EDAN20

Language Technology

http://cs.lth.se/edan20/

Chapter 13: Dependency Parsing

Pierre Nugues

Lund University
Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

September 18, 2017

Parsing Dependencies

Generate all the pairs:

Which sentence root?

----→ Bring
----→ the
----→ meal
----→ to
----→ the

----> table

Talbanken: An Annotated Corpus of Swedish

```
Äktenskapet
                        NN
                              NN
                                              SS
    och
                                         3
                                              ++
                        ++
                              ++
3
    familjen
                                              CC
                        NN
                              NN
     är
                        AV
                              AV
                                         0
                                              ROOT
4
5
                        ΕN
                              EN
                                              DT
     en
                                              AT
6
    gammal
                        AJ
                              AJ
    institution
                        NN
                              NN
                                         4
                                              SP
                        ΙK
                              ΙK
                                              ΙK
8
9
                        PO
                              PO
                                              SS
                                         10
    som
10
     funnits
                        VV
                              VV
                                              ET
                        PR
                              PR
                                              TA
11
    sedan
                                         10
12
     1800-talet
                        NN
                              NN
                                         11
                                              PA
                                              IΡ
13
                        IP
                              IΡ
                                         4
```


Visualizing the Graph

Using What's Wrong With My NLP (https://code.google.com/p/whatswrong/):

Parser Input

The words and their parts of speech obtained from an earlier step.

1	Äktenskapet	_	NN	NN	_
2	och		++	++	
3	familjen		NN	NN	
4	är		AV	AV	
5	en		EN	EN	
6	gammal		AJ	AJ	
7	institution		NN	NN	
8	,		IK	IK	
9	som		PO	PO	
10	funnits		VV	VV	
11	sedan		PR	PR	
12	1800-talet		NN	NN	
13		_	IP	IP	

Nivre's Parser

Joakim Nivre designed an efficient dependency parser extending the shift-reduce algorithm.

He started with Swedish and has reported the best results for this language and many others.

His team obtained the best results in the CoNLL 2007 shared task dependency parsing.

The Parser (Arc-Eager)

The first step is a POS tagging

The parser applies a variation/extension of the shift-reduce algorithm since dependency grammars have no nonterminal symbols

The transitions are:

- 1. **Shift**, pushes the input token onto the stack
- Reduce, pops the token on the top of the stack
- Right arc, adds an arc from the token on top of the stack to the next input token and pushes the input token onto the stack.
 - Left arc, adds an arc from the next input token to the token on the top of the stack and pops it.

Transitions' Definition

Actions	Parser states	Conditions
Initialization	$\langle nil, W, \emptyset \rangle$	
Termination	$\langle S, [], A \rangle$	
Shift	$\langle S, [n I], A \rangle \rightarrow \langle [S n], I, A \rangle$	
Reduce	$\langle [S n], I, A \rangle \rightarrow \langle S, I, A \rangle$	$\exists n'(n',n) \in A$
Left-arc	$\langle [S n], [n' I], A \rangle \rightarrow \langle S, [n' I], A \cup \{(n \leftarrow n')\} \rangle$	$ \nexists n''(n'',n) \in A $
Right-arc	$\langle [S n], [n' I], A \rangle \rightarrow \langle [S n, n'], I, A \cup \{(n \rightarrow n')\} \rangle$	

- **①** The first condition $\exists n'(n',n) \in A$, where n' is the head and n, the dependent, is to ensure that the graph is connected.
- ② The second condition $\nexists n''(n'',n) \in A$, where n'' is the head and n, the dependent, is to enforce a unique head.

Nivre's Parser in Action

Input W = The waiter brought the meal. The graph is:

$$\{\mathsf{the} \leftarrow \mathsf{waiter}, \mathsf{waiter} \leftarrow \mathsf{brought}, \mathsf{ROOT} \rightarrow \mathsf{brought}, \mathsf{the} \leftarrow \mathsf{meal}, \\ \mathsf{brought} \rightarrow \mathsf{meal}\},$$

Let us apply the sequence:

[sh, sh, la, sh, la, ra, sh, la, ra]

Nivre's Parser in Action

[sh, sh, la, sh, la, ra, sh, la, ra]

(M)
A STATE

Nivre's Parser in Action (II)

[sh, sh, la, sh, la, ra, sh, la, ra]

Trans.	Stack	Queue	Graph
ra			
	[brought] ROOT]	[the, meal]	
sh			
	the brought ROOT	[meal]	
la			
	[brought]	[meal]	
ra			
end	meal brought ROOT	0	

Nivre's Parser in Python: Shift and Reduce

We use a stack, a queue, and a partial graph that contains all the arcs.

```
def shift(stack, queue, graph):
    stack = [queue[0]] + stack
    queue = queue[1:]
    return stack, queue, graph
```

```
def reduce(stack, queue, graph):
    return stack[1:], queue, graph
```


