Основи системного аналізу

Метод аналізу мереж

Метод аналізу мереж

Метод аналізу мереж (ANP, Analytic Network Process) був розроблений Т. Сааті як узагальнення МАІ для задач, які не можуть бути представлені у вигляді ієрархії через наявність зворотніх та/або горизонтальних зв'язків.

Ієрархії і мережі

Етапи МАМ

- 1) Формування мережі кластерів
- 2) Оцінювання впливів елементів для пов'язаних кластерів (парні порівняння)
- 3) Формування суперматриці
- 4) Зважування суперматриці
- 5) Визначення ліміту ступенів суперматриці

Суперматриця мережі

$$W = egin{pmatrix} W_{11} & W_{12} & \dots & W_{1N} \\ W_{21} & W_{22} & \dots & W_{2N} \\ \dots & \dots & \dots & \dots \\ W_{N1} & W_{N2} & \dots & W_{NN} \end{pmatrix}$$
 Кожна підматриця W_{ij} показує вплив елементів кластера W_i на елементи кластера W_j .

$$W_{ij} = egin{pmatrix} w_{i1}^{(j1)} & w_{i1}^{(j2)} & \dots & w_{i1}^{(jn_j)} \\ w_{i2}^{(j1)} & w_{i2}^{(j2)} & \dots & w_{i2}^{(jn_j)} \\ \dots & \dots & \dots & \dots \\ w_{in_i}^{(j1)} & w_{in_i}^{(j2)} & \dots & w_{in_i}^{(jn_j)} \end{pmatrix}$$
 $w_{ik}^{(jl)}$ — локальна вага елемента w_{ik} відносно w_{jl} .

Суперматриця ієрархії

$$W = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ W_{21} & 0 & \dots & 0 & 0 \\ 0 & W_{32} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & W_{NN-1} & I \end{pmatrix}$$

	Мета		Крит	Альт	ативи	1		
G	Мета	(0)	0	0	0	0	0)	
	· · · · · · · · · · · · · · · · · · ·	0,6	0	0	0	0	0	
C_1 C_2	Критерії	0,4	0	0	0	0	0	
	Альтер- нативи	0	0,2	0,6	1	0	0	_
A_1 A_2 A_3		0	0,5	0,3	0	1	0	
		0	0,3	0,1	0	0	1	
				,	i i			

Суперматриця ієрархії

Результатом є ліміт ступенів суперматриці

Зважування суперматриці мережі

Для того, щоб ліміт суперматриці мережі був скінченний, необхідно, щоб матриця була стохастичною за стовпчиками:

$$\forall j \in \overline{1, N_s} : \sum_{i=1}^{N_s} w_{ij} = 1$$

Два підходи:

1) нормування матриці:

$$\widetilde{W}_{ij} = \frac{W_{ij}}{\sum_{k=1}^{N_s} W_{kj}}$$

2) Зважування кластерів

Зважування кластерів

Для кожного кластера порівнюються кластери, що на нього впливають, з точки зору величини цього впливу. Формується матриця \mathcal{W}^c :

$$W^{c} = \begin{pmatrix} w_{11}^{c} & \dots & w_{1N}^{c} \\ \dots & \dots & \dots \\ w_{N1}^{c} & \dots & w_{NN}^{c} \end{pmatrix} \qquad \tilde{W} = \begin{pmatrix} w_{11}^{c}W_{11} & w_{12}^{c}W_{12} & \dots & w_{1N}^{c}W_{1N} \\ w_{21}^{c}W_{21} & w_{22}^{c}W_{22} & \dots & w_{2N}^{c}W_{2N} \\ \dots & \dots & \dots & \dots \\ w_{N1}^{c}W_{N1} & w_{N2}^{c}W_{N2} & \dots & w_{NN}^{c}W_{NN} \end{pmatrix}$$

Ліміт ступенів суперматриці

При піднесенні суперматриці до ступенів можливі два варіанти:

- 1) Матриця збігається до фіксованих величин
- 2) Матриця "зациклюється"

