

Profa. Cristiane Paim

Introdução

No projeto de controladores usando a resposta em frequência as principais especificações de desempenho são:

- Margens de Fase
- Largura de Faixa
- Erro de Regime Permanente

Como visto anteriormente, margem de fase e largura de faixa estão relacionadas com características da resposta transitória. A margem de fase está associada com o amortecimento enquanto a largura de faixa indica a velocidade da resposta.

Seja a configuração de controle em série;

O controlador em avanço é escrito na forma

$$C(s) = K \frac{1 + \alpha Ts}{1 + Ts} \qquad T > 0, \alpha > 1$$

ou, em frequência

$$C(j\omega) = K \frac{1 + j\omega \alpha T}{1 + j\omega T}$$

A resposta em frequência do controlador, considerando K=1 por simplicidade, terá as variações de módulo e fase definidas a seguir.

Frequência	Módulo	Fase
ω =0 a ω =1/ $lpha$ T	0 dB/dec	0 °
ω =1/ $lpha$ T a ω =1/T	20 dB/dec	90°
ω=1/T a ω→∞	0 dB/dec	0°

$$\omega << 1 \rightarrow |C| = 0 dB$$
 $\angle C = 0^{\circ}$
 $\omega >> 1 \rightarrow |C| = 20 \log(\alpha)$ $\angle C = 0^{\circ}$

A fase do controlador é dada por

$$\angle C(j\omega) = tg^{-1}(\alpha T\omega) - tg^{-1}(T\omega)$$

Definindo,

$$\phi(\omega) = \angle C(j\omega)$$

e calculando a tangente, tem-se

$$\operatorname{tg} \phi(\omega) = \frac{(\alpha - 1)T\omega}{1 + \alpha T^2 \omega^2}$$

O pico de fase do controlador ocorre na frequência onde

$$\frac{\mathrm{d}}{\mathrm{d}\omega}\operatorname{tg}\phi(\omega) = 0$$

Resolvendo a equação, chega-se que a frequência onde pico ocorre é dada por

$$\omega_m = \frac{1}{T\sqrt{\alpha}}$$

Na frequência de pico (ω_m) ,

$$\operatorname{tg}\phi(\omega_m) = \operatorname{tg}\phi_m = \frac{\alpha - 1}{2\sqrt{\alpha}}$$

Ou ainda,

$$\operatorname{sen} \phi_m = \frac{\alpha - 1}{\alpha + 1}$$

Assim, quanto maior o valor de α , maior será o ângulo de fase (ϕ_m) e menor (mais à esquerda) será a frequência onde o pico ocorre (ω_m) .

Por exemplo, considerando T=K=1, tem-se

$$C(j\omega) = \frac{1 + j\omega\alpha}{1 + j\omega}$$

α	ω_{m}	ϕ_{m}
5	0,45	41,8°
10	0,32	54,9°
100	0,10	78,6°

O valor de α , entretanto, não deve ser muito grande para evitar ruídos de alta frequência.

O valor de α pode ser reescrito como

$$\alpha = \frac{1 + \sin \phi_m}{1 - \sin \phi_m}$$

Na frequência de pico $(\omega_{\rm m})$, o módulo do controlador é dado por

$$|C(j\omega_m)| = \sqrt{\alpha}$$

ou

$$|C(j\omega_m)|_{dB} = 20\log\sqrt{\alpha} = 10\log(\alpha)$$

O controlador em avanço é projetado com o objetivo de aumentar a margem de fase do sistema melhorando assim a margem de estabilidade e as características da resposta transitória.

Fazendo ω_{m} igual a frequência de cruzamento de ganho do sistema não compensado (ω_{G}) a fase aumentaria de um fator ϕ_{m} . Por outro lado, o controlador também introduz uma modificação no módulo, causando um pequeno deslocamento de ω_{G} para a direita, acarretando uma redução na margem de fase.

