

American International University- Bangladesh

Data Science

Final Project Report

Summer 22-23

Name : Nayeem Abdul Qaiyum

ID : 20-43581-1

Section : C

Date Of Submit: 15.08.23

Submitted By

Abdus Salam

Assistant Professor, CS

Data Set Name: US Births 👶 by Year, State, and Education Level

Data set Link: https://www.kaggle.com/datasets/danbraswell/temporary-us-births

Description:

This dataset provides birth rates and related data across the 50 states and DC from 2016 to 2021. A particular emphasis is given to detailed information on the mother's educational level. There are several rows and 9 columns in the data set and they are – State, State.Abbreviation, Year, Gender, Education.Level.of.Mother, Education.Level.Code, Number.of.Births, Average Age.of.Mother..years., Average.Birth.Weight..g. There are different types of attributes in this dataset and they are integer, numeric, character. Here we apply KNN method to find the highly accurate results.

Table of Contents

- 1. Import data
- 2. View the structure of the dataset
- 3. First few rows of the dataset
- 4. Column name of the data set
- 5. Find the type of this dataset column
- 6. Summary
- 7. Data preparation steps
- 8. Delete Column (State Abbreviation)
- 9. Conversion
- 10. Categorical to Numeric (State column)
- 11. Categorical to Numeric (Gender column)
- 12. Categorical to Numeric (Education Level of Mother column)
- 13. Missing Value
- 14. Finding the missing value for all attributes
- 15. Normalization
- 16. Correlation
- 17. Calculate the correlation between "Education.Level.of.Mother" and "State"
- 18. Calculate the correlation between "Education.Level.of.Mother" and "Year"
- 19. Calculate the correlation between "Education.Level.of.Mother" and "Gender"
- 20. Calculate the correlation between "Education.Level.of.Mother" and "Number.of.Births"
- 21. Calculate the correlation between "Education.Level.of.Mother" and "Average.Age.of.Mother..years."
- 22. Calculate the correlation between "Education.Level.of.Mother" and "Average.Birth.Weight..g."
- 23. Plot Correlation Matrix
- 24. Training & Testing
- 25. Accuracy
- 26. 10-fold cross validation
- 27. Confusion matrix

Project Solution

Import data:

Insert all of the data from the excel file first, and then save the document as a dataset file. then convert the dataset file's format to a CSV file. After importing my CSV file into RStudio, I add the following code.

Code Segment:

us_births <- read.csv("D:/11th Semester/Data Science/Final/us_births_2016_2021.csv") us_births

Output:

View the structure of the dataset:

The dataset structure is shown using the str() function, including the variables, their data types, and the initial values. We will get a general idea of the dataset from this.

Code Segment:

str(us_births)

First few rows of the dataset:

The first few rows of the dataset are shown using the head() function. This will allow us to understand the data and ensure that it was imported properly.

Code Segment:

head(us_births)

> head(us_birth						
	e.Abbreviation Year Gen	nder Education Level of Mother	Education Level Code	Number of Rirths	Average.Age.of.Motheryears.	Average Right Weight o
1 Alabama	AL 2016	F 8th grade or less	1	1052	27.8	3116.9
2 Alabama	AL 2016	F 9th through 12th grade with no diploma	2	3436		3040.0
3 Alabama	AL 2016	F High school graduate or GED completed		8777	25.4	3080.0
4 Alabama	AL 2016	F Some college credit, but not a degree		6453	26.7	3121.9
5 Alabama	AL 2016 AL 2016	F Associate degree (AA. AS)		2227	28.9	3174.3
6 Alabama		3 , , ,)			
0 Alabama	AL 2016	F Bachelor's degree (BA, AB, BS)	0	4453	30.3	3239.0
>						

Column name of the data set:

Explanation: To see the all column name we using the names() function.

Code Segment:

names(us_births)

```
> names(us_births)
[1] "State" "State.Abbreviation" "Year" "Gender" "Education.Level.of.Mother"
[6] "Education.Level.Code" "Number.of.Births" "Average.Age.of.Mother..years." "Average.Birth.Weight..g."
> |
```

Find the type of this dataset column:

Explanation: We can determine which column contains which type using sapply(). **Code Segment:**

sapply(us_births, class)

```
> Sapply(us_births, class)

State State.Abbreviation Year Gender Education.Level.of.Mother Education.Level.Code
"character" "integer" "character" "integer"

Number.of.Births Average.Age.of.Mother..years. Average.Birth.Weight..g.
"integer" "numeric"

> |
```

Summary:

For numerical variables in the dataset, the summary() function returns summary statistics (count, mean, median, etc.). This will help us gain understanding of the variables' distribution and central patterns.

Code Segment:

summary(us_births)

```
> summary(us_births)
   State
                  State.Abbreviation
                                        Year
                                                    Gender
                                                                   Education.Level.of.Mother Education.Level.Code Number.of.Births Average.Age.of.Mother..years.
                                                                                                              Min. : 10 Min. :23.10
1st Qu.: 559 1st Qu.:27.50
Length:5496
                  Length:5496
                                  Min. :2016 Length:5496
                                                                   Length:5496
                                                                                           Min. :-9.000
Class :character Class :character 1st Ou.:2017 Class :character Class :character
                                                                                           1st Ou.: 2.000
 Mode :character Mode :character Median :2019
                                                                                           Median : 4.000
                                                                                                              Median : 1692
                                                 Mode :character Mode :character
                                                                                                                              Median :29.60
                                    Mean :2019
                                                                                           Mean : 3.026
                                                                                                              Mean : 4115
                                                                                                                              Mean :29.55
                                                                                           3rd Qu.: 6.000
                                    3rd Qu.:2020
                                                                                                              3rd Qu.: 5140 3rd Qu.:31.80
                                                                                                             Max. :59967 Max. :35.50
                                    Max.
                                          :2021
                                                                                           Max. : 8.000
 Average.Birth.Weight..g.
 Min. :2452
1st Ou.:3182
 Median :3256
 Mean :3251
 3rd Qu.:3331
Max. :3586
```

Data preparation steps

First, I need to prepare my dataset so that I can apply the KNN method later.

