Algèbre linéaire et bilinéaire I – TD₄

Partie 1 : Familles libres

Exercice 1:

Les familles suivantes de \mathbb{R}^3 sont-elles libres?

- 1. (u, v) avec u = (1, 2, 3) et v = (-1, 4, 6);
- 2. (u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (0, 0, 1);
- 3. (u, v, w) avec u = (1, 2, -1), v = (1, 0, 1) et w = (-1, 2, -3).
- 1. Une famille de deux vecteurs est liée si et seulement si ces deux vecteurs sont colinéaires. Ici, u et v ne sont pas colinéaires donc la famille (u, v) n'est pas liée, elle est donc libre.
- 2. Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$a.(1, 2, -1) + b.(1, 0, 1) + c.(0, 0, 1) = (0, 0, 0).$$

Cela donne le système

$$\begin{cases} a+b=0\\ 2a=0\\ -a+b+c=0 \end{cases}$$

La deuxième ligne donne a=0, la première ligne donne donc b=0 et enfin la troisième ligne donne c=0. La famille (u, v, w) est donc libre.

3. Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$a.(1, 2, -1) + b.(1, 0, 1) + c.(-1, 2, -3) = (0, 0, 0).$$

Cela donne le système

$$\begin{cases} a+b-c=0\\ 2a+2c=0\\ -a+b-3c=0 \end{cases} \iff \begin{cases} a+b-c=0\\ -2b+4c=0\\ 2b-4c=0 \end{cases} \qquad (L_2 \leftarrow L_2 - 2L_1)$$

On constate que L_2 et L_3 sont équivalentes. On obtient b=2c et la première ligne donne a=-c. En prenant c=1, on a donc une solution non nulle (-1,2,1) au système. On a donc

$$-(1, 2, -1) + 2.(1, 0, 1) + (-1, 2, -3) = (0, 0, 0)$$

ce qui montre que la famille (u, v, w) est liée, elle n'est donc pas libre.

Exercice 2:

On considère dans \mathbb{R}^3 les vecteurs $v_1 = (1, 1, 0), v_2 = (4, 1, 4)$ et $v_3 = (2, -1, 4)$.

- 1. Montrer que la famille (v_1, v_2) est libre. Faire de même pour (v_1, v_3) , puis pour (v_2, v_3) .
- 2. La famille (v_1, v_2, v_3) est-elle libre?

Il faut donc faire attention au fait que si toutes les sous-familles d'une famille finie sont libres, cela n'implique pas que la famille est libre.

- 1. Les vecteurs v_1 et v_2 ne sont pas colinéaires donc la famille (v_1, v_2) est libre. De même, les vecteurs v_1 et v_3 ne sont pas colinéaires donc la famille (v_1, v_3) est libre. Enfin, les vecteurs v_2 et v_3 ne sont pas colinéaires donc la famille (v_2, v_3) est libre.
- 2. Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$a.v_1 + b.v_2 + c.v_3 = (0, 0, 0).$$

Cela donne le système

$$\begin{cases} a+4b+2c=0\\ a+b-c=0\\ 4b+4c=0 \end{cases}$$

La troisième ligne donne b = -c et la deuxième donne alors a = 2c. En prenant c = 1, on obtient une solution non nulle du système, c'est-à-dire :

$$2.v_1 - v_2 + v_3 = (0, 0, 0).$$

La famille (v_1, v_2, v_3) n'est pas libre.

Exercice 3:

Soit E le \mathbb{R} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{R} .

- 1. Montrer que la famille (\cos , \sin) de E est libre.
- 2. Montrer que la famille $(x \mapsto e^x, x \mapsto e^{2x}, x \mapsto e^{x^2})$ de E est libre (on pourra faire une étude asymptotique en $+\infty$).
- 3. Montrer que la famille $(x \mapsto |x-a|)_{a \in \mathbb{R}}$ de E est libre.
- 1. Soit $(a, b) \in \mathbb{R}^2$ tel que $a \cos + b \sin$ soit égale à la fonction nulle, c'est-à-dire :

$$\forall x \in \mathbb{R}, \quad a\cos x + b\sin x = 0.$$

En prenant x = 0, on obtient $0 = a \cos 0 + b \sin 0 = a$ donc a = 0. Puis en prenant $x = \pi/2$ on obtient $0 = b \sin(\pi/2) = b$ donc b = 0. On a donc a = b = 0, la famille (cos, sin) est libre.

