Metody Obliczeniowe w Nauce i Technice Minimalizacja funkcji

Marian Bubak, Katarzyna Rycerz

Department of Computer Science
AGH University of Science and Technology
Krakow, Poland
kzajac@agh.edu.pl
dice.cyfronet.pl

Contributors Anna Bukowska Yurii Vyzhha Arkadiusz Placha

Wstęp

Motywacja

Szeroka klasa zagadnień – szukanie najmniejszej wartości przyjmowanej przez funkcję jednej lub wielu zmiennych.

Przykłady

- Produkcja minimalizacja kosztów, przy zaspokojeniu popytu
- Zasoby ludzkie problem przydziału godzin pracy
- Rolnictwo dobór nawozów w celu maksymalizacji plonów
- Fizyka
- . . .

Terminologia

Terminologia

- tradycyjnie: minimalizacja
- maksymalizacja (F = -f(x))
- optymalizacja
- b. stary termin: programowanie (liniowe, nieliniowe, matematyczne)
- ekstremalizacja
- mathematical optimization (function minimization)

Zdefiniowanie zagadnienia

Definicja

Dane: funkcja $F: A \to \mathbb{R}, A \subseteq R^d$

Szukane: element $x_{min} \in A$ taki, że $\forall x \in A \ F(x_{min}) \leqslant F(x)$

Założenia

- 1 Dla funkcji F może nie być znany wzór analityczny.
- Wartości x mogą być zawężone do pewnego ustalonego obszaru – constrained minization.
- **3** Mogą być dostępne $\frac{\partial F}{\partial x}$.
- funkcji f(x), aż do osiągnięcia minimum.

Zdefiniowanie zagadnienia

Kryteria wyboru najlepszej metody

Najlepsza metoda znajduje minimum (z zadaną tolerancją):

- po najmniejszej liczbie obliczeń wartości funkcji f
- po najmniejszej liczbie kroków procedury niska złożoność obliczeniowa
- wymaga mało pamięci dodatkowej niska złożoność pamięciowa

Gdzie szukać minimum globalnego funkcji?

F(x) przyjmuje minimum w jednym z punktów:

- **1** p. stacjonarny wszystkie $\frac{\partial F}{\partial x} = 0$
- 2 wierzchołek (cusp) niektóre $\frac{\partial F}{\partial x}$ nie istnieją
- 3 edge point na krawędzi obszaru

Gdy nie znamy funkcji analitycznie – musimy ograniczyć się do minimum lokalnego x_0 – unconstrained local minimization.

Minimum lokalne

 $\forall x \in U, F(x) \geqslant F(x_0)$, gdzie U - otoczenie punktu x_0

Kształt funkcji F(x) – 1-D

Założenie

F(x) – ma sens fizyczny tj. w rozpatrywanym obszarze istnieją jej wszystkie pochodne.

Rozwijamy F(x) wokół x_0 w szereg Taylora (1-D):

$$F(x) = F(x_0) + \left. \frac{\partial F}{\partial x} \right|_{x_0} (x - x_0) + \left. \frac{1}{2} \frac{\partial^2 F}{\partial x^2} \right|_{x_0} (x - x_0)^2 + \dots$$

• Im mniejsza wartość $(x - x_0)$, tym mniej ważne człony wyższych rzędów.

Konkluzja: Dla małych kroków – przewidywania oparte na wyrazach niższego rzędu powinny być wystarczające.

Kształt funkcji F(x) – n-D

Dla n-D:
$$\vec{x} = x = [x_1, x_2, ..., x_n]^T$$

Rozwijamy funkcję F wokół $\vec{x_0}$:

$$F(\vec{x}) = \underbrace{F(\vec{x_0})}_{\text{staty}} + \vec{g}^T \cdot (\vec{x} - \vec{x_0}) + \frac{1}{2} (\vec{x} - \vec{x_0})^T \cdot H \cdot (\vec{x} - \vec{x_0}) + \dots$$

$$g_i = \frac{\partial F}{\partial x_i}\Big|_{\vec{x_0}}$$
 - gradient; $H_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j}\Big|_{\vec{x_0}}$ - Hesjan;

Kształt funkcji F(x) – n-D

- $\vec{g}^T \cdot (\vec{x} \vec{x_0})$ proporcjonalny do gradientu, wskazuje kierunek największego spadku funkcji. W pobliżu minimum: $\vec{g} \to 0$, to $\vec{g} \cdot (\vec{x} \vec{x_0}) \to 0$ człon liniowy, nie przepowiada minimum, nie można go użyć do określenia wielkości kroku.
- 2 $\frac{1}{2}((\vec{x}-\vec{x_0})^T) \cdot H \cdot (\vec{x}-\vec{x_0})$ człon kwadratowy, najniższy człon przydatny do przewidywania minimum. $H \approx$ stałe na małych obszarach.

