Deep Learning for Recommender Systems

Balázs Hidasi

Head of Research @ Gravity R&D

balazs.hidasi@gravityrd.com

RecSys Summer School, 21-25 August, 2017, Bozen-Bolzano

What is Deep Learning?

- A class of machine learning algorithms
 - that use a cascade of multiple non-linear processing layers
 - and complex model structures
 - to learn different representations of the data in each layer
 - where higher level features are derived from lower level features
 - to form a hierarchical representation

What is Deep Learning?

- The second resurgence of neural network research
- A useful toolset for
 - pattern recognition (in various data)
 - representation learning
- A set of techniques that achieve previously unseen results on complex tasks
 - Computer vision
 - Natural language processing
 - Reinforcement learning
 - Speech recognition
 - Etc.
- A key component of recent intelligent technologies
 - Personal assistants
 - Machine translation
 - Chatbot technology
 - Self driving cars
 - Etc.
- A new trendy name for neural networks

What is Deep learning NOT?

- Deep learning is NOT
 - Al (especially not general/strong Al)
 - Al has many to it than just machine learning
 - It can be part of specialized Als
 - Might be part of a future strong Al
 - the artifical equivalent of the human brain
 - o but techniques in DL are inspired by neuroscience
 - the best tool for every machine learning task
 - requires lots of data to work well
 - computationally expensive
 - o "no guarantees": theorethical results are few and far between
 - o (mostly) a black box approach
 - lot of pitfalls

Neural Networks - Neuron

- Rough abstraction of the human neuron
 - Receives inputs (signals)
 - Sum weighted inputs is big enough → signal
 - Non-continuous step function is approximated by sigmoid

$$- \sigma(x) = \frac{1}{1 + e^{-x}}$$
$$- \sigma'(x) = (1 - \sigma(x))\sigma(x)$$

- Amplifiers and inhibitors
- Basic pattern recognition
- The combination of a linear model and an activation function

$$y = f(\sum_i w_i x_i + b)$$

Neural Networks

- Artificial neurons connected to each other
 - Outputs of certain neurons connected to the input of neurons
- Feedforward neural networks
 - Neurons organized in layers
 - The input of the k-th layer is the output of the (k-1)-th layer
 - Input layer: the values are set (based on data)
 - Output layer: the output is not the input of any other layer
 - Hidden layer(s): the layers inbetween
 - Forward propagation

$$\circ \quad h_i^0 = x_i$$

$$\circ \quad s_j^k = \sum_j w_{i,j}^k h_i^{k-1} + b_j$$

 $\circ \quad s^k = W^k h^{k-1} + b$

$$\circ h_i^k = f(s_i^k)$$

 $\circ h^k = f(s^k)$

$$\circ \quad y_i = f(s_i^{n+1})$$

Training Neural Networks - Backpropagation

- Training: modify weights to get the expected output
 - Training set: input-(expected) output pairs
 - Many ways to do this
 - Most common: gradient descent
 - Define loss between output and expected output
 - Loss (L): single scalar
 - Multiple output: individual losses (e_i) are summed
 - Compute the gradient of this loss wrt. the weights
 - Modify the weights in the (opposite) direction of the gradient
- For the hidden-to-output weights (last layer):

$$\frac{\partial L}{\partial w_{j,i}^{n+1}} = \frac{\partial e_i}{\partial \hat{y}_i} \cdot \frac{\partial y_i}{\partial s_i^{n+1}} \cdot \frac{\partial s_i^{n+1}}{\partial w_{j,i}^{n+1}} = \frac{\partial e_i}{\partial \hat{y}_i} f'(s_i^{n+1}) h_j^n$$

- For the second to last layser:
 - $\frac{\partial L}{\partial w_{k,j}^n} = \sum_i \frac{\partial e_i}{\partial \hat{y}_i} \cdot \frac{\partial y_i}{\partial s_i^{n+1}} \cdot \frac{\partial s_i^{n+1}}{\partial h_j^n} \cdot \frac{\partial h_j^n}{\partial s_j^n} \cdot \frac{\partial s_j^n}{\partial w_{k,j}^n} = \sum_i \frac{\partial e_i}{\partial \hat{y}_i} f'(s_i^{n+1}) w_{j,i}^{n+1} f'(s_j^n) h_k^{n-1}$
- Backpropagation of the error from layer k to $\frac{1}{\partial u^{k-1}} = h^{k-2} \left((d^k)^T W^k \circ f'(s_j^{k-1})^T \right)$ • $\frac{\partial L}{\partial w_{l,j}^{k-1}} = \left(\sum_i d_i^k w_{j,i}^k \right) f'(s_j^{k-1}) h_l^{k-2}$ • $(d^k)^T = (d^{k+1})^T W^{k+1} \circ f'(s_j^k)^T$
 - $d_j^k = \begin{cases} \frac{\partial e_i}{\partial y_i} & \text{if } k = n+1\\ \sum_i d_i^{k+1} w_{j,i}^{k+1} f'(s_j^k) & \text{otherwise} \end{cases}$

Why go deep?

- Feedforward neural networks are universal approximators
 - Can approximate any function with arbitarily low error if they are big enough
- What is big enough?
 - Number of layers / neurons
 - Theoretical "big enough" conditions massively overshoot
- Go deep, not wide
 - For certain functions it is shown
 - Exists a k number
 - The number of neurons required for approximating the function is polynomial (in the input) if the network has at least k hidden layers (i.e. deep enough)
 - Otherwise the number of required units is exponential in the input

Why was it hard to train neural networks?

