

**TWENTIETH
SYSTEMS &
TECHNOLOGY
SYMPOSIUM**

***Charging Ahead
into the
Next Millennium***

20000106 110

DARPATech'99
Denver • June 7-10, 1999

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)			2. REPORT DATE 6/7/99	3. REPORT TYPE AND DATES COVERED Proceedings 6/07/99-6/10/99
4. TITLE AND SUBTITLE Charging Ahead into the Next Millennium Proceedings, Twentieth Systems and Technology Symposium DARPATech '99			5. FUNDING NUMBERS N/A	
6. AUTHOR(S) Defense Advanced Research Projects Agency				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defense Advanced Research Projects Agency 3701 N. Fairfax Drive Arlington, VA 22203-1714			8. PERFORMING ORGANIZATION REPORT NUMBER N/A	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) same			10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES DARPATech '99				
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved Public Release; Distribution Unlimited			12b. DISTRIBUTION CODE PB	
13. ABSTRACT (Maximum 200 words)				
14. SUBJECT TERMS			15. NUMBER OF PAGES	
			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF THIS REPORT unclas	18. SECURITY CLASSIFICATION OF THIS PAGE unclass	19. SECURITY CLASSIFICATION OF ABSTRACT unclass	20. LIMITATION OF ABSTRACT	

DARPA

DARPA Tech '99

Welcome and Overview

Dr. Frank Fernandez
Director, DARPA

June 8, 1999

RADICAL

In The Future, Institutions Must Simultaneously Pursue:

- Systematic, continuing improvement
- Building tomorrow's systems based on a proven today
- Radical innovation with a goal that makes obsolete and, to a large extent, replaces even the most successful current products

DADDY

Strategy

- Flexibility to find, exploit externally generated ideas is paramount
- High technical risk, high-focus investments
- Competition
- Investment-oriented focus

RAND

Approach

- Broader horizon than commercial analogues
- More focused than university research
- Not bound by military requirements
- Flat, small organization
- No facilities, themes
- Rotate programs, staff

DARPA

Operational Dominance

- Execution Based Planning
- Affordable, Precision Moving Target Kill
- Mobile, Distributed Communications
- Combined Manned and Unmanned Warfare

DNA

High-Risk Technology Exploitation

- Core Technologies
- The Intersection of Biology,
Information and Microsystems

DADDY

Reorganization

- Flatten organization . . .
emphasize bottoms-up,
opportunity-driven nature
- Emphasize thrust areas

Office Structure

DARPA

Deputy Director
Jane Alexander

Director
Frank Fernandez

**Advanced
Technology
Office**
T. Meyer
W. Jeffrey

**Defense
Sciences
Office**
L. Dubois

**Information
Systems
Office**
W. Mularie
B. Sharkey

**Information
Technology
Office**
D. Tennenhouse
B. Hui

**Microsystems
Technology
Office**
N. MacDonald
E. Urban

**Special
Projects
Office**
J. Carlini
A. Alving

**Tactical
Technology
Office**
D. Whelan
A. Adler

DARPA

*Consider Joining the
DARPA Program
Management Team*

DOD

Biological Warfare Defense and Biological Systems

Dr. Jane A. Alexander
Deputy Director

DAMN

BWD is *Very High Priority*

Why?

- Protect military troops, airfields, ports, depots
- Prevent, mitigate terrorism against population centers
- Bioengineering technology may lead to new pathogens

Biological Primer

Bacteria, Viruses, Toxins are quite different

- Size of agent particle
- Modes of action in the body
- Effects can be lethal to incapacitating
- Time for symptoms to appear
- Size of dose needed for disease or death

Bioengineering Problem

- Antibiotic resistant (bacteria)
- Disguised pathogens
- Non-pathogens turned into pathogens
- Enhanced infectivity
- Enhanced stability in environment
- Changed route of infectivity
- Increased production yield (toxins)

DARPA

BWD at DARPA

Goal:

Thwart the use of biological warfare agents (including bacterial, viral, and bioengineered organisms and toxins) by both military and terrorist opponents

DARPA

BWD Program Overview

DARPA

BWD at DARPA

DARPA BWD Program

DADD

Biosensor Objective

- Fieldable (Small, Low-Cost)
- Integrated
- Live vs Dead
- Unattended

DARPA

BWD Systems

Operational Impact of Information Management

The Information Problem:

- Managing consequences of a terrorist attack is very complex
- What to do is not well known - hard to find the “few who know”

DARPA

ENCOMPASS Components

ENCOMPASS Components

- Electronic PlayBooks
- Incident “Repository”
- Electronic Watchboard
- Patient/Casualty Tracking
- ViewPort
- CODA/BASIS
- Casualty Management

DADDY

[Bio:Info:Micro] Interface

Bio

Info

Micro

Interface of Biology With Molecular Conventional DOD Technology

DAPPA

DARPA

Controlled Bio Systems

Control, influence, or mimic the locomotion and distribution of biological organisms for sensing, reporting and countermeasure delivery

Biotic Control

Control through
Biointerfaces

Biomimetics

DADDY

Biotic Control

DADDY

Control through Biointerfaces

DARPA

Bionimetics

DARPA

Electronic Dog's Nose

Defense Sciences Office

Office Overview

Lawrence H. Dubois
Director

<http://www.darpa.mil/DSO/>

DSO

DSO: *Mission*

“Technology Harvesting”

Identify and vigorously pursue the most promising technologies within the science and engineering research communities and develop them into new DoD capabilities.

DSO: In Practice

Respond to technological opportunity

- “Miracle Identification”
- Catalyze the creation of new technologies
- Clear understanding of military needs

Multidisciplinary technical approach

- Office is technically diverse
- Seek opportunities at interfaces between conventional disciplines
- Teaming

DSO

DARPA DSO: Technology Thrusts

- Biological Warfare Defense
- Biology
- Defense Applications of Advanced Mathematics
- Materials and Devices for New Military Capabilities

DSO

Biological Warfare Defense

- Medical countermeasures
- Advanced diagnostics
- External protection
- Consequence management
- Genomic sequencing

Biology

- Tissue-based biosensors
- Controlled biological systems
- Bio-inspired systems
- Biomaterials / bioprocessing

Advanced Mathematics

- Signal and image processing
- Electromagnetic computations
- Fast and scaleable computational algorithms
- Optimized micro-structural process control for thin film growth

$$Z = Z' + V^T V DSO$$

Materials and Devices

- *Functional* materials and devices
- *Smart* materials and demonstrations
- *Structural* materials and components
- Mesoscopic machines
- Power generation and storage

DSO Program Synergy

DSO

DARPA Developing New Ideas

- Biological warfare defense
- Biomolecular systems
- Virtual electromagnetic test range
- Meso - 2000
- Compact hybrid power systems
- Accelerated materials acceptance
- New materials / processing concepts

Other really cool stuff!

<http://www.darpa.mil/DSO/solicitations/>

Biological Warfare Defense at DARPA

Program Overview

Stephen S. Morse, Ph.D.
DARPA/DSO
smorse@darpa.mil

DSO

DARPA BW/D Program

Goal: Develop and demonstrate technologies to thwart the use of biological warfare agents (including novel or bioengineered pathogens) by both military and terrorist opponents.

DsO

DARPA BWD Program

Approach: Create technologies
applicable to broad classes of
pathogens and toxins (most current
techniques are agent specific).

DSO

DARPA BWB Program

Measures of Success:

- *in vivo* testing (vs. *in vitro*)
- live agent (vs. inactivated)
- significant pathogen/toxins (vs. simulants)
- integration and utilization

DSO

BWD Program Overview

DARPA

DARPA BW Program

Sensors

*Dr. Mildred Donlon
Dr. Alan S. Rudolph
Dr. John K. Smith*

Advanced Diagnostics

Dr. Stephen Morse

Medical Countermeasures
*CDR Shaun B. Jones,
M.D., USN*

External Protection

*Dr. William Warren
CDR Shaun B. Jones
M.D., USN*

Genomic Sequencing
Dr. Ira Skurnick

Consequence Management
*Col John Silva,
M.D., USAF*

DSO

DARPA

BWID Program Overview

External
Protection

DSO

External Protection

Thermo-Catalytic Approach to “Clean Air”

- Pass hot air thru catalytic reactor to destroy lethal agents
- Heat & cool air in meso-heat exchangers
- Small, lightweight

“Artificial Skins”

Coat polymer scaffolds with high surface area aerogels incorporating enzymes to promote biocatalysis

Nanomolecular Countermeasures

- Novasomes™ have significant bactericidal effect (> 99% killed) on gram positive bacteria and spores
- Novasomes™ can be used to decontaminate vehicles and sensitive equipment
- Novasomes™ are non-toxic to humans, plants, and animals

DARPA

BWD Program Overview

DSO

Advanced Diagnostics for BW

Goals:

- Detect exposure/infection by any biological threat agent, and differentiate from other significant pathogens
 - in the body/clinical samples
 - in real-time
 - before symptoms appear
- Monitor the effectiveness of therapy

The Need for Advanced Diagnostics

- During conflicts, 75% of casualties are disease non-battle injury
- Infections by different biological warfare agents may begin with the same flu-like symptoms, but have very different outcomes
- Effective treatment requires correct early diagnosis and pathogen identification

Advanced Diagnostics for BWD

Approach:

- Leverage developments in commercial biotechnology (e.g., “PCR-on-a-chip”)
- Develop new diagnostic technologies (e.g., rapid agent identification, cellular sentries)
- Identify new markers of diseases and develop into new diagnostic capabilities (e.g., exhaled NO detection)

“BW Breathalyzer”

Summary of Clinical Studies

- Exhaled NO levels are greater in symptomatic subjects
- NO increases early in infection, sometimes *before* self-reported symptoms change
- Prototype NO sensors developed

DSO

Single-Chain DNA Sequencing

Ions flow through an open channel

Reduction of ion flux reflects the properties of the nucleotide

DSO

Tissue Based Biosensors

Goal:

Develop multifunctional physiological bioassay system(s) utilizing singular and multicellular arrays to provide early warning for chem/bio agents (toxins, nerve agents, bioregulators and other chemicals)

B-Cell Amplifier “CANARY”

Objective:

Use genetically modified cells as amplifiers for single particle detection of pathogens

Approach:

Engineer B-cells with a bio-luminescent protein to signal binding; integrate into a microfluidic chip

DSO

BWD Program Overview

Medical Countermeasures

Program Goals:

- Defeat a pathogen's ability to enter the body and reach target tissues
- Target common mechanisms of pathogenesis and functions or structures shared by groups of pathogens
- Modulate the human biological response to pathogens

Anti-Bacterials

Rapid

Immunizations

Anti-Virals Anti-Toxins

DSO

DAPP

Evolutionary Approaches to Vaccines

Fast acting
potent vaccines

Inducible
vaccine boosts

High Throughput Vaccine Production

Systematic
vaccine production
in a day

DSO

Early Pathogen Genes

Why target genes turned on early?

- Likely to be important for the pathogen to establish infection
- Many of the most “generic” virulence steps (e.g., pathogen-host signaling mechanisms) are expressed early → identification of broadly applicable targets
- Want to treat patient as early as possible to minimize illness or death

Early Pathogen Genes

Results:

- Identified over 200 genes that are turned on early in the infection process and are shared by multiple pathogens
- Identified 22 Two-Component Signal Transduction systems, critical to the pathogen because they sense the environment and ensure microbial adaptation
- Identifying and developing candidate therapeutics based on these functions

DSO

Enzymes Essential for Pathogen Survival

Target a newly discovered

enzyme (CcrM) essential to
bacterial pathogen survival

- First target Brucella
abortus

- Identical target found in
many other plant and
animal pathogens

- Candidate compounds
now being tested

Level and Timing of CcrM in
Cell Cycle Critical to Bacterial
Viability

DSO

BWD Program Overview

Genomic
Sequencing

D_{SO}

BWD Genomic Sequencing

Goals:

- Develop inventory of genes and proteins that distinguish pathogens from non-pathogens ... look for general rules or patterns
- Identify pathogenic markers in any guise
- Provide superior molecular targets for identification and treatment

DSO

BWD Genomic Sequencing

Approach:

- Sequence/annotate biological threat agents (viruses, bacteria and rickettsia) and their respective non-pathogenic “nearest neighbors”
- Identify genes and proteins whose expression is essential for pathogenesis
- Identify coordinately regulated genes/proteins and common regulatory elements

BWD Website

**[http://www.darpa.mil/DSO/rd/
Abmt/Bwd.html](http://www.darpa.mil/DSO/rd/Abmt/Bwd.html)**

DSO

Controlled Biological and Biomimetic Systems

<http://www.sysplan.com/cbs>

Alan S. Rudolph Ph.D, MBA

*“If one way be better than another, that you may
be sure is Nature’s way”*
- Aristotle, fourth century B.C.E

DSO

Controlled Biological and Biomimetic Systems

Understanding biological systems presents unique opportunities for developing new defense capabilities through mimicry, integration of living and non-living components, or direct use of complex biological systems

D_{SO}

Controlled Biological and Biomimetic Systems

DARPA

GOAL: *Develop biological and biomimetic systems as mobile distributed sensors, sentinels, and delivery agents.*

Biomimetics

Biohybrids

Biosystems

DSO

Bionimetics

Force Dynamics

walking, running, climbing, flying

Neural Control Architectures

object investigation, spatial navigation,
target location

Sensorimotor Control

fusion of sensors and actuation, motivation
to target

DSO

Force Dynamics of Climbing

Gecko climbs vertically at 1m/sec, attaches to multiple surfaces

Feet are self-cleaning and use dry adhesion

Single-leg ground-reaction forces

Prototype leg designed, built and platform tested

UC Berkeley/IS Robotics

DSO

DAPPA

Neural Control Architectures

**Kinematic
analysis, muscle
control signals**

NEastern U/Massa Products

**Behavioral
action sequences**

DSO

Sensorimotor Control and Navigation

Simulation model of odor-guided target location used by moths in following chemical plumes to a source.

U Arizona/Tufts

DSO

Biohybrid Systems

- Explore the direct use of biological components
- Develop insect antennae to hand held device to detect odorant plume

Iowa
State

DSO

Biohybrid Systems

*Design interfaces for real
time recording and
stimulation, two way
communications*

UMichigan/Duke/Plexon/USC

DSO

DADDY

Target Identification Modes

Undirected Sampling

Influenced Sampling

Directed Sampling

★ Target

○ Attractant

DSO

DANNO

Using Organisms for Target Location

Physiological Response before and after training

Before

Train Organisms to UXO Compounds: 2,4 DNT

Sucrose Source Sucrose Only

Preflight Experience

USDA/Iowa State/ORNL/UAZ

DSO

DADDY

Engineering Bee Colonies

*Use individual and social
insect behavior and activity
for environmental sampling
and target location*

U Montana/EPA/USDA/CEHR

DSO

Mission Applications

- Animal Sentinels - ‘Sensor Web’ for situational awareness, locate suspected targets (CBW depots or plants)

- Living machines -use as sensor or navigational devices

- Fault tolerant locomotion and sensing
- Armament neutralization

SPIKER - Non-lethal Armament Neutralization

- Explore the feasibility of introducing defects into armaments that would result in non-lethal failure
- Implement asymmetrical controlled biological or biomimetic systems to deliver payloads and execute defects

USA-TACOM

DSO

Controlled Biological and Biomimetic Systems

Enhancing Defense Capabilities through Life Sciences

Signals and Alarms

Chemical
Analysis
and
Reporting

Sensorimotor Navigation

Force
Dynamics

Fault
Tolerant
Locomotion

Transport and Uptake

Neural Control
Architecture

DSO

Directions and Opportunities in DARPA's Materials Program

Steven G. Wax

DSO

DARPA

DSO Program Synergism

DSO

Materials and Devices

- Smart Materials and Demonstrations
 - Garcia, Coblenz, Wax
- Structural Materials and Components
 - Wax, Coblenz, Christodoulou, Lyons
- Functional Materials and Devices
 - Wolf, Warren, Browning
- Mesoscopic Machines
 - Warren, Wax
- Power Generation and Storage
 - Nowak, Wax

Materials Synergies

- Biology
 - Biomimetic Materials
 - Rudolph, Wax, Christodoulou
- Defense Applications of Advanced Mathematics
 - Virtual Integrated Prototyping
 - Healy, Wolf

Program PhilOSophy

New Concepts in Materials

Emerging Defense Needs

- Rapid Design and Prototyping
- Micro/nanostructure Control
- Computational Materials Science
- Combinatorial Synthesis
- Biomimetics
- Multi-functionality

- Force Projection, Mobility
- Littoral Operations
- Information Driven Warfare
- Aging Platforms
- Small Units, Urban Warfare
- Unmanned Systems
- Nuclear/Chem/Bio Threat

DSO

Ultra-lightweight Armor Program

Establish New Designs for Body Armor Material Systems

- Target: 3.5 lbs/ft² (7.62 mm AP) vs. Current 6.5 lbs/ft²
- Exploiting New Mechanisms
- Understanding/Predicting Behavior (Model → Test)

5.08-mm B₄C/6.60-mm Al

5.08-mm B4C/ Semi-inf. RHA

D_{SO}

Multi-Functional Materials and Structures

- Designed Compositional and Morphological Arrangements
 - Perform Multiple Functions Simultaneously (Often Inspired by Nature)
- New Paradigm for Structure Design
 - Significant Impact on DoD Systems Performance, Survivability and Maintenance

Smart Materials and Structures

Material Development

- Single Crystal Perovskites
- Electroactive Polymers

High Authority Actuators

- Helicopter
- Fixed Wing Aircraft
- Submarines/ Torpedo

Demonstrations

- Piezoelectrics
- Electrostrictors
- Magnetostrictors

DSO

Electroactive Polymers

**Tailorable,
Responsive
Electroactive
Properties**

**Polymer
Chemistry**

**Actuation
and Sensing**

**Structural
Properties of
Polymers**

**Electro-Optical
Response**

Artificial Muscles and Smart Skins
Acoustic (Sonar)
Biomimetic Devices

Analog Processing
Flexible Displays
Flexible Electronics

**Electroactive Polymers are
“Intrinsically” Smart Materials**

D_{SO}

Electroactive Polymers

Actuation

- Promise
 - Bio-Inspired Actuation
(Mammalian Muscle)
 - Microactuation
- Advantages:
 - Compactness
 - Low Overhead
 - Intrinsic Sensor Capability
 - Localize Actuation Control

