Counter Detection

Objectives

- Compute the effective sweepwidth if the target is trying to evade the searcher
- Compute the effective sweepwidth if the target is trying to approach the searcher

Review

• Recall the definition of the finite range sensor $-R \le x \le R$

range

• If the target's CPA is within senderteration target R=w/2 R=w/2 x, lateral

, target

Counter Detection

- Searcher characteristics
 - velocity: v
 - cookie-cutter sensor range: R_s
- Target characteristics
 - velocity: u
 - cookie-cutter sensor range: R_t
- Assumptions
 - v > u: searcher faster
 - $R_t > R_s$: target detects searcher first and takes an evasive course in an attempt to avoid detection

Questions

- Under what conditions can the target always evade detection?
- What is the target's effective sweepwidth?
 - W_e
 - Will be less than $2R_s$ because target can evade

Bottom Line

- Evasion scenario: target wants to avoid detection
 - We will primarily focus on this situation

- Approach scenario: target wants to be detected
 - Rescue situation
 - Target is actually shooter moving in to attack
 - In this case, effective sweep width **greater** than $2R_s$

$$w_e = 2R_t \sin \frac{R_s}{R_t} - \cos^{-1} \frac{R_s}{R_t} \cos^{-1} \frac{R_t}{R_t} \cos^{-1} \frac{R_t}{R_t} \cos^{-1} \frac{R_t}{R_t} \cos^{-1} \frac{R_t}{R_t} \cos^{$$

Derivation: more tedious geometry/trigonometry

- Assume target stationary (relative motion) until counter-detection occurs
- Searcher heads due north

No detections
No counterdetections

- Assume target stationary (relative motion) until counter-detection occurs
- Searcher heads due north

No detections
No counterdetections

- Assume target stationary (relative motion) until counter-detection occurs
- Searcher heads due north

No detections Red counter-detect

If Red remains stationary, then Blue will detect Red. However, if Red takes evasive actions (intuitively head to the northeast), Red may be able to avoid detection

- Assume target stationary (relative motion) until counter-detection occurs
- Searcher heads due north

No detections Red counter-detect

If Red remains stationary, than Blue will detect Red. However, if Red takes evasive actions (intuitively head to the northeast), Red may be able to avoid detection

Effective Sweepwidth

- With counter-detection the target can increase its lateral range
 - The distance at the closest point of approach (CPA)
 - Move away from approaching searcher
- Thus there will be situations where a target without counter-measures will be detected . . .
 - ... But a target with counter-measures can avoid detection
- Impact: reduction in effective sweepwidth
 - Less than 2*R_s

- At time of counter-detection, the target sits at a lateral range of R_s
- Searcher will detect target if the target does not take countermeasures
- What can target do to avoid detection?

Head due east

- At time of counter-detection, the target sits at a lateral range of x=0
- Can target avoid detection?
- Possibly, depending on the values of u,v,R_s , and R_t
- Implication:
 - Effective sweepwidth may be 0: searcher can never detect target under any circumstances

- Want to find a distance d, such that searcher will still detect targets with lateral ranges less than d at time of counter-detection,
- Effective sweepwidth $w_e = 2d$

Effective Sweepwidth

$$w_e = 2d$$

- How do we find d?
- If you are the target, what course are you taking to evade detection?
 - Assume both searcher and target know values of u,
 v, R_s, R_t

Target heads in direction to maximize distance at CPA

Motion Relative to Searcher

- How Target moves from point of view of Searcher
- View blimp hovering over Searcher. How does Target appear to be moving from point of view of someone on blimp
- Target relative velocity: $u_T v_s$

$$w_e = 2d$$

- How do we find d?
- If you are the target, what course are you taking to evade detection?

- Target heads in direction to maximize distance at CPA
- Target chooses velocity vector \mathbf{u}_{τ} such that \mathbf{u}_{τ} is heading away from the searcher and the vectors \mathbf{u}_{τ} and \mathbf{u}_{τ} - \mathbf{v}_{s} are perpendicular

Effective Sweepwidth

$$W_e = 2d$$

How do we find d?

• Target chooses velocity vector \mathbf{u}_{τ} such that \mathbf{u}_{τ} is heading away from the searcher and the vectors \mathbf{u}_{τ} and $\mathbf{u}_{\tau} - \mathbf{v}_{s}$ are perpendicular

$$a = \cos^{-1} \mathbf{\hat{q}} \mathbf$$

 Given optimal heading, can the target avoid detection?

