Solving Non-Linear Real Arithmetic Formulas with Virtual Substitution

Author: Aklima Zaman Supervision: Erika Ábrahám

Theory of Hybrid Systems - Informatik 2 - RWTH-Aachen

Satisfiability Seminar, Winter-16/17

Outline

- Motivation
- Preliminaries
- Sign Invariant Regions
- Compute Zeros
- Compute Test Candidates
- Virtual Substitution
- Virtual Substitution Rules

Motivation

- Other related methods
 - Interval Constraint Propagation
 - Cylindrical Algebraic Decomposition
- Virtual substitution
 - Complete for a sub-language
 - Eliminates quantified variables up to degree 4

• Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$

constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$

constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$

constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \wedge \varphi \mid \exists x \cdot \varphi$

• Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c := t < tformulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• A polynomial $P(x) \in Z[x_1, ..., x_n][x]$ has following form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + 2x + 4z)}_{p_1} \leq 0 \vee \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

• Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• A polynomial $P(x) \in Z[x_1, ..., x_n][x]$ has following form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + 2x + 4z)}_{p_1} \leq 0 \vee \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

• Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• A polynomial $P(x) \in Z[x_1, ..., x_n][x]$ has following form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + \underbrace{2x + 4z})}_{p_1} \leq 0 \vee \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

• Real arithmetic (RA) formula has the following syntax:

terms: $t := 0 \mid 1 \mid x \mid t+t \mid t-t \mid t \cdot t$ constraints: c := t < t

formulas: $\varphi := c \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \cdot \varphi$

• A polynomial $P(x) \in Z[x_1, ..., x_n][x]$ has following form:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \ldots + a_0 x^0$$

$$\varphi = (\underbrace{(x^2 + 2x + 4z)}_{p_1} \le 0 \lor \underbrace{(yx^2 + 6y^3x + 4z)}_{p_2} = 0)$$

Sign Invariant Regions

Compute Zeros

$$p(x) = ax^2 + bx + c$$

$$X_0 = -\infty$$

side condition: $a = 0 \land b = 0$

Compute Zeros

$$p(x) = ax^2 + bx + c$$

$$x_1 = -b/c$$
 side condition: $a = 0 \land b \neq 0$

Compute Zeros

$$p(x) = ax^2 + bx + c$$

$$x_2=rac{-b+\sqrt{b^2-4ac}}{2a}, \ x_3=rac{-b-\sqrt{b^2-4ac}}{2a}$$
 side condition: $a
eq 0 \wedge b^2-4ac\geq 0$

Compute Test Candidates

Possible solution intervals for x om $p \sim 0$:

Constraints	$-\infty$	<i>X</i> ₁	$x_1 + \epsilon$	<i>X</i> ₂	$x_2 + \epsilon$	<i>X</i> 3	$x_3 + \epsilon$
p = 0	-	√	-	√	-	√	-
$p > 0, p < 0, p \neq 0$	✓	-	✓	-	✓	-	✓
$p\geqslant 0, p\leqslant 0$	✓	✓	-	\checkmark	-	✓	-

Virtual Substitution

 Virtual Substitution is an existential quantifier elimination procedure:

$$\exists x_1 \dots \exists x_n \cdot \varphi' \rightarrow \exists x_1 \dots \exists x_{n-1} \cdot \psi'$$

where φ', ψ' quantifier free and $\exists x_1 \dots \exists x_n \cdot \varphi' \equiv \exists x_1 \dots \exists x_{n-1} \cdot \psi'$

 Quantifier elimination by virtual substitution is based on the following equivalence:

$$\exists x_1 \dots \exists x_n \cdot \varphi' \equiv \exists x_1 \dots \exists x_{n-1} \cdot \bigvee_{t \in T} \varphi'[t \setminus x] \wedge S_t$$

