Lineare Algebra SS2018

Dozent: Prof. Dr. Arno Fehm

21. Mai 2018

In halts verzeichn is

1	Enc	lomorphismen	1			
	1	Eigenwerte	1			
	2	Das charakteristische Polynom	4			
	3	Diagonalisierbarkeit	6			
	4	Trigonalisierbarkeit	9			
	5	Das Minimalpolynom	11			
	6	Nilpotente Endomorphismen	14			
	7	Die JORDAN-Normalform	18			
п	Ska	Skalarprodukte				
	1	Das Standardskalarprodukt	21			
	2	Bilinearformen und Sesquilinearformen	24			
	3	Euklidische und unitäre Vektorräume	27			
	4	Orthogonalität	29			
	5	Orthogonale und unitäre Endomorphismen	32			
Ш	Dualität 3					
IV	V Moduln					
An	hang	S	37			
A	List	sen	37			
	A.1	Liste der Theoreme	37			
		Liste der benannten Sätze	38			
Inde	ex		38			
Index						

Kapitel I

Endomorphismen

In diesem Kapitel seien K ein Körper, $n \in \mathbb{N}$ eine natürliche Zahl, V ein n-dimensionaler K-VR und $f \in \operatorname{End}_K(V)$ ein Endomorphismus.

Das Ziel dieses Kapitels ist, die Geometrie von f besser zu verstehen und Basen zu finden, für die $M_B(f)$ eine besonders einfache oder kanonische Form hat.

1. Eigenwerte

▶ Bemerkung 1.1

Wir erinnern uns daran, dass $\operatorname{End}_K(V) = \operatorname{Hom}_K(V, V)$ sowohl einen K-VR als auch einen Ring bildet. Bei der Wahl einer Basis B von V wird $f \in \operatorname{End}_K(V)$ durch die Matrix $M_B(f) = M_B^B(f)$ beschrieben

■ Beispiel 1.2
$$\begin{pmatrix} 1 & 2 \\ K = \mathbb{R}, A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R}), f = f_A \in \operatorname{End}_K(K^2)$$

$$A \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}, \ A \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$\Rightarrow \text{ mit } B = \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right) \text{ ist } M_B(f) = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}.$$

Der Endomorphismus $f = f_A$ streckt also entlang der Achse $\mathbb{R} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ um den Faktor 3 und spiegelt

entlang der Achse $\mathbb{R} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

Definition 1.3 (Eigenwert, Eigenvektor, Eigenraum)

Sind $0 \neq x \in V$ und $\lambda \in K$ mit $f(x) = \lambda x$ so nennt man λ einen Eigenwert von f und x einen Eigenvektor von f zum Eigenwert λ . Der Eigenraum zu $\lambda \in K$ ist $\text{Eig}(f,\lambda) = \{x \in V \mid f(x) = \lambda x\}$.

▶ Bemerkung 1.4

Für jedes $\lambda \in K$ ist $\text{Eig}(f, \lambda)$ ein UVR von V, da

$$\begin{aligned} \operatorname{Eig}(f,\lambda) &= \{x \in V \mid f(x) = \lambda x\} \\ &= \{x \in V \mid f(x) - \lambda \cdot \operatorname{id}_V(x) = 0\} \\ &= \{x \in V \mid (f - \lambda \cdot \operatorname{id}_V)(x) = 0\} \\ &= \operatorname{Ker}(f - \lambda \cdot \operatorname{id}_V) \end{aligned}$$

und $f - \lambda \cdot id_V \in \operatorname{End}_K(V)$.

▶ Bemerkung 1.5

Achtung! Der Nullvektor ist nach Definition kein Eigenvektor, aber $\lambda=0$ kann ein Eigenwert sein, nämlich genau dann, wenn $f\notin \operatorname{Aut}_K(V)$, siehe Übung. Die Menge der Eigenvektoren zu λ ist also $\operatorname{Eig}(f,\lambda)\backslash\{0\}$ und λ ist genau dann ein Eigenwert von f, wenn $\operatorname{Eig}(f,\lambda)\neq\{0\}$.

■ Beispiel 1.6

Ist $A = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ und $f = f_A \in \operatorname{End}_K(K^n)$, so sind $\lambda_1, ..., \lambda_n$ EW von f und jedes e_i ist ein EV zum EW λ_i .

Satz 1.7

Sei B eine Basis von V. Genau dann ist $M_B(f)$ eine Diagonalmatrix, wenn B aus EV von f besteht.

Beweis. Ist $B=(x_1,...x_n)$ eine Basis aus EV zu EW $\lambda_1,....,\lambda_n$, so ist $M_B(f)=\mathrm{diag}(\lambda_1,...,\lambda_n)$ und umge-

■ Beispiel 1.8

Sei $K = \mathbb{R}$, $V = \mathbb{R}^2$ und $f_{\alpha} \in \text{End}_K(\mathbb{R}^2)$ die Drehung um den Winkel $\alpha \in [0, 2\pi)$

$$\Rightarrow M_{\mathcal{E}}(f_{\alpha}) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

Für $\alpha = 0$ hat $f_{\alpha} = \mathrm{id}_{\mathbb{R}^2}$ nur den EW 1.

Für $\alpha = \pi$ hat $f_{\alpha} = -\operatorname{id}_{\mathbb{R}^2}$ nur den EW -1.

Für $\alpha \neq 0, \pi$ hat f_{α} keine EW.

Lemma 1.9

Sind $\lambda_1, ..., \lambda_n$ paarweise verschiedene EW von f und ist x_i ein EV zu λ_i für i = 1, ..., m, so ist $(x_1,...,x_m)$ linear unabhängig.

Beweis. Induktion nach m

$$0 = (f - \lambda \cdot id_V) \left(\sum_{i=1}^m \mu_i x_i \right)$$
$$= \sum_{i=1}^m \mu_i (f(x_i) - \lambda_m \cdot x_i)$$
$$= \sum_{i=1}^{m-1} \mu_i (\lambda_i - \lambda_m) \cdot x_i$$

Nach IB ist $\mu_i(\lambda_i - \lambda_m) = 0$ für i = 1, ..., m - 1, da $\lambda_i \neq \lambda_m$ für $i \neq m$ also $\mu_i = 0$ für i = 1, ..., m - 1. Damit ist auch $\mu_m = 0$. Folglich ist $(x_1, ..., x_m)$ linear unabhängig.

Satz 1.10

Sind $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden, so ist

$$\sum_{i=1}^{m} \operatorname{Eig}(f, \lambda_i) = \bigoplus_{i=0}^{m} \operatorname{Eig}(f, \lambda_i).$$

Beweis. Seien $x_i, y_i \in \text{Eig}(f, \lambda_i)$ für i = 1, ..., m. Ist $\sum_{i=1}^m x_i = \sum_{i=1}^m y_i$, so ist $\sum_{i=1}^m \underbrace{x_i - y_i} = 0$.

o. E. seien $z_i \neq 0$ für i = 1, ..., r und $z_i = 0$ für i = r + 1, ..., m. Wäre r > 0, so wären $(z_1, ..., z_r)$ linear abhängig, aber $z_i = x_i - y_i \in \text{Eig}(f, \lambda_i) \setminus \{0\}$, im Widerspruch zu Lemma 1.9. Somit ist $x_i = y_i$ für alle i und folglich ist die Summe $\sum \operatorname{Eig}(f, \lambda_i)$ direkt.

Definition 1.11 (EW und EV für Matrizen)

Sei $A \in \operatorname{Mat}_n(K)$. Man definiert Eigenwerte, Eigenvektoren, etc von A als Eigenwerte, Eigenvektoren von $f_A \in \operatorname{End}_K(K^n)$.

Satz 1.12

Sei B eine Basis von V und $\lambda \in K$. Genau dann ist λ ein EW von f, wenn λ ein EW von $A = M_B(f)$ ist. Insbesondere haben ähnliche Matrizen die selben EW.

Beweis. Dies folgt aus dem kommutativen Diagramm

denn $f_A(x) = \lambda x \iff (\Phi_B \circ f_A)(x) = \Phi_B(\lambda x) \iff f(\Phi_B(x)) = \lambda \Phi_B(x)$. Ähnliche Matrizen beschreiben den selben Endomorphismus bezüglich verschiedener Basen, vgl. IV.4.1

2. Das charakteristische Polynom

Satz 2.1

Sei $\lambda \in K$. Genau dann ist λ ein EW von f, wenn $\det(\lambda \cdot id_V - f) = 0$.

Beweis. Da $\operatorname{Eig}(f,\lambda) = \operatorname{Ker}(\lambda \cdot \operatorname{id}_V - f)$ ist λ genau dann ein EW von f, wenn $\operatorname{dim}_K(\operatorname{Ker}(\lambda \cdot \operatorname{id}_V - f)) > 0$, also wenn $\lambda \cdot \mathrm{id}_V - f \notin \mathrm{Aut}_K(V)$. Nach IV.4.6 bedeutet dies, dass $\det(\lambda \cdot \mathrm{id}_V - f) = 0$

Definition 2.2 (charakteristisches Polynom)

Das charakteristische Polynom einer Matrix $A \in \operatorname{Mat}_n(K)$ ist die Determinante der Matrix $t \cdot \mathbb{1}_n$ – $A \in \operatorname{Mat}_n(K[t]).$

$$\chi_A(t) = \det(t \cdot \mathbb{1}_n - A) \in K[t]$$

Das charakteristische Polynom eines Endomorphismus $f \in \text{End}_K(V)$ ist $\chi_f(t) = \chi_{M_B(f)}(t)$, wobei B eine Basis von V ist.

Satz 2.3

Sind $A, B \in \operatorname{Mat}_n(K)$ mit $A \sim B$, so ist $\chi_A = \chi_B$. Insbesondere ist χ_f wohldefiniert.

Beweis. Ist $B = SAS^{-1}$ mit $S \in GL_n(K)$, so ist $t \cdot \mathbbm{1}_n - B = S(t \cdot \mathbbm{1}_n - A)S^{-1}$, also $t \cdot \mathbbm{1}_n - B \sim t \cdot \mathbbm{1}_n - A$ und ähnliche Matrizen haben die selben Determinante (IV.4.4).

Sind B, B' Basen von V, so sind $M_B(f) \sim M_{B'}(f)$, also $\chi_{M_B(f)} = \chi_{M_{B'}(f)}$

Lemma 2.4

Für $\lambda \in K$ ist $\chi_f(\lambda) = \det(\lambda \cdot id_V - f)$.

Beweis. Sei B eine Basis von V und $A = M_B(f) = (a_{ij})_{i,j}$. Dann ist $M_B(\lambda \cdot id_V - f) = \lambda \cdot \mathbb{1}_n - A$. Aus IV.2.8 und I.6.8 folgt $\det(t \cdot \mathbb{1}_n - A)(\lambda) = \det(\lambda \cdot \mathbb{1}_n - A)$. Folglich ist

$$\chi_f(\lambda) = \chi_A(\lambda)$$

$$= \det(t \cdot \mathbb{1}_n - A)(\lambda)$$

$$= \det(\lambda \cdot \mathbb{1}_n - A)$$

$$= \det(\lambda \cdot \mathrm{id}_V - f)$$

Sei $\dim_K(V) = n$ und $f \in \operatorname{End}_K(V)$. Dann ist $\chi_f(t) = \sum_{i=0}^n \alpha_i t^i$ ein Polynom vom Grad n mit

$$\alpha_n = 1$$

$$\alpha_{n-1} = -\operatorname{tr}(f)$$

$$\alpha_0 = (-1)^n \cdot \det(f)$$

Die Nullstellen von χ_f sind genau die EW von f.

Beweis. Sei B eine Basis von V und $A=M_B(f)=(a_{ij})_{i,j}$. Wir erinnern uns daran, dass $\operatorname{tr}(f)=\operatorname{tr}(A=f)$ $\sum_{i=1}^{n} a_{ii}. \text{ Es ist } \chi_f(t) = \det(t - 1_n - A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} (t\delta_{i,\sigma(i)} - a_{i,\sigma(i)}).$ Der Summand für $\underline{\sigma} = \operatorname{id} \operatorname{ist } \prod_{i=1}^{n} (t - a_{ii}) = t^n + \sum_{i=1}^{n} (-a_{ii})t^{n-1} + \dots + \prod_{i=1}^{n} (-a_{ii})$

Für $\sigma \neq id$ ist $\sigma(i) \neq i$ für mindestens zwei i, der entsprechende Summand hat also Grad höchstens n-2. Somit haben α_n und α_{n-1} die oben behauptete Form, und $\alpha_0 = \chi_A(0) = \det(-A) = (-1)^n \cdot \det(f)$.

