Latent-space GANs for 3D Point Clouds

P. Achlioptas I. Mitliagkas O. Diamanti L. Guibas

Motivation

- Object-centered 3D data are becoming ubiquitous
- "Pure" form of input, less clutter than images
- Higher dimensionality, irregular structure, and less data compared to images make for a challenging problem
- Good 3D representations important for learning methods

Why Point Clouds?

Shortcomings of Alternatives

- **CAD models** are highly irregular
- Voxels provide canonical frame but are sparse and low resolution [Wu et al. 2016]
- ❖ Image-based methods live in 2D [Su et al. 2015]

Point Cloud Advantages

- Are homogeneous and compact
- Amenable to geometric transformations (e.g. morphable)
- Plethora of range scanning applications

This Work

Latent Representation for Point Clouds

Powerful Autoencoder-based representation

Generative Models for Point Clouds

- First GAN working in PC space (tedious training & complex architecture)
- Use AE to transform input data and train overly simple GAN in latent space

Structural Losses

Key Challenge

- Point clouds are unordered
- To compare, we need to match them

Two Losses

A. Optimal Assignment

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

[Fan et al. 2016]

B. Greedy Nearest Neighbor

$$d_{CH}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Autoencoder

1D-Conv: increasing stride and #filters decreasing filter size

Object Classification Success		
Method	MN40	MN10
SPH (Kazhdan et al., 2003)	68.2%	79.8%
LFD (Chen et al., 2003)]	75.5%	79.9%
T-L Network (Girdhar et al., 2016)	74.4%	-
VConv-DAE (Sharma et al., 2016)	75.5%	80.5%
3D-Gan (Wu et al., 2016)	83.3%	91.0%
ours, EMD loss	84.4%	95.3 %
ours, CD loss	85.7 %	95.0%

Improve SoA in unsupervised feature learning

Qualitative Results

Latent interpolations between objects

Structural editing: e.g. "add" armrests

Evaluation Metrics

Distributional Divergence

Jensen-Shannon
Divergence in 3D space

Minimum Matching Distance

Matching distance of **every** training object and any synthetic one (indicative of mode collapse)

Realism

Average classification probability with SoA point cloud classifier

Quantitative Results

Latent-GANs create
more realistic point
clouds, and better
match the ground
truth distribution

Smaller embeddings (32 vs. 512) trained faster without hurting fidelity (GAN & iWGAN)

Generative Results

