我们检测到你可能使用了 AdBlock 或 Adblock Plus,它的部分策略可能会影响到正常功能的使用(如关注)。 你可以设定特殊规则或将知乎加入白名单,以便我们更好地提供服务。(为什么?)

用Blender来学习Python创意编程,实现傅里叶级数可视化

Contra

低科技旧媒体没创意编程,公众号:实验编程

+ 关注他

90 人赞同了该文章

前言的前言:

如果你的技能点选择了 Python,恭喜,现在 Python 赶上了 AI 热潮。 而如果恰好还想做 Creative Programming,苦于漫天教程大多集中在 Processing、Unity、 OpenFrameworks、vvvv 等平台,真青年不要慌,Python 大法依然香,往下看。

前言:

【编程德鲁伊】系列是我的**横向编程**练习笔记,每期围绕一个主题(数学物理电子图形声音...),用几种程序语言分别实现。战法牧贼同时修,能抗能打能奶能开溜。

编程德鲁伊 - 数学篇 - 傅里叶级数可视化

Blender + Python 实现

本章做傅里叶级数可视化,已经分别练习了 JavaScript (React) 版:

▲ 赞同 90

₱ 10 条评论
▼ 分享
♥ 喜欢
★ 收藏 ・・

以及 <u>Unity 版</u>:

这一节又轮到 Python 了。

Playground 选择

在上一章三角函数主题里(<u>Python三角函数可视化</u>),Python 的开发环境或者 Playground ,我用的是 Jupyter Notebook 。它是一个 Web 版的在线 Python 开发环境,可以基本做到实时编程,边写边看运行结果,还可以代码和文档混编。

▲ **赞同 90** ▼ ● 10 条评论 **7** 分享 ● 喜欢 ★ 收藏 …

这样会相对容易一些,不用考虑如何搭建合理的本地 Python 环境、如何可视化图形渲染等问题。 先把注意力集中在 Python 代码编写上,直接在浏览器里就可编写并查看运行结果。

•

Jupyter 虽好,但仍不够野,如果想做更丰富的可视化效果,而非仅仅把公式曲线画出来,那用 Jupyter 来跑 Python 就稍有点限制。

我需要一个不用太操心图形渲染底层实现,并且渲染效果又强悍粗暴的 Python 运行环境。 Blender 和 TouchDesigner 是两款符合此条件的软件。

Blender

Blender 是一款开源的 3D 内容创作软件,核心功能可以类比 3D Max、Maya 等,体积短小精湛却又功能粗暴,横跨多操作系统,详细介绍见其官网:blender.org/

Blender 的生态基于 Python 而建,插件、扩展、高级定制功能等,都可以用 Python 来编写。(其实也可以做实时交互的游戏,这一点有点像 Unity,当然 Blender 更偏重 3D 内容的制作。)

TouchDesigner

▲ 赞同 90

● 10 条评论

7 分享

♥ 喜欢 ★ 收

...

TouchDesigner 是一款图形化编程工具,可以类比其他连连看工具如 $\underline{\mathsf{MaxMSP}}$ 、 $\underline{\mathsf{vvvv}}$ 等。TouchDesigner 的扩展脚本语言,也是 Python。

对我来说,目前用 MaxMSP 玩玩连连看就够了,等何时 TouchDesigner 火了我再来蹭热点。

所以本次我用 Blender 作为 Python 编程练习的运行环境。

Hello World

首先在 Blender 官网下载 2.80 版的安装文件,Mac、Windows、Linux都支持。

2.80 版起,Blender 有了巨大的更新,究竟有多大,我也不太清楚,因为我上一次用 Blender 是十多年前了,当时还是 2.4x 版,用 Python 试了试参数化建筑生成。 反正 2.80 版我当新软件用就对了。

2.80 版安装后启动:

它的功能很多,建模、贴图、动画、渲染等都有,反正我跟十多年前一样仍然不太会用,推荐查阅 官方教程。

本文直接切到 Scripting 来跑 Python。

同 90 ▼ ● 10 条评论 7 分享 ● 喜欢 ★ 收藏 …

在 Scripting 里有一个 Console,开箱即用,直接在里面输入 Python 代码即可。百年传统,helloworld:

仅在 Console 里写是很不方便的,点选图中的 Text,这实际上是一个代码文本编辑器,点击新建(New)开始玩耍:

继续用 ѾҜ҆ Ҭ" μ 试试:

print ("hello world from Text Editor")

输入代码,点击 Eốę g l l thí后,可以发现左侧的自带b" ek" L 区域里,并没有打印 *d 如 r về p induê 只śli c Alur 字样。

要调试 ${\it K}$ X $\acute{\bf L}$ in ${\it L}$ <u>I" ∖ķr∛s BXel Xţrĥi [rhini Ḥā</u> ໄốn j͡ŋŋ̈

对 ^ Bel XHŶ al "Ţķ版,直接在 ÜXEH菜单里开启系统 b " eķ" B 即可。

对î l版,要先开系统 KXthǐāe È终端(如果已打开 ^ Bǎe l Xth可以先关闭),在 KXthǐāe È里打开 ^ BXel XJH

"A打开 KXIIII in it is it "A在应用程序里右键点击

"A找到 b" enxentaŭ Î l gaï ^ bel XţH
"A将 jp bel XţH jp bel Xq jp be

1

õ, ₩ ķ X Ē X e \ãË

 \tilde{o} 片X kX \tilde{E} Xel Xf \hat{h}° 版的新功能,它是一种特殊的 \tilde{E} Xel Xf \tilde{o} 允许你在 \tilde{h}° 版的新功能,它是一种特殊的 \tilde{E} Xel Xf \tilde{o} 允许你在 \tilde{h}° k 空间里绘制 \tilde{o} k 图形,制作传统 \tilde{o} k 动画,剪切,动效,甚至制作故事版等。

2 ę XŰ ň ḤĒX" NJ õ ḤX ķX ĒXe laĒ" 6 Å (māe nbĪX k Xe taĒ le h Xem

铺垫了那么多,现在终于可以总结为:

在^Bkel XH里用 Ēunur e 调用 õ N kX ĒXel 超之ĒA进行 k 图形绘制。

有点像在 Ejil \ Xikkapnj和 Eⁱk 里用代码画图的形式,但同时可以使用 ^ Exel Xi-强大的软件功能,比如直接使用功能菜单,去修改代码所画物体的贴图、材质等等,这一点上,又有点像 ń ejand 的操作。

õ!X kX ĒXe) 董要展开的话这篇就越跑越远了,把参考资源列在这里:

"Aő JX ķX ĒXe L 董官方介绍(直接通过软件菜单来操作):

"A^ÈXel Xļ-lĒūrbJ" e 官方文档:

I" \ķrîs ĒXel Xḥril ḥrhjiň eð Ēnjjî

I" ໄķm͡ś ĒXel Xṭm͡l ṭnhjih eố Ēm̄jjî

"A^Èkel Xŀſ∑õţЖ kXĒXe¸\ābeĒÆ官方文档"H

I" ໄķm͡ś ĒXel Xṭm͡l ṭthin Ḥā ໄốm͡jin

"A^ĒXelXļffη̂őļX ķXĒXelāĒgljāĻhāēnjelőXeXļfmā,X2ļfm

mˈT Hiki miklākelXnliniji

注意上边加粗的资源 ^ \dot{x} el X el X ex \dot{x} ex \dot

如封装一个IHTLL X函数,用来从两点之间画线:

```
def draw_line(gp_frame, p0: tuple, p1:
tuple)Init new stroke
    gp_stroke = gp_frame.strokes.new()
    gp_stroke.display_mode = '3DSPACE'

# Define stroke geometry
    gp_stroke.points.add(count=2)
    gp_stroke.points[0].co = p0
    gp_stroke.points[1].co = p1
    return gp_stroke

gp_layer = init_grease_pencil()
gp_frame = gp_layer.frames.new(0)

draw_line(gp_frame, (0, 0, 0), (1, 1, 0))
知乎@Contra
```

