DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN

Linear Models For Regression, Part 2

Kim Steenstrup Pedersen

- Presentation of the next assignment
- A snippet of theoretical foundation of regression
- Recap of linear models for regression
- Bayesian regression for linear models
- Bayesian sequential learning for regression
- Advanced topic: Full Bayesian approach by computing the predictive distribution by integration over all models.

- Regression (this lecture):
 - Linear models for regression applied to a real data set in order to predict the number of sunspots from previous years sunspot numbers.
 - A theoretical question about weighted sum of squares

Input variable:

Number of sunspot in previous years

Target variable:

 Number of sunspots in following years

Your task:

Learn a linear regression model

$$t = \mathbf{y}(\mathbf{x})$$

for predicting sunspot numbers

- How to do this?
- We learn today and Tuesday

http://en.wikipedia.org/wiki/Sunspot

- Regression (this lecture):
 - Linear models for regression applied to a real data set in order to predict the number of sunspots from previous years sunspot numbers.
 - A theoretical question about weighted sum of squares
- Classification (next lecture):
 - Experiment with Linear Discriminant Analysis for classification on the Iris data set.
 - Theoretical question about the Bayes optimal classifier

Recall from last lecture

 The least squares solution is equivalent to maximum likelihood (ML) solution under Gaussian noise model.
 Both have tendency to overfit the data for M>=N (poor generalization).

$$\operatorname{argmin}_{\mathbf{w}} \tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left[y(x_n, \mathbf{w}) - t_n \right]^2 \quad \Leftrightarrow \quad \operatorname{argmax}_{\mathbf{w}} p(\mathbf{T} \mid \mathbf{X}, \mathbf{w})$$

 Regularized least squares equivalent to maximum a posteriori (MAP) under Gaussian noise model and isotropic Gaussian prior on model parameters. Both behaves well for M>=N (or at least better than ML solution).

$$\operatorname{argmin}_{\mathbf{w}} \tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left[y(x_n, \mathbf{w}) - t_n \right]^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2 \quad \Leftrightarrow \quad \operatorname{argmax}_{\mathbf{w}} p(\mathbf{w} \mid \mathbf{T}, \mathbf{X})$$

- Goal: Make prediction of unseen data.
- Approaches to making predictions in regression:

```
y(x) (Regression function)

p(t \mid x) (Predictive distribution)

p(t,x) (Joint distribution)
```

 Today we generalize the regression model and develop the full Bayesian approach to regression.

Decision theoretic interpretation of regression: Minimizing the risk (Recap)

- Assume we have 100 independent data sets $S=\{(t_1,x_1),...,(t_N,x_N)\}_{i=1,...,100}$
- We want to choose a model $y(\mathbf{x})$ that performs well on all these data sets.
- Choose the model that on average (over data sets) gives optimal performance.
- Optimal model? Optimality is defined through the loss function.
- Formally: Minimize the average loss $L(t,y(\mathbf{x}))$ (a.ka. the empirical risk) we incur by modeling data t with the model $y(\mathbf{x})$ 1 N

$$R_S(y(\mathbf{x})) = \frac{1}{N} \sum_{n=1}^{N} L(t_n, y(\mathbf{x}_n))$$

Or minimize the (theoretical) risk

$$R_p(y(\mathbf{x})) = E[L] = \iint L(t, y(\mathbf{x})) p(t, \mathbf{x}) d\mathbf{x} dt$$

Decision theoretic interpretation of regression: Minimizing the risk (Recap)

• Common regression loss function: $L(t, y(\mathbf{x})) = (y(\mathbf{x}) - t)^2$

$$R_p(y(\mathbf{x})) = E[L] = \iint (y(\mathbf{x}) - t)^2 p(t, \mathbf{x}) d\mathbf{x} dt$$

Minimization using calculus of variation (see Appendix D) leads to:

$$y(\mathbf{x}) = \int t \, p(t \mid \mathbf{x}) dt = E_t[t \mid \mathbf{x}]$$

- That is, the optimal solution under squared loss is given by the conditional mean of t given x with respect to the predictive distribution.
- Or said in another way: The solution is given by the mean of the predictive distribution

