Math 240A: Real Analysis, Fall 2019

Homework Assignment 6 Due Friday, November 15, 2019

- 1. Let $f \in L^1(m)$. Assume f(0) = 0 and f'(0) exists. Define $g : \mathbb{R} \to \mathbb{R}$ by g(0) = 0 and g(x) = f(x)/x if $x \neq 0$. Prove that $g \in L^1(m)$.
- 2. (1) Find the smallest $c \in \mathbb{R}$ such that $\log (1 + e^t) < c + t$ for all $t \in (0, \infty)$.
 - (2) Let $f:[0,1]\to [0,\infty)$ be Lebesgue integrable. Show that the following limit exists and calculate its value:

$$\lim_{n \to \infty} \frac{1}{n} \int_0^1 \log \left[1 + e^{nf(x)} \right] dx.$$

- 3. Construct Lebesgue integrable functions $f_n: [0,1] \to [0,1]$ $(n=1,2,\dots)$ such that $\lim_{n\to\infty} \int_0^1 f_n dm = 1$ and $\{f_n(x)\}$ diverges for any $x \in [0,1]$.
- 4. Prove the following variant of Egoroff's theorem: Let (X, \mathcal{M}, μ) be a measure space. Assume: (1) $f, f_n : X \to \mathbb{C}$ are all measurable and $f_n \to f$ a.e.; (2) there exists $g \in L^1(\mu)$ such that $|f_n| \leq g$ on X for all n. Then, for any $\varepsilon > 0$, there exists $E \in \mathcal{M}$ such that $\mu(E) < \varepsilon$ and $f_n \to f$ uniformly on E^c .
- 5. Prove Lusin's Theorem: Let $-\infty < a < b < \infty$ and $f:[a,b] \to \mathbb{C}$ be Lebesgue measurable. For any $\varepsilon > 0$, there exists a compact set $E \subseteq [a,b]$ such that $m(E^c) < \varepsilon$ and $f|_E$ is continuous.
- 6. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two measure spaces. Let $f: X \to \mathbb{C}$ and $g: Y \to \mathbb{C}$ be two functions and define $h: X \times Y \to \mathbb{C}$ by h(x, y) = f(x)g(y) for any $x \in X$ and $y \in Y$. Prove the following:
 - (1) If $f: X \to \mathbb{C}$ is \mathcal{M} -measurable and $g: Y \to \mathbb{C}$ is \mathcal{N} -measurable, then $h: X \times Y \to \mathbb{C}$ is $\mathcal{M} \otimes \mathcal{N}$ -measurable;
 - $(2) \ \text{If} \ f \in L^1(\mu) \ \text{and} \ g \in L^1(\nu), \ \text{then} \ h \in L^1(\mu \times \nu) \ \text{and} \ \int_{X \times Y} h \ d(\mu \times \nu) = \left(\int_X f \ d\mu\right) \left(\int_Y g \ d\nu\right).$
- 7. Let (X, \mathcal{M}, μ) be a σ -finite measure space, $f: X \to [0, \infty)$ a measurable function, and

$$G_f = \{(x,y) \in X \times [0,\infty) : y \le f(x)\}.$$

Prove that G_f is $\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$ -measurable and that $(\mu \times m)(G_f) = \int_X f \, d\mu$.

8. Prove

$$\int_0^1 \int_0^\infty \left(e^{-xy} - 2e^{-2xy} \right) \, dy dx \neq \int_0^\infty \int_0^1 \left(e^{-xy} - 2e^{-2xy} \right) \, dx dy.$$

- 9. Use Fubini's Theorem and the formula $\frac{1}{x} = \int_0^\infty e^{-xt} dt \ (x > 0)$ to prove $\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} dx = \frac{\pi}{2}$.
- 10. Let a > 0, $f:(0,a) \to \mathbb{R}$ be Lebesgue integral on (0,a), and $g(x) = \int_x^a t^{-1} f(t) dt$ (0 < x < a). Prove that g is integrable on (0,a) and $\int_{(0,a)} g dm = \int_{(0,a)} f dm$.