Probability Density Estimation, Smoothed Mean Estimators

Mark M. Fredrickson (mfredric@umich.edu)

Computational Methods in Statistics and Data Science (Stats 406)

Probability Density Estimation

Setting

Suppose we have IID data with density f:

$$X_i \sim F$$
, $F(x) = \int_{-\infty}^x f(t) dt$

Goal: Estimate f.

Setting

Suppose we have IID data with density f:

$$X_i \sim F$$
, $F(x) = \int_{-\infty}^x f(t) dt$

Goal: Estimate f.

We've seen the ECDF:

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$

2

Setting

Suppose we have IID data with density f:

$$X_i \sim F$$
, $F(x) = \int_{-\infty}^x f(t) dt$

Goal: Estimate f.

We've seen the ECDF:

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$

The empirical density function is then a discrete probability mass function

$$\widehat{f}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i = x)$$

2

If we think X is a continuous random variable, the empirical density function seems unsatisfactory.

If we think X is a continuous random variable, the empirical density function seems unsatisfactory.

We will try to **smooth** the density function in some way so that $\widehat{f}_n(x) \neq 0$ for x not observed in the sample.

3

If we think X is a continuous random variable, the empirical density function seems unsatisfactory.

We will try to **smooth** the density function in some way so that $\widehat{f}_n(x) \neq 0$ for x not observed in the sample.

Key idea: if there are many observations X_i close to x, this implies f(x) high (and vice-versa).

3

If we think X is a continuous random variable, the empirical density function seems unsatisfactory.

We will try to **smooth** the density function in some way so that $\widehat{f}_n(x) \neq 0$ for x not observed in the sample.

Key idea: if there are many observations X_i close to x, this implies f(x) high (and vice-versa).

We will start with the <u>univariate case</u>. Later we'll consider <u>bivariate extensions</u>. After that, we'll see smoothing for <u>conditional distributions</u>.

Simulated Data: Mixture of N(0,1) anf N(3,1)

Histograms

A histogram estimator creates bins k bins

$$[t_j,t_{j+1}), \quad j=1,\ldots,k$$

and counts then number of observations X_i that fall in each bin:

$$V_j=\sum_{i=1}^n I(X_i\in[t_j,t_{j+1}))$$

5

Histograms

A histogram estimator creates bins k bins

$$[t_j,t_{j+1}), \quad j=1,\ldots,k$$

and counts then number of observations X_i that fall in each bin:

$$V_j = \sum_{i=1}^n I(X_i \in [t_j, t_{j+1}))$$

Then an estimator of the density at point x is:

$$\widehat{f}(x) = \frac{1}{n} \sum_{j=1}^{k} \frac{V_j}{t_{j+1} - t_j} I(x \in [t_j, t_{j+1}))$$

5

• $\widehat{f}(x)$ is piece-wise constant (i.e., the same for all x in the same bin)

- $\hat{f}(x)$ is piece-wise constant (i.e., the same for all x in the same bin)
- ullet We usually make all bins have the same width $h=t_{j+1}-t_j$

- $\widehat{f}(x)$ is piece-wise constant (i.e., the same for all x in the same bin)
- ullet We usually make all bins have the same width $h=t_{j+1}-t_j$
- There is a tradeoff between smoothness (large h) and precision (small h).

- $\hat{f}(x)$ is piece-wise constant (i.e., the same for all x in the same bin)
- ullet We usually make all bins have the same width $h=t_{j+1}-t_j$
- There is a tradeoff between smoothness (large h) and precision (small h).
- There are several options for setting the bin width and locations (see Rizzo, chapter 10).

Multiple Histograms

If all bins have width h, there is only one "parameter" for the histogram: where the bins are centered.

Multiple Histograms

If all bins have width h, there is only one "parameter" for the histogram: where the bins are centered.

Average Shifted Histogram

Rather than estimate f with a single histogram, we can average over m histograms:

$$f_{\mathsf{ASH}}(x) = \frac{1}{m} \sum_{j=1}^{m} \widehat{f}_j(x)$$

where \hat{f}_j is a histogram with bin size h start at $t^{(j)} = t_0 + h/m$.

