Classification of neighbourhoods of leaves of singular foliations

joint work with Camille Laurent-Gengoux (Université de Lorraine)

Simon-Raphael Fischer

國家理論科學研究中心 National Center for Theoretical Sciences (National Taiwan University)

Remarks (Based on the following work)

S.-R. F. and Camille Laurent-Gengoux, *Classification of neighborhoods around leaves of singular foliations*, arXiv:2401.05966, (2024).

Remarks (Also based on the following previous works)

- Camille Laurent-Gengoux and Leonid Ryvkin, The neighborhood of a singular leaf, Journal de l'École Polytechnique, (2021).
- Camille Laurent-Gengoux et Leonid Ryvkin, The holonomy of a singular leaf, Selecta Mathematica, (2022).
- S.-R. F., Integrating curved Yang–Mills gauge theories, arXiv:2210.02924, (2022).

- Gauge Theory
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
- ...

First idea

Singular Foliations

Definition (Partitionifolds)

Let M be a smooth manifold. A **partitionifold of** M is a partition of immersed connected submanifolds, which we call leaves.

Remarks

We will denote a partitionifold by L_{\bullet} , $p \mapsto L_{p}$, where L_{p} is the leaf through $p \in M$.

Figure: The magnetic partition

A partitionifold with:

- All leaves are of the same dimension.
- But: It lacks regularity!

Figure: Isolated lasagna in a spaghetti dish

Remarks

A partitionifold with:

- Dimension is now different.
- But: Also no regularity!

Remarks

Isolated spaghetti in a lasagna dish: Regularity!

Figure: Isolated lasagna in a spaghetti dish

Remarks

A partitionifold with:

- Dimension is now different.
- But: Also no regularity!

Remarks

Isolated spaghetti in a lasagna dish: Regularity!

Definition (Smooth partitionifold)

A smooth partitionifold L_{\bullet} is smooth, if there is for all $p \in M$ and every vector $u \in T_p L_p$ a vector field X tangent to L_{\bullet} with

$$X_p = u$$
.

This definition is okay, but not widely used: It still has a problem...

Definition (Smooth partitionifold)

A smooth partitionifold L_{\bullet} is smooth, if there is for all $p \in M$ and every vector $u \in T_p L_p$ a vector field X tangent to L_{\bullet} with

$$X_p = u$$
.

Remarks

This definition is okay, but not widely used: It still has a problem...

Example (Vector fields not necessarily finitely generated)

Consider the following smooth partitionifold:

- $M = \mathbb{R}$;
- 0-dimensional leaves:

$$\{1\}, \left\{\frac{1}{2}\right\}, \left\{\frac{1}{3}\right\}, \dots, \left\{\frac{1}{n}\right\}, \dots, \{0\};$$

• 1-dimensional leaves: Remaining open intervals.

Remarks

One has a sort of "infinitesimal leaf" next to $\{0\}$.

Technically: Tangent vectors of L_{\bullet} are locally not finitely generated around 0.

Example (Vector fields not necessarily finitely generated)

Consider the following smooth partitionifold:

- \bullet $M=\mathbb{R}$:
- 0-dimensional leaves:

$$\{1\}, \left\{\frac{1}{2}\right\}, \left\{\frac{1}{3}\right\}, \dots, \left\{\frac{1}{n}\right\}, \dots, \{0\};$$

• 1-dimensional leaves: Remaining open intervals.

Remarks

One has a sort of "infinitesimal leaf" next to $\{0\}$.

Technically: Tangent vectors of L_{\bullet} are locally not finitely generated around 0.

Recall:

Theorem (Frobenius Theorem)

Every integrable subbundle E of TM corresponds to a regular foliation in M.

Remarks $(\Gamma(E)$ is involutive)

Integrable:

$$[X, Y] \in \Gamma(E)$$

for all $X, Y \in \Gamma(E)$.

Remarks

Alternatively: An involutive submodule of $\mathfrak{X}(M)$, or equivalently of $\mathfrak{X}_c(M)$.

Recall:

Theorem (Frobenius Theorem)

Every integrable subbundle E of TM corresponds to a regular foliation in M.

Remarks ($\Gamma(E)$ is involutive)

Integrable:

$$[X, Y] \in \Gamma(E)$$

for all $X, Y \in \Gamma(E)$.

Remarks

Alternatively: An involutive submodule of $\mathfrak{X}(M)$, or equivalently of $\mathfrak{X}_c(M)$.

Definition

Singular Foliations

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold M is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is involutive.
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

Definition

Definition (Smooth singular foliation)

A smooth singular foliation $\mathcal F$ on a smooth manifold is a subspace of $\mathfrak X_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is **locally finitely generated**.

