

(11) EP 0 791 656 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 27.08.1997 Bulletin 1997/35

(21) Application number: 97301066.3

(22) Date of filing: 19.02.1997

(51) Int Cl.6: **C12N 15/52**, C12N 9/00, C12N 15/63, C12P 19/62, C12P 17/08

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
PT SE

Designated Extension States: **RO**

(30) Priority: 22.02.1996 US 12050

(71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)

(72) Inventors:

• Burgett, Stanley Gene Indianapolis, Indiana 46227 (US)

- Kuhstoss, Stuart Allen Indianapolis, Indiana 46256 (US)
- Rao, Ramachandra Nagaraja Indianapolis, Indiana 46260 (US)
- Richardson, Mark Alan Bloomington, Indiana 46408 (US)
- Rosteck, Paul Robert, Jr. Indianapolis, Indiana 46237 (US)

(74) Representative: Tapping, Kenneth George et al Lilly Industries Limited European Patent Operations Erl Wood Manor Windlesham Surrey GU20 6PH (GB)

(54) Platenolide synthase gene

(57) A DNA molecule isolated from Streptomyces

ambofaciens encodes the multi-functional proteins which direct the synthesis of the polyketide platenolide.

Description

5

40

45

The present invention is directed to the DNA isolated from *Streptomyces ambofaciens* responsible for encoding the multi-functional proteins which direct the synthesis of the polyketide platenolide. The present invention also is directed to use of that DNA to produce compounds exhibiting antibiotic activity based on the platenolide structure, including specifically spiramycin and spiramycin analogues and derivatives.

Spiramycin is a macrolide antibiotic useful in both veterinary and human medicine produced by *Streptomyces ambofaciens* (ATCC 15154). Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. Spiramycin's antibiotic activity is believed to be due to its inhibition of protein synthesis by a mechanism that involves binding of the antibiotic to a ribosome. Spiramycin is structurally similar to another antibiotic, tylosin, and the biosynthetic pathways of both are known to be similar.

The biosynthesis of tylosin has been thoroughly investigated (Baltz et al., Antimicrobial Agents and Chemotherapy, 20(2):214-225(1981); Beckmann et al., Genetics and Molecular Biology of Industrial Microorganisms, (1989):176-186). Polyketides are synthesized via a common mechanistic scheme thought to be related to fatty acid synthesis. The cyclic lactone framework is prepared by a series of condensations involving small carboxylic acid residues. Modifications of the structure, such as ketoreduction, dehydration and enolylreduction, also occur during the processing. The synthesis is driven by a set of large multi-functional polypeptides, referred to as polyketide synthases.

PCT Publication WO 93/13663 describes the organization of the gene encoding the polyketide synthase of *Saccharapolyspora ezythraea*. The gene is organized in modules, with each module effecting one condensation step. The precise sequence of chain growth and the processing of the growing chain is determined by the genetic information in each module. This PCT application describes an approach for synthesizing novel polyketide structures by manipulating in several ways the DNA governing the biosynthesis of the cyclic lactone framework. In order to adapt this methodology to other polyketides, however, the DNA molecules directing the biosynthetic processing must first be isolated.

The present invention is directed to the DNA sequence for the gene cluster responsible for encoding platenolide synthase, the building machinery of platenolide which is the basic building block of spiramycin. As a result, the present invention provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide, arising from modifications of this DNA sequence designed to change the number and type of carboxylic acids incorporated into the growing polyketide chain and to change the kind of post-condensation processing that is conducted.

The present invention provides a DNA molecule comprising an isolated DNA sequence that encodes a platenolide synthase domain. Thus, the present invention provides the DNA molecule of SEQ ID NO:1 and DNA molecules that contain submodules thereof. The present invention also provides the products encoded by said DNA molecules, recombinant DNA expression vectors, and transformed microbial host cells. The present invention is further directed to a method of screening for new antibiotics based on the platenolide structure.

Figure 1 shows the map of the srmG region of the *S. ambofaciens* DNA. Distances in kb are shown relative to the beginning of srmG. Open reading frames (ORF) are indicated by block arrows. The srmG DNA (0-42 kb) is the platenolide PKS region. The indicia Ap, G, E, K, P, and X denote restriction sites Apal, Bglll, EcoRl, Kpnl, Pstl and Xhol, respectively. Predicted domains for the srmG DNA are labeled as shown. ACP stands for acyl carrier protein; AT stands for acyltransferase; DH stands for dehydratase; ER stands for enoylreductase; KR stands for ketoreductase; KS stands for ketosynthase; and KS' stands for a ketosynthase-like domain in which a glutamine residue is present in the position occupied by an active site cysteine in a normal ketosynthase. KR' is a domain that resembles a ketoreductase but which is predicted to be inactive.

Figure 2 demonstrates the biosynthetic pathway for platenolide synthesis. A denotes malonyl-CoA; B denotes ethylmalonyl-CoA; P denotes methylmalonyl-CoA; C2 denotes a CoA derivative related to malonyl-CoA but of unknown structure.

Figure 3 shows the map of two clones that span the whole region of the srmG DNA.

The term polyketide defines a class of molecules produced through the successive condensation of small carboxylic acids. This diverse group includes plant flavonoids, fungal aflatoxins, and hundreds of compounds of different structures that exhibit antibacterial, antifungal, antitumor, and anthelmintic properties. Some polyketides produced by fungi and bacteria are associated with sporulation or other developmental pathways; others do not yet have an ascribed function. Some polyketides have more than one pharmacological effect. The diversity of polyketide structures reflects the wide variety of their biological properties. Many cyclized polyketides undergo glycosidation at one or more sites, and virtually all are modified during their synthesis through hydroxylation, reduction, epoxidation, etc.

A common feature of compounds in this class is that their synthesis is directed by a complex of multi-functional peptides, termed a "polyketide synthase". Molecular genetic analysis of polyketide synthase genes has revealed two distinct classes of enzymes operating for different polyketides: (a) the aromatics, which are made through an essentially iterative process; (b) the complex polyketides, which comprise several repeats of the same activities arranged in few, very large polypeptides. A common feature among complex polyketide synthase genes is that they are generally arranged in several open reading frames (ORFs), each of which contains one or more repeated units, designated mod-

ules. Each module processes one condensation step and typically requires several activities accomplished by several enzymes including acyl carrier protein (ACP), β-ketosynthase (KS), and acyltransferase (AT).

Therefore a "module" is defined as the genetic element encoding a multi-functional protein segment that is responsible for all of the distinct activities required in a single round of synthesis, i.e., one condensation step and all the β -carbonyl processing steps associated therewith. Each module encodes an ACP, a KS, and an AT activity to accomplish the condensation portion of the synthesis, and selected post-condensation activities to effect β -carbonyl processing. Each module is therefore, further characterized by the inclusion of submodules that are responsible for encoding the distinct activities of a complex polyketide synthase. A "submodule" thus is defined as the portion of the polyketide synthase DNA sequence that encodes a distinct activity, or "domain". A distinct activity or domain is commonly understood to mean that part of the polyketide synthase polyprotein necessary for a given distinct activity.

5

10

15

30

35

50

The protein segments corresponding to each module are called synthase units (SUs). Each SU is responsible for one of the fatty acid-like cycles required for completing the polyketide; it carries the elements required for the condensation process, for selecting the particular extender unit (a coenzyme A thioester of a dicarboxylate) to be incorporated, and for the extent of processing that the β -carbon will undergo. After completion of the cycle, the nascent polyketide is transferred from the ACP it occupies to the KS of the next SU utilized, where the appropriate extender unit and processing level are introduced. This process is repeated, employing a new SU for each elongation cycle, until the programmed length has been reached. As in synthesis of long chain fatty acids, the number of elongation cycles determines the length of the molecule. However, whereas fatty acid synthesis involves a single SU used iteratively, formation of complex polyketides requires participation of a different SU for each cycle, thereby ensuring that the correct molecular structure is produced. The composition of the polyketide synthase gene modules are variable. Some carry the full complement of β -ketoreductase(KR), dehydratase(DH), and enoylreductase(ER) domains, and some encode a particular domain only or lack a functional domain, although much of the sequence is preserved.

This variable composition of the modules, which correlate with the asymmetry in the synthesis of the polyketide precursor, enable a specific step to be assigned to each module. Since each enzymatic activity is involved in a single biochemical step in the pathway, loss of any one activity should affect only a single step in the synthesis. Knowledge of the correlation between the structure of the polyketide and the organization of the polyketide synthase genes enables one to produce altered genes selectively which produce a polyketide derivative with predicted structure.

Because the degree of processing appears to depend on the presence of functional domains in a particular SU, inactivation of a KR, DH, or ER will result in a polyketide less processed at a single site, but only if the altered chain thus produced can be utilized as a substrate for the subsequent synthesis steps. Thus, the inactivation of one of these domains should result in the formation of a polyketide retaining a ketone, hydroxyl, or site of unsaturation at the corresponding position. This rationale has led to the successful production of altered erythromycin derivatives from strains in which a KR or an ER domain had been inactivated.

Thus, one can engineer polyketide pathways by genetic intervention of the polyketide synthase and by adding or eliminating modification steps. Many of the enzymes involved in postpolyketide modifications do not seem to have absolute specificity for a particular structure. In addition one can also select the desired components from a library of polyketide and postpolyketide biosynthesis genes and combine them to produce novel structures.

The present invention provides, in particular, the DNA sequence encoding the polyketide synthase responsible for biosynthesis of platenolide, i.e., platenolide synthase. Platenolide itself is the foundation for spiramycin-related polyketides. The platenolide synthase DNA sequence, which defines the platenolide synthase gene cluster, directs biosynthesis of the platenolide polyketide by encoding the various distinct activities of platenolide synthase.

The gene cluster for platenolide synthase, like other polyketide biosynthetic genes whose organization has been elucidated, is characterized by the presence of several ORFs, each of which contains one or more repeated units termed modules as defined above. Each module also further includes submodules as defined above. Organization of the platenolide synthase gene cluster derived from *Streptomyces ambofaciens* is shown in Figure 1. The accompanying synthetic pathway and the specific carboxylic acid substrates that are used for each condensation reaction and the post-condensation activities of platenolide synthesis are indicated in Figure 2.

A preferred DNA molecule comprising the platenolide synthase gene cluster isolated from *Streptomyces ambofaciens* is represented by SEQ ID NO: 1. Other preferred DNA molecules of the present invention include the various ORFs of SEQ ID NO: 1 that encode individual multi-functional polypeptides. These are represented by ORF1, 350 to 14002, ORF2, 14046 to 20036, ORF3, 20110 to 31284, ORF4, 31329 to 36071, and ORF5, 36155 to 41830 all in SEQ ID NO: 1. The predicted amino acid sequences of the various peptides encoded by these sequences are shown in SEQ ID NO: 2, 3, 4, 5, and 6.

Yet other preferred DNA molecules of the present invention include the modules that encode all the activities necessary for a single round of synthesis. These are represented by starter module 392 to 3424, module 1, 3527 to 8197, module 2, 8270 to 13720, module 3, 14148 to 19730, module 4, 20215 to 24678, module 5, 24742 to 31002, module 6, 31428 to 35837, and module 7, 36257 to 41395 all in SEQ ID NO: 1. The predicted amino acid sequences of the various synthase units encoded by these modules are represented by starter SU 15 to 1025, SU1, 1060 to 2616,

and SU2, 2641 to 4457 in SEQ ID NO: 2; SU3, 35 to 1895 in SEQ ID NO: 3; SU4, 36 to 1523, and SU5, 1545 to 3631 in SEQ ID NO: 4; SU6, 34 to 1503 in SEQ ID NO: 5; SU7, 35 to 1747 all in SEQ ID NO: 6.

Still other preferred DNA molecules include the various submodules that encode the various domains of platenolide synthase. These submodules are represented by KS'(s), 392 to 1603, AT(s), 1922 to 2995, and ACP(s), 3173 to 3424 of starter module in SEQ ID NO:1; KS1, 3527 to 4798, AT1, 5135 to 6208, KR1, 7043 to 7597, and ACP1, 7946 to 8197 of module 1 in SEQ IN NO: 1; KS2, 8270 to 9541, AT2, 9899 to 10909, DH2, 10985 to 11530, KR2, 12596 to 13153, and ACP2, 13469 to 13720 of module 2 in SEQ ID NO: 1; KS3, 14148 to 15422, AT3, 15789 to 16844, DH3, 16914 to 17510, KR3, 18612 to 19166, and ACP3, 19479 to 19730 of module 3 in SEQ ID NO: 1; KS4, 20215 to 21486, AT4, 21889 to 22872, KR'4, 23638 to 24159, and ACP4, 24484 to 24678 of module 4 in SEQ ID NO: 1; KS5, 24742 to 26016, AT5, 26371 to 27381, DH5, 27442 to 27966, ER5, 28843 to 29892, KR5, 29905 to 30462, and ACP5, 30760 to 31002 of module 5 in SEQ ID NP: 1; KS6, 31428 to 32696, AT6, 33024 to 34022, KR6, 34770 to 35327, and ACP6, 35586 to 35837 of module 6 in SEQ ID NO: 1; KS7, 36257 to 37528, AT7, 37898 to 38905, KR7, 39851 to 40408, ACP7, 40658 to 40909, and TE, 41297 to 41395 of module 7 in SEQ ID NO: 1. The predicted amino acid sequences of the various domains encoded by these submodules are represented by KS'(s), 15 to 418, AT(s), 525 to 882, and ACP(s), 942 to 1025 of starter SU in SEQ ID NO:2; KS1, 1060 to 1483, AT1, 1596 to 1953, KR1, 2232 to 2416, and ACP1, 2533 to 2616 of SU1 in SEQ IN NO: 2; KS2, 2641 to 3064, AT2, 3184 to 3520, DH2, 3546 to 3727, KR2, 4083 to 4268, and ACP2, 4374 to 4457 of SU2 in SEQ ID NO: 2; KS3, 35 to 459, AT3, 582 to 933, DH3, 957 to 1155, KR3, 1523 to 1707, and ACP3, 1812 to 1895 of SU3 in SEQ ID NO: 3; KS4, 36 to 459, AT4, 594 to 921, KS94, 1177 to 1350, and ACP4, 1459 to 1523 of SU4 in SEQ ID NO: 4; KS5, 1545 to 1969, AT5, 2088 to 2424, DH5, 2445 to 2619, ER5, 2912 to 3261, KR5, 3266 to 3451, and ACP5, 3551 to 3631 of SU5 in SEQ ID NO: 4; KS6, 34 to 456, AT6, 566 to 898, KR6, 1148 to 1333, and ACP6, 1420 to 1503 of SU6 in SEQ ID NO: 5; KS7, 35 to 458, AT7, 582 to 917, KR7, 1233 to 1418, ACP7, 1502 to 1585, and TE, 1715 to 1747 of SU7 in SEQ ID NO: 6.

Although not wishing to be bound to any particular technical explanation, a sequence similarity exists among domain boundaries in various polyketide synthase genes. Thus, one skilled in the art is able to predict the domain boundaries of newly discovered polyketide synthase genes based on the sequence information of known polyketide synthase genes. In particular, the boundaries of submodules, domains, and open reading frames in the instant application are predicted based on sequence information disclosed in this application and the locations of the domain boundaries of the erythromycin polyketide synthase (Donadio et al., *GENE*, 111 51-60 (1992)). Furthermore, the genetic organization of the platenolide synthase gene cluster appears to correspond to the order of the reactions required to complete synthesis of platenolide. This means that the polyketide synthase DNA sequence can be manipulated to generate predictable alterations in the final platenolide product.

25

35

40

45

The DNA sequence of the platenolide synthase gene can be determined from recombinant DNA clones prepared from the DNA of *Streptomyces ambofaciens*, in particular strain ATCC 15154. The platenolide synthase gene is contained in recombinant DNA vectors pKC1080 and pKC1306 (Figure 1), which are available from the National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604-3999, in *E. coli* DH10B under accession numbers B-21500 for pKC1080 (deposited Sep 21, 1995) and B-21499 for pKC1306 (deposited Sep 21, 1995) respectively.

Techniques of isolating bacterial DNA are readily available and well known in the art. Any such techniques can be employed in this invention. In particular DNA from these deposited cultures can be isolated as follows. Lyophils of *E. coli* DH10B/pKC1080 or *E. coli* DH10B/pKC1306 are plated onto L-agar (10 g tryptone, 10 g NaCl, 5 g yeast extract, and 15 g agar per liter) plates containing 100 μg/ml apramycin to obtain a single colony isolate of the strain. This colony is used to inoculate about 500 ml of L-broth (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter) containing 100 μg/ml apramycin, and the resulting culture is incubated at 37°C with aeration until the cells reach stationary phase. Cosmid DNA can be obtained from the cells in accordance with procedures known in the art (see e.g., Rao et al., 1987 in Methods in Enzymology, 153:166).

DNA of the current invention can be sequenced using any known techniques in the art such as the dideoxynucle-otide chain-termination method (Sanger, et al., Proc. Natl. Acad. Sci. 74:5463 (1977)) with either radioisotopic or fluorescent labels. Double-stranded, supercoiled DNA can be used directly for templates in sequence reactions with sequence-specific oligonucleotide primers. Alternatively, fragments can be used to prepare libraries of either random, overlapping sequences in the bacteriophage M13 or nested, overlapping deletions in a plasmid vector. Individual recombinant DNA subclones are then sequenced with vector-specific oligonucleotide primers. Radioactive reaction products are electrophoresed on denaturing polyacrylamide gels and analyzed by autoradiography. Fluorescently labeled reaction products are electrophoresed and analyzed on Applied Biosystems (ABI Division, Perkin Elmer, Foster City, CA 94404) model 370A and 373A or Dupont (Wilmington, DE) Genesis DNA sequencers. Sequence data are assembled and edited using Genetic Center Group (GCG, Madison, WI) programs GelAssemble and Seqed or the ABI model 670 Inherit Sequence Analysis system and the AutoAssembler and SeqEd programs.

Polypeptides corresponding to a domain, a submodule, a module, a synthesis unit (SU), or an open reading frame can be produced by transforming a host cell such as bacteria, yeast, or eukaryotic cell-expression system with the

cDNA sequence in a recombinant DNA vector. It is well within one skilled in the art to choose among host cells and numerous recombinant DNA expression vectors to practice the instant invention. Multifunctional polypeptides of polyketide platenolide synthase can be extracted from platenolide-producing bacteria such as *Streptomyces ambofaciens* or translated in a cell-free in vitro translation system. In addition, the techniques of synthetic chemistry can be employed to synthesize some of the polypeptides mentioned above.

Procedures and techniques for isolation and purification of proteins produced in recombinant host cells are known in the art. See, for example, Roberts et al., Eur. J. Biochem. 214, 305-311, (1993) and Caffrey et al., FEBS 304, 225-228 (1992) for detailed description of polyketide synthase purification in bacteria. To achieve a homogeneous preparation of a polypeptide, proteins in the crude cell extract can be separated by size and/or charge through different columns well known in the art once or several times. In particular the crude cell extract can be applied to various cellulose columns commercially available such as DEAE-cellulose columns. Subsequently the bound proteins can be eluted and the fractions can be tested for the presence of the polyketide platenolide synthase or engineered derivative protein. Techniques for detecting the target protein are readily available in the art. Any such techniques can be employed for this invention. In particular the fractions can be analysized on Western blot using antibodies raised against a portion or portions of such polyketide platenolide synthase proteins. The fractions containing the polyketide platenolide synthase protein can be pooled and further purified by passing through more columns well known in the art such as applying the pooled fractions to a gel filtration column. When visualized on SDS-PAGE gels homogeneous preparations contain a single band and are substantially free of other proteins.

Knowledge of the platenolide synthase DNA sequence, its genetic organization, and the activities associated with particular open reading frames, modules, and submodules of the gene enables production of novel polyketides having a predicted structure that are not otherwise available. Modifications may be made to the DNA sequence that either alter the initial carboxylic acid building block used or alter the building block added at any of the condensation steps. The platenolide synthase gene may also be modified to alter the actual number of condensation steps done, thereby changing the size of the carbon backbone. Submodules that are part of the present invention may be selectively inactivated thereby giving rise to predictable, novel polyketide structures. Modifications to portions of the DNA sequence that encode the post-condensation processing activities will alter the functional groups appearing at the various condensation sites on the carbon chain backbone.

One skilled in the art is fully familiar with the degeneracy of the genetic code. Consequently, the skilled artisan can modify the specific DNA sequences provided by this disclosure to provide proteins having the same or improved characteristics compared to those polypeptides specifically provided herein. Also, one skilled in the art can modify the DNA sequences to express an identical protein to those provided, albeit expressed at higher levels. Furthermore, one skilled in the art is familiar with means to prepare synthetically, either partially, or in whole, DNA sequences which would be useful in preparing recombinant DNA vectors or coding sequences which are encompassed by the current invention. Additionally, recombinant means for modifying the DNA sequences provided may include for example site-directed deletion or site-directed mutagenesis. These techniques are well known to those skilled in the art and require no further elaboration here. Consequently, as used herein, DNA which is isolated from natural sources, prepared synthetically or semi-synthetically, or which are modified by recombinant DNA methods, are within the scope of the present invention.

Likewise, those skilled in the art will recognize that the polypeptides of the invention may be expressed recombinantly. Alternatively, these polypeptides may be synthesized as well, either in whole or in part, by conventional known non-recombinant techniques; for example, solid-phase synthesis. Thus, the present invention should not be construed as necessarily limited to any specific vector constructions or means for production of the specific polyketide synthase molecules exemplified. These alternate means for preparing the present polypeptides are meant to be encompassed by the present invention.

Many cyclized polyketides undergo glycosidation at one or more sites. Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. The process of converting platenolide to spiramycin is well known in the art. The present invention also provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide. The principles have already been described above. In addition, any product resulting from post-transcriptional or post-translational modification in vivo or in vitro based on the DNA sequence information disclosed here are meant to be encompassed by the present invention.

The following example is provided for exemplification purposes only and is not intended to limit the scope of the invention which has been described in broad terms above.

Example 1:

5

15

20

25

30

40

45

55

Specific experimental details and results from the sequencing of platenolide synthase.

The DNA sequence of the S. ambofaciens platenolide synthase (srmG) gene can be obtained by sequencing inserts of recombinant DNA subclones containing contiguous or overlapping DNA segments of the region indicated in

Figure 3. All sequences representing srmG are fully contained in the overlapping cosmid clones pKC1080 and pKC1306 (Figure 3). The sequence can be obtained by subcloning and sequencing the fragments bounded by Nrul sites at position 1, 0.3 kb, 8.2 kb, 14.1 kb, 20.2 kb, 29.5 kb, 31.4 kb, 41.1 kb and 42.0 kb. In order to obtain the srmG region on a single fragment, the 25.0 kb fragment bounded by the Nrul site at position 1 and the Sful site at 25.0 kb should be isolated from a partial digestion of pKC1080 with restriction enzymes Nrul and Sful. The 17.8 kb DNA fragment bounded by the Sful sites at 25.0 kb and 42.8 kb should be isolated from a digestion of pKC1306 with the restriction enzyme Sful. The resulting fragments should be ligated and cloned in an appropriate recombinant DNA vector. Clones containing the correct orientation of the two ligated fragments can be identified by restriction enzyme site mapping.

The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
	(i) APPLICANT: ELI LILLY AND COMPANY
	(B) STREET: Lilly Corporate Center
	(C) CITY: Indianapolis
10	(D) STATE: Indiana (E) COUNTRY: United States of America
	(F) ZIP: 46285
	(ii) TITLE OF INVENTION: PLATENOLIDE SYNTHASE GENE
15	(iii) NUMBER OF SEQUENCES: 6
	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: K. G. Tapping
20	(B) STREET: Erl Wood Manor (C) CITY: Windlesham
20	(D) STATE: Surrey
	(E) COUNTRY: United Kingdom
	(F) ZIP: GU20 6PH
25	(v) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: Macintosh (C) OPERATING SYSTEM: Macintosh 7.0
	(C) OPERATING SISTEM: MacIntosi 715 (D) SOFTWARE: Microsoft Word 5.1
30	(5) 50.1
30	
35	
40	•
	(2) INFORMATION FOR SEQ ID NO:1:
	(2) INFORMATION FOR SEQ ID NO.1.
	(i) SEQUENCE CHARACTERISTICS:
45	(A) LENGTH: 44377 base pairs (B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
50	(11) NODECOLE TITE. DAY (GONOMIC)
	(ix) FEATURE:
	(A) NAME/KEY: CDS (B) LOCATION: 35014002
	(=, ===================================
55	(ix) FEATURE:

(B) LOCATION: 14046..20036

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 20110..31284

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 31329..36071

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 36155..41830

15 (vi) SPOUPNCE

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GACCGCTCGG GGAGACCTGA CATATTCGTC GCGAAGTGGT TGTCCGCGCC GCGAGGTACT 60 GAAATCTTCT CCGCTCGCCC AGGACTCCGC GTGCAGGTCA CCGGAGTGCG CGACCGGCCG 120 20 GGACGTCGGA GCGCCGACCC TGCGGACCTG GTGCGATGCC GTGTGGTCCC GCATGATCCC 180 GCGCCGTCTC CGGTGACGAG AATCGGTGGA CAATCTCCGA ACTTGACACA ATTGATTGTC 240 GTTCACCGGC CGTTCCTGTC GCCCGGCAGT TCGCCCGCTG TACGCTCGGG AAGATCAAGA 300 25 AAAGGCAGAA AAGCCACGGC GTGGTACGGC GAACATATGA GGGATGCAGG TGTCTGGAGA 360 ACTCGCGATT TCCCGCAGTG ACGACCGGTC CGACGCCGTT GCCGTGGTCG GAATGGCGTG 420 30 CCGGTTTCCC GGCGCCCCGG GAATTGCCGA ATTCTGGAAA CTGCTGACCG ACGGAAGGGA 480 CGCGATCGC CGGGACGCCG ACGCCGCCG GCGCGCATG ATCGAGGCGC CCGGCGACTT 540 CGACGCCGCC TTCTTCGGCA TGTCACCCCG CGAGGCCGCC GAGACCGACC CCCAGCAGCG 600 35 CCTGATGCTC GAACTCGGCT GGGAGGCTCT GGAGGACGCC GGCATCGTCC CCGGCTCCCT 660 GCGCGGCGAG GCGGTCGGCG TCTTCGTCGG GGCCATGCAC GACGACTACG CCACCCTGCT 720 CCACCGCGCC GGCGCCCGG TCGGCCCCCA CACCGCCACC GGCCTCCAGC GCGCCATGCT 40 780 CGCCAACCGG CTCTCCTACG TCCTGGGGAC GCGCGGCCCC AGCCTCGCGG TCGACACCGC 840 CCAGTCGTCC TCCCTGGTCG CCGTGGCCCT CGCCGTCGAG AGCCTGCGGG CCGCCACCTC 900 45 CCGCGTCGCC GTCGCCGGGG GCGTCAACCT GGTCCTCGCC GACGAGGGAA CGGCCGCCAT 960 GGAACGCCTC GGCGCGCTGT CACCCGACGG CCGCTGCCAC ACCTTCGACG CCCGTGCCAA 1020 CGGCTATGTC CGCGGTGAGG GCGCGCCGC CGTCGTCCTG AAGCCCCTCG CCGACGCCCT 1080 50 GGCCGACGG GACCCCGTGT ACTGCGTGGT GCGTGGCGTC GCCGTCGGCA ACGACGGCGG 1140 CGGCCCGGG CTGACCGCTC CCGACCGCGA GGGACAGGAG GCGCTGCTCC GGGCCGCCTG 1200 55 CGCCCAGGCC CGGGTCGACC CCGCCGAGGT GCGTTTCGTC GAACTGCACG GCACGGGAAC 1260

	CCCGGTGGGC	GACCCGGTCG	AGGCACACGC	CCTCGGCGCG	GTGCACGGCT	CCGGTCGGCC	1320
	GGCCGACGAC	CCCCTGCTGG	TGGGGTCGGT	GAAGACCAAC	ATCGGCCACC	TGGAGGCGC	1380
5	CGCCGGCATC	GCGGGCCTGG	TCAAGGCCGC	ACTGTGCCTG	CGGGAACGCA	CCCTTCCCGG	1440
	CTCGCTGAAC	TTCGCCACCC	CCTCTCCGGC	CATCCCGCTG	GACCAGCTCC	GGCTGAAGGT	1500
10	GCAGACCGCT	GCCGCCGAGC	TGCCGCTCGC	CCCGGGCGGC	GCACCCCTGC	TGGCGGGTGT	1560
	CAGTTCGTTC	GGCATCGGTG	GCACCAACTG	CCATGTGGTC	CTGGAACACC	TCCCCTCCCG	1620
	GCCCACCCCG	GCCGTCTCCG	TCGCCGCCTC	GCTTCCGGAC	GTCCCGCCGC	TGTTGTTGTC	1680
15	CGCGCGGTCG	GAGGGGGCGT	TGCGGGCGCA	GCCGCTGCCG	TTGGGTGAGT	ACGTGGAGCG	1740
	GGTGGGCGCG	GATCCGCGGG	ATGTGGCTTA	TTCGCTGGCT	TCGACGCGGA	CTCTTTTCGA	1800
	GCACCGTGCG	GTGGTGCCGT	GTGGTGGGCG	TGGGGAGCTC	GTCGCTGCTC	TTGGTGGGTT	1860
20	TGCTGCCGGG	AGGGTGTCTG	GGGGTGTGCG	GTCCGGGCGG	GCTGTGCCGG	CTCCCCTCCC	1920
	GGTGTTGTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTGGTATG	GGGCGTGGGT	TGTATGCGGG	1980
25	GGGTGGGGTG	TTTGCGGAGG	TGCTGGATGA	GGTGTTGTCG	ATGGTGGGG	AGGTGGATGG	2040
	TCGGTCGTTG	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	CCGGGGCTGA	2100
	TGCGGGTGCC	GCTGCGGGTG	CTGGGGTCGG	TTCTGGTTCC	GGTTCTGTGG	GTGGGTTGTT	2160
30	GGGTCGGACG	GAGTTTGCTC	AGCCTGCGTT	GTTTGCGTTG	GAGGTGGCGT	TCTTCCGGGC	2220
	GTTGGAGGCT	CGGGCTGTGG	AGGTGTCGGT	GGTGTTGGGT	CATTCGGTGG	GGGAGGTGGC	2280
	TGCTGCGTAT	CTCCCCCCCC	TCTTCTCCTT	GGGTGATGCG	GTGCGGTTGG	TGGTGGCGCG	2340
35	CCCTCCCTTC	ATGGGTGGGT	TGCCGGTGGG	TGGGGGGATG	TGGTCGGTGG	GGGCGTCGGA	2400
	GTCGGTGGTG	CGGGGGGTTG	TTGAGGGGTT	GGGGGAGTGG	GTGTCGGTTG	CGGCGGTGAA	2460
40	TGGGCCGCGG	TCGGTGGTGT	TGTCGGGTGA	TCTCCCTCTC	CTGGAGTCGG	TGGTTGCCTC	2520
	GCTGATGGGG	GATGGGGTGG	AGTGCCGGCG	GTTGGATGTG	TCGCATGGGT	TTCATTCGGT	2580
	GTTGATGGAG	CCGGTGTTGG	GGGAGTTCCG	GGGGGTTGTG	GAGTCGTTGG	AGTTCGGTCG	2640
45	GCTGCGGCCG	GCTCTCGTCG	TGGTGTCGGG	TGTGTCGGGT	GGGGTGGTGG	GTTCGGGGGA	2700
	GTTGGGGGAT	CCGGGGTATT	GGGTGCGTCA	TGCGCGGGAG	GCGGTGCGTT	TCGCGGATGG	2760
	GGTGGGGGTG	GTGCGTGGTC	TGGGTGTGGG	GACGTTGGTG	GAGGTGGGTC	CGCATGGGGT	2820
50	GCTGACGGGG	ATGGCGGGTG	AGTGCCTGGG	GGCCGGTGAT	GATGTGGTGG	TGGTGCCGGC	2880
	GATGCGGCGG	GCCCTCCGG	AGCGGGAGGT	GTTCGAGGCG	GCGCTGGCGA	CGGTGTTCAC	2940
55	CCGGGACGCC	GGCCTGGACG	CCACGGCACT	CCACACCGGG	AGCACCGGCC	GGCGCATCGA	3000
- -	CCTCCCCACC	TACCCCTTCC	AACGCCGTAC	CCACTGGTCG	CCCGCGCTGA	GCCGGCCGGT	3060

	CACGGCCGAC	GCCGGGGCGG	GTGTGACCGC	CACCGATGCC	GTGGGGCACA	GCGTCTCCCC	3120
5	GGACCCGGAG	AGCACCGAGG	GGACGTCCCA	CAGGGACACG	GACGACGAGG	CGGACTCGGC	3180
	GTCACCGGAG	CCGATGTCCC	CCGAGGATGC	CGTCCGCCTG	GTCCGCGAGA	GCACCGCGGC	3240
	CCTCCTGGGC	CACGACGATC	CCGGCGAGGT	CGCGCTCGAC	CGCACCTTCA	CCTCCCAGGG	3300
10	CATGGACTCG	GTGACCGCGG	TCGAGCTGTG	CGACCTGCTG	AAGGCCCCT	CGGGGCTCCC	3360
	CCTCGCCGCC	ACGCTGGTCT	ACGACCTGCC	CACCCCGCGT	GCCGTCGCCG	AGCACATCGT	3420
15	GGAAGCCGCG	GGCGGGCCGA	AGGACTCGGT	TGCCGGTGGG	CCCGGAGTGC	TCTCGTCGGC	3480
15	CGCGGTAGGG	GTGTCGGACG	CCCGGGGCGG	CAGCCGGGAC	GACGACGACC	CGATCGCCAT	3540
	CGTGGGTGTC	GGCTGCCGGC	TCCCCGGCGG	CGTCGACTCG	CGCGCCGCTC	TCTGGGAGCT	3600
20	GCTGGAGTCC	GGCGCCGACG	CCATCTCGTC	CTTCCCCACC	GACCGCGGCT	GGGACCTCGA	3660
	CGGGCTGTAC	GACCCCGAGC	CCGGGACGCC	CGGCAAGACC	TATGTGCGGG	AGGGCGGGTT	3720
	CCTGCACTCG	GCGGCCGAGT	TCGACGCGGA	GTTCTTCGGG	ATATCGCCGC	GCGAGGCCAC	3780
25	GGCCATGGAC	CCGCAGCAGC	GCTTGCTGCT	GGAAGCGTCG	TGGGAGGCCC	TCGAGGACGC	3840
	CGGAGTGCTC	CCCGAGTCAC	TGCGCGGCGG	CGACGCCGGA	GTGTTCGTCG	GCGCCACCGC	3900
	ACCGGAGTAC	GGGCCGAGGC	TTCACGAGGG	AGCGGACGGA	TACGAGGGGT	ACCTGCTCAC	3960
30	CGGCACCACC	GCGAGCGTGG	CCTCCGGCCG	GATCGCCTAC	ACCCTCGGCA	CCGGCGGACC	4020
	GCCCTCACC	GTCGACACCG	CGTGCTCCTC	GTCCCTGGTG	GCGCTGCACC	TGGCCGTGCA	4080
35	GCCCTGCGC	CGGGGCGAGT	GCGGGCTGGC	TCTGGCGGGC	GCCCCACGG	TGATGTCGGG	4140
	GCCCGGCATG	TTCGTGGAGT	TCTCGCGGCA	GCGCGGGCTC	GCCCCCGACG	GCCGCTGCAT	4200
	GCCGTTCTCC	GCCGATGCCG	ACGGTACGGC	CTGGTCCGAG	GCTGTCGCCG	TACTGGCACT	4260
40	GGAGCGGCTC	TCCGACGCCC	GGCGTGCGGG	ACACCGGGTG	CTGGGCGTGG	TGCGGGGCAG	4320
	TGCGGTCAAC	CAGGACGGTG	CCAGCAACGG	CCTGACCGCT	CCCAACCCCT	CCGCGCAGGA	4380
	GGCGTCATC	CGAGCTGCCC	TGGCCGACGC	CGCCTCGCG	CCGGGTGACG	TGGACGCGGT	4440
45	GGAGGCGCAC	GGTACGGGGA	CGGCGCTGGG	CGATCCGATC	GAGGCGAGCG	CCCTCCTCCC	4500
	CACGTACGGG	CGTGAGCGGG	TGGGCGACCC	CTTGTGGCTC	GGGTCGCTGA	AGTCCAACGT	4560
50	CGGTCACACC	CAGGCCGCCG	CGGGGCCGC	GGGTGTGGTC	AAGATGCTGC	TTGCCCTGGA	4620
	GCACGGCACG	CTGCCGCGGA	CACTTCACGC	GGACCGGCCC	AGCACGCACG	TCGACTGGTC	4680
	GTCGGGCACC	GTCGCCCTGC	TGGCAGAGGC	GCGCCGGTGG	CCCCGGCGGT	CGGACCGCCC	4740
55	GCGCCGGGCG	GCTGTGTCGT	CGTTCGGGAT	CAGTGGGACG	AACGCGCATC	TGATCATCCA	4800

