Intro to Threat Modelling

whoami

Matt Belvedere
Penetration tester for N years
Hacker for N+M years

Worked at **\$BIG_PENTEST_SHOP**

Worked at \$SHOP_THAT_SPONSORS_SPORTS

Now at my own shop

Before we begin

A simple example

Anyway

What this is

- An introduction to threat modelling
- What is a threat model
- How to do threat modelling
 - Assets
 - Threats
 - Likelihoods
 - (Mitigations?)
 - (Actors?)
- Applying to offensive contexts

What this is not

 A deep dive into the N different formal methods of threat modelling

What this is not

- If you know what PASTA / STRIDE / DREAD / PNG is, this talk is (probably)
 not for you
- Formal mechanisms have their strengths* and weaknesses*
- I'll mention them as appropriate, but it's not the focus
- This is aimed for an introduction
- I have 30 minutes

Threat Modelling

Threat modelling?

"Threat modeling is a process by which potential threats, such as structural vulnerabilities or the absence of appropriate safeguards, can be identified and enumerated, and countermeasures prioritized"

<u>en.wikipedia.org/wiki/Threat_model</u> (sort of STRIDE-y)

Too wordy

Threat Modelling

- Think of your system
- Think of bad things that could happen
- How do we make those things not happen
- Order likelihood / prioritise
- Figure out what to spend time fixing
- Bonus: Figure out if the fixes / mitigations are effective
- Bonus: Think of the people/things involved that might do bad things

Threat Modelling (For offensive purposes)

- Think of your system
- Think of bad things that could happen
- How do we make those things not happen
- Order likelihood / figure out what to spend time fixing
- Be the bad guy
- How do we make these bad things happen?
- Which bad things do we prioritise?

Why

Why Threat Modelling (Defensive)

Defensive:

- Design* teams Define security requirements ahead
- Engineering* teams "Secure by design" / part of Security Development Lifecycle
- Pentesting / Red Teaming Think of the likely threats of a system, then emulate them

Why Threat Modelling (Offensive)

Offensive:

- Ransomware actor figure out if your tooling will get you raided
- Figure out if your tradecraft is going to flag on every MDR/XDR/\$DETECTION SYSTEM
- Figure out what tech / processes your surprise clients have or might have
- Good red teams / pentest / threat emulation people are putting themselves into these shoes

https://therecord.media/alphv-black-cat-ransomware-takedown-fbi

Your system

What is your system?

- I.e. What are you trying to protect?
- What are its crown jewels?
- What tech stack does it use?
- Where does it sit / How is it hosted?
- Who uses it?
- What happens if it doesn't work properly?
- What happens if it doesn't work at all?

Entry / Exit / Data Flow

- What are the systems entry points?
- What are the systems exit points?
- How does data flow through the system?
- Data Flow Diagrams Even napkin based ones, are very useful here!

Entry / Exit / Data Flow (Trust Boundaries)

- Think of boundaries of trust (i.e. trust boundaries)
- Consider:
 - Explicit or implicit
 - Enforceable / unenforceable

System Behaviours / Intended states

- Have you considered using the behaviours into unexpected ways?
- What are the intended states?
 - What is the intended finite state machine?
- Does the system have dangerous or "interesting" functions
- Think Weird States / "What is exploitation"
 - Weird machines, exploitability and unexploitability

Threats

What is a threat?

- I.e. Bad things that could happen
- Formal models would say bad things in the following categories:
 - Spoofing
 - Tampering
 - Repudiation
 - Information Disclosure
 - Denial of Service
 - Elevation of Privilege
- (STRIDE)

Example threats

- Web Application
 - Cross Site Scripting (Stored / Reflected)
 - Deserialisation issues
 - Server Side Request Forgery
- Generic system issues
 - Authorisation bypasses
 - Authentication issues
 - Broken Logging (repudiation issues)
 - Compromised upstream compression library used on all of your servers

Other bits

Other things to consider

- People / Actors / Groups that might want to break your stuff
 - Have you considered the types of groups your system might attract?
 - Have you considered they may operate with very different parameters?
 - I.e. impunity, state sponsored activities, or just live in a country without an extradition policy
- Prior work against similar systems
 - Any issues they typically have?
 - I.e. systemic XSS in every app framework used?
- Any prior work for your organisation?
 - Any systemic processes / issues / noteworthy things to consider?
 - This can also include weird operating requirements!