Vanishing gradients

- $\sigma'(x) = (1 \sigma(x))\sigma(x)$
 - o x is too small or too big, the gradient becomes near zero (no update) \rightarrow saturation
 - It is possible that large parts of the network stop changing
 - The maximum is 0.25 (at x = 0)
 - After several layers the gradient vanishes (update negligible)

Saturation

- Absolute value of weighted inputs is large
- Output 1/0, gradient close to 0 (no updates)
 - Neuron doesn't learn
- Solutions (lot of effort on each task)
 - Initialization
 - Limited activations
 - Sparse activations

Overfitting

- High model capacity, prone to overfitting
- Black box, overfitting is not apparent
- L1/L2 regularization helps, but doesn't solve the problem
- Early stopping

Convergence issues

- SGD often gets stuck → momentum methods
- Sensitivity to learning rate parameter

Neural Winters

- Reasons:
 - Inflated expectations
 - Underdelivering
 - Hard to train the networks
- Results in disappointment
 - People abandoning the field
 - Lower funding
- First neural winter in the 1970s, second in the 1990s
 - Gives way to other methods
- Deep learning is not new
 - First deep models were proposed in the late 1960s
- The area was revived in the mid-2000s by layerwise training
- Deep learning boom has started around 2012-2013

Intermission – Layerwise training

- [Hinton et. al, 2006]
- To avoid saturation of the activation functions
- Layerwise training:
 - 1. Train a network with a single hidden layer, where the desired output is the same as the input
 - Unsupervised learning (autoassociative neural network)
 - The hidden layer learns a latent representation of the input
 - 2. Cut the output layer
 - 3. Train a new network with a single layer, using the hidden layer of the previous network as the input
 - Repeat from 2 fro some more layers
 - 4. For supervised learning, put a final layer on the top of this structure and optionally fine tune the weights
- What happens?
 - The weights are not initialized randomly
 - Rather they are set to produce latent representations in the hidden layer
 - Vanishing gradient is still in the lower layers
 - No problem, the weights are set to sensible values
- Deep Belief Networks (DBN), Deep Boltzmann Machines (DBM)
- Was replaced by end-to-end training & non-saturating activations

Why now? - Compute

- Natural increase in computational power
- GP GPU technology
 - NN rely on matrix and vector operations
 - Parallelization brings great speed-up
 - GPU architecture is a good fit

Why now? - Data

- Complex models are more efficient when trained on lots of data
- The amount of data increased quickly
 - This includes labelled data as well

Why now? – Research breakthroughs – Non-saturating activations

Name	f(x)	f'(x)	Parameters
Rectified Linear Unit (ReLU) [Nair & Hinton, 2010]	$f(x) = \max(x, 0)$	$f'(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$	None
Leaky ReLU [Maas et. al, 2013]	$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ \alpha x & \text{if } x < 0 \end{cases}$	$f'(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ \alpha & \text{if } x < 0 \end{cases}$	0 < α < 1
Exponential Linear Unit (ELU) [Clevert et. al, 2016]	$f(x) = \begin{cases} x & \text{if } x \ge 0\\ \alpha(e^x - 1) & \text{if } x < 0 \end{cases}$	$f'(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ f(x) + \alpha & \text{if } x < 0 \end{cases}$	α
Scaled Exponential Linear Unit (SELU) [Klambaues et. al, 2017]	$f(x) = \lambda \begin{cases} x & \text{if } x \ge 0\\ \alpha(e^x - 1) & \text{if } x < 0 \end{cases}$	$f'(x) = \lambda \begin{cases} 1 & \text{if } x \ge 0 \\ f(x) + \alpha & \text{if } x < 0 \end{cases}$	$\alpha \lambda > 1$
2 -	Sigmoid 0.8	— Sigmoid — ReLU — Leaky ReLU (0.1) — ELU (1)	RAVITY

Why now? – Research breakthroughs – Dropout: easy but efficient regularization

- Dropout [Srivastava et. al, 2014]:
 - During training randomly disable units
 - Scale the activation of remaining units
 - So that the average expected activation remains the same
 - E.g.: dropout=0.5
 - Disable each unit in the layer with 0.5 probability
 - Multiply the activation of non-disabled units by 2
 - No dropout during inference time
- Why dropout works?
 - A form of ensemble training
 - Multiple configurations are trained with shared weights and averaged in the end
 - Reduces the reliance of neurons on each other
 - Each neuron learns something useful
 - Redundance in pattern recognition
 - Form of regularization

Why now? – Research breakthroughs – Mini-batch training

- Full-batch gradient descent
 - Compute the average gradient over the full training data
 - Pass all data points forward & backward
 - Without changing the weights
 - Save the updates
 - Compute the average update and modify the weights
 - Accurate gradients
 - Costly updates, but can be parallelized
- Stochastic gradient descent
 - Select a random data point
 - Do a forward & backwards pass
 - Update the weights
 - Repeat
 - Noisy gradient
 - o Acts as regularization
 - Cheap updates, but requires more update steps
 - Overall faster conversion
- Mini-batch training
 - Select N random data points
 - Do batch training with these N data points
 - The best of both worlds

Why now? – Research breakthroughs – Adaptive learning rates

- Standard SGD gets stuck in valleys and around saddle points
 - Momentum methods
- Learning rate parameter greatly influences convergence speed
- Learning rate scheduling
 - Larger steps in the beginning
 - Smaller steps near the end
 - Various heuristics
 - \circ E.g. multiply by $0 < \gamma < 1$ after every N updates
 - E.g. Measure error on a small validation set and decrease learning rate if there is no improvement
 - Weights are not updated with the same frequency
- Adaptive learning rates
 - Collect gradient updates on weights so far and use these to scale learning rate per weight
 - Robust training wrt initial learning rate
 - Fast convergence
 - Recent paper claims that these might be suboptimal

Method	Accumulated values	Scaling factor
Adagrad [Duchi et. al, 2011]	$G_t = G_{t-1} + (\nabla L_t)^2$	$-rac{\eta}{\sqrt{G_t+\epsilon}}$
RMSProp [Tieleman & Hinton, 2012]	$G_t = \gamma G_{t-1} + (1 - \gamma)(\nabla L_t)^2$	$-\frac{\eta}{\sqrt{G_t+\epsilon}}$
Adadelta [Zeiler, 2012]	$G_t = \gamma G_{t-1} + (1 - \gamma)(\nabla L_t)^2$ $\Delta_t = \gamma \Delta_{t-1} + (1 - \gamma) \left(\frac{\sqrt{\Delta_{t-1} + \epsilon}}{\sqrt{G_t + \epsilon}} \nabla L_t\right)^2$	$-\frac{\sqrt{\Delta_{t-1}+\epsilon}}{\sqrt{G_t+\epsilon}}\nabla L_t$
Adam [Kingma & Ba, 2014]	$M_{t} = \beta_{1} M_{t-1} + (1 - \beta_{1}) \nabla L_{t}$ $V_{t} = \beta_{2} V_{t-1} + (1 - \beta_{2}) (\nabla L_{t})^{2}$	$-\frac{\eta \frac{M_t}{1-\beta_1^t}}{\sqrt{\frac{V_t}{1-\beta_2^t}+\epsilon}}$

