Exam 1

Mech 326: Aerodynamics Friday, October 9, 2015: 8:00–9:00 AM

Solution

- 1. (Desingularized vortex) (20%)
- 2. (Source near a wall) (20%)
- 3. (Lifting Cylinder) (20%)
- 4. (Concepts) (40%)

1. (Desingularized vortex) (20%) A desingularized clockwise vortex also known as a vortex blob (seriously) is centered at the origin and has the following two dimensional streamfunction,

$$\Psi = rac{\Gamma_d}{2\pi} \ln\!\sqrt{r^2 + \delta^2}$$

where $\delta = \text{constant}$ and $\Gamma_d > 0$.

- (a) Calculate the velocity field of the desingularized vortex.
- (b) Does a velocity potential exist for the vortex blob? If so, what is it? If not, why not?
- (c) A circular contour of radius $r = \delta$ is centered around the vortex blob. Calculate the circulation around the contour using **either** of the two different approaches.

(a)
$$u = \frac{\partial \Psi}{\partial y}$$
 $v = -\frac{\partial \Psi}{\partial x}$ $\frac{\partial \Psi}{\partial x}$ \frac

(c)
$$r = 6$$
 $r = -6$ $\vec{v} \cdot d\vec{s} = -\int_{0}^{7} (\vec{p} \times \vec{v}) d\vec{A}$

Approach 1 : $r = -6\vec{v} \cdot d\vec{s}$
 $\vec{v} \cdot d\vec{s} = rdo \hat{e}_{0}$
 $\vec{v} \cdot d\vec{s} = -rdo \hat{e}_{0}$
 $\vec{v} \cdot d\vec{s} = -rdo$

$$\Gamma = -\Gamma_d \left[\frac{\delta^2}{r^2 + \delta^2} \right]_0^{\delta} = -\Gamma_d \left[\frac{g^2}{2g^2} - \frac{g^2}{g^2} \right] = -\Gamma_d \left[\frac{1}{2} - \frac{1}{2} \right]$$

$$\Gamma = \frac{\Gamma_d}{2}$$

2. (Source near a wall) (20%) Consider a "source near a wall" flowfield. The flow consists of 2 sources of strength
$$\sigma$$
 a distance d on either side of a wall location. The velocity potential for this flow is given by

$$\phi = \frac{\sigma}{2\pi} \left\{ ln \left[(x-d)^2 + y^2 \right] + ln \left[(x+d)^2 + y^2 \right] \right\}$$

- (a) Show that there is no flow through the wall.
- (b) Determine the velocity distribution along the wall.
- (c) Determine the pressure distribution along the wall assuming $P = P_{\infty}$ far from the source.

(a) Show
$$u=0$$
 @ $x=0$

$$u=\frac{\partial \Phi}{\partial x}=\frac{\sigma}{2\pi}\left\{\frac{1}{(x-d)^2+y^2}2(x-d)+\frac{2(x+d)}{(x+d)^2+y^2}\right\}$$

(b) Peterphine $v(0,y)$:

$$v(x,y)=\frac{\sigma}{\partial y}=\frac{\sigma}{2\pi}\left\{\frac{2y}{(x-d)^2+y^2}+\frac{2y}{d^2+y^2}\right\}$$

(c) Find $P(x,y)$ along the wall $\Rightarrow P(x,y)$ when $P=P_{xx}$ for from Bernoullis: P_{xx} to $P(x,y)$ $\Rightarrow v(x,y)$ \Rightarrow

$$P(o,y) = P_{\infty} - \frac{1}{2} p \left[\frac{4\sigma^{2}y^{2}}{\pi^{2}(d^{2}+y^{2})^{2}} \right]$$

$$P(o,y) = P_{\infty} - \frac{2\rho\sigma^{2}y^{2}}{\pi^{2}(d^{2}+y^{2})^{2}}$$

3. (Lifting Cylinder) (20%) Consider the lifting flow over a circular cylinder with the following properties:

$$R = 0.2 \text{ m}$$

$$U_{\infty} = 2 \text{ m/s}$$

$$\rho = 1.23 \text{ kg/m}^3$$

The two stagnation points on the cylinder surface are 35 degrees apart. Determine the lift generated by this cylinder if it is 0.5 m long.

Lifting cylinder

Stagration pts occur @

$$\theta = -90^{\circ} + 17.5^{\circ} = -72.5^{\circ} \rightarrow \theta = -1.265 \text{ rad}$$

$$e = -90^{\circ} - 17.5^{\circ} = -107.5^{\circ}$$

$$\sin \theta = -0.954$$

$$\Gamma = -4\pi(z)(0.2)(-0.954)$$

$$\frac{L}{b} = \rho U \omega \Gamma \rightarrow L = \rho U \omega \Gamma b = (1.23)(2)(4.793)(0.5)$$

$$\boxed{L = 5.89N}$$

4. (Concepts) (40%) How well do you conceptually understand aerodynamics:
(4.1) The application of what type of stress causes a fluid to continuously deform but not a solid? A Shear Stress.
(4.2) What are the assumptions of potential flow? (3) Incompressible
(4.3) In a potential flow, does the strength of a vortex filament vary along it's length or stay the same? The strength stays the Same. (Helmhotte's 1st theorem
(4.4) In a potential flow, does the strength of a vortex filament vary in time or stay the same? The strength Stays the Same (Kelvin's Circulation theorem
(4.5) Mathematically, what does it mean to be incompressible? (4.6) Mathematically, what does it mean to have a steady flow? (4.7) Mathematically, what does it mean to have an irrotational flow?
(4.8) What are the four elementary potential flows? (1) Uniferm (2) Sowce/Sink (3) Opinblet (4) Vertex (4.9) In a potential flow, what is the drag on a cylinder?
7ero. (4.10) What is the theorem that connects the circulation around a body to the lift produced by the body? (4.10) What is the theorem that connects the circulation around a body to the lift produced by the body? (4.10) What is the theorem that connects the circulation around a body to the lift produced by the