Document **AN2** Appl. No. 10/054,967

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) Internati nal Patent Classification 6: C07K 14/52, A61K 38/19

A1

(11) International Publicati n Number:

WO 97/15594

(43) International Publication Date:

1 May 1997 (01.05.97)

(21) International Application Number:

PCT/US96/16959

(22) International Filing Date:

23 October 1996 (23.10.96)

(30) Priority Data:

60/006,051

24 October 1995 (24.10.95)

US

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM CORPORATION [US/US]; Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): WHITE, John, R. [GB/US]; 332 Jennifer Drive, Coatesville, PA 19320 (US). PELUS, Louis [US/US]; 24 Jacqueline Circle, Richboro, PA 18954 (US). LI, Haodong [CN/US]; 11033 Rutledge Drive, Gaithersburg, MD 20878 (US). KREIDER, Brent, L. [US/US]; 13014 Praire Knoll Court, Germantown, MD 20874 (US).
- (74) Agents: HAN, William, T. et al.; SmithKline Beecham Corporation, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(81) Designated States: AL, AM, AU, BB, BG, BR, CA, CN, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NOVEL CHEMOKINE FOR MOBILIZING STEM CELLS

(57) Abstract

Novel chemokines for mobilizing stem cells are provided. Methods of mobilizing stem cells are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	2432	8)4.3. +
AT	Austria	GE	Georgia	MW	
AU	Australia	GN	Guinea	MX	Mexico
BB	Barbados	GR	Greece	NE	Niger
BE	Belgium	HU ·	Hungary	, NL	Netherlands
BF	Burkina Faso	IE	freland	NO	Norway
BG	Bulgaria	IT	Italy	NZ	New Zealand
BJ	Benin	JP		PL.	Poland
BR	Brazil	KE	Japan	PT	Portugal
BY	Belarus	KG	Kenya	RO	Romania
CA	Canada	· KP	Kyrgystan	RU	Russian Federation
CF	Central African Republic	N.F	Democratic People's Republic	SD	Sudan
CG	Congo	V.D	of Korea	SE	Sweden
СН	Switzerland	KR	Republic of Korea	SG	Singapore
CI	Côte d'Ivoire	KZ	Kazakhstan	SI	Slovenia
CM	Cameroon	. u	Liechtenstein	SK	Slovakia
CN	China	LK	Sri Lanka	SN	Senegal
CS	Czechoslovakia	LR	Liberia	SZ	Swaziland
cz	Czech Republic	LT	Lithuania	TD	Chad
DE	Germany	LU	Luxembourg	TG	Togo ·
DK	Denmark	LV	Latvia	TJ	Tajikistan
EE	Estonia	MC	Monaco	TT	Trinidad and Tobago
ES	Spain	MD	Republic of Moldova	UA	Ukraine
FI	Spam Finland	MG	Madagascar	UG	Uganda
FR	•	ML	Mali '	US	United States of America
GA	France	MN	Mongolia	UZ.	Uzbekistan
UA	Gabon	MR	Mauritania	VN	Vict Nam

NOVEL CHEMOKINE FOR MOBILIZING STEM CELLS

Background of the Invention

5

10

15

20

25

30

Hematopoietic cells have very important roles in a number of different processes in the body. For example, leukocytic hematopoietic cells are important in maintaining the body's defenses against disease; monocytes, macrophages and lymphocytes are involved in potentiating the body's responses to infection and tumors, while granulocytes are involved in overcoming infection, parasites and tumors. Platelets, another hematopoietic cell, form an important element in the hemostatic mechanism through initiating thrombus formation by their adhesion to each other and to damaged surfaces, and by the release of factors which assist in the formation of the fibrin clot. Erythrocytes are mainly involved in the transport of oxygen.

All of these blood cells are derived from a single progenitor cell called the hematopoietic stem cell. Stem cells are both pluripotent, in that they give rise to all different cell types, and capable of self renewal. Hematopoietic stem cells make up only a small percentage of bone marrow cells and are normally quiescent. However, when stimulated to divide, these stem cells produce a differentiated daughter cell with great proliferative potential. Sequential rounds of division and differentiation give rise to an enormous amplification of cell numbers which is necessary for the production of mature blood cells. This process of division and differentiation is subject to regulation at many levels to control cell production.

