Homework 7: Cauchy Sequences, Series (Due March 7, 2020)

Assignments should be **stapled** and written clearly and legibly. Problems 5 and 6 are optional. In this and future assignments, you may use any result proved or stated in class, unless a problem states otherwise.

- 1. §3.1, #7.
- 2. §4.3, #15.
- 3. §8.2, #9.
- 4. Let (a_n) be a bounded sequence.
 - (a) Prove that the sequence (b_n) , defined by $b_n = \sup\{a_k : k \ge n\}$, converges.
 - (b) The **limit superior** of (a_n) , denoted by $\limsup a_n$, is defined to be the limit of the sequence (b_n) of part (a). Give a reasonable definition for $\liminf a_n$, and briefly explain why it must exist.
 - (c) Prove that if (c_n) and (d_n) are convergent sequences such that $c_n \leq d_n$ for all n, then $\lim_{n \to \infty} c_n \leq \lim_{n \to \infty} d_n$.
 - (d) Prove that $\liminf a_n \leq \limsup a_n$. Give an example of a bounded sequence (a_n) for which this inequality is strict.
- 5. Let (a_n) be a bounded sequence. Prove that $\liminf a_n = \limsup a_n$ if and only if $\lim_{n \to \infty} a_n$ exists. In this case, all three share the same value.
- 6. (Challenge) Let (a_n) have the property that every subsequence has a subsequence converging to L. Prove that (a_n) converges to L.