SIS8300 µTCA 16-bit Digitizer

SIS8300 µTCA FOR PHYSICS Digitizer

User Manual

SIS GmbH Harksheider Str. 102A 22399 Hamburg Germany

Phone: ++49 (0) 40 60 87 305 0 Fax: ++49 (0) 40 60 87 305 20

email: info@struck.de http://www.struck.de

Version: SIS8300-M-1402-1-V105.doc as of 17.10.2013

Revision Table:

Revision	Date	Modification	
1.00	02.01.2012	Based on SIS8300-M-1102-2-V211	
		Firmware: V1400	
		- add "Firmware Option register"	
		- add Memory Histogramming Feature	
		- add Harlink Connector Output Test Mode	
		- add SIS8900 RTM LVDS Test I/O Control register	
1.01	13.01.2012	Added DMA register description, fixed reset register descr.	
1.02	16.03.2012	Fix of broken reference	
1.03	28.09.2012	FW: v1401	
		- add IRQ register description	
		- add DAQ done IRQ	
		- add DAQ done DMA start signal chain	
		- add RAM FIFO debug register	
1.04	19.12.2012	FW: v1402	
		- fixed MLVDS Bit7 Trigger enable bit	
		- added Register 0x205 bit0 for byte swapped sample	
		readout	
1.05	17.10.2013	Fixed Sample Length Register description	
		Added Firmware upgrade description	

SIS8300 µTCA 16-bit Digitizer

- Table of contents

-		Table of contents					
1	Introduc	oduction5					
	1.1 Re	lated documents	5				
2	Design		6				
		nctionality					
	2.2 Blo	ock Diagram	6				
		tform Management					
		ock Distribution					
3		Connector Pin Assignments					
		N100 JTAG					
		04 Watchdog Reset					
		2 AVR JTAG					
4							
		AC LEDs					
		ont Panel LEDs					
		ID LEDs.					
5		mel					
9		rlink LVDS In-/Outputs					
		IA Clock Input					
		P Card Cage					
6		ayout					
7		re Description					
′		OC Sample Logic					
		emory Interface					
	7.2 Nic	Memory Write Interface					
	7.2.1	Memory Histogram Interface					
		emory buffer					
		dress Map					
		gister description					
	7.5.1	Module Id. and Firmware Revision register					
	7.5.2	Serial Number register.					
	7.5.3	XILINX JTAG register					
	7.5.4	XILINX Virtex5 Error Detection register.					
	7.5.5	User Control/Status register					
	7.5.6	Firmware Options register					
	7.5.7	ADC Acquisition Control/Status register					
	7.5.8	ADC Sample Control register					
	7.5.9	MLVDS Input/Output Control register					
	7.5.10	Harlink Connector Input/Output Control register					
	7.5.10	Clock Distribution Multiplexer control register					
	7.5.11	Clock Distribution AD9510 Serial Interface (SPI) interface register (0x41, read/write)					
	7.5.12	Clock Multiplier IC SI5326 SPI interface register					
	7.5.13	DAC Control register					
	7.5.15	DAC Data register					
	7.5.16	ADC Serial Interface (SPI) interface register					
	7.5.17	ADC Input Tap delay registers (0x49)					
	7.5.17	Virtex 5 System Monitor registers					
	7.5.18	Trigger registers					
	7.5.19	Memory Sample Start Address / Actual Sample Address registers					
	7.5.20						
	7.5.21	Sample Length register.					
	7.5.22	Ringbuffer Delay register Test Histogram Pattern-Memory Address register					
	7.5.23 7.5.24	Test Histogram Pattern-Memory Address register Test Histogram Pattern-Memory Data Write register					
	7.5.24	Test Histogram Control register					
	7.5.25	SIS8900 RTM LVDS Test Input/Output Control register					
	7.5.26	Read DMA System Destination address (lower 32bits)					
	1.3.41	Nead Divid System Destination address (10wer 320ns)	40				

7.5.28 Read DMA System Destination address (upper 32bits	s)46
7.5.29 Read DMA Card Memory Source address	
7.5.30 Read DMA Transfer length	47
7.5.31 Read DMA Control	47
7.5.32 Readout DMA Sample byte swap	47
7.5.33 Write DMA System Source address (lower 32bits)	48
7.5.34 Write DMA System Source address (upper 32bits)	
7.5.35 Write DMA Card Memory Destination address	
7.5.36 Write DMA Transfer length	49
7.5.37 Write DMA Control	49
7.5.38 DAQ Done DMA Chain Control	50
7.5.39 IRQ Enable	50
7.5.40 IRQ Status	51
7.5.41 IRQ Clear	51
7.5.42 IRQ Refresh	51
7.5.43 RAM FIFO debug register	52
7.6 External register interface	53
7.7 User Blockram DMA Interface	55
7.8 User Interrupt Interface	55
8 RTM management	56
9 Firmware upgrade	57
9.1 Create programming file	57
9.2 Create PROM file	58
9.3 Program FPGA	59
10 Appendix	61
10.1 Power Consumption	61
10.2 Ordering options	61
10.3 RTM/Zone 3 connectors J75 and J76	62
10.3.1 J75 connector pin assignments	62
10.3.2 J76 connector pin assignments	63
10.3.3 Note on AC/DC input stage selection	63
10.4 RTM connector schematics	65
11 Index	66

SIS8300 µTCA 16-bit Digitizer

1 Introduction

The SIS8300 is a ten 10 channel 125 MS/s digitizer with 16-bit resolution according to the uTCA for Physics draft standard.

SIS8300 with SFPs installed

As we are aware, that no manual is perfect, we appreciate your feedback and will incorporate proposed changes and corrections as quickly as possible. The most recent version of this manual can be obtained by email from info@struck.de, the revision dates are online under http://www.struck.de/manuals.html.

Note 1: It is PICMG's policy to prohibit claims of compliance with respect to a specification under development. Any such claims must be understood as applying to a draft, which is subject to change

Note 2: The SIS8300 is developed in co-operation with DESY under ZIM grant 2460101MS9 (ZIM: Zentrales Innovationsprogramm Mittelstand)

1.1 Related documents

A list of available firmware designs can be retrieved from http://www.struck.de/sis8300firm.html

2 Design

The central building block of the SIS8300 card is a Xilinx Virtex 5 FPGA. It holds the 4 lane PCI Express interface and is in control of all active components.

2.1 Functionality

The key properties of the SIS8300 card are listed below.

- AMC .4 µTCA for Physics Board
- 4 Lane PCI Express Interface
- Dual SFP Card Cage for optional Multi Gigabit Link
- Xilinx Virtex 5 FPGA
- DDR2 Memory Interface
- 4 x 1 GBit default DDR2 memory (4 x 2 GBit option)
- Atmega128 IPMI
- External Clock and Trigger Inputs
- Frontpanel digital I/O (4in/4 out) on Harlink Connectors
- RTM ADC Analog Inputs, I2C-Bus
- 10 ADC Channels 125MS/s, 16-Bit
- 2 DAC Channels 250MS/s, 16-Bit
- Clock distribution with phase shifting
- 4 M-LVDS µTCA Ports
- 2 μTCA Clocks

2.2 Block Diagram

A simplified block diagram of the SIS8300 is shown below.

Struck Documentation

SIS8300 uTCA for Physics Digitizer

2.3 Platform Management

The management code of the SIS8300 is implemented in an Atmel Atmega1281-16MU microcontroller and can be upgrade in field over connector J32 (see section 3.3).

2.4 Clock Distribution

The clock distribution scheme of the SIS8300 is illustrated below.

3 Jumper/Connector Pin Assignments

The following subsections describe the pin assignments of jumpers and connectors.

3.1 CON100 JTAG

The SIS8300's on board logic can load its firmware from a serial PROM, via the JTAG port on connector CON100, PCI Express or via the MMC.

Hardware like the XILINX HW-USB-JTAG in connection with the appropriate software will be required for in field JTAG firmware upgrades.

CON100 is a 2mm (i.e. metric) 14 pin header that allows you to reprogram the firmware of the SIS8300 board with a JTAG programmer. The pin out is shown in the schematic below. It is compatible with the cable that comes with the XILINX HW-USB-II-G-JTAG platform cable. CON100 can be found at the right bottom side of the board.

Note 1: The board has to be powered for reprogramming over JTAG

Note 2: The FPGA uses 8-bit parallel mode to load the firmware from the serial PROM. Make sure to check the 'Parallel Load' box in Impact when specifying the programming properties for the PROM.

3.2 J604 Watchdog Reset

J604 can be found next to the left upper edge of U500 (largest chip on the card). With J604 closed the boards watchdog reset is connected to the reset logic. J604 should be opened for JTAG firmware programming.

