Continuation of Examples

Note Title

Example 2: Face Image Database

- Provided by Prof. L. Sirovich (Mt Sinai S. M.)
- Consists of 143 faces of male caucasian prindents (and some faculty) at Brown Univ., without glasses, mustache, beard
- Each face is a groy-scale image with 128 x 128 pixels
- Horizontal dilation was applied so that the pupils are placed on two fixed points.

Below, 9 out of 143 are displayed:

Note that each image of size 128×128 pixels can be represented as a matrix of 128 rows and 128 columns or a vector of length 128×128 = 16384. Infact, in MATLAB, if

 $X = \begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,128} \\ \vdots & \vdots & \vdots \\ x_{128,1} & x_{128,2} & x_{128,128} \end{bmatrix} \in \mathbb{R}^{128 \times 128}$

then X(:) represents a vector of length 16384 as follows:

By default, a vector is a column vector

Now, let's pick one face image, and consider its representations using two different bases: 1) The standard basis {\varepsilon; \varepsilon} 2) The wavelet basis {\varepsilon; \varepsilon, \varepsilon} n=128^2 = 16384 > its relatives are used in JPEG 2000!

1) The standard basis

Original Basis #1 Basis #2 Residual Basis #3 Approx with 1311 terms 2) The wavelet basis Original Basis #1 Basis #2 Basis #3 Approx with 1311 terms Residual

Example 3: Term - Document Matrices for Search

This example is from Berry & Browne: "Understanding Search Engines", 2005.

Consider a set of documents consisting of book titles, and a set of words (or terms) as follows:

	Terms		Documents
T1:	Bab(y,ies,y's)	D1:	Infant & Toddler First Aid
T2:	Child(ren's)	D2:	Babies & Children's Room
			(For Your <u>Home</u>)
T3:	Guide	D3:	Child Safety at Home
T4:	Health	D4:	Your Baby's <u>Health</u> and Safety:
T5:	Home		From Infant to Toddler
T6:	Infant	D5:	Baby Proofing Basics
T7:	Proofing	D6:	Your Guide to Easy Rust Proofing
T8:	Safety	D7:	Beanie Babies Collector's Guide
T9:	Toddler		

Then, consider the following term-document matrix of size 9×7.

The 9 × 7 term-by-document matrix before normalization, where the element \hat{a}_{ij} is the number of times term i appears in document title j:

Now suppose we want to retrieve books on "Child Proofing"

Then this can be reprented by a query vector:

 $\mathcal{E} = [0]0000100]'$

Try to match & with each column vector (i.e., a document). No exact hit, but the close ones are D2, D3, D5, D6

Generalizing this to:

I terms = the English dictionary
I documents = the entire webpages
the term-document matrix
be comes huge!!

est. in 2017

300,000 × 47,000,000,000

or even lager now!

How to deal with such a huge matrix for search? ⇒ We'il learn how later in this course.

Example 4: Link Graph Matrix of web pages

Consider a very small set of webpages

This graph means that

- 1) has outlinks to @, 4, 5 (pointers)
- 1 has an inlink from 2
 - 2 has ---

A link graph matrix
$$P = (P_{ij})$$
 is defined by

 $P_{ij} = \begin{cases} nonzero & \text{if } \exists (j) \rightarrow (i) \\ 0 & \text{otherwise} \end{cases}$

The nonzero const. is determined by the normalization

$$\sum_{i=1}^{n} P_{ij} = 1 \quad \text{for } 1 \leq j \leq n$$

One possible measure of importance of a webpage i)

= how many other important pages

have outlinks to i)

- · This can be solved by the eigenvalue decomposition of P
- In reality, n > billions!
- Depending on the literature, P^{T} is denoted as "P", i.e., $\sum_{j=1}^{n} P_{ij} = 1$, $1 \le i \le n$
 - De 11 discuss link graph matrices in Letail later in this course.

Floating Point Computations * Floating Point Numbers

On a digital computer, one can only use a finite number of bits to represent a real number, e.g., $\sqrt{2}$, π , e, etc.

The idealized floating point system is a discrete subset $F \subset \mathbb{R}$ $F := \{0\} \cup \{x \in \mathbb{R} \mid x = \pm 1.d_1 d_2 \cdots d_t \times \beta^e\}$ $d_j \in \{0, 1, \cdots, \beta - 1\}, 1 \le j \le t$ $t \ge 1, t \in \mathbb{N},$ $\beta \ge 2, \beta \in \mathbb{N},$ $e \in \mathbb{Z}$ $d_i d_2 \cdots d_t = mantissa (or fraction)$ $\beta = base (rradix), typically \beta = 2.$ e = exponent, t = precision. $1.d_i d_2 \cdots d_t \times \beta^e$ in base β $= (\frac{1}{\beta^0} + \frac{d_1}{\beta^1} + \frac{d_2}{\beta^2} + \cdots + \frac{d_t}{\beta^t}) \times \beta^e$ in base 10

they are float, double, long double.

Basic f. p. types for a real number:

Single precision f. p. number = 32 bits

Double " " = 64 bits

Quadraple " " = 128 bits

MATLAB Default! \(\text{ATLAB Default!} \)

exponent fraction (52 bit)

Source: wiki pedia 0

How about t?

In IEEE 754 Standard,

24 for single precision

t = {53 double "

113 quadraple "

μ:= ½ β is called

the machine epsilon

or the unit round-off

of the floating point system,

often denoted by Emach.

Single Precision $\mu = 2^{-24} \approx 5.96 \times 10^{-8}$ Double Precision $\mu = 2^{-53} \approx 1.11 \times 10^{-16}$ Quadraple Precision $\mu = 2^{-1/3} \approx 9.63 \times 10^{-35}$

How about e?

In IEEE 754 Standard,

Single precision: $-126 \le e \le 127$ double ', : $-1022 \le e \le 1023$ Quadraple ', : $-16382 \le e \le 16383$

Hence the range of representable positive numbers are roughly:

Now, we have:

(*) ∀x ∈ R, = x´∈ F s.t. |x-x'| ≤ µ |x|

Let's define the following function: $fl: \mathbb{R} \to \mathbb{F}$

a fon giving the closest f.p. approximation to a given real num. = rounded equivalent in F.

So, the statement (*) is equivalent to $\forall x \in \mathbb{R}$, $\exists \xi \in \mathbb{R}$ with $|\xi| \leq \mu s.t$. $fl(x) = x(1+\xi)$

If a computer truncates (instead of rounds) the intermediate result xoy, then in (*) µ should be replaced by 2 µ.

Nick Trefethen (Oxford) calls (**)
"The Fundamental Axiom of
Floating Point Arithmetic."

* Floating Point Operations (FLOPS)

FLOPS = flops = flop/s
= f.p. operations/second
= a measure of a computer's
performance

flop = a unit of one arithmetic operation on a computer Ex. The statement in a code y = y + a * x;

How many flops does this require?

The world fastest computer can perform

2 93 Peta FLOPS = 93 × 1015 FLOPS!