Machine Learning Models and Predictive Analysis

Laura Lazarescou, John Rodgers, Maysam Mansor and Mel Schwan

March 1, 2021

Introduction

All machine learning models are categorized as either supervised or unsupervised. Supervised learning involves learning a function that maps an input to an output based on example input-output pairs. Supervised models are then sub-categorized as a regression or classification model. In regression models, the result is continuous. Linear regression is merely finding a line that best fits the data. Decision trees are a popular model used in operations research, strategic planning, and machine learning. The last node of the decision tree, where a decision is made, is called the tree leaves. (Terence Shin - towards data science, 2020)

Extreme Gradient Boosting is a model that creates a partition tree to make predictions on class-level outcomes using data subsets. New, subsequent partition trees are applied to the remaining batches of the dataset until residual error is minimized. The weight of each sample batch is adaptively changed after each round of boosting (new tree). The model focuses on building trees to correctly explain data contributing to incorrect classifications. This is repeated until optimal performance is obtained. However, XGBoost is prone to over-fitting.

Support Vector Machine, is a supervised classification technique that can get pretty complicated but is intuitive at the most fundamental level. A support vector machine will find a hyperplane or a boundary between the the classes of data that maximizes the margin between the the classes. Many planes can separate the classes, but only one plane can maximize the margin or distance between the classes. This plane becomes the optimal solution for the model.

The third model type, Random Forest, is an ensemble learning technique that builds off of decision trees. Random forests involve creating multiple decision trees using bootstrapped datasets of the original data and randomly selecting a subset of variables at each decision tree step. Relying on a "majority wins" model reduces the risk of error from an individual tree.

We will train all three models in this study and vary the hyperparameters to maximize the models' accuracy values and minimize log-loss while considering the runtime requirements.

Methods

Data Preparation

Financial data, containing 538 features and a binary target are the corpus used for this study. There were no feature descriptions included. The features were labeled with non-descriptive letters like v1, v2 etc.

Our prepared dataset included 538 features once we applied one-hot encoding and categorical transformation to all non-numeric factors.

Factor v22 received exceptional treatment since it included over 18000 unique character values. Using a grouping approach, we categorized v22 into 53 factors based on the rationale that a value should have at least 125 occurrences to be represented in the dataset. If we had one-hot encoded v22 without this transformation, our final dataset would have included more than 19000 factors and it would have caused the feature space to grow intractably.

Sparce matrices can lead to poor models and results. Thus we have choosen to reduce the model feature set to the most impactful factors.

Data Types and Data Distribution

The majority of our original factors were numeric. These factors are naturally compatible with machine learning models that we have used in this study. Figure 1 shows the unique values counts of non-numeric features, except for factor v22. It was removed from this plot because of its large number of unique values (18,210). v56 feature has the next greatest number of unique values.(125)

Unique Value Count per Non-Numeric Feature (excluding v22) (Figure 1)

Model Validation

The models were validated using five(5)-fold cross-validation. The steps for model validation are given below. Hyperameter tuning procedures and choices are discussed in each Model Discussion.

Model Validation Procedure

- Split data into 67% training and 33% test sets. The train dataset consisted of 76595 rows and the test dataset included 37726 rows. Both datasets included 538 factors.
- Use the train dataset with cross-validation to build multiple models of each type.
- Estimate the log-loss of XGBoost and Random Forest models, and the accuracy for all models by using the test dataset as a validation dataset, then comparing the predicted target values to the known target values.
- Statistics and performance of each model are listed in Results.

Models

In this case study, we use XGBoost, Support Vector Machines, and Random Forest to model the data. In each section we will desrcibe how these models work, and what steps were taking to tune each model.

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is laser focused on computational speed and model performance. (Jason Brownlee; 2016, machine learning mastery)

Model Features

Three main forms of gradient boosting are supported:

- Gradient Boosting algorithm also called gradient boosting machine including the learning rate.
- Stochastic Gradient Boosting with sub-sampling at the row, column and column per split levels.
- Regularized Gradient Boosting with both L1 and L2 regularization.

Algorithm Features

Some key algorithm implementation features include:

- Sparse Aware implementation with automatic handling of missing data values.
- Block Structure to support the parallelization of tree construction.
- Continued Training so that you can further boost an already fitted model on new data.

XGBoost Hyperparameter Tuning

To find an optimal combination of hyperparameters for an XGBoost model, a randomized search of combinations was performed to identify the best performing model based on the value of log loss. Each of these hyperparameter combinations was evaluated using 5-fold cross validation of the training data set. The following hyper-parameters and values were incorporated into the randomized grid search. (Table 1)

Hyperparameter	Values
max_depth	6, 10, 15, 20
learning_rate	0.001, 0.01, 0.1, 0.2, 0.3
subsample	0.5, 0.6, 0.7, 0.8, 0.9, 1.0
colsample_bytree	0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
colsample_bylevel	0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
min_child_weight	0.5, 1.0, 3.0, 5.0, 7.0, 10.0
gamma	0, 0.25, 0.5, 1.0
reg_lambda	0.1, 1.0, 5.0, 10.0, 50.0, 100.0

Table 1

The search model selected 5 hyperparameter combinations at random from the list above. With each of these 5 models being evaluated with a 5 cross-fold cross-validation, a total of 25 models were evaluated to determine the best-performing combination of hyperparameters. Log loss was used to identify the best-performing model, with the following combination of hyperparameters returning a log-loss value of 0.4691 and an accuracy score of 0.7683. (Table 2)

Hyperparameter	Value
max_depth	10
learning_rate	0.1
subsample	0.9
colsample_bytree	0.5
colsample_bylevel	0.4
min_child_weight	7.0
gamma	0.5
reg_lambda	10.0

Tahla 9

Additional metrics for the tuned XGBoost model were also evaluated. The following figure shows the actual classes of the test data compared to the value that the model predicted. (Figure 2)

XGB Class Prediction (Figure 2)

The figure below shows the precision, recall, and f1 score for each of the two classes. (Figure 3)

XGB Classification Report (Figure 3)

Support Vector Machine

TA support vector machine is a supervised learning algorithm that sorts data into two categories. It is trained with a series of data already classified into two categories, building the model as it is initially trained. The task of an SVM algorithm is to determine which category a new data point belongs in. This makes SVM a kind of non-binary linear classifier.

An SVM algorithm should not only place objects into categories, but have the margins between them on a graph as wide as possible.

Advantages:

- · Works relatively well when there is a clear margin of separation between classes
- More effective in high dimensional spaces
- Effective in cases where the number of dimensions is greater than the number of samples
- Relatively memory efficient

Disadvantages:

- Algorithm is not suitable for large data sets
- Does not perform very well when the data set has more noise i.e. target classes are overlapping
- In cases where the number of features for each data point exceeds the number of training data samples, the SVM will underperform
- Works by putting data points, above and below the classifying hyperplane there is no probabilistic explanation for the classification

Estimating the SVM in these high-dimensional spaces is considerably computationally expensive. Consider the model complexity when determining whether SVM should be implemented.

SVM Hyperparameter Tuning

Hyperparameters were selected with a randomized search. GridSearchCV is a library functions that is a member of sklearn's model_selection package. It loop through predefined Hyperparameter and fit the model on the training set. In the end best parameteres from the list of hyperparameteres can be selected. In our LinearSVC we evaluated hyperparameteres(C,loss,penalty,dual and tol,max_iter) and set a range for each and at the end we got accuracy of 0.77 with best parametereswere selected and tabulated in the table which gained 0.001 for C, squared_hinge for param_loss and with param_dual become False, tol =1e-05 with 100 max_iter with 872 sec long and finally with accuracy of 0.771137. We also hypertuned LinearSVC for sample size 1000, 2000, 5000, 10000 and find out accuracy for each and time of fiting the model was calculated and reported respectively. We showed results of parameter tuning and accuracy in a coresponsing tables.

Random Forest

A Random Forest is an emsemble model created from a collection of decision trees and bootstrapped aggregated (bagged) data (Breiman, 1996; James et al, 2013). The following steps are used to create bagged trees:

- bootstrap sample (repeated sampling with replacement) the dataset to create B separate datasets.
- fit a model $f^b(x)$ on each B dataset.

The bagged decision tree model is the majority vote of the classifiers resulting in the class prediction. Generally an ensemble should consist of a large number of decision trees. The number of decision trees was used as a hyperparameter and we tuned it with cross-validation.

Random Forest Hyperparameter Tuning

For Random Forest we also used GridSearchCV to randomly select combinations of hyper parameters. Outside of the Grid, the value of n_iterations is one of the most influential parameters in Random Forest. In our base model we chose n_iterations = 10 and ran it on the complete train dataset.

Below in figure 4 is a list of the default or base parameters used in our RF Base Model:

Parameters Used by Base Model:

```
{'bootstrap': True,
 'ccp alpha': 0.0,
 'class_weight': None,
 'criterion': 'gini',
 'max_depth': None,
 'max_features': 'auto',
 'max_leaf_nodes': None,
 'max_samples': None,
 'min_impurity_decrease': 0.0,
 'min_impurity_split': None,
 'min samples leaf': 1,
 'min samples split': 2,
 'min weight fraction leaf': 0.0,
 'n estimators': 10,
 'n jobs': None,
 'oob_score': False,
 'random state': 123,
 'verbose': 0,
 'warm_start': False}
```

Random Forest Base Parameters (Figure 4)

Grid Parameter Options

We did not include all possible parameters that could be tuned in our grid definition. We also limited n_iterations to 5000 and in our results, the algorithm only chose 1000. From this we learned that if one wants to test some extreme conditions or specific grid configurations, a random grid search may not be the best approach. Figure 4 shows the grid parameters that could be chosen at random by the GridSearchCV function (Figure 5).

Random Grid Parameters:

```
{'bootstrap': [True, False],
  'max_depth': [10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
  'max_features': ['auto', 'sqrt'],
  'min_samples_leaf': [1, 2, 4],
  'min_samples_split': [2, 5, 10],
  'n_estimators': [100, 500, 1000, 1500]}
```

Random Forest Grid Parameters (Figure 5)

Top Features

We will not share the top features from all models that were run, however we did notice that the top ten features from different models were not consistent. The feature importance graph in Figure 4 is difficult to read because there are so many features. However, what it does show well is that no features has a significant percent of importance. The top 10 features out of 508 features represent approximately 30% of the influence in the model. This says that the variability of the model is high, and we have seen that in our different scenarios (Figure 6)

Random Forest Feature Importance - All Features (Figure 6)

Top Ten Features

Rank	Feature ID	Importances
1.	feature 44	(0.060483)
2.	feature 11	(0.027440)
3.	feature 9	(0.025312)
4.	feature 96	(0.024937)
5.	feature 35	(0.023831)
6.	feature 20	(0.023625)
7.	feature 29	(0.023525)
8.	feature 13	(0.022473)
9.	feature 0	(0.021958)
10.	feature 338	(0.006959)

**Example Tree from our Random Forest Base Model"

The Figure below demonstrates a very small portion of the total Random Forest model. In this example, we intentionally limited the max_depth of the tree to be able to visualize each element. (Figure 7)

Random Forest Tree with max_depth=3 and n_iterations=10 (Figure 7)

Results

Validation Results

Model results are provided in Table 4. Base models were constructed with the parameters that were provided by Dr. Slater. Hypertuned models are listed by type and variation. We were able to provide log-loss and accuracy for XGBoost and Random Forest. SVM does not provide log-loss so it is excluded from the table. In addition to log-loss and accuracy, we have provided timing or estimated timing for some models. This allows us to evaluate the cost/accuracy trade-offs.

Of the Random Forest models, our best performer was also the most simple and took the least amount of processing time because we did not use RandomizedSearchCV. The number of iterations for all randomized models was n_iter=5 and the best_params were all very similar between the different cases. It's very possible that the default parameters just happened to be the best performing combination of tunable parameters for this dataset. Given the relatively small amount of feature importance and the large number of features, it's also possible that the test dataset was very similar to the train dataset in its lack of correlation or internal trend. Whatever the reason, we find that random forest outperforms the XGBoost and SVM models with this data. (Table 3)

Model	Log-Loss	Accuracy	Wall Time (Seconds)
XGBoost (Pre-Tuned Model)	0.585068	0.768330	8
XGBoost (RandomizedSearchCV)	0.469189	0.781848	1534
SVM, Entire DSet	NA	0.7608	1179.79
SVM, For_1000	NA	0.779	13.2
SVM, For_2000	NA	0.4075	28.39
SVM, For_5000	NA	0.7662	71.83
SVM, For_10000	NA	0.7599	161.57
Random Forest Base	0.248184	0.927400	41
RF Tuned, 1000 Entries	0.483830	0.786000	120
RF Tuned, 5000 Entries	0.258795	0.917200	420
RF Tuned, Full Dataset	0.264958	0.913960	540

Table of Model Performance and Results (Table 3)

AUC Comparisions for LinearSVC and Random Forest

Below in figure 1, is the comparision of the AUC performance for the LinearSVC and Random Forest model. This plot indicates that the Random Forest model trends towards more true positives than LinearSVC.decision_function (Figure 8)

LinearSVC and Random Forest Model Comparisions (Figure 8)

Conclusion

The best accuracy and log-loss values of our Random Forest (RF), Support Vector Machine (SVM), and XGBoost tuned models varied greatly depending on the hyperparameter tuning. Random Forest accuracy results were significantly higher than the other models. XGBoost and SVM were similar in their accuracy, but their execution time was significantly different. The main difference between all models appeared in the compute time required to ensure these results. The log-loss values for XGBoost were also higher than Random Forest. This difference in the predicted probability from the actual value in XGBoost and Random Forest makes our choice less difficult if you have the computing power. Random Forest appears to be the best model for this type of data set.

SVM is a useful model for small data sets that are highly dimensional. If you have a Big Data corpus, then XGBoost would be a good model. Random Forest works with categorical features very well and can handle high dimensional spaces and large numbers of training examples.

References

Terence Shin (2020), towards data science - All Machine Learning Models Explained in 6 Minutes

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24, 123-140.

CJason Brownlee (2016), machine learning mastery - A Gentle Introduction to XGBoost for Applied Machine Learning.