3.3 J32 AVR JTAG

This 10-pin header is used to connect to the JTAG of the Atmel Atmega128 microcontroller providing the IPMI/MCH functionality of the SIS8300.

	J32		
	TCK	GND	0_2
	TDO	VTREF	0_4_
	TMS	nSRST	0_6_
	nc	nTRST	0_8_
9_0	TDI	GND	010

4 LEDs

4.1 AMC LEDs

The AMC LEDs are implemented according to the standard.

4.2 Front Panel LEDs

The SIS8300 in Gigalink stuffing option has 4 green front panel LEDs.

LED name	Function in Gigalink design	
A	PCI Express Access	
U	User LED	
L1	PCIe Link up	
L2	ADC Sampling active	

4.3 SMD LEDs

A number of surface mount red LEDs are on the SIS8300 to visualize part of the board status.

LED designator	LED comment	Function
D20A	S1	Firmware dependent
		(Optical Link 1 up in 0x1102)
D20B	S2	Firmware dependent
		(Optical Link 2 up in 0x1102)
D20C	S3	Firmware dependent
D20D	S4	Firmware dependent
D20E	S5	Firmware dependent
D20F	S6	Firmware dependent
D20G	S7	Firmware dependent
D20H	S8	Firmware dependent
D21D	READY	FPGA ready
D105A	TX FAULT 1	Link 1 transmitter fault
D105B	RX LOS 1	Link 1 receiver loss of signal
D110A	TX FAULT 2	Link 2 transmitter fault
D110B	RX LOS 2	Link 2 receiver loss of signal

5 Front panel

The SIS8300 is a μ TCA for Physics board. A sketch of the front panel is shown below.

5.1 Harlink LVDS In-/Outputs

The Harlink LVDS Output and Input connectors have 5 signals each. The Clock signal to the left hand side is marked with C and the other 4 signals are labelled with 1-4.

	Clock	1	2	3	4
Top	P	P	P	P	P
Bottom	N	N	N	N	N

5.2 SMA Clock Input

The front panel SMA clock input is designed to accept a maximum peak to peak signal level of 3V into 50 Ohms. The clock input signal is coupled to the internal logic via a capacitor. The schematic of the input stage is shown below.

5.3 SFP Card Cage

The dual card cage can host two SFP link media.

They can be enabled in the sis8300top.vhd VHDL code as shown below (and are active in the 0x1102 firmware design e.g.):

DUAL_OPTICAL_INTERFACE_EN : integer := 1; --

Communication is handled through registers 0x14 to 0x17 (refer to the VHDL code)

6 Board Layout

A print of the silk screen of the component side is shown below.

Connector types

The used connectors are listed in the table below.

Designator	Function	Manufacturer	Part Number
CON100	JTAG	Molex	87831-1420
CON200	Clock In	JYEBAO	SMA8400A1-9000
CON301	DAC 1 Out	JYEBAO	SMA8400A1-9000
CON302	DAC 2 Out	JYEBAO	SMA8400A1-9000
CAGE105	SFP Cage, 2 Ports	TYCO	1761014-1
J10	AdvancedMC	HARTING	16211701301000
J32	JTAG Atmega	SAMTEC	HTSW-105-26-G-D
J75	RTM	ERNI	ERmetZD-10x3P-FEM
J76	RTM	ERNI	ERmetZD-10x3P-FEM
J77	RTM Keying	TYCO	(*)
J209	Trigger & Clock Out	HARTING	27 21 121 8000
J205	Trigger & Clock In	HARTING	27 21 121 8000
J604	Watchdog	SAMTEC	HTSW-102-26-G-S

Note (*): The used Key may depend on the hardware configuration of the SIS8300

7 Firmware Description

7.1 ADC Sample Logic

The block diagram shows the ADC data handling. Each ADC channel has its own Memory Address Control Logic.

The block diagram shows the ADC data handling. Two ADC channels share the same Memory Address Control Logic.

The "Single-Channel Copy-To-Memory" Logic needs more FPGA resources (+2500 Registers, +700 Slices, +10 BlockRams) than the "Dual-Channel Copy-To-Memory" Logic.

7.2 Memory Interface

The "sis_ddr2_interface_with_histogramming" provides the user logic with the possibility to write to the Memory and to increment (histogram) the content of 32-bit memory values.

User Interface block diagram for Memory read, write and histogram operations.

7.2.1 Memory Write Interface

The Write Interface consists of the following signals:

```
sis_write_fifo_wr_clk : in std_logic;
-- data: write fifo
sis_write_data_fifo_wr_en : in std_logic;
sis_write_data_fifo_din : in std_logic_vector(127 downto 0);
sis_write_data_fifo_wr_count : out std_logic_vector(9 downto 0);
-- address: write fifo
sis_write_addr_fifo_wr_en : in std_logic;
sis_write_64bit_addr_fifo_din : in std_logic_vector(31 downto 0);
sis_write_addr_fifo_wr_count : out std_logic_vector(9 downto 0)
```

A write cycle to the memory consists of one write command to the Address Fifo and two write commands to the Data Fifo.

One write command to the Address FIFO:

```
a valid "sis_write_addr_fifo_wr_en" signal over one clock period (sis_write_fifo_wr_clk) along with "sis_write_64bit_addr_fifo_din".
```

Two write commands to the Data FIFO:

```
a valid "sis_write_data_fifo_wr_en" signal over two clock periods (sis_write_fifo_wr_clk) along with "sis_write_data_fifo_din".
```

When issuing a write command to the Address Fifo, the second write command to the Data Fifo must be issued no more than one clock cycle later.

It is only allowed to write to the Address-FIFO, if "sis_write_addr_fifo_wr_count" is lower than X"1FF" (not full).

It is only allowed to write to the Data-FIFO, if "sis_write_data_fifo_wr_count" is lower than X"3FE" (not full).

The Memory Controller writes with one "write cycle" 256 bits (4 x 64 bits) to the Memory. Therefore the lower 2 address bits of the written 64-bit address must be 0 and the "next address" will be incremented by 4.

7.2.2 Memory Histogram Interface

The Histogram Interface consists of the following signals:

```
-- Histogramming
-- address: write fifo
sis_write_histo_addr_fifo_clr: in std_logic;
sis_write_histo_addr_fifo_wr_clk: in std_logic;
sis_write_histo_addr_fifo_wr_en: in std_logic;
sis_write_histo_32bit_addr_fifo_din: in std_logic_vector(31 downto 0);
sis_write_histo_addr_fifo_wr_count: out std_logic_vector(9 downto 0);
```

A write command to the Histogram Address Fifo will increment by one the content of the 32-bit Memory value addressed with the written 32-bit Memory Address.

```
It is only allowed to write to the Histo-Address-FIFO, if "sis_write_histo_addr_fifo_wr_count" is lower than X"1FF" (not full).
```

The histogramming memory controller supports an update rate of 5MHz (20 MHz within one 2K memory page amid differing three lowest order bits).

7.3 Memory buffer

The structure of the memory buffer with **512 MByte** (i.e. 4 x 1 GBit memory chips) is illustrated below.

512 MByte: 4 x 64M x 16bit = 256M x 16bit = 32M x 128bit = 16M x 256bit

The structure of the memory buffer with **1 GByte** (i.e. 4 x 2 GBit memory chips) is illustrated below.

1 GByte: 4 x 128M x 16bit = 512M x 16bit = 64M x 128bit = 32M x 256bit

7.4 Address Map

Following 32-bit addresses are implemented

Offset	Access	Function	
0x00	R	Module Identifier/Firmware Version register	
0x01	R	Serial number register	
0x02	R/W	XILINX JTAG register	
0x03	R	XILINX Virtex5 configuration memory Error Detection register	
0x04	R/W	User Control/Status register (JK)	
0x05	R	Firmware Options register	
0x10	R/W	ADC Acquisition Control/Status register	
0x11	R/W	ADC Sample Control register	
0x12	R/W	MLVDS Input/Output Control register	
0x13	R/W	Harlink Connector Input/Output Control register	
0x14	R/W	Link 1 data FIFO (refer to VHDL code)	
0x15	R/W	Link 1 set control (refer to VHDL code	
0x16	R/W	Link 2 data FIFO (refer to VHDL code	
0x17	R/W	Link 2 set control (refer to VHDL code	
0x40	R/W	Clock Distribution Multiplexer control register	
0x41	R/W	Clock Distribution IC AD9510 SPI interface register	
0x42	R/W	Clock Multiplier IC SI5326 SPI interface register	
0x44	R/W	reserved	
0x45	R/W	DAC Control register	
0x46	R/W	DAC Data register	
0x48	R/W	ADC SPI Interface register	
0x49	R/W	ADC Input Tap delay register	
0x90	R/W	VIRTEX5_SYSTEM_MONITOR_DATA register	
0x91	R/W	VIRTEX5_SYSTEM_MONITOR_ADDR register	
0x92	R/W	VIRTEX5_SYSTEM_MONITOR_CTRL register	
0xFF	W	Bit 0 = 1: Master Reset (reset all registers)	
0x100	R/W	ADC ch1 Trigger Setup register	
0x101	R/W	ADC ch2 Trigger Setup register	
• •			
0x109	R/W	ADC ch10 Trigger Setup register	
0x110	R/W	ADC ch1 Trigger Threshold register	
0x111	R/W	ADC ch2 Trigger Threshold register	
0x119	R/W	ADC ch10 Trigger Threshold register	
0x120	R/W	ADC ch1 Memory Sample Start Address / Actual Address register	

