# Linear regression

## Topics we'll cover

cornestone of Statistize

- Regression with multiple predictor variables
- 2 Least-squares regression
- 3 The least-squares solution

## Diabetes study

Data from n = 442 diabetes patients.

#### For each patient:

- 10 features  $x = (x_1, ..., x_{10})$ age, sex, body mass index, average blood pressure, and six blood serum measurements.
- A real value y: the progression of the disease a year later.

#### Regression problem:

- response  $y \in \mathbb{R}$
- predictor variables  $x \in \mathbb{R}^{10}$

linea forta of xxy = Wx+b

linea forta of xxy = Wx+b

slope intensit

sregression

y = Wx+b Least-squares regression

Linear function of 10 variables: for  $x \in \mathbb{R}^{10}$ ,

$$f(x) = w_1x_1 + w_2x_2 + \cdots + w_{10}x_{10} + b = w \cdot x + b$$

where  $w = (w_1, w_2, \dots, w_{10})$ . — Single vector W

Penalize error using squared loss  $(y - (w \cdot x + b))^2$ .

#### Least-squares regression:

- Given: data  $(x^{(1)},y^{(1)}),\ldots,(x^{(n)},y^{(n)})\in\mathbb{R}^d imes\mathbb{R}$
- Return: linear function given by  $w \in \mathbb{R}^d$  and  $b \in \mathbb{R}$
- Goal: minimize the loss function

$$L(w,b) = \sum_{i=1}^{n} (y^{(i)} - (w \cdot x^{(i)} + b))^{2}$$

### Back to the diabetes data

- ullet No predictor variables: mean squared error (MSE) =5930
- One predictor ('bmi'): MSE = 3890



- Two predictors ('bmi', 'serum5'): MSE = 3205
- All ten predictors: MSE = 2860

## Least-squares solution 1

Linear function of d variables given by  $w \in \mathbb{R}^d$  and  $b \in \mathbb{R}$ :

$$f(x) = w_1x_1 + w_2x_2 + \cdots + w_dx_d + b = w \cdot x + b$$

Assimilate the intercept b into w:

• Add a new feature that is identically 1: let  $\widetilde{x}=(1,x)\in\mathbb{R}^{d+1}$  derivatively 1:  $(4\ 0\ 2\ \cdots\ 3) \implies (1\ 4\ 0\ 2\ \cdots\ 3)$ 

• Set  $\widetilde{w} = (b, w) \in \mathbb{R}^{d+1}$ 

• Then  $f(x) = w \cdot x + b = \widetilde{w} \cdot \widetilde{x} = (b, \omega) \cdot (l, x) = b + \omega \cdot x$ 

Goal: find  $\widetilde{w} \in \mathbb{R}^{d+1}$  that minimizes

New 
$$L(\widetilde{w}) = \sum_{i=1}^{n} (y^{(i)} - \widetilde{w} \cdot \widetilde{x}^{(i)})^2$$
  $\Rightarrow$  rewrite as further many ve deproduct

 $\chi_{\omega}^{\gamma} \equiv \begin{pmatrix} \omega \chi^{(1)} \\ \widetilde{\omega} \chi^{(2)} \end{pmatrix}$ Least-squares solution 2  $X = \begin{pmatrix} & & \widetilde{\chi}^{(1)} & & & \\ & & \widetilde{\chi}^{(2)} & & & \\ & & & \widetilde{\chi}^{(2)} & & \\ & & & \widetilde{\chi}^{(n)} & & \end{pmatrix}, \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1$ Write and it minimized at  $\widetilde{w} = (X^TX)^{-1}(X^Ty)$ . No Symmon X we take THIS IS THE BROWN & BUTTER OF STATISTICS SUMMATION, INSTEAD OF FOR CUMPS WE VIT A MOTHY W results after assimility 6 into