Optimal regression function under quadratic loss

$$t(\mathbf{x}) = y(\mathbf{x}, \mathbf{w}) + \varepsilon$$

$$\varepsilon \sim \mathcal{N}(t \mid 0, \beta^{-1})$$

Noise model leads to:

$$p(t \mid \mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}) \Rightarrow E_t[t \mid \mathbf{x}] = \int t \, p(t \mid \mathbf{x}, \mathbf{w}, \beta) \, dt = y(\mathbf{x}, \mathbf{w})$$

- Training data set: $X = \{x_1, \dots, x_N\}$ $T = \{t_1, \dots, t_N\}$
- The (M-1)'th order polynomial model is linear in the M model parameters:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_{M-1} x^{M-1} = w_0 + \sum_{j=1}^{M-1} w_j x^j$$

Generalize this model using (non-linear) basis functions:

$$y(x, \mathbf{w}) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \dots + w_{M-1} \phi_{M-1}(x) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x)$$
• In vector notation using $\phi_0(x) = 1$:

$$y(x, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \mathbf{w}^T \overline{\phi}(x)$$
$$\mathbf{w} = (w_0, \dots, w_{M-1})^T, \ \overline{\phi}(x) = (\phi_0(x), \dots, \phi_{M-1}(x))^T$$

A STANDARD

Examples of basis functions (Recap)

• Simple *D*-dim. linear model: Assume $\mathbf{x} = (x_1, ..., x_D)^T$ Basis functions:

$$\phi_i(\mathbf{x}) = x_i$$
 , $\overline{\phi}(\mathbf{x}) = (1, x_1, \dots, x_D)^T$

Regression model:

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \overline{\phi}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_D x_D$$

Polynomial model (monomial basis):
 Basis functions:

$$\phi_j(x) = x^j$$
 , $\overline{\phi}(x) = (1, x, x^2, \dots, x^{M-1})^T$

Regression model:

$$y(x, \mathbf{w}) = \mathbf{w}^T \overline{\phi}(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_{M-1} x^{M-1}_{-0.5}$$

Examples of basis functions

Gaussian basis function:

Basis functions:

$$\phi_j(x) = \exp\left[-\frac{(x - \mu_j)^2}{2s^2}\right]$$

Regression model:

$$y(x, \mathbf{w}) = w_0 + w_1 \exp\left[-\frac{(x - \mu_1)^2}{2s^2}\right] + \dots + w_{M-1} \exp\left[-\frac{(x - \mu_{M-1})^2}{2s^2}\right]$$

 μ_i position of basis function and s scale

- Other basis functions:
 - Sigmoid
 - Fourier
 - Wavelets
 - Splines (piecewise polynomial), ...

Observations (i.i.d.):
$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

$$\mathbf{T} = (t_1, \dots, t_N)^T$$

$$p(t \mid \mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

Under the Gaussian noise model we have the likelihood:

$$y(x, \mathbf{w})$$
 $y(t|x_0, \mathbf{w}, \beta)$

$$p(\mathbf{T} \mid \mathbf{X}, \mathbf{w}, \boldsymbol{\beta}) = \prod_{n=1}^{N} \mathcal{N}(t_n \mid \mathbf{w}^T \overline{\phi}(\mathbf{x}_n), \boldsymbol{\beta}^{-1})$$

$$= \left(\frac{\beta}{2\pi}\right)^{N/2} \exp\left[-\frac{\beta}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \overline{\phi}(\mathbf{x}_n)\right)^2\right]$$

