中华人民共和国国家标准

GB 3102.6-93

光及有关电磁辐射的量和单位

代替 GB 3102.6-86

Quantities and units-Light and related electromagnetic radiations

引言

本标准等效采用国际标准 ISO 31-6:1992《量和单位 第六部分:光及有关电磁辐射》。 本标准是目前已经制定的有关量和单位的一系列国家标准之一,这一系列国家标准是:

- GB 3100 国际单位制及其应用;
- GB 3101 有关量、单位和符号的一般原则;
- GB 3102.1 空间和时间的量和单位;
- GB 3102.2 周期及其有关现象的量和单位;
- GB 3102.3 力学的量和单位;
- GB 3102.4 热学的量和单位;
- GB 3102.5 电学和磁学的量和单位;
- GB 3102.6 光及有关电磁辐射的量和单位;
- GB 3102.7 声学的量和单位;
- GB 3102.8 物理化学和分子物理学的量和单位;
- GB 3102.9 原子物理学和核物理学的量和单位;
- GB 3102.10 核反应和电离辐射的量和单位;
- GB 3102.11 物理科学和技术中使用的数学符号;
- GB 3102.12 特征数;
- GB 3102.13 固体物理学的量和单位。

上述国家标准贯彻了《中华人民共和国计量法》、《中华人民共和国标准化法》、国务院于 1984 年 2 月27 日公布的《关于在我国统一实行法定计量单位的命令》和《中华人民共和国法定计量单位》。

本标准的主要内容以表格的形式列出。表格中有关量的各栏列于左面各页,而将其单位列于对应的 右面各页并对齐。两条实线间的全部单位都是左面各页相应实线间的量的单位。

量的表格列出了本标准领域中最重要的量及其符号,并在大多数情况下给出了量的定义,但这些定义只用于识别,并非都是完全的。

某些量的矢量特性,特别是当定义需要时,已予指明,但并不企图使其完整或一致。

在大多数情况下,每个量只给出一个名称和一个符号。当一个量给出两个或两个以上的名称或符号,而未加以区别时,则它们处于同等的地位。当有两种斜体字母(例如: \emptyset 、 \emptyset , φ , ϕ ,g,g)存在时,只给出其中之一,但这并不意味另一个不同等适用。一般这种异体字不应给予不同的意义。在括号中的符号为"备用符号",供在特定情况下主符号以不同意义使用时使用。

量的相应单位连同其国际符号和定义一起列出。

单位按下述方式编排:

一般只给出 SI 单位。应使用 SI 单位及其用 SI 词头构成的十进倍数和分数单位。十进倍数和分数

国家技术监督局 1993-12-27 批准

1994-07-01 实施

单位未明确地给出。

可与 SI 的单位并用的和属于国家法定计量单位的非 SI 的单位列于 SI 单位之下,并用虚线与相应的 SI 单位隔开。专门领域中使用的非国家法定计量单位,列于"换算因数和备注"栏。一些非国家法定计量单位列于附录(参考件)中,这些参考件不是标准的组成部分。

关于量纲一的量的单位说明:

任何量纲一的量的一贯单位都是数字一(1)。在表示这种量的值时,单位 1 一般并不明确写出。词头不应加在数字 1 上构成此单位的十进倍数或分数单位。词头可用 10 的乘方代替。

例:

折射率 $n=1.53\times1=1.53$ 雷诺数 $Re=1.32\times10^3$

考虑到一般是将平面角表示为两长度之比,将立体角表示为面积与长度的平方之比,国际计量委员会(CIPM)在1980年决定,弧度和球面度在国际单位制中为无量纲的导出单位;这就意味着将平面角和立体角作为无量纲的导出量。为了便于识别量纲相同而性质不同的量,在导出单位的表示式中可以使用单位弧度和球面度。

数值表示:

"定义"栏中的所有数值都是准确的。

在"换算因数和备注"栏中的数值如果是准确的,则在数值后用括号加注"准确值"字样。

本标准的特殊说明:

本标准主要包括辐射度量、光度量和光子度量,少数是色度量、材料特性量和成像光学量等。关于电离辐射可参阅 GB 3102.10。

标准标题中的"光"指"可见辐射","有关电磁辐射"指"红外辐射"和"紫外辐射"。

某些对应的辐射度量、光度量和光子度量(例如辐射强度、发光强度和光子强度),用同一符号代表 (例如用 I)。若遇易于混淆的场合,则用下标区分。辐射度量用下标 e,光度量用下标 v,光子度量用下标 p。但顶焦距和顶焦度的符号也采用下标 v。

在本标准中,某一量的光谱密集度通常表示为波长的函数。它具有该量除以波长的量纲,并用下标 λ 标记。光谱密集度也可表示为频率或波数的函数,此时下标改为 ν 或 σ 。光谱密集度有时也称为分布函数,例如,波长分布函数、频率分布函数等。为简便起见,"光谱密集度"可用形容词"光谱[的]"代替。例如"辐射能密度的光谱密集度"可以称为"光谱辐射能密度"。但应该注意形容词"光谱[的]"也用来代表某一个量是波长(或频率或波数)的函数,它同光谱密集度的区别可以从记号的函数形式看出,此时,变量 λ (或 ν 或 σ)记在括弧内。例如"光谱发射率"记为 $\varepsilon(\lambda)$ 。

在光度学、辐射度学和光子度学中使用了辅助单位(球面度)。

1 主题内容与适用范围

本标准规定了光及有关电磁辐射的量和单位的名称与符号;在适当时,给出了换算因数。 本标准适用于所有科学技术领域。

2 名称和符号

量:6-1~6-7

项 号	量的名称	符号	定义	备注
6-1	频率 frequency	f , ν	周期除以时间	
6-2	角频率 angular frequency	ω	$\omega = 2\pi f$	
			:	
6-3	波长 wavelength	λ	在周期波传播方向上,同一瞬间两相邻同相位点之间的距离	介质中的波长等于真空中的波长除以介质的 折射率,参阅 6-44
6-4	波率 repetency, 波数 wavenumber	σ	$\sigma = 1/\lambda$	在分子光谱学中,也可用 v 代表 v/c
6-5	角波率 angular repetency, 角波数 angular wavenumber	k	$k = 2\pi\sigma$	
6-6	电磁波在真空中的 速度 velocity (speed) of electromagnetic waves in vacuum	C,C0		c=299 792 458 m/s 如果用 c 代表介质中 的相速度,则用 c。代表 真空中的相速度
6-7	辐[射]能 radiant energy	$(U,Q_{\rm e})$	以辐射的形式发射、传播或接 收的能量	