D_{SO}

Electroactive Polymers Applications

DARPA

Human Eye
Smart Focal
Plane Array

Green Light Emitting
Polymer (Dow Chemical)

Artificial Retina
(Uniax, Raytheon)

D_{SO}

Compact Hybrid Actuation

- System Level, Concurrent Design
 - Mechanical & Electrical Transmissions
 - Power Electronics
 - Controllers
 - Fatigue, Reliability & Durability

POWER SYSTEMS MATERIALS & PROCESSES

POWER SOURCE DEVELOPMENT DEPENDS ON NEW MATERIALS

- Electrodes, Electrolytes
 - Catalysts
 - Emitters
 - Filters
 - MEMS
 - Seals, Interconnects
 - Superconductors
 - Thermoelastics
 - Photovoltaics
 - Permanent Magnets
 - Batteries
 - Fuel Cells
 - Capacitors
 - TPV, Solar
 - Microturbines
 - Heat Engines
 - Motors
 - Energy Harvesting
-

D_{SO}

World's Smallest Turbine Engines

- Current: Gas Turbine Driven, Electric Power Generator

- Quiet.....Field Deployable
- Powerful.....1 kW Class/1.3 shp
- Portable.....Less Than 1 kg

- Miniature.....The Size of a Soda Can

- Efficient.....3 hr on a Liter of Heavy Fuel
- Robust.....Multi-Fuel/Low Maintenance

M-Dot, Inc

- Future: >2 kW-hr/kg

MIT

DSO

Advanced Magnets for Power

- Magnetic Alloys and Compounds for Advanced Power Systems
 - High Energy Products (100 MGoe)
 - High Temperature Operation (>250 C)
 - Mechanical Strength

Integrated Motor Propulsor

Flywheel for Combat Hybrid Power Systems (CHPS)

YBM Magnex, Inc. Has Already Shown a 20% Improvement in Energy Product With a New FE-B-H Alloy

DSO

ENERGY HARVESTING

(mW's - W's)

- Photovoltaics
 - Thin-film Manufacturing
- Mechanical
 - Ocean Currents, Heel Strike
- Thermal
 - Ground-air, Ocean-air Interfaces
- Chemical Gradients
 - Ocean Sediments
- Natural Fuels
 - Cellulose, Plant Sugars, Blood Sugar

DSO

Heel-strike Generator

- Recover up to Several Watts of Power During Normal Walking Without Burdening the Wearer
- Power Is Used to Charge Batteries or Directly on Boot for Specialized Functions

DSO

Mechanical Augmentation of Human Capabilities

- Move at the Speed of Battle in All Terrains
 - Enhanced Load Carrying Capability
 - Efficient Power Usage, Easy Re-fueling
- Technology Issues
- Smart, Efficient Actuators
 - Non-battery Power Sources, Power Distribution
 - Sensors, Feedback, Control
 - Reliability and Cost

D,SO

DARPA

Spintronics

A New Approach
to Electronics!

Metallic Energy States

Spin Magnetoresistance

Low Resistance D_{SO}

High Resistance D_{SO}

Spintronics for Magnetic Memory

- Non-Volatile, Radiation Hard Memory for Space, Missile and Avionics Applications
 - Speed of SRAM (<3 ns)
 - Density of Dram (4 Gbit)
 - Low Power (0.1 - 0.01x)
 - Low Cost (0.1x)
 - Infinitely Cyclable

Coherent Spins in Semiconductors

- Discoveries:

- Room Temperature, Optically Induced, Very Long Lived Quantum Coherent Spin State in Semiconductors (UCSB, 1997-1999)
- Ferromagnetism in Semiconducting GaMnAs (Sendai, Japan 1998)

- Potential Applications

- Quantum Computing in Conventional Semiconductors
- Very Fast, Very Dense, Low Power Memory and Logic
- Magnetic Sensors With SQUID Like Performance
- Optical Encoders and Decoders

DSO

Molecular Electronics

(Moletronics)

- Self-assembled Miniaturized Computational Engine Using Molecular Electronics

- Attributes

- 3-D
- High Density
- Room Temperature
- Low-power
- Compact
- Self-assembled
- Requires Fault-tolerance

D_{SO}

Nanotechnology

“Small is Different”

Ferromagnets => Superparamagnets
Ferroelectrics => Superparaelectrics

Semiconductors => Quantum Dots
Metals => Coulomb Islands

Size Selective Processing

Superlattice of 8 nm Cobalt Nanocrystals

Film Growth: Self-Assembly

Nanocrystal
Superlattice

Murray
IBM

DSO

Multi-scale Design and Integration

- For Multi-scale (mm to nm) Devices
 - Conventional Subsystems, Mesomachines, MEMS, and Evolving Nano-scaled Technologies
 - e.g., Hybrid Power Management Systems
- Functional Integration To Maximize Efficiency
 - Power, Actuation, Fluids, Electronics, Structure, etc.

Combinatorial Synthesis

Deposit large library of
inorganic compounds

Process Measure properties
(T, P, t, etc.)

- Accelerate the Discovery of New Materials
- Determine Optimum Processes and Synthesis
- Rapid Diagnostics Is The Key!

Thermoelectrics

The Dilemma in Materials Development!

DSO

Accelerated Insertion

- Modeling and Experiment in the Optimal Construction of a ‘Database’ That Satisfies Designers Needs

Growing/Emerging Opportunities

- Multi-Functional Materials
- Electroactive Polymers
- Compact Hybrid Actuation
- Mechanical Enhancement of Human Capability
- Advanced Magnetic Materials
- Spin Electronics
- Molecular Electronics
- Nanostructured Materials -- Applications Driven!
- Small Scale Design and Integration
- Accelerated Insertion of Materials

Mesoscale Opportunities at DARPA

William Warren

DARPA/DSO

wwarren@darpa.mil

Mesoscopic

*Microelectro-
mechanical*

Conventional

DSO

Meso-Machines - “*The Right Size*”-Machines

BWD Detection Pumps

All “terrain” machines

Water Purification and
Desalinization

Cool Uniforms

DSO

Why Mesoscale Machines? -

DNA

- *Optimum size for chemistry (combustion)*
- *Optimum size for heat transfer*
- *Optimum size for macroscopic electrostatic actuation*
- Improved reliability
- Low cost
- True 3-D shapes

Phenomenal *Meso*-Heat Exchangers

MesoSystems Technology Inc.

- Macro-heat exchangers - 20-30% efficient
- Program start: *meso*-heat exchangers - 50-60% efficient
- Newest *meso*-heat exchangers - 96% efficient

D_{SO}

Efficient Multi-layer Mesoscopic Blowers

Honeywell Technology Center

- Macro flow rates $\sim 10 \text{ l/min}$
- Figure of merit $> 50\times$ conventional pumps
- Pump attributes
 - 1 in^3 , $1/2$ ounce
 - low-power (2 W), truly 3D
 - inexpensive materials (plastics)
 - simple to fabricate

Energy-Efficient Flexible *Meso*-Coolers

DANIEL

UIUC

- 1/3 weight of conventional systems
- Heat exchanger optimized at *mesoscale*
- Low-power electrostatic *meso*-compressor

Hot side

Ingenious *Meso*-Machines Are Hopping

Sandia National Laboratories

DNSO

- Build a vehicle around power system: 1 mg fuel/hop
- Combustion-powered autonomous hopping
- Exceptional mobility & range capability (10 km)
- Handles rough terrain

DSO

The “Pen” Is Mightier Than The Sword!

DADDA

LATA Inc. & MIOX Corp.

The “pen” creates mixed oxidants that destroy biological and chemical agents by creating ozone, oxy-chloride species, and radicals in an electrochemical cell.

Cryptosporidium

Water Still the Size of a Coffee Mug

MesoSystems Technology Inc.

DRAFT

- Size $\sim 750 \text{ cm}^3$, weight $\sim 0.5 \text{ kg}$
 - Fuel = hydrocarbon fuels - no batteries
 - Desalinization of seawater (no clogging)
 - No BG spores in output water

sea water distilled water

0.35% NaCl ~ 0% NaCl

DSO

Meso-Channels for Heat Exchange Is Intuitive

MesoFins™

$$\dot{Q} \rightsquigarrow T_{\text{cold}}$$

Steam Outlet

DSD

We Are Envisioning a *Meso-2000*

Water generation/testing meso-machines

- Water from combustion by-products
- Biologically inspired (how do dolphins drink?)

Today: condensation of humidity
using plastic wrap

Tomorrow:

DSO

Meso-2000 Concepts

DADDY

- Meso-chemistry: rapid production of vaccines and pharmaceuticals
- Meso-arrays: waste heat recovery for cooling, water generation and purification

IMM

Good stuff can come from
this tailpipe!

DSO

Forgotten Mesoscopic Electronics

mesoscopic integrated

DADA **MICRO**

conformal electronics

DSO

3D Conformal Direct-Write Electronics

DARPA

Robotically controlled
direct-write system

Possible Applications:

- Microsatellites
- Miniature munitions
- Wireless communications
- Security printing

DSO

Lilliputian *Meso*-Electronics

Conventional
through-hole
mount

Direct-Write

6 mm

- 2 - 4x smaller
- 20x thinner
- No solder
- 300K deposition
- Multilayer

DSO

Direct-Write Passive Components

Potomac Photonics Inc./Naval Research Laboratory

- 3-D fabrication
- *in situ* trimming
- Room temperature deposition
- Works with any material
- Conformal

Resistors Inductors Capacitors

D_{SO}

Laser Guided Deposition Process

Optomec Design Corp.

Dense Materials on Low Temperature Substrates

DSO

Customers Demand Rapid Manufacture

Potomac Photonics Inc.

Demand

www.mesofab.com

- Host website devoted to *mesoscale technology*
- Tutorials & background information
- Links to team members, end-users, manufacturers
- Updated software, “recipes” and components lists
- Place an order!

Potomac Photonics Inc.

Batteries are Included!

Batteries, Solar Cells & RF Charge Pumps

- Reduced weight/improved performance
- Rugged/emplaced on any surface
- Fully integrated with the structure
- Capture incident energy (solar/electromagnetic)

SRI International

Of MICE and Meso-Machinists

MICE will integrate rugged, miniaturized electronics
with meso-machine structures

Passives and circuitry integrated
with the structure

Integrated batteries

D_{SO}

DARPA

Microsystems Technology Office (MTO)

DARPA Tech 1999

Dr. Noel MacDonald, Director

RADNA

MTO

- Microsystems via 'Chip-scale'
Integration of Core Technologies:
 - Electronics
 - Photonics
 - MEMS (Microelectromechanical Systems)

MTO (cont.)

- Materials, processes, devices & supporting technologies for chip-scale integration of Core Technologies

NANO

MTO Support Programs

- CAD (Computer Aided Design) for heterogeneous integration
- Simulation tools for ‘chip-scale’ microsystems
- Advanced Lithography

DARPA

Microsystem Technology

Electronics

Photonics

Micro
Components fo
Microelec
tronics

MEMS

Chip-scale' heterogeneous integration

NAPPA

No Boundaries

The ‘new gold’ is found at the intersections of the 3 technologies

DARPA

Commercial Examples:

‘Chip-scale’ Heterogeneous Integration
Ink Jet Printer Head:
(Microelectronics/MEMS)

NARDA

Commercial Examples:

‘Chip-scale’ Heterogeneous Integration
Texas Instruments Digital Micromirror
Device (DMD)™: (Microelectronics/
MEMS to direct photons)

NARDA

Commercial Examples:

‘Chip-scale’ Heterogeneous Integration
Micro Accelerometer (Airbag Deployed):
(Microelectronics/MEMS)

Microsystem Technologies

Focus on the ‘I Word’ - Integration at the micro/nm scale

- Processes
- Contacts, isolation and interconnects
- Mixed materials and mixed technologies
- Multiple chip integration (not packaging)

DARPA

Exploring the Interface between Biological Technology and More Conventional DoD Technologies

DARPA

Biological Technology Examples

10,000 Site Assay Chip

DARPA

Biological Technology Examples

Reconstitution and Delivery System

BSAC

NARRA

Photonic Imaging Examples

Single-Frame @ f/2.2
(50% Trans)

Raytheon

DADD

Photonic Technology Examples

Free-Space Interconnect Demo:

First system level demonstration of integrated 2-D interleaved arrays of VCSELs and detectors (1/98)

DARPA

Warfighter Support Programs

Test cases for microsystem technologies

- Wearable microsystems
- Micro-scale human interfaces
- Small size
- Micro-UAV
- cm³-scale robot

DARPA

Warfighter Technology Examples

Small Image Sources:

Small Image Sources:

640x480 AMEL
for Land Warrior

1280 x 1024 high brightness
AMLCD for Comanche

Members of the Team:

DARPA, SS COM, CECOM-NVESD, ARL, USARARL, Armstrong Labs, NAWC
Kopin Corp, Planar Inc., Sarnoff Corp., Allied Signal, Thesys, UMC, MIT-LL,
U of FL, GTRI, GIT, Oregon Graduate Institute, Honeywell, Hughes, Kaiser

Summary

- ‘Chip-scale’ integration of microsystem technologies
- Heterogeneous integration of electronics, photonics & MEMS.
- ‘Bio Chips’, signal a new era of heterogeneous integration

Summary (Cont.)

- Micro-components for new systems & new system architectures
- High-profile commercial products have demonstrated the power of heterogeneous integration

Photonics Overview

LtCol David A. Honey

DARPA/MTO

DARPA/TECH 1999

DARPA

NARDA

Photonics

- A Technology for...
 - Sensing
 - Communicating
 - Information Processing

DARPA

Warfighter Benefits

- Comprehensive Awareness

- Precision Engagement

Photonics Overview

MTO Applications Areas

Technical Strategy: Business Plan

S&T Acquisition Strategy

Future Opportunities

Photonics Overview

Sensor System

Platform Scale
Information System

Programs

- Sensing
 - IR Sensitive Materials; Sensor Integration; GaN Sensors
- Communicating
 - RF Photonics; Optical Micro Networks; Steered Beams
- Processing
 - VLSI Photonics; Photonic A/D Converter

Program Managers

- Sensing
 - R Balcerak; E. Towe; R. Leheny
- Communicating
 - R. Leheny; D. Honey
- Processing
 - E. Towe; R. Leheny

Photonics Overview

Micro Applications Areas

Technology Investment Strategy

Future Opportunities

Architecture

Photonic A/D Converter

DADD

Photonic A/D Converter

RF Input

Digital
Output

DAPPA

Optical Micro Networks

DARPA

Optical Micro Networks

Reduced
Cabling

9U chassis

6U chassis

DARPA

AV-8 Flying Testbed

China Lake NAS

VLSI Photonics

NARRA

VLSI Photonics

TBytes
of
Information

Chip-to-Chip Optical Interconnect

RF Photonics

RF Photonics

Performance

DARPA

Architecture

Nappa

DARPA

Integrated Sensors

DARPA

IR Sensitive Materials

IR Sensitive Cantilever

DARPA

Vehicle Self Protection

NARRA

Steered Agile Beams

Multiple Target Engagements

Photonics Overview

MTO Applications Areas

Technical Strategy: *Business Plan*

Future Opportunities

DARPA

Development Food Chain

NAPPA

Development Cycle

DARPA

Com.-Def. Teaming

COTS Product

Commercial Defense

DARPA

Funding Profile

Relative
Investment

Photonics Overview

MTO Applications Areas

Technical Strategy: *Business Plan*

S&T Acquisition Strategy

Next Generation

DARPA

Optical

- RAM
- Switching
- Processing

Multi-Spectral

- Sensors
- WDM Links

Displays

DARPA Tech 99

DARPA/MTO

Bruce Gnade

NAPPA

High Definition Systems

Objective: Develop leading-edge display technology to meet diverse, but specific, DoD needs. The goals include increased power efficiency, reduced weight and improved ruggedness, while pushing the state-of-the-art in display performance. Demonstrate DARPA-funded technology in military applications.

NAPPA

High Definition Systems

- Current emphasis for HDS program
 - Accelerate the development of flexible, rugged displays (organic EL, zero-power reflective, self-assembled materials)
 - Push maturing technologies to demonstration phase (FED, Color EL)
 - Increase the demonstration of HDS supported technology (DMD, TFEL, plasma)

NAPPA

CLADS

PROBLEM: CRT display systems used in AWACS, JSTARS and ABCCC are becoming unsupportable:

- Logistics Support: \$208K/CRT, MTBF ~ 500 hours

SOLUTION: Technology independent system TI-DMD, dpiX- AMLCD, Photonics - Plasma, etc.

Impact of FPD Technology:

- -1064 lb..
- -1750 watts
- MTBF > 3300 hours
- +70% viewing area

DARPA

Small Image Sources

1280 x 1024
AMLCD for Comanche

640x480 AMEL
for Land Warrior

**DARPA, SSCOM, CECOM-NVESD, ARL, USARARL, Armstrong
Labs, NAWC**

Kopin Corp, Planar Inc., Sarnoff Corp., Allied Signal, Thesys, UMC, MIT-LL, U of FL
GTRI, GIT, Oregon Graduate Institute, Honeywell, Hughes, Kaiser

DARPA

High Brightness Image Sources Rotocraft Avionics Systems

Performance goals

- 1280x1024
- 1650 ft-L
- 80:1 contrast ratio
- <1% reflectance
- Viewing angle +/-30°

Joint development program

- * DARPA
- * Comanche
- * Army
- * NVESD

Proposed Technologies

AMLCD - Kopin

AMIEL - Planar

DARPA

Zero-Power Displays

Advantages of cholesterics

- 1) Reflective in visible and IR
- 2) 2 AA batteries / year
- 3) Rugged plastic displays prevent breakage

NAPPA

Materials for Emissive Displays

TFEL Phosphor Efficiency

Brightness (2kV, 72Hz, 30usec)
Green

DARPA

Active Matrix Backplanes on Flexible Substrates

- * Driving force for active matrix is power efficiency
- * Pulsed operation and low duty cycle in PM require high current
- * I²R losses can reduce PM power efficiency by 25X

Provided by Jim Sturm - Princeton Univ. POEM

DARPA

Poly-Si TFTs on Plastic

LLNL

* Substrate = Polyester

* Max. Processing Temp = 100°C

* Max. Anneal Temp. = 150°C

* Si Crystallization \Rightarrow
308nm XeCl Excimer Laser

Transistor Process Flow

DARPA

Self Orienting, Fluidic Transport

SOFT process Flow

SOFT Advantages

- 1) high performance electronics
- 2) technology independent
- 3) size independent
- 4) low temp. processing
- 5) low capital investment
- 6) 2×10^7 pixels/8" wafer

Display Process

Beckman Display

Active Matrix Organic LED

Green: (Alq_3)
Luminance: 850 nits
Polysilicon

Planar Systems
Eastman Kodak
Sarnoff Corp
Princeton University

DARPA

Polymer Switched Matrix Display

Up-Conversion Phosphors

Gemfire

Optical IC

DARPA

Roll-to-Roll Display Processing

Roll-to-Roll laser etching electrode patterning

Roll-to-Roll display assembly

Polaroid

Summary

What do we want in displays?

