ТЕМА 11. ДВУМЕРНАЯ ДИСКРЕТНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА ЗАДАНИЕ. Во всех задачах кроме сформулированных заданий найти коэффициент корреляции.

Вариант N16.

1. Стрелок стреляет по мишени, состоящей из 2х зон. При попадании в первую он получает 1 очко, во вторую - 10 очков. Стреляет до первого попадания в "10", но не более 3 раз. Закон распределения числа выбитых очков:

V	0	1	10
Λ	0.2	0.7	0.1

Найти закон совместного распределения величин: X — число выстрелов и У — число промахов.

2. Законы распределения числа очков, выбиваемых каждым из двух стрелков:

V1	1	2	3
Λ1	0.1	0.3	0.6

V2	1	2	3
Λ	0.2	0.3	0.5

Найти закон совместного распределения очков.

3. Двумерная случайная величина (X,Y) распределена по закону:

X/Y	1	2	4
1	0.2	0.1	0.03
10	0.1	0.5	0.7

Найти законы распределения величин Х и У.

- 4. Игральный кубик бросают до первого появления цифры, кратной 3; но не более 4-х раз; X-число бросаний кубика, У-число появлений четной цифры. Найти закон совместного распределения.
- 5. Из урны, содержащей 5 белых и 6 черных шара, извлекают 2. X-число белых в выборке, У-число черных в выборке. Описать закон распределения (X,Y).

Вариант N17.

- 1. Из урны, содержащей 4 белых и 3 черных шара, извлекают 2. Х-число белых в урне, У-число черных в выборке. Описать закон распределения (X,У).
- 2. Двумерная случайная величина (X,У) распределена по закону:

X/Y	2	6	10
-1	0.2	0.1	0.3
0	0.1	0.15	0.15

Найти законы распределения величин Х и У.

3. Двумерная случайная величина (X,Y) распределена по закону:

7 1 2 1			(/
X/Y	2	6	10
1	0.1	0.1	0.3
4	0.2	0.15	0.15

Найти законы распределения величин X и Y.

4. Два стрелка независимо один от другого производят по одному выстрелу,

каждый по своей мишени. Х-число попаданий первого стрелка, У-второго стрелка. Вероятность попадания в мишень для первого стрелка 0.9, для второго 0.8. Найти закон совместного распределения.

5. По мишени производится один выстрел. Вероятность попадания равна 0.6. Рассматриваются две случайные величины; Х-число попаданий, У-число промахов. Построить совместную функцию распределения.

Вариант N18.

- 1. По мишени производится один выстрел. Вероятность попадания равна 0.6. Рассматриваются две случайные величины; Х-число попаданий, У-число промахов. Построить совместную функцию распределения.
- 2. Производятся два выстрела по мишени в неизменных условиях. Вероятность попадания в мишень при одном выстреле равна 0.4. Х-число попаданий, У- число промахов. Описать закон распределения (X, У).
- 3. Законы распределения числа очков, набираемых каждым из двух игроков при бросании колец:

V1	0	5	10
ΛΙ	0.6	0.3	0.1

Va	0	5	10
$\Lambda \mathcal{L}$	0.5	0.4	0.1

Найти закон совместного распределения очков.

4. Опыт заключается в одновременном бросании игрального кубика и монеты. Опыты повторяют до первого выпадения герба, но не более 3 раз. Найти закон совместного распределения величин: X-число опытов, У-число выпадений "6".

5. Случайная точка (X,У) на плоскости распределена по закону:

X / Y	0	1	2
0	0.1	0.15	0.2
1	0.1	0.1	0.1
2	0.05	0.15	0.05

Найти законы распределения величин Х и У.

Вариант N19.

- 1. Производятся два выстрела по мишени в неизменных условиях. Вероятность попадания в мишень при одном выстреле равна 0.4. Х-число попаданий, У- число промахов. Описать закон распределения (X,У).
- 2. Двумерная случайная величина (X,У) распределена по закону:

X / Y	1	2	4
1	0.2	0.1	0.03
2	0.1	0.5	0.07

Найти законы распределения величин Х и У.

3. Два стрелка независимо один от другого производят по два выстрела, каждый по своей мишени. Х-число попаданий первого стрелка, У - второго стрелка. Вероятность попадания в мишень для первого стрелка 0.9, для

второго 0.8. Найти закон совместного распределения.