To prepare my dataset firstly I need to convert all categorical data to numerical data. Also, we can delete any column unless we need it.

In this dataset I delete one column and that is State Abbreviation.

Delete Column (State Abbreviation): Code Segment:

```
us_births <- us_births[, -which(names(us_births) == "State.Abbreviation")]
print(us_births)</pre>
```

> t	<pre>> us_births <- us_births[, -which(names(us_births) == "State.Abbreviation")]</pre>									
> print(us_births)										
	State Year (Gender	Education.Level.of.Mother	Education.Level.Code	Number.of.Births	Average.Age.of.Motheryears.				
1	Alabama 2016	F	8th grade or less	1	1052	27.8				
2	Alabama 2016	F	9th through 12th grade with no diploma	2	3436	24.1				
3	Alabama 2016	F	High school graduate or GED completed	3	8777	25.4				
4	Alabama 2016	F	Some college credit, but not a degree	4	6453	26.7				
5	Alabama 2016	F	Associate degree (AA, AS)	5	2227	28.9				
6	Alabama 2016	F	Bachelor's degree (BA, AB, BS)	6	4453	30.3				
7	Alabama 2016	F	Master's degree (MA, MS, MEng, MEd, MSW, MBA)	7	1910	32.0				
8	Alabama 2016	F D	octorate (PhD, EdD) or Professional Degree (MD, DDS, DVM, LLB, JD)	8	487	33.1				
9	Alabama 2016	F	Unknown or Not Stated	-9	65	27.7				
10	Alabama 2016	M	8th grade or less	1	1188	27.6				
11	Alabama 2016	M	9th through 12th grade with no diploma	2	3657	23.9				
12	Alabama 2016	М	High school graduate or GED completed	3	9284	25.2				
13	Alabama 2016	M	Some college credit, but not a degree	4	6516	26.7				
4.4	.7 1 2016				2460	20.0				

Conversion

Converting categorical data to numerical data is a common preprocessing step in data science and analysis. This is often necessary because many algorithms, including K-Nearest Neighbors (KNN), work with numerical data and mathematical calculations.

<u>Categorical to Numeric (State column):</u>

Code Segment:

us_births\$State<factor(us_births\$State,levels=c("Alabama","Alaska","Arizona","Arkansa s","California","Colorado","Connecticut","Delaware","District of Columbia","Florida","Georgia","Hawaii","Idaho","Illinois","Indiana","Iowa","Kansas","K entucky","Louisiana","Maine","Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana","Nebraska","Nevada","New Hampshire","New

Jersey","New Mexico","New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon","Pennsylvania","Rhode Island","South Carolina","South Dakota","Tennessee","Texas","Utah","Vermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming"), labels = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51))

us_births

```
> us_births$State <- factor(us_births$State, levels=c("Alabama","Alaska","Arizona","Arkansas","California","Colorado","Connecticut","Delaware","bistrict of Columbia","Florida","Georgi a","Hawaii","Idaho","Illinois","Indiana","Iona","Kentucky","Louisiana","Waine","Maryland","Massachusetts","Wichigan","Winnesota","Mississippi","Wissouri","Montana","Mebrask a","Nevada","New Hampshire","New Jersey","New Mexico","New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon","Pennsylvania","Rhode Island","South Carolina","South Dakot a","Tennessee","Texas","Utah","Uermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming"), labels = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2
  ,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51))
                                                                                                       Education.Level.of.Mother Education.Level.Code Number.of.Births Average.Age.of.Mother..years
      State Year Gender
            1 2016
                                                                                                                   8th grade or less
            1 2016
                                                                                  9th through 12th grade with no diploma
            1 2016
                                                                                   High school graduate or GED completed
Some college credit, but not a degree
                                                                                                                                                                                                                                                       25.4
            1 2016
                                                                                                      Associate degree (AA, AS)
                                                                                                                                                                                                      2227
                                                                                                                                                                                                                                                       28.9
                                                                                             Bachelor's degree (BA, AB, BS)
                               F Master's degree (MA, MS, MEng, MEd, MSW, MBA)
F Doctorate (PhD, EdD) or Professional Degree (MD, DDS, DVM, LLB, JD)
            1 2016
            1 2016
                                                                                                            Unknown or Not Stated
                                                                                                                                                                                                         65
                                                                                 9th through 12th grade with no diploma
11
            1 2016
                                                                                                                                                                                                      3657
                                                                                                                                                                                                                                                       23.9
                                                                                   High school graduate or GED completed
13
            1 2016
                                                                                   Some college credit, but not a degree
                                                                                                                                                                                                      6516
                                                                                                                                                                                                                                                       26.7
                                                                                                       Associate degree (AA, AS)
                                                                                              Bachelor's degree (BA, AB, BS)
15
            1 2016
                                                                                                                                                                                                      4645
                                                                      Master's degree (MA, MS, MEng, MEd, MSW, MBA)
            1 2016
                               M Doctorate (PhD, EdD) or Professional Degree (MD, DDS, DVM, LLB, JD)
```

Categorical to Numeric (Gender column):

