ESTADÍSTICA DESCRIPTIVA

Algunos conceptos imprescindibles

Tipos de datos y escala de medición

Estadística Descriptiva y Análisis de Datos

Presentación de Datos

- *TEXTO
- *TABLAS
- *GRÁFICOS

DATOS SIN AGRUPAR

Variable cuantitativa con datos sin agrupar

 Sea X: "Número de cuadras caminadas por 14 alumnos de una escuela rural, para llegar cada mañana".

Primeramente ordenamos los datos

Frecuencia absoluta- relativa

- Frecuencia absoluta:
- Es el número de veces que se presenta cada valor de la variable.

Frecuencia relativa:

Es el cociente entre la frecuencia absoluta fi y el número total de elementos n de la muestra.

$$f_{ri} = \frac{f_i}{n}$$

$$0 \le f_{ri} \le 1$$

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

X	f	F
I	I	ı
2	I	2
4	3	5
5	4	9
6	3	12
8	2	14
Total	$\sum_{i} f_{i} = 14$	

Gráfico de bastones para una variable cuantitativa con datos sin agrupar

Gráfico de escalera para las F.A.

Gráfico de tronco y hojas o de Tallo y hojas

Se desea analizar cuánto demora un procesador X en guardar un archivo de cierto tamaño medido en segundos.

0,2	0,4	0,5	0 ,5	0,7	0,7	0 ,8	0 ,9	0 ,9	1,2
1,2	1,2	1,4	1,4	1,5	1,6	1 ,9	2,1	2 ,2	2,4
2 .6	2.6	3.7	3 ,8	3 ,9					

Troncos	Но	jas								Frecuencia	Frecuencia relativa
0	2	4	5	5	7	7	8	9	9	9	0,36
1	2	2	2	4	4	5	6	9		8	0,32
2	1	2	4	6	6					5	0,20
3	7	8	9							3	0,12
										n = 25	1.00

```
Stem-and-Leaf Display for Tiempo: unit = 0,1 1 | 2 represents 1,2

2 0 | 24
9 0 | 5577899
(5) 1 | 22244
11 1 | 569
8 2 | 124
5 2 | 66
3 3 | 3 | 3 | 3 | 789
```

DIAGRAMA DE PUNTOS

■ Ejemplo Variable cualitativa

En un estudio realizado por el Instituto del hierro y el acero de Estados Unidos durante el año 1992, se analizó las cantidades (en miles de toneladas) de importaciones de acero, en distintos países:

Principales fuentes de importaciones de acero en Estados Unidos durante 1992

Países	Frecuencia simple absoluta	Frecuencia simple relativa	Frecuencia simple relativa porcentual	
×i	f i	fri	fr; %	
Bélgica y Luxemburgo	1247	0,3041	30,41 %	
Japón	1072	0,2615	26,15 %	
Alemania	460	0,1122	11,22 %	
Canadá	367	0,0895	8,95 %	
Francia	299	0,0729	7,29 %	
Reino Unido	250	0,0610	6,10 %	
Otros	405	0,0988	9,88 %	
	n = 4100	1,0000	100,00 %	

<u>Fuente</u>: U.S. Department of Commerce. Datos preparados por el American <u>Iron</u> and <u>Steel</u> <u>Institute</u>, publicados en <u>Charting Steel's Progress</u> in 1992.

<u>Nota</u>: Para poder operar con los datos de la tabla o referirnos a ella, podemos representar la característica a observar (países) mediante la variable X y a la modalidad i-ésima de dicha variable con la notación x_i .

GRÁFICOS

Gráfico de barras verticales

<u>Principales fuentes de importaciones de acero en Estados Unidos durante 1992</u>

<u>Fuente</u>: U.S. Department of Commerce. Datos preparados por el American <u>Iron</u> and <u>Steel Institute</u>, publicados en <u>Charting Steel's Progress</u> in 1992.

Gráfico de sectores

Principales fuentes de importaciones de acero en Estados Unidos durante 1992

Fuente: U.S. Department of Commerce. Datos preparados por el American Iron and Steel Institute, publicados en Charting Steel's Progress in 1992.

Las siguientes son las alturas, en centímetros, de sesenta alumnos universitarios:

150	160	161	160	160	172	162	160	172	151
	•	•		•	•				
163	168	171	178	179	164	176	163	182	162

Estatura de sesenta estudiantes universitarios de Mendoza en 2004

Valores observados	Frecuencia simple absoluta	Frecuencia simple relativa	Frecuencia simple relativa porcentual	Frecuencia acumulada absoluta	Frecuencia acumulada relativa	Frecuencia acumulada relativa porcentual	
Xi	f i	$fr_i = f_i / n$	fr _i %	<u>Ei</u>	Fr: = Fi/n	Fr _i %	
149	1	0,0167	1,67 %	1	0,0167	1,67%	
150	1	0,0167	1,67 %	2	0,0333	3,33%	
151	1	0,0167	1,67 %	3	0,0500	5,00%	

184	1	0,0167	1,67 %	60	1,0000	100,00%
	n - 60					

DATOS AGRUPADOS

Estatura de sesenta estudiantes universitarios de Mendoza en 2004

Intervalos o clases	Punto medio	Frecuencia simple absoluta	Frecuencia simple relativa	Frecuencia simple relativa porcentual	Frecuencia acumulada absoluta	Frecuencia acumulada relativa	Frecuencia acumulada relativa porcentual
	Xi	fi	fri	fr _i %	Fi	Fri	Er:%
[149 , 154)	151,5	4	0,0667	6,67%	4	0,0667	6,67%
[154 , 159)	156,5	3	0,0500	5,00%	7	0,1167	11,67%
[159 , 164)	161,5	18	0,3000	30,00%	25	0,4167	41,67%
[164 , 169)	166,5	7	0,1166	11,66%	32	0,5333	53,33%
[169 , 174)	171,5	16	0,2667	26,67%	48	0,8000	80,00%
[174 , 179)	176,5	8	0,1333	13,33%	56	0,9333	93,33%
[179 , 184]	181,5	4	0,0667	6,67%	60	1,0000	100,00%
		n = 60	1,0000	100 %			

HISTOGRAMA

POLIGONO DE FRECUENCIAS

OJIVA

Ejemplo con R

Sea X: El peso de 40 estudiantes (libras)

119	125	126	128	132	135	135	135
136	138	138	140	140	142	142	144
144	145	145	146	146	147	147	148
149	150	150	152	153	154	156	157
158	161	163	164	165	168	173	176

- >pesos=c(119,...,176)
- Si los datos no estan ordenados
- > sort(pesos)
- >hist(pesos)
- >hist(pesos, col="lightblue",probability=T)
- hist(pesos, col="lightblue",probability=T, ylab="frecuencia relativa", main="Pesos de los estudiantes")
- >stem(pesos)

Histogram of pesos

Medidas numéricas descriptivas

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE DISPERSIÓN

MEDIDAS DE POSICIÓN

MEDIDAS DE FORMA

Medidas numéricas descriptivas

Medidas de tendencia central

Media

Mediana

Moda

Medidas de dispersión

- Rango
- Varianza
- Desviación estándar
- Coeficiente de Variación

Medidas de posición

- Cuartiles
- Deciles
- Percentiles

Medidas de tendencia central

Media Es el promedio aritmético de los datos.

El valor de la variable que ocupa la
 Mediana posición central, en un conjunto ordenado de datos.

Moda
 Es el valor de la variable que se presenta con mayor frecuencia

MEDIDAS PARA DATOS SIN AGRUPAR

Seguimos con el ejemplo de los talleres FIX

Los talleres de trasmisión Fix-An están analizando el tiempo que les toma a los mecánicos retirar, reparar y volver a colocar una trasmisión.

A continuación se analizará el tiempo en horas que se tardó en reparar doce transmisiones en tres sucursales distintas de la empresa.

Primer sucursal....

¿Cuanto demoraron en promedio en armar un transmisión? 9 10

Segunda sucursal....

¿Cuanto demoraron en promedio en armar una transmisión?

Tercera sucursal....

¿Cuanto de moraron en promedio en armar una transmisión?

Las tres sucursales....

¿Cuanto demoraron en promedio cada sucursal?

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{n}$$

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{n} = \frac{\sum_{i=1}^{12} x_i}{12} = 8$$

Determinación de Mediana

Si el conjunto de datos es impar y están ordenados en forma creciente o decreciente, el valor de la mediana es el valor central.

• Si el conjunto de datos es par y están ordenados en forma creciente o decreciente, el valor de la mediana se calcula como el promedio aritmético de las dos observaciones centrales.

Determinación de la mediana

- Si n=impar
- Ejemplo
- 2-4-6-8-9
- I-Ubicamos el lugar central L=(n+I)/2=3
- 2- Observamos el valor que se encuentra en el lugar central

Xme=6

Moda

¿Cuál es el valor de la moda en esta nueva sucursal?

NO HAY MODA

• Podría ver más de una moda?

MEDIDAS DE TENDENCIA CENTRAL

MEDIA

MEDIANA

MODA
VENTAJAS Y DESVENTAJAS

Con R

- >xbarra=mean(pesos)
- >xbarra

$$\bar{x} = 146,8$$

>scuadrado=var(pesos)

MEDIDA DE DISPERSIÓN

RANGOS

VARIANZA

DESVIACIÓN ESTÁNDAR

©COEFICIENTE DE VARIACIÓN

MEDIDAS DE DISPERSIÓN

- Las medidas de dispersión nos proporcionan una medida del mayor o menor agrupamiento de los datos respecto a los valores de tendencia central.
- Son positivas (mayores o iguales a 0)
- Un valor cero indica ausencia de dispersión

Medidas de TC- Medidas de dispersión

• Un promedio puede ser engañoso a menos que vaya acompañado de otra información que nos diga la amplitud o sus desviaciones con relación al promedio.

• Tienen la misma media aritmética, 2,5 puntos ¿pero podemos afirmar que hay homogeneidad entre los grupos?. Gráficamente vemos que el valor de la media aritmética no es suficiente para describir cada una de las situaciones.

•

Medidas de dispersión-Rango

RANGO

$$R = x_{\text{max}} - x_{\text{min}} = 12 - 2 = 10$$

Rango- Rango intercuartil- R. Interdecil

- R =xmax xmin
- El rango proporciona una rápida indicación de la variabilidad existente entre las observaciones de un conjunto de datos.
- La diferencia entre los percentiles 75avo y 25avo recibe el nombre de recorrido intercuartil, sólo incluye el 50% central de la distribución.

Medidas de dispersión

$$\sum_{i=1}^{m} (x_{i} - \bar{x})^{2}$$

Medidas de dispersión

VARIANZA MUESTRAL

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

DESVIACIÓN ESTÁNDAR MUESTRAL

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Varianza-Desviación Estándar

• La varianza de las observaciones x l, x2,...., xn es el promedio del cuadrado de las distancias entre cada observación y la media del conjunto de observaciones.

$$s^{2} = \frac{\sum_{i}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

$$s = \sqrt{\frac{\sum_{i} (x_i - \overline{x})^2}{n - 1}}$$

estándar

Desviaciones estándar

Coeficiente de variación

$${}^{\bullet}C.V.=\frac{s}{\bar{x}}$$

- Esta medida es adimensional.
- Sirve para comparar distintas distribuciones
- Ejemplo: Nos preguntamos quién tiene más variabilidad "Las alturas de los elefantes" o "Las alturas de las hormigas"

Coeficiente de variación

$$CV = \frac{\sigma_X}{\mu_X}$$
 Poblacional $CV = \frac{S_X}{\overline{X}}$ Muestral

- Es adimensional
- Permite efectuar comparaciones de distribuciones de distintas poblaciones.
- Ejemplo: Nos permite compara quién tiene mayor variabilidad ; "Las alturas de los elefantes (m)" o "Las alturas de las hormigas (mm)"
- Nos representa que proporción de la media representa la desviación estándar.

MEDIDAS DE POSICIÓN NO CENTRADAS

©CUARTILES

DECILES

PERCENTILES

Cuartiles, Deciles y Percentiles

Orden de las medidas de posición

$$Q_1^{\circ} = \frac{12+1}{4}1 = 3,25 \rightarrow Q_1 = 3$$

$$D_6^{\circ} = \frac{12+1}{10}6 = 7.8 \rightarrow D_6 = 12$$

$$P_{70}^{\circ} = \frac{12+1}{100}70 = 9,1 \rightarrow P_{70} = 12$$

$$Q_k^{\circ} = \frac{n+1}{4}k$$

$$D_k^{\circ} = \frac{n+1}{10}k$$

$$P_k^{\circ} = \frac{n+1}{100}k$$

Gráfico cuantil-cuantil

- La idea de este gráfico cuantil-cuantil es comparar cuantiles muestrales con cuantiles de una población conocida.
- Nosotros lo usaremos para analizar la normalidad de la distribución de la población.
- > datos(rnorm(35,5))
- > qqnorm(datos)
- > qqline(datos)

Gráfico cuantil-cuantil

Normal Q-Q Plot