Complex deep networks

Modular view

- Complex networks are composed from modules appropriate for certain tasks
- E.g. Feature extraction with CNN, combined with an RNN for text representation fed to feedforward module

Function approximation

- The network is a trainable function in a complex system
- E.g. DQN: the Q function is replaced with a trainable neural network

Representation learning

- The network learns representations of the entities
- These representations are then used as latent features
- E.g. Image classification with CNN + a classifier on top

Common building blocks

- Network types
 - Feedforward network (FFN, FNN)
 - Recurrent network (RNN)
 - For sequences
 - Convolutional network (CNN)
 - Exploiting locality
- Supplementary layers
 - Embedding layer (input)
 - Output layer
 - Classifier
 - Binary
 - Multiclass
 - Regressor
- Losses (common examples)
 - Binary classification: logistic loss
 - Multiclass classification: cross entropy (preceded by a softmax layer)
 - Distribution matching: KL divergence
 - Regression: mean squared error

Common architectures

- Single network
- Multiple networks merged
- Multitask learning architectures
- Encoder-decoder
- Generative Adversarial Networks (GANs)
- And many more...

Impressive results

- Few of the many impressive results by DL fom the last year
 - Image classification accuracy exceeds human baseline
 - Superhuman performance in certain Atari games
 - Agent receives only the raw pixel input and the score
 - AlphaGo beat go world champions
 - Generative models generate realistic images
 - Large improvements in machine translation
 - Improvements in speech recognition
 - Many production services using deep learning

Don't give in to the hype

- Deep learning is impressive but
 - deep learning is not Al
 - strong/general AI is very far away
 - instead of worrying about "sentient" Al, we should focus on the more apparent problems this technological change brings
 - deep learning is not how the human brain works
 - not all machine learning tasks require deep learning
 - deep learning requires a lot of computational power
 - the theory of deep learning is far behind of its empirical success
 - this technological change is not without potentially serious issues inflicted on society if we are not careful enough
- Deep learning is a tool
 - which is successful in certain, previously very challenging domains (speech recognition, computer vision, NLP, etc.)
 - that excels in pattern recognition

Why deep learning has potential for RecSys?

- Feature extraction directly from the content
 - Image, text, audio, etc.
 - Instead of metadata
 - For hybrid algorithms
- Heterogenous data handled easily
- Dynamic behaviour modeling with RNNs
- More accurate representation learning of users and items
 - Natural extension of CF & more
- RecSys is a complex domain
 - Deep learning worked well in other complex domains
 - Worth a try

The deep learning era of RecSys

- Brief history:
 - 2007: Deep Boltzmann Machines for rating prediction
 - Also: Asymmetric MF formulated as a neural network (NSVD1)
 - 2007-2014: calm before the storm
 - Very few, but important papers in this topic
 - 2015: first signs of a deep learning boom
 - Few seminal papers laying the groundwork for current research directions
 - 2016: steep increase
 - DLRS workshop series
 - Deep learning papers at RecSys, KDD, SIGIR, etc.
 - Distinct research directions are formed by the end of the year
 - 2017: continuation of the increase of DL in recommenders
- Current status & way forward
 - Current research directions to be continued
 - More advanced ideas from DL are yet to be tried
 - Scalability is to be kept in mind

Research directions in DL-RecSys

- As of 2017 summer, main topics:
 - Learning item embeddings
 - Deep collaborative filtering
 - Feature extraction directly from the content
 - Session-based recommendations with RNN
- And their combinations

Best practices

- Start simple
 - Add improvements later
- Optimize code
 - GPU/CPU optimizations may differ
- Scalability is key
- Opensource code
- Experiment (also) on public datasets
- The data should be compatible with the task you want to solve
- Don't use very small datasets
- Don't work on irrelevant tasks, e.g. rating prediction

Frameworks

- Low level
 - Torch, pyTorch Facebook
 - Theano University of Montreal
 - Tensorflow Google
 - MXNet
- High level
 - Keras
 - Lasagne

References

- [Clevert et. al, 2016] DA. Clevert, T. Unterthiner, S. Hochreiter: Fast and accurate deep network learning by exponential linear units (elus). International Conference on Learning Representations (ICLR 2016).
- [Duchi et. al, 2011] J. Duchi, E. Hazan, Y. Singer: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12, 2121–2159 (2011).
- [Hinton et. al, 2006] G. Hinton, S. Osindero, YW Teh: A fast learning algorithm for deep belief nets. *Neural computation* 18.7 (2006): 1527-1554.
- [Kingma & Ba, 2014] D. P. Kingma, J. L. Ba: Adam: A method for stochastic optimization. ArXiv preprint (2014) https://arxiv.org/abs/1412.6980.
- [Klambauer et. al, 2017] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, : Self-Normalizing Neural Networks. ArXiv preprint (2017) https://arxiv.org/abs/1706.02515.
- [Maas et. al, 2013] A. L. Maas, A. Y. Hannun, A. Y. Ng: Rectifier nonlinearities improve neural network acoustic models. 30th International Conference on Machine Learning (ICML 2013).
- [Nair & Hinton, 2010] V. Nair, G. Hinton: Rectified linear units improve restricted boltzmann machines. 27th International Conference on Machine Learning (ICML 2010).
- [Srivastava et. al, 2014] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov: Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning research, 15(1), 1929-1958. 2014.
- [Tieleman & Hinton, 2012] T. Tieleman, G. Hinton: Lecture 6.5 RMSProp, COURSERA: Neural Networks for Machine Learning. Technical report, 2012.
- [Zeiler, 2012] M. D. Zeiler: ADADELTA: an adaptive learning rate method. ArXiv preprint (2012) https://arxiv.org/abs/1212.5701.

