

01	Contents
02	ldea Iniciative
03	Our proposal
05	Centaurus Championships
06	Market Analysis
07	Pricing Strategy
09	Characteristics
09	After Sales
10	Promotion
11	Competition
12	Milestones
16	Production
17	Finances
20	Timetable of production
21	Well - to - Wheel
24	Environmental responsibility

Today employees are the key resource of every company.

Businesses are striving to increase their performance and face many challenges to successfully make their employees feel engaged and committed.

The problem gets more complicated as the organizations get bigger.

Employees who are not engaged sometimes are wasting their effort and talent on tasks that may not matter, do not show full commitment, they are not sticking around to evolve in their organization, and all of a sudden they realize that they are not as creative as they were.

Monotony kills their productivity.

Why should companies invest in employee engagement?

Employee engagement is interwoven significantly with important business outcomes:.

- 01. productivity
- 02. profitability
- 03. customer loyalty
- 04. commitment

People naturally like to feel connected wherever they are.

Team building is one of the most effective ways to increase morale.

A business perk that enhances cooperation and creates a common vision among employees inside a company.

Willing to engage in a long term bonding activity, and being former FSAE members hat have came across similar issues, we thought, why not combine assembling and racing Amphion, a single-seater race car, to bring back employee's productivity and keep their excitement high.

Which are the steps?

01.select color & logo 02.kit box ready 03.Make the order 04.start assembly 05.track days settings

READY TO RACE AT CENTAURUS CHAMPIONSHIPS

CHAMPIONSHIPS

In Centaurus Championships employees feel the ultimate race experience.

Championships are organized **twice a year** and of course, the public is allowed to watch live and feel the suspense and intensity.

Wanting to create a hotspot for our company and simultaneously use the beauty of greek nature, we chose **Mykonos** as one of the most beautiful islands in Greece in order to host our biggest event. **Mykonos**, having the **racetrack**

and the **beautiful view**, is the perfect place to do that.

CHAMPIONSHIP SCHEDULE

DAY 1

Welcome and introduction

✓ Technical inspection

DAY 2

Lunchbrake

Awards

EXPENSES FOR CHAMPIONSHIPS

	Year 1	Year 2	Year 3	Year 4	Year 5
Greece	2.000	4.000	4.000	4.000	4.000
Poland	0	12.000	12.000	12.000	12.000
Romania	0	0	12.000	12.000	12.000
Mykonos	0	5.000	5.000	5.000	5.000
SUM	2.000	21.000	33.000	33.000	33.000

INCOMES FROM CHAMPIONSHIPS

	Year 1	Year 2	Year 3	Year 4	Year 5
Fees	10.000	29.000	51.000	62.000	70.000
Tickets	22.500	37.500	52.500	75.000	90.000
SUM	32.500	66.500	103.500	137.000	160.000

All in all, our program is the perfect way to:

01.build better team relations

02.excite employee's soft skills

03.keep them motivated

04.achieve common goals

05.make employees perform higher

06.create a fun work environment

MARKET ANALYSIS

One of our company's goal is to establish even more the motorsport culture in countries where it is not so widespread.

Our customer's profile meet several characteristics:

01. Want to inspire a positive corporate culture

02. Care for every individual employee

03. Care about the company's social image

04. Encourage a work health environment

05. Have high revenue

06. Seek better ways to make employees permanent and feel proud to be part of the company they work at.

Former collaborators of ours from our FSAE years, already expressed their desire to buy and race our formula race car.

So, we will start our company in Greece, as we already have part of our demand. In comparison with other countries:

Country	Greece	Poland	Romania	Czech Republic	Bulgaria	Belarus
Big Companies	513	980	578	545	398	128
Race Tracks	9	11	17	21	3	7

PRICING STRATEGY

Our product is available either as purchased for 41.100 euros or leased for 6 months for 16.000 euros.

Companies who choose the leasing model, order the kit package either on December, February or May, so as to compete in one of our championships in May, July and October respectively.

Kit-packages are designed to be leased 4 times and run 400-500 km each time.

	41.100 €	16.000 €
	Purchased	Leasing
Basic kit		
Technical Support	/	/
Workshops	x3	x3
Championship per year	x3	×1
Disassembly	x4	

BIG KIT-CAR PACKAGE PRODUCTION

	Year 1	Year 2	Year 3	Year 4	Year 5
Greece	10	11	12	13	15
Poland	0	18	19	24	26
Romania	0	0	20	25	29
SUM	10	29	51	62	70

BIG KIT-CAR PACKAGE AND LEASING PRODUCTION/COST

	Year 1	Year 2	Year 3	Year 4	Year 5
Vehicle Production Cost	300.675	741.665	1.302.925	1.703.825	2.004.500
Tool package	8.250	22.550	40.700	55.000	66.550
Workshop	9.000	26.100	45.900	55.800	36.000
Dressing	17.370	50.373	88.587	107.6940	121.590
Technical support	4.500	13.050	22.950	27.900	31.500
Jack	450	1.230	2.220	3.000	3.630
Stands	225	615	1.110	1.500	1.815
Time Recorder	510	1.230	2.220	3.000	3.630
Service for leasing	12.850	38.550	73.245	118.220	163.195
SUM	351.260	822.820	1.453.110	1.928.255	2.299.300

INCOMES FROM BIG KIT-CAR PACKAGE

Year 1	Year 2	Year 3	Year 4	Year 5
360.810	1.046.349	1.840.131	2.237.022	2.525.670

INCOMES FROM LEASING PACKAGE

	Year 1	Year 2	Year 3	Year 4	Year 5
May - oct / cars used	5	5	8	14	18
Noe - apr / cars used	5	5	8	14	18
May - oct / cars used		8	14	18	21
Noe - apr / cars used		8	14	18	21
Mykonos / cars used		4	4	4	4
			9	9	9
SUM	160.000	480.000	912.0009	1.232.000	1.456.000

CHARACTERISTICS

01.58 kg downforce at 57 km/h

02. 0-100 km/h acceleration at 3.9 s

03.82 hp

04. 210 kg

05. 65 Nm engine torque

06. 1.6 g lateral acceleration

AFTER SALES

SPARE PARTS

It has been our company's top priority to provide our customers with a high-quality race car.

Yet, fatigue can have an adverse impact on their race car.

So as to **never stay out of track** for a long period due to part replacement delay, our customers **will get in touch with us** alongwith their requirements and **we will provide them what they need**.

Spare parts will be bought at a low price at the beginning of the year by our suppliers.

AFTER SALES EXPENSES

	Year 1	Year 2	Year 3	Year 4	Year 5
Spare parts	4.400	13.200	25.080	40.480	55.880
Consumables	4.336	13.008	24.715,2	39.891,2	55.067,2
SUM	8.736	26.208	49.795,2	80.371,2	110.947,2

AFTER SALES INCOMES

	Year 1	Year 2	Year 3	Year 4	Year 5
Spare parts	8.800	26.400	50.160	80.960	111.760
Consumables	8.672	26.016	49.430,4	79.782,4	110.134,4
SUM	17.472	52.416	99.590,2	160.742,4	221.894,4

PROMOTION

Entering the automotive market requires a solid marketing strategy.

social media

testing our product

HR events

PROMOTION EXPENSES

	And the second				
	Year 1	Year 2	Year 3	Year 4	Year 5
Facebook ads	2.200	3.000	5.000	5.000	5.000
Instagram ads	1.500	2.000	2.500	2.500	2.500
Linkedin ads	3.000	4.000	5.000	6.000	6.000
Helexpo participation	3.000	3.000	3.000	3.000	3.000
Corporative events	8.000	16.000	25.000	25.000	25.000
Direct Marketing	2.000	4.000	8.000	8.000	8.000
Romania campaign	0	7.000	5.000	5.000	5.000
Poland campaign	0	0	7.000	5.000	5.000
SUM	19.700	39.000	60.500	59.500	59.500

ZOE LUAN

Other business perks VS Amphion

Other team building activities VS Amphion

Other kit car companies VS Amphion

Being part of our exceptional building and racing experience, employees feel engaged as part of a team. Our program allows them to get better at a personal level by growing their soft skills and by building solid relationships rather than superficial ones. Which leads to building a connective and fruitful team. A nd that's the gain for the organizations.

ESTONES IN THE STATE OF THE STA

EXPANDING OUR COMPANY

One of our company's goals is to establish even more the motorsport culture in countries where it is not so widespread.

From the research we conducted, we saw that the most appropriate countries are Poland where we will broaden our customer base in the second year and Romania will follow the third year.

Countries	Potential Customers
Greece	590
Poland	843
Romania	675
SUM	2108

INDUSTRIES IN GREECE

Sector	Number of customers
Petroleum	10
Banking	17
Telecommunications	12
Automotive	10
Food	14
Aerospace	6
Energy	5
Industrials	8
Former collaborators	11
Others	3

INDUSTRIES IN POLAND

Sector	Number of customers
Energy	42 customers
Agriculture	27 customers
Manufacturing	33 customers
Tourism	18 customers
Others	25 customers

INDUSTRIES IN ROMANIA

Sector	Number of customers
Chemicals	23 customers
Food & Beverages	21 customers
Automotive	18 customers
Petroleum	15 customers
aerospace	8 customers
telecommunications	10 customers
others	17 customers

EXTERNAL COSTS

	Year 1	Year 2	Year 3	Year 4	Year 5
Kit transportation (Romania.Poland)	0	4.500	6.000	6.000	6.000
Truck driver	0	14.196	14.196	14.196	14.196
Warehouse Poland	0	2.400	2.400	2.400	2.400
Warehouse Romania	0	0	2.500	2.500	2.500
Poland employees warehouse (x2)	0	17.000	17.000	17.000	17.000
Romania employees warehouse (x2)	0	0	18.000	18.000	18.000
SUM	0	38.096	60.096	60.096	60,096

All in all, our sales are summed up as you can see:

SUSTAINABILITY

We value highly our relationship with our customers and especially with the ones that invested in buying our product.

After the third operational year we provide them with the opportunity to get another kit-package for only €7000.

This is done by replacing fatigued parts from leased vehicles that run over 2000 km and have operating vehicles with limited costs. That way we achieve to make full use of our product's life cycle and maintain our relationship with our customers

EXPENSES FOR REUSING AMPHION

	Year 1	Year 2	Year 3	Year 4	Year 5
Cost per car	0	0	2.225	2.225	2.225
Quantity	0	0	5	12	23
SUM	0	0	11.125	26.700	55.625

INCOMES FROM REUSING AMPHION

	Year 1	Year 2	Year 3	Year 4	Year 5
Cost per car	0	0	5	12	23
Quantity	0	0	7.120	7.120	7.120
SUM	0	0	35.600	85.440	163.760

SERVICE COST AFTER 1500 - 2000 km

Hub	300
Disc plates	100
Adapter	80
Rockers	100
Steering axle	50
Clutch discs	50
Oil filters	5
Oil	25
Kit service damper	100
SUM	810

Being a former FSAE team gives us the advantage to already have an established network of partners. That is why we do not have in house production. The financial conditions in Greece allow us to keep our operational costs like wages and rent low. We renewed our agreements with our partners, so that our company's stock will always be up to date and ready to be delivered to our customers. Being located in central Greece, makes the transport of pieces to our facilities happen in no time. 0 Too J00000 Volos, GR

INITIAL INVESTMENT

To carry out this concept, we need an investment of 500.000 euros. The money will be used for the following purposes:

TOTAL SALES

REVENUES - EXPENSES - PROFIT

SENSITIVITY ANALYSIS

ROI: 732,22%

IRR: 78,726%

NPV: 2.991.100€

With our ''just in time'' inventory system and our ERP system working vigorously to fulfill the estimated demand, our kit box will be ready to be shipped in only 4 days.

Bought parts such as the engine or tyres are delivered to our facilities during these days too.

PROPUST	CLIDDLIED	DAVC
PRODUCT	SUPPLIER	DAYS
front wing	CFT	3
rear wing	CFT	3
A-arms	B&T composites	2
hub	Spacesonic	1
upright	Spacesonic	2
undertray	CFT	2
nosecone	Spacesonic	1
aeroscreen	3d HUB	1
bellcrank	Spacesonic	1
semi - axles	Frantzis	2
seat	Spacesonic	2
steering wheel	CFT	2
crashbox	Noukaris	1
sidepods	Spacesonic	3
chassis	Lazarou Bros.	2

"Take care of your employee's future, so they will care about your company's future"

Today employees are the key resource of every company.

For each WTW pathway, calculate:

- 01. Total energy required
- 02. Total GHG emitted

WELL TO TANK

Crude production: 4,3 g CO2eq/MJ crude

01. 1.5 g CO2eq/MJ crude for energy use in production operations

02. 2.4 g CO2eg/MJ crude for flaring

03. 0.4 g CO2eq/MJ crude for venting and fugitive losses

Transport primary fuel: 0,8 g CO2eq/MJ crude, biggest part from Middle East (assuming a ship fueled by heavy fuel oil)

Produce road fuel/ crude oil refining: 7 g CO2eq/MJ crude

Distribute road fuel: 1 g CO2eq/MJ crude

TANK TO WHEEL

Burn fuel in vehicle: 96.5 g CO2/Km crude (final stages required to distribute the finished fuels from the point of import or production to the individual refuelling points.

To calculate the Carbon Dioxide - CO2 - emission from a fuel, the carbon content of the fuel must be multiplied with the ratio of molecular weight of CO2(44) to the molecular weight of Carbon (12) -> 44 / 12 = 3.7

Carbon Dioxide emission from burning a fuel can be calculated as qCO2 = cf / hf MCO2 /Mm [1] where

qCO2 = specific CO2 emission [kgCO2/kWh] cf = specific carbon content in the fuel [kgC/kgfuel] hf = specific energy content in the fuel [kWh/kgfuel] MC = Molecular weight Carbon [kg/kmol Carbon] MCO2 = Molecular weight Carbon Dioxide [kg/kmol CO2]

Messel Me

Note! Heat loss - 55-75% - in power generation is not included in the numbers.

The state of the s			MINERAL WINESE COURSE
Fuel	Gasoline		
	kg/l		
Liquid density	0.737		
Connection .	1011		
Specific	kgC/kgfuel		
carbon content	0.90		
Specific	kWh/kg _{fuel}	Btu/Ibfuel	
energy content	12.9	19900	
Specific			
CO2 emission	Kgco2/kgfuel	Kgco2/galfuel	lbco2/galfuel
(amount of fuel basis)	3.30	9.20	20.3
		TAXABLE DESIGNATION OF THE PARTY OF THE PART	
Specific	Kgco ₂ /kWh	Kgco ₂ /GJ	lbco2/mill Btu
CO2 emission	0.26	71	165.3
(amount of energy basis)			
THE RESERVE THE PERSON NAMED IN COLUMN			

All the information needed in order to calculate the Well to Wheel was found: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC85326/wtt_report_v4a_april2014_pubsy.pdf

WE RECYCLE.

As a company we want to have a green impact on the environment, so we try with every possible way to reduce the environmental contamination.

First of all in our company we use stationery that consists of recycled materials, we try to minimize the paper use and keep all the important documents in digital form. Also most of the company's furniture are from recycled materials.

Wanting our customers to have a green impact too, we give them the opportunity to return the damaged parts of the car that can't be fixed in order to be used again, get recycled to the respectively companies that we have tracked in Greece.

- 1. Worn tires —> Eco Elastika —> Eco Elastika is a company in Greece which is recycling all kinds of tires in order to sell the recycled material to other companies for the construction of roads and fields.
- 2. Lubricants —> Total Hellas —> Total Hellas is one of many companies in Greece who is recycling used lubricants of the automotive industry. That way the recycled lubricants are used for the production of energy in cement factories (εργοστάσια τσιμέντου) or in the production for new ones.
- 3.Metal and cables-->Sil-Metal-Scrap-->Sil-Metal-Scrap is a company located in Greece.

The company is active in the recycling of metals and electronic devices.

We mustn't forget that even the wooden box that contains our product isn't wasted. In order to make full use of it, we give to our customers the privilege of using the box as a bench for assembling.

Recycle today, for a better tomorrow.

