Contents

1	Sign	,	1
	1.1	- G	1
	1.2		2
		v	2
			2
			2
		1.2.4 Determinstic vs Random Signals	2
	1.3	Transformation of CT Signals	3
		1.3.1 Transformations	3
	1.4	Signal Characteristic	4
		1.4.1 Periodic signals	4
			4
		1.4.3 Average value and energy	4
	1.5		5
	1.6		5
		1.6.1 Transformed rect functions	5
		1.6.2 Unit impulse function	5
		1.6.3 Practical impulse function	5
	1.7	Continuous-time system	5
		1.7.1 Classification of CT Systems	6
2	\mathbf{CT}	LTI Systems	7
	2.1	Introduction	7
	2.2	LTI system properties	7
			7
	2.3		9
		± ±	

1 Signal & Systems (Fundamental)

1.1 Signal Definition

Definition 1.1.1 (Signal). Any "physical" quantity that varies with time or space (or other independent variables).

Example 1.1 (Ambulance Siren:).

$$s(t) = (1+t)\sin(2\pi[1000t + 10t^2 + 300\sin(2\pi t/2)])$$
 (1)

- \bullet (1 + t): amplitude term represents incresing loudness as ambulance approaches
- 1000t: represents 1kHz siren oscillatione
- $10t^2$: increasing pitch due to the *Doppler effect* as the ambulance approaches.

• $300sim(2\pi 2t)$: the eeh-ooh-eeh-ohh periodic variation in pitch.

Definition 1.1.2 (Systems). A physical "devicec" that performs an operation on a signal.

Definition 1.1.3 (Signal Processing). Take some input signals and produce some related output signals.

Example 1.2 (audio amplifier).

$$S_{out}(t) = aS_{in}(t) \tag{2}$$

Emphasize on continuous-time of analog signals.

1.2 Classification of Signals

1.2.1 Dimensionality

- By the domain of the function, i.e. how many arguments a function has.
- By the dimension of the range of the function, i.e. the space of values the function can take.

1.2.2 Time characteristics

Definition 1.2.1 (Continuous-time Signal). A function defined for all times $t \in (-\infty, \infty)$, or at least some interval (a, b).

Classify signals by time characteristics

- Continuous-11:10 signals or analog signals
- Discrete-time signals

1.2.3 Value Characteristics

Definition 1.2.2 (continuous-valued signal or continuous-amplitude signal). Can take any value in some continuous interval.

Definition 1.2.3 (discrete-valued signal or discrete-amplitude signal). Only takes values from a discrete set of possible values.

1.2.4 Determinstic vs Random Signals

Definition 1.2.4 (Determinstic signals). Can be described by an explicit mathematical representation.

Definition 1.2.5 (Random signals). Evolve over time in an unpredictable manner.

1.3 Transformation of CT Signals

1.3.1 Transformations

- Time transformations
 - Folding/reflecting/time-reversal

$$y(t) = x(-t) \tag{3}$$

- Time-scaling

$$y(t) = x(at) (4)$$

- Time-shifting

$$y(t) = x(t - t_0) \tag{5}$$

General time transformations
 Involves all three of the above time transformations.

$$y(t) = x(at - b) = x(\frac{t - t_0}{w}) \tag{6}$$

where $t_0 = b/a$, w = 1/a

- ullet Amplitude transformations
 - reverse

$$y(t) = -x(t) \tag{7}$$

- scaling

$$y(t) = ax(t) \tag{8}$$

- shifting

$$y(t) = x(t) + b (9)$$

• Differentiator

$$y(t) = \frac{d}{dt}x(t) \tag{10}$$

Example 1.3.

$$y(t) = -RC\frac{d}{dt}x(t) \tag{11}$$

• Integrator

$$y(t) = \int_{-\infty}^{t} x(\tau)d\tau \tag{12}$$

Example 1.4.

$$y(t) = -\frac{1}{RC} \int_{-\infty}^{t} x(\tau)d\tau \tag{13}$$

• Operation with two signals Sum or product at any point

1.4 Signal Characteristic

1.4.1 Periodic signals

$$x(t+T) = x(t)\forall t \tag{14}$$

if no T exists, called aperiodic.

