HarvardX: PH125.9x Data Science: Capstone

Capstone Project Report: Credit Card Fraud Detection

Yan Song Bai

January 9, 2020

Executive Summary

The purpose of this Capstone Project is to create a credit card fraud detection system using data science and machine learning techniques to analyze transaction data of credit cards in September 2013 by European cardholders, with the dataset available at https://www.kaggle.com/mlg-ulb/creditcardfraud. The full dataset includes 284,407 transactions.

Key steps performed in this project are:

- 1. Download and import the dataset
- 2. Explore the dataset and create the train and Test sets
- 3. Process the data and develop data model
- 4. Review the model based on the Test set

The metric used for measuring the score is the Area Under Curve (AUC) and a desirable result should have an AUC at least greater than 0.85. In this analysis, the model is able to achieve an AUC of 0.9799858, indicating the of the analysis.

Methods and Analysis

Exploratory Data Analysis

The dataset used in this analysis includes the credit card transactions during a two-day period in September 2013 by European cardholders. The dataset contains 284,407 transactions, with 30 features associated with the transaction.

Only numerical values are contained in this dataset due to PCA transformation, while the only 2 features that have not been transformed are 'Time' (i.e. the duration between the first transaction and the recorded transaction) and 'Amount' of the transactions and the rest of the features are labeled from V1 to V28 as they have low relevance to this analysis. The dataset is labeled with 'Class' and when Class has a value of 1, a positive (fraudulent) transaction is recorded, whereas a 0 value indicates regular transaction.

The first 6 rows of the dataset is as follows:

	Tin e	V1	V2	V3	V4	V5	V6
1	0	-1.35981	-0.07278	2.536347	1.378155	-0.33832	0.462388
2	0	1.191857	0.266151	0.16648	0.448154	0.060018	-0.08236
3	1	-1.35835	-1.34016	1.773209	0.37978	-0.5032	1.800499
4	1	-0.96627	-0.18523	1.792993	-0.86329	-0.01031	1.247203
5	2	-1.15823	0.877737	1.548718	0.403034	-0.40719	0.095921
6	2	-0.42597	0.960523	1.141109	-0.16825	0.420987	-0.02973
	V7	V8	V9	V 10	V11	V12	
1	0.239599	0.098698	0.363787	0.090794	-0.5516	-0.6178	
2	-0.0788	0.085102	-0.25543	-0.16697	1.612727	1.065235	
3	0.791461	0.247676	-1.51465	0.207643	0.624502	0.066084	
4	0.237609	0.377436	-1.38702	-0.05495	-0.22649	0.178228	
5	0.592941	-0.27053	0.817739	0.753074	-0.82284	0.538196	
6	0.476201	0.260314	-0.56867	-0.37141	1.341262	0.359894	
	V13	V14	V 15	V16	V17	V 18	
1	-0.99139	-0.31117	1.468177	-0.4704	0.207971	0.025791	
2	0.489095	-0.14377	0.635558	0.463917	-0.1148	-0.18336	
3	0.717293	-0.16595	2.345865	-2.89008	1.109969	-0.12136	
4	0.507757	-0.28792	-0.63142	-1.05965	-0.68409	1.965775	
5	1.345852	-1.11967	0.175121	-0.45145	-0.23703	-0.03819	
6	-0.35809	-0.13713	0.517617	0.401726	-0.05813	0.068653	
	V 19	V20	V21	V 22	V23	V24	
1	0.403993	0.251412	-0.01831	0.277838	-0.11047	0.066928	
2	-0.14578	-0.06908	-0.22578	-0.63867	0.101288	-0.33985	
3	-2.26186	0.52498	0.247998	0.771679	0.909412	-0.68928	
4	-1.23262	-0.20804	-0.1083	0.005274	-0.19032	-1.17558	
5	0.803487	0.408542	-0.00943	0.798278	-0.13746	0.141267	
6	-0.03319	0.084968	-0.20825	-0.55982	-0.0264	-0.37143	
	V 25	V26	V27	V 28	Am ount	Class	
1	0.128539	-0.18911	0.133558	-0.02105	149.62	0	
2	0.16717	0.125895	-0.00898	0.014724	2.69	0	
3	-0.32764	-0.1391	-0.05535	-0.05975	378.66	0	
4	0.647376	-0.22193	0.062723	0.061458	123.5	0	
5	-0.20601	0.502292	0.219422	0.215153	69.99	0	
6	-0.23279	0.105915	0.253844	0.08108	3.67	0	

Data outlier is also identified in this analysis. It can be seen in the following graphy that there are no significant outliers in the dataset.

