MATH610-600

 $Programming\ Assignment\ \#3$

April 09, 2019

LU SUN

1 Problem Specifications

1.1 Exercise 1: Triangulation

Implement a sequence of triangulations τ_i , i = 1, ..., 4 of the L-shaped domain

$$\Omega = [-1, 1]^2 \setminus [0, 1] \times [-1, 0] \tag{1}$$

with mesh sizes h_i defined in Table 1.

level	h	$a(h) = 1/2h^2$
1	0.2	0.02
2	0.1	0.005
3	0.05	0.00125
4	0.025	0.003125

Table 1: Mesh sizes and representative maximal area sizes.

- Write a file 'LShapedDomain.poly' that descirbed the above domain(1).
- Use command to generate the LShapedDomain.1, LShapedDomain.2, LShapedDomain.3, LShapedDomain.4 series (.poly, .node, .ele, .edge) files according to all four meshes above in the Table 1.
- Import these meshes into matlab by 'TriangleReader.m' file and plot the elements by 'exampleTriangleReader.m' file.
- Title each plot with the mesh size h = 1.

1.2 Exercise 2: Lagrange Interpolation with Linear Elements

Be given following 3 functions:

- (i) u(X) = |x y|
- (ii) $u(X) = \sin \pi (x+y)$

(iii)
$$u(X) = \begin{cases} 1, & x^2 + y^2 \ge \frac{1}{4} \\ 0, & otherwise \end{cases}$$

Let I_h be the Lagrange interpolation.

- Compute error $||u I_h u||_{L^2(\Omega)}$ on each of the four meshes for each of the above three functions (element by element).
- Plot element by element.
- Describe the three linear basis elements and evaluate the function value at three nodal on each cell.
- Compile a table of errors and convergence rates for each function.
- Discuss findings: How does smoothness of function affect convergence rates.
- Choose quadrature rules based on convergence rates and accuracy.

1.3 Exercise 3: L^2 Projection with Linear Elements

Let $\Pi_h: H^1 \to \mathbb{P}^1(\tau_h)$ be the L^2 projector onto the linear Lagrange finite element space.

- For each of the functions u(X) in Exercise 2 and the triangulations of Exercise 1, compute the discrete finite element solution (L^2 projection) $\Pi_h u(X)$.
- Compute the $L^2(\Omega), H^1(\Omega), L^{\infty}(\Omega)$ errors: $||u \Pi_h u||$.
- Construct tables of errors and convergence rates for each function.

1.4 Exercise 4: Poisson Equation with Dirichlet Boundary Conditions

Solve the Poisson equation with Dirichlet boundarys on the domain above.

$$\begin{cases}
-\Delta u = f, & X \in \Omega \\
u = u_d, & X \in \partial\Omega
\end{cases}$$
(2)

Be given $u(X) = \cos(2\pi x)\cos(2\pi y)$.

- Compute f(X) by hand.
- Compute u_d by hand.
- Compute $u_h(X)$ on the four triangulations.
- Plot the solution on the fourth mesh τ_4 .
- Compute the $L^2, H^1, L^{\infty} \operatorname{errors}(||u u_h||)$.
- Display the errors in a table with rates.
- Plot the error values in a log-log plot against the h value.

1.5 Exercise 5: Dirichlet problem with known solution on shaped domain

Let (r, θ) be standard polar coordinates about the origin and $u(r, \theta) = r^{\frac{2}{3}} \sin(2\theta/3)$, then $-\Delta u = 0$ in Ω and g = u on $\partial\Omega$

1.5.1 By hand

- Show $u \in H^1(\Omega)$
- Show $u \notin H^2(\Omega)$

1.5.2 On Matlab

- Compute $u_h(X)$ on the four triangulations.
- Use the Lagrange interpolant to determine Dirichlet boundary data.
- Compute the L^2, H^1, L^{∞} errors($||u u_h||$).
- Display the errors in a table with rates.
- Plot the error values in a log-log plot against the h value.
- Comment briefly on the relationship between H^1 convergence rate and regularity (smoothness) of u.

