Plan du cours

l.	Rap	opel des définitions des solides
	1.	La pyramide
	2.	Le cône de révolution
	3.	La pyramide
П.	Мо	déliser une situation spatiale : section plane de solides
	1.	Section d'une pyramide ou d'un cône
	2	Agrandissement et réduction

I. Rappel des définitions des solides

1. La pyramide

Définition

Une pyramide est un solide dont :

- toutes les faces latérales sont des triangles ayant un sommet commun appelé sommet de la pyramide ,
- l'autre face est un polygone quelconque appelé base de la pyramide.

Propriété

Le volume d'une pyramide est le tiers du produit de l'aire de sa base par sa hauteur : $\mathscr{V} = \frac{\mathscr{B} \times h}{3}$

Exercice d'application 1

(a) Calculer le volume de la pyramide ci-contre.

.....

2. Le cône de révolution

Définition

Un cône de révolution est un solide formé :

- d'un disque appelé **base**;
- d'une surface courbe appelé face latérale;
- d'un point appelé sommet du cône.

Propriété

Le volume d'un cône de révolution est le tiers du produit de l'aire de sa base par sa hauteur :

$$\mathscr{V} = \frac{\mathscr{B} \times h}{3} = \frac{\pi r^2 \times h}{3}$$

Exercice d'application 2

	8 cm
6 cn	

(a`) Calculer	le vo	lume d	ц cône	de	révolution	ci-contre
1	u,	Calculci	IC VO	unic u	u conc	uc	revolution	Ci Contic.

.....

3. La pyramide

II. Modéliser une situation spatiale : section plane de solides

1. Section d'une pyramide ou d'un cône

Propriété

La section d'une pyramide ou d'un cône de révolution par un plan parallèle à la base est une réduction de la base.

Exercice d'application 3

Un cône de révolution a pour hauteur $10\ cm$. Sa base a pour centre O et pour rayon $8\ cm$. Le cône est coupé par un plan parallèle à la base et passant à $7\ cm$ du sommet S.

A est un point du cercle de base.

Le plan coupe la génératrice [AS] en B et la hauteur [SO] en l.

1. Quel est le rayon de la section du cône par ce point?

Exercice d'application 4

Cette figure représente une pyramide régulière de sommet S dont la base est un hexagone régulier de centre O et de côté 6 cm. Sa hauteur est de 8 cm. On coupe cette pyramide par un plan parallèle à sa base à 3 cm au-dessus de sa base.

- 1. Pourquoi le triangle OAB est-il équilatéral?
- 2. Calculer la valeur exacte de SA.
- 3. Calculer les valeurs exactes de Cl et SC.
- 4. Calculer le périmètre de la section.

 	• •										

2. Agrandissement et réduction

Définition

Un **agrandissement** d'une figure ou d'un solide, c'est multiplier les dimensions de cette figure (ou de ce solide) par un nombre k supérieur à 1.

Une **réduction** d'une figure ou d'un solide, c'est multiplier les dimensions de cette figure (ou de ce solide) par un nombre k compris entre 0 et 1.

Propriété

Dans un agrandissement (ou une réduction) de rapport k:

- les **longueurs** sont multipliées par *k*.
- les aires sont multipliées par k^2 .
- les **volumes** sont multipliés par k^3 .

Exemples:

Soit SABCD une pyramide à base carré, on sait que son aire vaut $250 dm^2$.

- 2. Combien vaut l'aire d'une pyramide 2 fois plus petite?
- 3. Combien vaut le volume d'une pyramide 10 fois plus grande?

1. Si la pyramide est 2 fois plus petite, c'est une réduction et le rapport k vaut $\frac{1}{2}$.

Ainsi, $A_{pyramide} = k^2 \times A_{SABCD}$

$$A_{pyramide} = \left(\frac{1}{2}\right)^2 \times 250$$

$$A_{pyramide} = \frac{1}{4} \times 250$$

$$A_{pyramide} = 62,5 dm^2$$

2. Si la pyramide est 10 fois plus grande, c'est un agrandissement et le rapport k vaut 10.

Ainsi, $A_{pyramide} = k^2 \times A_{SABCD}$

$$A_{pyramide} = 10^2 \times 250$$

$$A_{pyramide} = 100 \times 250$$

$$A_{pyramide} = 25000 dm^2$$

Exercice d'application 5

On considère un cône de révolution de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm.

- 1. Calculer le volume de ce cône.
- 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer

le volume du cône de hauteur SO' ainsi défini.

$$1. V_1 = \frac{B \times h}{3}$$

$$V_1 = \frac{5 \times 5 \times \pi \times 6}{3}$$

$$V_1 = \frac{150\pi}{3}$$

$$V_1 = 50\pi c m^3$$

2. C'est une réduction ou $k = \frac{4}{6} = \frac{2}{3}$

$$V_2 = k^3 \times V_1$$

$$V_2 = \left(\frac{2}{3}\right)^3 \times V_1$$

$$V_2 = \frac{4}{9} \times 50\pi$$

$$V_2 = \frac{200}{9}\pi c m^3$$