Average Shifted Histogram

Rather than estimate f with a single histogram, we can average over m histograms:

$$f_{\mathsf{ASH}}(x) = \frac{1}{m} \sum_{j=1}^{m} \widehat{f}_j(x)$$

where \hat{f}_j is a histogram with bin size h start at $t^{(j)} = t_0 + h/m$.

- > library(ash)
- $> ash_x \leftarrow ash1(bin1(x), 5, kopt = c(0,0))$

As we increase m (number of histograms in ASH) the approximation will get more smooth. What happens when $m \to \infty$?

As we increase m (number of histograms in ASH) the approximation will get more smooth. What happens when $m \to \infty$?

Suppose all of the data is within [-1,1] and we want to estimate f(0).

As we increase m (number of histograms in ASH) the approximation will get more smooth. What happens when $m \to \infty$?

Suppose all of the data is within [-1,1] and we want to estimate f(0).

We will use histograms with bin width one and we will discard any bins that exceed [-1,1]. As we slide the histograms across, what proportion line up one point?

As we increase m (number of histograms in ASH) the approximation will get more smooth. What happens when $m \to \infty$?

Suppose all of the data is within [-1,1] and we want to estimate f(0).

We will use histograms with bin width one and we will discard any bins that exceed [-1,1]. As we slide the histograms across, what proportion line up one point?

Another way of saying this is, if we keep averaging at a single point as $m \to \infty$, what proportion of neighbors within +1/-1 are included?

Triangular Distribution

As $m \to \infty$, the ASH becomes

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} I(X_i \in [x-h, x+h]) \left(1 - \frac{|x-X_i|}{h}\right)$$

Density objects in R

R has a built in function to perform density estimation:

```
> fx <- density(x, kernel = "triangular")</pre>
```

Density objects in R

R has a built in function to perform density estimation:

```
> fx <- density(x, kernel = "triangular")</pre>
```

The object is list of two vectors: x values from the sample and $\hat{f}(x)$ estimates

Plotting in Base R

```
> plot(fx, ylim = c(0, 0.3))
> truef <- function(x) { 0.75 * dnorm(x) + 0.25 * dnorm(x, mean = 3) }
> curve(truef(x), add = TRUE, col = "red")
```

density.default(x = x, kernel = "triangular")

Plotting in ggplot

```
> ggplot(data.frame(x), aes(x = x)) + geom_density(kernel = 'triangular')
+ stat_function(fun = truef, col = 'red')
```


Kernel Density Estimators

In general, we can write:

$$\widehat{f}_{K,h}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

where

- *h* is the "bandwidth" of the estimator
- \bullet K(t) is a probability density symmetric about 0 (the "kernel")

Kernel Density Estimators

In general, we can write:

$$\widehat{f}_{K,h}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

where

- h is the "bandwidth" of the estimator
- K(t) is a probability density symmetric about 0 (the "kernel")

Optimal bandwidth depends on the true f. Heuristics discussed in Rizzo.

Some common kernels (with support)

• Gaussian
$$K(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$$
 $(t\in(-\infty,\infty))$

Some common kernels (with support)

- Gaussian $K(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$ $(t\in(-\infty,\infty))$
- Epanenchnikov: $K(t) = \frac{3}{4}(1-t^2)$ $(t \in [-1,1])$

Some common kernels (with support)

- Gaussian $K(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$ $(t\in(-\infty,\infty))$
- Epanenchnikov: $K(t) = \frac{3}{4}(1-t^2)$ $(t \in [-1,1])$
- ullet Rectangular: $K(t)=1/2 \ (t\in [-1,1])$

- Gaussian $K(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$ $(t\in(-\infty,\infty))$
- Epanenchnikov: $K(t) = \frac{3}{4}(1-t^2)$ $(t \in [-1,1])$
- Rectangular: K(t) = 1/2 $(t \in [-1,1])$
- Triangular: $K(t) = 1 |t| \ (t \in [-1, 1])$

- Gaussian $K(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$ $(t\in(-\infty,\infty))$
- Epanenchnikov: $K(t) = \frac{3}{4}(1-t^2)$ $(t \in [-1,1])$
- Rectangular: K(t) = 1/2 $(t \in [-1, 1])$
- ullet Triangular: $K(t)=1-|t|\;(t\in[-1,1])$
- Biweight: $K(t) = (15/16)(1-t^2)^2$ $(t \in [-1,1])$

