Homework 2

Giulio Nenna (s245715@studenti.polito.it)

14 febbraio 2021

Realizzato in collaborazione con Giulio Nenna (s245717), Andrea Sanna (s222975) e Ornella Elena Grassi (s290310)

Esercizio 1.

- (1) Dato che sono apparsi 8 fiori tra le 9 e le 10 a.m.,
 - la probabilità che 3 di questi siano apparsi tra le 9 e le 9:20 a.m. è

$$P\left(N\left(\frac{1}{3}\right)=3\mid N\left(1\right)=8\right)=\binom{8}{3}\left(\frac{1}{3}\right)^3\left(1-\frac{1}{3}\right)^5\sim 0.273;$$

• la probabilità che ne appaiano 13 tra le 9 a.m. e le 11 a.m. è

$$P(N(2) = 13 \mid N(1) = 8) = P(N(2) - N(1) = 5) = e^{-3} \frac{3^5}{5!} \sim 0.101.$$

(2) Si vuole calcolare la probabilità che tra le 9 a.m. e le 11 a.m. compaiano esattamente 3 fiori di tipo A, 2 di tipo B e nessuno di tipo C. Siano $N_i(t)$ con $i \in \{A, B, C\}$ i processi di Poisson ottenuti dal thinning del processo principale N(t). Essi rappresentano quindi il numero di fiori di tipo i sbocciati entro l'istante t e sono indipendenti con rate λp_i . Si ottiene:

$$P(N_A(2) = 3, N_B(2) = 2, N_C(2) = 0) =$$

$$P(N_A(2) = 3)P(N_B(2) = 2)P(N_C(2) = 0) =$$

$$e^{-3\frac{1}{3}2} \frac{\left(3\frac{1}{3}2\right)^3}{3!} \cdot e^{-3\frac{1}{6}2} \frac{\left(3\frac{1}{6}2\right)^2}{2!} \cdot e^{-3\frac{1}{2}2} \frac{\left(3\frac{1}{2}2\right)^0}{0!} =$$

$$e^{-2\frac{8}{3!}} \cdot e^{-1} \frac{1}{2!} \cdot e^{-3} \sim 0.0016$$

(3) Indicando con τ_1 il tempo in cui compare il primo fiore di tipo A, risulta che se $N_A(t) \sim \operatorname{Poisson}(\lambda p_A = 1)$, allora $\tau_1 \sim \exp(1)$. Pertanto, condizionatamente al fatto che il primo fiore che compare è di tipo A, la probabilità che il tempo τ in cui ciò avviene sia $\leq \frac{1}{2}$ è

$$P\left(\tau_1 \le \frac{1}{2}\right) = \int_0^{\frac{1}{2}} 1 \cdot e^{-1 \cdot x} \, dx = 1 - e^{-\frac{1}{2}} \sim 0.393.$$

Esercizio 2.

(a) Il processo di costruzione e distruzione del castello di sabbia può essere modellato con una catena di Markov a tempo continuo siffatta:

 $S=\{0,1,2\}$ è l'insieme degli stati ai quali sono associati i seguenti transition rates:

$$Q = \begin{bmatrix} -2 & 2 & 0 \\ 3 & -4 & 1 \\ 3 & 0 & -3 \end{bmatrix}.$$

Dove q(i,j) per $i \neq j$ rappresenta il rate dell'esponenziale che partecipa alla gara esponenziale se la catena si trova sullo stato i. Se a vincere è l'esponenziale $\tau_{ij} \sim \exp(q(i,j))$ allora la catena salta allo stato j. In pratica dallo stato 0 (costruzione del primo piano) si passa necessariamente allo stato 1 dopo un tempo esponenziale ($\exp(2)$). Una volta entrati nello stato 1 (costruzione del secondo piano) parte una gara esponenziale tra l'onda ($\exp(3)$) e la fine della costruzione del secondo piano ($\exp(2)$): se vince la prima si ritorna allo stato 0 mentre se vince la seconda si passa allo stato 2. Infine, arrivati allo stato 2 l'unica possibilità è quella di aspettare un'onda per tornare allo stato 0, che arriverà secondo un tempo esponenziale ($\exp(3)$).

