# Parametric Gröbner bases

GEOMETRY & APPLICATIONS

Andreas Bøgh Poulsen

201805425





Supervisor: Niels Lauritzen

## Contents

| 1 | Preliminaries                                            | 1         |
|---|----------------------------------------------------------|-----------|
| 2 | Definitions and initial results 2.1 A useful criterion   | <b>2</b>  |
| 3 | Parametric Gröbner bases 3.1 Computing faithful segments | <b>8</b>  |
| 4 | Applications         4.1 Quantifier elimination          | <b>12</b> |

#### Introduction

#### 1 Preliminaries

This project will assume familiarity with ring theory, multivariate polynomials over fields. A familiarity with Gröbner bases will be beneficial, but we will introduce the necesary notations and definitions. Let R be a Noetherian, commutative ring and  $X = (x_1, x_2, ..., x_n)$  be an ordered collection of symbols. We denote the ring of polynomials in these variables R[X]. Given two (disjoint) sets of variables X and Y, we will use R[X, Y] to mean  $R[X \cup Y]$ , which is isomorphic to R[X][Y]. A monomial is a product of variables and a term is a monomial times a coefficient. We denote a monomial as  $X^v$  for some  $v \in \mathbb{N}^n$ .

**1.1** • **Definition (Monomial order, leading term).** A monomial order is a well-order  $^a$  < on the set of monomials satisfying that  $u < v \implies wu < wv$ .

Given a monomial order < and a polynomial  $f \in R[X]$ , the *leading term* of f is the term with the largest monomial w.r.t. < and is denoted by  $lt_{<}(f)$ . If  $lt_{<}(f) = a \cdot m$  for some monomial m and  $a \in R$ , then we denote  $lm_{<}(f) = m$  and  $lc_{<}(f) = a$ . If < is clear from context, it will be omitted.

These definitions naturally extend to sets of polynomials, so given a set of polynomials  $F \subset k[X]$ , we denote  $\operatorname{Im}_{<}(F) := \{\operatorname{Im}_{<}(f) \mid f \in F\}$ . The above definitions work over a general ring (and we will use that), but from here, we'll work over a field k. With this, we can give the definition of a Gröbner basis.

**1.2** • **Definition (Gröbner basis).** Let  $G \subset k[X]$  be a finite set of polynomials and < be a monomial order. We say G is a *Gröbner basis* if  $\langle lt_{<}(G) \rangle = \langle lt_{<}(\langle G \rangle) \rangle$ .

We say G is a Gröbner basis for an ideal I if G is a Gröbner basis and  $\langle G \rangle = I$ . We will also have to use an alternative description of Gröbner bases.

- **1.3 Definition (Reduction modulo).** Let  $f, g \in R[X]$  be polynomials and < be a term order. We say f reduces modulo g if  $lt(g) \mid lt(f)$ , since in that case  $lt(lc(g) \cdot f p \cdot lc(f) \cdot g) < lt(f)$  where  $lm(f) = p \cdot lm(g)$ . We say a polynomial reduces modulo a set of polynomials if it reduces modulo any polynomial in the set. We say a polynomial reduces to zero if there is a chain of reductions that end in the zero polynomial.
- **1.4 Theorem.** Let  $G \subset R[X]$ . Then G is a Gröbner basis if and only if every polynomial in  $\langle G \rangle$  reduces to 0 modulo G.

*Proof.* A good exercise.

<sup>&</sup>lt;sup>a</sup>A total order, for which any chain a > b > c > ... must be finite.

## 2 Definitions and initial results

The purpose of this project is to study parametric Gröbner bases, so let's introduce those. The bare concept is rather simple.

**2.1** • **Definition (Parametric Gröbner basis).** Let k and  $k_1$  be fields, U and X be sets of variables and  $F \subset k[X,U]$  be a finite set of polynomials. A *parametric Gröbner basis* is a finite set of polynomials  $G \subset k[X,U]$  such that  $\sigma(G)$  is a Gröbner basis of  $\langle \sigma(F) \rangle$  for any ring homomorphism  $\sigma: k[U] \to k_1$ .

We call such a  $\sigma: k[U] \to k_1$  a *specialization*. By the linearity of  $\sigma$ , all such ring homomorphisms can be characterized by their image of U. Thus, we can identify  $\{\sigma: k[U] \to k_1 \mid \sigma \text{ is a ring hom.}\}$  with the affine space  $k_1^m$  when U has m elements. For  $\alpha \in k_1^m$  we'll denote the corresponding map

$$\sigma_{\alpha}(u_i) = \alpha_i \quad \text{for } u_i \in U$$

extended linearly.

When we work with these parametric Gröbner bases, it will be more convenient to have a bit more information attached to them, namely which elements are required for which  $\sigma$ . Since  $\sigma$  is described by an  $\alpha \in k_1^m$ , we can restrict them using subsets of  $k_1^m$ .

**2.2** • **Definition (Vanishing sets & algebraic sets).** Let  $E \subset k[X]$ . Then the *vanishing set* of E is  $V(E) := \{v \in k^n \mid e(v) = 0 \ \forall e \in E\}$ .

An *algebraic set* is a set of the form  $V(E) \setminus V(N)$  for two subsets E and N of k[X].

**2.3** • **Definition (Gröbner system).** Let A be an algebraic set and  $F, G \subset k[X, U]$  be finite sets. Then (A, G) is called a *segment of a Gröbner system for F* if  $\sigma_{\alpha}(G)$  is a Gröbner basis of  $\langle \sigma_{\alpha}(F) \rangle$  for all  $\alpha \in A$ . A set  $\{(A_1, G_1), \dots, (A_t, G_t)\}$  is called a *Gröbner system* if each  $(A_i, G_i)$  is a segment of a Gröbner system.

We call the algebraic sets  $A_i$  for the *conditions* on a segment.

A Gröbner system  $\{(A_1, G_1), \dots, (A_t, G_t)\}$  is called *comprehensive*, if  $\bigcup_{i=1}^t A_i = k_1^{|U|}$ . We also say a Gröbner system is *comprehensive* on  $L \subset k_1^{|U|}$  if  $\bigcup_{i=1}^t A_i = L$ .

We will sometimes call a triple (E, N, G) for a segment of a Gröbner system. By this we mean that  $(V(E) \setminus V(N), G)$  is a segment of a Gröbner system.

