Machine Learning course advanced track

Practice 14: Model Compression

Radoslav Neychev Iurii Efimov

MIPT 07.12.2019, Moscow, Russia

References

These slides are mostly based on paper <u>"A Survey on Methods and Theories of Quantized Neural Networks" by Yunhui Guo</u>

Model Compression Methods

- Weight Pruning
- Low-rank Approximation
- Knowledge Distillation
- Quantization

Model Compression Methods

- Weight Pruning
- Low-rank Approximation
- Knowledge Distillation (whiteboard driven)
- Quantization

State-of-the-art CNN Architectures

	# of parameters	Layers	flops	Top-1 error rate on ImageNet
AlexNet	60M	8	725M	43.45%
VGGNet-16 (BN)	138M	16	15484M	26.63%
GoogleNet	6.9M	22	1566M	31.30%
ResNet-152	60.2M	152	11300M	22.16%

Fig. 1: Distributions of weights (left two columns) and activations (right two columns) at different layers of the ResNet-20 network trained on CIFAR-10. All the test-set images are used to get the activation statistics.

¹ LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs, https://arxiv.org/pdf/1807.10029.pdf

- DL in low-power devices: smartphones, etc.
- Reduce memory consumption
- Reduce processing time
- Reduce energy consumption
- Reduce training time

- Make model more compact without performance degradation
- Use fixed-point operations instead of floating-point
- Given a,b binary vectors, a dot product is calculated as:

$$a\dot{b} = bitcount(a \ and \ b)$$

How?

- Deterministic: Discrete mapping between floating-point and fixed-point values
- Stochastic: quantized values are sampled from discrete distributions

What?

- Weights
- Activations
- Gradients

When?

- Training phase
- Post-training phase

How?

- Deterministic: Discrete mapping between floating-point and fixed-point values
- Stochastic: quantized values are sampled from discrete distributions (not today)

• What?

- Weights
- Activations
- Gradients (not today)

• When?

- Training phase
- Post-training phase (not today)

Pipeline

Forward pass:¹

$$x^b = sign(x) = \begin{cases} +1, & \text{if } x \ge 1\\ 0, & \text{otherwise} \end{cases}$$

Backward pass: gradients are 0 almost everywhere?
 Solution: Straight Through Estimator (STE)²

A simple example is the STE defined for Bernoulli sampling with probability $p \in [0, 1]$:

Forward:
$$q \sim Bernoulli(p)$$

Backward:
$$\frac{\partial c}{\partial p} = \frac{\partial c}{\partial q}$$
.

¹ BinaryConnect: Training Deep Neural Networks with binary weights during propagations, https://arxiv.org/abs/1511.00363

² Deep Neural Networks for Acoustic Modeling in Speech Recognition,

• Basic approach¹: BinaryConnect

Forward:
$$x^b = \operatorname{Sign}(x)$$

Backward: $\frac{\partial E}{\partial x} = \frac{\partial E}{\partial x^b} I_{|x| \le 1}$

where $I_{|x|<1}$ is an indicator function defined as,

$$\mathbf{I}_{|x| \le 1} = \begin{cases} 1 & |x| \le 1, \\ 0 & \text{otherwise} \end{cases}$$

¹ BinaryConnect: Training Deep Neural Networks with binary weights during propagations, https://arxiv.org/abs/1511.00363

• Improved approach¹: XNOR-Net

Forward:
$$x^b = \operatorname{Sign}(x) \times \operatorname{E}_F(|x|)$$

Backward:
$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial x^b}$$

where EF(|x|) is the mean of absolute weight values of each output channel

¹ XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, https://arxiv.org/abs/1603.05279

General scheme:

$$Q(x) = sc^{-1}(x)(\hat{Q}(sc(x)))$$

 $sc(x) : \mathbb{R} \to [0,1]$ - scaling function

 $\hat{Q}(x):[0,1]\to\{a_1,..,a_k\}$ - quantization for k quantization levels

Drawbacks:

- Performance drop may occur due to rounding
- Keep real values during training → memory overhead
- Harder to converge

Quantization: Vector-based

- Cluster the weights and use centroids to replace actual weights
- Given weight matrix

$$W \in R_{m \times n}$$

can perform k-means clustering

$$min \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{l=1}^{k} ||w_{ij} - c_k||^2$$

