

В. К. Давыдова, Частично системно транзитивные группы подстановок, Изв. вузов. Mamem., 1957, номер 1, 121–125

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 176.52.29.84

5 марта 2023 г., 23:45:03

В. К. Давыдова

ЧАСТИЧНО СИСТЕМНО ТРАНЗИТИВНЫЕ ГРУППЫ ПОДСТАНОВОК

§ 1. Бомонтом и Питерсоном в работе "Set-transitive permutation groups" (см. [1]) были рассмотрены системно-транзитивные группы подстановок. В настоящей статье мы обобщим это понятие, введя новое понятие m-частично k-системно транзитивной группы подста-

новок посредством следующего определения:

Пусть имеется группа g подстановок n символов. Образуем системы из этих n символов по k (не обязательно всевозможные). Обозначим образованные нами системы через $s_1, s_2, \dots s_m$, где $m \leqslant \binom{n}{k}$. Если для любой пары этих систем s_i и s_j ($1 \leqslant i \leqslant m$; $1 \leqslant j \leqslant m$) можно подобрать подстановку данной группы, переводящую s_i в s_j , и если всякий элемент группы каждую из этих систем переводит также в одну из этих систем, то группу $\mathfrak g$ будем называть m-частично k—системно транзитивной.

Если при этом каждый элемент системы s_i может быть переведен в любой произвольно заданный элемент системы s_j подстановкой данной группы, то группу \mathfrak{g} назовем m-частично k-кратно транзи-

тивной.

При $m = \binom{n}{k}$ группа \mathfrak{g} является k-системно транзитивной.

Докажем некоторые теоремы о частично системно транзитивных группах подстановок.

T е о р е м a 1. Если группа g подстановок n символов m-частично k-системно транзитивна, то g будет и m-частично (n-k)-си-

стемно транзитивной.

Доказательство. Пусть группа д подстановок n символов является m-частично k-системно транзитивной. Тогда система k символов, например, $s_1 = (\alpha_1, \alpha_2, \ldots, \alpha_k)$, может быть переведена в каждую из m систем s_1, s_2, \ldots, s_m с помощью подстановок этой группы д. Пусть, например, τ_i переводит s_1 в s_i , т. е. $(\alpha_1, \alpha_2, \ldots, \alpha_k)\tau_i = (i_1, i_2, \ldots, i_k)$. Тогда, очевидно, дополнение к системе s_1 , равное $c(s_1) = (\alpha_{k+1}, \alpha_{k+2} \ldots \alpha_n)$ переводится этой подстановкой τ_i в дополнение к системе s_i , т. е. в $c(s_i) = (i_{k+1}, i_{k+2}, \ldots, i_n)$. Но так как система s_1 может быть переведена в любую другую систему s_i , где $1 \le j \le m$, то, очевидно, дополнение к системе s_1 , т. е. $c(s_1)$ может быть переведено в любое другое дополнение $c(s_i)$, где $1 \le j \le m$.

Кроме этого, по определению m-частично k-системно транзитивной группы, каждый элемент группы \mathfrak{g} переводит систему \mathfrak{s}_1 в одну из этих же m систем. А значит дополнение $\mathfrak{c}(\mathfrak{s}_1)$ каждый элемент группы \mathfrak{g} будет переводить в дополнение \mathfrak{k} одной из этих \mathfrak{m} си-

стем, т. е.

$$c(s_1), c(s_2), \ldots, c(s_m).$$

Это означает, что группа \mathfrak{g} является m-частично (n-k)-системнотранзитивной.

Примечание. Если в теореме 1 положить $m = \binom{n}{k}$, то получим как частный случай теорему, доказанную Бомонтом и Питерсоном: если группа \mathfrak{g} является k-системно транзитивной, то она и (n-k)-системно транзитивна. (См. [1], стр. 37).

T е о р е ма 2. Если группа g подстановок n символов является m-частично k-системно m ранзитивной, то она содержит подгруппу g_1 индекса m, состоящую из подстановок, переводящих

одну из систем, например $(\alpha_1, \alpha_2, ..., \alpha_k)$, в самое себя.

