Лабораторная работа №1

Знакомство с Cisco Packet Tracer

Еюбоглу Тимур

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Контрольные вопросы	26
5	Выводы	30

Список иллюстраций

3.1	модель простои сети	8
3.2	Статические IP	9
3.3	Статические IP	10
3.4	Статические IP	11
3.5	Статические IP	12
3.6	Режим симуляции	13
3.7	Окно информации	14
3.8	Ответы на вопросы	15
3.9	Коллизия	16
3.10	Размещение коммутатора	17
3.11	Статические IP	17
3.12	Статические IP	18
3.13	Статические IP	18
3.14	Статические IP	18
3.15	Режим симуляции	20
3.16	Структура пакета	21
3.17	Режим симуляции	22
3.18	Режим симуляции	23
3.19	Режим симуляции	23
3.20	Коллизия	23
3.21	STP пакеты	24
3.22	IP	24
3.23	Размещение маршрутизатора	25
3 24	СПР пакеты	25

Список таблиц

1 Цель работы

Установка инструмента моделирования конфигурации сети Cisco Packet Tracer [3], знакомство с его интерфейсом.

2 Задание

- 1. Установить на домашнем устройстве Cisco Packet Tracer.
- 2. Постройте простейшую сеть в Cisco Packet Tracer, проведите простейшую настройку оборудования.

3 Выполнение лабораторной работы

- 1. 1. Создайте новый проект (например, lab_PT-01.pkt).
- 2. В рабочем пространстве разместите концентратор (Hub-PT) и четыре оконечных устройства РС. Соедините оконечные устройства с концентратором прямым кабелем (рис. 1.3). Щёлкнув последовательно на каждом оконечном устройстве, задайте статические IP-адреса 192.168.1.11, 192.168.1.12, 192.168.1.13, 192.168.1.14 с маской подсети 255.255.255.0 (рис. 1.4).(рис. 3.1) (рис. 3.2) (рис. 3.3) (рис. 3.4) (рис. 3.5).

Рис. 3.1: Модель простой сети

Рис. 3.2: Статические ІР

Рис. 3.3: Статические ІР

Рис. 3.4: Статические IP

Рис. 3.5: Статические ІР

3. В основном окне проекта перейдите из режима реального времени (Realtime) в режим моделирования (Simulation). Выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PCO, затем на PC2. В рабочей области должны будут появится два конверта, обозначающих пакеты, в списке событий на панели моделирования должны будут появиться два события, относящихся к пакетам ARP и ICMP соответственно (рис. 1.5). На панели моделирования нажмите кнопку «Play» и проследите за движением пакетов ARP и ICMP от устройства PC0 до устройства PC2 и обратно. (рис. 3.6)

Рис. 3.6: Режим симуляции

- 4. Щёлкнув на строке события, откройте окно информации о PDU и изучите, что происходит на уровне модели OSI при перемещении пакета (рис. 1.6). Используя кнопку «Проверь себя» (Challenge Me) на вкладке OSI Model, ответьте на вопросы.
- 5. Откройте вкладку с информацией о PDU (рис. 1.7). Исследуйте структуру пакета ICMP. Опишите структуру кадра Ethernet. Какие изменения происходят в кадре Ethernet при передвижении пакета? Какой тип имеет кадр Ethernet? Опишите структуру MAC-адресов.(рис. 3.7) (рис. 3.8).

Рис. 3.7: Окно информации

Рис. 3.8: Ответы на вопросы

6. Очистите список событий, удалив сценарий моделирования. Выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC0, затем на PC2. Снова выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC2, затем на PC0. На панели моделирования нажмите кнопку «Play» и проследите за возникновением коллизии (рис. 1.8). В списке событий посмотрите информацию о PDU. В отчёте поясните, как отображается в заголовках пакетов информация о коллизии и почему возникла коллизия (рис. 3.9).

Рис. 3.9: Коллизия

7. Перейдите в режим реального времени (Realtime). В рабочем пространстве разместите коммутатор (например Cisco 2950-24) и 4 оконечных устройства РС. Соедините оконечные устройства с коммутатором прямым кабелем. Щёлкнув последовательно на каждом оконечном устройстве, задайте статические IP-адреса 192.168.1.21, 192.168.1.22, 192.168.1.23, 192.168.1.24 с маской подсети 255.255.255.0. (рис. 3.10) (рис. 3.11) (рис. 3.12) (рис. 3.13) (рис. 3.14).

