

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUCAÇÃO PLANO DE ENSINO

Nome do Componente Curricular em português:		Código: BCC265	
Eletrônica para Computação			
Nome do Componente Curricular em inglês:			
Eletronics for Computer Science			
Nome e sigla do departamento:		Unidade acadêmica:	
Departamento de Computação – DECOM		ICEB	
Nome do docente: Fernando Cortez Sica			
Carga horária semestral 90 horas	Carga horária semanal teórica 04 horas/aula	Carga horária semanal prática 02 horas/aula	
Data de aprovação na assembléia departamental: 11/07/2019			

Ementa:

- 1) Conceitos de eletrônica básica, componentes eletrônicos passivos e ativos, circuitos de retificação, amplificação e acoplamento.
- 2) Amplificadores operacionais.
- 3) Conversores analógico-digital e digital-analógico.
- 4) Tabela verdade.
- 5) Expressões lógicas.
- 6) Portas lógicas.
- 7) Circuitos combinacionais.
- 8) Circuitos sequênciais.
- 9) Linguagens de descrição de hardware.

Conteúdo programático:

- Eletrônica analógica:
 - Conceitos de Eletrônica Analógica;
 - Componentes passivos:
 - Resistores;
 - Associação de resistores;
 - Divisores de tensão;
 - Leis de Kirchhoff;
 - Capacitores;
 - Associação de capacitores;
 - Energização de capacitores em CC e CA;
 - Indutores;
 - Reatância Indutiva;
 - Filtros com indutores e capacitores;
 - Semicondutores Extrínsecos;
 - Junções PN;
 - Diodos;

- Retificadores;
- Dobradores de tensão a diodos;
- Limitadores de tensão a diodos;
- Transistores;
 - Polarização direta e reversa de transistores;
 - Métricas associadas aos transistores;
 - Exemplos de circuitos básicos transistorizados;
- Conceitos Eletrônica Digital;
 - Álgebra de Boole;
 - Minimização de expressões booleanas;
 - Maxtermos e Mintermos:
 - Mapa de Karnaugh;
 - Conceitos de Verilog;
 - o Circuitos combinacionais;
 - Decodificadores:
 - Multiplexadores;
 - Demultiplexadores;
 - Aritmética Básica;
 - Eletrônica Digital Sequencial;
 - Flip-Flops;
 - Registradores;
 - Registradores Deslocamento;
 - Contadores Assíncronos;
 - Contadores Síncronos;
 - Conversores A/D e D/A.

Objetivos:

- Definir os conhecimentos associados à eletrônica analógica e digital;
- Descrever e demonstrar o funcionamento assim como aplicar os componentes eletrônicos básicos em circuitos de ordem prática;
- Empregar e construir circuitos, principalmente os voltados à eletrônica digital, usando, para tal, componentes da eletrônica digital e lingugens de descrição de hardware;
- Estruturar e desenvolver circuitos na prática por intermédio das aulas de laboratório.

Metodologia:

Aulas expositivas. Aulas práticas envolvendo a implementação de circuitos eletrônicos analógicos e digitais. Atividades individuais e em grupos.

Atividades avaliativas:

- Três avaliações totalizando 50%:
 - P1 = 10% (individual; online);
 - P2 = 20% (individual, presencial);
 - P3 = 20% (trabalho de implementação, grupo);
- Atividades em sala (grupo, presencial), totalizando 15%;
- Listas de exercícios, participação em fóruns de discussão no Moodle = 5%;
- Práticas de laboratório: 30%

Cronograma:

Dias Letivos	BCC265
13/08/19	Abertura do curso
15/08/19	Conceitos – Resistores – Aula 01
20/08/19	Associação de Resistores – Aula 02
22/08/19	Lei de Kirchhoff – Capacitores – Aula 02 / Aula 03
27/08/19	Simulador Proteus
29/08/19	Continuação Capacitores – Semicond. Aulas 03 e 04
03/09/19	Continuação diodos – Aula 04
05/09/19	Transistores – Aula 05
10/09/19	Continuação Transistores – Aula 05
12/09/19	Conceitos Eletrônica Digital – Aula 06
17/09/19	Álgebra de Boole – Aula 07
19/09/19	Simplificação – Aula 07 / Entrega P1
24/09/19	Maxtermos e Mintermos – Aula 08
26/09/19	Maxtermos e Mintermos – Aula 08 (continuação)
01/10/19	Mapa de Karnaugh – Aula 09
03/10/19	Verilog
08/10/19	Verilog
10/10/19	Atividade sala 01
15/10/19	Decodificadores – Aula 10
17/10/19	Decodificadores – Aula 10
22/10/19	Multiplexadores / Demultiplexadores
24/10/19	Atividade sala 02
29/10/19	Aritmética Básica / Comparadores de Magnitude
31/10/19	Revisão para P2
05/11/19	P2
07/11/19	Eletrônica Digital Sequencial – Latches e Flip-flops
12/11/19	Eletrônica Digital Sequencial – Latches e Flip-flops
14/11/19	Registradores / Registradores Deslocamento
19/11/19	Feriado
21/11/19	Registradores / Registradores Deslocamento
26/11/19	Contadores Assíncronos
28/11/19	Contadores Síncronos
03/12/19	Autômatos Finitos
05/12/19	Atividade sala 03
10/12/19	Acompanhamento P3
12/12/19	Entrega P3
17/12/19	Exame Especial

Bibliografia básica:

MALVINO, Albert Paul. **Eletronica:** volume 1. 4.ed. Sao Paulo: Makron Books, c1997. V.1, 747 p. ISBN 8534603782.

MALVINO, Albert Paul. Eletronica: volume 2. 4.ed. Sao Paulo: Makron Books, c1997. V.2 , 558 p. ISBN 853460455x.

CAPUANO, Francisco G; IDOETA, Ivan V. **Elementos de eletrônica digital.** 34. ed. São Paulo: Érica 2002. 526 p. ISBN 8571940193 (broch.).

COFFMAN, Ken. Real world FPGA design with verilog. New York: Prentice Hall 1999. 295 p. ISBN 0130998516.

Bibliografia complementar:

LILJA, David J; SAPATNEKAR, Sachin S. **Designing digital computer systems with Verilog.** Cambridge: Cambridge University Press, 2005. 160p

LEE, Weng Fook. **Verilog coding for logic synthesis.** Hoboken, N.J.: Wiley-Interscience c2003. xxvi, 309 p. ISBN 0471429767.

TOCCI, Ronald J; WIDMER, Neal S. **Sistemas digitais:** principios e aplicações. 7. ed. Rio de Janeiro: LTC c2000. xiii, 588 p. ISBN 852161179X (broch.).

LOURENÇO, Antonio Carlos de. **Circuitos digitais.** 9. ed. São Paulo: Érica, [2009]. 336 p. (Estude e Use. Eletronica digital). ISBN 9788571943209 (broch.).

BOYLESTAD, Robert L. **Introdução à análise de circuitos**/ Robert L. Boylestad. 8. ed. Rio de Janeiro: LTC 2001. 785 p. ISBN 8570540787 (broch.).