- Gaussian $K(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$ $(t\in(-\infty,\infty))$
- Epanenchnikov: $K(t) = \frac{3}{4}(1-t^2)$ $(t \in [-1,1])$
- Rectangular: K(t) = 1/2 $(t \in [-1, 1])$
- Triangular: K(t) = 1 |t| $(t \in [-1, 1])$
- Biweight: $K(t) = (15/16)(1-t^2)^2$ $(t \in [-1,1])$
- Cosine: $K(t) = (\pi/4)\cos(t\pi/2)$ $(t \in (-\infty, \infty))$

- Gaussian $K(t)=(1/\sqrt{2\pi})\exp(-t^2/2)$ $(t\in(-\infty,\infty))$
- Epanenchnikov: $K(t) = \frac{3}{4}(1-t^2)$ $(t \in [-1,1])$
- Rectangular: K(t) = 1/2 $(t \in [-1, 1])$
- Triangular: K(t) = 1 |t| $(t \in [-1, 1])$
- Biweight: $K(t) = (15/16)(1-t^2)^2$ $(t \in [-1,1])$
- Cosine: $K(t) = (\pi/4)\cos(t\pi/2)$ $(t \in (-\infty, \infty))$

• Gaussian
$$K(t) = (1/\sqrt{2\pi}) \exp(-t^2/2)$$
 $(t \in (-\infty, \infty))$

- Epanenchnikov: $K(t) = \frac{3}{4}(1-t^2)$ $(t \in [-1,1])$
- Rectangular: $K(t) = 1/2 \ (t \in [-1, 1])$
- Triangular: $K(t) = 1 |t| \ (t \in [-1, 1])$
- Biweight: $K(t) = (15/16)(1-t^2)^2$ $(t \in [-1,1])$
- Cosine: $K(t) = (\pi/4)\cos(t\pi/2)$ $(t \in (-\infty, \infty))$

Properties of the kernel usually transfer to \hat{f} . E.g., if K is smooth, then $f_{K,h}$ is also smooth.

Multivariate Density Smoothing

Suppose we have $X = (X_1, ..., X_d)$ from a multivariate density. We can create multivariate kernels two ways:

• Use multivariate kernels (e.g., the multivariate standard Normal distribution):

$$\widehat{f}(x_1,\ldots,x_d) = \frac{1}{nh_1h_2\ldots h_d} \sum_{i=1}^n K\left(\frac{x_1-X_{i1}}{h_1},\frac{x_2-X_{i2}}{h_2},\ldots,\frac{x_d-X_{id}}{h_d}\right)$$

Multivariate Density Smoothing

Suppose we have $X = (X_1, ..., X_d)$ from a multivariate density. We can create multivariate kernels two ways:

• Use multivariate kernels (e.g., the multivariate standard Normal distribution):

$$\widehat{f}(x_1,\ldots,x_d) = \frac{1}{nh_1h_2\ldots h_d} \sum_{i=1}^n K\left(\frac{x_1-X_{i1}}{h_1},\frac{x_2-X_{i2}}{h_2},\ldots,\frac{x_d-X_{id}}{h_d}\right)$$

 Create a kernel from the product of unidimensional kernels ("independent joint distribution")

$$\widehat{f}(x_1,\ldots,x_d) = \frac{1}{nh_1h_2\ldots h_d} \sum_{i=1}^n \prod_{j=1}^d K\left(\frac{x_j - X_{ij}}{h_j}\right)$$

> ggplot(nhanes, aes(x = sys_mean, y = dia_mean)) + geom_point()

- > library(MASS)
- > contour(kde2d(nhanes\$sys_mean, nhanes\$dia_mean))

Mixture distributions

Recall our definition of a mixture distribution

$$F(x) = \sum_{i=1}^{n} w_i F_i(x)$$

where

- Each F_i is a valid CDF.
- All the w_i sum to 1.

Mixture distributions

Recall our definition of a mixture distribution

$$F(x) = \sum_{i=1}^{n} w_i F_i(x)$$

where

- Each F_i is a valid CDF.
- All the *w_i* sum to 1.

