TOTIMERSØVING NR 5 TEP 4100/4107 FLUIDMEKANIKK

Høst 2015 LØSNINGSFORSLAG

Oppgave 1

En luftstrøm driver en væskefilm opp et skråplan ved en konstant skjærspenning τ_0 på væskeoverflaten. For å finne hastigheten u til væsken trenger vi to grensebetingelser for funksjonen u(y). Hvilke to?

Svar:
$$u(y=0)=0$$
 og $\mu \frac{du}{dy}\Big|_{y=\text{overflate}} = \tau_0$

Skisser mulige hastighetsprofil u(y) som er slik at

$$\bullet \quad \tau_w = \tau \big|_{v=0} = 0$$

Oppgave 2

Legg et kontrollvolum på innsiden av et rør, og finn sammenhengen mellom trykkgradienten $\frac{\partial p}{\partial x} \left(= \frac{\Delta p}{L} \right)$ og

veggskjærspenningen τ_w .

Svar:
$$\sum_{x} F_{x} = (p_{1} - p_{2})\pi R^{2} - \tau_{w} 2\pi RL = 0$$
$$\Rightarrow \frac{p_{1} - p_{2}}{L} = -\frac{\Delta p}{L} = \tau_{w} \frac{2}{R}$$

Hvilke forutsetninger/antagelser må du gjøre?

Svar: Fullt utviklet strømning (samme hastighetsprofil inn som ut).

Spiller det noen rolle om strømningen er laminær eller turbulent?

Svar: Nei. Hastighetsprofilet er identisk inn og ut av kontrollvolumet og kanselleres uansett form.

Oppgave 3

Gjenta oppgave 3, men nå skal rørlengden L dekke innløpslengden L_e . Hvorfor klarer vi ikke nå å finne en enkel sammenheng mellom Δp og $\tau_{_{\!\it w}}$?

Svar: Vi kan regne konveksjon inn og ut, men τ_{w}

vil nå også variere med x, så friksjonskraften blir $\int_0^L \tau_w 2\pi R dx$. Vi kjenner ikke funksjonen τ_w .

Oppgave 4

Et dreneringsrør (perforert plastslange) har lengde $L=100\,\mathrm{m}\,$ og diameter $d=5\,\mathrm{cm}$. Det renner $100\,\mathrm{liter}\,$ vann pr. time ut av røret. Hvis vi modellerer røret som et linjesluk $\phi=m\ln r$, $\psi=m\theta$ hva blir da styrken m til sluket? Bestem m ved å betrakte volumstrømmen gjennom et sylindrisk kontrollvolum med en vilkårlig radius r, plassert rundt linjesluket.

$$\vec{v} = \nabla \phi : v_r = \frac{\partial \phi}{\partial r} = \frac{m}{r}, v_\theta = \frac{1}{r} \frac{\partial \phi}{\partial \theta} = 0$$

$$\frac{Q}{b} = \int v_r \, ds = \int_0^{2\pi} v_r \, r \, d\theta = 2\pi m \quad \Rightarrow \quad m = \frac{Q/b}{2\pi} = \frac{100 \, \text{liter/time}}{2\pi \, 100 \, \text{m}} = \frac{1 \, \text{m}^3}{1000 \, \text{liter}} = 4.4 \cdot 10^{-8} \, \text{m}^2/\text{s}$$

Oppgave 5

Skisser noen strømlinjer fra kombinasjonen sluk -m i (0,0), kilde +m i (a,0) og kilde +m i (4a,0). (En sirkel skal dukke opp.)

Svar: Tips: Begynn å tegne strømlinjene nær kildene. Siden hver kilde er av styrke m har vi en balanse mellom hva som går inn og ut. Kilden i (4a,0) bidrar her på samme måte som den uniforme strømningen i potensialløsningen for strømning rundt en sylinder.

Oppgave 6

Skisser noen strømlinjer fra kombinasjonen potensialvirvel +K i (0,0), +K i (4a,0) og -K i (a,0). (En sirkel skal igjen dukke opp, sett langt ovenfra.)

Svar: Tips: Hold orden på rotasjonsretningene; strømningen mellom (0,0) og (a,0) presses oppover mens strømningen mellom (a,0) og (4a,0) presses nedover. Netto har vi +K+K-K=+K virvler, slik at man langt unna ser en virvel som går mot klokka.

Oppgave 7

2D-strømning over en skarpkantet innsnevring skal beregnes numerisk ved å løse Laplaceligningen $\nabla^2 \psi = 0$. Det strømmer inn en konstant hastighet $v_1 = 1$ m/s over høyden $H_1 = 1$ m, og ved utløpet $v_2 = 2$ m/s over $H_2 = 1/2$ m. Finn

grensebetingelsene for strømfunksjonen ψ over inn- og utløp, og langs veggene.

Svar: Veggene: Strømningen kan ikke gå på tvers av veggene. Det må derfor være en strømlinje $\psi=\psi_{\rm bunn}$ langs med bunnen og $\psi=\psi_{\rm top}$ langsmed toppen. Volumstrømmen inn og ut er per lengdeenhet inn i arket er $Q=v_1H_1=v_2H_2=1\,{\rm m}^2/{\rm s}$. Altså må $\psi_{\rm topp}-\psi_{\rm bunn}=1\,{\rm m}^2/{\rm s}$. Vi velger $\psi_{\rm bunn}=0$ og $\psi_{\rm top}=1$.

Innløp/utløp: Her er $u=\frac{\partial \psi}{\partial y}$ konstant. Dermed må ψ øke lineært langs inn- og utløp, fra $\psi_{\rm bunn}=0$ til $\psi_{\rm top}=1$.