DTP2_PROJ_3

Codec Digital Audio Interface

I2S Protocol

Block Aufteilung für Audio Interface Driver

I2S_Master Block

Audio_Control Block

I2S Master Design

Subblocks und Zeitverlaufsdiagramm

Phase-2 *Milestone-2*Digital Audio-Loop Test

WM8731 Digital Audio Interface Protocol

Format: I²S

Data Width: 16 bits

Operation: slave mode (BCLK generated in FPGA)

Figure 27 I²S Mode Quelle: WM8731L Datasheet Rev4.3

I²S mode is where the MSB is available on the 2nd rising edge of BCLK following a DACLRC or ADCLRC transition.

WM8731 Digital Audio Interface Pinning

Digital Audio Interface Driver Blocks

I2S Master Subblocks

BIT_CNTER 0...127 bit_cnt enable

I2S Master _ Blockdiagram

Digital Audio Interface Setup with fs = 48kHz

Gegeben

Master Clock clk_12M: 12,288MHz (nominal value)

Vorschlag

Bit Clock $BCLK : (clk12_M/2) = 6,144MHz$

Word Select WS: 48kHz = BCLK/128

(also called LRCK)

Hinweis VHDL Syntax

constant F_MCLK: natural := 12_288_000; constant F_BCLK: natural := F_MCLK/2;

constant F_FS: natural := 48_000;

constant COUNT_WS_TOGGLE: natural := F_BCLK/F_FS; -- equals 128

Audio Frame

(strobe by counter=0; easier for reset value)

I2S Master

Counter	0	116	1763	64	6580	81127
WS	0 (left)			1 (right)		
action	load	shift_L	hold_L		shift_R	hold_R
SIGNALS						
shift_L	0	1	0	0	0	0
shift_R	0	0	0	0	1	0
load	1	0	0	0	0	0

Observations:

- The input load has higher priority then shift for the P2S blocks
- Reset value is made so that you start by loading data right after reset;
- If you wish to have a «clean-transition» between modes, then introduce a init_n signal which can also take counter to reset value (this is just a nice to have, not a must)
- The I2S interface runs «continuously», only way to stop it is activating init_n (but again implementing init_n is a nice to have, not a must)