

LOONGSON

LS8P2050 型低压差线性稳压器产品 数据手册

V1.0

2024 年 10 月

龙芯中科(南京)技术有限公司

版权声明

本文档版权归龙芯中科(南京)技术有限公司所有,并保留一切权利。未经书面许可,任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究其法律责任。

免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新, 恕不另行通知。如因文档使用不当造成的直接或间接损失, 本公司不承担任何责任。

龙芯中科 (南京) 技术有限公司

地址:南京市江北新区星火路 19号 11栋

电话(Tel): 025-58600707

版本信息

	÷***	LS8P2050 型低压差线性稳压器产品	
华 大台自	文档名	数据手册	
版本信息	版本号	V1.0	
	创建人	芯片研发二部	

更新历史

序号	版本号	更新内容
1	V1.0	发布版

技术支持

可通过邮箱或问题反馈网站向我司提交芯片产品使用的问题,并获取技术支持。

售后服务邮箱: service@loongson.cn

目 录

1.	概述	1
	产品特性	
	引出端排列图	
4.	典型应用	2
5.	最大额定值与推荐工作条件	4
6.	电气特性	4
7.	功能描述	5
8.	封装形式图、封装尺寸	7
9.	产品标识	8
10.	订购信息	9
11.	使用操作规程及注意事项	9
12.	运输与储存	9
13.	开箱与检查	. 10

1. 概述

LS8P2050 电源芯片是一款具有 3A 负载能力的低压差线性稳压器,其输入电压范围为 2. 2V-5. 5V,输出电压可通过 ADJ 引脚外接分压电阻的方式在 0. 6V-5. 0V 的范围内进行设定。芯片具有易于进行时序控制的使能控制输入,可选择将芯片设置在低功耗关断状态,随时唤醒,同时可利用外接电容实现不同的软启动时间。芯片具有 Power Good 输出功能,可用于控制负载上电。此外,其还具有过温保护、欠压保护以及输出限流保护功能。可应用于服务器、通信电子、测量仪器设备等场景中,提供稳定可靠、灵活可调、低成本、小体积的供电方案。

2. 产品特性

- 输入电压 (V_{in}): 2.2V~5.5V;
- 输出电压(V_{out}): 0.6V~5.0V;
- 最低压差: 负载为 2A 时,典型值 150mV;负载为 3A 时,典型值 200mV;
- 最大输出电流:常温时,压差电压不大于 1.5V 的条件下可输出最大 3A 的电流;
- 线性和负载的输出电压精度 1%;
- 噪声: 83uVrms@300Hz~300kHz:
- 电源抑制比: 70dB@1kHz;
- 集成过流保护,欠压保护和过温保护。

3. 引出端排列图

图 1 为 LS8P2050 电源芯片管脚排列图,表 1 为 LS8P2050 电源芯片的管脚说明。

图1 管脚排列图

表 1 管脚说明

引脚编号	引脚名称	引脚描述	引脚功能
1, 19, 20	VOUT	输出电压	输出电容有效值务必不小于 10uF,建议 PCB 走线小于 0.5cm
3	ADJ	输出电压设置	通过片外电阻分压设置输出电压
4	PG	电源正常信号	工作状态为非稳压状态时置低电位
2, 5, 6, 7, 9, 10, 11, 12	NC	无连接	务必悬空配置
8, 18	GND	地电压	此引脚务必与地电位短接,建议 PCB 将此引脚与其余 GND 引脚一并与地电位短接
13	SS	电流软启动	建议外接 10nF 电容,TSS=1.5e5CSS
14	CE	使能	置高电位电路开始工作,置低电位电路停止 工作
15, 16, 17	VIN	输入电源电压	建议输入电容有效值不小于 10uF, PCB 走线 小于 0.6cm
EPad	GND	地电压(底部热沉 PAD)	此引脚务必与地电位短接,建议 PCB 将此热 沉 PAD 与其余 GND 引脚一并与地电位短接

4. 典型应用

LS8P2050 电源芯片典型应用如下图。

图 2 典型应用

电路中 C5、C6 为输入电容, 输入电容值建议大于等于 10uF。

电路中 C1、C2 为输出电容,R1、R2、C3 为反馈电阻和前馈电容,常用的输出电压与反馈电阻、前馈电容、输出电容的值参考下表:

