Lecture 2

Descriptive Statistics and Hypothesis Testing

Ashish Dandekar

Lecture Overview

Descriptive Statistics Probability Hypothesis Testing

Descriptive Statistics

Why do we need statistics?

> Why statistics?

Population vs Sample Notation Measures

Case 1

A real estate agent wants to estimate the average per square foot of residential property in a city.

Case 2

A manufacturing plant wants to estimate average life of their product.

Case 3

A pharmaceutical company wants to estimate the effectiveness of its new vaccine on an average human being.

Population versus Sample

Why statistics?

Measures

➤ Population vs Sample Notation

Population

It refers to a collection of entire set of measurements of any characteristic that we are interested in.

Sample

It refers to a smaller set of measurements collected from the population (a.k.a. a subset of the population).

Source: Towards Data Science

Population versus Sample

Why statistics?

Measures

▶ Population vs Sample Notation

Sample

Population

are interested in.

It refers to a smaller set of measurements collected from the population (a.k.a. a subset of the population).

It refers to a collection of entire set of

measurements of any characteristic that we

Source: Towards Data Science

Beware of the Sampling Bias

A sample should truly *represent* the population.

Notation

Why statistics?
Population vs Sample
Notation

Measures

- A population comprises of $X_1, X_2, ..., X_N$ datapoints.
- A sample is any subset of size n ≤ N of the population.
- A **statistic** is any function computed over the sample.

	Population	Sample
Mean	μ	\bar{X}
Variance	Ω^2	<i>S</i> ²
Proportion	π	р

Notation

Why statistics?
Population vs Sample

➤ Notation Measures

- A population comprises of $X_1, X_2, ..., X_N$ datapoints.
- A sample is any subset of size $n \le N$ of the population.
- A **statistic** is any function computed over the sample.

	Population	Sample
Mean	μ	X
Variance	Ω^2	S ²
Proportion	π	р

Note.

- *Greek* symbols are used for population measures.
- Latin symbols are used for sample measures.
- *n* is used to denote total number of datapoints in a sample.
- d is used to denote the dimension of any datapoint X_i .

Measures of Location

Why statistics? Population vs Sample Notation

▶ Measures of location of dispersion of association

Mean

It is the mathematical of average datapoints computed as follows:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Median

It is the middle value in the the sorted dataset. value in the dataset.

Mean

It is the most frequent

Source: Measures of Central Tendency

Measures of Location

Why statistics? Population vs Sample Notation

▶ Measures of location of dispersion of association

Mean

It is the mathematical of average datapoints computed as follows:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Median

It is the middle value in the the sorted dataset. value in the dataset.

Mean

It is the most frequent

Source: Measures of Central Tendency

Measures of Dispersion

Why statistics?
Population vs Sample
Notation

▶ Measures

of location
of dispersion
of association

Variance

It is the measure of spread of the data around its mean.

$$\Omega^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{X})^{2}$$

Standard deviation

It is the positive square root of variance.

Standardized value (Z-score)

It is the measure of distance that is **independent of the units of measurement**. It is computed as follows:

$$z_i = \frac{x_i - \mu}{\Omega}$$

Measures of Dispersion

Why statistics?
Population vs Sample
Notation

▶ Measures

of location
of dispersion
of association

Range

It is the difference between the maximum and minimum value in the dataset.

Inter-quartile Range (IQR)

It is the is the difference between first and third quartile.

Think!

Which of these measures are affected by outliers in the data?

Measures of Association

Why statistics?
Population vs Sample
Notation

▶ Measures

of location of dispersion

of association

Covariance

It is the measure of linear association between datasets.

$$cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{Y})$$

Correlation coefficient

It is the measure of linear association between datasets that is **independent of the units of measurement**.

$$r_{XY} = \frac{cov(X, Y)}{S_X S_y}$$

Measures of Association

Why statistics?
Population vs Sample
Notation

▶ Measures

of location of dispersion

of association

Probability

From Statistics to Probablity

▶ Motivation

Formalism Well-known Distributions Exercise **Experiment.** An **unbiased** (or fair) coin is tossed and the number of heads are counted.

