ЛЕКЦІЯ 1

Числові множини. Комплексні числа та дії над ними.

ЧИСЛОВІ МНОЖИНИ

Множини можуть складатися з будь-яких об'єктів різної природи. Для математики особливо важливу роль відіграють множини складені із «математичних об'єктів» — чисел, геометричних фігур тощо. Дуже часто зустрічаються числові множини, тобто множини, елементами яких є числа. Згадаємо деякі множини чисел, з якими ви знайомилися в курсі математики.

1. Множина **натуральних чисел** тобто чисел, які виникають в процесі лічби предметів. Цю множину чисел позначають буквою N:

$$N = \{1, 2, 3, 4, 5, 6, ...\}.$$

В цій множині завжди можна виконати дії додавання і множення.

2. Об'єднання натуральних чисел, чисел протилежних до натуральних і числа 0 утворює множину **цілих чисел**, яку позначають буквою **Z**:

$$Z = \{0, \pm 1, \pm 2, \pm 3, ...\}.$$

В цій множині завжди можна виконати дії додавання, віднімання та множення.

3. Множина **раціональних чисел** (її позначають буквою **Q**) — це множина чисел, які можна подати у вигляді нескоротного дробу $\frac{m}{n}$, де $m \in \mathbb{Z}$, $n \in \mathbb{N}$

$$Q = \{x: x = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}\}.$$

Кожне раціональне число можна подати у вигляді нескінченного періодичного дробу. Наприклад $\frac{1}{3}$ = 0,333... = 0,(3). В множині раціональних чисел завжди виконуються дії додавання, віднімання, множення, ділення (крім ділення на 0). Проте, квадратний корінь з раціонального числа не завжди є раціональним числом. Наприклад: $\sqrt{2}$, $\sqrt{3}$ і т. д.

4. Числа, які не можна подати у вигляді дробу $\frac{m}{n}$, де $m \in \mathbb{Z}$, $n \in \mathbb{N}$ (або числа, які подаються у вигляді нескінченного неперіодичного дробу, наприклад $\pi = 3,1415926...$), утворюють множину **ірраціональних чисел**.

Об'єднання раціональних і ірраціональних чисел утворює множину дійсних чисел, яку позначають буквою \mathbf{R} .

У множині дійсних чисел завжди можна виконати дії: додавання, віднімання, множення, ділення (крім ділення на 0), добування квадратного кореня з невід'ємного числа.

ВВЕДЕННЯ ПОНЯТТЯ КОМПЛЕКСНОГО ЧИСЛА

При розв'язанні квадратних алгебраїчних рівнянь виникла проблема тоді, коли дискримінант $D = p^2 - 4q$ виявлявся числом від'ємним, і стало зрозуміло, що дуже корисно і зручно не ігнорувати символ $\sqrt{-1}$ і вирази $a+b\sqrt{-1}$ (де $a,b\in R$), а оперувати з ними (чисто формально!), як із звичайними числами. А саме, якщо позначити $\sqrt{-1} = i$ та оперувати з виразами a+bi за звичайними правилами

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

$$(a+bi)\cdot(c+di)=(ac-bd)+(ad+bc)i,$$
(1)

то при цьому виконуються всі звичайні властивості додавання та множення. Отже, з цієї точки зору вирази a+bi мають таке саме право називатися числами, як вираз $\frac{m}{n}$ (де $m \in Z, n \in N$) — раціональними числами, або нескінченні десяткові дроби — дійсними числами.

Якщо вважати, що a+0i — це просто дійсне число a, що i — це 0+1i, то у відповідності з (1) $a+bi=(a+0i)+(b+0i)\cdot(0+1i)$ і, отже, вираз a+bi утворюється з $a,b\in R$ та $i=\sqrt{-1}$ шляхом заданого в (1) алгоритму множення та додавання, тобто $a+bi=a+b\cdot i$.

