Vorlesung 7 Der Satz von Rice

Wdh.: Bisher betrachtete Probleme

Die Diagonalsprache:

$$D = \{\langle M \rangle \mid M \text{ akzeptiert } \langle M \rangle \text{ nicht}\}$$

Das Diagonalsprachenkomplement:

$$\overline{D} = \{ \langle M \rangle \mid M \text{ akzeptiert } \langle M \rangle \}$$

Das Halteproblem:

$$H = \{\langle M \rangle w \mid M \text{ hält auf } w\}$$

Das spezielle Halteproblem:

$$H_{\epsilon} = \{ \langle M \rangle \mid M \text{ hält auf Eingabe } \epsilon \}$$

Alle diese Probleme sind unentscheidbar.

Wdh.: Beweise durch Unterprogrammtechnik

D ist unentscheidbar auf Grund eines Diagonalisierungs-Argumentes.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 169

Version 26. Oktober 2022

Wdh.: Beweise durch Unterprogrammtechnik

D ist unentscheidbar auf Grund eines Diagonalisierungs-Argumentes.

Die Argumentationskette war:

D ist unentscheidbar

 M_D

 $\overline{\mathcal{D}}$ ist unentscheidbar

 $M_{\overline{D}}$

Wdh.: Unentscheidbarkeit des Komplements der Diagonalsprache

Vorlesung BuK im WS 22/23, M. Grohe

Seite 170

Version 26. Oktober 2022

Wdh.: Beweise durch Unterprogrammtechnik

D ist unentscheidbar auf Grund eines Diagonalisierungs-Argumentes.

Die Argumentationskette war:

D ist unentscheidbar M_D \updownarrow D ist unentscheidbar $M_{\overline{D}}$

Wdh.: Beweise durch Unterprogrammtechnik

D ist unentscheidbar auf Grund eines Diagonalisierungs-Argumentes.

Die Argumentationskette war:

Vorlesung BuK im WS 22/23, M. Grohe

Seite 171

Version 26. Oktober 2022

Wdh.: Unentscheidbarkeit des Halteproblems

Wdh.: Beweise durch Unterprogrammtechnik

D ist unentscheidbar auf Grund eines Diagonalisierungs-Argumentes.

Die Argumentationskette war:

$$D$$
 ist unentscheidbar M_D
 $\downarrow \qquad \qquad \updownarrow$
 \overline{D} ist unentscheidbar $M_{\overline{D}}$
 $\downarrow \qquad \qquad \updownarrow$
 H ist unentscheidbar M_H

Vorlesung BuK im WS 22/23, M. Grohe

Seite 173

Version 26. Oktober 2022

Wdh.: Beweise durch Unterprogrammtechnik

D ist unentscheidbar auf Grund eines Diagonalisierungs-Argumentes.

Die Argumentationskette war:

D ist unentscheidbar	M_D
\Downarrow	\$
\overline{D} ist unentscheidbar	$M_{\overline{D}}$
\	\$
H ist unentscheidbar	\mathcal{M}_H
\	\$
<i>H</i> _e ist unentscheidbar	M_{H_s}

Wdh.: Unentscheidbarkeit des speziellen Halteproblems

Vorlesung BuK im WS 22/23, M. Grohe

Seite 174

Version 26. Oktober 2022

Wdh.: Beweise durch Unterprogrammtechnik

D ist unentscheidbar auf Grund eines Diagonalisierungs-Argumentes.

