PROBLÈME.

On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_0^1 (1-t)^n e^t dt.$$

- 1. Vérifier que $u_0 = e 1$.
- 2. (a) Montrer à l'aide d'une intégration par parties que, pour tout entier naturel n,

$$u_{n+1} = (n+1)u_n - 1$$

.

- (b) En déduire la valeur de u_1 et de u_2 .
- 3. Soient f_2 et f_1 les fonctions définies sur [0;1] respectivement par $f_1(x) = (1-x)e^x$ et $f_2(x) = (1-x)^2e^x$.
 - (a) Étudier sur [0; 1] la position relative des courbes \mathcal{C}_1 et \mathcal{C}_2 associées respectivement aux fonctions f_1 et f_2 .
 - (b) En déduire l'aire de la surface délimitée par les courbes \mathcal{C}_1 et \mathcal{C}_2 , l'axe des abscisses et les droites d'équation x=0 et x=1.
- 4. (a) Démontrer que la suite (u_n) est minorée par 0.
 - (b) La suite (u_n) est décroissante. Justifier cette assertion.
 - (c) La suite (u_n) est-elle convergente? Justifier.
- 5. (a) Montrer que pour tout réel t de l'intervalle [0;1] et pour tout entier naturel non nul n

$$(1-t)^n e^t \leqslant e \times (1-t)^n.$$

- (b) En déduire que pour tout n non nul, $u_n \le \frac{e}{n+1}$.
- 6. Déterminer la limite de la suite (u_n) .

^{1.} Pensez à utiliser la question 2.