

Problema I

Número Invertido

Nome base: invertido *Tempo limite:* 1s

Um inteiro maior que 1 é chamado de número primo se seus únicos divisores positivos são 1 e ele mesmo. Porém, você já tentou inverter a ordem dos dígitos de um primo? Por exemplo, 17 seria 71, que também é primo.

Isto acontece com alguns números primos.

Um Omirp (Primo escrito de trás para frente) é um Primo que resulta em outro Primo, diferente do primeiro (não palíndromo), quando a ordem dos seus dígitos é invertida. Por exemplo, 19 é Primo e não é Omirp, porque 91 não é Primo. E os números 7 e 11 são Primos e não são Omirp, pois a inversão dos dígitos seria o próprio número (palíndromo).

Neste problema, você tem que decidir se um número N é apenas "Primo", Não-primo ou Omirp.

ENTRADA

A entrada contém vários casos de teste com valores inteiros N, tal que $(2 \le N \le 2^31)$.

SAÍDA

Para cada número N da entrada, a saída deve conter um dos casos abaixo:

- 1. "N nao primo.", se N não é um número primo.
- 2. "N primo.", se N é primo e N não é Omirp.
- 3. "N omirp.", se N é Omirp.

Exemplo de Entrada	Exemplo de Saída
17	17 omirp
18	18 nao primo
19	19 primo
179	179 omirp
199	199 omirp
7	7 primo

Problema J

Jogo das Palavras

Nome base: jogo Tempo limite: 1s

Aninha recebeu uma lista de documentos da empresa ICPC. Teoricamente, ela deveria trabalhar preparando os relatórios para J. Boss. Porém, Aninha é uma secretária rebelde e, em vez de trabalhar, ela resolveu brincar com as palavras que estavam nos documentos e, assim, acabou inventando um jogo.

O joguinho que Aninha inventou foi: como concatenar as palavras de um documento e formar uma string com a sequência de termos conforme a menor ordem lexicográfica de cada termo.

Para você que gosta de algoritmos, automatizar esse joguinho é fácil, não é? Vamos ver se você consegue se dar bem no "Jogo das Palavras"!

ENTRADA

A entrada é composta por um inteiro T ($1 \le T \le 100$), indicando o número de casos de teste. Para cada caso, existe um inteiro M ($1 \le M \le 10$), que representa o número de palavras que terá no jogo, seguido de M palavras.

Os caracteres são todos minúsculos e as palavras sempre separadas por espaço. Seja S o tamanho de uma palavra, temos que $1 \le S \le 10000$.

SAÍDA

Para cada caso de teste, imprima uma linha contendo a resposta do jogo.

Exemplo de Entrada	Exemplo de Saída
2	caofarofafizhojestatusstudio
6 farofa hoje cao fiz status studio	duzklvrawqrc
5 k duz q rc lvraw	

Problema H

A História de J

Nome base: historia *Tempo limite:* 1s

Há uma história, ou estória, descrita por Josephus, em que ele e seus aliados foram cercados por inimigos, em uma caverna. Então, decidiram morrer no lugar de entregar.

Eles fizeram um círculo e começaram a matar-se, pulando de três em três. Josephus ficou por último e decidiu entregar ao inimigo em vez de suicidar-se. Ele sobreviveu, talvez, por sorte ou por saber programação de computadores.

Neste problema, você precisará descobrir qual seria a posição para sobreviver, dado uma quantidade A de aliados e um valor P do pulo.

ENTRADA

A entrada possui vários casos de teste. Em cada caso de teste haverá 2 inteiros, A ($1 \le A \le 20000$) e P ($1 \le P \le 2000$). A representa a quantidade de aliados e P representa o pulo que será dado de um aliado até o próximo que será morto, dentre os aliados que estão no círculo.

SAÍDA

A saída terá um inteiro que representará a posição, dentro do círculo, que será a da pessoa que sobreviveu.

