## Statistics 2

Analysis of Variance (ANOVA)

Casper Albers & Jorge Tendeiro Lecture 10, 2019 – 2020



## **Overview**

## Comparing means

Two-sample t test More than two groups — ANOVA Partitioning the variance F-test

# Example

Computing CIs for a group's mean

## Literature for this lecture

Read:

Agresti, Section 12.3

# **Comparing two means**

Regression with code variables (recall Lecture 8).

#### Two groups:

- ▶ Group<sub>1</sub>  $\sim \mathcal{N}(\mu_1, \sigma)$
- Group<sub>2</sub>  $\sim \mathcal{N}(\mu_2, \sigma)$
- $\triangleright$  Same  $\sigma$  assumed
- Sample size  $n_1$  and  $n_2$
- $\vdash \mathcal{H}_0 : \mu_1 = \mu_2$

Coding: 0s for Group 1; 1s for Group 2.

Thus:

$$\mu_1 = \beta_0$$

$$\mu_2 = \beta_0 + \beta_1$$

This implies  $\beta_1 = \mu_2 - \mu_1$ .

# Comparing two means

- $\beta_1 = \mu_2 \mu_1.$
- $\blacktriangleright$   $\mathcal{H}_0: \mu_1 = \mu_2$  is equivalent to  $\mathcal{H}_0: \beta_1 = 0$ .

Testing  $\mathcal{H}_0$  is done through

$$t = \frac{\bar{y}_2 - \bar{y}_1}{SE_{b_1}}$$

with  $n_1 + n_2 - 2$  degrees of freedom.

Conceptually:

$$t = \frac{\text{Distance between groups}}{\text{Variability within groups}}$$

# Comparing two means

Another approach to compare two means: The t-test.

Test statistic:

$$t = \frac{\overline{y}_2 - \overline{y}_1}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Conceptually:

$$t = \frac{\text{Distance between groups}}{\text{Variability within groups}}$$

$$SE_{b_1} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

so both t-tests are the same.

t-test and regression with a dummy variable are the same!

### Example

- Data from Moore, McCabe, & Craig.
- Reading performance in two groups of pupils: One with and one without 'directed reading activities'.
- ▶ Sample sizes  $n_1 = 21$ ,  $n_2 = 23$ .

|             | Unstandardized | Standard Error | Standardized | t      | р      |
|-------------|----------------|----------------|--------------|--------|--------|
| (Intercept) | 51.476         | 3.175          |              | 16.211 | < .001 |
| Group       | -9.954         | 4.392          | -0.330       | -2.267 | 0.029  |
| Огоир       |                | 4.552          |              | 2.201  |        |

|       | t     | df    | р     |
|-------|-------|-------|-------|
| Group | 2.267 | 42.00 | 0.029 |

Apart from sign issues, due to irrelevant coding choices, both approaches are mathematically equivalent.

## Comparing means: More than two groups

What to do when more than two groups need to be compared? Again, there are two approaches:

Regression with multiple dummy variables

ANOVA: ANalysis Of VAriance

Approaches mathematically equivalent.

Both are common within social sciences, thus important to be able to work with both.

## Principle:

Study differences in the means of g independent groups.

#### ► Test:

$$\mathcal{H}_0: \mu_1 = \mu_2 = \cdots = \mu_g.$$

versus

 $\mathcal{H}_{\it a}$  : Not all  $\mu$ 's are equal.

#### Procedure:

Compare the between and the within group variances using the  $\emph{F}$ -test.

Why call it Analysis of Variance when comparing means?





Distance between groups: relative to distance within groups.

$$F = \frac{\text{Variability between groups}}{\text{Variability within groups}}$$

The *t*-test is a special kind of ANOVA:

► Two-sample *t* test:

$$t = \frac{\overline{y}_2 - \overline{y}_1}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

Look at  $t^2$  (and assume  $n_1 = n_2 = n$  for simplicity):



Split total variance: Between groups and within groups



## ANOVA: Partitioning the variance

Split the total variance in two parts:

- ▶ A part that can be explained by differences between groups.
- A part that remains unexplained within groups.

