Notes on Amortized Analysis

Geoffrey Matthews

May 15, 2018

Amortized analysis

- Analyze a sequence of operations on a data structure.
- ▶ Goal: Show that although some operations may be expensive, on average the cost per operation is small.
- Average is not over a distribution of inputs, but over a sequence of operations.
- ▶ No probability is involved: *Average* cost in the *worst* case.
- We look at three methods of calculating:
 - 1. aggregate analysis
 - 2. accounting method
 - 3. potential method
- And two simple examples:
 - 1. stack with multipop
 - 2. binary counter
- ▶ And a more interesting example:
 - dynamic tables

Stack operations

```
Push(S, x): O(1)
Pop(S): O(1)
```

```
Multipop(S, k)
```

```
1 while S is not empty and k > 0
```

2
$$Pop(S)$$

$$3 k = k - 1$$

```
top \rightarrow 23
17
6
39
10
47
47
(a)
(b)
MULTIPOP(S, 4)
MULTIPOP(S, 7)
```

Running time of MULTIPOP:

- ▶ Linear in # of Pop operations.
- ▶ Let each PUSH/POP cost 1.
- # iterations of **while** loop is min(s, k)
 - where s = # of objects in stack.
- ▶ Total cost = min(s, k)

Worst-case analysis without amortization

- ightharpoonup Sequence of n PUSH, POP, and MULTIPOP operations.
- ▶ May have up to *n* PUSH operations.
- ▶ So worst-case there are *n* items on the stack.
- ▶ Therefore, worst-case cost of a MULTIPOP operation is O(n).
- ▶ Have n operations, each of which could be MULTIPOP.
- ▶ Therefore, worst-case cost of sequence of n operations is $O(n^2)$.

Something wrong with worst-case analysis

- ▶ There's clearly something wrong with this analysis.
- ▶ What is actual worst-case number of Pushs and Pops as a function of *n*?
- But how can we get a more accurate worst-case analysis?
- We need to consider how the operations interact with each other.
- ▶ We need to keep an account of how much time is spent in each one, because that affects the time spent in the others.

Aggregate analysis

Observations

- Each object can be popped only once per time that it's pushed.
- ▶ Have $\leq n$ Pushs, therefore $\leq n$ Pops, including those in MULTIPOP.
- ▶ Therefore, total cost = O(n).
- Average over n operations is = O(1) per operation on average, including those in MULTIPOP.
- ► This is called aggregate analysis.
 - No probability involved.
 - ▶ Showed worst-case O(n) for entire sequence.
 - ▶ Therefore, O(1) per operation on average.

Binary counter

Counter value	MINGHSHONSHONING	Total cost
0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	0
1	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$	1
2	0 0 0 0 0 0 1 0	3
3	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1$	4
4	0 0 0 0 0 1 0 0	7
5	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1$	8
6	0 0 0 0 0 1 1 0	10
7	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1$	11
8	0 0 0 0 1 0 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	$0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$	19
12	0 0 0 0 1 1 0 0	22
13	$0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1$	23
14	0 0 0 0 1 1 1 0	25
15	$0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$	26
16	0 0 0 1 0 0 0	31

- Bits that flip upon increment shaded.
- ► Total cost of flipping bits at right.
- ► Total cost always less than twice number of increments.

Binary counter

- ▶ k-bit binary counter A[0..k-1] of bits.
- ► *A*[0] is the least significant bit.
- Counts upward from 0.
- ▶ Value of counter is

$$\sum_{i=0}^{k-1} A[i] \cdot 2^{i}$$

- ▶ Initially counter is 0, so A[0..k-1] = 0.
- ▶ To increment, add 1 (mod 2^k):

```
INCREMENT(A, k)

1  i = 0

2  while i < k and A[i] == 1

3  A[i] = 0

4  i = i + 1

5  if i < k
```

A[i] = 1

Worst case analysis of binary counter

- ▶ Each call could flip *k* bits.
- ▶ n increments is O(nk).