Learning item embeddings & 2vec models

Item embeddings

- Embedding: a (learned) real value vector representing an entity
 - Also known as:
 - Latent feature vector
 - (Latent) representation
 - Similar entities' embeddings are similar
- Use in recommenders:
 - Initialization of item representation in more advanced algorithms
 - Item-to-item recommendations

Matrix factorization as embedding learning

- MF: user & item embedding learning
 - Similar feature vectors
 - Two items are similar
 - Two users are similar
 - User prefers item
 - MF representation as a simplictic neural network
 - Input: one-hot encoded user ID
 - Input to hidden weights: user feature matrix
 - Hidden layer: user feature vector
 - Hidden to output weights: item feature matrix
 - Output: preference (of the user) over the items
- Asymmetric MF
 - Instead of user ID, the input is a vector of interactions over the items

Word2Vec

- [Mikolov et. al, 2013a]
- Representation learning of words
- Shallow model
- Linear operations in the vector space can be associated with semantics
 - king man + woman ~ queen
 - Paris France + Italy ~ Rome
- Data: (target) word + context pairs
 - Sliding window on the document
 - Context = words near the target
 - o In sliding window
 - 1-5 words in both directions
- Two models
 - Continous Bag of Words (CBOW)
 - Skip-gram

Word2Vec - CBOW

- Continuous Bag of Words
- Maximalizes the probability of the target word given the context
- Model
 - Input: one-hot encoded words
 - Input to hidden weights
 - Embedding matrix of words
 - Hidden layer
 - Sum of the embeddings of the words in the context
 - Hidden to output weights
 - Softmax transformation
 - Smooth approximation of the max operator
 - Highlights the highest value
 - $\circ \quad s_i = \frac{e^{r_i}}{\sum_{j=1}^N e^{r_j}}, (r_j: scores)$
 - Output: likelihood of words of the corpus given the context
- Embeddings are taken from the input to hidden matrix
 - Hidden to output matrix also has item representations (but not used)

word(t-2) word(t-1) word(t+1) word(t+2)

Word2Vec - Skip-gram

- Maximalizes the probability of the context, given the target word
- Model
 - Input: one-hot encoded word
 - Input to hidden matrix: embeddings
 - Hidden state
 - Item embedding of target
 - Softmax transformation
 - Output: likelihood of context words (given the input word)
- Reported to be more accurate

Speed-up

- Hierarchical softmax [Morin & Bengio, et. al, 2005]
 - Softmax computation requires every score
 - Reduce computations to $O(\log_2 N)$ by using a binary tree
 - Leaves words
 - Each inner node has a trainable vector (v)
 - o $\sigma(v^Tv_c)$ is the probability that the left child of the current node is the next step we have to take in the tree
 - Probability of a word: $p(w|w_c) = \prod_{j=1}^{L(w_t)-1} \sigma\left(I_{n(w,j+1)=ch(n(w,j))} v_{n(w,j)}^T v_c\right)$
 - n(w, j): j-th node on the path to w
 - ch(n): left child of node n
 - During learning the vectors in the nodes are modified so that the target word becomes more likely
- Skip-gram with negative sampling (SGNS) [Mikolov, et. al, 2013b]
 - Input: target word
 - Desired output: sampled word from context
 - Score is computed for the desired output and a few negative samples

Paragraph2vec, doc2vec

- [Le & Mikolov, 2014]
- Learns representation of paragraph/document
- Based on CBOW model
- Paragraph/document embedding added to the model as global context

Prod2Vec

- [Grbovic et. al, 2015]
- Skip-gram model on products
 - Input: i-th product purchased by the user
 - Context: the other purchases of the user
- Bagged prod2vec model
 - Input: products purchased in one basket by the user
 - Basket: sum of product embeddings
 - Context: other baskets of the user
- Learning user representation
 - Follows paragraph2vec
 - User embedding added as global context
 - Input: user + products purchased except for the i-th
 - Target: i-th product purchased by the user
- [Barkan & Koenigstein, 2016] proposed the same model later as item2vec
 - Skip-gram with Negative Sampling (SGNS) is applied to event data

Utilizing more information

- Meta-Prod2vec [Vasile et. al, 2016]
 - Based on the prod2vec model
 - Uses item metadata
 - Embedded metadata
 - Added to both the input and the context
 - Losses between: target/context item/metadata
 - Final loss is the combination of 5 of these losses
- Content2vec [Nedelec et. al, 2017]
 - Separate moduls for multimodel information
 - CF: Prod2vec
 - Image: AlexNet (a type of CNN)
 - Text: Word2Vec and TextCNN
 - Learns pairwise similarities
 - Likelihood of two items being bought together

References

- [Barkan & Koenigstein, 2016] O. Barkan, N. Koenigstein: ITEM2VEC: Neural item embedding for collaborative filtering. IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP 2016).
- [Grbovic et. al, 2015] M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan, D. Sharp: E-commerce in Your Inbox: Product Recommendations at Scale. 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'15).
- [Le & Mikolov, 2014] Q. Le, T. Mikolov: Distributed Representations of Sentences and Documents. 31st International Conference on Machine Learning (ICML 2014).
- [Mikolov et. al, 2013a] T. Mikolov, K. Chen, G. Corrado, J. Dean: Efficient Estimation of Word Representations in Vector Space. ICLR 2013 Workshop.
- [Mikolov et. al, 2013b] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean: Distributed Representations of Words and Phrases and Their Compositionality. 26th Advances in Neural Information Processing Systems (NIPS 2013).
- [Morin & Bengio, 2005] F. Morin, Y. Bengio: Hierarchical probabilistic neural network language model. International workshop on artificial intelligence and statistics, 2005.
- [Nedelec et. al, 2017] T. Nedelec, E. Smirnova, F. Vasile: Specializing Joint Representations for the task of Product Recommendation. 2nd Workshop on Deep Learning for Recommendations (DLRS 2017).
- [Vasile et. al, 2016] F. Vasile, E. Smirnova, A. Conneau: Meta-Prod2Vec Product Embeddings Using Side-Information for Recommendations. 10th ACM Conference on Recommender Systems (RecSys'16).

