Package 'GPvecchia'

March 12, 2024

```
Type Package

Title Scalable Gaussian-Process Approximations

Version 0.1.7

Date 2024-02-29

Maintainer Marcin Jurek <marcinjurek1988@gmail.com>

Author Matthias Katzfuss [aut],

Marcin Jurek [aut, cre],

Daniel Zilber [aut],

Wenlong Gong [aut],

Joe Guinness [ctb],

Jingjie Zhang [ctb],

Florian Schaefer [ctb]
```

Description Fast scalable Gaussian process approximations, particularly well suited to spatial (aerial, remote-sensed) and environmental data, described in more detail in Katzfuss and Guinness (2017) <arXiv:1708.06302>. Package also contains a fast implementation of the incomplete Cholesky decomposition (IC0), based on Schaefer et al. (2019) <arXiv:1706.02205> and MaxMin ordering proposed in Guinness (2018) <arXiv:1609.05372>.

```
Encoding UTF-8

License GPL (>= 2)

Imports Rcpp (>= 1.0.9), methods, stats, sparseinv, fields, Matrix(>= 1.5.1), parallel, GpGp, FNN

LinkingTo Rcpp, RcppArmadillo, BH
```

RoxygenNote 7.2.3

Suggests mytnorm, knitr, rmarkdown, testthat

VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN

Date/Publication 2024-03-12 11:10:03 UTC

R topics documented:

2
3
4
5
5
6
6
6
7
8
8
9
10
10
11
12
12
13
14
15
16
17
18
19
20
21
_1
23

calculate_posterior_VL

Vecchia Laplace extension of GPVecchia for non-Gaussian data

Description

Vecchia Laplace extension of GPVecchia for non-Gaussian data

```
calculate_posterior_VL(
   z,
   vecchia.approx,
   likelihood_model = c("gaussian", "logistic", "poisson", "gamma", "beta", "gamma_alt"),
   covparms,
   covmodel = "matern",
   likparms = list(alpha = 2, sigma = sqrt(0.1)),
```

3 createL

```
max.iter = 50,
  convg = 1e-06,
  return_all = FALSE,
  y_init = NA,
 prior_mean = rep(0, length(z)),
  verbose = FALSE
)
```

Arguments z

an array of real numbers representing observations vecchia.approx a vecchia object as generated by vecchia specify() likelihood_model text describing likelihood model to be used for observations. Can be "gaussian", "logistic", "poisson", "gamma", or "beta" covariance parameters as a vector covparms covmode1 type of the model covariance or selected elements of the covariance matrix likparms likelihood parameters for the likelihood_model, as a list. Default values are sqrt(.1) for Gaussian noise and 2 for the alpha parameter for Gamma data. max.iter maximum iterations to perform convergence criteria. End iterations if the Newton step is this small convg

Return additional posterior covariance terms, TRUE or FALSE return_all y_init Specify initial guess for posterior mode

prior_mean specify the prior latent mean

verbose if TRUE messages about the posterior estimation will be displayed

Value

multivariate normal posterior parameters calculated by the Vecchia-Laplace approximation

Examples

```
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5)
calculate_posterior_VL(z,vecchia.approx, "gaussian", covparms=c(1,2,.5))
```

createL

create the sparse triangular L matrix for specific parameters

Description

create the sparse triangular L matrix for specific parameters

```
createL(vecchia.approx, covmodel, covparms = NULL)
```

4 createU

Arguments

vecchia.approx object returned by vecchia_specify

covmodel covariance model. currently implemented: matern: with covparms (var,range,smoothness)

esqe: exponential + squared exp with covparms (var1,range1,var2,range2) If covmodel is a function it has to be able to take a distance matrix and return a

vector with distances which is of length k.

covparms vector of covariance parameters

Value

list containing the sparse lower triangular L,

Examples

```
z=rnorm(9); locs=matrix(1:9,ncol=1); vecchia.approx=vecchia_specify(locs,m=5)
L = createL(vecchia.approx, covparms=c(1,2,.5), 'matern')
```

createU

create the sparse triangular U matrix for specific parameters

Description

create the sparse triangular U matrix for specific parameters

Usage

```
createU(vecchia.approx, covparms, nuggets, covmodel = "matern")
```

Arguments

vecchia.approx object returned by vecchia_specify

covparms vector of covariance parameters

nuggets nugget variances – if a scalar is provided, variance is assumed constant

covmodel covariance model. currently implemented:

Value

list containing the sparse upper triangular U, plus additional objects required for other functions

```
z=rnorm(9); locs=matrix(1:9,ncol=1); vecchia.approx=vecchia_specify(locs,m=5)
U.obj=createU(vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
```

getMatCov 5

getMatCov exi

extract the required elements from the covariance matrix

Description

This function takes the entire covariance matrix and creates a matrix of covariances based on the vecchia approximatino object

Usage

```
getMatCov(V, covariances, factor = FALSE)
```

Arguments

V the object returned by vecchia_specify

covariances The full covariance matrix or a covariance function

factor True if we are passing a factor of a matrix

Value

matrix of size n x (m+1) with only those elements that are used by the incomplete Cholesky decomposition

```
getMatCovFromFactorCpp
```

Calculate the covariance values required by HV for matrix factors passed as sparse matrices

Description

Calculate the covariance values required by HV for matrix factors passed as sparse matrices

Usage

```
getMatCovFromFactorCpp(F, revNNarray)
```

Arguments

F factor of a matrix in a sparse format revNNarray array with the neighbourhood structure

Value

matrix with covariance values

6 ichol

GPvecchia

GPvecchia: fast, scalable Gaussian process approximations

Description

The package can be used for parameter inference and prediction for Gaussian and non-Gaussian spatial data using many popular GP approximation methods.

ic0

Incomplete Cholesky decomposition of a sparse matrix passed in the compressed sparse row format

Description

Incomplete Cholesky decomposition of a sparse matrix passed in the compressed sparse row format

Usage

```
ic0(ptrs, inds, vals)
```

Arguments

ptrs pointers to the beginning of the row inds indices of nonzero elements in a row vals nonzero values

Value

vector of the values of the incomplete Cholesky factor

ichol

Wrapper for incomplete Cholesky decomposition

Description

Wrapper for incomplete Cholesky decomposition

```
ichol(M, S = NULL)
```

MaternFun 7

Arguments

M the matrix to be decomposed
S sparsity pattern matrix given

Value

the incomplete Cholesky factor in the sparse format

Examples

```
A = matrix(runif(25), ncol = 5)
A = t(A) * A + 2 * Matrix::Diagonal(5)
S = Matrix::Matrix(c(rep(1, 5), c(0, 1, 1, 0, 0), c(0, 0, 1, 0, 1),
c(0, 0, 0, 1, 0), c(0, 0, 0, 0, 1)), ncol = 5, byrow = TRUE)
I1 = ichol(A, S)
I2 = ichol(A * S)
```

MaternFun

Calculate Matern covariance function

Description

Calculate Matern covariance function

Usage

```
MaternFun(distmat, covparms)
```

Arguments

distmat A matrix with distances between points

covparms A vector with parameters (marg. variance, range, smoothness)

Value

A matrix with covariance values corresponding to the distance matrix

8 order_dist_to_point

order_coordinate

Sorted coordinate ordering

Description

Return the ordering of locations sorted along one of the coordinates or the sum of multiple coordinates

Usage

```
order_coordinate(locs, coordinate)
```

Arguments

locs

A matrix of locations. Each row of locs contains a location, which can be a point in Euclidean space R^d, a point in space-time R^d x T, a longitude and latitude (in degrees) giving a point on the sphere, or a longitude, latitude, and time giving a point in the sphere-time domain.

coordinate

integer or vector of integers in $\{1,...,d\}$. If a single integer, coordinates are ordered along that coordinate. If multiple integers, coordinates are ordered according to the sum of specified coordinate values. For example, when d=2, coordinate = c(1,2) orders from bottom left to top right.

Value

A vector of indices giving the ordering, i.e. the first element of this vector is the index of the first location.

