1. Punctual estimation

introduction

Neyman & Fisher's factorization theorem

Let:

 $\cdot \left(\Omega, \mathcal{A}, \mathcal{P} \right)$ k-D statistical model parametrized by Θ

 $\cdot L : \Omega \times \Theta \to \mathbb{R}$ likelihood function of $(\Omega, \mathcal{A}, \mathcal{P})$

 $\cdot (M, \Sigma)$ measurable space

 $\cdot X : \Omega \to M$ random variable

 $T: M \to \mathbb{R}^k \text{ statistic}$

Then, holds:

$$\cdot T \text{ sufficient } \leftrightarrow \exists \; \Lambda \; \colon \; \mathbb{R}^m \times \Theta \to \mathbb{R}^+, h \; \colon \; \Omega \to \mathbb{R}^k \; \colon$$

 $\forall x \in \Omega$:

 $\forall \ \theta \in \Theta :$

$$L(x,\theta) = \Lambda(T(x),\theta)h(x)$$

Cramer-Rao's inequality

Let:

- \cdot same conditions of above
- $T \in \chi_F$
- \cdot regular model
- $\cdot E_{\theta}T = g(\theta)$

Then, holds:

$$Var_{\theta}(T) \ge \frac{g'(\theta)^2}{I(\theta)}$$

Demonstration:

$$|E(\partial_{\theta} \log(L(x,\theta))(T(x)-g(\theta))| \le \sqrt{E_{\theta}(\partial_{\theta} \log(L(x,\theta)))^{2} E_{\theta}(T(x)-g(\theta))^{2}} = \sqrt{I(\theta)Var_{\theta}T}$$

$$E(\partial_{\theta} \log(L(x,\theta))(T(x)g(\theta) = E_{\theta}(\partial_{\theta} \log(L(x,\theta)T(x)) - g(\theta)E_{\theta}(\partial_{\theta} \log(L(x,\theta))))$$

$$E_{\theta}(\partial_{\theta} \log(L(x,\theta)T(x)))$$

$$\int_{\Omega} \partial_{\theta} \log(L(x,\theta)) T(x) L(x,\theta) dx = \int_{\Omega} \frac{1}{L(x,\theta)} \partial_{\theta} L(x,\theta) T(x) L(x,\theta) dx$$

$$|g'(\theta)| \le \sqrt{I(\theta)Var_{\theta}(T)}$$

$$g'(\theta)^2 \le I(\theta) Var_{\theta}(T)$$

Efficient estimators are UMV

Let:

 $\cdot statements \\$

.

Then, holds:

 $\cdot then, holds$

.

Demonstration:

demonstration

Characterization of efficient estimators

Let:

· mismas condiciones

Then, holds:

$$\cdot T$$
 efficient $\leftrightarrow \exists \lambda(\theta)$:

$$\lambda(\theta)\partial_{\theta}\log(L(x,\theta) = T(x) - g(\theta)P_{\theta} - qs$$

Demonstration:

no demonstration

Observation

Let:

· mismas condiciones

Then, holds:

.

Demonstration:

$$\lambda'(\theta) \log(L(x,\theta)) + \lambda(\theta) \partial_{\theta^2} \log(L(x,\theta)) = -g'(\theta)$$

$$E[*] = E_{\theta}(\lambda(\theta) \partial_{\theta} \log(L(x,\theta))) + \lambda(\theta) E_{\theta}(\partial_{\theta^2} \log(L(x,\theta))) = 0 - g'(\theta)$$

$$\lambda(\theta) I(\theta) = g'(\theta)$$

$$I(\theta) = \frac{g'(\theta)}{\lambda(\theta)}$$

si existe un estimador que da la igualdad entonces es UMV