PROCESY MARKOWA

LISTA 1 ZADANIE 3

Niech $\{Z_n\}$ będzie ciągiem wzajemnie niezależnych zmiennych losowych o tym samym rozkładzie (iid), $P(Z_1 = 1) = p$, $P(Z_1 = -1) = 1 - p$, gdzie $p \in (0,1)$, natomiast $\{X_n\}$ procesem zdefiniowanym przez:

$$X_{n+1} = X_n + Z_{n+1}$$
 gdzie $n \ge 0$

gdzie X_0 jest zmienną losową przyjmującą wartości całkowite i niezależną z ciągiem $\{Z_n\}$. Pokazać, że $\{X_n\}$ jest jednorodnym łańcuchem Markowa i znaleźć jego macierz prawdopodobieństwa przejscia.

Zdefinioway proces $\{X_n\}$ nazywa się błądzeniem losowym. Rozważyć sytuację, w której zmienne losowe Z_n przyjmują wartości całkowite z prawdopodobieństwami $P(Z_n = k) = a_k$, gdzie $|k| < \infty$. Napisać macierz prawdopodobieństwa przejścia.

• Pokazać, że $\{X_n\}$ jest jednorodnym łańcuchem Markowa:

Jednorodny Łańcuch Markowa

Proces stochastyczny nazywamy jednorodnym łańcuchem Markowa, jeżeli

$$P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = P(X_{n+1} = j | X_n = i) = p_{i,j}$$

dla wszystkich stanow $i_{n-1}, \ldots, i_0, i, j \in J$, oraz $n = \{0, 1, \ldots\}$. Prawdopodobieństwo warunkowe $p_{i,j}$ nazywamy prawdopodobieństwem przejścia ze stanu i do j.

$$L = P(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$= P(X_n + Z_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)$$

$$= \frac{P(X_n + Z_{n+1} = j, X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)}{P(X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)}$$

$$= \frac{P(Z_{n+1} = j - i, X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)}{P(X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)}$$

korzystając z niezależcności $\{X_n\}$ i $\{Z_n\}$

$$= \frac{P(Z_{n+1} = j - i) P(X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)}{P(X_n = i, X_{n-1} = i_{n-1}, \dots, X_0 = i_0)}$$
$$= P(Z_{n+1} = j - i)$$

$$P = P(X_{n+1} = j | X_n = i)$$

$$= P(X_n + Z_{n+1} = j | X_n = i)$$

$$= \frac{P(X_n + Z_{n+1} = j, X_n = i)}{P(X_n = i)}$$

$$= \frac{P(Z_{n+1} = j - i, X_n = i)}{P(X_n = i)}$$

$$= P(Z_{n+1} = j - i)$$

Jak widać L = P, zatem jest to jednorodny łańcuch Markowa.

• Znaleźć macierz prawdopodobieństwa przejścia tego łańcucha Markowa

Rekurencyjna postać łańcucha Markowa

Niech $\{Z_n\}$ będzie ciągiem wzajemnie niezależnych zmiennych losowych o tym samym rozkładzie o wartościach w przestrzeni S_1 z pewnym σ -ciałem $\sigma(S_1)$, X_0 zmienną losową o wartościach w przestrzeni J niezależną z ciągiem $\{Zn\}$, $f: J \times S_1 \to J$ funkcją odpowiednio mierzalną, a $\{X_n\}$ niech będzie procesem o wartościach w J zdefiniowanym następującym równaniem rekurencjjnym:

$$X_{n+1} = f(X_n, Z_{n+1}.)$$

Wtedy $\{X_n\}$ jest jednorodnym łańcuchem Markowa z macierzą prawdopodobieństw przejść $\mathbb{P} = (p_{i,j})$ gdzie:

$$p_{i,j} = P(X_{n+1} = j | X_n = i) = P(f(i, Z_1) = j).$$

Zatem:

$$p_{i,j} = P(X_{n+1} = j | X_n = i) = P(Z_1 = j - i)$$

$$= \begin{cases} P(Z_1 = 1) = p & \text{gdy } j = i + 1 \\ P(Z_1 = -1) = 1 - p & \text{gdy } j = i - 1 \end{cases}$$

Stąd macierz prawdopodobieństw przejść jest równa:

$$\mathbb{P} = \left(\begin{array}{cccc} 0 & p & 0 & \cdots \\ 1\text{-p} & 0 & p & \cdots \\ 0 & 1\text{-p} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{array} \right).$$

• Jeżeli zmienne losowe Z_n przyjmują wartości całkowite z prawdopodobieństwami $P(Z_n = k) = a_k$, gdzie $|k| < \infty$, to macierz prawdopodobieństw przejść jest rowna:

$$\mathbb{P} = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots \\ a_{-1} & 0 & a_1 & \cdots \\ a_{-2} & a_{-1} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$