The dataset is arbitrarily separated into training and testing sets. Training set contains 70% of the data while testing set contains 30%. The distribution of the transaction data is shown as below. It can be seen that the dataset is imbalanced.

Label	Total sample	Train	Test
0 (Normal)	284315	199145	85170
1 (Fraud)	492	342	150

As missing values may cause high degree of uncertainties and instabilities in data analysis and modelling, it is important to determine the degree of data coverage and data quality of the dataset. As the chart below suggests, the dataset has no missing values and has full coverage.

Correlation between each variables in the dataset are examined, as shown in the following graph. It can be seen that the variables are not closely related to each other and multicollinearity is not a major concern in the following analysis.

Data Processing

Because of the continuity of data, the ChiMerge method is used in order to make discretized data easier to process and stabilize modelling. The dplyr package is mainly used in this part of the analysis. The whole dataset is divided into 100 intervals and Chi-square values are calculated to merge the two adjacent intervals with the lowest Chi-square values until all pairs have Chi-square values above the threshold value. Each interval must contain positive (fraud) and negative (normal) data. The ChiMerge results are shown as follows.

##		df_name	Var1	Var2	Freq
##	1	Time	<=42500	0	7799
##	2	Time	42500~83200	0	37858
##	3	Time	83200~10900	0	93623
##	4	Time	>10900	0	145035
##	5	Time	<=42500	1	25
##	6	Time	42500~83200	1	118
##	7	Time	83200~10900	1	121
##	8	Time	>10900	1	228
##	9	V1	<=-4	0	7841
##	10	V1	-4~-1	0	57237
##	11	V1	-1~1	0	102647

	12	V1	>1		116590
	13	V1	<=-4	1	181
##	14	V1	-4~-1	1	159
##	15	V1	-1~1	1	99
##	16	V1	>1	1	53
##	17	V2	<=-2	0	13850
	18	V2	-2~1		217937
	19	V2	1~2	0	41508
	20	V2	>2	0	11020
	21	V2	<=-2	1	18
	22	V2	-2~1	1	83
	23	V2	1~2	1	94
	24	V2 V2	>2	1	297
	25	V2 V3	<=-4	0	2503
	26	V3	-4~-2 2 a	0	19596
	27	V3	-2~0		105604
	28	V3	>0		156612
	29	V3	<=-4	1	299
	30	V3	-4~-2	1	82
	31	V3	-2~0	1	79
	32	V3	>0	1	32
	33	V4	<=1	0	228598
##	34	V4	1~2	0	36924
##	35	V4	2~4	0	15078
##	36	V4	>4	0	3715
##	37	V4	<=1	1	46
##	38	V4	1~2	1	50
	39	V4	2~4	1	139
	40	V4	>4	1	257
	41	V5	<=-3	0	2803
	42	V5	-3~-1.6	0	14105
	43	V5	-1.6~0.6		195274
	44	V5	>0.6	0	72133
	45	V5	<=-3	1	170
	46	V5 V5	-3~-1.6	1	71
	47	V 5 V 5	-1.6~0.6	1	153
	47	V5 V5	-1.6~0.6 >0.6	1	98
	49	V6	<=-2 2 1	0	3344
	50	V6	-2~-1	0	40619
	51	V6	-1~0		132256
	52	V6	>0	0	108096
	53	V6	<=-2	1	177
	54	V6	-2~-1	1	126
	55	V6	-1~0	1	111
	56	V6	>0	1	78
##	57	V7	<=-3	0	2616
	58	V7	-3~-1.5	0	9735
##	59	V7	-1.5~-1	0	20343
##	60	V7	>-1	0	251621
##	61	V7	<=-3	1	249

