

Ratna Wardani Pendidikan Teknik Informatika

Materi Perkuliahan

- Logical Connectives
- Tabel Kebenaran

Arti Kalimat

- * Arti kalimat = nilai kebenaran
- Setiap kalimat pada logika proposisi memiliki salah satu dari nilai {true, false}
- Arti kalimat kompleks yang terdiri atas n variabel merupakan fungsi dari nilai kebenaran n variabel tersebut
- * Perlu tahu nilai kebenaran masing-masing variabel
- * Perlu aturan untuk menghitung fungsi tersebut

Interpretasi

* Interpretasi pada logika proposisi = pemberian nilai kebenaran pada semua variabel

* Contoh : $P \vee \neg Q$

* I1: P true dan Q true

* I2 : P true dan Q false

* I3 : P false dan Q false

* I4: P false dan Q true

Aturan Semantik

- * kalimat true bernilai true untuk semua interpretasi
- * kalimat false bernilai false untuk semua interpretasi
- * kalimat P,Q,R,... bernilai sesuai interpretasinya
- * not F bernilai true jika F false dan bernilai false jika F true
- * $F \wedge G$ bernilai true jika F dan G keduanya true dan bernilai false jika tidak demikian
- * $F \lor G$ bernilai false jika F dan G keduanya false dan bernilai true jika tidak demikian
- * $F \Rightarrow G$ bernilai false jika F true dan G false dan bernilai true jika tidak demikian

Tabel Kebenaran

- Dengan aturan semantik dapat ditentukan nilai kebenaran suatu kalimat kompleks untuk semua interpretasi yang mungkin
- Biasanya ditabelkan dan disebut tabel kebenaran
- Jika terdapat n variabel, maka terdapat 2n baris tabel kebenaran

Operator / Logical Connectives

- * Sebuah *operator* atau *penghubung* menggabungkan satu atau lebih ekspresi *operand* ke dalam ekspresi yang lebih besar. (seperti tanda "+" di ekspresi numerik.)
- * Operator *Uner* bekerja pada satu operand (contoh -3); Operator *biner* bekerja pada 2 operand (contoh 3×4).
- Operator *Proposisi* atau *Boolean* bekerja pada proposisiproposisi atau nilai kebenaran, bukan pada suatu angka

Operator / Boolean Umum

Nama Resmi	<u>Istilah</u>	Arity	Simbol
Operator Negasi	NOT	Unary	_
Operator Konjungsi	AND	Binary	^
Operator Disjungsi	OR	Binary	V
Operator Exclusive-OR	XOR	Binary	\oplus
Operator Implikasi	IMPLIES	Binary	\rightarrow
	(jika-maka)		
Operator Biimplikasi (Biconditional)	IFF (jika dan hanya jika)	Binary	\longleftrightarrow

Operator Negasi

- * Operator negasi uner "¬" (NOT) mengubah suatu proposisi menjadi proposisi lain yang bertolak belakang nilai kebenarannya
- * Contoh: Jika p = Hari ini hujan
- * maka $\neg p$ = Tidak benar hari ini hujan
- * Tabel kebenaran untuk NOT:

p	¬р
Т	F
F	T

T = True; F = False

■ Diartikan "didefinisikan sebagai"

Operator Konjungsi

- ♦ Operator konjungsi biner "\^" (AND) menggabungkan dua proposisi untuk membentuk logika konjungsinya ΛND
- * Cth: p = Galih naik sepedaq = Ratna naik sepeda
- $p \wedge q = Galih dan Ratna naik sepeda$

Tabel Kebenaran Konjungsi

* Perhatikan bahwa p q p qKonjungsi $p1 \land p2 \land ... \land pn$ dari n proposisi akan

memiliki 2^n baris

pada tabelnya

❖ Operasi ¬ dan ∧ saja cukup untuk mengekspresikan semua tabel kebenaran Boolean!

2 September 2007 *Pertemuan-1 - 2*

Operator Disjungsi

Operator biner disjungsi "\" (*OR*) menggabungkan dua proposisi untuk membentuk logika disjungsinya

p="Mesin mobil saya rusak"

q="Karburator mobil saya rusak"

 $p \lor q$ ="Mesin atau karburator mobil saya rusak."

