EA772 Circuitos Lógicos Prof. José Mario De Martino – Prova 01 – 2°. Semestre 2009

1.

a)
$$01011011_2 = 2^6 + 2^4 + 2^3 + 2^1 + 2^0 = 91_{10}$$

b)
$$53_{10} = 110101_2$$

$$resto = 1$$

$$26 / 2 = 13$$

$$resto = 0$$

$$13 / 2 = 6$$

$$resto = 1$$

$$6/2 = 3$$

$$resto = 0$$

$$3/2 = 1$$

$$resto = 1$$

$$1/2 = 0$$

$$resto = 1$$

c)
$$458_{10} = 1CA_{16}$$

resto =
$$10 \rightarrow A$$

resto =
$$12 \rightarrow C$$

$$1/16 = 0$$

resto =
$$1 \rightarrow 1$$

d)
$$3E8_{16} = 3 \cdot 16^2 + 14 \cdot 16^1 + 8 \cdot 16^0 = 1000_{10}$$

2.

$$fsp_1 = x'_2 x_1 + x_3 x_1 + x'_3 x_2 x'_1 + x'_3 x'_2 x_0 + x_2 x'_1 x_0$$

$$fsp_2 = x'_2 x_1 + x_3 x_1 + x'_3 x_2 x'_1 + x'_3 x'_2 x_0 + x_3 x_2 x_0$$

(6 portas)

$$fsp_3 = x'_2 x_1 + x_3 x_1 + x'_3 x_2 x'_1 + x'_3 x'_1 x_0 + x_3 x_2 x_0$$

(6 portas)

$$fsp_4 = x'_2 x_1 + x_3 x_1 + x'_3 x_2 x'_1 + x'_3 x'_1 x_0 + x_2 x'_1 x_0$$

(6 portas)

fsp₁ fsp₂, fsp₃ e fsp₄ têm custos equivalentes (mesmo número de portas).

	$X_1 X_0$	$\mathbf{x'}_1 \mathbf{x}_0$	$x_1 x_0$	$\mathbf{x}_1 \mathbf{x}'_0$
x' ₃ x' ₂	0	1	1	1
x' ₃ x ₂	1	1	\bigcirc	0
$x_3 x_2$	0	1	1	1
X ₃ X′ ₂	\cancel{A}	0	1	1
	7			

$$fps_1 = (x_2 + x_1 + x_0) (x'_3 + x_1 + x_0) (x'_3 + x_2 + x_1) (x_3 + x'_2 + x'_1)$$
 (5 portas)

 fps_1 tem o menor custo (menor número de portas), portanto é a melhor solução.

Diagrama esquemático do circuito:

3.

X ₂	\mathbf{x}_1	\mathbf{x}_0	\mathbf{z}_1	z_0
0	0	0	1	1
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	0	0

$$z_{1sp} = x'_2 x'_1 + x'_2 x'_0 + x'_1 x'_0$$
 (4 portas)

$$z_{1ps} = (x'_1 + x'_0) (x'_2 + x'_0) (x'_2 + x'_1)$$
 (4 portas)

 $z_{1sp}\,e\;z_{1ps}$ têm mesmo custo (mesmo número de portas). Arbitrariamente é escolhido z_{1sp}

$$z_{0sp} = x'_2 x'_1 x'_0 + x'_2 x_1 x_0 + x_2 x'_1 x_0 + x_2 x_1 x'_0$$
 (5 portas)

$$z_{0ps} = (x_2 + x_1 + x_0') (x_2 + x_1' + x_0) (x_2' + x_1 + x_0) (x_2' + x_1' + x_0')$$
 (5 portas)

 z_{0sp} e z_{0ps} têm mesmo custo (mesmo número de portas). Arbitrariamente é escolhido z_{0sp} O desenho esquemático do circuito é:

4.

1	0001 n	00x1 n	0xx1 n
	0010 n	0x01 n	x0x1 n
		x001 n	0x1x n
2	0011 n	001x n	
	0101 n	0x10 n	
	0110 n		
	1001 n	0x11 n	
		x011 n	
3	0111 n	01x1 n	
	1011 n	011x n	
	1110 n	x110	
		10x1 n	

_	-								
	1	2	3	5	6	7	9	11	14
0xx1	X		X	X		X			
x0x1	X		X				X	X	
0x1x		X	X		X	X			
•	•								
									

x110 x x

fps =
$$(x_3 + x'_0)(x_2 + x'_0)(x_3 + x'_1)(x'_2 + x'_1 + x_0)$$

Diagrama esquemático do circuito:

5.

a) Fator de carga de entrada:

$$I(x_2) = 3$$
 $I(x_1) = I(x_0) = 2$

b) Fanout de cada saída:

 $Fanout(z_1) = Fanout(z_0) = 12$ (Fanout CMOS = 12)

c)

$$t_{pHL}(x_1, z_1) = t_{pLH}(O_2) + t_{pLH}(A_4) + t_{pLH}(N_4) + t_{pHL}(O_1) + t_{pHL}(A_1) + t_{pHL}(N_2)$$

$$t_{pLH}(O_2) = 0.12 + 0.037 L$$

$$t_{pLH} (A_4) = 0.15 + 0.037 . 1 = 0.187$$

$$t_{pLH}(N_4) = 0.02 + 0.038 . 1 = 0.058$$

$$t_{pHL}(O_1) = 0.20 + 0.019 . 3 = 0.257$$

$$t_{pHL}(A_1) = 0.16 + 0.017 . 1 = 0.177$$

$$t_{pHL}(N_2) = 0.05 + 0.017$$
. $1 = 0.067$

$$t_{pLH}(x_2, z_0) = 0.866 + 0.037 L \text{ ns}$$