Sidenote - Prioritisation

Prioritising / Categorising issues

- You've likely already been doing this, or at least exposed to this
- Think CVSS
 - A score that considers impact to confidentiality / integrity / availability
 - Pros* and Cons exist
- Others may do a N x M risk* matrix

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

Scenarios

QR Codes

Quick-Response codes

Example threat model - QR codes

- What is it?
 - QR Codes
- What does it do?
 - Allows people to not have to type out long URLs to browse resources
- What can go wrong?
 - Sending you to a malicious or obnoxious website
 - Shell your box
- How can it do that?
 - Link to a phishing site
 - Oday in QR code parser

Is this QR code malicious?

Attack tree

Big Cat Experience

Big Cat Experience(™)

- What is it?
 - Visit a very large wild animal at a local Zoo
- What does it do?
 - The Cat Basically sits there (and hopefully doesn't eat you)
 - You Hang out with a very large cat
 - zookeeper Take some photos of you and the cat
 - You Pat the cat
- What can go wrong?
 - It decides to ruin your day
- How can it do that?
 - Big claws
 - Big Teeth

Attack tree

Example threat model - Cheetahs v human in the wild

- You should be considering threat intelligence or other data to help shape threats
- However; apply scrutiny to the data
- Bad threat intel / sample data / logs
 / sampling will misdirect your
 efforts significantly

Overlooking things

Did you consider other problems?

- Other People Zookeeper(s)
 - Has your unlocked phone, copies your photos off, installs malware, etc.
 - Feeds you to the cheetah and makes it look like an accident
- The cheetahs friend (the dog)
 - o 33 death-by-dog events in Australia since 1979
- Falling over in the dirt and being very injured
 - (Turns out this is way more likely to happen than the first two)

Sidenote - Falling over

No really - Falling over is fairly dangerous

Falling over threat intel

When modelling:

- Think of what attackers are *likely* to do
- This is intended to help prioritise what attacks to perform (or mitigate)
- But keep in mind that picking the wrong events means picking the wrong attacks (or mitigations)

Applying it to computers

E-Commerce

- What are the trust boundaries?
- How are they enforced?
- Did we get all the processes?
- Did we get all the components / assets?

E-Commerce

- Did we consider the boundaries are probably not enforced?
 - I.e. bypass cloudflare, hit origin directly
 - No firewall to DB server,
 DB server is Debian,
 attacker abuses Izma
 backdoor
- Did we consider unintended states?
 - Warehouse workers can modify orders and steal things

Putting it together

Tools

- Data Flow Diagrams
 - Draw in users / components / flow
 - Draw in trust boundaries
- Attack trees
 - Draw up what bad things happen and how they chain together
- Adversarial thinking!
 - Really think of what the bad guy is doing
 - Put yourself into the proverbial ransomware den

Start small

- Get a whiteboard
- Get some other people
- Draw the system, even crudely
- Map some entry / exit points
- Ask what can go wrong
- Think adversarially

Formalising

- Techniques like Shostack's 4
 question frame for threat modelling
 work well
- Look into STRIDE / PASTA / PNG, then know when / why to ignore them
- It's ok to stick with attack graphs or dot points of "what can go wrong"
- Beers, a whiteboard, and some other adversarial people around will work wonders

End

Slides up (shortly) at https://github.com/proactivelabs
Sometimes the biggest threat is something stealing your dinner

