- ▼ 06 二次型 $(f(x) = x^T A x$: 1+2
 - ▼ 定义 与 矩阵表示(1+3
 - 实二次型(上△
 - ▼ 完全展开式 | 和式 | 矩阵
 - base. 变换:
 - 完全展开式
 - 和式
 - **二次型f(x)'矩阵**(3:表达式 对称 变换
 - ▼ 1 化为 标准形 与 **规范形**(2
 - ▼ 定义 性质(2*2 +1 n
 - 线性变换 //换元 (x = Cy)
 - 矩阵合同($A \simeq B \leftarrow C^T A C = B$: 3 1 1性质:反对传
 - ▼ ..标准形(only x^2) → 规范形(only x^2 && 系数only ± 1.0
 - 基本定义(2+1
 - 性质
 - add.惯性定理
 - 方法
 - ▼ 2 **正定..**($\forall x \neq 0, f(x) = x^T A x > 0$: 1definition 2条件
 - 定义
 - 充要条件(3
 - 必要条件(结论)(2
 - add.判定

06 二次型 $(f(x) = x^T A x$: 1+2

定义与矩阵表示(1+3

实二次型(上△

a. n元变量 x_1, x_2, \ldots, x_n 的二次 齐次多项式

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + a_{22}x_2^2 + \dots + 2a_{2n}x_2x_n + \dots + a_{nn}x_n^2$$

b. 考研只研究 a_{ij} ∈ R (i≤j; i,j=1,2,...,n)的情况, 称此二次型f 为 **实二次型**

完全展开式|和式|矩阵

base. 变换:

则
$$2a_{ij}x_ix_j = a_{ij}x_ix_j + a_{ji}x_jx_i$$

- 达到补齐 矩阵的目的
- $x_i x_j = x_j x_i$, 若令 $a_{ij} = a_{ji} (i, j = 1, 2, \dots, n)$

完全展开式

 $f(x_1,x_2,\dots,x_n) = \underbrace{a_{11}x_1^2 + a_{12}x_1x_2 + \dots + a_{1n}x_1x_n}_{+\dots+a_{n1}x_nx_1 + a_{n2}x_nx_2 + \dots + a_{nn}x_n^2} + a_{21}x_2x_1 + a_{22}x_2^2 + \dots + a_{2n}x_2x_n$

和式

$$\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

二次型f(x)'矩阵(3:表达式 对称 变换

a. 二次型
$$f(x_1,x_2,\ldots,x_n)$$
 的 **矩阵表达式**

$$f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}$$

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad m{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix},$$

b. notice: 矩阵A 必须是一个 对称 矩阵

■ cause: 一个二次型可以有不同的写法,eg.三元二次型

■ 拆分系数可以有不同的形式

$$f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+4x_1x_2$$

$$f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+x_1x_2+3x_2x_1$$
,

$$f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2+2x_1x_2+2x_2x_1$$

自然 对应的矩阵 也有多种形式

$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} x_1, x_2, x_3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

c. 变换

写出三元二次型 $f(x_1,x_2,x_3)=2x_1^2+2x_2^2+2x_3^2-2x_1x_2-2x_2x_3+2x_1x_3$ 的二次型矩阵 **A**.

■ 对称转换

■ 行和列相乘效果运用

1 化为 标准形 与 规范形(2

定义 性质(2*2 +1 n

线性变换 //换元 (x=Cy

- a. 基本设定:
 - 对于 n元二次型 $f(x_1, x_2, \ldots, x_n)$
 - 令

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1s}y_n, \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2s}y_n, \\ \dots \\ x_n = c_{s1}y_1 + c_{s2}y_1 + \dots + c_{ss}y_n. \end{cases}$$
(*)

■ 记

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix},$$

- 可表示为
 - x = Cy

- (*)式 称为 从 $y_i, y_2, y_3, \ldots, y_n$,到 $x_1, x_2, x_3, \ldots, x_n$ 的线性变换
- 若 <u>系数矩阵C</u> **可逆**,即 $|C| \neq 0$,则称为 **可逆线性变换**
- b. 对于二次型的矩阵表示

$$-f(x) = x^T A x$$
, $\diamondsuit x = C y$

- **.** .]
- $\blacksquare \ \mathbb{M} \ f(x) = f(Cy) = (Cy)^T A(Cy)$

 - If $f(x) = y^T(\boxed{C^TAC)}y$
 - $idB = C^T A C$
 - **.** \
- ullet 得 $f(x) = y^T B y$ 即 得到一个新二次 型 $g(y) = y^T B y$

