

Docket No.: 5432/0M916US0

(PATENT)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of: Jan Kehler, et al.		
Application No.: Not Yet Assigned	Group Art U	Jnit: N/A
Filed: Concurrently Herewith	Examiner: 1	Not Yet Assigned
For: INDOLINE DERIVATIVES		
CLAIM FOR PRIORITY	AND SUBMISSION OF I	OCUMENTS
Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450		
Dear Sir:		
Applicant hereby claims priority	under 35 U.S.C. 119 based	l on the following prior
foreign application filed in the following for	reign country on the date in	dicated:
Country	Application No.	Date
Denmark	PA 2000 01931	22 December 2000
In support of this claim, a certific	ed copy of the said original	foreign application is filed
herewith.		
Dated: June 17, 2003	Respectfully submitte By Co. Todaro John C. Todaro Registration No.: 3 DARBY & DARBY 1 P.O. Box 5257	6,036

New York, New York 10150-5257

Attorneys/Agents For Applicant

(212) 527-7700 (212) 753-6237 (Fax)

Kongeriget Danmark

Patent application No.: PA 2000 01931

Date of filing: 22 December 2000

Applicants: H. Lundbeck A/S

Ottiliavej 9 DK-2500 Valby

This is to certify the correctness of the following information:

The attached photocopy is a true copy of the following document:

The specification and claims as filed with the application on the filing date indicated above.

Patent- og Varemærkestyrelsen

Erhvervsministeriet

Taastrup 30 Nov

30 November 2001

Inge-Lise Sørensen

Head Clerk

Indoline derivatives

The present invention relates to a novel class of 3-indoline derivatives having affinity for the dopamine D₄ receptor. The compounds are useful in the treatment of certain psychiatric and neurologic disorders, in particular psychoses. The compounds also have affinity for the 5-HT_{2A} receptor.

Background of the Invention

10 US patent No. 3,751,417 relates to 1-acyl-3-[2-(4-phenyl-1-piperazinyl)ethyl]indolines having the general formula

$$R_1$$
 R_2
 R_3
 R_4

wherein R₁ is hydrogen, chloro, bromo, lower alkoxy, nitro, amino, acetamido or dimethylamino, R₂ is hydrogen, lower alkoxy or nitro, or R₁ and R₂ taken together is methylenedioxy, R₃ is hydrogen or methyl, R₄ is hydrogen or methyl, R₅ is hydrogen, chloro, methoxy, methyl or trifluoromethyl and Y is benzoyl, p-chlorobenzoyl, p-nitrobenzoyl or lower alkanoyl.

The compounds are said to be useful as tranquillisers and analgesics.

US 3,751,416 relates to similar compounds having a hydrogen in position 1 of the indoline ring.

These compounds are also described as tranquillisers.

US 5,002,948 relates to compounds having the general formula

$$R_1$$
 X R_5 Y R_5

wherein R₁ is hydrogen, halogen, lower alkyl, lower alkenyl or trifluoromethyl, X is CH, CH₂, NH or CO, the dotted line indicates an optional bond, R2 is hydrogen, lower alkyl, acyl etc., Y is O or S, Y' is H, O, S or CH₂ and R⁵ is hydrogen, lower alkyl or alkenyl. The compounds are described as 5-HT_{IA} ligands being useful for the treatment of anxiety, depression aggression, alcohol abuse and diseases related to the cardiovascular, gastrointestinal and renal system.

US 3,900,563 relates to compounds said to be useful for the treatment of psychotic disorders. The compounds disclosed herein have the general formula

$$x_1$$
 y_1
 y_1
 y_2

wherein X_1 is 5,6-dimethoxy, or 5,6-methylendioxy, Y_1 is hydrogen or methyl and Z_1 is hydrogen or methoxy.

US 4.302.589 relates to substituted cis-2-methyl-3-[(piperazinyl) and (piperidino)ethyl]indolines having the general formula

15

25

wherein R₁ is fluoro, chloro, trifluoromethyl, or methoxy, R₂ is hydrogen, chloro and methoxy, and M and A are carbon or nitrogen. These compounds are described as antipsychotics.

WO 92/22554 relates to certain 4-(phenylalkyl)piperidines having affinity for sigma receptors. Nothing is said about effect at dopamine D₄ receptors.

Dopamine D₄ receptors belong to the dopamine D₂ subfamily of receptors, which is considered to be responsible for the antipsychotic effects of neuroleptics. The side effects of neuroleptic drugs, which primarily exert their effect via antagonism of D2 receptors, are known to be due to D2 receptor antagonism in the striatal regions of the brain. However, dopamine D4 receptors are primarily

located in areas of the brain other than striatum, suggesting that antagonists of the dopamine D₄ receptor will be devoid of extrapyramidal side effects. This is illustrated by the antipsychotic clozapine, which exerts higher affinity for D₄ than D₂ receptors, and is lacking extrapyramidal side effects (Van Tol et al. *Nature* 1991, 350, 610; Hadley *Medicinal Research Reviews* 1996, 16, 507-526 and Sanner Exp. Opin. Ther. Patents 1998, 8, 383-393).

