N1. **Definition.** The Limit Definition of Derivative

Suppose the distance a train has traveled is a function of time y = f(x). y = f(x)distance [mi] secant y_2 y_1 tangent → time [hr] xx + haverage average slope of definition of rate of velocity secant change difference between over over quotient [x,x+h]x, x+hx, x+hrate of

("instantaneous") rate of velocity at
$$x$$
 = $\frac{\text{change}}{\text{at } x}$ = $\frac{\text{tangent}}{\text{at } x}$ = $\lim_{h \to \infty}$ = $\lim_{h \to \infty}$ = definition of derivative written y' or $\frac{dy}{dx}$ or $f'(x)$ or $\frac{d}{dx}f(x)$

- N2. Exercise. Estimate from the diagram: the slope of the **secant** through 2 and 4.
- N3. Exercise. Estimate from the diagram: the slope of the tangent at 2.

N4. Example. Suppose
$$f(x) = 15 + \frac{5}{8}x^4$$
. Compute the slope of the **secant** through x and $x + h$.
$$f(x+h) = 15 + \frac{5}{8}(x+h)^4 = 15 + \frac{5}{8}x^4 + \frac{20}{8}x^3h + \frac{30}{8}x^2h^2 + \frac{20}{8}xh^3 + \frac{5}{8}h^4$$

$$\frac{f(x+h)-f(x)}{h} =$$

- N5. **Exercise.** Suppose $f(x) = 15 + \frac{5}{8}x^4$. Compute the slope of the **tangent** line at x.
- N6. Exercise. Use your answer to N5 to compute f'(2).

M1. **Definition.** The Limit Definition of Derivative

N2. Exercise. Estimate from the diagram: the slope of the secant through 2 and 4.

N3. Exercise. Estimate from the diagram: the slope of the tangent at 2.

N4. Example. Suppose $f(x) = 15 + \frac{5}{8}x^4$. Compute the slope of the **secant** through x and x + h. $f(x+h) = 15 + \frac{5}{8}(x+h)^4 = 15 + \frac{5}{8}x^4 + \frac{20}{8}x^3h + \frac{30}{8}x^2h^2 + \frac{20}{8}xh^3 + \frac{5}{8}h^4 = \frac{1}{8}h^4$

N5. Exercise. Suppose $f(x) = 15 + \frac{5}{8}x^4$. Compute the slope of the tangent line at x.

N6. Exercise. Use your answer to N5 to compute f'(2).