PCT/AU2004/001423

1/28

Figure 1

BEST AVAILABLE COPY

FIGURE 2

PCT/AU2004/001423

3/28

TCTGTCAATAGGGTTATGCCATATGTTCCTCTGTTAAATAGTTAAAAACATCTAAGAAGG AGACAGTTATCCCAATACGGTATACAAGGAGACAATTTATCAATTTTGTAGATTCTTCC flanking region of insertion site ---Fowlpox virus 5'

DNA sequence of the insertion site of VIR201 containing HIV gag/pol, human interferon and reporter cassette

(Ecogpt & beta-galactosidase) inserts

TTACTTCAACGATATTTGTCCGTGAGATAATATCCTCGATCTGTCAACTTAGGATATACG **AATGAAGTTGCTATAAACAGGCACTCTATTATAGGAGCTAGACAGTTGAATCCTATATGC**

GTAGTATCTTTTTATCCCTTTGATCCAGAACATAAAGTTTTTTTCGTTATATATGTTGGT 121

AGATATAAAGATAAGTATTGTGGAATTTCCTACGTAGCTGATAGAGAAGATATGTACAAA TCTATATTTCTATTCATAACACCTTAAAGGATGCATCGACTATCTCTTCTATACATGTTT 181

GTTATCAACAGGATATACCCGTACGTTAGTTGTTTTTACCTCGTATCAGATGGTATAATA CAATAGTTGTCCTATATGGGCATGCAATCAACAAAAATGGAGCATAGTCTACCATATTAT 241

:TAAAAGTATGATGAGGCATCGATTAGTGTGTCTTTATAATTTGGGGAAGGTCAATTA AATTTTCATACTACTCCGTAGCTAATCACACTAGAAATATTAAACCCCCTTCCAGTTAAT 301

ATAACATTATGAAATACACTTTATCATATACTAAAACTTATAAATTTCAAACTTGTTCCA TATTGTAATACTTTATGTGAAATAGTATATGATTTTTGAATATTTTAAAGTTTTGAACAAGGT 361

CAATACAGATAAGGCCACAAGTACGGAAAACATGGTTTTGTCAAACATAGATAATAGTTA GTTATGTCTATTCCGGTGTTCATGCCTTTTGTACCAAAACAGTTTGTATCTATTATCAAT 421

TTACCAGATGATATTCTCATAACATGTACAGCGTCCAGTAACATAGAATACATAACACAT

481

4/28

541	. ATAGATAATAAAAGCTAAAAAGAATACTTATAATAATAAAAGATAAATTTCTAAAGGGT TATCTATTATTTTTCGATTTTTCTTATGAATATTATTATTTTCTATTTAAAGATTTCCCA	
601	. ACTATCÀTGCAAGGTACTTTTAAAAAGTAAATATCATAAGACACAAGAAGTATACATAT TGATAGTACGTTCCATGAAAATTTTTTCATTTATAGTATTCTGTGTTCTTCATATATA	
661	. ACTATAACGTATTCTTCTTTTGATTGCCCTAAACTAGAAGATACTAAGTCATCGCTGCCA TGATATTGCATAAGAAAAAACTAACGGGATTTGATCTTCTATGATTCAGTAGCGACGGT	
721	AGTACGTGCAATAAAGCCCATATTAGATGGGCGTAGATATGTTACAAAAACTTTTAATGAT TCATGCACGTTATTTCGGTATAATCTACCCGCATCTATACAATGTTTTTGAAAATTACTA	
781	ACAATATAAATGGAAATAGCTAGAAACGCTAATAACGATAGGCCTTACTATATTAGTA TGTTATATTTACCTTTATCGATCTCTTTGCGATTATTGCTATCCGGAATGATAATCAT	
841	GTGTTATTGATAATAACTGGATTCTCGCTAGTGCTAAGATTAATACCGGGTGTTTATAGT CACAATAACTATTATTGACCTAAGAGCGATCACGATTCTAATTATGGCCCACAAATATCA	
901	TCAGTATCGAGGTCATCATTTACAGCAGGAAGAATACTTCGTTTTATGGAAATATTTTCT AGTCATAGCTCCAGTAGTAAATGTCGTCCTTCTTATGAAGCAAAATACCTTTATAAAAGA	
961	ACTATTATGTTTATTCCTGGAATAATTATATTGTACGCTGCTTATATAAGAAAAATTAAA TGATAATACAAATAAGGACCTTATTAATATAACATGCGACGAATATATTCTTTTTAATT	
1021	ATGAAAATAATTAGAATCTGAAAATGTCTTCTGGAAGCATCCATGTTATTACAGGCCCT TACTTTTTATTAATCTTAGACTTTTACAGAAGACCTTCGTAGGTACAATAATGTCCGGGA	

G

I

ഗ

G

ഗ

ഗ

Σ

5/28

Ø

G

>

Ŏ

᠐

TACAAAAGGCCATTTTGTAGCCTCGATCATTCTTCTTATTTTTCTAAATACGATAGATTG 1081 ATGTTTTCCGGTAAACATCGGAGCTAGTAAGAAGAATAAAAAGATTTATGCTATCTAAC coding protein \simeq tγ virus ĸ × Fowlpox Н ſП ഗ ×

TTTAAATGTATTATTATAACATTGTGGAGATAATAGATAATGAGGATGATGATAAAC **AAATTTACATAATAATATTTGTAACACCTCTATTATCTATATTACTCCTACTATATTTG**

 \mathbf{z} Ω G ပ I

TTAGTACCTACGCTATTAAATGATGGGGTTCAGGTAATAGGTATAGACGAGGCTCAATTC **AATCATGGATGCGATAATTTTACTACCTCAAGTCCATTATCCATATCTGCTCCGAGTTAAG** S N. K \geq \equiv ⋿ 1261

TITCTAGACATAGTAGAATTTAGTGAATCCATGGCTAATTTAGGTAAAACAGTTATTGTG AAAGATCTGTATCATCTTAAATCACTTAGGTACCGATTAAATCCATTTTGTCAATAACAC Ц K Σ ഗ (L) ГŢ

GCCGCGCTTAACGGTGATTTTAAACGCGAATTATTCGGTAACGTATATAAGTTATTATCA CGGCGCGAATTGCCACTAAAATTTGCGCTTAATAAGCCATTGCATATATTAATAGT z G ſщ ᆸ Ŀ 24 G Ы Ø