A number of D₄ ligands, which were postulated to be selective D₄ receptor antagonists (L-745,879 and U-101958) have been shown to posses antipsychotic potential (Mansbach et al. *Psychopharmacology* 1998, 135, 194-200). However, recently is has been reported that these compounds are partial D₄ receptor agonists in various *in vitro* efficacy assays (Gazi et al. *Br. J. Pharmacol.* 1998, 124, 889-896 and Gazi et al. *Br. J. Pharmacol.* 1999, 128, 613-620). Furthermore, it was shown that clozapine, which is an effective antipsychotic, is a silent antagonists (Gazi et al. *Br. J. Pharmacol.* 1999, 128, 613-620).

15 Consequently, D₄ ligands, which are partial D₄ receptor agonists or antagonists, may have beneficial effects against psychoses.

Dopamine D₄ antagonists may also be useful for the treatment of cognitive deficits (Jentsch et al. *Psychopharmacology* **1999**, *142*, 78-84.

It has also been suggested that dopamine D₄ antagonists may be useful to reduce dyskinesia occurring as a result of the treatment of Parkinson's disease with L-dopa (Tahar et al. Eur. J. Pharmacol. 2000, 399, 183-186).

20

Various effects are known with respect to compounds, which are ligands at the different serotonin receptor subtypes. As regards the 5-HT_{2A} receptor, which was previously referred to as the 5-HT₂ receptor, the following effects have been reported, e.g.:

Antidepressive effect and improvement of the sleep quality (Meert et al. *Drug. Dev. Res.* 1989, 18, 119), reduction of the negative symptoms of schizophrenia and of extrapyramidal side effects caused by treatment with classical neuroleptics in schizophrenic patients (Gelders *British J. Psychiatry* 1989, 155 (suppl. 5), 33). Furthermore, selective 5-HT_{2A} antagonists could be effective in the prophylaxis and treatment of migraine (Scrip Report; "Migraine – Current trends in research and treatment"; PJB Publications Ltd.; May 1991) and in the treatment of anxiety (Colpart et al *Psychopharmacology* 1985, 86, 303-305 and Perregaard et al. Recent Developments in Anxiolytics. *Current Opinion in Therapeutic Patents* 1993, 1, 101-128).

Some clinical studies implicate the 5-HT2 receptor subtype in aggressive behaviour. Further, atypical serotonin-dopamine antagonist neuroleptics, have 5-HT₂ receptor antagonistic effect in addition to their dopamine blocking properties, and has been reported to possess anti-aggressive behaviour (*Exp. Opin. Ther. Patents.* 1998, 8(4):350-351).

Recently, evidence has also accumulated which support the rational for selective 5-HT_{2A} antagonists as drugs capable of treating positive symptoms of psychosis (Leysen *et al*, Current Pharmaceutical Design, 1997, 3, 367-390 and Carlsson, Current Opinion in CPNS Investigational Drugs, 2000, 2(1), 22-24).

Accordingly, compounds with combined effects at dopamine D₄ and 5-HT_{2A} receptors may have the further benefit of improved effect on psychiatric symptoms in schizophrenic patients.

15 Summary of the Invention

20

The object of the present invention is to provide compounds, which are partial agonists or antagonists at the dopamine D₄ receptor, in particular compounds with combined effects at the dopamine D₄ receptor and the 5-HT_{2A} receptor.

Thus, the present invention relates to the use of a compound having the general formula

$$\mathbb{R}^{4}$$
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{4}
 \mathbb{R}^{3}
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{10}

wherein R¹ is acyl, thioacyl, trifluoromethylsulfonyl, or R¹ is a group R¹²SO₂-, R¹²OCO- or R¹²SCOwherein R¹² is C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl or
aryl, or R¹ is a group R¹³R¹⁴NCO-, R¹³R¹⁴NCS-, wherein R¹³ and R¹⁴ are independently hydrogen,
C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl or aryl, or R¹³ and
R¹⁴ together with the N-atom to which they are linked, form a pyrrolidinyl, piperidinyl or
perhydroazepin group;

n is 1-6;

5

20

30

X is C, CH or N, and the dotted line emanating from X indicates a bond when X is C and no bond when X is N or CH;

R² is hydrogen or C₁₋₆-alkyl; and

 R^3 - R^{11} are independently selected from hydrogen, halogen, cyano, nitro, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{2-6} -alkynyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkyl- C_{1-6} -alkyl, amino, C_{1-6} -alkylamino, di- $(C_{1-6}$ -alkyl)amino, C_{1-6} -alkylcarbonyl, aminocarbonyl, C_{1-6} -alkylaminocarbonyl, di- $(C_{1-6}$ -alkyl)aminocarbonyl, C_{1-6} -alkoxy, C_{1-6} -alkylthio, hydroxy, trifluoromethyl, trifluoromethylsulfonyl and C_{1-6} -alkylsulfonyl;

or a pharmaceutically acceptable acid addition salt thereof, for the manufacture of a medicament useful in the treatment of diseases or disorders responsive to antagonist or partial agonists at the dopamine D₄ receptor, such as positive and negative symptoms of schizophrenia, other psychoses, anxiety disorders, such as generalised anxiety disorder, panic disorder, and obsessive compulsive disorder, depression, aggression, side effects induced by conventional anti-psychotic agents, migraine, cognitive disorders, dyskinesia induced by treatment with L-dopa, and in the improvement of sleep quality.