单位:6-1.a~6-7.a

项 号	单位名称	符号	定 义	换算因数和备注
6-1. a	赫[兹] hertz	Hz	1 Hz=1 s ⁻¹	
6-2• a	弧度每秒 radian per second	rad/s		
6-2 . b	每秒 reciprocal second,	s ⁻¹		
	负一次方秒 second to the power minus one			
6-3. a	米 metre	m		埃(Å), 1 Å=1×10 ⁻¹⁰ m
6-4. a	每米 reciprocal metre,	m ⁻¹		常用分数单位 cm ⁻¹
	负一次方米 metre to the power minus one			
6-5. a	弧度每米 radian per metre	rad/m		
6-5. b	每米 reciprocal metre, 负一次方米 metre to the power minus one	m ⁻¹		
6-6. a	米每秒 metre per second	m/s	·	
6-7.a	焦[耳] joule	J	1 J=1 N ⋅ m	

量:6-8~6-13

项 号	量的名称	符号	定义	备注
6-8	辐[射]能密度 radiant energy density	w,(u)	体积元内的辐射能除以相应的 体积元	对于非偏振黑体(全) 辐射 $w_{\lambda} = 8\pi hc \cdot f(\lambda, T)$
6-9	福[射]能密度的光 谱密集度 spectral concentration of radiant energy density (in terms of wavelength), 光谱辐[射]能密度 spectral radiant energy density (in terms of wavelength)	w _{\lambda}	在无穷小波长范围内的辐射能 密度除以该波长范围	和 $w=(4\sigma/c)\cdot T^4$ $f(\lambda,T)$ 参阅 6-19 和 6-20, h 和 σ 参阅 6-18。 $w=\int w_{\lambda} d\lambda$ 参阅引言
6-10	辐[射]功率 radiant power, 辐[射能]通量 radiant energy flux	$P, \Phi, (\Phi_{\rm e})$	以辐射的形式发射、传播和接收的功率	$\Phi = \int\!\! \Phi_\lambda \mathrm{d}\lambda$
6-11	辐[射]能流 radiant energy fluence	Ψ	入射到空间一给定点球上的辐 射能除以该球的横截面积	
6-12	辐[射]能流率 radiant energy fluence rate	$arphi,\psi$	$arphi = \mathrm{d} oldsymbol{\Psi} / \mathrm{d} t$	$\varphi = \int \varphi_t d\lambda$ 在一各向同性的均匀 辐射场中, φ/c 是辐射 能密度,表面上的辐射 照度是 $\varphi/4$
6-13	辐[射]强度 radiant intensity	$I,(I_{ m e})$	在给定方向上的立体角元内, 离开点辐射源(或辐射源面元)的 辐射功率除以该立体角元	$I=\int I_\lambda\mathrm{d}\lambda$

单位:6-8.a~6-13.a

-	· · · · · · · · · · · · · · · · · · ·		Τ		· · · · · · · · · · · · · · · · · · ·
项 号	单位名称	符号	定	义	换算因数和备注 ————————————————————————————————————
6-8. a	焦[耳]每立方米 joule per cubic metre	J/m³			
6-9. a	焦[耳]每四次方 米 joule per metre to the fourth power	J/m⁴			
6-10. a	瓦[特] watt	w	1 W=1 J/s		
6-11. a	焦[耳]每平方米 joule per square metre	$ m J/m^2$			
6-12. a	瓦[特]每平方米 watt per square metre	$ m W/m^2$			
6-13. a	瓦[特]每球面度 watt per steradian	W/sr		,	关于球面度,参阅引言

量:6-14~6-18

项 号	量的名称	符号	定义	备注
6-14	辐[射]亮度,辐射 度 radiance	$L,(L_{ m e})$	表面一点处的面元在给定方向 上的辐射强度,除以该面元在垂 直于给定方向的平面上的正投影 面积	$L = \int L_{\lambda} d\lambda$ 对于非偏振黑体(全) 辐射, $L_{\lambda} = (c/4\pi)w_{\lambda} = 2hc^{2} \cdot f(\lambda,T)$ 和 $L = (\sigma/\pi) \cdot T^{4}$ $f(\lambda,T)$ 和 σ 分別参 阅 6-19,6-20 和 6-18
6-15	辐[射]出[射]度 radiant exitance	M, (M _c)	离开表面一点处的面元的辐射能通量,除以该面元面积	以前称为辐射发射率 (radiant emittance)。 $M = \int M_{\lambda} d\lambda$ 对于非偏振黑体(全)辐射, $M_{\lambda} = (c/4) \cdot w_{\lambda} = 2\pi h c^2 \cdot f(\lambda, T)$ 和 $M = \sigma \cdot T^4$ $f(\lambda, T)$, σ 分别参阅 6-19,6-20 和 6-18
6-16	辐[射]照度 irradiance	$E,(E_{\rm e})$	照射到表面一点处的面元上的 辐射能通量除以该面元的面积	$E=\int E_{\lambda}\mathrm{d}\lambda$
6-17	曝辐[射]量 radiance exposure	$H_{\bullet}(H_{e})$	$H = \int E \mathrm{d}t$	
6-18	斯忒藩-玻耳兹曼 常量 Stefan-Boltzmann constant	σ	σ是热力学温度为 T 的全辐射体(黑体)的辐射出射度表示式中的一个常量 M=σ・T ⁴	$\sigma = \frac{2\pi^5 k^4}{15 h^3 c^2} =$ $(5.670 51 \pm 0.000 19) \times$ $10^{-8} \text{ W}/(\text{m}^2 \cdot \text{K}^4)$ 式中玻耳兹曼常量 $k =$ $(1.380 658 \pm$ $0.000 012) \times 10^{-23} \text{ J/K},$ $h = (6.626 075 5 \pm$ $0.000 004 0) \times$ $10^{-34} \text{ J} \cdot \text{s}$

单位:6-14.a~6-18.a

项 号	单位名称	符号	定	义	换算因数和备注
6-14. a	瓦[特]每球面度 平方米 watt per steradian square metre	W/(sr • m²)			
6-15. a	瓦[特]每平方米 watt per square metre	W/m²			
6-16. a	瓦[特]每平方米 watt per square metre	W/m²			
6-17.a	焦[耳]每平方米 joule per square metre	J/m²			
6-18. a	瓦[特]每平方米 四次方开[尔文] watt per square metre kelvin to the fourth power	W/(m ² • K ⁴)			

量:6-19~6-25

项 号	量的名称	符号	定义	 备 注
6-19	第一辐射常量 first radiation constant	c_1	常量 c_1 和 c_2 出现在热力学温度为 T 的全辐射体(黑体)辐射出射度的光谱密集度的表示式中 $M_{\lambda} = c_1 f(\lambda, T) = c_1 \frac{\lambda^{-5}}{\exp(c_2/\lambda T) - 1}$	c ₁ =2πhc ² = (3.7417749± 0.0000022)× 10 ⁻¹⁶ W·m ² 第一辐射常量这个名称曾用来代表 6-9 备注中 w _λ 式的系数 8πhc 和代表 6-14 备注中 L _λ 式的系数 hc ²
6-20	第二辐射常量 second radiation constant	C 2		$c_2 = hc/k =$ $(1.438769 \pm$ $0.000012) \times 10^{-2} \text{ m} \cdot \text{K}$
6-21.1	发射率 emissivity	ε	热辐射体的辐射出射度与处于 相同温度的全辐射体(黑体)的辐 射出射度之比	
6-21.2	光谱发射率 spectral emissivity, emissivity at a specified wavelength	ε(λ)	热辐射体的辐射出射度的光谱 密集度与处于相同温度的全辐射 体(黑体)的光谱密集度之比	符号 ε(λ)参阅引言
6-21.3	光谱定向发射率 directional spectral emissivity	$\epsilon(\lambda, \theta, \varphi)$	热辐射体给定方向 θ,φ的辐射 亮度的光谱密集度与处于相同温 度的全辐射体(黑体)辐射亮度的 光谱密集度之比	
6-22	光子数 photon number	$N_{_{\mathrm{p}}}$, $Q_{_{\mathrm{p}}}$, Q	对于频率 $ u$ 的单色辐射, $ u$	
6-23	光子通量 photon flux	${m \Phi}_{ ext{p}}$, ${m \Phi}$	$arPhi_{ extsf{p}}\!=\! ext{d}N_{ extsf{p}}/ ext{d}t$	光子通量 Φ_p 与辐射能通量的光谱密集度 $\Phi_{e\lambda}$ 的关系为 $\Phi_p = \int \Phi_{e\lambda} \frac{\lambda}{hc} d\lambda$ 参阅 6-10
6-24	光子强度 photon intensity	$I_{ m p}$, I	在辐射源给定方向的立体角元 内,离开辐射源或其面元的光子 通量除以该立体角元	
6-25	光子亮度 photon luminance, photon radiance	$L_{ m p}$, L	表面一点处的面元在给定方向 上的光子强度除以该面元在垂直 于给定方向的平面上的正投影面 积	

单位:6-19.a~6-25.a

				平位:0-19.a~0-25.a
项 号	单位名称	符号	定义	换算因数和备注
6-19. a	瓦[特]平方米 watt square metre	W•m²		
6-20. a	米开[尔文] metre kelvin	m • K		
6-21. a	one	1		参阅引言
		·		
		-		
6-22. a	one	1		参阅引言
6-23. a	每秒 reciprocal second, 负一次方秒 second to the power minus one	s ⁻¹		
6-24. a	每秒球面度 reciprocal second per steradian	s ⁻¹ /sr		
6-25- a	每秒球面度平方 米 reciprocal second per steradian square metre	s ⁻¹ /(sr • m ²)		

量:6-26~6-32

			4	
项 号	量的名称	符号	定义	备注
6-26	光子出射度 photon exitance	$M_{\scriptscriptstyle \mathrm{p}}$, M	离开表面一点处的面元的光子 通量除以该面元的面积	
6-27	光子照度 photon irradiance	$E_{\scriptscriptstyle m p}$, E	照射到表面一点处的面元上的 光子通量除以该面元的面积	
6-28	曝光子量 photon exposure	$H_{\mathfrak{p}},H$	$H_{ extsf{p}} = \int E_{ extsf{p}} \mathrm{d}t$	
6-29	发光强度 luminous intensity	$I,(I_{\mathtt{v}})$		发光强度是基本量之 一。 参阅 6-30。 I = ∫ I _λ dλ
6-30	光通量 luminous flux	$\Phi,(\Phi_{ m v})$	发光强度为 I 的光源在立体角 $\mathrm{d}\Omega$ 内的光通量 $\mathrm{d}\Phi = I \; \mathrm{d}\Omega$	
6-31	光量 quantity of light	$Q_{\gamma}(Q_{\nu})$	光通量对时间积分	$Q = \int Q_{\lambda} \mathrm{d}\lambda$
6-32	[光]亮度 luminance	$L,(L_{\rm v})$	表面一点处的面元在给定方向 上的发光强度除以该面元在垂直 于给定方向的平面上的正投影面 积	$L=\int L_{\lambda}\mathrm{d}\lambda$

单位:6-26.a~6-32.a

项 号	单位名称	符号	定义	换算因数和备注
6-26. а	每秒平方米 reciprocal second	s^{-1}/m^2		
	per square metre			
6-27. a	每秒平方米	s^{-1}/m^2		
	reciprocal second per square metre			
6-28. a	每平方米	m^{-2}		
	reciprocal square metre			
			<i>II. II.</i> II. II. II. II. II. II. II. II. II.	
6-29 . a	坎[德拉] candela	cd	坎德拉是一光源在 给定方向上的发光强	
			度,该光源发出频率为	
			540×10 ¹² Hz的单色辐射,且在此方向上的辐	
			射强度为 1/683 W/sr	
6-30. a	流[明] lumen	lm	1 lm=1 cd • sr	
6-31. a	流[明]秒 lumen second	lm • s		
6-31. b	流[明][小]时 lumen hour	lm • h		1 lm • h=3 600 lm • s(准确值)
6-32. a	坎[德拉]每平方 米	cd/m²		该单位曾称尼特,符号为 nt,但 CIPM 和 ISO 都已将其废除
	candela per square metre			

