Relevance Vector Machine

Evgeny Burnaev

Skoltech, Moscow, Russia

Outline

- Bayesian Linear Models
- 2 Sparsification
- Practical comments

Bayesian Linear Models

2 Sparsification

Practical comments

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi(\mathbf{x})$ is a vector of known basis functions $\phi_j(\mathbf{x})$

Typical basis functions

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi(\mathbf{x})$ is a vector of known basis functions $\phi_j(\mathbf{x})$

Typical basis functions

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi(\mathbf{x})$ is a vector of known basis functions $\phi_j(\mathbf{x})$

Typical basis functions

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0},$$

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi(\mathbf{x})$ is a vector of known basis functions $\phi_j(\mathbf{x})$

Typical basis functions

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \ \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\}$$

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi(\mathbf{x})$ is a vector of known basis functions $\phi_i(\mathbf{x})$

Typical basis functions

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \, \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\}$$
$$\phi(\mathbf{x}) = \sigma\left(\boldsymbol{\mu}_{j,1} \cdot \mathbf{x}^\top + \boldsymbol{\mu}_{j,0}\right),$$

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi(\mathbf{x})$ is a vector of known basis functions $\phi_j(\mathbf{x})$

Typical basis functions

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \ \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\}$$
$$\phi(\mathbf{x}) = \sigma\left(\boldsymbol{\mu}_{j,1} \cdot \mathbf{x}^\top + \mu_{j,0}\right), \ \sigma(a) = \frac{1}{1 + e^{-a}}$$

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})^{\top}$$

where $\phi(\mathbf{x})$ is a vector of known basis functions $\phi_i(\mathbf{x})$

Typical basis functions

$$\phi_j(\mathbf{x}) = x_{j_1}^{j_0}, \ \phi_j(\mathbf{x}) = \exp\left\{-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|^2}{2s^2}\right\}$$
$$\phi(\mathbf{x}) = \sigma\left(\boldsymbol{\mu}_{j,1} \cdot \mathbf{x}^\top + \mu_{j,0}\right), \ \sigma(a) = \frac{1}{1 + e^{-a}}$$

$$y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$$

ullet For $\mathbf{Y}_m=\{y_1,\ldots,y_m\}$ and $\mathbf{X}_m=\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ data likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top, \beta^{-1})$$

$$y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$$
$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

ullet For $\mathbf{Y}_m=\{y_1,\ldots,y_m\}$ and $\mathbf{X}_m=\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ data likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top, \beta^{-1})$$

$$y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$$
$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

 \bullet For $\mathbf{Y}_m=\{y_1,\ldots,y_m\}$ and $\mathbf{X}_m=\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ data likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top, \beta^{-1})$$

$$y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$$
$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

 \bullet For $\mathbf{Y}_m=\{y_1,\ldots,y_m\}$ and $\mathbf{X}_m=\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ data likelihood

$$p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i | \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top, \beta^{-1})$$

$$y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$$
$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

 \bullet For $\mathbf{Y}_m=\{y_1,\ldots,y_m\}$ and $\mathbf{X}_m=\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ data likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top, \beta^{-1})$$

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) = \sum_{i=1}^m \log \mathcal{N}(y_i | \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i), \beta^{-1})$$

$$y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$$
$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

 \bullet For $\mathbf{Y}_m=\{y_1,\ldots,y_m\}$ and $\mathbf{X}_m=\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ data likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top, \beta^{-1})$$

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) = \sum_{i=1}^m \log \mathcal{N}(y_i | \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i), \beta^{-1})$$
$$= \frac{m}{2} \log \beta - \frac{m}{2} \log(2\pi) - \beta E_D(\mathbf{w})$$

$$y = f(\mathbf{x}, \mathbf{w}) + \varepsilon$$
$$p(y|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(y|f(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

ullet For $\mathbf{Y}_m=\{y_1,\ldots,y_m\}$ and $\mathbf{X}_m=\{\mathbf{x}_1,\ldots,\mathbf{x}_m\}$ data likelihood

$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \prod_{i=1}^m \mathcal{N}(y_i|\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top, \beta^{-1})$$

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) = \sum_{i=1}^m \log \mathcal{N}(y_i | \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i), \beta^{-1})$$
$$= \frac{m}{2} \log \beta - \frac{m}{2} \log(2\pi) - \beta E_D(\mathbf{w})$$

where
$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^m (y_i - \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)^\top)^2$$

- Specifying independent hyperparameters α_i is the key to sparsity
- Example marginal priors $p(w_1, w_2)$ illustrated below

- Specifying independent hyperparameters α_i is the key to sparsity
- \bullet Example marginal priors $p(w_1,w_2)$ illustrated below

$$p(\mathbf{w}) = p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$

The posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m),$$
$$\boldsymbol{\omega}_m = \boldsymbol{\beta} \mathbf{S}_m \boldsymbol{\Phi}^\top \mathbf{Y}_m$$
$$\mathbf{S}_m = (\boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1},$$

where $\Phi = \{\phi_i(\mathbf{x}_j)\} \in \mathbb{R}^{m \times M}$, $\alpha = \operatorname{diag}(\alpha_i)$

ullet We maximize the evidence approximation to estimate lpha and eta

$$p(\mathcal{D}_m | \boldsymbol{\alpha}, \boldsymbol{\beta}) = \int p(\mathcal{D}_m | \mathbf{w}, \boldsymbol{\beta}) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w} =$$

