

Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Rational Functions

Inverse Laplace Transforms: Expressions with Rational Functions

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$\frac{1}{p}$	1
2	$\frac{1}{p+a}$	e^{-ax}
3	$\frac{1}{p^2}$	x
4	$\frac{1}{p(p+a)}$	$\frac{1}{a}\left(1-e^{-ax}\right)$
5	$\frac{1}{(p+a)^2}$	xe^{-ax}
6	$\frac{p}{(p+a)^2}$	$(1-ax)e^{-ax}$
7	$\frac{1}{p^2 - a^2}$	$\frac{1}{a}\sinh(ax)$
8	$\frac{p}{p^2 - a^2}$	$\cosh(ax)$
9	$\frac{1}{(p+a)(p+b)}$	$\frac{1}{a-b} \left(e^{-bx} - e^{-ax} \right)$
10	$\frac{p}{(p+a)(p+b)}$	$\frac{1}{a-b} \left(ae^{-ax} - be^{-bx} \right)$
11	$\frac{1}{p^2 + a^2}$	$\frac{1}{a}\sin(ax)$
12	$\frac{p}{p^2 + a^2}$	$\cos(ax)$
13	$\frac{1}{(p+b)^2 + a^2}$	$\frac{1}{a}e^{-bx}\sin(ax)$
14	$\frac{p}{(p+b)^2 + a^2}$	$e^{-bx} \Big[\cos(ax) - \frac{b}{a} \sin(ax) \Big]$
15	$\frac{1}{p^n}, n=1, 2, \ldots$	$\frac{1}{(n-1)!}x^{n-1}$ $\frac{1}{(n-1)!}x^{n-1}e^{-ax}$
16	$\frac{1}{(p+a)^n}, n=1, 2, \dots$	$\frac{1}{(n-1)!}x^{n-1}e^{-ax}$

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
17	$\frac{1}{p(p+a)^n}, n=1, 2, \dots$	$a^{-n} \left[1 - e^{-ax} e_n(ax) \right],$ where $e_n(z) = 1 + \frac{z}{1!} + \dots + \frac{z^n}{n!}$
18	$\frac{Q(p)}{P(p)},$ $P(p) = (p - a_1) \dots (p - a_n);$ $Q(p) \text{ is a polynomial of degree}$ $\leq n - 1; a_i \neq a_j \text{ if } i \neq j$	$\sum_{k=1}^{n} \frac{Q(a_k)}{P'(a_k)} \exp(a_k x),$ (the prime stand for the differentiation)

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: Expressions with Rational Functions

Copyright © 2005 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/auxiliary/inttrans/LapInv2.pdf