Supporting Information for Semiparametric Mixed-Scale Models Using Shared Bayesian Forests

Antonio R. Linero Department of Statistics Florida State University arlinero@stat.fsu.edu

Debajyoti Sinha Department of Statistics Florida State University sinhad@stat.fsu.edu

Stuart R. Lipsitz
Department of Medicine
Brigham and Women's Hospital
slipsitz@partners.org

S.1 MEPS predictors

The following predictors were used in the analysis of the MEPS dataset:

- age: the age of the individual as of 2015.
- smoke: whether the individual currently smokes.
- race: whether the individual is black, white, Hispanic, Asian, or other.
- insurance: whether an individual has private, public, or no health insurance.
- phealth: the individuals perceived health (1 to 5).
- income: the individual's familial income.
- meds: the number of prescription medications the individual is taking.
- bmi: the body mass index.
- education: the level of completed education.
- diabetes, stroke, cancer, heart_attack, cognitive_limitations, arthritis: indicators for whether the subject has suffered from any of these conditions.
- down: whether an individual feels down/depressed/hopeless.
- dentist: the number of dentist visits over the survey period.

S.2 MCMC for the log-normal and gamma hurdle models

We provide details for implementing Markov chain Monte Carlo algorithms for the gamma hurdle and log-normal hurdle models. We consider a Markov chain operating on the \mathcal{T}_t 's, \mathcal{M}_t 's, and non-tree-specific parameters $\boldsymbol{\omega}$. Both approaches use the same basic approach, which is summarized by Algorithm 1.

Algorithm 1 Bayesian backfitting algorithm

- 1: **for** t = 1, ..., T **do**
- 2: Propose $\mathcal{T}'_t \sim Q(\mathcal{T}_t \to \mathcal{T}'_t)$
- 3: Sample $U \sim \text{Uniform}(0,1)$ and compute the acceptance ratio

$$\rho(\mathcal{T}_t, \mathcal{T}_t') = \frac{\Lambda(\mathcal{T}_t')Q(\mathcal{T}_t' \to \mathcal{T}_t)}{\Lambda(\mathcal{T}_t)Q(\mathcal{T}_t \to \mathcal{T}_t')}.$$

- 4: If $U \leq \rho(\mathcal{T}_t, \mathcal{T}_t')$, set $\mathcal{T}_t \leftarrow \mathcal{T}_t'$, otherwise leave \mathcal{T}_t unchanged.
- 5: Update the leaf node parameters according to (S.1), (7) and/or (8).
- 6: end for
- 7: Make an update to ω which leaves its full conditional invariant.
- 8: **for** i = 1, ..., n **do**
- 9: Sample $Z_i \sim \text{Normal}(\theta_0 + h_{\theta}(\boldsymbol{x}), 1)$ truncated to $(-\infty, 0)$ or $(0, \infty)$ according as $Y_i = 0$ or $Y_i > 0$.
- 10: end for

To compute $\Lambda(\mathcal{T}_t)$, Algorithm 1 requires the expression

$$L_{\theta}(t,\ell) = (\sqrt{2\pi})^{-n_{\ell}} \sqrt{\frac{\sigma_{\theta}^{-2}}{\sigma_{\theta}^{-2} + n_{\ell}}} \exp\left(-\frac{\mathrm{SSE}_{\ell}}{2} - \frac{n_{\ell} \sigma_{\theta}^{-2} \bar{R}_{\ell}^{2}}{2(n_{\ell} + \sigma_{\theta}^{-2})}\right),$$

where

$$n_{\ell} = |\{i : \boldsymbol{X}_{i} \leadsto (t, \ell)\}|, \qquad SSE_{\ell} = \sum_{i: \boldsymbol{X}_{i} \leadsto (t, \ell)} (R_{i} - \bar{R}_{\ell})^{2},$$

$$\bar{R}_{\ell} = \frac{1}{n_{\ell}} \sum_{i: \boldsymbol{X}_{i} \leadsto (t, \ell)} R_{i}, \qquad R_{i} = Z_{i} - \theta_{0} - \sum_{j \neq t} g(\boldsymbol{X}_{i}; \mathcal{T}_{t}, \mathcal{M}_{\theta, t}),$$

which is derived (e.g.) in Kapelner and Bleich (2016). Further, we require the full conditional

$$\theta_{t\ell} \sim \text{Normal}\left(\frac{n_{\ell}\bar{R}_{\ell}}{n_{\ell} + \sigma_{\theta}^{-2}}, \frac{1}{n_{\ell} + \sigma_{\theta}^{-2}}\right).$$
 (S.1)