$$p(\mathbf{w}) = p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$

The posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m),$$
$$\boldsymbol{\omega}_m = \boldsymbol{\beta} \mathbf{S}_m \boldsymbol{\Phi}^\top \mathbf{Y}_m$$
$$\mathbf{S}_m = (\boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1},$$

where
$$\Phi = \{\phi_i(\mathbf{x}_j)\} \in \mathbb{R}^{m \times M}$$
, $\alpha = \operatorname{diag}(\alpha_i)$

ullet We maximize the evidence approximation to estimate lpha and eta

$$p(\mathcal{D}_m | \boldsymbol{\alpha}, \beta) = \int p(\mathcal{D}_m | \mathbf{w}, \beta) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w} =$$

$$p(\mathbf{w}) = p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$

The posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m),$$
$$\boldsymbol{\omega}_m = \boldsymbol{\beta} \mathbf{S}_m \boldsymbol{\Phi}^\top \mathbf{Y}_m$$
$$\mathbf{S}_m = (\boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1},$$

where $\mathbf{\Phi} = \{\phi_i(\mathbf{x}_j)\} \in \mathbb{R}^{m \times M}$, $\mathbf{\alpha} = \mathrm{diag}(\alpha_i)$

ullet We maximize the evidence approximation to estimate $oldsymbol{lpha}$ and eta

$$p(\mathcal{D}_m|\boldsymbol{lpha},eta) = \int p(\mathcal{D}_m|\mathbf{w},eta)p(\mathbf{w}|\boldsymbol{lpha})d\mathbf{w} =$$

$$p(\mathbf{w}) = p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$

The posterior is defined by

$$p(\mathbf{w}|\mathcal{D}_m, \boldsymbol{\alpha}, \beta) = \mathcal{N}(\mathbf{w}|\boldsymbol{\omega}_m, \mathbf{S}_m),$$
$$\boldsymbol{\omega}_m = \beta \mathbf{S}_m \boldsymbol{\Phi}^\top \mathbf{Y}_m$$
$$\mathbf{S}_m = (\boldsymbol{\alpha} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1},$$

where $\mathbf{\Phi} = \{\phi_i(\mathbf{x}_j)\} \in \mathbb{R}^{m \times M}$, $\mathbf{\alpha} = \mathrm{diag}(\alpha_i)$

ullet We maximize the evidence approximation to estimate $oldsymbol{lpha}$ and eta

$$p(\mathcal{D}_m | \boldsymbol{\alpha}, \beta) = \int p(\mathcal{D}_m | \mathbf{w}, \beta) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w} =$$
$$= \int p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \beta) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w}$$

Bayesian Linear Models

2 Sparsification

3 Practical comments

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi} \cdot \mathbf{w}^{\top}, \beta^{-1}\mathbf{I})$$

The log evidence has the form

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi} \cdot \mathbf{w}^{\top}, \beta^{-1}\mathbf{I})$$

The log evidence has the form

$$\begin{aligned} p(\mathbf{w}|\boldsymbol{\alpha}) &= \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1}) \\ p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \boldsymbol{\beta}) &= \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\varPhi} \cdot \mathbf{w}^\top, \boldsymbol{\beta}^{-1}\mathbf{I}) \end{aligned}$$

• The log evidence has the form

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi} \cdot \mathbf{w}^{\top}, \beta^{-1}\mathbf{I})$$

• The log evidence has the form

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \log \int p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \boldsymbol{\beta}) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w}$$

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi} \cdot \mathbf{w}^{\top}, \beta^{-1}\mathbf{I})$$

The log evidence has the form

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \log \int p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \boldsymbol{\beta}) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w}$$
$$= \log \mathcal{N}(\mathbf{Y}_m | \mathbf{0}, \mathbf{C})$$

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi} \cdot \mathbf{w}^{\top}, \beta^{-1}\mathbf{I})$$

The log evidence has the form

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \log \int p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \boldsymbol{\beta}) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w}$$
$$= \log \mathcal{N}(\mathbf{Y}_m | \mathbf{0}, \mathbf{C})$$
$$= -\frac{1}{2} \left\{ m \log(2\pi) + \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\},$$

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$p(\mathbf{Y}_m|\mathbf{X}_m, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{Y}_m|\boldsymbol{\Phi} \cdot \mathbf{w}^{\top}, \beta^{-1}\mathbf{I})$$

The log evidence has the form

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \log \int p(\mathbf{Y}_m | \mathbf{X}_m, \mathbf{w}, \boldsymbol{\beta}) p(\mathbf{w} | \boldsymbol{\alpha}) d\mathbf{w}$$
$$= \log \mathcal{N}(\mathbf{Y}_m | \mathbf{0}, \mathbf{C})$$
$$= -\frac{1}{2} \left\{ m \log(2\pi) + \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\},$$

where $\mathbf{Y}_m = (y_1, \dots, y_m)^{\top}$, and $\mathbf{C} \in \mathbb{R}^{m \times m}$ is

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top}$$

ullet We set the derivatives of the log evidence w.r.t. lpha and eta to zero

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

where
$$\mathbf{C} = \beta^{-1}\mathbf{I} + \boldsymbol{\Phi}\boldsymbol{\alpha}^{-1}\boldsymbol{\Phi}^{\top}$$

As is the case of isotropic prior on w we obtain similar re-estimation equations

$$\alpha_i^{new} = \frac{\gamma_i}{([\boldsymbol{\omega}_m]_i)^2}, \ (\beta^{new})^{-1} = \frac{\|\mathbf{Y}_m - \boldsymbol{\Phi} \boldsymbol{\omega}_m^\top\|^2}{m - \sum_i \gamma_i}$$

ullet Here $[oldsymbol{\omega}_m]_i$ is the i-th component of the posterior mean

$$\omega_m = \beta \mathbf{S}_m \mathbf{\Phi}^\top \mathbf{Y}_m,$$

$$\mathbf{S}_m = (\alpha + \beta \mathbf{\Phi}^\top \mathbf{\Phi})^{-1}$$

$$\gamma_i = 1 - \alpha_i \cdot [\mathbf{S}_m]_{ii}$$

ullet We set the derivatives of the log evidence w.r.t. $oldsymbol{lpha}$ and eta to zero

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

where
$$\mathbf{C} = \beta^{-1}\mathbf{I} + \boldsymbol{\Phi}\boldsymbol{\alpha}^{-1}\boldsymbol{\Phi}^{\top}$$

ullet As is the case of isotropic prior on old w we obtain similar re-estimation equations

$$\alpha_i^{new} = \frac{\gamma_i}{([\boldsymbol{\omega}_m]_i)^2}, \ (\beta^{new})^{-1} = \frac{\|\mathbf{Y}_m - \boldsymbol{\Phi} \boldsymbol{\omega}_m^{\top}\|^2}{m - \sum_i \gamma_i}$$

ullet Here $[oldsymbol{\omega}_m]_i$ is the i-th component of the posterior mean

$$\omega_m = \beta \mathbf{S}_m \boldsymbol{\Phi}^{\top} \mathbf{Y}_m,$$

$$\mathbf{S}_m = (\boldsymbol{\alpha} + \beta \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1}$$

$$\gamma_i = 1 - \alpha_i \cdot [\mathbf{S}_m]_{ii}$$

ullet We set the derivatives of the log evidence w.r.t. $oldsymbol{lpha}$ and eta to zero

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

where
$$\mathbf{C} = \beta^{-1}\mathbf{I} + \boldsymbol{\Phi}\boldsymbol{\alpha}^{-1}\boldsymbol{\Phi}^{\top}$$

ullet As is the case of isotropic prior on old w we obtain similar re-estimation equations

$$\alpha_i^{new} = \frac{\gamma_i}{([\boldsymbol{\omega}_m]_i)^2}, \ (\beta^{new})^{-1} = \frac{\|\mathbf{Y}_m - \boldsymbol{\Phi}\boldsymbol{\omega}_m^{\top}\|^2}{m - \sum_i \gamma_i}$$

ullet Here $[oldsymbol{\omega}_m]_i$ is the i-th component of the posterior mean

$$oldsymbol{\omega}_m = eta \mathbf{S}_m oldsymbol{\Phi}^{ op} \mathbf{Y}_m, \ \mathbf{S}_m = (oldsymbol{lpha} + eta oldsymbol{\Phi}^{ op} oldsymbol{\Phi})^{-1}$$

$$\gamma_i = 1 - \alpha_i \cdot [\mathbf{S}_m]_{ii}$$

ullet We set the derivatives of the log evidence w.r.t. $oldsymbol{lpha}$ and eta to zero

$$\log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

where
$$\mathbf{C} = \beta^{-1}\mathbf{I} + \boldsymbol{\Phi}\boldsymbol{\alpha}^{-1}\boldsymbol{\Phi}^{\top}$$

 \bullet As is the case of isotropic prior on $\mathbf w$ we obtain similar re-estimation equations

$$\alpha_i^{new} = \frac{\gamma_i}{([\boldsymbol{\omega}_m]_i)^2}, \ (\beta^{new})^{-1} = \frac{\|\mathbf{Y}_m - \boldsymbol{\Phi} \boldsymbol{\omega}_m^\top\|^2}{m - \sum_i \gamma_i}$$

ullet Here $[oldsymbol{\omega}_m]_i$ is the i-th component of the posterior mean

$$\boldsymbol{\omega}_m = \beta \mathbf{S}_m \boldsymbol{\Phi}^{\top} \mathbf{Y}_m,$$

 $\mathbf{S}_m = (\boldsymbol{\alpha} + \beta \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1}$

$$\gamma_i = 1 - \alpha_i \cdot [\mathbf{S}_m]_{ii}$$

We get that

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top} = \beta^{-1} \mathbf{I} + \sum_{j=1}^{M} \alpha_j^{-1} \boldsymbol{\phi}_j \boldsymbol{\phi}_j^{\top},$$

where the column vector $\phi_i = (\phi_i(\mathbf{x}_1), \dots, \phi_i(\mathbf{x}_m))$

ullet Let us pull out the contribution from $lpha_i$ in ${f C}$ and get

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \sum_{j \neq i} \alpha_j^{-1} \phi_j \phi_j^{\top} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$

Due to Woodbury identity

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

ullet If a and ullet are N-dimensional column vectors, then

$$|\mathbf{I}_N + \mathbf{a}\mathbf{b}^{\mathsf{T}}| = 1 + \mathbf{a}^{\mathsf{T}}\mathbf{b}$$

• Since $\mathbf{C} = \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\top} = \mathbf{C}_{-i} (\mathbf{I} + \alpha_i^{-1} \mathbf{C}_{-i}^{-1} \phi_i \phi_i^{\top})$ we get that

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top} = \beta^{-1} \mathbf{I} + \sum_{j=1}^{M} \alpha_{j}^{-1} \boldsymbol{\phi}_{j} \boldsymbol{\phi}_{j}^{\top},$$

where the column vector $\phi_i = (\phi_i(\mathbf{x}_1), \dots, \phi_i(\mathbf{x}_m))$

ullet Let us pull out the contribution from $lpha_i$ in ${f C}$ and get

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \sum_{j \neq i} \alpha_j^{-1} \boldsymbol{\phi}_j \boldsymbol{\phi}_j^{\top} + \alpha_i^{-1} \boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\top}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\top}$$

Due to Woodbury identity

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

ullet If f a and f b are N-dimensional column vectors, then

$$|\mathbf{I}_N + \mathbf{a}\mathbf{b}^{\mathsf{T}}| = 1 + \mathbf{a}^{\mathsf{T}}\mathbf{b}$$

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top} = \beta^{-1} \mathbf{I} + \sum_{j=1}^{M} \alpha_j^{-1} \boldsymbol{\phi}_j \boldsymbol{\phi}_j^{\top},$$

where the column vector $\phi_i = (\phi_i(\mathbf{x}_1), \dots, \phi_i(\mathbf{x}_m))$

ullet Let us pull out the contribution from $lpha_i$ in ${f C}$ and get

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \sum_{j \neq i} \alpha_j^{-1} \phi_j \phi_j^{\top} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$

Due to Woodbury identity

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

If a and b are N-dimensional column vectors, then

$$|\mathbf{I}_N + \mathbf{a}\mathbf{b}^{\mathsf{T}}| = 1 + \mathbf{a}^{\mathsf{T}}\mathbf{b}$$

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top} = \beta^{-1} \mathbf{I} + \sum_{j=1}^{M} \alpha_{j}^{-1} \boldsymbol{\phi}_{j} \boldsymbol{\phi}_{j}^{\top},$$

where the column vector $\phi_i = (\phi_i(\mathbf{x}_1), \dots, \phi_i(\mathbf{x}_m))$

ullet Let us pull out the contribution from $lpha_i$ in ${f C}$ and get

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \sum_{j \neq i} \alpha_j^{-1} \phi_j \phi_j^{\top} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$

Due to Woodbury identity

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

ullet If f a and f b are N-dimensional column vectors, then

$$|\mathbf{I}_N + \mathbf{a}\mathbf{b}^{\mathsf{T}}| = 1 + \mathbf{a}^{\mathsf{T}}\mathbf{b}$$

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top} = \beta^{-1} \mathbf{I} + \sum_{j=1}^{M} \alpha_j^{-1} \boldsymbol{\phi}_j \boldsymbol{\phi}_j^{\top},$$

where the column vector $\phi_i = (\phi_i(\mathbf{x}_1), \dots, \phi_i(\mathbf{x}_m))$

ullet Let us pull out the contribution from $lpha_i$ in ${f C}$ and get

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \sum_{j \neq i} \alpha_j^{-1} \phi_j \phi_j^{\top} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$

Due to Woodbury identity

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

ullet If ${f a}$ and ${f b}$ are N-dimensional column vectors, then

$$|\mathbf{I}_N + \mathbf{a}\mathbf{b}^{\top}| = 1 + \mathbf{a}^{\top}\mathbf{b}$$

• Since $\mathbf{C} = \mathbf{C}_{-i} + \alpha_i^{-1} \boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\top} = \mathbf{C}_{-i} (\mathbf{I} + \alpha_i^{-1} \mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\top})$ we get that

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top} = \beta^{-1} \mathbf{I} + \sum_{j=1}^{M} \alpha_{j}^{-1} \boldsymbol{\phi}_{j} \boldsymbol{\phi}_{j}^{\top},$$

where the column vector $\phi_i = (\phi_i(\mathbf{x}_1), \dots, \phi_i(\mathbf{x}_m))$

ullet Let us pull out the contribution from $lpha_i$ in ${f C}$ and get

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \sum_{j \neq i} \alpha_j^{-1} \phi_j \phi_j^{\top} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$

Due to Woodbury identity

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

ullet If ${f a}$ and ${f b}$ are N-dimensional column vectors, then

$$|\mathbf{I}_N + \mathbf{a}\mathbf{b}^{\mathsf{T}}| = 1 + \mathbf{a}^{\mathsf{T}}\mathbf{b}$$

• Since $\mathbf{C} = \mathbf{C}_{-i} + \alpha_i^{-1} \boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\top} = \mathbf{C}_{-i} (\mathbf{I} + \alpha_i^{-1} \mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\top})$ we get that

$$|\mathbf{C}| = |\mathbf{C}_{-i}|(1 + \alpha_i^{-1} \boldsymbol{\phi}_i^{\mathsf{T}} \mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i),$$

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \boldsymbol{\Phi} \boldsymbol{\alpha}^{-1} \boldsymbol{\Phi}^{\top} = \beta^{-1} \mathbf{I} + \sum_{j=1}^{M} \alpha_{j}^{-1} \boldsymbol{\phi}_{j} \boldsymbol{\phi}_{j}^{\top},$$

where the column vector $\phi_i = (\phi_i(\mathbf{x}_1), \dots, \phi_i(\mathbf{x}_m))$

ullet Let us pull out the contribution from $lpha_i$ in ${f C}$ and get

$$\mathbf{C} = \beta^{-1} \mathbf{I} + \sum_{j \neq i} \alpha_j^{-1} \phi_j \phi_j^{\top} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$
$$= \mathbf{C}_{-i} + \alpha_i^{-1} \phi_i \phi_i^{\top}$$

Due to Woodbury identity

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1}$$

ullet If ${f a}$ and ${f b}$ are N-dimensional column vectors, then

$$|\mathbf{I}_N + \mathbf{a}\mathbf{b}^{\top}| = 1 + \mathbf{a}^{\top}\mathbf{b}$$

$$|\mathbf{C}| = |\mathbf{C}_{-i}| (1 + \alpha_i^{-1} \boldsymbol{\phi}_i^{\top} \mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i), \ \mathbf{C}^{-1} = \mathbf{C}_{-i}^{-1} - \frac{\mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i \boldsymbol{\phi}_i^{\top} \mathbf{C}_{-i}^{-1}}{\alpha_i + \boldsymbol{\phi}_i^{\top} \mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i}$$

• The log evidence function

$$L(\boldsymbol{\alpha}) = \log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \to \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

ullet Thanks to pulling out the contribution from $lpha_i$ in ${f C}$ we get that

Analysis of sparsity

The log evidence function

$$L(\boldsymbol{\alpha}) = \log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

• Thanks to pulling out the contribution from α_i in C we get that

The log evidence function

$$L(\boldsymbol{\alpha}) = \log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

ullet Thanks to pulling out the contribution from $lpha_i$ in ${f C}$ we get that

$$L(\boldsymbol{\alpha}) = L(\boldsymbol{\alpha}_{-i}) + \lambda(\alpha_i),$$

The log evidence function

$$L(\boldsymbol{\alpha}) = \log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

ullet Thanks to pulling out the contribution from $lpha_i$ in ${f C}$ we get that

$$L(\boldsymbol{\alpha}) = L(\boldsymbol{\alpha}_{-i}) + \lambda(\alpha_i),$$

where is $L(\alpha_{-i})$ is the same function but for the linear model without basis function ϕ_i , and

$$\lambda(\alpha_i) = \frac{1}{2} \left[\log \alpha_i - \log(\alpha_i + s_i) + \frac{q_i^2}{\alpha_i + s_i} \right],$$

The log evidence function

$$L(\boldsymbol{\alpha}) = \log p(\mathbf{Y}_m | \mathbf{X}_m, \boldsymbol{\alpha}, \boldsymbol{\beta}) \sim -\frac{1}{2} \left\{ \log |\mathbf{C}| + \mathbf{Y}_m^{\top} \mathbf{C}^{-1} \mathbf{Y}_m \right\} \rightarrow \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$$

ullet Thanks to pulling out the contribution from $lpha_i$ in ${f C}$ we get that

$$L(\boldsymbol{\alpha}) = L(\boldsymbol{\alpha}_{-i}) + \lambda(\alpha_i),$$

where is $L(\alpha_{-i})$ is the same function but for the linear model without basis function ϕ_i , and

$$\lambda(\alpha_i) = \frac{1}{2} \left[\log \alpha_i - \log(\alpha_i + s_i) + \frac{q_i^2}{\alpha_i + s_i} \right],$$

$$s_i = \boldsymbol{\phi}_i^{\top} \mathbf{C}_{-i}^{-1} \boldsymbol{\phi}_i$$
$$q_i = \boldsymbol{\phi}_i^{\top} \mathbf{C}_{-i}^{-1} \mathbf{Y}_m$$

Figure – Plots of the log marginal likelihood $\lambda(\alpha_i)$ versus $\log \alpha_i$ showing on the left, the single maximum at a finite α_i for $q_i^2 > s_i$ and on the right, the maximum at $\alpha_i = \infty$ for $q_i^2 < s_i$

$$\frac{d\lambda(\alpha_i)}{d\alpha_i} = \frac{\alpha_i^{-1} s_i^2 - (q_i^2 - s_i)}{2(\alpha_i + s_i)^2} = 0$$

- ullet Recall that $lpha_i \geq 0$, then if you $q_i^2 < s_i$ we get that $lpha_i^{opt} o \infty$
- If $q_i^2 > s_i$, then

$$\alpha_i^{opt} = \frac{s_i^2}{q_i^2 - s_i} \quad \text{and} \quad \text{for all } i \in \mathbb{R}$$

Figure – Plots of the log marginal likelihood $\lambda(\alpha_i)$ versus $\log \alpha_i$ showing on the left, the single maximum at a finite α_i for $q_i^2 > s_i$ and on the right, the maximum at $\alpha_i = \infty$ for $q_i^2 < s_i$

$$\frac{d\lambda(\alpha_i)}{d\alpha_i} = \frac{\alpha_i^{-1} s_i^2 - (q_i^2 - s_i)}{2(\alpha_i + s_i)^2} = 0$$

- Recall that $\alpha_i \geq 0$, then if you $q_i^2 < s_i$ we get that $\alpha_i^{opt} \to \infty$
- If $q_i^2 > s_i$, then

Figure – Plots of the log marginal likelihood $\lambda(\alpha_i)$ versus $\log \alpha_i$ showing on the left, the single maximum at a finite α_i for $q_i^2 > s_i$ and on the right, the maximum at $\alpha_i = \infty$ for $q_i^2 < s_i$

$$\frac{d\lambda(\alpha_i)}{d\alpha_i} = \frac{\alpha_i^{-1} s_i^2 - (q_i^2 - s_i)}{2(\alpha_i + s_i)^2} = 0$$

- ullet Recall that $lpha_i \geq 0$, then if you $q_i^2 < s_i$ we get that $lpha_i^{opt} o \infty$
- If $q_i^2 > s_i$, then

Figure – Plots of the log marginal likelihood $\lambda(\alpha_i)$ versus $\log \alpha_i$ showing on the left, the single maximum at a finite α_i for $q_i^2 > s_i$ and on the right, the maximum at $\alpha_i = \infty$ for $q_i^2 < s_i$

$$\frac{d\lambda(\alpha_i)}{d\alpha_i} = \frac{\alpha_i^{-1} s_i^2 - (q_i^2 - s_i)}{2(\alpha_i + s_i)^2} = 0$$

- Recall that $\alpha_i \geq 0$, then if you $q_i^2 < s_i$ we get that $\alpha_i^{opt} \to \infty$
- If $q_i^2 > s_i$, then

- For any given basis function $\phi_i(\mathbf{x})$ and associated hyperparameter α_i we can compute the quantities s_i and q_i^2 (true even if $\alpha_i = \infty$)
- Depending on the criterion $q_i^2 > s_i$ and the value of α_i we can then perform the following updates, all of which will increase $p(\mathcal{D}_m | \alpha, \beta)$:

- For any given basis function $\phi_i(\mathbf{x})$ and associated hyperparameter α_i we can compute the quantities s_i and q_i^2 (true even if $\alpha_i = \infty$)
- Depending on the criterion $q_i^2 > s_i$ and the value of α_i we can then perform the following updates, all of which will increase $p(\mathcal{D}_m | \boldsymbol{\alpha}, \beta)$:

- For any given basis function $\phi_i(\mathbf{x})$ and associated hyperparameter α_i we can compute the quantities s_i and q_i^2 (true even if $\alpha_i = \infty$)
- Depending on the criterion $q_i^2 > s_i$ and the value of α_i we can then perform the following updates, all of which will increase $p(\mathcal{D}_m | \boldsymbol{\alpha}, \beta)$:

	"In model": $\alpha_i < \infty$	"Out of model": $\alpha_i = \infty$
$q_i^2 > s_i$	re-estimation of α_i	addition of $\phi_i(\mathbf{x})$
$q_i^2 \leq s_i$	deletion of $\phi_i(\mathbf{x})$	_

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i>0$ and $\alpha_i<\infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set
 - $\alpha_i = \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i>0$ and $lpha_i<\infty$: re-estimate $lpha_i$
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set
 - $\alpha_i \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
 - If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

- 1. Initialize β and all $\alpha_j = \infty$, i.e. the empty model
- 2. Select a function $\phi_i(\mathbf{x})$ from the set of all M functions
- 3. Compute relevance $R_i = q_i^2 s_i$
 - if $R_i > 0$ and $\alpha_i < \infty$: re-estimate α_i
 - if $R_i > 0$ and $\alpha_i = \infty$: add ϕ_i to the model with updated α_i
 - if $R_i \leq 0$ and $\alpha_i < \infty$: delete ϕ_i from the model and set $\alpha_i = \infty$
- 4. If solving a regression problem update β
- 5. Recalculate all q_i and s_i
- 6. If convergence terminate, otherwise repeat

Bayesian Linear Models

Sparsification

Practical comments

Support Vector Regression

Relevance Vector Regression

	N	d	errors		_ vectors _	
Data set			SVM	RVM	SVM	RVM
Sinc (Gaussian noise)	100	1	0.378	0.326	45.2	6.7
Sinc (Uniform noise)	100	1	0.215	0.187	44.3	7.0
Friedman #1	240	10	2.92	2.80	116.6	59.4
Friedman #2	240	4	4140	3505	110.3	6.9
Friedman #3	240	4	0.0202	0.0164	106.5	11.5
Boston Housing	481	13	8.04	7.46	142.8	39.0
Normalised Mean			1.00	0.86	1.00	0.15

Computational Performance Illustration

Here we either

- Optimize greedily and delete basis functions (New RVM)
- Optimize w.r.t. all existing basis functions and delete some of them only at the end of the learning process (Old RVM)

Computational Performance Illustration: example timing

 \bullet Comparing at $m=1000\ \rm we\ have$

	Regression	Classification		
Old RVM	4 mins 17 secs	4 mins 58 secs		
New RVM	14.42 secs	12.84 secs		
SVM ^{light}	1.03 secs	0.38 secs		

- ullet In practice usually it takes 20-50 iterations to learn RVM
- On each iteration we calculate ω_m (inversion of a matrix of size $M \times M$ is required), and re-calculate α and β (usually O(1)). As a result RVM is 20-50 times slower than ordinary linear regression
- If we use kernel functions $K(\mathbf{x}, \mathbf{x}_i)$ as basis functions $\phi_i(\mathbf{x})$, then we have to perform cross-validation to select the kernel width. As a result we get a sparse kernel regression, as only a small subset of the initial sample will be used to define kernel basis functions and the final decision rule

- ullet In practice usually it takes 20-50 iterations to learn RVM
- On each iteration we calculate ω_m (inversion of a matrix of size $M \times M$ is required), and re-calculate α and β (usually O(1)). As a result RVM is 20-50 times slower than ordinary linear regression
- If we use kernel functions $K(\mathbf{x}, \mathbf{x}_i)$ as basis functions $\phi_i(\mathbf{x})$, then we have to perform cross-validation to select the kernel width. As a result we get a sparse kernel regression, as only a small subset of the initial sample will be used to define kernel basis functions and the final decision rule

- ullet In practice usually it takes 20-50 iterations to learn RVM
- On each iteration we calculate ω_m (inversion of a matrix of size $M \times M$ is required), and re-calculate α and β (usually O(1)). As a result RVM is 20-50 times slower than ordinary linear regression
- If we use kernel functions $K(\mathbf{x}, \mathbf{x}_i)$ as basis functions $\phi_i(\mathbf{x})$, then we have to perform cross-validation to select the kernel width. As a result we get a sparse kernel regression, as only a small subset of the initial sample will be used to define kernel basis functions and the final decision rule

Other issues

• With RVM we can obtain not only point prediction, but also its uncertainty. Let α^* and β^* be the hyperparameters that maximize the marginal likelihood, then the predictive distribution

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \int p(y|\mathbf{x}, \mathbf{w}, \boldsymbol{\beta}^*) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) d\mathbf{w}$$

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \int p(y|\mathbf{x}, \mathbf{w}, \boldsymbol{\beta}^*) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) d\mathbf{w}$$
$$= \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}_i(\mathbf{x})^\top, \sigma^2(\mathbf{x})),$$

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \int p(y|\mathbf{x}, \mathbf{w}, \boldsymbol{\beta}^*) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) d\mathbf{w}$$
$$= \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}_i(\mathbf{x})^\top, \sigma^2(\mathbf{x})),$$

where

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \int p(y|\mathbf{x}, \mathbf{w}, \boldsymbol{\beta}^*) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) d\mathbf{w}$$
$$= \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}_i(\mathbf{x})^\top, \sigma^2(\mathbf{x})),$$

where

$$\sigma^2(\mathbf{x}) = (\beta^*)^{-1} + \boldsymbol{\phi}(\mathbf{x})^{\top} \mathbf{S}_m \boldsymbol{\phi}(\mathbf{x})$$

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \int p(y|\mathbf{x}, \mathbf{w}, \boldsymbol{\beta}^*) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) d\mathbf{w}$$
$$= \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}_i(\mathbf{x})^\top, \sigma^2(\mathbf{x})),$$

where

$$\begin{split} \sigma^2(\mathbf{x}) &= (\beta^*)^{-1} + \phi(\mathbf{x})^\top \mathbf{S}_m \phi(\mathbf{x}) \\ \boldsymbol{\omega}_m &= \beta \mathbf{S}_m \boldsymbol{\Phi}^\top \mathbf{Y}_m \\ \mathbf{S}_m &= (\boldsymbol{\alpha} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}, \end{split}$$

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \int p(y|\mathbf{x}, \mathbf{w}, \boldsymbol{\beta}^*) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) d\mathbf{w}$$
$$= \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}_i(\mathbf{x})^\top, \sigma^2(\mathbf{x})),$$

where

$$\sigma^{2}(\mathbf{x}) = (\beta^{*})^{-1} + \phi(\mathbf{x})^{\top} \mathbf{S}_{m} \phi(\mathbf{x})$$
$$\boldsymbol{\omega}_{m} = \beta \mathbf{S}_{m} \boldsymbol{\Phi}^{\top} \mathbf{Y}_{m}$$
$$\mathbf{S}_{m} = (\boldsymbol{\alpha} + \beta \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1},$$

with
$$\boldsymbol{\Phi} = \{\phi_i(\mathbf{x}_j)\} \in \mathbb{R}^{m \times M}$$
, $\boldsymbol{\alpha} = \operatorname{diag}(\alpha_i)$

$$p(y|\mathbf{x}, \mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = \int p(y|\mathbf{x}, \mathbf{w}, \boldsymbol{\beta}^*) p(\mathbf{w}|\mathbf{X}_m, \mathbf{Y}_m, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) d\mathbf{w}$$
$$= \mathcal{N}(y|\boldsymbol{\omega}_m \cdot \boldsymbol{\phi}_i(\mathbf{x})^\top, \sigma^2(\mathbf{x})),$$

where

$$\begin{split} \sigma^2(\mathbf{x}) &= (\beta^*)^{-1} + \phi(\mathbf{x})^\top \mathbf{S}_m \phi(\mathbf{x}) \\ \boldsymbol{\omega}_m &= \beta \mathbf{S}_m \boldsymbol{\Phi}^\top \mathbf{Y}_m \\ \mathbf{S}_m &= (\boldsymbol{\alpha} + \beta \boldsymbol{\Phi}^\top \boldsymbol{\Phi})^{-1}, \end{split}$$

with
$$\boldsymbol{\Phi} = \{\phi_i(\mathbf{x}_j)\} \in \mathbb{R}^{m \times M}$$
, $\boldsymbol{\alpha} = \operatorname{diag}(\alpha_i)$

- Agglomerative algorithms (e.g. "matching pursuit") are often greedy
 i.e. "early" additions can be significantly sub-optimal
- Demonstration: a popular signal processing test data set

- Approximate with a basis comprising:
 - "heavyside" step functions (easy)
 - "heayvyside" and Gaussians (hard?)

- Agglomerative algorithms (e.g. "matching pursuit") are often greedy
 i.e. "early" additions can be significantly sub-optimal
- Demonstration: a popular signal processing test data set

- Approximate with a basis comprising:
 - "heavyside" step functions (easy)
 - "heayvyside" and Gaussians (hard?)

- Agglomerative algorithms (e.g. "matching pursuit") are often greedy
 i.e. "early" additions can be significantly sub-optimal
- Demonstration: a popular signal processing test data set

- Approximate with a basis comprising:
 - "heavyside" step functions (easy)
 - "heayvyside" and Gaussians (hard?)

	Heaviside		Heaviside + Gauss	
	Bayes	ORMP	Bayes	ORMP
М	1024	1024	5120	5120
\widehat{M}	12	12	12	82
Iterations	21	11	224	82
Additions	11	11	107	82
Deletions	0	_	96	_
Re-estimates	10	_	21	_
Time	1.34s	1.19s	43.3s	24.6s

- Assume the target is noise-free and is to be approximated more "cheaply", e.g. an image which is to be compressed
- Choose some appropriate basis set (e.g. Gabor wavelets)
- Fix σ^2 as desired
- Run the sparse Bayes regression algorithm
- Interpretation of σ^2 has changed it now models the approximation error, the noise process

- Assume the target is noise-free and is to be approximated more "cheaply", e.g. an image which is to be compressed
- Choose some appropriate basis set (e.g. Gabor wavelets)
- Fix σ^2 as desired
- Run the sparse Bayes regression algorithm
- Interpretation of σ^2 has changed it now models the approximation error, the noise process

- Assume the target is noise-free and is to be approximated more "cheaply", e.g. an image which is to be compressed
- Choose some appropriate basis set (e.g. Gabor wavelets)
- Fix σ^2 as desired
- Run the sparse Bayes regression algorithm
- Interpretation of σ^2 has changed it now models the approximation error, the noise process

- Assume the target is noise-free and is to be approximated more "cheaply", e.g. an image which is to be compressed
- Choose some appropriate basis set (e.g. Gabor wavelets)
- Fix σ^2 as desired
- Run the sparse Bayes regression algorithm
- Interpretation of σ^2 has changed it now models the approximation error, the noise process

- Assume the target is noise-free and is to be approximated more "cheaply", e.g. an image which is to be compressed
- Choose some appropriate basis set (e.g. Gabor wavelets)
- Fix σ^2 as desired
- Run the sparse Bayes regression algorithm
- Interpretation of σ^2 has changed it now models the approximation error, the noise process

Image compression

ullet Can approximate functions $f(\mathbf{x})$

$$\text{Likelihood} \sim \exp\left\{-\int \frac{1}{2\sigma^2} \|f(\mathbf{x}; \mathbf{w}) - f(\mathbf{x})\|^2 d\mathbf{x}\right\}$$

- Condition: we need to compute all $\int \phi_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$ and $\int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
- Practical example: $f(\mathbf{x}) = \sum_{j} \nu_{j} \psi_{j}(\mathbf{x})$, where ψ_{j} Gaussian
- Potential target functions: Gaussian process, SVM, kernel density estimator

 \bullet Can approximate functions $f(\mathbf{x})$

$$\text{Likelihood} \sim \exp\left\{-\int \frac{1}{2\sigma^2} \|f(\mathbf{x}; \mathbf{w}) - f(\mathbf{x})\|^2 d\mathbf{x}\right\}$$

- Condition: we need to compute all $\int \phi_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$ and $\int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
- Practical example: $f(\mathbf{x}) = \sum_{j} \nu_{j} \psi_{j}(\mathbf{x})$, where ψ_{j} Gaussian
- Potential target functions: Gaussian process, SVM, kernel density estimator

ullet Can approximate functions $f(\mathbf{x})$

$$\text{Likelihood} \sim \exp\left\{-\int \frac{1}{2\sigma^2} \|f(\mathbf{x}; \mathbf{w}) - f(\mathbf{x})\|^2 d\mathbf{x}\right\}$$

- Condition: we need to compute all $\int \phi_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$ and $\int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
- Practical example: $f(\mathbf{x}) = \sum_{j} \nu_{j} \psi_{j}(\mathbf{x})$, where ψ_{j} Gaussian
- Potential target functions: Gaussian process, SVM, kernel density estimator

ullet Can approximate functions $f(\mathbf{x})$

$$\text{Likelihood} \sim \exp\left\{-\int \frac{1}{2\sigma^2} \|f(\mathbf{x}; \mathbf{w}) - f(\mathbf{x})\|^2 d\mathbf{x}\right\}$$

- Condition: we need to compute all $\int \phi_i(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$ and $\int \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) d\mathbf{x}$
- Practical example: $f(\mathbf{x}) = \sum_{j} \nu_{j} \psi_{j}(\mathbf{x})$, where ψ_{j} Gaussian
- Potential target functions: Gaussian process, SVM, kernel density estimator

GP approximation

GP approximation

Kernel Density Estimator approximation

• Work directly with $\mathbf{C} = \sum_{i=1}^m \alpha_i^{-1} \phi_i \phi_i^\top + \sigma^2 \mathbf{I}$

