11. Лява и дясна граница на функция. Асимптоти

Лява и дясна граница на функция — дефиниция на Коши

Дефиниция

Казваме, че $\pmb{a} \in \mathbb{R}$ е дясна точка на сгъстяване на $\pmb{D} \subseteq \mathbb{R}$, ако всеки интервал от вида $(\pmb{a}, \pmb{a} + \varepsilon), \, \varepsilon > 0$, съдържа точка от \pmb{D} .

Казваме, че $a \in \mathbb{R}$ е <u>лява точка на сгъстяване</u> на $D \subseteq \mathbb{R}$, ако всеки интервал от вида $(a - \varepsilon, a), \varepsilon > 0$, съдържа точка от D.

Дефиниция (Коши)

Нека $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ и $a \in \mathbb{R}$ е дясна точка на сгъстяване на D. Казваме, че $\ell \in \mathbb{R}$ е дясна граница на f(x) при x, клонящо към a, и пишем $\ell = \lim_{x \to a+0} f(x)$, ако

$$orall arepsilon > 0 \quad \exists \delta > 0 : |f(x) - \ell| < arepsilon \quad orall x \in D$$
 такова, че $|x - \pmb{a}| < \delta$ и $\underline{x > \pmb{a}}.$

Нека $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ и $a \in \mathbb{R}$ е лява точка на сгъстяване на D. Казваме, че $\ell \in \mathbb{R}$ е лява граница на f(x) при x, клонящо към a, и пишем $\ell = \lim_{x \to a = 0} f(x)$, ако

$$orall arepsilon > 0 \ \exists \delta > 0 : |f(x) - \ell| < arepsilon \ orall x \in D$$
 такова, че $|x - a| < \delta$ и $\underline{x < a}$.

Други означения:
$$\lim_{\substack{x \to a \\ x > a}} f(x)$$
, $\lim_{\substack{x \to a \\ x < a}} f(x)$.
$$f(x) \underset{x \to a+0}{\longrightarrow} \ell, \quad f(x) \underset{x \to a-0}{\longrightarrow} \ell, \quad f(x) \underset{x > a}{\longrightarrow} \ell, \quad f(x) \underset{x > a}{\longrightarrow} \ell$$

Геометрична интерпретация

$$\ell_1 = \lim_{x \to a-0} f(x), \quad \ell_2 = \lim_{x \to a+0} f(x)$$
 (1)

Връзка между граница, лява граница и дясна граница

Твърдение

$$\exists \lim_{x \to a} f(x) = \ell \iff \exists \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = \ell$$
 (2)

Лява и дясна граница на функция— дефиниция на Хайне

Дефиниция (Хайне)

Нека $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ и $a \in \mathbb{R}$ е дясна точка на сгъстяване на D. Казваме, че $\ell \in \mathbb{R}$ е дясна граница на f(x) при x, клонящо към a, ако

$$\forall \{x_n\} : \lim x_n = a, \ x_n \in D, \ x_n > a \ \forall n \quad \text{immame} \quad \lim f(x_n) = \ell.$$

Нека $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ и $a \in \mathbb{R}$ е лява точка на сгъстяване на D. Казваме, че $\ell \in \mathbb{R}$ е лява граница на f(x) при x, клонящо към a, ако

$$\forall \{x_n\} : \lim x_n = a, \ x_n \in D, \ x_n < a \ \forall n \quad \text{immame} \quad \lim f(x_n) = \ell.$$

Теорема

Дефинициите на Коши и Хайне за дясна/лява граница на функция в точка са еквивалентни.

Вертикална асимптота

Дефиниция (Коши)

Нека $f:D\to\mathbb{R},\,D\subseteq\mathbb{R}$ и $\pmb{a}\in\mathbb{R}$ е точка на сгъстяване на \pmb{D} . Казваме, че $\pmb{f}(\pmb{x})$ клони към $+\infty$ при \pmb{x} , клонящо към \pmb{a} , и пишем $\lim_{\pmb{x}\to\pmb{a}}\pmb{f}(\pmb{x})=+\infty,$ ако

 $orall A \in \mathbb{R} \quad \exists \, \delta > 0 : f(x) > A \quad \forall x \in D \; \mathrm{такова}, \; \mathrm{чe} \; |x-a| < \delta \; \mathrm{id} \; \underline{x \neq a}.$

Дефиниция (Коши)

Нека $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ и $a \in \mathbb{R}$ е дясна (съотв. лява) точка на сгъстяване на D. Казваме, че f(x) клони към $+\infty$ при x, клонящо към a отдясно (съотв. отляво), и пишем $\lim_{x \to a+0} f(x) = +\infty$ (съотв.

$$\lim_{x \to a-0} f(x) = +\infty$$
), ако

$$\forall A \in \mathbb{R} \quad \exists \, \delta > 0 : f(x) > A \quad \forall x \in D \text{ такова, че } |x - a| < \delta \text{ и } \underline{x > a}$$
 (съотв. $x < a$).