进而画圆、画曲线等:

然后借助 $^{\dot{c}}$ X- $^{\dot{c}}$ X- $^{\dot{c}}$ 本身看家的 7 k 功能,给画的物体上材质:

▲ 赞同 ^{n 0} ▼ ● ^{s 0} 条评论 **7** 分享 ● 喜欢 ★ 收藏 …

甚至还可以结合 ^ È kel Xi h的 2 e li na e 功能:

傅里叶级数

终于回到正题了'H'H

再回顾一下傅里叶级数的简化公式:

$$f(x)=rac{4}{\pi}(sinx+rac{1}{3}sin3x+rac{1}{5}sin5x+...)$$
 ($x=1,3,5,7,9,...$)

有关傅里叶级数的数学知识学习笔记,可见 $\frac{1}{2}$ t $\frac{1}{2}$ t

▲ **赞同**^{n 0} ▼ ● ⁵⁰ 条评论 **7** 分享 ● 喜欢 ★ 收藏 …

完整代码可见后文。

最终效果'H

还记得么,õţ狀 ķXĒXelaĒ其实是在 k 空间里画 k 图形:

▲ **赞同 ^{® ®}** ▼ ● ⁵⁰ 条评论 **7** 分享 ● 喜欢 ★ 收藏 ・

参考资源

- "A【编程德鲁伊 ά数学篇】Ēūrb̈̈J" ę 三角函数可视化
- "A【编程德鲁伊 ά数学篇】÷ţ g \ Hā tim ĖΧ \ rin 傅里叶级数可视化
- "Aõ!X ķXĒXe】适官方介绍
- "A^Èkel XḤĒǘrǘ" ę 官方文档
- "A^Bel X上of XX EXel 超2EA官方文档
- "A^ĒXelXĻfĥõĻX ķXĒXeĮāĒgĮĻāĻhāenjelõXeXĻInā,X2Ļhin

Ķ Ēeāķ ∖ŪX ḤĥgŪ"Ţ ň XnhŪX ∖" IXБ

本例及【编程德鲁伊】系列大部分代码都开源在这里: njādŪ້ố6ຖື." ȟາ ṭ ẹmໄ" ẹnҢາຖິຖິຖິ

请猛戳下方赞赏或喜欢作者, 6ốü h X l "NXXX! 您的鼓励是我乱码的动力。

另外在知识星球里你将持续获得代码和无限次答疑,感谢已经加入星球的朋友们。

详情请点击:关于赞赏和内部知识星球。

英文内容欢迎在Ērtk" ę上订阅。

网站'HNE) máốnjầ" ň

微信公众号1知乎专栏1知识星球: 实验编程

b ÜXXHkò

b" entil

编辑于6060省5省7

「6őűňX ~ " NNXX 」

赞赏

还没有人赞赏, 快来当第一个赞赏的人吧!

Ēürtṻ́'ę ^ÈXel XļH 编程

文章被以下专栏收录

实验编程(t Ű-KY-M Xem EEH nH h h æn),意义取自实验艺术,实验电子,或实验音H

关注专栏

推荐阅读

■ 50 条评论

7 分享 ● 喜欢 ★ 收藏

https://zhuanlan.zhihu.com/p/92267080

前言^Ě&el Xi自己的g \ laitan没有自动补全,对于记性不好的人来说相当难受了,所以选择t k\ "IX来作为开发环境。 ųg b"IX AEt 安装ų kó Ė grốl å b"IX άb"IX tl ataenji ÈXI Xiaux 记得勾选添加环H

¤ ęnj/m 发表于虚幻°杂篇

