Convexity

Divya Bhagia

Boston College

August 20, 2019

Overview

- Convex Sets
- Separating Hyperplanes
- Concave and Convex Functions
- Quasiconcave and Quasiconvex Functions

Overview

- Convex Sets
- Separating Hyperplanes
- 3 Concave and Convex Functions
- 4 Quasiconcave and Quasiconvex Functions

Convex Sets and Convex Hull

Definition

In real vector space V, a set $S \subset V$ is a **convex set** if

$$\lambda x + (1 - \lambda)y \in S$$

for any $\lambda \in [0,1]$ and $x, y \in S$.

Definition

In a vector space V, the **convex hull** of set $S \subset V$, denoted by Co(S) is the intersection of all convex sets in V that contain S. Co(S) can be interpreted as the smallest convex set that covers S.

Convex Sets

Proposition

In a vector space V, the set $S \subset V$ is convex *iff* any convex combination of $x_1, x_2, ..., x_n \in S$ given by the vector $\sum_{i=1}^n \lambda_i x_i$ is also in S where $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}_+$ and $\sum_{i=1}^n \lambda_i = 1$.

Proof: \Leftarrow is trivial.

 \Rightarrow : Proof by induction. If n=1, the statement is trivial. If n=2, then $\lambda_1x_1+\lambda_2x_2\in S$ by definition of convexity. Now assume statement is true for n=k. With n=k+1, consider any $\lambda_1,\lambda_2,...,\lambda_{k+1}\in \mathbb{R}_+$ with $\sum_{i=1}^{k+1}\lambda_i=1$, then we have

$$\sum_{i=1}^{k+1} \lambda_i x_i = \sum_{i=1}^k \lambda_i x_i + \lambda_{k+1} x_{k+1}$$

$$= \left(\sum_{i=1}^k \lambda_i\right) \sum_{i=1}^k \frac{\lambda_i}{\sum_{i=1}^k \lambda_i} x_i + \lambda_{k+1} x_{k+1} \quad \Box$$

Overview

- Convex Sets
- Separating Hyperplanes
- 3 Concave and Convex Functions
- 4 Quasiconcave and Quasiconvex Functions

Hyperplanes

Definition

Given $p \in \mathbb{R}^n$ with $p \neq 0$, and $c \in \mathbb{R}$, the **hyperplane** generated by p and c is the set

$$H_{p,c} := \{z \in \mathbb{R}^n : p^T z = c\}$$

The sets $\{z \in \mathbb{R}^n : p^T z \ge c\}$ and $\{z \in \mathbb{R}^n : p^T z \le c\}$ are called **half-space above** and **half-space below** the hyperplane $H_{p,c}$, respectively.

Separating Hyperplane Theorems

Minkowski's Theorem

Suppose that the convex sets $A, B \subset \mathbb{R}^n$ are disjoint (i.e. $A \cap B = \phi$). Then there exists $p \in \mathbb{R}^n$ with $p \neq 0$ and a value $c \in \mathbb{R}$ such that $p^T x \geq c$ for every $x \in A$ and $p^T y \leq c$ for every $y \in B$.

Separating Hyperplane Theorems

Weaker Version with Strict Separation

Suppose that the *closed* convex sets $A, B \subset \mathbb{R}^n$ are disjoint with at least one of them *bounded*. Then there exists $p \in \mathbb{R}^n$ with $p \neq 0$ and a value $c \in \mathbb{R}$ such that $p^T x > c$ for every $x \in A$ and $p^T y < c$ for every $y \in B$.

Proof: Define $d(A, B) = \inf\{d_2(a, b) : a \in A, b \in B\}$. Let \hat{a} and \hat{b} be points that achieve it. Now let

$$p = \hat{a} - \hat{b}$$
 and $c = \frac{||\hat{a}||^2 - ||\hat{b}||^2}{2}$

Claim 1: $p^T x > c$ for every $x \in A$.

Proof by contradiction, assume that there exists $a \in A$ s.t. $p^T a \le c$. This means that

$$(\hat{a} - \hat{b})^T a \le \frac{||\hat{a}||^2 - ||\hat{b}||^2}{2}$$
 (1)

Separating Hyperplane Theorems

Proof Cont.

