ADATSZERKEZETEK ÉS ALGORITMUSOK

Kulcsütközések

- Hash függvény
 - Ezzel a hash függvénnyel:

```
• int hash(char *s, int n)
{
    int sum = 0;
    while(n--) sum=sum+*s++;
    return sum % 256;
}
```

- hash("AB", 2) és hash("BA", 2) ugyanazt az értéket adják!
- Ezt hívjuk kulcsütközésnek
 - Számos technikát használnak a kulcsütközés feloldására

Kulcsütközés feloldása

- Kulcsütközés
 - Akkor fordul elő, ha a hash függvény két különböző kulcshoz rendeli ugyanazt a címet
 - A táblázat fel kell ismerje és fel kell oldja ezt
 - Felismerés
 - Tároljuk az aktuális kulcsot az elemmel a hash táblában:
 - Számítsuk ki a címét k = h(kulcs)
 - Ellenőrizzük a találatot:
 - if (table[k].key == kulcs) then találat else próbáld a következőt
 - Javaslat
 - Számos technika néhányat megnézünk

Láncolt listák

- Kulcsütközés Javaslat
 - minden táblaelemhez egy láncolt listát rendelünk
 - Keressünk i kulcsú elemet:
 - Láncolt_hasító_keresés(T,i)
 - kiszámítjuk h(i)-t
 - keressük az i kulcsú elemet a T[h(i)] listában
 - ha NULL-t találunk, a kulcs nincs a táblában

Láncolt listák

- Kulcsütközés Javaslat
 - minden táblaelemhez egy láncolt listát rendelünk
- Beszúrunk x-t:
 - Láncolt_hasító_beszúrás(T,x)
 - kiszámítjuk h(x.kulcs)-t
 - Beszúrunk a T[h(x.kulcs)] lista elejére
- Törlés hasonlóan a T[h(x.kulcs)] listából

Hasító táblázatok – betöltési tényező

- Az ütközések nagyon valószínűek
- A tábla betöltési tényezőjét alacsonyan kell tartani:

$$\alpha = \frac{n}{m}$$

- n az elemek száma, m a helyek száma
- Az átlagos lánchosszúságok kiterjedt analízise ismert
- Külön láncolás
 - Minden helyhez külön adjuk a láncolt listákat
 - Jobb végrehajtást ad
 - De több helyet foglal

Láncolásos hasítás műveletigénye

- Milyen hatékonysággal működik a láncolásos hasítás?
 - Legyen T egy m rést tartalmazó hasító táblázat, amelyben n elem van.
 - Az α kitöltési tényező: $\frac{n}{m}$ = az egy láncba fűzött elemek átlagos száma.
 - α lehet kisebb, egyenlő és nagyobb is mint 1.
 - A legrosszabb esetben: minden elem egy helyre képeződik le, így n hosszú lista keletezik
 - Ez pedig $\Theta(n)$ a keresés végrehajtási ideje (plusz a h kiszámítási ideje)

24/E/08/3

Láncolásos hasítás műveletigénye

- Feltételezzük először, hogy a h hasító függvény egyenletesen osztja szét az elemeket, minden elem egyforma valószínűséggel képződik le bármelyik értékre, (ez az egyszerű egyenletes hasítási feltétel)
- Jelöljük a T[j] lista hosszát n_j -vel, ekkor

$$n = n_0 + n_1 + n_2 + \dots + n_{m-1}$$

- n_j várható értéke: $\mathsf{E}[n_j] = \frac{n}{m} = \alpha$
- Feltéve, hogy a h(k) érték $\mathcal{O}(1)$ idő alatt számítható ki, akkor a k kulcsú elem keresése lineárisan függ a T[h(k)] lista hosszától.

Láncolásos hasítás műveletigénye

- Ha egy hasító táblázatban az ütközések feloldására láncolást használunk és a hasítás egyszerű egyenletes, akkor a sikeres és a sikertelen keresésekre is igaz, hogy az átlagos idejük $\Theta(1 + \alpha)$.
 - Bizonyítás: Cormen könyvében
- Mi következik ebből? Ha a hasító táblázat réseinek száma arányos a táblázatbeli elemek számával, akkor

$$n = \mathcal{O}(m)$$
, így $\alpha = \frac{n}{m} = \frac{\mathcal{O}(m)}{m} = \mathcal{O}(1)$.

- Optimális hash függvény esetén az az összes művelet megvalósítható $\mathcal{O}(1)$ idő alatt
 - Tehát a beszúrás/törlés/keresés megvalósul.

Túlcsordulási terület

- Túlcsordulási terület
 - a "láncolt" listát a tábla egy speciális területén hozzuk létre ez a túlcsordulási terület
 - Tfh. h(k) = h(j)
 - és a k lett először tárolva
 - Beszúrjuk a j-t a hash táblába
 - Kiszámítjuk h(j) értéket
 - Megtaláljuk k-t, ami a táblában már benne van
 - Megkeressük az első szabad helyet a túlcsordulási területen
 - Oda betesszük j értéket
 - *k* "pointere" erre mutat (a mutató itt a táblabeli index)
 - Többféle lehetőség a lista elejére, végére is szúrhatunk be
 - Keresés ugyanaz, mint a láncolt lista
 - Törlésnél lehet a lista utolsó elemét idetenni, de lehet új állapotot bevezetni a töröltre, ez majd jön