Uwaga

Ta analiza nie jest słuszna dla $F(\vec{x})$ zależnych liniowo od \vec{x} ; Wtedy: Klasa problemów – programowanie liniowe, rozwiązania leżą na krawędzi obszaru ograniczeń.

Kształt funkcji F(x)

Kształt funkcji F(x)

Optymalne algorytmy minimalizacji

Nie ma uniwersalnej metody minimalizacji. Dla bardzo złego algorytmu można znaleźć funkcję F(x), którą minimalizuje on najszybciej – i odwrotnie.

Zasada doboru algorytmu optymalizacji

Zasada: Dla konkretnej funkcji należy indywidualnie dobrać algorytm minimalizacji.

Minimalizacja w 1-D

Minimalizacja w 1-D

Przydatność metod 1-D dla zag. n-D

- Prosta ilustracja ogólnych problemów
- Metody 1-D są często elementem składowym metod n-D

Przeglądanie siatki (grid search)

Realizacja

- Przegląd wszystkich elementów iloczynu kartezjańskiego podzbiorów parametrów.
- Wybór wartości najmniejszej.

Zalety

- Absolutna prostota, problem typu embarrassingly parallel.
- Bezwzględna zbieżność.
- Brak "czułości" na szczegółowe zachowanie się F(x).

Wady

- Nie może być stosowana dla przedziału nieskończonego.
- Nieefektywna, nie "uczy się" własności funkcji.

Przeglądanie siatki (grid search)

Problem z doborem rozmiaru siatki, tak aby nie zgubić szukanej wartości.

Przeglądanie siatki (grid search)

Założenie: Poszukujemy minimum w k-D dysponując k zbiorami parametrów po 10 000 elementów każdy.

Zawężamy obszar do
$$1\%$$
 \Rightarrow $\begin{tabular}{lll} 100 & punktów & w & 1-D \\ 100^2 & & w & 2-D \\ 100^{10} & & w & 10-D \end{tabular}$

Przy czasie obliczeń jednej wartości $F(x) \approx 10^{-5} s$

Czas obliczeń:
$$t_o = \frac{10^{20} * 10^{-5} s}{\underbrace{\pi * 10^7}_{\text{sek. w roku}}} \approx 3 * 10^7 lat!$$

Definicja funkcji unimodalnej

Funkcję f(x) nazywamy unimodalną na przedziale [a,b] jeżeli:

- ② $\forall x_1, x_2 : a \leq x_1 < x_2 \leq b$ zachodzi:
 - $x_2 \leqslant x_* \Rightarrow f(x_1) > f(x_2)$
 - $x_1 \geqslant x_* \Rightarrow f(x_1) < f(x_2)$

czyli minimum w przedziale [a, b] jest tyko jedno.

Założenia

Dane: f – funkcja unimodalna na przedziale [a, b]

Szukane: minimum x_0 funkcji f na przedziale [a, b]

F(x) - f. unimodalna

Realizacja

 $t \in (0,1)$ – współczynnik redukcji po każdym etapie

- **1** Obliczamy nową długość przedziałów d = t(b a)
- 3 Jeżeli $f(x_L) > f(x_R) \Rightarrow x_0 \in [x_L, b]$, $a := x_L$, Jeżeli $f(x_L) < f(x_R) \Rightarrow x_0 \in [a, x_R]$, $b := x_R$,
- Procedurę powtarzamy, aż do osiągnięcia żądanej zbieżności.

Minimalizacja ewaluacji

Problem: Chcemy zminimalizować liczbę ewaluacji funkcji f.

Rozwiązanie: Dobieramy współczynnik t, aby w kolejnym kroku wykorzystać jedną z dwóch próbek: $f(x_L)$ lub $f(x_R)$.