Die Argumentationskette war:

D ist unentscheidbar	M_D
\downarrow	\$
D ist unentscheidbar	<i>M</i> _D
\downarrow	\(\)
H ist unentscheidbar	M_H
\downarrow	\(\)
H_{ϵ} ist unentscheidbar	$M_{H_{\epsilon}}$

Wdh.: Bisher betrachtete Probleme

Die Diagonalsprache:

$$D = \{\langle M \rangle \mid M \text{ akzeptiert } \langle M \rangle \text{ nicht}\}$$

Das Diagonalsprachenkomplement:

$$\overline{D} = \{ \langle M \rangle \mid M \text{ akzeptiert } \langle M \rangle \}$$

Das Halteproblem:

$$H = \{\langle M \rangle w \mid M \text{ hält auf } w\}$$

Das spezielle Halteproblem:

$$H_{\epsilon} = \{\langle M \rangle \mid M \text{ hält auf Eingabe } \epsilon\}$$

Alle diese Probleme sind unentscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 176

Version 26. Oktober 2022

Wdh.: Bisher betrachtete Probleme

Die Diagonalsprache:

$$D = \{\langle M \rangle \mid M \text{ akzeptiert } \langle M \rangle \text{ nicht} \}$$

Das Diagonalsprachenkomplement:

$$\overline{D} = \{ \langle M \rangle \mid M \text{ akzeptiert } \langle M \rangle \}$$

Das Halteproblem:

$$H = \{\langle M \rangle w \mid M \text{ hält auf } w\}$$

Das spezielle Halteproblem:

$$H_{\epsilon} = \{\langle M \rangle \mid M \text{ hält auf Eingabe } \epsilon \}$$

Alle diese Probleme sind unentscheidbar.

Was haben sie strukturell gemeinsam?

Wdh.: Berechenbare partielle Funktionen

Im allgemeinen berechnet eine Turingmaschine M mit Ein- und Ausgabealphabet Σ eine partielle Funktion f_M von Σ^* nach Σ^* , die definiert ist durch

$$f_M(x) = \begin{cases} y & \text{falls } M \text{ bei Eingabe } x \text{ mit Ausgabe } y \text{ anhält,} \\ \bot \text{ (undefiniert)} & \text{falls } M \text{ bei Eingabe } x \text{ nicht anhält.} \end{cases}$$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 177

Version 26. Oktober 2022

Wdh.: Berechenbare partielle Funktionen

Im allgemeinen berechnet eine Turingmaschine M mit Ein- und Ausgabealphabet Σ eine partielle Funktion f_M von Σ^* nach Σ^* , die definiert ist durch

$$f_M(x) = \begin{cases} y & \text{falls } M \text{ bei Eingabe } x \text{ mit Ausgabe } y \text{ anhält,} \\ \bot \text{ (undefiniert)} & \text{falls } M \text{ bei Eingabe } x \text{ nicht anhält.} \end{cases}$$

Eine partielle Funktion f von Σ^* nach Σ^* ist berechenbar, wenn es eine Turingmaschine M gibt, so dass $f = f_M$.

Satz von Rice

Satz

Sei \mathcal{R} die Menge der berechenbaren partiellen Funktionen und \mathcal{S} eine Teilmenge von \mathcal{R} mit $\emptyset \subsetneq \mathcal{S} \subsetneq \mathcal{R}$. Dann ist die Sprache

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$

unentscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 178

Version 26. Oktober 2022

Satz von Rice

Satz

Sei \mathcal{R} die Menge der berechenbaren partiellen Funktionen und \mathcal{S} eine Teilmenge von \mathcal{R} mit $\emptyset \subsetneq \mathcal{S} \subsetneq \mathcal{R}$. Dann ist die Sprache

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$

unentscheidbar.

Mit anderen Worten: Aussagen über die von einer TM berechnete Funktion sind nicht entscheidbar.

Satz von Rice – Anwendungsbeispiele

Beispiel 1

- ► Sei $S = \{f_M \mid f_M(\epsilon) \neq \bot\}$.
- ► Dann ist

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$

= $\{\langle M \rangle \mid M \text{ hält auf Eingabe } \epsilon\}$
= H_{ϵ}

▶ Gemäß Satz von Rice ist H_{ϵ} nicht entscheidbar. (Aber das wussten wir ja schon \odot .)

