Solution-Neutral Problem Statement and Task Clarification

TASK CLARIFICATION

There are two important steps in the task clarification phase of the design process:

- Preparing a problem statement
- Elaborating a specification

PREPARING A PROBLEM STATEMENT

To avoid solving the <u>wrong</u> problem, it is wise to spend some time identifying the true needs and preparing a **solution-neutral problem statement** which avoids any indication of how the problem should be solved. A useful technique is to systematically raise the level of abstraction.

LAWN MOWER

Consider the problem statement:

" Design a <u>1kW</u> lawn-mower to replace last year's <u>300 mm cylinder</u> model. It must be powered by mains electricity, weigh not more than <u>10 kg</u>, collect the grass cuttings and be quiet in operation."

This statement clearly indicates the direction of the solution.

A solution-neutral problem statement may be derived by successive abstraction:

- Replace <u>last year's model</u>
- → Design a <u>lawn-mower</u>
- → Create a <u>device</u> to <u>cut</u> <u>grass</u>
 - Devise a means of keeping the <u>grass short</u>
 - Plan a way of keeping the garden looking <u>pleasant</u>

increasing abstraction

ASTHMATIC INHALER

Consider another problem statement:

" Design an asthmatic inhaler for children based upon the 200 dose <u>MDI</u> inhaler."

This statement also indicates the direction of the solution.

A solution-neutral problem statement may be derived by successive abstraction:

- → Modify an MDI inhaler for use by children
- → Design an <u>easy-to-use</u> <u>inhaler</u>
- → Create a <u>device</u> to rapidly <u>alleviate</u> asthma symptoms
 - Devise a means of <u>preventing</u> asthma in children
 - Reduce airborne <u>pollution</u>

increasing abstraction

DRAUGHT BEER IN A CAN

Consider yet another problem statement:

" Develop a 'widget' to enable draught bitter in a can to taste like the keg draught."

This statement also indicates the direction of the solution.

A solution-neutral problem statement may be derived by successive abstraction:

- → Develop a <u>widget</u> for use in a can of bitter
- Develop a means of creating a good head from a canned bitter increasing
 - Develop a <u>new beer</u>
 - Develop a <u>refreshing</u> <u>drink</u> alco pops

abstraction

FEMALE CONDOM

Consider another problem statement:

" Develop a polyurethane female condom."

This statement also indicates the direction of the solution.

A solution-neutral problem statement may be derived by successive abstraction:

- → Develop a <u>polyurethane</u> <u>female</u> condom
- Develop a <u>contraceptive</u> for use by <u>women</u>
 - Create a means of <u>preventing</u> conception

increasing abstraction

ABSTRACTION

Abstraction has the following steps:

- Eliminate requirements which have no direct bearing on the function and essential constraints
- Transform quantitative statements into qualitative ones
- Formulate the problem in solution-neutral terms at the appropriate level of generality

Abstraction increases the search space.

It is now wise to limit the search space by preparing a detailed list of all the requirements and constraints.

The following are important when preparing a specification:

- Adopting a clear structure (checklist)
- Quantifying whenever possible
- Identifying demands and wishes
- Indicating sources of statements
- Reviewing and updating regularly, and recording changes

To help structure a specification, a checklist may be used such that from 'Systematic Design - A Structured Approach' by Pahl and Beitz. Where possible use quantified statements. For example, 'Height not to exceed 90 mm with MDI can loaded' is much better than 'Small enough to fit a child's hand'.

To aid selection and evaluation of possible solution concepts it is useful to identify each requirements statement as being either:

- a demand (D) a requirement which must be fulfilled
- a wish (W) a requirement which is desirable, but not essential

It is useful to indicate the weighting (\underline{Wt}) of wishes as high (H), medium (M) or low (L) importance. may use a numeric scale

The demands in the specification provide the criteria for a preliminary selection, and the wishes provide the criteria for evaluation.

The source of a requirement should be recorded and any subsequent changes logged.

THE REQUIREMENTS SPECIFICATION

There are three types of requirements:

- technical requirements the functional and performance requirements of the product
- business requirements cost, scheduling, and other managerial requirements
- regulatory requirements governmental laws, industrial standards, or product regulations

DESIRED CHARACTERSITICS OF REQUIREMENTS

Requirements should be:

- solution independent requirements should not specify a solution to the problem; they should specify what needs to be done, but not how it will be done.
- complete the requirements must include all areas of concern, including all phases of the product life cycle.
- clear requirements should not leave anyone guessing what is required.
- concise unnecessary requirements should be omitted; the wording of requirements should be concise – do not bury the requirement in unneeded text.
- testable Quantitative (numerical) limits, tolerances, ranges, and intended values should be indicated when possible; testable requirements can be measured in order to determine if the design goal is met.

