Reti di calcolatori

Sottolivello MAC

Prof.ssa Simonetta Balsamo Dipartimento di Informatica Università Ca' Foscari di Venezia balsamo@dsi.unive.it http://www.dsi.unive.it/~reti

http://www.doi.dilive.it/ Te

Sottolivello MAC

S.Balsamo A.A. 2010

R5 1

Sottolivello MAC: Medium Access Control

- Per allocare il canale ai vari utenti in competizione esistono due meccanismi:
 - Allocazione statica decisa in anticipo
 - Allocazione dinamica si adatta alle esigenze del momento
- Allocazione statica: preallocazione di banda
 - adatta solo per numero di utenti costante e data rate costante
 - possibile spreco di banda e incapacità di gestire traffico bursty
- Allocazione dinamica: adattiva
 - modello a stazioni che generano frame tasso di arrivo λ spedizione

di un frame per volta

- singolo canale
- collisioni rilevabile da tutti, ritrasmissione
- tempo: continuo o discreto (slotted)
- ascolto del canale: carrier sense (prima di trasmettere) no c.s. (dopo)

Sottolivello MAC

S.Balsamo A.A. 2010

R5.3

Sottolivello MAC: Medium Access Control

- I protocolli per decidere qual'è la prossima stazione a trasmettere su un canale broadcast (detto anche multiaccess channel o random access channel) appartengono al sottolivello MAC
- Sono usati nelle LAN, ma anche nelle WAN basate su satelliti

R5 2

R5.4

Sottolivello MAC: Medium Access Control

S.Balsamo A.A. 2010

- Tipi di protocolli per accesso al mezzo condiviso
 - I Protocolli ad accesso casuale (random access)
 - ALOHA
 - CSMA (Carrier Sense Multiple Access)
 - CSMA/CD (Carrier Sense Multiple Access/ Collision Detection)
 - CSMA/CA (Carrier Sense Multiple Access/ Collision Avoidance)
 - I Protocolli ad accesso controllato
 - Prenotazione
 - Polling
 - Basati su token (anello virtuale)
 - Protocolli basati su divisione del canale
 - FDMA (Frequency Division Multiple Access)
 - TDMA (Time Division Multiple Access)
 - CDMA (Code Division Multiple Access)

Sottolivello MAC

Sottolivello MAC

S.Balsamo A.A. 2010

Protocolli ad accesso casuale

- Tutte le stazioni sono paritarie
- Algoritmo distribuito per accedere al mezzo
- Non esiste alcun elemento centralizzato
- 1) Non esiste un tempo predefinito per l'accesso al mezzo da parte di ogni stazione => accesso casuale (*random access*)
- 2) Non esiste una regola per stabilire qual è la prossima stazione a trasmettere => competizione (contention)
- Si può avere conflitto: collisione
 - => distruzione o modifica dei frame
- Ogni stazione deve rispondere a
 - Quando si può accedere al mezzo?
 - Cosa fare se il mezzo è occupato?
 - Come determinare il successo o fallimento di una trasmissione?
 - Cosa fare in caso di conflitti?

Sottolivello MAC

S.Balsamo A.A. 2010

R5.5

R5.7

Sottolivello MAC - protocollo Aloha

- Algoritmo Alhoa (mittente)
 - 0) K=0
 - 1) invia il frame al livello fisico;
 - 2) aspetta un tempo 2 x T_
 - 3) If (Ack non ricevuto)
 - 3.1) K=K+1
 - 3.2) If K ≤ K____
 - scegli un numero casuale R∈[0,2^K-1]
 - aspetta un tempo $\mathbf{T}_{\mathrm{B}}\text{= R x }\mathbf{T}_{\mathrm{p}}\text{ oppure }\mathbf{T}_{\mathrm{B}}\text{= R x }\mathbf{T}_{\mathrm{f}}$
 - 4) torna a 1)
- Con T_n massimo tempo di propagazione
 - T_f tempo medio di trasmissione di un frame
 - K numero di tentativi
 - K_{max} numero massimo di tentativi (solitamente 16)
- T_P tempo di back-off

