TABLEAU PERIODIQUE

I. Propriétés des alcalins

1.1. Action du sodium sur l'eau

Les vidéo: https://www.youtube.com/watch?v=NdDbrZFCqWI

https://www.youtube.com/watch?v=04d4onyFyUc

• Expérience

- → Prendre une toute petite paillette, l'essuyer avec du papier filtre.
- → La poser à la surface de l'eau avec une pince.

Observation

Le sodium lévite, il y a un dégagement gazeux (du H₂) La phénolphtaléine devient rose.

• Exploitation

- → La phénolphtaléine met en évidence le caractère basique de la solution : présence de HO⁻.
- \rightarrow La réaction Na + H₂O = Na⁺ + HO⁻ + ½ H₂ \rightarrow

On conserve le sodium :

- La réaction est évidente avec l'eau, il faut le conserver dans un milieu anhydre.
- Il faut éviter qu'il s'oxyde car c'est un puissant réducteur, les produits qu'il forme sont plus stables.

Alcalino terreux

Le lithium, le potassium ...

II. Combustion

2.2.1 Combustion du magnésium

• Observations

La réaction est violente, il y a un important dégagement de chaleur. La phénolphtaléine se colore.

L'eau au fond sert à refroidir l'oxyde qui tombe et à éviter les chocs thermiques

• La réaction de combustion

 $2Mg(s) + O_{2(g)} = 2 MgO(s)$

La magnésie solide ionique

•Caractéristiques

La phénolphtaléine devient rose, l'oxyde de magnésium est basique : $MgO + H_2O = Mg(OH)_{2(S)} = Mg^{2+} + 2HO^{-}$

2.2.2. Oxyde d'aluminium

• Les réactions

$$AI^{3+} + 3HO^{-} = AI(OH)_{3(s)}$$

$$AI(OH)_{3(s)} + HO^{-} = AI(OH)_{4}^{+}$$

L'oxyde d'aluminium Al(OH)3(s) est un ampholyte, il est à la fois basique et acide.

2.3. Oxyde de zinc

• Les réactions

$$Zn^{2+} + 2HO^{-} = Zn(OH)_{2(s)}$$

Précipité blanc constante d'équilibre K=10^{-16,4}

$$Zn(OH)_{2(s)} + 2HO^{-} = ZnO_2^{2-} + 2H_2O$$

Soluté incolore

$$Zn(OH)_{2(s)} + 3 H_3O^+ = Zn^{2+} + 4H_2O$$

2.4. Combustion du carbone

• Observations :

Il y a une vive combustion

Réaction

$$C_{(s)} + O_2 = CO_{2(g)}$$

 $CO_{2(g)}$ est un gaz relativement soluble dans l'eau et conduit à une solution acide mise en évidence par le BBT :

$$CO_2, H_2O + H_2O = HCO_3^- + H_3O^+ K_{A1} = 10^{-6.3}$$

$$HCO_{3-} + H_2O = CO_{32-} + H_3O_+ K_{A2} = 10_{-10,3}$$

2.5. Conclusion

Oxyde	Ionique	Covalent	
Caractère	Basique	Amphotère	Acide
	$Mg(OH)_{2(s)}$	$AI(OH)_{3(s)}$	CO _{2(g)}

III. Propriétés oxydantes des halogènes

3.2. Solutions

Les réactions :

 $Cl_2 + 2e^{-} = 2Cl^{-}$

 $2HCIO + 2 e^{-} + 2H^{+} = CI_{2} + H_{2}O$

 $2CI_2 + 4H_2O = 2CI^- + 2HCIO + 2H_3O^+$

Soit $Cl_2 + 2H_2O = Cl^- + HClO + H_3O^+$

3.3. Eau de chlore et eau lodée sur la paille de fer

• Eau de Chlore

$$Cl_2 + 2 e^{-} = 2Cl^{-}$$

$$Fe = Fe^{3+} + 3 e^{-}$$

$$3CI_2 + 2Fe = 6CI^- + 2Fe^{3+}$$

En effet on met en évidence la présence des ions Fe³⁺ :

$$Fe^{3+} + 3 HO^{-} = Fe(OH)_3$$
 précipité rouille

$$Fe^{3+} + SCN^{-} = FesCN^{2+}$$
 rouge

FeSCN²⁺

Eau iodée

$$I_2 + 2 e^{-} = 2I^{-}$$

$$Fe = Fe^{2+} + 2e^{-}$$

$$I_2 + Fe = 2I^- + Fe^{2+}$$

Les ions Fe³⁺ ne sont pas mis en évidence, ce sont les ions Fe²⁺ qui sont présents.

$$Fe^{2+} + 2HO^{-} = Fe(OH)_{2(s)}$$
 verdâtre.

Le pouvoir oxydant décroit dans la colonne.

□V. Etude des halogénures

	CI ⁻	Br ⁻	I-
Ion Ag ⁺	Précipité blanc	Précipité blanc jaunâtre	Précipité jaunâtre
UV	Noircit	Gris	Rien
NH ₃	Redissous	Redissolution pas totale	Précipité plus blanc

$$Ag^+ + CI^- = AgCI_{(s)}$$
 (K= $10^{9,7}$)

$$AgCl_{(s)} + 2NH_3 = Ag(NH_3)_2^+ + 2Cl^-$$

$$Ag^+ + Br^- = AgBr_{(s)}$$
 (K= $10^{12,3}$)

$$AgBr_{(s)} + 2NH_3 = Ag(NH_3)_2^+ + 2Br^-$$

$$Ag^+ + I^- = AgI_{(s)}$$
 (K= $10^{16,2}$)

Le précipité est de plus en plus stable

Halogénure et argent

Après ajout d'ammoniac

Test des ions

Ajout de HO-

Fe³⁺ + SCN⁻

On observe Cu^{2+} , $Cu(OH)_2$ et $Cu(NH_3)^{2+}$

