Math 252 Homework 6 Written Part

Name: KEY

Write legibly. Show your work. Graph neatly. Use a ruler for all straight lines.

(1) Fill in the indefinite integral (anti-derivative) of each function. Don't forget the +C!

	Indefinite Integral / Anti-Derivative	
example:	answer:	
$\int x^2 dx$	$\int x^2 dx = \frac{x^3}{3} + C$	
$\int adx$ (where a is constant)	$\int a dx = ax + C$	1
$\int x^n dx$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	
	For all n except n =	
$\int \sin(x)dx$	$\int \sin(x) dx = -\cos(x) + C$	
$\int \cos(x)dx$	Scos(x) dx = sin(x) +C	
$\int \frac{1}{x} dx$	$\int \frac{1}{x} dx = \ln x + C$	_
$\int e^x dx$	$(e^{x}dx = e^{x} + C$	19

Showing your work neatly, completely, and correctly, find each integral: Give exact answers!

$$(2) \int_{-\frac{\pi}{3}}^{0} \cos(x) dx$$

$$= \int_{-\frac{\pi}{3}}^{\infty} \sin(x) \int_{-\frac{\pi}{3}}^{\infty} dx$$

$$= \int_{-\frac{\pi}{3}}^{\infty} \cos(x) dx$$

(3)
$$\int_{1}^{5} \frac{1}{x^{2}} + \frac{1}{x} dx$$

$$= \int_{1}^{5} x^{-2} + \frac{1}{x} dx$$

$$= \frac{x^{-1}}{-1} + \ln|x| \int_{1}^{5}$$

$$= -\frac{1}{x} + \ln|x| \int_{1}^{5}$$

$$= \left[-\frac{1}{5} + \ln(5) \right] - \left[-1 + \ln(5) \right]$$

$$= \frac{4}{5} + \ln(5)$$