Aggregate analysis of binary counter

▶ Not every bit flips every time.

bit	flips how often	times in n Increments
0	every time	n
1	1/2 the time	$\lfloor n/2 \rfloor$
2	1/4 the time	$\lfloor n/4 \rfloor$
	:	
i	$1/2^i$ the time	$\lfloor n/2^i \rfloor$
	:	
$i \ge k$	never	0

Total number of flips

$$\sum_{i=0}^{k-1} \lfloor n/2^i \rfloor < n \sum_{i=0}^{k-1} (1/2)^i$$

$$= n \frac{(1/2)^k - 1}{1/2 - 1}$$

$$= n \frac{1 - (1/2)^k}{1 - 1/2}$$

$$< n \left(\frac{1}{1/2}\right)$$

$$= 2n$$

- ▶ n Increments costs O(n).
- Average cost per operation O(1).

Accounting Method and Potential Method

- Aggregate method works when we can add up all operations.
- ▶ More complex operations need a more sophisticated method.
- ▶ Two approaches:

Accounting method:

- assign charges to each operation
- some operations charged more than they cost
- others, charged less, can use accrued credit

Potential method:

- prepaid work is "potential energy"
- energy is assigned to data structures as a whole
- some operations increase potential energy
- some operations can release potential energy to reduce costs
- most flexible of the amortized analysis methods

Accounting method

- Amortized cost = amount we charge
- ▶ Amortized cost must always be ≥ actual cost
- When amortized cost > actual cost, store the difference on specific objects in the data structure as credit.
- When we have credit, we have accounted for expenses not yet accrued
- Use credit later to pay for operations whose actual cost > amortized cost.
- Differs from aggregate analysis:
 - In the accounting method, different operations can have different costs.
 - ▶ In aggregate analysis, all operations have the same cost.
- Credit must never go negative.
 - ▶ Otherwise we have a sequence of operations for which amortized cost is not an upper bound on actual cost.
 - Amortized cost would tell us nothing.

Accounting method costs

 $c_i =$ actual cost of ith operation

 $\hat{c}_i = \text{amortized cost of } i \text{th operation}$

Require

$$\sum_{i=1}^n \hat{c}_i \geq \sum_{i=1}^n c_i$$

Total credit stored

$$\sum_{i=1}^n \hat{c}_i - \sum_{i=1}^n c_i$$

must never be negative.

Accounting method amortized analysis of stack operations

operation	actual cost	amortized cost
Push	1	2
Рор	1	0
Multipop	$\min(k,s)$	0

Intuition:

- When pushing an object, pay \$2
- ▶ \$1 pays for the Push
- ▶ \$1 is prepayment for it being popped by POP or MULTIPOP
- Since each object has \$1 credit, the credit can never go negative.
- ▶ Total amortized cost, O(n), is an upper bound on total cost.
- ▶ Worst cast amortized cost is 2n = O(n).

Accounting method amortized analysis of binary counter

- ► Charge \$0 to set a bit to 0
- Charge \$2 to set a bit to 1
 - \$1 pays for setting the bit to 1
 - ▶ \$1 prepayment for setting it back to 0
 - Have \$1 credit for every 1 in the counter
 - ► Therefore credit ≥ 0
- ► Amortized cost of INCREMENT:
 - Cost of resetting bits to 0 is paid by credit.
 - At most 1 bit is set to 1.
 - ▶ Amortized cost is always ≤ 2.
 - For *n* operations amortized cost is O(n).

The Potential Method

- Like the accounting method, but think of the credit as the *potential* stored with the entire data structure.
- Accounting method stores credit with specific objects.
- ▶ Potential method stores potential in the data structure as a whole.
- Can release potential to pay for future operations.
- Most flexible of the amortized analysis methods.

Potential function

 $D_i = data structure after the ith operation$

 $D_0 = initial data structure$

 c_i = actual cost of *i*th operation

 $\hat{c}_i = \text{amortized cost of the } i \text{th operation}$

Potential function: $\Phi: D_k \to \mathbb{R}$

 $\Phi(D_i)$ is the *potential* associated with the data structure D_i .

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

= $c_i + \Delta\Phi(D_i)$

The amortized cost is the *increase in potential* due to the *i*th operation.