2. Soit $(a, b, c) \in \mathbb{R}^3$ tel que

$$\forall x \in \mathbb{R}, \quad ae^x + be^{2x} + ce^{x^2} = 0.$$

La méthode dans ce genre de situation est de factoriser par le terme qui tend le plus vite vers $+\infty$ quand $x \to +\infty$. Ici, c'est $x \mapsto e^{x^2}$.

On a pour tout $x \in \mathbb{R}$:

$$e^{x^2} \left(ae^{x-x^2} + be^{2x-x^2} + c \right) = 0$$

et comme l'exponentielle ne s'annule pas on obtient

$$0 = ae^{x-x^2} + be^{2x-x^2} + c \underset{x \to +\infty}{\longrightarrow} a \times 0 + b \times 0 + c = c$$

donc c=0. On recommence : pour tout $x\in\mathbb{R},$ on a

$$e^{2x} \left(ae^{x-2x} + b \right) = 0$$

d'où

$$0 = ae^{-x} + b \underset{x \to +\infty}{\longrightarrow} a \times 0 + b = b$$

d'où b=0. On a donc $ae^x=0$ pour tout $x\in\mathbb{R}$ ce qui donne a=0 en prenant x=0. On a donc a=b=c=0, la famille $(x\mapsto e^x,\,x\mapsto e^{2x},\,x\mapsto e^{x^2})$ est libre.

3. Considérons donc une sous-famille finie de $p \geq 1$ vecteurs $(x \mapsto |x - a_i|)_{i \in \{1, ..., p\}}$ avec $a_i \in \mathbb{R}$ pour tout $i \in \{1, ..., p\}$ deux-à-deux distincts $(a_i \neq a_j \text{ pour } i \neq j)$.

Ici la famille est infinie. Pour montrer qu'elle est libre, il faut montrer que toutes ses sous-familles finies sont libres.

Soit $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$ tel que

$$\forall x \in \mathbb{R}, \quad \lambda_1 |x - a_1| + \dots + \lambda_p |x - a_p| = 0.$$

L'idée ici est d'exploiter le fait que $x \mapsto |x|$ est dérivable partout sauf en 0.

Soit $k \in \{1, \ldots, p\}$. Pour tout $x \in \mathbb{R}$ on a

$$\lambda_k |x - a_k| = \underbrace{-\sum_{i \neq k} \lambda_i |x - a_i|}_{=g(x)}.$$

La fonction $g: \mathbb{R} \to \mathbb{R}$ est dérivable en a_k puisque $a_i \neq a_k$ pour $i \neq k$. Or la fonction $x \mapsto \lambda_k |x - a_k|$ est dérivable en a_k si et seulement si $\lambda_k = 0$. On a donc $\lambda_k = 0$.

En recommençant le raisonnement, on obtient en un nombre fini d'étapes que tous les λ_i sont nuls. Finalement, la sous-famille finie $(x \mapsto |x - a_i|)_{i \in \{1, \dots, p\}}$ est libre.

Conclusion :
$$(x \mapsto |x - a|)_{a \in \mathbb{R}}$$
 est libre.

