

Università del Piemonte Orientale

Dipartimento di Scienze e Innovazione Tecnologica Corso di Laurea in Informatica

Relazione per la prova finale

Caratterizzazione di sensori di temperatura NTC per l'esperimento FOOT con sorgente di corrente e microcontrollore

Tutore interno:

Candidato:

Prof. Luciano Ramello

Antonio Scalogna

Anno Accademico 2019/2020

Indice

1.	Adroterapia	2
2.	Esperimento FOOT	3
3.	Metodologie e strumenti utilizzati	
	3.1 Termistori NTC	4
	3.2 Sorgente di corrente	7
	3.3 Multiplexer analogico	8
	3.4 Contatore binario preimpostabile a 4 bit	10
	3.5 Sensore di temperatura LM35	11
	3.6 Arduino UNO	12
	3.7 Fritzing	12
	3.8 LTSpice	12
	3.9 Raccolta e analisi dei dati	14
4.	Lavoro svolto	
	4.1 Funzionamento LM34	15
	4.2 LM334 con un singolo termistore NTC miniature	16
	4.3 Circuito con LM334 e multiplexer ADG506A	18
	4.4 Termistori NTC a temperature superiori a 25°C	24
	4.5 Correzione errore sistematico R _{ON}	33
	4.6 Formula di Steinhart-Hart	38
	4.7 Temperature sotto i 25°C	42
	4.8 Contatore e multiplexer	43
5.	Conclusione e sviluppi futuri	47
	Appendice A	48
	Bibliografia	58
	Ringraziamenti	59

1 - Adroterapia

La cura adronica è una terapia per il trattamento di tumori utilizzando fasci di protoni, ioni o neutroni. Quest'ultimi essendo neutri hanno un fattore più alto di penetrazione e a causa di ciò il danneggiamento dei tessuti non è localizzabile con precisione, cosa che, invece, è possibile per gli adroni carichi. Questa tecnica offre una maggior precisione nel rilascio delle dosi rispetto alla radioterapia (Figura 2), poiché minimizza il danno ai tessuti sani intorno al tumore.^[13]

Figura 1 - Dose rilasciata dai protoni, elettroni e raggi x

Durante il trattamento, la dose iniziale data dai protoni è minima e raggiunge il picco massimo, chiamato "picco di Bragg" (Figura 1), in una zona di pochi millimetri.

Figura 2 - Differenza tra la terapia a protoni e radiazioni tradizionali

L'obbiettivo dell'esperimento FragmentatiOn Of Target (FOOT) è quello di migliorare il trattamento dei tumori con l'adroterapia studiando il comportamento dei fasci di particelle, come questi interagiscono con il corpo umano, tenendo conto della frammentazione del proiettile (che può essere uno ione C o O) e dei nuclei dei tessuti del paziente, composti principalmente da idrogeno, carbonio e ossigeno, con una risoluzione migliore del 5%. In particolare, per ogni frammento, è necessaria una misurazione precisa del Time Of Flight (σ < 100 ps), quantità di moto (σ < 5%) e energia (σ < 2%).

2 - Esperimento FOOT

L'esperimento FOOT è progettato per essere a target fisso: i fasci colpiscono un materiale che rappresenta il tessuto umano e i frammenti prodotti vengono rilevati e misurati da un rilevatore multiuso.^[8]

Figura 3 - Esperimento FOOT è diviso in parti

Target Region

Questa regione è composta da un sottile rivelatore di scintillatore in plastica utilizzato per fornire informazioni sul trigger e il tempo di inizio (Start) per il successivo rilevatore Time Of Flight (TOF), una camera di deriva con lo scopo di misurare la direzione del fascio e dei target sottili in polietilene e grafite, necessario per adottare il metodo di sottrazione delle sezioni trasversali.

Magnetic Spectrometer

Lo spettrometro magnetico è composto da quattro strati di rivelatore di pixel di silicio posizionati dopo il target, da utilizzare come rivelatore di vertici, due magneti permanenti con geometria di Halbach per eseguire le misure di quantità di moto e tre strati di rivelatori a microstriscia di silicio, ciascuno composto da 2 sensori.

Calorimeter Region

Questa parte è composta da scintillatori plastici, per misurare l'energia depositata ${}^{dE}/{}_{dx}$ (perdita media di energia per unità di percorso), dare lo stop al TOF e una stima della posizione del frammento, e un calorimetro composto da 320 elementi di cristallo BGO (germanato di bismuto) che è adibito alla misurazione dell'energia dei frammenti (protoni, particelle alfa, ioni leggeri) con una precisione di circa il 2%.

Lo scintillatore a cristalli di BGO ha una buona densità atomica e quindi permette un deposito maggiore di energia, fino all'arresto della particella entro il volume del cristallo, al contrario dello scintillatore plastico che ha uno spessore inferiore alla lunghezza di radiazione caratteristica, causando una minor capacità di deposito energetico.

Componente importante è il SiPM, Silicon Photomultiplier (fotomoltiplicatore al silicio) che, rispetto il PM, fotomoltiplicatore costruito con tubi a vuoto, usato principalmente con i cristalli scintillatori, ha due vantaggi principali: una bassa tensione di funzionamento e l'insensibilità al campo magnetico.

Nell'esperimento FOOT, ogni barra di scintillatore plastico è collegata a 4 SiPM, due per ogni estremità, e questi trasformano il segnale luminoso in segnale elettrico, fornendo il segnale di STOP e ottenendo la misura del Time Of Flight iniziata dallo Start Counter. La risoluzione energetica ottenuta ha una variazione che è compresa tra il 6% e il 13%.

Figura 4 - Il cristallo BGO, all'estremità posteriore, ha una tile di SiPM

Il monitoraggio delle temperature di ogni cristallo è necessario per ottenere una buona risoluzione energetica. Tenendo conto della dipendenza della resa di luce del cristallo BGO e del guadagno del SiPM dalla temperatura, la risoluzione necessaria per il monitoraggio delle temperature deve essere almeno di 0.5°C.

Per monitorare i 320 cristalli usando un numero ragionevole di canali è necessario l'utilizzo di multiplexer, che permettono di avere un maggior numero di ingressi su un canale, e di un contatore che permette di incrementare l'indirizzo di selezione del multiplexer.

I termistori NTC, insieme ad una sorgente di corrente, sono una buona alternativa per il monitoraggio delle temperature, permettendo così di tradurre una resistenza variabile R_T , data dal termistore, in temperatura, con un ADC, Analog to Digital Converter.

3 - Metodologie e strumenti utilizzati

3.1 - Termistori NTC

I termistori utilizzati per il rilevamento della temperatura sono NTC (Negative Temperature Coefficient), la resistenza è inversamente proporzionale alla temperatura, ovvero l'aumento di temperatura comporta una riduzione del valore di resistenza.^[14]

La dipendenza della resistenza dalla temperatura può essere calcolata con l'equazione

$$R_T = R_R \cdot e^{B \cdot (\frac{1}{T} - \frac{1}{T_R})}$$

Formula 1

dove:

- R_T esprime il valore della resistenza NTC in Ω a una temperatura T in Kelvin (T°C + 273,15)
- R_R esprime il valore nominale della resistenza NTC in Ω a una temperatura di riferimento T_R in Kelvin, comunemente 298,15 K (25 °C), che è di circa $10k\Omega$.
- B è un valore costante espresso in K considerato per un intervallo di temperature specifico (per esempio $25^{\circ}\text{C} 100^{\circ}\text{C}$), ricavabile dalle specifiche del termistore NTC e anche tramite la formula $B = \frac{T \cdot T_R}{T T_R} \cdot \ln \frac{R_R}{R_T}$ [9]

Il comportamento di un termistore NTC è approssimativamente descritto dalla relazione esponenziale citata sopra, però, questo approccio, è adatto solo per descrivere con precisione un range ristretto intorno alla temperatura o alla resistenza nominale.

Figura 6 - Termistore NTC, di tipo miniature, utilizzato nella sperimentazione

Una variazione nella resistenza del termistore NTC (Figura 5 e 6) può essere determinata da una variazione della temperatura ambiente (causa esterna) oppure da auto riscaldamento (causa interna) dovuto dalla corrente che scorre attraverso il termistore.

Il fattore di auto riscaldamento non dipende solo dal carico elettrico applicato ma anche dal fattore di dissipazione termica δ_{th} e dalla geometria del termistore stesso.

Considerando un termistore con resistenza nominale R_R di $10k\Omega$ +/- 1% (percentuale che indica l'incertezza) e un valore B di 3988 K +/- 0.3%, il fattore di auto riscaldamento può essere rappresentato logaritmicamente in funzione della corrente che passa attraverso il termistore (Figura 7), considerando diverse temperature. [10]

Figura 7- Auto riscaldamento di un termistore NTC per 3 diverse temperature

Inoltre, il fattore di auto riscaldamento cambia se l'alimentazione è a corrente costante (Figura 8a) o a tensione costante con una resistenza in serie (Figura 8b). Nella Figura 9 sono mostrati i casi in cui vi è una corrente costante a 200 µA e tre casi con una stessa tensione elettrica a 5V ma con 3 differenti resistenze.

Figura 8

1.2 K ΔΤ 1.0 0.8 0.6 V = 5 V; $R_S = 5 k\Omega$ V = 5 V; $R_S = 10 k\Omega$ V = 5 V; $R_S = 20 k\Omega$

Figura 9 – Grafico dell'auto riscaldamento a corrente costante (200 μ A) e a tensione costante con 3 diverse resistenze

3.2 - Sorgente di corrente

La sorgente di corrente, in particolare l'LM334, usato nella sperimentazione, è un generatore di corrente regolabile a tre terminali.

Figura 10 - Componente LM334

L'LM334 è un dispositivo che produce un valore costante di corrente indipendentemente dalla tensione della sorgente o dalla resistenza di carico. [11]

Figura 11 – Circuito base per illustrare il funzionamento della sorgente di corrente

La corrente è determinata da un resistore esterno (Figura 11), senza richiedere altri componenti esterni.

La corrente totale attraverso il componente LM334 (I_{SET}) è la somma della corrente che attraversa il resistore R_{SET} e la corrente di polarizzazione (I_{BIAS}), ovvero la corrente che scorre dall'uscita dell'LM334 al termistore R_{SET} . (Figura 12)

Figura 12 – Rappresentazione delle correnti

$$I_{SET} = I_R + I_{BIAS}$$

Formula 2 – Rapporto tra le correnti

Considerando una tensione di circa 66,7mV (VR nella Figura 12) e un I_{set} di 0.25mA, la scelta di R_{SET} è di 250 Ω poiché è la resistenza che più si avvicina al risulto di ${}^{66,7mV}/{}_{0,25mA} = 266,8~\Omega$.

3.3 - Multiplexer analogico

La funzione del multiplexer analogico è quella di trasferire verso la propria uscita uno ed uno solo dei dati presenti ai suoi ingressi, in funzione del valore assunto da un comando di selezione.

In questo modo è possibile trattare con lo stesso convertitore più segnali provenienti da diversi canali. Questo comporta un enorme vantaggio, in quanto permette di aumentare la quantità di dati che possono essere trasmessi in un ingresso dell'ADC.

La selezione dei canali avviene rispettando una tabella di verità contenente i pin A_n, usati per selezionare i canali del multiplexer (Figura 13).

Ogni multiplexer ha un canale di uscita, chiamato D o Y, e un pin Enable (EN) che serve ad attivare i pin che andranno all'ADC. EN può essere attivo alto o attivo basso ed è definito nelle specifiche del componente.^[2]

Truth Table (ADG506A)								
A3	A2	A1	A0	EN	On Switch			
х	Х	X	х	0	NONE			
0	0	0	0	1	1			
0	0	0	1	1	2			
0	0	1	0	1	3			
0	0	1	1	1	4			
0	1	0	0	1	5			
0	1	0	1	1	6			
0	1	1	0	1	7			
0	1	1	1	1	8			
1	0	0	0	1	9			
1	0	0	1	1	10			
1	0	1	0	1	11			
1	0	1	1	1	12			
1	1	0	0	1	13			
1	1	0	1	1	14			
1	1	1	0	1	15			
1	1	1	1	1	16			

Figura 13 – Tabella di verità del multiplexer ADG506A

Nell'esperimento è stato impiegato il multiplexer ADG506A (Figura 14) a 16 canali, quindi 4 ingressi per selezionare i canali, e il pin Enable è attivo quando viene collegata ad un generatore di tensione, in questo caso a 5V di Arduino.

Figura 14 – Schema ADG506A

Il multiplexer ADG506A, per funzionare correttamente, deve essere alimentato con una tensione di almeno 9 V.

In Figura 15 sono rappresentati i collegamenti di un multiplexer a 8 canali concettualmente simile all'ADG506A usato nella sperimentazione. I collegamenti A0, A1 e A2 sono collegati a 3 pin di Arduino configurati come OUTPUT.

Figura 15 – Esempio funzionamento multiplexer in LTSpice

3.4 - Contatore binario preimpostabile a 4 bit

Il 74HC193 è il contatore binario sincrono up/down utilizzato per scorrere gli indirizzi del multiplexer.

I clock up e down sono separati con dei pin CPU e CPD per semplificare ulteriormente il funzionamento.

Figura 16 – Contatore 74HC193

Uno solo dei due ingressi CPU e CPD può essere mantenuto ad ALTO: infatti se si mantiene ad alto CPD, e quindi l'unico clock a pulsare è CPU, il contatore inizierà a contare normalmente (count up), mentre se i due ingressi vengono invertiti, CPU mantenuto ad ALTO e CPD è il clock che pulsa, verrà effettuato un conto alla rovescia (count down). Quindi le uscite (Q0, Q1, Q2 e Q3) cambiano stato in modo sincrono utilizzando la transizione up/down di uno dei due ingressi clock.