Sottolivello MAC

S.Balsamo A.A. 2010

Sottolivello MAC - protocollo Aloha Nata negli anni '70 per collegare tra loro, tramite radio al suolo, elaboratori sparsi nelle isole Hawaii (Pure Aloha e Slotted Aloha) Pure Aloha: le stazioni trasmettono quando vogliono, e durante la trasmissione ascoltano il canale e confrontano ciò che ricevono con ciò che hanno spedito In caso di collisione (errore) ripetono l'invio dopo un tempo casuale Il tempo di attesa per ritrasmettere è casuale per diminuire la probabilità di successive collisioni (detto tempo di back-off) Pure Aloha: trasmissione a tempi arbitrari

tempo ----

R5 6

Sottolivello MAC - protocollo Aloha

S.Balsamo A.A. 2010

Sotto ipotesi di esponenzialità dei tempi

Sottolivello MAC

T tempo di frame: tempo per trasmettere un frame (lunghezza frame in bit/bit rate)
Assumiamo: generazione di frame da spedire secondo la distribuzione di Poisson di
media A frame/tempo di frame

Se A>1 il tasso di arrivo dei frame supera la capacità del canale

Se 0<A<1 il tasso di arrivo permette una trasmissione regolare

Assumiamo: *numero di tentativi* di trasmissione per tempo di frame secondo la distribuzione di Poisson con media G *frame/tempo di frame*

probabilità che siano generati k≥0 frame in un tempo di frame: $P[k] = G^k e^{-G} / k!$

G≥A - Se A ≅0 allora G≅A (carico basso), se A>> G>>A (carico alto)

Assumiamo: Po probabilità che non ci sia collisione

Dato un carico presentato G, la capacità di trasporto (throughput) $S = G P_0$

Sottolivello MAC - protocollo Aloha se in media sono generati G frame (carico), allora il throughput del mezzo (la capacità di trasporto) è S=G P₀ con Poprobabilità che non vi sia collisione = probabilità che siano generati (k=0) frame nel periodo vulnerabile, dove P[0]=e-G probabilità che siano generati (k=0) frame in un tempo di frame nel tempo di 2 frame (periodo vulnerabile) il numero medio di frame generati è 2G => probabilità che nel periodo *vulnerabile* non ci sia collisione (niente traffico). ovvero **non** si verifica altro traffico in questo tempo con probabilità $P_0 = e^{-2G}$ allora la media di frame generata dalla stazione, S, che in caso di stabilità corrisponde al throughput (capacità di trasporto per tempo di frame) è $S = G e^{-2G}$ es. G=0.5, max throughput S=0.184 (<20%) frame per frame time S.Balsamo A.A. 2010 R5 10

Sottolivello MAC - protocollo CSMA 1/6

- **CSMA** (Carrier Sense Multiple Access)
 - protocolli con ascolto del canale
 - Le stazioni possono ascoltare il canale e regolarsi di conseguenza, ottenendo un'efficienza molto più alta (carrier sense)
- CSMA: diversi protocolli
 - 1-persistent: Se il canale è libero, allora trasmette con probabilità 1
 - I non persistent: Se si libera, aspetta un tempo random prima di trasmettere
 - P-persistent: Se occupato aspetta lo slot, se libero trasmette con probabilità p, con probabilità 1-p aspetta lo slot

Sottolivello MAC S.Balsamo A.A. 2010 R5.13

Sottolivello MAC - protocollo CSMA Confronto dell'utilizzazione del canale per alcuni protocolli ad accesso casuale, in funzione del carico G 0.01-persistent CSMA Nonpersistent CSMA 0.9 0.8 0.1-persistent CSMA 0.7 0.5-persistent E 0.6 0.5 0.4 0.3 1-persisten Pure ALOHA CSMA È 0.2 S.Balsamo A.A. 2010 R5.15

Sottolivello MAC - protocollo CSMA 2/6

```
Algoritmo 1-persistent
  1) If (canale libero) <invia il frame al livello fisico>:
  2) torna a 1)
  Algoritmo non-persistent
  1) If (canale libero) <<aspetta un tempo casuale - 1>;
                                       <invia il frame al livello</pre>
      fisico> >
                           else <aspetta un tempo casuale - 2>;
  2) torna a 1)
                           (per comunicazione slotted)
  Algoritmo p-persistent
  1) If (canale libero)
           1.1) genera un numero causale X
           1.2) if X \le p <invia il frame al livello fisico>
                       else
                       <aspetta il prossimo slot>
                       if (canale libero) torna a 1.1)
                                    <applica la procedura di back-off
                              come dopo una collisione>
S.Balsamo A.A. 2010
R5 14
Sottolivello MAC
2) torna a 1)
```

Sottolivello MAC - protocollo CSMA 4/6

- CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
 - Ascolta il canale durante la propria trasmissione
 - I se la potenza del segnale ricevuto è superiore a quella trasmessa si scopre la collisione
 - I Se si verifica una collisione, la stazione aspetta un tempo casuale
 - e al termine riprova a trasmettere
- T tempo di propagazione del segnale fra gli estremi della rete
- Occorre un tempo 2T perché una stazione possa essere sicura di rilevare una collisione.