Nivre's Parser in Python: Left-Arc

The partial graph is a dictionary of dictionaries with the heads and the functions (deprels): graph['heads'] and graph['deprels']
The deprel argument is is either to assign a function or to read it from the manually-annotated corpus.

```
def left_arc(stack, queue, graph, deprel=False):
    graph['heads'][stack[0]['id']] = queue[0]['id']
    if deprel:
        graph['deprels'][stack[0]['id']] = deprel
    else:
        graph['deprels'][stack[0]['id']] = stack[0]['deprel']
    return reduce(stack, queue, graph)
```

Nivre's Parser in Prolog: Left-Arc

```
% shift_reduce(+Sentence, -Graph)
shift_reduce(Sentence, Graph) :-
    shift_reduce(Sentence, [], [], Graph).

% shift_reduce(+Words, +Stack, +CurGraph, -FinGraph)
shift_reduce([], _, Graph, Graph).
shift_reduce(Words, Stack, Graph, FinalGraph) :-
    left_arc(Words, Stack, NewStack, Graph, NewGraph),
    write('left arc'), nl,
    shift_reduce(Words, NewStack, NewGraph, FinalGraph).
```

Nivre's Parser in Prolog: Left-Arc (II)

```
% left_arc(+WordList, +Stack, -NewStack, +Graph, -NewGraph)
left_arc([w(First, PosF) | _], [w(Top, PosT) | Stack],
    Stack, Graph, [d(w(First, PosF),
    w(Top, PosT), Function) | Graph]) :-
    word(First, FirstPOS),
    word(Top, TopPOS),
    drule(FirstPOS, TopPOS, Function, left),
    \+ member(d(_, w(Top, PosT), _), Graph).
```


Gold Standard Parsing

Nivre's parser uses a sequence of actions taken in the set {la, ra, re, sh}.

We have:

- A sequence of actions creates a dependency graph
- Given a projective dependency graph, we can find an action sequence creating this graph. This is gold standard parsing.

Let *TOP* be the top of the stack and *FIRST*, the first token of the input list, and *A* the dependency graph.

- **1** if $arc(TOP, FIRST) \in A$, then right-arc;
- **2** else if $arc(FIRST, TOP) \in A$, then left-arc;
- **③** else if $\exists k \in Stack, arc(FIRST, k) \in A$ or $arc(k, FIRST) \in A$, then reduce;
- else shift.

Parsing a Sentence

When parsing an unknown sentence, we do not know the dependencies yet The parser will use a "guide" to tell which transition to apply in the set {la, ra, re, sh}.

The parser will extract a context from its current state, for instance the part of speech of the top of the stack and the first in the queue, and will ask the guide.

D-rules are a simply way to implement this

Dependency Rules

D-rules are possible relations between a head and a dependent. They involve part-of-speech, mostly, and words

- $\texttt{determiner} \leftarrow \texttt{noun}. \qquad 4. \quad \texttt{noun} \leftarrow \texttt{verb}.$

- 2. adjective \leftarrow noun. 5. preposition \leftarrow verb.
- 3. preposition \leftarrow noun. 6. verb \leftarrow root.

 $\begin{bmatrix} \textit{category} : \textit{noun} \\ \textit{number} : \textit{N} \\ \textit{person} : \textit{P} \\ \textit{case} : \textit{nominative} \end{bmatrix} \leftarrow \begin{bmatrix} \textit{category} : \textit{verb} \\ \textit{number} : \textit{N} \\ \textit{person} : \textit{P} \end{bmatrix}$

Parsing Dependency Rules in Prolog

```
%drule(Head, Dependent, Function).

drule(noun, determiner, determinative).
drule(noun, adjective, attribute).
drule(verb, noun, subject).
drule(verb, noun, object).
```

D-Rules may also include a direction, for instance a determiner is always to the left

%drule(Head, Dependent, Function, Direction).

Tracing Nivre's Parser in Python

```
_ 2 SS
 Jag
         PO
             PO
                _ 0 ROOT
       _{-} VV VV
2 tycker
  det _ PO PO
                   2 00
3
                _ 2 NA
      AB AB
4 inte
       ΙP
             IΡ
                   2 IP
```

Transitions:

```
['sh', 'sh', 'la.SS', 'ra.ROOT', 'ra.OO', 're', 'ra.NA',
    're', 'ra.IP']
```

Parser state:

```
{'heads': {'4': '2', '5': '2', '3': '2', '2': '0', '1': '2',
   '0': '0'},
'deprels': {'4': 'NA', '5': 'IP', '3': '00', '2': 'R
   'SS', '0': 'ROOT'}}
```