Appendix

Code

```
In [3]: import pandas as pd
        import xgboost as xgb
        import os
        import time
        import numpy as np
        from sklearn.metrics import log loss, accuracy score
        from sklearn.svm import SVC
        from sklearn.svm import LinearSVC
        from sklearn.metrics import accuracy score
        from sklearn.ensemble import RandomForestClassifier
        from tabulate import tabulate
        import pickle
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.model selection import RandomizedSearchCV
        from sklearn.tree import export_graphviz
        from pprint import pprint
        import math
        import matplotlib.pyplot as plt
        import matplotlib.pyplot as plt
        from sklearn import model selection
        from sklearn.preprocessing import StandardScaler
        from sklearn.model selection import train test split
        from sklearn.model selection import GridSearchCV
        from sklearn.svm import LinearSVC
        import sklearn.feature selection as fs
        from sklearn.model selection import cross val score
```

```
In [7]: # Set Directory for image files - Comment out if you are not LL
    import os
    os.chdir('C:\\SMU_Local\\SMU_T5_QTW_CapA\\QTW_7333\\Unit 7 and 8\\case_s
    tudy_81_2\\CS8')
In [8]: os.getcwd()
Out[8]: 'C:\\SMU_Local\\SMU_T5_QTW_CapA\\QTW_7333\\Unit 7 and 8\\case_study_81_
    2\\CS8'
```

Load Data and Prepare for Modeling

```
In [4]: # Load Data
    # load data and separate target variable from dataset
    train = pd.read_csv('Data/case_8.csv')
    target = train['target']
    train.drop(['target'],inplace=True, axis=1)
In [ ]: pickle.dump(target, open("Pickle/target.pkl", "wb"))
```

In [5]: # evaluate data types
 train.info(verbose=True)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114321 entries, 0 to 114320

#	Column	Dtype
0	ID	int64
1	v1	float64
2	v2	float64
3	v3	object
4	v4	float64
5	v5	float64
6	v6	float64
7	v7	float64
8	v8	float64
9	v9	float64
10	v10	float64
11	v11	float64
12	v12	float64
13	v13	float64
14	v14	float64
15	v15	float64
16	v16	float64
17	v17	float64
18	v18	float64
19	v19	float64
20	v20	float64
21	v21	float64
22	v22	object
23	v23	float64
24	v24	object
25	v25	float64
26	v26	float64
27	v27	float64
28	v28	float64
29	v29	float64
30	v30	object
31	v31	object
32	v32	float64
33	v33	float64
34	v34	float64
35	v35	float64
36	v36	float64
37	v37	float64
38	v38	int64
39	v39	float64
40	v40	float64
41	v41	float64
42	v42	float64
43	v43	float64
44	v44	float64
45 46	v45	float64
46 47	v46	float64
47 48	v47	object float64
48 49	v48 v49	float64
50	v49 v50	float64
51	v50 v51	float64
ЭI	۷ J T	TIOGCOT

52	v52	object
53	v53	float64
54	v54	float64
55	v55	float64
56	v56	object
		-
57	v57	float64
58	v58	float64
59	v59	float64
60	v60	float64
		float64
61	v61	
62	v62	int64
63	v63	float64
64	v64	float64
65	v65	float64
66	v66	object
67	v67	float64
68	v68	float64
69	v69	float64
70	v70	float64
71	v71	object
72	v72	int64
73	v73	float64
74	v74	object
75	v75	object
76	v76	float64
77	v77	float64
78	v78	float64
79	v79	object
		-
80	v80	float64
81	v81	float64
82	v82	float64
83	v83	float64
84	v84	float64
85	v85	float64
86	v86	float64
87	v87	float64
88	v88	float64
89	v89	float64
90	v90	float64
91	v91	object
92	v92	float64
93	v93	float64
94	v94	float64
95	v95	float64
96	v96	float64
97	v97	float64
98	v98	float64
99	v99	float64
100	v100	float64
101	v101	float64
102	v102	float64
103	v103	float64
104	v103	float64
105	v105	float64
106	v106	float64
107	v107	object
108	v108	float64
-00	V = 0 0	1100004

```
109 v109
            float64
 110 v110
            object
 111 v111
            float64
 112 v112
            object
 113 v113
            object
 114 v114
            float64
 115 v115
            float64
 116 v116
            float64
 117 v117
            float64
 118 v118
            float64
 119 v119
            float64
 120 v120
            float64
121 v121
            float64
 122 v122
            float64
 123 v123
            float64
 124 v124
            float64
125 v125
            object
 126 v126
            float64
 127 v127
            float64
 128 v128
            float64
 129 v129
            int64
 130 v130
            float64
131 v131
            float64
dtypes: float64(108), int64(5), object(19)
memory usage: 115.1+ MB
```

In [6]: # isolate object data type columns
 train_object_dtype_cols = train.select_dtypes(include='object')

In [7]: # review head of object columns
train_object_dtype_cols.head()

Out[7]:

	v3	v22	v24	v30	v31	v47	v52	v56	v66	v71	v74	v75	v79	v91	v107	v110	v112	v1
0	С	XDX	С	С	Α	С	G	DI	С	F	В	D	Е	Α	Е	В	0	
1	С	GUV	С	С	Α	Е	G	DY	Α	F	В	D	D	В	В	Α	U	
2	С	FQ	Е	С	Α	С	F	AS	Α	В	В	В	Е	G	С	В	S	
3	С	ACUE	D	С	В	С	Н	BW	Α	F	В	D	В	В	В	В	J	
4	С	HIT	E	С	Α	I	Н	BW	С	F	В	D	С	G	С	Α	Т	

```
In [8]: # count unique values in object columns
         train_object_dtype_cols.describe(include='all').loc['unique', :]
Out[8]: v3
        v22
                 18210
        v24
                     5
                     7
        v30
        v31
                     3
        v47
                    10
        v52
                    12
        v56
                   122
        v66
                     3
        v71
                     9
        v74
                     3
        v75
                     4
        v79
                    18
        v91
                     7
        v107
                     7
        v110
                     3
        v112
                    22
        v113
                    36
        v125
                    90
        Name: unique, dtype: object
```

```
In [9]: # count unique values without v22 in object columns and plot
    unique_series = train_object_dtype_cols.describe(include='all').loc['uni
    que', :]
    unique_df = pd.DataFrame(unique_series)
    unique_df = unique_df.drop(['v22'])
    ax = unique_df.plot.bar(title='Feature Unique Value Count')
```


mean 281.704918 std 431.560670 min 126.000000 25% 147.000000 50% 167.000000 75% 226.000000 max 2886.000000 Name: v22, dtype: float64

```
In [53]: # Get counts of unique values in v22
   val = train_object_dtype_cols['v22'].value_counts()
   # identify values with counts > 125
   y = val[val < 125].index
   # replace values with count < 125 with NaN
   train_object_dtype_cols['v22'] = train_object_dtype_cols['v22'].replace
   ({x:math.nan for x in y})
   # Output v22 information after removing values less than 125
   train_object_dtype_cols.info()
   train_object_dtype_cols.groupby('v22').v22.count().describe()</pre>
```

2021-02-28 22:04:04,974 [35816] WARNING py.warnings:110: [JupyterRequire] C:\Anaconda\lib\site-packages\ipykernel_launcher.py:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114321 entries, 0 to 114320
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	v3	114321 non-null	object
1	v22	17184 non-null	object
2	v24	114321 non-null	object
3	v30	114321 non-null	object
4	v31	114321 non-null	object
5	v47	114321 non-null	object
6	v52	114321 non-null	object
7	v56	114321 non-null	object
8	v66	114321 non-null	object
9	v71	114321 non-null	object
10	v74	114321 non-null	object
11	v75	114321 non-null	object
12	v79	114321 non-null	object
13	v91	114321 non-null	object
14	v107	114321 non-null	object
15	v110	114321 non-null	object
16	v112	114321 non-null	object
17	v113	114321 non-null	object
18	v125	114321 non-null	object

