Due: 13 November 2019 @8:40 am – No late homework will be accepted.

- 1) Consider the BiCMOS follower circuit shown in Figure 1a. The BJT transistor parameters are $V_{BE,on}=0.75V$, $V_{CE,sat}=0.25V$, $V_A=\infty$, and the depletion mode n-MOSFET parameters are $V_{TH}=-1.7V$, $k_n=15mA/V^2$, $\lambda=0$ (You can treat depletion mode MOSFETS as regular MOSFETS).
 - a. Determine the maximum and minimum values of output voltage and the corresponding input voltages for the circuit to operate in the linear region (i.e. Class-A operation) for (a) $R_L = \infty$ and (b) $R_L = 400\Omega$.
 - b. What is the smallest value of R_L possible if a 2.5 V peak sine wave is produced at the output?
 - c. What is the corresponding power conversion efficiency?
- 2) Consider the class-AB output stage in Figure 1b. The diodes and transistors are matched, with parameters $I_S = 7 \times 10^{-12} A$, and $\beta = 50$.
 - a. Determine R_1 such that the minimum current in the diodes is 24 mA when $V_0=25V$. Find i_N and i_P for this condition.
 - b. Using the results of part (a), determine the diode and transistor currents when $V_0 = 0$.
- 3) Consider the class-AB MOSFET output stage shown in Figure 2a. The circuit parameters are $I_{Bias}=0.25mA$, $R_L=1.2k\Omega$. The transistor parameters are $V_{TH,n}=0.75V$, $k_n'=120\mu A/V^2$, $V_{TH,p}=-0.75V$, $k_p'=50\mu A/V^2$. For the quiescent condition, assume $V_{GS,3}=V_{SG,4}$ and $V_{GS,1}=V_{GS,2}$. Assume $\lambda=0$ for all transistors.
 - a. If $V_i = -1.6V$, $V_O = 0V$, and $i_{D1} = i_{D2} = 0.4mA$, determine the W/L ratio of each transistor.
 - b. Assuming a voltage drop across I_{Bias} of 0.25 V and no voltage drop across V_i , find the maximum and minimum limits of V_O .
- 4) Using SPICE, plot the input/output characteristic of the circuit shown in Figure 2b for $-2.3 \text{ V} < V_{in} < +2.3 \text{ V}$. Also, plot the output waveform for an input sinusoid having a peak amplitude of 2.3 V. How are these results changed if the load resistance is raised to 20 Ω ? Use 2N2222 npn transistor in LTSpice.

Fig 1a. Figure of Question 1

Fig 1b. Figure of Question 2

Fig 2a. Figure of Question 3

Fig 2b. Figure of Question 4