Computer Vision HW2 Report

Student ID: R10522606

Name:曾柏翔

Part 1. (10%)

• Plot confusion matrix of two settings. (i.e. Bag of sift and tiny image representation) (5%) Ans:

Tiny image

Bag of sift

• Compare the results/accuracy of both settings and explain the result. (5%)

Ans:

Tiny image : $0.21 \cdot \text{Bag of sift} : 0.62$

Tiny image 我是透過 cv2.resize 的方式來將圖片變為 16 x 16, 再通過 flatten()來提取特徵,這方法簡單且速度快,但相對的精確度就不高,經過調整一些參數後,仍卡在 20%左右,下圖為 resize 示意圖。

Bag of sift 首先是建立 vocabulary,透過 dsift()得到 descriptors,但這邊只要得到代表性的 sample 即可,因此只取出一半的 descriptors,進入 kmeans(vocab_size=400)中,得到 vocabulary。而 bag of sift 也透過 dsift()得到 descriptors,再利用 distance.cdist()找最相近的 vocabulary,最 後透過 histogram 的方式得到 features。

兩種方法最終丟進 KNN 中進行 predicts,經過嘗試後,得到 k=6 有最好的精確度,以及 City-block 距離效果比 Euclidean 距離好。

Part 2. (35%)

• Compare the performance on residual networks and LeNet. Plot the learning curve (loss and accuracy) on both training and validation sets for both 2 schemes. 8 plots in total. (20%) Ans:

• Attach basic information of the model you use including model architecture and number of the parameters. (5%)

Ans:

Layer (type)	Output Shape	Param #
=======================================	============	=========
Conv2d-1	[-1, 64, 32, 32]	1,792
Conv2d-2	[-1, 64, 32, 32]	36,928
BatchNorm2d-3	[-1, 64, 32, 32]	128
ReLU-4	[-1, 64, 32, 32]	0
residual_block-5	[-1, 64, 32, 32]	0
Conv2d-6	[-1, 64, 32, 32]	36,928
MaxPool2d-7	[-1, 64, 16, 16]	0
BatchNorm2d-8	[-1, 64, 16, 16]	128
ReLU-9	[-1, 64, 16, 16]	0
Conv2d-10	[-1, 64, 16, 16]	36,928
BatchNorm2d-11	[-1, 64, 16, 16]	128
ReLU-12	[-1, 64, 16, 16]	0
residual_block-13	[-1, 64, 16, 16]	0
Conv2d-14	[-1, 128, 16, 16]	73,856
MaxPool2d-15	[-1, 128, 8, 8]	0
BatchNorm2d-16	[-1, 128, 8, 8]	256
ReLU-17	[-1, 128, 8, 8]	0
Conv2d-18	[-1, 128, 8, 8]	147,584
BatchNorm2d-19	[-1, 128, 8, 8]	256
ReLU-20	[-1, 128, 8, 8]	0
residual_block-21	[-1, 128, 8, 8]	0
Linear-22	[-1, 512]	4,194,816
ReLU-23	[-1, 512]	0
Linear-24	[-1, 10]	5,130
		:========
Total params: 4,534,858		
Trainable params: 4,534,858		
Non-trainable params: 0		

• Briefly describe what method do you apply? (e.g. data augmentation, model architecture, loss function, semi-supervised etc.) (10%)

Ans:

LeNet: **0.52** • ResNet: **0.79**

	RandomHorizontalFlip	Optimizer	SGD
Data augmentation	RandomVerticalFlip	Scheduler	MultiStepLR
	RandomRotation(degrees=5)	Epoch	30
Loss function	CrossEntropy	Batch	16

首先輸入一層 Conv2d 後,接著一層 residual block(Conv2d + BatchNorm2d + ReLU),再通過一層 cnn_layer2(Conv2d + MaxPool2d + BatchNorm2d + ReLU),再將前面的 residual block 接進來,接著通過 cnn_layer4(Conv2d + MaxPool2d + BatchNorm2d + ReLU),再照前面的方式接上 residual block,最後通過 fully connected。

其中加上 max pooling 跟 batch normalization 有效地防止 overfitting 與 vanishing gradient, 並對精確度有所提升。