Numerous studies have led to the definition of functions of several hematopoietic regulatory messengers. These biomolecules have been characterized as stimulatory, e.g., Colony Stimulating Factors (CSFs) and interleukins (IL-1, IL-3, IL-5 and IL-9); inhibitory, e.g., transforming growth factor-β (TGF-β), interferon, prostaglandin E, tumor necrosis factor, macrophage inflammatory protein-1 (MIP-1), lactoferrin, acidic isoferritins, AcSKDP, and pEEDCK (a synthetic HP5B monomer); or enhancing, e.g., TGF-β, IL-6, IL-4, IL-9, IL-11, MIP-1, MIP-2, leukemia inhibitory factor and *Steel* factor. Pelus et al. *Experimental Hematology* 1994, 22:239-247. Stimulatory biomolecules have been found to promote division of

particular cell lineages. For example, G-CSF derives neutrophil production, while erythropoietin promotes formation of erythrocytes. .

A number of these biomolecules and additional agents have been found to induce the mobilization of hematopoietic stem cells.

5

10

15

20

25

30

A single injection of IL-8 has been shown to induce mobilization of pluripotent stem cells that are able to provide permanent reconstitution of myeloid cells and of T and B lymphocytes. Laterveer et al. *Blood* 1995, 85(8):2269-2275. IL-8 belongs to a family of pro-inflammatory molecules called chemokines. This family has been divided into two subfamilies, the CXC and CC chemokines, based on whether the first two cysteine residues in a conserved motif are adjacent to each other or are separated by an intervening residue. In general, CXC, which include IL-8, melanoma growth-stimulating activity (MGSA) and platelet factor 4 (PF4), are potent chemoattractants and activators of neutrophils but not monocytes. In contrast, CC chemokines, which include RANTES, monocyte chemotactic protein 1 (MCP-1) and MIP-1, are chemoattractants for monocytes but not neutrophils.

Stem cell inhibitors (SCIs) such as the CC chemokines, murine and human MIP-1 α (LD78), have also been shown to enhance the release and mobilization of cells into the peripheral blood. WO 94/28916; Simm et al. *Blood* 1994, 84:2937.

Increased mobilization of stem cells in patients treated with sequentially administered interleukin-3 and GM-CSF compared with GM-CSF alone has been reported by Brugger et al. *Blood* 1992, 79:1193-1200. In addition, it has been shown that the absolute number of peripheral blood progenitor cells can be expanded *in vitro* by culture in a cocktail of cytokines, usually including SCF, IL-3, and either IL-6 or IL-1. Bodine, D. *Experimental Hematology* 1995, 23:293-295.

SK&F 107647, a hematoregulatory agent containing an ethylene bridge in place of the cysteine bridge of HP5B, has been demonstrated to be a potent stimulator of *in vitro* myelopoiesis. Pelus et al. *Experimental Hematology* 1994, 22:239-247. Injection of SK&F 107647 in normal mice resulted in a two- to six-fold increase in serum colony-stimulating activity. Administration of this agent over 4 days resulted in significant increases in the number of granulocyte-macrophage.

erythroid, and multipotential progenitor cells, as well as stimulating their cell cycle rates.

It has also been found that pretreatment with stem cell stimulating factor such as G-CSF can expand the pool of progenitor cells susceptible for mobilization by these agents, further increasing their mobilizing effect. For example, the combination of MIP-1 α with G-CSF was found to increase white cell count in the blood as compared to G-CSF alone. Simm et al. *Blood* 1994, 84:2937. Co-administration of SCI with G-CSF caused the enhanced mobilization of a number of cell types including neutrophils, monocytes, eosinphils, lymphocytes and basophils. WO 94/28916. Administration of G-CSF alone had no effect on the release of eosinphils or basophils after 2 days of administration. Similar effects were observed when other agents such as GM-CSF, f-MET-Leu-Phe or IL-8 were coadministered with SCIs.

New chemokines have now been identified which also mobilize stem cells in an animal. These chemokines can be administered alone, or in combination with a colony stimulating factor or hemoregulatory agent to enhance mobilization of stem cells.

Summary of the Invention

5

10

15

20

25

30

An object of the present invention is to provide novel chemokines for the mobilization of stem cells in an animal.

