

CONTROL AUTOMATICO

Constante de error de posición estático

Profesor: Erick Salas Chaverri.

En la siguiente tabla se observa la variacion del error ante las diferentes entradas, en funcion del tipo de sistema.

	1	Error		
		Posición	Velocidad	Aceleración
Tipo	0	$1/(1+K_p)$	o o	∞
	1	0	1/K _v	× ×
	2	0	0	l/K _a

$$\mathbf{K}_{v}$$
= Limite s G(s) S--->0

Ejercicio

$$G(s) = 1$$
 (S+2) (S+3)

Mi ecuacion es de tipo 0, debo convertirla en una tipo 1 para que cuando su entrada sea escalon esta me de 0 según la tabla.

$$G(s) = \frac{1}{(S+2)(S+3)} * \frac{1}{S}$$

$$G(s) = 1$$

 $S(S+2)(S+3)$

se multplica por un bloque con un integrador, asi se obtiene una funcion de tipo ${\bf 1}$

ESCALON

$$K_{P}$$
= Limite $G(s)$
S--->0

$$K_{P}$$
= Limite $\frac{1}{S(S+2)(S+3)}$ = ∞

$$\mathbf{e}_{\text{ss}} = \mathbf{1} = \mathbf{0}$$

$$e_{ss}=0$$

RAMPA

$$K_{v=}$$
 Limite $S*G(s)$
S--->0

Kv= Limite S
$$\frac{1}{S(S+2)(S+3)} = \frac{1}{6}$$

$$\mathbf{e}_{ss} = \underbrace{\frac{1}{\frac{1}{6}}} = 6$$

e_{ss= Limite} s 1 * 1
$$\frac{1}{S^2}$$
 S--->0 $\frac{1+\frac{1}{S(S+2)(S+3)}}{S(S+2)(S+3)}$

ACELERACION

$$K_{A=}$$
 Limite $S^2 = 0$
S--->0 $S(S+2)(S+3)$

$$e_{ss} = 1$$
 = ∞