Maximum Likelihood (ML) solution for the general linear model

Maximize the log-likelihood with respect to w:

$$\frac{\partial}{\partial w_j} \log p(\mathbf{T} \mid \mathbf{X}, \mathbf{w}, \boldsymbol{\beta}) = \frac{\partial}{\partial w_j} \left[-\frac{\boldsymbol{\beta}}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \overline{\boldsymbol{\phi}}(\mathbf{x}_n) \right)^2 \right] = 0 \text{ for all } j$$

$$\mathbf{w} = \left(\left[\sum_{n=1}^{N} \overline{\phi}(\mathbf{x}_{n}) \overline{\phi}^{T}(\mathbf{x}_{n}) \right]^{-1} \right)^{T} \left(\sum_{n=1}^{N} t_{n} \overline{\phi}^{T}(\mathbf{x}_{n}) \right)^{T}$$

Voila, we get the ML solution – but what an ugly expression!

• Introduce design matrix notation: $\Phi_{nj} = \phi_j(\mathbf{x}_n)$

$$\Phi = \begin{bmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{bmatrix} \in \mathbb{R}^{N \times M}$$

Each row contains the outcome of evaluating the M basis functions in the n'th data point.

Examples of design matrices

• 1-dim. (M-1)'th order polynomial model: $y(x, \mathbf{w}) = w_0 + w_1 x + \dots + w_{M-1} x^{M-1}$

$$\Phi = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{M-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{M-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_N & x_N^2 & \cdots & x_N^{M-1} \end{bmatrix}$$

• 1-dim. linear model: $y(x, \mathbf{w}) = w_0 + w_1 x$

$$\Phi = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}$$

The design matrix specifies the likelihood

We can rewrite the likelihood using the design matrix:

$$p(\mathbf{T} \mid \mathbf{X}, \mathbf{w}, \boldsymbol{\beta}) = \prod_{n=1}^{N} \mathcal{N}(t_n \mid \mathbf{w}^T \overline{\phi}(\mathbf{x}_n), \boldsymbol{\beta}^{-1}) = \mathcal{N}(\mathbf{T} \mid \boldsymbol{\Phi} \mathbf{w}, \boldsymbol{\beta}^{-1} \mathbf{I})$$

- The design matrix and the target vector T represents the training data in the likelihood.
- With unspecified T the likelihood is a N-dim. multivariate Gaussian with isotropic covariance.

Maximize with respect to parameters w:

$$\mathbf{w}_{\mathrm{ML}} = \left(\left[\sum_{n=1}^{N} \overline{\phi}(\mathbf{x}_{n}) \overline{\phi}^{T}(\mathbf{x}_{n}) \right]^{-1} \right)^{T} \left(\sum_{n=1}^{N} t_{n} \overline{\phi}^{T}(\mathbf{x}_{n}) \right)^{T} = \left(\Phi^{T} \Phi \right)^{-1} \Phi^{T} \mathbf{T}$$

• Maximize with respect to precision β :

$$\frac{\partial}{\partial \beta} \log p(\mathbf{T} \mid \mathbf{X}, \mathbf{w}_{\text{ML}}, \beta) = \frac{N}{2} \frac{1}{\beta} - \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}_{\text{ML}}^T \overline{\phi}(\mathbf{x}_n) \right)^2 = 0 \Rightarrow$$

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \left(t_n - \mathbf{w}_{\text{ML}}^T \overline{\phi}(\mathbf{x}_n) \right)^2$$

The problem:

- Measuring percentage of body fat accurately is inconvenient/ costly and requires weighing the body underwater and in air and applying the so-called Siri's equation.
- How accurately can we predict the percentage of body fat from measurements of circumferences of selected body parts?

Data set (measurements from N=252 men):

- Density determined from underwater weighing
- Percentage body fat from Siri's (1956) equation
- Age (years)
- Weight (lbs)
- Height (inches)
- Circumferences (cm): Neck, Chest, Abdomen 2, Hip, Thigh,
 Knee, Ankle, Biceps (extended), Forearm, Wrist

Example: Prediction of body fat percentage

 Consider a 1-dim. linear model of a subset of the percentage body fat data set by selecting column 8 (Abdomen 2) as the x variable:

t [%]	x [cm]
14.7	83.3
17.8	88.2
16.9	90.3
32.6	113.4
5.7	84.5
32.6	108.1
15.2	98.8
25.3	108.8

