Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(1 – 1 de 149

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (59 - 108 de 1499)

Linguagens livres de contexto e PDA's

Conversão de GLC em PDA

- ► Toda LLC é aceita por um PDA estendido.
 - ► As regras de derivação podem ser usadas para gerar as transições do PDA.
- ▶ Seja \mathcal{L} uma LLC e $G = (V, \Sigma, P, S)$ uma gramática na forma normal de Greibach, com $\mathcal{L}(G) = \mathcal{L}$.
 - ▶ As regras de G, exceto $S \to \varepsilon$, tem a forma $A \to \alpha A_1 A_2 \dots A_n$, com $\alpha \in \Sigma$ e $A, A_1, \dots, A_n \in V$.
 - ► Em uma derivação à esquerda $S \stackrel{*}{=} uAv \stackrel{!}{=} u\alpha A_1A_2...A_nv$, com $u \in \Sigma^+$ e $v \in V^*$, as variáveis A_i , i = 1, ..., n, são substituídas na sequência $A_1, A_2, ..., A_n$.
- ▶ Empilhar $A_1, A_2, ..., A_n$, com A_1 no topo da pilha, armazena as variáveis na ordem requerida pela derivação.

Linguagens livres de contexto e PDA's

Conversão de GLC em PDA

• Gramática $G = (V, \Sigma, P, S)$, na forma normal de Greibach.

 $\delta(s_1, \varepsilon, \$) = (s_{fim}, \varepsilon).$

▶ PDA $P = \langle \Sigma, \Gamma = V - \{S\}, E = \{s_{ini}, s_0, s_1, s_{fim}\}, s_{ini}, \delta, F = \{s_{fim}\}\rangle$, onde:

$$\begin{split} \delta(s_0,\alpha,\varepsilon) &= (s_1,A_1A_2\ldots A_k), & \text{ se } S \to \alpha A_1A_2\ldots A_k, \\ & \alpha \in \Sigma \text{ e } S, A_1,\ldots,A_k \in V, \ k \geqslant 1; \\ \delta(s_0,\alpha,\varepsilon) &= (s_1,\varepsilon), & \text{ se } S \to \alpha, \\ & \alpha \in \Sigma \cup \{\varepsilon\} \text{ e } S \in V; \\ \delta(s_1,\alpha,A_i) &= (s_1,A_1A_2\ldots A_\ell), & \text{ se } A_i \to \alpha A_1A_2\ldots A_\ell, \\ & \alpha \in \Sigma \text{ e } A_i,A_1,\ldots,A_\ell \in V, \ \ell \geqslant 1; \\ \delta(s_1,\alpha,A_i) &= (s_1,\varepsilon), & \text{ se } A_i \to \alpha, \\ & \alpha \in \Sigma \text{ e } A_i \in V; \\ \delta(s_{ini},\varepsilon,\varepsilon) &= (s_0,\$), \end{split}$$

INF/UFG - LFA 2021/1 - H. Longo PDA's e GLC's (60 - 108 de 1499) INF/UFG - LFA 2021/1 - H. Longo PDA's e GLC's (61 - 108 de 1499)

Conversão de GLC em PDA

▶ Diagrama simplificado de estados para o PDA *P*:

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (62 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.24

- Figure 1. Gramática G na forma normal de Greibach que aceita \mathcal{L} :

$$G: \left\{ \begin{array}{l} S \to aAB \mid aB, \\ A \to aAB \mid aB, \\ B \to b \end{array} \right\}.$$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (63 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.24

▶ PDA $P = \langle \Sigma = \{a, b\}, \Gamma = \{A, B\}, S = \{s_{ini}, s_0, s_1, s_{fim}\}, s_0, \delta, F = \{s_{fim}\} \rangle$, onde:

$$G: \left\{ \begin{array}{l} S \rightarrow aAB \mid aB, \\ A \rightarrow aAB \mid aB, \\ B \rightarrow b \end{array} \right\}.$$

$$\delta(s_{ini}, \varepsilon, \varepsilon) = (s_0, \$);$$

$$\delta(s_0, a, \varepsilon) = \{(s_1, AB), (s_1, B)\},$$

$$\delta(s_1, a, A) = \{(s_1, AB), (s_1, B)\},$$

$$\delta(s_1, b, B) = \{(s_1, \varepsilon)\},$$

$$\delta(s_1, \varepsilon, \$) = (s_{fim}, \varepsilon).$$

$$b, B \rightarrow \varepsilon$$

$$a, A \rightarrow B$$

$$a, A \rightarrow AB$$

$$a, \varepsilon \rightarrow B$$

$$a, \varepsilon \rightarrow AB$$

Linguagens livres de contexto e PDA's

Exemplo 1.24

lacktriangle Derivação da cadeia aaabbb por G e processamento por P:

$$S \Rightarrow aAB$$
 $[s_0, aaabbb, \varepsilon] \mapsto [s_1, aabbb, AB]$
 $\Rightarrow aaABB$ $\mapsto [s_1, abbb, ABB]$
 $\Rightarrow aaaBBB$ $\mapsto [s_1, bbb, BBB]$
 $\Rightarrow aaabBB$ $\mapsto [s_1, bb, BB]$
 $\Rightarrow aaabbB$ $\mapsto [s_1, b, B]$
 $\Rightarrow aaabbb$. $\mapsto [s_1, \varepsilon, \varepsilon]$.