量:6-33~6-37.2

项 号	量的名称	符 号	定义	备注注
6-33	光出射度 luminous exitance	M , (M_v)	离开表面一点处的面元的光通 量除以该面元的面积	以前称为面发光度(luminous emittance)。 $M=\int M_\lambda\mathrm{d}\lambda$
6-34	[光]照度 illuminance	E , $(E_{\rm v})$	照射到表面一点处的面元上的 光通量除以该面元的面积	$M = \int M_{\lambda} \mathrm{d}\lambda$ $E = \int E_{\lambda} \mathrm{d}\lambda$
6-35	曝光量 light exposure	Н	$H = \int E \cdot \mathrm{d}t$	
· ·				`
6-36.1	光视效能 luminous efficacy	K	$K = \frac{\Phi_{v}}{\Phi_{e}}$ $K(\lambda) = \frac{\Phi_{v\lambda}}{\Phi_{e\lambda}}$	$K = \frac{\int \Phi_{v\lambda} \mathrm{d}\lambda}{\int \Phi_{e\lambda} \mathrm{d}\lambda} =$
6-36.2	光谱光视效能 spectral luminous efficacy, luminous efficacy at a specified wavelength	$K(\lambda)$	$K(\lambda) = \frac{\Phi_{\nu\lambda}}{\Phi_{e\lambda}}$	$\frac{\int K(\lambda) \Phi_{e\lambda} \mathrm{d}\lambda}{\int \Phi_{e\lambda} \mathrm{d}\lambda}$
6-36.3	最大光谱光视效能 maximum spectral luminous efficacy	$K_{\mathfrak{m}}$	K(λ)的最大值	频率为 540×10 ¹² Hz 单色辐射的光谱光视效 能等于 683 lm/W
6-37.1	光视效率 luminous efficiency	V	$V\!=\!K/K_{\mathrm{m}}$	$V = \frac{\int V(\lambda) \Phi_{e\lambda} \mathrm{d}\lambda}{\int \Phi_{e\lambda} \mathrm{d}\lambda}$
				$\Phi_{\rm v} = \int K(\lambda) \; \Phi_{\rm e\lambda} { m d}\lambda = \ K_{ m m} \cdot \int V(\lambda) \; \Phi_{\rm e\lambda} { m d}\lambda$
6-37-2	光谱光视效率,(视 见函数) spectral luminous efficiency, luminous efficiency at a	$V(\lambda)$	$V(\lambda) = K(\lambda)/K_{\rm m}$	1971 年国际照明委员会(CIE)公布的明视 觉的 V(λ)标准值已于1972 年由国际计量委员会批准,会议记录
	specified wavelength			CIPM 40 (1972) 29, 145,参阅附录 A

单位:6-33.a~6-37.a

项 号	单位名称	符号	定义	换算因数和备注
6-33. a	流[明]每平方米 lumen per square metre	lm/m²		
6-34. a	勒[克斯] lux	lx	$1 lx = 1 lm/m^2$	
6-35. a	勒[克斯]秒 lux second	lx • s		
6-35. b	勒[克斯][小]时 lux hour	lx • h		1 lx • h=3 600 lx • s(准确值)
6-36. a	流[明]每瓦[特] lumen per watt	lm/W		
			·	
6-37. a	one	1		参阅引言

量:6-38~6-39

项 号	量的名称	符号	定义	备注
6-38	CIE 色度函数, CIE 光谱三刺激值 CIE colorimetric functions	$\overline{x}(\lambda)$, $\overline{y}(\lambda)$, $\overline{z}(\lambda)$	这是等能量单色光刺激在 "CIE 1931 标准色度系统 (XYZ) "中的三色分量,这些函数适用于 1° 到 4° 之间的视角,对这一标准色度系统 $\bar{y}(\lambda) \stackrel{\text{def}}{==} V(\lambda)$	1964 年 CIE 采用了 另一个标准色度系统, 其色度函数为 $\bar{x}_{10}(\lambda)$, $\bar{y}_{10}(\lambda)$, $\bar{z}_{10}(\lambda)$ 。 这系统用于视角大于 4° 的情况
6-39	色品坐标, 三色坐标	x,y,z	当相对光谱功率分布为φ(λ) 时,则	φ(λ)称为色三刺激函 数。
	trichromatic coordinates		$x = \frac{\int \varphi(\lambda) \overline{x}(\lambda) d\lambda}{\int \varphi(\lambda) \overline{x}(\lambda) d\lambda + \int \varphi(\lambda) \overline{y}(\lambda) d\lambda}$	$1 + \int \varphi(\lambda) \overline{z}(\lambda) d\lambda$
			y 和 z 仿此式列出。对光源, $\varphi(\lambda) = \Phi_{e\lambda}(\lambda)/\Phi_{e\lambda}(\lambda_0)$ (相对光谱辐射能通量)。 对物体色, $\varphi(\lambda)$ 由下面三个积中之一求出	λ ₀ 是参比波长。 在 CIE1964 补 充标 准色度系统中,色品坐 标的符号是 x ₁₀ ,y ₁₀ ,z ₁₀ 该系统用于 4°以上
			$arphi(\lambda) = rac{arPhi_{e\lambda}(\lambda)}{arPhi_{e\lambda}(\lambda_0)} ullet \left\{ egin{aligned} au(\lambda) \ eta(\lambda) \end{aligned} ight.$	视场

