开发计划文档

1. 系统技术架构

技术架构

零售自动立体仓库系统技术架构图如下,从客户端、对象、应用层、数据层、数据库、运行环境六方面做出介绍。

数据库设计

● 用户user表

uid	uname	upassword	utype
用户id	用户名	用户密码	用户角色

• 货物品类species表

sid	sname	stype	num	weight	sh	sw	sd
货物品类id	货物品名	货物种类	货物存量	货物重量	货物长度	货物宽度	货物高度

• 货物cargo表

sid	sname	cid	production_date	shelf_life	input_time	output_time
货物品类id	货物品名	货物编号	货物生产日期	货物保质期	货物入库时间	货物出库时间

● 仓库柜cell表

ceid	cetype	ch	cw	cd	cost_t	maxWeight
仓库柜id	仓库柜类型	仓库柜长	仓库柜宽	仓库柜高	单位时间成本消耗	最多载重

(有3种仓库柜: a、b、c)

● 仓库repository表

rid	rtype	aTotalNum	bTotalNum	cTotalNum	aRestNum	bRestNum	cRestNum
仓库id	仓库类型	a型柜总数量	b型柜总数量	c型柜总数量	a型柜剩余数量	b型柜剩余数量	c型柜剩余数量

• 无人超市supermarket表

suid	suregion	rid
超市id	超市地区	关联仓库

● 货物-仓库存储表

sid	cid	rid	ceid	input_time	output_time
货物品类id	货物编号	仓库id	仓库柜id	入库时间	出库时间

● 日志表

sid	cid	rid	ceid	record_time	log	suid
货物品类id	货物编号	仓库id	仓库柜id	日志记录时间	日志内容	关联超市

2. 开发内容

零售自动立体仓库系统功能主要分四部分:管理设置、入库、仓库管理、出库。

3. 工作分解

零售自动立体仓库系统实现从范围定义阶段、系统设计阶段、系统实现阶段、系统测试阶段、系统审查阶段5个阶段分别作出任务分解。

树状WBS分解结构如下:

4. 重难点以及解决的路径

重难点1: 如何实现空间的最优化利用?

解决路径:在入库分配位置时,将同区或同排,同层数的货物进行合并,尽量减少存储空间小的分区的数量,增大现有存储空间的大小。

重难点2: 如何评价调度算法的性能?

解决路径:评价指标可设计为平均单次调度的耗电量,平均每批次货物的调度次数等,使用尽可能多、全面、能覆盖生活实际的测试用例,后期由代码自动随机生成测试用例,来评价、并优化调度算法。

重难点3: 如何评价成本消耗?

解决路径: 平均单次调度的耗电量, 平均每批次货物的调度次数等。

重难点4: 如何让调度算法的效果贴近现实?

解决路径:让调度算法的效果贴近现实,首先应该是调度算法的评价角度贴近现实,在市场调研使用实景中通常被考虑的因素,例如冷藏仓库柜的耗电情况、以及使用中的注意事项,尽量避免出现不必要的错误。

5. 人员分工和时间计划

• 人员分工

姓名	任务
党田乐20301002	组长,后端工程师,调度算法的实现
邹佳期20301155	后端工程师,信息查询与展示
王圳20301024	后端工程师,规则设置,信息管理
柳萱莹20301164	前端工程师,界面设计,与后端的连接
何军庭20301007	前端工程师,界面设计,与后端的连接

• 时间计划

- 。 范围定义阶段 1周
- o 系统设计阶段 1周
- o 系统实现阶段 4周
- 系统测试阶段 2周
- o 系统审查阶段 1周
- 甘特图 (含里程碑)

《零售自动立体仓库》项目——时间计划

功能/时间	第1周	第2周	第3周	第4周	第5周	第6周	第7周	第8周	
范围定义									
系统设计									
系统实现			7		7				
系统测试									
系统审查									

🛨 里程碑: 完成基础功能 🌟 里程碑: 完成高级功能 🛨 里程碑: 全部测试用例通过