TD 16 - Analyse asymptotique

Exercice 1: Déterminer le $DL_3(0)$ des fonctions suivantes :

a)
$$ln(1+x) + sin x$$

b)
$$\frac{1}{1-x} - (1+x)$$

c)
$$\cos x + \sin x$$

d)
$$\ln \frac{1+x}{1-x}$$

 $\mathbf{Exercice}\ \mathbf{2}: \hat{\mathbf{E}}$ crire les développements limités des fonctions f suivantes à l'ordre et au point indiqué :

a)
$$DL_3(2)$$
 de $f(x) = \ln x$,

b) DL₁(3) de
$$f(x) = \frac{e^x}{x^2 + 2}$$

c)
$$\mathrm{DL}_2(2)$$
 de $f(x)=rac{\ln x}{\sqrt{x}}$

a)
$$\mathrm{DL}_3(2)$$
 de $f(x) = \ln x$, b) $\mathrm{DL}_1(3)$ de $f(x) = \frac{e^x}{x^2 + 2}$ c) $\mathrm{DL}_2(2)$ de $f(x) = \frac{\ln x}{\sqrt{x}}$ d) $\mathrm{DL}_4(0)$ de $f(x) = \frac{\sin x}{4 - x^2}$ e) $\mathrm{DL}_2(0)$ de $f(x) = \frac{\sinh x}{\sin x}$ f) $\mathrm{DL}_3(0)$ de $f(x) = x(\cosh x)^{\frac{1}{x^2}}$

e)
$$\mathrm{DL}_2(0)$$
 de $f(x) = \frac{\sin x}{\sin x}$

f)
$$\mathrm{DL}_3(0)$$
 de $f(x)=x(\operatorname{ch} x)^{\frac{1}{x^2}}$

g)
$$\mathrm{DL}_3(\frac{\pi}{4})$$
 de $f(x) = \sqrt{\tan x}$

h)
$$\mathrm{DL}_2(+\infty)$$
 de $f(x) = \sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2}$

Exercice 3 : Calculer les développements limités suivants :

$$DL_4(0)$$
 de $f(x) = \exp(\sin(x))$,

$$\mathrm{DL}_6(0) \ \mathrm{de} \ g(x) = \ln(\cos(x)), \qquad \qquad \mathrm{DL}_3(1) \ \mathrm{de} \ h(x) = e^{\sqrt{x}}.$$

$$\mathrm{DL}_3(1)$$
 de $h(x) = e^{\sqrt{x}}$.

Exercice 4: Étudier la limite en a des fonctions suivantes:

$$f(x) = \frac{1}{x^2} - \frac{1}{(\arctan x)^2} \text{ en } a = 0, \qquad g(x) = (2^x + 3^x - 12)^{\tan \frac{\pi x}{4}} \text{ en } a = 2, \qquad h(x) = \sqrt{x^2 + 1} - x \text{ en } a = +\infty.$$

$$h(x) = \sqrt{x^2 + 1} - x$$
 en $a = +\infty$

Exercice 5 : Déterminer les limites des suites suivantes :

$$u_n = \left(1 + \frac{a}{n}\right)^n$$
 avec a réel.

$$v_n = \left(\sqrt{\frac{n+1}{n+3}}\right)^n$$

$$u_n = \left(1 + rac{a}{n}
ight)^n$$
 avec a réel. $v_n = \left(\sqrt{rac{n+1}{n+3}}
ight)^n$ $w_n = \left(\cosrac{\pi}{6n+1} + \sinrac{\pi}{3n+2}
ight)^n$

Exercice 6 : Étudier la continuité, la dérivabilité et la position de la courbe représentative par rapport à une éventuelle tangente au point d'abscisse 0 pour les fonctions g et h suivantes :

Pour
$$x \neq 0$$
, $g(x) = \frac{x}{e^x - 1}$, $h(x) = \frac{x - \ln(1 + x)}{x}$ avec $g(0) = 1$ et $h(0) = 0$.

avec
$$g(0) = 1$$
 et $h(0) = 0$.

Exercice 7 : Étudier les branches infinies des courbes représentatives des fonctions suivantes :

$$f(x) = \sqrt[3]{(x^2-2)(x+3)}$$

$$g(x) = \frac{1}{x}(2x^2 - 1)e^{\frac{1}{x}}$$

Exercice 8: Soit la fonction f définie, pour $x \in \mathbb{R}^*$, par $: f(x) = \frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{ch} x - 1}$

- 1. Écrire le développement limité à l'ordre 4 de f(x) en 0. En déduire le prolongement par continuité de f en 0.
- 2. Montrer que f, ainsi prolongée, est dérivable en 0. Préciser la position de la courbe représentative de f par rapport à sa tangente au point d'abscisse 0 et au voisinage de ce point.

