

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Machine learning - Block 8

Måns Magnusson Department of Statistics, Uppsala University

Autumn 2022

This week's lectures

- Introduction to Reinforcement Learning
- Bandits
- Mandan
- Markov Decision Processes

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Another type of Machine Learning:
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement learning

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Another type of Machine Learning:
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement learning
- Computational approach of learning from interaction
- Closest to human and animal learning: trial, error, and planning.
- The learner is *not* told which actions to take

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Another type of Machine Learning:
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement learning
- Computational approach of learning from interaction
- Closest to human and animal learning: trial, error, and planning.
- The learner is *not* told which actions to take
- Connections to:
 - Game Theory
 - Control Theory
 - Multi-agent systems
 - Swarm intelligence
 - Information theory
 - Statistics

Introduction to Reinforcement

- Learning

 Bandits
- Markov Decision Processes

Introduction to Reinforcement Learning

• Goal: maximize return over a sequence of actions

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Goal: maximize return over a sequence of actions
- Three characteristics:
 - 1. Closed-loop: early actions affects later actions

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Goal: maximize return over a sequence of actions
- Three characteristics:
 - 1. Closed-loop: early actions affects later actions
 - 2. No direct instructions

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Goal: maximize return over a sequence of actions
- Three characteristics:
 - 1. Closed-loop: early actions affects later actions
 - 2. No direct instructions
 - 3. Reward signals over a long period of time

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• RL agent won over Lee Sedol in 2016: AlphaGo

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- RL agent won over Lee Sedol in 2016: AlphaGo
- Won over human champions in DOTA2 in 2019

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- RL agent won over Lee Sedol in 2016: AlphaGo
- Won over human champions in DOTA2 in 2019
- ChatGPT/InstructGPT in 2022

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- RL agent won over Lee Sedol in 2016: AlphaGo
- Won over human champions in DOTA2 in 2019
- ChatGPT/InstructGPT in 2022
- Industry automation: RL is used to reduce the energy cost of datacenter cooling

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- RL agent won over Lee Sedol in 2016: AlphaGo
- Won over human champions in DOTA2 in 2019
- ChatGPT/InstructGPT in 2022
- Industry automation: RL is used to reduce the energy cost of datacenter cooling
- Automated trading

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- RL agent won over Lee Sedol in 2016: AlphaGo
- Won over human champions in DOTA2 in 2019
- ChatGPT/InstructGPT in 2022
- Industry automation: RL is used to reduce the energy cost of datacenter cooling
- Automated trading
- Elevator scheduling

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision
- Processes

- RL agent won over Lee Sedol in 2016: AlphaGo
- Won over human champions in DOTA2 in 2019
- ChatGPT/InstructGPT in 2022
- Industry automation: RL is used to reduce the energy cost of datacenter cooling
- Automated trading
- Elevator scheduling
- A/B testing and personalized recommendations

- Introduction to Reinforcement Learning
- Bandits
-
- Markov Decision Processes

- RL agent won over Lee Sedol in 2016: AlphaGo
- Won over human champions in DOTA2 in 2019
- ChatGPT/InstructGPT in 2022
- Industry automation: RL is used to reduce the energy cost of datacenter cooling
- Automated trading
- Elevator scheduling
- A/B testing and personalized recommendations
- Board games such as backgammon, chess and checkers

ONIVERSI

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

The different parts in RL

1. The Agent: The learning agent.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. The Agent: The learning agent.
- 2. The Environment: Where the agent performs actions.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. The Agent: The learning agent.
- 2. The Environment: Where the agent performs actions.
- 3. Actions: Made by the agent and affects the environment.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. The Agent: The learning agent.
- 2. The Environment: Where the agent performs actions.
- 3. Actions: Made by the agent and affects the environment.
- 4. Reward: The evaluation of an action. A scalar value. Pleasure and pain.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. The Agent: The learning agent.
- 2. The Environment: Where the agent performs actions.
- 3. Actions: Made by the agent and affects the environment.
- **4.** Reward: The evaluation of an action. A scalar value. Pleasure and pain.
- 5. Return: The aggregated reward over a long period.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