SS = sum of squares

$$\sum_{ij}(y_{ij}-\overline{y})^2=\sum_{ij}(\overline{y}_i-\overline{y})^2+\sum_{ij}(y_{ij}-\overline{y}_i)^2$$

- i indexes the groups.
- j indexes the persons in a group.

- $y_{ij} = \text{observation of person } j \text{ in group } i.$
- $\overline{y}_i$  = mean of the DV y in group i. (i.e., over all persons in group i)
- $\overline{y} = \text{overall, or grand, mean of } y.$  (i.e., over all persons in all groups)

## **ANOVA: Partitioning the variance**



With g groups:

$$\underbrace{\sum_{ij} (y_{ij} - \overline{y})^2}_{TSS} = \underbrace{\sum_{ij} (\overline{y}_i - \overline{y})^2}_{GSS} + \underbrace{\sum_{ij} (y_{ij} - \overline{y}_i)^2}_{RSS}$$

Convert SS's in variances: Divide by degrees of freedom (df)

Mean Squares (MS)

|   |    | Total          | Group              | Residual                  |           |
|---|----|----------------|--------------------|---------------------------|-----------|
| S | S  | TSS            | GSS                | RSS                       |           |
| d | lf | df = n - 1     | $df_1 = g-1$       | $df_2 = n - g$            |           |
| М | IS | TMS = TSS/df   | $GMS {=} GSS/df_1$ | RMS=RSS/df <sub>2</sub> \ |           |
|   |    | Variance in y! |                    | $s_p^2 = pooled$          | variance! |

Hypotheses:

$$\mathcal{H}_0: \mu_1 = \mu_2 = \cdots = \mu_g.$$
  
 $\mathcal{H}_a: \text{Not all } \mu$ 's are equal.

► Test statistic:

$$F = \frac{\mathsf{GMS}}{\mathsf{RMS}} = \frac{\mathsf{GSS}/\mathsf{df}_1}{\mathsf{RSS}/\mathsf{df}_2}.$$

If  $\mathcal{H}_0$  holds:  $F \approx 1$ .

Q: Why?

A: Because:

- 1. RMS =  $s_p^2$  always estimates  $\sigma^2$ , the common group variance.
- 2. Under  $\mathcal{H}_0$ , GMS also estimates  $\sigma^2$ .
- 3. Hence, under  $\mathcal{H}_0$ , the F ratio is  $\approx 1$ .
- (If  $\mathcal{H}_0$  does not hold: F > 1.)

**Conclusion:** Reject  $\mathcal{H}_0$  is F is too large (i.e.,  $F \gg 1$ ).

**Q:** But how large need statistic *F* be?

**A:** Use the sampling distribution.

$$F \sim F(g-1, n-g)$$



| Source   | SS                                            | df  | MS                  | F       |
|----------|-----------------------------------------------|-----|---------------------|---------|
| Group    | $\sum_{ij} (\overline{y}_i - \overline{y})^2$ | g-1 | GSS/df <sub>1</sub> | CMC/DMC |
| Residual | $\sum_{ij}(y_{ij}-\overline{y}_i)^2$          |     | $RSS/df_2$          | GMS/RMS |
| Total    | $\sum_{ij}(y_{ij}-\overline{y})^2$            | n-1 |                     |         |

#### **Example:** Directed Reading Activities

| Cases    | Sum of Squares | df | Mean Square | F     | р     |
|----------|----------------|----|-------------|-------|-------|
| group    | 1088           | 1  | 1087.8      | 5.137 | 0.029 |
| Residual | 8893           | 42 | 211.7       |       |       |

$$\left( \mathsf{Reject} \,\, \mathcal{H}_0 : \mu_1 = \mu_2 
ight)$$

Recall: t-test provided t = 2.267, p = .029.

Indeed,  $\sqrt{5.137} = 2.267$ : t and F-test equivalent.

## **Example with more than 2 groups**

James et al. (2015) studied whether playing a computer game (Tetris) could prevent intrusive memories (flashbacks) related to a traumatic event from occurring, via a reactivation-reconsolidation mechanism<sup>1</sup>.