- 4. Дважды бросают игральный кубик. X-число появлений цифры, кратной 3; У- число появлений четной цифры. Найти закон совместного распределения и P(X>У).
- 5. Законы распределения числа очков, выбиваемых каждым из двух стрелков:

V1	1	2	3
ΛI	0.6	0.3	0.1

V2	0	1	2
ΛZ	0.2	0.3	0.5

Найти закон совместного распределения очков.

Вариант N20.

1. Из урны, содержащей 6 белых и 4 черных шара, извлекают 2. Х-число белых в выборке, У-число черных в урне. Описать закон распределения (X, У).

2. Двумерная случайная величина (X,У) распределена по закону:

X/Y	0	1	2
-1	0.2	0.1	0.3
1	0.1	0.2	0.1

Найти законы распределения величин X и У.

- 3. Четыре шарика разбрасываются по трем лункам. Х-число занятых лунок, У-количество шариков в 1-ой лунке.
- 4. Из коробки, в которой три красных и три зеленых карандаша, производится последовательное извлечение (без возвращения) карандашей до первого появления красного карандаша. Х-число извлеченных при этом карандашей. Затем извлечение карандашей продолжается до первого появления зеленого карандаша. Пусть У-число извлеченных карандашей во второй серии. Найти закон совместного распределения.
- 5. Двумерная случайная величина (Х,У) распределена по закону:

X/Y	1	2	3
-1	1/8	1/12	7/24
1	5/24	1/8	1/6

Найти законы распределения величин X и Y.

Вариант N21.

1. Стрелок стреляет по мишени, состоящей из 2х зон. При попадании в первую он получает 1 очко, во вторую - 10 очков. Стреляет до первого попадания в "10", но не более 3 раз. Закон распределения числа выбитых очков:

V	0	1	10
Λ	0.2	0.7	0.1

Найти закон совместного распределения величин: Х-число выстрелов и У-число промахов.

2. Случайная точка (X,Y) на плоскости распределена по закону:

J		\	
X / Y	0	1	2

0	0.1	0.15	0.2
1	0.1	0.1	0.1
2	0.05	0.15	0.05

Найти законы распределения величин X и Y.

- 3. Два стрелка независимо один от другого производят по одному выстрелу, каждый по своей мишени. X-число попаданий первого стрелка, Y-второго стрелка. Вероятность попадания в мишень для первого стрелка 0.9, для второго 0.8. Найти закон совместного распределения.
- 4. Бросают игральный кубик и монету. Найти закон совместного распределения.
- 5. Партия изделий содержит 5% изделий с браком вида A, для брака B этот показатель 7%. Взяли 2 изделия, X-число браков A, Y-число браков B. Описать закон распределения (X,Y).

Вариант N22.

1. Двумерная случайная величина (X,Y) распределена по закону:

X/Y	1	2	4
1	0.2	0.1	0.03
2	0.1	0.5	0.07

Найти законы распределения величин X и Y.

- 2. Трижды бросают игральный кубик. X-число появлений цифры, кратной 3; Y-число появлений четной цифры. Найти закон совместного распределения и P(X>Y).
- 3. Из коробки, в которой три красных и два зеленых карандаша, производится последовательное извлечение (без возвращения) карандашей до первого появления красного карандаша. Х-число извлеченных при этом карандашей. Затем извлечение карандашей продолжается до первого появления зеленого карандаша. Пусть Y-число извлеченных карандашей во второй серии. Найти закон совместного распределения.
- 4. Два стрелка независимо один от другого производят по одному выстрелу, каждый по своей мишени. Х-число попаданий первого стрелка, У-второго стрелка. Вероятность попадания в мишень для первого стрелка 0.5, для второго 0.7. Найти закон совместного распределения.
- 5. Двумерная случайная величина (X, У) распределена по закону:

X / Y	0	1	2
-1	0.2	0.1	0.3
1	0.1	0.2	0.1

Найти законы распределения величин X и У.

Вариант N23.

1. Двумерная случайная величина (X, У) распределена по закону:

X/Y	1	2	3
-1	1/8	1/12	7/24
1	5/24	1/6	1/8

Найти законы распределения величин X и У.