Partie 2: Bases et dimension

Exercice 4:

On considère le sous-espace vectoriel F de \mathbb{R}^4 défini par

$$F = \{(x, y, z, t) \in \mathbb{R}^4, x + y = 0 \text{ et } x + z = 0\}.$$

- 1. Donner une base de F.
- 2. Compléter la base trouvée en une base de \mathbb{R}^4 .
- 3. On pose $u_1 = (1, 1, 1, 1)$, $u_2 = (1, 2, 3, 4)$ et $u_3 = (-1, 0, -1, 0)$. La famille (u_1, u_2, u_3) est-elle libre?
- 4. On pose $G = \text{Vect}(\{u_1, u_2, u_3\})$. Quelle est la dimension de G?
- 5. Donner une base de $F \cap G$.
- 6. En déduire que $F + G = \mathbb{R}^4$.

1. On a

$$u = (x, y, z, t) \in F \Longrightarrow \begin{cases} x + y = 0 \\ x + z = 0 \end{cases} \longleftarrow \begin{cases} x = -y \\ y = y \\ z = y \\ t = t \end{cases} \longleftarrow u = yv_1 + tv_2$$

avec $v_1 = (1, -1, -1, 0)$ et $v_2 = (0, 0, 0, 1)$. On a donc $F = \text{Vect}(\{v_1, v_2\})$, c'est-à-dire que la famille (v_1, v_2) est une famille génératrice de F. De plus, elle est libre car v_1 et v_2 ne sont pas colinéaires.

$$(v_1, v_2)$$
 est une base de F .

2. Soit (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 .

On sait que la famille (v_1, v_2) est libre et que la famille (e_1, e_2, e_3, e_4) est génératrice de \mathbb{R}^4 . D'après le théorème de la base incomplète, on sait que l'on peut compléter la famille (v_1, v_2) par deux vecteurs de la base canonique de \mathbb{R}^4 pour obtenir une base de \mathbb{R}^4 .

Montrons que (v_1, v_2, e_1, e_2) est une base de \mathbb{R}^4 . Puisqu'il y a 4 vecteurs dans cette famille et que dim $\mathbb{R}^4 = 4$, il suffit de montrer que c'est une famille libre. Soient a, b, c et d des nombres réels tels que $av_1 + bv_2 + ce_1 + de_2 = (0, 0, 0, 0)$. On a

$$\begin{cases} a+c=0\\ -a+d=0\\ -a=0\\ b=0 \end{cases} \implies a=b=c=d=0$$

donc (v_1, v_2, e_1, e_2) est libre, c'est bien une base de \mathbb{R}^4 .

3. Soient a, b et c des nombres réels tels que $au_1 + bu_2 + cu_3 = (0, 0, 0, 0)$. On a

$$\begin{cases} a+b-c=0\\ a+2b=0\\ a+3b-c=0\\ a+4b=0 \end{cases}$$

ce qui donne b = 0 (faire $L_4 - L_2$), puis a = 0 d'après L_2 donc c = 0 d'après L_1 . La famille (u_1, u_2, u_3) est libre.

- 4. La famille (u_1, u_2, u_3) est une famille génératrice de G par définition de G. C'est aussi une famille libre d'après la question précédente. C'est donc une base de G, d'où dim G = 3.
- 5. Soit $x \in F \cap G$. Puisque $x \in G$, il existe des nombres réels a, b et c tels que $x = au_1 + bu_2 + cu_3$. Puisque $x \in F$, cela donne

$$\begin{cases} 2a + 3b - c = 0 \\ 2a + 4b - 2c = 0 \end{cases} \implies \begin{cases} 2a = -3b + c \\ b = c \end{cases} \implies \begin{cases} a = -c \\ b = c \\ c = c \end{cases} \implies x = -cu_1 + cu_2 + cu_3 = c(-1, 1, 1, 3)$$

en ayant fait $L_2 \leftarrow L_2 - 2L_1$ à la deuxième étape. On a donc $F \cap G = \text{Vect}(\{(-1, 1, 1, 3)\})$. La famille ((-1, 1, 1, 3)) est donc génératrice de $F \cap G$. De plus c'est une famille libre (une famille d'un seul vecteur est libre si et seulement si ce vecteur n'est pas nul). Une base de $F \cap G$ est donc ((-1, 1, 1, 3)). En particulier, $\dim(F \cap G) = 1$.

