Introduction Exact Matching Propensity Score Matching Genetic Matching

PMAP 8131 Applied Research Methods Matching Methods

Matteo Zullo

Georgia State University & Georgia Institute of Technology

July 6, 2022

Outline

- Introduction
- 2 Exact Matching
- Propensity Score Matching
 - Inverse Probability Weighting
- Genetic Matching

Table of Contents

- Introduction
- Exact Matching
- Propensity Score MatchingInverse Probability Weighting
- , ,
- 4 Genetic Matching

Introduction

- Exact Matching (EM)
- Propensity Score Matching (PSM)
 - Nearest Neighbor Matching (NNM)
 - Optimal Matching (OM)
 - Full Matching (FM)
- Inverse Probability Weighting (IPW)
- Genetic Matching (GM)

Introduction

Assess covariate balance: Standardized Mean Differences

$$SMD = \frac{|\overline{X}_{treat} - \overline{X}_{control}|}{(\sqrt{S_{treated}^2 - S_{control}^2})/2}$$

- where:
 - X_{treat} and $X_{control}$ are mean characteristics
 - S_{treat}^2 and $S_{control}^2$ are variances of characteristics

Introduction

- Example: Age
 - $Age_{treat} \sim (35,3)$
 - $Age_{control} \sim (38, 4)$

$$SMD = \frac{|35 - 38|}{\sqrt{(9 + 16)/2}} = 0.24$$

Table of Contents

- Introduction
- 2 Exact Matching
- Propensity Score Matching
 - Inverse Probability Weighting
- Genetic Matching

Exact Matching

Exact Matching (EM)

• Treated and controls are the exact same

Coarsened Exact Matching (EM)

- Treated and controls are roughly the same
 - Binning covariate values

Exact Matching

id	treat	age	earnings
001	0	20	50,000
002	0	21	47,000
003	0	54	110,000
004	1	24	52,000
005	1	29	60,000
006	1	57	125,000

Table: Coarsened Exact Matching via binning

Exact Matching

id	treat	age	age_binned	earnings
001	0	20	19-29	50,000
002	0	21	19-29	47,000
003	0	54	49-59	110,000
004	1	24	19-29	52,000
005	1	29	19-29	60,000
006	1	57	49-59	125,000

Table: Coarsened Exact Matching via binning

Table of Contents

- Introduction
- Exact Matching
- Propensity Score Matching
 - Inverse Probability Weighting
- Genetic Matching

- Estimate logistic regression model
 - Dependent variable: Binary treatment indicator
 - Independent variable: Covariates predicting treatment

$$P(T_i = 1) = \frac{1}{1 + e^{-\beta X}}$$

- For each unit, treated and untreated, save predicted probability of receiving treatment (i.e., propensity score)
- Match treated and controls based on propensity scores

Predictive equation (Brookhart et al., 2006)

- Variables to include
 - Affect both X and Y
 - Affect Y, but not X
- Variables not to include
 - Affect X, but not Y
 - Affected by X and affect Y

Nearest Neighbor Matching (NNM)

- Match each treated unit with (1 : k) control units within maximum specified distance of d propensity scores
 - k = neighbors
 - d = caliper (usually between 0.1-0.25)
- STATA's psmatch2

Optimal Matching (OM)

 Minimizes average distance between treated and control units given maximum treat-to-control ratio

Full matching (FM)

- Minimizes average weighted distance between treated and control units across different strata
 - Strata are defined from original sample via exact matching, coarsened exact matching, or PSM
 - Matching happens within strata

NNM vs OM vs FM: 1-to-1

- Units
 - T: 0.80, 0.72
 - C: 0.88, 0.73, 0.68
- NNM
 - T = (0.80, 0.72), C = (0.73, 0.68)
 - avg. distance = (0.07 + 0.04) = 0.055
- FM
 - T = (0.80, 0.72), C = (0.88, 0.73)
 - avg. distance = (0.08 + 0.01) = 0.045

Figure: NNM, OM, FM (Zhao et al., 2021)

- The PSM paradox: "When you do better, you do worse"
 - "When you do better"
 - When propensity scores are ≈ 0.5
 - "You do worse"
 - PS-based selection discards closer matches on covariates

Figure: PSM vs covariate matching (King & Nielsen, 2019)

The PSM paradox: "When you do better, you do worse"

id	treat	$age_{-}binned$	ps
001	0	19-29	0.5
002	0	19-29	0.5
003	0	49-59	0.5
004	1	19-29	0.5
005	1	19-29	0.5
006	1	49-59	0.5

- Final samples: {001,002,004,005}, {001,002,005,006}
- PS selection: Matched sample 1 has better age_binned balance but propensity scores ignore that

Inverse Probability Weighting

- Estimate propensity scores
- Calculate inverse probability weights

$$ipw_i = \begin{cases} rac{1}{P_i}, & ext{if } T_i = 1 \\ rac{1}{1 - P_i}, & ext{if } T_i = 0 \end{cases}$$

Calculate weighted outcome difference

$$Y_1^1 - Y_0^1 = \sum_{i=1}^{T} ipw_i Y_i - \sum_{i=1}^{N-T} ipw_i Y_i$$

Inverse Probability Weighting

IPW vs PSM

- Pro: Preserving full sample size (no units discarded!)
- Con: Keeping units outside common support

Inverse Probability Weighting

Figure: Covariate balance with PSM and IPW (Krajewski et al., 2020)

Table of Contents

- Introduction
- Exact Matching
- Propensity Score MatchingInverse Probability Weighting
- Genetic Matching

- lacksquare Initialize vector of weights W on covariates as 1
- Estimate propensity scores for each unit (optional)
- Match using Weighted Mahalanobis Distance (WMD)

• Randomly (i.e., "genetically") modify W deploying K new sets of weights W_1, \ldots, W_K (i.e., "generations")

5 Choose the vector W_k which minimizes SMD

- Initialize vector of weights W on covariates as 1
- Estimate propensity scores for each unit (optional)
- Match using Weighted Mahalanobis Distance (WMD)
 - For each treatment, calculate WMD with any control
 - Sequentially match treatments and controls
 - Calculate resulting covariate balance using SMD
- Randomly (i.e., "genetically") modify W deploying K new sets of weights W_1, \ldots, W_K (i.e., "generations")
 - For each set of weights W_k , repeat step 3
 - Calculate resulting covariate balance using SMD
- **Output** Choose the vector W_k which minimizes SMD
 - STOP if final balance improves on initial, ELSE restart

Weighted Mahalanobis Distance

• WMD between treatment *i* and control *j*

$$WMD_{ij}(X_i, X_j) = \sqrt{(X_i - X_j)'(\hat{\Sigma}^{-\frac{1}{2}})'W(\hat{\Sigma}^{-\frac{1}{2}})(X_i - X_j)}$$

- Note: Might include propensity scores in covariates!
- WMD matching
 - Starting with 1st treatment, match to closest control
 - Match 2nd treatment to closest of N-T-1 controls
 - etc.

Figure: GM (Zhao et al., 2021)

• WMD matching: Covariates X = [age, ps]

id	treat	age	ps	WMD_{-1}	WMD ₂	WMD_3
001	0	20	0.41	_	_	_
002	0	21	0.42	_	_	_
003	0	54	0.62	_	_	_
004	1	24	0.43	0.22	0.16	2.50
005	1	29	0.46	0.60	0.59	2.02
006	1	57	0.64	2.62	2.55	0.74

Table: Genetic Matching on propensity score and age

GM vs PSM vs IPW

• Pros: Matching on covariate space

Cons: Computationally expensive