Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
Beschleunigung – Kraft Physik # 5 Mechanik				Beschleunigung –	Weg		Haftreibung			$\operatorname{Gleitreibung}$	
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
	reibung – Schief			Leistung			Wirkungsgrad			Radialbeschleuni	
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	Physik # 9 Mechanik Arbeit			potentielle Ener	rgie		kinteische Energi	ie		Kreisfrequen	Z
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
Kreisfrequenz Hook'sche Feder				harmonische Schwi Beschleunigun			harmonische Schwing Geschwindigkeit			harmonische Schwi Auslenkung	

F _{Gl} µ _{Gl} F _N :	: Gleitreibungskonstante	F _H µ _H F _N			$x = \frac{1}{2} \cdot a \cdot t^2$ $[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$		$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
# 8	$Antwort$ $a = \frac{v^2}{r}$ $\left[\begin{array}{cc} m & \frac{m^2}{s^2} \end{array}\right]$	<u># 7</u>	$Antwort$ $\eta = rac{P_{ m out}}{P_{ m in}}$	<u># 6</u>	$Antwort$ $P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$		$\mu_{ m H}= anlpha$ gegebenes $\mu_{ m H}$, ab dem die Haftrei-
# 12	$\left[\frac{\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}}{m}\right]$ $Antwort$ $\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{rad}{s}\right]$	<u># 11</u>	$Antwort$ $E_{kin} = \frac{1}{2} \cdot m \cdot v^{2}$ $\left[J = kg \cdot \frac{m^{2}}{s^{2}} \right]$	<u># 10</u>	$= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3} $ $= kg \frac{m^2}{s^3} $ $Antwort$ $E_{pot} = m \cdot g \cdot h$ $\int J = kg \cdot \frac{m}{s^2} \cdot m$		nehr zum Halten ausreicht, also das M ngt zu "rutschen" $M = K \cdot S$
T: Kreisf	requenz (Umlaufzeit) Antwort	<u>#</u> 15	Antwort	<u># 14</u>	$= kg \frac{m^2}{s^2} \bigg]$ $Antwort$	<u># 13</u>	$= kg \frac{m}{s^2} \cdot m$ $= kg \frac{m^2}{s^2} $ Antwort
	$y(t) = y_0 \cdot \sin \omega t$		$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m}\right]$	` '	$= -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $= s^{-2} \cdot m$	D: Federl	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$ konstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
	potentielle Energie Hook'sche Feder			Kraft Hook'sche Feder Physik # 22 Mechanik			Inelastischer Sto	ов	Elastischer Stoß Physik # 24 Mechanik		
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls			che Energie Dre			Impuls			reisfrequenz Fade	
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
	Trägheitsmoment Stab um Stabende			gheitsmoment S Schwerpunk		Träg	heitsmoment Voll	lzylinder	Träg	gheitsmoment Ho	hlzylinder
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
	Transformation Geschwindigkeit Winkelgeschwindig	_	Tr	ägheitsmoment	Kugel		leeres Duplikat	t		Leistung Transla	ation

