Criptografia Aplicada

Atividade prática com assinatura digital

Assinatura Digital

Algoritmos necessários

- Geração de chaves: (pk,sk) = KeyGen
- Assinatura: s = Sign(m, sk)
- Verificação: Verify(m, s, pk) $\begin{cases} \text{"válida" se s = Sign(m, sk)} \\ \text{"inválida" caso contrário} \end{cases}$

Assinatura digital e hash

- Normalmente, esquemas de assinatura são usados juntamente com uma função de hash criptográfica
- O hash da mensagem é assinado, ao invés da mensagem

Atividade

- Vamos trabalhar com assinaturas digitais no python!
- Vamos utilizar a biblioteca <u>PyCryptodome</u>
- Para instalar no linux, basta rodar o comando:
 - pip install pycryptodome
 - o pip install pycryptodomex (alternativa se não funcionar a anterior)
- Importação da biblioteca:
 - o from Cryptodome.Cipher import AES
 - o from Crypto.Cipher import AES

Atividade 1

 Crie uma função python para verificar a assinatura digital RSA disponibilizada no Canvas na semana passada

iii Arquivos	•	:
₩ Ø assinatura.bin	0	:
∰ Ø msg.txt	•	:
Ø thais.publica.pem	0	:

Essa função será equivalente a rodar:

openssl dgst -sha256 -verify thais.publica.pem -signature assinatura.bin msg.txt

Ver RSAsig.py para um esqueleto do código

Atividade 1 - Dicas

- Crie uma função genérica de verificação, que receba a mensagem, assinatura e chave em bytes e retorna True ou False;
 - o a leitura em arquivo com f.read() retorna o conteúdo em bytes
- Se desejarem printar o conteúdo dos arquivos na tela, decodificar os bytes
 - o ex: print (mensagem.decode())
- Para printar assinaturas, primeiro é necessário codificar em base64 e depois decodificar os bytes:
 - o ex: print(b64encode(signature).decode())

Atividade 2

- Complemente o código com funções de geração de chaves e assinatura
- A geração de chaves deve receber o tamanho da chave
- Crie uma função de assinatura que receba a mensagem e a chave em bytes e retorne a assinatura em RSA
- Alguma função demorou mais tempo para executar?
- Tente fazer um código mais genérico, que funcione também para ECDSA

Referências

Documentação PyCryptodome:

- Assinaturas Digitais
- Funções de Hash
- Chaves RSA