dtypes: object(19)
memory usage: 16.6+ MB

Out[53]: count

 count
 61.000000

 mean
 281.704918

 std
 431.560670

 min
 126.000000

 25%
 147.000000

 50%
 167.000000

 75%
 226.000000

 max
 2886.000000

Name: v22, dtype: float64

```
In [54]: # one-hot encode remaining object columns
    object_one_hot_df = pd.get_dummies(data=train_object_dtype_cols)
    # Output one-hot encodeing results
    object_one_hot_df.info(verbose=True)
    # get list of columns that were one-hot encoded
    drop_cols = train_object_dtype_cols.columns
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114321 entries, 0 to 114320
Data columns (total 425 columns):

Data	columns (total 425 columns):
#	Column	Dtype
0	v3_A	uint8
1	v3_B	
	v22 AAPP	
	v22 ABF	
	v22_ABOF	
6	722_NCHT	uin+8
7	v22_ACHJ v22_ACWE	uin+Q
8	V22_ACWE	uin+0
	v22_ACXD v22_ADDF	uin+Q
	v22_ADGN	
	v22_ADMI	
	v22_ADMP	
	v22_AFOZ	
1 <i>A</i>	v22_AFYU	uin+8
15	v22_AGDF	uin+8
16	v22_AGON	uin+8
	v22_AGZT	
	v22_AHE	
	v22_AMD	
	v22_AMR	
	v22_AWT	
22	v22_AXH	uin+8
23	v22_BLE	uin+8
24	v22_DJU	uint8
	v22_EJC	
	v22_GBS	
	v22_GEB	
	v22_GEJ	
	v22_HDD	
	v22_HUU	uint8
31	v22_HUU v22_HZE	uint8
		uint8
	v22_KLZ	uint8
	v22 LIP	uint8
	v22 MNZ	uint8
	_	uint8
	v22 NGS	uint8
	v22_NRT	uint8
39	v22_NWG	uint8
	v22_NXE	uint8
	v22_OFD	uint8
	v22 PBC	
	v22 PFR	
	_	uint8
	v22 PTJ	uint8
	v22_PTO	uint8
47	v22_PWR	uint8
		uint8
	v22_QKP	
	v22_QVR	
	v22_gvR v22_RIC	
<i>J</i>		

52 V22_ROZ uint8 53 V22_TG uint8 54 V22_TVR uint8 55 V22_UAG uint8 56 V22_VVI uint8 57 V22_VZF uint8 58 V22_WRI uint8 60 V22_WRI uint8 61 V22_YEP uint8 62 V22_YGJ uint8 63 V22_YOD uint8 64 V24_A uint8 65 V24_B uint8 67 V24_D uint8 68 V24_E uint8 69 V30_A uint8 70 V30_B uint8 71 V30_C uint8 72 V30_D uint8 73 V30_E uint8 74 V30_F uint8 75 V30_G uint8 76 V31_A uint8 79 V47_A uint			
54 V22_TVR uint8 55 V22_UAG uint8 56 V22_VVI uint8 57 V22_VZF uint8 58 V22_WFT uint8 59 V22_WRI uint8 60 V22_WEP uint8 61 V22_YED uint8 62 V22_YGJ uint8 63 V22_YOD uint8 64 V24_A uint8 65 V24_B uint8 66 V24_C uint8 67 V24_D uint8 68 V24_E uint8 69 V30_A uint8 70 V30_B uint8 71 V30_C uint8 72 V30_D uint8 73 v30_E uint8 74 v30_F uint8 75 v30_G uint8 76 v31_A uint8 77 v31_B uint8	52	v22_ROZ	uint8
55	53	v22_TG	uint8
55 V22_UAG uint8 56 V22_VVI uint8 57 V22_VZF uint8 58 V22_WFT uint8 59 V22_WRI uint8 60 V22_YEP uint8 61 V22_YGJ uint8 61 V22_YOD uint8 62 V22_YOD uint8 64 V24_A uint8 65 V24_B uint8 66 V24_C uint8 67 V24_D uint8 68 V24_E uint8 69 V30_A uint8 70 V30_B uint8 71 V30_C uint8 72 V30_D uint8 73 v30_E uint8 74 v30_F uint8 75 v30_G uint8 76 v31_A uint8 77 v31_B uint8 78 v47_B uint8 </td <td>54</td> <td>v22 TVR</td> <td>uint8</td>	54	v22 TVR	uint8
56 V22_VVI uint8 57 V22_VZF uint8 58 V22_WFT uint8 59 V22_WRI uint8 60 V22_YEP uint8 61 V22_YGJ uint8 62 V22_YOD uint8 63 V24_A uint8 64 V24_B uint8 65 V24_B uint8 66 V24_C uint8 67 V24_D uint8 68 V24_E uint8 69 V30_A uint8 70 V30_B uint8 71 V30_C uint8 72 V30_D uint8 73 v30_E uint8 74 v30_F uint8 75 V30_G uint8 76 v31_A uint8 77 v31_B uint8 78 v31_C uint8 79 v47_A uint8	55	_	uint8
57			
58 V22_WFT uint8 59 V22_WNI uint8 60 V22_WRI uint8 61 V22_YEP uint8 62 V22_YOD uint8 63 V22_YOD uint8 64 V24_A uint8 65 V24_B uint8 66 V24_C uint8 67 V24_D uint8 68 V24_E uint8 69 V30_A uint8 70 V30_B uint8 71 V30_C uint8 72 V30_D uint8 73 V30_E uint8 74 V30_F uint8 75 V30_G uint8 76 V31_A uint8 77 V31_B uint8 78 V31_C uint8 79 V47_A uint8 80 V47_B uint8 81 V47_C uint8 82 V47_B uint8 84 V47_F		_	
59			
60			
61		_	
62		_	
63		_	
64			
65			
66		_	
67		· —	
68		v24_C	
69 V30_A uint8 70 V30_B uint8 71 V30_C uint8 72 V30_D uint8 73 V30_E uint8 74 V30_F uint8 75 V30_G uint8 76 V31_A uint8 77 V31_B uint8 78 V31_C uint8 79 V47_A uint8 80 V47_B uint8 81 V47_C uint8 82 V47_D uint8 83 V47_E uint8 84 V47_F uint8 85 V47_G uint8 87 V47_I uint8 87 V47_I uint8 87 V47_I uint8 89 V52_A uint8 90 V52_B uint8 91 V52_C uint8 91 V52_C uint8 91 V52_C uint8 92 V52_D uint8 93 V52_E uint8 94 V52_F uint8 95 V52_B uint8 96 V52_H uint8 97 V52_I uint8 97 V52_I uint8 98 V52_J uint8 99 V52_K uint8 90 V52_L uint8 91 V52_C uint8 92 V52_D uint8 93 V52_E uint8 94 V52_F uint8 95 V52_G uint8 96 V52_H uint8 97 V52_I uint8 97 V52_I uint8 98 V52_J uint8 99 V52_K uint8 100 V52_L uint8 101 V56_A uint8 102 V56_AA uint8 103 V56_AB uint8 104 V56_AC uint8 105 V56_AE uint8 106 V56_AF uint8 107 V56_AF uint8		· <u>-</u> -	
70		v24_E	uint8
71	69	v30_A	uint8
72	70	v30_B	uint8
73	71	v30_C	uint8
74	72	v30_D	uint8
75 v30_G	73	v30 E	uint8
75 v30_G	74	v30 F	uint8
76 v31_A		_	
77 v31_B			
78 v31_C			
79 V47_A uint8 80 V47_B uint8 81 V47_C uint8 82 V47_D uint8 83 V47_E uint8 84 V47_F uint8 85 V47_G uint8 86 V47_H uint8 87 V47_I uint8 89 V52_A uint8 90 V52_B uint8 91 V52_C uint8 91 V52_C uint8 92 V52_D uint8 94 V52_F uint8 95 V52_G uint8 96 V52_H uint8 97 V52_I uint8 98 V52_J uint8 99 V52_K uint8 99 V52_K uint8 100 V52_L uint8 101 V56_A uint8 102 V56_AA uint8 103 V56_AB uint8 104 V56_AC uint8 105 V56_AF uint8 106 V56_AF uint8		_	
80		_	
81		_	
82		_	
83	_		
84	-	_	
85		_	
86		_	
87		_	
88		_	
89 V52_A uint8 90 V52_B uint8 91 V52_C uint8 92 V52_D uint8 93 V52_E uint8 94 V52_F uint8 95 V52_G uint8 96 V52_H uint8 97 V52_I uint8 98 V52_J uint8 99 V52_K uint8 100 V52_L uint8 101 V56_A uint8 102 V56_AA uint8 103 V56_AB uint8 104 V56_AC uint8 105 V56_AE uint8 106 V56_AF uint8 107 V56_AG uint8		_	
90 v52_B uint8 91 v52_C uint8 92 v52_D uint8 93 v52_E uint8 94 v52_F uint8 95 v52_G uint8 96 v52_H uint8 97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
91 v52_C uint8 92 v52_D uint8 93 v52_E uint8 94 v52_F uint8 95 v52_G uint8 96 v52_H uint8 97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
92 v52_D uint8 93 v52_E uint8 94 v52_F uint8 95 v52_G uint8 96 v52_H uint8 97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
93 v52_E uint8 94 v52_F uint8 95 v52_G uint8 96 v52_H uint8 97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
94 v52_F uint8 95 v52_G uint8 96 v52_H uint8 97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	92	_	
95 v52_G uint8 96 v52_H uint8 97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	93	_	
96 v52_H uint8 97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	94	v52_F	uint8
97 v52_I uint8 98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	95	v52_G	uint8
98 v52_J uint8 99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	96	v52_H	uint8
99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	97	v52_I	uint8
99 v52_K uint8 100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	98	v52 J	uint8
100 v52_L uint8 101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8	99	_	uint8
101 v56_A uint8 102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8			uint8
102 v56_AA uint8 103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
103 v56_AB uint8 104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
104 v56_AC uint8 105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
105 v56_AE uint8 106 v56_AF uint8 107 v56_AG uint8		_	
106 v56_AF uint8 107 v56_AG uint8		_	
107 v56_AG uint8		_	
_		_	
100 A20 WU MILIER		_	
	100	√30_AП	ullico

109	v56 AI	uint8
110	v56 AJ	uint8
111	v56 AK	uint8
	_	
112	v56_AL	uint8
113	v56_AM	uint8
114	v56 AN	uint8
115	v56 AO	uint8
116	v56 AP	uint8
	_	
117	v56_AR	uint8
118	v56_AS	uint8
119	v56_AT	uint8
120	v56 AU	uint8
121	v56 AV	uint8
122	v56 AW	uint8
	_	
123	v56_AX	uint8
124	v56_AY	uint8
125	v56_AZ	uint8
126	v56 B	uint8
127	v56 BA	uint8
128	_	uint8
	v56_BC	
129	v56_BD	uint8
130	v56_BE	uint8
131	v56 BF	uint8
132	v56 BG	uint8
133	v56 BH	uint8
134	_	
	_	uint8
135	v56_BJ	uint8
136	v56_BK	uint8
137	v56_BL	uint8
138	v56 BM	uint8
139	v56_BN	uint8
140	v56 BO	uint8
141	v56_B0	uint8
	_	
142	v56_BQ	uint8
143	v56_BR	uint8
144	v56_BS	uint8
145	v56_BT	uint8
146	v56 BU	uint8
147	v56_BV	uint8
	_	
148	v56_BW	uint8
149	v56_BX	uint8
150	v56_BY	uint8
151	v56_BZ	uint8
152	v56 C	uint8
153	v56_CA	uint8
154	v56 CB	uint8
	_	
155	v56_CC	uint8
156	v56_CD	uint8
157	v56_CE	uint8
158	v56_CF	uint8
159	v56_CG	uint8
160	v56 CH	uint8
	_	
161	v56_CI	uint8
162	v56_CJ	uint8
163	_	uint8
164	v56_CL	uint8
165	v56_CM	uint8
	_	

166	v56_CN	uint8
167	v56_C0	uint8
168	v56_CP	uint8
169	v56_CQ	uint8
170	v56_CS	uint8
171	v56_CT	uint8
172	v56_CV	uint8
173	v56_CW	uint8
174	v56_CX	uint8
175	v56_CY	uint8
176	v56_CZ	uint8
177	v56_D	uint8
178	v56_DA	uint8
179	v56_DB	uint8
180	v56_DC	uint8
181	v56_DD	uint8
182	v56_DE	uint8
183	v56_DF	uint8
184	v56_DG	uint8
185	v56_DH	uint8
186	v56_DI	uint8
187	v56_DJ	uint8
188	v56_DK	uint8
189	v56_DL	uint8
190	v56_DM	uint8
191	v56_DN	uint8
192	v56_DO	uint8
193	v56_DP	uint8
194	v56_DQ	uint8
195	v56_DR	uint8
196	v56_DS	uint8
197	v56_DT	uint8
198	v56_DU	uint8
199	v56_DV	uint8
200	v56_DW	uint8
201	v56_DX	uint8
202	v56_DY	uint8
203	v56_DZ	uint8
204	v56_E	uint8
205	v56_F	uint8
206	v56_G	uint8
207	v56_H	uint8
208	v56_I	uint8
209	v56_L	uint8
210	v56 M	uint8
211	v56 N	uint8
212	v56 0	uint8
213	v56 P	uint8
214	v56 Q	uint8
215	v56_R	uint8
216	v56_T	uint8
217	v56_U	uint8
218	v56_V	uint8
219	v56_W	uint8
220	v56_X	uint8
221	v56_Y	uint8
222	v56_Z	uint8
	_	

223	v66_A	uint8
224	v66 B	uint8
225	_	uint8
226	_	uint8
227		uint8
228	_	uint8
	_	
229	v71_D	uint8
230	v71_F	uint8
231	v71_G	uint8
232	v71_I	uint8
233	v71_K	uint8
234	v71_L	uint8
235	v74_A	uint8
236	v74_B	uint8
237	v74_C	uint8
238	v75_A	uint8
239	v75_B	uint8
240	v75_C	uint8
241	v75_D	uint8
242	_	uint8
243	_	uint8
244		uint8
245	_	uint8
246	v79_E	uint8
247	v79_F	uint8
248	v79_G	uint8
249	v79_H	uint8
250	v79_I	uint8
251	v79_J	uint8
252	v79_K	uint8
253	v79_L	uint8
254	v79_M	uint8
255	v79_N	uint8
256	v79 0	uint8
257	v79_P	uint8
258	_	uint8
259	_	uint8
	_	
260	v91_A	uint8
261	v91_B	uint8
262	v91_C	uint8
263	v91_D	uint8
264	v91_E	uint8
265	v91_F	uint8
266	v91_G	uint8
267	v107_A	uint8
268	v107_B	uint8
269	v107 C	uint8
270	v107_D	uint8
271	v107_E	uint8
272	v107_F	uint8
273	v107_F v107_G	uint8
274	v107_G v110 A	uint8
	_	uint8
275	v110_B	
276	v110_C	uint8
277	v112_A	uint8
278	v112_B	uint8
279	v112_C	uint8

280	v112_D	uint8
281	v112 E	uint8
282	v112 F	uint8
283	v112_r	uint8
	_	
284	v112_H	uint8
285	v112_I	uint8
286	v112_J	uint8
287	v112 K	uint8
288	v112 L	uint8
289	v112 M	uint8
290	v112 N	uint8
	v112_N v112_0	
291	_	uint8
292	v112_P	uint8
293	v112_Q	uint8
294	v112_R	uint8
295	v112_S	uint8
296	v112 T	uint8
297	v112 U	uint8
298	v112 V	uint8
299	_	uint8
	_	
300	v113_AA	uint8
301	v113_AB	uint8
302	v113_AC	uint8
303	v113_AD	uint8
304	v113 AE	uint8
305	v113 AF	uint8
306	v113 AG	uint8
307	v113_Ne	uint8
	_	
308	v113_AI	uint8
309	v113_AJ	uint8
310	v113_AK	uint8
311	v113_B	uint8
312	v113_C	uint8
313	v113 D	uint8
314	v113 E	uint8
315	v113_E	uint8
316	_	uint8
	_	
317	v113_H	uint8
318	v113_I	uint8
319	v113_J	uint8
320	v113_L	uint8
321	v113_M	uint8
322	v113 N	uint8
323	v113 0	uint8
324	v113 P	uint8
325	_	uint8
326	v113_R	uint8
327	v113_S	uint8
328	v113_T	uint8
329	v113_U	uint8
330	v113_V	uint8
331	v113 W	uint8
332	v113 X	uint8
333	v113_X v113_Y	uint8
334	v113_1 v113_Z	uint8
335	_	
	v125_A	uint8
336	v125_AA	uint8

337	v125_AB	uint8
338	v125 AC	uint8
339	v125 AD	uint8
	_	
340	v125_AE	uint8
341	v125_AF	uint8
342	v125_AG	uint8
343	v125 AH	uint8
344	v125 AI	uint8
345	-	
	_	uint8
346	v125_AK	uint8
347	v125_AL	uint8
348	v125 AM	uint8
349	v125 AN	uint8
350	v125_AO	uint8
351	_	
		uint8
352	v125_AQ	uint8
353	v125_AR	uint8
354	v125 AS	uint8
355	v125 AT	uint8
356	v125_H	uint8
	_	
357	v125_AV	uint8
358	v125_AW	uint8
359	v125_AX	uint8
360	v125_AY	uint8
361	v125_AZ	uint8
362	v125_B	uint8
363	v125 BA	uint8
364	v125 BB	uint8
365	v125_BC	uint8
366	_	
		uint8
367	v125_BE	uint8
368	v125_BF	uint8
369	v125_BG	uint8
370	v125_BH	uint8
371	v125 BI	uint8
372	v125 BJ	uint8
373	v125 BK	uint8
	v125_BK v125_BL	uint8
374	_	
375	v125_BM	uint8
376	v125_BN	uint8
377	v125_BO	uint8
378	v125_BP	uint8
379	v125 BQ	uint8
380	v125 BR	uint8
381	v125_BS	uint8
382	_	uint8
	_	
383	v125_BU	uint8
384	v125_BV	uint8
385	v125_BW	uint8
386	v125_BX	uint8
387	v125_BY	uint8
388	v125 BZ	uint8
389	v125_C	uint8
390	v125_C	uint8
391	_	uint8
	v125_CB	
392	v125_CC	uint8
393	v125_CD	uint8

```
394 v125_CE
              uint8
 395 v125_CF
              uint8
 396 v125_CG
              uint8
397 v125_CH
              uint8
 398 v125_CI
              uint8
 399 v125_CJ
              uint8
 400 v125_CK
              uint8
 401 v125_CL
              uint8
 402 v125 D
              uint8
 403 v125 E
              uint8
 404 v125 F
              uint8
 405 v125_G
              uint8
 406 v125 H
              uint8
 407 v125_I
              uint8
 408 v125_J
              uint8
 409 v125_K
              uint8
410 v125_L
            uint8
411 v125 M
              uint8
412 v125 N
              uint8
413 v125 O
              uint8
 414 v125 P
              uint8
415 v125_Q
            uint8
416 v125 R
              uint8
 417 v125_S
             uint8
418 v125_T
           uint8
            uint8
 419 v125 U
 420 v125_V
             uint8
 421 v125 W
             uint8
422 v125 X
             uint8
423 v125_Y
             uint8
 424 v125_Z
              uint8
dtypes: uint8(425)
memory usage: 46.3 MB
```

```
In [55]: # drop one-hot encoded columns from dataframe
    train = train.drop(drop_cols, axis=1)
```

```
In [56]: # merge one-hot encoded columns to dataframe
    frames = [train, object_one_hot_df]
    train = pd.concat(frames,axis=1)
    # Output train dataframe
    train.info(verbose=True)
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 114321 entries, 0 to 114320

Data	columns	(total	538	columns):

Data	COLUMNIS	(COCAT 330
#	Column	Dtype
		- 7 L
0	ID	int64
1	v1	float64
2	v2	float64
3	v4	float64
4	v5	float64
5	v6	float64
6	v7	float64
7	v8	float64
8	v9	float64
9	v10	float64
10	v11	float64
11	v12	float64
12	v13	float64
13	v14	float64
14	v15	float64
15	v16	float64
16	v17	float64
17	v18	float64
18	v19	float64
19	v20	float64
20	v21	float64
21	v23	float64
22	v25	float64
23	v26	float64
24	v27	float64
25	v28	float64
26	v29	float64
27	v32	float64
28	v33	float64
29	v34	float64
30	v35	float64
31	v36	float64
32	v37	float64
33	v38	int64
34	v39	float64
35	v40	float64
36	v41	float64
37	v42	float64
38	v43	float64
39	v44	float64
40	v45	float64
	-	
41	v46	float64
42	v48	float64
43	v49	float64
44	v50	float64
45	v51	float64
46	v53	float64
47	v54	float64
48	v55	float64
49	v57	float64
50	v58	float64
51	v59	float64
-		

52	v60	float64
53	v61	float64
54	v62	int64
55	v63	float64
56	v64	float64
57	v65	float64
58	v67	float64
59	v68	float64
60	v69	float64
61	v70	float64
62	v72	int64
63	v73	float64
64	v76	float64
65	v77	float64
66	v78	float64
67	v80	float64
68	v81	float64
69	v82	float64
70	v83	float64
71	v84	float64
72	v85	float64
73		float64
	v86	
74	v87	float64
75 76	v88	float64
76	v89	float64
77	v90	float64
78	v92	float64
79	v93	float64
80	v94	float64
81	v95	float64
82	v96	float64
83	v97	float64
84	v98	float64
85	v99	float64
86	v100	float64
87	v101	float64
88	v102	float64
89	v103	float64
90	v104	float64
91	v105	float64
92	v106	float64
93	v108	float64
94	v109	float64
95	v111	float64
96	v114	float64
97	v115	float64
98	v116	float64
99	v117	float64
100	v118	float64
101	v119	float64
102	v120	float64
102	v120	float64
103	v121	float64
104	v122	float64
105	v123	float64
106	v124 v126	float64
108	v127	float64

109	v128	float64
110	v129	int64
	v130	float64
	v131	float64
	v3_A	uint8
	v3 B	uint8
	v3_E v3_C	uint8
	v22_AAPP	
110	v22_ABF	uint8
	v22_ABOF	uint8
	v22_ACHJ	uint8
	v22_ACWE	
	v22_ACXD	
	v22_ADDF	
	v22_ADGN	uint8
124	v22_ADMI	uint8
125	v22_ADMP	uint8
126	v22_AFOZ	uint8
	v22_AFYU	uint8
	v22_AGDF	
	v22_AGON	
	v22 AGZT	
	v22_AHE	uint8
	v22_And	uint8
132	V22_AJQ	
133	v22_AMR	uint8
	v22_AWT	uint8
	v22_AXH	
	v22_BLE	
	v22_DJU	
138	v22_EJC	uint8
139	v22_GBS	uint8
140	v22_GEB v22_GEJ	uint8
141	v22 GEJ	uint8
142	v22_HDD	uint8
143	v22_HUU	uint8
	v22 HZE	uint8
145	_	uint8
146	_	uint8
147	_	uint8
	_	uint8
148	v22_MNZ	
149	v22_MQE	uint8
150	v22_NGS	uint8
151	v22_NRT	uint8
152	_	uint8
153	v22_NXE	uint8
154	v22_OFD	uint8
155		uint8
156	v22_PFR	uint8
157	v22_PSE	uint8
158	v22_PTJ	uint8
159	_	uint8
160	_	uint8
161	_	uint8
162		uint8
163		uint8
164	v22_QvR v22 RIC	uint8
	_	
165	v22_ROZ	uint8

166	v22_TG	uint8
167	v22_TVR	uint8
168		uint8
169		uint8
170	_	uint8
171	v22 WFT	
172	_	uint8
173	v22_WRI	uint8
174	v22_YEP	uint8
175	V22_IEF	uint8
176	v22_YGJ	
	_	
177	_	uint8
178	_	uint8
179	_	uint8
180	v24_D	uint8
181	v24_E	uint8
182	v30_A	uint8
183	v30_B	uint8
184	v30_C	uint8
185	v30_D	uint8
186	v30 E	uint8
187	v30 F	uint8
188	_	uint8
189	v31 A	uint8
190	v31 B	uint8
191	v31_B v31_C	uint8
192	v47 A	uint8
193	_	
	_	uint8
194	_	uint8
195	_	uint8
196	_	uint8
197	v47_F	uint8
198	v47_G	uint8
199	v47_H	uint8
200	v47_I	uint8
201	v47_J	uint8
202	v52_A	uint8
203	v52_B	uint8
204	v52 C	uint8
205	v52 D	uint8
206	v52 E	uint8
207	v52 F	uint8
208	v52_G	uint8
209		uint8
210	_	uint8
211	_	uint8
212	v52_6 v52_K	uint8
	_	
213	v52_L	uint8
214	v56_A	uint8
215	v56_AA	uint8
216	_	uint8
217	_	uint8
218	_	uint8
219	_	uint8
220	v56_AG	uint8
221	v56_AH	uint8
222	v56_AI	uint8
	_	