	GGAGGCGCCG	GAGTGGGTCG	AGGACATCGA	CGCCGTCGCT	GCTCCTGACC	GCGGTACCGC	4860
	GGACGCGGCT	GCTCCGTCGC	CGCTGTTGTT	GTCCGCGCGG	TCGGAGGGGG	CGTTGCGGGC	4920
5	GCAGGCGGTG	CCCTTCCCTC	AGTACGTGGA	CCCCCTCCCT	GCGGATCCGC	GGGATGTGGC	4980
	TTATTCGCTG	GCTTCGACGC	GGACTCTTTT	CGAGCACCGT	GCGGTGGTGC	CCTCTCCTCC	5040
10	GCGTGGGGAG	CTCGTCGCTG	CTCTTGGTGG	GTTTGCTGCC	GGGAGGGTGT	CTGGGGGTGT	5100
10	GCGGTCCGGG	CGGGCTGTGC	CGGGTGGGGT	GGGGTGTTG	TTCACGGGTC	AGGGTGCGCA	5160
	GTGGGTTGGT	ATGGGGCGTG	GGTTGTATGC	GGGGGTGGG	GTGTTTGCGG	AGGTGCTGGA	5220
15	TCACGTGTTG	TCGATGGTGG	GGGAGGTGGA	TGGTCGGTCG	TTGCGGGATG	TGATGTTCGG	5280
	CGACGTCGAC	GTGGACGCGG	CTCCCGCGC	TGATGCGGGT	CCCGTCCGG	CTCCTCCCCT	5340
	CCCTTCTCCT	TCCGGTTCTG	TGGGTGGGTT	GTTGGGTCGG	ACGGAGTTTG	CTCAGCCTGC	5400
20	GCTGTTTGCG	TTGGAGGTGG	CGTTGTTCCG	GGCGTTGGAG	CCTCCCCCTC	TGGAGGTGTC	5460
	CCTCCTCTTC	GGTCATTCGG	TGGGGGAGGT	GGCTGCTGCG	TATGTGGCGG	GGGTGTTGTC	5520
25	GTTGGGTGAT	GCGGTGCGGT	TGGTGGTGGC	CCCCCTCCC	TTGATGGGTG	GGTTGCCGGT	5580
	GGGTGGGGG	ATGTGGTCGG	TGGGGGCGTC	GGAGTCGGTG	GTGCGGGGG	TTGTTGAGGG	5640
	GTTGGGGGAG	TGGGTGTCGG	TTGCGGCGGT	GAATGGGCCG	CGGTCGGTGG	TCTTCTCGGG	5700
30	TGATGTGGGT	GTGCTGGAGT	CGGTGGTTGC	CTCGCTGATG	GGGGATGGGG	TOGAGTGCCG	5760
	GCGGTTGGAT	GTGTCGCATG	GGTTTCATTC	GGTGTTGATG	GAGCCGGTGT	TGGGGGAGTT	5820
	CCGGGGGGTT	GTGGAGTCGT	TGGAGTTCGG	TCGGGTGCGG	CCGGGTGTGG	TGGTGGTGTC	5880
35	CCCTCTCTCC	GCTGGGGTGG	TGGGTTCGGG	GGAGTTGGGG	GATCCGGGGT	ATTGGGTGCG	5940
	TCATGCGCGG	GAGGCGGTGC	GTTTCGCGGA	TGGGGTGGGG	GTGGTGCGTG	GTCTGGGTGT	6000
40	GGGGACGTTG	GTGGAGGTGG	GTCCGCATGG	GGTGCTGACG	GGGATGGCGG	GTGAGTGCCT	6060
	CCCCCCT	GATGATGTGG	TGGTGGTGCC	GGCGATGCGG	CGGGGCCGTG	CGGAGCGGGA	6120
	GGTGTTCGAG	GCGCCCCTCC	CGACGGTGTT	CACCCGGGAC	CCCCCCCTCC	ACCCACGC	6180
45	ACTCCACACC	GGGAGCACCG	GCCGGCGCAT	CGACCTCCCC	ACCTACCCCT	TCCAACGCGA	6240
	CCGCTACTGG	CTGGACCCCG	TTCGCACCGC	CCTGACCGGC	GTCGAGCCCG	CCGCCTCGCC	6300
	GCCGGACGCT	CGGGCCACTG	AGCGGGGACG	GTCGACGACG	GCCGGGATCC	GCTACCGCGT	6360
50	CGCTTGGCAG	CCGGCCGTCG	TCGACCGCGG	CAACCCCGGG	CCTGCCGGTC	ATGTGCTGCT	6420
	TCTGGCCCCG	GACGAGGACA	CCCCCCACTC	CGGACTCGCC	CCCGCGATCG	CACCTGAACT	6480
55	CCCCCTCCCC	GGGGCCGAGG	TCCACACCGT	CGCCGTGCCG	GTCGGTACAG	GCCGGGAGGC	6540
	AGCCGGGGAC	CTCTTCCGGG	CCGCCGGTGA	CCCTCCCCCC	CGCAGCACCC	GACTTCTGTG	6600

	GCTCGCCCCG	GCCGAGCCGG	ACGCGGCCGA	CGCCGTCGCC	CTCGTCCAGG	CCCTCCCCCA	6660
5	GGCGGTACCC	GAAGCCCCGC	TCTGGATCAC	CACCCGTGAG	GCGGCGGCCG	TGCGGCCGGA ·	6720
	CGAGACCCCT	TCCGTCGGGG	GCGCTCAGCT	GTGGGGACTC	GGACAGGTCG	CCCCCTCCA	6780
	ACTGGGGCGG	CGCTGGGGCG	GCTTGGCGGA	CCTGCCCGGG	AGTGCGTCGC	CCCCCCTGCT	6840
10	CCGTACGTTC	GTCGGGGCGC	TGCTCGCCGG	GGGAGAGAAC	CAGTTCGCGG	TACOGCCCTC	6900
	CGGCGTCCAT	GTCCGCCGTG	TGGTTCCCGC	GCCCGTCCCC	GTCCCGGCCT	CCGCTCGCAC	6960
15	CGTCACCACG	GCCCCCGCCA	CCGCCGTCGG	CGAGGACGCA	CGGAACGACA	CCTCGGACGT	7020
15	GGTCGTGCCG	GACGACCGGT	GGTCCTCCGG	CACCGTACTG	ATCACCGGGG	GCACCGGTGC	7080
	CCTGGGTGCG	CAGGTCGCCC	GCAGGCTCGC	CCGGTCGGGC	GCCGCGCGTC	TGCTCCTGGT	7140
20	GGGCCGGCGC	GCCCCCCCC	GCCCCGGAGT	GGGCGAACTC	GTCGAGGAGC	TGACGGCGCT	7200
	CGGTTCCGAA	GTGGCCGTCG	AGGCCTGCGA	CGTCGCCGAC	CGGGACGCAC	TGGCCGCGCT	7260
	CCTCGCGGGC	CTCCCCGAGG	AGCGGCCCCT	CGTCGCCGTA	CTGCACGCGG	CAGGTGTGCT	7320
25	CGACGACGGT	GTGCTCGACT	CGCTCACCTC	CGACCGGGTG	GACGCCGTAC	TGCGGGACAA	7380
	GGTCACCGCC	GCCCGTCACC	TGGACGAGCT	GACCGCGGAC	CTTCCGCTCG	ACGCCTTCGT	7440
	GCTCTTCTCC	TCCATCGTCG	GCGTGTGGGG	CAACGGAGGG	CAGGCCGTCT	ACGCCCCCC	7500
30	CAACGCCGCG	CTCGACGCCC	TGGCGCAGCG	GCGCCGGGCC	AGGGGAGCCC	CTCCCCCTC	7560
	GATCGCCTGG	GGCCGTGGG	CCGCTGCCGG	AATGGCCTCC	GGAACGGCGG	CGAAGTCCTT	7620
35	CGAACGGGAC	GGCGTCACGG	CCCTGGACCC	CGAGCGCGCG	CTCGACGTCC	TCGACGACGT	7680
	GGTGGGCGCC	GGCGGGACCT	CTGCCGCAGG	GACGCACGCG	GCCGGCGAGA	CCTCCCTGCT	7740
	CGTCGCCGAC	GTGGACTGGG	AGACCTTCGT	CGGGCGTTCG	GTCACCCGCC	GTACCTGGTC	7800
40	GCTCTTCGAC	GCCTCTCCG	CCGCCCGTTC	GCCCCTCCC	GGCCATGCCG	CGGACGACCG	7860
	TGCCGCTCTC	ACCCCAGGGA	CCCCCCCCCC	CGACGCCCCA	CCGGGCGGGA	CCCCACACGA	7920
	CGGGGGCGAG	GGCCGGCCGT	GCCTCTCCGT	CCCCCCTCC	CCGGCGGAAC	CCCCTCCTCC	7980
45	TCTGCTCACG	CTTGTGCGCT	CGGAGGCCGC	CGGGATCCTG	CGCCACGCCT	CCCCCGACCC	8040
	GGTCGACCCG	GAGCTGGCCT	TCCGGTCCGC	CGGGTTCGAC	TCCCTCACCG	TTCTCGAACT	8100
50	GCGTAACCGC	CTGACCGCTG	CCACCGGCCT	GAACCTGCCG	AACACGCTGC	TCTTCGACCA	8160
	CCCGACCCCC	CTCTCGCTCG	CCTCCCACCT	GCACGACGAA	CTCTTCCCTC	CCGACAGCGA	8220
	GGCGGAGCCG	GCAGCGGCCG	CCCCCACGCC	GGTCATGGCC	GACGAGCGTG	AGCOGATOGC	8280
55	GATCGTGGGC	ATGGCGTGCC	GTTACCCGGG	CCGTGTCCCG	TCGCCGGACG	ACCTGTGGGA	8340

	CCTGGTGGCC	GGTGACGGGC	ACACGCTCTC	CCCGTTCCCG	GCCGACCGTG	GCTGGGACGT	8400
	CGAGGGGCTG	TACGACCCGG	AGCCGGGGGT	GCCGGGCAAG	AGCTATGTAC	GGGAAGGCGG	8460
5	GTTCCTGCGT	TCCGCGGCCG	AGTTCGACGC	GGAGTTCTTC	GGGATATCGC	CGCGCGAGGC	8520
	CACGGCCATG	GACCCGCAGC	AGCGGTTGCT	GCTGGAGACG	TCGTGGGAGG	CGCTGGAGCG	8580
10	GGCCGGCATC	GTTCCGGACT	CGCTGCGCGG	CACCCGGACC	GGTGTCTTCA	GCGGCATCTC	8640
	CCAGCAGGAC	TACGCGACCC	AGCTGGGGGA	CGCCGCCGAC	ACCTACGGCG	GGCATGTGCT	8700
	CACGGGGACC	CTCGGCAGTG	TGATCTCCGG	TCGGGTTGCC	TATGCGTTGG	GGTTGGAGGG	8760
15	GCCGGCGCTG	ACGGTGGACA	CGGCGTGTTC	GTCGTCGTTG	GTGGCGTTGC	ATCTGGCGGT	8820
	GCAGTCGTTG	CGGCGGGGTG	AGTGTGATCT	GCCGTTGGCC	GGTGGGGTGA	CGGTGATGGC	8880
	GACGCCGACG	GTGTTCGTGG	AGTTCTCGCG	GCAGCGGGGG	CTGGCGGCGG	ACGGGCGGTG	8940
20	CAAGGCGTTC	GCGGAGGGTG	CGGACGGGAC	GCCTGGCC	GAGGGTGTGG	GTGTGCTGCT	9000
	GGTGGAGCGG	CTTTCCGACG	CGCGCCGCAA	CGGTCATCGG	GTGCTGGCGG	TGGTGCGGGG	9060
25	CAGTGCGGTC	AATCAGGACG	GTGCGAGCAA	TGGGCTGACG	GCGCCGAGTG	GTCCGGCGCA	9120
	GCAGCGGGTG	ATCCGTGAGG	CGCTGGCTGA	TGCGGGGCTG	GTGCCCGCCG	ACGTGGATGT	9180
	GGTGGAGGCG	CACGGTACGG	GGACGCCCT	GGGTGATCCG	ATCGAGGCGG	GTGCGCTGCT	9240
30	GGCCACGTAC	GGGCGGGAGC	GGGTCGGCGA	TCCGTTGTGG	CTCGGGTCGT	TGAAGTCGAA	9300
	CATCGGGCAT	GCGCAGGCGG	CTGCGGGTGT	GGGTGGTGTG	ATCAAGGTGG	TGCAGGGGAT	9360
	GCGGCATGGG	TCGTTGCCGC	GGACGCTGCA	TGTGGATGCG	CCGTCGTCGA	AGGTGGAGTG	9420
35	CCCTTCCCCT	GCGGTGGAGC	TGCTGACCGA	GACCCGGTCG	TGCCCGCGC	GGGTGGAGCG	9480
	GCTGCGGCGG	GCCGCGGTGT	CGGCGTTCGG	GGTGAGCGGG	ACCAACGCCC	ATGTGGTCCT	9540
40	GGAGGAAGCG	CCGGCGGAGG	CCGGGAGCGA	GCACGGGGAC	GGCCCTGAAC	CTGAGCGGCC	9600
	CGACGCGGTG	ACGGGTCCGT	TGTCGTGGGT	GCTTTCTGCG	CGGTCGGAGG	GCCCCTTGCC	9660
,	GCCCAGGCG	GTGCGGTTGC	GTGAGTGTGT	GGAGCGGGTG	GGTGCGGATC	CGCGGGATGT	9720
45	GCCGGGGTCG	TTGGTGGTGT	CGCGTGCGTC	GTTCGGTGAG	CGTGCGGTGG	TOGTOGGCCG	9780
	GGGGCGTGAG	GAGTTGCTGG	CGGGTCTGGA	TGTGGTGGCT	GCCGGGGCTC	CTCTCCCTCT	9840
	GTCTTCGGGG	GCCGGTGCTG	TGGTGCGGGG	GACTCCCGTG	CGGGGTCGTG	CCCTCCCCCT	9900
50	GTTGTTCACG	GGTCAGGGTG	CGCAGTGGGT	TGGTATGGGG	CGTGGGTTGT	ATGCGGGGG	9960
	TGGGGTGTTT	GCGGAGGTGC	TGGATGAGGT	GTTGTCGGTG	GTGGGGGAGG	TGGATGGTCG	10020
<i>55</i>	GTCGTTGCGG	GATGTGATGT	TCGCGGATGC	TGACTCGGTT	TTGGGTGGGT	TCTTGGGTCG	10080
- -	GACGGAGTTT	GCTCAGCCTG	CGTTGTTTGC	GTTGGAGGTG	GCGTTGTTCC	GGCCGTTGGA	10140

	GGCTCGGGGT GTGGAGGT	T CGGTGGTGTT	GGGTCATTCG	GTGGGGGAGG	TGGCTGCTGC	10200
5	GTATGTGGCG GGGGTGTT	T CGTTGGGTGA	TGCGGTGCGG	TTGGTGGTGG	CGCGGGGTGG	10260
	GTTGATGGGT GGGTTGCC	G TGGGTGGGG	GATGTGGTCG	GTGGGGGGGT	CGGAGTCGGT	10320
	GGTGCGGGGG GTTGTTGA	gg ggttggggga	GTGGGTGTCG	GTTGCGGCGG	TGAATGGGCC	10380-
10	GCGGTCGGTG GTGTTGTC	eg gtgatgtggg	TGTGCTGGAG	TCGGTGGTTG	TCACGCTGAT	10440
	GGGGATGGG GTGGAGTG	CC GGCGGTTGGA	TGTGTCGCAT	GGGTTTCATT	CGCTGTTGAT	10500
	GGAGCCGGTG TTGGGGGA	TCCGGGGGGT	TGTGGAGTCG	TTGGAGTTCG	GTCGGGTGCG	10560
15	GCCGGGTGTG GTGGTGGT	T CGGGTGTGTC	GGGTGGGGTG	GTGGGTTCGG	GGGAGTTGGG	10620
	GGATCCGGGG TATTGGGT	C GTCATGCGCG	GGAGGCGGTG	CGTTTCGCGG	ATGGGGTGGG	10680
20	GGTGGTGCGT GGTCTGGG	G TGGGGACGTT	GGTGGAGGTG	GGTCCGCATG	GGGTGCTGAC	10740
	GGGGATGGCG GGTCAGTG	C TGGAGGCCGG	TGATGATGTG	GTGGTGGTGC	CGGCGATGCG	10800
	GCGGGGCCGT CCGGAGCGC	G AGGTGTTCGA	GGCGGCGCTG	GCGACGGTGT	TCACCCGGGA	10860
25	CGCCGGCCTC GACGCCAC	A CACTCCACAC	CGGGAGCACC	GGCCGACGCA	TCGACCTCCC	10920
	CACCTACCCC TTCCAACAC	A ACCGCTACTG	GGCAACCGGC	TCAGTGACCG	GTGCGACCGG	10980
	CACCTCGGCA GCCGCGCG	T TCGGCCTGGA	GTGGAAGGAC	CACCCCTTCC	TCAGCGGCGC	11040
30	CACGCCGATA GCCGGCTCC	G GCGCGCTGCT	CCTCACCGGC	AGGGTGGGGC	TCGCTGCCCA	11100
	CCCGTGGCTG GCCGACCAC	G CCATCTCCGG	CACGGTGCTG	CTCCCCGGAA	CGGCGATCGC	11160
35	CGACCTGCTG CTGCGGGC	G TCGAGGAGGT	CGCCGCCGGA	GGGGTCGAGG	AACTGACGCT	11220
	CCATGAGCCC CTGCTCCTC	C CCGAGCGAGG	CGGCCTGCAC	GTCCAGGTGC	TGGTCGAGGC	11280
	GGCGACGAG CAGGGACG	C GTGCCGTGGC	AGTCGCCGCA	CGCCCGGAGG	GCCCTGGGCG	11340
40	GGACGGTGAG GAACAGGAG	T GGACCCGGCA	CGCGGAAGGC	GTGCTCACCT	CCACCGAGAC	11400
	GGCCGTTCCG GACATGGGC	T GGGCCGCCGG	GCCTGCCC	CCGCCCGGTG	CCGAGCCGAT	11460
	CGACGTCGAG GAGCTGTAC	G ACGCGTTCGC	CGCGGACGGC	TACGGCTACG	GCCCGGCCTT	11520
45	CACCGCACTG TCCGGCGTG	T GCCGTCTCGG	CGACGAACTC	TTCGCCGAGG	TGCGGCGGCC	11580
	CCCGGGGGC GCGGCACC	A CCGGTGACGG	TTTCGGCGTC	CACCCCGCAC	TCTTCGATGC	11640
50	GCCCTCCAC CCGTGGCGC	G CCGGCGGGCT	GCTGCCCGAC	ACGGGCGGCA	CCACCTGGGC	11700
	GCCGTTCTCC TGGCAGGGC	A TCGCGCTCCA	CACCACCGGA	GCCGAGACGC	TCCGCGTCAG	11760
	ACTGCCCCT GCGCCGGC	G GCACCGAGTC	GCCTTCTCC	GTACAGGCCG	CCGACCCGGC	11820
55	GGGCACCCCG GTCCTCACC	C TCGACGCACT	GCTGCTCCGC	CCGGTGACCC	TGGGAGGGC	11880

	CGACGCGCCG	CAACCGCTGT	ACCGCGTCGA	CTGGCAGCCG	GTCGGCCAGG	GGACCGAGGC	11940
5	CTCCGGCGCC	CAGGGCTGGA	CGGTGCTCGG	GCAGGCCGCG	GCCGAGACGG	TCGCGCAGCC	12000
3	CGCCGCCCAT	GCGGACCTCA	CCGCCCTGCG	TACGGCTGTG	GCCGCGGCGG	GAACACCCGT	12060
	GCCCCGGCTG	GTGGTCGTGT	CGCCGGTGGA	CACCCGGCTG	GACGAGGGC	CGGTGCTGGC	12120
10	GGACGCCGAG	GCTCGGGCCC	GTGCGGGTGA	CGGCTGGGAC	GACGATCCCC	TACGTGTCGC	12180
	CCTCGGGCGC	GGCCTGACCC	TGGTCCGGGA	GTGGGTCGAG	GACGAACGGT	TGGCGGACTC	12240
	CCGGCTCGTC	GTCCTCACCC	CTGCCGCGCT	GGCGGCCGGT	CCCGGCGATG	TGCCGGACCT	12300
15	GACAGGTGCG	GCCCTGTGGG	GGCTGCTCCG	CTCCGCGCAG	TCGGAGTATC	CGGACCGCTT	12360
	CACCCTCATC	GACGTGGACG	ATTCCCCCGA	GTCCCGTGCG	GCTCTGCCCC	GGGCTCTGGG	12420
	ATCGGCCGAG	CGACAACTCG	CCCTGCGGAC	GGGCGACGTG	CTGGCGCCGG	CCCTGGTCCC	12480
20	GATGGCCACC	cccccccc	AGACCACTCC	AGCGACGGCG	GTCGCCTCGG	CGACAACACA	12540
	GACACAGGTC	ACCGCGCCCG	CTCCCGACGA	CCCGGCTGCG	GATGCCGTGT	TCGACCCGGC	12600
25	GGGCACCGTA	CTGATCACCG	GCGGCACCGG	CCCCTGGGA	CGCCGTGTCG	CCTCGCACCT	12660
	ccccccccc	TACGGCGTAC	GCCACATGCT	TCTGGTCAGC	AGGCGTGGAC	CGGACGCCCC	12720
	CGAGGCCGGT	CCCCTGGAAC	GGGAACTCGC	CGGTCTCGGA	GTCACCGCCA	CCTTCCTGGC	12780
30	ATGCGACCTC	ACCGACATCG	AGGCCGTACG	GAAGGCCGTC	GCCGCGGTGC	CGTCGGACCA	12840
	CCCGCTGACC	GGTGTGGTGC	ACACCGCCGG	CGTGCTGGAC	GACGGCGCCC	TGACCGGCCT	12900
	GACCCGGCAA	CGCCTCGACA	CCGTGCTGCG	GCCCAAGGCC	GACGCCGTGC	GGAACCTCCA	12960
35	CGAGGCGACC	CTCGACCGGC	CGCTGCGCGC	GTTCGTCCTG	TTCTCCGCCG	CCGCCGGACT	13020
	CCTGGGCCGC	CCCGGGCAGG	CCTCCTACGC	CGCCGCCAAC	GCGGTCCTCG	ACGCGCTCGC	13080
40	GGGAGCCCGC	CGCGCGGCCG	GACTGCCCGC	AGTGTCCCTG	GCGTGGGGCC	TGTGGGACGA	13140
40	GCAGACGGGC	ATGGCAGGAG	GCCTCGACGA	GATGGCCCTG	CGCGTGCTGC	GCCGGGACGG	13200
	CATCGCCGCG	ATGCCTCCGG	AGCAGGGGCT	CGAACTGCTC	GACCTGGCCC	TGACCGGACA	13260
45	CCGGGACGGA	CCCGCCGTCC	TCGTCCCCCT	CCTCCTCGAC	GCGCGCCC	TGCGCCGCAC	13320
	GGCGAAGGAG	cccccccc	CCACGATGTC	CCCCTTGCTG	CGCGCCCTGC	TGCCCGCCGC	13380
	CCTGCGCCGC	AGCGGTGGAG	cccccccc	CGCGGCGGCC	GACCGGCACG	GCAAGGAGGC	13440
. 50	GGACCCCGGT	GCGGGACGCC	TCGCAGGGAT	GGTGGCACTC	GAAGCGGCGG	AGCGTTCCGC	13500
	GCCGTCCTT	GAGCTGGTCA	CCGAACAGGT	CGCCGAGGTC	CTCGGCTACG	CCTCCCCCCC	13560
	GGAGATCGAG	CCCGAACGAC	CCTTCCGGGA	GATCGGCGTC	GACTCCCTGG	CGGCGGTGGA	13620
55	GCTGCGCAAC	CGGCTCAGCC	CTCTCCTCCC	CCTGCGGTTG	CCGACCACGC	TCTCCTTCGA	13680

	CCACCCCACG	CCGAAGGACA	TGGCGCAGCA	CATCGACGGG	CAGCTCCCCC	GCCCGGCCGG	13740
5	AGCCTCGCCC	GCGGACGCAG	CGCTGGAAGG	GATCGGCGAC	CTCGCGCGGG	CGGTCGCCCT	13800
	GCTGGGCACG	GGCGACGCCC	GCCGGGCCGA	GGTACGAGAG	CAGCTCGTCG	GACTGCTGGC	13860
	CGCGCTCGAC	CCACCTGGGC	GGACGGGCAC	CGCCGCACCC	GGCGTCCCCT	CCGGTGCCGA	13920
10	TGGCGCGGAA	CCGACCGTGA	CGGACCGGCT	CGACGAGGCG	ACCGACGACG	AGATCTTCGC	13980
	CTTCCTGGAC	GAGCAGCTGT	GACCACACCG	TGGACCGACC	GCATGCCGAG	GAGTTGGTGG	14040
15	CAGCAATGAC	CGCCGAGAAC	GACAAGATCC	GCAGCTACCT	GAAGCGTGCC	ACCGCCGAAC	14100
	TGCACCGGAC	CAAGTCCCGC	CTGGCCGAGG	TCGAGTCGGC	GAGCCGCGAG	CCGATCGCGA	14160
	TCGTGGGCAT	GCCTGCCGT	TACCCGGGCG	GTGTGGCGTC	GCCGGACGAC	CTGTGGGACC	14220
20	TGGTGGCAGC	CGGTACGGAC	GCGGTCTCCG	CGTTCCCCGT	CGACCGTGGC	TGGGACGTCG	14280
	AGGGGCTGTA	CGACCCCGAT	CCGGAGGCGG	TGGGGCGTAG	TTACGTGCGG	GAGGGCGGGT	14340
	TCCTGCACTC	GGCGGCCGAG	TTCGACGCGG	AGTTCTTCGG	GATCTCGCCC	CCTGACGCCG	14400
25	CGGCGATGGA	TCCGCAGCAG	CGCTTGCTGC	TGGAGACGTC	GTGGGAGGCG	CTGGAGCGGG	14460
	CGGGGATCGT	CCCCGCGTCG	CTGCGCGGCA	CCCGTACCGG	CGTCTTCACC	GCCGTCATGT	14520
30	ACGACGACTA	CGGGTCGCGG	TTCGACTCGG	CTCCGCCGGA	GTACGAGGGC	TACCTCGTGA	14580
30	ACGGCAGCGC	CGGCAGCATC	GCGTCCGGTC	GGGTTGCCTA	TGCGTTGGGG	TTGGAGGGGC	14640
	CGGCGCTGAC	GGTGGACACG	GCGTGTTCGT	CCTCCTTCCT	GGCGTTGCAT	CTGGCGGTGC	14700
35	AGTCGTTG CG	GCGGGGTGAG	TGTGATCTGG	CCTTCGCCGG	TGGGGTGACG	GTGATGGCGA	14760
	CGCCGACGGT	GCTCGTGGAG	TTCTCGCGGC	AGCGGGGGCT	GGCGGCGGAC	GGGCGGTGCA	14820
	AGGCGTTCGC	GGAGGGTGCG	GACGGGACGG	CGTGGGCCGA	GGGTGTGGGC	CTCCTCCTCC	14880
40	TGGAGCGGCT	CTCCGACGCC	CGCCGCAATG	GCCATCGGGT	GCTGGCGGTG	CTGCGGGGCA	14940
	GTGCGGTCAA	TCAGGACGGT	GCGAGCAACG	GGCTGACGGC	GCCGAGTGGT	CCTGCGCAGC	15000
	AGCGGGTGAT	CCGTGAGGCG	CTGGCCGACG	CGGGGCTGAC	GCCCGCCGAC	GTCGACGCGG	15060.
45	TCGAGGCGCA	CGGCACCGGC	ACACCCCTGG	GCGACCCCAT	CGAGGCGGGT	GCGTTGCTGG	15120
	CCACCTATGG	CAGTGAGCGC	CAGGGCCAAG	CTCCCTTCTC	GTTGGGGTCG	TTGAAGTCGA	15180
50	ACATCGGGCA	TGCGCAGGCG	GCTGCGGGTG	TCCCTCCCCT	GATCAAGGTG	GTGCAGGCGA	15240
	TGCGGCATGG	GTCGTTGCCG	CCGACCCTCC	ATGTGGATGC	GCCGTCGTCG	AAGGTGGAGT	15300
	GGGCTTCGGG	TGCGGTGGAG	CTGCTGACCG	AGACCCGGTC	GTGGCCGCGG	CGGGTGGAGC	15360
55	GGGTGCGGCG	GGCCGCGGTG	TCGCCGTTCG	GGGTGAGCGG	GACCAACGCC	CATGTGGTCC	15420

	TGGAGGAAGC	GCCGGCGAG	GCCGGGAGCG	AGCACGGGGA	CGGCCCTGAA	CCCGAGCGGC	15480
5	CCGACGCGGT	GACGGGTCCG	TTGTCGTGGG	TGCTTTCTGC	GCGGTCGGAG	GGGGCGTTGC	15540
	GGCGCAGGC	GGTGCGGTTG	CGTGAGTGTG	TGGAGCGGGT	GGGTGCGGAT	CCGCGGGATG	15600
	TGGCGGGGTC	GTTGGTGGTG	TCGCGTGCGT	CGTTCGGTGA	GCGTGCGGTG	GTGGTGGGCC	15660
10	GGGGGCGTGA	GGAGTTGCTG	GCGGGTCTGG	ATGTGGTGGC	TGCCGGGGCT	CCTGTGGGTG	15720
	TGTCCGGGGG	CGTGTCTTCG	GGGGCCGGTG	CTGTGGTGCG	GGGGAGTGCG	CTCCCCCCTC	15780
	CTCCCCTCCC	GGTGTTGTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTGGTATG	CCCCCTCCCT	15840
15	TGTATGCGGG	GGGTGGGGTG	TTTGCGGAGG	TGCTGGATGA	GGTGTTGTCG	CTCCTCCCCC	15900
	AGGTGGGGG	TTGGTCGTTG	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	15960
	CCGGGGCTGA	TGCGGGTGTC	GGTTCGGGTG	TTGGTGTGGG	TGGGTTGTTG	GGTCGGACGG	16020
20	AGTTTGCTCA	GCCTGCGTTG	TTTGCGTTGG	AGGTGGCGTT	GTTCCGGGCG	TTGGAGGCTC	16080
	GGGGTGTGGA	GGTGTCGGTG	GTGTTGGGTC	ATTCGGTGGG	GGAGGTGGCT	GCTGCGTATG	16140
25	TGGCGGGGGT	GTTGTCGTTG	GGTGATGCGG	TGCGGTTGGT	GGTGGCGCGG	GGTGGGTTGA	16200
	TCCCTCCCTT	GCCGGTGGGT	GGGGGGATGT	GGTCGGTGGG	GGCGTCGGAG	TCGGTGGTGC	16260
	GGGGGTTGT	TGAGGGGTTG	GGGGAGTGGG	TGTCGGTTGC	GGCGGTGAAT	GGGCCGCGGT	16320
30	CGGTGGTGTT	GTCGGGTGAT	GTGGGTGTGC	TGGAGTCGGT	GGTTGCCTCG	CTGATGGGGG	16380
	ATGGGGTGGA	GTGCCGGCGG	TTGGATGTGT	CGCATGGGTT	TCATTCGGTG	TTGATGGAGC	16440
	CGGTGTTGGG	GGAGTTCCGG	GGGGTTGTGG	AGTCGTTGGA	GTTCGGTCGG	CTGCGGCCGG	16500
35	GTGTGGTGGT	GGTGTCGAGT	GTGTCGGGTG	GGGTGGTGGG	TTCGGGGGAG	TTGGGGGATC	16560
	CGGGGTATTG	GGTGCGTCAT	GCGCGGGAGG	CGGTGCGTTT	CGCGGATGGG	CTGGGGGTGG	16620
40	TGCGTGGTCT	GGGTGTGGGG	ACGTTGGTGG	AGGTGGGTCC	GCATGGGGTG	CTGACGGGGA	16680
,,	TGGCGGGTGA	GTGCCTGGGG	GCCGGTGATG	ATGTGGTGGT	GGTGCCGGCG	ATGCGGCGGG	16740
	GCCGTGCGGA	GCGGGAGGTG	TTCGAGGCGG	CGCTGGCGAC	GGTGTTCACC	CGGGACGCCG	16800
45	GCCTGGACGC	CACGACACTC	CACACCGGGA	GCACCGGCCG	ACGCATCGAC	CTCCCCACCT	16860
	ACCCCTTCCA	ACACGACCGC	TACTGGCTGG	CCGCCCCGTC	CCGGCCCAGG	ACGGACGGC	16920
	TCTCCCCCCC	GGGTCTGCGC	GAGGTGGAGC	ACCCCCTGCT	CACCGCCGCC	GTGGAACTGC	16980
50	CCGCCACCGA	CACCGAGGTG	TGGACCGGCC	GCATATCCGC	TGCCGACCTG	CCCTGGCTCG	17040
	CCGACCACCT	GGTGTGGGAC	CGAGGCGTGG	TGCCGGGGAC	CGCGCTGCTG	GAGACGGTGC	17100
	TCCAGGTGGG	AAGCCGGATC	GGTCTGCCGC	GCGTCGCCGA	ACTGGTCCTG	GAGACGCCGC	17160
5 5	TGACCTGGAC	GTCGGACCGC	CCGCTCCAGG	TCCGGATCGT	CGTGACCGCT	GCCGCCACCG	17220

		000000000000000000000000000000000000000	CDC1 CCCDCC	> 0 0 00000000000000000000000000000000	ca1cccc	accecemoon.	17000
	CCCCCGGGGG	CGCGCGTGAG	CIGACCCICC	ACTCGCGGCC	CGAGCCCGTG	GCCGCCTCCT	17280
5	CGTCCTCCCC	GAGTCCCGCC	TCTCCCCCCC	ACCTCACGGC	GCAGGAGAGC	GACGACGACT	17340
	GGACCCGGCA	TGCCTCAGGG	CTGCTCGCCC	CGGCTGCCGG	CCTCGCCGAC	GACTTCGCCG	17400
	AGCTCACCGG	CGCCTGGCCC	CCCGTCGGCG	CCGAGCCCCT	CGACCTCGCC	GGTCAGTACC	17460
10	CGCTCTTCGC	AGCCGCCGGA	GTGCGCTACG	AAGGCGCCTT	CCGAGGGCTG	CGCGCGCAT	17520
	GGCGTCGAGG	CGACGAGGTC	TTCGCCGACG	TACGGCTGCC	CGACGCGCAC	GCGGTCGACG	17580
15	CTGATCGTTA	CGGGGTGCAC	CCCGCCCTGC	TCGACGCGGT	GCTCCACCCG	ATCGCGTCGC	17640
15	TGGACCCGCT	GGGCGACGGC	GGGCACGGTC	TGCTGCCGTT	CTCCTGGACC	GACGTACAGG	17700
	GACACGGCGC	CGGCGGACAC	GCCCTCCGGG	TACGGGTGGC	GGCCGTCGAC	GCCGCCCCG	17760
20	TGTCGGTCAC	CGCGGCCGAC	CACGCGGGCA	ACCCGGTGTT	ATCCGCCCGG	TCCCTGGCAC	17820
	TGCGTCGTAT	CACCGCGGAC	CGGCTTCCCG	ccccccccr	CGCCCCTCTC	TACCGCGTGG	17880
	ACTGGCTGCC	GTTCCCGGGT	CCGGTGCCCG	TATCCGCGGG	CGGCCGCTGG	GCGGTCGTCG	17940
25	GACCCGAGGC	CGAAGCCACG	GCTGCCGGAC	TGCGTGCGGT	GGGCCTCGAC	GTGCGTACCC	18000
	ATGCGCTCCC	CCTCGGAGAG	CCCCTGCCTC	CGCAGGCCGG	TACCGACGCG	GAGGTGATCA	18060
	TCCTCGACCT	GACCACCACC	GCAGCCGGCC	GTACGGCGTC	GGACGGGGGG	CGGCTCAGTC	18120
30	TCCTCGACGA	CCTCCCTCCC	ACGGTGCGCC	GGACCCTCGA	AGCCGTACAG	GCCCGCCTCG	18180
	CCGACACCGA	AACGGCCCCC	GACGTCGACG	TCCGTACGGC	cccccccc	CGCACAGCCG	18240
35	CCCGTACAAG	CCCCCCCCTG	GACACCCGCA	CGGGAGCCCG	CACCGCTGAC	GCCCCCGCC	18300
	TCGTCGTCCT	GACCCGGGGC	GCGGCCGGAC	CCGAGGGAGG	CGCGGCCGAT	CCCGCGGGTG	18360
	CCGCTGTCTG	GGGGCTCGTC	CGGGTCGCCC	AGGCCGAACA	GCCCGGCCGC	TTCACCCTGG	18420
40	TGGACGTCGA	CGGCACCCAG	GCGTCGCTGC	GGGCCCTGCC	CGGTCTGCTG	GCCACGGATG	18480
	CCGGCCAGTC	GCCGTGCGC	GACGGACGTG	TCACCGTCCC	GCGCCTCGTC	CCCCTCCCCC	18540
	ACCCCGTCCC	CCACGGCGGC	GGCACGGCGG	CCGACGGGAC	GGGTGCCGGC	GAGCCGTCCG	18600
45	CGACCCTGGA	CCCCGAAGGC	ACCGTGCTGA	TCACCGGCGG	CACCGGAGCA	CTGGCCGCGG	18660
	3AAACCGCCCC	GCACCTGGTC	GACCGGCACA	AGGTGCGCCA	TCTCCTGCTG	GTGGGCAGGC	18720
	GCGGTCCCGA	CGCACCCGGC	GTCGATCGAC	TGGTCGCCGA	GTTGACCGAG	TCGGGTGCCG	18780
50	AGGTCGCCGT	ACGGGCCTGT	GACGTCACGG	ACCGCGACGC	CCTGCGCCGC	CTGCTCGACG	18840
	CACTCCCCGA	CGAACACCCG	CTGACCTGCG	TGGTGCACAC	CGCCGGGGTG	CTCGACGACG	18900
55	GCGTGCTCTC	CGCCCAGACG	GCCGAGCGGA	TCGACACGGT	GCTCCGGCCC	AAGGCCGACG	18960

