Lecture 18

Linear Combination of Unitaries

- Quantum Walk for Sparse Hamiltonian Simulation

1 Non-unitary LCU with approximation

Theorem. Let A be a Hermitian operator with eigenvalues in a domain $D \subseteq \mathbb{R}$ (Common choice: D = [-1, 1]). Suppose the function $f: D \to \mathbb{R}$ satisfies $|f(x)| \ge 1$ for all $x \in D$ and is ε -close to $\sum_i \alpha_i T_i$ on D for some $\varepsilon \in (0, 1/2)$, coefficients $\alpha_i > 0$, and functions $T_i: D \to \mathbb{C}$. Let $\{U_i\}$ be a set of unitaries such that $U_i |0^t\rangle |\phi\rangle = |0^t\rangle T_i(A)|\phi\rangle + |\Phi_i^{\perp}\rangle$ for all states $|\phi\rangle$, where t is a nonnegative integer and $(|0^t\rangle \langle 0^t| \otimes I) |\Phi_i^{\perp}\rangle = 0$.

Given an algorithm U_B for preparing $|b\rangle$, there is a quantum algorithm that prepares a quantum state 4ε -close to $f(A)|b\rangle/||f(A)|b\rangle||$, succeeding with constant probability, that makes $O(\alpha/||f(A)|b\rangle||) = O(\alpha)$ uses of U_B, U , and V, where

$$U = \sum_{i} |i\rangle \langle i| \otimes U_{i}, \quad V |0^{n}\rangle = \frac{1}{\sqrt{\alpha}} \sum_{i} \sqrt{\alpha_{i}} |i\rangle , \quad \alpha = \sum_{i} \alpha_{i}.$$

and an output bit indicating whether it was successful.

For a Hermitian A: $A = \sum_{i} \lambda_{i} |\lambda_{i}\rangle \langle \lambda_{i}|, f(A) = \sum_{i} f(\lambda_{i}) |\lambda_{i}\rangle \langle \lambda_{i}|.$

Input	Further combination
Unitary	LCU
Block of unitary	Non-unitary LCU
Block of unitary with approximation	Non-unitary LCU with approximation

To apply LCU results, we need to implement U, in particular the U_i 's.

In our class, we consider the case where all U_i are correlated, and are actually powers of a simple unitary Y. In this case, we have:

Theorem. Let $U = \sum_{i=0}^{N-1} |i\rangle \langle i| \otimes Y^i$, where Y is a unitary with gate complexity G. Assume $N = 2^n$. Then the gate complexity of implementing U is O(NG).

Note: A brute-force way of implementing each $|i\rangle \langle i| \otimes Y^i$ cost

$$G(1+2+\cdots+N-1) = O(N^2G)$$
.

Proof. - The unitary Y^{2j} for $j \in \{0.1, \dots, n-1\}$ has gate complexity at most 2^jG .

- We implement $U = \sum_{i=1}^{N-1} |i\rangle \langle i| \otimes Y^i$ by having the operator $c - Y^{2^j}$ on the second register controlled by j^{th} qubit of the first register $|i\rangle$.

Total gate complexity:
$$G(1+2+\cdots+2^{n-1})=O(NG)$$

What's the Y we use here? (Discrete-time) quantum walk for a Hamiltonian.

Let A be an s-sparse $N \times N$ Hamiltonian. $||A||_{\max} = \max_{i,j \in [a]} |A_{ij}| \le 1$.

Denote $s=2^{\mathfrak{s}}$, $H=\frac{1}{s}A$. From the part of quantum walks, we know that taking $Z_{\Pi}=2\Pi-I,\Pi=|0^{\mathfrak{s}}\rangle\langle 0^{\mathfrak{s}}|\otimes I, O_{H}=U_{A}Z_{\Pi}$, we have

$$\langle 0^{\mathfrak{s}} | c_i | O_H^k | 0^{\mathfrak{s}} \rangle | j \rangle = (T_k(H))_{ij} \quad \forall i \cdot j \in [N].$$

Recall: T_k is the degree-k Chebyshev polynomial.