输出电压/V	R2/kΩ	R1/kΩ	C3/nF	C1/uF	实际输出电压/V
1.0		1	1.5	22	1.0
1. 2		1.4	1.5	22	1.2
1.5		2	1.5	22	1.5
1.8	1	2.61	1.5	22	1.805
2. 5		4.02	1	22	2.51
3. 3		5. 6	1	22	3. 3
5. 0		9.1	1	22	5.05

表2 元件选用参考

损耗功率限制:

由于 LDO 是一种线性稳压器,因此自身存在较大的功率损耗,尤其是在输入电压 VIN 较高而输出电压 VOUT 较低时,功率损耗可能达到 80%;为了保证 LDO 不会过热而触发过温保护,需要对 LDO 自身的损耗功率进行限制。推荐在 25℃时的功率损耗不超过 2.5W,例如当输入电压 VIN 较高而输出电压 VOUT 较低,如 5V 转 1V 时,需要限制输出电流不高于 0.6A,而当输入电压 VIN 与输出电压 VOUT 较为接近时,如 2.5V 转 1.8V 时,输出电流可以达到 3A。同时,为了保证高温工作的稳定性,LDO 的功率损耗还需要留出一定裕量。

5. 最大额定值与推荐工作条件

绝对最大额定值如下:

表3 绝对最大额定值

输入电压 (V _{IN})	-0. 3V [~] +8V
输出电压(V _{out})	-0.3V~+5V
最大输出电流(I _{our})	3.6A
PG、ENABLE、ADJ、SS 对地电压	-0.3V~+5.5V

推荐工作条件如下:

表4 推荐工作条件

输入电压 (V _{IN})	+2. 2V~+5. 5V
输出电压 (V _{OUT})	$+0.6V^{\sim}+5.0V$
输出电流 (I _{OUT})	0A~+3. 0A
工作温度 (T _A)	-40°C~+125°C

表5 温度信息

热阻 (典型) θ _{JA}	48℃/W
热阻(典型) θ Jc	4℃/W
最高工作结温 (Tj)	150℃
储存温度范围	+10°C~+30°C

6. 电气特性

表6 电参数

参数	符号	条件 (除非另有说明外,所有参数都是在以下指定条件下确定: V _{IN} =V _{OUT} +0.4V, V _{OUT} =1.8V, C _{IN} =C _{OUT} =10 μF, -40℃≤T _A ≤125℃, I _{LOM} =0A 应用必须遵循封装的散热指南,以确定最坏情况 下的结温温度。)	最小值	典型值	最大值	单位
直流参数						
输入电压范围	$V_{\scriptscriptstyle \rm IN}$	/	2. 2	/	5. 5	V
输出电压范围	V_{out}	/	0.6	/	5.2	V
		$V_{OUT}=1.8V$; $V_{IN}=2.2V$; $I_{LOAD}=0A$	/	0.5	/	
输出电压精度	电压精度 /	V _{OUT} =1.8V; 2.2V <v<sub>IN<3.6V; 0A<i<sub>LOAD<3A</i<sub></v<sub>	-1.0	/	1.0	%
		V _{OUT} =2.5V; V _{IN} =2.9V; I _{LOAD} =OA	/	0.5	/	70
		V_{OUT} =2.5V; 2.9V< V_{IN} <5.5V; $0A$ < I_{LOAD} <3A	-1.0	/	1.0	

