1.	38 cm
2.	30 cm^2
3.	60 cm ³
4.	65°
5.	15 cm
6.	384 cm^2
7.	$\pi/4$ radians
8.	43.96 cm
9.	Yes
10.	40 cm ²
11.	0.5
12.	8 cm
13.	22.62°
14.	7.07 cm
15.	0.5
16.	11.55 m
17.	Use formula $\frac{1}{2}$ ab $\sin C$
18.	≈ 10.3 cm
19.	≈ 7.62 cm
20.	70°
21.	78.5 cm ²

22. 12.57 cm

- 23. 113.1 cm²
- 24. 25.7 cm
- 25. 502.65 cm³
- 26. 12 cm
- 27. Twice angle subtended by tangent points
- 28.5 cm
- 29. 9.9 cm
- 30. $(x-3)^2 + (y+2)^2 = 25$
- 31. 90° each
- 32. 360°
- 33. 60 cm²
- 34. Width = 6 cm, Length = 12 cm
- 35. 110°
- 36. (4, 6)
- 37. Equal by square properties
- 38. 40 cm²
- 39. 34 cm
- 40. Diagonals bisect each other
- **41.** 9 sides
- 42. 120°
- 43. 45°
- 44. 35
- 45. 360°

```
46. 9 sides
47. 108°
48. 9 sides
49. 9 sides
50.9
51. (2, 2)
52. (-10, 16)
53. 10
54. 45°
55. $\left(\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right) $
56. 2
57. Yes
58. (5, 6)
59. (3, 7)
60. Vector magnitude and direction found by components
61. \frac{1}{3}   \cos 3^2   \cos 7 = 21   \cos^3 
62. Use derivative \frac{dA}{dt} = 2\pi r \frac{dr}{dt} $
63. 5
64. Perpendicular vector: (-y, x)
65. Length 8, angle 60°
66. Obtuse check via cosine rule
67. Use negative reciprocal slope
```

68. $\frac{4}{3} \pi^3 = \frac{4}{3} \pi^3 = 523.6 \text{ cm}^3$

- 69. Diagonal length = 13 cm
- 70. 7 cm
- 71. Use dot product formula, angle cos⁻¹
- 72. Distance formula to line
- 73. Use area formula for coordinates
- 74. Perpendicular diagonals by dot product zero
- 75. External 18°, internal 162°
- 76. Complete square: center (2, -3), radius 5
- 77. Sine rule application
- 78. Sector area $\frac{120}{360}$ \times \pi \times 10^2 = 104.7 \\$ cm²
- 79. Line equation y = x + 2
- 80. Calculate midpoints and lengths
- 81. $\frac{3}{2} \times 10 = 8.66$ cm
- 82. Bearing 45° or other measured angle
- 83. Sum interior angles $$ = n 2 \times 180$
- 84. Side length $= \frac{10}{2}{\sqrt{2}} = 10$ \$ cm
- 85. (4, -4)
- 86. 40 cm
- 87. 360 cm³
- 88. Reflection line y = -2
- 89.60°
- 90. 5 cm
- 91. Diagonals equal by Pythagoras

- 92. 15 sides
- 93. 25°
- 94. 5
- 95. 60 cm²
- 96. 5
- 97. 339.3 cm³
- 98. 20°
- 99. 900°
- 100. (-8, 6)