ADDITIONAL MATHEMATICS

8.30 am – 11.00 am (2½ hours) This paper must be answered in English

- 1. Answer ALL questions in Section A and any FOUR questions in Section B.
- 2. Write your answers in the answer book provided. For Section A, there is no need to start each question on a fresh page.
- All working must be clearly shown.
- 4. Unless otherwise specified, numerical answers must be exact.
- 5. In this paper, vectors may be represented by bold-type letters such as **u**, but candidates are expected to use appropriate symbols such as **ū** in their working.
- 6. The diagrams in the paper are not necessarily drawn to scale.

⑥香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2004

2004-CE-A MATH-1

FORMULAS FOR REFERENCE

 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

 $2 \sin A \cos B = \sin (A + B) + \sin (A - B)$

 $2\sin A \sin B = \cos (A - B) - \cos (A + B)$

 $\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$

 $\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$

 $\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$

 $\cos A + \cos B = 2\cos \frac{A+B}{2}\cos \frac{A-B}{2}$ $2\cos A\cos B = \cos (A+B) + \cos (A-B)$ $cos(A \pm B) = cos A cos B \mp sin A sin B$ $\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Section A (62 marks)
Answer ALL questions in this section.

- Find
- $\cos(3x+1)\,\mathrm{d}x\,,$ (a)
- $(2-x)^{2004} dx$. **(**P)

(4 marks)

- Expand $(1+2x)^6$ in ascending powers of x up to the term x^3 . (a)
- (4 marks) Find the constant term in the expansion of $(1-\frac{1}{x}+\frac{1}{x^2})(1+2x)^6$. **@**

2004-CE-A MATH-2

<u>|</u> |-

The slope at any point (x, y) of a curve C is given by $\frac{dy}{dx} = 3x^2 + 1$. If the 3

x-intercept of C is 1, find the equation of C.

(4 marks)

Figure 1

In Figure 1, the shaded region is bounded by the circle $x^2 + y^2 = 9$, the x-axis, the y-axis and the line y = 2. Find the volume of the solid (4 marks) generated by revolving the region about the y-axis.

Find the general solution of the equation

s.

છં

 $\sin 3x + \sin x = \cos x$

(5 marks)

Figure 2

C is a point on AB such that AC:CB = 1:2. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$ In Figure 2, OAB is a triangle.

- Express $\overrightarrow{\partial C}$ in terms of \mathbf{a} and \mathbf{b} . (a)
- (5 marks) If $|\mathbf{a}| = 1$, $|\mathbf{b}| = 2$ and $\angle AOB = \frac{2\pi}{3}$, find $|\overline{OC}|$. <u>@</u>

2004-CE-A MATH-3

-2-

Go on to the next page

(5 marks) Prove that $9^{n}-1$ is divisible by 8 for all positive integers n.

7.

 \equiv

Solve the following equations:

∞i

- |x-3|=1.(a)
- $|x-1| = |x^2 4x + 3|$ **(**P)

6

12.

In Figure 3, P(a,b) is a point on the curve $C: y = x^3$. The tangent to C at P passes through the point (0, 2).

- Show that $b = 3a^3 + 2$. (a)
- Find the values of a and b. <u>e</u>

(6 marks)

Let O be the origin and A be the point (3, 4). P is a variable point such that the area of ΔOPA is always equal to 2.

10.

Show that the locus of P is a pair of parallel lines.

Find the distance between these two lines.

(6 marks)

In Figure 4, OABC is a pyramid such that OA = 3, OB = 5, BC = 12, $\angle AOC = 120^{\circ}$ and $\angle OAB = \angle OBC = 90^{\circ}$.

- Find AC. (a)
- A student says that the angle between the planes OBC and ABC can be represented by ZOBA. 9

Determine whether the student is correct or not.

(6 marks)

Figure 5 shows two lines $L_1: y = -x + c$ and $L_2: y = 2x$, where c > 0. The two lines intersect at point P.

- Let θ be the acute angle between L_1 and L_2 . Find $\tan \theta$. (a)
- L_1 intersects the x- and y-axes at the points A and B respectively. Find AP:PB. 9

(7 marks)

-3-

2004-CE-A MATH-5

Go on to the next page

2004-CE-A MATH-4

Answer any FOUR questions in this section. Each question carries 12 marks. Section B (48 marks)

13.

Figure 6

In Figure 6, OABC and ODEF are two squares such that OA = 1, OF = 2and $\angle COD = \theta$, where $0^{\circ} < \theta < 90^{\circ}$. Let $\overrightarrow{OD} = 21$ and $\overrightarrow{OF} = -2j$, where i and j are two perpendicular unit vectors.

