Radiometric alignment and vignetting calibration

Pablo d'Angelo University of Bielefeld

Overview

- Motivation
- Image formation
- Vignetting and exposure estimation
- Results
- Summary

Motivation

- Determination of vignetting and exposure
- Traditional approach
 - Flatfield + camera response calibration in the lab
- Simpler: use overlapping images

- Applications
 - Spatial & photometric mosaicing
 - Recovery of scene radiance, required for radiometric reconstruction methods (Shape from Shading, Photoconsitency)

Image formation

Irradiance I in $\left[\frac{W}{m^2}\right]$

- Image irradiance: $I = \frac{\pi}{k^2} M L$
- Natural vignetting: $M = \cos^4 \theta$

k aperture value M vignetting function

Image formation

Irradiance $I\left[\frac{W}{m^2}\right]$ in image plane

Camera response $f(w_i eML)$

Pixel values B_i in [colour levels]

- Integration on sensor
- Used model

$$B_i = f(w_i eML)$$

$e = st \frac{\pi}{k^2}$	effective exposure
M	vignetting function
${\mathcal W}_i$	white balance factor
i	channel number
k	aperture value
\boldsymbol{S}	camera sensitivity
t	integration time

Natural vignetting

- Light falloff due to
 - Apparent area of exit pupil, cos(b)
 - Larger effective area on film, cos(b)
 - Larger distance to image corner, cos²(b)
- Natural vignetting not reduced by stopping down
- Lenses are complicated, \cos^4 does not apply for many designs

© Paul van Walree

Pablo d'Angelo

CCMVS 2007

Optical vignetting

- Entrance pupil shaded by lens barrel
- Optical vignetting depends on aperture

f 1.4

f 5.6

© Paul van Walree

Mechanical vignetting

- Light is blocked by lens hood, or other objects
- Results in unrecoverable vignetting

© Paul van Walree

Vignetting of a real lens Flatfield image

- Image of a homogeneous white surface
- Observation
 - Radial falloff
 - Not centred

Image by Goldman and Chen (2005)
Contrast enhanced and quantized for better visibility on a beamer

Modelling vignetting

- Non-Parametric models
 - Flatfield image
 - accurate
 - acquisition cumbersome

- Parametric models
 - Radial polynomial model

$$M = \beta_1 r^6 + \beta_2 r^4 + \beta_3 r^2 + 1$$

- Allow center shift c

Modelling the camera response

- Non-Parametric
 - Can model all shapes
 - Dense data required
- Parametric
 - Polynomial
 - Less parameters
 - Dense data required
 - PCA basis of 201 response functions (Grossberg, Nayar)
 - First 3 Eigenresponses describe all 201 functions well.
 - Strong model, can be used with sparse data

Grey value transfer function

- Scene points imaged in registered images
- Joint histogram
 - cannot model vignetting
- Gray value transfer function

$$B_1 = \tau(B_2) = f(\frac{e_1 M(x_1) f^{-1}(B_2)}{e_2 M(x_2)})$$

 $L_1 = L_2$

 B_1

Estimation using corresponding points

• Estimation of the transfer function by minimising

$$e_t = d\left(B_1 - \tau(B_2)\right)$$

- Other approaches (Goldman 05)
 - Alternating minimisation steps of

$$e = \sum_{j} d(B_{j} - f(eML_{j}))$$

for L and e,M,f

- Large number of variables
- Slow convergence

$$L_1 = L_2$$

d distance metric

Estimation using corresponding points

• Estimation of the transfer function by minimising

$$e_t = d\left(B_1 - \tau(B_2)\right)$$

• Symmetric transfer error:

$$e_s = d(B_1 - \tau(B_2)) + d(B_2 - \tau(B_1))$$

- Minimising e_s using a set of (B_1, B_2) measurements yields
 - Exposure, vignetting, white balance
 - Camera response

d distance metric

The exponential ambiguity

- Simultaneous estimation of exposure and camera response subject to exponential ambiguity
- Calibration and Radiometry
 - Either camera response or exposure need to be known
- Removal of exposure, vignetting and WB differences
 - Find any solution, correct images
 - Use inverse response to transform into original grey value space

Extraction of corresponding points

- Avoid outliers due to misregistration
 - Extract points in low gradient areas
- Need points at all radii r
 - Bin points by distance from image centre
 - Select points with lowest gradients

Evaluation Synthetic example

- Simulated panorama with 6 overlapping images
 - Gaussian noise (2 grey values), quantisation, outliers
 - Estimate vignetting and exposure, analyse error to ground truth

Venice Vignetting correction

Green Lake Vignetting, exposure and WB correction

Green Lake Results Goldman & Chen

Spherical panorama Original images

Spherical panorama Vignetting, exposure and WB correction

Summary and conclusion

- Estimation of radiometric camera parameters from overlapping images
 - exposure, vignetting, response curve, white balance
 - Robust approach, better results than previous methods
 - Compact parametrisation, fast estimation
- Applications
 - Radiometric calibration, estimation of scene radiance
 - Removal of photometric distortions from image mosaics
- Implemented in Hugin, http://hugin.sf.net

Radiometric alignment and vignetting calibration

by Pablo d'Angelo

Evaluation Image blending

