

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Learning objectives of today

Goals:

- Anomaly detection: understand what anomalies are, why we would want to detect them, and how we can do so
- CNNs: Understand how convolution works and how it can be implemented in TensorFlow

How will we do this?

- We will start by discussing anomaly detection and the different techniques used to perform it in different settings
- We will use this to lead over into the student presentations
- We then turn to computer vision, and the fundamental architectural innovation that makes it work: convolutional layers

Anomaly detection

What color are swans?

What color are swans?

Outliers and anomalies

Outliers:

- Data points that are distinctly different from other data points
- Can be caused by unavoidable random errors or by systematic errors relating to how data was sampled

Anomalies:

- Outliers or other values that are not expected to exist
- Can be context- or pattern-based:
 - Context: exceptionally high credit card spending on Black Friday versus near-simultaneous spending in New York and London
 - Pattern: high credit card spending every Saturday versus high spending on a day where spending is low in other weeks

What are possible anomalies and how would we detect them?

Consider the following situations:

- A machine produces thousands of screws per minute, every few days the type of screw is changed
- A software developer for a bank downloads a large number of entries from a customer database
- An intermediary supplies fair trade coffee beans

What is the expected outcome in each case?

What is an anomalous outcome?

What data do we observe?

Detecting anomalies

Supervised anomaly detection:

- A fancy way of saying classification learn to differentiate between two classes
- We can use the standard toolbox
- Upside: When feasible, usually the most failsafe method
- Downside: only works if we know how normal and anormal data looks like

Semi-supervised anomaly detection:

- Learn an efficient representation of normal data and then try to apply this to new data coming in
- We can use autoencoders and other tools
- Upside: we don't need to know how anormal data looks like
- Downside: still need to be sure that our normal data is actually normal

Unsupervised anomaly detection:

- Learn "how far" datapoints are from each other and recognize the ones that are far away from anything else
- We can use isolation forests and other tools
- Upside: we can work with any kind of data
- Downside: we don't have many guarantees

Anomaly detection with an autoencoder

"Encoder": find a representation f(x) "Decoder": unpack x = g(f(x))

What we should be observing

Difference between true data and decoded values

Your turn – what did you find?

Computer vision and convolutional layers

Importance of computer vision in business processes

Typical computer vision problems

Semantic segmentation

Object detection

Neural style transfer

Source: Lin, reiinakano.com

Challenges to deep learning using large images

Say we have 100 neurons at the first layer. Then we need 100*(45000+1)=4.5 mio parameters, just for the first layer!

From fully connected to locally connected

Source: Dieleman

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0		

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0

Convolutional layers: learning the filter

- 1			
	<i>w</i> _{1,1}	$W_{1,2}$	$W_{1,3}$
	$w_{2,1}$	$W_{2,2}$	$W_{2,3}$
	<i>w</i> _{3,1}	$W_{3,2}$	$W_{3,3}$

Less parameters required

Parameters are shared

Translation invariance

Hierarchical setup

Source: Goodfellow

With convolution, the center matters more

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

1 2 2 1

20	12	19
22	21	22
22	15	16

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1		

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1	4		

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1	4	7	

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1	4	7	4	4
8	20	12	19	10
17	22	21	22	14
13	22	15	16	9
6	9	5	5	2

The convolution operator with padding and stride

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1	

The convolution operator with padding and stride

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1	7	

The convolution operator with padding and stride

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1	7	4

The convolution operator with padding and stride

1	3	1	2	
6	1	5	4	
5	4	2	5	
3	3	1	2	

1	2
2	1

1	7	4
17	21	14
6	5	2

$$4x4 \ (n_H^{[0]}, n_W^{[0]})$$

2x2 with padding 1x1 and stride 2x2

$$3x3 \ (n_H^{[1]}, n_W^{[1]})$$

$$(f_H, f_W)$$
 with (p_H, p_W) and (s_H, s_W) $(n_H^{[1]}, n_W^{[1]})$
$$n_H^{[1]} = \left[\frac{n_H^{[0]} + 2p_H - f_H}{s_H} + 1\right] \quad n_W^{[1]} = \left[\frac{n_W^{[0]} + 2p_W - f_W}{s_W} + 1\right]$$

The same, just in 3D

Convolution on a 3D array

*

Convolution on a 3D array

4x4x3 2x2x3 3x3

Multiple 3D convolutions

Additional architectural considerations

Objective of pooling layers

- Subsample (i.e., summarize) the input
 - Reduced computational load
 - Reduced memory usage
 - Fewer parameters (and, thus, less overfitting)

Max pooling

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

6	5	

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

6	5	5

1	3	1	2
6	1	5	4
5	4	2	5
3	3	1	2

6	5	5
6	5	5
5	4	5

Typical architecture

Source: Géron

ConvNets in practice

Starting with object detection – non-sequential models

Typical computer vision problems Image classification

Semantic segmentation

Neural style transfer

Source: Lin, reiinakano.com

Before detection: classification + localization

A look at creating non-sequential models

Sources

- Alla & Kalyan Adari, 2019, Beginning Anomaly Detection Using Python-Based Deep Learning, Apress
- Bhaskhar, 2021, Introduction to Deep Learning: https://cs229.stanford.edu/syllabus.html
- DeepLearning.AI, n.d.: <u>deeplearning.ai</u>
- Dieleman, 2020, Lecture 3: Convolutional Neural Networks:
 https://storage.googleapis.com/deepmind-media/UCLxDeepMind_2020/L3%20-%20UUCLxDeepMind%20DL2020.pdf
- Géron, 2019, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: http://www.deeplearningbook.org
- Liang, 2016, Introduction to Deep Learning: https://www.cs.princeton.edu/courses/archive/spring16/cos495/
- Lin et al., 2014, Microsoft COCO: Common Objects in Context: https://arxiv.org/pdf/1405.0312.pdf