O efeito deste deslocamento pode ser compensado introduzindo no projeto uma "margem de segurança" na determinação de ϕ_m .

Seja o sistema de controle a seguir.

Projetar um controlador em avanço de fase de modo a atender as seguintes especificações:

- Erro à rampa menor do que 10%
- Margem de fase maior ou igual a 60°

Como visto no diagrama de bode, a especificação de margem de fase já é atendida porém o erro de regime permanente é muito maior do que a especificação.

$$Kv = \lim_{s \to 0} sG(s) = \frac{1}{2} \longrightarrow e_{\infty} = 2$$

O ganho K do controlador pode ser ajustado para garantir a especificação de erro. Entretanto, este ajuste causará uma redução na margem de fase que será corrigida com a alocação de polo e zero do controlador.

Considerando o controlador em avanço, o erro de regime permanente será

$$Kv = \lim_{s \to 0} sC(s)G(s) = \frac{K}{2} \longrightarrow e_{\infty} = \frac{2}{K}$$

Assim, para garantir a especificação de erro,

$$e_{\infty} = \frac{2}{K} \le 0.1 \quad \rightarrow \quad K \ge 20$$

Para K=20 tem-se

$$KG(j\omega) = \frac{20}{(j\omega)(j\omega + 2)} \rightarrow \frac{|KG(j\omega)| = \frac{20}{\omega\sqrt{\omega^2 + 4}}}{2\omega\sqrt{\omega^2 + 4}}$$

$$\angle KG(j\omega) = -\text{tg}^{-1}\left(\frac{2\omega}{-\omega^2}\right)$$

$$\left| KG(j\omega) \right| = \frac{20}{\omega \sqrt{\omega^2 + 4}}$$

$$\angle KG(j\omega) = -\text{tg}^{-1} \left(\frac{2\omega}{-\omega^2}\right)$$

A frequência de cruzamento de ganho ω_{G} será determinada por

$$|KG(j\omega)| = \frac{20}{\omega\sqrt{\omega^2 + 4}} = 1 \rightarrow \omega^4 + 4\omega^2 - 400 = 0$$

$$\omega = \pm 4.25$$
 $\omega = \pm j4.7$
 $\rightarrow \omega_G = 4.25$

Nesta frequência

$$\angle KG(j\omega_G) = -\text{tg}^{-1}\left(\frac{2}{-\omega_G}\right) = -154.8^\circ$$

Portanto,

$$MF = 180^{\circ} - 154,8^{\circ} = 25,2^{\circ}$$

A contribuição de fase do controlador é escolhida de modo a garantir a margem de fase desejada.

Geralmente, o ajuste de fase é feito adicionado uma fase entre 5 e 12 graus.

Definida a contribuição de fase do controlador, o valor de α pode ser calculado:

$$\alpha = \frac{1 + \operatorname{sen} \phi_{\mathrm{m}}}{1 - \operatorname{sen} \phi_{\mathrm{m}}} \rightarrow \alpha = 5.83$$

A frequência de cruzamento de ganho do sistema controlado, será definida pelo módulo

$$|C(j\omega_C)G(j\omega_C)| = 1$$

Assim, para conseguir o aumento necessário de fase, a frequência de cruzamento de ganho é ajustada para o pico de fase do controlador

$$\left| K \sqrt{\alpha} \ G(j\omega_C) \right| = 1$$

$$\frac{20}{\omega\sqrt{\omega^2 + 4}} = \frac{1}{\sqrt{\alpha}} \to \omega^4 + 4\omega^2 - 2332,9 = 0$$

$$\omega = \pm 6.81$$
 $\omega = \pm j7.1$
 $\rightarrow \omega_C = 6.8$

Verificação

$$\angle KG(j\omega_C) = -\text{tg}^{-1}\left(\frac{2}{-\omega_C}\right) = -163.6^{\circ}$$

$$MF = 180^{\circ} - 163.9^{\circ} + 45^{\circ} = 61.4^{\circ} > 60^{\circ}$$

Para concluir o projeto falta definir polo e zero do controlador. A frequência de cruzamento de ganho do sistema controlado

deve ser posicionada frequência de pico do controlador:

$$\omega_C = \omega_m = \frac{1}{T\sqrt{\alpha}} \rightarrow T = \frac{1}{\omega_C\sqrt{\alpha}}$$

Assim,

$$T = \frac{1}{\omega_C \sqrt{\alpha}} = 0,061 \quad \text{e} \quad \alpha T = 0,355$$

O controlador fica

$$C(s) = 20 \frac{1 + 0,355s}{1 + 0,061s}$$

ou

$$C(s) = 116,4 \frac{s + 2,82}{s + 16,4}$$

Exemplo 1 – Verificação dos resultados

1. Sistema sem controlador (ou C(s)=1)

$$G(s) = \frac{1}{s(s+2)} \rightarrow MF = 76,4^{\circ}$$

$$\omega_{CG} = 0,486$$

$$Kv = \lim_{s \to 0} sG(s) = \frac{1}{2} \longrightarrow e_{\infty} = 200\%$$

$$T(s) = \frac{1}{s^2 + 2s + 1}$$
 \rightarrow $M_P = 0\%$
 $t_s = 5.8$

Resposta em Frequência (sem controlador)

Resposta ao Degrau

Exemplo 1 – Verificação dos resultados

2. Sistema com ganho K=20

$$G(s) = \frac{20}{s(s+2)} \rightarrow MF = 25,4^{\circ}$$

$$\omega_{CG} = 4,25$$

$$Kv = \lim_{s \to 0} sG(s) = 10 \longrightarrow e_{\infty} = 10\%$$

$$T(s) = \frac{20}{s^2 + 2s + 20}$$
 \rightarrow $M_P = 48,5\%$
 $t_s = 3,8$

Resposta em Frequência (com ganho K)

Resposta ao Degrau (K=20)

Exemplo 1 – Verificação dos resultados

3. Sistema com controlador em avanço

$$C(s)G(s) = \frac{116,4(s+2,82)}{s(s+2)(s+16,4)} \to MF = 61,4^{\circ}$$

$$\omega_{CG} = 6,8$$

$$Kv = \lim_{s \to 0} sG(s) = 10 \longrightarrow e_{\infty} = 10\%$$

$$T(s) = \frac{116,4(s+2,82)}{s^3 + 18,4s^2 + 149,2s + 328,2} \rightarrow \begin{array}{c} M_P = 9,8\% \\ t_s = 0,82seg \end{array}$$

Resposta em Frequência (com controlador em avanço)

Resposta ao Degrau (com controlador em avanço)

Resposta em Frequência

Resposta ao Degrau

Efeitos da introdução de um controlador em avanço:

- Melhoria na margem de fase → redução de sobressinal
- Aumento da largura de faixa → maior velocidade da resposta

Limitações:

• Necessidade de fase muito grande para o controlador o que acarretaria em valores elevados de α . Isto implica em valores elevados de largura de faixa podendo gerar problemas de ruído. Além disso, valores elevados de α geralmente estão associados a problemas de implementação prática em função do dimensionamento dos componentes.

Recomenda-se que o valor de α não seja superior a 15.

• Quando a fase decresce muito rapidamente (devido a presença de polos muito próximos ou polos complexos com pequeno fator de amortecimento) um controlador em avanço simples pode não ser suficiente para gerar MF desejada.

Seja a configuração de controle em série;

O controlador em atraso é escrito na forma

$$C(s) = K \frac{1 + \alpha Ts}{1 + Ts} \qquad T > 0, 0 < \alpha < 1$$

ou, em frequência

$$C(j\omega) = K \frac{1 + j\omega \alpha T}{1 + j\omega T}$$

Controladores em Avanço

A resposta em frequência do controlador, considerando K=1 por simplicidade, terá as variações de módulo e fase definidas a seguir.

Frequência	Módulo	Fase
ω =0 a ω =1/ $lpha$ T	0 dB/dec	0°
ω =1/ α T a ω =1/T	-20 dB/dec	-90°
ω=1/T a ω→∞	O dB/dec	0°

$$\omega << 1 \rightarrow |C| = 0 dB$$
 $\angle C = 0^{\circ}$
 $\omega >> 1 \rightarrow |C| = 20 \log(\alpha)$ $\angle C = 0^{\circ}$

Os valores de ω_{m} e ϕ_{m} são os mesmos obtidos para o controlador em avanço:

$$\omega_m = \frac{1}{T\sqrt{\alpha}} \qquad \qquad \operatorname{sen} \phi_m = \frac{\alpha - 1}{\alpha + 1}$$

Entretanto, a metodologia de projeto será diferente uma vez o pico de fase do controlador é negativo.

Neste caso, polo e zero do controlador em atraso, serão alocados em uma frequência abaixo da frequência de cruzamento de ganho (para atender a MF desejada) de modo que a contribuição negativa de fase não provoque redução na MF do sistema.

Escolhe-se a frequência de cruzamento de ganho do sistema controlado, ω_{C} , uma década acima do zero do controlador, ou seja,

$$\omega_C = \frac{10}{\alpha T}$$

Nesta frequência,

$$\angle C(j\omega_C) = tg^{-1}(\alpha T\omega_C) - tg^{-1}(T\omega_C)$$
$$= tg^{-1}(10) - tg^{-1}(10/\alpha)$$

Para $0 < \alpha < 1$,

$$-5.7^{\circ} < \angle C(j\omega_C) < 0^{\circ}$$

ou seja, no limite a contribuição negativa de fase será aproximadamente -6°.

De forma similar ao controlador em avanço, o controlador em atraso é projetado com o objetivo de melhorar a margem de fase do sistema melhorando assim a margem de estabilidade.

Ajusta-se inicialmente o ganho K do controlador para garantir a especificação de erro. Consequentemente, este ajuste causará uma redução na margem de fase. A margem de fase desejada será obtida através da alocação do zero do controlador em uma frequência uma década abaixo da definida para atender a especificação.

Seja o sistema de controle a seguir.

Projetar um controlador em avanço de fase de modo a atender as seguintes especificações:

- Erro à rampa menor do que 10%
- Margem de fase maior ou igual a 60°

Como visto no exemplo anterior um ganho $K \ge 20$ irá garantir a especificação de erro de regime permanente.

Considerando K=20, tem-se

$$\omega_{CG} = 4,25$$
 e $MF = 25,2^{\circ}$

Inicialmente calcula-se a frequência de cruzamento de ganho necessária para garantir o atendimento da margem de fase desejada.

$$\angle KG(j\omega_C) = -\text{tg}^{-1}\left(\frac{2}{-\omega_C}\right) = -114^\circ \implies \omega_C = 0.89$$

Portanto, a nova frequência de cruzamento de ganho será ω_c =0,89.

É preciso garantir agora que ω_{C} seja a frequência de cruzamento de ganho do sistema controlado. Para tanto,

$$|C(j\omega_C)G(j\omega_C)| = 1$$

Uma vez que utiliza-se a parte de alta frequência do controlador, a condição acima reduz-se a

$$\left| \alpha K G(j\omega_C) \right| = 1$$

Assim,

$$\alpha = \frac{1}{\left| K G(j\omega_C) \right|}$$

No exemplo,

$$\alpha = \frac{\omega_C \sqrt{\omega_C + 4}}{20} = 0.1$$

A frequência de cruzamento de ganho do sistema controlado, ω_{C} , deve estar uma década acima do zero do controlador, ou seja,

$$\omega_C = \frac{10}{\alpha T} \rightarrow T = \frac{10}{\alpha \omega_C}$$

Assim,

$$T = \frac{10}{0.1 \times 0.89} = 112.4$$
 e $\alpha T = 11.24$

O Controlador fica

$$C(s) = 20 \frac{11,24s+1}{112,4s+1}$$

ou

$$C(s) = 2\frac{s + 0.09}{s + 0.009}$$

Observe que, esta metodologia de projeto leva a um controlador em atraso que tem forma semelhante àquele projetado usando Lugar das Raízes, com polo e zero próximos à origem.

Exemplo – Verificação dos resultados

1. Sistema sem controlador (C(s)=1)

$$G(s) = \frac{1}{s(s+2)} \rightarrow MF = 76,4^{\circ}$$

$$\omega_{CG} = 0,486$$

$$Kv = \lim_{s \to 0} sG(s) = \frac{1}{2} \longrightarrow e_{\infty} = 200\%$$

$$T(s) = \frac{1}{s^2 + 2s + 1}$$
 \rightarrow $M_P = 0\%$
 $t_s = 5.8$

Resposta em Frequência (sem controlador)

Resposta ao Degrau (sem controlador)

Exemplo – Verificação dos resultados

2. Sistema com ganho K=20

$$G(s) = \frac{20}{s(s+2)} \rightarrow MF = 25,4^{\circ}$$

$$\omega_{CG} = 4,25$$

$$Kv = \lim_{s \to 0} sG(s) = 10 \longrightarrow e_{\infty} = 10\%$$

$$T(s) = \frac{20}{s^2 + 2s + 20}$$
 \rightarrow $M_P = 48,5\%$
 $t_s = 3,8$

Resposta em Frequência (com ganho K=20)

Resposta ao Degrau (com ganho K=20)

Exemplo – Verificação dos resultados

3. Sistema com controlador em atraso

$$C(s)G(s) = \frac{2(s+0,09)}{s(s+0,009)(s+2)} \to MF = 60,4^{\circ}$$

$$\omega_{CG} = 0,9$$

$$Kv = \lim_{s \to 0} sG(s) = 10 \longrightarrow e_{\infty} = 10\%$$

$$T(s) = \frac{2(s+0.09)}{s^3 + 2.009s^2 + 2.018s + 0.18} \rightarrow \frac{M_P = 12.3\%}{t_s = 16.7seg}$$

Resposta em Frequência (com controlador em atraso)

Resposta ao Degrau (com controlador em atraso)

Efeitos da introdução de um controlador em atraso:

- Melhoria na margem de fase → redução de sobressinal
- Redução da largura de faixa → menor velocidade da resposta

Problema:

Quando existe saturação no sistema, a rede em atraso pode gerar estabilidade condicional ou mesmo a instabilidade do sistema.

Controlador em Avanço

$$C(s)G(s) = \frac{116,4(s+2,82)}{s(s+2)(s+16,4)} \rightarrow MF = 61,4^{\circ}$$

$$\omega_{CG} = 6,8$$

$$T(s) = \frac{116,4(s+2,82)}{s^3 + 18,4s^2 + 149,2s + 328,2} \rightarrow \frac{M_P = 9,8\%}{t_s = 0,82 \text{ seg}}$$

Controlador em Atraso

$$C(s)G(s) = \frac{2(s+0,09)}{s(s+0,009)(s+2)} \to MF = 60,4^{\circ}$$

$$\omega_{CG} = 0,9$$

$$T(s) = \frac{2(s+0.09)}{s^3 + 2.009s^2 + 2.018s + 328.2} = 0.18 \rightarrow \frac{M_P = 12.3\%}{t_s = 16.7 \text{ seg}}$$

Controlador Avanço-Atraso

A estrutura do controlador será definida por:

$$C(s) = K \left(\frac{s + 1/T_1}{s + \alpha/T_1} \right) \left(\frac{s + 1/T_2}{s + \beta/T_2} \right) \quad \begin{array}{l} \alpha > 1 \\ 0 < \beta < 1 \end{array}$$

Existem duas possibilidades para o controlador:

$$\alpha \neq \beta$$
$$\alpha = 1/\beta$$

Usualmente utilizado quando existe mais de uma especificação relativa à resposta transitória.

A estrutura do controlador será definida por:

$$C(s) = K \left(\frac{s + 1/T_1}{s + \alpha/T_1} \right) \left(\frac{s + 1/T_2}{s + 1/\alpha T_2} \right) \qquad \alpha > 1$$

Observe que, nesta estrutura a relação polo/zero é a mesma no avanço e no atraso.

A parcela relativa ao avanço será usada para melhorar a margem de fase e largura de faixa (resposta transitória) enquanto o ganho e a parcela do atraso são ajustados para atender a especificação de regime permanente.

Procedimento de Projeto

1. A partir das especificações de desempenho da resposta transitória determinar MF e largura de faixa necessárias:

$$\omega_{B} = \omega_{n} \sqrt{(1-2\xi^{2}) + \sqrt{4\xi^{4} - 4\xi_{2} + 2}}$$

- 2. Ajustar o ganho K para atender a especificação de regime permanente.
- 3. Verificar MF e frequência de cruzamento de ganho para o $KG(j\omega)$.

4. Determinar a nova frequência de cruzamento de ganho, ω_{C} , próximo da largura de faixa desejada.

5. Determinar a contribuição angular do controlador em avanço, ϕ_m , de modo a atender a MF desejada.

6. Determinar α a partir dos requisitos do avanço.

$$\alpha = \frac{1 + \operatorname{sen} \phi_m}{1 - \operatorname{sen} \phi_m}$$

7. Projetar o controlador em atraso, escolhendo o zero uma década abaixo da nova frequência de cruzamento de ganho.

$$\frac{1}{T_2} = \frac{\omega_C}{10}$$

8. Determinar polo e zero do controlador em avanço:

$$T_1 = \frac{1}{\omega_C \sqrt{1/\alpha}}$$

9. Fazer a verificação do Projeto.

Seja o sistema de controle a seguir.

Projetar um controlador em avanço-atraso de fase de modo a atender as seguintes especificações, no domínio do tempo:

- Sobresinal máximo menor do que 15%
- Tempo de pico menor do que 2 segundos
- Coeficiente de erro de velocidade menor ou igual a 12

Das especificações:

•
$$M_P \le 15\% \implies \xi \ge 0.5168 \quad (MF \ge 52^\circ)$$

Valor de Projeto: MF ≡ 55°

• $t_P < 2$

$$t_P = \frac{\pi}{\omega_n \sqrt{1 - \xi^2}} \quad \text{ou} \quad \omega_n = \frac{\pi}{t_P \sqrt{1 - \xi^2}}$$

Assim,

$$\omega_{B} = \frac{\pi}{t_{P}\sqrt{1-\xi^{2}}}\sqrt{(1-2\xi^{2})} + \sqrt{4\xi^{4} - 4\xi_{2} + 2}$$

Usando os valores limite:

$$\xi = 0.55 \, (\text{MF} = 55^{\circ}) \, \text{e} \, t_p = 2$$

chega-se a

$$\omega_{\!\scriptscriptstyle B} = 2,28$$

1. A partir das especificações de desempenho da resposta transitória determinar MF e largura de faixa necessárias:

$$\omega_{\!\scriptscriptstyle B} = 2,28$$

2. Ajustar o ganho K para atender a especificação de regime permanente: $K_{v} \ge 12$

$$K_V = \lim_{s \to 0} sC(s)G(s) = \frac{K}{4} \longrightarrow K \ge 48$$

Valor de projeto:

$$K \triangleq 50$$

3. Verificar MF e frequência de cruzamento de ganho para o $KG(j\omega)$.

Para K=50:

$$\omega_{CG} = 3,07 \rightarrow \text{MF} = -19,5^{\circ}$$
 $\omega_{CF} = 2 \rightarrow \text{MG} = -7,96 \,\text{dB}$

Ou seja, o sistema torna-se instável.

4. Determinar a nova frequência de cruzamento de ganho, $\omega_{\rm C}$, próximo da largura de faixa desejada ($\omega_{\rm B}$ =2,28).

Para escolhas de $\omega_{\rm C}$, entre 5 e 20%, abaixo de $\omega_{\rm B}$, tem-se:

$$\omega_C \triangleq 1.8 \rightarrow \text{MF} = 5^{\circ}$$
 $\omega_C \triangleq 2.0 \rightarrow \text{MF} = 0^{\circ}$
 $\omega_C \triangleq 2.2 \rightarrow \text{MF} = -4^{\circ}$

Valor de projeto:

$$\omega_C \triangleq 1.8$$

5. Determinar a contribuição angular do controlador em avanço, ϕ_m , de modo a atender a MF desejada.

6. Determinar α a partir dos requisitos do avanço.

$$\alpha = \frac{1 + \sin \phi_m}{1 - \sin \phi_m} \rightarrow \alpha = 10$$

7. Projetar o controlador em atraso, escolhendo o zero uma década abaixo da nova frequência de cruzamento de ganho.

$$z_{AT} = \frac{1}{T_2} = \frac{\omega_C}{10} \rightarrow z_{AT} = 0.18$$

Assim,

$$P_{AT} = \frac{1}{\alpha T_2} = 0.018$$

O controlador em atraso fica

$$C_{AT}(s) = \frac{s + 0.18}{s + 0.018}$$

Controlador Avanço-Atraso (β =1/ α)

8. Determinar polo e zero do controlador em avanço:

$$T_1 = \frac{1}{\omega_C \sqrt{1/\alpha}} = 1,76$$

Portanto,

$$z_{AV} = \frac{1}{T_1} = 0,57$$
 $P_{AV} = \frac{\alpha}{T_1} = 5,7$

O controlador em avanço fica:

$$C_{AV}(s) = \frac{s+0.57}{s+5.7}$$

Controlador avanço-atraso:

$$C(s) = 50 \left(\frac{s+0,18}{s+0,018} \right) \left(\frac{s+0,57}{s+5,7} \right)$$

9. Verificação do Projeto.

$$C(s)G(s) = \frac{50}{s(s+1)(s+4)} \left(\frac{s+0,18}{s+0,018}\right) \left(\frac{s+0,57}{s+5,7}\right)$$

$$\omega_{CG} = 1,76 \rightarrow \text{MF} = 55,5^{\circ}$$
 $\omega_{CF} = 5,02 \rightarrow \text{MG} = 13,9 \,\text{dB}$

Especificação de coeficiente de erro:

$$K_V = \frac{50}{4} = 12,5 > 12$$
 \rightarrow $e_{\infty} = 8\%$

$$\Delta(s) = s(s+1)(s+4)(s+0,018)(s+5,7) + 50(s+0,18)(s+5,7)$$
$$= s^5 + 10,7s^4 + 32,7s^3 + 73,4s^2 + 37,9s + 5,1$$

$$p_1 = -0.22$$
 $p_2 = -0.41$
 $p_{3,4} = -1.24 \pm j2.4$
 $p_5 = -7.6$

$$z_1 = -0.018$$

 $z_2 = -0.57$

Projeto 2 – Nova escolha para ω_{C}

Escolhendo $\omega_{\rm C}$ = 2:

$$\omega_C \triangleq 2,0 \rightarrow MF = 0^{\circ}$$

Mantendo

$$\phi_m = 55^{\circ}$$

Projeto 3 — Nova escolha para ω_{C}

Escolhendo $\omega_{\rm C}$ = 2:

$$\omega_C \triangleq 2.0 \rightarrow \text{MF} = 0^{\circ}$$

Fazendo

$$\phi_m = 60^\circ$$