TST - Projekt 2

Jakub Postępski

27 stycznia 2019

1 Bieguny

- przy lokowaniu biegunów poza układem jednostowym układ "rozjeżdza się".
- zwiększanie odległości od zera lokowanych biegunów minimalnie przyspiesza regulację, ale zwiększa wpływ szumów
- przy lokowaniu ujemnych biegunów układ obserwatora dużo gorzej reaguje na szumy

1.1 Bieguny obserwatora

Można stworzyć obserwator złożony z dwuczęściowego (odzielnie obserwujemy macierz Φ i Φ_w). Wtedy nie bierzemy pod uwagę wpływu Phi_{xw} . Drugą opcją jest zaprojektowanie obserwatora dla całego układu od razu co daje mniejsze błędy estymacji.

1.2 Bieguny K_x

Z równania

$$det(zI - A + BK_x)$$

daje się znaleźć tylko liniową zależność ponieważ:

$$rank(W_c) < rank(\Phi)$$

więc układ nie jest sterowalny. Ustawienie dużych wartości wektora K_x powoduje większe przenoszenie szumów przez większe wartości sterowania.

1.3 Bieguny K_w

Po przekształceniu równania

$$\hat{x}(x+1) = \Phi x(t) + \Phi_{xw} w(t) + \Gamma u(t)$$

i podstawieniu

$$U(t) = -K_x x(t) - K_w w(t)$$

dostajemy:

$$w(t) = (\Phi_{xw} - \Gamma K_w) \Rightarrow K_w = \Gamma^{-1} \Phi_{xw}$$

ale wymiary macierzy się nie zgadzają. Żeby znaleźć coś podobnego do odwrotności zastosowałem pseudoodwrotność macierzy.

2 Sterowanie

- widać wyraźne piki sterowania przy zmianie wartości zadanej
- $\bullet\,$ nie ma eliminacji uchybu statycznego. Wartość uchybu statycznego zależy od K_c
- przy niektórych symulacjach widać jak nieskompensowany szum zaczyna wprowadzać coraz większe oscylacje do obserwatora.

3 Wartość K_c

Układ bez sterowania zewnętrznego zbiega do zera. Po dodaniu do sterowania wartości zadanej układ powinien zbiegać do niej. Zależy nam na tym aby w stanie ustalonym (możemy pominąć indeksy czasu i wpływ szumów):

$$y = Cx = u_c$$

Po podstawieniu tam gdzie się da $u_c = y$ i zastosowaniu macierzy pseudoodwrotnej dostajemy:

$$K_c = \Gamma^{-1}(1 - Phi + \Gamma K_x)C^{-1}$$

i wtedy moglibyśmy wyliczyć $K_c,$ gdyby nie to, że K_x jest liniowo zależne.

Na zwykłą logikę jeśli $K_c=1$ to układ powinien podążać za u_c i dla symulacji faktycznie ma to miejsce.

Można na to wszystko spojrzeć w przewrotny sposób. Można odwrócić powyższe równanie i wyliczyć wartości K_x , przy założeniu $K_c=1$. Przy tak dobranych wartościach szumy są małe i układ reguluje się dobrze.