223	· <u>-</u>	uint8
224	v56_AK	uint8
225	v56_AL	uint8
226	v56_AM	uint8
227	v56 AN	uint8
228	v56 AO	uint8
229	v56 AP	uint8
230	v56 AR	
231	v56 AS	uint8
232	v56_AT	uint8
233	v56_AU	uint8
234	_	uint8
	_	
235	v56_AW	uint8
236	v56_AX	uint8
237	v56_AY	
238	_	uint8
239	v56_B	uint8
240	v56_BA	uint8
241	v56_BC	uint8
242	v56_BD	uint8
243	v56_BE	uint8
244	v56 BF	uint8
245	v56 BG	uint8
246	_	uint8
247	v56 BI	uint8
248	v56 BJ	uint8
249	v56_BK	uint8
250	_	uint8
	_	
251	v56_BM	uint8
252	v56_BN	uint8
253	_	uint8
254	_	uint8
255	_ ~	uint8
256	v56_BR	uint8
257	v56_BS	uint8
258	v56_BT	uint8
259		uint8
260		uint8
261	v56 BW	uint8
262	v56 BX	uint8
263	_	uint8
264	v56 BZ	uint8
265	v56 C	uint8
266	v56 CA	uint8
267	v56_CB	uint8
268	_	uint8
269	_	
	_	
270	_	uint8
271	v56_CF	uint8
272	v56_CG	uint8
273	v56_CH	uint8
274	v56_CI	uint8
275	_	uint8
276	_	uint8
277	_	uint8
278	v56_CM	uint8
279	v56_CN	uint8
	=	

280 v56_CO			
282 v56_CQ uint8 283 v56_CS uint8 284 v56_CT uint8 285 v56_CV uint8 286 v56_CW uint8 287 v56_CX uint8 288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DD uint8 306 v56_DD uint8 307 v56_DD uint8 308 v56_DD uint8 309 v56_DD uint8 310 v56_DD uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 319 v56_G uint8 317 v56_E uint8 319 v56_D uint8 311 v56_DV uint8 315 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 319 v56_G uint8 319 v56_G uint8 310 v56_DV uint8 311 v56_DV uint8 312 v56_DV uint8 313 v56_DV uint8 314 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 319 v56_G uint8 320 v56_H uint8 321 v56_L uint8 321 v56_L uint8 322 v56_L uint8 323 v56_N uint8 324 v56_N uint8 325 v56_C uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_Y uint8 334 v56_Y uint8 335 v56_Z uint8	280	v56_C0	uint8
283 v56_CS uint8 284 v56_CT uint8 285 v56_CV uint8 286 v56_CW uint8 287 v56_CX uint8 288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 301 v56_DK uint8 302 v56_DD uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DD uint8 307 v56_DQ uint8 308 v56_DP uint8 307 v56_DQ uint8 308 v56_DD uint8 309 v56_DD uint8 301 v56_DV uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 311 v56_DV uint8 312 v56_DV uint8 313 v56_DV uint8 314 v56_DX uint8 315 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 319 v56_F uint8 317 v56_E uint8 319 v56_F uint8 319 v56_B uint8 310 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 317 v56_E uint8 319 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_N uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 327 v56_Q uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_Y uint8 334 v56_Y uint8 335 v56_Z uint8	281	v56_CP	uint8
283 v56_CS uint8 284 v56_CT uint8 285 v56_CV uint8 286 v56_CW uint8 287 v56_CX uint8 288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DD uint8 307 v56_DQ uint8 308 v56_DD uint8 307 v56_DQ uint8 308 v56_DD uint8 309 v56_DD uint8 307 v56_DQ uint8 308 v56_DD uint8 309 v56_DD uint8 310 v56_DD uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DV uint8 314 v56_DX uint8 315 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 319 v56_E uint8 319 v56_E uint8 319 v56_F uint8 319 v56_F uint8 319 v56_B uint8 321 v56_L uint8 322 v56_L uint8 323 v56_N uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 327 v56_Q uint8 329 v56_T uint8 321 v56_V uint8 331 v56_V uint8 332 v56_W uint8 331 v56_V uint8 332 v56_W uint8 333 v56_Y uint8 334 v56_Y uint8 335 v56_Z uint8 337 v56_Y uint8 337 v56_V uint8 337 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_Y uint8	282	v56 CQ	uint8
284 v56_CT uint8 285 v56_CV uint8 286 v56_CW uint8 287 v56_CX uint8 288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 301 v56_DK uint8 302 v56_DD uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DD uint8 307 v56_DQ uint8 308 v56_DD uint8 307 v56_DQ uint8 308 v56_DD uint8 309 v56_DD uint8 309 v56_DD uint8 301 v56_DV uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DV uint8 317 v56_E uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 317 v56_E uint8 319 v56_G uint8 317 v56_E uint8 319 v56_G uint8 317 v56_E uint8 319 v56_D uint8 317 v56_E uint8 319 v56_D uint8 317 v56_E uint8 319 v56_D uint8 317 v56_E uint8 319 v56_G uint8 317 v56_E uint8 319 v56_D uint8 310 v56_D uint8 311 v56_D uint8 311 v56_D uint8 312 v56_D uint8 313 v56_D uint8 314 v56_D uint8 315 v56_D uint8 317 v56_E uint8 318 v56_D uint8 319 v56_D uint8 319 v56_D uint8	283	_	uint8
285 v56_CV uint8 286 v56_CW uint8 287 v56_CX uint8 288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DH uint8 290 v56_DH uint8 291 v56_DB uint8 295 v56_DB uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DH uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DD uint8 305 v56_DD uint8 307 v56_DD uint8 308 v56_DD uint8 309 v56_DD uint8 309 v56_DD uint8 309 v56_DD uint8 310 v56_DD uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DV uint8 315 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 319 v56_E uint8 319 v56_E uint8 319 v56_B uint8 319 v56_B uint8 310 v56_D uint8 311 v56_DV uint8 315 v56_DV uint8 315 v56_DV uint8 316 v56_DV uint8 317 v56_E uint8 319 v56_B uint8 319 v56_B uint8 319 v56_B uint8 310 v56_DV uint8 311 v56_DV uint8 311 v56_DV uint8 312 v56_DV uint8 313 v56_B uint8 329 v56_B uint8 320 v56_B uint8 321 v56_D uint8 322 v56_B uint8 323 v56_B uint8 324 v56_D uint8 325 v56_D uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
286 v56_CW uint8 287 v56_CX uint8 288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DM uint8 305 v56_DD uint8 306 v56_DD uint8 307 v56_DD uint8 307 v56_DD uint8 308 v56_DD uint8 309 v56_DD uint8 301 v56_DD uint8 307 v56_DD uint8 308 v56_DD uint8 309 v56_DD uint8 310 v56_DT uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 319 v56_G uint8 320 v56_H uint8 321 v56_D uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_C uint8 327 v56_Q uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 331 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
287 v56_CX uint8 288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DM uint8 305 v56_DD uint8 307 v56_DD uint8 307 v56_DD uint8 308 v56_DD uint8 307 v56_DD uint8 307 v56_DD uint8 308 v56_DD uint8 309 v56_DD uint8 307 v56_DD uint8 308 v56_DD uint8 309 v56_DD uint8 310 v56_DT uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DU uint8 313 v56_DW uint8 314 v56_DW uint8 315 v56_DW uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 319 v56_G uint8 310 v56_D uint8 311 v56_D uint8 312 v56_D uint8 315 v56_D uint8 315 v56_D uint8 316 v56_D uint8 317 v56_E uint8 319 v56_G uint8 319 v56_G uint8 320 v56_H uint8 321 v56_L uint8 321 v56_L uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
288 v56_CY uint8 289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DH uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DD uint8 305 v56_DD uint8 306 v56_DD uint8 307 v56_DD uint8 308 v56_DP uint8 309 v56_DD uint8 310 v56_DT uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DU uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 319 v56_G uint8 317 v56_E uint8 319 v56_G uint8 319 v56_G uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_Y uint8 332 v56_W uint8 333 v56_X uint8 333 v56_X uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
289 v56_CZ uint8 290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DE uint8 297 v56_DG uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DM uint8 305 v56_DD uint8 307 v56_DD uint8 307 v56_DD uint8 307 v56_DD uint8 308 v56_DP uint8 309 v56_DD uint8 310 v56_DD uint8 310 v56_DD uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 314 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 317 v56_E uint8 319 v56_G uint8 319 v56_G uint8 319 v56_G uint8 321 v56_I uint8 322 v56_L uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
290 v56_D uint8 291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DM uint8 305 v56_DD uint8 307 v56_DD uint8 307 v56_DD uint8 308 v56_DP uint8 309 v56_DB uint8 309 v56_DB uint8 310 v56_DD uint8 310 v56_DD uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 319 v56_B uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 331 v56_Y uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
291 v56_DA uint8 292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DM uint8 305 v56_DD uint8 306 v56_DD uint8 307 v56_DD uint8 307 v56_DD uint8 308 v56_DP uint8 309 v56_DB uint8 309 v56_DB uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 319 v56_G uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
292 v56_DB uint8 293 v56_DC uint8 294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 305 v56_DD uint8 305 v56_DD uint8 306 v56_DP uint8 307 v56_DQ uint8 308 v56_DP uint8 309 v56_DB uint8 310 v56_DT uint8 310 v56_DT uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DV uint8 315 v56_DV uint8 315 v56_DV uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_F uint8 319 v56_G uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
293 v56_DC		_	
294 v56_DD uint8 295 v56_DE uint8 296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DD uint8 307 v56_DQ uint8 307 v56_DQ uint8 309 v56_DR uint8 310 v56_DR uint8 311 v56_DU uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DV uint8 315 v56_DV uint8 317 v56_E uint8 318 v56_F uint8 319 v56_E uint8 319 v56_E uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 331 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
295 v56_DE	293	_	
296 v56_DF uint8 297 v56_DG uint8 298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 309 v56_DR uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DV uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_E uint8 319 v56_G uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 327 v56_Q uint8 328 v56_P uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_M uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	294	v56_DD	uint8
297 v56_DG	295	v56_DE	uint8
298 v56_DH uint8 299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 309 v56_DR uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DW uint8 315 v56_DV uint8 315 v56_DV uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_F uint8 319 v56_F uint8 319 v56_F uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	296	v56_DF	uint8
299 v56_DI uint8 300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 308 v56_DR uint8 309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DW uint8 313 v56_DW uint8 314 v56_DW uint8 315 v56_DW uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 330 v56_V uint8 331 v56_V uint8 331 v56_V uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	297	v56 DG	uint8
300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 309 v56_DR uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 319 v56_G uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	298	v56 DH	uint8
300 v56_DJ uint8 301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 309 v56_DR uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 319 v56_G uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	299	v56 DI	uint8
301 v56_DK uint8 302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 309 v56_DR uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_E uint8 319 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 324 v56_P uint8 325 v56_O uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
302 v56_DL uint8 303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 309 v56_DR uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DW uint8 315 v56_DW uint8 315 v56_DW uint8 316 v56_DX uint8 317 v56_E uint8 318 v56_F uint8 319 v56_F uint8 319 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
303 v56_DM uint8 304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 308 v56_DR uint8 309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
304 v56_DN uint8 305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 308 v56_DR uint8 309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
305 v56_DO uint8 306 v56_DP uint8 307 v56_DQ uint8 308 v56_DR uint8 309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 331 v56_V uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
306 v56_DP uint8 307 v56_DQ uint8 308 v56_DR uint8 309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DX uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
307 v56_DQ uint8 308 v56_DR uint8 309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_E uint8 319 v56_F uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
308 v56_DR uint8 309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_F uint8 319 v56_F uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
309 v56_DS uint8 310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DX uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_F uint8 319 v56_F uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 327 v56_Q uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 329 v56_V uint8 331 v56_V uint8 331 v56_V uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8			
310 v56_DT uint8 311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 319 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
311 v56_DU uint8 312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 327 v56_Q uint8 328 v56_P uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		v56_DS	uint8
312 v56_DV uint8 313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	310	v56_DT	uint8
313 v56_DW uint8 314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 327 v56_Q uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	311	v56_DU	uint8
314 v56_DX uint8 315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 325 v56_O uint8 327 v56_Q uint8 327 v56_Q uint8 329 v56_T uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	312	v56_DV	uint8
315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	313	v56 DW	uint8
315 v56_DY uint8 316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	314	v56 DX	uint8
316 v56_DZ uint8 317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
317 v56_E uint8 318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 329 v56_R uint8 329 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
318 v56_F uint8 319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
319 v56_G uint8 320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
320 v56_H uint8 321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
321 v56_I uint8 322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
322 v56_L uint8 323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
323 v56_M uint8 324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
324 v56_N uint8 325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
325 v56_O uint8 326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8			
326 v56_P uint8 327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
327 v56_Q uint8 328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	325	v56_0	
328 v56_R uint8 329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		v56_P	uint8
329 v56_T uint8 330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	327	v56_Q	uint8
330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	328	v56_R	uint8
330 v56_U uint8 331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8	329	v56_T	uint8
331 v56_V uint8 332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8			uint8
332 v56_W uint8 333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
333 v56_X uint8 334 v56_Y uint8 335 v56_Z uint8		_	
334 v56_Y uint8 335 v56_Z uint8		_	
335 v56_Z uint8		_	
<u>—</u>		_	
220 AOO_H MIHER		_	
	220	V 0 0 _A	ullica

337	v66_B	uint8
338	v66_C	uint8
339	_	uint8
340	_	uint8
341	v71_C	uint8
342		uint8
	_	
343	_	uint8
344	v71_G	uint8
345	v71_I	uint8
346	v71_K	uint8
347	v71_L	uint8
348	_	uint8
349	v74_B	uint8
350	v74_C	uint8
351	v75_A	uint8
352	v75_B	uint8
353	v75_C	uint8
354	v75_D	uint8
355	v79 A	uint8
356	_	uint8
357	_	uint8
358	_	uint8
359	_	
	_	uint8
360	_	uint8
361	v79_G	uint8
362	v79_H	uint8
363	_	uint8
364	_	uint8
365	_	uint8
366	v79_L	uint8
367	v79_M	uint8
368	v79 N	uint8
369	v79_0	uint8
370	v79 P	uint8
371	v79_Q	uint8
372		uint8
373	_	uint8
374	_	uint8
375	_	uint8
	_	uint8
376	v91_D	
377	v91_E	uint8
378	v91_F	uint8
379		uint8
380	_	uint8
381	_	uint8
382	_	uint8
383		uint8
384	v107_E	uint8
385	v107_F	uint8
386	v107 G	uint8
387	v110_A	uint8
388	_	
389	_	uint8
390	_	uint8
391	v112_n	uint8
392	_	uint8
393	_	uint8
J 9 J	^ T T Z D	ullico

