Foundations of Machine Learning

Module 6: Neural Network
Part B: Multi-layer Neural
Network

Sudeshna Sarkar IIT Kharagpur

Limitations of Perceptrons

- Perceptrons have a monotinicity property:
 If a link has positive weight, activation can only increase as the corresponding input value increases (irrespective of other input values)
- Can't represent functions where input interactions can cancel one another's effect (e.g. XOR)
- Can represent only linearly separable functions

A solution: multiple layers

Power/Expressiveness of Multilayer Networks

- Can represent interactions among inputs
- Two layer networks can represent any Boolean function, and continuous functions (within a tolerance) as long as the number of hidden units is sufficient and appropriate activation functions used
- Learning algorithms exist, but weaker guarantees than perceptron learning algorithms

Multilayer Network

Two-layer back-propagation neural network

The back-propagation training algorithm

 Step 1: Initialisation
 Set all the weights and threshold levels of the network to random numbers uniformly distributed inside a small range

Backprop

- Initialization
 - Set all the weights and threshold levels of the network to random numbers uniformly distributed inside a small range
- Forward computing:
 - Apply an input vector x to input units
 - Compute activation/output vector z on hidden layer

$$z_j = \varphi(\sum_i v_{ij} x_i)$$

Compute the output vector y on output layer

$$y_k = \varphi(\sum_j w_{jk} z_j)$$

y is the result of the computation.

Learning for BP Nets

- Update of weights in W (between output and hidden layers):
 - delta rule
- Not applicable to updating V (between input and hidden)
 - don't know the target values for hidden units z1, Z2, ... ,ZP
- Solution: Propagate errors at output units to hidden units to drive the update of weights in V (again by delta rule) (error BACKPROPAGATION learning)
- Error backpropagation can be continued downward if the net has more than one hidden layer.
- How to compute errors on hidden units?

Derivation

• For one output neuron, the error function is $F = \frac{1}{2} (2 - \hat{x})^2$

$$E = \frac{1}{2}(y - \hat{y})^2$$

• For each unit j, the output o_j is defined as

$$o_j = \varphi(net_j) = \varphi(\sum_{k=1}^n w_{kj}o_k)$$

The input net_j to a neuron is the weighted sum of outputs o_k of previous n neurons.

• Finding the derivative of the error: $\partial E = \partial E \partial o_j \partial net_j$

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}}$$

Derivation

• Finding the derivative of the error:
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ij}} \\ \frac{\partial net_j}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \left(\sum_{k=1}^n w_{kj} o_k \right) = o_i \\ \frac{\partial o_j}{\partial net_j} = \frac{\partial}{\partial net_j} \varphi \left(net_j \right) = \varphi \left(net_j \right) \left(1 - \varphi \left(net_j \right) \right)$$

Consider E as as a function of the inputs of all neurons $Z = \{z_1, z_2, ...\}$ receiving input from neuron j,

$$\frac{\partial E(o_j)}{\partial o_i} = \frac{\partial E(net_{z_1}, net_{z_2}, \dots)}{\partial o_i}$$

taking the total derivative with respect to o_i , a recursive expression for the derivative is obtained:

$$\frac{\partial E}{\partial o_{j}} = \sum_{l} \left(\frac{\partial E}{\partial net_{z_{l}}} \frac{\partial net_{z_{l}}}{\partial o_{j}} \right) = \sum_{l} \left(\frac{\partial E}{\partial o_{l}} \frac{\partial o_{l}}{\partial net_{z_{l}}} w_{jz_{l}} \right)$$

$$\frac{\partial E}{\partial o_{j}} = \sum_{l} \left(\frac{\partial E}{\partial net_{z_{l}}} \frac{\partial net_{z_{l}}}{\partial o_{j}} \right) = \sum_{l} \left(\frac{\partial E}{\partial o_{l}} \frac{\partial o_{l}}{\partial net_{z_{l}}} w_{jz_{l}} \right)$$

- Therefore, the derivative with respect to o_i can be calculated if all the derivatives with respect to the outputs o_{z_1} of the next layer – the one closer to the output neuron – are known.
- Putting it all together: $\frac{\partial E}{\partial w_{ij}} = \delta_j o_i$

$$\frac{\partial E}{\partial w_{ij}} = \delta_j o_i$$

With

$$\delta_{j} = \frac{\partial E}{\partial o_{j}} \frac{\partial o_{j}}{\partial net_{j}} = \begin{cases} (o_{j} - t_{j}) o_{j} (1 - o_{j}) & \text{if } j \text{ is an output neuron} \\ (\sum_{Z} \delta_{z_{l}} w_{jl}) o_{j} (1 - o_{j}) & \text{if } j \text{ is an inner neuron} \end{cases}$$

To update the weight w_{ij} using gradient descent, one must choose a learning r $\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$

Backpropagation Algorithm

Thank You