Vorlesung BuK im WS 22/23, M. Grohe

Seite 179

Version 26. Oktober 2022

Satz von Rice – Anwendungsbeispiele

Beispiel 1

- ► Sei $S = \{f_M \mid f_M(\epsilon) \neq \bot\}.$
- ► Dann ist

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$

= $\{\langle M \rangle \mid M \text{ hält auf Eingabe } \epsilon\}$
= H_{ϵ}

▶ Gemäß Satz von Rice ist H_{ϵ} nicht entscheidbar. (Aber das wussten wir ja schon \mathfrak{S} .)

Satz von Rice – Anwendungsbeispiele

Beispiel 2

- ► Sei $S = \{ f_M \mid \forall w \in \{0, 1\}^* : f_M(w) \neq \bot \}.$
- Dann ist

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$

= $\{\langle M \rangle \mid M \text{ hält auf jeder Eingabe}\}$

- ightharpoonup Diese Sprache ist auch als das allgemeine Halteproblem H_{all} bekannt.
- ▶ Gemäß Satz von Rice ist H_{all} nicht entscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 180

Version 26. Oktober 2022

Satz von Rice – Anwendungsbeispiele

Beispiel 2

- ► Sei $S = \{ f_M \mid \forall w \in \{0, 1\}^* : f_M(w) \neq \bot \}.$
- Dann ist

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$

= $\{\langle M \rangle \mid M \text{ hält auf jeder Eingabe}\}$

- ightharpoonup Diese Sprache ist auch als das allgemeine Halteproblem $H_{\rm all}$ bekannt.
- ▶ Gemäß Satz von Rice ist H_{all} nicht entscheidbar.

Satz von Rice – Anwendungsbeispiele

Beispiel 3

- ► Sei $S = \{f_M \mid \forall w \in \{0, 1\}^* : f_M(w) = 1\}.$
- Dann ist

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$

= $\{\langle M \rangle \mid M \text{ hält auf jeder Eingabe mit Ausgabe 1}\}$

▶ Gemäß Satz von Rice ist L(S) nicht entscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 181

Version 26. Oktober 2022

Satz von Rice – Anwendungsbeispiele

Beispiel 3

- ► Sei $S = \{f_M \mid \forall w \in \{0, 1\}^* : f_M(w) = 1\}.$
- Dann ist

$$L(S) = \{\langle M \rangle \mid M \text{ berechnet eine Funktion aus } S\}$$

= $\{\langle M \rangle \mid M \text{ hält auf jeder Eingabe mit Ausgabe 1}\}$

▶ Gemäß Satz von Rice ist L(S) nicht entscheidbar.

Satz von Rice – Beweis

Satz

Sei \mathcal{R} die Menge der von TMen berechenbaren partiellen Funktionen und \mathcal{S} eine Teilmenge von \mathcal{R} mit $\emptyset \subsetneq \mathcal{S} \subsetneq \mathcal{R}$. Dann ist die Sprache

$$L(S) = \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$$

unentscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 182

Version 26. Oktober 2022

Satz von Rice – Beweis

Beweis

Wir nutzen die Unterprogrammtechnik. Aus einer TM $M_{L(S)}$, die L(S) entscheidet, konstruieren wir eine TM $M_{H_{\epsilon}}$, die das spezielle Halteproblem H_{ϵ} entscheidet.

Einige Vereinbarungen:

- Sei *u* die überall undefinierte Funktion.
- ightharpoonup O.B.d.A. $u \notin S$.

Satz von Rice – Beweis

Beweis

Wir nutzen die Unterprogrammtechnik. Aus einer TM $M_{L(S)}$, die L(S) entscheidet, konstruieren wir eine TM $M_{H_{\epsilon}}$, die das spezielle Halteproblem H_{ϵ} entscheidet.

Einige Vereinbarungen:

- Sei *u* die überall undefinierte Funktion.
- ▶ O.B.d.A. $u \notin S$.

