4 ベクトル空間とその次元 (続き)

定理 4.6 V を有限次元ベクトル空間, $n=\dim V$ とし, v_1,\ldots,v_n を V の基底とする. このとき, V のすべての元は $c_1v_1+\cdots+c_nv_n$ $(c_1,\ldots,c_n\in K)$ という形で書き表すことができる:

$$V = \{c_1v_1 + \dots + c_nv_n \mid c_1, \dots, c_n \in K\}.$$

[証明] 任意の $v\in V$ をとる。n は線形独立となる V の元の組の最大個数だから、n+1 個の組 v_1,\ldots,v_n,v は線形従属となるはず。よって、ある $a_1,\ldots,a_{n+1}\in K$ が存在して、 $a_1v_1+\cdots+a_nv_n+a_{n+1}v=\mathbf{0}$ かつ $(a_1,\ldots,a_{n+1})\neq (0,\ldots,0)$ となる。このとき、もし $a_{n+1}=0$ とすると、 v_1,\ldots,v_n の線形独立性から $a_1=\cdots=a_n=0$ であることになってしまい上記に反するので、 $a_{n+1}\neq 0$ である。 従って、 $v=-(a_1/a_{n+1})v_1-\cdots-(a_n/a_{n+1})v_n$.

前回から抽象的にベクトル空間を定義してきたので、多項式のような「矢印」のイメージとは結びつかないものも「ベクトル」の概念に含めてしまったわけであるが、有限次元のベクトル空間の元は、基底を使って数ベクトルと同一視することにより、図形的なイメージを持たせることができる:

$$V \ni c_1 v_1 + \dots + c_n v_n \longleftrightarrow \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in K^n.$$

5 線形写像とその行列表現

前節と同様に, K を \mathbb{R} または \mathbb{C} とし, スカラーの全体とする.

定義 5.1 U,V を 2 つのベクトル空間, $\varphi:U\to V$ を U から V への写像とする φ が線形写像であるとは、すべての $u,v\in U$ と $c\in K$ に対して

- (i) $\varphi(u+v) = \varphi(u) + \varphi(v)$
- (ii) $\varphi(cu) = c\varphi(u)$

が成り立つことをいう. 特に, U=V のときは線形写像のことを線形変換 (あるいは 1 次変換) という.

 $^{^1}U$ の各元に対して V の元がそれぞれ決まる対応関係が定まっているとき、それを U から V への写像という.

例 5.2 (1) $A=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}$ を 2×2 行列とするとき, $\varphi:K^2\to K^2$ を $\varphi(\boldsymbol{v})=A\boldsymbol{v}$ により定めれば, φ は線形変換となる.

(2) K[x] の中で, n 次以下の多項式全体を $K[x]_n$ と書くことにすると, これは K[x] の有限次元な部分空間となる $(\dim K[x]_n=n+1,$ 基底として $1,x,\ldots,x^n$ がとれる). $n\geq 1$ のとき, $\varphi:K[x]_n\to K[x]_{n-1}$ を $\varphi(f(x))=f'(x)$ により定めると, これは線形写像となる.

U,V が有限次元の場合を考える. $n=\dim U,\, m=\dim V$ とし, $u_1,\ldots,u_n\in U$ が U の基底, $v_1,\ldots,v_m\in V$ が V の基底であったとする. ここで線形写像 $\varphi:U\to V$ が与えられたとき, $\varphi(u_1),\ldots,\varphi(u_n)\in V$ に対して, 定理 4.6 により,

$$\varphi(u_1) = a_{11}v_1 + \dots + a_{m1}v_m$$

$$\vdots$$

$$\varphi(u_n) = a_{1n}v_1 + \dots + a_{mn}v_m$$

となる $a_{ij} \in K \ (i=1,\ldots,m,\,j=1,\ldots,n)$ が存在する. これを略記して、

$$(\varphi(u_1),\ldots,\varphi(u_n))=(v_1,\ldots,v_m)$$

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

と表すこともある. ここに出てくる行列 $\left(egin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array}
ight)$ を $,\,\,arphi$ の (U の基底

 u_1,\ldots,u_n と V の基底 v_1,\ldots,v_m に関する) 表現行列と呼ぶ.

例 5.3 (1) 例 5.2 (1) の φ について, K^2 の基底 $e_1=\begin{pmatrix}1\\0\end{pmatrix}, e_2=\begin{pmatrix}0\\1\end{pmatrix}$ に関する表現行列を求めてみる.

$$\varphi(\boldsymbol{e}_1) = a_{11}\boldsymbol{e}_1 + a_{21}\boldsymbol{e}_2
\varphi(\boldsymbol{e}_2) = a_{12}\boldsymbol{e}_1 + a_{22}\boldsymbol{e}_2$$

だから, A が φ の表現行列そのものである.

(2) 例 5.2 (2) の φ について, $K[x]_2$ の基底 $1,x,x^2$ と $K[x]_1$ の基底 1,x に関する表現行列を求めてみる.

$$\varphi(1) = 0 \cdot 1 + 0x$$

$$\varphi(x) = 1 \cdot 1 + 0x$$

$$\varphi(x^2) = 0 \cdot 1 + 2x$$

だから, φ の表現行列は $\left(egin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}
ight)$ となる. つまり, 略記法で書けば,

$$(\varphi(1), \varphi(x), \varphi(x^2)) = (1, x) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

演習 $5.4~(1)~\varphi:K[x]_2\to K[x]_2$ を $\varphi(f(x))=f''(x)-2xf'(x)+4f(x)$ により定めると、これは $K[x]_2$ の線形変換となることを確かめよ。そして、 $K[x]_2$ の基底 $1,x,x^2$ に関する φ の表現行列を求めよ。

(2) (1) で求めた表現行列を A とする. K^3 の部分空間 W_1 を

$$W_1 = \{ \boldsymbol{v} \in K^3 \mid A\boldsymbol{v} = \boldsymbol{0} \}$$

により定める. 図形的に K^3 を 3 次元空間と同一視したとき, W_1 は 2 つの平面の交わりとして, 直線になることを確かめよ.

(3) $K[x]_2$ の部分空間 W_2 を

$$W_2 = \{ f(x) \in K[x]_2 \mid f''(x) - 2xf'(x) + 4f(x) = 0 \}$$

により定める. $\dim W_2 = 1$ を示せ. (前回最後の問題と同様ですが、(2) と比較すると、前とは少し違って見えると思います.)