TTAGCTGAAACAGTGTCCAGTTTGACAGCTATTTGCGTGAAATGCTATTGCGACGCTTCG AATCGACTTTGTCACAGGTCAAACTGTCGATAACGCACTTTACGATAACGCTGCGAAGC

D A S

C

ပ

C V K

Н

Ø

₽

Н

ഗ

ഗ

ш

L A

6/28

CGACAAGTTAGGTCCATAGAACGCCCTATAGTTGTTGTATCAGTAGTTGGTCGCCTGCTG 1501 ITTICTAAACGAGTTACAGAAAATAAAGAAGTAATGGATATAGGTGGTAAAGATAAATAC 1561 ATAGCCGTGTGTAGGAAATGTTTTTTAGTAATTAAggggagatctccccatggcccaaa gcggggtttgaacagggtttcgctcaggtttgcctgtgtcatggatgcagcctccagaat cgccccaaacttgtcccaaagcgagtccaaacggacacagtacctacgtcggaggtctta ggcgttgaaaagaTTAGCGACCGGAGATTGGCGGGACGAATACGACGCCCATATCCCACG 1801 GCTGTTCAATCCAGGTATCTTGCGGGATATCAACAACATAGTCATCAACCAGCGGACGAC acttactggaaactattgtaacccgcctgaagttaaaaagaacaacgcccggcagtgcca segeaacttttctAATCGCTGGCCTCTAACCGCCCTGCTTATGCTGCGGGTATAGGGTGC 1861 CAGCCGGTTTTGCGAAGATGGTGACAAGTGCGCTTTTGGATACATTTCACGAATCGCAA TATCGGCACACATCCTTTACAAAAAAATCATTAATTcccctctagaggggtaccggggttt GTCGGCCAAAACGCTTCTACCACTGTTTCACGCGAAAACCTATGTAAAGTGCTTAGCGTT End of Ecogpt protein coding sequence G G Σ Ω [±] ഗ × ᅜ ഥ Z ပ ы \bowtie 12 α C 1621 1681

GGCGTCATGGTGGCCATAGGTGCTCCAGTAGTTATTGCTACTTCGGAAGCGGTAGCGGAA 1981 CTGCGCGTTTCAGCACTTTAAGCTCGCGCTGGTTGTCGTGATCGTAGCTGGAAATACAAA GACGCGCAAAGTCGTGAAATTCGAGCGCGACCAACAGCACTAGCATCGACCTTTATGTTT Ω 工 Ω z ŏ Ω œ ы Н × > ᆸ ×

1921 CCGCAGTACCACCGGTATCCACCAGGTCATCAATAACGATGAAGCCTTCGCCATCGCCTT

2041 CGGTATCGACATGACGAATACCCAGTTCACGCGCCAGTAACGCACCCGGTACCAGACCGC GCCATAGCIGTACTGCTTATGGGTCAAGTGCGCGGTCATTGCGTGGGCCATGGTCTGGCG ہم 9 Ø ⊣ K 2 G 24 二

2101 CACGGCTTACGGCAATAATGCCTTTCCATTGTTCAGAAGGCATCAGTCGGCTTGCGAGTT GTGCCGAATGCCGTTATTACGGAAAGGTAACAAGTCTTCCGTAGTCAGCCGAACGCTCAA ႕ Σ Д S 団 Õ Z \times G K

2161 TACGTGCATGGATCTGCAACATGTCCCAGGTGACGATGTATTTTCGCTCATGtgaagtg ATGCACGTACCTAGACGTTGTACAGGGTCCACTGCTACATAAAAAGCGAGTAcacttcac > 3 Σ Õ

Estart of Ecogpt protein coding sequence

tcccagcctgtttatctacggcttaaaaagtgttcgaggggaaaataggttgcgcgagat agggtcggacaaatagatgccgaatttttcacaagctccccttttatccaacgcgctcta tatagagatccgtcactgttctttatgatctacttccttaCCGTGCAATAAATTAGAATA ${ t atatct}$ ctaggcagtgacaagaaatactagatgaaggaat ${ t GGCACGTTATTTAATCTTAT}$

ATAAAAGATGAAAATGCTCTTTAATTAATAACATAATAATAATACCCACTTTTTGAAT 2341

CTATAAAAAGCGGGGGGTTTGGAattagtgatcagtttatgtatatcgcaactaccggc SATATTTTCGCCCACCCAAACCTtaatcactagtcaaatacatatagcgttgatggccg

2461

(marked in upper case)

← Vaccinia virus p7.5 promoter

8/28

End of beta-Galactosidase protein coding sequence atatggctattcgacatcgagaacattacccacatgataagagattgtatcagtttcgta gtcttgagtattggtattactatatagtatatgtcgggaattcagatccatgcagatccc 3ggacgggccaataatAATAAAAACTGTGGTTGACCATTACCATCGCTGGCCGCG ataccgataagctgtagctcttgtaatgggtgtactattctctaacatagtcaaagcat cagaactcataaccataatgatatatcatatacagcccttaagtctaggtacgtctaggg cctgcccggttattaTTTTTGACACCAGACCAACTGGTAATGGTAGCGACCGGCGC

CCTTTGGCAGCTATAAGTCGGTACACGGAAGAAGGCGCGCACGTCGTCTACCGCTACCGACC 2701 GGAAACCGTCGATATTCAGCCATGTGCCTTCTTCCGCGTGCAGCAGATGGCGAGGCTGG ഥ ſΞ

AGTCGACCTTAAGGCGGCTATGACTGCCCGAGGTCCTCAGCAGCGGTGGTTAGGGGTATA

TCAGCTGGAATTCCGCCGATACTGACGGGCTCCAGGAGTCGTCGCCACCAATCCCCATAT

2641

2761 TTTCCATCAGTTGCTGTTGACTGTAGCGGCTGATGTTGAACTGGAAGTCGCCGCGCCACT **AAAGGTAGTCAACGACAACTGACATCGCCGACTACAACTTGACCTTCAGCGGCGCGGTGA**

Figure 3 continued

2581

2821 GGTGTGGGCCATAATTCAATTCGCGCGTCCCGCAGCGCAGACCGTTTTCGCTCGGGAAGA

CCACACCCGGTATTAAGTTAAGCGCGCAGGGGGGTCGCGTCTGGCAAAAGCGAGCCCTTCT

9/28

CGTACGGGGTATACATGTCTGACAATGGCAGATCCCAGCGGTCAAAACAGGCGGCAGTAA GCATGCCCCATATGTACAGACTGTTACCGTCTAGGGTCGCCAGTTTTGTCCGCCGTCATT CCGCCAGCCCTATCAAAAGAACGCCGGGATTAGGCTCGGTCAAATGGGCGAGACGATGGA 2941 GGCGGTCGGGATAGTTTTCTTGCGGCCCTAATCCGAGCCAGTTTACCCGCTCTGCTACCT CATCAACGGTAATCGCCATTTGACCACTACCATCAATCCGGTAGGTTTTCCGGCTGATAA GTAGTTGCCATTAGCGGTAAACTGGTGATGGTAGTTAGGCCATCCAAAAGGCCGACTATT 3121 ATAAGGTTTTCCCCTGATGCTGCCACGCGTGAGCGGTCGTAATCAGCACCGCATCAGCAA TATTCCAAAAGGGGACTACGACGGTGCGCACTCGCCAGCATTAGTCGTGGCGTAGTCGTT z K 3 Ξ Ω G Д ᆸ 口 Ø G 工 9 K Ø 3 G G õ Ø ŏ Ц I ഥ G Ø Н 3001

