Aula 12

Aula passada

- Cadeias de Markov
- Definição e exemplos
- Modelo On-Off
- Sem memória
- Distribuição no tempo
- Irredutibilidade
- Aperiodicidade

Aula de hoje

- Distribuição estacionária
- Tempo de chegada
- Distância de variação total
- Convergência
- Reversibilidade
- Passeios aleatórios

Cadeia de Markov

- Seja S o espaço de estados da CM, e P a matriz de transição de estados
- Seja X_t uma v.a. que determina o valor do estado da cadeia no instante de tempo t, para t = 0,1,2,...
- Estamos interessados em

$$\bullet P[X_t = s] = \pi_s(t)$$

Sabemos que para um estado incial, temos

$$\pi(t) = \pi(t-1)P = \pi(0)P^{t}$$

Mas para onde vai $\pi(t)$?

• será que depende em $\pi(0)$?

Possível Convergência

- Observação 1: X, não converge
 - X_t passeia pela cadeia para sempre, trocando de estado
- Observação 2: $P[X_t = s_i]$ pode convergir
 - Prob. de encontrar X_t no estado s_i , ou fração de vezes que X_t visita o estado s_i (intuitivamente)
- Estamos interessados em valores grandes de t

$$\lim_{t\to\infty}\pi(t)=\lim_{t\to\infty}\pi(0)P^t$$

• mas temos que formalizar este limite

Distribuição Estacionária

- Seja π um vetor de distribuição em uma CM com matriz de transição P
- Dizemos que π (vetor linha) é uma distribuição estacionária sse

$$\pi_s \ge 0$$
 $\sum_{s \in S} \pi_s = 1$ Vetor de probabilidade $\pi P = \pi$ $\pi_i = \sum_j \pi_j P_{ji}$, para todo i

- Ou seja, ao multiplicar π por P temos π de volta
 - "estacionou", não temos mais dinâmica!
- Repare que se $\pi(0)$ é uma distribuição estacionária, então $\pi(1) = \pi(0)P = \pi(0)$

Exemplo Modelo On-Off

$$P = \begin{pmatrix} .75 & .25 \\ .67 & .33 \end{pmatrix}$$

• Verificando: $\pi P = ?$

$$\pi_1 = 8/11*3/4+3/11*2/3=8/11$$
 $\pi_2 = 8/11*1/4+3/11*1/3=3/11$

- Se $\pi(0) = \pi$ então temos que $\pi(1) = \pi(0)P = \pi$
 - vetor de probabilidade está estacionado!

Tempo de Chegada

- T_{ij} : Tempo necessário para sair de um estado s_i e chegar a outro estado s_i (hitting time)
 - número de transições, T_{ij} é aleatório, $\tau_{ij} = E[T_{ij}]$ $T_{ij} = min\{t | X_t = s_i \land X_0 = s_i\}$
- Se i = j, temos τ_{ii} , chamado de tempo médio de retorno ao estado s_i
 - número médio de transições para sair e voltar ao estado s_i
- T_{ij} não depende de $\pi(t)$ pois estamos condicionando em estar em s_i

Tempo de Chegada

• Teorema: Para qualquer CM irredutível e aperiódica, para qualquer dois estados s_i e s_j , temos o seguinte:

$$P[T_{ij} < \infty] = 1$$

- Probabilidade de T_{ij} ser infinito é zero
- Não há chances de sair de s, ficar circulando pela cadeia e nunca chegar as_i

$$E[T_{ij}] = \tau_{ij} < \infty$$

- $E[T_{ii}] = \tau_{ii} < \infty$ Valor esperado do tempo de retorno para qualquer estado s, é finito
 - Boa notícia!

Distribuição Estacionária e Tempo de Retorno

 Teorema: Para qualquer CM irredutível e aperiódica, para qualquer estado s_i, temos a seguinte relação

$$\pi_i = \frac{1}{\tau_{ii}}$$

- Relação entre tempo médio de retorno e distribuição estacionária
- Conhecer um determina o outro!
- Intuição: na média o processo visita s_i 1 vez a cada τ_{ii} passos

Exemplo

$$P = \begin{pmatrix} .75 & .25 \\ .67 & .33 \end{pmatrix}$$

$$P = \begin{pmatrix} .75 & .25 \\ .67 & .33 \end{pmatrix}$$

$$\pi = (8/11 \ 3/11)$$

- Tempo médio de retorno do estado On (1) e Off (2) ?
- $\tau_{11} = 1/\pi_1 = 11/8 = 1.375$
- $\tau_{22} = 1/\pi_2 = 11/3 = 3.666$

Variação Total

- Como medir a distância entre dois vetores?
 - Precisamos disto para medir aproximação da distribuição estacionária
 - há muitas maneiras, uma delas é variação total
- Seja α e β dois vetores de probabilidade em S, a distância de variação total entre eles é dada por

$$d_{TV}(\alpha,\beta) = \frac{1}{2} \sum_{k} |\alpha_k - \beta_k|$$
 \leftarrow d_{TV} tem valor entre 0 e 1