Definition (Smooth singular foliation)

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i^r$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Remarks (Leaves)

We have an induced smooth partitionifold L_{\bullet} ,

$$\mathscr{F}\Rightarrow L_{\bullet},$$

but ${\mathscr F}$ also encodes the information about the generators,

Why happens without being locally finitely generated?

Figure: Infinite comb

First step towards classification

Theorem $(\mathscr{F} ext{-connections})$

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $\mathsf{Sym}(\tau_{l}, \tau_{l'})$.
- For a contractible loop γ_0 at I: PT_{γ_0} values in $Inner(\tau_I)$.

Example of a transverse foliation τ in \mathbb{R}^d :

Remarks

- Inner (τ_I) maps each circle to itself
- Sym (τ_I) allows to exchange circles
- Both preserve τ_l and fix the origin

Other example: Regular foliation

Recovering the ordinary definition

Foliation	Connection
Regular	Flat lift
Singular	Family of possibly curved lifts

Remarks

Inner(τ_I): Trivial.

 $\mathsf{Sym}(au_I)$: We essentially need the image of a group morphism

$$\pi_1(L) \to \mathsf{Diff} \big(\mathbb{R}^d, 0 \big).$$

Idea

We guess:

$$\mathscr{F} = \begin{cases} \mathsf{Some} \ \mathsf{map} \ \pi_1(L) \to \mathsf{Diff} \left(\mathbb{R}^d, 0\right) \ (\mathsf{at} \ \mathsf{I}) \\ \mathsf{Bundle} \ \mathsf{structure} \ \mathsf{by} \ \tau_\mathsf{I}, \mathsf{Inner}(\tau_\mathsf{I}), \mathsf{Sym}(\tau_\mathsf{I}), \ldots \end{cases}$$

Thus, we want to classify \mathcal{F} with given L and τ_l (for a fixed $l \in L$).

Dange

But $Sym(\tau_l)$ and $Inner(\tau_l)$ are in general infinite-dimensional, so that we have to deal with infinite-dimensional geometry!

Idea

We guess:

$$\mathscr{F} = \begin{cases} \mathsf{Some} \ \mathsf{map} \ \pi_1(L) \to \mathsf{Diff} \left(\mathbb{R}^d, 0 \right) \ (\mathsf{at} \ \mathsf{I}) \\ \mathsf{Bundle} \ \mathsf{structure} \ \mathsf{by} \ \tau_\mathsf{I}, \mathsf{Inner}(\tau_\mathsf{I}), \mathsf{Sym}(\tau_\mathsf{I}), \ldots \end{cases}$$

Thus, we want to classify \mathcal{F} with given L and τ_l (for a fixed $l \in L$).

Danger

But $Sym(\tau_l)$ and $Inner(\tau_l)$ are in general infinite-dimensional, so that we have to deal with infinite-dimensional geometry!

Definition (Formal foliation)

 $X\in \mathscr{F}$ induces a derivation on $\hat{C}:=C^\infty(M)/C_0^\infty(M)$, where $C_0^\infty(M)$ is the ideal of functions vanishing with all their derivatives along L. The image of \mathscr{F} under this is the **formal singular foliation**.

Remarks

 $f \in \hat{C}$ a formal power series, w.r.t. (x_1, \dots, x_d) as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d \ge 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with $f_{i_1,...,i_d} \in C^{\infty}(L)$.

 $f \in \hat{C}$ a formal power series, w.r.t. (x_1, \dots, x_d) as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d \ge 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with $f_{i_1,...,i_d} \in C^{\infty}(L)$.

Example (Canonical example of a formal foliation)

- Normal bundle \mathcal{T} : $TM|_L/TL$.
- ullet Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism $\mathfrak{X}(M) o \mathfrak{X}^{\mathsf{formal}}$.

 $f \in \hat{C}$ a formal power series, w.r.t. (x_1, \ldots, x_d) as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d \ge 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with $f_{i_1,...,i_d} \in C^{\infty}(L)$.

Example (Canonical example of a formal foliation)

- Normal bundle \mathcal{T} : $TM|_L/TL$.
- ullet Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism $\mathfrak{X}(M) o \mathfrak{X}^{\mathsf{formal}}$.
- ullet Formal version of ${\mathcal F}$ via this map.

 $f \in \hat{C}$ a formal power series, w.r.t. (x_1, \dots, x_d) as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d \ge 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with $f_{i_1,...,i_d} \in C^{\infty}(L)$.

