Ипользовано в Data Startup Accelerator Program: развитие компетенций в создании инновационных продуктов и бизнесов в сфере Больших Данных Совместная инициатива корпорации SAP и innovationStudio MSU FE

Boolean Matrix Factorisation for Collaborative Filtering: An FCA-based approach

Dmitry Ignatov¹, Elena Nenova², Andrey Konstantinov¹, Natalia Konstantinova³

 ¹National Research University Higher School of Economics, Moscow, Russia
 ²Imhonet Research, Moscow, Russia
 ³University of Wolverhampton, UK

> AIMSA 2014, Sept. 12, Varna, Bulgaria

Outline

- Problem Statement
- Basic Matrix Factorisation (MF) Techniques
- FCA-based Boolean Matrix Factorisation
 - FCA definitions
 - FCA and Recommender Systems
 - FCA-based BMF
- General Scheme of Experiments
- Experiments
- Conclusion & Future Plans

Problem Statement

- Recommender Systems is a rapidly growing area (ACM RecSys conference series since 2007)
- Matrix Factorisation techniques seems to be an industry standard (SVD, NMF, PLSA etc.)
- What about Boolean Matrix Factorisation or/and FCA?
- Hence why not to develop FCA-based BMF technique, evaluate it, and compare with the state-of-the-art techniques?

Outline

- Problem Statement
- Basic Matrix Factorisation (MF) Techniques
- FCA-based Boolean Matrix Factorisation
 - FCA definitions
 - FCA and Recommender Systems
 - FCA-based BMF
- General Scheme of Experiments
- Experiments
- Conclusion & Future Plans

Basic MF Techniques. SVD

Singular Value Decomposition

$$A = U \left(\begin{array}{c} \Sigma \\ 0 \end{array} \right) V^T,$$

$$A \in \mathbb{R}^{m \times n} (m > n)$$
,

 $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices

$$\Sigma = diag(\sigma_1, \dots, \sigma_n)$$
, where $\sigma_1 \ge \sigma_2 \ge \dots \ge 0$.

SVD Example

$$V^T = \begin{pmatrix} 0.32 & 0.41 & -0.24 & 0.36 & 0.07 & 0.70 & 0.13 \\ 0.32 & 0.41 & -0.24 & 0.36 & 0.07 & -0.62 & -0.35 \\ 0.26 & 0.37 & -0.32 & -0.79 & -0.12 & -0.06 & 0.17 \\ 0.50 & 0.01 & 0.55 & 0.05 & 0.24 & -0.21 & 0.57 \\ 0.41 & 0.01 & 0.50 & -0.14 & -0.42 & 0.21 & -0.57 \\ 0.42 & -0.53 & -0.27 & -0.15 & 0.57 & 0.10 & -0.28 \\ 0.33 & -0.46 & -0.36 & 0.21 & -0.63 & -0.10 & 0.28 \end{pmatrix}.$$

Basic MF Techniques. NMF

Non-negative Matrix Factorisation

$$V \approx WH$$

$$V \in \mathbb{R}^{n \times m}, \quad V_{ij} \ge 0;$$

$$W \in \mathbb{R}^{n \times k}, \ W_{ij} \ge 0;$$

$$H \in \mathbb{R}^{k \times m}, \ H_{ij} \geq 0.$$

Basic MF Techniques. NMF

$$V = \begin{pmatrix} 4 & 4 & 5 & 0 & 0 & 0 & 0 \\ 5 & 5 & 3 & 4 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 & 0 \\ 0 & 0 & 0 & 5 & 4 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 \end{pmatrix}.$$

$$V = \begin{pmatrix} 2.32 & 1.11 & 0 \\ 0 & 1.28 & 0 \\ 0 & 1.46 & 1.23 \\ 0 & 0 & 1.60 \\ 0 & 0 & 1.28 \end{pmatrix}$$

$$V = \begin{pmatrix} 2.34 & 0 & 0 \\ 2.32 & 1.11 & 0 \\ 0 & 1.28 & 0 \\ 0 & 1.46 & 1.23 \\ 0 & 0 & 1.60 \\ 0 & 0 & 1.28 \end{pmatrix} * \begin{pmatrix} 1.89 & 1.89 & 1.71 & 0.06 & 0 & 0 & 0 \\ 0.13 & 0.13 & 0 & 3.31 & 2.84 & 0.27 & 0 \\ 0 & 0 & 0 & 0.03 & 0 & 3.27 & 2.93 \end{pmatrix}.$$

