Непрерывность:

точки a, что при всех x из $\mathcal{W} \cap M$ число f(x) лежит в \mathcal{V} . Обозначение: $f \in C(a)$.

основные определения и теоремы

03.02.2020 — 17.02.2020 35/29/23 з. на 5/4/3

Определение 1. (Непрерывность по Коши) Пусть $M \subseteq \mathbb{R}$. Говорят, что функция $f: M \to \mathbb{R}$ непрерывна в точке $a \in M$, если для любой окрестности $\mathcal V$ точки f(a) найдётся такая окрестность $\mathcal W$

Если f непрерывна в каждой точке из M, говорят, что f непрерывна на M, и пишут $f \in C(M)$.

Замечание. Для простоты можно считать, что M вместе с каждой своей точкой содержит какуюто окрестность или хотя бы полуокрестность этой точки. Но это упрощение необязательно, и вы можете попробовать справиться без него.

Задача 1 $^{\varnothing}$. Запишите без отрицаний: « $f:M\to\mathbb{R}$ разрывна (не непрерывна) в точке $a\in M$ ».

Задача 2. В каких точках непрерывны функции: а) x; б) $\operatorname{sgn} x$; в) x^2 ; г) $\{x\}$; д) $\frac{1}{x}$; е) \sqrt{x} . (Функцию, заданную формулой, мы считаем определённой всюду, где эта формула имеет смысл.)

Определение 2. Пусть $M \subseteq \mathbb{R}$. Говорят, что функция $f: M \to \mathbb{R}$ ограничена на M, если найдётся такое число k, что |f(x)| < k при всех $x \in M$.

Задача 3. Будет ли функция, непрерывная в точке a, ограничена в какой-то окрестности точки a?

Задача 4°. Пусть $f: M \to \mathbb{R}$ непрерывна в точке $a \in M$, причём f(a) > 0. Докажите, что существует такая окрестность \mathcal{U} точки a, что f положительна на множестве $\mathcal{U} \cap M$.

Задача 5 (*Непрерывность по Гейне*) Пусть $M \subseteq \mathbb{R}$. **а)** Докажите, что если функция $f: M \to \mathbb{R}$ непрерывна в точке $a \in M$, то для любой последовательности x_n элементов M, сходящейся к a, последовательность $f(x_n)$ сходится к f(a). **б)** Докажите обратное утверждение.

Задача 6. Пусть $f,g \in C(a)$. Докажите, что **a)** $|f| \in C(a)$; **б)** $f \pm g \in C(a)$; **в)** $f \cdot g \in C(a)$; **r)** если $g(a) \neq 0$, то функция $\frac{f}{a}$ непрерывна в точке a.

Задача 7^{\varnothing} . Докажите непрерывность функции (на её области определения):

а) x^n , где $n \in \mathbb{N}$; б) многочлен из $\mathbb{R}[x]$; в) $\frac{P(x)}{Q(x)}$, где $P, Q \in \mathbb{R}[x]$, $Q \neq 0$; г) $\sqrt[n]{x}$, где $n \in \mathbb{N}$.

Задача 8. Придумайте определённую на $\mathbb R$ функцию f, множество точек разрыва которой есть

а) \mathbb{R} ; б) \mathbb{R} без одной точки; в) $\{\frac{1}{n} \mid n \in \mathbb{N}\}$; г)* \mathbb{Q} .

Задача 9. Пусть $f \in C([a;b])$, причём числа f(a) и f(b) имеют разные знаки. Докажите, что найдётся такое $\gamma \in (a;b)$, что $f(\gamma) = 0$, с помощью **a)** деления отрезка пополам; **б)** аксиомы о существовании точной верхней грани; **в)** компактности отрезка.

Задача 10 $^{\varnothing}$. (Теорема о промежуточном значении). Пусть $f \in C([a;b])$, причём f(a) < f(b). Докажите, что для любого $k \in [f(a);f(b)]$ найдётся такая точка $\gamma \in [a;b]$, что $f(\gamma) = k$.

Задача 11. Докажите, что любой многочлен нечётной степени с действительными коэффициентами имеет хотя бы один действительный корень.

Задача 12 $^{\varnothing}$. Функция непрерывна на отрезке I. Докажите, что она

- а) ограничена на I; б) достигает своего наибольшего и наименьшего значений на I.
- в) Верны ли утверждения предыдущих пунктов, если I интервал или прямая?

Определение 3. *Промежсутком* называется любой отрезок, интервал, полуинтервал, луч (замкнутый или открытый, то есть с началом или без), а также вся действительная прямая.

Задача 13. Непостоянная функция f определена и непрерывна на промежутке $I\subseteq \mathbb{R}$. Каким может быть множество значений этой функции на I, если I- это

а) отрезок; б) интервал; в) полуинтервал; г) открытый луч; д) замкнутый луч; е) прямая?

Задача 14. Пусть $f,g\in C(\mathbb{R})$, причём f(x)=g(x) для любого $x\in\mathbb{Q}$. Докажите, что f=g.

Задача 15. Найдите все $f \in C(\mathbb{R})$, такие что f(x+y) = f(x) + f(y) для любых $x,y \in \mathbb{R}$.

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	$\begin{bmatrix} 2 \\ \Gamma \end{bmatrix}$	2 Д	$\begin{bmatrix} 2 \\ e \end{bmatrix}$	3	4	5 a	5	6 a	66	6 B	6 Г	 7 б	7 B	$\begin{bmatrix} 7 \\ \Gamma \end{bmatrix}$	8 a	8 6	8 B	8 Г	9 a	9	9 B	10	11	12 a	12 б	12 B	13 a	13 б	13 B	13 Г	13 Д	13 e	14	15