ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 19

Final do Cap 4.2 – O problema da parada Cap 5 - Redutilibidade Cap 5.1 – Problemas indecidíveis (parte 1)

Profa. Ariane Machado Lima ariane.machado@usp.br

Na aula passada...

 $A_{\mathsf{MT}} = \{ \langle M, w \rangle | \ M \ \text{\'e uma MT e } M \ \text{aceita } w \}.$

TEOREMA 4.11

 $A_{\rm MT}$ é indecidível.

Na aula de hoje

- Uma relação entre a decidibilidade de linguagens e seus complementos
- Como provar que outros problemas são indecidíveis...
- ... usando a técnica de redutibilidade

Voltando às linguagens Turing-NÃO-Reconhecíveis

- Vimos que existem linguagens que NÃO são Turing-reconhecíveis
- Perguntas:
 - Quais são alguns exemplos delas?
 - O que isso tem a ver com linguagens Turingdecidíveis?

Decidibilidade e reconhecibilidade

- Uma linguagem é Turing-decidível se ela E seu complemento forem ambas Turingreconhecíveis
- Uma linguagem é co-Turing-reconhecível se ela for o complemento de uma linguagem Turing-reconhecível (def. do livro)
- Uma linguagem é co-Turing-reconhecível se seu complemento for Turing-reconhecível (acho mais preciso)

Decidibilidade e reconhecibilidade

TEOREMA 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

Em outras palavras, uma linguagem é decidível exatamente quando ela e seu complemento são ambas Turing-reconhecíveis.

TEOREMA 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

 (=>) Se uma linguagem A é Turing-decidível, então ela é também Turing-reconhecível (pelas suas próprias definições).

Além disso, como existe uma MTA que, para qualquer cadeia w, decide se w pertence ou não a A, pode-se construir uma MTAC que reconhece o complemento de A, usando MTA... (fazendo o quê?).

TEOREMA 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

 (=>) Se uma linguagem A é Turing-decidível, então ela é também Turing-reconhecível (pelas suas próprias definições).

Além disso, como existe uma MTA que, para qualquer cadeia w, decide se w pertence ou não a A, pode-se construir uma MTAC que reconhece o complemento de A, usando MTA... (fazendo o quê?) aceitando tudo o que MTA rejeita e rejeitando o que MTA aceita.

TEOREMA 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

(<=) Se uma linguagem A é Turing-reconhecível, consigo aceitar todas as cadeias de A (usando uma máquina M₁). O problema são as cadeias do complemento de A... Mas se o complemento também é reconhecível (por uma MT₂), posso rejeitar tudo o que a MT₂ do complemento aceita...

M = "Sobre a entrada w:

- 1. Rode ambas, M_1 e M_2 , sobre a entrada w em paralelo.
- 2. Se M_1 aceita, aceite; se M_2 aceita, rejeite."

 Onde rodar em paralelo significa rodar cada MT em uma fita diferente, rodando um passo de cada uma de cada vez e alternadamente, até que uma delas aceite

Retomando...

 $A_{\mathsf{MT}} = \{ \langle M, w \rangle | M \text{ \'e uma MT e } M \text{ aceita } w \}.$

TEOREMA 4.11

 $A_{\rm MT}$ é indecidível.

 Uma linguagem é Turing-decidível se ela E seu complemento forem ambas Turingreconhecíveis

O complemento de A_{MT} é o quê?

COROLÁRIO 4.23

 $\overline{A_{\mathsf{MT}}}$ não é Turing-reconhecível.

COROLÁRIO 4.23

 $\overline{A_{\mathsf{MT}}}$ não é Turing-reconhecível.

PROVA Sabemos que A_{MT} é Turing-reconheível. Se \overline{A}_{MT} também fosse Turing-reconhecível, A_{MT} seria decidível. O Teorema 4.11 nos diz que A_{MT} não é decidível, portanto \overline{A}_{MT} não pode ser Turing-reconhecível.