Basic MF Techniques. NMF

Boolean Matrix Factorisation

$$I = P \circ Q,$$

$$(P \circ Q)_{ij} = \bigvee_{l=1}^{k} P_{il} \cdot Q_{lj},$$

$$I \in \{0, 1\}^{n \times m},$$

$$P \in \{0, 1\}^{n \times k},$$

$$Q \in \{0, 1\}^{k \times m}.$$

Outline

- Problem Statement
- Basic Matrix Factorisation (MF) Techniques
- FCA-based Boolean Matrix Factorisation
 - FCA definitions
 - FCA and Recommender Systems
 - FCA-based BMF
- General Scheme of Experiments
- Experiments
- Conclusion & Future Plans

Formal Concept Analysis

[Wille, 1982, Ganter & Wille, 1999]

Definition 1. Formal Context is a triple (G, M, I), where G is a set of **(formal) objects**, M is a set of **(formal) attributes**, and $I \subseteq G \times M$ is the incidence relation which shows that object $g \in G$ posseses an attribute $m \in M$.

Example. Books recommender

	Romeo & Juliet	The Puppets Master	Ubik	Ivanhoe
Kate	x			x
Mike	x		x	
Alex		x	x	
David		x	x	x

Formal Concept Analysis

Definition 2. Derivation operators (defining Galois connection)

 $A' := \{ m \in M \mid glm \text{ for all } g \in A \} \text{ is the set of attributes common to all objects in } A$

 $B' := \{ g \in G \mid glm \text{ for all } m \in B \} \text{ is the set of objects that have all attributes from } B$

Example

	R&J	PM	Ub	lv
Kate	x			Х
Mike	x		Х	
Alex		х	Х	
David		Х	Х	Х

$${Kate, Mike}^{I} = {RJ}$$
 ${Ubik}^{I} = {Mike, Alex, David}$
 ${RJ,PM}^{I} = {}_{G}$
 ${}_{G}^{I} = M$

Formal Concept Analysis

Definition 3. (*A*, *B*) is a **formal concept** of (*G*, *M*, *I*) iff $A \subseteq G$, $B \subseteq M$, $A^{l} = B$, and $B^{l} = A$.

A is the **extent** and B is the **intent** of the concept (A, B).

B (G,M,I) is a set of all concepts of the context (G,M,I)

Example

	R&J	PM	Ub	lv
Kate	Х			Х
Mike	х		х	
Alex		х	х	
David		х	х	х

- A pair ({Kate, Mike},{R&J}) is a formal concept
- ({Alex, David}, {Ubik}) doesn't form a formal concept, because {Ubik}¹≠{Alex, David}
- ({Alex, David} {PM, Ubik}) is a formal concept

FCA and Graphs

	a	b	С	d
Kate	x			X
Mike	x		X	
Alex		X	X	
David		X	X	X

Formal Context	Bipartite graph		
Formal Concept	Biclique		
(maximal rectangle)			

FCA & Recommender Systems

- Collaborative Recommending using Formal Concept Analysis (du Boucher-Ryan & Bridge, 2006)
- Concept-based Recommendations for Internet Advertisement (Ignatov & Kuznetsov, 2008)
- FCA-based Recommender Models and Data Analysis for Crowdsourcing Platform Witology (Ignatov et al., 2014)

FCA-based BMF

Belohlavek & Vyhodil, 2010

Matrix I can be considered a matrix of binary relations between set X of objects (users), and a set Y of attributes (items that users have evaluated). We assume that xIy iff the user x evaluated object y. The triple (X,Y,I) clearly forms a formal context.

Consider a set $\mathcal{F} \subseteq \mathcal{B}(X,Y,I)$, a subset of all formal concepts of context (X,Y,I), and introduce matrices $P_{\mathcal{F}}$ and $Q_{\mathcal{F}}$:

$$(P_{\mathcal{F}})_{il} = \begin{cases} 1, i \in A_l, \\ 0, i \notin A_l, \end{cases} (Q_{\mathcal{F}})_{lj} = \begin{cases} 1, j \in B_l, \\ 0, j \notin B_l. \end{cases},$$

where (A_l, B_l) is a formal concept from F.