- 2. Два стрелка независимо один от другого производят по одному выстрелу, каждый по своей мишени. Х-число попаданий первого стрелка, У-второго стрелка. Вероятность попадания в мишень для первого стрелка 0.9, для второго 0.8. Найти закон совместного распределения.
- 3. Опыт заключается в одновременном бросании игрального кубика и монеты. Опыты повторяют до первого выпадения "6", но не более 3 раз. Найти закон совместного распределения величин: X число опытов, У-число выпадений герба.
- 4. Дважды бросают игральный кубик. Х-число появлений цифры, кратной 3; У- число появлений четной цифры.
- 5. Законы распределения числа очков для каждого из двух стрелков:

V1	0	1	2
Λ1	0.1	0.3	0.6

V2	0	1	2
$\Lambda \mathcal{L}$	0.2	0.2	0.6

Вариант N24.

- 1. Иван и Петр наудачу извлекают по 1 шару из урны, содержащей 6 белых и 4 черных шара. Иван извлекает шар первым. Х-число белых шаров у Ивана, У-число белых шаров у Петра. Описать закон распределения величин (X,У) (шары не возвращаются).
- 2. Производятся два выстрела по мишени в неизменных условиях. Вероятность попадания в мишень при одном выстреле равна 0.4. Х-число попаданий, У- число промахов. Описать закон распределения (X, У).
- 3. Х₁ и Х₂- независимые случайные величины;

V1	0	1	2
Λ1	0.2	0.7	0.1

V2	0	1	2
Λ	0.2	0.3	0.5

Найти закон совместного распределения.

- 4. По мишени производится один выстрел. Вероятность попадания равна 0.6. Рассматриваются две случайные величины; Х-число попаданий, У-число промахов. Построить совместную функцию распределения.
- 5. Стрелок стреляет по мишени, состоящей из 2х зон. При попадании в первую он получает 1 очко, во вторую 10 очков. Стреляет до первого попадания в "10", но не более 3 раз. Закон распределения числа выбитых очков:

v	0	1	10
Λ	0.2	0.7	0.1

Найти закон совместного распределения величин: Х-число выстрелов и У-число промахов.

Вариант N25.

- 1. Производятся два выстрела по мишени в неизменных условиях. Вероятность попадания в мишень при одном выстреле равна 0.4. Х-число попаданий, У- число промахов. Описать закон распределения (X, У).
- 2. Двумерная случайная величина (X,У) распределена по закону:

	<u> </u>		()
X / Y	1	2	3
-1	1/8	1/12	7/24
1	5/24	1/8	1/6

Найти законы распределения величин Х и У.

- 3. Опыт заключается в одновременном бросании игрального кубика и монеты. Опыты повторяют до первого выпадения "6", но не более 3 раз. Найти закон совместного распределения величин: Х-число опытов, У-число выпадений герба.
- 4. Из урны, содержащей 6 белых и 4 черных шара, извлекают 2. Х-число белых в выборке, У-число черных в урне. Описать закон распределения (X,У).
- 5. Три шарика разбрасываются по трем лункам. Х-число свободных лунок, У-число занятых лунок.

Вариант N26.

1. Двумерная случайная величина (Х,У) распределена по закону:

X/Y	1	2	4
1	0.2	0.1	0.03
2	0.1	0.5	0.07

Найти законы распределения величин X и У.

2. Стрелок стреляет по мишени, состоящей из 2х зон. При попадании в первую он получает 1 очко, во вторую - 10 очков. Стреляет до первого попадания в "10", но не более 3 раз. Закон распределения числа выбитых очков:

v	0	1	10
Λ	0.2	0.7	0.1

Найти закон совместного распределения величин: Х-число выстрелов и У-число промахов.

3. X_1 и X_2 - независимые случайные величины;

V1	0	1	2
Λ1	0.2	0.7	0.1

V2	-1	0	1
Λ	0.2	0.3	0.5

Найти закон совместного распределения.

- 4. Из урны, содержащей 5 белых и 6 черных шара, извлекают 2. Х-число белых в выборке, У-число черных в выборке. Описать закон распределения (X,У).
- 5. По мишени производится один выстрел. Вероятность попадания равна 0.6. Рассматриваются две случайные величины; Х-число попаданий, У-число промахов. Построить совместную функцию распределения.

Вариант N27.

