Optimization Methods

Fall 2020

Homework 1

Instructor: Lijun Zhang Name: Student name, StudentId: Student id

Notice

• The submission email is: njuoptfall2019@163.com.

• Please use the provided LATEX file as a template. If you are not familiar with LATEX, you can also use Word to generate a **PDF** file.

Problem 1: Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ with $\text{dom} f = \mathbb{R}^n$ is called a *norm* if

• f is nonnegative: $f(x) \ge 0$ for all $x \in \mathbb{R}^n$

• f is definite: f(x) = 0 only if x = 0

• f is homogeneous: f(tx) = |t| f(x), for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

• f satisfies the triangle inequality: $f(x+y) \leq f(x) + f(y)$, for all $x, y \in \mathbb{R}^n$

We use the notation f(x) = ||x||. Let $||\cdot||$ be a norm on \mathbb{R}^n . The associated dual norm, denoted $||\cdot||_*$, is defined as

$$||z||_* = \sup\{z^{\mathrm{T}}x | ||x|| \le 1\}$$

a) Prove that $\|\cdot\|_*$ is a valid norm.

b) Prove that the dual of Euclidean norm $(\ell_2\text{-}norm)$ is the Euclidean norm, *i.e.*, prove that

$$||z||_{2*} = \sup\{z^{\mathrm{T}}x|||x||_2 \le 1\} = ||z||_2$$

 $(\mathit{Hint} \colon \mathsf{Use}\ \mathsf{Cauchy}\text{-}\mathsf{Schwarz}\ \mathsf{inequality}.)$

Problem 2: Convex sets

Convex C_c sets are the sets satisfying the constraints below:

$$\theta x_1 + (1-\theta)x_2 \in C_c$$

for all,
$$x_1, x_2 \in C_c, 0 \le \theta \le 1$$

1

a). Show that a set is convex if and only if its intersection with any line is convex.

b). Determine if each set below is convex.

1)
$$\{(x,y) \in \mathbf{R}^2_{++} | x/y \le 1\}$$

2)
$$\{(x,y) \in \mathbf{R}^2_{++} | x/y \ge 1\}$$

3)
$$\{(x,y) \in \mathbf{R}^2_{\perp\perp} | xy \le 1\}$$

4)
$$\{(x,y) \in \mathbf{R}^2_{++} | xy \ge 1\}$$

5)
$$\{(x,y) \in \mathbf{R}_{++}^2 | y = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \}$$

Problem 3: Examples Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{x \in \mathbb{R}^n | x^T A x + b^T x + c \le 0\}$$

with $A \in \mathbb{S}^n, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

- 1) Show that C is convex if $A \succeq 0$.
- 2) Is the following statement true? The intersection of C and the hyperplane defined by $g^T x + h = 0$ is convex if $A + \lambda g g^T \succeq 0$ for some $\lambda \in \mathbb{R}$.

Problem 4: Operations That Preserve Convexity

Suppose $\phi: \mathbb{R}^n \to \mathbb{R}^m$ and $\psi: \mathbb{R}^m \to \mathbb{R}^p$ are the linear-fractional functions

$$\phi(x) = \frac{Ax+b}{c^\top x+d}, \psi(y) = \frac{Ey+f}{g^\top y+h}$$

with domains **dom** $\phi = \{x \mid c^{\top}x + d > 0\}$, **dom** $\psi = \{y \mid g^{\top}y + h > 0\}$. We associate with ϕ and ψ the matrices respectively.

$$\left[\begin{array}{cc} A & b \\ c^\top & d \end{array}\right], \left[\begin{array}{cc} E & f \\ g^\top & h \end{array}\right]$$

Now, consider the composition Γ of ϕ and ψ , i.e., $\Gamma(x) = \psi(\phi(x))$, with domain

$$\mathbf{dom}\Gamma = \{x \in \mathbf{dom}\phi \mid \phi(x) \in \mathbf{dom}\psi\}$$

Show that Γ is linear-fractional, and that the matrix associate with it is the product

$$\left[\begin{array}{cc} E & f \\ g^\top & h \end{array}\right] \left[\begin{array}{cc} A & b \\ c^\top & d \end{array}\right]$$

Problem 5: Generalized Inequalities

Let K^* be the dual cone of a convex cone K. Prove the following

- 1) K^* is indeed a convex cone.
- 2) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$