394	v112_E	uint8
395	v112 F	uint8
396	v112 G	uint8
397	v112_6	uint8
	_	
398	v112_I	uint8
399	v112_J	uint8
400	v112_K	uint8
401	v112 L	uint8
402	v112 M	uint8
403	v112 N	uint8
404	v112_N	uint8
	_	
405	v112_P	uint8
406	v112_Q	uint8
407	v112_R	uint8
408	v112_S	uint8
409	v112 T	uint8
410	v112 U	uint8
411	v112 V	uint8
412	v112_v v113 A	uint8
	_	
413	v113_AA	uint8
414	v113_AB	uint8
415	v113_AC	uint8
416	v113_AD	uint8
417	v113 AE	uint8
418	v113 AF	uint8
419	v113 AG	uint8
420	_	
	_	uint8
421	v113_AI	uint8
422	v113_AJ	uint8
423	v113_AK	uint8
424	v113 B	uint8
425	v113 C	uint8
426	v113 D	uint8
427	v113_B v113 E	uint8
428	_	uint8
	v113_F	
429	v113_G	uint8
430	v113_H	uint8
431	v113_I	uint8
432	v113_J	uint8
433	v113_L	uint8
434	v113 M	uint8
435	v113_N	uint8
	_	
436	v113_0	uint8
437	v113_P	uint8
438	v113_Q	uint8
439	v113_R	uint8
440	v113_S	uint8
441	v113_T	uint8
442	v113 U	uint8
443	v113_V	uint8
444	v113_W	uint8
445	v113_X	uint8
446	v113_Y	uint8
447	v113_Z	uint8
448	v125_A	uint8
449	v125_AA	uint8
450	v125_AB	uint8
	· 	

```
451 v125_AC
             uint8
452 v125_AD
             uint8
453 v125_AE
             uint8
454 v125 AF
             uint8
455 v125 AG
            uint8
456 v125 AH
            uint8
457 v125 AI
            uint8
458 v125_AJ
             uint8
459 v125 AK
             uint8
460 v125 AL
            uint8
461 v125_AM
             uint8
462 v125_AN
            uint8
463 v125_AO
             uint8
464 v125 AP
             uint8
465 v125 AQ
            uint8
466 v125 AR
             uint8
467 v125_AS
            uint8
468 v125_AT
            uint8
469 v125_AU
            uint8
470 v125 AV
            uint8
471 v125 AW
             uint8
472 v125 AX
            uint8
473 v125 AY
             uint8
474 v125 AZ
            uint8
475 v125_B
            uint8
476 v125 BA
            uint8
477 v125 BB
            uint8
478 v125 BC
             uint8
479 v125 BD
            uint8
480 v125 BE
            uint8
481 v125_BF
            uint8
482 v125 BG
            uint8
483 v125 BH
            uint8
484 v125 BI
            uint8
485 v125_BJ
            uint8
486 v125 BK
            uint8
487 v125_BL
            uint8
488 v125 BM
            uint8
489 v125 BN
            uint8
490 v125 BO
            uint8
491 v125 BP
            uint8
492 v125 BQ
            uint8
493 v125_BR
            uint8
494 v125 BS
            uint8
495 v125 BT
             uint8
496 v125 BU
            uint8
497 v125_BV
             uint8
498 v125 BW
            uint8
499 v125 BX
            uint8
500 v125 BY
             uint8
501 v125_BZ
            uint8
502 v125 C
             uint8
503 v125 CA
            uint8
504 v125 CB
            uint8
505 v125_CC
             uint8
506 v125 CD
            uint8
507 v125 CE
             uint8
```

```
508 v125 CF
                       uint8
          509 v125 CG
                       uint8
          510 v125 CH
                       uint8
          511 v125 CI
                       uint8
          512 v125 CJ
                       uint8
          513 v125_CK
                       uint8
          514 v125 CL
                       uint8
          515 v125 D
                       uint8
          516 v125 E
                        uint8
          517 v125 F
                       uint8
          518 v125 G
                       uint8
          519 v125_H
                       uint8
          520 v125 I
                       uint8
          521 v125_J
                       uint8
          522 v125 K
                       uint8
          523 v125 L
                       uint8
          524 v125 M
                       uint8
          525 v125 N
                       uint8
          526 v125_0
                       uint8
          527 v125 P
                       uint8
          528 v125 Q
                       uint8
          529 v125_R
                      uint8
          530 v125 S
                       uint8
          531 v125_T
                       uint8
          532 v125_U
                      uint8
          533 v125 V
                      uint8
          534 v125 W
                      uint8
          535 v125 X
                       uint8
          536 v125 Y
                       uint8
          537 v125 Z
                       uint8
         dtypes: float64(108), int64(5), uint8(425)
         memory usage: 144.9 MB
In [19]: # Save training set to pickle
         pickle.dump(train, open("Pickle/train.pkl", "wb"))
In [20]: # Load train pickle for consistent shared data across models
         train = pickle.load( open("Pickle/train.pkl", "rb" ) )
In [22]: # create test/train split of data and target
         from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(train, target, test_
         size=0.33, random state=42)
In [24]: #### Save split train and test sets for consistant model testing and tim
         e savings.
         pickle.dump(X train, open("Pickle/X train.pkl", "wb"))
         pickle.dump(y_train, open("Pickle/y_train.pkl", "wb"))
         pickle.dump(X test, open("Pickle/X test.pkl", "wb"))
         pickle.dump(y test, open("Pickle/y test.pkl", "wb"))
```

```
In [111]: #### Load split train and test sets for consistant model testing and tim
        e savings.
        X_train = pickle.load( open("Pickle/X_train.pkl", "rb"))
        y_train = pickle.load( open("Pickle/y_train.pkl", "rb"))
        X_test = pickle.load( open("Pickle/X_test.pkl", "rb"))
        y_test = pickle.load( open("Pickle/y_test.pkl", "rb"))
 # End of Data Preparation
        # Begin Models
        # XGBoost Model
        In [ ]: | # BEGIN JR XGB RANDOMIZED SEARCH
 In [ ]: | # combine data into DMatrix for XGBoost
        xgtrain = xgb.DMatrix(X train.values, y train.values)
        xgtest = xgb.DMatrix(X test.values, y test.values)
 In [ ]: | clf = xgb.XGBClassifier()
 In [ ]: | param grid = {
                'silent': [False],
                'max depth': [6, 10, 15, 20],
                'learning rate': [0.001, 0.01, 0.1, 0.2, 0.3],
                'subsample': [0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
                'colsample_bytree': [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
                'colsample_bylevel': [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
                'min child weight': [0.5, 1.0, 3.0, 5.0, 7.0, 10.0],
                'gamma': [0, 0.25, 0.5, 1.0],
                'reg lambda': [0.1, 1.0, 5.0, 10.0, 50.0, 100.0],
                'n estimators': [100]}
 In [ ]: | xgb rs clf = RandomizedSearchCV(clf, param grid, n iter=5,
                                n jobs=-1, verbose=2, cv=5,
                                scoring='neg log loss', refit=True, random s
        tate=123)
 In [ ]: import time
        print("Randomized search..")
        search time start = time.time()
        xgb_rs_clf.fit(X_train, y_train)
        xgb rs elapsed = time.time() - search time start
        print("Randomized search time:", xgb rs elapsed)
 In [ ]: pickle.dump(xgb rs elapsed, open("xgb rs elapsed.pkl", "wb"))
```

```
In [ ]: xgb_rs_elapsed = pickle.load( open("xgb_rs_elapsed.pkl", "rb" ) )
In [ ]: pickle.dump(xgb rs clf, open("xgb rs clf.pkl", "wb"))
In [ ]: | xgb rs clf = pickle.load( open("xgb rs clf.pkl", "rb" ) )
In [ ]: print('The best combination of parameters, based on an evaluation of log
        -loss is:')
        xgb_rs_clf.best_params_
In [ ]: best_params = xgb_rs_clf.best_params_
In [ ]: print(f'The log-loss value for the best model is {round(xgb rs clf.best_
        score_ * -1,4)}.')
In [ ]: results = pd.DataFrame(xgb_rs_clf.cv_results_)
In [ ]: pickle.dump(results, open("results.pkl", "wb"))
In [ ]: results = pickle.load( open("results.pkl", "rb" ) )
In [ ]: results.iloc[xgb_rs_clf.best_index_]
In [ ]: xgb test preds = xgb rs clf.predict(X test)
In [ ]: pickle.dump(xgb test preds, open("xgb test preds.pkl", "wb"))
In [ ]: xgb test preds = pickle.load( open("xgb test preds.pkl", "rb" ) )
In [ ]: print(accuracy_score(y_test,np.rint(xgb_test_preds)))
In [ ]: results summary = pd.DataFrame([['XGBoost', 'RandomSearchCV',xgb rs clf.
        best_score_ * -1,accuracy_score(y_test,np.rint(xgb_test_preds)),xgb_rs_e
        lapsed ]],columns=['Model', 'Tuning', 'log loss', 'accuracy', 'time'])
In [ ]: | #####
                END JR XGB RANDOMIZED SEARCH
In [ ]: ##### BEGIN JR XGB ORIGINAL EXAMPLE
```

```
In [ ]: print('Fit the model...')
        # XGBoost params:
        xgboost_params = {
           "objective": "binary:logistic",
           "booster": "gbtree",
           "eval metric": "logloss",
           "eta": 0.01,
           "subsample": 0.5,
           "colsample bytree": 0.5,
           "max depth": 3
        boost round = 50
        xgb clf start = time.time()
        xgb_clf = xgb.train(xgboost_params,xgtrain,num_boost_round=boost_round,v
        erbose_eval=True, maximize=False)
        xgb clf_elapsed = time.time() - xgb_clf_start
In [ ]: pickle.dump(xgb clf elapsed, open("xgb clf elapsed.pkl", "wb"))
In [ ]: xgb_clf_elapsed = pickle.load( open("xgb_clf_elapsed.pkl", "rb" ) )
In [ ]: #Make predict
        print('Predict...')
        xgb test preds orig = clf.predict(xgtest, ntree limit=clf.best iteration
        )
        # Save results
In [ ]: pickle.dump(xgb clf, open("xgb clf.pkl", "wb"))
In [ ]: | xgb clf = pickle.load( open("xgb clf.pkl", "rb" ) )
In [ ]: print(log_loss(y_test,xgb_test_preds_orig))
        print(accuracy_score(y_test,np.rint(xgb_test_preds_orig)))
In [ ]: | results_summary = results_summary.append(pd.DataFrame([['XGBoost','Base'
        ,log loss(y test,xgb test preds orig),accuracy score(y test,np.rint(xgb
        test preds orig)), xgb clf elapsed ]],columns=['Model', 'Tuning', 'log l
        oss', 'accuracy', 'time']))
In [ ]: results summary = results summary.reset index()
In [ ]: results summary
In [ ]: pickle.dump(results_summary, open("jr_results_summary.pkl", "wb"))
In [ ]: | ##### END XGB XGB ORIGINAL EXAMPLE
```

```
In [ ]: ##### BEGIN XGB VISUALIZATIONS
 In [ ]: import matplotlib.pyplot as plt
         from xgboost import plot tree
 In []: fig, ax = plt.subplots(figsize=(30, 30))
         plot_tree(xgb_rs_clf.best_estimator_, num_trees=1, ax=ax)
         plt.show()
 In [ ]: from yellowbrick.classifier import ClassificationReport, ClassPrediction
         Error
 In [ ]: report = ClassificationReport(xgb_rs_clf, size=(1080, 720), classes=[0,1
         1)
         report.score(X_test, y_test)
         c = report.poof()
 In [ ]: error = ClassPredictionError(xgb_rs_clf, size=(1080, 720), classes=[0,1
         1)
         error.score(X_test, y_test)
         e = error.poof()
 In [ ]: | #### END XGB VISUALIZATIONS
 # SVM model
         In [146]: #### Load split train and test sets for consistant model testing and tim
         e savings.
         X_train = pickle.load( open("Pickle/X_train.pkl", "rb"))
         y_train = pickle.load( open("Pickle/y_train.pkl", "rb"))
         X test = pickle.load( open("Pickle/X test.pkl", "rb"))
         y_test = pickle.load( open("Pickle/y_test.pkl", "rb"))
```

```
Original SVM Code from Dr. Slater with Added Timing
        start = time.time()
        # WARNING THIS TAKES AN HOUR TO RUN #
        # Using LinearSVC for faster returns#
        svm = LinearSVC(verbose=True, random state=42)
        svm.fit(X_train, y_train)
        end = time.time()
        LinearSVC_time=round((end-start),2)
        LinearSVC_time
        [LibLinear]
        2021-03-01 00:26:57,492 [35816] WARNING py.warnings:110: [JupyterRequi
        re] C:\Anaconda\lib\site-packages\sklearn\svm\ base.py:977: Convergence
        Warning: Liblinear failed to converge, increase the number of iteration
          "the number of iterations.", ConvergenceWarning)
Out[142]: 55.44
In [144]: # Predict using the model and Measure Accuracy
        X pred=svm.predict(X test)
        #from sklearn.metrics import accuracy score
        svm_base_accuracy = accuracy_score(y_test,X_pred)
```

0.5046122037851879

print(svm base accuracy)

```
In [145]: # Plot the SCM curve
svm_disp = plot_roc_curve(svm, X_test, y_test)
```

```
1.0 - 0.8 - 0.6 - 0.6 0.8 - 0.0 - 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate
```

```
In [ ]: # FULL DATASET TUNED SVM MODEL
        # Ignore to save time - Picked Models are available
        # Gridsearch to determine the value of C
        param grid = \{'C': [0.001, 0.01, 0.1],
                       'loss': ['hinge', 'squared_hinge'],
                       'penalty' : ['12'],
                       'dual' : [True, False],
                       'tol': [0.00001,0.01], #0.0001 is the Default
                       'max iter': [100],
        SVC Linear = LinearSVC(random state=42)
        CV_svc = GridSearchCV(estimator = SVC_Linear, param_grid=param_grid, cv=
        5, n jobs =-1, verbose=1)
        Start=time.time()
        CV_svc_mod = CV_svc.fit(X_train, y_train)
        Stop=time.time()
        Time1=Stop-Start
        Time1
        pkl filename = "Pickle/CV SVM Linear.pkl"
        with open(pkl filename, 'wb') as file:
            pickle.dump(CV_svc_mod, file)
```

```
In [ ]: Time1
```

```
In [112]: # Load CV svc mod
          #with open("C://Users/18322/OneDrive - Southern Methodist University/Des
          ktop/QOW/week7/case study 8/case study 81 2/CV SVM Linear.pkl", 'rb') as
          file:
               CV svc = pickle.load(file)
          CV_svc_mod = pickle.load( open("Pickle/CV_SVM_Linear.pkl", "rb" ) )
In [113]: svc_gridsearch = pd.DataFrame(CV_svc_mod.cv_results_)
          svc_columns = [
              "param_C",
              "param_loss",
              "param dual",
              "param_tol",
              "param max_iter",
              "mean_fit_time",
              "mean_test_score",
              "rank_test_score"
          ]
```

In [114]: svc_gridsearch[svc_columns].sort_values(by="rank_test_score").head(10)