**2.4** • Example. Let  $X = \{x, y\}$  and  $U = \{u\}$  and consider the polynomials  $f(x, y, u) = ux^2 + x$  and g(x, y, u) = xy + 1. When  $u \neq 0$ , a Gröbner basis of  $\langle f, g \rangle$  could be (y - u, ux + 1), whatever u may be. TODO

Skriv om Kalkbrener

**2.5** • **Definition (Leading coefficient w.r.t. variables).** Let  $f \in k[U][X]$ . Then the leading term of f is denoted  $lt_U(f)$ , the leading coefficient is  $lc_U(f)$  and the leading monomial is  $lm_U(f)$ . These notations are also used when  $f \in k[X,U]$ , just viewing f as a polynomial in k[U][X].

Note that  $lc_U(f) \in k[U]$ , i.e. the leading term is a polynomial in k[U] times a monomial in X.

From this point, we assume that the monomial order on k[X,U] satisfies  $X^{v_1} > U^{v_2}$  for all  $v_1 \in \mathbb{N}^{|X|}$  and  $v_2 \in \mathbb{N}^{|U|}$ . This monomial order restricts to a monomial order on k[X], denoted by  $<_X$ . Note that this assumption is not too restrictive, as we're usually only interested in a certain monomial order on the variables, since the parameters will be specialized away anyway. Thus for a given monomial order  $<_X$ , we can construct a suitable monomial order on k[X,U], by using  $<_X$  and breaking ties with any monomial order on k[U].

#### 2.1 A useful criterion

In this section we will prove a criterion to decide when a Gröbner basis G of an ideal  $\langle F \rangle$  maps to a Gröbner basis  $\sigma(G)$  if the ideal  $\langle \sigma(F) \rangle$ . This is theorem 3.1 in [1].

**2.6** • **Lemma.** Let G be a Gröbner basis of an ideal  $\langle F \rangle \subset R[X]$  w.r.t.  $\langle$ , let  $\sigma : R \to K$  be a ring homomorphism to a field K and set  $G_{\sigma} = \{g \in G \mid \sigma(\operatorname{lc}(g)) \neq 0\} = \{g_1, g_2, \dots, g_l\} \subset R[X]$ . Then  $\sigma(G_{\sigma})$  is a Gröbner basis of the ideal  $\langle \sigma(F) \rangle$  w.r.t.  $\langle X \rangle$  if and only if  $\sigma(g)$  is reducible to 0 modulo  $\sigma(G_{\sigma})$  for every  $g \in G$ .

*Proof.* First, we prove " $\Longrightarrow$ ": Suppose  $\sigma(G_{\sigma})$  is a Gröbner basis of  $\langle \sigma(F) \rangle$ . Since  $\sigma(g) \in \langle \sigma(F) \rangle$ , we get that  $\sigma(g)$  reduces to zero modulo any Gröbner basis of  $\langle \sigma(F) \rangle$  by theorem 1.4, in particular  $\sigma(G_{\sigma})$ .

Next, we prove " $\Leftarrow$ ": Assume that  $\sigma(g)$  is reducible to 0 modulo  $G_{\sigma}$  for every  $g \in G$  and let  $f \in \langle F \rangle$  such that  $\sigma(f) \neq 0$ . It's enough to show that

$$\exists h \in \langle F \rangle : \sigma(\mathrm{lc}(h)) \neq 0 \land \mathrm{lm}(h) \mid \mathrm{lm}(\sigma(f)).$$

Indeed, since G is a Gröbner basis of  $\langle F \rangle$ , that implies there is some  $g \in G$  such that  $\operatorname{Im}(g) | \operatorname{Im}(h)$  and  $\operatorname{Im}(h) = \operatorname{Im}(\sigma(h)) | \operatorname{Im}(\sigma(f))$ . Furthermore, since  $\operatorname{lc}(g) | \operatorname{lc}(h)$ , we have that  $\sigma(\operatorname{lc}(g)) \neq 0$ , hence  $\operatorname{lt}(\sigma(g)) | \operatorname{lt}(\sigma(f))$ . Thus, if the above holds for any f, then  $\sigma(G)$  is a Gröbner basis of  $\langle \sigma(F) \rangle$ . We prove this claim by induction on  $\langle X \rangle$ .

The base case is when lm(f) = 1, which means  $f \in R$ . Since we assumed  $\sigma(f) \neq 0$ , we have  $lm(\sigma(f)) = lm(f)$  and  $\sigma(lc(f)) \neq 0$ .

Now, the induction step. Let  $f \in \langle F \rangle$  with  $\sigma(\operatorname{lc}(f)) \neq 0$  and assume that every  $f' \in \langle F \rangle$  with  $\operatorname{lm}(f') < \operatorname{lm}(f)$  we have  $\exists h \in \langle F \rangle : \sigma(\operatorname{lc}(h)) \neq 0 \land \operatorname{lm}(h) \mid \operatorname{lm}(\sigma(f'))$ . If  $\sigma(\operatorname{lc}(f)) \neq 0$ , we can simply use h = f, so consider the case when  $\sigma(\operatorname{lc}(f)) = 0$ . If there is some  $\sigma(g) \in G_{\sigma}$  such that  $\operatorname{lm}(g) \mid \operatorname{lm}(f)$ , then we can reduce f by g to get  $f' = \operatorname{lc}(g) \cdot f - \operatorname{lc}(f) \cdot \frac{\operatorname{lm}(f)}{\operatorname{lm}(g)} g$ .

Then  $lm(\sigma(f')) = lm(\sigma(f))$  since  $\sigma(lc(f)) = 0$  and lm(f') < lm(f), so the assertion holds by the induction hypothesis.

On the other hand, if there is no such  $\sigma(g) \in G_{\sigma}$ , then we must have some  $g \in G \setminus G_{\sigma}$  such that  $lm(g) \mid lm(f)$ . However, we can't simply reduce by g, since the factor lc(g) is zero under  $\sigma$ . Instead, we can find a subset  $\{g_{j_1}, \dots, g_{j_r}\} \subset G \setminus G_{\alpha}$  such that

$$\operatorname{lm}(f) = \sum_{i=1}^{r} c_{i} \frac{\operatorname{lm}(f)}{\operatorname{lm}(g_{j_{i}})} \operatorname{lm}(g_{j_{i}}).$$

Since each of the  $\sigma(g_{j_i})$  are reducible to 0 modulo  $G_{\sigma}$ , we can find some  $h_i \in \langle F \rangle$  and  $b_i \in R \setminus \ker(\sigma)$  such that  $\sigma(b_i g_{j_i}) = \sigma(h_i)$  and  $\operatorname{Im}(\sigma(h_i)) = \operatorname{Im}(\sigma(g_{j_i})) > \operatorname{Im}(g_{j_i})$  for each  $i \in \{1, ..., r\}$ . Let  $b = \prod_{i=1}^r b_i$ , which is non-zero, then

$$f' = bf - \sum_{i=1}^{r} c_i \frac{b}{b_i} \frac{\text{Im}(f)}{\text{Im}(g_{j_i})} (b_i g_{j_i} - h_i)$$

is a new polynomial with

$$\sigma(f') = \sigma(bf) - \sum_{i=1}^{r} \sigma\left(c_i \frac{b}{b_i} \frac{\operatorname{Im}(f)}{\operatorname{Im}(g_{j_i})}\right) (\sigma(b_i g_{j_i}) - \sigma(h_i)) = \sigma(bf)$$

hence  $\operatorname{Im}(\sigma(f')) = \operatorname{Im}(\sigma(f))$  but also  $\operatorname{Im}(f') < \operatorname{Im}(f)$  since  $\operatorname{Im}(g_{j_i}) > \operatorname{Im}(h_i)$ . Thus the conclusion follows from the induction hypothesis.