Рис. 3.10: Размещение коммутатора

Рис. 3.11: Статические IP

Рис. 3.12: Статические ІР

Рис. 3.13: Статические ІР

Рис. 3.14: Статические IP

- 8. В основном окне проекта перейдите из режима реального времени (Realtime) в режим моделирования (Simulation). Выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC4, затем на PC6. В рабочей области должны будут появится два конверта, обозначающих пакеты, в списке событий на панели моделирования должны будут появиться два события, относящихся к пакетам ARP и ICMP соответственно (рис. 1.9). На панели моделирования нажмите кнопку «Play» и проследите за движением пакетов ARP и ICMP от устройства PC4 до устройства PC6 и обратно. В отчёте поясните, есть ли различия и в чём они заключаются в событиях протокола ARP в сценарии с концентратором.
- 9. Исследуйте структуру пакета ICMP. Опишите структуру кадра Ethernet. Какие изменения происходят в кадре Ethernet при передвижении пакета? Какой тип имеет кадр Ethernet? Опишите структуру MAC-адресов.(рис. 3.15) (рис. 3.16).

Рис. 3.15: Режим симуляции

Рис. 3.16: Структура пакета

10. Очистите список событий, удалив сценарий моделирования. Выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC4, затем на PC6. Снова выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC6, затем на PC4. На панели моделирования нажмите кнопку «Play» и проследите за движением пакетов. В отчёте поясните, почему не возникает коллизия. (рис. 3.17).

Рис. 3.17: Режим симуляции

11. Перейдите в режим реального времени (Realtime). В рабочем пространстве соедините кроссовым кабелем концентратор и коммутатор. Перейдите в режим моделирования (Simulation). Очистите список событий, удалив сценарий моделирования. Выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC0, затем на PC4. Снова выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC4, затем на PC0. На панели моделирования нажмите кнопку «Play» и проследите за движением пакетов. В отчёте поясните, почему сначала возникает коллизия (рис. 1.10), а затем пакеты успешно достигают пункта назначения. (рис. 3.18) (рис. 3.19) (рис. 3.20).

Рис. 3.18: Режим симуляции

Рис. 3.19: Режим симуляции

Рис. 3.20: Коллизия

12. Очистите список событий, удалив сценарий моделирования. На панели моделирования нажмите «Play» и в списке событий получите пакеты STP (рис. 1.11). Исследуйте структуру STP. Опишите структуру кадра Ethernet в этих пакетах. Какой тип имеет кадр Ethernet? Опишите структуру МАСадресов. (рис. 3.21).

Рис. 3.21: STP пакеты

13. Перейдите в режим реального времени (Realtime). В рабочем пространстве добавьте маршрутизатор (например, Cisco 2811). Соедините прямым кабелем коммутатор и маршрутизатор (рис. 1.12). Щёлкните на маршрутизаторе и на вкладке его конфигурации пропишите статический IP-адрес 192.168.1.254 с маской 255.255.255.0, активируйте порт, поставив галочку «Оп» напротив «Port Status» (рис. 1.13). (рис. 3.22) (рис. 3.23).

Рис. 3.22: ІР

Рис. 3.23: Размещение маршрутизатора

14. Перейдите в режим моделирования (Simulation). Очистите список событий, удалив сценарий моделирования. Выберите на панели инструментов мышкой «Add Simple PDU (P)» и щёлкните сначала на PC3, затем на маршрутизаторе. На панели моделирования нажмите кнопку «Play» и проследите за движением пакетов ARP, ICMP, STP и CDP. Исследуйте структуру пакета CDP, опишите структуру кадра Ethernet. Какой тип имеет кадр Ethernet? Опишите структуру MAC-адресов. (рис. 3.24).

Рис. 3.24: CDP пакеты

4 Контрольные вопросы

1. Дайте определение следующим понятиям: концентратор, коммутатор, маршрутизатор, шлюз (gateway). В каких случаях следует использовать тот или иной тип сетевого оборудования?

Концентратор (Hub): концентратор является устройством, которое принимает данные с одного устройства сети и передает их всем остальным устройствам в сети. Он работает на физическом уровне модели OSI (Open Systems Interconnection), просто усиливая сигнал и передавая его по всем портам. Концентратор не имеет интеллекта для анализа данных или управления трафиком. Обычно используется в небольших сетях или для расширения количества портов в сети.

Коммутатор (Switch): коммутатор также работает на канальном уровне OSI и способен анализировать адреса MAC (Media Access Control) устройств, подключенных к нему. В отличие от концентратора, коммутатор передает данные только тому устройству, для которого они предназначены, что делает его более эффективным по сравнению с концентратором.