3241 AGCGTTCGACCCAGGCGTTAGGGTCAATGCGGGTCGCTTCACTTACGCCAATGTCGTTAT

Ø

ы

æ

Ø

Ø

GTGTATCTGCCGTGCACTGCAACAACGCTGCTTCGGCCTGGTAATGGCCCGCCGCCTTCC CACATAGACGGCACGTGACGTTGTTGCGACGAAGCCGGACCATTACCGGGCGGCGGAAGG

3181

TCGCAAGCTGGGTCCGCAATCCCCAGTTACGCCCAGCGAAGTGAATGCGGTTACAGCAATA

ഗ

ы

Ø

⊢

Ø

CCAGCGGTGCACGGGTGAACTGATCGCGCGGCGGCGTCAGCAGTTGTTTTTATCGCCAA

PCT/AU2004/001423

10/28

3361 ICCACAICIGIGAAAGAAAGCCIGACIGGCGGIIAAAIIGCCAACGCIIAIIACCCAGCI AGGTGTAGACACTTTCTTTCGGACTGACCGCCAATTTAACGGTTGCGAATAATGGGTCGA CGATGCAAAAATCCATTTCGCTGGTGGTCAGATGCGGGATGGCGTGGGACGCGGCGGGGA GACTGGTACGCCAGCGCAAGCCAACGTGATGCGCATGACACTCGGTCTCAACGGGCCGCG GCTACGTTTTTAGGTAAAGCGACCACCAGTCTACGCCCTACCGCACCCTGCGCCGCCCCT CGCAGTGTGACTCCAAAAGGCGGTCTGCGGTGACGACGGTCCGCGACTACACGGGCCGAA CTGACCATGCGGTCGCGTTCGGTTGCACTACGCGTACTGTGAGCCAGAGTTGCCCGGCGC TCTCCGGCTGCGGTAGTTCAGGCAGTTCAATCAACTGTTTACCTTGTGGAGCGACATCCA GCGTCACACTGAGGTTTTCCGCCAGACGCCACTGCTGCCAGGCGCTGATGTGCCCGGCTT AGAGGCCGACGCCATCAAGTCCGTCAAGTTAGTTGACAAATGGAACACCTCGCTGTAGGT GAGGCACTTCACCGCTTGCCAGCGGCTTACCATCCAGCGCCCACCATCCAGTGCAGGAGCT CTCCGTGAAGTGGCGAACGGTCGCCGAATGGTAGGTCGCGGTGGTAGGTCACGTCCTCGA ဟ ĸ 田 G K, K Н ш Ø \times Н വ ы Ŏ \equiv α ᅱ Н П 3 æ [-- > ĸ ы Ω ⊱ Ø Ø ഗ Z, Д ĹŦ ĿЭ [1] z Ø $\mathbf{\Sigma}$ K ഗ ₽ Ŏ S Ø Σ ပ 3 Д ഗ 3481 3541 3601

PCT/AU2004/001423

11/28

					•		
ជា	AC TG	GT CA	AC IG G	U Ø ⊠	AG . IC	5 5 1	CT GA Q
П	TAA ATT L	GCG CGC R	ATC TAG D	CAC GTG	TTT <i>I</i> AAA1 K	900 0000 8	366 CCC P
Н	GGA CCT	CGT GCA T	AAA TTT F	ATC TAG D	GTA CAT	д ССС О	GAA CTT
H	9 9 9 9 9	200 000	990 900	CTG GAC	CCA GGT	CAG GTC L	CGG 990
M	TTG AAC Q	ATG TAC H	ATC TAG D	CGA GCT S	CTG GAC Q	GAT CTA I	AGC TCG A
M M V	NCGGAACAGGTATTCGCTGGTCACTTCGATGGTTTGCCCC NGCCTTGTCCATAAGCGACCAGTGAAGCTACCAAACGGGC R F L Y E S T V E I T Q G	AACTGCTGCTGTTTTGCTTCCGTCAGCGCTGGATGCGGCGTC TTGACGACGACCACAAACGAAGGCAGTCGCGACCTACGCCGCAC F Q Q H K A E T L A P H P T	CGT GCA T	GACCACGGGTTGCCGTTTTCATCATTTTAATCAGCGACTGATCC GCTGGTGCCCAACGGCAAAAGTAGTATAAATTAGTCGCTGACTAGG S W P N G N E D Y K I L S Q D	CAGACGAAGCCGCCCTGTAAACGGGGATACTGACGAAACGCCTGCCAGTAT GGTCTGCTTCGGCGGGACATTTGCCCCTATGACTGCTTTGCGGACGGTCATA W V F G G Q L R P Y Q R F A Q W Y	AAACCGCCAAGACTGTTACCCATCGCGTGGGCGTATTCGCAAAGGATCAGCGGC TTTGGCGGTTCTGACAATGGGTAGCGCACCCGCATAAGCGTTTCCTAGTCGCCC F G G L S N G M A H A Y E C L I L P	CTCTCCAGGTAGCGAAAGCCATTTTTGATGGACCATTTCGGCACAGCCGGGAAGGGCT SAGAGGTCCATCGCTTTCGGTAAAAACTACCTGGTAAAGCCGTGTCGGCCTTCCCGA E G P L S L W K K I S W K P V A P F P Q
>	GAT CTA I	090 909 80	2050 1990	AAT TTA	AAA TTT E	GCA CGT C	CGG
Ø	TTC AAG E	CAG GTC L	GTT CAA N	TTT AAA K	ACG TGC	TTC AAG E	TTT AAA K
L P K G D L A	CAC GTG	CGT GCA T	ATC TAG	ATA TAT Y	CTG GAC Q	GTA CAT Y	CCA GGT
D	GGT CCA	TTC	16CG 1CGC R	ATC TAG	ATA TAT	660 1006 1006	GGA CCT S
G	GCT CGA S	TGC ACG	CTG GAC Q	TTC AAG E	ط الأودو	GTG	GAT CTA I
×	TTC 'AAG E	TTT: AAA: K	GAA CTT F	GTT	ACG 'TGC R	050, 190,0	TTT AAA K
Д	GTA CAT	GTG CAC H	ACA TGT C	9 992) 993)	TAA ATT L	CAT GTA M	TTT 'AAA K
	CAG GTC L	CTG	CAT GTA M	GTT CAA N	CTG GAC Q	ACC TGG	CCA
A	GAA CTT F	CTG GAC Q	GTT CAA N	1 1 1 1 1 1 1 1	9 990 990	GTT CAA N	AAG TTC L
S	ACG TGC R	CTG GAC Q	ACC TGG G	CCA GGT W	9 990 990	ACT TGA S	CGA GCT S
Ŋ	CTATGE GATACT S H	AAA TTT F	CAG GTC L	CGA GCT S	GAA CTT F	AAG TTC L	TAG ATC L
កា	GCT CGA S	TGGAAA SACCTTT Q F	GAC CTG	AGC TCG A	GAC CTG V	9 990 900	AGG TCC
>	ATC TAG D	CTG GAC Q	AAA TTT E	GTA CAT Y	CCA GGT W	ACC TGG	TCC AGG G
Д	3721 CGTTATCGCTATGACGGAACAGGTATTCGCTGGTCACTTCGATGGTTTGCCCGGATAAAC GCAATAGCGATACTGCCTTGTCCATAAGCGACCAGTGAAGCTACCAAACGGGCCTATTTG < N D S H R F L Y E S T V E I T Q G S L R	3781 GGAACTGGAAAACTGCTGCTGGTGTTTTGCTTCCGTCAGCGCTGGATGCGGCGTGCGGT CCTTGACCTTTTTGACGACGACCACAAAACGAAGGCAGTCGCGACCTACGCCGCCGCCCA < F Q F F Q Q Q H K A E T L A P H P T R D	CGGCAAAGACCAGACCGTTCATACAGAACTGGCGATCGTTCGGCGTATCGCCAAAATCAC GCCGTTTCTGGTCTGG	3901 CGCCGTAAGCCGACCACGGGTTGCCGTTTTCATCATTTTAATCAGCGACTGATCCACCC GCGGCATTCGGCTGGTGCCCAACGGCAAAGTAGTATAAATTAGTCGCTGACTAGGTGGG < G Y A S W P N G N E D Y K I L S Q D V W	3961 AGTCCCAGACGGAGCCGCCCTGTAAACGGGGATACTGACGAAACGCCTGCCAGTATTTAG TCAGGGTCTGCTTCGGCGGGACATTTGCCCCTATGACTGCTTTGCGGACGGTCATAAATC . < D W V F G G Q L R P Y Q R F A Q W Y K A	4021 CGAAACCGCCAAGACTGTTACCCATCGCGTGGGCGTATTCGCAAAGGATCAGCGGGCGG	\sim
V	0 0	0 0		7. 0.	11 A T	7. 0 \	1 T A >
	372	378	3841	390	396	402	408
					•	_	