Tabel Kebenaran Disjungsi

- Perhatikan bahwa pvq
 berarti p benar, atau q
 benar, atau keduanya benar!
- * Jadi, operasi ini juga disebut *inclusive or*, karena mencakup kemungkinan bahwa both *p* dan *q* keduanya benar.

p	q	$p \vee q$	
F	F	F	3.
F	T	$ \mathbf{T} $	Lihat
T	F		bedanya dengan
T	T	T	AND

Proposi Bertingkat

- Gunakan tanda kurung untuk mengelompokkan sub-ekspresi:
 - "Saya baru saja bertemu teman lama, dan anaknya sudah dua atau tiga." = $f \land (g \lor s)$
 - $-(f \land g) \lor s$ artinya akan berbeda
 - $-f \wedge g \vee s$ artinya akan ambigu
- ❖ Menurut perjanjian, "¬" presedensinya lebih tinggi dari "∧" dan "∨".
 - $\neg s \land f$ artinya $(\neg s) \land f$, bukan $\neg (s \land f)$

Latihan

Misalkan p="Tadi malam hujan", q="Tukang siram tanaman datang tadi malam," r="Pagi ini kebunnya basah."

Terjemahkan proposisi berikut dalam bahasa Indonesia:

 $\neg p$ = "Tadi malam tidak hujan."

 $r \wedge \neg p$ = "Pagi ini kebunnya basah dan tadi malam tidak hujan."

 $\neg r \lor p \lor q =$

"Pagi ini kebun tidak basah, atau tadi malam hujan, atau tukang siram tanaman datang tadi malam."

Operator Exclusive OR

Operator biner *exclusive-or* "\$\Delta" (XOR) menggabungkan dua proposisi untuk membentuk logika "exclusive or"-nya

p = "Saya akan mendapat nilai A di kuliah ini," q = "Saya akan drop kuliah ini," $p \oplus q$ = "Saya akan mendapat nilai A atau saya akan drop kuliah ini (tapi tidak dua-duanya!)"

2 September 2007 *Pertemuan-1 - 2*

Tabel Kebenaran Exclusive OR

Perhatikan bahwa p⊕q
berarti p benar, atau q
benar tapi tidak duaduanya benar!

- $\begin{array}{c|cccc} p & q & p \oplus q \\ \hline F & F & F \\ F & T & T \\ \hline T & F & T \end{array}$
- * Disebut *exclusive or*,
 karena tidak memungkinkan T

 T

 F

 p dan q keduanya benar

2 September 2007

Bahasa Alami sering Ambigu

- Perhatikan bahwa kata "atau" dapat bermakna
 ambigu berkenaan dengan kasus keduanya benar.
- "Tia adalah penulis atau Tia adalah aktris." -
- "Tia perempuan atauTia laki-laki" –

_ <i>p</i>	q	<i>p</i> "or" <i>q</i>
F	F	F
F	T	T
T	F	T
T	T	?

Perlu diketahui konteks pembicaraannya!

Operator Implikasi

- * Implikasi $p \rightarrow q$ menyatakan bahwa p mengimplikasikan q.
- * p disebut antecedent dan q disebut consequent
- * Jika p benar, maka q benar; tapi jika p tidak benar, maka q bisa benar bisa tidak benar
- * Contoh:

p = Nilai ujian akhir anda 80 atau lebih

q = Anda mendapat nilai A

 $p \rightarrow q$ = "Jika nilai ujian akhir anda 80 atau lebih, maka anda mendapat nilai A"

2 September 2007

Implikasi p → q

(a) Jika p, maka q (if p, then q)

(b) Jika p, q (if p, q)

(c) p mengakibatkan q (p implies q)

(d) q jika p (q if p)

(e) p hanya jika q (p only if q)

(f) p syarat cukup agar q (p is sufficient for q)

(g) q syarat perlu bagi p (q is necessary for p)

(i) q bilamana p (q whenever <math>p)

2 September 2007 *Pertemuan-1 - 2*

Tabel Kebenaran Implikasi

- * $p \rightarrow q$ salah <u>hanya jika</u> p benar tapi q tidak benar
- * $p \rightarrow q$ tidak mengatakan bahwa hanya p yang menyebabkan q!
- * $p \rightarrow q$ tidak mensyaratkan bahwa p atau q harus benar!
- * Cth. " $(1=0) \rightarrow$ kucing bisa terbang" BENAR!

Contoh Implikasi

- * "Jika saya rajin kuliah hari ini, matahari akan bersinar esok hari" *True False*?
- * "Jika hari ini Selasa, maka saya adalah seekor pinguin." *True / False*
- * "Jika 1+1=6, Maka SBY adalah presiden." True / False?
- * "Jika bulan dibuat dari keju, maka saya lebih kaya dari Bill Gates." *True* or *False*?

