FINAL: 180 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer ALL questions. You may use **two** single sided $8\frac{1}{2} \times 11$ crib sheets. NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

1	2	3	4	5	6	Total
100	50	50	50	50	50	350

- 1 Circle at most one answer per question. 10 points for each correct answer and -5 points for each incorrect answer (blank answer is 0 points). Don't guess!
- (a) P(n) is a predicate $(n \in \mathbb{N})$. P(1), P(2), P(3) are true, and $P(n) \to P(n+4)$ is true for $n \ge 1$. For which n can we be **<u>sure</u>** P(n) is true?
 - $\boxed{\mathbf{A}}$ All $n \geq 1$ except multiples of 2.
 - $\boxed{\mathrm{B}}$ All $n \geq 1$ except multiples of 4.
 - C All $n \geq 1$
 - D Only n = 1, 2, 3.
- (b) Of the following five sets, list all that are <u>countable</u> (\mathcal{A} is countable if $\mathbb{N} \xrightarrow{\text{surj}} \mathcal{A}$):
 - (I) Prime numbers; (II) Rational numbers; (III) Integers; (IV) Even numbers; (V) Infinite binary strings.
 - A I and III.
 - B I and II and III and IV.
 - C I and III and V.
 - D II and III and IV.
- (c) A class with 25 students needs to choose a representative committee which is a <u>subset</u> of 5 students. How many different committees can be formed?
 - $| A | 25^5.$
 - $\boxed{\mathrm{B}} \ \frac{25!}{20! \times 5!}.$

 - D $25 \times 24 \times 23 \times 22 \times 21 = \frac{25!}{20!}$.
- (d) A friendship network has 7 people and each person has at least 1 friend. 6 of the people have *exactly two friends*. How many friends can the 7th person have? Give all possibilities.
 - A The seventh person could have either 2 or 4 friends.
 - B The seventh person could have either 2 or 4 or 6 friends.
 - C The seventh person could have either 1 or 2 or 3 friends.
 - D The seventh person could have any number of friends that is greater than 1.
- (e) Compute the summation $(0+1) + (1+2) + (2+4) + (3+8) + \dots + (10+2^{10}) = \sum_{i=0}^{10} (i+2^i)$
 - A 2048.
 - B 2102.
 - C 1078.
 - D 2200.

(f) You have a known fact that 0 = 0 and all the standard operations of algebra you learned in high-school math. Which of the following is a valid proof that 7 = 7:

		_		
1.	7	=	7	
2.	7 - 7	=	7 - 7	
3.	0	=	0	\checkmark
\longrightarrow	7	=	7	

1.
$$7 \neq 7$$

2. $7 - 7 \neq 7 - 7$
3. $0 \neq 0$!FISHY
 $\rightarrow 7 = 7$

A I & II & III.

B II & III.

C I & II

D I & III.

- (g) Let $f(n) = \sum_{i=1}^{n} i$ and $g(n) = 2^{3 \log_2 n}$. What is the big-Oh relationship between f and g?
 - $\boxed{\mathbf{A}} f(n) = O(g(n)) \text{ and } g(n) = O(f(n)).$
 - $\boxed{\mathbf{B}} f(n) = O(g(n)) \text{ and } g(n) \neq O(f(n)).$
 - $\boxed{\mathbb{C}} f(n) \neq O(g(n)) \text{ and } g(n) = O(f(n)).$
 - $\boxed{\mathrm{D}} f(n) \neq O(g(n)) \text{ and } g(n) \neq O(f(n)).$
- (h) You independently generate the ten bits of a binary sequence $b_1b_2\cdots b_{10}$ with $\mathbb{P}[b_i=0]=\frac{1}{2}$. Compute the probability that the sequence is sorted from low to high. For example 0000111111 is sorted.
 - $\boxed{A} \frac{10}{1024}$
 - $\boxed{\mathrm{B}} \frac{11}{1024}$
 - $\boxed{\text{C}} \frac{20}{1024}$
 - $\boxed{\mathrm{D}} \ \frac{12}{1024}$
- (i) x_1, x_2, x_3 are non-negative integers. Compute the number of different solutions to $x_1 + x_2 + x_3 = 100$. (For example two different solutions are 1 + 2 + 97 = 100 and 97 + 1 + 2 = 100.)
 - A 10302
 - B 5151
 - C 4949
 - D 5050
- (j) For the automaton on the right, which input string is accepted? (Strings are processed from left to right.)
 - A 010101
 - B 0101011
 - C 01010110
 - D 010101100

2 Proofs

1. Prove that for all integers $n \ge 1$: $n2^n \le 3^n$

2. Prove that \underline{every} \underline{odd} natural number is the difference of two square numbers.

3 Finite Automaton with a Random Input String

The automaton to the right processes a random binary string $b_1b_2...b_n$ of length n generated as follows: you independently generate each bit b_i with $\mathbb{P}[b_i=1]=p$ and $\mathbb{P}[b_i=0]=1-p$. Show that the probability that the string is accepted is

 $\mathbb{P}[\text{ random input string is accepted }] = 1 - (1-p)^n - np(1-p)^{n-1}.$

[Hints: (i) Figure out a simple property of a string for it to be accepted. (ii) Binomial distribution.]

4 Probability and Expectation

- (a) You independently roll 3 fair dice D_1, D_2, D_3 and let $S = D_1 + D_2 + D_3$ be the sum. Compute:
 - (i) $\mathbb{P}[S=8]$

 $\underline{\text{(ii) } \mathbb{P}[S=8 \mid D_1=1]}$

(iii) Compute the expectation and variance of S.

- (b) You toss a fair coin independently until you get two heads in a row. Let X be the number of tosses. Compute $\mathbb{E}[X]$ using the law of total expectation:
 - (i) Consider the 3 cases T, HT, HH for how the tosses may start and show that

$$\mathbb{E}[X] = \tfrac{1}{2}(1 + \mathbb{E}[X]) + \tfrac{1}{4}(2 + \mathbb{E}[X]) + \tfrac{1}{2}.$$

(ii) Use (i) to show that $\mathbb{E}[X] = 6$.

5 Context Free Grammars

This problem is about the language $\mathcal L$ generated by the CFG:

(a) Is the string 1010010 in \mathcal{L} ? If yes then give a derivation or parse tree; if \underline{no} then explain why.

(b) Prove that the length of every string in \mathcal{L} is odd.

6	Turing	Machine
---	--------	---------

(a) What is the difference between a Turing-recognizable language and a Turing-decidable language?

- (b) Consider the arithmetic task of squaring, which corresponds to the language $\mathcal{L} = \{0^n \# 0^{n^2} | n \ge 1\}$.
 - (i) Circle the simplest model of computing that you think solves the problem \mathcal{L} :

Finite Automaton Context Free Grammar Turing Machine

(ii) Give your machine from (i) that solves \mathcal{L} (for a TM, a high level description will do).

SCRATCH

SCRATCH