(9) 日本国特許庁 (JP)

10 特許出願公開

⑩公開特許公報(A)

昭59—130157

Int. Cl.³
 A 23 L 1/10

識別記号

庁内整理番号 6760-4B 砂公開 昭和59年(1984)7月26日

発明の数 1 審査請求 未請求

(全 6 頁)

砂強化精米および精麦の製造法

②特 願 昭58-4423

@出 願 昭58(1983)1月14日

⑩発 明 者 渡辺裕彦

神戸市北区東有野台1丁目24番

地の4

⑩発 明 者 西村素行

神戸市灘区楠丘町1丁目6番19

号

⑫発 明 者 森高真太郎

神戸市北区東大池3丁目26番22

号

⑪出 願 人 武田薬品工業株式会社

大阪市東区道修町2丁目27番地

⑪出 顋 人 武田食品工業株式会社

大阪市東区道修町2丁目27番地

砂代 理 人 弁理士 天井作次

明 和 .有

/ 発明の名称

強化精米および精麦の製造法

.2 特許請求の範囲 .

将米粒または病変粒に栄養素を含有または付辞せしめ、各粒を常温で熔膜せずに熱時熔除する油 脂類およびロウ類を含有してなる乳化物で被援す ることを特徴とする強化精米または級変の製造法。

3. 発明の詳細な説明

木発明は演化摘米および強化精度の製造法に関 するものである。

従来、強化精米または強化精変としてはビタミンBIのみを強化したものが主として市販されてきた。白米を主食とする日本人にとつてビタミンBIは不足しやすい栄強祭の1つであり、その重要性は現在でもいささかも変つていない。しかしながら、生活レベルが上り食生活も豊かになつた反而、食生活における選択の広がりが、暗好的、即席的な食品のみを選ばせがちな現在では、栄養のアンパランスが大きな社会問題となりつつある。従つ

て、主食である米・または辛主食である変にビタミンB以外の栄養器も強化し、主食から多くの栄養器をパリンスよく摂取できるようにすることは 極めて重要なことである。

ところで、強化精米または強化精変の代表的な 製造法として、酸パーポイルド・フイス法とコー テイング法がある。前者は原料精米または原料精 変を強化栄強緊を溶解した酸性溶液に一定時間没 液し、次いで過熱蒸気中で値めて短時間蒸煮した のち、熱風で乾燥する方法である。本法では水に 溶けない脂溶性ビタミン・例えば、ビタミンA・ ビタミンD・ビタミンE は強化することができな い。また、カルシウムや鉄などのミネラルも使用 する原料が水不溶性または水道溶性のものが大半 であるため強化することはできない。

一方、コーティング法については数多くの製造法が報告されているが、いずれも原料精米または 原料精変に強化栄養器をコーティングし、その上 を洗米時の流出を防止する目的で、水不溶性の皮 胶剤・例えば、とりもろこしのたん白質であるッ

時間昭59-130157(2)

エイン、取る種の昆虫の体表より分泌される天然 個脂セラックなどをエタノール・インプロパノー ルなどの溶剤に溶かした液をコーテイングして被 梗する方法である。本法では、脂溶性ビタミンお よびミネラルを含む強化精米または強化精変を製 造するととは可能であるが、溶剤を使り関係上製 造酸備が大がかりなものになり、得られる強化構 米または強化精変が非常に高価なものになるなど の欠点がある。

とうした状況から、本発明者らは強化精米および強化精変の製造法について鋭度研究の結果、精 米粒または精変粒に栄養薬を含有または付散せし め、次いで油脂類およびロウ類を含む乳化液を噴 緒して被擬することにより、強化栄養器の洗米損 失が極めて少ない品質の汚れた強化精米を安価に 製造できることを見出し、本発明を完成するに至

すなわち、木発明は精米粒または精変粒に栄養 素を含有または付預せしめ、各粒に常温で熔融せ ずに熱時熔融する油服類およびロウ類を含有して

本発明に用いる油脂類およびロウ類は、いずれも常温で熔融せず熱時に熔融するもので米飯の食味を損わないものであれば特に限定することなく用いることができ、通常、融点が約40℃以上で炊飯等の加熱網理時に熔融するものが好適である。例えば、油脂類としては大豆油、綿突油、菜潤油、米油、トウモロコシ油などの植物性硬化油脂や、牛脂、豚脂などの動物油脂およびこれらに水菜添加して得られる動物性硬化油脂などが用いられる。またロウ類としては、カルナパロウ、カンデリラロウ・線ロウ、米ぬかロウ、みつロウなどが発げられる。

