高等代数-2笔记整理

CassiniWei

序

高等代数第二学期谭老师班本人的笔记。

笔记是按照自己上课记得内容整理而来,只包括课上的内容梗概,由于是期末整理,所有例题的解答和定理的证明都来不及写。

由于匆忙,可能会出现各种各样的问题。

此模板是由https://github.com/zhcosin/elementary-math简化而来的。

CassiniWei 2019-06 于江安

目录

第五章	线性空间和线性映射 1
5.1	线性空间 1
5.2	维数、基和坐标 2
5.3	线性映射和同构 5
5.4	子空间 7
5.5	子空间的运算 8
5.6	直和 9
第六章	线性变换 11
6.1	线性变换 11
6.2	零化和极小多项式 11
6.3	矩阵的相似 12
6.4	特征值和特征向量 12
6.5	特征多项式 13
6.6	不变子空间 14
6.7	λ-阵
6.8	行列式、不变、初等因子 17
6.9	有理标准形 18
第七章	Euclidean空间 21
7.1	内积 21
7.2	欧氏空间 22
7.3	正交变换 23
7.4	对称变换 24
第八章	线性型双线性型二次型 25
8.1	线性型 25
8.2	双线性型 25
8.3	合同关系
8.4	二次型 27
8.5	正定阵 28

6 目录

第五章 线性空间和线性映射

5.1 线性空间

定义 5.1.1 (线性空间). 设 \mathbb{F} 是一数域, \mathbb{F} 是一个非空集合, 设有运算(映射), 称为加法, 从 $V \times V \to V$, 再有一运算称为数乘, 从 $\mathbb{F} \times V \to V$, 且满足:

- 1. 加法: 满足交换律
- 2. 加法: 满足结合律
- 3. 加法: 存在单位元
- 4. 加法: $\forall \alpha \in V$ 使得 $\alpha\beta = 0$, 记作 $\beta = -\alpha$
- 5. 乘法: 存在单位元
- 6. 对数的加法的分配律
- 7. 对向量的加法的分配律

则称V是一个关于加法, 数乘的线性空间, 由单点集给出的线性空间称为零空间.

例 1

- 1. $\mathbb{F}[x]$ 关于多项式的加法, 数乘是 \mathbb{F} 中的一个线性空间.
- 2. \mathbb{F}^n 关于向量的加法, 数乘是 \mathbb{F} 上的一个线性空间.
- 3. $\mathbb{M}(m \times n)$ 关于矩阵的乘法, 数乘是 \mathbb{F} 上的一个线性空间.
- 4. $HOM(\mathbb{F}^n, \mathbb{F}^n)$ 中映射的加法和数乘.
- 5. C[a,b]中函数的加法和数乘.
- 6. $\forall a \in [a, b], f : a \mapsto 0, f$ 是一个线性映射
- 7. 若 $\mathbb{F} \subseteq \mathbb{K}$, 则 \mathbb{K} 是 \mathbb{F} 上的线性空间.
- 8. ℝ+中规定加法为数的乘法,规定乘法为求幂,则ℝ+是ℝ上的线性空间

性质 5.1.1. 设V是 \mathbb{F} 上的线性空间,则:

- 1. 加法满足消去律
- $2. -\alpha = -1 \cdot \alpha$ (对数的加法的分配律)
- 3. 若 $k\alpha = 0$, 则k = 0或 $\alpha = 0$ (数域的性质 $k \cdot k^{-1} = 1$, 反证法)
- 4.0和 $-\alpha$ 的唯一性

推论 5.1.1. 非零向量的不同倍数不相同

5.2 维数、基和坐标

定义 5.2.1 (线性组合). $\sum_{i=1}^{s} k_i \alpha_i = k_1 \alpha_1 + \dots + k_s \alpha_s \in V$ 称为 $\alpha_1, \dots, \alpha_s$ 的一个线性组合.

一般称线性空间中的元素为向量,"0"为零向量.

定义 5.2.2 (线性表出). 设V是 \mathbb{F} 上的线性空间, $\beta, \alpha_1, \cdots, \alpha_n \in V$, 如果 $\exists k_1, \cdots, k_n \in \mathbb{F}$ 使得

$$\beta = \sum_{i=1}^{n} k_i \alpha_i$$

则称 β 可以由 $\alpha_1, \dots, \alpha_n$ 线性表出.

例 1

- 1. 0可以由任意向量属于V线性表出.
- 2. $\alpha \in \mathbb{F}^n$ 可以由基本向量线性表出.
- 3. 矩阵可由基本矩阵线性表出
- 4. $\forall a \in \mathbb{F}, f(x) \in \mathbb{F}_n[x], f(x)$ 可以由 $a, x a, (x a)^2, \cdots, (x a)^n$ 线性表出.
- 5. C是C上的线性空间, 可以由其线性表出.
- 6. ℂ是ℝ上的线性空间, 不可以由其线性表出.

定理 **5.2.1.** $\forall \beta, \alpha_1, \cdots, \alpha_n$ 只有下面三种情况之一:

- 1. β不可以由其线性表出.
- 2. β可以由其线性表出, 且方式唯一.
- 3. β可以由其线性表出, 且方式不唯一.

定理 5.2.2. 如果 β 可以由 $\alpha_1, \dots, \alpha_n$ 线性表出, 且方式不唯一, 则有无穷多种表出方式.

5.2 维数、基和坐标

3

定义 **5.2.3** (线性相关). 如果V是 \mathbb{F} 上的线性空间, $\alpha_1, \dots, \alpha_n \in V$, Ξ 0被 $\alpha_1, \dots, \alpha_n$ 线性表出的方式唯一, 则称 $\alpha_1, \dots, \alpha_n$ 线性无关, 否则, 称其线性相关.

- 2. 若 $\alpha_1, \dots, \alpha_n$ 线性无关,而 $\alpha_1, \dots, \alpha_n, \alpha_{n+1}$ 线性相关,则 α_{n+1} 可以被其余向量唯一表出
- 3. 若在 \mathbb{F}^n 上,向量 $\alpha \in \mathbb{F}^n$ 伸长不改变线性无关性质,缩短不改变线性相关性质.

引理 5.2.1 (基本引理). V是 \mathbb{F} 上线性空间,则若 $\alpha_1, \dots, \alpha_r \in V$ 能够被 β_1, \dots, β_s 线性表出,且r > s,则 $\alpha_1, \dots, \alpha_r$ 线性相关.同样的可以得到逆否命题.

定义 5.2.4 (极大无关组). V是 \mathbb{F} 上线性空间,设 $\alpha_1, \dots, \alpha_n \in V$, 若其子组设 $\alpha_1, \dots, \alpha_r$ 线性无关,且添加任何其他原组中的向量则变为线性相关,则称其为原组的一个极大无关组.

推论 5.2.2. 极大无关组包含相同的向量个数

定义 5.2.5 (秩). 极大无关组的个数称为向量组的秩

例 2 在C[a,b]中, sinx和conx线性无关

定义 5.2.6 (Wrongski行列式). 设 $f_1(x), \dots, f_n(x)$ 的n-1阶导数存在,则

$$W(f_1, \dots, f_n) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

为 f_1, \dots, f_n 的Wrongski行列式.

若 $W(f_1, \dots, f_n) \neq 0$, 则 f_1, \dots, f_n 线性无关.

例 3 在 $\mathbb{F}[x]$ 中,若 $0 \leq i_1 < \cdots < i_n \in \mathbb{Z}$,则 $x^{i_1}, \cdots, x^{i_n} \in \mathbb{F}[x]$ 线性无关

例 4 设V在 \mathbb{F} 是一个线性空间,有 $\alpha_1, \dots, \alpha_n \in V$ 线性无关,若有 $\beta_i = \sum_{j=1}^n a_{ji}\alpha_j, 1 \leq i \leq s$,即:

$$(\beta_1, \beta_2, \cdots, \beta_s) = (\alpha_1, \alpha_2, \cdots, \alpha_n) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ a_{21} & a_{22} & \cdots & a_{2s} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ns} \end{pmatrix}$$

记该矩阵为A, 则 $rank\{\beta_1, \dots, \beta_s\} = rank\{A\}$, 且线性相关性与矩阵A对应列的线性相关性相同.

- 例 5 在 $\mathbb{F}[x]$ 中,求 $\alpha_1 = 1 x x^2$, $\alpha_2 = x x^2$, $\alpha_3 = -2 + x^2$ 的秩.
- **例 6** \mathbb{C} 在 \mathbb{C} 是线性空间, i, 1是线性相关的, 而在 \mathbb{R} 上是线性无关的.
- **例 7** 定义 $\mathbb{Q}[\sqrt[n]{2}] = \{f(\sqrt[n]{2})|f(x) \in \mathbb{Q}[x]\}, \, \text{则}1, \, \sqrt[n]{2}, \, \sqrt[n]{2^2}, \cdots, \, \sqrt[n]{2^{n-1}} \in \mathbb{Q}[\sqrt[n]{2}]$ 线性无关. $f(x) = x^n 1$ 有唯一的根 $\sqrt[n]{2}$,考虑其与非零多项式 $g(x) = \sum_{i=0}^{n-1} a_i x^i$ 的整除关系.
- 定义 5.2.7 (线性无关子集). 设V是 \mathbb{F} 上的线性空间, $S \neq \emptyset \subseteq V$, 如果其任意有限子集都线性无关, 则称S是V的一个线性无关子集.
- 定义 5.2.8 (极大线性无关子集). 设V是 \mathbb{F} 上的线性空间, $\emptyset \neq S \subseteq V$, $\emptyset \neq S_1 \subseteq S$, 如果 S_1 是一个线性无关子集, 并且任意S中的向量都可以由 S_1 线性表出, 则称 S_1 是S的一个极大无关子集.
- **公理 5.2.1** (基的存在性定理). 设V是 \mathbb{F} 上的线性空间, $\emptyset \neq S \subseteq V, S \neq \{0\}$, 则S一定有极大无关子集.
- 定义 5.2.9 (基). V的极大无关子集称为V的基.

