

Not So Fun Facts about Covid-19

- Type A blood is more susceptible
- Reinfection is possible, having it in the past does not mean you're immune
- Can live on surfaces for days
- Anosmia loss of smell
- Is more dangerous for small children and the elderly
- Texas and California both surpass 1 million confirmed cases
- Carriers are often Asymptomatic

Project Goals / Objectives

- The primary aim of this analysis is to highlight the key factors that contributed to confirmation of Covid-19 cases in the United States of America.
- Multiple Models will be assessed in order to determine the best and most effective predictor of confirmed Covid-19 cases.
- The goal is to create a model that can be used to predict future Covid-19 cases and cases of a future disease of similar magnitude.

BigQuery Datasets

List and Describe them:

- Mobility change from baseline activity
- Open various information such as temperature, hospitalized, recovered, etc.
- Policy what policies were in place in certain counties
- Mask how often it is advised to wear a mask
- Symptoms the symptoms in different counties

Cleaned Covid Data Dictionary

Change from Baseline Mobility	Aggregation Level	Policies	Economic Measures	Stringency Index
Mobility trends in various places	Level of cluster forming	Numeric scale measuring how strict government policy was	Various economic relief measured in USD	Scale of 1-100 of how well the government responded to Covid 19
Retail and recreation, Parks, Transit, Work place, Residential, etc.		Testing policy, Stay at home order, Gathering restrictions, etc.,	Debt, Relief, stimulus, Vaccine investment, etc.	

Analysis of Covid Confirmed Cases by Policy, Climate, & Mobility

Policy Dataset Features

- Cancel Public Events
- Restriction on Gatherings
- International Travel Controls
- School closing policies
- Public Information Campaigns
- Testing Policy
- Workplace Closing policies

Mobility Dataset Features

- Grocery Store and Pharmacy Traffic Change
- Parks Percent Traffic Change
- Transit Station Traffic Change

Open Dataset Features

- State of California, New York, Florida and Texas
- Rainfall(mm), Average, Maximum, and Minimum Temperature (Celsius)
- Date (DD, MM, YYYY)

Models Assessed on Mobility, Policy, location and Climate Dataset

Models Fitted:

- 1. Linear Regression
- 2. Lasso Regression
- 3. Ridge Regression
- 4. Elastic Net
- 5. Random Forest Regression
- 6. Principal Component Regression

Covid Confirmed Cases: Model Scores

	Training r2 Score	Test r2 Score
Prinicipal_comp_reg	0.9917	0.918800
Random_Forest_Regres	0.9979	0.988600
Lasso	0.6817	0.654500
Ridge	0.6812	0.654200
Linear_Regression	0.6819	0.654500
ENET	0.6425	0.615183

Top Two Models:

- Random Forest Regression
- 2. Principal ComponentRegression (usingRandom ForestRegression)

Random Forest Regression

The Model's prediction

- Random Forest Regression
 Model has an Training r2
 score score of 99.8%
- The Model's r2 score on testing data is 98.9%.
- The RMSE for the Model was around 5,649.

Google Search Symptoms for 2020 & 2019

To public health workers and to researchers in the scientific community, thank you

Data:

- Contains aggregated trends in Google
 Searches for health symptoms
- The data set is further organized by date and location
- 422 symptom searches were studied

Photo by: Google

Change in Google Search Symptoms: 2020 to 2019

- 1. Infection
- 2. Common cold
- 3. Fever
- 4. Acne
- Xeroderma
- 6. Arthritis
- 7. Gastroesophageal Reflux Disease
- 8. Hair Loss
- 9. Abdominal Obesity
- 10. Asthma
- 11. Heartburn
- 12. Shortness of Breath
- 13. Hay Fever
- 14. Chest Pain
- 15. Hypoxemia
- 16. Hyperthermia
- 17. Low Grade Fever
- 18. Dandruff
- 19. Hyperpigmentation
- 20. Headache

Top Correlation to Covid Case Count

Behavioral Symptoms:

- Dysphoria a state of unease
- Clouding of Consciousness
- Mood Swings
- Confusion
- Depression
- Impulsivity
- Anxiety

Others:

- Fatigue
- Weight Gain

Models Using Search Data

Model	Training Score	Test Score	
Linear Regression	0.733689	0.718972	
Ridge	0.733673	0.719133	
RidgeCV	0.733269	0.719450	
Lasso	0.733689	0.718990	
Random Forest	0.994890	0.969984	

Mask Data Set

Survey Response conducted by Dynata for The New York Times

250,000 survey responses between July 2 and July 14

How often do you wear a mask in public when you expect to be within six feet of another person?"

- NEVER
- RARELY
- SOMETIMES
- FREQUENTLY
- ALWAYS

Mask Use in the U.S.

SAY NEVER

North Dakota 18%

SAY SOMETIMES

Iowa **17.36%**Oklahoma **17.41%**South Dakota **17%**

SAY ALWAYS

Delaware 82%

NOT INTUITIVE?

Let's combine with a choropleth map.

2020 US COVID-19 Status by State

Mask Use in the NY

The most **NEVER** use mask people are living in Montgomery county.

Chemung county gets the biggest number in **FREQUENTLY** for mask but not in **ALWAYS**.

In all of counties, Wyoming has the least people use mask in **SOMETIMES** & **FREQUENTLY**.

Yates gets the most in **ALWAYS**

NY

SAY ALWAYS

VS Based line 80%

NY

SAY NEVER

WELCOME TO NY

Modeling with Mask Data

Model	Training Score	Test Score
Linear Regression	0.648969	-3.535922
Ridge	0.922133	0.344883
RidgeCV	0.911987	0.333114
Lasso	0.401339	0.449235
Random Forest	0.965044	0.776316
Extra Tree	1.0	0.785858

Conclusions & Future Directions

- Random Forest Regressor -
 - R2 score on Testing Data: 98.9%
 - o RMSE 5,649 cases
- Symptoms Search-
 - Random Forest Model provided the best score (.96 CV score)
 - The most correlated symptoms seem to be behavioral symptoms
- Mask Model -
 - Our models displayed high variance
 - May be due to balance between high covid cases leading to high mask use and lower mask use leading to high covid case count (requires further study)
 - The data itself was a snapshot of mask usage based on a survey from July
- Future Direction:
 - Combine all the datasets into one model
 - Model using Time Series