High Dimensional Statistics

Yanbo Tang

Imperial College London

Feb. 2025

Content of this week

- Concentration for functions of random variables
- Performance bounds for linear regression
- LASSO

Sub-Gaussian random vectors

Definition

A random variable X is called sub-Gaussian with proxy variance σ^2 if there exists a $\sigma^2 > 0$:

$$\mathbb{E}[\exp(\lambda(X-\mu))] \le \exp\left(\frac{\lambda^2\sigma^2}{2}\right)$$

for all $\lambda \in \mathbb{R}$. A random vector $X \in \mathbb{R}^d$ is sub-Gaussian with proxy variance σ^2 if $u^\top X$ is sub-Gaussian with proxy variance σ^2 for all $u \in S^{d-1}$.

Concentration for functionals

f:10" 1-7/10

f(x, x, x, ..., xn) - Ecf(x, x, ..., x)]

f (K,)

Bounded differences

Suppose we have a function $f: \mathbb{R}^d \to \mathbb{R}$ for all $x_1, x_2, \dots, x_d, x_1', x_2', \dots, x_d' \in \mathbb{R}$

$$|f(x'_{1}, x_{2}, \dots, x_{j}, \dots, x_{d}) - f(x''_{1}, x_{2}, \dots, x_{j}, \dots, x_{d})| \leq L_{1} < \infty$$

$$\vdots$$

$$|f(x_{1}, x_{2}, \dots, x'_{j}, \dots, x_{d}) - f(x_{1}, x_{2}, \dots, x_{j}, \dots, x_{d})| \leq L_{j}$$

$$\vdots$$

$$|f(x_{1}, x_{2}, \dots, x_{j}, \dots, x'_{d}) - f(x_{1}, x_{2}, \dots, x_{j}, \dots, x_{d})| \leq L_{d}.$$

Bounded differences/McDiaramids

Proposition

(Bounded differences inequality/McDiaramids) Suppose that f satisfies the bounded difference property with parameters (L_1, \ldots, L_n) and that the random vector

$$X=(X_1,X_2,\ldots,X_n)$$

has independent components. Then

$$\mathbb{P}\big[|f(X) - \mathbb{E}[f(X)]| \ge t\big] \le 2e^{-\frac{2t^2}{\sum_{k=1}^n L_k^2}} \quad \textit{for all } t \ge 0.$$

$$E[|X_i - X_i|] = \sum_{\substack{i < j \\ (n)}} \frac{|X_i - X_j|}{\binom{n}{a}}$$

$$U = \sum_{\substack{i < j \\ (n)}} \frac{|X_i - X_j|}{\binom{n}{a}}$$

Imagine
$$\|g\|_{\infty} < b$$
 (or $X_i \in \mathcal{I} - b, 6$) $a - s$)

$$\begin{cases}
V_i \in \mathcal{I}_{r,r}, & |V(X_i, ..., X_n)| = \frac{1}{\binom{n}{2}} |\mathcal{I}_i| |\mathcal{I}_i| |\mathcal{I}_i| |\mathcal{I}_i| \\
= \frac{(n-1) \cdot 2b}{\binom{n}{2}} = \frac{4b}{n}
\end{cases}$$

$$\begin{cases}
V_i = \frac{4b}{n} & \forall j \in \mathcal{I}_{r,r,r}, \\
V_i = \mathcal{I}_i| |\mathcal{I}_i| |\mathcal{$$

Lipschitz property

We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is *L*-Lipschitz with respect to the Euclidean norm if:

Gaussian concetration

Theorem

Let $(X_1, ... X_n)$ be a vector of IID standard Gaussian random variables and let $f: \mathbb{R}^n \to \mathbb{R}$ be a L-Lipschitz function with respect to the Euclidean norm. Then f(X) - E[f(X)] is sub-Gaussian with parameter at most L and

$$\mathbb{P}[|f(X) - E[f(X)]| \ge t] \le 2 \exp\left(\frac{-t^2}{2L^2}\right)$$
 for all $t \ge 0$.

Singular value decomposition

As a reminder for a real matrix $A \in \mathbb{R}^{n \times d}$, the singular value decomposition is:

$$A = \sum_{i=1}^{r} s_i(A) u_i v_i^{\top}$$
, where $r = rank(A)$.

The non negative numbers $s_i(A)$ are called the singular values of A, the vectors $u_i \in \mathbb{R}^n$ are the left singular vectors of A, and $v_i \in \mathbb{R}^d$ are the right singular vectors of A.

