ÁLGEBRA I: PRÁCTICO 7

Números complejos

1. Para los siguientes $z \in \mathbb{C}$, hallar Re (z), Im (z), |z|, Re (z^{-1}) , Im (z^{-1}) , Re $(-i \cdot z)$ e Im $(i \cdot z)$.

a)
$$z = (2+i)(1+3i)$$
.

b)
$$z = 5i(1+i)^4$$
.

c)
$$z = (\sqrt{2} + \sqrt{3}i)^2 \overline{(1-3i)}$$
.

d)
$$z = i^{17} + \frac{1}{2}i(1-i)^3$$
.

$$e) \ z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{179}.$$

$$f) \ z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{-1}.$$

$$g) \ z = \overline{1 - 3i}^{-1}.$$

2. Dados z = 1 + 3i y w = 4 + 2i, representar en el plano complejo los siguientes números:

$$e) -z$$
.

$$i) \ \overline{z}.$$

$$b)$$
 w .

$$j) \ \overline{3z+2w}.$$

$$n) |z + w|.$$

c)
$$z + w$$
.

$$g) \frac{1}{2}z.$$

$$k) \ \overline{iz}.$$

$$\tilde{n}$$
) $|z-w|$.

$$d) z - w$$

$$h)$$
 iz

$$o) |\overline{w-z}|.$$

3. Halle el valor del número complejo z que satisface cada una de las siguientes igualdades:

a)
$$3 \cdot z + \overline{z} = 3 + 5 \cdot i$$
.

b)
$$2 \cdot z \cdot (1+i) = (1-i^{39}) \cdot 2 \cdot \overline{z}$$
.

4. Describa geométricamente en el plano complejo la región determinada por las siguientes condiciones:

a)
$$\operatorname{Re}(z) < 2$$
.

b)
$$Im(z) > 3$$
.

$$c) |z| \leqslant 4.$$

$$d) \ z + \overline{z} - 4 \leqslant 0.$$

e)
$$z \neq 0, |z| \ge 2 \text{ y } \frac{\pi}{2} \le \arg(z) \le \frac{2\pi}{3}.$$

$$f) \ z \neq 0 \ y \ arg(-iz) > \frac{\pi}{4}.$$

g)
$$z \neq 0, |z| < 3 \text{ y arg}(z^4) \leqslant \pi.$$

5. Calcular los módulos y los argumentos de los siguientes números complejos:

$$a) 3 + \sqrt{3}i.$$

c)
$$(-1-i)^{-1}$$
.

$$e) \left(-1 + \sqrt{3}i\right)^{-5}.$$

b)
$$(2+2i)(\sqrt{3}-i)$$
. d) $(-1+\sqrt{3}i)^5$.

d)
$$(-1 + \sqrt{3}i)^5$$

$$f) \frac{1+\sqrt{3}i}{1-i}.$$

a) Escribir el siguiente número en forma binómica: $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.

b) Escribir la forma binómica de $(-1 + \sqrt{3}i)^n$ para cada $n \in \mathbb{N}$.

c) Hallar todos los $n \in \mathbb{N}$ tales que $(\sqrt{3} - i)^n = 2^{n-1} (-1 + \sqrt{3}i)$.

7. Hallar:

 $g) (3-2i)^5.$

a) $(1+i)^{3523}$. c) $(2+i)^2$. e) $(-2+5i)^2$. b) $(1-i)^{4236}$. d) $(3+i\sqrt{2})^2$. f) $(1-i)^3$.

8. Calcular las raíces cuadradas de los siguientes números complejos:

a) z = -36.

c) z = -3 - 4i.

b) z = i.

d) z = -15 + 8i

9. Calcule y represente gráficamente las raíces cuartas de $z=1+\sqrt{3}\cdot i.$

10. Hallar en cada caso las raíces n-ésimas de z:

a) z = 8, n = 6.

d) $z = 2i(\sqrt{2} - \sqrt{6}i)^{-1}, n = 11.$

b) z = -4, n = 3.

e) $z = (2-2i)^{12}$, n = 6.

c) z = -1 + i, n = 7.

f) z = 1, n = 8.

a) Calcular $w + \overline{w} + (w + w^2)^2 - w^{38} (1 - w^2)$ para cada $w \in G_7$. 11.

b) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.

c) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$.

d) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w^{-3}}$ para cada $w \in G_5$.

12. Sea \sim la relación en G_{20} definida por

$$a \sim b \Leftrightarrow a = wb$$
, para algún $w \in G_4$,

o sea, dos elementos están relacionados si uno es un múltiplo del otro por una raíz cuarta de la unidad.

a) Probar que \sim es una relación de equivalencia.

b) ¿Cuántas clases de equivalencia hay en total?

13. Halle los valores de x que satisfacen las siguientes ecuaciones

a) $x^3 - 1 = 0$.

d) $3x^2 + 12 = 0$.

 $f) x^2 - x + 5 = 0.$

b) $x^2 + 16 = 0$.

c) $x^2 + 25 = 0$.

e) $\frac{1}{2}x^2 - 3x + 5 = 0$. g) $2x^2 - x + 3 = 0$.

14. Sean z_1 y z_2 dos números complejos distintos y $z=(1-t)\cdot z_1+t\cdot z_2$ para algún $t\in(0,1).$ Mostrar que

a) $|z-z_1|+|z-z_2|=|z_2-z_1|$.

b) $\arg(z-z_1) = \arg(z_2-z)$.

c) $\arg(z-z_1) = \arg(z_2-z_1)$.

15. Sean z_1 y z_2 dos números complejos no nulos tales que $|z_1+z_2|=|z_1-z_2|$. Mostrar que $\frac{z_1}{z_2}$ es un imaginario puro.

16. Un triángulo equilátero tiene su centro en el origen y un vértice en (5,0). Encontrar los otros dos vértices.

2