

```
Author
               (Inventor):
                                    ZHANG CHONGMIN (CN); LI JIANSHE (CN); HU XIMEI
      (CN)
  Priority (No,Kind,Date): CN 97105983 A 199
Applic (No,Kind,Date): CN 97105983 A 1997
IPC: * C08G-077/58; B01J-002/04; B01D-053/28
CA Abstract No: ; 132(24)323641Y
                                                                     19970721
                                                                  19970721
  Derwent WPI Acc No: ; C 99-26
Language of Document: Chinese
                                       99-264463
Patent (No, Kind, Date): CN 1081478
                                                             20020327
   GUANULATED GELATINIZED SILICA-ALUMINA PRODUCT (English)
   Patent Assignee: QINGDAO HAIYANG CHEMICAL INDUS (CN)
               (Inventor):
                                    ZHANG CHONGMIN (CN); LI JIANSHE
                                                                                         (CN); HU XIMEI
      (CN)
  Priority (No, Kind, Date): CN 97105983 A 19970721
Applic (No, Kind, Date): CN 97105983 A 19970721
IPC: * B01D-053/28; B01J-020/30; B01J-002/04; C08G-077/58
CA Abstract No: * 132(24)32364463
   Derwent WPI Acc No: * C 99-264463
   Language of Document: Chinese
```

Inpadoc/Fam.& Legal Stat (Dialog® File 345): (c) 2003 EPO. All rights reserved.

©1997-2003 The Dialog Corporation - Version 2.3

[19]中华人民共和国国家知识产权局

[51] Int. Cl6

C08G 77/58

B01J 2/04 B01D 53/28

[12] 发明专利申请公开说明书

[21] 申请号 97105983.7

[43]公开日 1999年1月27日

[11]公开号 CN 1206020A

[22]申请日 97.7.21 [21]申请号 97105983.7

[71]申请人 青岛海洋化工集团公司

地址 266041 山东省青岛市汾阳路 12 号

[72]发明人 张崇岷 李建设 胡熙美

[74]专利代理机构 青岛市专利服务中心 代理人 韩振东

权利要求书2页 说明书7页 附图页数0页

[54] 发明名称 硅铝胶凝胶粒产品及其生产方法 [57] 摘要

本发明公开了一种硅铝胶凝胶粒产品及其生产方法。该方法采用硅酸钠溶液与 酸化无机酸铝溶液,在混旋式造粒装置中,制成球形凝胶粒,再经一系列老化,酸化,水洗,活化表面,干燥等处理工艺,制得含上式键 壁的球形颗粒状硅钼胶凝胶粒。该胶粒含 $SiO_2:89.5-98\%$, $Al_2O_3:0.5-9\%$,平均粒度:0.5-8mm,平均比表面积: $450-800m^2/g$,平均孔容在 0.3-0.6ml/g,平均孔径: $0.0015-0.0035\mu$,在相对 湿度 20%下,吸附:5-15%,在相对湿度 80%下,吸附量:30-50%。

1、一种硅铝胶凝胶粒产品,其特征在于:由硅酸钠溶液与酸化无机酸铝溶液,在混旋式造粒装置中逐级反应并经喷咀设备喷射到空气中,缩聚成型生成球形颗粒状硅铝凝胶粒,该凝胶粒经系列后处理工艺,得到的凝胶粒含有:

 Al_2O_8 含量在 9-0.5%,该凝胶粒的平均粒度: 0.5-8 mm, 平均比表面积: 450-800 m²/g, 平均孔容在 0.3-0.6 m l/g, 平均孔径: 0.0015-0.0035 ML,在相对湿度 20% 下, 吸附: 5-15%,在相对湿度 80% 下, 吸附量: 30-50%。

