ADS – proofs goal 1 & goal 2

Tim Grimbergen & Timo Post

October 2023

1 Setting

- 1. $n \in \mathbb{N}^{1}$
- $2. m \in \mathbb{N},$
- 3. $s_i = n \text{ for all } i \in \{1, \dots, m\},\$
- 4. $p_i \in \{1, 2, ..., p_{\text{max}}\}$ with $p_{\text{max}} \in \mathbb{N}$,
- 5. $h_i = \bar{h}$ with $\bar{h} \in \mathbb{Z}_{>0}$ a constant.
- 6. Every online algorithm ALG knows n, m, p_{max} and \bar{h} . Also, ALG is aware of constraint 3), so that it can safely wait till the last day for sending everyone home.

Consider the following algorithm $ALG_{\sqrt{p_{\max}}}$:

Algorithm 1 The $\lfloor \sqrt{p_{\max}} \rfloor$ -threshold algorithm $\mathtt{ALG}_{\sqrt{p_{\max}}}$

```
Q \leftarrow \lfloor \sqrt{p_{\max}} 
floor for i \leftarrow 1 to m do
if (p_i \leq Q \lor i = m) then
Buy n tickets.
end if
end for
```

Theorem 1. The algorithm $ALG_{\sqrt{p_{\max}}}$ is an optimal deterministic algorithm.

The proof of Theorem 1 will following straightforwardly from Lemmas 2 and 3.

Lemma 2. The algorithm $ALG_{\sqrt{p_{\max}}}$ is $\sqrt{p_{\max}}$ -competitive.

Proof. Consider an arbitrary instance I satisfying the restrictions above. If m=1, then the problem is trivial since both ALG and OPT buy n tickets on the first day for the same price so the competitive ratio is 1. We then make the observation that both ALG and OPT always buy all tickets on a single day be design. This means that the number of people n is irrelevant for the competitive ratio c since

$$c = \frac{\mathtt{ALG}_{\sqrt{p_{\max}}}(I)}{\mathtt{OPT}(I)} = \frac{p_{\mathtt{ALG}_{\sqrt{p_{\max}}}} \cdot n}{p_{\mathtt{OPT}} \cdot n} = \frac{p_{\mathtt{ALG}_{\sqrt{p_{\max}}}}}{p_{\mathtt{OPT}}},$$

where $p_{\texttt{ALG}_{\sqrt{p_{\max}}}}$ and $p_{\texttt{OPT}}$ are the prices for which $\texttt{ALG}_{\sqrt{p_{\max}}}$ and OPT buy the tickets respectively. We know distinguish two more cases:

¹In this research \mathbb{N} is the set of all strictly positive integers $1, 2, \ldots$

i) $\forall i \in \{1, \dots, m\}, p_i > \lfloor \sqrt{p_{\max}} \rfloor$: In this case we have that $p_{\mathtt{ALG}_{\sqrt{p_{\max}}}}, p_{\mathtt{OPT}} \geq \lfloor \sqrt{p_{\max}} \rfloor + 1$. The competitive ratio c is then maximal if $p_{\mathtt{ALG}_{\sqrt{p_{\max}}}}$ is as large as possible and $p_{\mathtt{OPT}}$ as small as possible, so

$$c = \frac{p_{\mathtt{ALG}_{\sqrt{p_{\max}}}}}{p_{\mathtt{OPT}}} \leq \frac{p_{\max}}{\lfloor \sqrt{p_{\max}} \rfloor + 1}.$$

Now notice that $\lfloor \sqrt{p_{\text{max}}} \rfloor + 1 \ge \sqrt{p_{\text{max}}}$ so

$$\frac{p_{\max}}{\lfloor \sqrt{p_{\max}} \rfloor + 1} \le \frac{p_{\max}}{\sqrt{p_{\max}}} = \sqrt{p_{\max}},$$

so we conclude that in this case the competitive ratio c is indeed bounded by $\sqrt{p_{\text{max}}}$.

ii) $\exists i \in \{1, \dots, m\}, p_i \leq \lfloor \sqrt{p_{\max}} \rfloor$: In this case we have that $p_{\mathtt{ALG}_{\sqrt{p_{\max}}}}, p_{\mathtt{OPT}} \leq \lfloor \sqrt{p_{\max}} \rfloor$. Maximizing the competitive ratio yields

$$c = \frac{p_{\mathtt{ALG}_{\sqrt{p_{\max}}}}}{p_{\mathtt{OPT}}} \leq \frac{\lfloor \sqrt{p_{\max}} \rfloor}{1} \leq \sqrt{p_{\max}},$$

so in this case the competitive ratio is also bounded by $\sqrt{p_{\text{max}}}$.

Since cases i) and ii) together cover all remaining cases, we conclude that the competitive ratio is indeed bounded by $\sqrt{p_{\text{max}}}$. Note the analysis is tight if we consider an instance with for example $\sqrt{p_{\text{max}}} = 1$.

Lemma 3. There exists no $\epsilon > 0$ and feasible online deterministic algorithm ALG such that ALG is $(\sqrt{p_{\max}} - \epsilon)$ -competitive.

Proof. Consider the instance for which $(n, m, p_{\text{max}}) = (1, 1, 1)$ with thus $p_1 = 1$. The cost of ALG and OPT are both equal to 1, so we have found an instance for which the competitive ratio is equal to 1, while $\sqrt{p_{\text{max}}} - \epsilon < 1$. Therefore, we conclude that we have reached a contradiction.

Comment. In fact note that every instance with m=1 results in essentially the same argument. Furthermore, if $p_{\max}=k^2$ for some number $k\in\mathbb{N}$ we can provide the instances $(p_1^1,p_2^1)=(k,1)$ and $(p_1^2,p_2^2)=(k,k^2)$. Depending on the decision the online algorithm ALG makes on the first day, the adversary can always choose one of the instances so that the competitive ratio becomes $k=\sqrt{p_{\max}}$. This shows that, besides the trivial sufficient example, there are more instances for which one can not find an algorithm that is better than $\sqrt{p_{\max}}$ -competitive.

Proof of Theorem 1. The fact that $\mathtt{ALG}_{\sqrt{p_{\max}}}$ is an optimal algorithm follows from Lemmas 2 and 3. First of all, no online deterministic algorithm can be better than $\sqrt{p_{\max}}$ -competitive, which is proven in Lemma 3. Together with the fact that $\mathtt{ALG}_{\sqrt{p_{\max}}}$ is $\sqrt{p_{\max}}$ -competitive, which is proven in Lemma 2, this implies that $\mathtt{ALG}_{\sqrt{p_{\max}}}$ is indeed an optimal deterministic algorithm.