Code Segment:

 us_births \$Gender <- factor(us_births \$Gender, levels=c("F","M"), labels = c(1,2)) us_births

Categorical to Numeric (Education Level of Mother column):

Code Segment:

us_births\$Education.Level.of.Mother <- factor(us_births\$Education.Level.of.Mother, levels=c("8th grade or less","9th through 12th grade with no diploma","High school graduate or GED completed","Some college credit, but not a degree","Associate degree (AA, AS)","Bachelor's degree (BA, AB, BS)","Master's degree (MA, MS, MEng, MEd, MSW,

MBA)","Doctorate (PhD, EdD) or Professional Degree (MD, DDS, DVM, LLB, JD)","Unknown or Not Stated"), labels = c(1,2,3,4,5,6,7,8,9))

us_births

> us_birthsSEducation.Level.of.Mother <- factor(us_birthsSEducation.Level.of.Mother, levels=c("8th grade or less","9th through 12th grade with no diploma","High school graduate or GED c ompleted","Some college credit, but not a degree","Associate degree (AA, AS)","Bachelor's degree (BA, AB, BS)","Master's degree (MA, MS, MEng, MEd, MSW, MBA)","Doctorate (PhD, EdD) or P rofessional Degree (MD, DDS, DVM, LLB, JD)","Unknown or Not Stated"), labels = c(1,2,3,4,5,6,7,8,9)) sub hirths

	State Year	Gender	Education.Level.of.Mother	Education.Level.Code	Number.of.Births	Average.Age.of.Motheryears.	Average.Birth.Weightg.
1	1 2016	1	1	1	1052	27.8	3116.9
2	1 2016	1	2	2	3436	24.1	3040.0
3	1 2016	1	3	3	8777	25.4	3080.0
4	1 2016	1	4	4	6453	26.7	3121.9
5	1 2016	1	5	5	2227	28.9	3174.3
6	1 2016	1	6	6	4453	30.3	3239.0
7	1 2016	1	7	7	1910	32.0	3263.5
8	1 2016	1	8	8	487	33.1	3196.7
9	1 2016	1	9	-9	65	27.7	3083.9
10	1 2016	2	1	1	1188	27.6	3232.9
11	1 2016	2	2	2	3657	23.9	3121.2
12	1 2016	2	3	3	9284	25.2	3197.9
13	1 2016	2	4	4	6516	26.7	3252.1
14	1 2016	2	5	5	2460	29.0	3301.4
15	1 2016	2	6	6	4645	30.3	3376.1
16	1 2016	2	7	7	1974	32.2	3358.2
17	1 2016	2	8	8	511	32.8	3368.4
18	1 2016	2	9	-9	56	27.2	3107.7
19	1 2017	1	1	1	1012	27.6	3139.6
20	1 2017	1	2	2	3283	24.4	3040.6
21		1	3	3	8962	25.4	3068.8
22	1 2017	1	4	4	6384	26.9	3112.3
23	1 2017	- 1	5	5	2411	28.9	3197 2

Finding the missing value for all attributes:

Missing data is crucial for accurate analysis and results.

Code Segment:

```
number_of_missing_value=colSums(is.na(us_births))
```

```
number_of_missing_value
```

Normalization

Normalization is a data preprocessing technique that is commonly used in data science to scale and transform features to a consistent range (0,1). It involves adjusting the values of features in a dataset to ensure that they have similar scales.

```
library(dplyr)
us_births <- as.data.frame(sapply(us_births, as.numeric))
min_max_norm <- function(x) {
   (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
}</pre>
```



```
normalized data <- us births %>%
 mutate(across(everything(), min_max_norm))
print(normalized_data)
> library(dplyr)
> us_births <- as.data.frame(sapply(us_births, as.numeric))</pre>
> min_max_norm <- function(x) {</pre>
    (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
> normalized_data <- us_births %>%
    mutate(across(everything(), min_max_norm))
> print(normalized_data)
    State Year Gender Education, Level. of. Mother Education, Level. Code Number. of. Births Average, Age. of. Mother...vears. Average, Birth, Weight...g.
                                                                                                    0.37903226
    0.00 0.0
                                        0.000
                                                        0.5882353
                                                                      0.0173791217
                                                                                                                             0.5865232
                                                        0.6470588
                                                                      0.0571409510
                                                                                                    0.08064516
    0.00 0.0
                                        0.125
                                                                                                                             0.5186982
    0.00 0.0
                                        0.250
                                                        0.7058824
                                                                      0.1462214587
                                                                                                    0.18548387
                                                                                                                             0.5539778
    0.00 0.0
                   0
                                        0.375
                                                        0.7647059
                                                                      0.1074603466
                                                                                                    0.29032258
                                                                                                                             0.5909331
                                                                      0.0369764998
    0.00 0.0
                                        0.500
                                                        0.8235294
                                                                                                    0.46774194
                                                                                                                             0.6371494
    0.00 0.0
                                        0.625
                                                        0.8823529
                                                                      0.0741031072
                                                                                                    0.58064516
                                                                                                                             0.6942141
    0.00 0.0
                                        0.750
                                                        0.9411765
                                                                      0.0316893774
                                                                                                    0.71774194
                                                                                                                             0.7158229
    0.00 0.0
                                        0.875
                                                        1.0000000
                                                                      0.0079557016
                                                                                                    0.80645161
                                                                                                                             0.6569060
                                                        0.0000000
                                                                      0.0009173241
                                                                                                    0.37096774
                                                                                                                             0.5574175
    0.00 0.0
                                        1.000
    0.00 0.0
                                        0.000
                                                        0.5882353
                                                                      0.0196474140
                                                                                                    0.36290323
                                                                                                                             0.6888340
10
                                                        0.6470588
11
    0.00 0.0
                                        0.125
                                                                      0.0608269260
                                                                                                    0.06451613
                                                                                                                             0.5903158
                                                                                                                             0.6579644
12
    0.00 0.0
                                                        0.7058824
                                                                      0.1546775189
                                                                                                    0.16935484
                                        0.250
13 0.00 0.0
                                        0.375
                                                        0.7647059
                                                                      0.1085110996
                                                                                                    0.29032258
                                                                                                                             0.7057682
                                                                                                                             0.7492503
                                        0.500
                                                        0.8235294
                                                                                                    0.47580645
14
   0.00 0.0
                                                                      0.0408626182
15 0.00 0.0
                                        0.625
                                                        0.8823529
                                                                      0.0773054022
                                                                                                    0.58064516
                                                                                                                             0.8151349
```