Na aula de hoje

- Uma relação entre a decidibilidade de linguagens e seus complementos
 - Uma linguagem é Turing-decidível se ela E seu complemento forem ambas Turingreconhecíveis
- Como provar que outros problemas são indecidíveis...
- usando a técnica de redutibilidade

 Redução: conversão de um problema A em outro problema B de forma que a solução de B seja usada para solucionar A

Ex:

- Se você tem amigos morando em Paris, viajar para Paris pode ser reduzido a
- Comprar uma passagem aérea de São Paulo a Paris, que pode ser reduzido a
- Ganhar dinheiro para a passagem, que pode ser reduzido a
- Encontrar um emprego

- Exemplos matemáticos:
 - Medir a área de um retângulo pode ser reduzido a medir a altura e a largura do retângulo
 - Resolver um problema de equações lineares pode ser reduzido ao problema de inverter uma matriz

- Utilidade:
 - Se A é redutível a B
 - A não pode ser mais (fácil/difícil?) do que B

• Utilidade:

- Se A é redutível a B
- Não pode ser mais fácil porque não faria sentido reduzir um problema mais fácil para um mais difícil.
- Não pode ser mais difícil porque daí a solução de B não garantiria a solução de A.
- A não pode ser mais fácil nem mais difícil do que B
- Se B for decidível, A também será
- Se A for indecidível, B também será

- Utilidade:
 - Se A é redutível a B
- Não pode ser mais fácil porque não faria sentido reduzir um problema mais fácil para um mais difícil.
- Não pode ser mais difícil porque daí a solução de B não garantiria a solução de A.
- A não pode ser mais fácil nem mais difícil do que B
- Se B for decidível, A também será
- Se A for indecidível, B também será

Chave para provar que certos problemas são indecidíveis (reduzindo um problema conhecidamente indecidível a ele)

- PARA_{MT} = {<M,w> : M é uma MT e M pára sobre a entrada w}
- Que problema indecidível pode ser reduzido a esse?

- PARA_{MT} = {<M,w> : M é uma MT e M pára sobre a entrada w}
- $A_{MT} = \{ \langle M, w \rangle : M \text{ \'e uma MT e M aceita w} \}$
- $A_{\rm MT}$ (que é indecidível) pode ser reduzido a PARA_{MT}, pois se eu tiver a solução de PARA_{MT} terei a solução de $A_{\rm MT}$. Ou seja, se existir uma MT que decida PARA_{MT}, então essa máquina poderia ser usada para decidir $A_{\rm MT}$.
- Mas A_{MT} é indecidível! Logo, PARA_{MT} é indecidível

 Prova (tem que mostrar a redução!): assuma, por contradição, que uma MT R decida PARA_{MT}. Então construímos S que usa R para decidir A_{MT}:

- Prova (tem que mostrar a redução!): assuma, por contradição, que uma MT R decida PARA_{MT}. Então construímos S que usa R para decidir A_{MT}:
- S = "Sobre a entrada <M, w>, uma codificação de uma MT M e uma cadeia w:
 - 1. Rode a MT R sobre a entrada <M, w>.
 - 2. Se R rejeita,
 - 3. Se R aceita,

- Prova (tem que mostrar a redução!): assuma, por contradição, que uma MT R decida PARA_{MT}. Então construímos S que usa R para decidir A_{MT}:
- S = "Sobre a entrada <M, w>, uma codificação de uma MT M e uma cadeia w:
 - 1. Rode a MT R sobre a entrada <M, w>.
 - 2. Se R rejeita, rejeite.
 - 3. Se R aceita,

- Prova (tem que mostrar a redução!): assuma, por contradição, que uma MT R decida PARA_{MT}. Então construímos S que usa R para decidir A_{MT}:
- S = "Sobre a entrada <M, w>, uma codificação de uma MT M e uma cadeia w:
 - 1. Rode a MT R sobre a entrada <M, w>.
 - 2. Se R rejeita, rejeite.
 - 3. Se R aceita, simule M sobre w até ela pare.
 - 2. Se M aceitou, aceite; se M rejeitou, rejeite."

 Prova (tem que mostrar a redução!): assuma, por contradição, que uma MT R decida PARA_{MT}. Então construímos S que usa R para decidir A_{MT}.

- Logo A_{MT} pode ser reduzido a PARA_{MT}
- Como A_{MT} é indecidível, PARA_{MT} é indecidível