DEFINE THE PROBLEM

The information used to define the problem comes from many different sources.

DEFINE THE PROBLEM

After gathering this information, write down:

WHO? Who will be using the product?

Who will be affected by the product?

• WHAT? What must the product do?

What needs must it serve?

WHERE? Where will the product be used?

WHEN? When will the product be used?

WHY? Why will the product be used?

LAWN MOWER

After gathering this information, write down:

• WHO? <u>home owner</u>

WHAT? <u>need to cut grass</u>

• WHERE? <u>Home</u>

WHEN? <u>every two weeks during the summer months</u>

WHY? <u>to keep the garden looking tidy</u>

DRAUGHT BEER IN A CAN

After gathering this information, write down:

WHO? <u>beer drinker</u>

WHAT? <u>'keg' beer in a can</u>

• WHERE? <u>at home</u>

• WHEN? <u>not too frequently</u>

• WHY? <u>enjoy 'pub' beer at home</u>

DETERMINE BUSINESS REQUIREMENTS

For most new product developments business objectives must also be met. Examples of typical business or commercial objectives include:

- pay back development costs within a specified time period
- <u>increase market share</u> within a defined segment
- <u>extend product life</u> through cost reduction or introduction of new features
- <u>enhance product range</u> by adding new variants

Information may be structured in many ways, for example:

- Process requirements of methods, modes and uses. Many of these items will also be captured in functional analysis. Scheduling, including timelines, dates, and milestones. References to regulations where appropriate.
- Performance usability, availability, reliability, and other general
 performance requirements. Use of existing products with the
 developing product and the future improvements of the developing
 product. Characterisation of the environment for each stage of the
 life cycle. References to regulations where appropriate.
- **Safety** features, standards, and issues concerning the product throughout its entire life cycle.
- Cost target costs and sources of cost for each stage.
- Documentation appropriate records, logs, and documents to be produced.

operational view of all issues / lifecycle view of process issues

	\					
		Process	Performance	Safety	Cost	Documentation
	Operation (operation process	operation performance	operation safety	operation cost	operation documentation
Product in Use	Maintenance	maintenance process	maintenance performance	maintenance safety	maintenance cost	maintenance documentation
	Disposal	disposal process	disposal performance	disposal safety	disposal cost	disposal documentation
Product Design/ Manufacture/ Supply	Design	design process	design performance	design safety	design cost	design documentation
	Manufacture	manufacture process	manufacture performance	manufacture safety	manufacture cost	manufacture documentation
	Distribution	distribution process	distribution performance	distribution safety	distribution cost	distribution documentation
	Installation	installation process	installation performance	installation safety	Installation cost	installation documentation

Operation Process	Operational Performance
Identify what functions occur in each Type and Mode of Use:	Physical characteristics:
Types of Use intended use special use non-use misuse (abuse) Modes of Use automatic manual on/off standby start up/shut down normal operating saving failure recovery from failure signals/warnings/fault alarms operation in event of power loss maintenance Identify infrastructure requirements: energy (electricity, gas, hydraulic power, compressed air) water and sewerage	shape size (height, breadth, length, volume, diameter) space requirement maximum dimensions weight operating temperature range operating pressure range forces (magnitude, direction, frequency, resonance effects) aesthetics appearance finish colour texture materials prescribed materials corrosion resistance physical and chemical properties coating requirements chemical compatibility (cleaning agents) bio-compatibility sterilization needed
cooling	

communications (data, telecomms)

Operational Performance (continued)

Perfo	rmance parameters:		ergonomics
	speed of operation		height
	cycle time/run time		reach
	capacity		lighting
	load handling		posture of operator
	accuracy		operator fatigue
	repeatability		access levels to controls
	response time		normal
	quietness		maintenance
	expected lifetime		system development (programming)
	working life- number of operations or hours of operation shelf life	Guida	nce:
	_		AAMI HE44-1193 Human Factors: Engineering Guidelines and Preferre
	total life span		ces for the Design of Medical Devices
	for manufacturing: production rate	Exter	nal Interfaces:
	for manufacturing: scrap rate		signals (sensors, control equipment, displays)
User	Interface:		type (electronic, pneumatic, hydraulic)
	man-machine relationship		transmission standards (analogue, digital, serial, parallel)
	operator skill/training requirements		audible signals
	clarity of interface		volume
	operator input		option to mute
	product output	Adan	tability:
	visual displays in all lighting conditions	Tuap	•
	visual instructions		compatibility with existing equipment/previous products
	guidance/prompting for user		design features for future expansion
	feedback to user		capacity for future expansion
	diamles lenguese		likelihood of future enhancements
	display language		ease of modification

