Math135 - November 30, 2015 Proof of CJRT - More Polynomials

Proof of CJRT

Recall: CJRT states that if n is a root of a complex polynomial, then \overline{n} is also a root, so long as f(x) has real coefficients.

Proof: Assume f(x) is a polynomial with real coefficients, and that $c \in \mathbb{C}$ is a root of f(x).

So,

$$f(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0 = 0$$

$$\overline{a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0} = \overline{0}$$

$$\overline{a_n c^n} + \overline{a_{n-1} c^{n-1}} + \dots + \overline{a_1 c} + \overline{a_0} = 0$$

$$a_n \overline{c}^n + a_{n-1} \overline{c}^{n-1} + \dots + a_1 \overline{c} + a_0 = 0$$

(Because a_i is a real number, and the conjugate of a real is itself.)

 $f(\overline{c}) = 0$, so \overline{c} is a root of f.

Ex. Write $f(x) = x^4 - 5x^3 + 16x^2 - 9x - 13$ as a product of irreducible factors in $\mathbb{C}[x]$, given that 2 - 3i is a root.

We know
$$2-3i$$
 is a root, so by CJRT, $2+3i$ is a root. $\therefore (x-2-3i)(x-2+3i)$ is a factor of $f(x)(x-2-3i)(x-2+3i)$ is a factor of $f(x)(x-2-3i)(x-2-3i)$ is a factor of $f(x)(x-2-3i)$

Now, by long division, we see that $f(x) = (x^2 - 4x + 13)(x^2 - x - 1) = (x - 2 - 3i)(x - 2 + 3i)(x - \frac{1}{2} - \frac{\sqrt{5}}{2})(x - \frac{1}{2} + \frac{sqrt5}{2})$

 $\therefore f(x) \text{ written as irreducible factors in } \mathbb{C}\left[x\right] \text{ is } f(x) = (x-2-3i)(x-2+3i)(x-\frac{1}{2}-\frac{\sqrt{5}}{2})(x-\frac{1}{2}+\frac{sqrt5}{2})$

Ex. Prove that any real polynomial of odd degree has a real root.

Proof by contradiction.

Assume that f(x) is a polynomial of k degree and k is odd and f(x) has no real roots.

Thus, all of its roots are complex numbers with non-zero imaginary parts.

By CJRT, if c is a root, then \bar{c} is also root. We know $c \neq \bar{c}$ since all the roots have non-zero imaginary parts.

Thus, since all roots are imaginary, there must be an even number of roots.

but, by CPN, there are k complex roots for a complex polynomial of degree k, and k is odd.

Contradiction!