单位:6-38.a~6-39.a

项 号	单位名称	符 号	定 义	换算因数和备注
6-38. a	one	1		参阅引言
6-39·a	one ·	1		参阅引言

量:6-40.1~6-41

项 号	量的名称	符号	定义	备注
6-40.1	光谱吸收比 spectral absorptance, 光谱吸收因数 spectral absorption factor	$\alpha(\lambda)$	吸收的与入射的辐射能通量或 光通量的光谱密集度之比	符号 α, ρ, τ 和 β 分别 用来表示 $\alpha(\lambda), \rho(\lambda),$ $\tau(\lambda)$ 和 $\beta(\lambda)$ 的加权平 均值,这时"光谱"就应 从这些名称中除去
6-40.2	光谱反射比 spectral reflectance, 光谱反射因数 spectral reflection factor	ρ(λ)	反射的与入射的辐射能通量或 光通量的光谱密集度之比	
6-40-3	光谱透射比 spectral transmittance, 光谱透射因数 spectral transmission factor	τ(λ)	透过的与入射的辐射能通量或 光通量的光谱密集度之比	
6-40-4	光谱辐[射]亮度因数 spectral radiance factor	β(λ)	在表面一点上,非自身辐射体 在给定方向上的辐射亮度的光谱 密集度与同样辐照条件下理想漫 射体的辐射亮度的光谱密集度之 比	
6-41	[光谱]光密度 optical density	$D(\lambda)$	$D(\lambda) = -\lg[\tau(\lambda)]$	

单位:6-40.a~6-41.a

项 号	单位名称	符号	定 义	换算因数和备注
6-40. a	one	1		参阅引言
			·	
		•		
			· .	
0.17		-		会阅 己言
6-41.a	one	1	·	参阅引言

量:6-42.1~6-46.2

项 号	量的名称	符号	定义	备注
6-42-1	线性衰减系数 linear attenuation coefficient, 线性消光系数 linear extinction coefficient	μ,μ_l	垂直通过无限薄介质层的准直 电磁辐射束,它的辐射能通量或 光通量的光谱密集度的相对减弱 除以介质层的厚度	μ/ρ(ρ 是介质密度) 称为质量衰减系数
6-42.2	线性吸收系数 linear absorption coefficient	a	由吸收引起的线性衰减系数	a/ρ(ρ 是介质密度) 称为质量吸收系数
6-43	摩尔吸收系数 molar absorption coefficient	κ	κ=a/c 式中 c 为物质的量浓度	"物质的量浓度"可参 阅GB 3102.8
6-44	折射率 refractive index	n	对非吸收介质,真空中电磁波 传播的速度与介质中特定频率的 电磁波传播的相速度之比	
6-45.1	物距 object distance	p,l	对薄透镜而言,物距是轴上物 点和物方主面之间的距离	6-45.1 至 6-45.4 各 项的符号右上标,不带
6-45.2	像距 image distance	p',l'	对薄透镜而言,像距是轴上像 点和物方主面之间的距离	"'"者为物方量的名称或泛指该量,带"'"者为
6-45.3	焦距 focal distance	f	对薄透镜而言,焦距是透镜中心至焦点的距离	像方量的名称。如 f 为 物方焦距, f'为像方焦
6-45.4	顶焦距 vertex focal distance	$f_{\mathtt{v}}$	对薄透镜而言,顶焦距是透镜 表面顶点到相应焦点的距离	距
6-46.1	透镜焦度, (光焦度) vergence, lens power	Φ,F		薄透镜的焦度等于 1/f
6-46.2	顶焦度 vertex vergence, vertex lens power	$F_{ m v}$	$F_{\rm v} = n/f_{\rm v}$	

单位:6-42.a~6-46.a

项 号	单位名称	符号	定义	换算因数和备注
6-42. a	每米 reciprocal metre, 负一次方米 metre to the power minus one	m ⁻¹		
6-43. a	平方米每摩[尔] square metre per mole	m²/mol		
6-44. a	one one	. 1		参阅引言
6-45. a	米 metre	m		
6-46. a	每米 reciprocal metre, 负一次方米 metre to the power minus one	m ⁻¹		屈光度(D)是非法定计量单位。 1 D=1 m ⁻¹

附 录 A 明**视觉的光谱光视效率**¹⁾ (参考件)

λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$
360	0.000 003 917 000	385	0.000 064 000 00	410	0.001 210 000
61	0.000 004 393 581	86	0.000 072 344 21	11	0.001 362 091
62	0.000 004 929 604	87	0.000 082 212 24	12	0.001 530 752
63	0.000 005 532 136	88	0.000 093 508 16	13	0.001 720 368
64	0.000 006 208 245	89	0.000 106 136 1	14	0.001 935 323
365	0.000 006 965 000	390	0.000 120 000 0	415	0.002 180 000
66	0.000 007 813 219	91	0.000 134 984 0	16	0.002 454 800
67	0.000 008 767 336	92	0.000 151 492 0	17	0.002 764 000
68	0.000 009 839 844	93	0.000 170 208 0	18	0.003 117 800
69	0.000 011 043 23	94	0.000 191 816 0	19	0.003 526 400
70	0.000 012 390 00	395	0.000 217 000 0	420	0.004 000 000
71	0.000 013 886 41	96	0.000 246 906 7	21	0.004 546 240
72	0.000 015 557 28	97	0.000 281 240 0	22	0.005 159 320
73	0.000 017 442 96	98.	0.000 318 520 0	23	0.005 829 280
74	0.000 019 583 75	99	0.000 357 266 7	24	0.006 546 160
375	0.000 022 020 00	400	0.000 396 000 0	425	0.007 300 000
76	0.000 024 839 65	01	0.000 433 714 7	26	0.008 086 507
77	0.000 028 041 26	02	0.000 473 024 0	27	0.008 908 720
78	0.000 031 531 04	03	0.000 517 876 0	28	0.009 767 680
79	0.000 035 215 21	04	0.000 572 218 7	29	0.010 664 43
380	0.000 039 000 00	405	0.000 640 000 0	430	0.011 600 00
81	0.000 042 826 40	. 06	0.000 724 560 0	31	0.012 573 17
82	0.000 046 914 60	07	0.000 825 500 0	32	0.013 582 72
83	0.000 051 589 60	08	0.000 941 160 0	33	0.014 629 68
84	0.000 057 176 40	09	0.001 069 880	34	0.015 715 09
	•				

