INSTRUCTIONS

TMT Isobaric Mass Tagging Kits and Reagents

2073.0

Number Description

90063 TMTduplexTM Isobaric Mass Tagging Kit

Contents:

TMT⁰ Label Reagent, 5 vials TMT²-126 Label Reagent, 5 vials TMT²-127 Label Reagent, 5 vials

Dissolution Buffer (1 M triethyl ammonium bicarbonate), 5 ml

Denaturing Reagent (10% SDS), 1 ml **Reducing Reagent** (0.5 M TCEP), 1 ml

Iodoacetamide, $12 \times 9 \text{ mg}$

Quenching Reagent (50% hydroxylamine), 1 ml

Trypsin, $2 \times 20 \mu g$

Trypsin Storage Solution, 250 µl

Albumin, Bovine, 2.5 mg

90064 TMTsixplexTM Isobaric Mass Tagging Kit

Contents:

TMT⁶-126 Label Reagent, 5 vials TMT⁶-127 Label Reagent, 5 vials TMT⁶-128 Label Reagent, 5 vials TMT⁶-129 Label Reagent, 5 vials TMT⁶-130 Label Reagent, 5 vials TMT⁶-131 Label Reagent, 5 vials

Dissolution Buffer (1 M triethyl ammonium bicarbonate), 5 ml

Denaturing Reagent (10% SDS), 1 ml **Reducing Reagent** (0.5 M TCEP), 1 ml

Iodoacetamide, $12 \times 9 \text{ mg}$

Quenching Reagent (50% hydroxylamine), 1 ml

Trypsin, $5 \times 20 \text{ g}$

Trypsin Storage Solution, 250 µl

Albumin, Bovine, 2.5 mg

90065 TMTduplex Label Reagent Set

Contents:

TMT²-126 Label Reagent, 5 vials TMT²-127 Label Reagent, 5 vials

90066 TMTsixplex Label Reagent Set

Contents:

TMT⁶-126 Label Reagent, 5 vials TMT⁶-127 Label Reagent, 5 vials TMT⁶-128 Label Reagent, 5 vials TMT⁶-129 Label Reagent, 5 vials TMT⁶-130 Label Reagent, 5 vials TMT⁶-131 Label Reagent, 5 vials

90067 TMTzeroTM Label Reagent, 5 vials

Storage: Upon receipt store at 4°C. Product shipped at ambient temperature.

Note: This product is for research use only. Do not use for diagnostic procedures.

Introduction

The Thermo Scientific TMT Isobaric Mass Tagging Kits and Reagents enable quantitative labeling of proteins extracted from cells and tissues. Each isobaric tagging reagent is composed of an amine-reactive NHS-ester group, a spacer arm and an MS/MS reporter (Figure 1). The reagents label peptides prepared from distinct cell-based or tissue samples, either two samples for the duplex kit or six samples for the sixplex kit. For each sample, a unique reporter mass results in the MS/MS spectrum (i.e., 126-127 Da for TMT² and 126-131 Da for TMT⁶ Label Reagents). These reporter ions are in the low mass region of the MS/MS spectrum and are used to report relative protein expression levels during peptide fragmentation. Each reagent in the duplex and sixplex set has the same nominal parent (precursor) mass; however, the masses differ in the balancing and reporter region. By balancing these two components, the intact molecule has the same mass. For example, for the duplex reagent a given peptide will be modified by 225 Da per amine residue. At the MS/MS level, the reporter ions will be either 126 or 127 Da (see the Additional Information Section). The mass balance is compensated by a neutral loss of the reporter ion.

Figure 1. Chemical structure of the TMT Label Reagents.

Procedure Summary

Protein extracts are isolated from cells grown in culture or from tissue samples. After removing amine- and thiol-based buffers, samples are reduced, alkylated and digested overnight. Samples are labeled with the TMT reagents and then mixed at the duplex or the sixplex level. Strong-cation exchange (SCX) fractionation simplifies complex samples before LC-MS/MS analysis. Data analysis software is used to analyze the reporter ions in the low mass region (Figure 2).

Figure 2. Schematic for using the Thermo Scientific TMTsixplex Isobaric Mass Tagging Reagents.

Important Product Information

- The TMT reagents are amine-reactive and modify lysine residues and the N-termini. All amine-containing buffers and additives must be removed before digestion and labeling.
- All samples must be digested, labeled and then mixed equally before desalting, fractionation and LC-MS/MS. For optimal results, use 25-100 µg of peptide for each labeling reaction.
- To avoid contamination of MS samples, always wear gloves when handling samples and gels. Use ultrapure MS-grade reagents. Perform sample preparation in a cleaned work area cleaned with 70% methanol (Fisher Product No. A454-1).
- The TMTzero Label Reagent can be used to optimize methods before multiplexed analysis of samples with the TMTduplex or TMTsixplex Reagent Set.