##		V7	-3~-1.5	1	96
##		V7	-1.5~-1	1	21
##		V7	>-1	1	126
##		V8	<=0		135372
##		V8	0~1	0	133068
##	67	V8	1~2	0	12943
##	68	V8	>2	0	2932
##	69	V8	<=0	1	149
##	70	V8	0~1	1	149
##	71	V8	1~2	1	84
##	72	V8	>2	1	110
##	73	V9	<=-2	0	8723
##		V 9	-2~-1	0	34610
##		V 9	-1~-0.5	0	41946
##		V9	>0.5	0	199036
##		V9	<=-2	1	257
##		V9	-2~-1	1	99
##		V9	-1~-0.5	1	38
##		V9 V9	>0.5	1	98
##		V9 V10	<=-2	0	3125
##		V10	-2~-1 1-0	0	27113
##		V10	-1~0		129229
##		V10	>0		124848
##		V10	<=-2	1	395
##		V10	-2~-1	1	24
##		V10	-1~0	1	36
##		V10	>0	1	37
##		V11	<=0		145600
##		V11	0~1.8	0	130437
##		V11	1.8~2.2	0	5137
##		V11	>2.2	0	3141
##	93	V11	<=0	1	32
##	94	V11	0~1.8	1	75
##	95	V11	1.8~2.2	1	34
##		V11	>2.2	1	351
##		V12	<=-3	0	2834
##		V12	-3~-2	0	
##	_	V12	-2~0	_	107241
	100	V12	>0		163693
	101	V12	<=-3	1	368
	102	V12 V12	-3~-2	1	38
	103	V12 V12	-2~0	1	61
	104	V12 V12	-2~0 >0	1	25
	105	V13	<=-1	0	44496
	106	V13	-1~0	0	99378
	107	V13	0~1	0	96554
	108	V13	>1	0	43887
	109	V13	<=-1	1	120
	110	V13	-1~0	1	129
##	111	V13	0~1	1	163

	112	V13	>1	1	80
	113	V14	<=-3	0	1983
##	114	V14	-3~-0.4	0	71848
##	115	V14	-0.4~0.3	0	110600
##	116	V14	>0.3	0	99884
##	117	V14	<=-3	1	405
##	118	V14	-3~-0.4	1	58
##	119	V14	-0.4~0.3	1	13
##	120	V14	>0.3	1	16
	121	V15	<=-1	0	38166
	122	V15	-1~0	0	
	123	V15	0~1		109653
	124	V15	>1	0	38691
	125	V15	<=-1	1	85
	126	V15	-1~0	1	178
	127	V15 V15	0~1	1	164
	128	V15 V15	>1	1	65
	129	V15 V16	<=-2	0	5688
	130				
		V16	-2~0 0~1		126452 124237
	131	V16	0~1 \1		
	132	V16	>1 	0	27938
	133	V16	<=-2	1	340
	134	V16	-2~0	1	72
	135	V16	0~1	1	46
	136	V16	>1	1	34
	137	V17	<=-1	0	12966
	138	V17	-1~0		140274
	139	V17	0~1		107178
	140	V17	>1	0	23897
	141	V17	<=-1	1	374
##	142	V17	-1~0	1	21
##	143	V17	0~1	1	40
##	144	V17	>1	1	57
##	145	V18	<=-2	0	3748
	146	V18	-2~-1	0	23187
	147	V18	-1~1	_	227825
	148	V18	>1	0	29555
	149	V18	<=-2	1	223
	150	V18	-2~-1	1	68
	151	V18	-1~1	1	150
	152	V18	>1	1	51
	153	V18 V19	<=0		141653
	154	V19 V19	<=0 0~1		116900
	155	V19	1~2	0	21771
	156	V19	>2	0	3991
	157	V19	<=0	1	151
	158	V19	0~1	1	145
	159	V19	1~2	1	97
	160	V19	>2	1	99
##	161	V20	<=-0.4	0	27143