Bemerkung: Im Falle $u \in \mathcal{S}$ betrachten wir $\mathcal{R} \setminus \mathcal{S}$ statt \mathcal{S} und zeigen die Unentscheidbarkeit von $L(\mathcal{R} \setminus \mathcal{S})$. Hieraus ergibt sich dann unmittelbar die Unentscheidbarkeit von $L(\mathcal{S})$.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 182

Version 26. Oktober 2022

Satz von Rice - Beweis

Beweis

Wir nutzen die Unterprogrammtechnik. Aus einer TM $M_{L(S)}$, die L(S) entscheidet, konstruieren wir eine TM $M_{H_{\epsilon}}$, die das spezielle Halteproblem H_{ϵ} entscheidet.

Einige Vereinbarungen:

- Sei *u* die überall undefinierte Funktion.
- ightharpoonup O.B.d.A. $u \notin S$.
- ightharpoonup Sei f eine Funktion aus S.
- ► Sei *N* eine TM, die *f* berechnet.

Bemerkung: Im Falle $u \in \mathcal{S}$ betrachten wir $\mathcal{R} \setminus \mathcal{S}$ statt \mathcal{S} und zeigen die Unentscheidbarkeit von $L(\mathcal{R} \setminus \mathcal{S})$. Hieraus ergibt sich dann unmittelbar die Unentscheidbarkeit von $L(\mathcal{S})$.

Die TM $M_{H_{\epsilon}}$ mit Unterprogramm $M_{L(S)}$ arbeitet wie folgt

- 1)
- 1) Teste, ob w Gödelnummer. Wenn nicht, verwerfe. Sonst sei M die TM mit $w = \langle M \rangle$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 183

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Die TM $M_{H_{\epsilon}}$ mit Unterprogramm $M_{L(S)}$ arbeitet wie folgt

- 1)
- 1) Teste, ob w Gödelnummer. Wenn nicht, verwerfe. Sonst sei M die TM mit $w = \langle M \rangle$
- 2) Sonst berechnet $M_{H_{\epsilon}}$ aus der Eingabe $\langle M \rangle$ die Gödelnummer der TM M^* (nächste Folie).

Die TM $M_{H_{\epsilon}}$ mit Unterprogramm $M_{L(S)}$ arbeitet wie folgt

- 1)
- 1) Teste, ob w Gödelnummer. Wenn nicht, verwerfe. Sonst sei M die TM mit $w = \langle M \rangle$
- 2) Sonst berechnet $M_{H_{\epsilon}}$ aus der Eingabe $\langle M \rangle$ die Gödelnummer der TM M^* (nächste Folie).
- 3) Starte $M_{L(S)}$ mit der Eingabe $\langle M^* \rangle$ und akzeptiere (verwirf) genau dann, wenn $M_{L(S)}$ akzeptiert (verwirft).

Vorlesung BuK im WS 22/23, M. Grohe

Seite 183

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Verhalten von M^* auf Eingabe x

Phase A: Simuliere das Verhalten von M bei Eingabe ϵ auf einer für diesen Zweck reservierten Spur.

Verhalten von M^* auf Eingabe x

Phase A: Simuliere das Verhalten von M bei Eingabe ϵ auf einer für diesen Zweck reservierten Spur.

Phase B: Simuliere das Verhalten von *N* auf *x*, halte, sobald *N* hält, und übernimm die Ausgabe.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 184

Version 26. Oktober 2022

Satz von Rice – Illustration

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

Bei Eingabe von $w = \langle M \rangle$ gilt:

$$w \in H_{\epsilon}$$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 186

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

Bei Eingabe von $w = \langle M \rangle$ gilt:

 $w \in H_{\epsilon} \quad \Rightarrow \quad M \text{ hält auf } \epsilon$

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

Bei Eingabe von $w = \langle M \rangle$ gilt:

$$w \in H_{\epsilon} \Rightarrow M \text{ hält auf } \epsilon$$

 $\Rightarrow M^* \text{ berechnet } f$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 186