Túlcsordulási terület

24/E/08/3 Kulcsütközések feloldása

- Az elemeket a táblában tároljuk.
 - Egy elem keresésénél végigmegyünk a táblázaton, amíg meg nem találjuk, vagy el tudjuk dönteni, hogy nincs benne a táblában.
 - Elem beszúrásánál kipróbáljuk az összes helyet, amíg üreset nem találunk valamilyen stratégia szerint ez a beszúrandó kulcs függvénye, nem a $0 \dots m-1$ felsorolás!
 - Kiterjesztjük a hash függvény értelmezési tartományát az ún. kipróbálási számmal:
 - $h: K \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}$
 - Megköveteljük, hogy minden k kulcsra a (h(k,0),h(k,1),h(k,2),...,h(k,m-1)) kipróbálási sorozat a $\{0,1,...,m-1\}$ egy permutációja legyen
 - Így előbb-utóbb minden hely szóba jön

- Tegyük fel, hogy a T hasító táblázatban csak kulcsok vannak vagy NIL
- Beszúrás:

```
Hasító_beszúr(T,k)
i←0
repeat j←h(k,i)
  if T[j]=NIL
    then T[j]←k
    return
    else i←i+1
until i=m
error "hasító táblázat túlcsordulás"
```

24/E/08/3

Keresésnél aszerint keressük, ahogy a beszúrás betehette

```
Hasito_keres(T, k)
i←0
repeat j←h(k,i)
  if T[j]=k
    then return j
    i←i+1
until T[j]=NIL vagy i=m
return NIL
```

- Törlés: bonyolultabb, ugyanis nem elég csak NIL-t írni, hiszen akkor egy következő keresés nem találná meg azokat, amelyek később vannak a táblába
 - vezessünk be a NIL-en kívül még egy szimbólumot, a TÖRÖLT-et

```
Hasito_töröl(T, k)
i←0
repeat j←h(k,i)
  if T[j]=k
    then T[j]←TÖRÖLT
    return
  i←i+1
until T[j]=NIL vagy i=m
```

 A beszúrást is módosítani kell, hiszen most már a TÖRÖLT-be is be lehet szúrni:

```
Hasító_beszúr(T,k)
i←0
repeat j←h(k,i)
  if T[j]=NIL vagy T[j]=TÖRÖLT
      then T[j]←k
      return
    else i←i+1
until i=m
error "hasító táblázat túlcsordulás"
```

24/E/08/3

Re-hashing – kettős hashelés

- Használjunk egy második hash függvényt h'
 - Sok variáció
 - általános név: re-hashing kettős hashelés
- h(k) = h(j)
- k lett először tárolva
- Beszúrjuk j-t a hash táblába
 - Kiszámítjuk h(j) értéket
 - Így megtaláljuk k kulcsot, ami már a táblában van
 - Ismételjük, míg találunk üres helyet:
 - Kiszámítjuk h'(j)-t
 - Betesszük *j-*t
- Keresés használd h(x)-t, aztán h'(x)-t
- Egy mezőnek 3-féle státusza lehet
 - üres foglalt törölt (hogy a keresés folytatódhasson)

Re-hashing – kettős hashelés

24/E/08/3 Kulcsütközések feloldása

Re-hash függvények

- A második hash függvény
 - Sok variáció
 - Lineáris kipróbálás
 - $h: K \rightarrow \{0, 1, ..., m-1\}$ hash függvény,
 - $h'(k,i) = (h(k) + i) \mod m$
 - Próbáld először a T[h(k)]-t, aztán
 - Vegyük a következőt ciklikusan, amíg nem találunk egy üreset
 - Rossz csomósodások lehetnek
 - A Re-hash kulcsok kitöltik az üres helyet az egyéb kulcsok között és súlyosbítják a kulcsütközés problémáit – elsődleges csomósodás

Re-hash függvények – lineáris kipróbálás

24/E/08/3 Kulcsütközések feloldása

Re-hash függvények

- A második hash függvény
 - Sok variáció
 - Négyzetes próba
 - $h'(k,i) = (h(k) + c_1 i + c_2 i^2) \mod m$ az i. próbánál, ahol $c_1, c_2 \neq 0, i = 0, 1, ... m 1$
 - Elkerüli az elsődleges csomósodást
 - Ahhoz, hogy az egész táblázatot lefedje, megkötések kellenek c_1 , c_2 és m-re
 - Másodlagos csomósodás lehet:
 - Minden kulcs, amelyik ütközik h-ban ugyanazon sorozat mentén
 - Először
 - a = h(j) = h(k)
 - Ez után pl. a + c, a + 4c, a + 9c,
 - Ez általában kisebb probléma

Re-hash függvények

- A második hash függvény
 - Sok variáció
 - Dupla hasítás
 - $h'(k,i)=(h_1(k)+ih_2(k)) \bmod m$ az i. próbánál $i\in\{0,1,\ldots,m-1\}$ -re
 - A $h_2(k)$ relatív prím kell legyen a táblázat m méretéhez képest.
 - Lehet például az m-t 2 hatványnak választani és h_2 -t úgy választani, hogy mindig páratlan számot állítson elő
 - Lehet úgy is, hogy m prím és h_2 mindig m-nél kisebb pozitív egészet ad vissza