Effective Sweepwidth

$$W_e = 2d$$

We know the optimal heading of target

- On the previous slides we illustrated pictorially what conditions d must satisfy?
 - DRM tangent to searcher sensor circle
- Computing d explicitly requires going through the geometry/trigonometry

Summary

$$w_e = 2d$$
 $d = R_t \sin(d)$ $d = a - b = \cos^{-1} k$

- Only valid for
 - v > u: otherwise target always escapes and $w_e = 0$
 - $R_t > R_s$: otherwise counter-detections worthless and $w_e = 2R_s$
- Also only valid for $a > b \stackrel{R_s}{•} \frac{R_s}{R_t} > \frac{u}{v}$
- If $\frac{R_s}{R_v} < \frac{u}{t}$ target has sufficient speed to escape and $R_v = 0$

Numerical Example

- $R_s = 8$
- $R_t = 12$
- v = 9
- u = 3

- No countermeasures: sweepwidth $w = 2R_s = 16nm$
- With counter-detection $w_e = 2R_t \sin \frac{1}{2} \cos^{-1} \cos^{$
- If $\frac{R_{\rm s}}{R_{\rm t}} < \frac{u}{v}$ then $w_{\rm e} = 0$
 - E.g., target increase speed $\frac{R_s}{R_t} < \frac{u}{v} + \frac{vR_s}{R_t} < u + v > 6$

Target Wishes to Be Detected

- In the previous analysis, at counterdetection the target chose a heading to evade the target and (hopefully) escape detection
 - Maximize distance at CPA

- What if target wants to be detected?
 - E.g, rescued
- Target might be shooter closing in for attack
 - *R_s* represents firing distance for target

Effective Sweepwidth

- With counter-detection the target can now decrease its lateral range
 - Move closer to approach searcher
- Thus there will be situations where a target without counter-measures will be not be detected . . .
 - . . . But a target with counter-measures can be detected
- Impact: increases our effective sweepwidth
 - Greater than 2*R_s
- d: maximum distance off searcher track at counterdetection, such that target can still close to within

Target's Approach Heading

$$W_e = 2d$$

- How do we find d?
- As with the evasion situation, we want the target's velocity vector perpendicular to the DRM
- Target chooses velocity vector \mathbf{u}_{T} such that \mathbf{u}_{T} is heading toward the searcher and the vectors \mathbf{u}_{T} and $\mathbf{u}_{T} \mathbf{v}_{S}$ are perpendicular

Target's Approach Heading

Effective Sweepwidth: Approach

$$w_e = 2d$$

- How do we find d?
- As with the evasion situation, we can find d by finding the point where the DRM (given optimal perpendicular heading) is tangent to the searcher's sensor footprint

Effective Sweepwidth: Approach

$$W_e = 2d$$

- How do we find *d*?
- Can go through a similar geometric derivation to find d by comparing triangles and angles

Approach Summar

$$w_e = 2d$$
 $d = R_t \sin(d)$

$$v_e = 2d d = R_t \sin(d) d = p - \cos^{-1}$$

$$w_e = 2R_t \sin(d) - \cos^{-1}$$

$$\cos^{-1}$$

- Only valid for
 - v > u : otherwise eventually target reaches searcher footprint and $w_e = 2R_t$
 - $R_t > R_s$: otherwise counter-detections worthless and $w_e = 2R_s$
- Also only valid for $\frac{u}{\lambda} = 1$ + $\frac{u}{v} < \sqrt{1 \frac{u}{v}}$
- target has sufficient speed to

reach searcher footprint $w_0 = 2R_L$

Numerical Example

- $R_s = 8$
- $R_t = 12$
- v = 9
- u = 3
- No countermeasures: sweepwidth $w = 2R_s = 16nm$
- With counter-detection $w_e = 2R_t \sin \varphi \cos^{-1} \varphi \cos^{1$
- If $\frac{u}{v} > \sqrt{1 \frac{u}{\sqrt{R_t}}}$ then $w_e = 2R_t$ • E.g., target increase speed $\frac{u}{v} > \sqrt{1 - \frac{u}{\sqrt{R_t}}}$ u > 6.71

Counter Counter-measures

- Can Searcher do anything to thwart counterdetection?
 - Or at least reduce the effectiveness of counterdetection
- We assume searcher and target know parameters: u, v, R_s , R_t
 - And searcher heading
- If searcher took actions to make the target believe v and R_s were something other than their true values, then the target would take a suboptimal evasion heading and the effective sweep width would increase (evasion case)

Other Considerations

Sensor ranges may depend upon velocities

$$R_{s}(u,v), R_{t}(u,v)$$

- Which velocity should the searcher and target choose (subject to constraints)?
- Evasion situations lead to different objectives
 - Searcher wants to maximize effective sweepwidth
 - Target wants to minimize effective sweepwidth
- Shooter situations lead to different objectives
 - Searcher wants to minimize effective sweepwidth
 - Target wants to maximize effective sweepwidth
- Rescue situations both want to maximize effective sweepwidth