- 2、根据权利要求 1 所述的硅铝胶凝胶粒产品及其生产方法,其特征在于将 含 SiO_2 : 8-22% (Wt) 的硅酸钠溶液与含 $Al_2(SO_4)$ s_0 . 3-12% (Wt) 的酸化无机酸铝溶液,在混旋式造粒装置中,按一定流量泵入混旋器, 其反应工作压力在 0.1-1.0 MPa,反应温度在: 5-35 C, 反应 PH值 在: 7-12 的工艺条件下,逐级反应并喷射到空气中,缩聚成型生成球形颗粒 硅铝胶凝胶粒,诸凝胶粒的后处理工艺为:
- (一)老化稳定处理:将上述诸凝胶粒置入盛有碱性溶液的老化罐中,控制浸泡时间:1-6小时,浸泡温度:30-60C,控制浸泡液PH值7-11;
- (二)酸化处理:将(一)中处理的诸凝胶粒置入盛有酸化液的酸化罐中,控制浸泡时间:0.5-10小时,浸泡温度30-60℃;
- (三) 水洗处理:将(二)中处理的诸凝胶粒置入水洗槽中,用净水冲洗, 控制保持水温在:20-70°;冲洗2-15次,每次冲洗时间:1-6小时, 或串罐冲洗,其时间:6-30小时,每次冲洗完毕后测凝胶粒的PH值3-7, 测比电阻值>3000 Ω . cm时为止;
- (四)表面处理:将(三)中处理的诸凝胶粒置入盛有表面活性剂溶液的活化槽中,控制浸泡时间:1-24小时,浸泡液含表面活性剂浓度:0.01-2%(Wt),其为具有表面张力小于40达因/cm的水溶液;
- (五)干燥处理:将(四)中处理的诸凝胶粒置入烘干室内,控制烘干热风送风时间: **3** -72小时,热风温度60-180℃。

- 3、根据权利要求 1 所述的硅铝胶凝胶粒产品及其生产方法,其特征在于所述的酸化无机酸铝溶液,其为无机酸与硫酸铝溶液混配而成,其中含硫酸: 8-20% (Wt),或含盐酸: 6-15% (Wt),或含硝酸: 10-26% (Wt),和含硫酸铝: 0.3-12% (Wt)。
- 4、根据权利要求 2 所述的硅铝胶凝胶粒产品及其生产方法,其特征在于所述的酸化液,其含有硫酸: 0-6% (Wt) 和硫酸铝: 0-10% (Wt)。
- 5、根据权利要求2所述的硅铝胶凝胶粒产品及其生产方法,其特征在于所述的表面活性剂,其可以选用:辛烷基酚聚氧乙烯醚,脂肪醇聚氧乙烯硅烷醚, 平平加,脂肪酸酰胺聚氧乙烯,泡丝剂M,色浆绿FB,聚乙二醇,氯碳,其中的一种或几种,制成水溶液使用之。

硅铝胶凝胶粒产品及其生产方法

,本发明涉及硅化工技术领域,改进了一种硅铝胶凝胶粒产品及其生产方法。

在石化工程中,经常使用一种硅铝胶来进行脱硫干燥。所采用的硅铝胶其都是由煤油等非极性溶剂中成型制成的。这种硅铝胶成球形度差,易磨损,外观暗黄,其制法耗用大量煤油,容易造成环境污染。造粒的后处理,工艺繁髓,必须经过"热液漂油"工序,以除去硅铝胶中的夹带煤油。在胶粒成型过程中,由于油、水的界面压力作用造成胶粒成球率低且强度不够,易破碎。

本发明的目的是要提供一种骨架强度高的,球形度好,耐磨损的硅铝胶凝胶粒及其制造生产方法。该方法通过喷射造粒装置,将硅铝水溶胶在空气中成型制成球形的硅铝胶凝胶粒(以下筒称:凝胶粒),再进行一系列后处理工艺,将凝胶粒的骨架强度提高,凝胶粒表面球形度高,耐磨损,其比表面积在 450-800 $00m^2/g$,平均孔容在 0.3-0.6m1/g,平均孔径:0.0015 -0.0035 u,平均粒度在 0.5-8 m m ,相对湿度 20 %状况下, 吸附量在 5-15 %,相对湿度 80 %状况下, 吸附量在 30-50 %。