- ► Dependent variable
  - $y = N_INTR = Number of intrusive memories over the next seven days$
- ► Factor

CONDITION, with four levels:

- ▶ 1 = No-task control
- 2 = Reactivation + Tetris
- ▶ 3 = Tetris only
- ► 4 = Reactivation only

<sup>&</sup>lt;sup>1</sup>See Lecture 8

|                |       | N_II  | NTR   |       |
|----------------|-------|-------|-------|-------|
|                | 1     | 2     | 3     | 4     |
| Valid          | 18    | 18    | 18    | 18    |
| Mean           | 5.111 | 1.889 | 3.889 | 4.833 |
| Std. Deviation | 4.227 | 1.745 | 2.888 | 3.330 |



Question: Is there an effect of CONDITION on N\_INTR?
In week 8, we studied this using code variables. Today: ANOVA

## **Example: Preventing flashbacks**

Recall from Lecture 8: Regression with 3 code variables.

#### Regression output

|             | Unstandardized | Standard Error | Standardized | t      | р      |
|-------------|----------------|----------------|--------------|--------|--------|
| (Intercept) | 4.833          | 0.749          |              | 6.457  | < .001 |
| z1          | 0.278          | 1.059          | 0.036        | 0.262  | 0.794  |
| z2          | -2.944         | 1.059          | -0.382       | -2.781 | 0.007  |
| z3          | -0.944         | 1.059          | -0.123       | -0.892 | 0.375  |

- These tests are indicative of specific contrasts
- Overall model fit assessed through R<sup>2</sup>
- ▶ JASP provided  $R^2 = .149$
- F =  $(R^2/g)/((1-R^2)/(n-g)) = 3.795$  with p = .014

## **Example: Preventing flashbacks**

#### ANOVA-approach

 $\mathcal{H}_0: \mu_1 = \mu_2 = \mu_3 = \mu_4.$ 

| ANOVA table | ΑN | IO | /A | tal | Ы | e |
|-------------|----|----|----|-----|---|---|
|-------------|----|----|----|-----|---|---|

| Model |            | Sum of Squares | df | Mean Square | F     | р     |
|-------|------------|----------------|----|-------------|-------|-------|
| 1     | Regression | 114.8          | 3  | 38.27       | 3.795 | 0.014 |
|       | Residual   | 685.8          | 68 | 10.09       |       |       |
|       | Total      | 800.7          | 71 |             |       |       |

#### Conclusions:

- ▶ Reject  $\mathcal{H}_0$ .
- ▶ Both the *F*-test in ANOVA and in regression with code variables are equivalent (whatever the choice of dummy coding!).

#### The Kruskal-Wallis test

In ANOVA one makes three assumptions:

- 1. Independent observations.
- 2. Homogeneity: Variance in each group is equal.
- 3. Normality: Each group is normally distributed.

In Lecture 7 we learned how to check these assumptions and the consequences of violations.

Non-parametric alternative to ANOVA: The Kruskal-Wallis test.

Does not assume normality nor homogeneity.

You don't need to know technical details of KW, just be able to work with it.

 $\mathcal{H}_0$ : The distribution of observations in each group is identical.

 $\mathcal{H}_1$ : The distribution of observations in each group is not identical.

| Factor    | Statistic | df | р     |
|-----------|-----------|----|-------|
| Condition | 13.56     | 3  | 0.004 |

p = .004 thus reject  $H_0$ . Significant differences between groups.

This is not in the textbook but it is important!!

Two ways to compute CIs for group means:

▶ Based on the pooled SD, s<sub>p</sub>. (ideal when homoscedasticity is met)

CI for group 
$$i = \overline{y}_i \pm t_{n-g}^* \frac{s_p}{\sqrt{n_i}}$$

$$n = \text{total sample size}$$

Based on the groups SD, s<sub>i</sub>. (when homoscedasticity is violated)

CI for group 
$$i = \overline{y}_i \pm t_{n_i-1}^* \frac{s_i}{\sqrt{n_i}}$$

$$n_i = \text{group sample size}$$

## For the next lecture

#### Contents:

Analysis of Variance (ANOVA): Two-way ANOVA

Read: Section 12.4.