Ethan Nadler | Curriculum Vitae

Carnegie Observatories & University of Southern California 813 Santa Barbara Street – Pasadena, CA 91101 – USA

☑ enadler@carnegiescience.edu • • • • • Ethan O. Nadler

Kesearch	
Dark Matter - Linking dark matter particle properties to small-scale structure throughout cosmic his - Modeling dark matter-baryon interactions, self-interactions, and production mechanisms	
Computational Astrophysics. - Emulating the impact of baryons on small scales using cosmological simulations; - Empirically modeling the connection between faint galaxies and dark matter halos.	
Near-field Cosmology - Developing a semi-analytic framework to extract primordial physics from Milky Way semi-during dark matter constraints from near-field probes of cosmic structure.	
Positions	
Carnegie Observatories & University of Southern California Postdoctoral Research Fellow	2021-
Education	
Stanford University Ph.D., Physics Thesis: Faint Galaxies and Small Halos: Probes of Galaxy Formation and Dark Matter	2021
University of California, Santa Barbara B.S., Physics Thesis: Universality in the Structure and Abundance of Dark Matter Halos	2016
Scientific Collaborations	

Satellites Around Galactic Analogs Survey: Member 2019–

DECam Local Volume Exploration (DELVE) Survey: Member	2019–
Rubin LSST Dark Energy Science Collaboration: Member, Dark Matter Working Group	2018-

Kudin L551	Dark E	nergy 50	ience C	Lonab	oration:	Member,	Dark Matter	working Group	,
D 1 E	_	3 (1	3 6.11	T 4 7	TAT 1.				

Dark Energy Survey: Member, Milky Way Working Group 2018–

Fellowships & Awards

Outstanding Senior Award: UCSB Department of Physics

Carnegie DEI Grant: CreateNow + Carnegie: Dark Matter & Data Visualization	2022-
XSEDE Allocation: Cosmological Simulations of Milky Way-like Systems with Galactic Disks	2022-
XSEDE Allocation: Simulations of Milky Way Halos with Large Magellanic Cloud Analogs	2020–21
NSF Graduate Research Fellow: National Science Foundation	2018–21
Faculty Committee Commendation of Excellence: UCSB College of Creative Studies	2016

2016

Mentoring

)21–
o Wendy Crumrine, USC: Likelihood analyses for dark matter interactions using Milky Way satellites;	
 Trey Driskell, USC: Generating constrained dark matter merger trees; Noah Glennon, University of New Hampshire: Soliton orbital evolution with axion self-interactions; 	
• Elise Darragh-Ford, Stanford: Searching for dwarf galaxies in <i>Gaia</i> data;	
 Yunchong Wang, Stanford: Modeling dwarf galaxy star formation histories; 	
 Sidney Mau, Stanford: Dwarf galaxy constraints on decaying dark matter; 	
Undergraduate & Post-baccalaureate Students	018–
 Shuxing Fang, USC '22: Large Magellanic Cloud infall in self-interacting dark matter; 	
o Nyal McCrea, CWU '22 & Simons-NSBP Scholar: Visualizing subhalos in cosmological simulations;	
 Resherle Verna, USC '20: Evolution of subhalo populations in SIDM hydrodynamic simulations; Deveshi Buch, Stanford '23: Constrained simulations of Milky Way-like systems; 	
 Veronica Pratt, Stanford '23: Statistics of Large Magellanic Cloud analogs in the SAGA Survey; 	
o Nicel Mohamed-Hinds, Stanford '19 \rightarrow UW: Emulating hydrodynamic zoom-in simulations;	
o Abigail Lee, UPenn '19 $ ightarrow$ UChicago: Subhalo disruption in galaxy clusters.	
Teaching	
Textbook Co-Author (University of California, Davis)	2022
o A Cosmology Workbook: 31: Structure Formation, 32: Galaxy Formation.	
Teaching Assistant (Stanford) 2017	7–21
o Structure Formation & Galaxy Formation, Modern Astrophysics, Cosmology & Extragalctic Astrophysics,	
Origin & Development of the Cosmos, Electricity & Magnetism.	
Course Assistant (UCSB) 2015	5–16
o Relativistic Quantum Mechanics, Kinetic Theory & Relativity, Mechanics & Waves, Newtonian Mechanics.	
Tutor (UCSB Campus Learning Assistance Services) 2013	5-16
o Held biweekly supplementary lectures for Basic Physics, Linear Algebra, Differential Equations.	
Outreach & Service	
CreateNow + Carnegie: Dark Matter & Data Visualization (Course Instructor)	2022
Cosmic Cocktail Hour with Carnegie Observatories (Speaker)	2022
USC Physics Climate Committee (Member) 20	021–
UCSB Physics NSF REU (Speaker)	2021
San Mateo County Astronomical Society (Speaker) [video]	2021
Journal Referee (ApJ, Astropart. Phys., JCAP, MNRAS)	019–
Astronomy on Tap San Francisco (Speaker and Volunteer) 2018	3–20
Stanford Future Advancers of Science and Technology (Physics Mentor) 2017	7–19
Media	
KIPAC Research Highlight , Between the worlds of the visible and invisible lies: Dark Matter	2021
Fermilab Press Release , DES census of the smallest galaxies hones the search for dark matter	2020
SLAC Press Release , Milky Way satellites reveal link between dark matter and galaxy formation	2020
	2019
	2019
KIPAC Research Highlight , Dark matter subhalo disruption: insights from machine learning	2018