Example (Canonical example of a formal foliation)

- Normal bundle \mathcal{T} : $TM|_L/TL$.
- ullet Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism $\mathfrak{X}(M) o \mathfrak{X}^{\mathsf{formal}}$.
- ullet Formal version of ${\mathcal F}$ via this map.
- In particular: Formal version of $X \in \mathcal{F}$ can be evaluated at $l \in L$, coinciding with X_l .

 $f \in \hat{C}$ a formal power series, w.r.t. (x_1, \dots, x_d) as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d \ge 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with $f_{i_1,...,i_d} \in C^{\infty}(L)$.

Example (Canonical example of a formal foliation)

- Normal bundle \mathcal{T} : $TM|_L/TL$.
- ullet Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism $\mathfrak{X}(M) o \mathfrak{X}^{\mathsf{formal}}$.
- ullet Formal version of ${\mathcal F}$ via this map.
- In particular: Formal version of $X \in \mathcal{F}$ can be evaluated at $l \in L$, coinciding with X_l .

Our aim

Remarks (Our assumptions)

- τ_l a formal singular foliation.
- L a manifold (connected immersed submanifold of M).

Remarks (Avoiding formal setting)

Either

add real-analyticity conditions to the classification,

or

• assume (locally) closed L.

Formal Foliation

Our aim

Remarks (Our assumptions)

- τ_l a formal singular foliation.
- L a manifold (connected immersed submanifold of M).

Remarks (Avoiding formal setting)

Either

• add real-analyticity conditions to the classification,

or

• assume (locally) closed L.

Multiplicative Yang-Mills connections

Remarks (F-connection)

For $\phi \in \operatorname{Sym}(\tau_l)$ we have an induced parallel transport

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then, on the normal bundle $\pi \colon \mathcal{T} \to L$,

$$\mathsf{PT}_{\gamma}(\phi \cdot p) = \mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \cdot \mathsf{PT}_{\gamma}(p)$$
 $\mathsf{PT}_{\gamma_0}(p) = \varphi \cdot p$

for all $p \in \mathcal{T}_I$, $\phi \in \operatorname{Sym}(\tau_I)$, and for some $\varphi \in \operatorname{Inner}(\tau_I)$.

Remarks (Sym-connection)

For $\phi \in \operatorname{Sym}(\tau_l)$ we have an induced parallel transport

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then

$$\mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi \circ \phi') = \mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi) \circ \mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi')$$
$$\mathsf{PT}_{\gamma_0}^{\mathsf{Sym}}(\phi) = \varphi \circ \phi \circ \varphi^{-1}$$

for all $\phi, \phi' \in \text{Sym}(\tau_I)$, and for some $\varphi \in \text{Inner}(\tau_I)$.

More on foliation connections

Idea

Idea

Generators of \mathcal{F} given by:

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$, $\mathbb{H}(X)$ its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

More on foliation connections

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$[\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] = \mathbb{H}([X, X']) + \dots$$

$$= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{\sim curvature}} + \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{\sim connection}} + \overline{[\nu, \mu]}$$

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$\begin{bmatrix} \mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu} \end{bmatrix} = \mathbb{H}([X, X']) + \dots$$

$$= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{\sim curvature}} + \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{\sim connection}} + \overline{[\nu, \mu]}$$

Idea $(\ldots \in \tau)$

We need:

- Lie algebra bundle τ with structure τ_I
- $oldsymbol{2}$ A horizontal lift $\mathbb H$ into $\mathcal T$ satisfying

Curvature:
$$[\mathbb{H}(X), \mathbb{H}(X')] - \mathbb{H}([X, X']) \in \tau$$

Connection: $[\mathbb{H}(X), \overline{\mu}] \in \tau$

Summary

Singular Foliations

Remarks

Connections

- preserve group bundle action,
- and their curvatures follow corresponding orbits.

The pair of connections may **not** be unique for a given \mathcal{F} !

Curved Yang-Mills gauge theories:

Classical Curved Lie group G Lie group bundle $\mathscr G$

$$G \longrightarrow \mathscr{G}$$

$$\downarrow$$
 L

Motivation

What are Ehresmann connections, preserving \mathscr{G} -actions?

Definition (LGB actions)

$$\mathscr{T} \xrightarrow{\pi} L$$

A **right-action of** \mathscr{G} **on** \mathscr{T} is a smooth map

 $\mathcal{T}*\mathcal{G}\coloneqq\mathcal{T}_{\pi}\times_{\pi_{\mathcal{G}}}\mathcal{G}\to\mathcal{T}$, $(p,g)\mapsto p\cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{1}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{2}$$

$$p \cdot e_{\pi(p)} = p \tag{3}$$

for all $p \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathcal{G}_{\pi(p)}$.