The invention also relates to compounds of formula (I) as defined above but with the proviso that

- (i) R⁹ may not be hydrogen, CF₃ or chloro, when R²-R⁸, R¹⁰-R¹¹ are hydrogen, n is 2 and R¹ is acetyl;
- 25 (ii) R^7 or R^{11} may not be methoxy when X is N, n is 2, or 4 and R^1 is acetyl; and
 - (iii) R⁴ may not be methoxy, when n is 2, R¹ is C₁₋₄-alkanoyl, benzoyl, p-chlorobenzoyl or p-nitrobenzoyl;

or a pharmaceutically acceptable acid addition salt thereof.

According to a preferred embodiment, the present invention relates to the S-enantiomer of the compounds of formula (I) and the use thereof.

According to another embodiment, the present invention relates to compounds of formula (I) and the use thereof wherein R⁷ and R¹¹ are hydrogen. In a preferred embodiment, the present invention relates to such compounds of formula (I) and the use thereof wherein R¹⁰ is also hydrogen.

In a particular preferred embodiment, the present invention relates to compounds wherein at least one of R⁸ and R⁹ is selected from halogen, cyano, nitro, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, amino, C₁₋₆-alkylamino, di-(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonyl, aminocarbonyl, C₁₋₆-alkylaminocarbonyl, di-(C₁₋₆-alkyl)aminocarbonyl, C₁₋₆-alkylsulfonyl.

According to a more specific embodiment, the present invention relates to such compounds of formula (I) and the use thereof, wherein n is 2, or 3, preferably 2, and compounds wherein R¹ is acyl, in particular acetyl.

When R^2 is C_{1-6} -alkyl, it is preferably methyl.

10

30

In a further embodiment the present invention relates to compounds of formula (I) above wherein R^2 , R^3 , R^4 , R^5 and R^6 are hydrogen.

20 In particular, the present invention relates to the following compounds:

(+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-dimethylphenyl)piperazine,

(+)-1-[2-(1-Acetyl-2,3-dihydro-IH-indol-3-yl)ethyl]-4-(4-methylphenyl)piperazine,

(+)-1-[2-(1-Acetyl-2,3-dihydro-IH-indol-3-yl)ethyl]-4-(4-methylphenyl)piperidine,

(+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-dichlorophenyl)piperazine, and

(+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-bromophenyl)piperazine, or a pharmaceutically acceptable salt thereof and the use thereof.

The compounds of the invention are partial agonists or antagonist at the dopamine D₄ receptors. The compounds also have affinity for the 5-HT_{2A} receptor.

Accordingly, the compounds of the invention are considered useful in the treatment of positive and negative symptoms of schizophrenia, other psychoses, anxiety disorders, such as generalised anxiety disorder, panic disorder, and obsessive compulsive disorder, depression, aggression, side effects induced by conventional antipsychotic agents, dyskinesia induced by treatment with L-dopa,

5 migraine, cognitive disorders and in the improvement of sleep quality.

In particular, the compounds of the invention are considered useful in the treatment of positive and negative symptoms of schizophrenia without inducing extrapyramidal side effects.

In another aspect, the present invention provides a pharmaceutical composition comprising at least one compound of formula I as defined above or a pharmaceutically acceptable acid addition salt thereof in a therapeutically effective amount in combination with one or more pharmaceutically acceptable carriers or diluents.

In a further aspect, the present invention provides a method of treating the positive and negative symptoms of schizophrenia, other psychoses, anxiety disorders, such as generalised anxiety disorder, panic disorder, and obsessive compulsive disorder, depression, aggression, side effects induced by conventional anti-psychotic agents, migraine, cognitive disorders, dyskinesia induced by treatment with L-dopa, and in the improvement of sleep quality, comprising administration of a therapeutically acceptable amount of a compound of formula (I) as above.

15

Detailed Description of the Invention

The compounds of general formula I may exist as optical isomers thereof and such optical isomers are also embraced by the invention.

20

The term C_{1-6} -alkyl refers to a branched or unbranched alkyl group having from one to six carbon atoms inclusive, such as methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-2-propyl and 2-methyl-1-propyl.

Similarly, C₂₋₆-alkenyl and C₂₋₆-alkynyl, respectively, designate such groups having from two to six carbon atoms, including one double bond and one triple bond respectively, such as ethenyl, propenyl, butenyl, ethynyl, propynyl and butynyl.

The terms C_{1-6} -alkylthio, C_{1-6} -alkylthio, C_{1-6} -alkylsulfonyl, C_{1-6} -alkylamino, C_{1-6} -alkylcarbonyl, and the like, designate such groups, in which the alkyl group is C_{1-6} alkyl as defined above.

The term C₃₋₈-cycloalkyl designates a monocyclic or bicyclic carbocycle having three to eight C-atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, etc.