Da Q si deducono quindi:

$$\begin{cases} \lambda(0) = 2 \\ \lambda(1) = 4 \\ \lambda(2) = 3 \end{cases} \qquad R = \begin{bmatrix} 0 & 1 & 0 \\ \frac{3}{4} & 0 & \frac{1}{4} \\ 0 & 0 & 1 \end{bmatrix}$$

(b) La probabilità che, partendo dallo stato 1, dopo 2 ore, ci si ritrovi nello stato 0 è

$$P_2(1,0)$$
,

dove P_2 è la matrice della probabilità di transizione al tempo t=2, data da

$$P_2 = e^{Q_2} = \sum_{k=0}^{\infty} 2^k \frac{Q^k}{k!},$$

che è una soluzione particolare delle equazioni di Kolmogorov $(P'(t) = P_t Q e P'(t) = Q P_t)$, nel caso t = 2.

(c) La probabilità che i bambini riescano a finire la costruzione del secondo livello, prima che un'onda li costringa a ricominciare ed essendo già alle prese con la costruzione del primo livello, è legata al fatto che la variabile di Poisson relativa al processo di comparsa delle onde arrivi due volte seconda in due gare esponenziali, rispettivamente prima con l'esponenziale di tasso 2 e, poi, con l'esponenziale di tasso 1 all'ora. Allora, si avrà:

$$1^{a} \operatorname{gara}: P(\exp(2) \operatorname{arrivi primo}) = \frac{\lambda(\exp(2))}{\sum_{i} \lambda_{i}} = \frac{2}{2+3} = \frac{2}{5};$$

$$2^{a} \mathrm{gara}: \ P\left(\exp\left(1\right) \mathrm{arrivi\ primo}\right) = \frac{\lambda\left(\exp\left(1\right)\right)}{\sum_{i} \lambda_{i}} = \frac{1}{1+3} = \frac{1}{4}.$$

Dunque, la probabilità cercata sarà pari a:

$$\frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10}$$

Esercizio 3.

Si consideri una CTMC con spazio degli stati $\{0,1,2,\ldots\}$ e rates di transizione (per $i\neq j$)

$$q\left(i,j\right) = \begin{cases} \frac{3+\sin i}{1+i^2}, & \text{se } i^2 < j < 2i^2 + 1\\ 0, & \text{altrimenti} \end{cases}$$

(a) Trovare $P(X_{1.5} = 4 \mid X_0 = 8)$ significa calcolare $P_{1.5}(8,4)$. Tuttavia, $\forall i, j, i \neq j$, dallo stato i si può arrivare allo stato j solamente se

$$i^2 < j < 2i^2 + 1$$

ossia la catena non può fare altro che avanzare nello spazio degli stati Pertanto non è possibile che se $X_0=8$ la catena effettui un passo verso uno stato j<8, in particolare:

$$P_{1.5}(8,4) = 0.$$

(b) Calcolare $P(X_{1.5} \neq 0 \mid X_0 = 0)$ significa calcolare $P_{1.5}(0, x > 0)$, ovvero la probabilità di effettuare un salto da 0 entro un tempo pari a 1.5.

Sia τ_0 l' "holding time" nello stato 0. Sappiamo che

$$\tau_0 \sim \exp(\lambda(0))$$
.

Pertanto, si ricava che

$$P_0\left(\tau_0 < 1.5\right) = \int_0^{1.5} e^{\lambda(0)x} dx = 1 - e^{-\lambda(0)1.5}$$

dove, sapendo che

$$q(0,1) = \frac{3 + \sin 0}{1} = 3 = \lambda(0) \cdot r(0,1)$$

e che $r\left(0,1\right)=1$ (poiché 1 è l'unico stato raggiungibile da 0), risulta $\lambda\left(0\right)=3.$

In conclusione,

$$P(\tau_0 < 1.5) = 1 - e^{-4.5} \sim 0.99.$$

(c) Per capire se la catena è esplosiva, possiamo studiare i rates $\lambda(i)$ associati ad ogni stato y_i della catena "embedded". Risulta:

$$\lambda(i) = \sum_{j=1}^{\infty} q(i,j) = \sum_{j=i^2+1}^{2i^2+1} \frac{3 + \sin(i)}{1 + i^2} = (2i^2 + 1 - i^2 - 1 + 1) \frac{3 + \sin(i)}{1 + i^2} = (3 + \sin(i)) \left(\frac{i^2 + 1}{i^2 + 1}\right) < 4$$

Poichè i rate dei tempi di uscita da ciascuno stato sono maggiorati da una costante K=4 allora la catena **non** è esplosiva.