Notation

Motivation

→ Formalism *Notation*

Examples Random Variable Probability Distribution Expected Value

Well-known Distributions

Exercise

Random Experiment

It is a physical experiment whose outcome can not b predicted until it is performed.

Sample Space (Ω)

It is the set of all possible outcomes of the experiment.

Event (E)

it is any subset of the sample space.

Probability

Probability of any event $\boldsymbol{\mathcal{E}}$ is defined as:

$$Pr(E) = \frac{|E|}{|\Omega|}$$

Example

Motivation

≯ Formalism

Notation

Examples

Random Variable Probability Distribution Expected Value

Well-known Distributions Exercise

Discrete sample space

Rolling a fair die.	
Sample Sapce	$\Omega = \{1, 2, 3, 4, 5, 6\}$
Event	An even number is rolled.
Probability	Pr(E) = 3/6 = 0.5

Example

Motivation

> Formalism

Notation

Examples

Random Variable Probability Distribution Expected Value

Well-known Distributions Exercise

Discrete sample space

Rolling a fair die.	
Sample Sapce	$\Omega = \{1, 2, 3, 4, 5, 6\}$
Event	An even number is rolled.
Probability	Pr(E) = 3/6 = 0.5

Continuous sample space

Rainfall in Singapore on a random day.	
Sample Sapce	$\Omega = [0, 200]$
Event	Low rainfall (≤ 20).
Probability	How to compute?

Note

You can't define an event with exact value for a continuous random variable!

Random Variable

Motivation

▶ Formalism

Notation Examples

Random Variable

Probability Distribution Expected Value

Well-known Distributions

Exercise

Definition

Random variable is a real-valued function defined on the sample space.

Example

Suppose two fair 3-sided dice are rolled. Let X_{sum} denote the random variable that denotes the some of the digits on the dice. Thus,

$$X_{sum}: \Omega \to \{2, 3, 4, 5, 6\}$$

Question

What is the difference between an event and a random variable?

Probability Distribution

Motivation

> Formalism

Notation Examples Random Variable

Probability Distribution

Expected Value

Well-known Distributions Exercise

Definition

Probability distribution of a random variable is a function that assigns a probability to every possible value that the random variable takes.

Example

Consider the probability distribution of X_{sum} .

Xi	Event	$Pr[X_{sum} = x_i]$
2	{(1, 1)}	1/9
3	{(1, 2), (2, 1)}	2/9
4	{(2, 2), (1, 3), (3, 1)}	3/9
5	{(2, 3), (3, 2)}	2/9
6	{(3, 3)}	1/9

Probability Distribution

Motivation

▶ Formalism

Notation Examples Random Variable

Probability Distribution

Expected Value

Well-known
Distributions
Exercise

Probability mass function

It is a probability distribution function p for a **discrete** random variable X. It satisfies following rules:

$$Pr[X = x_i] = p(x_i) \ge 0.$$

$$\sum_{x_i} Pr[X = x_i] = 1.$$

Probability density function

It is a probability distribution function of a **continuous** random variable X. It satisfies following rules:

$$Pr[X \in (a, b)] = \int_a^b p(x) dx \ge 0.$$

$$\int_{-\infty}^{\infty} p(x) dx = 1.$$

Expected Value

Motivation

▶ Formalism

Notation Examples Random Variable Probability Distribution

Expected Value

Well-known
Distributions
Exercise

Definition

Expected value $\boldsymbol{E}[\boldsymbol{X}]$ of a random variable \boldsymbol{X} is defined as follows.

For discrete random variable. $E[X] = \sum_{x_i} x_i p(x_i)$

For continuous random variable.

$$E[X] = \int_{-\infty}^{\infty} x p(x) dx$$

Mean as a special case

Expected value is also known as weighted average. It is equal to the mean for a **uniform** distribution. (A uniform probability distribution is the probability distribution where all values are equally probable.)

