

Fluctuating Power Logic: SCA Protection By V_{DD} Randomization At The Cell-level

Fan Zhang, Bolin Yang, Bojie Yang, Yiran Zhang,

Shivam Bhasin, Kui Ren

Content

- 1. Introduction
- 2. FPL scheme
- 3. Simulation
- 4. Conclusion

1. Introduction

Side-Channel Attack

Power dissipation correlates to switching operations

Power models like hamming weight etc.

Major power consumption comes from the clock distribution

network and Flip-Flops

(FFs) (estimated 30%-60%)

Mainstream SCA countermeasures

- Hiding :noise, clock randomizer, dual-rail precharge logics
- Masking: algorithm level, hardware level

New countermeasure: FPL

Our contributions

- We propose a novel cell-level logic: Fluctuating power logic(FPL)
- We compared FPL with standard-cell-based and WDDL-based implementation
- We analyzed side-channel security of FPL on PRESENT/AES implementation

Content

- 1. Introduction
- 2. FPL scheme
- 3. Simulation
- 4. Conclusion

2. FPL scheme

- The proposed logic is highlighted with a modified secure FF.
- This scheme is based on a cascade voltage logic(CVL) and further enhanced with a compensatory unit (CU).

cascade voltage logic(CVL)

- n diodes
- one PMOS
- one "n-input" OR-gate.
- V_{dp}: voltage drop

$$VDD_m = VDD - V_{dp}$$

cascade voltage logic(CVL)

•
$$K=0, V_{dp}=0$$

•
$$K=1$$
, $V_{dp}=V_{th0}$

• K>1, 0<V_{dp}<V_{th0}

K denotes the total number of VM_i whose logic value is "1"

V_{th0} denotes the threshold voltage of NMOS and diode

cascade voltage logic(CVL)

- CP: circuit on critical path
- NCP: circuit on non-critical path

Modified FF with FPL

- Critical paths marked in brown
- Non-critical paths marked in blue
- Transistors connected with VDD_m
 marked in grey

compensatory unit (CU)

- the power consumption for variant data transitions $(0 \rightarrow 1 \text{ and } 1 \rightarrow 0)$ is larger than that for invariant ones $(0 \rightarrow 0 \text{ and } 1 \rightarrow 1)$
- When the FF makes a 0→1 or 1→0 the CU is off
- when the inputs of FF keep unchanged the CU is turned on

Total Power dissipation

$$P_{\text{total}} = P_{FF} + P_{CVL} + P_{CU}$$

Content

- 1. Introduction
- 2. FPL scheme
- 3. Simulation
- 4. Conclusion

3. Simulation

- Testbench
- compiling and synthesis by Design Compiler
- n=4
- HSPICE

Simulation results

- (GE) Gate equivalents
- (SC-FF) standard-cell-based FF
- (WDDL) dynamic differential logic

Testbench	PRESENT encryption circuit			AES encryption circuit		
	SC-based	FPL-based	WDDL-based	SC-based	FPL-based	WDDL-based
Area[GE]	152	221 (× 1.45)	520 (×3.42)	1340	1478 (×1.10)	3111 (×2.32)
$P_{max}[fJ]$	2212.2	2335.9	7097.0	2590.9	3664.6	21249.0
$P_{min}[fJ]$	769.6	1132.2	6829.0	1301.0	2595.4	20842.0
$P_{avg}[fJ]$	1299.3	1532.3 (× 1.18)	6958.0 (×5.36)	2249.6	3307.6 (×1.47)	21083.1 (×9.37)
σ_P	362.2	281.6	80.6	219.0	181.2	79.0

Comparation(AES)

Correlation vs. number of traces

Standard

Comparation(AES)

- Correlation vs. length of a trace
- Standard AES

PFL AES

Comparation(PRESENT)

Correlation vs. number of traces

Standard

FPL

Comparation(PRESENT)

Correlation vs. length of a trace

Standard

FPL

Content

- 1. Introduction
- 2. FPL scheme
- 3. Simulation
- 4. Conclusion

Conclusion

- proposed a power-diffusing logic named as fluctuating power logic (FPL)
- analyzed side-channel security on PRESENT/AES implementation
- compared FPL with standard-cell-based and WDDLbased implementation