Definition 1.4.1 (Fundamental Period). Smallest T_0 of T.

Theorem 1.4.1. With period T > 0,

$$x(t+nT) = x(t) \tag{15}$$

Sum of two periodic signals

Suppose a value T > 0 satisfies $T = n_1 T_1$ and $T = n_2 T_2$ then, $\mathbf{x}(t)$ is periodic with period T.

Theorem 1.4.2. A sum of two periodic signals is period iff the ratio od their periods is rational.

1.4.2 Even and Odd Symmetry

Definition 1.4.2 (Even Symmetry). iff $x(-t) = x(t) \forall t$

Definition 1.4.3 (Odd Symmetry). iff $x(-t) = x(t) \forall t$

Even and Odd Components

We can decompose any signal into even and odd components:

$$x(t) = x_e(t) + x_o(t) \tag{16}$$

$$x_e(t) = \frac{1}{2}[x(t) + x(-t)], \quad x_o(t) = \frac{1}{2}[x(t) - x(-t)]$$
 (17)

1.4.3 Average value and energy

Definition 1.4.4 (Average Value).

$$A = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)dt \tag{18}$$

Definition 1.4.5 (Energy).

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{19}$$

Definition 1.4.6 (Average Power).

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \tag{20}$$

Definition 1.4.7 (Energy Signal). If E is finite, then x(t) is called energy signal and P = 0.

Definition 1.4.8 (Power Signal). If E is infinite and P is finite and nonzero, x(t) is called power signal.

1.5 Exponential signals

To be done

1.6 Sigularity functions

1.6.1 Transformed rect functions

 $rect(\frac{t-t_0}{T})$ centered ar t_0 with width T.

1.6.2 Unit impulse function

 $\delta(t)$, area is 1 and width is 0

relationships: $\delta(t) = \frac{d}{dt}u(t)$, $u(t) = \int_{-\infty}^{t} \delta(\tau)d\tau$ scaling property: $\delta(at+b) = \frac{1}{|a|}\delta(t+b/a)$

1.6.3 Practical impulse function

$$\delta_{\Delta}(t) = \begin{cases} \frac{1}{\Delta}, & 0 < t < \Delta \\ 0, & otherwise \end{cases}$$
 (21)

width approaches zero as $\Delta \to 0$; height approaches infinity as $\Delta \to 0$

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t) \tag{22}$$

1.7 Continuous-time system

Definition 1.7.1 (Continuous-time(CT) System). a device that transforms input CT signal into another output CT signal.

$$y(\cdot) = \mathcal{T}(x(\cdot)) \tag{23}$$

Definition 1.7.2 (Input-output Relationship). Precisely defines how the output signal is related to the input signal.

• Series connection

$$x(t) \to \boxed{\mathcal{T}_1} \to \boxed{\mathcal{T}_2} \to y(t)$$
 (24)

$$y(t) = \mathcal{T}_2[\mathcal{T}_1[x(t)]] \tag{25}$$

• Parallel connection

$$y(t) = \mathcal{T}_1[x(t)] + \mathcal{T}_2[x(t)] \tag{26}$$

1.7.1 Classification of CT Systems

- Amplitude properties
 - A-1 linearity

$$\mathcal{T}[a_1x_1(t) + a_2x_2(t)] = a_1\mathcal{T}[x_1(t)] + a_2\mathcal{T}[x_2(t)] \tag{27}$$

Property

$$\mathcal{T}[ax(t)] = a\mathcal{T}[x(t)] \tag{28}$$

superpostion property

$$\mathcal{T}\left[\sum_{k=1}^{K} \mathcal{T}[x_k(t)]\right] \tag{29}$$

$$\mathcal{T}[\int x(t;v)dv] = \int \mathcal{T}[x(t;v)]dv$$
 (30)

A-2 stability
 Satisfy BIBO

Definition 1.7.3 (Bounded-input Bounded-output (BIBO) stable). Every bounded input produces a bounded output

Triangle Inquality

$$\left|\sum_{n} a_n\right| \le \sum_{n} |a_n| \tag{31}$$

- invertibility

Definition 1.7.4 (invertible). each output signal is the response to only one input signal.

