

ANEXO: CONCEPTOS FUNDAMENTALES DE ESTADÍSTICA

- ► Universo: totalidad de individuos que pueden ser representados por una determinada característica a estudiar
- ▶ Población: Conjunto sobre el que se realizará el estudio estadístico (contenido, lugar y tiempo determinado), es una parte del universo.
- ▶Individuo o Unidad Estadística: Cada uno de los elementos que componen la población.
- ► Muestra: Conjunto representativo de la población pero más pequeño que esta.
- ▶ Valor: Resultados que podemos obtener.

► Variable: Característica observable que varía entre los diferentes individuos

- ▶Tipos de variables:
 - ► Cualitativas, categóricas o de atributos
 - ► Nominal
 - ▶ Ordinal
 - ▶ Cuantitativas
 - Discreta
 - ▶ Continua

▶Dato: Valor de la variable para un individuo concreto

▶ Parámetro: Cantidad calculada sobre una población

▶Estadístico: Cantidad calculada sobre una muestra. Puede ser representativo del parámetro

▶ Censo: Listado de características de la población

▶ La esperanza matemática:

$$\mu = E(x) = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\sum_{i=1}^{n} x^*_i \cdot f_i}{n}$$

- ▶ Propiedades:
 - ▶ Si X es siempre positiva, entonces siempre lo es E(X).
 - ▶ La esperanza matemática de una constante es igual a esa misma constante
 - ▶ Si X está delimitada por dos números reales, a y b, tal que: a<X< b, entonces también lo está su media: a<E(X)< b</p>
 - ▶ Linealidad: Si Y= a+bX, E(Y)= a+b*E(X)
- ▶ Otras medias:
 - Ponderada
 - ▶ Geométrica
 - ▶ Armónica
 - ▶ Cuadrática

► Mediana:

- ▶ Representa el valor de la variable de posición central en un conjunto de datos ordenados.
- ▶ Uno de los estimadores más importantes
- ▶Si estamos con valores ordinales, es más representativa que la media
- ►Moda y multi-moda
 - ► Moda: valor más repetido
 - ▶ Puede haber más de una

▶La varianza y la desviación típica

$$\sigma^{2} = V(x) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n} = \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \overline{x}^{2}$$

$$\sigma = \sqrt{V(x)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n} - \overline{x}^2}$$

Propiedades:

$$V(X) >= 0$$

$$V(aX+b) = a^2V(X)$$

$$V(X+Y) = V(X)+V(Y)+2Cov(X,Y)$$

$$V(X-Y) = V(X)+V(Y)-2Cov(X,Y)$$

- ▶Cuantiles: mediana, cuartiles, deciles y percentiles
 - ► Cuantil: El cuantil de orden p de una distribución (con 0 p</sub> que marca un corte de modo que una proporción p de valores de la población es menor o igual que x_p
 - ► Mediana: valor que se encuentra en la posición central. Divide la distribución de datos en 2 partes iguales
 - ► Cuartil: valores dividen la distribución de datos en 4 partes iguales
 - ▶ Decil: valores dividen la distribución de datos en 10 partes iguales
 - ▶ Percentil: valores dividen la distribución de datos en 100 partes iguales
 - ► Rango intercuartílico: Q₃-Q₁
- ▶ Correlación x~y
 - ► Mide el grado de dependencia entre dos variables
 - ▶ Generalmente se mide la dependencia lineal

- ► Asimetría y curtosis:
 - ► Asimetría:
 - ▶ A la izquierda: media < mediana < moda
 - ▶ A la derecha: media > mediana > moda
 - ▶ Simétrica: media = mediana = moda
 - ▶ Curtosis
 - ► Habría que calcular los <u>momentos centrales</u>
 - ► <u>Formulas</u>

PREPARACIÓN DE LOS DATOS

► Estadísticos básicos: media, mediana, desviación típica, cuantiles...

► Missings: registros nulos, muy frecuentes en estudios de mercado, BBDD de clientes...

▶Outliers: valores que se salen de lo "normal"

► Escalado:

► Min-Max: (x-min)/(max-min)

► Z-score: (x-μ)/σ

▶ Frecuencias

► Histograma

▶ Dispersión

▶ Boxplot

▶Sector

. . .

▶ Pictogramas

NORMALIDAD Y SIGNIFICATIVIDAD

NORMALIDAD Y SIGNIFICANCIA

 H_0 : Hipótesis nula \rightarrow (1-a): nivel de confianza

H₁: Hipótesis Alternativa → a: nivel de significatividad

INTERVALO DE CONFIANZA

$IC = 1-\alpha$	α	k
0,68	0,32	0,994
0,85	0,15	1,440
0,9	0,1	1,645
0,95	0,05	1,960
0,99	0,01	2,576
0,999	0,001	3,291

¿Cuál sería el IC al 95 % de una media de 5 y una desviación típica de 1,5?

$$\hat{X} = 5 \pm 1,96 \cdot 1,5 = 5 \pm 2,94 = [2,06;7,94]$$

EL CONCEPTO DE ESTIMADOR

► Un estimador es una función utilizada para conocer un parámetro de una población determinada

UNIVERSO > POBLACIÓN > MUESTRA

- ► Cada parámetro puede tener varios estimadores, escogeremos el que cumpla mejor las siguientes propiedades:
 - ▶ Sesgo: diferencia entre el valor real y el esperado
 - ▶ Eficiencia: diferencia entre varianza de estimadores
 - ► Consistencia: a medida que el la muestra crece el estimador tiende al valor real del parámetro
 - ▶ Robustez: si violando los supuestos de partida en los que se basa la estimación, el resultado no cambia significativamente
 - ▶ Suficiencia: el estimador resume de manera relevante toda la información de la muestra
 - ▶ Invarianza: el estimador de la función del parámetro coincide con la función del estimador del parámetro