MOME VS MLE

o many be hered to comput

optimating unds of n

is high

> here ASO

o Easy to comput.

No such program

* Asymptotically wrond ?

NO SURL PROPORTY.

[EX: Shame may be regarried

No may be regarried

fange preserving prop. 1.e.;
if Q C (H), then
personners gale
personners gale
personners gale

et model answerthms started then Brite may not hord then Brite may not be a good choice.

to model assumptions than

· Buome is une sensitive

as a starting to set inter-PMOME is upter wand

Confidence intervals (Section 9.2)

Set up: Same as before, i.e.,

-, Xn (racolm)

GON! CRAN WORM &

P[8=0]=0, 14 **Motivation**: Estimator $\hat{\theta}$ is a single number that gives a

plausible value of the unknown θ . But rarely the two will be

equal. So, often it is preferable to give an interval of plausible values — a confidence interval (CI), which contains the

unknown θ with a specified high probability.

$$(P(L \leq \theta \leq U)) = (1 - \alpha) \quad \text{for all } \theta.$$
"comage parasitify" specified in advance.

- L and U are random, so the CI is random.
- Parameter θ is not random it is unknown but fixed.
- $(1 \alpha) = confidence coefficient$ or confidence level.
- In practice, $(1 \alpha) = 0.90$ or 0.95 (most common) or 0.99.

A general method for constructing CI for θ

Step 1: Find an unbiased estimator θ of θ that has a normal distribution with known variance, i.e., $(\underline{\theta} \sim N(\underline{\theta}, \text{var}(\theta)))$

Step 2: Standardize $\hat{\theta}$ to get Z, where

2 to hisman

Step 3: Find a critical point $z_{\alpha/2}$ such that $1 - \alpha = P(-z_{\alpha/2} \le Z \le \log \sqrt{2})$

$$= \frac{1}{16} - 24 \times \frac{0-0}{56(0)} \times 24 \times \frac{24}{10} = \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} = \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} = \frac{1}{100} \times \frac{1}{100} \times \frac$$

We either hormal table Thus, the $100(1-\alpha)\%$ CI is: $L_{L'}$ $v\vec{J}$ $\hat{g} \pm (\vec{z}_{L'})$ $\hat{z}_{E}(\hat{g})$ $\hat{z}_{L'}$ where $\hat{z}_{L'}$ $\hat{z}_{L'}$

quantile of

Note: If the distribution of θ is approximately normal, then

eg wan is little of the same of som grown (1-42) siry the CI is also approximate.

Confidence interval for population mean μ Recall: \overline{X} is which and and \overline{X} is which \overline{X} is a find \overline{X}

Case 1: The sample comes from a normal distribution with known variance. In this case, $\overline{\chi} \sim N [\mu, \ell]$ mand IN IND(IA) 1: CI to II. e exact ct (no opport . was).

large. In this case, $\chi \sim N [M(\widetilde{e})]$ if h is have Case 2: The sample comes from a any distribution, but n is

Mexterd => "Approx. 100 (1x)-1. C2 for M 15. Rule of thurb; young of in NWCh 15 N330

 $N(\mu, 10)$ population gives $\overline{x} = 2.45$ Find the 95% CI for μ . Ex: Suppose that an observed sample of size (20) from a

1 3.84 Z 242 = 20.025 = (97.5) the presentile of N(0,1) modern to 90.1 / 1-x=0.95 => 0.0 = 5.00 = 1-00 = 0.975 = 1.96 (warms tath m R) 2,45 ± 1.96 JEO = @ 2.45 ±

Notice that this interval is fxed— it's a numerical interval. \uparrow There is nothing random about it.

Q: Can we say that this observed interval contains the true value of u with 95% probability? value of μ with 95% probability?

of the stronger with a control of trobs of \$3.84] (= 0.95)

The down fined fined So, how do we really interpret a CI?