本顧発明の製造法では、上記のような油脂類をよびロウ類を併用して乳化物を調製し、これを精光粒また精変粒の被疑に供する。油脂類とロウ類の含有制合は、これらの脈類の組合せ等を考慮し適宜に選択される。一般に、油脂類100類保部に対してロウ類を約1~100類保部、好ましくは約5~80項状の方式に対してロウ類に、用いた油脂類

なる乳化物で被殺することを特徴とする強化精米 または強化精変の製造法である。

本発明で強化の対象となる原料の精米または精 変は通常食用に供するものであれば特に限定する ととなく用いることができる。例えば、その品額 . 精米・精変の程度等は適宜選択することができ る。また、精変は常法により押圧したいわゆる押 変を使用してもよい。

本発明において、精米粒主たは精変粒に強化される栄養素としては、例えば、水溶性ビタミン類(ビタミンB・、ビタミンC・ビタミンB・・、エコチン酸・パントテン酸をど)・服溶性ビタミン類(ビタミンA・ビタミンD・ビタミンタ・アミノ酸類(リジン・スレオニンなど)・およびミネラル類(カルシウム・鉄など)等が挙げられる。各栄養素は食品添加物として思うがから加出・精製した物(例、天然ビタミンE・天然カルシウム)等から、適宜選択して用いられる。

100 風最部に対し、水を約100~1000 風 推部および乳化剤を約1~100 風機部の糊合で 加え、常法により乳化する。乳化剤は両者を乳化 できるものであれば特に限定することなく用いる ことができる。例えば、雌辯脂肪酸エステル、ソ ルビタン脂肪酸エステル、グリセリン脂肪酸エス テルなどの乳化剤、アラビアガム、キサンタンガ ム、ゼラチン、寒天などの天然糊料が挙げられる。 これらの中で雌智脂肪酸エステルを用いると最も 安定な乳化液を翻製することができる。乳化は油 脂類およびロウ類の熔融温度以上で、微拌型ある いは圧力到等の通常の乳化機を用いて実施される。

本乳化物には、必要に応じて、出来上りの強化 米また強化精変の療色を目的にピタミンBoまたは その他の色素(例、クロロフィル・β - カロチン ・くちなし黄色色繁など)を加えておいてもよい。

次に、本発明の製造法において、栄発緊を含有 または付辞せしめ、前述の乳化物で被授する方法 につき、精米を原料とする場合を例に挙げて、以 下に説明する。

特開昭59-130157(3)

精米粒に栄養繁を含有または付脂せしめる方法 自体は公知の手段に従えばよい。例えば、水溶性 の栄養素の場合は、これを溶解した酸性溶液に初 米を一定時間浸潤し精米粒に含有せしめ、次いで、 過熱蒸気中で初めて短時間蒸煮したのも熱風で乾 燥する方法,あるいは精米粒にコーテイングによ り付剤せしめる方法などが挙げられるが、通常は 前者の方法によると米粒がα化されるので品質的 により好ましいものが得られる。また、脂溶性ピ タミン類やミネラル類などの水不溶性または水漿 溶性の栄養素は、精米粒に直接にまたは水溶性の 栄養素を含有せしめた上配乾燥米に、例えばコー テイングにより付泊せしめる。

上配におけるコーテイングは通常のコーテイング方法に従えばよい。例えば、コーテイングパンに精米を投入し、熱風を送りながら、強化栄養器とゼラチン・アラビアガム、αースターチ、砂朝などの結婚剤を含む水溶液を噴霧することによって目的が達せられる。

強化栄養素の種類および配合品は任意に決める

ために、通常、出来上り製品中に油脂類およびロウ類の合計量として約2項量を以上、望ましくは約3項量を以上となるように被優するのが好ましい。一方、油脂類およびロウ類の被
取扱が多すぎると米飯の風味を損うことがあり、これを防ぐためには出来上り製品当り油脂類およびロウ類の合計量として約7項量を以下となるよう被償するのが一般に超ましい。

