CLAIMS

WHAT IS CLAIMED IS:

1	1. A method of manufacturing an integrated circuit, the
2	method comprising:
3	providing a first gate structure and a second gate structure
4	on a semiconductor substrate including a strained semiconductor layer,
5	the first gate structure and the second gate structure each including a
6	first spacer, wherein the first gate structure is provided above a first area
7	of the strained semiconductor layer and the second gate structure is
8	provided above a second area of the strained semiconductor layer;
9	providing a first masking layer above the first area;
10	forming first deep source and drain regions in the strained
11	semiconductor layer in the second area;
12	removing the first masking layer;
13	masking the second area with a second masking layer;
14	providing a second spacer to the first gate structure; and
15	forming second deep source and drain regions in the strained
16	semiconductor layer in the second area.
1	2. The method of claim 1, further comprising:
2	activating the first and second deep source and drain regions
3	in an annealing process.
1	3. The method of claim 2, wherein the annealing process
2	operates at less than 600°C.
1	4. The method of claim 3, wherein the removing step is a
2	dry-etching step.
1	5. The method of claim 4, wherein the first and second
2	spacers comprise nitride.
1	6. The method of claim 1, further comprising:

2	siliciding the first and second gate structures and the first
3	and second source and drain regions.
1	7. The method of claim 1, wherein the first and second
2	gate structures includes a polysilicon conductor.
1	8. The method of claim 1, further comprising:
2	covering at least a portion of the semiconductor substrate
3	with an insulative layer.
1	9. The method of claim 1, wherein the second spacers
2	are approximately 500 angstroms wide.
1	10. The method of claim 9, wherein the second source
2	and drain regions include Arsenic.
1	11. A method of manufacturing an ultra-large scale
2	integrated circuit including a plurality of field effect transistors having
3	gate structures, the method comprising the steps of:
4	selectively providing deep source and drain regions for a first
5	group of the field effect transistors;
6	selectively providing offset spacers for a second group of the
7	field effect transistors, the second group of the field effect transistors
8	being different than the first group of the field effect transistors, wherein
9	the first group and the second group are provided on a top surface of a
10	strained semiconductor layer; and
11	selectively providing source and drain regions for the second
12	group.
1	12. The method of claim 11, further comprising:
2	providing a silicide layer above the source and drain regions
3	for the first group and the second group.
1	13. The method of claim 12, further comprising:

providing a silicon dioxide layer over the silicide layer.

2

1	14. The method of claim 11, wherein the strained
2	semiconductor layer includes silicon.
1	15. The method of claim 14, wherein the silicon is above a
2	silicon/germanium layer.
1	16. The method of claim 15, wherein the offset spacers
2	are approximately 500-2000 angstroms high and approximately 500
3	angstroms wide.
1	17. A process of forming source and drain regions on a
2	semiconductor substrate, the process comprising:
3	forming a plurality of gate structures on a top surface of a
4	strained silicon layer;
5	covering a first set of gate structures;
6	forming deep source and drain regions on each side of a
7	second set of the gate structures;
8	uncovering the first set of gate structures;
9	covering the second set of gate structures;
10	providing spacers for the first set of gate structures; and
11	forming deep source and drain regions on each side of the
12	first set of the gate structures.
1	18. The process of claim 17, further comprising:
2	annealing the strained silicon layer after the providing steps.
1	19. The process of claim 18, wherein the strained silicon
2	layer is provided above a silicon geranium layer.
1	20. The process of claim 19, wherein the deep source and
2	drain regions are provided by ion implantation.