Dla [0,1] – długość przedziału po pierwszym etapie: $d_1=t$ Dla przykładowego rozmieszczenie punktów w kolejnym kroku rozwiązania szukamy w $(0,x_2)$:

Chodzi o to, żeby w kolejnym kroku wykorzystać znaną już wartość, która zastała we wnętrzu przedziału (tutaj $f(x_1)$)

Długość przedziału po drugim etapie to t^2 . Jednocześnie długość ta jest wyznaczona przez pozycję z wnętrza przedziału na poprzednim etapie (tutaj pozycję x_1)

$$t^2=1-t \Rightarrow t=rac{\sqrt{5}-1}{2}pprox 0,616
ightarrow extit{z}$$
łoty podział

Dla zadanej liczby kroków – optymalna.

Kwadratowa interpolacja i aproksymacja

Założenia

Wykres funkcji f(x) jest parabolą.

Realizacja

- Interpolujemy f(x) funkcją kwadratową w 3 punktach: x_1, x_2, x_3 .
- ekstremum f(x) to ekstremum paraboli przechodzącej przez x_1, x_2, x_3 , znajduje się w punkcie x_4 :

$$x_4 = -\frac{\frac{f_1 \cdot (x_2 + x_3)}{(x_1 - x_2) \cdot (x_1 - x_3)} + \frac{f_2 \cdot (x_1 + x_3)}{(x_2 - x_1) \cdot (x_2 - x_3)} + \frac{f_3 \cdot (x_1 + x_2)}{(x_3 - x_1) \cdot (x_3 - x_2)}}{2 \cdot \left[\frac{f_1}{(x_1 - x_2) \cdot (x_1 - x_3)} + \frac{f_2}{(x_2 - x_1) \cdot (x_2 - x_3)} + \frac{f_3}{(x_3 - x_1) \cdot (x_3 - x_2)} \right]}$$

Kwadratowa interpolacja i aproksymacja

Realizacja cd.

- x_4 zastępuje jeden z x_1, x_2, x_3 , wyznaczamy nowy x_4 .
- Procedurę kończymy gdy wartość $f(x_4)$ jest bliska $f(x_3)$ z zadaną dokładnością.

Problemy

- **1** Na każdym kroku x_1,x_2,x_3 mogą wyznaczać max, a nie min powodując rozbieżność.
- **②** Gdy x_1, x_2, x_3 leżą prawie na prostej, otrzymujemy duży krok:
 - Trudności numeryczne
 - Rozbieżność
- Stóry z poprzednich punktów odrzucić?
- 4 Możliwe oscylacje wokół minimum, zamiast zbieżności.

Kwadratowa interpolacja i aproksymacja

Możliwe zabezpieczenia

Zaniechanie metody przy wystąpieniu trudności.

Zastosowanie

W ostatniej fazie minimalizacji funkcji f.

(Funkcje fizyczne są zwykle paraboliczne w pobliżu minimum.)

Metoda prób i błędów (success-failure method)

Założenie

Procedura składa się z dwóch części:

- Iteracyjne zawężenie przedziału podobne do grid search.
- Kwadratowa interpolacja na otrzymanym przedziale.

 x_0 – start point, d – initial step size

- Gdy $f(x_0 + d) < f(x_0)$ sukces: $x_0 \rightarrow x_0 + d$, $d \rightarrow \alpha * d$, α – expansion factor $(\alpha > 1)$
- Gdy $f(x_0 + d) > f(x_0)$ niepowodzenie: $d \rightarrow -\beta * d, \beta$ contraction factor $(\beta < 1)$

 α oraz β – ustalamy arbitralnie

Procedurę powtarzamy do zbieżności, tj. $|f(x_0 + d) - f(x_0)| < \epsilon$.

Metoda prób i błędów (success-failure method)

Minimum jest wstępnie zlokalizowane (bracketed), gdy po sukcesie - niepowodzenie, wtedy mamy trzy punkty typu:

Są one *punktem startowym* interpolacji kwadratowej. **Uniwersalna, efektywna metoda 1-D dla ogólnych funkcji.**

Metody krokowe dla n-D (stepping methods in many variables)

Przeszukiwanie losowe

Problem: Grid search na n-D – złożoność czasowa $O(k^n)$.

Algorytm niepraktyczny dla n > 2.

Rozwiązanie: Metody Monte-Carlo – Wybór próbek losowo.

