Бинарный поиск. Вещественный бинарный поиск

Лесников Юрий, ceagest

1 Бинарный поиск

Определение 1.1. Бинарный поиск — это алгоритм поиска элемента в отсортированном массиве, который делит поисковый интервал пополам, и продолжает поиск в нужной половине.

Бинарный поиск на Java

```
public static int binarySearch(int[] array, int target) {
    int left = 0;
    int right = array.length - 1;

while (left <= right) {
        int mid = left + (right - left) / 2;
        if (array[mid] == target) {return mid;}
        if (array[mid] < target) {left = mid + 1;}
        else {right = mid - 1;}
}

return -1;</pre>
```

1.1 Анализ сложности бинарного поиска

Рекуррентное соотношение. Бинарный поиск можно описать рекуррентным соотношением:

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$$

Применим мастер теорему:

- a = 1 (одна подзадача)
- b = 2 (данные делятся пополам)
- c = 0 ($\Theta(1)$ время на объединение)

Итого, $a = b^c = 1 \implies$ из мастер теоремы:

$$T(n) = \Theta(n^c \log n) = \Theta(\log n)$$

2 Вещественный бинарный поиск

Идея алгоритма. Применяется для поиска корней уравнений или решения задач с вещественными числами, где требуется найти значение с заданной точностью.

Пример вычисления \sqrt{n} с точностью ε при помощи алгоритма вещественного бинарного поиска на Java

```
public static double sqrtBinarySearch(double n) {
    double epsilon = Math.pow(10, -6);
    double left = 0;
    double right = n + 1;
    while (right - left > epsilon) {
        double mid = (left + right) / 2;
        if (mid * mid < n) {left = mid;}
        else {right = mid;}
    }
    return (left + right) / 2;</pre>
```

2.1 Анализ сложности вещественного бинарного поиска

Общая постановка задачи. Пусть функция $f:[a,b]\to\mathbb{R}$ строго монотонна, $\varepsilon>0,\ y\in\mathbb{R}$. Требуется найти $f^{-1}(y)$ с точностью ε .

Будем делать аналогичный дискретному случаю поиск, но будем останавливаться, если границы поиска находятся на расстоянии ε друг от друга.

- ullet Начальный промежуток: [a,b] (положим [b-a]=n)
- На каждой итерации промежуток уменьшается в 2 раза
- Требуемая точность: ε
- Количество итераций k, где $\frac{n}{2^k} \le \varepsilon \implies k \ge \log_2 \frac{n}{\varepsilon}$

Тогда получаем, что:

$$T(n) = \mathcal{O}\left(\log \frac{n}{\varepsilon}\right)$$