1 ГРАНИЦІ ФУНКЦІЇ

1.1 Границя числової послідовності

Назвемо послідовністю множину чисел, пронумерованих натуральними числами, розташованими у порядку зростання. Іншими словами, якщо кожному натуральному числу п за певним правилом ставиться у відповідність число a_n , то множину чисел $\{a_1, a_2,, a_n, ...\}$ називають числовою послідовністю. Або, коротко, послідовністю.

Послідовність позначається $\{a_n\}$. Послідовність вважається заданою, якщо відома формула, за якою знаходять загальний член a_n .

Наприклад,
$$a_n = \frac{n}{n+2}$$
, тобто $a_1 = \frac{1}{3}$; $a_2 = \frac{2}{4}$; $a_3 = \frac{3}{5}$; ...; $a_n = \frac{n}{n+2}$;

Послідовність є функцією цілочислового аргументу.

Визначення 1.1. Послідовність називається обмеженою зверху, якщо існує таке число M>0, що $|a_n|\leq M$ для усіх $n\in N$. (Запис $n\in N$ означає, що n належить множині натуральних чисел).

Визначення 1.2. Послідовність називається обмеженою знизу, якщо існує таке M, що $a_n \ge M$, для усіх $n \in N$.

Визначення 1.3. Число A називається границею числової послідовності $\{a_n\}$, якщо для довільного наперед заданого числа $\varepsilon > 0$, яке може бути яким завгодно малим, існує такий номер $N = N(\varepsilon)$ (залежний від обраного ε), що для усіх значень $n \ge N$ буде виконуватися нерівність: $|a_n - A| < \varepsilon$.

Запис $\lim_{n\to\infty} a_n = A$ означає: границя послідовності $\{a_n\}$ дорівнює A коли n прямує до нескінченності.

Якщо послідовність має скінченну границю, то вона називається збіжною. В усіх інших випадках вона називається розбіжною.

Властивості границі числової послідовності:

- 1 Якщо послідовність має границю, то ця границя є єдиною.
- 2 Послідовність, що має границю, є обмеженою.
- 3 Теорема існування границі монотонної обмеженої послідовності (теорема Вейєрштрасса): якщо послідовність $\{a_n\}$ неспадна і обмежена зверху, $a_n \leq M$, то послідовність має границю. Якщо послідовність $\{a_n\}$ не зростає і обмежена знизу, то вона має границю.
- 4 Нехай послідовність $\{x_n\}$ має границю, яка дорівнює a, послідовність $\{y_n\}$ має границю, яка дорівнює b, тоді справедливі такі рівності:

$$\lim(x_n \pm y_n) = \lim x_n \pm \lim y_n = a \pm b.$$

$$\lim(x_n \cdot y_n) = \lim x_n \cdot \lim y_n = a \cdot b.$$

$$\lim \frac{y_n}{x_n} = \frac{\lim y_n}{\lim x_n} = \frac{a}{b}, b \neq 0$$

$$\lim x_n^{y_n} = \lim x_n^{\lim y_n} = a^b$$

- 5 Якщо $\lim x_n \le \lim y_n$, то $a \le b$.
- 6 Якщо $x_n \le z_n \le y_n$ і $\lim x_n = a$; $\lim y_n = a$, то $\lim z_n = a$;

Визначення 1.4. Послідовність $\left\{a_{_{n}}\right\}$ називається нескінченно малою, якщо $\lim_{n\to\infty}\alpha_{_{n}}=0$.

Приклад 1.1. Написати перші чотири члени послідовності $\left\{a_n = \frac{1}{1+n^2}\right\}$.

Розв'язання

при
$$n = 1$$
 $a_1 = \frac{1}{1+1^2} = \frac{1}{2}$; при $n = 2$ $a_2 = \frac{1}{1+2^2} = \frac{1}{5}$; при $n = 3$ $a_1 = \frac{1}{1+3^2} = \frac{1}{10}$; при $n = 4$ $a_2 = \frac{1}{1+4^2} = \frac{1}{17}$.

Тобто перші чотири члени послідовності $\{a_n\}$:

$$\left\{\frac{1}{3}, \frac{1}{5}, \frac{1}{10}, \frac{1}{17}, \dots\right\}$$
.

Приклад 1.2. Написати формулу загального члена послідовності : $\left\{\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \dots\right\}$.

Розв'язання

Проаналізуємо чисельники. Ці числа ϵ непарними, які можна записати у вигляді (2n – 1). Аналогічно знаменники – парні числа, тому вони будуть записані у вигляді 2n, тобто маємо послідовність

$$\left\{a_{n} = \frac{2n-1}{2n}\right\}.$$

Приклад 1.3. Показати, що при $n \to \infty$ послідовність $\left\{\frac{7}{3}, \frac{10}{5}, ... \frac{3n+4}{2n+1}, ...\right\}$ має границю $\frac{3}{2}$.

Розв'язання

Скористуємось визначенням 1.3.

Побудуємо $a_n - \frac{3}{2} = \frac{3n+4}{2n+1} - \frac{3}{2} = \frac{5}{2(2n+1)}$. Визначимо, при якому зна-

ченні п виконується нерівність $\frac{5}{2(2n+1)} < \epsilon$. Розв'язуючи цю нерівність,

отримаємо $n > \frac{5}{4\epsilon} - \frac{1}{2}$. Наприклад при $\epsilon = 0,1$ нерівність $\left| a_n - \frac{3}{2} \right| < \epsilon$ виконується при n > 12.

До поняття числової послідовності ми ще повернемось при вивченні теми «Ряди». Методи пошуку границь числових послідовностей цілком співпадають з методами пошуку границь неперервних змінних, що будуть розглянуті в наступних розділах.

1.2 Границя змінної величини

Якщо змінна величина x_n пробігає значення послідовності $\{x_n\}$, то вона є дискретною змінною. І границю такої змінної знаходять за визначенням 1.3.

Якщо змінна величина х набуває усіх числових значень деякого скінченого проміжку X, то вона є неперервною змінною.

Визначення 1.5. Число x_0 називають границею змінної x, якщо для довільного числа $\varepsilon > 0$ існує таке значення x', починаючи з якого для усіх наступних значень x виконується нерівність $|x-x_0| < \varepsilon$, і пишуть

$$\lim x = x_0$$
, and $x \to x_0$.