^{1) 1971} 年国际照明委员会公布,1972 年国际计量委员会批准。

续表

A/am				埃 农			
36 0. 018 007 36 66 0. 077 016 00 96 0. 270 184 9 37 0. 019 214 48 67 0. 080 266 40 97 0. 282 293 9 38 0. 020 453 92 68 0. 087 232 80 99 0. 308 578 0 440 0. 023 000 00 470 0. 090 980 00 500 0. 323 000 0 41 0. 024 294 61 71 0. 094 917 55 01 0. 338 402 1 42 0. 025 610 24 72 0. 099 045 84 02 0. 354 685 8 43 0. 026 958 57 73 0. 103 367 4 03 0. 371 698 6 44 0. 028 351 25 74 0. 107 884 6 04 0. 389 287 5 445 0. 029 800 00 475 0. 112 600 0 505 0. 407 300 0 46 0. 031 310 83 76 0. 112 600 0 505 0. 407 300 0 48 0. 034 521 12 78 0. 122 674 4 07 0. 444 309 6 48 0. 034 521 12 78 0. 123 922 8 08 0. 463 304 4	λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$	
37 0. 019 214 48 67 0. 080 266 40 97 0. 282 293 9 38 0. 020 453 92 68 0. 087 232 80 98 0. 295 050 5 39 0. 021 718 24 69 0. 087 232 80 99 0. 308 578 0 440 0. 023 000 00 470 0. 090 980 90 500 0. 323 000 0 41 0. 024 294 61 71 0. 099 945 84 02 0. 354 685 8 43 0. 026 958 57 73 0. 103 367 4 03 0. 371 698 6 44 0. 028 351 25 74 0. 107 884 6 04 0. 389 287 5 445 0. 029 800 00 475 0. 112 600 0 505 0. 407 300 0 46 0. 031 310 83 76 0. 117 532 0 06 0. 425 629 9 47 0. 032 883 68 77 0. 122 674 4 07 0. 444 309 6 48 0. 034 521 12 78 0. 127 992 8 08 0. 463 394 4 49 0. 036 225 71 79 0. 133 452 8 09 0. 482 939 5	435	0.016 840 00	465	0.073 900 00	495	0.258 600 0	
38 0.020 453 92 68 0.083 666 80 98 0.295 050 5 39 0.021 718 24 69 0.087 232 80 99 0.308 578 0 440 0.023 000 00 470 0.090 980 00 500 0.323 000 0 41 0.024 294 61 71 0.094 917 55 01 0.338 402 1 42 0.025 610 24 72 0.099 045 84 02 0.354 685 8 43 0.026 958 57 73 0.103 367 4 03 0.371 696 6 44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 88 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450	36	0.018 007 36	66	0.077 016 00	96	0.270 184 9	
39 0.021 718 24 69 0.087 232 80 99 0.308 578 0 440 0.023 000 00 470 0.090 980 00 500 0.323 000 0 41 0.024 294 61 71 0.094 917 55 01 0.338 402 1 42 0.025 610 24 72 0.099 045 84 02 0.354 685 8 43 0.026 958 57 73 0.103 367 4 03 0.371 698 6 44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 <td>37</td> <td>0.019 214 48</td> <td>67</td> <td>0.080 266 40</td> <td>97</td> <td>0. 282 293 9</td> <td></td>	37	0.019 214 48	67	0.080 266 40	97	0. 282 293 9	
440 0.023 000 00 470 0.090 980 00 500 0.323 000 0 41 0.024 294 61 71 0.094 917 55 01 0.338 402 1 42 0.025 610 24 72 0.099 045 84 02 0.354 685 8 43 0.026 958 57 73 0.103 367 4 03 0.371 698 6 44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.932 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 <tr< td=""><td>38</td><td>0.020 453 92</td><td>68</td><td>0.083 666 80</td><td>98</td><td>0.295 050 5</td><td></td></tr<>	38	0.020 453 92	68	0.083 666 80	98	0.295 050 5	
41 0.024 294 61 71 0.094 917 55 01 0.338 402 1 42 0.025 610 24 72 0.099 045 84 02 0.354 685 8 43 0.026 958 57 73 0.103 367 4 03 0.371 698 6 44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0	39	0.021 718 24	69	0.087 232 80	99	0.308 578 0	
41 0.024 294 61 71 0.094 917 55 01 0.338 402 1 42 0.025 610 24 72 0.099 045 84 02 0.354 685 8 43 0.026 958 57 73 0.103 367 4 03 0.371 698 6 44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0							
42 0.025 610 24 72 0.099 045 84 02 0.354 685 8 43 0.026 958 57 73 0.103 367 4 03 0.371 698 6 44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.048 800 00 485 0.169 300 0 515 0.608 200 0	440	0.023 000 00	470	0.090 980 00	500	0.323 000 0	
43 0.026 958 57 73 0.103 367 4 03 0.371 698 6 44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0	41	0.024 294 61	71	0.094 917 55	01	0.338 402 1	
44 0.028 351 25 74 0.107 884 6 04 0.389 287 5 445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6	42	0.025 610 24	72	0.099 045 84	02	0.354 685 8	
445 0.029 800 00 475 0.112 600 0 505 0.407 300 0 46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.566 569 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8	43	0.026 958 57	73	0.103 367 4	03	0.371 698 6	
46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2	44	0.028 351 25	74	0.107 884 6	04	0.389 287 5	
46 0.031 310 83 76 0.117 532 0 06 0.425 629 9 47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2							
47 0.032 883 68 77 0.122 674 4 07 0.444 309 6 48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4	445	0.029 800 00	475	0.112 600 0	505	0.407 300 0	
48 0.034 521 12 78 0.127 992 8 08 0.463 394 4 49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0	46	0.031 310 83	76	0.117 532 0	06	0.425 629 9	
49 0.036 225 71 79 0.133 452 8 09 0.482 939 5 450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6	47	0.032 883 68	77	0.122 674 4	07	0.444 309 6	
450 0.038 000 00 480 0.139 020 0 510 0.503 000 0 51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6	48	0.034 521 12	78	0.127 992 8	08	0.463 394 4	
51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4 </td <td>49</td> <td>0.036 225 71</td> <td>79</td> <td>0.133 452 8</td> <td>09</td> <td>0.482 939 5</td> <td></td>	49	0.036 225 71	79	0.133 452 8	09	0.482 939 5	
51 0.039 846 67 81 0.144 676 4 11 0.523 569 3 52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
52 0.041 768 00 82 0.150 469 3 12 0.544 512 0 53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	450	0.038 000 00	480	0.139 020 0	510	0.503 000 0	
53 0.043 766 00 83 0.156 461 9 13 0.565 690 0 54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	51	0.039 846 67	81	0.144 676 4	11	0.523 569 3	
54 0.045 842 67 84 0.162 717 7 14 0.586 965 3 455 0.048 000 00 485 0.169 300 0 515 0.608 200 0 56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	52	0.041 768 00	82	0.150 469 3	12	0.544 512 0	
455 0. 048 000 00 485 0. 169 300 0 515 0. 608 200 0 56 0. 050 243 68 86 0. 176 243 1 16 0. 629 345 6 57 0. 052 573 04 87 0. 183 558 1 17 0. 650 306 8 58 0. 054 980 56 88 0. 191 273 5 18 0. 670 875 2 59 0. 057 458 72 89 0. 199 418 0 19 0. 690 842 4 460 0. 060 000 00 490 0. 208 020 0 520 0. 710 000 0 61 0. 062 601 97 91 0. 217 119 9 21 0. 728 185 2 62 0. 065 277 52 92 0. 226 734 5 22 0. 745 463 6 63 0. 068 042 08 93 0. 236 857 1 23 0. 761 969 4	53	0.043 766 00	83	0.156 461 9	13	0.565 690 0	
56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	54	0.045 842 67	84	0.162 717 7	14	0.586 965 3	
56 0.050 243 68 86 0.176 243 1 16 0.629 345 6 57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4					,		
57 0.052 573 04 87 0.183 558 1 17 0.650 306 8 58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	455	0.048 000 00	485	0.169 300 0	515	0.608 200 0	
58 0.054 980 56 88 0.191 273 5 18 0.670 875 2 59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	56	0.050 243 68	86	0.176 243 1	16	0.629 345 6	
59 0.057 458 72 89 0.199 418 0 19 0.690 842 4 460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	57	0.052 573 04	87	0.183 558 1	17	0.650 306 8	
460 0.060 000 00 490 0.208 020 0 520 0.710 000 0 61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	58	0.054 980 56	88	0.191 273 5	18	0.670 875 2	
61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	59	0.057 458 72	89	0.199 418 0	19	0.690 842 4	
61 0.062 601 97 91 0.217 119 9 21 0.728 185 2 62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4							
62 0.065 277 52 92 0.226 734 5 22 0.745 463 6 63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	460	0.060 000 00	490	0.208 020 0	520	0.710 000 0	
63 0.068 042 08 93 0.236 857 1 23 0.761 969 4	61	0.062 601 97	91	0.217 119 9	21	0.728 185 2	
	62	0.065 277 52	92	0.226 734 5	22	0.745 463 6	
64 0.070 911 09 94 0.247 481 2 24 0.777 836 8	63	0.068 042 08	93	0. 236 857 1	23	0.761 969 4	
	64	0.070 911 09	94	0.247 481 2	24	0.777 836 8	