Esercizio 4.

Si consideri una CTMC con spazio degli stati $\{0,1,2,\ldots\}$. Siano $y_i,\,i\in S$, i relativi stati della catena "embedded".

(a) Se i tassi di transizione sono

$$q(i,j) = \begin{cases} 2^{i} & \text{if } j = i+1 \\ 0 & \text{if } j \neq i \text{ e } j \neq i+1 \end{cases},$$

allora la catena "embedded" risulta essere una catena di sole "nascite", dove $r(i,j)=1, \, \forall i\neq j.$

Ne consegue che $\lambda(i) = 2^i$, $\forall i$ e, dunque,

$$\sum_{n=0}^{\infty} \frac{1}{\lambda_{y_n}} = \sum_{n=0}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$$

è convergente (essendo una serie geometrica di ragione $\frac{1}{2}$). Pertanto, la catena è esplosiva.

(b) Se i tassi di transizione sono

$$q\left(i,j\right) = \begin{cases} i+1 & \text{if } i < j \leq i+5 \\ 0.5 & \text{if } j=i-1 \text{ e } i \geq 1 \\ 0 & \text{in tutti gli altri casi} \end{cases},$$

allora ad ogni salto catena può effettuare un solo passo indietro oppure un numero di passi in avanti compreso tra 1 e 5. Vale la seguente:

$$\lambda(0) = 5$$

$$\lambda(i) = \sum_{j \in S} q(i, j) = 0.5 + \sum_{i+1}^{i+5} (i+1) = 5i + 5.5 \text{ per } i \ge 1$$

Ora assumendo che la catena embedded parta da un valore arbitrario $Y_0 = k \text{ con } k \in \mathbb{N}$, allora

$$Y_n \le k + 5n$$

ossia Y_n non può assumere un valore più grande di k+5n che si realizzerebbe solamente nel caso in cui la catena compie n salti di

lunghezza 5 in avanti.

Poiché λ è una funzione monotona vale quindi:

$$\lambda(Y_n) \le \lambda(k+5n)$$

da cui:

$$\sum_{n=1}^{\infty} \frac{1}{\lambda(Y_n)} \ge \sum_{n=1}^{\infty} \frac{1}{\lambda(k+5n)} = \sum_{n=1}^{\infty} \frac{1}{5k+25n+5.5} = \infty$$

pertanto la catena non esplode.

(c) Se i tassi di transizione sono

$$q\left(i,j\right) = \begin{cases} 2^{i} & \text{if } j = i+1 \\ 2^{i+1} & \text{if } j = i-1 \text{ e } i \geq 2 \\ 0 & \text{in tutti gli altri casi} \end{cases},$$

Allora, per $i \geq 2$:

$$\lambda(i) = 2^{i+1} + 2^i = 3 \cdot 2^i.$$

In particolare per $i \geq 2$:

$$r(i, i+1) = \frac{q(i, i+1)}{\lambda(i)} = \frac{1}{3}$$

 $r(i, i-1) = \frac{q(i, i-1)}{\lambda(i)} = \frac{2}{3}$

La catena embedded è quindi una birth-death chain discreta riflessa nello stato 0. Questo tipo di catena discreta ammette una distribuzione stazionaria (e quindi è ricorrente) se e solo se:

$$M = \sum_{r=0}^{\infty} \prod_{i=0}^{x-1} \frac{p_i}{q_{i-1}} < \infty$$

dove nel nostro caso:

$$p_i = \frac{1}{3} \qquad q_i = \frac{2}{3}$$

$$p_0 = p_1 = 1 \qquad q_0 = q_1 = 0$$

$$\forall i \ge 2$$

infatti se la catena si trova negli stati 0 o 1 non può fare altro che avanzare di un passo.

