

Universidade Presbiteriana Mackenzie

Uso de MLP em predição de séries temporais

Prof. Dr. Leandro Augusto da Silva

leandroaugusto.silva@mackenzie.br
Laboratório de Big Data e Métodos Analíticos Aplicados
Faculdade de Computação e Informática
Programa de Pós-Graduação em Engenharia Elétrica e Computação

CONTEUDO

O objetivo desta aula é fazer um estudo de caso completo envolvendo a aplicação de conceitos em modelagem por funções y(X) de múltiplas variáveis

Mais especificamente trabalharemos na previsão de Ibovespa

Previsão de séries usando MLP

Série Índice Bovespa de 1995 até 2008

 Considerada a média de quatro valores relevantes: abertura, máximo, mínimo e fechamento

 Problema: projetar uma MLP para estimar tal valor médio para o dia seguinte, a partir da sua observação nos dias antecedentes

Sobre a série Ibovespa ("média dos 4")

- Foi definido como janela de tempo a observar, o período de 10 dias, sendo o valor de 11º dia o alvo do previsor (tamJanela = 11;)
- Cada amostra de treino será representada por 10 valores médios diários, além do 11º dia (valor "futuro" a prever)
- A base de dados tem 298 amostras (3285 dias / 11 ~ 298), divididas em conjunto de treinamento e conjunto de teste, 223 amostras (75%) e 75 (25%) amostras respectivamente.

Definindo Janela de análise

Em termos de Excell ...

	#dia	Abert		Máxi.	Mínim.	Fe	cha.	Média
	19/01/1995	4.	079	4.079	3.77	76	3.809	3.936
10 dias-	20/01/1995	3.	809	3.871	3.63	35	3.862	3.794
	23/01/1995	3.	756	3.798	3.68	30	3.758	3.748
11 dia -{	03/02/1995	3.	898	3.975	3.63	37	3.944	3.914
				Σ	Z		y	
		#	X ₁	x ₂	X ₃		X ₁₁	
		1	3.936	3.794	3.748		3.914	
		298	71.75	71.81	1 72.07	6	70.93	9

Em termos de R...

ı		У			
#	$\mathbf{x_1}$	X ₂	X ₃		X ₁₁
1	3.936	3.794	3.748		3.914
300	71.754	71.811	72.076		70.939

X

#	1	 10
X ₁	3.936	3.748
X ₂₉₈	71.754	70.939

У

#	1	 298
	3.914	70.939

[1 x 298]

[298 x 10]

Exemplo de Arquitetura MLP (ilustrativo). N. de entradas e N. de saídas

Separando as amostras em conjunto de treinamento e conjunto de teste

- -Contornos: 298 amostras (do arredondamento entre número de dias e janela de estudo, ou seja, 3285 / 11).
- -Decidiu-se que 75% das amostras será usada para treinamento e 25% para teste.
- -A separação será feita de forma intercalada, ou seja, para uma sequência de 4 valores de y, 3 são retirados para treino (11, 23 e 33) e um é retirado para teste (43). O resultado está ilustrado nas próximas duas transparências.

Conjunto de Treinamento e Conjunto de Teste (Amostras de treino e teste são intercaladas)

Conjunto de Treinamento e Conjunto de Teste (Amostras de treino e teste são intercaladas)

Conjunto de Treinamento e Conjunto de Teste (Amostras de treino e teste são intercaladas)

Normalização Note que foi necessário "achatar" valores de y (fator 4 foi suficiente)

Valores de Y

Função Tangente hiperbólica

Normalização adotada

$$y = \underbrace{\frac{y - MEDIA(y)}{4 DesvPadr(y)}}$$

• Em termos de R a normalização fica:

$$Yn = Y - mean(Y) / 4 * desv(Y);$$

Normalização dos valores de X

 A normalização dos valores de X é opcional, pois os pesos sinápticos já escalam as entradas adaptativamente.

$$\tilde{X} = \frac{X - MEDIA(X)}{DesvPadr(X)}$$

• Em termos de R a normalização fica:

$$Xn = X - mean(X) / desv(X);$$

Medidas de Desempenho do previsor

RMSE (Root Mean Square of Errors)

$$RMSE = \sqrt{\frac{1}{M} \sum_{t=1}^{M} (\hat{R}_t - R_t)^2}$$

where \hat{R}_t is the predicted value for time t.

 R_r is the actual value at time t.

M is the number of observations.

Prof. Dr. Leandro Augusto da Silva

leandroaugusto.silva@mackenzie.br

Faculdade de Computação e Informática Programa de Pós-Graduação em Engenharia Elétrica e Computação