Sottolivello MAC - protocollo CSMA 5/6

- Il modello concettuale che si utilizza è il seguente:
 - Vi è un'alternanza di periodi di contesa, di trasmissione e di inattività
 - Il periodo di contesa è modellato come uno Slotted Aloha con slot di durata 2T
 - les.: per un cavo di 1 km si ricava T ≅ 5 µsec
- Differenza di CSMA/CD da Slotted Alhoa
 - Persistenza (1, non, p)
 - I Trasmissione del frame
 - in CSMA/CD trasmissione e controllo del conflitto è un processo continuo
 - ogni stazione riceve e trasmette simultaneamente, con porte distinte
- Invio di una sequenza di jamming (disturbo) per rinforzare la rilevazione di collisione da parte di altre stazioni

Sottolivello MAC S.Balsamo A.A. 2010 R5.17

Sottolivello MAC altri protocolli

- NB: in reti wireless non si riesce facilmente a rilevare la collisione=>occorre evitarla
- Protocolli ad accesso casuale Protocolli per reti LAN wireless
 - CSMA/CA (Carrier Sense Multiple Access/ Collision Avoidance) segnalazione dell'intenzione di inviare e di ricevere - blocco delle altre stazioni
- Protocolli ad accesso controllato
 - Prenotazione

risolvono la contesa per il canale senza collisioni (collision free)

- Protocollo a mappa di bit
- Conteggio binario
- Protocolli a contesa limitata
- Polling
- Basati su token (anello virtuale)
- Protocolli basati su divisione del canale
 - FDMA- TDMA CDMA (Frequency/Time/Code Division Multiple Access)
- Sottolivello MA Protocolli WDMA (Wavelength Division Multiple Access)

5.19

Sottolivello MAC - protocollo CSMA 6/6 Trasm. Contesa Trasmissione Contesa Trasmissione Frame * * ok Frame * * ok Frame Inattività ok Frame Collisione Non c'è collisione Non c'è collisione Uso della variazione di energia per rilevare la collisione Sottolivello MAC S.Baltamo A.A. 2010 RES.18

Sottolivello MAC protocolli senza collisioni 2/2 Per reti con molte stazioni: indirizzo binario Protocollo a conteggio binario tutte le stazioni vedono i bit dichiarati chi vuole trasmettere invia il proprio indirizzo in binario in caso di conflitto ha priorità l'indice più alto Tempo di bit semplice confronto su bit Non è equo 1 0 0 1 1010 Efficienza d/(d+log N) Risultato La stazione 1001 vede 1 Le stazioni 0010 e 0100 Sottolivello MAC S.Balsamo A.A. 2010 R5 21

Sottolivello MAC - rete ad anello 1/4 Una rete ad anello consiste di una Stazione Linea collezione di punto a punto unidirezionale interfacce di rete. Interfaccia collegate a coppie da linee punto a Stazione punto Stazione Interfaccia Stazione Sottolivello MAC S.Balsamo A.A. 2010 R5 25

Sottolivello MAC - rete ad anello 2/4

- Caratteristiche delle reti ad anello
- Non sono reti basate su un mezzo trasmissivo broadcast
 - Non c'è una significativa componente analogica per la rilevazione delle collisioni (che non possono verificarsi)
- → L'anello è intrinsecamente equo
- Ogni bit che arriva all'interfaccia è copiato in un buffer interno, rigenerato e ritrasmesso sul ring
- Può essere modificato prima di essere ritrasmesso

Sottolivello MAC

S.Balsamo A.A. 2010

R5 26

R5.28

Sottolivello MAC - rete ad anello 4/4

- In listen mode i bit in ingresso vengono copiati nel buffer interno (dove possono essere modificati) e ritrasmessi con un ritardo di 1-bit delay
- In transmit mode l'anello è aperto, e i bit in arrivo vengono rimossi; nuovi bit vengono trasmessi sull'anello
- Una speciale configurazione binaria, detta token (gettone) circola in continuazione se nessuno vuole trasmettere
- Quando una stazione vuole trasmettere, deve:
 - Aspettare che arrivi il token (in listen mode)
 - Rimuoverlo dal ring (in listen mode)
 - I Trasmettere i dati (in transmit mode)
 - Rigenerare il token (in transmit mode)
 - Rimettersi in listen mode