Quindi la quantità M in esame sarà pari a:

$$M = 2 + \sum_{x=3}^{\infty} \left(\frac{1}{2}\right)^x < \infty.$$

Questo risultato dimostra che la catena embedded $(Y_n)_{n\in\mathbb{N}}$ relativa alla CTMC ammette una distribuzione stazionaria ed è quindi una catena **ricorrente**. In particolare la CTMC in esame **non** può essere esplosiva dal momento che se una generica CTMC è esplosiva, allora la sua catena embedded deve necessariamente essere transiente.

Esercizio 5.

Sia $\Omega = \mathbb{N} \setminus \{0\}$ e $\mathcal{F} = P(\Omega)$.

Si consideri il seguente processo stocastico:

$$\begin{cases} X_0 = 0 \\ X_n = \begin{cases} -1 & \text{se } \omega \le n \\ n & \text{se } \omega > n \end{cases} .$$

(1) Osserviamo che:

$$X_0(\omega) \in \{0\},\ X_1(\omega) \in \{-1,1\},\ X_2(\omega) \in \{-1,2\},\ \dots \text{ e così via.}$$

Pertanto le controimmagini sono nella forma:

$$X_1^{-1}(1) = \{\omega \in \mathbb{N} \setminus \{0\} | \omega > 1\}$$

$$X_1^{-1}(-1) = \{\omega \in \mathbb{N} \setminus \{0\} | \omega \le 1\}$$

$$X_2^{-1}(2) = \{\omega \in \mathbb{N} \setminus \{0\} | \omega > 2\}$$

$$X_2^{-1}(-1) = \{\omega \in \mathbb{N} \setminus \{0\} | \omega \le 2\}$$

$$\vdots$$

Le σ -algebre che rendono misurabile il processo allo scorrere di t sono quindi (si considera $k \in \mathbb{N} \setminus \{0\}$):

$$\sigma(X_1) = \sigma(\{0, 1\}, \{k > 1\})$$

$$\sigma(X_2) = \sigma(\{0, 1\}, \{k > 1\}, \{0, 1, 2\}, \{k > 2\})$$

:

Se ne deduce, allora, che, per $n \geq 0$,

$$\mathcal{F}_n = \sigma\{X_0, ..., X_n\} = \sigma(\{0, ..., i\}, \{k > i\}, i = 1, ... n)$$

(2) Sia

$$\mathbb{P}(A) = \sum_{k \in A} \frac{1}{k(k+1)}.$$

Mostriamo che \mathbb{P} è una probabilità su (Ω, \mathcal{F}) .

- $\mathbb{P}(\emptyset) = 0$, poiché, in tal caso, $\mathbb{P}(\emptyset) = \sum_{k \in \emptyset} \frac{1}{k(k+1)}$ è una sommatoria vuota, dato che non vi sono elementi in \emptyset ;
- $\mathbb{P}(A) \ge 0 \ \forall A \in \mathcal{F}$, poiché $\sum_{k \in A} \frac{1}{k(k+1)} > 0$ sempre, dato che $k \in \mathbb{N} \setminus \{0\}$;

inoltre, se $A_1, A_2, ...$ è una successione di insiemi mutuamente disgiunti in \mathcal{F} , allora

-
$$\mathbb{P}\left(\cup_{j=1}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mathbb{P}\left(A_{j}\right)$$
, poiché, in tal caso, è possibile scrivere

$$\mathbb{P}\left(\cup_{j=1}^{\infty}A_{j}\right) = \sum_{k\in\cup_{j=1}^{\infty}A_{j}}\frac{1}{k\left(k+1\right)} = \sum_{k\in A_{1}}\frac{1}{k\left(k+1\right)} + \sum_{k\in A_{2}}\frac{1}{k\left(k+1\right)} + \dots = \mathbb{P}\left(A_{1}\right) + \mathbb{P}\left(A_{2}\right) + \dots = \sum_{j=1}^{\infty}\mathbb{P}\left(A_{j}\right);$$

- $\mathbb{P}(\Omega) = 1$, poiché

$$\mathbb{P}\left(\Omega\right) = \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

e, dunque,

$$\sum_{n=1}^{k} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{k+1} \longrightarrow 1, \text{ per } k \to \infty.$$

Mostriamo che $(X_n)_{n\geq 0}$ è una martingala rispetto a \mathcal{F}_n .

