Fundamental Concepts in Computational and Applied Mathematics

Juan Meza School of Natural Sciences University of California, Merced

Fall 2014

Recap

- Beware catastrophic cancellation know the limits of precision
- Learn about the conditioning of your problem
- Choose algorithms known to be stable so as to not introduce any more loss of precision than necessary
 - Conditioning is fundamentally a characteristic of the problem while
 - Stability is related to algorithms

Informally

Conditioning

A problem is well conditioned if small changes in the inputs lead to small changes in the outputs.

Stability

An algorithm is stable if it solves a "nearby" problem exactly.

Claim: We cannot solve anything numerically except linear systems

- Usually start by taking a continuous problem and discretizing
- Next step is to linearize the problem (if it already isn't linear)
- Final step involves solving some form of Ax = b

N.B.

These days, there is usually another step where the algorithm is parallelized

Basic Linear Algebra methods

- Suppose $x, y \in R^N$ and $A \in R^{N \times N}$
- Familiar linear algebra operations
 - dot products: x^Ty
 - matvec: Ax
 - saxpy: ax + y
 - Solve Ax = b
 - Solve $Ax = \lambda x$
- \bullet These operations have been immortalized into the BLAS and LAPACK libraries

Methods for solving Ax = b

- Various standard methods for solving systems of linear equations
 - LU
 - Cholesky
 - QR
 - SVD
- All have advantages and disadvantages learn about them!
- Your choice of method will depend on the application, software availability, and time (\$\$) constraints

Warning

Never (EVER) solve a linear system by calculating the inverse of the matrix and multiplying!

Some Useful Terms to Know

Residual

The residual of linear system is given by b - Ax.

Machine Precision

Machine precision is denoted by μ . Modern computers have $\mu \approx 10^{-16}$.

Condition Number

The condition number of a matrix A is given by: $\kappa(A) = ||A|| \cdot ||A^{-1}||$.

III-conditioning

A problem is said to be ill-conditioned if $\mu \cdot \kappa(A) \approx 1$.

Fun Facts

- Gaussian elimination always produces solutions with relatively small residuals (minor caveats).
- Best possible error bound¹ for solving a system of linear equations can be given by

$$\frac{||x - \hat{x}||_{\infty}}{||x||_{\infty}} \le 4\mu\kappa_{\infty}(A),\tag{1}$$

where μ is machine precision of the computer.

Discussion

If the residual of a computed solution is small, can I say that I have an "good" answer? Can I trust it?

¹Golub and van Loan, Matrix Computations 3rd ed., pp. 105

Stable or Unstable? Well conditioned or ill-conditioned?

Consider Ax = b, where

$$A = \begin{bmatrix} \epsilon & 1 \\ 1 & 0 \end{bmatrix}, b = [1, 1]^T.$$

Discussion

What do you think that Gaussian Elimination will do with this? Is the problem well conditioned or ill-conditioned?

LU with Partial Pivoting (LU/PP)

• Can show that LU/PP generates the exact solution to a perturbed problem (A+E)x=b, such that

$$||E||_{\infty} \le 8n^3 \rho ||A||_{\infty} \mu.$$

- In theory, the growth factor ρ can grow exponentially, but in practice it is usually of order 10.
- Consider the residual, b Ax:

$$||b - Ax||_{\infty} = ||Ex||_{\infty}$$

$$\leq 8n^{3}\rho ||A||_{\infty}\mu ||x||_{\infty}$$

$$\approx \mu ||A||_{\infty}||x||_{\infty}.$$

Comparison of some familiar algorithms for Ax = b

Table: Familiar Ax = b solution methods

Algorithm	Work	Advantages	Disadvantages
LU w/PP	\ /	simple (usually) stable	unstable growth factor; pivoting will change str
,	$\mathcal{O}(n^3)$	stable	more work than PP
QR	$\mathcal{O}(n^3)$	stable,no growth	2x work of LU
SVD	$\mathcal{O}(n^3)$	stable	more than 2x work

Summary

- ullet Basic Linear Algebra Subroutines (BLAS) are at the core of many modern computer simulations.
- Solution of linear systems is essential to your knowledge of computational mathematics.
- Small residuals are not enough to show you have a good solution need to do a deeper analysis.

References

• Matrix Computations, 3rd Ed., Gene H. Golub and Charles F. Van Loan, Johns Hopkins, 1996.