6. D'après la formule de Grassmann, on a

$$\dim(F + G) = \dim(F) + \dim(G) - \dim(F \cap G) = 2 + 3 - 1 = 4.$$

Ainsi, F + G est un sous-espace vectoriel de dimension 4 de \mathbb{R}^4 qui est aussi de dimension 4, d'où $F + G = \mathbb{R}^4$.

Exercice 5:

Soient F et G deux sous-espaces vectoriels de \mathbb{R}^5 de dimension 3. Montrer que $F \cap G \neq \{0_E\}$. Les sous-espaces vectoriels F et G étant de dimension finie, on peut appliquer la formule de Grassman:

$$\dim(F \cap G) = \dim F + \dim G - \dim(F + G) = 6 - \dim(F + G).$$

Or F+G est un sous-espace vectoriel de \mathbb{R}^5 d'où dim $(F+G) \leq \dim \mathbb{R}^5 = 5$. On a alors

$$\dim(F \cap G) > 6 - 5 = 1$$

ce qui montre que $F \cap G \neq \{0\}$ (car dim $\{0_E\} = 0$).

Exercice 6 : Formule de Grassmann

Soit E un \mathbb{K} -espace vectoriel et soient F et G deux sous-espaces vectoriels de E de dimension finie. Montrer que :

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

Le but de cet exercice est de démontrer la formule de Grassmann (Proposition du cours).

1. Justifier l'existence d'un supplémentaire H de $F \cap G$ dans F. En déduire que

$$\dim H = \dim F - \dim(F \cap G).$$

- 2. Montrer que $F + G = H \oplus G$.
- 3. Conclure.
- 1. Puisque $F \cap G$ est un sous-espace vectoriel de F, d'après la propriété (page 20) il existe un supplémentaire H de $F \cap G$ dans F. On a donc $(F \cap G) \oplus H = F$ donc d'après la propriété 1.20, $\dim(F \cap G) + \dim H = \dim F$ d'où le résultat.
- 2. On procède en deux étapes.
 - ⊳ Montrons que $H \cap G = \{0_E\}$. On a $\{0_E\} \subset H \cap G$, montrons $H \cap G \subset \{0_E\}$. Soit $x \in H \cap G$. On a $x \in H$ et comme $H \subset F$ on a $x \in F$. Comme de plus $x \in G$, on a finalement $x \in H \cap (F \cap G)$. Or H et $F \cap G$ sont en somme directe donc $x = 0_E$. On a donc $H \cap G \subset \{0_E\}$ d'où par double inclusion $H \cap G = \{0_E\}$.

Autre méthode :

$$\{0_E\} = H \cap (F \cap G) = (H \cap F) \cap G = H \cap G$$

 $car\ H\cap F=H\ puisque\ H\subset F.$

- \triangleright Montrons que H + G = F + G.
 - On a $H+G\subset F+G$ car si $x=h+g\in H+G$ avec $h\in H$ et $g\in G$, alors comme $h\in F$ car $H\subset F$, on a $x\in F+G$.
 - Montrons que $F + G \subset H + G$. Soit $x = f + g \in F + G$ avec $f \in F$ et $g \in G$. Comme $F = (F \cap G) \oplus H$, on peut écrire f = f' + h avec $f' \in F \cap G$ et $h \in H$. On a donc $x = h + (f' + g) \in H + G$. On a donc $F + G \subset H + G$.

Par double inclusion, on a bien H + G = F + G.

3. Puisque $F+G=H\oplus G$, d'après la propriété 1.20 (page 36) on a

$$\dim(F+G) = \dim H + \dim G.$$

Or dim $H = \dim F - \dim(F \cap G)$ d'après la question 1, d'où

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$

Exercice 7:

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soient F et G des sous-espaces vectoriels de E.

montrer que dim $F = \dim G$ si, et seulement si, F et G ont un supplémentaire commun dans E, c'est-à-dire qu'il existe un sous-espace vectoriel H de E tel que $E = F \oplus H = G \oplus H$.