例 8

- 1. $M_{m\times n}(\mathbb{F})$ 中的基本矩阵.
- 2. C[a,b]中的基. (无法直接写出)
- 引理 5.2.2. 线性空间V的任意基所含向量的个数相同.
- 定义 5.2.10 (线性空间的维数). 设S是V的一个基,则称S中向量的个数为维数,记为 $dimV=n,V=\varnothing$ 时,dimV=0,如果V的极大无关子集含有向量无穷多,则 $dimV=\infty$.

例 9

- 1. F[x]的维数
- 2. 齐次线性方程AX = 0的解空间的维数
- 推论 5.2.3. 设 $\emptyset \neq V$ 在 \mathbb{F} 是一个线性空间, 若dimV = n, 则其中任意n个线性无关的向量都是V的一个基.

例 10

1. \mathbb{C}/\mathbb{C} 中,有 $dim\mathbb{C}=1$

5.3 线性映射和同构

5

- $2. \mathbb{C}/\mathbb{R}$ 中,有 $dim\mathbb{C}=2$
- $3. \mathbb{R}/\mathbb{Q}$ 中,有 $dim\mathbb{R} = \infty$
- $4. \mathbb{R}/\mathbb{R}$ 中,有 $dim\mathbb{R}=1$

定义 5.2.11 (坐标). 设 $\alpha_1, \dots, \alpha_n$ 是n维线性空间V的一个基,则对 $\forall \alpha \in V$,有

$$\alpha = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 $称 X 为 \alpha$ 的在该基下的坐标.

例 11 定义建立了一个从V到 \mathbb{F}^n 的双射.

定理 **5.2.3.** 设 V/\mathbb{F} , 设 $\alpha_1, \dots, \alpha_n$ 是V的一个基, 设 $\beta_1, \dots, \beta_n \in V$, 则有:

$$\begin{pmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} A$$

则 β_1, \dots, β_n 是V的一个基 \iff 有A可逆

推论 5.2.4. 在 V/\mathbb{F} , 由上, 若:

$$\gamma = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} X = \begin{pmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix} Y$$

设A是上述的转移矩阵,则有 $Y = A^{-1}X$.

5.3 线性映射和同构

定义 5.3.1 (线性映射). 设 $V_1, V_2/\mathbb{F}$, 设映射 $f: V_1 \to V_2$, 满足:

- 1. $f(\alpha + \beta) = f(\alpha) + f(\beta), \forall \alpha, \beta \in V_1$
- 2. $f(k\alpha) = kf(\alpha), \forall \alpha \in V_1, \forall k \in \mathbb{F}$

则称f为从 V_1 到 V_2 的线性映射. 记所有此线性映射的集合为 $Hom(V_1,V_2)$ 或 $L(V_1,V_2)$

例 1

1. 设 $V_1, V_1/\mathbb{F}, f: \alpha \mapsto 0, \alpha \in V_1$, 即 $0 \in Hom(V_1, V_2)$. 这个例子说明 $Hom(V_1, V_2)$ 不 会是一个 \varnothing .

- 2. 将V, dimV = n中的向量映射到 \mathbb{F}^n 中的该向量的坐标的映射, 是一个线性映射.
- 3. 在 $M_{m\times n}(\mathbb{F})$ 中,将一个矩阵映射到其的转置.

定义 5.3.2 (线性变换). 在一个线性映射中, 若 $V_1 = V_2$, 则称该f是一个线性变换.

定义 **5.3.3** (线性映射的矩阵). 设 $V_1, V_2, dimV_1 = n, dimV_2 = m$ 是两个有限维线性空间,设 $\alpha_1, \dots, \alpha_n$ 以及 β_1, \dots, β_m 分别是两个线性空间的基,设有线性映射f,有:

$$(f(\alpha_1) \quad f(\alpha_2) \quad \cdots \quad f(\alpha_n)) = (\beta_1 \quad \beta_2 \quad \cdots \quad \beta_m) A, \ A \in M_{m \times n}(\mathbb{F})$$

例 2 设 $V_1, V_2 / \mathbb{F}$, 取定 $\alpha_1, \dots, \alpha_n$ 以及 β_1, \dots, β_m 分别是两个线性空间的基, 则有单射 $\sigma: Hom(V_1, V_2) \to M_{m \times n}(\mathbb{F})$.

定理 5.3.1 (线性映射存在性与唯一性定理). 设 $V_1, V_2 / \mathbb{F}$, $dimV_1 = n$, 则取定 V_1 的一个基 $\alpha_1, \dots, \alpha_n$, 取定 V_2 中的一个向量组 β_1, \dots, β_n , 则存在唯一的 $f \in Hom(V_1, V_2)$, 使得 $f(\alpha_i) = \beta_i$, 1 < i < n.

例 3 $f \in Hom(V_1, V_2)$, 关于两个线性空间的两个基(有限)的矩阵为A, 设 $\alpha \in V_1$, 其坐标为X, 则有其在 V_2 中的坐标为AX

例 4 由上例,设 $im(f) = \{f(\alpha) \in V_2 | \alpha \in V_1\}$,则 $\beta \in im(f) \iff \beta$ 的坐标Y可以由A的列向量线性表出

例 5 有 $kerf = \{\alpha \in V_1 | f(\alpha) = 0\} = \{\alpha \in V_1 | AX = 0\}$, 可见kerf不是空集, 一定有0.

推论 5.3.1. $f \in Hom(V_1, V_2)$, 则: f是满射 $\iff im(f)$ 中向量可以由A的列向量线性表出 $\iff r(A)$ 等于 $dimV_2$. f是单射 $\iff kerf = \{0\}$. 两者都是有限维线性空间,则f单且满 $\iff A$ 满秩.

例 6 设 $f \in Hom(V_1, V_2)$, 其中 $\alpha_1, \dots, \alpha_n$ 和 $\alpha'_1, \dots, \alpha'_n$ 是 V_1 的基, β_1, \dots, β_m 和 $\beta'_1, \dots, \beta'_m$ 是 V_2 的基, 有:

$$\begin{pmatrix} f(\alpha_1) & f(\alpha_2) & \cdots & f(\alpha_n) \end{pmatrix} = \begin{pmatrix} \beta_1 & \beta_2 & \cdots & \beta_m \end{pmatrix} A, \ A \in M_{m \times n}(\mathbb{F}) \\
\begin{pmatrix} f(\alpha'_1) & f(\alpha'_2) & \cdots & f(\alpha'_n) \end{pmatrix} = \begin{pmatrix} \beta'_1 & \beta'_2 & \cdots & \beta'_m \end{pmatrix} B, \ B \in M_{m \times n}(\mathbb{F}) \\
\begin{pmatrix} \alpha'_1 & \alpha'_2 & \cdots & \alpha'_n \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} P, \ P \in M_n(\mathbb{F}) \\
\begin{pmatrix} \beta'_1 & \beta'_2 & \cdots & \beta'_n \end{pmatrix} = \begin{pmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix} Q, \ Q \in M_m(\mathbb{F})$$

有 $B = Q^{-1}AP$. A n B是在同一个线性映射不同基下的矩阵.

定义 5.3.4 (同构映射). 设 $V_1, V_2/\mathbb{F}$, 设其线性映射 f单且满, 则称其为同构映射.

推论 5.3.2. f为同构映射 \iff f的矩阵A可逆.

5.4 子空间 7

引理 5.3.1. 设 $f \in Hom(V_1,V_2)$, 则有f是同构映射 \Longleftrightarrow ∃ $g \in Hom(V_1,V_2) \rightarrow g \cdot f = id_{V_1}, f \cdot g = id_{V_2}$

例 7

- 1. $M_{m \times n}(\mathbb{F}) \cong M_{n \times m}(\mathbb{F})$
- 2. $D: \mathbb{F}[x] \to \mathbb{F}[x], f(x) \mapsto f'(x), 有 Ker D = \mathbb{F}, 其是满射但是不是单射.$

5.4 子空间

定义 5.4.1 (子空间). 设线性空间V的一个子集W关于V的运算封闭,则称W是V的线性子空间. 特别地,任意线性空间的子空间含零空间.

例 1

- 1. $M_n(\mathbb{F})$ 中的对称矩阵组成的集合.
- 2. $M_n(\mathbb{F})$ 中秩为1的矩阵组成的集合.
- 3. $\mathbb{F}[x]$ 中小于特定阶数的多项式集合.
- 4. $\mathbb{F}[x]$ 中同构于其子空间 $W: x^i \mapsto x^{2i}, i \in \mathbb{N}$.
- 5. \mathbb{R}^+ ⊂ \mathbb{R} 关于乘法和幂.

