Пространство будет иметь размерность n^2 (грубо говоря, вытянем все столбцы в один). Выберем базис следующим образом:

- о n^2-1 матриц, у которых на i,j месте 1, на остальных 0, $i,j\in\overline{1,n}, (i,j)\neq(n,1);$
- одна матрица матрица из всех едениц.

Занумеруем векторы базиса следующим образом: матрица из всех единиц будет иметь номер n^2-n , остальные векторы $(i-1)\cdot n+j$, где i и j — позиция ненулевого элемента. В таком базисе у верхнетреугольных матриц координата с номером n^2-n будет всегда нулевой. Из формулы скалярного произведения

$$\langle a, b \rangle = \sum_{i=1}^{n^2} a_i b_i,$$

 a_i, b_i — координаты в выбранном базисе, следует, что еденичная матрица ортогональна любой верхнетреугольной матрице.