Lecture 11 Unsupervised learning

GEOL 4397: Data analytics and machine learning for geoscientists

Jiajia Sun, Ph.D.

March. 26th, 2019

	Week	Date	Topics	Comments
			Overview of syllabus	
	1	01/15 Tues	Lecture: Introduction to Machine learning: applications	
		01/17 Thur	Lecture: Review of linear algebra	
	2	01/22 Tues	Lab: Linear algebra in Python	Not graded
		01/24 Thur	Lecture: Introduction to optimization	
	3	01/29 Tues	Lab: Gradient descent + Linear regression	Report due on 02/05 at 5:30 pm
		01/31 Thur	Lecture: Introduction to machine learning: concepts	
	4	02/05 Tues	Lecture: Logistic regression	
		02/07 Thur	Lab: Logistic regression	Report due on 02/14 at 5:30 pm
	5	02/12 Tues	Lecture: Support vector machine	
		02/14 Thur	Lab: Support vector machine	Report due on 02/21 at 5:30 pm
	6	02/19 Tues	Lecture: Decision trees	
		02/21 Thur	Lab: Decision trees	Report due on 02/28 at 5:30 pm
	7	02/26 Tues	Lecture: Random Forest	
		02/28 Thur	Lab: Random forest	Report due on 03/07 at 5:30 pm
	8	03/05 Tues	Lecture: Ensemble learning	
		03/07 Thur	Lab: Ensemble learning	Reprot due on 03/19 at 5:30 pm
	9	03/12 Tues	No class due to spring break	
		03/14 Thur	No class due to spring break	
	10	03/19 Tues	Review & Recap	
		03/21 Thur	Exam	
	11	03/26 Tues	Lecture: Clustering	
		03/28 Thur	Lab: Clustering	Report due on 04/04 at 5:30 pm
	12	04/02 Tues	Lecture: Introduction to TensorFlow	
		04/04 Thur	Lab: TensorFlow	Not graded
	13	04/09 Tues	Lecture: Introduction to neural networks 1	
		04/11 Thur	Lecture: Introduction to neural networks 2	
	14	04/16 Tues	Lab: Deep learning	Report due on 04/23 at 5:30pm
		04/18 Thur	Lecture: Convolutional neural networks 1	
	15	04/23 Tues	Guest lecture: Convolutional neural networks 2	
		04/25 Thur	Lab: CNN (optional)	Report due on 05/02 at 5:30 pm
	16	04/30 Tues	final presentation??	
lia		05/02 Thur	final presentation??	2
Jia	Note	28 class meetings		04/29 last day of class

Outline

Dimensionality reduction

K-means Clustering

Implementation in Scikit-Learn

Acknowledgments

- Youtube video by Joshua Starmer: https://goo.gl/RDMb4P
- Youtube video by Luis Serrano: https://goo.gl/wuSYXK

Dimensionality reduction

 Reduces high-dimensional data into 2D (or 3D) space for better visualization and analysis

Introduction to dimensions

Fundamental yet important concepts

1-Dimension (1D) = a number line

1-Dimension (1D) = a number line

Suppose I measure the average density of some crustal rocks: 2.67 g/cc

1-Dimension (1D) = a number line

Suppose I measured densities on several different rocks:

2.14 g/cc, 2.67 g/cc, 3.25 g/cc, 3.86 g/cc

1-Dimension (1D) = a number line

Suppose I measured densities on several different rocks:

2.14 g/cc, 2.67 g/cc, 3.25 g/cc, 3.86 g/cc

- 1 measurement = 1D graph
- 2 measurements = 2D graph
- 3 measurements = 3D graph

- 1 measurement = 1D graph
- 2 measurements = 2D graph
- 3 measurements = 3D graph
- 4 measurements = 4D graph (you cannot draw it)

- 1 measurement = 1D graph
- 2 measurements = 2D graph
- 3 measurements = 3D graph
- 4 measurements = 4D graph (you cannot draw it)
- 200 measurements = 200D graph

- 1 measurement = 1D graph
- 2 measurements = 2D graph
- 3 measurements = 3D graph
- 4 measurements = 4D graph (you cannot draw it)
- 200 measurements = 200D graph

Each more physical property measurement we make on one rock sample adds one more dimension.