性质 5.4.1. 由上, $dimW \leq dimV$, 特别地, 有 $dimW = dimV \leftrightarrow W = V$.

定理 5.4.1 (基的扩充定理). W是V的子空间,则W的任意一个基可以扩充为V的一个基.

定义 **5.4.2** (生成子空间). 设 V/\mathbb{F} , α_1 , \cdots , $\alpha_s \in V$, 称 $<\alpha_1$, \cdots , $\alpha_s >= \{\beta \in V | \beta = \sum_{i=1}^s k_i \alpha_i, k_i \in \mathbb{F}\}$ 为 α_1 , \cdots , α_s 张成的子空间.

- 例 2 求 $dim < 1, x+1, x^2+x+1, x^2+x-2 >$
- **例 3** 设 $V_1, V_2/\mathbb{F}, f \in Hom(V_1, V_2), 则kerf 是V_1$ 的子空间, im(f)是 V_2 的子空间.

定义 5.4.3 (同构). 若两个线性空间之间存在同构映射, 则称两个线性空间同构(等价关系), 记为 $V_1\cong V_2$.

定理 5.4.2 (同构定理). 两个都是有限维的线性空间同构 \longleftrightarrow 两个线性空间的维数相等(设为n), 特别地, 其同构于 \mathbb{F}^n

例 4 设 $dimV_1 = n$, $dimV_2 = m$ 则有 $Hom(V_1, V_2) \cong M_{m \times n}(\mathbb{F})$, 特别地, $dimM_{m \times n}(\mathbb{F}) = dimHom(V_1, V_2) = mn$

5.5 子空间的运算

定理 5.5.1 (子空间的维数公式). 设 $V_1, V_2/\mathbb{F}, f \in Hom(V_1, V_2),$ 其中 $dimV_1 = n \Longrightarrow dimkerf + dimim(f) = n$

命题 **5.5.1** (子空间的交). 设 V_1 , V_2 都是V的子空间, 子空间的交为 $V_1 \cap V_2$. 子空间的交仍是子空间. 多个子空间的交仍是子空间.

例 1

- 1. 如何求两个子空间的交及其维数?
- 2. 若dimV = n, 则V可以写成若干n 1维子空间的交.
- 3. (线性映射保子空间), $W = V_1$ 的子空间, 则 $f(W) = V_2$ 的子空间.

引理 **5.5.1** (子空间的并). 两个线性子空间 V_1, V_2 的并是子空间 $\iff V_1 \subseteq V_2$ 或 $V_2 \subseteq V_1$. 可以看出线性子空间的并意义不大.

定理 5.5.2. 线性空间V无法等于其有限多个线性真子空间的并.

命题 5.5.2. 线性子空间的补 W^c 一定不是子空间.

引理 **5.5.2.** 线性子空间的和 $V_1 + V_2 \triangleq \{\alpha_1 + \alpha_2 | \alpha_1 \in V_1, \alpha_2 \in V_2\}$ 是子空间.

例 2

$$V = V_1 + V_2 + \dots + V_s \Longleftrightarrow \forall \ \alpha \in V, \exists \ \alpha_1 \in V_1, \dots, \alpha_s \in V_s \to \alpha = \sum_{i=1}^s \alpha_i$$

例 3 $V=M_n(\mathbb{F}),\ V_1=\{A\in V|A=A'\},\ V_2=\{A\in V|A=-A'\},\ \bar{有}V=V_1+V_2,$ 由于 $A=\frac{A+A'}{2}+\frac{A-A'}{2}.$

例 4

$$V_1 = \{ \alpha \in V | f(\alpha) = \alpha \}, \ V_2 = \{ \alpha \in V | f(\alpha) = -\alpha \}, \ f^2 = id_V \Longrightarrow V = V_1 + V_2$$

命题 5.5.3.

$$<\alpha_1,\cdots,\alpha_s>+<\beta_1,\cdots,\beta_t>=<\alpha_1,\cdots,\alpha_s,\beta_1,\cdots,\beta_t>$$

注意子空间的加不具有消去律,

定理 **5.5.3** (子空间的维数公式). 设 $V_1, V_2 \not\in V$ 的子空间,且其维数都有限,则 $dim(V_1 + V_2) = dimV_1 + dimV_2 - dim(V_1 \cap V_2)$

5.6 直和

5.6 首和

9

定义 **5.6.1** (直和). 若 $\forall \alpha \in \sum_{i=1}^{s} V_i$, $\exists \alpha_i \in V_i \to \alpha = \sum_{i=1}^{s} \alpha_i$, 且表示方法唯一, 则 称 $\sum_{i=1}^{s} V_i$ 是一个直和.

推论 5.6.1. $\sum_{i=1}^{s} V_i$ 是直和 \iff 零的写法唯一.

命题 **5.6.1.** $V_1 + V_2$ 是直和 $\iff V_1 \cap V_2 = \{0\}$

例 1 设 $V_1 = \{f(x) \in C[-\infty, +\infty] | f(a) = 0\}, V_2 = \{f(x) \in C[-\infty, +\infty] | f(b) = 0\}, 则V_1 + v_2$ 是直和?

定理 5.6.1. 设 V_i , $1 \le i \le s$ 的一个基为 $\alpha_{i1}, \dots, \alpha_{it_i}$, 则 $\sum_{i=1}^s V_i$ 是直和 $\iff dim \sum_{i=1}^s V_i = \sum_{i=1}^s dim V_i$

例 2 若有 $V_1 \oplus V_2 = V_1 \oplus V_3 \Longrightarrow dimV_2 = dimV_3 \Longrightarrow V_2 \cong V_3$. 注意不能够推导 $\exists V_2 = V_3$.

例 3 $f \in Hom(V, V)$ 则有kerf + im(f)是直和.

定理 5.6.2. 设 V_1 是V的子空间,则一定存在 V_2 是V的子空间,使得 $V=V_1 \oplus V_2$.

定义 5.6.2 (补空间). 称上述定理中的 V_2 是 V_1 在V中的补空间.

定义 **5.6.3** (嵌入). 设 V_1 是V的子空间,则有映射 $\tau: V_1 \to V, \alpha \mapsto \alpha$, 称为从 V_1 到V的嵌入.

定义 **5.6.4** (线性投影). 取 V_1 在V中的补空间 V_2 , 有 $\forall \alpha \in V$, $\alpha = \alpha_1 + \alpha_2$, $\alpha_1 \in V_1$, $\alpha_2 \in V_2$, 表示唯一, 称映射 $p_{V_1}: V \to V_1$, $\alpha \mapsto \alpha_1 \ni V \ni V_1$ 的线性的投影.

定理 **5.6.3** (准素分解定理). 设 V/\mathbb{F} , 若有 $\rho \in EndV$, $f(x) \in \mathbb{F}[x]$, $f(\rho) = 0$, $f(x) = f_1(x) \cdots f_s(x)$ 且 $f_i(x)$ 两两互素,则有:

$$V = ker f_1(\rho) \oplus \cdots \oplus ker f_s(\rho)$$

例 4 V/\mathbb{F} , 设 $f \in Hom(V,V)$, 则 $V = ker(f-3id_V) \oplus ker(f+2id_V) \iff f^2 - f - 6id_V = 0$

例 5 线性变换保空间分解: $V = V_1 \oplus V_2$, dimV = n, $f \in Hom(V, V)$, $V = f(V_1) \oplus f(V_2) \Longrightarrow f$ 是同构映射.

例 6 设 $V, W/\mathbb{F}$, 且 $V = V_1 \oplus \cdots \oplus V_s$, $W = W_1 \oplus \cdots \oplus W_t$, 若有:

$$V_i \stackrel{l_i}{\to} V \stackrel{f}{\to} W \stackrel{p_{W_j}}{\to} W_j$$

,记 $f_{ji} \triangleq p_{W_i} \cdot f \cdot l_i$,若设线性空间为有限维,则可以得到分块矩阵的具体意义,略.

第六章 线性变换

6.1 线性变换

定义 6.1.1 (线性变换). 线性映射中, 两个线性空间是同一个线性空间的线性映射称为线性变换. 记为 \mathbb{A} , \mathbb{B} 等表示线性变换, 此时Hom(V,V) = End(V).

- 命题 6.1.1. EndV是 \mathbb{F} 上的一个线性子空间.
- 命题 6.1.2. 1. 对乘法封闭, 不满足交换律.
 - $2. \lambda i d_V$ 与所有EndV中元素都可关于乘法交换.
 - 3. 乘法满足结合律.
 - 4. $\forall f, g \in \mathbb{F}[x], \mathbb{A}, \mathbb{B} \in EndV \ 有 f(\mathbb{A})g(\mathbb{B}) = g(\mathbb{B})f(\mathbb{A})$
- **例 1** 设 $\mathbb{A} \in EndV$, $C(\mathbb{A}) = \{\mathbb{B} \in EndV | \mathbb{AB} = \mathbb{BA} \}$, $C(\mathbb{A}) \notin EndV$ 的子空间, 求其维数?