0x121	R/W	ADC ch2 Memory Sample Start Address / Actual Address register	
0x129	R/W	ADC ch10 Memory Sample Start Address / Actual Address register	
0x12A	R/W	ADC chx Sample Length register	
0x12B	R/W	ADC chx Ringbuffer Delay register (0 to 2046)	
0x12C	R/W	Test Histogram Pattern-Memory Address register	
0x12D	R/W	Test Histogram Pattern-Memory Data Write register	
0x12E	R/W	Test Histogram Control register	
0x12F	R/W	SIS8900 RTM LVDS Test Input/Output Control register	
0x200	R/W	DMA_READ_DST_ADR_LO32	
0x200	R/W	DMA_READ_DST_ADR_HI32	
0x201	R/W	DMA_READ_SRC_ADR_LO32	
0x203	R/W	DMA_READ_SRC_ADR_E032 DMA READ LEN	
0x204	R/W	DMA_READ_CTRL	
0x205	R/W	DMA Readout Sample byte swap control	
0x210	R/W	DMA_WRITE_SRC_ADR_LO32	
0x210 0x211	R/W	DMA_WRITE_SRC_ADR_LO32 DMA_WRITE_SRC_ADR_HI32	
0x211	R/W	DMA_WRITE_DST_ADR_LO32	
0x212	R/W	DMA_WRITE_LEN	
0x214	R/W	DMA_WRITE_CTRL	
0x216	R/W	DAQ Auto DMA Chain Control	
0x220	R/W	IRQ Enable	
0x221	R	IRQ Status	
0x222	W	IRQ Clear	
0x223	KA	IRQ Refresh	
0x230	R/W	MEMORY test Mode register	
0x231	R/W	RAM FIFO debug register	
0x400	R/W	Mapped out of register bank to top level. May be used for user defined register implementation. See Section 7.6.	
0x4FF	R/W		

7.5 Register description

7.5.1 Module Id. and Firmware Revision register

#define SIS8300_IDENTIFIER_VERSION_REG

0x00

This register holds the module identifier (SIS8300) and the firmware version and revision.

BIT	access	Name	Function
31-16 FFFF0000	RO	Module Identifier	0x8300
15-8 0000FF00	RO	Firmware Version	1255
7-0	RO	Firmware Revision	1255

Example: The initial version of the SIS8300 reads 0x83001400

7.5.2 Serial Number register

#define SIS8300_SERIAL_NUMBER_REG

0x01

This register holds the Serial Number of the module.

BIT	access	Name	Function
31-16 FFFF0000	RO	reserved	
15-0 0000FFFF	RO	Serial Number	165535

7.5.3 XILINX JTAG register

#define SIS8300_XILINX_JTAG_REG

0x02

This register is used in the firmware upgrade process over PCIe only. A TCK is generated upon a write cycle to this register.

Bit	write Function	read Function
31	none	TDO
30		1 x Shifted TDO
•••		
4	none	
3	none	
2	none	
1	TMS	
0	TDI	30 x Shifted TDO

The read register function operates as a shift register for TDO. The content of the read register is shifted to the right by one bit with every positive edge of TCK and the status of TDO is transferred to Bit 30. Bit 31 reflects the current value of TDO during a read access.

7.5.4 XILINX Virtex5 Error Detection register

#define SIS8300_XILINX_ECC_REG

0x03

XILINX Virtex5 configuration memory error detection register.

Bit	read Function
31	0
30	0
16	0
15	Frame ECC output indicating a valid SYNDROME value
14	0
13	CRC Error
12	ECC Error
11	SYNDROME: Status bit 11
1	SYNDROME: Status bit 1
0	SYNDROME: Status bit 0

7.5.5 User Control/Status register

#define SIS8300_USER_CONTROL_STATUS_REG

0x04

The control register is implemented as a selective J/K register, a specific function is enabled by writing a 1 into the set/enable bit, the function is disabled by writing a 1 into the clear/disable bit (which location is 16-bit higher in the register). An undefined toggle status will result from setting both the enable and disable bits for a specific function at the same time. The only function at this point in time is user LED on/off.

On read access the same register represents the status register.

Bit	write Function	read Function	
31	Clear reserved 15 (*)	0	
30	Clear reserved 14 (*)	0	
29	Clear reserved 13 (*)	0	
28	Clear reserved 12 (*)	0	
27	Clear reserved 11 (*)	0	
26	Clear reserved 10 (*)	0	
25	Clear reserved 9 (*)	0	
24	Clear reserved 8 (*)	0	
23	Clear reserved 7 (*)	0	
22	Clear reserved 6 (*)	0	
21	Clear reserved 5 (*)	0	
20	Clear reserved 4 (*)	0	
19	Clear reserved 3 (*)	0	
18	Clear reserved 2 (*)	0	
17	Switch off LED test	0	
16	Switch off user LED (*)	0	
15	Set reserved 15	Status reserved 15	
14	Set reserved 14	Status reserved 14	
13	Set reserved 13	Status reserved 13	
12	Set reserved 12	Status reserved 12	
11	Set reserved 11	Status reserved 11	
10	Set reserved 10	Status reserved 10	
9	Set reserved 9	Status reserved 9	
8	Set reserved 8	Status reserved 8	
7	Set reserved 7	Status reserved 7	
6	Set reserved 6	Status reserved 6	
5	Set reserved 5	Status reserved 5	
4	Set reserved 4	Status reserved 4	
3	Set reserved 3	Status reserved 3	
2	Set reserved 2	Status reserved 2	
1	Switch on LED test	Status LED test	
0	Switch on user LED	Status User LED (1=LED on, 0=LED off)	

(*) denotes power up default setting

7.5.6 Firmware Options register

#define SIS8300_FIRMWARE_OPTIONS_REG

0x05

This register holds the information of the Xilinx firmware option features.

Bit	read Function
31	reserved
30	
16	reserved
15	reserved
14	reserved
13	reserved
12	reserved
11	reserved
10	reserved
9	reserved
8	FPGA_SX_1GByte Memory
7	reserved
6	DUAL_OPTICAL_INTERFACE_EN
5	DUAL_PORT14_15_INTERFACE_EN
4	DUAL_PORT12_13_INTERFACE_EN
3	none
2	DUAL_CHANNEL_SAMPLING
1	RINGBUFFER_DELAY_EN
0	TRIGGER_BLOCK_EN

FPGA_SX_1GByte Memory = 0 : Virtex 50LX50T and 512 MByte Memory **FPGA_SX_1GByte Memory = 1 :** Virtex 50SX50T and 1 GByte Memory

7.5.7 ADC Acquisition Control/Status register

#define SIS8300_ACQUISITION_CONTROL_STATUS_REG 0x10

Bit	write	read
31		0
		0
		0
8		0
7		Status: DDR2 Memory Init OK
6		0
5		Status: internal Sample Logic Buffer FIFO
		Not Empty
4		Status: internal Sample Logic Busy
3		0
2	'1': Disable Sampling	0
	(Reset Sample Logic)	
1	'1': Arm Sampling	Status: Arm for trigger
	(Start with next trigger)	(Wait for trigger)
0	'1': Start Sampling immediately	Status: Sampling Busy
	(Arm and Start/Trigger)	

The power up default value is 0x0

7.5.8 ADC Sample Control register

#define SIS8300_SAMPLE_CONTROL_REG 0x11

ADC channels can be disabled from storing data to memory by setting the corresponding disable bit in this register.

