Data Science for Business Lecture #6 Decision Tree Examples

Prof. Alan L. Montgomery

The University of Hong Kong & Carnegie Mellon University, Tepper School of Business email: alanmontgomery@cmu.edu

All Rights Reserved, © 2021 Alan Montgomery

Do not distribute, post, or reproduce without Alan Montgomery's Permission

Lending Club In-Class Exercise

Review from last session with Logistic Regression

Sign in Help

Personal Loans

Auto Refinancing

Business Loans

Patient Solutions

Investing

How It Works

About Us

How does an online credit marketplace work? Lending Club uses technology to operate a credit marketplace at a lower cost than traditional bank loan programs, passing the savings on to borrowers in the form of lower rates and to investors in the form of solid returns. Borrowers who used a personal loan via Lending Club to consolidate debt or pay off high interest credit cards report in a survey that the interest rate on their loan was an average of 25% lower than they were paying on their outstanding debt or credit cards.¹

By providing borrowers with better rates, and investors with attractive, risk-adjusted returns, Lending Club has earned among the highest satisfaction ratings

in the financial services industry.2

INVESTORS PROVIDE FUNDING

!!!LendingClub

BORROWERS MAKE MONTHLY PAYMENTS

Introduction to Lending Club

Fast facts

- <u>Lending Club</u> is a <u>peer-to-peer lending system that</u> has set up an online marketplace connecting investors to borrowers
- Lending Club operates at a lower cost than traditional bank lending programs and pass the savings on to borrowers (lower rates) and to investors (solid returns)
- In 2007, Lending Club made 9,758 loans with ~\$75M in loan value
- All loan lengths are 3 years
- Investors shared in \$15M in profits after accounting for \$12.5M in loan default losses

CEO has ask you to determine if there is a better model for determining credit worthiness

Two-sided Market

Better for Borrowers

We cut the cost and complexities of traditional bank loans and pass the savings on to borrowers.

average of 25%1!

Learn more

- Easy online application
- Low fixed rates
- Fixed monthly payments
- Flexible terms
- No prepayment penalties
- No hidden fees
- Friendly service

Borrowers reduce their rates by an

Borrowers who used a personal loan* via Lending Club to consolidate debt or pay off high interest credit cards report in a survey that the interest rate on their loan was an average of 25% lower than they were paying on their outstanding debt or credit cards.

Better for Investors

At Lending Club you can earn attractive risk-adjusted returns by quickly and easily investing in a diversified portfolio of loans.

Learn more

- Solid returns with historical returns by Grade A-C of 5.01% to 7.38%.⁵
- Monthly cash flow
- Simple and straightforward
- Easy to diversify across many Loans
- 401(k) rollover and retirement accounts available

Solid Returns

Lending Club Notes have historical annual returns between 5% and 7%. Each Note represents a fraction of an underlying loan.¹

Low Volatility

99% of investors who invest in 100+ Notes of relatively equal size have seen positive returns.²

Monthly Cash Flow

Investors receive between 2-5% of their total investment back in cash payments as borrowers make their monthly loan payment.³

Lending Club Dataset

Variable	Description
default	1 if the customer did not fully pay back the loan, and 0 otherwise.
credit.policy	1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise.
purpose	The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all_other").
int.rate	The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates.
installment	The monthly installments (\$) owed by the borrower if the loan is funded.
log.annual.inc	The natural log of the self-reported annual income of the borrower.
dti	The debt-to-income ratio of the borrower (amount of debt divided by annual income).
fico	The FICO credit score of the borrower.
days.with.cr.line	The number of days the borrower has had a credit line.
revol.bal	The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle).
revol.util	The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available).
inq.last.6mths	The borrower's number of inquiries by creditors in the last 6 months.
delinq.2yrs	The number of times the borrower had been 30+ days past due on a payment in the past 2 years.
pub.rec	The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).

Explaining the Model The most important reasons for default...

Variable	Estimate	Importance	Why consumers more likely to default if they
installment	a 0.00	0.28	have high payments
log.annual.inc	-0.48	0.26	have low incomes Top 5 reasons that
inq.last.6mths	a 0.10	0.25	have many recent inquiries to borrow contribute
purposecredit_card	- 0.74	0.22	are not refinancing credit cards to default
fico	-0.01	0.19	have poor credit scores
purposedebt_consolidation	-0.42	0.18	are not refinancing other debt
int.rate	4.91	0.14	have high interest rates
purposes mall_business	a 0.48	0.13	are refinancing for small business loans
revol.util	a 0.00	0.13	are using higher percentage of available revolving credit
credit.policy	- 0.32	0.12	do not meet current credit policy
revol.bal	a 0.00	0.10	have high revolving credit balances
pub.rec	a 0.33	0.09	have previous bankruptcy or default
purposeeducational	-0.23	0.04	are not refinancing educational loans
purposemajor_purchase	-0.1 4	0.03	are not refinancing major purchases
purposehome_improvement	a 0.01	0.00	are refinancing home important loans

Lending Club

Predicting Default using Decision Trees

In-Class Exercise: Part 3 Decision Tree

Step through the "@tree" in the script and carefully consider the results.

