Band structure of new superconducting AlB₂-like ternary silicides $M(Al_{0.5}Si_{0.5})_2$ and $M(Ga_{0.5}Si_{0.5})_2$ (M= Ca, Sr and Ba).

I.R. Shein*, N.I. Medvedeva and A.L. Ivanovskii

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences 620219, Ekaterinburg, Russia

(Dated: 28 November 2002)

The electronic band structures of the new superconducting (with T_C up to 7.7K) ternary silicides $M(A_{0.5}Si_{0.5})_2$ (M= Ca, Sr, Ba; A= Al, Ga) in the AlB₂-type structure have been investigated using the full-potential LMTO method. The calculations showed that the trend in transition temperatures doesn't follow the changes in the density d-states at the Fermi level and probably is associated with phonon-mode frequencies.

* E-mail: shein@ihim.uran.ru PACS numbers: 74.70.-b,71.20.-b

The discovery of superconductivity (SC) in hexagonal AlB₂-like MgB₂ (T_c \sim 39K)¹ and creation of promising materials based thereon²⁻⁴ have attracted a great deal of interest in related compounds isostructural with magnesium diboride because of their potential as a new superconductors. One of the remarkable results is the synthesis by a floating zone and a Ar arc melting methods the series of the new ternary layered silicides $Sr(Ga_xSi_{1-x})_2^6$, $Ca(Al_{0.5}Si_{0.5})_2^7$ and $(Ca,Sr,Ba)(Ga_xSi_{1-x})_2^{7,8}$ with transition temperatures T_c ranging 3.3 - 7.7 K, except for $Ba(Al_xSi_{1-x})_2$. They have the AlB₂-type structure in which Si and Al,Ga atoms are arranged in honeycomb sheets and alkalineearth metals are intercalated between them. Furthemore, a series of the compounds $(Ca,Sr,Ba)(Al_xSi_{1-x})_2$ were synthesized by varying Al/Si $(0.6 < x < 1.2)^9$ and the maximum T_c for these phases appears at the 1:1:1 composition.

Electrical resistivity and dc magnetization results^{5–8} revealed that these layered silicides are a type-II superconductors. The observed different T_c of these phases would be qualitatively attributed to the change in densities of states at E_F , $N(E_F)^8$. The Seebeck coefficient measurements for $(Ca,Sr,Ba)(Al_xSi_{1-x})_2^9$ indicate that their carriers are predominantly electrons, in contrast to the holes in magnesium diboride^{1–4}.