Define $g(x) = ||x - \hat{b}||^2$, then $\nabla g(x) = 2(x - \hat{b})$.

$$\nabla g(\hat{a})(a - \hat{a}) = 2(\hat{a} - \hat{b})^{T}(a - \hat{a})$$

$$= 2(-||\hat{a}|| + (\hat{a} - \hat{b})^{T}a + \hat{b}^{T}\hat{a})$$

$$\leq 2\left(-||\hat{a}|| + \frac{||\hat{a}||^{2} - ||\hat{b}||^{2}}{2} + \hat{b}^{T}\hat{a}\right)$$
 From (1)
$$= -||d - c||^{2} < 0$$

This implies that $\exists \bar{\alpha} > 0$ s.t. $\forall \alpha \in (0, \bar{\alpha})$

$$g(\hat{a} + \alpha(\hat{a} - a)) < g(\hat{a})$$

But this contradicts that \hat{a} was the closest point to \hat{b} .

Overview

- Convex Sets
- Separating Hyperplanes
- Concave and Convex Functions
- 4 Quasiconcave and Quasiconvex Functions

Concave and Convex Functions

Definitions

Consider a function $f: A \to \mathbb{R}$, where A is a convex set in vector space V.

1 The function *f* is a **concave** function if

$$f(\lambda x' + (1 - \lambda)x) \ge \lambda f(x') + (1 - \lambda)f(x)$$

for all x and $x' \in A$ and all $\lambda \in [0,1]$. If inequality is strict for all $x' \neq x$ and all $\lambda \in (0,1)$, then we say that the function is **strictly concave**.

2 The function f is a **convex** function if

$$f(\lambda x' + (1 - \lambda)x) \le \lambda f(x') + (1 - \lambda)f(x)$$

for all x and $x' \in A$ and all $\lambda \in [0,1]$. If inequality is strict for all $x' \neq x$ and all $\lambda \in (0,1)$, then we say that the function is **strictly convex**.

First-Order Characterization of Concavity

Theorem

Suppose the function $f:S\to\mathbb{R}$ is a C^2 function, where S is a convex and open set in \mathbb{R}^n . Then f is concave in S iff

$$f(x) - f(x^0) \le \nabla f(x^0)^T (x - x^0) = \sum_{i=1}^n \frac{\partial f(x^0)}{\partial x_i} (x_i - x_i^0)$$

for all $x, x^0 \in S$.

Proof: \Rightarrow : Let $x, x^0 \in S$. Since f is concave,

$$\lambda f(x) + (1 - \lambda)f(x^0) \le f(\lambda x + (1 - \lambda)x^0)$$

for all $\lambda \in [0,1]$. Rearranging the above inequality, for all $\lambda \in (0,1]$, we obtain

$$f(x) - f(x^0) \le \frac{f(x^0 + \lambda(x - x^0)) - f(x^0)}{\lambda}$$
 (#)

For $\lambda \to 0$, the RHS of (#) approaches $\nabla f(x^0)^T (x - x^0)$.

First-Order Characterization of Concavity

Proof Cont.

 \Leftarrow : Define $z = \lambda x + (1 - \lambda)x^0$. Notice that $z \in S$ because S is convex. Then given the statement of the theorem,

$$f(x) - f(z) \le \nabla f(z)^{T} (x - z) \tag{1}$$

$$f(x^0) - f(z) \le \nabla f(z)^T (x^0 - z) \tag{2}$$

Multiplying (1) by $\lambda > 0$ and (2) by $1 - \lambda > 0$, we obtain

$$\lambda(f(x)-f(z))+(1-\lambda)(f(x^0)-f(z))\leq \nabla f(z)^T\underbrace{[\lambda(x-z)+(1-\lambda)(x^0-z))]}_{\lambda x+(1-\lambda)x^0-z=0}$$

Then re-arranging the above equation gives us

$$\lambda f(x) + (1 - \lambda)f(x^0) \le f(z) = f(\lambda x + (1 - \lambda)x^0)$$

Thus f is concave.

First-Order Characterization of Strict Concavity

Corollary

f is strictly concave iff the inequality in the previous theorem is strict when $x \neq x^0$.

Proof: \Rightarrow : Suppose that f is strictly concave in S. Then, inequality (#) is strict for all $\lambda \in (0,1)$ and all $x \neq x^0$.

