# Kinemaatika Saskia, nr3 2021

## Crème de la crème

## 1 Jänes ja rebane

Jänes jookseb kiirusega v piki x-telge. Teda ajab taga rebane, kelle kiirus u on alati suunatud jänese poole |v| = |u|. Alghetkel kiirused ristuvad ning jänes ja rebane on üksteisest kaugusel L. Leia nendevaheline vähim kaugus d.

### 2 Sipelgas

Sipelgas asub 1-meetrise kummipaela ühes otsas. Ta hakkab teise otsa suunas liikuma kiirusega  $u=1\frac{cm}{s}$ . Samal ajal venitatakse paela kiirusega  $v=1\frac{m}{s}$ . Kas sipelgas jõuab kunagi teise otspunkti ning kui kaua tal selleks kuluks?

## 6 Laigud kammidel

Kaks kammi on asetatud üksteise taha nii, nagu näidatud joonisel. Halli kammi liigutatakse kiirusega  $v=1\frac{cm}{s}$  ning musta kammi hoitakse paigal. Millise kiirusega ja millises suunas liiguvad tumedad laigud?



## Kiiruse - aja graafik

Keha hakkab liikuma nagu graafikul näidatus. Mis on ta maksimaalne kaugus algpunktist?



## Paraboolid

#### 3 Ruumiosa

Milline on see ruumiosa  $\mathcal{R}$ , kuhu saab lasta kahuriga, mis asub koordinaatide alguspunktis ja mis annab kuulile algkiiruse  $v_0$ ? Laskesuuna võib valida vastavalt vajadusele.

#### 4 Kahuri asukoht

Eelmise ülesannete eelduste korral ja teades, et ruumiosa  $\mathcal{R}$  piirjoon on parabool, näita, et kahur asub parabooli fookuses.

#### 5 Kurikuulus viilkatuse ül

Millise minimaalse algkiiruse peab andma kivile, et visata üle viilkatuse? Viilkatuse laius on b, ühe otsa kõrgus on a, teise kõrgus on c.



## 1 Liikumine jõe- või õhuvoolus

### 7 Uppuv poiss

Jões, mille voolukiirus on w asub punktis A (kaugus kaldast on a) poiss. Piki kallast jookseb ta kiirusega v ja ujub kiirusega u; vesi voolab jões kiirusega w>u. Poiss tahab jõuda jõe kaldal ülesvoolu asuvasse punkti C minimalse ajaga. Millisel kaugusel x punktiga A kohakuti asuvast punktist B peaks veest välja ronima?



#### Kaater

Kaater sõitis l=4 km kaugusel otse lõuna suunas asuvale saarele. Alguses võeti suund esimesele meremärgile, seejärel pöörati teise suunas ning lõpuks võeti kurss otse saare peale; seega koosnes trajektoor kolmest sirglõigust: I lõiku sõideti  $t_1=3min$ , tuul tundus puhuvat kiirusega  $v_1=15\frac{m}{s}$  idast

II lõiku sõideti  $t_2=1,5min,$  tuul tundus puhuvat kiirusega  $v_2=10\frac{m}{c}$  kagust

irusega  $v_2=10\frac{m}{s}$  kagust III lõiku sõideti  $t_3=1,5min$ , tuul tundus puhuvat kiirusega  $v_3=5\frac{m}{s}$  edelast

Mis oli tegelik tuule kiirus?

Märkus. Eri lõikudel võis paadi kiirus olla erinev, kuid iga lõigu kestel hoiti konstantne; pööramiseks ja kiirendamiseks kulunud aeg oli tühine; tuule tegelik suund ja kiirus ei muutunud.

### Pöördliikumine

#### 8 Kamaka pöörlemine

Jäik kamakas on surutud kahe plaadi vahele, millest üks liigub kiirusega  $v_1$  ja teine kiirusega  $v_2$ . Antud hetkel on kiirused horisontaalsed ning kamaka ja plaatide puutepunktid kohakuti. Märkige skemaatilisel joonisel kõik need kamaka punktid, mille kiiruse moodul võrdub  $v_1$ -või  $v_2$ -ga.



#### 9 Rõngad

Üks kahest rõngast raadiusega r on paigal ning teine liigub esimese poole kiirusega v. Leia, kuidas ülemise lõikepunkti kiirus sõltub rõngaste keskpunktide kaugusest, a-st.



#### 10 Rõngad vol $2 \omega$ edition

Kaks ühesugust traatrõngast raadiusega R on üksteise vahetus läheduses, rõngaste tasandid on paralleelsed ning rõngad puudutavad üksteist punktides A ja B. Kaarele AB vastav kesknurk on vaadeldaval ajahetkel  $\alpha$ . Alumine rõngas on paigal, ülemine pöörleb nurkkiirusega  $\omega$  ümber punkti A läbiva ning rõngaste tasanditega risti oleva telje. Leidke rõngaste puutepunkti B kiirus antud ajahetkel.

