FPV Week 1: Implications, Assertions and Conditions

Exercises

- There will be tutorial exercises every week
- In non-programming weeks, there will be quizzes to be solved during tutorials
- In programming weeks, there will be homework
- All exercises will be managed on Artemis artemis.ase.in.tum.de
- Programming exercises will be graded automatically, with secret tests
- This means you see your results already before the deadline ("What you see is what you get")

Grade Bonus

- Successful participation ($\geq 70\%$) in quizzes and programming tasks will lead to a bonus of 0.3 in the final exam, provided that you passed the exam.
- Programming homework and quizzes are to be submitted individually.
- Discussing solutions before the end of the week is considered plagiarism.
- Plagiarism will not be tolerated and will (at the very least) lead to exclusion from the bonus system

Material

https://github.com/Funky-Punky/FPV_SoSe23_Fr-14-16

Quiz

$$\begin{array}{l}
\gamma(a \Rightarrow b) \\
\equiv \gamma(a \Rightarrow b) \\$$

31274657

Week 01 Tutorial 01 Recap: Implications

1.
$$x = 1 \implies 0 < x$$

2. $x < 6 \implies x = 3$
3. $x > 0 \implies x \ge 0$
4. $x = -2 \implies x < -1 \lor x > 1$
5. $x = 0 \lor x = 7 \implies 4 \ne x$
6. $x = 1 \implies x \le 3 \land y > 0$
7. $x < 8 \land y = x \implies y \ne 12$
8. $x = 1 \lor y = 1 \implies x > 0$
9. $x \ne 5 \implies false$
10. $true \implies x \ne y$
11. $false \implies x = 1 \lor$
12. $x \ge 1 \implies 2x + 3 = 5 \lor$
13. $A \land x = y \implies A$
14. $B \implies A \lor B \lor$
15. $A \implies (B \implies A) \lor$
16. $(A \implies B) \implies A \lor$

Week 01 Tutorial 02 Assertions

1. Which of the following assertions hold at point A?

Week 01 Tutorial 02 Assertions

2. Which of the following assertions hold at point B?

$$\circ$$
 b) $x=i$

$$0 < i < x$$

e)
$$i \geq 0 \land x \geq 0$$

$$\circ$$
 c) $i < x$ \circ d) $0 \le i \le 10$ \circ e) $i \ge 0 \land x \ge 0$ \circ f) $n = 1 \implies x = i$

Week 01 Tutorial 02 Assertions

3. Which of the following assertions hold at point C?

$$\circ$$
 a) $i \geq 0$ \lor \circ b) $i = 10$ \checkmark

b)
$$i=10$$

c)
$$i>0$$

$$\circ$$
 e) $x=10n$

$$\circ$$
 c) $x \ne n \times$ \circ e) $x = 10n \times$ \circ f) $x = i * n \wedge i = 10 \times$

Week 01 Tutorial 03 The Strong and the Weak

- 1. When annotating the control flow graph, can you say that one of the given assertions is "better" than the others?
- 2. Can you arrange the given assertions in a meaningful order?
- 3. How can you define a *stronger than* relation formally?
- 4. How do true and false fit in and what is their meaning as an assertion?
- 5. What are the strongest assertions that still hold at A, B and C?

Week 01 Tutorial 04 Strongest Postconditions

Week 01 Tutorial 04 Strongest Postconditions

2.

4

$$\chi = 3(i-1) 1 i 2 1$$

6

Week 01 Tutorial 04 Strongest Postconditions

