Reparameterizing Distributions on Lie Groups

Luca Falorsi^{1,2}, Pim de Haan^{1,3}, Tim R. Davidson^{1,2}, Patrick Forré¹

A Probabilistic Model of The World

- Generally, in machine learning we aspire to model the world around us
- We attempt to infer latent structure responsible for observed events
- Unfortunately, our observations can be incomplete and noisy
- Hence, we utilize a probabilistic approach to allow for imperfect predictions

Variational Inference

- Given: Observations (X) Assumed: Latent Structure (Z)
 - We would like to infer the posterior over latent variables given observations, p(Z | X)
- Deep Learning: Powerful to learn arbitrary functions
- Bayes Rule: intractable in practice
- Alternative: Variational Inference (VI)
 - transforms inference task into an optimization problem
 - find distribution q(**Z**), that best approximates true posterior
- Reparameterization trick crucial to enable VI in DL

Reparameterizable distributions

$$\nabla_{\theta} \mathbb{E}_{z \sim q(\mathbf{z}; \theta)}[f(\mathbf{z})] = \nabla_{\theta} \mathbb{E}_{\epsilon \sim s(\epsilon)}[f(\mathcal{T}(\epsilon; \theta))]$$

$$= \mathbb{E}_{\epsilon \sim s(\epsilon)}[\nabla_{\theta} f(\mathcal{T}(\epsilon; \theta))]$$
where $\mathcal{T}(\epsilon; \theta) = z \sim q(z; \theta)$, if $\epsilon \sim s(\epsilon)$

- We want to:
 - Take unbiased, low variance gradients with respect to the distribution's parameters
- We need to be able to:
 - Take samples of the distribution by first sampling a simple distribution independent on the parameters and then transforming it into the target distribution
 - Compute the density (often useful for computing KL using MC estimates)

So, is reparameterizing distributions solved?

- **No general trick** to reparameterize arbitrary density
- In recent years much research has been done on extending the class of reprametrizable densities:
 - Normalizing Flows (Rezender & Mohammed 2014)
 - Acceptance Rejection Sampling (Naesseth et al. 2017)
 - Implicit Reparameterization (Figurnov et al. 2018)
- However almost all past work assumes a 'flat' Euclidean space

Lie Groups in the Wild

- Yet many problems are naturally defined on non-trivial spaces:
 - Example 1: estimate position and orientation of a Drone
 - Example 2: infer camera position and orientation
 - Example 3: maximum entropy reinforcement learning on a Robotic Arm
 - Example 4: inference of an orthogonal matrix in a Bayesian Neural Network
- All of the above can be described in terms of 'Lie Groups'!

What is a Lie Group

- Manifold: **locally** Euclidean, but **globally** non-trivial
- Lie Groups, manifolds with group structure:
 - The elements of the space can operate on the space itself by group multiplication
- Very useful construct to describe changes of objects over time!

Lie Group Examples

SO(2)

SO(3)

SE(3)

Gaussian Reparametrization

Location-scale reparameterization trick

- a. Sample from standard Gaussian
- b. Change scale
- c. Change location by using translation operation

Reparameterize Lie Groups

Reparameterize Lie Group

- Reparametrize a density in Euclidean space:
 - Tangent space at group identity: Lie algebra g ≈ ℝ^D [SO(2): ℝ]

- Exponential map: $\exp : \mathbb{R}^{\mathbb{D}} \cong \mathfrak{g} \to \mathscr{G}$ [SO(2): mod 2π]
- For matrix Lie groups this is the matrix exponential

- Moving the distribution on the lie group on a target position:
 - Action of group on itself by left group multiplication $L_{\mu}(g) = \mu \cdot g$ [SO(2): +0 mod 2π]

Reparameterize General Lie Group:

- Reparameterize density in ℝ^N
- Exponential map
- Act by left multiplication

Where does the difficulty 'Lie'?

- Exponential map:
 - In general non-injective
 - In some groups can be constant under local variations

Where does the difficulty 'Lie'?

- Exponential map:
 - In general **non-injective**
 - In some groups can be constant under local variations (in a set of measure zero)
- We prove it has a density

$$p(a) = \sum_{\mathbf{x} \in \mathfrak{g}: \exp(\mathbf{x}) = a} r(\mathbf{x}) |J(\mathbf{x})|^{-1}$$

- Contributions from all pre-image algebra elements
- Change of volume
 - From auto-diff
 - From Lie Algebra representation

Non-injectivity

Synthetic example: SO(3)

- Group of 3D oriented rotations, describe rotations of static object
- Task: given two views of an object, find which rotation(s) relate(s) them
- Variational Inference on SO(3)-valued latent
 - Object (a) has rotational symmetry around one axis
 - Object (b) has threefold discrete symmetry around one axis

Normalizing Flow

- True posterior: circular subgroup / discrete subgroup (order 3)
- **Multi-modal** distributions needed:
 - Recall we can use **arbitrary base distribution** in the Lie Algebra
 - Why not use Normalizing Flows (NF)?
- Basic NF: use repeated invertible transformations to create complex density
 - Parameterize very complex distribution in Lie Algebra and push to Lie Group

Results

- Markov Chain Monte Carlo true posterior v. approximate model posterior
- Modeled results are lifted in z-axis for clarity
- Almost perfectly capture latent dynamics!

Takeaway

- Go beyond Euclidean spaces!
- Easy to use framework for distributions on all Lie Groups
- Can express powerful multimodal distributions
- Usable for:
 - Variational Inference
 - Maximum Likelihood Estimation

(For technical details + lively discussion: visit our Poster #We116 later today!)

Thank You for your Time!

Contact: luca.falorsi@aiconic.com

pimdehaan@gmail.com

tim.davidson@aiconic.com