Klausur Grundlagen der Informatik

AI2,WI2 WS 07/08, Semester: 15.2.2008

Bearbeitungszeit: Hilfsmittel: A ohne prog. C 90

Aufgabe 1 (2 Punkte)

Das Programmieren mit Lochkarten vor mehr als 20 Jahren war sehr umständlich und aufwändig im Vergleich zu heute.

- Die heute vergleichsweise sehr komfortable Programmierung hat nicht nur Vorteile. Nennen Sie einen Nachteil.
- Was können wir daraus lernen?

Aufgabe 2 (2 Punkte)

Was ist die wichtigste Botschaft von Joseph Weizenbaum an uns? (z.B. im Film, Weizenbaum, Rebel at Work")

Aufgabe 3 (3 Punkte)

Wieviele binäre Stellen benötigt man, um eine Zahl mit n Dezimalstellen zu speichern? (Herleitung!)

Aufgabe 4 (6 Punkte)

Vergleichen Sie jeweils die beiden angegebenen Funktionen bezüglich ihres asymptotischen Wachstums und tragen Sie das korrekte Symbol $(o, O, \omega, \Omega \text{ oder } \Theta)$ in die Lücke ein. Beachten Sie bitte folgendes: Wenn o zutrifft, dann wird O als falsch gewertet. Wenn w zutrifft, dann wird Ω als falsch gewertet. Wenn Θ zutrifft, dann werden O und Ω als falsch gewertet.

a)
$$2^n = \dots (2^{n+1})$$

b)
$$2^n = (2^{2n})$$

a)
$$2^n = \dots (2^{n+1})$$
 b) $2^n = \dots (2^{2n})$ c) $n^{\ln 10} = \dots (10^{\ln n})$

d)
$$\log n = \dots \left(\frac{1}{1+e^{-n}}\right)$$
 e) $\sqrt{n} = \dots (n^{1/2} + n^{0.3})$ f) $n^2 = \dots (n + \cos n)$

Aufgabe 5 (6 Punkte (1,2,3))

Gegeben sei ein endlicher Automat mit folgendem Zustandsdiagramm

- a) Ist der Automat deterministisch?
- b) Geben Sie den Automaten als 5-Tupel mit Zustandsübergangstabelle an.

 ${\bf c)}~$ Geben Sie alle Worte der Längen 1, 2, 3, 4, 5 an, die der Automat erkennt.

Aufgabe 6 (3 Punkte)

Bestimmen Sie mit dem Mastertheorem die Komplexität für folgende Rekurrenzgleichung:

$$T(n) = 4T(n/3) + 2^n$$

Aufgabe 7 (5 Punkte)

Zeigen Sie anhand der folgenden Wertetabelle mit Laufzeitmessungen eines Programms, dass diese Messungen die Komplexität $T(n) = \Theta(\ln(n^3))$ bestätigen.

n	10	100	1000	10 000	100 000
T(n)[sec.]	271.128	554.77	843.625	1119.62	1400.13

Aufgabe 8 (6 Punkte)

Gegeben ist folgende Entfernungstabelle des ungerichteten Graphen G mit den Knoten 1,2,3,4,5:

$\mathbf{a})$	Bestimmen	Sie mit	dem	Nearest-N	Neighbour-	-Algorithmus	eine	Rundreise	mit	Start	in	Knoten
	1.											

b) Bestimmen Sie einen Minimum-Spanning-Tree und geben Sie alle Kanten an.