EC4219: Software Engineering

Lecture 3 — Propositional Logic (1)

Syntax and Semantics

Sunbeom So 2024 Spring

```
1 void testme(int x, int y) {
2  z = 2 * y;
3  if (z == x) {
4  if (x > y+10) {
5  /* Error */
6  }
7  }
```

```
1 void testme(int x, int y) {
2    z = 2 * y;
3    if (z == x) {
4        if (x > y+10) {
5             /* Error */
6        }
7    }
8 }
```

- [Q1] Test-cases for reaching line 5?
 - (22, 11), (24, 12), (100, 50), ...
- **[Q2]** Probability of generating such tests? (assumption: 0 <= x, y <= 100)

Can we do better in systematic ways?

```
α β

1 void testme(int x, int y) {
2  z = 2 * y;
3  if (z == x) {
4  if (x > y+10) {
5  /* Error */
6  }
7  }
8 }
```

```
Constraint for reaching line 5 (x = \alpha) \land (y = \beta) \land (z = 2 * y) \land (z = x) \land (x > y + 10)
```

```
α β

1 void testme(int x, int y) {

2  z = 2 * y;

3  if (z == x) {

4  if (x > y+10) {

5  /* Error */

6  }

7  }

8 }
```

```
Constraint for reaching line 5 (x = \alpha) \land (y = \beta) \land (z = 2*y) \land (z = x) \land (x > y + 10)
SMT Solver (theorem prover)
```

```
α β

1 void testme(int x, int y) {

2  z = 2 * y;

3  if (z == x) {

4  if (x > y+10) {

5  /* Error */

6  }

7  }
```

```
Constraint for reaching line 5

1 void testme(int x, int y) {

2  z = 2 * y;

3  if (z == x) {

4  if (x > y+10) {

5   /* Error */

6  }

7  }

Error-triggering input

x \mapsto 22, y \mapsto 11, z \mapsto 22, \alpha \mapsto 22, \beta \mapsto 11
```

- Logic is the mathematical basis for systemically analyzing software.
- Many software engineering tools are built on top of logic.
 - Symbolic execution, formal verification, program synthesis, etc.

Reference Book

- "The Calculus of Computation" by Aaron R. Bradley and Zohar Manna
- See chapters 1, 2, and 5 for this course.
 - ► Chapter 1: Propositional Logic
 - ► Chapter 2: First-order Logic
 - ► Chapter 5: Program Verification

Preliminary 1: Inference Rule

One way to define the set is to use inference rules. An inference rule is of the form:

 $\frac{A}{B}$

- A: hypothesis (antecedent)
- B: conclusion (consequent)
- Interpreted as: "if A is true then B is also true".
- Inference rules without hypotheses are called axioms (e.g., B):

 \overline{B}

The hypothesis may contain multiple statements, e.g.,

$$\frac{AB}{C}$$

Interpreted as: "If both A and B are true then so is C".

Preliminary 2: Context-free Grammar

Another way to define the set is to use context-free grammar.

• The set of natural numbers $\mathbb{N} = \{0, 1, 2, \cdots\}$ is inductively defined using inference rules:

$$rac{n \in \mathbb{N}}{0 \in \mathbb{N}} \qquad rac{n \in \mathbb{N}}{n+1 \in \mathbb{N}}$$

• The inference rules can be expressed by the context-free grammar:

$$n o 0 \mid n+1$$

- Interpreted as:
 - (1) 0 is a natural number.
 - (2) If n is a natural number then so is n + 1.

Syntax of Propositional Logic

- Atom: basic elements
 - ▶ truth symbols: \bot (false), \top (true)
 - ightharpoonup propositional variables $P,\,Q,\,R,\,\cdots$
- **Literal:** an atom lpha or its negation $\neg lpha$
- Formula: a literal, or the application of a logical(boolean) connective to formulas

Subformula

ullet Formula G is a *subformula* of formula F if it syntactically occurs within G.

$$\begin{array}{rcl} \mathsf{sub}(\bot) &=& \{\bot\} \\ \mathsf{sub}(\top) &=& \{\top\} \\ \mathsf{sub}(P) &=& \{P\} \\ \mathsf{sub}(\neg F) &=& \{\neg F\} \cup \mathsf{sub}(F) \\ \mathsf{sub}(F_1 \land F_2) &=& \{F_1 \land F_2\} \cup \mathsf{sub}(F_1) \cup \mathsf{sub}(F_2) \\ \mathsf{sub}(F_1 \lor F_2) &=& \{F_1 \lor F_2\} \cup \mathsf{sub}(F_1) \cup \mathsf{sub}(F_2) \\ \mathsf{sub}(F_1 \to F_2) &=& \{F_1 \to F_2\} \cup \mathsf{sub}(F_1) \cup \mathsf{sub}(F_2) \\ \mathsf{sub}(F_1 \leftrightarrow F_2) &=& \{F_1 \leftrightarrow F_2\} \cup \mathsf{sub}(F_1) \cup \mathsf{sub}(F_2) \end{array}$$

 The strict subformulas of a formula are all its subformulas except itself.