Визначення 1.6. Якщо для довільного числа M>0 існує таке значення x, починаючи з якого усі наступні значення x задовольняють нерівність |x|>M, то кажуть, що змінна x прямує до нескінченності і пишуть

$$\lim x = \infty$$
, a fo $x \to \infty$.

Таку змінну називають нескінченно великою змінною.

Зауваження. З виразом ∞ не можна поводитись, як з числом, це – лише символ, який характеризує певну змінну величину.

1.3 Границя функції в точці

Визначення 1.7. Число A ϵ границею функції f(x) при $x \to x_{_0}$, якщо для кожного $\epsilon > 0$ існує таке $\delta = \delta(\epsilon)$, що при $0 < \left| x - x_{_0} \right| < \delta$, буде виконуватись нерівність: $\left| f(x) - A \right| < \epsilon$.

Записується границя функції f(x): $\lim_{x\to x_0} f(x) = A$

Приклад 1.4. Доведемо, що $\lim_{x\to 2} (3x+1) = 7$. Дійсно, нехай задане довільне $\varepsilon > 0$; для того, щоб виконувалась нерівність $|(3x+1)-7| < \varepsilon$, необхідне виконання таких нерівностей:

$$|3x-6| < \varepsilon \cdot |x-2| < \frac{\varepsilon}{3} \implies -\frac{\varepsilon}{3} < x-2 < \frac{\varepsilon}{3}.$$

Порівнюючи вираз $|x-2|<\frac{\varepsilon}{3}$ з виразом $|x-x_0|<\delta$, маємо, що $x_0=2;\delta=\frac{\varepsilon}{3}$. Таким чином, при кожному ε для усіх значень x, що задовольняють нерівності $|x-2|<\frac{\varepsilon}{3}=\delta$, значення функції 3x+1 буде відрізнятися від числа 7 менше ніж на ε . А це і означає, що 7 є границею функції при $x\to 2$.

3 виразу $\left| x - x_{_0} \right| < \delta$ легко отримати: $-\delta < x - x_{_0} < \delta$; звідки $x_{_0} - \delta < x < x_{_0} + \delta$.

Цей інтервал $(x_0 - \delta; x_0 + \delta)$ називають дельта-околом точки x_0 . Ці поняття можна проілюструвати (рис. 1.1)

Рисунок 1.1 – Поняття околу точки.

Зауваження. Функція необов'язково має границю у точці.

Приклад 1.5. Візьмемо точку перетину функції $y = \sin \frac{1}{x}$ з віссю Ох.

(рис. 1.2).
$$\sin \frac{1}{x} = 0 \implies \frac{1}{x} = \pi n; \ x = \frac{1}{\pi n} ,$$
 де $n = 0, 1, 2, \dots$

Який би ми не взяли окіл навколо точки О, функція приймає всі значення від -1 до 1, і «загнати» значення функції в ε - окіл будь-якої точки при малому ε неможливо, тому функція f(x) не має границі в точці О.

 $Pucyнок 1.2 - \Gamma paфік функції y = sin \frac{1}{x}$

Визначення 1.8. Число A_1 назвемо границею функції f(x)в точці x_0 справа (правосторонньою границею), якщо для кожного $\varepsilon > 0$ існує таке $\delta > 0$, що при всіх x, які задовольняють нерівності $x_0 < x < x_0 + \delta$, виконується нерівність: $|f(x) - A_1| < \varepsilon$.

Позначається правостороння границя так: $\lim_{x \to x_0^{+0}} f(x) = A_1$;

можна записати: $\lim_{x \to x_0 + 0} f(x) = A_1$, якщо

$$\forall \varepsilon > 0 \exists \delta > 0 : x_0 < x < x_0 + \delta \Rightarrow |f(x) - A_1| < \varepsilon.$$

Визначення 1.9. Число A_2 називається границею функції f(x) в точці x_0 зліва (лівосторонньою границею), якщо для кожного $\varepsilon > 0$ існує таке $\delta > 0$, що при всіх x, які задовольняють нерівності $x_0 - \delta < x < x_0$, виконується нерівність: $|f(x) - A_2| < \varepsilon$.

Лівостороння границя позначається так: $\lim_{x \to x_0 = 0} f(x) = A_2$;

можна записати: $\lim_{x \to x_0 = 0} f(x) = f(x_0 - 0)$.

Скорочено $\lim_{x\to x_0-0} f(x) = A_2$, якщо

$$\forall \varepsilon > 0 \exists \delta > 0: x_0 - \delta < x < x_0 \Longrightarrow |f(x) - A_2| < \varepsilon.$$

Властивості односторонніх границь

Якщо існує границя функції в точці, то існують обидві односторонні границі.

Але, якщо існують односторонні границі, це не означає, що існує границя функції в точці.

Для того щоб існувала границя функції в точці x_0 , необхідно і достатньо, щоб існували обидві односторонні границі і щоб ці границі були рівні між собою: $f(x_0+0)=f(x_0-0)$.

Визначення 1.10. Число A називається границею функції f(x) при $x \to \infty$, якщо для будь-якого додатного ε існує N > 0 таке, що при усіх |x| > N, виконується нерівність: $|f(x) - A| < \varepsilon$.

Позначається: $\lim_{x \to \infty} f(x) = A$.

Наприклад, візьмемо функцію $y = \frac{1}{x^2}$ (рис. 1.3).

Якщо
$$|x| > \frac{1}{\sqrt{\varepsilon}}$$
, то $\left| \frac{1}{x^2} - 0 \right| < \varepsilon$.

$$N = \frac{1}{\sqrt{\varepsilon}}$$

Рисунок 1.3 – Окіл нескінченно великої точки.

Множина x, яка задовольняє нерівності |x| > N, називається околом нескінченно великої точки: |x| > N, $U(\infty)$ (рис. 1.3).

Визначення 1.11. Число A називається границею функції f(x) при $x \to a$, якщо для кожного $\varepsilon > 0$ існує окіл точки a такий, що при всіх x, які належать околу, $(x \ne a)$, виконується нерівність: $|f(x) - A| < \varepsilon$.

Властивості границь функції ϵ такими ж, як і властивості границь числової послідовності:

- 1 Якщо функція має границю, то ця границя є єдиною.
- 2 Границя сталої дорівнює цій сталій . $\lim_{x\to x} C = C$.

