

I. PROJECT PRESENTATION

- GOAL: Predict bike count at a given hour across 56 counters in Paris.
- METRIC: Root mean square error (RMSE)
- TIMEFRAME:
 - Training data: September 1st, 2020 September 9th, 2021
 - Public Test data: September 10th, 2021 October 18th, 2021
- DATA:
 - training dataset partly furshihed
 - Testing set: 50% public, 50% private.

II. EDA

ADDING EXTERNAL DATA

Exploration:

- Checked proportion of missing and unique values
- Plotted relationships between features and target
- Checked the correlation table

II. EDA

ADDING EXTERNAL DATA

Cleaning:

- Missing values
 - Deleted columns containing > 10% missing values
 - Replaced the rest with the median
- Deleted columns with a single value
- Deleted some highly correlated columns

Added features:

- French school holidays (zone C)
- Bank holidays
- Quarantines
- Seasons
- Distance from city center

ISSUE: merging both datasets gave a huge error (RMSE ≈ 2.15)

II. EDA

ENCODING

Standard Scaler	One-Hot	Cyclical encoding
All numerical columns	Counter name Years Weekday	HourDayWeekdayMonth

IV. MODEL EXPERIMENTATION & SELECTION

- Models tested:
 - Ridge Regression
 - Random Forest
 - XGBoost
 - Catboost
 - LightGBM
- Evaluated model performance on XGBoost using cross-validation and RMSE as metrics.
- Grid Search on the most probant model

V. EVALUATION OF FINAL MODEL

VI. FUTURE RESEARCH

- Analysis of construction work iin Paris from additional datasets?
- Test other types of encoders?
 - Gap encoder or Target encoder
- Integrating additional data like geographical traffic density or inhabitants density
- Exploring neural networks