Il contatore può essere resettato in qualunque momento utilizzando l'ingresso asincrono MR (Master Reset), inoltre il contatore può essere preimpostato in parallelo usando l'ingresso PL e gli ingressi D0, D1, D2 e D3.

Le uscite del count up (TCU) e del count down (TCD) sono normalmente settate ad ALTO.

Quando il circuito ha raggiunto lo stato di conteggio massimo di 15, la successiva transizione dall'ALTO a BASSO della CPU farà passare TCU a BASSO, quest'ultima rimarrà BASSO fin quando la CPU non tornerà ad ALTO, duplicando il clock del conteggio.

In ugual modo, l'uscita TCD diventerà BASSA quando il circuito avrà raggiunto il conteggio minimo 0 e il CPD sarà BASSO.

TCU e TCD possono essere utilizzate come segnali di ingresso del clock per un successivo circuito, poiché duplicano la forma d'onda. [7]

Figura 17 – Schema logico del contatore

I pin da D0 a D3 sono ingressi dati, mentre i pin da Q0 a Q3 sono gli output dei flip-flop.

3.5 - Sensore di temperatura LM35

È un sensore ad altra precisione a tre terminali: uno per l'alimentazione, uno di massa e uno per l'uscita della tensione proporzionale alla temperatura rilevata, pari a circa 10mV per ogni grado centigrado, poiché il sensore è calibrato in centigradi. [12]

Figura 18 – Schema LM35

3.6 - Arduino UNO

È un microcontrollore basato sul chip ATmega328P. Ha 14 pin di input/output digitali, 6 dei quali possono essere utilizzati in modalità PWM, Pulse Width Modulation, cioè una tecnica che permette di ottenere risultati approssimativamente analogici da pin digitali, e 6 pin analogici, ovvero gli ingressi per l'ADC.

Figura 19 – Arduino UNO utilizzato per l'esperimento

Arduino può restituire un'alimentazione da 5V o 3.3V e a sua volta può essere alimentato esternamente da USB o esternamente tramite porta DC. [1]

La scheda Arduino è programmabile tramite l'IDE proprietario in Java.

Un progetto è generalmente diviso in due parti:

- setup(), la parte di codice che viene eseguita al primo avvio dello sketch (progetto di Arduino)
- loop(), la parte di codice che viene continuamente eseguita fin quando non si termina la l'esecuzione.

3.7 - Fritzing

È un software open source che permette di simulare uno sketch in Arduino o Processing collegando solamente il microcontrollore ed effettuare uno schema realistico del circuito che verrà fisicamente assemblato in seguito.

3.8 - LTSpice

LTSpice è un software Freeware basato su SPICE (programma di simulazione circuitale sviluppato nel 1975 e distribuito in licenza BSD) ed è usato per simulare circuiti elettronici analogici. ^[6] In particolare, per la sperimentazione, si è dovuto aggiungere un componente (la sorgente di corrente) partendo dal codice in SPICE, mostrato di seguito:

```
1. * Selfmade model of the LM334 from National Semiconductor or ST
2. * Helmut Sennewald
3. *
4. * Pin order: v+ v- R
5. .SUBCKT LM334 v+ v- R
6. Q4 N002 N001 v+ 0 pnp1
7. Q5 N003 N001 v+ 0 pnp1
8. Q6 R N001 v+ 0 pnp1 14
9. Q1 N003 N003 R 0 npn1 14
10. Q2 N002 N003 N004 0 npn1
11. Q3 N001 N002 R 0 npn1
12. C1 N002 N004 50p
13. R2 N004 v- 1µ
14. R8 v + v - 1G
15. C2 v+ v- 10p
16. C3 N003 v- 1p
17. C4 R v- 1p
18. .model npn1 NPN(Is=1e-15 BF=200 TF=1e-9 Cjc=0.5e-12 Cje=1e-12 VAF=100
  Rb=100 Re=5)
19. .model pnp1 PNP(Is=1e-15 BF=100 TF=1e-7 Cjc=0.5e-12 Cje=1e-12 VAF=100
  Rb=100 Re=5)
20. .ENDS
```

Codice 1 – Circuito equivalente del componente LM334 contenuto nel file lm334.sub

```
1. Version 4
2. SymbolType CELL
3. LINE Normal 0 24 0 80
4. LINE Normal 0 -24 0 -80
5. LINE Normal 64 0 14 0
6. LINE Normal 23 -5 14 0
7. LINE Normal 23 5 14 0
8. RECTANGLE Normal 64 80 -64 -80
9. CIRCLE Normal 16 8 -16 -24
10. CIRCLE Normal 16 24 -16 -8
11. TEXT 7 -63 Left 0 V+
12. TEXT 7 64 Left 0 V-
13. TEXT 41 -16 Left 0 R
14. WINDOW 3 -40 0 VCenter 0
15. WINDOW 0 16 -96 Left 0
16. SYMATTR Value LM334
17. SYMATTR Prefix X
18. SYMATTR Value2 LM334
19. SYMATTR Description Adjustable Current Source
20. SYMATTR SpiceModel LM334.sub
21. PIN 0 -80 NONE 8
22. PINATTR PinName v+
23. PINATTR SpiceOrder 1
24. PIN 0 80 NONE 8
25. PINATTR PinName v-
26. PINATTR SpiceOrder 2
27. PIN 64 0 NONE 8
28. PINATTR PinName R
29. PINATTR SpiceOrder 3
```

Codice 2 – Configurazione dei pin del componente LM3334 contenuta nel file lm334.asy

3.9 - Raccolta e analisi dei dati

Per il raccoglimento dei dati si è utilizzato Office Excel 2020 insieme alla macro PLX-DAQ 2.0 (Open Source) il quale permette di collegare la porta seriale di Arduino ad Excel, facendo diventare quest'ultimo un monitor seriale.

Figura 20 – Macro PLX-DAQ 2.0

Questo strumento si è dimostrato essere molto versatile per il raccoglimento dei dati e la realizzazione dei plot in real time durante la fase di campionamento.

Eventuali correzioni dei calcoli sono state realizzate in VBA (Visual Basic for Applications) direttamente nella sezione Sviluppo di Excel.

Per un'analisi più dettagliata è stato usato Gnuplot, un software open source per la realizzazione di grafici di funzioni matematiche (a due o tre dimensioni) e rappresentazione grafica partendo da dati grezzi.

Figura 21 – Schermata Gnuplot

4 - Lavoro svolto

4.1 - Funzionamento LM334

Partendo dal circuito visto nella descrizione del componente (Figura 11) e aggiungendo un resistore con tolleranza dello 0,1% all'uscita V⁻ dell'LM334 (Figura 22) è possibile controllare la corrente che scorre in entrambi i resistori. Il corretto funzionamento prevede lo stesso valore di I_{SET} e I_R per diversi resistori di carico (LOAD), che corrispondono alle variazioni di temperatura in un termistore.

Figura 22 – Circuito LM334 alimentato diretta da Arduino UNO a 5 V

Il circuito del LM334 mantiene una differenza di tensione di circa 67,7mV (a 25 $^{\circ}$ C) tra i due estremi di R_{SET}, come illustrato nella quarta colonna della Tabella 1, che elenca il valore nominalre della corrente I_R.

V+	R _{SET}	I _{SET}	67.7mV/R _{SET}	I _R	I _{BIAS}	I _{SET} /I _{BIAS}	V_R	V_{LOAD}	R _{LOAD}
5	250	148	270,8	140	8	18,5	0,035	4,46	30k
3,3	250	132	270,8	124	8	16,5	0,031	3,96	30k
9	250	266	270,8	252	14	19	0,063	8	30k
12	250	267,6	270,8	252	15,6	17,1538462	0,063	8,03	30k
3,3	250	256,6	270,8	244	12,6	20,3650794	0,061	3,85	15k
5	250	266,7	270,8	252	14,7	18,1428571	0,063	4	15k
9	250	267,3	270,8	252	15,3	17,4705882	0,063	4	15k
12	250	267,3	270,8	252	15,3	17,4705882	0,063	4,01	15k
3,3	250	267,1	270,8	252	15,1	17,6887417	0,63	2,671	10k
5	250	267,2	270,8	252	15,2	17,5789474	0,063	2,672	10k
9	250	267,5	270,8	252	15,5	17,2580645	0,063	2,675	10k
12	250	267,4	270,8	252	15,4	17,3636364	0,063	2,674	10k

Tabella 1 – Tabella con i valori ottenuti dalle misurazioni

Il componente LM334 è stato alimentato a 4 diverse tensioni, 3.3V e 5V da Arduino UNO, 9V provenienti da una pila e 12V da un generatore di tensione regolabile.

Verso la massa è stato inserito un resistore con un'incertezza dell'1% che varia da $10k\Omega$ (25°C nominali), $15k\Omega$ e $30k\Omega$ che rappresentano temperature al di sotto di quella ambiente.

Per valutare la stabilità del componente bisogna calcolare tre correnti I_{SET} , I_R e I_{BIAS} calcolate rispettivamente:

$$I_{SET} = \frac{V_{SET}}{R_{SET}} \cos R_{SET} = 250\Omega$$

$$I_R = \frac{V_{LOAD}}{R_{LOAD}} \cos R_{LOAD}$$
 che varia in $10k\Omega$, $15k\Omega$, $30k\Omega$

 $I_{BIAS} = I_{SET} - I_R$, cioè la corrente che fuori esce dall'LM334.

 I_{SET}/I_{BIAS} è un fattore che, guardando le specifiche del componente, tipicamente corrisponde a 18 ma che può variare da 16 a 24.

Come si può notare dalla tabella 1, non è previsto un corretto funzionamento della sorgente di corrente a 3.3V, in quanto V_R ha una tensione maggiore di quella in ingresso. Per gli altri casi, il valore misurato di I_{SET} non è molto discostato da quello teorico con la tensione a 67.7mV e R_{SET} sempre a 250Ω , e le tensioni e correnti misurate, sono piuttosto stabili, indice del corretto funzionamento dell'LM334.

4.2 - LM334 con un singolo termistore NTC miniature

Il circuito con la sorgente di corrente e il termistore è essenzialmente identico a quello con la resistenza, poiché, per definizione, il termistore è una resistenza il cui valore varia in base alla temperatura.

Figura 23 – Schema circuito con LM334 e termistore in LTSpice

Figura 24 – Plot circuito nella figura 23

Il plot effettuato con LTSpice restituisce un'idea sul significato del termistore NTC, ovvero all'aumentare della temperatura vi è una diminuzione del valore di resistenza.

Le costanti nello sketch 1 indicano:

- B è il valore costante presente nelle specifiche del termistore ed indica la costante B presente nella Formula 1;
- R₀ è il valore della resistenza per la temperatura nominale di 25 °C
- R_{SET} è la resistenza da 250 Ω presente nel circuito del LM334 e V_{SET} è la tensione (teorica) tra i due capi della resistenza.

```
1. #define B 3988// K
2. #define R0 10000//10K\Omega
3. #define RSET 250 // \Omega
4. #define VSET 0.0677 // V
5.
6. float RT, VR, TR, TO, VRT, ISET;
7. float LM35;
8. float temp;
9.
10. void setup() {
    Serial.begin(9600);
11.
      ISET = VSET/RSET;
12.
     T0 = 25 + 273.15;
13.
14. }
15.
16. void loop() {
17.
18.
      VRT = analogRead(A5);
      VRT = (5.00 / 1023.00) * VRT; //conversione del segnale letto
19.
20.
      RT = VRT / ISET;
21.
      TR = B / log(RT/(R0*exp(-B/T0)));
22.
      TR = TR - 273.15; //conversione da Kelvin in Celsius
23.
    Serial.print("NTC:");
24.
25.
    Serial.print(TR);
     Serial.print(" °C \t\t");
26.
27.
28. /*
29. * La costa 0.48828125 è data dalla divisione di 5/1023, tenendo conto
 che 10mV rappresentano 1 °C
30. */
31. for (int i = 0; i < 100; i++) {
32.
      LM35 = analogRead(A1);
33.
        LM35 = LM35 * 0.48828125;
34.
        temp += LM35;
35.
36.
     }
37.
38.
     temp = temp/100;
39.
40.
     Serial.print("LM35:");
41.
     Serial.print(temp);
42.
     Serial.println(" °C");
43.
     delay(1000);
```

Sketch 1 – Leggere le temperature dall'LM35 e dal termistore NTC

Figura 25 – Circuito con LM334, LM35 e termistore NTC

Il termistore NTC è affiancato al sensore di temperatura LM35 (Figura 25), collegato separatamente, perché, essendo calibrato di fabbrica, ha più stabilità rispetto al termistore NTC e quindi è utilizzato come riferimento per le misurazioni successive, per effettuare la calibrazione dei termistori.

Per aumentare la precisione del sensore LM35 quest'ultimo è letto 100 volte, viene effettuata la media delle misurazioni e questa viene convertita in gradi Celsius.

4.3 - Circuito con LM334 e multiplexer ADG506A

Lo sviluppo del prototipo del sistema prevede l'uso di cinque termistori NTC collegati ad un multiplexer per poter usare una sola uscita analogica di Arduino. Per misure successive i termistori sono collegati al multiplexer con un cavo da 5 metri, per simulare la lunghezza dei cavi dell'esperimento FOOT (Figura 26).