续表

λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$	λ/nm	V(λ)
525	0.793 200 0	555	1.000 000 0	585	0.816 300 0
26	0.808 110 4	56	0.999 856 7	86	0.804 794 7
27	0.822 496 2	57	0.999 304 6	87	0.793 082 0
28	0.836 306 8	58	0.998 325 5	88	0.781 192 0
29	0.849 491 6	59	0.996 898 7	89	0.769 154 7
530	0.862 000 0	560	0.995 000 0	590	0.757 000 0
31	0.873 810 8	61	0.992 600 5	91	0.744 754 1
32	0.884 962 4	62	0.989 742 6	92	0.732 422 4
33	0.895 493 6	63	0.986 444 4	93	0.720 003 6
34	0.905 443 2	64	0.982 724 1	94	0.707 496 5
535	0.914 850 1	565	0.978 600 0	595	0.694 900 0
36	0.923 734 8	66	0.974 083 7	96	0.682 219 2
37	0.932 092 4	67	0.969 171 2	97	0.669 471 6
38	0.939 922 6	68	0. 963 856 8	98	0.656 674 4
39	0.947 225 2	69	0. 958 134 9	99	0.643 844 8
		·			
540	0.954 000 0	570	0.952 000 0	600	0.631 000 0
41	0.960 256 1	71	0.945 450 4	01	0.618 155 5
42	0.966 007 4	72	0.938 499 2	02	0.605 314 4
43	0.971 260 6	73	0.931 162 8	03	0.592 475 6
44	0.976 022 5	74	0.923 457 6	04	0.579 637 9
545	0.980 3 00 0	575	0.915 400 0	605	0.566 800 0
46	0.984 092 4	76	0.907 006 4	06	0.553 961 1
47	0.987 418 2	77	0.898 277 2	07	0.541 137 2
48	0.990 312 8	78	0.889 204 8	08	0.528 352 8
49	0.992 811 6	79	0.879 781 6	09	0.515 632 3
550	0.994 950 1	580	0.870 000 0	610	0.503 000 0
51	0.996 710 8	81	0.859 861 3	11	0.490 468 8
52	0.998 098 3	82	0.849 392 0	12	0.478 030 4
53	0.999 112 0	83	0.838 622 0	13	0.465 677 6
54	0.9997482	84	0. 827 581 3	14	0.453 403 2