Die Aussage über die Nullstellen von χ_f folgt aus Satz 2.1 und Lemma 2.4.

Folgerung 2.6

Ist $\dim_K(V) = n$, so hat f höchstens n Eigenwerte.

Beweis. Satz 2.5 und I.6.10 \Box

Definition 2.7 (normiertes Polynom)

Ein Polynom $0 \neq P \in K[t]$ mit Leitkoeffizient 1 heißt normiert.

■ Beispiel 2.8

- 1. Ist $A = (a_{ij})_{i,j}$ eine obere Dreiecksmatrix, so ist $\chi_A(t) = \prod_{i=1}^n (t a_{ii})$, vgl. IV.2.9.c Insbesondere ist $\chi_{1_n}(t) = (t-1)^n$, $\chi_0(t) = t^n$
- 2. Für eine Blockmatrix $A=\begin{pmatrix}A_1&B\\0&A_2\end{pmatrix}$ mit quadratischen Matrizen A_1,A_2 ist $\chi_A=\chi_{A_1}\cdot\chi_{A_2}$ vgl. IV.2.9.e
- 3. Für

$$\begin{pmatrix} 0 & \dots & \dots & 0 & -c_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & 0 & -c_{n-1} \end{pmatrix} \quad c_0, \dots, c_{n-1} \in K$$

ist
$$\chi_A(t) = t^n + \sum_{i=0}^{n-1} c_i t^i$$

Man nennt diese Matrix die Begleitmatrix zum normierten Polynom $P=t^n+\sum_{i=0}^{n-1}c_it^i$ und schreibt $M_P:=A$

3. Diagonalisierbarkeit

Definition 3.1 (diagonalisierbar)

Man nennt f diagonalisierbar, wenn V eine Basis B besitzt, für die $M_B(f)$ eine Diagonalmatrix ist.

Lemma 3.2

Genau dann ist f diagonalisierbar, wenn

$$V = \sum_{\lambda \in K} \operatorname{Eig}(f, \lambda)$$

.

 $Beweis. \ \ (\Rightarrow) : \text{Ist } B \text{ eine Basis aus EV von } f \text{ (vgl. Satz 1.7)}, \text{ so ist } B \leq \bigcup_{\lambda \in K} \text{Eig}(f,\lambda), \text{ also } V = \text{span}_K (\bigcup_{\lambda \in K} \text{Eig}(f,\lambda)) = \sum_{\lambda \in K} \text{Eig}(f,\lambda).$

 $\sum_{\lambda \in K} \operatorname{Eig}(f, \lambda).$ (\Leftarrow): Ist $V = \sum_{\lambda \in K} \operatorname{Eig}(f, \lambda)$, so gibt es $\lambda_1, ..., \lambda_n \in K$ mit $V = \sum_{i=1}^r \operatorname{Eig}(f, \lambda_i)$. Wir wählen Basen B_i von $\operatorname{Eig}(f, \lambda_i)$. Dann ist $\bigcup_{i=1}^r B_i$ ein endliches Erzeugendensystem von V, enthält also eine Basis von V (II.3.6). Diese besteht aus EV von f.

Satz 3.3

Ist $\dim_K(V) = n$, so hat f höchstens n Eigenwerte. Hat f genau n Eigenwerte, so ist f diagonalisierbar.

Beweis. Ist λ ein EW von f, so ist $\dim_K(\text{Eig}(f,\lambda)) \geq 1$. Sind also $\lambda_1,...,\lambda_n$ paarweise verschiedene EW von f, so ist

$$n = \dim_{K}(V) \ge \dim_{K} \left(\sum_{i=1}^{m} \operatorname{Eig}(f, \lambda_{i}) \right)$$

$$\stackrel{\operatorname{Satz} \ 1.10}{=} \dim_{K} \left(\bigoplus_{i=0}^{m} \operatorname{Eig}(f, \lambda_{i}) \right)$$

$$= \sum_{i=1}^{m} \dim_{K} (\operatorname{Eig}(f, \lambda_{i}))$$

$$\ge m$$

Ist zudem m = n, so muss

$$\dim_K(V) = \dim_K(\sum_{i=1}^m \operatorname{Eig}(f, \lambda_i))$$
 sein, also
$$V = \sum_{i=1}^m \operatorname{Eig}(f, \lambda_i)$$

Nach Lemma 3.2 ist f genau dann diagonalisierbar.

Definition 3.4 (a teilt b)

Sei R ein kommutativer Ring mit seien $a, b \in R$. Man sagt, a <u>teilt</u> b (in Zeichen a|b), wenn es $x \in R$ mit b = ax gibt.

Definition 3.5 (Vielfachheit)

Für $0 \neq P \in K[t]$ und $\lambda \in K$ nennt man $\mu(P, \lambda) = \max\{r \in \mathbb{N}_{>0} \mid (t - r)^r | P\}$ die <u>Vielfachheit</u> der Nullstelle λ von P.

Lemma 3.6

Genau dann ist $\mu(P,\lambda) \geq 1$, wenn λ eine Nullstelle von P ist.

Beweis.
$$(\Rightarrow)$$
: $t - \lambda | P \Rightarrow P(t) = (t - \lambda) \cdot Q(t)$ mit $Q(t) \in K[t] \Rightarrow P(\lambda) = 0 \cdot Q(\lambda) = 0$. (\Leftarrow) : $P(\lambda) = 0 \stackrel{I.6.9}{=} t - \lambda | P(t) \Rightarrow \mu(P, \lambda) \ge 1$.

Lemma 3.7

Ist $P(t) = (t - \lambda)^r \cdot Q(t)$ mit $Q(t) \in K[t]$ und $Q(\lambda) \neq 0$, so ist $\mu(P, \lambda) = r$

Beweis. Offensichtlich ist $\mu(P,\lambda) \ge r$. Wäre $\mu(P,\lambda) \ge r+l$, so $(t-\lambda)^{r+l}|P(t)$ also $(t-\lambda)^r \cdot Q(t) = (t-\lambda)^{r+l} \cdot R(t)$ mit $R(t) \in K[t]$, folglich $t-\lambda|Q(t)$, insbesondere $Q(\lambda) = 0$.

(Denn wir dürfen kürzen: R ist nullteilerfrei, genau so wie K[t]).

$$(t-\lambda)^r(Q(t)-(t-\lambda)R(t))=0 \Rightarrow Q(t)=(t-\lambda)R(t).$$

Lemma 3.8

Sind $P, Q, R \in K[t]$ mit PQ = PR, und ist $P \neq 0$, so ist Q = R.

Beweis.
$$PQ = PR \Rightarrow P(Q - R) = 0$$
 $\stackrel{K[t] \text{ nullteilerfrei}}{\Rightarrow} Q - R = 0, \text{ d.h. } Q = R.$

Lemma 3.9

Es ist $\sum_{\lambda \in K} \mu(P, \lambda) \leq \deg(P)$, mit Gleichheit genau dann, wenn P in Linearfaktoren zerfällt.

Beweis. Schreibe $P(t) = \prod_{\lambda \in K} (t-\lambda)^{r_{\lambda}} \cdot Q(t)$, wobei $Q(t) \in K[t]$ keine Nullstellen mehr besitzt. Nach Lemma 3.7 ist $\mu(P,\lambda) = r_{\lambda}$ für alle λ und somit $\deg(P) = \sum_{\lambda \in K} r_{\lambda} + \deg(Q) \geq \sum_{\lambda \in K} \mu(P,\lambda)$ mit Gleichheit genau dann, wenn $\deg(Q) = 0$, also $Q = c \in K$, d.h. genau dann, wenn $P(t) = c \cdot \prod_{\lambda \in K} (t-\lambda)^{r_{\lambda}}$.

Lemma 3.10

Für $\lambda \in K$ ist

$$\dim_K(\operatorname{Eig}(f,\lambda)) \ge \mu(x_f,\lambda)$$

Beweis. Ergänze eine Basis B von $\mathrm{Eig}(f,\lambda)$ zu einer Basis B von V. Dann ist

$$A = M_B(f) = egin{pmatrix} \lambda \mathbb{1}_s & * \\ 0 & A' \end{pmatrix}$$

mit einer Matrix $A' \in \operatorname{Mat}_{n-s}(K)$, also $\chi_f(t) = \chi_A(t) \stackrel{\text{Beispiel 2.8}}{=} \chi_{\lambda 1} \cdot \chi_{A'}(t) = (t - \lambda)^s \cdot \chi_{A'}(t)$ und somit $\dim_K(\operatorname{Eig}(f,\lambda)) = s \leq \mu(x_f,\lambda)$.

Satz 3.11

Genau dann ist f diagonalisierbar, wenn χ_f in Linearfaktoren zerfällt und $\dim_K(\text{Eig}(f,\lambda)) = \mu(x_f,\lambda)$ für alle $\lambda \in K$.

Beweis. Es gilt

$$\dim_{K} \left(\sum_{\lambda \in K} \operatorname{Eig}(f, \lambda) \right) \stackrel{\operatorname{Satz} \ 1.10}{=} \dim_{K} \left(\bigoplus_{\lambda \in K} \operatorname{Eig}(f, \lambda) \right)$$

$$\stackrel{\operatorname{II.4.12}}{=} \sum_{\lambda \in K} \dim_{K} \left(\operatorname{Eig}(f, \lambda) \right)$$

$$\stackrel{\operatorname{Lemma} \ 3.10}{\leq} \sum_{\lambda \in K} \mu(\chi_{f}, \lambda) \qquad (1)$$

$$\leq \deg(\chi_{f}) \qquad (2)$$

$$= n$$

Nach Lemma 3.2 ist f genau dann diagonalisierbar, wenn $\dim_K(\sum_{\lambda \in K} \operatorname{Eig}(f,\lambda)) = n$, also wenn bei (1) und (2) Gleichheit herrscht. Gleichheit bei (1) bedeutet $\dim_K(\operatorname{Eig}(f,\lambda)) = \mu(\chi_f,\lambda)$ für alle $\lambda \in K$, und Gleichheit bei (2) bedeutet nach Lemma 3.9, dass χ_f in Linearfaktoren zerfällt.

Definition 3.12 (algebraische und geometrische Vielfachheit)

Man nennt $\mu_a(f,\lambda) = \mu(\chi_f,\lambda)$ die <u>algebraische Vielfachheit</u> und $\mu_g(f,\lambda) = \dim_K(\text{Eig}(f,\lambda))$ die geometrische Vielfachheit des Eigenwertes λ von f.

▶ Bemerkung 3.13

Wieder nennt man $A \in \operatorname{Mat}_n(K)$ diagonalisierbar, wenn $f_A \in \operatorname{End}_K(K^n)$ diagonalisierbar ist, also wenn $A \sim D$ für eine Diagonalmatrix D.

4. Trigonalisierbarkeit

Definition 4.1

Man nennt f <u>trigonalisierbar</u>, wenn V eine Basis B besitzt, für die $M_B(f)$ eine obere Dreiecksmatrix ist.

■ Beispiel 4.2

Ist f diagonalisierbar, so ist f auch trigonalisierbar.

Lemma 4.3

Ist ftrigonalisierbar, so zerfällt χ_f in Linearfaktoren.

Beweis. Klar aus Beispiel 2.8 und Satz 2.3.

Definition 4.4 (invariant)

Ein Untervektorraum $W \leq V$ ist f-invariant, wenn $f(W) \leq W$.

▶ Bemerkung 4.5

Ist W ein f-invarianter UVR von V, so ist $f|_W \in \text{End}_K(W)$.

■ Beispiel 4.6

- 1. V hat stets die f-invarianten UVR $W = \{0\}$ und W = V.
- 2. Jeder UVR $W \leq \text{Eig}(f, \lambda)$ ist f-invariant.
- 3. Ist $B = (x_1, ..., x_n)$ eine Basis von V, für die $M_B(f)$ eine obere Dreiecksmatrix ist, so sind alle UVR $W_i = \operatorname{span}_K(x_1, ..., x_i)$ f-invariant.
- 4. Sei $V=W\oplus U,\ B_1=(x_1,...,x_r)$ Basis von $W,\ B_2(x_{r+1},...,x_n)$ Basis von U und $B=(x_1,...,x_n)$. Ist W f-invariant, so ist

$$M_B(f) = \begin{pmatrix} M_{B_1}(f|_W) & * \\ 0 & * \end{pmatrix}$$

Sind W und U f-invariant, so ist

$$M_B(f) = \begin{pmatrix} M_{B_1}(f|_W) & 0\\ 0 & M_{B_2}(f|_U) \end{pmatrix}$$

Lemma 4.7

Ist $W \subset V$ ein f-invarianter UVR, so gilt $\chi_{f|_W}|\chi_f$. Hat W ein lineares Komplement U, dass auch f-invariant ist, so $\chi_f = \chi_{f|_W} \cdot \chi_{f|_U}$.