Correlation

Correlation analysis is a statistical technique used to evaluate the strength and direction of the linear relationship between two or more variables in a dataset.

<u>Calculate the correlation between "Education.Level.of.Mother" and "State":</u>

Code Segment:

correlation <- cor(normalized_data\$Education.Level.of.Mother, normalized_data\$State) print(correlation)

```
> correlation <- cor(normalized_data$Education.Level.of.Mother, normalized_data$State)
> correlation <- cor(normalized_data$Education.Level.of.Mother, normalized_data$State)
> print(correlation)
[1] 9.600574e-05
```

Calculate the correlation between "Education.Level.of.Mother" and "Year":

Code Segment:

correlation <- cor(normalized_data\$Education.Level.of.Mother, normalized_data\$Year) print(correlation)

```
> correlation <- cor(normalized_data$Education.Level.of.Mother, normalized_data$Year)
> print(correlation)
[1] 0.0006628243
> |
```


<u>Calculate the correlation between "Education.Level.of.Mother"</u> and "Gender":

Code Segment:

correlation <- cor(normalized_data\$Education.Level.of.Mother, normalized_data\$Gender) print(correlation)

> correlation <- cor(normalized_data\$Education.Level.of.Mother, normalized_data\$Gender)
> print(correlation)
[1] 0.0005658527
> |

<u>Calculate the correlation between "Education.Level.of.Mother"</u> and "Number.of.Births":

Code Segment:

correlation <- cor(normalized_data\$Education.Level.of.Mother,
normalized_data\$Number.of.Births)
print(correlation)
> correlation <- cor(normalized_data\$Education.Level.of.Mother, normalized_data\$Number.of.Births)
> print(correlation)
[1] -0.1347495

Calculate the correlation between "Education.Level.of.Mother" and "Average.Age.of.Mother..years.":

Code Segment:

```
correlation <- cor(normalized_data$Education.Level.of.Mother,
normalized_data$Average.Age.of.Mother..years.)
print(correlation)
> correlation <- cor(normalized_data$Education.Level.of.Mother, normalized_data$Average.Age.of.Mother..years.)
> print(correlation)
[1] 0.6441881
> |
```

<u>Calculate the correlation between "Education.Level.of.Mother" and "Average.Birth.Weight..g.":</u>

```
correlation <- cor(normalized_data$Education.Level.of.Mother,
normalized_data$Average.Birth.Weight..g.)
print(correlation)
> correlation <- cor(normalized_data$Education.Level.of.Mother, normalized_data$Average.Birth.Weight..g.)
> print(correlation)
[1] 0.08728431
> |
```


Plot Correlation Matrix

A plot correlation matrix is a data visualization technique that visually represents relationships between multiple variables in a dataset. It displays correlation coefficients between pairs of variables, with color or shading indicating strength and direction. Each cell in the matrix represents the correlation between two variables, and the color or shading of the cell can be used to convey the strength and direction of the correlation.

Code Segment:

install.packages("corrplot")

library(corrplot)
plot<-cor(normalized_data)
corrplot(plot,method="color")</pre>

Training & Testing

Splitting a dataset into training and testing subsets is a crucial step in the field of data science, particularly when building and evaluating predictive models. For example: Fair Comparison, Decision Making, Validation of Results, Quality Control. Dividing the data into training and test set.

Code Segment:

random <- sample(1:nrow(normalized_data), 0.7 * nrow(normalized_data))

Divide the data set into training and testing sets

Education.Level.of.Mother_train <- normalized_data[random,] Education.Level.of.Mother_test <- normalized_data[-random,]

Extract the labels (assuming "Education.Level.of.Mother" column is the label) Education.Level.of.Mother_train_labels <-

 $Education. Level. of. Mother_train \$ Education. Level. Of. Mother_train \$ Education$

