1

Assignment-15

Satyam Singh EE20MTECH14015

Download tex file from

https://github.com/satyam463/Assignment-13/blob/main/Assignment%2013.tex

1 Problem Statement

Let T be the linear operator on C^2 defined by

$$T(x_1, x_2) = (x_1, 0)$$
 (1.0.1)

Let β be the standard ordered basis for C^2 and

$$\beta' = \{\alpha_1, \alpha_2\} \tag{1.0.2}$$

be the ordered basis defined by

$$\alpha_1 = (1, i), \alpha_2 = (-i, 2)$$
 (1.0.3)

What is the matrix of T relative to the pair β' , β ?

2 Solution

Transformation T from C^2 to C^2 . Let

$$\beta = \{e_1, e_2\} \implies e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 (2.0.1)

$$\beta' = \{\alpha_1, \alpha_2\} \implies \alpha_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}, \alpha_2 = \begin{pmatrix} -i \\ 2 \end{pmatrix} \quad (2.0.2)$$

T is defined by

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{2.0.3}$$

$$T(\mathbf{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x} \tag{2.0.4}$$

consider β' under T

$$T\left(\alpha_{1}\right) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{2.0.5}$$

$$T(\alpha_2) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -i \\ 2 \end{pmatrix} = \begin{pmatrix} -i \\ 0 \end{pmatrix}$$
 (2.0.6)

we have to write $T(\alpha_1)$ and $T(\alpha_2)$ as linear combinations of e_1 , e_2

$$T(\alpha_1) = 1e_1 + 0e_2 \tag{2.0.7}$$

$$T(\alpha_2) = -ie_1 + 0e_2 \tag{2.0.8}$$

Therefore matrix of relative to the pair β' , β

$$T\left(\beta'\right) = \begin{pmatrix} 1 & -i \\ 0 & 0 \end{pmatrix} \beta \tag{2.0.9}$$