Отже, будь-яке квадратне рівняння виду $x^2 + px + q = 0$, де p і q — дійсні числа, має два корені, тобто:

- \blacksquare якщо дискримінант D>0, то дане рівняння має два різних дійсних кореня $x_{1,2}=\frac{-p\pm\sqrt{p^2-4q}}{2}$;
- якщо дискримінант D=0, то дане рівняння має два рівних дійсних кореня $x_{1,2}=\frac{-p}{2}$;

 \blacksquare якщо дискримінант D < 0, то дане рівняння має два різних комплексних кореня

$$x_{1,2} = \frac{-p \pm i\sqrt{p^2 - 4q}}{2} = -\frac{p}{2} \pm i\sqrt{q - \frac{p^2}{4}}$$
.

Подібне твердження відоме під назвою "основна теорема алгебри" (Будь-який многочлен ненульового степеня з комплексними коефіцієнтами має хоч один комплексний корінь), доведення якої було дане Гаусом в кінці XVIII ст., має місце для алгебраїчних рівнянь будь-якого ступеня з довільними комплексними коефіцієнтами.

Таким чином, ми отримуємо своєрідне розширення множини дійсних чисел, породжене приєднанням до R уявного елементу $i=\sqrt{-1}$, тобто такого, що $i^2=-1$.

АЛГЕБРАЇЧНА ФОРМА ЗАПИСУ КОМПЛЕКСНИХ ЧИСЕЛ ТА ДІЇ НАД КОМПЛЕКСНИМИ ЧИСЛАМИ

Комплексними числами називаються вирази виду a+bi, де a і b — дійсні числа, а число i, що визначається рівністю $i^2 = -1$, називається уявною одиницею, причому дійсне число a називається дійсною частиною комплексного числа z = a+bi і позначається $\operatorname{Re} z$, число bi — уявною частиною і позначається $\operatorname{Im} z$, а дійсне число b — коефіцієнтом уявної частини. Множина комплексних чисел позначається C (від Complex).

Два комплексні числа $a_1 + b_1 i$ і $a_2 + b_2 i$ називаються p івними, якщо їхні дійсні та уявні частини відповідно рівні, тобто коли $a_1 = a_2$ і $b_1 = b_2$.

Сумою двох комплексних чисел $a_1 + b_1 i$ і $a_2 + b_2 i$ називається комплексне число, дійсна частина якого дорівнює сумі дійсних частин доданків, а коефіцієнт уявної частини — відповідно сумі коефіцієнтів уявної частини доданків, тобто $(a_1 + a_2) + (b_1 + b_2) i$.

Добутком двох комплексних чисел $a_1 + b_1 i$ і $a_2 + b_2 i$ називається комплексне число, дійсна частина якого дорівнює $a_1 a_2 - b_1 b_2$, а уявна — $a_1 b_2 + a_2 b_1$.

Запис комплексного числа у вигляді z = a + bi називається *алгебраїчною формою* комплексного числа.

Будь-яке дійсне число a міститься в множині комплексних чисел, тому що його можна записати так: $a = a + 0 \cdot i$. Числа 0, 1 та i записуються відповідно у вигляді $0 = 0 + 0 \cdot i$, $1 = 1 + 0 \cdot i$ і $i = 0 + 1 \cdot i$. При a = 0 комплексне число a + bi перетворюється в чисто уявне число bi.

Комплексні числа вигляду a+bi і -a-bi називаються **протилежними**.

Комплексне число a-bi називається **спряженим** з числом a+bi і позначається \overline{z} , тобто $\overline{z}=\overline{a+bi}=a-bi$, але до числа \overline{z} також можна знайти спряжене число, яким буде число z, тому можна вести мову про пару спряжених чисел. Наприклад, до числа -7+5i протилежним ε число 7-5i, а спряженим -7-5i.