35 Halogen means fluoro, chloro, bromo or iodo.

As used herein the term acyl refers to a formyl, C_{1.6}-alkylcarbonyl, arylcarbonyl,

aryl- C_{1-6} -alkylcarbonyl, C_{3-8} -cycloalkylcarbonyl or a C_{3-8} -cycloalkyl- C_{1-6} -alkyl-carbonyl group and the term thioacyl is the corresponding acyl group in which the carbonyl group is replaced with a thiocarbonyl group. In the term C_{3-8} -cycloalkyl- C_{1-6} -alkyl, C_{3-8} -alkyl and C_{1-6} -alkyl is as defined above.

The term aryl refers to a carbocyclic aromatic group, such as phenyl, or naphthyl, in particular phenyl, which may optionally be substituted with C_{1-6} -alkyl.

The acid addition salts of the compounds of the invention are pharmaceutically acceptable salts formed with non-toxic acids. Exemplary of such organic salts are those with maleic, fumaric, benzoic, ascorbic, succinic, oxalic, bis-methylenesalicylic, methanesulfonic, ethanedisulfonic, acetic, propionic, tartaric, salicylic, citric, gluconic, lactic, malic, mandelic, cinnamic, citraconic, aspartic, stearic, palmitic, itaconic, glycolic, p-aminobenzoic, glutamic, benzenesulfonic and theophylline acetic acids, as well as the 8-halotheophyllines, for example 8-bromotheophylline. Exemplary of such inorganic salts are those with hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric and nitric acids.

The pharmaceutical compositions of this invention, or those which are manufactured in accordance with this invention, may be administered by any suitable route, for example orally in the form of tablets, capsules, powders, syrups, etc., or parenterally in the form of solutions for injection. For preparing such compositions, methods well known in the art may be used, and any pharmaceutically acceptable carriers, diluents, excipients, or other additives normally used in the art may be used.

25 Conveniently, the compounds of the invention are administered in unit dosage form containing said compounds in an amount of 0.01 to 100 mg.

The total daily dose is usually in the range of 0.05 - 500 mg, and most preferably in the range of 0.1 to 50 mg of the active compound of the invention.

The compounds of the invention may be prepared as follows:

30

1) Alkylating a piperazine, piperidine, or tetrahydropyridine of formula III with an alkylating derivative of formula II:

$$R^4$$
 R^5
 R^6
 R^1
 R^2
 R^7
 R^8
 R^{10}
 R^{10}
 R^{10}

wherein R^1 - R^{11} , X, n and the dotted line are as previously defined, and L is a leaving group such as e.g. halogen, mesylate, or tosylate;

5 2) Reductive alkylation of an amine of formula III with a reagent of formula IV:

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^6
 \mathbb{R}^1
 \mathbb{R}^7
 \mathbb{R}^8
 \mathbb{R}^9
 \mathbb{R}^1
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{10}

wherein R¹-R¹¹, X, n and the dotted line are as previously defined and E is an aldehyde or an activated carboxylic acid;

3) Reducing the double bond in the tetrahydropyridinyl ring in derivatives of formula V:

$$R^3$$
 $(CH_2)_n$
 R^3
 R^4
 R^5
 R^8
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}

15 wherein R¹-R¹¹ and n are as previously defined; or

10

4) Acylating an amine of formula VI by the use of a carboxylic acid and a coupling reagent, an activated ester, an acid chloride, an isocyanate or by a two-step procedure by treatment with phosgene followed by addition of an amine:

$$\mathbb{R}^{4}$$
 \mathbb{R}^{3}
 \mathbb{R}^{4}
 \mathbb{R}^{11}
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{10}

wherein R²-R¹¹, X, n and the dotted line are as previously defined; whereupon the compound of formula I is isolated as the free base or a pharmaceutically acceptable acid addition salt thereof.

The alkylation according to method 1) is conveniently performed in an inert organic solvent such as a suitably boiling alcohol or ketone, preferably in the presence of an organic or inorganic base (potassium carbonate, diisopropylethylamine or triethylamine) at reflux temperature. Alternatively, the alkylation can be performed at a fixed temperature, which is different from the boiling point, in one of the above-mentioned solvents or in dimethyl formamide (DMF), dimethylsulfoxide (DMSO) or *N*-methylpyrrolidin-2-one (NMP), preferably in the presence of a base. The alkylating derivatives of formula II have been described in the literature (WO 98/28293), and the amines of formula III are commercially available or has been described in the literature.

15

20

10

The reductive alkylation according to method 2) is performed by standard literature methods. The reaction can be performed in two steps, e.g. coupling of amines of formula III with reagent of formula IV by standard methods via the carboxylic acid chloride, activated esters or by the use of carboxylic acids in combination with a coupling reagents such as e.g. dicyclohexyl carbodiimide, followed by reduction of the resulting amide with lithium aluminium hydride or alane. The carboxylic acids of formula IV can be prepared by reduction of the corresponding indolecarboxylic acids by standard methods (see e.g. WO 98/28293).

