Chapter 6

Order Relations and

Structures

- 6.1 Partially Ordered Sets
- 6.2 Hasse Diagram
- 6.3 Extremal Elements of Partially Ordered Sets
- 6.4 Least Upper Bound and Greatest Lower Bound

6.1 Partially Ordered Sets

- A relation R on a set A is called a partial order if R is reflexive, antisymmetric, and transitive.
- The set A with the partial order R is called a partially ordered set, or poset, denoted by (A, R).

E.g.

$$(A,R) \to (A,R)$$

- Let A be a collection of subsets of a subset of a set S. The relation ⊆ of set inclusion is a partial order on A, so (A, ⊆) is a poset.
- Let Z⁺ be the set of positive integers. The usual relations ≤ (less than or equal to) and ≥ (greater or equal to) are partial orders on Z⁺, but the relations < (less than) and > (greater than) are not partial order since they are not reflexive.

The relation of divisibility (a R b if and only if a|b) is a partial order on Z⁺ but R is not partial order on Z since it is not antisymmetric, for example -2|2 and 2|-2 but -2 ≠ 2.

- Let R be a partial order on a set A, then the inverse relation R⁻¹ is also a partial order. The poset (A, R⁻¹) is called the dual of the poset (A, R), and the partial order R⁻¹ is called the dual of the partial order R.
- The most familiar partial orders are the relations ≤ or ≥ on Z and R.
- In general, a partial order relation on a set often use the symbols \leq or \geq for R (relation R). Do not mistake this to familiar relation

≤ on Z (integers) or R (real numbers).

■ Symbols such as \leq_1 , \leq' , \geq_1 , \geq' can be used to denote partial orders.

Poset	Dual Poset
(\mathcal{A},\leq)	(\mathcal{A},\geq)
(A, \leq_1)	(A, \geq_1)
(<i>B</i> , ≤')	(<i>B</i> , ≥')

■ If (A, \leq) is a poset, the elements a and b of A are said to be comparable if

$$a \le b$$
 or $b \le a$.

divides

- □ Consider $(A, \leq) = (Z^+, |)$
 - 2 and 6 are comparable since $2 \le 6$ or $2 \mid 6$.
 - 2 and 7 are not comparable since 2 ∤ 7 and 7 ∤ 2.

- If every pair of elements in a poset A is comparable, then A is a linearly ordered set, and the partial order is called a linear order. We also say that A is a chain.
 - \square (Z⁺, \le) is linearly ordered poset.
 - \Box (A, |) where A = {1, 3, 6, 9, 12} is not a linearly ordered poset.

not in a chain, it branches off

Theorem 1

If (A, \leq) and (B, \leq) are posets, then $(A \times B, \leq)$ is a poset, with partial order \leq defined by

- $(a, b) \le (a', b')$ if $a \le a'$ in A and $b \le b'$ in B.
- □ The symbol ≤ is being used to denote three distinct partial orders.
- □ The partial order ≤ defined on the Cartesian product A × B is called the product partial order.

Let $A = \{1, 3, 5\}$, $B = \{2, 4, 8\}$, and \leq_A means "less than or equal to", | means "divides", then (A, \leq_A) and (B, |) are posets.

Hence, $(A \times B, \leq)$ is also a poset since

$$1 \le_A 3$$
, $2 \mid 4$, $(1, 2) \le (3, 4)$, also

$$3 \leq_A 5, 4 \mid 8, (3, 4) \leq (5, 8).$$

Hence
$$(1, 2) \le (3, 4), (3, 4) \le (5, 8)$$

$$\Rightarrow$$
 (1, 2) \leq (5, 8) because $1 \leq_A 5$, 2|8.

- □ (A, \leq_A) and (B, |) are linearly ordered but not $(A \times B, \leq)$ since some elements are not comparable. For examples,
 - $(1, 4) \not \leq (3, 2)$ since 4/12 even $1 \leq_A 3$;
 - $(3, 2) \not \leq (1, 4)$ since $3 \not \leq_A 1$ even $2 \mid 4$.
 - So, A and B are linearly ordered \Rightarrow A \times B linearly ordered.
- If (A, \leq) is a poset, we say a < b if $a \leq b$ but $a \neq b$.