Another object of the invention is to provide a method of mobilizing stem cells.

Brief Description of the Drawings

Figure 1 shows the sequence and alignment of the novel chemokines with known chemokines.

Detailed Description of the Invention

In recent years, the availability of recombinant cytokines and the use of hematopoietic stem cell support have resulted in the widespread application of high-dose chemotherapy regimens designed to improve the success of cancer therapy.

Despite significant advances, however, delayed recovery of hematopoiesis remains an important source of morbidity and mortality for patients treated with this approach. Since their discovery over 20 years ago, peripheral blood hematopoietic progenitor cells (PBPCs) have been increasingly used to supplement and even replace bone marrow as the source of hematopoietic support in a variety of situations.

5

10

15

20

25

30

Purified populations of cells are increasingly being used therapeutically and it would therefore be advantageous to be able to increase the number of circulating blood cells. It is useful to be able to harvest hematopoietic cells prior to chemotherapy or radiotherapy, thus, protecting them from harmful effects of this therapy; after therapy, the cells can be returned to the patient. It would therefore be highly beneficial to provide an agent which promoted the release and mobilization of a number of hematopoietic cells. Such an agent would be useful for enhancing the response to infection.

Peripheral blood cell transplantation is an important procedure in the treatment of cancer patients with high dose chemotherapy. In such treatment, patients are treated to induce clinical remission of their cancer, then during the remission, successive treatment with CSF, for example, by priming with cyclophosphamide then administration of G-CSF, causes eventual mobilization of cells from the bone marrow to the peripheral circulation for harvesting of leukophoresed blood; then the patient is given high dose chemotherapy or radiotherapy and the resultant bone marrow failure is compensated for by infusion of the stored blood or cells collected previously. This procedure may be modified by the omission of the initial induction of remission, and whole blood may be collected rather than leukophoresed blood. The mobilization effects of the present invention makes it a candidate both to replace CSFs in such cancer treatment regimes, and also to complement the mobilization effects of CSFs in combined treatments.

The two subfamilies of chemokines (CXC and CC) are ever expanding and presumably the individual members have similar, if slightly divergent, functions. The chemokines disclosed in the present invention are new members of the CC subfamily and are structurally similar to MCP-1, MCP-3, hRANTES, mMIP-1 α , and mMIP-1 β (Figure 1). The effect of these chemokines in inducing leukophilia will find clinical

and veterinary application in all utilities where the raising of hematopoietic cell levels is important. For example, a chemokine of the present invention can be used to enhance immune responses against chronic infections, particularly parasitic and bacterial infections. It may also have a role in promoting wound healing.

5

10

The chemoattractant activity of these chemokines can be boosted by pretreatment with a colony stimulating factor such as G-CSF or GM-CSF. Alternatively, the hematoregulatory peptides SK&F 107647 (currently in clinical trials), FLT-3 ligand (Immunex) or any other G-CSF mimetics (peptide and nonpeptide) may be used. These stimulants may have an even more dramatic effect on these novel chemokines than on those already known due to their slight structural differences. For example, CKB-6 in combination with G-CSF was effective as a mobilizing factor. As known in the art, these peptides are useful in stimulating myelopoiesis in patients suffering from reduced myelopoietic activity, including bone marrow damage, agranulocytosis and aplastic anemia. Also included are patients who have depressed bone marrow function due to immunosuppressive treatment to suppress tissue reactions (i.e., bone marrow transplant surgery). They may also be used to promote more rapid regeneration of bone marrow after cytostatic chemotherapy and radiation therapy for neoplastic and viral diseases. There may also be a value where patients have serious infections due to a lack of immune response following bone marrow failure.

20

15

The hematopoietic stem cells released and harvested in the manner described above may be useful for subsequent *in vitro* and *ex vivo* manipulations to deliver gene products in gene therapy. Another embodiment is co-administration with cytotoxic drugs.

25

The following examples are provided for illustrative purposes only and are not intended to limit the invention.