The reduction of the double bond according to method 3) is generally performed by catalytic hydrogenation at low pressure (< 3 atm.) in a Parr apparatus, or by using reducing agents such as diborane or hydroboric derivatives as produced *in situ* from NaBH₄ in trifluoroacetic acid in inert solvents such as tetrahydrofuran (THF), dioxane or diethyl ether.

The acylation according to method 4) is conveniently performed by standard methods via the carboxylic acid chloride, activated esters or by the use of carboxylic acids in combination with coupling reagents such as e.g. dicyclohexyl carbodiimide. When the acylating reagent is carbamoyl

chlorides, or isocyanates, the acylation produces urea derivatives. The urea derivatives can also be prepared by a two-step procedure consisting of treatment with phosgene followed by addition of an amine.

5 The intermediate compounds of formula VI are prepared as described in methods 1) and 2).

Experimental Section

Melting points were determined on a Büchi SMP-20 apparatus and are uncorrected. Analytical LC10 MS data were obtained on a PE Sciex API 150EX instrument equipped with IonSpray source and
Shimadzu LC-8A/SLC-10A LC system. The LC conditions (C18 column 4.6 × 30 mm with a
particle size of 3.5 μm) were linear gradient elution with water/acetonitrile/trifluoroacetic acid
(90:10:0.05) to water/acetonitrile/trifluoroacetic acid (10:90:0.03) in 4 min at 2 mL/min. Purity was
determined by integration of the UV trace (254 nm). The retention times, R₁, are expressed in
15 minutes.

Mass spectra were obtained by an alternating scan method to give molecular weight information. The molecular ion, MH+, was obtained at low orifice voltage (5-20V) and fragmentation at high orifice voltage (100-200V).

Preparative LC-MS-separation was performed on the same instrument. The LC conditions (C18 column 20 × 50 mm with a particle size of 5 μm) were linear gradient elution with water/acetonitrile/trifluoroacetic acid (80:20:0.05) to water/acetonitrile/trifluoroacetic acid (5:95:0.03) in 7 min at 22.7 mL/min. Fraction collection was performed by split-flow MS detection. HNMR spectra were recorded at 500.13 MHz on a Bruker Avance DRX500 instrument or at 250.13 MHz on a Bruker AC 250 instrument. Deuterated chloroform (99.8%D) or dimethyl sulfoxide (99.9%D) were used as solvents. TMS was used as internal reference standard. Chemical shift values are expressed in ppm-values. The following abbreviations are used for multiplicity of NMR signals: s=singlet, d=doublet, t=triplet, q=quartet, qui=quintet, h=heptet, dd=doublet doublet, dt=double triplet, dq=double quartet, tt=triplet of triplets, m=multiplet. NMR signals corresponding to acidic protons are generally omitted. Content of water in crystalline compounds was determined by Karl Fischer titration. For column chromatography silica gel of type Kieselgel 60, 230-400 mesh ASTM was used. For ion-exchange chromatography (SCX, 1 g, Varian Mega Bond Elut®, Chrompack cat. no. 220776). Prior use of the SCX-columns was pre-conditioned with 10% solution of acetic acid in methanol (3 mL).

Examples

Preparation of the compounds of the inventi n

5 Example 1

1a, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-dimethylphenyl)piperazine,hydrochloride.

A mixture of 1-(3,4-dimethylphenyl)piperazine (1.15 g), (+)-1-[2-(1-acetyl-2,3-dihydro-1H-indol-3-yl)ethylbromide (prepared in wo 98/28293) (1.3 g) and potassium carbonate (0.7 g) in acetonitrile (20 mL) were heated to 85°C for 6 h. The mixture was cooled to room temperature, silicagel (7 g) added and the mixture evaporated in vacuo to give a white powder. The product was purified by flash chromatography on silicagel using as eluent ethylacetate/triethylamine (99:1). Fractions containing the product were pooled and evaporated in vacuo. The product was dissolved in tetrahydrofuran and converted to its hydrochloride by addition of HCl in diethylether (1.4 g). Mp 238-240°C. ¹H NMR (DMSO-d₆): 2.00-2.08 (m, 1H); 2.15 (s, 3H), 2.20 (s, 6H), 2.30 (m, 1H), 3.10-3.30 (m, 7H), 3.55 (m, 1H), 3.60 (m, 2H), 3.75 (m, 2H), 3.85 (m, 1H), 4.25 (m, 1H), 6.75 (d, 1H), 6.83 (s, 1H), 7.0 (t, 2H), 7.20 (t, 1H), 7.30 (d, 1H), 8.05 (d, 1H). MS m/z: 404 (MH+), 378.1.

The following compounds were prepared in a similar manner:

20

1b, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-

methylphenyl)piperazine,hydrochloride from 4-(4-methylphenyl)piperazine and (+)-1-[2-(1-acetyl-2,3-dihydro-1H-indol-3-yl)ethylbromide. Mp 217-220°C. ¹H NMR (DMSO-d₀): 2.00-2.08 (m, 1H); 2.17 (s, 3H), 2.23 (s, 3H), 2.30 (m, 1H), 3.10-3.30 (m, 7H), 3.55 (m, 1H), 3.60 (m, 2H), 3.75 (m, 2H), 3.85 (m, 1H), 4.25 (m, 1H), 6.90 (d, 2H), 7.05 (m, 3H), 7.20 (t, 1H), 7.30 (d, 1H), 8.05 (d, 1H). MS m/z: 404 (MH+), 364.0.