Out[114]:

	param_C	param_loss	param_dual	param_tol	param_max_iter	mean_fit_time	mean_test_s
6	0.001	squared_hinge	False	1e-05	100	872.557506	0.77
2	0.001	squared_hinge	True	1e-05	100	94.016914	0.77
3	0.001	squared_hinge	True	0.01	100	77.806056	0.77
7	0.001	squared_hinge	False	0.01	100	119.676386	0.77
23	0.1	squared_hinge	False	0.01	100	145.308221	0.77
14	0.01	squared_hinge	False	1e-05	100	1386.344374	0.77
15	0.01	squared_hinge	False	0.01	100	269.671581	0.770
22	0.1	squared_hinge	False	1e-05	100	1003.456923	0.770
10	0.01	squared_hinge	True	1e-05	100	207.509046	0.770
11	0.01	squared_hinge	True	0.01	100	214.311796	0.770

```
In [ ]: print('Best Accuracy:', CV_svc_mod.best_score_)
```

```
In [115]: # Create Dataframe of 1000 Rows
          Xtrain 1000 = pd.DataFrame.sample(X train, n=1000, random state=123)
          ytrain 1000 = pd.DataFrame.sample(y_train,n=1000, random_state=123)
          Xtest_1000 = pd.DataFrame.sample(X_test,n=1000, random_state=123)
          ytest_1000 = pd.DataFrame.sample(y_test,n=1000, random_state=123)
          print('Training Features 1000:', Xtrain_1000.shape)
          print('Training Labels 1000:', ytrain_1000.shape)
          print('Testing Features 1000:', Xtest 1000.shape)
          print('Testing Labels 1000:', ytest_1000.shape)
          Training Features 1000: (1000, 538)
          Training Labels 1000: (1000,)
          Testing Features 1000: (1000, 538)
          Testing Labels 1000: (1000,)
In [137]: #1000 Rows
          # Gridsearch to determine the value of C
          param_grid = \{'C': [0.001, 0.01, 0.1],
                        'loss': ['hinge', 'squared_hinge'],
                         'penalty' : ['12'],
                        'dual' : [True, False],
                        'tol': [0.00001,0.01], #0.0001 is the Default
                        'max_iter': [100],
                       }
          SVC Linear = LinearSVC(random state=42)
          CV_svc = GridSearchCV(estimator = SVC_Linear, param_grid=param_grid, cv=
          5, n jobs =-1, verbose=1)
          Start=time.time()
          CV_svc_mod_1000 = CV_svc.fit(Xtrain_1000, ytrain_1000)
          Stop=time.time()
          Time2=Stop-Start
          Time2
          pkl_filename = "Pickle/CV_SVM Linear 1000.pkl"
          with open(pkl filename, 'wb') as file:
              pickle.dump(CV_svc_mod_1000, file)
          Fitting 5 folds for each of 24 candidates, totalling 120 fits
          [Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent work
          ers.
          [Parallel(n jobs=-1)]: Done 52 tasks
                                                  elapsed:
          [Parallel(n jobs=-1)]: Done 120 out of 120 | elapsed:
                                                                   1.3s finished
  In [ ]: Time2
In [138]: #1000
          #with open("C://Users/18322/OneDrive - Southern Methodist University/Des
          ktop/QOW/week7/case study 8/case study 81 2/CV SVM Linear 1000.pkl", 'r
          b') as file:
             CV_svc = pickle.load(file)
          CV svc mod 1000 = pickle.load( open("Pickle/CV SVM Linear 1000.pkl", "r
          b" ) )
```

In [140]: #for 1000 samples
svc_gridsearch[svc_columns].sort_values(by="rank_test_score").head(10)

Out[140]:

	param_C	param_loss	param_dual	param_tol	param_max_iter	mean_fit_time	mean_test_s
23	0.1	squared_hinge	False	0.01	100	0.044880	C
15	0.01	squared_hinge	False	0.01	100	0.087365	С
7	0.001	squared_hinge	False	0.01	100	0.058641	С
6	0.001	squared_hinge	False	1e-05	100	0.117089	С
14	0.01	squared_hinge	False	1e-05	100	0.164079	С
22	0.1	squared_hinge	False	1e-05	100	0.122875	С
10	0.01	squared_hinge	True	1e-05	100	0.158082	С
11	0.01	squared_hinge	True	0.01	100	0.165455	С
1	0.001	hinge	True	0.01	100	0.156181	С
0	0.001	hinge	True	1e-05	100	0.143215	С

```
In [ ]: print('Best Accuracy:', CV_svc_mod_1000.best_score_)
```

```
In [121]: #2000
# Create Dataframe of 2000 Rows
Xtrain_2000 = pd.DataFrame.sample(X_train, n=2000, random_state=123)
ytrain_2000 = pd.DataFrame.sample(y_train,n=2000, random_state=123)
Xtest_2000 = pd.DataFrame.sample(X_test,n=2000, random_state=123)
ytest_2000 = pd.DataFrame.sample(y_test,n=2000, random_state=123)
print('Training Features 2000:', Xtrain_2000.shape)
print('Training Labels 2000:', ytrain_2000.shape)
print('Testing Features 2000:', Xtest_2000.shape)
print('Testing Labels 2000:', ytest_2000.shape)
```

```
Training Features 2000: (2000, 538)
Training Labels 2000: (2000,)
Testing Features 2000: (2000, 538)
Testing Labels 2000: (2000,)
```

```
In [122]: #2000
          # Gridsearch to determine the value of C
          param_grid = \{'C': [0.001, 0.01, 0.1],
                         'loss': ['hinge', 'squared_hinge'],
                         'penalty' : ['12'],
                         'dual' : [True, False],
                         'tol': [0.00001,0.01], #0.0001 is the Default
                         'max iter': [100],
          SVC Linear = LinearSVC(random state=42)
          CV svc = GridSearchCV(estimator = SVC Linear, param grid=param grid, cv=
          5, n jobs =-1, verbose=1)
          Start=time.time()
          CV svc mod 2000 = CV svc.fit(Xtrain 2000, ytrain 2000)
          Stop=time.time()
          Time3=Stop-Start
          Time3
          pkl_filename = "Pickle/CV_SVM_Linear_2000.pkl"
          with open(pkl filename, 'wb') as file:
              pickle.dump(CV_svc_mod_2000, file)
```

Fitting 5 folds for each of 24 candidates, totalling 120 fits

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent work ers.

[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 8.5s [Parallel(n_jobs=-1)]: Done 120 out of 120 | elapsed: 10.6s finished 2021-03-01 00:17:45,154 [35816] WARNING py.warnings:110: [JupyterRequire] C:\Anaconda\lib\site-packages\sklearn\svm_base.py:977: Convergence Warning: Liblinear failed to converge, increase the number of iteration s.

"the number of iterations.", ConvergenceWarning)

In [126]: svc_gridsearch[svc_columns].sort_values(by="rank_test_score").head(10)

Out[126]:

	param_C	param_loss	param_dual	param_tol	param_max_iter	mean_fit_time	mean_test_s
6	0.001	squared_hinge	False	1e-05	100	0.417046	0.
23	0.1	squared_hinge	False	0.01	100	0.132361	0.
15	0.01	squared_hinge	False	0.01	100	0.134945	0.
7	0.001	squared_hinge	False	0.01	100	0.139359	0.
14	0.01	squared_hinge	False	1e-05	100	0.567534	0.
22	0.1	squared_hinge	False	1e-05	100	0.492509	0.
19	0.1	squared_hinge	True	0.01	100	0.442345	0.7
18	0.1	squared_hinge	True	1e-05	100	0.464916	0.7
17	0.1	hinge	True	0.01	100	0.449724	0.7
16	0.1	hinge	True	1e-05	100	0.507707	0.

```
In [ ]: print('Best Accuracy:', CV_svc_mod_2000.best_score_)
```

```
In [127]: #5000
    # Create Dataframe of 5000 Rows
    Xtrain_5000 = pd.DataFrame.sample(X_train, n=5000, random_state=123)
    ytrain_5000 = pd.DataFrame.sample(y_train,n=5000, random_state=123)
    Xtest_5000 = pd.DataFrame.sample(X_test,n=5000, random_state=123)
    ytest_5000 = pd.DataFrame.sample(y_test,n=5000, random_state=123)
    print('Training Features 5000:', Xtrain_5000.shape)
    print('Training Labels 5000:', ytrain_5000.shape)
    print('Testing Features 5000:', Xtest_5000.shape)
    print('Testing Labels 5000:', ytest_5000.shape)
```

```
Training Features 5000: (5000, 538)
Training Labels 5000: (5000,)
Testing Features 5000: (5000, 538)
Testing Labels 5000: (5000,)
```

```
In [ ]: # Gridsearch to determine the value of C
          param grid = \{'C': [0.001, 0.01, 0.1],
                         'loss': ['hinge', 'squared_hinge'],
                         'penalty' : ['12'],
                         'dual' : [True, False],
                         'tol': [0.00001,0.01], #0.0001 is the Default
                         'max_iter': [100],
                        }
          SVC_Linear = LinearSVC(random_state=42)
          CV svc = GridSearchCV(estimator = SVC Linear, param grid=param grid, cv=
          5, n jobs =-1, verbose=1)
          Start=time.time()
          CV svc mod 5000 = CV svc.fit(Xtrain 5000, ytrain 5000)
          Stop=time.time()
          Time4=Stop-Start
          Time4
          pkl filename = "Pickle/CV SVM Linear 5000.pkl"
          with open(pkl_filename, 'wb') as file:
              pickle.dump(CV svc mod 5000, file)
  In [ ]: | Time4
In [128]: #with open("C://Users/18322/OneDrive - Southern Methodist University/Des
          ktop/QOW/week7/case study 8/case study 81 2/CV SVM Linear 5000.pkl", 'r
          b') as file:
          # CV svc = pickle.load(file)
          CV_svc_mod_5000 = pickle.load( open("Pickle/CV SVM Linear 5000.pkl", "r
          b" ) )
In [129]: | svc gridsearch = pd.DataFrame(CV svc mod 5000.cv results )
          svc_columns = [
              "param C",
              "param loss",
              "param dual",
              "param tol",
               "param_max_iter",
              "mean fit time",
              "mean test score"
              "rank test score"
```

]

```
In [130]: svc_gridsearch[svc_columns].sort_values(by="rank_test_score").head(10)
```

Out[130]:

	param_C	param_loss	param_dual	param_tol	param_max_iter	mean_fit_time	mean_test_s
6	0.001	squared_hinge	False	1e-05	100	1.029846	0.
22	0.1	squared_hinge	False	1e-05	100	0.939270	0.
23	0.1	squared_hinge	False	0.01	100	0.230186	0.7
15	0.01	squared_hinge	False	0.01	100	0.244742	0.
7	0.001	squared_hinge	False	0.01	100	0.227392	0.
14	0.01	squared_hinge	False	1e-05	100	1.177088	0.
0	0.001	hinge	True	1e-05	100	1.197936	0.0
1	0.001	hinge	True	0.01	100	1.296276	0.0
8	0.01	hinge	True	1e-05	100	1.226919	0.0
9	0.01	hinge	True	0.01	100	1.168087	0.0

```
In [ ]: print('Best Accuracy:', CV_svc_mod_5000.best_score_)
```

```
In [131]: #10000
# Create Dataframe of 10000 Rows

Xtrain_10000 = pd.DataFrame.sample(X_train, n=10000, random_state=123)
ytrain_10000 = pd.DataFrame.sample(y_train,n=10000, random_state=123)
Xtest_10000 = pd.DataFrame.sample(X_test,n=10000, random_state=123)
ytest_10000 = pd.DataFrame.sample(y_test,n=10000, random_state=123)
print('Training Features 10000:', Xtrain_10000.shape)
print('Training Labels 10000:', Ytrain_10000.shape)
print('Testing Features 10000:', Xtest_10000.shape)
print('Testing Labels 10000:', ytest_10000.shape)
```

Training Features 10000: (10000, 538)
Training Labels 10000: (10000,)
Testing Features 10000: (10000, 538)
Testing Labels 10000: (10000,)

```
In [133]: # Gridsearch to determine the value of C
          param grid = \{'C': [0.001, 0.01, 0.1],
                         'loss': ['hinge', 'squared_hinge'],
                         'penalty' : ['12'],
                         'dual' : [True, False],
                         'tol': [0.00001,0.01], #0.0001 is the Default
                         'max_iter': [100],
                        }
          SVC_Linear = LinearSVC(random_state=42)
          CV svc = GridSearchCV(estimator = SVC Linear, param grid=param grid, cv=
          5, n jobs =-1, verbose=1)
          Start=time.time()
          CV svc mod 10000 = CV svc.fit(Xtrain 10000, ytrain 10000)
          Stop=time.time()
          Time5=Stop-Start
          Time5
          pkl filename = "Pickle/CV SVM Linear 10000.pkl"
          with open(pkl_filename, 'wb') as file:
              pickle.dump(CV svc mod 10000, file)
          Fitting 5 folds for each of 24 candidates, totalling 120 fits
          [Parallel(n jobs=-1)]: Using backend LokyBackend with 8 concurrent work
          [Parallel(n jobs=-1)]: Done 34 tasks
                                                    elapsed:
                                                                   4.5s
          [Parallel(n jobs=-1)]: Done 120 out of 120 | elapsed:
                                                                   14.0s finished
  In [ ]: Time5
In [134]: #with open("C://Users/18322/OneDrive - Southern Methodist University/Des
          ktop/QOW/week7/case study 8/case study 81 2/CV SVM Linear 10000.pkl", 'r
          b') as file:
               CV svc = pickle.load(file)
          CV svc mod 10000 = pickle.load( open("Pickle/CV SVM Linear 10000.pkl",
          "rb" ) )
In [135]: | svc gridsearch = pd.DataFrame(CV svc mod 10000.cv results )
          svc columns = [
              "param C",
              "param loss",
              "param_dual",
              "param tol",
              "param max iter",
              "mean fit time",
              "mean test score",
              "rank test score"
          ]
```

```
In [136]: svc_gridsearch[svc_columns].sort_values(by="rank_test_score").head(10)
```

Out[136]:

	param_C	param_loss	param_dual	param_tol	param_max_iter	mean_fit_time	mean_test_s
14	0.01	squared_hinge	False	1e-05	100	1.248989	0.7
22	0.1	squared_hinge	False	1e-05	100	1.117655	0.
6	0.001	squared_hinge	False	1e-05	100	1.184583	0.
23	0.1	squared_hinge	False	0.01	100	0.249406	0.
15	0.01	squared_hinge	False	0.01	100	0.241507	0.
7	0.001	squared_hinge	False	0.01	100	0.262091	0.
19	0.1	squared_hinge	True	0.01	100	1.260491	0.
18	0.1	squared_hinge	True	1e-05	100	1.278927	0.
10	0.01	squared_hinge	True	1e-05	100	1.309391	0.
11	0.01	squared_hinge	True	0.01	100	1.259128	0.7

```
In [ ]: print('Best Accuracy:', CV_svc_mod_10000.best_score_)
```

```
# RF Base Model
        ##############################
        #from sklearn.ensemble import RandomForestClassifier
        # Full Dataset used for Base Model.
        # Default max levels is None, so the tree is very large
        rf_base = RandomForestClassifier(n_estimators=10, random_state=123 )
        start = time.time()
        rf_base.fit(X_train, y_train)
        end = time.time()
        rf_base_time=round((end-start),2)
        rf base time
        NameError
                                             Traceback (most recent call 1
        ast)
        <ipython-input-6-cda592a95acd> in <module>
             8 # Default max_levels is None, so the tree is very large
        ---> 10 rf_base = RandomForestClassifier(n_estimators=10, random_state=
        123 )
            11
            12 start = time.time()
        NameError: name 'RandomForestClassifier' is not defined
In [63]: rf base preds = rf base.predict proba(X test)
In [64]: rf base log loss = log loss(y test,rf base preds[:,1]) # each column is
        class probability,
        print(rf base log loss)
        rf_base_accuracy = accuracy_score(y_test,np.rint(rf_base_preds[:,1]))
        print(rf_base_accuracy)
        0.9337292313310098
        0.7515241478025765
# Begin Hypertuning for Random Forest
```