Figure 3 continued

Ø

CCAGAAGTAGGTGCGCGCGCATGTAGCCCGTTTATTATAGCCACCGGCACCACAGCCGAG GGTCTTCATCCACGCGCGCGTACATCGGGCAAATAATATCGGTGGCCGTGGTGTCGGCTC

Σ

Ø

12/28

CGCCGCCTTCATACTGCACCGGGCGGGAAGGATCGACAGATTTGATCCAGCGATACAGCG GCGGCGGAAGTATGACGTGGCCCGCCCTTCCTAGCTGTCTAAACTAGGTCGCTATGTCGC GCAGCACTAATCGCGGCACCGGACTAAGTAAGGGGTCGCTGGTCTACTAGTGTGAGCCCA CGTCGTGATTAGCGCCGTGGCCTGATTCATTCCCCAGCGACCAGATGATCACACTCGGGT GATTACGATCGCGCTGCACCATTCGCGTTACGCGTTCGCTCATCGCCGGTAGCCAGCGCG GATCATCGGTCAGACGATTCATTGGCACCATGCCGTGGGTTTCAATATTGGCTTCATCCA CCACATACAGGCCGTAGCGGTCGCACGTGTACCACAGCGGATGGTTCGGATAATGCG GGTGTATGTCCGGCATCGCCAGCGTGTCGCACATGGTGGTCGCCTACCAAGCCTATTACGC CTAGTAGCCAGTCTGCTAAGTAACCGTGGTACGGCACCCAAAGTTATAACCGAAGTAGGT TTGTCGCGTGCCGCAATTTCAACAAGACGAAGTAGTCGTCCTATAGGACGTGGTAGCAGA 4501 AACAGCGCACGGCGTTAAAGTTGTTCTGCTTCATCAGCAGGATATCCTGCACCATCGTCT Ω z ĿП ഗ S Н لتا 二 3 G α, G z Σ ۲ ഗ ធា щ S α ပ Σ Σ Z α, G 24 Ø z G 4201 4261

GCTCATCCATGACCTGACCATGCAGAGGATGATGCTCGTGACGGTTAACGCCTCGAATCA

4561

CGAGTAGGTACTGGACTGGTACGTCTCCTACTACGAGCACTGCCAATTGCGGAGCTTAGT

 Ξ

GCAACGGCTTGCCGTTCAGCAGCAGACCATTTTCAATCCGCACCTCGCGGAAACCGA

4621

CGTTGCCGAACGGCAAGTCGTCGTCGTCTGGTAAAGTTAGGCGTGGAGCGCCTTTGGCT

G)

z

G

13/28

CATCGCAGGCTTCTGCTTCAATCAGCGTGCCGTCGGCGGTGTGCAGTTCAACCACCGCAC GTAGCGTCCGAAGACGAAGTTAGTCGCACGGCAGCCGCCACGTCAAGTTGGTGGCGTG GATAGAGATTCGGGTTTCGGCGCTCCACAGTTTCGGGTTTTCGACGTTCAGACGTAGTG CTATCTCTAAGCCCTAAAGCCGCGAGGTGTCAAAGCCCAAAAGCTGCAAGTCTGCATCAC ACTGCGCTAGCCGTATTGGTGGTGCGAGTAGCTATTAAAGTGGCGGCTTTCCGCGCCCACG 4801 TGACGCGATCGGCATAACCACCACGCTCATCGATAATTTCACCGCCGAAAGGCGCGGTGC 4921 ACTCGCCGCACATCTGAACTTCAGCCTCCAGTACAGCGCGGGTGAAATCATCATTAAAGC TGAGCGGCGTGTAGACTTGAAGTCGGAGGTCATGTCGCGCCGACTTTAGTAGTAATTTCG 4981 GAGTGGCAACATGGAAATCGCTGATTTGTGTAGTCGGTTTATGCAGCAACGAGACGTCAC z ĸ ഥ H K Д \simeq ഗ G ᆈ Н B Гı 3 [L] П ഗ Ø ĸ K G ဟ ſщ . G ГL 띠 ГIJ Ø Ŏ [±] K 4681 4861

CTCACCGTTGTACCTTTAGCGACTAAACACATCAGCCAAATACGTCGTTGCTCTGCAGTG

T T

 Ξ

×

Д

Oi

ഗ

5041 GGAAAATGCCGCTCATCCGCCACATATCCTGATCTTCCAGATAACTGCCGTCACTCCAAC

5401

14/28

CCTTTTACGGCGAGTAGGCGGTGTATAGGACTAGAAGGTCTATTGACGGCAGTGAGGTTG 5101 GCAGCACCATCACCGCGAGGCGGTTTTCTCCGGCGCGTAAAATGCGCTCAGGTCAAATT CGTCGTGGTAGTGGCGCTCCGCCAAAAGAGGCCGCGCGTTTTTACGCGAGTCCAGTTTAA CAGACGGCAAACGACTGTCCTGGCCGTAACCGACCCAGGCGCCCGTTGCACCACAGATGAA TGCGGCTCAATTGCGGTAGTTTTTATTAAGCGCAGACCGGAAGGACATCGGTCGAAAGTA GTCTGCCGTTTGCTGACAGGACCGGCATTGGCTGGGTCGCGGGCAACGTGGTGTCTACTT 5221 ACGCCGAGTTAACGCCATCAAAAATAATTCGCGTCTGGCCTTCCTGTAGCCAGCTTTCAT GTTGTAATTTACACTCGCTCATTGTTGGGCAGCCTAAGAGGCACCCTTGTTTGCCGCCTA 5281 CAACATTAAATGTGAGCGAGTAACAACCCGTCGGATTCTCCGTGGGAACAAACGGCGGAT 5341 TGACCGTAATGGGATAGGTTACGTTGGTGTAGATGGGCGCATCGTAACCGTGCATCTGCC ACTGGCATTACCCTATCCAATGCAACCACATCTACCCGCGTAGCATTGGCACGTAGACGG Σ G ഗ Ø z Õ Ē G ш \vdash Ц Ы 24 G ഥ K ഥ α 3 Ø z Д Ø م ~ G G Ę Ω G [1] ₽ G Σ z z 3 \propto K Н S Σ K ഗ G Н S > Д G Σ Ы z z 5161