1c, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-methylphenyl)piperidine from 4-(4-methylphenyl)piperidine and (+)-1-[2-(1-acetyl-2,3-dihydro-1H-indol-3-yl)ethylbromide. Mp 112-114°C. ¹H NMR (DMSO-d₆): 1.60-1.80 (m, 5H); 2.00 (t, 3H), 2.17 (s, 3H), 2.23 (s, 3H), 2.40 (m, 3H), 3.00 (m, 2H), 3.45 (m, 1H), 3.60 (m, 2H), 3.80 (m, 1H), 4.20 (m, 1H), 7.00 (t, 1H), 7.10 (m, 4H), 7.20 (t, 1H), 7.30 (d, 1H), 8.05 (d, 1H). MS m/z: 404 (MH+), 364.1.

1d, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-

dichlorophenyl)piperazine,hydrochloride from 4-(3,4-dichlorophenyl)piperazine and (+)-1-[2-(1-acetyl-2,3-dihydro-1H-indol-3-yl)ethylbromide. Mp 184-186°C. ¹H NMR (DMSO-d₆): 2.00-2.08 (m,

1H); 2.15 (s, 3H), 2.30 (m, 1H), 3.10-3.30 (m, 7H), 3.55 (m, 1H), 3.60 (m, 2H), 3.75 (m, 2H), 3.85 (m, 1H), 4.25 (m, 1H), 7.0 (m, 2H), 7.20 (t, 1H), 7.25 (m, 1H), 7.30 (d, 1H), 7.43 (d, 1H), 8.05 (d, 1H). MS m/z: 404 (MH+), 417.9.

5 le, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-

bromophenyl)piperazine,hydrochloride from 4-(4-bromophenyl)piperazine, hydrochloride and (+)-1-[2-(1-acetyl-2,3-dihydro-1H-indol-3-yl)ethylbromide.. ¹H NMR (DMSO-d₆): 2.00-2.08 (m, 1H); 2.17 (s, 3H), 2.30 (m, 1H), 3.10-3.30 (m, 4H), 3.55 (m, 1H), 3.60 (m, 2H), 3.70-4.00 (m, 6H), 4.25 (m, 1H), 6.90 (d, 2H), 7.05 (t, 1H), 7.20 (t, 1H), 7.30 (d, 1H), 7.48 (d, 2H), 8.05 (d, 1H). MS m/z: 404 (MH+), 427.9.

Pharmacological Testing

The compounds of the invention were tested in well recognised and reliable tests. The tests were as follows:

Inhibition of the binding of [3H]YM-09151-2 to D_{4.2} receptors

By this method the inhibition by drugs of the binding of [H]YM-09151-2 (0.06 nM) to membranes of human cloned dopamine D_{4.2} receptors expressed in CHO-cells is determined *in vitro*. The method is modified from NEN Life Science Products, Inc., technical data certificate PC2533-10/96.

Inhibition of the binding of [3H]Ketanserin to 5-HT_{2A} receptors

The compounds were tested with respect to their affinity for 5-HT_{2A} receptors by determining their ability to inhibit binding of [³H]Ketanserin (0.50 nM) in membranes from rat brain (cortex) is determined *in vitro*. Method described in Sánchez et al. *Drug Dev. Res.* 1991, 22, 239-250. In table 1 below, the test results are shown:

Compound	% inhib. At the D4-receptor	IC ₅₀ (nM) at the 5HT2A- receptor
1a	< 50/ 88	5.0
1b	< 50/88	15.
1c	< 50/76	17.
1d	< 50/86	21.
le	< 50/ 95	17.

Table 1: Binding Data (% inhibition of binding at 50 nM)

20

25

The compounds of the invention have also been tested in the following tests:

Inhibition of the binding of [3H]Spiroperidol to D2 receptors

The compounds were tested with respect to affinity for the dopamine D₂ receptor by determining their ability to inhibit the binding of [³H]-spiroperidol to D₂ receptors by the method of Hyttel et al. J. Neurochem, 1985, 44, 1615.

The compounds of the invention have been found potently to inhibit the binding of tritiated YM-09151-2 to dopamine D₄ receptors. Further, the compounds bind potently to 5-HT_{2A} receptors.

10

The compounds have also been tested in a functional assay described in *Br. J. Pharmacol.* 1999, 128, 613-629. In this test, the compounds were shown to be partial agonists or antagonists at the dopamine D₄ receptors.

15 The compounds were found to have no substantial or only weak affinity for the dopamine D₂ receptor.

Thus, the compounds of the invention are considered useful in the treatment of positive and negative symptoms of schizophrenia, other psychoses, anxiety disorders, such as generalised anxiety disorder, panic disorder, and obsessive compulsive disorder, depression, side effects induced by conventional antipsychotic agents, migraine, dyskinesia induced by treatment with L-dopa, and in the improvement of sleep quality. In particular, the compounds of the invention are considered useful in the treatment of positive and negative symptoms of schizophrenia without inducing extrapyramidal side effects.