Education.Level.of.Mother_test_labels <-

Education.Level.of.Mother_test\$Education.Level.of.Mother

Education.Level.of.Mother_train Education.Level.of.Mother_test

For train:										
> Education.Level.of.Mother_train										
> Ea					walled at particular	A A of Makkan	Access of the burning			
026	0.16	0.6				Average.Age.of.Motheryears.				
926		0.6	0	0.875	0.0081725236 0.0393115066	0.98387097	0.7481037			
1859	0.34		0	0.500		0.46774194	0.6806315			
2445	0.44	0.6	1	1.000	0.0089897760	0.47580645	0.5814077			
4333	0.80	0.2	0	0.750	0.0353586737	0.75806452	0.7166167			
1774	0.32	0.4	1	0.000	0.0088563470	0.51612903	0.7782678			
624	0.10	0.8	1	0.250	0.1078439548	0.28225806	0.6531134			
4734	0.86	1.0	1	0.250	0.9248628184	0.25806452	0.6945669			
5150	0.94	0.8	1	0.500	0.0680654469	0.57258065	0.8616158			
3467	0.64	0.2	0	0.500	0.1475223910	0.58870968	0.6766626			
284	0.04	0.6	1	0.500	0.0568574145	0.54032258	0.8086082			
595	0.10	0.6	0	0.000	0.0121086779	0.58870968	0.5897866			
2355	0.42	0.8	1	1.000	0.0150607936	0.69354839	0.7587758			
2803	0.50	1.0	1	0.750	0.0591924212	0.75000000	0.8501499			
992	0.18	0.2	0	0.125	0.1647847624	0.16935484	0.5553008			
47	0.00	0.4	1	0.125	0.0521707224	0.08870968	0.5806139			
3664	0.68	0.0	0	0.375	0.0192638057	0.35483871	0.7575410			
4255	0.78	0.6	0	0.000	0.0022682923	0.64516129	0.6219792			
2708	0.50	0.0	1	0.125	0.0621445369	0.06451613	0.6518786			
4969	0.92	0.0	1	0.375	0.1560284871	0.40322581	0.7825895			
2008	0.36	0.6	1	0.000	0.0143436129	0.36290323	0.6658141			
1195	0.22	0.0	0	0.750	0.0110579248	0.87903226	0.6178338			
3919	0.72	0.4	0	0.750	0.0190469837	0.72580645	0.7168813			
1136	0.20	0.6	0	0.125	0.0972363527	0.13709677	0.5157876			
886	0.16	0.2	Ö	0.375	0.0111579966	0.40322581	0.5056447			
3500	0.64	0.6	ō	0.125	0.1761762597	0.31451613	0.5916387			

For test:

> Fo	> Education Level of Mother test								
					Number.of.Births	Average.Age.of.Motheryears.	Average.Birth.Weightg.		
4	0.00	0.0	0	0.375	0.1074603466	0.29032258	0.5909331		
5	0.00	0.0	0	0.500	0.0369764998	0.46774194	0.6371494		
8	0.00	0.0	0	0.875	0.0079557016	0.80645161	0.6569060		
16	0.00	0.0	1	0.750	0.0327568090	0.73387097	0.7993473		
17	0.00	0.0	1	0.875	0.0083559885	0.78225806	0.8083436		
19	0.00	0.2	0	0.000	0.0167119769	0.36290323	0.6065444		
22	0.00	0.2	0	0.375	0.1063095218	0.30645161	0.5824660		
26	0.00	0.2	0	0.875	0.0090231332	0.80645161	0.6869818		
28	0.00	0.2	1	0.000	0.0161449038	0.36290323	0.6860998		
36	0.00	0.2	1	1.000	0.0012508965	0.29032258	0.5634151		
39	0.00	0.4	0	0.250	0.1482896076	0.19354839	0.5404833		
40	0.00	0.4	0	0.375	0.1003052187	0.31451613	0.5987829		
48	0.00	0.4	1	0.250	0.1566956319	0.19354839	0.6392662		
53	0.00	0.4	1	0.875	0.0093400270	0.80645161	0.7669783		
54	0.00	0.4	1	1.000	0.0008672882	0.36290323	0.6039866		
59	0.00	0.6	0	0.500	0.0398619010	0.47580645	0.6413830		
61	0.00	0.6	0	0.750	0.0310055540	0.70967742	0.6910390		
64	0.00	0.6	1	0.000	0.0200477009	0.39516129	0.7003881		
66	0.00	0.6	1	0.250	0.1607318578	0.19354839	0.6417358		
80	0.00	0.8	0	0.875	0.0089897760	0.81451613	0.6846887		
82	0.00	0.8	1	0.000	0.0188635189	0.34677419	0.6706650		
84	0.00	0.8	1	0.250	0.1608819654	0.20967742	0.6353854		
86	0.00	0.8	1	0.500	0.0438480911	0.49193548	0.7344329		
96	0.00	1.0	0	0.625	0.0745534300	0.59677419	0.6754278		
97	0.00	1.0	0	0.750	0.0360758544	0.70967742	0.6711060		
98	0.00	1.0	0	0.875	0.0094567774	0.79838710	0.7169695		
103	0.00	1.0	1	0.375	0.0945344163	0.34677419	0.6842477		

Accuracy:

In data science and machine learning, accuracy is a key metric used to measure the performance of a predictive model.

```
library(class)
set.seed(123)
random <- sample(1:nrow(normalized_data), 0.7 * nrow(normalized_data))
Education.Level.of.Mother_train <- normalized_data[random, ]
Education.Level.of.Mother_test <- normalized_data[-random, ]
Education.Level.of.Mother train labels <-
Education.Level.of.Mother_train$Education.Level.of.Mother
Education.Level.of.Mother test labels <-
Education.Level.of.Mother_test$Education.Level.of.Mother
 k < -3
predicted_labels <- knn(train = Education.Level.of.Mother_train[, -</pre>
which(names(Education.Level.of.Mother_train) == "Education.Level.of.Mother")],
                   test = Education.Level.of.Mother_test[, -
which(names(Education.Level.of.Mother_test) == "Education.Level.of.Mother")],
                  cl = Education.Level.of.Mother_train_labels,
                  k = k
accuracy <- sum(predicted labels == Education.Level.of.Mother test labels) /
length(Education.Level.of.Mother_test_labels)
cat("Accuracy:", accuracy, "\n")
> library(class)
> set.seed(123)
> random <- sample(1:nrow(normalized_data), 0.7 * nrow(normalized_data))</pre>
> Education.Level.of.Mother_train <- normalized_data[random, ]
> Education.Level.of.Mother_test <- normalized_data[-random, ]</pre>
> Education.Level.of.Mother_train_labels <- Education.Level.of.Mother_train$Education.Level.of.Mother
> Education.Level.of.Mother_test_labels <- Education.Level.of.Mother_test$Education.Level.of.Mother
> predicted_labels <- knn(train = Education.Level.of.Mother_train[, -which(names(Education.Level.of.Mother_train) == "Education.Level.of.Mother_train")
er")],
                      test = Education.Level.of.Mother_test[, -which(names(Education.Level.of.Mother_test) == "Education.Level.of.Mother_test")
r")],
                      cl = Education.Level.of.Mother_train_labels,
                      k = k
> accuracy <- sum(predicted_labels == Education.Level.of.Mother_test_labels) / length(Education.Level.of.Mother_test_labels)</pre>
> cat("Accuracy:", accuracy, "\n")
Accuracy: 0.4893875
```