Bit	write
31	
•••	
12	
11	Enable external Trigger
10	Enable internal Trigger
9	Disable Sampling Ch10
8	Disable Sampling Ch9
7	
6	
5	
4	
3	
2	Disable Sampling Ch3
1	Disable Sampling Ch2
0	Disable Sampling Ch1

The power up default value is 0x0

7.5.9 MLVDS Input/Output Control register

#define SIS8300_MLVDS_IO_CONTROL_REG 0x12

Bit	Write	Read
31	Enable LVDS Output Bit 7	Enable LVDS Output Bit 7
30	Enable LVDS Output Bit 6	Enable LVDS Output Bit 6
••		
25	Enable LVDS Output Bit 1	Enable LVDS Output Bit 1
24	Enable LVDS Output Bit 0	Enable LVDS Output Bit 0
23	LVDS Output Bit 7	LVDS Output Bit 7
22	LVDS Output Bit 6	LVDS Output Bit 6
•••		
17	LVDS Output Bit 1	LVDS Output Bit 1
16	LVDS Output Bit 0	LVDS Output Bit 0
15	LVDS Input 7 External Trigger Enable	LVDS Input 7 External Trigger Enable
14	LVDS Input 6 External Trigger Enable	LVDS Input 6 External Trigger Enable
•••		
9	LVDS Input 1 External Trigger Enable	LVDS Input 1 External Trigger Enable
8	LVDS Input 0 External Trigger Enable	LVDS Input 0 External Trigger Enable
7	LVDS Input 7 External Trigger falling edge	LVDS Input Bit 7
6	LVDS Input 6 External Trigger falling edge	LVDS Input Bit 6
1	LVDS Input 1 External Trigger falling edge	LVDS Input Bit 1
0	LVDS Input 0 External Trigger falling edge	LVDS Input Bit 0

Note: external trigger in signals are synchronized with the FPGA CLK05

7.5.10 Harlink Connector Input/Output Control register

#define SIS8300_HARLINK_IO_CONTROL_REG 0x13

Bit	Write	Read
31	No function	0
30	No function	0
21	No function	0
20	Harlink Test Output Enable	Harlink Test Output Enable
19	Harlink Test Output 4 (*)	Harlink Test Output 4
18	Harlink Test Output 3 (*)	Harlink Test Output 3
17	Harlink Test Output 2 (*)	Harlink Test Output 2
16	Harlink Test Output 1 (*)	Harlink Test Output 1
15	Harlink Input 4 External Trigger falling edge	Harlink Input 4 External Trigger falling edge
14	Harlink Input 3 External Trigger falling edge	Harlink Input 3 External Trigger falling edge
13	Harlink Input 2 External Trigger falling edge	Harlink Input 2 External Trigger falling edge
12	Harlink Input 1 External Trigger falling edge	Harlink Input 1 External Trigger falling edge
11	Harlink Input 4 External Trigger Enable	Harlink Input 4 External Trigger Enable
10	Harlink Input 3 External Trigger Enable	Harlink Input 3 External Trigger Enable
9	Harlink Input 2 External Trigger Enable	Harlink Input 2 External Trigger Enable
8	Harlink Input 1 External Trigger Enable	Harlink Input 1 External Trigger Enable
7	No function	0
6	No function	0
5	No function	0
4	No function	0
3	No function	Harlink Input 4
2	No function	Harlink Input 3
1	No function	Harlink Input 2
0	No function	Harlink Input 1

(*): only if "Harlink Test Output Enable" = 1 (**): only if "Harlink Test Output Enable" = 0

Harlink Connector Input(1): external trigger In

Harlink Connector Output(1): adc chx (or) trigger out (**)

Note: external trigger in signals are synchronized with the FPGA CLK05

7.5.11 Clock Distribution Multiplexer control register

#define SIS8300_CLOCK_DISTRIBUTION_MUX_REG 0x40

The SIS8300 has 5 IDT ICS853S057 clock multiplexer chips, which are labelled A to E in the clock distribution schematic in section 2.4. The multiplexer control register holds the two select bits for the 5 multiplexer chips as shown in the table below.

The assignment of the inputs to the resources (i.e. clock inputs) is listed in subsection 7.5.11.1.

BIT	access	Name	Function
31-12 FFFFF000	R/W	reserved	no
11-10 00000000	R/W	MUXE_SEL	Multiplexer E select bits
9-8	R/W	MUXD_SEL	Multiplexer D select bits
7-6	R/W	reserved	no
5-4	R/W	MUXC_SEL	Multiplexer C select bits
3-2	R/W	MUXB_SEL	Multiplexer B select bits
1-0	R/W	MUXA_SEL	Multiplexer A select bits

7.5.11.1 Multiplexer A Input Signals:

U222 - Sel0 and Sel1 (MUX1A_SEL) = Multiplexer A select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	RTMCLK_0	Clock 2 from µRTM card
0	1	TCLKB_0	Clock 2 (Telecom Clock B) from AMC Connector (Backplane)
1	0	TCLKA_0	Clock 1 (Telecom Clock A) from AMC Connector (Backplane)
1	1	OSC_CLK0	Onboard Clock chip (250MHz)

7.5.11.2 Multiplexer B Input Signals:

U223 - Sel0 and Sel1 (MUX1B_SEL) = Multiplexer B select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	RTMCLK_1	Clock 2 from µRTM card
0	1	TCLKB_1	Clock 2 (Telecom Clock B) from AMC Connector (Backplane)
1	0	TCLKA_1	Clock 1 (Telecom Clock A) from AMC Connector (Backplane)
1	1	OSC_CLK1	Onboard Clock chip (250MHz)

7.5.11.3 Multiplexer C Input Signals:

U240 - Sel0 and Sel1 (MUXAB_SEL) = Multiplexer C select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	EXT_CLKB0	Clock from Harlink Connector "CI1-4 IN" (frontpanel)
0	1	EXT_CLKA0	Clock from SMA Connector "CLK IN" (frontpanel)
1	0	MUXA_CLK1	Multiplexer A Output Signal
1	1	MUXB_CLK1	Multiplexer B Output Signal

7.5.11.4 Multiplexer D Input Signals:

U250 - Sel0 and Sel1 (MUX2A_SEL) = Multiplexer D select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	MUXA_CLK0	Multiplexer A Output Signal
0	1	MUL_CLK1	Clock Multiplier (U242) Output 2 Signal
1	0	EXT_CLKB1	Clock from Harlink Connector "CI1-4 IN" (frontpanel)
1	1	EXT_CLKA1	Clock from SMA Connector "CLK IN" (frontpanel)

7.5.11.5 Multiplexer E Input Signals:

U251 - Sel0 and Sel1 (MUX2B_SEL) = Multiplexer E select lines

Sel1	Sel0	Selected Input - Net Name	Clock source Description
0	0	MUXB_CLK0	Multiplexer B Output Signal
0	1	MUL_CLK0	Clock Multiplier (U242) Output 1 Signal
1	0	EXT_CLKB2	Clock from Harlink Connector "CI1-4 IN" (frontpanel)
1	1	EXT_CLKA2	Clock from SMA Connector "CLK IN" (frontpanel)

7.5.12 Clock Distribution AD9510 Serial Interface (SPI) interface register (0x41, read/write)

#define SIS8300_AD9510_SPI_REG

0x41

The parameters of the Clock Distribution IC AD9510 chips can be configured with the SPI (serial Peripheral Interface).

Bit	Write	read	
31	Cmd Bit 1	Write/Read Logic BUSY Flag	
30	Cmd Bit 0		
29	Set "Function" Output Level	Status of Set "Function" Output Level	
28	Select "Function"	Status of Select "Function"	
	synchronisation CLK	synchronisation CLK	
•••			
25		Status AD9510 #2	
24	AD9510 #2 Select Bit	Status AD9510 #1	
23	Read Cycle Bit		
22			
21			
20	Address Bit 12		
19	Address Bit 11		
12	Address Bit 4		
11	Address Bit 3		Ω
10	Address Bit 2		RW CME
9	Address Bit 1		\ \
8	Address Bit 0		RV
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)	
6	Write Data Bit 6	Read Data Bit 6	
••			
1	Write Data Bit 1	Read Data Bit 1	
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)	

The power up default value is 0x20000000

Command Bit (31:30) Explanation:

Cmd Bit 1	Cmd Bit 0	Command
0	0	No Function
0	1	R/W CMD
1	0	Function CMD
		Generates a pulse at the Function Input pin of the AD9510 which is synchronous to the selected clock. The clock selection is done via Bit 28 (Function Syn CLK). The actual function depends on the programming of the selected AD9510
1	1	Reserved

Select "Function" synchronisation CLK Bit (28) Explanation:

Bit 28	Clock Source
0	PCI Clock
1	FPGA CLK 69

Note:

- 1. enable READ by writing 0x90 to addr 0x0
- 2. and set Read Cycle Bit

Note:

Please refer to the SIS8300_AD9510_SPI_Setup routine as illustration and to the AD9510 documentation for details.

7.5.13 Clock Multiplier IC SI5326 SPI interface register

Several parameters of the Clock Multiplier SI5326 chip can be configured with the SPI (serial Peripheral Interface).

