

Universitatea Politehnica București Faculatatea de Automatica si Calculatoare Domeniul Calculatoare si Tehnologia Informatiei

Laborator 4 Teoria Sistemelor

Raspunsul in domeniul timp si operational al sistemelor liniare discrete

Laboratorul 4

Raspunsul in domeniul timp si operational al sistemelor liniare discrete

4.1 Chestiuni de studiat

Fie sistemul liniar neted (SLN) descris de 4.1:

$$\begin{cases} A = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -2 & -101 \\ 1 & 1 & 0 \end{bmatrix} & B = \begin{bmatrix} 0 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix} \\ C = \begin{bmatrix} 1 & 0 & 101 \end{bmatrix} & D = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$(4.1)$$

asupra caruia este aplicata o comanda 4.2

$$u(t) = \begin{bmatrix} 1(t) \\ -2 \cdot 1(t) \end{bmatrix}$$
 (4.2)

- 1. Sa se realizeze un script in Matlab care sa calculeze:
 - (a) Discretizantul pe stare cu pasul de discretizare h = 0.01.

$$A_d = e^{Ah}, B_d = \int_0^h e^{A\theta} B d\theta, C_d = C, si D_d = D$$

Functii matlab folosite:

• Integrala unei functii f(x) se calculeaza folosind functia Matlab int. **Exemplu:** int(f, x, a, b) - calculeaza integrala functiei f de variabila x pe intervalul [a, b]).

4.1. CHESTIUNI DE STUDIAT

- Important!: Atat in calcului A_d cu functia ilaplace cat si in calculul lui B_d cu functia int raspunsul obtinut va fi unul de tip simbolic. Pentru a putea fi folosite in Simulink acestea trebuie aduse la o forma numerica cu functia Matlab double. Exemplu: $A_{d1} = double(A_d)$
- (b) Matricea de transfer a sistemului discretizat cu pasul h = 0.01.

Functii Matlab folosite:

- Trecerea spatiul unui sistem din reprezentarea starilor (A, B, C, D)reprezentarea intrare-iesire in realizeaza (T(s))cu functiile Matlab ss2tfse si tf.**Exemplu** pentru $H_{11}(s)$:
 - **Pasul 1**: [num1s, den1s] = ss2tf(A, B, C, D, 1) Calculeaza prima functie de transfer, $H_{11}(s)$, din matricea de transfer T(s) si memoreaza coeficientii de la numaratorul acesteia in vectorul num1s respectiv pe cei ai numaratorului in vectorul den1s.
 - **Pasul 2**: H11s = tf(num1s, den1s) Reprezentarea unei functii de transfer atunci cand se conosc coeficientii acesteia
- Discretizarea unei functii de transfer se realizeaza cu functia c2d **Exemplu**: $H_{11z} = c2d(H_{11s}, h)$. Raspunsul obtinut va fi de tipul transfer function (tf).
- coeficientilor • Extragerea de numaratorul/numitorul functiei la unei transfer Н aflata sub forma variabile tipul de de tfrealizeaza folosind functia se Matlab tfdata(H,'v').**Exemplu:** $[num1z, den1z] = tfdata(H_{11}(z), 'v')$
- 2. Folosind rezultatele obtinute la punctul precedent sa se ploteze pe un osciloscop in Simulink evolutia urmatoarelor semnale:
 - (a) Raspunsul fortat al sistemului liniar neted reprezentat pe stare.
 - Pentru reprezentarea pe stare a sistemului se va folosi blocul Simulink State-Space ce va avea ca si intrare comanda u(t) (vezi relatia 4.2).
 - (b) Raspunsul sistemului liniar discret reprezentat pe stare.
 - Pentru reprezentarea pe stare a sistemului se va folosi blocul Simulink $Discrete\ State Space\$ ce va avea ca si intrare comanda u(z) (vezi relatia 4.2) si $Sample\ time=h$
 - Pentru a face trecerea din continuu in discret a comenzii u(t) se va folosi un extrapolator de ordin zero (blocul Zero Order Hold) cu $Sample \ time=h$.
 - In situatia in care pasul de discretizare al intregii simulari (step-size) este diferit de pasul de discretizare al SLD ("h"), trebuie ca semnalul in osciloscop sa fie trimis prin intermediul unui bloc de "Rate Transition". Acest bloc se ocupa cu

LABORATORUL 4. RASPUNSUL IN DOMENIUL TIMP SI OPERATIONAL AL SISTEMELOR LINIARE DISCRETE

gestionarea semnalelor transmise pe acelasi port, ce au fost generate cu pas de discretizare diferit.

- (c) Raspunsul fortat al sistemului discretizat reprezentat intrare iesire.
 - Pentru aceasta se va folosi blocul Simulink $DiscreteTransfer\ Fcn$ ce va avea ca si intrare comanda u(t) in discret (vezi relatia 4.2) si $Sample\ time=h$.

Nota: Parametrii de simulare ai modelului Simulink sunt urmatorii:

• Solver selection:

Type: Fixed-step;

Solver: ode4 (Runge-Kutta)

• Solver details

Fixed-step-size (fundamental sample time):0.01;

3. Sa se realizeze un script in Matlab care sa ploteze evolutiile semnalelor obtinute in *Simulink* in cadrul exercitiului anterior. Graficelor obtinute li se va atribui o legenda corespunzatoare.

