CPE348: Introduction to Computer Networks

Lecture #19: Chapter 5.4

Jianqing Liu Assistant Professor of Electrical and Computer Engineering, University of Alabama in Huntsville

jianqing.liu@uah.edu http://jianqingliu.net

Alternatives to TCP

- Two classes of transport protocols
 - Stream (byte) oriented (TCP)
 - Reliable (TCP)
 - Unreliable(UDP)
 - Request/Reply (RPC) message oriented

TCP Characteristics Review

- TCP has explicit setup and tear down phases
 - Gives the receiver a chance to deny the connection
 - Tear down allows applications to keep a connection open for long periods of time without the need to send "keep alive" messages
- TCP window based protocol
 - Advertised window can be used with the RTT to determine a rate based design if necessary
- A lot more ...

- Request/Reply Protocol
- Type of protocol not a standard like TCP
- RPC protocols vary in the functions performed

- Applications make a call for a procedure
 - Procedure may be local or
 - Procedure may be remote
- Remote procedure calls are more complicated than local procedure calls
 - Network has more complex properties than a local computer
 - Computers involved may be of different architecture and data representations

- Two major components
 - A protocol for handling messages send/receive deals with network issues
 - Programming and compiler support

- Two functions performed by any RPC protocol
 - Provide a name space to uniquely identify the procedure
 - Hierarchical approach naming structure;
 - Unique name.
 - Match each reply message to the request message
 - A message ID: Request and Reply IDs are the same;
 - Calling is blocked until a reply is received.

RPC – Optional Design

- RPC protocols perform additional functions
 - Provide reliable message delivery
 - Use ACKs and timeouts
 - Server ACKs the request
 - Client ACKs the reply
 - Support large packets through fragmentation and reassembly

RPC – Optional Design

- Implicit Acknowledgement
 - Caller receives a reply this ACKs that the server received the request
 - Server receives the next request indicates that the client received the reply

- Real Time applications
 - VoIP human to human interaction
 - Multimedia involves video, audio and data
 - Interactive applications telephony, conferencing
 - Streaming applications YouTube lack human to human interaction – not as stringent as interactive applications

- Real time transport protocol concerns
 - Not too much reliability but continuity!

- Real Time Transport Protocol (RTP) can run over many lower-layer protocols
- RTP and UDP are both transport layer protocols
- RTP uses UDP to handle the demultiplexing (ports) of information

Protocol stack for RTP

- Requirements
 - Synchronization of audio and video streams
 - Indication of packet loss
 - Application needs to deal with missing packets
 - Application needs to know that packets are missing
 - Packet loss is indication of congestion receiver needs to convey this information to the sender
 - Frame boundary indication different for different applications
 - A more user-friendly identifier of senders instead of ip address, use user@domain.com

- Requirements, cont'
 - Make reasonably efficient use of bandwidth
 - Don't want a long header
 - Reduce number of extra bits required
 - For voice, packets are short and long headers reduce the capacity for useful data

- RTP Design uses a pair of protocols
 - RTP
 - RTCP Real-Time Transport Control Protocol
 - Used for passing control information about the data stream
- RTP and RTCP use consecutive port numbers
- RTCP provides three main functions
 - Feedback on the condition of the app. and the network
 - A way to synchronize different media streams
 - A way to provide the ID of the sender for display

Summary

- Discussed how to convert host-to-host packet delivery service to process-to-process communication channel.
 - We have discussed UDP
 - We have discussed TCP
 - We have discussed TCP congestion control/avoidance
- Transport layer protocol alternatives: Remote Procedure Call (RPC) and Real-time Transport Protocol (RTP)