Parameters Used by Base Model:

```
{'bootstrap': True,
'ccp_alpha': 0.0,
'class_weight': None,
'criterion': 'gini',
'max_depth': None,
 'max_features': 'auto',
'max_leaf_nodes': None,
'max_samples': None,
'min_impurity_decrease': 0.0,
'min_impurity_split': None,
 'min_samples_leaf': 1,
'min samples split': 2,
'min weight fraction leaf': 0.0,
'n estimators': 10,
 'n_jobs': None,
 'oob_score': False,
'random state': 123,
'verbose': 0,
 'warm start': False}
```

```
In [67]: # Define Random Grid Parameters and use RandomizedSearchCV to choose
         # different combinations of parameters for different sizes of datasets
         #from sklearn.model selection import RandomizedSearchCV
         # Number of trees in random forest
         n_{estimators} = [100, 500, 1000, 1500]
         # Number of features to consider at every split
         max features = ['auto', 'sqrt']
         # Maximum number of levels in tree
         max_depth = [10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
         # Minimum number of samples required to split a node
         min_samples_split = [2, 5, 10]
         # Minimum number of samples required at each leaf node
         min samples leaf = [1, 2, 4]
         # Method of selecting samples for training each tree
         bootstrap = [True, False]
         # Create the random grid
         random_grid = {'n_estimators': n_estimators,
                         'max_features': max_features,
                         'max depth': max depth,
                         'min_samples_split': min_samples_split,
                         'min_samples_leaf': min_samples_leaf,
                         'bootstrap': bootstrap}
         print('Random Grid Parameters:\n')
         pprint(random_grid)
         Random Grid Parameters:
         {'bootstrap': [True, False],
          'max_depth': [10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
          'max_features': ['auto', 'sqrt'],
          'min samples_leaf': [1, 2, 4],
          'min samples split': [2, 5, 10],
          'n_estimators': [100, 500, 1000, 1500]}
In [68]: # Adapt variable names for this example
         train features = X train
         train labels = y_train
         test features = X test
         test labels = y test
         print('Training Features Shape:', train_features.shape)
         print('Training Labels Shape:', train labels.shape)
         print('Testing Features Shape:', test_features.shape)
         print('Testing Labels Shape:', test_labels.shape)
         Training Features Shape: (76595, 538)
         Training Labels Shape: (76595,)
         Testing Features Shape: (37726, 538)
         Testing Labels Shape: (37726,)
```

```
In [69]: # Create Smaller Dataframe of 1000 Rows
         train features 1000 = pd.DataFrame.sample(X train, n=1000, random state=
         123)
         train_labels_1000 = pd.DataFrame.sample(y_train,n=1000, random_state=123
         test features 1000 = pd.DataFrame.sample(X test,n=1000, random state=123
         test labels 1000 = pd.DataFrame.sample(y test,n=1000, random state=123)
         print('Training Features 1000:', train_features_1000.shape)
         print('Training Labels 1000:', train_labels_1000.shape)
         print('Testing Features 1000:', test features 1000.shape)
         print('Testing Labels 1000:', test_labels_1000.shape)
         Training Features 1000: (1000, 538)
         Training Labels 1000: (1000,)
         Testing Features 1000: (1000, 538)
         Testing Labels 1000: (1000,)
In [70]: # Create Medium DataFrame of 5000 Rows
         train features 5000 = pd.DataFrame.sample(X train, n=5000, random state=
         123)
         train_labels_5000 = pd.DataFrame.sample(y_train,n=5000, random_state=123
         test_features_5000 = pd.DataFrame.sample(X_test,n=5000, random_state=123
         test labels 5000 = pd.DataFrame.sample(y test,n=5000, random state=123)
         print('Training Features 5000:', train features 5000.shape)
         print('Training Labels 5000:', train_labels 5000.shape)
         print('Testing Features 5000:', test features 5000.shape)
         print('Testing Labels 5000:', test_labels_5000.shape)
         Training Features 5000: (5000, 538)
         Training Labels 5000: (5000,)
         Testing Features 5000: (5000, 538)
         Testing Labels 5000: (5000,)
In [71]: # Original Code Commented - Using Pickled Models
         # Use the random grid to search for best hyperparameters
         # Define estimator - same parameters as base model
         # rf = RandomForestClassifier(n estimators=50, random state=123 )
In [72]: # Create the FULL model based on the random grid parameters
         # rf random = RandomizedSearchCV(estimator = rf, param distributions = r
         andom_grid, n_iter = 5, cv = 5, verbose=2, random state=123, n jobs = -
In [73]: # Fit the SMALL random search model with 1000 rows
         # rf random 1000 = rf random.fit(train features 1000, train labels 1000)
In [74]: # Fit the MEDIUM model with 5000 rows
```

rf random 5000 = rf random.fit(train features 5000, train labels 5000)

```
In [75]: # Fit a model on all data using the same random grid parameters
         # rf random all = rf random.fit(train features, train labels)
In [76]: #pickle.dump(rf random all,open("rf random all.pkl", "wb"))
         #pickle.dump(rf random 1000,open("rf random 1000.pkl","wb"))
         #pickle.dump(rf random 5000,open("rf random 5000.pkl","wb"))
         #pickle.dump(rf base,open("rf base.pkl","wb"))
         #pickle.dump(rf base time,open("rf base time.pkl","wb"))
In [77]: # Load Pickled Models to avoid re-running models
         rf random_all = pickle.load( open("Pickle/rf random all.pkl", "rb"))
         rf_random 1000 = pickle.load( open("Pickle/rf_random 1000.pkl", "rb"))
         rf_random_5000 = pickle.load( open("Pickle/rf_random_5000.pkl", "rb"))
         rf_base = pickle.load( open("Pickle/rf_base.pkl", "rb"))
         # Load other stored variables
         rf base time = pickle.load( open("Pickle/rf base time.pkl", "rb"))
In [78]: #
         # Compare Random Grid Parameters among different datasets - 1000, 5000,
         ####
In [79]: rf random 1000.best params
Out[79]: {'n estimators': 1000,
          'min samples split': 10,
          'min samples leaf': 2,
          'max features': 'auto',
          'max depth': None,
          'bootstrap': False}
In [80]: rf random 5000.best params
Out[80]: {'n estimators': 1000,
          'min samples split': 10,
          'min samples leaf': 2,
          'max_features': 'auto',
          'max depth': 1000,
          'bootstrap': False}
In [81]: rf random all.best params
Out[81]: {'n estimators': 1000,
          'min samples split': 10,
          'min_samples_leaf': 2,
          'max features': 'auto',
          'max depth': 1000,
          'bootstrap': False}
```

```
In [82]: #
         # Determine Log-Loss and Accuracy for All RF Models
         In [83]: # Generate Predictions for Base model
         rf base preds = rf base.predict proba(X test)
In [84]: # Log-Loss and Accuracy for Base Model
         # import numpy as np
         # from sklearn.metrics import log loss, accuracy score
         rf base log_loss = log_loss(y_test,rf_base_preds[:,1]) # each column is
         class probability,
         print(rf_base_log_loss)
         rf base accuracy = accuracy score(y test,np.rint(rf base preds[:,1]))
         print(rf base accuracy)
         0.24818377998398874
         0.9273975507607486
In [86]: # Generate Predictions for 1000 element tuned model
         rf 1000 preds = rf random 1000.predict proba(test features 1000)
In [87]: # Log-Loss and Accuracy for 1000 Row Model
         rf 1000 log loss = log loss(test labels 1000,rf 1000 preds[:,1]) # each
         column is class probability,
         print(rf 1000 log loss)
         rf 1000 accuracy = accuracy score(test labels 1000, np.rint(rf 1000 preds
         [:,1]))
         print(rf 1000 accuracy)
         0.48383002447131424
         0.786
In [88]: # Generate Predictions for 5000 element tuned model
         rf 5000 preds = rf random 5000.predict proba(test features 5000)
In [89]: # Log-Loss and Accuracy for 5000 Row Model
         rf 5000 log loss = log loss(test labels 5000,rf 5000 preds[:,1]) # each
         column is class probability,
         print(rf 5000 log loss)
         rf 5000 accuracy = accuracy score(test labels 5000,np.rint(rf 5000 preds
         [:,1]))
         print(rf 5000 accuracy)
         0.2587950210933267
         0.9172
In [90]: # Generate Predictions for Full Model
         rf all preds = rf random all.predict proba(test features)
```

```
In [91]: # Log-Loss and Accuracy for Full Model
    rf_all_log_loss = log_loss(test_labels,rf_all_preds[:,1]) # each column
        is class probability,
    print(rf_all_log_loss)
    rf_all_accuracy = accuracy_score(test_labels,np.rint(rf_all_preds[:,1]))
    print(rf_all_accuracy)
```

0.26495811383785384 0.9139585431797699

In [93]: rf_base.feature_importances_

```
Out[93]: array([2.19576698e-02, 4.61408532e-03, 4.54027314e-03, 4.70482752e-03,
                5.04434562e-03, 4.89174431e-03, 4.29335739e-03, 4.71446799e-03,
                4.33285167e-03, 2.53118395e-02, 4.18768936e-03, 2.74401645e-02,
                4.24549574e-03, 2.24728625e-02, 4.51155587e-03, 4.70138546e-03,
                4.07981463e-03, 4.66154902e-03, 4.32649362e-03, 4.55287778e-03,
                2.36252049e-02, 2.97495910e-03, 4.83270092e-03, 4.10554682e-03,
                4.39553108e-03, 4.58738124e-03, 3.93261673e-03, 4.28856168e-03,
                4.11493552e-03, 2.35251656e-02, 4.48150958e-03, 4.97092891e-03,
                4.69097167e-03, 8.44852224e-04, 4.56074273e-03, 2.38307012e-02,
                4.06558251e-03, 4.10675339e-03, 4.14507300e-03, 4.40307200e-03,
                4.35607051e-03, 4.62930976e-03, 4.05495603e-03, 4.23632962e-03,
                6.04834561e-02, 4.31834504e-03, 4.42748648e-03, 4.86906825e-03,
                4.45527694e-03, 4.49465475e-03, 4.47505121e-03, 4.40967058e-03,
                4.30586393e-03, 4.24420884e-03, 5.77902399e-03, 4.65919257e-03,
                4.29646248e-03, 4.23596110e-03, 4.13769516e-03, 4.62747596e-03,
                4.79847581e-03, 4.96326744e-03, 4.85468987e-03, 4.34816359e-03,
                4.08267411e-03, 4.10669970e-03, 4.48577477e-03, 4.27239846e-03,
                4.90572625e-03, 4.94663101e-03, 4.45542365e-03, 4.20347419e-03,
                4.88923151e-03, 4.37896839e-03, 4.82268390e-03, 4.60666937e-03,
                4.63525565e-03, 4.42760693e-03, 4.04569835e-03, 4.08931141e-03,
                4.35296175e-03, 4.23361427e-03, 4.06210305e-03, 4.26940698e-03,
                5.03295089e-03, 4.90955336e-03, 4.48772712e-03, 4.54793638e-03,
                4.66487371e-03, 4.52246681e-03, 4.29532532e-03, 4.51421155e-03,
                3.91441636e-03, 4.94528532e-03, 4.76524496e-03, 4.36378715e-03,
                2.49368096e-02, 4.72404952e-03, 4.22808435e-03, 4.68432405e-03,
                4.31596025e-03, 4.50018141e-03, 4.82522551e-03, 4.14196338e-03,
                4.34990601e-03, 4.29001663e-03, 4.71185014e-03, 4.56621538e-03,
                4.47170104e-03, 4.57825000e-03, 5.53908348e-03, 4.12908563e-03,
                4.41852369e-03, 2.54004394e-05, 2.74933728e-05, 2.12694991e-05,
                1.24306579e-04, 7.06309615e-05, 1.83493530e-04, 1.95827069e-04,
                1.66573377e-04, 1.89412937e-04, 2.01096373e-04, 1.09923060e-04,
                2.23111695e-04, 1.08342626e-04, 1.36453881e-04, 1.40313608e-04,
                9.23674689e-04, 1.80819595e-04, 7.88653360e-05, 1.74448423e-04,
                1.81885577e-04, 2.70236367e-04, 1.66474916e-04, 1.42727207e-04,
                1.55435636e-04, 8.89766900e-05, 1.53067639e-04, 2.73087641e-04,
                1.03984958e-04, 8.11105103e-05, 1.15089862e-04, 1.28179643e-04,
                2.71396471e-04, 8.82736849e-05, 1.25203360e-04, 1.25073893e-04,
                3.63750965e-04, 1.48598787e-04, 1.26851273e-04, 1.95659326e-04,
                1.32535811e-04, 1.07272428e-04, 1.04785043e-04, 7.72072166e-05,
                1.77091445e-04, 2.36757909e-04, 1.70837183e-04, 2.90568738e-04,
                3.12715120e-04, 3.43341381e-04, 1.02091925e-04, 1.43551548e-04,
                1.19334686e-04, 1.88758136e-04, 1.32031075e-04, 1.70739977e-04,
                1.34041510e-04, 2.47020596e-04, 2.36518270e-04, 8.68803090e-05,
                1.76367906e-04, 1.00568646e-04, 1.90118218e-04, 7.75785426e-04,
                1.75561688e-04, 1.22049161e-03, 1.54836293e-03, 2.61477475e-03,
                3.61264114e-03, 3.43330327e-03, 5.43763469e-04, 4.22599984e-05,
                2.04852161e-03, 1.07197816e-03, 5.68018268e-04, 5.29238189e-04,
                1.38754061e-03, 4.73326287e-03, 1.27595597e-03, 5.74684827e-04,
                3.04144390e-05, 1.45258311e-05, 2.68055121e-03, 2.33255330e-04,
                1.07274183e-03, 6.86160049e-04, 7.46941091e-04, 0.00000000e+00,
                2.68969182e-03, 7.07513138e-04, 2.27735842e-03, 2.24227069e-03,
                2.46207353e-03, 2.32227765e-03, 2.33086267e-03, 2.52010851e-03,
                2.37228516e-03, 2.29398076e-03, 2.48736925e-03, 2.66476152e-03,
                2.13190093e-03, 2.28080932e-03, 1.20596312e-05, 3.13181928e-05,
                0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.53716157e-04,
                4.62617392e-04, 3.22426617e-05, 1.32723410e-04, 0.00000000e+00,
                3.96113319e-05, 7.24101742e-05, 4.80447222e-07, 1.59100020e-04,
```

```
1.00228622e-04, 0.00000000e+00, 7.62196353e-05, 9.13298174e-04,
2.29698122e-06, 1.56694305e-05, 0.00000000e+00, 9.42177642e-04,
0.000000000e+00, 2.51536688e-05, 9.65568867e-05, 7.24120813e-07,
1.75796957e-04, 0.00000000e+00, 1.02147554e-05, 0.00000000e+00,
2.31585403e-06, 5.78321660e-05, 2.23130924e-05, 6.82549862e-06,
8.58384446e-04, 5.74466965e-04, 5.14431604e-04, 1.02733948e-04,
1.31125866e-05, 0.00000000e+00, 0.0000000e+00, 5.13112954e-05,
1.21673683e-06, 1.20252649e-05, 0.00000000e+00, 2.50264158e-05,
4.63700364e-04, 2.60120604e-03, 3.11364563e-04, 4.93507569e-05,
1.23851821e-03, 3.46982077e-05, 4.79993237e-05, 6.57883778e-06,
9.26484896e-05, 0.00000000e+00, 0.0000000e+00, 3.31148179e-05,
0.00000000e+00, 5.61997005e-05, 1.10851826e-04, 0.00000000e+00,
0.00000000e+00, 1.79237738e-05, 1.86935927e-04, 1.19757564e-03,
1.49372707e-05, 1.91049485e-04, 0.00000000e+00, 1.19433666e-04,
8.53069442e-07, 0.00000000e+00, 9.14139534e-06, 7.14993594e-07,
1.79725404e-03, 0.00000000e+00, 0.00000000e+00, 1.87453695e-04,
0.00000000e+00, 0.00000000e+00, 0.0000000e+00, 7.23094797e-06,
6.76028780e-04, 1.86917371e-05, 2.88857284e-04, 1.35746406e-03,
5.10741293e-04, 3.77701227e-05, 4.21926473e-05, 1.93095000e-05,
5.43978123e-05, 1.39638366e-03, 1.13187976e-03, 1.69381039e-05,
5.39827564e-04, 4.40109539e-04, 0.00000000e+00, 4.42090457e-05,
2.72504858e-05, 1.72614436e-05, 8.07719691e-04, 5.93405813e-04,
3.00543378e-05, 0.00000000e+00, 1.72129229e-06, 4.38762351e-04,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
7.50338005e-04, 0.00000000e+00, 2.74232348e-03, 0.00000000e+00,
2.55836996e-04, 0.00000000e+00, 3.72568845e-04, 2.21190838e-04,
1.43084138e-07, 0.000000000e+00, 2.03106847e-04, 4.14633004e-05,
4.47640158e-03, 5.46458158e-03, 6.95946871e-03, 0.00000000e+00,
2.93317877e-03, 1.73990829e-03, 0.00000000e+00, 2.99929110e-03,
2.56776743e-06, 1.70231687e-05, 0.00000000e+00, 0.00000000e+00,
7.52471660e-06, 2.43865672e-04, 2.66432655e-04, 1.72003022e-05,
2.76946338e-03, 3.87356054e-05, 2.86155345e-03, 8.84101574e-05,
4.00973227e-03, 2.34966438e-03, 9.46756254e-04, 1.32674100e-03,
7.47842613e-05, 1.50761212e-05, 5.60172094e-04, 8.50274306e-04,
1.14709526e-04, 6.07251902e-04, 0.00000000e+00, 8.09251666e-04,
1.83656204e-05, 3.58782012e-04, 2.03227006e-04, 5.64559573e-04,
1.28860827e-05, 3.10084072e-03, 2.84709424e-03, 2.96224209e-03,
9.68176636e-05, 7.26218018e-04, 2.19342257e-03, 3.15095697e-03,
2.19159580e-03, 2.84088295e-03, 2.88437032e-03, 2.96774490e-03,
3.09536333e-03, 7.05958777e-04, 1.15147677e-04, 4.08359096e-03,
3.22983596e-03, 2.58329173e-04, 1.88723942e-03, 9.34313633e-04,
7.57055648e-04, 1.76222247e-03, 1.49479948e-03, 3.08634085e-03,
7.13091307e-04, 1.44654322e-03, 2.20296468e-03, 1.39830127e-03,
1.12689287e-03, 1.23370596e-03, 5.72953441e-04, 1.88697845e-03,
1.16985829e-03, 1.46906566e-03, 8.77790809e-04, 1.27767507e-03,
4.11196560e-04, 1.16643982e-03, 1.33464864e-03, 7.74161609e-04,
2.88282305e-04, 1.56963778e-08, 6.58285595e-04, 1.66247279e-03,
2.01795038e-04, 5.57773878e-04, 1.19065500e-03, 8.59052095e-04,
5.14626666e-04, 3.26117624e-04, 5.58825139e-04, 2.21572557e-07,
5.84951695e-04, 3.85437459e-04, 1.76457117e-04, 2.17623585e-04,
9.21530546e-05, 3.21602650e-03, 1.22140220e-05, 9.60876638e-04,
1.60124049e-04, 3.09974776e-04, 9.75534992e-04, 2.01688740e-04,
8.31186668e-05, 9.71383991e-04, 3.57265403e-04, 1.25548067e-04,
5.10551899e-04, 4.94192270e-04, 3.61042372e-04, 6.57704490e-04,
7.08350161e-04, 6.41547994e-04, 7.26995550e-04, 2.72957610e-04,
8.33271017e-04, 3.85393631e-04, 9.61226200e-05, 1.01715035e-03,
3.61970603e-04, 4.12161562e-04, 7.12664832e-04, 4.26350366e-04,
```

```
5.99698843e-04, 3.72760455e-04, 6.86691465e-04, 3.75835536e-04,
                1.36797109e-03, 2.47316479e-04, 1.02583890e-03, 3.23943725e-04,
                4.87512832e-04, 5.91838392e-04, 3.65676160e-04, 3.69384385e-04,
                4.17627861e-05, 5.08768857e-04, 7.78862369e-04, 8.68579165e-04,
                2.50864184e-04, 7.93733299e-05, 2.64925241e-04, 9.41540318e-04,
                4.17095219e-04, 4.02885951e-04, 1.60405536e-04, 4.96035495e-04,
                4.28745449e-04, 1.42545366e-03, 7.53628543e-04, 6.26934009e-04,
                1.77717844e-03, 4.61356253e-04, 5.11173338e-04, 4.01239311e-04,
                3.67931304e-04, 4.21301233e-04, 2.35173402e-04, 2.49097441e-04,
                5.74008478e-04, 4.82927529e-04, 1.04483759e-03, 7.18448703e-04,
                1.37272816e-03, 1.82682680e-06, 3.31779683e-04, 6.97077519e-04,
                4.24798918e-04, 4.37114327e-04, 8.57595020e-04, 4.95756146e-04,
                5.86053205e-04, 1.21320890e-03, 4.93604290e-04, 2.52189488e-04,
                7.74686488e-04, 3.62113573e-04, 2.91734814e-04, 5.98962065e-04,
                1.01921155e-03, 2.43672730e-04, 9.76607112e-04, 1.24287848e-03,
                2.86509193e-04, 5.14574235e-04, 1.17435983e-03, 1.18877379e-03,
                4.67374030e-04, 6.28369628e-04, 2.37936407e-04, 7.97930511e-04,
                6.62439286e-04, 5.69390890e-04, 4.97797317e-04, 4.72505073e-04,
                5.31497414e-04, 1.00473644e-03, 3.97094551e-04, 4.76147072e-04,
                5.54053070e-04, 5.95136452e-04])
In [94]: # Top 10 Features for Base Model
         importances = rf base.feature importances
         std = np.std([tree.feature_importances_ for tree in rf_base.estimators_
         ],
                      axis=0)
         indices = np.argsort(importances)[::-1]
In [95]: #import numpy as np
         #import matplotlib.pyplot as plt
         # Print the feature ranking
         # print("Feature ranking:")
         #for f in range(X train.shape[1]):
              print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indic
         es[f]]))
         print("Top Ten Features:")
         for f in range(0, 10):
             print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indice
         s[f]]))
         Top Ten Features:
         1. feature 44 (0.060483)
         2. feature 11 (0.027440)
         3. feature 9 (0.025312)
         4. feature 96 (0.024937)
         5. feature 35 (0.023831)
         6. feature 20 (0.023625)
         7. feature 29 (0.023525)
         8. feature 13 (0.022473)
         9. feature 0 (0.021958)
```