# 20	Antwort	<u># 19</u>	Antwort	# 18	Antwort	<u># 17</u>	Antwort
			$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$ $\left[J = \frac{N}{m} m^2 \right.$ $= \frac{kg \frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2} \right]$
# 24	Antwort	<u># 23</u>	Antwort	<u># 22</u>	Antwort	<u># 21</u>	Antwort
Nur bei α	$\omega = \sqrt{\frac{g}{l}}$ $\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$ $= \sqrt{s^{-2}} = s^{-1}$ $< 5^{\circ}$		$p = m \cdot v$ $\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}}\right]$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^{2}$ $\left[J = kg m^{2} \cdot s^{-2}$ $= kg \frac{m^{2}}{s^{2}} \right]$		$L = \vartheta \cdot \omega$ $\left[N \text{ m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$ $\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$ $\text{kg} \frac{\text{m}^2}{\text{s}} = \text{kg} \frac{\text{m}^2}{\text{s}} \right]$
# 28	Antwort	<u># 27</u>	Antwort	<u># 26</u>	Antwort	<u># 25</u>	Antwort
	$\vartheta = m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$	r: Durchn	$\vartheta = \frac{1}{2} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ nesser des Zylinders	l: Länge	$\vartheta = \frac{1}{12} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	l: Länge	$\vartheta = \frac{1}{3} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes
# 32	Antwort	<u># 31</u>	Antwort	<u># 30</u>	Antwort	<u># 29</u>	Antwort
1	$P = F \cdot v = M \cdot \omega$ $\left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \right]$ $sg\frac{m^2}{s^3} = kg\frac{m}{s^2} \cdot \frac{m}{s}$				$\vartheta = \frac{2}{5} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$v = r \cdot \omega$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1}\right]$

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik
	Drehmoment			Kreisfrequenz Drehschwingung Physik # 38 Mechanik			llmoment Drehs	schwingung	Präzessionsfrequenz Physik # 40 Mechani		
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik
	Satz von Steine			Gravitationkonst			ravitationspote			pot. Energie Gra	
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik
	Physik # 41 Mechanik Gravitationfeldstärke			Gravitationskr	aft	Erhalt	ungssätze der k Physik	lassischen		Corioliskra	ft
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Physik	# 48	Deformation
	Keplersche Gesetze			Planet auf Kreis	bahn	Gebun	dener und unge Zustand	bundener		Elastizitätsmo	odul

$\omega_{p} = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_{r}}$ $\left[s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{\text{kg m}^{2} \cdot s^{-1}}\right]$	$M = -D_{\varphi} \cdot \varphi$ $[\mathrm{Nm} = \mathrm{Nm?}]$ $D_{\varphi}: \text{Torsionsfederkonstante}$ $\varphi: \text{Verdrillungswinkel}$	$\omega = \sqrt{\frac{D}{\vartheta}}$ $\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}\right]$	$M = F \cdot r$ $\left[\text{Nm} = \text{N} \cdot \text{m} \right]$
# 40	# 39	# 38 Antwort $\gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$	# 37 $ \theta = m \cdot a^2 + \vartheta_{\mathrm{SP}} $ $ \left[\ker \mathbf{w}^2 = \mathbf{m}^2 \cdot \ker \mathbf{w} + \ker \mathbf{w}^2 \right] $ $ \theta_{\mathrm{SP}} \text{Trägheitsmoment durch Schwerpunkt} $ $ \theta \text{Trägheitsmoment durch neue Achse,} $ $ \ \text{ zur Achse von } \vartheta_{\mathrm{SP}} $ $ \text{a Abstand der beiden Achsen} $
# 44	# 43 Antwort • Energien • Impulse • Drehimpulse • elektrische Ladungen	# 42	# 41
# 48	# 47	$\frac{r_{\rm p}^3}{T_{\rm p}^2} = \gamma \frac{m_{\rm s}}{4\pi^2} = const.$ $r_{\rm p} \colon \text{Radius Planetenbahn}$ $T_{\rm p} \colon \text{Umlaufzeit Planet}$ $m_{\rm s} \colon \text{Masse der Sonne}$	 # 45 Antwort Planeten auf Ellipsen mit Sonne im gemeinsamen Brennpunkt Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: ΔA/Δt = const Umlaufzeit T_{1,2}, große Halbachse a_{1,2} zweier Planeten: T²/T²/2 = a³/a³/2