	CCGCCGTCCA	CCTGGACGAG	CTGACCCGGG	AGATCGGACG	GCTGCCCCTG	GTGCTGTACT	19020
_	CCTCGGTCTC	GCCACCCTG	GGCAGCGCGG	GGCAGGCCGG	GTACGCGGCG	GCCAACGCCT	19080
5	TCATGGACGC	GCTGGCCGCC	CGGCGGTGCG	CCGCCGGGCA	CCCCGCGCTG	TCGCTCGGCT	19140
	GGGGCTGGTG	GTCCGGGGTG	GGTCTCGCCA	CCGGACTGGA	CGGAGCGGAC	GCGGCGCGG	19200
10	TCAGGCGCTC	GGGTCTCGCC	CCGCTCGACG	ccecccccc	ACTGGACCTG	CTCGACCGG	19260
	CGCTGACCCG	GCCCGAGCCG	GCCCTGCTGC	CCGTGCGGCT	CGACCTGCGC	GCCGCGGCCG	19320
	GTGCCACCGC	TCTCCCGGAG	GTCCTGCGTG	ACCTGGCCGG	CGTACCGGCG	GACGCCCGCA	19380
15	GCACGCCCGG	GCCCCCGCG	GGCACCGGGG	ACGAGGACGG	TGCCGTGCGC	CCTGCCCCCG	19440
	CCCCGGCCGA	CCCCCCCGG	ACGCTGGCCG	CGCGGCTCGC	GGGACGTTCC	GCACCCGAGC	19500
	GTACGGCTCT	CCTGCTCGAC	CTGGTGCGGA	CCGAGGTCGC	GCCGCTGCTC	GGACACGGCG	19560
20	ACCCCGCCGC	GATCGGCGCC	GCCCGCACCT	TCAAGGACGC	CGGATTCGAC	TCCCTCACCG	19620
	CTGTCGACCT	CCGCAACCGG	CTGAACACAC	GCACCGGACT	GCGGCTGCCC	GCGACCCTCG	19680
25	TCTTCGACCA	CCCCACACCG	CTCGCCCTCG	CCGAACTCCT	GCTCGACGGG	CTGGAGGCGG	19740
20	CCGGTCCAGC	GGAACCGGCC	GCTGAGGTCC	CGGACGAAGC	GGCCGGTGCC	GAGACCCTGT	19800
	CCGGCGTGAT	CGACCGGCTG	GAACGCAGCC	TCGCCGCGAC	CGACGACGGC	GACGCCCGGG	19860
30	TCCGCGCGGC	ACGGCGGCTG	CGCGGCCTGC	TGGACGCGCT	CCCCGCCGGT	CCCGGTGCCG	19920
	CGTCCGGTCC	GGATGCCGGA	GAGCACGCCC	CCGGTCGCGG	CGACGTGGTG	ATCGACCGGC	19980
	TCAGGTCGGC	CTCCGACGAC	GACTTGTTCG	ACCTGCTCGA	CAGCGACTTC	CAGTGAGCCG	20040
35	GACCGCGCCG	CGCGCCGACC	GCTGAACCGC	TCTTCACCCA	GACCCACGAG	ACCACGCCTG	20100
	AGGAGAACCG	TGTCTGCGAC	CAACGAGGAG	AAGTTGCGGG	AGTACCTGCG	GCGCGCGATG	20160
	GCCGACCTGC	ACAGCGCACG	ACACCCCTTC	CGCGAGGTCG	AGTCGGCGAG	CCGTGAGCCG	20220
40	ATCGCGATCG	TGGGCATGGC	GTGCCGTTAC	CCGGGCGGTG	TGGCGTCGCC	GGAGGAGCTG	20280
	TGGGACCTGG	TGGCCGCCGG	TACGGACGCG	ATCTCCCCGT	TCCCCGTCGA	CCGCGGCTGG	20340
45	GACGCCGAGG	GTCTGTACGA	CCCGGAGCCG	GGGGTGCCGG	GCAAGAGCTA	CCTCCCCAC	20400
	GGCGGGTTCC	TGCACTCGGC	GGCCGAGTTC	GACGCGGAGT	TCTTCGGGAT	CTCGCCGCGT	20460
	GAGGCGGCGG	CGATGGATCC	GCAGCAGCGG	TTGCTGCTGG	AGACGTCGTG	GCAGGCGCTG	20520
50	GAGCGGGCCG	GGATCGTCCC	CGCGTCGCTG	CGCGGCACCC	GTACCGGCGT	CTTCACCGGC	20580
	GTCATGTACC	ACGACTACGG	CAGCCACCAG	GTCGGCACCG	CCGCCGATCC	CAGTGGACAG	20640
	CTCGGCCTCG	GCACCGCGGG	GAGCGTCGCC	TCGGGCCGGG	TGGCGTACAC	CCTCGGTCTA	20700
55	CAGGGCCGG	CCGTGACCAT	GGACACGGCA	TGCTCGTCCT	CGCTGGTGGC	GTTGCACCTG	20760

	GCGGTGCAGT	CGTTGCGGCG	GGCGAGTGC	GATCTCGCGT	TGGCCGGCGG	GCCGACGGTC	20820
5	TTGGCGACGC	CCACGGTGTT	CGTGGAGTTC	TCGCGGCAAC	GGGGGCTGGC	GGCGGACGGA	20880
	CGGTGCAAGG	CGTTCGCGGA	GGGCGCCGAC	GGCACGGCGT	GGGCCGAGGG	CGCCGGTGTG	20940
	CTCCTCCTCC	AGCGGCTCTC	CGACGCCCGC	CGCAACGGCC	ATCGGGTGCT	CGCGGTGGTG	21000
10	CGGGGCAGCG	CGGTCAACCA	GGACGGTGCC	AGCAACGGCC	TCACCGCACC	CAGCGGGCCC	21060
	GCCCAGCAGC	GGGTGATCCG	TGACGCGCTG	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	21120
15	GACGCGGTCG	AGGCGCACGG	CACCGGCACA	CCGCTCGGCG	ACCCGATCGA	GCCGGCGCG	21180
	CTGATGGCCA	CCTACGGCAG	TGAACGGGTG	GGCGACCCGC	TGTGGCTGGG	TTCGCTGAAG	21240
	TCGAACATCG	GACACACCCA	GCCGCCGCC	GGAGCCGCCG	GCGTCATCAA	GATGGTGCAG	21300
20	GCGTTACGGC	AGTCCGAGCT	GCCGCGCACC	CTGCACGTCG	ACGCGCCCTC	GGCCAAGGTC	21360
	GAATGGGACG	CGGCCGCCGT	GCAACTGCTC	ACCGGCGTCC	GGCCATGGCC	CCGGCGCGAG	21420
	CACAGGCCCC	GGCGGGCCGC	GGTCTCCGCC	TTCGGCGTCA	GCGGCACCAA	CGCCCACGTC	21480
25	ATCATCGAGG	AACCGCCCGC	GGCCGGTGAC	ACCTCGCCCG	CCGGCGACAC	CCCTGAGCCG	21540
	GGCGAGGCGA	CCGCGTCCCC	CTCCACCGCG	GCCGGGCCGT	CGTCCCCCTC	CGCGGTGGCC	21600
	GGCCGCTGT	CCCCCTCCTC	CCCGGCCGTG	GTCTGGCCCC	TGTCCGCCGA	GACCGCCCCC	21660
30	GCCCTGCGCG	CCCAGGCCGC	CCGCCTGCGG	GCGCACCTCG	AACGCCTCCC	CGGCACCTCG	21720
	CCGACCGACA	TCGGCCACGC	CCTGGCCGCC	GAACGCGCCG	CCCTCACCCG	ACGCGTCGTG	21780
35	ĆTGCTCGGCG	ACGACGGAGC	CCCGGTCGAC	GCACTCGCCG	CCCTCGCCGC	CGGCGAGACC	21840
	ACCCCCGACG	CCGTCCACGG	CACCGCGGCG	GACATCCGCC	GGGTCGCCTT	CCTGTTCCCC	21900
	GGCCAGGGTT	CCCAGTGGGC	CGGGATGGGC	GCCGAACTGC	TGGACACGGC	CCCGCCTTC	21960
40	GCCGCCGAAC	TGGACCGCTG	CCAGGGGGGG	CTCTCCCCGT	ACGTGGACTG	GAACCTCGCG	22020
	GACGTGCTGC	GCGGCGCGCC	CGCGGCGCCC	GCCTCGACC	GGGTCGACGT	CGTCCAGCCG	22080
	GCCACCTTCG	CCGTCATGGT	GGGACTCGCC	GCGCTGTGGC	GCTCCCTCGG	GGTCGAACCC	22140
45	GCCGCCGTCA	TCGGCCACTC	CCAGGGCGAG	ATCGCCGCGG	CCTGCGTGGC	GGCGCGCTC	22200
	TCCCTGGAGG	ACGCCGCCCG	GATCGTGGCC	CTGCGCTCCC	AGGTCATCGC	CCGCGAACTG	22260
50	GCCGGGCGGG	GCGGCATGGC	CTCGGTGGCC	CTGCCCGCGG	CGGAGGTCGA	GCCCCCCTG	22320
	GCCGGCGGCG	TCGAGATCGC	CGCCGTCAAC	GCCCCCGGCT	CGACCGTCGT	CTGCGGAGAG	22380
	CCCGCCCCC	TGGAGGCGTT	GCTCGTCACG	CTGGAGAGCG	AAGGCACCCG	GCTCCGCCGC	22440
55	ATCGACGTCG	ACTACGCGTC	CCACTCCCAC	TACGTCGAGA	GCATCCGGGC	GGAACTCGCC	22500

	ACCGTCCTCG	GCCCCGTCCG	GCCGCGGAGG	GCCGACGTGC	CCTTCTACTC	CACCGTCGAG	22560
5	CCCCCCTCC	TCGACACCGC	CACCCTGGAC	GCCGACTACT	GGTACCGCAA	CCTGCGCCTC	22620
J	CCGGTGCGCT	TCGAGCCGAC	CGTACGCGCC	ATGCTCGACG	ACGGCGTCGA	CGCGTTCGTG	22680
	GAGTGCTCCG	CGCATCCCGT	CCTGACCGTC	GCCTGCGCC	AGACCGTGGA	GAGCGCCGGC	22740
10	GGCGCGGTCC	CGGCCCTCGC	TTCGCTGCGC	CGCGACGAGG	GCGGGCTGCG	GCGCTTCCTC	22800
	ACCTCCGCCG	CCGAGGCCCA	GGTCGTCGGC	CTCCCCGTGG	ACTGGGCGAC	GCTCCGCCCA	22860
	GGCGCCGGCC	GGGTGGACCT	GCCGACCTAC	GCCTTCCAGC	GCGAACGCCA	CTGGGTCGGC	22920
15	CCCGCCCGGC	CCGACTCCGC	GGCGACGGCC	GCCACGACCG	GTGACGACGC	CCCGGAGCCC	22980
	GGAGACCGGC	TCGGCTACCA	CGTCGCGTGG	AAGGGACTGC	GCTCCACCAC	CGGCGGCTGG	23040
	CGCCCCGGCC	TGCGCCTGCT	GATCGTGCCC	ACCGGGGACC	AGTACACCGC	CCTCGCCGAC	23100
20	ACCCTGGAAC	AGGCGGTCGC	CTCCTTCGGC	GGAACGGTCC	CCCCCTCCC	CTTCGACCCG	23160
	GCACGCACCG	GACGCGCCGA	GCTGTTCGGC	CTGCTCGAGA	CGGAGATCAA	CGGCGACACC	23220
25	GCCGTCACCG	GCGTCGTCTC	GCTGCTCGGA	CTGTGCACCG	ACGGCAGGCC	GGACCACCCC	23280
	GCCGTGCCCG	TCGCCGTCAC	CGCCACCCTC	GCCCTCGTCC	AGGCCCTGGC	CGACCTCGGC	23340
	AGCACCGCAC	CGCTGTGGAC	CGTCACCTGC	GGCGCGGTCG	CCACCGCCCC	CGACGAACTG	23400
30	CCGTGCACCG	CCGGTGCCCA	GCTGTGGGGC	CTGGGCCGGG	TGGCCGCGCT	GGAGCTGCCC	23460
	GAGGTGTGGG	GCGGCCTCAT	CGACCTTCCC	GCGCGGCCCG	ACGCCCGGGT	CCTGGACCGT	23520
	CTCGCCGGCG	TCCTCGCCGA	ACCCGGCGGC	GAGGACCAGA	TCGCCGTACG	GATGGCGGGC	23580
35	GTCTTCGGCC	GCCGGGTCCT	GCGGAACCCG	GCCGACTCCC	GCCCCCGGC	CTGGCGCGCC	23640
	CGGGGCACCG	TCCTCATCGC	CGGCGACCTC	ACGACGGTGC	CCGGCCGACT	GCTCCGCTCC	23700
	CTCCTCGAGG	ACGGCGCGGA	CCCCCTCCTC	CTGGCCGGAC	CCGACGCCCC	CGCACAGGCC	23760
40	GCCGCCGCCG	GACTGACCGG	CGTCTCCCTC	GTCCCCGTGC	GCTGCGACGT	CACCGACCGC	23820
	GCCGCACTGG	CCGCGCTGCT	CGACGAGCAC	GCGCCCACCG	TCGCCGTGCA	ccccccccc	23880
45	CTGGTGCCCC	TGGCGCCGCT	GCGGGAGACG	GCACCCGGCG	ACATCGCCGC	CCCCTCCCC	23940
	GCCAAGACCA	ceecceccee	CCACCTGGTC	GACCTGGCGC	CGGCCGCGGG	CCTCGACGCG	24000
	CTGGTGCTGT	TCTCCTCGGT	CTCCGGAGTG	TGGGGCGGCG	CGGCCCAGGG	CCCTACCC	24060
50	GCCGCCAGCG	CGCACCTCGA	CGCGCTGGCC	GAACGCGCCC	ccccccccc	CCTCCCCCC	24120
	TTCTCCGTGG	CCTGGAGCCC	CTGGGCCGGA	GCACGCCCG	CCGACGGTGC	CGACGCCGAG	24180
	TTCCTCAGCC	GCCCCGGCT	GGCTCCCCTC	GACCCCGACC	AGGCGGTGCG	GACCCTGCGC	24240
55	CGCATGCTGG	AGCGCGGCAG	CGCCTGCGGT	GCGGTCGCCG	ACGTCGAGTG	GAGCCGGTTC	24300

	GCCGCCTCCT	ACACCTGGGT	GCGTCCCGCC	GTACTCTTCG	ACGACATCCC	GGACGTGCAG	24360
5	CGGCTGCGCG	CGGCCGAACT	CGCCCCGAGC	ACCGGAGACT	CGACCACCTC	CGAACTCGTC	24420
	CGCGAGCTGA	CCGCGCAGTC	CGGCCACAAG	CGGCACGCCA	CCCTGCTGCG	GCTGGTGCGC	24480
	GCACACGCCG	CCGCCGTCCT	CGGACAGTCC	TCCGGCGACG	CGGTGAGCAG	cccccccc	24540
10	TTCCGCGACC	TCGGCTTCGA	CTCGCTGACC	GCCCTCGAAC	TGCGCGACCG	GCTCAGCACC	24600
	AGCACCGGGC	TCAAACTGCC	CACCTCCCTG	GTCTTCGACC	ACTCCAGCCC	GCCCCCCCTC	24660
15	GCCCGGCACC	TCGGTGAGGA	ACTCCTCGGC	CGGAACGACA	CCGCCGACCG	GCCGGCCCC	24720
	GACACCCCGG	TACGGACGGA	CGAGCCCATC	GCCATCATCG	GCATGGCCTG	CCGGCTGCCC	24780
	GGCGGGGTGC	AGTCCCCCGA	GGACCTGTGG	GACCTGCTGA	CCGGTGGGAC	CGACGCCATC	24840
20	ACCCCCTTCC	CGACCAACCG	GGGATGGGAC	AACGAGACCC	TCTACGACCC	CGACCCCGAC	24900
	TCGCCCGGGC	ACCACACCTA	CGTGCGCGAG	GCCGGGTTCC	TGCACGACGC	GGCCGAGTTC	24960
	GACCCCGGCT	TCTTCGGCAT	CAGCCCCCGC	GAGGCCCTGG	CCATGGACCC	GCAGCAGCGG	25020
25	CTGATCCTGG	AGACGTCCTG	GGAGTCCTTC	GAACGGGCCG	GCATCGACCC	GGTCGAACTG	25080
	CGCGGCAGCC	GCACCGGGGT	CTTCGTCGGC	ACCAACGGAC	AGCACTACGT	GCCGCTCCTC	25140
	CAGGACGGCG	ACGAGAACTT	CGACGGCTAC	ATCGCCACCG	GCAACTCCGC	CAGCGTGATG	25200
30	TCCGGCCGGC	TCTCCTACGT	CTTCGGACTG	GAGGCCCCG	CCGTCACCGT	CGACACCGCC	25260
	TGCTCGGCCT	CCCTGGCCGC	ACTGCACCTG	GCGGTGCAGT	CACTGCGCCG	CGGCGAATGC	25320
35	GACTACGCCC	TCGCCGGCGG	GGCCACGGTG	ATGTCCACCC	CCGAGATGCT	GGTGGAGTTC	25380
	GCCCGTCAGC	GAGCGGTGTC	GCCGGACGGC	CGCAGCAAGG	CCTTCCCCGA	GCCGCCGAC	25440
	GGGGTCGGTC	TCGCCGAGGG	AGCCGGGATG	CTGCTCGTGG	AGCGGCTGTC	GGAGGCGCAG	25500
40	AAGAAGGCC	ATCCGGTACT	GCCGCTGGTG	CGGGGCAGTG	CCGTCAACCA	GGACGGTGCC	25560
	AGCAACGGCC	TCACCGCACC	CAGCGGGCCC	GCCCAGCAGC	GGGTGATACG	GGAGGCGCTG	25620
	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	GACGCGGTCG	AGGCGCACGG	CACCGGCACG	25680
45	CCGCTCGGCG	ACCCCATCGA	GCCCGCCCC	CTGCTCGCCA	CGTACGGCCG	GGACCGGCGC	25740
	GACGGCCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	GGCACACCCA	GCCGCCGCC	25800
50	GCCGTGGCCG	GGGTGATCAA	GATGGTGCTG	GCGCTGCGCC	ACGCCCACCT	GCCGCGCACC	25860
- -	CTGCACGCGT	CGACGCCGTC	GTCCAGGATC	GATTGGGACG	CGGGCGCCGT	GGAGTTGCTG	25920
	GACGAGGCCA	GCCCTGGCT	CCAGCGGGCC	GAGGGCCGC	GCCGGGCGGG	CATCTCCTCG	25980
55	TTCGGCATCA	GCGGCACCAA	CGCGCACCTC	GTCATCGAGG	AGCCGCCGGA	GCCCACCGCG	26040

	CCCGAACTGC	TCGCGCCCGA	ACCGGCCGCC	GACGGCGACG	TCTGGTCCGA	GGAGTGGTGG	26100
	CACGAGGTGA	CCGTGCCCCT	GATGATGTCC	GCGCACAACG	AAGCCGCCCT	GCGCGACCAG	26160
5	GCGCGCGCCC	TGCGCGCCGA	CCTGCTCGCC	CACCCGAGC	TGCACCCGGC	CGACGTCGGC	26220
	TACACCCTCA	TCACCACCCG	CACCCGGTTC	GAGCAGCGGG	CCGCCGTCGT	CGGCGAGAAC	26280
10	TTCACGGAGC	TGATCGCGGC	CCTCGACGAC	CTCGTCGAAG	GCCGACCGCA	CCCGCTCGTG	26340
	CTGCGGGGCA	CCGCCGGCAC	CTCCGACCAG	GTCGTGTTCG	TCTTCCCCGG	CCAGGGCTCG	26400
	CAGTGGCCCG	AGATGGCCGA	CGGGCTGCTG	GCCCGCTCCA	GCGGCTCCGG	CTCCTTCCTG	26460
15	GAGACCGCCC	GCGCCTGCGA	CCTCGCGCTC	CGCCCCACC	TCGGCTGGTC	CGTCCTGGAC	26520
	GTACTGCGCC	GGGAACCCGG	CGCGCCCTCG	CTCGACCGGG	TCGACGTGGT	GCAGCCCGTG	26580
	CTGTTCACCA	TGATGGTCTC	GCTCGCCGAG	ACGTGGCGTT	CGCTGGGCGT	CGAACCGGCC	26640
20	GCGGTCGTCG	GTCACTCCCA	GGGCGAGATC	GCCGCCGCCT	ACGTCGCCGG	CGCCCTGACG	26700
	CTGGACGACG	CGCCGCGCAT	CGTCGCCCTG	CGCAGCCAGG	CGTGGCTGCG	GCTGGCCGGC	26760
25	AAGGGCGGCA	TGGTCGCCGT	GACCCTGTCC	GAACGCGACC	TGCGTCCCCG	CCTGGAGCCC	26820
23	TGGAGCGACC	GGCTCGCCGT	CGCCGCCGTC	AACGGCCCCG	AGACCTGCGC	CGTCTCCGGG	26880
	GACCCGGACG	CCCTGGCGGA	GCTGGTCGCC	GAACTCGGTG	CGGAGGGCGT	GCACGCCCGC	26940
30	CCCATCCCCG	GCGTCGACAC	CGCCGGGCAC	TCGCCGCAGG	TCGACACGCT	GGAGGCCCAC	27000
	CTGCGGAAGG	TGCTCGCGCC	CGTCGCGCCC	CGCACCTCCG	ACATCCCGTT	CTACTCGACG	27060
	GTCACCGGAG	GACTGATCGA	CACCGCCGAG	CTGGACGCCG	ACTACTGGTA	CCGCAACATG	27120
35	CGCGAGCCGG	TGGAGTTCGA	GCAGGCCACC	CGCGCCCTGA	TCGCCGACGG	CCACGACGTG	27180
	TTCCTGGAGT	CGAGCCCGCA	CCCCATGCTG	GCCGTCTCCC	TCCAGGAGAC	GATCAGCGAC	27240
	GCCCGTTCCC	CGCCGCCCT	CCTCGGCACC	CTGCGGCGCG	GCCAGGGCGG	CCCCCCCTCC	27300
40	CTGGGCGTCG	CCCTCTGCCG	CGCCTACACC	CACGGCCTGG	AGATCGACGC	CGAGGCCATC	27360
	TTCGGCCCCG	ACTCACGCCA	GGTGGAACTG	CCCACGTACC	CCTTCCAGCG	CGAGCGCTAC	27420
45	TGGTACAGCC	CCGGCCACCG	CGGTGACGAC	CCCGCCTCCC	TCGGTCTGGA	CGCCGTCGAC	27480
	CACCCGCTGC	TGGGCAGCGG	CGTCGAACTG	CCGGAGTCCG	GTGACCGGAT	GTACACCGCA	27540
	CGGCTGGGCG	CCGACACCAC	CCCGTGGCTG	GCCGACCACG	CGCTGCTGGG	CTCGCCCCTG	27600
50	CTGCCCGGCG	CCGCCTTCGC	CGACCTGGCG	CTCTGGGCCG	GCCGCCAGGC	CGCACCGC	27660
	CGCGTCGAGG	AGCTCACCCT	GCCGCGCCC	CTGGTGCTGC	CCGGCTCCGG	GGCTGTCCGG	27720
	CTGCGGCTGA	ACGTCGGCGC	CCCGGGCACC	GACGACGCCC	GCCGCTTCGC	CGTGCACGCC	27780
55	CGCGCCGAGG	GCGCCACGGA	CTGGACCCTG	CACGCCGAGG	GGCTGCTCAC	CGCGCAGGAC	27840

	ACGGCCGACG	CGCCGGACGC	CTCGGCGGCC	ACCCCGCCCC	CCGCCCCGA	ACAACTGGAC	27900
5	ATCGGCGACT	TCTACCAGCG	CTTCTCCGAA	CTCGGTTACG	GCTACGGCCC	GTTCTTCCGG	27960
	GGACTGGTGA	GCGCCCACCG	CTGCGGCCCC	GACATCCACG	CGGAGGTCGC	GCTGCCCGTC	28020
	CAGGCGCAGG	GCGACGCGGC	CCGCTTCGGC	ATCCATCCCG	CGCTGCTGGA	CGCGGCGCTG	28080
10	CAGACCATGA	GCCTCGGGGG	сттсттсссс	GAGGACGGCC	GCGTCCGCAT	GCCGTTCGCC	28140
	CTGCGCGGCG	TTCGGCTGTA	CCGCGCCGGA	GCCGACCGGC	TGCACGTGCG	CGTCTCGCCC	28200
15	GTCTCCGAGG	ACGCGGTCCG	CATCAGGTGC	GCCGACGGCG	AGGGACGGCC	GGTCGCCGAG	28260
.5	ATCGAGTCCT	TCATCATGCG	GCCGGTCGAC	CCGGGACAGC	TCCTGGGGG	CCGCCCGGTC	28320
	GGCGCCGACG	CGCTCTTCCG	CATCGCCTGG	CGGGAACTCG	CCGCCGGCCC	GGGCACCCGT	28380
20	ACCGGCGACG	GCACCCCTCC	CCCGGTGCGC	TGGGTGCTGG	CGGGACCCGA	CGCGCTGGGC	28440
	CTGGCCGAGG	CGGCCGACGC	CCACCTGCCC	GCCGTTCCCG	GCCCGGACGG	CGCACTGCCG	28500
	TCCCCGAÇGG	GACGCCCGGC	GCCGGACGCC	GTCGTGTTCG	CGGTCCGTGC	CGGGACCGGC	28560
25	GACGTCGCCG	CCGACGCGCA	CACCGTGGCC	TGCCGGGTGC	TGGACCTCGT	CCAGCGCCGG	28620
	CTCGCGCCCC	CGGAGGCCC	GGACGCCCC	CCCTGGTGG	TGGCCACCCG	CGGCGCGGTC	28680
	GCCGTACGCG	ACGACGCCGA	GGTGGACGAC	cccccccc	CCGCCGCGTG	GGGCCTGCTG	28740
30	CGCTCCGCGC	AGGCCGAGGA	ecccecce	TTCCTGCTCG	TGGACCTGGA	CGACGACCCG	28800
	GCGTCCGCCC	GGGCGCTGAC	CGACGCCCTC	GCCTCCGGCG	AACCGCAGAC	CGCGGTCCGG	28860
35	GCCGGGACGG	TGTACGTGCC	CCGGCTGGAG	CGGCCGCCG	ACCGCACGGA	CGGCCCCTC	28920
	ACCCCGCCCG	ACGACGGTGC	CTGGCGGCTG	GGCCGGGGCA	CCGACCTCAC	CCTCGACGGC	28980
	CTCGCCCTGG	TGCCCGCCCC	GGACGCCGAG	GCGCCGCTGG	AGCCCGGCCA	GGTGCGCGTC	29040
40	GCCGTACGCG	CCGCGGGGGT	CAACTTCCGC	GACGCCCTCA	TCGCCCTCGG	CATGTACCCG	29100
	GGCGAGGCGG	AGATGGGAAC	GGAGGGCGCC	GGCACCGTCG	TCGAGGTCGG	CCCCGCCTC	29160
	ACCGGTGTCG	CCGTCGGCGA	CCGCGTGCTC	GCCTGTGGG	ACGGCGGCCT	GGGCCCGCTG	29220
45	TGCGTGGCCG	ACCACCGGCT	GCTCGCCCCC	GTCCCGGACG	GCTGGTCCTA	CGCCCAGGCC	29280
	GCCTCGGTCC	CCGCGGTGTT	CCTCAGCGCC	TACTACGGTC	TGGTCACCCT	GGCCGGCCTC	29340
50	AGGCCGGGGG	AGCGGGTGCT	CGTGCACGCC	GCCGCCGGGG	GCGTCGGCAT	GCCCCCCTC	29400
50	CAGATCGCCC	GCCACCTCGG	CGCGGAGGTG	CTGGCCACCG	CGACCCCCG	CAAGTGGGAC	29460
	GCCCTGCGCG	CCATGGGCAT	CACCGACGAC	CACCTCGCCT	CCTCCCGCAC	CCTCGACTTC	29520
55	GCGACCGCCT	TCACCGGAGC	GGACGGCACG	TCCCGCGCGG	ACGTCGTCCT	GAACTCGCTC	29580

	ACCAAGGAGT	TCGTGGACGC	CTCCCTCGGG	CTGCTCCGTC	CGGGCGGCCG	GTTCCTGGAG	29640
5	CTGGGCAAGA	CCGACGTCCG	GGACCCCGAG	CGGATCGCCG	CCGAACACCC	CGGGGTGCGC	29700
	TACCGGGCGT	TCGACCTCAA	CGAGGCCGGA	CCCGACGCAC	TCGGCCGGCT	GCTGCGGGAA	29760
	CTGATGGACC	TGTTCGCCGC	CGGCGTGCTG	CACCCGCTGC	CCGTCGTCAC	CCACGACGTG	29820
10	CGCCGGGCCG	CGGACGCCCT	GCGCACCATC	AGCCAGGCCC	GGCACACCGG	AAAGCTCGTC	29880
	CTGACCATGC	CGCCCGCCTG	GCACCCGTAC	GGCACGGTCC	TGGTCACCGG	TGGCACCGGC	29940-
	GCCCTCGGCA	GCCGCATCGC	CCGCCACCTG	GCGAGCCGGC	ACGCCCTCCC	CCGGCTGCTG	30000
15	ATCGCCGCCC	GCCGGGGCCC	GGACGCCGAG	GCCCCCCCG	AGCTGGTCGC	CGACCTCGCC	30060
	GCCCTGGGCG	CGTCGGCCAC	CGTGGTCGCC	TGCGACGTCT	CCGACGCGGA	CGCCGTCCGC	30120
	GGACTGCTCG	CCGGCATACC	GGCCGATCAC	CCGCTGACGG	CGGTGGTGCA	CAGCACCGGC	30180
20	GTCCTCGACG	ACGGCGTGCT	GCCCGGGCTC	ACCCCGAGC	GGATGCGGCG	CGTGCTGCGG	30240
	CCCAAGGTGG	AGGCCGCCGT	CCACCTGGAC	GAACTCACCC	GCGACCTCGA	CCTGTCGGCG	30300
25	TTCGTCCTCT	TCTCCTCCAG	CGCCGGTCTG	CTGGGCAGCC	CGGCCCAGGG	CAACTACGCG	30360
	GCGGCCAACG	CCACCCTCGA	CGCCCTCGCC	GCCCGGCGCC	GGTCCCTCGG	CCTCCCGTCG	30420
	GTGTCACTCG	CCTGGGGTCT	GTGGTCCGAC	ACCAGCCGGA	TGGCACACGC	ACTGGACCAG	30480
30	GAGAGCCTCC	AGCGGCGCTT	CGCCCGCAGC	GGCTTCCCGC	CCCTGTCCGC	CACGCTGGGC	30540
	GCCGCGCTGT	TCGACGCCGC	CCTGCGGGTC	GACGAGGCCG	TGCAGGTCCC	CATGCGGTTC	30600
	GACCCGGCCG	CGCTGCGCGC	CACCGGAAGC	GTCCCCGCCC	TGCTGTCGGA	CCTCGTCGGG	30660
35	TCCGCCCCGG	CGACCGGGTC	CGCGGCCCCG	GCGTCCGGCC	CCCTTCCGGC	TCCGGACGCC	30720
	GGGACCGTCG	GCGAGCCGCT	CGCCGAGCGG	TTGGCCGGAC	TCTCCGCCGA	GGAACGCCAC	30780
40	GACCGGCTGC	TCGGCCTGGT	CGGCGAACAC	CTCCCCCCC	TACTGGGCCA	CGGCTCCGCC	30840
40	GCCGAGGTCC	GGCCCGACCG	CCCCTTCCCC	GAGGTCGGGT	TCGACTCGCT	CACGGCCGTG	30900
	GAACTGCGCA	ACCGGATGGC	GGCGGTCACC	GGGGTCAGGC	TCCCCGCCAC	CCTGGTCTTC	30960
45	GACCACCCCA	CCCCCGCCGC	GCTGTCCTCG	CACCTCGACG	GCCTGCTGGC	CCCGGCACAG	31020
	CCGGTCACCA	CCACACCGCT	GCTGTCCGAA	CTGGACCGCA	TCGAGGAGGC	CCTGGCCGCC	31080
	CTCACCCCCG	AGCACCTCGC	GGAGCTCGCC	cccgcccccg	ACGACCGGGC	CGAGGTCGCC	31140
50	CTGCGCCTGG	ACGCCCTGGC	CGACCGCTGG	CGCGCCCTGC	ACGACGCCC	ccccccccc	31200
	GACGACGACA	TCACCGACGT	GCTGAGCAGC	GCCGACGACG	ACGAGATCTT	CCCCTTCATC	31260
	GACGAGCGGT	ACGGCACGTC	GTGACCGCCG	GCCCGGAGCC	CCGCCCGTCA	TCGAAAGGAA	31320
55	GCACCACCAT	GGCGAACGAA	GAGAAGCTGC	GCGCCTACCT	CAAGCGCGTG	ACGGGTGAGC	31380

	TGCACCGGGC	CACCGAGCAG	CTGCGTGCCC	TGGACCGGCG	GGCCCACGAG	CCGATCGCGA	31440
5	TCGTCGGGGC	GGCCTGCCGA	CTCCCCGGCG	GCGTCGAGAG	TCCGGACGAC	CTGTGGGAGC	31500
	TGCTGCACGC	CGGTGCCGAC	GCGGTCGGCC	cccccccc	CGACCGCGC	TGGGACGTGG	31560
	AGGGAAGGTA	CTCGCCCGAC	CCCGACACGC	CCGGCACCTC	GTACTGCCGC	GAGGGGGCT	31620
10	TCGTGCAGGG	GGCCGACCGG	TTCGACCCCG	CCCTCTTCGG	CATCTCGCCC	AACGAGGCGC	31680
	TCACCATGGA	CCCCCAGCAG	CGGCTGCTGC	TGGAGACCTC	CTGGGAGGCG	CTGGAGCGAG	31740
15	CCGGTCTGGA	CCCCCAGTCC	CTGGCGGCA	GCCGGACCGG	CGTGTTCGCC	GCGCCTCGG	31800
	AGAGCGGCTA	CCAGAAGGGC	GTCGAAGGC	TCGAAGCCGA	TCTGGAGGCC	CAACTCCTGG	31860
	CCGGCATCGT	CAGCTTCACC	GCCGGCCGCG	TCGCCTACGC	CCTGGGCCTG	GAGGGCCCGG	31920
20	CGCTGACGAT	CGACACGGCC	TGCTCCTCGT	CGCTGGTGGC	ACTGCACCTG	GCGGTGCAGT	31980
	CACTGCGCCG	GGCGAGTGC	GACCTCGCAC	TGGCGGGGGG	CGCCACGGTC	ATCGCCGACT	32040
	TCGCGCTCTT	CACCCAGTTC	TCCCGGCAGC	GCGGGCTCGC	CCCCGACGGG	CGGTGCAAGG	32100
25	CCTTCGGTGA	GACGGCCGAC	GGCTTCGGCC	CCGCCGAGGG	CGCGGGGATG	CTGCTGGTCG	32160
	AGCGGCTGTC	GGACGCCCGC	CGCAACGGGC	ACCCGGTGCT	GCCGCTGCTG	CGGGGCAGTG	32220
	CCGTCAACCA	GGACGGTGCG	AGCAATGGGC	TGACGCCCC	GAGTGGTCCT	GCGCAGCAGC	32280
30	GGGTGATCCG	TGAGGCGCTG	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	GACGCGGTCG	32340
	AGGCGCACGG	CACCGGCACG	CCGCTCGGCG	ACCCCATCGA	GCCCGCCCC	CTCATGGCGA	32400
35	CGTACGGGCA	CGAACGGACG	GGCGACCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	32460
	GGCACACCCA	GCCGCCGCC	GCCTGCCCG	GGGTGATCAA	GATGGTGCTG	GCGCTGCGCC	32520
	ACGGTGAGCT	GCCGCGCACC	CTGCACGCGT	CGACGCCGTC	CTCCAGGATC	GAATGGGACG	32580
40	CGGCCCCCT	GGAGTTGCTG	GACGACGCCA	GCCCTGGCC	CCGGCGTGCC	GAGGGGCCGC	326 40
	cccccccc	CATCTCCTCG	TTCGGCATCA	GCGGCACCAA	CGCGCACCTC	GTCATCGAGG	32700
	AGGAGCCGCC	cecceecce	GAGCCCGAGG	AGGCCGCGCA	GCCGCCCGCC	CCGGCCACCA	32760
45	CCGTCCTCCC	GCTGTCGGCC	GCCGGCGCGC	GATCCCTGCG	CGAGCAGGCC	CCCAGGCTCG	32820
	CCGCGCACCT	GGCCGGCCAC	GAGGAGATCA	CCGCCGCCGA	cecceccec	TCCGCCGCCA	32880
50	CCACCCGTGC	CGCGCTCTCG	CACCGGGCCT	CGGTCCTGGC	CGACGACCGG	CGCGCCTGA	32940
	TCGACAGGCT	GACCGCGCTG	GCGGAGGACA	GGAAGGACCC	CGGCGTCACC	CTCGGCGAGG	33000
	CGGGCAGCGG	cccccccc	GTCTTCGTCT	TCCCGGGACA	GGGCTCCCAG	TGGACGGGCA	33060
55	TGGGCGCCGA	ACTCCTGGAC	AGGGCACCGG	TCTTCCGCGC	CAAGGCCGAG	GAGTGCGCGC	33120