Realizacja

- $-\vec{x_i}$ ustalane losowo, zgodnie z rozkładem:
 - równomiernym,
 - normalnym
- Wybranie nalepszego znalezionego punktu.

Stosowane, gdy:

- nic nie wiadomo o F(x).
- F(x) ma kilka minimów.
- dla ustalenia rozsądnego punktu startowego innych metod.

Zmiana jednego parametru

Założenie

Funkcja f – ciągła na poszukiwanym obszarze.

Obserwacja

Warunek na istnienie minimum - x_i – stacjonarny punkt, tj. znikają wszystkie n pochodne cząstkowe, $\frac{\partial f}{\partial x_i}=0$, $i=1,2,3,\ldots,n$

- 1 Wybierz jeden z *n* wymiarów.
- 2 Wykonaj optymalizację 1-D na wybranym wymiarze.
- **3** Powtarzaj do uzyskania punktu x_i , będącego minimum dla wszystkich wymiarów n.

Zmiana jednego parametru cd.

Przykład dwuwymiarowy.

Zmiana jednego parametru cd.

Bardzo wolna z uwagi na przypadki z wąwozem (narrow valley):

Dla takiego przykładu stosujemy ulepszone metody.

Metoda Powella

Algorytm

- Wykonaj jeden pełny cykl minimalizacji wzgl. kolejno wszystkich parametrów (współrzędnych),
- Zmień osie układu współrzędnych nowy układ ortogonalny: jedna z osi od punktu początkowego do końcowego w ostatnim cyklu minimalizacji,
- Wykonaj kolejny cykl w nowym układzie współrzędnych.

Metoda mało efektywna dla dużego n

Metoda simpleksów

Simplex - wprowadzenie

Definicja

Simplex - najprostsza n-wymiarowa figura określona przez (n+1) wierzchołków (vertex).

$$\Xi^1 \longrightarrow X_2 \bigwedge_{X_1} X_2 \bigwedge_{X_1} X_1$$

 $oldsymbol{\mathsf{Nazwa}}\ \mathbf{metody}$ - w każdym kroku informacja o funkcji dotyczącej jej wartości w n+1 punktach

Metoda simpleksów

Opis metody cz.1

Opis metody cz.2

Wybieramy (losowo, min 1-D) 3 punkty P₁, P₂, P₃ i wyznaczamy spośród nich:
P_H - gdzie F największa (highest)

 P_L - gdzie F najmniejsza (lowest)

Wyznaczamy "środek masy" wszystkich punktów z pominięciem P_H

$$\overline{P} = \frac{1}{n} \left[\sum_{i=1}^{n+1} P_i - P_H \right]$$

③ Obliczamy odbicie P_H wzgl. \overline{P} : $P^* = \overline{P} + (\overline{P} - P_H)$ jeżeli $F(P^*) < F(P_L) \Rightarrow$ nowy $P^{**} = \overline{P} + 2*(\overline{P} - P_H)$ $F(P^*) > F(P_L) \Rightarrow$ nowy $P^{**} = \overline{P} - 1/2*(\overline{P} - P_H)$

Opis metody cz.3

• Punkt P_H zastępujemy przez najlepszy z P^* i P^{**} Jeżeli żaden z nowych punktów nie jest lepszy od P_H , tworzymy simplex oparty o P_L w wymiarach 0.5 * poprzednie.

Modyfikacje:

- Inne współczynniki $\neq 2$ oraz $\neq \frac{1}{2}$,
- Interpolacja kwadratowa wzdłuż prostej (P_H, \overline{P})

Uwaga

Nowy punkt nie może być zbyt blisko \overline{P} , bo to grozi redukcją (bez powrotu) simpleksów w n do hiperpłaszczyzny.

Opis metody cz.4

Zalety:

- nieczuła na płytkie minima (pochodzenia: zaokrąglenia, statystyka ...),
- mała ilość obliczeń funkcji F(X) w każdym kroku,
- największe możliwe kroki,
- rozsądny kierunek poszukiwań,
- bezpieczna i szybka daleko od minimum

Zbieżność

$$EDM = F(P_H) - F(P_L) < \epsilon$$

estimated distance to minimum

Działają w oparciu o informacje o funkcji w małych obszarach (używany gradient i ew. wyższe pochodne).

