Nonlinear Equations and Newton's Method Pseudo-Transient Continuation (Vtc.) Constrained Vtc. Vtc Theory Examples Conclusions

### Projected Pseudo-Transient Continuation

C. T. Kelley

NC State University

tim\_kelley@ncsu.edu

Joint with Liqun Qi, Li-Zhi Liao, Corey Winton, Todd Coffey

Plovdiv, August 2007



### Outline

Nonlinear Equations and Newton's Method **Implementation** Pseudo-Transient Continuation (Ψtc ) What's wrong with Newton? Integration to Steady State and Ψtc Flow Through a Nozzle Constrained Vtc. Ψtc Theory Convergence **Dynamics** Examples **Bound Constrained Optimization** Inverse Singular Value Problem Model Calibration

#### Collaborators

- ▶ NCSU Students: Scott Pope, Jill Reese, Corey Winton
- NCSU Alums: Todd Coffey, Katie Fowler, Chris Kees
- Hong Kong: Liqun Qi, Li-Zhi Liao
- NCSU MAE: Scott McRae, Jeff McMullan
- UNC: Casey Miller, Matt Farthing
- ► Elsewhere: David Keyes, Stacy Howington

### Newton's method

Problem: solve F(u) = 0

 $F: \mathbb{R}^N \to \mathbb{R}^N$  is Lipschitz continuously differentiable.

Conclusions

Newton's method

$$u_+=u_c+s$$
.

The step is

$$s = -F'(u_c)^{-1}F(u_c)$$

 $F'(u_c)$  is the Jacobian matrix

### **Implementation**

Inexact formulation:

$$||F'(u_c)s + F(u_c)|| \le \eta_c ||F(u_c)||.$$

 $\eta=0$  for direct solvers + analytic Jacobians. If  $F(u^*)=0$ ,  $F'(u^*)$  is nonsingular, and  $u_c$  is close to  $u^*$ 

Conclusions

$$||u_+ - u^*|| = O(\eta_c ||u_c - u^*|| + ||u_c - u^*||^2)$$

Meditation exercise: What's  $\eta$ ?

### But what if $u_0$ is far from $u^*$ ?

Armijo Rule: Find the least integer  $m \ge 0$  such that

Conclusions

$$||F(u_c + 2^{-m}s)|| \le (1 - \alpha 2^{-m})||F(u_c)||$$

- ightharpoonup m = 0 is Newton's method.
- ▶ Make it fancy by replacing  $2^{-m}$ .
- ho  $\alpha = 10^{-4}$  is standard.

### Theory

If F is smooth and you get s with a direct solve or GMRES then either

- ▶ **BAD:** the iteration is unbounded, i. e.  $\limsup ||u_n|| = \infty$ ,
- ▶ **BAD:** the derivatives tend to singularity, <u>i. e.</u> lim sup  $||F'(u_n)^{-1}|| = \infty$ , or
- ▶ **GOOD:** the iteration converges to a solution  $u^*$  in the terminal phase, m = 0, and

Conclusions

$$||u_{n+1}-u^*||=O(\eta_n||u_n-u^*||+||u_n-u^*||^2).$$

Bottom line: you get an answer or an easy-to-detect failure.



# Why worry?

- ▶ Stagnation at singularity of F' really happens.
  - ▶ steady flow → shocks in CFD
- Non-physical results
  - fires go out
  - negative concentrations
- Nonsmooth nonlinearities
  - are not uncommon: flux limiters, constitutive laws
  - globalization is harder
  - finite diff directional derivatives may be wrong

 $\Psi$ tc is one way to fix some of these things.



### Steady-state Solutioins

Think about a PDE

$$\frac{du}{dt} = -F(u), u(0) = u_0,$$

and its solution u(t).

F(u) contains

- the nonlinearity,
- boundary conditions, and
- spatial derivatives.

We want the steady-state solution:  $u^* = \lim_{t \to \infty} u(t)$ .



What's wrong with Newton? Integration to Steady State and Ψtc Flow Through a Nozzle

# What can go wrong?

If  $u_0$  is separated from  $u^*$  by

- complex features like shocks,
- stiff transient behavior, or
- unstable equlibria,

the Newton-Armijo iteration can

- stagnate at a singular Jacobian, or
- ▶ find a solution of F(u) = 0 that is not the one you want.