Please refer to the documentation of the SI5326 chip for details.

Bit	Write	read
31	Cmd Bit 1	Write/Read Logic BUSY Flag
30	Cmd Bit 0	Reset, Decrement or Increment Cmd BUSY Flag
29		
17		Si53xx LOL Status
16		Si53xx INT_C1B Status
15	Instruction Byte Bit 7	
8	Instruction Byte Bit 0	
7	Address/Data Byte Bit 7	Read Data Bit 7 (MSB)
••		Read Data Bit 1
0	Address/Data Byte Bit 0	Read Data Bit 0 (LSB)

The power up default value is 0x0

Cmd Bit 1	Cmd Bit 0	Command
0	0	Execute SPI Write/Read Cmd
0	1	Reset Cmd
1	0	Decrement Cmd
1	1	Increment Cmd

Reset Cmd: generates an 1us reset pulse

Decrement Cmd: generates an 1us Skew Decrement pulse Increment Cmd: generates an 1us Skew Increment pulse

Note: INC/DEC Time between consecutive pulses must be greater than 16ms!

7.5.14 DAC Control register

#define SIS8300_DAC_CONTROL_REG 0x45

Bit	write	read
31		
•••		
12		
11		
10		
9		
8	DAC DCM Reset pulse	
7		
6		
5	Power Down	0: power down, 1: power up
4	TORB	0: binary, 1: Two's complement
	Two's-Complement/Binary Select	
1	Test Mode Bit 1	
0	Test Mode Bit 0	

The power up default value is 0x0

Test Mode Bit 1	Test Mode Bit 0	DAC Test Mode
0	0	Data from DAC Data register
0	1	Ramp Test Mode
1	0	ADC1/ADC2 -> DAC1/DAC2
1	1	reserved

Note: ADC 1 Clock is used as DAC clock

7.5.15 DAC Data register

Bit	write
31	DAC2 Data 15
•••	
16	DAC2 Data 0
15	DAC1 Data 15
•••	
0	DAC1 Data 0

The power up default value is 0x0, data= $0 \rightarrow +1 \text{ V}$, data= $0xFFFF \rightarrow -1 \text{ V}$ output (with TORB=1, i.e. in Two's complement mode)

Note: The default DAC range is -1V,...,+1 V into a 50 Ω load

7.5.16 ADC Serial Interface (SPI) interface register

#define SIS8300_ADC_SERIAL_INTERFACE_REG

Several parameters of the ADC AD9268 chip can be configured with the SPI (serial Peripheral Interface).

0x48

Please refer to the documentation of the ADC AD9268 chip for details.

Bit	write	read
31	ADC Synch cmd	Write/Read Logic BUSY Flag
•••		
•••		
26	ADC Select Mux Bit 2	
25	ADC Select Mux Bit 1	
24	ADC Select Mux Bit 0	
23	Read Cmd	
22		
21		
20	Address Bit 12	
19	Address Bit 11	
12	Address Bit 4	
11	Address Bit 3	
10	Address Bit 2	
9	Address Bit 1	
8	Address Bit 0	
7	Write Data Bit 7 (MSB)	Read Data Bit 7 (MSB)
6	Write Data Bit 6	Read Data Bit 6
1	Write Data Bit 1	Read Data Bit 1
0	Write Data Bit 0 (LSB)	Read Data Bit 0 (LSB)

The power up default value is 0x0

ADC Synch Cmd: generates an synch pulse with AD9510 #1 FPGA clock

7.5.17 ADC Input Tap delay registers (0x49)

#define SIS3305_ADC_INPUT_TAP_DELAY

0x49

The input tap delay registers are used to adjust the FPGA data strobe timing.

Bit	31-13	12	11	10	9	8	7-6	5-0
Function	None	ADC 9/10	ADC 7/8	ADC 5/6	ADC 3/4	ADC 1/2	None	Tap delay value
		Select	Select	Select	Select	Select		(x 78ps)

Bit	write	read
31		Tap Delay Logic BUSY Flag
••		
12	ADC 9/10 Select Bit	
11	ADC 7/8 Select Bit	
10	ADC 5/6 Select Bit	
9	ADC 3/4 Select Bit	
8	ADC 1/2 Select Bit	
7	Tap delay value Bit 7	Tap delay value Bit 7
6	Tap delay value Bit 6	Tap delay value Bit 6
1	Tap delay value Bit 1	Tap delay value Bit 1
0	Tap delay value Bit 0	Tap delay value Bit 0

7.5.18 Virtex 5 System Monitor registers

#define	SIS8300_VIRTEX5_SYSTEM_MONITOR_DATA_REG	0x90
#define	SIS8300_VIRTEX5_SYSTEM_MONITOR_ADDR_REG	0x91
#define	SIS8300_VIRTEX5_SYSTEM_MONITOR_CTRL_REG	0x92

The Virtex 5 system monitor registers give access to temperature and voltages of the FPGA on the SIS8300.

Refer to the sysmon.c routine and the Virtex 5 FPGA documentation for details.

7.5.19 Trigger registers

The Trigger Block contains Logic to generate internal triggers (only implemented if the Firmware Option register bit TRIGGER_BLOCK_EN = 1).

Two types are implemented: A "threshold trigger" and a "FIR trigger".

7.5.19.1 Trigger setup registers

These read/write registers hold the 8-bit wide trigger pulse length (in sample clocks), the Peaking and Gap Time of the trapezoidal FIR filter.

(Gap Time = SumG Time – Peaking Time)

Bit	Function		
31	Reserved		
26	Enable Trigger		
25	GT trigger condition		
24	FIR Trigger Mode (0: Threshold	Trigger; 1: FIR Trigger)	
23	Puls Length bit 7		
22	Puls Length bit 6		
21	Puls Length bit 5		
20	Puls Length bit 4	Trigger Pulse Length	
19	Puls Length bit 3		
18	Puls Length bit 2		
17	Puls Length bit 1		
16	Puls Length bit 0		
15	reserved		
14	reserved		
13	reserved	SumG time (only FIR trigger)	
12	SumG bit 4	(time between both sums)	
11	SumG bit 3		
10	SumG bit 2		
9	SumG bit 1		
8	SumG bit 0		
7	reserved		
6	reserved	Peaking time P (only FIR trigger)	
5	reserved		
4	P bit 4	x+P	
3	P bit 3	Σ Si	
2	P bit 2	i = x	
1	P bit 1		
0	P bit 0		

The power up default value reads 0x 00000000

Si: Sum of ADC input sample stream from x to x+P

Struck Documentation

SIS8300 uTCA for Physics Digitizer

P: Peaking time (number of values to sum)

SumG: SumGap time (distance in clock ticks of the two running sums)

The maximum SumG time: 16 (clocks)
The minimun SumG time: 1 (clocks)

Values > 16 will be set to 16 Value = 0 will be set to 1

The maximum Peaking time: 16 (clocks)
The minimun Peaking time: 1 (clocks)

Values > 16 will be set to 16 Value = 0 will be set to 1

7.5.19.2 Trigger Threshold registers

These read/write registers hold the threshold values for the 10 ADC channels.

7.5.19.2.1 Trigger Threshold

FIR Trigger Mode = 0

Bit	31-16	15-0
Function	Threshold value OFF	Threshold value ON

default after Reset: 0x0

A trigger output pulse is generated on two conditions:

- GT is set (GT) in trigger setup register: the trigger Out pulse will be issued if the actual sampled ADC value **goes** above the threshold value ON **and** OFF. A new Trigger Out Pulse will be suppressed until the ADC value **goes** below the threshold value OFF.
- GT is cleared (LT) in trigger setup register: the trigger Out pulse will be issued if the actual sampled ADC value **goes** below the threshold value ON **and** OFF. A new trigger Out pulse will be suppressed until the ADC value **goes** above the threshold value OFF.

the trigger Out pulse will be issued if the actual sampled ADC value **goes** below the threshold value.

GT: greater than LT: lower than

7.5.19.2.2 FIR Trigger Threshold

FIR Trigger Mode = 1

Bit	31-20	19-0
Function	None	Trapezoidal threshold value

default after Reset: 0x0

The value of the Sum (trapezoidal value) depends on the peaking time P. Therefore the selection of the value of the Trapezoidal threshold depends on P also.

Trapezoidal value calculation:

Trapezoidal value = (SUM2 - SUM1)

Where

$$SUM1 = \sum_{i=x}^{x+P} Si$$

$$i = x$$

$$x+P+sumG$$

$$SUM2 = \sum_{j=x+sumG} Sj$$

The FIR filter logic generates the Trapezoidal by subtraction of the two running sums. This implies, that the internal value of the trapezoid is on average 0.

