Domain Adaptation简介

柯水洲

2022.7.21

Domain Adaptation 是迁移学习中的一个重要方向,每年在各大顶会上都有很多文章被接受,以 CVPR 2022 为例,其中 transfer/low-shot/long-tail learning 在众多 Topic 中排第四,有 400+ 投稿,接受的文章近百。

Domain shift: Training and testing data have different distributions.

Domain adaptation

Domain Shift p(x,y)=p(x|y)p(y)=p(y|x)p(x)

输入的边缘概率分布p(x) 输出标签的边缘概率分布p(y) 对应的条件概率分布p(x|y)

Domain Adaptation

Source Domain (with labeled data)

Knowledge of target domain

- Idea: training a model by source data, then fine-tune the model by target data
- Challenge: only limited target data, so be careful about overfitting

Domain Adaptation

Source Domain (with labeled data)

Knowledge of target domain

Domain Adversarial Training

Domain Adversarial Training

Domain Adversarial Training

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

SOURCE

TARGET

MNIST-M

SVHN

MNIST

GTSRB

Метнор	SOURCE	MNIST	SYN NUMBERS	SVHN	SYN SIGNS	
METHOD	TARGET	MNIST-M	SVHN	MNIST	GTSRB	
SOURCE ONLY		.5749	.8665	.5919	.7400	
PROPOSED APPROACH		.8149 (57.9%)	.9048 (66.1%)	. 7107 (29.3%)	.8868 (56.7%)	
TRAIN ON TARGET		.9891	.9244	.9951	.9987	

技术现状

Outlook

Partial DA

Open Set DA (Busto et al. 2017)

Open Set DA (Saito et al. 2018)

https://openaccess.thecvf.com /content_CVPR_2019/html/Yo u_Universal_Domain_Adaptati on_CVPR_2019_paper.html

Universal DA

技术现状

Domain Adaptation

Source Domain (with labeled data)

Knowledge of target domain

Testing Time Training (TTT)

https://arxiv.org/ abs/1909.13231

unlabeled

Large amount of unlabeled data

labeled

MICCAI 2018手术器械分割:达芬奇,肾切除术,9种objects (8种器械+组织),11种语义关系(切割,烧灼,扎环等)

TORS数据集: 达芬奇, 口咽癌手术, 5种objects, (4种器械+ 组织),5种语义关系(操作,抓握,烧灼等)

数据由自己标注: 按照(object1, predicate, object2)的模式, 如A monopolar curved scissor is cutting tissue.

GT: A monopolar curved scissor GT: A prograsp forcep retracting cutting tissue

tissue

GT: A clip applier is clipping a clip

GT: A suction is suctioning blood and a spatulated monopolar cautery is cauterizing tissue

(a) Source domain

(b) Target domain

Label Smoothing: 分类中防止过拟合的方法,用于模型校准

Domain Adaptation: 源域和目标域往往属于同一类任务, 但是分

布不同。下图可视化展示不同域数据之间的分布情况

Domain Shift: 背景、器械、组织

提取特征的类别分布

Domain Adversarial Training

实验 结果

实验方面:分别在SD和TD使用常用的无监督和半监督设置: Unsupervised DA、zero-shot、one-shot、few-shot 进行实验验证。 验证集不变,区别只在于训练集上: UDA, 在SD训练模型 的直接用于TD评估; zero-shot, 使用TD中的覆盖了85%词汇的 caption进行训练; One-shot, 包括所有词语类别的最少图像样本

			BLEU-1↑	BLEU-2↑	BLEU-3↑	BLEU-4↑	METEOR↑	ROUGE↑	CIDEr↑
SD		M ² Transformer [18]	0.5054	0.4543	0.4055	0.3646	0.4441	0.6355	1.7878
		Ours	0.5228	0.4730	0.4262	0.3861	0.4567	0.6495	2.2598
TD	UDA	M ² Transformer [18]	0.2302	0.1059	0.0469	0.0267	0.1286	0.2956	0.1305
		Ours	0.2493	0.1150	0.0517	0.0289	0.1390	0.3129	0.1517
	Zero-shot	M ² Transformer [18]	0.3204	0.2463	0.1923	0.1502	0.2371	0.4413	0.2874
		Ours	0.3118	0.2406	0.185	0.1409	0.2401	0.4336	0.3395
	One-shot	M ² Transformer [18]	0.3746	0.3285	0.2939	0.2646	0.3449	0.5101	0.6367
		Ours	0.4042	0.372	0.3433	0.3161	0.4066	0.5385	0.8615
	Few-shot	M ² Transformer [18]	0.4096	0.3803	0.3532	0.3265	0.4203	0.5489	0.9770
		Ours	0.4141	0.3888	0.3637	0.3375	0.4357	0.5538	0.9828