We will use a consequence of this lemma, which uses a test that is much easier to check. We use the above lemma with R = k[U].

**2.7** • **Lemma.** Let  $G = \{g_1, g_2, ..., g_k\}$  be a Gröbner basis of an ideal  $\langle F \rangle$  in k[X, U] w.r.t  $\langle$  and let  $\alpha \in k_1^m$ . If  $\sigma_{\alpha}(\operatorname{lc}_U(g)) \neq 0$  for each  $g \in G \setminus k[U]$ , then  $\sigma_{\alpha}(G)$  is a Gröbner basis of  $\langle \sigma_{\alpha}(F) \rangle$ .

*Proof.* First note that since  $X^{\nu_1} > U^{\nu_2}$ , any Gröbner basis of  $\langle F \rangle \subset k[X,U]$  is also a Gröbner basis of  $\langle F \rangle \subset k[U][X]$ . Let  $G_{\alpha} = \{\sigma_{\alpha}(g) \mid \sigma_{\alpha}(\operatorname{lc}_{U}(g)) \neq 0\}$ . If there is any  $g \in G$ , such that  $\sigma_{\alpha}(g) \in k_1 \setminus \{0\}$ , then  $g \in G \cap k[U]$  since  $\sigma_{\alpha}(\operatorname{lc}_{U}(g)) \neq 0$  for all  $g \in G \setminus K[U]$ . Furthermore, since  $g \in \langle F \rangle$ , we get that  $\langle \sigma_{\alpha}(F) \rangle = k_1[X]$  and  $\sigma_{\alpha}(G)$  is a Gröbner basis.

If there is no such g, then  $\alpha \in V(G \cap k[U])$ . Take any  $g \in G$ . If  $\sigma_{\alpha}(g) \in G_{\alpha}$ , then  $lt(\sigma_{\alpha}(g)) = a \cdot lm_{U}(g)$  for some  $a \in k_{1}$  since  $X^{\nu_{1}} > U^{\nu_{2}}$ . Thus the monomial of its leading term is preserved by  $\sigma_{\alpha}$ , so  $\sigma_{\alpha}(g)$  is reducible to 0 modulo  $G_{\alpha}$ , since it's leading term is divisible by its own leading term.

On the other hand, if  $\sigma_{\alpha}(g) \notin G_{\alpha}$ , then we must have  $g \in G \cap k[U]$ . Since  $\alpha \in V(G \cap k[U])$  then  $\sigma_{\alpha}(g) = 0$ , so is immediately reducible to zero. Thus  $\sigma_{\alpha}(G)$  is a Gröbner basis of  $\langle \sigma_{\alpha}(F) \rangle$  by lemma 2.6.

With lemma 2.7 in mind, we can start constructing Gröbner systems. Let G be a reduced Gröbner basis of an ideal  $\langle F \rangle \subset k[X,U]$ , and let  $H = \{lc_U(g) \mid g \in G \setminus k[U]\}$ . Then

 $(k_1^m \setminus \bigcup_{h \in H} V(h), G)$  is a segment of a Gröbner system. Thus, to make a Gröbner system, we need to find segments covering  $\bigcup_{h \in H} V(h) = V(\text{lcm}(H))$ .

If we take G to be a reduced Gröbner basis, then  $h \notin \langle F \rangle$  for any  $h \in H$  since then the corresponding leading term would be divisible by a leading term in G. This is not allowed when G is reduced. Hence, we can find a Gröbner basis  $G_1$  of  $F \cup \{h\}$ , which will then form a segment  $(V(h) \setminus \bigcup_{h_1 \in H_1} V(h_1), G_1)$  where  $H_1 = \{lc_U(g) \mid g \in G_1\}$ . Since k[X,U] is Noetherian, this will eventually stop, forming a Gröbner system.

This gives us the ingredients for a simple algorithm for computing Gröbner systems, Algorithm 1.

```
Algorithm 1: CGS_{simple}, an algorithm for computing comprehensive Gröbner systems on V(S)
```

```
INPUT: Two finite sets F \subset k[X,U], S \subset k[U]

OUTPUT: A finite set of triples (E,N,G), each forming a segment of a comprehensive Gröbner system on V(S).

if \exists g \in S \cap (k \setminus \{0\}) then

return \emptyset;

else

G \leftarrow \mathbf{groebner}(F \cup S);

H \leftarrow \{lc_U(g) \mid g \in G \setminus k[U]\};

h \leftarrow lcm(H);

return \{(S,\{h\},G)\} \cup \bigcup_{h' \in H} CGS_{simple}(G \cup \{h'\},S \cup \{h'\})

end
```

**2.8** • **Theorem.** Let  $F \subset k[X,U]$  and  $S \subset k[U]$  be finite sets of polynomials. Then  $\mathbf{CGS_{simple}}(F,S)$  terminates and the output  $\mathcal{H}$  is a comprehensive Gröbner system on V(S).

*Proof.* First, we prove termination. Let *F* and *S* be inputs to **CGS**<sub>simple</sub>, let *G* be the reduced Gröbner basis of  $F \cup S$  and let  $H = \{lc_U(g) \mid g \in G \setminus k[U]\}$ . Take any  $h \in H$ . Since *G* is reduced,  $h \notin \langle F \cup S \rangle$ , since then its leading term would be divisible by an element in *G*, but that cannot be the case. Indeed, since  $h \in k[U]$ , it cannot be reduced by any  $g \in G \setminus k[U]$  (as  $X^{v_1} > U^2$ , so the leading terms of  $G \setminus k[U]$  must contain a variable from *X*), and if it was reducible by a  $p \in G \cap k[U]$ , then that *p* would also reduce one of the elements of  $G \setminus k[U]$ , which is not allowed when *G* is reduced. Thus  $\langle F \cup S \rangle \subseteq \langle F \cup S \cup \{h\} \rangle$ . Since this is the case at every recursive call, each successive call to **CGS**<sub>simple</sub> will have a strictly greater ideal  $\langle F \cup S \rangle$ . Since k[X,U] is Noetherian, this must stop eventually. Note also, that since *F* stays constant, this means that  $\langle S \rangle \subseteq \langle S \cup \{h\} \rangle$ .