34

Antwort

33

Antwort

36

Antwort

35

Antwort

Physik	# 49	Deformation	Physik	# 50	Deformation	Physik	# 51	Deformation	Physik	# 52	Deformation
	Zugfestigkeit Physik # 53 Deformation			Hooksches Gesetz Physik # 54 Deformation			relative Längenä	nderung	Poisson-Zahl Physik # 56 Deformation		
Physik	# 53	Deformation	Physik	# 54	Deformation	Physik	# 55	Deformation	Physik	# 56	Deformation
	Druck			Kompressibi			Kompressions			Scherspann	
Physik	# 57	Deformation	Physik	# 58	Deformation	Physik	# 59	Deformation	Physik	# 60	Deformation
	Torsionskonstante dünnwandiges Rohr		Torsionskonstante Vollstab				Drehmoment T	Γ orsion		Dehnung eines Federkonsta	
Physik	# 61	Deformation	Physik	# 62	Deformation	Physik	# 63	Deformation	Physik	# 64	Fluide
	potentielle Energie Dehnarbeit			Energiedichte D	Dehnung		Energiedichte T	Torsion (Viskositä "Zähigkeit	

# 52	Allewore	# 01	Allewore	# 50	Allewore	# 49	Allewore
Querko ab.	$\mu = \left \frac{\frac{\Delta d}{d}}{\frac{\Delta l}{l}}\right $ ontraktion, Dicke nimm t \perp zur Dehnung		$arepsilon = rac{\Delta l}{l_0}$ $\left[1 = rac{\mathrm{m}}{\mathrm{m}}\right]$		$\sigma = E \cdot \varepsilon$ $\left[\frac{N}{m^2} = \frac{N}{m^2} \cdot 1\right]$		$\sigma = \frac{F}{A}$ $\left[\frac{N}{m^2} = \frac{N}{m^2}\right]$
<u># 56</u>	Antwort	<u># 55</u>	Antwort	<u># 54</u>	Antwort	# 53	Antwort
G:	$\tau = \frac{F_{\rm s}}{A} = G\alpha$ Scherkraft, tangential zu A Torsions- oder Schubmodul [Pa] Scherwinkel		$K = \frac{1}{\kappa}$ $\left[Pa = \frac{1}{\frac{1}{Pa}} \right]$		$\frac{\Delta V}{V} = -\kappa p$ $\Rightarrow \kappa = \frac{3}{E}(1 - 2\mu)$ $\left[\frac{1}{\text{Pa}} = \frac{1}{\frac{\text{N}}{\text{m}^2}}\right]$		$p = \frac{F}{A}$ $\left[Pa = \frac{N}{m^2} \right]$
# 60	Antwort	<u># 59</u>	Antwort	# 58	Antwort	# 57	Antwort
	$D = \frac{E \cdot A}{l}$ $\left[\frac{N}{m} = \frac{\frac{N}{m^2} \cdot m^2}{m}\right]$		$M = D_{\varphi} \cdot \varphi$ $\left[\text{N m} = \text{N m} \right]$	R: Rohri l: Rohri		r: Rohrrad	ndstärke, $d \ll r$
# 64	Antwort	# 63	Antwort	# 62	Antwort	<u># 61</u>	Antwort
	$\eta\left[rac{ ext{N s}}{ ext{m}^2} ight]$		$w = \frac{G}{2}\alpha^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$		$w = \frac{W}{V} = \frac{E}{2}\varepsilon^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$	_	$E \cdot A \cdot l \cdot \varepsilon^{2} = \frac{1}{2} \cdot E \cdot V \cdot \varepsilon^{2}$ $\cdot m^{2} \cdot m = N m$