Recently, the first band structure study of the layered silicides $Sr(Ga_xSi_{1-x})_2$, x = 0.375, 0.5, 0.625 and $Ca(Al_{0.5}Si_{0.5})_2$ has been performed¹⁰. It has been shown that the SC properties may be due to the high density of (Ca,Sr)d-states at the Fermi level. In the present work we report the results of first-principles calculations for all known 1:1:1 ternary compounds $M(A_{0.5}Si_{0.5})_2$ (M=Ca, Sr, Ba; A=Al, Ga) and analyze the band structure parameters in association of SC properties for the isostructural and isoelectronic compounds: $Ca(Al_{0.5}Si_{0.5})_2$, $Sr(Al_{0.5}Si_{0.5})_2$, $Ba(Al_{0.5}Si_{0.5})_2$ $Ca(Ga_{0.5}Si_{0.5})_2$, $Sr(Ga_{0.5}Si_{0.5})_2$, $Ba(Ga_{0.5}Si_{0.5})_2$. band structures of the above silicides were calculated by the scalar relativistic full-potential LMTO method¹¹. The lattice parameters used are listed in the Table 1. Energy bands, total and site projected \(\ell \)-decomposed densities of states (DOS, LDOS) of $M(A_{0.5}Si_{0.5})_2$ are presented in Figs. 1-7. Let us discuss the band structures of $M(A_{0.5}Si_{0.5})_2$ for example $Ca(Al_{0.5}Si_{0.5})_2$. The valence band (VB) for $Ca(Al_{0.5}Si_{0.5})_2$ includes four fully occupied bands and has a width of about 10 eV. The quasi-core s-like band is located in the interval from 10.0 to 7.8 eV below the Fermi level and separated by a gap ($\sim 1.45 \text{ eV}$) from the hybrid (Al,Si)sp-states which form four $\sigma(2p_{x,y})$ and two $\pi(p_z)$ bands, Fig. 1. The E(k) dependence for $p_{x,y}$ and p_z bands differs considerably. For $2p_{x,y}$ like bands the most pronounced dispersion of E(k) is observed along the direction $k_{x,y}$ $(\Gamma$ -K of the Brillouin zone (BZ)). These bands are of the quasi two dimensional (2D) type. They form a quasi-flat zone along k_z (Γ -A). The (Al,Si) $p_{x,y}$ orbitals participate strong covalent σ -states to form 2D honeycomb network bonds of sp² type with the s states. The (Al,Si) p_z -like bands are responsible for weaker $\pi(p_z)$ interactions. These 3D-type bands have the maximum dispersion in the direction $k_z(\Gamma-A)$. The Cas,p,d-states are admixed to p-like bands. The $\sigma(\mathbf{p}_{x,y})$ and $\pi(\mathbf{p}_z)$ bands intersect at the Γ point of the BZ. It is important that the (Al,Si)p-bands are located below E_F and do not contain hole states as well as those in non-superconducting AlB_2^{2-4} , which is isoelectronic to the $Ca(Al_{0.5}Si_{0.5})_2$. The main contribution to the $Ca(Al_{0.5}Si_{0.5})_2$ DOS in the vicinity of the Fermi level is made by the Ca3d-states: their constribution in $N(E_F)$ is about 59 % compared with 9 % and 10% for Alp- and Sip-states, respectively. Let us compare the band structures of $Ca(Al_{0.5}Si_{0.5})_2$, $Sr(Al_{0.5}Si_{0.5})_2$ and $Ba(Al_{0.5}Si_{0.5})_2$. The most obvious consequence of the alkaline-earth metal variation (Ca \longrightarrow Sr \longrightarrow Ba) is the decreasing of VB width from 10.0 (Ca(Al_{0.5}Si_{0.5})₂) to \sim 9.1 eV (Ba(Al_{0.5}Si_{0.5})₂) caused by the increased cell volume. The location and dispersion of lowest d-bands depend from the alkalineearth metals. As is seen from Fig.1, (Sr,Ba)d-states form the nearly flat bands in the direction L-H, close to E_F . As a result for $Sr(Al_{0.5}Si_{0.5})_2$, $Ba(Al_{0.5}Si_{0.5})_2$ the sharp peaks in LDOS of (Sr,Ba)d-states hybridized with (Al,Si)-orbitals, appear which are separated by a pseudogap from the bonding p-bands (Figs. 2-4). The values of $N(E_F)$ increases more than twice going from $Ca(Al_{0.5}Si_{0.5})_2$ to $Ba(Al_{0.5}Si_{0.5})_2$. It is important to note that the increase in $N(E_F)$ is due to similtaneously growth in LDOS of valence states for all atoms in silicates, see Table 1.

The band structures of $M(Al_{0.5}Si_{0.5})_2$ and $M(Ga_{0.5}Si_{0.5})_2$ are similar, Fig.1. Their differences are revealed in an increase in the dispersion of σ -, π -bands in the A-L-H directions an decreasein band gap (at ~ 1.0 -0.9 eV) between s- and p-like bands for $M(Ga_{0.5}Si_{0.5})_2$ compared with $M(Al_{0.5}Si_{0.5})_2$. The VB width of $M(Ga_{0.5}Si_{0.5})_2$ increases by ~ 1.3 -1.0 eV. The change of the alkalineearth metal in the sequence $Ca \longrightarrow Sr \longrightarrow Ba$ causes the increase of the $N(E_F)$, the M d-states make the main contribution to near-Fermi DOS, Figs. 5-7, Table 1.

Thus, the band structure of the ternary AlB₂-like silicides is quite different from SC MgB₂. As compared by magnesium diboride, for M(A_{0.5}Si_{0.5})₂ were found (i) the filling of the bonding $p_{x,y}$ -bands and the absence of σ -holes, (ii) the increase of covalent interactions (due to p-d-hybridization) between graphene-like (Al,Si) or (Ga,Si) sheets and metal hexagonal layers and (iii) the principal change in the composition of N(E_F), where the alkaline-earth metal d-states make the main contributions (55-60 %, Table 1).

