				_
1	CI	Λ.		C
1	\ .I	A	IV	

We claim:

3

- 4 1. A method for determining near-end cross-talk effects, the method comprising:
- inputting a test signal into at least one conductor of a transmission cable;
 receiving a raw cross-talk signal from at least another conductor of the
 transmission cable; and

processing the raw cross-talk signal in the frequency domain to determine a combination of near-end cross-talk components thereof, said combination of components being characteristic of the near-end cross-talk effects.

11 12

9 10

2. A method for determining near-end cross-talk effects according to claim 1, wherein the test signal has a frequency that is swept, each time by a predefined sweep frequency step, across a predetermined sweep frequency range, and wherein the near end cross-talk components include at least one of a cross-talk component that is non-periodic over the sweep frequency range and a cross-talk component that has a repetition period of more than a predetermined number of sweep frequency steps.

20

3. A method for determining near-end cross-talk effects according to claim 2,
 wherein the combination of near end cross-talk components is obtained by
 averaging the raw cross-talk signal.

24

4. A method for determining near-end cross-talk effects according to claim 3,
 wherein the averaging of the raw cross-talk signal is performed using the function

27

28
$$X1(n) = \frac{1}{2K+1} \sum_{m=-K}^{m=K} X(m+n)$$

- 29 wherein
- 30 X1(n) is the averaged cross-talk signal value at a sweep frequency $n\Delta f$,
- 31 X(n) is the raw cross-talk signal value at a sweep frequency $n\Delta f$,
- Δf is the predefined sweep frequency step.

			21
1	K	is a po	sitive integer, which corresponds to about half a predetermined
2	nı	umber d	of discrete magnitude values for performing the moving average,
3	m	is an i	nteger from –K to K, and
4	n	is a po	sitive integer.
5			
6	5.	A me	thod for determining near-end cross-talk effects according to claim 3,
7	wher	ein the	averaging of the raw cross-talk signal comprises:
8		a)	performing a moving average operation over a predetermined
9		numb	er of discrete magnitude values of the raw cross-talk signal to obtain
10		an av	eraged cross-talk signal; and
11		b)	repeating a) on the average cross-talk signal obtained from a
12		prece	ding moving average operation for a predefined number of times to
13		obtair	n the combination of near end cross-talk components that is
14		chara	cteristic of the near-end cross-talk effects.
15			
16	6.	A me	thod for determining near-end cross-talk effects according to claim 3.

17

18

19

20

21

22

23

24

25

26 27

- A method for determining near-end cross-talk effects according to claim 3, 6. wherein the averaging of the raw cross-talk signal comprises:
 - performing a first moving average operation over a predetermined a) number of discrete magnitude values of the raw cross-talk signal to obtain a first averaged cross-talk signal;
 - performing a second moving average operation over the b) predetermined number of discrete magnitude values of the first averaged cross-talk signal to obtain a second averaged cross-talk signal; and
 - performing a third moving average operation over twice the c) predetermined number of discrete magnitude values of the second averaged cross-talk signal to obtain the combination of near end cross-talk components that is characteristic of the near-end cross-talk effects.

28

7. 29 A method for determining near-end cross-talk effects according to claim 1, 30 wherein the test signal has a frequency that is swept between 1 megahertz and 350 megahertz. 31