6.2 零化和极小多项式

- 定义 6.2.1 (零化多项式). 多项式f(x)使得 $f(\mathbb{A})=0\in EndV$, 则称f(x)为 \mathbb{A} 的零化多项式.
- 引理 6.2.1. 若dimV = n, $A \in EndV$, 则A有非零零化多项式.
 - **例 1** $\frac{d}{dx} \in End(C[a,b])$ 没有非零零化多项式.
- 引理 **6.2.2** (极小多项式的唯一性). 设m1. m1是 \mathbb{A} 的次数最小的首一的零化多项式,则m1 = m2.
- 定义 6.2.2 (极小多项式). 设A的次数最低的首一的零化多项式为A的极小多项式.
- **例 2** 设 $\mathbb{A} \in EndV, \ dimV = n < \infty, \ \mathbb{F}[\mathbb{A}] \triangleq \{ \ \mathbb{B} \in EndV \mid \exists \ f(x) \in \mathbb{F}, \ \mathbb{B} = f(\mathbb{A}) \}, \ \mathbb{MF}[\mathbb{A}]$ 一定是EndV的子空间, 求其维数.
- 定理 **6.2.1.** $EndV \cong M_n(\mathbb{F}), dimEndV = dimM_n(\mathbb{F}) = n^2.$
- 推论 6.2.1. $\forall \mathbb{A} \in EndV, \exists 0 \neq f(x) \in \mathbb{F}[x]$ 使得 $f(\mathbb{A}) = 0 \in EndV$

6.3 矩阵的相似

引理 6.3.1. 若有:

$$\begin{pmatrix} \mathbb{A}\alpha_1 & \mathbb{A}\alpha_2 & \cdots & \mathbb{A}\alpha_n \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} A$$

$$\begin{pmatrix} \mathbb{A}\beta_1 & \mathbb{A}\beta_2 & \cdots & \mathbb{A}\beta_n \end{pmatrix} = \begin{pmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix} B$$

$$\begin{pmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix} C$$

则有 $B = C^{-1}AC$.

定义 6.3.1 (相似). 称上述两个矩阵之间的关系为相似, 即存在可逆的矩阵C, 使得 $B=C^{-1}AC$.

命题 6.3.1. 相似关系是等价关系.

例 1 相似于一数量阵的矩阵只有其本身.

例 2 A与B相似, 等且仅当XA = BX矩阵方程有可逆的解, 等且仅当 $f(t_1, \dots, t_r) = det(t_1X_1 + \dots + t_rX_r) \in \mathbb{F}[t_1, \dots, t_r]$ 是一个非零函数(X_i 是解空间的基).

命题 6.3.2. 相似关系不依赖于数域, 由上可以看出.

性质 6.3.1. 相似关系的必要条件:

- 1. det(A) = det(B).
- 2. r(A) = r(B).
- 3. tr(A) = tr(B).
- 4. A, B的极小多项式相同.

引理 6.3.2.

$$A \sim B \Longrightarrow A^k \sim B^k \Longrightarrow f(A) \sim f(B)$$

6.4 特征值和特征向量

引理 **6.4.1.** $A \in M_n(\mathbb{F}), \ D = diag\{\lambda_1, \cdots, \lambda_n\}A \sim D \Longrightarrow A\xi_i = \lambda_i \xi_i, \ 1 \leq i \leq n, \$ 中每个 ξ_i 线性无关.

推论 6.4.1. $M_n(\mathbb{F})$ 上的矩阵可以对角化, 当且仅当其有n个线性无关的特征向量.

6.5 特征多项式 13

定义 **6.4.3** (特征子空间). $A \in M_n(\mathbb{F})$, $\Xi \lambda_1$, \cdots , λ_s 是其互不相同的特征值, 则称 $V_{\lambda} = \{ \xi \in \mathbb{F}^n | A\xi = \lambda \xi \}$ 为矩阵的属于该特征值的特征子空间.

引理 **6.4.2.** $A \in M_n(\mathbb{F})$, $\Xi \lambda_1$, ···, λ_s 是其互不相同的特征值, 则该s个特征子空间是直和.

推论 6.4.2. 若有对角元都相同的上三角阵 $A \in M_n(\mathbb{F})$,则其不可对角化.

引理 **6.4.3.** $A \in M_n(\mathbb{F})$,则 λ 是其特征值 $(\Lambda \to 0)$ 当且仅当 $r(A - \lambda E) < n$ 或 $\det(A - \Lambda E) = 0$.

6.5 特征多项式

定义 **6.5.1** (特征多项式). $f(\lambda) = det(\lambda E - A) \in \mathbb{F}[x]$ 为 $A \in M_n(\mathbb{F})$ 的特征多项式. 则有 λ 是其特征值, 当且仅当是其特征多项式的根.

推论 6.5.1. $A \in M_n(\mathbb{F})$ 是对角元都不相同的上三角阵,则其可对角化.

推论 6.5.2. 两个矩阵相似,则其特征多项式相同.

推论 **6.5.3.** 若 $A \in M_n(\mathbb{F})$, 则 $det(A) = \prod_{i=1}^n \lambda_i$, $tr(A) = \sum_{i=1}^n \lambda_i$.

推论 6.5.4. $A \in M_n(\mathbb{F})$ 是上三角阵, $\Xi \lambda_1, \dots, \lambda_n$ 是其对角元, 则 $tr(A^k) = \sum_{i=1}^n \lambda_i^k$.

定义 **6.5.2** (几何重数和代数重数). $\lambda \in A \in M_n(\mathbb{F})$ 的一个特征值,则称其在特征多项式中的重数为其代数重数,其特征子空间的维数为几何重数.

定理 6.5.1 (实数对称阵的特征值). 实数域上的对称阵的特征值一定是实数.

例 1 对角化算法:

- 1. 由特征多项式判断其特征值是否在数域F上, 否则不可对角化.
- 2. 算出每个特征子空间的基, 若维数之和小于n, 则其不可对角化.
- 3. 依次排列基和对应的特征值即为C和D.

定理 6.5.2. $A \in M_n(\mathbb{F})$, $\mathbb{F} \subseteq \mathbb{K}$, 则A相似于一个上三角阵, 当且仅当其特征值都在 \mathbb{K} 上.

推论 6.5.5. 一个矩阵在复数域上一定相似于一个上三角阵.

例 2 $A \in M_n(\mathbb{F}), A^n = 0$,当且仅当A只有零特征值,当且仅当其特征多项式为 x^n .

例 3 若 $A \in M_n(\mathbb{F})$, A相似于一个对角元为 $\lambda_1, \dots, \lambda_n$ 的上三角阵, $g \in \mathbb{F}[x]$, 有 $det(g(A)) = \prod_{i=1}^n g(\lambda_i)$.

命题 **6.5.1.** $A \in M_n(\mathbb{F})$, 则A一定有非零零化多项式.

定理 6.5.3 (Hamilton-Caylay定理). 矩阵的特征多项式即为其零化多项式.

推论 6.5.6. $A \in M_n(\mathbb{F})$,则其极小多项式整除其特征多项式,且其复根相同.

推论 **6.5.8.** 若有A, $B \in M_n(\mathbb{F})$, $A = diag\{A_1, \dots, A_s\}$, $A_i \in M_{r_i}(\mathbb{F})$, AB = BA, 则 $B = diag\{B_1, \dots, B_s\}$, $B_i \in M_{r_i}(\mathbb{F})$.

特别地, 若A是对角阵, 则B也是对角阵, 且有 $dim\{B \in M_n(\mathbb{F})|AB = BA\} = n$.

例 4 $A \in M_n(\mathbb{F})$,其特征多项式为 f_A ,若 f_A , $g \in \mathbb{F}[x]$,则g(A)可逆,当且仅当 $(f_A, g) = 1$.

例 5 由A的特征多项式可得, A^{-1} 仍为其多项式.

例 6 $A \in M_n(\mathbb{F})$,则其复特征值 λ 的代数重数大于等于其几何重数.

且, A可对角化, 当且仅当其代数重数和几何重数相等.

6.6 不变子空间

定义 **6.6.1** (不变子空间). 若W是 \mathbb{F}^n 的子空间, 若有 $\forall \alpha \in W$, $A\alpha \in W$, 则称W是A的不变子空间(A-子空间).

即A在F上可准对角化, 当且仅当其可以分解为其不变子空间的直和.

例 1

- 1. $A \in M_n(\mathbb{F})$, 则有 \mathbb{F}^n , 0是A的平凡A-子空间.
- 2. 其特征子空间是其一个不变子空间.
- 3. 特征子空间的和是一个不变子空间.

例 2 设 $A \in M_n(\mathbb{R})$, 设 λ 是其一复特征值, 对应 α 是其特征向量, 令 $\xi_1 = \alpha + \bar{\alpha}$, $\xi_2 = (\alpha - \bar{\alpha})i$. 则有 $W = \langle \xi_1, \xi_2 \rangle$ 是A的一个不变子空间.

实数域上的方阵一定有二维的不变子空间.

例 3
$$A = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 绕z轴旋转.

例 4 $A \in M_n(\mathbb{F})$, 且 $\lambda_1, \dots, \lambda_s$ 是其互不相同的特征值, 设W是其特征子空间, 则有:

 $W \cap (V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_s}) = (W \cap V_{\lambda_1}) \oplus \cdots \oplus (W \cap V_{\lambda_s}).$

特别地, 若A可对角化, 则有:

$$W = (W \cap V_{\lambda_1}) \oplus \cdots \oplus (W \cap V_{\lambda_s}).$$

定义 6.6.2 (线性变换的特征值等). 定义 $A \in EndV$ 的矩阵A的特征值, 特征向量, 特征 子空间, 不变子空间, 特征多项式为A的.