Design matrix		
	1	83.3
	1	88.2
Т	1	90.3
	1	113.4
Φ=	1	84.5
	1	108.1
	1	98.8
	1	108.8

Targ	Target vector		
	$\lceil 14.7 \rceil$		
	17.8		
T=	16.9		
	32.6		
	5.7		
	32.6		
	15.2		
	25.3		

Example: Prediction of body fat percentage

Design matrix			k Targ	jet ved	tor
	1	83.3		[14.7]	
	1	88.2		17.8	
	1	90.3		16.9	
Ф	1	113.4	T=	32.6	
Φ=	1	84.5		5.7	
	1	108.1		32.6	
	1	98.8		15.2	
	1	108.8		25.3	
	_	_		_	1

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{T}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{T}\mathbf{T} = \begin{bmatrix} -46.9\\0.7 \end{bmatrix}$$

$$y(x, \mathbf{w}_{\mathrm{ML}}) = \mathbf{w}_{\mathrm{ML}}^{T}\overline{\phi}(x) = -46.9 + 0.7x$$

$$y(x, \mathbf{w}_{\mathrm{ML}}) = \mathbf{w}_{\mathrm{ML}}^{T}\overline{\phi}(x) = -46.9 + 0.7x$$

Learn the model parameters w on the training set:

$$X = \left\{ \mathbf{x}_{1}, \dots, \mathbf{x}_{N} \right\}$$

$$\mathbf{T} = (t_{1}, \dots, t_{N})^{T}$$

$$\Phi = \begin{bmatrix} \phi_{0}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{1}) & \cdots & \phi_{M-1}(\mathbf{x}_{1}) \\ \phi_{0}(\mathbf{x}_{2}) & \phi_{1}(\mathbf{x}_{2}) & \cdots & \phi_{M-1}(\mathbf{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(\mathbf{x}_{N}) & \phi_{1}(\mathbf{x}_{N}) & \cdots & \phi_{M-1}(\mathbf{x}_{N}) \end{bmatrix}$$

$$\mathbf{w}_{\mathrm{ML}} = \left(\Phi^{T}\Phi\right)^{-1}\Phi^{T}\mathbf{T}$$

$$\beta_{\mathrm{ML}}^{-1} = \frac{1}{N}\sum_{i=1}^{N}\left(t_{n} - \mathbf{w}_{\mathrm{ML}}^{T}\overline{\phi}(\mathbf{x}_{n})\right)^{2}$$

Apply the model to new data x:

$$y(\mathbf{x}, \mathbf{w}_{\text{ML}}) = \mathbf{w}_{\text{ML}}^{T} \overline{\phi}(\mathbf{x})$$

$$p(t \mid \mathbf{x}, \mathbf{w}_{\text{ML}}, \beta_{\text{ML}}^{-1}) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}_{\text{ML}}), \beta_{\text{ML}}^{-1})$$

Summary: Maximum likelihood (ML) regression

Apply the model to the test set

$$\tilde{X} = \left\{ \tilde{\mathbf{x}}_{1}, \dots, \tilde{\mathbf{x}}_{\tilde{N}} \right\}$$

$$\tilde{\mathbf{T}} = \left(\tilde{t}_{1}, \dots, \tilde{t}_{\tilde{N}} \right)^{T}$$

and compute root-mean-square error:

$$RMS = \sqrt{\frac{1}{\tilde{N}} \sum_{n=1}^{\tilde{N}} (\tilde{t}_n - y(\tilde{\mathbf{x}}_n, \mathbf{w}_{ML}))^2}$$

Root mean square error on the training set:

RMS =
$$\sqrt{\frac{1}{N} \sum_{n=1}^{N} (t_n - y(\mathbf{x}_n, \mathbf{w}_{ML}))^2}$$

= 4.1

Root mean square error on the test set:

RMS =
$$\sqrt{\frac{1}{\tilde{N}} \sum_{n=1}^{\tilde{N}} (\tilde{t}_n - y(\tilde{\mathbf{x}}_n, \mathbf{w}_{\text{ML}}))^2}$$

$$= 7.6$$

The Gaussian likelihood from before (Assume known noise precision β):

$$p(\mathbf{T} | \mathbf{X}, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{T} | \Phi \mathbf{w}, \beta^{-1} \mathbf{I})$$

- Add a prior to regularize the solution, thereby reducing the risk of overfitting to the training.
- Pick the (conjugated) Gaussian prior for the parameters

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_0, \mathbf{S}_0)$$

Posterior:

$$p(\mathbf{w} \mid \mathbf{T}, \mathbf{X}, \boldsymbol{\beta}) = \frac{p(\mathbf{T} \mid \mathbf{X}, \mathbf{w}, \boldsymbol{\beta})p(\mathbf{w})}{p(\mathbf{T})}$$

Bayesian linear regression (MAP)

The posterior is a Gaussian:

$$p(\mathbf{w} \mid \mathbf{T}, \mathbf{X}, \boldsymbol{\beta}) = \mathcal{N} \left(\mathbf{T} \mid \boldsymbol{\Phi} \mathbf{w}, \boldsymbol{\beta}^{-1} \mathbf{I} \right) \mathcal{N} (\mathbf{w} \mid \mathbf{m}_{0}, \mathbf{S}_{0}) / p(\mathbf{T})$$
$$= \mathcal{N} (\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N})$$

• Posterior covariance and mean (by completing the square):

$$p(\mathbf{w} \mid \mathbf{T}, \mathbf{X}, \boldsymbol{\beta}) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N})$$

$$\mathbf{S}_{N} = \left(\mathbf{S}_{0}^{-1} + \boldsymbol{\beta} \boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \in \mathbb{R}^{M \times M}$$

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \boldsymbol{\beta} \boldsymbol{\Phi}^{T} \mathbf{T}\right) \in \mathbb{R}^{M}$$

• MAP solution: $\mathbf{W}_{\text{MAP}} = \mathbf{m}_N$

D	esiç	gn matrix	c Targ	jet vect	or	(-46.9]
	1	83.3		[14.7]	1	$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{T}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{T}\mathbf{T} = \begin{bmatrix} -46.9\\0.7 \end{bmatrix}$
	1	88.2		17.8		[~.,]
	1 90.3		16.9	35	35	
Φ=	1	113.4 84.5		32.6	30	$y(x, \mathbf{w}_{ML}) = \mathbf{w}_{ML}^T \overline{\phi}(x) = -46.9 + 0.7x$
	1	84.5		5.7		$y(x, \mathbf{w}_{\mathrm{ML}}) = \mathbf{w}_{\mathrm{ML}} \varphi(x) = -40.9 + 0.7x$
	1	108.1		32.6	25	
	1	98.8		15.2	20	20 -
	1	108.8		15.2 25.3		•
	-	-		_	15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathbf{w}_{ ext{MAP}}$	= r	$\mathbf{n}_N = \begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$	-39.4 ²	$, \alpha =$	= 1/2	$y(x, \mathbf{w}_{MAP}) = \mathbf{w}_{MAP}^{T} \overline{\phi}(x) = -39.4 + 0.6x$ $2 , \beta = 25$ $80 85 90 95 100 105 110 115$

Root mean square error on the test set:

$$RMS(ML) = \sqrt{\frac{1}{\tilde{N}} \sum_{n=1}^{\tilde{N}} (\tilde{t}_n - y(\tilde{\mathbf{x}}_n, \mathbf{w}_{ML}))^2} = 7.6$$

RMS(MAP) =
$$\sqrt{\frac{1}{\tilde{N}} \sum_{n=1}^{\tilde{N}} (\tilde{t}_n - y(\tilde{\mathbf{x}}_n, \mathbf{w}_{MAP}))^2} = 7.1$$

Simplified Gaussian Prior Models

Choose an appropriate prior, but consider:

- (a) In general the covariance matrix consists of D(D+1)/2 free parameters.
- Reduce the amount of parameters to D in the diagonal model (b) and 1 in the isotropic model (c).