Additional Materials Required

- Acetonitrile (Thermo Scientific Acetonitrile HPLC grade, Product No. 51101)
- Glass syringe (100 µl)
- HPLC grade water (Fisher, Product No. W6-4)
- Cell lysis reagent such as Thermo Scientific M-PER® Mammalian Protein Extraction Reagent (Product No. 78501), RIPA Lysis and Extraction Buffer (Product No. 89901) or 8 M Urea (Product No. 29700)
- Protease inhibitors (Thermo Scientific Halt Protease Inhibitor Single-Use Cocktail, EDTA-free, Product No. 78425)
- Phosphatase inhibitors (Thermo Scientific Halt Phosphatase Inhibitor Cocktail, Product No. 78420)
- Thermo Scientific Coomassie Plus (Bradford) Protein Assay (Product No. 23236)
- 75-300 µm capillary C₁₈ reversed phase column
- Ion trap or time-of-flight (TOF) mass spectrometer with online or offline liquid chromatography (LC) system
- Data analysis software such as Thermo Scientific Proteome Discoverer or Mascot Software (Matrix Science, Ltd.)

Material Preparation

Albumin, Bovine (BSA) Reconstitute BSA (2.5 mg) with 2.5 ml of ultrapure water. Divide solution into 100 µl aliquots

and lyophilize to dryness.

Add 100 µl of the Dissolution Buffer (1 M TEAB) to 400 µl of ultrapure water. 200 mM TEAB (triethyl

ammonium bicarbonate)

2% SDS Add 50 µl of the Denaturing Reagent (10% SDS) to 200 µl of ultrapure water.

Add 70 μ l of the Reducing Reagent (0.5 M TCEP) to 70 μ l of ultrapure water. Then add 35 μ l of 200 mM TCEP

the Dissolution Buffer (1 M TEAB).

5% Hydroxylamine Dilute the Quenching Reagent (50% hydroxylamine) 1:10 with 200 mM TEAB.

Procedure for Labeling with the TMT Isobaric Mass Tags

A. Preparing Whole Cell Protein Extracts

- Culture cells to harvest at least 100 μ g per condition. For best results, culture a minimum of 5×10^6 cells.
- Lyse cells in either RIPA buffer, M-PER Reagent or 8 M urea. Add protease and phosphatase inhibitors to the lysis reagent. Use 4 ml of lysis reagent for each milliliter of cells.
- Determine the protein concentration using the Coomassie Plus (Bradford) Protein Assay.
- Place 100 µg per condition (two for the TMTduplex or six for the TMTsixplex Label Reagents) in a polypropylene, 15 ml centrifuge tube and add six volumes of pre-chilled (-20°C) acetone. Allow the precipitation to proceed overnight.
- Centrifuge the samples at $8,000 \times g$ for 10 minutes at 4°C. Carefully invert the tubes to decant the acetone without disturbing the white pellet. Allow the pellet to dry for 10 minutes.

B. Protein Digestion

protein will be solubilized.

Note: Use 25-100 μ g of purified or lyophilized protein per sample. If the protein is in solution, make sure it is free of amine-containing buffers. Use the BSA (100 μ g) as a control sample for method optimization.

- 1. Add 5 μl of 2% SDS, 45 μl of 200 mM TEAB to the sample and adjust to a final volume of 100 μl with ultrapure water.

 Note: An acetone-precipitated pellet might not completely dissolve; however, after proteolysis at 37°C (Step B.6), all the
- 2. Add 5 µl of the 200 mM TCEP and incubate sample at 55°C for 1 hour.
- 3. Immediately before use, dissolve one tube of Iodoacetamide (9 mg) with 132 µl of 200 mM TEAB to make 375 mM iodoacetamide. Protect solution from light.
- 4. Add 5 μl of the 375 mM iodoacetamide (with TEAB) to the sample and incubate for 30 minutes protected from light.
- 5. Immediately before use, add 20 μ l of the Trypsin Storage Solution to the bottom of the Trypsin glass vial and incubate for 5 minutes. Store any remaining reagent in single-use aliquots at -80°C (e.g., 2.5 μ g of Trypsin per 100 μ g of protein).
- 6. Add 2.5 μg of Trypsin (i.e., 2.5 μl) per 100 μg of protein. Digest the sample overnight at 30-37°C.

C. Protein Labeling

- 1. After sample digestion and immediately before use, equilibrate the TMT Label Reagents to room temperature. Add 41 µl of anhydrous acetonitrile to each tube containing 0.8 mg of reagent. Allow the reagent to dissolve for 5 minutes with occasional vortexing. Briefly centrifuge the tube to gather the solution.
- 2. Using a 100 μl glass syringe add exactly 41 μl of the TMT Label Reagent to each sample. For example, if comparing two samples using the duplex set, add the TMT²-126 Label Reagent to the test sample and TMT²-127 Label Reagent to the control sample or vice versa.
- 3. Incubate the reaction for 1 hour at room temperature.
- 4. Add 8 µl of 5% hydroxylamine to the sample and incubate for 15 minutes.
- 5. Combine samples at equal amounts or store isolated at -80°C.