- Suppose that (A, ≤) and (B, ≤) are posets, we define (A × B, ≺) as
 (a, b)≺(a', b') if a < a' or if a = a' and b ≤ b'.
 This ordering is called lexicographic, or "dictionary" order.
 - The ordering of the elements in the first coordinate dominates, except in case of "ties", when attention passes to the second coordinate.

- If (A, ≤) and (B, ≤) are linearly ordered sets, then the lexicographic order ≺ on A × B is also a linear order.
- From previous example,
 - $(1, 4) \prec (3, 2)$ since $1 \le 3$,
 - $(1, 4) \prec (1, 8)$ since 1 = 1 and $4 \mid 8$.

□ Lexicographic ordering is easily extended to Cartesian products $A_1 \times A_2 \times ... \times A_n$ as follows:

$$a_1 < a_1'$$
 or $a_1 = a_1'$ and $a_2 < a_2'$ or $a_1 = a_1'$, $a_2 = a_2'$, and $a_3 < a_3'$ or ... $a_1 = a_1'$, $a_2 = a_2'$, ..., $a_{n-1} = a_{n-1}'$ and $a_n = a_n'$.

Thus the first coordinate dominates except in equality, in which case we consider the second coordinate. If equality holds again, pass to the next coordinate, and so on.

Let $S = \{a, b, ..., z\}$ be the ordinary alphabet, linearly ordered in the usual way, $(a \le b, b \le c, ..., y \le z)$.

$$S^n = S \times S \times ... \times S$$
 (*n* factors)

can be identified with the set of all words having length *n*.

Then park → part, help → hind, jump → mump.

 If S is a poset, we can extend lexicographic order to S* in the following way.

If $x = a_1 a_2 ... a_n$ and $y = b_1 b_2 ... b_k$ are in S^* with $n \le k$, we say that $x \prec y$ if $(a_1 a_2 ... a_n) \prec (b_1 b_2 ... b_n)$ in S^n under lexicographic ordering of S^n .

For example, park → park → park → partition help ≺ helping, park ≺ parking

Theorem 2

The digraph of a partial order has no cycle of length greater than 1.

6.2 Hasse Diagram

- A simplification of digraph obtained by:
 - 1. omitting all cycles of length 1;
 - 2. omitting all edges that are implied by the transitive property;
 - 3. drawing all the edges slanting upwards so that the arrow need not be drawn;
 - representing vertices by dots instead of circles.

Consider the digraph given:

Arrange from bottom to top

Step 1: Delete all cycles of length 1

Step 2: Eliminate all edges that are implied by the transitive property

Step 3: Hasse diagram obtained

E.g.1

Let $A = \{1, 2, 3, 4, 12\}$. Consider the partial order of divisibility on A. That is, if a and $b \in A$, $a \le b$ if and only if a|b. Draw the Hasse diagram for the poset (A, \le) .

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (12, 12), (1, 2), (1, 3), (1, 4), (1, 12), (2, 4), (2, 12), (3, 12), (4, 12)\}$$

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (12, 12), (1, 2), (1, 3), (1, 4), (1, 12), (2, 4), (2, 12), (3, 12), (4, 12)\}$$

E.g.2

Let $a \le b$ if and only if a|b and $a \ge b$ if and only if a is a multiple of b or b|a. Draw the Hasse diagrams of (A, \le) and (A, \ge) for

i.
$$A = \{1, 2, 4, 8, 16\},\$$

$$(A, \leq)$$
: $a \leq b \iff a|b$

$$R = \{(1, 1), (1, 2), (1, 4), (1, 8), (1, 16), (2, 2), (2, 4), (2, 8), (2, 16), (4, 4), (4, 8), (4, 16), (8, 8), (8, 16), (16, 16)\}$$

$$a \leq b \iff a|b$$

$$1|2 \rightarrow 1 \leq 2$$
$$2|4 \rightarrow 2 \leq 4$$
$$4|8 \rightarrow 4 \leq 8$$

(*A*, ≥):

$$R = \{(1, 1), (2, 1), (2, 2), (4, 1), (4, 2), (4, 4), (8, 1), (8, 2), (8, 4), (8, 8), (16, 1), (16, 2), (16, 4), (16, 8), (16, 16)\}$$