TCGCGGCGCT GTGGGAGTCC CACGGTGTAC GGCCCGCCGC CATGGTCGGC CACTCCCAAG GCGAGATCGC CGCCGCCCAC GCGGCCGGTG CCCTGTCCCT CGACGACGCG GCCCGCGTGA TCGCCGAGGC CAGCAGGCTC TGGAAGCGGC TGGCCGGAAA CGGCGCATG CTCTCCGTGA TGGCCCCGGC CAGCAGGGTC CGCGAACTGA TGGAGCCCTG GGCGGAGCGC ATTCCGTGGA CCGCCGTCAA CGGCCCGGC TCGGTCACCG TGGCCGGTGA CGCGCGGGG CTGGAGGAGT TCGGCGGCG GCTCTCCGCC GCCGGGGTGC TGGCCGGACC CTCGGCGGC GTCGAGGAGT CCGGACACTC ACCCCAGGTG GAGCAGTTCC GGGCCGAGCT CCTCGACACG CTGGGCACCG TCCGGCCGAC CGCCCCGGC TACTGTTCC GGGCCGAGCT CCTCGACACG CTGGGCACCG TCCGCCGAC CGCCGCCGG CTGCCCTTCT TCTCCACCGT GACCGCCGGG GCGCACGAGC CCGAAGGCCT GGACGCCGGG TACTGGTACC GGAACACTC GTCGACACG CTGGGCACCG CCACCCTGCG GACGCCCGG TACTGGTACC GGAACACTC GTCGAGAGC CACCCCTGC CCCCCCCGC GCGCACGACC CCCACCCTGCG GACGCCCGG TACTGGTACC GGAACACCTT CGTCGAGAG GCCCGCACCC CCCTCCTGGG GACGCCGGG TACTGGTACC GGAACACCTT CGTCGAGATG GGCCCGCACCC CCCTCCTGGG GACGCCGGG TCGCGAGGGCC ACCGACCCTT CGTCGAGATG GGCCCGCACCC CCCTCCTGCGG CGCCGGATC GACGAGGGCC TGGACCGGT CGGCCCTCC GTGGGGCCCG CCCCCGGCGC TCGCCCCCC CCCCCGGGGC TCGCCCCTC CGGCCCCCC CGGCCCCCC CGGCCCCCC CGGCCCCCC		CCCCCTCCC	GGCCCACCTC	GACTGGTCGG	TGCTCGACGT	CCTGCGCGAC	cccccccc	33180
TCGCGGCGCT GTGGGAGTCC CACGGTGTAC GGCCCGCCGC CGTGGTCGGC CACTCCCAMG GCGAGATCGC CGCCGCCCAC GCGGCCCGTG CCCTGTCCCT CACGGACGGC GCCCGGTGA TCGCCCGGC CAGCGGGCTC CGCGAACTGA TGGAGCCCTG GGCGGAGGC ATGTCCGTGA TGGCCCGGC CACCGGGTC CGCGAACTGA TGGAGCCCTG GGCGGGGGC ATGTCCGTGG CCGCGCTCAA CGGCCCCGCC TCGGTCACCG TGGCCGGGGC CTGGAGGAGT TCGGCGGCGC GCTCTCCGCC GCCGGGGTGC TGCGCGGGGC CTGGACGAGGT CCGGCGACACTC ACCCCAGGTG GAGCAGTTCC GCCGGAGCT CCTCGACACG CTGGGCACCG TCCGGCACACTC ACCCCAGGTG GAGCAGTTCC GCCGGAGCT CCTCGACACG CTGGGCACCG CCGAAGGCCT GACCGCCGC TACTGGTACC GAACATGCC GAACCCCTG GACCCGCGC GCCACAGACC CCCGAAGGCCT GGACGCCGG TACTGGTACC GAACATGCG GAACCCGTG GACCCGGCG CCCCCACAGACC CCCTGCTGGG GACGCTGCT CGCGGAGGCC ACCGCACCTT CGTCGAGATG GGCCCGCACC CCCTGCTGGG GACGCTGCT GACGAGGCC ACCGCACCTT CGTCGAGATG GGCCCGCACC CCCTGCTGGG GACGCTGCT GACGAGGCC ACCGCACCTT CGTCGAGATG GGCCCGCACC CCCTGCTGGG CGCCGGGATC GACGAGGCC ACCGCACCTT CGGCGAGGC GCCACCGCCC CCTTGCGCC CGCCGGGATC GACGAGGCCG TGGACCGGT CCGCCCCCCC GCCCCCCCCC GCCCCCCCCC GCCCCCC	5	CCCCGCCGAT	CGACCGCGCG	GACGTCGTCC	AGCCGACCCT	GTTCACCATG	ATGGTCTCCC	33240
TCGCCGACGC CAGCAGGCTC TGGAAGCGGC TGGCCGGAAA CGGCGGCATG CTCTCCGTGA TCGCCCCGCC CGACCGGCTC CGCCAACTGA TGGAGCCCTG GGCGGAGCGG ATGTCCGTGGG CCGCCGTCAA CGGCCCCGCC TCGGTCACCG TGGCCGGTGA CGGCGGAGCG CTGGAGGAGT TCGGCGGCG GCTCTCCGCC GCCGGGGTGC TGGCCGTGGC CCTCGCCGGC GTCGACTTCG CCGGACACTC ACCCCAGGTG GAGCAGTTCC GCGCGAGGCT CCTCGACACG CTGGGCACCG TCCGCCCGAC CGCCGCCGG CTGCCCTTCT TCTCCACCGT GACCGCCGCG GCGCACGACC CCGAAGCCCT GGACGCCGG TACTGGTACC GAAACATGCG CGAACCCGTG GACTTCGGT CCACCCTGCG GACGCCGCG TACTGGTACC GAAACATGCG CGAACCCGTG GACTTCGGTAC CCACCCTGCG GACGCCGCG TACTGGTACC GCGAGCCCAC GAAACCCGTG GACTTCGCCACC CCACCCTGCG GACGCCGCG TACTGGTACC GCGAGCCCAC GACCCGCCGC GCCCACCGCC CCCACCCTGCG GACGCCGCG TACTGGTACC GCGAGCCCAC GACCCCGCCC GACCCCCCCC CCCTGCTGGG CGCCGCGATC GACGAGGTCG CCGAGGCCGA GGGCTGCAC GCCACCGCCC CCTTCGCCCA CGGAGTACG GTCGACTGG ACGCCCTTT CGGTGGGGCCCG GCGCCCGCC GCGTTCACCCC ACGCCCCCC GCGGCCCCC GCGCCCCCCC GCGCCCCCC GCGGCCCCC GCGGCCCCC GCGGCCCCC GCGGCCCCC GCGGCCCCC GCGGCCCCC GCGGCCCGC GCGGCCCGC GCGGCCGCC	3	TCGCGGCGCT	GTGGGAGTCC	CACGGTGTAC	GCCCGCCGC	CGTGGTCGGC	CACTCCCAAG	33300
TOGCCCCGGC CGACCGGGTC CGCGAACTGA TGGGGCCTG GGCGGAGCGG ATGTCCGTGG CCGCCGTCAA CGGCCCGCC TCGGTCACCG TGGCCGGTGA CGCGGGGGGC CTGGAGGAGT TCGGCGGCG GCTCTCCGCC GCCGGGGTGC TGCGCTGGC CCTCGCCGGC GTCGACTTCG CCGGACACTC ACCCCAGGTG GAGCAGTTCC GCGCGAGGTC CCTCGACACG CTGGACCAGGC TCCGGCCGAC CGCCGCCGG CTGCCCTTCT TCTCCACCGT GACCGCCGG GCGCAGAGC CCGAAGGCCT GGACGCCGCG TACTGGTACC GCAACATGCG CGAACCCGTG GACTTCGCGT CCACCCTGCG GACGCCGCG TACTGGTACC GCAACACATGC CGAACCCGTG GACTTCGCGT CCACCCTGCG GACGCCGCG TACTGGTACC GCAACACATGC CGAACCCGTG GACTTCGCGT CCACCCTGCG GACGCCGCG TACTGGTACC GCAACACACT CGTCGAGATG GCCCCGCACC CCACCCTCCG GACGCCGCG TCCGGCGGCC TCGACCCCTT CGTCGAGATG GCCCCGCACC CCTTCGCCCA CGCACGCGC TCCGGCGGCC TGGACCCGTT CCGCTCCTCG GTGGGCGCCG CCTTCGCCCACCC CCGTCCACCCCC CCGTCCACCCCC CCGTCCACCCCC CCGTCCACCCCC CCGTCCACCCCC CCGTCCACCCCC CCGTCCACCCCC CCCCCGCCCC CCCCGGCGCC TACCGCCCCC CCCCGGCGCC TACCGCCCCC CCCCGGCGCC CCCCGGGCCC CCCCGGGCGC CCCCGGCGCC CCCCGGGCGC CCCCGGGCCCC CGGGGCCCCC CGGCGCCCCC CGGGGCCCCC CGGGGCCCCC CGGGGCCCCC CGGGGCCCCC CGGGGCCCCC CGGGGCCCCC CGGGGCCCCC CGGGGCCCCC CGGCGCCCCC CGGCGCCCCC CGGCGCCCCCC		GCGAGATCGC	CGCCGCCCAC	GCGGCCGGTG	CCCTGTCCCT	CGACGACGCG	GCCCGCGTGA	33360
TCGCCGTCAA CGGCCCCGCC TCGGTCACCG TGGCCGGTGA CGGGGGGGG CTGGAGGAGT TCGGCGGCG GCTCTCCGCC GCCGGGGTGC TGCGCTGACC CCTCGCCGGC GTCGACTTCG CCGGACACTC ACCCCAGGTG GAGCAGTTCC GGGCGGAGCT CCTCGACACG CTGGGCACCG TCCGCCCGAC CGCCGCCCGG CTGCCCTTCT TCTCCACCGT GACCGCCGG GCGCACGAGC CCGAAGGCCT GACGCCGCG TACTGGTACC GGAACATGCG CGAACCCGTG GACTTCGCGT CCACCCTGCG GACGCTGCT CGCGAGGGCC ACCGCACCTT CGTCGAGATG GGCCCGGACC CCCTGCTGGG CGCCGCGATC GACGAGGCC ACCGCACCTT CGTCGAGATG GGCCCGGACC CCCTGCTGGG CGCCGCGATC GACGAGGCC TGGACCGGT GAGCTCTCG GTGGGGCCCG CGTTCGCCAC CCACCGCGG TCCGGCGGCC TGGACCGGT CGGCCTCTC GGTGGGGCCCG GGTTCGCCCA CGGAGTACG GTCGACTGG ACGCCCTTT CGGTGCGCCC GGCGCCCGC GGTTCGCCCA CGGAGTACG GTCGACTGG ACGCCCTTT CGGAGGGTC GGCGCCCGC GGGTCCCGCT GCCCACCTAC GCCTTCAGCC GGGACCGGTA CTGGCTGCCC GGCGCCCGCC GCCGGGGGGC CGTCGAGGCG GCCCCCTTC ACGCGTCCC CCCCGGGGC TACCGCCTCA GCCGGGGGGC CGTCGAGGCG GCCCCCTTC ACGCGCTCC CGGGGGCCCGC TACCGCGTCA CCTGGACACC CGTGGCATCC GACGACTCCG GCCGGCCCTC CGGGCGCCTC CGTGCGGCCC GGGTGGTCGT GGAGCGCTG CTGCTGGATC CCACCGAGGC GTCGGCCCTC GGTGCGGCCG AGCCCCCGG CACCGCCC GACGAGGCG ACACCGCGG GTCGGCCCTC GGTGCGCCCG AGCGACTGGC CGAACTGGA GCGCAGCGG ACGCCCGGG GTCGGCCCTC GGTGCGCCCG AGCGACTGGC CGAACTGGA CCGCCGAGC CCCCCCGGCG CCGCGCGCTC ACGCTCACCG GCCGTCCGCA GAGCACCGCA CCGCCGGACC CCCCCCGGC CGCGCCCCTC GGTGCGCCCG GCCCCCCGGGC CCCCCGGGGC CCCCCGGGCCCCC GGCCCCCC	10	TCGCCGAGCG	CAGCAGGCTC	TGGAAGCGGC	TGGCCGGAAA	CGGCGGCATG	CTCTCCGTGA	33420
TCGGCGGCCG GCTCTCCGCC GCCGGGGTCC TGCGCTGGCC CCTCGCCGGC GTCGACTTCG CCGGACACTC ACCCCAGGTG GAGCAGTTCC GCGCGGACCT CCTCGACACG CTGGGCACCG TCCGGCCGGA CGCGGCCGG CTGCCCTTCT TCTCCACCGT GACCGCCGG GCGCACGAGC CCGAAGGCCT GGACGCCGGC TACTGGTACC GGAACATGCG CGAACCGTG GACTTCGCGT CCACCCTGCG GACGCTGCT CGCGAGGGCC ACCGCACCTT CGTCGAGATG GCCCCGCACC CCACCCTGCG GACGCTGCT GACGAGGCC ACCGCACCTT CGTCGAGATG GGCCGCACCC CCCTGCTGGG CGCCGCGATC GACGAGGTCG CGGAGGCCGA GGGCGTGCAC GCCACCGCCC CCCTGCTCGCC CCACCGCCC TCGACCGCT CCACCGCGC TCGGCCGCCT CGGCGCCGCC GGGGCCCGCC GGGGCCCGCC CGTTCGCCCA CGGAGTACGG GTCGACTGG ACGCCCTCTT CGAGGGCTCC GGCGCCCGC GGGGCCCGCC GGGGCCCGCC GGGGCCCGCC GGGGCCCGCC GGGGCCCGCC GGGGCCCGCC GCCGCC		TGGCCCCGGC	CGACCGGGTC	CGCGAACTGA	TGGAGCCCTG	GGCGGAGCGG	ATGTCCGTGG	33480
CCGGACACTC ACCCCAGGTG GAGCAGTTCC GCGCCGAGCT CCTCGACACG CTGGGCACCG TCCGCCCGAC CGCCGCCCGG CTGCCCTTCT TCTCCACCGT GACCGCCGC GCGCACGAGC CCGAAGGCCT GGACGCCGG TACTGGTACC GGAACATGCG CGAACCCGTG GACTTCGCGT CCACCCTGCG GACGCCGGC TACTGGTACC GGAACATGCG CGAACCCGTG GACTTCGCGT CCACCCTGCG GACGCCGCT CGCGAGGGCC ACCGCACCTT CGTCGAGATG GGCCCGCACC TCGCCACCCT CCACCGGGGC TCGGGCGGC TGGACCGGTT CGGCTGCAC GCCACCGCCC CGTTCGCCCA CGGAGTACGG GTCGACTGGG ACGCCCGTT CGGCTCCTCG GTGGGGGCCG GCGTTCGCCCA CGGAGTACGG GCCCCGCCC CGGGCCCCCCC CGGGCCCCCC CGGGCCCCCC		CCGCCGTCAA	CGGCCCCGCC	TCGGTCACCG	TGGCCGGTGA	CGCGCGGGCG	CTGGAGGAGT	33540
TCCGCCCGAC CGCCGCCCGG CTGCCCTTCT TCTCCACCGT GACCGCCGG GCGCACGAGC CCGAAGGCCT GGACGCCGG TACTGGTACC GGAACATGCG CGAACCCGTG GAGTTCGCGT CCACCCTGCG GACGCTGCTG CGCGAGGGCC ACCGCACCTT CGTCGAGATG GGCCCGCACC CCCTGCTGGG CGCCGCGATC GACGAGGTCG CGCAGGCCGA GGGCGTGCAC GCCACCGCCC TCGCCACCCT CCACCGCGGC TCCGGCGGCC TGGACCGGTA GGGCGTGCAC GCCACCGCCC CGTTCGCCCA CGGAGTACGG GTCGACTGGG ACGCCCTCTT CGAGGGCTCC GGGCCCGCCC GGGTCCCGCT GCCCACCTAC GCCTTCAGCC GGGACCGGTA CTGGCTGCCC ACCGCCACC GCCGGCGCCC CGTCGAGGCG GCCCCCGTCG ACGCCTCCT CGGGCGCCC TACCGCCATCA CCTGGACACC CGTGGCATCC GACGACTCCG GCCGGCCCTC CGGGCGCTG CTGCTGGTGC GGGTGGTCGT GGAGCGCTG CACCGCGCG ACGCCCTC CGGGCGCTG CTGCTGGTGC GGGTGGTCGT GGAGCGCTG CTGCTGGATC CACCGAGGC GTCGGCCCTC GGTGCGCCCG AGCCACTGG CACCGCGCC GACGAGCCG ACGCCCTGC CGGCCCCTC GGTGCGCCCG AGCGACTGGC CGAACTGGAC GCGCAGCCG ACGCCCTGC CGGCCCTC GTGCTGCCCG AGCGACTGGC CGAACTGGAC CCGCCAGCCG ACGCCCTGC CGGCCCTC GTGCTGCCCG ACCGTCCGCA GAGCACCGCA CCGGCAGCCG ACGCCCTGC CGGCCCTC GTGCTGCCCG TCCTGCTCGCA GAGCACCGCA CCGGCAGCCG ACGCCCTGC CGACCCGGGA ACGCCCCCG CCCGGCGCTC GGTCCAGGCC GTGCCGGAC CCTCCCCCCT CGACCCGGGA ACGCCCCCCG TCCTGCTCGCA GAGCACCGCA CCGGCAGCCG ACGCCCTGCT TGGGTGGTGA CCCGGGGTTCG GGTCCAGGCC GTGCCGGAC CCGCCCCGTC TGGCCCGGGATC TGGGTGGTGA CCCGGGGTTCGG GCCGGTGC CGTCCGGAAC CCGCCCGGATC TGGGTGGTGA TCCTGCTCGC GCCGGTGC CGTTCGGGTG ACGTCCCGTC TGCGGTGGTG TGGGTGGTGA TGGCGGTGCG GCCGGGTTC CGTGAGTGC TGCCGTTGCT TCCGGTGGTT CGGGGGGTG TGGCGGTGCG GCCGGGTTC CGTGAGTGC TTCCGGTGGT CGGGGGGTG TGGCGGGGTC GCTGCGGTG CTGTGGGGG CTCTCTCTC	15	TCGGCGGCCG	GCTCTCCGCC	GCCGGGGTGC	TGCGCTGGCC	CCTCGCCGGC	GTCGACTTCG	33600
CCGAAGGCCT GGACGCCGCG TACTGGTACC GGAACATGCG CGAACCCGTG GAGTTCGCGT CCACCCTGCG GACGCTGCTG CGCGAGGGCC ACCGCACCTT CGTCGAGATG GGCCCGCACC CCCTGCTGGG CGCCGCGATC GACGAGGTCG CCGAGGCCGA GGGCGTGCAC GCCACCGCCCC TCGCCACCCTT CCACCGCGGC TCCGGCGGCC TGGACCGGTA GGGCGTGCAC GCCACCGCCC CGTTCGCCCA CGAGTTACGG GTCGACTGGG ACGCCCTCTT CGAGGGCTCC GGCGCCCGCCC GGGTCCCGCT GCCCACCTAC GCCTTCAGCC GGGACCGGTA CTGGCTGCCC ACCGCCACCGC GCCGGCGCGC CGTCGAGGCG GCCCCCGTCG ACGCCTCTT CGAGGGCTCC ACCGCCATCG GCCGGCGCGC CGTCGAGGCG GCCCCCGTCG ACGCCTCCC CCCCGGGCG TACCGCCATCG CCTGGACACC CGTGGCATCC GACGACTCCG GCCGGCCCTC CGGGCGCTG CTGCTGGTGC GGGTGGTCGT GGAGCGCTG CTGCTGGATC CCACCGAGC CTCGCCCCTC GGTGCGCCCC AGACCCCCGG CACCGACCGC GACGAGCCG ACACCGCGCC GTCGCCCCTC GGTGCGCCCC AGCGACTGCC CGAACTGGAC GCGCAGCCGG ACGCCTGGC CGGCGCTCT GGTGCGCCCC AGCGACTGCC CGAACTGGAC GCGCAGCCGG ACGCCTGGC CGGCCGTCT GTGCTGCCCC AGCGACTGCC GGACCGCCA CCGCCGGACC CCTCCCCGCT CGACCCGGGG ACGCCCGCCC TCCTGCTCCCC GACCACCGCC GTGCCGGACC CCTCCCCCCT CGACCCGGGG ACGCCCGCCC GCGGGTCCGCA GAGCACCGCA CCGGCCGGACC CCTCCCCGCT CGACCCGGGG ACGCCCGCCC TCCTGCTCCTC GGTCCAGGCC GTGCCGGACC CCGCCCGCTC TGCCGCGGGTTCT GGGGGTCCGCG GGTCGCGGTC GCGTTCGAGC CCGCCGGGTTCT TGGTGGGTCG GGGGTCTGGG GCCGCGTCC CGTTGCAGC CCCCCGCTC TCGCGCTGGGT TGGTGGGTTC GGGGTCCGCG GCCCGCTCC CGTTGGAGC GTCCCGGTC TGCGGTGGGT TGGTGGATC GGGGTCCGCG GCCCGCTCC CGTGGTGGGC GTCCTGTCCC CTCCCCGTT CCGCGTGGGT TGGTGGATC GGGTCCGCG TGCCGGTC CGTTGGAGC GTCTGTTCGC TCGTCGTCC CTCGCGTTCC GGGTCCCGCC TGGTTCCGCC GTTGGTGGG CTCTTTCCGC TCGTCTCTC CTCGCGTTCC GGGTCCCGCC TGGTTCCGCC GTTGTCCCCT TCTCCTCTC CTCCCCTCT CTCCCCTCT CTCCCCTCT CTCGCTTCC CTCGCTTCCCCCT GGGTCCCGCC TGGTTCCCCCC CTCCCCGCT TCTCCCCCTC CTCCCCCTC CTCCCCCTC CTCCCCCTC CTCCCCCTC CTCCCCCTC CTCCCCCC		CCGGACACTC	ACCCCAGGTG	GAGCAGTTCC	GCGCCGAGCT	CCTCGACACG	CTGGGCACCG	33660
CCGAAGGCCT GGACGCCGC TACTGGTACC GGAACATGCG CGAACCCGTG GAGTTCGCGT CCACCCTGCG GACGCTGCTG CGCGAGGGCC ACCGCACCTT CGTCGAGATG GGCCCGCACC CCCTGCTGGG CGCCGCGATC GACGAGGTCG CCGAGGCCGA GGGCGTGCAC GCCACCGCCC TCGCCACCCT CCACCGCGGC TCCGGCGGCC TGGACCGGTT CCGCTCCTCG GTGGGCGCCG CGTTCGCCCA CGGAGTACGG GTCGACTGGG ACGCCCTCTT CGAGGGCTCC GGCGCCGCCC GGGGTCCCGCT GCCCACCTAC GCCTTCAGCC GGGACCGGTA CTGGCTGCCC ACCGCCATCG GCCGGCGCGC CGTCGAGGCG GCCCCCGTCG ACGCCTCTC CGGGGCGCCC TACCGCCATCG CCTGGACACC CGTGGAGCC GCCCCCGTCG ACGCGTCCC CCCCGGGCG TACCGCCATCA CCTGGACACC CGTGGCATCC GACGACTCCG GCCGGCCCTC CGGGCGCTTG CTGCTGGTGC GGGTTGCTCGT GGAGCGCTG CTGCTGGATC CCACCGAGGC GTCGGCCCTC GGTGCGGCCG AGCGACTGGC CGAACTGGAC CTGCTGGATC CCACCGAGGC CGCGCGCTC ACGCTCACCG AGCGACTGGC CGAACTGGAC GCGCAGCCGG ACGCCTGC CGGCGTGCT ACGCTCACCG GCCGTCCGCA GAGCACCGCA CCGGCCGGAC CCGCCCGCTC CGACCCGGGG ACGCCCGCG TCCTGCTCGT GGTCCAGGCC GTGCCGGACG CCTCCCCGCT CGACCCGGGG ACGCCGCCCG TCCTGCTCGT GGTCCAGGCC GTGCCGGACG CCGCCTCCGAA GGCCCGGGG ACGCCGCCCG CGGGGTTCTGG GGTCCAGGCC GTGCCGGACG CCGCCTCCCGCT TGCGCTGGTGA CGCGGGGTTGC GGTCCAGGCC GTGCCGGAG CCGCCTCCGAA GGCCCGGGATC TGGGTGGTGA CGCGGGGTGC GGTGCCGGTG GGGTCGGGT ACGTCCCGT TGCGCGGGTTGT CGCGGGGTGC GGTGCCGGTG CGGTTCGAGG TGCGGGTGGT TGGGGGGGTG TGGCGGGGGG GCCGGTTGCAGGT GCGTTGGAGG TCCGGGGGTTG TGGCGGTGGG GCCGGGTGC CGTTGGAGG TTCCGGTTGC CTGGGTGGGT TGGCGGGGGT GCGTTCCGGG GTTCGCGGT TCCGGTGGT TCGGGTGGGT		TCCGCCCGAC	CGCCGCCCGG	CTGCCCTTCT	TCTCCACCGT	GACCGCCGCG	GCGCACGAGC	33720
25 CCCTGCTGGG CGCCGCGATC GACGAGGTCG CCGAGGCCGA GGGCGTGCAC GCCACCGCCC TCGCCCACCCT CCACCGCGGC TCCGGCGGCC TGGACCGGTT CCGCTCCTCG GTGGGCGCCG CGTTCGCCCA CGGAGTACGG GTCGACTGGG ACGCCTCTT CGAGGGCTCC GGCGCCCGCC GGGGCCCGCC GGGGCCGCCC GGGGCCGCC	20	CCGAAGGCCT	GGACGCCGCG	TACTGGTACC	GGAACATGCG	CGAACCCGTG	GAGTTCGCGT	33780
TCGCCACCCT CCACCGCGC TCCGGCGGCC TGGACCGGTT CCGCTCCTCG GTGGGCGCCCG CCGTTCGCCCA CGGAGTACGG GTCGACTGGG ACGCCCTCTT CGAGGGCTCC GGCGCCCGCC CGGGCGCCCGCC GGCGCCGCC GCCCGCCCT GCCCACCTAC GCCTCACCC GGGACCGGTA CTGGCTGCCC ACCGCCATCG GCCGGCGCGC CGTCGACACC GCCCCGTCG ACGCGTCCGC CCCCGGGCGC TACCGCGTCA CCCTGGACACC CGTGGCATCC GACGACTCCG GCCGGCCCTC CGGGCGCTC CGGGCGCTC GGTGCGGCCG GACGAGGCG ACACCGCGGC GTCGGCCCTC GGTGCGGCCG GACGAGGCG ACACCGCGGC GTCGGCCCTC GGTGCGGCCG GACGAGGCG ACACCGCGGC GTCGGCCCTC GGTGCGGCCG AGGGTGGTCG CGAACTGGC CGAACTGGAC CGAACTGGAC CGGCAGCCG ACGCCTGGC CGGCGTGCT GTGCTGCCCG GCCGTCCCCGA GGCCTCCCCGA GGCCCTCCCGCT GGACCGGGG ACGCCGCCG ACGCCCCCC GTCCTCCCCGCT GGACCCGGGG ACGCCCGCG ACGCCCGCC		CCACCCTGCG	GACGCTGCTG	CGCGAGGGCC	ACCGCACCTT	CGTCGAGATG	GCCCGCACC	33840
TCGCCACCCT CCACCGCGC TCCGCGGCC TGGACCGGTT CCGCTCCTCG GTGGGCGCCG CCGTTCGCCCA CGGAGTACGG GTCGACTGGG ACGCCCTCTT CGAGGGCTCC GGCGCCCGCC CGGTTCGCCCA CCGCCACCTAC GCCCACCTAC GCCCCACCTAC GCCCCACCTAC GCCCCACCTAC GCCCGGCGCC CGCCGGGCGC CGCCGGGCGC CGCCGGGCGC CGCCGGGCGC CGCCGGGCGC CGCCGGGCGC CGCCGGGCGC CGCCGGGCGC CGCCGGGCGC CGCGGGCGCC CGGGGCGCCC CGGGGCGCCC CGGGGCGCCC CGGGGCGCCC CGGGGCGCCC GGGGCGCCC GGGGGCGCC GGGGGCGCC GGGGGCGCC GGGGGCGCC GGGGGCCCC GGGGGCCCCC GGGGGCCCC GGGGCGCCCC GGGCGCCCC GGGCGCCCC GGGCGCCCC GGGCGCCCC GGGCGCCCC GGGCGCCCCC GGGCGCCCCC GGGCGCCCCC GGGCCGCC	25	CCCTGCTGGG	CGCCGCGATC	GACGAGGTCG	CCGAGGCCGA	GGGCGTGCAC	GCCACCGCCC	33900
Gegreege ceregere cecesates accepted cecesates accepted a		TCGCCACCCT	CCACCGCGGC	TCCGGCGGCC	TGGACCGGTT	CCGCTCCTCG	GTGGGCGCCG	33960
GCCGGCGCG CGTCGAGGCG GCCCCGGTCG ACGCGTCCGC CCCCGGGCGC TACCGCGTCA 3 CCTGGACACC CGTGGCATCC GACGACTCCG GCCGGCCCTC CGGGCGCTGG CTGCTGGTGC 3 AGACCCCCGG CACCGCGCCG GACGAGGCGG ACACCGCGGC GTCGGCCCTC GGTGCGGCCG 3 GGGTGGTCGT GGAGCGCTGC CTGCTGGATC CCACCGAGGC GTCGGCCCTC ACGCTCACCG 3 AGCGACTGGC CGAACTGGAC GCGCAGCCGG ACGCCCTGC CGGCGCGTC ACGCTCACCG 3 GCCGTCCGCA GAGCACCGCA CCGGCCGGACG CCTCCCCGCT CGACCCGGGG ACGCCCGCG 3 TCCTGCTCGT GGTCCAGGCC GTGCCGGACG CCGCTCCCGAA GGCCCGGGATC TGGGTGGTGA 3 CGCGGGTCTGGG GGTCCAGGCC GTGCCGGACG CCGCTCCCGAA GGCCCGGGATC TGGGTGGTGA 3 GGGGTCTGGG GCGCGGTG GCGTTGGAGG TGCCGGTGCA GTGGCGTGGT TGGGTGGATG 3 TGGCGGTGGG GCCGGTTC CGTTGGAGG TGCCGGTGCA GTGGCGTGGT TGGGTGGATG 3 TGGCGGTGGG GGCGGTTC CGTTGAGTGG GTCGTGTTGGT GGGTGTGTT GCGGGGGGTG 3 TGGGTGCGGG TGGTTCGGGG GTGTGGGG GTGTTTCGG TCGTCGTTC GTGGGTGG		CGTTCGCCCA	CGGAGTACGG	GTCGACTGGG	ACGCCCTCTT	CGAGGGCTCC	GCCCCCCCC	34020
AGACCCCCGG CACCGCGCCG GACGAGGCGG ACACCGCGGC GTCGGCCCTC GGTGCGGCCG GACGAGGCGG ACACCGCGGG GTCGGCCCTC GGTGCGGCCG GGGGGCGG GACGAGGGCG ACACCGCGGG GTCGGCCCTC GGTGCGGCCG GGGGTGCTG GGAGGGCGG GACGAGGCG CGGGCGGGTC ACGCTCACCG GGGGGGCGC GGACGAGCTGG CGGAACTGGA GGCCAGCCGG AGGCCTGGC CGGCGGTGCTG GTGCTGCCCG GACCGGCAG CCGCGTCCGCA GAGCACCGCA GGCCCGGATC TGGGTGGTGA GCCCGGCTGCT GGTCCAGGCC GTGCCGGACG CCGCTCCGAA GGCCCGGATC TGGGTGGTGA GGCCGGGTGC GGTGCGGTG GGGTCGGGT ACGCCGGGTGT TGGGGGTGA GGGGGTTGGGG GCGGGTGCT GCGGGGGTGT GGGGGGTGT GGGGGGTGC GGGGGGTG GGGTTGGAGG GCCCGGGTG GGGGGGTG GGGGGGTG GGGGGGTG GGGGGGTG GGGGGG	30	GGGTCCCGCT	GCCCACCTAC	GCCTTCAGCC	GGGACCGGTA	CTGGCTGCCC	ACCGCCATCG	34080
AGACCCCCGG CACCGCGCG GACGAGGCGG ACACCGCGGC GTCGGCCCTC GGTGCGGCCG GGGGGCGG GGGGGGGG		GCCGGCGCGC	CGTCGAGGCG	GCCCCCGTCG	ACGCGTCCGC	CCCCGGGCGC	TACCGCGTCA	34140
AGCGACTGCC CGAACTGGAC CTGCTGGATC CCACCGAGGC CGCGCGGTC ACGCTCACCG 3 AGCGACTGGC CGAACTGGAC GCGCAGCCGG ACGCCTGGC CGGCGTGCTG GTGCTGCCCG 3 GCCGTCCGCA GAGCACCGCA CCGGCCGACG CCTCCCCGCT CGACCCGGGG ACGCCCGCCG 3 TCCTGCTCGT GGTCCAGGCC GTGCCGGACG CCGCTCCGAA GGCCCGGGATC TGGGTGGTGA 3 CGCGGGGTGC GGTGCCGGTG GCGTCGGGTG ACGTCCCGTG TGCGGTGGGT CCGCGGGTGT 3 GGGGTCTGGG GCGGGTGC GCGTTGGAGG TGCCGGTGCA GTGGGGTGGG		CCTGGACACC	CGTGGCATCC	GACGACTCCG	GCCGGCCCTC	CGGGCGCTGG	CTGCTGGTGC	34200
AGCGACTGGC CGAACTGGAC GCGCAGCCGG AGGGCCTGGC CGGCGTGCTG GTGCTGCCCG 3 GCCGTCCGCA GAGCACCGCA CCGGCCGACG CCTCCCCGCT CGACCCGGGG ACGGCCGCCG 3 TCCTGCTCGT GGTCCAGGCC GTGCCGGACG CCGCTCCGAA GGCCCGGGATC TGGGTGGTGA 3 CGCGGGGTGC GGTCCAGGCC GCGTCGGGTG AGGTCCCGTG TGCGGTGGGT GCGCGGGTGT 3 GGGGTCTGGG GCGGGTGCT GCGTTGGAGG TGCCGGTGCA GTGGCGGTGGT GCGGGGGTGT 3 TGGCGGTGGG GCCGGGTGC CGTGAGTGGC GTCGTTGGT GCGGGGGGTG 3 GGGTGCGGGG GGCGGGTCC CGTGGTGGGG GTCGTTTCGG TCGTCGTTCC GTGGGTGG	35	AGACCCCCGG	CACCGCGCCG	GACGAGGCGG	ACACCGCGGC	GTCGGCCCTC	CCTCCCGCCC	34260
GCCGTCCGCA GAGCACCGCA CCGGCCGACG CCTCCCCGCT CGACCCGGGG ACGGCCGCCG 3 TCCTGCTCGT GGTCCAGGCC GTGCCGGACG CCGCTCCGAA GGCCCGGATC TGGGTGGTGA 3 CGCGGGGTGC GGTGCGGGT GCGTCGGGT ACGTCCCGTC TGCGGTGGGT GCGCGGGTGT 3 GGGGTCTGGG GCGGGTGCT GCGTTGGAGG TGCCGGTGCA GTGGGGTGGG		GGGTGGTCGT	GGAGCGCTGC	CTGCTGGATC	CCACCGAGGC	CGCGCGCGTC	ACGCTCACCG	34320
GCCGTCCGCA GAGCACCGCA CCGGCCGACG CCTCCCCGCT CGACCCGGGG ACGGCCGCCG 3 TCCTGCTCGT GGTCCAGGCC GTGCCGGACG CCGCTCCGAA GGCCCGGATC TGGGTGGTGA 3 CGCGGGGTGC GGTGCGGGT GCGTCGGGT ACGTGCCGT TGCGGTGGGT GCGCGGGTGT 3 GGGGTCTGGG GCGGGTGCT GCGTTGGAGG TGCCGGTGCA GTGGGGTGGG		AGCGACTGGC	CGAACTGGAC	GCGCAGCCGG	AGGCCTGGC	CGCCGTGCTG	GTGCTGCCCG	34380
CGCGGGGTCC GGTGGCGGTC GGGTGGGGTC AGGTGCGTC TGCGGTGGGT GCGCGGGTGT 3 GGGGTCTGGG GCGGGTGCC GCGTTGGAGG TGCCGGTGCA GTGGGGTGGG	40	GCCGTCCGCA	GAGCACCGCA	CCGGCCGACG	CCTCCCCGCT	CGACCCGGGG	ACGCCCCCC	34440
GGGGTCTGGG GCGGGTGGCT GCGTTGGAGG TGCCGGTGCA GTGGGGTGGG		TCCTGCTCGT	GGTCCAGGCC	GTGCCGGACG	CCGCTCCGAA	GGCCCGGATC	TGGGTGGTGA	34500
TGGCGGTGGG GCCGGGTGC CGTGAGTGGC GTCGTGTGGT GGGGGGGTG GGGGGGGTG GGGGGGGTG GGGGGG	45	CGCGGGGTGC	GGTGGCGGTG	CCCTCCCCTC	AGGTGCCGTG	TGCGGTGGGT	CCCCGCTCT	34560
GGGTGCGGG TGGTTCGGG GTGTGCGGG TCGTCGTCTC CTCGGTGTGG 3 GGGTGCGGG TGGTTCGGGG GTGTGGCGGT TGTGGTGGTG ACGGGTGGGT 3 TGGGTGGTGT GGGGGGTCAT GTGGCGCGGT GGTTGGCGGG TTCGGGTGCG GAGCATGTGG 3		GGGTCTGGG	GCGGGTGGCT	GCGTTGGAGG	TGCCGGTGCA	GTGGGGTGGG	TTGGTGGATG	34620
GGGTGCGGG TGGTTCGGGG GTGTGGCGTG CGCGGGGGTG TGTGGTGGTG ACGCGTGGGT 3 TGGGTGGTGT GGGGGGTCAT GTGGCGCGGT GGTTGGCGGG TTCGGGTGCG GAGCATGTGG 3		TGGCGGTGGG	GCCGCCTCTC	CGTGAGTGGC	GTCGTGTGGT	GGGTGTGGTT	GCGGGGGGTG	34680
TGGGTGGTGT GGGGGGTCAT GTGGCGCGGT GGTTGGCGGG TTCGGGTGCG GAGCATGTGG 3	50	GTGAGGATCA	GGTGGCGGTG	CGTGGTGGGG	CTCTCTTCCC	TCGTCGTCTG	CTCCCTCTCC	34740
SE.		GGGTGCGGG	TGGTTCGGGG	GTGTGGCGTG	CGCGGGGGTG	TCTCCTCCTC	ACGGGTGGGT	34800
TGTTGGCGGG GCGTCGGGGT GGTCGGGGTTG TGGGGGGCGGT GGAGTTGGAG CGCGAGTTGG 3		TGGGTGGTGT	GGGGGGTCAT	GTGGCGCGGT	GGTTGGCGCG	TTCGGGTGCG	GAGCATGTGG	34860
	55	TCTTCGCCGG	GCGTCGGGGT	GCTCGGGTTG	TGGGGGGGGT	GGAGTTGGAG	CCCGACTTCC	34920