Total amortized cost

$$egin{aligned} \sum_{i=1}^n \hat{c_i} &= \sum_{i=1}^n (c_i + \Phi(D_i) - \Phi(D_{i-1})) \ &= \sum_{i=1}^n c_i + \Phi(D_n) - \Phi(D_0) \end{aligned}$$

- ▶ If we require that $\Phi(D_i) \ge \Phi(D_0)$ for all i, then the amortized cost is always an upper bound on the actual cost.
- ▶ In practice:

$$\Phi(D_0) = 0$$

$$\Phi(D_i) > 0 for all i$$

Amortized analysis of stack operations using the potential method

$$\Phi=\#$$
 of objects in the stack
$$=\# \text{ of $\$1$ bills in the accounting method}$$
 $\Phi({\it D}_0)=0$

Since # of objects in stack is always ≥ 0 ,

$$\Phi(D_i) \ge 0 = \Phi(D_0) \qquad \qquad \text{for all } i$$

operation	actual cost	ΔΦ
Push	1	(s+1)-s=1
Рор	1	(s-1)-s=-1
Multipop	$k' = \min(k, s)$	(s-k')-s=k'

Therefore the amortized cost of a sequence of n operations is O(n).

Amortized analysis of binary counter: potential method

- lacktriangledown $\Phi=b_i=\#$ of 1's after *i*th INCREMENT
- ▶ Suppose *i*th operation resets t_i bits to 0.
- ▶ $c_i \le t_i + 1$, since it resets t_i bits and sets ≤ 1 bit to 1.
- ▶ If $b_i = 0$, the *i*th operation reset all *k* bits and didn't set one, so

$$b_{i-1} = t_i = k \Rightarrow b_i = b_{i-1} - t_i = 0$$

▶ If $b_i > 0$ the *i*th operation reset t_i bits, set one, so

$$b_i = b_{i-1} - t_i + 1$$

Either way

$$b_i \leq b_{i-1} - t_i + 1$$

Therefore

$$\Delta\Phi(D_i) \le (b_{i-1} - t_i + 1) - b_{i-1} = 1 - t_i$$
$$\hat{c}_i = c_i + \Delta\Phi(D_i) \le (t_i + 1) + (1 - t_i) = 2$$

- ▶ If counter starts at 0, $\Phi(D_0) = 0$.
- ▶ Therefore, amortized cost of n operations is O(n).

Dynamic Tables

- Nice application of amortized analysis.
- ▶ Suppose you have a table, maybe a hash table, maybe a heap.
- Details of table organization not important.
- We will assume insertion and deletion take O(1).
- You don't know in advance how many items will be stored in it.
- ▶ When it fills, you must reallocate a larger table and copy all the items into the new table.
- When it gets sufficiently small, you might want to reallocate with a smaller size.
- ► How can you do this so it doesn't mess up the efficiency of your table?
- ▶ Does it turn O(1) (hash) or $O(\lg n)$ (heap) into O(n), since in worst case we have to copy all n elements into new array?

Dynamic Table Goals

- 1. O(1) amortized time per operation.
- 2. Unused space always \leq constant fraction of allocated space.
- Load factor α = num/size where num = # items stored, size = allocated size.
- ▶ Never allow $\alpha > 1$
- Keep α > constant fraction (goal 2).

Table expansion

- First we consider only expansion.
- When table becomes full, double its size and reinsert all existing items.
- ► Each time we actually insert an item, it's an **elementary insertion**.

```
Table-Insert (T, x)
 1 if T. size == 0
                                                                 // empty?
          allocate T. table with 1 slot.
          T. size = 1
    if T. num == T. size
                                                                // expand?
 5
          allocate new-table with 2 · T. size slots
 6
         insert all items in T. table into new-table
         free T. table
 8
          T. table = new-table
          T. size = 2 \cdot T. size
    insert x into T. table
10
11
     T.num = T.num + 1
```

