

Fakultät für Mathematik und Naturwissenschaften

Institut für Mathematik, Arbeitsgruppe Diskrete Mathematik und Algebra

Bachelorarbeit

Chromatische Zahl und Spektrum von Graphen

vorgelegt von: Stefan Heyder

Matrikelnummer: 49070

Betreuer: Prof. Dr. Michael Stiebitz

26. September 2014

Inhaltsverzeichnis

1	Einführung		1
	1.1	Graphen und Hypergraphen	1
	1.2	Färbungen von Graphen und Hypergraphen	2
	1.3	Eigenwerte von symmetrischen Matrizen	4
	1.4	Eigenwerte von Graphen	7
	1.5	Eigenschaften des Spektrums	11
2	Erdős–Faber–Lovász Vermutung		14
	2.1	Bekannte Resultate	14
	2.2	Krauszzerlegungen von Graphen	14
3	Spektraleigenschaften von Graphen		20
	3.1	Krauszzerlegungen und Eigenwerte	20
	3.2	Schranken für $\kappa_d(G)$	22
	3.3	Chromatische Zahl und Eigenwerte	24
	3.4	k -chromatische Graphen mit $\lambda_k > -2$	24
Li	Literatur		

1 Einführung

Gegenstand dieser Bachelorarbeit ist der Zusammenhang zwischen den Eigenwerten, der chromatischen Zahl und den Krauszzerlegungen eines Graphen. Die dafür benötigten Grundlagen werden wir in Kapitel 1 erarbeiten.

1.1 Graphen und Hypergraphen

Die in dieser Arbeit betrachteten Graphen und Hypergraphen sind endlich und haben weder Mehrfachkanten noch Schlingen. Bei den Bezeichnungen richten wir uns im Wesentlichen nach dem Buch von Diestel beziehungsweise dem Buch von Berge. Mit \mathbb{N} bezeichnen wir die Menge der positiven ganzen Zahlen und setzen $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Für eine Menge V sei die Menge 2^V die Potenzmenge von V und $[V]^p$ mit $p \in \mathbb{N}_0$ die Menge der p-elementigen Teilmengen von V.

Referenzen

Ein Hypergraph H ist ein Tupel von zwei Menge, V(H) und E(H). Dabei ist V(H) endlich und E(H) eine Teilmenge von $2^{V(H)}$ mit $|e| \geq 2$ für alle $e \in E(H)$. Die Menge V(H) heißt dann **Eckenmenge** von H und ihre Elemente heißen **Ecken** von H. Die Menge E(H) heißt **Kantenmenge** und ihre Elemente heißen **Kanten**. Ein Hypergraph heißt **linear**, falls zwei verschieden Kanten höchstens eine Ecke gemeinsam haben.

Sei H ein Hypergraph. Die **Ordnung** von H ist die Anzahl der Ecken von H, geschrieben |H|. Eine Kante e heißt **Hyperkante**, falls $|e| \geq 3$ und sonst **gewöhnliche Kante**. Für eine gewöhnliche Kante $e = \{u, v\}$ schreiben wir auch kurz e = uv oder e = vu. Ist $E(H) \subseteq [V]^p$, so nennen wir H p-uniform. Ein **Graph** ist ein 2-uniformer Hypergraph, also ein Hypergraph in dem jede Kante gewöhnlich ist. Eine Ecke v ist **inzident** mit einer Kante e, falls $v \in e$ gilt. Für eine Ecke v von H sei $E_H(v) = \{e \in E(H) | v \in e\}$. Der **Grad** einer Ecke v ist $d_H(v) = |E_H(v)|$. Der **Minimalgrad** (**Maximalgrad**) sei definiert als der kleinste (größte) Grad einer Ecke von H und wird mit $\delta(H)$ ($\Delta(H)$) bezeichnet. Ist $\delta(H) = \Delta(H) = r$, so heißt H r-regulär.

Ein **Unterhypergraph** von H ist ein Hypergraph H' mit $V(H') \subseteq V(H)$ und $E(H') \subseteq E(H)$. Wir schreiben dann $H' \subseteq H$. Gilt $H' \neq H$, so ist H' ein **echter Unterhypergraph**. Gibt es eine Menge $X \subseteq V(H)$ mit V(H') = X und $E(H') = \{e \in E(H) | e \subset X\}$, so ist H' ein **induzierter Hypergraph** und wir schreiben H' = H[X] bzw. $H' \subseteq H$.

Ist H ein Hypergraph und $X \subseteq V(H)$, so bezeichne $H - X = H[V(H) \setminus X]$. Ist $X = \{v\}$, so schreiben wir dafür auch H - v statt H - X. Ist $F \subseteq 2^{V(H)}$ eine Menge,

so sei H-F der Hypergraph mit Eckenmenge V(H) und Kantenmenge $E(H) \setminus F$ und H+F der Hypergraph mit Eckenemenge V(H) und Kantenmenge $E(H) \cup F$. Ist $F = \{e\}$ so schreiben wir H-e beziehungsweise H+e anstatt $H-\{e\}$ beziehungsweise $H+\{e\}$.

Eine Menge von Ecken $X \subseteq V(H)$ heißt unabhängige Menge von H, falls $E(H[X]) = \emptyset$ gilt, beziehungsweise Clique, falls H[X] alle gewöhnlichen Kanten von $[X]^2$ enthält. Die Unabhängigkeitszahl $\alpha(H)$ ist die Ordnung der größten unabhängigen Menge von H. Die Cliquenzahl $\omega(H)$ ist die Ordnung der größten Clique von H.

Ein Graph G heißt vollständiger Graph, falls $E(G) = [V(G)]^2$ gilt. Ist G ein vollständiger Graph der Ordnung n, so schreiben wir auch $G = K_n$. Man beachte hierbei, dass alle vollständigen Graphen der Ordnung n isomorph sind. In diesem Sinne bezeichnen wir mit C_n den Kreis der Ordnung n, mit P_n den Weg der Ordnung n und mit O_n den kantenlosen Graphen der Ordnung n (d.h. das Komplement von K_n).

Damit ist $\omega(H)$ die größte Zahl, sodass H einen vollständigen Graphen der Ordnung n als Untergraphen enthält und $\alpha(H)$ die größte Zahl n, sodass H den kantenlosen Graphen der Ordnung n als induzierten Untergraphen enthält.

Der Kantengraph L(H) eines Hyergraphen H ist der Graph mit der Eckenmenge V(L(H)) = E(H) und Kantenmenge

$$E(L(H) = \left\{ ee' | \left\{ e, e' \right\} \in [E(H)]^2, e \cap e' \neq \emptyset \right\}$$

Für eine Kante e von H sei $d_H(e) = d_{L(H)}(e)$ der **Kantengrad** von e in H. Dieser ist also die Zahl der von e verschiedenen Kanten e' von H, welche mit e nichtleeren Schnitt haben.

1.2 Färbungen von Graphen und Hypergraphen

Das **Färbungsproblem** für Graphen ist ein klassischen Problem aus der Graphentheorie mit vielfältigen Anwendungen in der kombinatorischen Optimierung und anderen Teilgebieten der Mathematik. Beim Färbungsproblem besteht die Aufgabe darin, die Ecken eines Graphen G so zu färben, dass durch eine Kante verbundene Ecken verschiedenen Farben erhalten. Dabei sollen natürlich möglichst wenige Farben verwendet werden.

Sei C eine endliche Menge. Eine Abbildung $f:V(G)\to C$ heißt **Färbung** von G, falls für alle Kanten vw von G gilt: $f(v)\neq f(w)$. Ist $|C|=k\in\mathbb{N}$, so heißt f k-**Färbung**. Die kleinste natürliche Zahl k, für die G eine k-Färbung besitzt, bezeichnen wir mit $\chi(G)$, der chromatischen Zahl von G.

Die Bestimmung der chromatischen Zahl eines Graphen ist ein NP-schweres Optimie-

rungsproblem, wie im Jahre 1972 von Karp [?] gezeigt wurde. Sei f eine Färbung von G und H ein Untergraph von G. Dann ist $f_{|V(H)}$ eine Färbung von H. Folglich ist die chromatische Zahl ein monotoner Graphenparameter, d.h.

$$H \subseteq G \Rightarrow \chi(H) < \chi(G)$$
.

Eine Abbildung $f:V(G)\to C$ ist eine Färbung von G, genau dann wenn für alle $c\in C$ das Urbild $f^{-1}(c)$ eine unabhängige Menge in G ist (d.h. keine zwei Ecken von $f^{-1}(c)$ sind durch eine Kante von G verbunden). Diese Urbilder nennen wir **Farbklassen**. Offensichtlich sind die Farbklassen disjunkt. Folglich haben Farbklassen höchstens $\alpha(G)$ Ecken. Daraus folgt, dass jede k-Färbung von G $|G| \leq k\alpha(G)$ erfüllt, und deswegen auch $|G| \leq \chi(G)\alpha(G)$ gilt.

Offensichtlich gilt $\chi(G) \leq |G|$. Damit gilt

$$\chi(G) \ge |G| \Leftrightarrow chi(G) = |G| \Leftrightarrow \alpha(G) \le 1 \Leftrightarrow G$$
 ist ein vollständiger Graph

Insbesondere gilt somit für $n \in \mathbb{N}$: $\chi(K_n) = n$. Da χ ein monotoner Graphenparameter ist, ist also

$$\omega(G) \le \chi(G)$$
.

