Course: CSC707, Automata, Computability and Computational Theory

Homework 1: Functions, Sets, Proofs, Induction, Countability

Submission: Use Wolfware

File Format: Both LaTeX and PDF

Due Date: 2:00 AM, Tuesday, January 19, 2010

- 1. Specify an estimate time spent (minutes) on each sub-problem (optional).
- 2. No penatly for skipping up to three (3) sub-problems at your choosing.
- 3. What sub-problems you would like us to discuss in class (optional).
- 4. Provide any feedback/questions you may have on this homework (optional).
- 5. Using LaTeX is required.
- 1. Prove of disprove the countability of each of the following sets:
 - (a) $S = \{f : N \to N \mid f \text{ is total and, } \forall i \in N, f(i) \leq 2i\}$
 - (b) _____ The set of all finite sequences of natural numbers
 - (c) _____ The set of all subsets of a countable set
 - (d) $S = \{1, 3, 5\}$
 - (e) _____ The set of all ordered pairs of integers

Answers:

(a) We hope to discuss this sub-problem in the class.

For $S = \{f : N \to N \mid f \text{ is total and, } \forall i \in N, f(i) \leq 2i\}$, every $x \in N$ maps to a finite subset of N:

$$1 \to \{1, 2\}, 2 \to \{1, 2, 3, 4\}, \dots, n \to \{1, 2, 3, \dots, 2 * n\}, \dots$$

Since the countable union of countable sets: $\bigcup_{j=1}^{\infty} S_j$, S_j is countable for $\forall j, S = \{f : N \to N \mid f \text{ is total and, } \forall i \in N, f(i) \leq 2i\}$ is countable.

(b) The set of all finite sequences of natural numbers consists of 1-length sequences of N, 2-length sequences of N, ..., n-length sequences of N and so on. All these n-length sequences of N, $n \in N$, are countable. Since the countable union of countable sets is countable, the set of all finite sequences of natural numbers is countable.

- (c) The set of all subsets of a countable set is countable. Assume a countable set $S = \{s_1, s_2, \ldots, s_n, \ldots\}$, we can create a function to map a sequence $A = \langle a_1, a_2, \ldots, a_n, \ldots \rangle$ to a subset of S. For example, given a subset S' of S, if $s_1 \notin S'$, then $a_1 = 0$ in the corresponding sequence A' for S'. This function maps the countable set "sequence of S" onto the set of all subsets of a countable set S. Thus, the set of subsets of a countable set is countable.
- (d) $S = \{1, 3, 5\}$ is countable since |S| is finite, which is 3.
- (e) I provide two solutions to it:
 - i. The set of all ordered pairs of integers is the cross-product of the set of integers, $Z \times Z$. Since the set of integers, Z, is coutable and $\prod_{j=1}^{\infty} S_j$ is countable for $\forall j, Z \times Z$ is countable. Thus, the set of all ordered pairs of integers is countable.
 - ii. I use a function that is similar to the one that counts the ordered pairs of natural numbers. For an ordered pair of integers, (i,j), I can compute their absolute values, (|i|,|j|), and use the function $\frac{(|i|+|j|-2)(|i|+|j|-1)}{2}+|i|$ to compute the corresponding mapping value k. In this way, we can map the k value of the integer pairs, (i,j), i>0, j>0, to 4k+1, the k value of the integer pairs, (i,j), i<0, j>0, to 4k+2, the k value of the integer pairs, (i,j), i<0, j<0, to 4k+3, and the k value of the integer pairs, (i,j), i>0, j<0, to 4k+3. First I construct a function $f(i,j): Z \to N, i \in Z, j \in Z, i \neq 0, j \neq 0$:

$$f(i,j) = \begin{cases} f(i,j) = 4 * \left(\frac{(|i|+|j|-2)(|i|+|j|-1)}{2} + |i| \right) + 1 & \text{if } i > 0, j > 0 \\ f(i,j) = 4 * \left(\frac{(|i|+|j|-2)(|i|+|j|-1)}{2} + |i| \right) + 2 & \text{if } i < 0, j > 0 \\ f(i,j) = 4 * \left(\frac{(|i|+|j|-2)(|i|+|j|-1)}{2} + |i| \right) + 3 & \text{if } i < 0, j < 0 \\ f(i,j) = 4 * \left(\frac{(|i|+|j|-2)(|i|+|j|-1)}{2} + |i| \right) + 4 & \text{if } i > 0, j < 0 \end{cases}$$