 \Leftarrow : With $z = x^0 + \lambda(x - x^0)$, we have

$$f(x) - f(x^0) < \frac{f(z) - f(x^0)}{\lambda} \le \frac{\nabla f(x^0)^T (z - x^0)}{\lambda} = \nabla f(x^0)^T (x - x^0)$$

First-Order Characterization of Convexity

Theorem 1

Suppose the function $f: S \to \mathbb{R}$ is a C^1 function, where S is a convex and open set in \mathbb{R}^n . Then f is convex in S iff

$$f(x) \ge f(x^0) + \nabla f(x^0)^T (x - x^0) = \sum_{i=1}^n \frac{\partial f(x^0)}{\partial x_i} (x_i - x_i^0)$$

for all $x, x^0 \in S$.

In addition, f is strictly convex iff the inequality is strict when $x \neq x^0$.

Second-Order Characterization in $\mathbb R$

Theorem

Suppose the function $f: S \to \mathbb{R}$ is a C^2 function, where $S \subset \mathbb{R}$ is convex and open.

- **1** f is convex iff $f''(x) \ge 0$ for any $x \in S$.
- 2 f is concave iff $f''(x) \le 0$ for any $x \in S$.

Replace with strict inequalities to obtain equivalent statements for strict convexity and strict concavity.

Proof: We do a mean-value expansion of the function around x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x^*)(x - x_0)^2$$

where x^* lies between x_0 and x. By our hypothesis, $f''(x^*) \ge 0$. Let $x_0 = \lambda x_1 + (1 - \lambda)x_2$ and $x = x_1$, then

$$f(x_1) \ge f(x_0) + f'(x_0)(1-\lambda)(x_1-x_2) \tag{1}$$

Similarly taking $x = x_2$

$$f(x_2) \ge f(x_0) + f'(x_0)\lambda(x_1 - x_2)$$
 (2)

Multiplying (1) by λ and (2) by $(1 - \lambda)$ and adding finishes the proof for (1). Rest of the statements follow easily.

Second-Order Characterization of Convexity and Concavity

Theorem

Suppose the function $f: S \to \mathbb{R}$ is a C^2 function, where S is a convex and open set in \mathbb{R}^n .

- ① f is convex iff it's Hessian matrix $D^2f(x)$ is positive semi-definite for any $x \in S$.
- ② f is concave iff it's Hessian matrix $D^2f(x)$ is negative semi-definite for any $x \in S$.

Proof: \Leftarrow : Take two points $x, x^0 \in S$ and let $t \in [0, 1]$. Define

$$g(t) = f(x^0 + t(x - x^0)) = f(tx + (1 - t)x^0)$$

Differentiating with respect to t

$$g'(t) = \sum_{i=1}^{n} f_i(x^0 + t(x - x^0))(x_i - x_i^0) = (x - x^0)^T [\nabla f(x^0 + t(x - x^0))]$$

Second-Order Characterization of Convexity and Concavity

Proof Cont.

Differentiating again with respect to t

$$g''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}(x^{0} + t(x - x^{0}))(x_{i} - x_{i}^{0})(x_{j} - x_{j}^{0})$$
$$= (x - x^{0})^{T} [D^{2}f((x^{0} + t(x - x^{0}))](x - x^{0})$$

Because D^2f is positive semi-definite, therefore $g''(t) \ge 0$ for any $t \in [0,1]$ which implies that g is convex. Then it follows

$$g(t) = g(t.1 + (1-t).0) \ge tg(1) + (1-t)g(0) = tf(x) + (1-t)f(x^0)$$

and f is also convex.

 \Rightarrow : Suppose f is convex. Take $x \in S$ and arbitrary vector $h = (h_1, ..., h_n)$, then there exists a > 0 s.t. $x + th \in S \ \forall t$ with |t| < a. Let I = (-a, a).

Second-Order Characterization of Convexity and Concavity

Proof Cont.

Define the function p on I by p(t) = f(x + th). Since p(.) is convex in I

$$p''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}(x + th)h_{i}h_{j} \ge 0$$

Plugging in t = 0, it follows that

$$h^T D^2 f(x) h \ge 0$$

for any $x \in S$ and any h, therefore $D^2 f(x)$ is positive semi-definite. Proof for (2) follows by setting f = -f.

Second-Order Partial Characterization of Strict Convexity and Concavity

Theorem

Suppose the function $f: S \to \mathbb{R}$ is a C^2 function, where S is a convex and open set in \mathbb{R}^n .

- ① f is strictly convex **if** it's Hessian matrix $D^2f(x)$ is positive definite for any $x \in S$.
- ② f is strictly concave **if** it's Hessian matrix $D^2f(x)$ is negative definite for any $x \in S$.