矩阵合同($A \simeq B \leftarrow C^TAC = B$: 3 1 1性质:反对传

- a. 1)基本定义
 - $f(x) \ni g(y)$ 的系数矩阵关系:

$$C^TAC = B$$

- 则称 A与B 合同
 - 记为

 $A \simeq B$

■ 称对应的二次型 f(x) 与 g(y) 为 合同
 二次型

b. 2)性质

- a.阐述:
 - A、B 实际 表征 同一事物 在不同 参照系下 不同"形态"
 - 可以指出,在二次整會量下,4 表征的是 $f(x) = x^t Ax$ 的"形态",8 表征的是 $g(y) = y^t By$ 的"形态", 但是毕竟 f(x) = g(y),是同一个东西,之所以 A, B 分别表征了不同的"形态",无非是因为在 $x = [x_1, x_2, \cdots, x_n]$ 的参照系下与在 $y = [y_1, y_2, \cdots, y_n]$ 的参照系下号的公同一个事物的不同"形态"到了。

 A与B的合同 就是指 同一个二次型 在可逆线性变换下 两个不同状态 的联系

- b.性质:
 - a. 反身 对称 传递
 - (1)A≃A(反身性);
 (2)若A≃B,则B≃A(对称性);
 (3)若A≃B,且B≃C,则A≃C(传递性).
 - b. 不改变 秩
 - 若A与B合同 → r(A)=r(B)
 - 则 可逆线性变换 <u>不会改</u>变 **二次型的秩**
 - c. 与 对称 A 合同的 矩阵 也必定 是 对称矩阵
 - $B^{\mathrm{T}} = (C^{\mathrm{T}}AC)^{\mathrm{T}} = C^{\mathrm{T}}A^{\mathrm{T}}C = C^{\mathrm{T}}AC = B.$ $\xi A \simeq B$,即存在可逆矩阵 C,使得 $C^{\mathrm{T}}AC = B$

..标准形(only x^2) \to 规范形(only x^2 && 系数only ±1,0

基本定义(2+1

- a. 标准形
 - 二次型 中<mark>只含□平方项</mark> 不含交叉 项(所有交叉项的系数为0)
 - 形如
- ↓
- b. 规范形
 - 标准型中,系数 d_i 仅为 **1,-1,0**
 - 形如
 - $x_1^2 + \cdots + x_p^2 x_{p+1}^2 \cdots x_{p+q}^2$
- c. 合同 标准形/规范形

- \blacksquare 二次型 $f(x)=x^TAx$ 合同于 标准型 $d_1x_1^2+\ldots+d_nx_n^2$ or 规范型
- 称该标准型/规范型为二次型的合同标准型/规范型

性质

- a. 配方法
 - 任何 二次型 均可通过配方法 化成标准形/标准形
 - **I**
 - 任何 实对称矩阵A,必存在可逆矩阵C,
 - 使得
 - $C^{T}AC = \Lambda$
 - 其中

b. 正交变换**

- 任何二次型均可通过配方法化成标准形/标准形
- 任何 实对称矩阵A,必存在 正交 矩阵Q 使得

 - 其中

add.惯性定理

- a. 1)基本定义
 - 在 可逆线性变换中, 正项个数p 负项 个数q 始终不变
 - p:正惯性指数
 - q: 负惯性指数
- b. 2)性质
 - a.r = p+q
 - b.合同的充要条件: same p q or r

方法

- 配方法
- 正交变换法
- 合同
- 惯性定理

2 正定…(
$$\forall x \neq 0$$
, $f(x) = x^T Ax > 0$: 1definition 2条件

定义

- a. 设定:
 - n 元二次型 $f(x_1,x_2,\dots,x_n)=\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$
 - 对任意的 $\mathbf{x} = [x_1, x_2, \dots, x_n]^T \neq \mathbf{0}$, 均有 $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$
- b. f 为 正定二次型,A 为 正定矩阵

充要条件(3

a. 定义

- b.f 的正惯性指数
- c. A
 - A与E合同
 - ..特征值 $\lambda_i > 0$ (i = 1,2,...,n)
 - ..的全部顺序主子式 均> 0
 - A的 顺序主子式
 - 设 $\mathbf{A} = (a_{ii})_{n \times n}$,则

- 称为 n 阶矩阵 A 的 k 阶顺序(或左上角)主子式
- 当 k 取 1,2,…,n 时,就得到 A 的 n 个顺序主子式

必要条件(结论)(2

■ a. 主对角线 元素 >0

$$a_{ii} > 0 (i=1,2,\cdots,n)$$

 $\bullet \ \mathrm{b.} |A| > 0$

add.判定

- 具体型二次型
- 抽象型二次型