Introducción a la Inferencia Estadística

Mauricio A. Álvarez

Modelos probabilísticos profundos AIR Institute

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud Otros tipos de estimación

Motivación: modelos de predicción y exploratorios Regresión

Agrupamiento
Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud Otros tipos de estimación

Ejemplo Regresión

- Regresión: supongamos una función conocida $sen(2\pi x)$ con ruido aleatorio incluido en la variable objetivo **t**.
- Datos disponibles: $\mathbf{x} \equiv \{x_1, \dots, x_N\}^\top$, $\mathbf{t} \equiv \{t_1, \dots, t_N\}^\top$.

Modelo de regresión lineal (I)

Supongamos t dado como

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon,$$

donde $\epsilon \sim \mathcal{N}(0, \beta^{-1})$.

 \Box Para la función $y(\mathbf{x}, \mathbf{w})$, el modelo lineal asume que

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{M-1} w_i \phi_i(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}),$$

donde $\phi_i(\mathbf{x})$ son funciones base, M es el número de parámetros del modelo, y w_0 es el desplazamiento.

Modelo de regresión lineal (II)

Usando funciones base polinomiales, $\phi_j(x) = x^j$, se tiene

$$y(x, \mathbf{w}) = w_0 + w_1 x + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j = \mathbf{w}^\top \phi(x),$$

donde
$$\phi(x) = [1 \ x \ x^2 \cdots x^M]^\top$$
.

- fill El problema de estimación consiste en encontrar el valor de los parámetros ${f w},\,eta$ y ${f M}$ que describen mejor un conjunto de datos ${f x},\,{\bf y}$ ${f t}.$
- Usualmente, al todo el conjunto de parámetros se le denota por una sola letra, por ejemplo, θ .
- □ Para el caso anterior $\theta = \{\mathbf{w}, \beta, M\}$.

Después de resolver el problema de estimación

Motivación: modelos de predicción y exploratorios

Regresión

Agrupamiento

Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud Otros tipos de estimación

Ejemplo agrupamiento

- Agrupamiento: encontrar de forma automática grupos similares presentes en un conjunto de datos.
- Datos disponibles: $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$, cada uno de dos variables $\mathbf{x}_i = [x_{i,1} \ x_{i,2}]^{\top}$.

Agrupamiento probabilístico

- Una forma de aproximar funciones de probabilidad multimodales es a través de una mezcla de funciones de probabilidad.
- De las mezclas de funciones de probabilidad, la mezcla de Gaussianas es una de las más conocidas,

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

donde K es el número de componentes de la mezcla, y los parámetros π_k son probabilidades que satisfacen

$$0 \leq \pi_k \leq 1, \quad \sum_{k=1}^K \pi_k = 1.$$

Ejemplo en una dimensión

Agrupamiento probabilístico

El problema de estimación consiste en encontrar el valor de los parámetros $\theta = \{K, \{\pi_k\}_{k=1}^K, \{\mu_k\}_{k=1}^K, \{\Sigma_k\}_{k=1}^K\}$ a partir de **X**.

Después de resolver el problema de estimación

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento

Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud Otros tipos de estimación

Ejemplo reducción de dimensionalidad (I)

- ullet Cada imagen vive en un espacio de $100 \times 100 = 10,000$ dimensiones.
- Cada imagen se puede representar como un vector $\mathbf{x} \in \mathbb{R}^{10,000}$.
- Cada imagen se generó a partir de traslaciones verticales, traslaciones horizontales y rotaciones (3 grados de libertad).

Ejemplo reducción de dimensionalidad (II)

- Reducción de dimensión: encontrar de forma automática una representación de baja dimensionalidad $\mathbf{z} \in \mathbb{R}^M$, con $M \ll 10,000$.
- Datos disponibles: $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N\}$, cada uno de 10,000 variables $\mathbf{x}_i = [x_{i,1} \cdots x_{i,10,000}]^{\top}$.

Modelo de reducción de dimensión

- El modelo lineal más conocido es el Análisis de Componentes Principales (PCA por su nombre en inglés).
- $\ \square$ En su versión probabilística (PPCA) cada datos observado, $\mathbf{x} \in \mathbb{R}^D$ se representa mediante

$$\mathbf{X} = \mathbf{W}\mathbf{Z} + \boldsymbol{\mu} + \boldsymbol{\epsilon},$$

donde $\mathbf{W}^{D \times M}$, μ es la media de los datos y

$$\begin{split} & p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}), \\ & p(\epsilon) = \mathcal{N}(\epsilon|\mathbf{0}, \sigma^2\mathbf{I}). \end{split}$$

□ El problema de estimación consiste en encontrar el valor de los parámetros $\theta = \{M, \mathbf{W}, \mu, \sigma^2\}$.