According to the experimental data⁵⁻⁹: (i) in the silicides $M(Al_{0.5}Si_{0.5})_2$ the T_c decreases monotonically when the metal M is changed from Ca to Ba; (ii) in the silicides $M(Ga_{0.5}Si_{0.5})_2$ the T_c changes slightly (within range 3.9-5.1) with the maximum (5.1K) for $Sr(Ga_{0.5}Si_{0.5})_2$, Table 1.

In framework of BCS theory, the T_c can be estimated by the McMillan equation $T_c \approx \langle \omega \rangle \exp f(\lambda)$, where $\langle \omega \rangle$ is the averaged phonon frequency (inversely proportional to the atomic masses), λ is the electron-phonon coupling constant $(\lambda=N(E_F)\langle I^2\rangle/\langle M^2\rangle,\langle I^2\rangle$ is the electron-phonon matrix element, the value of $\langle M^2\rangle$ does not depend on mass and is determined by force constants).

The values of $N(E_F)$ (as the contributions in $N(E_F)$ from Md-,(Si, Al, Ga)p-states) obtained here showed that (i)

in the silicides $M(Al_{0.5}Si_{0.5})_2$ and $M(Ga_{0.5}Si_{0.5})_2$ $N(E_F)$ increases monotonically when the alkaline-earth metal is changed from Ca to Ba (it is opposite to T_c trend⁵⁻⁹), (ii) $N(E_F)$ in the silicides $M(Al_{0.5}Si_{0.5})_2$ are higher than $N(E_F)$ in the silicides $M(Ga_{0.5}Si_{0.5})_2$ based on the same M, what also does not correlate with the observed critical temperatures. Thus, the direct relationship T_c $\sim N(E_F)$, suggested in for the "strong stoichiometric" compositions of silicides $M(A_{0.5}Si_{0.5})_2$ are impossible. It may be supposed that the main factor, determining the variation in T_c in a number of isostructural and isoelectronic compounds $M(A_{0.5}Si_{0.5})_2$, is the change of phonon frequencies depending from the atomic masses. Additionally, the shape of DOS (and the value of $N(E_F)$) may be changed owing to disorder in the distribution of (Al,Ge)/Si atoms in honeycomb layers. As a result alkaline-earth metals will be in different trigonalprizmatic positions, that may lead to the splitting of near-Fermi bands and to a decrease in $N(E_F)$. This effect will be more strong for Sr, Ba-containing silicides, where for "ideal ordering" state the $N(E_F)$ is determined by narrow intensive peaks in DOS, Figs. 3,4,6,7. The possibilty of chemical disordering and the inhomogenity in the arc melted samples of silicides were noted by authors of 7 .

In summary, our calculations of the band structure of all known ternary silicides with the stoichiometry $M(A_{0.5}Si_{0.5})_2$ showed that the Fermi level is located in the region of a sharp DOS peak originated mainly from alkaline-earth metal d-states with some contributions of (Al,Ge,Si)p-orbitals. The T_c behavior for the isostructural and isoelectronic $M(A_{0.5}Si_{0.5})_2$ cannot be identified with the variation of $N(E_F)$, and probably connected with phonon-mode frequencies determined by atomic masses.

Acknowledgement.

This work was supported by the RFBR, grant 02-03-32971.

J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).

² A.L. Ivanovskii, Russ. Chem. Rev., **71** 203 (2001).

³ C. Buzea and T. Yamashita, Supercond. Sci. Technol., 14, R115 (2001).

⁴ P.C. Canfield and S.L. Budko, Phys. World, **15** 29 (2002).

M. Imai, E. Abe, J. Ye, K. Nishida, T. Kimura, K.Honma, H. Abe, and H. Kitazawa, Phys. Rev. Letters,87, 077003 (2001).

⁶ M. Imai, K. Nishida, T. Kimura, and H. Abe, Appl. Phys. Letters, 80, 1019 (2002).

⁷ M. Imai, K. Nishida, T. Kimura, and H. Abe, Physica, C377, 96 (2002).