6.7 λ -阵

- 例 5 若 $\mathbb{A} \in EndV$, 则 $ker\mathbb{A}$, $im(\mathbb{A})$ 是 \mathbb{A} -子空间.
- **例 6** $A, B \in M_n(\mathbb{F})$, 且AB = BA, 则kerB一定是A的特征子空间.

特别地, 对 $\forall f(x) \in \mathbb{F}[x]$, ker(A)是A-子空间.

例 7 $\mathbb{F}[x]$ 上, $\frac{d}{dx}$ 只有一个特征值0, 且其特征子空间的维数为1.

定义 **6.6.3** (限制). 设 V/\mathbb{F} , $\mathbb{A} \in EndV$, W是其一个不变子空间, 则称 $\mathbb{A}|_W:W \to W$, $\alpha \mapsto \mathbb{A}\alpha$ 是 \mathbb{A} 在W上的限制.

- **例 8** 设 V_{λ} 是A的一个特征子空间,则有 $A|_{V_{\lambda}} = \lambda i d_{V_{\lambda}}$.
- **例 9** 在准素分解定理中, 若 $g = g_1 \cdots g_s$, 且其两两互素, g非零为 \mathbb{A} 的一个零化多项式, $kerg_i(\mathbb{A})$ 是其一个不变子空间, 则 g_i 是 $\mathbb{B}_i = \mathbb{A}|_{kerg_i(\mathbb{A})}$ 的一个零化多项式.
- **例 10** 若 V/\mathbb{F} , \mathbb{A} , $\mathbb{B} \in EndV$, 且 $\mathbb{AB} = \mathbb{BA}$, $dimV < \infty$, $\mathbb{F} = \mathbb{C}$, 则 \mathbb{A} 和 \mathbb{B} 有共同的特征向量.
- **例 11** 设 $A, B \in M_n(\mathbb{F}), AB = BA$, 则存在可逆的方阵 $P \in M_n(\mathbb{C})$, 使得 $P^{-1}AP$, $P^{-1}BP$ 同时为上三角阵.
 - **例 12** 设 $A, B \in M_n(\mathbb{F}), AB = BA, 且B幂零, 则<math>det(A + B) = det(A)$
- 命题 6.6.1. 极小多项式不依赖于数域/线性相关性不依赖于数域/.
- 引理 **6.6.1.** 若A可以写成准对角阵 $diag\{A_1, \dots, A_s\}$, 设m(x)是其极小多项式, $m_i(x)$ 是对角元位置上矩阵的极小多项式, 则 $m = [m_1, \dots, m_s]$.
- - **例 13** r阶Jordan块一定不可对角化.

6.7 λ -阵

- 定义 6.7.1 (特征阵). 设 $A \in M_n(\mathbb{F})$, λ 为不定元, $\delta \lambda E_n A \in M_n(\mathbb{F}[\lambda])$ 为A的特征阵. 其中 $M_n(\mathbb{F}[\lambda])$ 为所有 $(a_{ij}(\lambda))_{n \times n}$, $a_{ij}(\lambda) \in \mathbb{F}[x]$ 的集合.
- 定义 6.7.2 (λ 阵的次数). 定义 $\max_{1 \leq i,j \leq n} a_{ij}(\lambda) 为 A(\lambda) \in M_n(\mathbb{F}[\lambda])$ 为其次数,约定在 $A(\lambda) = 0$ 时次数为 $-\infty$.
- 一般地可以将 $A(\lambda)$ 写成 $A(\lambda)=\lambda^mA_m+\lambda^{m-1}A_{m-1}+\cdots+\lambda A_1+A_0,\ A_i\in M_n(\mathbb{F})$ 的样式.

性质 **6.7.1.** $M_n(\mathbb{F}[\lambda])$ 上:

- 1. $deg(A(\lambda) + B(\lambda)) \le max\{degA(\lambda), degB(\lambda)\}, deg(A(\lambda)B(\lambda)) \le degA(\lambda) + degB(\lambda).$
- 2. 是一个环, 是 $\mathbb{F}[\lambda]$ 上的矩阵环.
- $3. \mathbb{F}[x]$ 是一个交换环,可以定义行列式,满足行列式乘积定理、laplace定理.

定义 6.7.3 (λ 阵的可逆性). 若存在 $B(\lambda) \in M_n(\mathbb{F}[\lambda])$ 使得 $A(\lambda)B(\lambda) = B(\lambda)A(\lambda) = E$, 则称 $A(\lambda)$ 可逆, $B(\lambda)$ 为其逆矩阵.

定理 6.7.1 (λ 阵可逆的充要条件). $\mathcal{E}A(\lambda) \in M_n(\mathbb{F}[\lambda])$, 则 $A(\lambda)$ 可逆, 当且仅当 $det(A(\lambda)) \in \mathbb{F} \setminus \{0\}$.

例 1

- 1. λ 阵的初等变换: 交换两行/列, 将某行/列的 $u(\lambda)$ 倍加到另一行, 将某一行乘以一个非零常数.
- 2. 定义 E_n 经一次初等变换得到的矩阵称为初等 λ 阵.
- 3. 初等 λ 阵一定可逆, 且逆矩阵仍是初等 λ 阵.
- 4. 定理: 对 λ 阵做初等变换, 等价于对该 λ 阵乘以相应的初等 λ 阵.

定义 6.7.4 (λ 阵的秩). $A(\lambda)$ 非零子式的最高阶数为其秩, 记为 $r(A(\lambda))$.

定义 6.7.5 (λ 阵的相抵). 设 $A(\lambda)$, $B(\lambda) \in M_n(\mathbb{F}[\lambda])$, 若存在可逆的 $P(\lambda)$, $Q(\lambda)$ 使得 $P(\lambda)A(\lambda)Q(\lambda) = B(\lambda)$, 则称 $A(\lambda)$, $B(\lambda)$ 相抵. 相抵是等价关系.

引理 **6.7.1.** A, B相似, 当且仅当, 存在可逆的 R_1, R_2 使得 $R_1(\lambda E - A)R_2 = \lambda E - B$.

引理 **6.7.2.** $P(\lambda), Q(\lambda) \in M_n(\mathbb{F}[\lambda])$, 则存在 $H(\lambda), G(\lambda) \in M_n(\mathbb{F}[\lambda])$, $R_1, R_2 \in M_n(\mathbb{F})$ 使得

$$P(\lambda) = H(\lambda)(\lambda E - B) + R_1$$
$$Q(\lambda) = (\lambda E - B)G(\lambda) + R_2.$$

引理 6.7.3. 设 $A(\lambda) = (a_{ij}(\lambda))_{m \times n}$, 且 $a_1 1 \neq 0$ 若存在 $a_{ij}(\lambda)$ 使得 $a_{11}(\lambda) \nmid a_{ij}(\lambda)$, 则 $A(\lambda)$ 一定可以经有限步初等变换化为 $B(\lambda) = (b_{ij}(\lambda))_{m \times n}$ 其中, $b_{11}(\lambda)$ 首一且 $degb_{11} < dega_{11}$.

定理 **6.7.3.** 设 $A(\lambda) \in M_{m \times n}(\mathbb{F}[\lambda])$ 且非零,则 $A(\lambda)$ 一定相抵于: $diag\{d_1(\lambda), d_2(\lambda), \cdots, d_r(\lambda), 0, \cdots, 0\}$, 且对角元首一, $d_i(\lambda)|d_{i+1}(\lambda), 1 \le i \le r-1$.

推论 6.7.1. 1. $A(\lambda)$ 可逆, 当且仅当其可以表示为有限个初等 λ 阵的乘积.

2. $A(\lambda)$, $B(\lambda)$ 相抵, 当且仅当 $A(\lambda)$ 可以经有限步初等变换化为 $B(\lambda)$.

6.8 行列式、不变、初等因子

定义 **6.8.1** (行列式因子). 设 $A(\lambda)$ 是一个 λ 阵, 且 $r(A(\lambda) > 0)$, 对 $1 \le k \le n$, 其存在非零k阶子式, 则称其所有k阶子式的最大公因式为其k级行列式因子, 记为 $D_k(\lambda) = D_k(A(\lambda))$.

引理 6.8.1. 初等行/列变换不改变 λ -阵的行列式因子.

推论 6.8.1. 1. 初等变换不改变 λ -矩阵的秩.

2. 相抵的λ-阵具有相同的秩.

定理 **6.8.1** (行列式因子与不变因子)**.** 若 $A(\lambda)$ 相抵于 $diag\{d_1(\lambda), d_2(\lambda), \dots, d_r(\lambda), 0, \dots, 0\}$, 且对角元首一, $d_i(\lambda)|d_{i+1}(\lambda), 1 \le i \le r-1$, 则有:

1.
$$d_1(\lambda) = D_1(\lambda), \ d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)}, \ \cdots, \ d_r(\lambda) = \frac{D_r(\lambda)}{D_{r-1}(\lambda)}.$$

2. 若 $A(\lambda)$ 相抵于 $diag\{f_1(\lambda), f_2(\lambda), \cdots, f_r(\lambda), 0, \cdots, 0\}$,则 $f_i = d_i, 1 \le i \le r$.(唯一性)

定义 6.8.2 (smith标准形). 称上定理中的矩阵为 $A(\lambda)$ 的相抵标准形, 称 $d_i(\lambda)$, $1 \le i \le r$ 为其不变因子.

