Programación concurrente 2018

Integrantes:

- Lujan, Martin
- Morales, Julian

TP Integrador

En este práctico se debe resolver el control de acceso a una playa de estacionamiento con 3 entradas (calles) diferentes. En esta playa hay 2 pisos, y en cada piso pueden estacionar 30 autos. La playa cuenta con 2 salidas diferentes y una única estación de pago (caja). En los accesos a la playa y en los egresos existen barreras que deben modelarse.

La playa cuenta con lugares (3) donde los vehículos se detienen cuando quieren entrar (barrera), una vez que ingresaron se les indica un piso y estacionan (puede ser piso 1 o piso 2). Se debe cuidar que no se permita el ingreso (superar barrera) a más vehículos de los espacios disponibles totales. Los autos que se retiran de la playa deben liberar un espacio del piso en que se encontraban (diferenciar estacionamiento en cada piso). Cuando un vehículo se va a retirar puede optar por salida a calle 1 ó salida a calle 2.

Luego debe abonar la estadía. El cobro de la estadía le lleva a un empleado promedio al menos 3 minutos. (Existe una sola caja). En caso de que la playa esté llena, se debe encender un cartel luminoso externo que indica tal situación.

El sistema controlador debe estar conformado por distintos hilos, los cuales deben ser asignados a cada conjunto de responsabilidades afines en particular. Por ej. Ingreso de vehículos, manejo de barreras, etc.

Debe realizar

- 1) La red de Petri que modela el sistema.
- 2) Agregar las restricciones necesarias para evitar interbloqueos ni accesos cuando no hay lugar, mostrarlo con la herramienta elegida y justificarlo.
- 3) Simular la solución en un proyecto desarrollado con la herramienta adecuada (expliqueporque eligió la herramienta usada).
- 4) Colocar tiempo en las estación de pago caja (en la/s transición/es correspondiente/s).
- 5) Hacer la tabla de eventos.
- 6) Hacer la tabla de estados o actividades.
- 7) Determinar la cantidad de hilos necesarios (justificarlo)
- 8) Implementar dos casos de Políticas para:
 - a) Prioridad llenar de vehículos planta baja (piso 1) y luego habilitar el piso superior. Prioridad salida indistinta (caja).
 - b. Prioridad llenado indistinta. Prioridad salida a calle 2.
- 9) Hacer el diagrama de clases.
- 10) Hacer los diagramas de secuencias.

La red de Petri que modela el sistema

Adjunto se encuentra en la carpeta doc/PetriModel los modelos creados, siendo esta la tercera version que cumple con los requerimientos pedidos, tambien se encuentran los fuente de las redes en formato XML para PIPEv4, el cual elegimos como herramienta ya que permitia testear la vivasidad de la red y obtener sus invariantes y matrices, que luego con un script transformamos de manera directa a un JSON que se carga en el programa con la configuración de la red y su estado inicial.

Tablas de estados y eventos

Tabla de estados		
cartelOff	Cartel apagado	
cartelOn	Cartel encendido	
lugaresTotalesLibres	Lugares totales libres	
ingreso1	Ingresa por calle 1	
ingreso1Lugares	Cantidad de lugares en la entrada	
ingreso1BarreraAlta	Abierta para que pase 1 auto	
ingreso1BarreraBaja	Cerrada	
ingreso2	Ingresa por calle 2	
ingreso2Lugares	Cantidad de lugares en la entrada	
ingreso2BarreraAlta	Abierta para que pase 1 auto	
Ingreso2BarreraBaja	Cerrada	
ingreso3	Ingresa por calle 3	
ingreso3Lugares	Cantidad de lugares en la entrada	
ingreso3BarreraAlta	Abierta para que pase 1 auto	
ingreso3BarreraBaja	Cerrada	
ingresos	Autos esperando para elegir piso	
selectorDePiso	Auto en el selector de piso	
selectorLimite	Limite de autos en el selector	
PisoALugaresOcupados	Lugares ocupados piso a	

PisoALugaresLibres	lugares libres piso a
Rampa	rampa de asc/desc piso b
PisoBSubiendo	Auto subiendo al piso b
PisoBLugaresLibres	Lugares lires segundo piso
PisoBLugaresOcupados	lugares ocupados piso b
PisoBBajando	Bajando del piso b
egreso	Saliendo del estacionamiento para ir a cobrar
caja	Cajero
cobrando1	Cobrando por calle 1
Salida1BarreraBaja	Barrera baja de la calle 1
Salida1BarreraAlta	Barrera alta de la calle 1
cobrando2	Cobrando por la calle 2
Salida2BarreraAlta	Barrera alta de la calle 2
Salida2BarreraBaja	Barrera baja de la calle 2

Tabla de eventos	
ApagaCartel	Cuando hay lugares disponibles
PrendeCartel	Cuando no hay lugares libres disponibles
ingreso1Termina	Cuando el auto entra a la playa
ingreso1AbreBarrera	Cuando el auto quiere entrar a la playa
ingreso1Generador	Autos que llegan
ingreso1NoEntra	Autos que llegan pero no entran
Ingreso2Termina	Cuando el auto entra a la playa

ingreso2AbreBarrera	Cuando el auto quiere entrar a la playa
ingreso2Generador	Autos que llegan
ingreso2NoEntra	Autos que llegan pero no entran
ingreso3Termina	Cuando el auto entra a la playa
ingreso3AbreBarrera	Cuando el auto quiere entrar a la playa
ingreso3Generador	Autos que llegan
ingreso3Noentra	Autos que llegan pero no entran
IngresaSelector	Cuando el auto debe seleccionar el piso
PisoAEntra	Entro al piso a
PisoASale	Salio del piso a
PisoBEntra	Entra al piso b si esta disponbile la rampa
PisoBSale	Sale del piso, debe esperar la rampa
PisoBSubio	Subiendo al piso por la rampa
PisoBBajando	Bajando al piso por la rampa
SalePor1	Sale por la calle 1
Salida1AbreBarrera	Se abre la barrera para quie salga
Salio1	Salio
SalePor2	Sale por calle 2
salio2	Salio
Salida2AbreBarrera	Abre la barrera para que salga

Cantidad de hilos

Utilizamos un hilo por transicion menos aquella secuncia de transiciones que se disparan en un orden especifico y necesario, de tal manera que el sistema no evoluciona distinto por tenermas un hilo con una secuancia de transiciones.

Un caso atipico que nos llevo a utilizar un hilo para cada transicion en una secuncia era por que el hilo devolvia el semaforo del monitor e inmediatamente entraba en un cambio de conexto que hacia que no este encolado, por lo tanto perdia frente a otro hilo la prioridad, esto sucede cuando se usa un solo hilo para el pago y el cobro de cada calle. haciendo que cuando salga de la playa no alcanse a encolarse y la otra salida ganaba el disparo de la transicion para cobrar y salir por ese lugar.

Se produce una situacion similar en el selector de ingresos, donde luego de dispararse la transicion de que tiene mas prioridad entra en un cambio de conexto sin poder encolarse

Diagrama de secuencia del monitor

Los diagramas se encuentran en la carpeta doc/Diagramas, y son 3. Uno es sin tiempo, el segundo es con tiempo que es el que fue implementado y el tercero es una idea de como resolver las politicas en las temporales en sistemas mas complejos, pero no fue implementado no solo por la complejidad, si no por que la red actual no usaria las funciones que resuelve este ultimo diagrama.

Diagrama de clases

El diagrama de clases es muy excenso, y al igual que los demas se encuentra en doc/Diagramas/Monitor