Bei der Untersuchung des Färbungsproblems für Graphen erweisen sich die kritischen Graphen als ein nützliches Hilfsmittel. Dies liegt vor allem daran, dass sich Färbungsprobleme für Graphen oft auf entsprechende Fär-bungsprobleme für kritische Graphen zurückführen lassen. Ein Graph G heißt **k-kritisch**, falls $\chi(G) = k$ ist und $\chi(H) < k$ gilt für alle echten induzierten Untergraphen H von G.

Sie C eine endliche Menge. Eine Abbildung $g: E(H) \to C$ heißt **Kantenfärbung** von H, falls für zwei verschiedene Kanten e, e' von H mit nichtleerem Schnitt $g(e) \neq g(e')$ gilt. Ist |C| = k, so ist g eine k-Kantenfärbung. Die kleinste natürliche Zahl k, für die H eine k-Kantenfärbung besitzt, bezeichnen wir mit $\chi'(H)$, dem **chromatischen Index** von H. Man beachte hierbei, dass stets $\chi'(H) = \chi(L(H))$ gilt.

Zu (Kanten) Färbungen von Graphen und Hypergraphen ist vieles bekannt, vor allem die Sätze von Brooks und Vizing. Der Vollständigkeit halber wollen wir diese hier anführen. Der folgende Satz stammt von Brooks aus dem Jahr 1941. Die Schranke werden wir später noch verbessern, siehe Satz 3.9.

Satz 1.1 (Brooks) Sei G ein zusammenhängender Graph mit Maximalgrad Δ . Dann gilt

$$\chi(G) \leq \Delta + 1.$$

Gleichheit tritt nur auf, falls G ein vollständiger Graph oder ein ungerader Kreis ist.

Sei G ein Graph. Dann ist offensichtlich $\chi'(G) \geq \Delta(G)$, da alle Kanten die eine Ecke maximalen Grades enthalten mit unterschiedlichen Farben gefärbt werden müssen.

Satz 1.2 (Vizing) Sei G ein Graph mit Maximalgrad Δ . Dann gilt $\chi'(G) = \Delta$ oder $\chi'(G) = \Delta + 1$.

1.3 Eigenwerte von symmetrischen Matrizen

Bevor wir uns den Eigenwerten von Graphen zuwenden, wollen wir den Leser an einige bekannte Tatsachen über symmetrische Matrizen erinnern. Es sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix der Ordnung $n \in \mathbb{N}$. Dann ist

$$Ax = \lambda x \tag{1.1}$$

mit $x \in \mathbb{R}^n$ und $\lambda \in \mathbb{R}$ die (reelle) Eigenwertgleichug
n von A. Für $\lambda \in \mathbb{R}$ ist die Lösungsmenge

$$E_A(\lambda) = \{x \in \mathbb{R}^n | Ax = \lambda x\}$$

ein linearer Unterraum von \mathbb{R}^n mit dim $(E_A(\lambda) \geq 0$. Man nennt dann λ einen **Eigenwert** von A, falls dim $(E_A(\lambda) \geq 1$ ist, die Vektoren aus $E_A(\lambda)$ heißen **Eigenvektoren** von A zum Eigenwert λ und $E_A(\lambda)$ ist der zu λ gehörende **Eigenraum** von A. Die Abbildung p_A mit

$$p_A(\lambda) = \det(A - \lambda I)$$

ist ein Polynom aus $\mathbb{R}[\lambda]$ vom Grade n, welches **charakteristisches Polynom** von A genannt wird (dabei ist $I \in \mathbb{R}^{n \times n}$ die Einheitsmatrix der Ordnung n). Für $\lambda \in \mathbb{R}$ gilt dann

$$\lambda$$
 ist Eigenwert von $A \Leftrightarrow p_A(\lambda) = 0$.

Da A symmetrisch ist, zerfällt p_A in genau n reelle Linearfaktoren, d.h. p_A hat genau n Nullstellen (gezählt mit ihren Vielfachheiten). Für $\lambda \in \mathbb{R}$ sei $m_A(\lambda)$ die Vielfachheit von λ als Nullstelle von p_A . Die Matrix A besitzt somit n reelle Eigenwerte, welche wir monton fallend anordnen können. Im Folgenden bezeichnen wir mit $\lambda_p(A)$ den p-größten Eigenwert von A, das heißt es gilt

$$\lambda_1(A) \ge \lambda_2(A) \ge \dots \lambda_n(A)$$

Dann ist $\lambda_{max}(A) = \lambda_1(A)$ der größte Eigenwert von A und $\lambda_{min}(A) = \lambda_n(A)$ der kleinste Eigenwert von A. Die Folge

$$\operatorname{sp}(A) = (\lambda_1(A), \lambda_2(A), \dots \lambda_n(A))$$

der Eigenwerte bezeichnet man als das **Spektrum** von A. Bekanntlich besitzen zwei symmetrische Matrizen genau dann das gleiche Spektrum, wenn sie zueinander ähnlich sind. Ist λ ein Eigenwert von A so ist dim $E_A(\lambda) = m_A(\lambda)$. Eigenvektoren zu verschiedenen Eigenwerten sind stets orthogonal und \mathbb{R}^n ist die direkte Summe der Eigenräume zu den verschiedenen Eigenwerten. Insbesondere besitzt der \mathbb{R}^n eine Orthonomalbassi aus lauter Eigenwerten von A.

Eine symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ heißt positiv semidefinit, falls $x^T A x \geq 0$ für alle Vektoren $x \in \mathbb{R}^n$ gilt. Gilt zusätzlich noch $x^T A x = 0$ nur für $x = 0 \in \mathbb{R}^n$ (hat also A vollen Rang), so heißt A positiv definit. Wir wollen nun auf einige Eigenschaften von positiv (semi)definiten Matrizen anführen.

Satz 1.3 Folgende Aussagen sind für eine symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ äquivalent

- (a) A ist positiv semidefinit.
- (b) Alle Eigenwerte von A sind nicht negativ.
- (c) $A = UU^T$ für eine Matrix $U \in \mathbb{R}^{n \times m}$.

Für $A \in \mathbb{R}^{n \times n}$ und $x \in \mathbb{R}$ sei der Rayleigh-Quotient $R_A(x)$ definiert als

$$R_A(x) = \frac{x^T A x}{x^T x}.$$

Der folgende Satz findet sich in der Literatur als Courant-Fischer Minmax Theorem, es scheint schwierig zu sein eine Originalquelle zu finden .

finden

Satz 1.4 (Courant-Fischer) Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch. Dann gilt für alle $p \in \{1, \dots, n\}$:

- (a) $\lambda_p(A) = \max\{\min_{x \in V, x \neq 0} R_A(x) | V \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } p\}.$
- (b) $\lambda_p(A) = \min\{\max_{x \in V, x \neq 0} R_A(x) | V \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } n p + 1\}.$

Lemma 1.5 Seien $A, B \in \mathbb{R}^{n \times n}$ symmetrisch und A - B positiv semidefinit. Dann ist $\lambda_p(A) \ge \lambda_p(B)$ für alle $1 \le p \le n$.

Beweis: Sei $x \in \mathbb{R}^n \setminus \{0\}$ beliebig. Dann gilt $x^T(A-B)x \ge 0$, da A-B positiv semidefinit ist. Daraus folgt

$$x^T A x > x^T B x$$

und folglich ist $\frac{x^TAx}{x^Tx} \geq \frac{x^TBx}{x^Tx}$ und es folgt mit Satz 1.4(a) :

$$\begin{split} \lambda_p(A) &= \max\{ \min_{x \in V, x \neq 0} \frac{x^T A x}{x^T x} | V \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } p \} \\ &\geq \max\{ \min_{x \in V, x \neq 0} \frac{x^T B x}{x^T x} | V \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } p \} \\ &= \lambda_p(B) \end{split}$$

für
$$1 \le p \le n$$
.