经性调 敕索	A.V. / A.V.	V _{OUT} +0. 4V <v<sub>IN<3.6V; V_{OUT}=1.8V</v<sub>	/	0.1	0.4	0/
线性调整率	Δ V _{OUT} / Δ V _{IN}	$V_{OUT}+0.4V < V_{IN} < 5.5V; V_{OUT}=2.5V$	/	0.1	0.8	%
た +b \回 #b →;		$0A < I_{LOAD} < 3A$	-1	/	1	0/
负载调整率	Δ V _{OUT} / Δ I _{OUT}	$0A < I_{LOAD} < 2A$	-0.8	/	0.8	%
压差电压	$V_{ m drop}$	I _{LOAD} =3A; V _{OUT} =2.5V	100	200	400	mV
反馈电压	$V_{\scriptscriptstyle FB}$	2. $2V < V_{IN} < 5.5V$; $0A < I_{LOAD} < 3A$	493	500	507	V
静态电流	${ m I}_{\scriptscriptstyle { m Q}}$	$I_{LOAD} = 0A; 2.2V < V_{IN} < 5.5V$	/	2	5	mA
关断电流	${ m I}_{ ext{ iny SD}}$	V _{IN} =2. 2V	/	0.4	/	uA
八明电机	T _{SD}	V _{IN} =5. 5V	/	1	10	un
短路电流	${ m I}_{ m sc}$	V _{OUT} =OV; 2.2V <v<sub>IN<5.5V</v<sub>	/	3.6	/	A
欠压锁定阈值	UVLO start	V _{IN} =2. 2V	1.1	1.7	1.9	V
欠压锁定迟滞	UVLO HYS	$V_{IN}=2.2V$	0.02	0.1	0.2	V
过热保护温度	T_{SHDN}	$V_{out}+0.4V < V_{IN} < 6V$	/	160	/	$^{\circ}$
过热迟滞温度	Δ T _{SHDN}	$V_{out}+0.4V < V_{in} < 6V$	/	30	/	$^{\circ}$
工作温度范围	/	/	-40	25	125	$^{\circ}$
交流参数				•		
电源纹波抑制	DODD	f=10kHz; I _{LOAD} =3A; V _{IN} =2.2V	/	70	/	ID
比	PSRR -	f=500kHz; I _{LOAD} =3A; V _{IN} =2.2V	/	30	/	dB
输出噪声电压		I _{LOAD} =10mA; BW=300Hz <f<300khz< td=""><td>/</td><td>83</td><td>/</td><td>uV_{RMS}</td></f<300khz<>	/	83	/	uV_{RMS}
使能引脚参数				•		
开启阈值	$V_{\scriptscriptstyle EN}$	2. 2V <v<sub>IN<5. 5V</v<sub>	0.5	0.7	1.0	V
迟滞电压	V _{EN (HYS)}	2. 2V <v<sub>IN<6V</v<sub>	100	200	500	mV
漏电电流	${ m I}_{\scriptscriptstyle { m EN}}$	$V_{IN} = 5.5V$; $V_{EN} = 3V$	/	/	5	uA
PG 引脚参数						
PG 阈值	PG_RISE	V_{IN} =2.2V, V_{FB} =420mV \sim 480mV	84	92	96	$%V_{\text{out}}$
PG 迟滞	PG_ _{HYS}	$V_{\tiny \mbox{IN}}$ =2.2V, $V_{\tiny \mbox{FB}}$ =420mV \sim 480mV	1.5	4	5	%
PG 输出低电平	V_{PG_low}	V _{IN} =2. 2V	610	667	910	mV
PG 漏电电流	$I_{\rm PG_lkg}$	$V_{IN}=2.2V$	/	0.05	5	uA
软启动参数						
软启动电流	I_{ss}	/	-8.5	-5	-3.5	uA

7. 功能描述

本器件是一款具有 3A 负载能力的低压差线性稳压器,其输入电压范围为 $2.2V\sim5.5V$,输出电压可通过 ADJ 引脚外接分压电阻的方式在 $0.6V\sim5.0V$ 的范围内进行设定。器件功能框图见图 $3.6V\sim5.0V$

图 3 器件功能框图

输入电压

输入电压 VIN 允许的最大误差范围为设计值 $\pm 10\%$ 。受 LDO 器件特性的影响,为达到最佳性能和电源抑制比,输入电压需要保证大于输出电压与最大负载时的压差之和,即:VIN > VOUT $+\Delta$ Vdrop@max load。

使能

EN 不可悬空,如果不使用该功能请将 EN 引脚使用 10K 电阻上拉到 VIN。如需让芯片随 VIN 上电开启, EN 引脚可与 VIN 短接。EN 引脚内部有 1MΩ下拉电阻。不推荐使用 VIN 分压 控制使能,可以采用外置输入控制。

电源状态

PG 表征 LDO 的工作状态,当 PG 为高时,表示 VOUT 输出正常。PG 需要一个外置的上拉电阻接到一个高电平上,通常使用 VIN 或 VOUT。在以下几种情况 PG 状态无效:输出电压低于期望输出电压 80%,限流,输入电压过低,过温保护,芯片处于关闭状态。

