Ex3.5

集合 $P = \{ \boldsymbol{x} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 1, \boldsymbol{x} \geq 0 \}$ とベクトル $\boldsymbol{x} = (0,0,1)$ を考える。 \boldsymbol{x} の実行可能方向を示せ。

実行可能方向 $\mathbf{d}=(d_1,d_2,d_3)$ とすると、正のスカラー θ を用いて $\mathbf{x}+\theta\mathbf{d}\in P$ が成り立つ必要がある。(定義 3.1 より) そのため、 $(x_1+\theta d_1)+(x_2+\theta d_2)+(x_3+\theta d_3)=1$ つまり、 $d_1+d_2+d_3=0$ 、 $(x_1+\theta d_1)\geq 0$, $(x_2+\theta d_2)\geq 0$, $(x_3+\theta d_3)\geq 0$ つまり、 $d_1\geq 0$, $d_2\geq 0$, $d_3\geq -1$ が成り立つ集合が実行可能方向の集合。よって、実行可能方向の集合は $\{\mathbf{d}\in\mathbb{R}^3\mid d_1+d_2+d_3=0,d_1\geq 0,d_2\geq 0,d_3\geq -1\}$

Ex4.1

下のような主問題のを考える。

minimize
$$x_1 - x_2$$
 subject to
$$2x_1 + 3x_2 - x_3 + x_4 \le 0$$

$$3x_1 + x_2 + 4x_3 - 2x_4 \ge 3$$

$$-x_1 - x_2 + 2x_3 + x_4 = 6$$

$$x_1 \le 0$$

$$x_2, x_3 \ge 0$$

$$(1)$$

これに対応する双対問題を示せ。

4.2 の対応表より、

$$\begin{array}{ll} \text{maximize} & 3p_2-6p_3\\ \text{subject to} & p_1 \leq 0\\ & p_2 \geq 0\\ & p_3 \text{free} \\ & 2p_1+3p_2-p_3 \leq 1\\ & 3p_1+p_2-p_3 \geq -1\\ & -p_1+4p_2+2p_3 \leq 0\\ & p_1-2p_2+p_3=0 \end{array} \tag{2}$$

Ex4.6

 $m{A}$ を $m \times n$ の行列、 $m{b}$ を \mathbb{R}^m のベクトルとする。ここで、すべての $m{x} \in \mathbb{R}^n$ について $\|m{A}m{x} - m{b}\|_{\infty}$ を最小化する問題を考える。ここで $\|\cdot\|_{\infty}$ は $\|m{y}\|_{\infty} = \max_i |y_i|$ で定義されるベクトルノルムである。また、最適コストの値を v とする。

- (a) $\sum_{i=1}^m |p_i| \le 1, p'A = \mathbf{0}'$ を満たす任意の \mathbb{R}^m ベクトル p を考える。 $p'b \le v$ を示せ。
- (b) (a) で考えた形式の最適な下限を得るために、線形計画問題を立てる。

maximize
$$p'b$$
 subject to $p'A = 0'$ $\sum_{i=1}^{m} |p_i| \le 1$

この問題における最適コストは v に等しいことを示せ。

(a)

 $z = \|Ax - b\|_{\infty}$ とすると今回の問題は下のように書ける。

minimise
$$z$$

subject to $Ax + ze \ge b$
 $-Ax + ze \ge -b$
 $z > 0$ (3)

ここでeは要素が全て1であるベクトルである。この問題の双対問題は下のように書ける。

maximise
$$b'u - b'w$$

subject to $A'u - A'w = 0$
 $e'u + e'w \le 1$
 $u, w > 0$ (4)

あるベクトル p について、 $p_i = s_i - t_i, |p_i| = s_i + t_i, s_i \ge 0, t_i \ge 0$ を満たすベクトル s,t を考える。このベクトル p が $\sum_{i=1}^m |p_i| \le 1, p'A = 0'$ を満たすとすると、 $e's + e't \le 1, A's - A't = 0$ が成り立つため、s,t は双対問題の 実行可能解である。弱双対性より、 $b'p = b'(s-t) \le v$ が示せる。

(b)

(b) の問題の最適コストを v' とする。(a) より、 $\mathbf{v}' \leq v$ 。

v=0 の時、 ${m p}=0$ は実行可能解であり、その時のコストは ${m b}'{m p}=0$ となるため、 $v'\geq 0=v$ が成り立つ。

 $v \neq 0$ の時、全ての i について、 $(\mathbf{A}\mathbf{x} + z\mathbf{e})_i = b_i, (-\mathbf{A}\mathbf{x} + z\mathbf{e})_i = -b_i$ のどちらか一方は成立しない。 $(\mathbf{u}^*, \mathbf{w}^*)$ が双 対最適解であると仮定すると、相補スラック条件より、 $u_i^*w_i^* = 0$ である。そのため、 $\mathbf{u}^* + \mathbf{w}^* = |\mathbf{u}^* - \mathbf{w}^*|$ が成り立つ。

 $q=m{u}^*-m{w}^*$ とすると、q は (b) の問題の実行可能解である。強双対性定理により、 $m{b'q}=m{b'}(m{u}^*-m{w}^*)=v$ 。v' は (b) の問題に対する最適値であるので、 $v'\geq m{b'q}\geq v$ よって v'=v が成り立つ。