Total	No.	of	`Printed	Pages:2

P.T.O.

г	^`
- 1	Z

UNIVERSITY

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2022

EN3ES25 Engineering Materials

Programme: B.Tech. Branch/Specialisation: AU/FT/ ME

Duration: 3 Hrs. Maximum Marks: 60

-	uestions are compulsory. Internal cho should be written in full instead of o	•	e indicated. Answer	s of	
Q.1 i.	γ-Iron has Crystal structure.			1	
	(a) HCP (b) FCC	(c) BCC	(d) SCC		
ii.	Orthorhombic crystal system has ax	ial Relationship	as-	1	
	(a) a=b=c (b) a=b≠c	(c) a≠b≠c	(d) None of these		
iii.	is usually defined as resist	ance of a mater	ial to penetration.	1	
	(a) Tensile strength	(b) Compressive strength			
	(c) Hardness	(d) Fatigue str	rength		
iv.	The ability of a material to absorb e	nergy when def	orm elastically and	1	
	dissipate it when the load is remove	d.			
	(a) Malleability	(b) Porosity			
	(c) Stiffness	(d) Resilience	;		
v.	In Gibbs phase rule, Number of va	riables that car	be independently	1	
	changed without altering the state of the system is:				
	(a) Degree of solubility	(b) Degree of	Freedom		
	(c) No. of Component	(d) None of the	nese		
vi.	comprise of alternate layers o	f ferrite and cer	mentite in steel.	1	
	(a) Austenite (b) Pearlite	(c) Ledeburite	e (d) None of these		
vii.	Bronze is an alloy of-			1	
	(a) Lead and Tin	(b) Copper an	d Tin		
	(c) Copper and Zinc	(d) Nickel and	d Zinc		
viii.	What is full form of HSLA?			1	
	(a) High Steel Low Aluminium	(b) High-strer	igth, low-alloy		
	(c)High Sulphur Low Aluminium	(d) None of the	nese		
ix.	Structure of common glass is			1	
	(a) Crystalline	(b) Granular			
	(c) Amorphous	(d) None of the	nese		

х.	ABS stand for- (a) Anode based styrene (b) Anode based system (c) Acrylonitrile butadiene styrene (d) None of these	1	
i.	\mathcal{E}	3	
ii.		7	
iii.	Classify crystal imperfection and explain point defect in detail.	7	
i.	Draw labelled stress-strain diagram for ductile material, brittle material, ceramic, and polymer.	4	
ii.		6	
111.	Explain any six mechanical properties of engineering materials.	6	
i. ii.	Explain allotropy nature of Iron with diagram. Draw neat and clean Iron-iron carbide metastable phase diagram indicating various temperature, carbon-content and various zones. Write three important reactions also.		
iii.	Draw and explain TTT diagram. Explain Hume Rothery rule for solid solution.	7	
i.	Classify cast-iron. Explain any one type in details.	4	
ii.	1	6	
iii.		6	
	Attempt any two:		
i.		5	
ii. iii.	What are the General properties and application of carbon nano tubes?	5 5	
	 i. ii. ii. iii. iii. iii. 	 (a) Anode based styrene (b) Anode based system (c) Acrylonitrile butadiene styrene (d) None of these i. Draw the miller indices for given indices- (a) [0 0 1] (b) [1 1 1] (c) (1 1 1) ii. Draw the unit cell for SCC and FCC crystal structure. Discuss the number of atoms, coordination number and atomic packing factor for both unit cells. iii. Classify crystal imperfection and explain point defect in detail. i. Draw labelled stress-strain diagram for ductile material, brittle material, ceramic, and polymer. ii. Explain the any two methods of strengthening of metals. iii. Explain any six mechanical properties of engineering materials. i. Explain allotropy nature of Iron with diagram. ii. Draw neat and clean Iron-iron carbide metastable phase diagram indicating various temperature, carbon-content and various zones. Write three important reactions also. iii. Draw and explain TTT diagram. Explain Hume Rothery rule for solid solution. i. Classify cast-iron. Explain any one type in details. ii. (a) Classify ferrous materials with examples. (b) Explain TRIP Steel (Composition, properties, and application). iii. Write composition, properties, and application of two important Nickel based alloys. Attempt any two: Differentiate between thermoplastic polymers and thermosetting Polymers. ii. What are the General properties and application of carbon nano tubes? iii. Write brief note on - 	

Marking Scheme EN3ES25 Engineering Materials

Q.1	i)	(b) FCC				1
	ii)	(c) a≠b≠c				1
	iii)	(c)Hardnes	S			1
	iv)	(d) Resilier	nce			1
	v)	(b) Degree	of Freedom			1
	vi)	(b)Pearlite				1
	vii)	(b) Copper	and Tin			1
	viii)	(b) High-st	rength, low-alloy			1
	ix)	(c) Amorph	nous			1
	x)	(c) Acrylor	nitrile butadiene styr	ene		1
Q.2	i.		` / ' ` ` ` `	en indices- (1 1 1)		3
	ii.	number of for both un	atoms, coordination	I FCC crystal structu number and atomic r SCC and FCC		7
		MARKS	2 MARKS	2 MARKS	2 MARKS	
		Unit cell	Number of atoms	CN	APF	
		SCC	1	6	~52 %	
OR	iii.	Classificati	on	12 nd explain point defe int defect with diagra	2 marks	7
Q.3	i.	Draw labelled stress-strain diagram for ductile material, brittle 4 material, ceramic and polymer. 1 mark for each				4
	ii.			strengthening of met	als.	3,3
		-	each method			
OR	iii.	Explain and 1 mark for		operties of engineerin	g materials.	6
Q.4	i.	Explain alle Explanation Diagram	otropy nature of Iror n 1 mark 2 marks	n with diagram.		3

	ii.	Draw neat and clean Iron-Iron carbide metastable phase diagram indicating various temperature, carbon-content and various zones. Write three important reactions also. Correct diagram indicating correct zones - 2 marks Correct temperatures - 1 mark Correct compositions - 1 mark Three important reaction - 3 marks	7
OR	iii.	Draw and explain TTT diagram. Explain Hume Rothery rule for solid solution. 4 marks for TTT Diagram 3 marks for Hume Rothery rule	7
Q.5	i.	Classification 2 Marks	4
	ii.	Any one type of cast iron 2 Marks a) Classify ferrous materials with examples. b) Explain TRIP Steel (Composition, properties and application) Classification of ferrous materials - 3 marks TRIP Steel - 3 marks	3,3
OR	iii.	Write composition, properties and application of two important nickel based alloys. Name of alloy composition properties application Alloy 1 1 mark 1 mark 1 mark Alloy 2 1 mark 1 mark 1 mark	6
Q.6	i.	Attempt any two: Differentiate between thermoplastic polymers and thermosetting Polymers. 1 Mark each (1 Mark*5)	5
	ii. iii.	What are the General properties and application of carbon nano tubes? 2.5 marks for properties (minimum 2 properties) 2.5 marks for application (minimum 2 application) Write brief note on -	5 5
		(a) Shape memory alloy (b) Ceramics2.5 marks for each	
