

		B	AUUA	
Pos.	Anz.	Ø	Länge	Bem.:
1	5	28	6.01	
2	10	14	6.61	
3	20	12	2.85	
4	67	8	2.40	
5	47	8	2.46	
6	8	8	1.68	
7	12	12	2.80	
8	8	8	1.74	
9	10	10	1.75	
10	8	12	2.70	
11	8	12	2.50	
12	4	10	6.01	
13	2	10	6.61	
14	6	12	3.31	
15	6	12	3.11	

Gesamtgewicht 530.502 kg

Pos.	Stck	Bezeichnung
1023	2	DEHA Kugelkopfanker 4 t, 340mm Zulagebewehrung nach Herstellerangaben
5004-29	4	Hüllwellrohr D=60mm L=29cm

TAB 1. Mindestwerte der Biegerollendurchmesse	er bei einmaligem Biegen (DIN EN 1992-1-1/NA, Tabelle NA.8.1a)									
D min2 +	Haken, Wink Schlaufen, B			nrägstäbe oder andere oogene Stäbe (D _{min 2})						
+ ds	Stabdurchn	nesser ds	Mindestwerte der Betondeckung rechtwinklig zur Biegeebene							
	<20mm	_20mm	>100mm >7 ds	>50mm >3 ds	_50mm _3 ds					
Normalbeton	4 ds	7 ds	10 ds	15 ds	20 ds					
Leichtbeton nach DIN EN 1992-1-1, 11.8.11	6 ds	10,5 ds	15 ds	22,5 ds	30 ds					

TAB 2. Mindestwerte der Biegerollendurchmesser d _{br} für nach dem Schweißen gebogene Bewehrung bei einmaligen Biegen (DIN EN 1992-1-1/NA, Tabelle NA.8.1b)										
±_a ,ds	Vorwiegend ruh	ende Einwirkungen	Nicht vorwiegend ruhende Einwirkungen							
The second secon	Schweißung außerhalb des Biegebereiches	Schweißung innerhalb des Biegebereiches	Schweißung auf der Außenseite der Biegung	Schweißung auf der Innenseite der Biegung						
für a <4 ds	20 ds	20 ds	100 ds	500 ds						
für a _4 ds	Werte nach Tabelle	20 us	100 05	300 ds						

BAUSTOFFE		- 1	Beton F	estigke	eitsklas	se			Potos	nstahl	Beto	Feuchtigkeitsklasse						
Bauteil	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60	LP	WU	BSt	BSt 500M (A)		nmaß c _\ oben	seitlich		WF		WS	
Unterzug			Х						Х		25	25	25	Х				

	shrt			ı	Bewel	rungs	skorros	sion							Beto	onangi	riff				
	ewequn	Ka	arbona	atisieru	ıng	_	hlorid eerwa	e isser)	_	hlorid eerwa	-	(mit/	Fro ohne	ost Taum	ittel)	che	m. An	griff	Ve	rschle	iß
Expositionsklasse	X0	XC1	XC2	XC3	XC4	XD1	XD2	XD3	XS1	XS2	XS3	XF1	XF2	XF3	XF4	XA1	XA2	XA3	XM1	XM2	хмз
Unterzug		Х																			

EWE	HRUNG	Biegemaße gelten von Außenkante zu Außenkante Stahl.
1	Betonstabstahl - Positionen	Mindestbiegerollendurchmesser D _{min} nach DIN EN 1992-1-1/NA, Tabelle NA.8.1DEa
1	Betonstahlmatten - Positionen	Alle Maße und Schnittlängen sind vor der Ausführung zu prüfen !!

<u>OBERFLÄCHEN</u>	Sichtbeton glatt	Einfüllseite	Feingeglät	tet Sonderst	ruktur Alle Kante fasen	n + 1	
Fertigteil - Position	Stück	Länge	Breite	Höhe	Volumen (m ³)	Gewicht (to.)]
07-110	1	6.66	0.50	0.65	2.06	5.15	

31.03.2020	b	Jan.	Freigabe Prüfingenieur
09.03.2020	а	Jan.	Auflager für Deckenplatten geändert
Datum	Index	Name	Änderung

		!	
Datum	03.02.2020	Bauvorhaben/Bauteil	Auftr. Nr
Gez.	Jan.	Sand- und Baustoffwerke Neumarkt GmbH & Co.KG	
stat.Pos	NT1-04b	Neubau einer Ausstellungshalle, und Containerhalle mit Büro	819-19
		Unterzug Pos. 07-110	
Maßstab	1:25	Ontoizug 1 03. 07 110	Plan. Nr / Index / Status

Martin Schütz GmbH Platenstraße 45 91054 Erlangen Tel. 09131-917 22-10 www.plan-er.de

anschlüssel FT_XX_07-110_b_F