Next, we prove that if  $(E, N, G) \in \mathcal{H}$ , then  $(V(E) \setminus V(N), G)$  is a segment of a Gröbner system. By the algorithm,  $N = \operatorname{lcm}(H)$ , where  $H = \{\operatorname{lc}_U(g) \mid g \in G \setminus k[U]\}$  as before, for G being the reduced Gröbner basis of  $\langle F \cup S \rangle$ . Hence, for any  $\alpha \in V(E) \setminus V(N)$ , we have that  $\sigma_{\alpha}(\operatorname{lc}_U(g)) \neq 0$  for every  $g \in G \setminus k[U]$ . Thus  $\sigma_{\alpha}(G)$  is a Gröbner basis of  $\langle \sigma_{\alpha}(F \cup S) \rangle$  by lemma 2.7. Also, E = S, so  $\sigma_{\alpha}(S) = 0$ . Hence  $\langle \sigma_{\alpha}(F \cup S) \rangle = \langle \sigma_{\alpha}(F) \rangle$ , so  $\sigma_{\alpha}(G)$  is a Gröbner basis of  $\langle \sigma_{\alpha}(F) \rangle$ .

Finally, we need to prove that

$$\bigcup_{(E,N,G)\in\mathscr{H}}V(E)\setminus V(N)=V(S).$$

Note, that since  $V(\text{lcm}(H)) = \bigcup_{h \in H} V(H)$ , we have the following:

$$V(S) = (V(S) \setminus V(\operatorname{lcm}(H))) \cup \bigcup_{h \in H} V(h)$$
$$= (V(S) \setminus V(\operatorname{lcm}(H))) \cup \bigcup_{h \in H} V(S \cup \{h\})$$

Inductively, the recursive calls to  $\mathbf{CGS_{simple}}$  will compute Gröbner systems covering  $\bigcup_{h \in H} V(S \cup \{h\})$ . The base case is when  $\langle S \rangle = k[U]$ . In that case,  $V(S) = \emptyset$ , so  $\emptyset$  is a comprehensive Gröbner system on V(S).

Note that in the implementation, we use  $G \setminus (k[U] \setminus k)$  for the Gröbner segments. This has no impact on the validity of the segments, it just removes elements, which would specialize to 0 on that segment anyway.

However, this algorithm has a crucial flaw: if (E, N, G) is a triple returned by  $CGS_{simple}$ , then we don't necessarily have  $G \subset \langle F \rangle$ . This may or may not be a problem depending on the application. For some of the applications of this project, this is indeed a flaw. To fix this, we present an alternative algorithm, which will be extended to produce Gröbner segments, which are properly contained in  $\langle F \rangle$ . This algorithm depends on the following proposition.

**2.9** • **Proposition.** Let  $F \subset k[X,U]$  and  $S \subset k[U]$  be finite sets of polynomials and let G be the reduced Gröbner basis of  $\langle F \cup S \rangle$ . Then  $(V(G \cap k[U]) \setminus V(h), G \setminus k[U])$  is a segment of a Gröbner system for both  $\langle F \cup S \rangle$  and  $\langle F \rangle$ , where  $h = \text{lcm}\{\text{lc}_U(g) \mid g \in G \setminus k[U]\}$ .

*Proof.* Let  $h = \text{lcm}\{\text{lc}_U(g) \mid g \in G \setminus k[U]\}$  and let  $\alpha \in V(G \cap k[U]) \setminus V(h)$ . Since  $X^{\nu_1} > U^{\nu_2}$ , we have that  $\langle G \cap k[U] \rangle = \langle F \cup S \rangle \cap k[U]$ . Thus we can assume w.l.o.g. that  $S = G \cap k[U]$ .

Since  $\alpha \notin V(h) = \bigcup_{g \in G \setminus k[U]} V(\operatorname{lc}_U(g))$ , we have that  $\sigma_\alpha(\operatorname{lc}_U(g)) \neq 0$  for each  $g \in G \setminus k[U]$ . Thus  $\sigma_\alpha(G)$  is a Gröbner basis of  $\langle \sigma_\alpha(F \cup S) \rangle$  by lemma 2.7.

Finally, since  $\alpha \in V(G \cap k[U])$ , we have that  $\sigma_{\alpha}(G) = \sigma_{\alpha}(G \setminus k[U]) \cup \{0\}$ , and since  $S = G \cap k[U]$ , we have  $\sigma_{\alpha}(F \cup S) = \sigma_{\alpha}(F) \cup \{0\}$ . Thus  $\sigma_{\alpha}(G) = \sigma_{\alpha}(G \setminus k[U]) \cup \{0\}$  is a Gröbner basis of both  $\langle \sigma_{\alpha}(F) \rangle$  and  $\langle \sigma_{\alpha}(F \cup S) \rangle$ .

Armed with this proposition, we can compute Gröbner segments like this: we simply add leading terms to F until  $\langle F \cup S \rangle = k[X,U]$  and compute the segment  $(V(G \cup k[U]) \setminus V(h), G \setminus k[U])$  at every step along the way. This algorithm is a variation on the algorithm presented in [2].

#### Algorithm 2: CGS<sub>aux</sub>, an auxiliary algorithm for computing Gröbner systems

```
INPUT: A finite set F \subset k[X,U]

OUTPUT: A finite set of tuples (h,G)

G \leftarrow \mathbf{groebner}(F);

H \leftarrow \{lc_U(g) \mid g \in G \setminus k[U]\};

h \leftarrow lcm(H);

if h = 1 then

\mid \mathbf{return} \{(h,G)\};

else

\mid \mathbf{return} \{(h,G)\} \cup \bigcup_{h' \in H} CGS_{aux}(G \cup \{h'\});

end
```

**2.10** • Lemma. Assume that  $F \subset k[X,U]$  is a Gröbner basis, and let  $\mathcal{H}$  be the result of  $CGS_{aux}(F)$ . If  $(h,G) \in \mathcal{H}$ , then  $(V(G \cap k[U]) \setminus V(h), G \setminus k[U])$  is a Gröbner system. Furthermore,

$$\{(V(G \cap k[U]) \setminus V(h), G \setminus k[U]) \mid (h, G) \in \mathcal{H}\}$$

is a comprehensive Gröbner system on  $V(\langle F \rangle \cap k[U])$ .

