Electromagnetc Theory: PHYS330

Jordan Hanson

November 2, 2020

Whittier College Department of Physics and Astronomy

Summary

Week 2 Summary

- 1. Homework discussions
 - Proofs! Glorious proofs.
 - Exercises with checking fundamental theorems
- 2. Electrostatics and Coulomb forces
 - Charge distributions, superposition, and the Coulomb force
 - A note about the far-field
 - Setting up integrals, taking limits, checking units
 - The divergence of electric fields
 - The curl of electric fields
- 3. Electric Potential
 - Definitions, fundamental theorem for gradients
 - Reference points
 - Laplace equation ...
- 4. Work, energy, and conductors

Homework

Homework, Week 2

Unlike last week, these exercises come from *within* the chapter. Ideally, you should look at all of the problems within the chapter as you study.

- Exercise 2.5
- Exercise 2.6
- Exercise 2.9
- Exercise 2.12
- Exercsie 2.16
- Exercise 2.18
- Exercise 2.25
- Exercise 2.29

Charge distributions, Superposition,

and the Coulomb Force

Figure 1: The basic problem of electrostatics. Note the definition of the separation vector, and the vectors to the field point and to all the source charges.

Figure 2: Begin with a dipole, and then a *physical* dipole.

Figure 3: The continuous limit implies a variety of symmetries and geometries over which we integrate, rather than sum.

Figure 4: A coninuous line density of charge. Integration yields the electric field.