

UNIK 4450/9450 - Schedule

30/8 Solar cell fundamentals

6/9 Solar cell efficiency

20 13/9 Semiconductor theory

20/9 Generation

27/9 Recombination and lifetime

4/10 Silicon

11/10 Junctions

••) 18/10 Solar cells

25/10 Silicon solar cells I (@IFE)

(°°) 1/11 Silicon solar cells II

(°°) 8/11 Alternative solar cells

15/11 Light trapping

22/11 Cancelled

29/11 Solar modules + Q&A

Oral exam December 12th

Clever student question:

"Why do I care?"

Photogenerated current

$$\mathbf{b_s}(\mathbf{E})$$
 $\mathbf{R}(\mathbf{E})$ $\mathbf{a}(\mathbf{E}), \eta_{\text{coll}}(\mathbf{E})$

$$I_{SC}(E) = q \cdot A \cdot ([1 - R(E)] \cdot \eta_{coll}(E) \cdot a(E) \cdot b_s(E))$$

Overview

- Basic theory
- Front side reflection
 - Anti-reflex coatings
 - Textures
- Light trapping
 - Rear side mirrors
 - Dielectric
 - Metallic
 - Geometrical
 - Diffractive
 - Plasmonic
- Concentration
- Photon recycling

Optical model

Reflected fraction

$$f_{refl} = b_s(E) \cdot R(E)$$

Absorbed fraction

$$f_{abs} = 1 - R(E) - [b(E,w)/b_s(E)] = [1 - R(E)] \cdot (1 - e^{-\alpha(E)w})$$

$$b(E,x) \qquad b(E,w)$$

$$b_s(E) \cdot R(E)$$

$$0 \qquad x \qquad w$$

Transmitted fraction

$$f_{trans} = [b(E,w)/b_s(E)] = [1 - R(E)] \cdot e^{-\alpha(E)w}$$

$$b(E,x) \qquad b(E,w)$$

$$b_s(E) \cdot R(E)$$

$$0 \qquad x \qquad w$$

Front side reflection

Reflected fraction

Reflection at an interface

$$R = (n_0(E) - n_s(E)/n_0(E) + n_s(E))^2$$

- Calculated example
 - Air: $n_0 = 1$
 - Glass: $n_s = 1.5$
 - Reflection: $R = (0.5/2.5)^2 = 4 \%$

Minimizing reflection – ARC

Reflection at an interface

$$R = \frac{[(\eta_0 - \eta_s)^2 + (\eta_0 \eta_s / \eta_1 - \eta_1)^2 \tan^2 \delta_1]}{[(\eta_0 + \eta_s)^2 + (\eta_0 \eta_s / \eta_1 + \eta_1)^2 \tan^2 \delta_1]}$$

where
$$\delta_1 = 2\pi \eta_1 d_1 \cos \theta_1 / \lambda$$

Texturing

- Structure: Typical feature sizes of several µm
- <u>Realization:</u> Wet chemical processes, possibly laser or plasma
- Challenges: -

Multilayered anti-reflex coatings (ARCs)

- Nanostructure: Multilayered stack of deposited dielectric materials
- Realization: PECVD
- Challenges: Complexity, throughput, process stability

- Nanostructure: Nanoporous silicon
- Realization: Electrochemical etching

Selj et al, J. Appl. Phys 107 (2010) p. 074904

Selj et al, J. Appl. Phys 107 (2010) p. 074904

- On the cool side:
 - The process works
 - Reproduceable, simple and fast process
- Is it really relevant for a solar cell?
 - High throughput
 - Surface passivation
 - Process issues
- Work in progress!

Issues for very thin solar cells

- Conventional textures consume a lot of silicon
- Front side textures excellent with respect to reflectance
 - KOH on <100>
- Preferred «smart cut» direction: <111>
 - Conventional processes unsuitable
 - KOH: <100>
 - Iso: saw damage
 - Plasma texturing an option
- Can we avoid texturing altogether?