A trigger output pulse is generated:

- GT is set (GT): the Trigger Out Pulse will be issued if the actual trapezoidal value **goes** above the programmable trapezoidal threshold value
- GT is cleared (LT): the Trigger Out Pulse will be issued if the actual trapezoidal value **goes** below the **negated** programmable trapezoidal threshold value

7.5.20 Memory Sample Start Address / Actual Sample Address registers

If the Firmware Option register bit DUAL_CHANNLE_SAMPLING = 0 then all 10 registers are used.

If the Firmware Option register bit DUAL_CHANNLE_SAMPLING = 1 then only the first 5 registers are used.

The **write function** to these registers defines the memory start address.

The value is given in 256-bit blocks.

Write Function: ADC chx Memory Sample Start Address

Bit	31-24	23-0
	reserved	Memory Sample Start Address (256-bit blocks) (16-bit word address x 16)

default after Reset: 0x0

Explanation (memory sample start address)

The contents of the **sample memory start address** register is assigned as memory data storage address with the arm command (key address arm sampling) or with the enable command (key address enable sampling).

The **read function** from these registers give the information of the actual sampling address for the given ADC channel.

(at the moment: only valid if the logic is not busy!)

Read Function: ADC chx Actual Sample Address

Bit	31-24	23-0
	reserved	Actual Sample Address (in 256-bit Blocks)
		(16-bit word address x 16)

The value is given in 256-bit Blocks (16bit word address x 16)

7.5.21 Sample Length register

#define SIS8300_SAMPLE_LENGTH_REG

0x12A

This register defines the number of sample blocks of each ADC channel. The register must be set to [number of sample blocks] -1.

The size of one sample block for each ADC channel is 256-bit (16 x 16-bit word).

Bit	31-24	23-0
Function	reserved	Sample Block Length - 1

Default after Reset: 0x0

7.5.22 Ringbuffer Delay register

#define SIS8300_PRETRIGGER_DELAY_REG

0x12B

This register defines the number of pre trigger delay samples for all channels. The maximum pre trigger delay value is 2046.

Bit	31-12	11-0
Function	reserved	Delay value

7.5.23 Test Histogram Pattern-Memory Address register

#define SIS8300_TEST_HISTO_MEM_ADDR

0x12C

This register defines the Write Address of the Test Histogram Pattern Memory (4Kx28).

Bit	31-12	11-0
Function	reserved	Write Address

default after Reset: 0x0

7.5.24 Test Histogram Pattern-Memory Data Write register

#define SIS8300_TEST_HISTO_MEM_DATA_WR

0x12D

The write function to this register writes the data to the Test Histogram Pattern Memory (4Kx28).

Bit	31-28	27-0
Function	reserved	Data (Histogram index)

default after Reset: 0x0

7.5.25 Test Histogram Control register

Bit	Write	Read
31	Test Histogram Control Bit 1	Test Histogram Control Bit 1
30	Test Histogram Control Bit 0	Test Histogram Control Bit 0
29	reserved	Copy Logic Busy Flag
28	reserved	
17	reserved	
16	reserved	
15	Copy Length Bit 15	Read Copy Length Bit 15 (MSB)
1	Copy Length Bit 1	Read Copy Length Bit 1
0	Copy Length Bit 0	Read Copy Length Bit 0 (LSB)

The power up default value is 0x0

Control Bit 1	Control Bit 0	Command
0	0	Reset
0	1	Copy "Length-1" values from "Test Histogram Pattern-Memory"
		(start with addr=0) to the Histogram-Fifo
1	0	Continuously histogramming of ADC channel 1 and 2
		(average of 128 values, every (125/128) us)
		- Histogram of Channel 1: Byte addr 0x0 – 0x3ffff (64K)
		- Histogram of Channel 2: Byte addr 0x40000 – 0x7ffff (64K)
1	1	Continuously histogramming of Coincidence channel 1 / channel 2
		(average of 128 values, every (125/128) us)
		- Coincidence Histogram 256 x 256 : Byte Addr 0x0 = 0x3 ffff
		(64K)

7.5.26 SIS8900 RTM LVDS Test Input/Output Control register

#define SIS8300_RTM_LVDS_IO_CONTROL_REG

0x12F

Bit	Write	Read
31	-	0
30	-	0
29	Enable RTM LVDS Output Bit 11	Enable RTM LVDS Output Bit D 11
25	Enable RTM LVDS Output Bit 7	Enable RTM LVDS Output Bit D 7
24	Enable RTM LVDS Output Bit 6	Enable RTM LVDS Output Bit D 6
23	-	0
22	-	0
21	RTM LVDS Output Bit D 11	RTM LVDS Output Bit D 11
17	RTM LVDS Output Bit D 7	RTM LVDS Output Bit D 7
16	RTM LVDS Output Bit D 6	RTM LVDS Output Bit D 6
15	-	0
14	-	0
9	-	0
8	-	0
7	-	0
6	-	0
5	-	RTM LVDS Input Bit D5
•••		
1	-	RTM LVDS Input Bit D1
0	-	RTM LVDS Input Bit D0

7.5.27 Read DMA System Destination address (lower 32bits)

#define DMA_READ_DST_ADR_LO32

0x200

This register holds the lower 32bits of the destination address in system memory into which the card will transfer data.

Bit	31-0
Function	System memory address (lower 32bits)

7.5.28 Read DMA System Destination address (upper 32bits)

#define DMA READ DST ADR HI32

0x201

This register holds the upper 32bits of the destination address in system memory into which the card will transfer data.

Bit	31-0
Function	System memory address (upper 32bits)

7.5.29 Read DMA Card Memory Source address

#define DMA_READ_SRC_ADR_LO32

0x202

This register holds the 32bit source address in the cards address space which is used to select the data source which is read from.

Bit	31-0
Function	Card address space

The address layout is:

512MB Models:

```
Address 0x0 - 0x1FFFFFFF: DDR2 Memory readout Address 0x80000000 - 0xAFFFFFFF: Repeated User DMA space
```

1GB Models:

```
Address 0x0 - 0x3FFFFFFF: DDR2 Memory readout
Address 0x80000000 - 0xAFFFFFFF: Repeated User DMA space
```


7.5.30 Read DMA Transfer length

#define DMA_READ_LEN

0x203

This register holds the amount of data which is going to be transferred.

Bit	31-0
Function	DMA Transfer length

7.5.31 Read DMA Control

#define DMA_READ_CTRL

0x204

This register starts the Read DMA process and allows to poll the transfer status.

Bit	write	read
31	unused	0
•••		0
1	unused	0
0	Start DMA	DMA running

7.5.32 Readout DMA Sample byte swap

#define DMA READ BYTESWAP

0x205

This register allows swapping each byte in a sample for optimizing data handling on big/little endian machines.

Example for disabled swapping:

Byte address offset: Sample value

00 Sample 0 lo byte (LSB)
01 Sample 0 hi byte (MSB)
02 Sample 1 lo byte (LSB)
03 Sample 1 hi byte (MSB)

Example for enabled swapping:

Byte address offset: Sample value

00 Sample 0 hi byte (MSB)
01 Sample 0 lo byte (LSB)
02 Sample 1 hi byte (MSB)
03 Sample 1 lo byte (LSB)

Bit	write	read
31	unused	0
		0
1	unused	0
0	Byteswap enable	Byteswap enable status

7.5.33 Write DMA System Source address (lower 32bits)

#define DMA_WRITE_DST_ADR_LO32

0x210

This register holds the lower 32bits of the destination address in system memory from which the card will transfer data.

Bit	31-0
Function	System memory address (lower 32bits)

7.5.34 Write DMA System Source address (upper 32bits)

#define DMA_WRITE_DST_ADR_HI32

0x211

This register holds the upper 32bits of the destination address in system memory from which the card will transfer data.

Bit	31-0
Function	System memory address (upper 32bits)

7.5.35 Write DMA Card Memory Destination address

#define DMA_WRITE_DST_ADR_LO32

0x212

This register holds the 32bit destination address in the cards address space which is used to select the data source which is written to.

Bit	31-0
Function	Card address space

Depending on the populated amount of dram on the module the address layout is:

512MB Models:

Address 0x0 - 0x1FFFFFFF: DDR2 Memory

Struck Documentation

SIS8300 uTCA for Physics Digitizer

1GB Models:

Address 0x0 - 0x3FFFFFFF: DDR2 Memory

7.5.36 Write DMA Transfer length

#define DMA_WRITE_LEN

0x213

This register holds the amount of data which is going to be transferred.

Bit	31-0
Function	DMA Transfer length

7.5.37 Write DMA Control

#define DMA_WRITE_CTRL

0x214

This register starts the Write DMA process and allows to poll the transfer status.