What is a good tree? (e.g., What value for cp?)

Review your initial hypothesis? What did you learn from the decision tree about default?

Complete the following two slides:

- Explaining your model
- Use your model to construct three different classification matrices

Decision Tree: Estimate Full Tree cp=.001 Do we need to prune this tree back?

Decision Tree: Estimate Full Tree cp=.001 Compare training and validation samples

Notice the large

drop in

performance. This

is a clear indicator

of over-fitting.

Training Sample

trueclass 0 predclass

0 4048 251 1 757 641

\$accuracy [1] 0.8230648

\$confmatrix

\$truepos [1] 0.7186099

\$precision [1] 0.4585122

\$trueneg [1] 0.8424558

Test Sample

\$confmatrix trueclass

predclass 0 2514 429

1 726 212

\$accuracy

[1] 0.7023963

\$truepos

[1] 0.3307332

\$precision

[1] 0.2260128

\$truenea

[1] 0.7759259

Decision Tree: Prune the tree to cp=.0048831 *This is only a rule of thumb, could try many settings*

printcp(ctree.full) plotcp(ctree.full)

```
CP nsplit rel error xerror
                                          xstd
1 0.0252911
                      1.00000 1.00036 0.025050
2 0.0113258
                      0.97471 0.98267 0.024495
3 0.0061745
                      0.96338 0.97510 0.024068
4 0.0048831
                      0.95721 0.97144 0.023974
  0.0046170
                      0.95233 0.97303 0.023989
  0.0032407
                      0.94771 0.97729 0.024103
  0.0030520
                      0.93799 0.98544 0.024394
  0.0030470
                 11
                      0.92883 0.98461 0.024354
9 0.0025003
                      0.92578 0.99736 0.024745
10 0.0024418
                      0.92328 1.00615 0.025109
11 0.0023533
                      0.91840 1.01386 0.025326
12 0.0022901
                      0.90899 1.02583 0.025661
13 0.0022776
                      0.89970 1.02721 0.025689
14 0.0022395
                      0.89742 1.02721 0.025689
```

cp=complexity

rel error=error relative to base error (one leaf) xerror=relative error for cross-validated model xstd=measure of uncertainty for mean A good choice of cp is to choose the smallest model that is within a one standard error of the mean (e.g., xerror+xstd<1), say cp=.0048831 size of tree

Another good choice of cp for pruning is the one with the minimum "xerror", say cp=.0032407

Decision Tree: Tree with cp=.005 Easy to understand tree

Explaining the Model

Use this slide to explain your tree model: you can show the tree, call out the most important predictors, or otherwise justify the rules highlighted by the tree

Decision Tree *Use* plotmo *to understand response curve*

Examine Prediction Accuracy using Confusion Matrix

Build a confusion matrix for cutoff of 0.16 (above or below average)

Make sure that the confusion matrix is for the test set and not the training set for the model

Examine Prediction Accuracy using Confusion Matrix

Build a confusion matrix for cutoff of 0.16 (above or below average)

Make sure that the confusion matrix is for the test set and not the training set for the model

\$confmatrix trueclass predclass 0 1 0 2132 279 1 1108 362

\$accuracy [1] 0.6426179

\$truepos [1] 0.5647426

\$precision
[1] 0.2462585

\$trueneg [1] 0.6580247

\$lift [1] 1.976695

If we predict "default" then we will not make loans, so no profits If we predict "don't default" then we will make loans, so profits come from those that don't default (279) and losses come from those that default (2132)

Examine Prediction Accuracy using Confusion Matrix

Build a confusion matrix for cutoff of 0.16 (above or below average)

Make sure that the confusion matrix is for the test set and not the training set for the model

\$confmatrix trueclass predclass 0 1 0 2132 279 1 1108 362

\$accuracy [1] 0.6426179

\$truepos [1] 0.5647426

\$precision
[1] 0.2462585

\$trueneg [1] 0.6580247

\$lift [1] 1.976695

If we predict "default" then we will not make loans, so no profits If we predict "don't default" then we will make loans, so profits come from those that don't default (279) and losses come from those that default (2132)

