Experiment 2

20D070037

EE-214, WEL, IIT BOMBAY

 18^{th} August 2021

Overview of the experiment

The experiment serves the following purposes:

- To understand the concept of logic minimization using K-Map .
- To make the circuit for the given problem statement using minimum number of gates.
- To write a VHDL code to implement the Scrabble game given in the problem statement.
- To perform RTL and GATE level simulation on the design to test the design on the test-bench with a given trace-file.

The following procedure was followed by me to perform the experiment in step by step manner:

- 1. Read the problem statement.
- 2. Made the truth table for the various inputs involved.
- 3. Performed K-Map minimization on the output.
- Minimized the logic even further by using complex gates, namely XOR and XNOR.
- 5. Wrote an HDL code to implement the final logic.
- 6. Compiled the code and performed RTL and GATE level simulation for the design.

The following report will start with approach that I have followed while performing the experiment followed by the the design document and the VHDL code. I will then discuss the results of the various simulations I have performed. Towards the end I will discuss the observations made while performing the experiment.

Approach to the experiment

My approach to the experiment was as follows. First I went through the problem statement and identified the concept that had to be used. In this case it was logic minimization using K-map. I first converted the problem statement into logical form. I then wrote the truth table and performed logic minimization using K-map. I did some tweaking to reduce the number of gates used even further in order to accommodate the bonus problem. At last I wrote the HDL code and performed the required simulations.

The truth table and K-Map minimization are given as follows:

Table 1: Truth Table For Logic

Letter	Binary Value	Output	
A	0000	0	
В	0001	1	
C	0010	1	
D	0011	0	
E	0100	0	
F	0101	0	
G	0110	0	
H	0111	0	
I	1000	0	
J	1001	0	
K	1010	0	
L	1011	0	
M	1100	0	
N	1101	1	
О	1110	1	
P	1111	0	

Table 2: K-Map For Logic

$^{\mathrm{CD}}$	00	01	11	10
AB				
00	0	1	0	1
01	0	0	0	0
11	0	1	0	1
10	0	0	0	0

Design document and VHDL code

The aim of the experiment was to implement a Scrabble game using digital logic. We had to identify the letters for which the score was given 3 out of the first 16 letters of the alphabet using a digital circuit. Each of the 16 letters was to be represented by 4-bit binary numbers(ABCD). Each of the binary number was associated to logic 0 or logic 1 depending on if it has a value of 3 points. Accordingly, I made a truth table. Then I performed a K-Map minimization using the rules. The output logic that I got was $(A.B + \bar{A}.\bar{B}).(C.\bar{D} + \bar{C}.D)$. However after careful observation it was evident that $(A.B + \bar{A}.\bar{B})$ can be written as A XNOR B and $(C.\bar{D} + \bar{C}.D)$ can be written as C XOR D. Thus the number of logic gates involved could be reduced to a minimum of 3, including the AND gate between them. After I was convinced that the number of logic gates can not be reduced any more, I wrote the code for the logic circuit which I had got and performed the RTL and GATE level simulation.

RTL views

Following is the RTL view.

Figure 1: RTL view

${\bf DUT\ Input/Output\ Format}$

In the experiments the format of any vector is MSB at the leftmost side and LSB at the right most side. The input/output format for the experiment is as follows

INPUT: [A, B, C, D] OUTPUT: [Y] TEST-CASES: $0000\ 0\ 1$ 0001 1 1 $0010\ 1\ 1$ $0011 \ 0 \ 1$ $0100\ 0\ 1$ $0101\ 0\ 1$ $0110\ 0\ 1$ $0111\ 0\ 1$ $1000\ 0\ 1$ $1001\ 0\ 1$ $1010\ 0\ 1$ $1011\ 0\ 1$ $1100\ 0\ 1$ 1101 1 1 1110 1 1 1111 0 1

RTL Simulation

Figure 2: Waveform for RTL simulation

GATE level Simulation

Figure 3: Waveform for GATE level simulation