本发明的目的是有以下技术方案实现的,研制了一种硅铝胶凝胶粒产品,由 硅酸钠溶液与酸化无机酸铝溶液,在混旋式造粒装置中逐级反应并经喷咀设备喷 射到空气中,缩聚成型生成球形颗粒状硅铝凝胶粒,该凝胶粒经系列后处理工艺,

89.5-98%, Al₂O₃含量在9-0.5%, 该凝胶粒的平均粒度: 0.5-8mm, 平均比表面积: 450-800m²/g, 平均孔容在0.3-0.6ml/g, 平均孔径: 0.0015-0.003544, 在相对湿度20%下, 吸附: 5-15%, 在相对湿度80%下, 吸附量: 30-50%。

本硅铝胶聚胶粒产品及其生产方法,将含 SiO_2 : 8-22% (Wt) 的硅酸钠溶液与含 $Al_2(SO_a)$ s_0 . 3-12% (Wt) 的酸化无机酸铝溶液,在混旋式造粒装置中,按一定流量泵入混旋器,其反应工作压力在0.1-1.0 MPa,反应温度在: 5-35%,反应PH值在: 7-12的工艺条件下,逐级反应并喷射到空气中,缩聚成型生成球形颗粒硅铝胶凝胶粒,诸凝胶粒的后处理工艺为:

- (一)老化稳定处理:将上述诸凝胶粒置入盛有碱性溶液的老化罐中,控制 浸泡时间:1-6小时,浸泡温度:30-60℃,控制浸泡液PH值7-11;
- (二)酸化处理:将(一)中处理的诸凝胶粒置入盛有酸化液的酸化罐中,控制浸泡时间:0.5-10小时,浸泡温度30-60℃;
- (三)水洗处理:将(二)中处理的诸凝胶粒置入水洗槽中,用净水冲洗, 控制保持水温在:20-70°;冲洗2-15次,每次冲洗时间:1-6小时, 或串罐冲洗,其时间:6-30小时;每次冲洗完毕后测凝胶粒的PH值3-7, 测比电阻值>3000Ω.cm时为止;
- (四)表面处理:将(三)中处理的诸凝胶粒置入盛有表面活性剂溶液的活化槽中,控制浸泡时间:1-24小时,浸泡液含表面活性剂浓度:0.01-2%(Wt),其为具有表面张力小于40达因/cm的水溶液;
- (五)干燥处理:将(四)中处理的诸凝胶粒置入烘干室内,控制烘干热风送风时间: 3-72小时,热风温度60-180°C。

本硅铝胶凝胶粒产品及其生产方法,所述的酸化无机酸铝溶液,其为无机酸与硫酸铝溶液混配而成,其中含硫酸: 8-20% (Wt) , 或含盐酸: 6-15% (Wt) ,或含硝酸: 10-26% (Wt) ,和含硫酸铝: 0.3-12% (Wt) 。

本硅铝胶凝胶粒产品及其生产方法,所述的酸化液,其含有硫酸: 0-6% (Wt) 和硫酸铝: 0-10% (Wt)。

本硅铝胶凝胶粒产品及其生产方法,所述的表面活性剂,其可以选用:辛烷基酚聚氧乙烯醚,脂肪醇聚氧乙烯硅烷醚,平平加,脂肪酸酰胺聚氧乙烯,泡丝剂M,色浆绿FB,聚乙二醇,氯碳,其中的一种或几种,制成水溶液使用之。