- * Low power
 - * Rugged
 - * Sunlight readable
 - * Interactive
 - * Inexpensive

Advanced Imaging Sensors

Uncooled Infrared

Three Dimensional Imaging

DARPA Tech '99

Raymond Balcerak

Microsystems Technology Office

Imaging Systems DoD Requirements

- Long Range Targeting
- Target Identification
- Precision Strike
- Damage Assessment
- Sensor Matched to the Vehicle
 - Robotics
 - Micro-air Vehicles

NAPPA

Need for Precision Targeting

Wide Area Search

Rapid Target Selection

DARPA

Advanced Imaging

Sensors

Objectives:

- Transform Most of IR Imaging from Cooled to Uncooled
- Add Precision Targeting
 - Short Wave IR
 - 3-D Imaging

DARPA

Why Uncooled IR?

Cryogenic Sensor Uncooled Flat Pack

- 20 x Power Reduction
- 10 x to 100 x Size Reduction
- 10 x Cost Reduction

DARPA

Incooled IR Applications

3-10X

Current

Rifle Sight

Viewer

Unattended

Missile Seeker

Target Acq.

Micro Sensor

20-70X

Performance

IX

Emerging

Future

DARPA

Uncooled IR Payoff

Missile Seeker

U-Sensor

- Targeting Through the Missile
- Low Weight – 5-50 Grams
- 15 lbs. Weight Savings
- Sensors for Novel Applications
- 7x Cost Reduction

NARRA

Current Uncooled Detector

DARPA

Thermal Detector Challenges

- Ideal Thermal Isolation
- Optical Absorption in Thin Layer
- Thermal Time Constant
- Non-Contact Read-out
- Electronic Compensation
- Array Technology

DARPA

Ideal Thermal Device Concept

Thermal Sensitive Pixel

DARPA

Uncooled IR

Camera System Uncooled FPA

Temperature Coefficients Library
Electronic Temperature Compensation Approach

Signal Processing

- Temperature Compensation
 - Milli-Degree Accuracy
 - Coefficient Library
- Large Dynamic Range
 - On-Chip Correction/Anti-Blooming
 - Local Contrast Enhancement
 - Linearity Over Scene Temperatures

NARDA

Precision Targeting

3-D Imaging:

- Adds Pixels on Target
- Aspect Invariant
- Wave Length Flexibility
- Camouflage Penetration
- Minimum Platform
- Stabilization

NAPPA

3-D Technology

Processing Detector

Read-out

Challenges

- SWIR Detection with Internal Gain
- High Quantum Efficiency
- High Speed (Gigahertz)
- Imaging Sampling
- Low Noise Pre-amp.
- Output Format (A/Ds)
- Gain/Bias Control Feedback

NAPPA

High Speed Devices with Gain-concepts

Grown Structure

Wafer Fusion
Bonding

NAPPA

Summary

- Uncooled IR Dramatically Expands Applications
- Ten Times Performance Increase Necessary for Uncooled IR
- Precision Targeting with Unique 3-D Imaging Devices

DARPA

Distributed Robotics

Program Managers

Mr. Ellison Urban (MTO)

Dr. Regina Dugan (ATO)

Technical Support

Dr. Elana Ethridge (SPC)

DARPA Tech 99

DARPA

Distributed Robotics

The average rat can:

- wriggle through a hole no larger than a quarter
- scale a brick wall as though it had rungs
- swim half a mile and tread water for three days
- gnaw through lead pipes and cinder blocks with chisel teeth that exert 24,000 lbs. per square inch
- survive being flushed down a toilet and enter buildings by the same route
- plummet five stories to the ground and scurry off unharmed
- multiply so rapidly that a pair could have 15,000 descendants in a year's life span*

*It is not anticipated that this goal will be met by the DARPA program.

DAPPA

Distributed Robotics

*Develop
small robots (less than 5 cm)
Using
novel integrated small system
design techniques
For
application in military missions*

Distributed Robotics

Challenges:

- Non-linear scaling laws
- Mobility innovation
- Small system integration
- Interface of micro and meso scale technologies to the real world
- Energy constrained environments
- Multi-robot control strategies
- User interfaces

DADDY

Distributed Robotics

Current Projects

Carnegie Mellon University
Case Western Reserve University
Caltech
University of Minnesota
Northwestern University
UCLA
North Carolina State University
Duke University
Xerox PARC
University of Michigan
Michigan State University
Sandia National Laboratory
USC/ISI

NAPPA

Distributed Robotics

- 40 mm diameter robot
- Includes MEMS chemical sensor, MEMS vibrational device and video camera
- Robot rolls and/or jumps up to 1 meter
- Can be thrown or shot from M203 or larger robot
- Enter building (through window)
- Locate chemical (gas)
- Locate vibration source
- Locate people

University of Minnesota

NARRA

Distributed Robotics

- Small intelligent robot appx 1 cubic inch
- Integrated system with chem-resistor/humidity sensor, RF communications, covert design
- Distributed/decentralized algorithms
 - Simple individual algorithms with sophisticated collective behavior/ processing
 - Physically distributed memory
 - Inherent parallel processing
 - Time-spatial correlation

Microcrawler

Sandia National Laboratory

NADDA

Distributed Robotics

- Inch worm design
- Suction cups with micro-pumps for locomotion
- Climbs glass or other smooth surfaces
- Camera in suction cup
- Radio
- Building surveillance mission

Michigan State University

DARPA

Distributed Robotics

Flying Silicon

Air Flow

Helmholtz Resonator

Acoustic Ejector

Micro Air Platform

University of Michigan

DARPA

Distributed Robotics

Simple jumping robot based on a single actuator
Pneumatic “jumper” + positioning legs

Miniature control module including:

- RF range finder for simple location detection
- Magnetic compass
- Charge pump PZT control circuit
- Microcontroller

North Carolina State University

DARPA

Distributed Robotics

- Large scale integration of miniaturized components
- Robust distributed control
- Modular locomotion/ application strategies
- Reconfiguration planning

Dodecahedron

Spider

Xerox PARC

NARRA

Distributed Robotics

Configurable Robots

- Modular construction
- Sensors, camera, communications
- Reconfigurable

Hexapod

USC/ISI

DAPPA

Distributed Robotics

Aquatic MicroHunters track a signal in 3D to its source:

Signals can be any vector field:

- EM fields, including earth's magnetic field
- acoustic fields
- pressure gradient (e.g. depth in water column)
- light

MicroHunters characteristics:

- extremely simple
- can be very small (work at MEMS scales)
- few, miniature components
- few moving parts
- robust (can use low-grade signals, can survive damage)

DAPPA

Distributed Robotics

New BAA will be issued in August 1999

- Novel miniature robots
- Integrated microsystems that move
- Collaborative robots
- Mission specific applications

MEMS 2003 and Beyond

A DARPA Vision of the Future of MEMS

Albert P. Pisano, Ph. D.

MEMS Program Manager
Microsystems Technology Office
Defense Advanced Research Projects Agency

(703) 696-2278

apisano@darpa.mil

<http://www.darpa.mil/MTO/MEMS/>

What Are MEMS?

- A way of making things
 - Leveraging on existing infrastructure of IC fabrication tools
 - Prototype on the exact mass-production fabrication tools
- Co-location of sense, compute, actuate, control, communicate, power
 - Increase performance and decrease cost
 - Integrate an increased number of fabrication technologies
- Closed-loop, microscale control of electrical, thermal, fluid, magnetic, optical, and mass flux
- MEMS is a surface technology
- Control phenomena on the microscale
- Cause large effects both on macroscale and microscale

What Are MEMS?

- High spatial resolution and high temporal bandwidth
 - Integrated solutions offer greater physical density
 - Miniaturized components offer faster response
- MEMS at both microscale and macroscale
 - Large array of MEMS on a chip
 - Large array of MEMS “islands” on a macro platform
 - Dual-scale interconnect problem (integration required)
- The relevant size metric is the minimum feature size
 - Overall device or system size is irrelevant
 - Minimum feature size determines the required technology
- MEMS as Analog of Transistors
 - Direct and/or control power from macro and other sources

Defense Applications of MEMS

- Inertial navigation units on a chip for munitions guidance and personal navigation
- Electromechanical signal processing for ultra-small, ultra low-power wireless communication
- Distributed unattended sensors for asset tracking, environmental monitoring, security surveillance
- Integrated fluidic systems for miniature analytical instruments, propellant and combustion control
- Weapons safing, arming and fusing
- Embedded sensors and actuators for condition-based maintenance
- Mass data storage devices for high density, low power
- Integrated micro-optomechanical components for identify-friend-or-foe systems, displays and fiber-optic switches
- Active, conformable surfaces for distributed aerodynamic control of aircraft and adaptive optics

What is the Future of MEMS?

MEMS is an enabling technology that will be part of both macro and micro systems.

- Wrist Communicator
- Robust Jet Engine
- Stand-Off Chemical Sensing
- Micro Airborne Sensor/Communicator
- Micro Thermal-Chemical Power Systems

Wrist Communicator

Receiver Block Diagram

Board-Level Implementation

Univ. of Michigan
MEMS for Signal Processing

Approved for Public Release - Distribution Unlimited

DARPA

Wrist Communicator

Sixth-Order Bandpass Filter with Audio Center Frequency

Fourth-Order
Bandpass Filter
with 71 MHz
Center Frequency

Univ. of Michigan
MEMS for Signal Processing

NARDA

Robust Jet Engine

Micro heat fins 150 μm diameter, 500 μm tall, spaced on 1.0 mm centers on a 1.7 cm diameter rod. (LSU)

Micro resonant strain gage with over 10,000x sensitivity of metal foil strain gages. Nominal sensitivity 600Hz/ μstrain . (UCB)

Approved for Public Release - Distribution Unlimited

Robust Jet Engine

SARCOS
PROPRIETARY INFORMATION

mems 3 / 73a

UAST Demo on 1/2-Scale F/A-18 Tail

Approved for Public Release - Distribution Unlimited

DARPA

Robust Jet Engine

Robust Jet Engine

MITE

Pressure Belt Cross Section

(Vertical scale enlarged for illustration only)

MEMS Sensor Integrated on an MCM with Embedded Passives

Flight Loads Testing
Using Pressure Belts

DAPPA

Micro Airborne Sensor/Communicator

MEMS Polychromator

Honeywell Corp.

- A new concept for an electronically programmable, dark-field correlation spectrometer based on a MEMS diffraction grating.
- Leads to development of a miniature, electronically programmable remote chemical detection system for field use.

Micro Airborne Sensor/Communicator

Approved for Public Release - Distribution Unlimited

DARPA

Micro Thermal-Chemical Power

Isopropanol Barrier Isopropanol Reservoir

Approved for Public Release - Distribution Unlimited

NARDA

Micro Thermal-Chemical Power

40 μm

20kV x400 6000 10.0μ MSME

Lancet width = 170 μm

Needle width = 150 μm

Approved for Public Release - Distribution Unlimited

NARDA

Micro Thermal-Chemical Power

Ultrasonic Atomizer

(U of Wisconsin)

Water Droplets 20-35 μm at 72kHz

Axial Displacement Amplitude

Approved for Public Release - Distribution Unlimited

Conclusions

MEMS is an enabling technology that will be part of both macro and micro systems.

- Extreme miniaturization of low-power communication devices.
- Networks of sensors and actuators on macro devices for robustness and performance.
- Integrated systems for airborne sensing/communication.
- Thermal-chemical power on the microscale, for the microscale.

Advanced Microelectronics

Dr. Daniel J. Radack

DARPA

Flow of Talk

- Overview
- 25nm Transistors
- Vertical Devices
- 3D Integration
- Circuits and Structures

DARPA

Terascale Integration

2D Transistors

3D Si Circuits

DARPA

Design Opportunity

100's of billions of 25nm
transistors available for design of
monolithic electronic systems

DARPA

Silicon Slot FETs

1. Etch slot
2. Spacer and Gate Ox

DARPA

Silicon Slot FET's

3. Gate electrode and junctions

Slot FET's functional

DARPA

Planar Double Gate

**Simple device concept,
difficult to self-align gates**

DARPA

Folded Channel FET

Manufacturable double gate
transistor

DARPA

Double Gate FET

$L_{\text{gate}} = 30\text{nm}$

AG = 41.05 KX EHT = 1.00 kV Signal A = InLens
200nm WD = 5 mm Photo No. = 972 Date :28 Aug 1998
Time :11:26

DARPA

Vertical Devices

Interconnect Gate

Substrate
Substrate

Channel engineering and greater
functionality per area

DARPA

Vertical SRAM

Top Contact

Compact, low leakage, latching

Interconnect Challenge

Delay (ps)

Metal
Interconnect

Gate delay

25nm
250nm

DARPA

3D Integration

Integrated circuit on multiple layers

Multiple Si Layers

ELO/CMIP demonstrated for 2 layers with low leakage transistors

Pixel Processor

Local comm., constrained area

DARPA

25-nm Circuit Demo

Design rules for 25nm process

DARPA

Summary

- 25nm transistors work!
- Vertical devices have functionality/area advantages
- Moving toward integration and circuit experiments

DARPA

Program Vision

- Capable Affordable space-based radar

New Capabilities

- Deep look
- Near-continuous dwell
- Look angle diversity
- 3-D change detection

Objectives

- GMTI Collection

- SAR Imaging

- Affordability

- Dynamic Tasking

- JTF/Theater Downlink Commander

- Collection of Precision Digital Terrain Elevation Data (DTED)

MTI Overlaid
on SAR Image

Definition

- Technology development and demonstration (Design to Cost) program
- “Objective System”
- Two satellites/Modify ground systems
- Transition to reduced risk EMD

Discoverer II: An advanced technology demonstration on the path to an affordable production system [Goal: 1) \$100M/bird 2) < \$10.0B life cycle cost]

Starlite | Discoverer II Program | Low-cost, Mini-EMD | Production & Deployment

07

04

99

Key Themes

- Cohesive, Focused Program with Balanced Risk Reduction and Core Elements
- Maximum Industry Innovativeness/Involvement
- Limited Government Oversight/Specifications
- Staged Decision Process

Technical Challenges

- Spaceborne Active ESA
- HRR-GMTI/SAR Processing
- Ground Segment Comm/
Processing
- High-Resolution Terrain
Mapping Algorithms

Small Aperture
Flexible
Wideband

Key Contractors

- System Integration Contractors
 - Lockheed Martin Astronautics
 - Spectrum Astro
 - TRW
- Risk Reduction Performers
 - Northrop Grumman
 - Raytheon
 - MIT/LL
 - Alphatech
 - Johns Hopkins/APL
 - AFRL
 - ERIM International
 - Aerospace Corp

Program Schedule

DARPA

Significant Accomplishments

- Space Qualified Multiple Advanced T/R Module Designs
- Clutter Removal Testbed
 - STAP
 - Airborne Collects
- VLSI Processor Developed
 - .25 micron
 - 24 Gops/watt

FIR Chip
24 Gflop/watt

6M Transistors
0.25 micron

Demonstration Summary

- Joint Demonstration Program:
- Technical feasibility affordable space-based GMTI/SAR capability
- Objective System Design
- Fly (2) Space-based Radar (SBR) R&D satellites
- Tactical ground stations

Micro Adaptive Flow Control

Tactical Technology Office

DARPA Tech 99

DARPA

MAFC

MICRO
ADAPTIVE
FLOW

Controlling large scale flow behavior
using small scale/low energy
actuation

Aircraft

CONTROL

Engines

Munitions

Maritime

**ENABLES A
SPECTRUM OF
MILITARY
APPLICATIONS**

TTO
Tactical Technology Office

DARPA

Enabling Generic Actuator Concepts

MEMS/Smart Materials

Pulsed Blowing

SyntheticJet

Flow Around a Cylinder

Synthetic Jet Closes Wake, Eliminates Form Drag, Controls Circulation

Program Goals

- Demonstrate large scale flow control with small actuators
- Demonstrate robust control under real flow conditions
- Achieve radical performance enhancements with MAFC

DARPA

Program Strategy

- Identify System Level Application
- Develop MAFC Concept
- Design and develop actuators and controllers
- Validate MAFC performance
- Integrate and demonstrate system

DAPPA

Current Status

- Phase III Tech. Development & Feasibility Demonstrations
 - Radical propulsion system performance
 - Aerodynamic tailoring for flight controls and performance
 - Precision munitions trajectory control

TTO
Tactical Technology Office

Aspirated Compressor

Conventional Rotor Blading
3 Stages

Aspirated Rotor Blading
1 Stage

Aspirated Rotor with Tip Shroud
Pressure Ratio = 3.8

NAPDA

V-22 Lift Enhancement

Close wake with flow control on flaps to reduce downwash and increase V-22 lifting capacity 30%

DARPA

Munitions

- Lutronix - Range Extended Adaptive Munition

Fins steer 50 cal munition to reduce wind drift and ballistic drop for increased accuracy at longer ranges

DARPA

Future

- Planning BAA for Fall 1999
- Develop and demonstrate technical feasibility of MAFC concept
 - System level realizability
 - System level demonstration of radical performance
- Munitions, Maritime, Aerodynamics, Engines
- DARPA is interested in hearing from the community as to potential applications and approaches.

DARPA

Smart Bullets

DARPA

Future Vehicles Need Future Weapons

- Less armor and greater reliance on mobility, agility, and situational awareness
- Weapons requirements will change

Guns Are Still Candidates

- Guns provide more stowed kills for short range targets
- Guns can provide flexible effects
 - Rate of fire
 - Choice of round

DARPA

Missions

- Anti-vehicle
- Active protection
- Local air defense
- Anti-personnel
 - Lethal
 - Non-lethal

Gun Characteristics

- Agility
- Flexibility
- Accuracy
- Lethality
- Size, weight, power burdens

Existing Gun and Turret

Future Guns and Turrets

Enabling Concepts

- Guided/smart munitions

- Agile gun carriage
- High speed breech mechanism
- Novel propellants/ electric guns

Why Smart Bullets?