2 Preliminaries

2.1 Exercise 1

2.1.1 LShapedDomain.poly

This file is used for describe the above Domain(1). The first part is the 6 nodes counter-clockwise start from point (0,0). The second part is the definition for 6 sizes. The third part means no holes inside. The code is as follow:

```
1 6 2 0 1
2
3 1 0 0 1
4 2 1 0 1
5 3 1 1 1
6 \quad 4 \quad -1 \quad 1 \quad 1
7 5 -1 -1 1
8 6 0 -1 1
10 6 1
11
12 1 1 2 1
13 2 2 3 1
14 3 3 4 1
15 4 4 5 1
16 5 5 6 1
17 6 6 1 1
18
19
  0
```

$\mathbf{2.1.2}$ example Triangle Reader.m

In the exampleTriangleReader.m, T is imported to record triangle in 'LshapedDomian.1' to 'LshapedDomian.4' and plot each of 4 meshes. The code is as follow:

```
1 function T=exampleTriangleReader(choose)
   % import into T, plot the situation choose
   % choose
              hi
       1
              0.2
4
   응
       2
              0.1
       3
              0.05
  9
   응
              0.025
       4
10 % run triangle with the following flags on the A.poly file
11 %
12 % ./triangle -pq28ea0.02 LShapedDomain.poly
13 %
14 % which generates LShapedDomain.1. {node, ele, edge} files
16 T = TriangleReader(['LShapedDomain.',num2str(choose),'.node'],...
17 ['LShapedDomain.',num2str(choose),'.ele'],...
  ['LShapedDomain.', num2str(choose), '.edge']);
  %T = ...
      TriangleReader('LShapedDomain.1.node', 'LShapedDomain.1.ele', 'LShapedDomain.1.edge');
```

```
20
21
22 figure
23 % another approach to plotting elements with fill color specified at each ...
       node
24 for i = 1:T.n_elements
       V = T.nodes(T.elements(i,:),:);
       f = [1 2 3];
26
       Col = V(:,1); % color by x coordinate
27
       patch('Faces', f, 'Vertices', V, 'FaceVertexCData', Col,...
28
          'EdgeColor', 'black', 'FaceColor', 'interp', 'LineWidth', 1);
29
30
   end
31
32 switch (choose)
      case 1
33
           title('h=0.2');
34
       case 2
35
          title('h=0.1');
36
37
       case 3
           title('h=0.05');
       case 4
39
           title('h=0.025');
40
41 end
42 end
```

To show out the plots, we run the following code:

```
1 for i =1:4
2    exampleTriangleReader(i);
3 end
```

2.2 Exercise 2

2.2.1 feEval.m

In this file, three linear basis elements on regular triangle ((0,0),(1,0),(0,1)) is shown. The code is as follow:

```
1 function [FE_at_quad] = feEval( Quad, p )
2 \times = Quad.xhat(:,1);
y = Quad.xhat(:,2);
4 Identity = ones(Quad.nq,1);
5 \text{ if } (p == 1)
                             phi_1, phi_2, phi_3
7
       % Linear elements :
                             1-x-y, x,
                                            У
       % x derivative
                               -1 ,
                                       1,
                        :
8
                               -1 ,
       % y derivative
                                      Ο,
9
       FE_at_quad.hat_phi = [1-x-y, x, y]; %nq * 3
10
12
       FE_at_quad.hat_phix = [-1, 1, 0].* Identity; %nqx3
13
       FE_at_quad.hat_phiy = [-1, 0, 1].* Identity; %nqx3
14 end
```

$\mathbf{2.2.2}$ getQuadOnRefElement.m

In this file, the quadrature rules of weights and nodes (x,y) are recorded.

2.2.3 $comput_error.m$

In this file, local L^2 norm is calculated. It is the same as previous L^2 norm calculated in 1D. Nothing have been changed.

${f 2.2.4}$ Lagrange Interpolation.m

In this file, the total L^2 error and plot of different functions (3 kinds) with different quadrature (5 kinds) and mesh sizes (4 kinds) can be shown. The code is as follow:

```
1 function L2error=LagrangeInterpolation(funchoose, quad_n_points, ifplot)
2 %funchoose functions
  % 1
                   u = |x - y|
                 u=sin(pi(x+y))
4 %
                  u=1 or 0
6 %
7 %quad_n_points=1;2;3;4;5;
9 %ifplot
10 % false
                   not plot
11 % true
                     plot
13 L2error=zeros(4,1);
14 p=1;
15
16 switch funchoose
      case 1
17
          u=0(x) abs(x(1)-x(2));
18
           fprintf('u=|x-y|: n');
19
      case 2
20
         u=0(x)\sin(pi*(x(1)+x(2)));
          fprintf('u=sin(pi(x+y))n');
           u=0 (x) double ((x(1)^2+x(2)^2\geq 1/4)&1);
24
           fprintf('u=1 or 0 n');
25
26 end
27
   for i=1:4
28
       T = TriangleReader(['LShapedDomain.',num2str(i),'.node'],...
29
           ['LShapedDomain.', num2str(i), '.ele'],...
30
           ['LShapedDomain.', num2str(i), '.edge']);
31
32
       L2sqrd = 0;
33
       if ifplot
           figure;
36
       for ele=1:T.n_elements
37
           vertical V = [v1; v2; v3] = [X, Y]
38
           V = T.nodes(T.elements(ele,:),:);
39
40
           %The coefficients for basis function
41
42
           uh = [u(V(1,:)); u(V(2,:)); u(V(3,:))];
```

```
if ifplot
44
                %plot
45
                %X=V(:,1), Y=V(:,2), Z=uh;
46
                patch('XData', V(:,1), 'YData', V(:,2), 'ZData', ...
47
                    uh, 'FaceVertexCData', uh,...
                    'EdgeColor', 'black', 'FaceColor', 'interp', 'LineWidth', 1); % ...
48
                        color by Z coordinate
                view(3);
49
           end
50
51
52
           %L2 error
           Quad_Error = getQuadOnRefElement(quad_n_points);
           FE_at_Quad_Error = feEval(Quad_Error, p);
54
            [localL2sqrd] = compute_error(V, uh, u, Quad_Error, ...
55
                FE_at_Quad_Error, p);
           L2sqrd = L2sqrd + localL2sqrd;
56
       end
57
       L2error(i) = sqrt(L2sqrd);
       switch(i)
       case 1
60
           title('h=0.2');
61
           fprintf('h=0.2,error=%f\n',L2error(i));
62
       case 2
63
64
           title('h=0.1');
65
           fprintf('h=0.1,error=%f\n',L2error(i));
66
           title('h=0.05');
67
            fprintf('h=0.05,error=%f\n',L2error(i));
68
       case 4
69
           title('h=0.025');
70
            fprintf('h=0.025,error=%f\n',L2error(i));
71
72
       end
73
74 end
75
  end
```