Beweis. Ergänze eine Basis $B_0=(x_1,...,x_r)$ von W zu einer Basis $B=(x_1,...,x_n)$ von V. Sei $A=M_B(f)$, $A_0=M_{B_0}(f|_W)$. Dann ist

$$A = \begin{pmatrix} A_0 & * \\ 0 & C \end{pmatrix} \quad C \in \operatorname{Mat}_{n-r}(K)$$

folglich $\chi_f = \chi_A = \chi_{A_0} \cdot \chi_C$, insbesondere $\chi_{f|_W}|\chi_f$. Ist auch $U = \operatorname{span}_K(x_{r+1}, ..., x_n)$ f-invariant, so ist

$$A = \begin{pmatrix} A_0 & 0 \\ 0 & C \end{pmatrix}$$

und folglich $\chi_f = \chi_A = \chi_{A_0} \cdot \chi_C = \chi_{f|_W} \cdot \chi_{f|_U}.$

Theorem 4.8

Genau dann ist ftrigonalisierbar, wenn χ_f in Linearfaktoren zerfällt.

Beweis. (\Rightarrow) : Lemma 4.3

 (\Leftarrow) : Induktion nach $n = \dim_K(V)$.

n=1: trivial

 $\overline{n-1} \to n$: Nach Annahme ist $\chi_f(t) = \prod_{i=1}^n (t-\lambda_i)$ mit $\lambda_1,...,\lambda_n \in K$. Sei x_1 ein EV zum EW λ_1 . Dann ist $V_1 = K \cdot x_1$ ein f-invarianter UVR. Ergänze $B_1 = (x_1)$ zu einer Basis $B = (x_1,...,x_n)$ von V und setze $B_2 = (x_2,...,x_n), \ V_2 = \operatorname{span}_K(B_2). \ \underline{n-1} \to \underline{n}$: Nach Annahme ist $\chi_f(t) = \prod_{i=1}^n (t-\lambda_i)$ mit $\lambda_1,...,\lambda_n \in K$. Sei x_1 ein EV zum EW λ_1 . Dann ist $V_1 = K \cdot x_1$ ein f-invarianter UVR. Ergänze $B_1 = (x_1)$ zu einer Basis $B = (x_1,...,x_n)$ von V und setze $B_2 = (x_2,...,x_n), \ V_2 = \operatorname{span}_K(B_2)$.

$$\Rightarrow M_B(f) = \begin{pmatrix} \lambda_1 & * \\ 0 & A_2 \end{pmatrix} \quad A_2 \in \operatorname{Mat}_{n-1}(K)$$

$$\chi_f(t) = \chi_{\lambda_1 \mathbb{1}_1} \cdot \chi_{A_2} = (t - \lambda_1) \cdot \chi_{A_2}(t)$$

$$\stackrel{\text{Lemma 3.7}}{\Rightarrow} \chi_{A_2}(t) = \prod_{i=2}^{n} (t - \lambda_i)$$

Seien $\pi_1, \pi_2 \in \operatorname{End}_K(V)$ gegeben durch $M_B(\pi_1) = \operatorname{diag}(1, 0, ..., 0)$ und $M_B(\pi_2) = \operatorname{diag}(0, 1, ..., 1)$. Dann ist $\pi_1 + \pi_2 = \operatorname{id}_V$ und $f_i = \pi_1 \circ f$ ist $f = \operatorname{id}_V \circ f = f_1 + f_2$ und $f_2|_{V_2} \in \operatorname{End}_K(V_2)$. Nach Induktionshypothese ist $f_2|_{V_2}$ trigonalisierbar, da $M_B(f_2|_{V_2}) = A_2$, also $\chi_{f_2|_{V_2}} = \chi_{A_2}$. Dies bedeutet, es gibt also eine Basis $B_2' = (x_2', ..., x_n')$ von V_2 , für die $M_{B_2'}(f_2|_{V_2})$ eine obere Dreiecksmatrix ist. Somit ist für $B' = (x_1, x_2', ..., x_n')$ auch

$$M_{B'}(f) = M_{B'}(f_1) + M_{B'}(f_2)$$

$$= \begin{pmatrix} \lambda_1 & * \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & M_{B'_2}(f_2|_{V_2}) \end{pmatrix}$$

eine obere Dreiecksmatrix.

Folgerung 4.9

Ist K algebraisch abgeschlossen, so ist jedes $f \in \text{End}_K(V)$ trigonalisierbar.

Beweis. Ist K algebraisch abgeschlossen, so zerfällt nach I.6.14 jedes Polynom über K in Linearfaktoren, insbesondere also χ_f .

Folgerung 4.10

Ist V ein endlichdimensionaler $\mathbb{C}\text{-VR}$, so ist jedes $f\in \mathrm{End}_{\mathbb{C}}(V)$ trigonalisierbar.

Beweis. Nach dem Fundamentalsatz der Algebra I.6.16 ist $\mathbb C$ algebraisch abgeschlossen.

5. Das Minimalpolynom

Definition 5.1

Für ein Polynom $P(t) = \sum_{i=0}^n c_i t^i \in K[t]$ definieren wir $P(f) = \sum_{i=0}^m c_i f^i \in \operatorname{End}_K(V)$, wobei $f^0 = \operatorname{id}_V, \ f^1 = f, \ f^2 = f \circ f, \dots$ Für ein Polynom $P(t) = \sum_{i=0}^n c_i t^i \in K[t]$ definieren wir $P(f) = \sum_{i=0}^m c_i f^i \in \operatorname{End}_K(V)$, wobei $f^0 = \operatorname{id}_V, \ f^1 = f, \ f^2 = f \circ f, \dots$

Analog definiert man P(A) für $A \in Mat_n(K)$.

▶ Bemerkung 5.2 $\begin{cases} K[t] \to \operatorname{End}_K(V) \\ P \mapsto P(f) \end{cases}$ ist ein Homomorphismus von K-VR und Ringen. Sein Kern ist das Ideal

$$\mathcal{I}_f := \{ P \in K[t] \mid P(f) = 0 \}$$

und sein Bild ist der kommutative Unterring

$$K[f] := \{ P(f) \mid P \in K[t] \}$$

= span_K(f⁰, f¹, f², ...)

des (im Allgemeinen nicht kommutativen) Rings $\operatorname{End}_K(V)$.

Analog definiert man \mathcal{I}_A und $K[A] \leq \operatorname{Mat}_n(K)$.

Lemma 5.3

$$\mathcal{I}_f \neq \{0\}$$

Beweis. Wäre $\mathcal{I}_f = \{0\}$, so wäre $K[t] \to \operatorname{End}_K(V)$ injektiv, aber $\dim_K(K[t]) = \infty > n^2 = \dim_K(\operatorname{End}_K(V))$, ein Widerspruch.

Satz 5.4

Es gibt ein eindeutig bestimmtes normiertes Polynom $0 \neq P \in K[t]$ kleinsten Grades mit P(f) = 0. Dieses teilt jedes $Q \in K[t]$ mit Q(f) = 0.

Beweis. Nach Lemma 5.3 gibt es $0 \neq P \in K[t]$ mit P(f) = 0 von minimalem Grad d. Indem wir durch den Leitkoeffizienten von P teilen, können wir annehmen, dass P normiert ist.

Sei $Q \in \mathcal{I}_f$. Polynomdivision liefert $R, H \in K[t]$ mit $Q = P \cdot H + R$ und $\deg(R) < \deg(P) = d$. Es folgt $R(f) = \underbrace{Q(f)}_{} - \underbrace{P(f)}_{} \cdot H(f) = 0$. Aus der Minimalität von d folgt R = 0 und somit P|Q.

Ist Q zudem normiert vom Grad d, so ist H = 1, also Q = P, was die Eindeutigkeit zeigt.

Definition 5.5 (Minimalpolynom)

Das eindeutig bestimmte normierte Polynom $0 \neq P \in K[t]$ kleinsten Grades mit P(f) = 0 nennt man das Minimalpolynom P_f von f.

Analog definiert man das Minimalpolynom $P_A \in K[t]$ einer Matrix $A \in \operatorname{Mat}_n(K)$.

■ Beispiel 5.6

1.
$$A = \mathbb{1}_n$$
, $\chi_A(t) = (t-1)^n$, $P_A(t) = t-1$

2.
$$A = 0$$
, $\chi_A(t) = t^n$, $P_A(t) = t$

3. Ist $A = \operatorname{diag}(a_1, ..., a_n)$ mit paarweise verschiedenen Eigenwerten $\lambda_1, ..., \lambda_r$, so ist $\chi_A(t) = \prod_{i=1}^n (t-a_i) = \prod_{i=1}^n (t-\lambda_i)^{\mu_a(f_A, \lambda_i)}, P_A(t) = \prod_{i=1}^r (t-\lambda_i)$ und es folgt $\operatorname{deg}(P_A) \geq |\{a_1, ..., a_n\}| = r$.

Definition 5.7 (f-zyklisch)

Ein f-invarianter UVR $W \leq V$ heißt f-zyklisch, wenn es ein $x \in W$ mit $W = \operatorname{span}_K(x, f(x), f^2(x), ...)$ gibt.

Lemma 5.8

Sei $x \in V$ und $x_i = f(x)$. Es gibt ein kleinstes k mit $x_k \in \text{span}_K(x_0, x_1, ..., x_{k-1})$, und $W = \text{span}_K(x_0, ..., x_{k-1})$ ein f-zyklischer UVR von V mit Basis $B = (x_0, ..., x_{k-1})$ und $M_B(f|_W) = M_{\chi_{f|_W}}$.

Beweis. Da $\dim_K(V) = n$ ist $(x_0, ..., x_n)$ linear abhängig, es gibt also ein kleinstes k mit $(x_0, ..., x_{k-1})$ linear unabhängig, aber $(x_0, ..., x_k)$ linear abhängig, folglich $x_k \in \operatorname{span}_K(x_0, ..., x_{k-1})$. Mit $x_k = f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$ ist dann Da $\dim_K(V) = n$ ist $(x_0, ..., x_n)$ linear abhängig, es gibt also ein kleinstes k mit $(x_0, ..., x_{k-1})$ linear unabhängig, aber $(x_0, ..., x_k)$ linear abhängig, folglich $x_k \in \operatorname{span}_K(x_0, ..., x_{k-1})$. Mit $x_k = f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$ ist dann

$$M_B(f|w) = \begin{pmatrix} 0 & \dots & \dots & 0 & -c_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & 0 & -c_{k-1} \end{pmatrix}$$

somit $\chi_{f|_W} = t^k + \sum_{i=0}^{k-1} c_i t^i$, also $M_B(f|_W) = M_{\chi_{f|_W}}$.

Theorem 5.9 (Satz von Cayley-Hamiltion)

Für $f \in \text{End}_K(V)$ ist $\chi_f(f) = 0$.

Beweis. Sei $x \in V$. Definiere $x_i = f^i(x)$ und $W = \operatorname{span}_K(x_0, ..., x_{k-1})$ wie in Lemma 5.8. Sei $\chi_{f|_W} = t^k + \sum_{i=0}^{k-1} c_i t^i$, also $f(x_{k-1}) = \sum_{i=0}^{k-1} -c_i x_i$. Wenden wir $\chi_{f|_W}(f) \in \operatorname{End}_K(V)$ auf x an, so erhalten wir

$$\chi_{f|W}(f)(x) = \left(f^k + \sum_{i=1}^{k-1} c_i f^i\right)(x)$$
$$= \sum_{i=1}^{k-1} -c_i x_i + \sum_{i=1}^{k-1} c_i x_i$$
$$= 0$$

Aus $\chi_{f|_W}|\chi_f$ (Beispiel 4.6) folgt somit $\chi_f(f)(x)=0$, denn ist $\chi_f=Q\cdot\chi_{f|_W}$ mit $Q\in K[t]$, so ist $\chi_f(f)=Q(f)\circ\chi_{f|_W}(f)$, also $\chi_f(f)(x)=Q(f)(\underbrace{\chi_{f|_W}(f)(x)}_{=0})=0$. Da $x\in V$ beliebig war, folgt $\chi_f(f)=0\in \operatorname{End}_K(V)$. \square

Folgerung 5.10

Es gilt $P_f|\chi_f$. Insbesondere ist $\deg(P_f) \leq n$.