Proof: Define g(.) as in the proof of the previous theorem. If $D^2f(x)$ is positive definite, then for $x \neq x^0$, g''(t) > 0 for all $t \in [0,1]$ which implies that g(.) is strictly convex. Then we have

$$g(t) = g(t.1 + (1-t).0) > tg(1) + (1-t)g(0) = tf(x) + (1-t)f(x^{0})$$

for all $t \in (0,1)$. Proof for (2) follows by setting f = -f.

Overview

- Convex Sets
- Separating Hyperplanes
- 3 Concave and Convex Functions
- 4 Quasiconcave and Quasiconvex Functions

Quasiconcave and Quasiconvex Functions

Definitions

Conside a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.

 $oldsymbol{0}$ The function f is a **quasiconcave** function if

$$f(\lambda x + (1 - \lambda)x') \ge \min\{f(x), f(x')\}$$

for any $x, x' \in S$ and $\lambda \in [0, 1]$.

$$f(\lambda x + (1 - \lambda)x') \le max\{f(x), f(x')\}$$

for any $x, x' \in S$ and $\lambda \in [0, 1]$.

Strictly Quasiconcave and Strictly Quasiconvex Functions

Definitions

Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.

 $oldsymbol{0}$ The function f is a **strictly quasiconcave** function if

$$f(\lambda x + (1 - \lambda)x') > \min\{f(x), f(x')\}$$

for any $x, x' \in S$ with $x \neq x'$ and $\lambda \in (0, 1)$.

$$f(\lambda x + (1 - \lambda)x') < \max\{f(x), f(x')\}$$

for any $x, x' \in S$ with $x \neq x'$ and $\lambda \in (0, 1)$.

Quasiconcave and Quasiconvex Functions

Theorem

Consider a function $f: S \to \mathbb{R}$, where S is a convex set in vector space V.

- **1** If is quasiconcave iff it's upper contour set $C^a = \{x \in S : f(x) \ge a\}$ is convex in V for any $a \in \mathbb{R}$.
- ② f is quasiconvex iff it's lower contour set $C_a = \{x \in S : f(x) \le a\}$ is convex in V for any $a \in \mathbb{R}$.

Proof: \Rightarrow : Take any $a \in \mathbb{R}$ and $x, x' \in C^a$, then $f(x) \ge a$ and $f(x') \ge a$. Because f is quasiconcave, for any $\lambda \in (0,1)$,

$$f(\lambda x + (1 - \lambda)x') \ge \min\{f(x), f(x')\}\$$

Thus $\lambda x + (1-\lambda)x' \in C^a$ implying that C^a is convex. \Leftarrow : Take $x, x' \in S$ and $\lambda \in [0,1]$. Define $a = min\{f(x), f(x')\}$. Then $x, x' \in C^a = \{x \in S : f(x) \geq a\}$ and therefore $\lambda x + (1-\lambda)x' \in C^a$. This implies that $f(\lambda x + (1-\lambda)x') \geq min\{f(x), f(x')\}$. Proof for (2) is symmetric.

Quasiconcavity is Preserved under Positive Monotone Transformation

Theorem

Consider a function $f:S\to\mathbb{R}$, where S is a convex set in vector space V. If f is quasiconcave (quasiconvex) and $\phi:\mathbb{R}\to\mathbb{R}$ is weakly increasing then $\phi\circ f$ is quasiconcave (quasiconvex).

Proof: Take any $x, x' \in S$ and $\lambda \in [0, 1]$, then

$$f(\lambda x + (1 - \lambda)x') \ge \min\{f(x), f(x')\}$$

Since ϕ is strictly increasing

$$\phi(f(\lambda x + (1 - \lambda)x')) \ge \phi(\min\{f(x), f(x')\}) = \min\{\phi(f(x), \phi(f(x'))\}\}$$

and hence $\phi \circ f$ is quasiconcave. Argument for quasiconvexity follows symmetrically.