$\textbf{2.2.5} \quad BestQuadrature Finder.m$

In this file, we try to plot meshes and errors with 5 kinds quadrature in one picture for each function. The code is as follow:

```
1 ERROR1 = zeros(4,5);
  for quadn = 1:5
       fprintf('quadrature k=%d\n',quadn);
       ERROR1(:,quadn) = LagrangeInterpolation(1,quadn,false);
4
5 end
7 ERROR2 = zeros(4,5);
   for quadn = 1:5
       fprintf('quadrature k=%d\n',quadn);
9
       ERROR2(:,quadn) = LagrangeInterpolation(2,quadn,false);
10
11 end
12
13 ERROR3 = zeros(4,5);
14 for quadn = 1:5
```

```
fprintf('quadrature k=%d\n', quadn);
       ERROR3(:,quadn) = LagrangeInterpolation(3,quadn,false);
16
17 end
18
19 h=[0.2,0.1,0.05,0.025];
20 figure;
21 plot (h, ERROR1 (:, 1), h, ERROR1 (:, 2), ':', h, ERROR1 (:, 3), '--', ...
       h, ERROR1(:,4),'+-',h, ERROR1(:,5),'o-');
23 legend('k=1','k=2','k=3','k=4','k=5');
24 xlabel('mesh size');
25 ylabel('error');
26 title('u=|x-y|');
28 figure;
29 plot (h, ERROR2 (:, 1), h, ERROR2 (:, 2), ':', h, ERROR2 (:, 3), '--', ...
       h, ERROR2(:,4),'+-',h,ERROR2(:,5),'o-');
31 legend('k=1','k=2','k=3','k=4','k=5');
32 xlabel('mesh size');
33 ylabel('error');
34 title('u=sin(pi(x+y))');
36 figure;
37 plot(h, ERROR3(:,1),h, ERROR3(:,2),':',h, ERROR3(:,3),'--',...
       h, ERROR3(:,4),'+-',h,ERROR3(:,5),'o-');
38
39 legend('k=1','k=2','k=3','k=4','k=5');
40 xlabel('mesh size');
41 ylabel('error');
42 title('u=1 or 0');
```

2.2.6 Exercise2.m

In this file, it show out the entire results. The code is as follow:

```
1 %Find best quadrature k for problem
2 BestQuadratureFinder;
4 %choose quadrature k=3
5 k = 3;
6 %compute L2 errors for function j=1,2,3
7 Errors = zeros(4,6);
8 \text{ for } j=1:3
       Errors(:,2*j-1) = LagrangeInterpolation(j,k,true);
9
10 end
11
12 %compute convergence rate
13 for j=1:3
       for i=2:4
14
15
           Errors (i, 2*j) = Errors (i-1, 2*j-1) /Errors (i, 2*j-1);
16
       end
17 end
18
19 Errors
```

2.3 Exercise 3

2.3.1 The same files as above

In Exercise 3, we will use the above files: TriangleReader.m, feEval.m, getQuadOnRefElement.m.