3 Нехай при х \rightarrow х₀ функція f(x) має границю, яка дорівнює a, а функція g(x) має границю, яка дорівнює b, тоді справедливі такі рівності:

$$\begin{split} &\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = a \pm b. \\ &\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = a \cdot b. \\ &\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}, \ b \neq 0. \\ &\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} f(x)^{\lim_{x \to x_0} g(x)} = a^b. \end{split}$$

- 4 Якщо $\lim_{x\to x_0} f(x) \le \lim_{x\to x_0} g(x)$, то: $a \le b$.
- 5 Якщо $f(x) \le h(x) \le g(x)$ і $\lim_{x \to x_0} f(x) = a$; $\lim_{x \to x_0} g(x) = a$, то $\lim_{x \to x_0} h(x) = a$;.
- 6 Перша стандартна границя $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
- 7 Друга стандартна границя $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$.

1.4 Нескінченно малі та нескінченно великі функції. Поняття еквівалентних функцій. Основні еквівалентності

Визначення 1.12. Функція $\alpha(x)$ при $x \to x_0$ називається нескінченно малою, якщо її границя дорівнює нулю. $\lim_{x \to x_0} \alpha(x) = 0$.

Властивості нескінченно малих функцій:

1 Для того щоб функція f(x) при $x \to x_0$ мала границю A, необхідно і достатньо, щоб f(x) можна було записати у вигляді:

$$f(x) = A + \alpha(x) ,$$

де $\alpha(x)$ – нескінченно мала функція при $x \to x_0$.

- 2 Сума скінченої кількості нескінченно малих функцій ϵ нескінченно малою функцією.
- 3 Добуток нескінченно малої при $x \to x_0$ функції на функцію, обмежену в околі точки x_0 , є нескінченно малою функцією.
- 4 Добуток двох нескінченно малих функцій при $x \to x_0$ є нескінченно малою функцією.

Нехай функції $\alpha(x)$ і $\beta(x)$ є нескінченно малими при $x \to x_0$.

5 Нескінченно малі $\alpha(x)$ і $\beta(x)$ називаються нескінченно малими одного порядку, якщо:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = C \neq 0, \text{ де } C - \text{const},$$

- 6 Якщо $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, то нескінченно мала $\alpha(x)$ називається нескінченно малою більш високого порядку, ніж $\beta(x)$. При цьому нескінченно мала $\beta(x)$ є нескінченно малою більш низького порядку, чим $\alpha(x)$.
- 7 Якщо $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \infty$, то нескінченно мала $\alpha(x)$ називається нескінченно малою більш низького порядку, ніж $\beta(x)$.
- 8 Якщо $\lim_{x \to x_0} \frac{\alpha(x)}{[\beta(x)]^k} = C \neq 0$, то нескінченно мала $\alpha(x)$ називається нескінченно малою *k-го* порядку в порівнянні з нескінченно малою $\beta(x)$.
- 9 Дві нескінченно малі функції $\alpha(x)$ і $\beta(x)$ називаються еквівалентними при $x \to x_{_0}$, якщо :

$$\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=1.$$

Еквівалентність позначається так: $\alpha(x) \sim \beta(x)$.

3 першої стандартної границі $\lim_{x\to 0} \frac{\sin x}{x} = 1$ маємо: $\sin x \sim x$.

Визначення 1.13. Функція f(x) при $x \to x_0$ називається нескінченно великою, якщо для будь-якого як завгодно великого додатного числа M існує окіл точки x_0 $U(x_0)$ такий, що при усіх $x \in U(x_0)$, $x \ne x_0$ виконується нерівність: |f(x)| > M або скорочено: $\lim_{x \to x_0} f(x) = \infty$.

Властивості нескінченно великих функцій:

1 Якщо функція ϵ нескінченно великою, то вона ϵ необмеженою. Зворотне твердження невірне, тобто необмежена функція не обов'язково ϵ нескінченно великою.

Наприклад, якщо взяти функцію $y = x \sin x$ (рис. 1.4), вона не ϵ нескінченно великою, але ϵ необмеженою.

2 Дві нескінченно великі функції A(x) і B(x) називаються еквівалентними при $x \to x_0$, якщо :

$$\lim_{x\to x_0}\frac{A(x)}{B(x)}=1.$$

Pисунок $1.4 - \Gamma paфік функції y = x sin x .$

3 Поліном степеня п $a_0 x^n + a_1 x^{n-1} + ... a_n$ при $x \to \infty$ є еквівалентним своєму члену з найбільшим степенем, або

$$a_0 x^n + a_1 x^{n-1} + ... a_n \sim a_0 x^n$$
.

4 Якщо функція $\alpha(x)$ є нескінченно малою при $x \to x_0$, тоді функція $\beta(x) = \frac{1}{\alpha(x)}$ є нескінченно великою при $x \to x_0$ і навпаки: якщо функція $\beta(x)$ нескінченно велика при $x \to x_0$, тоді $\alpha(x) = \frac{1}{\beta(x)}$ є нескінченно малою при $x \to x_0$.

Наведемо основні еквівалентності, які ϵ наслідками першої та другої стандартних границь:

- $1 \sin \alpha(x) \sim \alpha(x)$ власне перша стандартна границя, та її наслідки:
- 2 $tg\alpha(x) \sim \alpha(x)$;
- 3 $\arcsin \alpha(x) \sim \alpha(x)$;
- 4 $arctg\alpha(x) \sim \alpha(x)$;

наслідки другої стандартної границі:

- 5 $e^{\alpha(x)}-1\sim\alpha(x)$;
- 6 $a^{\alpha(x)}-1\sim\alpha(x)\ln a$;
- 7 $(1+\alpha(x))^n 1 \sim \alpha(x)n;$
- 8 $\ln(1+\alpha(x))\sim\alpha(x)$.

1.5 Приклади на знаходження границь

За допомогою розглянутих властивостей можна знаходити деякі границі.

Приклад 1.6. Знайти границю

$$\lim_{x\to 1}\frac{4x}{x^2+3}.$$

Розв'язання

На основі згаданих властивостей і рівності $\lim_{x \to 1} x = 1$ маємо

$$\lim_{x \to 1} \frac{4x}{x^2 + 3} = \frac{\lim_{x \to 1} (4x)}{\lim_{x \to 1} (x^2) + 3} = \frac{4\lim_{x \to 1} (x)}{(\lim_{x \to 1} (x))^2 + 3} = \frac{4}{1^2 + 3} = 1.$$

Цей самий результат можна дістати, підставляючи у вираз граничне значення х. Тому сформулюємо **перше правило** обчислення границь:

- підставити у вираз граничне значення х. Якщо отримане скінченне число, границя знайдена.

