Class 23 – MRM: Qualitative Regressors (Part II)

Pedram Jahangiry

A Binary dependent variable: the linear probability model

☐ Linear regression when the dependent variable is binary

The multiple linear regression model with a binary dependent variable is called the linear probability model (LPM) because the response probability is linear in the parameters

$$\Rightarrow \quad \beta_j = \Delta P(y=1|\mathbf{x})/\Delta x_j \quad \longleftarrow \quad \text{In the linear probability model, the coefficients describe} \\ \quad \text{the effect of the explanatory variables } \\ \underline{\text{on the probability}} \\ \underline{\text{that y=1}}$$

				_	-																	
÷	inlf 🍍	hours [‡]	kidslt6	kidsge6	age	educ	wage [‡]	repwage [‡]	hushrs [‡]	husage [‡]	huseduc [‡]	huswage [‡]	faminc [‡]	mtr [‡]	motheduc [‡]	fatheduc	unem [‡]	city	exper [‡]	nwifeinc	lwage	expersq [‡]
1	1	1610	1		0 32	12	3.3540	2.65	2708	34	12	4.0288	16310	0.7215	12	7	5.0	0	14	10.910060	1.21015370	196
2	1	1656	0		2 30) 12	1.3889	2.65	2310	30	9	8.4416	21800	0.6615	7	7	11.0	1	5	19,49998	0.32851210	25
3	1	1980	1		3 35	5 12	4.5455	4.04	3072	40	12	3.5807	21040	0.6915	12	7	5.0	0	15	12.039910	1.51413774	225
4	1	456	0		3 34	1 12	1.0965	3.25	1920	53	10	3.5417	7300	0.7815	7	7	5.0	0	6	6.79999	0.09212332	36
5	1	1568	1		2 3	I 14	4.5918	3.60	2000	32	12	10.0000	27300	0.6215	12	14	9.5	1	7	20.100058	1.52427220	49
6	1	2032	0		0 54	1 12	4.7421	4.70	1040	57	11	6.7106	19495	0.6915	14	7	7.5	1	33	9.859054	1.55648005	1089
7	1	1440	0		2 37	7 16	8.3333	5.95	2670	37	12	3.4277	21152	0.6915	14	7	5.0	0	11	9.15204	2.12025952	121
8	1	1020	0		0 54	1 12	7.8431	9.98	4120	53	8	2.5485	18900	0.6915	3	3	5.0	0	35	10.900038	2.05963421	1225
9	1	1458	0		2 48	3 12	2.1262	0.00	1995	52	4	4.2206	20405	0.7515	7	7	3.0	0	24	17.305000	0.75433636	576
10	1	1600	0		2 39	9 12	4.6875	4.15	2100	43	12	5.7143	20425	0.6915	7	7	5.0	0	21	12.925000	1.54489934	441

.

741	0	0	1	1	I	31	12	NA	0.00	800	33	14	3.0000	4000	0.8015	12	7	9.5	1	10	4.000000	NA	100
742	0	0	0	1	I	44	12	NA	0.00	3022	46	12	10.5890	40500	0.5815	7	7	7.5	1	5	40.500000	NA	25
743	0	0	0	1	ı	48	11	NA	0.00	1512	50	14	10.9130	21620	0.7215	10	7	7.5	1	7	21.620001	NA	49
744	0	0	0	1	ı	53	12	NA	0.00	2677	53	12	5.6033	23426	0.7215	0	0	7.5	1	11	23.426001	NA	121
745	0	0	0	3	3	42	10	NA	2.75	3150	44	12	7.9365	26000	0.6615	3	3	11.0	1	14	26.000000	NA	196
746	0	0	2	6	5	39	12	NA	0.00	1430	34	12	2.9476	7840	0.9415	7	0	9.5	1	5	7.840000	NA	25
747	0	0	1	2	2	32	10	NA	0.00	3307	36	4	2.0562	6800	0.7915	7	3	7.5	0	2	6.800000	NA	4
748	0	0	0	2	2	36	12	NA	0.00	3120	39	12	1.3013	5330	0.7915	7	12	14.0	0	4	5.330000	NA	16
749	0	0	0	2	2	40	13	NA	0.00	3020	43	16	9.2715	28200	0.6215	10	10	9.5	1	5	28.200001	NA	25
750	0	0	2	3	3	31	12	NA	0.00	2056	33	12	4.8638	10000	0.7715	12	12	7.5	0	14	10.000000	NA	196
751	0	0	0	C)	43	12	NA	0.00	2383	43	12	1.0898	9952	0.7515	10	3	7.5	0	4	9.952000	NA	16
752	0	0	0	0)	60	12	NA	0.00	1705	55	8	12.4400	24984	0.6215	12	12	14.0	1	15	24.983999	NA	225
753	0	0	0	3	3	39	9	NA	0.00	3120	48	12	6.0897	28363	0.6915	7	7	11.0	1	12	28.363001	NA	144

