

COMET: Constrained Counterfactual Explanations for Patient Glucose Multivariate Forecasting

Zhendong Wang, Isak Samsten, Ioanna Miliou, and Panagiotis Papapetrou

Zhendong Wang, PhD Student Stockholm University

Outline

- Background
- Proposed COMET method
- Empirical evaluation
- Conclusions

Forecasting in healthcare

- Deep learning (DL) models can assist medical decisionmaking process in forecasting
 - E.g., Daily patient arrivals and length of stays in the ICU
- For type 1 diabetes mellitus (T1DM) patients, closely tracking glucose levels is a crucial task
 - RNN-based models and transfer learning have been applied to accurately predict patients' glucose
 - Incorporated additional covariate variables, e.g., insulin dosages and daily carbohydrates

DL forecasting of diabetic blood glucose (30 mins -> 5 mins)

Counterfactual (CF) explanations

 Show modifications required to change a prediction from an undesired (e.g., unhealthy) to a desired outcome (e.g., healthy)

Example on heart risk prediction: Black-box model \hat{f} High risk Blood Daily Gender Age **Carbs** Pressure CF suggests: Low risk 130/90 43 Male 1000 1800 4000 mmHg

Counterfactuals for forecasting

- Recent study proposed to provide counterfactuals for time series forecasting: ForecastCF
 - Define desired outcome: upper and lower bounds that forecasted values are desired to fall into
- Desired bounds for sales forecasting:

Pseudo-code for proposed COMET

```
Algorithm 1: COMET counterfactual search
   input: Time series X, differentiable forecaster f(\cdot),
              lower and upper bounds [\alpha, \beta], clipping
              ranges [\rho, \phi], historical value set \mathcal{G}, forecast
              margin weight w, learning rate \eta, maximum
              iteration max iter
   output: Counterfactual X' with desired outcome
1 X^* \leftarrow X
\hat{y}^* \leftarrow f(X^*)
c \leftarrow ActivityTemporalConstriant(X^*)
4 loss \leftarrow L(X^*, w, \alpha, \beta, X, C)
t \leftarrow 0
6 while (\hat{y}^* > \beta \lor \hat{y}^* < \alpha) \land (t < max\_iter) do
        X^* \leftarrow AdamOptimize(X^*, loss, \eta)
       X^* \leftarrow Clip(X^*, \rho, \phi)
       \hat{\boldsymbol{y}}^* \leftarrow f(\boldsymbol{X}^*)
       C \leftarrow HistValueConstraint(X^*, \mathcal{G})
       loss \leftarrow L(X^*, w, \alpha, \beta, X, C)
       t \leftarrow t + 1
13 X' \leftarrow X^*
14 return X'
```

COMET considers three domain-specific constraints for T1DM patients:

1. Activity temporal constraint (-A): incorporates constraint c to encourage counterfactual changes at specific period with any planned activity (e.g., meal and exercise)

2. Clipping constraint (-C): ensures each value at timestep of the CF sample are within the minimum and maximum range

3. Historical values constraint (-H): imposes constraints on the CF samples to be closer to the historical values for each patient

Define desired bounds in COMET

Experimental set-up

- Multivariate forecasting setup:
 - Using 5 clinical features from previous
 2 hours to predict CGM measurements
 in the next 30 mins
 - 2 DL models: GRU and WaveNet
- 2 datasets of diabetes patients
 - OhioT1DM: a real-world type 1 diabetes patient dataset
 - SimGlucose: simulated from FDAapproved UVA/PADOVA simulator
 - Divide patients in 2 groups: hyper-/hypo-glycemia

3 variants of COMET

- COMET-C: included the clipping constraint
- COMET-A: both clipping and activity temporal constraints
- COMET-H: included all three mechanisms (i.e., with historical values constraint)

Empirical evaluation

			GRU				WaveNet			
Datacet	Patient group	CF model	Valid.	Proxi.	Compa.	Step AUC	Valid.	Proxi.	Compa.	Step AUC
Baseline:	+	-ForecastCF	0.945	0.193	0.264	0.783	0.955	0.159	0.758	0.790
ForecastCF	Iyperglycemia	COMET-C	0.867	0.349	0.558	0.706	0.900	0.251	0.844	0.746
		COMET-A	0.675	0.347	0.808	0.526	0.718	0.192	0.935	0.569
OhioT1DM		COMET-H	0.585	0.173	0.910	0.459	0.658	0.150	0.955	0.521
		ForecastCF	0.497	0.284	0.049	0.188	0.525	0.162	0.721	0.196
	Hypoglycemia	COMET-C	0.490	0.345	0.247	0.175	0.530	0.189	0.829	0.171
		COMET-A	0.207	0.396	0.775	0.066	0.238	0.111	0.937	0.074
		COMET-H	0.165	0.173	0.909	0.046	0.145	0.042	0.973	0.055
	Hyperglycemia	ForecastCF	0.984	0.056	0.368	0.853	0.964	0.117	0.889	0.823
		COMET-C	0.858	0.108	0.776	0.758	0.873	0.095	0.935	0.720
		COMET-A	0.732	0.117	0.935	0.624	0.727	0.009	0.999	0.457
SimGlucose		COMET-H	0.726	0.116	0.935	0.618	0.727	0.008	0.999	0.457
	Hypoglycemia	ForecastCF_	0.115	0.143	0.213	0.041	0.163	$0.\overline{285}$	0.856	0.019
		COMET-C	0.215	0.065	0.928	0.062	0.094	0.171	0.955	0.009
		COMET-A	0.155	0.031	0.998	0.052	0.103	0.020	0.999	0.004
		COMET-H	0.155	0.031	0.998	0.052	0.103	0.018	0.999	0.004

Metrics:

- Validity Ratio (proportion of valid timesteps)
- Proximity

 (Euclidean distance)
- <u>Compactness</u> (unchanged proportion)
- Stepwise AUC (consecutive validity)

Qualitative analysis: a T1DM patient

- Forecasting for the next
 30 mins (blue dots), with
 upper and lower bounds
 (red-dotted lines)
- Original sample illustrated in *blue*, CF suggestions in <u>orange arrows</u>
- Baseline: ForecastCF

Conclusions

- Summary of the paper:
 - Proposed COMET generated counterfactual explanations for multivariate forecasting, with three domainspecific constraints for glucose forecasting
 - Experiments with 2 diabetes datasets outperformed the baseline ForecastCF in proximity and compactness, while maintaining reasonable validity

• Future work:

- Incorporating clinical experts in assessing counterfactuals' effectiveness and medical relevance
- Extending into other forecasting applications by involving domain-specific constraints

References

- 1. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual Explanations Without Opening the Black Box:
 Automated Decisions and the GDPR. Technical report, Social Science Research Network (2017)
- 2. Deng, Y., Lu, L., Aponte, L., Angelidi, A.M., Novak, V., Karniadakis, G.E., Mantzoros, C.S., 2021. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients. npj Digital Medicine, vol 4, pp. 1–13.
- 3. Cui, R., Hettiarachchi, C., Nolan, C.J., Daskalaki, E., Suominen, H., 2021. Personalised Short-Term Glucose Prediction via Recurrent Self-Attention Network, in: 2021 IEEE International Symposium on Computer-Based Medical Systems (CBMS), pp. 154–159.
- 4. Wang, Z., Miliou, I., Samsten, I., Papapetrou, P., 2023. Counterfactual Explanations for Time Series Forecasting, in: 2023 IEEE International Conference on Data Mining (ICDM), pp. 1391–1396.

Many thanks for your attention!