psi^{\;l}_{3d_{x^2-y^2}}\;m{r}\;+\psi^{\;r}_{3d_{x^2-y^2}}\;m{r}$
	$\psi^{~l}_{3d_{xy}}$ $m{r}$ $-\psi^{~r}_{3d_{xy}}$ $m{r}$
	$\psi^{\;l}_{3d_{z^2}}$ $oldsymbol{r}$ $-\psi^{\;r}_{3d_{z^2}}$ $oldsymbol{r}$

Quiz 7

Chemistry 3BB3; Winter 2006

- 1-3. List three things that are favorable for covalent bonding.
- -- orbitals that are similar in size.
- -- orbitals that are similar in energy.
- -- good overlap between orbitals. (Orbitals in similar regions of space.)
- -- "directionality" in orbitals (so that they "point at" each other).
- -- smaller orbitals are (usually) better than bigger orbitals.

....

4. Consider the π -bonding and π -antibonding orbitals in O_2 . Along the internuclear axis (the line between the two atomic nuclei that represents the "bond"), the amount of electron density in a π -antibonding orbital is ______ the amount of electron density in the associated π -bonding orbital.

(a) greater than (b) less than

- (c) the same as
- 5. Consider the σ -bonding and σ -antibonding in the Helium molecule cation, He₂⁺. Along the internuclear axis (the line between the two atomic nuclei that represents the "bond"), the amount of electron density in a σ -antibonding orbital is _____ the amount of orbital density in the associated σ -bonding orbital.
 - (a) greater than(b) less than

(c) the same as

6-10. Label the following approximate (unnormalized) molecular orbitals using the σ,π,δ , u,g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as ψ_{1s}^{l} \boldsymbol{r} , with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
π_u^+	$\psi^{~l}_{3d_{xz}}$ $oldsymbol{r}$ $-\psi^{~r}_{3d_{xz}}$ $oldsymbol{r}$
π_g^-	$\psi^{}_{3d_{yz}}$ $m{r}$ $+$ $\psi^{r}_{3d_{yz}}$ $m{r}$
δ_g^+	$\psi^{~l}_{3d_{x^2-y^2}} ~~ m{r} ~ + \psi^{~r}_{3d_{x^2-y^2}} ~~ m{r}$
δ_u^-	$\psi^{~l}_{3d_{xy}}$ $oldsymbol{r}$ $-\psi^{~r}_{3d_{xy}}$ $oldsymbol{r}$
σ_u^+	$\psi^{}_{3d_{z^2}}$ $oldsymbol{r}$ $-\psi^{}_{3d_{z^2}}$ $oldsymbol{r}$