### A Questionable Idea

One way to guarantee that you get  $u^*$  is

- Find a high-quality temporal integration code.
- Set the error tolerances to very small values.
- Integrate the PDE to steady state.
  - ▶ Continue in time until u(t) isn't changing much.
- Then apply Newton to make sure you have it right.

Problem: you may not live to see the results.

#### Ψtc

Integrate

$$\frac{du}{dt} = -F(u)$$

to steady state in a stable way with increasing time steps. Equation for  $\Psi$ tc Newton step:

Conclusions

$$\left(\delta_c^{-1}I + F'(u_c)\right)s = -F(u_c),$$

or

$$\| \left( \delta_c^{-1} I + F'(u_c) \right) s + F(u_c) \| \le \eta_c \| F(u_c) \|.$$

### Ψtc as an Integrator

Implicit Euler for y' = -F(y)

$$u_{n+1} = u_n + \delta F(u_{n+1})$$

 $u_{n+1}$  is the solution of

$$G(u) = u - u_n + \delta F(u) = 0.$$

Since  $G'(u) = I + \delta F'(u)$ , a single Newton iterate from  $u_c = u_n$  is

$$u_{+} = u_{c} - (I + \delta F'(u_{c}))^{-1}(u_{c} - u_{n} + \delta F(u_{c}))$$
$$= u_{c} - (\delta^{-1}I + F'(u_{c}))^{-1}F(u_{c}),$$

since  $u_c - u_n = 0$ .



### Ψtc as an Integrator

- Low accuracy PECE integration
  - Trivial predictor
  - ▶ Backward Euler corrector + one Newton iteration
  - 1st order Rosenbrock method
     High order possible, Luo, K, Liao, Tam 06
- ▶ Begin with small "time step"  $\delta$ . Resolve transients.
- ▶ Grow the "time step" near  $u^*$ . Turn into Newton.

Is this stable?



# Time Step Control

Grow the time step with switched evolution relaxation (SER)

Conclusions

$$\delta_n = \min(\delta_0 || F(u_0) || / || F(u_n) ||, \delta_{max}).$$

If  $\delta_{max} = \infty$  then  $\delta_n = \delta_{n-1} ||F(u_{n-1})|| / ||F(u_n)||$ .

Alternative with no theory (SER-B):

$$\delta_n = \delta_{n-1}/\|u_n - u_{n-1}\|$$

# Temporal Truncation Error (TTE)

Estimate local truncation error by

$$\tau = \frac{\delta_n^2(u)_i''(t_n)}{2}$$

Conclusions

and approximate  $(u)_i''$  by

$$\frac{2}{\delta_{n-1} + \delta_{n-2}} \left[ \frac{((u)_i)_n - ((u)_i)_{n-1}}{\delta_{n-1}} - \frac{((u)_i)_{n-1} - ((u)_i)_{n-2}}{\delta_{n-2}} \right]$$

Adjust step so that  $\tau = .75$ .

### Numerical Example: Flow through a Nozzle



### **Euler Equations**

unknowns density, velocity, energy.

$$\nabla \cdot (\rho \mathbf{v}) = 0$$

$$\nabla \cdot (\rho \mathbf{v} \mathbf{v} + p I) = 0$$

$$\nabla \cdot ((\rho e + p)\mathbf{v}) = 0$$

Ideal gas law  $p = \rho(\gamma - 1)(e - |\mathbf{v}|^2/2)$ , where  $\gamma$  is the ratio of specific heats.

Use nonsmooth slope limiter to get second order accuracy.



# Trouble with Newton: density



# Trouble with Newton: convergence



### Ψtc with SER

#### Residual, Update, and Timestep for SER



# And Ψtc gets it right!



#### But *F* is not smooth

#### Typical Euler equation approach

- ▶ Discretize with 2nd order scheme with slope limiter. Slope limiters can be nonsmooth, but Lipschitz continuous.
- Use Jacobian of a (smooth) 1st order scheme.

Modified method:  $u_+ = u_c + s$  where

$$\| (\delta_c^{-1}I + J_c) s + F(u_c) \| \le \eta_c \| F(u_c) \|,$$

and  $J_c$  is the Jacobian of the smooth, low-order discretization. Folwer-K and Liao-Qi-K results explain this.

