

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC164519

1 of 45 Page:

FCC Radio Test Report FCC ID: Y9E-IAD18005

Original Grant

Report No. TB-FCC164519

Applicant IAdea Corporation

Equipment Under Test (EUT)

EUT Name Smart Signboard

Model No. XDS-1588

XDS-1588-A,XDS-1588-H,XDS-158X-Y(Note: X is "0~9", and Y Serial Model No.

is "A~Z", represents the appearance color or customer models)

Brand Name IAdea

: 2019-03-01 **Receipt Date**

Test Date : 2019-03-01 to 2019-04-30

Issue Date : 2019-05-06

Standards FCC Part 15: 2018, Subpart C(15.247)

ANSI C63.10: 2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer

Engineer

Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 45

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Da5ta	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	19
	6.5 Test Data	19
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	21

Page: 3 of 45

	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	22
	9.2 Test Setup	22
	9.3 Test Procedure	
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.		
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	
	10.3 Result	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
	ACHMENT B RADIATED EMISSION TEST DATA	
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND-ED	GE TEST DATA
		35
	ACHMENT D BANDWIDTH TEST DATA	
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	42
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 45

Revision History

Report No.	Version	Description	Issued Date
TB-FCC164519	Rev.01	Initial issue of report	2019-05-06
WOOD!	101		TO THE
	TO ITS		
TO THE	CA Proper		and a
D. T.	The same	(OB)	OD .
The same	3	OBI GODE	TO THE REAL PROPERTY.
	((03)		
MODE			J (703)
000		A COUNTY OF	THE STATE OF THE S
TO TO		WUBA WORK	
		(U)133	
China Carlo	33 4	TODAY TODAY	THE REAL PROPERTY.

Page: 5 of 45

1. General Information about EUT

1.1 Client Information

Applicant : IAdea Corporation		IAdea Corporation
Address : 3F, No. 21 Lane 168, Xingshan Road, Neihu Dist., Taipei		3F, No. 21 Lane 168, Xingshan Road, Neihu Dist., Taipei, Taiwan
Manufacturer		IAdea Corporation
Address : 3F, No. 21 Lane		3F, No. 21 Lane 168, Xingshan Road, Neihu Dist., Taipei, Taiwan

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Smart Signboard		
Models No.		XDS-1588, XDS-1588-A, XDS-1588-H, XDS-158X-Y(Note: X is "0~9", and Y is "A~Z", represents the appearance color or customer models)		
Model Difference	ŀ	All these models are the same PCB, layout and electrical circuit, the only different is appearance color or customer models.		
		Operation Frequency:	Bluetooth 4.0(BLE): 2402MHz~2480MHz	
JUL STATE	A	Number of Channel:	Bluetooth 4.0(BLE): 40 channels see note(3)	
Product		RF Output Power:	BLE:8.155 dBm	
Description		Antenna Gain:	1.14dBi FPC Antenna	
		Modulation Type:	GFSK	
Maria		Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Supply	:		AC Adapter(FJ-SW1202000N): Input: AC 100-240V, 50/60Hz, 0.6A	
Software Version	1	N/A		
Hardware Version	:	R35		
Connecting I/O Port(S)	i	Please refer to the User's Manual		

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v05.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.

Page: 6 of 45

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

ADAPTER	EUT	

Page: 7 of 45

1.4 Description of Support Units

Equipment Information				
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
ADAPTER	FJ-SW1202000N		1	V

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	Normal Working+ TX Mode (Channel 20)			

For Radiated Test				
Final Test Mode Description				
Mode 1	Normal Working+ TX Mode (Channel 20)			
Mode 2	Normal Working+ TX Mode (Channel 00/20/39)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 45

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	RFTestTool.exe		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy:	±4.60 dB
Radiated Effilssion	9kHz to 30 MHz	±4.60 db
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Effilssion	30MHz to 1000 MHz	±4.40 UB
Radiated Emission	Level Accuracy:	±4,20 dB
Naulateu EIIIISSIOII	Above 1000MHz	±4.20 UD

Page: 9 of 45

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 45

2. Test Summary

Standard Section		Took Itams	Tuel avec a set	Damari
FCC IC		Test Item	Judgment	Remark
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted PASS Frequency		N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth PASS		N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power PASS		N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, RSS 247 15.209&15.247(d) 5.5		Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

Note: N/A is an abbreviation for Not Applicable.