Examples

order_dist_to_point

Distance to specified point ordering

Description

Return the ordering of locations increasing in their distance to some specified location

```
order_dist_to_point(locs, loc0, lonlat = FALSE)
```

order_maxmin_exact 9

Arguments

locs A matrix of locations. Each row of locs contains a location, which can be a

point in Euclidean space R^d , a point in space-time $R^d \times T$, a longitude and latitude (in degrees) giving a point on the sphere, or a longitude, latitude, and

time giving a point in the sphere-time domain.

loc0 A vector containing a single location in R^d.

lonlat TRUE/FALSE whether locations are longitudes and latitudes.

Value

A vector of indices giving the ordering, i.e. the first element of this vector is the index of the location nearest to loc0.

Examples

order_maxmin_exact

Maximum minimum distance ordering

Description

Return the indices of an exact maximum-minimum distance ordering. The first point is chosen as the "center" point, minimizing L2 distance. Dimensions d=2 and d=3 handled separately, dimensions d=1 and d>3 handled similarly. Algorithm is exact and scales quasilinearly.

Usage

```
order_maxmin_exact(locs)
```

Arguments

locs

Observation locations

Value

A vector of indices giving the ordering, i.e. the first element of this vector is the index of the first location.

```
n=100; locs <- cbind(runif(n),runif(n))
ord <- order_maxmin_exact(locs)</pre>
```

10 order_middleout

```
order_maxmin_exact_obs_pred
```

Maximum minimum distance ordering for prediction

Description

Return the indices of an exact maximum-minimum distance ordering. The first point is chosen as the "center" point, minimizing L2 distance. Dimensions d=2 and d=3 handled separately, dimensions d=1 and d>3 handled similarly. Algorithm is exact and scales quasilinearly.

Usage

```
order_maxmin_exact_obs_pred(locs, locs_pred)
```

Arguments

locs Observation locations
locs_pred Prediction locations

Value

A vector of indices giving the ordering, i.e. the first element of this vector is the index of the first location.

Examples

```
n=100; locs <- cbind(runif(n),runif(n))
locs_pred = cbind(runif(n), runif(n))
ord <- order_maxmin_exact_obs_pred(locs, locs_pred)</pre>
```

order_middleout

Middle-out ordering

Description

Return the ordering of locations increasing in their distance to the average location

```
order_middleout(locs, lonlat = FALSE)
```

order_outsidein 11

Arguments

locs A matrix of locations. Each row of locs contains a location, which can be a

point in Euclidean space R^d , a point in space-time $R^d \times T$, a longitude and latitude (in degrees) giving a point on the sphere, or a longitude, latitude, and

time giving a point in the sphere-time domain.

lonlat TRUE/FALSE whether locations are longitudes and latitudes.

Value

A vector of indices giving the ordering, i.e. the first element of this vector is the index of the location nearest the center.

Examples

```
\begin{array}{lll} n <- \ 100 & \# \ Number \ of \ locations \\ d <- \ 2 & \# \ dimension \ of \ domain \\ locs <- \ matrix( \ runif(n*d), \ n, \ d \ ) \\ ord <- \ order\_middleout(locs) \end{array}
```

order_outsidein

Outside-in ordering

Description

Return the ordering of locations decreasing in their distance to the average location. Reverses middleout.

Usage

```
order_outsidein(locs, lonlat = FALSE)
```

Arguments

locs A matrix of locations. Each row of locs contains a location, which can be a

point in Euclidean space R^d , a point in space-time $R^d \times T$, a longitude and latitude (in degrees) giving a point on the sphere, or a longitude, latitude, and

time giving a point in the sphere-time domain.

lonlat TRUE/FALSE whether locations are longitudes and latitudes.

Value

A vector of indices giving the ordering, i.e. the first element of this vector is the index of the location farthest from the center.

12 V2covmat

Examples

```
\begin{array}{lll} n <- \ 100 & \# \ Number \ of \ locations \\ d <- \ 2 & \# \ dimension \ of \ domain \\ locs <- \ matrix( \ runif(n*d), \ n, \ d \ ) \\ ord <- \ order\_outsidein(locs) \end{array}
```

SelInv

selected inverse of a sparse matrix

Description

selected inverse of a sparse matrix

Usage

```
SelInv(cholmat)
```

Arguments

cholmat

cholesky factor L of a positive definite sparseMatrix A

Value

sparse inverse of A, with same sparsity pattern as L

Examples

```
A=Matrix::sparseMatrix(1:9,1:9,x=4); L=Matrix::chol(A)
SelInv(L)
```

V2covmat

compute covariance matrix from V.ord Do not run this function for large n or n.p!!!