Satz 1.6 (Interlacing) Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und sei $B \in \mathbb{R}^{(n-k) \times (n-k)}$ die symmetrische Matrix, welche aus A durch Löschen von Zeilen und den entsprechenden Spalten entsteht. Dann ist B symmetrisch, und es gilt:

$$\lambda_p(A) \ge \lambda_p(B) \ge \lambda_{p+k}(A)$$

 $f\ddot{u}r \ p = 1, \dots n - k.$

Beweis: Seien $l_1 < \cdots < l_{n-k}$ die Nummern der Zeilen bzw. Spalten die nicht gelöscht werden. Setze $P = (e_{l_1}, e_{l_2}, \dots, e_{l_{n-k}}) \in \mathbb{R}^{n \times (n-k)}$, wobei e_k der k-te Einheitsvektor des \mathbb{R}^n ist. Dann besitzt P vollen Spaltenrang und es gilt $B = P^T A P$. Seien $V \subseteq \mathbb{R}^{(n-k)}$ ein linearer Unterraum , $x \in V$ beliebig und y = P x. Dann ist $y \in \operatorname{im} P|_V = \{z \in \mathbb{R}^n | z = P x, x \in V\}$ und es gilt $y^T y = x^T P^T P x = x^T x$, da $P^T P = I_{n_k}$ ist. Außerdem ist im $P|_V$ ein linearer Unterraum des \mathbb{R}^n mit dim(im $P|_V$) = dim(V), da P vollen Spaltenrang besitzt. Mit Satz 1.4(a) folgt für $1 \le p \le n - k$:

$$\begin{split} \lambda_p(B) &= \max\{ \min_{x \in V, x \neq 0} \frac{x^T B x}{x^T x} | V \subseteq \mathbb{R}^{(n-k)} \text{ ist linearer Unterraum der Dimension } p \} \\ &= \max\{ \min_{x \in V, x \neq 0} \frac{x^T P^T A P x}{x^T x} | V \subseteq \mathbb{R}^{(n-k)} \text{ ist linearer Unterraum der Dimension } p \} \\ &= \max\{ \min_{y \in \text{im } P|_V, y \neq 0} \frac{y^T A y}{y^T y} | V \subseteq \mathbb{R}^{(n-k)} \text{ ist linearer Unterraum der Dimension } p \} \\ &\leq \max\{ \min_{x \in W, x \neq 0} \frac{y^T A y}{y^T y} | W \subseteq \mathbb{R}^n \text{ ist linearer Unterraum der Dimension } p \} \\ &= \lambda_p(A) \end{split}$$

Damit ist die erste Ungleichung gezeigt. Die zweite folgt analog bei Betrachtung von -A und -B, da $\lambda_p(-A) = -\lambda_{n-p+1}(A)$ ist.

Die folgenden Ungleichungen werden später bei der Betrachtung der Eigenwerte von Graphen hilfreich seien. Ein Beweis für die Weyl Ungleichungen findet sich in [1, 6.7].

Satz 1.7 (Weyl Ungleichungen) Seien $A, B, C \in \mathbb{R}^{n \times n}$ symmetrische Matrizen mit A = B + C. Dann gilt für alle $1 \le p \le n$

$$\lambda_p(B) + \lambda_n(C) \le \lambda_p(A) \le \lambda_p(B) + \lambda_1(C)$$

Ein Beweis für die folgenden Ungleichungen findet sich in [3, 3.].

Satz 1.8 (Ky Fan Ungleichungen) Seien $A, B, C \in \mathbb{R}^{n \times n}$ symmetrische Matrizen mit A = B + C. Dann gilt für alle $k \leq n$

$$\sum_{p=1}^{k} \lambda_p(A) \le \sum_{p=1}^{k} \lambda_p(B) + \sum_{p=1}^{k} \lambda_p(C)$$

 $F\ddot{u}r \ k = n \ gilt \ Gleichheit.$

1.4 Eigenwerte von Graphen

Sei G ein Graph der Ordnung n mit der Eckenmenge $V(G) = \{v_1, v_2, \dots, v_n\}$. Die **Adjanzenzmatrix** von G ist die Matrix $A(G) \in \mathbb{R}^{n \times n}$ mit

$$A(G)_{i,j} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G) \end{cases}$$

Dann ist A symmetrisch, und hat folglich nur reelle Eigenwerte. Damit es Sinn ergibt, von den Eigenwerten eines Graphen zu sprechen, dürfen die Eigenwerte von A(G) nicht von der Nummerierung der Ecken abhängen. Das dem so ist, zeigt das folgende Lemma.

Lemma 1.9 Sei G = (V, E) ein Graph. Dann ist das charakteristische Polynom von A(G) unabhängig von der Nummerierung der Ecken von G.

Beweis: Seien $V(G) = \{v_1, \dots, v_n\} = \{u_1, \dots, u_n\}$ zwei Nummerierungen der Ecken. Sei weiterhin $A, B \in \mathbb{R}^{n \times n}$ mit

$$A_{i,j} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G) \end{cases} \text{ und } B_{i,j} = \begin{cases} 1 & u_i u_j \in E(G) \\ 0 & u_i u_j \notin E(G) \end{cases}$$

Dann gibt es eine Permutation $\sigma \in S^n$ sodass $v_{\sigma(i)} = u_i$ ist. Folglich gilt $A_{\sigma(i),\sigma(j)} = B_{i,j}$. Sei $P \in GL_n(\mathbb{R})$ die Matrix mit

$$P_{i,j} = \begin{cases} 1 & \sigma(i) = j \\ 0 & \text{sonst} \end{cases}$$

Damit ist $P = (e_{\sigma(1)}, \dots, e_{\sigma(n)})$. Für die Matrix P^TAP gilt dann:

$$(P^{T}AP)_{i,j} = e_{j}^{T}P^{T}APe_{i} = e_{\sigma(j)}^{T}Ae_{\sigma(i)} = A_{\sigma(i),\sigma(j)} = B_{i,j}$$

Also ist $P^TAP = B$. Somit sind A und B ähnlich, und besitzen folglich das selbe charakteristische Polynom.

Für den Graphen G der Ordnung n sei dann $p_G = p_{A(G)}$ das **charakteristische Polynom** von G und $\lambda_p(G) = \lambda_p(A(G))$ der p-größte Eigenwerte von G (für $1 \le p \le |G|$) und $\operatorname{sp}(G) = \operatorname{sp}(A(G))$ das **Spektrum** von G. Diese sind nach Lemma 1.9 unabhängig von der Nummerierung der Ecken, und somit wohldefiniert. Dies gilt jedeoch nicht für die Eigenvektoren. Wir können aber auch eine koordinatenfreie Interpretation für die Eigenvektoren geben. Dazu betrachten wir einen Eigenwert λ von G und einen zugehörigen Eigenvektor x von A(G). Aus der Eigenwertgleichung 1.1 erhalten wir das Gleichungssystem

$$\lambda x_i = \sum_{j=1}^n A(G)_{ij} x_j \tag{1.2}$$

für $1 \leq i \leq n$. Der Vektor $x \in \mathbb{R}^n$ ordnet der Ecke v_i den Wert $x_i = x(v_i)$ zu und die Gleichung 1.2 ist äquivalent zu

$$\lambda x(v_i) = \sum_{v_j: v_i v_j \in E(G)} x(v_j). \tag{1.3}$$

Wir betrachten nun den Vektorraum $\mathbb{R}^{V(G)}$ aller Abbildungen $x:V(G)\to\mathbb{R}$. Offenbar ist die Abbildung $x\in\mathbb{R}^{V(G)}$ genau dann ein Eigenvektor von G zum Eigenwert λ , wenn für alle Ecken v von G gilt:

$$\lambda x(v) = \sum_{u: uv \in E(G)} x(u) \tag{1.4}$$

d.h. die Summe der Werte x(u) über die Nachbarn u von v ergibt den Wert $\lambda x(v)$. Es sei dann $E_G(\lambda)$ die Menge aller dieser Abbildungen. Dann ist $E_G(\lambda)$ der **Eigenraum** von G zum Eigenwert λ . Es sei $\mathbb{F}^{V(G)}$ die Abbildung mit $\mathbb{F}(v) = 1$ für alle $v \in V(G)$. Für eine Ecke v von G gilt dann

$$d_G(v) = \sum_{u: uv \in E(G)} 1 = \sum_{u: uv \in E(G)} \mathbb{1}(u)$$

und aus Gleichung 1.2 folgt somit für $r \in \mathbb{N}$:

 N_0 ?

$$\mathbb{K} \in E_G(r) \Leftrightarrow G \text{ ist } r\text{-regulär.}$$
(1.5)

Zwei Graphen heißen isospektral, falls sie das selbe Spektrum besitzen.

Bemerkung 1.10 Zwei isospektrale Graphen sind nicht unbedingt isomorph.

Beweis: Betrachte dazu folgende Graphen :

bild

Diese sind offenbar nicht isomorph. Betrachten wir die Adjazenzmatrizen der beiden Graphen

$$A(G) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \text{ und } A(H) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

und berechnen die Spektra, so erkennen wir das beide Graphen das Spektrum

$$sp(G) = sp(H) = (2, 0, 0, 0, 2)$$

besitzen. Also sind G und H isospektral, aber nicht isomorph.

Beispiel 1.11 Für den vollständigen Graphen der Ordnung K_n der Ordnung $n \ge 1$ gelten folgenden Aussagen:

1.
$$\operatorname{sp}(K_n) = (n-1, \underbrace{-1, -1, \dots, -1}_{n-1 \ mal}).$$

- 2. $p_{K_n}(\lambda) = (-1)^n (\lambda (n-1))(\lambda + 1)^{n-1}$.
- 3. $E_{K_n}(n-1) = [\mathbb{F}]$, wobei $\mathbb{F} \in \mathbb{R}^{V(K_n)}$ die Einsabbildung ist mit 1(v) = 1 für alle $v \in V(G)$.
- 4. $E_{K_n}(-1) = \{x \in \mathbb{R}^{V(K_n)} | x \text{ ist orthogonal } zu \, \mathbb{1} \}.$

Beweis: Es sei $J \in \mathbb{R}^{n \times n}$ die Matrix, welche nur 1 als Einträg besitzt (diese werden wir mit 1-Matrix bezeichnen). Dann gilt $A(K_n) = J - I$, wobei $I \in \mathbb{R}^{n \times n}$ die Einheitsmatrix ist. Da rang(J) = n - 1, ist also -1 ein Eigenwert von G mit Vielfachheit n - 1. Da K_n n - 1 regulär ist, ist auch n - 1 ein Eigenwert von K_n . Damit folgen (a) und (b). Weiterhin gilt (c) wegen Gleichung 1.5. Aus der Orthognalität der Eigenvektoren folgt nun (d).

Beispiel 1.12 Der Kreis C_n der Ordnung $n \geq 3$ hat die Eigenwerte

$$\lambda_p(C_n) = 2\cos(\frac{2\pi p}{n})$$

für $1 \le p \le n$. Einen Beweis findet der Leser in [4, 1.1.4]. Insbesondere gilt

$$sp(C_3) = sp(K_3) = (2, -1, -1)$$

$$sp(C_4) = (2, 0, 0, -2)$$

$$sp(C_5) = (2, \frac{1}{2}(\sqrt{5} - 1), \frac{1}{2}(\sqrt{5} - 1), \frac{1}{2}(-\sqrt{5} - 1), \frac{1}{2}(-\sqrt{5} - 1))$$

Beispiel 1.13 Für den kantenlosen Graphen O_n der Ordnung $n \in \mathbb{N}$ ist $A(O_n)$ die Null-matrix und somit gilt $p_{O_n}(\lambda) = (-1)^n \lambda^n$ und $\lambda_i(O_n) = 0$ für alle $1 \le i \le n$.

Beispiel 1.14 Ist G die disjunkte Vereinigug der nichtleeren Graphen $G_1, G_2, \dots G_l$ mit $l \in \mathbb{N}$, so ist

$$p_G(\lambda) = p_{G_1}(\lambda) \cdot p_{G_2}(\lambda) \cdot \cdots \cdot p_{G_l}(\lambda)$$

für $\lambda \in \mathbb{R}$. Das Spektrum von G ergibt sich somit aus der Vereinigung der Spektren von G_1, G_2, \ldots, G_l und für $\lambda \in \mathbb{R}$ gilt:

$$m_G(\lambda) = m_{G_1}(\lambda) + m_{G_2}(\lambda) + \dots + m_{G_l}(\lambda)$$

Beweis: Wir nummerieren die Ecken von G so, dass für $1 \le i \le l-1$ die Ecken von G_i vor den Ecken von G_{i+1} aufgelistet werden. Dann ist

$$A(G) = \operatorname{diag}(A(G_1), A(G_2), \dots, A(G_l))$$

und somit ist

$$A(G) - \lambda I = \operatorname{diag}(A(G_1) - \lambda I, A(G_2) - \lambda I, \dots, A(G_l) - \lambda I)$$

wobei I die Einheitsmatrix der passenden Ordnung ist. Dann ist

$$p_G(\lambda) = \det(A(G) - \lambda I)$$

$$= \det(A(G_1) - \lambda I) \cdot \det(A(G_2) - \lambda I) \cdot \dots \cdot \det(A(G_l) - \lambda I)$$

$$= p_{G_1}(\lambda) \cdot p_{G_2}(\lambda) \cdot \dots \cdot p_{G_l}(\lambda).$$

Da die Eigenwerte die Nullstellen des charakteristischen Polynoms sind, gilt dann für alle $\lambda \in \mathbb{R}$:

$$m_G(\lambda) = m_{G_1}(\lambda) + m_{G_2}(\lambda) + \dots + m_{G_l}(\lambda).$$

Ist G die disjunkte Vereinigung zweier vollständiger Graphen K_n , so ist sp $(G) = (n - 1, n - 1, \underbrace{-1, \dots, -1}_{2n-2 \text{ mal}})$. Insbesondere ist $\lambda_{max}(G) = n - 1$ ein doppelter Eigenwert von G.

1.5 Eigenschaften des Spektrums

In diesem Abschnitt wollen wir einige einfache, aber wichtigen Eigenschaften der Spektra von Graphen geben. Im Jahr 1912 bewies Frobenius einen zentralen Satz über die Eigenwerte von unzerlegbaren Matrizen mit nicht negativen Elementen. Der folgende Satz ist eine unmittelbare Folgerung aus dem Resultat von Frobenius.

Satz 1.15 Für einen zusammenhängenden Graphen G der Ordnung $n \in \mathbb{N}$ gelten folgende Aussagen:

- 1. $\lambda_{max}(G)$ ist ein einfacher Eigenwert mit $\lambda_{max}(G) \leq \Delta(G)$.
- 2. Es gibt einen Eigenvektor x von G zum Eigenwert $\lambda_{max}(G)$ mit x(v) > 0 für alle $v \in V(G)$.
- 3. Ist x ein Eigenvektor von G zum Eigenwert λ mit x(v) > 0 für alle $v \in V(G)$, so ist $\lambda = \lambda_{max}(G)$.
- 4. Für alle Eigenwerte λ von G gilt $|\lambda| \leq \lambda_{max}(G)$.

Korollar 1.16 Für einen r-regulären Graphen G der Ordnung $n \in \mathbb{N}$ gelten folgende Aussagen:

- 1. $\lambda_{max}(G) = r$.
- 2. G ist genau dann zusammenhängend, wenn $\lambda_{max}(G)$ ein einfacher Eigenwert ist.

Beweis: Es seien G_1, \ldots, G_l die Komponenten von G. Dann ist jede Komponente G_i ein r-regulärer Graph $(1 \leq i \leq l)$. Damit folgt aus 1.5, dass \mathbb{K} ein Eigenvektor von G_i zum Eigenwert r ist. Dann ist $\lambda_{max}(G) = r$ und $m_G(r) = l$. Somit gilt sowohl (a) als auch (b).

Für einen Graphen G sei \overline{G} der Komplementargraph von G mit $V(\overline{G})=V(G)$ und $E(\overline{(G)})=[V(G)]^2\setminus E(G).$

Korollar 1.17 Ist G ein r-regulärer Graph der Ordnung $n \ge 1$, so gelten folgende Aussagen:

1.
$$\lambda_1(G) = r \text{ und } \lambda_1(\overline{G}) = n - 1 - r.$$

2.
$$\lambda_i(\overline{G}) = -\lambda_{n-i+1}(G) - 1 \text{ für } 2 \le i \le n.$$

Beweis: Aussage (a) folgt, da der Komplementargraph eines r-regulären Graphes n-1-r-regulär ist. Zum Beweis von (b) wählen wir für G und \overline{G} die selbe Nummerierung der Ecken, etwa $v_1, v_2, \ldots v_n$. Dann ist

$$A(G) + A(\overline{G}) = J - I$$

wobei $J \in \mathbb{R}^{n \times n}$ die Matrix 1-Matrix ist, und $I \in \mathbb{R}^{n \times n}$ die Einheitsmatrix ist. Wir betrachten $\lambda = \lambda_i(G)$ für $i \geq 2$. Dann existiert ein Eigenvektor x zum Eigenwert λ . Dieser ist orthogonal zu $\mathbb{M} \in E_G(r)$. Folglich ist

$$A(G)x + A(\overline{G})x = Jx - Ix = -x$$

Durch Umstellen erhalten wir $A(\overline{G})x = (-\lambda - 1)x$. Also ist $(-\lambda - 1)$ ein Eigenwert von \overline{G} . Analog können wir zeigen, dass für $\lambda = \lambda_i(\overline{G})$ $(i \ge 2)$ -1 $-\lambda$ ein Eigenwert von G ist.

Lemma 1.18 Sei G ein Graph der Ordnung $n \in \mathbb{N}$ mit m = |E(G)| Kanten.

- (a) Die Summe aller Eigenwerte von G (mit Vielfachheiten) ist 0.
- (b) Die Summe der Quadrate aller Eigenwerte von G (mit Vielfachheiten) ist 2m.

Beweis: Wir zeigen zunächst (i). Für die Adjazenzmatrix A = A(G) gilt spur $(A) = \sum_{i=1}^{n} a_{ii} = 0$. Aus der Linearen Algebra ist bekannt, dass $\sum_{i=1}^{n} \lambda_i(A) = \text{spur}(A) = 0$ ist.

Um (ii) zu beweisen, betrachten wir $B = A^2$. Die Einträge $B_{i,j}$ geben die Anzahl aller Kantenfolgen der Länge 2 zwischen den Ecken v_i und v_j an. Insbesondere gilt $B_{i,i} = d_G(v_i)$. Daraus folgt:

$$\sum_{i=1}^{n} \lambda_i(G)^2 = \text{spur}(B) = \sum_{i=1}^{n} d_G(v_i) = 2|E(G)|$$

Lemma 1.19 Seien H ein induzierter Untergraph von G und k = |G| - |H|. Dann gilt

$$\lambda_p(G) \ge \lambda_p(H) \ge \lambda_{p+k}(G)$$

 $f\ddot{u}r \ 1 \le p \le n - k$.

Beweis: Ist H ein induzierter Untergraph von G, so entsteht A(H) aus A(G) durch Streichen von Spalten und den korrespondierenden Zeilen. Damit folgt die Behauptung aus Satz 1.6.

Korollar 1.20 Sei G ein Graph mit $\omega(G) = p$ und $\alpha(G) = q$. Dann gilt:

$$\lambda_p(G) \ge -1 \text{ und } \lambda_q(G) \ge 0.$$

Beweis: Ist $\omega(G) = p$, so besitzt G einen vollständigen induzierten Untergraphen H, der Ordnung p. Dann gilt $\lambda_1(H) = p - 1$ und $\lambda_i(H) = -1$ für $2 \le i \le p$ (siehe Beispiel 1.11). Damit folgt aus Korollar 1.20, dass $\lambda_p(G) \ge \lambda_p(H) \ge -1$ ist.

Ist $\alpha(G) = q$, so besitzt G einen kantenlosen induzierten Untergraphen H' der Ordnung q. Dann ist $\lambda_i(H') = 0$ für $1 \le i \le q$. Also folgt aus Korollar 1.20, dass $\lambda_p(G) \ge \lambda_p(H') = 0$ ist.

2 Erdős–Faber–Lovász Vermutung

Der Hauptteil dieser Bachelorarbeit befasst sich mit einer neuen Herangehensweise an die Erdős-Faber-Lovász Vermutung. Es bezeichne $\mathcal{EG}(n)$ die Klasse aller Graphen welche die Vereinigung von n kantendisjunkten vollständigen Graphen der Ordnung n sind.

Abbildung 1: Zwei Graphen aus $\mathcal{EG}(3)$ und $\mathcal{EG}(4)$

Für $G \in \mathcal{EG}(n)$ gilt also $G = \bigcup_{i=1}^n G_i$, wobei $G_i \cong K_n$ und $|G_i \cap G_j| \leq 1$ für alle $1 \leq i, j \leq n$ mit $i \neq j$ (in Abbildung 1 sind die Kanten der vollständigen Graphen mit der selben Farbe markiert).

Vermutung 2.1 (Erdős–Faber–Lovász(1972)) Sei $G \in \mathcal{EG}(n)$. Dann ist $\chi(G) = n$.

Über diese Vermutung ist viel bekannt, ein vollständiger Beweis fehlt jedoch bis jetzt.

2.1 Bekannte Resultate

Wir wollen nun einige bekannte Resultate beziehungsweise äquivalente Formulierungen dieser Vermutung angeben. Im Anschluss werden wir eine Vermutung über den k-ten Eigenwert k-chromatischer Graphen aufstellen, welche (sollte sie sich als wahr herausstellen) Vermutung 2.1 impliziert.

Bemerkung 2.2 Vermutung 2.1 gilt für $n \le 10$.

Quelle

2.2 Krauszzerlegungen von Graphen

Die Graphen aus $\mathcal{EG}(n)$ lassen sich alle durch n vollständige Graphen der Ordnung n kantendisjunkt überdecken. Im Folgenden wollen wir ein allgemeineres Konzept betrachten,

indem wir nicht fordern, dass alle Graphen der Überdeckung die selbe Ordnung haben. Diese Art der Überdeckung wurde zuerst von Krausz zur Charakterisierung von Kantengraphen verwendet, daher der Name Krauszzerlegung. Sei G ein Graph. Eine Menge K von Tausführlicher Untergraphen von G heißt Krauszzerlegung von G, falls folgende Bedingungen erfüllt sind:

- (Ka) Alle Graphen $K \in \mathcal{K}$ sind vollständige Graphen mit $|K| \geq 2$.
- (Kb) Sind K, K' zwei verschiedene Graphen aus K, so sind sie kantendisjunkt (d.h. $|K \cap K'| \le 1$)
- (Kc) ${\mathcal K}$ ist eine Überdeckung von G,d.h. $G=\bigcup_{K\in{\mathcal K}}K$

Desweiteren sei für $v \in V(G)$ der **Grad** von v bezüglich \mathcal{K} definiert als

$$d_G(v:\mathcal{K}) = |\{K \in \mathcal{K} | v \in V(K)\}|$$

und der **Minimalgrad** von G bezüglich \mathcal{K} als

$$\delta_G(\mathcal{K}) = \min_{v \in V(G)} d_G(v : \mathcal{K})$$

Für $d \geq 1$ sei $\kappa_d(G)$ die kleinste positive Zahl m derart, dass G eine Krauszzerlegung \mathcal{K} mit $|\mathcal{K}| = m$ und $\delta_G(\mathcal{K}) \geq d$ besitzt. Existiert keine solche Zahl m, so setzen wir $\kappa_d(G) = \infty$.

Abbildung 2: Eine Krauszzerlegung des K_4

Beispiel 2.3 In Abbildung 2 sehen wir eine Krauszzerlegung K des K_4 (die einzelnen kantendisjunkten Untergraphen sind jeweils mit der selben Farbe markiert). Wir können außerdem erkennen, dass $\delta_G(K) = 2$, und folglich $\kappa_2(K_4) \leq 4$ (wir werden später sehen, dass $\kappa_2(K_n) \geq n$ stets gilt, und somit $\kappa_2(K_4) = 4$ ist).

Lemma 2.4 Seien G ein Graph und $d \in \mathbb{N}$. Genau dann ist $\kappa_d(G) < \infty$, wenn $\delta(G) \geq d$ ist.

Beweis: Wir zeigen zunächst, dass $\delta(G) \geq d$ ist, falls $p = \kappa_d(G) < \infty$. Sei $v \in V(G)$ mit $d_G(v) = \delta(G)$. Dann existiert eine Krauszzerlegung $\mathcal{K} = \{K^1, \dots, K^p\}$ von G mit $\delta_G(\mathcal{K}) \geq d$. Da alle Graphen der Krauszzerlegung kantendisjunkt sind, gilt

$$d \le \sum_{K \in \mathcal{K}, v \in K} d_K(v) \le d_G(v) = \delta(v).$$

Dabei gilt die erste Ungleichung, da v in mindestens d der Graphen aus \mathcal{K} vorkommt.

Sei nun $\delta(G) \geq d$. Wir müssen zeigen, dass es eine Krauszzerlegung \mathcal{K} gibt, mit $d_G(v : \mathcal{K}) \geq d$ für alle $v \in V(G)$. Sei $E(G) = \{e_1, \ldots, e_m\}$ eine Nummerierung der Kanten. Sei dann K^i der Graph, welcher nur aus der Kante e_i und den zu e_i inzidenten Kanten besteht. Wir zeigen: $\mathcal{K} = \{K^i | 1 \leq i \leq m\}$ ist eine Krauszzerlegung von G mit $\delta_G(\mathcal{K}) \geq d$. (Ka) ist trivialerweise erfüllt, da alle Graphen von \mathcal{K} isomporph zu K_2 sind. Sind K, K' zwei verschiedene Graphen aus \mathcal{K} , so sind sie kantendisjunkt, da ihre einzigen Kanten in G verschieden sind. Also ist auch (Kb) erfüllt. Da jede Kante von G in einem $K \in \mathcal{K}$ vorkommt, ist auch (Kc) erfüllt. Sei nun v eine Ecke von G. Dann ist

$$d_G(v:\mathcal{K}) = d_G(v) \ge \delta(G) \ge d$$

und folglich auch $\delta_G(\mathcal{K}) \geq d$. Damit ist gezeigt, dass \mathcal{K} eine Krauszzerlegung von G ist mit $\delta_G(\mathcal{K}) \geq d$. Also ist $\kappa_d(G) \leq |K| < \infty$.

Beispiel 2.5 Sei G ein dreiecksfreier Graph mit Minimalgrad mindestens d. Dann ist $\kappa_d(G) = |E(G)|$, da G keine Dreiecke enthält und somit jeder Graph einer Krauszzerlegung von G isomorph zu K_2 sein muss.

Satz 2.6 Die folgenden Aussagen sind äquivalent:

- (a) Für alle $p \in \mathbb{N}$ und alle $G \in \mathcal{EG}(p)$ gilt $\chi(G) = p$.
- (b) Für alle Graphen G gilt $\chi(G) \leq \kappa_2(G)$.
- (c) Für alle linearen Hypergraphen H gilt $\chi'(H) \leq |H|$.

Beweis: Wir zeigen zunächst, dass (b) aus (a) folgt. Sei G ein Graph der Ordnung n. Ist $\kappa_2(G) = \infty$, so ist nichts zu zeigen. Andernfalls ist $\kappa_2(G) = p$. Dann existiert eine Krauszzerlegung $\mathcal{K} = \{K^1, \dots K^p\}$ von G mit $\delta_G(\mathcal{K}) \geq 2$. Ist $p \geq n$, so gilt:

$$\chi(G) \le n \le p = \kappa_2(G).$$

Ist andererseits p < n, so ist $|K^i| \le \omega(G) \le \kappa_2(G) = p$ für alle $1 \le i \le p$ (die letzte Ungleichung wird später in 3.5 gezeigt). Damit können wir für $1 \le i \le p$ jeden K^i durch Hinzufügen von Ecken und Kanten zu einem vollständigen Graphen vom Grad p aufblähen. Den so enstehenden Graphen nennen wir G'. Offenbar ist G ein Untergraph von G' und $G' \in \mathcal{EG}(p)$. Damit gilt

$$\chi(G) \le \chi(G') = p = \kappa_2(G)$$

Also folgt (b) aus (a).

Um zu zeigen, dass (a) aus (b) folgt, sei $G \in \mathcal{EG}(p)$ mit $p \in \mathbb{N}$. Dann ist G die kantendisjunkte Vereinigung von p vollständigen Graphen der Ordnung p, welche wir mit K^1, \ldots, K^p bezeichnen wollen. Nun entfernen wir wiederholt Ecken aus G, deren aktueller Grad kleiner als p ist solange, bis keine Ecken vom Grad kleiner als p existieren. Den daraus resultierenden (möglicherweise leeren) Graphen nennen wir H. Gelingt es, H mit p Farben zu färben, so können wir diese Färbung schrittweise zu einer Färbung von G erweitern, indem wir die entfernten Ecken in umgekehrter Reihenfolge färben. Dies ist mit p Farben möglich, da jede zu färbende Ecke höchstens p-1 bereits gefärbte Nachbarn besitzt. Somit reicht es zu zeigen, das $\chi(H) \leq p$. Ist $V(H) = \emptyset$, so gilt dies trivialerweise. Andernfalls gilt nach Konstruktion $\delta(H) \geq p$. Bleiben Ecken übrig, so nennen wir den resultierenden Graphen H. Nach Konstruktion gilt $\delta(H) \geq p$. Sei $\hat{K}^i = K^i \cap H$ für $1 \leq i \leq n$. Dann ist \hat{K}^i ein vollständiger Graph für alle i. Wähle $\mathcal{K} = \left\{ \hat{K}^i | |\hat{K}^i| \ge 2 \right\}$, $1 \le i \le n$. Wir zeigen, dass \mathcal{K} eine Krauszzerlegung von H mit $\delta_H(\mathcal{K}) \geq 2$ ist. Die Bedingung (Ka) ist offensichtlich erfüllt. Da in G die K^i kantendisjunkt sind, sind die \hat{K}^i in H ebenfalls kantendisjunkt. Folglich ist die Bedingung (Kb) ebenfalls erfüllt. Sei $v \in V(H)$. Dann ist $d_H(v) \ge p$, und somit gilt $d_G(v) \ge d_H(v) \ge p$. Die Ecke v ist in mindestens zwei vollständigen Graphen Kund K' aus der Krauszzerlegung $\mathcal K$ enthalten. Ansonsten wäre v nur in einem vollständigen Graphen $K \in \mathcal{K}$ enthalten und somit wäre $d_H(v) = d_K(v) \leq p-1$, was unmöglich ist. Folglich ist $d_H(v:\mathcal{K})\geq 2$ für alle $v\in V(H)$. Also ist \mathcal{K} eine Krauszzerlegung mit $\delta_H(\mathcal{K}) \geq 2$, und wegen (b) folgt dann:

$$\chi(H) \le \kappa_2(H) \le |\mathcal{K}| \le p.$$

Damit ist die Äquivalenz von (a) und (b) gezeigt.

Es bleibt die Äquivalenz von (b) und (c) zu zeigen. Zunächst zeigen wir, dass (b) aus (c) folgt. Dazu betrachten wir einen beliebigen Graphen G und zeigen, dass $\chi(G) \leq \kappa_2(G)$

gilt. Ist $\kappa_2(G) = \infty$, so ist (b) trivialerweise erfüllt. Andernfalls ist $\kappa_2(G) = p < \infty$ und es gibt eine Krauszzerlegung $\mathcal{K} = \{K^1, \dots, K^p\}$ von G mit $\delta_G(\mathcal{K}) \geq 2$. Für $v \in V(G)$ definiere e_v als die Menge aller $K \in \mathcal{K}$, welche v enthalten. Auf Grund der Wahl der Krauszzerlegung gilt $|e_v| = d_G(v : \mathcal{K}) \geq \delta_H(\mathcal{K}) \geq 2$ für alle $v \in V(G)$. Sei H der Hypergraph mit Eckenmenge \mathcal{K} und Kantenmenge $\{e_v|v \in V(G)\}$. Wir betrachten $\pi: V(G) \mapsto E(H)$ mit $\pi(v) = e_v$, diese ist offensichtlich surjektiv. Wir zeigen, dass π bijektiv ist. Wäre dem nicht so, so gäbe es zwei unterschiedliche Ecken v, w mit $e_v = e_w$. Da $|e_v| \geq 2$ ist, wäre dann die Kante vw in zwei Graphen von \mathcal{K} enthalten, was der Bedingung (Kb) widerspräche. Also ist π bijektiv. Wir zeigen nun, dass H ein linear Hypergraph ist. Seien dazu e_v, e_w zwei unterschiedliche Kanten von H. Angenommen $|e_v \cap e_w| \geq 2$. Dies ist ein Widersprüch zu Eigenschaft (Kb) der Krauszzerlegung \mathcal{K} . Folglich ist $|e_v \cap e_w| \leq 1$, also ist H linear. Dann folgt aus der Vorraussetzung (c), dass $\chi'(H) \leq |H| = \kappa_2(G)$ ist. Somit finden wir eine Färbung $g: E(H) \mapsto \{1, \dots, p\}$ der Kanten von H. Sei dann $f = g \circ \pi$. Wir zeigen, dass f eine Färbung der Ecken von G ist. Dazu betrachten wir eine Kante $vw \in E(G)$. Dann existiert ein $K \in \mathcal{K}$ mit $vw \in E(K)$. Also ist $e_v \cap e_w \neq \emptyset$ und folglich

$$f(v) = g(e_v) \neq g(e_w) = f(w).$$

Also ist f ein p-Färbung von G. Das heiß

$$\chi(G) .$$

Also folgt (b) aus (c).

Dass (c) aus (b) folgt, zeigen wir durch Widerspruch. Gelte (b) und sei H ein linearer Hypergraph minimaler Ordnung welcher (c) nicht erfüllt (d.h. ist H' ein weiterer linearer Hypergraph mit |H'| < |H|, so ist $\chi'(H') \le |H'|$). Ist $\delta(H) \le 1$, so können wir aus H eine Ecke v mit $d_H(v) \le 1$ entfernen. Für den Hypergraphen H' = H - v gilt dann $\chi'(H') \le |H'| = |H| - 1$. Da v in höchstens einer Kante von H enthalten ist, lässt sich die Färbung von H' zu einer $\chi'(H) + 1$ -Färbung von H erweitern. Dies steht im Widerspruch zur Wahl von H. Also ist $\delta(H) \ge 2$. Sei G der Kantengraph von H, d.h. V(G) = E(H) und $E(G) = \{ee' | e \cap e' \ne \emptyset, e, e' \in E(H)\}$. Für $v \in V(H)$ seien $E_H(v) = \{e \in E(H) | v \in e\}$ und $K^v = G[E_H(v)]$. Wir zeigen, dass die Menge $\mathcal{K} = \{K^v | v \in V(H)\}$ eine Krauszzerlegung von G mit $\delta_G(\mathcal{K}) \ge 2$ ist. Sei also $K \in \mathcal{K}$ beliebig. Dann gibt es eine Ecke $v \in V(H)$ mit $K = K^v = G[E_H(v)]$. Seien weiterhin $e, e' \in E_H(v)$ unterschiedliche Kanten. Da H ein linearer Hypergraph ist, ist $e \cap e' = \{v\}$ und deswegen $ee' \in E(K^v)$. Also ist K^v ein

vollständiger Graph. Außerdem ist

$$|K^v| = |E_H(v)| = d_H(v) \ge \delta(H) \ge 2$$

Also erfüllt \mathcal{K} die Bedingung (Ka). Seien nun K^v, K^w zwei verschiedene vollständige Graphen aus \mathcal{K} . Wir müssen zeigen, dass diese keine Kante in G gemeinsam haben. Angenommen, es gäbe eine solche Kante $ee' \in E(G)$. Dann wäre $v, w \in e \cap e'$. Ein Widerspruch, da H ein linearer Hypergraph ist. Also erfüllt \mathcal{K} (Kb). Sei $ee' \in E(G)$. Folglich ist $e \cap e' \neq \emptyset$ und es existiert eine Ecke v von H mit $e \cap e' = \{v\}$ (da H linearer Hypergraph). Damit sind $e, e' \in V(K^v)$. Da K^v ein vollständiger Graph ist, ist $ee' \in E(K^v)$. Also erfüllt \mathcal{K} die Bedingung (Kc). Es bleibt zu zeigen, dass $\delta_G(\mathcal{K}) \geq 2$ ist. Sei dazu $e \in V(G)$ beliebig. Da wir H als schlingenlos angenommen haben, existieren zwei unterschiedliche Ecken $v, w \in e$. Also ist $e \in K^v$ und $e \in K^w$. Diese beiden vollständigen Graphen sind unterschiedlich, da sonst v und w in zwei Kanten enthalten sind. Das ist aber unmöglich, da H ein linearer Genauer! Hypergraph ist. Damit ist

$$\chi'(H) = \chi(G) \le \kappa_2(G) \le |\mathcal{K}| = |H|$$

Ein Widerspruch zur Annahme $\chi'(H) > |H|$.

3 Spektraleigenschaften von Graphen

In diesem Kapitel wollen wir die in Abschnitt 1.3 behandelten Themen weiter vertiefen. Insbesondere werden wir einen Zusammenhang zwischen Krauszzerlegungen und den Eigenwerten eines Graphen herstellen. Da spezielle Krauszzerlegungen von Graphen (nämlich diejenigen mit Minimalgrad ≥ 2) in Zusammenhang mit Vermutung 2.1 stehen, werden wir hier eine alternative Herangehensweise an die Vermutung finden.

3.1 Krauszzerlegungen und Eigenwerte

Satz 3.1 Seien G ein Graph mit $V(G) = \{v_1, \ldots, v_n\}$ und $\mathcal{K} = \{K^1, \ldots, K^p\}$ eine Krauszzerlegung von G mit $d_G(\mathcal{K}) \geq d \geq 2$. Desweiteren sei $d_i = d_G(v_i : \mathcal{K})$ für $1 \leq i \leq n$. Dabei
wählen wir die Eckennummerierung so, dass $d_1 \geq \cdots \geq d_n$ ist. Dann gelten folgende
Aussagen:

(a)
$$\lambda_i(G) \geq -d_{n-i+1} \text{ für } i = 1, \dots, n.$$

(b)
$$\lambda_{p+1}(G) \leq -d \text{ falls } p < n \text{ ist.}$$

Beweis: Zunächst zeigen wir (a). Es sei A die Adjazenzmatrix von G und $D := \text{diag}(d_1, \ldots, d_n)$. Definiere $B \in \mathbb{R}^{n \times m}$ als die Inzidenzmatrix von \mathcal{K} , also

$$B_{i,j} = \begin{cases} 1 & v_i \in K^j \\ 0 & v_i \notin K^j \end{cases}$$

Nun betrachten wir $M = BB^T$. Es gilt

$$M_{i,j} = \sum_{k=1}^{d} B_{i,k} B_{j,k}$$

Seien zunächst $i, j \in \{1, ..., n\}$ mit $i \neq j$. Ist $B_{i,k} = 1$ und $B_{j,k} = 1$, so ist $v_i, v_j \in K^k$, und somit (da K^k ein vollständiger Graph ist) $v_i v_j \in E(G)$. Es können aber für höchstens ein $k \in \{1, ..., m\}$ $B_{i,k}$ und $B_{j,k}$ gleichzeitig 1 seien, da nach Definition einer Krauszzerlegung die Graphen aus K kantendisjunkt sind. Also ist $M_{i,j} = 1$ genau dann, wenn $v_i v_j \in E(G)$, genau dann wenn $A_{i,j} = 1$. Somit ist $M_{i,j} = A_{i,j}$

Sei nun $i \in \{1, ..., n\}$ beliebig. Wir betrachten $M_{i,i}$. Es gilt

$$M_{i,i} = \sum_{k=1}^{d} B_{i,k} B_{i,k} = \sum_{k=1}^{d} B_{i,k}.$$

 $B_{i,k} = 1$ gilt genau dann, wenn $v_i \in K^k$. Folglich ist $M_{i,i} = d_G(v_i : \mathcal{K}) = d_i$. Damit gilt M = A + D. M ist nach Satz 1.3 positiv semidefinit. Folglich ist A - (-D) positiv semidefinit, und es folgt mit Lemma 1.5, dass

$$\lambda_i(G) = \lambda_i(A) \ge \lambda_i(-D) = -d_{n-i+1}$$

Damit ist (a) gezeigt.

Nun zeigen wir (b). Sei p < n. Dann ist $\operatorname{rang}(M) = \operatorname{rang}(B) \le p$. Also ist $\lambda_{p+1}(M) = 0$ und es folgt mit Satz 1.7 dass

$$\lambda_{p+1}(A) + d \le \lambda_{p+1}(A) + d_n \le 0$$

Durch Umstellen erhalten wir die gewünschte Ungleichung.

Korollar 3.2 Sei H ein induzierter Untergraph von G und seien $q, d \in \mathbb{N}$ mit $q \leq |H|$ und $d \geq 2$. Ist $\lambda_q(H) \geq -d$, so ist $\kappa_d(G) > q$.

Beweis: Angenommen es gilt $p = \kappa_d(G) < q$. Dann gibt es eine Krauszzerlegung \mathcal{K} von G mit $|\mathcal{K}| = p$ und $\delta_G(\mathcal{K}) \geq d$. Wegen Lemma 1.19 gilt dann $\lambda_q(G) \geq \lambda_q(H) > -d$. Andererseits folgt aus Satz 3.1 dass $\lambda_q(G) \leq \lambda_{p+1} \leq -d$, ein Widerspruch.

Korollar 3.3 Seien $\delta(G) \geq 2$ und H ein induzierter Untergraph von G. Ist H Kantengraph eines Waldes, so gilt Dann ist $\kappa_2(G) \geq |H|$.

Beweis: Sei q = |H|. Da H Kantengraph eines Waldes ist, folgt $\lambda_q(H) > -2$ (vgl. [4, 3.4.10]) Dann ist mit Korollar 3.2 $\kappa_2(G) \ge |H|$.

Korollar 3.4 (Klotz) $\kappa_2(K_n) \geq n$

Beweis: K_n ist der Kantengraph von $K_{1,n}$. Nun folgt die Behauptung aus Korollar 3.3.

Korollar 3.5 *Ist* $\delta(G) \geq 2$, so gilt $\omega(G) \leq \kappa_2(G)$ und $\alpha(G) \leq \kappa_2(G)$.

Beweis: Sei $p = \omega(G)$. Dann gilt nach Korollar 1.20 $\lambda_p(G) \ge -1 > -2$. Damit sind für d = 2 die Voraussetzungen von Korollar 3.2 erfüllt, und es gilt folglich $\kappa_2(G) \ge p = \omega(G)$. Für $q = \alpha(G)$ gilt mit Korollar 1.20 $\lambda_q(G) \ge 0 > -2$. Damit folgt $\alpha(G) \le \kappa_2(G)$.

Satz 3.6 Existiert ein $d \in \mathbb{N}$, sodass für alle Graphen G mit $\chi(G) = k$ gilt $\lambda_k(G) > -d$. Dann gelten folgende Aussagen:

- (a) Für alle Graphen G gilt $\chi(G) \leq \kappa_d(G)$.
- (b) Ist H ein linearer Hypergraph mit $|e| \ge d$ für alle $e \in E(H)$, so ist $\chi'(H) \le |H|$

Beweis: Wir zeigen zunächst (a). Sei G ein beliebiger Graph mit $\chi(G) = k$. Nach Voraussetzung des Satzes ist dann $\lambda_k(G) > -d$. Mit Korollar 3.2 folgt $\kappa_d(G) \ge k = \chi(G)$. Damit ist (a) gezeigt.

Wir zeigen nun (b) durch Widerspruch. Angenommen die Behauptung gilt nicht. Dann gibt es einen linearen Hypergraphen minimaler Ordnung mit $|e| \geq d$ für alle $e \in E(H)$, für welchen $\chi'(H) > H$. Fall 1: Es existiert eine Kante e von H vom Grad kleiner als d. Da $|e| \geq d$ ist und H ein linearer Hypergraph ist, gibt es eine Ecke v von H welche nur in e vorkommt. Diese entfernen wir und erhalten einen Hypergraphen H' der Ordnung |H'| = |H| - 1. Dieser lässt sich mit $\chi'(H') \leq |H'|$ Farben färben. Diese Färbung können wir zu einer Färbung von H mit höchstens |H'| + 1 = |H| Farben erweitern. Ein Widerspruch zur Wahl von H.

fallunterscheid:

Fall 2: Alle Kanten von H haben mindestens den Grad d.

Angenommen in diesem exisitiert eine Kante vom Grad kleiner als d. Entfernen wir diese, erhalten wir einen Hypergraphen H' kleinerer Mächtigkeit. Dieser erfüllt die Behauptung, da H das kleinste Gegenbeispiel ist. Also existiert eine Kantenfärbung von H' mit höchstens |H'| < |H| Farben. Aus dieser gewinnen wir eine Kantenfärbung von H, indem wir alle Kanten wie in H' färben, und die entfernte Kante mit einer neuen Farbe färben. Folglich gilt also:

$$\chi'(H) < \chi'(H') + 1 < |H'| + 1 < |H|$$

Ein Widerspruch. Folglich haben alle Kanten in H mindestens Grad d.

Sei nun G = L(H) der Kantengraph von H. Dann ist $\delta(G) \geq d$. Für eine Ecke $v \in V(H)$ sei (analog zum Beweis von Satz 2.6) $E_H(v) = \{e \in E(H) | v \in e\}$ und $K^v = G[E_H(v)]$. Wie in Satz 2.6 folgt, dass $\mathcal{K} = \{K^v | v \in V(H)\}$ eine Krauszzerlegung von G mit $\delta_G(\mathcal{K}) \geq d$ ist. Damit gilt

$$\chi'(H) = \chi(G) \le \kappa_d(G) \le |\mathcal{K}| = |H|$$

Wobei die erste Ungleichung wegen (a) gilt. Damit ist alles gezeigt.

3.2 Schranken für $\kappa_d(G)$

Wir wollen nun einige Schranken für $\kappa_d(G)$ angeben.

Lemma 3.7 *Ist* $\delta(G) \geq d$, so ist $\kappa_d(G) \leq |E(G)|$.

Beweis: Dies folgt unmittelbar aus dem Beweis von Lemma 2.4.

Satz 3.8 Sei G ein Graph der Ordnung n und $d \in \mathbb{N}$. Dann gilt:

$$\kappa_d(G) \ge \frac{nd}{\lambda_1(G) + d}$$

Beweis: Ist $\kappa_d(G) = \infty$, so ist nichts zu zeigen.

Fall 1 : $\kappa_d(G) \ge n$ Da $\lambda_1(G) \ge 0$, gilt

$$\lambda_1(G) + d \ge d$$

$$1 \ge \frac{d}{\lambda_1(G) + d}$$

$$\kappa_d(G) \ge n \ge \frac{nd}{\lambda_1(G) + d}$$

Fall 2: $\kappa_d(G) < n$ Sei \mathcal{K} eine Krauszzerlegung von G mit $|\mathcal{K}| = \kappa_d(G)$ und $\delta_G(\mathcal{K}) \ge d$. Seien $d_i = d_G(v : \mathcal{K})$. Wir können annehmen, dass die d_i fallend geordnet sind. Sei $B \in \mathbb{R}^{n \times p}$ die Adjanzenzmatrix von \mathcal{K} und $M = BB^T = A + D$, wobei A = A(G) und $D = \operatorname{diag}(d_1, \ldots, d_n)$. Dann ist M positiv semidefinit und $\operatorname{rang}(M) \le p = \kappa_d(G) < n$. Deswegen ist $\lambda_{p+1}(M) = \ldots \lambda_n(M) = 0$. Mit Satz 1.8 folgt dann :

$$\sum_{i=1}^{n} \lambda_i(D) = \sum_{i=1}^{n} \lambda_i(A) + \sum_{i=1}^{n} \lambda_i(D)$$
$$= \sum_{i=1}^{n} \lambda_i(M) = \sum_{i=1}^{p} \lambda_i(M)$$
$$\leq \sum_{i=1}^{p} \lambda_i(A) + \sum_{i=1}^{p} \lambda_i(D)$$

Daraus folgt

$$(n-p)d \le (n-p)\lambda_n(D) \le \sum_{i=m+1}^n \lambda_i(D) \le \sum_{i=1}^p \lambda_i(A) \le p\lambda_1(A)$$

Durch Umstellen nach p erhalten wir die gewünschte Ungleichung.

3.3 Chromatische Zahl und Eigenwerte

Es ist nicht viel über den Zusammenhang der chromatischen Zahl eines Graphen, und seinen Eigenwerte bekannt. Wir wollen hier nur kurz auf zwei Sätze verweisen, die Schranken für die chromatische Zahl eines Graphen in Abhängigkeit des größten bzw. kleinsten Eigenwerts angeben. Eine Abschätzung nach oben (ähnlich zu dem Brookschen Satz) gibt Wilf in [5] an.

Satz 3.9 Ist G ein Graph, so gilt:

$$\chi(G) \le \lambda_1(G) + 1$$

Gleichheit tritt nur auf, falls G ein vollständer Graph oder ein ungerader Kreis ist.

Eine untere Schranke findet sich in [2] (man beachte hierbei, dass $\lambda_n(G)$ negativ ist):

Satz 3.10 Ist G ein Graph mit |G| = n, so gilt:

$$\chi(G) \ge 1 - \frac{\lambda_1(G)}{\lambda_n(G)}$$

3.4 k-chromatische Graphen mit $\lambda_k > -2$

Gilt Satz 3.6 für d=2, so folgt die Erdős–Faber–Lovász Vermutung auf Grund von Satz 2.6. Im Folgenden wollen wir für einige Graphenklassen folgende Vermutung überprüfen.

Vermutung 3.11 *Ist* G *ein Graph mit* $\chi(G) = k$, *dann gilt* $\lambda_k(G) > -2$.

Ein Graph G heißt k-kritisch, falls $\chi(G)=k$ und $\chi(H)< k$ für alle induzierten Untergraphen H von G.

Bemerkung 3.12 Es reicht Vermutung 3.11 für k-kritische Graphen zu zeigen.

$$\lambda_k(G) \ge \lambda_k(H) > -2$$

Damit gilt Vermutung 3.11 auch für G.

Seien v, r zwei natürliche Zahlen mit $v \ge r$. Der **Kneser Graph** $K_{v:r}$ ist der Graph mit Eckenmenge $V(K_{v:r}) = \{X \subset \{1, \dots v\} | |X| = r\}$ und Kantenmenge

 $E(K_{v:r}) = \{XY | X, Y \in V(K_{v:r}), X \cap Y = \emptyset\}.$

Es wurde gezeigt, dass $\alpha(K_{v:r}) = \binom{v-1}{r-1}$ (falls v > 2r) und $\chi(K_{v:r}) = v - 2r + 2$. Das, Referenz und Korollar 1.20 erlaubt uns Vermutung 3.11 für alle Kneser Graphen zu beweisen.

Satz 3.13 Seien $k, v \in \mathbb{N}$ mit k > v und sei $G = K_{v:r}$ ein Kneser-Graph mit $\chi(G) = k$. Dann gilt $\lambda_k(G) > -2$

Beweis: Wir machen eine Fallunterscheidung bezüglich r.

Fall 1: r = 1 Dann ist $G = K_{v:1}$ isomorph zu K_v , da alle Ecken von G einelementige Teilmengen von $\{1, \ldots, v\}$ sind, und diese alle miteinander disjunkt sind. Die Eigenwerte des K_v sind alle größer als -2.

Fall $2: v > 2r \ge 4$ Sei $p = \alpha(G)$. Dann ist $p = \binom{v-1}{r-1}$ und folglich $p \ge v-1$. Andererseits ist $\chi(G) = v - 2r + 2 < v - 2$. Folglich ist $p > \chi(G)$. Mit Korollar 1.20 gilt dann

$$\lambda_k(G) \ge \lambda_p(G) \ge 0 > -2$$

Fall 3: 2r = v Die Ecken von G sind alle r-elementingen Teilmengen von $\{1, \ldots, v\}$. Da v = 2r ist für ein $w \in V(G)$ die einzige benachbarte Ecke ihr Komplement in $\{1, \ldots, v\}$. Also sind die Komponenten von G alle isomoprh zu K_2 . Dann ist $\chi(G) = 2$ und $\omega(G) = 2$. Aus Korollar 1.20 folgt dann, dass $\lambda_2(G) \geq -1 > -2$ ist.

Fall 4: 2r > v Dann ist |E(G)| = 0, da je zwei Ecken nichtleeren Schnitt haben, und folglich ist G ein leerer Graph, welcher nur den Eigenwert 0 > -2 besitzt. Insbesondere ist also auch $\lambda_k(G) > -2$.

Satz 3.14 Sei G ein perfekter Graph. Dann gilt für $k = \chi(G)$:

$$\lambda_k(G) > -2$$

Beweis: Da G ein perfekter Graph ist, gilt $k = \chi(G) = \omega(G)$. Also besitzt G einen vollständigen Graphen der Ordnung k als induzierten Untergraphen. Nach 1.20 ist $\lambda_k(G) > -2$.

Satz 3.15 Vermutung 3.11 gilt für planare Graphen.

Beweis: Sei G ein planarer Graph. Wir machen eine Fallunterscheidung nach n = |G|.

Fall 1 : $n \le 6$

Fall 2: $n \ge 7$ Wir zeigen, dass $\lambda_4(G) > -2$ gilt. Da alle planaren Graphen eine chromatische Zahl kleiner gleich 4 haben, folgt dann die Behauptung.

Nehmen wir dafür an, dass $\lambda_4(G) < -2$ gilt. Aus Lemma 1.18 (i) folgt dann:

$$\sum_{i=1}^{3} \lambda_i(G) = -\sum_{i=4}^{n} \lambda_i(G) \ge 2(n-3) = 2n - 6$$

Mit Lemma 1.18 (ii) folgt außerdem:

$$\sum_{i=1}^{3} \lambda_i(G)^2 = 2m - \sum_{i=4}^{n} \lambda_i(G)^2$$

$$\leq 2(3n-6) - 4(n-3) = 2n$$

Die Ungleichung folgt dabei aus der Abschärtzung der Kanten für planare Graphen. Aus der Abschätzung der 2 und 1 Norm folgt nun:

$$2n \ge \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$

$$\ge \frac{1}{3}(|\lambda_1| + |\lambda_2| + |\lambda_3|)^2$$

$$\ge \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)^2$$

$$\ge \frac{1}{3}(2n - 6)^2$$

Lösen der entstehenden quadratischen Gleichung ergibt $n \leq 6$, ein Widerspruch.

Literatur

- [1] J.N. Franklin. Matrix theory. Prentice-Hall Series in Applied Mathematics. Englewood Cliffs, N.J.: Prentice-Hall, Inc. XII, 292 p. (1968)., 1968.
- [2] A.J. Hoffman. On eigenvalues and colorings of graphs. In ed. B.Harris, editor, *Graph Theory and its Applications*, pages 79–91. Academic Press, 1970.
- [3] Mohammad Sal Moslehian. Ky fan inequalities, 2011.
- [4] Dragoš Cvetković, Peter Rowlinson, and Slobodan Simić. An introduction to the theory of graph spectra. Cambridge: Cambridge University Press, 2010.
- [5] Herbert S Wilf. The eigenvalues of a graph and its chromatic number. *J. London Math. Soc*, 42(1967):330, 1967.

Erklärung: Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig verfasst und nur die angegebene Literatur verwendet habe. Die Arbeit wurde bisher keiner Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ilmenau, 26. September 2014

Stefan Heyder