Package 'moveNT'

March 31, 2017

adj2stack	Calculation o	of network met	trics		
Index					(
val					5
· ·					
	· · · · · · · · · · · · · · ·				
quant					3
graphmet .					3
	 .				
adj2stack .					1
R topics docum	ented:				
RoxygenNote 6.0.1.9	000				
LazyData true					
Encoding UTF-8					
License GPL (>=3)					
Depends R (>= $3.3.2$)					
Description This package provides a series of functions to analyse movement data using network theory.					
Version 0.0.0.9000					
1 0	the analysis of mov	ement data usi	ing network the	ory	
Title An R package for	r the analysis of mov	ement data usi	ing network the	ory	

Description

Transform an adjancency matrix to a series of network metrics at the node-level (weight, degree, betweenness, transitivity, eccenctricity) and graph level (diameter, transitivity, density, and modularity)

Usage

```
adj2stack(adjmov, grph = T)
```

2 clustnet

Arguments

adjmov Adjacency matrix, need to be an object of class adjmov

grph Whether node level metrics are to be plotted

Value

A raster stack object

Examples

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=100), grph=T)</pre>
```

clustnet

Normal mixture model for clustering of node level metrics

Description

Apply a normal mixture model to a node-level metric

Usage

```
clustnet(stack, id = 2, nclust = 2, grph = T)
```

Arguments

stack An object produce by the function adj2stack

id Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Ec-

centricity)

grph Whether resulting classification should be plotted

Value

A list object containing a Mclust object and a raster object

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=100), grph=T)
cl<-clustnet(stck, id=2, nclust=2, grph=T)
summary(cl[[1]])</pre>
```

graphmet 3

graphmet

Summarize graph-level metrics

Description

Summarize graph-level metrics from an object generated by adj2stack

Usage

```
graphmet(grid)
```

Arguments

grid An object generated by the function adj2stack

id Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Ec-

centricity)

Value

A vector

Examples

```
traj1<-sim_mov(type="OU", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)
graphmet(stck)</pre>
```

quant

Sample quantile of distance for ltraj object

Description

Wrapper function that extract the sample quantile of distance

Usage

```
quant(x, p = 0.5)
```

Arguments

x A ltraj object

p Probability, default=0.5 (median)

Value

A vector of length p

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)</pre>
```

4 sim_mov

SIM	mov

Simulation of patch-based movement trajectory

Description

Simulate a movement trajectory with user defined number of patches and interpatch movement

Usage

```
sim_mov(type = c("2states", "OU"), npatches = 5, ratio = 5,
  nswitch = 150, ncore = 200, spacecore = 200,
  seq_visit = sample(1:npatches, nswitch, replace = T), stepDist = "gamma",
  angleDist = "vm", stepPar = c(0.5, 3, 1, 5), anglePar = c(pi, 0, 0.5,
  2), s = diag(40, 2), grph = F)
```

Arguments

type	whether movement within patches should be based on a 2states process (from package moveHMM) or a Bivariate Ornstein-Uhlenbeck process (OU) (from package adehabitatLT)
npatches	Number of patches, default=5
ratio	Ratio (in percent) of locations associated to interpatch movement, default=5
nswitch	Number of switch/depart from patches, default=150
ncore	Number of locations within a patch per visit, default=200
spacecore	Minimum distance between center of patches, default=200
seq_visit	Specify the sequence of visit among patches, default is random sequence
stepDist	Distribution for step length if 2states specified in type, see simData of moveHMM package
angleDist	Distribution for turn angle if 2states specified in type, see simData of moveHMM package
stepPar	Parameters for step length distribution if 2states specified in type, see simData of moveHMM package
anglePar	Parameters for turn angle distribution if 2states specified in type, see simData of moveHMM package
S	Parameters for the OU process, see simm.mou of adehabitatLT package
grph	Whether a graph of the trajectory should be produced, default=F

Value

A ltraj (adehabitatLT) object

```
traj1<-sim_mov(type="OU", npatches=3, grph=T)
traj2<-sim_mov(type="2states", npatches=2, grph=T)</pre>
```

traj2adj 5

traj2adj

Generation of adjacency matrix from movement data

Description

Transform an Itraj object to an adjacency matrix using a user-specified grid size

Usage

```
traj2adj(mov, res = 100)
```

Arguments

mov Movement trajectory, need to be a ltraj object

res Grid size

Value

A list of object containing the adjacency matrix, the grid use, and patch/corridor identification (only useful if sim_mov was used)

Examples

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
adj<-traj2adj(traj1, res=100)</pre>
```

val

Extract occupied cells in a raster object

Description

Extract only occupied cells in a raster object,

Usage

```
val(grid, id)
```

Arguments

grid An object generated by the function adj2stack

id Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Ec-

centricity)

Value

A vector

```
traj1<-sim_mov(type="OU", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)
mean(val(stck, 2))</pre>
```

Index

```
*Topic Mclust clustnet, 2
*Topic adj2stack
     clustnet, 2
     {\tt graphmet}, {\tt 3}
     sim\_mov, 4
     traj2adj,5
     val, 5
*Topic ltraj
     quant, 3
*Topic traj2adj
     adj2stack, 1
     clustnet, 2
     sim_{mov}, 4
adj2stack, 1
clustnet, 2
graphmet, 3
quant, 3
sim\_mov, 4
traj2adj, <mark>5</mark>
val, 5
```