かくして、本発明の目的とする強化精米が得られるが、強化精変化ついても同様の方法により製 消することができる。

本発明の似族法により得られる強化精米または強化精変は、常温で熔線せずに熱時熔線する油脂類かよびロウ類を含有してなる乳化物を例えば噴粉して被慢する点にかいて極めて有利な特徴を有する。すなわち、単に油脂頻等で被凝しただけではその皮膜は精米粒または精変粒から比較的弱い概略等によつても容易に測度されるし、洗米時に栄養素を完全に保持するととができない。とれに対し、本発明の製造法によれば、とれらの欠点を

ことができる。例えば、ビタミンB.は18当り、
1.0~1.5 可含むように厚生省の特殊栄養食品の

花幣量で定められており、それを容劣にすればいいし、その他の栄養器については国民栄養調査の

枯果を容劣にして不足している最だけ補給できるようにしてもよい。また、協精時に失なわれる栄養器を玄米のレベルまで回復できるように配合してもよい。

精米粒に栄養素を含有または付廃せしめたのち、 削述の乳化物を用いて被擬する。被擬方法は米粒 表面に均一に乳化物を付廃せしめる方法であれば 特に限定されないが、通常は嗅鐋コーテイングに より好ましく突施できる。このコーテイングは、 たとえばコーテイングパンに約40~100℃の 温風を送りながら、温度約20~70℃の乳化物 を、機拌しつつ米粒に噴銹するととによつて行わ れる。

乳化物の噴霧は、栄養強化糖米を洗米したとき に栄養素の損失が防止できる程度に、米粒に油脂 類およびロウ類が被覆されるまで実施する。との

着しく改当でき、しかも食生活に必要な各種の栄 機器をパランスよく容易に強化することができる。

また、ツエイン・セラツクなどを使用する従来 の方法に比較し、被優に際して有機溶剤を使用す る必要がないので簡単な段値でよく、製造コスト も安価である。さらに、本製造法の場合、病色を 容易にかつ安定に行なうととができ外額的にも優 れたものが得られる。

次に、突線例および契筋例を排げて本発明をさ ちに具体的に説明する。

实验例 /.

ビタミンB. 塩酸均3.0gを含む1% 酢酸水溶液400 配を精白米20 夕に加え、コーテイングパンを用いて回転しつつ品温約35℃で2時間浸漬し、ビタミン溶液を米粒に完全に吸収させる。次いで、約100℃の蒸気で約2分間蒸煮したのち、約70℃の熱及で1時間乾燥する。乾燥終了後、縮過して結費米、砕米を除去し、水分13.0%の乾燥米195夕を得た。

乾燥米 1.9 5 kgをコーテイングパンに移し、天

特開昭59-130157(4)

然ビタミンE118.炭酸カルンウム408およびゼラチン108を含む水けん渦液250gをスプレーして、米粒にコーテイングする。次いで、これに确央硬化油(酸点約70℃)と米ぬかロウ(酸点約75℃)の種々の比率の混合物80g、低額脂肪酸エステル8gおよび水2128を含む乳化物300gをスプレーコーティングし、ビタミンB、ビタミンE、カルシウムを含む強化精米約20㎏を得た。得られた強化精米200粒を耐破財験器に入れ、1分間30回転の回転速度で200回転した時の強化精米の外観を肉収で概该した。

档 从

結果を第1表に示す。

(以下命台)

服をコーティングしても、小分け作衆中や輸送中にすぐ剥離してしまい目的を選することができない。米山かロウを併用すると硬化油の皮膜の強度は高まり、米山かロウを5%以上使用した強化稍米(低2~6)では皮膜の剝離はまつたく認められない。なお、米山かロウのみを用いた乳化液を喫霧した場合、米粒同志が結婚してしまい、目的物を得ることができなかつた。

爽顾例2

ビタミンB、放設塩3.08を含む1%酢酸水溶液400配を精白米2.0㎏に加え、コーテイングパンを用いて回転しつつ品温約3.5℃で2時間浸润し、ビタミン溶液を米粒に完全に吸収させる。次いで、約100℃の蒸気で約2分間蒸煮したのち、約70℃の熱風で1時間乾燥する。乾燥終了後、縮過して精液米・砕米を除去し、水分12.9%の乾燥米1.96㎏を得た。

