Καπετανίδης Παναγιώτης

AM: 1067426

ΑΣΚΗΣΕΙΣ ΨΗΦΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1η Εργασία

1η Άσκηση

Το ζητούμενο κύκλωμα στο LTSPICE:

1)

Vin =0

Vbe=0V μπλε ,V(n003)

Vcb=5V πράσινο ,V(N002,N003)

Vin=5V

Vbe=0.8V μπλε ,V(n003)

Vcb=-755.2mV πράσινο ,V(N002,N003)

Vce= 49.2mv , κόκκινο ,V(n002)

2)

Vin=5V

lb=510mA

Ic=2.28mA

3)Εκτελώντας transient με .tran 10u και λαμβάντας υπόψιν ότι:

td: (delay time) από τη στιγμή που η κυματομορφή εισόδου αλλάζει σε high (50%) έως το ρεύμα να βρεθεί στο 10% της τιμής ICsat

ts: (storage delay time) από τη στιγμή που η κυματομορφή εισόδου αλλάζει σε low (50%) έως το ρεύμα να βρεθεί στο 90% της τιμής ICsat

tr: (χρόνος ανόδου) ο χρόνος που χρειάζεται για να αυξηθεί το ρεύμα από το 10% στο 90% της τιμής ICsat

Εργαζόμαστε όπως στις παρακάτω διαφάνειες:

Επομένως από τις γραφικές παραστάσεις του LTSPICE για vin και να προκύπτουν: 1130ns-575ns=555ns

td: 69ns-25ns=44ns

ts: 120ns-69ns=**51ns**

tr: 1130ns-575ns=555ns

4) Γραφική την καμπύλη φορτίου του transistor(dc-sweep):

Vin:

Vout:

5) Χαρακτηριστική συνάρτηση του transistor(μεταβολή τάσης εισόδου Vin = 0 έως 5 volt με βήμα 0.1Volt,dc-sweep)

6) Για **PULSE(0 5 0 0 0 0.08u 0.16u)** και προσεγγίζοντας το σημείο όπου η td βρίσκεται στο 50% της περιόδου προκύπτει ότι η μέγιστη συχνότητα λειτουργίας : f=1/o,16us=6,2mhz

Πράγματι χρησιμοποιώντας ΑC-ανάλυση επαληθεύεται το αποτέλεσμα:

2η Άσκηση

Το ζητούμενο κύκλωμα στο LTSPICE:

Αλλάζοντας στο αρχείο "standard.bjt" το bf σε bf=100 υπολογίζουμε:

• Rb=100Kohm

Vb(Vn004)=**Vc**(n003)=**2.90713V**

Ve(Vn005)=**2.113798V**

• Rb=10Kohm

Vb(Vn004)=**3.344V**

Vc(n003)=**2.621V**

Ve(Vn005)=**2.545V**

• Rb=1Kohm

Vb(Vn004)=**3.86246V**

Vc(n003)=**3.08584V**

Ve(Vn005)=**3.06169V**

3η Άσκηση

Το ζητούμενο κύκλωμα στο LTSPICE:

• vi=0

vb=4.33V

ve=3.54V

• **vi**=-5V

vb=4.31V

ve=3.54V

• **vi**=+3V

vb=4.36V

ve=3.54V

• **vi**=-10v

ve=4.26V

vb=4.29V

Προσθέτοντας τη παλμική πηγή και λαμβάνοντας υπόψιν μας τη περιοχή αποκοπής και κορεσμού των transistor(προφανώς στην ενεργό περιοχή δεν θα έχουμε αντιστροφή) προκύπτουν τα εξής:

Για να πετύχουμε αντιστροφή:

η είσοδος πρέπει να κυμαίνεται στη περιοχή [0,1V-0,8V] δηλαδή vinmax=0,8v & vinmin=0,1V

Και η τάση Vc στα άκρα του κάθε BJT αντίστοιχα πρέπει να κυμαίνεται στη περιοχή [0,6V-1,6V] δηλαδή Vcmin=V1min=V2min=0,6V & Vcmax=V1max=V2max=1,6V

Βλέπουμε πως **για τις ελάχιστες τιμές** έχουμε αντιστροφή**(Vin=0,1V &V1=V2=0,6)**

Σε μια **μέση περίπτωση** επίσης έχουμε αντιστροφή**(Vin=0,5V &V1=V2=1V**)

Τέλος στη**ν ακραία περίπτωση** παρατηρούμε πως ξεκινάει και πάει να αντιστρέφεται ολόκληρη η κυματομορφή (Vin=0.8V & V1=V2=1,6V)

