

第四章 二元关系

回顾

- 序偶(x, y)
- 笛卡尔积: *A* × *B*
- 关系的定义,二元关系
 - 笛卡尔积-构成集合(子集)
- 关系相等
- 关系的性质
 - 自反,反自反,对称,反对称,传递,不可 传递

集合的压缩和开拓

定义:设R为集合A上的二元关系且 $S \subseteq A$,则称S上的二元关系 $R \cap (S \times S)$ 为R在S上的压缩,记为 $R \mid S$,并称R为 $R \mid S$ 在A上的开拓。

定理:设R为A的二元关系且 $S \subseteq A$,那么:

- (1)若R是自反的,则R|S也是自反的;
- (2)若R是反自反的,则R|S也是反自反的;
- (3)若R是对称的,则R|S也是对称的;
- (4)若R是反对称的,则R|S也是反对称的;
- (5)若R是可传递的,则R|S也是可传递的;

利用关系图判断关系的性质

• R是自反的: 关系图中每个结点都有自圈

- R是反自反的: 关系图中每个结点都无自圈
- *R*是对称的: 关系图任意两个结点间若存在 有向边, 那么必有双向的有向边
- *R*是反对称的: 关系图中任意两个结点间必 无双向边

· R是不可传递的: 关系图中存在x和y、y和z 之间存在有向边,则x和z之间没有有向边

二、关系矩阵

- 如果关系矩阵主对角线上的记入值全为1,则R是自 反的;
- 如果主对角线上的记入值全为0,则R是反自反的;
- 如果矩阵关于主对角线是对称的,则R是对称的;
- 如果矩阵关于主对角线是反对称的,(亦即 r_{ij} =1时则一定有 r_{ii} =0),则R是反对称的;
- 如果对于任意的 $i,j,k,r_{ij}=1$ 并且 $r_{jk}=1$ 时一定有 $r_{ik}=1$,则R是可传递的;
- 如果存在 $i,j,k,r_{ij}=1$ 并且 $r_{jk}=1$ 时,有 r_{ik} 不等于1,则R是不可传递的;

4.4关系的运算

• 注意: 由于关系也是特殊的集合,因此集合的运算也适用于关系中。

• 设 R_1 和 R_2 是从A到B的二元关系,那么 $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 - R_2$, $R_1 \oplus R_2$ 也是从A到B的二元关系,它们分别被称为二元关系 R_1 和 R_2 的交、并、差分和对称差分。

4.4关系的运算

• 例: 设集合 $A = \{a, b, c\}$, $B = \{d, e\}$,定义A到B的二元关系

$$R_1 = \{ \langle a, d \rangle, \langle a, e \rangle, \langle b, d \rangle, \langle c, e \rangle \}$$

 $R_2 = \{ \langle a, d \rangle, \langle b, e \rangle, \langle c, d \rangle \}$

则

$$R_{1} \cap R_{2} = \{ \langle a, d \rangle \}$$

$$R_{1} \cup R_{2} = \{ \langle a, d \rangle, \langle a, e \rangle, \langle b, d \rangle, \langle b, e \rangle, \langle c, d \rangle, \langle c, e \rangle \}$$

$$R_{1} - R_{2} = \{ \langle a, e \rangle, \langle b, d \rangle, \langle c, e \rangle \}$$

$$R_{2} - R_{1} = \{ \langle b, e \rangle, \langle c, d \rangle \}$$

$$\sim R_{1} = \{ \langle b, e \rangle, \langle c, d \rangle \}$$

$$R_{1} \oplus R_{2} = \{ \langle a, e \rangle, \langle b, d \rangle, \langle b, e \rangle, \langle c, e \rangle \}$$

4.4关系的运算

- 一、关系的合成
- 定义:设R是从X到Y的关系,S是从Y到Z的关系,于是可用 $R \circ S$ 表示从X到Z的关系,通常称它是R和S的合成关系,用式子表示即是:

$$R \circ S = \{ \langle x, z \rangle \mid x \in X \land z \in Z \land (\exists y)(y \in Y \land \langle x, y \rangle \in R \land \langle y, z \rangle \in S) \}$$