У другому випадку використовується ліміт за Чезаро або сума за Чезаро послідовних елементів циклу.

$$S = \lim_{k \to \infty} \frac{1}{k} \sum_{h=1}^{k} \tilde{W}^{h}$$

Оцінювання рекламних кампаній

Суперматриця

	•	1	2			3			4			5		
	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	0	. 1
	0.5	0.5	0	0	0.1	0.5	0.8	0	0	0	0	0	0	2
	0.5	0.5	0	0	0.9	0.5	0.2	0	0	0	0	0	0	2
	0.2	0.7	0.05	0.1	1	0.2	0	0	0	0	0	0	0	•
	0.4	0.2	0.35	0.3	0	0.8	0.4	0	0	0	0	0	0	3
D:=	0.4	0.1	0.6	0.6	0	0	0.6	0	0	0	0	0	0	_
_	0	0	0.5	0.1	0.1	0.3	0.7	0	0	0	0	0	0	-
	0	0	0.1	0.7	0.4	0.4	0.2	0	0	0	0	0	0	4
	0	0	0.4	0.2	0.5	0.3	0.1	0	0	0	0	0	0	
_	0	0	0	0	0	0.4	0.5	0.4	0.8	0	1	0	0	•
	0	0	0	0	0.6	0.3	0.1	0.2	0.2	0.5	0	1	0	5
	0	0	0	0	0.4	0.3	0.4	0.4	0	0.5	0	0	1	

Зважування кластерів суперматриці

$$W^{C} = \begin{cases} 1 & 0 & 0 & 0 & 0 \\ 2 & 0,1 & 0 & 0,1 & 0 & 0 \\ 0,9 & 0,3 & 0,1 & 0 & 0 \\ 4 & 0 & 0,7 & 0,3 & 0 & 0 \\ 5 & 0 & 0 & 0,5 & 1 & 1 \end{pmatrix}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

Зважена суперматриця

		1		2		3			4			5		
	0	0	0	0	0	0	0	0	0	0	0	0	0	1
_	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0.5-0.1	0.5.0.1	0	0	0.1.0.1	0.5.0.1	0.8-0.1	0	0	0	0	0	0	1
	0.5-0.1	0.5.0.1	0	0	0.9-0.1	0.5.0.1	0.2-0.1	0	0	0	0	0	0	Z
_	0.2.0.9	0.7.0.9	0.05.0.3	0.1.0.3	1.0.1	0.2.0.1	0.0.1	0	0	0	0	0	0	
	0.4.0.9	0.2.0.9	0.35.0.3	0.3.0.3	0	0.8.0.1	0.4.0.1	0	0	0	0	0	0	3
D:=	0.4.0.9	0.1.0.9	0.6.0.3	0.6.0.3	0	0	0.6-0.1	0	0	0	0	0	0	
_	0	0	0.5.0.7	0.1.0.7	0.1.0.3	0.3.0.3	0.7-0.3	0	0	0	0	0	0	-
	0	0	$0.1 \cdot 0.7$	0.7.0.7	0.4.0.3	0.4.0.3	0.2-0.3	0	0	0	0	0	0	1
_	0	0	0.4.0.7	0.2.0.7	0.5.0.3	0.3.0.3	0.1.0.3	0	0	0	0	0	0	4
_	0	0	0	0	0	0.4.0.5	0.5.0.5	0.4	0.8	0	1	0	0	
	0	0	0	0	0.6.0.5	0.3.0.5	0.1.0.5	0.2	0.2	0.5	0	1	0	_
	0	0	0	0	0.4.0.5	0.3.0.5	0.4.0.5	0.4	0	0.5	0	0	1)	5
-	0 0	0	0.4·0.7 0	0.2.0.7	0.5·0.3 0 0.6·0.5	0.3·0.3 0.4·0.5 0.3·0.5	0.1·0.3 0.5·0.5 0.1·0.5	0 0.4 0.2	0 0.8 0.2	$0 \\ 0 \\ 0.5$	0 1 0	0 0 1	0 0 0	4 5

