SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 2021-72

Programska potpora za upravljanje kamerom na CubeSat nanosatelitu

Nikola Gudan

Umjesto ove stranice umetnite izvornik Vašeg rada.

Da bi ste uklonili ovu stranicu obrišite naredbu \izvornik.

Hvala.

SADRŽAJ

1.	Uvo	d	1
2.	I^2C	sučelje mikrokontrolera STM32L471VGT6	2
	2.1.	I^2C protokol	2
		2.1.1. Opis komunikacije i vremenski dijagram	4
	2.2.	Struktura I ² C periferije na STM32L471VGT6	5
3.	Zak	ljučak	6
Lit	teratu	ıra	7

1. Uvod

Uvod rada. Nakon uvoda dolaze poglavlja u kojima se obrađuje tema.

2. I²C sučelje mikrokontrolera STM32L471VGT6

Za konfiguraciju kamere Arducam 5MP Mini Plus PDH računalo koristi I²C komunikaciju. S obzirom na to da se za razvoj programske potpore PDH računala koriste *Low-Layer* biblioteke, potrebno je razumijevanje načina rada I²C periferije odabranog mikrokontrolera kako bi se ispravno implementirali upravljački programi. U nastavku slijedi općenit opis I²C komunikacije kao i njena implementacija na STM32L471VGT6 mikrokontroleru.

2.1. I²C protokol

I²C (*Inter-Integrated Circuit*) je jednostavna dvosmjerna sinkrona serijska sabirnica razvijena od strane *Philips Semiconductors* (sada *NXP Semiconductors*) 1982. godine. Koristi dvije linije:

- serijska podatkovna linija (SDA, Serial Data Line),
- serijska taktna linija (SCL, Serial Clock Line),

obje linije su pritegnute na visoku logičku razinu preko *pull-up* otpornika. Moguće brzine prijenosa su:

- do 100 kbit/s u Standard-mode načinu rada,
- do 400 kbit/s u *Fast-mode* načinu rada,
- do 1 Mbit/s u Fast-mode Plus načinu rada,
- do 3.4 Mbit/s u *High-speed* načinu rada.

Navedene brzine se koriste kod dvosmjernog prijenosa, a moguća je i brzina do 5 Mbit/s u jednosmjernom prijenosu. Više uređaja se može spojiti na jednu sabirnicu, a svaki uređaje je prepoznatljiv po svojoj jedinstvenoj adresi i može se ponašati kao prijamnik ili odašiljač, ovisno o funkciji uređaja. Protokol najčešće, a tako i u ovom

slučaju, koristi 7-bitno adresiranje, a moguće je i korištenje 10-bitnog adresiranja. Uz prijamnike i odašiljače uređaj također može biti upravljač ili meta tijekom prijenosa podataka. Upravljač je uređaj koji inicijalizira prijenos podataka na sabirnici i generira signal takta kako bi omogućio prijenos. U tom trenutku, bilo koji uređaj koji je adresiran smatra se metom.

Na I²C sabirnicu se također može spojiti više upravljača, a primjer jednog takvog spoja sa dva mikrokontrolera je dan na sljedećoj slici. Prijenos podataka bi možda

Slika 2.1: Primjer I²C sabirnice sa spojena dva mikrokontrolera

mogao izgledati ovako:

- 1. Mikrokontroler A želi poslati podatke mikrokontroleru B:
 - mikrokontroler A (upravljač) adresira mikrokontroler B (meta)
 - mikrokontroler A (upravljač-odašiljač) šalje podatke mikrokontroleru B (meta-prijamnik)
 - mikrokontroler A prekida prijenos
- 2. Mikrokontroler A želi primiti podatke sa mikrokontrolera B:
 - mikrokontroler A (upravljač) adresira mikrokontroler B (meta)
 - mikrokontroler A (upravljač-prijamnik) prima podtke sa mikrokontrolera
 B (meta-odašiljač)
 - mikroknotroler A prekida prijenos.