Властивості спряжених чисел

- 1. Сума і добуток спряжених комплексних чисел ϵ числа дійсні, так як $z + \overline{z} = (a+bi) + (a-bi) = 2a$ і $z\overline{z} = (a+bi)(a-bi) = a^2 + b^2$.
- 2. Число, спряжене з сумою двох чисел, дорівнює сумі чисел, спряжених з доданками, тобто $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$.
- 3. Число, спряжене з добутком двох чисел, дорівнює добутку чисел, спряжених з співмножниками, тобто $\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$.
- 4. Число, спряжене з різницею двох чисел, дорівнює різниці чисел, спряжених зі зменшуваним z_1 і від'ємником z_2 , тобто $\overline{z_1-z_2}=\overline{z_1}-\overline{z_2}$.
- 5. Число, спряжене з часткою двох чисел, дорівнює частці чисел, спряжених з діленим z_1 і дільником z_2 , тобто $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, z_2 \neq 0$.

Розглядаючи віднімання і ділення комплексних чисел як дії, обернені відповідно додаванню і множенню, одержимо правила віднімання і ділення комплексних чисел.

Правило віднімання комплексних чисел: для того, щоб відняти два комплексних числа $z_1 = a_1 + b_1 i$ та $z_2 = a_2 + b_2 i$, потрібно окремо знайти різниці дійсної та уявної частин і результати відповідно записати, тобто

$$(a_1 + b_1 i) - (a_2 + b_2 i) = (a_1 - a_2) + (b_1 - b_2) i.$$
 (2)

Правило ділення комплексних чисел: для того, щоб поділити два комплексних числа $z_1=a_1+b_1i$ та $z_2=a_2+b_2i$, потрібно і чисельник і знаменник отриманого дробу $\frac{a_1+b_1i}{a_2+b_2i}$ помножити на число, спряжене до знаменника, тобто числа $z_2=a_2+b_2i$; отже,

$$\frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 + b_1 i)(a_2 - b_2 i)}{(a_2 + b_2 i)(a_2 - b_2 i)} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2} i.$$
(3)

Приклади.

Виконати дії: (4+2i)+(1+5i). \checkmark За правилом додавання комплексних чисел маємо (4+2i)+(1+5i)=(4+1)+(2+5)i=5+7i. \blacktriangleright

Виконати дії: (3+5i)-(6+3i). \checkmark За правилом віднімання комплексних чисел одержимо (3+5i)-(6+3i)=(3-6)+(5-3)i=-3+2i. \blacktriangleright

Виконати дії: (5-4i)(3+2i). \checkmark Згідно з правилом множення комплексних чисел $(5-4i)(3+2i) = [5\cdot 3 - (-4)\cdot 2] + i[5\cdot 2 - 3(-4)] = 23-2i$. \blacktriangleright

Виконати дії:
$$\frac{2-3i}{4+5i}$$
. $\checkmark \frac{2-3i}{4+5i} = \frac{(2-3i)(4-5i)}{(4+5i)(4-5i)} = \frac{8-10i-12i+15i^2}{16+25} = \frac{-7-22i}{41} = -\frac{7}{41} - \frac{22}{41}i$.

Знайти дійсні числа x та y із умови рівності двох комплексних чисел: -2 + 5ix - 3iy = 9i + 2x - 4y.

$$-2 + (5x - 3y)i = 2x - 4y + 9i.$$

Тепер, використовуючи рівності комплексних чисел, складемо систему:

$$\begin{cases} 2x - 4y = -2, \\ 5x - 3y = 9, \end{cases}$$

розв'язавши яку, одержуємо x = 3, y = 2.

