SIDH/Isogeny Signature Function Contracts

Robert Gorrie - McMaster University - December 19, 2017

1 Key Exchange

1.1 Ephemeral Key Generation – Alice

Key	generation for Alice
Location	Efficient Algo's Appendix A
Input	$x_{P_B}, x_{P_A}, y_{P_A}, SK_{Alice} = m_A \cdot l_A$
Output	$PK_{Alice} = [x_{\Phi_A}(P_B), x_{\Phi_A}(Q_B), x_{\Phi_A}(Q_B - P_B)]$

1.2 Ephemeral Key Generation – Bob

Key generation for Bob	
Location	Efficient Algo's Appendix A
Input	$x_{P_A}, x_{P_B}, y_{P_B}, SK_{Bob} = m_B \cdot l_B$
Output	$PK_{Bob} = [x_{\Phi_B}(P_A), x_{\Phi_B}(Q_A), x_{\Phi_B}(Q_A - P_A)]$

1.3 Ephemeral Secret Agreement – Alice

Shared secret algorithm for Alice

Location	Efficient Algo's Appendix A
Input	$PK_{Bob} = [x_{\Phi_B}(P_A), x_{\Phi_B}(Q_A), x_{\Phi_B}(Q_A - P_A)]$ $SK_{Alice} = m_A \cdot l_A$
Output	A shared secret j-invariant of an elliptic curve

1.4 Ephemeral Secret Agreement – Bob

Shared secret algorithm for Bob

Location	Efficient Algo's Appendix A
Input	$PK_{Alice} = [x_{\Phi_A}(P_B), x_{\Phi_A}(Q_B), x_{\Phi_A}(Q_B - P_B)]$ $SK_{Bob} = m_B \cdot l_B$
Output	A shared secret j-invariant of an elliptic curve

E_{p}	hemeral	lKey(Genera	$ation_A$

Location	kex.c
Input	unsigned char* PrivateKeyA, unsigned char* PublicKeyA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	publickey_t PublicKeyA, digit_t PrivateKeyA

EphemeralKeyGeneration_B

Location	kex.c
Input	unsigned char* PrivateKeyB, unsigned char* PublicKeyB, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	publickey_t PublicKeyB, digit_t PrivateKeyB

$Ephemeral Secret Agreement_A$

Location	kex.c
Input	const unsigned char* PrivateKeyA, const unsigned char* PublicKeyB, unsigned char* SharedSecretA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	f2elm_t SharedSecretA,

$EphemeralSecretAgreement_B$

Location	kex.c
Input	const unsigned char* PrivateKeyB, const unsigned char* PublicKeyA, unsigned char* SharedSecretB, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	f2elm_t SharedSecretB,

2 Signature Scheme

2.1 Keygen

Keygen	Location	Yoo et. al section 4
	Input	security parameter λ
	Output	sk = S,
		$pk = (E/\langle S \rangle, \Phi(P_B), \Phi(Q_B))$

Location	kex.c
Input	unsigned char* PrivateKeyB, unsigned char* PublicKeyB, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	publickey_t PublicKeyB, digit_t PrivateKeyB

Location	kex.c
Input	unsigned char* PrivateKeyA, unsigned char* PublicKeyA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	publickey_t PublicKeyA, digit_t PrivateKeyA

2.2 Sign

	Sign
Location	Yoo et. al section 4
Input	$sk = S$ with order $\ell_A^{e_A}$,
	message m
Output	$\sigma = ((\mathtt{com}_i)_i, (\mathtt{ch}_{i,j})_{i,j}, (h_{i,j})_{i,j}, ((\mathtt{resp})[J_i])$

isogny_sign		
Location	SIDH_signature.c	
Input	PCurveIsogenyStaticData CurveIsogenyData, unsigned char* PrivateKey, unsigned char* PublicKey, struct Signature* sig	
Output	Signature* sig	

2.3 Verify

	Sign
Location	Yoo et. al ection 4
Input	$\begin{aligned} \operatorname{pk} &= (E/\langle S \rangle, \Phi(P_B), \Phi(Q_B)), \\ \operatorname{message} &m, \\ \sigma &= ((\operatorname{com}_i)_i, (\operatorname{ch}_{i,j})_{i,j}, (h_{i,j})_{i,j}, ((\operatorname{resp})[J_i]) \end{aligned}$
Output	true or false $\frac{(\text{com}_{i,j})_{i,j},(\text{re}_{i,j})_{i,j},((\text{cosp})_{[\sigma_{i}]})}{(\text{cosp}_{i,j})_{i,j}}$

isogny_verify		
Location	SIDH_signature.c	
Input	PCurveIsogenyStaticData CurveIsogenyData, unsigned char* PublicKey, struct Signature* sig	
Output	CRYPTO_STATUS Status	

3 Public Key Compression

3.1 Compression

PK Compression

Location	Costello, Jao et. Al (no algorithm)
Input	PK = (E, P, Q)
Output	$(\mathbb{F}_{p^2}, \mathbb{Z}[\ell_B^{e_B}]^4),$

$\begin{tabular}{lll} \hline & PublicKeyCompression_A \\ \hline & Location & kex.c \\ \hline & Input & PublicKeyA = (\phi_A(P_B), \phi_A(Q_B), \phi_A(P_B-Q_B)), \\ & unsigned char* CompressedPKA, \\ & PCurveIsogenyStruct CurveIsogeny \\ \hline & Output & CompressedPKA = (\mathbb{F}_{p^2}, \mathbb{Z}[\ell_B^{e_B}]^4) \\ \hline \end{tabular}$

PublicKeyCompression_B			
Location	kex.c		
Input	PublicKeyB = $(\phi_B(P_A), \phi_B(Q_A), \phi_B(P_A - Q_A))$, unsigned char* CompressedPKB, PCurveIsogenyStruct CurveIsogeny,		
Output	CompressedPKB = $(\mathbb{F}_{p^2}, \mathbb{Z}[\ell_A^{e_A}]^4)$		

3.2 Decompression

4 Elliptic Curve Operations

5 Field Operations

6 Type Definitions & Structs

alias	definition
digit_t felm_t f2elm_t publickey_t	uint64_t digit_t[NWORDS_FIELD] felm_t[2] f2elm_t[3]

struct	contents	description
signature	unsigned char* Commitments1[NUM_ROUNDS] unsigned char* Commitments2[NUM_ROUNDS] unsigned char* HashResp unsigned char* Randoms[NUM_RUNDS] point_proj* psiS[NUM_ROUNDS]	
PCurve Isogeny Static Data	CurveIsogeny_ID CurveIsogeny unsigned int pwordbits unsigned int owordbits unsigned int pbits digit_t* prime digit_t* A digit_t* C unsigned int oBbits unsigned int eB digit_t* Border digit_t* PA digit_t* PA digit_t* PB unsigned int BigMont_A24 digit_t* BigMont_order digit_t* Montgomery_R2 digit_t* Montgomery_pp digit_t* Montgomery_one RandomBytes RandomBytesFunction	