Cálculo diferencial e integral I Ejercicios de práctica sobre supremos e ínfimos

Indicaciones: A continuación presentamos una serie de ejercicios cuya finalidad es que practiquen/refuercen los temas vistos recientemente. Esta lista de ejercicios se publica a petición de ustedes y solo es para practicar.

- 1. Sean $a, b \in \mathbb{R}$. Se tiene que a = b si y sólo si para todo $\varepsilon > 0$ se cumple que $|a b| < \varepsilon$.
- 2. Halle el supremo y el ínfimo de los siguientes conjuntos (cuando dichos valores existan). Además, decida cuáles de ellos tienen elemento máximo y elemento mínimo.
 - a) $\{x \in \mathbb{R} \mid x = 0 \text{ o } x = 1/n \text{ para algún } n \in \mathbb{N}\}.$
 - $b) \ \{x \in \mathbb{Q} \mid 0 \le x \le \sqrt{2}\}.$
 - c) $\{x \in \mathbb{R} \mid x^2 + x + 1 \ge 0\}.$
 - $d) \ \{x \in \mathbb{R} \mid x^2 + x + 1 < 0\}.$
 - e) $\{x \in \mathbb{R} \mid x^2 + x 1 < 0\}$
- 3. Sean $B \subseteq \mathbb{R}$ un conjunto no vacío y acotado inferiormente y $\beta \in \mathbb{R}$. Se cumple que $\beta = \inf(B)$ si y sólo si β es cota inferior de B y para cualquier $\varepsilon > 0$, existe $x \in B$ tal que $\beta \le x < \beta + \varepsilon$.
- 4. Sean b > 0, $A \subseteq \mathbb{R}$ un conjunto no vacío y acotado y $bA = \{ba \mid a \in A\}$. Muestre que $\sup(bA) = b \sup(A)$ y que $\inf(bA) = b \inf(A)$.
- 5. Sea $A \subset \mathbb{R}^+$ un conjunto no vacío y acotado. Si $B = \left\{ \frac{1}{a} \mid a \in A \right\}$ ¿Cómo se relacionan ínf(B) y sup(B) con ínf(A) y sup(A)? Argumente sus respuestas.
- 6. Sean $A, B \subseteq \mathbb{R}$ dos conjuntos no vacíos tales que $a \leq b$ para cualesquiera $a \in A$ y $b \in B$. Demuestra que:
 - a) Existe $\sup(A)$ y que $\sup(A) \leq b$, para todo $b \in B$.
 - b) Existe $\inf(B)$ y que $\sup(A) \leq \inf(B)$.
- 7. Para cada $n \in \mathbb{N}$ sean $a_n, b_n \in \mathbb{R}$ con $a_n \leq b_n$ y considere el intervalo cerrado $I_n = [a_n, b_n]$. Suponga además que $a_n \leq a_{n+1}$ y $b_{n+1} \leq b_n$ para toda $n \in \mathbb{N}$. Muestre que

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

¿Este resultado es verdadero si consideramos intervalos abiertos en lugar de intervalos cerrados? Argumente su respuesta.

1