LTL_f Synthesis with Fairness and Stability Assumptions

Shufang Zhu, 1 Giuseppe De Giacomo, 2 Geguang Pu 1 and Moshe Y. Vardi 3

 1 Each China Normal University, 2 Sapienza Università di Roma, 3 Rice University shufangzhu.szhu@gmail.com, degiacomo@diag.uniroma1.it, ggpu@sei.ecnu.edu.cn, vardi@cs.rice.edu

Linear Temporal Logic over Finite Traces

 $\phi ::= a \mid \neg \phi \mid \phi_1 \land \phi_2 \mid X\phi \mid \phi_1 U\phi_2$

 LTL_f : same syntax as Linear Temporal Logic, but interpreted over finite traces [DV13].

LTL_f Synthesis under Assumptions

A game of two players, the *environment* and the *agent*, contrasting each other:

- Given: LTL_f formula ϕ over environment variables \mathcal{X} and agent variables \mathcal{Y} , LTL formula ψ over \mathcal{X} as the environment assumption;
- **Obtain:** A strategy $g:(2^{\mathcal{X}})^+ \to 2^{\mathcal{Y}}$ which tells how the agent reacts in terms of the environment behaviors.

 ϕ describes the desired goal when the environment behaviors satisfy the assumption ψ .

Planning for LTL_f goals can be considered as a form of LTL_f synthesis under assumptions, where the assumptions are the dynamics of the environment encoded in the planning domain [ADMR19].

LTL_f Synthesis with Fairness and Stability Assumptions

 LTL_f synthesis under assumptions can be reduced to standard LTL synthesis, which remains a challenging problem [Finkbeiner2016]. How about environment assumptions with particular interests?

We propose a **reduction to two-player DFA games** to capture two different basic, but quite significant, forms of assumptions:

- a basic form of **fairness GF** α (always eventually α),
- a basic form of **stability FG** α (eventually always α),

where in both cases boolean formula α is over environment variables \mathcal{X} .

Highlighted Contributions

Each LTL_f goal ϕ can be translated to a Deterministic Finite Automaton (DFA) that accepts exactly the traces satisfying ϕ .

Key Idea: Conduct specific two-player DFA games to interpret the synthesis problems.

- express the LTL_f goal using the corresponding DFA as the game arena,
- express the assumption as part of the game winning condition.

Agent wins the game if specific winning condition is satisfied.

Reduction to Two-player DFA Games

LTL_f synthesis under **fairness assumption** $GF\alpha$, the agent wins the game if one of the following conditions holds:

- Stability: the trace over $\mathcal{X} \cup \mathcal{Y}$ does not satisfy the fairness assumption $GF\alpha$,
- Reachability: an accepting state is reached.

LTL_f synthesis under **stability assumption** $FG\alpha$, the agent wins the game if one of the following conditions holds:

- Recurrence: the trace over $\mathcal{X} \cup \mathcal{Y}$ does not satisfy the stability assumption $FG\alpha$,
- Reachability: an accepting state is reached.

Experiments

Comparison between our tool FSyft and LTL synthesis tool Strix for solving the problem of LTL_f synthesis under fairness assumptions. 1000 randomly conjuncted cases, generated by taking conjunctions over randomly selected basic formulas [ZTLPV17]. 20 scalable counter game cases.

For more experimental results, please see our paper in the proceedings.

Future Work

Targeting more general LTL assumptions. A possible approach is transforming only the assumption into a parity automaton, taking product with the DFA and then playing parity/reachability game on it.

