

2014—2015 学年第二学期 《大学物理 (2-1)》(64 学时)期末试卷

专业班级	
姓 名	
学 号	-
开课系室基础物	物理系
考试日期 2015 年 6 月	28 日 8:30-10:30

题	 		三			ш	Y 八				
题号	1	2	3	4	1	2	3	4	- 四	<u> </u>	总分
得分											
阅卷人											

注意事项:

- 1. 请在试卷正面答题, 反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面整洁;
- 3. 本试卷共四道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共9页。

一、选择题(共10小题,每小题3分,共30分)

1、(本题3分)

一细圆环,对通过环心且垂直于环面的轴的转动惯量为 J_A ,而对任一直 径为轴的转动惯量为 J_B ,则

- (A) $J_A > J_B$.
- (B) $J_A < J_B$.
- (C) $J_A=J_B$.
- (D)无法确定哪个大.

Γ 7

2、(本题 3 分)

一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统, 当此人在盘上随意走动时, 若忽略轴的摩擦, 此系统

- (A) 动量守恒.
- (B) 机械能守恒.
- (C) 对转轴的角动量守恒.
- (D) 动量、机械能和角动量都守恒.
- (E) 动量、机械能和角动量都不守恒.

Γ 7

3、(本题 3 分)

在波长为λ的驻波中两个相邻波节之间的距离为

(A) λ .

- (B) $3\lambda/4$.
- (C) $\lambda/2$.
- (D) $\lambda/4$.

Γ

7

4、(本题 3 分)

一辆机车以 30 m/s 的速度驶近一位静止的观察者,如果机车的汽笛的频率为 550 Hz, 此观察者听到的声音频率是(空气中声速为 330 m/s)

- (A) 605 Hz.
- (B) 600 Hz.
- (C) 504 Hz.
- (D) 500 Hz.

7 Γ

5、(本题3分)

如图, S_1 、 S_2 是两个相干光源, 它们到 P 点的距离分别为 r_1 和 r_2 . 路径 S_1P 垂直穿过一块厚度为 t_1 , 折射率为 n_1 的介质板, 路径 S_2P 垂直穿过厚度为 t_2 , 折射率为 n_2 的另一介质板, 其余部分可看作 真空,这两条路径的光程差等于

- (A) $(r_2 + n_2 t_2) (r_1 + n_1 t_1)$. (B) $[r_2 + (n_2 1)t_2] [r_1 + (n_1 1)t_2]$.
- (C) $(r_2 n_2 t_2) (r_1 n_1 t_1)$. (D) $n_2 t_2 n_1 t_1$.

6.	(本题3分)				
	一東波长为λ的单色光	光由空气垂直入射到折射	村率为n的透明薄膜上,	透明薄膜放	在空气
中,	要使反射光得到干涉	加强,则薄膜最小的厚	度为		
	(A) $\lambda/4$.	(B) $\lambda / (4n)$.			
	(C) $\lambda/2$.	(D) $\lambda/(2n)$.		[]
7、	(本题3分)				
	自然光以布儒斯特角	由空气入射到一玻璃表	面上,反射光是		
	(A) 在入射面内振动	的完全线偏振光.			
	(B) 平行于入射面的打	振动占优势的部分偏振	光.		
	(C) 垂直于入射面振z	动的完全线偏振光.			
	(D) 垂直于入射面的	振动占优势的部分偏振	光.	[]
8,	(本题3分)				
	气缸内盛有一定量的	氢气(可视作理想气体)。	当温度不变而压强增大	、一倍时,氢	气分子
的平	$ar{z}$ 均碰撞频率 $ar{z}$ 和平均	自由程 λ 的变化情况是	! =:		
	(A) Z 和 λ 都增大·	一倍.	(B) \overline{Z} 和 $\overline{\lambda}$ 都减为原来	的一半.	
	(C) \bar{Z} 增大一倍而 \bar{Z}	_ l 减为原来的一半.	(D) \bar{Z} 减为原来的一半	¥而 λ 增大-	一倍.
9、((本题3分)			[]
	热力学第二定律表明	:			
	(A) 不可能从单一热流	源吸收热量使之全部变	为有用的功.		
	(B) 在一个可逆过程 ¹	中,工作物质净吸热等	于对外作的功.		
	(C) 摩擦生热的过程	是不可逆的.			
	(D) 热量不可能从温	度低的物体传到温度高	的物体.]
10、	(本题3分)				
	质子在加速器中被加·	谏, 当其动能为静止能	量的 4 倍时, 其质量为	争止质量的	

(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍. [

二、简单计算与问答题(共4小题,每小题5分,共20分)

1、(本题5分)

分别从简谐振动的"受力特点、动力学方程、运动学方程、能量特点"四个方面,试述简谐振动的四个判据.

本プ	大题满分20分
本	
大	
题	
得	
分	

2、(本题 5 分)

已知天空中两颗星对一望远镜的角距离为 4.84×10⁻⁶ rad,设它们发出光的波长为 5500Å。望远镜的口径至少要多大才能分辨出这两颗星.

3、(本题 5 分)

速率分布函数的物理意义是什么? 试说明下列两公式各表示什么理意义?

(1) f(v)dv; (2) Nf(v)dv;

4、(本题 5 分)

一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为 0.5 m.则此米尺以多大的速度 v接近观察者.

三. 计算题 (共4小题,每小题10分,共40分)

1、(本题 10 分)

如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为R,其转动惯量为 $\frac{1}{2}MR^2$,滑轮轴光滑。在该物体由静止开始下落的过程中,试求:

(1) 物体的加速度 a. (2) 下落速度与时间的关系.

2、(本题 10 分)

如图所示,有一定量的理想气体,从初状态 $a(p_1,V_1)$ 开始,经过一个等体过程达到压强为 $p_1/4$ 的 b 态,再经过一个等压过程达到状态 c,最后经等温过程而完成一个循环. 求该循环过程中系统对外作的功 A 和所吸的热量 Q.

3、(本题 10 分)

某质点作简谐振动,周期为 2 s,振幅为 0.06 m,t=0 时刻,质点恰好处 在负向最大位移处,求

- (1) 该质点的振动方程;
- (2) 此振动以波速 u = 2 m/s 沿 x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);
 - (3) 该波的波长.

本人	卜题满分10分
本	
小	
题	
得	
分	

4、(本题 10 分)

波长 $\lambda = 6000$ 的单色光垂直入射到一光栅上, 测得第 2 级主极大的衍射角为 30° ,且第 3 级缺级.

试求: (1)光栅常数(*a*+*b*)是多大? (2)透光缝可能的最小宽度是多少? (3) 在屏幕上可能出现的主极大的级次是哪些.

本人	卜题满分10分
本	
小	
题	
得	
分	

四、实验设计题(共1题, 共10分)

下图是"鱼洗"的实验装置.它的大小像一个洗脸盆,底是扁平的,盆沿左右各有一个把柄,称为双耳;鱼洗奇妙的地方是,用手缓慢有节奏地摩擦盆边两耳时,能演示振动和波的一些相关现象.根据你对该实验的操作、观察和理解,试回答和分析以下问题:

- (1) 用手缓慢有节奏地摩擦盆边两耳时, 你能听到怎样的声音?
- (2) 用手缓慢有节奏地摩擦盆边两耳时, 描述一下你看到的实验现象.
- (3) 试从振动和波动两个方面来解释你看到的实验现象.