For the gamma-hurdle model, ω consists of just the parameter α , which we give the prior $\alpha^{-1/2} \sim \text{Cauchy}_+(0, A)$. Under this prior, the full conditional for α is proportional to

$$\frac{\alpha^{\alpha N}}{\Gamma(\alpha)^N} \left(\prod_{i=1}^n Y_i^{\alpha} \right) \exp \left[\alpha \sum_i \{ \lambda_0 + h_{\lambda}(\boldsymbol{x}) \} - \alpha \sum_i Y_i e^{\lambda_0 + h_{\lambda}(\boldsymbol{x})} \right] \times \frac{1}{\pi (A\alpha^{3/2} + \alpha^{1/2}/A)},$$

and we update α using slice sampling (Neal, 2003).

For the log-normal hurdle model, $\boldsymbol{\omega}$ consists of the baseline standard deviation $\sigma_0 = \exp(-\lambda_0/2)$. Let $\nu_i = \sigma^2(\boldsymbol{X}_i)/\sigma_0^2$. Then the full conditional of σ_0 is proportional to

$$\sigma_0^{-N/2} \exp \left[-\frac{1}{\sigma_0^2} \sum_{i=1}^n \nu_i \{ Y_i - \mu(\boldsymbol{X}_i) \}^2 \right] \frac{1}{\pi (1 + \sigma_0^2)},$$

where $N = |\{i : Y_i > 0\}|$. As before, σ_0 can be updated via slice sampling.

S.3 Metropolis-Hastings Algorithm

We construct Metropolis-Hastings the proposal from updating \mathcal{T}_t using the general strategies outlined, for example, Kapelner and Bleich (2016), Chipman et al. (1998), and Pratola (2016). As outlined in the main article, we assume that marginal likelihood

$$\Lambda(\mathcal{T}_{t}) = \pi_{\mathcal{T}}(\mathcal{T}_{t}) \prod_{\ell \in \mathcal{L}_{t}} \left[\int \prod_{i: \mathbf{X}_{i} \leadsto (t,\ell)} \operatorname{Normal}\{Z_{i} \mid \theta_{0} + h_{\theta}(\mathbf{X}_{i}), 1\} \operatorname{Normal}(\theta_{t\ell} \mid 0, \sigma_{\theta}^{2}) d\theta_{t\ell} \right] \\
\times \int \prod_{i: Z_{i} > 0, \mathbf{X}_{i} \leadsto (t,\ell)} f\{Y_{i} \mid \mathbf{h}_{u}(\mathbf{X}_{i}), \boldsymbol{\omega}\} \pi_{u}(u_{t\ell}) du_{t\ell} \right] \\
= \pi_{\mathcal{T}}(\mathcal{T}_{t}) \prod_{\ell \in \mathcal{L}_{t}} L_{\theta}(t,\ell) \cdot L_{u}(t,\ell) .$$

can be computed in closed form. Given a transition kernel $q(\mathcal{T}_t \to \mathcal{T}'_t)$ for updating \mathcal{T}_t , the Metropolis-Hastings acceptance probability is given by

$$A(\mathcal{T}_t \to \mathcal{T}_t') = \frac{\Lambda(\mathcal{T}_t')q(\mathcal{T}_t' \to \mathcal{T}_t)}{\Lambda(\mathcal{T}_t)q(\mathcal{T}_t \to \mathcal{T}_t')}.$$

Our choice of $q(\cdot)$ is a mixture of three possible moves: a Birth proposal, a Death proposal, and a Change proposal. The Birth step consists of the following steps.

- 1. Select a leaf node ℓ to become a branch.
- 2. Select a predictor j to construct the split, according to s.
- 3. Sample $C_b \sim \text{Uniform}(L_j, U_j)$, with (L_j, U_j) defined as in Section 2.1.