续表

λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$
615	0.441 200 0	645	0.138 200 0	675	0.023 200 00
16	0.429 080 0	46	0.131 500 3	76	0.021 800 77
17	0.417 036 0	47	0.125 024 8	77	0.020 501 12
18	0.405 032 0	48	0.118 779 2	78	0.019 281 08
19	0.393 032 0	49	0.112 769 1	79	0.018 120 69
620	0.381 000 0	650	0.107 000 0	680	0.017 000 00
21	0.368 918 4	51	0.101 476 2	81	0.015 903 79
22	0.356 827 2	52	0.096 188 64	82	0.014 837 18
23	0.344 776 8	53	0.091 122 96	83	0.013 810 68
24	0.332 817 6	54	0.086 264 85	84	0.012 834 78
	*				:
625	0.321 000 0	655	0.081 600 00	685	0.011 920 00
26	0.309 338 1	56	0.077 120 64	86	0.011 068 31
27	0.297 850 4	57	0.072 825 52	87	0.010 273 39
28	0.286 593 6	58	0.068 710 08	88	0.009 533 311
29	0. 275 624 5	59	0.064 769 76	89	0.008 846 157
630	0.265 000 0	660	0.061 000 00	690	0.008 210 000
31	0. 254 763 2	61	0.057 396 21	91	0.007 623 781
32	0. 244 889 6	62	0.053 955 04	92	0.007 085 424
33	0. 235 334 4	63	0.050 673 76	93	0.006 591 476
34	0. 226 052 8	64	0.047 549 65	94	0.006 138 485
		445	0.044.500.00	005	0.005.703.000
635	0. 217 000 0	665	0. 044 580 00	695	0.005 723 000
36	0. 208 161 6	66	0. 041 758 72	96	0.005 343 059
37	0. 199 548 8	67	0.039 084 96	97	0.004 995 796
38	0. 191 155 2	68	0.036 563 84	98	0.004 676 404
39	0.182 974 4	69	0.034 200 48	99	0.004 380 075
640	0 175 000 0	670	0.032 000 00	700	0.004 102 000
640	0. 175 000 0 0. 167 223 5	71	0. 029 962 61	01	0.004 102 000
42	0. 159 646 4	72	0. 028 076 64	02	0.003 589 099
	0. 159 646 4	73	0. 026 329 36	03	0. 003 354 219
43		73	0. 024 708 05	04	0. 003 134 093
44	0. 145 125 9	/4	0.024 100 00	04	0.000 104 000
				I	

续表

		п	· · · · · · · · · · · · · · · · · · ·	· II	
λ/nm	V(λ)	λ/nm	V(λ)	λ/nm	<i>V</i> (λ)
705	0.002 929 000	735	0.000 361 100 0	765	0.000 042 400 00
06	0.002 738 139	36	0.000 335 383 5	66	0.000 039 561 04
07	0.002 559 876	37	0.000 311 440 4	67	0.000 036 915 12
08	0.002 393 244	38	0.000 289 165 6	68	0.000 034 448 68
09	0.002 237 275	39	0.000 268 453 9	69	0.000 032 148 16
710	0.002 091 000	740	0.000 249 200 0	770	0.000 030 000 00
11	0.001 953 587	41	0.000 231 301 9	71	0.000 027 991 25
12	0.001 824 580	42	0.000 214 685 6	72	0.000 026 113 56
13	0.001 703 580	43	0.000 199 288 4	73	0.000 024 360 24
14	0. 001 590 187	44	0.000 185 047 5	74	0.000 022 724 61
715	0.001 484 000	745	0.000 171 900 0	775	0.000 021 200 00
16	0.001 384 496	46	0.000 159 778 1	76	0.000 019 778 55
17	0.001 291 268	47	0.000 148 604 4	77	0.000 018 452 85
18	0.001 204 092	48	0.000 138 301 6	78	0.000 017 216 87
19	0. 001 122 744	49	0. 000 128 792 5	79	0.000 016 064 59
720	0.001 047 000	750	0.000 120 000 0	780	0.000 014 990 00
21	0.000 976 589 6	51	0.000 111 859 5	81	0.000 013 987 28
22	0.000 911 108 8	52	0.000 104 322 4	82	0.000 013 051 55
23	0.000 850 133 2	53	0.000 097 335 60	83	0.000 012 178 18
24	0.000 793 238 4	54	0.000 090 845 87	84	0.000 011 362 54
725	0.000 740 000 0	755	0.000 084 800 00	785	0.000 010 600 00
26	0.000 690 082 7	56	0.000 079 146 67	86	0.000 009 885 877
27	0.000 643 310 0	57	0.000 073 858 00	87	0.000 009 217 304
28	0.000 599 496 0	58	0.000 068 916 00	88	0.000 008 592 362
29	0.000 558 454 7	59	0.000 064 302 67	89	0. 000 008 009 133
730	0.000 520 000 0	760	0.000 060 000 00	790	0.000 007 465 700
31	0.000 483 913 6	61	0.000 055 981 87	91	0.000 006 959 567
32	0.000 450 052 8	62	0.000 052 225 60	92	0.000 006 487 995
33	0.000 418 345 2	63	0.000 048 718 40	93	0.000 006 048 699
34	0.000 388 718 4	64	0.000 045 447 47	94	0.000 005 639 396
		<u> </u>		<u></u>	

续表

λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$	λ/nm	$V(\lambda)$
795	0.000 005 257 800	810	0.000 001 836 600	825	0.000 000 641 530 0
96	0.000 004 901 771	11	0.000 001 712 230	26	0.000 000 598 089 5
97	0.000 004 569 720	12	0.000 001 596 228	27	0.000 000 557 574 6
98	0.000 004 260 194	13	0.000 001 488 090	28	0.000 000 519 808 0
99	0.000 003 971 739	14	0.000 001 387 314	29	0.000 000 484 612 3
800	0.000 003 702 900	815	0.000 001 293 400	830	0.000 000 451 810 0
01	0.000 003 452 163	16	0.000 001 205 820		
02	0.000 003 218 302	17	0.000 001 124 143		
03	0.000 003 000 300	18	0.000 001 048 009		
04	0.000 002 797 139	19	0.000 000 977 057 8		
805	0. 000 002 607 800	820	0.000 000 910 930 0		
06	0.000 002 431 220	21	0.000 000 849 251 3	,	
07	0.000 002 266 531	22	0.000 000 791 721 2		
08	0.000 002 113 013	23	0.000 000 738 090 4		
09	0.000 001 969 943	24	0.000 000 688 109 8		

附加说明:

本标准由全国量和单位标准化技术委员会提出并归口。

本标准由全国量和单位标准化技术委员会第三分委员会负责起草。

本标准主要起草人徐大刚、夏学江、麦伟麟。