MATH703: Martingales et Chaînes de Markov

Contrôle continu nº 1

Documents autorisés : polycopié de cours, table des lois usuelles

Vendredi 24 novembre 2017.

Exercice 1. On rappelle que si Z suit la loi $\mathcal{N}(0, \sigma^2)$,

$$\forall s \in \mathbf{R}, \qquad \mathbb{E}\left[e^{sZ}\right] = e^{\sigma^2 s^2/2}.$$

Soient X et Y deux variables aléatoires indépendantes, X suivant la loi $\mathcal{N}(0,1)$ et Y la loi $\mathcal{N}(0,1/2)$.

Calculer $\mathbb{E}\left[e^{XY} \mid Y\right]$ puis $\mathbb{E}\left[e^{XY}\right]$.

Exercice 2. Soient $(X_k)_{k\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi exponentielle de paramètre $\lambda > 0$ et N une variable aléatoire à valeurs dans \mathbb{N}^* indépendante des $(X_k)_{k\geq 1}$. On pose $M = \min(X_1, \ldots, X_N)$.

- 1. Calculer, pour tout réel t, $\mathbb{P}(M > t \mid N)$.
- 2. Quelle est la loi conditionnelle de M sachant N?
- 3. Déterminer la fonction de répartition de M lorsque N suit la loi géométrique de paramètre p=1/2.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi de Poisson de paramètre $\lambda > 0$. On pose $S_0 = 0$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et, pour $n \geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad \mathcal{F}_n = \sigma(X_1, \ldots, X_n).$$

- 1. (a) Montrer que $(S_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -sous-martingale.
 - (b) Quelle est la nature du processus $(S_n n\lambda)_{n>0}$?
 - (c) Donner la décomposition de Doob de $(S_n)_{n\geq 0}$.
- 2. Pour $n \geq 0$, on pose $M_n = (S_n n\lambda)^2 n\lambda$. Montrer que $(M_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ martingale.
- 3. Pour $n \ge 0$, on pose $Z_n = 2^{S_n} e^{-\lambda n}$.
 - (a) Montrer que $(Z_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ -martingale positive.

- (b) Justifier brièvement que $(Z_n)_{n\geq 0}$ converge presque sûrement vers une variable aléatoire Z_∞ positive.
 - (c) En écrivant $Z_n = \exp(S_n \ln 2 \lambda n)$, montrer $Z_\infty = 0$ presque sûrement.
 - (d) On considère le temps d'arrêt

$$T = \inf\{n \ge 0 : Z_n \le 1/2\}.$$

Montrer que T est fini presque sûrement.