ГЕОМЕТРИЧНЕ ЗОБРАЖЕННЯ КОМПЛЕКСНОГО ЧИСЛА. МОДУЛЬ ТА АРГУМЕНТ КОМПЛЕКСНОГО ЧИСЛА

Візьмемо на площині декартову прямокутну систему координат xOy (рис. 1)

Домовимось комплексне число z = a + bi зображати точкою M(a,b) площини, абсциса якої у вибраній нами декартовій прямокутній системі координат дорівнює a, а ордината — b. Так між множиною всіх комплексних чисел і сукупністю всіх точок площини встановлюємо взаємно однозначну відповідність: кожному комплексному числу z = a + bi відповідає одна і тільки одна точка M(a,b) площини і,

навпаки, кожна точка $M_1(a_1,b_1)$ відповідає одному і тільки одному комплексному числу $z_1=a_1+b_1i$. Очевидно, комплексне число 0 зображене точкою O площини, яку взято як початок координат.

Дійсні числа зображують точками осі абсцис Ox, яку називають в цьому випадку diйсною віссю. Суто уявні числа bi зображують точками осі ординат Oy, тому цю вісь називають yявною. Площину, між точками якої і комплексними числами встановлено взаємно однозначну відповідність, щойно описаним способом, називають komnnekchoio площиною.

Довільному комплексному числу z = a + bi ставимо у відповідність напрямлений відрізок $\vec{z} = \overrightarrow{OM}$ комплексної площини xOy, початком якого є початок координат O, а кінцем — точка M з координатами (a,b). Інакше, комплексному числу z = a + bi ставимо у відповідність напрямлений відрізок z, що виходить з початку координат і проекція якого на вісь абсцис дорівнює a, а на вісь ординат — b. Числу 0 ставимо у відповідність точку O — початок координат. Так між множиною всіх комплексних чисел і сукупністю всіх напрямлених відрізків площини, що виходять з початку координат, встановлено взаємно однозначну відповідність. Очевидно, кожному дійсному числу a відповідає відрізок, що лежить на дійсній осі, а всякому суто уявному числу bi — відрізок, який лежить на уявній осі, і навпаки. Зокрема, одиничним відрізкам, що

лежать на дійсній і уявній осях і мають напрями цих осей, відповідають числа 1 та i.

Модулем комплексного числа z = a + bi називається число $\sqrt{a^2 + b^2}$, яке позначається r або |z|, тобто

$$r = |z| = |a + bi| = \sqrt{a^2 + b^2}.$$
 (4)

Модуль комплексного числа завжди ϵ дійсне невід'ємне число: $|z| \ge 0$, причому |z| = 0 тоді і тільки тоді, коли z = 0.

Із визначення модуля комплексного числа випливає, що для будь-яких комплексних чисел z, z_1, z_2 мають місце співвідношення:

- $|z_1 \cdot z_2| = |z_1| \cdot |z_2|;$
- $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$, якщо $z_2 \neq 0$;
- $|z^n| = |z|^n$ для будь-якого цілого числа n (при n < 0 за умови, що $z \ne 0$).

Якщо r — деяке додатне дійсне число, то на основі означення модуля комплексного числа одержуємо (див. рис.2):

- 1) множина всіх чисел z, для яких |z|=r, являє собою коло радіусом r з центром у початку координат;
- 2) множина всіх чисел z, для яких $|z| \le r$, являє собою круг радіусом r з центром у початку координат;
 - 3) множина всіх чисел z, для яких |z| > r, являє собою зовнішню частину

круга радіусом r з центром у початку координат.

Приклад. Визначити на комплексній площині області, що задаються умовами: 1) |z|=5; 2) $|z|\le 6$; 3) $|z-(2+i)|\le 3$; 4) $6\le |z-i|\le 7$.

- ✓ 1) розв'язком є коло радіусу 5 з центром у початку координат;
- a+bi
 o
- 2) розв'язком ϵ круг радіусу 6 з центром у початку координат;
- Рис. 3
- 3) розв'язком є круг радіусу 3 з центром у точці $z_0 = 2 + i$;
- 4) розв'язком ϵ кільце, обмежене колами з радіусами 6 і 7 з центром в точці $z_0 = i$. \blacktriangleright

Із геометричної інтерпретації комплексного числа випливають наступні властивості:

- 1. Довжина вектора \vec{z} дорівнює |z|.
- **2.** Точки z = a + bi і $\overline{z} = a bi$ симетричні відповідно дійсної осі (рис. 3).

