Sample Size: Small Size:	Test Statistics	Critical Value $Ua, (n1, n2)$	Decision If Uo >
n1 ≤ and n2 ≤ 10	$U_0 = minmum if \{U_{1 and} U_2\}$	0 a, (n1, n2)	Ua,(n1,n2)
n1 + n2 ≤ 20	where U_1 and U_2 = n1.n2		Do not reject H ₀
	$U_{1} = n_1 \cdot n_2 + \frac{n_1(n_1+1)}{2} - R_1$		else reject Ho
	$U_{2} = n_{1}.n_{2} + \frac{n2(n_{1}+1)}{2} - R2$	From man whitney table find p value for n1, n2 and Uo For two tailed, p-value = 2po, for one tailed p- value = Po	If p-value > a, then we do no reject H _o , otherwise reject H _o
Large Size:	For large samples size, the distribution of	Z _a from z-table	If Z _a table > Z calc,
n1 > , n2 > 10 n1 + n2> 20	U_0 is approximated to normal distn with		We accept H _o ,
111 + 112> 20	$mean = \frac{n1.n2}{2} \text{ and}$		else reject H _o
	n1.n2(n1+n2+1)		
	variance = 12		
	Test statistics:		
	$II_0 - \frac{n_1 \cdot n_2}{n_1 \cdot n_2}$		
	$Z = \frac{Uo - \frac{n_1 \cdot n_2}{2}}{\boxed{n_1 n_2 (n_1 + n_2 + 1)}}$		
	$\frac{n1n2(n1+n2+1)}{n1n2(n1+n2+1)}$		
	√ 12		
	In case of tied observation, corrected sd:		
	$\sigma_u = \sqrt{\frac{n_1 n_2}{n(n-1)} \left[\frac{n^3 - n}{12} - \frac{\sum (t_i^3 - t_i)}{12} \right]}$		
	Where $n = n1 + n2$ and $t_{i=}$ number for times ith rank is repeated		

Median Test

Sample Size: Small Size: n1 ≤ and n2 ≤ 10	Test Statistics 'a'	Critical Value Po = P(A≥a);	Decision For two tailed:
n1 + n2 ≤ 20	Test statistics is obtained as follows: Combine both samples and arrange them in ascending order of magnitude such that $n = n1 + n2$ calculate the median of the combined sampled and count the no of observations less than or equal to the median in the first sample This is 'a' $K = \frac{n1 + n2}{2}$	$P(A = a) = \frac{{}^{n_1}C_a {}^{n_2}C_{k-a}}{{}^{n_1+n_2}C_k}$ $P_0 = \sum_a^k \frac{{}^{n_1}C_a {}^{n_2}C_{k-a}}{{}^{n_1+n_2}C_k}$	If 2P _o > a, accept H _o , else reject H _o For one tailed: If P _o > a, accept H _o , else reject H _o

Large Size: n1 > 10 and n2 > 10 n1 + n2 > 20	Sample	No of obs <= Md	No of obs > Md	Total a+b	Extract X ² value from X ² table for 1 degree of freedom and a level of significance	If X ² _{cal} > X ² _{tab} , we reject H _o , else
	I Sample II	С	d	C+d	$X^{2}_{\alpha,1}$	accept.
	Total	A+c	B+d	A+b+c+d		
	$\chi^2 =$	$\overline{(a+b)(}$	$\frac{(ad-bc}{c+d)(a}$	$\frac{c}{(b+d)}$		

Kolomogorov Smirnov Test

One Sample:	Test Statistics	Critical Value	Decision
To check if			
To check if there is a significant difference between observed and expected frequency.	$D_{o} = Max \mid F_{e}(x) - F_{o}(x) \mid$ $Where, F_{e}(x) = \frac{CFe}{n}$ $Cfe = expected cumulative$ $frequency$ $Fe = expected frequency$ $= np_{i} = \frac{\Sigma f}{no \ of \ categories}$ $F_{o}(x) = \frac{CFo}{n}$ $Cf_{o} = observed cumulative$	$D_{tabulated} = D_{n, \alpha}$	If $D_0 > D_{n, \alpha}$ Then we reject H_0 otherwise we do not reject H_0 .
	frequency		

Two sample: Small sample $n1 \le = n2 \le 40$ $n1 != n2 \le 20$	For two tailed $D_o = Max \mid F(x) - F(y) \mid$ Where, $F(x) = \frac{CFx}{n1}$, $F(y) = \frac{CFy}{n2}$	$D_{tabulated} = D_{(n1,n2), \alpha}$ $D_{tabulated} = D_{(n1,n2), \alpha}$	If $D_{n1,n2,a} > D_o$, Then we do not reject H_0 otherwise we reject H_0 . If $D_{n1,n2,a} > D_o$,
	For two tailed $D_0 = Max F(x) - F(y) $	(**=/**=// **	Then we do not reject H ₀ otherwise we reject H ₀ .
Large sample n1, n2 > 40 for n1 = n2 and n1,n2 > 20 for n1!=n2	$X^2 = 4D_0^2 \left(\frac{n1n2}{n1+n2}\right)$	X^2 calculated = $X^2(\alpha, 2)$ degree of freedom	If X ² _{cal} > X ² _{tab} , we reject H _o , else accept

Wilcoxo Matched Pair Sign Rank Test (used for small sample, n<=20)

One Sample:	Test Statistics	Critical Value	Decision
One Sample: Use for small sample size	T = min {s(+), s(-), Where S(+) = sum of ranks of difference with '+' sign S(-) = sum of ranks of difference with '-' sign		If T _{a, ne} >= T, we reject H _o , else accept

Kruskal Walis H test

One	Test Statistics	Critical Value	Decision
Sample: Small sample: n <= 5 and k = 3	$H = \frac{12}{n(n+1)} \left(\sum_{i=1}^{k} \frac{R_i^2}{n_i}\right) - 3(n+1)$	Obtain p-values	If p- value > a we accept H _o , else reject
	where, $n = n1 + n2 + + n_k$ if there is tie in observation, then corrected H,		
	$H_{corr} = \frac{H}{C.F}$		
	$C.F = 1 - \frac{\sum (t_i^3 - t_i)}{n^3 - n}$		
Large sample:	Same as above	$X^2_{\text{tabulated}} = X^2_{a, (k-1) \text{ (degree)}}$	If $H < X_{tab}^2$, Accept h_0 else reject H_0
n _i > 5 and			eise reject ri ₀
k > 3		of freedom)	

Freidman F-Test

K= number of samples, n = size of each sample

Sample:	Test Statistics	Critical Value	Decision
Small sample: 2 <= n <= 5	$\frac{k}{2}$	Obtain p-values from table	If p- value > a we accept H _o ,
and k = 4	$F_r = \frac{12}{nk(k+1)} \left(\sum_{i=1}^k R_i^2\right) - 3n(k+1)$		else reject H _o
	if there is tie in observation, then corrected $\boldsymbol{F}_{\boldsymbol{r}}$ is used,		
	$F_{r\;corrected} = \frac{\mathit{Fr}}{\mathit{C.F}}$		

	$C.F = 1 - rac{\sum (t_i^3 - t_i)}{n(k^3 - k)}$ t $_{ ext{i}}$ = no time ith rank is repeated		
Large Sample n > 5 & k > 3	Same as above	X^2 tabulated = X^2 a, (k-1) (degree of freedom)	If $F_r < X^2_{tab}$, Accept h_o else reject H_o