本发明的硅铝胶凝胶粒产品的生产方法,其优点在于:由于凝胶粒骨架结构 0 0

的[(si-0)Al-] 旋壁构型,决定其极性强,表面活性强,对硫OH基有较强的

吸附能力,因此特别适用于天然气等燃气的脱硫脱水处理上。本发明的原料处理上,采用酸化硫酸铝溶液与硅酸钠在专利CN95233839.4号所公开的混施式造粒装

置中反应,旋流,在喷咀中形成液流,在喷离喷咀孔口处,由于表面张力作用在空气中由硅酸铝和正硅酸缩聚而成为0.5-8 mm的球形度高的硅铝胶凝胶粒,其反应式为: Na₂SiO₈+ H₂SiO₈+ Na₂SO₄ 3 Na₂SiO₈+ Al₂(SO₄) s→ Ai₂(SiO₈) s+ 3 Na₂SO₄

其中,酸化无机酸铝溶液的配制是由无机酸与硫酸铝溶液混配而成的。该无机酸铝溶液中,含硫酸: 8-20% (Wt),或含盐酸: 6-15% (Wt),或含硝酸: 10-26% (Wt) 和含硫酸铝 0.3-12% (Wt)。酸化无机酸铝溶液,用来保证形成的硅铝凝胶粒中氧化铝含量在 0.5-9%,构成 4si-0-Al 键壁的微孔网状结构。

在对硅铝胶凝胶粒后处理过程中,酸化处理尤为重要。球形颗粒状的硅铝胶 凝胶粒,经过老化处理,得到稳定的三维网状结构,达到孔隙通达,孔容适中,但凝胶粒骨架中 $A1^{s+}$ 的结合A1-O键较Si-O键为弱, 有必要在酸化处理中加强A1-O键,故在酸化液中再加硫酸铝, 以对凝胶骨架进行补铝增铝的强化作用,以防止凝胶骨架中 $A1^{s+}$ 被洗脱,保证 $A1_{2}O$ 。含量达标。当 $A1_{2}O$ 。含量需要在较低值时,可以使酸化液中仅含硫酸,经酸化处理的凝胶粒,其含A12O3量就可较低,如例 2 所述。本发明设计的凝胶粒所含 $A1_{2}O$ 3量的幅度范围,是通过酸化处理达到稳定状态的。在水洗处理时,利用温水将凝胶粒网状孔隙中的 Na^{+} , Na^{+} ,

由于对凝胶粒进行了老化,酸化,水洗,表面活性剂,干燥处理,各处理工艺相互补充协同作用,最终获得:含氧化铝:0.5-9%,含 SiO_2 : 89.5-98%,平均粒度:0.5-8mm,平均比表面积在 $450-800m^2/g$,平均孔容在0.3-0.6ml/g,平均孔径在0.0015-0.003544,相对湿度20%状况下,吸附量在5-15%,相对湿度20%状况下,吸附量在5-15%,相对湿度20%状况下,吸附量在5-15%,相对湿度20%状况下,吸附量在30-50%的硅铝胶凝胶粒的球形颗粒产品。

本发明的实施例通过下列表1,表2表达出来。本发明的保护范围不仅局限于实施例中。

实施本发明的生产方法中,首先将硅酸钛溶液配制成含 SiO_a : 8-22% (Wt) ,如表 1 所列原料浓度的溶液,和将酸化无机酸铝溶液配制成含 $Al_2(SO_4)$ 。 0.3-12% (Wt) ,如表 1 所列原料浓度的溶液。 再分别泵入混旋式造粒装置中,按一定流量控制反应工作压力在: 0.1-1.0 M Pa , 反应温度在 5-35 C ,反应 P H 值在: 7.5 ± 0.2 的工艺条件下(具体如表 1 所列制 胶条件),经逐级反应喷射到空气中,缩聚成球形颗粒状硅铝胶凝胶粒。诸凝胶 粒的后处理工艺如表 1 所列条件进行: (转 5 页)