60.0	80.0	70.0	90.0	20.0	₽0.0	٤0.0	20.0	10.0	00.0	Z
			9622.	6615.	0912.	0212.	080 2 .	0402.	0002.	0.0
6252. 5272.	9152. 4172.	2732.	9£9 č .	9655.	rsss.	TISS.	8742.	8642.	8662.	1.0
[4]6.	£019.	4909.	9209.	7862.	8462.	0165.	1782.	288 <i>2.</i>	£672.	2.0
7120.	0849.	8443.	9049.	89£9.	1689.	£629 [.]	SS29.	7129.	6719.	ε.0
678a.	4489.	8089	2 <i>LL</i> 9.	9£Γ ₉ .	0079.	1 999.	8799	1659.	4229.	4.0
422T.	0617.	TZIT.	£217.	8807.	420T.	6107.	2869.	0869.	S169.	5.0
675L.	TIST.	984r.	PSP 7.	224 <i>T.</i>	68£7.	TZET.	42ET.	1627.	TZST.	9.0
228T.	£287.	<i>46LL</i> .	49LL	AETT.	<i>₽</i> 0 <i>LL</i> .	£797.	749L	1197.	0827.	7.0
££18.	9018.	8708.	1208.	£208.	S667.	L96L.	6£67.	0167.	1887.	8.0
6858.	2988.	04E8.	2158.	(6828.)	4928.	8528.	2128.	<i>9</i> 818.	6518.	6.0
	6688.	LLS8.	4228. ·	IEZ8.	8028.	₹8±8.	1948.	8648.	6148.	0.1
1288.	0188.	0678.	0778.	9478.	6278.	8078.	9898.	2998.	£498.	1.1
0£88.	7668.	0868	. 2968.	4468.	2268.	7068.	8888.	6988.	6 1 88.	2.1
2109.		7416.	1619.	2119.	6606	2806.	9906.	6406.	2606.	E.1
7719.	2919. 9306	2626.	6726.	5926.	1826.	9236.	7776.	7026.	2616.	4.1
61£6.					2856.	0756.	72£6.	2456.	2EE6.	2.1
1446.	6246.	8I4e.	9046	4989.	2006.	4846.	<i>474</i> 6.	6946	7576°	9.1
2429.	2526.	\$226.	2129.	©2056)	1626.	2826.	£726.	4956.	₽ \$\$6.	7.1
££86,	2296.	2196	8096.	8656	1796.	7996	9596.	6496.	1496.	8.1
5076.	6696.	£696.	9899.	8L96	8679.	2579.	9276.	6176.	E179.	6.1
L9L6 [.]	19/6	9576.	0 <i>2</i> 76.	4479.						1
7186.	2186.	8086	£086.	8676.	£676.	8879.	£879.	8LL6	2779.	2.0
728e.	₽S86.	0286.	9786		8£86.	4586.	0£86. 8880	9286	1286.	2.2
0686.	788e.	4886.	1886.	8786.	2786.	1786.	8886. 8686.	4986. 9686.	198e. £68e.	2.3
9166.	£166.	1166.	6066	9066	\$066°	1066.	2266.	0266.	8166	2.4
9866	₽ £66.	2566.	1866.	6266.	726e.	\$266°				
2266.	1266.	6766	8466.	9 1 66.	S766	£466.	1466.	0466.	8£69.	2.5
7 966°	£966°	7966	1966.	0966	6566.	LS66	9566.	5566.	£266.	5.2 7.2
<i>₽</i> ∠66.	£766.	2799.	1766.	0799.	6966	8966	7966.	9966	2966. 4766.	8.2
1866.	0866.	6Z66.	6766.	8766.	7766.	£866	6869.	2866.	1866.	6.2
9866	9866	2866	£866.	4 866.	7 866	£866.	2866.		,	
0666	0666	6866.	6866.	6866.	8866.	8866.	7866.	786e.	7899.	0.5
£666.	£666.	2666.	2666,	Z666 [°]	7666	1666	1666	1666.	0666.	1.5
≥666.	≥666.	£666°	≯ 666°	7666	⊅666	≯ 666.	4666.	£666.	£666.	2.5
L666°	9666*	9666	9666	9666	9666	9666	ξ666.	\$666	2666.	E.E
8666.	L666°	L666°	L666°	L666°	L666 ⁻	L666°	L666°	L666 [.]	L666 [°]	4.8
8666.	8666.	8666	8666.	8666	8666	8666.	8666.	8666	8666.	3.5
6666	6666	6666	6666	6666	6666.	6666	6666	8666	8666	3.6
			·	·						

Interpretation of a CI

Recall:

- and construct the CI using the above formula, then roughly taking a random sample of size n from $N(\mu, \sigma^2)$ population 95% of times the observed CIs will be correct, i.e., it will • Usual long-term proportion interpretation of probability i.e., if we repeat a large number of times the process of capture the true value of μ .
- This CI formula gives an incorrect interval 5% (small) of the times.
- It is wrong to say that the observed interval contains the contains the true value of μ or it does not — we don't true value of μ with 95% probability. The CI either know what the case is.
- Thus, in a sense, we have 95% confidence in the CI formula — it gives the correct answer 95% of the times.

5000 6/11

- distribution and use the observed sample to construct a • Draw a random sample of size 20 from a N(5,10)Lets use simulation to verify this interpretation. 95% CI for μ using the above formula.
- Repeat this procedure 10,000 times. The figure on the next page plots the constructed CIs for the first 100 samples.
- Find the proportion of times the CI captures the true value.

X + 24 - 10 ci <-{mean(x) + c(-1,1) * qnorm(1-(alpha/2)) * conf.int <- function(mu, sigma, n, alpha){</pre> x <- rnorm(n, mu, sigma) [017] $\mathtt{sigma/sqrt}(\mathtt{n})^{\zeta}$ return(ci)

Get one CI

mu <- 5 sigma <- sqrt(10) n <- 20 alpha <- 0.05

```
ci.mat <- replicate(nsim, conf.int(mu, sigma, n, alpha))</pre>
                                                                                                                                                                                                                                                     [,5]
                                                                                                                                                                                                                  5.911925
                                                                                                                                                                                                 3.140117
                                                                                                                                                                                                                                                       3.466402 3.937424
                                                                                                                                                                                                                  6.709231
                                                                                                                                                                                                                                                        6.238210
                                                                                                                                                                                [3]
nsim times
                                                                                                                                                                                [,2]
                                                                                                                                                                                                  3.519999
                                                                                                                                                                                                                  6.291807
                                                                                                                                 5 intervals
```

2 10000

[1]

#

> dim(ci.mat)

> ci.mat[, 1:5]

#

The first

#

[,1]

[1,] 3.689654

#

6.461462

[2,]

#

sigma, n, alpha)

[1] 3.520961 6.292768

#

> conf.int(mu,

#

Repeat the process

#

nsim <- 10000