ſτ]

S

3

ы

D Q

Н

Д

A

Ω

H

>

Д

S

CGTGGCGAAGACCACGGCCTTTGGTCCGTTTCGCGGTAAGCGGTAAGTCCGACGCGTTGA

ഗ

ы

 α

3

ø

ഥ

5521

5461 GCACCGCTTCTGGTGCCGGAAACCAGGCAAAGCGCCATTCGCCCATTCAGGCTGCGCAACT

CAACCCTTCCCGCTAGCCACGCCCGGAGAAGCGATAATGCGGTCGACCGCTTTCCCCCTA

Z

ഗ

ГJ

ы

Ø

X

GTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGGTCACGACGTTGTAAAA CACGACGTTCCGCTAATTCAACCCATTGCGGTCCCAAAAGGGTCAGTGCTGCAACATTTT

GTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGGAT

15/28

Human interferon gamma protein coding sequence→ Estart of beta-Galactosidase protein coding sequence Fowlpox virus bidirectional promoter (in bold) TAATAAATG9acggatcgATGAAATATACAAGTTATATCTTGGCTTTTCAGCTCTGCATC **ATTATTTAC**ctgcctagcTACTTTATATGTTCAATATAGAACCGAAAAGTCGAGACGTAG GTTTTGGGTTCTCTTGGCTGTTACTGCCAGGACCCATATGTAAAAGAAGCAGAAAACCTT CAAAACCCAAGAGCCGACAATGACGGTCCTGGGTATACATTTTCTTCGTCTTTTGGAA Ø ᆸ S

5701

5761

Figure 3 continued

5641

CGACGGGATCTAGCATggatctagccATTTAGTATCCTAAAATTGAATTGTAATTATCGA

ĸ

ഥ

z

ρц

Ġ

Ċ

z

Н

GCTGCCCTAGATCGTAcctagatcgg**TAAATCATAGGATTTTAACTTAACATTAATAGCT**

AAGAAATATTTTAATGCAGGTCATTCAGATGTAGCGGATAATGGAACTCTTTTCTTAGGC TICTTTATAAAATTACGTCCAGTAAGTCTACATCGCCTATTACCTTGAGAAAAAATCCG ATTTTGAAGAATTGGAAAGAGGAGAGTGACAGAAAAAATAATGCCAGAGCCAAATTGTCTCC TAAAACTICTIAACCTTICCCCTCTCACTGICTTTTTATTACGICTCGGTTTAACAGAGG ഗ z Σ \times 3

TTTTACTTCAAACTTTTAAAAACTTTAAAGATGACCAGAGCATCCAAAAGAGTGTGGAG **AAAATGAAGTTTGAAAATTTTTGAAATTTTCTACTGGTCTCGTAGGTTTTTCTCACACCTC** Ŏ Ŏ Z بتا

ACCATCAAGGAAGACATGAATGTCAAGTTTTTCAATAGCAACAAAAAGAAACGAGATGAC TGGTAGTTCCTTCTGTACTTACAGTTCAAAAGTTATCGTTGTTTTTCTTTGCTCTACTG \bowtie × ഗ z بعا Z Σ Ω ſω

Figure 3 continued

AAGCTTTTCGACTGATTAATAAGCCATTGACTGAACTTACAGGTTGCGTTTCGTTATGTA TTCGAAAAGCTGACTAATTATTCGGTAACTGACTTGAATGTCCAACGCAAAGCAATACAT Ø z \succ Z E

GAACTCATCCAAGTGATGGCTGAACTGTCGCCAGCAGCTAAAACAGGGAAGCGAAAAAGG CTTGAGTAGGTTCACTACCGACTTGACAGCGGTCGTCGATTTTGTCCCTTCGCTTTTTCC E--K Ø ſω K $\mathbf{\Sigma}$ Õ

AGTCAGATGCTGTTTCGAGGTCGAAGAGCATCCCAGTAAtggttgtcctgcctgcaatat TCAGTCTACGACAAAGCTCCAGCTTCTCGTAGGGTCATTaccaacaggacggacgttata G 6181

HIV gag protein coding sequence

AGAGCGTCGGTATTAAGCGGGGGGAGAATTAGATAAATGGGAAAAAATTCGGTTAAGGCCA TCTCGCAGCCATAATTCGCCCCCTCTTAATCTATTTACCCTTTTTTAAGCCAATTCCGGT ×

œ ĿЭ 3 × Н

ഥ

9 G

ഗ

ഗ

GGGGGAAAGAAAAATATAAGTTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGA CCCCCTTTCTTTTTATATTCAATTTTGTATATCATACCCGTTCGTCCCTCGATCTTGCT ш α, Ø Ξ × \simeq \times 6239

TTCGCAGTCAATCCTGGCCTGTTAGAAACATCAGAAGGCTGCAGACAAATATTGGGACAG AAGCGTCAGTTAGGACCGGACAATCTTTGTAGTCTTCCGACGTCTGTTTATAACCCTGTC G G 6299

GATGTCGGTAGGGAAGTCTGTCCTAGTCTTCTTGAATCTAGTAATATATTATGTCATCGT

Figure 3 continued

upper ttitagactcatcaatcaaataagtatttataatagcaactTTTTTGTaatggatccc aaaatctgagtagttagtttattcataaatattatcgttgaAAAAAACAttacctaggg Engineered transcriptional stop motif

 ${ t tcgagagagctgcgtcctgagccgaacgacttcgcgcgtgtcgttctccgctcccgccg}$

6419

ACCCTCTATTGIGTACATCAAAGGATAGATGTAAAAGACACCAAGGAAGCTTTAGAGAAG TGGGAGATAACACATGTAGTTTCCTATCTACATTTTCTGTGGTTCCTTCGAAATCTCTTC