*Proof.* We first prove that  $CGS_{aux}$  terminates on every input. Let F be the input to  $CGS_{aux}$ , let G be the reduced Gröbner basis of  $\langle F \rangle$ , and let  $H = \{lc_U(g) \mid g \in G \setminus k[U]\}$ . Since G is reduced,  $h \notin \langle F \rangle$  since then its leading term would be divisible by an element in G, but that is not the case. Indeed, since  $h \in k[U]$ , it cannot be reduced by any  $g \in G \setminus k[U]$  (as  $X^{v_1} > U^{v_2}$ , so the leading terms of  $G \setminus k[U]$  must contain a variable from X), and if it was reducible by a  $p \in G \cap k[U]$ , then that p would also reduce one of the elements of  $G \setminus k[U]$ . Thus  $\langle F \rangle \subsetneq \langle F \cup h \rangle$ . Since this is the case at every recursive call, the each successive call to  $CGS_{aux}$  will have a strictly greater ideal. Since k[X,U] is Noetherian, this must stop eventually.

Next, we prove that if  $(h,G) \in \mathcal{H}$ , then  $(V(G \cap k[U]) \setminus V(h), G \setminus k[U])$  is a segment of a Gröbner system. If we let F be the original input to  $CGS_{aux}$ , then each such G is the reduced Gröbner basis of  $\langle F \cup S \rangle$  where  $S \subset k[U]$  is the set of recursively added leading coefficients. By proposition 2.9  $(V(G \cap k[U]) \setminus V(h), G \setminus k[U])$  is a segment of a Gröbner system.

Finally, we prove that  $\bigcup_{(h,G)\in\mathscr{H}}V(G\cap k[U])\setminus V(h)=V(\langle F\rangle\cap k[U])$ . Note, that since  $V(\operatorname{lcm}(H))=\bigcup_{h\in H}V(h)$ , we have the following:

$$\begin{split} V(\langle G \cap k[U] \rangle) &= (V(\langle G \cap k[U] \rangle) \setminus V(\operatorname{lcm}(H))) \cup \bigcup_{h \in H} V(h) \\ &= (V(\langle G \cap k[U] \rangle) \setminus V(\operatorname{lcm}(H))) \cup \bigcup_{h \in H} V(\langle G \cup \{h\} \rangle \cap k[U]). \end{split}$$

By induction, the recursive calls to  $CGS_{aux}$  will compute Gröbner segments covering  $\bigcup_{h\in H}V(\langle G\cup\{h\}\rangle\cap k[U])$ . Jeg skal finde ud af hvordan jeg vil håndtere base-casen. Mit bud lige nu er, at en

Eller måske skal man kun bruge  $k[U] \setminus k$ , så konstanter bliver der. Der er nogle problemer med de der konstanter.

Finally, we can use the result of this lemma to compute a comprehensive Gröbner system.

**Algorithm 3:** CGS, an algorithm for computing a comprehensive Gröbner system

```
INPUT: F \subset k[X,U] a finite set of polynomials

OUTPUT: A finite set of triples (E,N,G) forming a comprehensive Gröbner system

\mathcal{H} \leftarrow \text{CGS}_{\text{aux}}(F);

G_0 \leftarrow \text{groebner}(F);

GS \leftarrow \emptyset;

if \exists g \in G_0 \cap k[U] then

\mid GS \leftarrow \{(\emptyset, G_0 \cap k[U], \{1\})\};

end

for (h,G) \in \mathcal{H} do

\mid GS \leftarrow GS \cup \{(G \cap k[U], \{h\}, G \setminus k[U])\};

end

return GS;
```

Note that if  $G \cap k[U] \neq \emptyset$ , then {1} is a Gröbner basis on  $k_1^{|U|} \setminus V(G \cap k[U])$ . Thus the algorithm computes a comprehensive Gröbner system.

#### 3 Parametric Gröbner bases

We now move on to the problem of computing parametric Gröbner bases, which is the problem which Weispfenning tackled in his original article [3]. Recall the definition of parametric Gröbner bases from definition 2.1

- **3.1 Definition (Faithful Gröbner system).** A Gröbner system  $\{(A_1, G_1), \dots, (A_t, G_t)\}$  of an ideal  $\langle F \rangle$  is called *faithful* if  $G_i \subset \langle F \rangle$  for all i.
- **3.2** Corollary. Let  $\mathscr{G} = \{(A_1, G_1), \dots, (A_t, G_t)\}$  be a faithful comprehensive Gröbner system of an ideal  $\langle F \rangle$ . Then  $\bigcup_{(A,G) \in \mathscr{G}} G$  is a parametric Gröbner basis of  $\langle F \rangle$ .

*Proof.* Let  $\sigma_{\alpha}$  be a specialization. Since  $\mathscr G$  was comprehensive, there is some l such that  $\alpha \in A_l$ . Then  $\sigma_{\alpha}(G_l)$  is a Gröbner basis of  $\langle \sigma_{\alpha}(F) \rangle$ , so  $\langle \operatorname{lt}(\sigma_{\alpha}(G_l)) \rangle = \langle \operatorname{lt}(\sigma_{\alpha}(\langle F \rangle)) \rangle$ . Since for all i we have that  $\langle \sigma_{\alpha}(G_i) \rangle \subset \langle \sigma_{\alpha}(F) \rangle$ , we have that  $\langle \operatorname{lt}(\sigma_{\alpha}(G_i)) \rangle = \langle \operatorname{lt}(\sigma_{\alpha}(\langle F \rangle)) \rangle$ , so  $\sum_{i=1}^t \langle \operatorname{lt}(\sigma_{\alpha}(G_i)) \rangle = \langle \sigma_{\alpha}(F) \rangle$ , thus  $\sigma_{\alpha}\left(\bigcup_{(A,G) \in \mathscr G} G\right)$  is a Gröbner basis for  $\langle \sigma_{\alpha}(F) \rangle$ .

The path to computing parametric Gröbner bases seem clear. We simply need to modify the segments of a comprehensive Gröbner system to be faithful, then we're done. While this is surpisingly easy to implement, proving that the way we do it works is a little more cumbersome.

