Theorem 0.1: A set $\mathcal{O} \subseteq \mathbb{R}$ is open if and only if \mathcal{O}^c is closed.

Proof:

If $\mathcal{O} \subseteq \mathbb{R}$ is open, let $x \in \mathcal{O}^{c'}$. Then for all $\epsilon > 0$, there exists $a \in B_{\epsilon}(x) \cap (\mathcal{O}^c \setminus \{x\})$ such that $a \in \mathcal{O}^c$. This means, for all ϵ , there exists $a \in B_{\epsilon}(x)$ and $a \in \mathcal{O}^c$. Thus $x \notin \mathcal{O}$, or $\mathcal{O}^{c'} \subseteq \mathcal{O}^c$. So \mathcal{O}^c is closed.

If \mathcal{O}^c is closed, let $x \in \mathcal{O}$. Since $x \notin \mathcal{O}^c$, $x \notin \mathcal{O}^{c'}$,

then there exists an $\epsilon > 0$ such that the ϵ -neighborhood about x does not intersect $(\mathcal{O}^c \setminus \{x\})$. So that ϵ -neighborhood is in \mathcal{O} , so \mathcal{O} is open. \square

Corollary 0.2. The union of a finite collection of closed sets is closed. The intersection of an arbitrary collection of closed sets is closed.

Proof:

In either cases, it suffices to show that the union and intersection of 2 closed sets is closed.

Let \mathcal{A}, \mathcal{B} be closed sets, so by Theorem 0.1, \mathcal{A}^c and \mathcal{B}^c are open.

Since $\mathcal{A} \cup \mathcal{B} = (\mathcal{A}^c \cap \mathcal{B}^c)^c$, and \mathcal{A}^c and \mathcal{B}^c are open, the complement of their intersection is closed, and $\mathcal{A} \cup \mathcal{B}$ is closed.

Since $\mathcal{A} \cap \mathcal{B} = (\mathcal{A}^c \cup \mathcal{B}^c)^c$, and \mathcal{A}^c and \mathcal{B}^c are open, the complement of their union is closed, and $\mathcal{A} \cap \mathcal{B}$ is closed. \square