E.g.2 (cont)

ii. $A = \{2, 3, 4, 5, 15, 60\}.$

$$(A, \leq)$$
:

$$R = \{(2, 2), (2, 4), (2, 60), (3, 3), (3, 15), (3, 60), (4, 4), (4, 60), (5, 5), (5, 15), (5, 60), (15, 15), (15, 60), (60, 60)\}$$

note: no need to draw

split 3

green arrow and write level

(*A*, ≥):

 $R = \{(2, 2), (4, 2), (4, 4), (3, 3), (5, 5), (15, 3), (15, 5), (15, 15), (60, 2), (60, 3), (60, 4), (60, 5), (60, 15), (60, 60)\}$

Notes:

- E.g.2 (i) is a finite linearly ordered set.
- If (A, \leq) is a poset and (A, \geq) is the dual poset, then the Hasse diagram of (A, \geq) is just the Hasse diagram of (A, \leq) turned upside down.

E.g.3

Let D_n denotes the set of positive divisor of n. Draw the Hasse diagrams of the posets $(D_{24}, ||)$ and $(D_{30}, ||)$.

```
D_{24} = \{1, 2, 3, 4, 6, 8, 12, 24\}
 (D_{24}, |):
 R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (1, 8), (1, 6), (1, 8), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1), (
                 (1, 12), (1, 24), (2, 2), (2, 4), (2, 6), (2, 8),
                (2, 12), (2, 24), (3, 3), (3, 6), (3, 12),
                 (3, 24), (4, 4), (4, 8), (4, 12), (4, 24), (6, 6),
                (6, 12), (6, 24), (8, 8), (8, 24), (12, 12),
                 (12, 24), (24, 24)
                                                                                                                                                                                                                                                                        simplified version
```

```
D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}
 (D_{30}, |):
 R = \{(1, 1), (1, 2), (1, 3), (1, 5), (1, 6), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (1, 10), (
                 (1, 15), (1, 30), (2, 2), (2, 6), (2, 10),
                 (2, 30), (3, 3), (3, 6), (3, 15), (3, 30), (5, 5),
                 (5, 10), (5, 15), (5, 30), (6, 6), (6, 30),
                 (10, 10), (10, 30), (15, 15), (15, 30),
                 (30, 30)
                                                                                                                                                                                                                                                                                                                   Its a 3D cube!
```

- If A is a poset with partial order \leq , sometimes need to find a linear order \prec for the set A that will merely be an extension of the given partial order in the sense that if $a \leq b$, then $a \prec b$.
- The process of constructing a linear order such as

 is called a topological sorting.

- The problem might arise when we have to enter a finite poset A into a computer.
 - The elements of A must be entered in some order, and we might want them entered so that the partial order is preserved.
 - \square If $a \le b$, then a is entered before b.
 - □ A topological sorting ≺ will give an order of entry of the elements that meets this condition.

E.g. Refer to the following Hasse diagram.

The partial order \prec whose Hasse diagram shown below is clearly a linear order, i.e. every pair in \leq is also in the order \prec , so \prec is a topological sorting of the partial order \leq .

Below are two other solutions to this problem.

■ Let (A, \leq) and (A', \leq') be posets and let $f: A \rightarrow A'$ be a one-to-one corresponding between A and A'. The function f is called an isomorphism from (A, \leq) to (A', \leq') if, for any a and b in A,

 $a \le b$ if and only if $f(a) \le f(b)$.

- If $f: A \rightarrow A'$ is an isomorphism, then (A, \leq) and (A', \leq) are isomorphic posets.
 - □ Let A be the set Z^+ of positive integers, and let \leq be the usual partial order on A. Let A' be the set of positive even integers, and let \leq ' be the usual partial order on A'. Then the function $f: A \rightarrow A$ ' is given by f(a) = 2a.

Since *f* is one-to-one, onto, and everywhere defined, *f* is one-to-one corresponding.

Also, f(a) = 2a, f(b) = 2b, so $a \le b$ if and only if $f(a) \le f(b)$.

Thus f is an isomorphism.