Коммутаторы обычно используются в сетях с высокой пропускной способностью, где требуется эффективное управление трафиком и безопасностью. Маршрутизатор (Router): маршрутизатор работает на сетевом уровне OSI и способен анализировать IP-адреса устройств в сети. Он принимает решения о передаче данных между различными сетями на основе IP-адресации и информации о маршрутах. Маршрутизаторы используются для соединения различных сетей (например, локальной сети и Интернета) и обеспечения маршрутизации данных между ними.

Шлюз (Gateway): шлюз - это устройство, которое соединяет различные сети с разными протоколами, форматами данных или архитектурой. В контексте сетей Шлюз часто используется как точка доступа к другой сети, например, для доступа к Интернету из локальной сети. Шлюз выполняет преобразование данных и управляет коммуникацией между разными сетями. В зависимости от конкретного применения, шлюз может быть представлен как программное или аппаратное оборудование. Выбор типа сетевого оборудования зависит от конкретных потребностей сети: Для простых сетей малого размера без особых требований к управлению трафиком можно использовать концентраторы. Для сетей среднего и большого размера, где требуется управление трафиком и безопасность, рекомендуется использовать коммутаторы. Для подключения сетей различных типов и обеспечения маршрутизации данных между ними необходимы маршрутизаторы. Шлюзы используются там, где требуется соединение сетей с разными протоколами или доступ к внешним сетям, таким как Интернет.

2. Дайте определение следующим понятиям: ip-адрес, сетевая маска, broadcast адрес. IP-адрес (Internet Protocol Address): IP-адрес - это числовая метка, присвоенная каждому устройству в компьютерной сети, использующей протокол Интернета (IP). Он используется для идентификации и адресации устройств в сети, позволяя маршрутизаторам правильно направлять пакеты данных к их назначению. IP-адрес состоит из 32 бит (для IPv4) или 128 бит (для IPv6) и представляется в виде четырех чисел, разделенных точками (для IPv4) или в виде группы шестнадцатеричных чисел, разделенных двоеточиями (для IPv6). Сетевая маска (Network Mask): сетевая маска используется для определения, какая часть IP-адреса относится к сети, а какая - к узлу в этой сети. Она представляет собой набор битов, который определяет количество битов, зарезервированных для идентификации сети, в IP-адресе. Обычно сетевая маска записывается вместе с IP-адресом, используя формат, подобный "192.168.1.0/24", где /24 указывает на количество битов, отведенных для сети. Вгоаdcast-адрес:

Вгоаdcast-адрес - это специальный адрес в сети, который используется для отправки данных всем устройствам в этой сети. Когда устройство отправляет пакет данных на broadcast-адрес, все устройства в этой сети получают этот пакет. Broadcast-адрес для IPv4 обычно имеет значение, в котором все биты хоста установлены в 1, например, для сети 192.168.1.0 с сетевой маской /24 broadcast-адрес будет 192.168.1.255. Для IPv6 broadcast-адреса не существует, вместо этого используется multicast для доставки данных на несколько устройств.

3. Как можно проверить доступность узла сети? Ping (ICMP Echo Request): Ping - это самый распространенный способ проверки доступности узла. Это делается отправкой ICMP (Internet Control Message Protocol) Echo Request пакета на IP-адрес узла и ожиданием ответа. Если узел доступен, он отправит обратно ICMP Echo Reply пакет Traceroute (или traceroute6 для IPv6): Этот инструмент используется для определения маршрута, который пакеты данных пройдут от отправителя до получателя. Он посылает серию пакетов с увеличивающимся TTL (Time-to-Live) и анализирует ответы для определения промежуточных узлов. Это позволяет выявить места, где возникают проблемы в маршрутизации. Проверка порта (Port Scan): Если вам нужно не только убедиться, что узел отвечает на пинг, но и проверить, работает ли на нем конкретное сетевое приложение, вы можете выполнить сканирование портов. Существуют различные инструменты, такие как Nmap, которые позволяют сканировать порты на удаленном узле и определить, какие порты открыты и доступны для подключения. Использование специализированных сетевых инструментов: Существует множество специализированных инструментов для управления сетями, которые предоставляют информацию о доступности узлов, их статусе и производительности. Это могут быть мониторинговые системы, такие как Zabbix, Nagios, Prometheus, или программное обеспечение от производителей сетевого оборудования. Использование интерфейсов управления сетевым оборудованием: Многие сетевые

устройства предоставляют интерфейсы управления или CLI (Command Line Interface), через которые можно проверить доступность узлов в сети, например, используя команды ping или traceroute на маршрутизаторе. Выбор метода зависит от конкретных требований и характеристик вашей сетевой инфраструктуры.

5 Выводы

Благодаря выполнению данной лабораторной работы мы установили инструменты моделирования конфигурации сети Cisco Packet Tracer и познакомились с его интерфейсом.