東京大学工学部機械工学科 平成 30 年度 卒業論文

超音波 CT を用いた下肢組織の 動力学的解析手法の開発

指導教員 高木 周 教授

学籍番号 03-170225 冨田 結子

2月1日提出

概要

目次

第1章	序論	1
1.1	研究背景	2
1.2	超音波診断装置	4
1.3	リング型アレイトランスデューサ	4
1.4	研究目的	5
1.5	本論文の構成	6
第2章	基本原理	7
2.1	概要	8
2.2	超音波とは	8
2.3	超音波の性質	8
2.4	エラストグラフィの原理	11
2.5	低周波と生体組織	11
2.6	画像再構成手法	11
第3章	先行研究	12
3.1	概要	13
第4章	実験	14
4.1	概要	15
参考文献		16
付録 A	Verasonics プログラム	19

第1章

序論

1.1 研究背景

平成 30 年 5 月時点で日本の総人口は 1 億 2644 万 6 千人,65 歳以上の人口は 3541 万人であった.前年度同日と比較すると総人口は 25 万 8 千人減少した一方で,65 歳以上の人口は 46 万 8 千人増加した.日本の少子高齢化社会は益々深刻化すると考えられており,高齢者の健康を考えることが今までにないほど重要になった [1].要介護認定者数は 640 万人であり前年度と比較して約 11 万人増加している [2].図 1.1 は要介護者を対象に要介護に至った主な原因を調査したものである.認知症が 18.7% で最多,次いで脳血管疾患 (脳卒中) が 15.1%,高齢による衰弱が 13.8%,骨折や転倒が 12.5% であった [3].高齢者の要介護者が増加することは高齢者の QOL(Quality Of Life)を低下させることは勿論,国の医療費負担の増加,医療業界における人員不足など様々な問題を引き起こす。そこで、本研究では高齢者の寝たきりを予防するリング型アレイ超音波診断装置の開発を目標とする。中でも認知症や脳血管疾患に比べて予防がしやすいという点から、骨折や転倒を予防する手法を考案する.

骨折や転倒の原因としては、脳の衰えと下肢組織の衰えが考えられるが、本研究では下肢組織の衰えに着目する.下肢組織の健康状態を評価する指標として、下肢組織を伝播するせん断波の様子を観察することを考える.日頃から検査を重ねることで定量的に下肢組織の健康状態を判断する装置は未だに開発されていない.そこで、下肢組織の衰えを早期に発見できる治療を行う技術の確立が求められる.ここで、現在生体の機械的特性に着目して、断層画像を取得する方法として生体組織の硬さの分布を取得する超音波エラストグラフィについて説明する.図 1.2 に超音波エラストグラフィと、超音波エラストグラフィによって撮像される断層画像を示す.エラストグラフィには、大別して 2 つの手法がある.1 つ目は生体組織を加圧した時に生じる歪みの分布を取得し、相対的な硬さの分布を画像化する手法、2 つ目は生体組織を加振した際のせん断波の伝播速度の計測を行い、定量的な硬さの分布を画像化する手法である.前者には、Strain elastography、ARFI imaging、後者には Shear wave elastography、Transient elastography がある.本研究では定量的な診断を目的とするので、後者の手法について詳しく説明する.

図 1.1. 65 歳以上の要介護者などの性別にみた介護が必要となった主な原因

Shear wave elastography では、音響放射力によってせん断波を発生させる。高フレームレート計測法、ドプラ法によって変位分布を、粒子速度分布からせん断は速度の伝播を観察できる。

音響放射力が生体内で一様であるとした時に、音響放射力により生じる生体組織の変位は μ m オーダーであるため、ドプラ法によって加圧前後の超音波信号の位相差から変位を計測する [4]. 変位分布は得られるが、前述した通り音響放射力が生体内で一様であるという仮定を除く と、音響放射力の強弱によって生体組織の硬さは定性的な評価しかできない.