Connection on \mathcal{T} : Idea

If \mathscr{G} is trivial, $\sigma \equiv g$ constant, and H a connection:

Connection on \mathcal{T} : Revisiting the classical setup

If $\mathcal G$ is trivial, $\sigma \equiv g$ constant, and H a connection:

Remarks (Integrated case)

Parallel transport $\mathsf{PT}^{\mathcal{T}}_{\gamma}$ in \mathcal{T} :

$$\mathsf{PT}^{\mathscr{T}}_{\gamma}(p\cdot g) = \mathsf{PT}^{\mathscr{T}}_{\gamma}(p)\cdot g$$

where $\gamma: I \to L$ is a base path

Connection on \mathcal{T} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}^{\mathscr{T}}_{\gamma}(p \cdot g) = \mathsf{PT}^{\mathscr{T}}_{\gamma}(p) \cdot \mathsf{PT}^{\mathscr{G}}_{\gamma}(g).$$

Recovering the ordinary definition

- $\mathfrak{g}\cong L\times G$
- 2 Equip \$\mathcal{G}\$ with canonical flat connection

Connection on \mathcal{T} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(p) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g).$$

Recovering the ordinary definition

- 2 Equip \mathscr{G} with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi\colon \mathcal{T}\to L$ so that one has a commuting diagram

Ehresmann connection:

$$\mathsf{PT}^{\mathscr{T}}_{\gamma}(p\cdot g) = \mathsf{PT}^{\mathscr{T}}_{\gamma}(p)\cdot \mathsf{PT}^{\mathscr{G}}_{\gamma}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(p) = p \cdot \mathsf{g}_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathcal{G}^0_{\pi(p)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Remarks

Compare this with the Maurer-Cartan form and its curvature equation!

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Remarks

Singular Foliations

Compare this with the Maurer-Cartan form and its curvature equation!

Remarks

Singular Foliations

On the Lie algebra bundle q we have a connection ∇ with

$$\nabla ([\mu, \nu]_{g}) = [\nabla \mu, \nu]_{g} + [\mu, \nabla \nu]_{g},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Consider the Atiyah sequence of a principal G-bundle P:

$$(P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{\stackrel{\mathbb{H}}{\longrightarrow}} \mathsf{T}L$$

with splitting $\mathbb{H} \colon TL \to TP/G$, where g is the Lie algebra. Then

$$\nabla_{X}\nu = [\mathbb{H}(X), \nu]_{\mathsf{T}P/G},$$

$$\zeta(X, X') = [\mathbb{H}(X), \mathbb{H}(X')]_{\mathsf{T}P/G} - \mathbb{H}([X, X']).$$

Remarks

On the Lie algebra bundle q we have a connection ∇ with

$$\nabla ([\mu, \nu]_{g}) = [\nabla \mu, \nu]_{g} + [\mu, \nabla \nu]_{g},$$

$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

Example

Consider the Atiyah sequence of a principal G-bundle P:

$$(P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{\mathbb{I}} \mathsf{T}L$$

with splitting $\mathbb{H} \colon \mathrm{T} L \to \mathrm{T} P/G$, where g is the Lie algebra. Then

$$\nabla_{X}\nu = [\mathbb{H}(X), \nu]_{\mathsf{T}P/G},$$

$$\zeta(X, X') = [\mathbb{H}(X), \mathbb{H}(X')]_{\mathsf{T}P/G} - \mathbb{H}([X, X']).$$

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof

We have

$$[\mathbb{H}(X), \overline{\nu}] = \overline{\nabla_X \nu},$$
$$[\mathbb{H}(X), \mathbb{H}(X')] = \mathbb{H}([X, X']) + \overline{\zeta(X, X')},$$

where $\zeta \in \Omega^2(L; q)$.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on *G* and a Yang-Mills connection $\mathbb H$ on $\mathcal T$, then there is a natural foliation on \mathcal{T} generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(q)$.

Proof.

We have

$$\begin{split} [\mathbb{H}(X), \overline{\nu}] &= \overline{\nabla_X \nu}, \\ [\mathbb{H}(X), \mathbb{H}(X')] &= \mathbb{H}([X, X']) + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; q)$.

- ② P a principal G-bundle, equipped with an ordinary connection

- P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{G} := (P \times G)/G$, the inner group bundle

- $oldsymbol{Q}$ P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$
- $\mathfrak{T} := \left(P \times \mathbb{R}^d\right) / G$, the normal bundle

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection
- **3** $\mathscr{G} := (P \times G) / G$, the inner group bundle
- $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the normal bundle

- Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- 2 P a principal G-bundle, equipped with an ordinary connection
- $\mathfrak{F} \coloneqq (P \times G) / G, \text{ the inner group bundle}$

Remarks

- Think of the induced connection on $\mathcal T$ as the $\mathcal F$ -connection.
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

Singular Foliations

Proposition ([C. L.-G., S.-R. F.])