Figura 27 – Schema circuito multiplexer e sorgente di corrente

La sorgente di corrente può essere alimentata a 5V o 9V (Figura 27), mentre il multiplexer necessita di una alimentazione da 12V (i cestelli per le schede elettroniche standard VME nell'esperimento forniscono 5V, 12V e -12V) o 9V, la seconda scelta è più comoda in quanto rende il circuito portatile (Figura 28).

Come si può notare dalla Figura 27, il circuito che corrisponde alla sorgente di corrente è collegato all'output D del multiplexer in cui possono scorrere due flussi di corrente a due sensi differenti, in questo l'uscita D è in comunicazione con gli ingressi S_{1-16} a mano a mano che questi sono collegati.

Il sensore di temperatura LM35 (Figura 28) è collegato separatamente, ovvero non è collegato agli ingressi del multiplexer, perché l'uso della sorgente di corrente e la presenza di resistenze interne sia al multiplexer che all'LM35 porterebbe delle misurazioni non corrette, in particolare, presenterebbero forti oscillazioni.

Figura 28 – Circuito assemblato con tutte i componenti necessari (la breadboard centrale rappresenta il cavo da 5m)

Lo sketch 2 sottostante scorre tutti e 16 gli ingressi del multiplexer grazie ad un ciclo for dove per variare l'indirizzo si utilizzano sostanzialmente due istruzioni:

- digitalWrite(p, s): funzione utilizzata per impostare il pin HIGH (viene applicata una tensione di 5V) o LOW (tensione a 0V) e passa due valori, p definisce il pin, s indica lo stato e il pin deve essere definito come OUTPUT nella parte setup() dello sketch;
- bitRead(x, y): questa funzione legge un bit di un numero e può restituire 0 o 1, passa due valori, x rappresenta il numero da cui leggere il bit e y è il bit da leggere, partendo da 0 per il bit meno significativo.

```
14.
            pinMode(3, OUTPUT);
            pinMode(4, OUTPUT);
15.
            pinMode(5, OUTPUT);
16.
            ISET = VSET/RSET;
17.
     T0 = 25 + 273.15;
18.
19.
     analogRead(A1);
20.
      analogRead(A0);
21. }
22.
23. void loop(){
     /*
24.
       * //bitread (numero da cui leggere, quale bit leggere a partire da 0
25.
        * per il bit meno significativo) ritorna 0 o 1.
26.
27.
28.
            for (int i = 0; i < 16; i++) {
                    digitalWrite(2, bitRead(i, 0));
29.
                    digitalWrite(3, bitRead(i, 1));
30.
                    digitalWrite(4, bitRead(i, 2));
31.
                    digitalWrite(5, bitRead(i, 3));
32.
33.
34.
        if(i == 9){
          temp = calcolaLM35();
35.
36.
          Serial.print(i);
37.
          Serial.print(",");
38.
          Serial.println(temp);
39.
        } else{
40.
          temp = calcolaTemp(analogRead(A0));
41.
                      Serial.print(i);
42.
          Serial.print(",");
43.
                      //Serial.print(" temp =");
44.
                      Serial.println(temp);
45.
46.
47.
        delay(1000);
48.
49.
           }
50.
51. Serial.println("----");
52.
53. }
54.
55. float calcolaTemp(int VRT) {
56.
           float VRT1;
57.
            VRT1 = (5.00 / 1023.00) * VRT;
58.
            RT = VRT1/ISET;
59.
            TR = B / log(RT/(R0*exp(-B/T0)));
60.
     TR = TR - 273.15;
61.
62.
63.
            return TR;
64. }
65.
66. float calcolaLM35(){
     for (int i = 0; i < 100; i++) {
67.
        LM35 = analogRead(A1);
68.
69.
        LM35 = LM35 * 0.48828125;
70.
        t += LM35;
71.
72.
     }
73.
     t = t/100;
74.
75.
```

```
76. return t;
77. }
```

Sketch 2 – Lettura termistori e LM35 tramite ciclo for

Per semplificare ulteriormente il codice e selezionare solo gli ingressi con termistori, poiché su 16 ingressi solo 5 sono utilizzati, si è deciso di impostare singolarmente i pin digitali effettivamente usati, rispettando la tabella di verità del multiplexer.

Questa modifica permette l'uso di Excel come monitor seriale grazie alla macro PLX-DAQ, rendendo più semplice l'analisi dei risultati e le successive elaborazioni di quest'ultimi.

```
1. #define B 3988
2. #define R0 10000
3. #define RSET 250
4. #define VSET 0.0677
5. #define VREF 5000
6.
7. float RT, VR, TR, TO, VRT, ISET;
8. float temp, tempSH;
9. float LM35;
10. float t;
11. int ar;
12. /*
13.
     * Valori calcolati usando il datasheet
14.
      */
15. float a = 0.00112387;
16. float b = 0.000234941;
17. float c = 8.48e-08;
18.
19. void setup(){
20.
      Serial.begin(9600);
21.
       pinMode(2, OUTPUT);
22.
      pinMode(3, OUTPUT);
23.
      pinMode(4, OUTPUT);
24.
      pinMode(5, OUTPUT);
25.
26.
      ISET = VSET/RSET;
27.
      T0 = 25 + 273.15;
28.
29.
      analogRead(A1);
30.
       analogRead(A0);
       Serial.println("CLEARDATA");
31.
32.
33.
       * LABEL EXCEL
34.
        * Sensore
35.
        * Temperatura
36.
37.
   //Serial.println("LABEL, Time, SH1, Th1, SH2, Th2, SH3, Th3, SH4, Th4, SH5, Th5, LM35"
   );
38.
        Serial.println("LABEL, Time, Th1, Th2, Th3, Th4, Th5, LM35");
39.
40. }
41.
42. void loop() {
43.
       Serial.print("DATA, TIME,");
44.
       /*
        * S1
45.
```

```
46.
       */
47.
      digitalWrite(2, LOW);
       digitalWrite(3, LOW);
48.
       digitalWrite(4, LOW);
49.
       digitalWrite(5, LOW);
50.
51.
52.
       ar = analogRead(A0);
53.
      ar = analogRead(A0);
54.
      temp = calcolaTempSH(ar);
55.
       Serial.print(temp);
56.
      Serial.print(",");
57.
       /*
58.
       * S2
59.
       */
60.
       digitalWrite(2, HIGH);
61.
       digitalWrite(3, LOW);
62.
       digitalWrite(4, LOW);
63.
      digitalWrite(5, LOW);
64.
65.
       ar = analogRead(A0);
66.
67.
       ar = analogRead(A0);
68.
       temp = calcolaTemp(ar);
69.
       Serial.print(temp);
70.
      Serial.print(",");
71.
72.
       * S3
73.
       */
74.
75.
       digitalWrite(2, LOW);
76.
       digitalWrite(3, HIGH);
77.
       digitalWrite(4, LOW);
78.
       digitalWrite(5, LOW);
79.
80.
      ar = analogRead(A0);
81.
      ar = analogRead(A0);
82.
      temp = calcolaTemp(ar);
83.
      Serial.print(temp);
84.
      Serial.print(",");
85.
86.
87.
      * S4
88.
       */
89.
      digitalWrite(2, HIGH);
90.
      digitalWrite(3, HIGH);
91.
      digitalWrite(4, LOW);
92.
      digitalWrite(5, LOW);
93.
94.
      ar = analogRead(A0);
95.
      ar = analogRead(A0);
96.
      temp = calcolaTemp(ar);
97.
      Serial.print(temp);
98.
      Serial.print(",");
99.
100.
      * S5
101.
102.
       * /
103.
      digitalWrite(2, LOW);
104.
      digitalWrite(3, LOW);
105.
      digitalWrite(4, HIGH);
106.
      digitalWrite(5, LOW);
107.
```

```
108. ar = analogRead(A0);
109. ar = analogRead(A0);
110. temp = calcolaTemp(ar);
111. Serial.print(temp);
112.
     Serial.print(",");
113.
114.
      * LM35
115.
      */
116.
117.
      temp = calcolaLM35(analogRead(A1));
118.
      Serial.println(temp);
119.
120.
     delay(30000);
121.
122.
123. }
124.
125.
126. float calcolaTemp(int VRT) {
127. float VRT 1 = 0;
      VRT 1 = (\overline{5}.00 / 1023.00) * VRT;
128.
     RT = VRT 1/ISET;
129.
130.
131.
      TR = B / log(RT/(R0*exp(-B/T0)));
132.
     TR = TR - 273.15;
133.
134.
     return TR;
135. }
136.
137. float calcolaLM35(float input) {
138. for (int i = 0; i < 100; i++) {
139. LM35 = input;
140.
       LM35 = LM35 * 0.48828125;
141.
       t += LM35;
142. }
143. t = t/100;
144.
     return t;
145.}
```

Sketch 3 – Lettura termistori e LM35 con impostazione manuale dei pin

4.4 - Termistori NTC a temperature superiori a 25 °C

Per testare il comportamento dei termistori sono state scelte 4 temperature al di sopra dei 25 °C, ovvero 28°C, 30.5°C, 38 °C e circa 41 °C.

Nelle tabelle successive è possibile notare un difetto nel secondo termistore in tutte e quattro le temperature.

Per tutte le misurazioni i termistori sono stati chiusi in un ambiente termo isolato dove all'interno sono stati inseriti un rilevatore di temperatura e una resistenza di potenza, la quale, collegata ad un alimentatore di tensione continua e a un termostato, si riscalda fino a raggiungere la temperatura segnata nel termostato.

Una volta stabilizzata la temperatura all'interno dell'ambiente, è stato avviato il monitoraggio delle temperature (Tabella 2, Tabella 3, Tabella 4, Tabella 5)

Th1	Th2	Th3	Th4	Th5	LM35
28,86	25,82	28,52	29,46	29,51	27,83
28,81	26,25	28,57	31,19	29,56	28,11
28,91	25,33	28,57	31,09	29,61	28,6
28,91	25,78	28,57	31,03	29,66	28,12
28,96	26,51	28,57	29,21	29,66	28,11
28,96	25,99	28,57	29,26	29,71	28,6
29,01	20,82	28,62	29,76	29,76	28,61
28,96	28,19	28,57	31,14	29,76	28,12
29,01	28,28	28,52	29,26	29,76	28,11
29,01	25,99	28,47	29,21	29,76	28,11
29,01	28,47	28,52	29,26	29,76	28,11
29,01	28,57	28,57	31,31	29,76	28,11
28,96	28,47	28,57	31,19	29,76	28,11
29,01	28,52	28,62	29,81	29,76	28,11
29,01	28,52	28,62	29,76	29,76	28,11
29,01	28,52	28,57	31,42	29,81	28,11
29,01	28,38	28,57	29,31	29,76	28,11
29,06	28,71	28,52	29,51	29,81	28,11
29,01	28,38	28,47	29,21	29,81	28,6

Tabella 2 – Temperature con termostato a 28 °C

Th1	Th2	Th3	Th4	Th5	LM35
30,81	27,58	30,92	31,92	31,53	30,09
30,81	29,26	30,98	31,98	31,53	30,09
30,76	28,66	30,92	31,87	31,47	30,57
30,76	29,51	30,92	31,92	31,47	31,07
30,76	30,07	30,92	31,81	31,53	30,1
30,81	28,28	30,92	31,92	31,53	30,57
30,81	29,26	30,92	31,98	31,53	30,58
30,81	26,59	31,03	31,36	31,53	30,58
30,81	26,21	30,98	30,87	31,53	30,58
30,81	26,29	30,98	31,87	31,47	30,58
30,81	25,99	30,98	31,87	31,47	30,09
30,76	29,41	30,92	31,87	31,47	30,57
30,81	24,6	30,92	31,92	31,58	30,58
30,81	27,22	30,87	30,87	31,53	30,58
30,81	28,66	30,92	31,81	31,58	30,09
30,81	29,36	30,92	31,92	31,58	30,57
30,76	28	30,92	31,87	31,58	30,58
30,81	27,81	30,98	31,92	31,58	30,09
30,76	29,61	30,98	31,92	31,58	30,57

30,87	24,1	30,92	30,87	31,64	30,58
30,87	24,45	30,92	31,87	31,58	30,58
30,76	26,51	30,92	31,87	31,58	30,58
30,81	27,44	30,98	31,92	31,53	30,58
30,87	27,13	30,87	30,92	31,53	30,09
30,76	28,38	30,92	31,81	31,58	30,57
30,81	29,31	30,98	31,98	31,53	30,58
30,81	29,76	30,92	31,92	31,58	30,58
30,81	23,95	30,92	31,81	31,53	30,58
30,81	27,63	30,92	31,87	31,53	30,58
30,76	27,86	30,92	31,92	31,47	30,58

Tabella 3 – Temperature con termostato a 30 °C – 31°C

Th1	Th2	Th3	Th4	Th5	LM35
38,37	36,44	38,61	38,45	38,77	38,96
38,37	35,74	38,61	38,37	38,69	38,96
38,37	30,12	38,61	38,45	38,69	38,96
38,37	30,81	38,53	38,3	38,77	38,96
38,3	33,96	38,45	38,61	38,77	38,96
38,3	24,25	38,45	38,53	38,69	38,96
38,22	35,2	38,37	38,53	38,61	38,96
38,14	36,3	38,3	38,14	38,53	38,96
38,07	36,65	38,22	37,99	38,45	38,96
37,99	36,58	38,14	37,99	38,45	38,96
37,99	36,16	38,14	37,91	38,37	38,96
37,99	35,95	38,07	37,91	38,37	38,96
37,99	34,73	38,07	37,84	38,37	38,96
37,91	36,3	37,99	38,14	38,3	38,96
37,91	36,37	37,99	38,14	38,3	38,96
37,91	36,23	37,99	38,07	38,22	38,96
37,91	36,3	37,91	37,84	38,3	38,48
37,91	36,44	37,91	37,76	38,3	38,47
37,99	35,4	37,99	38,07	38,37	38,47
37,91	33,9	37,91	37,84	38,37	38,47
37,91	32,21	37,91	37,76	38,3	38,96
37,84	35,74	37,99	38,07	38,37	38,96
37,84	35,4	37,91	37,76	38,3	38,96
37,91	34,86	37,99	38,07	38,3	38,96
37,99	35,47	37,99	38,14	38,3	38,96
37,91	36,73	37,99	38,14	38,37	38,96
37,99	36,44	37,99	38,14	38,37	38,96
37,91	36,65	37,99	38,14	38,37	38,96

