Tutorials on OpenCV

Yi-Hsuan, Huang

Mat (Matrix)

- rows
- cols
- channels
- type

mat.cols

mat.rows mat.channels

	C1	C2	C3	C4
CV_8U	0	8	16	24
CV_8S	1	9	17	25
CV_16U	2	10	18	26
CV_16S	3	11	19	27
CV_32S	4	12	20	28
CV_32F	5	13	21	29
CV_64F	6	14	22	30

Mat creation

- cv::Mat(int rows, int cols, int type, const cv::Scalar &s)
- Ex.
- cv::Mat img1(240, 320, CV_8U);
- cv::Mat img2(240, 320, CV_8U, cv::Scalar(100));
- cv::Mat img3(240, 320, CV_8UC3, cv::Scalar(200, 100, 0));
- void cv::Mat::create(int rows, int cols, int type)
- Ex.
- cv::Mat img;
- img.create(300, 400, CV_8U);

• 最先採用數學方式定義

CIE RGB 顏色匹配函數

匹配水平刻度標示的波長的單色測試顏色所需要的原色數量

•
$$x = \frac{X}{X + Y + Z}$$

•
$$y = \frac{Y}{X + Y + Z}$$

•
$$z = \frac{Z}{X + Y + Z}$$

•
$$x + y + z = 1$$

Color Space – RGB & CMYK

RGB - 加法混色 光通過何種比例產生顏色

CMY + K (black) - 減法混色 使用何種油墨,通過光的反射顯示出顏色

Color Space – HSI

• Hue: 色相

• Saturation: 飽和度

• Intensity : 亮度

Color Space Transform

RGB - CMY

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

RGB - GRAY

$$Gray = R*0.299 + G*0.587 + B*0.114$$

RGB - HSI

$$B = I(1 - S)$$

$$R = I \left[1 + \frac{S \cos H}{\cos (60^{\circ} - H)} \right]$$

$$G = 1 - (R + B)$$

GB Sector (120° \leq **H** < **240**°) R = 1 - (G + B)

$$H = H - 120^{\circ}$$

$$B = I(1 - S)$$

$$G = I \left[1 + \frac{S \cos H}{\cos (60^{\circ} - H)} \right]$$

$$B = 1 - (R + G)$$

BR Sector (240 $^{\circ} \le H \le 360^{\circ}$)

$$H = H - 240^{\circ}$$

$$G = I(1-S)$$

$$B = I \left[1 + \frac{S \cos H}{\cos (60^{\circ} - H)} \right]$$

$$R = 1 \text{-} (G + B)$$

Histogram

Histogram Equalization - Gray

• It is a method that improves the contrast in an image, in order to stretch out the intensity range

Histogram Equalization - Color

- Equalize BGR image is a non-linear problem.
- Change BGR to YCrCb.
- YCrCb: Y stores the intensity information.
- Only equalize Y channel.

Histogram Equalization - Color

原圖

Y:灰階

Cr:紅色色度

Cb:藍色色度