$$\mathsf{strict}(F) = \mathsf{sub}(F) \setminus \{F\}$$

Example: Subformula

Find subformulas of the formula

$$F: (P \wedge Q) \rightarrow (P \vee \neg Q).$$

$$\begin{split} \operatorname{sub}(F) &= & \{(P \land Q) \rightarrow (P \lor \neg Q)\} \cup \operatorname{sub}(P \land Q) \cup \operatorname{sub}(P \lor \neg Q) \\ &= & \{(P \land Q) \rightarrow (P \lor \neg Q)\} \cup \\ & \cup \{P \land Q\} \cup \operatorname{sub}(P) \cup \operatorname{sub}(Q) \\ & \cup \{P \lor \neg Q\} \cup \operatorname{sub}(P) \cup \operatorname{sub}(\neg Q) \\ &= & \{(P \land Q) \rightarrow (P \lor \neg Q)\} \\ & \cup \{P \land Q\} \cup \{P\} \cup \{Q\} \\ & \cup \{P \lor \neg Q\} \cup \{P\} \cup \{\neg Q\} \cup \operatorname{sub}(Q) \\ &= & \{(P \land Q) \rightarrow (P \lor \neg Q)\} \\ & \cup \{P \land Q\} \cup \{P\} \cup \{Q\} \\ & \cup \{P \lor \neg Q\} \cup \{P\} \cup \{Q\} \\ &= & \{(P \land Q) \rightarrow (P \lor \neg Q), P \land Q, P \lor \neg Q, \neg Q, P, Q\} \end{split}$$

Semantics

- The semantics of a logic provides its meaning. The meaning of a PL formula is either true or false.
- The semantics of a formula is defined with an interpretation that assigns truth values to propositional values.
- Semantics is inductively defined, where we write $I \models F$ (resp., $I \not\models F$) iff F evaluates to true (resp., false).

Example: Semantics

Consider the formula

$$F: P \wedge Q \rightarrow P \vee \neg Q$$

and the interpretation

$$I: \{P \mapsto true, Q \mapsto false\}.$$

The truth value of F is computed as follows.

$$1. \quad I \models P \qquad \quad \mathsf{since} \; I[P] = \mathit{true}$$

2.
$$I \not\models Q$$
 since $I[Q] = false$

3.
$$I \models \neg Q$$
 by 2 and semantics of \neg

4.
$$I \not\models P \land Q$$
 by 2 and semantics of \land

5.
$$I \models P \lor \neg Q$$
 by 1 and semantics of \lor

6.
$$I \models F$$
 by 4 and semantics of o

Satisfiability and Validity

- ullet A formula F is satisfiable iff there exists an interpretation I such that $I \models F$.
- ullet A formula F is *valid* iff for all interpretations I, $I \models F$.
- Satisfiability and validity are dual:

$$F$$
 is valid iff $\neg F$ is unsatisfiable

We can check satisfiability by deciding validity, and vice versa.

Determining Validity and Satisfiability

There are two approaches to show $oldsymbol{F}$ is valid.

- Truth table method: performs exhaustive search.
 - ightharpoonup Ex) $F: P \wedge Q
 ightarrow Q ee
 eg Q$

P	Q	$P \wedge Q$	$\neg Q$	$P \lor \lnot Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	0	1

- **Semantic argument method**: uses deduction (proof by contradiction).
 - Assume F is invalid: $I \not\models F$ for some I (falsifying interpreation).
 - ▶ Apply deduction rules (proof rules) to derive a contradiction.
 - Case 1) If every branch of the proof derives a contradiction, then F is valid.
 - ightharpoonup Case 2) If some branch of the proof never derives a contradiction, then F is invalid. This branch describes a falsifying interpretation of F.
- SAT solvers use both search and deduction.

Deduction Rules for Propositional Logic

Proof rules used in the semantic argument method:

$$\begin{array}{c|c} I \models \neg F \\ \hline I \not\models F \end{array} & \begin{array}{c} I \not\models \neg F \\ \hline I \models F \\ \end{array} \\ \begin{array}{c} I \models F \land G \\ \hline I \models F, I \models G \end{array} & \begin{array}{c} I \not\models F \land G \\ \hline I \not\models F \mid I \not\models G \\ \end{array} \\ \begin{array}{c} I \models F \lor G \\ \hline I \models F \mid I \models G \end{array} & \begin{array}{c} I \not\models F \lor G \\ \hline I \not\models F, I \not\models G \\ \end{array} \\ \begin{array}{c} I \not\models F \rightarrow G \\ \hline I \not\models F \mid I \models G \end{array} & \begin{array}{c} I \not\models F \rightarrow G \\ \hline I \not\models F, I \not\models G \\ \end{array} \\ \begin{array}{c} I \models F \rightarrow G \\ \hline I \not\models F, I \not\models G \\ \end{array} \\ \begin{array}{c} I \not\models F \rightarrow G \\ \hline I \not\models F, I \not\models G \\ \end{array} \\ \begin{array}{c} I \not\models F \rightarrow G \\ \hline I \not\models F \land \neg G \mid I \models \neg F \land G \\ \end{array} \\ \begin{array}{c} I \not\models F \\ \hline I \not\models F \\ \hline I \not\models I \end{array}$$

