SQL 1 : Requêtes sur une table SELECT, WHERE, DISTINCT, ORDER BY, AS

Quentin Fortier

November 6, 2022

Gérer beaucoup de données

 $\underline{\text{Problème}}$: comment gérer de façon efficace un grand nombre de données?

Gérer beaucoup de données

<u>Problème</u> : comment gérer de façon efficace un grand nombre de données?

Exemples:

- Les astres connus, avec leur taille, poids...
- Les espèces connues, avec leur taxonomie, famille...
- 1 Les utilisateurs d'un site web, avec leur mot de passe, préférences...
- Les élèves d'un lycée, avec leurs notes, options...

Quelques solutions

On peut stocker ces données dans :

- Un tableur : trop limité.
- Une liste Python : trop désorganisé.
- Une base de donnée.

Base de donnée

Base de donnée

Une **base de donnée** est un ensemble de **tables**. On peut y extraire des informations à l'aide de **requêtes**.

Base de donnée

Base de donnée

Une **base de donnée** est un ensemble de **tables**. On peut y extraire des informations à l'aide de **requêtes**.

Table

Une **table** est un tableau à 2 dimensions dont les colonnes sont les **attributs** et les lignes les **enregistrements**.

Base de donnée

Base de donnée

Une **base de donnée** est un ensemble de **tables**. On peut y extraire des informations à l'aide de **requêtes**.

Table

Une **table** est un tableau à 2 dimensions dont les colonnes sont les **attributs** et les lignes les **enregistrements**.

<u>Exemple</u>: une base de donnée astre contient deux tables planete et etoile.

La table planete possède des attributs nom, rayon, poids...

Chaque enregistrement de planete correspond aux informations sur une planète.

Base de donnée astre

nom	rayon (km)	poids (kg)	etoile
'Terre'	6400	$6x10^{24}$	'Soleil'
'Jupiter'	70000	$2x10^{27}$	'Soleil'
'Proxima b'	?	?	'Proxima Centauri'

Table planete

nom	type	duree_vie (année)	galaxie
'Soleil'	'Naine jaune'	10^{10}	'Voie lactée'
'Proxima Centauri'	'Naine rouge'	?	'Voie lactée'

Table etoile

Domaine

Chaque attribut a un **domaine** : l'ensemble des valeurs que peut prendre cet attribut.

Domaine

Chaque attribut a un **domaine** : l'ensemble des valeurs que peut prendre cet attribut.

Dans la table planete :

- nom est un attribut ayant pour domaine l'ensemble des chaînes de caractères.
- ${f 2}$ rayon est un attribut ayant pour domaine ${\Bbb N}.$
- **③** ...

Clé

Une **clé** d'une table est un ensemble minimal d'attributs permettant d'identifier de façon unique chaque enregistrement.

Clé

Une ${\bf cl\acute{e}}$ d'une table est un ensemble minimal d'attributs permettant d'identifier de façon unique chaque enregistrement.

Parmi les clés possibles on en choisit une qu'on nomme clé primaire.

Clé

Une **clé** d'une table est un ensemble minimal d'attributs permettant d'identifier de façon unique chaque enregistrement.

Parmi les clés possibles on en choisit une qu'on nomme clé primaire.

nom	type	duree_vie (année)	galaxie
'Soleil'	'Naine jaune'	10^{10}	'Voie lactée'
'Proxima Centauri'	'Naine rouge'	?	'Voie lactée'
'Kepler-22'	'Naine jaune'	?	'Voie lactée'

Table etoile

Clés possibles?

Clé

Une **clé** d'une table est un ensemble minimal d'attributs permettant d'identifier de façon unique chaque enregistrement.

