Homework 7

Math 123

Due March 16, 2023 by midnight

Name:

Topics covered: Graph coloring, chromatic polynomial, Turan graphs Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this somewhere on the assignment.
- If you are stuck, please ask for help (from me, a TA, a classmate). Use Campuswire!
- You may freely use any fact proved in class. In general, you should provide proof for facts used that were not proved in class.
- Please restrict your solution to each problem to a single page. Usually solutions can be even shorter than that. If your solution is very long, you should think more about how to express it concisely.

Problem 1. Give an example or explain why no example exists: A graph G that is neither complete nor an odd cycle, but for which the greedy coloring uses $\Delta(G) + 1$ colors.

Solution. We give an example: Let P_4 be the path with vertices (v_1, v_2, v_3, v_4) , where v_1, v_4 have degree 1. Consider the greedy coloring where we order the vertices v_1, v_4, v_3, v_2 . This uses $3 = \Delta(G) + 1$ colors.

Problem 2. Give a very short proof that the following two graphs have the same chromatic number.¹

Solution. In fact these graphs have the same chromatic polynomials by the edge deletion-contraction formula. Apply the edge-contraction deletion formula to the left-most horizontal edge in each graph. The graphs obtained by deleting an edge are isomorphic; the same statement holds for the contractions. Thus the two graphs have the same chromatic polynomial. In particular, they have the same chromatic number.

¹Note: solutions that construct optimal colorings of these graphs will not receive credit.

Problem 3. Let $G = M_{n_1,...,n_k}$ be a complete k-partite graph with $n = n_1 + \cdots + n_r$ vertices. Show that if $n_i - n_j \geq 2$ for some i, j, then there exists a k-partite graph with n vertices and more edges than G.

Solution. Move one vertex v from the i-th group to the j-th group to get a new r-partite graph G'. All the vertex degrees are unchanged, except the degrees in the i-th and j-th group. In G', the i-th group has $n_i - 1$ vertices each with degree $n - n_i + 1$, and the j-th group has $n_j + 1$ vertices each with degree $n - n_j - 1$. Then in total the degree sum for vertices in G' in the i-th and j-th groups is

$$(n_i - 1)(n - n_i + 1) + (n_j + 1)(n - n_j - 1) = \left[n_i(n - n_i) + n_j(n - n_j)\right] + 2(n_i - n_j - 1)$$

The summand in brackets is the total degree sum from the *i*-th and *j*-th groups in G. The term $2(n_i - n_j - 1)$ is positive since $n_i - n_j \ge 2$. This shows the degree sum of G' is larger than the degree sum of G, so G' has more edges than G.

Problem 4. Given a set of lines in the plane with no three meeting at a point, form a graph G whose vertices are the intersections of the lines, with two vertices adjacent if they appear consecutively on one of the lines. Prove that $\chi(G) \leq 3$.

Solution. After perturbing the line arrangement, we can assume that no line is parallel to the x-axis. Order the intersections v_1, \ldots, v_n by decreasing height (two points may have the same height, but we can order vertices of the same height arbitrarily). Now we apply a greedy coloring: color the vertices in order with the first available color.

We claim this is a 3-coloring. The only way we need more than three colors is if there is a vertex v and (at least) three vertices below v that are connected to v by an edge. But this means that there are three lines that meet at v, contradicting our assumption. Therefore, the greedy coloring uses at most 3 colors.

²Suggestion: start by looking at some explicit examples.

³Hint: use a greedy coloring with an appropriate vertex ordering.

Problem 5. Let G be a graph with chromatic number k. Show that for every k-coloring of G and for each color i, there is a vertex of color i that is adjacent to vertices of the other k-1 colors. ⁴

Solution. We prove the contrapositive: Suppose there is a k-coloring of G and a color i such that for each vertex v of color i, there is a color j(v) not adjacent to v. We want to show $\chi(G) < k$. Change the color of v from i to j(v). Our assumptions imply that this is still a coloring, but now without using color i, so $\chi(G) < k$ as desired.

⁴Hint: think back to the proof that a graph with chromatic number k has at least $\binom{k}{2}$ edges.

Problem 6 (West 5.1.38). Prove that $\chi(G) = \omega(G)$ when the complement \bar{G} is bipartite. ⁵ ⁶ ⁷

Solution. Observation 1: If \bar{G} is bipartite, then for any coloring of G, for each color i, there are at most two vertices with color i. Given a coloring of G, we get a labeling of the vertices of \bar{G} with the property that vertices not connected by an edge have different colors. Then if \bar{G} has a bipartition $V = \sqcup Y$, then none of the X vertices have the same color, and same for Y, so there are at most two vertices with each color.

Observation 2: A k-coloring of G gives a matching of \bar{G} of size |V| - k. To see this, define a matching by matching an X vertex to a Y vertex of the same color, if it exists. Among the |V| vertices, if there are k colors each with multiplicity 1 or 2, then there are |V| - k pairs of vertices with the same color (pigeonhole principle).

Observation 3: A matching of \bar{G} of size m gives a coloring of G with |V|-m colors. Given a matching of \bar{G} , we color the vertices giving each pair of matched vertices a unique color and giving the remaining vertices new colors as well to get a coloring of G (in this coloring vertices have the same color only if they are connected by an edge in \bar{G} , so they are not connected by an edge in G). A matching of size m gives a coloring with |V|-m colors.

Combining Observations 2 and 3 (and their proofs) we get a bijection between colorings of G and matchings of \bar{G} . From this we conclude that

$$\chi(G) = |V| - \max\{|M| : M \text{ matching of } \bar{G}\}.$$

Observation 4: If $H \cong K_r \subset G$, then $V \setminus V(H)$ is a vertex cover of \bar{G} . The fact that H is a clique in G implies that there are no edges between V(H) in \bar{G} . This implies that $V \setminus V(H)$ is a vertex cover of \bar{G} .

Observation 5: If Q is a vertex cover of \bar{G} , then $V \setminus Q$ spans a clique in G. If Q is a vertex cover of \bar{G} , then there are no edges between vertices of $V \setminus Q$ in \bar{G} , so these vertices span a clique in G.

Combining Observations 4 and 5, we obtain

$$|V| - \min\{|Q|: Q \text{ vertex cover of } \bar{G}\} = \omega(G).$$

We finish by applying König's theorem with the preceding observations:

$$\chi(G) = |V| - \max\{|M| : M \text{ matching of } \overline{G}\}$$

$$= |V| - \min\{|Q| : Q \text{ vertex cover}\} \qquad \square$$

$$= \omega(G)$$

⁵Here $\omega(G)$ is the clique number: the largest m so that G contains K_m .

⁶Hint: look to apply König's theorem. (!)

⁷This is a pretty challenging problem. If you want more hints, please ask.

Problem 7 (Bonus). Let G = (V, E) be the unit distance graph in the plane: $V = \mathbb{R}^2$, and two points are adjacent if their Euclidean distance is 1. (a) Use the hexagonal tiling to prove $\chi(G) \leq 7$. (b) Prove that $\chi(G) \geq 3$.

 \Box