Transient elastographyでは、せん断波を加振によって発生させる。一般的に、超音波プローブにから発せられる超音波ビームの軸方向を伝播するせん断波を計測する事は困難であるが、Transient elastographyではビーム軸方向のせん断波の計測が可能である。超音波ビーム軸上の変位およびせん断波速度の分布の時間変化をドプラ法などにより計測し、最小二乗法を用いる事でせん断波の伝播速度を取得できる。そのため、比較的一様な組織であれば定量的な組織の硬さを評価することができる。

Shear wave elastography および Transient elastography は生体組織の硬さを比較的定量的 に計測できるが、以下のような条件が必要である [5].

- 1. 計測対象は無限に大きく, 一様である.
- 2. 体積は変化しない.
- 3. 密度は変化しない
- 4. 振動の減衰が起こらない.

したがって下肢組織などのように骨があり、振動の減衰が起こりやすく、組織が均質とは見なせない組織では超音波エラストグラフィ使用は適していない。したがって、上述したような 4 つの条件を満たさずとも組織の機械的特性を計測できる技術は、生体組織の健康状態の理解に直結する。以上に述べたことからも、本研究の目標である定量的な下肢組織の健康状態の計測を可能にする超音波診断装置の開発には大きな意義があると考える。次節にて超音波を用いた診断装置の技術について詳しく述べる。

1.2 超音波診断装置

超音波を用いた生体の断層画像を取得する技術には、超音波パルスエコーイメージングと 超音波 CT がある. 超音波を用いた医用画像は、ディジタル計算機の登場で飛躍的な進歩を遂 げた、問題点はまだ残されている. パルスエコーイメージングでは、以下のような欠点がある.

- 1. 超音波は骨の透過性が低いため、骨のある複雑な組織では正確な診断ができない.
- 2. 超音波エコーではプローブを用いるため、術者の技能によって取得画像の質が左右されてしまう.

パルスエコーイメージングは、超音波の反射を利用した技術であるが、超音波 CT は反射波だけでなく透過波も利用できる. 1976 年、Greenleaf らは透過波を用いて乳棒細胞の音速と減衰率を数値化し、乳房の音響特性を測定した [6]. これにより. 音速を減衰率の関数としてプロットすることで良性腫瘍と悪性腫瘍を識別できることが示された.

近年のコンピュータの発達により、超音波 CT は臨床応用が目指せるようになった。Duric らは図 1.3 に示すようなリング状の超音波の送受信素子が配置されたトランスデューサを上下に動かすことにより乳棒全体のデータ収集を行う CURE(Computed Ultrasound Risk Evaluation) と呼ばれる診断装置を開発し、臨床試験を行なった [7][8]。リングアレイトランスデューサの直径は 200mm、素子数は 256 であり、水槽内のレールに沿って上下動する。データ収集は 5 分程度で完了する上、患者はベッドにうつ伏せに寝て乳棒を水槽内に挿入するだけでいいため非侵襲性である。パルスエコーイメージングとは異なり、術者によって取得画像の差異が出ないという利点もある。図 1.4 に CURE によって得られた乳棒の診断画像を示す。

1.3 リング型アレイトランスデューサ

超音波 CT を運用する上で必要なプロセッサは半導体技術の発展により高速度演算を可能にした。また超音波 CT は安価で、MRI などと比べて非侵襲的な診察が可能である。技術的進歩と需要が相まって、超音波 CT の機能を高めることの重要性は増している。本研究では、リング型アレイトランスデューサ超音波 CT を用いた下肢組織の定量的な診断装置の開発を目的としている(図 1.3)。以下でリング型アレイ超音波 CT を用いた際の具体的な利点を 3 つあげる [9].

1. 透過, 反射, 減衰のトモグラフィ

リングアレイを用いることにより、反射波に加えて透過波を利用できる.しかし、透過波については利用可能な臓器は限定される.また、対象が骨や空気などの音響インピーダンスが大きな領域を含む場合は超音波はほとんど透過しないため、透過波を用いることはできない.

2. 任意方向のビーム伝播

リング状に並んだ素子の内,素子の選び方によって方向の異なる超音波ビームを形成することができる.これにより,音響放射圧を多方向からかけることができ,放射圧エラストグラフィにより組織の異方性を調べることができる.また,血流ドップラー計測の多方向化など,超音波による速度場計測が高度化する.

