WHAT IS CLAIMED IS:

1. A compound having the formula

$$R^1X$$
 Q R^2 R^3

3 wherein:

R¹ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

I

R² is a member selected from the group consisting of hydrogen, halogen, optionally substituted alkylamino, and C(O)-R⁵, wherein R⁵ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R³ is a member selected from the group consisting of hydrogen, and optionally substituted alkyl;

 R^4 is a member selected from the group consisting of halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and $S(O)_n$ - R^6 , wherein R^6 is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, wherein n is 1, 2 or 3; and

X is a heteroatom selected from the group consisting of O and NR, wherein R is a member selected from the group consisting of hydrogen and optionally substituted alkyl, or, alternatively, R and R² together with the atoms to which they are attached, join to form an optionally substituted 5-, 6- or 7-membered heterocyclic ring.

2. The compound of claim 1, said compound having the formula:

wherein:

R is a member selected from the group consisting of hydrogen and optionally substituted alkyl;

R¹ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R² is a member selected from the group consisting of hydrogen, halogen, optionally substituted alkylamino, and C(O)-R⁵, wherein R⁵ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R³ is a member selected from the group consisting of hydrogen, and optionally substituted alkyl; and

R⁴ is a member selected from the group consisting of halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and S(O)_n-R⁶, wherein R⁶ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, wherein n is 1, 2 or 3.

3. The compound of claim 1, said compound having the formula:

$$\mathbb{R}^{1}$$
 \mathbb{R}^{7}
 \mathbb{R}^{3}
 \mathbb{R}^{4}
 \mathbb{R}^{3}

3 wherein:

 R¹ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R³ is a member selected from the group consisting of hydrogen, and optionally substituted alkyl;

 R^4 is a member selected from the group consisting of halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and $S(O)_n$ - R^6 , wherein R^6 is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, wherein n is 1, 2 or 3; and

R⁷ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl.

4. The compound of claim 3, wherein:

2 R⁷ is hydrogen; and

R¹ is optionally substituted alkyl.

5. The compound of claim 1, said compound having the formula:

3 wherein:

R¹ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted hydrazino, and optionally substituted heteroaryl;

R³ is a member selected from the group consisting of hydrogen, and optionally substituted alkyl;

 R^4 is a member selected from the group consisting of halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and $S(O)_n$ - R^6 , wherein R^6 is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, wherein n is 1, 2 or 3; and

R⁸ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl.

6. The compound of claim 5, wherein:

R¹ and R⁸ are both hydrogen.

7. The compound of claim 1, said compound having the formula:

$$R^1O$$
 O R^2 R^3 Id

R¹ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

 R^2 is a member selected from the group consisting of hydrogen, halogen, and C(O)- R^5 , wherein R^5 is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R³ is a member selected from the group consisting of hydrogen, and optionally substituted alkyl; and

 R^4 is a member selected from the group consisting of halogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, and $S(O)_n$ - R^6 , wherein R^6 is a member

- selected from the group consisting of optionally substituted alkyl, optionally substituted
- cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, wherein n is 1, 2
- 17 or 3.
- 1 8. The compound of claim 7, wherein:
- 2 R¹ is a member selected from the group consisting of optionally substituted
- 3 C_1 - C_6 alkyl, and optionally substituted C_5 - C_6 cycloalkyl;
- 4 R² is a hydrogen; and
- R^4 is a member selected from the group consisting of halogen, and $S(O)_n$ - R^6 ,
- 6 wherein R⁶ is an optionally substituted alkyl, wherein n is 1 or 2.
- 1 9. The compound of claim 8, wherein:
- 2 R^1 is C_1 - C_6 alkyl;
- R² is a hydrogen; and
- 4 R⁴ is a halogen, wherein n is 1 or 2.
- 1 10. The compound of claim 9, wherein:
- 2 R¹ is a member selected from the group consisting of methyl, ethyl, propyl and
- 3 butyl.
 - 11. The compound of claim 7, said compound having the formula:

- wherein R¹ is a member selected from the group consisting of methyl, ethyl,
- 4 propyl and butyl.
- 1 12. The compound of claim 11, wherein: R¹ is methyl.
- 1 13. A method of making a compound having the formula:

wherein:

R¹ is a member selected from the group consisting of hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R² is a member selected from the group consisting of hydrogen, halogen, optionally substituted alkylamino, and C(O)-R⁵, wherein R⁵ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R³ is a member selected from the group consisting of hydrogen, and optionally substituted alkyl;

 R^{10} is a member selected from the group consisting of halogen, and $S(O)_n$ - R^6 , wherein R^6 is a member selected from the group consisting of optionally substituted alkyl, optionally substituted aryl, and optionally substituted heteroaryl, wherein n is 1, 2 or 3; and

X is a heteroatom selected from O and NR, wherein R is a member selected from the group consisting of hydrogen and optionally substituted alkyl, or, alternatively, R and R² together with the atoms to which they are attached, join to form an optionally substituted 5-, 6- or 7-membered heterocyclic ring, said method comprising:

reacting a compound having the formula:

IIa

with a sulfide to form a compound having a sulfide functionality of the formula

24 IIb

wherein R⁹ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and PG is a protective group;

cleaving said protecting group (PG) to form a compound having the formula:

29 IIc

30

1

3

4

5

25

2627

28

protecting the primary amine to form a protected amine; and eliminating said sulfide functional group and subsequent alcoholysis to generate a compound of Formula II.

14. The method of claim 13, wherein said sulfide has the formula:

2 IId

wherein said sulfide functional group is activated using SO_2Cl_2 , and said sulfide functional group is coupled to a compound of Formula II at low temperature in the presence of collidine.

- 1 15. The method of claim 14, wherein cleavage of the pivalate ester of the compound of Formula IIb is effectuated using NaOMe in MeOH with subsequent cyclization
- 3 to form a compound of Formula IIc.
- 1 16. The method of claim 13, wherein said compound of Formula IIc is
- 2 oxidized to form a diastereomeric mixture of sulfoxides to eliminated a sulfinic acid.
- 1 The method of claim 13, wherein:
- 2 R¹ is a member selected from the group consisting of optionally substituted
- 3 C_1 - C_6 alkyl, and optionally substituted C_5 - C_6 cycloalkyl;
- 4 R² is a hydrogen; and
- R^4 is a member selected from the group consisting of halogen, and $S(O)_n$ - R^6 ,
- 6 wherein R⁶ is an optionally substituted alkyl, wherein n is 1 or 2.
- 1 18. The method of claim 17, wherein:
- 2 R^1 is C_1 - C_6 alkyl;
- R² is a hydrogen;
- 4 R⁴ is a halogen, wherein n is 1 or 2.
- 1 19. The method of claim 18, wherein:
- 2 R¹ is a member selected from the group consisting of methyl, ethyl, propyl and
- 3 butyl.
- 1 20. The method of claim 13, wherein said compound of Formula II has the
- 2 formula:

- wherein R¹ is a member selected from the group consisting of methyl, ethyl,
- 5 propyl and butyl.

- 21. The method of claim 20, wherein: R¹ is methyl.
- 1 22. A method for generating a pharmacophore scaffold by introducing
- 2 leaving groups at positions 4 and 7 of an indole ring, said method comprising:
- 3 reacting a compound having the formula:

4

7

8 9

10

IIIa

5 with a sulfide to form a compound having a sulfide functionality of the formula

6 IIIb

wherein R⁹ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; and PG is a protective group;

cleaving said protecting group (PG) to form a compound having the formula:

11 IIIc

protecting the primary amine to form a protected amine; and
eliminating said sulfide functional group and subsequent alcoholysis to
generate a pharmacophore scaffold with leaving groups at positions 4 and 7 of the indole ring
to generate a compound having a formula:

$$R^{10}$$
 R^{2} R^{2} R^{3} R^{3} R^{3} R^{3}

wherein:

R¹ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R² is a member selected from the group consisting of hydrogen, halogen, and C(O)-R⁵, wherein R⁵ is a member selected from the group consisting of optionally substituted alkyl, optionally substituted aryl, and optionally substituted heteroaryl;

R³ is a member selected from the group consisting of hydrogen, and optionally substituted alkyl; and

 R^{10} is a member selected from the group consisting of halogen, and $S(O)_n$ - R^6 , wherein R^6 is a member selected from the group consisting of optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl, wherein n is 1, 2 or 3.

23. A method for making a compound having the formula:

3 wherein:

4 R¹¹ is a member selected from the group consisting of optionally substituted

5 alkenyl, optionally substituted aryl, and optionally substituted heteroaryl, said method

6 comprising:

reacting a compound having the formula

8 9

10

7

with an sp²-sp² C-C bond coupling group in the presence of a Pd catalyst, to

generate said compound of Formula IV.

- 1 24. The method of claim 23, wherein said sp²-sp² C-C bond coupling
- 2 group is an aryl boronic acid moiety.