Example: Labor force participation of married women

=1 if in labor force, =0 otherwise Non-wife income (in thousand dollars per year)
$$\widehat{inlf} = .586 - .0034 \ nwifeinc + .038 \ educ + .039 \ exper \\ (.154) \ (.0014) \ (.007) \ (.006)$$

$$- .00060 \ exper^2 - .016 \ age - .262 \ kidslt6 \\ (.00018) \ (.002) \ (.034)$$

$$+ .0130 \ kidsge6, \ n = 753, R^2 = .264 \\ (.0132)$$
 If the number of kids

If the number of kids under six years increases by one, the probability that the woman works falls by 26.2%

Example: Female labor participation of married women (cont.)

Graph for nwifeinc=50, exper=5, age=30, kindslt6=1, and kidsge6=0

The maximum level of education in the sample is educ=17. For the given case, this leads to a predicted probability to be in the labor force of about **50%**.

Negative predicted probability but no problem because no woman in the sample has educ < 5.

Goodness-of-fit measure for binary dependent variables: Percent Correctly Predicted

Percent Correctly Predicted (y=1) =
$$\frac{count \ \widehat{inlf}=1}{count \ inlf=1} = \frac{8}{10} = 0.8$$

Percent Correctly Predicted (y=0) =
$$\frac{count \ \widehat{inlf}=0}{count \ inlf=0} = \frac{6}{10} = 0.6$$

Overall correct prediction =

$$\frac{count \, (\widehat{inlf}=1 \,|\, inlf=1) + count (\, \widehat{inlf}=0 \,|\, inlf=0)}{total \, count \, inlf} = \frac{14}{20} = 0.7$$

obs	predicted_inlf	inlf_hat	inlf	kidslt6	kidsge6	age	educ	exper	nwifeinc
1	0.99	1	1	0	4	39	12	21	12.9
2	0.50	1	1	1	3	36	11	10	10.7
3	0.64	1	1	0	2	49	12	13	14.4
4	0.29	0	1	1	1	45	12	9	23.7
5	0.58	1	1	2	0	32	17	14	15.1
6	0.47	0	1	0	5	36	10	2	18.2
7	0.90	1	1	0	1	40	12	21	22.6
8	0.92	1	1	0	2	43	13	22	21.6
9	0.88	1	1	0	1	33	12	14	24.0
10	0.76	1	1	0	1	30	12	7	16.0
11	0.27	0	0	0	1	49	12	2	21.0
12	0.29	0	0	2	0	30	16	5	23.6
13	0.61	1	0	1	0	30	12	12	22.8
14	0.35	0	0	0	4	41	12	1	35.9
15	0.64	1	0	0	1	45	12	12	21.7
16	0.49	0	0	0	5	43	12	4	21.8
17	0.62	1	0	0	1	42	13	9	31.0
18	0.33	0	0	0	0	60	12	9	15.3
19	0.30	0	0	0	0	57	12	6	12.9
20	0.51	1	0	0	2	38	10	5	15.8

Advantages vs. Disadvantages of the linear probability model

Disadvantages

- ☐ Predicted probabilities may be larger than one or smaller than zero
 - Marginal probability effects sometimes logically impossible (having 4 kids under age 6 in previous example)
 - The linear probability model is necessarily heteroskedastic (Violation of MLR5)

Heteroskedasticity consistent standard errors need to be computed

Advantanges

- ☐ Easy estimation and interpretation
 - Estimated effects and predictions are often reasonably good in practice

More on policy analysis and program evaluation

Are nonwhite customers discriminated against (Discrimination in loan approval)?

- ✓ It is important to control for other characteristics that may be important for loan approval (e.g. profession, unemployment)
- ✓ Omitting important characteristics that are correlated with the non-white dummy will produce spurious evidence for discrimination