٠	٠
_	4
H	ķ
7	T

							·						
MEN!	(F. 2)	9	5	9	4	7	æ	6	4	9	4	8	9
国文	#E	9	4	ı 0.5	3	ಉ	0.02	3	5	р 0.4	83	22	%丝剂160.6
表	法性独种 类液质(3)	₩ 0. (WA 0. 4	中中	WA 0.3	WA 0.	氣礙	₩A 0.	TA 0.	平平加 0.	₩ 0.	WA 0.58	海
火 理	米	ဆ	6	10	7	11	7	11	6	12	₩.	14	10
水缆	漢(2)	4.0	6.0	6.0	4.0	4.0	30-35	25-35	09-09	25-35	25-35	25-35	40-45
BE M	(hr)	30-35	40-45	35-40	40-45	35-40	4	9	æ	4	4	4	7
€	- 及液度% 1.2 (SO4) 3	1.0	ı	4.0	2.0	8.0	1.5	4.0	0.9	1.14	-	0.5	2.0
₩	酸化液成分及液度% B2SO4 AL2(SO4)3	2.0	2.0	ı	,	1	ı	ı	ı	1.9	0.9	1.0	I
文章	时间 (hr)	3.0	0.0	0.0	4.0	4.0	0.5	6.0	1.5	3.0	1.0	6.0	4.0
製	門值	9-9.5	8.5-9.0	9-9.6	8. 5-9. 0	9.0-9.5	7.8	7.5	7-8	ō.	9-9.5	6	6.
老化	選度 (で)	40-45	4 5-50	\$ 1 -0 \$	40-45	40 45	8	878	30	253	\$3	3	04
条件	反应器 庚(℃)	18±5	18±5	18±5	18±5	18±5	16	19	83	18	14	æ	22
免胶	压力 (IIPa)	0.30	0.30	0.30	0.34	0.34	0.25	0.60	0.45	0.30	0.40	0.35	0.36
麻	A12 (SO4) 3 故度%	6.8	8.0	8.0	7.2	7.2	0.45	1.6	6.05	9.6	6.0	5.8	6. 5
*	HZSO4 被成為	11.9	11.9	11.9	8.3	8.3	19.6	18.5	16.3	5. 5	16	9 (Bc1)	19 (ENO ₃)
*	会S102 被废。	14.1	14.1	14.1	11.9	11.9	21.5	17	15	9.5	17.5	14	17
	THE W		2	65	4	20	9	-	6 0	6	10	11	12

其中水洗处理中测定水洗终止的方法是:

- (1) 称取一定量凝胶粒, 放入塑料袋中研磨碎后, 全部倒入烧杯中;
- (2)加入3倍重量的蒸馏水,搅拌均匀,静置3-10分钟,再搅拌1-2次,静置3-10分钟;
 - (3) 取上清液,用上海产PHS-3C型精密PH计,测该液的PH值;
 - (4) 取上清液,用上海产DDS-11A型电导率仪测该液的电导率。

干燥处理:将上述12批次的凝胶粒,或装入平盘中摊平40mm厚层,在烘干室(箱)内烘干,或摊平在网带输送带上25-30mm,在烘干随道中烘干,其中烘干热风温度为:60-180,烘至凝胶粒含水量<2%,即得成品硅铝胶凝胶产品,其分析测验结果如表2所列:(转7页)

₩2:

松大路林	**	幸 一	## \$\$	A10 44	**	附
	(8 /1 a)	(8/4)	(n)		RHZOX	RH80%
-	0.454	735	0.0024	2.44	9.30	42.24
3	0.505	783	0.0026	1.28	10.09	47.62
ಣ	0. 536	688	0.0031	5.76	10.20	49.38
4	0. 500	627	0.0032	6.84	7.80	50.36
2	0. 510	616	0.0033	8. 42	8.36	48.69
9	0.516	902	0.0029	0.62	10.09	44.06
L	0, 524	829	7800 0	3, 02	9. 52	46.45
8	0. 568	642	0.0036	6. 05	10.66	45. 52
6	0.459	732	9200 '0	3.04	9.30	39.90
10	0. 597	638	0.0037	3. 48	8.32	48.42
11	0. 525	919	0:0030	3.70	11.21	49.03
12	0.477	664	0.0029	5.83	11.56	47.87