Exemplo de Entrada	Exemplo de Saída
4 2	1
6 2	5
7 3	4

Problema G

Gostar de Ordenação

Nome base: gostar *Tempo limite:* 1s

A ordenação ajuda a arrumar várias coisas e, isto, pode ser bom para quem gosta de uma vida organizada.

Por exemplo, sabemos que, procurar coisas em locais desorganizados pode dar um grande trabalho e exigir bastante esforço de uma pessoa, ou computacional.

Para praticar a ordenação, de forma simples, neste problema será fornecida uma sequência de números inteiros e você precisará mostrá-los de forma ordenada crescente e decrescente, sendo uma sequência por linha.

ENTRADA

A entrada terá uma quantidade Q de números inteiros N, tal que (1 <= Q <= 10^5) e (1 <= N <= 2^3 1).

SAÍDA

A saída terá 2 linhas. A primeira será a sequência de números em ordem crescente e a segunda a sequência de números em ordem decrescente.

Exemplo de Entrada	Exemplo de Saída
	3 14 15 22 23 25 26 28 29 32 43 44 44 44 44 43 32 29 28 26 25 23 22 15 14 3

Problema F

O Futuro da Humanidade

Nome base: futuro *Tempo limite:* 1s

Com o advento da computação quântica e várias outras tecnologias, há possibilidade da humanidade prosperar e viver bem melhor e com maior longevidade. Há possibilidade até mesmo dos humanos viverem mais de 1.000 anos.

Pensando nisto, instituições de acompanhamento da população mundial estão preparando seus sistemas, para contar a quantidade de pessoas em cada idade, para poderem preparar as áreas de serviço público para atender as diferentes faixas etárias.

Ajude a preparar estes sistemas, com o desenvolvimento de um programa que informa a quantidade de pessoas no planeta por idade.

ENTRADA

A entrada possui uma sequência de números inteiros N (0 <= N <= 3000) correspondentes a idade, em anos.

SAÍDA

A saída possui dois inteiros por linha. O primeiro representa a idade e o segundo a quantidade de pessoas com esta idade. A saída é ordenada crescente pela idade.

Exemplo de Entrada	Exemplo de Saída
21 240 21 21 953	21 3
	240 1
	953 1

Exemplo de Entrada	Exemplo de Saída
5 3000 100 2000 100 8 0 2500	0 1
	5 1
	8 1
	100 2
	2000 1
	2500 1
	3000 1

Problema E

Caio, o Estudioso!

Nome base: estudioso *Tempo limite:* 1s

Caio está estudando a ordenação por Inserção. Este é um método simples de ordenação, baseado em inserir, passo a passo, em um subvetor já ordenado, um novo elemento. Para isso, os elementos do subvetor que sejam maiores do que está sendo inserido são deslocados para a direita.

O algoritmo estudado por Caio usa como sentinela, na posição 0 do vetor, o próprio elemento que está sendo inserido. Desta forma, ao se inserir o elemento na posição i do vetor, até i comparações são necessárias para se ajustar o vetor e encontrar a posição de inserção.

Neste problema, você deve ajudar o Caio a compreender a ordenação por Inserção, contando o total de comparações necessárias para a ordenação de uma dada string (deve incluir comparações com a sentinela).

ENTRADA

Vários casos de teste são propostos. A primeira linha da entrada é um inteiro t ($1 \le t \le 1000$) que indica quantos serão os casos de teste. A seguir são descritos t testes. Cada teste consiste de uma linha contendo uma string de até 1000 caracteres, com letras maiúsculas.

SAÍDA

Para cada caso de teste imprima o total de comparações para ordenar a string dada, usando o método descrito.

Exemplo de Entrada	Exemplo de Saída
3	75
TESTEDEINSERCAO	27
GFEDCBA	0
G	

Apoio: Cristhian Bonilha

Problema D

Dicionário

Nome base: dicionario *Tempo limite:* 1s

Tomás tem um sonho, ele deseja produzir seu próprio dicionário. Como ele possui apenas 8 anos, esta não é uma tarefa fácil para ele, uma vez que as palavras que ele conhece são limitadas. Sabendo disso, ele teve uma boa ideia. Pegar textos na Internet e selecionar, destes, as palavras distintas, arranjando-as em ordem alfabética. Porém isto consome muito tempo, e, por isto, ele precisa de sua ajudar para escrever um programa para facilitar a construção do seu dicionário.