Presentations

Dark Matter Physics + Rubin LSST CosmoPalooza 2022, LSST Dark Energy Science Collaboration Session*	2022
Towards Precision Near-Field Cosmology UC Riverside, Astronomy Seminar* Fermilab, Cosmic Physics Center Seminar*	2021–
Dark Matter Constraints from a Unified Analysis of Strong Lenses and Satellite Galaxies LSST DESC Dark Matter Working Group* Virginia Tech Center for Neutrino Physics, Journal Club*	2021
The Faintest Galaxies and their Dark Matter Halos Caltech, TAPIR Seminar* Minnesota Institute for Astrophysics, Cosmology Lunch Seminar* Harvard-Smithsonian Center for Astrophysics, GCSP Seminar [video] International Centre for Theoretical Sciences, Less Travelled Path of Dark Matter* [video, slid UC Santa Cruz, FLASH Seminar* UC Berkeley Center for Cosmological Physics, Cosmology Seminar* [slides] STScI, The Local Group: Assembly and Evolution KITP, The Galaxy–Halo Connection Across Cosmic Time: Recent Updates [video] LIneA, Webinar* [video, slides] KIPAC, Astrophysics Colloquium* [video] Fermilab, New Perspectives [slides] USC, CosmoLab Seminar* BSM Pandemic Seminar* [video, slides] Fermilab, Wine & Cheese*	2020–21 es]
Milky Way Satellites: Probes of Dark Matter Microphysics University of Chicago, Cosmic Controversies [slides] KICP, LSST Dark Matter Workshop* [slides] Institute for Advanced Study, Astro Coffee* Johns Hopkins, High Energy Physics/Cosmology Seminar* UC Berkeley, LSST DESC Winter Collaboration Meeting	2019
Modeling Subhalos and Satellites in Milky Way-like Systems KICP, Near-Field Cosmology with DES DR1* [slides] KITP, The Small-Scale Structure of Cold(?) Dark Matter [video, slides] UC Berkeley Center for Cosmological Physics, Cosmology Seminar* [slides]	2018
Predicting Realistic Subhalo Populations KITP, The Galaxy–Halo Connection Across Cosmic Time *invited presentation	2017
First & Co-Authored Publications	
E. O. Nadler, A. Banerjee, S. Adhikari, YY. Mao, and R. H. Wechsler. The Effects of Dark M.	latter and

- **E. O. Nadler**, A. Banerjee, S. Adhikari, Y.-Y. Mao, and R. H. Wechsler. *The Effects of Dark Matter and Baryonic Physics on the Milky Way Subhalo Population in the Presence of the Large Magellanic Cloud*. 2021, ApJL, 920, L11.
- **E. O. Nadler**, S. Birrer, D. Gilman, R. H. Wechsler, X. Du, A. Benson, A. Nierenberg, and T. Treu. *Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies*. 2021, ApJ, 917, 7.
- S. Das & E. O. Nadler. Constraints on the epoch of dark matter formation from Milky Way satellites. 2021, PRD 103, 043517.
- **E. O. Nadler** & A. Drlica-Wagner *et al.* (DES Collaboration). *Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies*. 2021, PRL 126, 091101.

