

Comparison of Acoustic Models and Trajectory Generation Methods for an Acoustically-Aware Aircraft

Kasey A. Ackerman and Irene M. Gregory

NASA Langley Research Center Hampton, VA 23681

AIAA SciTech Forum

National Harbor, MD January 2023

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Motivation

- Noise management is one of the major barriers to Urban Air Mobility
- Approaches to noise mitigation (non-exhaustive)
 - Vehicle configuration
 - Directivity control via propeller phase synchronization
 - Trajectory optimization

Objective

- Create framework for trajectory generation integrating location-based acoustic metrics and vehicle performance limitations
 - Multiple trajectory optimization methods and acoustic noise models
 - Mission-relevant constraints
 - Mission duration, airspace restrictions, ...
 - Vehicle dynamic constraints
 - Aircraft structural limitations, min/max airspeed, ...
 - Vehicle separation/obstacle avoidance
 - Acoustic constraints at a number of discrete observer locations

Comparison of Models and Methods

- Two acoustic source noise models
 - Omni-directional model based on propeller tip Mach Number
 - Directional hemisphere-based model
- Two trajectory planning methods
 - Pre-mission full-trajectory planner using polynomial parameterization
 - Receding horizon (near) real-time nonlinear model predictive control (MPC) trajectory planner
- Compare trajectory planning performance using both noise models and trajectory generation methods

Vehicle Dynamics

- Fixed-wing distributed propulsion aircraft
 - Can represent tilt-wing or split-propulsion vehicle in forward flight
 - Coordinated flight aircraft model*
 - Basic aerodynamic model
 - Simplified motor/propeller model
 - Assumes underlying tracking controller
- Parameter values taken from model of NASA's GL-10 aircraft

Figure credit: NASA

Omni-Directional Acoustic Model

- Metric is sound pressure level (SPL)
- Model data fit from the Propeller Analysis System of the Aircraft Noise Prediction Program (PAS-ANOPP)
- Based on effective propeller tip Mach number
- Optional frequency weighting

$$M_{\text{eff}} = \frac{M_t}{1 + J(1 - M_t)}$$
$$M_t = \omega_p d_p / 2c$$

kasey.a.ackerman@nasa.gov

Hemisphere Acoustic Model

- Metric is sound pressure level (SPL)
- Model data from the Propeller Analysis System of the Aircraft Noise Prediction Program (PAS-ANOPP)
- Directional noise emission
- Interpolation over airspeed, angle of attack, propeller speed, direction to observer

70

60 E

55 Z

50

40

Pre-Mission Trajectory Planner*

- Full trajectory optimization with polynomial parameterization
 - Simplified (differentially flat) vehicle dynamics, acoustic source model, and propagation model
 - Implemented as a 2nd order Hermite interpolation problem
 - Bézier polynomial representation of spatial path and parametric speed
 - Numeric (discrete) evaluation of mid- to high-fidelity acoustic source and propagation models

Figure Credit: *KA Ackerman and IM Gregory, "Trajectory Generation for Noise-Constrained Autonomous Flight Operations," AIAA SciTech Forum, Jan 2020. AIAA-2020-0978

MPC Motion planner*

Model Predictive Path Integral Control (MPPI)**

- Stochastic optimization technique used as nonlinear MPC
- Framework to efficiently solve a finite horizon nonlinear optimal control problems
- State cost function can be arbitrarily complex
- Sampling-based optimization leverages GPU for efficient computation

Figure credit: J Pravitra, KA Ackerman, N Hovakimyan, EA Theodorou, "L1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors," IROS, 2020.

^{*}KA Ackerman, IM Gregory, N Hovakimyan, EA Theodorou, "A Model Predictive Control Approach for In-Flight Acoustic Constraint Compliance," AIAA SciTech Forum, 2021. AIAA-2021-1958

^{**}G Williams, P Drews, B Goldfain, JM Rehg, EA Theodorou, "Information Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving," IEEE Transactions on Robotics, 2018.

