```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (12,8)
import warnings
warnings.filterwarnings("ignore")
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
Start coding or generate with AI.
movies = pd.read_csv("/content/zee-movies.csv")
ratings =pd.read_csv("/content/zee-ratings.csv")
users = pd.read_csv("/content/zee-users.csv" )
```

```
delimiter ="::"
users = users["UserID::Gender::Age::Occupation::Zip-code"].str.split(delimiter,expand = True)
users.columns = ["UserID", "Gender", "Age", "Occupation", "Zipcode"]
users["Age"].replace({"1": "Under 18","18": "18-24","25": "25-34",
                          "35": "35-44", "45": "45-49", "50": "50-55", "56": "56+"}, inplace=True)
users["Occupation"] = users["Occupation"].astype(int).replace({0: "other",1: "academic/educator",2: "artist",
                                                               3: "clerical/admin",4: "college/grad student",
                                             5: "customer service",6: "doctor/health care",7: "executive/managerial",
                                             8: "farmer" ,9: "homemaker",10: "K-12 student",11: "lawyer",
                                             12: "programmer",13: "retired",14: "sales/marketing",15: "scientist",
                                             16: "self-employed",17: "technician/engineer",
                                             18: "tradesman/craftsman",19: "unemployed",20: "writer"},
delimiter ="::"
ratings = ratings["UserID::MovieID::Rating::Timestamp"].str.split(delimiter,expand = True)
ratings.columns = ["UserID", "MovieID", "Rating", "Timestamp"]
movies.drop(["Unnamed: 1","Unnamed: 2"],axis = 1,inplace=True)
delimiter ="::"
movies = movies["Movie ID::Title::Genres"].str.split(delimiter,expand = True)
movies.columns = ["MovieID", "Title", "Genres"]
movies.shape,ratings.shape,users.shape
     ((3883, 3), (1000209, 4), (6040, 5))
movies # need to take care of Genres .
```

Genres	Title	MovieID	
Animation Children's Comedy	Toy Story (1995)	1	0
Adventure Children's Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4
Comedy	Meet the Parents (2000)	3948	3878
Drama	Requiem for a Dream (2000)	3949	3879
Drama	Tigerland (2000)	3950	3880
Drama	Two Family House (2000)	3951	3881
Drama Thriller	Contender, The (2000)	3952	3882

3883 rows × 3 columns

ratings # need to convert timestamp to hrs.

	UserID	MovieID	Rating	Timestamp
0	1	1193	5	978300760
1	1	661	3	978302109
2	1	914	3	978301968
3	1	3408	4	978300275
4	1	2355	5	978824291
1000204	6040	1091	1	956716541
1000205	6040	1094	5	956704887
1000206	6040	562	5	956704746
1000207	6040	1096	4	956715648
1000208	6040	1097	4	956715569

1000209 rows × 4 columns

users

	UserID	Gender	Age	Occupation	Zipcode
0	1	F	Under 18	K-12 student	48067
1	2	М	56+	self-employed	70072
2	3	М	25-34	scientist	55117
3	4	M	45-49	executive/managerial	02460
4	5	М	25-34	writer	55455
6035	6036	F	25-34	scientist	32603
6036	6037	F	45-49	academic/educator	76006
6037	6038	F	56+	academic/educator	14706
6038	6039	F	45-49	other	01060
6039	6040	M	25-34	doctor/health care	11106

6040 rows × 5 columns

```
# taking out the release year from the title column from movie table :
movies["Release_year"] = movies["Title"].str.extract('^(.+)\s\(([0-9]*)\)$',expand = True)[1]
movies["Title"] = movies["Title"].str.split("(").apply(lambda x:x[0])

# Converting timestamp to hours
from datetime import datetime
ratings["Watch_Hour"] = ratings["Timestamp"].apply(lambda x:datetime.fromtimestamp(int(x)).hour)
ratings.drop(["Timestamp"],axis = 1,inplace=True)

Start coding or generate with AI.

movies.shape,ratings.shape,users.shape

((3883, 4), (1000209, 4), (6040, 5))
```

Merging all the tables into one data frame :

٦.

28/24, 6:	:05 AM							Zee Recommender P	Project.ipynb - Colab			
②		UserID	Gender	Age	Occupation	Zipcode	MovieID	Title	Genres	Release_year	Rating	Watch_Hour
	0	1	F	Under 18	K-12 student	48067	1	Toy Story	Animation Children's Comedy	1995	5	23.0
	1	1	F	Under 18	K-12 student	48067	48	Pocahontas	Animation Children's Musical Romance	1995	5	23.0
	2	1	F	Under 18	K-12 student	48067	150	Apollo 13	Drama	1995	5	22.0
	3	1	F	Under 18	K-12 student	48067	260	Star Wars: Episode IV - A New Hope	Action Adventure Fantas	1977	4	22.0
	4	1	F	Under 18	K-12 student	48067	527	Schindler's List	Drama War	1993	5	23.0
	1000381	NaN	NaN	NaN	NaN	NaN	3650	Anguish	Horror	1986	NaN	NaN
	1000382	NaN	NaN	NaN	NaN	NaN	3750	Boricua's Bond	Drama	2000	NaN	NaN
	1000383	NaN	NaN	NaN	NaN	NaN	3829	Mad About Mambo	Comedy Romance	2000	NaN	NaN
	1000384	NaN	NaN	NaN	NaN	NaN	3856	Autumn Heart	Drama	1999	NaN	NaN
	1000385	NaN	NaN	NaN	NaN	NaN	3907	Prince of Central Park, The	Drama	1999	NaN	NaN
	1000386 ro	ws × 11 c	columns									
df_ =	df.copy()										

df_.dropna(inplace=True)

df_.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 996144 entries, 0 to 1000208
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
                 -----
   UserID
0
                 996144 non-null object
1
    Gender
                 996144 non-null object
2 Age
                 996144 non-null object
                996144 non-null object
    Occupation
4 Zipcode
                 996144 non-null object
5
   MovieID
                 996144 non-null object
6 Title
                 996144 non-null object
7
    Genres
                 996144 non-null object
    Release_year 996144 non-null object
9
    Rating
                 996144 non-null object
                996144 non-null float64
10 Watch_Hour
dtypes: float64(1), object(10)
memory usage: 91.2+ MB
```

```
df_['Release_year']=df_['Release_year'].astype('int32')
df_['Rating']=df_['Rating'].astype('int32')
```