If each CDF has a PDF/PMF f_i , then

$$f(x) = \frac{d}{dx} \sum_{j=1}^{m} w_i F_i(x) = \sum_{j=1}^{m} w_i f_i(x)$$

Location-scale mixtures

Suppose we have a mixture where the F_j come from a single location-scale family:

$$F_j(x) = G\left(\frac{x - \mu_j}{\sigma}\right)$$

Location-scale mixtures

Suppose we have a mixture where the F_j come from a single location-scale family:

$$F_j(x) = G\left(\frac{x - \mu_j}{\sigma}\right)$$

A slight extension to a result from the last homework gives us the density:

$$f_j(x) = \frac{g\left(\frac{x-\mu_j}{\sigma}\right)}{\sigma}$$

Location-scale mixtures

Suppose we have a mixture where the F_j come from a single location-scale family:

$$F_j(x) = G\left(\frac{x - \mu_j}{\sigma}\right)$$

A slight extension to a result from the last homework gives us the density:

$$f_j(x) = \frac{g\left(\frac{x - \mu_j}{\sigma}\right)}{\sigma}$$

The mixture density is then

$$f(x) = \sum_{i=1}^{n} w_i \frac{g\left(\frac{x-\mu_j}{\sigma}\right)}{\sigma}$$

Density estimation as a mixture

Now we can see that kernel density estimator is fitting a mixture distribution:

$$\widehat{f}_{K,h}(x) = \sum_{i=1}^{n} \frac{1}{n} \frac{K\left(\frac{x-X_i}{h}\right)}{h}$$

where

- K is the location-scale density,
- X_i is the mean μ_j
- h is the scale/sd σ .
- All weights are 1/n.

Gaussian kernel, h = 1/2, X = (0, 1, 3)

• Goal: estimate a density function from a sample

- Goal: estimate a density function from a sample
- ullet Technique: for any point x, average using close by observations

- Goal: estimate a density function from a sample
- Technique: for any point x, average using close by observations
- Need to pick a kernel and a bandwidth. Can be done with cross validation and a loss function.

- Goal: estimate a density function from a sample
- Technique: for any point x, average using close by observations
- Need to pick a kernel and a bandwidth. Can be done with cross validation and a loss function.
- Uses:

- Goal: estimate a density function from a sample
- Technique: for any point x, average using close by observations
- Need to pick a kernel and a bandwidth. Can be done with cross validation and a loss function.
- Uses:
 - Display

- Goal: estimate a density function from a sample
- Technique: for any point x, average using close by observations
- Need to pick a kernel and a bandwidth. Can be done with cross validation and a loss function.
- Uses:
 - Display
 - Smoothed boostrapping

- Goal: estimate a density function from a sample
- Technique: for any point x, average using close by observations
- Need to pick a kernel and a bandwidth. Can be done with cross validation and a loss function.
- Uses:
 - Display
 - Smoothed boostrapping
 - Using densities as outcomes in regressions

Smoothed Means

Suppose we have bivariate data (Y_i, x_i) .

Suppose we have bivariate data (Y_i, x_i) .

We will consider the Y_i to be random in some way, but the x_i values may be fixed.

Suppose we have bivariate data (Y_i, x_i) .

We will consider the Y_i to be random in some way, but the x_i values may be fixed.

We've seen examples of this in the HW, previous examples, etc.

Suppose we have bivariate data (Y_i, x_i) .

We will consider the Y_i to be random in some way, but the x_i values may be fixed.

We've seen examples of this in the HW, previous examples, etc.

Goal: Understand the relationship between x_i and Y_i (perhaps for prediction, data reduction, inference).

Mean functions

We've seen models of the form:

$$Y = \mu(x) + \epsilon$$

where we assume $E(\epsilon) = 0$.

Mean functions

We've seen models of the form:

$$Y = \mu(x) + \epsilon$$

where we assume $E(\epsilon) = 0$.

For example,

$$Y = \beta_0 + \beta_1 x + \epsilon$$

Mean functions

We've seen models of the form:

$$Y = \mu(x) + \epsilon$$

where we assume $E(\epsilon) = 0$.