Ava	ilability:		for machinery:
	acceptable downtime		clean room requirements
	mean availability		environmental monitoring during use
	MTBF (operating time)		microbiologocal controls during use
Reli	ability:		effluent measurement and disposal
	level of reliability required		
	MTTF (operations or hours of operation before failure)	One	erational Safety
	Mean elapsed time between failures		ck that product conforms with relevant safety regulations
	possible failure mechanisms		ee Appendix 3 for details:
	inherent weakness	m.	Medical Device Directives
	misuse	- ii	Machinery Directive for moving parts
	wear	- ii	Electrical Device Safety Standards and Requirements
	corrosion	- ii	Machinery Safety Regulations
	stress corrosion	_	wachinery Safety Regulations
	ageing	Prod	luct safety:
Woı	king environment:	<u>_</u>	safety hazards in use
	geographic locations		safety factors
Ī	ambient temper	- 5	preventive measures to safeguard against hazards
ō	humidity range	Ψ	warning labels
Ī	external pressure	- 4	fault alarms/warnings
ō	vibration and shock		fault hierarchy
	ventilation	Envi	ironmental impact – lifetime considerations:
	permitted noise level		energy consumption
	dust and dirt (IP rating)		consumables used
	gases and vapours		effluent disposal
	corrosion from fluids		cleaning/sterilisation

EMC

Operating Costs										
	initial costs									
	product (target consumer price, selling discounts)									
	delivery/distribution									
	acceptance tests									
	operator and support personnel training									
	running costs									
	operating and support personnel wages									
	energy									
	communications infrastructure									
	other services									
	depreciation									
	on-going operator and support personnel training									
Ono	nating decommentation									
Ope	rating documentation									
	user manuals									
	operating instructions									
	safety instructions									
	drawings									
	specifications									
	risk analysis for hazards in use									

Headings	Examples
Geometry	Size, height, breadth, length, space requirement, number, arrangement, connection, extension;
Kinematics	Type of motion, direction of motion, velocity, acceleration;
Forces	Direction of force, magnitude of force, frequency, weight, load, deformation, stiffness, elasticity, inertia forces, resonance;
Energy	Output, efficiency, loss, friction, ventilation, state, pressure, temperature, heating, cooling, supply, storage, capacity, conversion;
Material	Flow and transport of materials, physical and chemical properties of the initial and final product, auxiliary materials, prescribed materials;
Signals	Inputs and outputs, form, display, control equipment;
Safety	Direct protection systems. operational and environmental safety, legal requirements;
Ergonomics	Human-machine interface, type of operation, operating height, clearness of layout, sitting comfort, lighting, shape compatibility;

Headings	Examples
Production	Factory limitations, maximum possible dimensions, preferred production methods, means of production, achievable quality and tolerances, wastage;
Quality control	Possibilities of testing and measuring, application of special regulations and standards;
Assembly	Limitations due to lifting gear, clearance, means of transport (height and weight), nature and conditions of dispatch;
Operation	Quietness, wear, special uses, marketing area, destination (for example sulphurous atmosphere, tropical conditions);
Maintenance	Servicing intervals (if any), inspection, exchange and repair, painting, cleaning;
Costs	Maximum permissible manufacturing costs, cost of tools, investment and depreciation;
Schedules	End date of development, product planning and control, delivery date.

ASTHMATIC INHALER

A LARGE DRUG COMPANY			DESIGN SPECIFICATION Asthmatic Inhaler Page:		94
Changes	D/W	Wt	REQUIREMENTS		Source
	W	M	GEOMETRY • Maximum length 90 mm FORCES	Maximum length 90 mm	
<u>15/1/95</u>	<u>D</u> W	Н	 Activation force not to exceed <u>25 N</u> Activation force to exceed 10 N MATERIAL 		KMW KMW
	D		All materials used to be FDA approved SAFETY		PJC
	D D		 No loose parts Must always dose correctly ± 2 ERGONOMICS 	2%	KMW PJC
	W W	H H	Easy to operatePleasant appearancePRODUCTION		PJC PJC
	D		 Production in Class K clean ro 	om	KMW

