MATH 524 - Lecture 27 (11/28/2023)

Today: * elementary cochains * computing coboundaries, cohomology

Recall: Elementary cochain: ∇_{α}^{*} : 1 on ∇_{α} , 0 o.w. p-cochain $\beta^{p} = \sum_{i} g_{\alpha} \nabla_{\alpha}^{*}$ $\delta \phi^{p} = \sum_{i} g_{\alpha} (\delta \nabla_{\alpha}^{*}) \qquad (*)$

Let's verify (X): let T be a (p+)-simplex, and suppose $\partial T = \sum_{i=0}^{p+1} \epsilon_i \sigma_{x_i}$, $\epsilon_i = \pm 1$ $\forall i$.

Then $\langle \mathcal{S} \phi^{\dagger}, \tau \rangle = \langle \phi^{\dagger}, \partial \tau \rangle = \sum_{i=0}^{|\mathfrak{b}^{\dagger}|} \mathcal{E}_{i} \langle \phi^{\dagger}, \tau_{\alpha_{i}} \rangle$ $= \sum_{i=0}^{|\mathfrak{b}^{\dagger}|} \mathcal{E}_{i} \mathcal{J}_{\alpha_{i}}, \text{ where } \mathcal{J}_{\alpha_{i}} = \text{value of } \phi^{\dagger} \text{ on } \tau_{\alpha_{i}}.$

Also, $\langle g_{\alpha}(So_{\alpha}^{*}), \tau \rangle = g_{\alpha}\langle Sv_{\alpha}^{*}, \tau \rangle = g_{\alpha}\langle o_{\alpha}^{*}, \partial \tau \rangle$ $= \begin{cases} \varepsilon_{i}g_{\alpha}, & \text{if } \alpha = \alpha_{i}, \ i = 0, ..., \text{p+1}; \text{ and} \\ 0, & \text{otherwise}. \end{cases}$

So, (X) does hold.

By (*), to compute $S\phi^{\dagger}$, it suffices to compute $S\sigma^{*}$ for each oriented p-simplex σ . But $S\sigma^{*} = \Sigma \in_{j} T_{j}^{*}$

where the sum extends over all (pt)-simplices T_i that are cofaces of T_i i.e., $T_i > T$ (or, T_j has T_i as a face), and $E_j = \pm 1$ is the sign with which T_i appears in the expression for ∂T_j .

So, we can compute cohomology using elementary cochains, We now explore several examples.

Examples

1. Vertices $\{v_i\}$ edges $\{e_i\}$ faces $\{f_i\}$

Let's evaluate some coehains, and their coboundaries.

Let's evaluate some war axis; and plant proof.

Sez =
$$f_1^* - f_0^*$$
 notice \overline{e}_2 has $+1$ in $\partial \overline{f}_1$ and -1 in $\partial \overline{f}_8$

S $V_3^* = e_2^* + e_3^* + e_4^*$.

Cocycles and coboundaries

Both f_0^* and f_1^* are trivial 2-cocycles (as K has no 3-simplices, so $Sf_0^* = Sf_1^* = 0$).

Also, both f^* and f^* are coboundaries, since $Se^*_0 = f^*_0$ and $Se^*_1 = -f^*_1$.

Also, $Se_3^* = f_0^*$ and $Se_4^* = -f_1^*$.

The 1-cochain $\phi' = e_0^* + e_z^* + e_4^*$ is a 1-cocycle, as $S\phi' = f_0^* + (f_1^* - f_0^*) + -f_1^* = 0$.

It is also a 1-coboundary, as $S(v_1^* + v_3^*) = \phi^1$.

Here are all the o-coboundaries:

$$Sv_{0}^{*} = -e_{0}^{*} - e_{1}^{*} - e_{2}^{*}$$

$$Sv_{0}^{*} = -e_{0}^{*} - e_{1}^{*} - e_{2}^{*}$$

$$Sv_{1}^{*} = e_{0}^{*} - e_{3}^{*}$$

$$Sv_{2}^{*} = e_{1}^{*} - e_{4}^{*}$$

$$Sv_{3}^{*} = e_{2}^{*} + e_{3}^{*} + e_{4}^{*}$$

Hence the 0-cochain $\phi^0 = v_0^* + v_1^* + v_2^* + v_3^*$ is a 0-cocycle (as $8\phi^0 = 0$). It cannot be a coboundary, as there are no cochains of dimension -1.

2. Torus

Consider the 1-cochain $\phi'=e_i^*+...+e_b^*$. It is a 1-cocycle! Each triangle in the middle patch appears with a +1 and -1 in the expressions for Se_i^* .

Similarly,
$$\psi' = e_7^{\star} + \cdots + e_2^{\star}$$
 is also a 1-cocycle, as $8\psi' = 0$.

 ϕ' and ψ' are cohomologous, as $\phi' - \psi' = S(c^* + g^* + i^*)$.

$$Si^* = e_5^* + e_6^* + e_{15}^* - e_{10}^* - e_{11}^* - e_{14}^*$$

$$Sg^{*} = e_{3}^{*} + e_{4}^{*} + e_{8}^{*} - e_{8}^{*} - e_{9}^{*} - e_{8}^{*}$$

$$Sc^* = e_1^* + e_2^* + e_3^* - e_7^* - e_7^*$$

$$S(c^*+g^*+i^*) = \phi'-\psi'.$$

Two courdes are cohomologous if their difference is the coboundary of a one-dim lower cochain.

We write $\psi \sim \phi'$ here. Recall, 2-chains \bar{c}, \bar{c} are homologous, $\bar{c} \sim \bar{c}'$, if $\bar{c} - \bar{c}' = \partial \bar{d}$.

We can visualize the cocycles as "picket fences". Two 1-cocycles are cohomologous if the picket fences are attached at the "right" vertices "along the middle".

Example 3

Note that $H_0(K) \simeq \mathbb{Z}$ (one component), and $V_0 = V_1$ $H_1(K) \simeq \mathbb{Z}$ (one hole).

The general o-cochain is $p' = n_0 v_0^* + n_1 v_1^* + n_2 v_2^*$. We have $Sv_0^* = e_2^* - e_0^*$, $Sv_1^* = e_0^* - e_1^*$, and $Sv_2^* = e_1^* - e_2^*$.

 $\Rightarrow \delta \phi^{\circ} = \sum_{i=1}^{2} n_{i} (\delta v_{i}^{*}) = (n_{1} - n_{0}) e_{0}^{*} + (n_{2} - n_{i}) e_{1}^{*} + (n_{0} - n_{2}) e_{2}^{*}.$

Hence ϕ° is a 0-cocycle of $\delta \phi^{\circ} = 0$, i.e., when $n_{\circ} = n_{i} = n_{z} = n$ (say).

Then $\phi = \eta \left(\stackrel{?}{\underset{i=0}{\text{low}}} v_i^* \right)$. It is trivially not a coboundary as there are no (-1)-dim. cochains.

 \Rightarrow H°(K) \simeq Z, and is generated by $\{\Xi_i v_i^*\}$.

Notice the correspondence of the argument used here to the one used to find the structure of $H_1(K)$ — they're are essentially identical!