Deep collaborative filtering

CF with Neural Networks

- Natural application area
- Some exploration during the Netflix prize
- E.g.: NSVD1 [Paterek, 2007]
 - Asymmetric MF
 - The model:
 - Input: sparse vector of interactions
 - Item-NSVD1: ratings given for the item by users
 - Alternatively: metadata of the item
 - User-NSVD1: ratings given by the user
 - Input to hidden weights: "secondary" feature vectors
 - Hidden layer: item/user feature vector
 - Hidden to output weights: user/item feature vectors
 - Output:
 - Item-NSVD1: predicted ratings on the item by all users
 - User-NSVD1: predicted ratings of the user on all items
 - Training with SGD
 - Implicit counterpart by [Pilászy et. al, 2009]
 - No non-linarities in the model

Restricted Boltzmann Machines (RBM) for recommendation

- RBM
 - Generative stochastic neural network
 - Visible & hidden units connected by (symmetric) weights
 - Stochastic binary units
 - Activation probabilities:

$$- p(h_j = 1|v) = \sigma(b_j^h + \sum_{i=1}^m w_{i,j}v_i)$$

-
$$p(v_i = 1|h) = \sigma(b_i^v + \sum_{j=1}^n w_{i,j}h_j)$$

- Training
 - Set visible units based on data
 - Sample hidden units
 - Sample visible units
 - Modify weights to approach the configuration of visible units to the data
- In recommenders [Salakhutdinov et. al, 2007]
 - Visible units: ratings on the movie
 - Softmax unit
 - Vector of length 5 (for each rating value) in each unit
 - Ratings are one-hot encoded
 - Units corresponding to users who not rated the movie are ignored
 - Hidden binary units

Deep Boltzmann Machines (DBM)

- Layer-wise training
 - Train weights between visible and hidden units in an RBM
 - Add a new layer of hidden units
 - Train weights connecting the new layer to the network
 - All other weights (e.g. visible-hidden weights) are fixed

Autoencoders

- Autoencoder
 - One hidden layer
 - Same number of input and output units
 - Try to reconstruct the input on the output
 - Hidden layer: compressed representation of the data
- Constraining the model: improve generalization
 - Sparse autoencoders
 - Activations of units is limited
 - Activation penalty
 - Requires the whole train set to compute
 - Denoising autoencoders [Vincent et. al, 2008]
 - Corrupt the input (e.g. set random values to zero)
 - Restore the original on the output
- Deep version
 - Stacked autoencoders
 - Layerwise training (historically)
 - End-to-end training (more recently)

Autoencoders for recommendation

- Reconstruct corrupted user interaction vectors
- Variants
 - CDL [Wang et. al, 2015]
 - Collaborative Deep Learning
 - Uses Bayesian stacked denoising autoencoders
 - Uses tags/metadata instead of the item ID
 - CDAE [Wu et. al, 2016]
 - Collaborative Denoising Auto-Encoder
 - Additional user node on the input and bias node beside the hidden layer

Recurrent autoencoder

- CRAE [Wang et. al, 2016]
 - Collaborative Recurrent Autoencoder
 - Encodes text (e.g. movie plot, review)
 - Autoencoding with RNNs
 - Encoder-decoder architecture
 - The input is corrupted by replacing words with a deisgnated BLANK token
 - CDL model + text encoding simultaneously
 - Joint learning

Other DeepCF methods (1/2)

- MV-DNN [Elkahky et. al, 2015]
 - Multi-domain recommender
 - Separate feedforward networks for user and items per domain (D+1 networks in total)
 - Features first are embedded
 - Then runthrough sevaral layers
 - Similarity of the final layers (user and item representation) is maximized over items the user visited (against negative examples)
- TDSSM [Song et. al, 2016]
 - Temporal Deep Semantic Structured Model
 - Similar to MV-DNN
 - User features are the combination of a static and a time dependent part
 - The time dependent part is modeled by an RNN
- Coevolving features [Dai et. al, 2016]
 - Users' taste and items' audiences change over time (e.g. forum discussions)
 - User/item features depend on time
 - User/item features are composed of
 - Time drift vector
 - Self evolution
 - Co-evolution with items/users
 - Interaction vector
 - Feature vectors are learned by RNNs

Other DeepCF methods (2/2)

- Product Neural Network (PNN) [Qu et. al, 2016]
 - For CTR estimation
 - Embedded features
 - Pairwise layer: all pairwise combination of embedded features
 - Like Factorization Machines
 - Outer/inner product of feature vectors or both
 - Several fully connected layers
- CF-NADE [Zheng et. al, 2016]
 - Neural Autoregressive Collaborative Filtering
 - User events → preference (0/1) + confidence (based on occurence)
 - Reconstructs some of the user events based on others (not the full set)
 - Random ordering of user events
 - Reconstruct the preference i, based on preferences and confidences up to i-1
 - Loss is weighted by confidences

Applications: app recommendations

- Wide & Deep Learning [Cheng et. al, 2016]
- Ranking of results matching a query
- Combination of two models
 - Deep neural network
 - On embedded item features
 - o "Generalization"
 - Linear model
 - On embedded item features
 - And cross product of item features
 - "Memorization"
 - Joint training
 - Logistic loss
- Improved online performance
 - +2.9% deep over wide
 - +3.9% deep+wide over wide

Applications: video recommendations

- YouTube Recommender [Covington et. al, 2016]
 - Two networks
 - Candidate generation
 - Recommendations as classification
 - Items clicked / not clicked when were recommended
 - Feedforward network on many features
 - Average watch embedding vector of user (last few items)
 - Average search embedding vector of user (last few searches)
 - User attributes
 - Geographic embedding
 - Negative item sampling + softmax
 - Reranking
 - More features
 - Actual video embedding
 - Average video embedding of watched videos
 - Language information
 - Time since last watch
 - Etc.
 - Weighted logistic regression on the top of the network

