Process: Start with original data. Transform variables, subset or group cases, and join data as needed to create new data sets with the variables needed to display or model.

Sources of Data

Data are available through many sources, but a few data tables are regularly used for examples in DCF. You will usually read the data table into R with the data(), or from the Internet with fetchData(), or fetchGapminder() functions:

```
data(nhanes)
data(OrdwayBirdsOrig)
data(WakeVotersSmall)
```

These create data tables with the indicated name.

Assignment & Naming

Use <- or = to store an object by name. Use short, mnemonic names. You can use assignment to create copies of existing tables or to read in new ones.

```
birds <- OrdwayBirdsOrig
voters <- WakeVotersSmall</pre>
```

Know your Data

Be prepared to answer these questions about any data table:

- What constitutes a **case**?
- How many cases are there?
- What are the **variables**?
- What type is each variable?

```
nrow(birds)
[1] 15829

ncol(birds)
[1] 26
```

Variable names & Renaming

Variable types

Check the variables explicitly to avoid mistakes:

factor mean categorical

```
class(voters)
[1] "data.frame"
class(voters$Age)
[1] "integer"
class(voters$party)
[1] "factor"
```

Dirty Data

Sometimes data will surprise you:

```
> class(nhanes$sex)
[1] "numeric"
> class(birds$Month)
[1] "factor"
```

You probably thought sex would be categorical and Month would be numeric.

```
> head(nhanes$sex)
[1] 2 1 2 1 1 2
```

```
levels(birds$Month)
[1] "" "1" "10" "11"
[5] "12" "2" "25" "3"
[9] "4" "5" "6" "7"
[13] "8" "9" "Month"
```

Change Type of Variables

Categorical \rightarrow quantitative

```
birds <- transform(birds,
  Month=as.numeric(
    as.character(Month)))</pre>
```

Quantitative \rightarrow categorical

```
nhanes <- transform(nhanes,
  agegroup = cut(age,
  breaks=c(0,18,65,100),
  labels=c("Kid","Adult","Sr")))</pre>
```

Evenly spaced groups

Evenly populated groups

Group Summaries

Specify the variable or variables to use for grouping, and the operations. By default, a count of the number in each group.

```
groupBy(voters,by=party)
party count
DEM 4101
REP 3098
UNA 2783
```

Median age of voters, by party:

Use > 1 grouping variables.

Subset of Cases

According to a criterion:

Random sample

```
small <- sample(nhanes, size=10)</pre>
```

Subset of Variables

```
birds <- subset(OrdwayBirdsOrig,
    select=c("SpeciesName","Month"))</pre>
```

Mathematical Transformations

Joining Two Tables

Example: Drop the low-count species of birds.

	SpeciesName	count
1	Arkansas Kingbird	1.00
2	Bank Swallow	21.00
3	Bay-breasted Warbler	2.00

birds <- join(birds,counts)</pre>

Joining by: SpeciesName

	SpeciesName	Month	count
1	Bank Swallow	6	21.00
2	Bay-breasted Warbler	9	2.00
3	Bank Swallow	7	21.00
4	Bay-breasted Warbler	9	2.00

Choice in join(): • Variables to use for matching; • which tables' cases to keep.

Parallel Coordinates

Scatter Plots

To generate interactively:

mScatter(nhanes)

Required Variables in table:

x-position: Quant. e.g. Agey-position: Quant. e.g. BMI

Optional variables:

- Size: Quant. or Categorical (not used here)
- Color: Quant. or Categorical, e.g, diabetes
- Transluscency diabetes

Choices:

• Log axes (not used here)

Bar Plots

Make interactively with

mBar(voters)

Typically generated from **grouped** data. Required Variables in table:

- x-axis: Categorical e.g. AgeGroup
- y-axis: Quant. typically a count.

Optional Variable:

• Sub-divisions of bar groups: Categorical, e.g. party

Choices:

• Sub-bar arrangment: stacked, dodged, proportional.

Maps

Choose a program for the geometry of interest. Here, mWorldMap(), so the polygons are countries.

Required Variables in table:

- Polygon: Categorical, here Country
- Color: Categ. or Quant.

One case per polygon!

Trees

Find distances between each pair of individual cases.

hc <- hclust(dist(mtcars))
plot(hc, hang=-1)</pre>