```
import pandas as pd
df=pd.read_csv("/content/winequality-red.csv")
df
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.
4 500	6.0	N 21N	Ο 47	3 6	0 067	10 0	42 N	0.00540	2

import warnings
warnings.filterwarnings("ignore")

df.dtypes

fixed acidity float64
volatile acidity float64
citric acid float64
residual sugar float64

Automatic saving failed. This file was updated remotely or in another tab.

Show diff

density float64
pH float64
sulphates float64
alcohol float64
quality int64
dtype: object

df.isna().sum()

fixed acidity volatile acidity citric acid 0 residual sugar chlorides free sulfur dioxide total sulfur dioxide density 0 рΗ sulphates 0 alcohol 0 quality 0 dtype: int64

df["quality"].value_counts()

```
5 681
6 638
7 199
4 53
8 18
```

Name: quality, dtype: int64

import seaborn as sns
sns.countplot(df["quality"])

X=df.iloc[:,:-1].values
Y=df.iloc[:,-1].values

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()

X_new=sc.fit_transform(X)
X new

```
array([[-0.52835961, 0.96187667, -1.39147228, ..., 1.28864292, -0.57920652, -0.96024611],
[-0.29854743, 1.96744245, -1.39147228, ..., -0.7199333, 0.1289504, -0.58477711],
[-0.29854743, 1.29706527, -1.18607043, ..., -0.33117661, -0.04808883, -0.58477711],
...,
[-1.1603431, -0.09955388, -0.72391627, ..., 0.70550789, 0.54204194, 0.54162988],
[-1.39015528, 0.65462046, -0.77526673, ..., 1.6773996, 0.30598963, -0.20930812],
[-1.33270223, -1.21684919, 1.02199944, ..., 0.51112954, 0.01092425, 0.54162988]])
```

from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3,random_state=1)

Automatic saving failed. This file was updated remotely or in another tab. Show diff

from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier(n_estimators=100)
rf.fit(X_train,Y_train)
Y_pred=rf.predict(X_test)

from sklearn.metrics import accuracy_score
print("Accuracy Score",accuracy_score(Y_test,Y_pred))

Accuracy Score 0.6729166666666667

from sklearn.metrics import classification_report
print("Classification Report", classification report(Y test,Y pred))

Classification Report				precision	recall	f1-score	support
	3	0.00	0.00	0.00	2		
	4	0.00	0.00	0.00	21		
	5	0.72	0.83	0.77	207		
	6	0.65	0.65	0.65	195		
	7	0.52	0.44	0.48	52		
	8	0.50	0.33	0.40	3		
accuracy				0.67	480		
macro a	avg	0.40	0.38	0.38	480		
weighted a	avg	0.64	0.67	0.65	480		

from sklearn.metrics import ConfusionMatrixDisplay
print("Confusion Matrix", ConfusionMatrixDisplay.from_predictions(Y_test,Y_pred))

Colab paid products - Cancel contracts here

✓ 0s completed at 10:55 AM

Automatic saving failed. This file was updated remotely or in another tab. Show dif