References

- [Cheng et. al, 2016] HT. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah: Wide & Deep Learning for Recommender Systems. 1st Workshop on Deep Learning for Recommender Systems (DLRS 2016).
- [Covington et. al, 2016] P. Covington, J. Adams, E. Sargin: Deep Neural Networks for YouTube Recommendations. 10th ACM Conference on Recommender Systems (RecSys'16).
- [Dai et. al, 2016] H. Dai, Y. Wang, R. Trivedi, L. Song: Recurrent Co-Evolutionary Latent Feature Processes for Continuous-time Recommendation. 1st Workshop on Deep Learning for Recommender Systems (DLRS 2016).
- [Elkahky et. al, 2015] A. M. Elkahky, Y. Song, X. He: A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems. 24th International Conference on World Wide Web (WWW'15). [Paterek, 2007] A. Paterek: Improving regularized singular value decomposition for collaborative filtering. KDD Cup and Workshop 2007.
- [Paterek, 2007] A. Paterek: Improving regularized singular value decomposition for collaborative filtering. KDD Cup 2007 Workshop.
- [Pilászy & Tikk, 2009] I. Pilászy, D. Tikk: Recommending new movies: even a few ratings are more valuable than metadata. 3rd ACM Conference on Recommender Systems (RecSys'09).
- [Qu et. al, 2016] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu: Product-based Neural Networks for User Response Prediction. 16th International Conference on Data Mining (ICDM 2016).
- [Salakhutdinov et. al, 2007] R. Salakhutdinov, A. Mnih, G. Hinton: Restricted Boltzmann Machines for Collaborative Filtering. 24th International Conference on Machine Learning (ICML 2007).
- [Song et. al, 2016] Y. Song, A. M. Elkahky, X. He: Multi-Rate Deep Learning for Temporal Recommendation. 39th International ACM SIGIR conference on Research and Development in Information Retrieval (SIGIR'16).
- [Vincent et. al, 2008] P. Vincent, H. Larochelle, Y. Bengio, P. A. Manzagol: Extracting and Composing Robust Features with Denoising Autoencoders. 25th international Conference on Machine Learning (ICML 2008).
- [Wang et. al, 2015] H. Wang, N. Wang, DY. Yeung: Collaborative Deep Learning for Recommender Systems. 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'15).
- [Wang et. al, 2016] H. Wang, X. Shi, DY. Yeung: Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks. Advances in Neural Information Processing Systems (NIPS 2016).
- [Wu et. al, 2016] Y. Wu, C. DuBois, A. X. Zheng, M. Ester: Collaborative Denoising Auto-encoders for Top-n Recommender Systems. 9th ACM International Conference on Web Search and Data Mining (WSDM'16)
- [Zheng et. al, 2016] Y. Zheng, C. Liu, B. Tang, H. Zhou: Neural Autoregressive Collaborative Filtering for Implicit Feedback. 1st Workshop on Deep Learning for Development Recommender Systems (DLRS 2016).

Feature extraction from content for hydrid recommenders

Content features in recommenders

- Hybrid CF+CBF systems
 - Interaction data + metadata
- Model based hybrid solutions
 - Initiliazing
 - Obtain item representation based on metadata
 - Use this representation as initial item features
 - Regularizing
 - Obtain metadata based representations
 - The interaction based representation should be close to the metadata based
 - Add regularizing term to loss of this difference
 - Joining
 - Obtain metadata based representations
 - Have the item feature vector be a concatenation
 - Fixed metadata based part
 - Learned interaction based part

Feature extraction from content

- Deep learning is capable of direct feature extraction
 - Work with content directly
 - Instead (or beside) metadata
- Images
 - E.g.: product pictures, video thumbnails/frames
 - Extraction: convolutional networks
 - Applications (e.g.):
 - Fashion
 - Video
- Text
 - E.g.: product description, content of the product, reviews
 - Extraction
 - RNNs
 - o 1D convolution networks
 - Weighted word embeddings
 - Paragraph vectors
 - Applications (e.g.):
 - News
 - Books
 - Publications
- Music/audio
 - Extraction: convolutional networks (or RNNs)

- Speciality of images
 - Huge amount of information
 - 3 channels (RGB)
 - Lots of pixels
 - Number of weights required to fully connect a 320x240 image to 2048 hidden units:
 - -3*320*240*2048 = 471,859,200
 - Locality
 - Objects' presence are independent of their location or orientation
 - Objects are spatially restricted

- Image input
 - 3D tensor
 - Width
 - Height
 - Channels (R,G,B)
- Text/sequence inputs
 - Matrix
 - of one-hot encoded entities
- Inputs must be of same size
 - Padding
- (Classic) Convolutional Nets
 - Convolution layers
 - Pooling layers
 - Fully connected layers

- Convolutional layer (2D)
 - Filter
 - Learnable weights, arranged in a small tensor (e.g. 3x3xD)
 - The tensor's depth equals to the depth of the input
 - Recognizes certain patterns on the image
 - Convolution with a filter
 - Apply the filter on regions of the image

$$- y_{a,b} = f(\sum_{i,j,k} w_{i,j,k} I_{i+a-1,j+b-1,k})$$

Filters are applied over all channels (depth of the input tensor)

8

5

48

19

-27

28

- Activation function is usually some kind of ReLU
- Start from the upper left corner
- Move left by one and apply again
- Once reaching the end, go back and shift down by one
- Result: a 2D map of activations, high at places corresponding to the pattern recognized by the filter
- Convolution layer: multiple filters of the same size
 - o Input size $(W_1 \times W_2 \times D)$
 - \circ Filter size $(F \times F \times D)$
 - Stride (shift value) (S)
 - Number of filters (N)
 - Output size: $\left(\frac{W_1 F}{S} + 1\right) \times \left(\frac{W_2 F}{S} + 1\right) \times N$
 - Number of weights: $F \times F \times D \times N$
- Another way to look at it:
 - o Hidden neurons organized in a $\left(\frac{W_1-F}{S}+1\right) \times \left(\frac{W_2-F}{S}+1\right) \times N$ tensor
 - Weights a shared between neurons with the same depth
 - o A neuron processe an $F \times F \times D$ region of the input
 - Neighboring neurons process regions shifted by the stride value

Pooling layer

- Mean pooling: replace an $R \times R$ region with the mean of the values
- Max pooling: replace an $R \times R$ region with the maximum of the values
- Used to quickly reduce the size
- Cheap, but very aggressive operator
 - Avoid when possible
 - Often needed, because convolutions don't decrease the number of inputs fast enough
- Input size: $W_1 \times W_2 \times N$
- Output size: $\frac{W_1}{R} \times \frac{W_2}{R} \times N$

Fully connected layers

- Final few layers
- Each hidden neuron is connected with every neuron in the next layer
- Residual connections (improvement) [He et. al, 2016]
 - Very deep networks degrade performance
 - Hard to find the proper mappings
 - Reformulation of the problem: $F(x) \rightarrow F(x)+x$

- Some examples
 GoogLeNet [Szegedy et. al, 2015]

 Perious layer

 Perious layer
- Inception-v3 model [Szegedy et. al, 2016]

ResNet (up to 200+ layers) [He et. al, 2016]