Page: 11 of 45

3. Test Equipment

Conducted Emiss	ion Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	on Test			-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jan. 27, 2019	Jan. 26, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conduct	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

Page: 12 of 45

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Transport (MIN)	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 45

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Da5ta

Please refer to the Attachment A.

Page: 14 of 45

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247(d)

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)		
(MHz)	Peak (dBuV/m)	Average (dBuV/m)	
Above 1000	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 15 of 45

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 45

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 45

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 45

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)			
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)		
2310 ~2390	74	54		
2483.5 ~2500	74	54		

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Page: 19 of 45

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 45

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item	Test Item Limit Frequency Range(MHz				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5			

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 45

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)(3)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247				
Test Item Limit Frequency Range(MH				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 45

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit Frequency Range(MHz)				
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 45

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.14dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type		
Permanent attached antenna		
⊠Unique connector antenna	Miles Control	
Professional installation antenna	THE REAL PROPERTY.	

Page: 24 of 45

Attachment A-- Conducted Emission Test Data

Page: 25 of 45

4.1	10	DIT
	47	$\mathbf{K}\mathbf{V}$
ш	U	\mathbf{n}
		and the

Temperature:	25 ℃		Relative F	lumidity:	55%	000
Test Voltage:	AC 120V 60Hz	(A)	- CAI	العاليال		ATT.
Terminal:	Neutral	A.T.	SIL F	60	U.P.	
Test Mode:	Mode 1	a AMO		a v		TREE
Remark:	Only worse cas	se is reported			a 1	I I L
40 dBuV	The second secon	"Application of the contraction	and the property of any backgrown and	Market	QP:	peak
0.150	0.5 Reading	(MHz)	Measure-			30.000
No. Mk. Fre		Factor	ment	Limit	Over	
MH	z dBuV	dB	dBuV	dBuV	dB	Detector
1 * 0.150	00 46.07	9.58	55.65	65.99	-10.34	QP
2 0.150	00 18.80	9.58	28.38	55.99	-27.61	AVG
3 0.17	12 43.79	9.58	53.37	64.90	-11.53	QP
4 0.17	12 17.27	9.58	26.85	54.90	-28.05	AVG
5 0.21	39.29	9.58	48.87	62.89	-14.02	QP
6 0.21	80 18.29	9.58	27.87	52.89	-25.02	AVG
7 0.25	40 35.21	9.59	44.80	61.62	-16.82	QP
8 0.25	40 15.16	9.59	24.75	51.62	-26.87	AVG
9 0.28	19 33.45	9.59	43.04	60.76	-17.72	QP
10 0.28	19 17.81	9.59	27.40	50.76	-23.36	AVG
11 0.350	00 30.64	9.59	40.23	58.96	-18.73	QP
12 0.350		9.59	30.35	48.96	-18.61	AVG
Emission Level=	Read Level+ Co	orrect Factor	r 			

