

Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

(Department of CE

Lecture #27

1/26

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the p_i 's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N\left(p_i^{r_i}(T)\right)$ for each $1 \le i \le k$. Then

- The minimal polynomial of $T_i = T \upharpoonright_{W_i}$ is $p_i(x)$.

(Department of CE

Lecture #27

2 / 26

Primary Decomposition Theorem

Theorem

Let T be a linear function over a finite dimensional linear space V whose minimal polynomial factorizes as

$$p(x) = p_1^{r_1}(x) \cdots p_k^{r_k}(x),$$

where the pi's are monic and mutually coprime (i.e. have no nontrivial common factors). Let $W_i = N(p_i^{r_i}(T))$ for each $1 \le i \le k$. Then

- V = W₁ ⊕ · · · ⊕ W_k.
 For each 1 ≤ i ≤ k, T(W_i) ⊆ W_i.
- The minimal polynomial of T_i = T \(\cdot_W\) is p_i(x).
- ullet Note that a linear function T is diagonalizable if and only if its minimal polynomial factorizes as

$$p(x) = (x - \lambda_1) \cdots (x - \lambda_k)$$

Matrix Representation

- Suppose that T is a linear function on V with the characteristic polynomial is

$$f(x) = (x - \lambda_1)^{\underline{d_1}} \dots (x - \lambda_k)^{\underline{d_k}}$$

where $\lambda_1, \ldots, \lambda_k$ are distinct elements and $d_i \ge 1$.

- Then the minimal polynomial for T will be

where $1 \le r_i \le d_i$ based on the Cayley-Hamilton theorem.

- If W_i is the null space of $(T - \lambda_i I)^{r_i}$, then the primary decomposition theorem tells us that $V = W_1 \oplus \cdots \oplus W_k$

such that the linear function $T_i = T \upharpoonright_{W_i} : W_i \to W_i$ has minimal polynomial $(x - \lambda_i)^{r_i}$.

Department of CE)

Matrix Representation

Suppose that B_i is a basis for W_i . It has been proved that $B = \bigcup_{i=1}^k B_i$ is a basis for V. Based on primary decomposition theorem,

Thus

Matrix Representation

and

- Then N_i is nilpotent and has minimal polynomial x^{r_i}
- Then N_i is nilpotent and has minimal polynomial x^{n_i}
 Thus, T on W_i acts as N_i plus the scalar λ_i times the identity function I.
 Suppose we choose a basis for the subspace W_i and then find the variable (T-λ; I) = 0
- representation matrix of N_i on W_i .

5 / 26

Review: Nilpotent matrices and Nilpotent linear functions

Definition

A square matrix A is called nilpotent matrix with degree non-negative integer k if A^k is the zero matrix and A^r is the non-zero matrix for each $r, 1 \leq r \leq k$.

Definition

A be a linear function T on V is called nilpotent linear function with degree non-negative integer k if $T^{(k)}$ is the zero linear function and T^r is the non-zero one for each $r, 1 \leq r$ ISVEK

Review: Example

Let $A \in M_3(\mathbb{R})$ be the following matrix:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Then

$$A^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \mathbf{O}$$

The third power of A is

$$A^{3} = A^{2}A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{O}$$

Review: Nilpotent matrices (Revised version)

Lemma

Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

- The matrix A is nilpotent if and only if all the eigenvalues of A is zero.
- 2) The matrix A is nilpotent if and only if $A^n = O$.

(Department of CE

Lecture #2

8 / 26

Lemma

Let $\frac{V}{V}$ be a finite dimensional linear space. Then there is a vector vinV whose minimal polynomial respect to v is minimal polynomial T.