- Improved lethality with aimpoint selection
- Effective against maneuvering targets
- Novel effects with fused rounds

NAPPA

Example Payoff for Smart Bullets

LEGEND:

- KE BALLISTIC** (filled square)
- KE, GUIDED AUTONOMOUS** (empty square)

DOMINANCE IN:

MODE OF ENGAGEMENT	RANGE	BATTLESPACE
STANDING-STANDING	2:1	4:1
MANEUVERING-MANEUVERING	3.5:1	12+1

Key Technologies

- Guidance approach

- Sensors
 - IMU's

- Seekers
 - Divert

- Propulsive divert
 - Aero control

- Fuse and Warhead

Additional Challenges

- Cost: \$100 – \$1000 per round
- Launch Environment
 - 10 to 100 kilo-Gs
 - High Radial Gs
- Packaging Volume: ~1 – 10 cm³

Current Activities

- DARPA is looking for high payoff concepts around which to base a new program.
- Can accept white papers/proposals under open BAA 98-35
- Government led studies are examining operational benefits of smart bullets and other future gun concepts.

Multi-Mission Combat Systems

Dr. Marilyn Freeman, DARPA TTO

DARPA

TTO
Tactical Technology Office

The Past - Desert Storm

- 525,000 US troops deployed
- 7 month deployment period via ships and air
- Strategic Airlift:
 - 4.65 billion ton-miles (697.5 million for Berlin Airlift)
 - 20,500 missions; 534,000 passengers; 542,000 tons
- Ground Forces Example - VII Corps Support:
 - 150,000 troops, 50,000 combat vehicles
 - Estimated 800,000 gallons diesel/day consumption
 - Required 3,300,000 gallons diesel/day (11,500 tons)

The Present - Kosovo

- Quick reaction desired → rapid deployment

• Mission / Force Option/ Estimates

- 8,000 troops to secure border
- 75,000 troops to liberate Kosovo
- 200,000 troops to occupy and monitor

• Troop transport - not the hard part

- 240,000 troops to Desert Shield in 1 month
- Vehicles & support not available for many weeks

• Full Deployment Options

- Rapid Reaction → Air Transport
- Tactical Insertion → C-130/C-17
- Urgency Rules Out Strategic Sea lift

Deployability & Transportability Challenges

C-130J Size Limitations

Design Drivers

- Weight
 - 40%-50% of manned combat vehicle weight is armor
 - 20% is weapons system
 - 20% is drive train
- Size
 - Vehicle height is determined by human factors
 - > M1 A1 Abrams - 3.25 ft. height for reclined driver
 - > M3 Bradley - > 4 ft. for seated troops
 - Width
 - > Maximums are transportability related
 - > Minimums are subsystem spacing or human factors related
 - Volume (MBT)
 - > Approximately 30% of volume is attributed to crew

The Future - Army After Next

Tactical Technology Office

-
- The diagram illustrates the Army XXI architecture. At the top, three large arrows point downwards, labeled "Strike Force", "Battle Forces", and "AXXI Forces". Below these arrows is a large, tilted rectangular box containing the text "ARMY XXI". Inside this box, several smaller boxes list specific capabilities:
- Improved situational awareness
 - Strategic mobility
 - Operational-strategic focus
 - Maintains overmatch
- On the right side of the diagram, a vertical arrow points upwards, labeled "Current Forces". On the left side, a horizontal arrow points to the left, labeled "Capabilities".
- Information Dominance
 - Global Maneuver
 - Regional Engagement
 - Dominates Full Spectrum of Conflict

AOE

DARPA

What Are We Trying to Fix?

What Limits Past Solutions?

Former
Solutions
Lead to
Bigger,
Heavier
Systems

Plus
Current
Need for
Reduced
Manpower
and Costs

Lack of Forward Basing
Invalidates Former Solutions

Current Design Approaches

Input

Multi-Mission Combat Systems

- A New Approach

Common Solutions

- Reduced Size
- Stealth
- Reduce/Eliminate Crew

Technologies

- Robotics
- Electric Propulsion
- Adv Lethality
- Active Protection

DARPA/Army Study Goals

- Identify potential solutions and new approaches
- Provide convincing data supporting high payoff
- Explore and demonstrate high risk solutions and/or novel approaches to ground combat

Total Systems Approach Is Needed *New Design Philosophy*

TTO

Tactical Technology Office

Mobility/ Transportability

- Common Prime Power
- All-Wheel Drive
- Advanced Lightweight Materials

Lethality

- Energy Sources
- Launchers
- Missiles
- Smart Munitions

- Information Dominance
 - Intelligence Preparation of the Battlefield (IPB)
 - Situational Awareness
- Survivability
 - Active Defense
 - Passive Defense
 - Threat Avoidance
 - Minimally Manned Systems
- Supportability
 - Reduced Fuel Dependence
 - Reduced Maintenance
 - Reduced Life Cycle Costs

DARPA

Multi-Mission Systems

TTO
Tactical Technology Office

Technologies & Concepts From Existing Programs

DARPA/Army Study Concept

- Use total systems approach for Multi-Mission

Combat Systems:

- Multi-functional/multi-mission capabilities
- Re-configurable systems
- Enhanced survivability through manned/unmanned teaming, active defense, etc.
- Enhanced lethality/mission effectiveness
- Enhanced situational awareness
- Energy and power management with multi-function components

Study Azimuths

DARPA Role

TTO
Tactical Technology Office

Study Program Plan

- Identify high risk/high payoff concepts
- Identify issues with manned/unmanned teaming, advanced weapons systems
- Assess systems capabilities against appropriate missions
- Identify existing program crossovers
- Identify enabling technologies

MULTI-MISSION Combat Systems

DAPDA

DARPA

ATO

DARPA Tech '99

Advanced Technology Office

Dr. Tom Meyer
Director, ATO

June 1999

DARPA

FOCUS Areas

ATO

- Communications
- Maritime
- Early Entry / Special Operations

DARPA

People

Name	Phone	Name	Phone
Tom Meyer	703-696-2297	Joe Mitola	703-248-1515
William Jeffrey	703-696-2315	Art Morrish	703-696-7502
Tom Altshuler	703-696-0222	Frank Patten	703-696-2285
John Blitch	703-696-4464	John Polcari	703-696-2313
Ed Carapezza	703-696-2317	Gladys Reichlen	703-248-1516
Regina Dugan	703-696-2296	Rick Ridgley	703-248-1517
Theo Kooij	703-696-2333	Rob Ruth	703-696-2260
Mark McHenry	703-696-7495	Norm Whitaker	703-696-7501
Stu Milner	703-696-7449		

ATO

DARPA

Communications

HTS Filters, LNA

Network/Comms
Node

Innovative
Antennas

Complex Nets

Sub Comms

+ S/W Radios
+ Advanced
Waveforms

DARPA

ATO

Comms Challenges

- Agile spectrum management
- Assured access
- Autonomous, self-organizing wireless networks
- Robust to stressing environment and loss of components
- Multi-level secure

DARPA

Mariitime

ATO

Netted Acquisition and Targeting

Advanced Platforms

New Missions

Antimine

NARPA

ATO

Maritime Challenges

- Evolving roles and missions
- Fast transport (end-to-end)
- Optimal platform design
- Underwater power sources
- Wide area subsurface mapping

DARPA

Early Entry/Special Ops

AEO

Weapons

Robotics

UXO

- + Self-Healing Mine Fields
- + Warfighter Visualization

DARPA

Challenges

- Rapidly deployable, lethal, and survivable with global reach
- Situational awareness at the lowest echelons
- Enhanced unmanned capability

ATO

Opportunity

- New Office / New Focus
- Looking for *great* ideas
- Looking for *great* people
- Look to web page for details on upcoming BAAs

DARPA

ATO

Mine Detection and Alternatives to Antipersonnel Landmines

Thomas W. Altshuler
taltshuler@darpa.mil

DARPA

The Programs

- Electronic Dog's Nose

ATO

DARPA

ATO

The Programs

- Self-Healing Minefield
- Tags and Minimally Guided Munitions

DARPA

ATO

Antipersonnel Landmine Debate

*Challenge is finding creative
technology solutions in this
highly constrained
environment*

DARPA

ATO

The DARPA Approach

- Innovative maneuver denial approaches
 - Employ advanced technologies
 - Provide increased warfighting capability

DARPA

Two Innovative Approaches
ATO

Mixed Munitions Self-Healing Minefield
*Protection of AT
minefields*

Dismounted Infantry
Korean DMZ

Tags/MGM

DARPA

ATO

Self-Healing Minefield

Dynamic antitank minefield used to complicate breaching and preserve the obstacle

DARPA

ATO

Operational Concept

- Scatterable surface antitank mines
- Minefield detects breach
- Individual mines reorganize to defeat breach

DABPA

Response to Breach

Breach

**Mine can move
anywhere in
annulus**

**Healing not
sensitive
to details of
“jump”**

ATO

DARPA

Healing Algorithms

ATO

*No clear path
through
minefield after
breach attempt*

DARPA

Mine Mobility

ATO

- Healing is a statistical process
- Simple mobility needed
- Will be fault tolerant
- NO COMPLEX ROBOTICS

DARPA

System Benefits

- Prevents/impedes breach without antipersonnel landmines
- Opportunity for control of minefield
- Enemy must clear minefield

ATO

DARPA

Battlefield Utility

ATO

- North Korean mechanized battalion
- 3 rifle platoons

DARPA

Battlefield Utility

ATO

The Self-Healing Minefield significantly increases Blue battle performance

DARPA

ATO

Development Issues

- Distributed network comm.
 - Low power
 - Jam resistant
- Mine mobility
 - Multi-hop reorganization
- Healing behaviors
 - Provides battlefield capability

DARPA

ATO Tags/Minimally Guided Munitions

- Attack enemy dismounted maneuver by:

- affixing tags to the individual soldier
- employing rapid response, dedicated, guided, indirect fire

DARPA

Tags/MGM Concept

ATO

- Tags are burr-like transmitters picked up as enemy moves through engagement area
- Munitions are simple course correction, cueing on tag to keep dismounted soldier in kill box

Study Issues

- Tags

- Development of millimeter-size transmitters

- Relay information to munition launch point and during flight

- Power

- Packaging, adhesion, cueing, delivery of tags, etc.

DARPA

Study Issues

ATO

•Minimally Guided Munitions

- C2 - man-in-loop
- Low cost/high sensitivity receiver
- Indirect fire - group dynamics and individual feedback
- Time-of-flight, flight control, logistics, overall efficiency, etc.

DARPA

Program Status

- Electronic Dog's Nose
 - www.darpa.mil/dso/rd/applied/uxo
- Self-Healing Minefield
 - Anticipated Summer 99
- Tags/Minimally Guided Munitions
 - FY99 study phase
 - BAA anticipated fall, 1999

ATO

DARPA

DARPA Tech 99

ATO

Tactical Mobile Robotics

LTC John Blitch

DARPA/ATO

(703) 696-4464

jblitch@darpa.mil

DARPA

Goal

- Develop portable robotic tools which perform useful tasks that humans can't
 - Negotiate confined spaces / hazards undetected
 - Multi-modal sensing: 360x360
 - Map complex environments rapidly / completely
 - Manipulate complex objects

ATO

DARPA

System Concept

ATO

DARPA

TMR Time Line

ATO

DARPA

Surrogate Robots For Technology Development

ATO

Nomad
SuperScout

Sandia
Rattler

Foster Miller
Lemmings

RWI Pioneer

DARPA

Technology Goals

ATO

Enabling Technology: *Locomotion*

State-of-the-Art

Goal

- Obstacle avoidance • Barrier negotiation
- Rigid structures • Variable geometry
- Horizontal translation • Adaptive climbing

DARPA

TMR Progress: Locomotion

ATO

DARPA

Technology Goals

ATO

Enabling Technology: *Autonomy*

State-of-the-Art

- GPS/INS waypoint sequence
- Info sharing
- Visual servoing
- Collaborative mobile manipulation
- Cascading systems
- Marsupial operations

DAPPA

TMR Progress: Autonomy

ATO

Technology Goals

ATO

Enabling Technology: *Machine Perception*

State-of-the-Art

- Stereo vision (2 Hz)
- Sonar, radar, range finders
- Single band imagery
- Edge detection
- Planar image transfer
- Omni vision
- Penetrating radar, laser scanners
- Multi-band fusion
- Boundary representation
- Distributed Mapping (3-D)

Goal

DARPA

TMR Progress: Perception

ATO

odometry correction

DARPA

Throw-bot

(Initial Concepts)

ATO

DARPA

ATO

Systems Integration

- HRI - Human Robot Interface
 - Alert based semi-autonomy
 - Non-distracting gloves, glasses & wearable computer
- CRP - Collaborative Robot Platforms
 - Heterogeneous teaming
 - Marsupial operations

DARPA

Future Opportunity

ATO

- Innovative Mobility BAA
 - wall climbing, compliant surfaces
 - shape shifting, undulation, hybrids
- Collaboration with OSD Joint Robotics Program

DARPA

Submarine Payloads and Sensors Program

CAPT John Polcari
Program Manager

DARPA

Converging Thrusts

Advanced
Technology
Weapons and
Sensors

New Submarine Capabilities

Future
Warfare
Concepts

Traditional
Submarine
Concepts

DARPA Program Aspects

OPERATIONAL
UTILITY
CONCEPTS

PLATFORM
CONCEPT

PROGRAM
ROADMAP

PAYOUT
& SENSOR
CONCEPTS

TECHNOLOGY
NEEDS

STEALTH
ENDURANCE
AGILITY

Advanced
Ordnance

Advanced
Sensors

Adjvant
Vehicles

DARPA

Program Structure

Priming the pump

Phase 0

"Develop the Game Plan"

**18 months
2 Teams**

Bridge ROM

Initial Concepts

**Final
Deliverables**

PR01 Budget

FY01 Bridge

Follow-on Studies

12 months

?? Teams

**Interim
Deliverables**

POM02 Budget

The Future ?

- Technology maturation ?
- Risk reduction ?
- Demonstrations ?
- Eng. development ?
- Backfit / forward fit ?
- Class variant ?

DARPA

New Concepts

DARPA

Program Goal

Innovative
Spirit

Balanced
Pace

Current Designs

Adaptive
Management

Competitive
Environment

The future begins here...

Advanced
Capabilities

ATO

DAPPA

Airborne Communications Node (ACN)

Ms. Gladys Reichlen

DARPA

ACN Goals

ATO

Multi-Function Comm Node Supporting On-the-Move Forces with Enhanced:

- Connectivity
- Coverage
- Throughput
- Interoperability

DARPA

ACN Connectivity

ATO

CONUS
(DISN)

ACN961.v001
Emissions Emission Control
Emissions Emission Control

DARPA

ACN Features

- Autonomous Wireless Infrastructure
- Dynamic Payload Control and Configuration
- Adaptable to Any Mission

ATO

The logo for DARPA (Defense Advanced Research Projects Agency) is shown in a stylized oval. The letters "DARPA" are written vertically in a bold, sans-serif font.

DARPA

ACN Payload

The logo for ATO (Advanced Technology Office) is shown in a stylized oval. The letters "ATO" are written vertically in a bold, sans-serif font.

ATO

A Highly Flexible, Generic Communications System that's:

- Reprogrammable at the Waveform Level
- Reconfigurable at the Channel Level
- Modularly Constructed
- Scalable to Any Platform

NAPPA

ACN Design

AMO

Processing/Control

Switch Fabric

CoSite / Ant. Interface

Generic User A Generic User B

DARPA

ACN Services

ATO

Functionality Level

Range Extension

- SINGARS 10 - 20 User Pairs
- UHF LOS/Have Quick 10 - 20 User Pairs
- EPLRS
- Link 16
- TWR (MSE) 1 Channel
- 2 - 4 Channels

NAPPA

ACN Services

Functionality

Level

- Dissimilar Radio Interoperability Any to Any
- UHF Surrogate Satellite 10 - 20 User Pairs
- High Speed Infrastructure Access 10 - 45 Mbps
- Tactical Battlefield Multicast 64 - 1,544 Kbps
- Internet-like Data Networking 400 - 600 Users
- Alpha-Numeric Paging 500K Addresses
- Cellular / PCS-Like Voice / Data 50 - 200 Calls

DARPA

Performance Objectives

ATO

SWAP

- Volume 100 - 130 cu ft
- Weight 450 - 900 lbs
- Power 5 - 9.7 kW
- Range 100 - 150 mi

DARPA

Phase 1 Experiments

AIAO

DARPA

ATO

ACN Key Challenges

- Complex Interference Environment
 - Cosite Interference
 - Electromagnetic Compatibility
 - Intentional / Unintentional Jamming
- Size, Weight, & Power (SWAP)

Interference Mitigation

The logo for DARPA (Defense Advanced Research Projects Agency) is shown in a stylized font inside an oval shape.

Other ACN Challenges

The logo for ATO (Advanced Technology Office) is shown in a stylized font inside an oval shape.

- Adaptive Mobile Communications
- Waveform Supportability
- Scalability and Modularity
- Security
- Commercial Services

DARPA

Phase 1 Teams

A1O

SANDERS
A Lockheed Martin Company

Bellcore
Bell Communications Research

LOCKHEED MARTIN
Technical Defense Systems, Engle, MN

SRC
Science Applications
International Corporation
An Employee-Owned Company

MOTOROLA

XETRON

Viasat

Raytheon

GEC

HARRIS
COMMUNICATIONS

GTE

I Houston

HRL
LABORATORIES

Qualcomm

ZA

AT&T, BellSouth, and GTE are trademarks of AT&T Corp. IBM is a registered trademark of International Business Machines Corp. Xetron is a registered trademark of Xetron Corp. Harris is a registered trademark of Harris Corp. Qualcomm is a registered trademark of Qualcomm Inc. ZA is a registered trademark of ZA Corp. All other company names and product names are trademarks or registered trademarks of their respective companies.