- **3.** Точки z i -z симетричні відносно точки z = 0.
- **4.** Число $z_1 + z_2$ геометрично відображається як вектор, який побудовано за правилом додавання векторів, які відповідають точкам z_1 і z_2 (рис. 4).
 - **5.** Відстань між точками z_1 і z_2 дорівнює $|z_1 z_2|$ (рис.5).

Кут φ між дійсною віссю Ox і вектором \overrightarrow{OM} , що відраховується від

додатного напрямку дійсної осі, називається *аргументом* комплексного числа z = a + bi (див. рис. 1). Якщо відлік ведеться проти руху годинникової стрілки, то величина кута вважається додатною, а якщо за рухом стрілки — від'ємною.

Аргумент φ комплексного числа z = a + bi записується так:

$$\varphi = \arg z \text{ a fo } \varphi = \arg(a+bi).$$
 (5)

Для числа z = 0 аргумент не визначений.

Аргумент комплексного числа визначається неоднозначно: будь-яке комплексне число $z \neq 0$ має нескінчену множину аргументів, які відрізняються один від одного на число, кратне 2π . Найменше за абсолютною величиною значення аргументу із проміжку $(-\pi,\pi]$ називається *головним значенням* аргументу.

Із означень тригонометричних функцій випливає, що якщо $\varphi = \arg(a+bi)$, то мають місце рівності:

$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}} = \frac{a}{r}, \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}} = \frac{b}{r}.$$
 (6)

Справедливе і обернене твердження, тобто якщо виконуються обидві рівності (6), то $\varphi = \arg(a+bi)$. Таким чином, всі значення аргументу φ можна знайти, розв'язуючи разом рівняння (6).

Алгоритм знаходження значення аргументу комплексного числа $z = a + bi \neq 0$: визначити, в якій чверті знаходиться точка z = a + bi (використати

геометричну інтерпретацію числа z = a + bi); знайти в цій чверті кут φ , розв'язавши одне із рівнянь (6) або рівняння

$$tg\varphi = \frac{b}{a}; (7)$$

та знайти всі значення аргументу числа z за формулою $\arg z = \varphi + 2\pi k, \, k \in Z.$

Приклад. Побудувати радіус-вектор, який відповідає комплексному числу z = 2 + 3i.

$$\blacktriangleleft M_5 = (2;3)$$
 (рис. 6). \blacktriangleright

Знайти модуль і головне значення аргументу комплексних чисел:

1)
$$z = -5i$$
; 2) $z = 1 + i$

1) a=0,b=-5; знаходимо $r=\sqrt{0^2+(-5)^2}=5$; так як вектор, який відображає дане число, лежить на від'ємній вісі Oy, то $\varphi=-\frac{\pi}{2}$;

2) так як a=1,b=1, точка, яка відображає дане число, лежить в I чверті, значить, $r=\sqrt{1^2+1^2}=\sqrt{2}$; $tg\varphi=\frac{b}{a}=1$; $\varphi=\frac{\pi}{4}$

ТРИГОНОМЕТРИЧНА ФОРМА КОМПЛЕКСНОГО ЧИСЛА ТА ДІЇ НАД КОМПЛЕКСНИМИ ЧИСЛАМИ, ЗАДАНИМИ У ТРИГОНОМЕТРИЧНІЙ ФОРМІ

Нехай $r = |a+bi| = \sqrt{a^2 + b^2}$ — модуль, а φ — одне із значень аргументу комплексного числа a+bi. Оскільки із співвідношення (6) випливає, що $a = r\cos\varphi, b = r\sin\varphi$, то

$$a + bi = r(\cos \varphi + i \sin \varphi). \tag{8}$$

Таким чином, будь-яке комплексне число $a+bi\neq 0$ можна записати за формулою (8), де r – модуль, а φ – одне із значень аргументу цього числа.