Our new function use the same function to compute the corresponding mapping value k by replacing i,j with |i|,|j| and map (i,j) to 4k+x based on which quadrant (i,j) belong to. Since the function $f(i,j) = \frac{(i+j-2)(i+j-1)}{2} + i, i \in N, j \in N$ is bijection, our function is also bijection. Thus, the ordered pairs of $(i,j), i \in Z, j \in Z, i \neq 0, j \neq 0$ is countable. I can constuct the whole ordered pairs of integers by unioning the finite set of ordered pairs $(i,j), i \in Z, j \in Z, i = 0$ or j = 0. Since both sets are countable, their union is countable, too.

2. Define the contrapositive (NOT) for each of the two statements:

(a)
$$A$$
 AND (NOT B) $\rightarrow C$ OR (NOT D)

(b) $\exists p : \forall x \in L \ \exists \ u, v, w \text{ such that:}$

i.
$$x = uvw$$

ii.
$$|uv| \leq p$$

iii.
$$|v| > 0$$

iv.
$$\forall k \geq 0, uv^k w \in L$$

Answer:

(a) (NOT C) AND D \rightarrow (NOT A) OR B

(b) $\forall p : \exists x \in L \ \forall \ u, v, w \text{ such that:}$

i.
$$x \neq uvw$$
 OR

ii.
$$|uv| > p$$
 OR

iii.
$$|v| \le 0 \text{ OR}$$

iv.
$$\exists k \geq 0, uv^k w \notin L$$

3. Correct (if necessary) each of the following claims and prove the claims:

(a) For
$$\forall x, 2^x \geq x^2$$

(b) _____ There is no pair of integers a and $b: a \mod b = b \mod a$

(c)
$$\sum_{i=0}^{n} i^3 = \left(\sum_{i=0}^{n} i\right)^2$$

Answer:

(a) The claim, $\forall x, 2^x \geq x^2$, is not correct: When $x = -2, 2^x = \frac{1}{4} < x^2 = \frac{1}{4}$

The corrected claim is: $\forall x \geq 4, 2^x \geq x^2$.

Prove: First I use induction to prove $2^x \ge 2x + 1, \forall x \ge 4$.

When
$$x = 4, 2^x = 16, 2x + 1 = 9, 2^x \ge 2x + 1$$

Assume $x > 4, 2^x \ge 2x + 1$, then we have:

 $2^{x+1} = 2 * 2^x \ge 2x + 1 + 2 = 2(x+1) + 1$ Thus, $2^x \ge 2x + 1, \forall x \ge 4$.

Then I use induction to prove $\forall x \geq 4, 2^x \geq x^2$: When $x = 4, 2^x = 16, x^2 = 16, 2^x \geq 2x + 1$

Assume $x > 4, 2^x \ge x^2$, then we have:

$$2^{x+1} = 2 * 2^x \ge x^2 + 2x + 1 = (x+1)^2 \Rightarrow 2^{x+1} \ge (x+1)^2$$

Thus, $2^x \ge 2x + 1, \forall x \ge 4$.

(b) The claim, there is no pair of integers a and b: $a \mod b = b \mod a$, is not correct.