Page: 26 of 45

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Rest Voltage: AC 120V 60Hz	Tomn	oratu	ro:	25°C	7	_		CHIES	Polativo	Цим	idity:	51	5%			
Ant. Pol. Horizontal Remark: Only worse case is reported 70.0 dfw//m 70.0 dfw//m 70.0 Mk. Freq. Reading Correct Measure-Factor MHz dBuV/m						/ RC)Hz	A BOTH	izeiative	nuil	nuity.	J	J /0	13		
No. Mk. Freq. Reading Level Factor Measure Factor Message			je:				JΠZ		THE STATE OF						- CO	
No. Mk. Freq. Reading Level Factor Measure Factor Memory						aı				- (9		3	101	
70.0 dBuV/m No. Mk. Freq. Reading Level Factor Measure-Factor Memory Abuv/m dBuV/m dB Detector 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP								:	\sim						-	
No. Mk. Freq. Reading Level Factor Measure ment Limit Over MHz				Only	/ wo	rse	case	is reported	ALL DE			MA	W			
No. Mk. Freq. Reading Level Factor Measure-ment Limit Over MHz	70.0	dBuV/m														
No. Mk. Freq. Reading Level Factor Measure-ment Limit Over MHz											(DE)ECC	150.2	u Dadia			
No. Mk. Freq. Reading Level Factor Measure—ment Limit Over MHz											(nrjruu	100 3				
No. Mk. Freq. Reading Level Factor Measure- No. Mk. Freq. Limit Over Measure- No. Mk. Freq. Level Factor Measure- No. Mk. Freq. Limit Over Measure- No. Mk. Freq. Limit Limit Over Measure- No. Mk. Freq. Level Factor Measure- No. Mk. Freq. Limit Over Measure- No. Mk. Freq. Li						_			4		1				6	
No. Mk. Freq. Reading Level Factor Measure—ment Limit Over MHz								5	X					Ž.	M	
No. Mk. Freq. Reading Level Factor Measure— Limit Over MHz								ř		1.		ha	who "	• • • • • • • • • • • • • • • • • • • •		
No. Mk. Freq. Reading Level Factor Measure— Limit Over MHz	20 🗠	Mony	mh				Bend	J. James		www	, Ma				\square	
No. Mk. Freq. Reading Level Correct Factor ment Measurement Limit Over 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin			Y.	m	~~~	w	~~	*/\								
No. Mk. Freq. Reading Level Correct Factor ment Measurement Limit Over 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin																
No. Mk. Freq. Reading Level Correct Factor ment Measure-ment Limit Over 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin																
No. Mk. Freq. Reading Level Correct Factor ment Measurement Limit Over 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin															\Box	
No. Mk. Freq. Reading Level Correct Factor ment Measurement Limit Over 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin																
No. Mk. Freq. Reading Level Factor Factor ment Correct Measure- ment Limit Over 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP **Maximum data x:Over limit !:over margin	-30	00 40) E0	CO	70	00		(6411-1		200	400	EOO	C00 70	n .	1000.00	nn
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m d	30.00	00 40	, 30	00	70	ou		(MNZ)		300	400	300	000 70	U	1000.00	,,,
MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB Detector 1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin					F	Rea	ding	Correct	Measu	re-						_
1 351.7079 21.09 17.16 38.25 46.00 -7.75 QP 2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin	No.	. Mk.	Fr	eq.		Le	/el	Factor	ment	t	Limit	(Over			
2 482.2156 11.50 20.54 32.04 46.00 -13.96 QP 3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin			М	Hz		dB	uV	dB/m	dBuV/	m	dBuV/n	1	dB	D	etecto	or
3 750.1083 11.53 24.73 36.26 46.00 -9.74 QP 4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin	1		351.	7079		21.	09	17.16	38.2	5	46.00		-7.75		QP	
4 * 240.8301 24.42 14.02 38.44 46.00 -7.56 QP 5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin	2		482.2	2156		11.	50	20.54	32.0	4	46.00	_	13.9	6	QP	_
5 120.2766 19.58 9.45 29.03 43.50 -14.47 QP 6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin	3		750.	1083		11.	53	24.73	36.2	6	46.00		-9.74		QP	_
6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin	4	*	240.8	8301		24.	42	14.02	38.4	4	46.00		-7.56	,	QP	
6 881.4067 11.81 26.49 38.30 46.00 -7.70 QP *:Maximum data x:Over limit !:over margin	5		120.2	2766		19.	58	9.45	29.0	3	43.50	_	14.4	7	QP	_
	6		881.4	4067	'	11.	81	26.49	38.3	0	46.00		-7.70)	QP	_
								_								
Fortaction Land Control Control Fortact	*:Max	imum da	ata x:	Over lir	nit	!:ove	r margir	1								
Emission Level= Read Level+ Correct Factor	Emis	sion l	_evel=	= Rea	d Le	evel	+ Co	rrect Facto	or							