#### 3.1 Computing faithful segments

We follow the path laid out by [2], and introduce a new variable t and extend the monomial order such that  $t^n > X^{v_1} > U^{v_2}$  for all  $n \in \mathbb{N}$  and vectors  $v_1, v_2$ . In the CGS algorithm we added leading coefficients h to a set  $S \subset k[U]$ , and computed reduced Gröbner bases of  $\langle F \cup S \rangle$  to produce the segments. However, this "mixes up" the original ideal with the added leading coefficients. We need a way to seperate them. We do this by replacing  $F \cup S$  with  $t \cdot F \cup (1-t) \cdot S$ , where t is a new auxilliary variable that does not occur in F or S. Here we use the convention, that for a polynomial a and a set of polynomials F,  $a \cdot F := \{a \cdot f \mid f \in F\}$ . Note, that this need not be an ideal.

In this way we can seperate the original ideal from the added polynomials by specializing away *t*. That is the content of this first lemma.

**3.3** • Lemma. Let  $F, S \subset k[X,U]$  be finite sets and let  $g \in \langle t \cdot F \cup (1-t) \cdot S \rangle_{k[t,X,U]}$ . Then  $g(0,X,U) \in \langle S \rangle_{k[X,U]}$  and  $g(1,X,U) \in \langle F \rangle_{k[X,U]}$ .

*Proof.* By assumption, we can find  $f_1, \ldots, f_n \in F$ ,  $s_1, \ldots, s_m \in S$  and  $q_1, \ldots, q_n, p_1, \ldots, p_m \in k[t, X, U]$  such that

$$g = \sum_{i=1}^{n} t q_i f_i + \sum_{j=1}^{m} (t-1) p_j s_j.$$

By linearity of the evaluation map, we get that

$$g(0,X,U) = \sum_{j=1}^{m} p_j(0,X,U) s_j(X,U) \in \langle S \rangle_{k[X,U]}$$

and

$$g(1,X,U) = \sum_{i=1}^{n} q_i(1,X,U) f_i(X,U) \in \langle F \rangle_{k[X,U]}.$$

We're going to need these two specializations a lot, so we'll give them names. Let  $\sigma^0(f) = f(0, X, U)$  and  $\sigma^1(f) = f(1, X, U)$ . We also need that Gröbner bases are preserved under  $\sigma^1$ . While that is not true in general, the following is good enough for our uses.

**3.4** • Lemma. Let  $F \subset k[X,U]$ ,  $S \subset k[U]$  be finite sets with  $V(S) \subset V(\langle F \rangle \cap k[U])$  and let G be the reduced Gröbner basis of  $\langle t \cdot F \cup (1-t) \cdot S \rangle$ . Let also

$$H=\{\operatorname{lc}_U(g)\mid g\in G,\ \operatorname{lt}(g)\notin k[X,U],\ \operatorname{lc}_{X,U}(g)\notin k[U]\}.$$

Then  $\sigma_{\alpha}(\sigma^1(G))$  is a Gröbner basis of  $\langle \sigma_{\alpha}(F) \rangle$  for any  $\alpha \in V(S) \setminus V(\operatorname{lcm}(H))$ .

*Proof.* First note, that  $\operatorname{lt}(g) \notin k[X,U]$  means that the leading term of g contains the variable t and since t dominates the other variables, this means that  $g \in k[t,X,U] \setminus k[X,U]$ . Also, any polynomial in G has degree at most 1 in t, again since t dominates the other variables. For any polynomial  $g \in G$  we can therefor write  $g = t g^t + g_t$  where  $g_t = \sigma^0(g)$  and  $g^t = \sigma^1(g) - \sigma^0(g)$ .

Let  $\alpha \in V(S) \setminus V(\operatorname{lcm}(H))$ . By lemma 3.3 we have that  $\langle \sigma^1(G) \rangle = \langle F \rangle$  and thus  $\langle \sigma_{\alpha}(\sigma^1(G)) \rangle = \langle \sigma_{\alpha}(F) \rangle$  for any specialization  $\sigma_{\alpha}$ . Thus we only need to show that  $\sigma_{\alpha}(\sigma^1(G))$  is a Gröbner basis for itself.

Let  $G' = \{g \in G \mid \operatorname{lt}(g) \notin k[X,U], \operatorname{lc}_{X,U}(g) \notin k[U]\}$ . Then  $\sigma_{\alpha}(\operatorname{lc}_{U}(g)) \neq 0$  for any  $g \in G'$  since  $\alpha \notin V(\operatorname{lcm}(H))$ . We will show later, that if  $g \in G \setminus G'$  then  $\sigma_{\alpha}(g) = 0$ . Thus  $\sigma_{\alpha}(G) = \sigma_{\alpha}(G') \cup \{0\}$ . By lemma 2.7 this means that both  $\sigma_{\alpha}(G)$  and  $\sigma_{\alpha}(G')$  are Gröbner bases in  $k_1[t,X]$ .

Now we only need to show, that  $\sigma_{\alpha}(\sigma^1(G'))$  is a Gröbner basis in  $k_1[X]$ . For any  $g \in G'$  we have that  $\sigma_{\alpha}(g) = \sigma_{\alpha}(t \cdot g^t) + \sigma_{\alpha}(g_t)$ . Since  $g_t = \sigma^0(g) \in \langle S \rangle$  by lemma 3.3 and  $\alpha \in V(S)$ , we have that  $\sigma_{\alpha}(g_t) = 0$ , thus  $\sigma_{\alpha}(g) = \sigma_{\alpha}(t \cdot g^t)$ . This means that  $\sigma_{\alpha}(G') = \sigma_{\alpha}(\{t \cdot g^t \mid g \in G'\})$ . Since t divides every polynomial, and thus term, in that ideal, divisibility of leading terms is independent of t. Thus  $\sigma_{\alpha}(\sigma^1(G'))$  is a Gröbner basis.

To finish the proof, we need to prove the assertion that if  $g \in G \setminus G'$  then  $\sigma_{\alpha}(g) = 0$ . If  $g \in G \setminus G'$ , then either  $\operatorname{lt}(g) \in k[X,U]$  or  $\operatorname{lc}_{X,U}(g) \in k[U]$ . In the first case, since t dominates the other variables, g cannot contain t as a variable. Thus  $g = \sigma^0(g) \in \langle S \rangle_{k[X,U]}$  by lemma 3.3. Since  $\alpha \in V(S)$ ,  $\sigma_{\alpha}(g) = 0$ . On the other hand, if  $\operatorname{lt}(g) \notin k[X,U]$  but  $\operatorname{lc}_{X,U}(g) \in k[U]$ , we note that  $g^t = \operatorname{lc}_{X,U}(g)$ . Since  $g^t = \sigma^1(g) - \sigma^0(g)$ , we get from lemma 3.3 that  $g^t \in \langle F \rangle + \langle S \rangle = \langle F \cup S \rangle$ . Since we also had  $g^t \in k[U]$ , we have  $g^t \in \langle F \cup S \rangle \cap k[U]$ . But by assumption  $V(S) \subset V(\langle F \rangle \cap k[U])$ , thus  $\alpha \in V(S) \cap V(\langle F \rangle \cap k[U]) = V(\langle F \cup S \rangle \cap k[U])$ . Hence,  $\sigma_{\alpha}(g^t) = 0$ . But we proved earlier that for any  $g \in G$  we have  $\sigma_{\alpha}(g_t) = 0$ , so as  $\sigma_{\alpha}(g) = t \cdot \sigma_{\alpha}(g^t) + \sigma_{\alpha}(g_t) = 0$ , we are done.