Справедливе і обернене твердження: якщо комплексне число a+bi представлене у вигляді (8), де r>0, то r=|a+bi|, $\varphi=\arg(a+bi)$.

Представлення комплексного числа у вигляді

$$z = r(\cos \varphi + i \sin \varphi),$$

де r > 0, називається *тригонометричною формою* запису комплексного числа.

Алгоритм представлення комплексного числа в тригонометричній формі: знайти модуль цього числа та обчислити одне із значень аргументу цього числа.

<u>Зауваження</u>. В силу багатозначності $\arg z$ тригонометрична форма комплексного числа також неоднозначна.

Добуток комплексних чисел $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ і $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$ знаходиться за формулою

$$r_1(\cos\varphi_1 + i\sin\varphi_1) \cdot r_2(\cos\varphi_2 + i\sin\varphi_2) = r_1 r_2 [\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)], \tag{9}$$

$$|z_1 z_2| = r_1 \cdot r_2 = |z_1| \cdot |z_2|, \arg(z_1 z_2) = \varphi_1 + \varphi_2.$$

Правило множення комплексних чисел, заданих в тригонометричній формі: при множенні двох комплексних чисел, заданих у тригонометричній формі, їх модулі перемножуються, а аргументи додаються.

Частка комплексних чисел $z_1=r_1 (\cos \varphi_1+i\sin \varphi_1)$ і $z_2=r_2 (\cos \varphi_2+i\sin \varphi_2)$, причому $z_2\neq 0$, знаходиться за формулою

$$\frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1}{r_2} \left[\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)\right],\tag{10}$$

тобто

$$\left|\frac{z_1}{z_2}\right| = \frac{r_1}{r_2} = \frac{|z_1|}{|z_2|}, \arg\left(\frac{z_1}{z_2}\right) = \varphi_1 - \varphi_2.$$

Правило ділення комплексних чисел, заданих в тригонометричній формі: при діленні комплексних чисел, заданих у тригонометричній формі, їх модулі діляться, а аргументи віднімаються.

Для піднесення комплексного числа $r(\cos \varphi + i \sin \varphi)$ до n-го ступеня використовується формула

$$[r(\cos\varphi + i\sin\varphi)]^n = r^n(\cos n\varphi + i\sin n\varphi), n \in \mathbb{Z}, \tag{11}$$

яка називається формулою Муавра.

Для добування кореня n-го ступеня із комплексного числа $r(\cos \varphi + i \sin \varphi)$ використовується формула

$$z_{k} = \sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r}\left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right),\tag{12}$$

де $\sqrt[n]{r}$ — арифметичній корінь n-го ступеня, k = 0, 1, 2, ..., n-1.

Приклад. Представити в тригонометричній формі $-2 + 2\sqrt{3}i$

∢ $a = -2, b = 2\sqrt{3}, r = 4$, тому точка, яка відображає число z, лежить у ІІ чверті,

тобто
$$\operatorname{tg}\varphi = \frac{2\sqrt{3}}{-2} = -\sqrt{3}$$
, $\varphi = \frac{2\pi}{3}$, значить, $-2 + 2\sqrt{3}i = 4\left[\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right]$ або

$$-2 + \sqrt{3}i = 4\left[\cos\left(\frac{2\pi}{3} + 2\pi k\right) + i\sin\left(\frac{2\pi}{3} + 2\pi k\right)\right], k \in \mathbb{Z}.$$

Представити в алгебраїчній формі $z = 2(\cos 2\pi + i \sin 2\pi)$

∢ Підставивши значення $\cos 2\pi = 1, \sin 2\pi = 0$ в дане рівняння, отримаємо $z = 2(1+i\cdot 0) = 2$ ▶