BOEING

GTE Systems Inc
A former company

GTE

INTERNET WORKING
Powered by IBM

Harris

Rockwell
Collins

L3
communications

UCSD

DARPA

Low Cost Cruise Missile Defense (LCCMD) Program

Lt Col Ed Gjermundsen

DARPA/SPO

OUTLINE

- MOTIVATION
- THREAT
- PROGRAM DESCRIPTION
- TECHNICAL APPROACHES
- SUMMARY

SPRQ

MOTIVATION

THEN ...

- 30,000 Produced
- \$3K/unit

GERMAN V-1

NOW ...

- 70,000 Worldwide
- \$150K-\$1M/unit

MODERN CRUISE MISSILE

DARPA

DARPA

US Air Defense

AMRAAM

- Cruise Missile Defense

Standard Missile

- Ballistic Missile Defense

Patriot

- Anti-Air Warfare

DARPA

Cruise Missile Threat

- 82 Countries Possess
- 75 Systems in Service
- 42 in Development

Russian AS-11/KH-58

French Armat

DARPA

UAV Threat

- 74 Systems in Service
- 51 in Development

CHEM/BIO WARFARE

CONVENTIONAL WEAPONS

INFO DOMINANCE

Schedule

DARPA

SPD

DARPA

LCCMD CONOPS

DARPA

MALD-Interceptor

SEFT

Seeker Approaches

Infrared Seeker

Front View

Side View

Ladar Seeker

DARPA

Antenna Technologies

Optically Steerable Antenna

UHF Antenna

DARPA

MEMS ESA Seeker

Antenna Subarray

ESA

MEMS
Phase
Shifter

MEMS
ESA
Seeker

Phase Shifter Losses

DARPA

SP-01

NoISE Radar Seeker

- Features: Extremely High Bandwidth, Jam Resistant, No Ambiguities
- Reduced Requirements: Antenna Sidelobes, H/W Stability, 1 Bit A/D
- Challenge: Signal Processor

DARPA

Noise Radar Imaging

Data File: 173453

SIPQ

Flight Test

with Seeker

Target Drone

DARPA

Summary

- Program Addresses a Threat that Can Quickly Emerge
- Program Pursuing 6 Promising Concepts
 - Two Radar Seekers
 - Two Infrared Seekers
 - Two Novel Antennas
- We Continue to Look for More Novel Approaches to Cruise Missile Defense and Technologies that Enable Multi-Mission Applicability

Dr. John K. Smith

MEMS And Advanced Radar

DARPA

Active ESA

STC

T / R Module

DARPA

DARPA

MEM RF Switch

Digital Mirror Device

Shunt Bowtie Switch

DAPPA

MEM Switch

- Controlled By Static DC Voltage
- Acts As RF Switch Or Capacitor

Open Circuit / Low Capacitance

Closed Circuit / High Capacitance

RF Performance

DARPA

STOQ

Switching Time

CH1 20V A 10 μ s 12.2 V CH4
CH2 200mV

DARPA

DAPPA

X-Band Phase Shifter

Schematic

Photograph

Measured Characteristics

10 GHz 2-Bit (Small) PS Performance

6.0 - 10.0 GHz
• Average insertion loss 0.55-0.9 dB
(Arithmetic average of all 4 states)

5.5 - 11.0 GHz
• Return loss > 11 dB

Phase Shifter Technologies

Typical 4 Bit X-Band

Technology	Unit Cost	Power	Loss
MEMS	\$10	1 mw	1.5 dB
GaAs MMIC	\$40	20 mw	6-8 dB
Ferrite	\$100	400 mw	1.2 dB
Diode	\$20	200 mw	2.0 dB

AESAs And PESAs

DARPA

Active Electronically
Scanned Array
(AESAs)

Passive Electronically
Scanned Array
(PESAs)

T/R Module

Phase
Shifter

Manifold

T/R Module

Manifold

T/R Module

Transmitter Power Trades

STC

Array Size And MEM's Advantage

DARPA

DARPA

Space Fed Lens Vs. Constrained Feed

	Space	Constrained
Cost	Low	High
Weight	Low / Med	Med / High
Bandwidth	Low	Med / High

DARPA

Space - Fed Lens Applications

- Aerostat

- Ship

DARPA

Radant™ Lens

VIEW A
PIN DIODE SWITCH

VIEW B

Experimental System

Radant™ Lens

Reflector

Feed

DARPA

SFC

DARPA

MEM-Tenna

DARPA

Digital Mirror Device

Photo Detector Diode

DARDA

MEM Tunable Filter

Capacitive
MEM Switch

Variable
Capacitor

High-Q
Inductors

DARPA

STAR Waveform

PRI

Tx 1 Receive 1

STAR and Radar

- Range And Velocity Eclipsing Reduction
- Frequency Diversity
- Interleaved Waveforms: SAR/GMTI
- Multiple Beams
- Data Links In Common Aperture
- A/G And A/A Mode Interleaving

Conclusions

- MEMS Phase shifters and filters revolutionize radar antennas
 - Space feeds: MEM-Tenna
 - STAR Waveforms
- Order of magnitude reduction in cost and weight is possible

SPOT

Sensor Exploitation Programs

Dr. Thomas M. Strat
Special Projects Office

STPQ

ISO Organization

Sensor
Exploitation

DARPA

Operational Problems

Force-on-Force

Asymmetric Warfare

- Detect, track, identify military forces
- Terrain extraction and analysis
- Broad area search
- Detect, track, identify potentially hostile human activities
- 3-D model construction
- Site monitoring

DARPA

Sensor Exploitation Themes

Automatic
Recognition

MSTAR
AVS
IUP

Multisensor
Exploitation

DDB

Sensor
Management

AIM

Exploitation
Systems

SAIP

Data

Signals to Symbols

SIPQ

Semi-Automated IMINT Processing

An operational demonstration delivering a ten-fold improvement in tactical SAR exploitation rates

DARPA

DARPA

Next Generation ATR: MSTAR

Better ATR through
model based technology

SAR Image

Detections

ATR Output

Airborne Video Surveillance

*Technology to make video
more useful: A UAV force multiplier*

Multiple
Target
Surveillance

DARPA

DARPA

Dynamic Database

*Dynamic situation awareness
through multi-sensor exploitation*

DARPA

Advanced ISR Management

*Optimizing ISR support to the
dynamic battlefield*

Information
Needs
(Derived)

Collection
Tasks
(Coordinated)

Processing
Tasks
(Cooperative)

SII

Image Understanding for Force Protection

Information systems that see and understand in urban environments

DARPA

DAPDA

BAA's

AIM

Advanced ISR Management

IUFP

Image Understanding for Force
Protection

SIP

Sensor Exploitation Challenges

Vehicle-centric
Stovepiped analysis

Passive exploitation

- *Human-centric*
- *Multisensor exploitation*
- *Active sensor management*

- Increase levels of automation
- Invent new ways to exploit data

Affordable Moving Surface
Targeted Large Vehicle
(AMSTE)

DARPA Tech June 1999

Bruce Johnson
DARPA/SPO
703-248-1521
bjohnson@darpa.mil

Outline

- Motivation
- AMSTE Concept
- Feasibility Study
- AMSTE Program
- Summary

Motivation

- Affordably destroying moving surface targets is an essential future capability
- Existing approaches:
 - Sophisticated sensors
 - Man in the loop
 - Dispersive munitions

DARPA

Mobile Targets

Observation

Modern technology provides basis for the *affordable* precision targeting of moving surface targets

- Planned GMTI sensors
- Precision weapons
- Communication networks
- High performance processing

DARPA

GMTI Systems

U-2

- Manned Aircraft:
- Stand-off, look in
 - Large payload
 - Multifunction capabilities
 - On-board BM/C3

ARL

ASTOR (UK)

Others:

- Tactical UAV
- Special platforms

JSTARS

RTIP JSTARS

Global Hawk

- Unmanned Aircraft:
- Penetrating
 - Multifunction capabilities
 - Low Cost

- Space based:
- world wide access
 - peace & war
 - ground BM/C3

Space Based MTI?

1990 2000 2010

2020

Fighter MTI

- APG-73
- APG-76
- APG-68
- JSF

Precision Weapons

AMSTE Concept

- Network GMTI sensors
 - Improve detection
 - Increased revisit rate
 - Reduced location errors
- Precision fire-control tracking
- Command guided weapons

DARPA

AMSTE Features

- Moving land and sea targets
- Reduced cost weapons
- Shooter survivability
- Targeting selectivity and precision
- Reduced logistics
- Increased load-out

Feasibility Study

- Weapon miss-distance analysis
- Event-level simulation
 - High-fidelity vehicle movement
 - GMTI sensor/platform simulation
 - Laboratory GMTI tracker emulation
 - High-fidelity weapon simulation
- Error-source analyses

Error Sources

NAPDA

Track Prediction

DARPA

Targeting Accuracy

ERROR SOURCE	CURRENT ERROR	FUTURE ERROR
TRACK PREDICTION	178 m	7 m
DTED VERT.	20	3
SENSOR HOR. NAV.	14	5
WEAPON VERT. NAV.	7	3
WEAPON HOR. NAV.	7	3
WEAPON STEERING	1	1
RSS MISS DISTANCE	180 m	10 m

Study Conclusions

- AMSTE is feasible
- Precision tracking is key
 - Multi-platform data needed
- Weapon system studies needed
 - Cost-performance trade space
 - Identify technical risks

AMSTE Program

Objective: Develop and demonstrate technology for affordable precision engagement against moving surface targets

DARPA

Program Structure

Phase I:

Concept
Development

BAA

Phase II:

Fire Control
Experiments

Phase III:

Weapon
System
Experiments

Phase I: Approach

- Conduct weapons-system studies
 - Assess feasibility/cost
- Develop and evaluate fire-control precision tracking algorithms
 - Collect multi-platform data
- Investigate critical supporting targeting technologies

Phase I: Products

- Weapon system trade study
 - Feasibility/affordability assessment
 - Recommend follow-on experiments
- Precision fire control tracking
 - Develop and evaluate *government-owned* algorithms
- Multiple platform GMTI data

Summary

- Affordable moving target engagement is a critically needed capability
- DARPA's AMSTE program is developing and demonstrating technologies to support the *affordable engagement* of surface moving targets

Advanced Tactical Targeting Technology (ATT3)

Lt Col Beth M. Kaspar
DARPA / SPO
bkaspar@darpa.mil
(703) 248-1520

Importance

- Surface-to-Air Threat Proliferation, Sophistication, and Mobility Is a Significant Threat to US Air Power
- Destruction of Mobile Air Defense Units is the Central Issue
- Accuracy / Timeline Sufficient for PGM Weapon Delivery

AT3

Develop and Demonstrate
Enabling Technologies for
A Cost Effective Tactical
Targeting System for Lethal
Suppression of Enemy Air
Defenses (SEAD)

DARPA

Targeting Concept

DARPA

Location

TDOA
& FDOA

Ambiguities

TDOA

DARPA

Target Acquisition

Coordinated Cue

Preplanned

Tip&Tune

Robust Capability

AT3 Uniqueness: TLE

Target Location Error

AT3 Receiver

Challenges

- Common Pulse: Space / Time / Freq Alignment & Pulse Correlation
- Threat Sidelobes: Digital Receiver
- Network Management: Link 16 Access Control & Data Compression
- Multipath Resilience
- Geolocation Algorithms

Common Pulse

Collector A Collector B Collector C

- Detect
- Deinterleave
- Classify

- Detect
- Deinterleave
- Classify

- Detect
- Deinterleave
- Classify

- Pulse Train Match
- Pulse Magnitude
- CAE or TIN Processing
- IDOA/DOA Measurement

Geolocation

7D Registration

Commonly Registered 3 meter,
0.03 m/sec, 5 nano-sec P-V-T

Miniaturized
Precision
Clocks

GPS Guidance
Package

DAPDA

A/D Performance

DARPA

AT3 Timeline

< 10 sec

Link Management

Data Compression

- Match Data Link
 - > 3:1 for Sending Sampled Pulses for Coherent Processing
 - Wavelets
 - Pulse Descriptor Words for Non-Coherent Processing

Schedule

Phase 1

Design

- Simulations
- Component Demos

Phase 2

Fabricate and Test

- Algorithm Validation
- Multipath Evaluation

	FY98	FY99	FY00	FY01	FY02	FY03
Q3	Q4	Q1	Q2	Q3	Q4	Q1
Q4	Q1	Q2	Q3	Q4	Q1	Q2

CDR

PDR

Award

Brass'b'd Fab

Grd Test

Fit Test

Data Anal

... ▲

... ◆

... ◆

... ◆

... ◆

Opportunities

- Advanced Geolocation
Algorithms / Technology
- Multipath / DTED Exploitation
/ Geometry
- Reconfigurable Digital Receiver

PRO-Active Computing

- Get Physical
- Get Real
- Get Out

Dr. David Tennenhouse, Director
Information Technology Office

NAPPA

A Brief History of Information Technology

Numeric Computation

**PRO
JECT**

Symbolic Processing

Interactive Computing

ITC

DARPA

Success Stories

1965

Timesharing

1975

CTSS, Multics,
BSD, Unix

1985

Graphics

1995

Sketchpad

Internet & LANs

Arpanet,
Internet, ATM

Workstations

Lisp machine,
Xerox Alto,
Apollo, Sun

Gov. Research Industry Research Industry Development \$1B Business

Transfer of ideas or people

IT

DARPA

A Brief History of DARPA I.T.

PRO-Active

Interactive Computing

1962- present (J. Licklider, B. Taylor, I. Sutherland)

Strategic Computing

1974- present (Bob Kahn)

Artificial
Intelligence
(Saul Amarel)

High Perform.
Computing
(Steve Squires)

1960's

1970's

1990's

IT

DOD Impact

DARPA

PRO Active

ITFO

Interactive Computing

Strategic Computing

High Performance Computing

Command & Control

C4ISR

DOE, NSA,
NRO, etc.

DARPA

Beyond Interactive Computing...

PRO-Active

Lets “Declare Victory” on
Command & Control!

- Get Physical
- Get Real
- Get Out

JITCO

DARDA

PRO-Active Computing

PRO-*Active*

“Declare Victory” on White Collar Computing

- Why?
- Why Now?
- How?

ITC

Where Will the Computers Be?

Where Has CS
Focused?

Where Are The
Processors?

DARDA

Projected CPU Shipments In 2000

PROActive

Micro-controller Solutions
8,288,300,000

Cores	MCU's	Embedded MPU's	DSP	Computational MPU's
???	7,257,000,000	281,300,000	600,000,000	150,000,000
16 bit (ARM)	4 bit	8 bit	TI	x86
32 bit (MIPS)	8 bit	16 bit	AMD	PowerPC
ASSP	16 bit	32 bit		SPARC
ASIC	32 bit	153,100,000	43,000,000	

Source: Data Quest plus additional information

ITC

Why Now?

Inflection Points

- *Reinvention* of embedded processors
- *Deep Networking* of the missing 98%
- *Limits* of interactive computing

NARRATOR

Isn't This The Same As Ubiquitous Computing?

- Human productivity is common objective
- However, ubiquitous computing remains centered on
 - Human-in-the-loop paradigm
 - White-collar applications

HTC

How Do We Move Forward?

- Where are the opportunities?
 - Getting Physical
 - Getting Real
 - Getting Out

Get Physical

Attain pervasive physical locality to subjects of interest

Direct coupling to the physical world via networked devices

Targets: Vehicles, Infrastructure, Factories, Human Body

Get Physical

Bridge the Physical and Virtual Worlds

- Sample Challenges / Opportunities
 - Virtual Radios
 - Software-Enabled Control
 - National Scale Instrumentation
 - Sensor Information Technology

DARPA

Virtual Radios

Edison's Radio


```
pages = (BlockSize/4096) +1;
if((guppi_open("guppi0",pages)) < 0)
    exit(0);
guppi_start_rec();
for (i=0 ; i< NumBlocks ; i++){

    pdata = (char *)guppi_rec_buf();
    for ( j=0 ; j< IntsPerBlock ; j++){
```

```
        RealTap_ptr=RealTap;
        ImagTap_ptr=ImagTap;
        OutputDataReal=OutputDataRealma;
        OutputDataImag=OutputDataImagma;
        a=cos(TwoPi * FreqIn * index);
        b=sin(TwoPi * FreqIn * index);
        index += DecFrac;
        for ( k=0; k< FilterOrder; k++)
            OutputDataFilter[k] = ap[k];
        Tap[k];
    }
```


Disclaimer: "This is not an approved DARPA program. This alternative is under consideration."

DARPA

Software-Enabled Control

Getting
Physical

Translate

```
H(x)=  
H(x)=  
H(x)=  
H(x)=
```

Descend

```
H(x)=  
H(x)=  
H(x)=  
H(x)=
```

Hover


```
H(x)=  
H(x)=  
H(x)=  
H(x)=
```

```
if (veloc < 2.0) & (accel <  
0.05) & (alt > 5.0) then  
transitionmode(forward,  
hover,veloc,accel,alt)  
elseif (accel > 1) t  
}...  
ITC
```


National Scale Instrumentation

DARPA

Getting
Physical

NTON II
4 wavelengths
@ 10 Gb/s per fiber

HSSC
2.5 Gbps

DATA

Sensor Information Technology

Physical
Geography

First-Class Software for Embedded Systems

Getting
Physical

- Software to bridge the gap between single nodes and useful systems is missing ...
 - How do you enable “multi-tasking” of large collections of embedded nodes?
 - How do you “query” a sensor network?

JITCO

Let's Get Real

Operate at Faster-Than-Human ($>10\text{hz}$) Frequencies

- Drive applications towards real-time.
- Squeeze latency out of every system
- Enable fine-grained, high frequency interaction across subsystems.

DARPA

Getting Real

- Sample Challenges / Opportunities
 - Quorum Operating System
 - Faster-Than-Real-Time Simulation
 - Just-In-Time Hardware
 - PRO-Active Biology

ITCO

Quorum

Enhancements to NT

Getting
Real

Distribution of Event Latencies on NT 4.0

(Endo, et al, 1996)

ITG

Faster-Than-Real-Time Network Simulations

Getting
Real

simulators

real world
networks

DARPA

Just-in-Time Hardware

Getting
Real

Application

Sea of Gates

Instantly “Wired”

Run-Time Configurable Computer

ITC

DARPA

PRO-Active Biology

Getting
Physical

Real-Time
Monitoring

Lab-on-a-Chip

Access to
Experiments
in Progress

In Situ
Live
Benchtop

Getting Out

PRO Active

People are
Operators

People are
Users

People are
PRECIOUS

Get the Humans Out /
Above the “Loop”

ITGO

Getting Out

Get the Humans Out / Above the “Loop”

- Sample Challenges / Opportunities
 - First Class Software for Robotics
 - Distributed Agents / Knowbots
 - “Above the Loop” Approaches to HCI

175

DARPA

Robotics Research Without Building Robots(?)