1. Agents:

- 1.1 Have a goal (maximize return)
- 1.2 Sense aspect of their environment
- 1.3 Choose actions
- 1.4 Possibility to improve performance over time

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. Agents:
 - 1.1 Have a goal (maximize return)
 - 1.2 Sense aspect of their environment
 - 1.3 Choose actions
 - 1.4 Possibility to improve performance over time
- 2. Usually an uncertainty about the environment
- 3. Represent uncertainty of environment: Probability

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Policy: How the agent choose actions. Determines behaviour.
- 2. Model: The agent's model of the environment. Used for planning

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Policy: How the agent choose actions. Determines behaviour.
- 2. Model: The agent's model of the environment. Used for planning
- 3. Value function: The long-term value (the expected long-term return following a policy)

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Policy: How the agent choose actions. Determines behaviour.
- 2. Model: The agent's model of the environment. Used for planning
- 3. Value function: The long-term value (the expected long-term return following a policy)
- Outside agent: Reward signal: The instant value of an action

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Policy: How the agent choose actions. Determines behaviour.
- 2. Model: The agent's model of the environment. Used for planning
- 3. Value function: The long-term value (the expected long-term return following a policy)
- Outside agent: Reward signal: The instant value of an action
- Problem: Balance the trade-off between long-term and short-term rewards

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

1. Static vs. Dynamic

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. Static vs. Dynamic
- 2. No Gold Standard

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. Static vs. Dynamic
- 2. No Gold Standard
- 3. Multiple-Decision Process: Return vs. reward

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. Static vs. Dynamic
- 2. No Gold Standard
- 3. Multiple-Decision Process: Return vs. reward
- 4. Need for exploration

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- 1. Static vs. Dynamic
- 2. No Gold Standard
- 3. Multiple-Decision Process: Return vs. reward
- 4. Need for exploration
- 5. Evaluates actions not only instruct actions

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Exploration vs Exploitation

• Goal: Maximize the return (the total reward), i.e.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Exploration vs Exploitation

- Goal: Maximize the return (the total reward), i.e.
- Exploit the best actions

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Exploration vs Exploitation

- Goal: Maximize the return (the total reward), i.e.
- Exploit the best actions
- Explore to know the best actions

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Evolution vs Learning

- Set a policy without learning: Evolutionary Methods
- Good when agent cannot sense the environment

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Evolution vs Learning

- Set a policy without learning: Evolutionary Methods
- Good when agent cannot sense the environment
- Example: Bacteria don't learn, they evolve

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Setting the goal for the Agent

- Setting the goal: defining the reward signal (reward function)
- Example: If you want the agent to do something quick, give -1 per action.

Introduction to Reinforcement Learning

- Bandits
- Markov Decision Processes

Setting the goal for the Agent

- Setting the goal: defining the reward signal (reward function)
- Example: If you want the agent to do something quick, give -1 per action.
- We should give rewards for correct behaviour
- Do not use reward to guide how to reach the goal
- Be careful what you wish for...

- Introduction to Reinforcement Learning
- BanditsMarkov Decision
- Markov Decision Processes

Section 2

Bandits

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Goal: Maximize the total or average reward after N actions

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Goal: Maximize the total or average reward after N actions
- ullet The actions: Choose between k arms, i.e. $A_t \in \{1,...,k\}$

- Introduction to Reinforcement Learning
- Bandits
- Daniales
- Markov Decision Processes

- Goal: Maximize the total or average reward after N actions
- The actions: Choose between k arms, i.e. $A_t \in \{1,...,k\}$
- The reward signal:

$$R_t \sim p(R_t|a)$$
,

where
$$\mathbb{E}(R_t|A_t=a)=q^*(a)$$
.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Goal: Maximize the total or average reward after N actions
- The actions: Choose between k arms, i.e. $A_t \in \{1,...,k\}$
- The reward signal:

$$R_t \sim p(R_t|a)$$
,

where
$$\mathbb{E}(R_t|A_t=a)=q^*(a)$$
.

• $q^*(a)$ is unknown.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Goal: Maximize the total or average reward after N actions
- The actions: Choose between k arms, i.e. $A_t \in \{1,...,k\}$
- The reward signal:

$$R_t \sim p(R_t|a)$$
,

where
$$\mathbb{E}(R_t|A_t=a)=q^*(a)$$
.