32

8. A method for removing near-end cross-talk effects from a raw cross-talk 33 34 signal, the method comprising:

3,

1	inputting a test signal into at least one conductor of a transmission cable;					
2	receiving the raw cross-talk signal from at least another conductor of the					
3	transmission cable;					
4	processing the raw cross-talk signal in the frequency domain to determine					
5	a combination of near-end cross-talk components thereof, said combination of					
6	components being characteristic of the near-end cross-talk effects; and					
7	subtracting the combination of near-end cross-talk components from the					
8	raw cross-talk signal to remove the near-end cross-talk effects.					
9						
10	9. A system for determining near-end cross-talk effects originating from a					
11	near-end location of the system, a near end portion of the system being					
12	connectable to a transmission cable comprising a plurality of conductors, the					
13	system comprising:					
14	an injecting unit being adapted to generate and input a test signal into at					
15	least one conductor of the transmission cable;					
16	a receiving unit being adapted to receive a raw cross-talk signal from at					
17	least another conductor of the transmission cable; and					
18	a processing unit being adapted to process the raw cross-talk signal in the					
19	frequency domain to determine a combination of near-end cross-talk components					
20	thereof, said combination of components being characteristic of the near-end					
21	cross-talk effects.					
22						
23	10. A system for determining near-end cross-talk effects according to claim 9,					
24	wherein the test signal has a frequency that is swept, each time by a predefined					
25	sweep frequency step, across a predetermined sweep frequency range, and					
26	wherein the near-end cross-talk components include at least one of a cross-talk					
27	component that is non-periodic over the sweep frequency range and a cross-talk					
28	component that has a repetition period of more than a predetermined number of					
29	sweep frequency steps.					
30						
31	11. A system for determining near-end cross-talk effects according to claim					
32	10, wherein the processing unit is adapted to obtain the combination of near end					
33	cross-talk components by averaging the raw cross-talk signal.					

- 1 12. A system for determining near-end cross-talk effects according to claim
- 2 11, wherein the processing unit is adapted to average the raw cross-talk signal by
- 3 using the function
- 4 $X1(n) = \frac{1}{2K+1} \sum_{m=-K}^{m=K} X(m+n)$
- 5 wherein
- 6 X1(n) is the averaged cross-talk signal value at a sweep frequency $n\Delta f$,
- 7 X(n) is the raw cross-talk signal value at a sweep frequency $n\Delta f$,
- $\delta \Delta f$ is the predefined sweep frequency step,
- 9 K is a positive integer, which corresponds to about half predetermined number of
- discrete magnitude values for performing the moving average,
- m is an integer from -K to K, and
- n is a positive integer.

13

- 14 13. A system for determining near-end cross-talk effects according to claim
- 15 11, wherein the processing unit is adapted to average the raw cross-talk signal
- 16 **by**:
- a) performing a moving average operation over a predetermined
- number of discrete magnitude values on the raw cross-talk signal to obtain
- an averaged cross-talk signal; and
- b) repeating a) on the average cross-talk signal obtained from a
- 21 preceding moving average operation for a predefined number of times to
- obtain the combination of near end cross-talk components that is
- characteristic of the near-end cross-talk effects.

24

- 25 14. A system for determining near-end cross-talk effects according to claim
- 26 11, wherein the processing unit is adapted to average the raw cross-talk signal
- 27 **by**:
- a) performing a first moving average operation over a predetermined
- number of discrete magnitude values of the raw cross-talk signal to obtain
- 30 a first averaged cross-talk signal;

	·						
1	 b) performing a second moving average operation over the 						
2	predetermined number of discrete magnitude values of the first averaged						
3	cross-talk signal to obtain a second averaged cross-talk signal; and						
4	c) performing a third moving average operation over twice the						
5	predetermined number of discrete magnitude values of the second						
6	averaged cross-talk signal to obtain the combination of near end cross-t	alk					
7	components that is characteristic of the near-end cross-talk effects.						
8							
9	15. A system for determining near-end cross-talk effects according to claim	9,					
10	wherein the test signal has a frequency that is swept between 1 megahertz and	i					
11	350 megahertz.						
12							
13	16. A system for determining near-end cross-talk effects according to claim	9,					
14	wherein the receiving unit is a phase locked loop receiver.						
15							
16	17. A system for determining near-end cross-talk effects according to claim	9,					
17	wherein the processing unit is a microprocessor.						
18							
19	18. A system for determining near-end cross-talk effects according to claim	9,					
20	the system further comprises an analog to digital converting unit being adapted	to					
21	digitize the raw cross-talk signal received by the receiving unit.						
22							
23	19. A system for determining near-end cross-talk effects according to claim	9,					
24	wherein the system is implemented in a portable testing instrument.						
25							
26	20. A system for determining near-end cross-talk effects according to claim	9,					
27	wherein the injecting unit, the receiving unit and the processing unit are contain	ed					
28	within a hand held testing instrument.						
29							
30							