Running time

- ► Charge 1 per elementary insertion.
- Count only elementary insertions.
 - All other costs are constant per cell.
- $ightharpoonup c_i = actual cost of ith operation$
- ▶ If not full, $c_i = 1$
- ▶ If full, insert i 1 items plus one more, $c_i = i$.
- n operations, worst case:

$$c_i = O(n)$$

 $n ext{ operations} = O(n^2)$

Aggregate analysis

Of course, we don't always expand:

$$c_i =$$
 $\begin{cases} i & \text{if } i-1 \text{ is exact power of 2.} \\ 1 & \text{otherwise.} \end{cases}$

Total cost
$$=\sum_{i=1}^{n} c_i$$

 $\leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j$
 $= n + \frac{2^{\lfloor \lg n \rfloor + 1} - 1}{2 - 1}$
 $< n + 2n$
 $= 3n$

► Aggregate analysis: the amortized cost per operation is 3.

Accounting method

- ► Charge \$3 per elementary insertion of *x*:
 - ▶ \$1 pays for x's insertion.
 - ▶ \$1 pays for *x*'s move in the future.
 - \$1 pays for some other item to be moved.
- ▶ Suppose we've just expanded, size = m.
- size = 2m after next expansion.
- ▶ Assume that the expansion used up all the credit, so that there's no credit stored after the expansion.
- ▶ Will expand again after another *m* insertions.
- ▶ Each insertion will put \$1 on one of the *m* items that were in the table just after expansion, and will put \$1 on the item inserted.
- ► Have \$2*m* of credit by next expansion, when there are 2*m* items to move.
- Just enough to pay for expansion, with no credit left over!
- ▶ Credit always ≥ 0.

Potential method

$$\Phi(T) = 2 \cdot T. num - T. size$$

▶ Initially, num = size = 0.

$$\Phi = 0$$

▶ Just after expansion, $size = 2 \cdot num$

$$\Phi = 0$$

▶ Just before expansion, *size* = *num*

$$\Phi = num$$

we have enough potential to pay for moving all items.

▶ Need $\Phi \ge 0$ always.

Amortized cost of ith operation

$$num_i = num$$
 after *i*th operation $size_i = size$ after *i*th operation $\Phi_i = \Phi$ after *i*th operation

If no expansion:

$$size_i = size_{i-1}$$
 $num_i = num_{i-1} + 1$
 $c_i = 1$

Then we have

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1}$$

= 1 + (2 · num_i - size_i) - (2 · num_{i-1} - size_{i-1})
= 1 + (2 · num_i - size_i) - (2(num_i - 1) - size_i)
= 1 + 2 = 3

Amortized cost of ith operation

► If expansion:

$$size_i = 2 \cdot size_{i-1}$$

 $size_{i-1} = num_{i-1} = num_i - 1$
 $c_i = num_{i-1} + 1 = num_i$

Then we have

$$\begin{split} \hat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= num_i + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1}) \\ &= num_i + (2 \cdot num_i - 2(num_i - 1)) - (2(num_i - 1) - (num_i - 1)) \\ &= num_i + 2 - (num_i - 1) \\ &= 3 \end{split}$$

As we insert items, the potential builds up until we have enough to pay for moving all items, when the potential drops back to zero.

Expansion and contraction

When α drops too low, contract the table.

- Allocate a new, smaller one.
- Copy all items.

Still want:

- ightharpoonup α bounded from below by a constant
- ightharpoonup amortized cost of O(1)

"Obvious strategy"

- ▶ Double size when inserting into a full table ($\alpha = 1$).
- ▶ Halve size when deletion would make table less than half full $(\alpha < 1/2)$.
- ▶ Then would always have $1/2 \le \alpha \le 1$.
- Unfortunately, suppose we fill the table, then:

insert	\Rightarrow	double
two deletes	\Rightarrow	halve
two inserts	\Rightarrow	double
two deletes	\Rightarrow	halve
two inserts	\Rightarrow	double

Not performing enough operations in between expansion and contraction to pay for the next one.