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud Otros tipos de estimación

Tipos de estimación: clásica

La estimación se suele dividir en estimación clásica, puntual o frecuentista y estimación Bayesiana.

- Estimación clásica
 - perspectiva sin condicional: los métodos de inferencia deben dar buenas respuestas cuando se repite su uso.
 - natural cuando se necesita escribir software que sea útil para mucha gente que usa diferentes bases de datos.
 - los parámetros de interés se asumen como deterministas, pero desconocidos.

Tipos de estimación: Bayesiana

- En estimación Bayesiana,
 - perspectiva condicional: la inferencia se debe hacer condicionado a los datos actuales.
 - natural en proyectos de largo plazo que involucran un experto en determinado dominio.
 - se asume que los parámetros son la *realización de una variable aleatoria* (ó vector aleatorio) con alguna función de distribución, y se usa el teorema de Bayes para actualizar el conocimiento que tenemos sobre θ , a partir de una muestra X, para finalmente obtener G.

Más detalles ...

 Capítulo 1 del libro "Statistical decision theory and Bayesian analysis" by James Berger.

El videolecture de Michael I Jordan "Bayesian or frequentist: which one are you?"

http://videolectures.net/mlss09uk_jordan_bfway/

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento

Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud Otros tipos de estimación

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento

neducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima

Estimación de máxima verosimilitud Otros tipos de estimación

Introducción

- En esta sección se habla de las características de un "buen" estimador en el sentido clásico.
 - En este contexto, se estudian los estimadores que en *promedio* conducen al valor verdadero del parámetro.
- Dentro de este grupo, el objetivo es encontrar los estimadores que exhiban la menor variabilidad.
- Si el estimador tiene estas características, producirá valores cercanos al parámetro verdadero la mayoría de las veces.

Notación

 \Box En adelante el vector de parámetros estimados (obtenidos de la muestra) se denota como $\widehat{\theta}$ y los parámetros verdaderos (obtenidos de la población) se denotan como θ .

ullet El estimador es una función $g(\cdot)$ tal que

$$\widehat{\theta} = g(\mathcal{D}),$$

donde \mathcal{D} hace referencia a la muestra disponible.

Estimadores insesgados

- Para que un estimador sea insesgado, en promedio, el estimador debe conducir al valor verdadero del parámetro desconocido.
- Debido a que el valor del parámetro θ en forma general, se encuentra en el intervalo $a < \theta < b$, la condición de insesgado afirma que no importa cuál sea el valor real de θ , el estimador siempre lo obtendrá en promedio.
- Matemáticamente, un estimador es insesgado (imparcial o centrado), si

$$E(\widehat{\theta}) = \theta, \quad a < \theta < b,$$

donde (a, b) denota el rango de valores posibles de θ .

Ejemplo: constante con ruido Gaussiano

Considérese las observaciones obtenidas como

$$x_n = A + w_n, \quad n = 1, \ldots, N$$

donde A es el parámetro que necesita estimarse y w_n , $\forall n$ es ruido blanco Gaussiano con varianza σ^2 .

 \Box Sea \widehat{A} un estimador de A, obtenido como

$$\widehat{A} = \frac{1}{N} \sum_{n=1}^{N} x_n.$$

Tomando el valor esperado a ambos lados se tiene

$$E[\widehat{A}] = E\left[\frac{1}{N}\sum_{n=1}^{N}x_n\right] = \frac{1}{N}\sum_{n=1}^{N}E[x_n] = \frac{1}{N}\sum_{n=1}^{N}A = A.$$

Estimadores de varianza mínima (I)

- Para encontrar un estimador óptimo es necesario definir algún criterio de optimalidad.
- Supongamos que el criterio de optimalidad es el error cuadrático medio

$$\mathsf{mse}(\widehat{\theta}) = E\left[(\widehat{\theta} - \theta)^2\right].$$

- Este criterio mide la desviación media cuadrática promedio entre el estimador y el valor real.
- La adopción de este criterio conduce a estimadores que no son realizables, es decir, estimadores que no se pueden expresar únicamente como función de los datos.

Estimadores de varianza mínima (II)

El criterio MSE se puede reescribir como

$$\begin{split} \operatorname{mse}(\widehat{\theta}) &= E\left\{\left[\left(\widehat{\theta} - E(\widehat{\theta})\right) + \left(E(\widehat{\theta}) - \theta\right)\right]^2\right\} \\ &= \operatorname{var}(\widehat{\theta}) + \left[E(\widehat{\theta}) - \theta\right]^2 \\ &= \operatorname{var}(\widehat{\theta}) + b^2(\theta), \end{split}$$

Lo cual demuestra que el MSE está compuesto de errores debidos a la varianza del estimador así como a su sesgo.