Tabella 4 – Temperature con termostato a 38°C/39°C

37,99	35,2	38,07	37,91	38,45	38,96
37,99	35,95	38,07	37,84	38,61	38,96

Th1	Th2	Th3	Th4	Th5	LM35
40,25	39,5	40,42	40,33	40,77	40,94
40,33	39,25	40,51	40,51	40,85	40,94
40,33	39,41	40,59	40,33	40,94	41,91
40,33	31,03	40,51	40,59	40,94	41,43
40,33	26,55	40,51	40,42	40,77	41,92
40,33	35,6	40,42	40,33	40,77	41,43
40,51	38,93	40,68	40,51	40,77	41,92
40,59	38,93	40,59	40,51	40,94	41,92
40,59	35,67	40,68	40,68	40,94	40,95
40,68	36,44	40,68	40,59	40,85	41,43
40,59	37,76	40,68	40,68	40,85	41,92
40,68	37,53	40,77	40,51	40,94	41,43
40,68	38,61	40,68	40,77	41,12	41,43
40,77	37,91	40,77	40,59	41,12	41,92
40,77	38,69	40,77	40,85	41,03	41,92
40,77	38,77	40,77	40,77	41,21	41,43
40,77	38,69	40,77	40,77	41,12	41,43
40,77	38,93	40,68	40,59	41,12	41,92
40,85	38,93	40,68	40,59	41,03	41,43
40,85	38,07	40,77	40,77	41,12	41,92
40,77	38,53	40,85	40,59	41,12	41,92
40,77	38,85	40,77	40,85	41,03	41,92
40,77	37,68	40,77	40,85	41,12	41,43
40,77	38,93	40,77	40,85	41,12	41,92
40,77	30,02	40,77	40,77	41,03	41,92
40,77	36,8	40,77	40,77	41,12	41,92
40,77	36,73	40,77	40,77	41,03	41,43
40,77	39,58	40,68	40,68	41,21	42,41
40,77	39,74	40,77	40,77	41,12	41,44
40,77	39,58	40,68	40,59	41,21	42,41

Tabella 5 – Temperature con termostato a $40^{\circ}C/41^{\circ}C$

I grafici successivi mostrano l'andamento di ogni termistore, con gli evidenti picchi dovuti all'avvio del monitoraggio solo a temperatura stabilizzata. Il Grafico 2 mostra il difetto del secondo termistore.

 $Grafico\ 1$ – $Termistore\ 1$ confrontato con il sensore LM35

Grafico 2 – Termistore 2 confrontato con il sensore LM35

Grafico 3 – Termistore 3 confrontato con il sensore LM35

Grafico 4 – Termistore 4 confrontato con il sensore LM35

Grafico 5 – Termistore 5 confrontato con il sensore LM35

Usando il sensore il sensore LM35 come riferimento, è utile effettuare la regressione lineare per prevedere il funzionamento del termistore.

La variabile che si vuole prevedere è quella della temperatura del termistore (variabile dipendente), mentre quella del LM35 è la variabile che si usa per prevedere il valore (variabile indipendente) dell'altra.

Per effettuare il fit lineare (regressione lineare), sono stati calcolati i valori medi di ogni termistore (Y), del sensore (X), per le 4 variazioni di temperatura (Tabella 6).

1° 2° TERMISTORE TERMISTORE		_	s° STORE		store	_	s° STORE			
Х	Υ	Χ	Υ		Χ	Υ	Χ	Υ	Х	Υ
28,2	28,98	28,2	27,13		28,2	28,56	28,2	30,07	28,2	29,72
30,48	30,8	30,49	27,63		30,49	30,94	30,49	31,74	30,49	31,54
38,9	38,04	38,9	34,95		38,9	38,14	38,9	38,1	38,9	38,45
41,68	40,65	41,68	37,39		41,68	40,68	41,68	40,64	41,68	41,01

Tabella 6 – Valori medi dei termistori e del sensore, per ogni temperatura monitorata

La regressione lineare dei vari termistori ha dato origine alle seguenti equazioni ed errori standard dei fattori:

Termistore	Equazione: $a(x) + b$	Errore fattore a	Errore fattore b
Termistore 1	0.94x + 1.73	+/- 0.03925	+/- 1.361
Termistore 2	0.80x + 3.75	+/- 0.07932	+/- 2.75
Termistore 3	0.94x + 1.73	+/- 0.03925	+/- 1.361
Termistore 4	0.80x + 7.39	+/- 0.03399	+/- 1.179
Termistore 5	0.91x +3.58	+/- 0.01544	+/- 0.5354

 $Tabella\ 7-Risultati\ regressione\ lineare$

 $Grafico\ 6-Regressione\ lineare\ termistore\ 1$

 $Grafico\ 7-Regressione\ lineare\ termistore\ 2$

Grafico 8 – Regressione lineare termistore 3

 ${\it Grafico~9-Regressione~lineare~termistore~4}$

 $Grafico\ 10-Regressione\ lineare\ termistore\ 5$

L'unico termistore da non considerare, in quanto non segue perfettamente la retta di regressione (coefficiente angolare 0.80), è il secondo termistore, come si evinceva anche dai precedenti grafici 1,2,3,4 e 5.

4.5 - Correzione errore sistematico $R_{\rm ON}$

Tutte le temperature contengono un errore sistematico dovuto al multiplexer, in particolare da una resistenza R_{ON} in serie presente tra l'ingresso S_n e l'output D (Figura 29)

Figura $29 - R_{ON}$ in funzione di V_D a doppia e singola alimentazione

Multiplexer	Ron (dual supply)	Ron (single supply)
ADG506A	280 Ω	500 Ω

Tabella 8 – Valori tipici di R_{ON} per il multiplexer ADG506A

Nel multiplexer utilizzato nella sperimentazione la situazione è simile alla Figura 29 a destra, con tensioni utilizzate in input e output da 0 a 5V e $R_{ON\ che}$ varia tra 400Ω e 500Ω , per la sperimentazione il valore usato per correggere è 450Ω .

LM334 inietta nel termistore una corrente che dipende da $R_{SET} = 250\Omega$ di circa 0.292mA. (Figura 30)

Figura 30 – Schema che rappresenta la posizione di Ron rispetto al termistore e alla sorgente di corrente

È possibile correggere le temperature precedenti ricalcolando R_{T:}

partendo da

$$V_{adc} = (R_T + R_{on}) \cdot I_{set}$$

R_T è semplicemente ricavabile dalla formula inversa

$$R_T = \frac{V_{adc}}{I_{set}} - R_{on}$$

Considerando $R_T = 10k\Omega$, quindi a circa 25 °C, e $R_{ON} = 450\Omega$ l'errore sistematico sarà pari a

$$\frac{450}{10000 + 450} = 4.3\%$$

Per correggere le misurazioni effettuate precedentemente è stato sviluppata una macro in Visual Basic for Application in Excel che prende in ingresso la temperatura misurata (Macro 1)

- 1. Function T Corr(T)
- 2. Dim RT As Double
- 3. Dim RR As Integer
- 4. Dim B As Integer

```
5. Dim TR As Double
7. RR = 10000
8. B = 3988
9. TR = 298.15
10.
11. RT = RR * Exp(B * (1 / (T + 273.15) - (1 / TR)))
12.
13. Dim RfT As Double
14.
15. RfT = RT - 450
16.
    T Corr = (B / Log(RfT / (RR * Exp(-B / TR)))) - 273.15
17.
18.
19.
    End Function
```

Macro 1 – Correzione Ron su Excel

I dettagli sono riportati in appendice nelle Tabelle A.1, A.2, A.3 e A.4 con correzione R_{ON}.

Tale correzione, porta un aumento delle temperature di 1 o 2°C, ma ricalcolando il fit lineare si può notare una maggior accuratezza, determinato da un errore standard minore, in particolare guardando il coefficiente angolare "a" che risulta più prossimo a 1.0.

Termistore	Equazione	Errore fattore a
Termistore 1	0.98x + 2.77	+/- 0.0045
Termistore 2	0.89x + 2.17	+/- 0.0844
Termistore 3	1.00x + 1.65	+/- 0.0654
Termistore 4	0.85x + 7.31	+/- 0.0294
Termistore 5	0.95x +4.08	+/- 0.0421

Tabella 9 – Fit lineare correzione R_{ON}

Considerando il sensore di temperature LM35 come riferimento, è possibile determinare che temperatura misurerebbe il termistore quando il sensore misura 25°C, usando le equazioni del fit lineare elencati nella tabella 13. Molto utile è calcolare il Δ (25), ovvero l'errore del termistore rispetto i 25°C rilevati dal sensore. (Tabella 10), perché da questo errore è possibile effettuare una prima calibrazione del termistore.

Termistore	LM35=25, Th =?	Δ (25)
Th1	27.27	+ 2.7
Th2	24.42	- 0.58
Th3	26.54	+ 1,54
Th4	28.56	+ 3.56
Th5	27.83	+ 2.83

Tabella 10 – Previsione termistori quando LM35 rileva 25°C

I grafici sottostanti mostrano i fit lineari con la correzione R_{ON} e con la previsione a 25 °C del sensore LM35 (punto rosso).

42,50
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54
40,54

 $\textit{Grafico 11-Regressione lineare termistore 1 con correzione Rone valore Th1 a LM35 = 25 \, ^{\circ}C$

 $\textit{Grafico 12-Regressione lineare termistore 2 con correzione Rone valore Th2 a LM35 = 25 \, ^{\circ}C}$

Grafico 13 – Regressione lineare termistore 3 con correzione Rone valore Th3 a LM35 = $25 \, ^{\circ}$ C

Grafico 14 – Regressione lineare termistore 4 con correzione R_{ON} e valore Th4 a LM35 = 25 °C

 $\textit{Grafico 15-Regressione lineare termistore 5 con correzione Rone valore Th 5 a LM 35 = 25 \, ^{\circ}C}$

4.6 - Formula di Steinhart-Hart

La formula sviluppata da John S.Steinhart e Stanley R.Hart è usata con i termistori NTC e fornisce una maggior precisione della temperatura rispetto all'equazione più semplice utilizzata finora, ovvero:

$$T = \frac{B}{\ln \frac{R_T}{R_R e^{-B}/T_R}}$$

La formula di Steinhart-Hart è espressa in questo modo:

$$\frac{1}{T} = A + Bln(R) + C[\ln(R)]^3$$

- Tè la temperatura espressa in Kelvin;
- R è la resistenza del termistore
- A, B e C sono i "coefficienti di Steinhart-Hart" che cambiano in base al tipo e modello del termistore e al range di temperatura scelto.

Nella formula generale dell'equazione si trova anche un termine $[\ln(R)]^2$ che è trascurabile poiché è un termine molto piccolo.

I coefficienti di Steinhart-Hart di solito sono scritti nelle specifiche dei termistori, ma si possono calcolare, disponendo di tre valori di resistenza a tre temperature diverse, con un sistema di tre equazioni lineari nelle tre incognite A, B e C:

$$\begin{cases} \frac{1}{t_1 + 273,15} = A + Bln(R_1) + C[\ln(R_1)]^3 \\ \frac{1}{t_2 + 273,15} = A + Bln(R_2) + C[\ln(R_2)]^3 \\ \frac{1}{t_3 + 273,15} = A + Bln(R_3) + C[\ln(R_3)]^3 \end{cases}$$

Nella sperimentazione, per trovare i tre fattori A, B e C, è stata calcolata la regressione lineare usando come variabile dipendente la temperatura (in particolare 1/T) e come variabile indipendente R (in questo caso ln(R)).

R _T /R ₂₅ da specifiche	R _T	In (R _T)	T (°C) da specifiche	T (K)	1/T (K ⁻¹)
4,232	42320	10,65302	-5	268,15	0,003729
3,265	32650	10,3936	0	273,15	0,003661
2,539	25390	10,14211	5	278,15	0,003595
1,99	19900	9,898475	10	283,15	0,003532
1,571	15710	9,662053	15	288,15	0,00347
1,249	12490	9,432684	20	293,15	0,003411
1	10000	9,21034	25	298,15	0,003354
0,8057	8057	8,994297	30	303,15	0,003299
0,6531	6531	8,784315	35	308,15	0,003245
0,5327	5327	8,580544	40	313,15	0,003193
0,4369	4369	8,382289	45	318,15	0,003143
0,3603	3603	8,189522	50	323,15	0,003095

Tabella 11 – Valori ln (R_T) e 1/T

Le temperature e i valori di $\frac{R_T}{R_{25}}$ sono ricavati dalle specifiche del termistore per $B_{25/100}=3988$, per trovare R_T basta moltiplicare $\frac{R_T}{R_{25}}$ per 10000Ω poiché per una temperatura nominale di 25, la resistenza vale 10000Ω . Tramite Excel sono stati calcolati $ln(R_T)$, convertite le temperature in Kelvin e successivamente calcolato l'inverso K^{-1} . In particolare, i valori sull'asse X e Y che verranno mostrati nel grafico del fit lineare sono i seguenti:

X	Y
10,65302	0,003729
10,3936	0,003661
10,14211	0,003595
9,898475	0,003532
9,662053	0,00347
9,432684	0,003411
9,21034	0,003354
8,994297	0,003299
8,784315	0,003245
8,580544	0,003193
8,382289	0,003143
8,189522	0,003095

Errori asintotici standard dei tra fattori a,b,c:

a	+/- 6.55e-07 (0.05828%)
b	+/- 1.049e-0 (0.04467%)
c	+/- 3.927e-10 (0.4628%)

Equazione di Steinhart-Hart ricavata dal fit lineare (Figura 16):

$$T = \frac{1}{0.00112387 + 0.000234941 \ln(R) + 8.48408e - 08[\ln(R)]^3}$$

Grafico 16 – Fit lineare per trovare i 3 fattori di Steinhart-Hart

Se dall'equazione di Steinhart-Hart si rimuove il fattore C e il valore $[ln(R)]^3$, quella che si ottiene è un'altra forma della classica equazione usata per trovare la temperatura nei termistori NTC.