¹ Compressing Deep Convolutional Networks using Vector Quantization, https://arxiv.org/abs/1412.6115

² Quantized Convolutional Neural Networks for Mobile Devices, https://arxiv.org/abs/1512.06473

Quantization: Vector-based

Drawbacks:

- Expensive computation (K-means)
- Hard to achieve binary weights
- Hard to train from scratch
- Ignores local information in CNN

Quantization: Optimization

Find optimal approximation for real value weights

Binary weights:

$$J(B) = ||W - \alpha B||^2 \to \min_B$$

$$B^* = sign(W) \quad \alpha^* = \frac{1}{n} ||W||_{l1}$$

Ternary weights:²

$$\alpha^*, W^{t^*} = \begin{cases} \operatorname{argmin}_{\alpha, W^t} J(\alpha, W^t) = \|W - \alpha W^t\|_2^2 \\ \text{s.t.} \quad \alpha \geq 0, W_i^t \in -1, 0, 1, i = 1, 2, ..., n. \end{cases}$$

Etc.

¹ XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, https://arxiv.org/abs/1603.05279

² Ternary Weights Networks, https://arxiv.org/abs/1605.04711

Quantization: Optimization

Drawbacks:

- Convergence relies on weak assumptions
- Harder to implement
- Some methods require second-order derivatives

XNOR-net

Notation: L is the number of layers in the network. \mathbf{w}_{t-1} is the weight at time t-1. b_{t-1} is the bias at time t-1. a_k is the activation of layer k. n is the number of elements in a filter. E is the loss function.

Input: a minibatch of data (inputs, labels), a learning rate η_t . **Forward pass:**

2. for
$$k^{th}$$
 filter in l^{th} layer do:

3.
$$\mathbf{a}^{lk} = \frac{1}{n} \|\mathbf{w}_{t-1}^{lk}\|_{l_1}$$

4.
$$\mathbf{b}^{lk} = \operatorname{Sign}(\mathbf{w}_{t-1}^{lk})$$

5.
$$\mathbf{w}_b^{lk} = \mathbf{a}^{lk} \mathbf{b}^{lk}$$

6. Compute activations based on binarized filters

Backward pass:

1. Compute backward gradient $\frac{\partial E}{\mathbf{w}_b}$ based on \mathbf{w}_b

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, https://arxiv.org/abs/1603.05279

Parameter update:

1. Update \mathbf{w}_t using \mathbf{w}_{t-1} and $\frac{\partial E}{\mathbf{w}_b}$

A block in XNOR-Net

A typical block in CNN

⁷⁰

DoReFa-Net

A simple example is the STE defined for Bernoulli sampling with probability $p \in [0, 1]$:

Forward: $q \sim Bernoulli(p)$

Backward: $\frac{\partial c}{\partial p} = \frac{\partial c}{\partial q}$.

An STE we will use extensively in this work is **quantize**_k that quantizes a real number input $r_i \in [0, 1]$ to a k-bit number output $r_o \in [0, 1]$. This STE is defined as below:

Forward:
$$r_o = \frac{1}{2^k - 1} \text{ round}((2^k - 1)r_i)$$
 (5)

Backward:
$$\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o}$$
. (6)

DoReFa-Net

An STE we will use extensively in this work is **quantize**_k that quantizes a real number input $r_i \in [0,1]$ to a k-bit number output $r_o \in [0,1]$. This STE is defined as below:

Forward:
$$r_o = \frac{1}{2^k - 1} \text{ round}((2^k - 1)r_i)$$
 (5)

Backward:
$$\frac{\partial c}{\partial r_i} = \frac{\partial c}{\partial r_o}$$
. (6)

In case we use k-bit representation of the weights with k > 1, we apply the STE f_{ω}^k to weights as follows:

Forward:
$$r_o = f_\omega^k(r_i) = 2 \operatorname{quantize}_k(\frac{\tanh(r_i)}{2 \max(|\tanh(r_i)|)} + \frac{1}{2}) - 1.$$
 (9)

Backward:
$$\frac{\partial c}{\partial r_i} = \frac{\partial r_o}{\partial r_i} \frac{\partial c}{\partial r_o} 4$$
 (10)

¹ XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, https://arxiv.org/abs/1603.05279

DoReFa-Net: Let's code!

¹ XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, https://arxiv.org/abs/1603.05279