Prove: If a = b, then $a \mod b = 0$, $b \mod a = 0$ and $a \mod b = b \mod a$, which means the claim is not correct. Therefore, the claim should be changed to: there is no pair of distinct non-zero integers a and $b : a \mod b = b \mod a$. Prove: When ab = 0, $a \mod b$, $b \mod a$, or both $a \mod b$ and $b \mod a$ is invalid since the modulo can not be 0. When ab < 0, then $(a \mod b) * (b \mod a) < 0$ and $(a \mod b) \ne (b \mod a)$. When ab > 0 and assume |a| > b, $b \mod a = b$ and

 $a \mod b \neq b$. Therefore, the claim, there is no pair of distinct non-zero integers $a \mod b : a \mod b = b \mod a$, is correct.

- (c) Prove: The sum of cubes can be represented as: $\sum_{i=0}^{n} i^3 = \frac{n^2*(n+1)^2}{4}$. Since $\sum_{i=0}^{n} i = \frac{n*(n+1)}{2}$, $\left(\sum_{i=0}^{n} i\right)^2 = (\frac{n*(n+1)}{2})^2 = \frac{n^2*(n+1)^2}{4}$, $\sum_{i=0}^{n} i^3 = \left(\sum_{i=0}^{n} i\right)^2$. The claim is correct.
- 4. Prove or disprove each of the following claims:
 - (a) $\sqrt{2}$ is a rational number
 - (b) _____ Any even number is composite (i.e. not prime)

Answer:

- (a) Disprove: Assume $\sqrt{2}$ is a rational number. Thus, we can have: $\sqrt{2} = \frac{a}{b}$ such that a and b do not have common divisor. From $\sqrt{2} = \frac{a}{b}$, we can have: $2 = \frac{a^2}{b^2}$, from which we can further get $a^2 = 2*b^2$. Then we know a^2 is an even number and a must be an even number, since the square of an odd number can not be an even number. Knowing that a is an even number, we can replace a with 2*k and we have: $4*k^2 = 2*b^2 \Rightarrow b^2 = 2*k^2$, which means that b is also an even number. If a and b are both even numbers, then they have a common divisor, a, which means that we have a conflict with our assumption that a and a do not have common divisor. Therefore, a is not a rational number.
- (b) Disprove: 2 is an even number since it can be divided by itself. 2 is also a prime number since it has exactly two distinct natural number divisors, 1 and 2. Thus, not every even number is composite.
- 5. State (without proof) if a definition is one-to-one, onto, or a bijection.
 - (a) _____ $f: Z \to Z \mid f(i) = |i|$
 - (b) $f: N \to \{0, 1, 2, 3\} \mid f(i) \equiv i \mod 4$
 - (c) $\frac{1}{f(2)=3}$ $f: \{1,2,3\} \to \{1,2,3\} \mid f(1)=3, f(2)=1, f(3)=2,$

Answer:

- (a) $f: Z \to Z \mid f(i) = |i|$ is not one-to-one, onto, or a bijection.
- (b) $f: N \to \{0, 1, 2, 3\} \mid f(i) \equiv i \mod 4$ is onto.
- (c) $f: \{1,2,3\} \to \{1,2,3\} \mid f(1)=3, f(2)=1, f(3)=2, f(2)=3$ is onto.
- 6. The ugly proof.

- (a) Choose any of the above sub-problems.
- (b) Provide an **ugly** solution to this sub-problem.

The 'ugliest solution' is the one that contains either common or hard-to-catch mistakes. The more mistakes the better, but the elegancy of the mistakes will be valued higher.

Answers:

- (a) I choose problem 1(c): prove or disprove the set of all subsets of a countable set.
- (b) The set of all subsets of a countable set is countable. A subset of a countable set is countable and the set of all subsets of a countable set can be viewed as the countable union of its subsets. Since the coutable union of countable sets: $\bigcup_{j=1}^{\infty} S_j$ is countable for $\forall j$, the set of all subsets of a countable set is countable.

The problem of this ugly proof is: the union of all its subsets equals itself.