Beweis. Theorem 5.9 + Satz 5.4

▶ Bemerkung 5.11

Ist B eine Basis von V und $A = M_B(f)$, so ist $P_A = P_f$. Insbesondere ist $P_A = P_B$ für $A \sim B$. Als Spezialfall von Theorem 5.9 erhält man $\chi_A(A) = 0$ und $P_A|\chi_A$.

▶ Bemerkung 5.12

Bemerkung 5.12 Der naheliegende "Beweis"
$$\underbrace{\chi_A}_{\in \operatorname{Mat}_n(K)} = \det(t\mathbbm{1}_n - A)(A) = \det(A\mathbbm{1}_n - A) = \det(0) = \underbrace{0}_{\in K} \text{ ist falsch!}$$

6. Nilpotente Endomorphismen

▶ Bemerkung 6.1

Für $f \in \operatorname{End}_K(V)$ sind

- $\bullet \ f\{0\} = \operatorname{Ker}(f^0) \subseteq \operatorname{Ker}(f^1) \subseteq \operatorname{Ker}(f^2) \subseteq \dots$
- $V = \operatorname{Im}(f^0) \supseteq \operatorname{Im}(f^1) \supseteq \operatorname{Im}(f^2) \supseteq \dots$

Folgen von UVR von V. Nach der Kern-Bild-Formel III.7.13 ist

$$\dim_K(\operatorname{Ker}(f^i)) + \dim_K(\operatorname{Im}(f^i)) = \dim_K(V) \quad \forall i$$

Da $\dim_K(V) = n < \infty$ gibt es ein d mit $\operatorname{Ker}(f^d) = \operatorname{Ker}(f^{d+i})$ und $\operatorname{Im}(f^d) = \operatorname{Im}(f^{d+i})$ für jedes $i \geq 0$.

■ Beispiel 6.2

 $f = f_A, A \in \operatorname{Mat}_2(K).$

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) = \text{Ker}(f^1) = \dots$

•
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) \subset \text{Ker}(f^1) = \text{Ker}(f^2) = \dots = \text{span}_K(e_2)$

•
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \operatorname{Ker}(f^0) \subset \underbrace{\operatorname{Ker}(f^1)}_{=\operatorname{span}_K(e_1)} \subset \operatorname{Ker}(f^2) = \dots = K^2$

•
$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
: $\{0\} = \text{Ker}(f^0) \subset \text{Ker}(f^1) = \text{Ker}(f^2) = \dots = K^2$

Lemma 6.3

Seien $f, g \in \text{End}_K(V)$. Wenn f und g kommutieren, d.h. $f \circ g = g \circ f$, so sind die UVR Ker(g) und Im(g) f invariant.

Beweis. Ist $x \in \text{Ker}(f)$, so ist g(f(x)) = f(g(x)) = f(0) = 0, also $f(x) \in \text{Ker}(g)$. Für $g(x) \in \text{Im}(g)$ ist $f(g(x)) = g(f(x)) \in \text{Im}(g)$.

Satz 6.4 (Lemma von FITTING)

Seien $V_i = \text{Ker}(f^i)$, $W_i = \text{Im}(f^i)$, $d = \min\{i : V_i = V_{i+1}\}$. Dann sind

$$\{0\} = V_0 \subsetneq V_1 \subsetneq \dots \subsetneq V_d = V_{d+1} = \dots$$
$$V = W_0 \supsetneq W_1 \supsetneq \dots \supsetneq W_d = W_{d+1} = \dots$$

Folgen f-invarianter UVR und $V = V_d \oplus W_d$.

Beweis. Da f^i und f^j für beliebige i, j kommutieren, sind V_i und V_j nach Lemma 6.3 f-invariant für jedes i. Aus $\dim_K(V_i) + \dim_K(W_i) = n$ folgt $d = \min\{i : W_i = W_{i+1}\}$, insbesondere ist $\operatorname{Im}(f^d) = \operatorname{Im}(f^{d+1}) = f(\operatorname{Im}(f^d))$, somit $W_{d+i} = \operatorname{Im}(f^{d+i}) = W_d$ für $i \geq 0$, also auch $V_d = V_{d+i}$ für alle $i \geq 0$.

Insbesondere ist $f^d|_{W_d}: W_d \to W_{2d} = W_d$ surjektiv, also auch injektiv, also $V_d \cap W_d = \{0\}$. Aus der Dimensionsformel II.4.12 folgt dann $\dim_K(V_d + W_d) = \dim_K(V_d) + \dim_K(W_d) = \dim_K(V)$. Folglich ist $V_d + W_d = V$ und $V_d \cap W_d = \{0\}$, also $V = V_d \oplus W_d$.

Definition 6.5 (nilpotent)

Ein $f \in \text{End}_K(V)$ heißt <u>nilpotent</u>, wenn $f^k = 0$ für ein $k \in \mathbb{N}$. Analog heißt $A \in \text{Mat}_n(K)$ nilpotent, wenn $A^k = 0$ für $k \in \mathbb{N}$. Das kleinste k mit $f^k = 0$ bzw. A^k heißt die <u>Nilpotenzklasse</u> von f bzw. A.

Lemma 6.6

Ist f nilpotent, so gibt es eine Basis B von V, für die $M_B(f)$ eine strikte obere Dreiecksmatrix ist.

Beweis. Induktion nach $n = \dim_K(V)$.

$$n=1$$
: $f^k=0 \Rightarrow f=0$

 $\overline{n > 1}$: Sei k die Nilpotenzklasse von f und $U = \operatorname{Ker}(f^{k-1})$. Dann ist $U \subset V$. Da $f^k = f^{k-1} \circ f$ ist $f(V) \subset U$, insbesondere $f|_U \in \operatorname{End}_K(U)$. Da $f|_U$ nilpotent ist, gibt es nach I.H. eine Basis B_0 von U, für die $M_B(f|_U)$ eine strikte obere Dreiecksmatrix ist. Ergänze B_0 zu einer Basis B von V. Da $f(V) \subset U$ ist dann auch

$$M_B(f) = \begin{pmatrix} M_{B_0}(f|_U) & * \\ 0 & 0 \end{pmatrix}$$

eine strikte obere Dreiecksmatrix.

Satz 6.7

Für $f \in \text{End}_K(V)$ sind äquivalent:

- 1) f ist nilpotent
- 2) $f^n = 0$ für $n \in \mathbb{N}$
- 3) $P_f(t) = t^r$ für ein $r \le n$
- 4) $\chi_f(t) = t^n$
- 5) Es gibt eine Basis B von V, mit

$$M_B(f) = \begin{pmatrix} 0 & * & \dots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & 0 \end{pmatrix}$$

eine strikte obere Dreiecksmatrix ist.

Beweis.

- 1) \Rightarrow 5): Lemma 6.6
- 5) \Rightarrow 4): Beispiel 2.8
- 4) \Rightarrow 3): Nach Folgerung 5.10 ist $P_f|\chi_f = t^n$, also $t^n = P_f(t)Q(t)$ mit $Q \in K[t]$. Schreibe $P_f(t) = t^a \cdot P_1(t), Q(t) = t^b \cdot Q_1(t)$ mit $a, b \in \mathbb{N}, P_1, Q_1 \in K[t], P_1(0) \neq 0, Q_1(0) \neq 0$ $\stackrel{Lemma}{\Rightarrow} {}^{3.8}t^{n-(a+b)} = P_1(t)Q_1(t) \text{ und } (P_1Q_1)(0) \neq 0$ $\Rightarrow n (a+b) = 0 \Rightarrow P_1 = 1, \text{ somit } P_f(t) = t^a$
- 3) \Rightarrow 2): $t^r = 0$, $r \le n \Rightarrow f^n = 0$
- 2) \Rightarrow 1): nach Definition

Folgerung 6.8

Die Nilpotenzklasse eines nilpotenten Endomorphismus $f \in \operatorname{End}_K(V)$ ist höchstens $\dim_K(V)$.

Folgerung 6.9

Ist $d := \min\{i \mid \operatorname{Ker}(f^i) = \operatorname{Ker}(f^{i+1})\}$, so ist $d \leq \dim_K(\operatorname{Ker}(f)) = \mu_a(f, 0)$.

Beweis. Sei $V_d = \operatorname{Ker}(f^d)$, $W_d = \operatorname{Im}(f^d)$, $k = \dim_K(V_d)$. Da $V = V_d \oplus W_d$ ist $\chi_f = \chi_{f|_{V_d}} \cdot \chi_{f|_{W_d}}$. Da $f|_{V_d}$ nilpotent ist, ist $\chi_{f|_{V_d}} = t$ nach Satz 6.7. Da $f|_{W_d}$ injektiv ist, ist $\chi_{f|_{W_d}}(0) \neq 0$. Somit ist $\mu_a(f,0) = \mu(\chi_f,0) \stackrel{Lemma 3.6}{=} k$. Da $\dim_K(\operatorname{Ker}(f^d)) > \dots > \dim_K(\operatorname{Ker}(f)) > 0$ ist $k = \dim_K(\operatorname{Ker}(f^d)) \geq d$, falls d > 0, sonst klar.

▶ Bemerkung 6.10

Die Bedeutung nilpotenter Endomorphismen beim Finden geeigneter Basen ergibt sich aus der folgenden Beobachtung:

Ist A eine obere Dreiecksmatrix, so ist A = D + N, wobei D eine Diagonalmatrix ist und N eine strikte obere Dreiecksmatrix ist. Anders gesagt: Jeder trigonalisierbare Endomorphismus ist Summe aus einem diagonalisierbaren und einem nilpotenten Endomorphismus.

Definition 6.11 (JORDAN-Matrix)

Für $k \in \mathbb{N}$ definieren wir die JORDAN-Matrix

$$J_{k} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix} \in \operatorname{Mat}_{k}(K)$$

weiter setzen wir für $\lambda \in K$ $J_k(\lambda) := \lambda \mathbb{1} + J_k$.

Lemma 6.12

Die JORDAN-Matrix J_k ist nilpotent von Nilpotenzklasse k.

Beweis. Es ist
$$(J_k)^r = (\delta_{i+r,j})_{i,j}$$
 für $r \ge 1$.

Satz 6.13

Ist f nilpotent von Nilpotenzklasse k, so gibt es eindeutig bestimmte $r_1, ..., r_k \in \mathbb{N}_{>0}$ mit $\sum_{d=1}^k dr_d = n$ und eine Basis B von V mit

$$M_B(f) = \operatorname{diag}(\underbrace{J_k,...,J_k}_{r_k \text{ viele}},...,\underbrace{J_1,...,J_1}_{r_1 \text{ viele}})$$

Beweis. Sei $U_i = \operatorname{Ker}(f^i)$. Nach Satz 6.4 haben wir eine Folge $\{0\} = U_0 \subset U_1 \subset ... \subset U_k = V$ mit $f(U_i) \subseteq U_{i-1}$ für alle i > 0.

Wir konstruieren eine Zerlegung $V = \bigoplus_{d=1}^k W_d$ mit $U_i = U_{i-1} \oplus W_i$, $f(W_i) \subseteq W_{i-1}$, $f|_{W_d}$ injektiv für i > 1.

$$\begin{split} V &= U_k \\ V &= U_{k-1} \oplus W_k \\ V &= U_{k-2} \oplus W_{k-1} \oplus W_k \\ &\vdots \\ V &= U_0 \oplus W_1 \oplus \ldots \oplus W_k \end{split}$$

Wähle W_k mit $V = U_k = U_{k-1} \oplus W_k$. Ist k > 1, so ist $W_k \cap \operatorname{Ker}(f) \subseteq W_k \cap U_{k-1} = \{0\}$, also $f|_{W_k}$ ist injektiv. Des weiteren ist $f(W_k) \subseteq U_{k-1}$ und aus $W_k \cap U_{k-1} = \{0\}$ folgt $f(W_k) \cap U_{k-2} = \{0\}$. Wir können deshalb W_{k-1} mit $U_{k-1} = U_{k-2} \oplus W_{k-1}$ und $f(W_k) \subseteq W_{k-1}$ wählen. Somit ist $V = U_{k-1} \oplus W_k = U_{k-2} \oplus W_{k-1} \oplus W_k$. Wir setzen dies fort und erhalten $V = U_0 \oplus W_1 \oplus \ldots \oplus W_k$ mit $f(W_i) \subseteq W_{i-1}$ und $f|_{W_i}$ injektiv für i > 1, wobei $U_0 = \{0\}$ und $W_1 = \operatorname{Ker}(f)$.