Вертикална асимптота (допълнение)

Дефиниция (Коши)

Нека $f:D\to\mathbb{R},\,D\subseteq\mathbb{R}$ и $\pmb{a}\in\mathbb{R}$ е точка на сгъстяване на \pmb{D} . Казваме, че $\pmb{f}(\pmb{x})$ клони към $-\infty$ при \pmb{x} , клонящо към \pmb{a} , и пишем $\lim_{\pmb{x}\to\pmb{a}}\pmb{f}(\pmb{x})=-\infty$, ако

 $orall A \in \mathbb{R} \quad \exists \, \delta > 0 : \mathit{f(x)} < A \quad orall x \in \mathit{D} \; ext{такова, че} \; |x - a| < \delta \; \text{и} \; \underline{x
eq a}.$

Дефиниция (Коши)

Нека $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ и $a \in \mathbb{R}$ е дясна (съотв. лява) точка на сгъстяване на D. Казваме, че f(x) клони към $-\infty$ при x, клонящо към a отдясно (съотв. отляво), и пишем $\lim_{x \to a+0} f(x) = -\infty$ (съотв.

$$\lim_{x \to a-0} f(x) = -\infty$$
), ако

$$\forall A \in \mathbb{R} \quad \exists \, \delta > 0 : f(x) < A \quad \forall x \in D \text{ такова, че } |x - a| < \delta \text{ и } \underline{x > a}$$
 (съотв. $x < a$).

Други означения и деф. на Хайне

Други означения:
$$\lim_{\substack{x \to a \\ x > a}} f(x) = \pm \infty$$
, $\lim_{\substack{x \to a \\ x < a}} f(x) = \pm \infty$, $f(x) \xrightarrow[x \to a]{} \pm \infty$. $f(x) \xrightarrow[x \to a]{} \pm \infty$, $f(x) \xrightarrow[x \to a]{} \pm \infty$.

Във всеки един от описаните случаи, казваме, че правата с уравнение x = a е вертикална асимптота за графиката на функцията f(x).

Дефиниция (Хайне)

Нека $f:D\to\mathbb{R},\,D\subseteq\mathbb{R}$ и $a\in\mathbb{R}$ е точка на сгъстяване на D. Казваме, че f(x) клони към $+\infty$ при x, клонящо към a, ако

$$\forall \{x_n\} : \lim x_n = a, \ x_n \in D, \ x_n \neq a \ \forall n \quad$$
имаме $\lim f(x_n) = +\infty.$

При X, клонящо към a отдясно (съотв. отляво), заместваме условието $x_n \neq a \ \forall n \ c \ x_n > a \ \forall n \ (cъотв. <math>x_n < a \ \forall n)$

Пример

Правата с уравнение x=0 (т.е. ординатната ос) е вертикална асимптота за графиката на функцията.

Хоризонтална асимптота

Дефиниция (Коши)

Нека $f:[c,\infty)\to\mathbb{R}$, където $c\in\mathbb{R}$. Казваме, че f(x) има граница ℓ (клони към ℓ) при x, клонящо към $+\infty$, и пишем $\lim_{x\to+\infty}f(x)=\ell$, ако

$$\forall \varepsilon > 0 \quad \exists \nu > c : |f(x) - \ell| < \varepsilon \quad \forall x > \nu.$$

Дефиниция (Коши)

Нека $f:(-\infty,c]\to\mathbb{R}$, където $c\in\mathbb{R}$. Казваме, че f(x) има граница ℓ (клони към ℓ) при x, клонящо към $-\infty$, и пишем $\lim_{x\to-\infty}f(x)=\ell$, ако

$$\forall \varepsilon > 0 \quad \exists \nu < c : |f(x) - \ell| < \varepsilon \quad \forall x < \nu.$$

Казваме, че правата с уравнение $y = \ell$ е хоризонтална асимптота към графиката на функцията f(x) при $x \to +\infty$, съотв. $x \to -\infty$.

Съществуват еквивалентни форми на тези дефиниции в стила на деф. на Хайне.

Пример 1:
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

Хоризонтална асимптота при $x \to +\infty$: правата y = 0, т.е. абсцисната ос

Пример 2:
$$\lim_{x \to +\infty} \frac{\sin x}{x} = 0$$

Хоризонтална асимптота при $x \to +\infty$: правата y = 0, т.е. абсцисната ос

$$\lim_{x\to\pm\infty}f(x)=\pm\infty$$

Дефиниция

Нека $f:[c,\infty)\to\mathbb{R}$, където $c\in\mathbb{R}$.

