Revised Paragraphs of Crypto2023-Paper280

Reviewer#B-Q2:

The revised introduction of references [4] (for replacing lines 114-121 in our paper) is as follows:

Recently, Beierle et al. proposed a technique to reduce the complexity [4]. The high-level idea of the technique is as follows. Denote the set of all right pairs for the differential $\Delta_{in} \xrightarrow{E_1} \Delta_m$ by \mathcal{X} . To amplify the correlation of the distinguisher $\Delta_{in} \xrightarrow{E_1} \gamma_{out}$, we choose $\epsilon r^{-2}q^{-4}$ right pairs in the set \mathcal{X} to observe its correlation. To efficiently get right pairs, we exploit the structure of the set \mathcal{X} . Concretely, the set \mathcal{X} might have a special structure, such that for any $x \in \mathcal{X}$, one can obtain a set $X = \{(x \oplus u, x \oplus u \oplus \Delta_{in}) | u \in \mathcal{U}\}$, where \mathcal{U} is a subspace, such that all elements in X are right pairs for the differential $\Delta_{in} \to \Delta_m$. For a differential whose set of right pairs has such a special structure, once one right pair is obtained, one can generate a set of $2^{\dim \mathcal{U}}$ right pairs for free. To find such subspace \mathcal{U} for a differential, one can use the concept of the differential's neutral bits [BC04]. In particular, we require $2^{\dim \mathcal{U}} \geqslant \epsilon r^{-2}q^{-4}$. For some differentials for which obtaining a large enough \mathcal{U} is difficult, one might use a probabilistic approach related to the concept of probabilistic neutral bits [JS+08]. Assume that the probability that a randomly generated input x belongs to \mathcal{X} is \overline{p} . Then the complexity of the distinguisher is $\epsilon \overline{p}^{-1}r^{-2}q^{-4}$.

References

[BC04] Biham, E., Chen, R. (2004). Near-Collisions of SHA-0. In: Franklin, M. (eds) Advances in Cryptology – CRYPTO 2004. CRYPTO 2004. Lecture Notes in Computer Science, vol 3152. Springer, Berlin, Heidelberg.

[JS+08] Aumasson, JP., Fischer, S., Khazaei, S., Meier, W., Rechberger, C. (2008). New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (eds) Fast Software Encryption. FSE 2008. Lecture Notes in Computer Science, vol 5086. Springer, Berlin, Heidelberg.

Reviewer#B-Q3:

The revised tablenotes of Table 4 is as follows:

(r_m, r_2)	$\Delta_m \to \gamma_m \to \gamma_{out}$	Cor of $\Delta_m \to \gamma_{out}$
(8,3)	$[26] \to * \to [0, 9, 61, 91, 105]$	$2^{-4.679}$
(8,4)	$[31] \to * \to [0, 9, 61, 91, 105]$	$-2^{-10.970}$
(8,5)	$[31] \rightarrow [8, 41, 42, 73, 74] \rightarrow$	$-2^{-6.04} \times 2^{-10 \times 2}$
	[0, 29, 37, 38, 61, 68, 88, 91, 101, 102, 105, 114]	- /\-

 $^{^1}$ *: There are many choices searched by Algorithm 2. The maximum hamming weight of returned γ_m is 7. Since many differential-linear approximations share the same output mask γ_{out} , we directly present the experimental correlation of $\Delta_m \to \gamma_{out}$, i.e., $2^{-4.679}$ and $-2^{-10.970}$.

Reviewer#C-Q1:

A more detailed argument for Lemma 3 (for replacing lines 432-437 in our paper) is as follows:

Table 6 summarizes the result of the search. Given any plaintext pair $(P,P\oplus \Delta_{in})$ conforming to the 4-round differential characteristic as shown in Table 5, using the 34 basis elements, one can create from the plaintext pair a plaintext structure consisting of 2^{34} plaintext pairs. These 2^{34} plaintext pairs are expected to pass the differential characteristic together, with a theoretical probability $2^{-3.7}$ under the assumption that the effects of the 34 basis elements are independent. For verifying the theoretical probability $2^{-3.7}$, we generate 2^{10} plaintext pairs conforming to the 4-round differential characteristic, and find that the empirical probability is $2^{-3.18}$ (resp. $2^{-3.17}$, $2^{-3.33}$) for LEA-128 (resp. LEA-192, LEA-256). Thus, we obtain Lemma 3. The 17-round key recovery attack introduced later uses this linear subspace.

Lemma 3. There is a set $\mathcal{X} \subseteq \mathbb{F}_2^{128}$ of size $2^{128-33-3.7}$ and a 34-dimension linear subspace \mathcal{U} , such that for any element $x \in \mathcal{X}$ and any $u \in \mathcal{U}$ it holds that $E_1(x \oplus u) \oplus E_1(x \oplus u \oplus \Delta_{in}) = \Delta_m$ where E_1 denotes 4 rounds of LEA.

² Denote by r_m, r_2 the number of rounds covered by E_m, E_2 .

The three correlations $2^{-4.679}$, $-2^{-10.970}$, $-2^{-6.04}$ are estimated again using N plaintext pairs and 100 keys. The three values are the median of 100 experimental correlations. For $2^{-4.679}$ and $-2^{-6.04}$, $N=2^{24}$. For $-2^{-10.970}$, $N=2^{32}$. The number 2^{-10} in the third row is the correlation of the linear approximation $\gamma_m \to \gamma_{out}$.