EXAMPLES

Example 1: Mobilization Assay for Novel Chemokines as Single Agents

30

A panel of novel chemokines will be tested as individual stem cell mobilization agents in BDF 1 mice. These chemokines include, but should not be

limited to: Ckβ-1, Ckβ-4, Ckβ-6, Ckβ-7, Ckβ-8, Ckβ-9, Ckβ-10, Ckβ-11, Ckβ-12, Ckβ-13, and Ckα-1. Each agent will be assayed in concentrations of 50, 10, and 2 μg/mouse and administered via SC, IM, or a PO route. The kinetics of chemokine mobilization of stem cells will be monitored in 15 minute intervals over a period of 60 minutes by collecting blood samples from the mice by cardiac puncture. The mobilized stem cells will be collected by a densing gradient (Lympholyte M). Cells are washed then frozen for future usage. The mobilization profile of the blood differentials will be assessed using a Technicon H1 hematology analyzer. Mobilization of inflammatory cells such as PMN's, eosinophils, and basophils will be taken into account when evaluating the overall potential inflammatory profile. The chemokine IL-8, which mobilizes hematopoietic stem cells as a single factor, will be included in these studies as a positive control.

Example 2: Mobilization Assay for Novel Chemokines in Combination with Hematostimulants

In these studies, hematostimulants will be assayed in combination with the aforementioned chemokines as mobilization factors. These agents include: G-CSF, GM-CSF, SK&F 107647, and FLT-3 ligand. However, any G-CSF mimetic (hematostimulants which are not colony stimulating factors like G-CSF or GMCSF, but have hematopoietic activity) may be used. In combination studies, G-CSF will be administered IP to mice four days prior to the novel chemokines. As in Example 1, the dose of chemokine and time of blood collection will be varied. Combination studies with hematostimulant pre-treatment will utilize MIP-1\alpha as the positive control.

Example 3: CFU Assay

5

10

15

20

25

30

Blood samples collected during the mobilization phase will be assessed for colony forming units (CFU-GM) at days 7 and 14. Cells are adjusted to 2X10⁶ cells/ml in McCoys medium with 15 x FBS serum. A single layer agar system utilizing the following is used: McCoys medium enriched with nutrients (NaHCO₃,

pyruvate, amino acids and vitamins); 0.3% Bacto agar. To this is added cells from the blood samples (final concentration = $2X10^5$ cells/ml). The agar plates are incubated at 37°C, 5% CO₂ for 7 days. Colonies of proliferating cells (CFU-GM) are counted utilizing a microscope. In addition, early hematopoietic high proliferative potential (HPP) progenitors, will be counted in the day 14 CFU cultures.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT: SmithKline Beecham Corporation and Human Genome Sciences, Inc.
- (ii) TITLE OF INVENTION: Novel Chemokine for Mobilizing Stem Cells
 - (iii) NUMBER OF SEQUENCES: 19
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham Corporation
 - (B) STREET: 709 Swedeland Road, P.O. Box 1539
 - (C) CITY: King of Prussia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19406-0939
 - (v) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: DISKETTE, 3.5 INCH, 1.44 Mb STORAGE
 - (B) COMPUTER: IBM 486
 - (C) OPERATING SYSTEM: WINDOWS FOR WORKGROUPS
 - (D) SOFTWARE: WORD PERFECT 5.1
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: not yet assigned
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/006,051
 - (B) FILING DATE: October 24, 1995
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: William T. Han
 - (B) REGISTRATION NUMBER: 34,344
 - (C) REFERENCE/DOCKET NUMBER: P50382
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 610-270-5219
 - (B) TELEFAX: 610-270-5090

(2)	INFORMATION	FOR	SEQ	ID	NO:	1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 72
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