Bayesian linear regression: Effect of the prior

- In order to simplify, lets assume an isotropic prior: $S_0 = \alpha^{-1}I$
- Uniform prior: $\alpha^{-1} \to \infty$, $\alpha \to 0$: $\mathbf{S}_0^{-1} = \alpha \mathbf{I} \to \underline{\mathbf{0}}$ $\mathbf{S}_N = \left(\mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \to \left(\beta \mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1}$ $\mathbf{m}_N = \mathbf{S}_N \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^T \mathbf{T}\right) \to$ $\mathbf{S}_N \beta \mathbf{\Phi}^T \mathbf{T} = \beta^{-1} \left(\mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \beta \mathbf{\Phi}^T \mathbf{T} = \left(\mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^T \mathbf{T} = \mathbf{w}_{\mathrm{ML}}$
- No data: N = 0 $\mathbf{S}_N = \mathbf{S}_0$ $\mathbf{m}_N = \mathbf{S}_N \mathbf{S}_0^{-1} \mathbf{m}_0 = \mathbf{S}_0 \mathbf{S}_0^{-1} \mathbf{m}_0 = \mathbf{m}_0$ (posterior \rightarrow prior)

Bayesian sequential learning for regression The online learning version

Posterior for N-1 acts as prior for parameter at N

$$p(\mathbf{w} \mid \mathbf{T}, \mathbf{X}, \beta) = \frac{p(\mathbf{T} \mid \mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w})}{p(\mathbf{T})} \propto$$

$$\underbrace{p(t_N \mid \mathbf{x}_N, \mathbf{w}, \boldsymbol{\beta})}_{\text{likelihood for } N} \underbrace{p(\mathbf{w}) \prod_{n=1}^{N-1} p(t_n \mid \mathbf{x}_n, \mathbf{w}, \boldsymbol{\beta})}_{\text{posterior for } N-1} =$$

$$\prod_{n=1}^{N} \mathcal{N}\left(t_{n} \mid \mathbf{w}^{T} \overline{\phi}(\mathbf{x}_{n}), \beta^{-1}\right) \mathcal{N}(\mathbf{w} \mid \mathbf{m}_{0}, \mathbf{S}_{0}) =$$

$$\mathcal{N}\left(t_N \mid \mathbf{w}^T \overline{\phi}(\mathbf{x}_N), \beta^{-1}\right) \prod_{n=1}^{N-1} \mathcal{N}\left(t_n \mid \mathbf{w}^T \overline{\phi}(\mathbf{x}_n), \beta^{-1}\right) \mathcal{N}(\mathbf{w} \mid \mathbf{m}_0, \mathbf{S}_0)$$

Example: Line regression

- Synthetic data set: $f(x,\mathbf{a}) = a_0 + a_1 x$, $a_0 = -0.3$, $a_1 = 0.5$ $t_n = f(x_n,\mathbf{a}) + \varepsilon$, $\varepsilon \sim \mathcal{N}(\varepsilon \mid 0,0.2^2)$, $x_n \sim \mathcal{U}(x \mid -1,1)$
- Regression model: $y(x, \mathbf{w}) = w_0 + w_1 x$
- Lets assume the isotropic prior: $\mathbf{S}_0 = \alpha^{-1}\mathbf{I}$, $\mathbf{m}_0 = \mathbf{0}$ $p(\mathbf{w} \mid \alpha) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_0, \mathbf{S}_0)$
- Then posterior mean and covariance becomes:

$$\mathbf{S}_{N} = \left(\mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{T} \mathbf{\Phi}\right)^{-1} = \left(\alpha \mathbf{I} + \beta \mathbf{\Phi}^{T} \mathbf{\Phi}\right)^{-1}$$

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{T} \mathbf{T} \right) = \beta \mathbf{S}_{N} \mathbf{\Phi}^{T} \mathbf{T}$$

• Assume noise precision known β =(1/0.2²)=25 and set prior precision to α =2 and the MAP estimate of parameters is then \mathbf{w}_{MAP} = \mathbf{m}_{N} .

