Circuit Implementation of Lead Compensator and Lag Compensator

For an RC circuit, current waveform leads in phase with reference to the waveform of the applied voltage.

Current i(t) leads input voltage $v_1(t)$. The output voltage $v_2(t)$ is inphase with the current. Therefore, voltage waveform at the output leads in phase the voltage waveform at the input.

In transfer function form:

$$G(s) = \frac{V_2(s)}{V_1(s)} = \frac{R_2}{R_2 + (R_1 \parallel \frac{1}{Cs})}$$

Substituting
$$(R_1 || \frac{1}{Cs}) = \frac{R_1 \times \frac{1}{Cs}}{R_1 + \frac{1}{Cs}} = \frac{R_1}{R_1 Cs + 1}$$

$$G(s) = \frac{R_2}{R_2 + \frac{R_1}{R_1 C s + 1}}$$

$$= \frac{R_2 (R_1 C s + 1)}{R_2 R_1 C s + R_2 + R_1}$$

$$= \left(\frac{R_2}{R_1 + R_2}\right) \frac{\left(R_1 C s + 1\right)}{\left(\frac{R_2}{R_1 + R_2} R_1 C s + 1\right)}$$

Let,
$$R_1C = T$$
 & $\frac{R_2}{R_1 + R_2} = \alpha$

 $G(s) = \alpha \frac{(Ts+1)}{(\alpha Ts+1)}$ [It is obvious that 0<\alpha<1, as in lead compensator.]

This circuit's dc-gain is α . Putting an amplifier with gain $(1/\alpha)$ in cascade can bring the dc-gain to unity.

Current
$$i(t)$$
 leads input voltage $v_{\rm in}(t)$ by $\theta_1 = \tan^{-1} \frac{1}{\omega \tau_{12}}$

$$au_{12}$$
 is time constant of the whole circuit, i.e., $au_{12} = (R_1 + R_2)C$

Current
$$i(t)$$
 lead output voltage $v_0(t)$ by $\theta_2 = \tan^{-1} \frac{1}{\omega \tau_2}$

$$au_2$$
 is time constant of the vertical branch, i.e., $au_2 = R_2 C$

Considering waveform of current i(t) as reference, both $v_{in}(t)$ and $v_{o}(t)$ lags the current waveform. Input voltage lags current by θ_1 and output voltage by θ_2 .

As
$$\tau_{12} > \tau_2$$
, $\tan^{-1} \frac{1}{\omega \tau_{12}} < \tan^{-1} \frac{1}{\omega \tau_2} \implies \theta_1 < \theta_2$

Waveform of $v_{\rm o}(t)$ is more lagging than the waveform of $v_{\rm in}(t)$ with reference to the current waveform. The output voltage lags the input voltage.

In transfer function form:
$$G(s) = \frac{R_2 + \frac{1}{Cs}}{R_1 + R_2 + \frac{1}{Cs}}$$
$$= \frac{R_2 C s + 1}{(R_1 + R_2) C s + 1}$$
$$= \frac{(R_2 C s + 1)}{(\frac{R_1 + R_2}{R_2} R_2 C s + 1)}$$

Let,
$$R_2C = T$$
 & $\frac{R_1 + R_2}{R_2} = \alpha$

$$G(s) = \frac{(Ts+1)}{(\alpha Ts+1)}$$
 [It is obvious that $\alpha > 1$, as in lag compensator.]

This circuit's dc-gain is 1.