Dividing the data into training and test set

```
library(class)
# Split the data into training and test sets
set.seed(123)
random <- sample(1:nrow(normalized_data), 0.7 * nrow(normalized_data))
train data <- normalized data[random, ]
test_data <- normalized_data[-random, ]
# Extract labels
train labels <- train data$Education.Level.of.Mother
test_labels <- test_data$Education.Level.of.Mother
# Define k value
k < -3
# Train KNN classifier
knn_model <- knn(train = train_data[, -which(names(train_data) ==
"Education.Level.of.Mother")],
          test = test_data[, -which(names(test_data) == "Education.Level.of.Mother")],
          cl = train labels,
          k = k
# Calculate accuracy
accuracy_approach1 <- sum(knn_model == test_labels) / length(test_labels)</pre>
cat("Accuracy (Dividing data into training and test sets):", accuracy_approach1, "\n")
                   test - test_uatal, which(hames(test_uata) -- tuncation.tevel.or.mother /],
                   cl = train_labels,
                   k = k
> # Calculate accuracy
> accuracy_approach1 <- sum(knn_model == test_labels) / length(test_labels)</pre>
> cat("Accuracy (Dividing data into training and test sets):", accuracy_approach1, "\n")
Accuracy (Dividing data into training and test sets): 0.4893875
```

10-fold cross validation

The 10-fold cross-validation method, which divides the dataset into 10 equal-sized subsets, is a common data science method for evaluating the effectiveness of predictive models. Its main goal is to give an accurate estimate of how well a model performs on unknown data.

```
install.packages("class")
install.packages("caret")
```



```
library(class)
library(caret)
set.seed(123)
num folds <- 10
fold_indices <- createFolds(normalized_data$Education.Level.of.Mother, k = num_folds)
accuracies <- numeric(num_folds)</pre>
for (i in 1:num_folds) {
 test_indices <- fold_indices[[i]]
 train_indices <- setdiff(1:nrow(normalized_data), test_indices)</pre>
 Education.Level.of.Mother_train <- normalized_data[train_indices, ]
 Education.Level.of.Mother_test <- normalized_data[test_indices, ]
 input_features_train <- Education.Level.of.Mother_train[, c("State", "Year",
"Gender", "Number.of.Births", "Average.Age.of.Mother..years.",
"Average.Birth.Weight..g.")]
 input_features_test <- Education.Level.of.Mother_test[, c("State", "Year",
"Gender", "Number.of.Births", "Average.Age.of.Mother..years.",
"Average.Birth.Weight..g.")]
 Education.Level.of.Mother_train_labels <-
Education.Level.of.Mother_train$Education.Level.of.Mother
 Education.Level.of.Mother_test_labels <-
Education.Level.of.Mother_test$Education.Level.of.Mother
 k < -3 # Set the value of 'k'
 predicted_labels <- knn(train = input_features_train,</pre>
                test = input_features_test,
                cl = Education.Level.of.Mother_train_labels,
```

```
k = k)
accuracies[i] <- sum(predicted_labels == Education.Level.of.Mother_test_labels) /
length(Education.Level.of.Mother_test_labels)
}
mean_accuracy <- mean(accuracies)
cat("Mean Accuracy (10-Fold Cross-Validation):", mean_accuracy, "\n")
+ }
> mean_accuracy <- mean(accuracies)
> cat("Mean Accuracy (10-Fold Cross-Validation):", mean_accuracy, "\n")
Mean Accuracy (10-Fold Cross-Validation): 0.5151042
```