THR LYS THR GLU SER SER SER ARG GLY PRO TYR HIS PRO SER GLU

1 10 15

CYS CYS PHE THR TYR THR THR TYR LYS ILE PRO ARG GLN ARG ILE
20 25 30

MET ASP TYR TYR GLU THR ASN SER GLN CYS SER LYS PRO GLY ILE
35 40 45

VAL PHE ILE THR XAA ARG GLY HIS SER VAL CYS THR ASN PRO SER
50 55 60

ASP LYS TRP VAL GLN ASP TYR ILE LYS ASP MET LYS
65 70

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ALA SER ASN PHE ASP CYS CYS LEU GLY TYR THR ASP ARG ILE LEU

1 5 10 15

HIS PRO LYS PHE ILE VAL GLY PHE THR ARG GLN LEU ALA ASN ASX 20 25 30

GLY CYS ASP ILE ASN ALA ILE ILE PHE HIS THR LYS LYS LEU
35 40 45

SER VAL CYS ALA ASN PRO LYS GLN THR TRP VAL LYS TYR ILE VAL
50 55 60

ARG LEU LEU SER LYS LYS VAL LYS ASN MET
65 70

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70
 - (B) TYPE: Amino Acid

(D) TOPOLOGY: Linear

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: VAL VAL ILE PRO SER PRO CYS CYS MET PHE PHE VAL SER LYS ARG 5 10 ILE PRO GLU ASN ARG VAL VAL SER TYR GLN LEU SER SER ARG SER 20 25 THR CYS LEU LYS GLY GLY VAL ILE PHE THR THR LYS LYS GLY GLN 35 40 GLN PHE CYS GLY ASP PRO LYS GLN GLU TRP VAL GLN ARG TYR MET 50 55 LYS ASN LEU ASP ALA LYS GLN LYS LYS ALA 65 70
- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 60
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 82
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

 GLU ASN PRO VAL LEU LEU ASP ARG PHE HIS ALA THR SER ALA ASP

 1 5 10 15

 CYS CYS ILE SER TYR THR PRO ARG SER ILE PRO CYS SER LEU LEU

 20 25 30

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 79
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: SER ASP ALA GLY GLY ALA GLN ASP CYS CYS LEU LYS TYR SER GLN 5 10 15 ARG LYS ILE PRO ALA LYS VAL VAL ARG SER TYR ARG LYS GLN GLU 20 25 PRO SER LEU GLY CYS SER ILE PRO ALA ILE LEU PHE LEU PRO ARG 35 40 LYS ARG SER GLN ALA GLU LEU CYS ALA ASP PRO LYS GLU LEU TRP 50 55 VAL GLN GLN LEU MET GLN HIS LEU ASP LYS THR PRO SER PRO GLN 70 LYS PRO ALA GLN
- (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 82
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION:
 SEQ ID NO:
 7:

 PHE ASN PRO GLN GLY LEU ALA GLN PRO ASP ALA LEU ASN VAL PRO

 1
 5
 10
 15

 SER THR CYS CYS PHE THR PHE SER SER LYS LYS LYS ILE SER LEU GLN
 20
 25
 30

 ARG LEU LYS SER TYR VAL ILE THR THR SER ARG CYS PRO GLN LYS
 35
 40
 45

ALA	VAL	ILE	PHE	ARG	THR	LYS	LEU	GLY	LYS	GLU	ILE	CYS	ALA	ASP
				50					55					60
PRO	LYS	GLU	LYS	TRP	VAL	GLN	ASN	TYR	MET	LYS	HIS	LEU	GLY	ARG
				65					70					75
LYS	ALA	HIS	THR	LEU	LYS	THR								
				80										

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 83
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: PRO ALA PRO THR LEU SER GLY THR ASN ASP ALA GLU ASP CYS CYS 5 10 LEU SER VAL THR GLN-LYS PRO ILE PRO GLY TYR ILE VAL ARG ASN 20 25 PHE HIS TYR LEU LEU ILE LYS ASP GLY CYS ARG VAL PRO ALA VAL 40 VAL PHE THR THR LEU ARG GLY ARG GLN LEU CYS ALA PRO PRO ASP 50 55 GLN PRO TRP VAL GLU ARG ILE ILE GLN ARG LEU GLN ARG THR SER 65 75 ALA LYS MET LYS ARG ARG SER SER
- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 82
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION:
 SEQ ID NO: 9:

 ARG SER GLN PRO LYS VAL PRO GLU TRP VAL ASN THR PRO SER THR

 1
 5
 10
 15

 CYS CYS LEU LYS TYR TYR GLU LYS VAL LEU PRO ARG ARG LEU VAL
 20
 25
 30

 VAL GLY TYR ARG LYS ALA LEU ASN CYS HIS LEU PRO ALA ILE ILE
 35
 40
 45

 PHE
 VAL
 THR
 LYS
 ARG
 ASN
 ARG
 GLU
 VAL
 CYS
 THR
 ASN
 PRO
 ASN
 ASP

 ASP
 TRP
 VAL
 GLN
 GLU
 TYR
 ILE
 LYS
 ASP
 PRO
 ASN
 LEU
 PRO
 LEU
 TS

 PRO
 THR
 ARG
 ASN
 LEU
 SER
 THR
 THR

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 68
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- ⊕ 65
- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
- ALA SER PRO TYR SER SER ASP THR THR PRO CYS CYS PHE ALA TYR