Sottolivello MAC

S.Balsamo A.A. 2010

7

Sottolivello MAC - standard IEEE 1/2

- IEEE ha prodotto diversi standard per le LAN, IEEE 802. Includono:
 - Specifiche generali del progetto (802.1)
 - Logical Link Control, LLC (802.2)
 - CSMA/CD (802.3)
 - I Token Bus (802.4, destinato a LAN per automazione industriale)
 - I Token Ring (802.5)
 - DQDB (802.6, destinato alle MAN)
 - Wireless (802.11)
 - Wireless MAN (802.16)
 - PAN (802.15)

Sottolivello MAC

R5 29

R5.31

Sottolivello MAC - IEEE 802.3 Ethernet 1/10

 E' lo standard per un protocollo CSMA/CD, di tipo 1-persistent, funzionante a 10Mbps

S.Balsamo A.A. 2010

- 802.3 è l'evoluzione dello standard Ethernet, proposto da Xerox, DEC e INTEL
- 802.3 e Ethernet hanno alcune differenze, ma sono largamente compatibili
- Thick Ethernet : Consiste di un cavo coassiale spesso
 - Ufficialmente si chiama 10Base5, ossia:
 - I 10 Mbps
 - Baseband signaling
 - 500 metri di lunghezza massima
- Possono essere installate 100 macchine su un segmento

Sottolivello MA

S.Balsamo A.A. 2010

Sottolivello MAC - standard IEEE 2/2

I vari standard differiscono a livello fisico e nel sottolivello MAC, ma sono compatibili a livello data link. Ciò è ottenuto separando dal resto, attraverso l'apposito standard LLC

Sottolivello MAC S.B.

Sottolivello MAC - IEEE 802.3 Ethernet 2/10

- Ogni stazione contiene un'interfaccia di rete (scheda Ethernet) che:
 - Incapsula i dati del livello superiore
 - Gestisce il protocollo MAC
 - Codifica i dati da trasmettere
 - In ricezione decapsula i dati, e li consegna al livello superiore (o lo informa dell'errore)

R5 30

R5.32

ello MAC

S.Balsamo A.A. 2010

(a) 10Base5, (b) 10Base2, (c) 10Base-T

S.Balsamo A.A. 2010

R5.35

Sottolivello MAC - IEEE 802.3 Ethernet

7/10

- Il protocollo 802.3 è un CSMA/CD di tipo 1-persistent:
 - Prima di trasmettere, la stazione aspetta che il canale sia libero
 - Appena è libero inizia a trasmettere
 - Se c'è una collisione, la circuiteria contenuta nel transceiver invia una sequenza di jamming di 32 bit, per avvisare le altre stazioni
 - Se la trasmissione non riesce, la stazione attende una quantità di tempo casuale e poi riprova
 - guanto tempo?

Sottolivello MAC

S.Balsamo A.A. 2010

R5 37

Sottolivello MAC - IEEE 802.3 Ethernet 9/10

- Le prestazioni osservate sono molto buone, migliori di quelle stimabili in via teorica
 - I Può sopportare un carico medio del 30% (3 Mbps) con picchi del 60% (6 Mbps)
 - Sotto carico medio: 2-3% dei pacchetti ha una collisione
 - I Qualche pacchetto su 10.000 ha più di una collisione
- Fast Ethernet
- standard (802.3u), prevede l'aumento di velocità di un fattore 10 o 100, da 10 Mbps a 100 Mbps o a 1000 Mbps
- In modo diverso a seconda del supporto fisico utilizzato
 - Doppino di classe 3 (100BaseT4)
 - Doppino di classe 5 (100BaseT)
 - Fibra ottica (100BaseFX)
 - Fibra ottica (1000BaseSX) Gbps fibra multimodale fino a 500m
 - Fibra ottica (1000BaseLX) Gbps fibra monomodale fino a 5km
 - Doppino (1000BaseT) Gbps fino a 100m

Sottolivello MA

S.Balsamo A.A. 2010

R5.39

Sottolivello MAC - IEEE 802.3 Ethernet 8/10

- La quantità di tempo che si lascia passare è regolata da un algoritmo, il binary backoff exponential algorithm:
 - Dopo una collisione, il tempo si considera discretizzato (slotted) con uno slot time pari a 51,2 microsecondi (corrispondenti al tempo di trasmissione di 512 bit)
 - Il tempo di attesa prima della prossima ritrasmissione è un multiplo intero dello slot time, scelto a caso in un intervallo i cui estremi dipendono da quante collisioni sono avvenute
- Dopo n collisioni, il numero r di slot time da lasciar passare è scelto a caso nell'intervallo $0 \le r \le 2k-1$, con k = min(n, 10)
- Dopo 16 collisioni si rinuncia (inviando un messaggio di errore al livello superiore)