	TGGGGTTGGG	GGCGAAGGTG	ACGTTCGTTT	CGTGTGATGT	GGGGGATCGG	GCGTCGATGG	34980
5	TGGGGTTGTT	GGGTGTGGTG	GAGGGGTTGG	CCCTCCCCTT	GCGTGCTCTC	TTTCATGCGG	35040
	CGGGGGTGGC	TCAGGTGTCG	CCCTTCCCTC	AGGTGTCGTT	GGCGGAGGCG	GGTGGTGTGT	35100
	TGGGGGGTAA	GCCGTTGGGG	GCTGAGTTGT	TGGACGAGTT	GACGGCGGGT	GTGGAGCTGG	35160
10	ATGCGTTCGT	GTIGTTCTCG	TCGGGTGCTG	GGGTGTGGGG	GAGTGGGGG	CAGTCGGTGT	35220
	ATGCGGCGGC	CAATGCGCAT	CTGGATGCGT	TGGCGGAGCG	TCGTCGTGCG	CAGGGGCGTC	35280
15	CCGCGACCTC	CGTCGCCTGG	GGCCTGTGGG	GCGGCGAGGG	CATGGGAGCG	GACGAAGGCG	35340
,-	TCACGGAGTT	CTACGCCGAG	CGCGGCCTCG	CCCCCATGCG	GCCCGAGTCG	GGCATCGAGG	35400
	CACTGCACAC	GGCACTGAAC	GAGGGCGACA	CCTGCGTCAC	GGTCGCCGAC	ATCGACTGGG	35460
20	AACACTTCGT	CACCGGGTTC	ACCGCCTACC	GGCCCAGCCC	GCTGATCTCC	GACATCCCCC	35520
	AGGTCCGCGC	GTTGCGCACG	CCCGAACCCA	CCGTGGACGC	CTCGGACGGA	CTGCGCCGGC	35580
	GCGTCGACGC	CGCCCTCACC	CCGCGCGAGC	GCACCAAGGT	CCTGGTCGAC	CTGGTCCGCA	35640
25	CGGTGGCGGC	GGAGGTCCTC	GGTCACGACG	GGATCGGCGG	CATCGGCCAC	GACGTGGCCT	35700
	TCCGGGACCT	CGGCTTCGAC	TCGCTGGCCG	CGGTGCGGAT	GCGCGGCCGG	CTGGCCGAGG	35760
	CGACCGGACT	CGTACTGCCC	GCGACGGTCA	TCTTCGACCA	CCCCACCGTG	GACCGGCTCG	35820
30	GCGGCGCGCT	GCTGGAGCGG	CTGTCCGCGG	ACGAACCCGC	GCCCGGCGGG	GCGCCGGAGC	35880
	ccccccccc	GAGGCCCGCG	ACCCCACCGC	CCGCACCGGA	GCCGGCCGTC	CACGACGCCG	35940
35	ACATCGACGA	ACTCGACGCG	GACGCCCTGA	TCCGGCTGGC	CACGGGAACC	GCCGGACCGG	36000
	CCGACGCAC	GCCGGCCGAC	GCCGGCCCG	ACGCGGCGGC	GACCGCCCCC	GACGGAGCAC	36060
	CGGAGCAGTA	GCGCGCCCTC	ACCGGCGCGC	CGACCGGCGG	AGCGCCGTAC	CGCCGACGCC	36120
40	CCCCACAGCC	AGCGAGCAGA	CGAGGAAGCC	GAAGATGTCA	CCGTCCATGG	ACGAAGTGCT	36180
	GGGTGCGCTG	CGCACCTCCG	TCAAGGAGAC	CGAGCGGCTG	CGCCGGCACA	ACCGGGAGCT	36240
	CCTGGCCGGC	GCGCACGAGC	CGGTCGCCAT	CGTGGGCATG	GCCTGCCGCT	ACCCCGGTGG	36300
45	CGTGAGCACC	CCGGACGACC	TGTGGGAGCT	CGCCGCGGAC	GGCGTCGACG	CGATCACCCC	36360
	CTTCCCGGCC	GACCGGGGCT	GGGACGAGGA	CGCCGTCTAC	TCGCCCGACC	CCGACACCCC	36420
50	CGGCACCACC	TACTGCCGTG	AGGGCGGCTT	CCTCACCGGC	GCCGGGGACT	TCGACGCGGC	36480
	CTTCTTCGGC	ATCTCGCCGA	ACGAGGCGCT	GGTGATGGAC	CCGCAGCAGC	GCTCTTGCT	36540
	GGAGACGTCG	TGGGAGACGT	TGGAGCGGGC	CGGCATCGTC	CCCGCGTCGC	TGCGCGGCAG	36600
55	CCGTACCGGT	GTCTTCGTCG	GAGCCGCGCA	CACGGGATAC	GTCACCGACA	CCGCGCGAGC	36660

	GCCCGAGGGC	ACCGAGGGCT	ATCTGCTGAC	GGGCAACGCC	GATGCCGTCA	TCTCCGGCCG	36720
5	GATCGCCTAC	TCCCTGGGTC	TGGAGGGGCC	GGCGCTGACG	ATCGGGACGG	CCTGCTCGTC	36780
	GTCGTTGGTG	GCGTTGCATC	TGGCGGTGCA	GTCGTTGCGG	CGGGGCGAGT	GCGACCTGGC	36840
	GTTGGCCGGC	GCCGTCGCGG	TCATGCCCGA	CCCGACGGTG	TTCGTGGAGT	TCTCGCGGCA	36900
10	GCGGGGGCTG	GCGGTGGACG	GGCGGTGCAA	GGCGTTCGCG	GAGGGTGCGG	ACGGGACGGC	36960
	GTGGGCGGAG	GGAGTGGGTG	TECTECTEST	GGAGCGGCTT	TCCGACGCGC	GCCGCAATGG	3 7 02 0
	CCATCGGGTG	CTGGCGGTGG	TGCGGGGCAG	TGCGGTCAAT	CAGGACGGGG	CGAGCAATGG	37080
15	GCTGACGGCG	CCGAGTGGTC	CTGCGCAGCA	GCGGGTGATC	CGTGAGGCGC	TGGCTGATGC	37140
	GGGGCTGACG	CCCGCCGACG	TGGATGTGGT	GGAGGCGCAC	GGTACGGGGA	CCCCCTTCCC	37200
00	TGATCCGATC	GAGGCGGGTG	CGTTGCTGGC	CACGTACGGG	CGGGAGCGGG	TCGGTGATCC	37260
20	TTTCTCCTTC	GGGTCGTTGA	AGTCGAACAT	CGGGCATGCG	CAGGCGGCTG	CGGGTGTGGG	37320
	TGGTGTGATC	AAGGTGGTGC	AGGCGATGCG	GCATGGGTCG	TTGCCGCGGA	CGCTGCATGT	37380
25	GGATGCGCCG	TCGTCGAAGG	TGGAGTGGGC	TTCGGGTGCG	GTGGAGCTGC	TGACCGAGGG	37440
	CCGGTCGTGG	CCGCGGCGGG	TGGAGCGGGT	GCGGCGGGCC	GCGGTGTCGG	CGTTCGGGGT	37500
	GAGCGGGACC	AACGCCCATG	TGGTCCTGGA	GGAAGCACCG	GTCGAGGCCG	GGAGCGAGCA	37560
30	CGGGGACGGC	CCCGGACCCG	ACCGGCCCGA	CGCCGTGACG	GGTCCGCTCC	CCTGGGTGCT	37620
	CTCGGCACGC	TCGCGGGAGG	CGCTGCGCGG	CCAGGCCGGA	CGACTCGCCG	CTCTCGCCCG	37680
	CCAGGGGCGC	ACGGAGGGCA	CCGCCGCCGC	CAGCGGACTC	GTCGTCCCCG	CGCCGACAT	37740
35	CGGATACTCC	CTGGCCACCA	CCAGGGAGAC	CCTGGAGCAC	CGGCGGTGG	CGCTGGTGCA	37800
	GGAGAACCGG	ACGGCCGGGG	AGGACCTCGC	CGCGCTGGCC	GCCGGCCGCA	CACCGGAGAG	37860
40	CGTGGTCACG	GGTGTCGCGC	GACGTGGCCG	CGGGATCGCC	TTCCTCTGCT	CGGGGCAGGG	37920
,,	CGCCCAGCGG	CTCGGCGCCG	GTCGGGAGCT	CCGCGGCAGG	TTCCCCGTCT	TOGCOGACGO	37980
	CCTCGACGAG	ATCGCGGCGG	AGTTCGACGC	CCACCTCGAA	CCCCTCTCC	TGTCGGTGAT	38040
45	GTTCGCCGAG	CCCGCCACGC	CGGACGCCGC	ACTCCTCGAC	CGCACCGACT	ACACCCAGCC	38100
	GGCCCTCTTC	GCGGTGGAGA	CCGCGCTCTT	CCGGCTCCTG	GAGAGCTGGG	GCCTGGTCCC	38160
	GGACGTCCTC	GTGGGCCACT	CGATCGGCGG	TCTGGTGGCG	GCTCACGTGG	CGGCGTCTT	38220
50	CTCTGCGGCC	GACGCGGCCC	GCCTGGTCTC	CGCACGCGGC	CCCCTCATGC	GGCCCTGCC	38280
	CGAGGGCGGC	GCGATGGCGG	CCGTGCAGGC	CACCGAGCGG	GAGGCCGCCG	CGCTGGAGCC	38340
	CGTCGCCGCC	GCCGCCCCC	TGGTCGCCGC	GGTCAACGGC	CCGCAGGCCC	TCGTGCTCTC	38400
55	CGGGGACGAG	GCGGCCGTAC '	TGGCGGCGGC	CGGTGAACTG	GCCGCCCGCG	GACGCCGCAC	38460

	CAAGCGCCTG	AGGGTGAGCC	ACGCCTTCCA	CTCACCCCGT	ATGGACGCCA	TGCTCGCCGA	38520
5	CTTCCGCGCG	GTGGCGGACA	CGGTCGACTA	CCACGCCCCC	CGGCTGCCGG	TCGTCTCCGA	38580
	AGTGACCGGC	GACCTCGCCG	ACCCCCCCA	GCTGACCGAC	CCCGGCTACT	GGACCCGCCA	38640
	GGTGCGGCAG	CCGGTGCGCT	TCGCCGACGC	CGTGCGCACC	GCGAGCGCCC	GGGACGCCGC	38700
10	GACCTTCATC	GAGCTCGGGC	CCGACGCCGT	CCTGTGCGGC	ATGGCGGAGG	AGTCCCTGGC	38760
	CGCGGAGGCC	GACGTCGTGT	TCGCCCCGGC	ACTGCGCCGC	GGGCGCCCGG	AGGGCGACAC	38820
15	CGTGCTCCGG	GCCGCCGCGA	GCGCGTACGT	ccccccccc	GGCCTCGACT	GGGCCGCGCT	38880
	CTACGGCGGC	ACGGGAGCCC	GCCGCACCGA	CCTGCCCACC	TACGCCTTCC	AGCACAGCCG	38940
	CTACTGGCTC	GCCCCCGCCT	CGGCCGCGT	CCCCCCCCC	ACGGCCGCCC	CCTCCGTCCG	39000
20	ATCCGTGCCG	GAAGCCGAGC	AGGACGGGGC	CCTCTCCCCC	GCCGTGCACG	CCGGTGACGT	39060
	CGCCTCGGCC	GCGGCGCGAC	TGGGCGCCGA	CGACGCCGGT	ATCGAACACG	AACTGCGCGC	39120
	GGTCCTGCCG	CACCTGGCCG	CCTGGCACGA	CCGCGACCGC	GCGACCGCGC	GGACCGCGGG	39180
25	CCTGCACTAC	CGCGTCACCT	GGCAGGCGAT	CGAGGCAGAC	GCTGTCAGGT	TCAGCCCCTC	39240
	GGATCGCTGG	CTGATGGTCG	AGCATGGGCA	GCACACGGAA	TGCGCGGACG	CCGCGGAACG	39300
	GCCCTGCGC	GCGGCCGGCG	CGGAGGTCAC	CCGCCTGGTG	TGGCCGCTGG	AGCAGCACAC	39360
30	CGGATCACCG	CGGACGGAGA	CCCCGGACCG	CGGCACCCTG	CCGCCCCGC	TGGCCGAGCT	39420
	CGCACGGAGC	CCGGAGGGCC	TGGCCGGCGT	GCTGCTGCTC	CCCGACTCGG	GCGGTGCCGC	39480
35	GGTCGCCGGG	CACCCCGGGC	TGGACCAGGG	AACGGCGGCG	GTGCTGCTGA	CGATCCAGGC	39540
	ACTGACCGAC	GCCGCGGTGC	GGCACCGCT	GTGGGTGGTG	ACGCGGGGTG	CGGTGGCGGT	39600
	GGGGTCGGGT	GAGGTGCCGT	GTGCGGTGGG	TGCGCGGGTG	TGGGGTCTGG	GCCGCGTGGC	39660
40	TGCGTTGGAG	GTGCCGGTGC	AGTGGGGTGG	GTTGGTGGAT	GTGGCGGTGG	GCCCCCTCT	39720
	GCGTGAGTGG	CGTCGTGTGG	TCCCTCTCCT	TGCGGGGGGT	GGTGAGGATC	AGGTGGCGGT	39780
	GCGTGGTGGG	GGTGTGTTCG	GTCGTCGTCT	GCTGCGTGTG	GGGGTGCGGG	GTGGTTCGGG	39840
45	GGTGTGGCGT	GCGCGGGGT	CTCTCCTCCT	GACGGGTGGG	TTGGGTGGTG	TGGGGGTCA	39900
	TCTCCCCCC	TGGTTGGCGC	GTTCGGGTGC	GGAGCATGTG	GTGTTGGCGG	GCCTCGGG	39960
50	TGGTGGGGTT	GTGGGGGGGG	TGGAGTTGGA	GCGGGAGTTG	GTGGGGTTGG	CCCCGAAGGT	40020
50	GACGTTCGTT	TCGTGTGATG	TCCCGATCG	GCCGTCGGTG	GTGGGGTTGT	TGGGTGTGGT	40080
	GGAGGGGTTG	GGGTGCCGT	TGCGTGGTGT	GTTTCATGCG	CCGGGGGTCG	CTCAGGTGTC	40140
55	GGGGTTGGGT	GAGGTGTCGT	TGGCGGAGGC	GGGTGGTGTG	TTGGGGGGTA	AGGCGGTGGG	40200

	GGCTGAGTTG	TTGGACGAGT	TGACGGCGGG	TGTGGAGCTG	GATGCGTTCG	TGTTGTTCTC	40260
5	CTCCCCTCCT	CCCCTCTCCC	GGAGTGGGGG	GCAGTCGGTG	TATGCGGCGG	CCAATGCGCA	40320
	TCTGGATGCG	TTGGCGGAGC	GTCGTCGTGC	GCAGGGGCGT	CCCGCGACCT	CCGTCGCCTG	40380
	CCCCCTCC	GACGGCGACG	GCATGGGCGA	GATGGCGCCC	GAGGGCTACT	TCGCCCGCCA	40440
10	CGGCGTGGCC	CCGCTCCACC	CCGAGACGGC	GCTCACCGCC	CTGCACCAGG	CCATCGACGG	40500
	CCGCGAAGCC	ACGGTCACCG	TGGCGGACAT	CGACTGGGAA	CGGTTCGCCC	CCCCCTTCAC	40560
	CCCCTTCCGT	CCCAGCCCCC	TGATCGCCGG	CATCCCCGCG	GCCCGTACGG	CGCCCGCCGC	40620
15	ccccccccc	GCCGAGGACA	CCCCCACCGC	CCCCGCCTC	CTGCGGGCGC	GGCCCGAGGA	40680
	CCGGCCGCGG	CTCGCCCTGG	ACCTGGTGCT	CCGCCACGTC	GCGGCGGTCC	TCGGCCACTC	40740
00	CGAGGACGCC	CGGGTCGACG	CCCGGGCCCC	CTTCCGGGAC	CTCGGCTTCG	ACTCGCTCGC	40800
20	CCCCCTCCCC	CTGCGCCGCC	GGCTGGCCGA	GGACACCGGG	CTCGACCTGC	CCGCCACCCT	40860
	CGTCTTCGAC	CACGAGGACC	CCACCGCGCT	GGCCCACCAC	CTGGCCGGCC	TCGCCGACGC	40920
25	GGGGACCCCC	GGCCCCCAGG	AGGGCACGGC	TCGGGCCGAG	AGCGGGCTGT	TCCCCTCCTT	40980
	ccccccccc	GTCGAACAGC	GCAGGTCGAG	CGAGGTCGTG	GAGCTGATGG	CCGACCTGGC	41040
	GCCCTTCCGG	CCCGCCTACT	CCCGGCAGCA	CCCCGCTCC	GCCGCCCCG	CCCCGTACC	41100
30	CCTCGCGACC	GGACCGGCGA	CGCGTCCCAC	GCTGTACTGC	TGCGCCGGCA	CCCCCGTCGG	41160
	CTCCGGGCCC	GCCGAGTACG	TCCCGTTCGC	CGAAGGACTG	CGCGGCGTCC	GGGAGACGGT	41220
	CCCCCTTCCC	CTGTCCGGCT	TCGGCGACCC	CGCGGAACCG	ATGCCCGCAT	CCCTCGACCC	41280
35	GCTGATCGAG	GTCCAGGCCG	ACGTCCTCCT	GGAGCACACC	GCGGGCAAGC	CCTTCGCCCT	41340
	CCCCGCCAC	TCCGCCGGCG	CGAACATCGC	CCACGCCCTG	GCCGCCCGGC	TGGAGGAACG	41400
40	CCCCTCCCCC	CCCGCAGCCG	TCGTACTGAT	GGACGTCTAC	CGTCCCGAGG	ACCCCGGTGC	41460
	GATGGGCGAG	TOGCGCGACG	ACCTGCTCAG	CTGGGCGCTC	GAACGCAGCA	CGGTGCCCCT	41520
	GGAGGACCAC	CGGCTCACCG	CCATGGCCGG	CTATCAGCGG	CTGGTGCTCG	GAACCCGGCT	41580
45	CACCGCCCTC	GAAGCCCCCG	TCCTGCTGGC	CCGGGCGTCC	GAACCCCTGT	GCGCGTGGCC	41640
	eccceceec	GGGGCGCGGG	GCGACTGGCG	GTCCCAGGTC	CCGTTCGCAC	GGACCGTCGC	41700
	CGACGTGCCC	GGCAACCACT	TCACCATGCT	CACCGAACAC	GCCCGGCACA	CCGCGTCCCT	41760
50	GGTGCACGAA	TGGCTGGACA	GCCTCCCGCA	CCAGCCCGGT	ccccccccc	TCACCGGAGG	41820
	GAAACACTGA	TGTACGCCGA	CGACATCGCG (GCCGTCTACG	ACCTGGTCCA	CG A GGGGAAG	41880
	GGGAAGGACT	ACCGGCAGGA	GGCCGAGGAG	ATCGCCGCAC	TCGTGCGCGT	CCACCGGCCG	41940
55	GCCCCCGGA	CCCTGCTCGA	CGTGGCCTGC (GCACCGGCC .	AGCACCTGCA	CCACCTGGAC	42000

	GGCCTCTTCG	ACCACGTCGA	GGCCTGGAA	CTCTCCGCCG	ACATGCTGGC	CCTCGCGACC	42060
5	GGCCGGAACC	CCGGTGTCAC	CTTCCACCAA	GGGGACATGC	GCTCGTTCTC	CCTGGGACGC	42120
	CGGTTCGACG	CGGTGACCTG	CATGTTCAGC	TCCATAGGCC	ACCTGCGGAC	CACCGACGAA	42180
	CTCGACAGCA	CGCTGCGGGC	CTTCACCGAC	CACCTCGAAC	CGTCCGGCGT	CATCGTCGTC	42240
10	GAACCCTGGT	GGTTCCCCGA	GTCCTTCACC	CCCGGTTACG	TCGGCGCCAG	CATCACGGAG	42300
	GCGGGCGAGC	GCACCGTCTG	CCGGGTCTCG	CACTCCGTAC	GGGAGGGGAA	CCCACCCCC	42360
15	ATCGAGGTGC	ACTACCTCCT	CGCCGGACCC	GCCGCCGTCC	GTCACCTGAC	CGAGGACCAC	42420
	ACCATCACCC	TGTTCCCGCG	CGCCGACTAC	GAGGCGGCCT	TCGAGCGCGC	CGGCTGCGAC	42480
	GTGGTCTACC	AGGAAGGCGG	CCCGTCCGGT	CGCGGGCTGT	TCATCGGCAC	CCGCCGCTGA	42540
20	CCCGGTGCCG	ACGCGGACCG	CCGCGGCCCG	GAGGCGGGTT	GCCCCGACCC	ACCCGGCACA	42600
	CCCGGGTCCC	CCGATCGTGC	GAGCGCCCCC	ATCGACCCGA	GAAGAAAGGC	AGGGCAGCCA	42660
	TGCCCACCCT	TGCCACGGAA	ACGGCCCCCG	CGAGCACGAG	CACGAGCGCG	GGCACGAGCA	42720
25	CGGGCGTCCG	TGCGCTCGGC	CGTCGGCTCC	AGCTGACCCG	GGCCGCACAC	TGGTGCGCCG	42780
	GCAACCAGGG	CGACCCGTAC	GCGCTGATCC	TGCGCGCCGT	CGCCGACCCC	GAGCCGTTCG	42840
30	AACGGGAGAT	CCGGGCCCGC	GGACCGTGGT	TCCGCAGCGA	ACAGCTGGAC	GCCTGGGTGA	42900
30	CCGCGGACCC	CGAGGTGGCG	GCGGCCGTCC	TGGCCGACCC	GCGCTTCGGC	ACGCTGGACC	42960
	GGGCCGGACG	CCGCCCGGAC	GAGGAACTGC	TGCCCCTCGC	CGAGGCGTTC	CCCCACCACG	43020
35	AACGCGCGGA	GCTCGTACGC	CTGCGGGCGC	TGGCCGCCCC	GGTGCTCAGC	CGGTACGCCC	43080
	CGGCCCAGGC	GCCCTGCGCG	GCGCGCACCA	CCGCCCGCAG	AGTGCTCGGC	CGCCTCCTGC	43140
	CCACCGGTGA	CGCCGGGTTC	GACCTTGTCG	GCGAGGTCGC	CCGGCCCTAC	GCCGTCGAGC	43200
40	TGATGCTCAG	GCTCCTCGGA	GTGCCGGGCC	GCGACCGCGC	CACCGCCGCG	CGGGCACTCG	43260
	CCCCCTCCGG	CCCCCAGCTC	GACGCCCGGA	TGGCCCCGCA	ACTGCTGACC	CTCCCCCCCC	43320
	AGTCCGCCGA	CGCCGTCCGC	ACACTGGCCG	ACCTGGTCCC	CGAGCTCGTC	GCGGAGAAGT	43380
45	CCCGGGGCCT	CGGGAACGCC	GAGCCCCGGC	CCGACGACGT	GCTCGCCCTC	CTCCTGCACG	43440
	ACGGCGTCGC	CCCCGGCGAC	GTCGAGCGCA	TCGCGCTGCT	CCTCGCGGTC	GCCCACCCG	43500
50	AACCCGTCGT	CACCGCCGTC	GCGCACACGG	TCCACCGGCT	GCTCGGCCGG	CCGGGGGAGT	43560
	GGGAGAGGC	CCGCCGGACG	ccecceces	CGAACGCCGT	CGACCAGGTG	CTGCGCGAGC	43620
	GCCCCCCGGC	CCGGCTGGAG	AACCGGGTCG	CGCACACCGG	CCTCGAACTC	GCCGCCCCCC	43680
55	GGATCACCGC	CGACGAGCAC	GTCGTGGTGC	TGGCCGCCGC	CGGACGGGAG	ATCCCCGGGC	43740

	CGGAGCCGCT CGGGGGCGCC GACGGACCGC ACCTGGCGCT CGCCCTCCCG CTGATCCGCC	43800
5	TGGCCGCCAC CACCGCGGTC CAGGTCACGG CCGGCCGT GCCCGGCCTG CGGCCGAGG	43860
	GACCGCCCCT GACCCGGCCG CGGTCACCGG TCCTGGGCCGC CTGCGGCCCGC CTCCGGGTCC	43920
	ACCCGGGATG ACCCCGCCGT CCGTACGCCC CCTCCCAGAC CGGAGCCGCT GTGCGCGTCC	43980
10	TGCTGACATC CCTCGCCCAC AACACCCACT ACTACAGTCT GGTGCCCCTC GCCTGGGCGC	44040
	TGCGCGCCGC CGGGCACGAG GTACGGGTGG CGAGCCCGCC CTCCCTCACC GACGTCATCA	44100
	CCTCCACCGG TCTGACCGCC GTACCGGTGG GCGACGACCG ACCGGCCGCG GAGCTGCTCG	44160
15	CCGAGATGGG CAGAGACCTC GTCCCCTACC AGAGGGGCTT CGAGTTCGGT GAGGTGGAGA	44220
	3GCGAGGAGGA GACCACCTGG GAGTACCTGC TCGGCCAGCA GAGCATGATG GCCGCCCTGT	44280
20	GCTTCGCCCC GTTCAACGGC GCCGCCACGA TGGACGAGAT CGTCGACTTC GCCCGTGGCT	44340
20	GGCGGCCCGA CCTGGTCGTG TGGGAACCCT GGACCTA	44377
25	(2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4550 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown	,
30	(ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
35	Met Ser Gly Glu Leu Ala Ile Ser Arg Ser Asp Asp Arg Ser Asp Ala 1 5 10 15	
	Val Ala Val Val Gly Met Ala Cys Arg Phe Pro Gly Ala Pro Gly Ile 20 25 30	
40	Ala Glu Phe Trp Lys Leu Leu Thr Asp Gly Arg Asp Ala Ile Gly Arg 35 40 45	
	Asp Ala Asp Gly Arg Arg Gly Met Ile Glu Ala Pro Gly Asp Phe 50 55 60	
45	Asp Ala Ala Phe Phe Gly Met Ser Pro Arg Glu Ala Ala Glu Thr Asp 65 70 75 80	
50	Pro Gln Gln Arg Leu Met Leu Glu Leu Gly Trp Glu Ala Leu Glu Asp 85 90 95	
	Ala Gly Ile Val Pro Gly Ser Leu Arg Gly Glu Ala Val Gly Val Phe 100 105 110	
55	Val Gly Ala Met His Asp Asp Tyr Ala Thr Leu Leu His Arg Ala Gly 115 120 125	

	Ala	Pro 130		Gly	Pro	His	Thr 135	Ala	Thr	Gly	Leu	Gln 140	Arg	Ala	Met	Leu
5	Ala 145	Asn	Arg	Leu	Ser	Tyr 150	Val	Leu	Gly	Thr	Arg 155	Gly	Pro	Ser	Leu	Ala 160
	Val	Asp	Thr	Ala	Gln 165	Ser	Ser	Ser	Leu	Val 170	Ala	Val	Ala	Leu	Ala 175	Val
10	Glu	Ser	Leu	Arg 180	Ala	Gly	Thr	Ser	Arg 185	Val	Ala	Val	Ala	Gly 190	Gly	Val
	Asn	Leu	Val 195	Leu	Ala	Asp	Glu	Gly 200	Thr	Ala	Ala	Met	Glu 205	Arg	Leu	Gly
15	Ala	Leu 210	Ser	Pro	Asp	Gly	Arg 215	Суѕ	His	Thr	Phe	Asp 220	Ala	Arg	Ala	Asn
00	Gly 225	Tyr	Val	Arg	Gly	Glu 230	Gly	Gly	Ala	Ala	Val 235	Val	Leu	Lys	Pro	Leu 240
20	Ala	qeA	Ala	Leu	Ala 245	Asp	Gly	Asp	Pro	Val 250	Tyr	Cys	Val	Val	Arg 255	Gly
25	Val	Ala	Val	Gly 260	Asn	Asp	Gly	Gly	Gly 265	Pro	Gly	Leu	Thr	Ala 270	Pro	Asp
	Arg	Glu	Gly 275	Gln	Glu	Ala	Val	Leu 280	Arg	Ala	Ala	Cys	Ala 285	Gln	Ala	Arg
30	Val	Asp 290	Pro	Ala	Glu	Val	Arg 295	Phe	Val	Glu	Leu	His 300	Gly	Thr	Gly	Thr
	Pro 305	Val	Gly	Asp	Pro	Val 310	Glu	Ala	His	Ala	Leu 315	Gly	Ala	Val	His	Gly 320
35	Ser	Gly	Arg	Pro	Ala 325	Asp	yab	Pro	Leu	Leu 330	Val	Gly	Ser	Val	Lys 335	Thr
	Asn	Ile	Gly	His 340	Leu	Glu	Gly	Ala	Ala 345	Gly	Ile	Ala	Gly	Leu 350	Val	Lys
40	Ala	Ala	Leu 355	Суз	Leu	Arg	Glu	Arg 360	Thr	Leu	Pro	Gly	Ser 365	Leu	Asn	Phe
	Ala	Thr 370	Pro	Ser	Pro		Ile 375		Leu	Asp		Leu 380	Arg	Leu	Lys	Val
45	Gln 385	Thr	Ala	Ala	Ala	Glu 390	Leu	Pro	Leu	Ala	Pro 395	Gly	Gly	Ala	Pro	Leu 400
50	Leu	Ala	Gly	Val	Ser 405	Ser	Phe	Gly	Ile	Gly 410	Gly	Thr	Asn	Cys	His 415	Val
	Val	Leu	Glu	His 420	Leu	Pro	Ser	Arg	Pro 425	Thr	Pro	Ala	Val	Ser 430	Val	Ala
55	Ala	Ser	Leu 435	Pro	Asp	Val	Pro	Pro 440	Leu	Leu	Leu	Ser	Ala 445	Arg	Ser	Glu

	Gly	Ala	Leu	Arg	Ala	Gln	Ala 455		. Arg	Leu	Gly	Glu 460		Val	Glu	Arg
5	Val 465	Gly	Ala	Asp	Pro	Arg 470		Val	Ala	Tyr	Ser 475		Ala	Ser	Thr	Arg 480
	Thr	Leu	Phe	Glu	His 485	Arg	Ala	Val	Val	Pro	Суз	Gly	Gly	Arg	Gly 495	Glu
10	Leu	Val	Ala	Ala 500	Leu	Gly	Gly	Phe	Ala 505	Ala	Gly	Arg	Va1	Ser 510		Gly
	Val	Arg	Ser 515	Gly	Arg	Ala	Val	Pro 520		Gly	Val	Gly	Val 525		Phe	Thr
15	Gly	Gln 530		Ala	Gln	Trp	Val 535	Gly	Met	Gly	Arg	Gly 540	Leu	Tyr	Ala	Gly
20	Gly 545	Gly	Val	Phe	Ala	Glu 550	Val	Leu	Asp	Glu	Val 555	Leu	Ser	Met	Val	Gly 560
	Glu	Val	yab	Gly	Arg 565	Ser	Leu	Arg	Asp	Val 570	Met	Phe	Gly	Asp	Val 575	-
25	Val	Asp	Ala	Gly 580	Ala	Gly	Ala	Дзр	Ala 585	Gly	Ala	Gly	Ala	Gly 590	Ala	Gly
	Val	Gly	Ser 595	Gly	Ser	Gly	Ser	Val 600	Gly	Gly	Leu	Leu	Gly 605	Arg	Thr	Glu
30	Phe	Ala 610	Gln	Pro	Ala	Leu	Phe 615	Ala	Leu	Glu	Val	Ala 620	Leu	Phe	Arg	Ala
	Leu 625	Glu	Ala	Arg	Gly	Val 630	Glu	Val	Ser	Val	Val 635	Leu	Gly	His	Ser	Val 640
35	Gly	Glu	Val	Ala	Ala 645	Ala	Tyr	Val	Ala	Gly 650	Val	Leu	Ser	Leu	Gly 655	Asp
	Ala	Val	Arg	Leu 660	Val	Val	Ala	Arg	Gly 665	Gly	Leu	Met	Gly	Gly 670	Leu	Pro
40	Val	Gly	Gly 675	Gly	Met	Trp	Ser	Val 680	Gly	Ala	Ser	Glu	Ser 685	Val	Val	Arg
	Gly	Val 690	Val	Glu	Gly	Leu	Gly 695	Glu	Trp	Val	Ser	Val 700	Ala	Ala	Val	Asn
45	Gly 705	Pro	Arg	Ser	Val	Val 710	Leu	Ser	Gly		Val 715	Gly	Val	Leu	Glu	Ser 720
50	Val	Val	Ala	Ser	Leu 725	Met	Gly	Asp	Gly	Val 730	Glu	Сув	Arg		Leu 735	Asp
	Val	Ser	His	Gly 740	Phe	His	Ser	Val	Leu 745	Met	Glu	Pro		Leu 750	Gly	Glu
55	Phe	Arg	Gly 755	Val	Val	Glu		Leu 760	Glu	Phe ·	Gly	Arg	Val 765	Arg	Pro	Gly

	Val	Val 770	Val	Val	Ser	Gly	Val 775	Ser	Gly	Gly	Val	Val 780	Gly	Ser	Gly	Glu
5	Leu 785	Gly	dsV	Pro	Gly	Tyr 790	Trp	Val	Arg	His	Ala 795	Arg	Glu	Ala	Val	Arg 800
10	Phe	Ala	Asp	Gly	Val 805	Gly	Val	Val	Arg	Gly 810	Leu	Gly	Val	Gly	Thr 815	Leu
-	Val	Glu	Val	Gly 820	Pro	His	Gly	Val	Leu 825	Thr	Gly	Met	Ala	Gly 830	Glu	Cys
	Leu	Gly	Ala 835	Gly	yab	Asp	Val	Val 840	Val	Val	Pro	Ala	Met 845	Arg	Arg	Gly
15	Arg	Ala 850	Glu	Arg	Glu	Val	Phe 855	Glu	Ala	Ala	Leu	Ala 860	Thr	Val	Phe	Thr
20	Arg 865	Asp	Ala	Gly	Leu	Asp 870	Ala	Thr	Ala	Leu	His 875	Thr	Gly	Ser	Thr	Gly 880
	Arg	Arg	Ile	Asp	Leu 885	Pro	Thr	Tyr	Pro	Phe 890	Gln	Arg	Arg	Thr	His 895	Trp
25	Ser	Pro	Ala	Leu 900	Ser	Arg	Pro	Val	Thr 905	Ala	Asp	Ala	Gly	Ala 910	Gly	Val
	Thr	Ala	Thr 915	Asp	Ala	Val	Gly	His 920	Ser	Val	Ser	Pro	Asp 925	Pro	Glu	Ser
30	Thr	Glu 930	Gly	Thr	Ser	His	Arg 935	Asp	Thr	Asp	Asp	Glu 940	Ala	Asp	Ser	Ala
	Ser 945	Pro	Glu	Pro	Met	Ser 950	Pro	Glu	Asp	Ala	Val 955	Arg	Leu	Val	Arg	Glu 960
35	Ser	Thr	Ala	Ala	Val 965	Leu	Gly	His	Asp	А вр 970	Pro	Gly	Glu	Val	Ala 975	Leu
	Asp	Arg	Thr	Phe 980	Thr	Ser	Gln	Gly	Met 985	Asp	Ser	Val	Thr	Ala 990	Val	Glu
40	Leu	Cys	Asp 995	Leu	Leu	Lys	Gly	Ala 1000		Gly	Leu	Pro	Leu 1005		Ala	Thr
45	Leu	Val 1010	Tyr)	Asp	Leu	Pro	Thr 1019		Arg	Ala	Val	Ala 1020		His	Ile	Val
45	Glu 102		Ala	Gly	Gly	Pro 1030		Asp	Ser	Val	Ala 1035		Gly	Pro	Gly	Val 1040
50	Leu	Ser	Ser	Ala	Ala 1045		Gly	Val	Ser	Asp 1050		Arg	Gly	Gly	Ser 1055	
	Asp	Asp	Asp	Asp 1060		Ile	Ala	Ile	Val 1065		Val	Gly	Сув	Arg 1070		Pro
55	Gly	Gly	Val 1075		Ser	Arg	Ala	Ala 1080		Trp	Glu	Leu	Leu 1085		Ser	Gly

	Ala	Asp		Ile	Ser	Ser	Phe 1099		Thr	Asp	Arg	Gly 110		Asp	Leu	Asp
5	Gly 1105		Туг	Asp	Pro	Glu 1110		Gly	Thr	Pro	Gly 1115		Thr	Tyr	Val	Arg 1120
	Glu	Gly	Gly	Phe	Leu 1125		Ser	Ala	Ala	Glu 1130		Asp	Ala	Glu	Phe 1139	
10	Gly	Ile	Ser	Pro 1140	_	Glu	Ala	Thr	Ala 1149		Asp	Pro	Gln	Gln 1150		Leu
15	Leu	Leu	Glu 1159		Ser	Trp	Glu	Ala 1160		Gļu	Asp	Ala	Gly 116	Val	Leu	Pro
	Glu	Ser 1170		Arg	Gly	Gly	Asp 1175		Gly	Val	Phe	Val 1180		Ala	Thr	Ala
20	1185	5	_	_		1190)				1195	5		Tyr Arg		1200
	_				1205	5				1210)				1215	5
25	Tyr	Thr	Leu	Gly 1220		GIY	GIĀ	Pro	A1a 1225		Thr	Val	qeA	Thr 1230		Сув
	Ser	Ser	Ser 1235		Val	Ala	Leu	His 1240		Ala	Val	Gln	Ala 1245	Leu	Arg	Arg
30	Gly	Glu 1250	_	Gly	Leu	Ala	Leu 1255		Gly	Gly	Ala	Thr 1260		Met	Ser	Gly
	Pro 1265	-	Met	Phe	Val	Glu 1270		Ser	Arg	Gln	Arg 1275	_	Leu	Ala	Pro	1280 Asp
35	Gly	Arg	Сув	Met	Pro 1285		Ser	Ala	Asp	Ala 1290	_	Gly	Thr	Ala	Trp 1295	
	Glu	Gly	Val	Ala 1300		Leu	Ala	Leu	Glu 1305	_	Leu	Ser	Дsp	Ala 1310	•	Arg
40	Ala	Gly	His 1315		Val	Leu	Gly	Val 1320		Arg	Gly	Ser	Ala 1325	Val	Asn	Gln
		Gly 1330						Thr				Arg 1340		Ala	Gln	Glu
45	Gly 1345		Ile	Arg	Ala	Ala 1350		Ala	Asp	Ala	Gly 1355		Ala	Pro	Gly	Asp 1360
50	Val	Asp	Ala	Val	Glu 1365		His	Gly	Thr	Gly 1370		Ala	Leu	Gly	Asp 1375	
	Ile	Glu	Ala	Ser 1380		Leu	Leu	Ala	Thr 1385		Gly	Arg	Glu	Arg 1390		Gly
<i>55</i>	yab	Pro	Leu 1395	-	Leu	Gly	Ser	Leu 1400	-	Ser	Asn	Val	Gly 1405	His	Thr	Gln

