Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

Отчёт

по лабораторной работе №2

Дисциплина: Программирование микроконтроллеров для управления роботами
Тема: Вторичный источник питания

Tema. Droph hibin hero hink hintanian

Ляпцев И. А.

Студент гр. 331506/70401

Преподаватель

Капустин Д. А. »_____2020 г.

Содержание

Задани		. 3
1. Опис	рание	4
2. Расч	ет компонентов	. 7
1.	Выбор R _{FBT} и R _{FBB}	. 7
2.	Выбор частоты переключения	7
3.	Выбор конденсаторов на входе	7
4.	Выбор катушки индуктивности	7
5.	Выбор конденсатора на выходе	8
6.	Выбор С _{FF}	9
7.	Выбор С _{boot} (конденсатор начальной загрузки)	9
8.	VCC конденсатор	9
9.	Bias конденсатор	9
10.	Конденсатор плавного пуска	0
11.	Блокировка при пониженном напряжении	0
12.	Пин PGOOD	0
13.	Резистор для стабилитрона1	0
Заключ	ение1	1

Задание

Вариант задания №17. Микросхема LM46002.

Разработать понижающий преобразователь напряжения DC/DC 12B/5B. Мощность преобразователя 10Bт. Преобразователь должен обеспечивать работу в диапазоне входных напряжений от 10B до 16B. Преобразователь должен быть защищен от подачи напряжения обратной полярности, а также от подачи напряжения больше 16B. В устройстве должно присутствовать индикация напряжения питания на выходе. Выход преобразователя должен быть защищен предохранителем.

1. Описание

ТРS54360В это понижающий преобразователь напряжения со встроенным высокочастотным МОП-транзистором. Устройство реализует постоянную частоту, управление токовым режимом, что снимает выходную емкость и упрощает внешнюю частотную компенсацию. Широкий диапазон частот переключения позволяет оптимизировать выбор компонентов выходного фильтра.

Стабилизатор LM46002 представляет собой синхронный понижающий преобразователь постоянного / постоянного тока, способный управлять током нагрузки до 2 А при входном напряжении от 3,5 В до 60 В. LM46002 обеспечивает исключительную эффективность, точность вывода и падение напряжения при очень небольшом размере решения. Управление в режиме максимального тока используется для достижения простой компенсации контура управления и ограничения тока от цикла к циклу.

Дополнительные функции, такие как программируемая частота переключения, синхронизация, отметка о хорошем энергопотреблении, включение точности, внутренний плавный запуск, расширяемый плавный запуск и отслеживание, обеспечивают гибкую и простую в использовании платформу для широкого спектра приложений. Прерывистая проводимость и автоматическое снижение частоты при легких нагрузках улучшают эффективность легких нагрузок.

Функции защиты: Блокировка пониженного напряжения VCC, ограничение тока цикла за циклом и защита от короткого замыкания на выходе.

Основные характеристики данной микросхемы приведены в таблице 1.1.

Таблица 1.1 — Характеристики микросхемы LM46002

Параметр	Значение
Номинальное напряжение, В	от 3,5 до 60
Номинальный ток, А	От 0 до 2
Частота переключения, МГц	от 0,2 до 2
Рабочие температуры, °С	от -40 до 125
Температура теплового отключения, °С	160

На рисунке 1.1 представлено условное графическое обозначение микросхемы.

Рисунок 1.1 — УГО микросхемы LM46002

Контакт SW — коммутационный узел преобразователя. Внутренне подключен к обоим силовым полевым МОП-транзисторам.

Контакт СВООТ — подключение загрузочного конденсатора для драйвера затвора.

Контакт VCC предназначен для вывода питания внутреннего смещения для байпас-конденсатора.

Контакт BIAS — дополнительный внутренний вход питания LDO.

Контакт SYNC используется для для синхронизации действия переключения с внешними часами.

Контакт RT предназначен для программирования частоты переключения.

Контакт PGOOD— open drain выход для флага хорошего питания

Контакт FB— вход обратной связи по выходному напряжению. Подключается к делителю напряжения, с помощью которого устанавливается выходное напряжение.

Контакт AGND— аналоговый вывод заземления. Основание для внутренних ссылок и логики.

