

TrenchT2™ HiperFET™ **Power MOSFET**

IXFA130N10T2 IXFP130N10T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

100V 130A I_{D25} $10.1 \mathrm{m}\Omega$ \leq R_{DS(on)}

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 175°C	100	V	
V _{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	100	V	
V_{gss}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C (Chip Capability)	130	A	
I _{L(RMS)}	External Lead Current Limit	120	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	300	Α	
I _A	T _C = 25°C	65	A	
E _{as}	$T_{c} = 25^{\circ}C$	800	mJ	
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 175^{\circ}C$	20	V/ns	
P_{D}	T _C = 25°C	360	W	
 T _J		-55 +175	°C	
T _{JM}		175	°C	
T _{stg}		-55 +175	°C	
T,	Maximum Lead Temperature for Soldering	g 300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c	Mounting Force (TO-263)	1065 / 2.214.6	N/lb	
M _d	Mounting Torque (TO-220)	1.13 / 10	Nm/lb.in	
Weight	TO-263	2.5	g	
	TO-220	3.0	g	

V _{DSS}	$T_{J} = 25^{\circ}C$ to 175 $^{\circ}C$	100	V
V_{DGR}	$T_J = 25^{\circ}C$ to 175°C, $R_{GS} = 1M\Omega$	100	V
V _{GSS} V _{GSM}	Continuous Transient	±20 ±30	V
I _{D25}	T _C = 25°C (Chip Capability)	130	A
I _{L(RMS)}	External Lead Current Limit	120	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	300	Α
I _A	T _C = 25°C	65	А
E _{as}	$T_{c} = 25^{\circ}C$	800	mJ
dV/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 175^{\circ}\mathrm{C}$	20	V/ns
P_{D}	$T_{c} = 25^{\circ}C$	360	W
T		-55 +175	°C
T _{JM}		175	°C
T _{stg}		-55 +175	°C
T,	Maximum Lead Temperature for Soldering	g 300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in
Weight	TO-263 TO-220	2.5 3.0	g g

TO-22 (IXFP)			Tô	San Contract of the Contract o
	G _D	D (T	† Tab)	
	_	_		

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- · International Standard Packages
- 175°C Operating Temperature
- · High Current Handling Capability
- Fast Intrinsic Rectifier
- Dynamic dV/dt Rated
- Low $R_{DS(on)}$

Advantages

- · Easy to Mount
- Space Savings
- · High Power Density

Applications

- DC-DC Converters
- Battery Charges
- Switch-Mode and Resonant-Mode **Power Supplies**
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- · High Speed Power Switching Applications

Symbol (T _J = 25°C U	Test Conditions Unless Otherwise Specified)	Chara Min.	acteristi Typ.	c Value: Max.	S
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	2.0		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			10	μΑ
	$T_J = 150^{\circ}C$			500	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 65A, Notes 1 & 2$			10.1	mΩ

Symbo (T _J = 25		Test Conditions nless Otherwise Specified)	Char Min.	acteristic Typ.	c Values Max.
g _{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	35	58	S
C _{iss})			6600	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		640	pF
C _{rss}	J			133	pF
t _{d(on)})	Resistive Switching Times		16	ns
t,	($V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 65A$		38	ns
$\mathbf{t}_{d(off)}$	($R_{\rm G} = 3.3\Omega$ (External)		24	ns
t _f	J	Tig = 0.032 (External)		25	ns
$\mathbf{Q}_{g(on)}$)			130	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 65A$		35	nC
\mathbf{Q}_{gd}	J			42	nC
R _{thJC}					0.42 °C/W
R _{thCS}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol Test Conditions Character (T, = 25°C Unless Otherwise Specified) Min.			cteristic	Value: Max.	
I _s	V _{GS} = 0V			130	A
I _{SM}	Repetitive, Pulse Width Limited by T _{JM}			520	Α
V _{SD}	$I_F = 65A$, $V_{GS} = 0V$, Note 1			1.3	V
t _{rr}	I ₂ = 65A, V ₂₂ = 0V.			100	ns
I _{RM}	$I_F = 65A, V_{GS} = 0V,$ $-di/dt = 100A/\mu s, V_B = 50V$		4.8		Α
Q _{RM}	$-\alpha i/\alpha t = 100A/\mu s$, $v_R = 50V$		156		nC

Notes: 1. Pulse test, $t \le 300 \mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\mathrm{DS(on)}}$ Kelvin test contact location must be 5mm or less from the package body.

SYM	INCH	HES	MILLIN	METER
SIM	MIN	MAX	MIN	MAX
Α	.170	.185	4.30	4.70
Α1	.000	.008	0.00	0.20
A2	.091	.098	2.30	2.50
Ь	.028	.035	0.70	0.90
b2	.046	.060	1.18	1.52
С	.018	.024	0.45	0.60
C2	.049	.060	1.25	1.52
D	.340	.370	8.63	9.40
D1	.300	.327	7.62	8.30
Ε	.380	.410	9.65	10.41
E1	.270	.330	6.86	8.38
е	.100	BSC	2.54	BSC
Н	.580	.620	14.73	15.75
L	.075	.105	1.91	2.67
L1	.039	.060	1.00	1.52
L2	_	.070	_	1.77
L3	.010	BSC	0.254	BSC

SYM	INC	HES	MILLIM	ETERS
2114	MIN	MAX	MIN	MAX
Α	.169	.185	4.30	4.70
A1	.047	.055	1.20	1.40
A2	.079	.106	2.00	2.70
Ь	.024	.039	0.60	1.00
b2	.045	.057	1.15	1.45
С	.014	.026	0.35	0.65
D	.587	.626	14.90	15.90
D1	.335	.370	8.50	9.40
(D2)	.500	.531	12.70	13.50
Ε	.382	.406	9.70	10.30
(E1)	.283	.323	7.20	8.20
е	.100) BSC	2.54	BSC
e1	.200) BSC	5.08	BSC
H1	.244	.268	6.20	6.80
L	.492	.547	12.50	13.90
L1	.110	.154	2.80	3.90
ØΡ	.134	.150	3.40	3.80
Q	.106	.126	2.70	3.20

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 2. Extended Output Characteristics @ T_J = 25°C 350 $V_{GS} = 15V$ 10V 300 9V 250 lo - Amperes 200 150 100 50 5V 8 10 12 6 V_{DS} - Volts

Fig. 3. Output Characteristics @ T_J = 150°C 140 V_{GS} = 15V 10V 120 8V 100 7V ID - Amperes 60 6V 40 20 5V 0 1.0 2.0 0.0 0.5 1.5 V_{DS} - Volts

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off

Fig. 17. Resistive Turn-off

Fig. 18. Resistive Turn-off

Fig. 19. Maximum Transient Thermal Impedance