Wely's theorem

Theorem

Given two matrices X and Y in $\mathbb{R}^{n\times d}$, we have

$$\max_{i=1,...,d} |s_k(X) - s_k(Y)| \le s_1(X - Y) \le ||X - Y||_F,$$

where $\|\cdot\|_F$ is the Frobenius norm of a $\mathbb{R}^{n\times d}$ matrix:

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^d a_{ij}^2} = \sqrt{\textit{Trace}(A^\top A)} = \sqrt{\sum_{i=1}^{\min(n,d)} s_i(A)^2}.$$

Singular values of Gaussian random matrices
$$XG |R^{MX}| \text{ where } X_{j} \sim M_{0}1)$$

$$may \quad |\mathcal{L}(x) - S(y)| = |X - Y|_{\mathcal{L}} = 1 \cdot \sqrt{\frac{2}{5}} \frac{1}{5} (x_{j} - y_{j})^{2}$$

$$\vdots \cdot y_{j-1}d \quad P(|\mathcal{L}(x)| - \mathbb{E}[\mathcal{L}(x)]| \ge \delta) = \exp(-\frac{3^{2}}{5})$$

$$\text{Terring Tow into S in Random into } flowy$$

What about non-Gaussians?

We need some other assumptions:

Definition

A distribution supported in \mathbb{R}^n with density $p(x) = \exp(-\psi(x))$ is said to be γ strongly log concave if there exists a $\gamma > 0$ such that:

$$\lambda \psi(x) + (1 - \lambda)\psi(y) - \psi(\lambda x + (1 - \lambda)y) \ge \frac{\gamma}{2}\lambda(1 - \lambda)\|x - y\|_2^2,$$

for all $\lambda \in [0,1]$ and $x,y \in \mathbb{R}^n$.

Cont.

Theorem

Let $\mathbb P$ be any strongly log-concave distribution with parameter $\gamma>0$. Then for any L-Lipschitz function with respect to the Euclidean norm:

$$\mathbb{P}\left[|f(X) - \mathbb{E}[f(X)]| \geq t\right] \leq 2 \exp\left(\frac{-\gamma t^2}{4L^2}\right).$$

Concentration inequalities
by MASSART

Linear Regression

Prediction

Low MSE

for new ds.

I

this Week

Attaitation Sparity pattern vacuum

Tuferale Confidence Exacel for O,

Introduction

Most regression models can be written in the form of:

$$Y_i = f(x_i) + \epsilon_i, i = 1, \ldots, n,$$

where $f(\cdot)$ is some functional relationship and ϵ_i are some centred error terms.

Here, we assume the data generating model is:

$$Y_i = x_i^{ op} \theta^* + \epsilon_i, i = 1, \dots, n,$$
 Ensity of (5²)

MSE

We first consider the performance of our estimated models in terms of the *Mean Square Error* (MSE), for a general regression problem this is:

$$MSE(\hat{f}_n) = \frac{1}{n} \sum_{i=1}^{n} (\hat{f}_n(x_i) - f(x_i))^2,$$

for us this will simply to

$$MSE(X\hat{\theta}) = \frac{1}{n} ||X(\hat{\theta}_n - \theta^*)||_2^2,$$

where $\hat{\theta}_n$ is some estimated value for the regression parameter and θ^* is the true data-generating value of θ .

Unconstrained estimation

Proposition

The least squares estimator $\hat{\theta}^{LS} \in \mathbb{R}^d$ satisfies

$$X^{\top}X\hat{\theta}^{LS} = X^{\top}Y.$$
 Ax=b
At is such flace

Moreover, $\hat{\theta}^{LS}$ can be chosen to be

where $(X^{\top}X)^{\dagger}$ denotes the Moore-Penrose pseudoinverse of $X^{\top}X$.

First:
$$O + 7 ||Y - XO||_2^2$$
 is Convex ... all minima $64ut_3/10$) $T_0 ||Y - XO||_2^2 = 0$

$$T_0 ||Y - XO||_2^2 = -2(X^TX - O^TX^TX)^T = 0$$

$$= 7 \quad X^TX O = X^TY$$

Theorem

Assume that the linear model holds where $\varepsilon \sim \operatorname{sub} G_n(\sigma^2)$. Then the least squares estimator $\hat{\theta}^{LS}$ satisfies

$$\mathbb{E}[MSE(X\hat{\theta}^{LS})] = \frac{1}{n} \mathbb{E}|X\hat{\theta}^{LS} - X\theta^*|_2^2 \lesssim \sigma^2 \frac{r}{n},$$

where $r = rank(X^{T}X)$. Moreover, for any $\delta > 0$, with probability at least $1 - \delta$,

$$MSE(X\hat{\theta}^{LS}) \lesssim \sigma^2 \frac{r + \log(1/\delta)}{n}.$$

Small fact that we'll need:

Moments of sub-Gaussian random variables. Let X be any random variable such that

$$\mathbb{P}[|X| > t] \le 2 \exp\left(-\frac{t^2}{2\sigma^2}\right),$$

then for any positive integers $k \geq 1$,

$$E[|X|^k] \le (2\sigma^2)^{k/2} k \Gamma(k/2).$$

Proof
$$||\gamma - x \delta||_{2}^{2} \leq ||\gamma - x \delta^{*}||_{2}^{2} = ||z||_{2}^{2}$$
 $||z||_{2}^{1} \geq ||\gamma - x \delta^{*}||_{2}^{2} = ||x \delta - x \delta^{*}||_{2}^{2} - 2z ||x \delta - 0|||_{2}^{2}$
 $= ||x \delta^{*} + z - x \delta^{*}||_{2}^{2} - 2z ||x \delta - 0|||_{2}^{2}$
 $= ||x \delta^{*} + z - x \delta^{*}||_{2}^{2} - 2z ||x \delta - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - 2z ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2} - ||x \delta^{*} - x \delta^{*}||_{2}^{2}$
 $= ||x \delta^{*} - x \delta^{*}||_{2}^{2}$

Proof Cont. $Sep(\hat{\epsilon}^1 u)^2 \leq 8 lag(d) S^2 \cdot r + 8 S^2 lg(f)$ Sobre

Find
$$A = A \cos(mn) \left[\frac{1}{2} \times A \cos(nn) \right]^2$$

$$\left[\frac{1}{2} \times A \cos(nn) + \frac{1}{2} \times A \cos(nn) \right]^2 + \frac{1}{2} \times A \cos(nn) + \frac{1}{2} \times A$$

V= & e,, e1, e2, -e2, ... }

Sub-Gaussian width of L^1 ball

Theorem

Let P be a polytope with N vertices $v^{(1)}, \ldots, v^{(N)} \in \mathbb{R}^d$ and let $X \in \mathbb{R}^d$ be a random vector such that $[v^{(i)}]^\top X, i = 1, \ldots, N$, are sub-Gaussian random variables with variance proxy σ^2 . Then

$$\mathbb{E}\left[\max_{\theta \in P} \theta^{\top} X\right] \leq \sigma \sqrt{2\log(N)},$$

and

$$\mathbb{E}\left[\max_{\theta\in P}|\theta^\top X|\right] \leq \sigma\sqrt{2\log(2N)}.$$

Moreover, for any t > 0,

$$\mathbb{P}\left(\max_{\theta\in P}\theta^{\top}X>t\right)\leq Ne^{-\frac{t^2}{2\sigma^2}},$$

and

$$\mathbb{P}\left(\max_{\theta\in\mathcal{P}}|\theta^{\top}X|>t\right)\leq 2Ne^{-\frac{t^2}{2\sigma^2}}.$$

Performance

Theorem

Let \mathcal{B}_1 be the unit ℓ_1 ball of \mathbb{R}^d , $d \geq 2$ and assume that $\theta^* \in \mathcal{B}_1$. Moreover, assume the conditions of Theorem 6 and that the columns of \mathbb{X} are normalized such that $\max_j |\mathbb{X}_j|_2 \leq \sqrt{n}$. Then the constrained least squares estimator $\hat{\theta}_{\mathcal{B}_1}^{LS}$ satisfies

$$\mathbb{E}[MSE(\mathbb{X}\hat{\theta}_{\mathcal{B}_1}^{LS})] = \frac{1}{n}\mathbb{E}|\mathbb{X}\hat{\theta}_{\mathcal{B}_1}^{LS} - \mathbb{X}\theta^*|_2^2 \lesssim \sigma\sqrt{\frac{\log d}{n}}.$$

Moreover, for any $\delta > 0$, with probability $1 - \delta$, it holds

$$\mathit{MSE}(\mathbb{X}\hat{ heta}_{B_1}^{LS}) \lesssim \sigma \sqrt{rac{\log(d/\delta)}{n}}.$$

