STATISTICAL INFERENCE (MA862) Lecture Slides

Topic 1: Monte Carlo Simulation

Example

- Let we want to estimate the average distance between two randomly selected points in a region.
- Let $X = (X_1, X_2)$ and $Y = (Y_1, Y_2)$ be independent and uniformly distributed two points drawn from a finite rectangle $R = [0, a] \times [0, b]$.
- The Euclidean distance between these two points is

$$Z = d(X, Y) = \sqrt{(X_1 - Y_1)^2 + (X_2 - Y_2)^2}.$$

• We need E(Z).

$$E(Z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \times f_{X_1, X_2}(x_1, x_2) f_{Y_1, Y_2}(y_1, y_2) dx_1 dx_2 dy_1 dy_2$$

Example

• We can approximate E(Z) by sampling pair points (X_i, Y_i) , i = 1, 2, ..., n, form R and then calculating the average

$$\frac{1}{n}\sum_{i=1}^n d(\boldsymbol{X}_i, \, \boldsymbol{Y}_i).$$

Simple Monte Carlo

- In a simple Monte Carlo problem, we express the quantity we want to know as the expected value of a random variable Y, such as $\mu = E(Y)$.
- Generate values Y_1, \ldots, Y_n independently from the distribution of Y.
- Take their average

$$\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

as an estimate of μ .

Simple Monte Carlo

- In many examples, Y = h(X).
- X has a PMF/PDF p(x) (known).
- ullet f is a real-valued function defined over the support of X.

Justification of Simple MC

• The strong law of large numbers:

$$\mathbb{P}\left(\lim_{n\to\infty}|\widehat{\mu}_n-\mu|=0\right)=1.$$

 Loosely speaking, the SLLNs says that the error in approximation will be very small if we increase n.

Random Number Generation

- Our aim is to generate random number from appropriate distribution.
- Basic step of a random number generation from a distribution is to generate random numbers from Uniform distribution U(0, 1).
- The PDF of a random variable having U(0, 1) distribution is

$$f(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Uniform Random Numbers Generation

- To generate random numbers from a process that according to well established understanding of physics is truly random.
- Radioactive particle emission, that are thought to be truly random.
- Such process has it's own draw back.
- Therefore, people use Pseudo-random numbers (computer generated).
- We will not discuss it in detail, as almost all software has a routine to generate pseudo-random numbers from U(0, 1).
- Now-onward, the pseudo-random number will be referred as random number.

Uniform Random Numbers Generation

• A linear congruence generator (LCG):

$$x_{i+1} = ax_i \mod m$$
, $u_{i+1} = \frac{x_{i+1}}{m}$, $i = 0, 1, 2, ...$

- The multiplier a and the modulus m are integer constants.
- The initial value (seed) x_0 is called seed.
- x_0 is an integer between 1 and m-1.
- LCG is a deterministic recurrence relation.

Uniform Random Numbers Generation

The general linear congruence generator (GLCG):

$$x_{i+1} = (ax_i + c) \mod m, \quad u_{i+1} = \frac{x_{i+1}}{m}, \quad i = 0, 1, 2, \ldots$$

• a, m and c are appropriate integers.

Non-uniform Random Number Generation

- Method for transforming random numbers from U(0, 1) distribution to samples from other required distributions.
- The two most widely used general techniques are:
 - 1 Inverse Transform Method.
 - ② Acceptance Rejection Method.

• The inverse transform method is based on the following theorem.

Theorem 1: Let F be a CDF. Define the quasi-inverse of F by

$$F^{-1}(u) = \inf \{ x \in \mathbb{R} : F(x) \ge u \}$$
 for $0 < u < 1$.

Let $U \sim U(0, 1)$ and $X = F^{-1}(U)$. Then, the CDF of X is F.

• $\{x \in \mathbb{R} : F(x) \ge u\}$ is non-empty and has a lower bound for all $u \in (0, 1)$.

- Want a sample from the CDF F(x). That means that we want to generate a random variable X with the property that $P(X \le x) = F(x)$ for all $x \in \mathbb{R}$.
- Using above theorem, we have the following algorithm.

Algorithm 1 Inverse Transform Method

- 1: Generate U from U(0, 1) distribution.
- 2: Set $X = F^{-1}(U)$.
- 3: Return X.
 - In principle, this algorithm can be used to generate random number from any distribution.
 - However, there are computational aspects. We generally use this algorithm if F^{-1} is in closed form and easy to compute.

Example 1: (Generation from exponential distribution) The PDF is

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Example 2: (Generation from Arc Sin Law) Consider the CDF

$$F(x) = \frac{2}{\pi} \arcsin \sqrt{x}$$
, $0 \le x \le 1$.

Example 3: (Generation from Rayleigh Distribution) The CDF is

$$F(x) = 1 - e^{-2x(x-b)}, x \ge b.$$

```
Lemma 1: F and F^{-1} both are non-decreasing.
```

Lemma 2: $F F^{-1}(u) \ge u$ for all $u \in (0, 1)$.

Lemma 3: $F^{-1}F(x) \leq x$ for all $x \in \mathbb{R}$.

Lemma 4: For $x \in \mathbb{R}$ and 0 < u < 1, $F(x) \ge u$ if and only if $F^{-1}(u) \le x$.

Example 4: Generation from a Bernoulli distribution with probability of success p(q = 1 - p).

$$F_X(x) = \begin{cases} 0 & \text{if } x < 0 \\ q & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1. \end{cases} \text{ and } F^{-1}(u) = \begin{cases} 0 & \text{if } 0 < u < q \\ 1 & \text{if } q \le u < 1. \end{cases}$$

Algorithm 2 Generation from *Bernoulli(p)*

- 1: generate U from U(0,1).
- 2: **if** U < 1 p **then**
- 3: Set $X \leftarrow 0$.
- 4: else
- 5: Set $X \leftarrow 1$.
- 6: end if
- 7: **return** *X*

Example 5: Generation from a discrete distribution with finite support.

- ▶ Consider a DRV X whose support is $c_1 < c_2 < c_3 < \cdots < c_N$.
- ▶ Let $p_i = P(X = c_i), i = 1, 2, 3 ..., N$.
- ► Set $q_0 = 0$ and $q_i = \sum_{j=1}^{i} p_j$, i = 1, 2, 3, ..., N.

Algorithm 3 Inversion Transformation Method for Discrete Random Variable with Finite Support

- 1: Generate a uniform $U \sim U(0, 1)$.
- 2: Find $K \in \{1, 2, ..., N\}$ such that $q_{K-1} < U \le q_K$.
- 3: Return c_K .

Acceptance-Rejection Method

- We want to generate random number from a PDF f (target distribution).
- ullet Let g (candidate distribution) be a PDF such that for all $x\in\mathbb{R}$ and for some c>1

$$f(x) \leq cg(x)$$
.

- The technique to generate random number from g is known.
- Then we can use the following algorithm to generate random number from *f* .

Algorithm 4 Acceptance Rejection Method

- 1: repeat
- 2: generate X from distribution g.
- 3: generate U from U(0,1).
- 4: until $U \leq \frac{f(X)}{cg(X)}$
- 5: **return** *X*

Example 6: Generation random number from $Gamma(\alpha, \beta)$.

▶ The PDF of the distribution is

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$
 for $x > 0$.

• We will consider generation from $Gamma(\alpha, 1)$ for $\alpha > 0$.

Case I : $0 < \alpha < 1$.

▶ Take

$$g(x) = \begin{cases} \frac{x^{\alpha - 1}}{A} & \text{if } 0 < x < 1\\ \frac{e^{-x}}{A} & \text{if } x \ge 1, \end{cases}$$

where $A = \frac{1}{\alpha} + \frac{1}{\alpha}$.

- ▶ Then, $f(x) \leq cg(x)$, where $c = \frac{A}{\Gamma(\alpha)}$.
- \blacktriangleright The CDF corresponding to g is

$$G(x) = \begin{cases} \frac{x^{\alpha}}{\alpha A} & \text{if } 0 < x < 1\\ 1 - \frac{e^{-x}}{A} & \text{if } x \ge 1. \end{cases}$$

► Now,

$$G^{-1}(u) = \begin{cases} (\alpha A u)^{\frac{1}{\alpha}} & \text{if } 0 < u < \frac{1}{\alpha A} \\ -\ln A - \ln(1-u) & \text{if } \frac{1}{\alpha A} \le u < 1. \end{cases}$$

Algorithm 5 Generation from $Gamma(\alpha, 1)$ for $0 < \alpha < 1$

```
1: repeat
         generate U_1 from U(0, 1)
 2:
         if U < \frac{1}{\alpha^A} then
 3:
              Set X \leftarrow (\alpha AU)^{\frac{1}{\alpha}}
 4:
         else
 5:
              Set X \leftarrow -\ln A - \ln (1 - U)
 6:
         end if
 7:
         generate U_2 from U(0, 1)
 8:
 9: until cg(X)U_2 < f(X)
10: return X
```

Case II: α is a positive integer.

- ▶ Let $X_i \stackrel{i.i.d.}{\sim} Exp(1)$ for i = 1, 2, ..., n.
- ▶ Then $\sum_{i=1}^{n} X_i \sim Gamma(n, 1)$.

Algorithm 6 Generation from $Gamma(\alpha, 1)$, α is a positive integer

- 1: Set $n \leftarrow \alpha$ and $Y \leftarrow 0$
- 2: while $n \neq 0$ do
- 3: generate U from U(0, 1)
- 4: Set $X \leftarrow -\ln(U)$
- 5: $Y \leftarrow Y + X$
- 6: $n \leftarrow n-1$
- 7: end while
- 8: **return** *Y*

Case III: $\alpha > 1$ and not an integer.

- ▶ Let $X \sim Gamma(\alpha_1, \beta)$ and $Y \sim Gamma(\alpha_2, \beta)$.
- ► Suppose that *X* and *Y* are independent.
- ▶ Then $X + Y \sim Gamma(\alpha_1 + \alpha_2, \beta)$.
- \blacktriangleright [x]: the integer part of the positive real number x.
- \blacktriangleright {x}: the fractional part of the positive real number x.

Algorithm 7 Generation from $Gamma(\alpha, 1)$ when $\alpha > 1$ and α is not an integer

- 1: generate Y from $Gamma(\{\alpha\}, 1)$ using Algorithm 5
- 2: generate X from $Gamma(\lfloor \alpha \rfloor, 1)$ using Algorithm 6
- 3: Z = X + Y
- 4: **return** *Z*

Acceptance-Rejection Method

Theorem 2: Let f and g be two PDFs such that

$$f(x) \le cg(x)$$
 for all $x \in \mathbb{R}$ and for some $c \ge 1$.

Then X generated by Algorithm 4 has PDF f.

Technique based on Transformation

Example 7: Generation of random number from $Beta(\alpha, \beta)$.

- \blacktriangleright $X \sim Gamma(\alpha_1, \beta)$
- ▶ $Y \sim Gamma(\alpha_2, \beta)$
- \triangleright X and Y are independent
- ▶ Then $\frac{X}{X+Y} \sim Beta(\alpha_1, \alpha_2)$.

Algorithm 8 Generation from $Beta(\alpha_1, \alpha_2)$ distribution

- 1: generate X from $Gamma(\alpha_1, \beta)$
- 2: generate Y from $Gamma(\alpha_2, \beta)$

$$3: Z = \frac{X}{X + Y}$$

4: return \dot{Z}

Technique based on Transformation

Example 8: Generation of random number from $N(\mu, \sigma^2)$

- $\blacktriangleright U_1, U_2 \stackrel{i.i.d.}{\sim} U(0, 1)$
- ▶ Define

$$Z_1 = \sqrt{-2 \ln U_1} \cos (2\pi U_2)$$
 and $Z_2 = \sqrt{-2 \ln U_1} \sin (2\pi U_2)$.

- ▶ Then Z_1 , $Z_2 \stackrel{i.i.d.}{\sim} N(0, 1)$
- ▶ This transformation is called Box-Muller transformation.

Algorithm 9 Box-Muller Method to generate from N(0, 1)

- 1: generate U_1 and U_2 from U(0, 1)
- 2: $R \leftarrow \sqrt{-2 \ln U_1}$
- 3: $\theta \leftarrow 2\pi U_2$
- 4: $Z_1 \leftarrow R \cos(\theta)$
- 5: $Z_2 \leftarrow R \sin(\theta)$
- 6: **return** (Z_1, Z_2) .

Technique based on Transformation

Example 9: Generation from Geometric(p).

► The PMF is given by

$$P(X = i) = p(1 - p)^{i}$$
 for $i = 0, 1, 2, ...$

- ▶ Let Y be an exponential random variable with mean $\frac{1}{\lambda}$.
- ▶ Take $W = \lfloor Y \rfloor$. Then

$$P(W = i) = e^{-i\lambda} (1 - e^{-\lambda})$$
 for $i = 0, 1, 2, ...$

▶ $W \sim Geometric(1 - e^{-\lambda})$.

Algorithm 10 Generation from Geometric(p)

- 1: generate U from U(0, 1)
- 2: $X \leftarrow \left| \frac{\ln U}{\ln(1-p)} \right|$
- 3: **return** *X*.