Sales Analysis

Import necessary libraries

```
In [1]: import os
import pandas as pd
```

Merge data from each month into one CSV

```
In [ ]: path = "./Sales_Data"
files = [file for file in os.listdir(path) if not file.startswith('.')] # Ignore hi

all_months_data = pd.DataFrame()

for file in files:
    current_data = pd.read_csv(path+"/"+file)
    all_months_data = pd.concat([all_months_data, current_data])

all_months_data.to_csv("all_data_copy.csv", index=False)
```

Read in updated dataframe

```
In [3]: all_data = pd.read_csv("all_data.csv")
    all_data.head()
```

Out[3]:		Order ID	Product Quantity Ordered		Price Each	Order Date	Purchase Address
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
	1	NaN	NaN	NaN	NaN	NaN	NaN
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
	3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001

Clean up the data!

The first step in this is figuring out what we need to clean. I have found in practice, that you find things you need to clean as you perform operations and get errors. Based on the error, you decide how you should go about cleaning the data

Drop rows of NAN

```
In [12]: # Find NAN
    nan_df = all_data[all_data.isna().any(axis=1)]
    display(nan_df.head())

all_data = all_data.dropna(how='all')
    all_data.head()
```

Order ID Product Quantity Ordered Price Each Order Date Purchase Address

Out[12]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
	3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001

Make columns correct type

```
In [16]: all_data['Quantity Ordered'] = pd.to_numeric(all_data['Quantity Ordered'])
    all_data['Price Each'] = pd.to_numeric(all_data['Price Each'])
```

Get rid of text in order date column

```
In [17]: all_data = all_data[all_data['Order Date'].str[0:2]!='Or']
all_data.head()
```

Out[17]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4
	3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4

Augment data with additional columns

Task1: Add month column

```
In [15]: all_data['Month'] = all_data['Order Date'].str[0:2]
    all_data['Month'] = all_data['Month'].astype('int32')
    all_data.head()
```

Out[15]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4
	3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4

Task:2 Add sale column

```
In [18]: all_data['Sales']=all_data['Quantity Ordered']*all_data['Price Each']
all_data.head()
```

Out[18]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	23.90
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	99.99
	3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	600.00
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	11.99
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	11.99

Add month column (alternative method)

Task3: Add city column

```
In [28]: def get_city(address):
    return address.split(",")[1].strip(" ")

def get_state(address):
    return address.split(",")[2].split(" ")[1]

all_data['City'] = all_data['Purchase Address'].apply(lambda x: f"{get_city(x)} ({all_data.head()})
```

Out[28]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	23.90	Dallas (TX)
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	99.99	Boston (MA)
	3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	600.00	Los Angeles (CA)
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)

Data Exploration!

Question 1: What was the best month for sales? How much was earned that month?

```
In [19]: all_data['Sales'] = all_data['Quantity Ordered'].astype('int') * all_data['Price Ea
In [20]: all_data.groupby(['Month']).sum()
```

Out[20]:		Quantity Ordered	Price Each	Sales
	Month			
	1	10903	1811768.38	1822256.73
	2	13449	2188884.72	2202022.42
	3	17005	2791207.83	2807100.38
	4	20558	3367671.02	3390670.24
	5	18667	3135125.13	3152606.75
	6	15253	2562025.61	2577802.26
	7	16072	2632539.56	2647775.76
	8	13448	2230345.42	2244467.88
	9	13109	2084992.09	2097560.13
	10	22703	3715554.83	3736726.88
	11	19798	3180600.68	3199603.20
	12	28114	4588415.41	4613443.34

```
In [21]: import matplotlib.pyplot as plt

months = range(1,13)
    print(months)

plt.bar(months,all_data.groupby(['Month']).sum()['Sales'])
    plt.xticks(months)
    plt.ylabel('Sales in USD ($)')
    plt.xlabel('Month number')
    plt.show()
```


Question 2: What city sold the most product?

In [29]: a	all_data.groupby(['City']).sum()							
Out[29]:		Quantity Ordered	Price Each	Month	Sales			
	City							
	Atlanta (GA)	16602	2779908.20	104794	2795498.58			
	Austin (TX)	11153	1809873.61	69829	1819581.75			
	Boston (MA)	22528	3637409.77	141112	3661642.01			
	Dallas (TX)	16730	2752627.82	104620	2767975.40			
	Los Angeles (CA)	33289	5421435.23	208325	5452570.80			
N	New York City (NY)	27932	4635370.83	175741	4664317.43			
	Portland (ME)	2750	447189.25	17144	449758.27			
	Portland (OR)	11303	1860558.22	70621	1870732.34			
:	San Francisco (CA)	50239	8211461.74	315520	8262203.91			
	Seattle (WA)	16553	2733296.01	104941	2747755.48			
k p p p	import matplotli keys = [city for plt.bar(keys,all plt.ylabel('Sale plt.xlabel('Mont plt.xticks(keys, plt.show()	<pre>city, df in all _data.groupby([s in USD (\$)') h number')</pre>	'City']).su	um()['Sa				