• Sequência de vetores α_t converge para β em variação total sse

$$\lim_{t\to\infty} d_{TV}(\alpha_t, \beta) = 0$$

Convergência de CM

• Teorema: Para qualquer CM irredutível e aperiódica, para qualquer condição inicial $\pi(0)$, temos que

- Além disso, π é única!
 - CM sempre converge para a mesma distribuição estacionária, independente da condição inicial
 - Também chamado de estado estacionário, ou equilíbrio da CM

Encontrando π

- Ótima notícia, mas como encontrar π ?
 - 1) Método iterativo

$$\pi(t) = \pi(t-1)P = \pi(0)P^{t}$$

- fazer iteração até critério de convergência
- 2) Método direto

$$\pi = \pi P$$

• resolver sistema de equações, adicionando a equação

$$\sum_{i} \pi_{i} = 1$$

- 3) Monte Carlo
 - Usar própria cadeia para gerar amostras para estimar π_i ou estimar τ_{ii} para todo s_i

Modelo On-Off

- Distribuição estacionária?
- Sistemas de equações

$$\begin{array}{c|c}
1-p & Off \\
\hline
 & p
\end{array}$$

$$\begin{split} &\pi_{i} = \sum_{j} \pi_{j} P_{ji} \qquad \sum_{i} \pi_{i} = 1 \\ &\pi_{1} = \pi_{1} P_{11} + \pi_{2} P_{21} = (1 - p) \pi_{1} + q \pi_{2} \\ &\pi_{2} = \pi_{1} P_{12} + \pi_{2} P_{22} = p \pi_{1} + (1 - q) \pi_{2} \\ &\pi_{1} + \pi_{2} = 1 \end{split}$$

• Substituindo $\pi_2 = 1 - \pi_1$ na primeira equação, temos

$$\pi_1 = (1-p)\pi_1 + q(1-\pi_1) \rightarrow \pi_1 = \frac{q}{p+q}$$

$$e \quad \pi_2 = \frac{p}{p+q}$$

Reversibilidade

- Uma classe bem especial de CM
 - usada por muitos algoritmos, incluindo MCMC
- Reversível no tempo: evolução de X_t é o mesmo se t vai para frente ou para trás
- Uma CM é dita reversível para a distribuição de probabilidade π sse

$$\pi_i P_{ij} = \pi_j P_{ji}$$

Massa de prob = Massa de prob fluindo de s_i para s_j fluindo de s_j para s_i

- Se π existe então π é também distribuição estacionária
- Uma forma ainda mais forte de equilíbrio!

Passeios Aleatórios

- Seja G=(V, E) um grafo não direcionado
- Considere um andarilho que passeia pelo grafo de forma aleatória, sem preferência e sem memória

• escolhe uniformemente próximo vértice entre vizinhos

Andarilho

2

4

7

• $p_{12} = \frac{1}{2}$, $p_{13} = \frac{1}{2}$, $p_{21} = \frac{1}{3}$, $p_{23} = \frac{1}{3}$, $p_{24} = \frac{1}{3}$, ...

Passeios Aleatórios

- Nosso andarilho induz uma cadeia de Markov sobre o grafo G
 - forma de colocar o grafo em "movimento"
- X_t : vértice onde andarilho se encontra no tempo t
- Matriz de transição de probabilidade

$$P = D^{-1}A$$

- D⁻¹ é a matriz diagonal com o inverso do grau de cada vértice
- A é a matriz de adjacência de G
- Outra forma: $P_{ij} = 1/d_i$ se (i, j) são vizinhos, 0 c.c.
 - onde d_i é o grau do vértice i

Passeios Aleatórios

Qual a distribuição estacionária do andarilho ?

$$\pi_i = \frac{d_i}{K}$$
 $K = \sum_i d_i = 2m$ — $m \in o \text{ número de arestas em G}$

- Incrível: só depende do grau do vértice i
 - K é constante de normalização
 - Todos os vértices com mesmo grau em igual prob
- Além disso, esta CM é reversível

$$\pi_i P_{ij} = \pi_j P_{ji}$$
 ---- Podemos verificar

- tanto faz andarilho andar para frente ou para trás
- equilíbrio mais forte para esta CM

- Independente de onde andarilho inicia, distribuição de sua posição converge para π
 - prob de encontrar o andarilho no vértice i

Outro Exemplo

- CM é irredutível? Sim!
- CM é aperiódica? Sim!
- Qual é sua distribuição estacionária?
 - por inspeção, sem fazer conta

$$\pi_i = \frac{1}{4}$$
 para $i = 1, 2, 3, 4$

- Podemos verificar facilmente!
- CM é reversível? Não!

$$\pi_1 p_{12} = \frac{1}{4} \frac{6}{10} = \frac{3}{20} \neq \pi_2 p_{21} = \frac{1}{4} \frac{3}{10} = \frac{3}{40}$$

- Intuição: processo gira mais em uma direção (anti-horário)
 - direção do tempo (para frente ou para trás) determina direção mais girada, não sendo reversível