DIGITAL STORAGE OSCILLOSCOPES

Part II: Oscilloscope probe and filter frequency response

Massimo Ortolano 2024

POLITECNICO DI TORINO

© 2011–2024 Massimo Ortolano Dipartimento di Elettronica e Telecomunicazioni (DET) Politecnico di Torino Corso Duca degli Abruzzi, 24 10129 Torino Italy

Email: massimo.ortolano@polito.it

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3. O/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Team

Team no. B13

Student	Last name	First name	Signature
1	Sakacı	Ali	4
2	Fuat Unver	Muzaffer	MM
3	Murathan		
4			

1 Assignment

In this lab you will practice with a digital storage oscilloscope (DSO) and its usage to measure the frequency response of filters.

Fill the PDF form and upload it on *Portale della didattica*, one upload for each team, by 29 April 2024.

2 Step response of an RC low-pass filter

2.1 Assembling the circuit

- 1 Assemble the circuit of figure 1 on the breadboard. Figure 2 shows a possible way of assembling the circuit.
- **2** Turn on the function generator Hantek HDG2032B and the oscilloscope.

Figure 1: Circuit diagram of the RC filter.

Figure 2: A possible way of assembling the RC filter of figure 1.

2.2 Rise-time and cut-off frequency (Coaxial cable)

- 1 Calculate the nominal cut-off frequency $f_{\rm H}$ for the circuit of figure 1. Calculate the nominal rise-time with the formula $t_{\rm r} \approx 0.35/f_{\rm H}$. Report the result in table 1 on the following page.
- **2** Using a BNC-to-BNC cable, a BNC T adapter and a coaxial cable with crocodile clips, connect the function generator output to the oscilloscope CH1 input and then to the circuit input V_i . Warning: The black clip is the ground.
- **3** Using a coaxial cable with crocodile clips, connect the circuit output V_0 to the oscilloscope CH2 input.
- 4 Set the input coupling of both inputs to DC.
- 5 Set the function generator for a 1 kHz square wave. Measure the step-response rise time at the filter output and calculate the cut-off frequency from the formula $f_{\rm H} \approx 0.35/t_{\rm r}$. Report the results in table 1.
 - **6** Compare the measured values with that obtained at point 1 above. Do they agree? How do you explain the results obtained? Comment below table 1.

Table 1: Filter's step-response with coaxial cable.

	Theoretical	Measured
Rise time		11 us 31818 hz
Cut-off frequency		31818 hz

Comments:

Rise time can be seen on oscilloscope easily, all we need to do is apply the formula and find the cut-off frequency

2.3 Rise-time and cut-off frequency (Oscilloscope probe)

- **1** Disconnect the coaxial cable from the circuit output and the CH2 input and replace it with an attenuating oscilloscope probe (1 : 10 attenuation).
- **2** Compensate the probe (ask for a suitable screwdriver).
- 3 Measure the step-response rise time and calculate the cut-off frequency from the formula $f_{\rm H}=0.35/t_{\rm r}$. Compare these values with the theoretical ones and those obtained in section 2.2. What can you conclude? Report the results in table 2 and comment below.

Table 2: Filter's step-response with the oscilloscope probe.

	Theoretical	Measured
Rise time		7,54 US
Cut-off frequency		46419 hz

Comments:

We can calculate by applying the same method but using the probe.

3 Frequency response of the RC low-pass filter

A generic linear time-invariant filter with voltage input and output (figure 3) is characterised by a transfer function

$$H(j2\pi f) = \frac{V_{o}}{V_{i}},$$

where V_i is the complex phasor associated with a sinusoidal input voltage at frequency f, and V_0 is the phasor associated with the corresponding sinusoidal output voltage.

Figure 3:

 $H(j2\pi f)$ is thus a complex number which changes with f. The Bode plots are graphical representations of the quantities $G(f) = 20 \log |H(j2\pi f)|$ and $\varphi(f) = \arg H(j2\pi f)$ as a function of the frequency (figure 4). G(f) is the magnitude of the transfer function, expressed in decibel (dB), and $\varphi(f)$ is the phase. The frequency axis is logarithmic.

Figure 4: Example Bode plots.

1 Using the attenuating probe to connect the oscilloscope to the filter's output, measure G(f) and $\varphi(f)$ for the filter assembled in §2.1 at the frequencies 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, 100 kHz, 200 kHz and 500 kHz. Report the measurements in table 3.

	Table 3: Measured transfer function of the RC filter.			
	f/kHz	G(f)	$\varphi(f)$	$U(2\pi i f)$
4	1	0	-1.8	1
	2	0	- 3, 6	1
	5	0	-9,7	1
	10	0	- 15,13	1
	20	0	- 21,43	1
<u> </u>	50	-2,09	- 47,9	0, 7
	100	-7,13	- 59,4	0,44
Off	200	-12,4	- 79,92	0,24
	500	-18,41		0,12