Supongamos el ejemplo anterior y el siguiente estimador

$$\overline{A} = a \frac{1}{N} \sum_{n=1}^{N} x_n,$$

para alguna constante a.

Estimadores de varianza mínima (III)

- El objetivo es encontrar el valor de a que minimiza el MSE.
- □ Como $E[\overline{A}] = aA$ y $var(\overline{A}) = a^2 \sigma^2 / N$, se tiene

$$\operatorname{mse}(\overline{A}) = \operatorname{var}(\overline{A}) + b^2(\overline{A}),$$

$$= \frac{a^2\sigma^2}{N} + (a-1)^2A^2.$$

□ Diferenciando con respecto a *a* e igualando a cero se tiene

$$a_{\text{opt}} = \frac{A^2}{A^2 + \sigma^2/N}.$$

 El valor óptimo de a depende del parámetro desconocido A, luego el estimador no es realizable.

Estimadores de varianza mínima (IV)

- □ Lo anterior se debe a que el sesgo es una función de A.
- Desde un punto de vista práctico el estimador que minimiza el MSE no puede adoptarse.
- Un enfoque alternativo consiste en restringir el sesgo a que sea igual a cero y encontrar el estimador que minimiza la varianza.
- □ Tal estimador se conoce como *estimador insesgado de mínima varianza* (MVU).

Encontrando el estimador MVU

- No siempre es posible encontrar el estimador MVU para todos los valores de un parámetro.
- Algunos métodos para encontrarlo (si existiese) son los siguientes
 - Se determina el límite inferior de Cramer-Rao (CRLB) y se verifica si algún estimador lo satisface.
 - Se aplica el teorema Rao-Blackwell-Lehmann-Scheffe.
 - Se restringen los posibles estimadores, no sólo a que sean insesgados, si no también lineales. Luego el MVU se busca entre esta clase restringida de estimadores.

Extensión a un vector de parámetros

Se define

$$E(\widehat{\theta}) = \begin{bmatrix} E(\widehat{\theta}_1) \\ E(\widehat{\theta}_2) \\ \vdots \\ E(\widehat{\theta}_p) \end{bmatrix}.$$

- lacktriangle Se define el estimador insesgado como $E(\widehat{ heta})= heta$ para cada heta.
- un estimador MVU tiene la propiedad adicional que $var(\widehat{\theta_i})$, para $i=1,\ldots,p$, es mínima entre todos los posibles estimadores insesgados.

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento

Reduccion de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima

Estimación de máxima verosimilitud

Otros tipos de estimación

Máxima verosimilitud

□ El MLE para un parámetro escalar se define como el valor de θ que maximiza la función de verosimilitud $p(\mathbf{x}; \theta)$ para \mathbf{x} fijo.

La estimación por *máxima verosimilitud* (maximum likelihood estimation - MLE) es uno de los métodos de estimación clásica más empleados en la práctica.

Es aproximadamente igual al estimador MVU debido a su eficiencia aproximada.

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento

Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud

Otros tipos de estimación

Otros tipos de estimación clásica

Método de mínimos cuadrados.

Método de los momentos.

Motivación: modelos de predicción y exploratorios

Regresión Agrupamiento Reducción de dimensionalidad

Tipos de estimación

Estimación clásica

Estimadores insesgados de varianza mínima Estimación de máxima verosimilitud Otros tipos de estimación

Introducción

- □ En la estimación Bayesiana, el parámetro de interés θ se considera una variable aleatoria con fdp $p(\theta)$.
- \Box Se desea encontrar la fdp a posteriori del parámetro θ una vez se tienen los datos \mathcal{D} .
- Lo anterior se puede lograr empleando el teorema de Bayes

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}.$$

donde

$$p(\mathcal{D}) = \int p(\mathcal{D}|\theta)p(\theta)d\theta.$$

Formas de estimar la fdp a posteriori

 \Box Para muchos modelos probabilísticos, suele ser difícil estimar $p(\theta|\mathcal{D})$.

- Algunos métodos que se suelen emplear para encontrar la fdp a posteriori incluyen
 - Maximum a posteriori (MAP).
 - Aproximación por Laplace.
 - 3. Bayes variacional, $KL(q \parallel p)$.
 - 4. Expectation Propagation (EP), $KL(p \parallel q)$.
 - 5. Monte Carlo.
 - Markov Chain Monte Carlo.