

Schedule

- Having a running configuration (DONE)
- Cleaning up the config (ongoing)
- Study of current tracking configuration (on going)
 - Tracking performance (DONE)
 - Timing Study (DONE)
- Optimize track reconstruction (by the end of the Summer)
 - Decrease number of iterations
 - Increase the thresholds
 - Check pixel-only tracks for PV reconstruction
 - Make the steps PV constraint, probably
 - Try seed cleaning
 - Make use of pixelTracks
- Study the impact of using L1 tracks as seeds
- Study the impact of using Vector Hits --

fishbone, seed cleaner
To be integrated in CMSSW

integrate *Patatrack* pixel-based developments

instructions for running the Track Trigger tracks

Current Phase 2 Reconstruction Recipe

- > cmsrel CMSSW_10_4_0_mtd5
- > cd CMSSW_10_4_0_mtd5/src/ && cmsenv
- > runTheMatrix.py -w upgrade -n | grep 2023 | grep trackingOnly
- > runTheMatrix.py -w upgrade -l 21224.1 --dryRun

Reconstruction and validation done with:

cmsRun step3_RAW2DIGI_RECO_VALIDATION_DQM.py

Cleaner version: /afs/cern.ch/user/h/hyarar/public/trking/step3_clean.py

List of TTbar Samples to work with:

PU0:

/store/mc/PhaseIIMTDTDRAutumn18DR/TTbar_TuneCP5_14TeV_pythia8/FEVT/NoPU_103X_upgrade2023_realistic_v2-v1/PU200:

/store/mc/PhaseIIMTDTDRAutumn18DR/TTbar_14TeV_TuneCP5_Pythia8/FEVT/PU200_103X_upgrade2023_realistic_v2-v1/

In the step3 python script change the process.source from step2.root to the list of the samples:

process=cms.Process("RECO") ----> process = cms.Process("RECOHLT") #otherwise complains

Current Phase 2 Reconstruction

the offline tracking for Phase2
 is based on the Iterative Tracking

	Step Name	Seeding	Target Tracks			
	HighPtQuad	pixel quadruplets	prompt, high $p_{_{\rm T}}$			
	HighPtTriplet	pixel triplets	prompt, high p _T , recovery			
	LowPtQuad	pixel quadruplets	prompt, low p _T			
	LowPtTriplet	pixel triplets	prompt, low p _T , recovery			
	DetachedQuad	pixel quadruplets	displaced			
٠)	PixelPair	pixel pairs	high p _r , recovery			
	Muon Inside-Out	muon-tagged tracks	muon			
	Muon Outside-In	muon-tagged tracks	muon			

^{*} iterations as we have in the current HLT configuration

Baseline Performance - Efficiency

- LowPtTriplet, DetachedQuad, PixelPair, Muon iterations do not add much to the efficiency.
- With increasing PU we lose few % of efficiency in [0.3 1] GeV range.

Baseline Performance - Efficiency

- DetachedQuad provides few % efficiency for slightly displaced tracks
- displaced tracks are still missing
 - → VectorHits needs to be integrated in CMSSW, and it will be used for outer tracker seeded steps

Baseline Performance - Fake Rate

- as expected, with the increase of PU, the fake rate increases
 - above all at very low pT
 - marginally even at high pT

To be updated, eta should go up to 4.

Baseline Performance - Fake Rate per iteration

Tracks (after fitting and selection)

Timing

Running on

- vocms004 machine
- 1k events locally (in /data/user/tosi/)
- TTbar_14 events (PhaseIIMTDTDRAutumn18DR campaign: CMSSW_10_4_0_mtd5, 103X_upgrade2023_realistic_v2,)
- Multithreaded (otherwise jobs take forever!)
 - O 16 COTES process.options.numberOfStreams = cms.untracked.uint32(16) process.options.numberOfThreads = cms.untracked.uint32(16)

x44! Timing

	process <timing> per event [ms]</timing>	tracking path <timing> per event [ms]</timing>			
<pu>=0</pu>	900	450 (50 %)			
<pu>=200</pu>	39 300	38 900 (99 %)			

as expected, loading conditions and source files is

430.8 ± 18.5

- independent of PU
- negligible at <PU>=200

with the new samples at different PU scenarios, we will be able to check the PU dependence

Timing **x100** !!!

	process <timing> per event [ms]</timing>	tracking path <timing> per event [ms]</timing>	tracking-only modules <timing> per event [ms]</timing>	inner tracking-only modules <timing> per event [ms]</timing>
<pu>=0</pu>	900	450 (50 %)	350 (78 %)	260 (58 %)
<pu>=200</pu>	39 300	38 900 (99 %)	28 600 (74%)	25 000 (64 %)

we need to squeeze as much as possible these numbers!

iterations

	efficiency [%]		fakerate [%]		<timing> per event</timing>	[ms]			
	<pu>=0</pu>	<pu>=200</pu>	<pu>=0</pu>	<pu>=200</pu>		<pu>=0</pu>	<pu>=2</pu>		00
HighPtQuad	76	74	0.25	1.8	х7	130*	66	00*	x50
HighPtTriplet	15	15	0.7	25	x36	26	30	000	x115
LowPtQuad	0.8	0.9	0.3	7.8	x26	60	72	200	x120
LowPtTriplet	0.05	0.09	1	35	x35	9	16	600	x180
DetachedQuad	0.6	0.5	0.7	17	x24	11	39	900	x350
PixelPair	1	1	2	55	x27	5		440	x90

^{*} w/in the HighPtQuad <timing> we are not taking into account the currently needed PV reconstruction, which costs **8** and **2400** ms at <PU>=0 and <PU>=200 respectively, as now

iterations

we have to squeeze the timing

- limit the amount of fakes (and duplicates) already at seeding level
- limit the amount of candidates in the pattern recognition step

Backup 1 Baseline Performance - Efficiency

Efficiency drop with PU at eta ~ 1 (?)

Backup 2 Baseline Performance - Duplicate Rate

Backup 3
Baseline Performance - Fake Rate per Iteration for Track Building
Track Candidates