Flow Chart

$$\varphi := (\underbrace{(xy-1)}_{p_1} = 0) \land \underbrace{y^2-1}_{p_2} < 0)$$
 Elimination of y :

	constraints	test candidates
1.	from all constraints	$-\infty$
2.	$p_1 = 0$	$1/x$ if $x \neq 0$
3.	$p_2 < 0$	$1+\epsilon$
4.	$p_2 < 0$	$-1+\epsilon$

$$\varphi:=(\underbrace{(xy-1}_{p_1}=0)\wedge\underbrace{y^2-1}_{p_2}<0)$$

Elimination of y:

	constraints	test candidates		
1.	from all constraints	$-\infty$		
2.	$p_1 = 0$	$1/x$ if $x \neq 0$		
3.	$p_2 < 0$	$1+\epsilon$		
4.	$p_2 < 0$	$-1+\epsilon$		

$$\exists x \cdot \exists y \cdot \varphi \quad \leftrightarrow \quad \exists x \cdot \quad (\varphi[-\infty/y]) \qquad \qquad \lor$$

$$(\varphi[\frac{1}{x}/y] \qquad \land x \neq 0) \quad \lor$$

$$(\varphi[1 + \epsilon/y]) \qquad \qquad \lor$$

$$(\varphi[-1 + \epsilon/y])$$

Virtual Substitution Rules

- Substitution of Square Root Expressions
- Substitution of Infinitesimal Expressions
- Substitution of a Minus Infinity

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

A square root expression has following form:

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

• Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$
- Substitute x by $\frac{u+q\sqrt{r}}{s}$ in p(x)=0
- Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$
- Substitute x by $\frac{u+q\sqrt{r}}{s}$ in p(x)=0
- Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$
- Substitute x by $\frac{u+q\sqrt{r}}{s}$ in p(x)=0
- Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$
- Substitute x by $\frac{u+q\sqrt{r}}{s}$ in p(x)=0
- Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

$$\begin{array}{l} \bullet \ \, \frac{u'+q'\sqrt{r}}{s'} = 0 \\ \iff u' + q'\sqrt{r} = 0 \\ \iff u'q' \le 0 \ \, \land \ \, | \ \, u' \mid = \mid q'\sqrt{r} \mid \end{array}$$

$$k = \frac{u + q\sqrt{r}}{s}$$
 with u, q, r, s polynomials.

- Assume, p(x) = 0 and test candidate is $\frac{u+q\sqrt{r}}{s}$
- Substitute x by $\frac{u+q\sqrt{r}}{s}$ in p(x)=0
- Transform the result to $\frac{u'+q'\sqrt{r}}{s'}=0$ where u',q',s' are polynomials.

• Assume p(x) < 0 and test candidate is $e + \epsilon$

- Assume p(x) < 0 and test candidate is $e + \epsilon$
- After substitution:

$$(p < 0)[e + \epsilon/x] = \underbrace{((p < 0)[e/x])}_{\text{Case 1}} \underbrace{((p = 0)[e/x] \land (p' < 0)[e/x])}_{\text{Case 2}} \underbrace{((p = 0)[e/x] \land (p' = 0)[e/x] \land (p'' < 0[e/x])}_{\text{Case 3}}$$

- Assume p(x) < 0 and test candidate is $e + \epsilon$
- After substitution:

$$(\rho < 0)[e + \epsilon/x] = \underbrace{((\rho < 0)[e/x])}_{\text{Case 1}}$$

$$\underbrace{((\rho = 0)[e/x] \land (\rho' < 0)[e/x])}_{\text{Case 2}}$$

$$\underbrace{((\rho = 0)[e/x] \land (\rho' = 0)[e/x] \land (\rho'' < 0[e/x])}_{\text{Case 3}}$$

- Assume p(x) < 0 and test candidate is $e + \epsilon$
- After substitution:

$$(\rho < 0)[e + \epsilon/x] = \underbrace{((\rho < 0)[e/x])}_{\text{Case 1}} \underbrace{((\rho = 0)[e/x] \land (\rho' < 0)[e/x])}_{\text{Case 2}} \underbrace{((\rho = 0)[e/x] \land (\rho' = 0)[e/x] \land (\rho'' < 0[e/x])}_{\text{Case 3}}$$