	Ala	Ala 141		Gly	Ala	Ala	Gly 141		Val	ГЛа	Met	Leu 142		Ala	Leu	Glu
5	His 142		Thr	Leu	Pro	Arg 143		Leu	His	Ala	Asp 143	_	Pro	Ser	Thr	His 1440
10	Val	Asp	Trp	Ser	Ser 144		Thr	Val	Ala	Leu 145		Ala	Glu	Ala	Arg 145	Arg 5
	Trp	Pro	Arg	Arg 146	Ser 0	Asp	Arg	Pro	Arg 146		Ala	Ala	Val	Ser 147		Phe
15	Gly	Ile	Ser 147		Thr	Asn	Ala	His 148		Ile	Ile	Glu	Glu 148		Pro	Glu
	Trp	Val 149		Asp	Ile	Asp	Gly 149		Ala	Ala	Pro	Asp 150		Gly	Thr	Ala
20	Asp 1509		Ala	Ala	Pro	Ser 151		Leu	Leu	Leu	Ser 151		Arg	Ser	Glu	Gly 1520
	Ala	Leu	Arg	Ala	Gln 1525		Val	Arg	Leu	Gly 1530		Tyr	Val	Glu	Arg 153	
25	Gly	Ala	Asp	Pro 1540	Arg	Asp	Val	Ala	Tyr 1545		Leu	Ala	Ser	Thr 155		Thr
	Leu	Phe	Glu 1555		Arg	Ala	Val	Val 1560		Cys	Gly	Gly	Arg 1569		Glu	Leu
30	Val	Ala 1570	Ala	Leu	Gly	Gly	Phe 1575		Ala	Gly	Arg	Val 1580		Gly	Gly	Val
	1585	i			Ala	1590)				1595	,				1600
	Gln				1605					1610)				1615	;
	Gly			1620)				1625	•				1630)	
	Val		1635					1640)				1645	i	_	
45		1650					1655	,				1660				
	Gly 1665	Ser	Gly	Ser	Gly	Ser 1670	Val	Gly	Gly		Leu 1675		Arg	Thr		Phe 1680
50	Ala (Gln	Pro .	Ala	Leu 1685	Phe .	Ala	Leu		Val 1690	Ala	Leu	Phe	Arg	Ala 1695	
	Glu .	Ala .	Arg (Gly 1700	Val (Glu '	Val		Val 1705		Leu (Gly		Ser 1710		Gly
55	Glu '		Ala . 1715	Ala .	Ala '	Tyr '		Ala 1720	Gly	Val 1	Leu :		Leu (1725	Gly	Asp .	Ala

	Val	Arg 1730		Val	Val	Ala	Arg 173		Gly	Leu	Met	Gly 1740		Leu	Pro	Val
5	Gly 1749	_	Gly	Met	Trp	Ser 175		Gly	Ala	Ser	Glu 175		Val	Val	Arg	Gly 1760
10	Val	Val	Glu	Gly	Leu 1765	_	Glu	Trp	Val	Ser 1770	Val	Ala	Ala	Val	Asn 177!	
	Pro	Arg	Ser	Val 1780		Leu	Ser	Gly	Asp 1785		Gly	Val	Leu	Glu 1790		Val
15	Val	Ala	Ser 1795		Met	Gly	yab	Gly 1800		Glu	Суs	Arg	Arg 180		Asp	Val
	Ser	His 1810		Phe	His	Ser	Val 1815		Met	Glu	Pro	Val 1820		Gly	Glu	Phe
20	Arg 1825		Val	Val	Glu	Ser 1830		Glu	Phe	Gly	Arg 1839		Arg	Pro	Gly	Val 1840
	Val	Val	Val	Ser	Gly 1845		Ser	Gly	Gly	Val 1850		Gly	Ser	Gly	Glu 1855	
25	Gly	Asp	Pro	Gly 1860	-	Trp	Val	Arg	His 1865		Arg	Glu	Ala	Val 1870	-	Phe
	Ala	yab	Gly 1875		Gly	Val	Val	Arg 1880	_	Leu	Gly	Val	Gly 1885	_	Leu	Val
30	Glu	Val 1890		Pro	His	Gly	Val 1899		Thr	Gly	Met	Ala 1900		Glu	Cys	Leu
	Gly 1905		Gly	Asp	Asp	Val 1910		Val	Val	Pro	Ala 1915		Arg	Arg	Gly	Àrg 1920
35	Ala	Glu	Arg	Glu	Val 1925		Glu	Ala	Ala	Leu 1930		Thr	Val	Phe	Thr 1935	_
	Asp	Ala	Gly	Leu 1940	-	Ala	Thr	Ala	Leu 1945		Thr	Gly	Ser	Thr 1950	-	Arġ
40	Arg	Ile	Asp 1955		Pro	Thr	Tyr	Pro 1960		Gln	Arg	qeA	Arg 1965	. –	Trp	Leu
45	Asp										Glu			Gly	Ser	Pro
	Ala 1985	-	Ala	Arg	Ala	Thr 1990		Arg	Gly	Arg	Ser 1995		Thr	Ala	-	Ile 2000
50	Arg	Tyr	Arg	Val	Ala 2005	-	Gln	Pro		Val 2010		Asp	Arg	-	Asn 2015	
	Gly	Pro	Ala	Gly 2020		Val	Leu	Leu	Leu 2025		Pro	Asp	Glu	Asp 2030		Ala
55	Asp	Ser	Gly 2035		Ala	Pro		Ile 2040		Arg	Glu		Ala 2045		Arg	Gly

	Ala	Glu 2050		His	Thr	Val	Ala 2055		Pro	Val	Gly	Thr 2060		Arg	Glu	Ala
5	Ala 2065		Asp	Leu	Leu	Arg 2070		Ala	Gly	Asp	Gly 2075		Ala	Arg	Ser	Thr 2080
10	Arg	Val	Leu	Trp	Leu 2085		Pro	Ala	Glu	Pro 2090		Ala	Ala	Asp	Ala 2099	
	Ala	Leu	Val	Gln 2100		Leu	Gly	Glu	Ala 2109		Pro	Glu	Ala	Pro 2110		Trp
15	Ile	Thr	Thr 2115		Glu	Ala	Ala	Ala 2120		Arg	Pro	Asp	Glu 2129		Pro	Ser
	Val	Gly 2130	_	Ala	Gln	Leu	Trp 2135		Leu	Gly	Gln	Val 2140		Ala	Leu	Glu
20	Leu 2145	-	Arg	Arg	Trp	Gly 2150	-	Leu	Ala	Asp	Leu 2159		Gly	Ser	Ala	Ser 2160
	Pro	Ala	Val	Leu	Arg 2165		Phe	Val	Gly	Ala 2170		Leu	Ala	Gly	Gly 2175	
25	Asn	Gln	Phe	Ala 2180		Arg	Pro	Ser	Gly 2185		His	Val	Arg	Arg 2190		Val
	Pro	Ala	Pro 2195		Pro	Val	Pro	Ala 2200		Ala	Arg	Thr	Val 2205		Thr	λla
30	Pro	Ala 2210		Ala	Val	Gly	Glu 2215		Ala	Arg	Asn	Asp 2220		Ser	Asp	Val
	Val 2225		Pro	Asp	As p	Arg 2230		Ser	Ser	Gly	Thr 2235		Leu	Ile	Thr	Gly 2240
35	Gly	Thr	Gly	Ala	Leu 2245	_	Ala	Gln	Val	Ala 2250	_	Arg	Leu	λla	Arg 2255	
	Gly	Ala	Ala	Arg 2260		Leu	Leu	Val	Gly 2265		Arg	Gly	Ala	Ala 2270		Pro
40	Gly	Val	Gly 2275		Leu	Val	Glu	Glu 2280		Thr	Ala	Leu	Gly 2285		Glu	Val
45		Val 2290	Glu)	Ala	Cys		Val 2295		Asp	Arg	ysb	Ala 2300		λla	Ala	Leu
	Leu 2305		Gly	Leu	Pro	Glu 2310		Arg	Pro	Leu	Val 2315		Val	Leu	His	Ala 2320
50	Ala	Gly	Val	Leu	Asp 2325		Gly	Val	Leu	Asp 2330		Leu	Thr	Ser	Asp 2335	
	Val	Asp	Ala	Val 2340		Àrg	Asp	Lys	Val 23 4 5		Ala	Ala	Arg	His 2350		qaA
55	Glu	Leu	Thr 2355		Asp	Leu	Pro	Leu 2360	_	Ala	Phe	Val	Leu 2365		Ser	Ser

	Ile	Val 237		Val	Trp	Gly	Asn 237	-	Gly	Gln	λla	Val 238	-	Ala	Ala	Ala
5	Asn 238		Ala	Leu	Asp	Ala 239		Ala	Gln	Arg	Arg 239	_	Ala	Arg	Gly	Ala 2400
10	Arg	Ala	Ala	Ser	11e 240		Trp	Gly	Pro	Trp 241		Gly	Ala	Gly	Met 241	
	Ser	Gly	Thr	Ala 242		Lys	Ser	Phe	Glu 242		Asp	Gly	Val	Thr 243		Leu
15	Asp	Pro	Glu 243		Ala	Leu	Asp	Val 244		Авр	Asp	Val	Val 244	-	Ala	Gly
	Gly	Thr 245	Ser 0	Ala	Ala	Gly	Thr 245		Ala	Ala	Gly	Glu 246		Ser	Leu	Leu
20	Val 246		Asp	Val	Asp	Trp 247		Thr	Phe	Val	Gly 247		Ser	Val	Thr	Arg 2480
	Arg	Thr	Trp	Ser	Leu 248		Asp	Gly	Val	Ser 249		Ala	Arg	Ser	Ala 249	_
25	Ala	Gly	His	Ala 250		Asp	qaA	Arg	Ala 2509		Leu	Thr	Pro	Gly 2510		Arg
	Pro	Gly	Asp 2515		Ala	Pro	Gly	Gly 2520		Gly	Gln	Asp	Gly 252	-	Glu	Gly
30	Arg	Pro 2530	Trp	Leu	Ser	Val	Gly 253		Ser	Pro	Ala	Glu 2540		Arg	Arg	Ala
	Leu 2545	Leu	Thr	Leu	Val	Arg 2550		Glu	Ala	Ala	Gly 2555		Leu	Arg	His	Ala 2560
35	Ser	Ala	Asp	Ala	Val 2565		Pro	Glu	Leu	Ala 2570		Arg	Ser	Ala	Gly 2575	
40	Asp	Ser	Leu	Thr 2580		Leu	Glu	Leu	Arg 2585		Arg	Leu	Thr	Ala 2590		Thr
			Asn 2595	;				2600)				2605	;		
	Ser	Leu 2610	Ala)	Ser	His		His 2615		Glu	Leu	Phe	Gly 2620		Asp	Ser	Glu
45	Ala 2625	Glu	Pro	Ala	λla	Ala 2630		Pro	Thr		Val 2635		Ala	Asp		Arg 2640
50	Glu	Pro	Ile	Ala	Ile 2645		Gly	Met		Cys 2650		Туг	Pro	_	Gly 2655	
	Ala	Ser	Pro	Asp 2660		Leu	Trp	Asp	Leu 2665		Ala	Gly		Gly 2670		Thr
55	Leu	Ser	Pro 2675	Phe	Pro	Ala	Asp	Arg 2680		Trp	Asp		Glu 2685	Gly	Leu	Tyr

	Asp 1	Pro (2690	Glu	Pro	Gly	Val	Pro 2699		Lys	Ser	Tyr	Val 2700		Glu	Gly	Gly
5	Phe 1 2705	Leu /	Arg	Ser	Ala	Ala 2710		Phe	Asp	Ala	Glu 2715		Phe	Gly	Ile	Ser 2720
10	Pro i	Arg (3lu	Ala	Thr 2725		Met	qeA	Pro	Gln 2730		Arg	Leu	Leu	Leu 273	
	Thr S	Ser 1	-	Glu 2740		Leu	Glu	Arg	Ala 2749	-	Ile	Val	Pro	As p 2750		Leu
15	Arg (2	2755	-		_		2760)				2769	5		
		2770			_		2779	5				2780)			
20	Thr (2785	_				2790)				2795	;				2800
	Gly I			_	2805	•				2810	1				2815	i
25	Leu \			2820)				2825	5				2830)	
	Asp I	2	835					2840)				2845	•		
30		850				•	2855	;	•			2860	, -	•		-
35	Lys # 2865	Ala P	he i	Ala	Glu	Gly 2870		Asp	Gly		Ala 2875	-	Ala	Glu	Gly	Val 2880
				_		_					_				_	_
	Gly V				2885	•				2890					2895	
40	Arg \	/al L	eu i	Ala 2900	2885 Val	Val	Arg	Gly	Ser 2905	2890 Ala	Val	Asn	Gln	As p 2910	2895 Gly	Ala
40	Arg \	Val L Asn G 2	eu ; 31y 1	Ala 2900 Leu	2885 Val Thr	Val Ala	Arg Pro	Gly Ser 2920	Ser 2905 Gly	2890 Ala Pro	Val Ala	Asn Gln	Gln Gln 2925	Asp 2910 Arg	2895 Gly Val	Ala Ile
40	Arg V	Asn G 2 31u A	eu ; 31y 1 1915	Ala 2900 Leu Leu	2885 Val Thr	Val Ala Asp	Arg Pro Ala 2935	Gly Ser 2920 Gly	Ser 2905 Gly Leu	Ala Pro Val	Val Ala Pro	Asn Gln Ala 2940	Gln Gln 2925 Asp	Asp 2910 Arg Val	2895 Gly Val	Ala Ile Val
	Arg V	Val L Asn G 2 31u A 2930	eu i 31y 1 1915 11a 1	Ala 2900 Leu Leu His	2885 Val Thr Ala Gly	Val Ala Asp Thr 2950	Arg Pro Ala 2935	Gly Ser 2920 Gly Thr	Ser 2905 Gly Leu Ala	2890 Ala Pro Val Leu	Val Ala Pro Gly 2955	Asn Gln Ala 2940 Asp	Gln Gln 2925 Asp Pro	Asp 2910 Arg Val	2895 Gly Val Asp	Ala Ile Val Ala 2960
	Arg V	Val L Asn G 2 2 3 3 1 4 9 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	eu ; 3915 ala l ala l	Ala 2900 Leu Leu His Leu	2885 Val Thr Ala Gly Ala 2965	Val Ala Asp Thr 2950	Arg Pro Ala 2935 Gly Tyr	Gly Ser 2920 Gly Thr	Ser 2905 Gly Leu Ala Arg	2890 Ala Pro Val Leu Glu 2970	Val Ala Pro Gly 2955 Arg	Asn Gln Ala 2940 Asp Val	Gln 2925 Asp Pro Gly	Asp 2910 Arg Val Ile Asp	Cly Val Asp Glu Pro 2975	Ala Val Ala 2960 Leu
45	Arg N Ser A Arg G 2 Val G 2945 Gly A	Val L Asn G 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	Sly 1915 1915 1916 1919 1919 1919 1919 1919	Ala 29000 Leu Leu Leu Ser 2980	Val Thr Ala Gly Ala 2965 Leu	Val Ala Asp Thr 2950 Thr	Arg Pro Ala 2935 Gly Tyr Ser	Gly Ser 2920 Gly Thr Gly Asn	Ser 2905 Gly Leu Ala Arg	Ala Pro Val Leu Glu 2970	Val Ala Pro Gly 2955 Arg	Asn Gln Ala 2940 Asp Val	Gln Gln 2925 Asp Pro Gly Gln	Asp 2910 Arg Val Ile Asp Ala 2990	2895 Gly Val Asp Glu Pro 2975 Ala	Ala Val Ala 2960 Leu Ala

	Leu Pro		Leu Hi	s Val Asp 3015	Ala Pro S	Ser Ser Lys 3020	Val Glu	Trp
5	Ala Ser 3025	Gly Ala		u Leu Leu 30	Thr Glu T	hr Arg Ser 035	Trp Pro	Arg 3040
10	Arg Val	Glu Arg	Val Ar 3045	g Arg Ala	Ala Val S 3050	er Ala Phe	Gly Val 305	
	Gly Thr	Asn Ala 306		l Val Leu	Glu Glu A 3065	la Pro Ala	Glu Ala 3070	Gly
15	Ser Glu	His Gly 3075	Asp Gl	y Pro Glu 308	Pro Glu A	rg Pro Asp 308		Thr
	Gly Pro 309		Trp Va	l Leu Ser 3095	Ala Arg S	er Glu Gly 3100	Ala Leu	Arg
20	3105		31	10		115	•	3120
			3125	_	Val Val S 3130		3135	5
25		314	0		Gly Arg G 3145		3150	
		3155		316		316	5	
30	317	0		3175	Val Arg G	3180	·	
35	3185		31	90		195		3200
			3205		Glu Val Lo 3210	eu Asp Glu	Val Leu 3215	
	Val Val	Gly Glu	Val Agr					
40		3220)		Ser Leu Ai 3225		3230	
40		3220 Asp Ser 3235	Val Le	ı Gly Gly 324	3225 Leu Leu Gi	ly Arg Thr 324	3230 Glu Phe	Ala
40 45	Gln Pro	3220 Asp Ser 3235 Ala Leu	Val Le	1 Gly Gly 3240 2 Leu Glu 3255	3225 Leu Leu G) Val Ala Le	ly Arg Thr 324 eu Phe Arg 3260	3230 Glu Phe 5 Ala Leu	Ala Glu
	Gln Pro 325 Ala Arg 3265	3220 Asp Ser 3235 Ala Leu O	Val Let Phe Ald Glu Val	a Leu Glu 3240 a Leu Glu 3255 l Ser Val	J225 Leu Leu G Val Ala Le Val Leu G 32	ly Arg Thr 324 eu Phe Arg 3260 ly His Ser	3230 Glu Phe Ala Leu Val Gly	Ala Glu Glu 3280
	Gln Pro 325 Ala Arg 3265	3220 Asp Ser 3235 Ala Leu O	Val Let Phe Ald Glu Val	a Leu Glu 3240 a Leu Glu 3255 l Ser Val	J225 Leu Leu G Val Ala Le Val Leu G	ly Arg Thr 324 eu Phe Arg 3260 ly His Ser	3230 Glu Phe Ala Leu Val Gly	Ala Glu Glu 3280 Val
45	Gln Pro 3256 Ala Arg 3265 Val Ala Arg Leu	Asp Ser 3235 Ala Leu O Gly Val Ala Ala Val Val 3300	Val Let Phe Ald Glu Val 322 Tyr Val 3285 Ala Arc	a Leu Glu 3255 l Ser Val 70 l Ala Gly	Jacobs Ja	ly Arg Thr 324 eu Phe Arg 3260 ly His Ser 275 er Leu Gly	Glu Phe Glu Phe Ala Leu Val Gly Asp Ala 3295 Pro Val 3310	Ala Glu Glu 3280 Val

	Val Glu Gly L 3330	eu Gly Glu Tr 33		Ala Val Asn Gly Pro 3340
5	Arg Ser Val V 3345	Val Leu Ser Gl	y Asp Val Gly Val 335	Leu Glu Ser Val Val 5 3360
10	Val Thr Leu M	Met Gly Asp Gl 3365	y Val Glu Cys Arg 3370	Arg Leu Asp Val Ser 3375
10	-	lis Ser Val Le	ı Met Glu Pro Val 3385	Leu Gly Glu Phe Arg 3390
15	Gly Val Val G 3395	Slu Ser Leu Gl	Phe Gly Arg Val	Arg Pro Gly Val Val 3405
	Val Val Ser G 3410	Sly. Val Ser Gly		Ser Gly Glu Leu Gly 3420
20	Asp Pro Gly T 3425	yr Trp Val Arc 3430	g His Ala Arg Glu 343	Ala Val Arg Phe Ala 5 3440
	Asp Gly Val G	ly Val Val Arg	g Gly Leu Gly Val 3450	Gly Thr Leu Val Glu 3455
25	_	is Gly Val Le 460	I Thr Gly Met Ala 3465	Gly Gln Cys Leu Glu 3470
	Ala Gly Asp A 3475	sp Val Val Va	l Val Pro Ala Met 3480	Arg Arg Gly Arg Pro 3485
30	Glu Arg Glu V 3490	al Phe Glu Ala 349		Val Phe Thr Arg Asp 3500
	Ala Gly Leu A 3505	sp Ala Thr Th: 3510	Leu His Thr Gly 351	Ser Thr Gly Arg Arg 3520
35	Ile Asp Leu P	ro Thr Tyr Pro 3525	Phe Gln His Asn 3530	Arg Tyr Trp Ala Thr 3535
40		hr Gly Ala Th 540	Gly Thr Ser Ala 3545	Ala Ala Arg Phe Gly 3550
	Leu Glu Trp L 3555	ys Asp His Pro	Phe Leu Ser Gly 3560	Ala Thr Pro Ile Ala 3565
45	Gly Ser Gly A 3570	la Leu Leu Leu 35°		Gly Leu Ala Ala His 3580
	Pro Trp Leu A 3585	la Asp His Ala 3590	a Ile Ser Gly Thr 3599	Val Leu Leu Pro Gly 3600
50	Thr Ala Ile A	la Asp Leu Leu 3605	Leu Arg Ala Val 3610	Glu Glu Val Gly Ala 3615
		lu Glu Leu Thi 620	Leu His Glu Pro 3625	Leu Leu Pro Glu 3630
55	Arg Gly Gly L 3635	eu His Val Gla	Val Leu Val Glu 3640	Ala Ala Asp Glu Gln 3645

_	Gly Arg Arg	Ala Val Ala	Val Ala Ala A	Arg Pro Glu Gly 3660	Pro Gly Arg
5	Asp Gly Glu 3665	Glu Gln Glu 367	-	His Ala Glu Gly 3675	Val Leu Thr 3680
10	Ser Thr Glu	Thr Ala Val 3685	-	Gly Trp Ala Ala 1690	Gly Ala Trp 3695
70		Gly Ala Glu 3700	Pro Ile Asp V 3705	/al Glu Glu Leu	Tyr Asp Ala 3710
15	Phe Ala Ala 3715		Gly Tyr Gly F	Pro Ala Phe Thr 372	
	Gly Val Trp 3730	Arg Leu Gly	Asp Glu Leu P 3735	Phe Ala Glu Val 3740	Arg Arg Pro
20	Ala Gly Gly 3745	Ala Gly Thr 375		Sly Phe Gly Val 3755	His Pro Ala 3760
	Leu Phe Asp	Ala Ala Leu 3765	-	arg Ala Gly Gly 770	Leu Leu Pro 3775
25	_	Gly Thr Thr 3780	Trp Ala Pro P	he Ser Trp Gln	Gly Ile Ala 3790
	Leu His Thr		Glu Thr Leu A	rg Val Arg Leu 3809	
30	Ala Gly Gly 3810	Thr Glu Ser	Ala Phe Ser V 3815	al Gln Ala Ala 3820	Asp Pro Ala
	Gly Thr Pro	Val Leu Thr 3830	-	eu Leu Leu Arg 3835	Pro Val Thr 3840
35	Leu Gly Arg	Ala Asp Ala 3845		eu Tyr Arg Val	Asp Trp Gln 3855
		Gln Gly Thr 3860		ly Ala Gln Gly	
40		Ala Ala Ala		la Gln Pro Ala 3885	Ala His Ala
45				la Ala Ala Gly 3900	
10		Val Val Val 3910	Ser Pro Val A	sp Thr Arg Leu 3915	Asp Glu Gly 3920
50			Glu Ala Arg A	la Arg Ala Gly	Asp Gly Trp
		Pro Leu Arg	Val Ala Leu G	930 ly Arg Gly Leu	
55		3940 Val Glu Asp	3945 Glu Arg Leu A	la Asp Ser Arg	3950 Leu Val Val
	3955	•	3960	3965	

5	Leu	Thr 3970		Gly	Ala	Val	Ala 3975		Gly	Pro	Gly	3980		Pro	Asp	Leu
	Thr 3985	_	Ala	Ala	Leu	Trp 399(Leu	Leu	Arg	Ser 3995		Gln	Ser	Glu	Tyr 4000
10	Pro	Asp	Arg	Phe	Thr 4005		Ile	Asp	Val	Asp 4010	Asp	Ser	Pro	Glu	Ser 4019	
	Ala	Ala	Leu	Pro 4020	Arg		Leu	Gly	Ser 4025	Ala	Glu	Arg	Gln	Leu 4030		Leu
15	Arg	Thr	Gly 4035		Val	Leu	Ala	Pro 4040		Leu	Val	Pro	Met 4045		Thr	Arg
	Pro	Ala 4050		Thr	Thr	Pro	Ala 4055		Ala	Val	Ala	Ser 4060		Thr	Thr	Gln
20	Thr 4065		Val	Thr	Ala	Pro 4070		Pro	Ąsp	Авр	Pro 4075		Ala	Asp	Ala	Val 4080
	Phe	Asp	Pro	Ala	Gly 4085		Val	Leu	Ile	Thr 4090	Gly)	Gly	Thr	Gly	Ala 4095	
25	Gly	Arg	Arg	Val 4100		Ser	His	Leu	Ala 4105	_	Arg	Tyr	Gly	Val 4110		His
	Met	Leu	Leu 4115		Ser	Arg	Arg	Gly 4120		Авр	Ala	Pro	Glu 4125		Gly	Pro
30	Leu	Glu 4130		Glu	Leu	Ala	Gly 4135		Gly	Val	Thr	Ala 4140		Phe	Leu	Ala
	Cys 4145	_	Leu	Thr	Дар	Ile 4150		Ala	Val	Arg	Lys 4155		Val	Ala	Ala	Val 4160
35	Pro	Ser	qeA	His	Pro 4165		Thr	Gly	Val	Val 4170	His)	Thr	Ala	Gly	Val 4175	
40	qeA	qsA	Gly	Ala 4180		Thr	Gly	Leu	Thr 4185		Gln	Arg	Leu	Азр 4190		Val
	Leu	Arg	Pro 4195	•	Ala	Asp	Ala	Val 4200	_	Asn	Leu	His	Glu 4209		Thr	Leu
45	_	_			-						Ser			Ala	Gly	Leu
	Leu 4225		Arg	Pro	Gly	Gln 4230		Ser	Tyr	Ala	Ala 4239		Asn	Ala	Val	Leu 4240
50	Asp	Ala	Leu	Ala	Gly 4245		Arg	Arg	Ala	Ala 4250	Gly)	Leu	Pro	Ala	Val 4255	
	Leu	Ala	Trp	Gly 4260		Trp	Дзр	Glu	Gln 4265		Gly	Met	Ala	Gly 4270	_	Leu
55	Asp	Glu	Met 4275		Leu	Arg	Val	Leu 4280		Arg	Asp	Gly	Ile 4285		Ala	Met

5	Pro	Pro 429		Gln	Gly	Leu	Glu 429!		Leu	qeA	Leu	Ala 430		Thr	Gly	His
	Arg 430		Gly	Pro	Ala	Val 431		Val	Pro	Leu	Leu 431		Asp	Gly	Ala	Ala 4320
10	Leu	Arg	Arg	Thr	Ala 432		Glu	Arg	Gly	Ala 433		Thr	Met	Ser	Pro 433	
	Leu	Arg	Ala	Leu 4340		Pro	Ala	Ala	Leu 434		Arg	Ser	Gly	Gly 435		Gly
15	Ala	Pro	Ala 4355		Ala	qeA	Arg	His 436		ŗÀa	Glu	Ala	Asp 4369		Gly	Ala
	Gly	Arg 4370		Ala	Gly	Met	Val 4379		Leu	Glu	Ala	Ala 4380		Arg	Ser	Ala
20	Ala 4385		Leu	Glu	Leu	Val 4390		Glu	Gln	Val	Ala 4395		Val	Leu	Gly	Tyr 4400
	Ala	Ser	Ala	Ala	Glu 4405		Glu	Pro	Glu	Arg 4410		Phe	Arg	Glu	Ile 4415	Gly
25	Val	Asp	Ser	Leu 4420		Ala	Val	Glu	Leu 4429		Asn	Arg	Leu	Ser 4430		Leu
	Val	Gly	Leu 4435		Leu	Pro	Thr	Thr 4440		Ser	Phe	qaA	His 4445		Thr	Pro
30	Lys	Asp 4450	Met	Ala	Gln	His	Ile 4455		Gly	Gln	Leu	Pro 4460		Pro	Ala	Gly
35	λla 4465	Ser	Pro	Ala		Ala 4470		Leu	Glu		Ile 4475		Asp	Leu	Ala	Arg 4480
35	λla	Val	Ala	Leu	Leu 4485	Gly	Thr	Gly	Asp	Ala 4490		Arg	Ala	Glu	Val 4495	
40	G1u	Gln		Val 4500		Leu	Leu		Ala 4505		Asp	Pro		Gly 4510		Thr
	Gly	Thr	Ala 4515	Ala	Pro	Gly		Pro 4520		Gly	Ala		Gly 4525		Glu	Pro
45	Thr	Val 4530	Thr	Asp	Arg		Asp 4535		Ala	Thr		Asp 4540		Ile	Phe	Ala
	Phe 4545		Asp ·	Glu		Leu 4550										
50	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:3:								
		(i)	(A) LE	NGTH	: 19	TERI 96 au o ac	mino		ds						
55							o ac unkn									

(ii) MOLECULE TYPE: peptide

5	()	i) SE	QUEN	CE D	escr:	IPTI(on: s	SEQ :	ID N	0:3:					
	Met Tr	r Ala	Glu	Asn 5	Asp	Lys	Ile	Arg	Ser 10	Tyr	Leu	Lys	Arg	Ala 15	Thr
10	Ala G	u Leu	His 20	Arg	Thr	Lys	Ser	Arg 25	Leu	Ala	Glu	Val	Glu 30	Ser	Ala
	Ser A	g Glu 35	Pro	Ile	Ala	Ile	Val 40	Gly	Met	Ala	Суз	Arg 45	Tyr	Pro	Gly
15	Gly Va		Ser	Pro	Ąsp	As p 55	Leu	Trp	Asp	Leu	Va1 60	Ala	Ala	Gly	Thr
	Asp Al	a Val	Ser	Ala	Phe 70	Pro	Val	As p	Arg	Gly 75	Trp	Хэр	Val	Glu	Gly 80
20	Leu Ty	r Asp	Pro	Asp 85	Pro	Glu	Ala	Val	Gly 90	Arg	Ser	Tyr	Val	Arg 95	Glu
25	Gly Gl	y Phe	Leu 100	His	Ser	Ala	Ala	Glu 105	Phe	qsA	Ala	Glu	Phe 110	Phe	Gly
23	Ile Se	r Pro 115	Arg	Glu	Ala	Ala	Ala 120	Met	Aa p	Pro	Gln	Gln 125	Arg	Leu	Leu
30	Leu Gl		Ser	Trp	Glu	Ala 135	Leu	Glu	Arg	Ala	Gly 140	Ile	Val	Pro	Ala
	Ser Le	u Arg	Gly	Thr	Arg 150	Thr	Gly	Val	Phe	Thr 155	Gly	Val	Met	Tyr	Asp 160
35	Asp Ty	r Gly	Ser	Arg 165	Phe	Asp	Ser	Ala	Pro 170	Pro	Glu	Tyr	Glu	Gly 175	Tyr
	Leu Va	l Asn	Gly 180	Ser	Ala	Gly	Ser	Ile 185	Ala	Ser	Gly	Arg	Val 190	Ala	Tyr
40	Ala Le	u Gly 195		Glu	Gly	Pro	Ala 200	Leu	Thr	Val	Asp	Thr 205	Ala	Cys	Ser
	Ser Se		Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220	Leu	λrg	Arg	Gly
45	Glu Cy 225	s Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Thr 235	Val	Met	Ala	Thr	Pro 240
	Thr Va	l Leu	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Ala	Asp 25 5	Gly
50	Arg Cy	s Lys	Ala 260	Phe	Ala	Glu	Gly	Ala 265	Asp	Gly	Thr	Ala	Trp 270	Ala	Glu
55	Gly Va	1 Gly 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
	Gly Hi	s Arg	Val	Leu	Ala	Val	Val	A rg	Gly	Ser	Ala	Val	Asn	Gln	yab

		290					295					300				
5	Gly 305		Ser	Asn	Gly	Leu 310		Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	Ala	Asp	Ala	Gly 330	Leu	Thr	Pro	Ala	Авр 335	Val
10	Asp	Ala	Val	Glu 340		His	Gly	Thr	Gly 3 4 5	Thr	Pro	Leu	Gly	350 350	Pro	Ile
15	Glu	Ala	Gly 355		Leu	Leu	λla	Thr 360	Tyr	Gly	Ser	Glu	Arg 365		Gly	Gln
13	Gly	Pro 370		Trp	Leu	Gly	Ser 375	Leu	Lya	Ser	Asn	Ile 380	Gly	His	Ala	Gln
20	Ala 385	Ala	Ala	Gly	Val	Gly 390	Gly	Val	Ile	Lys	Val 395	Val	Gln	Ala	Met	Arg 400
	His	Gly	Ser	Leu	Pro 405	Arg	Thr	Leu	His	Val 410	Asp	Ala	Pro	Ser	Ser 415	Lys
25			Trp	420					425					430		
	Trp	Pro	Arg 435	Arg	Val	Glu	Arg	Val 440	Arg	Arg	Ala	Ala	Val 445	Ser	Ala	Phe
30	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Val	Leu	Glu 460	Glu	Ala	Pro	Ala
	Glu 465	Ala	Gly	Ser	Glu	His 470	Gly	Asp	Gly	Pro	Glu 475	Pro	Glu	Arg	Pro	Asp 480
35	Ala	Val	Thr	Gly	Pro 485	Leu	Ser	Trp	Val	Leu 490	Ser	Ala	Arg	Ser	Glu 495	Gly
	Ala	Leu	Arg	Ala 500	Gln	Ala	Val	Arg	Leu 505	Arg	Glu	Суз	Val	Glu 510	Arg	Val
40	Gly	Ala	Asp 515	Pro	Arg	λsp	Val	Ala 520	Gly	Ser	Leu	Val	Val 525	Ser	Arg	Ala
	Ser	Phe 530	Gly	Glu	Arg	Ala	Val 535	Val	Val	Gly	Arg	Gly 540	Arg	Glu	Glu	Leu
45	Leu 545	Ala	Gly	Leu	Asp	Val 550	Val	Ala	Ala	Gly	Ala 555	Pro	Val	Glγ	Val	Ser 560
50	Gly	Gly	Val	Ser	Ser 565	Gly	Ala	Gly	Ala	Val 570	Val	Arg	Gly	Ser	Ala 575	Val
50	Arg	Gly	Arg	Gly 580	Val	Gly	Val	Leu	Phe 585	Thr	Gly	Gln	Gly	Ala 590	Gln	Trp
<i>55</i>	Va1	Gly	Met 595	Gly	Arg	Gly	Leu	Tyr 600	Ala	Gly	Gly	Gly	Val 605	Phe	Ala	Glu
	Va1	Leu	Asp	Glu	Val	Leu	Ser	Val	Val	Gly	Glu	Val	Gly	Gly	Trp	Ser

		610	•				615					620				
5	Leu 625	Arg	yab	Val	Met	Phe 630	Gly	Asp	Val	Asp	Val 635	Asp	Ala	Gly	Ala	Gly 640
	Ala	Asp	Ala	Gly	Val 645	Gly	Ser	Gly	Val	Gly 650	Val	Gly	Gly	Leu	Leu 655	Gly
10	Arg	Thr	Glu	Phe 660	Ala	Gln	Pro	Ala	Leu 665	Phe	Ala	Leu	Glu	Val 670	Ala	Leu
15	Phe	Arg	Ala 675	Leu	Glu	Ala	Arg	Gly 680	Val	Glu	Val	Ser	Val 685	Val	Leu	Gly
15	His	Ser 690	Val	Gly	Glu	Val	Ala 695	Ala	Ala	Tyr	Val	Ala 700	Gly	Val	Leu	Ser
20	Leu 705	Gly	Asp	Ala	Val	A rg 710	Leu	Val	Val	Ala	Arg 715	Gly	Gly	Leu	Met	Gly 720
	Gly	Leu	Pro	Val	Gly 725	Gly	Gly	Met	Trp	Ser 730	Val	Gly	Ala	Ser	Glu 735	Ser
25	Val	Val	Arg	Gly 740	Val	Val	Glu	Gly	Leu 7 4 5	Gly	Glu	Trp	Val	Ser 750	Val	Ala
	Ala	Val	Asn 755	Gly	Pro	Arg	Ser	Val 760	Val	Leu	Ser	Gly	Asp 765	Val	Gly	Val
30	Leu	Glu 770	Ser	Val	Val	Ala	Ser 775	Leu	Met	Gly	Ąsp	Gly 780	Val	Glu	Cys	Arg
	Arg 785	Leu	Asp	Val	Ser	His 790	Gly	Phe	His	Ser	Val 795	Leu	Met	Glu	Pro	Val 800
35	Leu	Gly	Glu	Phe	Arg 805	Gly	Val	Val	Glu	Ser 810	Leu	Glu	Phe	Gly	Arg 815	Val
	Arg	Pro	Gly	Val 820	Val	Val	Val	Ser	Ser 825	Val	Ser	Gly	Gly	Val 830	Val	Gly
40	Ser	Gly	Glu 835	Leu	Gly	Asp	Pro	Gly 840	Tyr	Trp	Val	Arg	His 845	Ala	Arg	Glu
	λla	Val 850	Arg	Phe	Ala	Asp	Gly 855	Val	Gly	Val	Val	A rg 860	Gly	Leu	Gly	Val
45	Gly 865	Thr	Leu	Val	Glu	Val 870	Gly	Pro	His	Gly	Val 875	Leu	Thr	Gly	Met	Ala 880
50	Gly	Glu	Cys	Leu	Gly 885	Ala	Gly	Asp	Asp	Val 890	Val	Val	Val	Pro	Ala 895	Met
50	Arg	Arg	Gly	Arg 900	Ala	Glu	Arg	Glu	Val 905	Phe	Glu	Ala	Ala	Leu 910	Ala	Thr
55	Val	Phe	Thr 915	Arg	Asp	Ala	Gly	Leu 920	Asp	Ala	Thr	Thr	Leu 925	His	Thr	Gly
	Ser	Thr	Gly	Arg	Arg	Ile	Asp	Leu	Pro	Thr	Tyr	Pro	Phe	Gln	His	Asp