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

$$w \in H_{\epsilon} \Rightarrow M \text{ h\"alt auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } f$$

$$\stackrel{f \in \mathcal{S}}{\Rightarrow} \langle M^* \rangle \in L(\mathcal{S})$$

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

Bei Eingabe von $w = \langle M \rangle$ gilt:

```
w \in H_{\epsilon} \Rightarrow M \text{ hält auf } \epsilon
\Rightarrow M^* \text{ berechnet } f
\stackrel{f \in \mathcal{S}}{\Rightarrow} \langle M^* \rangle \in L(\mathcal{S})
\Rightarrow M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^* \rangle
```

Vorlesung BuK im WS 22/23, M. Grohe

Seite 186

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

$$w \in H_{\epsilon} \Rightarrow M \text{ h\"alt auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } f$$

$$\stackrel{f \in \mathcal{S}}{\Rightarrow} \langle M^* \rangle \in L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^* \rangle$$

$$\Rightarrow M_{H_{\epsilon}} \text{ akzeptiert } w$$

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

Bei Eingabe von $w = \langle M \rangle$ gilt:

$$w \in H_{\epsilon} \Rightarrow M \text{ hält auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } f$$

$$\stackrel{f \in \mathcal{S}}{\Rightarrow} \langle M^* \rangle \in L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^* \rangle$$

$$\Rightarrow M_{H_{\epsilon}} \text{ akzeptiert } w$$

 $w \notin H_{\epsilon}$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 186

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

$$w \in H_{\epsilon} \quad \Rightarrow \quad M \text{ hält auf } \epsilon$$

$$\Rightarrow \quad M^* \text{ berechnet } f$$

$$\stackrel{f \in \mathcal{S}}{\Rightarrow} \quad \langle M^* \rangle \in L(\mathcal{S})$$

$$\Rightarrow \quad M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^* \rangle$$

$$\Rightarrow \quad M_{H_{\epsilon}} \text{ akzeptiert } w$$

$$w \notin H_{\epsilon} \quad \Rightarrow \quad M \text{ hält nicht auf } \epsilon$$

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

Bei Eingabe von $w = \langle M \rangle$ gilt:

$$w \in H_{\epsilon} \Rightarrow M \text{ hält auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } f$$

$$f \in \mathcal{S} \\ \Rightarrow \langle M^* \rangle \in L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^* \rangle$$

$$\Rightarrow M_{H_{\epsilon}} \text{ akzeptiert } w$$

$$w \notin H_{\epsilon} \Rightarrow M \text{ hält nicht auf } \epsilon$$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 186

 \Rightarrow M^* berechnet u

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

$$w \in H_{\epsilon} \Rightarrow M \text{ hält auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } f$$

$$f \in \mathcal{S} \\ \Rightarrow \langle M^* \rangle \in L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^* \rangle$$

$$\Rightarrow M_{H_{\epsilon}} \text{ akzeptiert } w$$

$$w \notin H_{\epsilon} \Rightarrow M \text{ hält nicht auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } u$$

$$u \notin \mathcal{S} \\ \Rightarrow \langle M^* \rangle \notin L(\mathcal{S})$$

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$. Bei Eingabe von $w = \langle M \rangle$ gilt:

$$w \in H_{\epsilon} \Rightarrow M \text{ hält auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } f$$

$$f \in \mathcal{S} \\ \Rightarrow \langle M^* \rangle \in L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^* \rangle$$

$$\Rightarrow M_{H_{\epsilon}} \text{ akzeptiert } w$$

$$w \notin H_{\epsilon} \Rightarrow M \text{ hält nicht auf } \epsilon$$

$$\Rightarrow M^* \text{ berechnet } u$$

$$u \notin \mathcal{S} \\ \Rightarrow \langle M^* \rangle \notin L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ verwirft } \langle M^* \rangle$$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 186