Grafico 17 – Fit lineare con la formula di Steinhart-Hart senza il fattore ${\cal C}$

Dai risultati ottenuti dalle 3 metodologie di calcolo di temperatura si nota una notevole precisione quando è applicata la formula di Steinhart-Hart (Tabella 12):

Rt da T con B _{25/100}	T da Rt con formula S- H	T con S-H (solo coeff. a, b)	T da Rt con B _{25/100}
44658,3	-5,00E+00	-4,83	-4,03
34015,1	0,00	0,07	0,77
26163,2	5,00	4,99	5,58
20311,3	10,00	9,93	10,41
15907,4	15,00	14,89	15,26
12562,6	20,00	19,88	20,12
10000,0	25,00	24,88	25,00
8020,3	30,00	29,91	29,89
6478,7	35,00	34,96	34,81
5269,2	40,00	40,02	39,73
4313,4	45,00	45,11	44,68
3553,0	50,00	50,22	49,63

Tabella 12 – Valore R_T (da confrontare con la Tabella 15) e le temperature trovate con la formula di Steinhart-Hart, S-H senza il fattore C e la formula classica del termistore NTC.

4.7 - Temperature sotto i 25 °C

Nonostante nell'esperimento FOOT non sia previsto il raggiungimento di temperature eccessivamente basse, è interessante osservare il comportamento dei termistori NTC a temperature al di sotto dei 25 °C.

Anche in questo caso le misurazioni sono state effettuate con la formula classica che descrive i termistori NTC senza correzione R_{ON} , applicata successivamente, ma in entrambe si può notare la principale differenza tra i termistori NTC e il sensore di temperatura LM35: il tempo di recupero del sensore è molto più lungo rispetto ai termistori, ciò è dovuto la calibrazione di fabbrica del sensore. Le misurazioni sono state effettuate tramite il cavo da 5m collegato tra i termistori e il multiplexer.

Considerando che la temperatura indicata dipende dagli scambi termici tra ogni sensore e l'ambiente circostante, dai grafici 18 e 19 è evidente una minor capacità termica dei termistori rispetto al sensore LM35, poiché sono più sensibili ai cambiamenti di temperatura, per questo motivo è utile sapere il tempo che intercorre tra due misurazioni che in questo caso è di 30 secondi.

Vedere Tabelle A.5 e A.6 per visionare le misurazioni sotto i 25 °C.

Grafico 18 – Termistori e sensore di temperatura al di sotto di 25 °C

Grafico 19 - Termistori e sensore di temperatura al di sotto di 25 °C, con correzione Ron

4.8 - Contatore e multiplexer

Nell'esperimento FOOT sono presenti 320 termistori, quindi sono necessari più multiplexer. Per questo selezionare i termistori direttamente da Arduino diventa una scelta scomoda e l'alternativa migliore è quella di usare un contatore, ovvero un componente che si occupa di scorrere gli ingressi del multiplexer.

Figura 31 – Schema circuito con multiplexer e contatore

Come si può vedere nella Figura 31 le porte A0, A1, A2 e A3 sono collegate alle uscite Q0, Q1, Q2 e Q3, CP_U al pin 13, TC_U al pin 4 e MR al pin 3, tutti e tre di Arduino.

```
1. #define B 3988
2. #define VCC 5
3. #define R0 10000
4. #define RSET 250
5. #define VSET 0.0677
6. #define VREF 5000
8. float RT, TR, TO, VRT, ISET;
10.
     * Pin digitali a cui sono collegati i pin 75HCT193
     * int nome pin contatore = numero_pin_arduino
11.
12.
     */
13. int CPU = 13;
14. int MR = 3;
15. int TCU = 4; //TCU è negato
16. double TEMP;
17.
18. unsigned long previousMillis = 0;
19. const long interval = 1000;
20.
21.
22. void setup() {
23. Serial.begin(9600);
24.
     pinMode(TCU, INPUT);
25.
     pinMode(CPU, OUTPUT);
26.
      pinMode(MR, OUTPUT);
27.
28.
      ISET = VSET/RSET; //Calcolo corrente sorgente di corrente
      T0 = 25 + 273.15; //Temperatura standard convertita in Kelvin
29.
30.
31.
       * Per evitare un possibile errore di lettura
32.
33.
       * ho inserito nel setup un lattura che avverà
34.
       * al primo avvio dello sketch.
       */
35.
36.
      analogRead(A0);
37.
38.
      //pre-settings
39.
      digitalWrite (MR, LOW);
40.
      digitalWrite(CPU, LOW);
41. }
42.
43. void loop() {
44.
      unsigned long currentMillis = millis();
45.
46.
     if (currentMillis - previousMillis >= interval) {
47.
        //adjustment pre-setting
48.
        //delay(200);
49.
        digitalWrite(MR, HIGH);
50.
        digitalWrite(MR, LOW);
51.
52.
        for (int i = 0; i < 16; i++) {
53.
          digitalWrite(CPU, HIGH);
54.
55.
          analogRead(A0);
56.
          TEMP = calcolaTemp(analogRead(A0));
57.
          Serial.print("Temperature: ");
58.
          Serial.println(TEMP);
```

```
59.
60.
           digitalWrite(CPU, LOW);
           if(!digitalRead(TCU)) Serial.println("...FINITO...");
61.
           delay(200);
62.
63.
64.
       }
     }
65.
66.
67.
     float calcolaTemp(int VRT) {
       float VRT_1 = 0;
68.
       VRT_1 = (\overline{5}.00/1023.00) * VRT;
69.
       RT = VRT 1/ISET;
70.
71.
72.
       TR = B / log(RT/(R0*exp(-B/T0)));
73.
       TR = TR - 273.15;
74.
75.
       return TR;
76.
```

Sketch 4 – Scorrimento ingressi multiplexer con contatore

Figura 32 – Grafico configurazione e funzionamento del contatore

Il pin TC_U è usato per controllo, in questo caso crescente da 0 a 15, infatti quando questo pin è BASSO (Figura 32) vuol dire che il conteggio è finito e il contatore può partire da capo.

Come si vede nella Figura 32, nella fase di setup, per iniziare il conteggio, i pin CP_U e MR devono essere impostati entrambi a BASSO, per ogni loop MR effettua una transizione da ALTO a BASSO mentre CP_U viene impostato ALTO quando inizia il conteggio e a BASSO al momento in cui finisce il conteggio.

5 - Conclusione e sviluppi futuri

Durante la sperimentazione si sono evidenziate delle difficoltà riguardo il montaggio dei termistori nella breadboard poiché, la tipologia utilizzata, ha i fili di collegamento leggermente più sottili del normale, nonostante ciò, tutte le misurazioni i termistori si sono rivelati molto stabili, soprattutto confrontandoli con il sensore di temperatura LM35, eccetto il secondo termistore nel campionamento a temperature superiori a 25°C, probabilmente dovuto all'errore citato sopra.

Oggetto di approfondimento è stata la sorgente di corrente LM334 in quanto è un componente che richiede attenzione soprattutto per la sua influenza negli altri componenti, in questo caso termistori e multiplexer.

Il controllo sulle tensioni è il valore più semplice ed evidente per valutare malfunzionamenti, inoltre ha permesso di escludere le tensioni di alimentazione troppo basse.

Riflettendo sulla successiva espansione del progetto, ovvero nel progetto FOOT, si prevede l'uso di 320 termistori da monitorare, per questo sono necessari più multiplexer, contatori e un decoder che si occupa di attivare una combinazione di bit sulle linee di uscita in base alla combinazione di bit presenti ai suoi ingressi. Nella fase finale del lavoro è stato proprio dimostrato il funzionamento del contatore.

I termistori utilizzati nell'esperimento FOOT sono simili a quelli usati nell'esperimento con due differenze principali, sono saldati sul retro del SiPM e sono più sottili per stare a contatto con il cristallo BGO. [3]

Un procedimento che è stato molto utile visionare durante la sperimentazione e che sarà successivamente importante nell'implementazione ufficiale è quella della regressione lineare effettuata per le temperature maggiori di 25 °C, poiché prevedere il funzionamento del termistore ad una temperatura nominale serve a trovare un errore sistematico (nel nostro caso il valore assoluto della temperatura rilevata a 25°C del LM35 meno 25 °C) che verrà utilizzato per correggere il termistore, questo procedimento è definita calibrazione.

Nell'esperimento in questione è stato usato il sensore LM35, e in quello finale, FOOT, sarà effettuato un procedimento simile ma con il SiPM e sensore di temperatura posti sul retro del cristallo di BGO.

Durante lo svolgimento del lavoro sono state sperimentate tutte le parti essenziali del progetto di monitoraggio della temperatura dei cristalli, studiando in particolare l'alternativa della sorgente di corrente per convertire la resistenza in tensione. Per concludere, analizzando i risultati ottenuti e applicando le dovute correzioni di calibrazione, la precisione di 0.5 °C è sicuramente raggiungibile.

Appendice A

T'1	T'2	T'3	T'4	T'5
30,12013	26,89534	29,75812	30,75982	30,81318
30,06687	27,34989	29,81134	32,6107	30,86655
30,17339	26,37796	29,81134	32,50345	30,91992
30,17339	26,85308	29,81134	32,43911	30,9733
30,22666	27,62498	29,81134	30,49315	30,9733
30,22666	27,07498	29,81134	30,54647	31,02669
30,27995	21,64392	29,86456	31,08009	31,08009
30,22666	29,4071	29,81134	32,55707	31,08009
30,27995	29,5028	29,75812	30,54647	31,08009
30,27995	27,07498	29,70492	30,49315	31,08009
30,27995	29,70492	29,75812	30,54647	31,08009
30,27995	29,81134	29,81134	32,73945	31,08009
30,22666	29,70492	29,81134	32,6107	31,08009
30,27995	29,75812	29,86456	31,1335	31,08009
30,27995	29,75812	29,86456	31,08009	31,08009
30,27995	29,75812	29,81134	32,85752	31,1335
30,27995	29,60916	29,81134	30,59979	31,08009
30,33323	29,96037	29,75812	30,81318	31,1335
30,27995	29,60916	29,70492	30,49315	31,1335

Tabella A.1 –Correzione R_{ON} termostato a 28 °C

T'1	T'2	T'3	T'4	T'5
32,20331	28,75908	32,32119	33,3947	32,97562
32,20331	30,54647	32,3855	33,45922	32,97562
32,14974	29,90714	32,32119	33,34094	32,9112
32,14974	30,81318	32,32119	33,3947	32,9112
32,14974	31,41134	32,32119	33,27644	32,97562
32,20331	29,5028	32,32119	33,3947	32,97562
32,20331	30,54647	32,32119	33,45922	32,97562
32,20331	27,70967	32,43911	32,79311	32,97562
32,20331	27,30759	32,3855	32,2676	32,97562
32,20331	27,3922	32,3855	33,34094	32,9112
32,20331	27,07498	32,3855	33,34094	32,9112
32,14974	30,70647	32,32119	33,34094	32,9112
32,20331	25,60833	32,32119	33,3947	33,02932
32,20331	28,37715	32,2676	32,2676	32,97562
32,20331	29,90714	32,32119	33,27644	33,02932

32,20331	30,65313	32,32119	33,3947	33,02932
32,14974	29,20514	32,32119	33,34094	33,02932
32,20331	29,00329	32,3855	33,3947	33,02932
32,14974	30,91992	32,3855	33,3947	33,02932
32,2676	25,08198	32,32119	32,2676	33,09377
32,2676	25,45036	32,32119	33,34094	33,02932
32,14974	27,62498	32,32119	33,34094	33,02932
32,20331	28,61051	32,3855	33,3947	32,97562
32,2676	28,28173	32,2676	32,32119	32,97562
32,14974	29,60916	32,32119	33,27644	33,02932
32,20331	30,59979	32,3855	33,45922	32,97562
32,20331	31,08009	32,32119	33,3947	33,02932
32,20331	24,92419	32,32119	33,27644	32,97562
32,20331	28,81216	32,32119	33,34094	32,97562
32,14974	29,0564	32,32119	33,3947	32,9112
32,19367	28,8118	32,3387	33,20229	32,98457