2.3.2 $local_assemblyL2.m$

In this file, local matrix is assembled. It's the same as that in 1D problem, and we only need to change the dimension of mat_B form 1(2 nodals on each interval in 1D)to 2(3 nodals on each triangle in 2D) by the following code:

```
n mat_B = [(localnodes(2,:) - localnodes(1,:))', (localnodes(3,:) - ...
localnodes(1,:))'];
```

The way to get rhs_vals is a little different:

```
1 rhs_vals=zeros(Quad.nq,1);
2 for t=1:Quad.nq
3     rhs_vals(t) = f(q_points(t,:));
4 end
```

${\bf 2.3.3}$ constructDoFH and ler.m

In this file, only the following code need to be changed form 1D to 2D, for each triangle have 3 nodals:

```
1 DoFHandler.dofs(:,1:3) = T.elements;
```

2.3.4 computeLocalInfErrors.m

It's used for compute local infinity errors. And only the following code is different form that in 1D:

2.3.5 compute Local Errors.m

It's used for compute local both L^2 and H^1 errors. And only the following code is different form that in 1D:

```
n mat_B = [(localnodes(2,:) - localnodes(1,:)); (localnodes(3,:) - ...
localnodes(1,:))]; %[(dim)x(dim)]
```

2.3.6 L2projection.m

It's a file to give the errors and rates with plots. The code is as follow:

```
1 function [uh,E] = L2projection(funchoose, quad_n_points, p, ifplot)
3 %p: polynomial degree of lagrange finite element basis, here p=1
4 %
5 % Choose quadrature on reference element and evaluate finite element shape
6 %functions on reference element at quadrature points, here quad_n_points = 3
8 L2=zeros(4,1);
9 H1=zeros(4,1);
10 Linf=zeros(4,1);
11 E=zeros(4,6);
12
13 switch funchoose
14
       case 1
           u_exact = @(x)abs(x(1)-x(2));
15
           grad_u=xact = @(x)[1;-1]*double(x(1) \ge x(2))+...
16
                    [-1;1]*double(x(1)<x(2));
17
           fprintf('u=|x-y| \setminus n');
18
       case 2
19
           u_exact = @(x) sin(pi*(x(1)+x(2)));
20
           grad_u=exact = @(x) [pi*cos(pi*(x(1)+x(2)));...
21
                    pi*cos(pi*(x(1)+x(2)))];
22
           fprintf('u=sin(pi(x+y))n');
23
       case 3
^{24}
25
           u_{exact} = @(x) double(x(1)^2+x(2)^2 \ge 1/4);
           grad_u=exact = @(x) [0;0];
           fprintf('u=0 or 1\n');
27
28 end
29
30 % right hand side function
31 f = 0(x)u_exact(x);
32
33 % begin FEM code
   for j=1:4
34
           T = TriangleReader(['LShapedDomain.',num2str(j),'.node'],...
35
                ['LShapedDomain.', num2str(j), '.ele'], ...
36
                ['LShapedDomain.',num2str(j),'.edge']);
37
38
       9
39
       % setup_system
40
41
       DoFHandler = constructDoFHandler(T,p);
42
```

```
RHS = zeros(DoFHandler.n_dofs,1);
       A = spalloc(DoFHandler.n_dofs, DoFHandler.n_dofs, 15*T.n_nodes);
44
45
       Quad = getQuadOnRefElement(quad_n_points);
46
47
       [ FE_at_Quad] = feEval( Quad, p );
48
49
       % assemble_system
50
       for cell = 1:T.n_elements
51
           dofIndices = DoFHandler.dofs(cell,:);
52
           vertices = T.nodes(T.elements(cell,:),:);
53
54
            [cell_matrix,cell_rhs,¬] = local_assemblyL2(vertices,f, ...
                FE_at_Quad, Quad, p);
55
            % contribute local terms to global stiffness and RHS structures
56
           A(dofIndices, dofIndices) = A(dofIndices, dofIndices) + cell_matrix;
57
           RHS(dofIndices) = RHS(dofIndices) + cell_rhs;
58
       end
59
60
       % solve_system
61
62
       % Only solve system for unconstrained dofs (the non Dirichlet ones)
63
       uh = A \setminus RHS;
64
65
       %plot uh