Binomial Distribution

Motivation Formalism

> Well-known Distributions

Binomial Distribution

Multinomial Distribution Gaussian Distribution

Exercise

Bernoulli Trial

- It is a random experiment with only two outcomes. It is characterised by a parameter ho the probability of observing one of the two outcomes.
- Examples.
 - Is the visitor going to purchase the product?
 - Is the new applicant a woman?

i.i.d. assumption

In data analytics, data are often assumed to be *i.i.d* samples from the data distribution. *i.i.d* stands for datapoints that independently sampled and identically distributed.

For example: Under *i.i.d.* assumption, we assume that every visitor doesn't come with any bias and has the same purchasing probability. But realistically, this assumption is violated in multiple ways such as visitors who influence each other.

Binomial Distribution

Motivation Formalism

> Well-known Distributions

Binomial Distribution

Multinomial Distribution Gaussian Distribution

Exercise

Binomial distribution

• Sum *n i.i.d.* Bernoulli trials is said to follow **Binomial distribution**.

$$X \sim B(n, p)$$

 Probability of observing k positive outcomes is computed as follows:

$$Pr[X = k] = \binom{n}{k} p^k (1 - p)^{n-k}$$

Central Tendencies

•
$$\mu = np$$

$$\bullet \ \sigma^2 = np(1-p)$$

Examples

- How many of 600 participants actually purchased the products?
- How many of 100 applicants are women?

Multinomial Distribution

Motivation Formalism

> Well-known Distributions

Binomial Distribution

Multinomial Distribution

Gaussian Distribution

Exercise

Multinomial distribution

- It is an extension of the binomial distribution wherein the experiment may have > 2 outcomes.
- Let us assume that every experiment has k > 2 different outcomes. The experiment is performed n times.
- For an outcome $i p_i$ denotes the probability of observing it and x_i denote the number of times it is observed.

$$Pr[X = (x_1, x_2, ..., x_k)] = \frac{n!}{x_1! x_2! ... x_k!} p_1^{x_1} p_2^{x_2} ... p_k^{x_k}$$

Examples

 \bullet In an election, what is the probability that 40% voted for Part A, 30% voted for party B and the rest for party C?

Gaussian Distribution

Motivation Formalism

> Well-known Distributions

Binomial Distribution Multinomial Distribution

*Gaussian Distribution*Exercise

Gaussian distribution

• A random variable X following a gaussian distribution with mean μ and standard deviation σ is denoted as:

$$X \sim N(\mu, sigma)$$

• The corresponding probability density function takes the following form:

$$f(x, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-0.5\left(\frac{x-\mu}{\sigma}\right)^2}$$

N(0,1) is known as standard normal distribution.

Exercise

Motivation Formalism Well-known Distributions

> Exercise

Example 1.

The probability that a sales representative makes a sale over marketing call is 0.15.

- What is the probability that no sales are made in 10 calls?
- What is the probability that more than three sales are made in 20 calls?
- If the representative makes 20 calls in a day, how sales are made with 95% probability?
- ullet Find the least number of calls the representative should make to do ${f 5}$ sales on an average per day.

Can we solve it using Python?

Exercise

Motivation Formalism Well-known Distributions

> Exercise

Python cheatsheet

scipy.stats contains a large number of probability distributions, summary and frequency statistics, correlation functions. For instance:

```
z = norm(2, 3) # creates a rv that follows Gaussian distribution b = binom(10, 0.15) # created a rv that follows Binomial distribution
```

Every distribution supports following function:

```
z.pdf(x) # computes the probability density for the specified point x
z.cdf(x) # computes the cumuluative density for the specified point x
z.ppf(p) # computes the inverse CDF for the specified probability p
z.expect(f) # computes the expected value for the specified function f
```

Central Limit Theorem

▶ Motivation

Sampling Distribution Central Limit Theorem Confidence Interval Consider the following dataset of five students with their test score out of $\bf 5$.

Population ($\mu = 2.6$)	
А	3
В	4
С	2
D	3
E	1

▶ Motivation

Sampling Distribution Central Limit Theorem Confidence Interval Consider the following dataset of five students with their test score out of 5.

Population ($\mu = 2.6$)	
А	3
В	4
С	2
D	3
Е	1

Now we will take samples of **3** such and study the *distribution* of their sample mean.