Conversão de GLC em PDA - Alternativa

- ▶ £: LLC.
- ▶ G: GLC que gera \mathcal{L} .
- ▶ Conversão de G em um PDA P.
 - ► Se *G* gera *w*, então *P* aceita *w*.
 - ightharpoonup P determina se existe uma derivação para w em G.
 - P simula uma derivação para w em G.
- Quais regras de derivação devem ser utilizadas?
 - P deve ser não determinístico.

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (66 - 108 de 1499

Equivalência de GLC e PDA

Funcionamento do PDA P

- 1. Variável inicial na pilha.
- 2. Série de cadeias intermediárias: substituições uma a uma.
 - Pode chegar a uma cadeia que só contém símbolos terminais.
 - ▶ P aceita essa cadeia se é igual à cadeia w.
- Tratamento das cadeias intermediárias:
 - P tem acesso somente ao topo da pilha, que pode ser um terminal ou uma variável.
 - Retirar parte da cadeia intermediária (primeira variável) da pilha.
 - 'Casar' qualquer terminal anterior com os símbolos da cadeia de entrada.

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (67 - 108 de 1499

Equivalência de GLC e PDA

Exemplo 1.25

▶ PDA *P* com a cadeia intermediária *A*1*A*0 a pilha:

Equivalência de GLC e PDA

Funcionamento do PDA P

- 1. Inserir símbolo \$ na pilha.
- 2. Inserir variável inicial na pilha.
- 3. Repetir os passos:
 - 3.1 Se topo da pilha é uma variável $A \in V$, escolher (não determinístico) uma regra de derivação de A e substituí-la pelo lado direito da regra.
 - 3.2 Se topo da pilha é um terminal $a \in \Sigma$, ler próximo símbolo da cadeia de entrada e comparar com a. Se iguais, repetir, senão rejeitar.
 - 3.3 Se topo da pilha é o símbolo \$, ir para estado final. Se cadeia de entrada foi toda lida, então foi aceita.

Equivalência de GLC e PDA

Esquema de construção do PDA

- Gramática $G = (V, \Sigma, P, S)$.
- ► Construção do PDA $\mathcal{P} = \langle \Sigma, \Gamma, E, s_{ini}, \delta, F \rangle$:
 - \triangleright $s', s \in E$,
 - $ightharpoonup a \in \Sigma$,
 - $u \in \Gamma$
 - $ightharpoonup \mathcal{P}$ passa do estado s' para o $s \Rightarrow \mathcal{P}$ lê a e desempilha u.

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (70 - 108 de 1499

Equivalência de GLC e PDA

Esquema de construção do PDA

- (s, w) ∈ δ(s', a, u) ⇒ s' é o estado do PDA, a é o próximo símbolo de entrada e u é o topo da pilha.
 - ightharpoonup O PDA deve ler a, desempilhar u, empilhar a cadeia w e ir para o estado s.
- ► Exemplo para $(s, xyz) \in \delta(s', a, u)$:

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (71 - 108 de 1499)

Equivalência de GLC e PDA

Esquema de construção do PDA

- ▶ Empilhar toda a cadeia $w = w_1 \dots w_\ell$ ao mesmo tempo (transição estendida).
- Novos estados $s_1, \ldots, s_{\ell-1}$ e transição $\delta(s, a, u)$ tal que:

$$(s_1, w_{\ell}) \in \delta(s, a, u),$$

$$\delta(s_1, \varepsilon, \varepsilon) = \{(s_2, w_{\ell-1})\},$$

$$\delta(s_2, \varepsilon, \varepsilon) = \{(s_3, w_{\ell-2})\},$$

$$\vdots$$

$$\delta(s_{\ell-2}, \varepsilon, \varepsilon) = \{(s_{\ell-1}, w_2)\},$$

$$\delta(s_{\ell-1}, \varepsilon, \varepsilon) = \{(s, w_1)\}.$$

Equivalência de GLC e PDA

Esquema de construção do PDA

- ▶ PDA $\mathcal{P} = \langle \Sigma, \Gamma, E, s_0, \delta, F \rangle$.
 - $E = \{s_{ini}, s', s, s_{fim}\} \cup Q.$
 - $lackbox{ }Q$: novos estados para a notação simplificada para transições.
 - $ightharpoonup s_0 = s_{ini}$.
 - $F = \{s_{fim}\}.$
 - $\delta(s_{ini}, \varepsilon, \varepsilon) = \{(s', \$)\}.$
 - A pilha é iniciada com \$.
 - - ► A variável inicial S é colocada na pilha.
 - $\delta(s, \varepsilon, A) = \{(s, w)\}, \text{ onde } (A \to w) \in P, w \in (\Sigma \cup V)^*.$
 - O topo da pilha contém uma variável.
 - $\delta(s, a, a) = \{(s, \varepsilon)\}.$
 - O topo da pilha contém um terminal.
 - $\delta(s, \varepsilon, \$) = \{(s_{fim}, \varepsilon)\}.$
 - Marcador de pilha vazia (\$) está no topo.

Equivalência de GLC e PDA

Esquema de construção do PDA

▶ Diagrama simplificado de estados para o PDA \mathcal{P} :

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (74 – 108 de 1499)

Equivalência de GLC e PDA

Exemplo 1.26

- ▶ $GLC \ G = (V = \{S, T\}, \Sigma = \{a, b\}, R = \{S \rightarrow aTb \mid b, T \rightarrow Ta \mid \varepsilon\}, S).$
- ▶ Diagrama de estados do PDA que simula *G*:

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (75 - 108 de 1499)

Linguagens livres de contexto e PDA's

Teorema 1.27

ightharpoonup Se $\mathcal L$ é uma LLC, então existe um PDA $\mathcal P$ que aceita $\mathcal L$.

Demonstração.

- ► Seja $G = (V, \Sigma, P, S)$, na FNG, que aceita \mathcal{L} .
- Seja o PDA estendido $\mathcal{P}=\langle \Sigma,\Gamma=V-\{S\},E=\{s_0,s_1\},s_0,\delta,F=\{s_1\}\rangle$, onde: $\delta(s_0,a,\varepsilon)=\{(s_1,w)\mid (S\to aw)\in P\ \text{e}\ w\in V^*\},\\ \delta(s_1,a,A)=\{(s_1,w)\mid (A\to aw)\in P,\ A\in V-\{S\}\ \text{e}\ w\in V^*\},\\ \delta(s_0,\varepsilon,\varepsilon)=\{(s_1,\varepsilon)\ \text{se}\ (S\to\varepsilon)\in P\}.$

Linguagens livres de contexto e PDA's

Teorema 1.27

 \blacktriangleright Se \mathcal{L} é uma LLC, então existe um PDA \mathcal{P} que aceita \mathcal{L} .

Demonstração.

- 1. $\mathcal{L} \subseteq \mathcal{L}(\mathcal{P})$.
- **2**. $\mathcal{L}(\mathcal{P}) \subseteq \mathcal{L}$.

INF/UFG - LFA 2021/1 - H. Longo PDA's e GLC's (76 - 108 de 1499)

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (77 - 108 de 1499)

Teorema 1.27

ightharpoonup Se \mathcal{L} é uma LLC, então existe um PDA \mathcal{P} que aceita \mathcal{L} .

Demonstração.

- 1. $\mathcal{L} \subseteq \mathcal{L}(\mathcal{P})$.
 - ▶ Seja a derivação $S \stackrel{*}{\Longrightarrow} uw$, com $u \in \Sigma^+$ e $w \in V^*$.
 - Existe um processamento $[s_0, u, \varepsilon] \stackrel{*}{\longmapsto} [s_1, \varepsilon, w]$.

(Indução no comprimento da derivação):

Base:

Derivações $S \Longrightarrow aw$ de comprimento 1. A transição gerada pela regra $S \to aw$ é o processamento requerido.

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (78 - 108 de 1499)

Linguagens livres de contexto e PDA's

Teorema 1.27

Se £ é uma LLC, então existe um PDA P que aceita £.

Demonstração.

- 1. $\mathcal{L} \subseteq \mathcal{L}(\mathcal{P})$.
 - Seja a derivação $S \stackrel{*}{\Longrightarrow} uw$, com $u \in \Sigma^+$ e $w \in V^*$.
 - ▶ Existe um processamento $[s_0, u, \varepsilon] \stackrel{*}{\longmapsto} [s_1, \varepsilon, w]$.

(Indução no comprimento da derivação):

Hipótese:

Suponha que para todas cadeias uw geradas por derivações $S \stackrel{n}{\Longrightarrow} uw$ existe em $\mathcal P$ um processamento $[s_0,u,\varepsilon] \stackrel{\cdot}{\longmapsto} [s_1,\varepsilon,w]$.

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (79 - 108 de 1499)

Linguagens livres de contexto e PDA's

Teorema 1.27

ightharpoonup Se $\mathcal L$ é uma LLC, então existe um PDA $\mathcal P$ que aceita $\mathcal L$.

Demonstração.

- 1. $\mathcal{L} \subseteq \mathcal{L}(\mathcal{P})$.
 - Passo indutivo:
 - Seja a derivação $S \stackrel{n+1}{\Longrightarrow} uw$, com $u = va \in \Sigma^+$ e $w \in V^*$.
 - $S \stackrel{n}{\Longrightarrow} vAw_2 \Longrightarrow uw$, onde $w = w_1w_2$ e $(A \to aw_1) \in P$.
 - ▶ Por HI e $(s_1, w_1) \in \delta(s_1, a, A)$:

$$[s_0, va, \varepsilon] \stackrel{*}{\longmapsto} [s_1, a, Aw_2]$$

 $\longmapsto [s_1, \varepsilon, w_1w_2].$

Linguagens livres de contexto e PDA's

Teorema 1.27

ightharpoonup Se \mathcal{L} é uma LLC, então existe um PDA \mathcal{P} que aceita \mathcal{L} .

Demonstração.

- 1. $\mathcal{L} \subseteq \mathcal{L}(\mathcal{P})$.
 - Passo indutivo:
 - ▶ Para toda $u \in \mathcal{L}$, com |u| > 0, a aceitação de u por \mathcal{P} é mostrada pelo processamento correspondente à derivação $S \stackrel{*}{\Longrightarrow} u$.
 - ▶ Se $\varepsilon \in \mathcal{L}$, então $(S \to \varepsilon) \in P$ e o processamento $[s_0, \varepsilon, \varepsilon] \longmapsto [s_1, \varepsilon, \varepsilon]$ aceita ε .

Teorema 1.27

 \blacktriangleright Se \mathcal{L} é uma LLC, então existe um PDA \mathcal{P} que aceita \mathcal{L} .

Demonstração.

- 2. $\mathcal{L}(\mathcal{P}) \subseteq \mathcal{L}$.
 - ▶ Mostrar que para todo processamento $[s_0, u, \varepsilon] \stackrel{\cdot}{\longmapsto} [s_1, \varepsilon, w]$ existe a correspondente derivação $S \stackrel{\circ}{\Longrightarrow} uw$ em G.
 - Prova por indução.

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (82 - 108 de 1499)

Linguagens livres de contexto e PDA's

- ▶ Toda linguagem aceita por um PDA é uma LLC.
 - As regras de derivação da GLC são construídas a partir das transições do PDA.
 - A gramática é construída de modo que a aplicação de uma regra de derivação corresponda a uma transição no PDA.
- ▶ Seja o PDA $\mathcal{P} = \langle \Sigma, \Gamma, E, s_0, \delta, F \rangle$. Um PDA estendido \mathcal{P}' é construído a partir de \mathcal{P} aumentando-se a função δ com as transições:
 - 1. $(s_i, \varepsilon) \in \delta(s_i, u, \varepsilon) \Rightarrow (s_i, X) \in \delta'(s_i, u, X), \forall X \in \Gamma.$
 - 2. $(s_j, Y) \in \delta(s_i, u, \varepsilon) \Rightarrow (s_j, YX) \in \delta'(s_i, u, X), \ \forall \ X \in \Gamma.$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (83 - 108 de 1499)

Linguagens livres de contexto e PDA's

- A gramática $G = (V, \Sigma, P, S)$ é construída a partir das transições de \mathcal{P}' :
 - $\triangleright \Sigma$.
 - ▶ $V = \{S\} \cup \{\langle s_i, X, s_j \rangle\}$, onde $s_i, s_j \in E$ e $X \in \Gamma \cup \{\varepsilon\}$.
 - $ightharpoonup \langle s_i, X, s_j \rangle$: processamento em \mathcal{P}' que inicia em s_i , encerra em s_j e desempilha X.

Linguagens livres de contexto e PDA's

- A gramática $G = (V, \Sigma, P, S)$ é construída a partir das transições de \mathcal{P}' :
 - Conjunto P de regras de derivação:
 - 1. $S \to \langle s_0, \varepsilon, s_j \rangle, \ \forall \ s_j \in F$,
 - 2. Cada transição $(s_j, Y) \in \delta'(s_i, u, X)$, onde $X, Y \in \Gamma \cup \{\varepsilon\}$, gera

$$\{\langle s_i, X, s_k \rangle \to u \langle s_j, Y, s_k \rangle \mid s_k \in E\},\$$

3. Cada transição $(s_i, YX) \in \delta'(s_i, u, X)$, onde $X, Y \in \Gamma$, gera

$$\{\langle s_i, X, s_k \rangle \to u \langle s_i, Y, s_n \rangle \langle s_n, X, s_k \rangle \mid s_k, s_n \in E\},$$

4. $\langle s_k, \varepsilon, s_k \rangle \to \varepsilon, \forall s_k \in E$.

- ► Uma derivação começa com uma regra do tipo 1:
 - O lado direito representa um processamento que começa no estado so e termina em um estado final com pilha vazia.
 - ightharpoonup Um processamento de sucesso no PDA \mathcal{P}' .
- Regras do tipo 2 e 3 mapeiam as ações do PDA.
 - ▶ Regras do tipo 3 correspondem a transições estendidas de \mathcal{P}' , as quais aumentam o tamanho da pilha. O efeito na derivação é introduzir uma variável adicional.
- Regras do tipo 4 são usadas para terminar a derivação.
 - ▶ Representam um processamento a partir de um estado s_k para s_k que não altera a pilha (processamento nulo).

