1. Prove
$$\left[\frac{n(n+1)}{2}\right]^2 - \frac{n^2(n^2+1)}{4} + 78 \in O(n^3)$$

Take
$$\left[\frac{n(n+1)}{2}\right]^2 - \frac{n^2(n^2+1)}{4} + 78 = f(n)$$

Take
$$n^3 = g(n)$$

$$=> \left[\frac{n^2+n}{2}\right]^2 - \frac{n^4+n^2}{4} + 78$$

$$=>\frac{n^4+2n^3+n^2}{4}-\frac{n^4+n^2}{4}+78$$

$$=>\frac{2n^3}{4}+78 \le \frac{2n^3}{4}+78n^3=78.5n^3=c*n^3$$

Therefore, with c = 78.5 and $n_0 = 1$, $f(n) \le c * g(n)$ for all $n \ge n_0$

Which means $f(n) \in O(n^3)$

2. Prove or disprove $2^{2^n} \in O(2^{2n})$

Take
$$f(n) = 2^{2^n}$$

Take
$$g(n) = 2^{2n}$$

Take
$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

$$=> \lim_{n\to\infty} \frac{2^{2^n}}{2^{2n}} = \lim_{n\to\infty} 2^{2^n-2n}, \ 2^n \ dominates \ 2n$$

Therefore there is no such c and n_0 you can pick to keep g(n) greater for all $n \ge n_0$

3. Prove that any function that is in O(log2n) is also in O(log3n)

Take

$$f(n) \in O(\log_2 n)$$
, then $f(n) \le c_1 * \log_2 n$ for some c_1 and for some n_{0a} where all $n \ge n_{0a}$

Notice, $log_3 n = \frac{log_2 n}{log_3 3}$, by base change formula

$$\Rightarrow log_{n} = log_{n}^{n} * log_{n}^{2} = c_{0} * log_{n}^{n}$$
 where $c_{0}^{n} = log_{n}^{2}$

$$\Rightarrow f(n) \le c_1 * c_0 log_3 n$$
, substituting in for $log_2 n$

$$\Rightarrow f(n) \in O(\log_3 n) \ for \ some \ c, \ where \ c = c_0 * c_1 \ and \ some \ n_{0b} \ where \ n_{0b} \ge n_{0a}$$

Therefore, $f(n) \in O(\log_3 n)$

4. Prove that if $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then

$$f_1(n) + f_2(n) \in O(g_1(n) + g_2(n))$$

$$f_1(n) \in O(g_1(n)) => f_1(n) \le c_1 g_1(n) \text{ for all } n \ge n_{0a}$$

$$f_2(n) \in O(g_2(n)) => f_2(n) \le c_2 g_2(n) \text{ for all } n \ge n_{0h}$$

$$=> f_1(n) + f_2(n) = c_1g_1(n) + c_2g_2(n)$$

=>
$$f_1(n) + f_2(n) = c_{1+2}(g_1(n) + g_2(n))$$

Therefore, for all $n \ge max(n_{0a}, n_{0b})$ and $c = c_{1+2}, f_1(n) + f_2(n) \in O(g_1(n) + g_2(n))$

5.
$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{i+j} 1$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)$$

$$= \sum_{i=1}^{n} (\sum_{j=1}^{n} i + \sum_{j=1}^{n} j)$$

$$= \sum_{i=1}^{n} (in + \frac{n(n+1)}{2})$$

$$= n \sum_{i=1}^{n} i + \frac{n(n+1)}{2} \sum_{i=1}^{n} 1$$

$$= n * \frac{n(n+1)}{2} + \frac{n(n+1)}{2} * n$$

$$= \frac{2n^{2}(n+1)}{2}$$

$$= n^{2}(n+1)$$

$$= n^{3} + n^{2} \in O(n^{3})$$

6. For each iteration of the outer loop, the inner loop will do i iterations. So if we consider R iterations of the outer loop:

Outer loop Iteration	i Value at Beginning of Iteration	Number of Times Inner Loop Iterates
1	n	n
2	n/2	n/2
3	n/4	n/4
R	$n/2^{R-1}$	$n/2^{R-1}$

The summation of runtime will be: $n + n/2 + n/4 + ... + n/2^{R-1}$ Using the geometric series we can say: $S = n \frac{a}{1-r} = n \frac{1}{1/2} = 2n \in O(n)$