 1 5 10 15

 ILE ALA ARG PRO LEU PRO ARG ALA HIS ILE LYS GLU TYR PHE TYR

 20 25 30

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

- (2) INFORMATION FOR SEQ ID NO: 13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 69
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 78
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14: LEU ALA GLN PRO ASP ALA ILE ASN ALA PRO VAL THR CYS CYS TYR

ASN PHE THR ASN ARG LYS ILE SER VAL GLN ARG LEU ALA SER TYR
20 25 30

ARG ARG ILE THR SER SER LYS CYS PRO LYS GLU ALA VAL ILE PHE 35 40 45

LYS THR ILE VAL ALA LYS GLU ILE CYS ALA ASP PRO LYS GLN LYS
50 55 60

TRP VAL GLN ASP SER MET ASP HIS LEU ASP LYS GLN THR GLN THR
65 70 75

PRO LYS THR

- (2) INFORMATION FOR SEQ ID NO: 15:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 82
- (B) TYPE: Amino Acid
- (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

SER PRO GLN GLY LEU ALA GLN PRO VAL GLY ILE ASN THR SER THR 10 15 THR CYS CYS TYR ARG PHE ILE ASN LYS LYS ILE PRO LYS GLN ARG 30 LEU GLU SER TYR ARG ARG THR THR SER SER HIS CYS PRO ARG GLU 40 45 ALA VAL ILE PHE LYS THR LYS LEU ASP LYS GLU ILE CYS ALA ASP 50 55 PRO THR GLN LYS TRP VAL GLN ASP PHE MET LYS HIS LEU ASP LYS 65 70 75 LYS THR GLN THR PRO LYS LEU 80

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 72
 - (B) TYPE: Amino Acid
 - (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

SER ALA LYS GLU LEU ARG CYS GLN CYS ILE LYS THR TYR SER LYS 5

10

PRO PHE HIS PRO LYS PHE ILE LYS GLU LEU ARG VAL ILE GLU SER

15

60

20 25

GLY PRO HIS CYS ALA ASN THR GLU ILE ILE VAL LYS LEU SER ASP

35 40 45

55

GLY ARG GLU LEU CYS LEU ASP PRO LYS GLU ASN TRP VAL GLN ARG 50

VAL VAL GLU LYS PHE LEU LYS ARG ALA GLU ASN SER

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 71
- (B) TYPE: Amino Acid
- (D) TOPOLOGY: Linear .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

(2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 69
- (B) TYPE: Amino Acid
- (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

GLU ALA GLU GLU ASP GLY ASP LEU GLN CYS LEU CYS VAL LYS THR

1 5 5 5 7 10 7 10 15

THR SER GLN VAL ARG PRO ARG HIS ILE THR SER LEU GLU VAL ILE
20 25 30

LYS ALA GLY PRO HIS CYS PRO THR ALA GLN LEU ILE ALA THR LEU
35 40 45

LYS ASN GLY ARG LYS ILE CYS LEU ASP LEU GLN ALA PRO LEU TYR
50 55 55 60

LYS LYS ILE LEU LYS LYS LEU GLU SER

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 72
- (B) TYPE: Amino Acid
- (D) TOPOLOGY: Linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

What is claimed is:

- 1. A chemokine comprising SEQ ID NO: 1 capable of mobilizing stem cells.
- 2. A chemokine comprising SEQ ID NO: 2 capable of mobilizing stem cells.
- 3. A chemokine comprising SEQ ID NO: 3 capable of mobilizing stem cells.
- 4. A chemokine comprising SEQ ID NO: 4 capable of mobilizing stem cells.
- 5. A chemokine comprising SEQ ID NO: 5 capable of mobilizing stem cells.
- 6. A chemokine comprising SEQ ID NO: 6 capable of mobilizing stem cells.
- 7. A chemokine comprising SEQ ID NO: 7 capable of mobilizing stem cells.
- 8. A chemokine comprising SEQ ID NO: 8 capable of mobilizing stem cells.
- 9. A chemokine comprising SEQ ID NO: 9 capable of mobilizing stem cells.
- 10. A chemokine comprising SEQ ID NO: 10 capable of mobilizing stem cells.
- 11. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 1.
- 12. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 2.
- 13. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 3.
- 14. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 4.
- 15. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 5.
- 16. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 6.
- 17. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 7.
- 18. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 8.
- 19. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 9.

