

TIMERS

ATMEGA328P

TIMERS

Timers/Counters

São circuitos periféricos de contagem, que realizam essa tarefa de forma independente da CPU.

- Geração de sinais periódicos
- Geração de eventos síncronos
- Contagem de eventos
- Funções de captura e comparação

TIMERS DE 8BITS – ATMEGA328P

Timer/Counter 0 (TC0)

- 8 bits (permite contagens de 0 até 255).
- Fonte de clock interna ou externa.
- Divisor do clock para o contador de até 10 bits (prescaler).
- 2 comparadores independentes
- Gerador para 2 sinais PWM (pinos OC0A e OC0B).
- Gerador de frequência (onda quadrada).
- 3 fontes independentes de interrupção: Por estouro (TOV0) e igualdades de comparação OCF0A/OCF0B

Timer/Counter 2 (TC2)

- Características similares ao TC0
- Função adicional: Contagem precisa de Is através de um clock externo de 32,768 kHz
- Gerador para 2 sinais PWM (pinos OC2A e OC2B).

TIMER DE 16BITS – ATMEGA328P

Timer/Counter I (TCI)

- 16 bits (permite contagens de 0 até 65535).
- Fonte de clock interna ou externa.
- Divisor do clock para o contador de até 10 bits (prescaler).
- Gerador para 2 sinais PWM (pinos OCIA e OCIB) com inúmeras possibilidades de configuração.
- Gerador de frequência (onda quadrada).
- 4 fontes independentes de interrupção (por estouro e igualdades de comparação).

MODOS DE OPERAÇÃO

Modo NORMAL

- OTCn conta continuamente de forma crescente.
- A contagem se dá de 0 até 28-1 voltando a 0, num ciclo contínuo.
- O valor da contagem é armazenado no registrador TCNTn

 Quando a contagem estoura, o bit sinalizador de estouro (TOVn) é colocado em 1. Se habilitada, uma interrupção é gerada (TIMERn OVF).

MODOS DE OPERAÇÃO

Modo CTC (Clear Timer on Compare)

- O contador é zerado quando o valor de TCNTn é igual a OCRnA
- Uma interrupção pode ser gerada cada vez que o contador atinge o valor de comparação (OCRnA ou OCRnB)
- Permite geração de ondas quadradas nos pinos OCnA e OCnB

MODOS DE OPERAÇÃO

Modo PWM rápido

Modo PWM com fase corrigida

Modo captura de entrada 🗸

PRESCALER - TIMER

Prescaler: divisor de frequência

TCCRnA (Timer/Counter Control n Register A)

Controle do Modo de operação

Modo	WGM02	WGM01	WGM00	Modo de Operação TC	ТОР	Atualização de OCR0A no valor:	Sinalização do bit TOV0 no valor:	
0	0	0	0	Normal 🗸	0xFF	Imediata	0×FF	
1	0	0	1	PWM com fase corrigida	0×FF	0xFF	0×00	
2	0		9	стс 🗸	OCR0A	Imediata	0×FF	
3	0	1	1	PWM rápido	0xFF	0×00	0×FF	
4	1	0	0	Reservado	-	-	-	
5	I	0	I	PWM com fase corrigida	OCR0A	OCR0A	0×00	
6	I	ı	0	Reservado		-		
7	1	ı	1	PWM rápido	OCR0A	0×00	OCR0A	

P/ modo CTC:

COM 0AI	COM 0A0	Descrição	
0	0	Operação normal do pino, OC0A desconectado.	
0	I	Mudança do estado de OC0A na igualdade de comparação.	
I	0	OC0A é limpo na igualdade de comparação.	
I	I	OC0A é ativo na igualdade de comparação.	