This lemma is a generalization of lemma 2.7, and as such, it leads us to an algorithm for computing comprehensive, faithful Gröbner systems, at least on the vanishing set of some  $S \subset k[U]$ . We compute the reduced Gröbner basis of  $\langle t \cdot F \cup (1-t) \cdot S \rangle$ , which gives a faithful Gröbner segment on  $V(S) \setminus V(\text{lcm}(H))$ , where  $H = \{\text{lc}_U(g) \mid g \in G, \text{lt}(g) \notin k[X,U], \text{lc}_{X,U}(g) \notin k[U]\}$ . Then, we recursively compute faithful Gröbner segments on each V(h) for  $h \in H$ , by adding h to S.

#### Algorithm 4: CGB<sub>aux</sub>

```
INPUT: F \subset k[X,U] and S \subset k[U], two finite sets such that V(S) \subset V(\langle F \rangle \cap k[U])

OUTPUT: A finite set of triples (E,N,G) forming a comprehensive, faithful Gröbner system on V(S)

if 1 \in \langle S \rangle then | return \emptyset;

else | G \leftarrow \mathbf{groebner}(t \cdot F \cup (1-t) \cdot S); H \leftarrow \{\operatorname{lc}_U(g) \mid g \in G, \operatorname{lt}(g) \notin k[X,U], \operatorname{lc}_{X,U}(g) \notin k[U]\}; h \leftarrow \operatorname{lcm}(H); return \{(S,\{h\},\sigma^1(G))\} \cup \bigcup_{h' \in H} \mathbf{CGB_{aux}}(F,S \cup \{h'\}); end
```

**3.5** • **Theorem.** Let  $F \subset k[X,U]$  and  $S \subset k[U]$  be finite and assume  $V(S) \subset V(\langle F \rangle \cap k[U])$ . Then  $\mathbf{CGB_{aux}}(F,S)$  terminates, and the result is a faithful, comprehensive Gröbner system on V(S) for F.

*Proof.* We first show termination. Let G be the reduced Gröbner basis of  $\langle t \cdot F \cup (1-t) \cdot S \rangle$ , and let  $h \in \{lc_U(g) \mid g \in G, lt(g) \notin k[X,U], lc_{X,U}(g) \notin k[U]\}$ . Let  $g \in G$  be the element such that  $lc_U(g) = h$ . By assumption, g is of the form  $h \cdot t \cdot X^v + g'$  for some vector v and  $g' \in k[X,U]$ . If  $g \in \langle S \rangle$ , then  $(1-t) \cdot h \in \langle G \rangle$ , by the construction of G. This means that  $lt((1-t) \cdot h) = lt(t \cdot h)$  is divisible by some leading term of G, and since the leading term of G doesn't divide it,  $lt(t \cdot h)$  must be divisible by some leading term of  $G \setminus \{g\}$ . But this implies that the leading term of G is divisible by some leading term in  $G \setminus \{g\}$ , which is not allowed as G is a *reduced* Gröbner basis. Thus  $\langle S \rangle \subsetneq \langle S \cup \{h\} \rangle$ . Since k[t, X, U] is Noetherian, we can only expand this ideal finitely many times. Thus the algorithm terminates.

Next, observe that the precondition  $V(S) \subset V(\langle F \rangle \cap k[U])$  always hold if it held initially, as  $V(S') \subset V(S)$  for any  $S' \supset S$ . Apply this to  $S' = S \cup \{h\}$ .

If  $(S, \{h\}, G)$  is in the output of  $\mathbf{CGB_{aux}}(F, S)$ , then  $(V(S) \setminus V(h), G)$  is a segment of a Gröbner system by lemma 3.4. It is also faithful by lemma 3.3.

Finally, we need to show that  $V(S) = \bigcup_{E,N,G} \in \mathbf{CGB_{aux}}(\mathbf{F},\mathbf{S})V(E) \setminus V(N)$ . Let  $H = \{ \mathrm{lc}_U(g) \mid g \in G, \ \mathrm{lt}(g) \notin k[X,U], \ \mathrm{lc}_{X,U}(g) \notin k[U] \}$  and  $h = \mathrm{lcm}(H)$ . Then

$$V(S) = (V(S) \setminus V(h)) \cup \bigcup_{h' \in H} V(h')$$
$$= (V(S) \setminus V(h)) \cup \bigcup_{h' \in H} V(S \cup \{h'\})$$

By induction, the recursive calls to  $\mathbf{CGB_{aux}}$  computes segments covering each  $V(S \cup \{h'\})$ . The base case is when  $S \cup \{h'\} = k[U]$ , but in this case  $V(S \cup \{h'\}) = \emptyset$ , and  $\emptyset$  is a comprehensive Gröbner system on  $\emptyset$ .

The only thing left is to figure out what to do with that V(S). With the **CGS** algorithm we could choose  $S = \emptyset$ , then  $V(S) = k_1^{|U|}$ , but that doesn't work here, as it violates the assumption that  $V(S) \subset V(\langle F \rangle \cap k[U])$ . However, we can choose S to be a set of generators of the ideal  $\langle F \rangle \cap k[U]$ . Then  $S \subset \langle F \rangle$  and  $\langle \sigma_{\alpha}(S) \rangle$  is either zero or  $k_1[X]$ , depending whether  $\alpha \in V(S)$  or not. Hence,  $(k^{|U|} \setminus V(S), S)$  is a faithful segment of a Gröbner system.

**3.6** • **Theorem.** Let  $F \subset k[X,U]$  be a finite set of polynomials. Then  $\mathbf{CGB}(F)$  terminates and the output is a parametric Gröbner basis of  $\langle F \rangle$ .

