Lecture 3: Word Embeddings

Word Embeddings

A word embedding is a learned representation for text where words that have the same meaning have a similar representation

Advantages over Discrete representations

- Able to capture relations between different words.
- Ability to capture context by syntactic and semantic similarity

Single Value Decomposition (SVD)

Let A be an m*n matrix. Then there exists a factorisation of A, $A = U\Sigma V$

where U is an mm orthogonal matrix, V is an nn orthogonal matrix and Σ is an m*n matrix of the form,

 \checkmark Rows of the V^T are the TOPICS. \checkmark The values in each row of V^T are the importance of WORDS in that TOPIC

Steps:

- 1. Looping over the corpus to accumulate word co-occurrence counts in the X matrix.
- 2. Perform SVD on X to get decomposition.
- 3. Use rows of U as the word embeddings for all words in our dictionary.

- Assumption (for both): Words that are related will often appear in the same documents and vice versa
- In 2nd choice, X contains word co-occurrences (i.e. affinity matrix)

Advantages

- preserves the semantic relationship
- efficient factorization
- computed only once, can be used multiple times.

Disadvantages

poor scaling on large matrices (large memory).

Word2Vec

The word2vec algorithm uses a neural network model to learn word associations from a large corpus of text.

- Continuous Bag of Words (CBOW): predicts the current word from a window of surrounding context ****words.
- **Skip Gram:** the model uses current word to predict the surrounding window of context words.

CBOW Architecture

Input	Hidden Layer	Output
context words in a vector with size of vocabulary.	hyper-parameter which defines shape of word representations	outputs probability of all the words in a vector of size of the vocabulary.

ReLU activation: Input to Hidden Layer **Softmax activation**: Hidden to Output Layer

Disadvantages of CBOW:

- Overfits on frequent words for context window > 1
- Doesn't produce good representations of rare words.

Skip-Gram Method

Takes in input as center/context word and predicts its surrounding words.

Skip-Gram Architecture

Skip-gram learns word representations via:

- 1. matching output and true probabilities
- 2. Log Likelihood objective function.

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$