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (86 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.28

$$\triangleright \mathcal{P} = \langle \Sigma, \Gamma, E, s_0, \delta, F \rangle$$
:

- $\Sigma = \{a, b, c\};$
- $ightharpoonup \Gamma = \{X\};$
- $E = \{s_0, s_1\};$
- ► $F = \{s_1\};$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (87 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.28

$$ightharpoonup \mathcal{P}' = \langle \Sigma, \Gamma, E, s_0, \delta', F \rangle$$
:

- ▶ $\Sigma = \{a, b, c\};$
- $\Gamma = \{X\}$;
- $E = \{s_0, s_1\};$
- ► $F = \{s_1\};$
- $\delta'(s_0, a, \varepsilon) = \{(s_0, X)\};$
- $\delta'(s_1, b, X) = \{(s_1, \varepsilon)\};$
- $\delta'(s_0, a, X) = \{(s_0, XX)\};$
- $\delta'(s_0, c, X) = \{(s_1, X)\}.$

Linguagens livres de contexto e PDA's

Exemplo 1.28

INF/UFG - LFA 2021/1 - H. Longo

$$ightharpoonup G = (V, \Sigma, P, S)$$
:

- Σ.
- ▶ $V = \{S\} \cup \{\langle s_i, X, s_j \rangle\}$, onde $s_i, s_j \in E$ e $X \in \Gamma \cup \{\varepsilon\}$.

Exemplo 1.28

 $\mathcal{L} = \{ a^n c b^n \mid n \ge 0 \}.$

Transições	Regras de derivação
	$S \to \langle s_0, \varepsilon, s_1 \rangle$
$\delta'(s_0,a,\varepsilon)=\{(s_0,X)\}$	$\langle s_0, \varepsilon, s_0 \rangle \to a \langle s_0, X, s_0 \rangle$ $\langle s_0, \varepsilon, s_1 \rangle \to a \langle s_0, X, s_1 \rangle$
$\delta'(s_0,c,\varepsilon)=\{(s_1,\varepsilon)\}$	$\langle s_0, \varepsilon, s_0 \rangle \to c \langle s_1, \varepsilon, s_0 \rangle$ $\langle s_0, \varepsilon, s_1 \rangle \to c \langle s_1, \varepsilon, s_1 \rangle$
$\delta'(s_0, c, X) = \{(s_1, X)\}$	$\langle s_0, X, s_0 \rangle \to c \langle s_1, X, s_0 \rangle$ $\langle s_0, X, s_1 \rangle \to c \langle s_1, X, s_1 \rangle$
$\delta'(s_1,b,X) = \{(s_1,\varepsilon)\}$	$\langle s_1, X, s_0 \rangle \to b \langle s_1, \varepsilon, s_0 \rangle$ $\langle s_1, X, s_1 \rangle \to b \langle s_1, \varepsilon, s_1 \rangle$
$\delta'(s_0,a,X) = \{(s_0,XX)\}$	$ \langle s_0, X, s_0 \rangle \rightarrow a \langle s_0, X, s_0 \rangle \langle s_0, X, s_0 \rangle $ $ \langle s_0, X, s_0 \rangle \rightarrow a \langle s_0, X, s_1 \rangle \langle s_1, X, s_0 \rangle $ $ \langle s_0, X, s_1 \rangle \rightarrow a \langle s_0, X, s_0 \rangle \langle s_0, X, s_1 \rangle $ $ \langle s_0, X, s_1 \rangle \rightarrow a \langle s_0, X, s_1 \rangle \langle s_1, X, s_1 \rangle $ $ \langle s_0, x, s_0 \rangle \rightarrow c $
	$\langle s_0, \varepsilon, s_0 \rangle \to \varepsilon$ $\langle s_1, \varepsilon, s_1 \rangle \to \varepsilon$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (90 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.28

 $\mathcal{L} = \{ a^n c b^n \mid n \geqslant 0 \}.$

Variável	Variável original
A	$\langle s_0, \varepsilon, s_0 \rangle$
B	$\langle s_0, \varepsilon, s_1 \rangle$
C	$\langle s_1, \varepsilon, s_0 \rangle$
D	$\langle s_1, \varepsilon, s_1 \rangle$
E	$\langle s_0, X, s_0 \rangle$
F	$\langle s_0, X, s_1 \rangle$
G	$\langle s_1, X, s_0 \rangle$
Н	$\langle s_1, X, s_1 \rangle$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (91 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.28

 $\mathcal{L} = \{ a^n c b^n \mid n \ge 0 \}.$

Transições	Regras de derivação
	$S \rightarrow B$
$\delta(s_0, a, \varepsilon) = \{(s_0, X)\}\$	$A \rightarrow aE$
	$B \rightarrow aF$
$\delta(s_0,c,\varepsilon)=\{(s_1,\varepsilon)\}$	$A \rightarrow cC$
	$B \rightarrow cD$
$\delta(s_0, c, X) = \{(s_1, X)\}\$	$E \rightarrow cG$
	$F \rightarrow cH$
$\delta(s_1, b, X) = \{(s_1, \varepsilon)\}\$	$G \rightarrow bC$
	$H \rightarrow bD$
$\delta(s_0,a,X) = \{(s_0,XX)\}$	$E \rightarrow aEE$
	$E \rightarrow aFG$
	$F \rightarrow aEF$
	$F \rightarrow aFH$
	$A \to \varepsilon$
	$D \rightarrow \varepsilon$

Linguagens livres de contexto e PDA's

Exemplo 1.28

$$\mathcal{L} = \{ a^n c b^n \mid n \geqslant 0 \}.$$

$$ightharpoonup G = (V, \Sigma, P, S)$$
:

$$\blacktriangleright \ V = \{S,B,D,F,H\} \equiv \{S,F\}.$$

$$\Sigma = \{a, b, c\}.$$

$$P = \left\{ \begin{array}{l} S \to B, \\ B \to aF \mid cD, \\ D \to \varepsilon, \\ F \to aFH \mid cH, \\ H \to bD \end{array} \right\} \equiv \left\{ \begin{array}{l} S \to aF \mid c, \\ F \to aFb \mid cb \end{array} \right\}$$

•

PDA's e GLC's (93 - 108 de 1499)

Exemplo 1.29

- ▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- $\triangleright \mathcal{P} = \langle \Sigma, \Gamma, E, s_0, \delta, F \rangle$:
 - $\Sigma = \{a, b\};$
 - $\Gamma = \{X\};$
 - \triangleright $E = \{s_0, s_1, s_2\};$
 - $F = \{s_1, s_2\};$

INF/UFG – LFA 2021/1 – H. Longo

PDA's e GLC's (94 – 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.29

- ▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- $\triangleright \mathcal{P}' = \langle \Sigma, \Gamma, E, s_0, \delta', F \rangle$:
 - $\Sigma = \{a, b\};$
 - $\Gamma = \{X\};$
 - \triangleright $E = \{s_0, s_1, s_2\};$
 - $F = \{s_1, s_2\};$
 - $\delta'(s_0, a, \varepsilon) = \{(s_0, X)\};$
 - $\delta'(s_0, b, X) = \{(s_1, \varepsilon)\};$

 - $\delta'(s_0, a, X) = \{(s_0, XX)\};$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (95 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.29

- ▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- $ightharpoonup G = (V, \Sigma, P, S)$:
 - \triangleright Σ .
 - ▶ $V = \{S\} \cup \{\langle s_i, X, s_j \rangle\}$, onde $s_i, s_j \in E$ e $X \in \Gamma \cup \{\varepsilon\}$.

Linguagens livres de contexto e PDA's

Exemplo 1.29

▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$

Transições	Regras de derivação
	$S \to \langle s_0, \varepsilon, s_1 \rangle S \to \langle s_0, \varepsilon, s_2 \rangle$
$\delta'(s_0,a,\varepsilon) = \{(s_0,X)\}$	$ \langle s_0, \varepsilon, s_0 \rangle \to a \langle s_0, X, s_0 \rangle $ $ \langle s_0, \varepsilon, s_1 \rangle \to a \langle s_0, X, s_1 \rangle $ $ \langle s_0, \varepsilon, s_2 \rangle \to a \langle s_0, X, s_2 \rangle $
$\delta'(s_0, b, X) = \{(s_1, \varepsilon)\}\$	$ \langle s_0, X, s_0 \rangle \to b \langle s_1, \varepsilon, s_0 \rangle \langle s_0, X, s_1 \rangle \to b \langle s_1, \varepsilon, s_1 \rangle \langle s_0, X, s_2 \rangle \to b \langle s_1, \varepsilon, s_2 \rangle $
$\delta'(s_0, \varepsilon, \varepsilon) = \{(s_2, \varepsilon)\}$	$ \langle s_0, \varepsilon, s_0 \rangle \to \varepsilon \langle s_2, \varepsilon, s_0 \rangle $ $ \langle s_0, \varepsilon, s_1 \rangle \to \varepsilon \langle s_2, \varepsilon, s_1 \rangle $ $ \langle s_0, \varepsilon, s_2 \rangle \to \varepsilon \langle s_2, \varepsilon, s_2 \rangle $
$\delta'(s_0, \varepsilon, X) = \{(s_2, X)\}\$	$ \begin{array}{c} \langle s_0, X, s_0 \rangle \rightarrow \varepsilon \langle s_2, X, s_0 \rangle \\ \langle s_0, X, s_1 \rangle \rightarrow \varepsilon \langle s_2, X, s_1 \rangle \\ \langle s_0, X, s_2 \rangle \rightarrow \varepsilon \langle s_2, X, s_2 \rangle \end{array} $