Images in recommenders

- [McAuley et. Al, 2015]
 - Learns a parameterized distance metric over visual features
 - Visual features are extracted from a pretrained CNN
 - o Distance function: Eucledian distance of "embedded" visual features
 - Embedding here: multiplication with a weight matrix to reduce the number of dimensions
 - Personalized distance
 - Reweights the distance with a user specific weight vector
 - Training: maximizing likelihood of an existing relationship with the target item
 - o Over uniformly sampled negative items
- Visual BPR [He & McAuley, 2016]
 - Model composed of
 - Bias terms
 - MF model
 - Visual part
 - Pretrained CNN features
 - Dimension reduction through "embedding"
 - The product of this visual item feature and a learned user feature vector is used in the model
 - Visual bias
 - Product of the pretrained CNN features and a global bias vector over its features
 - BPR loss
 - Tested on clothing datasets (9-25% improvement)

Music representations

- [Oord et. al, 2013]
 - Extends iALS/WMF with audio features
 - To overcome cold-start
 - Music feature extraction
 - Time-frequency representation
 - Applied CNN on 3 second samples
 - Latent factor of the clip: average predictions on consecutive windows of the clip
 - Integration with MF
 - (a) Minimize distance between music features and the MF's feature vectors
 - (b) Replace the item features with the music features (minimize original loss)

Textual information improving recommendations

- [Bansal et. al, 2016]
 - Paper recommendation
 - Item representation
 - Text representation
 - Two layer GRU (RNN): bidirectional layer followed by a unidirectional layer
 - Representation is created by pooling over the hidden states of the sequence
 - ID based representation (item feature vector)
 - Final representation: ID + text added
 - Multi-task learning
 - Predict both user scores
 - And likelihood of tags
 - End-to-end training
 - All parameters are trained simultaneously (no pretraining)
 - Loss
 - User scores: weighted MSE (like in iALS)
 - Tags: weighted log likelihood (unobserved tags are downweighted)

References

- [Bansal et. al, 2016] T. Bansal, D. Belanger, A. McCallum: Ask the GRU: Multi-Task Learning for Deep Text Recommendations. 10th ACM Conference on Recommender Systems (RecSys'16).
- [He et. al, 2016] K. He, X. Zhang, S. Ren, J. Sun: Deep Residual Learning for Image Recognition. CVPR 2016.
- [He & McAuley, 2016] R. He, J. McAuley: VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback. 30th AAAI Conference on Artificial Intelligence (AAAI' 16).
- [McAuley et. Al, 2015] J. McAuley, C. Targett, Q. Shi, A. Hengel: Image-based Recommendations on Styles and Substitutes. 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'15).
- [Oord et. al, 2013] A. Oord, S. Dieleman, B. Schrauwen: Deep Content-based Music Recommendation. Advances in Neural Information Processing Systems (NIPS 2013).
- [Szegedy et. al, 2015] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich: Going Deeper with Convolutions. CVPR 2015.
- [Szegedy et. al, 2016] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna: Rethinking the Inception Architecture for Computer Vision. CVPR 2016.

Recurrent Neural Networks & Session-based recommendations

Recurrent Neural Networks

- Input: sequential information $(\{x_t\}_{t=1}^T)$
- Hidden state (h_t) :
 - representation of the sequence so far
 - influenced by every element of the sequence up to t

$$\bullet \ h_t = f(Wx_t + Uh_{t-1} + b)$$

RNN-based machine learning

- Sequence to value
 - Encoding, labeling
 - E.g.: time series classification
- Value to sequence
 - Decoding, generation
 - E.g.: sequence generation
- Sequence to sequence
 - Simultaneous
 - E.g.: next-click prediction
 - Encoder-decoder architecture
 - E.g.: machine translation
 - Two RNNs (encoder & decoder)
 - Encoder produces a vector describing the sequence
 - - Last hidden state
 - Combination of hidden states (e.g. mean pooling)
 - Learned combination of hidden states
 - Decoder receives the summary and generates a new sequence
 - The generated symbol is usually fed back to the decoder
 - The summary vector can be used to initialize the decoder
 - Or can be given as a global context
 - Attention mechanism (optionally)

Exploding/Vanishing gradients

- $\bullet \ h_t = f(Wx_t + Uh_{t-1} + b)$
- Gradient of h_t wrt. x_1
 - Simplification: linear activations
 - In reality: bounded

- $||U||_2 < 1 \rightarrow$ vanishing gradients
 - The effect of values further in the past is neglected
 - The network forgets
- $||U||_2 > 1 \rightarrow$ exploding gradients
 - Gradients become very large on longer sequences
 - The network becomes unstable

Handling exploding gradients

- Gradient clipping
 - If the gradient is larger than a threshold, scale it back to the threshold
 - Updates are not accurate
 - Vanishing gradients are not solved
- Enforce $||U||_2 = 1$
 - Unitary RNN
 - Unable to forget
- Gated networks
 - Long-Short Term Memory (LSTM)
 - Gated Recurrent Unit (GRU)
 - (and a some other variants)

Long-Short Term Memory (LSTM)

- [Hochreiter & Schmidhuber, 1999]
- Instead of rewriting the hidden state during update, add a delta

 - Keeps the contribution of earlier inputs relevant
- Information flow is controlled by gates
 - Gates depend on input and the hidden state
 - Between 0 and 1
 - Forget gate (f): 0/1 → reset/keep hidden state
 - Input gate (i): 0/1 → don't/do consider the contribution of the input
 - Output gate (o): how much of the memory is written to the hidden state
- Hidden state is separated into two (read before you write)
 - Memory cell (c): internal state of the LSTM cell
 - Hidden state (h): influences gates, updated from the memory cell

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$\tilde{c}_t = \tanh(Wx_t + Uh_{t-1} + b)
c_t = f_t \circ c_{t-1} + i_t \circ \tilde{c}_t
h_t = o_t \circ \tanh(c_t)$$

Gated Recurrent Unit (GRU)

- [Cho et. al, 2014]
- Simplified information flow
 - Single hidden state
 - Input and forget gate merged → update gate (z)
 - No output gate
 - Reset gate (r) to break information flow from previous hidden

state

Similar performance to LSTM

$$z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$$

$$r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)$$

$$\tilde{h}_t = \tanh(W x_t + r_t \circ U h_{t-1} + b_r)$$

$$h_t = \tanh(Wx_t + r_t \circ Uh_{t-1} + b)$$

$$h_t = z_t \circ h_t + (1 - z_t) \circ \tilde{h}_t$$

Session-based recommendations

- Sequence of events
 - User identification problem
 - Disjoint sessions (instead of consistent user history)
- Tasks
 - Next click prediction
 - Predicting intent
- Classic algorithms can't cope with it well
 - Item-to-item recommendations as approximation in live systems
- Area revitalized by RNNs

