A. Kapanowski

Fizyka - ćwiczenia nr 12

16 stycznia 2023

Zadanie 1. Obliczyć energię, jaka jest potrzebna, aby w sześcianie o boku a=10cm wytworzyć: (a) jednorodne pole elektryczne o natężeniu $E=10^5V/m$, (b) jednorodne pole magnetyczne o indukcyjności B=1T. Podane pola są duże, ale osiągalne w laboratoriach.

Zadanie 2. Dany jest szeregowy obwód RLC, w którym $R=200\Omega$, $C=18\mu F$, L=276mH, $f_w=50Hz$, a $\mathcal{E}_{max}=36V$. Oblicz maksymalne natężenie prądu I_{max} , skuteczne natężenie prądu I_{sk} . Obliczyć stałą czasową pojemnościową $\tau_C=RC$. Obliczyć stałą czasową indukcyjną $\tau_L=L/R$.

Zadanie 3. Transformator na słupie energetycznym dostosowany jest do napięcia $U_p=8.5kV$ po stronie pierwotnej i dostarcza energię elektryczną o napięciu $U_w=230V$ do kilku pobliskich domów, przy czym wartości obydwu napięć są wartościami skutecznymi. Zakładamy, że transformator obniżający napięcie jest transformatorem idealnym, obciążenie jest czysto oporowe, a współczynnik mocy jest równy jedności. Jaki jest stosunek liczby zwojów N_p/N_w transformatora?

Zadanie 4. Ramka prostokątna o bokach a i b znajduje się w polu magnetycznym prostopadłym o indukcji zmieniającej się w czasie $B=\alpha t$. Jaki prąd płynie w ramce, jeżeli jej opór wynosi R. Znaleźć kierunek prądu.

Zadanie 5. Obserwator znajduje się w odległości 1.8m od izotropowego źródła światła o mocy P=250W. Oblicz wartości średnie kwadratowe natężenia pola elektrycznego i indukcji pola magnetycznego fali świetlnej z tego źródła w miejscu, w którym znajduje się obserwator.