Theorem 1 Principle of Correspondence If the elements of B have any property relating to one another or to other elements of A, and if this property can be defined entirely in terms of the relation ≤, then the elements of B' must possess exactly the same property, defined in terms of ≤'.

- Two finite isomorphic posets must have the same Hasse diagrams.
 - Let A = {1, 2, 3, 6} and let ≤ be the relation | (divides). The Hasse diagram for (A, ≤) is given as follows:

power set

Let $A' = \wp(\{a, b\}) = \{ \varnothing, \{a\}, \{b\}, \{a, b\}\}, \text{ and let } \leq' \text{ be set containment, } \subseteq.$

If $f: A \rightarrow A'$ is defined by $f(1) = \emptyset$, $f(2) = \{a\}$, $f(3) = \{b\}$, $f(6) = \{a, b\}$, then f is one-to-one corresponding.

Since x|y if and only if $f(x) \subseteq f(y)$, f is order preserving. And if each label $a \in A$ of the Hasse diagram is replaced by f(a) and the Hasse diagram for (A', \leq') is obtained.

Thus the function *f* is an isomorphism.

- Consider a poset (A, ≤).
 - □ An element $a \in A$ is called a maximal element of A if there is no element c in A such that a < c.
 - An element b ∈ A is called a minimal element of A if there is no element c in A such that c < b.</p>

- If (A, \leq) is a poset and (A, \geq) is its dual poset, if you put it upside down
 - □ an element $a \in A$ is a maximal element of $(A, \ge) \Leftrightarrow a$ is a minimal element of (A, \le) .
 - □ an element $a \in A$ is a minimal element of $(A, \ge) \Leftrightarrow a$ is a maximal element of (A, \le) .

max becomes min, and vice versa.

Consider the following Hasse diagram.

- □ The elements a_1 , a_2 , and a_3 are maximal elements of A, and the elements b_1 , b_2 , and b_3 are minimal elements.
- □ Since there is no line between b_2 and b_3 , neither $b_2 \le b_3$ nor $b_3 \le b_2$.

- Let A be the poset of nonnegative real numbers with the usual partial order ≤. Then 0 is a minimal element and there are no maximal elements of A.
- The poset Z with the usual partial order ≤ has no maximal elements and has no minimal elements.

Theorem 1

Let A be a finite nonempty poset with partial order \leq . Then A has at least one maximal element and at least one minimal element.

- By using the concept of a minimal element, we can give an algorithm for finding a topological sorting of a given finite poset (A, \leq) .
 - □ If $a \in A$ and $B = A \{a\}$, then B is also a poset under the restriction of \leq to $B \times B$.
 - □ Assume a linear array name SORT that produced is ordered by increasing index, that is SORT[1] ≺ SORT[2] ≺ ...
 - □ The relation \prec on A defined in this way is a topological sorting of (A, \leq)

Algorithm for finding a topological sorting of a finite poset (A, ≤):

Step 1: Choose a minimal element of A.

Step 2: Make a next entry of SORT and replace A with $A - \{a\}$.

Step 3: Repeat steps 1 and 2 until $A = \{ \}$. End of algorithm.

□ Let $A = \{a, b, c, d, e\}$, and let the Hasse diagram of a partial order \leq on A be as shown below.

A minimal element of this poset is the vertex labelled d (could also have chosen e). Put d in SORT [1] and show the following Hasse diagram of $A - \{d\}$.

A minimal element of the new A is e, so e becomes SORT [2], and $A - \{e\}$ is shown below.

SORT

The process continues until we have exhausted A and filled SORT.

SORT

SORT

The completed array SORT and the Hasse diagram of the poset corresponding to SORT is shown below. This is a topological sorting of (A, \leq) .

- An element $a \in A$ is called a greatest element of A if $x \le a$ for all $x \in A$.
- An element $a \in A$ is called a least element of A if $a \le x$ for all $x \in A$.
- An element a of (A, \leq) is a greatest (or least) element \Leftrightarrow it is a least (or greatest) element of (A, \geq) .

- Let A be the poset of nonnegative real numbers with the usual partial order ≤. Then 0 is the least element and there is no greatest element.
- Let $S = \{a, b, c\}$ and the power set $A = \wp(S)$. Consider the poset (A, \subseteq) .
 - $A = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}.$

The empty set is a least element of A and the set S is a greatest element of A.