Parmi les clés possibles on en choisit une qu'on nomme clé primaire.

nom	type	duree_vie (année)	galaxie
'Soleil'	'Naine jaune'	10^{10}	'Voie lactée'
'Proxima Centauri'	'Naine rouge'	?	'Voie lactée'
'Kepler-22'	'Naine jaune'	?	'Voie lactée'

Table etoile

Clés possibles? nom

nom	pays	latitude	longitude
'Hanoï'	'Viêt Nam'	21°	104°
'Valence'	'France'	45°	5°
'Valence'	'Espagne'	39°	0°
'Quito'	'Equateur'	0°	-78°
'Singapour'	'Singapour'	0°	104°
'Valence'	'France'	45°	1°

Table ville

Clés possibles?

nom	pays	latitude	longitude
'Hanoï'	'Viêt Nam'	21°	104°
'Valence'	'France'	45°	5°
'Valence'	'Espagne'	39°	0°
'Quito'	'Equateur'	0°	-78°
'Singapour'	'Singapour'	0°	104°
'Valence'	'France'	45°	1°

Table ville

Clés possibles?

- latitude, longitude
- nom, longitude
- pays, longitude

Schéma

On peut résumer la structure d'une table par son schéma :

Schéma

Le schéma d'une table est la donnée de ses attributs, des domaines des attributs et de l'éventuelle clé primaire (soulignée), sous la forme : table (attribut_1 : type_1, ..., attribut_n : type_n)

Schéma

On peut résumer la structure d'une table par son schéma :

Schéma

Le schéma d'une table est la donnée de ses attributs, des domaines des attributs et de l'éventuelle clé primaire (soulignée), sous la forme : table (attribut_1 : type_1, ..., attribut_n : type_n)

Par exemple, le schéma de la table ville avec comme clé primaire (latitude, longitude) est :

ville (nom : chaîne de caractères, pays : chaîne de caractères, <u>latitude : entier,</u> longitude : entier)

Langage de requêtes

On accède à des informations d'une base de donnée avec un langage de requêtes.

Contrairement à un langage de programmation :

- On ne va pas utiliser de variable, boucle...
- On se contente de demander ce que l'on veut obtenir, mais il n'y a pas besoin de dire comment l'obtenir : la machine se débrouille.

Langage de requêtes / de programmation

Pour trouver la somme des masses des planètes du système solaire :

```
Langage de programmation :
   Somme = 0
Pour toute planete p :
   Si p tourne autour du Soleil :
        Augmenter Somme du poids de p
```

② Langage de requête : Obtenir la somme des poids des planetes qui tournent autour du Soleil

Quelques règles en SQL :

- Chaque requête doit être terminée par un point-virgule ;
- Pas d'indentation obligatoire comme en Python, mais il est conseillé de bien présenter son code
- Ses commandes peuvent être écrites en majuscules ou minuscules
- Il est conseillé d'écrire les commandes SQL en majuscules et de donner des noms de tables et colonnes en minuscules

Types en SQL

Les attributs peuvent être de type :

- INT : entier
- CHAR(k): chaîne d'au plus k caractères
 Une chaîne de caractère doit être entourée de guillemets ("exemple") ou apostrophes ('exemple')
- FLOAT : nombre à virgule
- BOOLEAN : booléen (en fait soit 0 soit 1)

Pour afficher des colonnes d'une table, on utilise :

```
SELECT colonne_1, ..., colonne_n FROM table;
```

Pour obtenir seulement les noms et prénoms des élèves dans une table eleve(nom, prenom, classe, ecole) :

SELECT nom, prenom FROM eleve;

Pour obtenir seulement les noms et prénoms des élèves dans une table eleve(nom, prenom, classe, ecole):

SELECT nom, prenom FROM eleve;

On obtient:

Pour obtenir seulement les noms et prénoms des élèves dans une table eleve(nom, prenom, classe, ecole):

```
SELECT nom, prenom FROM eleve;
```

On obtient:

Pour afficher la table entière, on peut utiliser * plutôt que donner le nom de chaque colonne :

```
SELECT * FROM eleve;
```

On peut faire des calculs dans les requêtes :

```
SELECT nom, poids / ((4/3)*3.14*POW(rayon, 3))
FROM planete;
```

Que fait cette requête?

On peut faire des calculs dans les requêtes :

```
SELECT nom, poids / ((4/3)*3.14*POW(rayon, 3))
FROM planete;
```

Que fait cette requête?

Elle affiche le nom et la densité de chaque planète.

On peut faire des calculs dans les requêtes :

```
SELECT nom, poids / ((4/3)*3.14*POW(rayon, 3))
FROM planete;
```

Que fait cette requête?