```
bins = [1919, 1929, 1939, 1949, 1959, 1969, 1979, 1989, 2000]
labels = ['20s', '30s', '40s', '50s', '60s', '70s', '80s', '90s']

df_["Released_In"] = pd.cut(df_['Release_year'], bins=bins, labels=labels)

import seaborn as sns
```

→ Average user rating distribution:

```
sns.histplot(df_[['UserID','Rating']].groupby('UserID').mean()["Rating"])
# average ratings given by each user distribution
```



```
sns.histplot(df_[['MovieID','Rating']].groupby('MovieID').mean()["Rating"])
# average rating , that each movie has received by users .
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f082eb12490>

df_["MovieID"].nunique()

3682

movies_per_decade = df_[['MovieID','Released_In']].groupby('Released_In').nunique()
movies_per_decade["% of all Movies"] = (movies_per_decade["MovieID"]/(df_["MovieID"].nunique())) * 100
movies_per_decade

MovieID % of all Movies

Released_In		
20s	23	0.624661
30s	71	1.928300
40s	120	3.259098
50s	164	4.454101
60s	184	4.997284
70s	237	6.436719
80s	586	15.915263
90s	2294	62.303096

<matplotlib.axes._subplots.AxesSubplot at 0x7f082e91ed90>

Start coding or generate with AI.

Start coding or generate with AI.

```
m = movies[["MovieID","Title","Genres"]]
m["Genres"] = m["Genres"].str.split("|")
m = m.explode("Genres")
m["Genres"] = m["Genres"].replace({"":"Other", "Horro": "Horror", "Sci-Fi", "Sci-Fi", "Sci-Fi", "Sci-Fi", "Dr: "Drama", "Documenta": "Documentary",
                                                                                         "Wester":"Western", "Fant": "Fantasy", "Chil": "Children's", "R": "Romance", "D": "Drama", "Rom": "Romance", "Animati": "Animation", "Childr": "Children's", "Childre": "Children's", "Children's "Children's", "Children's "Childre
                                                                                         "Fantas":"Fantasy","Come":"Comedy","Dram":"Drama","S":"Sci-Fi","Roma":"Romance","A":"Adventure","Children":"Children's","Adventu":"Adventure","Adventure","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's "Children's","Children's "Children's "Childre
                                                                                              "Wa":"War", "Thrille" :"Thriller", "Com":"Comedy", "Comedy", "Acti":"Action", "Advent": "Adventure", "Adventur": "Adventure", "Thriller",
                                                                                                      "Chi":"Children's", "Ro":"Romance", "F":"Fantasy", "We":"Western", "Documen":"Documentary", "Music": "Musical", "Children": "Children's", "Horr": "Horror",
                                                                                          "Children'": "Children's", "Roman": "Romance", "Docu": "Documentary", "Th": "Thriller", "Document": "Documentary"
                                                                                    })
m = m.pivot_table(values="Title", index="MovieID", columns="Genres", aggfunc= np.size,).fillna(0)
def apply(x):
       if x >= 1:
                 return 1
        else:
                return 0
m["Adventure"] = m["Adventure"].apply(apply)
m = m.astype(int)
```

Film-Genres Action Adventure Animation Children's Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Other Romance Thriller War Western Noir MovieID ... Ω Ω

3858 rows × 19 columns

```
final data = df.merge(m,on="MovieID",how="left").drop(["Genres"],axis = 1)
```

final data

	UserID	Gender	Age	Occupation	Zipcode	MovieID	Title	Release_year	Rating	Watch_Hour	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary
0	1	F	Under 18	K-12 student	48067	1	Toy Story	1995	5	23.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0
1	1	F	Under 18	K-12 student	48067	48	Pocahontas	1995	5	23.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0
2	1	F	Under 18	K-12 student	48067	150	Apollo 13	1995	5	22.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	1	F	Under 18	K-12 student	48067	260	Star Wars: Episode IV - A New Hope	1977	4	22.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0
4	1	F	Under 18	K-12 student	48067	527	Schindler's List	1993	5	23.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•••																	
1000381	NaN	NaN	NaN	NaN	NaN	3650	Anguish	1986	NaN	NaN	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1000382	NaN	NaN	NaN	NaN	NaN	3750	Boricua's Bond	2000	NaN	NaN	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1000383	NaN	NaN	NaN	NaN	NaN	3829	Mad About Mambo	2000	NaN	NaN	0.0	0.0	0.0	0.0	1.0	0.0	0.0
1000384	NaN	NaN	NaN	NaN	NaN	3856	Autumn Heart	1999	NaN	NaN	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1000385	NaN	NaN	NaN	NaN	NaN	3907	Prince of Central Park, The	1999	NaN	NaN	0.0	0.0	0.0	0.0	0.0	0.0	0.0

1000386 rows × 29 columns

```
Start coding or generate with AI.
```

final_data.Release_year = final_data.Release_year.astype(float)

final_data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000386 entries, 0 to 1000385

Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	UserID	1000209 non-null	float64
1	Gender	1000209 non-null	object
2	Age	1000209 non-null	object
3	Occupation	1000209 non-null	object
4	Zipcode	1000209 non-null	object

5	MovieID	1000386 non-null	int64
6	Title	1000386 non-null	object
7	Release_year	996606 non-null	float64
8	Rating	1000209 non-null	object
9	Watch_Hour	1000209 non-null	float64
10	Action	996320 non-null	float64
11	Adventure	996320 non-null	float64
12	Animation	996320 non-null	float64
13	Children's	996320 non-null	float64
14	Comedy	996320 non-null	float64
15	Crime	996320 non-null	float64
16	Documentary	996320 non-null	float64
17	Drama	996320 non-null	float64
18	Fantasy	996320 non-null	float64
19	Film-Noir	996320 non-null	float64
20	Horror	996320 non-null	float64
21	Musical	996320 non-null	float64
22	Mystery	996320 non-null	float64
23	Other	996320 non-null	float64
24	Romance	996320 non-null	float64
25	Sci-Fi	996320 non-null	float64
26	Thriller	996320 non-null	float64
27	War	996320 non-null	float64
28	Western	996320 non-null	float64
t+vn	es: float64(22) int64(1) object	+(6)

dtypes: float64(22), int64(1), object(6)

memory usage: 229.0+ MB

final_data.describe()

	UserID	MovieID	Release_year	Watch_Hour	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary	Dı
count	1.000209e+06	1.000386e+06	996606.000000	1.000209e+06	996320.000000	996320.000000	996320.000000	996320.000000	996320.000000	996320.000000	996320.000000	996320.000
mean	3.024512e+03	1.865526e+03	1986.758010	1.191620e+01	0.257534	0.134088	0.134088 0.043107 0.072154		0.354897	0.079690	0.007845	0.35
std	1.728413e+03	1.096030e+03	14.314345	7.894465e+00	0.437276	0.340747	0.203097	0.258742	0.478482	0.270813	0.088223	0.477
min	1.000000e+00	1.000000e+00	1919.000000	0.000000e+00	0.000000	0.000000	0.000000	0.000000 0.000000		0.000000	0.000000	0.000
25%	1.506000e+03	1.030000e+03	1982.000000	4.000000e+00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
50%	3.070000e+03	1.835000e+03	1992.000000	1.400000e+01	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000
75%	4.476000e+03	2.770000e+03	1997.000000	1.900000e+01	1.000000	0.000000	0.000000 0.000000		1.000000	0.000000	0.000000	1.000
max	6.040000e+03	3.952000e+03	2000.000000	2.300000e+01	1.000000	1.000000	0 1.000000 1.000000		1.000000	1.000000	1.000000	1.000

final_data.describe(include="object")

	Gender	Age	Occupation	Zipcode	Title	Rating
count	1000209	1000209	1000209	1000209	1000386	1000209
unique	2	7	21	3439	3833	5
top	М	25-34	college/grad student	94110	American Beauty	4
freq	753769	395556	131032	3802	3428	348971

final_data.nunique()

UserID	6040
Gender	2
Age	7
Occupation	21
Zipcode	3439
MovieID	3883
Title	3833
Release_year	81
Rating	5
Watch_Hour	24
Action	2
Adventure	2
Animation	2
Children's	2
Comedy	2
Crime	2
Documentary	2
Drama	2
Fantasy	2
Film-Noir	2
Horror	2
Musical	2
Mystery	2
Other	2
Romance	2
Sci-Fi	2
Thriller	2
War	2
Western	2
dtype: int64	

Unique values present in data

- 6040 unique UserID
- 7 different age groups
- 21 occupations
- 3439 different locations of users
- 3883 unique movies
- There are movies available in database , which were never been watched by any user before .
- Thats is the reason we have lots of NaN values in our final dataset.

```
final_data.shape
     (1000386, 29)

plt.rcParams["figure.figsize"] = (20,8)
```

Most of the movies present in our dataset were released in year:

final_data.groupby("Release_year")["Title"].nunique().plot(kind="bar")

<matplotlib.axes._subplots.AxesSubplot at 0x7f082e81b0d0>

<matplotlib.axes._subplots.AxesSubplot at 0x7f082e740cd0>

m.sum(axis= 0)

Genres Action 501 Adventure 283 Animation 104 Children's 249 Comedy 1189 Crime 210 Documentary 124 Drama 1585 Fantasy 63 Film-Noir 44 340 Horror Musical 113 Mystery 105 0ther 8 462 Romance Sci-Fi 265 Thriller 488 War 139 68 Western dtype: int64

final_data["Rating"].count()

1000209

Number of movies Rated by each Gender type :

Text(-0.7865921564492223, -0.7689426372705329, 'Male')], [Text(0.4290502867887404, 0.4194232366077249, '24.6%'), Text(-0.4290502671541212, -0.4194232566930179, '75.4%')])

Start coding or generate with AI.

Users of which age group have watched and rated the most number of movies?

```
plt.rcParams["figure.figsize"] = (10,6)
final_data.groupby("Age")["UserID"].nunique().plot(kind="bar")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f08478ed100>

- in DataSet: majority of the viewers are in age group of 25-34
- out of all, 25-34 age group have rated and watched the maximum number of movies.
- for other age groups data are as below:

```
final_data.groupby("Age")["MovieID"].nunique()
```

```
Age
18-24 3393
25-34 3508
35-44 3447
45-49 3288
50-55 3258
56+ 2913
Under 18 2650
Name: MovieID, dtype: int64
```

```
plt.rcParams["figure.figsize"] = (10,8)
final_data.groupby("Age")["MovieID"].nunique().plot(kind="bar")
```


Start coding or generate with AI.

Users belonging to which profession have watched and rated the most movies?

```
plt.rcParams["figure.figsize"] = (20,8)

plt.subplot(121)
final_data.groupby("Occupation")["UserID"].nunique().sort_values().plot(kind="bar")
plt.subplot(122)
final_data.groupby("Occupation")["MovieID"].nunique().sort_values().plot(kind="bar")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f0849c5a160>

- Majority of the Users are College Graduates and Students, followed by Executives, educators and engineers. y of the Users are College Graduates and Students, followed by Executives, educators and engineers.
- · Maximum movies are watched and rated by user's occupations are College graduate students, writers, executives, educator and artists.

final_data.groupby("Occupation")["MovieID"].nunique().sort_values(ascending = False).head(6)

Occupation
other 3448
college/grad student 3363
writer 3330
executive/managerial 3269
academic/educator 3218
artist 3145
Name: MovieID, dtype: int64

final data.columns

```
Index(['UserID', 'Gender', 'Age', 'Occupation', 'Zipcode', 'MovieID', 'Title', 'Release_year', 'Rating', 'Watch_Hour', 'Action', 'Adventure', 'Animation', 'Children's',
'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Other', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'],
dtype='object')
```

Movie Recommendation based on Genres as per Majority Users occupation :

- below table shows the rank preference of each occupation users:
- · higher the number more prefered .

	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary	Drama	Fantasy	Film- Noir	Horror	Musical	Mystery	Other	Romance	Sci- Fi	Thriller	War
Occupation																		
writer	13	6	18	9	8	12	2	11	17	3	10	5	1	15	14	16	0	4
artist	13	6	18	9	8	12	2	11	17	3	10	5	1	15	14	16	0	4
academic/educator	13	6	18	9	8	2	12	11	10	17	3	5	1	15	14	16	0	4
executive/managerial	13	6	9	18	8	2	11	12	3	17	10	5	1	15	14	16	0	4
college/grad student	13	6	9	18	8	12	11	2	17	10	5	3	1	14	15	16	0	7

- Writers, artists and educator most preferes to watch Animation, Fantasy and Science Fiction movies, followed by Romance, Action and rest of the genres.
- · COllege Students most prefer to watch Children's, Science Fiction, Romance and Fantasy movies.
- Film-Noir is more prefered by the educators and Executive occupation users.

```
Start coding or <u>generate</u> with AI.

Start coding or <u>generate</u> with AI.
```

what is the traffic on OTT, based on watch hour:

```
Start coding or generate with AI.

final_data.groupby("Watch_Hour")["UserID"].nunique().plot(kind="bar")
```


Start coding or generate with AI.

Start coding or generate with AI.

Top 10 Movies have got the most number of ratings:

top10_movies = final_data.groupby("Title")["Rating"].count().reset_index().sort_values(by="Rating",ascending=False).head(10)

top10_movies

	Title	Rating
127	American Beauty	3428
3261	Star Wars: Episode IV - A New Hope	2991
3262	Star Wars: Episode V - The Empire Strikes Back	2990
3263	Star Wars: Episode VI - Return of the Jedi	2883
1846	Jurassic Park	2672
2994	Saving Private Ryan	2653
3405	Terminator 2: Judgment Day	2649
2186	Matrix, The	2590
262	Back to the Future	2583
3090	Silence of the Lambs, The	2578

<matplotlib.axes._subplots.AxesSubplot at 0x7f08454caf70>

Start coding or generate with AI.

5 Top rated Recommended Movies per each genre :

```
Genres = ['Action', 'Adventure', 'Animation', "Children's", 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Other', 'Romance',
for G in Genres:
 print(G)
 print("----")
 print(final_data[final_data[f] == 1].groupby("Title")["Rating"].count().sort_values(ascending=False).head(5))
 print()
 print()
 print()
     Action
     Title
     Star Wars: Episode IV - A New Hope
                                                      2991
     Star Wars: Episode V - The Empire Strikes Back
                                                      2990
     Star Wars: Episode VI - Return of the Jedi
                                                      2883
                                                      2672
     Jurassic Park
     Saving Private Ryan
                                                      2653
     Name: Rating, dtype: int64
     Adventure
     -----
     Title
     Star Wars: Episode IV - A New Hope
                                                      2991
     Star Wars: Episode V - The Empire Strikes Back
                                                      2990
     Star Wars: Episode VI - Return of the Jedi
                                                      2883
     Jurassic Park
                                                      2672
     Men in Black
                                                      2538
    Name: Rating, dtype: int64
     Animation
     Title
     Toy Story
                                2077
     Who Framed Roger Rabbit?
                                1799
     Bug's Life, A
                                1703
     Toy Story 2
                                1585
     Aladdin
                                1351
     Name: Rating, dtype: int64
     Children's
     -----
     E.T. the Extra-Terrestrial
                                  2269
                                  2077
     Toy Story
     Babe
                                  1751
     Wizard of Oz, The
                                  1718
     Bug's Life, A
                                  1703
     Name: Rating, dtype: int64
```

```
Comedy
Title
American Beauty 3428
Back to the Future 2583
Men in Black 2538
Shakespeare in Love 2369
Princess Bride, The 2318
Name: Rating, dtype: int64

Start coding or generate with AI.
```

Top 5 movie recommended as per age_Group based on ratings each age group provided

```
age_groups = final_data.Age.unique()
for age_ in age_groups:
 print(age_)
 print("----")
 print(final_data[final_data.Age == age_].groupby("Title")["Rating"].count().sort_values(ascending=False).head())
 print()
 print()
 print()
     Under 18
     _____
     Title
     Toy Story
                                                    112
     Sixth Sense, The
                                                    109
     Star Wars: Episode IV - A New Hope
                                                    101
     Men in Black
                                                    100
     Star Wars: Episode VI - Return of the Jedi
                                                    100
     Name: Rating, dtype: int64
     56+
     Title
     American Beauty
                            184
                            137
     Schindler's List
     Shakespeare in Love
                            136
     Godfather, The
                            122
     Saving Private Ryan
     Name: Rating, dtype: int64
```

```
25-34
     -----
     Title
     American Beauty
                                                        1334
                                                        1176
     Star Wars: Episode V - The Empire Strikes Back
     Star Wars: Episode VI - Return of the Jedi
                                                        1134
     Star Wars: Episode IV - A New Hope
                                                        1128
     Terminator 2: Judgment Day
                                                        1087
     Name: Rating, dtype: int64
     45-49
     -----
     Title
                                                        258
     American Beauty
     Star Wars: Episode IV - A New Hope
                                                        243
     Star Wars: Episode V - The Empire Strikes Back
                                                        226
     Jurassic Park
                                                        218
     Shakespeare in Love
                                                        217
     Name: Rating, dtype: int64
     50-55
     _____
     Title
     American Beauty
                                                        248
     Star Wars: Episode IV - A New Hope
                                                        215
     Star Wars: Episode V - The Empire Strikes Back
                                                        206
     Fargo
                                                        199
                                                        198
     Godfather, The
     Name: Rating, dtype: int64
Start coding or generate with AI.
```

Creating a user Movie average rating Matrix :

```
df_.columns

Index(['UserID', 'Gender', 'Age', 'Occupation', 'Zipcode', 'MovieID', 'Title', 'Genres', 'Release_year', 'Rating', 'Watch_Hour', 'Released_In'], dtype='object')
```

Title	\$1,000,000 Duck	'Night Mother	'Til There Was You	'burbs, The	And Justice for All	1- 900	10 Things I Hate About You	101 Dalmatians	12 Angry Men	13th Warrior, The	187	2 Days in the Valley	20 Dates	20,000 Leagues Under the Sea	200 Cigarettes	2001: A Space Odyssey	2010	24 7: Twenty Four Seven	24- hour Woman	28 Days	Nin Noo Moun
UserID																					
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
10	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	3.0	4.0	0.0	0.0	0.0	4.0	0.0	3.0	0.0	0.0	0.0	0.0	
100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	
1000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	
995	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
996	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	3.0	0.0	0.0	0.0	4.0	4.0	0.0	0.0	0.0	
997	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
998	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
999	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	2.0	0.0	0.0	0.0	0.0	
00.40	0000																				

6040 rows × 3633 columns

Start coding or generate with AI.

item item similarity(hamming distance) based recommendation :

```
m = movies[["MovieID","Title","Genres"]]
m["Genres"] = m["Genres"].str.split("|")
m = m.explode("Genres")
m["Genres"] = m["Genres"].replace({"":"Other", "Horro": "Horror", "Sci-Fi", "Sci-Fi", "Sci-Fi", "Sci-Fi", "Dr: "Drama", "Documenta": "Documentary",
                                                                                         "Wester":"Western", "Fant": "Fantasy", "Chil": "Children's", "R": "Romance", "D": "Drama", "Rom": "Romance", "Animati": "Animation", "Childr": "Children's", "Childre": "Children's", "Children's "Children's", "Children's "Childre
                                                                                         "Fantas":"Fantasy","Come":"Comedy","Dram":"Drama","S":"Sci-Fi","Roma":"Romance","A":"Adventure","Children":"Children's","Adventu":"Adventure","Adventure","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's","Children's "Children's","Children's "Children's "Childre
                                                                                              "Wa":"War", "Thrille" :"Thriller", "Com":"Comedy", "Comedy", "Acti":"Action", "Advent": "Adventure", "Adventur": "Adventure", "Thriller",
                                                                                                      "Chi":"Children's", "Ro": "Romance", "F": "Fantasy", "We": "Western", "Documen": "Documentary", "Music": "Musical", "Children": "Children's", "Horr": "Horror",
                                                                                          "Children'": "Children's", "Roman": "Romance", "Docu": "Documentary", "Th": "Thriller", "Document": "Documentary"
                                                                                    })
m = m.pivot_table(values="Title", index="MovieID", columns="Genres", aggfunc= np.size,).fillna(0)
def apply(x):
       if x >= 1:
                 return 1
        else:
                return 0
m["Adventure"] = m["Adventure"].apply(apply)
m = m.astype(int)
```

Film-Thriller War Western Genres Action Adventure Animation Children's Comedy Crime Documentary Drama Fantasy Horror Musical Mystery Other Romance Noir MovieID ... Ω Ω

3858 rows × 19 columns

```
def Hamming_distance(x1,x2):
    return np.sum(abs(x1-x2))

Ranks = []
Query = "1"
for candidate in m.index:
    if candidate = Query:
        continue
Ranks.append([Query,candidate,Hamming_distance(m.loc[Query],m.loc[candidate])])

Ranks = pd.DataFrame(Ranks,columns=["Query","Candidate","Hamming_distance"])
Ranks = Ranks.merge(movies[['MovieID', 'Title']], left_on='Query', right_on='MovieID').rename(columns={'Title': 'query_tittle'}).drop(columns=['MovieID'])
Ranks = Ranks.merge(movies[['MovieID', 'Title']], left_on='Gandidate', right_on='MovieID').rename(columns={'Title': 'candidate_tittle'}).drop(columns=['MovieID'])
Ranks = Ranks.sort_values(by=['Query', 'Hamming_distance'])
```

	Query	Candidate	Hamming_distance	query_tittle	candidate_tittle
71	1	1064	0	Toy Story	Aladdin and the King of Thieves
1208	1	2141	0	Toy Story	American Tail, An
1442	1	2354	0	Toy Story	Rugrats Movie, The
1443	1	2355	0	Toy Story	Bug's Life, A
2281	1	3114	0	Toy Story	Toy Story 2
2831	1	3611	0	Toy Story	Saludos Amigos
2981	1	3751	0	Toy Story	Chicken Run
7	1	1005	1	Toy Story	D3: The Mighty Ducks
13	1	1010	1	Toy Story	Love Bug, The
19	1	1016	1	Toy Story	Shaggy Dog, The

```
def Hamming_distance(x1,x2):
    return np.sum(abs(x1-x2))

Ranks = []
Query = "1485"
for candidate in m.index:
    if candidate = Query:
        continue
Ranks.append([Query, candidate, Hamming_distance(m.loc[Query],m.loc[candidate])])

Ranks = pd.DataFrame(Ranks,columns=["Query","Candidate","Hamming_distance"])
Ranks = Ranks.merge(movies[['MovieID', 'Title']], left_on='Query', right_on='MovieID').rename(columns={'Title': 'query_tittle'}).drop(columns=['MovieID')]
Ranks = Ranks.merge(movies[['MovieID', 'Title']], left_on='(Candidate', right_on='MovieID').rename(columns={'Title': 'candidate_tittle'}).drop(columns=['MovieID')]
Ranks = Ranks.sort_values(by=['Query', 'Hamming_distance'])
Ranks.head(10)
```

	Query	Candidate	Hamming_distance	query_tittle	candidate_tittle
4	1485	1001	0	Liar Liar	Associate, The
5	1485	1002	0	Liar Liar	Ed's Next Move
13	1485	101	0	Liar Liar	Bottle Rocket
24	1485	102	0	Liar Liar	Mr. Wrong
25	1485	1020	0	Liar Liar	Cool Runnings
46	1485	104	0	Liar Liar	Happy Gilmore
49	1485	1042	0	Liar Liar	That Thing You Do!
82	1485	1075	0	Liar Liar	Sexual Life of the Belgians, The
86	1485	1079	0	Liar Liar	Fish Called Wanda, A
88	1485	1080	0	Liar Liar	Monty Python's Life of Brian

```
Start coding or generate with AI.

Start coding or generate with AI.

Start coding or generate with AI.
```

movies = pd.read fwf("/content/drive/Othercomputers/My Laptop/Data Science Studies/GitHub Desktop/BusinessCase Data Exploration-/Recommender System for OTT /zee-movies.dat",enco ratings =pd.read fwf("/content/drive/Othercomputers/My Laptop/Data Science Studies/GitHub Desktop/BusinessCase Data Exploration-/Recommender System for OTT /zee-ratings.dat",enc users = pd.read fwf("/content/drive/Othercomputers/My Laptop/Data Science Studies/GitHub Desktop/BusinessCase Data Exploration-/Recommender System for OTT /zee-users.dat",encodi delimiter ="::" users = users["UserID::Gender::Age::Occupation::Zip-code"].str.split(delimiter,expand = True) users.columns = ["UserID", "Gender", "Age", "Occupation", "Zipcode"] users["Age"].replace({"1": "Under 18","18": "18-24","25": "25-34", "35": "35-44","45": "45-49","50": "50-55","56": "56+"},inplace=True) users["Occupation"] = users["Occupation"].astype(int).replace({0: "other",1: "academic/educator",2: "artist", 3: "clerical/admin",4: "college/grad student", 5: "customer service",6: "doctor/health care",7: "executive/managerial", 8: "farmer" ,9: "homemaker",10: "K-12 student",11: "lawyer", 12: "programmer",13: "retired",14: "sales/marketing",15: "scientist", 16: "self-employed",17: "technician/engineer", 18: "tradesman/craftsman",19: "unemployed",20: "writer"}, delimiter ="::" ratings = ratings["UserID::MovieID::Rating::Timestamp"].str.split(delimiter,expand = True) ratings.columns = ["UserID", "MovieID", "Rating", "Timestamp"] movies.drop(["Unnamed: 1", "Unnamed: 2"],axis = 1,inplace=True) delimiter ="::" movies = movies["Movie ID::Title::Genres"].str.split(delimiter,expand = True) movies.columns = ["MovieID", "Title", "Genres"] movies.shape,ratings.shape,users.shape $movies["Release_year"] = movies["Title"].str.extract('^(.+)\s\(([0-9]*)\)$',expand = True)[1]$ movies["Title"] = movies["Title"].str.split("(").apply(lambda x:x[0]) from datetime import datetime ratings["Watch_Hour"] =ratings["Timestamp"].apply(lambda x:datetime.fromtimestamp(int(x)).hour) ratings.drop(["Timestamp"],axis = 1,inplace=True) df = users.merge(movies.merge(ratings,on="MovieID",how="outer"),on="UserID",how="outer") df["Genres"] = df["Genres"].str.split("|") df = df.explode('Genres') df["Genres"] = df["Genres"].replace({"":"Other","Horro":"Horror","Sci-Fi","Sci-Fi","Sci-Fi","Sci-Fi","Dr":"Drama","Documentary", "Wester":"Western", "Fant": "Fantasy", "Chil": "Children's", "R": "Romance", "D": "Drama", "Rom": "Romance", "Animati": "Animation", "Childr": "Children's", "Childre": "Childre": "Childre": "Childre": "Children's", "Childre": "Children's", "Children's "Children's", "Children's "Fantas":"Fantasy","Come":"Comedy","Dram":"Drama","S":"Sci-Fi","Roma":"Romance","A":"Adventure","Children":"Children's","Adventu":"Adventure","Adventure","Adventure","Children's","Adventure","Adventure","Children's","Adventure","Adventure","Children's","Adventure","Adventure","Children's","Adventure","Adventure","Children's","Adventure","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's","Children's","Adventure","Children's","Adventure","Children's","Adventure","Children's "Children's","Children's "Children's","Children's "Children's "Wa":"War", "Thrille" :"Thriller", "Com":"Comedy", "Comedy", "Acti":"Action", "Advent": "Adventure", "Adventur": "Adventure", "Adventure", "Thriller", "Chi":"Children's", "Ro": "Romance", "F": "Fantasy", "We": "Western", "Documen": "Documentary", "Music": "Musical", "Children": "Children's", "Horr": "Horror", "Children'":"Children's", "Roman": "Romance", "Docu": "Documentary", "Th": "Thriller", "Document": "Documentary" m = df.groupby(['MovieID','Genres'])['Title'].unique().str[0].unstack().reset_index().set_index('MovieID')

```
m = ~m.isna()
m = m.astype(int)

Start coding or generate with AI.

Start coding or generate with AI.

Start coding or generate with AI.
```

Cosine Similarity:

Item and User: -Cosine similarity Matrix:

```
from sklearn.metrics.pairwise import cosine similarity
Item similarity = cosine similarity(user movie rating matrix.T)
Item_similarity
    array([[1.
                     , 0.07235746, 0.03701053, ..., 0.
                                                          , 0.12024178,
           0.02700277],
           [0.07235746, 1.
                             , 0.11528952, ..., 0.
                                                          , 0.
           0.07780705],
           [0.03701053, 0.11528952, 1. , ..., 0.
                                                          , 0.04752635,
           0.0632837 ],
                  , 0. , 0. , ..., 1.
                                                         , 0.
           0.04564448],
          [0.12024178, 0. , 0.04752635, ..., 0.
                                                          , 1.
           0.04433508],
           [0.02700277, 0.07780705, 0.0632837, ..., 0.04564448, 0.04433508,
user_similarity.shape
    (3633, 3633)
Item_similarty_matrix = pd.DataFrame(Item_similarity,
           index = user_movie_rating_matrix.columns,
           columns = user_movie_rating_matrix.columns)
Item_similarty_matrix
```

Title	\$1,000,000 Duck	'Night Mother	'Til There Was You	'burbs, The	And Justice for All	1-900	10 Things I Hate About You	101 Dalmatians	12 Angry Men	13th Warrior, The	187	2 Days in the Valley	20 Dates	20,000 Leagues Under the Sea	200 Cigarettes	2001: A Space Odyssey	
Title																	
\$1,000,000 Duck	1.000000	0.072357	0.037011	0.079291	0.060838	0.000000	0.058619	0.189843	0.094785	0.058418	0.028171	0.021295	0.016918	0.141379	0.089850	0.068224	0.00
'Night Mother	0.072357	1.000000	0.115290	0.115545	0.159526	0.000000	0.076798	0.137135	0.111413	0.046135	0.060254	0.108613	0.038041	0.072367	0.139323	0.102570	0.07
'Til There Was You	0.037011	0.115290	1.000000	0.098756	0.066301	0.080250	0.127895	0.128523	0.079115	0.066598	0.019914	0.067742	0.091690	0.034371	0.197216	0.056820	0.00
'burbs, The	0.079291	0.115545	0.098756	1.000000	0.143620	0.000000	0.192191	0.250140	0.170719	0.197808	0.103273	0.183970	0.049312	0.186721	0.243211	0.201256	0.19
And Justice for All	0.060838	0.159526	0.066301	0.143620	1.000000	0.000000	0.075093	0.178928	0.205486	0.122431	0.114231	0.195255	0.039933	0.171536	0.114865	0.219975	0.1
Zed & Two Noughts, A	0.045280	0.091150	0.022594	0.055704	0.086080	0.000000	0.012702	0.042295	0.039344	0.041324	0.021497	0.083057	0.000000	0.063932	0.033813	0.094548	30.0
Zero Effect	0.039395	0.074787	0.079261	0.161174	0.110867	0.000000	0.175771	0.157313	0.133061	0.156505	0.097833	0.273992	0.063650	0.110569	0.120041	0.213441	0.16
Zero Kelvin	0.000000	0.000000	0.000000	0.000000	0.074317	0.000000	0.000000	0.033120	0.036867	0.034797	0.000000	0.041621	0.000000	0.035089	0.000000	0.033336	0.04
Zeus and Roxanne	0.120242	0.000000	0.047526	0.033567	0.000000	0.000000	0.058708	0.089840	0.058692	0.034623	0.000000	0.000000	0.031335	0.043226	0.074772	0.044879	0.00
eXistenZ	0.027003	0.077807	0.063284	0.110525	0.111040	0.039561	0.162060	0.120762	0.098731	0.230799	0.036650	0.165736	0.120666	0.116836	0.149607	0.246847	0.19
3633 rows × 3	3633 columns																

Start coding or generate with AI.

→ User Based Similartiy:

```
Start coding or generate with AI.
```

User_similarity = cosine_similarity(user_movie_rating_matrix)
User_similarity.shape

(6040, 6040)

```
User_similarity
```

```
array([[1. , 0.25531859, 0.12396703, ..., 0.15926709, 0.11935626, 0.12239079], [0.25531859, 1. , 0.25964457, ..., 0.16569953, 0.13332665, 0.24845029], [0.12396703, 0.25964457, 1. , ..., 0.20430203, 0.11352239, 0.30693676], ..., [0.15926709, 0.16569953, 0.20430203, ..., 1. , 0.18657496, 0.18563871], [0.11935626, 0.13332665, 0.11352239, ..., 0.18657496, 1. , 0.10827118], [0.12239079, 0.24845029, 0.30693676, ..., 0.18563871, 0.10827118, 1. ]])
```

UserID	1	10	100	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	101	1010	1011	1012	1
UserID																		
1	1.000000	0.255319	0.123967	0.207800	0.139317	0.110320	0.121384	0.180226	0.103896	0.052816	0.060032	0.102675	0.049839	0.029990	0.159501	0.078094	0.080898	0.047
10	0.255319	1.000000	0.259645	0.280479	0.158703	0.112917	0.141985	0.432536	0.194915	0.102487	0.161729	0.220798	0.118062	0.205438	0.352071	0.199990	0.153074	0.156
100	0.123967	0.259645	1.000000	0.306067	0.075736	0.110450	0.358686	0.237492	0.172872	0.099147	0.060103	0.043367	0.061238	0.347549	0.264241	0.139793	0.085678	0.024
1000	0.207800	0.280479	0.306067	1.000000	0.099117	0.047677	0.201722	0.355920	0.325966	0.130702	0.042828	0.077724	0.123638	0.282423	0.249464	0.124237	0.117258	0.050
1001	0.139317	0.158703	0.075736	0.099117	1.000000	0.164854	0.053887	0.152057	0.138602	0.134710	0.019576	0.083651	0.200411	0.067900	0.254713	0.072502	0.037462	0.073
995	0.035731	0.146552	0.033754	0.044404	0.109700	0.072578	0.031406	0.088838	0.061450	0.032265	0.000000	0.041055	0.019928	0.029313	0.087898	0.104274	0.100905	0.131
996	0.170184	0.304806	0.344290	0.330748	0.222119	0.224779	0.185226	0.352014	0.287965	0.164045	0.078759	0.117937	0.151984	0.272145	0.471598	0.182751	0.130688	0.090
997	0.159267	0.165700	0.204302	0.172803	0.103255	0.068980	0.170771	0.175488	0.106303	0.049536	0.037536	0.041037	0.031871	0.089073	0.170519	0.070629	0.033974	0.025
998	0.119356	0.133327	0.113522	0.098456	0.269952	0.218905	0.141829	0.075538	0.112029	0.052900	0.012658	0.056094	0.169102	0.036257	0.230255	0.046755	0.078672	0.091
999	0.122391	0.248450	0.306937	0.250564	0.178399	0.178474	0.198656	0.334470	0.164777	0.143866	0.054761	0.057473	0.107457	0.338316	0.426651	0.118305	0.137676	0.023

6040 rows × 6040 columns

Start coding or generate with AI.

Start coding or generate with AI.

candidate_tittle	query_tittle	cosine_similarity	Candidate	Query	
GoldenEye	Toy Story	0.0	10	1	0
City Hall	Toy Story	0.0	100	1	1
Curdled	Toy Story	0.0	1000	1	2
Extreme Measures	Toy Story	0.0	1003	1	5
Glimmer Man, The	Toy Story	0.0	1004	1	6
Chamber, The	Toy Story	0.0	1006	1	8
Davy Crockett, King of the Wild Frontier	Toy Story	0.0	1008	1	10
Robin Hood: Prince of Thieves	Toy Story	0.0	1027	1	31
Unforgettable	Toy Story	0.0	103	1	34
Freeway	Toy Story	0.0	1034	1	39

Start coding or generate with AI.

m

Genres	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary	Drama	Fantasy	Film- Noir	Horror	Musical	Mystery	Other	Romance	Sci- Fi	Thriller	War	Western	
MovieID																				
1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
100	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	
1000	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
1001	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
994	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
996	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	
997	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	
998	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
999	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	

3858 rows × 19 columns

Pearson Correlation

1 0

```
Zee Recommender Project.jpynb - Colab
4/28/24, 6:05 AM
   correlated movie matrix = m.T.corr()
   correlated_movie_matrix
                                    10
                                                                                                            1005
                                                                                                                      1006
                                                                                                                                 1007
                                                                                                                                                                           1010
                                                                                                                                                                                      1011
          MovieID
                          1
                                              100
                                                       1000
                                                                  1001
                                                                            1002
                                                                                       1003
                                                                                                  1004
                                                                                                                                           1008
                                                                                                                                                      1009
                                                                                                                                                                  101
          MovieID
                             -0.187500
                                        -0.148522
                                                  -0.102062
                                                              0.544331
                                                                        0.544331
                                                                                  -0.148522
                                                                                             -0.148522
                                                                                                                             0.604167
                                                                                                                                                  0.208333
                                                                                                                                                             0.544331
                                                                                                                                                                       0.792118
                                                                                                                                                                                  0.604167
             1
                    1.000000
                                                                                                        0.792118 -0.102062
                                                                                                                                       -0.102062
                                                                                                                                                                                            0.3
                                        0.321798
            10
                   -0.187500
                              1.000000
                                                   -0.102062
                                                             -0.102062
                                                                        -0.102062
                                                                                   0.321798
                                                                                              0.792118
                                                                                                        -0.148522
                                                                                                                  -0.102062
                                                                                                                            -0.187500
                                                                                                                                       -0.102062
                                                                                                                                                  0.208333
                                                                                                                                                            -0.102062
                                                                                                                                                                      -0.148522
                                                                                                                                                                                  0.208333
                                                                                                                                                                                            -0.1
            100
                   -0.148522
                             0.321798
                                         1.000000
                                                   -0.080845
                                                             -0.080845
                                                                        -0.080845
                                                                                   1.000000
                                                                                              0.441176
                                                                                                       -0.117647
                                                                                                                   0.687184
                                                                                                                            -0.148522 -0.080845 -0.148522
                                                                                                                                                            -0.080845
                                                                                                                                                                      -0.117647
                                                                                                                                                                                 -0.148522
                                                                                                                                                                                            0.4
            1000
                   -0.102062
                              -0.102062
                                        -0.080845
                                                   1.000000
                                                             -0.055556
                                                                        -0.055556
                                                                                  -0.080845
                                                                                             -0.080845
                                                                                                        -0.080845
                                                                                                                  -0.055556
                                                                                                                            -0.102062
                                                                                                                                       -0.055556
                                                                                                                                                  -0.102062
                                                                                                                                                            -0.055556
                                                                                                                                                                       -0.080845
                                                                                                                                                                                 -0.102062
            1001
                    0.544331
                              -0.102062
                                        -0.080845
                                                   -0.055556
                                                              1.000000
                                                                        1.000000
                                                                                  -0.080845
                                                                                             -0.080845
                                                                                                        0.687184
                                                                                                                  -0.055556
                                                                                                                             0.544331
                                                                                                                                       -0.055556
                                                                                                                                                  -0.102062
                                                                                                                                                             1.000000
                                                                                                                                                                       0.687184
                                                                                                                                                                                  0.544331
                             -0.102062
                                         0.687184
                                                   -0.055556
                                                             -0.055556
                                                                        -0.055556
                                                                                   0.687184
                                                                                             -0.080845
                                                                                                       -0.080845
                                                                                                                   1.000000
                                                                                                                            -0.102062
                                                                                                                                                            -0.055556
                                                                                                                                                                       -0.080845
            994
                   -0.102062
                                                                                                                                       -0.055556
                                                                                                                                                  -0.102062
                                                                                                                                                                                 -0.102062
                                                                                             0.321798
            996
                   -0.187500
                              0.208333
                                         0.321798
                                                   -0.102062
                                                             -0.102062
                                                                        -0.102062
                                                                                   0.321798
                                                                                                       -0.148522
                                                                                                                   0.544331
                                                                                                                             0.208333
                                                                                                                                       0.544331
                                                                                                                                                 -0.187500
                                                                                                                                                            -0.102062
                                                                                                                                                                      -0.148522
                                                                                                                                                                                 -0.187500
            997
                   -0.148522
                              0.321798
                                         1.000000
                                                   -0.080845
                                                             -0.080845
                                                                        -0.080845
                                                                                   1.000000
                                                                                              0.441176
                                                                                                                   0.687184
                                                                                                                            -0.148522
                                                                                                                                       -0.080845 -0.148522
                                                                                                                                                            -0.080845
                                                                                                                                                                      -0.117647 -0.148522
                                                                                                        -0.117647
                                                                                                                                                                                            0.4
                              0.321798
                                                             -0.080845
                                                                        -0.080845
                                                                                                                  -0.080845
                                                                                                                            -0.148522
                                                                                                                                       -0.080845
            998
                   -0.148522
                                        -0.117647
                                                   0.687184
                                                                                  -0.117647
                                                                                              0.441176
                                                                                                        -0.117647
                                                                                                                                                 -0.148522
                                                                                                                                                            -0.080845
                                                                                                                                                                       -0.117647
                                                                                                                                                                                 -0.148522
                                                                                                                                                                                            -0.1
            999
                   -0.102062 -0.102062 -0.080845
                                                   1.000000
                                                             -0.055556
                                                                        -0.055556
                                                                                  -0.080845
                                                                                            -0.080845 -0.080845 -0.055556 -0.102062 -0.055556 -0.102062 -0.055556 -0.080845 -0.102062 -0.0
         3858 rows × 3858 columns
   movies[movies.MovieID == "1"]["Title"][0]
         'Toy Story '
   movies[movies.Title.str.contains("Toy Story")].iloc[0].MovieID
         '1'
   def recommend_movie_based_on_correlation(movie):
        TITLE = movies[movies.Title.str.contains(movie)].iloc[0]["Title"]
        INDEX = movies[movies.Title.str.contains(movie)].iloc[0].MovieID
        print(TITLE)
        print(INDEX)
        print(movies[movies.MovieID.isin(correlated_movie_matrix[INDEX].sort_values(ascending=False).head(10).index.to_list())]["Title"])
   recommend movie based on correlation("Toy Story")
         Toy Story
```

Toy Story

```
584
                                Aladdin
1050
       Aladdin and the King of Thieves
2009
                       Jungle Book, The
2072
                      American Tail, An
2285
                     Rugrats Movie, The
2286
                          Bug's Life, A
3045
                           Toy Story 2
3542
                         Saludos Amigos
3682
                            Chicken Run
Name: Title, dtype: object
```

recommend_movie_based_on_correlation("Shawshank")

```
Shawshank Redemption, The
318
35
               Dead Man Walking
384
                      Boys Life
631
                          Frisk
1555
                   Career Girls
2443
       Ballad of Narayama, The
2451
                        Airport
2452
                   Airport 1975
2453
                   Airport '77
3525
                   Center Stage
3529
                         Hamlet
Name: Title, dtype: object
```

recommend_movie_based_on_correlation("Titanic")

```
Titanic
1721
200
                     Total Eclipse
357
            It Could Happen to You
1372
                     Jerry Maguire
1466
             Inventing the Abbotts
1951
                Dangerous Liaisons
2106
                           Déjà Vu
2247
                   Practical Magic
2850
       Year of Living Dangerously
3086
                 Anna and the King
3599
                  Romeo and Juliet
Name: Title, dtype: object
```

recommend_movie_based_on_correlation("Braveheart")

```
Braveheart
110
461
               Heaven & Earth
1204
           Full Metal Jacket
1214
                   Boat, The
1222
                       Glory
1959
         Saving Private Ryan
2358
          Thin Red Line, The
2993
            Longest Day, The
3559
               Flying Tigers
3574
        Fighting Seabees, The
3585
       Guns of Navarone, The
```

```
Name: Title, dtype: object
Start coding or generate with AI.
Start coding or generate with AI.
Start coding or generate with AI.
```

k - Nearest Neighbours

```
from sklearn.neighbors import NearestNeighbors
kNN_model = NearestNeighbors(metric='cosine')
kNN_model.fit(user_movie_rating_matrix.T)
     NearestNeighbors(metric='cosine')
distances, indices = kNN_model.kneighbors(user_movie_rating_matrix.T, n_neighbors= 5)
result = pd.DataFrame(indices)
result
```

	0	1	2	3	4	
0	0	731	414	285	582	
1	1	803	72	2162	3029	
2	2	1622	2524	3313	2583	
3	3	1452	2164	1304	1043	
4	4	26	723	890	493	
3628	3628	2548	750	1582	2439	
3629	3629	382	1699	482	1578	
3630	3630	1328	1687	3393	2922	
3631	3631	1609	1176	3225	2093	
3632	3632	839	3126	2519	1278	
	-					