Tracing Nivre's Parser (Prolog)

```
shift_reduce([w(the, 1), w(waiter, 2), w(brought, 3),
w(the, 4), w(meal, 5)], G).
shift
left arc
shift
left arc
shift
shift.
left arc
right arc
G = [d(w(brought, 3), w(meal, 5), object),
d(w(meal, 5), w(the, 4), determinative),
d(w(brought, 3), w(waiter, 2), subject),
d(w(waiter, 2), w(the, 1), determinative)]
```

Using Features

D-rules consider a limited context: the part of speech of the top of the stack and the first in the queue

- We can extend the context:
 - Extracts more features (attributes), for instance two words in the stack, three words in the queue
 - Use them as input to a four-class classifier and determine the next action

Training a Classifier

Gold standard parsing of a manually annotated corpus produces training data

	Stack	Queue	Stack		Queue		Trans.
	$POS(T_0)$	$POS(Q_0)$	POS(T ₀)	$POS(T_{-1})$	$POS(Q_0)$	$POS(Q_{+1})$	
	nil	ROOT	nil	nil	ROOT	DT	sh
	ROOT	DT	ROOT	nil	DT	NN	sh
	DT	NN	DT	ROOT	NN	VBD	la
	ROOT	NN	ROOT	nil	NN	VBD	sh
	NN	VBD	NN	ROOT	VBD	DT	la
	ROOT	VBD	ROOT	nil	VBD	DT	ra
	VBD	DT	VBD	ROOT	DT	NN	sh
	DT	NN	DT	VBD	NN	nil	la
,	VBD	NN	VBD	ROOT	NN	nil	# 3

Using Talbanken and CoNLL 2006 data, you can train decision treas implement a parser.

Feature Vectors

You extract one feature (attribute) vector for each parsing action.

The most elementary feature vector consists of two parameters: POS_TOP, POS_FIRST

Nivre et al. (2006) used from 16 to 30 parameters and support vector machines.

As machine-learning algorithm, you can use decision trees, perceptron, logistic regression, or support vector machines.

Finding Dependencies using Constraints

Parts of speech	Possible governors	Possible functions
Determiner	noun	det
Noun	verb	object, iobject
Noun	prep	pcomp
Verb	root	root
Prep	verb, noun	mod, loc

Tagging

Words	Bring	the	meal	to	the	table
Position	1	2	3	4	5	6
Part of speech	verb	det	noun	prep	det	noun
Possible tags	nil, root	3, det 6, det	4, pcomp 1, object 1, iobject	3, mod 1, loc	3, det 6, det	4, pcomp 1, object 1, iobject

A second step applies and propagates constraint rules.

Rules for English describe: projectivity – links must not cross –, function uniqueness – there is only one subject, one object, one indirect object –, topology

Constraints

- A determiner has its head to its right-hand side
- A subject has its head to its right-hand side when the verb is at the active form
- An object and an indirect object have their head to their left-hand side (active form)
- A prepositional complement has its head to its left-hand side

Words	Bring	the	meal	to	the	table
Position	1	2	3	4	5	6
Part of speech	verb	det	noun	prep	det	noun
Possible tags	nil, root	3, det	1, iobject 1, object	3, mod 1, loc	6, det	4, pcomp

Evaluation of Dependency Parsing

Dependency parsing: The error count is the number of words that are assigned a wrong head, here 1/6.

Reference

Output

Parser Variant: Arc-Standard

Nivre's parser has two variants in addition to arc-eager: arc-standard (Yamada and Matsumoto) and swap
The first step is a POS tagging
The transitions are:

- 1. **Shift**, pushes the input token onto the stack
- Right arc, adds an arc from the second token in the stack to the top of the stack and pops it.
- Left arc, adds an arc from the top of the stack to the second in the stack and removes the second in the stack.

Transitions' Definition of Arc-Standard

Actions	Parser states	Conditions
Initialization	$\langle nil, W, \emptyset \rangle$	
Termination	$\langle [ROOT], [], A \rangle$	
Shift	$\langle S, [n I], A \rangle \rightarrow \langle [S n], I, A \rangle$	
Left-arc	$\langle [S n,n'],I,A\rangle \rightarrow \langle [S n'],I,A\cup \{(n\leftarrow n')\}\rangle$	$n \neq ROOT$
Right-arc	$\langle [S n,n'],I,A\rangle \to \langle [S n],I,A\cup \{(n\to n')\}\rangle$	

Arc Standard Parser in Action (I)

Trans.	Stack	Queue	Graph
start	[ROOT]	[I, booked, a, ticket, to, Google]	{}
sh			
	ROOT	[booked, a, ticket, to, Google]	{}
sh			
	booked I ROOT	[a, ticket, to, Google]	{}
la			
	[booked] ROOT]	[a, ticket, to, Google]	$\{I \leftarrow booked\}$
sh			
	a booked ROOT	[ticket, to, Google]	$\{I \leftarrow booked\}$

Arc Standard Parser in Action (II)

Trans.	Stack	Queue	Graph
sh			
	[ticket]		
	a	[to, Google]	$\{I \leftarrow booked\}$
	booked	[to, doogle]	I — pooked?
	[ROOT]		
la			
	ticket		
	booked	[to, Google]	$\{I \leftarrow booked, \ a \leftarrow ticket\}$
	[ROOT]		
sh			
	to		
	ticket	[Google]	{I ← booked, a ← ticket}
	booked	[google]	l γι ← bookeu, a ← ticket
	ROOT		* **

Arc Standard Parser in Action (III)

Trans.	Stack	Queue	Graph
sh			
	Google to ticket booked ROOT		$\{I \leftarrow booked, a \leftarrow ticket\}$
ra			
	to ticket booked ROOT		$ \begin{cases} I \leftarrow booked, \ a \leftarrow ticket, \\ to \rightarrow Google \end{cases} $
ra			
	ticket booked ROOT	0	$\{I \leftarrow booked, to \rightarrow Google, ticket to \}$

Arc Standard Parser in Action (IV)

Trans.	Stack	Queue	Graph
ra			
	[booked] ROOT]	0	$ \begin{cases} I \leftarrow booked, \ a \leftarrow ticket, \\ to \rightarrow Google, \ ticket \rightarrow to, \\ booked \rightarrow ticket \end{cases} $

Transitions' Definition of Swap

The Swap variant enables the parser to parse nonprojective sentences

Actions	Parser states	Conditions
Initialization	$\langle nil, W, \emptyset \rangle$	
Termination	$\langle [ROOT], [], A \rangle$	
Shift	$\langle S, [n I], A \rangle o \langle [S n], I, A \rangle$	
Left-arc	$\langle [S n,n'],I,A\rangle \to \langle [S n'],I,A\cup \{(n\leftarrow n')\}\rangle$	$n \neq ROOT$
Right-arc	$\langle [S n,n'],I,A\rangle \rightarrow \langle [S n],I,A\cup \{(n\rightarrow n')\}\rangle$	
Swap	$\langle [S n,n'],I,A\rangle \rightarrow \langle [S n'],[n I],A\rangle$	$n \neq ROOT$ and
		inx(n) < inx(n')

Application: Dependency Parsing for Knowledge Extraction

IBM Watson, the question-answering system, uses dependency parsing to

- Analyze questions and
- Extract knowledge from text.

Given the question:

POETS & POETRY: He was a bank clerk in the Yukon before he published "Songs of a Sourdough" in 1907

Watson extracts:

```
authorOf(he, 'Songs of a Sourdough')
```

A predicate—argument structure representation would be:

```
published(he, 'Songs of a Sourdough')
```


IBM Watson: Parsing the Question

Watson parses the question in the form of dependencies.

• In the CoNLL format:

in the correctionnat.								
Inx	Form	Lemma	POS	Head	Funct.			
1	he	he	pronoun	2	subject			
2	published	publish	verb	0	root			
3	Songs of a Sourdough	Songs of a Sourdough	noun	2	object			

• In the Watson format:

```
subject(2,1).
object(2,3).
```


IBM Watson: Inferences

Watson uses Prolog rules to detect author/composition relationships:

```
authorOf(Author,Composition) :-
    createVerb(Verb),
    subject(Verb, Author),
    author (Author),
    object(Verb, Composition),
    composition(Composition).
createVerb(Verb) :-
    partOfSpeech(Verb, verb),
    lemma(Verb, VerbLemma),
    member(VerbLemma, ["write", "publish",...]).
```

Eventually, the question is reduced to:

authorOf(he, 'Songs of a Sourdough')

IBM Watson: Evidence from Text

Watson parses large volumes of text, for instance Wikipedia and the *New York Times*.

From the excerpt:

Songs of a Sourdough by Robert W. Service

Watson extracts:

```
authorOf('Robert W. Service', 'Songs of a Sourdough')
```

The classical predicate—argument structure representation of the same phrase is:

by ('Songs of a Sourdough', 'Robert W. Service')

IBM Watson: Matching Evidences

The relation is extracted from text using the rule:

```
authorOf(Author, Composition) :-
    composition(Composition),
    argument(Composition, Preposition),
    lemma(Preposition, "by"),
    objectOfPreposition(Preposition, Author),
    author (Author).
Leading to:
authorOf('Robert W. Service', 'Songs of a Sourdough')
This predicate—argument structure can be compared to:
authorOf(he, 'Songs of a Sourdough')
Or unified with:
authorOf(X, 'Songs of a Sourdough')
```