ASTHMATIC INHALER

A LARGE DRUG COMPANY			DESIGN SPECIFICATION Asthmatic Inhaler	Issued 11/11/9 Page:	94
Changes	D/W	Wt	REQUIREMENTS		Source
28/2/95	D		 QUALITY CONTROL All devices to be tested prior to packaging 	0	PJC
	D		ASSEMBLY Assembly and testing in <u>Class K</u> clean room OPERATION		KMW
	D		 No particulate contamination 		PJC
	W	М	Refillable with additional drug MAINTENANCE		KMW
	W	М	 No maintenance should be red COSTS 	quired	KMW
	W	Н	 Unit cost less than £10 SCHEDULES 		KMW
	W	A	 Device launch 3rd quarter 1997 		KMW
	W	М	Deliver 10,000 units / month pre-		KMW
	W	L	launchDeliver 50,000 units / month p launch	ost-	KMW

DRAUGHT BEER IN A CAN

A WELL KNOWN BREWERY			DESIGN SPECIFICATION Draught beer in a can Page:		93
Changes	D/W	Wt	REQUIREMENTS		Source
	W	Н	GEOMETRY • Must use a <u>standard</u> can <i>de</i> FORCES	 Must use a <u>standard</u> can <u>define</u> 	
	W	M	 Additional weight not to excee 	d 10 g	KMW
15/3/94	D		MATERIALAll materials used to be food approvedSAFETY		PJC
	D		 No loose parts what cond 	litions	KMW
	W	Н	Safe to open under <u>all</u> conditions PRODUCTION		PJC
	D		Production in a Class K clean room		KMW
	D		 Fill on existing canning line 		PJC
	W	M	QUALITY CONTROL0.01% sample testing of produbatches	ıct	PJC

DRAUGHT BEER IN A CAN

A WELL KNOWN BREWERY			DESIGN SPECIFICATION Draught beer in a can Page:		93
Changes	D/W	Wt	REQUIREMENTS		Source
14/5/94	D		ASSEMBLY Assembly in 'food' clean conditions OPERATION ?		KMW
	W	Н	 Tastes <u>as good as</u> keg draught beer COSTS 		PJC
	W	Н	Additional unit cost less than 10 pence SCHEDULES		KMW
	W	Н	 Product launch 3rd quarter 1994 		KMW
	W	М	 Deliver 1,000,000 cans / month pre- 		KMW
	W	L	launchDeliver 2,000,000 cans / month post-launch		KMW

FEMALE CONDOM

A SMALL NEW COMPANY			Female Condom 11	sued: I/11/92 age: 1 of 1
Changes	D/W	Wt	REQUIREMENTS	Source
	D D		GEOMETRY • Minimum length 170 mm • Minimum width 80 mm MATERIAL • All materials used to be FDA approved	PJC PJC PJC
	D W W	H H	SAFETY • No loose parts how ERGONOMICS • <u>Easy to use</u> • <u>Pleasant appearance</u>	e? PJC PJC
12/1/93	D D W	Н	PRODUCTION • Production in Class K clean room QUALITY CONTROL • All devices to be leak tested • Easy to validate	KMW PJC PJC

FEMALE CONDOM

A SMALL NEW COMPANY			DESIGN SPECIFICATION Female Condom 11/11/ Page:		
Changes	D/W	Wt	REQUIREMENTS		Source
	D		ASSEMBLY Assembly and testing in Class clean room OPERATION	KMW	
	D		No particulate contamination		PJC
	W	Н	Barrier performance equal to recondom COSTS COSTS	equal to male	
	W	Н	Unit cost less than £1 SCHEDULES		KMW
	W	Н			KMW
	W	М			KMW
	W	L	launchDeliver 800,000 units / month launch	post-	KMW

Specifications may be structured in many ways, for example:

- Introduction
- Regulations and standards
- Functional properties
- Physical properties
- Interface requirements
- Additional performance requirements ('ilities')
- Environmental conditions
- Maintenance
- Disposal

Specifications may be structured in many ways, for example:

- Schedule
- Validation
- Manufacturability
- Distribution and storage requirements
- Installation
- Training of personnel
- Safety
- Cost
- Documentation

A specification defines a <u>target</u> for a project team to aim for and the <u>criteria</u> by which they know that they have got there. A specification is also a '<u>live</u>' document - the target often moves and progress towards it is not always straightforward.

SUMMARY

It is important to appreciate that the process of task clarification does not take much effort but conversely may have a significant effect on the success of the project.