Version 26. Oktober 2022

Satz von Rice – Fortsetzung Beweis

Korrektheit:

Bei Eingabe von w, wobei w keine Gödelnummer ist, verwirft $M_{H_{\epsilon}}$.

$$w \in H_{\epsilon} \Rightarrow M$$
 hält auf ϵ

$$\Rightarrow M^{*} \text{ berechnet } f$$

$$f \in \mathcal{S} \Rightarrow \langle M^{*} \rangle \in L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ akzeptiert } \langle M^{*} \rangle$$

$$\Rightarrow M_{H_{\epsilon}} \text{ akzeptiert } w$$

$$w \notin H_{\epsilon} \Rightarrow M \text{ hält nicht auf } \epsilon$$

$$\Rightarrow M^{*} \text{ berechnet } u$$

$$u \notin \mathcal{S} \Rightarrow \langle M^{*} \rangle \notin L(\mathcal{S})$$

$$\Rightarrow M_{L(\mathcal{S})} \text{ verwirft } \langle M^{*} \rangle$$

$$\Rightarrow M_{H_{\epsilon}} \text{ verwirft } w$$

Beispiel 4

Sei $L_{17} = \{\langle M \rangle \mid M \text{ berechnet bei Eingabe der Zahl 17 die Zahl 42}\}.$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 187

Version 26. Oktober 2022

Satz von Rice – Weitere Anwendungsbeispiele

Beispiel 4

- Sei $L_{17} = \{\langle M \rangle \mid M \text{ berechnet bei Eingabe der Zahl 17 die Zahl 42} \}.$
- ► Es ist $L_{17} = L(S)$ für $S = \{f_M \mid f_M(bin(17)) = bin(42)\}.$

Beispiel 4

- Sei $L_{17} = \{\langle M \rangle \mid M \text{ berechnet bei Eingabe der Zahl 17 die Zahl 42}\}.$
- ► Es ist $L_{17} = L(S)$ für $S = \{f_M \mid f_M(bin(17)) = bin(42)\}.$
- ▶ Somit, (da $\emptyset \subseteq S \subseteq \mathcal{R}$), ist diese Sprache gemäß des Satzes von Rice nicht entscheidbar.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 187

Version 26. Oktober 2022

Satz von Rice – Weitere Anwendungsbeispiele

Beispiel 4

- Sei $L_{17} = \{\langle M \rangle \mid M \text{ berechnet bei Eingabe der Zahl 17 die Zahl 42}\}.$
- ► Es ist $L_{17} = L(S)$ für $S = \{f_M \mid f_M(bin(17)) = bin(42)\}.$
- Somit, (da $\emptyset \subseteq S \subseteq \mathcal{R}$), ist diese Sprache gemäß des Satzes von Rice nicht entscheidbar.

Beispiel 5

► Sei $H_{42} = \{\langle M \rangle \mid$ Auf jeder Eingabe hält M nach höchstens 42 Schritten $\}$.

Beispiel 4

- Sei $L_{17} = \{\langle M \rangle \mid M \text{ berechnet bei Eingabe der Zahl 17 die Zahl 42} \}.$
- ► Es ist $L_{17} = L(S)$ für $S = \{f_M \mid f_M(bin(17)) = bin(42)\}.$
- Somit, (da $\emptyset \subseteq S \subseteq \mathcal{R}$), ist diese Sprache gemäß des Satzes von Rice nicht entscheidbar.

Beispiel 5

- ► Sei $H_{42} = \{\langle M \rangle \mid$ Auf jeder Eingabe hält M nach höchstens 42 Schritten $\}$.
- ▶ Über diese Sprache sagt der Satz von Rice nichts aus!

