Cvičení 5: Řady

Základní řady

Zamyslete se nad následujícími řadami

- Geometrická řada: $\sum_{n=1}^{\infty} q^n$,
- \bullet Zobecněná harmonická řada: $\sum_{n=1}^{\infty}\frac{1}{n^s}.$

Grafické znázornění

Uvažujte jak jde graficky znázornit řady

- (a) $\sum_{n=1}^{\infty} (-1)^n$,
- (b) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)$,

(c) $\sum_{n=1}^{\infty} \sin(n)$.

Konvergence

Vyšetřete konvergenci následujících řad

- (a) $\sum_{n=1}^{\infty} \frac{2n^2}{n^2+3n}$,
- (b) $\sum_{n=1}^{\infty} \frac{2 + \cos(n)}{n + \ln(n)},$
- (c) $\sum_{n=1}^{\infty} \left(\frac{n+1}{3n+1}\right)^n$,
- (d) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$,
- (e) $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}-\sqrt{n^2-1}}{n}$,
- (f) $\sum_{n=1}^{\infty} \frac{1}{n!},$
- (g) $\sum_{n=1}^{\infty} \frac{(n+\sqrt{n})^n}{(2n^2+n)^{\frac{n}{2}}}$

- (h) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$,
- (i) $\sum_{n=1}^{\infty} \frac{2^n+1}{8^n-4^n}$
- $(j) \sum_{n=1}^{\infty} (\sqrt{n} 1)^n,$
- (k) $\sum_{n=1}^{\infty} \frac{n^2 2n + 8}{n^2 5}$,
- (1) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^3 + 1}$,
- (m) $\sum_{n=1}^{\infty} (-1)^n (\sqrt[n]{5} 1),$
- (n) $\sum_{n=1}^{\infty} \frac{6^n + 7^n}{8^n 2^n}$.

Konvergence v závislosti na parametru

V závislosti na $\alpha \in \mathbb{R}$ a $\beta \in \mathbb{R}^+$ rozhodněte o konvergenci následujících řad

- (a) $\sum_{n=1}^{\infty} \frac{1}{1+\beta^n},$
- (b) $\sum_{n=1}^{\infty} \frac{\beta^n}{1+\beta^n},$
- (c) $\sum_{n=1}^{\infty} \frac{\alpha^n}{n}$,

- (d) $\sum_{n=1}^{\infty} n^4 \beta^n,$
- (e) $\sum_{n=1}^{\infty} \frac{(\alpha+2)^n}{\sqrt{n+1}}$,
- (f) $\sum_{n=1}^{\infty} \frac{\alpha^n}{n3^n}$.

Užitečné vztahy

Pro řadu $\sum_{n=1}^{\infty}a_n$ definujeme částečný součet

$$s_n = \sum_{i=1}^n a_i = a_1 + \dots + a_n.$$

Nekonečnou řadu pak definujeme jako $\lim_{n\to\infty} s_n$.

Řadu nazveme absolutně konvergentní, pokud $\sum_{n=1}^{\infty} |a_n| < \infty$. Absolutní konvergence implikuje neabsolutní

$$\sum_{n=1}^{\infty} |a_n| < \infty \Rightarrow \sum_{n=1}^{\infty} a_n < \infty.$$

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady s nezápornými členy.

- Pokud řada $\sum_{n=1}^{\infty} a_n$ konverguje, pak $\lim_{n\to\infty} a_n = 0$. (nutná podmínka konvergence)
- Pokud $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < \infty$, pak $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=1}^{\infty} b_n$ konverguje. (srovnávací kritérium)
- Pokud $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$, pak $\sum_{n=1}^{\infty} a_n$ diverguje. Pokud $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$, pak $\sum_{n=1}^{\infty} a_n$ konverguje. (Cauchyovo odmocninové kritérium)
- Pokud $\limsup_{n\to\infty} \sqrt[n]{a_n} > 1$, pak $\sum_{n=1}^{\infty} a_n$ diverguje. Pokud $\limsup_{n\to\infty} \sqrt[n]{a_n} < 1$, pak $\sum_{n=1}^{\infty} a_n$ konverguje. (Cauchyovo odmocninové kritérium)
- Pokud $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}>1$, pak $\sum_{n=1}^{\infty}a_n$ diverguje. Pokud $\limsup_{n\to\infty}\frac{a_{n+1}}{a_n}<1$, pak $\sum_{n=1}^{\infty}a_n$ konverguje. (d'Alambertovo podílové kritérium)

Nechť $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ jsou řady a nechť $a_1 \ge a_2 \ge \cdots \ge 0$.

- Pokud $\lim_{n\to\infty} a_n = 0$ a řada $\sum_{n=1}^{\infty} b_n$ má omezené částečné součty, potom $\sum_{n=1}^{\infty} a_n b_n$ konverguje. (Dirichletovo kritérium)
- Pokud $\sum_{n=1}^{\infty} b_n$ konverguje, pak i $\sum_{n=1}^{\infty} a_n b_n$ konverguje. (Abelovo kritérium)
- Pokud $\sum_{n=1}^{\infty} a_n$ konverguje $\Leftrightarrow \sum_{n=0}^{\infty} 2^n a_{2^n}$ konverguje. (Cauchyovo kondenzační kritérium)