#### Constraints

$$\frac{du}{dt} = -F(u), u(0) = u_0 \in \Omega.$$

$$u(t) \in \Omega$$
,  $F(u) \in \mathcal{T}(u)$  (tangent to  $\Omega$ ).

#### Examples:

- $\triangleright$   $\Omega$  has interior: bound constrained optimization
- lacksquare  $\Omega$  smooth manifold: inverse singular value problem

Problem:  $\Psi$ tc will drift away from  $\Omega$ .

# Projected Ψtc

$$u_{+} = \mathcal{P}(u_{c} - (\delta_{c}^{-1}I + H(u_{c}))^{-1}F(u_{c}))$$

#### where

- ▶  $\mathcal{P}$  is map-to-nearest  $R^N \to \Omega$  $\|\mathcal{P}'(u)\| = 1$  for  $u \in \Omega$ .
- $\blacktriangleright$   $H(u_c)$  makes Newton-like method fast.

#### General Method

Liao-Qi-K, 2006

F Lipschitz (no smoothness assumptions)

$$u_{+} = \mathcal{P}(u_{c} - (\delta^{-1}I + H(u_{c}))^{-1}F(u_{c})),$$

where H is an approximate Jacobian.

Theory: H bounded, other assumptions imply  $u_n \rightarrow u^*$  and

Conclusions

$$u_{n+1} = u_{n+1}^N + O(\delta_n^{-1} + \eta_n) ||u_n - u^*||$$

where

$$u_{n+1}^N = u_n - H(u_n)^{-1}F(u_n)$$

which is as fast as the underlying method.



# What are those assumptions?

- $ightharpoonup u(t) 
  ightharpoonup u^*$
- ▶  $\delta_0$  is sufficiently small.
- ▶  $\|\mathcal{P}'(u)\| = 1$  or Lip const of  $\mathcal{P} = 1$
- ▶ u\* is dynamically stable
- ▶ H(u) is uniformly well-conditioned near  $\{u(t) \mid t \ge 0\}$

Conclusions

 $ightharpoonup u_+ = u_c - H(u_c)^{-1}F(u_c)$  is rapidly locally convergent near  $u^*$ 

### A word about dynamics

$$\frac{du}{dt} = -F(u), u(0) = u_0$$

Conclusions

**implies**  $u(t) \rightarrow u^*$  if  $F = \nabla f$  and

- f is real analytic,
- the Lojasiewicz inequality

$$\|\nabla f(u)\| \ge c|f(u) - f(u^*)|$$

holds, or

• f has bounded level sets and finitely many critical points.

But none of this implies that  $u^*$  is dynamically stable.



# Fixing TTE and SER-B

If the underlying problem is minimization of f and ...

- you reduce  $\delta$  until f is reduced,
- $ightharpoonup \delta_0$  is sufficiently small, and
- ▶ u\* is the unique root of F.

Then either  $\delta_n \to 0$  or you converge to  $u^*$ .

### **Bound Constrained Optimization**

$$\min_{u\in\Omega}f(u)$$

Conclusions

$$\Omega = \{u \mid L_i \leq (u)_i \leq U_i\}$$

$$\mathcal{P}(u)_i = \begin{cases} L_i & \text{if } (u)_i \leq L_i \\ (u)_i & \text{if } L_i < (u)_i < U_i \\ U_i & \text{if } (u)_i \geq U_i \end{cases}$$

Necessary Conditions:

$$F(u) \equiv u - \mathcal{P}(u - \nabla f(u)) = 0.$$



### Construction of H

Identify binding constraints

$$\mathcal{B}(u) = \{i \mid (u)_i = L_i \text{ and } (\nabla f(u))_i < 0 \text{ or }$$
  $(u)_i = U_i \text{ and } (\nabla f(u))_i > 0\}.$ 

Conclusions

with an over estimate to get fast convergence.  $\sigma$ -binding set

$$\mathcal{B}^{\sigma}(u) = \{i \mid U_i - (u)_i \leq \sigma \text{ and } (\nabla f(u))_i < -\sqrt{\sigma} \text{ or }$$
  $(u)_i - L_i \leq \sigma \text{ and } (\nabla f(u))_i > \sqrt{\sigma} \}.$ 

Conclusions

# Approximate Reduced Hessian

Set 
$$\sigma(u) = ||F(u)||$$
 and

$$H(u)_{ij} = \left\{ egin{array}{ll} 
abla^2 f(u)_{ij} & i 
otin \mathcal{B}^{\sigma}(u) \\ 
abla_{ij} & i 
otin \mathcal{B}^{\sigma}(u) 
otin 
otin$$

Then it all works.