18/28

6779 ATAGAGGAAGACCAAAACAAAAGTAAGAAAAAGGCACAGCAGCAGCAGCTGCAGCTGGC IAICICCTICGITIIGIIITCAIICITIITCGGIGICGIICGICGICGGCGACGICGACG 6899 ATGGTACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAAGAA 1019 CAAGATTTAAACACCATGCTAAACACAGTGGGGGGGCATCAAGCAGCCATGCAAATGTTA 6839 ACAGGAAACAGCCAGGTCAGCCAAAATTACCCTATAGTGCAGAACCTACAGGGGGAA TACCATGTAGTCCGGTATAGTGGATCTTGAAATTTACGTACCCATTTTCATCATCTTCTT 6959 AAGGCTTTCAGCCCAGAAGTAATACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCA TTCCGAAAGTCGGGTCTTCATTATGGGTACAAAAGTCGTAATAGTCTTCCTCGGTGGGGT STICTAAATTTGTGGTACGATTTGTGTCACCCCCCTGTAGTTCGTCGGTACGTTTACAAT TGTCCTTTGTCGTCGGTCCGGTTTTAATGGGATATCACGTCTTGGATGTCCCCGTT G Σ ſ٦ Ø Z, × Ø ഗ Ø Õ [--1 П Ø K H Ø ഗ G Ø × z ტ Σ Ŏ ы > ഗ \bowtie ĿЛ Ø ᄓ Σ K Д S S Ø ഗ z ſщ Ö Σ

GGATAACGTGGTCCGGTTTACTCTTGGTTCCCCTTCACTGTATCGTCCTTGATGATCA CCTATTGCACCAGGCCAAATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGT

PCT/AU2004/001423

19/28

7199 ACCCTTCAGGAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAAATC TGGGAAGTCCTTGTTTATCCTACTGTTTATTAGGTGGATAGGGTCATCCTTTAG ATATTTTCTACCTATTAGGACCCTAATTTATTTTATCATTCTTACATATCGGGATGGTCG 1379 AAAACTCTAAGAGCCGAACAAGCTTCACAGGATGTAAAAAATTGGATGACAGAAACCTTG 7259 TATAAAAGATGGATAATCCTGGGATTAAATAAATAGTAAGAATGTATAGCCCTACCAGC TAAGACCTGTATTCTGTTCCTGGTTTCCTTGGGAAATCTCTAATACATCTGGCCAAGATA ATTCTGGACATAAGACAAGGACCAAAGGAACCCTTTAGAGATTATGTAGACCGGTTCTAT TTTTGAGATTCTCGGCTTGTTCGAAGTGTCCTACATTTTTTAACCTACTGTCTTTGGAAC Д Σ 3 Д z × Д 24 ഗ z Z ы Σ Œ 3 G Ø G Н G Ø Н Õ ĿЛ Ø K Ø ĸ ĸ 7319

7499 ACACTAGAAGAATGATGACAGCATGTCAGGGAGTGGGGGGGCCCGGCCCATAAAGCAAGA TGTGATCTTCTTTACTACTGTCGTACAGTCCCTCACCCCCCTGGGCCGGTATTTCGTTÇT G G G Σ Σ ы

AACCAGGTTTTACGTTTGGGTCTAACATTCTGATAAAATTTTTCGTAACCCTGGTCGTCGA

 \times

⊱

 \times

ပ

K

z

Ø

7439 ITGGICCAAAAIGCAAACCCAGAIIGIAAGACIAIIITAAAAGCAIIGGGACCAGCAGC

7559 GITTIGGCIGAAGCCAIGAGCCAAGIAACAATCCAGCIAACAIAAIGAIGCAGAGAGG

G

20/28

HIV pol protein coding sequence

AAGGGAAGGCCAGGGAATTTTCTTCAGAGCAGACCAGAGCCAACAGCCCCCACCAGAAGAG

TTCCCTTCCGGTCCCTTAAAAAAAGTCTCGTCTGGTCTCGGTTGTCGGGGTGGTCTTCTC

Ø

Н

لتا

G

G

ſΞ

Ø

7859

AGCTICAGGTTIGGGGAGGAGAAAACAACICCCTCTCAGAAGCAGGAGCCGATAGACAAG TCGAAGTCCAAACCCCTCCTCTTTGTTGAGGGAGAGTCTTCGTCCTCGGCTATCTGTTC ഗ ſτ] H G

7919 GAACTGTATCCTTTAACTTCCCTCAGATCACTCTTTGGCAACGACCCCTCGTCACAATAA G ſΞÌ G G

CTTGACATAGGAAATTGAAGGGAGTCTAGTGAGAAACCGTTGCTGGGGAGCAGTGTTATT

CAAAACCGACTTCGGTACTCGGTTCATTGTTTAGGTCGATTGTATTACTACGTCTCTCCG 7619 AATTTTAGGAACCAAAGAAAGACTGTTAAGTGTTTCAATTGTGGCCAAAGAAGGGCCACATA ITAAAATCCTTGGTTTCTTTCTGACAATTCACAAAGTTAACACCGTTTCTTCCCGTGTAT $\mathbf{\Sigma}$ \circ Z Z K ပ z × ⊣ O S × 24 Σ Ø ш Ø

CGGTTTTTAACGTCCCGGGGATCCTTTTTCCCGACAACCTCTACACCTTCCCTTCCTGTG

~

3

G

K

Ø

6191

GTTTACTTTCTAACGTGACTCTCTGTCCGATTAAAAAATCCCTTCTAGACCGGAAGGATG

z

7739 CAAATGAAAGATTGCACTGAGAGACAGGCTAATTTTTTAGGGAAGATCTGGCCTTCCTAC

7979 GGATAGGGGGGCAACTAAAGGAAGCTCTATTAGATACAGGAGCAGATGATACAGTATTAG

Λ

CCTATCCCCCCGTTGATTTCCTTCGAGATAATCTATGTCCTCGTCTACTATGTCATAATC

ø

G

⊱

 \Box

囝

 \times

Ø

AAGAAATGAATTTGCCAGGAAAATGGAAACCAAAAATGATAGGGGGAATTGGAGGTTTTA TTCTTTACTTAAACGGTCCTTTTACCTTTGGTTTTTACTATCCCCCTTAACCTCCAAAAT

(zı

G

G

G

Σ

ы

×

×

G

Д

Н

z

8099

8039

21/28

TCAAAGTAAGACAGTACGATCAGATACCTGTAGAAATCTGTGGACATAAAGCTATAGGTA CAGTATTAGTAGGACCTACACCTGTCAACATAATTGGAAGAAATCTGTTGACTCAGATTG GTTGTACTTTAAATTTCCCCATTAGTCCTATTGAAACTGTACCAGTAAAATTAAAGCCAG TAGAGATATGTACAGAAATGGAAAGGAAGGGAAAATTTCAAAAATTGGGCCTGAAAATC 4TCTCTATACATGTCTTTACCTTTTCCTTCCCTTTTAAAGTTTTTAAACCCGGACTTTTAG CAACATGAAATTTAAAGGGGTAATCAGGATAACTTTGACATGGTCATTTTAATTTCGGTC AGTTTCATTCTGTCATGCTAGTCTATGGACATCTTTAGACACCTGTATTTCGATATCCAT GTCATAATCATCCIGGATGTGGACAGTTGTATTAACCTTCTTTAGACAACTGAGTCTAAC CTTACCTACCGGGTTTTCAATTCGTTACCGGTAACTGTCTTCTTTTTTATTTTCGTAATC Ø \leq 二 \simeq G z α ₽ ഥ ᄓ Д Д z 3 Ŏ O ш \bowtie Ω > ⊱⊣ \times Д Ø G z