Sample mean	Samples
2.00	{ACE, DCE}
2.33	{ADE, BCE}
2.67	{ABE, DBE, ACD}
3.00	{ABC, DBC}
3.33	{ABD}

▶ Motivation

Sampling Distribution Central Limit Theorem Confidence Interval

Probability distribution of the sample mean

We can treat sample mean as a random variable based on the randomness introduced by the sampling procedure.

Xi	$Pr[\overline{X} = x_i]$
2.00	2/10
2.33	2/10
2.67	3/10
3.00	2/10
3.33	1/10

▶ Motivation

Sampling Distribution Central Limit Theorem Confidence Interval

Probability distribution of the sample mean

We can treat sample mean as a random variable based on the randomness introduced by the sampling procedure.

Xi	$Pr[\bar{X} = x_i]$
2.00	2/10
2.33	2/10
2.67	3/10
3.00	2/10
3.33	1/10

Expected value of the sample mean

$$E[\bar{X}] = \sum_{x_i} x_i Pr[\bar{X} = x_i] = 2.6$$

Isn't it same as the population mean?

Sampling Distribution

Motivation

➤ Sampling Distribution Central Limit Theorem Confidence Interval

Sampling Distribution

Every random-sampling based statistic follows the probability distribution called as the **sampling distribution**.

Sample mean

Let us consider a population of datapoints with mean μ and standard deviation σ . We take multiple samples of size n from the population. The sample of mean X follows the sampling distribution with expected value and standard error

$$E[\bar{X}] = \mu$$

$$std(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

Sampling Distribution

Motivation

➤ Sampling Distribution Central Limit Theorem Confidence Interval

Sampling Distribution

Every random-sampling based statistic follows the probability distribution called as the **sampling distribution**.

Sample mean

Let us consider a population of datapoints with mean μ and standard deviation σ . We take multiple samples of size n from the population. The sample of mean N follows the sampling distribution with expected value and standard error

$$E[\bar{X}] = \mu$$

$$std(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

Why do we study statistics?

Source: Towards Data Science

Central Limit Theorem

Motivation
Sampling Distribution
Central Limit Theorem
Confidence Interval

Theorem

The sampling distribution of the sample mean any sufficiently large samples drawn from a population with mean μ and standard deviation σ follows standard normal distribution with mean μ and standard deviation μ/\sqrt{n} .

$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

What is a sufficiently large sample size?

Theoretically, the sampling distribution tends to the Gaussian distribution as the sample size increases $(n \to \infty)$.

Practically, it has been observed that sample size of 30 or more is sufficient for central limit theorem to hold.

Confidence Interval

Motivation
Sampling Distribution
Central Limit Theorem
Confidence Interval

Example 2: Average salary

As a student of IT5006, your first assignment is to conduct a survey and find the average salary of graduates at NUS. What will be your methodology? What will be the underlying assumptions?

- 1. Assume that all graduates salaries come from an unknown distribution with mean μ and standard deviation σ .
- 2. Since, you can not interview every single graduate, *randomly* choose a *sufficiently large* sample.
- 3. Compute the average of the sample \overline{X} .

What to do now? Is this the true average?

Confidence Interval

Motivation
Sampling Distribution
Central Limit Theorem

> Confidence Interval

Interval estimation

[a,b] is said to be $(1-\alpha)*100\%$ confidence interval of a random variable X if and only if

$$Pr[a \le X \le b] = (1 - \alpha)$$

CI Simulator

Question

How do we compute it for standard normal distribution?

Interval	Confidence	
[-2.57, 2.57]	99%	
[-1.96, 1.96]	95%	
[-1.64, 1.64]	90%	

Confidence Interval

Motivation
Sampling Distribution
Central Limit Theorem

> Confidence Interval

Going back to Example 2

- 1. Let's assume that we look at the historical employment data and find the standard deviation of the graduate salaries in general and assume it to be σ .
- 2. We can provide the 95% confidence interval for the graduate salaries as follows:

$$Pr[-1.96 \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le 1.96] = 95$$

.

$$Pr[(\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}}) \le \mu \le (\overline{X} + 1.96 \frac{\sigma}{\sqrt{n}})] = 95$$

.