Зважена суперматриця

	1	•	2		3			4			5		
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1
 0.05	0.05	0	0	0.01	0.05	0.08	0	0	0	0	0	0	2
0.05	0.05	0	0	0.09	0.05	0.02	0	0	0	0	0	0	
0.18	0.63	0.01	0.03	0.1	0.02	0	0	0	0	0	0	0	
0.36	0.18	0.12	0.09	0	0.08	0.04	0	0	0	0	0	0	3
0.36	0.09	0.18	0.18	0	0	0.06	0	0	0	0	0	0	
 0	0	0.35	0.07	0.03	0.09	0.21	0	0	0	0	0	0	
0	0	0.07	0.49	0.12	0.12	0.06	0	0	0	0	0	0	4
 0	0	0.28	0.14	0.15	0.09	0.03	0	0	0	0	0	0	
0	0	0	0	0	0.2	0.25	0.4	0.8	0	1	0	0	
0	0	0	0	0.3	0.15	0.05	0.2	0.2	0.5	0	1	0	5
0	0	0	0	0.2	0.15	0.2	0.4	0	0.5	0	0	1)	

Ліміт суперматриці

		1	2	3	4	5	6	7	8	9	10	11	12	13
	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	1.615·10 ⁻⁸	1.615·10 ⁻⁸	4.705·10 ⁻⁹	4.705·10 ⁻⁹	3.599·10 ⁻⁹	3.599·10 ⁻⁹	3.599·10 ⁻⁹	0	0	0	0	0	0
	4	1.148·10 ⁻⁸	1.148·10 ⁻⁸	3.344·10 ⁻⁹	3.344·10 ⁻⁹	2.561·10 ⁻⁹	2.561·10 ⁻⁹	2.561·10 ⁻⁹	0	0	0	0	0	0
	5	8.471·10 ⁻⁹	8.472·10 ⁻⁹	2.466·10 ⁻⁹	2.466·10 ⁻⁹	1.894·10 ⁻⁹	1.894·10 ⁻⁹	1.894·10 ⁻⁹	0	0	0	0	0	0
D ¹² =	6	2.589·10 ⁻⁸	2.588·10-8	7.536·10 ⁻⁹	7.536·10 ⁻⁹	5.79·10 ⁻⁹	5.79·10 ⁻⁹	5.79·10 ⁻⁹	0	0	0	0	0	0
_	7	2.913·10 ⁻⁸	2.913·10 ⁻⁸	8.478·10 ⁻⁹	8.478·10 ⁻⁹	6.525·10 ⁻⁹	6.525·10 ⁻⁹	6.525·10 ⁻⁹	0	0	0	0	0	0
	8	6.58·10 ⁻⁸	6.58·10 ⁻⁸	1.916·10 ⁻⁸	1.916·10 ⁻⁸	1.471·10 ⁻⁸	1.471·10 ⁻⁸	1.471·10 ⁻⁸	0	0	0	0	0	0
	9	5.479·10 ⁻⁸	5.479·10 ⁻⁸	1.595·10 ⁻⁸	1.595·10 ⁻⁸	1.226·10 ⁻⁸	1.226·10 ⁻⁸	1.226·10 ⁻⁸	0	0	0	0	0	0
	10	4.597·10 ⁻⁸	4.597·10 ⁻⁸	1.338·10 ⁻⁸	1.338·10 ⁻⁸	1.029·10 ⁻⁸	1.029·10 ⁻⁸	1.029·10 ⁻⁸	0	0	0	0	0	0
	11	0.391	0.272	0.325	0.546	0.178	0.412	0.463	0.4	0.8	0	1	0	0
	12	0.282	0.398	0.293	0.254	0.479	0.298	0.17	0.2	0.2	0.5	0	1	0
	13	0.328	0.331	0.382	0.201	0.343	0.29	0.367	0.4	0	0.5	0	0	1

Ступені зваженої суперматриці збігаються, результат для ваг альтернатив відносно факторів успішності:

	Прибуток	Репутація
К1	0,391	0,272
К2	0,282	0,398
К3	0,328	0,331