- $q^*(a)$ is unknown.
- The estimated (expected) value if action a at step t: $Q_t(a)$.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Goal: Maximize the total or average reward after N actions
- The actions: Choose between k arms, i.e. $A_t \in \{1,...,k\}$
- The reward signal:

$$R_t \sim p(R_t|a)$$
,

where $\mathbb{E}(R_t|A_t=a)=q^*(a)$.

- $q^*(a)$ is unknown.
- The estimated (expected) value if action a at step t: $Q_t(a)$.
- This is a tabular method/problem:
 We can represent the actions in a table.
- Tabular methods works in small problems e.g. A/B testing and dynamic web pages.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Exploration vs. Exploitation

- Two types of actions:
 - Exploitation: Choose the action with highest expected reward (short term)
 - 2. Exploration: Choose action to improve $Q_t(a)$, but reduces the reward (long term)
- The conflict between exploration and exploitation

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• ϵ -greedy: $P(\text{exploration}) = \epsilon$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

• Exploration:

$$A_t \sim U(1,...k)$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

Exploration:

$$A_t \sim U(1,...k)$$

• $Q_1(a) = 0$ (or used to encourage initial exploration)

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

Exploration:

$$A_t \sim U(1,...k)$$

- $Q_1(a) = 0$ (or used to encourage initial exploration)
- For any $\epsilon > 0$, $Q_t(a) \rightarrow q^*(a)$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

• Exploration:

$$A_t \sim U(1,...k)$$

- $Q_1(a) = 0$ (or used to encourage initial exploration)
- For any $\epsilon > 0$, $Q_t(a) \rightarrow q^*(a)$
- We estimate $q^*(a)$ using $Q_t(a)$ as

$$Q_T(a) = \frac{1}{N(a)} \sum_{t}^{T-1} R_{t,A_t=a},$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

Exploration:

$$A_t \sim U(1,...k)$$

- $Q_1(a) = 0$ (or used to encourage initial exploration)
- For any $\epsilon > 0$, $Q_t(a) \rightarrow q^*(a)$
- We estimate $q^*(a)$ using $Q_t(a)$ as

$$Q_T(a) = \frac{1}{N(a)} \sum_{t=1}^{T-1} R_{t,A_t=a},$$

- When should we explore?
 - Large $V(R_t)$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

Exploration:

$$A_t \sim U(1,...k)$$

- $Q_1(a) = 0$ (or used to encourage initial exploration)
- For any $\epsilon > 0$, $Q_t(a) \rightarrow q^*(a)$
- We estimate $q^*(a)$ using $Q_t(a)$ as

$$Q_T(a) = \frac{1}{N(a)} \sum_{t}^{T-1} R_{t,A_t=a},$$

- When should we explore?
 - Large $V(R_t)$
 - Large \mathcal{A}

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision
- Processes

- ϵ -greedy: $P(\text{exploration}) = \epsilon$
 - Exploitation:

$$A_t = \arg\max_a Q_t(a)$$

Exploration:

$$A_t \sim U(1,...k)$$

- $Q_1(a) = 0$ (or used to encourage initial exploration)
- For any $\epsilon > 0$, $Q_t(a) \rightarrow q^*(a)$
- We estimate $q^*(a)$ using $Q_t(a)$ as

$$Q_T(a) = \frac{1}{N(a)} \sum_{t}^{T-1} R_{t,A_t=a},$$

- When should we explore?
 - Large $V(R_t)$
 - Large \mathcal{A}
 - Non-stationarity

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Bandit example

Figure: The 10-armed bandit environment (Sutton and Barto, 2017, Fig. 2.1)

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Bandit example

Figure: The ϵ -greedy algorithm result in the 10-armed bandit (Sutton and Barto, 2017, Fig. 2.2)

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Bandit example: Optimistic initialization

Figure: The ϵ -greedy algorithm and optimistic initialization (Sutton and Barto, 2017, Fig. 2.3)