- The poset Z with usual partial order ≤ has neither a least nor greatest element.
- Theorem 2

A poset has at most one greatest element and at most one least element.

The greatest element of a poset, if exists, is denoted by / and is often called the unit element. The least element, if exists, is denoted by / and is often called the zero element.

- Consider a poset A and a subset B of A.
 - □ An element $a \in A$ is called an upper bound of B of $b \le a$ for all $b \in B$.
 - An element a ∈ A is called a lower bound of B of a ≤ b for all b ∈ B.
- A subset B of a poset may or may not have upper or lower bounds (in A). Moreover, an upper or lower bound of B may or may not belong to B itself.

- Let A be a poset and B is a subset of A.
 - An element a ∈ A is called a least upper bound of B, (LUB(B)), if a is an upper bound of B and a ≤ a', whenever a' is an upper bound of B.

Thus a = LUB(B) if $b \le a$ for all $b \in B$, and if whenever $a' \in A$ is also an upper bound of B, then $a \le a'$.

6.4 Least Upper Bound and Greatest Lower Bound

- Let A be a poset and B is a subset of A.
 - An element a ∈ A is called a least upper bound of B, (LUB(B)), if a is an upper bound of B and a ≤ a', whenever a' is an upper bound of B.

Thus a = LUB(B) if $b \le a$ for all $b \in B$, and if whenever $a' \in A$ is also an upper bound of B, then $a \le a'$.

6.4 Least Upper Bound and Greatest Lower Bound (cont)

An element a ∈ A is called a greatest lower bound of B, (GLB(B)), if a is a lower bound of B and a' ≤ a, whenever a' is a lower bound of B.

Thus a = GLB(B) if $a \le b$ for all $b \in B$, and if whenever $a' \in A$ is also a lower bound of B, then $a' \le a$.

6.4 Least Upper Bound and Greatest Lower Bound (cont)

- Upper bounds in (A, \leq) correspond to lower bounds in (A, \geq) (for the same set of elements), and lower bounds in (A, \leq) correspond to upper bounds in (A, \geq) . Similar statements hold for greatest lower bounds and least upper bounds.
- Theorem 3

Let (A, \leq) be a poset. Then a subset B of A has at most one LUB and at most one GLB.

6.4 Least Upper Bound and Greatest Lower Bound (cont)

In a finite poset A, as viewed from the Hasse diagram of A. Let $B = \{b_1, b_2, ..., b_r\}$. If a = LUB(B), then a is the first vertex that can be reached from $b_1, b_2, ..., b_r$ by upward paths. Similarly if a = GLB(B), then a is the first vertex that can be reached from $b_1, b_2, ..., b_r$ by downward paths.

E.g.4

Consider the poset $A = \{a, b, c, d, e, f, g, h\}$, whose Hasse diagram is shown.

Let $B_1 = \{a, b\}$ and $B_2 = \{c, d, e\}$ be subsets of A. Find

E.g.4 (cont)

- i. upper and lower bounds of B_1 and B_2 ;
- ii. all least upper bounds and greatest lower bounds of B_1 and B_2 .

E.g.4 (cont)

i. upper and lower bounds of B_1 and B_2 ; upper bounds of $B_1 = \{c,d,e,f,g,h\}$ lower bounds of $B_1 = \{f,g,h\}$ upper bounds of $B_2 = \{f,g,h\}$ lower bounds of $B_2 = \{a,b,c\}$

E.g.4 (cont)

ii. all least upper bounds and greatest lower bounds of B_1 and B_2 .

LUB of
$$B_1 = \{c\}$$

GLB of $B_1 = Nil$
LUB of $B_2 = Nil$
GLB of $B_2 = \{c\}$

E.g.5

Let $A = \{1, 2, 3, 4, 5, ..., 11\}$ be the poset whose Hasse diagram is shown below. Find the LUB and GLB of $B = \{6, 7, 10\}$, if they exist.

Exploring all upward paths from 6, 7, and 10

$$\Rightarrow$$
 LUB (B) = 10

Exploring all downward paths from 6, 7, and $10 \Rightarrow GLB(B) = 4$