- $(X_n)_{n\geq 0}$ è adattato a \mathcal{F}_n , poiché un processo stocastico è sempre adattato alla filtrazione naturale;
- $X_n \in L^1$, poiché

$$\mathbb{E}[\mid X_n \mid] = \mid -1 \mid P(\omega_i \le n) + n \cdot P(\omega_i > n) \le 1 + n < +\infty$$

$$\Rightarrow \mathbb{E}[\mid X_n \mid] < +\infty;$$

-
$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n$$
, poiché

$$\mathbb{E}[X_{n+1} - X_n \mid \mathcal{F}_n] = P(\omega_i > n+1) + (-1-n) \cdot P(\omega_i = n+1) = \sum_{k=n+2}^{\infty} \left(\frac{1}{k(k+1)}\right) + (-1-n) \cdot \frac{1}{(n+1)(n+2)} = 1 - \left(1 - \frac{1}{n+2}\right) - \frac{n+1}{(n+1)(n+2)} = 1 - \frac{n+1}{n+2} - \frac{1}{n+2} = \frac{1}{n+2} - \frac{1}{n+2} = 0.$$

(3) La martingala X_n risulta essere limitata in L^1 , poiché, essendo inferiormente limitata da -1, essa non potrà mai allontanarsi indefinitamente da questo valore. In particolare, risulta:

$$\sup_{n} \mathbb{E}[|X_{n}(\omega)|] = \omega - 1.$$

Applicando il "teorema di convergenza" di Doob, allora, si ottiene che

$$X_n \xrightarrow{q.c.} X_\infty \in L^1$$

e, quindi, X_{∞} deve necessariamente valere -1.

Esercizio 6.

Sia $\Omega = \mathbb{N} \setminus \{0\}$, $\mathcal{F} = P(\Omega)$ e $\mathbb{P}(A) = \sum_{k \in A} 2^{-k}$. Si consideri il seguente processo stocastico:

$$\begin{cases} M_n = \omega & \text{se } \omega \le n \\ M_n = n + 2 & \text{se } \omega > n \end{cases}.$$

- (1) Mostriamo che \mathbb{P} è una probabilità su (Ω, \mathcal{F}) .
 - $\mathbb{P}(\emptyset) = 0$, poiché, in tal caso, $\mathbb{P}(\emptyset) = \sum_{k \in \emptyset} \frac{1}{2^k}$ è una sommatoria vuota, dato che non vi sono elementi in \emptyset ;
 - $\mathbb{P}(A) \geq 0 \ \forall A \in \mathcal{F}$, poiché $\frac{1}{2^k} > 0$ sempre; inoltre, se A_1, A_2, \dots è una successione di insiemi mutuamente disgiunti in \mathcal{F} , allora
 - $\mathbb{P}\left(\bigcup_{j=1}^{\infty}A_{j}\right)=\sum_{j=1}^{\infty}\mathbb{P}\left(A_{j}\right)$, poiché, in tal caso, è possibile scrivere

$$\mathbb{P}\left(\cup_{j=1}^{\infty} A_{j}\right) = \sum_{k \in \cup_{j=1}^{\infty} A_{j}} \frac{1}{2^{k}} = \sum_{k \in A_{1}} \frac{1}{2^{k}} + \sum_{k \in A_{2}} \frac{1}{2^{k}} + \dots = \mathbb{P}\left(A_{1}\right) + \mathbb{P}\left(A_{2}\right) + \dots = \sum_{j=1}^{\infty} \mathbb{P}\left(A_{j}\right);$$

- $\mathbb{P}(\Omega) = 1$ poiché, osservando che

$$\sum_{n=1}^{\infty} 2^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n - 1$$

e ragionando sulla prima quantità di questa differenza, possiamo scrivere:

$$\begin{split} &\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots \\ &\Leftrightarrow \left(1 - \frac{1}{2}\right) \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots\right) \\ &\Leftrightarrow \left(1 - \frac{1}{2}\right) \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \left(1 - \frac{1}{2}\right)^{n+1} \\ &\Leftrightarrow \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}}. \end{split}$$

Da ciò segue che

$$\lim_{n \to \infty} \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{\frac{1}{2}} = 2$$

e, pertanto,

$$\sum_{n=1}^{\infty} 2^{-n} = 2 - 1 = 1.$$

Mostriamo che $(M_n)_{n\geq 0}$ è una martingala rispetto alla filtrazione naturale $\mathcal{F}_n = \sigma\{M_0, M_1, ..., M_n\}$.