• 例: 给定集合 $X = \{1, 2, 3, 4\}$, $Y = \{2, 3, 4\}$ 和 $Z = \{1, 2, 3\}$ 。设R是从X到Y的关系,并且S是从Y到Z的关系,并且R和S给定成:

$$R = \{\langle x, y \rangle \mid x + y = 6\} = \{\langle 2, 4 \rangle, \langle 3, 3 \rangle, \langle 4, 2 \rangle\}$$
$$S = \{\langle y, z \rangle \mid y - z = 1\} = \{\langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 3 \rangle\}$$

• 试求R和S的合成关系,并画出合成关系图给出合成 关系的关系矩阵。

解: 找出所有这样的偶对 $\langle x, z \rangle$ 对于某一个y来说,能有x + y = 6和y - z = 1,由上述的偶对就可构成从X到Z的关系 $R \circ S$ 。

$$R \circ S = \{\langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 4, 1 \rangle\}$$

$$y \xrightarrow{S} z$$

$$x \xrightarrow{R \circ S} z$$

$$M_{S} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 \\ 4 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- > 定义布尔运算:
- ▶ 布尔加: 0+0=0, 1+0=0+1=1+1=1
- ▶ 布尔乘: 1·1=1, 0·1= 1·0= 0·0=0
- > 对两个关系矩阵求其合成时,其运算法则与一般矩 阵的乘法是相同的,但其中的加法运算和乘法运算 应改为布尔加和布尔乘。

- 注意:设R是从集合X到集合Y的关系,S是从集合Y到集合Z的关系,于是有:
 - ✓如果R关系的值域与S关系的定义域的交集是个空集,则合成关系 $R \circ S$ 也是个空关系;
 - ✓若至少有一个序偶 $< x, y > \in R$,其中第二个成员是S中的某一个序偶的第一个成员,则合成关系就是个非空关系。
 - ✓对于合成关系R∘S来说,它的定义域是集合X的子集,而它的值域则是Z的子集,事实上,它的定义域是关系R的定义域的子集,它的值域是关系S的值域的子集。

• 定理: 给定集合X, Y, Z和W, 设 R_1 是从 X到Y的关系, R_2 和 R_3 是Y到Z的关系, R_4 是从Z到W的关系,于是有:

(a)
$$R_1 \circ (R_2 \bigcup R_3) = (R_1 \circ R_2) \bigcup (R_1 \circ R_3)$$

(b)
$$R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$$

(c)
$$(R_2 \cup R_3) \circ R_4 = (R_2 \circ R_4) \cup (R_3 \circ R_4)$$

$$(d) (R_2 \cap R_3) \circ R_4 \subseteq (R_2 \circ R_4) \cap (R_3 \circ R_4)$$

(a)
$$R_1 \circ (R_2 \cup R_3) = (R_1 \circ R_2) \cup (R_1 \circ R_3)$$

证明: 当且仅当存在某一个 $y \in Y$,能使 $\langle x, y \rangle \in R_1$ 和 $\langle y, z \rangle \in R_2 \cup R_3$,才有 $\langle x, z \rangle \in R_1 \circ (R_2 \cup R_3)$,而

对任意的
$$\langle x, z \rangle \in R_1 \circ (R_2 \cup R_3)$$

$$\Leftrightarrow \exists y (\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2 \cup R_3)$$

$$\Leftrightarrow \exists y (\langle x, y \rangle \in R_1 \land (\langle y, z \rangle \in R_2 \lor \langle y, z \rangle \in R_3))$$

$$\Leftrightarrow \exists y \big((\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2) \lor (\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_3) \big)$$

$$\Leftrightarrow \exists y(\in R_1 \land < y,z>\in R_2) \lor \exists y(\in R_1 \land < y,z>\in R_3)$$

$$\Leftrightarrow \langle x, z \rangle \in R_1 \circ R_2 \ \lor \langle x, z \rangle \in R_1 \circ R_3$$

$$\Leftrightarrow \langle x, z \rangle \in (R_1 \circ R_2) \cup (R_1 \circ R_3)$$
 得证