FCA-based BMF

Belohlavek & Vyhodil, 2010

Theorem 1. (Universality of formal concepts as factors). For every I there is $\mathcal{F} \subseteq \mathcal{B}(X,Y,I)$, such that $I = P_{\mathcal{F}} \circ Q_{\mathcal{F}}$.

Theorem 2. (Optimality of formal concepts as factors). Let $I = P \circ Q$ for $n \times k$ and $k \times m$ binary matrices P and Q. Then there exists a $\mathcal{F} \subseteq \mathcal{B}(X,Y,I)$ of formal concepts of I such that $|\mathcal{F}| \leq k$ and for the $n \times |\mathcal{F}|$ and $|\mathcal{F}| \times m$ binary matrices $P_{\mathcal{F}}$ and $Q_{\mathcal{F}}$ we have $I = P_{\mathcal{F}} \circ Q_{\mathcal{F}}$.

Example 1

Example 2

$$\begin{pmatrix} 4 & 4 & 5 & 0 & 0 & 0 & 0 \\ 5 & 5 & 3 & 4 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 & 0 & 0 \\ 0 & 0 & 0 & 5 & 4 & 5 & 3 \\ 0 & 0 & 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} = I.$$

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}$$

Outline

- Problem Statement
- Basic Matrix Factorisation (MF) Techniques
- FCA-based Boolean Matrix Factorisation
 - FCA definitions
 - FCA and Recommender Systems
 - FCA-based BMF
- General Scheme of Experiments
- Experiments
- Conclusion & Future Plans

General Scheme of Experiments

kNN approach

- Adomavicus & Tuzhilin, 2005
- Predicted rating of user c for item s

$$r_{c,s} = k \sum_{c' \in \widehat{C}} sim(c', c) \times r_{c',s},$$

where k serves as a normalizing factor and selected as $k = 1/\sum_{c' \in \widehat{C}} sim(c, c')$.

sim(c',c) is similarity between users c' and c,
 e.g. cosine-based or Pearson correlation

Outline

- Problem Statement
- Basic Matrix Factorisation (MF) Techniques
- FCA-based Boolean Matrix Factorisation
 - FCA definitions
 - FCA and Recommender Systems
 - FCA-based BMF
- General Scheme of Experiments
- Experiments
- Conclusion & Future Plans

Dataset

- MovieLens dataset:
 - 943 users,
 - 1682 movies,
 - every user have rated at least 20 movies,
 - 100000 ratings,
 - training set 80000 ratings,
 - test set 20000 ratings.

MAE for SVD and BMF at 80% coverage level

Number of neighbors	1	5	10	20	30	50	60
MAE_{SVD80}	2,4604	1.4355	1.1479	0.9750	0.9148	0.8652	0.8534
MAE_{BMF80}	2.4813	1.3960	1.1215	0.9624	0.9093	0.8650	0.8552
MAE_{all}	2.3091	1.3185	1.0744	0.9350	0.8864	0.8509	0.8410

 Number of factors for SVD and BMF at different coverage level

p%	100%	80%	60%
SVD	943	175	67
BMF	1302	402	223

 Comparison of kNN- approach and BMF-based approaches by Precision and Recall

 Scaling influence on the recommendations quality for BMF in terms of MAE

```
1. I_{ij} = 1 if R_{ij} > 0, else I_{ij} = 0 (user i rates item j).
```

2.
$$I_{ij} = 1$$
 if $R_{ij} > 1$, else $I_{ij} = 0$.

3.
$$I_{ij} = 1$$
 if $R_{ij} > 2$, else $I_{ij} = 0$.

4.
$$I_{ij} = 1$$
 if $R_{ij} > 3$, else $I_{ij} = 0$.

 MAE dependence on scaling and number of nearest neighbors for 80% coverage.

 MAE dependence on data filtration algorithm and the number of nearest neighbors.

Speed up of PLSA convergence

Conclusion

- BMF-based RA is similar to state-of-the-art techniques in terms of MAE and demonstrates good Precision and Recall
- Probably low scalability is the main drawback of the approach
- BMF: O(k|G||M|³) versus SVD: O(|G||M|²+|M|³)

Future Prospects

- BMF-based RS in Triadic Case (e.g., folksonomy data)
- BMF-based RS for Graded and Ordinal Data
- BMF-based RS for simultaneous factorisation of user-features, user-items, and itemsfeatures matrices
- BMF and Least Square based imputation techniques
- Scalability Issues

Thank you!