Веденцов Евгений

Лабораторная работа 1

1) Создать простейшую сеть, состоящую из 1 коммутатора и 2 компьютеров, назначить им произвольные ір адреса из одной сети

Топология сети:

Через терминал настраиваем IP-адрес PC1:

ip 192.168.1.10 255.255.255.0

Настройка IP-адреса PC2:

ip 192.168.1.11 255.255.255.0

2) Запустить симуляцию, выполнить команду ping с одного из компьютеров, используя ір адрес второго компьютера

Команда на PC1: ping 192.168.1.11

Вывод:

```
84 bytes from 192.168.1.11 icmp_seq=1 ttl=64 time=0.204 ms
84 bytes from 192.168.1.11 icmp_seq=2 ttl=64 time=0.259 ms
84 bytes from 192.168.1.11 icmp_seq=3 ttl=64 time=0.248 ms
84 bytes from 192.168.1.11 icmp_seq=4 ttl=64 time=0.240 ms
84 bytes from 192.168.1.11 icmp_seq=5 ttl=64 time=0.237 ms
```

3) Перехватить трафик протокола arp на всех линках(nb!), задокументировать и проанализировать заголовки пакетов в программе Wireshark, для фильтрации трафика, относящегося к указанному протоколу использовать фильтры Wireshark

Описание заголовка ARP:

- Наrdware type тип аппаратного обеспечения. В нашем случае значение во всех пакетах равно 1 (Ethernet).
- Protocol type: тип протокола значение 0x0800 равно IPv4.
- Hardware size: размер MAC-адреса в байтах (6).
- Protocol size: размер IP-адреса в байтах (4).
- Орсоde: код операции. 1 − запрос, 2 − ответ.

- Sender MAC address: MAC-адрес отправителя.
- Sender IP address: IP-адрес отправителя.
- Target MAC address: MAC-адрес получателя.
- Target IP address: IP-адрес получателя.

Скриншот (левое окно – соединение коммутатора и PC1, правое – коммутатора и PC2):

1-й пакет: РС1 спрашивает у всех в сети, кто находится по адресу 192.168.1.11.

2-й пакет: РС2 отвечает, что его МАС-адрес 00:50:79:66:68:00.

Рассмотрим ARP-заголовки:

No	Операц	МАС отправителя	IP	МАС получателя	IP
пакета	ИЯ	тиже отправителя	отправителя		получателя
1	Запрос	00:50:79:66:68:01	192.168.1.10	ff:ff:ff:ff:ff	192.168.1.11
		PC1	PC1	Bce	PC2
2	Ответ	00:50:79:66:68:00	192.168.1.11	00:50:79:66:68:01	192.168.1.10
		PC2	PC2	PC1	PC1

4) Создать простейшую сеть, состоящую из 1 маршрутизатора и 2 компьютеров, назначить им произвольные ір адреса из разных сетей

Топология сети:


```
Настройка IP-адреса PC1 (192.168.0.1 – шлюз):
```

ip 192.168.0.20 255.255.255.0 192.168.0.1

Настройка IP-адреса PC2 (192.168.5.1 – шлюз):

ip 192.168.5.20 255.255.255.0 192.168.5.1

Настройка маршрутизатора:

R1#conf t

R1(config)#interface Fa0/0

R1(config-if)#ip address 192.168.0.1 255.255.255.0

R1(config-if)#no shutdown

R1#

R1#conf t

R1(config)#int Fa1/0

R1(config-if)#ip address 192.168.5.1 255.255.255.0

R1(config-if)#no shutdown

5) Запустить симуляцию, выполнить команду ping с одного из компьютеров, используя ір адрес второго компьютера

Запускаем команду ping 192.168.5.20 на PC1:

```
84 bytes from 192.168.5.20 icmp_seq=1 ttl=63 time=30.036 ms
84 bytes from 192.168.5.20 icmp_seq=2 ttl=63 time=16.026 ms
84 bytes from 192.168.5.20 icmp_seq=3 ttl=63 time=17.283 ms
84 bytes from 192.168.5.20 icmp_seq=4 ttl=63 time=17.512 ms
84 bytes from 192.168.5.20 icmp_seq=5 ttl=63 time=16.227 ms
```

6) Перехватить трафик протокола arp и icmp на всех линках(nb!), задокументировать и проанализировать заголовки пакетов в программе Wireshark, для фильтрации трафика, относящегося к указанному протоколу использовать фильтры Wireshark

Скриншот (слева – подключение PC1 к R1, справа – PC2 к R1):

Сначала была выполнена команда ping с PC1 на PC2, затем с PC2 на PC1. На скриншоте отображены ARP-пакеты перед пингом PC1 с PC2. Рассмотрим ARP-заголовки:

Линк	$N_{\underline{0}}$	Операц	МАС отправителя	IP	МАС получателя	IP
	пакета	ИЯ		отправителя		получателя
PC2-	1	Запрос	00:50:79:66:68:00	192.168.5.20	ff:ff:ff:ff:ff	192.168.5.1
R1	1		PC2	PC2	Bce	R1
PC2-	2	Ответ	CC:01:14:72:00:10	192.168.5.1	00:50:79:66:68:00	192.168.5.20
R1	2	Olbei	R1	R1	PC2	PC2
PC1-	1	Запрос	00:50:79:66:68:01	192.168.0.20	ff:ff:ff:ff:ff	192.168.0.1
R1			PC1	PC1	Bce	R1
PC1-	2	Ответ	CC:01:14:72:00:00	192.168.0.1	00:50:79:66:68:01	192.168.0.20
R1			R1	R1	PC1	PC1

Линк PC2-R1:

- 1-й пакет: PC2 спрашивает у всех в сети, кто находится по адресу 192.168.5.1.
- 2-й пакет: R1 отвечает, что его MAC-адрес равен CC:01:14:72:00:10.

Линк PC1-R1:

- 1-й пакет: PC1 спрашивает у всех в сети, кто находится по адресу 192.168.0.1.
- 2-й пакет: R1 отвечает, что его MAC-адрес равен CC:01:14:72:00:00.