For example,

$$Y = \beta_0 + \beta_1 x + \epsilon$$

Notice because $E(\epsilon) = 0$, we have

$$E(Y|x) = \mu(x)$$

Can we use smoothing to estimate a good mean function?

Kernel Smoothing

As with density estimation, we want to let **near by values of** Y_i influence our estimate of E(Y|x).

Kernel Smoothing

As with density estimation, we want to let near by values of Y_i influence our estimate of E(Y|x).

The Nardaraya-Watson estimator using a kernel function K:

$$\hat{\mu}(x) = \frac{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) Y_{i}}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}$$

From density estimation to smoothed means

Consider the estimators for the joint distribution of (Y, X) and the marginal distribution of X:

$$\hat{f}(x,y) = \frac{1}{nh^2} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right) K\left(\frac{Y_i - y}{h}\right)$$
$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

From density estimation to smoothed means

Consider the estimators for the **joint distribution of** (Y, X) and the **marginal distribution of** X:

$$\hat{f}(x,y) = \frac{1}{nh^2} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right) K\left(\frac{Y_i - y}{h}\right)$$
$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

By the relationship that $f(y \mid x) = f(x, y)/f(x)$, we can plugin in our estimators to get

$$\hat{f}(y \mid x) = \frac{\frac{1}{h} \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) K\left(\frac{Y_{i}-y}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right)}$$

Estimating $E(Y \mid x)$

We want to estimate $E(Y \mid x) = \int y f(y \mid x) dy$, so let's plug in our estimate $\hat{f}(y \mid x)$:

$$\int y \, \hat{f}(y \mid x) \, dy = \int y \, \frac{\frac{1}{h} \sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right) K\left(\frac{Y_{i} - y}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right)} \, dy$$
$$= \frac{\frac{1}{h} \sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right) \int y K\left(\frac{Y_{i} - y}{h}\right) \, dy}{\sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right)}$$

Estimating $E(Y \mid x)$

We want to estimate $E(Y \mid x) = \int y f(y \mid x) dy$, so let's plug in our estimate $\hat{f}(y \mid x)$:

$$\int y \, \hat{f}(y \mid x) \, dy = \int y \, \frac{\frac{1}{h} \sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right) K\left(\frac{Y_{i} - y}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right)} \, dy$$
$$= \frac{\frac{1}{h} \sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right) \int y K\left(\frac{Y_{i} - y}{h}\right) \, dy}{\sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right)}$$

We're done if we can show

$$\frac{1}{h} \int y \, K\left(\frac{Y_i - y}{h}\right) \, dy = Y_i$$

$$v = \frac{y - Y_i}{h} \Rightarrow y = Y_i + hv, dy = hdv$$

$$v = \frac{y - Y_i}{h} \Rightarrow y = Y_i + hv, dy = hdv$$

$$\frac{1}{h}\int (Y_i + hv)K(-v)h\,dv$$

$$v = \frac{y - Y_i}{h} \Rightarrow y = Y_i + hv, dy = hdv$$

$$\frac{1}{h}\int (Y_i + hv)K(-v)h\,dv = \int (Y_i + hv)K(v)\,dv$$

$$v = \frac{y - Y_i}{h} \Rightarrow y = Y_i + hv, dy = hdv$$

$$\frac{1}{h}\int (Y_i+hv)K(-v)h\,dv=\int (Y_i+hv)K(v)\,dv=Y_i+h\mathsf{E}(V)=$$

$$v = \frac{y - Y_i}{h} \Rightarrow y = Y_i + hv, dy = hdv$$

$$\frac{1}{h}\int (Y_i+hv)K(-v)h\,dv=\int (Y_i+hv)K(v)\,dv=Y_i+h\mathsf{E}(V)=Y_i$$

Narrow bandwidth

```
> ## default bandwidth is 0.5
> bp_smooth <- ksmooth(nhanes$dia_mean,
                       nhanes$sys_mean,
+
                       kernel = "normal")
> str(bp_smooth)
List of 2
 $ x: num [1:3567] 0 0.0359 0.0718 0.1077 0.1436 ...
 $ y: num [1:3567] 135 135 135 135 ...
```


Better bandwidth

Picking a bandwidth using CV

Recall that **cross validation** splits the data into (many) training and test sets and estimates **prediction loss** (costs paid for estimating new values).