推论 6.8.2 (λ 阵相抵的充要条件)。两个 λ —阵相抵, 当且仅当其各级行列式因子相同, 当且仅当其所有不变因子相同.

定理 6.8.2 (矩阵相似的充要条件). 两个矩阵相似, 当且仅当其行列式因子相同, 当且仅当其不变因子相同.

例 1 若 $A \in M_n(\mathbb{F})$, f_A 是其特征多项式, d_1, \dots, d_r 是其不变因子, 则 $f_A = d_1 \cdots d_r$

2. $A, B \in M_n(\mathbb{F}), \mathbb{F} \subset \mathbb{K}, \mathbb{M}A, B$ 在 \mathbb{F} 上相似, 当且仅当其在 \mathbb{K} 上相似.

例 2 r阶Jordan块 $J_r(a)$ 的 $D_1(\lambda) = \cdots = D_{r-1}(\lambda) = 1, D_r(\lambda) = (\lambda - a)^r$.

例 3 $A(\lambda)$ 可逆,当且仅当其行列式为非零常数,当且仅当 $D_n(\lambda)=1$,当且仅当 $A(\lambda)$ 的标准形为 E_n .

命题 **6.8.1.** $A(\lambda)$ 不变因子的个数为 $A(\lambda)$ 的秩.

引理 **6.8.2.** $diag\{a_1(\lambda), \dots, p(\lambda)^s a_i(\lambda), \dots, p(\lambda)^t a_j(\lambda), \dots, a_n(\lambda)\}$ 和 $diag\{a_1(\lambda), \dots, p(\lambda)^t a_i(\lambda), \dots, p(\lambda)^s a_j(\lambda), \dots, p(\lambda)^s a$

引理 6.8.3. 设 $A(\lambda)$ 相抵于 $B(\lambda) = diag\{h_1(\lambda), \dots, h_n(\lambda)\}$, 设 $h_i(\lambda) = p_1(\lambda)^{r_{i1}} \dots p_s(\lambda)^{r_{is}}, 1 \le i \le n$, 且 $r_{ij} \ge 0, 1 \le j \le s$, 其中 $p_j(\lambda)^{r_{ij}}$ 是 \mathbb{F} 上的素幂因子, $p_j(\lambda)$ 不可分解.作s行,每行按照 $p_i(\lambda)$ 的次数降幂排列,每一列的乘积即为 $A(\lambda)$ 和 $B(\lambda)$ 的不变因子.

定义 **6.8.4** (初等因子). $A(\lambda) \in M_n(\mathbb{F}[\lambda])$, 且 $r(A(\lambda)) = n$, 把 $A(\lambda)$ 的每个正次数的不变因子的数幂因子称为 $A(\lambda)$ 的初等因子.

推论 6.8.4. $A(\lambda)$ 的不变因子的所有数幂因子构成 $A(\lambda)$ 的初等因子.

定理 **6.8.3** (矩阵相似的充要条件). $A, B \in M_n(\mathbb{F})$ 相似当且仅当其在同一数域的初等因子相同.

例 4 A的特征多项式等于其特征阵的初等因子的乘积.

定义 **6.8.5** (正整数的划分). 设 $n \in \mathbb{N}^+$, 则称 $n = n_1 + \dots + n_k$, $n_i \ge 1$, $n_{i+1} \ge n_i$, $1 \le i \le n - 1$ 为n的一个划分,以p(n)表示划分的个数.

推论 **6.8.5.** 设 $A \in M_n(\mathbb{F})$, 其特征多项式 $f_A = p_1(\lambda)^{s_1} \cdots p_t(\lambda)^{s_t}$, 则其初等因子和矩阵按照相似关系分类有 $p(s_1) \cdots p(s_t)$ 种.

定理 6.8.4 (Jordan标准形). 若A的全部复特征值属于 \mathbb{F} , 写出其初等因子, 按序排列, 构造准对角阵

 $J = diag\{J_1(a_1), \cdots, J_{m_1}(a_1), \cdots, J_1(a_s), \cdots, J_{m_s}(a_s)\}$ 是A在F上的Jordan标准形. 矩阵在某一数域上有Jordan标准形, 当且仅当其全部特征阵属于该数域.

例 5 如何求矩阵在某一数域的Jordan标准形.

- 1. 特征阵化为对角阵, 正次数对角元能否化为一次多相似的乘积, 否则无Jordan标准形.
- 2. 写出全部初等因子.
- 3. 写出Jordan标准形.
- **例 6** 待定系数法求可逆矩阵P使得 $P^{-1}AP = J$.
- 例 7 矩阵的极小多项式等于其最后一个不变因子.
- 例 8 $A \in M_n(\mathbb{F})$, 存在 $k \in \mathbb{N}^+$, 使得 $r(A^k) = r(A^{k+1} = \cdots)$
- **例 9** 设 $A \in M_n(\mathbb{F})$,若A在某数域上有Jordan标准形,则其对角元为a的Jordan块的个数为a作为其特征值的几何重数.

6.9 有理标准形

定义 6.9.1 (友阵). 若 $f(x) = \lambda_n + a_1\lambda_{n-1} + \dots + a_{n-1}\lambda_1 + a_n \in \mathbb{F}[\lambda]$, 定义 $R = \begin{pmatrix} 0 & -a_n \\ 1 & \ddots & \vdots \\ & \ddots & 0 & -a_2 \end{pmatrix}$ 为其友阵.

6.9 有理标准形 19

注意到, $|\lambda E - R| = f(\lambda) = d_n(\lambda)$, 而其他初等因子为1.

定义 **6.9.2** (有理标准形). 设A的全部初等因子的友阵分别为 $R_{11}, \cdots, R_{1t_1}, \cdots, R_{s1}, \cdots, R_{st_s}$,则定义矩阵 $diag\{R_{11}, \cdots, R_{1t_1}, \cdots, R_{s1}, \cdots, R_{st_s}\}$ 为其有利标准形.

注意到其有利标准形与A有相同的初等因子, 因此他们相似.

- **例 1** 若一个矩阵在某数域同时具有Jordan标准形,则此Jordan标准形与其有利标准形相似.
 - **例 2** 考虑 $M_2(\mathbb{R})$ 上所有矩阵的相似情况. 设该空间上的矩阵A的特征多项式为 $f(\lambda) = \lambda^2 + a\lambda + b$.

 - 2. 若 $a^2-4b=0$,则其在实数域上的初等因子有两种情况,相似于其Jordan标准形,可能相似于 $diag\{\lambda_0,\ \lambda_0\}$ 或是 $\begin{pmatrix} \lambda_0 & 1 \\ 0 & \lambda_0 \end{pmatrix}$.
 - 3. 若 $a^2 4b < 0$,则其相似于其有利标准形 $\begin{pmatrix} 0 & b \\ 1 & -a \end{pmatrix}$.

20

第七章 Euclidean空间

7.1 内积

定义 7.1.1 (内积). 具有对称性和正定性的双线性型为内积.

例 1

- 1. 称 \mathbb{R}^n 上的 $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n, \ X, Y \mapsto \sum_{i=1}^n x_i y_i$ 为标准内积.
- 2. ℝ3上的点积是内积.
- 3. $f: V \times V \to \mathbb{R}$, $(A, B) \mapsto tr(A'B)$ 是内积.
- 4. $f: C[a,b] \times C[a,b] \to \mathbb{R}, f,g \mapsto \int_a^b fg dx$ 是一个内积.

定义 7.1.2 (内积空间). 若(,)是V上的内积,则称(V,(,))是一个内积空间.

- 性质 7.1.1. 1. 若某一向量与该空间内任意向量做内积都为零,则该向量为零向量.
 - 2. 若 $\alpha_1, \dots, \alpha_n$, 两两之间内积都为零(正交), 则其线性无关.
 - 3. (Caucthy-Bunyakawski不等式): $\alpha, \beta \in V, 则(\alpha, \beta)^2 \leq (\alpha, \alpha)(\beta, \beta)$.
 - 4. (Schmidt正交化): $\alpha_1, \dots, \alpha_n$ 线性无关,则 $\beta_k = \alpha_k \sum_{i=1}^{k-1} \frac{(\alpha_k, \beta_i)}{(\beta_i, \beta_i)} \beta_i$, $\beta_1 = \alpha_1$. 两两正交且与原向量组等价.
 - **例 2** 由Caucthy不等式得到 $(\sum_{i=1}^{n} \frac{x_i^2}{n})^2 \le \frac{\sum_{i=1}^{n} x_i^2}{n}$ 成立.特别地, 基本不等式成立.
- 定义 7.1.3 (内积的几何性概念). 1. 定义某空间中向量的长度 $\|\alpha\| = \sqrt{(\alpha, \alpha)}$.
 - 2. 三角不等式 $\|\alpha\| \|\beta\| \le \|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.
 - 3. $\pi \frac{\alpha}{\|\alpha\|} \to \alpha$ 的单位化, 长度为一的向量为单位向量.
 - 4. 设两向量 α , β 都不为零,则 $|\frac{(\alpha,\beta)}{\|\alpha\|\cdot\|\beta\|}|\leq 1$, 存在唯一的 $\theta\in[0,\pi]$ 使得 $\cos\theta$ 与之相等,定义 θ 为两向量之间的夹角.

