WST 321 Assignment 1

 SJP Eloff (10237161), JH Liebenberg (14068215)

24-08-2018

Contents

1	Question 3	3
2	Question 4	7

1 Question 3

 $\mathbf{a})$

a)			
$\{u_t\}$	$\{v_t\}$		
$\mathrm{E}(u_t)=0$	$\mathrm{E}(v_t)=0$		
$Var(u_t) = 3$	$\operatorname{Var}(v_t) = 3$		
$lpha_3(u_t)=0$	$lpha_3(v_t)=0$		
$\alpha_4(u_t)=0$	$\alpha_4(v_t) = -1.2$		

b)

Note that $\{X_t\} = u_t + u_{t-1}$ is a General Linear Process in the form $Z_t = \theta_0 + a_t - \theta a_{t-1}$

It follows that the time series model is MA(1) with mean $= \mu = \theta_0 = 0$, $\theta = -1$ and

$$\omega_k = \begin{cases} 1 & k = 0, 1 \\ 0 & k = 2, 3, \dots \end{cases}$$

since

$$\gamma_k = \begin{cases} 2\sigma_a^2 & k = 0 \\ \sigma_a^2 & k = 1 \\ 0 & k = 2, 3, \dots \end{cases} \text{ and } \rho_k = \begin{cases} 1 & k = 0 \\ \frac{-1}{1 + (-1)^2} = -0.5 & k = 1 \\ 0 & k = 2, 3, \dots \end{cases}$$

 $\mathbf{c})$

 $\{X_t\}$ will be invertible if the roots of the following characteristic equation are all greater than 1 in absolute value:

$$\theta(x) = 1 - \theta x$$

Setting the equation equal to 0, we find the root is $x = \frac{1}{\theta}$, i.e. the process is invertible if $-1 < \theta < 1$ Since $\theta = -1$ for ou MA(1) process, it follows that the process is not invertible.

d)

In terms of ω , $X_t = \omega_0 u_t + \omega_1 u_{t-1}$

It follows that: $E[X_t] = E[\omega_0 u_t + \omega_1 u_{t-1}] = \omega_0 E[u_t] + \omega_1 E[u_{t-1}] = 0$,

$$Cov(X_t, X_{t+1}) = Cov(\omega_0 u_t + \omega_1 u_{t-1}, \omega_0 u_{t+1} + \omega_1 u_t) = \omega_0 \omega_1 Var(u_t) = (1)(1)(3) = 3$$
, and

$$Cov(X_t, X_{t+k}) = Cov(\omega_0 u_t + \omega_1 u_{t-1}, \omega_0 u_{t+k} + \omega_1 u_{t-1+k}) = 0 \text{ for } k = 2, 3, \dots$$

Since the ω_k 's are independent of the time axis, so are the mean and autocovariances, i.e. $\{X_t\}$ is

covariance-stationary.

e)

Theoretical statistics for $\{X_t\}$:

Mean:
$$E[{X_t}] = E[u_t + u_{t-1}] = E[u_t] + E[u_{t-1}] = 0 + 0 = 0 = \mu$$

$$\text{Autocovariances: } \gamma_k = \left\{ \begin{array}{ll} 3(1+\theta^2) = 3(1+(-1)^2) = 6 & k=0 \\ \\ 3(-\theta) = 3(1) = 3 & k=1 \\ \\ 0 & k=2,3,\ldots \end{array} \right.$$
 Autocorrelations:
$$\rho_k = \left\{ \begin{array}{ll} 1 & k=0 \\ \\ \frac{-\theta}{1+(\theta)^2} = \frac{1}{2} = 0.5 & k=1 \\ \\ 0 & k=2,3,\ldots \end{array} \right.$$

Please note that the code below is for questions f) through i). Please find related tables and graphs in the Appendix at the back, as referred to below:

For **f**) see the code below.

For g) refer to Tables 1 and 2.

For h) refer to Graphs 1 and 2.

For i) refer to Graphs 3 through 10. From the graphs we see that u_t, X_t and Y_t have normal distributions.

```
data ma1;
n = 1000;
seed = 0;
theta ut=-1;
var_ut=3;
ut_1=sqrt(var_ut)*rannor(seed);
ut_h=sqrt(var_ut)*rannor(seed);
theta\_vt=-1;
vt 1=6*ranuni(seed)-3;
vt_h=6*ranuni(seed)-3;
do t=-49 to n;
  ut=sqrt(var_ut)*rannor(seed);
  xt{=}ut{-}theta\_ut*ut\_1;
  vt = (ranuni(seed)*6) - 3;
  yt=vt-theta vt*vt 1;
  if t>0 then output;
        ut_1=ut;
        vt_1=vt;
end;
run;
proc arima data=ma1;
        identify var=xt nlag=6;
         identify var=yt nlag=6;
```

```
run;
goptions reset=all i=join;
symbol1 color=black width=1;
symbol2 color=red width=1;
legend1 label = none position = inside mode=share;
title1 'Simulated MA(1) Process';
proc gplot data = ma1;
        plot xt*t ut*t / overlay legend=legend1;
        plot yt*t vt*t / overlay legend=legend1;
run;
goptions reset=all;
proc univariate data=ma1 noprint;
        var ut xt vt yt;
        histogram ut xt vt yt/normal;
        qqplot ut xt vt yt/ normal(mu=est sigma=est) square;
run;
```

