HUDM5124 Session 12: Nonhierarchical clustering models

(overlapping clustering, "clumping")

Overview:

- Additive clustering (ADCLUS)
- Extended trees (EXTREE)
- Multiple trees
- Other related models: INDCLUS, twomode clustering, etc.
- Hybrid models (trees + spaces, etc.)

Overlapping (additive) clustering

- Additive clustering is the term most often used to denote a cluster solution in which the clusters may overlap in arbitrary patterns
- One of the first formal explorations of this idea was the ADCLUS (additive clustering) model proposed by Shepard and Arabie (1979)
- A more effective algorithm (MAPCLUS) for fitting this model was introduced by Arabie & Carroll (1980)
- Another effective approach, that can also fit the weighted INDCLUS model for individual differences, was described by Chaturvedi & Carroll (1994)

Graphically, an overlapping clustering is often represented as a set of "circles" drawn onto some spatial mapping of the object points:

Mathematically, the additive clustering model can be expressed as:

$$\hat{S}_{ij} = \sum_{k} w_k p_{ik} p_{jk}$$

Note that each cluster k is associated with a weight, w_k .

To express the ADCLUS model in matrix terms, note that a clustering is a collection of sets. We can represent this set of sets by an *n x m* cluster membership (or "property") matrix. The rows of this matrix correspond to conceptual "objects" to be clustered, and the columns to clusters.

D		C1	C2	C3	C4	C5
Ρ=	coke	1	1	0	0	0
	diet pepsi	0	0	1	1	1
	dr. pepper	0	1	0	0	0
	fresca	0	0	0	1	0
	pepsi	1	1	0	0	1
	tah	0	0	1	1	0

Then we can write the ADCLUS model as: $\hat{S} = PWP'$

Or as $\hat{S} = PWP' + C$ if we wish to include an additive constant (W is a diagonal matrix of cluster weights)

HUDM5124 - MDSC

Application: integers judged as abstract concepts (from Shepard & Arabie, 1979)

Hierarchical Clustering:

Figure 3. A strictly hierarchical clustering of the same integers embedded in the same two-dimensional scaling representation.

Application: integers judged as abstract concepts (from Shepard & Arabie, 1979)

additive (overlapping) clustering solution:

Table 1
Judged Similarities of the Abstract Concepts of the Integers 0 Through 9

Rank*	s level	Rise	Weight	Elements of subset	Interpretation of subset
1	.638	.064	.577	2 4 8	powers of two
2	.529	.249	.326	6789	large numbers
3	.565	.285	.305	3456	middle numbers
4	.653	.344	.299	1 2 3	small nonzero numbers
5	.717	.344	.277	369	multiples of three
6	.574	.192	.165	0 1	additive and multiplicative identities
7	.328	.132	.150	13579	odd numbers
8	.579	.206	.138	567	moderately large numbers
9	.382	.118	.112	0 1 2	small numbers
10	.235	.093	.101	01234	smallish numbers

Note. The data are from Shepard, Kilpatric, and Cunningham (1975). Variance accounted for = 83.1% with 10 subsets, plus additive constant (corresponding to the complete set of 10 numbers). Additive constant = .195.

ADCLUS solution:

Figure 2. The 10 ADCLUS subsets obtained for the 10 integers, 0-9, studied by Shepard, Kilpatric, and Cunningham (1975), embedded in a two-dimensional scaling representation.

Software for fitting overlapping clustering

Algorithm (Model)	Authors / reference	Implementation	Available from
ADCLUS	Shepard & Arabie, 1979	FORTRAN source	??
MAPCLUS (ADCLUS)	Arabie & Carroll, 1980	FORTRAN source	NETLIB
(ADCLUS)	M. Lee, 2002		
SINDCLUS (ADCLUS, INDCLUS)	Chaturvedi & Carroll (1994)	FORTRAN source	NETLIB
SYMPRES (INDCLUS)	Kiers, 1997 (see also Wilderjans et al., 2012)	??	??
	Lee, M. D. (1999)		

Newer approaches to fitting the ADCLUS model Michael D. Lee

Lee, M. D. (1999). An extraction and regularization approach to additive clustering. *Journal of Classification*, 16, 255-281.

Lee, M. D. (2002). A simple method for generating additive clustering models with limited complexity. *Machine Learning*, *49*, 39–58.

The additive clustering model can be thought of as a special case of the contrast model (Tversky, 1977), i.e. as an additive common-features model.

Ultrametric trees are also a special case of common-features models (in fact, they are additive clusterings with the additional restriction that clusters must be nested)

Additive trees can be seen as a special (nested) case of an additive distinctive-features model.

Classification of Additive Feature Models (Corter & Tversky, 1986) Feature Structure Nested Non-nested Common Hierarchical Clustering Additive Clustering Features (Sokal & Sneath, 1963) (Shepard & Arabie, 1979) Distance Rule Distinctive Additive Tree Extended Tree Features (Sattath & Tversky, 1977) (Corter & Tversky, 1986)

HUDM5124 - MDSC

Extended Similarity Trees (=general case of a distinctive-features model)

$$d(x,y) = -\theta f(X = Y) + \alpha g(X-Y) + \beta g(Y-X)$$
"common footnes" "distinctive "distractive footness"

Sistemal rate of (distributional footness

$$d(x,y) = g(X-Y) + g(Y-X)$$
HUDM5124-MDSC

An example of non-nested feature sets

HUDM5124 - MDSC

Example from Corter & Tversky (1986)– a factorial stimulus structure

HUDM5124 - MDSC

ADDTREE/P solution for schematic faces (similarity ratings)

EXTREE solution for schematic faces (similarity ratings)

R-SQ = .99

Extended Similarity Trees (EXTREE) - Corter & A. Tversky (1986)

FIGURE 8
EXTREE solution for similarity of integers (Shepard et al., 1975). PV = 90%.