66
67
       if ifplot
            figure;
68
            for cell=1:T.n_elements
69
                dofIndices = DoFHandler.dofs(cell,:);
70
                vertices = T.nodes(T.elements(cell,:),:);
71
                X = vertices(:,1);
72
                Y = vertices(:,2);
73
74
                Z=zeros(3,1);
                for i=1:3
75
                    Z(i) = uh (dofIndices(i));
76
77
                end
                patch('XData', X, 'YData', Y, 'ZData', Z, 'FaceVertexCData', Z,...
78
                'EdgeColor', 'black', 'FaceColor', 'interp', 'LineWidth', 1); % ...
79
                    color by Z coordinate
              view(3);
80
           end
81
           switch(j)
82
                case 1
83
                    title('h=0.2');
84
85
                case 2
                    title('h=0.1');
86
                case 3
87
                    title('h=0.05');
88
                case 4
89
                    title('h=0.025');
90
91
          end
92
       end
93
94
       %compute error
       Quad_Error = getQuadOnRefElement(guad_n_points);
95
96
       FE_at_Quad_Error = feEval(Quad_Error, p);
97
       % In the L inf error, we don't need a weight, only a bunch of xhat
98
99
       *locations so we combine the Quad_Error xhats with a uniformly
```

```
100
        %distributed set of nodes through the reference element to make a nice
101
           %L inf quadrature rule
102
        n_{inf_nodes} = 10;
103
        QuadInf_Error.nq = Quad_Error.nq+n_inf_nodes;
104
        addpoints=[0,0;1/3,0;2/3,0;1,0;0,1/3;1/3,1/3;2/3,1/3;0,2/3;1/3,2/3;0,1];
105
106
        QuadInf_Error.xhat = [Quad_Error.xhat; addpoints];
        FE_at_QuadInf_Error = feEval(QuadInf_Error, p);
107
108
109
        % Loop through the cells and compute the local errors and aggregate
110
        %them according to the norms
111
112
        L2sqrd = 0;
        H1sqrd = 0;
113
        Linferror = 0;
114
        for cell = 1:T.n_elements
115
                dofIndices = DoFHandler.dofs(cell,:); % [1x(p+1)] extract ...
116
                    indices pertaining to cell nodes
                vertices = T.nodes(T.elements(cell,:),:); % [(dim+1)xdim] ...
117
                    coordinates of vertices
118
                 %localL2sqrd = compute_error(vertices, uh(dofIndices), ...
119
                    u_exact, Quad_Error, FE_at_Quad_Error, p);
                 [localL2sqrd, localH1sqrd] = computeLocalErrors(vertices, ...
120
                    uh(dofIndices), u_exact, grad_u_exact, Quad_Error, ...
                     FE_at_Quad_Error, p);
                 L2sqrd = L2sqrd + localL2sqrd;
121
                H1sqrd = H1sqrd + localH1sqrd;
122
123
                localLinf = computeLocalInfErrors(vertices, uh(dofIndices), ...
124
                     u_exact, QuadInf_Error, FE_at_QuadInf_Error,p);
                Linferror = max( Linferror, localLinf);
125
126
        end
127
128
        L2(j) = sqrt(L2sqrd);
129
        H1(j) = sqrt(H1sqrd);
130
        Linf(j) = Linferror;
131 end
132
133 h=[0.2,0.1,0.05,0.025];
   for i=1:4
134
135
        E(i,:) = [Linf(i), 0, L2(i), 0, H1(i), 0];
136
        if (i>1)
137
            E(i,2) = E(i-1,1)/E(i,1); %Linf error rate
138
139
            E(i,4) = E(i-1,3)/E(i,3); %L2 error rate
            E(i,6) = E(i-1,5)/E(i,5); %H1 error rate
141
142
143
        fprintf('%f &%f& %f &%f &%f &%f &%f \\\\ \n',h(i), ...
            E(i,1), E(i,2), E(i,3), E(i,4), E(i,5), E(i,6));
144 end
145 end
```