*Leverage the progress
in mechatronics*

Getting
Out

Goal
Many robots /
person

*Proposed
Research*

State-of-the-Art
One robot /
person

State-of-the-
Practice

Several people /
robot

Develop the missing software

DARPA

Teams Of Knowbots

Getting
Off

- Leverage mobile code (agents) to achieve autonomous negotiation of large scale problems.
 - faster-than-human speed
 - millions of knowbots / person
 - allocation good enough & soon enough

ITC

What About HCI?

Getting
Out

- What Has Worked?
 - Interactive HCI Platform ≈ Computer
 - Single focal point / intermediary
- What about the PRO-active HCI?
 - How does a person direct thousands of devices? or millions of agents?

HTO

DARPA

Getting Active

PRO
Active

Java Is 5% of a Much Bigger Story ...

- Technical Challenges / Opportunities
 - Autonomous Knowbots
 - Active Networks
 - Active Software

JRC

DADDY

Active Networks

FROM: ...
TO: ...

Smart Packets

FROM: ...
TO: ...
HOW: ...
HOW: ...

Smart Packets

Not-So-Smart Packets

FROM: ...
TO: ...

JITO

DARPA

Active Software

Software That Reconfigures Itself While Running

How does code mobility change the way we think about software?

JTF

Disclaimer: "This is not an approved DARPA program. This alternative is under consideration."

NARRATOR

Can We Get Physical / Real / Out / Safety?

→ Yes...
↑

but that's another story.

JITO

How Does PRO-Active Move DoD Forward?

- Protection from Biological Attack
- Dynamic Battlefield
- Affordable, Precision Target Engagement
- Mobile, Distributed C³
- Combined Manned & Unmanned Warfare

PRO-Active Computing: The Other 98%

- We have only addressed 2% of the CPUs!
- The other 98% are embedded
- How does the world change with:
 - 1,000 processors / person?
 - Too many to bother keeping track of?

ITC

Software for Autonomous Systems

Mark L. Swinson, Ph.D., P.E.
Colonel, U.S. Army

ITO

DADDY

Program Vision

Develop the needed
Software Technologies
to enable the safe, reliable, and
cooperative operation of
autonomous, free ranging
systems for the real world

Program Scope

- Software (only) systems -
Knowbots
- Software-enabled, physically
embodied, mobile systems -
Robots

Knowbot Themes

- Information Retrieval
- Information Delivery
- Information Generation
(especially negotiation)

Robot Themes

- New Capabilities
- Enhanced Capabilities
- Reduced Cost

ITO Programs

- Knowbots
 - Autonomous Negotiating Targets
- Robots
 - Mobile Autonomous Robot Software
 - Software for Distributed Robotics
- Software Enabled Control

ANTS Vision

- Autonomously negotiate the assignment and customization of resources to tasks
- Applications include logistics, electronic countermeasures, and reactive weapons control

DAD

“You don’t get what you deserve, you get what you negotiate.”

Chester Karras

JFK

ANTS Technology Application

Could ANTs have prevented the 1996 Australian Army Blackhawk Collision?

11

DARPA

MARS Vision

State-of-the-Art

Telesupervised:
One robot/person
“tank commander”

MARS Research

State-of-the-Practice

Teleoperation:
Several people/robot
“tank driver”

JTFO

MARS Goals

- Enhance the autonomy of robot systems
- Enhance the utility, ease of development, and reusability of robot software

Research Issues

- Predictability
- Robustness
- Data Structures
- Adaptability
- Software Composition

Software Approaches

- Pre-programmed
- Learning-derived

Soft Computing

Robot Shaping

Imitative Learning

IT'S
A
GO

MARS Robots

DARPA

NAPPA

Tactical UGV

ITTO

ITG

Androids

NARPA

DARPA

Distributed Robots

HTG

NAPPA

Aerial

170

Nappa

SDR Vision

Large Scale Results from
many

Small Scale Robots

ITC

Research Issues

- Coordinated Control
- Networking/Communication
- Processing Power Allocation

NAPPA

Unmanned Vehicles

CTI

NAPPA

Autonomous Robots

ITG

DARPA

America's Army

IT-0

JITO

Mari Maeda
ITO

The Next Generation Internet Program

NAPPA

Today's Internet Traffic Makeup

Today's Internet

Flow Size Distribution

Comparison of 97 to 99

Packet Loss vs. Transmit Rate

Packet Loss

Cambridge to L.A.

Applications

- Application binary 10's MB
- High-Resolution Imagery 100 MB to GB
- Digital Video 20-90 Mb
- High-Definition TV 1500 Mbps

JTF

Scaling the Internet

*How do we enable the Internet to scale?
(in size, speed, reach, apps)*

Number of hosts connected to the Internet

Hop Number Distribution

$$\text{mean hop distance} = 16$$

- Increased loss probab.delay
- delay variation
- decreased security

DARPA's NGI Goals

Develop next generation multiplexing and switching technologies that enable dynamic resource sharing between typical and high-end users

Supernet

Create tools that automate planning and mgmt functions enabling the growth of networks by a factor of 100 or more, while limiting the cost and complexity of network management and control

Network Engineering

SuperNet Goals

To enable ultra-high bandwidth on demand over national networks, guaranteed over the shared infrastructure

Approach:

Target: Multi-Gbps end to end

- Streamlined networking protocol stacks

- Dynamically reconfigurable/switched optical layer (opaque or electronic)

- “Transparency”

- New switching/ routing technologies and control algorithms

- Dynamic and high bandwidth local access

NAPPA

SuperNet: Simplifying Protocol Stacks

JITCO

IP Over WDM

- WDM based router bypass
- Optical Flow Switching -- based on aggregate traffic change
- Host-triggered path setup
- Optical burst switch (v. short holding times)

↓
speed

Dynamic Optical Layer
transparent, opaque, or
regenerated

DARPA

IP Over WDM

Optical Burst Switching

Optical Label Switching

JTC

Bitrate and Protocol Transparent Modules

Modules at the core and the periphery of the network that can

- Recognize and lock to the bit rate (bit-rate adaptability)
- Recognize and handle different protocols (protocol agility)

- *Dynamically reconfigurable or burst switched networks*
- *Automated network upgrades without replacing hw (lock-on or sw downloads)*
- *Rapid deployment*
 - *Adapt to new types of sensors, CPE's*
 - *Minimum inventory*
 - *Development & testing of new protocols*

Universal Network Access Module

- Target bit range: 100 Mbps to 3 Gbps initially (10 Gbps later)
- Handle a variety of protocol classes at Layer 1 - 3

- OC3/12/48c ATM / SONET
- OC3/12/48c IP/SONET
- Gigabit ethernet
- SMPTE 25/292
- IEEE 1394 (firewire)
- G-Link
- FDDI
- Fibre Channel
- “ngi protocol” e.g. IP/WDM

Network Engineering

- Adaptive control
- Self-management
- Modeling and simulations
- Network visualization

Network Engineering: Adaptive Network Management Project

Large-scale network fault isolation

Self-configuring network monitors

- Surveyors map neighborhood
- They coordinate with other surveyors to adjust their ranges
- Careful multicast based self-organization
 - Continuous range expansion
 - Range description exchange
 - Back off
- ...eventually adapts to surveyor failure, network partitions

Adapts to network fault (link cut, node failure, congestion, network partition) and surveyor failure.

Network Engineering: Real-Time Network Simulations

From: Off-line

- Yesterday's traffic situation guides today's provisioning
- Problems fixed after occurrence

To: Realtime

- Live parameter tuning
- Large-scale changes and repair validation prior to fielding

simulators

topology
/configuration
↑ ↓ parameter
tuning

JTC

Adaptive Web Caching Project Target Problem: “Hot Spots”

Hundreds of thousands of clients fetching the same data
from the same server at about the same time

- Today:
- Happens few times a year
 - Manually create replic. sites
 - The Internet has yet to meet the challenge of simultaneous demands from millions of users

Tomorrow:

- Daily occurrence?
- Need demand-driven data dissemination and self-organizing caches e.g. content based routing protocol, cache group management protocol

Network Engineering: Network Monitoring, Analysis and Visualization

- Monitor and automate the discovery of the topology and traffic behavior of the Internet and future networks on a global scale.
- What makes this hard:
 - No central authority
 - Scale (span and speed)
 - Capturing dynamic behavior
 - Visualization

Tools :

“*skitter*” (active measurements: performance, topology)

“*coral*” monitors (passive measurements over high speed links)

Network Tomography

- Network “Radar”: Global connectivity information
- Measure IP paths (“hops”) from source to MANY ($\sim 10^4$) destinations
- Use 52 byte ICMP echo requests (every 30 min.) as probes
- Challenges:
 - Pervasive measurement with minimal load on infrastructure
 - Visualization

UCSD/CAIDA
(Cooperative Association for Internet Data Analysis)

Internet Tomography

Hop count
histogram

Temporal
behavior

DARPA

DARPA / NGI Testbed

Government-Wide NGI Program

Presidential Initiative -

Start FY1998; 3 year base + 2 year option

Participating Agencies:

DARPA, NSF, NIH/NLM, NIST, NASA, DOE

Goals:

- Networking Research
- Testbeds (SuperNet, vBNS, NREN, ESNET, DREN)
- Revolutionary Applications

Inherent Information Survivability

Gary M. Koob

DARPA/IITO

gkoob@darpa.mil

IITO

Layered Defense

Tolerate Detect Prevent

DARPA Strategy

DARPA

ITO

*Address Critical
Technology Gaps*

ISO

*Integration for
Balanced Protection*

3 ITO

Roadmap

Inherent Survivability
1999-2003

ISO Info Assurance
1997-2000

Information Survivability
1995-1999

DARPA

Accomplishments

*Local
Strong
Detection
Barriers*

Information
Survivability
Program

1995-1999

5 ITG

Strong Barriers

*Develop strong
barriers to
penetration at all
system levels*

DARPA

Network: DNS Security

ITC

Middleware: CORBA

RDDA

ITC

Microkernel

Security Manager

Process Manager

Trusted
App

OS:Nested Processes

Nappa

DAPPA

Application: Wrappers

Local Intrusion Detection

*Detect attacks
locally with high
confidence and low
false alarm rate*

Intrusion Detection

- State-Of-the-Practice
 - Pattern matching on known attacks
 - Program focus
 - Statistical Anomaly Detection
 - Model-Based Profiles

Detect Previously Unknown Attacks

Sample Results

1/day 10/day 100/day

False Alarms

Old VS New Attacks

DAPDA

New Directions

*Intrusion
Global
Tolerance
Detection*

Inherent
Survivability
Program

1999-2003

C
JRC

Global Detection

*Distinguish events of
elevated significance
from those of only
local interest*

RAPPDA

Common Intrusion Detection Framework

Intrusion Assessment

National

DoD

Organization

Local

Global
Context

Suppress
False
Alarms

Intrusion Tolerant Systems

*Maximize ability to
continue critical
operations following
partial compromise*

Data Integrity Marks

Wrapper:

- Verifies Marks
- Adds New One

Proof Carrying Code

Tolerant Software

Analogy to Mechanical Parts

Tolerate:

- Imprecision
- Completeness
- Latency

Ideas

- Active interfaces
- Probabilistic methods

Artificial Diversity

Example: Buffer Overflow Attack

Return Address

Canary

2. Checked
before return

1. Random string
inserted on stack

Intrusion Tolerant Networks

→ *Maximize residual capacity of network infrastructure following partial compromise*

Denying Denial-of-Service

*Constrain attacker's resource
consumption*

- Market-Based Allocation
- Progress-Based Protocols

Active Net Response

Layered Defense

Prevent

Detect

Tolerate

DAPDA

TIDES

*Translingual Information
Detection, Extraction, and
Summarization*

JTC

Why TIDES?

- 200M Web pages as of 7/97
 - 1 M terabytes of audio / year
 - Uncounted printed matter
 - Foreign language information growing faster than English

National Security

தலைவரமாக செயல்கம்
தயிர்மு விடுதலைப் புளிகள்
தயிர்மு
13.05.1998

எமது இதீசிய விடுதலைப் போராட்ட வரலாற்றில் இதீசியக் குவை வாய்ந்த நாள், எமது எதிரியான சிற்பிகப் பெரிய பகுட்டெய்திப்பாண "கேஜையசிக்குது" இருந்து எதிர்க்கு நின்ற போராடு. இன் துடன் இராணு பூர்வமாக காலத்திற்குள் முடிந்துவிடுவேன போர்ப்பளர் பிரச்சார எடுப்புகள் ஆரம்பமான இப்போர் நடவடிக்கையில் இன் ஒரு முடிவுபெறாது இழப்புகிறது. எடுத்துகிட்ட ஒரு தனிச்சமர் என்ற ரத்தியில், தயிர்முப் வரலாற்றில் உட்புரிமை நிறுவகப் பொரியல் வரவாற் றீன் டெதாரு சமராக இது முக்கியத்துவம் பெறகிறது. எதிர்முப்பகுட்டெய்திப்பை முருக்கமாக எதிர்த்துப் போராடு, ஏதும் சூழ்நிலையிலிருந்து வேகத்து நிறுத்தி, எதிரிப்பகடைகளை வேள்ளிக்காட்டிற்குள் முடக்கி வைத்து நடவடிக்கை இராணுவ வரலாற்றில் ஒரு பெற்றசாதனங்கைய எமது விடுதலை இயக்கம் நினைவுடியிக்கிறது.

1/10

TIDES Goal

- Find and Interpret Information Vital to National Security
 - Retrieve unfamiliar languages
 - Translate into English
 - Extract and correlate content

DAPDA

Machine Translation

OFFICE

170

Bombs & Warnings

DARPA

Targets

- Translingual access rivaling monolingual access
- Rapid development of MT for new languages
- Multi-document information extraction and correlation

The Problem

- Key facts, events, relationships
- Most information in text
- Unfamiliar languages
- Inadequate machine translation

The World - 1999

- ~228 Countries
- >6,700 Languages
- >39,000 Language, dialect,
and alternate names

Framework

JITCO

DARPA

Problem Statement

Information Space

Report

Process Steps

- Information Retrieval
- Topic Detection
- Entity Extraction
- Summarization

DARPA

Information Retrieval

Retrieved
Information

Relevant
Information

ITTO

ITC

Topic Detection

- Segmentation
- Recognition
- Tracking

DARPA

DARPA

Entity Extraction

- Names
- Places
- Events

JRC

DAPPA

Summarization

- Type
- Content
- Perspective
- Performance

JTC

Environment

- Large information space
- Human knowledge, patience, and labor
- Monolingual (English)

Beyond English

- Query translation
- Document translation
- 50% performance of monolingual retrieval

Exploiting Feedback

- Query refinement
- Topic unification
- Content threading
- Multidocument summarization

TIDES Tasks

- Machine Translation
 - Query
 - Query Refinement
 - Document Understanding

TIDES Tasks

- Feedback Exploitation
 - Topic Unification
 - Content Threading
 - Summarization

TIDES Evaluations

- Machine Translation
- Translingual Info Retrieval
- Topic Detection and Tracking
- Document Understanding
- Summarization & Integration

3-Year Goals

- Improved translilingual IR
- Rapid shift to new language
- Multilingual topic recognition
- Multidocument summarization

5-Year Goals

- 30+ languages
- Multilingual entity correlation
- Multilingual templates
- Multilingual summarization

TIDES

RADD

CBS
RADIO
NETWORK

J/T/O

JITCO

Information Technology Office

Dr. Helen Gill

Software-Enabled Control (SEC)

DARPA

Current State of Control Technology

- Conservative, limited in capability.
- Human operators “close the loop” for extreme disturbances and high performance.
- Old computational assumptions
 - Limited Resources
 - Fixed, static designs and schedules
 - Loose integration of supervisory and “inner loop” control
 - Limited prediction

DARPA

Program Objectives

Individual Systems

Coordinated Subsystems

Radar control JSF

Flight control

Fire control

Targeting

Autopilot

Cooperating Systems

ITC

Program Approach “*Superhuman*” Control

- Expand operational envelopes of vehicles through improved control systems.
- Leverage rapid increases in processing power and storage capacity.
- Use dynamic information to dramatically improve control and coordination.

Technical Tasks

- Active State Models
- Coordinated Multi-Modal Control
- On-Line Control Customization
- Open Control Platform

RAPPA

Active State Models

...With Predictive Transitions

Exit State

M_1

Safe Mode

External Disturbance

ITC

Active State Models

Challenges

- Dynamically exploit first-principles knowledge and on-line data to improve robustness.
- Accommodate multiple system and environmental factors.
- Predict effects over very large state and mode spaces.
- Rapidly assess damage, change.

RADDA

Coordinated Multi-Modal Control

Problem: Dynamic coordination of subsystem operation

Cobra Maneuver Pullout

JTF

DODA

Coordinated Multi-Modal Control

Coordination and Deconfliction of Control

Coordinated Multi-Modal Control *Challenges*

- Provide coordinated operation.
- Preserve stability of individual systems, as well as global stability and performance.
- Provide efficient control coordination.
- Enable distributed implementation for physically and geographically separated components.

Nappa

On-Line Control Customization

Adapt modes, transitions

Reparameterize

Adapt control laws

ITC

On-Line Control Customization *Challenges*

- Control re-parameterization and reconfiguration during operation, that:
 - Accommodates dynamically occurring coordination requirements
 - Accommodates environmental disturbances and damage
 - Accommodates sensors and actuators that vary dynamically in effectiveness
 - Preserves stability

NAPPA

Open Control Platform

Open Control Platform

- Provide control “middleware” and tool support for building commodity controllers.
- Provide parametric and structural framework to support SEC active-modal-based, coordinated, and adaptive multi-modal control technologies.
- Provide flexible experimental platform for SEC control research and demonstration.

NARDA

Experiment

Cooperative airlift

Increase controlled envelope

Disturbance
↓

Increase joint envelope

Interaction
↓

JTC

DARPA

Demonstration

Goal: Enable high performance autonomous tactical maneuvers for evasion and combat agility.