5. 若两向量之间的夹角为亞, 即称两向量垂直.

定义 7.1.4 (度量映射). 设 V_1 , V_2 是两个线性空间, 分别两个内积为 $(,)_1$, $(,)_2$, 若 $f \in Hom(V_1, V_2)$, 且任意 V_1 中的向量, $(f(\alpha), f(\beta))_2 = (\alpha, \beta)_1$, 即线性映射保内积, 则称该线性映射为度量映射.

引理 7.1.1. 线性映射是单射是线性映射为度量映射的必要条件.

定义 7.1.5 (等距). 若度量映射是双射,则称其为等距映射,两个线性空间存在等距映射,则称两个线性空间等距.

7.2 欧氏空间

定义 7.2.1 (欧氏空间). n维的内积空间称为一个n维欧氏空间.

性质 7.2.1. 1. 欧氏空间具有标准正交基.

- 2. 若欧氏空间上一个向量组标准正交,则其可以扩充为一个标正基.
- 3. 两个欧式空间等距, 当且仅当其维数相等.
- 4. W是欧氏空间V的一个子空间,则 W^{\perp} 也是其子空间, $V = W \oplus W^{\perp}$.
- **例 1** 欧氏空间上的两个向量在标正基下的坐标为X, Y, 则其内积为X'Y.

定义 7.2.2 (空间的正交). 内积空间的两子空间中的任意两向量内积为零,则称两子空间是正交的.

例 2 例如Fourier级数中的向量组1, sinx, sin2x, \cdots , cosx, cos2x, \cdots

定义 7.2.3 (正交投影). 若W是内积空间V的子空间,有 $V = W \oplus W^{\perp}$,对 $\forall \alpha \in V$,有 $\alpha = \alpha_1 + \alpha_2$,分别属于 $W \Rightarrow W^{\perp}$ 且唯一,则称 $\alpha_1 \Rightarrow \alpha \in W$ 上的正交投影.

定理 7.2.1 (正交投影). 由上, α_1 是 α 在W上的正交投影, 当且仅当, $\forall \beta \in W$, 有 $\|\alpha - \alpha_1\| \leq \|\alpha - \beta\|$.

定理 7.2.2 (最小二乘法). 设 $y = k_1 x_1 + \dots + k_n x_n$, 若有m组数据 a_{i1} , \dots , a_{in} , b_i , $1 \le i \le m$, 则使得 $\sum_{i=1}^{m} (b_i - \sum_{j=1}^{n} k_i a_{ij})$ 最小的 $X = (k_1, \dots, k_n)'$ 是线性方程组 $A'AX = A'\beta$ 的解, 称为最小二乘解.

定义 7.2.4 (内积的度量阵). V是一个欧氏空间, 其内积在某一基下具有度量阵.

例 3 $\alpha_1, \dots, \alpha_n$ 是标正基, 当且仅当其内积在其上的度量阵为单位阵.

性质 7.2.2. 1. 度量阵是单位阵.

- 2. 度量阵可逆.
- 3. 在不同基上的度量阵合同.

定义 7.2.5 (合同). 两个方阵A, $B \in M_n(\mathbb{F})$ 合同, 即存在可逆的方阵 $P \in M_n(\mathbb{F})$ 使 得B = P'AP.

7.3 正交变换 23

7.3 正交变换

定义 7.3.1 (正交变换). 若一欧氏空间,有 $\mathbb{A} \in EndV$, 若($\mathbb{A}\alpha$, $\mathbb{A}\beta$) = (α , β), 则称其是一个正交变换.

记欧式空间V上的所有正交变换的空间为O(V).

例 1 恒等变换是正交变换.

性质 7.3.1. 1. 一个正交变换是双射, 可逆, 且其逆也是正交变换.

- 2. 若W是正交变换的不变子空间,则其正交补也是其不变子空间.
- 3. 两个正交变换的积也是正交变化,O(V)是一个一般线性群GL(V)(V上可逆的线性变换作成的群)的子群.
- 4. 一个线性变换是正交变换, 当且仅当其将一个标正基映射到一个标正基.
- **例 2** 若两个n维欧氏空间,则其 $O(V_1)$, $O(V_2)$ 同构.

定义 7.3.2 (反射变换). 对 $\forall \alpha$, V是一欧氏空间, 有 $r_{\alpha}: V \to V$, $\gamma \mapsto \gamma - \frac{2(\alpha, \gamma)}{(\alpha, \alpha)}\alpha$. 称为由 α 确定的反射变换.

性质 7.3.2. 1. 反射变换是线性变换.

- 2. 反射变换是正交变换.
- 3. 反射变换的特征值为1, -1, 且几何重数分别为n-1, 1, 则反射变换可对角化.
- **例 3** $T: M_n(\mathbb{F}) \to M_n(\mathbb{F}), A \mapsto 3A + 5A',$ 则由定义可以得到其两个特征值-2, 8,且只有两个特征值.
 - **例 4** chapter6, 例62, Dieudonne定理.
- 定义 7.3.3 (正交阵). $A \in M_n(\mathbb{F})$, 且 $A'A = E_n$, 则称其是一个n阶正交阵.
- 定理 7.3.1 (正交阵的充要条件). $A \in M_n(\mathbb{R}) \in O(V)$, 当且仅当其在标正基下的矩阵为正交阵.

记所有正交阵组成的集合为 $On(\mathbb{R})$.

性质 7.3.3. 1. 正交阵可逆, 且其逆矩阵也是正交阵.

- 2. 正交阵的积仍是正交阵, 正交阵作成的集合是一个群.
- 3. n维欧式空间的O(V)与 $On(\mathbb{R})$ 之间有双射.
- 4. 若 $A \in O_m(\mathbb{R}), B \in O_n(\mathbb{R}), 则 diag\{A, B\} \in O_{m+n}(\mathbb{R}).$
- 5. 正交阵的行列式为1或-1. 记 $SO_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) | A'A = E_n, |A| = 1\}$ 为标准正交群.
- 6. 正交阵的任意复特征值在单位元上.

- 7. 定义线性变换 $A: \alpha \mapsto A\alpha$, 则A是正交阵, 当且仅当其是正交变换.
- 8. A是正交阵, 当且仅当其列/行向量组是 \mathbb{R}^n 的标正基.

7.4 对称变换

定义 7.4.1 (对称变换). 欧氏空间上一线性变换A, 使得对任意属于欧氏空间的两向量有($\mathbb{A}\alpha$, β) = (α , $\mathbb{A}\beta$), 则称此线性变换为对称变换.

记欧式空间上所有对称变换组成的集合记为 $\mathcal{S}(V)$.

定理 7.4.1 (对称变换的充要条件). A是对称变换, 当且仅当其在标正基下的矩阵为对称阵.

性质 7.4.1. 1. 实对称阵的特征值全为实数.

- 2. 若A是实对称阵,则若W是A-子空间,则W[⊥]也是A-子空间.
- 3. 若A是实对称阵, 若 λ_1 , \dots , λ_s 是其互不相同的特征值, 则其相应的特征子空间为直和且相互正交.

即,存在一个标正基,使得A是欧氏空间V上的正交变换,其在此标正基上的矩阵为对角阵.

即, V可以分解为A特征子空间的直和.

第八章 线性型双线性型二次型

8.1 线性型

- 定义 8.1.1 (线性型). 设 V/\mathbb{F} , 则称 $V^* \triangleq Hom(V,\mathbb{F})$ 为V上的一个线性型(线性函数). 称 V^* 为V的一个对偶空间.
- **例 1** 设V是一个内积空间, $f: V \to V^*$, $\alpha \mapsto f_{\alpha}$, $f_{\alpha}(\beta) = (\alpha, \beta)$, $\forall \beta \in V$, f是一个线性型, 其为单射, 则有嵌入 $V \to V^*$.
 - **例 2** 映射 $f: M_n(\mathbb{F}) \to \mathbb{F}, A \mapsto tr(A), 有 f \in V^*$.
- 定义 8.1.2 (对偶基). 由于 $V \cong V^*$, $\alpha_1, \dots, \alpha_n$ 是V的一个基,取 V^* 的一个向量组 $\alpha_1^*, \dots, \alpha_n^*$, 其中 α_i^* : $\alpha_j \mapsto \delta_{ij}$, $1 \leq i, j \leq n$.

将 $\sum_{i=1}^n k_i \alpha_i$ 依次作用于 α_i ,则可以得出 $\alpha_1^*, \cdots, \alpha_n^* \neq V^*$ 的一个基,称其为 $\alpha_1, \cdots, \alpha_n$ 的对偶基.