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• Compute $Q_t(a)$ on the fly:

$$Q_{T}(a) = Q_{T-1} + \frac{1}{N_{t}(a)}(R_{t,A_{t}=a} - Q_{T-1}(a))$$

- Introduction to Reinforcement Learning
- Bandits
- Daniales
- Markov Decision Processes

• Compute $Q_t(a)$ on the fly:

$$Q_T(a) = Q_{T-1} + \frac{1}{N_t(a)} (R_{t,A_t=a} - Q_{T-1}(a))$$

$$Q_T(a) = Q_{T-1} + \alpha(t)(R_{t,A_t=a} - Q_{T-1}(a))$$

- Introduction to Reinforcement Learning
- Bandits
- Mandan
- Markov Decision Processes

• Compute $Q_t(a)$ on the fly:

$$Q_T(a) = Q_{T-1} + \frac{1}{N_t(a)} (R_{t,A_t=a} - Q_{T-1}(a))$$

$$Q_T(a) = Q_{T-1} + \alpha(t)(R_{t,A_t=a} - Q_{T-1}(a))$$

- Examples:
 - $\alpha(t) = 1$: $Q_T(a) = R_{t,A_t=a}$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• Compute $Q_t(a)$ on the fly:

$$Q_T(a) = Q_{T-1} + \frac{1}{N_t(a)} (R_{t,A_t=a} - Q_{T-1}(a))$$

$$Q_T(a) = Q_{T-1} + \alpha(t)(R_{t,A_t=a} - Q_{T-1}(a))$$

- Examples:
 - $\alpha(t) = 1$: $Q_T(a) = R_{t,A_t=a}$
 - $\alpha(t) = 0$: $Q_T(a) = Q_1(a)$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• Compute $Q_t(a)$ on the fly:

$$Q_T(a) = Q_{T-1} + \frac{1}{N_t(a)} (R_{t,A_t=a} - Q_{T-1}(a))$$

$$Q_T(a) = Q_{T-1} + \alpha(t)(R_{t,A_t=a} - Q_{T-1}(a))$$

- Examples:
 - $\alpha(t) = 1$: $Q_T(a) = R_{t,A_t=a}$
 - $\alpha(t) = 0$: $Q_T(a) = Q_1(a)$
 - $\alpha(t) = \frac{1}{N_t(a)}$: Average reward

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• Compute $Q_t(a)$ on the fly:

$$Q_T(a) = Q_{T-1} + \frac{1}{N_t(a)} (R_{t,A_t=a} - Q_{T-1}(a))$$

$$Q_T(a) = Q_{T-1} + \alpha(t)(R_{t,A_t=a} - Q_{T-1}(a))$$

- Examples:
 - $\alpha(t) = 1$: $Q_T(a) = R_{t,A_t=a}$
 - $\alpha(t) = 0$: $Q_T(a) = Q_1(a)$
 - $\alpha(t) = \frac{1}{N_t(a)}$: Average reward
- $Q_T(a) \rightarrow q^*(a)$, if:

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• Compute $Q_t(a)$ on the fly:

$$Q_T(a) = Q_{T-1} + \frac{1}{N_t(a)} (R_{t,A_t=a} - Q_{T-1}(a))$$

$$Q_T(a) = Q_{T-1} + \alpha(t)(R_{t,A_t=a} - Q_{T-1}(a))$$

- Examples:
 - $\alpha(t) = 1$: $Q_T(a) = R_{t,A_t=a}$
 - $\alpha(t) = 0$: $Q_T(a) = Q_1(a)$
 - $\alpha(t) = \frac{1}{N_t(a)}$: Average reward
- $Q_T(a) \rightarrow q^*(a)$, if:
 - 1. $\sum_{t=0}^{\infty} \alpha_{t} = \infty$
 - 2. $\sum_{t}^{\infty} \alpha_{t}^{2} < \infty$
- Where have we seen these criterias before?