⁸ M. Imai, K. Nishida, T. Kimura, H. Kitazawa, H. Abe, H. Kito, and K. Yoshii, cond-mat/0210692

⁹ B. Lorenz, J. Lenzi, J. Cmaidalka, R.L. Meng, Y.Y. Sun, Y.Y. Xue, and C.W. Chu, cond-mat/0208341

¹⁰ I.R. Shein, V.V. Ivanovskaya, N.I. Medvedeva, and A.L. Ivanovskii, JETP Letters, 76, 189 (2002).

¹¹ S.Y.Savrasov, Phys. Rev., **B54**, 16470 (1996).

TABLE I: . The lattice parameters (a,Å, c/a [8]), total and site-projected ℓ -decomposed DOSs at the Fermi level (N(E_F), states/eV) and transition temperatures (T_c, K) of silicides M(A_{0.5}Si_{0.5})₂ (M=Ca, Sr, Ba; A=Al, Ga).

Parameters	$Ca(Al_{0.5}Si_{0.5})_2$	$Sr(Al_{0.5}Si_{0.5})_2$	$Ba(Al_{0.5}Si_{0.5})_2$	$Ca(Ga_{0.5}Si_{0.5})_2$	$Sr(Ga_{0.5}Si_{0.5})_2$	$Ba(Ga_{0.5}Si_{0.5})_2$
a	4.1905	4.2407	4.2974	4.1201	4.1875	4.2587
c/a	1.0498	1.1171	1.1967	1.0777	1.1331	1.1985
M-s	0.028	0.061	0.083	0.017	0.034	0.044
М-р	0.096	0.138	0.199	0.073	0.036	0.076
M-d	0.663	1.344	1.460	0.594	0.936	1.079
M-f	0.0	0.0	0.134	0.0	0.0	0.108
Al(Ga)-s	0.023	0.022	0.018	0.022	0.017	0.017
Al(Ga)-p	0.101	0.345	0.404	0.104	0.162	0.219
Al(Ga)-d	0.033	0.043	0.038	0.015	0.018	0.016
Si-s	0.023	0.013	0.009	0.019	0.014	0.013
Si-p	0.116	0.241	0.237	0.105	0.163	0.164
Si-d	0.044	0.067	0.066	0.042	0.051	0.051
Total	1.127	2.273	2.611	0.992	1.431	1.757
T_c , K	7.7^{6}	4.2^{8}	$< 2^{8,9}$	4.3^{7}	$5.1^{8,9}$	3.9^{8}
	7.8^{9}					

 $FIG. 1: Energy \ bands: \ 1 - Ca(Al_{0.5}Si_{0.5})_2; \ 2 - Sr(Al_{0.5}Si_{0.5})_2; \ 3 - Ba(Al_{0.5}Si_{0.5})_2; \ 4 - Ca(Ga_{0.5}Si_{0.5})_2; \ 5 - Sr(Ga_{0.5}Si_{0.5})_2; \ 6 - Ba(Ga_{0.5}Si_{0.5})_2.$

FIG. 2: Total and site-projected ℓ -decomposed DOSs of $Ca(Al_{0.5}Si_{0.5})_2$. The energies are relative to the Fermi level.

FIG. 3: Total and site-projected $\ell\text{-decomposed}$ DOSs of $Sr(Al_{0.5}Si_{0.5})_2. The energies are relative to the Fermi level.$

FIG. 4: Total and site-projected ℓ -decomposed DOSs of Ba(Al_{0.5}Si_{0.5})₂.The energies are relative to the Fermi level.

FIG. 5: Total and site-projected $\ell\text{-decomposed}$ DOSs of $\mathrm{Ca}(\mathrm{Ga}_{0.5}\mathrm{Si}_{0.5})_2.\mathrm{The}$ energies are relative to the Fermi level.

FIG. 6: Total and site-projected ℓ -decomposed DOSs of $Sr(Ga_{0.5}Si_{0.5})_2$. The energies are relative to the Fermi level.

FIG. 7: Total and site-projected $\ell\text{-decomposed}$ DOSs of $Ba(Ga_{0.5}Si_{0.5})_2. The energies are relative to the Fermi level.$