Отчёт по лабораторной работе №3

Модель боевых действий

Надежда Александровна Рогожина

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	11
Список литературы		12

Список иллюстраций

2.1	Постановка задачи	6
3.1	Модель боевых действий с регулярными войсками	8
3.2	Модель б.д. с регулярными войсками и партизанскими отрядами .	9
3.3	Код первой модели	9
3.4	Симуляция	10
3.5	Код второй модели	10
3.6	Симуляция	10

Список таблиц

1 Цель работы

Построить модель боевых действий.

2 Задание

Между страной X и страной У идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t). В начальный момент времени страна X имеет армию численностью 30 000 человек, а в распоряжении страны У армия численностью в 17 000 человек. Для упрощения модели считаем, что коэффициенты a, b, c, h постоянны. Также считаем P(t) и Q(t) непрерывными функциями. Постройте графики изменения численности войск армии X и армии У для следующих случаев (рис. 2.1)

1. Модель боевых действий между регулярными войсками

$$\frac{dx}{dt} = -0.45x(t) - 0.86y(t) + \sin(t+1)$$

$$\frac{dy}{dt} = -0.49x(t) - 0.73y(t) + \cos(t+2)$$

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов

$$\frac{dx}{dt} = -0.34x(t) - 0.81y(t) + \sin(2t)$$

$$\frac{dy}{dt} = -0.22x(t)y(t) - 0.91y(t) + \cos(t)$$

Рис. 2.1: Постановка задачи

3 Выполнение лабораторной работы

Код для модели боевых действий в юпитере выглядит следующим образом:

```
using DifferentialEquations, Plots
u0 = [30000, 17000]
p = [-0.45, -0.86, -0.49, -0.73]
function xy(u, p, t)
   x, y = u
    a, b, c, h = p
    dx = a*x + b*y + sin(t+1)
    dy = c*x + h*y + cos(t+2)
    return [dx, dy]
end
tspan = (0, 1)
test1 = ODEProblem(xy, u0, tspan, p)
sol = solve(test1, Tsit5())
 для первой модели, и
u0 = [30000, 17000]
p = [-0.34, -0.81, -0.22, -0.91]
function xy(u, p, t)
    x, y = u
   a, b, c, h = p
    dx = a*x + b*y + sin(2*t)
```

```
dy = c*x*y + h*y + cos(t)
  return [dx, dy]
end
test2 = ODEProblem(xy, u0, tspan, p)
sol = solve(test2, Tsit5())
```

для второй модели.

Визуализация моделирования отображена на рис. 3.1 и рис. 3.2

Рис. 3.1: Модель боевых действий с регулярными войсками

Рис. 3.2: Модель б.д. с регулярными войсками и партизанскими отрядами

Далее, те же самые модели были реализованы в OpenModelica (рис. 3.3, рис. 3.4, рис. 3.5, рис. 3.6).

Рис. 3.3: Код первой модели

Рис. 3.4: Симуляция

Рис. 3.5: Код второй модели

Рис. 3.6: Симуляция

4 Выводы

В ходе лабораторной работы мы смоделировали боевые действия между армией X и армией Y.

Список литературы