Confusion matrix

A confusion matrix evaluates classification model performance by comparing predicted and actual classes, revealing strengths and weaknesses, and aiding in data science.

```
library(class)
library(caret)

# Set seed for reproducibility
set.seed(123)

# Assuming 'normalized_data' is your original dataset

# Replace this with the correct name if necessary

# Number of folds for cross-validation
num_folds <- 10

# Create indices for cross-validation folds
fold_indices <- createFolds(normalized_data$Education.Level.of.Mother, k = num_folds)

# Initialize matrices to store confusion matrices and metrics
confusion_matrices <- list()
recalls <- numeric(num_folds)
```



```
precisions <- numeric(num_folds)</pre>
# Define a function to calculate recall and precision
calculate_metrics <- function(cm) {</pre>
 recall <- cm[1, 1] / sum(cm[1, ])
 precision <- cm[1, 1] / sum(cm[, 1])
 return(list(recall = recall, precision = precision))
# Perform 10-fold cross-validation
for (i in 1:num folds) {
 # Split data into training and testing sets for this fold
 test indices <- fold indices[[i]]
 train_indices <- setdiff(1:nrow(normalized_data), test_indices)
 data_train <- normalized_data[train_indices, ]</pre>
 data_test <- normalized_data[test_indices, ]</pre>
 # Extract the input features and the decision attribute
 input_features_train <- data_train[, c("State", "Year", "Gender", "Number.of.Births",
                          "Average.Age.of.Mother..years.", "Average.Birth.Weight..g.")]
 input_features_test <- data_test[, c("State", "Year", "Gender", "Number.of.Births",
                         "Average.Age.of.Mother..years.", "Average.Birth.Weight..g.")]
 decision train <- data train$Education.Level.of.Mother
 decision_test <- data_test$Education.Level.of.Mother
 # Perform KNN classification
 k < -3 # Set the value of 'k'
 predicted_decisions <- knn(train = input_features_train,</pre>
                  test = input_features_test,
                  cl = decision train,
                  k = k
 # Calculate confusion matrix for this fold
 confusion_matrices[[i]] <- table(predicted = predicted_decisions, actual = decision_test)
 # Calculate recall and precision for this fold
 metrics <- calculate_metrics(confusion_matrices[[i]])
 recalls[i] <- metrics$recall
 precisions[i] <- metrics$precision</pre>
}
# Calculate the mean recall and precision across folds
```



```
mean_recall <- mean(recalls)</pre>
mean precision <- mean(precisions)
# Print mean recall and precision
cat("Mean Recall:", mean_recall, "\n")
cat("Mean Precision:", mean_precision, "\n")
# Print individual confusion matrices for each fold
for (i in 1:num folds) {
 cat("Confusion Matrix (Fold", i, "):\n")
 print(confusion_matrices[[i]])
 cat("\n")
 > mean_precision <= mean(precisions)</p>
 > # Print mean recall and precision
 > cat("Mean Recall:", mean_recall, "\n")
 Mean Recall: 0.2494325
 > cat("Mean Precision:", mean_precision, "\n")
 Mean Precision: 0.281739
 > # Print individual confusion matrices for each fold
 > for (i in 1:num_folds) {
     cat("Confusion Matrix (Fold", i, "):\n")
      print(confusion_matrices[[i]])
```

Confusion Matrix (1,2)

```
Confusion Matrix (Fold 1 ):
                                    actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
                 0 \qquad 16 \qquad 1 \qquad 0 \qquad 9 \quad 24 \qquad 5 \qquad 1 \qquad 0 \quad 19

      0
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10
      10

Confusion Matrix (Fold 2 ):
                                   actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
                                                                                                                                                                                                                  1
                 0 18 1 1 7 22 5 0
                                                                                                                                                                                             0 13
                                                                42
                                                                                                                                                        0
                                                                                                                                                                            0
                 0.125 0
                                                                                      14
                                                                                                               1 0
                                                                                                                                                                                                         0 2

    0.125
    0
    42
    14
    1
    0
    0
    0

    0.25
    1
    18
    32
    10
    1
    0
    0

    0.375
    6
    1
    23
    39
    5
    3
    0

    0.5
    12
    0
    0
    7
    18
    13
    1

    0.625
    4
    0
    0
    0
    5
    36
    4

    0.75
    2
    0
    0
    0
    0
    9
    27

    0.875
    0
    0
    0
    0
    0
    23

    1
    9
    0
    0
    1
    7
    2
    0

                                                                                                                                                                                                         0 1
                                                                                                                                                                                                         0 3
                                                                                                                                                                                                         0 11
                                                                                                                                                                                                         0 1
                                                                                                                                                                                                         9 0
                                                                                                                                                                                                       45 1
```


Confusion Matrix (3,4)

```
Confusion Matrix (Fold 3):
         actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
                     1
                            10 25
                                            0
                                                  0 10
          12
                 1
                                       4
    0.125
                45
                     18
                             0
                                            0
                                                   0 0
                            7
    0.25
                13
                      31
                                 0
                                       0
                                            0
                                                   0 1
           1
    0.375 6
                     17
                            25
                                       1
                                            0
                                                   0 5
                 1
                                4
    0.5
          20
                 0
                      0
                            5
                                22
                                      13
                                            0
                                                  0 10
    0.625 3
                 0
                      0
                            0
                                13
                                      29
                                            5
                                                  0 0
    0.75
                 0
                      0
                            0
                               0
                                      9
                                           36
                                                 22 0
           0
    0.875 0
                      0
                            0
                                       0
                                           23
                 0
                                 0
                                                 47 0
                             3
          10
                      1
                                 9
                                            1
                                                  0 26
Confusion Matrix (Fold 4 ):
         actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
                     0
                            10
                                22
                                       2
                                            1
                                                   0 11
          18
                 1
    0.125 0
                44
                     13
                            1
                                 0
                                       0
                                            0
                                                   0 0
    0.25
                14
                      37
                            11
                                 0
                                       0
                                            0
                                                   0 1
                                       2
    0.375 11
                 0
                     16
                            25
                                4
                                            0
                                                  0 0
                                25
    0.5
                      0
                            5
                                            0
                                                  0 8
          18
                 0
                                      11
                      0
                            1
                                      30
                                            6
                                                  0 0
    0.625 1
                 0
                                 9
    0.75
           0
                 0
                      0
                            0
                                 0
                                      16
                                           29
                                                 14
                                                     3
    0.875 0
                 0
                      0
                             0
                                 0
                                       0
                                           23
                                                  39 0
                      0
                             2
                                 7
                                       2
                 0
                                                  0 45
          10
                                            0
                Confusion Matrix (5,6)
 Confusion Matrix (Fold 5 ):
          actual
 predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
           21
                   0
                       0
                             12
                                 19
                                         3
                                              0
                                                    0 17
                              2
                                         0
                                              0
                                                    0 1
     0.125
                  42
                       12
                                  0
            1
     0.25
                 15
                       32
                             12
                                  1
                                         0
                                              0
                                                    0 0
            3
     0.375
                   6
                        9
                             30
                                 4
                                        1
                                              0
                                                    0 3
     0.5
           19
                   0
                        0
                              2
                                 21
                                        8
                                              0
                                                    0 11
     0.625
            3
                   0
                        0
                              2
                                 10
                                       30
                                              6
                                                   0 2
     0.75
            2
                   0
                        0
                              0
                                  0
                                       19
                                             28
                                                   17
                                                       1
                        0
                              0
                                  0
                                        0
                                             23
                                                   44 0
     0.875
            0
                   0
            9
                   1
                        0
                              3
                                         3
                                             1
                                                    0 25
 Confusion Matrix (Fold 6 ):
          actual
 predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
                                                       1
                              7
                                         3
           20
                  1
                        1
                                 21
                                              0
                                                    0 19
     0.125
                  45
                       11
                              5
                                         0
                                              0
            5
                                  0
                                                       1
     0.25
            1
                 11
                       32
                             11
                                  0
                                        0
                                              0
                                                    0 0
                   2
                             33
                                 2
                                        1
                                              0
     0.375
                       14
                                                    0 3
     0.5
           17
                   0
                        0
                                 16
                                       15
                                              0
                                              5
     0.625
                   0
                        0
                              0
                                 13
                                       31
                                                    1 3
            6
     0.75
                   0
                                        2
                                             36
            0
                        0
                              0
                                  0
                                                    8
                                                       1
                   0
                        0
                                  0
                                        1
                                             27
                                                   47
                                                       3
     0.875
            1
                              0
```