25

20

Formulation Examples

The pharmaceutical formulations of the invention may be prepared by conventional methods in the art.

30

For example: Tablets may be prepared by mixing the active ingredient with ordinary adjuvants and/or diluents and subsequently compressing the mixture in a conventional tabletting machine. Examples of adjuvants or diluents comprise: corn starch, potato starch, talcum, magnesium stearate, gelatine, lactose, gums, and the like. Any other adjuvants or additives usually used for such purposes such as colourings, flavourings, preservatives etc. may be used provided that they are compatible with the active ingredients.

Solutions for injections may be prepared by dissolving the active ingredient and possible additives in a part of the solvent for injection, preferably sterile water, adjusting the solution to desired volume, sterilising the solution, and filling it in suitable ampules or vials. Any suitable additive conventionally used in the art may be added, such as tonicity agents, preservatives, antioxidants, etc.

5 Typical examples of recipes for the formulation of the invention are as follows:

1)	Tablets containing 5.0 mg of a compound of the invention calculated as the free base:
----	---

	Compound	5.0 mg
	Lactose	60 mg
10	Maize starch	30 mg
	Hydroxypropylcellulose	2.4 mg
	Microcrystalline cellulose	19.2 mg
	Croscarmellose Sodium Type A	2.4 mg
	Magnesium stearate	0.84 mg

15

2) Tablets containing 0.5 mg of a compound of the invention calculated as

the free base:

	Compound	0.5 mg
	Lactose	46.9 mg
20	Maize starch	23.5 mg
	Povidone	1.8 mg
	Microcrystalline cellulose	14.4 mg
	Croscarmellose Sodium Type A	1.8 mg
	Magnesium stearate	0.63 mg

25

3) Syrup containing per millilitre:

	Compound	25 mg
	Sorbitol	500 mg
	Hydroxypropylcellulose	15 mg
30	Glycerol	50 mg
	Methyl-paraben	1 mg
	Propyl-paraben	0.1 mg
	Ethanol	0.005 ml
	Flavour	0.05 mg
35	Saccharin sodium	0.5 mg
	Water	ad 1 ml

4) Solution for injection containing per millilitre:

	Compound	0.5 mg
5	Sorbitol	5.1 mg
	Acetic Acid	0.05 mg
	Saccharin sodium	0.5 mg
	Water	ad 1 ml

Claims

5

1. The use of a compound having the general formula

$$\mathbb{R}^4$$
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^6
 \mathbb{R}^1
 \mathbb{R}^2
 \mathbb{R}^7
 \mathbb{R}^8
 \mathbb{R}^9
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{10}

wherein R¹ is acyl, thioacyl, trifluoromethylsulfonyl, or R¹ is a group R¹²SO₂-, R¹²OCO- or R¹²SCO-wherein R¹² is C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl or aryl, or R¹ is a group R¹³R¹⁴NCO,- R¹³R¹⁴NCS-, wherein R¹³ and R¹⁴ are independently hydrogen, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl or aryl, or R¹³ and R¹⁴ together with the N-atom to which they are linked, form a pyrrolidinyl, piperidinyl or perhydroazepin group; n is 1-6;

15 X is C, CH or N, and the dotted line emanating from X indicates a bond when X is C and no bond when X is N or CH;

R² is hydrogen or C₁₋₆-alkyl; and

- R³-R¹¹ are independently selected from hydrogen, halogen, cyano, nitro, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, amino, C₁₋₆-alkylamino, di-(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonyl, aminocarbonyl, C₁₋₆-alkylaminocarbonyl, di-(C₁₋₆-alkyl)aminocarbonyl, C₁₋₆-alkylthio, hydroxy, trifluoromethyl, trifluoromethylsulfonyl and C₁₋₆-alkylsulfonyl;
- or a pharmaceutically acceptable acid addition salt thereof, for the manufacture of a medicament useful in the treatment of positive and negative symptoms of schizophrenia, other psychoses, anxiety disorders, such as generalised anxiety disorder, panic disorder, and obsessive compulsive disorder, depression, aggression, side effects induced by conventional anti-psychotic agents, migraine, cognitive disorders, dyskinesia induced by treatment with L-dopa and in the improvement of sleep quality.

