1). Using the knowledge base, show the corresponding Bayes Net.

2). Using the ideas of conditional independence discussed in class and in Ch. 14 of R&N, identify which variables in this network are conditionally independent of which others given what conditions.

Using markov blanket rule:

- 1. Lays eggs is conditionally independent of the network given owl and Ech
- 2. Flies is conditionally independent of the network given owl, Bat
- 3. Mam_G is conditionally independent of the given network given Ech, Bat and Panda
- 4. Eat B is conditionally independent of the given network given Panda
- 5. Owl is conditionally independent of the network given Lays eggs, Flies, Echidna, Bat
- 6. Ech is conditionally independent of the network given Lays_eggs ,Mam_G , Owl, BAt and Panda
- 7. Bat is conditionally independent of the network given Mam_G,Flies, Echidna, Panda, Owl
- 8. Panda is conditionally independent of the network given Eat_Bamboo, Mam_G, Echidna, Bat.

Using d-separation:X and Y are d-separated if all the paths that connect them are inactive.

Using common cause rule: (a<-c->b)

- 1. Lays eggs and Flies are conditionally independent given Owl
- 2. Lays_eggs and Mam_G are conditionally independent given Echidna
- 3. Flies and Mam_G are conditionally independent given Bat
- 4. Mam G and Eat B are conditionally independent given Panda

3) Use the prior and conditional probabilities provided to construct probability tables for each node of this network.

For each node:

P(0):

P(E):

P(B):

P(P):

P(L_E):

P(F):

F	0	В	P(F/O,B)
T	+	T	0-9 X0.03 =0.027
T	T.	F	0.95 X 0.97 = 0.9215
7	F	T	0-86×0.03=0.0258
	F	F	0.03 x0.97=0.0291
F	T	T	0.1 X 0.03 = 0.003
F	T	F	0.05 x 0.97 =0.0485
F	F	T	0-14 x0.03=0.0012
F	F	F	0.97+0.97=0.9409

P(M_G):

	ريو	Pib	0.01
e b	P		P(M/e,d,A)A
TT		T	0.9×0.02 = 0.018 ×0.63 = 0.00054
+ +		+	0-75×0.98×0.735×0.03 = 0.0220
TE		T	
			6. 4 × 0.02 = 0.008 × 0.97 = 0.0776
TF	F	T	0.02×0,98=0.0196×0.97=0.01901
TT	1	F	0.1 x 0.02 = 0.02 x 0.03 = 0.0006
TT	F	F	0-25 x 0.98 = 0.245 x 0.03 = 0.00735
TF	丁	F	0.6 x 0.62 = 0.012 x 0.97 = 0.01164
+ =	F	F	0.98 x 0.98 = 0-9604 x 0.97=0.93158
FT	T	T	6.5 × 0.02 = 0.61 × 0.03 =0.0003
FT	F	T	008 × 0.98 = 0.0784 x003=0.0235
FF	4	T	0.5 × 0.02 = 0.01 x0.97 =0.0097
FF	F	T	0.01 × 0.98 = 6.009 8×0.97=0.0095
	19+1	F	0.5 x 0.02 = 0.01 x0.03 = 0.0003
FT			0.92 × 0.98 = 0.9016×0.03=0.007
FT	F	F	02 = 0.01×0.97=0 11 M
FF	Tes	F	0.5 x 6.02 0.99 x 0.98 = 0.9702x0.97=0 Sa us
FF	F	F	0.991 X V = us
		The same of	Manual Manual Transmission

P(E_B):

P E_B P(E-B)
T T
$$0.7 \times 0.02 = 0.014$$

F T $0.03 \times 0.98 = 0.0294$
F F $0.3 \times 0.02 = 0.006$
F F $0.97 \times 0.98 = 0.9506$

Convention adopted:

OWL:O BAT:B Panda: P Echidna:e Flies: F

Lays_eggs:L_E
Eats Bamboo: E_B
Mammary glands: M_G

Then use exact inference to answer the following questions. What is the probability that

a) The animal can fly.

- b) The animal is an echidna.
- c) The patient is a bat, given that it eats bamboo.
 - a) P(Flies=T)=T

Initial calculation and reduction:

$$P(F=T)=T$$
.