Tabella A.2 –Correzione Ron termostato a 30.5 °C

T'1	T'2	T'3	T'4	T'5
40,40956	38,29273	40,67396	40,49766	40,85037
40,40956	37,52894	40,67396	40,40956	40,76215
40,40956	31,46479	40,67396	40,49766	40,76215
40,40956	32,20331	40,58579	40,33249	40,85037
40,33249	35,59563	40,49766	40,67396	40,85037
40,33249	25,23982	40,49766	40,58579	40,76215
40,24444	36,9411	40,40956	40,58579	40,67396
40,15642	38,13981	40,33249	40,15642	40,58579
40,07943	38,52227	40,24444	39,99146	40,49766
39,99146	38,44574	40,15642	39,99146	40,49766
39,99146	37,98697	40,15642	39,90353	40,40956
39,99146	37,75786	40,07943	39,90353	40,40956
39,99146	36,43041	40,07943	39,82661	40,40956
39,90353	38,13981	39,99146	40,15642	40,33249
39,90353	38,21626	39,99146	40,15642	40,33249
39,90353	38,06338	39,99146	40,07943	40,24444
39,90353	38,13981	39,90353	39,82661	40,33249
39,90353	38,29273	39,90353	39,73872	40,33249
39,99146	37,15868	39,99146	40,07943	40,40956
39,90353	35,53068	39,90353	39,82661	40,40956
39,90353	33,70666	39,90353	39,73872	40,33249
39,82661	37,52894	39,99146	40,07943	40,40956
39,82661	37,15868	39,90353	39,73872	40,33249

39,90353	36,57158	39,99146	40,07943	40,33249
39,99146	37,23487	39,99146	40,15642	40,33249
39,90353	38,60977	39,99146	40,15642	40,40956
39,99146	38,29273	39,99146	40,15642	40,40956
39,90353	38,52227	39,99146	40,15642	40,40956
39,99146	36,9411	40,07943	39,90353	40,49766
39,99146	37,75786	40,07943	39,82661	40,67396

Tabella A.3 –Correzione R_{ON} termostato a 38.9 °C

T'1	T'2	T'3	T'4	T'5
42,48799	41,65679	42,67678	42,57681	43,06592
42,57681	41,38034	42,77678	42,77678	43,15496
42,57681	41,55723	42,86571	42,57681	43,25516
42,57681	32,43911	42,77678	42,86571	43,25516
42,57681	27,66732	42,77678	42,67678	43,06592
42,57681	37,37642	42,67678	42,57681	43,06592
42,77678	41,0269	42,9658	42,77678	43,06592
42,86571	41,0269	42,86571	42,77678	43,25516
42,86571	37,45267	42,9658	42,9658	43,25516
42,9658	38,29273	42,9658	42,86571	43,15496
42,86571	39,73872	42,9658	42,9658	43,15496
42,9658	39,48622	43,06592	42,77678	43,25516
42,9658	40,67396	42,9658	43,06592	43,45569
43,06592	39,90353	43,06592	42,86571	43,45569
43,06592	40,76215	43,06592	43,15496	43,3554
43,06592	40,85037	43,06592	43,06592	43,55602
43,06592	40,76215	43,06592	43,06592	43,45569
43,06592	41,0269	42,9658	42,86571	43,45569
43,15496	41,0269	42,9658	42,86571	43,3554
43,15496	40,07943	43,06592	43,06592	43,45569
43,06592	40,58579	43,15496	42,86571	43,45569
43,06592	40,93862	43,06592	43,15496	43,3554
43,06592	39,65087	43,06592	43,15496	43,45569
43,06592	41,0269	43,06592	43,15496	43,45569
43,06592	31,35789	43,06592	43,06592	43,3554
43,06592	38,68635	43,06592	43,06592	43,45569
43,06592	38,60977	43,06592	43,06592	43,3554
43,06592	41,74532	42,9658	42,9658	43,55602
43,06592	41,92248	43,06592	43,06592	43,45569
43,06592	41,74532	42,9658	42,86571	43,55602

Tabella A.4 –Correzione Ron termostato a 40/41°C

Th1	Th2	Th3	Th4	Th5	LM35
23,05	23,09	22,98	22,98	23,42	22,46
23,02	22,98	22,94	22,94	23,42	22,69
22,98	22,91	22,87	22,87	23,38	22,69
22,20	22,03	21,79	21,65	22,84	22,2
21,48	21,28	20,99	20,7	22,23	21,71
20,89	20,66	20,31	20,03	21,72	20,72
20,47	20,16	19,79	19,57	21,28	20,23
20,09	19,85	19,39	19,24	20,92	19,73
19,88	19,54	19,15	19,09	20,76	19,24
19,66	19,33	18,95	18,95	20,54	19,24
19,48	19,12	18,69	18,8	20,31	18,26
19,30	18,92	18,51	18,69	20,13	18,25
19,12	18,74	18,34	18,54	19,97	18,25
19,01	18,57	18,2	18,43	19,82	18,25
18,86	18,46	18,12	18,31	19,69	17,76
18,74	18,34	18,01	18,17	19,57	17,76
18,66	18,23	17,92	18,06	19,48	17,27
18,57	18,15	17,9	17,92	19,39	17,26
18,46	18,06	17,84	17,84	19,3	17,26
18,40	17,98	17,78	17,76	19,21	16,77
18,34	17,92	17,73	17,68	19,15	16,77
18,29	17,9	17,73	17,65	19,09	16,77
18,23	17,87	17,7	17,57	19,04	16,28
18,17	17,84	17,7	17,54	19,01	16,76
18,15	17,81	17,65	17,51	18,95	16,77
18,12	17,81	17,68	17,51	18,92	16,28
18,09	17,78	17,65	17,46	18,89	16,28
18,06	17,78	17,65	17,46	18,86	16,28
18,06	17,78	17,68	17,43	18,83	16,28
18,03	17,76	17,65	17,43	18,83	16,28
18,01	17,78	17,65	17,43	18,77	16,28
18,01	17,78	17,65	17,43	18,8	16,28
18,01	17,78	17,68	17,46	18,77	16,28
18,01	17,81	17,68	17,43	18,77	16,28
17,98	17,84	17,7	17,46	18,77	16,28
17,98	17,84	17,73	17,48	18,77	16,28
17,98	17,87	17,76	17,54	18,77	16,28
18,01	17,87	17,76	17,51	18,77	16,28
18,01	17,9	17,78	17,57	18,8	16,28
18,01	17,92	17,81	17,59	18,8	16,28
18,03	17,95	17,84	17,62	18,83	16,28
18,03	18,01	17,87	17,62	18,83	16,76

18,06 18,01 17,9 17,65 18,83 16,28 18,09 18,03 17,92 17,7 18,86 16,28 18,09 18,06 17,95 17,73 18,89 16,28 18,12 18,12 18,01 17,76 18,95 16,76 18,15 18,12 18,01 17,78 18,95 16,76 18,23 18,2 18,09 17,87 18,95 16,76 18,23 18,2 18,09 17,87 18,95 16,77 18,29 18,31 18,2 17,98 19,07 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,43 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,44 18,43 18,17 19,24 16,77 18,45						
18,09 18,06 17,95 17,73 18,89 16,28 18,12 18,12 18,01 17,76 18,92 16,76 18,15 18,12 18,01 17,78 18,95 16,77 18,17 18,17 18,06 17,81 18,95 16,28 18,23 18,26 18,15 17,9 19,04 16,77 18,29 18,29 18,17 17,92 19,07 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,43 18,2 19,3 16,77 18,57 18,57 18,46 18,23 19,3 16,77 18,66	18,06	18,01	17,9	17,65	18,83	16,28
18,12 18,12 18,01 17,76 18,92 16,76 18,15 18,12 18,01 17,78 18,95 16,77 18,17 18,17 18,06 17,81 18,95 16,28 18,23 18,26 18,15 17,9 19,04 16,77 18,29 18,29 18,17 17,92 19,07 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,34 18,23 18,01 19,09 16,77 18,40 18,43 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,46 18,34 18,15 19,21 16,77 18,46 18,43 18,2 19,3 16,77 18,57 18,57 18,46 18,23 19,3 16,77 18,60 18,51	18,09	18,03	17,92	17,7	18,86	16,28
18,15 18,12 18,01 17,78 18,95 16,77 18,17 18,17 18,06 17,81 18,95 16,28 18,23 18,2 18,09 17,87 18,98 16,76 18,23 18,26 18,15 17,9 19,04 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,34 18,23 18,01 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,49 18,37 18,17 19,24 16,77 18,46 18,43 18,15 19,21 16,77 18,46 18,43 18,29 19,33 16,77 18,57 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66	18,09	18,06	17,95	17,73	18,89	16,28
18,17 18,17 18,06 17,81 18,98 16,76 18,23 18,2 18,09 17,87 18,98 16,76 18,23 18,26 18,15 17,9 19,04 16,77 18,29 18,17 17,92 19,07 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,34 18,23 18,01 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,40 18,43 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,57 18,56 18,51 18,29 19,36 17,26 18,63 18,66	18,12	18,12	18,01	17,76	18,92	16,76
18,23 18,2 18,09 17,87 18,98 16,76 18,23 18,26 18,15 17,9 19,04 16,77 18,29 18,17 17,92 19,07 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,34 18,23 18,01 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,49 18,37 18,17 19,24 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,67 18,37 19,42 17,26 18,72 18,6	18,15	18,12	18,01	17,78	18,95	16,77
18,23 18,26 18,15 17,9 19,04 16,77 18,29 18,17 17,92 19,07 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,34 18,23 18,01 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,57 18,66 18,57 18,31 19,39 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,69 18,72 18,6 18,37 19,42 17,26 18,72 18,74 18,66 18,37 19,45 17,26 18,77	18,17	18,17	18,06	17,81	18,95	16,28
18,29 18,29 18,17 17,92 19,07 16,77 18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,34 18,23 18,01 19,09 16,77 18,34 18,37 18,29 18,06 19,18 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,31 19,24 16,77 18,57 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,66 18,43 19,51 17,26 18,77 18,77 <td>18,23</td> <td>18,2</td> <td>18,09</td> <td>17,87</td> <td>18,98</td> <td>16,76</td>	18,23	18,2	18,09	17,87	18,98	16,76
18,29 18,31 18,2 17,98 19,09 16,77 18,34 18,34 18,23 18,01 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,63 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,42 17,26 18,69 18,72 18,66 18,43 19,51 17,26 18,77 18,69 18,46 19,51 17,26 18,77 <td>18,23</td> <td>18,26</td> <td>18,15</td> <td>17,9</td> <td>19,04</td> <td>16,77</td>	18,23	18,26	18,15	17,9	19,04	16,77
18,34 18,34 18,23 18,01 19,09 16,77 18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,69 18,72 18,6 18,37 19,42 17,26 18,77 18,77 18,69 18,43 19,51 17,26 18,77 18,77 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 <td>18,29</td> <td>18,29</td> <td>18,17</td> <td>17,92</td> <td>19,07</td> <td>16,77</td>	18,29	18,29	18,17	17,92	19,07	16,77
18,34 18,37 18,29 18,06 19,15 16,77 18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,57 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,63 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89	18,29	18,31	18,2	17,98	19,09	16,77
18,40 18,43 18,29 18,06 19,18 16,77 18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,67 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,87 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,89 18,89 18,8 18,6 19,63 17,26	18,34	18,34	18,23	18,01	19,09	16,77
18,43 18,46 18,34 18,15 19,21 16,77 18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,57 18,66 18,51 18,29 19,36 17,26 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,95 18,88 18,69 19,72 17,26 18,98 19,89	18,34	18,37	18,29	18,06	19,15	16,77
18,46 18,49 18,37 18,17 19,24 16,77 18,51 18,54 18,43 18,2 19,3 16,77 18,57 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,80 18,83 18,72 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,95 18,83 18,63 19,66 17,26 18,95	18,40	18,43	18,29	18,06	19,18	16,77
18,51 18,54 18,43 18,2 19,3 16,77 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,83 18,89 18,8 18,6 19,63 17,26 18,89 18,89 18,83 18,63 19,66 17,26 18,95 18,83 18,63 19,66 17,26 18,95 18,98	18,43	18,46	18,34	18,15	19,21	16,77
18,57 18,57 18,46 18,23 19,3 16,77 18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,77 19,79 17,75	18,46	18,49	18,37	18,17	19,24	16,77
18,60 18,6 18,51 18,29 19,36 17,26 18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,77 19,79 17,75 19,07	18,51	18,54	18,43	18,2	19,3	16,77
18,63 18,66 18,54 18,31 19,39 17,26 18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,75 19,09 19,12 19,01 18,77 19,79 17,75 19,18 19,18 19,07 18,86 19,88 17,75 19,18 <td>18,57</td> <td>18,57</td> <td>18,46</td> <td>18,23</td> <td>19,3</td> <td>16,77</td>	18,57	18,57	18,46	18,23	19,3	16,77
18,66 18,66 18,57 18,37 19,42 17,26 18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,94 18,92 18,72 19,72 17,26 18,98 19,04 18,92 18,77 19,79 17,26 19,04 19,07 18,95 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27	18,60	18,6	18,51	18,29	19,36	17,26
18,69 18,72 18,6 18,37 19,45 17,26 18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75	18,63	18,66	18,54	18,31	19,39	17,26
18,72 18,74 18,66 18,43 19,51 17,26 18,77 18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,19 19,15 18,89 19,91 17,76 <tr< td=""><td>18,66</td><td>18,66</td><td>18,57</td><td>18,37</td><td>19,42</td><td>17,26</td></tr<>	18,66	18,66	18,57	18,37	19,42	17,26
18,77 18,69 18,46 19,51 17,26 18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,27 <td>18,69</td> <td>18,72</td> <td>18,6</td> <td>18,37</td> <td>19,45</td> <td>17,26</td>	18,69	18,72	18,6	18,37	19,45	17,26
18,80 18,83 18,72 18,51 19,57 17,26 18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,87 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,30 19,3 19,21 19,01 20 17,76	18,72	18,74	18,66	18,43	19,51	17,26
18,83 18,86 18,77 18,54 19,6 17,26 18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42	18,77	18,77	18,69	18,46	19,51	17,26
18,89 18,89 18,8 18,6 19,63 17,26 18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,42 19,42 19,3 19,12 20,13 17,76	18,80	18,83	18,72	18,51	19,57	17,26
18,92 18,95 18,83 18,63 19,66 17,26 18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76	18,83	18,86	18,77	18,54	19,6	17,26
18,95 18,98 18,89 18,69 19,72 17,26 18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76	18,89	18,89	18,8	18,6	19,63	17,26
18,98 19,04 18,92 18,72 19,72 17,26 19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76	18,92	18,95	18,83	18,63	19,66	17,26
19,04 19,07 18,95 18,77 19,79 17,26 19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,48 19,36 19,21 20,19 18,24	18,95	18,98	18,89	18,69	19,72	17,26
19,07 19,07 19,01 18,77 19,79 17,75 19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25<	18,98	19,04	18,92	18,72	19,72	17,26
19,09 19,12 19,01 18,8 19,85 17,27 19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25	19,04	19,07	18,95	18,77	19,79	17,26
19,15 19,18 19,07 18,86 19,88 17,75 19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,07	19,07	19,01	18,77	19,79	17,75
19,18 19,18 19,09 18,89 19,91 17,76 19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,09	19,12	19,01	18,8	19,85	
19,24 19,24 19,15 18,92 19,94 17,76 19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,48 19,36 19,18 20,13 17,76 19,48 19,45 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,15		19,07	18,86	19,88	
19,24 19,27 19,18 18,95 19,97 17,76 19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,48 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25		19,18	19,09	18,89	19,91	17,76
19,30 19,3 19,21 19,01 20 17,76 19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,36 19,18 20,13 17,76 19,48 19,45 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,24	19,24	19,15	18,92	19,94	17,76
19,33 19,33 19,24 19,07 20,06 17,76 19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,48 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,24	19,27	19,18	18,95	19,97	
19,33 19,39 19,3 19,09 20,09 17,76 19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,48 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,30	19,3	19,21	19,01	20	17,76
19,42 19,42 19,3 19,12 20,13 17,76 19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,48 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,33	19,33	19,24	19,07	20,06	
19,45 19,45 19,36 19,18 20,13 17,76 19,48 19,48 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,33		19,3	19,09	20,09	17,76
19,48 19,48 19,36 19,21 20,19 18,24 19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25		19,42	19,3	19,12	20,13	17,76
19,51 19,51 19,45 19,24 20,22 18,25 19,54 19,54 19,45 19,27 20,25 18,25	19,45	19,45	19,36	19,18	20,13	17,76
19,54 19,54 19,45 19,27 20,25 18,25	19,48	19,48	19,36	19,21	20,19	18,24
	19,51	19,51	19,45	19,24	20,22	18,25
19,60 19,6 19,51 19,33 20,28 18,25	19,54	19,54	19,45	19,27	20,25	18,25
	19,60	19,6	19,51	19,33	20,28	18,25