Issues for very thin solar cells

S	J _{ph} [mA/cm²]						
Front side	Back side	Oxide	ÁΙ	Ag	Ideal		
Pyramids	Planar	No	35.7	37.3			
Pyramids	Planar	Yes	37.7	37.9			
Pyramids	Pyramids	No	36.1	38.9			
Pyramids	Pyramids	Yes	39.4	40.0		\leftarrow	
Pyramids	Pyramids	-			40.4		
Planar	Cylinder	Yes	35.6	36.0			
Planar*	Cylinder	Yes	37.6	38.0			
Planar	Zigzag	Yes	37.3	37.7			
Planar*	Zigzag	Yes	39.3	39.7		∢ ······	

Light trapping

Refraction

Refraction at interface (Snell's law)

$$n_0 sin\theta_0 = n_s sin\theta_s$$

Total internal reflection

$$n_0 sin 90^0 = n_s sin \theta_{crit}$$

$$\theta_{crit} = sin^{-1} (n_0/n_s)$$

Total internal reflection

Total internal reflection

Thinner and thinner...

J. Gjessing

Light confinement – rear mirrors

Path length enhancement:

$$<1> = 2w$$

Light confinement – random scattering

Path length enhancement:

$$< l > \sim 4 n_s^2 w$$

Geometric light trapping

Symmetry can reduce optical path length

$$L_{opt} \sim 5W$$

Geometric light trapping

Breaking symmetries – "patch" structures

Masking + laser ablation

If we could choose...

Photonic crystals

- Periodic material structures
 - Refractive index contrast
 - Sub-wavelength feature size
- Can exhibit unique optical properties, including
 - Effective scattering into higher orders
 - High (broadband) reflectance

2D photonic crystals (2DPCs)

- Exhibit the desired properties
- Diffraction angles and efficiencies can be optimized

$$sin(\theta_m) = sin(\theta_i) + m\lambda/\Lambda n_0$$

- Effective scattering possible with thin structures
- Bandwidth requirements relaxed at rear side
- Metal absorption an issue

Modeling of 2DPCs

- Tools:
 - Rigorous electromagnetic modeling required when feature sizes are close to λ
 - RCWA
- Model:
 - Structured silicon filled with low index dielectric (SiO₂)
 - Separation of metal added (Ag or Al)
 - All relevant dimensions varied

Current understanding

- Many different geometries investigated
- Full structures modeled
- Dimension control more important than unit cell structure
- Asymmetry highly beneficial

J. Gjessing et al., J. Appl. Phys (2011) J. Gjessing et al., JEOS (2011)

Current understaning

• 2D light trapping structures can be extremely effective!

Synthesis of large-area 2DPCs

- Focus: from laboratory to real world application
 - Demonstrators fabricated using lithographic techniques
- Can we enable large area, low cost nanopatterning?
 - Nano-imprint lithography
 - Interference lithography
 - Self-assembly
- Potentially easier to address backsheet than the silicon wafer itself.

Pattern definition

Pattern definition

Making the 2DPCs

Making the 2DPCs

Making the 2DPCs

Self-assembly + laser ablation

Self-assembly + laser ablation

Fig. 4. Optical losses for a $28-\mu$ m-thick cell with a planar front side and dimples on the rear side as found using the model described in Section II-B.

Self-assembly + laser ablation

Light trapping – evaluation

Light trapping solar cell

Metallic rear reflector

- Realization: Screen-printing, sputtering, evaporation
- Advantage: Multiple functionality in one material/process
- Disadvantage: R < 100%

Distributed Bragg reflectors (DBRs)

- Nanostructure: Nanoporous silicon
- Realization: Electrochemical etching, PECVD

Distributed Bragg reflectors (DBRs)

S. Rørkjær – M.Sc thesis (NTNU) 2010

Photonic crystals

- Nanostructure: 1D, 2D and 3D periodic structures
- <u>Realization:</u> electrochemical etching, nanopatterning, colloidal crystals

Photonic crystals

Self-ordered photonic crystals

H. Granlund, Master thesis (NTNU) 2009

Photonic crystals

- On the cool side:
 - High, broadband reflection obtainable
 - Scattering
- Is it really relevant for a solar cell?
 - Manufacturability
 - Low cost, large-area, sub-micron structuring
- Work in progress!

Concentration

The effect of concentration

- Irradiance: $b_{s}(E)$
- Concentrated irradiance: $X \cdot b_s(E)$

•
$$J_{sc} => X \cdot J_0$$

$$\begin{array}{ll} \bullet & J_{sc} => & X \cdot J_0 \\ \bullet & V_{oc} => & \sim V_{oc}(1) + (kT/q) \cdot lnX \end{array}$$

Photon recycling

