BLP Discrete Choice Model With Choice Sets

Albert Tan

February 20, 2017

1 Model Setup

There are T = 200 markets and in each market, there are J = 10 products (excluding the outside option), The utility of consumer i consuming product j in market t is given by

$$u_{ijt} = x_{it}'\beta_i + \alpha_i p_{jt} + \xi_{jt} + \epsilon_{ijt}$$

where

- x_{it} : Product-market specific characteristics.
- p_{it}: Product-market specific prices
- ξ_{jt} : Product-market specific mean zero shocks
- ϵ_{ijt} : i.i.d. individual preference shocks ~ T1EV
- β_i : individual i's taste on attributes
- α_i : individual i's taste on price.

The utility of consuming the outside option, u_{i0t} is normalized to ϵ_{i0t} . Indvidual i's taste($\beta_i \& \alpha_i$) is affected by i's logged income I_i and V_i . I_i is drawn from $N(\mu_j, \sigma_j^I)$ where μ_j and σ_j^I are the mean and standard deviation of income in market j where individual i resides. On the other hand, V_i is drawn from N(0, C) where C is as follow:

$$\begin{bmatrix}
\sigma_1 & 0 & 0 & 0 & 0 \\
0 & \sigma_2 & 0 & 0 & 0 \\
0 & 0 & \sigma_3 & 0 & 0 \\
0 & 0 & 0 & \sigma_4 & 0 \\
0 & 0 & 0 & 0 & \sigma_5
\end{bmatrix}$$

The equation for $\begin{pmatrix} \beta_i \\ \alpha_i \end{pmatrix}$ can be written as follow:

$$\left(\begin{array}{c} \beta_i \\ \alpha_i \end{array}\right) = \left(\begin{array}{c} \bar{\beta} \\ \bar{\alpha} \end{array}\right) + \Pi I_i + V_i$$

1.1 Exposure to different subsets of products

Due to variation in advertising, some individuals only observe a subset of the products instead of all of the products. Specifically, with probability $p_{j,all}$, every individual in market j observe all the products and with probability $1 - p_{j,all}$, every individual in market j only observes products 1 to 5. The outside option is always observed. The market share of product j in market t, s_{it}^{all} conditional on every individual in market t observing all the products? (2 points)

$$\sum_{i=1}^{n} \frac{exp(\underbrace{\begin{bmatrix} x_{j,t}^{'} \ p_{j,t} \end{bmatrix}}_{1\times 5} \underbrace{\begin{bmatrix} \underbrace{\bar{\beta}}_{\bar{\alpha}} \\ \bar{\alpha} \end{bmatrix}}_{5\times 1} + \underbrace{\begin{pmatrix} \pi \\ 0 \\ 0 \\ 0 \end{pmatrix}}_{1\times 1} \underbrace{\underbrace{I_{i}}_{5\times 5} \times \underbrace{B_{i}}_{5\times 1}}_{5\times 1} + \underbrace{\xi_{j,t}}_{5\times 1}$$

The market share of product j in market t, s_{jt}^{subset} conditional on every individual in market t observing only products 1 to 5:

For the first five products in each market, we have:

$$s_{jt}^{subset} = \sum_{i=1}^{n} \frac{exp(\underbrace{\begin{bmatrix} x_{j,t}^{'} \ p_{j,t} \end{bmatrix}}_{1 \times 5} \underbrace{\begin{bmatrix} \frac{\bar{\beta}}{\bar{\alpha}} \\ \frac{\bar{\beta}}{\bar{\alpha}} \end{bmatrix}}_{1 \times 5} + \underbrace{\begin{pmatrix} \pi \\ 0 \\ 0 \\ 0 \end{pmatrix}}_{5 \times 1} \underbrace{\underbrace{I_{i}}_{1 \times 1} + \underbrace{L}_{5 \times 5} \times \underbrace{B_{i}}_{5 \times 1}}_{1 \times 1} + \xi_{j,t})}_{1 \times 5}$$

For the next five products in each market, s_{jt}^{subset} equals to zero

2 Optimization Setup

2.1 MPEC

The parameters are estimated via MPEC. The optimization problem is given by:

$$\min_{\theta,\,\eta,\,\delta} \quad \eta' W \eta$$

subject to

$$g(\delta - x'\begin{pmatrix} \bar{\beta} \\ \bar{\alpha} \end{pmatrix}) = \eta$$

$$s(p_t, x_t, \delta; \theta) = S$$

$$\pi \geq 1$$

where $\theta = (\bar{\beta}, \bar{\alpha}, \pi)$

3 Test Files and Computation

The data are files are as follow:

- MktData1.csv: Contains the market shares of each product in each market, product-market specific characteristics, and prices
- MktData2.csv: Contains the mean of income, standard deviation of income, probability of every individual observing all products and probability of every individual observing products 1 to 5.

The results of the test files are given by:

Parameters:

Estimates
1.78
1.39
1.33
0.59
-2.69
1.16
0.85
0.74
0.74
0.32
1.00

The covriance matrix is as follow:

28.706	1.148	0.971	-0.698	-0.146	-0.012	-0.283	0.256	-0.024	-0.060	21.751
1.148	0.180	0.146	-0.094	0.013	0.001	-0.044	0.015	-0.002	0.006	0.898
0.971	0.146	0.121	-0.079	0.007	0.000	-0.032	0.014	-0.002	0.003	0.754
-0.698	-0.094	-0.079	0.054	-0.003	-0.001	0.020	-0.011	0.002	-0.001	-0.540
-0.146	0.013	0.007	-0.003	0.011	0.002	-0.005	-0.004	0.000	0.005	-0.095
-0.012	0.001	0.000	-0.001	0.002	0.003	-0.001	0.001	-0.002	0.001	-0.007
-0.283	-0.044	-0.032	0.020	-0.005	-0.001	0.035	-0.003	-0.002	-0.002	-0.228
0.256	0.015	0.014	-0.011	-0.004	0.001	-0.003	0.006	-0.001	-0.002	0.191
-0.024	-0.002	-0.002	0.002	0.000	-0.002	-0.002	-0.001	0.002	0.000	-0.018
-0.060	0.006	0.003	-0.001	0.005	0.001	-0.002	-0.002	0.000	0.002	-0.039
21.751	0.898	0.754	-0.540	-0.095	-0.007	-0.228	0.191	-0.018	-0.039	16.508