20. A method of mobilizing stem cells in an animal comprising administering to an animal an effective amount of a chemokine comprising SEQ ID NO: 10.

- 21. The method of claims 11-20 further comprising administering a colony stimulating factor.
- 22. The method of claims 11-20 further comprising administering a hematoregulatory agent.

Substitute Sheet (Rule 26)

-<u>|</u>C. -

INTERNATIONAL SEARCH REPORT

. . .tional application No. PCT/US96/16959

A. CLA	ASSIFICATION OF SUBJECT MATTER :C07K 14/52; A61K 38/19	•				
US CL:530/434; 424/85.1 According to International Patent Classification (IPC) or to both national classification and IPC						
	LDS SEARCHED					
Minimum o	socumentation searched (classification system follow	red by classification symbols)				
U.S. :	530/434; 424/85.1					
Documenta	tion searched other than minimum documentation to t	he extent that such documents are included	in the fields scarched			
Electronic of	data base consulted during the international search (name of data base and, where practicable	, search terms used)			
1	erms: chemokine, mip					
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.			
×	WO 95 18228 A1 (FORSSMANN Claim 1, SEQ ID NO:6) 06 July 1995 (06.07.95)	1,11			
Υ			21,22			
A			2-10,12-20			
X Y	WO 95/17092 A1 (HUMAN GEN June 1995 (29.06.95) Claims 10 and 8.		1,4,5,11, 14 ,15			
			21,22			
A	•					
			2 , 3 , 6 - 10,12,13,16-20			
	Xeren o restor to the least of	a on militar i di permitira di se	- * * * -			
X Furth	er documents are listed in the continuation of Box (C. See patent family annex.				
	cial categories of cited documents:	"T" Inter document published after the inter date and not in conflict with the applica				
. 10 t	ament defining the general state of the art which is not considered to of particular relevance	principle or theory underlying the inve				
"L" doc	ier document published on or after the international filing date ument which may throw doubts on priority chim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone	ed to involve an inventive ≪cp			
· spec	d to establish the publication date of another citation or other rial reason (as specified)	"Y" document of particular relevance; the				
"O" doc	ument referring to an oral disclosure, use, exhibition or other	combined with one or more other such being obvious to a person skilled in the	documents, such combination			
	amont published prior to the international filing date but later than priority date claimed	*&* document member of the same patent i	limily			
Date of the a	Date of the actual completion of the international search Date of mailing of the international search report					
26 DECEN	IBER 1996	D 3 FEB 1997				
	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer	1 R. 1			
Box PCT	D.C. 2023	LORRAINE M. SPECTOR				
	. (703) 305-3230	Telephone No. (703) 308-0196				

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

- .tional application No. PCT/US96/16959

	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		<u></u>
Category*	Citation of document, with indication, where appropriate, of the relevant p	assages	Relevant to claim N
Y	Brugger et al. Mobilization of peripheral blood progenitor sequential administration of Interleukin-3 and granulocyte-macrophage colony-stimulating factor following polychemo with etoposide, ifosfamide, and cisplatin. Blood. 01 March Vol. 79, No. 5, pages 1193-1200, see entire document.	therany	21-22
A	Horuk. R. Molecular properties of the chemokine receptor family. TiPS. May 1994, Vol. 15, pages 159-165.	r ·	1-22
A	Laterveer et al. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and learn myelolymphoid repopulating ability. Blood. 15 April Vol. 85, No. 8, pages 2269-2275, see entire document.	One-	21-22 1-20
		٠.	
		·	
.*			
,	*		· · · · · · · · · · · · · · · · · · ·
			·
	A Region Communication of the		·
ŀ			