Зауваження. Не завжди можна під знак границі підставляти граничне значення аргументу. Такі функції, для яких це можна робити, називаються неперервними і будуть розглянуті далі.

Приклад 1.7. Знайти границю

$$\lim_{x\to 2}\frac{2-x}{x^2-4}.$$

Розв'язання

Підставляючи x=2 у вираз, дістанемо $\frac{0}{0}$. Таку ситуацію називають невизначеністю, оскільки після знаходження границь чисельника і знаменника обидві дорівнюють нулю, а границя усього виразу може бути як конкретним числом, так і нескінченністю, або взагалі може не існувати. Знайти подібну границю означає розкрити невизначеність. $\mathfrak E$ інші види невизначеностей: $\frac{\infty}{100}$, $\infty - \infty$, $0 \cdot \infty$, $10 \cdot \infty$, $10 \cdot \infty$

У виразі під знаком границі можна виконувати будь-які спрощення, що не суперечать правилам алгебри. Повернемось до прикладу 1.7.

Приклад 1.8. Знайти границю:

$$\lim_{x\to 2}\frac{2-x}{x^2-4}.$$

Розв'язання

Розкладемо знаменник на множники. У чисельнику винесемо за дужки число -1.

$$\lim_{x \to 2} \frac{2 - x}{x^2 - 4} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 2} \frac{-(x - 2)}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{-1}{(x + 2)} = -\frac{1}{4}.$$

У фігурних дужках після умови задачі будемо надалі вказувати вид невизначеності.

У більш складних випадках пошуку границь для функції виду

$$\frac{P_n(x)}{Q_m(x)} = \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m},$$

якщо $\lim_{x \to x_0} \frac{P_n(x)}{Q_m(x)} = \left\{ \begin{array}{l} 0 \\ 0 \end{array} \right\}$ у чисельнику і знаменнику виділяють множник $x - x_0$, поки не позбуваються невизначеності.

Приклад 1.9. Знайти границю

$$\lim_{x \to 1} \frac{x^5 - 1}{x^3 - 1}.$$

Розв'язання

$$\lim_{x \to 1} \frac{x^5 - 1}{x^3 - 1} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 1} \frac{(x - 1)(x^4 + x^3 + x^2 + x + 1)}{(x - 1)(x^2 + x + 1)} =$$

$$= \lim_{x \to 1} \frac{x^4 + x^3 + x^2 + x + 1}{x^2 + x + 1} = \frac{5}{3}.$$

Приклад 1.10. Знайти границю

$$\lim_{x\to 0}\frac{\sqrt{x+4}-2}{x}.$$

Розв'язання

Домножимо чисельник і знаменник дробу на суму $\sqrt{x+4} + 2$:

$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x} \cdot \frac{\sqrt{x+4} + 2}{\sqrt{x+4} + 2} = \lim_{x \to 0} \frac{x+4-4}{x(\sqrt{x+4} + 2)} = \lim_{x \to 0} \frac{1}{(\sqrt{x+4} + 2)} = \frac{1}{4}.$$

Третє правило обчислення границь:

У виразі під знаком границі замість будь-якої функції можна підставляти еквівалентну їй іншу функцію.

Приклад 1.11. Знайти границю

$$\lim_{x\to 0} \frac{\ln(1+5x^2)}{x \operatorname{arctg} x}$$

Розв'язання

Скористаємось еквівалентностями 4 і 8:

$$\begin{vmatrix} \ln(1+5x^2) \sim 5x^2 \\ \arctan x \end{vmatrix}.$$

$$\lim_{x \to 0} \frac{\ln(1+5x^2)}{\text{xarctgx}} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{5x^2}{x \cdot x} = 5.$$

Ці правила можна використовувати одночасно.

Приклад 1.12. Знайти границю

$$\lim_{x\to 0}\frac{1-\cos 5x}{x^2}.$$

Розв'язання

Використаємо відому тригонометричну формулу $2\sin^2\alpha = 1 - \cos 2\alpha$ і першу еквівалентність:

$$\lim_{x \to 0} \frac{1 - \cos 5x}{x^2} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 0} \frac{2\sin^2 \frac{5x}{2}}{x^2} = 2\lim_{x \to 0} \left(\frac{\sin \frac{5x}{2}}{x} \right)^2 = 2\left(\frac{5}{2} \right)^2 = \frac{25}{2}.$$

Приклад 1.13. Знайти границю:

$$\lim_{x\to 0}\frac{\cos 2x-\cos 4x}{3x^2}.$$

Розв'язання

Використаємо відому тригонометричну формулу $\cos\alpha - \cos\beta = -2\sin\frac{\alpha-\beta}{2}\sin\frac{\alpha+\beta}{2} \text{ і першу еквівалентність:}$

$$\lim_{x \to 0} \frac{\cos 2x - \cos 4x}{3x^2} = \lim_{x \to 0} \frac{2\sin x \sin 3x}{3x^2} = \lim_{x \to 0} \frac{2x 3x}{3x^2} = 2.$$

Розглянемо границю функції

$$\frac{P_{n}(x)}{Q_{m}(x)} = \frac{a_{0}x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n}}{b_{0}x^{m} + b_{1}x^{m-1} + \dots + b_{m-1}x + b_{m}}$$

у випадку, коли $x \to \infty$. У цьому випадку для пошуку границі використовують третю властивість нескінченно великих функцій. У загальному випадку її можна записати у вигляді:

$$\lim_{x\to\infty}\frac{P_n(x)}{Q_m(x)}=$$

$$= \begin{cases} \infty, \text{якщо } n > m \\ \frac{a_0}{b_0}, \text{ якщо } n = m. \\ 0, \text{ якщо } n < m \end{cases}$$

Приклад 1.14. Знайти границю

$$\lim_{x\to\infty} \frac{3x^5 + 2x^3 + 1}{4x^5 + x^2 - x - 1}.$$

Розв'язання

Використаємо наведену узагальнену формулу n = m = 5:

$$\lim_{x \to \infty} \frac{3x^5 + 2x^3 + 1}{4x^5 + x^2 - x - 1} = \left\{ \frac{\infty}{\infty} \right\} = \frac{3}{4}.$$

