Joint probability distribution 2

Joint probability distribution_2

is function f(x,y) is a joint probability mass function of the random variables X and X if

- 1. f(a,y) ≥0 for all (r,y)
 - 2. $\sum_{y \neq x} f(x, y) = 1$
 - 3. $P(x=\alpha, y=\beta)=f(\alpha, y)$

(discrete ase)

Example

The joint distribution of X and X is given by

$$f(a_{1}a) = \frac{x+y}{21}$$
; $\chi = 1,2,3$; $y=1,2$

- J Find Marginal distribution of X and Y,
- 2) Find conditional distribution of γ given x=3

Ans				
1)	N	1	2	(3)
(A)	P(0)	5/21	4/3	(9/28)
monograpian >			p(n) =	> f(7,7)
00°8 '				y

XX	1,	2	Total	
-1/	2/2/4	1 3/21	5/21	
2	3/21	4/21	764	
31	4/21	-5/1	981	-
total	9122	14/24	_	
			74	

y 1 2

2) Conditional distribution of
$$Y$$
 given $X=3$, $P(Y|X=3) = \frac{p(3,y)}{P(2-3)}$

$$f(x,y) = \begin{cases} \frac{2}{3}y^2 e^{-xy} & \text{for } (x,y) \in [0,\infty) \times [1,2] \\ 0 & \text{other wise} \end{cases}$$

find conditional density function of x given Y=2

the conditioned density function
$$f(7/7=2) = \frac{f(7,2)}{f_{\chi}(2)}$$

$$f_{\gamma}(y) = \int_{-\infty}^{\infty} f(x,y) dx = \int_{0}^{\infty} \frac{2}{3} y^{2} e^{-xy} dx$$

$$= \left[-\frac{2}{3} y e^{-xy}\right]_{0}^{\infty}$$

$$= \frac{2}{3} y$$

$$f_{y}(2) = \frac{4}{3}$$

Therefore the conditional probability density

Survetion $f(x/y=2) = \int_{0}^{2} \frac{2^{2}e^{-2x}}{2} = 2e^{-2x}$ if $x=1e^{x}$.

are x and y independent?

$$f(x,y) = \begin{cases} 24 \text{ my} & 0 < x < 1, 0 < y < 1 \\ 0 & 0 < x + y < 1 \end{cases}$$

 C_{1}^{N} A_{2} A_{3} A_{4} A_{5} A_{5}

 $f_{\chi}(x) = \int_{0}^{\infty} 6e^{-x}e^{-x}dy \quad \text{for own}$ $=2e^{-2x}$ and $f_{y}(y) = 3e^{-3y}$ We see that $f_{XY}(a,y) = f_X(a) f_Y(y)$ Thefore X and Y are independent Since the domain 0<x<1,0<7<1,0<x+7<1 cannot be written in the form AXB for any intervals A and By therefore X and X are dependent.