Wyznaczanie pochodnych

Analitycznie – kłopotliwe, więc numerycznie:

$$\frac{\partial(F)}{\partial(x)}\Big|_{x_0} \approx \frac{F(x_0+d)-F(x_0)}{d}, \quad \delta \approx \frac{d^2}{2} \cdot \frac{\partial^2 F}{\partial x^2}\Big|_{x_0}$$

Lepiej:

$$\left. \frac{\partial(F)}{\partial(x)} \right|_{x_0} \approx \frac{F(x_0 + d) - F(x_0 - d)}{2 \cdot d}, \quad \delta \approx \dots \cdot \frac{\partial^3 F}{\partial x^3} \right|_{x_0}$$

Wyznaczanie pochodnych cd.

łatwo przy okazji obliczyć drugie pochodne:

$$\left. \frac{\partial^2 F}{\partial x^2} \right|_{x_0} \approx \frac{F(x_0 + d) - 2 \cdot F(x_0) + F(x_0 - d)}{d^2}$$

– Drugie pochodne tworzą macierz $n \times n$. $H_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j}$ Na przykład:

$$\left. \frac{\partial^2 F}{\partial x \partial y} \right|_{x_0, y_0} \approx$$

$$\frac{F(x_0+d,y_0+d)-F(x_0,y_0+d)-F(x_0+d,y_0)+F(x_0,y_0)}{d^2}$$

Wyznaczanie pochodnych cd.

Ogólnie dla mieszanych pochodnych poza p. symetrycznymi potrzeba $\frac{n(n-1)}{2}$ pkt.

Metoda największego spadku

- podążanie w kierunku wyznaczonym przez $-\vec{g}$ (gradient $g_i = \frac{\partial F}{\partial x_i}$)
- w tym kierunku funkcja maleje najszybciej (nierówność Cauchy'ego-Schwarza)
- seria minimalizacji 1-D wzdłuż kierunku największego spadku $\vec{x_{k+1}} = \vec{x_k} \alpha_k \vec{g}|_{x_k}$; α_k dobrane tak, ze $f(\vec{x_k} \alpha_k \vec{g}|_{x_k}) = min_{\alpha > 0} f(\vec{x_k} \alpha \vec{g}|_{x_k})$
- jeśli α stałe \rightarrow metoda gradientu prostego (vanilla)
- iteracyjna, bo gradient nie jest stały
- $g_{k+1} \perp g_k$ metoda prowadzi do "zygzakowania"

Metody Obliczeniowe w Nauce i Technice

Metody krokowe dla n-D (stepping methods in many variables)

Metody gradientowe

Metoda Newtona - przypomnienie 1D

Znamy już metodę Newtona do znajdowania miejsc zerowych funkcji f(x):

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Metodę tę można zastosować do znajdowania możliwego minimum funkcji f(x), którą przybliżamy wielomianem Taylora drugiego stopnia

$$f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(x)(y - x)^{2}$$

Następnie liczymy pochodną tego przybliżenia po y i szukamy jej miejsca zerowego metodą Newtona. Wzór iteracyjny przyjmuje postać:

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

Metoda Newtona minimalizacji N-D

Ogólna funkcja kwadratowa jest określona przez:

- wartość,
- pierwsze pochodne
- drugie pochodne

W dowolnym punkcie x₀

Dysponujemy tymi informacjami

 $F(\vec{x})$ rozwijamy w szereg Taylora, pomijamy dalsze wyrazy:

$$F(\vec{x}) = F(\vec{x_0}) + \vec{g}^T \cdot (\vec{x} - \vec{x_0}) + \frac{1}{2} (\vec{x} - \vec{x_0})^T \cdot H \cdot (\vec{x} - \vec{x_0})$$

i szukamy minimum takiej funkcji kwadratowej Wzór na minimum (iteracyjny, analogiczny do 1D):

$$\vec{x_{i+1}} = \vec{x_i} - H^{-1}|_{\vec{x_i}} \cdot \vec{g}|_{\vec{x_i}} = \vec{x_i} - V \cdot \vec{g}$$

Metoda Newtona cd.

Metoda jest n-D odpowiednikiem 1-D interpolacji kwadratowej.

Te same wady!