# Linear Algebra Problem

Chu, 92 . . .

Conclusions

Find  $c \in R^N$  so that the  $M \times N$  matrix

$$B(c) = B_0 + \sum_{k=1}^{N} c_k B_k$$

has prescribed singular values  $\{\sigma_i\}_{i=1}^N$ . Data: Frobenius orthogonal  $\{B_i\}_{i=1}^N$ ,  $\{\sigma_i\}_{i=1}^N$ .

#### **Formulation**

Least squares problem

$$\min F(U, V) \equiv ||R(U, V)||_F^2$$

Conclusions

where

$$R(U, V) = U\Sigma V^{T} - B_{0} - \sum_{k=1}^{N} \langle U\Sigma V^{T}, B_{k} \rangle_{F} B_{k}$$

**Manifold constraints:** U is orthogonal  $M \times M$  and V is orthogonal  $N \times N$ 

# Dynamic Formulation

$$\Omega = \left\{ \left( \begin{array}{c} U \\ V \end{array} \right) \in R^{M \times M} \oplus R^{N \times N} \mid U \text{ and } V \text{ orthogonal} \right\}$$

Conclusions

Projected gradinet:

$$g(U,V) = \frac{1}{2} \left( \frac{(R(U,V)V\Sigma^TU^T - U\Sigma V^TR(U,V)^T)U}{(R(U,V)^TU\Sigma V^T - V\Sigma^TU^TR(U,V))V} \right).$$

ODE:

$$\dot{u} = \begin{pmatrix} \dot{U} \\ \dot{V} \end{pmatrix} = -F(u) \equiv -g(U, V).$$

# Projection onto $\Omega$

Higham 86, 04

Projection of square matrix onto orthogonal matrices

$$A \rightarrow U_P$$
.

where  $A = U_P H_P$  is the polar decomposition.

Compute  $U_P$  via the SVD  $A = U \Sigma V^T$ 

$$U_P = UV^T$$
.

Projection of

$$w = \begin{pmatrix} A \\ B \end{pmatrix}$$

onto  $\Omega$  is

$$\mathcal{P}(w) = \left(\begin{array}{c} U_P^A \\ U_P^B \end{array}\right).$$

#### The local method

Given  $u \in \Omega$  let  $P_T(u) = \mathcal{P}'(u)$  be the projection onto the tangent space to  $\Omega$  at u. Let

Conclusions

$$H = (I - P_T(u)) + P_T(u)F'(u)P_T(u)$$

Locally (very locally) superlinearly convergent if  $\Omega$  is OK near  $u^*$ .

Conclusions

### Inverse Singular Value Problem



# Optimization Example I

Parameter ID: Find c and k for simple harmonic oscillator

Conclusions

$$w'' + cw' + kw = 0$$
;  $w(0) = w_0, w'(0) = 0$ ,

by sampling output of ode15s with

$$rtol = atol = 10^{-6}$$

and comparing to exact solution (c = k = 1) at 100 equally spaced points.

$$u = (c, k)^T$$
,  $M = 100$ ,  $N = 2$ .

$$R(u)_i = w^{exact}(t_i) - w_i(u)$$



#### Results from three cases

Bounds:  $u \le u_0 = (10, 10)$  in all cases

Interior:  $(0,0) \le u$ , zero residual Exterior:  $(2,0) \le u$ , non-zero

residual Exterior:  $(1,0) \le u$ , zero residual, degenerate.

Conclusions

### Computations



#### Conclusions

- Ψtc computes steady-state solutions.
  - Can succeed when traditional methods fail.
  - It is not a general nonlinear solver!
- Theory and practice for many problems
  - ► ODEs, DAEs
  - ► Nonsmooth *F*
- ▶ Tempting idea for optimization