10. feature 338 (0.006959)

3.09721409e-04, 6.00479217e-04, 8.51278834e-05, 1.36145431e-03,

```
# RESULTS
         ####################################
In [97]: # Build Summary Table for All Model Types
         data = [['XGBoost', 'Base', xgb base log loss, xgb base accuracy, xgb base
         _time],
                ['Random Forest Complete Dataset', 'Base', rf base log loss, rf ba
         se_accuracy, rf base_time],
                ['Random Forest Complete Dataset', 'Tuned', rf_all log_loss, rf_al
         l_accuracy, 90],
                ['Random Forest 1000 Entries', 'Tuned', rf 1000 log loss, rf 100
         0_accuracy, 2],
                 [' Random Forest 5000 Entries', 'Tuned', rf_5000_log_loss, rf_50
         00_accuracy, 7]]
In [98]: #from tabulate import tabulate
         print (tabulate(data, headers=["Model", "Tuning", "Log-Loss", "Accuracy",
         "Wall Time"]))
        Model
                                       Tuning
                                                   Log-Loss
                                                              Accuracy
                                                                          Wal
         1 Time
        XGBoost
                                       Base
                                                  0.585187 0.766395
         7.89
        Random Forest Complete Dataset Base
                                                  0.248184
                                                              0.927398
        Random Forest Complete Dataset Tuned
                                                  0.264958
                                                             0.913959
        Random Forest 1000 Entries
                                       Tuned
                                                   0.48383
                                                              0.786
        Random Forest 5000 Entries
                                       Tuned
                                                   0.258795
                                                              0.9172
 In [ ]: | ##
         # Visualizations
         In [ ]: | # Single Tree Visualization
         # All Credit to https://www.kaggle.com/willkoehrsen/a-complete-introduct
         ion-and-walkthrough#Visualize-Single-Decision-Tree
         #model = RandomForestClassifier(max depth = 3, n_estimators=10)
         #model.fit(train selected, train labels)
         model = rf base
         estimator limited = model.estimators [1]
         estimator limited
```

In []: train selected = X train

```
In [ ]: #from sklearn.tree import export graphviz
         export_graphviz(estimator_limited, out_file='Images/1_tree.dot', feature
         names = train_selected.columns,
                         rounded = True, proportion = False, precision = 2, fille
         d = True
 In [ ]: # Convert .dot file to .png - commented out because run time is long.
         # Using .png in write-up
         #import os
         #os.environ["PATH"] += os.pathsep + 'C:/Program Files/Graphviz/bin/'
         #os.system('dot -Tpng tree limited.dot -o tree limited.png')
In [99]: ### Create Small Tree with 3 Levels to be able to visualize
         # Look at parameters used by our current forest
         print('Parameters currently in use:\n')
         pprint(rf_base.get_params())
         Parameters currently in use:
         {'bootstrap': True,
          'ccp_alpha': 0.0,
          'class_weight': None,
          'criterion': 'gini',
          'max_depth': None,
          'max features': 'auto',
          'max leaf nodes': None,
          'max samples': None,
          'min impurity decrease': 0.0,
          'min impurity split': None,
          'min samples leaf': 1,
          'min samples split': 2,
          'min weight fraction leaf': 0.0,
          'n estimators': 50,
          'n jobs': None,
          'oob score': False,
          'random state': 123,
          'verbose': 0,
          'warm start': False}
 In [ ]: # Limit depth of tree to 3 levels to be able to see details.
         rf small = RandomForestClassifier(n estimators=10, max depth = 3)
         rf small.fit(train features, train labels)
         # Extract the small tree
         tree small = rf small.estimators [5]
         # Save the tree as a png image - Commented out to save time since alread
         y done
         # export graphviz(tree_small, out_file = 'Images\\small_tree.dot', featu
         re names = train selected.columns, rounded = True, precision = 1)
         # (graph, ) = pydot.graph from dot file('small tree.dot')
         # graph.write png('small tree.png');
```

```
In [ ]:
 In [ ]:
 In [ ]:
         In [ ]:
In [37]: #from sklearn.ensemble import RandomForestClassifier
         rf = RandomForestClassifier(n estimators=50)
         start = time.time()
         rf.fit(X_train, y_train)
         end = time.time()
         rf_time=round((end-start),2)
         rf_time
Out[37]: 31.57
In [40]: | preds = rf.predict_proba(X_test)
In [41]: rf_base_log_loss = log_loss(y_test,preds[:,1]) # each column is class pr
         obability,
         print(rf base log loss)
         rf base accuracy = accuracy score(y test,np.rint(preds[:,1]))
         print(rf_base_accuracy)
         0.4925212965112307
         0.7761755818268569
In [43]: data = [['XGBoost', xgb base log loss, xgb base accuracy, xgb time],
                 ['LinearSVC', "N/A", svm base accuracy, LinearSVC time],
                 ['Random Forest', rf base log loss, rf base accuracy, rf time]]
In [44]: print(data)
         [['XGBoost', 0.5851586336031108, 0.7655198006679743, 10.97], ['LinearSV
         C', 'N/A', 0.528547951015215, 61.67], ['Random Forest', 0.4925212965112
         307, 0.7761755818268569, 31.57]]
In [45]: rowlen=len(data)
         print(rowlen)
```

```
In [46]: import numpy as np
        rownums=np.arange(0,rowlen,1)
        rownums=rownums+1
        headers=['Model', 'Log-Loss', 'Accuracy', 'Wall Time']
        print(headers)
        print(rownums)
        ['Model', 'Log-Loss', 'Accuracy', 'Wall Time']
        [1 2 3]
In [47]: print(pd.DataFrame(data, rownums, headers))
                  Model Log-Loss Accuracy Wall Time
                XGBoost 0.585159 0.765520
        1
                                               10.97
        2
              LinearSVC
                             N/A 0.528548
                                               61.67
        3 Random Forest 0.492521 0.776176
                                               31.57
In [48]: # Output table of the models results
        print (tabulate(data, headers=["Model", "Log-Loss", "Accuracy", "Wall Ti
        me"]))
        Model
                      Log-Loss
                                                     Wall Time
                                          Accuracy
        XGBoost
                      0.5851586336031108
                                          0.76552
                                                         10.97
        LinearSVC
                      N/A
                                          0.528548
                                                         61.67
        Random Forest 0.4925212965112307
                                          0.776176
                                                         31.57
#. Extra code for loading and plotting
```

```
In [42]: # Plot the Random Forest model vs SVM
    ax = plt.gca()
    rfc_disp = plot_roc_curve(rf, X_test, y_test, ax=ax, alpha=0.8)
    svm_disp.plot(ax=ax, alpha=0.8)
```

Out[42]: <sklearn.metrics. plot.roc curve.RocCurveDisplay at 0x1a23145f50>


```
In [31]: svc = LinearSVC(random_state=123)
svc.fit(X_train, y_train)
svc_disp = plot_roc_curve(svc, X_test, y_test)
```

Traceback (most recent call 1

----NameError

```
ast)
```

<ipython-input-31-863beec980c9> in <module>
----> 1 svc = SVCLinear(random state=42)

2 svc.fit(X_train, y_train)

3 svc_disp = plot_roc_curve(svc, X_test, y_test)

NameError: name 'SVCLinear' is not defined

```
In [ ]: # Ramdom forest classifier
    rfc = RandomForestClassifier(random_state=42)
    rfc.fit(X_train, y_train)

    ax = plt.gca()
    rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=ax, alpha=0.8)
    svc_disp.plot(ax=ax, alpha=0.8)
```

```
In [ ]: X, y = datasets.make_classification(random_state=0)
        clf = svm.SVC(random state=0)
        clf.fit(X_train, y_train)
        SVC(random_state=0)
        metrics.det_curve(clf, X_test, y_test)
        plt.show()
In [ ]: | import scikitplot as skplt
        rf = RandomForestClassifier()
        lr = LogisticRegression()
        nb = GaussianNB()
        svm = LinearSVC()
        rf_probas = rf.fit(X_train, y_train).predict_proba(X_test)
        lr_probas = lr.fit(X_train, y_train).predict_proba(X_test)
        nb probas = nb.fit(X train, y train).predict_proba(X_test)
        svm_scores = svm.fit(X_train, y_train).decision_function(X_test)
        probas_list = [rf_probas, lr_probas, nb_probas, svm_scores]
        clf_names = ['Random Forest', 'Logistic Regression',
                       'Gaussian Naive Bayes', 'Support Vector Machine']
        skplt.metrics.plot_calibration_curve(y_test,
                                               probas_list,
                                              clf_names)
        plt.show()
In [ ]: from sklearn import metrics
        metrics.det curve(clf, X test, y test)
        plt.show()
```

In []: