

Arab Academy for Science, Technology & Maritime Transport

College of Engineering and Technology

EXAMINATION PAPER

Department: Computer Engineering **Date**: 30-December 2020

Course Title: Digital Electronics Time allowed: 2 Hours

Course Code: CC 341

Lecturer: Prof. Dr. Mohamed T. El-Sonni

Student's Name:	
Student's Department:	Reg.#:

	Marks		
	Available	Actual	
Question #			
1	3		
2	3		
3	3		
4	3		
5	2		
6	3		
7	3		
Total	20		
	Name: Prof. Dr. Mohamed T. El-Sonni		
Lecturer	Signature:		
	Date: 30 December 2020		

Question 1: [Linear wave shaping]

A negative pulse of 6V amplitude is applied to an RC high-pass filter circuit with R = $22K\Omega$ and $C=0.47~\mu F$. Sketch the output waveform and Specify $V_{o}~(0 \leq t < t_{p}),~V_{o}(t_{p+}),~V_{o}(t_{p-})$ and $V_{o}~(t > t_{p})$ when: $t_{p}=10.34~msec$.

Symbol	Formula / Condition	Calculations / Results	Units
Fall time = t _f			
$Vo (0 \le t < tp)$			
V1 =Vo(tp-)			
V2 =Vo(tp+)			
Vo (t > tp)			
Draw RC high- pass filter circuit			
Draw output waveform	Vo	tp t	

Question 2: [Non-linear wave shaping]

For the following circuits, draw the appropriate transfer characteristic output voltage. Know that $V_{max}\!>\!V_r$ and $R_L\!=\!2R$

D is ON:		
D' OFF		
D is OFF:		

Question 3: [Switching characteristic of devices]

Design a Common Emitter transistor switch operating with $V_{\rm CC}$ =20v and V_{BB} =20v. The transistor is expected to operate at $I_{\rm C(sat)}$ =5mA, $h_{\rm FE(min)}$ =25, $V_{\rm CE(sat)}$ =0.2V, $V_{\rm BE(sat)}$ =0.7V.

Solution:

Symbol	Formula / Condition	Calculation / Result	Units
R _C =			
I _{B(min)} =			
I _{B(sat)} =			
I ₂ =			
R ₂ =			
I ₁ =			
$\mathbf{R}_1 =$			
V _i (high level) =			

Question 4: [Astable multivibrator]

Design an astable multivibrator, assuming that silicon devices with $h_{FE(min)}=45$ are used. Also assume that $Vcc=12v,\,I_{C\,(sat)}=5$ mA. Let the desired frequency of oscillations be 5 KHz and the required duty cycle 70%. For transistor used, $V_{CE\,(sat)}=0.2v,\,V_{BE\,(sat)}=V\sigma=0.7v.$

Solution:

Symbol	Formula / Condition	Calculation / Result	Units	
Rc				
I _{B (min)}				
I _B (sat)				
$\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}$				
For an unsymmetric a-stable multivibrator (T1 \neq T2) It is required to fix the component values of R1, R2, C1 and C2 let R1 = R2 = R				
T ₁				
T ₂				
C ₁				
C_2				

Question 5: [Monostable multivibrator]

Diagnose the following circuit when a component is short circuited (S.C) and when a component is open circuited (O.C).

Solution:

R1	C1	R2	Vb1	Vc1	Vb2	Vc2	Q1	Q2
S.C			Vc2=0.2	Vcc	>0.7	VceSat	off	on
O.C			<0.7 or -Vbb?	Vcc	>0.7	VceSat	off	on
	S.C		>0.7 or Vce-IR1	Vb2	>0.7	VceSat	off	on
	O.C							
		S.C						
		O.C						

Answer the following multiple choice questions:

- 1) The base emitter voltage in a saturation region is_____
 - a) Greater than 7V
 - b) Almost to 0.7V
 - c) Less than 0.7V
 - d) Cannot be predicted
- 2) Bistable circuit is also known as _____
 - a) Latch
 - b) Gate
 - c) Flip-flop
 - d) Bidirectional circuit
- 3) What is a square wave generator?
 - a) Flip-flop
 - b) Bi-stable multivibrator
 - c) Astable multivibrator
 - d) Monostable multivibrator
- 4) Monostable multivibrators can be used as
 - a) Pulse generator
 - b) Pulse stretcher
 - c) Pulse looser
 - d) Pulse motor

Question 6:

Design a fixed-bias binary multivibrator with h_{FE} = 50. The circuit parameters are $V_{CC} = 12v$, $V_{BB} = -12v$, $I_C = 5$ mA, $V_{CE (sat)} = 0.3v$, $V_{BE(sat)} = 0.7v$.

Symbol	Formula / Condition	Calculation / Result	Units
RC			
I ₂			
R ₂			
IB2(min)			
I _{B2(sat)}			
I ₁			
I _B (min)			
V _{B1}			

Question 7: [Logic Gates]

Draw the following Circuits and Complete The Truth Tables:

PMOS NOR gate:

V_1	V_2	O/P
Low	Low	
Low	High	
High	Low	
High	High	

CMOS NAND:

V_1	V_2	O/P
Low	Low	
Low	High	
High	Low	
High	High	

74 series two input Transistor Transistor Logic NAND Gate:

V_1	V_2	O/P
Low	Low	
Low	High	
High	Low	
High	High	