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

The ϵ -greedy algorithm

```
A simple bandit algorithm  \begin{aligned} &\text{Initialize, for } a = 1 \text{ to } k \text{:} \\ &Q(a) \leftarrow 0 \\ &N(a) \leftarrow 0 \end{aligned}  Repeat forever:  &A \leftarrow \left\{ \begin{array}{l} \text{arg max}_a Q(a) & \text{with probability } 1 - \varepsilon \\ \text{a random action} & \text{with probability } \varepsilon \end{array} \right. \end{aligned}  (breaking ties randomly)  &R \leftarrow bandit(A) \\ &N(A) \leftarrow N(A) + 1 \\ &Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[ R - Q(A) \right]
```

Figure: The ϵ -greedy algorithm

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

The Upper-Confidence-Bound method

• Explore based on our uncertainty of $Q_t(a)$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

The Upper-Confidence-Bound method

- Explore based on our uncertainty of $Q_t(a)$
- The Upper-Confidence-Bound (UCB) method

$$A_t = \arg\max_{a} \left(Q_t + c \sqrt{\frac{\log t}{N_t(a)}} \right)$$

An analogy:

$$A_t = rg \max_{a} \left(Q_t + c \sqrt{rac{\hat{\sigma}^2(a)}{N_t(a)}} \right)$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

The UCB algorithm

Figure: The UCB algorithm

UPPSALA UNIVERSITET

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

The Bayesian Bandit: Thompson sampling

- A Bayesian Bandit
 - 1. Setup a likelihood for R, $p(R|a, \theta)$
 - 2. Setup a prior for θ , $p(\theta)$
 - 3. Compute posterior for θ , $p(\theta|R, a)$
 - 4. Choose action A_t proportional to

$$\int I[\mathbb{E}(R|\theta, a^{\star}) = \arg\max_{a'} \mathbb{E}(R|\theta, a')] p(\theta|R, a) d\theta$$

where *I* is the indicator function.

• Repeat step 3-4

UPPSALA UNIVERSITET

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

The Bayesian Bandit: Thompson sampling

- A Bayesian Bandit
 - 1. Setup a likelihood for R, $p(R|a, \theta)$
 - 2. Setup a prior for θ , $p(\theta)$
 - 3. Compute posterior for θ , $p(\theta|R, a)$
 - 4. Choose action A_t proportional to

$$\int I[\mathbb{E}(R|\theta, a^{\star}) = \arg\max_{a'} \mathbb{E}(R|\theta, a')] p(\theta|R, a) d\theta$$

where *I* is the indicator function.

- Repeat step 3-4
- Monte Carlo approximation of step 4:
 - 1. Draw one sample from the posterior $\tilde{\theta}$

$$\tilde{\theta} \sim p(\theta|R,a)$$

2. Conditional on $\tilde{\theta}$, choose action A_t

$$A_t = rg \max_{a'} \mathbb{E}(R| ilde{ heta}, a')]$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Section 3

Markov Decision Processes

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• Bandits does not have a state.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Bandits does not have a state.
- An action might change the environment.
- An action might be different in different states

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Bandits does not have a state.
- An action might change the environment.
- An action might be different in different states
- Example: In chess, we want to make a move based on the current position of all pieces

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Bandits does not have a state.
- An action might change the environment.
- An action might be different in different states
- Example: In chess, we want to make a move based on the current position of all pieces
- To capture this we use a Markov Decision process
- One of the most important concepts in Reinforcement Learning

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Figure: The (finite) Markov Decision Process (Sutton and Barto, 2017, Fig 3.1)

- States $S_t \in \mathcal{S}$: Basis for action
- Actions $A_t \in \mathcal{A}$
- Rewards $R_t \in \mathbb{R}$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Boundry between Agent and Environment:
 - The total control of the action

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Boundry between Agent and Environment:
 - The total control of the action
 - Reward is external to agent: Pain and pleasure
 - The agent should not be able to change the reward function

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Boundry between Agent and Environment:
 - The total control of the action
 - Reward is external to agent: Pain and pleasure
 - The agent should not be able to change the reward function
- The policy $(\pi(A_t|S_t=s))$:
 - We make an action given the current state S_t
- The goal: (Again) maximize return $G_t = R_{t+1} + ... + R_T$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Two type of interactions
 - Episodic: $T < \infty$, has terminal state
 - Continuing: $T = \infty$
- Discounting:

$$G_t = R_{t+1} + \gamma R_{t+3} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Two type of interactions
 - Episodic: $T < \infty$, has terminal state
 - Continuing: $T = \infty$
- Discounting:

$$G_{t} = R_{t+1} + \gamma R_{t+3} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