Приклад 1.15. Знайти границю

$$\lim_{n \to \infty} \frac{\sqrt[5]{n^3 + 2} + \sqrt[3]{n}}{\sqrt[4]{n^3 + 2} + n}.$$

Розв'язання

Степінь чисельника n = 3/5 менший ніж степінь знаменника m = 3/4, тому

$$\lim_{n \to \infty} \frac{\sqrt[5]{n^3 + 2} + \sqrt[3]{n}}{\sqrt[4]{n^3 + 2} + n} = \left\{ \frac{\infty}{\infty} \right\} = 0.$$

Приклад 1.16. Знайти границю

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3} \right)$$

Розв'язання

Домножимо і поділимо розглянутий вираз на $(\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3})$:

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3} \right) = \left\{ \infty - \infty \right\} =$$

$$= \lim_{x \to \infty} \left(\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3} \right) \frac{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} =$$

$$\lim_{x \to \infty} \frac{x^2 + 8x + 3 - x^2 - 4x - 3}{\sqrt{x^2 + 8x + 3} + \sqrt{x^2 + 4x + 3}} = \lim_{x \to \infty} \frac{4x}{x + x} = 2.$$

Тут враховані еквівалентності:

$$\sqrt{x^2 + 8x + 3} \sim \sqrt{x^2} = x$$
; $\sqrt{x^2 + 4x + 3} \sim \sqrt{x^2} = x$.

У випадках невизначеності 1° використовують другу стандартну границю.

Приклад 1.17. Знайти границю

$$\lim_{x\to 0} (1+3x)^{\frac{1}{x}}$$
.

Розв'язання

$$\lim_{x\to 0} (1+3x)^{\frac{1}{x}} = \left\{1^{\infty}\right\} = \lim_{x\to 0} (1+3x)^{\frac{3-\frac{1}{3x}}} = \lim_{x\to 0} \left((1+3x)^{\frac{1}{3x}}\right)^{3} = e^{3},$$

Приклад 1.18. Знайти границю

$$\lim_{x\to\infty} \left(1+\frac{\alpha}{x}\right)^{\beta x}.$$

Розв'язання

$$\lim_{x\to\infty} \left(1+\frac{\alpha}{x}\right)^{\beta x} = \left\{1^{\infty}\right\} = \lim_{x\to\infty} \left(\left(1+\frac{\alpha}{x}\right)^{\frac{x}{\alpha}\alpha}\right)^{\beta} = \left(\lim_{x\to\infty} \left(1+\frac{\alpha}{x}\right)^{\frac{x}{\alpha}}\right)^{\alpha\beta} = e^{\alpha\beta}.$$

На основі перетворень, що застосовані у прикладах 1.16 і 1.17, можна розв'язувати більш складні задачі.

Приклад 1.19. Знайти границю

$$\lim_{x\to\infty}\left(\frac{2x-3}{2x+1}\right)^{4x-2}.$$

Розв'язання

$$\begin{split} \lim_{x \to \infty} & \left(\frac{2x - 3}{2x + 1} \right)^{4x - 2} = \left\{ 1^{\infty} \right\} = \lim_{x \to \infty} \left(1 + \frac{-4}{2x + 1} \right)^{4x - 2} = \\ & = \lim_{x \to \infty} \left(1 + \frac{-4}{2x + 1} \right)^{\frac{2x + 1}{-4} \frac{-4}{2x + 1}(4x - 2)} = \lim_{x \to \infty} \left(\left(1 + \frac{-4}{2x + 1} \right)^{\frac{2x + 1}{-4}} \right)^{\frac{-4}{2x + 1}(4x - 2)} = \lim_{x \to \infty} e^{-\frac{4(4x - 2)}{2x + 1}} = e^{-\lim_{x \to \infty} \frac{4(2x - 1)}{1 + \frac{1}{2x}}} = e^{-8}. \end{split}$$

Приклад 1.20. Знайти границю

$$\lim_{x\to 0}(\cos x)^{\frac{1}{x^2}}.$$

Розв'язання

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^{2}}} = \left\{ 1^{\infty} \right\} = \lim_{x \to 0} (1 + (\cos x - 1))^{\frac{1}{x^{2}}} =$$

$$= \lim_{x \to 0} \left(1 + 2\sin^{2} \frac{x}{2} \right)^{\frac{1}{x^{2}}} = \lim_{x \to 0} \left(1 + 2\sin^{2} \frac{x}{2} \right)^{\frac{-2\sin^{2} \frac{x}{2}}{x^{2}}} =$$

$$= \lim_{x \to 0} \left(1 + 2\sin^{2} \frac{x}{2} \right)^{\frac{1}{x^{2}}} = \lim_{x \to 0} \left[\left(1 + 2\sin^{2} \frac{x}{2} \right)^{\frac{-2\sin^{2} \frac{x}{2}}{x^{2}}} \right]^{\frac{-2\sin^{2} \frac{x}{2}}{x^{2}}} =$$

$$e^{-2\lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{x} \right)^{2}} = e^{-2\left(\frac{1}{2}\right)^{2}} = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}.$$

У загальному вигляді, якщо $\lim_{x \to x_0} f(x) = 1;$ $\lim_{x \to x_0} \phi(x) = \infty;$ то

$$\begin{split} \lim_{x \to x_0} & [f(x)]^{\varphi(x)} = \left\{ 1^{\infty} \right\} = \lim_{x \to x_0} \left[(1 + (f(x) - 1))^{\frac{1}{f(x) - 1}} \right]^{\varphi(x)[f(x) - 1]} = \\ & \left| \begin{array}{l} f(x) - 1 = \alpha(x) \\ \alpha(x) \to 0 \end{array} \right| = \left[\lim_{\alpha(x) \to 0} (1 + \alpha(x))^{\frac{1}{\alpha(x)}} \right]^{\lim_{x \to x_0} \varphi(x)[f(x) - 1]} = \\ & = e^{\lim_{x \to x_0} \varphi(x)[f(x) - 1]}. \end{split}$$

2 НЕПЕРЕРВНІСТЬ ФУНКЦІЇ

2.1 Неперервність функції у точці

Визначення 2.1. Функція f(x) називається неперервною в точці $x = x_0$, якщо:

- 1) функція визначена в точці x_0 і в деякому її околі, тобто існує значення $f(x_0)$;
 - 2) існує границя $\lim_{x \to x} f(x) = A$;
 - 3) і ця границя дорівнює $A = f(x_0)$.

Визначення 2.2. Функція f(x) називається неперервною в точці x_0 , якщо:

- 1) функція визначена в точці x_0 і в деякому її околі;
- 2) існує границя приросту функції, коли $\Delta x \to 0$ (приріст аргументу прямує до нуля): $\lim_{x\to 0} \Delta y$;
 - 3) і ця границя дорівнює нулю: $\lim_{\Delta x \to 0} \Delta y = 0$.

Таким чином, функція неперервна в точці x, якщо: $\lim_{\Delta x \to x_0} f(x) = f(x_0)$. Візьмемо значення $x = x_0 + \Delta x$ (рис. 2.1).

Розглянемо границю $\lim_{\Delta x \to 0} f(x_0 + \Delta x) - f(x_0) = 0$, тобто $\lim_{\Delta x \to 0} [f(x_0 + \Delta x) - f(x_0)] = 0$ або $\lim_{\Delta x \to 0} \Delta y = 0$.

Рисунок 2.1

Розглянемо неперервність основних елементарних функцій:

- 1) $y = x^a$ степенева;
- 2) $y = a^{x} \text{показниковi};$
- 3) $y = log_a x логарифмічна;$
- 4) $y = \sin x$, $y = \cos x$, y = tgx, y = arctgx тригонометричні.

Усі вони є функціями неперервними в області визначення.

Приклад 2.1. Показати неперервність функції $y = x^2$.

Розв'язання

$$\Delta y = (x + \Delta x)^2 - x^2 = x^2 + 2x\Delta x + \Delta x^2 - x^2 = 2x\Delta x + \Delta x^2$$

 $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (2x\Delta x + \Delta x^2) = 0$. Функція $y = x^2$ неперервна на всій числовій вісі.

Приклад 2.2. Показати неперервність функції $y = \sin x$.

Розв'язання

$$\Delta y = y(x + \Delta x) - y(x) = \sin(x + \Delta x) - \sin(x) = 2\sin\frac{x + \Delta x - x}{2};$$

$$\cos\frac{x + \Delta x + x}{2} = 2\sin\frac{\Delta x}{2}\cos\frac{2x + \Delta x}{2} = 2\sin\frac{\Delta x}{2}\cos\left(x + \frac{\Delta x}{2}\right).$$

 $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} 2 \sin \frac{\Delta x}{2} \cos \left(x + \frac{\Delta x}{2} \right) = 0 \,. \quad \Phi$ ункція $y = \sin x$ неперервна при усіх $x \in R$.

Визначення 2.3. Функція y = f(x) називається неперервною зліва у точці x_0 , якщо:

1) вона визначена в точці x_0 і у деякому лівому півоколі $(x_0 - \Delta x, x_0)$ і існує границя:

$$\lim_{x \to x_0} f(x) = f(x_0 - 0) = f(x_0);$$

2) існує границя приросту функції $\lim_{x\to x_{-}0} \Delta y$, яка дорівнює нулю:

$$\lim_{x\to x_0=0} \Delta y = 0.$$

Визначення 2.4. Функція y = f(x) називається неперервною справа у точці x_0 , якщо:

1) вона визначена в точці $x_{_0}$ і у деякому правому півоколі $(x_{_0},x_{_0}+\Delta x)$ і існує границя:

$$\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) = f(x_0);$$

2) існує границя приросту функції $\lim_{x \to x_0 + 0} \Delta y$, яка дорівнює нулю:

$$\lim_{x \to x_0 + 0} \Delta y = 0.$$

Точки, у яких порушується хоча б одна з умов неперервності функції, називаються точками розриву, тобто це точки, у яких функція:

- 1) або не визначена;
- 2) або не існує границі $\lim_{x\to x_0} f(x)$;

3) aбo
$$\lim_{x\to x_0} f(x) \neq f(x_0)$$
.

Точки розриву ділять на точки першого і другого роду.

Визначення 2.5. Точка розриву x_0 називається точкою розриву першого роду, якщо в цій точці існують обидві скінченні односторонні границі. Точки розриву першого роду бувають усувного і неусувного розриву.

Розрив неусувний, якщо:

$$\lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 - 0} f(x) \qquad f(x_0 - 0) \neq f(x_0 + 0),$$

але в точці x_0 функція або не існує, або не визначена.

Визначення 2.6. Точка x_0 називається точкою розриву другого роду, якщо в цій точці функція f(x) не має принаймні однієї з односторонніх границь, або хоча б одна одностороння границя дорівнює нескінченності.

Приклад 2.3. Знайти точки розриву функції $y = \frac{x}{|x|}$, дослідити їх характер.

Розв'язання

При x = 0 функція невизначена. Тому x = 0 – точка розриву.

$$|x| =$$
 $\begin{cases} x, & \text{якщо } x > 0 \\ -x, \text{якщо } x < 0 \\ 0, & \text{якщо } x = 0 \end{cases}$

Побудуємо графік функції (рис. 2.2).

$$P$$
исунок 2.2 – Графік функції у = $\frac{\mathbf{x}}{|\mathbf{x}|}$

Легко бачити: $\lim_{x\to 0+0} y(x) = 1$; $\lim_{x\to 0-0} y(x) = -1$.

Висновок:

x = 0 – точка розриву 1-го роду. Розрив неусувний.

Приклад 2.4. Знайти точки розриву функції $y = \frac{\sin x}{x}$, дослідити їх характер.

Розв'язання

$$\lim_{x\to 0+0} \frac{\sin x}{x} = 1, \text{ тобто } f(0-0) = 1 \text{ зліва};$$

$$\lim_{x\to 0+0} \frac{\sin x}{x} = 1, \text{ тобто } f(0+0) = 1 \text{ справа};$$

$$f(0-0) = f(0+0);$$

$$f(0) = \frac{0}{0} \text{ не існує}.$$

У цьому випадку точка $x_0 = 0$ ϵ точкою усувного розриву. Точка $x_0 = 0$ – точка розриву першого роду (див. рис. 2.3).

Рисунок 2.3 – Графік функції $y = \frac{\sin x}{x}$.

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{при } x \neq 0, \\ 1 & \text{при } x \neq 0 \end{cases}$$

тобто у точці $x_0 = 0$ існують значення функції як граничної зліва і справа.

Приклад 2.5. Знайти точки розриву функції $y = \frac{1}{x}$, дослідити їх характер.

Розв'язання

$$\lim_{x \to 0+0} \frac{1}{x} = +\infty;$$

$$\lim_{x \to 0-0} \frac{1}{x} = -\infty.$$

Побудуємо графік (рис. 2.4).

Рисунок 2.4 – Графік функції $y = \frac{1}{x}$.

x = 0 — точка розриву другого роду.

Приклад 2.6. Знайти точки розриву функції, $y = 2^{\frac{1}{x-3}}$ дослідити їх характер.

Розв'язання

x = 3 – точка розриву

Розглянемо границю зліва:

$$\lim_{x \to 3-0} y(x) = \lim_{x \to 3-0} 2^{\frac{1}{x-3}} = 2^{-\infty} = \frac{1}{2^{\infty}} = 0.$$

Розглянемо границю справа:

$$\lim_{x \to 3+0} y(x) = \lim_{x \to 3+0} 2^{\frac{1}{x-3}} = 2^{\infty} = \frac{1}{2^{-\infty}} = \infty.$$

Побудуємо схематичний графік (рис. 2.5).

Pисунок $2.5 - \Gamma paфік функції y = <math>2^{\frac{1}{X-3}}$

Легко бачити, що точка x = 3 – точка розриву другого роду.

Приклад 2.7. Знайти точки розриву функції, дослідити їх характер.

$$f(x) = \begin{cases} x & \text{при } x < -2 \\ -x + 1 & \text{при } -2 \le x \le 1, \\ x^2 - 1 & \text{при } x > 1 \end{cases}$$

Розв'язання

Розглянемо границі зліва і справа точок x = -2, і x = 1:

$$\lim_{x \to -2-0} f(x) = \lim_{x \to -2-0} x = -2;$$

$$\lim_{x \to -2+0} f(x) = \lim_{x \to -2+0} (-x+1) = 3;$$

$$f(-2) = 2+1 = 3;$$

$$f(-2-0) \neq f(-2+0).$$

Висновок: у точці x = -2 існує розрив першого роду.

$$\lim_{x \to 1-0} f(x) = \lim_{x \to 1-0} (-x+1) = 0;$$

$$\lim_{x \to 1+0} f(x) = \lim_{x \to 1+0} (x^2 - 1) = 0;$$

$$f(1) = 0;$$

$$f(1-0) = f(1+0) = f(1=0).$$

Висновок: у точці x = 1 функція неперервна. Побудуємо графік (рис. 2.6).

Рисунок 2.6 – Графік функції з прикладу 2.7

Властивості неперервних у точці функцій:

1 Алгебраїчна сума скінченої кількості неперервних функцій ϵ функція неперервна.

- 2 Добуток скінченої кількості неперервних функцій ϵ функція неперервна.
- 3 Частка двох неперервних функцій ϵ функція неперервна, за умови, що знаменник ϵ відмінним від нуля у відповідній точці.
- 4 Якщо функція $u = \varphi(x)$ неперервна в точці x_0 , а функція y = f(u) неперервна у відповідній точці $u_0 = \varphi(x_0)$, то складена функція $y = f[\varphi(x)]$ буде неперервною в точці x_0 .
- 5 Будь-яка елементарна функція ϵ неперервною в будь-якій точці області визначення.

2.2 Неперервність функції на інтервалі

Визначення 2.7. Функція f(x) називається неперервною на інтервалі (a;b), якщо вона неперервна в кожній точці цього інтервалу.

Визначення 2.8. Функція називається неперервною на відрізку [a;b], якщо вона неперервна в кожній точці цього відрізка і неперервна в точці x = a справа, і в точці x = b зліва.

Визначення 2.9. Якщо для усіх $x \in [a;b]$ виконується нерівність $f(x) < f(x_1)$, де $x_1 \in [a;b]$, то $f(x_1) = M$ називається найбільшим значенням функції на відрізку.

Визначення 2.10. Якщо для усіх $x \in [a;b]$ виконується нерівність $f(x) \ge f(x_1)$, де $x_1 \in [a;b]$, то $f(x_1) = m$ називається найменшим значенням функції на відрізку.

Властивості неперервних на відрізку функцій:

- 1) якщо функція f(x) неперервна на відрізку [a;b], то принаймні в одній точці цього відрізка вона приймає найбільше значення M і принаймні в одній точці найменше значення m (теорема Вейєрштрасса);
- 2) нехай функція f(x) неперервна на відрізку [a;b] і на кінцях цього відрізка приймає значення різних знаків, тоді між точками а і b знайдеться принаймні одна точка x = c, у якій функція перетворюється на нуль: f(c) = 0, при a < c < b (перша теорема Больцано-Коші);
- 3) якщо функція f(x) неперервна на відрізку [a;b] і f(a)=A, f(b)=B, і $A \neq B$, то для будь-якого числа C, яке знаходиться між A і B, знайдеться принаймні одна точка $c \in [a;b]$ така, що f(c)=C (друга теорема Больцано-Коші).

2.3 Асимптоти кривої

Визначення 2.11. Пряма a називається асимптотою кривої y = f(x), якщо при наближенні точки, яка рухається вздовж кривої, до нескінченності відстань від точки кривої до цієї прямої наближається до нуля (рис. 2.7).

Асимптоти діляться на похилі і вертикальні.

Рисунок 2.7

Визначення 2.12. Пряма x=a називається вертикальною асимптотою кривої y=f(x), якщо $\lim_{x\to a\pm 0}f(x)=\pm\infty$.

Приклад 2.8. Знайти вертикальну асимптоту функції

$$y = \frac{1}{x}$$

Розв'язання

Знайдемо $\lim_{x\to +0} \frac{1}{x} = +\infty$, $\lim_{x\to -0} \frac{1}{x} = -\infty$.

Висновок: x = 0 – вертикальна асимптота(рис. 2.4).

Приклад 2.9. Знайти вертикальну асимптоту функції

$$y = \log_a x$$

Розв'язання

Знайдемо $\lim_{x\to 0} \log_a x = -\infty$.

Висновок: x = 0 – вертикальна асимптота (рис. 2.8)

Pисунок $2.8 - \Gamma pa\phi$ ік ϕ ункції $y = log_a x$.

Приклад 2.10. Знайти вертикальні асимптоти функції

$$y = \frac{x^2}{\sqrt{x^2 - 1}}$$

Розв'язання

Область визначення функції $x^2-1>0 \implies x^2>1; |x|>1$, або $x \in (-\infty;-1) \cup (1;+\infty)$ (рис. 2.9).

Рисунок 2.9

Знайдемо

$$\lim_{x \to -1-0} \frac{x^2}{\sqrt{x^2 - 1}} = +\infty , \qquad \lim_{x \to -1+0} \frac{x^2}{\sqrt{x^2 - 1}} = +\infty$$

Висновок: вертикальні асимптоти x = -1 і x = 1.

Рівняння похилої асимптоти будемо шукати у вигляді:

$$y = kx + b$$
 де $k = \lim_{x \to \infty} \frac{f(x)}{x} = 0$
$$b = \lim_{x \to \infty} [f(x) - kx] = 0.$$

Якщо хоча б однієї з границь не існує, то крива похилої асимптоти не має.

Зауваження. Усі викладені вище міркування справедливі і при $x \to -\infty$. Випадки $x \to +\infty$ і $x \to -\infty$ варто розглядати окремо.

$$k_{1} = \lim_{x \to +\infty} \frac{f(x)}{x} = 0 \qquad b_{1} = \lim_{x \to +\infty} [f(x) - k_{1}x] = 0$$

$$k_{2} = \lim_{x \to -\infty} \frac{f(x)}{x} = 0 \qquad b_{2} = \lim_{x \to -\infty} [f(x) - k_{2}x] = 0$$

(тобто можливі лівостороння асимптота при $x \to -\infty$, і правостороння асимптота при $x \to +\infty$).

Якщо k = 0, то

$$b = \lim_{x \to \infty} f(x),$$

тому $y = b - рівняння горизонтальної асимптоти. Оскільки це рівняння <math>\epsilon$ окремим випадком загального рівняння прямої, то можна розрізняти не три, а два види асимптот: вертикальні і невертикальні.

Приклад 2.11. Знайти асимптоти кривої

$$y = \frac{x^3}{x^2 - 4x + 3}$$

1 Знаходимо вертикальні асимптоти. Знайдемо точки розриву.

$$x^{2} - 4x + 3 = 0 x_{1} = 1; x_{2} = 3;$$

$$x^{2} - 4x + 3 = (x - 1)(x - 3);$$

$$\lim_{x \to 1+0} \frac{x^{3}}{x^{2} - 4x + 3} = \lim_{x \to 1+0} \frac{x^{3}}{(x - 1)(x - 3)} = -\infty;$$

$$\lim_{x \to 3+0} \frac{x^{3}}{x^{2} - 4x + 3} = \lim_{x \to 3+0} \frac{x^{3}}{(x - 1)(x - 3)} = +\infty;$$

$$\lim_{x \to 3+0} \frac{x^{3}}{x^{2} - 4x + 3} = \lim_{x \to 3+0} \frac{x^{3}}{(x - 1)(x - 3)} = -\infty;$$

$$\lim_{x \to 3+0} \frac{x^{3}}{x^{2} - 4x + 3} = \lim_{x \to 3+0} \frac{x^{3}}{(x - 1)(x - 3)} = +\infty.$$

Маємо дві вертикальні асимптоти x = 1 і x = 3.

2 Знаходимо похилі асимптоти:

$$k_{1} = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{x^{3}}{x^{3} - 4x^{2} + 3x} = \lim_{x \to +\infty} \frac{1}{1 - \frac{4}{x} + \frac{3}{x^{2}}} = 1;$$

$$b_{1} = \lim_{x \to +\infty} (y - k_{1}x) = \lim_{x \to +\infty} \left(\frac{x^{3}}{x^{2} - 4x + 3} - x\right) =$$

$$= \lim_{x \to +\infty} \frac{x^{3} - x^{3} + 4x^{2} - 3x}{x^{2} - 4x + 3} = \lim_{x \to +\infty} \frac{4x^{2} - 3x}{x^{2} - 4x + 3} =$$

$$k_{2} = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{1}{1 - \frac{4}{x} + \frac{3}{x^{2}}} = 1;$$

$$= \lim_{x \to +\infty} \frac{4 - \frac{3}{x}}{1 - \frac{4}{x} + \frac{3}{x^{2}}} = 4;$$

$$b_{2} = \lim_{x \to +\infty} (y - k_{2}x) = \lim_{x \to +\infty} \frac{4 - \frac{3}{x}}{1 - \frac{4}{x} + \frac{3}{x^{2}}} = 4.$$

Маємо похилу асимптоту y = x + 4.

Приклад 2.12. Знайти асимптоти кривої

$$y = \frac{1}{1 - e^x}.$$

1 x = 0 – вертикальна асимптота, тому що

$$\lim_{x \to 0 - 0} \frac{1}{1 - e^x} = +\infty \; ;$$

$$\lim_{x \to 0+0} \frac{1}{1 - e^x} = -\infty \; ;$$

2 Похилі асимптоти:

a)
$$k_1 = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{1}{(1 - e^x)x} = 0;$$

$$b_1 = \lim_{x \to +\infty} (y - k_1 x) = \lim_{x \to +\infty} \left(\frac{1}{1 - e^2} \right) = 0.$$

Висновок: при х $\to +\infty$ графік функції має горизонтальну асимптоту y=0;

6)
$$k_2 = \lim_{x \to -\infty} \frac{y}{x} = \lim_{x \to -\infty} \frac{1}{(1 - e^x)x} = 0;$$

$$b_2 = \lim_{x \to \infty} (y - k_2 x) = \lim_{x \to \infty} \left(\frac{1}{1 - e^2} \right) = 1.$$

Висновок: при х $\to -\infty$ графік функції має горизонтальну асимптоту y=1.

Графік функції має дві горизонтальні асимптоти: лівосторонню y=1 і правобічну y=0.

2.4 Завдання для самостійної роботи

- **1** Теоретичні питання необхідно вивчити самостійно з використанням курсу лекцій та підручників.
 - 1) Дати означення неперервності функції у точці.
 - 2) Який розрив називається розривом першого роду?
 - 3) Який розрив називається розривом другого роду?
 - 4) Яка функція називається неперервною на проміжку?
- 5) Сформулювати властивості функцій, неперервних на відрізку. Самостійно або за допомогою лекцій з'ясувати геометричний зміст цих властивостей.
 - 6) Що називається асимптотою кривої?
 - 7) Як знайти вертикальну асимптоту?
 - 8) Як знайти невертикальну асимптоту?