19,63	19,63	19,54	19,36	20,31	18,25
19,63	19,66	19,57	19,39	20,34	18,25
19,69	19,69	19,6	19,42	20,38	18,25
19,72	19,72	19,63	19,48	20,41	18,25
19,76	19,79	19,69	19,48	20,44	18,25
19,79	19,79	19,72	19,54	20,5	18,25
19,82	19,85	19,72	19,57	20,5	18,25
19,85	19,85	19,79	19,6	20,57	18,74
19,91	19,91	19,79	19,63	20,57	18,25
19,94	19,94	19,85	19,69	20,63	18,25
19,97	19,97	19,88	19,69	20,63	18,74
20,00	20	19,91	19,76	20,66	18,74
20,03	20,03	19,94	19,76	20,73	18,74
20,06	20,09	20	19,82	20,73	18,74
20,09	20,09	20,03	19,85	20,79	18,74
20,13	20,13	20,03	19,88	20,79	19,23
20,16	20,16	20,06	19,91	20,82	18,75
20,19	20,19	20,09	19,94	20,86	19,23
20,22	20,22	20,13	19,97	20,86	18,75
20,25	20,25	20,16	20	20,89	18,74
20,28	20,28	20,19	20,03	20,92	18,74
20,31	20,31	20,22	20,06	20,95	19,23
20,31	20,34	20,25	20,06	20,99	18,75
20,38	20,38	20,28	20,13	21,02	18,74
20,38	20,41	20,28	20,16	21,02	19,23
20,44	20,41	20,31	20,19	21,05	19,24
20,44	20,44	20,34	20,19	21,08	19,24
20,47	20,47	20,38	20,25	21,12	19,24
20,50	20,5	20,41	20,25	21,15	19,72
20,50	20,54	20,44	20,28	21,18	19,24
20,57	20,57	20,47	20,31	21,18	19,24
20,57	20,57	20,47	20,34	21,22	19,24
20,60	20,6	20,5	20,38	21,25	19,24
20,63	20,63	20,54	20,38	21,25	19,24
20,66	20,66	20,54	20,41	21,28	19,72
20,66	20,66	20,57	20,44	21,32	19,73
20,70	20,7	20,6	20,44	21,32	19,73
20,73	20,73	20,63	20,5	21,35	19,24
20,76	20,73	20,63	20,54	21,38	19,72
20,76	20,76	20,66	20,54	21,38	19,73
20,79	20,79	20,7	20,57	21,42	19,73
20,82	20,79	20,73	20,6	21,45	19,73
20,86	20,82	20,73	20,6	21,45	19,73
20,86	20,86	20,76	20,63	21,45	19,73
20,89	20,89	20,76	20,66	21,52	19,73

20,92	20,89	20,82	20,7	21,55	20,22
20,95	20,92	20,82	20,7	21,55	19,73
20,99	20,95	20,86	20,73	21,58	19,73
20,99	20,95	20,86	20,76	21,58	19,73
20,99	20,99	20,92	20,76	21,62	19,73
21,05	21,02	20,92	20,79	21,62	19,73
21,05	21,02	20,95	20,82	21,65	19,73
21,05	21,05	20,95	20,82	21,65	19,73
21,08	21,08	20,99	20,86	21,68	20,22
21,12	21,08	20,99	20,86	21,68	20,22
21,15	21,12	21,05	20,92	21,72	20,22
21,15	21,15	21,05	20,92	21,72	19,73
21,18	21,15	21,08	20,95	21,75	20,22
21,18	21,18	21,08	20,99	21,75	20,22
21,22	21,18	21,12	20,99	21,79	19,73
21,25	21,22	21,12	21,02	21,82	20,22
21,25	21,22	21,15	21,05	21,82	20,22
21,25	21,25	21,15	21,05	21,85	20,22
21,28	21,28	21,18	21,08	21,85	20,22
21,28	21,25	21,18	21,08	21,85	20,22

Tabella A.5 – Termistori e sensore LM35 a temperature sotti i $\,$ 25 $\,$ $^{\circ}C$

Th1	Th2	Th3	Th4	Th5	LM35
23,97864	24,02063	23,90518	23,90518	24,36713	22,46
23,94716	23,90518	23,86321	23,86321	24,36713	22,69
23,90518	23,83173	23,78977	23,78977	24,32512	22,69
23,08739	22,90934	22,65809	22,51159	23,7583	22,2
22,33375	22,12461	21,82151	21,5186	23,11882	21,71
21,71704	21,47683	21,11152	20,81945	22,58484	20,72
21,27849	20,95504	20,56924	20,33999	22,12461	20,23
20,88203	20,63178	20,15249	19,99629	21,74838	19,73
20,66306	20,30873	19,90259	19,84013	21,58126	19,24
20,43376	20,09	19,69443	19,69443	21,35155	19,24
20,24623	19,87136	19,42394	19,53836	21,11152	18,26
20,05876	19,66321	19,23676	19,42394	20,92374	18,25
19,87136	19,47595	19,06003	19,26795	20,75689	18,25
19,75687	19,29914	18,91453	19,15358	20,60051	18,25
19,60078	19,18477	18,83141	19,02885	20,46502	17,76
19,47595	19,06003	18,71713	18,88336	20,33999	17,76
19,39274	18,94571	18,62365	18,76907	20,24623	17,27
19,29914	18,86258	18,60288	18,62365	20,15249	17,26
19,18477	18,76907	18,54057	18,54057	20,05876	17,26
19,1224	18,68597	18,47826	18,4575	19,96505	16,77

19,00806 1 18,94571 1 18,88336 1 18,86258 1 18,83141 1 18,80024 1	18,62365 18,60288 18,57172 18,54057 18,50942 18,50942 18,47826	18,42635 18,42635 18,3952 18,3952 18,3433 18,37444 18,3433	18,37444 18,3433 18,26026 18,22912 18,19798	19,90259 19,84013 19,78809 19,75687	16,77 16,77 16,28 16,76
18,94571 1 18,88336 1 18,86258 1 18,83141 1 18,80024 1	18,57172 18,54057 18,50942 18,50942 18,47826	18,3952 18,3952 18,3433 18,37444	18,26026 18,22912 18,19798	19,78809 19,75687	16,28
18,88336 1 18,86258 1 18,83141 1 18,80024 1	18,54057 18,50942 18,50942 18,47826	18,3952 18,3433 18,37444	18,22912 18,19798	19,75687	
18,86258 1 18,83141 1 18,80024 1	18,50942 18,50942 18,47826	18,3433 18,37444	18,19798		16,76
18,83141 1 18,80024 1	18,50942 18,47826	18,37444		10.60442	
18,80024	18,47826			19,69443	16,77
		18 3433	18,19798	19,66321	16,28
18,76907	18,47826	10,3733	18,14609	19,632	16,28
		18,3433	18,14609	19,60078	16,28
18,76907	18,47826	18,37444	18,11496	19,56957	16,28
18,73791	18,4575	18,3433	18,11496	19,56957	16,28
18,71713	18,47826	18,3433	18,11496	19,50715	16,28
18,71713	18,47826	18,3433	18,11496	19,53836	16,28
18,71713	18,47826	18,37444	18,14609	19,50715	16,28
18,71713	18,50942	18,37444	18,11496	19,50715	16,28
18,68597	18,54057	18,3952	18,14609	19,50715	16,28
18,68597	18,54057	18,42635	18,16685	19,50715	16,28
18,68597	18,57172	18,4575	18,22912	19,50715	16,28
18,71713	18,57172	18,4575	18,19798	19,50715	16,28
18,71713	18,60288	18,47826	18,26026	19,53836	16,28
18,71713	18,62365	18,50942	18,28102	19,53836	16,28
18,73791	18,65481	18,54057	18,31216	19,56957	16,28
18,73791	18,71713	18,57172	18,31216	19,56957	16,76
18,76907	18,71713	18,60288	18,3433	19,56957	16,28
18,80024	18,73791	18,62365	18,3952	19,60078	16,28
18,80024	18,76907	18,65481	18,42635	19,632	16,28
18,83141	18,83141	18,71713	18,4575	19,66321	16,76
18,86258	18,83141	18,71713	18,47826	19,69443	16,77
18,88336	18,88336	18,76907	18,50942	19,69443	16,28
18,94571	18,91453	18,80024	18,57172	19,72565	16,76
18,94571	18,97688	18,86258	18,60288	19,78809	16,77
19,00806	19,00806	18,88336	18,62365	19,81931	16,77
19,00806	19,02885	18,91453	18,68597	19,84013	16,77
19,06003	19,06003	18,94571	18,71713	19,84013	16,77
19,06003	19,09121	19,00806	18,76907	19,90259	16,77
19,1224	19,15358	19,00806	18,76907	19,93382	16,77
19,15358	19,18477	19,06003	18,86258	19,96505	16,77
19,18477	19,21596	19,09121	18,88336	19,99629	16,77
19,23676	19,26795	19,15358	18,91453	20,05876	16,77
19,29914	19,29914	19,18477	18,94571	20,05876	16,77
19,33034	19,33034	19,23676	19,00806	20,12124	17,26
19,36154	19,39274	19,26795	19,02885	20,15249	17,26
19,39274	19,39274	19,29914	19,09121	20,18373	17,26
19,42394	19,45514	19,33034	19,09121	20,21498	17,26
19,45514	19,47595	19,39274	19,15358	20,27748	17,26
19,50715	19,50715	19,42394	19,18477	20,27748	17,26