U svakom od navedenih slučajeva mikrokontroler A je generirao takt i prekidao prijenos. Upravljač uvijek generira takt na I²C sabirnici kod prijenosa podataka. U ovom radu korišten je samo jedan mikrokontroler, odnosno upravljač, pa ćemo se dalje usredotočiti samo na taj slučaj.

2.1.1. Opis komunikacije i vremenski dijagram

I²C komunikacija započinje sa *start* simbolom i završava sa *stop* simbolom. Komunikacijom se može čitati ili pisati ovisno o R\W bitu u adresi. Struktura adresiranja kod 7-bitne adrese izgleda ovako:

	Adresno polje							R\W
Pozicija bita u bajtu	7	6	5	4	3	2	1	0
Značenje	MSB						LSB	1=READ, 0=WRITE

kao što se vidi, najmanje značajan bit označava želi li se nešto čitati ili pisati.

Imajući na umu izgled adresnog bajta, vremenski dijagram tipčne I²C komunikacije izgleda ovako:

Slika 2.2: Vremenski dijagram I²C komunikacije

- Prijenos podataka se inicijalizira start uvjetom (S) tako da SDA linija prijeđe u nisku logičku razinu dok SCL linija ostaje u visokoj logičkoj razini.
- (Plavo područje) SCL prelazi u nisku logičku razinu i SDA postavlja prvi podatkovni bit dok je SCL u niskoj logičkoj razini.
- (Zeleno područje) Podaci se primaju dok SCL poraste za prvi bit (B₁). Kako bi podaci bili valjani, SDA se ne smije promijeniti između rastućeg brida SCL-a i sljedećeg padajućeg brida.
- Postupak se ponavlja, SDA se postavlja dok je SCL u niskoj razini, a podaci se čitaju dok je SCL u visokoj razini (B₂ do B_n).
- Nakon posljednjeg bita slijedi taktni impuls, tijekom kojeg SDA prelazi u nisku razinu pripremajući se za stop uvjet.
- Signalizira se stop uvjet kada SCL poraste, nakon čega slijedi porast SDA-a.
 Start i stop uvjete uvijek generira upravljač.

Nakon svakog bajta prijamnik šalje odašiljaču ACK bit kojim se signalizira uspješno primanje podatka, odnosno NACK bit kojim se signalizira neuspješno primanje podatka. ACK i NACK bitovi se nazivaju signalom potvrde i definiraju sljedeći način: odašiljač otpušta SDA liniju tijekom potvrdnog takta kako bi prijamnik mogao

spustiti SDA na nisku razinu na kojoj i ostaje tijekom visoke razine takta. Ako SDA ostaje u visokoj razini tijekom devete periode takta, to predstavlja NACK (engl. *Not Acknowledge*) signal, a suprotan slučaj predstavlja ACK (engl. *Acknowledge*) signal. Ako je došlo do NACK signala, upravljač može generirati *stop* uvjet kako bi prekinuo prijenos ili može ponovno generirati *start* uvjet kako bi započeo nov prijenos.

Vremenski dijagram cijele komunikacije sa potvrdnim signalima prikazan je na sljedećoj slici:

Figure 6. Data transfer on the I²C-bus

Slika 2.3: Prijenos podataka na I²C sabirnici

2.2. Struktura I²C periferije na STM32L471VGT6

3. Zaključak

Zaključak.

LITERATURA

UM10204 I²C-bus specification and user manual. NXP Semiconductors, 2021. Rev. 7.0.

Wikipedia. I^2c , 2022. URL https://en.wikipedia.org/wiki/I%C2%B2C. Preuzeto: 30.05.2022.

Programska potpora za upravljanje kamerom na CubeSat nanosatelitu
Sažetak
Sažetak na hrvatskom jeziku.
Ključne riječi: Ključne riječi, odvojene zarezima.
Software for Camera Control on CubeSat Nanosatellite
Abstract
Abstract.
Keywords: Keywords.