Description

compute covariance matrix from V.ord Do not run this function for large n or n.p!!!

Usage

```
V2covmat(preds)
```

Arguments

preds

Object returned by vecchia_prediction()

vecchia_estimate 13

Value

Covariance matrix at all locations in original order

Examples

```
z=rnorm(5)
locs=matrix(1:5,ncol=1)
vecchia_specify=function(z,locs,m=5,locs.pred=(1:5)+.5)
V2covmat(vecchia_prediction(vecchia.approx,covparms=c(1,2,.5),nuggets=.2))
```

vecchia_estimate

estimate mean and covariance parameters of a Matern covariance function using Vecchia

Description

estimate mean and covariance parameters of a Matern covariance function using Vecchia

Usage

```
vecchia_estimate(
  data,
  locs,
  X,
  m = 20,
  covmodel = "matern",
  theta.ini,
  output.level = 1,
  reltol = sqrt(.Machine$double.eps),
  ...
)
```

Arguments

data	data vector of length n
locs	n x d matrix of spatial locations
Χ	$n \times p$ matrix of trend covariates. default is vector of ones (constant trend). set to NULL if data are already detrended
m	number of neighbors for vecchia approximation. default is 20
covmodel	covariance model. default is Matern. see vecchia_likelihood for details.
theta.ini	initial values of covariance parameters. nugget variance must be last.
output.level	passed on to trace in the stats::optim function
reltol	tolerance for the optimization function; by default set to the sqrt of machine precision
	additional input parameters for vecchia_specify

Value

object containing detrended data z, trend coefficients beta.hat, covariance parameters theta.hat, and other quantities necessary for prediction

Examples

```
n=10^2; locs=cbind(runif(n),runif(n))
covparms=c(1,.1,.5); nuggets=rep(.1,n)
Sigma=exp(-fields::rdist(locs)/covparms[2])+diag(nuggets)
z=as.numeric(t(chol(Sigma))%*%rnorm(n));
data=z+1
vecchia.est=vecchia_estimate(data,locs,theta.ini=c(covparms,nuggets[1]))
```

```
vecchia_laplace_likelihood
```

Wrapper for VL version of vecchia_likelihood

Description

Wrapper for VL version of vecchia_likelihood

Usage

```
vecchia_laplace_likelihood(
   z,
   vecchia.approx,
   likelihood_model,
   covparms,
   likparms = list(alpha = 2, sigma = sqrt(0.1)),
   covmodel = "matern",
   max.iter = 50,
   convg = 1e-05,
   return_all = FALSE,
   y_init = NA,
   prior_mean = rep(0, length(z)),
   vecchia.approx.IW = NA
)
```

Arguments

```
z an array of real numbers representing observations

vecchia.approx a vecchia object as generated by vecchia_specify()

likelihood_model

text describing likelihood model to be used for observations

covparms covariance parameters as a vector
```

likelihood parameters for the likelihood_model, as a list likparms describes the covariance model, "matern" by default covmodel max.iter maximum iterations to perform convg convergence criteria. End iterations if the Newton step is this small return_all Return additional posterior covariance terms y_init Specify initial guess for posterior mode prior_mean specify the prior latent mean vecchia.approx.IW an optional vecchia approximation object, can reduce computation if method is called repeatedly

Value

(multivariate normal) loglikelihood implied by the Vecchia approximation

Examples

```
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5)
vecchia_laplace_likelihood(z,vecchia.approx,"gaussian",covparms=c(1,2,.5))
```

Description

Wrapper for VL version of vecchia likelihood

```
vecchia_laplace_likelihood_from_posterior(
    z,
    posterior,
    vecchia.approx,
    likelihood_model,
    covparms,
    likparms = list(alpha = 2, sigma = sqrt(0.1)),
    covmodel = "matern",
    max.iter = 50,
    convg = 1e-05,
    return_all = FALSE,
    y_init = NA,
    prior_mean = rep(0, length(z)),
    vecchia.approx.IW = NA
)
```

