Sprawozdanie LAB3

Arkadiusz Ziółkowski 26.03.2015r

1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie złożoności obliczeniowej algorytmu wypełniania danymi Listy zaimplementowanej w oparciu o wskaźniki (LinkLista) oraz o tablice (metoda inkrementalna, oraz podwajania).

2 Dowód teoretyczny złożoności obliczeniowej

2.1 Lista inkrementalna

- Zakładamy, że tablicę zwkiększamy o stałą wartość c, a nowe dane umieszczamy na końcu listy,
- tablia zostanie przpisana (zastąpniona) k = n/c razy,
- czas wykonania n operacji Push obliczamy:

$$n + c + 2c3c + 4c + \dots + kc = n + c(1 + 2 + 3 + 4 + \dots + k) = n + ck(k + 1)/2$$

• Pozbywając się stałych otrzymujemy złożoność T(n) wyrażoną $O(n+k^2)$, czyli $O(n^2)$.

2.2 Lista podwajana

- Tablica zostanie zastąpniona $k = log_2 n$ razy,
- czas wykonania n operacji Push wynosi:

$$n+1+2+4+8+\ldots+2^k=\\n+2^{k+1}-12n-1$$

• więc złożoność obliczeniową możemy wyrazić w O(n).

2.3 LinkLista

- Zakładamy, że nowe elementy dodajemy na początek lub koniec listy,
- ponieważ czas odania nowego elementu jest stały możemy potraktować go jako operację jednostkową,
- całkowity czas wykonania n operacji Push wynosi n,
- złożoność obliczniowa wyrażona jest w O(n).

3 Wyniki pomiarów

Rozmiar próby	Średni czas obliczeń [ms]		
	LinkedList	ListArr1	ListArr2x
10^{1}	0.0012	0.009	0.0009
10^{3}	0.0981	1.4804	0.0125
10^{4}	0.6861	138.542	0.1330
$2.5 * 10^4$	1.0745	883.635	0.3032
$7.5 * 10^4$	2.3387	7895.44	1.0990
10^{5}	3.3010	14174.1	1.4476
10^{6}	34.7139	-	15.1452
10^{7}	348.659	-	167.946
10^{8}	3473.58	-	1503.68

4 Wnioski

Na podstawie wykonanych obliczeń okazało się, że największą złożonośc obliczeniową metody Push posiada lista zaimplementowana na tablicy inkrementalnej. Jest ona nieporównywalnie gorsza od pozostałych dwóch sposobów implementacji, ponieważ posiada n - krotnie większą złożonośc obliczeniową.

Wykresy (Rysunki 1-3) otrzymane metoda eksperymentalną potwierdzają złożoności wyliczone drogą teoretyczną. Wykresy są przedstawione w skali log-log dzięki czemu na podstawie wykreślonch różnych funkcji potęgowych możemy jednoznacznie stwierdzić do jakiej klasy obliczeniowej przynależy badany algorytm (równoległość wykresów). Na ostatnim rysunku - czwartym możemy porównać wszystkie trzy implementacje listy i na jego podstawie stwierdzić, iż ListaArr2x okazała się być najmniej czasochłonnym algorytmem.

5 Wykresy

Rysunek 1: Wykres czasu od rozmiaru próby dla ListArr1

Rysunek 2: Wykres czasu od rozmiaru próby dla ListArr2x

Rysunek 3: Wykres czasu od rozmiaru próby dla LinkedList

Rysunek 4: Porównanie charakterystyk wszystkich rodzajów list