Доказательство. Пусть группа \mathfrak{g} подстановок \mathfrak{n} символов является \mathfrak{m} -частично k-системно транзитивной. Это означает, что система k символов, например (α_1 , α_2 ,..., α_k), может быть переведена в любую из \mathfrak{m} систем k символов подстановкой, принадлежащей группе \mathfrak{g} , и что любая подстановка группы \mathfrak{g} переводит эту систему в одну из тех же \mathfrak{m} систем.

Подстановки, которые систему $(\alpha_1, \alpha_2, ..., \alpha_k)$ переводят в самое себя, составляют подгруппу g_1 группы g. Разложим g по модулю g_1 :

$$g = g_1 + g_1 T_2 + \dots + g_1 T_r.$$

Если элемент T_i переводит систему $(\alpha_1, \alpha_2, ..., \alpha_k)$ в другую систему $(i_1, i_2, ..., i_k)$, то, очевидно, любой элемент смежной системы \mathfrak{g}_1T_i переводит $(\alpha_1, \alpha_2, ..., \alpha_k)$ в $(i_1, i_2, ..., i_k)$. Если же два элемента T_i и T_j принадлежат различным системам, то они систему $(\alpha_1, \alpha_2, ..., \alpha_k)$ переводят в различные системы, т. е.

$$(\alpha_1, \alpha_2, \ldots, \alpha_k) T_i = (i_1, i_2, \ldots, i_k).$$

 $(\alpha_1, \alpha_2, \ldots, \alpha_k) T_j = (j_1, j_2, \ldots, j_k),$

причем $(i_1, i_2, ..., i_k) \neq (j_1, j_2, ..., j_k)$, в противном случае элемент- $T_i T_j^{-1}$ принадлежал бы \mathfrak{g}_1 , т. е. входил бы в смежную систему \mathfrak{g}_1 , что невозможно, т. к. T_i и T_j , по предположению, принадлежат различным смежным системам.

Так как, по условию, группа \mathfrak{g} *m*-частично k-системно транзитивна, то таких смежных систем должно быть m, т. е. r=m, а это означает, что индекс подгруппы \mathfrak{g}_1 равен m. На основании теоремы Лагранжа из теоремы 2 вытекает следующее:

Если группа \mathfrak{g} подстановок n символов является m-частично k-системно транзитивной, то порядок \mathfrak{g} равен $m \cdot p$, где p есть порядок подгруппы \mathfrak{g}_1 группы \mathfrak{g}_2 , состоящей из таких подстановок, которые переводят одну из этих m систем k символов в самое себя.

Теорема 3. Если группа д подстановок п символов является m-частично k-системно транзитивной, то она не будет (m-l)-частично k-системно транзитивной, где $1\leqslant l\leqslant m$, если (m-l)

систем будут взяты из числа прежних т систем.
Показательство. Пусть группа с является т

Доказательство. Пусть группа $\mathfrak g$ является m-частично k-системно транзитивной. Выберем из m данных систем какие-либо (m-l) систем. Очевидно, каждая из этих (m-l) систем может быть переведена в любую другую произвольно заданную систему из выбранных нами (m-l) систем с помощью подстановок данной группы. Но не всякая подстановка группы $\mathfrak g$ будет переводить одну из этих (m-l) систем в какую-либо другую из этих же систем, т. к. данная группа, по условию, является m-частично k-системно транзитивной, т. е. найдутся подстановки в группе $\mathfrak g$, которые данную систему будут переводить в одну из l систем, которые входят в число m систем, но не входят в (m-l) выбранных систем. А это означает, что группа $\mathfrak g$ не будет (m-l) частично k-системно транзитивной.

Следствие. Если группа \mathfrak{g} подстановок n символов является k-системно транзитивной, то она не является p-частично k-системно транзитивной, где $1 \leqslant p \leqslant \binom{n}{k}$.

Действительно, k-системно транзитивную группу можно считать

m-частично k-системно транзитивной, когда $m = \binom{n}{k}$.

Из условия системной транзитивности следует, что m есть число всевозможных систем из n символов по k. Следовательно, для того, чтобы группа $\mathfrak g$ была p-частично k-системно транзитивной, мы должны из данных m систем выбрать p каких-либо систем. Но из теоремы $\mathfrak g$ следует, что, если из $m=\binom{n}{k}$ систем мы выберем любые p систем, то группа $\mathfrak g$ не будет p-частично k-системно транзитивной.

