Bayesplot :: CHEAT SHEET

```
library("bayesplot")
library("rstanarm")
options(mc.cores = parallel::detectCores())
library("ggplot2")
library("dplyr")
```

Model Parameters

To showcase bayesplot, we'll fit linear regression using rstanarm::stan_glm and use this model throughout.

```
model <- stan_glm(mpg ~ ., data=mtcars, chains=4)
posterior <- as.matrix(model)</pre>
```

Chances are good you're most interested in the posterior distributions for select parameters.

Posterior distributions medians and 80% intervals

Diagnosing convergence with traceplots is simple.

```
mcmc_trace(posterior, pars=c("sigma", "wt"))
```


Using as.array, you can extract each of the four chain's posterior draws, different from above. This allows you to see each chain's traceplot for selected parameters.

chains_trace

The pairs plot is helpful in determining if you have any highly correlated parameters.

Posterior Predictive Checks

Check how well the model covers your data with draws from the posterior predictive density.

```
ppd <- posterior_predict(model, draws=500)
ppd %>%
    ppc_intervals(y = mtcars$mpg, yrep = ., x = mtcars$wt, prob = 0.5) +
    labs(x = "Weight (1000 lbs)", y = "MPG",
        title = "50% posterior predictive intervals of MPG by weight")
```

50% posterior predictive intervals of MPG by

Diagnostics

15

Bayesplot makes it easy to check diagnostics specific to the NUTS sampling method that rstanarm uses by default.

2120.0

```
mcmc_scatter(posterior, pars = c("wt", "sigma"),
    np = nuts_params(model$stanfit))
```

22.5 25.0


```
np <- nuts_params(model$stanfit)
mcmc_nuts_energy(np, binwidth=1) +
    ggtitle("NUTS Energy Diagnostic")</pre>
```

NUTS Energy Diagnostic