	162	V20	-0.4~0	0	141810
##	163	V20	0~0.2	0	59491
##	164	V20	>0.2	0	55871
##	165	V20	<=-0.4	1	80
##	166	V20	-0.4~0	1	97
##	167	V20	0~0.2	1	42
##	168	V20	>0.2	1	273
##	169	V21	<=-1	0	5366
	170	V21	-1~0.3		238037
	171	V21	0.3~0.5	0	24902
	172	V21	>0.5	0	16010
	173	V21	<=-1	1	42
	174	V21	-1~0.3	1	128
	175	V21 V21	0.3~0.5	1	48
	176	V21 V21	>0.5~0.5	1	274
	175				
		V22	<=-1 1-0	0	17963
	178	V22	-1~0		123201
	179	V22	0~2		142577
	180	V22	>2	0	574
	181	V22	<=-1	1	45
	182	V22	-1~0	1	193
	183	V22	0~2	1	238
	184	V22	>2	1	16
##	185	V23	<=-0.3	0	33345
##	186	V23	-0.3~0	0	114774
##	187	V23	0~0.4	0	116403
	188	V23	>0.4	0	19793
	189	V23	<=-0.3	1	143
	190	V23	-0.3~0	1	138
	191	V23	0~0.4	1	103
	192	V23	>0.4	1	108
	193	V23	<=-0.6	0	41843
	194	V24 V24	-0.6~-0.1	0	60305
	195	V24 V24	-0.1~0.5		120398
		V24 V24	-0.1~0.5 >0.5		61769
	196 197	V24 V24	>0.5 <=-0.6	0 1	84
	198	V24	-0.6~-0.1	1	150
	199	V24	-0.1~0.5	1	203
	200	V24	>0.5	1	55
	201	V25	<=-1	0	8745
	202	V25	-1~0		130343
	203	V25	0~1		139786
	204	V25	>1	0	5441
##	205	V25	<=-1	1	41
##	206	V25	-1~0	1	173
##	207	V25	0~1	1	235
##	208	V25	>1	1	43
##	209	V26	<=-0.3	0	78367
##	210	V26	-0.3~0	0	73109
	211	V26	0~0.3	0	69351

	212	V26	>0.3	0	63488
	213	V26	<=-0.3	1	101
##	214	V26	-0.3~0	1	143
##	215	V26	0~0.3	1	99
##	216	V26	>0.3	1	149
##	217	V27	<=-1	0	4089
##	218	V27	-1~0	0	136781
##	219	V27	0~1	0	141037
##	220	V27	>1	0	2408
##	221	V27	<=- 1	1	61
##	222	V27	-1~0	1	73
##	223	V27	0~1	1	256
##	224	V27	>1	1	102
##	225	V28	<=-0.1	0	37748
##	226	V28	-0.1~0.2	0	222935
	227	V28	0.2~0.4	0	18856
	228	V28	>0.4	0	4776
##	229	V28	<=-0.1	1	126
	230	V28	-0.1~0.2	1	147
	231	V28	0.2~0.4	1	109
	232	V28	>0.4	1	110
	233	Amount	<=	0	30311
	234	Amount	1~10	0	69704
	235	Amount	10~96	0	124716
	236	Amount	>96	0	59584
	237	Amount	<=	1	181
	238	Amount	1~10	1	68
	239	Amount	10~96	1	82
	240	Amount	>96	1	161
##	240	AIIIUUITE	790	1	101

Information Value (IV) is utilized as a metric to examine the distinctiveness of variables and is used as filter towards the variables prior to modelling.

$$IV_i = (p(y = 1)_i - P(y = 0)_i) * WOE_i$$

Whereas Weight of Evidence (woe) represents the transformation towards the original variables in which continuous variables are discretized and each resulting interval has a corresponding value calculated; it is determined by the percentage of positive (fraud) data divided by the percentage of negative (normal) data within the interval.