Bit	write	read
31	unused	0
•••		0
1	unused	0
0	Start DMA	DMA running

7.5.38 DAQ Done DMA Chain Control

#define DAQ_DMA_CHAIN

0x216

This register allows the chaining of the DAQ Done Signal into the DMA Start Signal.

Bit	write	read
31	unused	0
•••		0
1	unused	0
0	DAQ Done DMA Start Chain enable	Chain enabled

7.5.39 IRQ Enable

#define IRQ_ENABLE

0x220

This register enables each interrupt source for interrupt generation. The register is implemented as a J-K register.

Bit	write	read
31	Disable User IRQ	0
30	Disable DAQ Done IRQ	0
29	unused	0
18	unused	0
17	Disable Write DMA Done IRQ	0
16	Disable Read DMA Done IRQ	0
15	Enable User IRQ	User IRQ enabled status
14	Enable DAQ Done IRQ	DAQ Done IRQ enabled status
13	unused	0
•••		
2	unused	0
1	Enable Write DMA Done IRQ	Write DMA Done IRQ enabled status
0	Enable Read DMA Done IRQ	Read DMA Done IRQ enabled status

7.5.40 IRQ Status

#define IRQ_STATUS

0x221

This register lists the latched interrupt bits for which an interrupt has been generated.

Bit	write	read
31	unused	0
•••		0
16	unused	0
15	unused	User IRQ happened
14	unused	DAQ Done IRQ happened
13	unused	0
•••		
2	unused	0
1	unused	Write DMA Done IRQ happened
0	unused	Read DMA Done IRQ happened

7.5.41 IRQ Clear

#define IRQ_CLEAR

0x222

This register clears any handled interrupts an allows the logic to generate new interrupts.

Bit	write	read
31	unused	0
•••		0
16	unused	0
15	User IRQ clear	0
14	DAQ Done IRQ clear	0
13	unused	0
•••		
2	unused	0
1	Write DMA Done IRQ clear	0
0	Read DMA Done IRQ clear	0

7.5.42 IRQ Refresh

#define IRQ_REFRESH

0x223

This register refreshes the interrupt logic. This might be needed in the case an interrupt happens while the software interrupt service routine was still handling the previous interrupt.

Bit	write	read
any	Refresh IRQ logic	0

7.5.43 RAM FIFO debug register

#define RAM_FIFO_DEBUG

0x231

This register provides fifo information of internal read and write fifo pipes in the DDR2 memory controller. It also allows to selectively reset each data path.

Bit	write	read
31	Reset read address/data fifos	Reset status
30	Reset write address/data fifos	Reset status
29	Fifo count select bit 1	Fifo count select bit 1 status
28	Fifo count select bit 0	Fifo count select bit 0 status
27	unused	Selected fifo status bit 27
•••		
0	unused	Selected fifo status bit 0

Fifo 0 status bits:

Bit	write	read
27	unused	0
•••		
12	unused	0
11	unused	Read data fifo almost empty
10	unused	Read data fifo empty
9	unused	Read data fifo fill count bit 9
0	unused	Read data fifo fill count bit 0

Fifo 1 status bits:

Bit	write	read
27	unused	0
•••		
10	unused	0
9	unused	Read address fifo fill count bit 9
•••		
0	unused	Read address fifo fill count bit 0

Fifo 2 status bits:

Bit	write	read
27	unused	0
10	unused	0
9	unused	Write data fifo fill count bit 9
•••		
0	unused	Write data fifo fill count bit 0

Fifo 3 status bits:

Bit	write	read
27	unused	0
•••		
10	unused	0
9	unused	Write address fifo fill count bit 9
•••		
0	unused	Write address fifo fill count bit 0

7.6 External register interface

The external register interface provides the user with the possibility to implement up to 256 32bit registers on the top level of the HDL design. The registers are embedded into the devices regular register space from address 0x400 to 0x4FF.

The External register interface consists of the following signals:

```
reg_0x400_0x4FF_adr : out std_logic_vector(7 downto 0);
reg_0x400_0x4FF_wr_data : out std_logic_vector(31 downto 0);
reg_0x400_0x4FF_rd_data : in std_logic_vector(31 downto 0);
reg_0x400_0x4FF_wr_en : out std_logic;
reg_0x400_0x4FF_rd_en : out std_logic;
```

reg 0x400 0x4FF adr:

8bit wide addressbus which selects the next register to be read from or written to.

reg_0x400_0x4FF_wr_data:

32bit wide databus which holds the data to be written to the addressed register.

reg_0x400_0x4FF_rd_data:

32bit wide databus to which the user logic must provide the read data from the addressed register.

reg_0x400_0x4FF_wr_en:

Write enable pulse to indicate that a write request has been issued from the PCIe interface.

reg_0x400_0x4FF_rd_en:

Read enable pulse to indicate to that a read request has been issued from the PCIe interface.

The interface is synchronous to the User Blockram DMA interface clock. See 7.7.

See the following graphs on how the device expects user logic to interact with the interface.

7.7 User Blockram DMA Interface

The User Blockram DMA interface consists of the following signals:

```
bram_dma_clk : out std_logic;
bram_dma_adr : out std_logic_vector(31 downto 0);
bram_dma_rd_en : out std_logic;
bram_dma_rd_data : in std_logic_vector(63 downto 0);
```

bram dma clk:

Free running 125MHz clock to which the data and control signals are synchronous to bram dma adr:

32bit wide addressbus which is mapped over the 512MB of onboard sample RAM. The addresses ranges from 0x000000000 to 0x1FFFFFF (512MB)

bram dma rd en:

(Optional) Read enable pulse for connected logic. The read enable pulse is valid 1 clockperiod before the data is expected to be valid on the databus.

bram_dma_rd_data:

64bit wide (due to PCIe endpoint design) databus which holds the data to be transmitted over PCIe. The data needs to be valid 1 clockperiod after ram_dma_rd_en is valid.

Note:

This interface was built to be directly able to connect to a Xilinx CoreGen generated blockram module with a 64bit wide read bus. Due to PCIe endpoint design constraints the user has to read the blockram via DMA in 8byte steps.

7.8 User Interrupt Interface

The User Interrupt interface consists of the following signals.

```
user_irq : in std_logic;
user_irq_clear : out std_logic;
```

user_irq:

User interrupt pulse input to the PCIe endpoint. The connected logic has to supply a pulse of at least 1 clockperiod in length to trigger the interrupt logic. If the driver/user software has enabled the corresponding interrupt line, an interrupt is generated on the PCIe interface.

user_irq_clear:

A 1 clock period wide pulse which is triggered, when the driver software has serviced the issued interrupt in the interrupt service routine. This pulse may be used to reset any logic that depends on user feedback through the software interface.

The interface is synchronous to the User Blockram DMA interface clock. See 7.7.

8 RTM management

Connected RTMs shall be compliant to the PICMG MTCA.4 specification in a way that they must have an on board I²C EEProm (on address 0x50) and a NXP PCF8574-compatible port expander (on address 0x7C).

Required port expander connection map for normal operation:

Port pin	Function
P0	HotSwap Switch (low active)
P1	LED Blue (low active)
P2	LED Red (low active)
P3	LED Green (low active)
P4	PowerGood (low active)
P5	Reset (low active)
P6	PowerEnable (low active)
P7	EEprom Write Protect

The EEprom shall contain any relevant device information (FRU records) about the RTM (refer to PICMG AMC.0). Additionally the EEprom shall contain the new record types defined in PICMG MTCA.4.

In order to be able to decide whether a connected RTM is compatible to the SIS8300 the RTM record shall contain one of the Zone 3 Identifier records listed in the table below.

Supported Zone 3 Identifier Records (Interface Identifier OEM):

IANA PEN (Private	Zone 3 OEM record	Descripton
enterprise number)		
0x0092BD (37565)	0x83000001	SIS8300 Zone3 - v1
		compatibility
0x00053F (1343)	0x08020000	DESY DWC Zone3
		compatibility

9 Firmware upgrade

Two files are needed for the updating process, the real firmware as a binary file and an EPROM file. The FPGA is programmed with the Xilinx software iMPACT.

9.1 Create programming file

Before creating the programming file, the value of the *Configuration Rate* should be set to 42.

9.2 Create PROM file

Select in the left iMPACT menu the item *Create PROM File*. The following picture shows how to fill in the menu.

Select the created PROM file and click on Generate File.

9.3 Program FPGA

After a Boundary Scan and the initialisation of the chain, select the created *.mcs file.

Right click on the selected component and open the *Programming Property* menu.

Enable the property items verify and parallel Mode.

Finally the new firmware can be programmed into the select component.

10 Appendix

10.1 Power Consumption

The currents drawn by the SIS8300 are listed in the table below.