*Proof.* **CGB** doesn't loop, and every subroutine it calls terminates, so it terminates. Since S is a set of generator of the ideal  $\langle F \rangle \cap k[U]$ , we have that  $V(S) = V(\langle F \rangle \cap k[U])$ , so by theorem 3.5,  $\mathscr{H}$  is a faithful, comprehensive Gröbner system on V(S). Since  $\langle \sigma_{\alpha}(S) \rangle$  is either 0 or  $k_1[X]$ ,  $(k^{|U|} \setminus V(S), S)$  is a segment of a faithful, comprehensive Gröbner system. Hence

$$\{(V(\emptyset) \setminus V(S), S)\} \cup \mathcal{H}$$

#### Algorithm 5: CGB

INPUT:  $F \subset k[X, U]$  a finite set of polynomials

OUTPUT:  $G \subset k[U, X]$  a comprehensive Gröbner basis of F

 $S \leftarrow \mathbf{groebner}(F) \cap k[U];$  $\mathscr{H} \leftarrow \mathbf{CGB_{aux}}(F, S);$ 

return  $S \cup \bigcup_{(E,N,G) \in \mathcal{H}} G$ ;

is a faithful, comprehensive Gröbner system for  $\langle F \rangle$ . By corollary 3.2 we get that  $S \cup \bigcup_{(E,N,G) \in \mathcal{H}} G$  is a parametric Gröbner basis for  $\langle F \rangle$ .

## 4 Applications

### 4.1 Quantifier elimination

One of the first applications of parametric Gröbner bases was presented by its inventor Weispfenning [3] in the original article. It concerns the problem of computing a system of polynomial equations, whose solutions are equivalent to solutions to a set of logical expressions involving polynomial equations, con- and disjunctions, negations and existential quantifiers.

Sepcifically, we're given a formula  $\exists x_1, ..., x_n : \phi(U, x_1, ..., x_n)$  where  $\phi$  is a combination using  $\wedge$  and  $\vee$  of polynomial equalities and inequalities in k[U, X]. If  $k_1$  is an extension field of k, then that formula determines a partioning of  $k_1^{|U|}$ , namely those values of U where the formula is true and those where it isn't. Our goal is to find a system of polynomial equations in k[U] that is satisfied in exactly the same points.

First, we need to normalize the logical expressions, to fit a format we can work with.

- **4.1 Definition (Positive, primitive formula).** A logical formula  $\varphi$  is called *positive and primitive* if it only involves polynomial equalities in k[X], conjunctions and existential quantifiers.
- **4.2 Lemma.** Let  $\phi$  be a logical formula involving polynomial equalities, conjunctions, disjunctions, negations and existential quantifiers. Then there exists a finite set of positive, primitive formula  $\varphi_1, \varphi_2, ..., \varphi_r$  such that  $\phi \iff (\varphi_1 \vee ... \vee \varphi_r)$ .

*Proof.* Using standard logical rules, we can find  $\phi_1, \dots, \phi_r$  containing only polynomial equalities, conjunction, negation and existential quantifiers such that

$$\phi \iff \bigvee_{i=1}^r \phi_r.$$

Using De Morgans law and distributivity we can assume that negations are at the lowest level of the formulas. Thus, we can see the  $\phi_i$ 's as exists tential formulas containing conjunctions of polynomial equations and inequations.

12

Now, to eliminate the inequalities, we use the following trick:

$$f(X) \neq 0 \iff \exists t : f(X) \cdot t - 1 = 0.$$

Thus we can solve each of the positive, primitive formulas independently, and see if any of them are satisfiable.

**4.3** • **Theorem.** Let  $F \subset k[U, X]$  be a finite set of polynomials over an algebraically closed field and let G be a parametric Gröbner basis of F. For a polynomial  $f \in k[U][X]$ , let  $C(f) \subset k[U]$  denote the set of coefficients of non-constant terms in f. Then

$$\left(\exists x_1,\ldots,x_n: \bigwedge_{f\in F} f(U,x_1,\ldots,x_n)=0\right) \iff \bigwedge_{g\in G} \left(g(U,0,\ldots,0)=0\vee \bigvee_{c\in C(g)} c(U)\neq 0\right)$$

in any extension field  $k_1 \supset k$ .

*Proof.* Let  $\alpha \in k_1^{|U|}$ . Then the question of whether  $\exists x_1, \dots, x_n : \bigwedge_{f \in F} f(U, x_1, \dots, x_n) = 0$  is satisfied in  $U = \alpha$  is equivalent to whether  $\langle \sigma_{\alpha}(F) \rangle$  has a common zero, i.e. if  $V(\langle \sigma_{\alpha}(F) \rangle) \neq \emptyset$ .

For the first implication, assume  $\exists x_1,\ldots,x_n: \bigwedge_{f\in F} f(U,x_1,\ldots,x_n)=0$  is satisfied at some  $\alpha\in k_1^{|U|}$ . Let  $\beta\in k_1^{|X|}$  be a vector of  $(x_1,\ldots,x_n)$  such that  $f(\alpha,\beta)=0$  for all  $f\in F$ . Then, since all  $g\in G$  are also in  $\langle F\rangle$ , we get  $g(\alpha,\beta)=0$   $\forall g\in G$ . Hence, if  $g(\alpha,0,\ldots,0)\neq 0$ , then there has to be some non-constant term in g, which is also non-zero at  $\alpha$ .

For the other implication, assume every  $g \in G$  has zero constant term or some non-zero non-constant term, when viewed as a polynomial in k[U][X]. Assume for a contradiction that  $V(\langle \sigma_{\alpha}(F) \rangle) = \emptyset$ . By the weak Nullstellensatz we get that  $1 \in \langle \sigma_{\alpha}(F) \rangle$ . Since G is a parametric Gröbner basis, there is some  $g \in G$  such that  $\operatorname{lt}(\sigma_{\alpha}(g)) \mid 1$ . Thus  $\sigma_{\alpha}(g)$  is a constant polynomial with non-zero constant term, contradicting the assumption.

## References

- [1] Michael Kalkbrener. ?On the Stability of Gröbner Bases Under Specializations? in Journal of Symbolic Computation: 24.1 (1997), pages 51-58. ISSN: 0747-7171. DOI: https://doi.org/10.1006/jsco.1997.0113. URL: https://www.sciencedirect.com/science/article/pii/S0747717197901139.
- [2] Akira Suzuki **and** Yosuke Sato. ?A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases? English. **in**Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC: Association for Computing Machinery (ACM), 2006, **pages** 326–331. ISBN: 1595932763. DOI: 10.1145/1145768. 1145821.

[3] Volker Weispfenning. ?Comprehensive Gröbner bases? in Journal of Symbolic Computation: 14.1 (1992), pages 1-29. ISSN: 0747-7171. DOI: https://doi.org/10.1016/0747-7171(92)90023 - W. URL: https://www.sciencedirect.com/science/article/pii/074771719290023W.