Arguments

an array of real numbers representing observations z posterior distribution obtained from calculate_posterior_VL() posterior vecchia.approx a vecchia object as generated by vecchia_specify() likelihood_model text describing likelihood model to be used for observations covparms covariance parameters as a vector likelihood parameters for the likelihood_model, as a list likparms describes the covariance model, "matern" by default covmodel maximum iterations to perform max.iter convg convergence criteria. End iterations if the Newton step is this small return_all Return additional posterior covariance terms Specify initial guess for posterior mode y_init prior_mean specify the prior latent mean vecchia.approx.IW an optional vecchia approximation object, can reduce computation if method is

Value

(multivariate normal) loglikelihood implied by the Vecchia approximation

called repeatedly

```
vecchia_laplace_prediction
```

Wrapper for VL version of vecchia_prediction

Description

Wrapper for VL version of vecchia_prediction

```
vecchia_laplace_prediction(
  vl_posterior,
  vecchia.approx,
  covparms,
  pred.mean = 0,
  var.exact = FALSE,
  covmodel = "matern",
  return.values = "all"
)
```

vecchia_likelihood 17

Arguments

vl_posterior a posterior estimate object produced by calculate_posterior_VL

vecchia.approx a vecchia object as generated by vecchia_specify()

covparms covariance parameters as a vector

pred.mean provides the prior latent mean for the prediction locations

var.exact should prediction variances be computed exactly, or is a (faster) approximation

acceptable

covmodel covariance model, 'matern' by default.

return.values either 'mean' only, 'meanvar', 'meanmat', or 'all'

Value

(multivariate normal) loglikelihood implied by the Vecchia approximation

Examples

```
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5)
vl_posterior = calculate_posterior_VL(z,vecchia.approx,"gaussian",covparms=c(1,2,.5))
locs.pred=matrix(1:10+.5,ncol=1)
vecchia.approx.pred = vecchia_specify(locs, m=5, locs.pred=locs.pred)
vecchia_laplace_prediction(vl_posterior,vecchia.approx.pred,covparms=c(1,2,.5))
```

vecchia_likelihood

evaluation of the likelihood

Description

evaluation of the likelihood

Usage

```
vecchia_likelihood(z, vecchia.approx, covparms, nuggets, covmodel = "matern")
```

Arguments

z the observed data

vecchia.approx a vecchia object as generated by vecchia_specify()

covparms covariance parameters as a vector

nuggets either a single (constant) nugget or a vector of nugget terms for the observations

covmodel covariance model, 'matern' by default

Value

(multivariate normal) loglikelihood implied by the Vecchia approximation

18 vecchia_lincomb

Examples

```
z=rnorm(5); locs=matrix(1:5,ncol=1); vecchia.approx=vecchia_specify(locs,m=3)
vecchia_likelihood(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
```

Description

linear combination of predictions compute the distribution of a linear combination Hy

Usage

```
vecchia_lincomb(H, U.obj, V.ord, cov.mat = FALSE)
```

Arguments

Н	sparse matrix with n.all columns specifying the linear combination
U.obj	U matrix is the full joint approximated cholesky matrix
V.ord	ordered V matrix from vecchia_prediction() or U2V()
cov.mat	logical TRUE or FALSE – should the entire covariance matrix be returned (only do if H has a small number of rows)

Value

Variance of linear combination of predictions.

```
n=5; z=rnorm(n); locs=matrix(1:n,ncol=1); n.p=5
vecchia.approx = vecchia_specify(locs,m=3,locs.pred=locs+.5)
preds=vecchia_prediction(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
H=Matrix::sparseMatrix(i=rep(1,n.p),j=n+(1:n.p),x=1/n.p)
vecchia_lincomb(H,vecchia.approx,preds$V.ord,cov.mat=TRUE)
```

vecchia_pred 19

vecch	nia	nred

make spatial predictions using Vecchia based on estimated parameters

Description

make spatial predictions using Vecchia based on estimated parameters

Usage

```
vecchia_pred(vecchia.est, locs.pred, X.pred, m = 30, ...)
```

Arguments

vecchia.est	object returned by vecchia_estimate
locs.pred	n.p x d matrix of prediction locations
X.pred	$n.p \ x \ p$ matrix of trend covariates at prediction locations. does not need to be specified if constant or no trend was used in $vecchia_estimate$
m	number of neighbors for vecchia approximation. default is 30.
	additional input parameters for vecchia_specify