8219

8339

8279

Figure 3 continued

8159

 \mathbf{z}

ᇤ

Д

G

 \searrow

S

 \simeq

G

띠

[1]

Σ

ГJ

⊱

ы

CATACAATACTCCAGTATTTGCTATAAAGAAAAAAGACAGTACTAAATGGAGAAAACTAG

GTATGTTATGAGGTCATAAACGATATTTCTTTTTTTTTGTCATGATTTACCTCTTTTGATC

PCT/AU2004/001423

22/28

ATCTAAAGTCTCTTGAATTATTTTCTTGAGTTCTGAAGACCCTTCAAGTCAATCCTTATG GTGTGGGGCGTCCCAATTTTTTTTTTTTAGTCATTGTCATAACCTACACCCACTACGTA TAGATTTCAGAGAACTTAATAAAGAACTCAAGACTTCTGGGAAGTTCAGTTAGGAATAC 8579 ACTITICAGIICCCITAGAIAAAGACIIITAGAAAGIAIACIGCAITIACCAIACCIAGIA TAAACAATGAGACACCAGGGATTAGATATCAGTACAATGTGCTGCCACAGGGATGGAAAG GATCACCAGCAATATTCCAAAGTAGCATGACAAAAATCTTAGAGGCCTTTTAGAAAACAGA CACACCCCGCAGGGTTAAAAAAAAAAATCAGTAACAGTATTGGATGTGGGTGATGCAT TGAAAAGTCAAGGGAATCTATTTCTGAAATCTTTCATATGACGTAAATGGTATGGATCAT ATTTGTTACTCTGTGGTCCCTAATCTATAGTCATGTTACACGACGGTGTCCCTACCTTTC CTAGTGGTCGTTATAAGGTTTCATCGTACTGTTTTTAGAATCTCGGAAAATCTTTTGTCT G Ø Ω щ ĿЛ Ø (±) > ₽ Ω Z Ω > \simeq Ø ഗ 云 \simeq ₽ \times Į٠٠ Σ α \simeq × K \simeq × ഗ \times Ω ഗ Ø П Н ഥ Д ſΞĴ G Н ⊱⊣ ы Ø z z z 8519 8639 8699

8999 ATGACATACAGAAGTTAGTGGGAAAATTGAATTGGGCAAGTCAGATTTATGCAGGGATTA 9059 AAGTAAAGCAGTTATGTAAACTCCTTAGAGGAACCAAAGCACTAACAGAAGTAATACCAC TTCATTTCGTCAATACATTTGAGGAATCTCCTTGGTTTCGTGATTGTCTTATATGGTG TACTGTATGTCTTCAATCACCCTTTTAACTTAACCCGTTCAGTCTAAATACGTCCCTAAT TAACAGAAGAAGCAGAGCTAGAACTGGCAGAAAACAGGGAGATTCTAAAAGAACCAGTAC ATTGTCTTCTTCGTCTCGATCTTGACCGTCTTTTGTCCCTCTAAGATTTTCTTGGTCATG 9179 ATGAAGTATATATGACCCATCAAAAGACTTAGTAGCAGAAATACAGAAGCAGGGGCCAAG TACTICATATAATACTGGGTAGTTTTCTGAATCATCGTCTTTATGTCTTCGTCCCGGTTC ы Ŏ Ø \times z G П ĸ \times Н ပ × 口 × Ø Ø Ø \simeq

9119

CCACACCAGACAAAAACATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTCC GGTGTGGTCTGTTTTTGTAGTCTTTCTTGGAGGTAAGGAAACCTACCCAATACTTGAGG Õ ГIJ ы ГIJ 8879

ATCCTGATAAATGGACAGTACAGCCTATAATGCTGCCAGAAAAAAAGACAGCTGGACTGTCA

8939

TAGGACTATTTACCTGTCATGTCGGATATTACGACGGTCTTTTTTTGTCGACCTGACAGT

H Σ

ρ

Ø

ATCCCGTCGTATCTTGTTTTATCTCCTTGACTCTGTCGTAGACAACTCCACCCCTAAAT

8819 TAGGGCAGCATAGAACAAAATAGAGGAACTGAGACAGCATCTGTTGAGGTGGGGATTTA

GCCAATGGACATATCAAATTTATCAAGAGCCATTTAAAAAATCTGAAAACAGGAAAGTATG

9239 (

CGGTTACCTGTATAGTTTAAATAGTTCTCGGTAAATTTTTAGACTTTTGTCCTTTCATAC

z

Ø

CAAGGATGAGGGGTGCCCACACTAATGATGTAAAACAGTTAACAGAGGCAGTGCAAAAAG

9299

GTTCCTACTCCCCACGGGTGTGATTACTACATTTGTCAATTGTCTCCGTCACGTTTTTC

24/28

TATCCACAGAAAGCATAGTAATATGGGGAAAGATTCCTAAATTTAAACTACCCATACAAA 9419 AGGAAACATGGGAAGCATGGTGGATGGAGTATTGGCAAGCTACCTGGATTCCTGAGTGGG TAGGAGCAGAAACTTTCTATGTAGATGGGGCAGCTAATAGGGAGACTAAATTAGGAAAAG TCCTTTGTACCCTTCGTACCACCTACCTCATAACCGTTCGATGGACCTAAGGACTCACCC ATCCTCGTCTTTGAAAGATACATCTACCCCGTCGATTATCCCTCTGATTTAATCCTTTTC CAGGATATGTTACTGACAGAGGAAGACAAAAAGTTGTCTCCATAGCTGACACAAAATC GTCCTATACAATGACTGTCTCCTTCTGTTTTCAACAGAGGTATCGACTGTGTTTAG 9659 AGAAGACTGAATTACAAGCAATTCATCTAGCTTTGCAGGATTCGGGATTAGAAGTAAACA ATAGGTGTCTTTCGTATCATTATCCCCTTTCTAAGGATTTAAATTTGATGGGTATGTTT Ø Н Д Д 교 K ഥ \times 3 K H ſω Ø 口 \times X Ø Ø z 3 Ø × 3 > × 一 Ø \simeq Ω \mathfrak{O} ы \simeq G Ö z 3 Ω ĸ П ۲ Н 3 > ശ > エ M × α Ø Ø Ω Д بيا G ഗ ш ⊱ Ę Ø G 9359 9539 9599