Seu programa removerá as repetições e formatará as palavras em minúsculas. Por exemplo, palavras como "Ipameri", "ipameri" ou "IPAMERI" são consideradas a mesma, e a escrita é "ipameri".

ENTRADA

A entrada consiste de um texto, com até 5000 palavras. Cada palavra possui até 100 caracteres. Uma vez que Tomás deseja montar seu dicionário em língua inglesa, a entrada não terá acentuação nas palavras, porém, terá alguns símbolos de pontuação (ponto ou vírgula).

SAÍDA

A saída deve fornecer uma lista com as palavras diferentes que aparecem no texto de entrada. Cada palavra deve ser escrita em uma linha e desconsiderar os símbolos de pontuação (ponto ou vírgula). As palavras devem ser escritas em minúsculas, e ordenadas em ordem alfabética.

Exemplo de Entrada	Exemplo de Saída
About ICPC	about
	algorithmic
The International Collegiate Programming Contest is	an
an algorithmic programming contest for college	college
students.	collegiate
	contest
	for
	icpc
	international
	is
	programming
	students
	the

Problema C

Coelho da Páscoa

Nome base: coelho *Tempo limite:* 1s

Lewis Carroll não vê a hora de chegar a Páscoa! Ele recebeu um crédito C numa chocolataria e gostaria de comprar dois ovos de páscoa. Primeiramente, ele conhece a loja e cria uma lista L com todos os ovos disponíveis. Desta lista, ele gostaria de comprar dois itens que somados, atingem o valor total do crédito recebido. Você consegue ajudá-lo a otimizar sua compra de ovos de Páscoa?

Sua solução deve mostrar dois inteiros, representando as posições dos itens na lista (em ordem crescente) cuja soma de seus preços, é exatamente o valor do crédito C.

ENTRADA

A primeira linha contém o número $N \le 50$, representando a quantidade de casos de teste. Cada caso de teste seguinte terá:

- uma linha com o valor C ($5 \le C \le 1000$), o crédito recebido na chocolataria;
- uma linha contendo o valor I ($3 \le I \le 2000$), a quantidade de itens na loja;
- uma linha contendo uma lista de I inteiros. Cada inteiro P ($1 \le P \le 1000$) indica o preço de um ovo de páscoa na loja.

Cada caso de teste terá exatamente uma solução.

SAÍDA

Para cada caso de teste, imprima uma linha contendo "Caso #x: " seguido dos índices dos dois itens cujos preços, somados, representam exatamente o crédito de Jaque. O menor índice deve ser impresso primeiro e "x" representa o caso de teste em questão (começando em 1).

Exemplo de Entrada	Exemplo de Saída
3	Caso #1: 2 3
100	Caso #2: 1 4
3	Caso #3: 4 5
5 75 25	
200	
7	
150 24 79 50 88 345 3	
8	
8	
2 1 9 4 4 56 90 3	

Problema B

Buscar pela Ordem

Nome base: buscar *Tempo limite:* 1s

Implemente um programa para mostrar uma sequência de números em Pré-ordem, In-ordem e Pós-ordem.

ENTRADA

A entrada terá uma quantidade Q de números inteiros N, tal que (1 <= Q <= 10^5) e (1 <= N <= 2^3 1).

SAÍDA

A saída mostrará os números em Pré-ordem, In-ordem e Pós-ordem, sendo cada ordem em uma linha.

Exemplo de Entrada	Exemplo de Saída
	93 5 2 4 11 15 32 99 115 110 2 4 5 11 15 32 93 99 110 115 4 2 32 15 11 5 110 115 99 93

Exemplo de Entrada	Exemplo de Saída
	2 4 99 93 5 11 15 32 115 110 2 4 5 11 15 32 93 99 110 115 32 15 11 5 93 110 115 99 4 2