(b)
$$R_1 \circ (R_2 \cap R_3) \subseteq (R_1 \circ R_2) \cap (R_1 \circ R_3)$$

证明: 当且仅当存在某一个 $y \in Y$,能使 $\langle x, y \rangle \in R_1$ 和 $\langle y, z \rangle \in R_2 \cap R_3$,才有 $\langle x, z \rangle \in R_1 \circ (R_2 \cap R_3)$,而

对任意的 $\langle x, z \rangle \in R_1 \circ (R_2 \cap R_3)$

- $\Leftrightarrow (\exists y)(\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2 \cap R_3)$
- $\Leftrightarrow (\exists y)(\langle x,y\rangle \in R_1 \land (\langle y,z\rangle \in R_2 \land \langle y,z\rangle \in R_3))$
- $\Leftrightarrow (\exists y)(\langle x,y\rangle \in R_1 \land \langle y,z\rangle \in R_2 \land (\langle x,y\rangle \in R_1 \land \langle y,z\rangle \in R_3))$
- $\Rightarrow (\exists y)((\langle x,y\rangle \in R_1 \land \langle y,z\rangle \in R_2) \land (\exists y)(\langle x,y\rangle \in R_1 \land \langle y,z\rangle \in R_3))$
- $\Leftrightarrow \langle x, z \rangle \in R_1 \circ R_2 \land \langle x, z \rangle \in R_1 \circ R_3$
- $\Leftrightarrow \langle x, z \rangle \in (R_1 \circ R_2) \cap (R_1 \circ R_3)$

- 对以上证明过程(a)式使用的是存在量词对 > 满足分配律
- 对(b)存在量词对 \land 不满足分配律,但它满足蕴涵式 $\exists x(A(x) \land B(x)) \Rightarrow \exists xA(x) \land \exists x B(x)$
 - 这里应注意 $A \Rightarrow B \not\in A \subseteq B$

- 合成运算是对关系的二元运算,使用这种运算, 能够由两个关系生成一个新的关系,对于这个 新的关系又可进行合成运算,从而生成其它关 系。
- 定理: 设 R_1 是从X到Y的关系, R_2 是从Y到Z的 关系, R_3 是从Z到W的关系,于是有

$$(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$$

关系的合成

$$\langle x, w \rangle \in (R_1 \circ R_2) \circ R_3$$

$$\Leftrightarrow (\exists z)(\langle x, z \rangle \in R_1 \circ R_2 \land \langle z, w \rangle \in R_3)$$

$$\Leftrightarrow (\exists z)((\exists y)(\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2) \land \langle z, w \rangle \in R_3)$$

$$\Leftrightarrow (\exists z)(\exists y)(\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2 \land \langle z, w \rangle \in R_3)$$

$$\Leftrightarrow (\exists y)(\exists z)(\langle x, y \rangle \in R_1 \land \langle y, z \rangle \in R_2 \land \langle z, w \rangle \in R_3)$$

$$\Leftrightarrow (\exists y)(\langle x, y \rangle \in R_1 \land (\exists z)(\langle y, z \rangle \in R_2 \land \langle z, w \rangle \in R_3))$$

$$\Leftrightarrow (\exists y)(\langle x, y \rangle \in R_1 \land \langle y, w \rangle \in R_2 \circ R_3)$$

$$\Leftrightarrow \langle x, w \rangle \in R_1 \circ (R_2 \circ R_3)$$

$$X \circ - - - - - \circ Z$$

$$R_1 \circ R_2$$

 $R_2 \circ R$

关系的合成

例: 给定关系R和S,并且 $R = \{\langle 1, 2 \rangle, \langle 3, 4 \rangle, \langle 2, 2 \rangle\}$ $S = \{\langle 4, 2 \rangle, \langle 2, 5 \rangle, \langle 3, 1 \rangle, \langle 1, 3 \rangle\}$

则
$$R \circ S = \{\langle 1, 5 \rangle, \langle 3, 2 \rangle, \langle 2, 5 \rangle\}$$