9719 TAGTAACAGACTCACAATATGCATTAGGAATCATTCAAGCACAACCAGATAAGAGTGAAT

ATCATTGTCTGAGTGTTATACGTAATCCTTAGTAAGTTCGTGTTGGTCTATTCTCACTTA

G

Н

Ø

Õ

ഗ

S

Ø

K

9779 CAGAGTTAGTCAGTCAAATAATAGAGCAGTTAATAAAAAAGGAAAAGGTCTACCTGGCAT

GTCTCAATCAGTCAGTTTATTATCTCGTCAATTATTTTTTCCTTTTCCAGATGGACCGTA

Œ

×

×

Н

Ø

ഥ

Ø

ഗ

[±] Ŋ

9839

GGGTACCAGCACACAAAGGAATTGGAGGAAATGAACAAGTAGATAAATTAGTCAGTGCTG CCCATGGTCGTGTTTCCTTAACCTCCTTTACTTGTTCATCTATTTAATCAGTCACGAC

Ω

Ø

ഥ

z

G

G

G

TCTTCTGACTTAATGTTCGTTAAGTAGATCGAAACGTCCTAAGCCCCTAATCTTCATTTGT

G

S

Ω

Ö

Н

K

Н

 Ξ

Ø

O

25/28

GAATCAGGAAAGTACTATTTTGAATGGAATAGATAAGGCCCCAAGAAGAACATGAGAAAT CTTAGTCCTTTCATGATAAAACTTACCTTATCTATTCCGGGTTCTTCTTGTACTCTTTA ATCACAGTAATTGGAGGCAATGGCTAGTGATTTTAACCTGCCACCTGTAGTAGCAAAAG TAGTGTCATTAACCTCTCGTTACCGATCACTAAAATTGGACGGTGGACATCATCGTTTTC 10079 ACTGTAGTCCAGGAATATGGCAACTAGATTGTACACATCTAGAAGGAAAAATTATCCTGG TGACATCÁGGTCCTTATACCGTTGATCTAACATGTGTAGATCTTCCTTTTTAATAGGACC ы × ഥ Σ Ø K ſъ z بتا Ω 9 S Ŏ \mathbf{z} K Ö 山 Σ \times Ø Ω 口 α C > S × Ø ~ 6686 9959

ATCGTCAAGTACATCGGTCACCTATATATCTTCGTCTTCAATAAGGTCGTCTCTGTCCCG TAGCAGTTCATGTAGCCAGTGGATATATAGAAGCAGAAGTTATTCCAGCAGAGACAGGGC

K

[L]

Ø

ĿЛ

 \vdash

G

ഗ

ø

I

Ø

10199

 \simeq

G

山

ᆸ

工

⊣

O

口

Ø

3

G

Д

 $\frac{1}{2}$

10139

AGGAAACAGCATATTTTCTCTTAAAATTAGCAGGAAGATGGCCAGTAAAAAACAATACATA

26/28

CAGACAATGGCAGCAATTTCACCAGTACTACGGTTAAGGCCGCCTGTTGGTGGGCAGGGA 10379 ATAATGAATTAAAGAAAATTATAGGACAGGTAAGAGATCAGGCTGAACACCTTAAGACAG TCCTTTGTCGTATAAAAGAGAATTTTAATCGTCCTTCTACCGGTCATTTTTGTTATGTAT GTCTGTTACCGTCGTTAAAGTGGTCATGATGCCAATTCCGGCGGACAACCACCCGTCCCT 10319 TCAAGCAGGAATTTGGCATTCCCTACAATCCCCAAAGTCAAGGAGTAGTAGAATCTATGA TATTACTTAATTTCTTTTAATATCCTGTCCATTCTCTAGTCCGACTTGTGGAATTCTGTC CAGTACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGGATTGGGGGATACA GTCATGTTTACCGTCATAAGTAGGTGTTAAAATTTTTCTTTTTCCCCCTAACCCCCTATGT 10499 GTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAACTACAAA AGTTCGTCCTTAAACCGTAAGGGATGTTAGGGGTTTCAGTTCCTCATCATCTTAGATACT CACGTCCCCTTTCTTATCATCTGTATTATCGTTGTCTGTATGTTTGATTTCTTGATGTTT G $\mathbf{\Sigma}$ Ø × I ធា ග G Ø Ø G Ø Ø Ŏ \times \times S G > ĸ ₽ ш [--1 z O² **×** ഗ G ⊱ لتا Z G ſщ \times Ø G ы Σ Z Õ Ø z 10259 10439

TCGTTTAATGTTTTAAGTTTTAAAAGCCCAAATAATGTCCCTGTTGTTTTTAGGGGGAAA GGAAAGGACCAGCAAAGCTTCTCGGAAAGGTGAAGGGGGCAGTAGTAATACAAGATAATA CCTTTCCTGGTCGTTTCGAAGAGACCTTTCCACTTCCCCGTCATCATTATGTTCTATTAT Ø K G \rightarrow H > G ĸ \times استا 3 Ч Z Ø × Н Ç × 10619

10559 AGCAAATTACAAAAATTCAAAATTTTCGGGTTTTATTACAGGGACAACAAGATCCCCTTT

10679 GTGACATAAAAGTAGTGCCAAGAAGAAAGCAAAAATCATTAGGGATTATGGAAAACAGA CACTGTATTTTCATCACGGTTCTTTTTCGTTTTTAGTAATCCCTAATACCTTTTGTCT G Ø \times ĸ > S

ACCGTCCACTACTAACACACCGTTCATCTGTCCTACTCCTAATCttgtaccttttcaaat 10739 TGGCAGGTGATGATTGTGTGGCAAGTAGACAGGATGAGGATTAGaacatggaaaagttta ធា ĸ ഗ Ø Ω

gtaaaacaccatagggtcgactgcagaagcttccatggggagctctttagtgtaataaat cattttgtggtatcccagctgacgtcttcgaaggtacccctcgagaaatcacattattta 10799

ttaataaaatattgacaaaatagttaaatgaatatatgaaagtacattatacacggaATG ${ t aattattttataactgttttatcaatttacttatatactttcatgtaatatgtgcctTAC}$ GAGTTCGATATTAGTTCTTGCAGAATGATATATTCTCTTCTCGAACAATATCACTTTGTT 10919

flanking region of insertion site (in upper case) Fowlpox virus

CTCAAGCTATAATCAAGAACGTCTTACTATAAGACAAGAGCTTGTTATAGTGAAACAA

11039	11039 GATTCTACGATAAAAATATCCGTACAGGTTTGTTTCTGAAATTCACTTTGTAAGATAC CTAAGATGCTATTTCTTTATAGGCATGTCCAAACAAAGACTTTAAGTGAAACATTCTATG	
11099	11099 ATAATTAACAAATTCAGGGGGAAAAATCTTTACAAAATTAGTATAGAAGCTATAGATATA TATTAATTGTTTAAGTCCCCCTTTTTAGAAATGTTTTAATCATATCTTCGATATCTATAT	
11159	11159 TCAAAAGGTAGACAACAAATAATCAGAACCTAATTTTTTTT	
11219	11219 ATAAAATGAAAATAACTTGTATGAAGAAAAATGAACATGAGTAAGAAACAAGTAAAA TATTTACTTTTATTGAACATACTTCTTTTTACTTGTACTCATTCTTGTACTTGTTCTTTTT	
11279	11279 CTCAAAGTAAATAATAATAACGCATCTAGATTTACATGCCTGGATGCGGTGCA GAGTTTATTATTATTAGATCTAAATGTACGACCTACGCCACGT	