软启动

软启动可以有效降低 LDO 上电/使能到 VOUT 稳定时的浪涌电压及电流。同时,通过调整外部软启动电容值可以控制 LDO 在上电/使能时输出电压 VOUT 的稳定时间。默认状态下推荐使用至少 10nF 电容以达到 1ms 左右的软启动时间,若需要更长的软启动时间,则可以相应加大软启动电容值。

输出电压选择

LDO 的内置基准源电压为 500mV,通过反馈电阻的选择可以得到预定的输出电压。常用

输出电压的参数选择可以参考第四章节相关描述。

 $V_{OUT} = 0.5V \times (R_1/R_2+1)$

输出电容选择

VOUT 和 GND 之间必须跨接一个不小于 10uF 的电容,电容介质推荐使用 X7R 或 X5R,同时保证 PCB 走线尽量短。为达到最佳性能,容值选取可以参考第四章节相关描述。

输入电容

正常工作时,VIN和GND之间需跨接一个电容,容值大于等于10uF,电容介质推荐使用X7R或X5R,同时保证PCB走线尽量短,也可加入小容量去耦电容用于滤除高频干扰。

过流保护

当输出电流大于 4A (典型值)时,LDO 启动过流保护。当芯片启动过流保护时,芯片将 开始关断功率管,此时输出电压会下降,芯片工作状态类似于恒流源。当输出电流回落到正 常范围时,过流保护状态接触,输出电压恢复正常。

过温保护

当芯片温度超过 160℃ (典型值)时,LD0 的输出将关断,直至温度降至 130℃ (典型值)时,LD0 重新启动。如果此时芯片工作的环境温度仍然较高或芯片损耗功率仍然过大,则过温保护可能频繁启动导致芯片输出出现振荡。

8. 封装形式图、封装尺寸

LS8P2050 采用 20 引脚 QFN 塑封封装,装配方式为表贴回流焊,器件尺寸为(3.50±0.10) mm×(3.50±0.10) mm×0.80 MAX mm,外形尺寸按图 4 的规定,单位为毫米。

单位为 mm

尺寸	MIN	NOM	MAX	
A	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A3		0. 203REF		
b	0.20	0. 25	0.30	
D	3. 40	3. 50	3.60	
E	3.40	3.50	3.60	
D2	2.00	2.05	2.10	
E2	2.00	2.05	2.10	
e	0. 50BSC			
L	0.35	0.40	0.45	
Н	0. 35REF			

图 4 塑封外形尺寸图

9. 产品标识

器件为激光打标,标识如图5所示。

图 5 器件标志图

每一器件应标志下列内容:

- a) 定位点: ●;
- b) 第一行: 器件型号为 "2050";
- c) 第二行: XXXX 为年周号4位数字,前2位为公元最后2位数,后2位为第几周。

10. 订购信息

表 7 LS8P2050 订购信息

芯片型号	封装	工作温度
LS8P2050	塑封	-40°C~+125°C

11. 使用操作规程及注意事项

器件必须采取防静电措施进行操作。取用芯片时应佩戴防静电手套,防止人体电荷对器件的静电冲击,损坏器件。将芯片插入电路板上的底座时以及将芯片从电路板上的底座取出时,应注意施力方向以确保芯片管脚均匀受力。不要因为用力过猛,损坏芯片管脚,导致无法使用。

推荐下列操作措施:

- a)器件应在防静电的工作台上操作,或带指套操作;
- b) 试验设备和器具应接地;
- c) 不能触摸器件引线;
- d)器件应存放在ESD防护托盘和防静电袋中;
- e) 生产、测试、使用以及转运过程中应避免使用引起静电的塑料、橡胶或丝织物;
- f)相对湿度尽可能保持在45%~75%。

12. 运输与储存

存储环境推荐温度: +10℃~+30℃。

使用指定的防静电包装盒进行产品的包装和运输。在运输过程中,确保芯片不要与外物发生碰撞。

13. 开箱与检查

开箱使用芯片时,请注意观察芯片管壳上的产品标识。确定产品标识清晰,无污迹,无 擦痕。同时,注意检查芯片管壳及引脚。确定管壳无损坏,无伤痕,管脚整齐,无缺失,无 变形。