Sottolivello MAC S.Balsamo A.A. 2010

R5.38

Sottolivello MAC - IEEE 802.5 Token Ring 1/5

- IBM scelse l'anello per la sua architettura di LAN, Token Ring. IEEE ha definito lo standard IEEE 802.5 sulla base di tale architettura
- Le differenze sono che la rete IBM prevede velocità di 4 Mbps e 16 Mbps, mentre 802.5 prevede oltre ad esse anche la velocità di 1 Mbps
- Il cablaggio è basato su doppino telefonico:
 - schermato (STP)
 - non schermato (UTP)
 - categoria 3, 4 o 5 per 4 Mbps
 - categoria 4 o 5 per 16 Mbps
- Il cablaggio è fatto utilizzando un wire center, che ha la possibilità di isolare parti dell'anello guaste

Sottolivello MAC

S.Balsamo A.A. 2010

R5.41

Sottolivello MAC - IEEE 802.5 Token Ring 3/5

			2 opp. 6		a 30	a 17.747	4	1	1	
SD	AC	FC	Indirizzo destinaz.	Indirizzo sorgente	RI	Dati	Checksum	ED	FS	l

- SD, ED: Starting e ending delimiter
- AC: Access control, serve per il controllo dell'accesso. Sono 8 bit PPPTMRRR.
 - I tre bit P indicano la priorità attuale
 - Il bit M serve per il controllo di frame orfani
 - Il bit T, detto token bit, identifica un token (0) o un frame (1)
- I tre bit R indicano la priorità richiesta
- FC: Frame control
- Indirizzi Dati Checksum: Come 802.3
- RI: Routing information
- FS: Frame status

R5.43

Sottolivello MA

S.Balsamo A.A. 2010

Sottolivello MAC - IEEE 802.5 Token Ring 2/5

Token Ring IBM

Lobo

Relais

Sottolivello MAC

S.Balsamo A.A. 2010

R5.42

Sottolivello MAC - IEEE 802.5 Token Ring 4/5

- Quando il token circola e una stazione vuole trasmettere, essa, che è in listen mode, opera come segue
 - Aspetta che arrivi il token e quando il token arriva:
 - Lascia passare SD
 - Lascia passare i bit PPP di AC
 - I Quando ha nel buffer il token bit T:
 - · Lo cambia in uno, trasformando il token in un frame
 - Invia il bit T modificato sul ring
 - I Si mette immediatamente in transmit mode
 - I Invia il resto del frame.
 - I Quando il frame è trasmesso
 - I Se non ha esaurito il THT (Token holding time) può trasmettere un altro frame
 - I altrimenti rigenera un nuovo token e lo trasmette
 - I Trasmesso l'ultimo bit del token si rimette in listen mode

Sottolivello MAC

S.Balsamo A.A. 2010

R5.44

Sottolivello MAC - IEEE 802.5 Token Ring 5/5

- Ogni ring ha un monitor, che viene designato all'avvio dell'anello. I suoi compiti:
 - Rigenerare il token se esso si perde
 - Ripulire il ring dai
 - · resti di frame danneggiati
 - · frame orfani

Sottolivello MAC

S.Balsamo A.A. 2010

R5 45

1/2

Sottolivello MAC - confronto

- Vantaggi di 802.5:
 - E' totalmente digitale
 - I buon funzionamento e prestazioni sotto forte carico
- Svantaggi di 802.5:
 - I Si manifesta comunque ritardo anche senza forte carico (tempo per ottenere il token)
 - Ha bisogno di un monitor per rilevare malfunzionamenti (e nessuno se ne accorge?)
- non si può indicare la migliore in assoluto

Sottolivello MAG

S.Balsamo A.A. 2010

R5.47

Sottolivello MAC - confronto

1/2

R5 46

R5.48

- Vantaggi di 802.3:
 - Ha un'enorme diffusione
 - Esibisce un buon funzionamento a dispetto della teoria
- Svantaggi di 802.3:
 - Ha sostanziose componenti analogiche (per il rilevamento delle collisioni)
 - prestazioni degradate in presenza di forte carico

Sottolivello MAC

S.Balsamo A.A. 2010

Sottolivello LLC - descrizione 1/2

- Ha due funzioni principali:
 - Fornire al livello network un'interfaccia unica, nascondendo le differenze fra i vari sottolivelli MAC
 - Fornire, un servizio più sofisticato di quello offerto dai vari sottolivelli MAC
- Offre:
 - Servizi datagram
 - Servizi datagram confermati
 - I Servizi affidabili orientati alla connessione

Sottolivello MAC

S.Balsamo A.A. 2010