Value

object containing prediction means mean.pred and variances var.pred

```
n=10^2; locs=cbind(runif(n),runif(n))
covparms=c(1,.1,.5); nuggets=rep(.1,n)
Sigma=exp(-fields::rdist(locs)/covparms[2])+diag(nuggets)
z=as.numeric(t(chol(Sigma))%*%rnorm(n));
data=z+1
vecchia.est=vecchia_estimate(data,locs,theta.ini=c(covparms,nuggets[1]))
n.p=30^2; grid.oneside=seq(0,1,length=round(sqrt(n.p)))
locs.pred=as.matrix(expand.grid(grid.oneside,grid.oneside))
vecchia.pred=vecchia_pred(vecchia.est,locs.pred)
```

20 vecchia_prediction

vecchia_prediction

Vecchia prediction

Description

Vecchia prediction

Usage

```
vecchia_prediction(
  z,
  vecchia.approx,
  covparms,
  nuggets,
  var.exact,
  covmodel = "matern",
  return.values = "all"
)
```

Arguments

z observed data

vecchia.approx a vecchia object as generated by vecchia_specify()

covparms covariance parameters as a vector

nuggets nugget

var.exact should prediction variances be computed exactly, or is a (faster) approximation

acceptable

covmodel covariance model, 'matern' by default.

return.values either 'mean' only, 'meanvar', 'meanmat', or 'all'

Value

posterior mean and variances at observed and unobserved locations; V matrix

```
z=rnorm(5); locs=matrix(1:5,ncol=1); vecchia.approx=vecchia_specify(locs,m=3,locs.pred=locs+.5)
vecchia_prediction(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
```

vecchia_specify 21

vecchia_specify specify a general vecchia approximation

Description

specify the vecchia approximation for later use in likelihood evaluation or prediction. This function does not depend on parameter values, and only has to be run once before repeated likelihood evaluations.

Usage

```
vecchia_specify(
  locs,
  m = -1,
  ordering,
  cond.yz,
  locs.pred,
  ordering.pred,
  pred.cond,
  conditioning,
  mra.options = NULL,
  ic0 = FALSE,
  verbose = FALSE
)
```

Arguments

locs	nxd matrix of observed locs
m	Number of nearby points to condition on
ordering	options are 'coord' or 'maxmin'
cond.yz	options are 'y', 'z', 'SGV', 'SGVT', 'RVP', 'LK', and 'zy'
locs.pred	nxd matrix of locations at which to make predictions
ordering.pred	options are 'obspred' or 'general'
pred.cond	prediction conditioning, options are 'general' or 'independent'
conditioning	conditioning on 'NN' (nearest neighbor) or 'firstm' (fixed set for low rank) or 'mra' $$
mra.options	Settings for number of levels and neighbors per level
ic0	Specifies if ic0 decomposition should be used as opposed to regular Cholesky
verbose	Provide more detail when using MRA calculations. Default is false.

Value

An object that specifies the vecchia approximation for later use in likelihood evaluation or prediction.

vecchia_specify

Examples

locs=matrix(1:5,ncol=1); vecchia_specify(locs,m=2)

Index

```
calculate_posterior_VL, 2
createL, 3
{\tt createU}, \color{red} 4
getMatCov, 5
getMatCovFromFactorCpp, 5
GPvecchia, 6
GPvecchia-package (GPvecchia), 6
ic0,6
ichol, 6
MaternFun, 7
order_coordinate, 8
order\_dist\_to\_point, 8
order_maxmin_exact, 9
order_maxmin_exact_obs_pred, 10
order_middleout, 10
order_outsidein, 11
SelInv, 12
V2covmat, 12
vecchia_estimate, 13, 19
vecchia_laplace_likelihood, 14
vecchia_laplace_likelihood_from_posterior,
vecchia_laplace_prediction, 16
vecchia_likelihood, 13, 17
vecchia_lincomb, 18
vecchia_pred, 19
vecchia_prediction, 20
vecchia_specify, 4, 13, 19, 21
```