Vorlesung BuK im WS 22/23, M. Grohe

Seite 187

Version 26. Oktober 2022

Satz von Rice – Weitere Anwendungsbeispiele

Beispiel 4

- Sei $L_{17} = \{\langle M \rangle \mid M \text{ berechnet bei Eingabe der Zahl 17 die Zahl 42} \}.$
- ► Es ist $L_{17} = L(S)$ für $S = \{f_M \mid f_M(bin(17)) = bin(42)\}.$
- Somit, (da $\emptyset \subseteq S \subseteq \mathcal{R}$), ist diese Sprache gemäß des Satzes von Rice nicht entscheidbar.

Beispiel 5

- Sei $H_{42} = \{\langle M \rangle \mid$ Auf jeder Eingabe hält M nach höchstens 42 Schritten $\}$.
- ▶ Über diese Sprache sagt der Satz von Rice nichts aus!
- ► Ist *H*₄₂ entscheidbar?

Satz von Rice für C++ Programme

Konsequenz für C++

Es gibt keine algorithmische Methode (von Hand oder automatisiert) festzustellen, ob ein C++ Programm einer (nicht-trivialen) Spezifikation entspricht.

Die analoge Konsequenz gilt auch für ähnliche Programmiersprachen wie Java.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 188

Version 26. Oktober 2022

Satz von Rice – Weitere Anwendungsbeispiele

Beispiel 6

▶ Sei $L_D = \{\langle M \rangle \mid M \text{ entscheidet die Diagonalsprache}\}.$

Beispiel 6

- ▶ Sei $L_D = \{\langle M \rangle \mid M \text{ entscheidet die Diagonalsprache}\}.$
- ▶ Dann ist $L_D = L(S)$ für $S = \{f_D\}$ wobei

$$f_D(w) = \begin{cases} 1 & \text{wenn } w \in D \\ 0 & \text{sonst.} \end{cases}$$

Vorlesung BuK im WS 22/23, M. Grohe

Seite 189

Version 26. Oktober 2022

Satz von Rice – Weitere Anwendungsbeispiele

Beispiel 6

- ▶ Sei $L_D = \{\langle M \rangle \mid M \text{ entscheidet die Diagonalsprache}\}.$
- ▶ Dann ist $L_D = L(S)$ für $S = \{f_D\}$ wobei

$$f_D(w) = egin{cases} 1 & \text{wenn } w \in D \\ 0 & \text{sonst.} \end{cases}$$

▶ Über diese Sprache sagt der Satz von Rice nichts aus!

Beispiel 6

- ▶ Sei $L_D = \{\langle M \rangle \mid M \text{ entscheidet die Diagonalsprache}\}.$
- ▶ Dann ist $L_D = L(S)$ für $S = \{f_D\}$ wobei

$$f_D(w) = \begin{cases} 1 & \text{wenn } w \in D \\ 0 & \text{sonst.} \end{cases}$$

- ▶ Über diese Sprache sagt der Satz von Rice nichts aus!
- ▶ Aber: Diese Sprache ist entscheidbar, denn $L_D = \{\}$.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 189

Version 26. Oktober 2022

Satz von Rice – Weitere Anwendungsbeispiele

Beispiel 6

- ▶ Sei $L_D = \{\langle M \rangle \mid M \text{ entscheidet die Diagonalsprache}\}.$
- ▶ Dann ist $L_D = L(S)$ für $S = \{f_D\}$ wobei

$$f_D(w) = egin{cases} 1 & \text{wenn } w \in D \\ 0 & \text{sonst.} \end{cases}$$

- Über diese Sprache sagt der Satz von Rice nichts aus!
- ▶ Aber: Diese Sprache ist entscheidbar, denn $L_D = \{\}$.

Vorlesung BuK im WS 22/23, M. Grohe

Seite 189

Collatz Problem

Erinnerung an die Iterationsgleichung

$$x \leftarrow \begin{cases} x/2 & \text{wenn } x \text{ gerade} \\ 3x + 1 & \text{sonst.} \end{cases}$$

Das Collatz-Problem ist eine Instanz des allgemeinen Halteproblems.

Wir wissen nicht, ob diese Instanz eine Ja- oder eine Nein-Instanz ist.