 In general, we don't care about the specific choice of parameter, but want to make predictions of new unseen data:

$$p(t \mid x)$$
 (Predictive distribution)

 Including the observations (training set), the model independent predictive distribution is given by marginalization over all models:

$$p(t \mid \mathbf{x}, \mathbf{T}, \mathbf{X}, \alpha, \beta) = \int \underbrace{p(t \mid \mathbf{x}, \mathbf{w}, \beta)}_{\text{Noise model}} \underbrace{p(\mathbf{w} \mid \mathbf{T}, \mathbf{X}, \alpha, \beta)}_{\text{Posterior}} d\mathbf{w}$$

Gaussian predictive distribution

 Consider the case of Gaussian noise model, prior and posterior:

$$p(t \mid \mathbf{x}, \mathbf{w}, \boldsymbol{\beta}) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \boldsymbol{\beta}^{-1}) \quad \text{(Noise model)}$$
$$p(\mathbf{w} \mid \mathbf{T}, \mathbf{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathcal{N}(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}) \quad \text{(Posterior)}$$

Predictive distribution:

$$p(t \mid \mathbf{x}, \mathbf{T}, \mathbf{X}, \alpha, \beta) = \int \underbrace{p(t \mid \mathbf{x}, \mathbf{w}, \beta)}_{\text{Noise model}} \underbrace{p(\mathbf{w} \mid \mathbf{T}, \mathbf{X}, \alpha, \beta)}_{\text{Posterior}} d\mathbf{w}$$

$$= \int \mathcal{N} \Big(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1} \Big) \mathcal{N} \Big(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N} \Big) d\mathbf{w}$$

$$= \int \mathcal{N} \Big(t, \mathbf{w} \mid \mathbf{x}, \beta^{-1}, \mathbf{m}_{N}, \mathbf{S}_{N} \Big) d\mathbf{w} = \mathcal{N} \Big(t \mid y(\mathbf{x}, \mathbf{m}_{N}), \sigma_{N}^{2}(\mathbf{x}) \Big)$$

$$\sigma_{N}^{2}(\mathbf{x}) = \frac{1}{\beta} + \overline{\phi}^{T}(\mathbf{x}) \mathbf{S}_{N} \overline{\phi}(\mathbf{x}) \qquad \text{(Predictive variance)}$$

Example: Sinusoidal data set

• Synthetic sinusoidal data set: $X = (x_1, ..., x_N)^T$

$$t(x) = Sin(2\pi x) + \chi$$
, $\chi \sim N(\chi \mid 0.0.3^2)$ $T = (t_1, ..., t_N)^T$

Linear regression with 9 Gaussian basis functions:

$$\phi_j(x) = \exp\left[-\frac{(x - \mu_j)^2}{2s^2}\right]$$

Lets plot the predictive mean curve:

$$\int tp(t \mid \mathbf{x}, \mathbf{T}, \mathbf{X}, \alpha, \beta) dt = \int t \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{m}_N), \sigma_N^2(\mathbf{x})) dt = y(\mathbf{x}, \mathbf{m}_N)$$

• And the predictive standard deviation curve: $\sigma_N(\mathbf{x})$

Examples of Predictive Distribution

Samples From Posterior Distribution

Summary

- Linear models for regression
- Bayesian regression for linear models
- Bayesian sequential learning for regression
- Full Bayesian approach the model independent predictive distribution
- Advanced: It is difficult to simultaneously estimate \mathbf{w} , α , β analytically, however approximations exist (not for this course).

Literature

- Linear models for regression: Sec. 3.1
- Loss function for regression: Sec. 1.5.5
- Bayesian Linear Regression: Sec. 3.3 3.3.2
- Limitations on fixed basis functions: Sec. (3.6)