		930					935					940				
5	Arg 945	Tyr	Trp	Leu	Ala	Ala 950	Pro	Ser	Arg	Pro	Arg 955	Thr	qsA	Gly	Leu	Ser 960
	Ala	Ala	Gly	Leu	Arg 965	Glu	Val	Glu	His	Pro 970	Leu	Leu	Thr	Ala	Ala 975	Val
10	Glu	Leu	Pro	Gly 980	Thr	Asp	Thr	Glu	Val 985	Trp	Thr	Gly	Arg	Ile 990	Ser	Ala
_	Ala	Asp	Leu 995	Pro	Trp	Leu	Ala	Asp 100		Leu	Val	Trp	Asp 100		Gly	Val
15	Val'	Pro 101	_	Thr	Ala	Leu	Leu 101		Thr	Val	Leu	Gln 102		Gly	Ser	Arg
20	Ile 1029	-	Leu	Pro	Arg	Val 103		Glu	Leu	Val	Leu 1035		Thr	Pro	Leu	Thr 1040
	Trp	Thr	Ser	Asp	Arg 1049		Leu	Gln	Val	Arg 1050		Val	Val	Thr	Ala 105	Ala 5
25	Ala	Thr	Ala	Pro 1060		Gly	Ala	Arg	Glu 1069		Thr	Leu	His	Ser 107		Pro
	Glu	Pro	Val 1079		Ala	Ser	Ser	Ser 1080	Ser)	Pro	Ser	Pro	Ala 1089		Pro	Arg
30	His	Leu 109(Ala	Gln	Glu	Ser 1095		Asp	Asp	Trp	Thr 110		His	Ala	Ser
	Gly 1105		Leu	Ala	Pro	Ala 111(Gly	Leu	Ala	Asp 1115		Phe	Ala	Glu	Leu 1120
35					1125	5			Ala	1130)				1135	5
	Gln	Tyr	Pro	Leu 1140		Ala	Ala	Ala	Gly 1145		Arg	Tyr	Glu	Gly 1150		Phe
40		_	1155	•				1160		_	_		1165	•		•
	Val	Arg 1170		Pro	Asp	Ala	His 1175		Val	Asp	Ala	Asp 1180	_	Tyr	Gly	Val
45	His 1185		Ala	Leu	Leu	Asp 1190		Val	Leu	His	Pro 1195		Ala	Ser	Leu	Asp 1200
50	Pro	Leu	Gly	Asp	Gly 1205	_	His	Gly	Leu	Leu 1210		Phe	Ser	Trp	Thr 1215	-
50	Val	Gln	Gly	His 1220		Ala	Gly	Gly	His 1225		Leu	Arg	Val	Arg 1230		Ala
55	Ala	Val	Asp 1235		Gly	Ala	Val	Ser 1240	Val	Thr	Ala	Ala	Asp 1245		Ala	Gly
	Asn	Pro	Val	Leu	Ser	Ala	Arg	Ser	Leu	Ala	Leu	Arg	Arg	Ile	Thr	Ala

	1250	1255	5	1260
5	Asp Arg Leu Pro 1265	Ala Ala Pro 1270	Val Ala Pro Leu 1275	Tyr Arg Val Asp Trp 1280
	Leu Pro Phe Pro	Gly Pro Val 1285	Pro Val Ser Ala 1290	Gly Gly Arg Trp Ala 1295
10	Val Val Gly Pro		Ala Thr Ala Ala 1305	Gly Leu Arg Ala Val
	Gly Leu Asp Val 1315	Arg Thr His	Ala Leu Pro Leu 1320	Gly Glu Pro Leu Pro 1325
15	Pro Gln Ala Gly 1330	Thr Asp Ala 1335		Leu Asp Leu Thr Thr 1340
20	Thr Ala Ala Gly 1345	Arg Thr Ala 1350	Ser Asp Gly Gly 1355	Arg Leu Ser Leu Leu 1360
	Asp Glu Val Arg	Ala Thr Val 1365	Arg Arg Thr Leu 1370	Glu Ala Val Gln Ala 1375
25	Arg Leu Ala Asp 138		Ala Pro Asp Val 1385	Asp Val Arg Thr Ala 1390
	Ala Arg Pro Arg 1395		Arg Thr Ser Pro 1400	Arg Val Asp Thr Arg 1405
30	Thr Gly Ala Arg 1410	Thr Ala Asp 1415		Val Val Leu Thr Arg 1420
	Gly Ala Ala Gly 1425	Pro Glu Gly 1430	Gly Ala Ala Asp 1435	Pro Ala Gly Ala Ala 1440
35	Val Trp Gly Leu	Val Arg Val 1445	Ala Gln Ala Glu 1450	Gln Pro Gly Arg Phe 1455
	Thr Leu Val Asp		Thr Gln Ala Ser	Leu Arg Ala Leu Pro 1470
40	Gly Leu Leu Ala 1475	_	Gly Gln Ser Ala 1	Val Arg Asp Gly Arg 1485
	Val Thr Val Pro 1490		Pro Val Ala Asp	Pro Val Pro His Gly 1500
45	Gly Gly Thr Ala 1505	Ala Asp Gly 1510	Thr Gly Ala Gly (Glu Pro Ser Ala Thr 1520
	Leu Asp Pro Glu	Gly Thr Val	Leu Ile Thr Gly (1530	Gly Thr Gly Ala Leu 1535
50	Ala Ala Glu Thr 1540		Leu Val Asp Arg 1 1545	His Lys Val Arg His 1550
55	Leu Leu Leu Val 1555		Gly Pro Asp Ala : 1560	Pro Gly Val Asp Arg 1565
	Leu Val Ala Glu	Leu Thr Glu	Ser Gly Ala Glu '	Val Al a Val Arg Ala

	1570		1575	1580
5	Cys Asp Val 1 1585	Thr Asp Arg 1590	-	Arg Leu Leu Asp Ala Leu 1595 1600
	Pro Asp Glu I	His Pro Leu 1605	Thr Cys Val Val 1610	His Thr Ala Gly Val Leu 1615
10		Val Leu Ser 1620	Ala Gln Thr Ala 1625	Glu Arg Ile Asp Thr Val 1630
	Leu Arg Pro I 1635	Lys Ala Asp	Ala Ala Val His 1640	Leu Asp Glu Leu Thr Arg 1645
15	Glu Ile Gly F 1650	Arg Val Pro	Leu Val Leu Tyr 1655	Ser Ser Val Ser Ala Thr 1660
20	Leu Gly Ser A 1665	Ala Gly Gln 1670		Ala Ala Asn Ala Phe Met 1675 1680
	Asp Ala Leu A	Ala Ala Arg 1685	Arg Cys Ala Ala (1690	Gly His Pro Ala Leu Ser 1695
25		Sly Trp Trp 1700	Ser Gly Val Gly 1 1705	Leu Ala Thr Gly Leu Asp 1710
	Gly Ala Asp A 1715	Ala Ala Arg	Val Arg Arg Ser (1720	Gly Leu Ala Pro Leu Asp 1725
30	Ala Gly Ala A 1730		Leu Leu Asp Arg 1 1735	Ala Leu Thr Arg Pro Glu 1740
	Pro Ala Leu L 1745	eu Pro Val . 1750		arg Ala Ala Ala Gly Ala 1755 1760
35	Thr Ala Leu P	Pro Glu Val 1 1765	Leu Arg Asp Leu 1 1770	ala Gly Val Pro Ala Asp 1775
	Ala Arg Ser T	hr Pro Gly 2 .780	Ala Ala Ala Gly 1 1785	Thr Gly Asp Glu Asp Gly 1790
40	Ala Val Arg P 1795	ro Ala Pro i	Ala Pro Ala Asp I 1800	ala Ala Gly Thr Leu Ala 1805
45	Ala Arg Leu A 1810		Ser Ala Pro Glu <i>I</i> 1815	rg Thr Ala Leu Leu Leu 1820
	Asp Leu Val A 1825	rg Thr Glu 1 1830		eu Gly His Gly Asp Pro 835 1840
	Ala Ala Ile G	ly Ala Ala <i>I</i> 1845	Arg Thr Phe Lys 3 1850	sp Ala Gly Phe Asp Ser 1855
50	Leu Thr Ala V	al Asp Leu 1 860	Arg Asn Arg Leu A 1865	sn Thr Arg Thr Gly Leu 1870
55	Arg Leu Pro A 1875	la Thr Leu \	/al Phe Asp His F 1880	ro Thr Pro Leu Ala Leu 1885
	Ala Glu Leu L	eu Leu Asp (Gly Leu Glu Ala A	la Gly Pro Ala Glu Pro

		189	0				189	5				190	0			
5	Ala 190		Glu	Val	Pro	Asp 191		Ala	Ala	Gly	Ala 191		Thr	Leu	Ser	Gly 1920
	Val	Ile	Asp	Arg	Leu 192		Arg	Ser	Leu	Ala 193		Thr	Asp	Asp	Gly 193	Asp 5
10	Ala	Arg	Val	Arg 194		Ala	Arg	Arg	Leu 194		Gly	Leu	Leu	Asp 195		Leu
	Pro	Ala	Gly 195		Gly	Ala	Ala	Ser 196		Pro	Asp	Ala	Gly 196		His	Ala
15	Pro	Gly 197		Gly	Asp	Val	Val 197		Asp	Arg	Leu	Arg 198		Ala	Ser	Asp
20	Asp 1989		Leu	Phe	Asp	Leu 199	Leu 0	Дзр	Ser	Asp	Phe 199					
	(2)	INF	ORMA!	rion	FOR	SEQ	ID I	NO:4:	:							
25		(i)	() (I	A) LI 3) Th	engti (PE:	4: 3'	CTER: 724 a no ac unkr	amino		ids						
		(ii)	MOI	ECUI	E T	PE:	pept	ide								
30		(xi)	SEC	UENC	E DE	ESCRI	IPTIC	N: S	SEQ 1	ID NO): 4 :					
35	Met 1	Ser	Ala	Thr	Asn S	Glu	Glu	Lys	Leu	Arg 10	Glu	Tyr	Leu	Arg	Arg 15	Ala
••	Met	Ala	Дзр	Leu 20	His	Ser	Ala	Arg	Glu 25	Arg	Leu	Arg	Glu	Val 30	Glu	Ser
40	Ala	Ser	Arg 35	Glu	Pro	Ile	Ala	Ile 40	Val	Gly	Met	Ala	Cys 45	Arg	Tyr	Pro
	Gly	Gly 50	Val	Ala	Ser	Pro	Glu 55	Glu	Leu	Trp	Asp	Leu 60	Val	Ala	λla	Gly
45	Thr 65	Asp	Ala	Ile		Pro 70	Phe	Pro	Val	Asp	Arg 75	Gly	Тгр	Asp		Glu 80
	Gly	Leu	Tyr	Asp	Pro 85	Glu	Pro	Gly	Val	Pro 90	Gly	Lys	Ser	Tyr	Val 95	Arg
50	Glu	Gly		Phe 100	Leu	His	Ser		Ala 105	Glu	Phe	Asp	Ala	Glu 110	Phe	Phe
	Gly	Ile	Ser 115	Pro	Arg	Glu				Met	Asp	Pro	Gln 125		Arg	Leu
55	Leu	Leu 130	Glu	Thr	Ser	Trp	Glu 135	Ala	Leu	Glu		Ala 140	Gly	Ile	Val	Pro

-	Ala 145		Leu	Arg	Gly	Thr 150		Thr	Gly	Val	Phe 155		Gly	Val	Met	Tyr 160
5	His	Asp	Tyr	Gly	Ser 165	His	Gln	Val	Gly	Thr 170		Ala	qeA	Pro	Ser 175	Gly
10	Gln	Leu	Gly	Leu 180	Gly	Thr	Ala	Gly	Ser 185	Val	Ala	Ser	Gly	Arg 190	Val	Ala
	Tyr	Thr	Leu 195	Gly	Leu	Gln	Gly	Pro 200	Ala	Val	Thr	Met	Asp 205		Ala	Сув
15	Ser	Ser 210	Ser	Leu	Val	Ala	Leu 215	His	Leu	Ala	Val	Gln 220	Ser	Leu	Arg	Arg
	225			yab		230					235					240
20				Phe	245					250					255	
				Lys 260					265					270		
25			275	Gly				280					285			
30		290		Arg			295					300				
	305			Ser		310					315					320
35				Arg	325					330					335	
				Val 340					345					350	_	
40			355	Gly				360					365	_		-
		370		Trp			375					380				
45	385			Gly		390					395					400
				Leu	405					410					415	
50				Asp 420					425				_	430		
55			435	Arg				440					445			
55	GIÀ	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Ile	Ile	Glu 460	Glu	Pro	Pro	Ala

5	Ala 465		Asp	Thr	Ser	Pro 470		Gly	Asp	Thr	Pro 475		Pro	Gly	Glu	Ala 480
5	Thr	Ala	Ser	Pro	Ser 485		Ala	Ala	Gly	Pro 490		Ser	Pro	Ser	Ala 495	Val
10	Ala	Gly	Pro	Leu 500		Pro	Ser	Ser	Pro 505		Val	Val	Trp	Pro 510		Ser
	Ala	Glu	Thr 515		Pro	Ala	Leu	A rg 520		Gln	Ala	Ala	Arg 525		Arg	Ala
15	His	Leu 530		Arg	Leu	Pro	Gly 535	Thr	Ser	Pro	Thr	Asp 540	Ile	Gly	His	Ala
	545					550					555	•				Gly 560
20					565					570				Ala	575	
				580					585					590		Val
25			595					600					605			Ala
30		610					615					620		Asp		
	625					630					635			Asp		640
35					645					650				Val	655	
				660					665					Trp 670		
40			675					680					685	Gly		
		690					695					700	_	Ala		_
45	705					710					715			Ala		720
·					725					730				Glu	735	
50				740					745					Gly 750		
55	Val		755					760					765			
55	Glu	Ser 770	Glu	Gly	Thr		Val 775	Arg	Arg	Ile		Va1 780	Asp	Tyr	Ala	Ser

5	His 785		His	Tyr	Val	Glu 790		Ile	Arg	Ala	Glu 795		Ala	Thr	Val	. Leu 800
	Gly	Pro	Val	Arg	Pro 805		Arg	Gly	yab	Val 810		Phe	Tyr	Ser	Thr 815	Val
10	Glu	Ala	Ala	Leu 820	Leu		Thr	Ala	Thr 825	Leu		Ala	Asp	Tyr 830	Trp	Tyr
	Arg	Asn	Leu 835	Arg	Leu	Pro	Val	Arg 840	Phe	Glu	Pro	Thr	Val 845		Ala	Met
15	Leu	Asp 850		Gly	Va1	Asp	Ala 855	Phe	Val	Glu	Суз	Ser 860		His	Pro	Val
	Leu 865		Val	Gly	Val	A rg 8 70	Gln	Thr	Val	Glu	Ser 875	Ala	Gly	Gly	Ala	Val 880
20	Pro	Ala	Leu	Ala	Ser 885	Leu	Arg	Arg	Asp	Glu 890	Gly	Gly	Leu	Arg	A rg 895	Phe
	Leu	Thr	Ser	Ala 900	Ala	Glu	Ala	Gln	Val 905	Val	Gly	Val	Pro	Val 910	Asp	Trp
25	Ala	Thr	Leu 915	Arg	Pro	Gly	Ala	Gly 920	Arg	Val	Asp	Leu	Pro 925	Thr	Tyr	Ala
	Phe	Gln 930	Arg	Glu	Arg	His	Trp 935	Val	Gly	Pro	Ala	Arg 940	Pro	Asp	Ser	Ala
30	Ala 945	Thr	Ala	Ala	Thr	Thr 950	Gly	Asp	Asp	Ala	Pro 955	Glu	Pro	Gly	Asp	Arg 960
35	Leu	Gly	Tyr	His	Val 965	Ala	Trp	Lys	Gly	Leu 970	Arg	Ser	Thr	Thr	Gly 975	Gly
	Trp	Arg	Pro	Gly 980	Leu	Arg	Leu	Leu	Ile 985	Val	Pro	Thr	Gly	дар 990	Gln	Tyr
40	Thr	Ala	Leu 995	Ala	Asp	Thr	Leu	Glu 1000		Ala	Val	Ala	Ser 1005		Gly	Gly
	Thr	Val 1010	Arg	Arg	Val	Ala	Phe 1015		Pro	Ala	Arg	Thr 1020		Arg	Ala	Glu
45	Leu 1025	Phe	Gly	Leu	Leu	Glu 1030	Thr	Glu	Ile	Asn	Gly 1035		Thr	Ala	Val	Thr 1040
	Gly	Val	Val	Ser	Leu 1045		Gly	Leu	Суз	Thr 1050		Gly	Arg		Asp 1055	
50	Pro	Ala	Val	Pro 1060	Val	Ala	Val	Thr	Ala 1065		Leu	Ala	Leu	Val 1070		Ala
	Leu	Ala	Asp 1075	Leu	Gly	Ser	Thr	Ala 1080		Leu	Trp	Thr	Val 1085		Cys	Gly
55	Ala	Val 1090	Ala	Thr	Ala	Pro	Asp 1095		Leu	Pro		Thr 1100		Gly	Ala	Gln

5	Leu 110		Gly	Leu	Gly	Arg 111		Ala	Ala	Leu	Glu 111		Pro	Glu	Val	Trp 1120
	Gly	Gly	Leu	Ile	Asp 112		Pro	Ala	Arg	Pro 113		Ala	Arg	Val	Leu 113	Asp 5
10	Arg	Leu	Ala	Gly 114		Leu	Ala	Glu	Pro 114	_	Gly	Glu	-	Gln 115		Ala
	Val	Arg	Met 115		Gly	Val	Phe	Gly 116		Arg	Val	Leu	Arg 116		Pro	Ala
15	Asp	Ser 117		Pro	Pro	Ala	Trp 117		Ala	Arg	Gly	Thr 118		Leu	Ile	Ala
	Gly 118		Leu	Thr	Thr	Val 119		Gly	λrg	Leu	Val 119		Ser	Leu	Leu	Glu 1200
20	Asp	Gly	Ala	Asp	Arg 120		Val	Leu	Ala	Gly 121		Asp	Ala	Pro	Ala 121	
	Ala	Ala	Ala	Ala 1220	_	Leu	Thr	Gly	Val 122		Leu	Val	Pro	Val 1230	•	Суз
25	Asp	Val	Thr 123		Arg	Ala	Ala	Leu 1240		Ala	Leu	Leu	Asp 124		His	Ala
	Pro	Thr 1250	Val	Ala	Val	His	Ala 125		Pro	Leu	Val	Pro 1260		Ala	Pro	Leu
30	Arg 1265		Thr	Ala	Pro	Gly 127	Asp 0	Ile	Ala	Ala	Ala 1275	_	Ala	Ala	Lys	Thr 1280
35	Thr	Ala	Ala	Gly	His 1289		Val	Asp	Leu	Ala 1290		Ala	Ala	Gly	Leu 1295	_
	Ala	Leu	Val	Leu 1300		Ser	Ser	Val	Ser 1305		Val	Trp	Gly	Gly 1310		Ala
40	Gln	Gly	Gly 1315		Ala	Ala	Ala	Ser 1320		His	Leu	Asp	Ala 1325		Ala	Glu
	Arg	Ala 1330		Ala	Ala	Gly	Val 1335		Ala	Phe	Ser	Val 1340		Trp	Ser	Pro
45	Trp 1345		Gly	Gly	Thr	Pro 1350	Ala)	Asp	Gly	Ala	Glu 1355	Ala	Glu	Phe		Ser 1360
	Arg	Arg	Gly	Leu	Ala 1365		Leu	Asp	Pro	Asp 1370		Ala	Val		Thr 1375	
50	Arg	Arg	Met	Leu 1380		Arg	Gly	Ser	Ala 1385		Gly	Ala	Val	Ala 1390	_	Val
	Glu	Trp	Ser 1395		Phe	Ala	Ala	Ser 1400		Thr	Trp	Val	Arg 1405		Ala	Val
55	Leu	Phe 1410		Asp	Ile	Pro	Asp 1415		Gln	Arg		Arg 1420		Ala	Glu :	Leu

	Ala 142		Ser	Thr	Gly	Asp 143		Thr	Thr	Ser	Glu 143!		Val	Arg	Glu	Leu 1440
5	Thr	Ala	Gln	Ser	Gly 144		Lys	Arg	His	Ala 1450		Leu	Leu	Arg	Leu 145	
	Arg	Ala	His	Ala 1460		Ala	Val	Leu	Gly 1469		Ser	Ser	Gly	Asp 147		Val
10	Ser	Ser	Ala 147		Ala	Phe	Arg	Asp 148		Gly	Phe	As p	Ser 148		Thr	Ala
15	Leu	Glu 1490		Arg	Asp	Arg	Leu 149	Ser 5	Thr	Ser	Thr	Gly 150		ГЛа	Leu	Pro
	Thr 1509		Leu	Val	Phe	Asp 1510		Ser	Ser	Pro	Ala 1519		Leu	Ala	Arg	His 1520
20	Leu	Gly	Glu	Glu	Leu 1525		Gly	Arg	Asn	Asp 1530		Ala	Asp	Arg	Ala 1539	_
	Pro	Asp	Thr	Pro 1540		Arg	Thr	Asp	Glu 1545		Ile	Ala	Ile	Ile 1550	_	Met
25	Ala	Сув	Arg 1555		Pro	Gly	Gly	Val 1560		Ser	Pro	Glu	Asp 1565		Trp	Asp
	Leu	Leu 1570		Gly	Gly	Thr	Asp 1579	Ala	Ile	Thr	Pro	Phe 1580		Thr	As n	Arg
30	Gly 1585		Asp	Asn	Glu	Thr 1590		Tyr	Asp	Pro	Asp 1599		yab	Ser	Pro	Gly 1600
	His	His	Thr	Tyr	Val 1605		Glu	Gly	Gly	Phe 1610		His	Asp	Ala	Ala 1615	
35	Phe	Asp	Pro	Gly 1620		Phe	Gly	Ile	Ser 1629		Arg	Glu	Ala	Leu 1630		Met
	Asp	Pro	Gln 1635		Arg	Leu	Ile	Leu 1640		Thr	Ser	Trp	Glu 1649		Phe	Glu
40	Arg	Ala 1650		Ile	Asp	Pro	Val 1655	Glu	Leu	Arg	Gly	Ser 1660		Thr	Gly	Val
45	Phe 1665		Gly	Thr	Asn	Gly 1670		His	Tyr	Val	Pro 1675		Leu	Gln	Asp	Gly 1680
	yab	Glu	Asn	Phe	Asp 1685	_	Tyr	Ile	Ala	Thr 1690		Asn	Ser	Ala	Ser 1695	
50	Met	Ser	Gly	Arg 1700		Ser	Tyr	Val	Phe 1705	_	Leu	Glu	Gly	Pro 1710		Val
	Thr	Val	Asp 1715		Ala	Сув	Ser	Ala 1720		Leu	Ala	Ala	Leu 1725		Leu	Ala
55	Val	Gln 1730		Leu	Arg	Arg	Gly 1735	Glu	Cys	Asp	Tyr	Ala 1740		Ala	Gly	Gly

	Ala Thr Val Met 5	Ser Thr Pro Glu Met 1750	Leu Val Glu Pho 1755	Ala Arg Gln 1760
5		Pro Asp Gly Arg Ser 1765	Lys Ala Phe Ala 1770	a Glu Ala Ala 1775
	Asp Gly Val Gly I 1780	Leu Ala Glu Gly Ala 178		ı Val Glu Arg 1790
10	Leu Ser Glu Ala C 1795	Gln Lya Lya Gly Hia 1800	Pro Val Leu Ala 180	
15	Gly Ser Ala Val A 1810	Asn Gln Asp Gly Ala 1815	Ser Asn Gly Let 1820	Thr Ala Pro
	Ser Gly Pro Ala G 1825	Sin Gin Arg Val Ile 1830	Arg Glu Ala Leu 1835	Ala Asp Ala 1840
20		ala Asp Val Asp Ala 845	Val Glu Ala His 1850	Gly Thr Gly 1855
	Thr Pro Leu Gly A	sp Pro Ile Glu Ala 1869		Ala Thr Tyr 1870
25	Gly Arg Asp Arg A 1875	arg Asp Gly Pro Leu 1880	Trp Leu Gly Ser 188	
	Asn Ile Gly His T 1890	hr Gln Ala Ala Ala 1895	Gly Val Ala Gly 1900	Val Ile Lys
30	Met Val Leu Ala L 1905	eu Arg His Gly Glu 1910	Leu Pro Arg Thr 1915	Leu His Ala 1920
		er Arg Ile Asp Trp 925	Asp Ala Gly Ala 1930	Val Glu Leu 1935
35	Leu Asp Glu Ala A 1940	rg Pro Trp Leu Gln 1945		Pro Arg Arg 1950
	Ala Gly Ile Ser S 1955	er Phe Gly Ile Ser 1960	Gly Thr Asn Ala 196	
40	Ile Glu Glu Pro P	ro Glu Pro Thr Ala 1975	Pro Glu Leu Leu 1980	Ala Pro Glu
45	Pro Ala Ala Asp G 1985	ly Asp Val Trp Ser 1990	Glu Glu Trp Trp 1995	His Glu Val 2000
		et Met Ser Ala His 005	Asn Glu Ala Ala 2010	Leu Arg Asp 2015
50	Gln Ala Arg Arg Lo 2020	eu Arg Ala Asp Leu 2025		Glu Leu His 2030
	Pro Ala Asp Val G 2035	ly Tyr Thr Leu Ile 2040	Thr Thr Arg Thr 2049	
55	Gln Arg Ala Ala Va 2050	al Val Gly Glu Asn 2055	Phe Thr Glu Leu 2060	Ile Ala Ala

	Leu 206	_	Asp	Leu	Val	Glu 207	_	Arg	Pro	His	Pro 2075		Val	Leu	Arg	Gly 2080
5	Thr	Ala	Gly	Thr	Ser 2089		Gln	Val	Val	Phe 2090		Phe	Pro	Gly	Gln 2099	
	Ser	Gln	Trp	Pro 2100		Met	Ala	Ąsp	Gly 2105		Leu	Ala	Arg	Ser 211		Gly
10	Ser	Gly	Ser 2115		Leu	Glu	Thr	Ala 2120	Arg	Ala	Cys	Asp	Leu 212		Leu	Arg
15	Pro	His 2130		Gly	Trp	Ser	Val 2139		Asp	Val	Leu	Arg 2140		Glu	Pro	Gly
	Ala 214		Ser	Leu	Asp	Arg 215		Asp	Val	Val	Gln 215		Val	Leu	Phe	Thr 2160
20	Met	Met	Val	Ser	Leu 2169		Glu	Thr	Trp	Arg 2170		Leu	Gly	Val	Glu 2175	
	Ala	Ala	Val	Val 2180	_	His	Ser	Gln	Gly 2185		Ile	Ala	Ala	Ala 2190	-	Val
25	Ala	Gly	Ala 2195		Thr	Leu	Asp	Asp 2200	Ala)	Ala	Arg	Ile	Val 2205		Leu	Arg
	Ser	Gln 2210		Trp	Leu	Arg	Leu 2215		Gly	Lys	Gly	Gly 2220		Val	Ala	Val
30	Thr 2225		Ser	Glu	Arg	Asp 2230		Arg	Pro	Arg	Leu 2235		Pro	Trp	Ser	Asp 2240
	Arg	Leu	Ala	Val	Ala 2245		Val	Asn	Gly	Pro 2250		Thr	Сув	Ala	Val 2255	
35	Gly	Asp	Pro	Asp 2260		Leu	Ala	Glu	Leu 2265		Ala	Glu	Leu	Gly 2270		Glu
40	Gly	Val	His 2275		Arg	Pro	Ile	Pro 2280	Gly	Val	Asp	Thr	Ala 2285		His	Ser
40	Pro	Gln 2290		yab	Thr	Leu	Glu 2295		His	Leu	Arg	Lys 2300		Leu	Ala	Pro
45	Val 2305		Pro	Arg	Thr	Ser 2310		Ile	Pro	Phe	Tyr 2315		Thr	Val		Gly 2320
	Gly	Leu	Ile	Asp	Thr 2325		Glu	Leu	Asp	Ala 2330		Tyr	Trp	Tyr	Arg 2335	
50	Met	Arg	Glu	Pro 2340		Glu	Phe	Glu	Gln 2345		Thr	Arg	Ala	Leu 2350		Ala
	Asp	Gly	His 2355		Val	Phe	Leu	Glu 2360	Ser	Ser	Pro	His	Pro 2365		Leu	Ala
55	Val	Ser 2370		Gln	Glu	Thr	Ile 2375		Asp	Ala	Gly	Ser 2380		Ala	Ala	Val

	238		Thr	Leu	Arg	Arg 239		Gln	Gly	Gly	239	-	Trp	Leu	Gly	Val 2400
5	Ala	Leu	Cys	Arg	Ala 240		Thr	His	Gly	Leu 241		Ile	Asp	Ala	Glu 241	Ala 5
	Ile	Phe	Gly	Pro 242		Ser	Arg	Gln	Val 242		Leu	Pro	Thr	Tyr 243		Phe
10	Gln	Arg	Glu 243		Tyr	Trp	Tyr	Ser 244		Gly	His	Arg	Gly 244	-	A sp	Pro
15	Ala	Ser 245		Gly	Leu	Asp	Ala 245		Asp	His	Pro	Leu 246		Gly	Ser	Gly
	Val 246		Leu	Pro	Glu	Ser 247		Asp	Arg	Met	Tyr 247		Ala	Arg	Leu	Gly 2480
20	Ala	Ąsp	Thr	Thr	Pro 248		Leu	Ala	Asp	His 249		Leu	Leu	Gly	Ser 249	
	Leu	Leu	Pro	Gly 250		Ala	Phe	Ala	Asp 250	Leu 5	Ala	Leu	Trp	Ala 251	_	Arg
25	Gln	Ala	Gly 251		Gly	Arg	Val	Glu 252		Leu	Thr	Leu	Ala 252		Pro	Leu
	Val	Leu 253	Pro	Gly	Ser	Gly	Gly 2535		Arg	Leu	Arg	Leu 254(Val	Gly	Ala
30	Pro 2549	Gly 5	Thr	Asp	qeA	Ala 2550		Arg	Phe	Ala	Val 2555		Ala	Arg	Ala	Glu 2560
					2565	;				Glu 2570)				2575	;
35	qeA	Thr	Ala	Asp 2580	Ala)	Pro	yab	Ala	Ser 2589	Ala	λla	Thr	Pro	Pro 2590	Pro	Gly
	λla	Glu	Gln 2595	Leu	As p	Ile	Gly	Asp 2600		Tyr	Gln	Arg	Phe 2605		Glu	Leu
40	Gly	Tyr 2610	Gly)	Tyr	Gly	Pro	Phe 2615		Arg	Gly		Val 2620		Ala	His	Arg
45	Cys 2625	Gly	Pro	Asp	Ile	His 2630	Ala	Glu	Val	Ala	Leu 2635		Val	Gln		Gln 2640
	Gly	Asp	Ala		Arg 2645		Gly	Ile		Pro 2650		Leu	Leu		Ala 2655	Ala
50	Leu	Gln	Thr	Met 2660	Ser	Leu	Gly		Phe 2665		Pro	Glu		Gly 2670	_	Val
	Arg	Met	Pro 2675	Phe	Ala	Leu		Gly 2680		Arg	Leu		Arg 2685		Gly /	Ala
55	Asp	Arg 2690	Leu	His	Val :	Arg	Val 2695	Ser	Pro	Val :		Glu 2700	Asp .	Ala	Val i	Arg

	11e 270		Суз	Ala	Asp	Gly 271		Gly	Arg	Pro	Val 271		Glu	Ile	Glu	Ser 2720
5	Phe	Ile	Met	Arg	Pro 272		Asp	Pro	Gly	Gln 273		Leu	Gly	Gly	Arg 273	Pro 5
	Val	Gly	Ala	Asp 274		Leu	. Phe	Arg	Ile 274		Trp	Arg	Glu	Leu 275		Ala
10	Gly	Pro	Gly 275		Arg	Thr	Gly	Asp 276		Thr	Pro	Pro	Pro 276		Arg	Trp
15	Val	Leu 277		Gly	Pro	Asp	Ala 277		Gly	Leu	Ala	Glu 278		Ala	Asp	Ala
	His 2789		Pro	Ala	Val	Pro 279		Pro	Asp	Gly	Ala 279		Pro	Ser	Pro	Thr 2800
20	Gly	Arg	Pro	Ala	Pro 280		Ala	Val	Val	Phe 2810		Val	Arg	Ala	Gly 2815	
	Gly	Asp	Val	Ala 2820		Asp	Ala	His	Thr 2825		Ala	Суз	Arg	Val 2830		qeA
25	Leu	Val	Gln 2835		Arg	Leu	Ala	Ala 2840		Glu	Gly	Pro	Asp 2845	-	Ala	Arg
	Leu	Val 2850		Ala	Thr	Arg	Gly 2855		Val	Ala	Val	Arg 2860	_	Asp	Ala	Glu
30	Val 2869		Asp	Pro	Ala	Ala 2870		Ala	Ala	Trp	Gly 2875		Leu	Arg	Ser	Ala 2880
35	Gln	Ala	Glu	Glu	Pro 2885		Arg	Phe	Leu	Leu 2890		Asp	Leu	Asp	Asp 2895	_
	Pro	Ala	Ser	Ala 2900		Ala	Leu	Thr	Asp 2905		Leu	Ala	Ser	Gly 2910		Pro
40	Gln	Thr	Ala 2915		Arg	Ala	Gly	Thr 2920		Tyr	Val	Pro	Arg 2925		Glu	Arg
40	Ala	Ala 2930	Asp		Thr	Asp	Gly 2935	Pro		Thr	Pro	Pro 2940	Asp		Gly	Ala
45	Trp 2945	Arg	Leu	Gly	Arg	Gly 2950		Asp	Leu	Thr	Leu 2959		Gly	Leu		Leu 2960
	Val	Pro	Ala	Pro	Asp 2965		Glu	Ala	Pro	Leu 2970		Pro	Gly		Val 2975	_
50	Val	Ala	Val	Arg 2980		Ala	Gly	Val	Asn 2985		Arg	Asp		Leu 2990		Ala
	Leu	Gly	Met 2995		Pro	Gly	Glu	Ala 3000		Met	Gly	Thr	G1u 3005	-	Ala	Gly
55	Thr	Val 3010		Glu	Val	Gly	Pro 3015	Gly	Val	Thr		Val 3020		Val	Gly .	Asp

	Arg Val Leu Gly Leu Trp Asp Gly Gly Leu Gly Pro Leu Cys Val Ala 3025 3030 3035 304	
5	Asp His Arg Leu Leu Ala Pro Val Pro Asp Gly Trp Ser Tyr Ala Gl 3045 3050 3055	n.
	Ala Ala Ser Val Pro Ala Val Phe Leu Ser Ala Tyr Tyr Gly Leu Val 3060 3065 3070	i
10	Thr Leu Ala Gly Leu Arg Pro Gly Glu Arg Val Leu Val His Ala Ala 3075 3080 3085	a
15	Ala Gly Gly Val Gly Met Ala Ala Val Gln Ile Ala Arg His Leu Gly 3090 3095 3100	,
	Ala Glu Val Leu Ala Thr Ala Ser Pro Gly Lys Trp Asp Ala Leu Arg 3105 3110 3115 312	
20	Ala Met Gly Ile Thr Asp Asp His Leu Ala Ser Ser Arg Thr Leu Asp 3125 3130 3135	•
	Phe Ala Thr Ala Phe Thr Gly Ala Asp Gly Thr Ser Arg Ala Asp Val 3140 3145 3150	•
25	Val Leu Asn Ser Leu Thr Lys Glu Phe Val Asp Ala Ser Leu Gly Leu 3155 3160 3165	l
	Leu Arg Pro Gly Gly Arg Phe Leu Glu Leu Gly Lys Thr Asp Val Arg 3170 3175 3180	İ
30	Asp Pro Glu Arg Ile Ala Ala Glu His Pro Gly Val Arg Tyr Arg Ala 3185 3190 3195 320	
35	Phe Asp Leu Asn Glu Ala Gly Pro Asp Ala Leu Gly Arg Leu Leu Arg 3205 3210 3215	
•	Glu Leu Met Asp Leu Phe Ala Ala Gly Val Leu His Pro Leu Pro Val 3220 3225 3230	
40	Val Thr His Asp Val Arg Arg Ala Ala Asp Ala Leu Arg Thr Ile Ser 3235 3240 3245	
	Gln Ala Arg His Thr Gly Lys Leu Val Leu Thr Met Pro Pro Ala Trp 3250 3260	
45	His Pro Tyr Gly Thr Val Leu Val Thr Gly Gly Thr Gly Ala Leu Gly 3265 3270 3275 328	
	Ser Arg Ile Ala Arg His Leu Ala Ser Arg His Gly Val Arg Arg Leu 3285 3290 3295	
50	Leu Ile Ala Ala Arg Arg Gly Pro Asp Gly Glu Gly Ala Ala Glu Leu 3300 3305 3310	
	Val Ala Asp Leu Ala Ala Leu Gly Ala Ser Ala Thr Val Val Ala Cys 3315 3320 3325	
55	Asp Val Ser Asp Ala Asp Ala Val Arg Gly Leu Leu Ala Gly Ile Pro 3330 3340	