3. 無限開口ビーム, 回折角=0

図 1. に示すのは、リング型振動子と球面型振動子からそれぞれパルス超音波が送波される際の超音波ビームである. 球面型振動子では焦点が広がっているのに対して、リング型振動子では完全に 1 点に収束している. このことから、リングアレイは理想的な点広がり関数を持ち、任意形状の治療ビームの形成や、従来型の診断プローブを用いた画像に見られたスペックルの存在しない診断画像が期待される.

以上のように、リング型アレイ超音波 CT には機能的には大きな利点があげられる. 計測対象 である生体組織に骨があるということを考慮した上でさらなるリング型アレイ超音波 CT の改善を目指す.

1.4 研究目的

本研究の目的はリング型アレイトランスデューサ超音波 CT を用いて下肢組織の健康状態を 生体組織上を伝播するせん断波観察することで定量的に評価する診断装置の開発である. 前述 のような診断装置の開発を実現するために, 以下の 2 つの課題に取り組む.

- 1. 下肢組織の断層画像の画像再構成の改善
- 2. 下肢組織を加振した際の腱や筋肉を伝播するせん断波の計測方法の提案

具体的には、以下のようなシミュレーションおよび、実験を行う.

- 1. 下肢組織の断層画像の画像再構成をシミュレーションと実験のデータを比較.
- 2. せん断波の伝播に伴い生じる、ひずみの伝播をトラッキングする手法を検討
- 1. については、下肢組織の形状を模したモデルを2つ作成し、それぞれについてリング型アレイ超音波 CT でシミュレーションする. その際に得られた断層画像から生体組織の機械的特性、考察しシミュレーション結果の画像処理の改善に取り組む. 2. については、まずは弦などをファントムとして加振した際のせん断波の伝播の様子をリアルタイムで超音波エコーによって観測し、最終的にリング型アレイ超音波 CT で伝播の様子を観測するが、リング型アレイ超

6 第1章 序論

音波 CT はリアルタイムでの撮像ができないため、得られた断層画像から対象物をトラッキングする手法を提案する.

1.5 本論文の構成

第2章

基本原理

2.1 概要

本章では、本研究で具体的な焦点となる超音波の性質、エラストグラフィーの原理、画像再構成手法、低周波と生体組織の関係についての基礎的な知識について示す.

2.2 超音波とは

超音波は、人の可聴域を超える 20000Hz 以上の高周波数の音波である. 超音波は運輸, 製造業, 建築, 水道, 農林水産, 食品そして医療に至るまで様々な分野で利用されている. 医療分野では診断装置, センサ, 通信機器, 補助具, 溶着など多用されている.

2.3 超音波の性質

医療機器では 1 20MHz の超音波を使用しており, 超音波が生体内を伝播することで伝播 経路における音響特性が変化する. この音響特性の分布の変化を解析することで, 生体内の組織の状態を観測できる.. 以下で, 超音波と生体組織をの関係を述べるにあたり, 必要となる超音波の基本的な性質について述べる [10].

● 反射と屈折

超音波は異なる屈折率をもつ 2 つの物質を通過する際に、その境界面で反射・屈折を起こす。図 2.1 に音速 c_0 、密度 ρ_0 の媒質から、音速 c_1 、密度 ρ_1 の媒質に超音波が入射する様子を示す。 θ_0 、 θ_1 はそれぞれ入射角、屈折角を表す、また、音速の異なる媒質に入射する際、超音波の一部は境界面で反射する。図 2.1 の θ_0 で表されているのが反射角である。入射角と反射角は等しい。また、入射波と透過波の間では Snell の法則が成り立つ。

$$\frac{\sin \theta_0}{c_0} = \frac{\sin \theta_1}{c_1} \tag{2.1}$$

生体組織では、様々な音響特性をもつ物質が存在するため、超音波パルスを与えた際に 観察される複雑な波形の乱れは、生体組織の境界面や音響特性などをはじめとした生体 組織を特徴付ける、様々な情報を含んでいる.