Page: 27 of 45

Temperature:	25℃		Relative H	umidity:	55%	107
Test Voltage:	AC 120V	′ 60Hz		Million.	- N	N. Comment
Ant. Pol.	Vertical	Marie a		61	11:30	
Test Mode:	Mode 1	- N	Million Control		0	
Remark:	Only wor	se case is repo	rted	1000	0 W	
70.0 dBuV/m						
20	m	2 X	3	(RF)FCC	S 15C 3M Radiation Margin -6	
30.000 40 5	0 60 70 8	D (I	MHz)	300 400	500 600 700	1000.000
No. Mk. F	_	eading Con Level Fac	rect Measur ctor ment	e- Limit	Over	
-	MHz	dBuV dB/	m dBuV/n	n dBuV/n	n dB	Detector
1 42.	.8997	18.46 11.3	25 29.71	40.00	-10.29	QP
2 120	.2766	24.71 9.4	5 34.16	43.50	-9.34	QP
3 240	.8304	25.47 14.	02 39.49	46.00	-6.51	QP
4 351	.7079	18.36 17.	16 35.52	46.00	-10.48	QP
5 528	3.2458	15.22 21.	88 37.10	46.00	-8.90	QP
6 * 881		13.53 26.				QP
*:Maximum data Emission Leve		over margin	actor			

Page: 28 of 45

Above 1GHz

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	AC 120V 60HZ	AC 120V 60HZ						
Ant. Pol.	Horizontal							
Test Mode:	BLE Mode TX 2402 MHz							
Remark:	No report for the emission which more than 10 dB below the							
	prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.048	41.87	14.43	56.30	74.00	-17.70	peak
2	*	4804.048	28.44	14.43	42.87	54.00	-11.13	AVG

Page: 29 of 45

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	AC 120V 60HZ		- 1 L					
Ant. Pol.	Vertical	/ertical						
Test Mode:	BLE Mode TX 2402	BLE Mode TX 2402 MHz						
Remark:	No report for the em	No report for the emission which more than 10 dB below the						
	prescribed limit.							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.048	40.69	14.43	55.12	74.00	-18.88	peak
2	*	4804.048	26.59	14.43	41.02	54.00	-12.98	AVG

Page: 30 of 45

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	AC 120V 60HZ	Million					
Ant. Pol.	Horizontal						
Test Mode:	BLE Mode TX 2442 MHz	0					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

N	o. N	۱k.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4	4883.736	28.43	14.91	43.34	54.00	-10.66	AVG
2		4	4884.978	41.17	14.93	56.10	74.00	-17.90	peak

Page: 31 of 45

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	AC 120V 60HZ	William .						
Ant. Pol.	Vertical	Vertical						
Test Mode:	BLE Mode TX 2442 MHz	BLE Mode TX 2442 MHz						
Remark:	No report for the emission which more than 10 dB below the							
	prescribed limit.							

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.424	41.15	14.91	56.06	74.00	-17.94	peak
2	*	4883.424	28.24	14.91	43.15	54.00	-10.85	AVG

Page: 32 of 45

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	AC 120V 60HZ	MULL					
Ant. Pol.	Horizontal						
Test Mode:	BLE Mode TX 2480 MHz	0					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.						

