Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

студента Я	ковлева Андре	<u>я</u> группы <u> Б20-5</u>	<u>04 </u> . Дата сд	цачи:_20.11.22_	
Ведущий пр	еподаватель: _	Трофимов А.Г	оценка:	подпись:	

Вариант № 12

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, <i>m</i> _i	Дисперсия, σ_i^2	Объем выборки, n_i
X_1	$N(\mu,\sigma^2)$	$\mu = 5$ $\sigma^2 = 3$	5	3	200
X_2	$N(\mu,\sigma^2)$	$\mu = 5$ $\sigma^2 = 1$	5	1	250
X_3	$N(\mu,\sigma^2)$	$\mu = 5$ $\sigma^2 = 5$	5	5	200
X_4	$N(\mu, \sigma^2)$	$\mu = 5$ $\sigma^2 = 5$	5	5	200

Количество случайных величин k=4

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i
X_1	5.162	2.926	1.711
X_2	4.879	0.982	0.991
X_3	5.064	4.795	2.190
X_4	4.967	4.419	2.102
Pooled	5.010	3.157	1.777

2. Визуальное представление выборок

Диаграммы Box-and-Whisker:

Примечание: для построения диаграмм использовать функции **boxplot**, vartestn (matplotlib.pyplot.boxplot)

3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза: $H_0: \sigma_1^2 = ... = \sigma_k^2$

Критерий Бартлетта:

	philephii Bup illerru.						
Выборочное значение статистики критерия		p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения			
	152.435	7.86e ⁻³³	H_0 отвергается	нет			

Примечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

Источник вариации	Показатель вариации	Число степеней свободы	Несмещённая оценка
Группировочный признак	0.01179	k - 1 = 3	3.280
Остаточные признаки	3.145	N - k = 846	3.160
Все признаки	3.157	N - 1 = 849	3.161

Эмпирический коэффициент детерминации $\eta^2 = 0.00367$

Эмпирическое корреляционное отношение $\eta = 0.06055$

Статистическая гипотеза: $H_0: m_1 = ... = m_k$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
1.038	0.375	H_0 принимается	нет

Примечание: при расчетах использовать функцию anova1 (scipy.stats.f_oneway)

5. Метод линейных контрастов

Доверительные интервалы для $m_1, ..., m_k$:

Попарные сравнения m_i и m_j :

Гипотеза	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.01$	Ошибка стат. решения
H_0 : $m_1 = m_2$	2.186	0.0287	H_0 принимается	нет
$H_0: m_1 = m_3$	0.495	0.620	H_0 принимается	нет
$H_0: m_1 = m_4$	1.014	0.310	H_0 принимается	нет
$H_0: m_2 = m_3$	-1.188	0.234	H_0 принимается	нет
$H_0: m_2 = m_4$	-0.581	0.561	<i>H</i> ₀ принимается	нет
$H_0: m_3 = m_4$	0.452	0.651	H_0 принимается	нет

Примечание: при расчетах использовать функцию multcompare (statsmodels.stats.multicomp.pairwise_tukeyhsd)