In-class quiz

- Geochemical facies analysis
- Data consists of XRF measurements of cuttings from the lateral section of an unconventional well
- Measurements made at approximately 10 m intervals
- For each cutting sample, there were 22 measurements.
- A total of 269 cutting samples
- Question: If we plot up the measurements, what is the dimension of the space? How many points are there in this high dimensional space?

In-class quiz 2

Some examples of MNIST handwritten digits

Each image is a 28 X 28 pixel images

A total of 70,000 images

Question: Suppose we want to plot up all 70,000 images in a high dimensional space, what should the dimension of this space be?

Questions

- How to visualize high-dimensional data?
- Are all those dimensional equally important? Or some more important than others?

PCA

 Reduces a high-dimensional dataset (e.g., 22-D dimensional) to 2 or 3 dimensions for better visualization

- PC1 (the first component) is the axis that spans the most variation
- PC2 (the second component) is the axis that spans the second most variation

What if we 3-Dimension (3D) data?

What if we had 4-D data?

- PC1 would span the direction of the most variation.
- PC2 would span the direction of the 2nd most variation.
- PC3 would span the direction of the 3rd most variation.
- PC4 would span the direction of the 4th most variation.

What if we had 4-D data?

- PC1 would span the direction of the most variation.
- PC2 would span the direction of the 2nd most variation.
- PC3 would span the direction of the 3rd most variation.
- PC4 would span the direction of the 4th most variation.

In general,

- There is a PC for each physical property measurement.
- If we had 22 measurements on each cutting sample, we would have 22 PCs.
- PC22 would span the direction of the 22nd most variation.

How does PCA reduce dimensionality?

Dimensionality reduction

MNIST dataset: PCA

Original data in 784 dimensional space

First and Second Principal Components colored by digit

Image source: https://goo.gl/Dj97T7

MNIST dataset: t-SNE

Original data in 784 dimensional space

tSNE dimensions colored by digit

Image source: https://goo.gl/Dj97T7

Example: PCA for high-dimensional data

500,000 DNA sites in human genome projected to 2 dimensions with PCA

Principal components correspond to geography \rightarrow ancestry

Characterize genetic variations in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. They find a close correspondence between genetic and geographic distances. → genetic ancestry testing an individual's DNA can be used to infer their geographic origin with surprising accuracy—often to within a few hundred kilometers.

Novembre et al. (2008), Nature

Thanks to Karianne Bergen

Outline

Dimensionality reduction

K-means Clustering

Implementation in Scikit-Learn

Clustering

Clustering

Clustering

MA

MANAGE

MINASOF

More Headlines

After Boeing Crashes, Sharp Questions About Industry Regulating Itself

Fox News • 1 hour ago

View full coverage

Trump hands Democrats a gift with new effort to kill Obamacare

POLITICO • 5 hours ago

The New York Times . 3 hours ago

View full coverage

Technology

Sports

Science

Health

Language & region

English | United States

Entertainment

^

Unsupervised learning: applications

Social network analysis

Market segmentation

Investing in pizza stores in Houston

Customer data

Human wisdom

Start with random locations

Distribution of customers

Distribution of customers

Distribution of customers

Update store locations

Update store locations

Update store locations

Update customer distributions

K-means clustering

Update store locations

K-means clustering: terminology

- The pizza store locations are called cluster centers or centroids.
- Each group of customers is called a cluster
- Each location or building is called an observation (or an object/instance).

K-means clustering: how it works

- Start with random initial cluster centers
- While (not converge)
 - Calculate distance between each cluster center and each instance.
 - Assign each instance to the nearest cluster center
 - Update cluster centers by calculating the mean of all the instances assigned to the same cluster
- end

Implementation in Scikit-learn

Implementation in Scikit-learn

```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
```

Implementation in Scikit-learn

```
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
```