Property

$$\mathcal{T}^{-1}[\mathcal{T}[x(t)]] = x(t) \tag{32}$$

- Time properties
 - T-1 causality

Definition 1.7.5 (Casual System). The output y(t) at time t only depends on the present and (possibly) past inputs, not on future inputs.

Noncasual systems arise often when t is other variables than time, such as space.

- T-2 memory

Definition 1.7.6 (Static system or Memoryless System). The output y(t) at time t only depends on the current input x(t). Otherwise is a dynamic system.

 T-3 time-invariance Systems whose input-output behavior does not change with time

Definition 1.7.7 (Time Invariant).

$$x(t) \xrightarrow{\mathcal{T}} y(t)$$
 implies that $x(t - t_0) \xrightarrow{\mathcal{T}} y(t - t_0)$ (33)

2 CT LTI Systems

2.1 Introduction

Primary forcus: CT linear-time-variant (LTI) systems. Overview:

$$x(t) \rightarrow \boxed{LTI \ with \ imulse \ response \ h(t)} \rightarrow y(t) = x(t) * h(t)$$
 (34)

where $\delta(t) \xrightarrow{\mathcal{T}} h(t)$

Input-output relationships (given by convolution intergral):

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
 (35)

- Any system whose input and output can be discribed by the above form is LTI system
- An LTI system is completely described by its impulse response h(t)
- We can determine the response y(t) due to any input signal with impulse response.

2.2 LTI system properties

2.2.1 Properties of Convolution and Impulse Functions

• commutative property

$$x(t) * h(t) = h(t) * x(t)$$
 (36)

associative property

$$[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$$
(37)

• distributive property

$$x(t) * \delta(t) = x(t) \tag{38}$$

• delay property

$$x(t) * \delta(t - t_0) = x(t - t_0)$$
(39)

• If y(t) = x(t) * h(t), then $x(t - t_0) * h(t - t_1) = y(t - t_0 - t_1)$

there are four remaining properties in terms of h(t).

• T-1 casusality

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{0}^{\infty} h(\tau)x(t-\tau)d\tau + \int_{-\infty}^{0^{-}} h(\tau)x(t-\tau)d\tau$$

Definition 2.2.1 (LTI causal). An LTI system is causal iff its impulse response h(t) = 0 for all t < 0.

then using $\tau' = t - \tau$

$$y(t) = \int_0^\infty h(\tau)x(t-\tau)d\tau = \int_{-\infty}^t x(\tau')h(t-\tau')d\tau'$$
 (40)

• T-2 memory

Definition 2.2.2 (LTI memoyless). Iff its impulse response is $h(t) = a\delta(t)$. Otherwise is dynamic.

In this case, the response is y(t) = ax(t)

There are two classes of dynamic systems:

Definition 2.2.3 (finite impulse response (FIR)). hash(t) that is nonzero only within some finite interval $t_1 < t < t_2$.

Definition 2.2.4 (infinite impulse response (IIR)). has h(t) that persists indefinitely.

• A-2 stability Suppose x(t) is a bounded input signal $|x(t)| \leq M_x < \infty \ \forall t$.

$$|y(t)| = |\int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau|$$

$$\leq \int_{-\infty}^{\infty} |h(\tau)x(t-\tau)|d\tau \quad (trangle inequality)$$

$$= \int_{-\infty}^{\infty} |h(\tau)||x(t-\tau)|d\tau$$

$$\leq M_x \int_{-\infty}^{\infty} |h(\tau)|d\tau$$

So, sufficient condition:

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty \tag{41}$$

Definition 2.2.5 (LTI BIBO stable). Iff its imppluse response is absolutely integrable, i.e. $\int_{-\infty}^{\infty}|h(t)|dt<\infty$

• A-3 invertibility Fact: if a system is LTI, then if it is also invertible, the inverse system is also LTI.

$$x(t) \to \boxed{LTI\ h(t)} \to y(t) \to \boxed{LTIh_i(t)} \to z(t) = x(t)$$
 (42)

The cascade of two LTI system is also LTI.

Definition 2.2.6 (LTI invertible). If the system is invertible, then

$$h(t) * h_i(t) = \delta(t) \tag{43}$$

2.3 Step response

A way to find the impluse response h(t) of an LTI system in practice.