Substitution of a Minus Infinity

• Assume $p(x) = ax^2 + bx + c < 0$ and test candidate is $-\infty$

$$p(x) < 0[-\infty/x] = \underbrace{a < 0}_{Case1} \land$$

$$\underbrace{a = 0 \land b > 0}_{Case2} \land$$

$$\underbrace{a = 0 \land b = 0 \land c < 0}_{Case3}$$

Substitution of a Minus Infinity

• Assume $p(x) = ax^2 + bx + c < 0$ and test candidate is $-\infty$

Substitution of a Minus Infinity

• Assume $p(x) = ax^2 + bx + c < 0$ and test candidate is $-\infty$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

1.Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty/y]$$

 $\land (y^2 - 1 < 0)[-\infty/y])$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

1.Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty/y])$$

$$\land (y^2 - 1 < 0)[-\infty/y]$$

$$\Leftrightarrow \exists x \cdot \quad (\quad (x = 0 \land -1 = 0)$$

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of *y*:

1.Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty/y]$$

$$\land (y^2 - 1 < 0)[-\infty/y])$$

$$\Leftrightarrow \exists x \cdot ((x = 0 \land -1 = 0))$$

 \land (1 < 0 \lor (1 = 0 \land 0 > 0) \lor (1 = 0 \land 0 = 0 \land -1 < 0)))

$$\exists x \cdot \exists y \cdot ((xy - 1 = 0) \wedge y^2 - 1 < 0)$$

Elimination of y:

1.Test candidate: $-\infty$

$$\exists x \cdot ((xy - 1 = 0)[-\infty/y])$$

$$\land (y^2 - 1 < 0)[-\infty/y]$$

$$\Leftrightarrow \exists x \cdot ((x = 0 \land -1 = 0))$$

$$\wedge \quad \text{(1} < 0 \lor \text{(1} = 0 \land 0 > 0) \lor \text{(1} = 0 \land 0 = 0 \land -1 < 0))) \\$$

$$\Leftrightarrow \exists x \cdot$$
 (false)

Elimination of
$$y$$
:

2.Test candidate: $\frac{1}{x}$ if $x \neq 0$

$$\exists x \cdot \left((xy - 1 = 0) \left[\frac{1}{x} / y \right] \right.$$

$$\wedge \left. (y^2 - 1 < 0) \left[\frac{1}{x} / y \right] \right.$$

$$\wedge \left. x \neq 0 \right.)$$

$$\Leftrightarrow \exists x \cdot \left((0 = 0) \right.$$

$$\wedge \left. ((1 > 0) \wedge 1 - x^2 < 0 \vee (1 < 0 \wedge 1 - x^2 < 0)) \right.$$

$$\wedge \left. x \neq 0 \right.)$$

$$\Leftrightarrow \exists x \cdot \left((1 - x^2 < 0) \right.$$

$$\wedge \left. x \neq 0 \right.)$$

 $\exists x \cdot \exists y \cdot ((xy - 1 = 0) \land y^2 - 1 < 0)$

$$\exists x \cdot (1-x^2 < 0 \land x \neq 0)$$

Elimination of x:

1. Test candidate: $-\infty$

$$(1 - x_2 < 0)[-\infty/x]$$

$$= \quad (-1 < 0 \lor (-1 = 0 \land 0 > 0) \lor (-1 = 0 \land 0 = 0 \land 1 < 0))$$

= true

$$\exists x \cdot (\text{ true } \land x \neq 0)$$

Elimination of x:

1. Test candidate: $-\infty$

$$(x \neq 0)[-\infty/x]$$

$$= (1 \neq 0 \lor 0 \neq 0)$$

= true

$$\exists x \cdot (\text{true} \land \text{true})$$

Elimination of x:

1. Test candidate: $-\infty$

$$(x \neq 0)[-\infty/x]$$

$$= (1 \neq 0 \lor 0 \neq 0)$$

= true

Example: Flow Chart