Express \overrightarrow{OC} and \overrightarrow{OA} in terms of θ , i and j. Ξ

(a)

Show that $\overline{AD} = (2 + \sin \theta) \mathbf{i} - \cos \theta \mathbf{j}$.

 \equiv

(4 marks)

Show that \overrightarrow{AD} is always perpendicular to \overrightarrow{FC}

(4 marks)

Find the value(s) of θ such that points B, C and E are (4 marks) collinear. Give your answer(s) correct to the nearest degree. છ

 C_1 and C_2 are the circles $x^2 + y^2 = 36$ and $x^2 + y^2 - 10x + 16 = 0$ respectively.

14.

Show that, for all values of θ , the variable point $P(6\cos\theta, 6\sin\theta)$ always lies on C_1 . Ξ

a

Find, in terms of θ , the equation of the tangent to C_1 at $P(6\cos\theta, 6\sin\theta)$. Ξ

@

(3 marks)

Let L be the common tangent to C_1 and C_2 with a positive slope (see Figure 7).

- Using (a), or otherwise, find the equation of $\,L\,$. Ξ
- It is known that C₁ and C₂ intersect at two distinct points Q and R. A circle C3, passing through Q and R, is bisected by L. Find the equation of C₃. \equiv

(9 marks)

Provided by dse.life

- 2 -

15.

16.

- C₁ has the vertex (4, 9) and passes through the point (10, 0).
- Show that $f(x) = -\frac{1}{4}x^2 + 2x + 5$. (a)
- Show that C_2 also passes through the point (10, 0). \odot

9

(3 marks)

- If C_1 and C_2 meet at two points, find, in terms of h, the x-coordinate of the point other than (10, 0). \equiv
 - (5 marks)

<u>છ</u>

of height 15 units is installed two small holes D₁ and D₂ in A rectangular coordinate system is introduced in this Figure 8 shows a fountain. A vertical water pipe OP on the horizontal ground. Iwo streams of water are ejected continuously from the pipe, with D_2 above D_1 . The two streams of water lie in the same vertical plane. plane, with O as the origin

and OP on the positive y-axis. The fountain is designed such that the stream of water ejected from D_1 lies on the curve C_1 , and that ejected from D2 lies on C2.

- Find OD1. Ξ
- If the two streams of water do not cross each other in the air before meeting at the same point on the ground, find the range of possible values of OD_2 . Ξ

Figure 9

In Figure 9, ABCD is a quadrilateral inscribed in a circle centred at O and with radius r, such that AB//DC and O lies inside the quadrilateral.

Let $\angle COD = 2\theta$ and reflex $\angle AOB = 2\beta$, where $0 < \theta < \frac{\pi}{2} < \beta < \pi$. Point E denotes the foot of perpendicular from O to DC. Let S be the area of

- Show that $S = \frac{r^2}{2} \left[\sin 2\theta \sin 2\beta + 2 \sin(\beta \theta) \right].$ (a)
- Suppose β is fixed. Let S_{β} be the greatest value of S as θ **(**P)

(3 marks)

Show that $S_{\beta} = 2r^2 \sin^3(\frac{2\beta}{3})$ and the corresponding value of θ is

[Hint: You may use the identity $\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha$.]

(6 marks)

A student says: <u>်</u>

ABCD becomes a square when S_{β} in (b) attains its Among all possible values of eta, the quadrilateral greatest value.

Determine whether the student is correct or not.

(3 marks)

Let $y = (x - \pi) \sin x + \cos x$. (a)

17.

Show that $\frac{dy}{dx} = (x - \pi) \cos x$.

Ξ

Hence find
$$\int (x-\pi)\cos x \, dx.$$

9

Figure 10 shows the graph of $y = (x - \pi) \cos x$ for $0 \le x \le \frac{3\pi}{2}.$ \equiv

- Find the areas of the two shaded regions R_1 and R₂ as shown in Figure 10. Ξ
- (7 marks) $\frac{2}{\pi}(x-\pi)\cos x\,\mathrm{d}x$. Find 3

Let f(x) be a continuous function. Figure 11 shows a sketch of the graph of y = f'(x) for $0 \le x \le x_4$. It is known that the areas of the shaded regions S_1 and S_2 as shown in Figure 11 are equal.

- Show that $f(x_1) = f(x_3)$. Ξ
- Furthermore, $f(0) = f(x_4) = 0$ and $f(x) \neq 0$ for $0 < x < x_4$. In Figure 12, draw a sketch of the graph of y = f(x) for $0 \le x \le x_4$. \equiv

END OF PAPER

-6-