Decision Tree: Compare performance *Which tree is better?*

\$\text{cp=.005} \quad \text{\$\text{confmatrix} \\ \text{trueclass} \\ \text{predclass} \quad 0 \\ \text{2514} \quad 429 \\ \text{1} \quad 726 \quad 212 \quad \text{5accuracy} \quad \text{\$\text{faccuracy} } \quad \qq\quad \quad \quad \quad \quad \qq\quad \quad \quad \qq\quad \quad \qq\qq\qq\qq\q

\$accuracy \$accuracy [1] 0.7023963 [1] 0.7080649

\$truepos \$truepos [1] 0.3307332 [1] 0.4040562

\$trueneg \$trueneg [1] 0.7759259 [1] 0.7682099

Decision Tree Alternative tree with cp=0.0030470

\$confmatrix

trueclass

predclass 0 1

0 2391 355

1 849 286

\$accuracy

[1] 0.6897707

\$truepos

[1] 0.4461778

\$precision

[1] 0.2519824

\$trueneg

[1] 0.737963

Lending Club

Which model to use?

In-Class Exercise: Part 4 Choose a model

Compare the model on the various metrics shown in the following page and ROC curves generated by the "@compare" portion of the script.

Which model should we use?

Compare the models

Variable	Logistic Regression	Decision Tree
Accuracy	.643	.708
Precision	.246	.256
Recall	.565	.404
Lift in top decile	1.977	1.715
AUC	.664	.620

Lending Club

What cutoff to use?

In-Class Exercise: Part 5 Use the model to recommend loans

How can use use your model to improve the recommendation of which customers receive loans?

What KPIs or metrics should we use to judge the model?

If we follow your model recommendation then how much can we make?

Examine Prediction Accuracy (by varying cutoff threshold for prediction)

Build a confusion matrix for 3 different cutoff thresholds

Make sure that the confusion matrix is for the test set and not the training set for the model

Examine Prediction Accuracy (by varying cutoff threshold for prediction)

Build a confusion matrix for 3 different cutoff thresholds

Make sure that the confusion matrix is for the test set and not the training set for the model

Accuracy = 41% TPR = 86% Precision = 20% Accuracy = 64% TPR = 56% Precision = 25% Accuracy = 78% TPR = 25% Precision = 31%

Connection between Profits and Confusion Matrix

$$\begin{split} E[Profit] &= \\ & (Interest_{dd}) \times \Pr\left(Actual = Don't \ Default \mid Predict = Don't \ Default\right) \times N \\ &- (Principal_d) \times \Pr\left(Actual = Default \mid Predict = Don't \ Default\right) \times N \\ &= (Interest_{dd}) \times \left(\frac{2132}{279 + 2132}\right) \times N - (Principal_d) \times \left(\frac{279}{279 + 2132}\right) \times N \\ &= (Interest_{dd}) \times 2132 - (Principal_d) \times 279 \end{split}$$

where
$$N = 279 + 2132 = 2411$$

Another metric that we might be interested in Return on Invested Capital (ROIC):

$$ROIC = \frac{Interest_{dd}}{Principal_{d} + Principal_{dd}}$$

Profitability for Lending Club

What is the effect of different cutoffs on profits?

Conflicting Instructions from Management

CEO	 "Our customers care about one thing – return on their investments. We should make sure that we build a strategy that takes this into account." "Cost associated with bad loans is killing us () the market is penalizing us because they believe that things will only get worse () and I also think that they will" "I think that we made some mistakes during the boom years of the economy () we were caught in the origination spiral and gave credits to client that were not credit worthy"
CFO	 "Our investors wants us to be profitable, they are not concerned about growing now () although if we can provide the required level of return I am sure they will provide additional capital" "I am sure that we could have increased interest rates but the problem was that everyone was focused on growth () I am not even sure if we had the capacity to price correctly our clients" "With Big Data I can know much better my potential new customers () we can price risk much better and generate profitable growth"
СМО	 "I think that there is a big opportunity in offering a loans to new clients so we can increase market share () we just need to be fast so that we beat Prosper" "I think there is a lot of potential in creating adaptive interest rates to our existing clients () with Internet of Things I can know even how they drive" "Our existing portfolio is what it is () we should be focused on growth the capabilities to not make the same mistakes again"

Examine Prediction Accuracy (by varying cutoff threshold for prediction)

Summary

Confusion Matrix encapsulates the probability of correct (profitable) and incorrect (unprofitable) decisions

The decision of threshold determines whether we want to be aggressive in making loans (positive classification) or not making loans (negative classification)

Findings

Predictive models are not just about making predictions, but about understanding relationships

You can use predictive models iteratively, to better understand the data, and then (perhaps collect better data and) build better models

Models can be judged on many metrics, but the most important one for a business context is how will it help you improve your decision (and increase profits)