Proof $|\chi \hat{\theta} - \chi \hat{\sigma}|_{2}^{2} \leq 4 \sup_{V \in \mathcal{X}_{K}} c_{\varepsilon}^{T} V$ support En rable(82) try 1/3/2= N ET/3 n 5-66 (1162) Sine $\mathcal{E}^{T}X_{j} = |X_{j}|_{2} \frac{\mathcal{E}^{T}X_{j}}{|X_{j}|_{2}}$ copy an prenan burle as polytym P(MSE18]) >t) = P(Sup(ET) >ME) = 2d apl-ute/per) $2de^{-nt^{2}/320^{2}} \le 6 = 7$ $e^{2} = 32 \frac{dy}{dx} + 32 \frac{dy}{dx}$

L^0 performance

Denote by $B_0(k)$ the ℓ_0 "ball" of \mathbb{R}^d , i.e., the set of k-sparse vectors, defined by

$$B_0(k) = \{ \theta \in \mathbb{R}^d : |\theta|_0 \le k \}.$$

Our goal is to control the MSE of $\hat{\theta}_{K}^{IS}$ when $K = B_{0}(k)$. Note that computing $\hat{\theta}_{B_{0}(k)}^{IS}$ defined as:

$$\hat{\theta}_{B_0(k)}^{\mathsf{LS}} \in \operatorname*{argmin}_{\theta \in B_0(k)} |Y - \mathbb{X}\theta|_2^2,$$

but this would require computing $\binom{d}{k}$ least squares estimators since this loss is no longer smooth due to the constraint

Best subset selection

Theorem

Fix a positive integer $k \le d/2$. Let $K = B_0(k)$ be set of k-sparse vectors of \mathbb{R}^d and assume that $\theta^* \in B_0(k)$. Moreover, assume the conditions of Theorem 6. Then, for any $\delta > 0$, with probability $1 - \delta$, it holds

$$MSE(\mathbb{X}\hat{\theta}_{B_0(k)}^{IS}) \lesssim \frac{k\sigma^2}{n}\log\left(\frac{ed}{2k}\right) + \log(6)\frac{\sigma^2k}{n} + \frac{\sigma^2}{n}\log(1/\delta).$$

Matching rates for LASSO?

Assumption INC(k**)** We say that the design matrix \mathbb{X} has incoherence k for some integer k > 0 if

$$\left|\frac{\mathbb{X}^T\mathbb{X}}{n} - I_d\right|_{\infty} \le \frac{1}{32k}$$

where the $|A|_{\infty}$ denotes the largest element of A in absolute value. Equivalently,

• For all i = 1, ..., d,

$$\left|\frac{\|\mathbb{X}_j\|_2^2}{n}-1\right|\leq \frac{1}{32k}.$$

② For all $1 \le i, j \le d, i \ne j$, we have

$$\frac{|\mathbb{X}_i^T \mathbb{X}_j|}{n} \leq \frac{1}{32k}.$$

Technical Lemma

Lemma

Fix a positive integer $k \leq d$ and assume that \mathbb{X} satisfies assumption INC(k). Then, for any $S \in \{1, \ldots, d\}$ such that $|S| \leq k$ and any $\theta \in \mathbb{R}^d$ that satisfies the cone condition

$$|\theta_{S^c}|_1 \leq 3|\theta_S|_1$$

it holds

$$|\theta|_2^2 \leq 2 \frac{|\mathbb{X}\theta|_2^2}{n}$$
.

We will interpret the cone condition more carefully next week when we consider sparse recovery.

LASSO

Theorem

Fix $n \geq 2$. Assume that the linear model (2.2) holds where $\varepsilon \sim \operatorname{sub} G_n(\sigma^2)$. Moreover, assume that $\|\theta^*\|_0 \leq k$ and that X satisfies assumption $\operatorname{INC}(k)$. Then the Lasso estimator $\hat{\theta}^{\mathcal{L}}$ with regularization parameter defined by

$$2\tau = 8\sigma\sqrt{\frac{\log(2d)}{n}} + 8\sigma\sqrt{\frac{\log(1/\delta)}{n}}$$

satisfies

$$MSE(X\hat{\theta}^{\mathcal{L}}) = \frac{1}{n} ||X\hat{\theta}^{\mathcal{L}} - X\theta^*||_2^2 \lesssim k\sigma^2 \frac{\log(2d/\delta)}{n}.$$

and

$$\|\hat{\theta}^{\mathcal{L}} - \theta^*\|_2^2 \lesssim k\sigma^2 \frac{\log(2d/\delta)}{n}.$$

with probability at least $1 - \delta$.

Proof

Proof Cont.