به نام خدا

دانشگاه تهران پردیس دانشکدههای فنی دانشکده برق و کامپیوتر

الكترونيك ١

دکتر سنایی

پروژه نهایی

تقویت کننده ترانزیستوری سه طبقه

(مهلت تحویل : ۲۰دی)

طراحان مهدی آقایی محمد عرفان افشاری عرفان حاجی احمدی

زمستان ۱۴۰۲

بخش ١

برای داشتن نظم و دقت بیشتر کار را از طبقه سوم شروع مینماییم و ابتدا مداری به شکل زیر میبندیم.

$oldsymbol{eta}$ به دست آوردن ۱.۱

Bias Point ابتدا به صورت دلخواه مقداری برای R_{B2} انتخاب نمایید و سپس با استفاده از شبیه سازی مقدار و سپس با استفاده از شبیه سازی مقدار R_{B2} مقدار R_{B2} به دست آورید. حال به کمک این داده ها مقدار R_{B2} را پیدا کنید .

$V_{BE_{ON}}$ به دست آوردن ۱.۲

با نوشتن $V_{BE_{ON}}$ را بدست آورید – امیتر مقدار $V_{BE_{ON}}$ را بدست آورید

R_{B2} به دست آوردن ۱.۳

در صورتی که بخواهیم $I_{C}=5mA$ باشد مقاومت R_{B2} را طوری تعیین نمایید که این مهم برقرار گردد.

۱.۴ به دست آوردن بهره

ابتدا به صورت تئوری و سپس با شبیه سازی بهره این طبقه را بیابید . آیا نتایج منطبق هستند ؟ برای مد sweep/noise شبیه سازی میتوانید از transient استفاده کنید یا اینکه از سوئیپ فرکانسی یا همان transient استفاده کنید و نتیجه را در فرکانس نزدیک 10HZ گزارش کنید .

۱.۵ به دست آوردن مقاومت ورودی

ابتدا به صورت تئوری و سپس با شبیه سازی مقاومت ورودی این طبقه را بیابید . آیا نتایج منطبق هستند ؟ (برای شبیه سازی مشابه قسمت قبل عمل نمایید)

$V_{\it CE}$ به دست آوردن ماکسیمم سویین متقارن ۱.۶

ابتدا به کمک محاسبات دستی سویینگ را محاسبه نمایید سپس به کمک شبیه سازی نیز آن را نمایش دهید .

۱.۷ بررسی ماکسیمم سویینگ متقارن خروجی

صرفا به کمک شبیه سازی سویینگ را در خروجی بررسی نمایید .

۱.۸ به دست آوردن ماکسیمم سویینگ مقارن ورودی

صرفا به کمک محاسبات دستی ماکسییم سویینگ متقارن ورودی را به دست آورید .

۱.۹ استفاده از طبقه کلکتور مشترک

به نظر شما دلیل استفاده از ترکیب کلکتور مشترک در طبقه سوم چیست ؟

بخش ۲

در این قسمت طبقه دوم را به شکل زیر به مدار اضافه میکنیم:

۲.۱ استفاده از طبقه امیتر مشترک

به نظر شما دلیل استفاده از ترکیب امیتر مشترک در طبقه دوم چیست ؟

R_{Co2} به دست آوردن ۲.۲

 R_{Co_2} مقدار مقاومت $I_C=1mA$ مقدار مقاومت $3<|A_V|<3.1$ مقدار مقاومت اگر بخواهیم بهره در باز 3

۲.۳ نمایش بهره

با استفاده از سوییپ فرکانسی بهره طبقه دوم را نمایش دهید .

۲.۴ به دست آوردن مقاومت ورودی

ابتدا به صورت تئوری و سپس شبیه سازی مقاومت ورودی این طبقه را بیابید . ایا نتایج منطبق هستند؟ (برای شبیه سازی مشابه قسمت قبل عمل نمایید.)

بخش ٣

در این بخش طبقه اول را به صورت زیر به مدار اضافه نمایید .

۳.۱ علت استفاده از ترکیب بیس مشترک

به نظر شما علت استفاده از ترکیب بیس مشترک در طبقه اول چیست ؟

R_{B_6} به دست آوردن ۳.۲

مقدار R_{B_6} را به گونه ای به دست آورید تا مقاومت ورودی در بازه زیر قرار بگیرد . سپس با شبیه سازی صحت محاسبات خود را بررسی کنید

$$8\Omega < R_{in} < 10\Omega$$

R_{CO_1} به دست آوردن ۳.۳

در این قسمت R_{CO_1} را به گونه ای به دست آورید که A_V از ۲۷۵ بیشتر شود . سپس با شبیه سازی نتیجه را نشان دهید .

$A_{V_{S1}}$ به دست آوردن ۳.۴

با توجه به بهره ای که در قسمت قبل به دست آمده $A_{V_{S1}}$ را بدست آورده و شبیه سازی کنید.

۳.۵ به دست آوردن بهره کل

ابتدا به صورت تئوری مقدار $A_{V_{Tot}}$ را بدست آورید سپس با شبیه سازی صحت آن را بررسی نمایید پس از این $A_{Vs_{Tot}}$ را صرفا شبیه سازی کنید.

۳.۶ به دست آوردن مقاومت خروجی کل

ابتدا به صورت تئوری و سپس با شبیه سازی مقاومت خروجی کل تقویت کننده را بیابید . آیا نتایج مطابق هستند ؟ همچنین تغییراتی که در مدار لازم است برای شبیه سازی را بیان کنید .

۳.۷ اثر وجود خازن ها در تقویت کننده

اگر در اتصال طبقات مختلف به یکدیگر از خازن استفاده نکنیم چه مشکلاتی خواهیم داشت ؟

نكات پروژه

- ترانزیستور مورد استفاده در این پروژه از نوع BC368 که در کتابخانه Ebipolar هست میباشد.
- هدف اصلی پروژه کار کردن با برنامه PSpice است اما داگر دانشجویانی مایل به انجام پروژه با برنامه دیگر هستند میتوانید پروژه خود را با برنامه ساله انجام دهند .
 - در شبیه سازی های فرکانسی مقادیری که مدنظر ما هستند در فرکانس 10KHz هستند.
 - در تمامی موارد از اثر ارلی صرف نظر کنید .
- در تمامی خواسته هایی که نیاز به محاسبات دارد،محاسبات را در گزارش خود بیاورید و همچنین نتایج شبیه سازی را به صورت عکس در هر بخش در گزارش خود قرار دهید.
- مقادیر پیش فرض مدار قابل تغییر نیستند ولی در جواب شبیه سازی های خود آزادی عمل دارید و نیاز به دقت بالا ندارید .
- پروژه خود را به صورت یک فایل زیپ که شامل گزارش کار (PDF) و همچنین نتایج شبیه سازی است با فرمت CA_Name_StudentID.zip تا موعد مقرر در سامانه قرار دهید .
- در صورت داشتن هرگونه سوال یا ابهام با طراحان پروژه (مهدی آقایی ، محمد عرفان افشاری ، عرفان حاجی احمدی) از طریق تلگرام یا ایمیل در ارتباط باشید.