Simple solution

- ▶ Double when full $(\alpha = 1)$.
- ▶ Halve size when $\alpha = 1/4$.
- ▶ Immediately after expansion *or* contraction, $\alpha = 1/2$.
- ▶ Always have $1/4 \le \alpha \le 1$

Intuition

- Want to make sure we perform enough operations in between consecutive expansions/contractions to pay for the change in table size.
- Need to delete half of the items before contraction.
- Need to double the number of items before expansion.
- Either way, the number of operations between expansions and contractions is at least a constant fraction of the number of items copied.

$$\Phi(T) = \begin{cases} 2 \cdot T. num - T. size & \text{if } \alpha \ge 1/2 \\ T. size/2 - T. num & \text{if } \alpha < 1/2 \end{cases}$$

$$\begin{array}{l} \textit{T} \; \mathsf{empty} \Rightarrow \Phi = 0 \\ \alpha \geq 1/2 \Rightarrow \textit{num} \geq \textit{size}/2 \Rightarrow 2 \cdot \textit{num} \geq \textit{size} \Rightarrow \Phi \geq 0 \\ \alpha \leq 1/2 \Rightarrow \textit{num} < \textit{size}/2 \Rightarrow \Phi \geq 0 \end{array}$$

Further intuition

- Φ measures how far from $\alpha = 1/2$ we are.
- $ho \quad \alpha = 1 \Rightarrow \Phi = 2 \cdot num num = num$
- $ho \quad \alpha = 1/4 \Rightarrow \Phi = size/2 num = 4 \cdot num/2 num = num$
- Therefore, when we double or halve, we have enough potential to pay for moving all *num* items.

Further intuition

- ▶ Potential increases linearly between $\alpha = 1/2$ and $\alpha = 1$.
- ▶ Potential increases linearly between $\alpha = 1/2$ and $\alpha = 1/4$.
- ▶ Since α has different distances to go to get to 1 or 1/4, starting from 1/2, rate of increase of Φ differs.
- For α to go from 1/2 to 1:
 - num increases from size/2 to size
 - Φ increases from 0 to size
 - Φ needs to increase by 2 for each item inserted.
 - That's why the coefficient of 2 in the formula for Φ.
- For α to go from 1/2 to 1/4:
 - ▶ num decreases from size/2 to size/4.
 - Φ increases from 0 to size/4
 - ► Thus, Φ needs to increase by 1 for each item deleted.
 - ▶ That's why the coefficient of -1 in the formula for Φ .

Eight cases for calculating amortized costs

- ▶ insert *vs.* delete
- $\alpha \ge 1/2$ vs. $\alpha < 1/2$
- ▶ size changes vs. size doesn't change

Insert, $\alpha \geq 1/2$, with or without expansion

- Same analysis as before.
- $\hat{c}_i = 3$

Insert, $\alpha_{i-1} < 1/2$, no expansion

▶
$$\alpha_i < 1/2$$

$$\begin{split} \hat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= 1 + \left(size_i/2 - num_i \right) - \left(size_{i-1}/2 - num_{i-1} \right) \\ &= 1 + \left(size_i/2 - num_i \right) - \left(size_i/2 - \left(num_i - 1 \right) \right) \\ &= 0 \end{split}$$

$$\sim \alpha_i \geq 1/2$$

$$\begin{split} \hat{c_i} &= c_i + \Phi_i - \Phi_{i-1} \\ &= 1 + (2 \cdot num_i - size_i) - (size_{i-1}/2 - num_{i-1}) \\ &= 1 + (2(num_{i-1} + 1) - size_{i-1}) - (size_{i-1}/2 - num_{i-1}) \\ &= 3 \cdot num_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &= 3 \cdot \alpha_{i-1} size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &< \frac{3}{2} \cdot size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &= 3 \end{split}$$

Insert, $\alpha < 1/2$, expansion

Cannot happen.

Insert

=3
=3
ossible
= 0
=3

▶ Therefore, in all cases, the amortized cost of insertion is ≤ 3 .

Delete

contraction	lpha < 1/2	$\hat{c}_i = 1$
no contraction	$\alpha < 1/2$	$\hat{c}_i = 2$
contraction	$\alpha \geq 1/2$	impossible
no contraction	$\alpha_{i-1} \geq 1/2, \alpha_i \geq 1/2$	$\hat{c_i} = -1$
no contraction	$\alpha_{i-1} \ge 1/2, \alpha_i < 1/2$	$\hat{c}_i = 2$

▶ In all cases the amortized cost is ≤ 2 .