Exemplo 1.29

▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$

Transições	Regras de derivação
$\delta'(s_0, a, X) = \{(s_0, XX)\}$	$\langle s_0, X, s_0 \rangle \to a \langle s_0, X, s_0 \rangle \langle s_0, X, s_0 \rangle$
	$\langle s_0, X, s_1 \rangle \rightarrow a \langle s_0, X, s_0 \rangle \langle s_0, X, s_1 \rangle$ $\langle s_0, X, s_2 \rangle \rightarrow a \langle s_0, X, s_0 \rangle \langle s_0, X, s_2 \rangle$
	$\langle s_0, X, s_0 \rangle \rightarrow a \langle s_0, X, s_1 \rangle \langle s_1, X, s_0 \rangle$
	$\langle s_0, X, s_1 \rangle \to a \langle s_0, X, s_1 \rangle \langle s_1, X, s_1 \rangle$
	$\langle s_0, X, s_2 \rangle \rightarrow a \langle s_0, X, s_1 \rangle \langle s_1, X, s_2 \rangle$ $\langle s_0, X, s_0 \rangle \rightarrow a \langle s_0, X, s_2 \rangle \langle s_2, X, s_0 \rangle$
	$\langle s_0, X, s_0 \rangle \rightarrow a \langle s_0, X, s_2 \rangle \langle s_2, X, s_0 \rangle$ $\langle s_0, X, s_1 \rangle \rightarrow a \langle s_0, X, s_2 \rangle \langle s_2, X, s_1 \rangle$
	$\langle s_0, X, s_2 \rangle \to a \langle s_0, X, s_2 \rangle \langle s_2, X, s_2 \rangle$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (98 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.29

▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$

Transições	Regras de derivação
$\delta'(s_1, b, X) = \{(s_1, \varepsilon)\}\$	$\langle s_1, X, s_0 \rangle \to b \langle s_1, \varepsilon, s_0 \rangle$ $\langle s_1, X, s_1 \rangle \to b \langle s_1, \varepsilon, s_1 \rangle$ $\langle s_1, X, s_2 \rangle \to b \langle s_1, \varepsilon, s_2 \rangle$
$\delta'(s_2, \varepsilon, X) = \{(s_2, \varepsilon)\}$	$ \langle s_2, X, s_0 \rangle \to \varepsilon \langle s_2, \varepsilon, s_0 \rangle $ $ \langle s_2, X, s_1 \rangle \to \varepsilon \langle s_2, \varepsilon, s_1 \rangle $ $ \langle s_2, X, s_2 \rangle \to \varepsilon \langle s_2, \varepsilon, s_2 \rangle $
	$\langle s_0, \varepsilon, s_0 \rangle \to \varepsilon$ $\langle s_1, \varepsilon, s_1 \rangle \to \varepsilon$
	$\langle s_2, \varepsilon, s_2 \rangle \to \varepsilon$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (99 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.29

 $\blacktriangleright \mathcal{L} = \{a^i \mid i \geq 0\} \cup \{a^i b^i \mid i \geq 0\}.$

Variável	Variável original
A	$\langle s_0, \varepsilon, s_0 \rangle$
B	$\langle s_0, \varepsilon, s_1 \rangle$
C	$\langle s_0, \varepsilon, s_2 \rangle$
D	$\langle s_1, \varepsilon, s_0 \rangle$
E	$\langle s_1, \varepsilon, s_1 \rangle$
F	$\langle s_1, \varepsilon, s_2 \rangle$
G	$\langle s_2, \varepsilon, s_0 \rangle$
Н	$\langle s_2, \varepsilon, s_1 \rangle$
I	$\langle s_2, \varepsilon, s_2 \rangle$

Variável	Variável original
\overline{J}	$\langle s_0, X, s_0 \rangle$
K	$\langle s_0, X, s_1 \rangle$
L	$\langle s_0, X, s_2 \rangle$
M	$\langle s_1, X, s_0 \rangle$
N	$\langle s_1, X, s_1 \rangle$
o	$\langle s_1, X, s_2 \rangle$
P	$\langle s_2, X, s_0 \rangle$
Q	$\langle s_2, X, s_1 \rangle$
R	$\langle s_2, X, s_2 \rangle$

Linguagens livres de contexto e PDA's

Exemplo 1.29

Transições	Regras de derivação
	$S \rightarrow B$
	$S \to C$
$\delta(s_0, a, \varepsilon) = \{(s_0, X)\}\$	$A \rightarrow aJ$
	$B \rightarrow aK$
	$C \rightarrow aL$
$\delta(s_0,b,X)=\{(s_1,\varepsilon)\}$	$J \rightarrow bD$
	$K \rightarrow bE$
	$L \rightarrow bF$
$\delta(s_0, \varepsilon, \varepsilon) = \{(s_2, \varepsilon)\}$	$A \rightarrow G$
	$B \rightarrow H$
	$C \rightarrow I$
$\delta(s_0, \varepsilon, X) = \{(s_2, X)\}\$	$J \rightarrow P$
	$K \to Q$
	$L \to R$

Exemplo 1.29

• $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$

Transições	Regras de derivação
$\delta(s_0, a, X) = \{(s_0, XX)\}$	$J \rightarrow aJJ$
	$K \rightarrow aJK$
	$L \rightarrow aJL$
	$J \rightarrow aKM$
	$K \rightarrow aKN$
	$L \rightarrow aKO$
	$J \rightarrow aLP$
	$K \rightarrow aLQ$
	$L \rightarrow aLR$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (102 – 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.29

▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$

Transições	Regras de derivação
$\delta(s_1, b, X) = \{(s_1, \varepsilon)\}\$	$M \rightarrow bD$
	$N \rightarrow bE$
	$O \rightarrow bF$
$\delta(s_2, \varepsilon, X) = \{(s_2, \varepsilon)\}\$	$P \rightarrow G$
	$Q \rightarrow H$
	$R \rightarrow I$
	$A \rightarrow \varepsilon$
	$E \rightarrow \varepsilon$
	$I \rightarrow \varepsilon$

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (103 - 108 de 1499)

Linguagens livres de contexto e PDA's

Exemplo 1.29

- ▶ $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- ▶ $G = (V = \{S, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R\}, \Sigma = \{a, b\}, P, S)$:

$$\begin{cases} S \rightarrow B \mid C, \\ A \rightarrow aJ \mid G \mid \varepsilon, \\ B \rightarrow aK \mid H, \\ C \rightarrow aL \mid I, \\ E \rightarrow \varepsilon, \\ I \rightarrow \varepsilon, \\ J \rightarrow bD \mid P \mid aJJ \mid aKM \mid aLP, \\ K \rightarrow bE \mid Q \mid aJK \mid aKN \mid aLQ, \\ L \rightarrow bF \mid R \mid aJL \mid aKO \mid aLR, \\ M \rightarrow bD, \\ N \rightarrow bE, \\ O \rightarrow bF, \\ P \rightarrow G, \\ Q \rightarrow H, \\ R \rightarrow I \end{cases}$$

Linguagens livres de contexto e PDA's

Exemplo 1.29

- ► $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- ► $G_1 = (V_1 = \{S, B, C, E, I, J, K, L, N, R\}, \Sigma = \{a, b\}, P_1, S)$:

$$P_1 = \left\{ \begin{array}{l} S \rightarrow B \mid C, \\ B \rightarrow aK, \\ C \rightarrow aL \mid I, \\ E \rightarrow \varepsilon, \\ I \rightarrow \varepsilon, \\ J \rightarrow aJJ, \\ K \rightarrow bE \mid aJK \mid aKN, \\ L \rightarrow R \mid aJL \mid aLR, \\ N \rightarrow bE, \\ R \rightarrow bI \end{array} \right.$$

Exemplo 1.29

- $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- ► $G_2 = (V_2 = \{S, B, C, E, I, K, L, N, R\}, \Sigma = \{a, b\}, P_2, S)$:

$$P_2 = \left\{ \begin{array}{l} S \rightarrow B \mid C, \\ B \rightarrow aK, \\ C \rightarrow aL \mid I, \\ E \rightarrow \varepsilon, \\ I \rightarrow \varepsilon, \\ K \rightarrow bE \mid aKN, \\ L \rightarrow R \mid aLR, \\ N \rightarrow bE, \\ R \rightarrow I \end{array} \right.$$

INF/UFG - LFA 2021/1 - H. Longo

Linguagens livres de contexto e PDA's

Exemplo 1.29

- $\mathcal{L} = \{a^i \mid i \ge 0\} \cup \{a^i b^i \mid i \ge 0\}.$
- $ightharpoonup G_3 = (V_3 = \{S, K, L\}, \Sigma = \{a, b\}, P_3, S)$:

$$P_{3} = \left\{ \begin{array}{l} S \to aK \mid aL \mid \varepsilon, \\ K \to b \mid aKb, \\ L \to \varepsilon \mid aL \end{array} \right\}$$

 $ightharpoonup G_4 = (V_4 = \{S, K, L\}, \Sigma = \{a, b\}, P_4, S):$

$$P_4 = \left\{ \begin{array}{l} S \to aK \mid aL \mid a \mid \varepsilon, \\ K \to b \mid aKb, \\ L \to a \mid aL \end{array} \right\}$$

PDA's e GLC's (106 - 108 de 1499)

INF/UFG - LFA 2021/1 - H. Longo

PDA's e GLC's (107 - 108 de 1499)

Equivalência com GLC

Corolário 1.30

Toda linguagem regular é livre de contexto.

Demonstração.

- Toda linguagem regular é reconhecida por um autômato finito.
- ▶ Todo autômato finito é um autômato com pilha que simplesmente ignora a sua
- ► Toda linguagem regular é também livre de contexto.

Linguagens Livres de Contexto (Autômato com Pilha – PDA)

> Linguagens Regulares (Autômato Finito – DFA)

> > П

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It - A Structured Approach. Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

T. A. Sudkamp.

Languages and Machines - An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation.

PWS Publishing Company, 1997

H. R. Lewis; C. H. Papadimitriou

Elementos de Teoria da Computação. Bookman, 2000

INF/UFG - LFA 2021/1 - H. Longo PDA's e GLC's (108 - 108 de 1499)

INF/UFG - LFA 2021/1 - H. Longo

Bibliografia (1499 - 1499 de 1499)