- Discount rate γ :
 - $0 \le \gamma \le 1$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Two type of interactions
 - Episodic: $T < \infty$, has terminal state
 - Continuing: $T = \infty$
- Discounting:

$$G_t = R_{t+1} + \gamma R_{t+3} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Discount rate γ :
 - $0 \le \gamma \le 1$
 - $\gamma = 1$: No discount
 - $\gamma = 0$: Full discount: Only next reward counts
 - $\gamma < 1$ and R_t is bounded: $G_t < \infty$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- Two type of interactions
 - Episodic: $T < \infty$, has terminal state
 - Continuing: $T = \infty$
- Discounting:

$$G_t = R_{t+1} + \gamma R_{t+3} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Discount rate γ :
 - $0 \le \gamma \le 1$
 - $\gamma = 1$: No discount
 - $\gamma = 0$: Full discount: Only next reward counts
 - $\gamma < 1$ and R_t is bounded: $G_t < \infty$
- For episodic problem we assume $R_{T+i} = 0$ for all $i \in \mathbb{N}^+$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• The Markov Decision process (MDP):

$$P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$
 (1)

• Eq. (1) fully specify a MDP

- Introduction to Reinforcement Learning
- Bandits
- Ballare
- Markov Decision Processes

• The Markov Decision process (MDP):

$$P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$
 (1)

- Eq. (1) fully specify a MDP
- Markov property:

$$P(S_{t+1} = s', R_{t+1} = r | S_1 = s, A_1 = a, ..., S_t = s, A_t = a) = P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision
- Processes

The Markov Decision process (MDP):

$$P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$
 (1)

- Eq. (1) fully specify a MDP
- Markov property:

$$P(S_{t+1} = s', R_{t+1} = r | S_1 = s, A_1 = a, ..., S_t = s, A_t = a) = P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$

• The MDP is a good approximation or model: All models are wrong, but some are useful.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• The Markov Decision process (MDP):

$$P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$
 (1)

- Eq. (1) fully specify a MDP
- Markov property:

$$P(S_{t+1} = s', R_{t+1} = r | S_1 = s, A_1 = a, ..., S_t = s, A_t = a) = P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$

- The MDP is a good approximation or model:
 All models are wrong, but some are useful.
- From Eq. (1) we can get marginals of interest:
 - State-action rewards:

$$r(s,a) = \mathbb{E}(R_{t+1}|S_t = s, A_t = a)$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision

Processes

The Markov Decision Process

The Markov Decision process (MDP):

$$P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$
 (1)

- Eq. (1) fully specify a MDP
- Markov property:

$$P(S_{t+1} = s', R_{t+1} = r | S_1 = s, A_1 = a, ..., S_t = s, A_t = a) = P(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a)$$

- The MDP is a good approximation or model: All models are wrong, but some are useful.
- From Eq. (1) we can get marginals of interest:
 - State-action rewards:

$$r(s,a) = \mathbb{E}(R_{t+1}|S_t = s, A_t = a)$$

• State-transition probability:

$$p(s'|s,a) = P(S_{t+1} = s'|S_t = s, A_t = a)$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• The value function $v_{\pi}(s)$: the long-term value of s given a policy $\pi(a|s)$:

$$v_\pi(s) = \mathbb{E}_\pi(\mathit{G}_t|\mathit{S}_t = s) = \mathbb{E}_\pi\left(\sum_{k=0}^\infty \gamma^k \mathit{R}_{t+k+1}|\mathit{S}_t = s
ight)$$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• The value function $v_{\pi}(s)$: the long-term value of s given a policy $\pi(a|s)$:

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t|S_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s
ight)$$

• Informally: How "good" is a state for the agent with the policy π .