2.3.7 *Exercise*3.*m*

It's a file to shown all the results needed in Exercise 3.

2.4 Exercise 4

In this exercise, we only need to rewrite two different files.

2.4.1 DirichletBoundaryCondition.m

The code is as follow:

```
1 ifplot=True;
2 p = 1; % polynomial degree of lagrange finite element basis
_{3} L2=zeros(4,1);
4 H1=zeros(4,1);
5 Linf=zeros(4,1);
6 \quad E=zeros(4,6);
8 u_exact = @(x)\cos(2*pi*x(1)).*\cos(2*pi*x(2));
9 grad_u_exact = @(x) [-2*pi*sin(2*pi*x(1)).*cos(2*pi*x(2)),...
10
                         -2*pi*cos(2*pi*x(1)).*sin(2*pi*x(2))];
11
12 % right hand side function
13 f = @(x)(8*pi^2)*(cos(2*pi*x(1)).*cos(2*pi*x(2)));
14 	 g_D = @(x) 	 u_exact(x);
15
16 for j=1:4
       T = TriangleReader(['LShapedDomain.', num2str(j), '.node'],...
17
                ['LShapedDomain.', num2str(j), '.ele'],...
18
               ['LShapedDomain.', num2str(j), '.edge']);
19
20
       DoFHandler = constructDoFHandler(T,p);
21
       uh = zeros(DoFHandler.n_dofs,1);
22
       RHS = zeros(DoFHandler.n_dofs,1);
23
       A = spalloc(DoFHandler.n_dofs, DoFHandler.n_dofs, 15*T.n_nodes);
24
       % upper bound on NNZ in matrix for 1D is 2*p+1 interactions per node ...
25
           (p on either side plus itself)
       quad_n_points = 5;
       Quad = getQuadOnRefElement(quad_n_points);
28
       [ FE_at_Quad] = feEval( Quad, p );
29
30
       for cell = 1:T.n_elements
31
           dofIndices = DoFHandler.dofs(cell,:); % [1x(p+1)] extract ...
32
               indices pertaining to cell nodes
           vertices = T.nodes(T.elements(cell,:),:); % [(dim+1)xdim] ...
33
               coordinates of vertices
34
           [cell_matrix,cell_rhs,\neg] = local_assembly(vertices,f, FE_at_Quad, ...
35
               Quad, p);
37
           % contribute local terms to global stiffness and RHS structures
```

```
A(dofIndices, dofIndices) = A(dofIndices, dofIndices) + cell_matrix;
           RHS(dofIndices) = RHS(dofIndices) + cell_rhs;
39
       end
40
41
       % solve_system
42
43
       % Only solve system for unconstrained dofs (the non Dirichlet ones)
44
       for t=1:size(DoFHandler.dirichletdofs)
45
           uh(DoFHandler.dirichletdofs(t)) = ...
46
               g_D (DoFHandler.dirichletdofs_coordinates(t,:));
       end
47
48
49
       RHS = RHS - A*uh;
50
       % solve_system
51
52
       % Only solve system for unconstrained dofs (the non Dirichlet ones)
53
       uh (DoFHandler.freedofs) = A (DoFHandler.freedofs, DoFHandler.freedofs) ...
54
           \ RHS (DoFHandler.freedofs);
55
       %compute error
56
       Quad_Error = getQuadOnRefElement(guad_n_points);
57
       FE_at_Quad_Error = feEval(Quad_Error, p);
58
59
60
       L2sqrd = 0;
       H1sqrd = 0;
61
       Linferror = 0;
       for cell = 1:T.n_elements
63
           dofIndices = DoFHandler.dofs(cell,:); % [1x(p+1)] extract ...
64
               indices pertaining to cell nodes
           vertices = T.nodes(T.elements(cell,:),:); % [(dim+1)xdim] ...
65
               coordinates of vertices
           [localL2sqrd, localH1sqrd] = computeLocalErrors(vertices, ...
               uh (dofIndices), u_exact, grad_u_exact, Quad_Error, ...
               FE_at_Quad_Error, p);
           L2sqrd = L2sqrd + localL2sqrd;
67
           H1sqrd = H1sqrd + localH1sqrd;
68
69
           localLinf = computeLocalInfErrors(vertices, uh(dofIndices), ...
               u_exact, Quad_Error, FE_at_Quad_Error,p);
           Linferror = max( Linferror, localLinf);
70
71
       end
       L2(j) = sqrt(L2sqrd);
72
       H1(j) = sqrt(H1sqrd);
73
       Linf(j) = Linferror;
74
75 end
77 h=[0.2,0.1,0.05,0.025];
78
  for i=1:4
79
       E(i,:) = [Linf(i), 0, L2(i), 0, H1(i), 0];
80
      if (i>1)
81
82
          E(i,2) = E(i-1,1)/E(i,1);
          E(i,2) = \log(E(i,1)/E(i-1,1))/\log(h(i)/h(i-1)); %Linf error
83
          E(i,4) = E(i-1,3)/E(i,3);
84
          E(i,4) = \log(E(i,3)/E(i-1,3))/\log(h(i)/h(i-1)); L2 error
85
86
          E(i,6) = E(i-1,5)/E(i,5);
          E(i,6) = \log(E(i,5)/E(i-1,5))/\log(h(i)/h(i-1)); %H1 error
87
88
      end
89
```

```
fprintf('%f&%f& %f& %f& %f& %f& %f\\\\n', ...
91
           h(i), E(i,1), E(i,2), E(i,3), E(i,4), E(i,5), E(i,6));
   end
92
93
   if ifplot
94
        figure;
95
        for cell=1:T.n_elements
96
            dofIndices = DoFHandler.dofs(cell,:);
97
            vertices = T.nodes(T.elements(cell,:),:);
98
            X = vertices(:,1);
99
100
            Y = vertices(:,2);
101
            Z=zeros(3,1);
            for i=1:3
102
103
                 Z(i) = uh (dofIndices(i));
104
            end
            patch('XData', X, 'YData', Y, 'ZData', Z, 'FaceVertexCData', Z,...
105
             'EdgeColor', 'black', 'FaceColor', 'interp', 'LineWidth', 1); % color ...
106
                by Z coordinate
107
            view(3);
108
        end
        title('h=0.025');
109
110 end
111
112 figure;
113 loglog(h,E(:,1),'+-',h,E(:,3),'o-',h,E(:,5),'*-');%,h,2*h+5,'--',h,4*h+1,':');
114 legend('Inf','L2','H1');%,'rate=2','rate=4');
115 xlabel('h');
116 ylabel('error');
```

2.4.2 $local_assembly.m$

In this file, a new way to assemble local matrix is shown in the following code:

```
1 function [cell_matrix, local_rhs, area] = ...
       local_assembly(localnodes, f, FE_at_Quad, Quad, p)
2
4 mat_B = [(localnodes(2,:) - localnodes(1,:))', (localnodes(3,:) - ...
       localnodes(1,:))']; %[(dim)x(dim)]
5 det_B = det(mat_B);
6 \text{ inv}_B = \text{mat}_B \setminus \text{eye}(2);
s q-points = (mat_B*Quad.xhat' + repmat(localnodes(1,:)',1,Quad.nq))'; % ...
       [nqxdim] list of real quadrature points in cell not ref element
9 %rhs_vals=f(q_points(:,1),q_points(:,2));
rhs_vals = zeros(Quad.nq,1);
11 for t=1:Quad.nq
12
       rhs_vals(t) = f(q_points(t,:));
13 end
14
15 % preallocate space for cell_matrix
16 cell_matrix = zeros(3,3);
17 local_rhs = zeros(3,1);
18 area = abs(det_B);
19
20 for q_index = 1:Quad.nq % run through quadrature points on element
```

```
grad_phi_at_q_point = [FE_at_Quad.hat_phix1(q_index,:)*inv_B;...
22
                                 FE_at_Quad.hat_phix2(q_index,:)*inv_B;...
23
                                 FE_at_Quad.hat_phix3(q_index,:)*inv_B];%3x2
24 %
  응
25
         grad_phi_ij_matrix = grad_phi_at_q_point*grad_phi_at_q_point'; % 3x3
26 %
27
       grad_phi_at_q_point = [FE_at_Quad.hat_phix(q_index,:)',...
28
29
                                FE_at_Quad.hat_phiy(q_index,:)']*inv_B;
30
       grad_phi_ij_matrix = grad_phi_at_q_point*grad_phi_at_q_point';
31
32
33
       cell_matrix = cell_matrix + grad_phi_ij_matrix...
                                  * Quad.what(q_index) ...
34
                                  * abs(det_B);
35
36
       cell_matrix = cell_matrix + phi_ij_matrix...
37 %
38 %
                                  * Quad.what(q_index) ...
                                  * det_B;
39 %
       local_rhs = local_rhs + rhs_vals(q_index)...
                                                                  % f(q_point)
41
                              * FE_at_Quad.hat_phi(q_index,:)' ... % bases on ...
42
                                  reference element at q_point [(p+1)x1]
43
                              * Quad.what(q_index)...
                                  quadrature weight
                              * abs(det_B);
                                                                         응 ...
                                  reference area-element transform
45
46 end
47 end
```

2.5 Exercise 5

Here, we use the same m-file as that in Exercise 4 and only need to replace the definition of exact functions as follow:

3 Results and Analysis

3.1 Exercise 1:

In the problem, it asks for plots of 4 meshes above. The plots are as follow:

Figure 1: mesh elements

3.2 Exercise 2:

In this exercise, we first show the plot of three different functions with quadrature k=3(I will show the reason for k=3 in the following):

Figure 2: function(i) u := |x - y|

Figure 3: function(ii) $u := \sin(\pi(x+y))$

Figure 4: function(iii) u := 1 or 0

In the above code, we have shown the linear basis elements and their derivative in feEval.m:

	ϕ_1	ϕ_2	ϕ_3
Linear elements	1-x-y	X	у
x derivative	-1	1	0
y derivative	-1	0	1

The table of errors and convergence rates is shown as follow:

h	L^2 error	rate
0.2	0.0317	0
0.1	0.0098	3.2252
0.05	0.0036	2.6951
0.025	0.0012	2.9798

Table 2: function (i) u := |x-y|

Here, we define the rate to be $errorrate := \frac{||u-I_{h_{i-1}}u||_{L^2}}{||u-I_{h_i}u||_{L^2}}.$

h	L^2 error	rate
0.2000	0.0576	0
0.1000	0.0151	3.8088
0.0500	0.0037	4.1002
0.0250	0.0009	4.2167

Table 3: function(ii) $u := \sin(\pi(x+y))$

h	L^2 error	rate
0.2000	0.2363	0
0.1000	0.1728	1.3675
0.0500	0.1156	1.4945
0.0250	0.0815	1.4190

Table 4: function(iii) u := 0 or 1

From the above table, we find that errors comes down with the decreasing of mesh sizes h and all the 3 functions with converge rate larger than one, which means that Lagrange Interpolation converges to the function above.