- (a) $\lim_{x \to +\infty} f(x) = +\infty$: $\forall A \in \mathbb{R} \quad \exists \nu > c : f(x) > A \quad \forall x > \nu$;
- (6) $\lim_{x \to +\infty} f(x) = -\infty$: $\forall A \in \mathbb{R} \quad \exists \nu > c : f(x) < A \quad \forall x > \nu$.

Дефиниция

Нека $f:(-\infty,c]\to\mathbb{R}$, където $c\in\mathbb{R}$.

- (a) $\lim_{x \to -\infty} f(x) = +\infty$: $\forall A \in \mathbb{R} \quad \exists \nu < c : f(x) > A \quad \forall x < \nu$;
- (6) $\lim_{x \to -\infty} f(x) = -\infty$: $\forall A \in \mathbb{R} \quad \exists \nu < c : f(x) < A \quad \forall x < \nu$.

Съществуват еквивалентни форми на тези дефиниции в стила на деф. на Хайне.

Наклонена асимптота

Дефиниция

Казваме, че правата с уравнение y = ax + b е <u>наклонена асимптота</u> за графиката на f(x) при $x \to +\infty$ (съотв. $x \to -\infty$), ако

$$\lim_{\substack{X \to +\infty \\ \text{Chotb. } X \to -\infty}} \left(f(x) - (ax + b) \right) = 0. \tag{3}$$

Бележка: Хоризонталната асимптота е частен случай на наклонена.

Примери:

НДУ за наклонена асимптота

Твърдение

Правата с уравнение y=ax+b е наклонена асимптота за графиката на f(x) при $x\to +\infty$

$$\iff \exists \lim_{x \to +\infty} \frac{f(x)}{x} = a \quad \text{if} \quad \exists \lim_{x \to +\infty} (f(x) - ax) = b. \tag{4}$$

Аналогично при $\mathbf{x} \to -\infty$.

Бележка

Поведението на $\frac{f(x)}{x}$ при $x \to +\infty$ отчита колко стръмна е графиката на f(x) спрямо права. Това, че $\frac{f(x)}{x}$ има граница при $x \to +\infty$, показва, че f(x) клони към $+\infty$ или $-\infty$ при $x \to +\infty$, подобно на права (по-точно, подобно на ax, като коефициентът a показва колко стръмна е тази права и накъде е насочена). След това $\lim_{x \to +\infty} (f(x) - ax)$ показва с колко е транслирана във вертикална посока правата y = ax.

Доказателство

 \Longrightarrow) Нека правата с уравнение y=ax+b е наклонена асимптота за графиката на f(x) при $x\to +\infty$.

Тогава

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0 \implies \lim_{x \to +\infty} (f(x) - ax) = b.$$
 (5)

За да установим първото твърдение в (4), използваме, че

$$\frac{f(x)}{x} - a = \frac{f(x) - ax}{x}, \quad \text{ho} \quad \lim_{x \to +\infty} \left(f(x) - ax \right) = b \tag{6}$$

$$\implies \lim_{x \to +\infty} \frac{f(x) - ax}{x} = 0 \implies \lim_{x \to +\infty} \frac{f(x)}{x} = a.$$
 (7)

⇐⇒) От второто твърдение в (4) следва:

$$\lim_{x \to +\infty} \left(f(x) - ax \right) = b \implies \lim_{x \to +\infty} \left(f(x) - (ax + b) \right) = 0$$
 $\stackrel{\text{деф.}}{\Longrightarrow} y = ax + b \text{ е наклонена асимптота.} \tag{8}$

Пример 1:
$$f(x) = \frac{x^2}{x+1}$$
, $x \ge 0$

$$\frac{f(x)}{x} = \frac{x}{x+1} = \frac{1}{1+\underbrace{\frac{1}{x}}_{x\to +\infty} 0} \xrightarrow{x\to +\infty} 1 =: a$$
 (9)

$$f(x) - ax = f(x) - x = -\frac{x}{x+1} \xrightarrow{x \to +\infty} -1 =: b$$
 (10)

 \Longrightarrow правата с у-ние y=x-1 е наклонена асимптота за графиката на f(x) при $x\to +\infty$

Пример 2:
$$f(x) = x + \frac{\sin x}{x}, \ x \ge 1$$

$$\frac{f(x)}{x} = 1 + \frac{\sin x}{x^2} \underset{x \to +\infty}{\longrightarrow} 1 + 0 = 1 =: a, \quad \text{защото } |\sin x| \le 1 \quad \forall x \quad (11)$$

$$f(x) - ax = f(x) - x = \frac{\sin x}{x} \underset{x \to +\infty}{\longrightarrow} 0 =: b$$
 (12)

 \Longrightarrow правата с у-ние y=x е наклонена асимптота за графиката на f(x) при $x \to +\infty$