$$WOE_i = ln \frac{p(y=1_i)}{p(y=0)_I}$$

In this analysis, the IV values of the data is determined as follows. Variables with IV higher than 1 are kept while the rest are filtered. 18 variables are kept as a result of this operation. Regarding the imbalance of the dataset, no particular action is performed since the presence of the 18 variables with IV higher than 1 indicates that the dataset is relatively distinctive.

```
##
          feature
                           ΙV
## V14
              V14 5.73056320
## V12
              V12 4.77211529
## V10
              V10 4.76780691
## V11
              V11 4.25588245
## V3
               V3 3.83718438
## V4
               V4 3.79811396
## V17
              V17 3.57725022
              V16 3.24859276
## V16
## V7
               V7 3.06602480
## V2
               V2 2.47157350
## V9
               V9 2.10875807
## V18
              V18 2.06638119
## V21
              V21 1.92303083
## V6
               V6 1.62367146
## V5
               V5 1.60599284
## V1
               V1 1.43691543
## V28
              V28 1.27175352
## V27
              V27 1.26451088
## V8
               V8 0.97191141
## V20
              V20 0.79876647
              V19 0.74391114
## V19
           Amount 0.70055422
## Amount
## V23
              V23 0.50852704
## V25
              V25 0.18482111
## V24
              V24 0.10751990
## Time
             Time 0.10600724
## V22
              V22 0.09996072
## V13
              V13 0.06452457
## V26
              V26 0.05729099
## V15
              V15 0.01836866
```

Data Modeling

Based on the exploration and processing of the dataset, the logistic regression model is utilized in this analysis as a classifier of credit card transaction data. When the output is greater than 0.5, a positive (fraud) transaction is detected; when the output is smaller than 0.5, a negative (normal) transaction is detected.