	334	_	H1S	Pro	Leu	335		Val	Val	His	335		GIÀ	Val	Leu	336
5	Ąsp	Gly	Val	Leu	Pro 336		Leu	Thr	Pro	Glu 337	_	Met	Arg	Arg	Val 337	
	Arg	Pro	Lys	Val 338		Ala	Ala	Val	His 338	Leu 5	Asp	Glu	Leu	Thr 339	_	Asp
10	Leu	Asp	Leu 339		Ala	Phe	Val	Leu 340		Ser	Ser	Ser	Ala 340	-	Leu	Leu
15	Gly	Ser 341		Ala	Gln	Gly	Asn 341		Ala	Ala	Ala	Asn 342		Thr	Leu	Asp
	Ala 342		Ala	Ala	Arg	Arg 343		Ser	Leu	Gly	Leu 343!		Ser	Val	Ser	Leu 3440
20	Ala	Trp	Gly	Leu	Trp 344		Asp	Thr	Ser	Arg 345		Ala	His	Ala	Leu 345	_
	Gln	Glu	Ser	Leu 3460		Arg	Arg	Phe	Ala 346!	Arg 5	Ser	Gly	Phe	Pro 347		Leu
25	Ser	Ala	Thr 3475		Gly	Ala	Ala	Leu 3480		Asp	Ala	Ala	Leu 3489	_	Val	Asp
	Glu	Ala 3490		Gln	Val	Pro	Met 3499		Phe	As p	Pro	A1a 3500		Leu	Arg	Ala
30	Thr 3509		Ser	Val	Pro	Ala 351		Leu	Ser	Asp	Leu 3519		Gly	Ser	λla	Pro 3520
35	Ala	Thr	Gly	Ser	Ala 3525		Pro	Ala	Ser	Gly 3530		Leu	Pro	Ala	Pro 3535	-
-	Ala	Gly	Thr	Val 3540		Glu	Pro	Leu	Ala 3549	Glu 5	Arg	Leu	Ala	Gly 3550		Ser
40	Ala	Glu	Glu 3555		His	As p	Arg	Leu 3560		Gly	Leu	Val	Gly 3565		His	Val
	Ala	Ala 3570		Leu	Gly	His	Gly 3575		Ala	Ala	Glu	Val 3580		Pro	Asp	Arg
45	Pro 3585		Arg	Glu	Val	Gly 3590		Asp	Ser	Leu	Thr 3595		Val	Glu	Leu	Arg 3600
	Asn	Arg	Met	Ala	Ala 3605		Thr	Gly	Val	Arg 3610		Pro	Ala	Thr	Leu 3615	
50	Phe	Asp	His	Pro 3620		Pro	Ala	Ala	Leu 3625	Ser	Ser	His	Leu	Asp 3630		Leu
	Leu	Ala	Pro 3635	Ala		Pro	Val	Thr 3640	Thr	Thr	Pro	Leu	Leu 3645	Ser		Leu
55	qeÆ	Arg 3650	Ile	Glu	Glu	Ala	Leu 3655		Ala	Leu	Thr	Pro 3660		His	Leu	Ala

	Glu 366		Ala	Pro	Ala	Pro 367	_	Asp	Arg	Ala	Glu 367		Ala	Leu	Arg	Leu 3680
5	Asp	Ala	Leu	Ala	Asp 368	_	Trp	Arg	Ala	Leu 369		qeA	Gly	Ala	Pro 369	Gly 5
	Ala	Ąsp	yab	Asp 370	Ile 0	Thr	Asp	Val	Leu 370		Ser	Ala	Asp	Asp 371	_	Glu
10	Ile	Phe	Ala 371		Ile	Asp	Glu	Arg 372	-	Gly	Thr	Ser				
15	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO:5	:							
20		(i	() ()	A) LI B) T	CE CI ENGTI YPE: OPOLO	d: 19	580 a	amin cid		ids						
20		(ii) MOI	LECUI	LE T	(PE:	pep	tide								
<i>25</i>					CE DE				_							
	Met 1	Ala	Asn	Glu	Glu 5	Lys	Leu	Arg	Ala	Tyr 10	Leu	Lys	Arg	Val	Thr 15	Gly
30	Glu	Leu	His	Arg 20	Ala	Thr	Glu	Gln	Leu 25	Arg	Ala	Leu	Ąsp	Arg 30	Arg	Ala
	His	Glu	Pro 35	Ile	Ala	Ile	Val	Gly 40	Ala	Ala	Cys	Arg	Leu 45	Pro	Gly	Gly
35	Val	Glu 50	Ser	Pro	Asp	Asp	Leu 55	Trp	Glu	Leu	Leu	His 60	Ala	Gly	Ala	Asp
	Ala 65	Val	Gly	Pro	Ala	Pro 70	Ala	Asp	Arg	Gly	Trp 75	Asp	Val	Glu	Gly	Arg 80
40	Tyr	Ser	Pro	Asp	Pro 85	qaA	Thr	Pro	Gly	Thr 90	Ser	Tyr	Cys	Arg	Glu 95	Gly
	Gly	Phe		Gln 100	Gly				Phe 105					Phe 110	_	Ile
45	Ser	Pro	Asn 115	Glu	Ala	Leu	Thr	Met 120	Asp	Pro	Gln	Gln	Arg 125	Leu	Leu	Leu
50	Glu	Thr 130	Ser	Trp	Glu	Ala	Leu 135	Glu	Arg	Ala	Gly	Leu 140	Asp	Pro	Gln	Ser
	Leu 145	Ala	Gly	Ser	Arg	Thr 150	Gly	Val	Phe	Ala	Gly 155	Ala	Trp	Glu	Ser	Gly 160
55	Tyr	Gln	Lys	Gly	Val 165	Glu	Gly	Leu	Glu	Ala 170	Asp	Leu	Glu	Ala	Gln 175	Leu
	Leu	Ala	Gly	Ile	Val	Ser	Phe	Thr	Ala	Glv	Ara	Val	Ala	Tvr		î.eu

				180					185	5				190)	
5	Gly	Leu	Glu 195	Gly	Pro	Ala	Leu	Thr 200		asp	Thr	Ala	Cys 205		Se	Ser
	Leu	Val 210	Ala	Leu	His	Leu	Ala 215		Glm	Ser	Leu	Arg 220		Gly	Glu	Cys
10	Asp 225	Leu	Ala	Leu	Ala	Gly 230	Gly	Ala	Thr	Val	Ile 235		. Asp	Phe	Ala	Leu 240
	Phe	Thr	Gln	Phe	Ser 245	Arg	Gln	Arg	Gly	Leu 250		Pro	Asp	Gly	Arg 255	Сув
15	Lys	Ala	Phe	Gly 260	Glu	Thr	Ala	Asp	Gly 265		Gly	Pro	Ala	Glu 270	_	Ala
	Gly	Met	Leu 275	Leu	Val	Glu	Arg	Leu 280	Ser	yab	Ala	Arg	Arg 285		Gly	His
20	Pro	Val 290	Leu	Ala	Val	Val	Arg 295	Gly	Ser	Ala	Val	Asn 300	Gln	Asp	Gly	Ala
25	Ser 305	Asn	Gly	Leu	Thr	Ala 310	Pro	Ser	Gly	Pro	Ala 315	Gln	Gln	Arg	Val	Ile 320
	Arg	Glu	Ala	Leu	Ala 325	Asp	Ala	Gly	Leu	Thr 330	Pro	Ala	Asp	Val	Asp 335	Ala
30	Val	Glu	Ala	His 340	Gly	Thr	Gly	Thr	Pro 345	Leu	Gly	Asp	Ьċо	Ile 350	Glu	Ala
	Gly	Ala	Leu 355	Met	Ala	Thr	Tyr	Gly 360	His	Glu	Arg	Thr	Gly 365	Asp	Pro	Leu
35	Trp	Leu 370	Gly	Ser	Leu	Lys	Ser 375	Asn	Ile	Gly	His	Thr 380	Gln	Ala	Ala	Ala
	Gly 385	Val	Ala	Gly	Val	Ile 390	Lys	Met	Val	Leu	Ala 395	Leu	Arg	His	Gly	Glu 400
40	Leu	Pro	Arg	Thr	Leu 405	His	Ala	Ser	Thr	Ala 410	Ser	Ser	Arg	Ile	Glu 41 5	Trp
	qaA	Ala	Gly	Ala 420	Va1	Glu	Leu	Leu	Asp 425	Glu	Ala	Arg	Pro	Trp 430	Pro	Arg
45	Arg	Ala	Glu 435	Gly	Pro	Arg	Arg	Ala 440	Gly	Ile	Ser	Ser	Phe 445	Gly	Ile	Ser
50	Gly	Thr 450	Asn	Ala	His	Leu	Val 455	Ile	Glu	Glu	Glu	Pro 460	Pro	Ala	Arg	Pro
	Glu 465	Pro	Glu	Glu	Ala	Ala 470	Gln	Pro	Pro	Ala	Pro 475	Ala	Thr	Thr	Val	Leu 480
<i>55</i>	Pro	Leu	Ser	Ala	Ala 485	Gly	Ala	Arg	Ser	Leu 490	Arg	Glu	Gln		A rg 4 95	Arg

	Leu	Ala	Ala	His 500	Leu	Ala	Gly	His	G1u 505	Glu	Ile	Thr	Ala	Ala 510	Asp	Ala
5	Ala	Arg	Ser 515	Ala	Ala	Thr	Thr	Arg 520	Ala	Ala	Leu	Ser	His 525	Arg	Ala	Ser
	Val	Leu 530	Ala	Yab	yab	Arg	Arg 535	Ala	Leu	Ile	Asp	Arg 540	Leu	Thr	Ala	Leu
10	Ala 545	Glu	Asp	Arg	Lys	Asp 550	Pro	Gly	Val	Thr	Val 555	Gly	Glu	Ala	Gly	Ser 560
	Gly	Arg	Pro	Pro	Val 565	Phe	Val	Phe	Pro	Gly 570	Gln	Gly	Ser	Gln	Trp 575	Thr
15	Gly	Met	Gly	Ala 580	Glu	Leu	Leu	Asp	Arg 585	Ala	Pro	Val	Phe	A rg 590	Ala	Lys
	Ala	Glu	Glu 595	Cys	Ala	Arg	Ala	Leu 600	Ala	Ala	His	Leu	Asp 605	Trp	Ser	Val
20	Leu	Asp 610	Val	Leu	Arg	Asp	Ala 615	Pro	Gly	Ala	Pro	Pro 620	Ile	Asp	Arg	Ala
25	Asp 625	Val	Val	Gln	Pro	Thr 630	Leu	Phe	Thr	Met	Met 635	Val	Ser	Leu	Ala	Ala 640
25	Leu	Trp	Glu	Ser	His 645	Gly	Val	Arg	Pro	Ala 650	Ala	Val	Val	Gly	His 655	Ser
30	Gln	Gly	Glu	Ile 660	Ala	Ala	Ala	His	Ala 665	Ala	Gly	Ala	Leu	Ser 670	Leu	Asp
	Asp	Ala	Ala 675	Arg	Val	Ile	Ala	Glu 680	Arg	Ser	Arg	Leu	Trp 685	Lys	Arg	Leu
35	Ala	Gly 690	Asn	Gly	Gly	Met	Leu 695	Ser	Val	Met	Ala	Pro 700	Ala	Asp	Arg	Val
	Arg 705	Glu	Leu	Met	Glu	Pro 710	Trp	Ala	Glu	Arg	Met 715	Ser	Val	Ala	Ala	Val 720
40	Asn	Gly	Pro	Ala	Ser 725	Val	Thr	Val	Ala	Gly 730	Asp	Ala	Arg	Ala	Leu 735	Glu
	Glu	Phe	Gly	Gly 740	Arg	Leu	Ser	Ala	Ala 745	Gly	Val	Leu	Arg	Trp 750	Pro	Leu
45	Ala	Gly	Val 755	Asp	Phe	Ala	Gly	His 760	Ser	Pro	Gln	Val	Glu 765	Gln	Phe	Arg
50	Ala	Glu 770	Leu	Leu	Ąsp	Thr	Leu 775	Gly	Thr	Val	Arg	Pro 780	Thr	Ala	Ala	Arg
	Leu 785	Pro	Phe	Phe	Ser	Thr 790	Val	Thr	Ala	Ala	Ala 795	His	Glu	Pro	Glu	Gly 800
55	Leu	qeK	Ala	Ala	Tyr 805	Trp	Tyr	Arg	Asn	Met 810	Arg	Glu	Pro	Val	Glu 815	Phe

	Ala	Ser	Thr	Leu 820	Arg	Thr	Leu	Leu	Arg 825	Glu	Gly	His	Arg	Thr 830	Phe	Val
5	Glu	Met	Gly 835	Pro	His	Pro	Leu	Leu 840	Gly	Ala	Ala	Ile	Asp 845	Glu	Val	Ala
	Glu	Ala 850	Glu	Gly	Val	His	Ala 855	Thr	Ala	Leu	Ala	Thr 860	Leu	His	Arg	Gly
10	Ser 865	Gly	Gly	Leu	Asp	Arg 870	Phe	Arg	Ser	Ser	Val 875	Gly	Ala	Ala	Phe	Ala 880
					885	•	-	-		890		Glu	-		895	
15	Arg	Arg	Val	Pro 900	Leu	Pro	Thr	Tyr	Ala 905	Phe	Ser	Arg	Asp	Arg 910	Tyr	Trp
00	Leu	Pro	Thr 915	Ala	Ile	Gly	Arg	Arg 920	Ala	Val	Glu	Ala	Ala 925	Pro	Val	Asp
20	Ala	Ser 930	Ala	Pro	Gly	Arg	Tyr 935	Arg	Val	Thr	Trp	Thr 940	Pro	Val	Ala	Ser
25	Asp 945	Asp	Ser	Gly	Arg	Pro 950	Ser	Gly	Arg	Trp	Leu 955	Leu	Val	Gln	Thr	Pro 960
					965					970		Ser			975	
30				980					985			Pro		990		
			995					1000)			Asp	1005	5		
35		1010)				1019	5				Pro 1020)			
	1029	5				1030)				1035					1040
40					1045	;				1050)	Ala			1055	;
45				1060)			;	1065	•		Glu		1070	+	
45	Val	Gly	Ala 1075	Arg	Val	Trp	Gly	Leu 1080		Arg	Val	Ala	Ala 1085		Glu	Val
50	Pro	Val 1090	Gln	Trp	Gly	Gly	Leu 1095		ysb	Val	Ala	Val 1100		Ala	Gly	Val
	Arg 1105	Glu	Trp	Arg	Arg	Val 1110	Val	Gly	Val	Val	Ala 1115	Gly	Gly	Gly	Glu	Asp 1120
55	Gln	Val	Ala	Val	Arg 1125		Gly	Gly		Phe 1130		Arg	Arg		Val 1135	

	Val Gly Val Arg		y Val Trp Arg Ala 1145	Arg Gly Cys Val
5	Val Val Thr Gly 1155	Gly Leu Gly Gly 110		Val Ala Arg Trp 1165
	Leu Ala Arg Ser 1170	Gly Ala Glu His	s Val Val Leu Ala 118	Gly Arg Arg Gly
10	Gly Gly Val Val 1185	. Gly Ala Val Glu 1190	ı Leu Glu Arg Glu 1195	Leu Val Gly Leu 1200
	Gly Ala Lys Val	Thr Phe Val Sen	r Cys Asp Val Gly 1210	Asp Arg Ala Ser 1215
15	122	10	l Glu Gly Leu Gly 1225	1230
	Gly Val Phe His 1235	Ala Ala Gly Val	l Ala Gln Val Ser 10	Gly Leu Gly Glu 1245
20	Val Ser Leu Ala 1250	Glu Ala Gly Gly 1255	Val Leu Gly Gly 126	
25	Ala Glu Leu Leu 1265	Asp Glu Leu Thi 1270	Ala Gly Val Glu 1275	Leu Asp Ala Phe 1280
	Val Leu Phe Ser	Ser Gly Ala Gly 1285	Val Trp Gly Ser 1290	Gly Gly Gln Ser 1295
30	Val Tyr Ala Ala 130		Leu Asp Ala Leu 1305	Ala Glu Arg Arg 1310
	Arg Ala Gln Gly 1315	Arg Pro Ala Thr 132	Ser Val Ala Trp	Gly Leu Trp Gly 1325
35	Gly Glu Gly Met 1330	Gly Ala Asp Glu 1335	Gly Val Thr Glu 1340	
	Arg Gly Leu Ala 1345	Pro Met Arg Pro 1350	Glu Ser Gly Ile 1355	Glu Ala Leu His 1360
40	Thr Ala Leu Asn	Glu Gly Asp Thr 1365	Cys Val Thr Val 1370	Ala Asp Ile Asp 1375
	Trp Glu His Phe	Val Thr Gly Phe 0	Thr Ala Tyr Arg 1385	Pro Ser Pro Leu 1390
<i>45</i>	Ile Ser Asp Ile 1395	Pro Gln Val Arg 140	Ala Leu Arg Thr	Pro Glu Pro Thr 1405
50	Val Asp Ala Ser 1410	Asp Gly Leu Arg 1415	Arg Arg Val Asp	
	Pro Arg Glu Arg 1425	Thr Lys Val Leu 1430	Val Asp Leu Val 1435	Arg Thr Val Ala 1440
55	Ala Glu Val Leu	Gly His Asp Gly 1445	Ile Gly Gly Ile 1450	Gly His Asp Val 1455

	Ala	Phe	λrg	Asp 146		Gly	Phe	Asp	Ser 146		Ala	Ala	Val	Arg 147		Arg
5	Gly	Arg	Leu 147		Glu	Ala	Thr	Gly 148		Val	Leu	Pro	Ala 148		Val	Ile
	Phe	Asp 149		Pro	Thr	Val	Asp 149		Leu	Gly	Gly	Ala 150		Leu	Glu	Arg
10	Leu 150		Ala	Asp	Glu	Pro 1510		Pro	Gly	Gly	Ala 151		Glu	Pro	Ala	Gly 1520
15	Gly	Arg	Pro	Ala	Thr 152		Pro	Pro	Ala	Pro 1530		Pro	Ala	Val	His 153	_
15	Ala	Asp	Ile	Asp 1540		Leu	Asp	Ala	Asp 1549		Leu	Ile	Arg	Leu 155		Thr
20	Gly	Thr	Ala 155		Pro	Ala	Asp	Gly 1560		Pro	Ala	Asp	Gly 156		Pro	Asp
	Ala	Ala 1570		Thr	Ala	Pro	Азр 1579		Ala	Pro	Glu	Gln 1580)			
25	(2)	INF														
30		(i)	(1	A) LE 3) TY	ingti (Pe :	i: 18 amir				ds						
		(ii)	MOI	LECUI	Æ TY	PE:	pept	ide								
35								ON: S								
	1	Ser			5					10					15	
40		Glu		20					25					30		
		His	35					40					45			
45		Val 50					55					60				
	Asp 65	Ala	Ile	Thr	Pro	Phe 70	Pro	Ala	Asp	Arg	Gly 75	Trp	Asp	Glu		Ala 80
50	Val	Tyr	Ser	Рго	Asp 85	Pro	Asp	Thr	Pro	Gly 90	Thr	Thr	Tyr	Cys	A rg 95	Glu
	Gly	Gly	Phe	Leu 100	Thr	Gly	Ala	Gly	Asp 105	Phe	Asp	Ala		Phe 110	Phe	Gly
55	Ile	Ser	Pro	Asn	Glu	Ala	Leu	Val	Met	Asp	Pro	Gln	Gln	Arg	Leu	Leu

			115					120)				129	5		
5	Leu	Glu 130	Thr	Ser	Trp	Glu	Thr 135		Glu	Arg	Ala	Gly 140		· Val	l Pro	Ala
	Ser 145	Leu	Arg	Gly	Ser	Arg 150		Gly	Val	Phe	Val 155		Ala	Ala	His	Thr 160
10	Gly	Tyr	Val	Thr	Asp 165		Ala	Arg	Ala	Pro 170		Gly	Thr	Glu	Gly 175	
	Leu	Leu	Thr	Gly 180	Asn	Ala	Asp	Ala	Val 185		Ser	Gly	Arg	11e		Tyr
15	Ser	Leu	Gly 195	Leu	Glu	Gly	Pro	Ala 200	Leu	Thr	Ile	Gly	Thr 205		Cys	Ser
·	Ser	Ser 210	Leu	Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220	Leu	Arg	Arg	Gly
20	Glu 225	Cys	Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Ala 235	Val	Met	Pro	Asp	Pro 240
05	Thr	Val	Phe	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Val	Asp 255	-
25	Arg	Cys	Lys	Ala 260	Phe	Ala	Glu	Gly	Ala 265	Asp	Gly	Thr	Ala	Trp 270		Glu
	Gly	Val	Gly 275		Leu	Leu	Val	Glu 280		Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
30	Gly	His 290	Arg	Val	Leu	Ala	Val 295	Val	Arg	Gly	Ser	Ala 300	Val	Asn	Gln	Asp
35	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	Ala	yab	Ala	Gly 330	Leu	Thr	Pro	Ala	Asp 335	Val
40	Asp	Val	Val	Glu 340	Ala	His	Gly	Thr	Gly 345	Thr	Ala	Leu	Gly	Asp 350	Pro	Ile
	Glu	Ala	Gly 355	Ala	Leu	Leu	Ala	Thr 360	Tyr	Gly	Arg	Glu	A rg 365	Val	Gly	Asp
45	Pro	Leu 370	Trp	Leu	Gly	Ser	Leu 375	Lys	Ser	Asn	Ile	Gly 380	His	Ala	Gln	Ala
	Ala 385	Ala	Gly	Val	Gly	Gly 390	Val	Ile	Lys	Val	Va1 395	Gln	Ala	Met	Arg	His 400
50	Gly	Ser	Leu	Pro	Arg 405	Thr	Leu	His	Val	Asp 410	Ala	Pro	Ser	Ser	Lys 415	Val
	Glu	Trp	Ala	Ser 420	Gly	Ala	Val	Glu	Leu 425	Leu	Thr	Glu	Gly	Arg 430	Ser	Trp
55	Pro	Arg	Arg	Val	Glu	Arg	Val	Arg	Arg	Ala	Ala	Val	Ser	Ala	Phe	Gly

			435	5				440)				449	5		
5	Va]	Ser 450	Gly	Thr	Asn	Ala	455	Va]	Va]	Leu	ı Glu	Glu 460		a Pro	Val	l Glu
	Ala 465	Gly	/ Ser	Glu	His	Gl ₃ 470	qe <i>K</i> (Gly	Pro	Gly	Pro 475		Arg	g Pro	y ya	Ala 480
10	Val	Thr	Gly	Pro	Leu 485	Pro	Ттр	Val	Leu	Ser 490		Arg	Ser	Arg	g Glu 495	
	Leu	Arg	Gly	Gln 500	Ala	Gly	/ Arg	Leu	Ala 505		Leu	Ala	Arg	Glr 510		Arg
15	Thr	Glu	Gly 515	Thr	Gly	Gly	Gly	Ser 520	Gly	Leu	Val	Val	Pro 525		Ala	Asp
	Ile	Gly 530	Tyr	Ser	Leu	Ala	Thr 535	Thr	Arg	Glu	Thr	Leu 540		His	Arg	Ala
20	Val 545	Ala	Leu	Val	Gln	Glu 550	Asn	Arg	Thr	Ala	Gly 555	Glu	Asp	Leu	Ala	Ala 560
25	Leu	Ala	Ala	Gly	Arg 565	Thr	Pro	Glu	Ser	Val 570	Val	Thr	Gly	Val	Ala 575	_
	Arg	Gly	Arg	Gly 580	Ile	Ala	Phe	Leu	Cys 585	Ser	Gly	Gln	Gly	Ala 590		Arg
30	Leu	Gly	Ala 595	Gly	Arg	Glu	Leu	Arg 600	Gly	Arg	Phe	Pro	Val 605	Phe	Ala	Аsp
	Ala	Leu 610	Хsр	Glu	Ile	Ala	Ala 615	Glu	Phe	Asp	Ala	His 620	Leu	Glu	Arg	Pro
35	Leu 625	Leu	Ser	Val	Met	Phe 630	Ala	Glu	Pro	Ala	Thr 635	Pro	Asp	Ala	Ala	Leu 640
	Leu	Asp	Arg	Thr	Asp 645	Tyr	Thr	Gln	Pro	Ala 650	Leu	Phe	Ala	Val	Glu 655	Thr
40	Ala	Leu	Phe	Arg 660	Leu	Leu	Glu	Ser	Trp 665	Gly	Leu	Val	Pro	Азр 670	Val	Leu
	Val	Gly	His 675	Ser	Ile	Gly	Gly	Leu 680	Val	Ala	Ala	His	Val 685	Ala	Gly	Val
45	Phe	Ser 690	Ala	Ala	Asp	Ala	Ala 695	Arg	Leu	Val	Ser	Ala 700	Arg	Gly	Arg	Leu
	Met 705	Arg	Ala	Leu	Pro	Glu 710	Gly	Gly	Ala	Met	Ala 715	Ala	Val	Gln	Ala	Thr 720
50	Glu	Arg	Glu	Ala	Ala 725	Ala	Leu	Glu	Pro	Val 730	Ala	Ala	Gly	Gly	Ala 735	Val
	Val	Ala	Ala	Val 740	Asn	Gly	Pro	Gln	Ala 745	Leu	Val	Leu	Ser	Gly 750	qsA	Glu
55	Ala	Ala	Val	Leu	Ala	Ala	Ala	Gly	Glu	Leu	Ala .	Ala	Arg	Gly	Arg	Arg

		755		760		765	
5	Thr Lys 770		Arg Val	Ser His	Ala Phe His	Ser Pro Ar 780	g Met Asp
	Ala Met 785	Leu Ala	Asp Phe 790		Val Ala Asp 799	Thr Val As	p Tyr His 800
10	Ala Pro	Arg Leu	Pro Val	Val Ser	Glu Val Thi 810	r Gly Asp Le	u Ala Asp 815
	Ala Ala	Gln Leu 820		Pro Gly	Tyr Trp Thi 825	Arg Gln Va 83	
15	Pro Val	Arg Phe 835	Ala Asp	Ala Val 840		Ser Ala Ar 845	g Asp Ala
	Ala Thr 850	Phe Ile	Glu Leu	Gly Pro 855	Asp Ala Val	Leu Cys Gl 860	y Met Ala
20	Glu Glu 865	Ser Leu	Ala Ala 870		Asp Val Val 875	Phe Ala Pr	o Ala Leu 880
25	Arg Arg	Gly Arg	Pro Glu 885	Gly Asp	Thr Val Leu 890	ı Arg Ala Al	a Ala Ser 895
	Ala Tyr	Val Arg 900	Gly Ala	Gly Leu	Asp Trp Ala 905	Ala Leu Ty 91	
30		915		920		Ala Phe Gl	
	930			935		Ala Pro Ala 940	
35	945		950		955		960
			965		970	Ala Ala Ala Arg Ala Vai	975
40		980			985	990 Thr Ala Arg)
		995		1000)	1005	
45	1010	0		1015		Glu Ala Ası 1020	
	1025		103	0	103		1040
50	Thr Glu	Cys Ala	Asp Ala 1045	Ala Glu	Arg Ala Leu 1050	Arg Ala Ala	Gly Ala 1055
55	Glu Val	Thr Arg 1060		Trp Pro	Leu Glu Gln 1065	His Thr Gly	
<i>55</i>	Arg Thr	Glu Thr	Pro Asp	Arg Gly	Thr Leu Ala	Ala Arg Lev	Ala Glu

	1	75	1080	1085	1085			
5	Leu Ala A 1090	g Ser Pro G	lu Gly Leu Ala Gly 1095	Val Leu Leu Leu Pro Asp 1100				
	Ser Gly G		al Ala Gly His Pro 110	Gly Leu Asp Gln Gly Thr 1115 1120				
10	Ala Ala Va	al Leu Leu Th 1125	nr Ile Gln Ala Leu 113	Thr Asp Ala Ala Val Arg 0 1135				
	Ala Pro Le	eu Trp Val Va 1140	al Thr Arg Gly Ala 1145	Val Ala Val Gly Ser Gly 1150				
15		o Cys Ala Va .55	al Gly Ala Arg Val 1160	Trp Gly Leu Gly Arg Val 1165				
	Ala Ala Le 1170	eu Glu Val Pr	o Val Gln Trp Gly 1175	Gly Leu Val Asp Val Ala 1180				
20	Val Gly Al 1185		g Glu Trp Arg Arg 90	Val Val Gly Val Val Ala 1195 1200)			
25	Gly Gly Gl	y Glu Asp Gl 1205	n Val Ala Val Arg 121	Gly Gly Gly Val Phe Gly 1215				
	Arg Arg Le	u Val Gly Va 1220	l Gly Val Arg Gly 1225	Gly Ser Gly Val Trp Arg 1230				
30	Ala Arg Gl 12	y Cys Val Va 35	l Val Thr Gly Gly 1240	Leu Gly Gly Val Gly Gly 1245				
	His Val Al 1250	a Arg Trp Le	u Ala Arg Ser Gly 1255	Ala Glu His Val Val Leu 1260				
35	Ala Gly Ar 1265	g Arg Gly Gl 12	y Gly Val Val Gly 70	Ala Val Glu Leu Glu Arg 1275 1280)			
	Glu Leu Va	l Gly Leu Gl 1285	y Ala Lys Val Thr 129	Phe Val Ser Cys Asp Val				
40	Gly Asp Ar	g Ala Ser Va 1300	l Val Gly Leu Leu 1305	Gly Val Val Glu Gly Leu 1310				
	13	15	1320	Ala Gly Val Ala Gln Val 1325				
45	Ser Gly Le 1330	u Gly Glu Va	l Ser Leu Ala Glu 1335	Ala Gly Gly Val Leu Gly 1340				
	Gly Lys Al 1345	a Val Gly Ala	a Glu Leu Leu Asp 50	Glu Leu Thr Ala Gly Val 1355 1360				
50	Glu Leu As	p Ala Phe Va 1365	l Leu Phe Ser Ser 1370	Gly Ala Gly Val Trp Gly 1375				
EE.	Ser Gly Gl	y Gln Ser Va 1380	l Tyr Ala Ala Ala 1385	Asn Ala His Leu Asp Ala 1390				
55	Leu Ala Gl	u Arg Arg Arg	g Ala Gln Gly Arg	Pro Ala Thr Ser Val Ala				

	1395		1400	1405
5	Trp Gly Pro Tr 1410	p Asp Gly Asp 141	Gly Met Gly Glu Me 5 14	
	Tyr Phe Ala Ar 1425	g His Gly Val 1430	Ala Pro Leu His Pro 1435	o Glu Thr Ala Leu 1440
10	Thr Ala Leu Hi	s Gln Ala Ile 1445	Asp Gly Glu Ala 1450	a Thr Val Thr Val 1455
	Ala Asp Ile As		Phe Ala Pro Gly Phe 1465	e Thr Ala Phe Arg 1470
15	Pro Ser Pro Le 1475	ı Ile Ala Gly	Ile Pro Ala Ala Arg 1480	Thr Ala Pro Ala 1485
	Ala Gly Arg Pr 1490	o Ala Glu Asp 1499	Thr Pro Thr Ala Pro	
20	Ala Arg Pro Gl	Asp Arg Pro 1510	Arg Leu Ala Leu Ası 1515	Leu Val Leu Arg 1520
25	His Val Ala Al	Val Leu Gly 1525	His Ser Glu Asp Ala 1530	a Arg Val Asp Ala 1535
	Arg Ala Pro Ph		Gly Phe Asp Ser Let 1545	ı Ala Ala Val Arg 1550
30	Leu Arg Arg Arg 1555	J Leu Ala Glu	Asp Thr Gly Leu Asp 1560	Leu Pro Gly Thr 1565
	Leu Val Phe As 1570	His Glu Asp 1575	Pro Thr Ala Leu Ala 158	
35	Gly Leu Ala As 1585	Ala Gly Thr 1590	Pro Gly Pro Gln Glu 1595	Gly Thr Ala Arg 1600
	Ala Glu Ser Gl	Leu Phe Ala 1605	Ser Phe Arg Ala Ala 1610	Val Glu Gln Arg 1615
40	Arg Ser Ser Gla	Val Val Glu	Leu Met Ala Asp Leu 1625	Ala Ala Phe Arg 1630
	Pro Ala Tyr Ser 1635	Arg Gln His	Pro Gly Ser Gly Arg 1640	Pro Ala Pro Val 1645
45	Pro Leu Ala Thi 1650	Gly Pro Ala 1655	Thr Arg Pro Thr Leu 166	
	Gly Thr Ala Val	Gly Ser Gly 1670	Pro Ala Glu Tyr Val 1675	Pro Phe Ala Glu 1680
50	Gly Leu Arg Gly	Val Arg Glu 1685	Thr Val Ala Leu Pro 1690	Leu Ser Gly Phe 1695
EE	Gly Asp Pro Ala 170	Glu Pro Met	Pro Ala Ser Leu Asp 1705	Ala Leu Ile Glu 1710
55	Val Gln Ala Asp	Val Leu Leu	Glu His Thr Ala Gly	Lys Pro Phe Ala

1720

1725

1715

5			Leu	Ala 173		His	Ser	Ala	Gly 173		Asn	Ile	Ala	His 174		Leu	Ala	Ala	
			Arg 1749		Glu	Glu	Arg	Gly 175		Gly	Pro	Ala	Ala 1759		Val	Leu	Met	Asp 1760	
10			Val	Туr	Arg	Pro	Glu 176		Pro	Gly	Ala	Met 1770		Glu	Trp	Arg	Asp 1775	•	
			Leu	Leu	Ser	Trp 178		Leu	Glu	Arg	Ser 1789		Val	Pro	Leu	Glu 1790		His	
15			Arg	Leu	Thr 1799	Ala 5	Met	Ala	Gly	Tyr 1800		Arg	Leu	Va1	Leu 1809		Thr	Arg	
			Leu	Thr 1810	Ala O	Leu	Glu	Ala	Pro 1815		Leu	Leu	Ala	Arg 1820		Ser	Glu	Pro	
20			Leu 1825	Cys	Ala	Trp	Pro	Pro 1830	Ala)	Gly	Gly	Ala	Arg 1835		Asp	Trp	Arg	Ser 1840	
25			Gln	Val	Pro	Phe	Ala 1845		Thr	Val	Ala	Asp 1850		Pro	Gly	Asn	His 1855		
			Thr	Met	Leu	Thr 1860	Glu)	His	Ala	Arg	His 1865		Ala	Ser	Leu	Val 1870		Glu	
30			Trp	Leu	Asp 1875	Ser	Leu	Pro	His	Gln 1880	Pro	Gly	Pro	Ala	Pro 1885		Thr	Gly	
			Gly	Lys 1890															
35	Cla	ims																	
	1.	An isola tide cor								ide se	quenc	e that	enco	des a	polype	eptide	where	in said polypep	-
40	2.	The isc	lated	DNA i	moleci	ule of	claim	1 whe	rein th	e nucl	eotide	sequ	ence	is sele	cted f	rom th	ie groi	up consisting of:	:
		n 8197, 8	ucleot 3270 to	ides 3 5 9541	892 to 1, 9899	1603, 9 to 10	1922 909, 1	to 299 10985	95, 317 to 11 <i>5</i>	73 to 3 30, 12	3424, 2596 te	3527 o 1318	to 479 53, 13	8, 513 469 to	35 to 6	6208, 1 0, 141	7043 t 48 to	o 7597, 7946 to 15422, 15789 to)
45		24484	to 246 31428	378, 24 8 to 3	4742 t 2696,	o 260 3302	16, 26 4 to 34	371 to 4022,	2738 34770	1, 274 to 35	142 to 327,	2796 35586	6, 288 to 35	43 to 837, 3	29892	2, 2990	05 to 3	23638 to 24159 30462, 30760 to 37898 to 38905)
	3.	A polyp	eptide	e cons	sisting	of an	amino	acid	seque	nce wl	nerein	said į	oolype	ptide	consis	sts of a	a plate	nolide synthase	}

2912 to 3261, 3266 to 3451, and 3551 to 3631 all in SEQ ID NO: 4;

50

55

domain.

2641 to 3064, 3184 to 3520, 3546 to 3727, 4083 to 4268, and 4374 to 4457 all in SEQ ID NO: 2; (b) amino acids 35 to 459, 582 to 933, 957 to 1155, 1523 to 1707, and 1812 to 1895 all in SEQ ID NO: 3; (c) amino acids 36 to 459, 594 to 921, 1177 to 1350, 1459 to 1523, 1545 to 1969, 2088 to 2424, 2445 to 2619,

(a) amino acids 15 to 418, 525 to 882, 942 to 1025, 1060 to 1483, 1596 to 1953, 2232 to 2416, 2533 to 2616,

4. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:

- (d) amino acids 34 to 456, 566 to 898, 1148 to 1333, and 1420 to 1503 all in SEQ ID NO: 5; and
- (e) amino acids 35 to 458, 582 to 917, 1233 to 1418, 1502 to 1585, 1715 to 1747 all in SEQ ID NO: 6.
- 5. The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: 5 nucleotides 392 to 3424, 3527 to 8197, 8270 to 13720, 14148 to 19730, 20215 to 24678, 24742 to 31002, 31428 to 35837, and 36257 to 41395 all in SEQ ID NO: 1.
 - 6. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:
 - (a) amino acids 15 to 1025, 1060 to 2616, and 2641 to 4457 all in SEQ ID NO: 2;
 - (b) amino acids 35 to 1895 in SEQ ID NO: 3;
 - (c) amino acids 36 to 1523, and 1545 to 3631 all in SEQ ID NO: 4;
 - (d) amino acids 34 to 1503 in SEQ ID NO: 5; and
 - (e) amino acids 35 to 1747 in SEQ ID NO: 6.

15

10

- 7. The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 350 to 14002, 14046 to 20036, 20110 to 31284, 31329 to 36071, and 36155 to 41830 all in SEQ ID NO: 1.
- 20 8. A homogenous preparation of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 3, 4, 5, and 6.
 - 9. An isolated DNA molecule consisting of nucleotide sequence of SEQ ID NO: 1
- 25 10. A recombinant DNA vector comprising the DNA molecule of claim 1.
 - 11. A recombinant DNA vector comprising the DNA molecule of claim 2.
 - 12. A recombinant DNA vector comprising the DNA molecule of claim 5.

30

- 13. A recombinant DNA vector comprising the DNA molecule of claim 7.
- 14. A recombinant DNA vector comprising the DNA molecule of claim 9.
- 35 15. A host cell transformed with a recombinant DNA vector of Claim 10.
 - 16. A host cell transformed with a recombinant DNA vector of Claim 11.
 - 17. A host cell transformed with a recombinant DNA vector of Claim 12.

- 18. A host cell transformed with a recombinant DNA vector of Claim 13.
- 19. A host cell transformed with a recombinant DNA vector of Claim 14.
- 45 20. The recombinant DNA vector deposited under accession number NRRL B-21500.
 - 21. The recombinant DNA vector deposited under accession number NRRL B-21499.

50

40

55

Fig. 1

srmG ~44kb

KS-7 AT KR ACP TE ORF 5 Module 7 KS-6 AT DH KR ACP ORF 4 Module 6 KS-4 AT KR ACP KS-5 AT DH ER KR ACP Module 5 ORF 3 Module 4 KS-3 AT DH KR ACP ORF 2 Module 3 KS AT ACP KS-1 AT KR ACP KS-2 AT DH KR ACP Module 2 ORF1 Module 1 Starter Module

Fig. 2