- może być niestabilna
- rozbieżna, gdy V nie jest dodatnio określona (czyli NIE zachodzi $\forall_{x\neq 0} x^T V x > 0$)

Zalety:

- krok nie jest dowolny, lecz określony przez metodę
- kierunek ≠ wartość gradientu, tylko brana pod uwagę korelacja parametrów (pamietane w macierzy V)

Metoda Newtona cd.

Używana:

- blisko minimum.
- gdy funkcja jest dodatnio określoną formą kwadratową.

Metoda Newtona jest podstawą wielu metod.

Dygresja: dodatnio określone formy kwadratowe

1-D forma kwadratowa:

$$F(x) = a + g \cdot x + \frac{1}{2}G \cdot x^2$$

$$g = \frac{\partial F}{\partial x}\Big|_{0}, \qquad G = \frac{\partial^{2} F}{\partial x^{2}}\Big|_{0}$$

F(x) ma min. wtedy i tylko wtedy, gdy G > 0.

$$x_{min} = -g/G$$
 $G = 0$ to $x_{min} \to \infty$;

Dodatnio określone formy kwadratowe cd.

Dodatnio określone formy kwadratowe cd.

Dla ogólnej funkcji nieliniowej:

- krok do $x=-\frac{g}{G}$ gdy G>0 (w przeciwnym przypadku: ∞ lub maximum)
- gdy $G \leqslant 0$ krok = -g
 - → kierunek dobry,
 - \rightarrow wartość dowolna

W $x_0 \rightarrow F(x)$ nie jest wypukła (dodatnio określona)

Uogólnienie na n-D:

 $g \to \vec{g}$, G - macierz 2-ich poch (inaczej hesjan H).; $F(\vec{X}) = a + \vec{g}^T \cdot \vec{x} + \frac{1}{2} \vec{x}^T G$ tylko dla G dod. określonej ma sens krok do: $\vec{x} = -G^{-1} \cdot \vec{g}$

$$\vec{x_{i+1}} = \vec{x_i} - G^{-1} \cdot \vec{g}$$

Badanie czy G jest dodatnio określona.

Brak prostych sposobów.

Dla macierzy kwadratowych, symetrycznych - 2 warunki konieczne

 1^o elementy diagonalne > 0

2° elementy pozadiagonalne:

$$G_{ij}^2 < G_{ii} \cdot G_{jj}$$

Badanie czy G jest dodatnio określona cd.

Ogólne warunki konieczne i wystarczające

- Definicja: skalar $\vec{e}^T \cdot G \cdot \vec{e} > 0$ dla każdego $\vec{e} \neq 0$ wyjaśnia dlaczego G dod. okr. daje formę F(x) z minimum: F(x) rośnie we wszystkich kierunkach od $\vec{e} = 0$
- wszystkie wartości własne > 0 (b. trudne i przybliżone)
- wyznacznik wszystkich macierzy > 0

(najprościej sprawdzić)

 $-V=G^{-1}$ jest dodatnio określona

Postępowanie w przypadku G - nie jest dod. określone

- **1** analogicznie do 1-D : $G = I \rightarrow Ale$:
- lepiej:
 - gdy wszystkie elementy diagonalne G>0, wtedy pozadiag. $\rightarrow=0$ (scale invariant step),
 - gdy tylko niektóre el. pozadiag. G²_{ij} ≥ G_{ii}G_{jj} ⇒ G_{ij} = 0,
 - zamiast G^{-1} bierzemy $(G + \lambda \cdot I)^{-1}$; $\lambda \geqslant$ największa (bezwzgl.) ujemna wartość własna (dużo obliczeń)

Gdy G - nie jest dodatnio określone cd.

Metody oparte na powyższych regułach - quasi-Newton method

Podstawowa wada tych metod - obliczanie i odwracanie w każdym kroku macierzy drugich pochodnych

- obliczanie 2-ich poch. $\sim n^2$ (długie)
- odwracanie

Metody gradientowe

kierunki sprzężone (conjugate directions)

Wektory $\vec{d_i}$ i $\vec{d_j}$ są sprzężone ze względu na dodatnio określoną macierz, jeżeli:

$$\vec{d_i}^T A \vec{d_j} = 0 \text{ dla } i \neq j;$$

gdy $A = I, \vec{d_i} \rightarrow \text{ortogonalne}$ (sprzężenie - uogólnienie ortogonalności)

n sprzężonych wektorów rozpina n-D przestrzeń.