$$h_{\theta}(x) = \frac{1}{1 + e^{\theta^T} x}$$

Area Under Curve (AUC), defined as the area under the ROC curve, is used to assess the performance of the model. A higher AUC indicates a better performance of the classifier model. In this analysis, the AUC is determined as follows.

```
##
## Call:
## glm(formula = f, family = binomial, data = traindata)
##
```

```
## Deviance Residuals:
##
       Min
                 10
                      Median
                                    30
                                            Max
## -2.1603
            -0.0189
                     -0.0109
                              -0.0068
                                         4.6246
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
                                     -0.319 0.749534
## (Intercept) -0.38664
                            1.21108
## V1-4~-1
                0.06407
                            0.44163
                                      0.145 0.884650
## V1-1~1
                0.11433
                            0.52062
                                      0.220 0.826179
## V1>1
                            0.57687
                                      0.911 0.362160
                0.52568
## V2-2~1
                0.91327
                            0.62396
                                      1.464 0.143283
## V21~2
                0.80497
                            0.64257
                                      1.253 0.210305
## V2>2
                            0.67391 -1.505 0.132392
               -1.01406
## V3-4~-2
               -0.43698
                            0.47304
                                    -0.924 0.355611
## V3-2~0
                                     -1.652 0.098513 .
               -0.83634
                            0.50623
## V3>0
                            0.58054
                                     -2.676 0.007442 **
               -1.55375
## V41~2
                1.12786
                            0.33787
                                      3.338 0.000844 ***
                                      9.984 < 2e-16 ***
## V42~4
                3.33922
                            0.33447
## V4>4
                            0.41557
                                      8.883 < 2e-16 ***
                3.69136
## V5-3~-1.6
                0.83800
                            0.58902
                                      1.423 0.154824
                0.79190
## V5-1.6~0.6
                            0.60162
                                      1.316 0.188081
## V5>0.6
                0.68476
                            0.62302
                                      1.099 0.271719
## V6-2~-1
                0.71260
                            0.47840
                                      1.490 0.136341
## V6-1~0
                                      3.317 0.000909 ***
                1.62262
                            0.48916
## V6>0
                0.84818
                            0.47425
                                      1.788 0.073699 .
## V7-3~-1.5
               -1.02956
                            0.63781
                                     -1.614 0.106481
                                    -2.698 0.006969 **
## V7-1.5~-1
               -2.05572
                            0.76185
## V7>-1
               -1.83899
                            0.61566
                                    -2.987 0.002817 **
## V9-2~-1
                0.22352
                            0.46363
                                      0.482 0.629727
## V9-1~-0.5
                0.07743
                            0.50290
                                      0.154 0.877629
## V9>0.5
                0.20994
                            0.47187
                                      0.445 0.656382
## V10-2~-1
                                     -5.715 1.10e-08 ***
               -2.46663
                            0.43159
## V10-1~0
                -2.41863
                            0.42951
                                     -5.631 1.79e-08 ***
                                     -6.696 2.15e-11 ***
## V10>0
                -3.02774
                            0.45220
## V110~1.8
                0.90788
                            0.29462
                                      3.081 0.002060 **
                                      4.722 2.34e-06 ***
## V111.8~2.2
                2.17719
                            0.46109
## V11>2.2
                1.48593
                            0.44870
                                      3.312 0.000927 ***
## V12-3~-2
                                     -1.050 0.293626
               -0.51740
                            0.49267
## V12-2~0
               -1.23831
                            0.43957
                                     -2.817 0.004846 **
                                     -5.129 2.91e-07 ***
## V12>0
               -2.53332
                            0.49389
               -2.09689
                            0.36163
                                     -5.798 6.69e-09 ***
## V14-3~-0.4
## V14-0.4~0.3 -3.68073
                            0.51066
                                     -7.208 5.68e-13 ***
## V14>0.3
               -4.22879
                            0.49158
                                     -8.602 < 2e-16 ***
## V16-2~0
               -0.75334
                            0.58166
                                     -1.295 0.195269
## V160~1
               -1.21088
                            0.61047
                                     -1.984 0.047309 *
## V16>1
               -1.75022
                            0.63878
                                    -2.740 0.006145 **
## V17-1~0
               -0.58417
                            0.54068
                                     -1.080 0.279949
## V170~1
               -0.46602
                            0.49889
                                     -0.934 0.350250
## V17>1
               -0.82708
                            0.49416
                                     -1.674 0.094187 .
## V18-2~-1
               -0.30220
                            0.64285 -0.470 0.638293
```

```
## V18-1~1
                0.35548
                           0.61424
                                     0.579 0.562767
                           0.69109
## V18>1
                0.38681
                                     0.560 0.575677
## V21-1~0.3
               -1.13245
                           0.46603
                                     -2.430 0.015100 *
## V210.3~0.5
                0.09824
                           0.56005
                                     0.175 0.860756
## V21>0.5
                0.22186
                           0.46805
                                     0.474 0.635502
## V27-1~0
                0.34209
                           0.58498
                                     0.585 0.558689
## V270~1
                0.70604
                           0.59081
                                     1.195 0.232069
## V27>1
               -2.26346
                           0.71075
                                     -3.185 0.001450 **
## V28-0.1~0.2 -0.47859
                           0.34017
                                     -1.407 0.159457
## V280.2~0.4 -1.10878
                           0.43438
                                     -2.553 0.010693 *
## V28>0.4
               -0.88759
                           0.43620 -2.035 0.041868 *
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 5039.6
                              on 199486
                                          degrees of freedom
## Residual deviance: 1160.1
                              on 199432
                                          degrees of freedom
## AIC: 1270.1
##
## Number of Fisher Scoring iterations: 12
```

Results

For the purpose of this project, the final AUC should be greater than 0.85. The AUC results obtained from the logistic model are 0.9753151 for the training set and 0.9799858 for the test set, thus meeting the AUC requirement.

Train AUC: 0.9753151

Conclusion

In this project, a credit card fraud detection system has been developed. The system is based on the variations among given variables. Finally a logistic regression model is developed based on data processing to classify data transaction data. An AUC of 0.9799858 has been achieved on the test set.

However, many other differentiating factors may also be considered to further tune the model and improve the accuracy. The dataset is unbalanced and the issue can be solved by under sampling with 1:1 ratio of positive and negative samples to train the model. Also, other algorithms and models can be used to further compare the performance of various models, such as GBM, KNN, Random Forest and lightGBM, etc.