19,53836 19,56957 19,45514 19,23676 20,33999 17,2 19,56957 19,60078 19,50715 19,26795 20,37124 17,2 19,632 19,632 19,53836 19,33034 20,4025 17,2 19,66321 19,69443 19,56957 19,36154 20,43376 17,2 19,69443 19,72565 19,632 19,42394 20,49629 17,2 19,72565 19,78809 19,66321 19,45514 20,49629 17,2 19,78809 19,81931 19,69443 19,50715 20,56924 17,2 19,81931 19,81931 19,75687 19,50715 20,56924 17,7 19,84013 19,81931 19,75687 19,53386 20,63178 17,2 19,93382 19,81931 19,60078 20,66306 17,7 19,99629 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,66321 20,72561 17,7 20,05876 20,058	66 66 66 66 66 75
19,632 19,53836 19,33034 20,4025 17,2 19,66321 19,69443 19,56957 19,36154 20,43376 17,2 19,69443 19,72565 19,632 19,42394 20,49629 17,2 19,72565 19,78809 19,66321 19,45514 20,49629 17,2 19,78809 19,81931 19,69443 19,50715 20,56924 17,2 19,81931 19,81931 19,75687 19,53836 20,63178 17,2 19,84013 19,87136 19,75687 19,53836 20,66306 17,7 19,93382 19,81931 19,60078 20,66306 17,7 19,99629 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,66321 20,72561 17,7 19,99629 19,99629 19,66321 20,72561 17,7 20,05876 19,99629 19,81931 20,72561 17,7 20,09 20,05876 19,84013 20,85074 17,7 <td>66 66 66 66 75</td>	66 66 66 66 75
19,66321 19,69443 19,56957 19,36154 20,43376 17,2 19,69443 19,72565 19,632 19,42394 20,49629 17,2 19,72565 19,78809 19,66321 19,45514 20,49629 17,2 19,78809 19,81931 19,69443 19,50715 20,56924 17,2 19,81931 19,81931 19,75687 19,50715 20,56924 17,7 19,84013 19,87136 19,75687 19,53836 20,63178 17,2 19,99259 19,93382 19,81931 19,60078 20,66306 17,7 19,99382 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99382 19,96321 20,72561 17,7 19,99629 19,99629 19,93382 19,6443 20,75689 17,7 20,05876 20,05876 19,96305 19,75687 20,78817 17,7 20,09 20,05876 19,96505 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7	66 66 66 75
19,69443 19,72565 19,632 19,42394 20,49629 17,2 19,72565 19,78809 19,66321 19,45514 20,49629 17,2 19,78809 19,81931 19,69443 19,50715 20,56924 17,2 19,81931 19,81931 19,75687 19,50715 20,56924 17,7 19,84013 19,87136 19,75687 19,53836 20,63178 17,7 19,90259 19,93382 19,81931 19,60078 20,66306 17,7 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99382 19,66321 20,72561 17,7 19,99629 19,99529 19,66321 20,72561 17,7 20,05876 19,93382 19,69443 20,75689 17,7 20,05876 19,996505 19,75687 20,78817 17,7 20,09 20,05876 19,84013 20,88203 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 </td <td>66 66 75</td>	66 66 75
19,72565 19,78809 19,66321 19,45514 20,49629 17,2 19,78809 19,81931 19,69443 19,50715 20,56924 17,2 19,81931 19,81931 19,75687 19,50715 20,56924 17,7 19,84013 19,87136 19,75687 19,53836 20,63178 17,2 19,90259 19,93382 19,81931 19,60078 20,66306 17,7 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,90259 19,66321 20,72561 17,7 19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,85074 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,96505 20,98633 18,2	66 66 75
19,78809 19,81931 19,69443 19,50715 20,56924 17,2 19,81931 19,81931 19,75687 19,50715 20,56924 17,7 19,84013 19,87136 19,75687 19,53836 20,63178 17,2 19,90259 19,93382 19,81931 19,60078 20,66306 17,7 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,90259 19,66321 20,72561 17,7 19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,05876 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2	6 5 7
19,81931 19,81931 19,75687 19,50715 20,56924 17,7 19,84013 19,87136 19,75687 19,53836 20,63178 17,2 19,90259 19,93382 19,81931 19,60078 20,66306 17,7 19,93382 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,90259 19,66321 20,72561 17,7 19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,24623 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,21498 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 <t< td=""><td>75 27</td></t<>	75 27
19,84013 19,87136 19,75687 19,53836 20,63178 17,2 19,90259 19,93382 19,81931 19,60078 20,66306 17,7 19,93382 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,90259 19,66321 20,72561 17,7 19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,93382 20,92374 17,7 20,30873 20,30873 20,21498 19,99629 21,01762 <t< td=""><td>7</td></t<>	7
19,90259 19,93382 19,81931 19,60078 20,66306 17,7 19,93382 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,90259 19,66321 20,72561 17,7 19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,21498 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,4025 20,4025 20,30873 20,12124 21,11152	
19,93382 19,93382 19,84013 19,632 20,69433 17,7 19,99629 19,99629 19,90259 19,66321 20,72561 17,7 19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 19,99629 21,04892 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,40502 20,46502 20,33999 20,15249 21,14282	5
19,99629 19,99629 19,90259 19,66321 20,72561 17,7 19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,49629 20,49629 20,4623 21,21587 18,2	
19,99629 20,02752 19,93382 19,69443 20,75689 17,7 20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,4025 20,307124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,40502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 <t< td=""><td>6</td></t<>	6
20,05876 20,05876 19,96505 19,75687 20,78817 17,7 20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,212124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,46502 20,43376 20,33999 20,15249 21,14282 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 <td>6</td>	6
20,09 20,09 19,99629 19,81931 20,85074 17,7 20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,46502 20,43376 20,33999 20,15249 21,14282 18,2 20,49629 20,46502 20,37124 20,18373 21,18456 18,2 20,53797 20,56924 20,46502 20,24623 21,21587 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18	6
20,09 20,15249 20,05876 19,84013 20,88203 17,7 20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,53797 20,56924 20,46502 20,24623 21,24718 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	6
20,18373 20,18373 20,05876 19,87136 20,92374 17,7 20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4623 21,21587 18,2 20,53797 20,56924 20,46502 20,30873 21,3098 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	6
20,21498 20,21498 20,12124 19,93382 20,92374 17,7 20,24623 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,30873 21,3098 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	6
20,24623 20,24623 20,12124 19,96505 20,98633 18,2 20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,30873 21,3098 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	6
20,27748 20,27748 20,21498 19,99629 21,01762 18,2 20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,30873 21,3098 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	6
20,30873 20,30873 20,21498 20,02752 21,04892 18,2 20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,30873 21,3098 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	4
20,37124 20,37124 20,27748 20,09 21,08022 18,2 20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,30873 21,3098 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	5
20,4025 20,4025 20,30873 20,12124 21,11152 18,2 20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,24623 21,24718 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	5
20,4025 20,43376 20,33999 20,15249 21,14282 18,2 20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,24623 21,24718 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	5
20,46502 20,46502 20,37124 20,18373 21,18456 18,2 20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,24623 21,24718 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	5
20,49629 20,49629 20,4025 20,24623 21,21587 18,2 20,53797 20,56924 20,46502 20,24623 21,24718 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	5
20,53797 20,56924 20,46502 20,24623 21,24718 18,2 20,56924 20,56924 20,49629 20,30873 21,3098 18,2	5
20,56924 20,56924 20,49629 20,30873 21,3098 18,2	5
, , , , , , , , , , , , , , , , , , , ,	5
	5
20,60051 20,63178 20,49629 20,33999 21,3098 18,2	
20,63178 20,63178 20,56924 20,37124 21,38287 18,7	4
20,69433 20,69433 20,56924 20,4025 21,38287 18,2	5
20,72561 20,72561 20,63178 20,46502 21,44551 18,2	5
20,75689 20,75689 20,66306 20,46502 21,44551 18,7	4
20,78817 20,78817 20,69433 20,53797 21,47683 18,7	4
20,81945 20,81945 20,72561 20,53797 21,54993 18,7	4
20,85074 20,88203 20,78817 20,60051 21,54993 18,7	
20,88203 20,88203 20,81945 20,63178 21,61259 18,7	
20,92374 20,92374 20,81945 20,66306 21,61259 19,2	3
20,95504 20,95504 20,85074 20,69433 21,64392 18,7	
20,98633 20,98633 20,88203 20,72561 21,6857 19,2	
21,01762 21,01762 20,92374 20,75689 21,6857 18,7	5
21,04892 21,04892 20,95504 20,78817 21,71704 18,7	
21,08022 21,08022 20,98633 20,81945 21,74838 18,7	4
21,11152 21,11152 21,01762 20,85074 21,77972 19,2	4
21,11152 21,14282 21,04892 20,85074 21,82151 18,7	4

21,18456	21,18456	21,08022	20,92374	21,85286	18,74
21,18456	21,21587	21,08022	20,95504	21,85286	19,23
21,24718	21,21587	21,11152	20,98633	21,88421	19,24
21,24718	21,24718	21,14282	20,98633	21,91556	19,24
21,27849	21,27849	21,18456	21,04892	21,95736	19,24
21,3098	21,3098	21,21587	21,04892	21,98872	19,72
21,3098	21,35155	21,24718	21,08022	22,02007	19,24
21,38287	21,38287	21,27849	21,11152	22,02007	19,24
21,38287	21,38287	21,27849	21,14282	22,06189	19,24
21,41419	21,41419	21,3098	21,18456	22,09325	19,24
21,44551	21,44551	21,35155	21,18456	22,09325	19,24
21,47683	21,47683	21,35155	21,21587	22,12461	19,72
21,47683	21,47683	21,38287	21,24718	22,16643	19,73
21,5186	21,5186	21,41419	21,24718	22,16643	19,73
21,54993	21,54993	21,44551	21,3098	22,1978	19,24
21,58126	21,54993	21,44551	21,35155	22,22917	19,72
21,58126	21,58126	21,47683	21,35155	22,22917	19,73
21,61259	21,61259	21,5186	21,38287	22,271	19,73
21,64392	21,61259	21,54993	21,41419	22,30237	19,73
21,6857	21,64392	21,54993	21,41419	22,30237	19,73
21,6857	21,6857	21,58126	21,44551	22,30237	19,73
21,71704	21,71704	21,58126	21,47683	22,37559	19,73
21,74838	21,71704	21,64392	21,5186	22,40697	20,22
21,77972	21,74838	21,64392	21,5186	22,40697	19,73
21,82151	21,77972	21,6857	21,54993	22,43835	19,73
21,82151	21,77972	21,6857	21,58126	22,43835	19,73
21,82151	21,82151	21,74838	21,58126	22,4802	19,73
21,88421	21,85286	21,74838	21,61259	22,4802	19,73
21,88421	21,85286	21,77972	21,64392	22,51159	19,73
21,88421	21,88421	21,77972	21,64392	22,51159	19,73
21,91556	21,91556	21,82151	21,6857	22,54298	20,22
21,95736	21,91556	21,82151	21,6857	22,54298	20,22
21,98872	21,95736	21,88421	21,74838	22,58484	20,22
21,98872	21,98872	21,88421	21,74838	22,58484	19,73
22,02007	21,98872	21,91556	21,77972	22,61623	20,22
22,02007	22,02007	21,91556	21,82151	22,61623	20,22
22,06189	22,02007	21,95736	21,82151	22,65809	19,73
22,09325	22,06189	21,95736	21,85286	22,68949	20,22
22,09325	22,06189	21,98872	21,88421	22,68949	20,22
22,09325	22,09325	21,98872	21,88421	22,72089	20,22
22,12461	22,12461	22,02007	21,91556	22,72089	20,22
22,12461	22,09325	22,02007	21,91556	22,72089	20,22

Tabella A.6 – Correzione Ron termistori e sensore LM35 a temperature sotto i 25 °C

Bibliografia

- [1] Arduino. (s.d.) Tratto da Arduino: https://store.arduino.cc/arduino-uno-rev3
- [2] Analog Devices, Inc. (1998). CMOS 8-/16-Channel Analog Multiplexers ADG506A/ADG507A. 3-4-5.
- [3] Fondazione Bruno Kessler. (2019). 9 Tiles for FOOT Project, (p. 2).
- [4] INFN. (s.d.). Beam and target fragmentation in hadrontherapy: the FOOT (FragmentatiOn Of Target) experiment.
- [5] INFN. (2020) Performance of the calorimeter for the FOOT Experiment, Lorenzo Scavarda, on behalf of the FOOT Collaboration
- [6] LTSpice. (s.d.). Tratto da Wikipedia: https://en.wikipedia.org/wiki/LTspice
- [7] Nexperia B.V., 74HC193; 74HCT193 Presettable synchronous 4-bit binary up/down counter, Rev.5, 2016, 4-6
- [8] Rivelatore. (s.d.). Tratto da FOOT The Experiment INFN: https://web.infn.it/foot/rivelatore/
- [9] TDK. (2018, Gennaio). NTC Thermistors General technical information. (p. 3).
- [10] TDK. (2018). NTC Thermistors General technical information . (p. 9 10.)
- [11] Texas Instruments (2013). LM134/LM234/LM334 3-Terminal Adjustable Current Sources. 6.
- [12] Texas Instruments (2017). LM35 Precision Centigrade Temperature Sensors. 3 -15.
- [13] Terapia Adronica. (s.d.). Tratto da Wikipedia: https://it.wikipedia.org/wiki/Terapia_adronica
- [14] Termistore. (s.d.). Tratto da Wikipedia: https://it.wikipedia.org/wiki/Termistore

Ringraziamenti

Ringrazio il Professor Ramello per avermi guidato per tutto il lavoro e al tempo stesso per avermi fatto appassionare all'argomento trattato.

Mi congratulo con Roberto per aver raggiunto questo traguardo insieme a me, lo ringrazio per tutto l'aiuto e per aver reso le giornate di stage più leggere.

Ringrazio i miei genitori, a cui dedico la tesi, per essermi sempre stato accanto, per avermi appoggiato in qualsiasi momento.

Ringrazio tutta la mia famiglia, in particolare Federica, per avermi sostenuto nel momento più difficile.

Ringrazio Ale, Gabri, Marty, Nico e Salvo per aver sopportato sempre i miei sproloqui e perché, semplicemente, sono degli amici che mai avrei immaginato di trovare.

Infine ringrazio tutti i miei colleghi, o meglio, amici, che ho conosciuto in università perché senza di loro probabilmente questo percorso sarebbe stato dieci volte più complicato e noioso.