A - nie określa jednoznacznie zbioru wektorów sprzężonych

W minimalizacji użyteczne są wektory sprzężone ze względu na *hesjan H*.

Metoda sprzężonych kierunków cd.

Można pokazać, że

- Sekwencja liniowych minimalizacji w każdym z n sprzężonych kierunków minimalizuje ogólną funkcję kwadratową n zmiennych.
- Minimalizacja wzdłuż jednego z kierunków sprzężonych jest niezależna od minimalizacji względem pozostałych sprzężonych kierunków

Wnioski:

Minimalizacja nie wzdłuż osi ortogonalnych, ale wzdłuż kierunków sprzężonych

Metoda gradientów sprzężonych (conjugate gradients)

Jak wyznaczyć kierunki sprzężone bez znajomości H?

Metoda wykorzystuje tylko 1-sze pochodne.

Jeśli $F(\vec{x})$ i $\vec{g}(\vec{x})$ wyznaczone w $\vec{x_0}$ i $\vec{x_1}$, z nich:

$$\vec{\Delta x} = \vec{x_1} - \vec{x_0}, \quad \vec{\Delta g} = \vec{g_1} - \vec{g_0}$$

to dla $F(\vec{x})$ kwadratowej, z hesjanem $H: \boxed{\vec{\Delta g} = H \cdot \vec{\Delta x}}$, zatem dowolny $\vec{d_1}$ sprzeżony do $\vec{\Delta x}$ będzie $\perp \vec{\Delta g}$:

$$\vec{d_1}^T H \vec{\Delta x} = \vec{d_1}^T \cdot \vec{\Delta g} = 0(*)$$

Pierwszy kierunek: $\vec{d_0} = -\vec{g_0}$ znajdujemy minimum $\vec{x_1}$ wzdłuż $\vec{d_0}$ według $\vec{x_1} = \vec{x_0} + \alpha \vec{d_0}$ a następnie gradient w tym punkcie (czyli $\vec{g_1}$) Drugi kierunek tworzymy jako liniową kombinację znanych kierunków: $\vec{d_1} = -\vec{g_1} + b \cdot \vec{d_0}$

Metoda gradientów sprzężonych cd.

Jak ustalić b?

Warunek sprzężenia:
$$\vec{d_1}^T \cdot H \cdot \vec{d_0} = 0$$
, czyli $\vec{d_1}^T \cdot H \cdot \frac{1}{\alpha} (\vec{x_1} - \vec{x_0}) = 0$ z (*) $\vec{d_1}^T \cdot (\vec{g_1} - \vec{g_0}) = 0$ czyli: $(-\vec{g_1} - b \cdot \vec{g_0})^T \cdot (\vec{g_1} - \vec{g_0}) = 0$ $\vec{x_1}$ - jest znalezionym minimum wzdłuż $-\vec{g_0}$ \Rightarrow kolejny $\vec{g_1}$, uzyskany w p. $\vec{x_1}$, więc jest \perp do $\vec{g_0} \Rightarrow \vec{g_1}^T \cdot \vec{g_0} = 0$ $\Rightarrow b = \frac{\vec{g_1}^T \cdot \vec{g_1}}{\vec{g_0}^T \cdot \vec{g_0}}$, czyli nowy sprzężony kierunek $\vec{d_1} = -\vec{g_1} + \left(\frac{\vec{g_1}^T \cdot \vec{g_1}}{\vec{g_0}^T \cdot \vec{g_0}}\right) \cdot \vec{d_0}$

Ten proces kontynuujemy generując *n* kierunków wzajemnie sprzężonych do użycia dla kolejnych kroków minimalizacji

$$\vec{d_{i+1}} = -\vec{g_{i+1}} + rac{\vec{g_{i+1}}^T \cdot \vec{g_{i+1}}}{\vec{g_i}^T \cdot \vec{g_i}} \cdot \vec{d_i}$$

Literatura

- Uczenie maszynowe https: //ruder.io/optimizing-gradient-descent/index.html
- Minimalizacja za pomocą kompiterów kwantowych https://pennylane.ai/qml/demos/tutorial_quantum_ natural_gradient.html
- Scipy notes (dobry przegląd referencji)
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
- Scipy lectures https://scipy-lectures.org/advanced/ mathematical_optimization