図 2.1. 屈折率の異なる媒質間の境界面での超音波の挙動

● 音響インピーダンス

音響インピーダンスとは、音波の伝播に際する通りにくさを表し、電気工学でいう所の抵抗 R であるというアナロジー的な説明が成されることが多い。音響インピーダンスは物質ごとに固有な値であり、振動数や振幅とは独立である。音響インピーダンスは、物質の密度、物質固有の音速 c を用いて以下の式で表せる。

$$Z = \rho \times c$$
 (2.2)

音響インピーダンスの差異が超音波の反射や屈折のような現象を引き起こす。図 2.2 に示すように、境界面に対して超音波が直角に入射した際も、音響インピーダンスの差異によって、反射波、透過波が生じる。図 2.2 に音響インピーダンス Z_0 、密度 ρ_0 、音速 c_0 から音響インピーダンス Z_1 、密度 ρ_1 、音速 c_1 へ超音波が入射する様子を示す。連続の式より、反射率 R と透過率 T はそれぞれ (2.3) 式および (2.4) 式のように示せる.

$$R = \frac{Z_2 - Z_1}{Z_2 + Z_1} \tag{2.3}$$

$$T = \frac{2Z_2}{Z_2 + Z_1} \tag{2.4}$$

人体では、骨などの音響インピーダンスの大きい部分では反射が生じるので、超音波 CT で得られる断層画像にも大きな影響を及ぼす.

図 2.2. 屈折率の異なる媒質間の境界面での超音波の挙動

● 音速と体積弾性率

音速は媒質を物理的に振動させることによって、媒質の粗密が媒質中を伝播していく時の速度である. 生体内で伝搬する超音波は縦波で、その伝搬速度 c は体積弾性率 K および平均密度 ρ を用いて、(2.5) 式のように表せる.

$$c = \sqrt{\frac{K}{\rho}} \tag{2.5}$$

● 散乱

波長と同程度のサイズの媒質に入射すると回折が起こる. 生体内では, 反射, 屈折, 回 折によって散乱が起こる. 波長に対して散乱体径が小さい場合は, 散乱強度は入射波の 周波数の4乗に比例し, 光学におけるレイリー散乱のような振る舞いをする [11]. 波長 と散乱体径が近い場合, ミー散乱に近い振る舞いをする.

減衰

減衰は、散乱と吸収によって 2 点を結ぶ直線経路間のエネルギーの損失を表す. 生体 組織は音速や密度が不均一に分布するため、上述したように、反射、屈折、回折などの現 象が複雑に作用することで散乱場が生じる. 散乱は超音波のエネルギー損失を引き起こ さない. 一方、吸収は伝播中に超音波のエネルギーが熱に変換され、音響エネルギーを失 う.

減衰率 α は、初期音圧 p_0 、伝播距離 x、減衰後の音圧 p を用いて (2.6) 式のように表さ

れる.

$$\alpha = \frac{20}{x} \log 10 \frac{p_0}{p_1} \tag{2.6}$$

生体内では、減衰率 α は周波数 f に依存し、周波数 f, 乗数 g, 定数 g0 を用いて (2.7) 式のように表される.

$$\alpha = \alpha_0 f^y \tag{2.7}$$

表 2.1 に、人体の組織における減衰定数 0 と周波数 f についてまとめる.

組織	減衰率 α_0	計測周波数 $f[Hz]$
血液	0.2×10^{-7}	1
脳	1.05×10^{-7}	3.4
肝臓	0.77×10^{-7}	3
脂肪	0.45×10^{-7}	3.4
頭蓋骨	24×10^{-7}	1.8

表 2.1. 人体の様々な組織における減衰率

2.4 エラストグラフィの原理

医用画像の歴史は、ヴィルヘルム・コンラート・レントゲンの 1895 年の X 線の発見にまで 遡る. レントゲンは世界で初めて X 線写真の撮影に成功したが、生体にメスを入れることなく 生体内部を可視化できることは、非常に画期的なことであった。その後、医用画像はディジタル 計算機の登場により更に進化を遂げ、今日では X 線画像だけでなく RI 画像、超音波画像、CT 画像など医用画像の種類も多様化した。超音波を用いた医用画像の取得は、特にディジタル計算機の恩恵を受けた技術であり、今後更なる発展が見込まれている。以下では、超音波と生体組織との関わりを述べる [12].

• エラストグラフィ

2.5 低周波と生体組織

2.6 画像再構成手法

第3章

先行研究

3.1 概要

第4章

実験

4.1 概要

参考文献

謝辞

ありがとう、そして、ありがとう

付録A

Verasonics プログラム