- 1. Montrer le sens indirect.
- 2. Montrer que le sens direct est vrai dans le cas où dim $F = \dim G = n$.
- 3. On suppose que le sens direct est vrai pour un $p \leq n$ donné (si dim $F = \dim G = p$, alors F et G ont un supplémentaire commun dans E) et on veut montrer que le sens direct est vrai pour p-1.
 - (a) Soient F et G deux sous-espaces vectoriels de dimension p-1 < n. Montrer par l'absurde que $F \cup G \neq E$.
 - (b) Soit $x \in E \setminus (F \cup G)$. Calculer $\dim(F + \operatorname{Vect}(\{x\}))$ et $\dim(G + \operatorname{Vect}(\{x\}))$.
 - (c) Montrer que F et G ont un supplémentaire commun dans E.
- 4. Conclure.
- 1. Supposons que F et G ont un supplémentaire commun H dans E, c'est-à-dire $E = F \oplus H = G \oplus H$. On a alors dim $E = \dim F + \dim H = \dim G + \dim H$ d'où dim $F = \dim G$.
- 2. Si dim $F=\dim G=n,$ alors F=G=E et $\{0_E\}$ est un supplémentaire commun à F et à G dans E :

$$E = F \oplus \{0_E\} = G \oplus \{0_E\}.$$

- 3. (a) Supposons par l'absurde que $F \cup G = E$. En particulier, $F \cup G$ est un espace vectoriel. D'après la propriété 1.5 (page 8), cela n'est possible que si $F \subset G$ ou si $G \subset F$.
 - ightharpoonup Si $F \subset G$, alors comme dim $F = \dim G$ on a F = G et donc $G = F \cup G = E$ ce qui contredit p-1 < n, c'est absurde.
 - \triangleright De même, $G \subset F$ est absurde.

Finalement, $F \cup G \neq E$.

(b) D'après la formule de Grassmann, on a

$$\dim(F + \operatorname{Vect}(\{x\})) = \dim F + \dim \operatorname{Vect}(\{x\}) - \dim(F \cap \operatorname{Vect}(\{x\})).$$

- \triangleright On a dim F = p 1.
- \triangleright Comme $x \neq 0_E$ (car $0_E \in F \cup G$), on a dim Vect($\{x\}$) = 1.
- ▷ On a dim $(F \cap \text{Vect}(\{x\})) = 0_E$. En effet, si $y \in F \cap \text{Vect}(\{x\})$ alors il existe $\lambda \in \mathbb{K}$ tel que $y = \lambda x$. Si $\lambda \neq 0$, alors $x = \lambda^{-1}y \in F$ car $y \in F$, absurde. On a donc $\lambda = 0$ d'où $y = 0_E$. On a donc $F \cap \text{Vect}(\{x\}) \subset \{0_E\}$ d'où le résultat. En particulier, $F + \text{Vect}(\{x\}) = F \oplus \text{Vect}(\{x\})$.

On obtient donc $\dim(F + \operatorname{Vect}(\{x\})) = p$. De même, on obtient $\dim(G + \operatorname{Vect}(\{x\})) = p$ et $G + \operatorname{Vect}(\{x\}) = G \oplus \operatorname{Vect}(\{x\})$.

(c) Par hypothèse, puisque $p = \dim(F + \text{Vect}(\{x\})) = \dim(G + \text{Vect}(\{x\}))$, ils ont un supplémentaire commun S dans E:

$$E = S \oplus (F \oplus \operatorname{Vect}(\{x\})) = S \oplus (G \oplus \operatorname{Vect}(\{x\}))$$

donc en posant $S' = S \oplus \text{Vect}(\{x\})$, on obtient

$$E = F \oplus S' = G \oplus S'$$
,

c'est-à-dire que S' est un supplémentaire commun à F et à G dans E.