Sie $r_d = \dim_K(W_d) - \dim_K(W_{d+1})$, wobei wir $W_{k+1} = \{0\}$. Wähle nun eine Basis $(x_{k,1}, ..., x_{k,r_k})$ von W_k . Ist k > 1, so ist $f|_{W_k}$ injektiv und wir können $(f(x_{k,1}), ..., f(x_{k,r_k}))$ durch Elemente $x_{k-1,1}, ..., x_{k-1,r_{k-1}}$ zu einer Basis von W_{k-1} ergänzen, und so weiter.

$$Da V = \bigoplus_{d=1}^{k} W_d \text{ ist}$$

$$B = \{f^{i}(x_{d,j}) \mid d = 1, ..., k, j = 1, ..., r_{d}, i = 0, ..., d - 1\}$$

eine Basis von V, die bei geeigneter Anordnung das Gewünschte leistet.

Es bleibt zu zeigen, dass $r_1, ..., r_k$ eindeutig bestimmt sind. Ist B_0 eine Basis, für die $M_{B_0}(f)$ in der gewünschten Form ist, so ist

$$\dim_{K}(U_{1}) = \sum_{d=1}^{k} r_{d}$$

$$\dim_{K}(U_{2}) = \sum_{d=2}^{k} r_{d} + \sum_{d=1}^{k} r_{d}$$

$$\vdots$$

$$\dim_{K}(U_{k}) = \sum_{d=k}^{k} r_{d} + \dots + \sum_{d=1}^{k} r_{d}$$

woraus man sieht, dass $r_1, ..., r_k$ durch $U_1, ..., U_k$, also durch f eindeutig bestimmt.

Beispiel 6.14 Sei
$$f = f_A$$
 mit $A = \begin{pmatrix} 0 & 1 & 3 \\ & 0 & 2 \\ & & 0 \end{pmatrix} \in \operatorname{Mat}_3(\mathbb{R})$

$$A^2 = \begin{pmatrix} 0 & 0 & 2 \\ & 0 & 0 \\ & & 0 \end{pmatrix}, A^3 = 0$$

 $\Rightarrow k = 3, U_0 = \{0\}, U_1 = \mathbb{R}e_1, U_2 = \mathbb{R}e_1 + \mathbb{R}e_2, U_3 = V.$

Wähle W_3 mit $V=U_3=U_2\oplus W_3$, z.B. $W_3=\mathbb{R}e_3$.

Wähle W_2 mit $U_2 = U_1 \oplus W_2$ und $f(W_3) \subseteq W_2$, also

$$W_2 = \mathbb{R} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$$

Setze $W_1 = U_1 = \text{Ker}(f) = \mathbb{R}e_1 \Rightarrow \text{Basis } B = (f^2(e_3), f(e_3), e_3)$

$$M_B(f) = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 1 \\ & & 0 \end{pmatrix}$$

7. Die Jordan-Normalform

Definition 7.1 (Hauptraum)

Der Hauptraum von f zum EW λ der Vielfachheit $r = \mu_a(f, \lambda)$ ist

$$\operatorname{Hau}(f,\lambda) = \operatorname{Ker}\left((f - \lambda \operatorname{id}_V)^r\right)$$

Lemma 7.2

 $\operatorname{Hau}(f,\lambda)$ ist ein f-invarianter UVR der Dimension $\dim_K(\operatorname{Hau}(f,\lambda)) = \mu_a(f,\lambda)$, auf dem $f - \lambda \operatorname{id}_V$ nilpotent ist und $\chi_{f|_{\operatorname{Hau}(f,\lambda)}} = (t-\lambda)^{\mu_a(f,\lambda)}$

Beweis. f kommutiert sowohl mit f als auch mit id_V , somit auch mit $(f - \lambda \, \mathrm{id}_V)^r$. Die f-Invarianz von $U = \mathrm{Hau}(f,\lambda)$ folgt aus Lemma 6.3. Nach Folgerung 6.9 ist $\mathrm{dim}_K(U) = \mu_a(f - \lambda \, \mathrm{id}_V,0)$ und $\mathrm{da} \, \chi_f(t) = \chi_{f-\lambda \, \mathrm{id}_V}(t-\lambda)$ ist $\mu_a(f,\lambda) = \mu(\chi_f,\lambda) = \mu_a(f - \lambda \, \mathrm{id}_V,0)$. Da $f - \lambda \, \mathrm{id}_V \, |_U$ nilpotent ist $\chi_{f-\lambda \, \mathrm{id}_V \, |_U}(t) = t^r$, somit $\chi_{f|_U}(t) = (t-\lambda)^r$.

Satz 7.3 (Hauptraumzerlegung)

Ist $\chi_f(t) = \prod_{i=1}^m (t-\lambda_i)^{r_i}$ mit $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden und $r_1, ..., r_m \in \mathbb{N}$, so ist $V = \bigoplus_{i=1}^m V_i$ mit $V_i = \text{Hau}(f, \lambda_i)$ eine Zerlegung in f-invariante UVR und für jedes i ist $\chi_{f|_{V_i}}(t) = (t-\lambda_i)^{r_i}$.

Beweis. Induktion nach m.

 $m=1: r_1=n \overset{Lemma}{\Rightarrow} \overset{7.2}{\Rightarrow} V=V_1.$

 $\overline{m-1} \to m$: Nach Satz 6.4 ist $V = V_1 \oplus W_1$ mit $W_1 = \operatorname{Im}((f-\lambda_i\operatorname{id}_V)^r)$ eine Zerlegung in f-invariante UVR mit $\dim_K(V_1) = r_1$, $\dim_K(W_1) = n - r_1$. Somit ist $\chi_f = \chi_{f|_{V_1}} \cdot \chi_{f|_{W_1}}$ und $\chi_{f|_{V_1}} \stackrel{Lemma 7.2}{=} (t-\lambda_1)^{r_1}$ also $\chi_{f|_{W_1}} = \prod_{i=2}^m (t-\lambda_i)^{r_i}$. Nach I.H. ist also $W_1 = \bigoplus_{i=2}^m \operatorname{Hau}(f|_{W_1},\lambda_i)$. Es ist für $i \geq 2$ $\operatorname{Hau}(f|_{W_1},\lambda_i) \subseteq \operatorname{Hau}(f,\lambda_i) = V_i$ und da $\dim_K(\operatorname{Hau}(f|_{W_1},\lambda_i)) = r_i = \dim_K(\operatorname{Hau}(f,\lambda_i))$ gilt Gleichheit. Damit ist

$$V = V_1 \oplus W_1$$

$$= V_1 \oplus \bigoplus_{i=2}^m \operatorname{Hau}(f|_{W_1}, \lambda_i)$$

$$= V_1 \oplus \bigoplus_{i=2}^m V_i$$

$$= \bigoplus_{i=1}^m V_i$$

■ Beispiel 7.4

 $f = f_A$

$$A = \begin{pmatrix} 1 & 3 \\ & 1 & 4 \\ & & 2 \end{pmatrix} \in \operatorname{Mat}_3(\mathbb{R})$$

$$\chi_A(t) = (t-1)^2(t-2) \Rightarrow \mathbb{R}^3 = \underbrace{\operatorname{Hau}(f,1)}_{\text{dim}=2} \oplus \underbrace{\operatorname{Hau}(f,2)}_{\text{dim}\,1}$$

$$\operatorname{Hau}(f,1) = \operatorname{Ker}((f-\operatorname{id})^2) = L((A-1)^2,0)$$

$$\operatorname{Hau}(f,2) = \operatorname{Ker}(f-2\operatorname{id}) = \operatorname{Eig}(f,2) = L(A-21,0)$$

$$A - \mathbb{1} = \begin{pmatrix} 0 & 3 \\ -1 & 4 \\ 0 \end{pmatrix}, (A - \mathbb{1})^2 = \begin{pmatrix} 0 & 12 \\ 0 & 4 \\ 1 \end{pmatrix} \Rightarrow \operatorname{Hau}(f, 1) = \mathbb{R}e_1 + \mathbb{R}e_2$$

$$A - 2\mathbb{1} = \begin{pmatrix} -1 & 3 \\ -1 & 4 \\ 0 \end{pmatrix} \Rightarrow \operatorname{Hau}(f, 2) = \mathbb{R} \begin{pmatrix} 12 \\ 4 \\ 1 \end{pmatrix}$$

Mit
$$B = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 12 \\ 4 \\ 1 \end{pmatrix} \right)$$
 ist

$$M_B(f) = \begin{pmatrix} \begin{pmatrix} 1 & 3 \\ & 1 \end{pmatrix} & \\ & & 2 \end{pmatrix}$$

Theorem 7.5 (JORDAN-Normalform)

Sei $f \in \operatorname{End}_K(V)$ ein Endomorphismus, dessen charakteristisches Polynom χ_f in Linearfaktoren zerfällt. Dann gibt es $r \in \mathbb{N}$, $\mu_1,...,\mu_r \in K$ und $k_1,...,k_r \in \mathbb{N}$ mit $\sum_{i=1}^r k_i = \dim_K(V)$ und eine Basis B von V mit

$$M_B(f) = \text{diag}(J_{k_1}(\mu_1), ..., J_{k_r}(\mu_r))$$

Die Paare $(\mu_1, k_1), ..., (\mu_r, k_r)$ heißen die <u>JORDAN-Invarianten</u> von f und sind bis auf Reihenfolge eindeutig bestimmt.

Beweis. Schreibe $\chi_f(t) = \prod_{i=1}^m (t - \lambda_i)^{r_i}$ mit $\lambda_1, ..., \lambda_m \in K$ paarweise verschieden, $r_i \in \mathbb{N}$. Sei $V_i = \text{Hau}(f, \lambda_i)$. Nach Satz 7.3 ist $V = \bigoplus_{i=1}^m V_i$ eine Zerlegung in f-invariante UVR. Für jedes i wenden wir Satz 6.13 auf $(f - \lambda_i \operatorname{id}_V)|_{V_i}$ an und erhalten eine Basis B_i von V_i und $k_{i,1} \geq ... \geq k_{i,s_i}$ mit

$$M_B((f - \lambda_i \operatorname{id})|_{V_i}) = \operatorname{diag}(J_{k_{i-1}}, ..., J_{k_{i-s-1}})$$

Es folgt $M_{B_i}(f|_{V_i}) = M_{B_i}(\lambda_i \operatorname{id}_{V_i}) + M_{B_i}((f - \lambda_i \operatorname{id}_{V_i})|_{V_i})$. Ist nun B die Vereinigung der B_i , so hat $M_B(f)$ die gewünschte Form. Die Eindeutigkeit der JORDAN-Invarianten folgt aus der Eindeutigkeit der $k_{i,j}$ in Lemma 6.3.

▶ Bemerkung 7.6

Ist K algebraisch abgeschlossen, so haben wir nun eine (bis auf Permutationen) eindeutige Normalform für Endomorphismen $f \in \operatorname{End}_K(V)$ gefunden. Aus ihr lassen sich viele Eigenschaften des Endomorphismus leicht ablesen.

Folgerung 7.7

Sei $f \in \operatorname{End}_K(V)$ trigonalisierbar mit $\chi_f(t) = \prod_{i=1}^m (t - \lambda_i)^{\mu_a(f,\lambda_i)}, P_f(t) = \prod_{i=1}^m (t - \lambda_i)^{d_i}$ und Jordan-Invarianten $(\mu_1, k_1), \dots, (\mu_r, k_r)$. Mit $J_i = \{j \mid \mu_j = \lambda_i\}$ ist dann

$$\mu_g(f, \lambda_i) = |J_i|$$

$$\mu_a(f, \lambda_i) = \sum_{j \in J_i} k_j$$

$$d_i = \max\{k_j \mid j \in J_i\}$$

Beweis. • μ_a : klar, da $\chi_f(t) = \prod_{j=1}^r (t - \mu_j)^{k_j} = \prod_{i=1}^m (t - \lambda_i)^{\mu_a(f, \lambda_i)}$

• μ_g : lese Basis von Eig (f, λ_i) aus JORDAN-NF: Jeder Block $J_{k_j}(\lambda_i)$ liefert ein Element der Basis.

• d_i : folgt, da J_{k_j} nilpotent von Nilpotenzklasse k_j ist (Lemma 6.12).

Folgerung 7.8

Genau dann ist f diagonalisierbar, wenn

$$\chi_f(t)=\prod_{i=1}^m(t-^\lambda_i)^{r_i}\quad \lambda_1,...,\lambda_m\in K \text{ paarweise verscheiden und}$$

$$P_f(t)=\prod_{i=1}^mm(t-\lambda_i)$$

Beweis. Genau dann ist f diagonalisierbar, wenn f trigonalisierbar ist und die JORDAN-NF die Diagonalmatrix ist (Eindeutigkeit der JNF), also $k_j = 1$ für alle j. Nach Folgerung 7.7 ist dies äquivalent dazu, dass $d_i = 1$ für alle i, also $P_f = \prod_{i=1}^m (t - \lambda_i)$.

