

Data Collection and Preprocessing Phase

Date	15 July 2024
Team ID	team-740084
Project Title	Online Payments Fraud Detection
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Description
Data Overview	[10] df.describe()
Univariate Analysis	Data Visualization numerical_columns = df.select_dtypes(include=['int&d', 'float&d']).columns for column an numerical_columns: plr.fignre(figslze=(12, 5)) # Histogram plr.subplot(ficolumn), bins=30, kde=True) plr.title("Histogram of (column)") # Bow Flort plr.subplot(ficolumn), bins=30, kde=True) plr.title("Histogram of (column)") plr.title("Fox Flot of (column)") plr.title("Fox Flot of (column)") plr.tight_layout() plr.show() Histogram of step Box Plot of step

Data Preprocessing Code Screenshots

	dfspd.rea	Lesvi	('OFDdata.c	sv')								
	df											
		tep	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	newbalanceDest	isFraud	isFlaggedFraud
	0	1	PAYMENT	9839.64	C1231006815	170136.00	160296.36	M1979787155	0.00	0.00	0	0
	1	1	PAYMENT	1864.28	C1666544295	21249.00	19384.72	M2044282225	0.00	0.00	0	0
	2	1	TRANSFER	181.00	C1305486145	181.00	0.00	C553264065	0.00	0.00	1	0
Data	3	1	CASH_OUT	181.00	C840083671	181.00	0.00	C38997010	21182.00	0.00	1	0
Oata	4	1	PAYMENT	11668.14	C2048537720	41554.00	29885.86	M1230701703	0.00	0.00	0	0
	***			-	-	-	-			-	-	***
	1048570	95	CASH_OUT	132557.35	C1179511630	479803.00	347245.65	C435674507	484329.37	616886.72	0	0
	1048571	95	PAYMENT	9917.36	C1956161225	90545.00	80627.64	M668364942	0.00	0.00	0	0
	1048572	95	PAYMENT	14140.05	C2037964975	20545.00	6404.95	M1355182933	0.00	0.00	0	0
	1048573	95	PAYMENT	10020.05	C1633237354	90605.00	80584.95	M1964992463	0.00	0.00	0	0
	1048574	95	PAYMENT	11450.03	C1264356443	80584.95	69134.92	M677577406	0.00	0.00	0	0

Handling outliers	[17]: Q1 = df.quantile Q3 = df.quantile IQR = Q3 - Q1 outliers = ((df	*(0.75) < (Q1 - 1.5 * IQR)) (df > (f outliers:", outliers.sum())	(Q3 + 1.5 * IQR))).	.any(axis=1)				
	Data shape after [19]: df.describe(incl	pe after removing outliers:", r removing outliers: (716403, iude='all')	8)					
	print("Data shap Data shape after [19]: df.describe(incl	ne after removing outliers:", r removing outliers: (716403, tude='all') tep type amount	8) oldbalanceOrg ne				isFraud	
Carrad Duranasa d Data	print("Oata shap Data shape after [19]: df.describe(incl [19]: st count 1.048575e+	pe after removing outliers:", r removing outliers: (716403, lude='all')	8) oldbalanceOrg ne 1.048575e+06	ewbalanceOrig o 1.048575e+06 8.938089e+05	oldbalanceDest 1.048575e+06 9.781600e+05	1.048575e+06	isFraud 1.048575e+06 1.089097e-03	
Saved Processed Data	print("Data shape Data shape after [19]: df.describe(incl [19]: st count 1.048575e+ mean 2.696617e+	ne after removing outliers:", r removing outliers: (716403, iude='all') tep type amount -05 1.048575e+06 1.048575e+06	8) oldbalanceOrg ne 1.048575e+06 8.740095e+05	1.048575e+06	1.048575e+06	1.048575e+06 1.114198e+06	1.048575e+06	
Saved Processed Data	print("Outs shap Data shape after [19]: df.dsscribu(inch) [19]: count 1.048575c mean 2.096617c- std 1.562235c-	removing outliers: (716403, lude='all') tep type amount	8) oldbalanceOrg ne 1.048575e+06 8.740095e+05 2.971751e+06	1.048575e+06 8.938089e+05	1.048575e+06 9.781600e+05	1.048575e+06 1.114198e+06 2.416593e+06	1.048575e+06 1.089097e-03	
Saved Processed Data	print("Outs shap Data shape after [19]: df.describe(inc) [19]: count 1.04875e mean 2.696617e std 1.56225e min 1.00000e-	pe after removing outliers: (716403, tudem'all') tep type amount 006 1.048575e+06 1.048575e+06 1.0713400e+00 1.586670e+05 1.348007e+00 2.649409e+05 1.348000e+00 2.649409e+00 2.649409e+	8) oldbalanceOrg ne 1.048575e+06 8.740095e+05 2.971751e+06 0.000000e+00	1.048575e+06 8.938089e+05 3.008271e+06	1.048575e+06 9.781600e+05 2.296780e+06	1.048575e+06 1.114198e+06 2.416593e+06 0.000000e+00	1.048575e+06 1.089097e-03 3.298351e-02	
Saved Processed Data	print("Outs shap Data shap after [19]: dfi,dsscribe(incl. [19]: st count 1.04875e- mean 2.69617e- std 1.56222e- min 1.00000e- 25% 1.50000e- 25% 2.00000e- 56% 2.00000e-	pe after removing outliers: 7, removing outliers: 716403, tude='all') teep type amount 0.06 1.048575e-06 1.048575e-06 0.01 1.713400e+00 1.385670e+05 0.01 1.345007e+00 2.649409e+05 0.000000e+01 1.000000e+01	8) oldbalanceOrg ne 1.048575e+06 8.740095e+05 2.971751e+06 0.00000e+00 0.000000e+00 1.600200e+04	1.048575e+06 8.938089e+05 3.008271e+06 0.000000e+00	1.048575e+06 9.781600e+05 2.296780e+06 0.000000e+00	1.048575e+06 1.114198e+06 2.416593e+06 0.000000e+00 0.000000e+00 2.182604e+05	1.048575e+06 1.089097e-03 3.298351e-02 0.000000e+00	