Analysis of vector operations

Analysis of vector operations

Christophe Rhodes

Motivation

- understand consequence of data structure design decisions
- simple example of random-access model and big-O notation

Implementation details

Here we are thinking as the data structure implementor, not the data structure user

- look "behind the curtain" of the data structure
- · implementing operations, so we can't use them!

Primitives:

- MREF(n) $\Rightarrow \mathbb{Z}$
- ALLOC(n) $\Rightarrow \mathbb{Z}$ (and allocates memory)
- arithmetic

Constructor

length-data

function VNEW(n)

$$v \leftarrow ALLoc(n+1)$$
 $\triangleright 2$
 $MREF(v) \leftarrow n$ $\triangleright 1$
return v $\triangleright 1$

end function

$\Rightarrow \Theta(1)$

sentinel

function VNEW(n)

$$v \leftarrow ALLOC(n+1)$$

 $MREF(v+n) \leftarrow $$

$$- ALLOC(n+1) \qquad \triangleright 2$$

$$FF(v+n) \leftarrow \$ \qquad \triangleright 2$$

$$\Rightarrow \Theta(1)$$

Dereference

sentinel

function [](v,i)
return MREF(v+i) ▷ 2
end function

 $\Rightarrow \Theta(1)$

length-data

function [](v,i)
return MREF(v+i+1) ▷ 3
end function

$$\Rightarrow \Theta(1)$$

length-data

function LENGTH(v)
return MREF(v) ▷ 1
end function

$$\Rightarrow \Theta(1)$$

Length

sentinel

$$\Rightarrow \Theta(n)$$