 $S \circ R = \{\langle 4, 2 \rangle, \langle 3, 2 \rangle, \langle 1, 4 \rangle\}$
 $R \circ (S \circ R) = \{\langle 3, 2 \rangle\}$
 $(R \circ S) \circ R = \{\langle 3, 2 \rangle\}$
 $R \circ R = \{\langle 1, 2 \rangle, \langle 2, 2 \rangle\}$
 $S \circ S = \{\langle 4, 5 \rangle, \langle 3, 3 \rangle, \langle 1, 1 \rangle\}$
 $R \circ R \circ R = \{\langle 1, 2 \rangle, \langle 2, 2 \rangle\}$

定义:如果 R_1 是从 X_1 到 X_2 的关系, R_2 是从 X_2 到的 X_3 关系,…, R_n 是从 X_n 到 X_{n+1} 的关系,则无括号表达式 $R_1 \circ R_2 \circ \cdots \circ R_n$ 表达了从 X_1 到 X_{n+1} 的关系。 当 $X_1 = X_2 = \cdots = X_{n+1}$ 和 $R_1 = R_2 = \cdots = R_n$ 时,也就是说当集合X中的所有 R_i 都是同样的关系时,X中的合成关系 $R_1 \circ R_2 \circ \cdots \circ R_n$ 可表达成 R^n ,并称作X不的幂。

定义: 给定集合X, R是X中的二元关系。设 $n \in N$, 于是R的n次幂 R^n 可定义成

- a) R^0 是集合X中的恒等关系 I_X ,亦即 $R^0 = I_X = \{\langle x, x \rangle | x \in X\}$
- $\mathbf{b)} \quad R^{n+1} = R^n \circ R$

定理: 给定集合X,R是X中的二元关系。设m, $n \in N$,于是可有

(a)
$$R^m \circ R^n = R^{m+n}$$

$$(b) \quad (R^m)^n = R^{mn}$$

例: 给定集合 $X=\{a,b,c\}$, R_1,R_2,R_3,R_4 是X中的关系,并给定

$$R_{1} = \{\langle a, b \rangle, \langle a, c \rangle, \langle c, b \rangle\}$$

$$R_{2} = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle\}$$

$$R_{3} = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, c \rangle\}$$

$$R_{4} = \{\langle a, b \rangle, \langle b, a \rangle, \langle c, c \rangle\}$$

给出这些关系的各次幂

解:

$$R_{1}^{2} = \{\langle a,b \rangle\}, R_{1}^{3} = \emptyset, R_{1}^{4} = \emptyset, \cdots$$

$$R_{2}^{2} = \{\langle a,c \rangle, \langle b,a \rangle, \langle c,b \rangle\},$$

$$R_{2}^{3} = \{\langle a,a \rangle, \langle b,b \rangle, \langle c,c \rangle\} = R_{2}^{0}$$

$$R_{2}^{4} = R_{2}, R_{2}^{5} = R_{2}^{2}$$

$$R_{2}^{6} = R_{2}^{3}, \cdots$$

$$R_{3}^{2} = \{\langle a,c \rangle, \langle b,c \rangle, \langle c,c \rangle\} = R_{3}^{3} = R_{3}^{4} = R_{3}^{5} \cdots$$

$$R_{4}^{2} = \{\langle a,a \rangle, \langle b,b \rangle, \langle c,c \rangle\} = R_{4}^{0}$$

$$R_{4}^{3} = R_{4}, R_{4}^{5} = R_{4}^{3} \cdots$$

定理: 设X是含有n个元素的有限集合,R是X中的二元关系。于是存在这样的s和t,能使 $R^t = R^s$, $0 \le s < t \le 2^{n^2}$

- 证明:
 - 集合X中的每一个二元关系都是 $X \times X$ 的子集,
 - X有n个元素, $X \times X$ 有 n^2 个元素,
 - $\rho(X \times X)$ 有 2^{n^2} 个元素,每一个元素都是 $X \times X$ 的一个子集,也是一种二元关系,
 - 因而,在X中有 2^{n^2} 个不同的二元关系。所以,不同的二元关系R的幂不会多于个 2^{n^2} 。
 - 但是序列 R^0 , R^1 , ..., $R^{2^{n^2}}$ 中有 2^{n^2} + 1项,因此这些的幂中至少有两个是相等的。证毕。