Контакт SS/TRK— Штифт управления плавным пуском.

Контакт EN предназначен для включения микросхемы (высокий уровень— ВКЛ, низкий— ВЫКЛ).

Контакт VIN предназначен для подключения входного напряжения питания с рабочим диапазоном от 3,5 B до 60 B.

Контакт PGND — контакты заземления питания, подключенные внутри к полевому транзистору низкого напряжения.

2. Расчет компонентов

1. Выбор R_{FBT} и R_{FBB}

Согласно даташиту, расчет осуществляется по формуле (1.1).

$$R_{FBB} = \frac{V_{FB}}{V_{OUT} - V_{FB}} R_{FBT} \tag{1.1}$$

Также рекомендуется брать R_{FBT} равным $1M\Omega$ для минимизации токов покоя, что повышает «эффективность малой нагрузки». Также, исходя из того, что $V_{out} = 5V$, а типовое значение V_{FB} (напряжение на пине FB) равно внутреннему $V_{REF} = 1,011V$, получаем $R_{FBB} = 253,5 \ k\Omega$, выбираем ближайшее значение $255 \ k\Omega$.

В итоге $R_{FBT}=1M\Omega,\,R_{FBB}=255~k\Omega,\,$ я возьму RC0603FR-071ML и RC0603FR-07255KL соответственно.

2. Выбор частоты переключения

Согласно даташиту, при частоте 500 кГц можно обойтись меньшим числом пассивных компонентов, выбираем ее. Пин RT можно оставить плавающим.

3. Выбор конденсаторов на входе

Согласно даташиту, на вход нужно поставить один высокочастотный развязывающий конденсатор большой емкости и один конденсатор любой емкости, чтобы демпфировать скачки напряжения, особенно если цепь расположена не ближе 5 см от источника входного напряжения. Также рекомендуется использовать высококачественную керамику типа X5R или X7R. Первый конденсатор должен быть в пределах от 4.7 µF до 10µF. Оба конденсатора должны быть рассчитаны на максимальное входное напряжение, включая пульсации.

В итоге $C_{in} = 10 \mu F$, я возьму GRM32ER71H106KA12L, в качестве C_{inx} я возьму CC1210KKX7R8BB226.

4. Выбор катушки индуктивности

При выборе катушки есть 2 критерия:

1. Индуктивность, основанная на желаемом размахе пульсации тока, протекающего в катушке вместе с постоянным током нагрузки.

Более высокая индуктивность дает более низкий ток пульсаций и,

следовательно, более низкие пульсации выходного напряжения при тех же выходных конденсаторах. Низкая индуктивность может привести к уменьшению размера и стоимости компонента. Расчет производится по уравнению (1.2) и (1.3), $D = \frac{Vout}{Vin}$, согласно рекомендациям, начать стоит с индуктивности, обеспечивающей ток пульсации 20-40% от I_{OUT} :

$$\Delta i_L = \frac{(V_{IN} - V_{OUT}) \cdot D}{L \cdot F_S} \tag{1.2}$$

$$\frac{(V_{IN} - V_{OUT}) \cdot D}{0.4 \cdot F_S \cdot I_{L,MAX}} \le L \le \frac{(V_{IN} - V_{OUT}) \cdot D}{0.2 \cdot F_S \cdot I_{L,MAX}} \tag{1.3}$$

Получаем:

$$\frac{(10-5)\cdot\frac{5}{10}}{0.4\cdot500\cdot2} \le L \le \frac{(10-5)\cdot\frac{5}{10}}{0.2\cdot500\cdot2}$$
$$0.00625 \le L \le 0.0125$$

Возьмем среднее значение в 10μН.

2. Номинальный ток насыщения индуктора. Катушка должна быть рассчитана на максимальный ток нагрузки + ток пульсации (см. формулу 1.4).

$$I_{L_PEAK} = I_{LOAD-MAX} + \frac{\Delta i_L}{2}$$
 (1.4)

Т.е катушка должна быть рассчитана на ток в 2.5A, для запаса возьмем катушки от 3A до 4A.

Также необходимо выбрать тип индуктора. В моем случая я остановился на ферритовых сердечниках, согласно рекомендациям даташита.

В итоге мой выбор остановился на SRN8040-100M.