GRU4Rec (1/3)

- [Hidasi et. al, 2015]
- Network structure
 - Input: one hot encoded item ID
 - Optional embedding layer
 - GRU layer(s)
 - Output: scores over all items
 - Target: the next item in the session
- Adapting GRU to session-based recommendations
 - Sessions of (very) different length & lots of short sessions: session-parallel mini-batching
 - Lots of items (inputs, outputs): sampling on the output
 - The goal is ranking: listwise loss functions on pointwise/pairwise scores

GRU4Rec (2/3)

- Session-parallel mini-batches
 - Mini-batch is defined over sessions
 - Update with one step BPTT
 - Lots of sessions are very short
 - 2D mini-batching, updating on longer sequences (with or without padding) didn't improve accuracy
- Output sampling
 - Computing scores for all items (100K 1M) in every step is slow
 - One positive item (target) + several samples
 - Fast solution: scores on mini-batch targets
 - Items of the other mini-batch are negative samples for the current mini-batch
- Loss functions
 - Cross-entropy + softmax
 - Average of BPR scores
 - TOP1 score (average of ranking error + regularization over score values)

$$XE = -\log(s_i), s_i = \frac{e^{\hat{y}_i}}{\sum_{j=1}^{N_S} e^{\hat{y}_j}}$$

$$BPR = \frac{-\sum_{j=1}^{N_S} \log\left(\sigma(\hat{y}_i - \hat{y}_j)\right)}{N_S}$$

$$TOP1 = \frac{\sum_{j=1}^{N_S} \sigma(\hat{y}_j - \hat{y}_i) + \sum_{j=1}^{N_S} \sigma(\hat{y}_j^2)}{N_S}$$

$$GR$$

GRU4Rec (3/3)

Observations

- Similar accuracy with/without embedding
- Multiple layers rarely help
 - Sometimes slight improvement with 2 layers
 - Sessions span over short time, no need for multiple time scales
- Quick conversion: only small changes after 5-10 epochs
- Upper bound for model capacity
 - No improvement when adding additional units after a certain threshold
 - This threshold can be lowered with some techniques

Results

20-30% improvement over item-to-item recommendations

Improving GRU4Rec

- Recall@20 on RSC15 by GRU4Rec: 0.6069 (100 units), 0.6322 (1000 units)
- Data augmentation [Tan et. al, 2016]
 - Generate additional sessions by taking every possible sequence starting from the beginning of a session
 - Randomly remove items from these sequences
 - Long training times
 - Recall@20 on RSC15 (using the full training set for training): ~0.685 (100 units)
- Bayesian version (ReLeVar) [Chatzis et. al, 2017]
 - Bayesian formulation of the model
 - Basically additional regularization by adding random noise during sampling
 - Recall@20 on RSC15: 0.6507 (1500 units)
- New losses and additional sampling [Hidasi & Karatzoglou, 2017]
 - Use additional samples beside minibatch samples
 - Design better loss functions: BPR_{max} = $-\log\left(\sum_{j=1}^{N_S} s_j \sigma(r_i r_j)\right) + \lambda \sum_{j=1}^{N_S} r_j^2$

Extensions

- Multi-modal information (p-RNN model) [Hidasi et. al, 2016]
 - Use image and description besides the item ID
 - One RNN per information source
 - Hidden states concatenated
 - Alternating training
- Item metadata [Twardowski, 2016]
 - Embed item metadata
 - Merge with the hidden layer of the RNN (session representation)
 - Predict compatibility using feedforward layers
- Contextualization [Smirnova & Vasile, 2017]
 - Merging both current and next context
 - Current context on the input module
 - Next context on the output module
 - The RNN cell is redefined to learn context-aware transitions
- Personalizing by inter-session modeling
 - Hierarchical RNNs [Quadrana et. al, 2017], [Ruocco et. al, 2017]
 - One RNN works within the session (next click prediction)
 - o The other RNN predicts the transition between the sessions of the user

References

- [Chatzis et. al, 2017] S. P. Chatzis, P. Christodoulou, A. Andreou: Recurrent Latent Variable Networks for Session-Based Recommendation. 2nd Workshop on Deep Learning for Recommender Systems (DLRS 2017). https://arxiv.org/abs/1706.04026
- [Cho et. al, 2014] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio. On the properties of neural machine translation: Encoder-decoder approaches. https://arxiv.org/abs/1409.1259
- [Hidasi et. al, 2015] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk: Session-based Recommendations with Recurrent Neural Networks. International Conference on Learning Representations (ICLR 2016). https://arxiv.org/abs/1511.06939
- [Hidasi et. al, 2016] B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk: Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations. 10th ACM Conference on Recommender Systems (RecSys'16).
- [Hidasi & Karatzoglou, 2017] B. Hidasi, Alexandros Karatzoglou: Recurrent Neural Networks with Top-k Gains for Session-based Recommendations. https://arxiv.org/abs/1706.03847
- [Hochreiter & Schmidhuber, 1997] S. Hochreiter, J. Schmidhuber: Long Short-term Memory. Neural Computation, 9(8):1735-1780.
- [Quadrana et. al, 2017] M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi: Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks. 11th ACM Conference on Recommender Systems (RecSys'17). https://arxiv.org/abs/1706.04148
- [Ruocco et. al, 2017] M. Ruocco, O. S. Lillestøl Skrede, H. Langseth: Inter-Session Modeling for Session-Based Recommendation. 2nd Workshop on Deep Learning for Recommendations (DLRS 2017). https://arxiv.org/abs/1706.07506
- [Smirnova & Vasile, 2017] E. Smirnova, F. Vasile: Contextual Sequence Modeling for Recommendation with Recurrent Neural Networks. 2nd Workshop on Deep Learning for Recommender Systems (DLRS 2017). https://arxiv.org/abs/1706.07684
- [Tan et. al, 2016] Y. K. Tan, X. Xu, Y. Liu: Improved Recurrent Neural Networks for Session-based Recommendations. 1st Workshop on Deep Learning for Recommendations (DLRS 2016). https://arxiv.org/abs/1606.08117
- [Twardowski, 2016] B. Twardowski: Modelling Contextual Information in Session-Aware Recommender Systems with Neural Networks, 10th ACM Conference on Recommender Systems (RecSys'16).