设集合 $X = \{x_1, x_2, ..., x_m\}, Y = \{y_1, y_2, ..., y_n\}, Z = \{z_1, z_2, ..., z_p\}, R是从X到Y的关系,S是从Y到Z的关系,<math>M_R$ 和 M_S 第i行第j列的元素分别是 a_{ij} 和 b_{ij} ,它们是0或者1。则合成关系 $R \circ S$ 关系矩阵上的元素为

$$c_{ij} = \bigvee_{k=1}^{n} a_{ik} \wedge b_{kj}$$
 $i = 1, 2, \dots, m; j = 1, 2, \dots, p$

- 定义布尔运算:
 - 布尔加V:0+0=0, 1+0=0+1=1+1=1
 - 布尔乘∧: 1·1=1, 0·1= 1·0= 0·0=0
- 对两个关系矩阵求其合成时,其运算法则与一般矩阵的乘法是相同的,但其中的加法运算和乘法运算 应改为布尔加和布尔乘。

例:求合成关系 $R \circ S$ 的关系矩阵 $M_{R \circ S}$

$$M_{R_1} \circ (M_{R_2} \circ M_{R_3}) = (M_{R_1} \circ M_{R_2}) \circ M_{R_3} = M_{R_1} \circ M_{R_2} \circ M_{R_3}$$

$$M_{R_1} = M_{R_2} = \cdots = M_{R_n} = M_R$$

用MRn表示这些矩阵的合成矩阵

例: 设集合 $X=\{0,1,2,3\}$,R是X中的关系,并且 $R = \{\langle 0,0 \rangle, \langle 0,3 \rangle, \langle 2,0 \rangle, \langle 2,1 \rangle, \langle 2,3 \rangle, \langle 3,2 \rangle\}$ 画出 R^2 和 R^3 的关系图

解: $R^2 = R \circ R = \{\langle 0, 0 \rangle, \langle 0, 3 \rangle, \langle 0, 2 \rangle, \langle 2, 0 \rangle, \langle 2, 3 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle, \langle 3, 0 \rangle\}$

 $R^{3} = R^{2} \circ R = \{\langle 0, 2 \rangle, \langle 0, 0 \rangle, \langle 0, 3 \rangle, \langle 0, 1 \rangle, \langle 2, 0 \rangle, \langle 2, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 0 \rangle, \langle 3, 3 \rangle\}$

- 关系R的逆关系 \tilde{R} 定义如下: 对于所有的 $x \in X$ 和 $y \in Y$ 来说, $xRy \Leftrightarrow y\tilde{R}x$
- 逆关系的关系矩阵: 原关系矩阵转置

- 逆关系的关系图: 原关系图中颠倒弧线上箭头的方向。
- 区分: 逆关系**vs**补关系 在关系图和关系矩阵上的体现?

三、合成关系的求逆运算

• 定理: 设R是从集合X到Y的关系。S是从集合Y到Z的关系。于是有

$$\widetilde{R \circ S} = \widetilde{S} \circ \widetilde{R}$$

- 证明:
 - 对于任何 $x \in X$, $y \in Y$ 和 $z \in Z$ 来说,如果 xRy和ySz,则会有 $x(R \circ S)z$ 和 $z(R \circ S)x$,
 - 因为还有 $z\widetilde{S}y$ 和 $y\widetilde{R}x$,所以又有 $z(\widetilde{S}\circ\widetilde{R})x$ 。 因此可有 $\widetilde{R\circ S}=\widetilde{S}\circ\widetilde{R}$ 。
- 利用关系矩阵也可以理解, $M_{R \circ S}$ 的转置和 $M_{\widetilde{S} \circ \widetilde{R}}$ 是一样的。

三、合成关系的求逆运算

例:给定关系矩阵 M_R 和 M_S 。

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

给定关系矩阵
$$M_R$$
和 M_S 。
$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad M_S = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

则:

$$M_{\tilde{R}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$M_{\widetilde{R}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \qquad M_{R \circ S} = M_R \wedge M_S = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$M_{\tilde{S}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$M_{\tilde{S}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_{\tilde{S} \circ \tilde{R}} = M_{\tilde{S}} \wedge M_{\tilde{R}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = M_{\tilde{R} \circ \tilde{S}}$$