Comparison – Acoustic Constraint Inactive

MPC Planner

Comparison – Acoustic Constraint Active

MPC Planner

Comparison – Sound Pressure Level

Pre-mission Planner

MPC Planner

Comparison – Vehicle Speed

MPC Planner

Noise Model Comparison

Omni-directional propeller speed model

X [m]

Noise Model Comparison

Hemisphere model

Summary

16

- Compared two different trajectory planning methods and two acoustic noise models
 - Full trajectory planning with guaranteed constraint satisfaction
 - Finite horizon planning has greater freedom in trajectory planning
 - Better able to exploit directionality of hemisphere model
 - Directionality of noise emission makes difference in maximum noise levels seen on ground
 - Higher peak noise, but shorter duration with hemisphere model
- Future efforts focused on combining planner methods to leverage advantages of each
- Acknowledgements
 - NASA's Revolutionary Vertical Lift Technology Project
 - Dr. Kyle Pascioni (NASA Langley Research Center)
 - Dr. Javier Puig Navarro (National Institute of Aerospace)

POC: Kasey Ackerman kasey.a.ackerman@nasa.gov

Background Material

Vehicle Dynamics

- Fixed-wing distributed propulsion aircraft
 - Can represent tilt-wing or split-propulsion vehicle in forward flight
 - Coordinated flight aircraft model*
 - Includes basic aerodynamic model
 - Assumes underlying tracking controller
 - Dynamics:

$$egin{aligned} \dot{m{x}} &= m{v} \ \dot{m{v}} &= m{g} + m{R}m{a}_v \ \dot{m{q}} &= rac{1}{2}m{q} \otimes egin{bmatrix} 0 \ m{\omega}_v \end{bmatrix} & ext{Coordinated flight constraint} \ m{\omega}_v &= egin{bmatrix} p_s & -m{e}_3 \left(m{a}_v + m{g} \right) / V & m{e}_3m{g} / V \end{bmatrix}^\mathsf{T} \ m{T} & m{e}_3 &= egin{bmatrix} 0 & 0 & 1 \end{bmatrix}^\mathsf{T} \end{aligned}$$

*Adapted from J Hauser, R Hindman, "Aggressive Flight Maneuvers," IEEE Conference on Decision and Control, 1997.

Vehicle Dynamics

Aerodynamic model:

$$\boldsymbol{a}_{v} = \begin{bmatrix} \frac{T}{m} \cos \alpha - \frac{\rho V^{2} S}{2m} \left(\sin \alpha \left(C_{N_{0}} + C_{N_{\alpha}} \alpha \right) + \cos \alpha \left(C_{A_{0}} + C_{A_{\alpha^{2}}} \alpha^{2} \right) \right) \\ 0 \\ -\frac{T}{m} \sin \alpha - \frac{\rho V^{2} S}{2m} \left(\cos \alpha \left(C_{N_{0}} + C_{N_{\alpha}} \alpha \right) - \sin \alpha \left(C_{A_{0}} + C_{A_{\alpha^{2}}} \alpha^{2} \right) \right) \end{bmatrix}$$

Highlighted variables: Thrust – blue AoA – red

Aero Coeff - green

Propeller/motor model:

$$T=c_2(J)\omega_p^2+c_1(J)\omega_p+c_0(J)$$

$$J=\frac{2\pi V\cos\alpha}{\omega_n d_n}$$
 Advance ratio

Parameter values taken from model of NASA's GL-10 aircraft

Pre-Mission Trajectory Planner

- Full trajectory optimization with polynomial parameterization
 - Simplified vehicle dynamics, acoustic source model, and propagation model
 - Implemented as a 2nd order Hermite interpolation problem
 - Bézier polynomial representation of spatial path and parametric speed
 - Computationally efficient algorithms
 - No discretization of trajectory or constraint functions
 - Constraints can be satisfied to arbitrary precision
 - Assumes differential flatness of dynamics and constraints
 - Numeric (discrete) evaluation of mid- to high-fidelity acoustic source and propagation models