5. Выбор конденсатора на выходе

Конденсатор должен учитывать пульсации из-за следующих факторов:

Пульсации тока индуктора через ESR выходных конденсаторов рассчитываются по формуле (1.5).

$$\Delta V_{OUT-ESR} = \Delta i_L \cdot ESR \tag{1.5}$$

Пульсации тока индуктивности при зарядке и разрядке выходных конденсаторов рассчитываются по формуле (1.6).

$$\Delta V_{OUT-C} = \frac{\Delta i_L}{8 \cdot \xi_S \cdot C_{OUT}} \tag{1.6}$$

Выбирать следует конденсатор с наименьшей емкостью.

Примерное уравнение для емкости конденсатора согласно даташиту показано в уравнениях (1.7) и (1.8).

$$C_{OUT} > \frac{1}{F_s \cdot r \cdot \frac{\Delta V_{OUT}}{I_{OUT}}} \cdot \left(\left(\frac{r^2}{12} \cdot (1 + D^{\prime}) \right) + (D^{\prime} \cdot (1 + r)) \right)$$
 (1.7)

$$C_{out} > 0.002\mu F \tag{1.8}$$

Также расчет максимального ESR показан в формулах (1.9) и (1.10).

$$ESR < \frac{D}{F_S \cdot C_{OUT}} \cdot (\frac{1}{r} + 0.5) \tag{1.9}$$

$$ESR < 2.25$$
 (1.10)

Следует выбирать минимально возможное ESR, и поэтому, также ввиду рекомендация даташита, я остановился на GRM32ER61E226KE15L, его я поставлю 3 штуки ($22\mu F$, 25V, X5R, ESR = $667\mu\Omega$).

6. Выбор С_{FF}

Конденсатор ставится параллельно R_{FBT} в случае, когда ESR достаточно низкое, что приводит к низкому запасу по фазе, конденсатор фазовое сопротивление улучшает, и выбирается по формуле (1.11).

$$f_X = \frac{4.35}{V_{OUT} \cdot C_{OUT}} \tag{1.11}$$

В нашем случае выбран ближайший подходящий конденсатор в 20 пF- CC0402JRNPO9BN200.

7. Выбор Сьоот (конденсатор начальной загрузки)

Согласно даташиту выбирает конденсатор в $0.47~\mu F$ - GRM155R60J474KE19D.

8. VCC конденсатор

Аналогично, по даташиту, выбираем конденсатор в $10\mu F$ - CC0603MRX5R5BB106.

9. Bias конденсатор

Добавляется для эффективности малой нагрузки при выходном напряжении

больше 3.3V. Возьмем GRM219R61A475KE34.

10. Конденсатор плавного пуска

Можно не ставить, так как время пуска изменять необходимости нет (4.1 мс).

11. Блокировка при пониженном напряжении

Включение, когда входное напряжение больше какого-либо (3.1V типовое по даташиту). Нет необходимости.

12. Пин PGOOD

Подтягивается резистором для сигнала при напряжении в пределах допустимого уровня, ставится резистор от 10 до 100 кОм. В данном случае поставим 44,2к Ом- RC0603FR-0744K2L.

13. Резистор для стабилитрона

Выбираем стабилитрон PLZ15C с напряжением стабилизации $U_{\rm cra6}$ =15В при силе тока стабилизации $I_{\rm cra6}$ =10 мА.

Расчет сопротивления резистора выполняется по формуле (1.12)

$$R = \frac{U_{\text{BX}} - U_{\text{CTa6}}}{I_{\text{CTa6}}},\tag{1.12}$$

где $U_{\text{вх}}$ – входное напряжение, В.

Рассчитаем сопротивления резистора для максимально возможного входного напряжения $U_{\text{вx}}$ =16 В.

$$R = \frac{16-15}{0.01} = 100 \text{ Om}$$

Заключение

В ходе лабораторной работы был разработан понижающий преобразователь напряжения, обеспечивающий все необходимые требования. Дано описание ключевых компонентов, выполнен расчет электронных компонентов схемы, рассчитана стоимость изготовления печатной платы.

В результате выполнения работы были предоставлены принципиальная электрическая схема, файлы производства, перечень электронных компонентов и файлы проекта Altium Designer.