TCCRnB (Timer/Counter Control n Register B)

Bit		7	6	5	4	3	2	1	0
	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00
Lê/Escr.	•	Е	Е	L	L	L/E	L/E	L/E	L/E
Valor Inic.		0	0	0	0	0	0	0	0

- FOC0A:B Force Output Compare A e B, quando modo não-PWM, força uma comparação no modulo gerador de onda
- WGM02 Tabela anterior
- CS02:0 Seleção de clock

CS02	CS01	CS00	Descrição
0	0	0	Sem fonte de clock (TC0 parado),
0	0		clock/
0	1	0	clock/8 (prescaler = 8).
0			clock/64 (prescaler = 64).
1	0	0	clock/256 (prescaler = 256).
I	0	I	clock/1024 (prescaler = 1024).
I	I	0	clock externo no pino T0. Contagem na borda de descida.
I	I	I	clock externo no pino T0. Contagem na borda de subida. 🗸

TCNTn (Timer/Counter n Register)

 Registrador onde é realizada a contagem do TCn, pode ser lido ou escrito a qualquer tempo.

OCRnA (Output Compare n Register A)

• Registrador de comparação A, possui o valor que é continuamente comparado com o valor do contador (TCNTn). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OCnA.

OCRnB (Output Compare n Register B)

• Registrador de comparação B, possui o valor que é continuamente comparado com o valor do contador (TCNTn). A igualdade pode ser utilizada para gerar uma interrupção ou uma forma de onda no pino OCnB.

TIMSKn (Timer/Counter n Interrupt Mask Register)

OCIEnB (Timer/Counter n Output Compare Match B Interrupt Enable)

• A escrita I neste bit ativa a interrupção do TCn na igualdade de comparação com o registrador OCRnB.

OCIENA (Timer/Counter n Output Compare Match A Interrupt Enable)

• A escrita I neste bit ativa a interrupção do TCn na igualdade de comparação com o registrador OCRnA.

TOIEn (Timer/Counter n Overflow Interrupt Enable)

• A escrita I neste bit ativa a interrupção por estouro do TCn

TIFRn (Timer/Counter n Interrupt Flag Register)

Os flags são ativados quando os respectivos eventos ocorrem


```
#define F_CPU 1600000UL
                                           OVERFLOW DO TC0
#include <avr/io.h>
#include <avr/interrupt.h>
ISR(TIMER0 OVF vect) //interrupção do TC0
  PORTB ^= 0b00100000; //Inverte o estado do PB5
int main()
                                                                +1024
 ✓DDRB = 0b00100000;//habilita PB5 como saída e demais pinos como entrada
                                                                4256
  √PORTB = 0b11011111;//apaga PB5 e habilita pull-ups nos pinos não utilizados
  TIMSK0 = 0b00000001//habilita a interrupção por estouro do TC0
  ✓sei(); //habilita a chave de interrupção global
                                                        0,0625,5
  while(1)
      //a cada estouro do TC0 o programa desvia para ISR(TIMER0_OVF_vect)
```

EXEMPLO: INTERRUPÇÃO

```
#define F CPU 16000000UL
                                                 EXEMPLO: INTERRUPÇÃO
#include <avr/io.h>
                                                         CTC DO TC0
#include <avr/interrupt.h>
ISR(TIMER0_COMPA_vect) //interrupção do TC0 a cada 1ms = (64*(249+1))/16MHz
PORTB ^= 0b00100000; //Inverte o estado do PB5
int main(void)
  →DRB = 0b00100000;//habilita PB5 como saída e demais pinos como entrada
  ✓ORTB = 0b11011111;//apaga PB5 e habilita pull-ups nos pinos não utilizados
   TCCR0A = 0b000000010; //habilita modo CTC do TC0
   TCCR0B = 0b00000011; //liga TC0 com prescaler = 64
   OCROA = 249; //ajusta o comparador para o TCO contar até 249
   TIMSKO = 0b000000010; //habilita a interrupção na igualdade de comparação com OCROA. A
   interrupção ocorre a cada 1ms = (64*(249+1))/16MHz
   sei();
   while(1)
```

REFERÊNCIAS

IDE

Atmel Studio 7 (gratuito) https://www.microchip.com/mplab/avr-support/atmel-studio-7

Simuladores

- https://www.simulide.com/p/blog-page.html
- https://github.com/lcgamboa/picsimlab/releases
- https://www.labcenter.com/downloads/

Material de referência:

- Datasheet do Atmega 328p: https://www.microchip.com/wwwproducts/en/ATmega328p#datasheet-toggle
- Livro texto: http://borgescorporation.blogspot.com/2012/05/avr-e-arduino-tecnicas-de-projeto.html