Let's pick bandwidth using leave one out cross validation with squared error loss.

```
> hs <- seq(0.4, 20, length.out = 50)
> h_loss <- sapply(hs, loss_LOOCV)
> (best <- hs[which.min(h_loss)])</pre>
```

[1] 7.6

Comparing smoothed mean functions

Question: Is the mean function for aspirin takers the same as the mean function for non-apsirin takers?

Comparing smoothed mean functions

Question: Is the mean function for aspirin takers the same as the mean function for non-apsirin takers?

A little setup to make sure we compute the smooothers at the same point:

Implementing the smoothers

```
> compute_smoother <- function(v, x, z) {</pre>
      # we'll use the optimal bandwidth from before,
      # but this could be computed within groups
+
      ksmooth(x[z], y[z], bandwidth = 7.6,
+
              n.points = 1000, range = bounds)
+ }
> take sm <- with(nhanes.
                  compute_smoother(sys_mean, dia_mean, taking_aspirin))
+
> nott_sm <- with(nhanes,
                  compute_smoother(sys_mean, dia_mean, !taking_aspirin))
+
```


Difference Function

We probably want to know if

$$\mu_1(x) > \mu_0(x) \Rightarrow \mu_1(x) - \mu_0(x) > 0$$

> smoothed_differences <- take_sm\$y - nott_sm\$y

Confidence intervals for differences

```
> mu_diff <- function(data, index) {</pre>
   xstar <- data[index, ]
   s1 <- with(xstar.
               compute_smoother(sys_mean, dia_mean, taking_aspirin))
   s2 <- with(xstar.
               compute_smoother(sys_mean, dia_mean, !taking_aspirin))
+
    return(s1\$y - s2\$y)
+ }
```

```
> mu_boot <- boot(nhanes,
+ mu_diff,
+ strata = nhanes$taking_aspirin, R = 100)
> point_ci <- apply(mu_boot$t, 2,
+ quantile, probs = c(0.025, 0.975), na.rm = TRUE)</pre>
```

95% confidence CIs for difference of mean fns

 \bullet Trying to estimate the function μ in

$$Y = \mu(x) + \epsilon, E(\epsilon = 0) \iff E(Y \mid x) = \mu(x)$$

ullet Trying to estimate the function μ in

$$Y = \mu(x) + \epsilon, E(\epsilon = 0) \iff E(Y \mid x) = \mu(x)$$

• Used smoothed joint and marginal densities to create a smoothed conditional density $\hat{f}(y \mid x)$.

ullet Trying to estimate the function μ in

$$Y = \mu(x) + \epsilon, E(\epsilon = 0) \iff E(Y \mid x) = \mu(x)$$

- Used smoothed joint and marginal densities to create a smoothed conditional density $\hat{f}(y \mid x)$.
- Used the smooth conditional to estimate $\hat{\mu}(x) = \int y \hat{f}(y \mid x) \, dy$ (Nadaraya-Watson)

ullet Trying to estimate the function μ in

$$Y = \mu(x) + \epsilon, E(\epsilon = 0) \iff E(Y \mid x) = \mu(x)$$

- Used smoothed joint and marginal densities to create a smoothed conditional density $\hat{f}(y \mid x)$.
- Used the smooth conditional to estimate $\hat{\mu}(x) = \int y \hat{f}(y \mid x) \, dy$ (Nadaraya-Watson)
- Saw that NW is example of linear smoother (we'll see more later), bias and variance depend on h and K

ullet Trying to estimate the function μ in

$$Y = \mu(x) + \epsilon, E(\epsilon = 0) \iff E(Y \mid x) = \mu(x)$$

- Used smoothed joint and marginal densities to create a smoothed conditional density $\hat{f}(y \mid x)$.
- Used the smooth conditional to estimate $\hat{\mu}(x) = \int y \hat{f}(y \mid x) \, dy$ (Nadaraya-Watson)
- Saw that NW is example of linear smoother (we'll see more later), bias and variance depend on h and K
- Added uncertainty using bootstrap (could have assumed constant variance as well)