CONCOURS SMF JUNIOR

ÉQUIPE TISANE

Problème 3

Auteurs : Chloé Papin Etienne Perrot Victor Quach

May 11, 2017

1 Problème 3

Commençons par démontrer le résultat préliminaire suivant.

Lemme 1.1. Soient $(k_i)_{1 \le i \le n}$ des entiers naturels. On note S leur somme.

Pour $j \in \mathbb{Z}$, on note u_j le nombre de n-uplets d'entiers naturels $(x_i)_{1 \leq i \leq n}$ vérifiant :

$$\sum_{1 \le i \le n} x_i = j \quad et \quad \forall i \in [\![1,n]\!], x_i \le k_i.$$

Alors,

$$\forall j \in \mathbb{Z}, u_j = u_{S-j},$$

et la suite $(u_j)_{1 \leq j \leq S}$ est croissante sur $]-\infty, \lceil \frac{S}{2} \rceil]$ c'est-à dire sur $]-\infty, \frac{S}{2}] \cap \mathbb{Z}$.

On peut remarquer que cette propriété implique que, si $j_1 \leq j_2$, alors $u_{j_2} - u_{j_1}$ est du même signe que $S - (j_1 + j_2)$.

En effet $u_{j_2} - u_{j_1} = u_{\min(j_2, S - j_2)} - u_{\min(j_1, S - j_1)}$, dont les indices sont dans $\left] - \infty, \frac{S}{2} \right] \cap \mathbb{Z}$, où u est croissante, et $\min(j_2, S - j_2) - \min(j_1, S - j_1)$ est du signe de $S - (j_1 + j_2)$ par une simple disjonction des 3 cas possibles (en utilisant $j_1 \leq j_2$).

Preuve:

Initialisation Pour n=1, le résultat est évident car les u_j sont tous égaux à 1 si $j \in [0, k_1]$, et nuls ailleurs.

Hérédité Soit $n \geq 1$. Supposons la propriété vraie au rang n.

Soient $(k_i)_{1 \le i \le n+1}$ des entiers naturels, de somme S, et soit $(u_j)_{1 \le j \le S}$ définie comme au-dessus.

Soit $S_p = \sum_{i=1}^n k_i$ et posons $(v_j)_{1 \le j \le S_p}$ la suite associée aux $(k_i)_{1 \le i \le n}$.

On remarque alors que (en fixant le terme x_{n+1} dans la somme de x_i):

$$\forall j \in \mathbb{Z}, u_j = \sum_{l=0}^{k_{n+1}} v_{j-l}$$

Soit $j \in \mathbb{Z}$

$$u_{S-j} = \sum_{l=0}^{k_{n+1}} v_{S-j-l}$$

$$= \sum_{l=0}^{k_{n+1}} v_{S-j-(k_{n+1}-l)}$$

$$= \sum_{l=0}^{k_{n+1}} v_{S_p-j+l}$$

$$= \sum_{l=0}^{k_{n+1}} v_{j-l}$$

$$= u_j$$

Soit
$$j \in \left] -\infty, \frac{S}{2} - 1 \right] \cap \mathbb{Z}$$
 Alors

$$u_{j+1} - u_j = v_{j+1} - v_{j-k_{n+1}}$$

Or, $j+1 \le j-k_{n+1}$ et $S_p-(j+1+j-k_{n+1})=S-(2j+1)\le 0$

Donc d'après la remarque,

$$u_{j+1} - u_j \le 0$$

Cela assure la croissance de u sur $\left]-\infty, \frac{S}{2}\right] \cap \mathbb{Z}$. La propriété énoncée est donc vraie au rang n+1, ce qui achève de démontrer la récurrence.

Appliquons maintenant cette propriété à notre problème, avec les notations de l'énoncé. En prenant la suite u définie dans le résultat préliminaire, on a $c_p = u_p$. On sait aussi que $(u_i)_{i\in\mathbb{Z}}$ est maximale en i=p, et nulle en dehors de [0,2p].

De plus, par définition de u,

$$\sum_{i \in \mathbb{Z}} u_i = \sum_{0 \le i \le 2p} u_i = \prod_{1 \le i \le n} (k_i + 1).$$

(Il s'agit du nombre de *n*-uplets d'entiers naturels $(x_i)_{1 \le i \le n}$ vérifiant : $\forall i \in [1, n], x_i \le n$ k_i .)

D'où:

$$u_p \ge \frac{\prod_{1 \le i \le n} (k_i + 1)}{2p + 1} \ge \frac{\prod_{1 \le i \le n} k_i}{2p + 1}$$

$$c_p \ge \frac{\prod_{1 \le i \le n} k_i}{2p + 1} \tag{1}$$

c'est-à-dire

En appliquant Cauchy-Schwarz:

$$2p = \sum_{1 \le i \le n} k_i \le \sqrt{n} \sqrt{\sum_{1 \le i \le n} k_i^2}.$$

La minoration que nous avons mise en évidence dans (1) assure donc que celle de l'énoncé est vérifiée, en prenant par exemple une constante $C_n = \frac{1}{2\sqrt{n}}$ (en minorant grossièrement $\frac{1}{2p+1}$ par $\frac{1}{2\times 2p}$, pour avoir une constante indépendante de p).