CLAIMS

ı	l.	(Сите	ntly amended) A method of fabricating a CMOS device comprising the steps
2		of:	
3		(a)	forming a gate dielectric on a semiconductor substrate that can be sectioned
4			into a p-well region for forming an NMOSFET and a n-well region for
5			creating PMOSFET;
6		(b)	forming [[a]] an aluminum nitride buffer layer material over the gate dielectric;
7		(c)	depositing a first metal on the buffer layer;
8		(d)	selectively etching the first metal with a first etchant so that the buffer layer is
9			exposed on one of said p-well and n-well regions;
0		(c)	depositing a second metal on both the exposed buffer layer and the remaining
ı			first metal;
2		(f)	removing said first metal and said second metal and said buffer layer in
3			selected areas so as to form a PMOSFET gate electrode and an NMOSFET
4			gate electrode of said CMOS device; and
5		(g)	annealing remaining portions of said first metal and said second metal and said
6			buffer layer to consume said portions of said buffer layer by reacting with said
7			first metal and said second metal to form first and second conductive alloys
8			with first and second work functions respectively.
l	2.	(Origin	nal) A method as recited in claim 1 wherein said buffer layer material is

3. (Cancelled)

from said first etchant.

selected to have a resistance to said first etchant for protecting said gate dielectric

2

3

4.	(Currently amended) A method as recited in claim [[3]] $\underline{1}$ wherein said buffer layer
	has a buffer layer thickness less than 20nm.

- (Original) A method as recited in claim 1 wherein said first etchant is a wet chemical solution including a mixture of sulfuric acid and hydrogen peroxide.
- (Original) A method as recited in claim 1 wherein said first etchant is a wet chemical
- solution including a mixture of hydrofluoric acid and hydrogen peroxide.
- (Original) A method as recited in claim 1 wherein said annealing is done at a
 temperature in excess of 400°C.
- 8. (Original) A method as recited in claim 1 wherein said first metal is hafnium and said
 second metal is tantalum.
- 9. (Original) A method as recited in claim 1 wherein said forming a buffer layer
- 2 material includes a process selected from the group consisting of physical vapor
- deposition (PVD), chemical vapor deposition (CVD) and atomic layer deposition
- 4 (ALD).

1

- 1 10. (Currently amended) A method as recited in claim [[3]] wherein a composition
- 2 ratio of said aluminum to said nitrogen the aluminum nitride is selected to achieve
- 3 desired work functions of said metal alloys.
 - (Currently amended) A method of determining a work function of a metal gate electrode comprising:
- determining a desired work function of a metal gate electrode including
- 4 (a) depositing [[al] an aluminum nitride buffer layer material on a gate dielectric:

3

(b) depositing a metal on said buffer layer material; and

760429x77v1

- (c) annealing said buffer layer and said metal to cause said buffer material and said metal to react and form an alloy having the desired work function.
- 12. (Cancelled)

6

- Currently amended) A method as recited in claim 42 11 wherein a composition ratio
- 2 of said-aluminum and-said-nitrogen the aluminum nitride is selected to achieve a
- 3 desired said work function.
- 1 14. (Currently amended) A method as recited in claim [[3]] wherein the first metal and
- 2 second metal are selected from the group consisting of titanium (Ti), hafnium (Hf)
- 3 and tantalum (Ta).
- 1 15. (Currently amended) A method as recited in claim [[3]] wherein the first metal and
- 2 second metal have an electronegativity of less than 1.34 Ev.
- 16. (Currently amended) A metal gate for CMOS applications, wherein the contact area
- 2 between said metal gate and adjacent metal gate dielectric is comprised of an alloy
 3 formed from ADN, aluminum nitride and a metal whose electronegativity is less than

4

1.4.

- 17. (Original) A metal gate as in Claim 16, where the metal is Hf, and the alloy has a
- work function of approximately 4.4Ev, appropriate for NMOS.
- 18. (Original) A metal gate as in Claim 16, where the metal is Ta, and the alloy has a

4

2 work function of approximately 4.9Ev, appropriate for PMOS.