Voltage	Current
3,3 V	100 mA
12 V	2 A

These currents are typical values during normal operation. They can vary depending on the loaded firmware design.

10.2 Ordering options

The available part numbers are listed in the table below.

Struck part number	FPGA	Memory
04075	SIS8300 V2 with XC5VLX50T-3FFG1136C	4 x 1 GBit
To be defined	XC5VLX110T-1/3FFG1136C	5 x 1 GBit

Note: The V1 and V2 preseries cards are stuffed with the fastest available speed grade -3. A lower speed grade -1 version may be desirable for high volume applications when speed considerations are not an issue.

10.3 RTM/Zone 3 connectors J75 and J76

J75 and J76 are 90 pin right angle female connectors providing 30 contact pairs each (60 signal contacts and 30 ground contacts). Every contact pair is surrounded by a "L" shaped male shield blade. The shielding contact is designated with the names of the corresponding signal pair (signal pin a and b is affiliated with shielding contact ab e.g.). The picture below shows the connector contact layout as seen from the rear side of the board.

10.3.1 J75 connector pin assignments

The J75 connector routes the differential analog input signals of the ADC channels and ground to the RTM. The characters "TF" in signal names stand for signals to the AC coupled transformer input stages. In same fashion "PA" stands for DC coupled preamplifier input stage.

$Col \rightarrow$	ef	f	e	cd	d	С	ab	b	a
Row↓									
10	GND	CH9_PA-	CH9_PA+	GND	GND	GND	GND	CH0_TF-	CH0_TF+
9	GND	CH1_TF-	CH1_TF+	GND	GND	GND	GND	CH8_PA-	CH8_PA+
8	GND	CH7_PA-	CH7_PA+	GND	GND	GND	GND	CH2_TF-	CH2_TF+
7	GND	CH3_TF-	CH3_TF+	GND	GND	GND	GND	CH6_PA-	CH6_PA+
6	GND	CH5_PA-	CH5_PA+	GND	GND	GND	GND	CH4_TF-	CH4_TF+
5	GND	CH5_TF-	CH5_TF+	GND	GND	GND	GND	CH4_PA-	CH4_PA+
4	GND	CH3_PA-	CH3_PA+	GND	GND	GND	GND	CH6_TF-	CH6_TF+
3	GND	CH7_TF-	CH7_TF+	GND	GND	GND	GND	CH2_PA-	CH2_PA+
2	GND	CH1_PA-	CH1_PA+	GND	GND	GND	GND	CH8_TF-	CH8_TF+
1	GND	CH9_TF-	CH9_TF+	GND	GND	GND	GND	CH0_PA-	CH0_PA+

10.3.2 J76 connector pin assignments

The J76 connector is used to route power, data and system management pins to the RTM board.

$Col \rightarrow$	ef	f	e	Cd	d	С	ab	b	a
Row↓									
10	GND	GND	GND	GND	GND	GND	GND	GND	GND
9	GND	CLK1-	CLK1+	GND	GND	GND	GND	CLK0-	CLK0+
8	GND	GND	GND	GND	CLK2-	CLK2+	GND	GND	GND
7	GND	GND	GND	GND	GND	GND	GND	GND	GND
6	GND	D11-	D11+	GND	D10-	D10+	GND	D9-	D9+
5	GND	D8-	D8+	GND	D7-	D7+	GND	D6-	D6+
4	GND	D5-	D5+	GND	D4-	D4+	GND	D3-	D3+
3	GND	D2-	D2+	GND	D1-	D1+	GND	D0-	D0+
2	GND	SCL_I	SCL_E	GND	SCL	MP+3.3V	GND	PWR+12V	PWR+12V
1	GND	SDA_I	SDA_E	GND	SDA	PS#	GND	PWR+12V	PWR+12V

10.3.3 Note on AC/DC input stage selection

The AC (transformer) or DC (operation amplifier Opamp) input path is selected on the SIS8300 card via 0603 solder bridges as illustrated for channels 0 and 1 on the screenshot below. The designators for all channels can be found in the table below.

ADC Channel	Designator	Input for ADC
0	SW63A	ADC_CH0+
0	SW63B	ADC_CH0-
1	SW61A	ADC_CH1+
1	SW61B	ADC_CH1-
2	SW58A	ADC_CH2+
2	SW58B	ADC_CH2-
3	SW56A	ADC_CH3+
3	SW56B	ADC_CH3-
4	SW53A	ADC_CH4+
4	SW53B	ADC_CH4-
5	SW51A	ADC_CH5+
5	SW51B	ADC_CH5-
6	SW48A	ADC_CH6+
6	SW48B	ADC_CH6-
7	SW46A	ADC_CH7+
7	SW46B	ADC_CH7-
8	SW43A	ADC_CH8+
8	SW43B	ADC_CH8-
9	SW41A	ADC_CH9+
9	SW41B	ADC_CH9-

10.4 RTM connector schematics

11 Index

II IIIUCA	
12 V 61	J75 62, 63
3,3 V 61	JTAG 9, 13, 20
8-bit 9	AVR 9
A 10	
	over PCIe 23
AC 63	register 23
AD9268 36	jumper 9
AD9510 32	JYEBAO 13
ADC Sample Logic 14	L1 10, 12
Address Map 20	L2 10, 12
AdvancedMC 6	LED 10
AMC 6	20A 10
AMC.0 56	A 10
Appendix 61	D105A 10
arm 41	D105B 10
Atmega 13	D110A 10
e e e e e e e e e e e e e e e e e e e	
Atmega128 9	D110B 10
Atmel 7, 9	D20B 10
AVR JTAG 9	D20C 10
binary 35	D20D 10
Block diagram 6	D20E 10
board layout 13	D20F 10
clock	D20G 10
input 12	D20H 10
clock distribution 8	D21D 10
CON600 9	L1 10
4.0	L2 10
connector types 13	
CRC 23	test 24
DAC 13	U 10
DAC	user 24
range 35	LEDs
DAC	AMC 10
impedance 35	Front Panel 10
DC 63	SMD 10
design 6	Link 1 20
DESY 5	Link 2 20
ECC 23	LVDS 12
ERNI 13	M 38
external register interface 53	MCH 9
e e e e e e e e e e e e e e e e e e e	
FIFO	memory buffer 19
Link 1 20	memory histogram interface 18
Link 2 20	memory interface 16
firmware	memory write interface 17
version 22	microcontroller 7, 9
Firmware 14	MOLEX 13
Firmware Options	MTCA.4 56
register 25	multiplexer A 31
Firmware upgrade 57	multiplexer B 31
FPGA 6	multiplexer C 31
front panel 11	multiplexer D 31
FRU 56	multiplexer E 31
functionality 6	NXP 56
Harlink 12	ordering options 61
HARTING 13	P 38
IANA 56	parallel load 9
IANA PEN 56	PCF8574 56
ICS853S057 30	PCI Express 6
IDT 30	PEN 56
impact 9	PICMG 5
iMPACT 57	platform management 7
introduction 5	Power Consumption 61
	PROM File 58
IPMI 7,9	
J32 7, 9	register
J604 9	ADC Acquisition Control/Status 26

Struck Documentation

SIS8300 uTCA for Physics Digitizer

ADC IOB delay 37 ADC Sample Control 27 ADC serial interface 36 clock distribution AD9510 SPI interface 32 clock distribution multiplexer control 30 Clock Multiplier IC SI5326 SPI interface 34 control 22 DAC control 35 DAC Data 35 Firmware Options 25 firmware revision 22 Harlink Connector Input/Output Control 29 Memory Sample Start Address 41 MLVDS Input/Output Control 28 module Id. 22 ringbuffer delay 42 Sample Length 42 serial number 22 SIS8900 RTM LVDS Test Input/Output Control register 45 Test Histogram Control 44 Test Histogram Pattern-Memory Address 43 Test Histogram Pattern-Memory Data Write 43 trigger setup 38, 39 trigger threshold 39 User Control/Status 24 XILINX JTAG 23 XILINX Virtex5 Error Detection 23 registers Virtex 5 System Monitor 37 RTM 56 RTM connector schematics 65 RTM connectors 62

RTM management 56 SAMTEC 13

SFP 6, 12, 13 SI5326 34 SIS8300 5 SMA 12 SYNDROME 23 TDI 23 TDO 23 temperature 37 TMS 23 TORB 35 trigger threshold 39 Two's complement 35 TYCO 13 U 10 U222 31 U223 31 U240 31 U250 31 U251 31 U500 9 user LED 24 user blockram dma interface 55 user interrupt interface 55 Virtex 5 6 Virtex5 Error Detection register 23 watchdog reset 9 XC5VLX110T-1FFG1136C 61 XC5VLX50T-3FFG1136C 61 Xilinx 6 ZIM 5 Zone 3 62