Знайти добуток:
$$2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right] \cdot 3\left[\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right].$$

≺ За формулою (9) одержимо

$$2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right] \cdot 3\left[\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right] = 2 \cdot 3\left[\cos\left(\frac{\pi}{6} + \frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{6} + \frac{\pi}{12}\right)\right] =$$

$$= 6\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right] = 6\left[\left(\frac{\sqrt{2}}{2}\right) + i\left(\frac{\sqrt{2}}{2}\right)\right] = 3\sqrt{2} + 3i\sqrt{2}.$$

Виконати ділення: $\frac{10\left[\cos\left(\frac{3\pi}{4}\right)+i\sin\left(\frac{3\pi}{4}\right)\right]}{2\left[\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)\right]}.$

≺ За формулою (10) одержимо

$$\frac{10\left[\cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right)\right]}{2\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right]} = \frac{10}{2}\left[\cos\left(\frac{3\pi}{4} - \frac{\pi}{4}\right) + i\sin\left(\frac{3\pi}{4} - \frac{\pi}{4}\right)\right] = 5\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right] = 5\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right$$

Піднести до ступеня: 1) $\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right]^6$.

< 1) За формулою Муавра одержимо

$$\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right]^{6} = \cos\left[6\cdot\left(\frac{\pi}{6}\right)\right] + i\sin\left[6\cdot\left(\frac{\pi}{6}\right)\right] = \cos\pi + i\sin\pi = -1 + i\cdot 0 = -1$$

Добути корінь \sqrt{i} .

◄ 1) Подамо число i у тригонометричній формі: $i = 0 + 1 \cdot i = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)$.

За формулою (12) одержимо

$$z_{k} = \sqrt{i} = \sqrt{\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)} = \cos\frac{\frac{\pi}{2} + 2\pi k}{2} + i\sin\frac{\frac{\pi}{2} + 2\pi k}{2} = \cos\left(\frac{\pi}{4} + \pi k\right) + i\sin\left(\frac{\pi}{4} + \pi k\right), k = 0,1,$$
якщо $k = 0$, то $z_{0} = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + \left(\frac{\sqrt{2}}{2}\right)i$,
якщо $k = 1$, то $z_{1} = \cos\left(\frac{\pi}{4} + \pi\right) + i\sin\left(\frac{\pi}{4} + \pi\right) = -\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} - \left(\frac{\sqrt{2}}{2}\right)i$

ПОКАЗНИКОВА ФУНКЦІЯ З КОМПЛЕКСНИМ ПОКАЗНИКОМ. ФОРМУЛИ ЕЙЛЕРА. ПОКАЗНИКОВА ФОРМА КОМПЛЕКСНОГО ЧИСЛА

Ступінь e^z з комплексним показником z = x + iy визначається рівністю:

$$e^z = \lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n.$$

Можна довести, що

$$e^z = e^x (\cos y + i \sin y),$$

тобто

$$e^{x+iy} = e^x(\cos y + i\sin y). \tag{13}$$

Зокрема, при x = 0 отримується відношення

$$e^{iy} = \cos y + i \sin y, \tag{14}$$

яке називається формулою Ейлера.

Для комплексних показників залишаються в силі основні правила дій з показниками: при множенні чисел показники додаються, при діленні — віднімаються, при піднесенні до ступеня –перемножуються.

Показникова функція має період, який дорівнює $2\pi i$, тобто $e^{z+2\pi i}=e^z$. Зокрема, при z=0 одержується відношення $e^{2\pi i}=1$.