Elle affiche le nom et la densité de chaque planète.

Exercice

L'attribut rayon est en km.

Écrire une requête pour afficher le rayon de chaque planète en mètres.

DISTINCT

DISTINCT permet d'éviter d'avoir des doublons :

SELECT ecole FROM eleves;

- -- affiche plusieurs fois la même école
- -- (si plusieurs élèves l'ont intégré)

SELECT DISTINCT ecole FROM eleves;

-- affiche une fois chaque école

On peut utiliser des fonctions sur un attribut :

• SUM(a): Somme l'attribut a sur tous les enregistrements.

Exemple: SELECT SUM(population) FROM world

On peut utiliser des fonctions sur un attribut :

- SUM(a): Somme l'attribut a sur tous les enregistrements.

 <u>Exemple</u>: SELECT SUM(population) FROM world
- MIN(a) / MAX(a) : Minimum/maximum de a sur tous les enregistrements.

Exemple : SELECT MAX(population) FROM world

On peut utiliser des fonctions sur un attribut :

- SUM(a): Somme l'attribut a sur tous les enregistrements. <u>Exemple</u>: SELECT SUM(population) FROM world
- MIN(a) / MAX(a): Minimum/maximum de a sur tous les enregistrements.

Exemple : SELECT MAX(population) FROM world

COUNT(a): Compte le nombre de fois que a est différent de null.
 Souvent on compte le nombre total d'enregistrements avec
 COUNT(*).

Exemple:

SELECT COUNT(*) FROM eleve WHERE classe_sup = 'MP2I'.

On peut utiliser des fonctions sur un attribut :

- SUM(a): Somme l'attribut a sur tous les enregistrements. Exemple: SELECT SUM(population) FROM world
- MIN(a) / MAX(a) : Minimum/maximum de a sur tous les enregistrements.

Exemple: SELECT MAX(population) FROM world

COUNT(a): Compte le nombre de fois que a est différent de null.
 Souvent on compte le nombre total d'enregistrements avec COUNT(*).

Exemple:

SELECT COUNT(*) FROM eleve WHERE classe_sup = 'MP2I'.

- AVG(a): Moyenne de l'attribut a.
 Exemple:
 - SELECT AVG(note) FROM eleve WHERE classe_sup = 'MP2I'.

On peut utiliser des fonctions sur un attribut :

- SUM(a): Somme l'attribut a sur tous les enregistrements. Exemple: SELECT SUM(population) FROM world
- MIN(a) / MAX(a): Minimum/maximum de a sur tous les enregistrements.

Exemple: SELECT MAX(population) FROM world

- COUNT(a): Compte le nombre de fois que a est différent de null.
 Souvent on compte le nombre total d'enregistrements avec COUNT(*).
 - Exemple:

SELECT COUNT(*) FROM eleve WHERE classe_sup = 'MP2I'.

AS

Il est possible de renommer une colonne avec AS :

```
SELECT nom, poids / ((4/3)*3.14*POW(rayon, 3)) AS densite FROM planete;
```

AS

Il est possible de renommer une colonne avec AS :

```
SELECT nom, poids / ((4/3)*3.14*POW(rayon, 3)) AS densite FROM planete;
```

Utile pour y faire référence!

Il est possible de récupérer seulement les enregistrements vérifiant une condition avec \mathtt{WHERE} :

```
SELECT colonne_1, ..., colonne_n FROM table WHERE condition;
```

Il est possible de récupérer seulement les enregistrements vérifiant une condition avec WHERE :

```
SELECT colonne_1, ..., colonne_n FROM table WHERE condition;
```

Dans condition on peut utiliser :

- **1** = (et non pas ==)
- **2** <, <=
- != (ou son équivalent <>)
- 4 AND, OR
- LIKE

Pour afficher les noms des élèves qui ont été en MPSI2, on écrira :

Pour afficher les noms des élèves qui ont été en MPSI2, on écrira :

```
SELECT nom FROM eleve WHERE classe_sup = 'MPSI2';
```

Pour afficher les noms des élèves qui sont passés de MPSI à PSI :

Pour afficher les noms des élèves qui ont été en MPSI2, on écrira :

```
SELECT nom FROM eleve WHERE classe_sup = 'MPSI2';
```

Pour afficher les noms des élèves qui sont passés de MPSI à PSI :

Comment afficher les planètes de rayon supérieur à 50000 km?