Example 1: Semantic Argument Method

Prove that the following formula is valid using the semantic argument method.

$$F: P \wedge Q o P ee
eg Q$$

Example 1: Semantic Argument Method

Prove that the following formula is valid using the semantic argument method.

$$F: P \wedge Q o P ee
eg Q$$

1.
$$I \not\models P \land Q \rightarrow P \lor \neg Q$$

2.
$$I \models P \land Q$$

3.
$$I \not\models P \lor \neg Q$$

4.
$$I \models P$$

5.
$$I \not\models P$$

6.
$$I \models \bot$$

assumption

by 1 and the rule \rightarrow

by 1 and the rule \rightarrow

by 2 and the rule \land

by 3 and the rule \lor

4 and 5 are contradictory

Example 2: Semantic Argument Method

Prove that the following formula is valid using the semantic argument method.

$$F:(P\to Q)\wedge (Q\to R)\to (P\to R)$$

Equivalence and Implication

ullet Two formulas F_1 and F_2 are equivalent:

$$F_1 \iff F_2$$

iff $F_1 \leftrightarrow F_2$ is valid, i.e., for all interpretations I, $I \models F_1 \leftrightarrow F_2$.

ullet Formula F_1 implies F_2

$$F_1 \implies F_2$$

iff $F_1 o F_2$ is valid, i.e., for all interpretations I, $I \models F_1 o F_2$.

- ullet Note 1) $F_1 \iff F_2$ and $F_1 \implies F_2$ are not formulas. They are semantic assertions!
- We can check equivalence and implication by checking validity.

Substitution

ullet A substitution σ is a mapping from formulas to formulas:

$$\sigma:\{F_1\mapsto G_1,\cdots,F_n\mapsto G_n\}$$

• The domain of σ , denoted **dom**, is

$$\mathsf{dom}(\sigma):\{F_1,\cdots,F_n\}$$

while the range, denoted range, is

$$\mathsf{range}(\sigma):\{G_1,\cdots,G_n\}$$

- The application of a substitution σ to a formula F, $F\sigma$, replaces each occurrence of F_i with G_i . Replacements occur all at once.
- When two subformulas F_j and F_k are in $dom(\sigma)$ and F_k is a strict subformula of F_j , then F_j is replaced first.

Example: Substitution

Consider the formula $oldsymbol{F}$

$$F: P \wedge Q \rightarrow P \vee \neg Q$$

and the substitution σ

$$\sigma: \{P \mapsto R, P \land Q \mapsto P \to Q\}$$

Then,

$$F\sigma:(P o Q) o Ree
eg Q$$

More Notations on Substitution

- A variable substitution is a substitution in which the domain consists only of propositional variables.
- When we write $F[F_1, \dots, F_n]$, we mean that formula F can have formulas F_1, \dots, F_n as subformulas.
- ullet If $\sigma=\{F_1\mapsto G_1,\cdots,F_n\mapsto G_n\}$, then

$$F[F_1,\cdots,F_n]\sigma:F[G_1,\cdots,G_n]$$

• For example, in the previous example, writing

$$F[P,P\wedge Q]\sigma:F[R,P o Q]$$

emphasizes that P and $P \wedge Q$ are replaced by R and $P \rightarrow Q$, respectively.

Semantic Consequences of Substitution

Lemma (Substitution of Equivalent Formulas)

Consider a substitution $\sigma: \{F_1 \mapsto G_1, \cdots, F_n \mapsto G_n\}$ such that $F_i \iff G_i$ for each i. Then, $F \iff F\sigma$.

Lemma (Valid Template)

If F is valid and $G=F\sigma$ for some variable substitution σ , then G is valid.

For example, since

$$F: (P \to Q) \leftrightarrow (\neg P \lor Q)$$

is valid, every formula of the form $F_1 o F_2$ is equivalent to $\neg F_1 \lor F_2$, for any formulas F_1 and F_2 .

Composition of Substitutions

Given substitutions σ_1 and σ_2 , their composition $\sigma = \sigma_1 \sigma_2$ ("apply σ_1 and then σ_2 ") is computed as follows.

- **1** Apply σ_2 to each formula of the range of σ_1 , and add the results to σ .
- ② If F_i of $F_i\mapsto G_i$ appears in the domain of σ_2 but not in the domain of σ_1 , add $F_i\mapsto G_i$ to σ .

For example,

$$\sigma_{1}\sigma_{2}: \{P \mapsto R, P \land Q \mapsto P \to Q\} \{P \mapsto S, S \mapsto Q\}$$

$$= \{P \mapsto R\sigma_{2}, P \land Q \mapsto (P \to Q)\sigma_{2}, S \mapsto Q\}$$

$$= \{P \mapsto R, P \land Q \mapsto S \to Q, S \mapsto Q\}$$

Summary

- Q. Why computational logic in software engineering?
 A. Mathematical basis for systemically analyzing software.
- Syntax and semantics of propositional logic
- Satisfiability and validity
- Basic notations (inference rule, context-free grammar, substitution)

Next lecture: normal forms and decision procedures