

What is claimed is:

- 1 1. A cache-coherent device comprising:
 - 2 a plurality of client ports, each to be coupled to one of a plurality of port components;
 - 3 a plurality of sub-unit caches, each coupled to one of said plurality of client ports and
 - 4 assigned to one of said plurality of port components; and
 - 5 a coherency engine coupled to said plurality of sub-unit caches.

- 1 2. The device of claim 1 wherein said plurality of port components include processor port components.

- 1 3. The device of claim 1 wherein said plurality of port components include input/output components.

- 1 4. The device of claim 3 wherein said plurality of sub-unit caches include transaction buffers using a coherency logic protocol.

- 1 5. The device of claim 4 wherein said coherency logic protocol includes a Modified-Exclusive-Shared-Invalid (MESI) cache coherency protocol.

- 1 6. A processing system comprising:
 - 2 a processor;
 - 3 a plurality of port components; and

4 a cache-coherent device coupled to said processor and including a plurality of client
5 ports, each coupled to one of said plurality of port components, said cache-coherent device
6 further including a plurality of caches, each coupled to one of said plurality of client ports and
7 assigned to one of said plurality of port components, and a coherency engine coupled to said
8 plurality of caches.

1 7. The processing system of claim 6 wherein said plurality of port components include
2 processor port components.

8. The processing system of claim 6 wherein said plurality of port components include
input/output components.

9. In a cache-coherent device including a coherency engine and a plurality of client ports, a
method for processing a transaction, comprising:

4 receiving a transaction request at one of said plurality of client ports, said transaction
request includes an address; and

5 determining whether said address is present in one of a plurality of sub-unit caches, each
6 of said sub-unit caches assigned to said of a plurality of client ports.

1 10. The method of claim 9 wherein said transaction request is a read transaction request.

1 11. The method of claim 10 further comprising:

2 transmitting data for said read transaction request from said one of said plurality of sub-
3 unit caches to one of said plurality of client ports.

1 12. The method of claim 11 further comprising:
2 prefetching one or more cache lines ahead of said read transaction request; and
3 updating the coherency state information in said plurality of sub-unit caches.

1 13. The method of claim 12 wherein the coherency state information includes a Modified-
2 Exclusive-Shared-Invalid (MESI) cache coherency protocol.

1 14. The method of claim 9 wherein said transaction request is a write transaction request.

1 15. The method of claim 14 further comprising:
2 modifying coherency state information for a cache line in said one of said plurality of
3 sub-unit caches;
4 updating coherency state information in others of said plurality of sub-unit caches by said
5 coherency engine; and
6 transmitting data for said write transaction request from said one of said plurality of sub-
7 unit caches to memory.

1 16. The method of claim 15 further comprising:
2 modifying coherency state information of said write transaction request in the order
3 received; and

4 pipelining multiple write requests.

1 17. The method of claim 16 wherein the coherency state information includes a Modified-
2 Exclusive-Shared-Invalid (MESI) cache coherency protocol.