第 1 表

			-		
Ка	棉 実 硬化油 (重量部)	米ぬか ロ ウ (質量部)	製造中の結婚 米の生成*	/ 崩壊試験時の 皮膜の刺躁**	
1	100	0 .	-	+	
2	100	5	-	-	
3	100	10	-	-	
4	100	50	_	-	
5	100	80	-	-	
6	100	100	±	<u> </u>	

註* -:結婚米の生成は認められない

±:結婚米の生成がわずかに認められる

+:結婚米の生成がかなり認められる

** -:皮膜の剥離は認められない

±:皮膜の剥離がわずかに認められる

+:皮膜の剝雌がかなり認められる

第1表から明らかなように、本発明のすぐれているととが照客に認められた。すなわち、稲実硬化油のみを含む乳化液をコーティングした強化精米(低1)は、硬化油の皮膜がすぐ刺離してしまい、洗米時の栄養素の損失を防止する為に硬化油

レーし、米粒にコーテイングする。次いで、これ に稲実硬化油68g,米山かロウ12g,麻粕脂 肪酸エステル8g,水312gおよびビタミンB, 0.1gを含む乳化物400gをスプレーして、ビ タミンB,ビタミンE,カルシウムを含む質色に 預色された強化精米約20岁を得た。別に、上記 乳化物を100g,200g,300gをスプレー しコーティングしたもの、ならびに上記乳化物 をスプレーコーテイングしないサンブルも同様に して製造した。

梢白米300gに上記強化精米1.5gを添加混合し、一定条件で洗米した時に流出してくるビタミンBi,ビタミンE,カルシウムを測定した。

ビタミンB, ビタミンB およびカルシウムの流 出風を強化精米中の各々の含量に対する百分率で 表わしたものを洗米損失率として第2表に示す。

特開昭59-130157(5)

馆 2 衰

16.	稲契硬化油と米ぬか	洗米损失率(9)		
	ロウの合計量(物*	ピタミンBi	ピタミンE	カルシウム
1	0	65	75	76
2	1.1	47	59	57
3	1.9	25	33	34
4	3.1	6	10	9
5	4.2	3	. 7	6

註 *:強化精米中の含煮

第2数から明らかなように、木発明の優れていることが顕著に限められた。すなわち、綿実硬化油と米山かロウを含まない強化精米(瓜1) および稲実硬化油と米山かロウの混合物を約1 %コーティングした強化梢米(瓜2)を洗米すると、ビタミンB、ビタミンE およびカルシウムは47~76%流出してしまうが、綿実硬化油と米山かロウの混合物を約2%コーティングしたものでは、強りし、綿実硬化油と米山かロウの混合物を約3%以上(瓜4,5)コーティングしたものでは、強

般でスプレーしてコーティングしたサンプルも同様にして製造した。

精白米300gに上記強化精米1.5gを添加混合し、一定条件で洗米した時に流出してくるビタミンBi,鉄,カルシウムを測定した。

粘 果

ビタミンB.・鉄およびカルシウムの施出角を強 化精米中の各々の含用に対する百分率で表わした ものを洗米損失率として第3表に示す。

郑 3 表

K	棉突硬化油と米	洗米损失(%)		
	ぬかロウのコー テイング方法	ピタミンBi	鉄	カルシウム
対 IIR	熔鎖スプレー	10	12	11
本発明	乳化物スプレー	4	5	5

第3表から明らかなように、本発明のすぐれていることが顕著に認められた。すなわち、縮実硬化油と米ぬかロウの混合物を熔磁状態でスプレー してコーティングした強化粉米のビタミンBi, 鉄 化栄養器の洗米損失は10%以下までに放減した。 実験例3

ビタミンB 填酸塩3.0gを含む1%酢酸水溶液400 配を開白米2.0 切に加え、コーテイングパンを用いて回伝しつつ品温約3.5 ℃で2時間設復し、ビタミン溶液を米粒に完全に吸収させる。次いで、約1.00℃の蒸気で約2分間蒸煮したのち、約7.0℃の蒸気で1時間乾燥する。乾燥終了後、縮過して結婚米、砕米を除去し、水分1.3.1%の乾燥米1.97切を得た。

だ娘米1.97切をコーテイングパンに移し、炭酸カルシウム40g.ピロリン酸第二鉄11gかよびゼラチン10gを含むけん潤液300gをスプレーし、米粒にコーテイングする。次いで、これに綿実硬化油70gおよび米ぬかロウ10gを 麻晒脂肪酸エステル8gを用いて水162gに乳化した乳化物250gをスプレーしてコーテイングし、ビタミンBi,鉄,カルシウムを含む強化精米約20切を得た。別に、綿実硬化油70gと米ぬかロウ10gからなる混合物を熔砂し、熔敝状

、カルシウムの洗米損失は10%以上であるのに対し、乳化物をスプレーコーテイングした強化精米では、コーテイングされた綿実硬化油と米ぬかロウの丘は等しいのにもかかわらず、洗米時の強化栄養器の洗米損失は5%以下まで液液した。 実施例!