The associated connection on $\mathscr G$ is a multiplicative Yang-Mills connection and the one on \mathcal{T} is a corresponding Yang-Mills connection.

Proof.

Recall

$$[p,g]\cdot[p,v]=[p,g\cdot v]$$

for all $[p,g] \in \mathcal{G}$ and $[p,v] \in \mathcal{T}$, and

$$\mathsf{PT}_{\gamma}^{\mathcal{F}}\big([p,v]\big) = \Big[\mathsf{PT}_{\gamma}^{P}(p),v\Big].$$

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

Proposition ([C. L.-G., S.-R. F.])

The associated connection on $\mathcal G$ is a multiplicative Yang-Mills connection and the one on $\mathcal T$ is a corresponding Yang-Mills connection.

Proof.

Recall

$$[p,g]\cdot[p,v]=[p,g\cdot v]$$

for all $[p,g] \in \mathcal{G}$ and $[p,v] \in \mathcal{T}$, and

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}([p,v]) = \Big[\mathsf{PT}_{\gamma}^{P}(p),v\Big].$$

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_L as transverse data.

The reconstructed foliation is independent of the choice of connection on P.

Proof.

- The adjoint bundle of P, $Ad(P) := (P \times \mathfrak{g})/G$, is the Lie algebra bundle of \mathscr{G}
- $\tau = \overline{\mathrm{Ad}(P)}$
- Difference of two connections on P has values in Ad(P)

Generators take this already into account; recall:

$$\mathbb{H}(X) + \overline{\nu}$$

with $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(Ad(P))$.

Proposition ([C. L.-G., S.-R. F.])

The reconstructed foliation is independent of the choice of connection on P.

Proof.

- The adjoint bundle of P, $Ad(P) := (P \times \mathfrak{g})/G$, is the Lie algebra bundle of \mathscr{G}
- $\tau = \overline{\mathsf{Ad}(P)}$
- Difference of two connections on P has values in Ad(P)

Generators take this already into account; recall:

$$\mathbb{H}(X) + \overline{\nu}$$

with $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(Ad(P))$.

Main Theorems

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner (τ_I) -bundles P over L

Main Theorems

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

P is now finite-dimensional!

Main Theorems

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Remarks

P is now finite-dimensional!

Formal setting is here very important!

Summary

Main Theorems

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Remarks

P is now finite-dimensional!

Danger

Formal setting is here very important!

Examples

Singular Foliations

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Corollary

L simply connected and τ_l is made of vector fields vanishing quadratically at 0. Then the unique singular foliation is the trivial one, i.e. the trivial product of $(L, \mathfrak{X}(L))$ and (\mathbb{R}^d, τ_l) .

Examples

Singular Foliations

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Corollary ([C. L.-G., S.-R. F.])

L contractible. Then the unique singular foliation is the trivial one.

Examples

Theorem ([C. L.-G., S.-R. F.])

In the simply connected case, the following are equivalent:

- ullet Singular foliations with leaf L and transverse model $\left(\mathbb{R}^d, au_I
 ight)$
- Principal Inner $(\tau_l)/\mathrm{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

Corollary ([C. L.-G., S.-R. F.])

L simply connected. Then \mathcal{F} is the trivial foliation if and only if it admits a flat \mathcal{F} -connection.

Reconstructing Foliations

Examples [C. L.-G., S.-R. F.]

 $L = \mathbb{S}^2$, $M = \mathbb{T}\mathbb{S}^2$. Let us consider two possible τ_I :

Name	Concentric circles	Spirals
Generator	$x\partial_y - y\partial_x$	$x\partial_y - y\partial_x + (x^2 + y^2)(x\partial_x + y\partial_y)$
Picture of the leaves		
$Inner(\tau_l)/Inner(\tau_l)_{\geq 2}$	\mathbb{S}^1	\mathbb{R}

Examples [C. L.-G., S.-R. F.]

 $L = \mathbb{S}^2$, $M = \mathbb{T}\mathbb{S}^2$. Let us consider two possible τ_I :

Name	Concentric circles	Spirals
Generator	$x\partial_y - y\partial_x$	$x\partial_y - y\partial_x + (x^2 + y^2)(x\partial_x + y\partial_y)$
Picture of the leaves		
$Inner(\tau_l)/Inner(\tau_l)_{\geq 2}$	\mathbb{S}^1	R

Thank you!