We can show all the rates of three functions in the following table:

h	func(i)	func(ii)	func(iii)
0.2000	0	0	0
0.1000	3.2252	3.8088	1.3675
0.0500	2.6951	4.1002	1.4945
0.0250	2.9798	4.2167	1.4190

Table 5: Smoothness and Convergence rate

We have known the smoothness relationship: function(ii)>function(i)>function(iii). Here'>'mean 'more smooth than'. And from the above table, we can learn the relationship of convergence rate: function(ii)>function(i)>function(iii) which is accord with the smoothness relationship. Finally, we can show the finding: the more smooth a function is, the larger convergence rates the L^2 norm will get.

In the end part, the reason for choosing k=3 is shown as follow:

Figure 5: Quadrature to choose

The left row is the enlarge plot of the right row at h = 0.025. From the above plots, we can learn that when k = 3, all the 3 functions get the smallest errors, namely the largest accuracy, and the highest slop, namely the largest rates. According to accuracy and convergence rates, we choose k = 3.

3.3 Exercise 3:

In this part, results of u_h will be shown in the following plots:

Figure 6: function(i)projection u := |x - y|

Figure 7: function(ii)projection $u := \sin(\pi(x+y))$

Figure 8: function(iii)projection u := 1 or 0

The table of errors and convergence rates is shown as follow:

h	L^{∞} error	L^{∞} rate	L^2 error	L^2 rate	H^1 error	H^1 rate
0.200000	0.088067	0.000000	0.018525	0.000000	0.852758	0.000000
0.100000	0.054943	1.602890	0.005901	3.139484	0.585915	1.455430
0.050000	0.026496	2.073632	0.002279	2.589217	0.432974	1.353233
0.025000	0.013294	1.993067	0.000748	3.047071	0.294875	1.468333

Table 6: function(i) u := |x - y|

h	L^{∞} error	L^{∞} rate	L^2 error	L^2 rate	H^1 error	H^1 rate
0.200000	0.090707	0.000000	0.018489	0.000000	1.213229	0.000000
0.100000	0.028660	3.164972	0.004369	4.231449	0.613977	1.976017
0.050000	0.007393	3.876808	0.001091	4.006347	0.300825	2.040979
0.025000	0.002033	3.636147	0.000256	4.262422	0.145780	2.063559

Table 7: function (ii) $u := \sin(\pi(x+y))$

h	L^{∞} error	L^{∞} rate	L^2 error	L^2 rate	H^1 error	H^1 rate
0.200000	0.766479	0.000000	0.160636	0.000000	4.990635	0.000000
0.100000	0.907637	0.844477	0.124621	1.288998	6.948984	0.718182
0.050000	0.947707	0.957719	0.085404	1.459191	9.536437	0.728677
0.025000	0.975872	0.971138	0.059333	1.439407	13.907986	0.685681

Table 8: function (iii) $u := 0 \ or \ 1$

3.4 Exercise 4

Solution on the fourth mesh is shown in the following plot:

Figure 9: Solution on the fourth mesh

The errors are in the following table:

h	L^{∞} error	L^{∞} rate	L^2 error	L^2 rate	H^1 error	H^1 rate
0.200000	0.276922	0.000000	0.185416	0.000000	3.296411	0.000000
0.100000	0.086160	3.214031	0.047493	3.904099	1.631578	2.020382
0.050000	0.026214	3.286850	0.012288	3.865089	0.816495	1.998270
0.025000	0.006685	3.920983	0.003025	4.061902	0.407380	2.004261

Table 9: Errors and rates

The plot of errors is as follow:

Figure 10: Errors against h

3.5 Exercise 5

Here, the errors in a table with rates are as follow:

h	L^{∞} error	L^{∞} rate	L^2 error	L^2 rate	H^1 error	H^1 rate
0.200000	1.580154	0.000000	0.348605	0.000000	1.669226	0.000000
0.100000	1.474614	1.071571	0.306806	1.136239	1.821625	0.916339
0.050000	1.473371	1.000844	0.293445	1.045532	2.291479	0.794956
0.025000	1.489071	0.989457	0.293296	1.000508	2.370845	0.966524

Table 10: Errors and rates

The plot of errors is as follow:

Figure 11: Errors against h

From the rate of H^1 which is approximate of 1, and $u \in H^{k+1}$ with k = 0, we can see that H^1 norm is not bounded by h (since h is the relationship of 2 multiple). This suit with the inequality we learn on class that:

$$||u - I_h u||_{H^1(T)} \le C h_T^k |u|_{H^{k+1}(T)},$$

here k = 0.