4. On a montré que le sens direct est vrai pour p = n et que s'il est vrai pour $p \le n$ alors il est vrai pour p - 1. Par récurrence descendante, il est vrai pour tout p.

Partie 3 : Applications linéaires

Exercice 8:

Considérons l'application $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par

$$\forall (x, y, z) \in \mathbb{R}^3, \quad f(x, y, z) = (x + z, y - x, z + y, x + y + 2z).$$

- 1. Montrer que $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^4)$.
- 2. Déterminer une base de Ker(f).
- 3. L'application f est-t-elle injective? Est-elle surjective?
- 1. Soit $(x, y, z) \in \mathbb{R}^3$, $(x', y', z') \in \mathbb{R}^3$ et $\lambda \in \mathbb{R}$. On a

$$\begin{split} f\Big(\lambda(x,\,y,\,z) + (x',\,y',\,z')\Big) &= f(\lambda x + x',\,\lambda y + y',\,\lambda z + z') \\ &= \Big((\lambda x + x') + (\lambda z + z'),\,(\lambda y + y) - (\lambda x + x'),\,(\lambda z + z') + (\lambda y + y'),\\ &(\lambda x + x') + (\lambda y + y') + 2(\lambda z + z')\Big) \\ &= \lambda(x + z,\,y - x,\,z + y,\,x + y + 2z) \\ &\qquad \qquad + (x' + z',\,y' - x',\,z' + y',\,x' + y' + 2z') \\ &= \lambda f(x,y,z) + f(x',y',z') \end{split}$$

donc f est linéaire.

2. On a

$$(x, y, z) \in \operatorname{Ker} f \iff \begin{cases} x + z = 0 \\ y - x = 0 \\ z + y = 0 \\ x + y + 2z = 0 \end{cases} \iff \begin{cases} x = -z \\ y = -z \\ z = z \end{cases}$$

ce qui montre que (-1, -1, 1) engendre Ker(f). Comme ce vecteur est non nul, la famille ((-1, -1, 1)) est libre. C'est donc une base de Ker(f).

3. Puisque dim(Ker(f)) $\neq 0$, on a Ker $(f) \neq \{(0, 0, 0)\}$, ce qui montre que f n'est pas injective (proposition 1.4). Puisque rg $u = \dim(\operatorname{Im}(f)) \neq 4$, on a $\operatorname{Im}(f) \neq \mathbb{R}^4$ donc f n'est pas surjective (proposition 1.4).

Exercice 9:

Soient E, F et G trois K-espaces vectoriels, soit $f \in \mathcal{L}(E, F)$ et soit $g \in \mathcal{L}(F, G)$. Montrer que

$$g \circ f = 0_{\mathscr{L}(E,G)} \iff \operatorname{Im}(f) \subset \operatorname{Ker}(g).$$

On procède par double implications.

 \Longrightarrow Supposons $g\circ f=0_{\mathscr{L}(E,G)}$ et montrons que $\mathrm{Im}(f)\subset\mathrm{Ker}(g)$. Soit $y\in\mathrm{Im}(f)\subset G$. Il existe donc $x\in E$ tel que y=f(x). On a

$$g(y) = g(f(y)) = (g \circ f)(x) = 0_G$$

ce qui montrer que $y \in \text{Ker}(g)$. On a donc bien $\text{Im}(f) \subset \text{Ker}(g)$.

 \Leftarrow Supposons $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$ et montrons que $g \circ f = 0_{\mathscr{L}(E,G)}$. Soit $x \in E$. On a $f(x) \in \operatorname{Im}(f)$ donc $f(x) \in \operatorname{Ker}(g)$ par hypothèse, c'est-à-dire que $g(f(x)) = 0_G$. On a donc pour tout $x \in E$, $(g \circ f)(x) = 0_G$, d'où $g \circ f = 0_{\mathscr{L}(E,G)}$.

Conclusion : $g \circ f = 0_{\mathscr{L}(E,G)}$ si et seulement si $\mathrm{Im}(f) \subset \mathrm{Ker}(g)$.