代数结构 HW10 答案

张朔宁

May 16, 2025

15. 令 $G = \{A | A \in (\mathbb{Q}_n), |A| \neq 0\}$,G 对于矩阵乘法构成群。 $f: G \to \mathbb{R}^*$,f(A) = |A|。证明: f 是从群 G 到非零实数乘群 \mathbb{R}^* 的同态映射。求 f(G) 和 $\operatorname{Ker} f$ 。

解. $\forall A, B \in G, |AB| = |A||B|,$ 所以 $\forall f(AB) = f(A)f(B),$ 所以是从群G到非零实数乘群 \mathbb{R}^* 的同态映射。 $f(G) = \mathbb{Q}^*$ Ker $f = \{A \in G | |A| = 1\}$

16. G 是交换群,k 是取定的正整数。 $f:G\to G,\ f(a)=a^k$ 。证明: f 是同态映射。求出 f(G) 和 $\operatorname{Ker} f$ 。

解. $\forall a,b \in G$, 有 $f(ab) = (ab)^k = a^k b^k = f(a)f(b)$, 故f是同态。 $f(G) = \{a^k | a \in G\}$ Ker $f = \{a | a^k = e\}$

18. $H \stackrel{\cdot}{\to} G$ 的正规子群,[G:H]=m。证明:对于 G 的任意元素 $x, x^m \in H$ 。

解. H 是正规子群,商群 G/H 存在,且 |G/H|=[G:H]=m 因为 $\forall xH\in G/H:(xH)^m=H=x^mH$ 即: $x^m\in H$