Тригонометричну форму комплексного числа $z = r(\cos \varphi + i \sin \varphi)$ можна замінити *показниковою формою*:

$$z = re^{\varphi i}. (15)$$

Множення, ділення, піднесення до цілого додатного ступеня та добування кореня цілого додатного ступеня для комплексних чисел, заданих в показниковій формі, виконуються за наступними формулами:

$$r_{1}e^{i\varphi_{1}} \cdot r_{2}e^{i\varphi_{2}} = r_{1} \cdot r_{2}e^{i(\varphi_{1} + \varphi_{2})}; \qquad (16) \qquad \frac{r_{1}e^{i\varphi_{1}}}{r_{2}e^{i\varphi_{2}}} = \frac{r_{1}}{r_{2}}e^{i(\varphi_{1} - \varphi_{2})}, r_{2} \neq 0; \qquad (17)$$

$$\left(re^{i\varphi}\right)^{n} = r^{n}e^{in\varphi}; \qquad (18) \qquad \sqrt[n]{re^{i\varphi}} = \sqrt[n]{r} \cdot e^{\frac{\varphi + 2\pi k}{n}} \left(k = 0, 1, 2, ..., n - 1\right). \qquad (19)$$

Приклад. Знайти показникову форму числа $z_1=1+i$. < 1) для заданого числа $z_1=1+i$ знаходимо $r=|z_1|=\sqrt{2}$, $\arg z_1=\frac{\pi}{4}$, тобто $z_1=1+i=\sqrt{2}e^{i\frac{\pi}{4}}$. >

Знайти алгебраїчну форму числа $z_1 = 2e^{\frac{\pi}{3}i}$.

< 1) За умовою маємо
$$z_1 = 2e^{\frac{\pi}{3}i} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right) = 1 + i\sqrt{3}$$
.

Знайти добуток z_1z_2 і частку $\frac{z_1}{z_2}$ комплексних чисел та записати результати в тригонометричній формі: $z_1=3e^{\frac{2}{3}i}$; $z_2=6e^{\frac{i}{6}}$.

$$\frac{z_1}{z_2} = \frac{3e^{\frac{2}{3}i}}{6e^{\frac{i}{6}}} = \frac{1}{2}e^{\frac{2}{3}i - \frac{i}{6}} = \frac{1}{2}e^{\frac{3}{6}i} = \frac{1}{2}e^{\frac{i}{2}} = \frac{1}{2}\left(\cos\frac{1}{2} + i\sin\frac{1}{2}\right)$$

Обчислити z^4 , де $z = 2e^{-3i}$, та представити результати в тригонометричній формі.

◄
$$z^4 = (2e^{-3i})^4 = 2^4 e^{-3i \cdot 4} = 16e^{-12i} = 16(\cos(-12) + i\sin(-12)) \approx 16(0.8438 + 0.5366i) \approx 13.50 + 8.59i$$
 ▶

Формула Ейлера (14) встановлює зв'язок між тригонометричними функціями і показниковою функцією. Замінивши в ній y на φ і на $-\varphi$, отримаємо

$$e^{\varphi i} = \cos \varphi + i \sin \varphi, e^{-\varphi i} = \cos \varphi - i \sin \varphi.$$

Додаючи і віднімаючи ці рівності, отримаємо

$$\cos \varphi = \frac{e^{\varphi i} + e^{-\varphi i}}{2}, \qquad (20) \qquad \sin \varphi = \frac{e^{\varphi i} - e^{-\varphi i}}{2i}. \qquad (21)$$

Ці дві прості формули, які також називають формулами Ейлера, виражають тригонометричні функції через показникові і дозволяють алгебраїчним шляхом отримати основні формули тригонометрії.

Таблиця значень тригонометричних функцій деяких кутів

α	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°
$f(\alpha)$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	_
ctgα	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_	0

Знаки тригонометричних функцій

α	Чверть	sin α	cos α	tgα	ctgα
$0 < \alpha < \frac{\pi}{2}$	I	+	+	+	+
$\frac{\pi}{2} < \alpha < \pi$	II	+	_	_	_
$\pi < \alpha < \frac{3\pi}{2}$	III	_	_	+	+
$\frac{3\pi}{2} < \alpha < 2\pi$	IV	_	+	_	_