定理: 给定集合X和Y,R、 R_1 、 R_2 是从X到Y的关系,于是有:

1.
$$\widetilde{\widetilde{R}} = R$$

$$2. \qquad \widetilde{R_1 \cup R_2} = \widetilde{R_1} \cup \widetilde{R_2}$$

$$3. \qquad \widetilde{R_1 \cap R_2} = \widetilde{R_1} \cap \widetilde{R_2}$$

$$4. \qquad \widetilde{X \times Y} = Y \times X$$

5.
$$\widetilde{\emptyset} = \emptyset$$

6.
$$\sim R = \sim (\tilde{R}),$$
 这里 $\sim R = X \times Y - R$

7.
$$R_1 - R_2 = \widetilde{R_1} - \widetilde{R_2}$$
, 这里 $R_1 - R_2$ 表示 $R_1 - R_2$ 的逆关系

8.
$$R_1 = R_2 \Rightarrow \widetilde{R_1} = \widetilde{R_2}$$

9.
$$R_1 \subseteq R_2 \Rightarrow \widetilde{R_1} \subseteq \widetilde{R_2}$$

- 1. $\widetilde{\widetilde{R}} = R$
- 证明: 设 $\langle x, y \rangle$ 是R的任意元素。于是 $\langle x, y \rangle \in R \Leftrightarrow \langle y, x \rangle \in \widetilde{R} \Leftrightarrow \langle x, y \rangle \in \widetilde{R}$, 所以有 $\widetilde{R} = R$
- 2. $R_1 \cup R_2 = \widetilde{R_1} \cup \widetilde{R_2}$
- 证明: $\langle x, y \rangle \in R_1 \tilde{\bigcup} R_2 \Leftrightarrow \langle y, x \rangle \in R_1 \bigcup R_2$ $\Leftrightarrow \langle y, x \rangle \in R_1 \vee \langle y, x \rangle \in R_2$ $\Leftrightarrow \langle x, y \rangle \in \tilde{R}_1 \vee \langle x, y \rangle \in \tilde{R}_2$ $\Leftrightarrow \langle x, y \rangle \in \tilde{R}_1 \cup \tilde{R}_2$

得证

- 6. $\overline{R} = \overline{R}$, 这里 $R = X \times Y R$
- 证明: $\langle x, y \rangle \in (\sim R) \Leftrightarrow \langle y, x \rangle \in \sim R$ $\Leftrightarrow \langle y, x \rangle \notin R$ $\Leftrightarrow \langle x, y \rangle \notin \widetilde{R}$ $\Leftrightarrow \langle x, y \rangle \in \sim (\widetilde{R})$
- 7. $R_1 R_2 = \widetilde{R_1} \widetilde{R_2}$, 这里 $\widetilde{R_1} R_2$ 表示 $R_1 R_2$ 的 逆关系
- 证明: 因为 $R_1 R_2 = R_1 \cap \sim R_2$,于是有 $R_1 R_2 = R_1 \cap \sim R_2 = \tilde{R}_1 \cap (\sim \tilde{R}_2) = \tilde{R}_1 \cap \sim \tilde{R}_2$ = $\tilde{R}_1 \tilde{R}_2$ 得证。

• 定理: 设R是集合X中的关系。于是当且仅当 $R = \tilde{R}$,R才是对称的。

• 证明:

- (充分性)若 $R = \tilde{R}$ 则 $\langle x, y \rangle \in R \leftrightarrow \langle x, y \rangle \in \tilde{R} \Leftrightarrow \langle y, x \rangle \in R$,即R是对称的。
- (必要性)设R是对称的,那么对任何 $\langle x,y \rangle \in R \Rightarrow \langle y,x \rangle \in R \Leftrightarrow \langle x,y \rangle \in \tilde{R}$

即 $R \subseteq \tilde{R}$;

对任何 $\langle x, y \rangle \in \tilde{R} \Leftrightarrow \langle y, x \rangle \in R \Rightarrow \langle x, y \rangle \in R$ 即 $\tilde{R} \subseteq R$

必要性证明完毕。

作业

· 103页11,13,15,17,19