§ 2. По аналогии с терминологией, данной Бомонтом и Питерсо-

ном, дадим такое определение:

Группу \mathfrak{g} подстановок n символов будем называть m-частично системно транзитивной, если она m-частично k-системно транзитивна для любого k, удовлетворяющего условию

$$1 \leqslant k \leqslant n-1$$
.

Теорема 4. Если группа д есть прямое произведение двух системно транзитивных групп с различными символами, то д есть частично системно транзитивная группа.

Доказательство. Пусть \mathfrak{g}_1 -системно транзитивная группа n символов, и \mathfrak{g}_2 — системно транзитивная группа m других символов, и пусть группа \mathfrak{g} есть прямое произведение групп \mathfrak{g}_1 и \mathfrak{g}_2 . Составим всевозможные системы s_1, s_2, \ldots, s_t из k символов группы \mathfrak{g}_1 , где $0 \leqslant k \leqslant n$, и l символов группы \mathfrak{g}_2 , где $0 \leqslant l \leqslant m$.

Докажем, что система s_1 может быть переведена в любую из t систем с помощью подстановки, принадлежащей \mathfrak{g} , т. е.

$$s_1G = s_j$$
, где $G \in \mathfrak{g}$ и $j = 1, 2, ..., t$.

Так как \mathfrak{g}_1 , по условию,—системно транзитивная группа, то совокупность любых ее k символов может быть переведена в любую другую наперед заданную совокупность k символов с помощью подстановки $\tau_j \in \mathfrak{g}_1$, т. е. найдется такая подстановка $\tau_j \in \mathfrak{g}_1$, которая будет переводить систему символов $\left(a_1^{(1)} \ a_2^{(1)} \dots a_k^{(1)}\right)$ в систему $\left(a_1^{(i)} \ a_2^{(j)} \dots a_k^{(j)}\right)$, т. е.

$$(a_1^{(1)} a_2^{(1)} \dots a_k^{(1)}) \tau_j = (a_1^{(j)} a_2^{(j)} \dots a_k^{(j)}),$$

и так как \mathfrak{g}_2 , по условию,—системно транзитивная группа, то любая совокупность l ее символов может быть переведена в любую другую наперед заданную совокупность символов с помощью подстановки $\sigma_j \in \mathfrak{g}_2$, т. е. найдется такая подстановка $\sigma_j \in \mathfrak{g}_2$, что

$$(b_1^{(1)} b_2^{(1)} \dots b_l^{(1)}) \circ_j = (b_1^{(j)} b_2^{(j)} \dots b_l^{(j)}).$$

Подстановка $G_j = \tau_j \sigma_j$ будет принадлежать группе \mathfrak{g} как прямое произведение подстановок, принадлежащих \mathfrak{g}_1 и \mathfrak{g}_2 , и будет переводить систему s_1 в систему s_j , т. е. $s_1G_j = s_j$, т. к. σ_j будет оставлять без изменения символы группы \mathfrak{g}_1 , а τ_j — оставлять без изменения символы группы \mathfrak{g}_2 .

С другой стороны, система, состоящая из k символов группы ${\bf g}_1$ и l символов группы ${\bf g}_2$, не может быть переведена в произвольно выбранную систему (k+l) символов, например, составленную из (k+1) символов группы ${\bf g}_1$ и (l-1) символов группы ${\bf g}_2$. Следовательно, группа ${\bf g}$ является лишь частично (k+l)-системно транзитивной группой.

Так как число k может принимать значения от 0 до n и l от 0 до m, то (k+l) может изменяться от 0 до (n+m), т. е. группа $\mathfrak g$ будет частично p-системно транзитивна для любого p, где $1 , т. е., по определению, группа <math>\mathfrak g$ является частично системно транзитивной группой.

§ 3. В этом параграфе мы рассматриваем геометрические при-

меры т-частично к-системно транзитивных групп.

1. Рассмотрим m тетраэдров T_i , расположенных таким образом, что вращение на угол $\frac{2\pi}{m}$ относительно некоторой оси переводит

 T_i в T_{i+1} $(i=1,...m;\ T_{m+1}=T_i)$. Каждое вращение на угол $\frac{2\pi}{m}$ k $(k=0,...,\ m-1)$ относительно той же оси можно представить подстановкой 4m символов (вершин тетраэдров); подстановки эти образуют некоторую группу $\mathfrak g$ порядка m, которая, как легко видеть, будет m-частично 4-системно транзитивна. В качестве m систем по 4 символа можно взять системы, содержащие все вершины одного тетраэдра.

2. Возьмем *т* тетраэдров и рассмотрим группу подстановок, переводящих один из тетраэдров в любой произвольно заданный тетраэдр. Если за символы группы д принять вершины тетраэдров, то получим группу 4*m* символов. Пронумеруем вершины каждого тет-

раэдра: 1, 2, 3, 4. Рассмотрим три случая:

1) обозначим через \mathfrak{g}_1 группу, состоящую из подстановок, переводящих одни из тетраэдров в любой другой тетраэдр, причем так, что каждая вершина первого тетраэдра переходит в вершину другого тетраэдра с тем же номером. Порядок группы \mathfrak{g}_1 равен m!.

2) Обозначим через \mathfrak{g}_2 группу, состоящую из подстановок, переводящих один из тетраэдров в любой другой тетраэдр так, что вершина (1) первого тетраэдра переходит в вершину (1) другого тетраэдра. Порядок группы \mathfrak{g}_2 равен $\mathfrak{m}!\cdot 3$, т. к. один тетраэдр можно перевести в другой так, чтобы совпали верхние вершины, с помощью трех различных подстановок.

3) Обозначим через g_3 группу, состоящую из подстановок, переводящих один из тетраэдров в любой другой тетраэдр, причем совершенно произвольно. Порядок группы g_3 равен $m! \cdot 12$, т. е. m!

умножается на порядок группы тетраэдра.

Все эти группы \mathfrak{g}_1 , \mathfrak{g}_2 , \mathfrak{g}_3 будут m-частично 4-системно транзитивны, т. к. совокупность 4-х вершин одного тетраэдра может быть переведена в совокупность 4-х вершин любого другого тетраэдра с помощью подстановки данной группы.

3. Возьмем m произвольных многогранников с l вершинами и рассмотрим группу подстановок, переводящих вершины одного из мно-

гогранников в вершины любого другого многогранника.

Пронумеруем вершины каждого многогранника: 1, 2..., l, и рассмотрим группу \mathfrak{g} , символами которой являются вершины многогранников и, которая состоит из подстановок, переводящих один из многогранников в любой другой многогранник, причем так, что p вершин первого многогранника переходят в p вершин другого мно-

гогранника с тем же номером, где $0 \leqslant p \leqslant l$. Порядок группы \mathfrak{g} равен m! (l-p)!. Образуя совокупность m систем по l символов, каждая из которых будет содержать вершины одного многогранника, убеждаемся, что данная группа будет m-частично l-системно транзитивна.

4. Рассмотрим сферу с центром в начале координат, фиксируя некоторый диаметр ее AB, разделим его на k+1 равных частей и проведем через точки деления плоскости, перпендикулярные AB, получая, таким образом, на сфере k параллелей; затем проведя через AB плоскости под углами $\frac{\pi}{m}k$ ($k=0,\ldots,m-1$) к некоторой фиксированной плоскости, получим на сфере m меридианов. Пересечения меридианов с параллелями дадут 2mk точек. Принимая за элементы группы g, вращая вокруг оси AB на углы $\frac{\pi}{m}t$ ($0\leqslant t\leqslant 2m-1$), рассматриваемые как подстановки точек пересечений параллелей с меридианами, убеждаемся что g m-частично 2k-системно транзитивна.

Аналогичное построение, примененное к незамкнутой поверхности вращения, например параболоиду вращения, приводит к группе с бесконечным числом символов, которая будет m-частично ∞ -си-

стемно транзитивна.

Московский химико-технологический институт им. Д. И. Менделеева

Поступило 1 X 1957

ЛИТЕРАТУРА

1. Beaumont, Peterson, Set-transitive permutation groups, Canadian Journal of Mathematics, VII. No. 1, p.p. 35-42, 1955.