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.024	42.70	15.39	58.09	74.00	-15.91	peak
2	*	4960.066	29.54	15.39	44.93	54.00	-9.07	AVG

Page: 33 of 45

25℃	Relative Humidity:	55%						
AC 120V 60HZ								
Vertical								
BLE Mode TX 2480 MHz								
No report for the emission which more than 10 dB below the								
prescribed limit.								
	AC 120V 60HZ Vertical BLE Mode TX 2480 MHz No report for the emission w	AC 120V 60HZ Vertical BLE Mode TX 2480 MHz No report for the emission which more than 10 dB						

No	No. Mk. Fre		Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.024	41.86	15.39	57.25	74.00	-16.75	peak
2	*	4960.066	27.95	15.39	43.34	54.00	-10.66	AVG

Page: 34 of 45

Conducted Emission Test Data

Page: 35 of 45

Attachment C-- Restricted Bands Requirement and Band-edge Test Data

(1) Radiation Test

Page: 36 of 45

Page: 37 of 45

Temperature: 25°C						Relative Humidity:							55%		
Test \	Volta	ge:	AC 120V 60HZ										No.		
Ant. F	Pol.		Hori	Horizontal											
Test I	Mode	:	BLE Mode TX 2480 MHz												
Rema	ark:		N/A		117	3							a 1	M	
120.0	dBuV/n	1													
	Y Y														
	X														
	+														
	A														
70	1										(RF) FCC I	PART 15C (PEAK	<u>-</u>
	;														
		ı									(B	F) FCC	PART 150	JAVG)
F	3														
\perp		1													
		1							-						
20.0															
2475	5.000 24	85.00	2495.00	2505.0	00 25	15.00	2525.0	0 :	2535.00	254	5.00	2555.	00	2!	575.00 MH
				Rea	ding	Сс	orrect	М	easur	e-					
No.	. Mk	Fre	eq.	Le	vel	F	actor		ment		Lim	iit	Ove	r	
		MH	Ηz	dB	uV	di	B/m	(dBuV/m	1	dBu	V/m	dB		Detector
1	*	2479.	.800	97	.94	2	.07	1	100.01	1 F	undam	ental	Frequenc	;у –	AVG
2	Χ	2480.	.000	103	3.35	2	.07	•	105.42	2 F	undam	ental	Frequenc	y –	peak
3		2483.	500	63	.55	2	.10		65.65)	74.	.00	-8.3	5	peak
4		2483.	500	49	.20	2	.10		51.30)	54.	.00	-2.7	0	AVG
Emis	sion	Level=	Read	Leve	I+ Co	rrect	Facto	r							

Page: 38 of 45

Page: 39 of 45

(2) Conducted Test

Page: 40 of 45

Attachment D-- Bandwidth Test Data

Temperature:	25℃		Relative Humidity:	55%		
Test Voltage:	AC 1	20V 60HZ				
Test Mode:	BLE	TX Mode				
Channel freque	ency	6dB Bandwidth 99% Bandwidth		Limit		
(MHz)		(kHz)	(kHz)	(kHz)		
2402		671.5	1081.5			
2442		672.3	1082.6	>=500		
2480		694.6	1082.3			

BLE Mode

Page: 41 of 45

Page: 42 of 45

Attachment E-- Peak Output Power Test Data

	Temperature:		Relative Humidity: 55%						
	Test Voltage:	AC 120V 60HZ							
	Test Mode:	BLE TX M							
	Channel frequen	cy (MHz)	Test Res	ult (dBm)		Limit (dBm)			
	2402 2442 2480		7.9	56					
			8.1	55		30			
			6.809						
į	BLE Mode								

BLE Mode

Page: 43 of 45

Page: 44 of 45

Attachment F-- Power Spectral Density Test Data

Temperature:	25°C		Relative Hu	ımidity:	55%	1	
Test Voltage:	AC 120V	60HZ					
Test Mode:	BLE TX M	/lode		a W			
Channel Frequ	uency	Power I	Density	Limi	t	Result	
(MHz)		(dBm/	3kHz)	(dBm/3kHz)		Result	
2402		-6.0)65				
2442	2442		-5.917 8			PASS	
2480		-7.2	296				
		DI E I	Modo	•			

BLE Mode

Page: 45 of 45

----END OF REPORT-----