This is basically what we want!

Query complexity: 2k for O_c and $O_A \Rightarrow$ in total O(k) quantum queries.

The core idea is:

- 1. Quantum walk for A/s = H gives Chebyshev polynomials of H.
- 2. Combine them by non-unitary LCU.
- 3. Which to combine: polynomial approximation.

2 Quantum Walk for Sparse Hamiltonian Simulation

In our lecture, we have proved that sparse Hamiltonian can be efficiently simulated, ie., an s-sparse Hamiltonian with n quits can be simulated with cost poly $(n, s, t, 1/\varepsilon)$.

However, poly can be large. and it's also not precise. Can we give a better bound?

We use quantum walk for Hamiltonian + non-unitary LCU.

How to do this? Approximate $e^{-iH/s \cdot st}$ by $T_k(H/s)$.

This is basically representing e^{-itx} by polynomials $T_k(x)$ for different k.

 $e^{-itx} = \cos(tx) - i\sin(tx) \Rightarrow$ suffices to approximate $\cos(tx)$ and $\sin(tx)$ by Chebyshev polynomials.

Jacobi-Anger expansion:

$$\cos(tx) = J_0(t) + 2\sum_{n=1}^{\infty} (-1)^n J_{2n}(t) T_{2n}(x)$$

$$\sin(tx) = 2\sum_{n=0}^{\infty} (-1)^n J_{2n+1}(t) T_{2n+1}(x)$$

Here, $J_n(z)$ denotes the Bessel functions of the first kind.

Specifically, for any ν , $e^{z(\nu-\frac{1}{\nu})/2} = \sum_{n=-\infty}^{+\infty} \nu^n J_n(z)$.

Or in a series: far any $n \in \mathbb{Z}$, $J_n(z) = \sum_{l=0}^{\infty} \frac{(-1)^l}{2^{2l+n} l! (n+l)!} z^{2l+n}$.

Properties of the Bessel function:

- For any real z and integer n, $J_{-n}(z) = (-1)^n J_n(z)$.
- For any real z and integer n, $|J_n(z)| \leq \frac{1}{|n|!} \left| \frac{z}{2} \right|^{|n|}$ Eq. (1).
- By Eq. (1), for any positive integer k and real z s.t. $|z| \le k$, $\sum_{n=k+1}^{\infty} |J_n(z)| \le 2 \frac{|z/2|^{k+1}}{(k+1)!}$. Eq. (2).
- For real z, $\sum_{n=-\infty}^{+\infty} |J_n(z)|^2 = 1$. By Cauchy-Schwart, this gives $\sum_{n=0}^{k} |J_n(z)| < \sqrt{k+1}$ Eq. (3).

Note: Eq. (2) bounds the tail of Jacobi-Anger expansion, but the form looks simple only for small z. Eq. (3) bounds the cost needed for LCU (the α).

Simulate in piece: Each piece for a shout the z=2 (total number of pieces $=\frac{t}{2}$). and precision $\frac{\varepsilon}{t}$ for each piece (two terms in each piece: $\cos 2H$ and $\sin 2H$). Total error: $\leqslant \frac{t}{2} \cdot \frac{\varepsilon}{t} \cdot 2 = \varepsilon$.

This requires that $\frac{2}{(k+1)!} \leq \frac{\varepsilon}{t}$. By Stirling's formula, $k! \sim \sqrt{2\pi k} \cdot \left(\frac{k}{e}\right)^k$

$$\Rightarrow k = O\left(\log\frac{t}{\varepsilon}/\log\log\frac{t}{\varepsilon}\right).$$

Final algorithm:

Input: An s-sparse Hamiltonian A such that $||A||_{\max} \leq 1$. We assume its quantum query oracle.

