Cross-modal Prototype Driven Network for Radiology Report Generation ECCV2022

La Jun Wang, Abhir Bhalerao, Yulan He

Abstract

- Radiology Report Generation (RRG) aims to describe automatically a radiology image with human-like language.
- Approaches often use encoder-decoder architectures but focus on single-modal feature learning.
- We propose a CROSS-modal PROtotype driven NETwork (XPRONET) to promote cross-modal pattern learning to improve radiology report generation from X-rays.
- XPRONET obtains substantial improvements on the IU-Xray and MIMIC-CXR benchmarks, exceeding recent state-of-the-art approaches.

Fig. 1: An example of the report generated by different models. The ground truth report is shown in the blue dashed rectangle. Words that occurred in the ground truth are marked as red.

Challenges

- Radiology reports consist of several sentences and their length may be four-times longer than image captions.
- Medical reports often exhibit more sophisticated linguistic and semantic patterns.
- Datasets suffer from notable biases: (1) a majority of the training samples are of *normal* cases; (2) any abnormal regions often only exist in small parts of an image, even in pathological cases (3) most statements may be associated with a description of normal findings.

Architecture Pseduo Label y [1,0,1,0,...,0]0000...000 0000...000

Fig. 2: The architecture of XPRONET: An image is fed into the Visual Feature Extractor to obtain patch features. A word at time step T (e.g. "lungs") is mapped onto a word embedding via an embedding layer. The visual and textual representations are then sent to the cross-modal prototype querying and responding module to perform cross-modal interaction on the selected cross-modal prototypes based on the associated pseudo label. Then the single-model feature are enriched by the generated responses through a linear layer and taken as the source inputs of the Transformer encoder-decoder to generate the report.

PRESENTER Jun Wang

@markin-wang

Cross-modal prototypes increase performance of radiology report generation

- 1. A novel end-to-end cross-modal prototype driven network is developed utilising cross-modal prototypes to enhance image and text pattern interactions
- 2. A memory matrix is used to learn and record the cross-modal prototypes which are regarded as intermediate representations between the visual and textual features
- 3. An improved multi-label contrastive loss learns cross-modal prototypes while simultaneously accommodating label differences via an adaptive controller term

We are very grateful to the support of the UKRI Tier 2 Sulis HPC Platform, enabling the efficient training on the MIMIC-CXR dataset.

Method

Aim: To learn important informative cross-modal patterns and utilize them to explicitly model cross-modal feature interactions for RRG.

- A. Image Feature Extractor: Given an input radiology image and its report, we firstly extract the visual feature sequences (tokens) and pseudo labels.
- B. Prototype Matrix Initialisation: We design a shared cross-modal prototype matrix $PM \in \mathbb{R}^{N^l \times N^p \times D}$ to learn and store the cross-modal patterns, which can be considered as intermediate representations. It is initialized from the clustered, concatenated features (visual+textutal) via K-Mean algorithm.
- C. Cross-modal Prototype Querying&Responding: To generate the responses containing the most related cross-modal patterns to visual/textual
- Measure the similarity (weight) between its **single**-modal representation and the **cross**-modal prototype vectors.
- Select the top γ vectors having the highest similarity to interact with the single-model representations.
- Generate the responses r^s and r^t for the visual and textual features by taking the weighted sum over these transformed cross-modal prototype
- D. Feature Interaction: The last step is to introduce these informative patterns (selected cross-modal vectors) into the single-modal features by a linear layer which takes the concatenated single-model features and responses as input and outputs the fused features l^s and l^t .
- E. Report Generation with Transformer: Given the fused visual and textual representation sequences l^s and $l^t = \{l_1^t, l_2^t, \dots, l_{T-1}^s\}$, the report is generated by the encoder-decoder through a repeating process:

$$\{m_1, m_2, \dots, m_{N^s}\} = Encoder(l_1^s, l_2^s, \dots, l_{N^s}^s)$$
 (

$$p_T = \mathbf{Decoder}(m_1, m_2, \dots, m_{N^s}; l_1^t, l_2^t, \dots, l_{T-1}^t)$$
 (2)

F. **Prototype Learning**: An improved multi-label contrastive loss is proposed to further supervise the learning of the crocs-modal prototypes, where the maximum positive similarity is replaced with a label difference term, $\theta^{(.)}$:

$$L_{icn}^{s} = \frac{1}{B^{2}} \sum_{i=1}^{B} \sum_{j:y_{i} \otimes y_{j} \neq 0}^{B} (\theta^{-\frac{h_{d}}{h_{t}}} - Sim(\sigma(r_{i}^{s}, r_{j}^{s}))) + \sum_{j:y_{i} \otimes y_{j} = 0}^{B} \max(Sim(\sigma(r_{i}^{s}, r_{j}^{s})) - \alpha, 0)$$
(3)

 $h_d = \epsilon(abs(\mathbf{y}_i - \mathbf{y}_i)), \quad h_t = \epsilon(\mathbf{y}_i + \mathbf{y}_i)$

Results

Dataset	Method	BL-1	BL-2	BL-3	BL-4	RG-L	MTOR	CIDEr
IU-Xray	ST [38]	0.216	0.124	0.087	0.066	0.306	-	-
	ADAATT [26]	0.220	0.127	0.089	0.068	0.308	-	0.295
	ATT2IN [36]	0.224	0.129	0.089	0.068	0.308	-	0.220
	SentSAT + KG [47]	0.441	0.291	0.203	0.147	0.304	-	0.304
	HRGR [20]	0.438	0.298	0.208	0.151	0.322	-	0.343
	CoAT[14]	0.455	0.288	0.205	0.154	0.369	-	0.277
	CMAS - RL [13]	0.464	0.301	0.210	0.154	0.362	-	0.275
	KERP [19]	0.482	0.325	0.226	0.162	0.339	-	0.280
	$R2GenCMN^*$ [3]	0.474	0.302	0.220	0.168	0.370	0.198	-
	$\overline{\boldsymbol{XPRONET}(Ours)}$	0.525	0.357	0.262	0.199	0.411	0.220	0.359
	RATCHET [11]	0.232	-	-	-	0.240	0.101	-
	ST [38]	0.299	0.184	0.121	0.084	0.263	0.124	-
MIMIC -CXR	ADAATT [26]	0.299	0.185	0.124	0.088	0.266	0.118	-
	ATT2IN [36]	0.325	0.203	0.136	0.096	0.276	0.134	-
	TopDown[1]	0.317	0.195	0.130	0.092	0.267	0.128	-
	$R2GenCMN^*$ [3]	0.354	0.212	0.139	0.097	0.271	0.137	-
	V D D O N ET (Oama)	0.244	0.215	0 146	0 105	0.270	0 199	

Table 1: Comparative results of XPRONET with previous studies. The best values are highlighted in bold and the second best are underlined.

Fig. 3: An example generated report and the selected cross-modal prototype indices. The prototype indices selected both from the image patch and from the text instance are marked as red.

Fig. 4: T-SNE visualization of the cross-modal prototype matrix on the MIMIC-CXR. Points with the same colour come from the same prototype category.