- $(M_n)_{n\geq 0}$ è adattato a \mathcal{F}_n , poiché un processo stocastico è sempre adattato alla filtrazione naturale;
- $M_n \in L^1$, poiché

$$\mathbb{E}[| M_n |] = \sum_{i=1}^{\infty} | \omega_i | p_{\omega_i} \mathbb{1}_{\{\omega_i \le n\}} + | n+2 | P(\omega_i > n) \le \frac{n(n+1)}{2} + n + 2 < +\infty$$

$$\Rightarrow \mathbb{E}[| M_n |] < +\infty;$$

- $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$, poiché

$$\mathbb{E}[M_{n+1} - M_n \mid \mathcal{F}_n] = 1 \cdot P(\omega_i > n+1) + (-1) \cdot P(\omega_i = n+1) = \sum_{k=n+2}^{\infty} \left(\frac{1}{2}\right)^k - \left(\frac{1}{2}\right)^{n+1} = 2 - \frac{2^{n+2} - 1}{2^{n+1}} - \frac{1}{2^{n+1}} = 0.$$

(2) M_n è in realtà una martingala ereditaria, poiché

$$M_n = \mathbb{E}[\omega \mid \mathcal{F}_n],$$

dove ω è una variabile aleatoria $\in L^1$. Infatti

$$\mathbb{E}[|\omega|] = \sum_{i=1}^{\infty} \omega_i p_{w_i} \mathbb{1}_{\{\omega_i \le n\}} + \sum_{i=1}^{\infty} \omega_i p_{w_i} \mathbb{1}_{\{\omega_i > n\}} \le \frac{n(n+1)}{2} + \sum_{i=1}^{\infty} \frac{n+i}{2^{n+i}} < \infty,$$

poiché $\sum_{i=1}^{\infty} \frac{n+i}{2^{n+i}}$ converge, come mostra l'applicazione del "criterio del rapporto" a tale serie:

$$\lim_{i \to \infty} \frac{n+i+1}{2^{n+i+1}} \cdot \frac{2^{n+i}}{n+i} = \lim_{i \to \infty} \frac{n+i+1}{2n+2i} = \frac{1}{2}.$$

Pertanto, essendo M_n una martingala ereditaria, essa converge quasi certamente e in L^1 a M_{∞} , che è anche il limite che la genera, ovvero:

$$M_n \xrightarrow[L^1]{q.c.} M_\infty \in L^1,$$

dove

$$M_{\infty} = \lim_{n \to \infty} \mathbb{E}[\omega \mid \mathcal{F}_n] = \mathbb{E}[\omega \mid \mathcal{F}_{\infty}].$$

Inoltre,

$$\mathbb{E}[\omega \mid \mathcal{F}_n] = \mathbb{E}[M_{\infty} \mid \mathcal{F}_n],$$

dal momento che

$$\mathbb{E}[M_{\infty} \mid \mathcal{F}_n] = \mathbb{E}[\mathbb{E}[\omega \mid \mathcal{F}_{\infty}] \mid \mathcal{F}_n] = \mathbb{E}[\omega \mid \mathcal{F}_n].$$

Infine, siccome

$$\mathcal{F}_n = \sigma\{M_0, M_1, ..., M_n\} = \sigma\{\{2\}, \{1, 3\}, \{1, 2, 4\}, ..., \{1, 2, 3, 4, ..., n, n + 2\} \mid n \in \mathbb{N}\},\$$

 $\forall n \geq \omega-2,$ risulta che $\omega \sim \mathcal{F}_n$ e, pertanto, $\omega \sim \mathcal{F}_\infty;$ dunque, si avrà:

$$M_{\infty} = \mathbb{E}[\omega \mid \mathcal{F}_{\infty}] = \omega.$$

Esercizio 7.