50

Antwort

49

Antwort

52

Antwort

51

Antwort

Physik	# 65	Fluide	Physik	# 66	Fluide	Physik	# 67	Fluide	Physik	# 68	Fluide
Dichte Physik # 69 Fluide			Oberflächenspannung Physik # 70 Fluide				hydrostatischer Druc Schweredruck	ck	Auftrieb Physik # 72 Fluid		
Physik	# 69	Fluide	Physik	# 70	Fluide	Physik	# 71	Fluide	Physik	# 72	Fluide
Baro	metrische Höher	nformel		Rückstellkraft Oberflächenspannu	ıng		Oberflächenenergie		Dru	ck in Flüssigkeit	skugel
Physik	# 73	Geometrie	Physik	# 74	Fluide	Physik	# 75	Fluide	Physik	# 76	Fluide
Kugelo	berfläche- und '	Volumen		Kontinuitätsgleichu r inkompressible M			Bernoulli-Gleichung	5		onsches Reibung osität zwischen l	
Physik	# 77	Fluide	Physik	# 78	Fluide	Physik	# 79	Fluide	Physik	# 80	Fluide
Geschwindigkeit im Stromröhrchen			Ant	riebskraft Rohrstr	ömung	G	esetz von Hagen-Poise	euille	Stock	æsches Gesetz fü	ır Kugel

# 68 Antwort	# 67	Antwort	# 66	Antwort	# 65	Antwort
$F = (\varrho_{\rm Fl} - \varrho_{\rm K}) \cdot V$ $\left[N = \frac{\text{kg}}{\text{m}^3} \cdot \text{m}^3 \cdot \frac{\text{m}}{\text{s}^2} \right]$ $\varrho_{\rm Fl} < \varrho_{\rm K} \Leftrightarrow F_{\rm A} < F_{\rm G} \Longrightarrow$ $\varrho_{\rm Fl} = \varrho_{\rm K} \Leftrightarrow F_{\rm A} = F_{\rm G} \Longrightarrow$ $\varrho_{\rm Fl} > \varrho_{\rm K} \Leftrightarrow F_{\rm A} > F_{\rm G} \Longrightarrow$	$= kg \frac{m}{s^2}$ Körper sinkt Körper schwebt Körper steigt p_0 : (I	$p(h) = p_0 + \varrho \cdot h \cdot g$ $\left[\text{Pa} = \text{Pa} + \underbrace{\frac{\text{kg}}{\text{m}^3} \cdot \text{m} \cdot \frac{\text{m}}{\text{s}^2}}_{\frac{\text{kg}}{\text{m} \cdot \text{s}^2} \cdot \frac{\text{m}}{\text{m}} = \frac{\text{N}}{\text{m}^2} = \text{Pa}} \right]$ puft-)Druck an der Oberfläche iefe		$\sigma\left[rac{ m J}{ m m^2} ight]$		$arrho\left[rac{\mathrm{kg}}{\mathrm{m}^3} ight]$
# 72 Antwort	# 71	Antwort	# 70	Antwort	# 69	Antwort
$p = 2\frac{\sigma}{r}$ Vollkugel (W $p = 3\frac{\sigma}{r}$ Hohlkugel (S $\left[\text{Pa} = \frac{\frac{\text{J}}{\text{m}^2}}{\text{m}} = \frac{\frac{\text{N} \text{m}}{\text{m}^2}}{\text{m}} = \frac{\text{N}}{\text{m}^2} \right]$	Vassertropfen) Jeifenblase)	$W = A \cdot \sigma$ $\left[J = m^2 \cdot \frac{J}{m^2} \right]$	F [Ν σ: Oberflär	$F = 2 \cdot \sigma \cdot l$ $N = \frac{J}{m^2} \cdot m = \frac{N}{m} \cdot m$ chenspannung er Randlinie des Bügels		$\exp\left(-\frac{\varrho_0}{p_0}\cdot g\cdot h\right)$
# 76 Antwort	<u># 75</u>	Antwort	<u># 74</u>	Antwort	# 73	Antwort
$F = \eta \cdot A \cdot \frac{\mathrm{d}v}{\mathrm{d}x}$ $\left[N = \frac{N s}{m^2} \cdot m^2 \cdot \right]$		$\frac{\underline{\varrho}}{2}v_1^2 + \underbrace{p_1}_{\text{stat. Druck}} = \underbrace{p_0}_{\text{Gesamtdruck}}$		$A_1v_1 = A_2v_2$ für $\varrho = \mathrm{const}$	$A = 4\pi r^2$ $A = \frac{4}{3}\pi r^3$	Kugeloberfläche Kugelvolumen
# 80 Antwort	<u># 79</u>	Antwort	<u># 78</u>	Antwort	<u># 77</u>	Antwort
$F_{\mathrm{R}} = 6 \cdot \pi \cdot \eta \cdot \left[\mathrm{N} = \frac{\mathrm{N} \mathrm{s}}{\mathrm{m}^2} \cdot \mathrm{m} \cdot \right]$	$\frac{\mathbf{m}}{\mathbf{s}}$	$\dot{M} = \frac{\varrho \cdot \pi}{8 \cdot \eta} \cdot \frac{\Delta p}{l} \cdot R^4 \sim R^4$ $\frac{\kappa g}{s} = \frac{\frac{kg}{m^3}}{\frac{Ns}{m^2}} \cdot \frac{\frac{N}{m^2}}{m} \cdot m^4 = \frac{N \log m^6}{N s m^6}$		$= \pi \cdot r^2 \cdot \Delta p$ $= m^2 \cdot Pa = m^2 \cdot \frac{N}{m^2}$		$\frac{p_2}{m}(R^2 - r^2)$ $m^2 = \frac{\frac{N}{m^2}}{\frac{N}{m^2}m}m^2 = \frac{m^2}{m s}$ The und hinter dem Röhrchen
$v={ m const}$ für: $mg- F_{ m A} =6\cdot\pi\cdot a$	Δp : I	Massenstromstärke Druckdifferenz vor und hinter dem Rohr Radius des Rohres			R: Radius de	es umschließenden Rohres es Röhrchens