By a retrospective-sampling argument, a valid transition probability associated to this move is given by

$$q(\mathcal{T}_t o \mathcal{T}_t') = rac{p_{ exttt{Birth}}(\mathcal{T}_t)}{L_t}$$

where $p_{\text{Birth}}(\mathcal{T}_t)$ is the user-specified probability of proposing a Birth move (which may depend on the tree structure, as Death moves are not possible from the root).

The inverse of the Birth transition is a Death transition. This requires selecting the node ℓ , which is a branch node in \mathcal{T}'_t . This occurs with probability

$$q(\mathcal{T}_t' \to \mathcal{T}_t) = \frac{p_{\mathtt{Death}}(\mathcal{T}_t')}{B+1}$$

where B is the number of branches which are not grandparents (i.e., both children are leaves).

The Death transition involves the following steps.

- 1. Select a branch node b, which is not a grandparent.
- 2. Delete the two child nodes of b, making it a leaf.

We again have the following forward/backward transition probabilities

$$q(\mathcal{T}_t \to \mathcal{T}_t') = \frac{p_{\mathtt{Death}}(\mathcal{T}_t)}{B}$$
 and $q(\mathcal{T}_t' \to \mathcal{T}_t) = \frac{p_{\mathtt{Death}}(\mathcal{T}_t)}{L_t - 1}$.

Finally, the Change transition is carried out as follows:

- 1. Select a branch node b which is not a grandparent.
- 2. Select a new predictor j according to s.
- 3. Sample a new cut point $C_b \sim \text{Uniform}(L_i, U_i)$.

As noted by Kapelner and Bleich (2016), the transition probability simplifies substantially in this case as

$$A(\mathcal{T}_t \to \mathcal{T}_t') = \frac{\Lambda(\mathcal{T}_t')}{\Lambda(\mathcal{T}_t)} \wedge 1.$$

S.4 Proof of Lemma 1

Proof. To show the mapping is surjective, for any $F \in \mathcal{M}$, we can take $\pi(\mathbf{x}) = F_{\mathbf{x}}(\{0\})$ and $G_{\mathbf{x}}(A) = F_{\mathbf{x}}(A \cap \{0\}^c)/[1 - \pi(\mathbf{x})]$ when $F_{\mathbf{x}}$ has an atom at 0, and take $\pi(\mathbf{x}) = 0$ and $G_{\mathbf{x}} = F_{\mathbf{x}}$ otherwise.

To show the mapping is injective, consider any $(\pi, G) \neq (\pi', G')$ in $\mathscr{P} \times \mathscr{G}$, and define $F_{\boldsymbol{x}} = \pi(\boldsymbol{x})\delta_0 + [1 - \pi(\boldsymbol{x})]G_{\boldsymbol{x}}$. Define $F'_{\boldsymbol{x}}$ similarly. First, if $\pi \neq \pi'$ then there exists an \boldsymbol{x} such that $F_{\boldsymbol{x}}(\{0\}) \neq F'_{\boldsymbol{x}}(\{0\})$. Conversely, suppose $\pi = \pi'$ but $G \neq G'$. Then there exists a set A and a \boldsymbol{x} such that $G_{\boldsymbol{x}}(A) \neq G'_{\boldsymbol{x}}(A)$; because G and G' do not have atoms at 0, we can assume without loss of generality that $0 \notin A$. But then, noting that $1 - \pi(\boldsymbol{x}) \neq 0$, $F_{\boldsymbol{x}}(A) = [1 - \pi(\boldsymbol{x})]G_{\boldsymbol{x}}(A) \neq [1 - \pi(\boldsymbol{x})]G'_{\boldsymbol{x}}(A) = F'_{\boldsymbol{x}}(A)$, so $F \neq F'$. \square

References

Chipman, H. A., George, E. I., and McCulloch, R. E. (1998). Bayesian CART model search. *Journal of the American Statistical Association*, 93(443):935–948.

Kapelner, A. and Bleich, J. (2016). bartMachine: Machine learning with Bayesian additive regression trees. *Journal of Statistical Software*, 70(4):1–40.

Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31(3):705–767.

Pratola, M. (2016). Efficient Metropolis-Hastings proposal mechanisms for Bayesian regression tree models. *Bayesian Analysis*, 11(3):885–911.