- 1. Из урны, содержащей 6 белых и 4 черных шара, извлекают 2. X число белых в выборке, У-число черных в выборке. Описать закон распределения (X,У).
- 2. Из урны, содержащей 4 белых и 3 черных шара, извлекают 2. Х-число белых в урне, У-число черных в выборке. Описать закон распределения (X,У).
- 3. Законы распределения числа очков, выбиваемых каждым из двух стрелков:

V1	0	1	2
Λ1	0.1	0.3	0.6

va	0	1	2
ΛL	0.2	0.2	0.6

Найти закон совместного распределения очков.

4. Случайная точка (X,Y) на плоскости распределена по закону:

		() /	
X / Y	0	1	2
0	0.1	0.15	0.2
1	0.1	0.1	0.1
2	0.05	0.15	0.05

Найти законы распределения величин Х и У.

5. Два стрелка независимо один от другого производят по одному выстрелу, каждый по своей мишени. Х-число попаданий первого стрелка, У-второго стрелка. Вероятность попадания в мишень для первого стрелка 0.9, для второго 0.8. Найти закон совместного распределения.

Вариант N28.

1. X1 и X2- независимые случайные величины;

V1	0	1	2
ΛΙ	0.2	0.7	0.1

va	-1	0	1
Λ	0.2	0.3	0.5

Найти закон совместного распределения.

- 2. Два стрелка независимо один от другого производят по одному выстрелу, каждый по своей мишени. Х-число попаданий первого стрелка, У-второго стрелка. Вероятность попадания в мишень для первого стрелка 0.9, для второго 0.8. Найти закон совместного распределения.
- 3. Стрелок стреляет по мишени, состоящей из 2х зон. При попадании в первую он получает 1 очко, во вторую 10 очков. Стреляет до первого попадания в "10", но не более 3 раз. Закон распределения числа выбитых очков:

,			1 1
V	0	1	10
Λ	0.3	0.5	0.2

Найти закон совместного распределения величин: Х-число выстрелов и У-

число промахов.

- 4. Дважды бросают игральный кубик. X-число появлений цифры, кратной 3; У- число появлений четной цифры. Найти закон совместного распределения и P(X>У).
- 5. Производятся два выстрела по мишени в неизменных условиях. Вероятность попадания в мишень при одном выстреле равна 0.7. Х-число попаданий, У- число промахов. Описать закон распределения (X, У).

Вариант N29.

1. Х1 и Х₂- независимые случайные величины;

V1	0	1	2
Λl	0.3	0.6	0.1

X2	-1	0	1
	0.2	0.4	0.4

Найти закон совместного распределения.

- 2. Дважды бросают игральный кубик. X-число появлений цифры, кратной 3; Y- число появлений четной цифры. Найти закон совместного распределения и P(X>Y).
- 3. Из урны, содержащей 4 белых и 3 черных шара, извлекают 2. Х-число белых в урне, У-число черных в выборке. Описать закон распределения (X,У).
- 4. По мишени производится один выстрел. Вероятность попадания равна 0.6. Рассматриваются две случайные величины; Х-число попаданий, У-число промахов. Построить совместную функцию распределения.
- 5. Двумерная случайная величина (X,У) распределена по закону:

X/Y	0	2	3
1	1/8	1/12	7/24
3	5/24	1/6	1/8

Найти законы распределения величин Х и У.

Вариант N30.

- 1. Из урны, содержащей 6 белых и 4 черных шара, извлекают 2. Х число белых в выборке, У-число черных в выборке. Описать закон распределения (X,У).
- 2. Двумерная случайная величина (X,У) распределена по закону:

X/Y	0	1	3
-1	0.2	0.1	0.3
2	0.1	0.2	0.1

Найти законы распределения величин Х и У.

3. Законы распределения числа очков, выбиваемых каждым из двух стрелков:

V1	0	1	2
Λ1	0.3	0.6	0.1

X2	0	1	2

	0.2	0.3	0.5
--	-----	-----	-----

Найти закон совместного распределения очков.

- 4. Партия изделий содержит 5% изделий с браком вида A, для брака B этот показатель 7%. Взяли 2 изделия, X-число браков A, У-число браков B. Описать закон распределения (X,Y).
- 5. Четыре шарика разбрасываются по трем лункам. Х-число занятых лунок, Усуммарное количество шариков в 1-ой и 2-ой лунках.