▶ Bemerkung 7.9

Wider definiert man die JORDAN-Invarianten, etc. von einer Matrix $A \in \operatorname{Mat}_n(K)$ als die JORDAN-Invarianten von $f_A \in \operatorname{End}_K(K^n)$.

Folgerung 7.10

Seien $A, B \in \operatorname{Mat}_n(K)$ trigonalisierbar. Genau dann ist $A \sim B$, wenn A und B die gleichen JORDAN-Invarianten haben.

Beweis. Existenz und Eindeutigkeit der Jordan-Normalform.

Kapitel II

Skalar produkte

In diesem ganzen Kapitel seien

- $K = \mathbb{R} \text{ oder } K = \mathbb{C}$
- $n \in \mathbb{N}$
- ullet V ein n-dimensionaler K-VR

1. Das Standardskalarprodukt

Sei zunächst $K = \mathbb{R}$.

Definition 1.1 (Standardskalarprodukt in \mathbb{R})

Auf den Standardraum $V = \mathbb{R}^n$ definiert man das Standardskalarprodukt in \mathbb{R} $\langle . \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ durch

$$\langle x, y \rangle = x^t y = \sum_{i=1}^n x_i y_i$$

Satz 1.2

Das Standardskalarprodukt erfüllt die folgenden Eigenschaften:

• Für $x, x', y, y' \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ ist:

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle$$
$$\langle \lambda x, y \rangle = = \lambda \langle x, y \rangle$$
$$\langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle$$
$$\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$$

- Für $x, y \in \mathbb{R}^n$ ist $\langle x, y \rangle = \langle y, x \rangle$
- Für $x \in \mathbb{R}^n$ ist $\langle x, y \rangle \ge 0$ und $\langle x, x \rangle = 0 \iff x = 0$

Beweis. • klar

- klar
- $\langle x, x \rangle = \sum_{i=1}^n x_i^2 \ge x_j^2$ für jedes $j \Rightarrow \langle x, x \rangle \ge 0$ und $\langle x, x \rangle > 0$ falls $x_j \ne 0$ für ein j.

Definition 1.3 (euklidische Norm in \mathbb{R})

Auf $K=\mathbb{R}^n$ definiert man euklidische Norm in $\mathbb{R} \ \|\cdot\|:\mathbb{R}^n \to \mathbb{R}_{\geq 0}$ durch

$$||x|| = \sqrt{\langle x, x \rangle}$$

Satz 1.4 (Ungleichung von CAUCHY-SCHWARZ)

Für $x, y \in \mathbb{R}^n$ gilt

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Gleichheit genau dann, wenn x und y linear abhängig sind.

Beweis. siehe Analysis, siehe VI.§3

Satz 1.5

Die euklidische Norm erfüllt die folgenden Eigenschaften:

- Für $x \in \mathbb{R}^n$ ist $||x|| = 0 \iff x = 0$
- Für $x \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ ist $||\lambda x|| = |\lambda| \cdot ||x||$
- Für $x, y \in \mathbb{R}^n$ ist $||x + y|| \le ||x|| + ||y||$

Beweis. • Satz 1.2

- Satz 1.2
- $\|x+y\|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \le \|x\|^2 + 2\|x\| \|y\| + \|y\|^2 = (\|x\| + \|y\|)^2 \overset{Satz}{\Rightarrow} \overset{1.4}{\Rightarrow} \|x+y\| \le \|x\| + \|y\|$

Sei nun $K = \mathbb{C}$.

Definition 1.6 (komplexe Konjugation, Absolutbetrag)

Für $x,y\in\mathbb{R}$ und $z=x+iy\in\mathbb{C}$ definiert man $\overline{z}=x-iy$ heißt komplexe Konjugation. Man definiert den Absolutbetrag von z als

$$|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2} \in \mathbb{R}_{\geq 0}$$

Für $A = (a_{ij})_{i,j} \in \mathrm{Mat}_{m \times n}(\mathbb{C})$ sehen wir

$$\overline{A} = (\overline{a_{ij}})_{i,j} \in \mathrm{Mat}_{m \times n}(\mathbb{C})$$

Satz 1.7

Komplexe Konjugation ist ein Ringautomorphismus von $\mathbb C$ mit Fixkörper

$$\{z\in\mathbb{C}\mid z=\overline{z}\}=\mathbb{R}$$

Beweis. siehe LAAG1 H47

Folgerung 1.8

Für $A, B \in \operatorname{Mat}_n(\mathbb{C})$ und $S \in \operatorname{GL}_n(\mathbb{C})$ ist $\overline{A+B} = \overline{A} + \overline{B}, \overline{AB} = \overline{A} \cdot \overline{B}, \overline{A^t} = \overline{A}^t, \overline{S^{-1}} = \overline{S}^{-1}$

Beweis. Satz 1.7, einfache Übung

Definition 1.9 (Standardskalarprodukt in \mathbb{C})

Auf $K = \mathbb{C}^n$ definiert man das Standardskalarprodukt in $\mathbb{C} \langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ durch

$$\langle x, y \rangle = x^t \overline{y} = \sum_{i=1}^n x_i \overline{y}_i$$

Satz 1.10

Das komplexe Standardskalarprodukt erfüllt die folgenden Eigenschaften:

• Für $x, x', y, y' \in \mathbb{C}^n$ und $\lambda \in \mathbb{C}$ ist:

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle$$
$$\langle \lambda x, y \rangle = = \lambda \langle x, y \rangle$$
$$\langle x, y + y' \rangle = \langle x, y \rangle + \langle x, y' \rangle$$
$$\langle x, \lambda y \rangle = \overline{\lambda} \langle x, y \rangle$$

- Für $x, y \in \mathbb{C}^n$ ist $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- Für $x \in \mathbb{C}^n$ ist $\langle x,y \rangle \in \mathbb{R}_{\geq 0}$ und $\langle x,x \rangle = 0 \iff x = 0$

Beweis. • klar

- klar
- $\langle x, x \rangle = \sum_{i=1}^{n} x_i \overline{x_i} = \sum_{i=1}^{n} |x_i|^2$

Definition 1.11 (euklidische Norm in \mathbb{C})

Auf $V=\mathbb{C}$ definiert man die
 euklidische Norm in \mathbb{C} $\|\cdot\|:\mathbb{C}^n\to\mathbb{R}_{\geq 0}$ durch

$$||x|| = \sqrt{\langle x, x \rangle}$$

▶ Bemerkung 1.12

Schränkt man das komplexe Skalarprodukt auf den \mathbb{R}^n ein, so erhält man das Standardskalarprodukt auf dem \mathbb{R}^n . Wir werden ab jetzt die beiden Fälle $K=\mathbb{R}$ und $K=\mathbb{C}$ parallel behandeln. Wenn nicht anders angegeben, werden wir die Begriffe für den komplexen Fall benutzen, aber auch den reellen Fall einschließen.

2. Bilinearformen und Sesquilinearformen

Sei $K = \mathbb{R}$ oder $K = \mathbb{C}$.

Definition 2.1 (Bilinearform, Sesquilinearform)

Eine Bilinearform $(K = \mathbb{R})$ bzw. Sesquilinearform $(K = \mathbb{C})$ ist eine Abbildung $s: V \times V \to K$ für die gilt:

- Für $x, x', y \in V$ ist s(x + x', y) = s(x, y) + s(x', y)
- Für $x, y, y' \in V$ ist s(x, y + y') = s(x, y) + s(x, y')
- Für $x, y \in V$, $\lambda \in K$ ist $s(x, \lambda y) = \overline{\lambda} s(x, y)$

▶ Bemerkung 2.2

Im Fall $K = \mathbb{R}$ ist $\lambda = \overline{\lambda}$. Wir werden der Einfachheit halber auch in diesem Fall von Sesquilinearformen sprechen, vgl. Bemerkung 1.12

■ Beispiel 2.3

Für $A = (a_{ij})_{i,j} \in \operatorname{Mat}_n(K)$ ist $s_A : K^n \times K^n \to K^n$ gegeben durch

$$s_A(x,y) = x^t A \overline{y} = x^t \left(\sum_{j=1}^n a_{ij} \overline{y}_j \right)_i = \sum_{i,j=1}^n a_{ij} x_i \overline{y}_j$$

eine Sesquilinearform auf $V = K^n$.

Definition 2.4

Sei s eine Sesquilinearform auf V und $B=(v_1,...,v_n)$ eine Basis von V. Die <u>darstellende Matrix</u> von s bzgl. B ist

$$M_B(s) = (s(v_i, v_j))_{i,j} \in \operatorname{Mat}_n(K)$$

■ Beispiel 2.5

Die darstellende Matrix des Standardskalarprodukts $s=s_{\mathbbm{1}_n}$ auf den Standardraum $V=K^n$ bzgl. der Standardbasis $\mathcal E$ ist

$$M_{\mathcal{E}}(s) = \mathbb{1}_n$$

Lemma 2.6

Seien $v, w \in V$. Mit $x = \Phi_B^{-1}(v)$, $y = \Phi_B^{-1}(w)$ und $A = M_B(s)$ ist $s(v, w) = x^t A \overline{y} = s_A(x, y)$.

Beweis. Achtung: v_i beschreibt das *i*-te Element der Basis B! $s(v,w) = s(\sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j) = \sum_{i,j=1}^n x_i \overline{y} s(v,v_j) = x^t A \overline{y}$

Satz 2.7

ISei B eine Basis von V. Die Abbildung $s \mapsto M_B(s)$ ist eine Bijektion zwischen den Sesquilinearformen auf V und $\operatorname{Mat}_n(K)$.

Beweis. • injektiv: Lemma 2.6

• surjektiv: Für $A \in \operatorname{Mat}_n(K)$ wird durch $s(v,w) = \Phi_B^{-1}(v)^t \cdot A \cdot \overline{\Phi_B^{-1}(w)}$ eine Sesquilinearform auf V mit $M_B(s) = (s(v_i, w_j))_{i,j} = (e_i^t A \overline{e_j})_{i,j} = (e_i A e_j)_{i,j} = A$ definiert.

Satz 2.8 (Transformationsformel)

Seien B und B' Basen von V und s eine Sesquilinearform auf V. Dann gilt:

$$M_{B'}(s) = (T_B^{B'})^t \cdot M_B(s) \cdot \overline{T_B^{B'}}$$

Beweis. Seien $v, w \in V$. Definiere $A = M_B(s)$, $A' = M_{B'}(s)$, $T = T_B^{B'}$ und $x, y, x', y' \in K^n$ mit $v = \Phi_B(x) = \Phi_B(x')$, $w = \Phi_B(y) = \Phi_B(y')$. Dann ist x = Tx', y = Ty' und somit

$$(x')^{t}A'\overline{y'} \stackrel{Lemma}{=} {}^{2.6} s(v, w)$$

$$\stackrel{Lemma}{=} {}^{2.6} x^{t}A\overline{y}$$

$$= (Tx')^{t}A\overline{Ty'}$$

$$= (x')^{t}T^{t}A\overline{Ty'}$$

Da $v, w \in V$ und somit $x', y' \in K$ beliebig waren, folgt $A = T^t A \overline{T}$.

■ Beispiel 2.9

Sei s das Standardskalarprodukt auf dem K^n und $B = (b_1, ..., b_n)$ eine Basis des K^n . Dann ist

$$M_B(s) = (T_{\mathcal{E}}^B)^t \cdot M_{\mathcal{E}}(s) \cdot \overline{T_{\mathcal{E}}^B} = B^t \cdot \mathbb{1}_n \cdot \overline{B} = B^t B$$

wobei $B = (b_1, ..., b_n) \in \operatorname{Mat}_n(K)$.

Satz 2.10

Sei s eine Sesquilinearform auf V. Dann sind äquivalent:

- Es gibt $0 \neq v \in V$ mit s(v, w) = 0 für alle $w \in V$.
- Es gibt $0 \neq w \in V$ mit s(v, w) = 0 für alle $v \in V$.
- Es gibt eine Basis B von V mit $det(M_B(s)) = 0$.
- Für jede Basis B von V gilt $det(M_B(s)) = 0$.

Beweis. Sei B eine Basis von V, $v = \Phi_B(x)$ und $A = M_B(s)$. Genau dann ist die (semilineare) Abbildung $w \mapsto s(v, w)$ die Nullabbildung, wenn $x^t A \overline{y} = 0$ für alle $y \in K^n$, also wenn $0 = x^t A$, d.h. $A^t x = 0$. Somit ist (1) genau dann erfüllt, wenn A^t nicht invertierbar ist, also wenn $0 = \det(A^t) = \det(A)$. Damit (1) \Rightarrow (4) \Rightarrow (3) \Rightarrow (1) gezeigt und (2) \iff (4) zeigt man analog.