Question 3: What time should we display advertisements to maximize likelihood of customer's buying product?

```
In [33]: all_data['Order Date']=pd.to_datetime(all_data['Order Date'])
In [36]: # Add hour column
    all_data['Hour'] = pd.to_datetime(all_data['Order Date']).dt.hour
    all_data['Minute'] = pd.to_datetime(all_data['Order Date']).dt.minute
    all_data['Count'] = 1
    all_data.head()
```

Out[36]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Sales	City	Hour	N
	0	176558	USB-C Charging Cable	2	11.95	2019-04-19 08:46:00	917 1st St, Dallas, TX 75001	4	23.90	Dallas (TX)	8	
	2	176559	Bose SoundSport Headphones	1	99.99	2019-04-07 22:30:00	682 Chestnut St, Boston, MA 02215	4	99.99	Boston (MA)	22	
	3	176560	Google Phone	1	600.00	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	600.00	Los Angeles (CA)	14	
	4	176560	Wired Headphones	1	11.99	2019-04-12 14:38:00	669 Spruce St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)	14	
	5	176561	Wired Headphones	1	11.99	2019-04-30 09:27:00	333 8th St, Los Angeles, CA 90001	4	11.99	Los Angeles (CA)	9	
In [38]:	ke	eys = [p	air f or pai	r, df in	all_da	ta.groupby	(['Hour'])]				
	pl pl pl	t.xtick t.xlabe	el('Hour') el('Number o)			our']).cou	nt()['Cou	nt'])				

8 of 12 2/18/2023, 11:50 PM

My recommendation is slightly before 11am or 7pm

Question 4: What products are most often sold together?

```
In [41]: # https://stackoverflow.com/questions/43348194/pandas-select-rows-if-id-appear-seve
    df = all_data[all_data['Order ID'].duplicated(keep=False)]
    # Referenced: https://stackoverflow.com/questions/27298178/concatenate-strings-from
    df['Grouped'] = df.groupby('Order ID')['Product'].transform(lambda x: ','.join(x))
    df2 = df[['Order ID', 'Grouped']].drop_duplicates()
    df2.head()
```

C:\Users\Saeed Khan\AppData\Local\Temp\ipykernel_5564\398840089.py:4: SettingWithCo
pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

df['Grouped'] = df.groupby('Order ID')['Product'].transform(lambda x: ','.join
(x))

Out[41]:	Order ID		Grouped			
	3	176560	Google Phone, Wired Headphones			
	18	176574	Google Phone, USB-C Charging Cable			
	30	176585	${\tt Bose\ SoundSport\ Headphones, Bose\ SoundSport\ Hea}$			
	32	176586	AAA Batteries (4-pack),Google Phone			
	119 176672		Lightning Charging Cable, USB-C Charging Cable			

```
In [42]: # Referenced: https://stackoverflow.com/questions/52195887/counting-unique-pairs-of
         from itertools import combinations
         from collections import Counter
         count = Counter()
         for row in df2['Grouped']:
             row_list = row.split(',')
             count.update(Counter(combinations(row_list, 2)))
         for key,value in count.most_common(10):
             print(key, value)
          ('iPhone', 'Lightning Charging Cable') 1005
         ('Google Phone', 'USB-C Charging Cable') 987
         ('iPhone', 'Wired Headphones') 447
         ('Google Phone', 'Wired Headphones') 414
          ('Vareebadd Phone', 'USB-C Charging Cable') 361
          ('iPhone', 'Apple Airpods Headphones') 360
          ('Google Phone', 'Bose SoundSport Headphones') 220
          ('USB-C Charging Cable', 'Wired Headphones') 160
         ('Vareebadd Phone', 'Wired Headphones') 143
         ('Lightning Charging Cable', 'Wired Headphones') 92
```

What product sold the most? Why do you think it sold the most?

```
In [43]: product_group = all_data.groupby('Product')
    quantity_ordered = product_group.sum()['Quantity Ordered']

    keys = [pair for pair, df in product_group]
    plt.bar(keys, quantity_ordered)
    plt.xticks(keys, rotation='vertical', size=8)
    plt.show()
```



```
In [44]: # Referenced: https://stackoverflow.com/questions/14762181/adding-a-y-axis-label-to
prices = all_data.groupby('Product').mean()['Price Each']

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()
    ax1.bar(keys, quantity_ordered, color='g')
    ax2.plot(keys, prices, color='b')

ax1.set_xlabel('Product Name')
    ax1.set_ylabel('Quantity Ordered', color='g')
    ax2.set_ylabel('Price ($)', color='b')
    ax1.set_xticklabels(keys, rotation='vertical', size=8)

fig.show()
```

C:\Users\Saeed Khan\AppData\Local\Temp\ipykernel_5564\136096346.py:14: UserWarning:
FixedFormatter should only be used together with FixedLocator
 ax1.set_xticklabels(keys, rotation='vertical', size=8)
C:\Users\Saeed Khan\AppData\Local\Temp\ipykernel_5564\136096346.py:16: UserWarning:
Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a
non-GUI backend, so cannot show the figure.
 fig.show()

In []: