Scientific Seminar "Bayesian Methods of ML"

Deep Structured Models

Ashuha Arseniy

Moscow Institute of Physics and Technology ars.ashuha@gmail.com

April 28, 2016

Based on article: Chen, Schwing, et al. "Learning deep structured models." ICML 2015

Neural Nets and Graphical Models

- Neural Nets and Graphical Models
- Deep Structured Models
- 3 Efficient Approximate Learning of DSM
- 4 Blending Learning
- Evaluation

- ▶ NNs is a framework for constructing flexible models
- Neural net is a composition linear and nonlinear functions

$$argmax(\sigma[Linear(\sigma[Linear(w, w)], w)]) = cat$$

▶ We can learn it efficiently by back propagation

Problem

Can't take into account dependences between predicted variables.

- ► Non structured predict simple variable (like a number)
- Structured predict difficult variable (like a matrix, tree, sequence)

(a) Segmentation, $|Y| = \#pixel^{\#sigment}$

(c) Traffic prediction, |Y|=?

water/animals/sea

(d) Translation, |Y|=?

- ► **GMs** is a framework for taking into account dependencies between predicted variables.
- ▶ What can we do with exp-large output space? Use local dependences.
- ▶ Introduce prior knowledge as a score functions $\phi_r(y_r)$, $|y_r|$ is small

 $\phi_{y1,y2}(\textit{people}, \textit{male}) = 10$ is high $\phi_{y1,y2}(\textit{wather}, \textit{girl}) = 0.2$ is low

▶ We can introduce non-normalized probability distribution over outputs

$$p(y|x, w) = \frac{1}{Z} \prod_{r} \phi_r(x, y_r; w)$$
 Energy $= -\sum_{r} \phi_r(x, y_r; w)$

► Inference Task:

$$y^* = \arg\max_{y} p(y|x, w)$$

- 1. We want to **train parameters** *w* of parametric potential
- 2. Given training data $(x, y) \in D$; estimate the functions $f_r(y, x, w)$
- 3. Minimize a typically convex loss and a regularize on training set

$$Loss_{log}(x, y, w) = -\ln p_{x,y}(y; w)$$

$$Loss_{hinge}(x, y, w) = \max_{\hat{y}} (\Delta(y, \hat{y}) - w^{T} \Phi(x, \hat{y}) + w^{T} \Phi(x, y))$$

4. The assumption is that the model is log-linear

$$E(x, y, w) = -w^T \phi(x, y)$$

and the features decompose in a graph

$$w^T \phi(x, y) = \sum_{r \in R} w_r^t \phi(x, y)$$

Problem

How can we remove the log-linear restriction, to use potentials such as Neural Nets?

Deep Structured Models

- Neural Nets and Graphical Models
- Deep Structured Models
- Sefficient Approximate Learning of DSM
- 4 Blending Learning
- Evaluation

How can we combine Graphical Models and Deep Neural Nets?

- 1. Peace-wise learning:
 - lacktriangle train deep features o train linear potential o inference in GM
- 2. Jointly learning:
 - lacktriangle train deep features as non linear potential ightarrow inference in GM

How can we combine Graphical Models and Deep Neural Nets?

- 1. Peace-wise learning:
 - lacktriangle train deep features o train linear potential o inference in GM
- 2. Jointly learning:
 - ightharpoonup train deep features as non linear potential ightarrow inference in GM

- ▶ We have: scoring function F(x, y; w), training data $(x, y) \in D$
- ▶ Prediction proses is equal finding maximum scoring configuration y^* :

$$y^* = arg \max_{y} F(x, y; w)$$

Introduce probability distribution over configurations as

$$p_{(x,y)}(\hat{y}|w) = \frac{\exp F(x,\hat{y},w)}{\sum_{y'} \exp F(x,y',w)} = \frac{\exp F(x,\hat{y},w)}{Z(x,w)}$$

rephrase previous task as finding high probably configuration

► Training proses is finding parameters w by MLE

$$\begin{aligned} w &= \arg\max_{w} \log \prod_{(x,y) \in D} p_{(x,y)}(y|w) = \\ &= \arg\max_{w} \sum_{(x,y) \in D} F(x,y,w) - \ln Z(x,w) \end{aligned}$$

We have optimization problem:

$$\sum_{(x,y)\in D} \left(F(x,y,w) - log \sum_{y'\in Y} exp \ F(x,y',w) \right) \to \max_{w}$$

Let's solve it by gradient assent (will be proof on the board if it's necessary):

$$\frac{\partial}{\partial w} \sum_{(x,y)\in D} (F(x,y,w) - log Z(x,w)) =$$

$$= \sum_{(x,y)\in D} \sum_{y'\in Y} (p(y'|w,x) - \delta(y'=y)) \frac{\partial}{\partial w} F(x,y',w)$$

Very easy! Where is a challenge?

Problem: What If Y is exponentially large!

1) How can we represent F? 2) What we can do with sum over Y?

$$\sum_{(x,y)\in D} \left(F(x,y,w) - \log \sum_{y'\in Y} \exp F(x,y',w) \right) \to \max_{w}$$

1. Use the graphical model $F(x, y; w) = \sum_{r} f_r(x, y; w)$

$$\frac{\partial}{\partial w} \sum_{(x,y) \in D} (F(x,y,w) - log Z(x,w)) =$$

$$= \sum_{(x,y)\in D} \sum_{y'\in Y} (p(y'|w,x) - \delta(y'=y)) \frac{\partial}{\partial w} F(x,y',w)$$

(will be proof on the board if it's necessary):

$$= \sum_{(x,y)\in D} \sum_{y'_r,r} (p_r(y'_r|w,x) - \delta(y'_r = y_r)) \frac{\partial}{\partial w} f_r(x,y'_r,w)$$

- 2. How to obtain marginals $p_r(y_r|w,x)$?
- 3. Use beliefs $p_r(y_r|w,x) \approx b_r(y_r|w,x)$

Deep Structured Learning (algo 1)

Repeat until stopping criteria:

- 1. Forward pass to compute the $f_r(y_r, x; w)$ $\forall r, y_r, (x, y) \in D$
- 2. Compute the $b_r(y_r|x, w)$ by approx inference $\forall r, y_r, (x, y) \in D$
- 3. Backward pass via chain rule to obtain gradient

$$\frac{\partial}{\partial w} = \sum_{(x,y)\in D, y'_r, r} (b_r(y'_r|w,x) - \delta(y'_r = y_r)) \frac{\partial}{\partial w} f_r(x, y'_r; w)$$

4. Update parameters w

$$\mathbf{w} = \mathbf{w} - \alpha \cdot \partial / \partial \mathbf{w}$$

Problem

We run inference for each object to make one parameters update

Efficient Approximate Learning of DSM

- Neural Nets and Graphical Models
- Deep Structured Models
- Sefficient Approximate Learning of DSM
- 4 Blending Learning
- 5 Evaluation

$$\sum_{(x,y)\in D} \left(F(x,y,w) - \log \sum_{y'\in Y} \exp F(x,y',w) \right) \to \max_{w}$$

1. We can represent Z as (will be proof on the board if it's necessary):

In
$$Z = \sum_{\hat{y}} \exp F(x, \hat{y}, w) = \max_{p_{(x,y)}} \mathbb{E}_{p_{(x,y)}(\hat{y})} F(x, \hat{y}; w) + H(p_{(x,y)})$$

2. Assumption, F and H is decomposed into a sum of "local" functions

$$F = F(x, y; w) = \sum_{r} f_r(x, y_r; w)$$
 $H = H(p_{(x,y)}) = \sum_{r} H(p_{(x,y),r})$

Rephrase our task as

$$\min_{w} \sum_{(x,y) \in D} \left(\max_{p_{(x,y)}} \left\{ \sum_{r} p_{(x,y),r}(\hat{y}_r) f_r(x, \hat{y}_r; w) + H(p_{(x,y)}) \right\} - F \right)$$

$$\sum_{(x,y)\in D} \left(\max_{p_{(x,y)}} \left\{ \sum_{r} p_{(x,y),r}(\hat{y}_r) f_r(x,\hat{y}_r;w) + H(p_{(x,y)}) \right\} - F \right) \to \min_{w}$$

1. We can't compute true marginals, let's use beliefs $b_{(x,y)} \approx p_{(x,y)}$

$$b_{(x,y)} \in C_{(x,y)} = \begin{cases} b_{(x,y),r}(\cdot) \ge 0 & \sum_{y_r} b_{(x,y),r}(y_r) = 1 \\ b_{(x,y),r} = \sum_{\hat{y}_p \setminus \hat{y}_r} p_{(x,y),p}(\hat{y}_p) & \forall r, \hat{y}_r, p \in P(r) \end{cases}$$

- 2. $P(r) = \{ p \in Y : r \subset p \}$ and $C(r) = \{ c \in Y : r \in P(c) \}$
- 3. Rephrase our task as

$$\min_{w} \sum_{(x,y) \in D} \left(\max_{b_{(x,y)} \in C_{(x,y)}} \left\{ \sum_{r} b_{(x,y),r}(\hat{y}_r) f_r(x, \hat{y}_r; w) + H(b_{(x,y)}) \right\} - F \right)$$

Problem

We need to solve inner problem to compute subgradient!

$$\min_{w} \sum_{(x,y)\in D} \left(\max_{b_{(x,y)}\in C_{(x,y)}} \left\{ \sum_{r} b_{(x,y),r}(y_r) f_r(x,y_r;w) + H(b_{(x,y)}) \right\} - F \right)$$

s.t. $b_{(x,y)} \in C_{(x,y)}$ marginalization and discrete distribution conditions H is redefined as barrier function when argument is not a distribution:

1. The Lagrangian of inner problem is:

$$L_{(x,y)} = \sum_{r,\hat{y}_r} b_{(x,y),r}(\hat{y}_r) \cdot \hat{f}_r(x,\hat{y}_r;w,\lambda) + H_{barier}$$

$$\hat{f}_r(x,\hat{y}_r;w,\lambda) = f_r(x,\hat{y}_r;w) + \sum_{p \in P(r)} \lambda_{(x,y),p \to r}(\hat{y}_r) - \sum_{c \in C(r)} \lambda_{(x,y),c \to r}(\hat{y}_c)$$

2. Move to dual task by λ (In $Z = \max_{p_{(x,y)}} \mathbb{E}_{p_{(x,y)}(\hat{y})} F(x, \hat{y}; w) + H(p_{(x,y)})$):

$$\min_{w,\lambda} \sum_{(x,y),r} \ln \sum_{\hat{y}_r} exp \ \hat{f}_r(x,\hat{y}_r;w,\lambda) - \sum_{(x,y) \in D} F(x,y;w)$$

Standard learning:

Blended learning:

Advantage:

More frequent parameter updates

Hazan, Schwing, McAllester, Urtasun: Blending Learning and Inference in Structured Prediction

$$D(\lambda, w) = \sum_{(x,y),r} \ln \sum_{\hat{y}_r} exp(f_r(x, \hat{y}_r; w) + \sum_{c \in C(r)} \lambda_{(x,y),c \to r}(\hat{y}_c) - \sum_{p \in P(r)} \lambda_{(x,y),r \to p}(\hat{y}_r)) - \sum_{(x,y)} F(x,y; w) \to \min_{w,\lambda}$$

▶ Optimize by w (will be proof on the board if it's necessary):

$$\frac{\partial D}{\partial w} = \sum_{(x,y),r,\hat{y}_r} b_{(x,y),r,\hat{y}_r} \frac{\partial}{\partial w} f_r(x,\hat{y}_r;w) + \sum_{(x,y)} \frac{\partial}{\partial w} F(x,y;w)$$

▶ Optimize by λ (will be proof on the board if it's necessary):

$$\begin{split} &\mu_{(x,y),\rho \to r}(\hat{y}_r) = \ln \sum_{\hat{y}_\rho \setminus \hat{y}_r} \exp \left(f_\rho(x,\hat{y}_\rho;w) - \sum_{\rho' \in P(\rho)} \lambda_{(x,y),\rho \to \rho'}(\hat{y}_\rho) + \sum_{r' \in C(\rho) \setminus r} \lambda_{(x,y),r' \to \rho}(\hat{y}_{r'}) \right) \\ &\lambda_{(x,y),r \to \rho}(\hat{y}_r) \propto c_{r'}(f_r(x,\hat{y}_r;w) - \sum_{c \in C(r)} \lambda_{(x,y),c \to r}(\hat{y}_c) + \sum_{\rho \in P(r)} \mu_{(x,y),\rho \to r}(\hat{y}_r)) - \mu_{(x,y),\rho \to r}(\hat{y}_r) \end{split}$$

Efficient Deep Structured Learning (algo 2)

Repeat until stopping criteria:

- 1. Forward pass to compute the $f_r(y_r, x; w)$ $\forall r, y_r, (x, y) \in D$
- 2. Compute the $b_r(y_r|x,w) = \exp(\hat{f}_r(x,y_r;w,\lambda)) \ \forall r,y_r,(x,y) \in D, p \in P(r)$

$$\mu_{(x,y),\rho \rightarrow r}(\hat{y}_r) = \ln \sum_{\hat{y}_{\rho} \backslash \hat{y}_r} \exp \left(f_{\rho}(x,\hat{y}_{\rho};w) - \sum_{\rho' \in P(\rho)} \lambda_{(x,y),\rho \rightarrow \rho'}(\hat{y}_{\rho}) + \sum_{r' \in C(\rho) \backslash r} \lambda_{(x,y),r' \rightarrow \rho}(\hat{y}_{r'}) \right)$$

$$\lambda_{(x,y),r\to\rho}(\hat{y}_r)\propto c_r\cdot \left(f_r(x,\hat{y}_r;w)-\sum_{c\in C(r)}\lambda_{(x,y),c\to r}(\hat{y}_c)+\sum_{\rho\in P(r)}\mu_{(x,y),\rho\to r}(\hat{y}_r)\right)-\mu_{(x,y),\rho\to r}(\hat{y}_r)$$

3. Backward pass via chain rule to obtain gradient

$$g = \sum_{(x,y),r,\hat{y_r}} b_{(x,y),r}(\hat{y}_r) \nabla_w f_r(\hat{y}_r, x; w) - \nabla_w \sum_{(x,y),r} f_r(x,y; w)$$

4. Update parameters w

$$w = w - \alpha \cdot \partial / \partial w$$

- 1. Modeling of correlations between variables
- 2. Non-linear dependence on parameters
- 3. Joint training of many convolution neural networks

Evaluation

- Neural Nets and Graphical Models
- Deep Structured Models
- 3 Efficient Approximate Learning of DSM
- 4 Blending Learning
- Evaluation

Task: Find a combination of tags that describe the image, $IYI = 2^{38}$

sky/plant life/tree sky/plant life/tree

water/animals/sea water/animals/sky

- Graphical Model: Fully Connected 38
- ▶ First order potential: $f_i(x, y_i; U) = Alexnet(x, U)$
- ▶ Second order potential: $f_{i,j}(x, y_i, y_j; W) = W_{y_iy_j}$

Training method	Prediction error [%]		
Unary only	9.36		
Piecewise	7.70		
Joint (with pre-training)	7.25		

Learned class "correlations":

female	0.00	0.68	0.04	0.24	-0.01	-0.05	0.07	-0.01	0.01
people	0.68	0.00	0.06	0.36	-0.05	-0.12	0.74	-0.04	-0.03
indoor	0.04	0.06	0.00	0.07	-0.35	-0.34	0.02	-0.15	-0.21
portrait	0.24	0.36	0.07	0.00	-0.02	-0.01	0.12	0.02	0.05
sky	-0.01	-0.05	-0.35	-0.02	0.00	0.24	-0.00	0.44	0.30
lant life	-0.05	-0.12	-0.34	-0.01	0.24	0.00	-0.07	0.09	0.68
male	0.07	0.74	0.02	0.12	-0.00	-0.07	0.00	0.00	-0.02
clouds	-0.01	-0.04	-0.15	0.02	0.44	0.09	0.00	0.00	0.11
tree	0.01	-0.03	-0.21	0.05	0.30	0.68	-0.02	0.11	0.00
	Tenale	No.	indoor	DOX	S.F.	DA	, nak	c/o,	1/00
	Tennelle Ople Troop Portrain				×	Diant life Clouds tree			

Task: Find five letters within distorted images, $IYI = 26^5$

Graphical Model:

- First order potential:
 - 1. One Layer : $f_i(x, y_i; U) = ReLu(U_1^T \cdot x)$
 - 2. Two Layers: $f_i(x, y_i; U) = ReLu(\overline{U_2}^T \cdot ReLu(\overline{U_1}^T \cdot x))$
- Second order potential:
 - 1. Linear: $f_{i,j}(x, y_i, y_j; W) = W_{y_i y_j}$

Two-layer MLP Configuration

- ► Task: Image segmentation
- ► **Graphical Model**: Fully connected CRF with Gaussian potentials
- **NN**: PreTrain OxfordNet, predicts $40 \times 40 + \text{upsampling}$
- ▶ Inference: using (algo1), with mean-field as approx. inference

Training method	Mean IoU [%]				
Unary only	61.476				
Joint	64.060				

- 1. Jointly learning helps
- 2. Non-linear pairwise function improves over the linear one
- 3. Deeper and more structured \rightarrow better performance
- 4. Wide range of applications: Word recognition, Tagging, Segmentation

Bibliography

- Nen, Schwing, Learning Deep Structured Models v1 v2 v3 icml
- 陯 Hazan, Schwing, Blending Learning and Infer. in Struct. Pred. paper
- Raquel Urtasun, CS Department, UofT, Learning Deep SM slides
- Liang-Chieh Chen, CS Department, UofC, ICML video slides
- Alexandr Schwing, CS Department, UofT, Re.Work video