Definition 2.11 (ausgeartet)

Eine Sesquilinearform s auf V heißt <u>ausgeartet</u>, wenn eine der äquivalenten Bedingungen aus Satz 2.10 erfüllt ist, sonst nicht-ausgeartet.

Definition 2.12 (symmetrisch, hermitesch)

Eine Sesquilinearform s auf V heißt symmetrisch, wenn bzw. hermitesch, wenn

$$s(x,y) = \overline{s(y,x)}$$
 für alle $x, y \in V$

Eine Matrix $A \in \operatorname{Mat}_n(K)$ heißt symmetrisch bzw. hermitesch, wenn $A = A^* = \overline{A}^t = \overline{A}^t$.

Satz 2.13

Sei s eine Sesquilinearform auf V und B eine Basis von V. Genau dann ist s hermitesch, wenn $M_B(s)$ dies ist.

Beweis. (\Rightarrow) : klar aus Definition von $M_B(s)$.

$$(\Leftarrow) : x = \Phi_B^{-1}, \ y = \Phi_B^{-1}(w), \ \overline{s(v,w)} = \overline{s(v,w)^t} = \overline{(x^t A \overline{y})^t} = y^t \overline{A^t} \overline{x} = s(w,v)$$

Satz 2.14

Für
$$A, B \in \text{Mat}_n(K)$$
 und $S \in GL_n(K)$ ist $(A + B)^* = A^* + B^*$, $(AB)^* = B^*A^*$, $(A^*)^* = A$ und $(S^{-1})^* = (S^*)^{-1}$.

Beweis. Folgerung 1.8, III.1.14, III.1.15

3. Euklidische und unitäre Vektorräume

Lemma 3.1

Sei s eine hermitesche Sesquilinearform auf V. Dann ist $s(x,x) \in \mathbb{R}$ für alle $x \in V$.

Beweis. Da s hermitesch ist, ist $s(x,x) = \overline{s(x,x)}$, also $s(x,x) \in \mathbb{R}$.

Definition 3.2 (quadratische Form)

Sei s eine hermitesche Sesquilinearform auf V. Die quadratische Form zu s ist die Abbildung

$$q_s: \begin{cases} V \to \mathbb{R} \\ x \mapsto s(x,x) \end{cases}$$

▶ Bemerkung 3.3

Die quadratische Form q_s erfüllt das $q_s(\lambda x) = |\lambda|^2 \cdot q_s(x)$ für alle $x \in V$, $\lambda \in K$. Im Fall $K = \mathbb{R}$, $V = \mathbb{R}^n$, $x = (x_1, ..., x_n)^t$, $s = s_A$, $A \in \operatorname{Mat}_n(\mathbb{R})$ ist $q_s(x) = s_A(x, x) = x^t A x = \sum_{i,j=1}^n a_{ij} x_i x_j$ ein "quadratisches Polynom in den Variablen $x_1, ..., x_n$ ".

Satz 3.4 (Polarisierung)

Sei s ein hermitesche Sesquilinearform auf V. Dann gilt für $x, y \in V$:

$$s(x,y) = \frac{1}{2}(q_s(x+y) - q_s(x) - q_s(y)) \quad K = \mathbb{R}$$

$$s(x,y) = \frac{1}{4}(q_s(x+y) - q_s(x-y) + iq_s(x+iy) - iq_s(x-iy)) \quad K = \mathbb{C}$$

Beweis. Im Fall $K = \mathbb{R}$ ist

$$q_s(x+y) - q_s(x) - q_s(y) = s(x+y, x+y) - s(x, x) - s(y, y)$$

$$= s(x, x) + s(x, y) + s(y, x) + s(y, y) - s(x, x) - s(y, y)$$

$$= s(x, y) + s(y, x) - 2s(x, y)$$

Im Fall $K = \mathbb{C}$: ÜA

Definition 3.5 ((semi)definit, euklidischer VR, unitärer VR)

Sei s eine hermitesche Sesquilinearform auf V. Ist $s(x,x) \ge 0$ für alle $x \in V$, so heißt s positiv semidefinit. Ist s(x,x) > 0 für alle $0 \ne x \in V$, so heißt s positiv definit (oder ein Skalarprodukt).

Eine hermitesche Matrix $A \in \operatorname{Mat}_n(K)$ heißt positiv (semi)definit, wenn s_A dies ist.

Einen endlichdimensionalen K-VR zusammen mit positiv definiten hermiteschen Sesquilinearformen nennt man einen <u>euklidischen</u> bzw. <u>unitären</u> VR (oder auch <u>Prähilbertraum</u>). Wenn nicht anderes angegeben, notieren wir die Sesquilinearform mit $\langle \cdot, \cdot \rangle$.

■ Beispiel 3.6

Der Standardraum $V=K^n$ zusammen mit dem Standardskalarprodukt ist ein euklidischer bzw. unitärer VR.

■ Beispiel 3.7

Ist $A = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ mit $\lambda_i \in \mathbb{R}$, so ist s_A genau dann positiv definit, wenn $\lambda_i > 0$ für alle i, und positiv semidefinit, wenn $\lambda_i \geq 0$ für alle i.

Satz 3.8

Ist V ein unitärer VR und $U\subseteq V$ ein UVR, so ist U mit der Einschränkung des Skalarprodukts wieder ein unitärer VR.

Beweis. klar, die Einschränkung ist wieder positiv definit.

Definition 3.9

Ist V ein unitärer VR, so definiert man die Norm von $x \in V$ als

$$||x|| = \sqrt{\langle x, x \rangle} \in \mathbb{R}_{\geq 0}$$

Satz 3.10

Die Norm eines unitären VR erfüllt die folgenden Eigenschaften:

- Für $x \in V$ ist $||x|| = 0 \iff x = 0$
- Für $x \in V$ und $\lambda \in K$ ist $\|\lambda x\| = |\lambda| \cdot \|x\|$
- Für $x, y \in V$ ist $||x + y|| \le ||x|| + ||y||$

Beweis. • Das Skalarprodukt ist positiv definit.

- klar
- Wie im Fall im \mathbb{R}^n

Satz 3.11

Ist V ein unitärer VR, so gilt für $x, y \in V$:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Dabei gilt Gleichheit genau dann, wenn x und y linear abhängig sind.

Beweis. Für y=0 ist die Aussage klar. Sei also $y\neq 0$. Für $\lambda,\mu\in K$ ist

$$0 \le \langle \lambda x + \mu y, \lambda x + \mu y \rangle$$

= $\lambda \overline{\lambda} \cdot \langle x, x \rangle + \mu \overline{\mu} \cdot \langle y, y \rangle + \lambda \overline{\mu} \cdot \langle x, y \rangle + \mu \overline{\lambda} \cdot \langle y, x \rangle$

Setzt man $\lambda = \overline{\lambda} = \langle y, y \rangle > 0$ und $\mu = -\langle x, y \rangle$ ein, so erhält man

$$0 \le \lambda \cdot ||x||^2 ||y||^2 + \mu \overline{\mu} \lambda - \lambda \mu \overline{\mu} - \langle x, y \rangle \overline{\lambda} \langle y, x \rangle$$
$$= \lambda (||x||^2 ||y||^2 - |\langle x, y \rangle|^2)$$

Teilen durch λ und Wurzelziehen liefert die Ungleichung. Gilt dort Gleichheit, so ist $\|\lambda x + \mu y\| = 0$ folglich (da $\lambda \neq 0$) sind dann x, y linear unabhängig. Ist $x = \alpha y$ mit $\alpha \in K$, so ist $|\langle x, y \rangle| = |\alpha| \cdot ||y||^2 = ||x|| \cdot ||y||$

4. Orthogonalität

Sei V ein euklidischer bzw. unitärer Vektorraum.

Definition 4.1 (orthogonal, orthogonales Komplement)

Zwei Vektoren $x,y\in V$ heißen <u>orthogonal</u>, in Zeichen $x\perp y$, wenn $\langle x,y\rangle=0$. Zwei Mengen $X,Y\subseteq V$ sind <u>orthogonal</u>, in Zeichen $X\perp Y$, wenn $x\perp y$ für alle $x\in X$ und $y\in Y$.

Für $U \subseteq V$ bezeichnet

$$U^{\perp} = \{ x \in V \mid x \perp u \text{ für alle } u \in U \}$$

das orthogonale Komplement zu U.

Lemma 4.2

Für $x, y \in V$ ist

- $\bullet \ x \perp y \iff y \perp x$
- \bullet $x \perp 0$
- $x \perp x \iff x = 0$

Beweis. klar

Satz 4.3

Für $U \subseteq V$ ist U^{\perp} ein Untervektorraum von V mit $U \perp U^{\perp}$ und $U \cap U^{\perp} \subseteq \{0\}$.

Beweis. Linearität des Skalarprodukts im ersten Argument liefert, dass U^{\perp} ein Untervektorraum ist. Die Aussage $U^{\perp} \perp U$ ist trivial, $U \perp U^{\perp}$ folgt dann aus Lemma 4.2. Ist $u \in U \cap U^{\perp}$, so ist insbesondere $u \perp u$, also u = 0 nach Lemma 4.2.

Definition 4.4 (orthonormal)

Eine Familie $(x_i)_{i \in I}$ von Elementen von V ist <u>orthogonal</u>, wenn $x_i \perp x_j$ für alle $i \neq j$, und <u>orthonormal</u>, wenn zusätzlich $||x_i|| = 1$ für alle i. Eine orthogonale Basis nennt man eine <u>Orthogonalbasis</u>, eine orthonormale Basis nennt man eine Orthonormalbasis.

▶ Bemerkung 4.5

Eine Basis B ist genau dann eine Orthonormalbasis, wenn die darstellende Matrix des Skalarprodukts bezüglich B die Einheitsmatrix ist. (Beispiel: Standardbasis des Standardraum bezüglich des Standardskalarprodukts)

Lemma 4.6

Ist die Familie $(x_i)_{i\in I}$ orthogonal und $x_i\neq 0$ für alle $i\in I$, so ist $(x_i)_{i\in I}$ linear unabhängig.

Beweis. Ist $\sum_{i \in I} \lambda_i x_i = 0$, $\lambda_i \in K$, fast alle gleich 0, so ist $0 = \langle \sum_{i \in I} \lambda_i x_i, x_j \rangle = \sum_{i \in I} \lambda_i \langle x_i, x_j \rangle = \lambda_j \langle x_j, x_j \rangle$ Aus $x_j \neq 0$ folgt $\langle x_j, x_j \rangle > 0$ und somit $\lambda_j = 0$ für jedes $j \in I$.

Lemma 4.7

Ist $(x_i)_{i\in I}$ orthogonal und $x_i \neq 0$ für alle i, so ist $(y_i)_{i\in I}$ mit

$$y_i = \frac{1}{\|x_i\|} x_i$$

orthonormal.

Beweis. Für alle
$$i$$
 ist $\langle y_i, y_i \rangle = \frac{1}{\|x_i\|^2} \langle x_i, x_i \rangle = 1$. Für alle $i \neq j$ ist $\langle y_i, y_j \rangle = \frac{1}{\|x_i\| \cdot \|x_j\|} \langle x_i, x_j \rangle = 0$.