Domain Adaptation

Source Domain (with labeled data)

Knowledge of target domain

Domain Generalization

https://ieeexplore.ieee.org/document/8578664

Training

Testing

Training

Testing

定义1: X、Y是输入和输出变量, P_{xy}是数据分布。

定义2: S表示training domains。每个domain之间的数据分布P不同。DG的目的就是从多个training domains中学习一函数h,再test domain中达到精度最高。

Definition 1 (Domain). Let \mathcal{X} denote a nonempty input space and \mathcal{Y} an output space. A domain is composed of data that are sampled from a distribution. We denote it as $\mathcal{S} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim P_{XY}$, where $\mathbf{x} \in \mathcal{X} \subset \mathbb{R}^d$, $y \in \mathcal{Y} \subset \mathbb{R}$ denotes the label, and P_{XY} denotes the joint distribution of the input sample and output label. X and Y denote the corresponding random variables.

Definition 2 (Domain generalization). As shown in Fig. 2, in domain generalization, we are given M training (source) domains $S_{train} = \{S^i \mid i = 1, \cdots, M\}$ where $S^i = \{(\mathbf{x}^i_j, y^i_j)\}_{j=1}^{n_i}$ denotes the i-th domain. The joint distributions between each pair of domains are different: $P^i_{XY} \neq P^j_{XY}, 1 \leq i \neq j \leq M$. The goal of domain generalization is to learn a robust and generalizable predictive function $h: \mathcal{X} \to \mathcal{Y}$ from the M training domains to achieve a minimum prediction error on an unseen test domain S_{test} (i.e., S_{test} cannot be accessed in training and $P^{test}_{XY} \neq P^i_{XY}$ for $i \in \{1, \cdots, M\}$):

$$\min_{h} \mathbb{E}_{(\mathbf{x},y)\in\mathcal{S}_{test}}[\ell(h(\mathbf{x}),y)], \tag{1}$$

where \mathbb{E} is the expectation and $\ell(\cdot, \cdot)$ is the loss function.

多任务学习:针对一批数据,一次性学习多个任务(不针对新的domain)

迁移学习:再source任务训练的模型,用来增强target任务结果,更多使用Pretrain

Finetune的策略 (target数据不可见,且source和target任务一样的,分布不同)

领域适应:可以访问测试数据,实现测试任务上的精度最高 (target不可见)

元学习:根据已有的数据和任务,学习一个函数用于新的数据(是DG中常用的学习 策略)

终身学习:不断地接受新的数据、任务的同时,不遗忘以前学习的任务(对以前数据可见)

zero-shot学习:根据已有学习对未见过的数据进行分类 (DG的target同类不同分布)

Learning paradigm	Training data	Test data	Condition	Test access
Multi-task learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{Y}^i \neq \mathcal{Y}^j, 1 \leq i \neq j \leq n$	\checkmark
Transfer learning	\mathcal{S}^{src} , \mathcal{S}^{tar}	\mathcal{S}^{tar}	$\mathcal{Y}^{src} eq \mathcal{Y}^{tar}$	\checkmark
Domain adaptation	$\mathcal{S}^{src}, \mathcal{S}^{tar}$	\mathcal{S}^{tar}	$P(\mathcal{X}^{src}) \neq P(\mathcal{X}^{tar})$	\checkmark
Meta-learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$\mathcal{Y}^i \neq \mathcal{Y}^j, 1 \leq i \neq j \leq n+1$	\checkmark
Lifelong learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^i arrives sequentially	\checkmark
Zero-shot learning	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$\mathcal{Y}^{n+1} \neq \mathcal{Y}^i, 1 \leq i \leq n$	×
Domain generalization	$\mathcal{S}^1,\cdots,\mathcal{S}^n$	\mathcal{S}^{n+1}	$P(\mathcal{S}^i) \neq P(\mathcal{S}^j), 1 \le i \ne j \le n+1$	×

Q&A