Exercice 9 : Déterminer un équivalent simple pour les suites suivantes :

a)
$$u_n = |\sqrt{n}|$$

b)
$$v_n = \sqrt{2n^2 + n} - n$$

c)
$$w_n = \frac{1}{n^2} - \frac{1}{n^3}$$

a)
$$u_n = \lfloor \sqrt{n} \rfloor$$
 b) $v_n = \sqrt{2n^2 + n} - n$ c) $w_n = \frac{1}{n^2} - \frac{1}{n^3}$ d) $x_n = \sum_{k=0}^{n} (2k+1)$

Exercice 10: On étudie la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1>0$ et $u_{n+1}=\frac{1}{n+1}e^{-u_n}$.

- 1. À l'aide d'un encadrement, montrer que (u_n) converge vers 0.
- 2. Déterminer un équivalent de u_n et en déduire un développement de la forme : $u_n = \frac{a}{n} + o\left(\frac{1}{n}\right)$.
- 3. Déterminer a, b réels tels que $u_n = \frac{a}{n} + \frac{b}{n^2} + o\left(\frac{1}{n^2}\right)$.
- 4. Déterminer a,b,c réels tels que $u_n = \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + o\left(\frac{1}{n^3}\right)$.

Exercice 11: On considère la fonction f définie sur \mathbb{R}_+^* par $f(x) = \ln(x) + x$. Soit $n \in \mathbb{N}^*$. On définit x_n comme l'unique soluion de l'équation $\ln(x) + x = n$.

- 1. Montrer que (x_n) existe et tend vers $+\infty$.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, $\ln(x_n) \leqslant x_n$.

- 3. Montrer que $x_n \sim n$.
- 4. On pose $y_n = x_n n$ pour tout entier naturel n non nul. Montrer que $y_n \sim -\ln(n)$.
- 5. On pose $z_n = x_n n + \ln(n)$. Montrer que $z_n \sim \frac{\ln(n)}{n}$.

Exercice 12: Prouver que la suite définie par $u_1 \in]0,1[$ et $\forall n \in \mathbb{N}^*, \quad u_{n+1} = 1 + \frac{u_n}{n+1}$ est convergente.

Montrer que $u_n=1+rac{a}{n}+rac{b}{n^2}+o\left(rac{1}{n^2}
ight)$ avec a,b réels à déterminer.

Exercice 13: On définit (E_n) : $x^n + 9x^2 - 4 = 0$.

- 1. Montrer que pour tout entier $n \ge 1$, l'équation (E_n) possède une unique solution dans]0,1[que l'on note u_n .
- 2. Déterminer le sens de variation de la suite (u_n) . En déduire que u converge vers un réel ℓ .
- 3. Montrer que $\lim_{n\to+\infty}u_n^n=0$. En déduire la valeur de ℓ . Déterminer un équivalent de $u_n-\ell$.

Exercice 14: Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = e^x \tan x$$

On note (E_n) l'équation f(x)=1 avec $x\in I_n=]-\pi/2+n\pi,\pi/2+n\pi[$ pour tout n entier naturel.

- 1. Montrer que l'équation (E_n) admet une unique solution dans I_n que l'on notera x_n . En déduire que $x_n \underset{+\infty}{\sim} n\pi$.
- 2. On note $v_n = x_n n\pi$. Montrer que l'on a $v_n = \arctan(e^{-x_n})$. En déduire que $v_n \underset{+\infty}{\sim} e^{-n\pi}$.
- 3. En déduire que $x_n = n\pi + e^{-n\pi} e^{-2n\pi} + \frac{7}{6}e^{-3n\pi} + o(e^{-3n\pi}).$

Exercice 15: On définit pour tout entier naturel $n:u_n=\int_0^1 t^n\sqrt{1+t}\ \mathrm{d}t.$

- 1. Montrer que la suite (u_n) converge vers 0.
- 2. En utilisant une intégration par parties, montrer que $u_n \underset{n \to +\infty}{\sim} \frac{\sqrt{2}}{n}$.

Exercice 16: On considère, pour tout entier naturel n, l'intéqrale $I_n = \int_0^1 \frac{t^n}{4-t^2} dt$.

- 1. Montrer que la suite (I_n) converge vers 0.
- 2. En utilisant une intégration par parties, montrer que $I_n = \alpha + \frac{\beta}{n} + o\left(\frac{1}{n}\right)$ où α, β sont des réels à déterminer.
- 3. Montrer que $I_n = \alpha + \frac{\beta}{n} + \frac{\gamma}{n^2} + o\left(\frac{1}{n^2}\right)$ où γ est un réel à déterminer.

Exercice 17: On pose $G(x) = \int_{x}^{3x} \frac{\sin t}{t} dt$.

- 1. Déterminer un développement limité à l'ordre 4 de G en 0.
- 2. En déduire que G est prolongeable par continuité sur $\mathbb R$ puis que la fonction prolongée est $\mathcal C^1$ sur $\mathbb R$.