(1) Sia $M=(M_n)_{n\geq 0}$ una martingala ad incrementi equilimitati (cioè tale che $\mid M_n-\bar{M}_{n-1}\mid \leq K$ con K costante) e sia $M^{\tau}=(M_n^{\tau})_{n\geq 0}$ la corrispondente martingala arrestata al tempo τ , integrabile. Proviamo che M^{τ} è uniformemente integrabile. Sia

$$M_n^{\tau} = M_{\tau \wedge 0} + (M_{\tau \wedge 1} - M_{\tau \wedge 0}) + (M_{\tau \wedge 2} - M_{\tau \wedge 1}) + \dots$$

Sfruttando l' "identità di arresto"

$$M_n^{\tau} - M_{n-1}^{\tau} = (M_n - M_{n-1}) \mathbb{1}_{\tau \le n},$$

otteniamo

$$M_n^{\tau} = M_0 + (M_1 - M_0) + (M_2 - M_1) + \dots$$

$$\Leftrightarrow | M_n^{\tau} | \le | M_0 | + \sum_{i=1}^n | M_i - M_{i-1} | \mathbb{1}_{\{\tau \ge i\}}.$$

Applicando la maggiorazione

$$\mid M_n^{\tau} \mid \leq \mid M_0 \mid + \sum_{i=1}^n \mid M_i - M_{i-1} \mid \mathbb{1}_{\{\tau \geq i\}} \leq \mid M_0 \mid + \sum_{i=1}^{\infty} \mid M_i - M_{i-1} \mid \mathbb{1}_{\{\tau \geq i\}},$$

ci basterà dimostrare che

$$\mathbb{E}[|\sum_{i=1}^{\infty} | M_i - M_{i-1} | \mathbb{1}_{\{\tau \ge i\}} |] < +\infty,$$

per poter dire che $\mid M_n^{\tau} \mid \leq Z \in L^1$.

In effetti, ciò è assicurato dal "teorema di convergenza dominata" di Beppo Levi", per il quale risulta che

$$\mathbb{E}[|\sum_{i=1}^{\infty} |M_{i} - M_{i-1} | \mathbb{1}_{\{\tau \geq i\}}|] \leq \mathbb{E}[\sum_{i=1}^{\infty} K \mathbb{1}_{\{\tau \geq i\}}] =$$

$$\mathbb{E}[\lim_{n \to \infty} \sum_{i=1}^{n} K \mathbb{1}_{\{\tau \geq i\}}] = \lim_{n \to \infty} \mathbb{E}[\sum_{i=1}^{n} K \mathbb{1}_{\{\tau \geq i\}}] =$$

$$\lim_{n \to \infty} K \sum_{i=1}^{n} \mathbb{E}[\mathbb{1}_{\{\tau \geq i\}}] = \lim_{n \to \infty} K \sum_{i=1}^{n} P(\tau \geq i) = K \sum_{i=1}^{\infty} P(\tau \geq i) = K \mathbb{E}(\tau) < \infty$$

(poiché τ è un tempo di arresto integrabile). Dunque,

$$\mid M_n^{\tau} \mid \leq Z \in L^1 \Rightarrow M_n^{\tau} \xrightarrow[L^1]{} M_{\tau}$$

ed essendo, quindi, M_n^τ limitata in $L^1,$ per il "teorema di convergenza" di Doob, vale anche

$$M_n^{\tau} \xrightarrow{q.c.} M_{\tau} \in L^1.$$

Allora, se

$$M_n^{\tau} \xrightarrow[L^1]{q.c.} M_{\tau} \in L^1,$$

per il "teorema di caratterizzazione di martingale in L^1 ", M^τ è uniformemente integrabile.

- (2) Sia $M=(M_n)_{n\geq 0}$ una martingala tale che:
 - i) $M_0 = 0;$
 - ii) $0 < a \le |M_n M_{n-1}| \le K < +\infty$.

(a) La martingala in questione non converge q.c. al crescere di n. Questo perché essa, per $n \to \infty$, può espandersi simmetricamente verso valori infinitamente positivi e negativi.

Se, per assurdo, M_n convergesse q.c. a M_{∞} , si avrebbe necessariamente che $M_{\infty}=0$, da cui

$$\lim_{n \to \infty} | M_n - M_{n-1} | = 0 \, \sharp \,,$$

dal momento che $|M_n - M_{n-1}| \ge a > 0, \forall n.$

(b) Sia $\lambda > 0$ e sia $\tau = \inf n : M_n > \lambda$.