Hypothesis Testing

> Introduction

Formalism
Solving HT
Popular tests

Example 3: Average Purchase Value

Suppose an e-commerce company wants to investigate whether the average purchase value on their website is significantly different from a target value of 50 dollars. They collect a random sample of 100 purchase transactions and calculate the mean purchase value to be 52.50 dollars, with a known population standard deviation of 8.00 dollars.

What can they say about target value? Is it scientifically valid to say that the platform offers higher cost?

> Introduction

Formalism
Solving HT
Popular tests

Example 3: Average Purchase Value

Suppose an e-commerce company wants to investigate whether the average purchase value on their website is significantly different from a target value of 50 dollars. They collect a random sample of 100 purchase transactions and calculate the mean purchase value to be 52.50 dollars, with a known population standard deviation of 8.00 dollars.

What can they say about target value? Is it scientifically valid to say that the platform offers higher cost?

> Introduction

Formalism Solving HT Popular tests

Example 3 (solution): Average Purchase Value

- 1. Let's assume that $\mu = 50$.
- 2. As per the given information, X = 52.5, n = 50 and $\sigma = 8$.
- 3. Let's construct 95% confidence interval around the mean.

$$Pr[(50 - 1.96 \frac{8}{\sqrt{50}}) \le \bar{X} \le (50 + 1.96 \frac{8}{\sqrt{50}})] = 95$$

$$Pr[47.78 \le \bar{X} \le 52.22] = 95$$

We can reject the assumption that average cost is 50 with 95% confidence.

Hypothesis Testing

Introduction

> Formalism *Hypothesis Testing*

p-value

Solving HT

Popular tests

Null Hypothesis H_0

- Something that is already established.
- Something that you want to challenge.

Alternate Hypothesis H_1

- Something that you want to assess.
- Something that challenges the current establishment.

	H_0 is True	H ₀ is False	
Accept H_0	No Error	Type II error ($oldsymbol{eta}$)	
Reject H_0	Type I Error (<i>a</i>)	No Error	

Hypothesis Testing

Introduction

> Formalism *Hypothesis Testing*

p-value

Solving HT

Popular tests

How is the Type I error related to the confidence interval?

Let's say: H_0 : $\mu = \mu_0$ and we set Type I error to be 5%.

- We construct the 95% confidence interval around μ_0 .
- ullet If the observed mean X lies outside the interval
 - \circ We reject H_0 .
 - In doing so, we would have committed an error of 5%.
- ullet If the observed mean $ar{X}$ lies within the interval
 - \circ We do not sufficient evidence to reject H_0 .
 - \circ We are 95% confident H_0 is correct.

Introduction

▶ Formalism

Hypothesis Testing

*p-value*Solving HT
Popular tests

Definition

It is the probability of observing results as extreme as the observed, under the assumption that the null hypothesis is correct.

- In simple words p-value computes the error of commiting error.
- If p-value is less than or equals to 0.05
 - \circ We reject H_0 .
 - It means that the error is within the tolerance.
- If p-value is more than 0.05
 - \circ We do not have sufficient evidence to reject H_0

Introduction

▶ Formalism

Hypothesis Testing

*p-value*Solving HT
Popular tests

Example 3 (*p*-value solution): Average Purchase Value

- 1. Let's assume that $\mu = 50$.
- 2. As per the given information, X=52.5, n=50 and $\sigma=8$.
- 3. Let's compute the p-value. To do so, let's compute the probability that the output to be worse that the observed.

$$Pr[\bar{X} > 52.5] = 0.013$$

4. Since we are checking the alternate hypothesis that $\mu \neq 50$, by symmetry

$$p - value = 2 * 0.013 = 0.026$$

5. Since p-value is less than 0.05, we can reject the null hypothesis.

Two ways to solve HT

Introduction
Formalism
Solving HT
Popular tests

Using the confidence interval

- 1. Setup the null hypothesis.
- 2. Assume Type I error tolerance α .
- 3. Choose the sampling distribution.
- 4. Construct a $(1 \alpha) * 100\%$ confidence interval under the null hypothesis.
- 5. If
 - Observation lies outside CI. Reject H₀.
 - \circ Otherwise. No sufficient evidence to reject H_0 .