 $P(F)=X \leq P(0) P(b) P(e) P(P) \cdot P(F/0,b) P(E-b/p)$
 $o,b,e,p,le,e-b,MG$
 $P(le,b,e) \cdot P(M-G/e,b,p)$
 $E(B,MG) = P(B) \cdot P(F/0,b) = P(E-b/p) \cdot P(E-b/p) \cdot$

With the given priors of o and b

With the given priors of o and b

$$P(F=T)=T$$

$$P(B)=XEP(0)\cdot \sum_{B}P(B)\cdot P(F=0,B)$$

$$P(O)=0$$

$$P($$

Calculating P(F=T/b,o)*P(b):

1) (alc
$$P(F=T \land O/B) = \sum_{B} P(F, O, B) \cdot P(B)$$

F O B

T T

F $O = P(F \land O/B)$

O $O = P(F \land O/B)$

P $O = P(F \land O/B)$

P $O = P(F \land O/B)$

O $O = P(F \land O/B)$

O

Combining common values of b: calculating P(F=T/o):

Calculating P(F=T/o)*P(o)

Calc:
$$P(F=T) = \sum_{0}^{\infty} P(0) \cdot P(F=T/0)$$
 $F = 0$
 $P(F=T)$
 $T = 0.9489 \times 0.05 = 0.047425$
 $F = 0.0519 \times 0.05 = 0.02579$
 $F = 0.0549 \times 0.95 = 0.052155$
 $F = 0.9491 \times 0.95 = 0.897845$
 $F = 0.9451 \times 0.95 = 0.897845$

Combining over all values of o : P(F=T)

4)
$$P(F=T)$$
 $+ = 0.09958$
 $F = 0.90042$
 $P(F=T)=T(0.09958)$

Calculating P(F=T)=T

$$P(F=T) = 0.09958/0.90042 = 0.09958$$

b) P(Echidna)= P(E=T)=T

Given:

Moving summation inside:

$$P(E=T) \propto \sum_{B,P} P(B).P(P).P(LE/0,E=T) P(F/6,B)$$

Rewriting, P(E) to P(E=T):

Using variable elimination:

Removing that is
$$\leq P(0) \cdot P(E=T) \cdot P(LE/0, E=T) = 1$$

(ii) $\leq \leq P(B) \cdot P(F/0, B) = 1$

we have

$$P(E=T) \times \leq P(P) \cdot P(B) \cdot P(M/E=T, B, P) \cdot P(E=T)$$

by var elimination
$$\leq P(P).P(B).P(E=T).P(M/E=T,B,P)=P(E=T)$$

 $P(E=T) \propto P(E=T) = prior probability=0.01$

P(E=T) is left after variable elimination of all other variables: which gives prior probability of 0.01

c) P(B=T/E_B=T)

With the following equation: Calculating P(B=T, E_B=T)

$$P(B=T/e=B=T) \times P(B/eB=T)$$
 $P(B/eB=T) \times P(B) P(O) P(e) P(P) P(Le/o,e) P(F/o,B)$
 O, E, P, Le, F, MG
 $P(M-G/e,b,P) \cdot P(e-B=T/P)$

Moving summation inside:

Starting with variable elimination:

$$\sum_{e} P(e) \cdot P(Le/o, e) = 1$$

$$\sum_{e} P(P) \cdot P(E-B-T/P) = P(E-B-T)$$

$$\sum_{e} P(P) \cdot P(E-B-T/P) = P(E-B-T)$$

$$\sum_{e} P(P) \cdot P(E-B-T/P) = P(E-B-T)$$

$$\sum_{e} P(P) \cdot P(E-B-T/P) = P(E-B-T/P)$$

$$\sum_{e} P(P) \cdot P(E-B-T/P) = P(E-B$$

Summing over all values of p to get P(E_B=T):

Substituting the value:

For P(B=T):

$$P(B=T/E=T) \times P(B=T) \times 0.0146 \cdot \xi_{P(0)} \cdot P(F_{0,B=T}) \cdot \xi_{P(P)} \cdot P(M-G_{0,b=T,P})$$
 $\xi_{MG} P(M-G_{0,b=T,P}) = 1, \xi_{P(P)} = 1, \xi_{P(P)} = 1, \xi_{P(P)} = 1$

Doing variable elimination:

Finally:

Hence.
$$P(B=T/E_B=T) \times P(B=T) \times 0.0146$$

$$= 0.03 \times 0.0146$$

$$= 0.000438$$

$$P(B=T, E_B=t)= 0.000438$$

$$P(B=T/E_B=T) = P(B=T, E_B=t) / P(E_B=T)$$

= 0.000438 / 0.0146 as calculated above:

Hence

 $P(B=T/E_B=T)=0.03$