Converse, Inverse & Contrapositive

Beberapa terminologi dalam implikasi $p \rightarrow q$:

- * Converse-nya adalah: $q \to p$.
- * Inverse-nya adalah: $\neg p \rightarrow \neg q$.
- * Contrapositive-nya adalah: $\neg q \rightarrow \neg p$.
- * Salah satu dari ketiga terminologi di atas memiliki makna yang sama (memiliki tabel kebenaran yang sama) dengan $p \rightarrow q$. Bisa Anda sebutkan yang mana?

Bagaimana Menunjukkannya?

Membuktikan eqivalensi antara $p \rightarrow q$ dan contrapositive-nya dengan tabel kebenaran:

p q	$\neg q$	$\neg p$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
$F \rightarrow F$	$T \rightarrow$	T	T	T
	F →		T	T
T≠F	T	F	F	F
$T \rightarrow T$	$F \rightarrow$	F	T	T

2 September 2007

Operator Biimplikasi

- * Operator biimplikasi $p \leftrightarrow q$ menyatakan bahwa p benar jika dan hanya jika (jikka) q benar
- * p = "SBY menang pada pemilu 2004"
- * q = "SBY akan menjadi presiden mulai tahun 2004."
- * $p \leftrightarrow q$ = "Jika dan hanya jika SBY menang pada pemilu 2004 maka dia akan menjadi presiden mulai tahun 2004."

Biimplikasi p ↔ q

- (a) p jika dan hanya jika q.(p if and only if q)
- (b) p adalah syarat perlu dan cukup untuk q. (p is necessary and sufficient for q)
- (c) Jika *p* maka *q*, dan sebaliknya. (if *p* then *q*, and conversely)
- (d) *p* jikka *q* (*p* iff *q*)

2 September 2007 Pertemuan-1 - 2

Tabel Kebenaran Biimplikasi

*
$$p \leftrightarrow q$$
 benar jika p dan q memiliki nilai kebenaran

yang sama.

Perhatikan bahwa tabelnya

* adalah *kebalikan* dari tabe

exclusive or
$$\oplus$$
!

$$-p \leftrightarrow q \ artinya \ \neg (p \oplus q)$$

Perhatikan

Nyatakan pernyataan berikut dalam ekspresi logika: "Anda tidak dapat terdaftar sebagai pemilih dalam Pemilu jika anda berusia di bawah 17 tahun kecuali kalau anda sudah menikah"

Misalkan:

p: Anda berusia di bawah 17 tahun.

q: Anda sudah menikah.

r: Anda dapat terdaftar sebagai pemilih dalam Pemilu.

maka pernyataan di atas dapat ditulis sebagai

$$(p \land \sim q) \rightarrow \sim r$$

Ringkasan

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	T	F	F	F	T	7
F	T	T	F	T	T	T	F /
T	F	F	F	T	T	F	F /
T	T	F	T	T	F	T	Γ

2 September 2007 *Pertemuan-1 - 2* 29

- Gunakan konstanta proposisional A untuk "Bowo kaya raya" dan B untuk "Bowo hidup bahagia". Lalu ubahlah pernyataan-pernyataan berikut menjadi bentuk logika:
- 1) Bowo tidak kaya raya
- 2) Bowo kaya raya dan hidup bahagia
- 3) Bowo kaya raya atau tidak hidup bahagia
- 4) Jika Bowo kaya raya, maka ia hidup bahagia
- Bowo hidup bahagia jika dan hanya jika ia kaya raya

2 September 2007 *Pertemuan-1 - 2* 30

- Berilah konstanta proposisional, dan ubahlah pernyataan-pernyataan berikut menjadi bentuk logika :
- Jika Bowo berada di Malioboro, maka Dewi juga berada di Malioboro
- 2) Pintu rumah Dewi berwarna merah atau coklat
- 3) Berita itu tidak menyenangkan
- Bowo akan datang, jika ia mempunyai kesempatan
- 5) Jika Dewi rajin kuliah, maka ia pasti pandai

2 September 2007 *Pertemuan-1 - 2* 31

- Jawablah dengan tabel kebenaran :
- 1) Apakah nilai kebenaran dari $(A \wedge A)$?
- 2) Apakah nilai kebenaran dari (A V A)?
- 3) Apakah nilai kebenaran dari $(A \land \neg A)$?
- 4) Apakah (A⇒B) ekivalen dengan (B⇒A)
- Apakah (A⇒B)⇒C ekivalen dengan A⇒(B⇒C)

- Buat tabel kebenaran untuk pernyataan berikut:
- 1) $\neg (\neg A \land \neg A)$
- 2) $A \wedge (A \vee B)$
- 3) $((\neg A \land (\neg B \land C)) \lor (B \land C)) \lor (A \land C)$
- $(A \land B) \lor (((\neg A \land B) \Rightarrow A) \land \neg B)$
- $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$