Pre-Mission Trajectory Planner

22

Differentially flat dynamics

$$\dot{\boldsymbol{x}}(t) = V(t) \begin{bmatrix} \cos(\gamma(t))\cos(\chi(t)) \\ \cos(\gamma(t))\sin(\chi(t)) \\ -\sin(\gamma(t)) \end{bmatrix}$$

$$m\dot{V}(t) = T(t) - D(t)$$

- Spatial path and timing law
 - Derive all other variables from path and timing law

$$\boldsymbol{x}(\zeta) = \sum_{k=0}^{5} \bar{\boldsymbol{x}}_{k} b_{k}^{n}(\zeta), \qquad \zeta \in [0, 1]$$

$$\theta = \frac{\mathrm{d}\zeta(\hat{t})}{\mathrm{d}\hat{t}} = \sum_{k=0}^{n_{\theta}} \bar{\theta}_{k} b_{n}^{k}(\hat{t}), \qquad \hat{t} = \frac{t}{t_{f}}$$

$$\zeta\left(\hat{t}\right) = \int_0^t \theta(\tau) d\tau$$

*KA Ackerman and IM Gregory, "Trajectory Generation for Noise-Constrained Autonomous Flight Operations," AIAA SciTech Forum, Jan 2020. AIAA-2020-0978

MPC Motion Planner*

23

Model Predictive Path Integral Control (MPPI)**

- Sample thousands of control sequences, $u_t \sim \mathcal{N}(u_t, \Sigma)$, propagate trajectories in parallel
- ullet Exponential cost-weighted averaging to update mean of optimal control distribution, $oldsymbol{u}_t$
- Propagate mean optimal control sequence to obtain nominal trajectory

Figure credit: J Pravitra, KA Ackerman, N Hovakimyan, EA Theodorou, "L1-Adaptive MPPI Architecture for Robust and Agile Control of Multirotors," IROS, 2020.

MPC Motion Planner

- Implementation*
 - Discrete-time dynamics $m{z}_{t+1} = m{f}(m{z}_t, m{
 u}_t), \ m{
 u}_t \sim \mathcal{N}(m{u}_t, m{\Sigma})$
 - Cost functional

$$oldsymbol{J}(oldsymbol{U}) = \mathbb{E}\left[\phi(oldsymbol{z}_{t+T}) + \sum_{k=t}^{t+T-1} q(oldsymbol{z}_k) + \lambda oldsymbol{u}_k^{\mathsf{T}} oldsymbol{\Sigma}^{-1} (oldsymbol{
u}_k - oldsymbol{u}_k)
ight]$$

State cost and control weight for each control sequence

$$S(\mathbf{V}_t^i) = \phi(\mathbf{z}_{t+T}^i) + \sum_{k=t}^{t+T-1} q(\mathbf{z}_k)$$

$$w(\mathbf{V}_t^i) = \exp\left[-\frac{1}{\lambda} \left(S(\mathbf{V}_t^i) - \sum_{k=t}^{t+T-1} \mathbf{u}_t' T \mathbf{\Sigma}^{-1} \mathbf{\nu}_k^i - \beta\right)\right]$$

Approximate optimal control

$$u_t^* pprox u_t = u_t' + \frac{1}{\sum_{i=1}^{N_s} w(V_t^i)} \sum_{i=1}^{N_s} w(V_t^i) (\nu_t^i - u_t^i),$$

*KA Ackerman, IM Gregory, N Hovakimyan, EA Theodorou, "A Model Predictive Control Approach for In-Flight Acoustic Constraint Compliance," AIAA SciTech Forum, 2021. AIAA-2021-1958

Noise Model Comparison – Pre-mission Planner

25

Noise Model Comparison – MPC Planner

26

Omni-Directional Model

Hemisphere Model

Planner Comparison – Omni-directional model

27

MPC Planner

Planner Comparison – Hemisphere Model

MPC Planner