- 1. Implement the quantum walk for Hamiltonian $H = \frac{A}{s}$, as introduced above.
- 2. Approximate $\cos 2H$ and $\sin 2H$ with precision $\frac{\varepsilon}{st}$. respectively. Using the Jacobi-Anger expansion. $k = O\left(\log \frac{st}{\varepsilon} / \log \log \frac{st}{\varepsilon}\right)$ and the non-unitary LCU framework.

$$\cos(tx) = J_0(t) + 2\sum_{n=1}^{\infty} (-1)^n J_{2n}(t) T_{2n}(x) \Rightarrow \cos(tx) \approx J_0(t) + 2\sum_{n=1}^{\left\lceil \frac{k}{2} \right\rceil} (-1)^n J_{2n}(t) T_{2n}(x)$$

$$\sin(tx) = 2\sum_{n=0}^{\infty} (-1)^n J_{2n+1}(t) T_{2n+1}(x) \Rightarrow \sin(tx) \approx 2\sum_{n=0}^{\lfloor \frac{\kappa}{2} \rfloor} (-1)^n J_{2n+1}(t) T_{2n+1}(x).$$

This approximates the map e^{-2iH} with precision $\frac{2\varepsilon}{st}$.

3. Apply this for $\frac{st}{s}$ times, which gives a quantum algorithm for implementing $\left(e^{-2iH}\right)^{\frac{st}{2}}=e^{-iAt}$ with precision $\left(\frac{2\varepsilon}{st}\right) \cdot \frac{st}{2} = \varepsilon$.

Correctness: Since $f(x) = e^{-ixt}$ satisfies $|f(x)| = 1 \quad \forall x \in \mathbb{R}$. This condition is met in non-unitary LCU. $\alpha_i \geqslant 0$: This is can be released by rotating a phase on the quantum walk \Rightarrow Need to compute $\alpha = \sum_i |\alpha_i|$ instead.

Cost: O(st) times of non-unitary LCU, each with

$$\alpha = \sum_{i} |\alpha_{i}| = O\left(\sum_{n=0}^{k} J_{n}(2)\right) = O(\sqrt{k}).$$

Complexity of implementing each LCU: O(k). k is the degree of polynomial approximation.

In total:
$$O(st) \cdot O(\sqrt{k}) \cdot O(k) = O\left(stk^{1.5}\right) = O\left(st \cdot \left(\frac{\log(st/\varepsilon)}{\log\log(st/\varepsilon)}\right)^{1.5}\right)$$
. This is much better than using the Trotter formula!

We achieve: (almost) linear in s, (almost) linear in t, poly-logarithmic in ε .

On the other hand, this is not far from the optical band: $\Theta\left(st\|A\|_{\max} + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right)$.

Reference. Low and Chang. Optimal Hamiltonian simulation by quantum signal processing. PRL 2017: arxiv: 1606.02685.

3 Solving Linear Systems

One of the most basic problems in linear algebra.

In quantum computing we consider the following problem:

Definition. (Quantum Linear system problem, QLSP) Let A be an $N \times N$ Hermitian matrix with condition number κ , ||A|| = 1, and is d-sparse. Let \vec{b} be an N-dimensional vector, and let $\vec{x} = A^{-1}\vec{b}$. We define the quartan states $|b\rangle$ and $|x\rangle$:

$$|b\rangle = \frac{\sum_{i} b_{i} |i\rangle}{\|\sum_{i} b_{i} |i\rangle\|} \text{ and } |x\rangle = \frac{\sum_{i} x_{i} |i\rangle}{\|\sum_{i} x_{i} |i\rangle\|}.$$

Given a quantum query oracle O_A and a unitary U_B that prepares (b), the goal is to output a state $|\bar{x}\rangle$ such that $|||\bar{x}\rangle - |x\rangle|| \leq \varepsilon$. succeeding with probability $\geq 2/3$.

||A|| = 1, condition number $K \Rightarrow$ all eigenvalues of A are in $D_k = [-1, -1/k] \cup [1/k, 1]$.

As a result, all eigenvalues of H = A/d are in $[-1/d, -1/dk] \cup [1/dk, 1/d] \subseteq D_{dk}$.

Next Class: non-unitary LCU + quantum walk for solving linear systems.