ジベンソイルチアミン塩酸塩70g,ビタミン 8:0.12g,ニコチン酸アミド13.5g,パントテン酸カルシウム 6.6gおよびピリドキシン塩酸 塩0.2gを含む9%酢酸水溶液400gを米2㎏に加え、コーテイングパンを用いて品温約35℃で2時間浸液する。次いで、浸液米を約100℃の蒸気で約2分間蒸煮した後約70℃の熱風で約1時間乾燥する。乾燥終了後、離渦して結消米,砕米を除去し、水分128%の乾燥米195㎏を 3元。乾燥米をコーテイングパンに移し、天然ビタミンE10g,炭酸カルシウム40gをスプレーコーテイングする。次いで、綿突硬化油60g,米ぬかロウ48g, 欧糖脂肪酸エステル12g

特開昭59-130157(6)

、ビタミンB,0.2g、天然クロロフイル製剤0.8 gを含む乳化物600g(残りは水)をスプレーコーテイングして、7種類の栄養薬を含有する強 化植米約20㎏を得た。

閉白米 2 0 kgをコーティングパンに入れ、ビタミン Bi 塩酸塩 3.0 g, ビタミン A油 2.0 g, 炭酸カルシウム 4.0 g, ゼラチン 2.0 gを含む水けん 満夜 4.0 0 gをスプレーコーティングする。次いで、硬化牛脂 5.7 g, カンデリラロウ 3 g, アラビアガム 2.0 g, ビタミンBi 0.2 g かよび βーカロチン 1.0 %含有粉末製剤 0.1 gを含む乳化物 3.0 0 g (残りは水)をスプレーコーティングして、ビタミンBi, ビタミン A およびカルシウムを含有する強化精米約 2.0 kgを得た。

精白米に200:1の比率で混入し洗米したと きの各栄養器の洗米損失は約15%であつた。 家施例3

砕米を除去し、水分131%の乾燥米196 好を 得た。乾燥米をコーテイングパンに移し、天然ピ タミンE10g、炭酸カルシウム40g、ピロリン酸第二鉄10g、ゼラナン10gをおよび砂罐 10gを含む水けん潤液300gをスプレーコーテイングする。次いで、綿突硬化油70g・みつ ロウ3.5g、糜塊脂肪酸エステル12g・ピタミンB・0.2gを含む乳化物600g(残りは水)を スプレーコーティングして、8種類の栄養業を含 有する強化精米約20 好を得た。

精白米に200:1の比率で混入し洗米したと きの各栄養素の洗米損失は約10%であつた。

代现人 并现士 天 井 作

コーテイングパンを用い、精要1.0 好化ビタミンB, 塩酸塩1.5 g, 炭酸カルシウム20g, ピロリン酸第二鉄5 g, アラビアガム2gかよび砂糖6gを含む水けん陨液70gをスプレーコーテイングする。次いで、硬化菜銀油57g,カルナパロウ3g, 蹠頭脂肪酸エステル12g, ビタミンB, 0.2 gを含む乳化物300g(残りは水)をスプレーコーティングして、ビタミンB, カルシウム,鉄を含有する強化精変約1.0 好を得た。

ジベンゾイルチアミン塩酸塩 7.0g . ビタミン 8.0.12g . ニコチン酸アミド13.5g . パントテン酸カルシウム 6.6gおよびピリドキシン塩酸塩 0.2gを含む 9 米酢酸水溶液 400 mlを米 2 klに加え、コーテイングパンを用いて品温約35 でで2時間浸潤する。次いで、浸润米を約100℃の蒸気で約2分間蒸煮した後約70℃の熱風で約1時間乾燥する。乾燥終了後、縮過して精粉米。