Physik	# 81	Fluide	Physik	# 82	Fluide	Physik	# 83	Schwingungen	Physik	# 84	Schwingungen
	Reynolds-Z	ahl		$\operatorname{Luftwiderst}$	and						
Physik	# 85	Schwingungen	Physik	# 86	Schwingungen	Physik	# 87	Schwingungen	Physik	# 88	Schwingungen
Physik	# 89	Schwingungen	Physik	# 90	Schwingungen	Nutzungshinweis	# 91	Lizenz			
						Kar Die Kart Beteiligten r Gewissen er und Klaus	rteilernka en wurde nach beste estellt, für surgelinge	zung dieser arten: n von allen em Wissen und Fehlerfreiheit en kann aber eben werden.			

# 84	Antwort		Antwort	# 82	Antwort	<u># 81</u>	Antwort
	=		=	$c_{ m w}$: Strö	$F = c_{\rm w} \cdot \frac{\varrho}{2} \cdot v^2 \cdot A$ $\left[{\rm N} = 1 \cdot \frac{{\rm kg}}{{\rm m}^3} \cdot \frac{{\rm m}^2}{{\rm s}^2} \cdot {\rm m}^2 \right]$ mungswiderstandskoeffizient afläche	Sobald <i>Re</i> schreitet (z.	$Re = \frac{\varrho \cdot L \cdot v}{\eta}$ $\left[1 = \frac{\frac{\text{kg}}{\text{m}^3} \cdot \text{m} \cdot \frac{\text{m}}{\text{s}}}{\frac{\text{Ns}}{\text{m}^2}} = \frac{\frac{\text{kg}}{\text{sm}}}{\frac{\text{kg}}{\text{sm}}}\right]$ einen bestimmten Grenzwert über- B. 2300 bei Rohrströmung), schlägt ng von laminar in turbulent um.
# 88	Antwort	<u># 87</u>	Antwort	# 86	Antwort	<u># 85</u>	Antwort
	=		=		=		=
		# 91	Antwort	# 90	Antwort	# 89	Antwort
		Moritz Au https://gith this file. As you can do	ER-WARE LICENSE": logsburger (and others, see ub.com/maugsburger/exph) wrote long as you retain this notice whatever you want with this stuff. t some day and you think this stuff		=		=

If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.