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• The value function $v_{\pi}(s)$: the long-term value of s given a policy $\pi(a|s)$:

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t|S_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s
ight)$$

- Informally: How "good" is a state for the agent with the policy π .
- Estimating $v_{\pi}(s)$ is one of the most important problem in RL

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• The value function $v_{\pi}(s)$: the long-term value of s given a policy $\pi(a|s)$:

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t|S_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s\right)$$

- Informally: How "good" is a state for the agent with the policy π .
- Estimating $v_{\pi}(s)$ is one of the most important problem in RL
- Value functions are recursive:

$$egin{aligned} v_\pi(s) &= \mathbb{E}_\pi(G_t|S_t=s) \ &= \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma v_\pi(s')) \end{aligned}$$

• This is the Bellman equation for $v_{\pi}(s)$: The relationship between the values of the state and its successor states.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• The value function $v_{\pi}(s)$: the long-term value of s given a policy $\pi(a|s)$:

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t|S_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s\right)$$

- Informally: How "good" is a state for the agent with the policy π .
- ullet Estimating $v_\pi(s)$ is one of the most important problem in RL
- Value functions are recursive:

$$egin{aligned} v_\pi(s) &= \mathbb{E}_\pi(G_t|S_t=s) \ &= \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) (r + \gamma v_\pi(s')) \end{aligned}$$

- This is the Bellman equation for $v_{\pi}(s)$: The relationship between the values of the state and its successor states.
- Bellman equation is the basis for computing $v_{\pi}(s)$ (not part of this course)

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

8.8	4.4	5.3	1.5
3.0	2.3	1.9	0.5
0.7	0.7	0.4	-0.4
-0.4	-0.4	-0.6	-1.2
-1.3	-1.2	-1.4	-2.0
	3.0 0.7 -0.4	3.0 2.3 0.7 0.7 -0.4 -0.4	8.8 4.4 5.3 3.0 2.3 1.9 0.7 0.7 0.4 -0.4 -0.4 -0.6 -1.3 -1.2 -1.4

Figure: The gridworld equiprobable policy value function

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

• A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
 - A policy that is better or equal to all other policies is the optimal policy π_{\star} .

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- A policy that is better or equal to all other policies is the optimal policy π_{*}.
- The optimal value function: $v_{\pi_{\star}}(s) = v_{\star}(s)$

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- A policy that is better or equal to all other policies is the optimal policy π_{*}.
- The optimal value function: $v_{\pi_{\star}}(s) = v_{\star}(s)$
- The optimal policy π_{\star} is greedy wrt $v_{\pi_{\star}}(s)$: The best long term strategy

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- A policy that is better or equal to all other policies is the optimal policy π_{*}.
- The optimal value function: $v_{\pi_{\star}}(s) = v_{\star}(s)$
- The optimal policy π_{\star} is greedy wrt $v_{\pi_{\star}}(s)$: The best long term strategy
- Computing optimal value function might be impossible: we need to estimate/re-estimate/approximate it

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- A policy that is better or equal to all other policies is the optimal policy π_{*}.
- The optimal value function: $v_{\pi_{\star}}(s) = v_{\star}(s)$
- The optimal policy π_{\star} is greedy wrt $v_{\pi_{\star}}(s)$: The best long term strategy
- Computing optimal value function might be impossible: we need to estimate/re-estimate/approximate it
- One of the most important problem in RL

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- A policy that is better or equal to all other policies is the optimal policy π_{*}.
- The optimal value function: $v_{\pi_{\star}}(s) = v_{\star}(s)$
- The optimal policy π_{\star} is greedy wrt $v_{\pi_{\star}}(s)$: The best long term strategy
- Computing optimal value function might be impossible: we need to estimate/re-estimate/approximate it
- One of the most important problem in RL
- Example: Chess, we cannot compute the optimal long-term moves, we need to approximate/estimate (based on computational budget)

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

- A policy π is better than π' if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- A policy that is better or equal to all other policies is the optimal policy π_{*}.
- The optimal value function: $v_{\pi_{\star}}(s) = v_{\star}(s)$
- The optimal policy π_{\star} is greedy wrt $v_{\pi_{\star}}(s)$: The best long term strategy
- Computing optimal value function might be impossible: we need to estimate/re-estimate/approximate it
- One of the most important problem in RL
- Example: Chess, we cannot compute the optimal long-term moves, we need to approximate/estimate (based on computational budget)
- We might also estimate v_{*}(s) better for commonly encountered states

- Introduction to Reinforcement Learning
- Bandits
- Markov Decision Processes

Figure: The gridworld optimal value function and policy