Two ways to solve HT

Introduction
Formalism
Solving HT
Popular tests

Using the confidence interval

- 1. Setup the null hypothesis.
- 2. Assume Type I error tolerance α .
- 3. Choose the sampling distribution.
- 4. Construct a $(1 \alpha) * 100\%$ confidence interval under the null hypothesis.
- 5. If
 - Observation lies outside CI. Reject H₀.
 - \circ Otherwise. No sufficient evidence to reject H_0 .

Using *P*-value

- 1. Setup the null hypothesis.
- 2. Assume Type I error tolerance α .
- 3. Choose the sampling distribution.
- 4. Compute *p*-value.
- 5. If
 - ∘ $p \le \alpha$. Reject H_0 .
 - \circ Otherwise. No sufficient evidence to reject H_0 .

One-sided test

Introduction Formalism Solving HT

> Popular tests One-sided test

z-tests One sample t-test

Example 4: Average Purchase Value

Suppose an e-commerce company wants to investigate whether the average purchase value on their website is significantly different more than the target value of 50 dollars. They collect a random sample of 50 purchase transactions and calculate the mean purchase value to be 52.50 dollars, with a known population standard deviation of 8.00 dollars.

In this case we can set up the hypotheses as follows:

$$H_0$$
: $\mu \le 50$

$$H_1$$
: $\mu > 50$

One-sided test

Introduction Formalism Solving HT

▶ Popular tests *One-sided test z-tests*

One sample t-test

Example 4 (Solution CI): Average Purchase Value

We need to construct a one-sided 95% confidence interval around 50. To do so,

$$Pr[\frac{\bar{X} - 50}{8/\sqrt{50}} \le 1.64] = 0.95$$

$$Pr[\bar{X} \le 51.86] = 0.95$$

•

Since **52.5** lies outside the CI, we reject the null hypothesis.

One-sided test

Introduction Formalism Solving HT

▶ Popular tests

One-sided test

z-tests

One sample t-test

Example 4 (Solution *p*-value): Average Purchase Value

We had previously computed the error as follows:

$$Pr[\bar{X} > 52.5] = 0.013$$

.

Since the p-value is less than 0.05, we reject the null hypothesis.

z-test

Introduction Formalism Solving HT

▶ Popular tests

One-sided test

z-tests

One sample t-test

- The tests that we have performed so far are known as Z-tests.
- The name stems from the use of standard normal distribution as the sampling distribution.

It's easy with Python!

• z-test using Python

t-test

Introduction Formalism Solving HT

▶ Popular tests

One-sided test z-tests

One sample t-test

Example 5:

Suppose an e-commerce company wants to investigate whether the average purchase value on their website is significantly different more than the target value of 50 dollars. They collect a random sample of 50 22 purchase transactions and calculate the mean purchase value to be 52.50 dollars, with a known population standard deviation of 8.00 dollars.

Question

What is the sampling distribution of the mean for the sample size smaller than 30?

One sample t-test

Introduction Formalism Solving HT

▶ Popular tests

One-sided test z-tests

One sample t-test

Example 5 (solution):

Let's compute the t i.e.

$$\frac{52.5 - 50}{8/\sqrt{22}} = 2.21$$

Thus, the p-value is 2 * 0.019 = 0.038.

We reject the null hypothesis.

Think!

Earlier with a sample of 50, the p-value was 0.026. With the sample of 22, it has become 0.038. Does this make sense?

Summary

Summary

Descriptive Statistics

• Central tendencies

Probability

- Formalism
- Probability distribution

Central Limit Theorem

• Interval Estimation

Hypothesis Testing

- Type I and Type II Error
- Some popular tests

Thank you!

Feel free to reach out to me at dcsashi (at) nus (dot) edu (dot) sg