Dal momento che $0<\lambda<\infty$, possiamo sicuramente affermare che τ è un tempo di arresto finito. Infatti, se la martingala $(M_n)_{n\geq 0}$, per $n\to +\infty$, si estende indefinitamente a $+\infty$ e $-\infty$, esisterà sicuramente un tempo di ingresso finito τ , in cui essa assumerà il valore finito $\lambda+k$, per un opportuno valore $k\in\mathbb{R}$.

Ne consegue che $(M_n^{\tau})_{n\geq 0}$ è certamente una martingala.

Proviamo che $\lambda + K - \overline{M}_n^{\tau}$ è una martingala.

- $(\lambda + K M_n^{\tau}) \sim \mathcal{F}_n$, con \mathcal{F}_n filtrazione naturale del processo $(\lambda + K M_n^{\tau})_{n>0}$;
- $(\lambda + K M_n^{\tau}) \in L^1$, poiché $(\lambda + K) \in L^1$ e $M_n^{\tau} \in L^1$;
- $\mathbb{E}[\lambda + K M_{n+1}^{\tau} \mid \mathcal{F}_n] = \lambda + K M_n^{\tau}$, poiché

$$\mathbb{E}[\lambda + K - M_{n+1}^{\tau} \mid \mathcal{F}_n] = \mathbb{E}[\lambda + K \mid \mathcal{F}_n] - \mathbb{E}[M_{n+1}^{\tau} \mid \mathcal{F}_n] = \lambda + K - M_n^{\tau}.$$

Adesso, per provare che $\lambda+K-M_n^{\tau}$ è una martingala convergente, basta provare che M_n^{τ} è convergente.

Usando l' "identità di arresto" e le proprietà del valore assoluto, si ottiene

$$|M_n^{\tau}| \le \sum_{i=1}^n |M_i - M_{i-1}| \mathbb{1}_{\{\tau \ge i\}},$$

da cui:

$$\begin{split} & \mathbb{E}[|\sum_{i=1}^{n} | \ M_i - M_{i-1} \ | \ \mathbb{1}_{\{\tau \geq i\}} \ |] \leq \mathbb{E}[\sum_{i=1}^{n} K \mathbb{1}_{\{\tau \geq i\}}] = \\ & K \sum_{i=1}^{n} \mathbb{E}[\mathbb{1}_{\{\tau \geq i\}}] = K \sum_{i=1}^{n} P\left(\tau \geq i\right) < +\infty \\ & \Rightarrow \sup_{n} \mathbb{E}[| \ M_n^{\tau} \ |] \leq +\infty. \end{split}$$

Pertanto, per il "teorema di convergenza" di Doob,

$$M_n^{\tau} \xrightarrow{q.c.} M_{\tau} \in L^1$$

e, dunque, anche $\lambda + K - M_n^{\tau}$ converge q.c. a $(\lambda + K - M_{\tau}) \in L^1$.

- (c) Il "teorema di arresto opzionale" di Doob afferma che se $M=(M_n)_{n\geq 0}$ è una martingala su Ω e τ è un tempo di arresto per M, supponendo che valga una delle seguenti condizioni:
 - i) τ è limitato, ovvero $\exists c$ costante tale che $\tau < c$ q.c.;
 - ii) $\mathbb{E}[\tau] < \infty$ ed esiste una costante $K \in \mathbb{R}$ tale che

$$\mid M_n(\omega) - M_{n-1}(\omega) \mid \leq K \ \forall (n, \omega);$$

iii) M è limitata, ovvero $\exists K \in \mathbb{R}$ tale che

$$|M_n(\omega)| \leq K \ \forall (n,\omega)$$

e τ è finito q.c.;

allora $\mathbb{E}[M_{\tau}] = \mathbb{E}[M_0].$

Nel caso della martingala $M=(M_n)_{n\geq 0}$, definita al punto (b), però, risulta che $\mathbb{E}[M_0]=0$, mentre $\lambda<\mathbb{E}[M_\tau]\leq \lambda+K$.

Di conseguenza, $\mathbb{E}[M_{\tau}] \neq \mathbb{E}[M_0]$ e quindi, in particolare, τ non è integrabile.