First-Order Characterization of Quasiconcavity

Theorem

Let $f: S \to \mathbb{R}$ be a C^1 function, where S is a convex and open set in \mathbb{R}^n . Then f is quasiconcave on S iff for all $x, x^0 \in S$

$$f(x) \ge f(x^0) \Rightarrow \nabla f(x^0)^T (x - x^0) = \sum_{i=1}^n \frac{\partial f(x^0)}{\partial x_i} (x_i - x_i^0) \ge 0$$

Second-Order Characterization of Quasiconcavity

Theorem

Let $f: S \to \mathbb{R}$ be a C^2 function, where S is a convex and open set in \mathbb{R}^n . Then f is quasiconcave on S iff for every $x \in S$, the Hessian matrix $D^2f(x)$ is negative semidefinite in subspace $\{z \in \mathbb{R}^n : \nabla f(x)^T z = 0\}$. That is

$$z^T D^2 f(x) z \le 0$$
 whenever $\nabla f(x)^T z = 0$

for every $x \in S$. If the Hessian matrix $D^2f(x)$ is negative definite in the subspace $\{z \in \mathbb{R}^n : \nabla f(x)^T z = 0\}$ for every $x \in S$, then f is **strictly** quasiconcave.

Characterization through Bordered Hessian

Theorem

Let $f: S \to \mathbb{R}$ be a C^2 function, where S is a convex and open set in \mathbb{R}^n . Define the bordered Hessian determinants $B_r(x)$ as follows for each r=2,...,n:

$$B_r(x) = \begin{vmatrix} 0 & f_1(x) & \dots & f_r(x) \\ f_1(x) & f_{11}(x) & \dots & f_{1r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_r(x) & f_{r1}(x) & \dots & f_{rr}(x) \end{vmatrix}$$

- **1** A necessary condition for f to be quasiconcave is that $(-1)^r B_r(x) \ge 0$ for all $x \in S$ and all r = 1, ..., n.
- ② A sufficient condition for f to be strictly quasiconcave is that $(-1)^r B_r(x) > 0$ for all $x \in S$ and all r = 1, ..., n.

Review

Review 1 / 6

Review: Hessian Matrix

Definition

Suppose the function $f:S\to\mathbb{R}$ is a C^2 function, where S is a convex and open set in \mathbb{R}^n . The matrix

$$D^2f(x)=(f_{ij}(x)))_{n\times n}$$

is called the **Hessian** matrix of f at x where $f_{ij}(x) = \partial^2 f(x)/\partial x_i \partial x_j$.

Review 2 / 6

Review: Quadratic Forms and Definiteness

Definition

Any $N \times N$ matrix M determines a quadratic form Q

$$Q(x) = Q(x_1, ..., x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = x^T M x_i$$

Definitions

- ① The $N \times N$ matrix M is negative semi-definite if $x^T M x \leq 0$ for all $x \in \mathbb{R}^N$.
- ② The $N \times N$ matrix M is **negative definite** if $x^T M x < 0$ for all $z \neq 0$ with $x \in \mathbb{R}^N$.
- **3** The $N \times N$ matrix M is **positive semi-definite** if $x^T M x \ge 0$ for all $x \in \mathbb{R}^N$.
- **1** The $N \times N$ matrix M is **positive definite** if $x^T M x > 0$ for all $z \neq 0$ with $x \in \mathbb{R}^N$.

Review 3 / 6

Review: Definiteness of Matrices

Theorem

- The $N \times N$ matrix M is **positive definite** if and only if all it's N leading principal minors are strictly positive.
- ② The $N \times N$ matrix M is **negative definite** if and only if its N leading minors alternate in sigh as follows:

$$|M_1| < 0 \quad |M_2| > 0 \quad |M_3| < 0 \quad ...$$

The kth order leading principal minor should have the same sign as $(-1)^k$.

Review 4 / 6

Review: Definiteness of Matrices

Theorem

- **1** The $N \times N$ matrix M is **positive semi-definite** if and only if every principal minor of A is ≥ 0 .
- ② M is **negative semi-definite** if and only if every principal minor of odd order is ≤ 0 and every principal minor of even order is ≥ 0 .

Review 5 / 6

Review: Definiteness of Matrices

Easy to show previous two theorems for n = 2. In which case the quadratic form is

$$Q(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2$$

After some manipulation, we obtain

$$Q(x_1, x_2) = a_{11} \left(x_1 + \frac{a_{12}}{a_{11}} x_2 \right)^2 + \left(a_{22} - \frac{a_{12}^2}{a_{11}} \right) x_2^2$$

Thus we obtain

- $Q(x_1, x_2) > 0$ iff $a_{11} > 0$ and $a_{11}a_{22} a_{12}^2 > 0$
- $Q(x_1, x_2) < 0$ iff $a_{11} < 0$ and $a_{11}a_{22} a_{12}^2 < 0$

◆ロト ◆個ト ◆差ト ◆差ト 差目 からの

Review 6 / 6