LIKE permet d'établir une condition sur la forme d'une chaîne de caractères d'un attribut :

attribut LIKE motif

LIKE permet d'établir une condition sur la forme d'une chaîne de caractères d'un attribut :

attribut LIKE motif

motif doit être une chaîne de caractères qui peut contenir :

- % : pour n'importe quelle chaîne de caractères
- _ : pour n'importe quel (unique) caractère

Que fait la requête suivante?

SELECT * FROM eleve WHERE ecole LIKE 'Centrale%';

ORDER BY

ORDER BY permet de trier dans l'ordre croissant les enregistrements en fonction d'un attribut. On peut ajouter DESC pour trier dans l'ordre décroissant.

Exemples:

SELECT nom FROM eleve ORDER BY nom;

ORDER BY

ORDER BY permet de trier dans l'ordre croissant les enregistrements en fonction d'un attribut. On peut ajouter DESC pour trier dans l'ordre décroissant.

Exemples:

```
SELECT nom FROM eleve ORDER BY nom;
```

les noms d'élèves par ordre alphabétique

```
SELECT * FROM planete
WHERE etoile = 'Soleil'
ORDER BY poids DESC;
```

ORDER BY

ORDER BY permet de trier dans l'ordre croissant les enregistrements en fonction d'un attribut. On peut ajouter DESC pour trier dans l'ordre décroissant.

Exemples:

```
SELECT nom FROM eleve ORDER BY nom;
```

les noms d'élèves par ordre alphabétique

```
SELECT * FROM planete
WHERE etoile = 'Soleil'
ORDER BY poids DESC;
```

les planètes du système solaire de la plus lourde à la plus légère

LIMIT

LIMIT $\,\mathbf{k}\,$ permet de limiter le nombre d'enregistrements aux k premières valeurs. Il est souvent utilisé avec ORDER BY.

LIMIT

LIMIT k permet de limiter le nombre d'enregistrements aux k premières valeurs. Il est souvent utilisé avec ORDER BY.

```
SELECT * FROM planete
WHERE etoile = 'Soleil'
ORDER BY poids DESC
LIMIT 3;
```

Donne les 3 planètes les plus lourdes du système solaire.

OFFSET

OFFSET p permet d'afficher les enregistrements à partir du (p+1)ème. Il est souvent utilisé avec ORDER BY.

OFFSET

OFFSET p permet d'afficher les enregistrements à partir du (p+1)ème. Il est souvent utilisé avec ORDER BY.

```
SELECT * FROM planete
WHERE etoile = 'Soleil'
ORDER BY poids
LIMIT 1
OFFSET 2;
```

Donne la 3ème planète la plus légère du système solaire.

Récapitulatif

Toutes les commandes optionnelles de SELECT doivent être **écrites** dans cet ordre :

```
SELECT colonne_1, ..., colonne_n
FROM nom_table
WHERE conditions
ORDER BY colonne_i
LIMIT k
OFFSET p;
```

Exercices

planete (nom, poids, rayon)

Question

Comment obtenir, dans la table planete, la deuxième planète la plus dense connue?

Exercices

```
planete (nom, poids, rayon)
```

Question

Comment obtenir, dans la table planete, la deuxième planète la plus dense connue?

Question

Comment obtenir, dans la table eleve, les noms des 3 derniers élèves entrés dans une ENS en MP*?

NULL

NULL est un mot-clé signifiant « valeur manquante ».

NULL

```
NULL est un mot-clé signifiant « valeur manquante ».
```

Pour savoir si un attribut est NULL:

```
WHERE ... IS NULL
```

(et non pas WHERE ... = NULL)

NULL

```
NULL est un mot-clé signifiant « valeur manquante ».

Pour savoir si un attribut est NULL :

WHERE ... IS NULL

(et non pas WHERE ... = NULL)
```

Pour savoir si un attribut n'est pas NULL :

WHERE ... IS NOT NULL

(et non pas WHERE ... <> NULL)