(high-level) Summary of EXTREE algorithm

I. fit best additive tree

-transform data to satisfy metric axions

- D -> compute neighbor score matrix, N

- combine those objects that are mutual reconst-neighbor

T

- find cliques of pairwise features

- II. estimate measure of each possible marked feature & choose best set w= = = = [d(x,v)+d(y,u)-d(x,u)-d(y,v)]
 -eliminate redundant fortures
- III. simultaneous least-squares estimation of all model parameters

Some indeterminacies in the representation

- 1) a feature might be represented by tree structure OR by a marked segment
- 2) Placement of a marked feature (see figure)

Note that both representations are equivalent in terms of the model distances:

$$d_{xy} + d_{uv} < d_{xu} + d_{yv} < d_{xv} + d_{yu}$$

Some placement indeterminacies are resolved by choice of a root:

EXTREE example: numbers rated as abstract concepts (Shepard, Kilpatric, & Cunningham; 1975)

```
marked feature pattern matrix
```

```
zero C D . . .
CCCCCDDDDDDD---|
                 CCCCCC---- two
          DDDDDDD--
                 IIIIIII---- four
NNNNNNN-----|
          EEEEEEEE ---- eight
           CCCCCDDDDDDD-----
                             three
                             nine
           EEEEEEEE-----
                       five
     EEEEEEEE seven
```

r-squared (p.v.a.f.)=0.9013

Representing overlapping clustering by multiple trees

Carroll, J. D., & Corter, J. E. (1995). A graph-theoretic method for organizing overlapping clusters into trees, multiple trees, or extended trees. *Journal of Classification*, *12*(2), 283-313.

Basic ideas:

- An overlapping clustering (i.e., ADCLUS model solution) can be grouped into two or more nested subset of features
- This can be accomplished by a clique-finding algorithm operating on a graph representation of the feature set relationships
- Each nested subset of clusters then can be represented by a tree
- The dissimilarity between any two objects is then modeled visually by the SUM of the distances in the two trees (common feature interpretation also possible)

 HUDM5124 - MDSC

Representing overlapping clustering by multiple trees (cont.)

Example: MAPCLUS solution for the Rosenberg kinship data

TABLE 2
Nine-Cluster MAPCINS Solution for 15 Kinship Terms.

(1)	.582	WROTHR SISTER
(2)	.554	FATHER HOTHER
(3)	.551	DAUGHT SON
143	,547	GRDAUG GREATH GRHOTH GRSCN
(5)	,468	AUNT COUSIN NEPHEW NIECE
(6)	. 432	NEPHEW NIECE
(7)	,398	AUNT DAUGHT GRDAUG GRMOTH MOTHER NIECE SISTER
(8)	.395	BROTHR FATHER GREATH GRSQN NEWHEN SON UNCLE
(9)	.311	BROTHR DAUGHT FATHER MOTHER SISTER SOM

Representing overlapping clustering by multiple trees (cont.)

Two-tree representation for the MAPCLUS solution

A related problem: (Additive) clustering of 2-way 2-mode (rectangular proximity) data (="block clustering", "bicluster" methods)

- Idea is to simultaneously cluster the rows and columns of a proximity matrix (e.g. consumers and products; people and clubs)
- Early work by Hartigan (1972; 1975)
- Recent papers by van Mechelen et al. (2004),
 Depril et al. (2008), Wilderjans et al. (2012)
- The clustering of rows and/or or columns can be overlapping (or not)

References – Nonhierarchical Clustering

Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of similarities as combinations of discrete overlapping properties. *Psychological Review*, 86(2), 87-123.

Arabie, P., & Carroll, J. D. (1980). MAPCLUS: a mathematical programming approach to fitting the ADCLUS model. *Psychometrika*, *45-2*, 211-235.

Carroll, J. D., & Arabie, P. (1983). INDCLUS: An individual differences generalization of the ADCLUS model and the MAPCLUS algorithm. *Psychometrika*, *48*(2), 157-169.

Ten Berge, J. M. F., & Kiers, H. A. L. (2005). A Comparison of Two Methods for Fitting the INDCLUS Model. *Journal of Classification*, 22(2), 273-286.

Arabie, P., Carroll, J. D., & DeSarbo, W. S. (1987). *Three-Way Scaling and Clustering*. Newbury Park: Sage.

Van Mechelen, I., Bock, H. H., & De Boeck, P. (2004). Two-mode clustering methods: a structured overview. *Statistical Methods in Medical Research*, 13(5), 363-394.

*Depril, D., Van Mechelen, I., & Mirkin, B. (2008). Algorithms for additive clustering of rectangular data tables. *Computational Statistics and Data Analysis*, *52*, 4923–4938.

Wilderjans, T. F., Depril, D., & Van Mechelen, I. (2012). Block-relaxation approaches for fitting the INDCLUS model. *Journal of Classification*, 29(3), 277-296.

Corter, J.E., & Tversky, A. (1986). Extended similarity trees. *Psychometrika*, *51*, 429-451.