Satz 4.8

Sei $U \subseteq V$ ein Untervektorraum und $B = (x_1, ..., x_k)$ eine Orthonormalbasis von U. Es gibt genau einen Epimorphismus $\operatorname{pr}_U : V \to U$ mit $\operatorname{pr}_U|_U = \operatorname{id}_U$ und $\operatorname{Ker}(\operatorname{pr}_U) \perp U$, insbesondere also $x - \operatorname{pr}_U \perp U$ für alle $x \in V$, genannt die orthogonale Projektion auf U, und dieser ist geben durch

$$x \mapsto \sum_{i=1}^{k} \langle x, x_i \rangle x_i \tag{1}$$

Beweis. Sei zunächst pr_U durch (1) gegeben. Die Linearität von pr_U folgt aus (S1) und (S3). Für $u = \sum_{i=1}^k \lambda_i x_i \in U$ ist $\langle u, x_j \rangle = \left\langle \sum_{i=1}^k \lambda_i x_i, x_j \right\rangle = \sum_{i=1}^k \lambda_i \left\langle x_i, x_j \right\rangle = \lambda_j$, woraus $\operatorname{pr}_U(u) = u$. Somit ist $\operatorname{pr}_U|_U = \operatorname{id}_U$, und insbesondere ist pr_U surjektiv. Ist $\operatorname{pr}_U(x) = 0$, so ist $\langle x, x_i \rangle = 0$ für alle i., woraus mit (S2) und (S4) sofort $x \perp U$ folgt. Somit ist $\operatorname{Ker}(\operatorname{pr}_U) \perp U$.

$$\begin{split} & \text{F\"{u}r} \ x \in V \text{ ist } \operatorname{pr}_U(x - \operatorname{pr}_U(x)) = \operatorname{pr}_U(x) - \operatorname{pr}_U(\operatorname{pr}_U(x)) = \operatorname{pr}_U(x) - \operatorname{pr}_U(x) = 0, \text{ also } x - \operatorname{pr}_U(x) \in \operatorname{Ker}(\operatorname{pr}_U) \subseteq U^\perp. \\ & \text{Ist } f: V \to U \text{ ein weiterer Epimorphismus mit } f|_U = \operatorname{id}_U \text{ und } \operatorname{Ker}(f) \perp U, \text{ so ist } \end{split}$$

$$\underbrace{\operatorname{pr}_U(x)}_{\in U} - \underbrace{f(x)}_{\in U} = \underbrace{\operatorname{pr}_U(x) - x}_{\in U^{\perp}} - \underbrace{f(x) - x}_{\in U^{\perp}} \in U \cap U^{\perp} = \{0\}$$

für jedes $x \in V$, somit $f = \operatorname{pr}_U$.

Theorem 4.9 (GRAM-SCHMIDT-Verfahren)

Ist $(x_1,...,x_n)$ eine Basis von V und $k \leq n$ mit $(x_1,...,x_k)$ orthonormal, so gibt es eine Orthonormalbasis $(y_1,...,y_n)$ von V mit $y_i=x_i$ für i=1,...,k und $\operatorname{span}_K(y_1,...,y_l)=\operatorname{span}_K(x_1,...,x_l)$ für l=1,...,n.

Beweis. Induktion nach d = n - k.

d=0: nichts zu zeigen

 $\overline{d-1} \to d$: Für $i \neq k+1$ definiere $y_I = x_i$. Sei $U = \operatorname{span}_K(x_1,...,x_k), \ x_{k+1} = x_{k+1} - \operatorname{pr}_U(x_{k-1})$. Dann ist $x_{k+1} \in \operatorname{Ker}(\operatorname{pr}_U) \subseteq U^{\perp}$ (vgl. Satz 4.8) und $\operatorname{span}_K(x_1,...,x_k,x_{k+1}) = \operatorname{span}_K(x_1,...,x_{k+1})$. Setze $y_{k+1} = \frac{1}{\|x_{k+1}\|}x_{k+1}$. Dann ist $(y_1,...,y_n)$ eine Basis von V mit $(y_1,...,y_{k+1})$ orthonormal (vgl. Lemma 4.7). Nach Induktionshypothese gibt es eine Orthonormalbasis von V, die das Gewünschte leistet.

Folgerung 4.10

Jeder endlichdimensionale euklidische bzw. unitäre Vektorraum V besitzt eine Orthonormalbasis.

Beweis. Wähle irgendeine Basis von V und wende Theorem 4.9 mit k=0 an.

Folgerung 4.11

Ist U ein Untervektorraum von V, so ist $V = U \oplus U^{\perp}$ und $(U^{\perp})^{\perp} = U$.

Beweis. Wähle eine Orthonormalbasis von U (vgl. Folgerung 4.10), $B=(x_1,...,x_k)$ und ergänze diese zu einer Orthonormalbasis $(x_1,...,x_n)$ von V (vgl. Theorem 4.9). Dann sind $x_{k+1},...,x_n \in U \perp$, da $U \cap U^\perp = \{0\}$ ist somit $V=U \oplus U^\perp$. Insbesondere ist $\dim_K(U^\perp)=n-\dim_K(U)$, woraus $\dim_K((U^\perp)^\perp)=\dim_K(U)$ folgt. Zusammen mit der trivialen Inklusion $U\subseteq (U^\perp)^\perp$ folgt $U=(U^\perp)^\perp$.

Folgerung 4.12

Ist s eine positiv definite hermitesche Sesquilinearform auf V und B eine Basis von V, so ist

$$\det(M_B(s)) \in \mathbb{R}_{>0}$$

Beweis. Wähle eine Orthonormalbasis B' von V bezüglich s. Dann ist $M_{B'}(s)=\mathbbm{1}_n,$ folglich

$$\det(M_B(s)) = \det\left(\left(T_{B'}^B\right)^t \cdot \mathbb{1}_n \cdot \overline{T_{B'}^B}\right)$$

$$= \det\left(\left(T_{B'}^B\right)^t\right) \cdot \det\left(\overline{T_{B'}^B}\right)$$

$$= \det\left(T_{B'}^B\right) \cdot \overline{\det\left(T_{B'}^B\right)}$$

$$= |\det\left(T_{B'}^B\right)|^2$$

$$> 0$$

5. Orthogonale und unitäre Endomorphismen

Sei V ein euklidischer bzw. unitärer Vektorraum und $f \in \operatorname{End}_K(V)$.

Definition 5.1 (orthogonale, unitäre Endomorphismen)

f ist orthogonal bzw. unitär, wenn

$$\langle f(x), f(y) \rangle = \langle x, y \rangle \quad \forall x, y \in V$$

Satz 5.2

Ist f unitär, so gelten

- Für $x \in V$ ist ||f(x)|| = ||x||.
- Sind $x, y \in V$ mit $x \perp y$, so ist $f(x) \perp f(y)$.
- Es ist $f \in Aut_K(V)$ und auch f^{-1} ist unitär.
- \bullet Das Bild einer Orthonormalbasis unter f ist eine Orthonormalbasis.
- Ist λ ein Eigenwert von f, so ist $|\lambda| = 1$.

Beweis. • klar

- klar
- $f(x) = 0 \iff ||f(x)|| = 0 \iff ||x|| = 0 \iff x = 0$, also ist f injektiv, somit $f \in Aut_K(V)$ und

$$\left\langle f^{-1}(x), f^{-1}(y) \right\rangle \stackrel{f \text{ unit \"ar}}{=} \left\langle f(f^{-1}(x)), f(f^{-1}(y)) \right\rangle = \left\langle x, y \right\rangle$$

- Folgt aus 1, 2 und 3
- Ist $f(x) = \lambda x, x \neq 0$, so ist

$$||x|| = ||f(x)|| = ||\lambda x|| = |\lambda| \cdot ||x|| \Rightarrow |\lambda| = 1$$

Satz 5.3

Ist ||f(x)|| = ||x|| für alle $x \in V$, so ist f unitär.

Beweis. Aus ||f(x)|| = ||x|| folgt $\langle f(x), f(x) \rangle = \langle x, x \rangle$. Die Polarisierung (Satz 3.4) für $\langle f(x), f(y) \rangle$ und die Linearität von f liefern $\langle f(x), f(y) \rangle = \langle x, y \rangle$. Zum Beispiel im Fall $K = \mathbb{R}$:

$$\langle f(x), f(y) \rangle = \frac{1}{2} \left(\left\langle \underbrace{f(x) + f(y)}_{f(x+y)}, \underbrace{f(x) + f(y)}_{f(x+y)} \right\rangle - \left\langle f(x), f(x) \right\rangle - \left\langle f(y), f(y) \right\rangle \right)$$

$$= \frac{1}{2} \left(\left\langle x + y, x + y \right\rangle - \left\langle x, x \right\rangle - \left\langle y, y \right\rangle \right)$$

$$= \left\langle x, y \right\rangle$$

Definition 5.4 (orthogonale, unitäre Matrizen)

Eine Matrix $A \in \operatorname{Mat}_n(K)$ heißt orthogonal bzw. unitär, wenn

$$A^*A = \mathbb{1}_n$$

▶ Bemerkung 5.5

Offenbar ist A genau dann unitär, wenn A^* das Inverse zu A ist. Die folgenden Bedingungen sind

daher äquivalent dazu, dass A unitär ist:

$$AA^* = \mathbb{1}_n, \overline{A}A^t = \mathbb{1}_n, A^t \overline{A} = \mathbb{1}_n, A^t = \overline{A^{-1}}$$

Satz 5.6

Sei B eine Orthogonalbasis von V. Genau dann ist f unitär, wenn $M_B(f)$ unitär ist.

Beweis. Sei $A = M_B(f)$, $v = \Phi_B(x)$, $\Phi_B(y)$. Dann ist $\langle v, w \rangle = x^t \underbrace{M_B(\langle \cdot, \cdot \rangle)}_{=1} \cdot \overline{y} = x^t \cdot \overline{y}$. Somit ist f genau dann unitär, wenn $(Ax)^t \overline{Ay} = x^t \overline{y}$ für alle $x, y \in K^n$, also wenn $A^t \overline{A} = \mathbb{1}$, d.h. A unitär.

Satz 5.7

Die folgenden Mengen bilden Untergruppen der $GL_n(K)$.

- $O_n = \{A \in GL_n(\mathbb{R}) \mid A \text{ ist orthogonal}\}\ die \underline{\text{orthogonale Gruppe}}$
- $SO_n = \{A \in O_n \mid \det(A) = 1\}$ die spezielle orthogonale Gruppe
- $U_n = \{A \in GL_n(\mathbb{C}) \mid A \text{ ist unitar}\}\ die unitare Gruppe$
- $SU_n = \{A \in U_n \mid \det(A) = 1\}$ die spezielle unitäre Gruppe

Beweis. z.B. für U_n: Sind
$$A^{-1} = A^*$$
, $B^{-1} = B^*$, so ist $(AB)^{-1} = B^{-1}A^{-1} = B^*A^* = (AB)^*$, $(A^{-1})^{-1} = A = (A^*)^{-1} = (A^{-1})^*$

Satz 5.8

Genau dann ist $A \in \operatorname{Mat}_n(K)$ unitär, wenn die Spalten (oder die Zeilen) von A eine Orthonormalbasis des K^n bilden.

Beweis. Sei s das Standardskalarprodukt und $B=(a_1,...,a_n)$. Nach Bemerkung 4.5 ist B genau dann eine Orthonormalbasis, wenn $M_B(s)=\mathbbm{1}_n$, und $M_B(s)=A^t\cdot \mathbbm{1}_n\cdot \overline{A}$, vgl. Beispiel 2.9

Kapitel III $Dualit\ddot{a}t$

Kapitel IVModuln

Anhang A: Listen

A.1. Liste der Theoreme

Theorem 4.8:		10
Theorem 5.9:	Satz von Cayley-Hamiltion	12
Theorem 7.5:	JORDAN-Normalform	19
Theorem 4.9:	Gram-Schmidt-Verfahren	30

A.2. Liste der benannten Sätze

Satz 6.4:	Lemma von Fitting	14
Satz 7.3:	Hauptraumzerlegung	18
Satz 1.4:	Ungleichung von Cauchy-Schwarz	22
Satz 2.8:	Transformationsformel	25
Satz 3.4:	Polarisierung	27

Index

JORDAN-Invarianten, 19	nilpotent, 15
JORDAN-Matrix, 16	Nilpotenzklasse, 15
	normiert, 5
Absolutbetrag, 22	,
ausgeartet, 25	orthogonal, 29
Bilinearform, 24	orthogonale Gruppe, 33 orthogonale Komplement, 29
charakteristische Polynom, 4	orthogonale Projektion, 30 orthonormal, 29
definit, 27	
diagonalisierbar, 6	quadratische Form, 27
Eigenraum, 1	semidefinit, 27
Eigenvektor, 1	Sesquilinearform, 24
Eigenwert, 1	darstellende Matrix, 24
Endomorphismus	spezielle orthogonale Gruppe, 33
orthogonal, 32	spezielle unitäre Gruppe, 33
unitär, 32	Standardskalarprodukt in \mathbb{C} , 22
euklidische Norm in \mathbb{C} , 23	Standardskalarprodukt in \mathbb{R} , 21
euklidische Norm in \mathbb{R} , 21	symmetrisch, 25
euklidischen, 27	,
	teilt, 6
Hauptraum, 18	trigonalisierbar, 9
hermitesch, 25	,
invariant, 9	unitäre Gruppe, 33
iiivaiiaii, o	unit \ddot{a} ren, 27
komplexe Konjugation, 22	
,	Vielfachheit, 6
Matrix	algebraische Vielfachheit, 8
orthogonal, 32 unitär, 32	geometrische Vielfachheit, 8
Minimalpolynom, 11	zyklisch, 12