Lecture #27

10 / 20

W=Z[V,,Ni) (+) -- (+) Z (~, Ni)

(Department of CE)

Lecture #27

15 / 20

The smallest T-invariant subspace containing v

- Assume V is finite-dimensional linear space over $\mathbb{F}=\mathbb{R}$ or \mathbb{C} and T is a fixed (but arbitrary) linear function on V.
- If W is any subspace of V which is invariant under T and contains v, then W must also contain the vector T(v); hence W must contain $T(Tv) = T^2v$, $T(T^2v) = T^3v$, etc. In other words W must contain g(T)v, for every polynomial g(x) over \mathbb{F} . The set of all polynomial g(x) over \mathbb{F} is denoted by $\mathbb{F}[x]$
- Let $Z(v,T) = \{g(T)v \mid g(x) \in \mathbb{F}[x].\}$
- Z(v,T) is a subspace of V and it is the smallest T-invariant subspace which contains v.

(Department of CE)

Lecture #27

16 / 26

T-cyclic subspace generated by v

Definition

If v is any vector in V, the subspace Z(v,T) is called the T-cyclic subspace generated. If Z(v,T) = V, then v is called a cyclic vector for T.

For any T:

- \bullet The T-cyclic subspace generated by the zero vector is the zero subspace.
- **2** The space Z(v,T) is one-dimensional if and only if v is an eigenvalue vector for T.
- 3 Thus, we shall be interested in linear relations:

$$c_0v + c_1Tv + \cdots, c_kT^kv = 0.$$

between the vectors $T^{j}v$, that is we shall be interested in the polynomials

$$c_0 + c_1 x + \cdots, c_k x^k = 0$$

which have the property that g(T)v = 0.

dim Zlv11) sdag Pola)

The dimension of T-cyclic subspace generated by v

Theorem

Assume that T is a linear space on a linear space V. Let v be any non-zero vector in V and let $p_v(x)$ is the minimal polynomial for v respect to T.

- 2 If U is the linear function on Z(v,T) induced by T, then the minimal polynomial for U is $p_v(x)$.

Minimal and characteristic polynomials of a cyclic vector

Theorem

T has a cyclic vector if and only if the minimal and characteristic polynomials for T are identical.

Cyclic Decomposition Theorem

Theorem

Let T be a linear function on a finite-dimensional vector space V. There exist non-zero vectors $v_1, \ldots, v_k \in V$ with minimal polynomial p_{v_1}, \ldots, p_{v_k} such that

(i)
$$V = \underline{Z(v_1, T)} \oplus \cdots \oplus \underline{Z(v_k, T)}$$
.
(ii) $p_{\nu_i} \mid p_{\nu_{i+1}}$ for each $i \ge 2$.

(iii) Furthermore, the integer r and the minimal polynomial p_{v_1}, \ldots, p_{v_k} are uniquely determined by (i), (ii).

(Department of CE.)

Lecture #27

20 / 26

Proof.

(Department of CE

Lecture #27

21 /

Proof.

dim 2/2/7) = deg (2/2)

$$= \left\{ \gamma_1 \, \, N_i \, \gamma_1 \, - \, , \, \, \, N_c^{r_i - l_r} \, \right\}$$

Bi= 2 (1.) Niy, , - , Niy, , - , Ni Nu

Jordan Form

(Department of CE)

Lecture #2

23 / 26

Nilpotent matrices

 $Lemme V = Z(\gamma, \gamma)$

Let T is a linear function on \underline{V} such that $B = \{v, Tv, ..., T^{m-1}v\}$ is a basis for V where $0 \neq v \in V$. Then

(Department of CE)

Lecture #2

-24 / 26

Rational Form

- By Cyclic Decomposition Theorem: $V = Z(v_1, T) \oplus \cdots \oplus Z(v_k, T)$.
- Matrix representation by diagonal blocks:

$$\begin{vmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \ddots & 0 & -c_2 \\ 0 & 0 & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{vmatrix}$$

\N, TY 1 ... \\

(Department o		المرب	ture #27	۲,	(1)	25 / 26
11.1						
	7	Γhan	k Ye	ou!		
(Department o	(CF)	Lec	4ure #27			26 / 26