- **E. O. Nadler**, A. Banerjee, S. Adhikari, Y.-Y. Mao, and R. H. Wechsler. *Signatures of Velocity-dependent Dark Matter Self-interactions in Milky Way-mass Halos*. 2020, ApJ, 896, 112.
- **E. O. Nadler** & R. H. Wechsler *et al.* (DES Collaboration). *Milky Way Satellite Census. II. Galaxy-Halo Connection Constraints Including the Impact of the Large Magellanic Cloud.* 2020, ApJ, 893, 48.
- **E. O. Nadler**, V. Gluscevic, K. K. Boddy, and R. H. Wechsler. *Constraints on Dark Matter Microphysics from the Milky Way Satellite Population*. 2019, ApJL, 878, L32.
- **E. O. Nadler**, Y.-Y. Mao, G. M. Green, and R. H. Wechsler. *Modeling the Connection between Subhalos and Satellites in Milky Way-like Systems*. 2019, ApJ, 873, 34.
- **E. O. Nadler**, Y.-Y. Mao, R. H. Wechsler, S. Garrison-Kimmel, and A. Wetzel. *Modeling the Impact of Baryons on Subhalo Populations with Machine Learning*. 2018, ApJ, 859, 129.
- **E. O. Nadler**, A. Perko, and L. Senatore. *On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure*. 2018, JCAP, 1, 058.
- **E. O. Nadler**, S. P. Oh, and S. Ji. *On the apparent power law in CDM halo pseudo-phase space density profiles*. 2017, MNRAS, 470, 500.

Nth-Author Publications

- S. Wagner-Carena, J. Aalbers, S. Birrer, E. O. Nadler et al. From Images to Dark Matter: End-To-End Inference of Substructure From Hundreds of Strong Gravitational Lenses. 2203.00690 (ApJ submitted).
- S. Mau, **E. O. Nadler**, R. H. Wechsler, A. Drlica-Wagner, K. Bechtol *et al.* (DES Collaboration). *Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies*. 2201.11740 (ApJ submitted).
- o Major contributions: Performed cosmological decaying dark matter simulations and derived constraints.
- S. Bhattacharyya, S. Adhikari, A. Banerjee, S. More, A. Kumar, E. O. Nadler et al. The Signatures of Self-Interacting Dark Matter and Subhalo Disruption on Cluster Substructure. 2106.08292 (ApJ submitted).
- J. F. Wu, J. E. G. Peek, E. J. Tollerud, Y.-Y. Mao, **E. O. Nadler** *et al. Extending the SAGA Survey (xSAGA) I: Satellite Radial Profiles as a Function of Host Galaxy Properties.* 2022, ApJ, 927, 121.
- D. Nguyen, D. Sarnaaik, K. K. Boddy, **E. O. Nadler**, and V. Gluscevic. *Observational constraints on dark matter scattering with electrons*. 2021, PRD 104, 103521.
- A. Drlica-Wagner, J. Carlin, D. L. Nidever *et al.* (DELVE Collaboration, incl. **E. O. Nadler**). *The DECam Local Volume Exploration Survey: Overview and First Data Release.* 2021, ApJS, 256, 2.
- Y. Wang, E. O. Nadler, Y.-Y. Mao, S. Adhikari, R. H. Wechsler *et al.* UniverseMachine: *Predicting Galaxy Star Formation over Seven Decades of Halo Mass with Zoom-in Simulations*. 2021, ApJ 915, 116.
- o Major contributions: Interpretation of dwarf galaxy star formation history predictions, simulation analysis.
- E. Darragh-Ford, **E. O. Nadler**, S. McLaughlin, and R. H. Wechsler. *Searching for Dwarfs in Gaia DR2 Phase-space Data using Wavelet Transforms*. 2021, ApJ 915, 48.
- o Major contributions: Pilot study, search algorithm development, predictions for number of detected dwarfs.
- K. Maamari, V. Gluscevic, K. K. Boddy, E. O. Nadler, and R. H. Wechsler. *Bounds on velocity-dependent dark matter*—proton scattering from Milky Way satellite abundance. 2021, ApJL 907, L46.
- o Major contributions: Development of numerical techniques to constrain interacting dark matter models.
- Y.-Y. Mao, M. Geha, R. H. Wechsler, B. Weiner, E. J. Tollerud, **E. O. Nadler** *et al. The Saga Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way-like Galaxies.* 2021, ApJ, 907, 85.
- o Major contributions: Interpretation of SAGA observations in the context of galaxy–halo connection models.
- A. Drlica-Wagner, K. Bechtol, S. Mau, M. McNanna, **E. O. Nadler** *et al.* (DES Collaboration). *Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1*. 2020, ApJ, 893, 47.
- o Major contributions: Machine-learning modeling of satellite detection sensitivity, simulation analysis.