2 Question 4

Please note that the code below is for questions a) through e). Please find related tables and graphs in the Appendix at the back, as referred to below:

For a) see the code below.

```
For b) refer to Table 3 and Graph 11.
```

For c) refer to Table 4 and Graph 12.

- d) The model in b) has a Durbin-Watson test statistic of 2.1017. The model in c) has a Durbin-Watson test statistic of 1.9975. The closer the value is to 2, the less correlated the error terms. Note that the error in model c) is less than the error in model b).
- e) The theoretical standard error for b) is 0.09733 while the empirical value is 0.0989. For c we have a theoretical standard error of 0.03784155 and an empirical value of 0.0938.

```
data ar1;
n = 950;
seed = 0;
theta0=70;
phi=0;
meanzt=theta0/(1-phi);
var_at=9;
zt 1=meanzt;
do t=-49 to n;
        at=sqrt(var at)*rannor(seed);
        zt=theta0+phi*zt 1+at;
        if t>0 then output;
                 zt_1=zt;
end;
run;
proc autoreg data=ar1;
        model zt=;
        output out = reg out p=zthat;
run;
```

```
goptions reset=all i=join;
symbol1 line=1 color='green';
symbol2 line=2 color='blue';
title1 'Simulated Trend-Stationary Process with a constant mean';
axis1 label=(angle=90 'Value');
axis2 label=('Time');
legend1 label=('Legend');
proc gplot data=reg_out;
        plot (zt zthat)*t/overlay haxis=axis2 vaxis=axis1 legend = legend1;
run;
proc autoreg data=ar1;
        model zt=/nlag = 1 method = uls;
        output out = reg_out2 p=zthat;
run;
goptions reset=all i=join;
symbol1 line=1 color='black';
symbol2 line=1 color='red';
title1 'Simulated Trend-Stationary Process with Constant Mean';
axis1 label=(angle=90 'Value');
axis2 label=('Time');
legend1 label=('Legend');
proc gplot data=reg out2;
        plot (zt zthat)*t/overlay haxis=axis2 vaxis=axis1 legend = legend1;
run;
```

Appendix

Table 1:

The SAS System The ARIMA Procedure Name of Variable = xt Mean of Working Series 0.038162 **Standard Deviation** 2.447829 **Number of Observations** 1000 **Autocorrelation Check for White Noise** Chi-Square DF Pr > ChiSq To Lag **Autocorrelations** <.0001 | 0.521 | 0.024 | -0.013 | -0.037 | 0.002 | 0.044 6 276.71 6

Table 2:

Name of Variable = yt					
Mean of Working Series	0.094766				
Standard Deviation	2.497007				
Number of Observations	1000				

Autocorrelation Check for White Noise									
To Lag	Chi-Square	DF	Pr > ChiSq	q Autocorrelations					
6	294.74	6	<.0001	0.537	0.067	0.021	-0.013	0.008	0.020

Graph 1:

Graph 2:

Simulated MA(1) Process

Graphs 3&4:

Graphs 5&6:

Graphs 7&8:

Graphs 9&10:

Table 3:

The AUTOREG Procedu	ΙΓE
---------------------	-----

Ore			
SSE	8822.56406	DFE	949
MSE	9.29670	Root MSE	3.04905
SBC	4820.01522	AIC	4815.15875
MAE	2.45439801	AICC	4815.16297
MAPE	3.52243068	HQC	4817.00914
Durbin-Watson	2.1017	Regress R-Square	0.0000
		Total R-Square	0.0000

Parameter Estimates						
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t	
Intercept	1	69.9075	0.0989	706.68	<.0001	

Graph 11:

Table 4:

The AUTOREG Procedure

Unco	st Squares Estimate	Estimates		
SSE	8797.61406	DFE	948	
MSE	9.28018	Root MSE	3.04634	
SBC	4824.18414	AIC	4814.47121	
MAE	2.45099338	AICC	4814.48389	
MAPE	3.51780345	HQC	4818.17198	
Durbin-Watson	1.9975	Regress R-Square	0.0000	
		Total R-Square	0.0028	

Parameter Estimates						
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t	
Intercept	1	69.9072	0.0938	744.96	<.0001	
AR1	1	0.0533	0.0325	1.64	0.1014	

Autoregressive parameters assumed given						
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t	
Intercept	1	69.9072	0.0938	744.96	<.0001	

Graph 12:

