

Amendments to the Specification:

Please replace the paragraph beginning at page 24, lines 8 through 11, with the following amended paragraph:

Following the procedures outlined in Example 1, the following oligonucleotides were synthesized:

Oligo # <u>SEQ ID NO:</u>	Sequence (5'---> 3') and Modification ^a
1	d(CTATCTGAC G TTC T GT)
2	d(CTATCTGAC C* GTTCTCTGT)
3	d(CTATCTGAC C* TTCTCTGT)
4	d(CTATCTGAC C* GTTCTCTGT)
5	d(CTATCTGAC C* TTCTCTGT)

^a CpG-motif is shown in bold. **C*** represents 5-hydroxycytosine (oligos 2 and 3) or N4-ethylcytosine (oligos 4 and 5).

Please replace the paragraph beginning at page 29, line 9 through page 30, line 8 with the following amended paragraph:

The CpG-PS-oligos shown in Figure 17 were synthesized using an automated synthesizer and phosphoramidite approach. Oligo **1** (16-mer) was synthesized using nucleoside-5'-β-cyanoethylphosphoramidites. Oligo **2**, a 32-mer, was synthesized using nucleoside-3'-β-~~cyanooethylphosphor-amidites~~ cyanooethylphosphoramidites and controlled pore glass support (CPG-solid support) with a 3'-linked nucleoside in which 16-mer sequence of Oligo **1** was repeated twice; therefore, Oligo **2** had two 16-mers (Oligo **1**) linked by a normal 3'-5'-linkage. Oligo **3**, a 32-mer, was synthesized with two 16-mers (Oligo **1**) linked by a 5'-5'-linkage, so Oligo **3** had two 3'-ends and no 5'-end. Synthesis of Oligo **3** was carried out in two steps: the first 16-mer was synthesized using nucleoside-3'-β-cyanoethylphosphoramidites and solid

support with a 3'-linked nucleoside, and then synthesis of the second 16-mer segment was continued using nucleoside-5'- β -cyanoethylphosphoramidites. Oligo **4**, a 32-mer, comprised two 16-mers (Oligo **1**) linked by a 3'-3'-linkage, so Oligo **4** had two 5'-ends and no 3'-end. Synthesis of Oligo **4** was carried out in two steps: the first 16-mer was synthesized using nucleoside-5'- β -cyanoethylphosphoramidites and solid support with a 5'-linked nucleoside, and the synthesis of the second 16-mer segment was continued using nucleoside-3'- β -cyanoethylphosphoramidites. Synthesis of Oligos **5-8** was carried out by using the same nucleoside- β -cyanoethylphosphoramidites as for Oligos **1-4**, respectively. At the end of the synthesis, Oligos **1-8** were deprotected with concentrated ammonia solution, purified by reversed phase HPLC, detritylated, desalted and dialyzed. The purity of each PS-oligo was checked by CGE and the molecular weight was confirmed by MALDI-TOF mass spectral analysis (Table 1). The sequence integrity and directionality of 5'-CpG motif in Oligos **1-8** were confirmed by recording melting temperatures (T_{ms}) of the duplexes with their respective DNA complementary strands (5'-AAGGTCGAGCGTTCTC-3' (SEQ ID NO: 6) for Oligos **1-4**, and 5'-ATGGCGCACGCTGGGAGA-3' (SEQ ID NO: 7) for Oligos **5-8**). The T_{ms} of these duplexes were 53.9 ± 0.9 °C (Oligos **1-4**), 61.8 °C (Oligo **5**), and 58.8 ± 0.6 °C (Oligos **6-8**) (note that Oligo **5** was a 18-mer and Oligos **6-8** were 32-mers but not 36-mers).