University of Waterloo Pmath 450 - Summer 2015 Assignment 4

Sina Motevalli 20455091

Problem 1

Part a

I will first prove that C_0 is a subspace of l^{∞} .

Let $(x_n) \in C_0$. If $x_n = 0$ for all n then $||(X_n)||_{\infty} = 0$ and we are done. So we assume that the sequence (x_n) has non-zero terms. Let a be the first non-zero term.

Let $\epsilon < |a|$. Since $x_n \to 0$ as $n \to \infty$, there exists $N \in \mathbb{N}$ such that $x_n < \epsilon < |a|$ for all $n \geq N$. So we have:

$$||(x_n)||_{\infty} = \sup |X_n|$$
$$= \max\{x_1, ..., x_N\} < \infty$$

Thus $(x_n) \in l^{\infty}$.

Now I need to prove that C_0 is closed.

Let $(x_n)_m$ be a sequence in C_0 meaning $(x_n)_i \to 0$ as $n \to \infty$ for all $i \in \mathbb{N}$. So $(x_n)_m \to 0$ as $n, m \to \infty$ and we are done.

Part b

We first show that l^{∞} is not separable.

Consider the set of sequences whose elements are made up of only zeroes and ones. This is clearly a subset of l^{∞} . Note that there is a one-to-one correspondence between each of these sequences and the binary representation of numbers in the interval (0,1) $(0.x_1, x_2,$ is the binary representation of a number in (0,1).

So our set is uncountable. Note that any two distinct elements are one distance apart (with respect to our norm). Now if we put a ball of radius $\frac{1}{4}$ around these points, non of these balls intersect. Since every dense subset of l^{∞} must have an element in each of these balls, any dense subset must be uncountable. Hence l^{∞} is separable.

I now prove that C_0 is separable.

Consider the set of sequences $\{(x_n): x_i \in \mathbb{Q} \ \forall i, x_n \to 0 \ as \ n \to \infty\}.$

This is a countable subset of c_0 and it is clearly dense in c_0 as \mathbb{Q} is dense in \mathbb{R} .

Hence C_0 is separable.

Problem 2

We have:

$$| \langle x_n, y_n \rangle - \langle x, y \rangle | = | \langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle |$$

$$\leq | \langle x_n, y_n \rangle - \langle x_n, y \rangle | + | \langle x_n, y \rangle - \langle x, y \rangle |$$

$$\leq | \langle x_n, y_n - y \rangle | + | \langle x_n - x, y \rangle |$$

$$\leq | |x_n| | | ||y_n - y|| + ||x_n - x|| ||y|| By C.S$$

Now since $||x_n||, ||y|| < \infty$ and $||x_n - x||, ||y_n - y| \to 0$ as $n \to \infty$ we have that $|< x_n, y_n > - < x, y > | \to \infty$ as $n \to \infty$.

Problem 3

Problem 4

Part a

Note that S_{\perp} the intersection of inverse images of the closed set $\{0\}$ of the maps $i_s: x \to \langle x, s \rangle$ for every element of S.

$$S_{\perp} = \bigcap_{s \in S} i_s^{-1}(\{0\})$$

Since i_s is continious, S_{\perp} is the intersection of closed sets and is therefore closed. span(S) closed by definition.

Part b

If $x \in span(S)$ then $x = \sum_{k=1}^{\infty} \langle x, s_i \rangle s_i$ for some s_i 's in S. Now if $x \in S_{\perp}$ then $\langle x, s_i \rangle = 0$ for all i and therefore $x = \sum_{k=1}^{\infty} \langle x, s_i \rangle = 0$. Hence $S_{\perp} \cap span(S) = \{0\}.$

Part c

Since H is separable, it is second countable and second countability passes to susets and a hilbert space is separable if and only if it is second countable. Hence every subset of H is separable.

Part d

Let $\{e_n\}$ be a basis for S. We can extend this basis to get $\{e_n\} \cup \{f_k\}$ a basis for H. (Note that these are countable sets because H is separable).

Let $x \in H$. We can write $x = \sum_{n} \langle x, e_n \rangle e_n + \sum_{k} \langle x, f_k \rangle f_k$. Let $z = \sum_{n} \langle x, e_n \rangle e_n$ and $y = \sum_{k} \langle x, f_k \rangle f_k$.

Clearly $z \in span(S)$. I need to show that $y \in S^{\perp}$.

Let $s = \sum_{n} a_n e_n \in S$. We have:

$$< y, s > = < \sum_{k} < x, f_k > f_k, \sum_{n} a_n e_n > = \sum_{k} < x, f_k > \sum_{n} a_n < e_n, f_k > = 0$$

Thus $y \in S^{\perp}$.

Now assume x = y' + z' where $y' \in S^{\perp}$ and $z' \in span(S)$. We have:

 $y - y' = z - z' \in S^{\perp} \cap \bar{span}(S) = \{0\}.$ So y = y' and z = z'.

Thus y and z are unique.

Bonus

Assume such a measurable set exists. Let $0 < \epsilon < m(A)$. Let O be an open set with $A \subset O$ such that $m(O \setminus A) < \epsilon$. Then $m(A \cap O) = m(A) = \frac{m(O)}{2}$. but $m(O \setminus A) = m(O) - m(A) = \frac{m(O)}{2} = m(A) < \epsilon$. This is a contradiction because $\epsilon < m(A)$.