- 2. The use of a compound according to claim 1 which is in the form of the S-enantiomer.
- 3. The use of a compound according to claims 1-2 wherein R^7 and R^{11} are hydrogen.
- 4. The use of a compound according to claim 3 wherein R^{10} is hydrogen.
- 5. The use of a compound according to claims 1-4 wherein at least one of R⁸ and R⁹ are independently selected from halogen, cyano, nitro, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, amino, C₁₋₆-alkylamino, di-(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonyl, aminocarbonyl, C₁₋₆-alkylaminocarbonyl, di-(C₁₋₆-alkyl)aminocarbonyl, C₁₋₆-alkylthio, hydroxy, trifluoromethyl, trifluoromethylsulfonyl and C₁₋₆-alkylsulfonyl.
- 6. The use of a compound according to claims 1-5 wherein n is 2, or 3, preferably 2.
- 7. The use of a compound according to claims 1-6 wherein R^1 is acyl.
- 8. The use of a compound according to claim 7 wherein R^1 is acetyl.
- 9. The use of a compound according to claim 8 which is selected from (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-dimethylphenyl)piperazine, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-methylphenyl)piperazine, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-methylphenyl)piperazine, (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-dichlorophenyl)piperazine, and (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-bromophenyl)piperazine, or a pharmaceutically acceptable salt thereof.
 - 10. An 3-indoline derivative of the general formula

5

15

wherein R^1 is acyl, thioacyl, trifluoromethylsulfonyl, or R^1 is a group $R^{12}SO_2$, $R^{12}OCO$ - or $R^{12}SCO$ -wherein R^{12} is C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{2-6} -alkynyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkyl- C_{1-6} -alkyl or aryl, or R^1 is a group $R^{13}R^{14}NCO_3$ - $R^{13}R^{14}NCS_3$ -, wherein R^{13} and R^{14} are independently hydrogen, C_{1-6} -alkyl, C_{2-6} -alkenyl, C_{2-6} -alkynyl, C_{3-8} -cycloalkyl, C_{3-8} -cycloalkyl- C_{1-6} -alkyl or aryl, or R^{13} and R^{14} together with the N-atom to which they are linked, form a pyrrolidinyl, piperidinyl or perhydroazepin group; and

n is 1-6;

10 X is C, CH or N, and the dotted line emanating from X indicates a bond when X is C and no bond when X is N or CH;

R² is hydrogen or C₁₋₆-alkyl;

R³-R¹¹ are independently selected from hydrogen, halogen, cyano, nitro, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₈-cycloalkyl, C₃₋₈-cycloalkyl-C₁₋₆-alkyl, amino, C₁₋₆-alkylamino, di-(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonyl, aminocarbonyl, C₁₋₆-alkylaminocarbonyl, di-(C₁₋₆-alkyl)aminocarbonyl, C₁₋₆-alkoxy, C₁₋₆-alkylthio, hydroxy, trifluoromethyl, trifluoromethylsulfonyl and C₁₋₆-alkylsulfonyl;

20 with the proviso that

30

- (i) R⁹ may not be hydrogen, CF₃ or chloro, when R²-R⁸, R¹⁰-R¹¹ are hydrogen, n is 2 and R¹ is acetyl;
- (ii) R^7 or R^{11} may not be methoxy when X is N, n is 2, or 4 and R^1 is acetyl; and
- (iii) R⁴ may not be methoxy, when n is 2, R¹ is C₁₋₄-alkanoyl, benzoyl, p-chlorobenzoyl or pnitrobenzoyl;

or a pharmaceutically acceptable acid addition salt thereof.

- 11. A compound according to claim 10 which is in the form of the S-enantiomer.
- 12. A compound according to claims 10-11 wherein R⁷ and R¹¹ are hydrogen.
- 13. A compound according to claim 12 wherein R¹⁰ is hydrogen.

14. A compound according to claims 10-13 wherein at least one of R⁸ and R⁹ are selected from halogen, cyano, nitro, C_{1.6}-alkyl, C_{2.6}-alkenyl, C_{2.6}-alkynyl, C_{3.8}-cycloalkyl, C_{3.8}-cycloalkyl-C_{1.6}alkyl, amino, C₁₋₆-alkylamino, di-(C₁₋₆-alkyl)amino, C₁₋₆-alkylcarbonyl, C₁₋₆-alkoxy, C₁₋₆-alkylthio, hydroxy, trifluoromethyl, trifluoromethylsulfonyl and C₁₋₆-alkylsulfonyl.

5

- 15. A compound according to claims 10-14 wherein n is 2, or 3, preferably 2.
- 16. A compound according to claims 11-15 wherein R¹ is acyl.

10

- A compound according to claim 16 wherein R¹ is acetyl. 17.
- 18. A compound according to claim 17 which is selected from
- (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-dimethylphenyl)piperazine,
- (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-methylphenyl)piperazine,
 - (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-methylphenyl)piperidine,
 - (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(3,4-dichlorophenyl)piperazine, and
 - (+)-1-[2-(1-Acetyl-2,3-dihydro-1H-indol-3-yl)ethyl]-4-(4-bromophenyl)piperazine, or a pharmaceutically acceptable salt thereof.

20

- 19. A pharmaceutical composition characterised in that it comprises a compound of any of claims 10 to 18 in a therapeutically effective amount together with one or more pharmaceutically acceptable carriers or diluents.
- 20. A method of treating the positive and negative symptoms of schizophrenia, other psychoses, 25 anxiety disorders, such as generalised anxiety disorder, panic disorder, and obsessive compulsive disorder, depression, aggression, side effects induced by conventional anti-psychotic agents, migraine, cognitive disorders, dyskinesia induced by treatment with L-dopa, and in the improvement of sleep quality comprising administration of a therapeutically acceptable amount of a compound according to
- any of claims 10 to 18.