- S. Mau & W. Cerny et al. (DELVE Collaboration, incl. E. O. Nadler). Two Ultra-Faint Milky Way Stellar Systems Discovered in Early Data from the DECam Local Volume Exploration Survey. 2020, ApJ, 890, 136.
- C. E. Martínez-Vázquez et al. (DES Collaboration, incl. E. O. Nadler). Search for RR Lyrae stars in DES ultrafaint systems: Grus I, Kim 2, Phoenix II, and Grus II. 2019, MNRAS 490, 2183.
- K. M. Stringer *et al.* (DES Collaboration, incl. **E. O. Nadler**). *Identification of RR Lyrae stars in multiband, sparsely-sampled data from the Dark Energy Survey using template fitting and Random Forest classification.* 2019, AJ 158, 16.

White Papers

- A. Banerjee et al. Snowmass2021 Cosmic Frontier White Paper: Cosmological Simulations for Dark Matter Physics. 2022, 2203.07049
- K. Bechtol et al. Snowmass2021 Cosmic Frontier White Paper: Dark Matter Physics from Halo Measurements. 2022, 2203.07354.
- Y.-Y. Mao et al. Snowmass2021: Vera C. Rubin Observatory as a Flagship Dark Matter Experiment. 2022, 2203.07252.
- K. Boddy et al. Astrophysical and Cosmological Probes of Dark Matter. 2022, 2203.06380.
- S. Gezari et al. R2-D2: Roman and Rubin From Data to Discovery. 2022, 2202.12311.
- V. Gluscevic et al. Cosmological Probes of Dark Matter Interactions: The Next Decade. 2019, 1903.05140.
- J. Simon et al. Dynamical Masses for a Complete Census of Local Dwarf Galaxies. 2019, 1903.047435.
- K. Bechtol et al. Dark Matter Science in the Era of LSST. 2019, 1903.04425.
- A. Drlica-Wagner & Y.-Y. Mao et al. Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope. 2019, 1902.01055.
- o Major contributions: Forecasts and theoretical development for LSST dwarf galaxy dark matter constraints.

Interdisciplinary Studies

- M. Chu, B. S. Desikan, **E. O. Nadler** *et al. Signal in Noise: Exploring Meaning Encoded in Random Character Sequences with Character-Aware Language Models.* **2203.07911** (ACL accepted).
- B. S. Desikan, T. Hull, **E. O. Nadler** *et al.* comp-syn: *Perceptually Grounded Word Embeddings with Color.* 2020, Proceedings of the 28th International Conference on Computational Linguistics, 1744.
- D. Guilbeault, **E. O. Nadler** *et al. Color associations in abstract semantic domains.* 2020, Cognition 201, 104306.