X-36

JTF

DAPDA

Roadmap

JTF

Impact:

- Reinvent Control Systems
- Reusable Control Software
- Open Control Platforms

DARPA

DARPA Bio Futures

Adding the “Bio Dimension” to
DARPA Futures

Stephen L. Squires

DADDY

What are we doing?

- Reflecting on the past
- Recognizing trends and limits
- Formulating alternative futures
- Developing a strategic vision
- Stimulating strategic processes
- Moving toward advanced futures

►Reflecting on the past

- Over 50 years of *accelerating advance*
 - ...
- The role of
 - science,
 - technology,
 - applications.
- The role of DARPA in the
 - national and global
 - system context.

► Recognizing trends and limits

- The information technology revolution enabled by microelectronics
- The revolutions in biology with minimal coupling to info and micro
- The increasingly pervasive use of information technology in science, technology, society
- The potential of coupling to biology

►Formulating alternative futures

- Recognize the potential of increased coupling among [Bio:Info:Micro]
- Imagine the scientific discovery of fundamental devices at the intersection
- Imagine their transformation to new scalable systems and applications

Why this is important ...

- Defense Challenges
 - Bio Defense
 - Human Interfaces
 - Others?
- DARPA Opportunities
 - Enabling new mission capabilities
 - Stimulating new science and technology
 - Building on DARPA Strengths

DARDA

Interactions

Scale

DARPA

- ... up toward galactic
 - 10^{24} $O(Avogadro)$
 - 10^{21}
 - 10^{18}
 - E
 - 10^{15}
 - P
 - 10^{12}
 - T
 - 10^9
 - G
 - 10^6
 - M
 - 10^3
 - K
 - 10^0
 - (1)
- Exa Peta Tera Giga Mega Kilo
- milli micro nano pico femto atto
- 10^{-3}
- 10^{-6}
- 10^{-9}
- 10^{-12}
- 10^{-15}
- 10^{-18}
- ... down into sub atomic

DARPA

The [Bio:Info:Micro] Space

Each dimension is Log(scale) with origin at Log(1)

Fundamental Devices

A Generic 21st Century Characterization

- Enables fundamental advance
- Functional unit of replication
- Scalable production system
- Integrable into systems

The details are different for each kind ...

“Solid State” Technologies
enable
[Micro:Info]

Transistors, Lasers, Displays
and “Magnetics”

[Micro:Info]

DARPA

DAPPA

The transistor invention ...

DARDA

... from Transistors to ...

Microprocessor
photomicrograph

Integrated Circuit
held by tweezers

Transistor
in a Can

DADA

Moore's Law

DARPA

Photonics Curves

DARPA

“Bio State” Technologies
enable
[Bio:Info:Micro]

DADD

[Bio:Info]

DADDY

The DNA discovery ...

X-ray
crystallography

Description in
Nature

3-D
Model

DNA-Scale Devices

DARPA

meter

10^{-7}

Strands of DNA

10^{-8}

The structure of DNA

10^{-9}

The molecules of DNA

Cell-Scale Devices

Micro-organisms

A lymphocyte

The nucleus of the cell

meter

DARPA

[Bio:Micro] Devices

Imagine a collection of
photomicrographs of
Future [Bio:Micro] Devices.

Developing a strategic vision

- Stimulate the formation of interdisciplinary research activities focused on fundamentals of the interactions in [Bio:Info:Micro]
- Enable the transition of scientific discoveries into prototype technologies that can be experimentally applied
- Enable the development of new capabilities in realistic system contexts

Stimulating strategic processes

- Leverage existing Bio research activities
- Couple to Info and Micro research
- Transition to IT-based processes
- Develop new “devices”
- Imagine new capabilities
- Transition imagination toward technology
- Establish fundamentally new capabilities

DARPA

Enable IT-based ...

Measurement

Analysis

Design

Prototyping

Integration

Collaboration

All accessible over the Net

►Preparing for the future

- Visiting advanced research sites
 - Aggressive listening
 - Trends, limits, challenges, opportunities
 - Investment strategies
- Planning [Bio:Info:Micro] meetings
- Planning joint program approaches
- Planning for *future* pilot projects

NASSO

Information Systems Office

Dr. W. M. Mularie
Director

DARDA

Agenda

- View of the Environment**
- Programmatic Themes**
- Program Implementation**
- Opportunities**

Environment

“What we believe about the world”

Reflects JV 2010 Information Superiority

- ♦ Network Centric Warfare
- ♦ Digitization of the Battlefield
- Heterogeneous World**
- ♦ Intra / Inter (Joint)
- ♦ Coalition
- ♦ Commercial Market Driven Threat
- ♦ Force on Force
- ♦ Asymmetric Warfare

Commercial Market Driven Environment

DARPA Focus

Government Systems
Attempted Emulation

Commercial Systems
(Enemy Baseline)

1990

"Recasting role of DoD could create needed advantage in information technologies" New World Vistas Study, USAF
Dr. William M. Mularie and Maj Gen Robert Rosenberg (Ret.)

DARPA

ISO Response

- Strategic Cyber Defense
- Total Information Awareness
- Command & Control

ISO

DARPA

Strategic Cyber Defense *(Information Assurance)*

Trustworthy Systems
from Untrustworthy
Components

Layered
Protection

Deficiencies

Attacks

- Prevention
- Detection
- Tolerance

FY00

Technologies

NSO

ISO Response

Strategic Cyber Defense
Total Information Awareness
Command and Control

DARPA

Force on Force - JV2010

ASO

DARPA

Asymmetric Warfare

KSO

DARPA

ISO Response

- Strategic Cyber Defense
- Total Information Awareness
- Command and Control

ISO

NSO

Command and Control

Strategic

Conventional Military

Infinite
Bandwidth

Current Bandwidth

Rapid Response

Complexity

Information

ISO Implementation

Strategic Cyber Defense

- ◆ Information Assurance
- ◆ Information Survivability

Total Information Awareness

- ◆ CoABS
- ◆ HPKB/RKF
- ◆ Project GENOA
- ◆ IU/IUFP

Command & Control

- ◆ ALP
- ◆ JFACC
- ◆ CPoF
- ◆ Active Templates
- ◆ JL-ACTD
- ◆ BADD

DARPA

ISO Technology Base

Program A
CoABS

CPA

Program B
CoABS

CPA

Program Z
Genoa

Agents, Objects, Interoperability

Information Assurance & Security

AI, Knowledge Bases

DADDY

ISO Broad Agency Announcements

- Active Templates
 - Image Understanding for Force Protection
 - Joint Forces Air Component Commander
 - Rapid Knowledge Formation
 - Project Genoa
 - Strategic Cyber Defense

Summer 99 Summer 99 Summer 99 Summer 99 Winter/Spring 00 Summer 99

O. Sami Saydjjari
Program Manager

Strategic Cyber Defense

DARPA

NSO

ISO

Information Assurance

DARPA

Information
Treasures

Risk-Balanced, Optimizing Strategy

ISO

Tradeoffs

DARPA

Performance

Functionality

100%
Secure

Security

Challenging Questions

Commander's Attack Triage

- Am I under attack ?
- What is the nature of the attack ?
- What is mission impact ?
- When did attack start ?
- Who are the adversaries ?
- What can I do about it ?
- What is the long term solution ?

DARPA

Layered Protection

Prevention Detection Tolerance

ISO

ISSO

Game Theory

DARDA

DARPA

Strategic Cyber Defense

NSC

Cyber Defense Strategy:
Nat'l Level I&W and Response Integration

Cyber Command & Control
Cyber State Awareness
Cyber Sensors & Exploitation

Observe Orient Decide Act
Info Assurance Science & Engineering

DAPPA

Strategic Cyber Defense:

NAPDA

System Assurance Methodology

Attack
Function

Likely
Attacks

Design
Function

System
Design

New CM
Rqmts

NARDA

Trustworthy Systems from Untrustworthy Components

Operational
Model

Design Tools

Experiment

Analyze

ISO

Control of Agent Based Systems

**Jim Hender
Program Manager**

DARPA

NSO

Agents and the Military Need

- Assignment problems ↔ Auction mechanisms
- Bursty bandwidth use ↔ Mobile code
- Open source information ↔ Info agents
- Interoperability ↔ brokering
- And many more

What is an Agent?

An agent is a software component or system that is:

- ◆ Communicative
- ◆ Autonomous
- ◆ Capable
- ◆ Adaptive

IASO

Agent Evolution

Where we are

A critical zone

Web Agent

Information Agent

"Intelligent" Agent

Communicative

Adaptive

Gather Nuts

Fetch, point, carry, etc.

Make it so

Agent Scaling Experiments

Current experiments
cluster near the axes on
the orthogonal planes

Number of agents

Agent Scaling Experiments

Number of agents

CoABS will show that we
can get out into the
middle of this space!

Information Agent Challenge

- c • Communicative
- o • Autonomous
- m • Capable
- p • Adaptive
- i • Intelligent
- x • Extensible
- t • Testable
- y • Scalable

Environment

These desirable
properties come
at a cost...

CoABS Focus

Examine these technologies in the context of
an evolving military information management
vision

- ◆ AFSAB Information Management, AF C2 Conops
- ◆ Army after next
- ◆ Cooperative Engagement Capability
- ◆ and numerous others

DARPA CoABS: Meeting the Challenge

Military TIEs stress integration

- ♦ OOTW
- ♦ Ballistic and Theatre Missile Defense
- ♦ Coalition Force Interoperability

Scientific TIEs stress scaling

- ♦ Negotiation Experiments
- ♦ Mathematical Analyses
- ♦ Control Scheme Comparison

Site j “costs” c_j to visit and has probability p_j of success.

Visit sites until none left or successful.

$$\text{Expected cost} = c_j + (1-p_j)c_k + (1-p_k)(1-p_j)c_m + \dots$$

CoABS Agent Grid

CoABS “Grid” provides a basis for tool development for DARPA and military computer programs

- ◆ Legacy systems wrapping

- Middleware approach
- Service based
- Logging/reporting tools included

- ◆ New systems development

- Tool refinement, testing, integration

The “N-agent” Problem

DAPP

ENVIRONMENT

DSO

DADA

Beyond CoABS: Agent Science

The Turing Machine

**Cannot model
agent-based
systems!**

Undecidable

The Science of Agency

How do we apply scientific methodology to agent-based computing?

- ♦ Bring the science of computing out of the 1950s

1999 Workshop

- ♦ Leading computer scientists in the US and abroad being invited

Summary

DARPA is exploring the use of agents for a wide range of military needs

- ◆ CoABS focuses on critical challenges
 - interoperability of legacy systems
 - scaling of multi-agent systems

DARPA is interested in helping the computer science community to explore the underlying theory of agent-based computing

DADDY

Total Information Awareness

J. Brian Sharkey
Deputy Director,
Information Systems Office

ISO

Asymmetric Warfare

YES

Type	Source	Nation State	Trans-National
Symmetric		X	
Asymmetric			X

ISSO

Environment

NARDA

DAPDA

Understanding the Environment

YSSO

Understanding

Options

Response Time

Targets

Far Field

Near Field Transition Zone

MSO

Total Information Awareness

Collective
Reasoning

Models &
Behavior

Information
Discovery

Data Gathering

Webline

Human

DARPA

Total Information Awareness

Collective Reasoning
Intent Models

Evidence Models

Index Space

Hard to Find

Data Gathering
Sensors
Events
Information Space
Easy

Semantic Content

RADDIA

Data Gathering

Information
Space

Near Field

• Perimeter Security

- People Tracking
- Face Recognition

• News Bulletin

Far Field

- Data Bases
- Data Mining

• Heterogeneous Search

ΣΥΣΤΟΣ

ΣΥΣΤΟΣ

DAPDA

Information Discovery

Index
Space

Model Driven
Search Agents

Easy for
Human to Find

Information Space

Human to Find

[ə'reɪzəf] for

NARRA

Models and Behavior Analysis

Intent Models

Evidence
Models

Index Space

Model Driven
Search Agents

MSO

Inference
Agents

NAPPA

Collective Reasoning

Conclusion

Hypothesis

Evidence

Project Genoa

Intent Models

Inference Agents

Evidence Models

Argument Templates

Other Models

NSC

Project Genoa

DARPA

DARPA

Total Information Awareness

Collective Reasoning

Models & Behavior

Information Discovery

Data Gathering

Hunting

Modeling

DARPA

Collective Reasoning

MSO

Collective
Reasoning

Models

Information
Discovery

Data
Gathering

Information
Discovery

Data
Gathering

Near Field Transition Zone Far Field

DARPA

Humans and Computers

Human
Reasoning

Automation

Semantic C...

Near Field Transition Zone

Far Field

MSO

**Rapid
Knowledge
Formation**

**Murray Burke
Program Manager**

DARPA

TSSO

Grand Vision

- Experts Enabled to Directly Enter Knowledge
- Massive Libraries of Reusable Knowledge Throughout WWW

DARPA

What's Hard?

ISO

$\forall x, p1, p2.$
 $\text{vehicle}(x) \Leftrightarrow$
 $\text{physical_object}(x)$ and
 $\text{self-propelled}(x)$ and
 $\text{can}(\text{move}(x), p1, p2).$

$\forall x, c. \text{ cargo}(c) \Rightarrow \dots$

Rapid Knowledge Formation

- Human - KB Interaction
- Understand Current Knowledge
- Enter New Knowledge
- Correct Errors
- Knowledge Formation
- Theory Manipulation

•Knowledge
•Base

Human-KB Interaction

- Natural Language Entry
- Discourse Understanding
- Sketching & Diagram Input
- Explanation

Knowledge Formation

- Reasoning by Analogy
- Learning by Example
- Discourse Management
- Partial Theory Formation

Theory Manipulation

- Theory Slicing, Merging
- Conflict Resolution
- Context Management
- Belief Management

Knowledge Content

Problem Solving &
Reasoning Methods

Upper Ontology

- Mid-Level Theories
- Domain-Specific Theories

Database

Program Structure

- Operational challenge problem drives the desired R&D
- End-to-end teams solve problem
- Technology developers advance the state of the art

Challenge Problem

- Develop knowledge bases to reason about chemical and biological weapons development

Milestones

- FY 99 3Q BAA
- FY 00 1Q Awards
- FY 00 4Q Component Tests
- FY 01 Single User Entry
- FY 02 4Q Multi-User Entry
- FY 03 1M Axiom KB Developed

Dr. Todd Carrico
Program Manager

Advanced Logistics Project

ASQ

DAPPA

Advanced Logistics Project

Getting Control of the Logistics Pipeline...

- Planning, Managing, and Providing Visibility
- All Echelons, All Phases of Operations
- Continuous Planning and Execution

**Basic Building Block
Agent “Cluster”**

Agent Community

Complex Agent Society

First Large Scale Distributed Agent-Based Architecture

ALP

ALP Operational Vision

Rapid Planning

Execution Monitoring

Continuous Replanning

Continuous System

- Planning and Execution
- Extreme Detail

ALP Agent Cluster

Nappa

Incoming
Directives

Expander

Plugin

Plugin

Plugin

Allocator

Plugin

Existing
Log Data

Penalties &
Exceptions

Outgoing
Directives

DARPA

An ALP Community

ISO

US Transportation Command

DABPA

The ALP Society

Total
Logistics
Business
Process

CENTCOM

FORSCOM

TRANSCOM

MSC

AMC

- Fully automated
- Distributed
- Continuous
- Peace and War
- All Echelons

Jan 99 Demo (FY98 Work)

Distributed logistics planning & execution system

- ◆ 5 Geographic sites
 - ◆ Automatic information sharing using the Internet
- ◆ Automatic generation of a detailed Logistics Plan
 - ◆ Bottom-up demand generation
 - 70+ units and organizations
 - 800+ distinct processes
 - Unit level equipment item detail
- ◆ Live database access (JTAG, GTN, GDSS)
- ◆ Sustainment Support & Transportation schedules for
 - 10,000+ PAX
 - 2836 of the division's 8104 vehicles
 - 36 Tactical aircraft and support equipment
- ◆ Less than an hour

FY 99 Demo (Jan 00)

Larger Society

- ◆ 125 Clusters 7 Geographic Locations
- ◆ 30 unique base plug-ins 1200 specialized plug-ins

Larger Force Deployment

- ◆ Army Division / AF AEF Expansion
- ◆ Marine Expeditionary Force
- ◆ Numbered Navy Fleet (partial)

Planning from installation through TAA

Emphasis on Execution

- ◆ Monitoring execution against real-time data
- ◆ Sentinels identifying plan deviations
- ◆ Selective replanning to correct deviations

DARPA

Comprehensive Logistics Picture

Live
Sensor
Feeds

Port of Savannah

Contemporary
Data Bases

Integrates organizational plans, assets, real-world sensor data and databases

DABBA

A Complete Architecture

- **Automation**
- **Connectivity**
- **Flexibility**
- **Interoperability**
- **Evolvability**

**Coalition/Host
Nation Systems**

ACROSS

ADAMS

DAAS

SAMMS

JTAV

GTN

GDSS

CSSCS

TC AIMS II

**Commercial
Systems**

DoD Contemporary & Future Systems/Data Sources

ICODES

DoD Email

FedEx
CSX
3M
Dell

CSX
3M
Dell

DARPA Tech '99

List of Acronyms

A

A/A	Air-to-Air
A/C	Aircraft
A/D	Analog-to-Digital
A/G	Air-to-Ground
AAN	Army After Next
AAV	Advanced Air Vehicle
ABCCC	Airborne Battlefield Command, Control and Communications
ABS	Agent-Based Systems
ACN	Airborne Communications Node
ACS	Adaptive Computing Systems
ACTD	Advanced Concept Technology Demonstration
ADC	Analog/Digital Converter
AEF	Air Expeditionary Force
AESA	Active Electronically Scanned Array
AF	Air Force
AFRL	Air Force Research Laboratory
AFSAB	Air Force Science Advisory Board
AFSS	Advanced Fire Support System
AI	Artificial Intelligence
a _i	Inference Agents
AIM	Advanced ISR Management
AIP	Automated Image Processing
AITS	Advanced Information Technology Services
AJ	Anti-Jamming; Active Jamming

ALP	Advanced Logistics Program; Advanced Logistics Planning
AMC	Army Materiel Command
AMD	Air Movement Device/Designator
AMEL	Active Matrix Electro-Luminescent
AMLCD	Active Matrix Liquid Crystal Display
AMRAAM	Advanced Medium-Range Air-to-Air Missile
AMSTE	Affordable Moving Surface Target Engagement
ANTS	Autonomous Negotiating Targets
AOE	Army of Excellence
AOR	Area of Operations
API	Application Program Interface
ARL	Army Research Laboratory; Aerial Reconnaissance Low
ARM	Advanced RISC Machine
ARPA	Advanced Research Projects Agency
a _s	Search Agents
ASARS	Advanced Synthetic Aperture Radar System
ASIC	Application Specific Integrated Circuit
ASIC	Application-Specific Integrated Circuit
ASSP	Application Specified Standard Product
ASTOVL	Advanced [Affordable] Short Takeoff and Vertical Landing
AT	Anti-Tank
AT3	Advanced Tactical Targeting Technology
ATD	Advanced Technology Demonstration
ATDNet	Advanced Technology Demonstration Network
ATM	Asynchronous Transfer Mode
ATO	Advanced Technology Office
ATR	Automatic Target Recognition
AVS	Airborne Video Surveillance
AWACS	Airborne Warning and Control System
AWEs	Advanced Warfighter Experiments

B

BAA	Broad Agency Announcement
BADD	Battlefield Awareness and Data Dissemination
BART	Bay Area Rapid Transit
BCTP	Battle Command Training Program
BDA	Battle Damaged Assessment
BG	Bacillus Subtilis Var Niger (biological warfare agent simulant)
BM	Ballistic Missile
BM/C3	Battle Management/Command, Control and Communications
BMC2	Battle Management Command and Control
bps	Bits per second
BW	Biological Warfare
BW/CW	Biological Warfare/Chemical Warfare
BWD	Biological Warfare Defense

C

C	Computer Programming Language
C ²	Command and Control
C ³	Command, Control and Communications
C ³	Command, Control and Communications
C ³ I	Command, Control, Communications and Intelligence
C ⁴ I	Command, Control, Communication, Computers and Intelligence
C ⁴ ISR	C ⁴ I and Surveillance and Reconnaissance
CAD	Computer Aided Design
CAF	Combat Air Force

CARS/DGS	Contingency Airborne Reconnaissance System/ Deployable Ground Station
CBD	Chemical/Biological Defense
CBS	Controlled Biological and Biomimetic Systems
CBW	Chemical/Biological Warfare
CC&D	Camouflage, Concealment and Deception
CCC&D	Counter-Camouflage, Concealment and Deception
CCD	Charged Coupled Devices
CCTT	Close Combat Tactical Trainer
CDL	Common Data Link
CDR	Critical Design Review
CECOM	Communications Electronics Command (Army)
CENTCOM	United States Central Command
CHPS	Combat Hybrid Power Systems
CIC	Combat Intelligence Center
CIDF	Common Intrusion Detection Framework
CINC	Commander in Chief
CISE	Computer and Information Science and Engineering
CKEM	Compact Kinetic Energy Missile
CLADS	Common Large Area Display Set
CM	Countermeasure
CM	Cruise Missile
CMD	Cruise Missile Defense
CMOS	Complementary Metal Oxide Semiconductor
CMP	Communication Module Processor
CNO	Chief of Naval Operations
COA	Course of Action
CoABS	Control of Agent Based Systems
COMINT	Communications Intelligence
COMMS	Communications Management System
COMSEC	Communications Security
CONOPS	Concept of Operations
CONUS	Continental United States
COP	Coefficient of Performance

CORBA	Common Object Request Broker Agent
COTS	Commercial Off-The-Shelf
CPE	Central Processing Element
CPoF	Command Post of the Future
CPU	Central Processing Unit
CRP	Collaborative Robot Platforms
CRT	Cathode Ray Tube
CRW	Canard Rotor/Wing
CS	Composable Services
CSAR	Combat Search And Rescue
CSSCS	Combat Service Support Control System
CTSS	Compatible Time Sharing System
CVGF	Counter Underground Facilities
CW Laser	Continuous Wave Laser
CW	Chemical Warfare

D

D	Dimensional (1-D; 2-D; 3-D; 4-D)
D/A	Digital-to-Analog
DARPA	Defense Advanced Research Projects Agency
DB	Database
DC	Direct Current
DDB	Dynamic Database
DEMUX	Demultiplexor
DFB	Distributed Feedback
DI	Deionized (water)
DIA	Defense Intelligence Agency
DII	Defense Information Infrastructure; Discoverer II
DIRO	Director's Office
DISA	Defense Information Systems Agency

DISN	Defense Information Systems Network
DLA	Defense Logistics Agency
DLP	Digital Light Processing
DMD	Digital Micromirror Device
DMZ	Demilitarized Zone
DNA	Deoxyribonucleic Acid
DNS	Domain Name Server
DoD	Department of Defense
DOE	Department of Energy
DoS	Denial of Service
dpi	Dots Per Inch
DRaFT	Digital Radio Frequency Tag
DRAM	Dynamic Random Access Memory
DREN	Defense Research and Engineering Network
DSB	Defense Science Board
DSO	Defense Sciences Office
DSP	Digital Signal Processor
DTED	Digital Terrain Elevation Data

E

E/O	Electro-Optical
EAP	Electroactive Polymers
ECCM	Electronic Counter-Countermeasures
EL	Electro-Luminescent
ELF/VLF	Extremely Low Frequency/Very Low Frequency
ELINT	Electronic Intelligence
ELO	Epitaxial Lateral Overgrowth
ELS	Emitter Location System
EM	Electromagnetic; Electrothermal Magnetic
EMC	Electromagnetic Compatibility

EMD	Engineering and Manufacturing Development; Engineering Manufacturing Design
EMI	Electromagnetic Interference
EMP	Electromagnetic Pulse
ENG	Electronic News Gathering
EO	Electro-Optical
EO/IR	Electro-Optical/Infra-Red
EPLRS	Enhanced Position Location Reporting System
ESA	Electronically Scanned Array
ESNET	Energy Sciences Network
ETC	Electrothermal Chemical
ETDM	Electronic Time Division Multiplexing
ETO	Electronic Technology Office (now MTO)
ETRAC	Enhanced Tactical Radar Correlator
EV	Electric Vehicle
EW	Electronic Warfare

F

F	Frequency
FA	False Alarm
FAO	Foreign Area Officer
FBE	Fleet Battle Experiment
FDDI	Fiber Distributed Data Interface
FDOA	Frequency Difference of Arrival
FED	Field Emission Display
FET	Field Effect Transistor
FFT	Fast Fourier Transform
FIR	Far Infrared; Finite Impulse Response
FOPEN	Foliage Penetration
FORSCOM	United States Army Forces Command
FPA	Focal Plane Array

FPGA	Field Programmable Gate-Array
FTE	Full Time Employment
FY	Fiscal Year

G

G/T	antenna Gain-to-noise Temperature
GBR	Ground Based Radar
GBS	Global Broadcast Service
GDSS	Global Decision Support System
GFI	Government Furnished Information
GGP	GPS Guidance Package
GMR	Giant Magneto Resistance
GMTI	Ground Moving Target Indicator
Gnd	Ground
GOTS	Government Off-The-Shelf
GPS	Global Positioning System
GPS/INS	Global Positioning System/Inertial Navigation System
GS	General Service
GTN	Global Transportation Network

H

H/W	Hardware
HAE	High Altitude Endurance
HAE UAV	High Altitude Endurance Unmanned Air Vehicle
HARM	High-speed AntiRadiation Missile
HCI	Human Computer Interaction
HD	Hard Drive
HDS	High Definition Systems

HEV	Hybrid Electric Vehicle
HF	High Frequency
HP	Horsepower
HPC	High-Performance Computing
HPCC	High Performance Computing and Communications
HPKB	High Performance Knowledge Base
HRI	Human Robot Interface
HRR	High Range Resolution
HSCC	High Speed Connectivity Consortium
HTS	High Temperature Superconductors
HTTP	HyperText Transfer Protocol
HVAC	High Voltage Alternating Current
HW	Hardware

I&T	Integration and Test
I&W	Indications and Warning
I/O	Input/Output
IA	Information Assurance
IC	Integrated Circuit
ICE	Independent Cost Estimate
ICMP	Internet Control Message Protocol
ICS	Integrated Communications System
IEEE	Institute of Electrical and Electronics Engineers
IER	Interim Evaluation Review
IETF	Internet Engineering Task Force
IFF	Identification, Friend or Foe
IIOP	Internet Inter-ORB Protocol
IMINT	Imagery Intelligence
IMU	Inertial Measurement Unit
INS	Inertial Navigation System

IP	Internet Protocol
IPB	Intelligence Preparation of the Battlefield
IR	Infrared; Information Retrieval
IS	Information System; Intelligent System
ISO	Information Systems Office
ISP	Internet Service Provider
ISR	Intelligence, Surveillance and Reconnaissance
IT	Information Technology
ITO	Information Technology Office
ITS	Interactive Training System
ITV	In Transit Visibility
IU	Image Understanding
IUFP	Image Understanding for Force Protection
IW	Information Warfare

J

JFACC	Joint Forces Air Component Commander
JIP	Just In time Power
JL-ACTD	Joint Logistics Advanced Concept Technology Demonstration
JPO	Joint Program Office
JRP	Joint Robotics Program
JSF	Joint Strike Fighter
JSTARS	Joint Surveillance Target Attack Radar System
JTAV	Joint Total Asset Visibility
JTF	Joint Task Force
JTIDS	Joint Tactical Information Distribution System
JV	Joint Vision

K

KB	Knowledge Base
KE	Kinetic Energy

L

LADAR	Laser Radar
LAN	Local Area Network
LCCMD	Low Cost Cruise Missile Defense
LED	Light-Emitting Diode
LNA	Low Noise Amplifier
Log	Logistics
LOS	Loss of Signal; Line of Sight
LPD	Low Probability of Detection
LSB	Least Significant Bit
LTTE	Liberation Tigers of Tamil Eelam (Sri Lanka)
LWIR	Long Wavelength Infrared

M

MAFC	Micro Adaptive Flow Control
MAFET	Microwave and Analog Front-End Technology
MALD	Miniature Air Launched Decoy
MARS	Mobile Autonomous Robot Software
MAV	Micro Air Vehicles
MBT	Main Battle Tank
MCM	Mine Countermeasures; Multi-Chip Module
MCU	Master Control Unit

MDARS	Mobile Detection Assessment Response Team
MDV	Minimum Detectable Velocity
MEDLINE	MEDLARS On-Line System
MEF	Marine Expeditionary Force
MEMS	Microelectromechanical Systems
MGM	Minimally Guided Munitions
MICE	Mesoscopic Integrated Conformal Electronics
MIMIC	Microwave and Millimeter Wave Monolithic Integrated Circuits
MIPS	Million Instructions Per Second
MIPS	Millions of Instructions Per Second
MMCS	Multi-Mission Combat Systems
MMIC	Monolithic Microwave Integrated Circuit; Miniature Millimeter Wave Integrated Circuit
MOA	Memorandum of Agreement
MONET	Multiwavelength Optical Networking
MOPS	Million Operations Per Second
MOS	Metal Oxide Semiconductor
MPRF	Medium Pulse Repetition Frequency
MPU	Microprocessor Unit
MS	Milestone
MSB	Most Significant Bit
MSE	Mobile Subscriber Equipment
MSET	Multi-Sensor Exploitation Testbed
MSTAR	Moving and Stationary Target Acquisition and Recognition
MT	Machine Translation
MTBF	Mean-Time-Between-Failure
MTI	Moving Target Indication
MTO	Microsystems Technology Office
MUC	Message Understanding Conference
MULTICS	Multiplexed Information and Computing Service
MUX	Multiplexor

N

NAS	Naval Air Station
NASA	National Aeronautics and Space Administration
NATO	North Atlantic Treaty Organization
NAWC	Naval Air Warfare Center
NB	Narrow Band
NGI	Next Generation Internet
NIH	National Institute of Health
NII	National Information Infrastructure
NIMA	National Imagery and Mapping Agency
NIST	National Institute of Standards and Technology
NLM	National Library of Medicine
NREN	National Research and Education Network
NRL	Naval Research Laboratory
NRO	National Reconnaissance Office
NSA	National Security Agency
NSF	National Science Foundation
NT	Nodal Terminal
NTONII	National Transparent Optical Network
NVESD	Night Vision and Electronic Sensors Directorate

O

O	Output
O&S	Operations and Support
OCP	Open Control Platform
OCR	Optical Character Resolution
OEIC	Optoelectronic Integrated Circuit
OLED	Organic Light Emitting Diode

ONR	Office of Naval Research
ONRAMP	Optical Network for Regional Access using Multiwavelength Protocols
OO	Object Oriented
OODA	Observe, Orient, Decide, Act
OOTW	Operations Other Than War
Ops	Operations; Operations per second
ORB	Object Request Broker
OS	Operating System
OSD	Office of the Secretary of Defense
OTDM	Optical Time Division Multiplexing
OXC	Optical (WDM) Cross-Connect

P

P	Power
PA	Power Amp
PAC/C	Power Aware Computing and Communications
PACOM	U.S. Pacific Command
PACT	Photonic A/D Converter Technology
PAX	Passengers
PC	Personal Computer
PCC	Proof-Carrying Code
PCR	Polymerase Chain Reaction
PCS	Personal Communications System
PDR	Preliminary Design Review
PESA	Passive Electronically Scanned Array
PFCT	Precision Fire Control Tracking
PGM	Precision-Guided Munition
PILOT	Phase Integrated Laser Optics Technology
Pk	Probability of Kill
PM	Passive Matrix; Program Manager

PNP	Positive-Negative-Positive
POC	Point of Contact
PR	Preliminary Review
PRDA	Program Research and Development Activity
PRF	Pulse Repetition Frequency
PRI	Primary Rate Interface
PS	Phase Shifters
PTCOE	Phosphor Technology Center of Excellence
P-V-T	Position-Velocity-Time
PVTF	Position-Velocity-Time-Frequency

Q

Q Quarter

R

R&D	Research and Development
R/T	Receive/Transmit
RADANT	Radome Antenna
RADAR	Radio Detecting/Detection and Ranging
RAM	Random Access Memory
RF	Radio Frequency
RFP	Request for Proposals
RIN	Relative Intensity Noise
RISC	Reduced Instruction Set Computing
RKF	Rapid Knowledge Formation
RNA	Ribonucleic Acid
ROM	Rough Order of Magnitude
RPV	Remotely Piloted Vehicle

RSS	Radar Signal Simulator; Radar Support System
RST-V	Reconnaissance, Surveillance, and Targeting Vehicle
RTIP	Real Time Interactive Processor
RX	Receive; Receiver

S

S&T	Science and Technology
S/V	Survivability/Vulnerability
S/W	Software
SAIP	Semi-Automated Image Processing
SAM	Surface-to-Air Missile
SAR	Synthetic Aperture Radar
SATCOM	Satellite Communications
SBIR	Small Business Innovative Research
SBR	Space-Based Radar
SDR	Software for Distributed Robotics
SEAD	Suppression of Enemy Air Defenses
SEC	Software Enabled Control
SHM	Self-Healing Minefield
SI	System Integration; International System of Units
SIGINT	Signals Intelligence
SIL	Systems Integration Lab
SINGARS	Single-Channel Ground and Airborne Radio System
SLID	Small Low-Cost Interceptor Device
SMPTE	Society of Motion Picture and Television Engineers
SNMP	Simple Network Management Protocol
SNR	Signal-to-Noise Ratio
SOF	Special Operations Forces
SOFT	Self Orienting Fluidic Transport
SONET	Synchronous Optical Network

SPARC	Scalable Processor Architecture
SPO	Special Projects Office
SQUID	Superconducting Quantum Interference Devices
SRAM	Static Random Access Memory
SSCOM	Soldier System Command
SSN	Ship, Submersible, Nuclear
STALO	Stable Local Oscillator
STAP	Space-Time Adaptive Processing
STAR	Simultaneous Transmit And Receive
STO	Sensor Technology Office (now SPO)
SUO	Small Unit Operations
SW	Software; Short Wave
SWAP	Size, Weight, Area and Power
SWIR	Short Wavelength Infrared

T

T	Temperature; Time
T/R	Transmit/Receive
TAA	Technology Assistance Agreement
TACOM	Tank and Automotive Command
Tags/MGM	Tags/Minimally Guided Munitions
TC AIMS II	Transportation Coordinators Automatic Information for Movement System II
TCDL	Tactical Common Data Link
TDOA	Time Difference of Arrival
TDT	Topic Detection and Tracking
TEL	Transporter Erector Launcher
TES	Tactical Exploitation Station
TFEL	Thin Film Electro-Luminescent
TFT	Thin Film Transistor
TI	Technology Independent; Test Interface

TIA	Total Information Awareness
TIDES	Translingual Information Detection, Extraction, and Summarization
TIE	Technology Integration Experiment
TLE	Target Location Error
TMD	Theater Missile Defense
TMR	Tactical Mobile Robotics
TMR	Tactical Mobile Robotics
TNT	Trinitrotoluene
TOA	Time of Arrival
TPV	Thermophotovoltaics
TRANSCOM	U.S. Army Transportation Command
TRANSEC	Transmission Security
TREC	Text Retrieval Conference
TTO	Tactical Technology Office
TWR	Trans World Radio
TX	Transmit; Transmitter

U

UAV	Unmanned Air Vehicle
UCAV	Unmanned Combat Aerial Vehicle
UGF	Underground Facilities
UGS	Unattended Ground Sensor
UGV	Unmanned Ground Vehicle
UHF	Ultra High Frequency
UNIX	Uniplexed Information and Computing Service
USA	United States Army
USAF	United States Air Force
USAR	United States Army Reserve
USCG	United States Coast Guard
USMC	United States Marine Corps

USN	United States Navy
UWB	Ultra Wideband
UXO	Unexploded Ordnance

V

vBNS	Very high performance Backbone Network Service
VCO	Voltage Controlled Oscillator
VCSELs	Vertical Cavity Surface Emitting Lasers
VDoP	Vertical Dilution of Precision
VHF	Very High Frequency
VLSI	Very Large Scale Integration
VSP	Vehicle Self Protection
VTOL	Vertical Take-Off and Landing

W-Z

WAN	Wide Area Network
WB	Wide Band
WDM	Wavelength Division Multiplexing
WSTS	Weapon System Trade Study
WT	Weight
WWW	World Wide Web