Sample Cleanup and Fractionation

For best results, use an HPLC system to perform strong cation exchange fractionation to remove the anionic SDS and fractionate complex proteomic extracts. Perform the separation with a Strong-Cation Exchange Column (PolyLC, Inc., Table 1). Alternatively, cleanup samples using the TopTipTM Strong Cation-Exchange Tips (PolyLC, Product No. TT1000SEA-2015), according to the manufacturer's instructions.

Table 1. Strong-cation exchange column information.

PolyLC Part #	<u>Column</u>	Particle	Pore	Load Range	Flow Range
102SE0503	2.1×100	5 μm	300 Å	0.1-1.0 mg	0.14-0.2 ml/min
104SE0503	4.2×100	5 μm	300 Å	0.4-4.0 mg	0.7-1.0 ml/min

Troubleshooting

Problem	Possible Cause	Solution	
Poor labeling	An amine-based buffer was used	Use a non-amine-based buffer	
	Incorrect buffer pH	Make sure the buffer pH is ~8.0	
Protein precipitation	Lack of detergent present	Add detergent, such as 0.05% SDS to the preparation	
	pH decreased	Make sure the pH is > 7.5	

Additional Information

A. Mass Modification

Each reagent in the duplex and sixplex sets has the same nominal parent (precursor) mass; however, the masses differ in the balancing and reporter region. By balancing these two components, the intact molecule has the same mass. For example, for the duplex reagent a given peptide will be modified by 225 Da per amine residue. At the MS/MS level, the reporter ions will be either 126 or 127 Da (Table 2). The mass balance is compensated by a neutral loss of the reporter ion.

Table 2. Modification masses of the TMT Label Reagents.

Label	Modification Mass	Modification	<u>Monoisotopic</u>	Average
Reagent	(monoisotopic)	Mass (average)	Reporter Mass	Reporter Mass
TMT ⁰ -126	224.1525	224.2994	126.1283	126.2193
TMT ² -126	225.1558	225.2921	126.1283	126.2193
TMT^2-127	225.1558	225.2921	127.1316	127.2120
TMT ⁶ -126	229.1629	229.2634	126.1283	126.2193
TMT ⁶ -127	229.1629	229.2634	127.1316	127.2120
TMT ⁶ -128	229.1629	229.2634	128.1350	128.2046
TMT ⁶ -129	229.1629	229.2634	129.1383	129.1973
TMT ⁶ -130	229.1629	229.2634	130.1417	130.1900
TMT ⁶ -131	229.1629	229.2634	131.1387	131.1834

B. Please visit the website for additional information related to this product including the following:

- Tech Tip Protocol #49: Acetone Precipitation of Proteins
- Tech Tip Protocol #19: Remove Detergents from Protein Samples

Related Products

90008	Pierce Strong Cation Exchange Spin Column, Mini, 24 spin columns and 48 collection tubes
90009	Pierce Strong Cation Exchange Spin Column, Maxi, 8 spin columns and 16 collection tubes
89983	Pierce SILAC Protein Quantitation Kit – DMEM
89982	Pierce SILAC Protein Quantitation Kit – RPMI 1640
89870	PepClean C-18 Spin Columns, 25 columns
28904	Trifluoroacetic Acid, Sequanal Grade
23227	Pierce BCA Protein Assay
23208	Pre-Diluted Protein Assay Standards
89853	Phosphopeptide Isolation Kit
90003	Pierce Phosphoprotein Isolation Kit
89885	iCON Concentrator, 20 ml/9K MWCO, 25 units
89893	Zeba Desalt Spin Columns, 10 ml, 5 columns

General References

Dayon, L., et al. (2008). Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem. 80(8):2921-31.

Ross, P.L., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3 (12):1154-69.

This product ("Product") is warranted to operate or perform substantially in conformance with published Product specifications in effect at the time of sale, as set forth in the Product documentation, specifications and/or accompanying package inserts ("Documentation") and to be free from defects in material and workmanship. Unless otherwise expressly authorized in writing, Products are supplied for research use only. No claim of suitability for use in applications regulated by FDA is made. The warranty provided herein is valid only when used by properly trained individuals. Unless otherwise stated in the Documentation, this warranty is limited to one year from date of shipment when the Product is subjected to normal, proper and intended usage. This warranty does not extend to anyone other than the original purchaser of the Product ("Buyer").

No other warranties, express or implied, are granted, including without limitation, implied warranties of merchantability, fitness for any particular purpose, or non infringement. Buyer's exclusive remedy for non-conforming Products during the warranty period is limited to replacement of or refund for the non-conforming Product(s).

There is no obligation to replace Products as the result of (i) accident, disaster or event of force majeure, (ii) misuse, fault or negligence of or by Buyer, (iii) use of the Products in a manner for which they were not designed, or (iv) improper storage and handling of the Products.

Current versions of product instructions are available at www.thermo.com/pierce. For a faxed copy, call 800-874-3723 or contact your local distributor.

© 2008 Thermo Fisher Scientific Inc. All rights reserved. Unless otherwise indicated, all trademarks are property of Thermo Fisher Scientific Inc. and its subsidiaries. Printed in the USA.