- Компоненты сильной связности (КСС) орграфа *G* это его максимальные сильно связные подграфы.
- Если вершина не связана с другими, то считается, что она сама образует КСС.
- Орграф, который получается стягиванием в одну вершину каждой КСС, называется фактор-графом, или конденсацией орграфа *G*.

- Для выделения КСС орграфа можно в качестве основы алгоритма использовать метод поиска в глубину.
- В качестве примера рассмотрим Алгоритм Косараджу— Шарира (Kosaraju, Sharir)
- 1 этап: запускается поиск в глубину на обращении графа
- 2 этап: запускается поиск в глубину на исходном графе в порядке, определяемом списком, полученным на первом этапе (в обратном порядке)

3.13 Эйлеровы графы

- Цикл в графе называется эйлеровым, если он содержит все ребра графа.
- Связный граф, в котором существует эйлеров цикл, называется эйлеровым графом.
- Эйлеровой цепью (или путем) является цепь (путь), которая включает все ребра (дуги) графа по одному разу.
- Собственная эйлерова цепь это эйлерова цепь, которая не является эйлеровым циклом.

звезда Давида

Теорема Эйлера-2. Связный граф является эйлеровым тогда и только тогда, когда степени всех его вершин четны.

Граф имеет собственную эйлерову цепь (путь) ⇔ когда он связный и ровно две его вершины имеют нечетную степень.

Мостом (или перешейком) называется такое ребро графа *G*, удаление которого увеличивает число связных компонент. Если ребро *r* принадлежит некоторому циклу *C*, то оно не может быть мостом.

алгоритм Флери:

- Движение начинается из произвольной вершины графа; идем по ребрам, включая эти ребра в эйлерову цепь и удаляя их из графа.
- В очередной вершине выбираем путь по перешейку только в том случае, если нет пути по циклу.
- 3) Если в графе остаются ребра, которые нельзя использовать для продолжения имеющегося пути, то следует начать строить простой замкнутый цикл из уже пройденной вершины и инцидентного ей ребра, если последнее ранее не использовалось.

3.14 Гамильтоновы графы

Гамильтонова цепь (путь) — это простая цепь (путь), которая проходит через каждую вершину (узел) графа ровно по одному разу.

Гамильтонов цикл — это простой цикл, который проходит через каждую вершину графа.

Граф, содержащий гамильтонов цикл, называется гамильтоновым графом.

Не существует четкого критерия для определения, является ли граф гамильтоновым.

Теорема (Оре): Пусть G –связный граф с n вершинами (n>2). Если для любых несмежных вершин u и v deg(u)+deg(v) ≥ n, то граф Гамильтонов

Теорема (Дирака): Пусть G –связный граф с n вершинами (n>2). Если для любой вершины v deg(v) ≥ n/2, то граф Гамильтонов

n=6, $\forall v \deg(v)=2$

Ope: $2+2=4 \ge 6$ – не выполняется

Дирака:

 $2 \ge 6/2$ – не выполняется

3.15 Минимальный остов

- Вес остовного дерева взвешенного графа равен сумме весов, приписанных его ребрам.
- Минимальным остовным деревом называется остовное дерево графа с минимальным весом.
- Математическая формулировка задачи: во взвешенном связном графе G(V,E) найти минимальное остовное дерево T(V,E').

Алгоритм Краскала (Cruskal)

- Первоначально множество Е' пустое, V множество вершин графа. Два следующих действия выполняются до тех пор, пока это возможно.
- 1) Выбрать ребро минимального веса в исходном графе G, не принадлежащее множеству E', так, что его добавление в E' не создает цикла в дереве T.
- 2) Добавить это ребро во множество ребер Е'.

3.16 Кратчайшие пути

Рассматривается взвешенный граф (орграф) G(V,E) Вес обозначает длину (или стоимость) пути из одного конца ребра в другой. Если из вершины v_i нет ребра (дуги) в вершину v_i , то вес ребра (v_i, v_i) считается равным ∞ . Для ребер, являющихся петлями (диагональ матрицы

Алгоритм Дейкстры

- Находит кратчайшее расстояние от одной фиксированной вершины до другой и указывает сам путь, длина которого равна этому расстоянию.
- Для примера будем искать кратчайшее расстояние от вершины v_1 до вершины v_n .

смежности), их веса будем считать равными 0.

Каждой вершине v_k ставится в соответствие упорядоченная пара (m, v_r) , первоначально все вершины помечены $(\infty, 0)$ и имеют статус временных.

Алгоритм состоит из следующих шагов:

- 1. Начать в вершине $v_1(\infty,0)$, заменить ее метку на $v_1(0,0)$ и сделать эту вершину постоянной.
- 2. Пока v_n не станет постоянной вершиной, выполнять следующие шаги:
 - а)Если вершина $v_k(m,v_r)$ стала постоянной, то для всех смежных с ней временных вершин v_j вычислить $m+d(v_k,v_j)$ и сравнить с текущим расстоянием, которым помечена вершина v_j . Если полученная сумма меньше, то текущее расстояние заменить ею, а вторую координату заменить на v_k .

- b) Найти минимум из расстояний, приписанных временным вершинам. Первую из таких вершин сделать постоянной.
- 3. Когда v_n станет постоянной вершиной, то расстояние, приписанное ей это и есть длина кратчайшего пути. Сам путь можно отследить, если пройти в обратную сторону —от вершины v_n к v_1 по вторым координатам меток вершин.

Пример. Найти кратчайший путь из вершины A в вершину F

Вершина А стала постоянной

Пересчитали расстояние для смежных с А вершин: В и С.

Минимальное из расстояний 5 ⇒ вершина B(5,A) становится постоянной

Вычисляем расстояния от В до смежных с ней С, Е, F, D

Изо всех текущих меток расстояний min{12,15,7,6} = $6 \Rightarrow$ вершину C(6,A) делаем постоянной

Пересчитываем расстояния от С до смежных с ней временных вершин

Вершину с наименьшим расстоянием делаем постоянной – Е.

Пересчитываем расстояния для временных вершин, смежных с E

Выбираем вершину с наименьшим расстоянием и делаем её постоянной (F)

Оформление в виде таблицы:

	Пройденные вершины	w	d(w)	d(B)	d(C)	d(D)	d(E)	d(F)
0	A	A	0	5	6	∞	∞	∞
1	A,B	В	5	-	6	12	7	15
2	A,B,C	С	6	-	-	12	7	15
3	A,B,C,E	E	7	-	-	12	-	11
4	A,B,C,E,F	F	11	_	-	12	_	_