0 29

Confusion Matrix (7,8)

```
Confusion Matrix (Fold 7 ):
         actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
          24
                0
                     0
                            8
                               27
                                       6
                                            0
                                                  0
                                                    2
    0.125
          2
                42
                     12
                            3
                               0
                                       0
                                            0
                                                  0
                            9
    0.25
                10
                     33
                                0
                                            0
                                                  0
    0.375 5
                                2
                                                    2
                 1
                     15
                           31
                                      1
                                            0
                                                  0
                                                  0
                                                    7
    0.5
          15
                 1
                      1
                           5 18
                                     13
                                            1
    0.625 5
                            0
                                      29
                                                  0
                                                     2
                 0
                      0
                                8
                                           16
    0.75
           0
                 0
                      0
                            0
                                0
                                     13
                                           23
                                                 12
                                                     2
    0.875 0
                 0
                      0
                            0
                                0
                                     0
                                           20
                                                 54
                                                    0
                            8
                                3
                 0
                      0
                                      0
                                                  0 30
          16
                                           1
Confusion Matrix (Fold 8 ):
         actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
                      2
                           16
                               20
                                       1
                                            1
                                                  0 19
          12
                 1
                54
                     15
                            2
                                0
                                       0
                                            0
                                                  0
                                                     0
    0.125
           1
           4
                12
                            4
                                1
                                       0
                                            0
                                                  0
                                                    1
    0.25
                     26
    0.375 6
                 2
                     16
                           30
                                2
                                      2
                                            0
                                                  0 6
    0.5
                               25
                                            0
                                                  0 4
          16
                 0
                      0
                                     11
    0.625 4
                      0
                           0
                               7
                                      23
                                           8
                                                 0 0
                 0
           2
                               0
                                                     2
    0.75
                 0
                      0
                            0
                                      20
                                           36
                                                 16
    0.875 0
                 0
                      0
                            0
                                0
                                       0
                                           18
                                                 43
                                                    1
                 0
                      1
                            3
                                6
                                       2
                                            1
                                                  0 29
```

Confusion Matrix (9,10)

```
Confusion Matrix (Fold 9 ):
        actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
               1
                    1
                          12 19
                                     6
                                                0 0
    0.125 1
               47
                    19
                          3
                               0
                                     0
                                          0
    0.25
               13
                    30
                          10
                              0
                                    0
                                               0
                                                  0
          0
                                          0
    0.375
          5
               2
                     9
                          28
                               2
                                    1
                                         0
                                               0
    0.5
         27
                0
                     0
                          14
                              20
                                    10
                                         1
                                               0
                                                   6
                          0
                               7
    0.625
          5
                O
                     0
                                    34
                                         8
                                               0
                                                  1
    0.75
                              0
          0
                0
                     0
                           0
                                    12
                                         29
                                              12
                                                  1
    0.875
                                               56
          0
                0
                     0
                           0
                               0
                                    1
                                         18
                                                  1
          9
                     0
                           1
                               6
                                    1
                                               0 26
Confusion Matrix (Fold 10 ):
        actual
predicted 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875
                     2
         17
               1
                          11
                              21
                                                  6
    0.125 4
               48
                    19
                          3
                              0
                                     0
                                          0
                                                0
                                                  0
    0.25
          2
               12
                    20
                          11
                               0
                                     0
                                               0 0
    0.375 4
               1
                    11
                          33
                              1
                                    0
                                                 2
         23
    0.5
                0
                    O
                          9 16
                                    11
                                         0
                                               0 6
                    0
    0.625
         2
                0
                          0
                              13
                                    27
                                         6
                                               0 1
                          0
                                         27
                                               7
    0.75
          2
                0
                     0
                              0
                                    14
                                                  0
    0.875
          0
                0
                     0
                           0
                               0
                                     0
                                         24
                                               59
                                                  0
    1
         15
                0
                     1
                           1
                               4
                                     1
                                          3
                                               0 40
```