- **例 3** 设映射关系 $V_1 \stackrel{f}{\rightarrow} V_2 \stackrel{g}{\rightarrow} \mathbb{F}$, 定义映射: $f^* \in Hom(V_2^*, V_1^*)$, $g \mapsto g \cdot f$. 证明其为线性映射, 求其关于 $\beta_1^*, \dots, \beta_m^*$ 和 $\alpha_1^*, \dots, \alpha_n^*$ 的矩阵.
- 命题 8.1.1. 设 $f_1, \dots, f_s \in V^*$, 则一定 $\exists \alpha \in \alpha$ 使得 $f_i(\alpha)$ 互不相同.
- 命题 8.1.2. 设 $\alpha \in V$, 有 $\forall f \in V^*$, $f(\alpha) = 0$, 则一定有 $\alpha = 0$.
 - **例 4** 记 $V^{**} \triangleq (V^*)^*$, 对 $\forall \alpha \in V$ 有线性映射 $\alpha^{**} \in Hom(V^*, \mathbb{F})$, $f \mapsto f(\alpha)$. 有"自然的"线性映射 $\rho \in Hom(V, V^{**})$, $\alpha \mapsto \alpha^{**}$, 且rho是单射, 有嵌入 $V \to V^{**}$.
- 定理 8.1.1 (对偶定理). ρ 是同构映射, 即 $V \cong V^{**}$.

8.2 双线性型

定义 8.2.1 (双线性型). 设 V/\mathbb{F} , 若 $f \in Hom(V \times V, \mathbb{F})$, 且f满足双线性性,则称其为双线性刑

记B(V)是V上所有双线性型的集合.

- **M M 1** 内积是一个双线性型.
- **例 2** 对任意的 $f \in Hom(V, V^*)$, 定义映射 $\tilde{f} \in B(V)$: $V \times V \to \mathbb{F}$, $(\alpha, \beta) \mapsto f(\alpha, \beta)$, 可以证明 \tilde{f} 是一个线性映射.

定义映射 ρ : $Hom(V,V^*) \to B(V)$, $f \mapsto \tilde{f}$, 可以证明其为线性映射且单射, 有嵌入 $Hom(V,V^*,B(V))$

若有 $f(\alpha,\beta)=f(\beta,\alpha), \ \forall \ \alpha,\beta\in V,$ 则称f是对称的, 记 $\mathscr{S}(V)$ 为V的所有对称的双线性型的集合, 作为B(V)的子空间.

若有 $rad_L f = rad_R f = 0$, 则称f是非退化的.

例 3 内积是对称的且是非退化的, 具有更强的正定性.

定义 8.2.3 (度量阵). 若有 V/\mathbb{F} , $dimV = n < \infty$, $f \in B(V)$, 取定其一个基 $\alpha_1, \dots, \alpha_n$, 则记 $A = (f(\alpha_i, \alpha_i))_{n \times n}, 1 \le i, j \le n$ 为 f 在改基下的度量阵.

命题 8.2.1. 在上述定义下(有限维情况下),若有两向量 α , β 的坐标分别是X,Y,则有 $f(\alpha,\beta)=X'AY$.

设 $\alpha \in rad_L f$, 则有X'AY = 0的解空间的维数为n, 即A'X = 0的解空间即为 $rad_L f$, 则 $dimrad_L f = n - r(A)$.

同理可以得到有限维时情况相同,即 $rad_R f \to AY = 0$ 的解空间, $dimrad_R f = n - r(A)$. 即左根和右根同构.

则有f非退化即r(A) = n即可逆.

定理 8.2.1. 定义映射: $\rho: B(V) \to M_n(\mathbb{F}), f \mapsto A$, 其中 $A \to A$ 有在取定的一个基下的矩阵, 则有 ρ 是线性的, 单且满, 则有:

 $B(V) \cong M_n(\mathbb{F})$

命题 8.2.2. 求一个线性空间的维数 (已知):

- 1. 找到其一个基
- 2. 将其同构于一个维数已知的线性空间
- 3. 使用维数公式
- **例 4** 由定理可以得到 $dim \mathcal{S}(V) = \frac{1}{n(n+1)}$.

定理 8.2.2 (双线性映射的秩). 设有 $A, B \in M_n(\mathbb{F})$, 则A, B合同 \iff 存在n维线性空间的 双线性映射f使得A, B是其在不同基上的度量阵.

称r(A)为f的秩, 记为rank(f).

定理 8.2.3 (对称阵基本定理). 设 $A \in M_n(\mathbb{F})$, 则有A是对称阵 \iff 其合同于一个对角阵.

或者说: $dimV = n < \infty$, $f \in B(V)$ 当且仅当其在某一个基上的度量阵是对角阵.

引理 8.2.1. 若 $f \in \mathcal{S}(V)$, 则一定存在 $\alpha \in V$ 使得 $f(\alpha, \alpha) \neq 0$.

8.3 合同关系 27

8.3 合同关系

例 1 合同关系依赖于数域.

例如 $A = diag\{1,1\}, B = diag\{2,-2\},$ 在C上有:

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}i} \end{pmatrix} \begin{pmatrix} 2 & 0\\ 0 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}i} \end{pmatrix} = E_2$$

在 \mathbb{R} 上, 若有可逆的 $C \in M_n\mathbb{R}$, 使得B = C'AC, 两边取行列式有 $det(C)^2 = -4$, 矛盾.

引理 8.3.1. 对角阵 $A = diag\{a_1, \dots, a_n\}, B = diag\{a_{i1}, \dots, a_{in}\},$ 其中 i_1, \dots, i_n 是 $1, \dots, n$ 的排列,则有A n B合同.

推论 8.3.1. 在 \mathbb{C} 上,两对称阵合同当且仅当其秩相同,其一定相似于 $\begin{pmatrix} E_r \\ 0 \end{pmatrix}$,其中r是 矩阵的秩.

推论 8.3.2. 在
$$\mathbb{R}$$
上,任意对称阵一定相似于 $\begin{pmatrix} E_p & & \\ & E_q & \\ & & 0 \end{pmatrix}$,其中 $p+q$ 为矩阵的秩.

8.4 二次型

定义 8.4.1 (二次型). 形如 $f(x_1, \dots, x_n) = b_{11}x_1^2 + \dots + b_{nn}x_n^2 + \sum_{1 \leq i < j \leq n} b_{ij}x_ix_j$, 其中系数数域某一数域, 称为二次型.

二次型都可以写成X'AX的形式.

引理 8.4.1. 二次型可以唯一写作X'AX的形式, 其中A' = A, 称A为 f的矩阵.

例 1 某数域上所有对称阵空间,与所有双线性型组成的空间,与所有二次型组成的空间同构.

定义 8.4.2 (二次型的标准型). 二次型只有平方项(其为标准型), 当且仅当其矩阵为对角阵.

定义 8.4.3 (非退化的线性替换). 若P可逆, 则称X = PY是二次型X'PX的一个非退化的线性替换.

定义 8.4.4 (二次型的等价). 存在非退化的线性替换从一个二次型到另一个二次型,则称两个二次型等价.

推论 8.4.1. 二次型X'AX和Y'BY等价, 当且仅当A, B合同.

推论 8.4.2. 某一数域下的二次型一定等价于一标准型.

推论 8.4.3. 在 \mathbb{C} 上的二次型一定等价于 $y_1^2+\cdots+y_r^2$. 在 \mathbb{R} 上的二次型一定等价于 $y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_{p+q}^2$, 称为规范型.

- **例 2** 如何求实数域对称阵的规范型?
- 1. 配方法
- 2. 利用合同变换.
- 3. *利用正交变换.

定理 8.4.1 (惯性定理). 在实数域上, 两对称阵合同, 当前仅当其p, q相同f正负惯性系数相同f.

定义 8.4.5 (惯性指数). p, q被一矩阵唯一地确定, πp 为其正惯性指数, πq 为其负惯性指数, $\pi p - q$ 为其符号差.

推论 8.4.4. 实数域上对称阵的正负惯性指数,分别等于其正负特征值的个数/重根按重数计).

推论 8.4.5. 实数域上的对称阵按照合同关系分类, 可以分为 $\frac{n(n+2)}{2}$ 种.

8.5 正定阵

定义 8.5.1 (正定阵). 实数域上, 若X'AX恒有 $X'AX \ge 0$, $X'AX = 0 \leftrightarrow X = 0$, 则 称X'AX为正定二次型, 称A为正定阵.

例 1 实数域上的 $b_1x_1^2 + \cdots + b_nx_n^2$ 是正定二次型, 当且仅当其所有不定元的系数都大于零.

推论 8.5.1. $A \in M_n(\mathbb{R})$:

- 1. A是正定阵, 当且仅当其正惯性系数为n.
- 2. A是正定阵, 当且仅当其特征值全为正数.
- 3. A是正定阵, 当且仅当其合同于单位阵.
- 4. A是正定阵, 当且仅当存在实数域上可逆的C使得A = C'C.
- **例 2** A是正定阵, 当且仅当存在唯一的正定阵B使得 $A = B^2$.
- 性质 **8.5.1.** 1. 等价的两二次型, 若其中一个是正定二次型, 则另一个也是正定二次型.
 - 2. 若两个矩阵是正定阵,则其和也是正定阵.
 - 3. 若两个矩阵是正定阵,则其乘积是正定阵当且仅当其可交换.
 - 4. 若一个矩阵正定,则其行列式大于零.

8.5 正定阵 29

5. 若两个矩阵正定,则其组合成的准对角阵正定.

定理 8.5.1 (正定阵的充要条件). 实数域上的对称阵A是正定阵, 当且仅当, 对 $1 \le i \le n$,

定理 8.5.2 (正定阵的充要条件). 一个矩阵是正定阵, 当且仅当其是欧氏空间某内积的度量阵.