Logical Connectives (II)

Contents

1 Interplay of Negation, Conjunction, and Disjunction

2 Conditional and Biconditional Sentences

_ast time

· Logic concerns touth values
of oeutences

· J logical connectives

o hogical equivalence

Interplay of Negation, Conjunction, and Disjunction

De Morgan's Laws

The following rules pertain to the negation of conjunctive and disjunctive sentences.

Theorem 1 (De Morgan's Laws)

Let P and Q be sentences. Then

- **1** $\neg (P \land Q)$ is logically equivalent to $\neg P \lor \neg Q$.
- **2** $\neg (P \lor Q)$ is logically equivalent to $\neg P \land \neg Q$.

Proof of 1. (using a truth table)

P	Q	$P \wedge Q$	$\neg (P \land Q)$	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$
Т	Т	Т	F	F	F	F
Т	F	F	Т	F	T	T
F	Т	F	Т	T	F	T
F	F	F	Т	T	T	T

De Morgan's Laws (cont')

```
Proof of 1. (in words)
```

```
Suppose \neg (P \land Q) is true. Then ...
PAQ is false,

So at least one of P and Q is false,

So at least one of \neg P and \neg Q is true,

So \neg P \lor \neg Q is true.

Conversely, suppose \neg P \lor \neg Q is true. Then ...
            at least one of TP and TQ is true,
           so at least one of P and Q is false,
            SO PAQ is false,
            80 7 (PAQ) is true.
```

It follows that $\neg(\dot{P} \land \dot{Q})$ is true exactly when $\neg P \lor \neg Q$ is true. Then by elimination, $\neg(P \land Q)$ is false exactly when $\neg P \lor \neg Q$ is false. Therefore, $\neg(P \land Q)$ is logically equivalent to $\neg P \lor \neg Q$.

Example

Let x be a real number. The negation of the sentence $1 \le x < 3$ is logically equivalent to $(x < 1) \lor (x \ge 3)$.

In words:

Using logical symbols:

$$\neg (1 \leq x < 3) \equiv \neg \left[(1 \leq x) \land (x < 3) \right]$$

$$\equiv \neg (1 \leq x) \lor \neg (x < 3)$$
 by De Morgan's Law
$$\equiv (x < 1) \lor (x \geq 3).$$

Example (cont')

Let x be a real number. The negation of the sentence $1 \le x < 3$ is logically equivalent to $(x < 1) \lor (x \ge 3)$.

Visually:

original

The Distributive Laws

algebra:
$$a(b+c) = ab + ac$$

The following laws pertain to the conjunction of two disjunctive sentences or the disjunction of two conjunctive sentences.

Theorem 2 (The Distributive Laws)

Let P, Q, and R be sentences. Then:

- **1** $P \wedge (Q \vee R)$ is logically equivalent to $(P \wedge Q) \vee (P \wedge R)$.
- **2** $P \lor (Q \land R)$ is logically equivalent to $(P \lor Q) \land (P \lor R)$.

The Distributive Laws (cont')

Proof of 2. (using a truth table)

P	Q	R	$Q \wedge R$	$P \lor (Q \land R)$	j	$P \lor Q$	$P \vee R$	$(P \vee Q) \wedge (P \vee R)$
Т	Т	Т	Т	T		Т	Т	T
Т	Т	F	F	$\overline{}$		Т	Т	T
Т	F	Т	F	T		Т	Т	T
Т	F	F	F	T		Т	Т	T
F	Т	Т	Т	一		Т	Т	T
F	Т	F	F	F		Т	F	-
F	F	Т	F	F		F	Т	F
F	F	F	F	F		F	F	F
					_			

The column headed by $P \vee (Q \wedge R)$ is identical to the one headed by $(P \vee Q) \wedge (P \vee R)$.

The Distributive Laws (cont')

Proof of 2. (in words)

Suppose that $P \vee (Q \wedge R)$ is true. Then at least one of P and $Q \wedge R$ is true.

- Case 1. Suppose P is true. Then both of $P \vee Q$ and $P \vee R$ are ______, so $(P \vee Q) \wedge (P \vee R)$ is ______.
- Case 2. Suppose $Q \wedge R$ is true. Then both of Q and R are ______, so both of $P \vee Q$ and $P \vee R$ are ______, so $(P \vee Q) \wedge (P \vee R)$ is ______.

Thus in either case, $(P \lor Q) \land (P \lor R)$ is true.

Conversely, suppose $(P \lor Q) \land (P \lor R)$ is true. Then both of $P \lor Q$ and $P \lor R$ are true.

- Case 1. Suppose P is true. Then the sentence $P \lor (Q \land R)$ is ______.
- Case 2. Suppose P is false. Then since $P \vee Q$ is true, Q must be ______. Similarly, since the sentence $P \vee R$ is true, R must be ______. Thus both of Q and R are true, so $Q \wedge R$ is ______.

Thus in either case, $P \vee (Q \wedge R)$ is true.

From the previous two paragraphs, it follows that $P\vee (Q\wedge R)$ is true exactly when $(P\vee Q)\wedge (P\vee R)$ is true. Hence $P\vee (Q\wedge R)$ is logically equivalent to $(P\vee Q)\wedge (P\vee R)$. \qed

Conditional and Biconditional Sentences

Conditional Sentences

A sentence of the form $P \Rightarrow Q$ is called a *conditional sentence*.

Conditional Sentences

Given P and Q:

- When P and Q are both true, $P \Rightarrow Q$ is considered to be true.
- When P is true and Q is false, $P \Rightarrow Q$ is considered to be false.
- Whenever P is false, $P \Rightarrow Q$ is considered to be true.

P	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Terminology. In a conditional sentence $P \Rightarrow Q$, P is called the *antecedent* and Q is call the *consequent*.

Conditional Sentences (cont')

The sentence $P\Rightarrow Q$ stands for "If P, then Q" which is synonymous to P implies Q. P is sufficient for Q. Q is necessary for P. Q if P.

Careful!

- Do NOT write "If $P \Rightarrow Q$."
- \bullet Do NOT use " \Rightarrow " for "therefore" or for "so".

Example

Let x be any real number. Consider the sentence

"If
$$\underbrace{x < 1}_{P}$$
, then $\underbrace{x < 3}_{Q}$."

which is always true.

Negation of a Conditional Sentence

Theorem 3 (Negation of a Conditional Sentence)

Let P and Q be sentences. Then $\neg(P\Rightarrow Q)$ is logically equivalent to $P\wedge \neg Q$.

Proof. (in words)

Read.

Converse of a Conditional Sentence

Given a conditional sentence $P \Rightarrow Q$, the sentence $Q \Rightarrow P$ is called the converse of $P \Rightarrow Q$. Note that $Q \Rightarrow P$ is not logically equivalent to $P \Rightarrow Q$.

Examples.

Let x be a real number.

$$P\Rightarrow Q: \qquad x>3 \implies x^2>9 \qquad \text{(always true)}$$
 $Q\Rightarrow P: \qquad x^2>9 \implies x>3 \qquad \text{(not always true)}$ e.g. $\mathscr{L}=-\mathbb{S}$

Consider an infinite series
$$\sum_n a_n$$
. Color. $P\Rightarrow Q: \sum_{n=1}^\infty a_n < \infty \implies \lim_{n\to\infty} a_n = 0$ (always true)
$$Q\Rightarrow P: \lim_{n\to\infty} a_n = 0 \implies \sum_{n=1}^\infty a_n < \infty \qquad \text{(not always true) e.g. hormonic series}$$

$$\sum_{n=1}^\infty \frac{1}{n} \approx 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

Biconditional Sentences

A sentence of the form $P \Leftrightarrow Q$ is called a *biconditional sentence*.

Biconditional Sentences

Given P and Q, the sentence $P \Leftrightarrow Q$ is considered to be true just when both of P and Q have the same truth value.

P	Q	$P \Leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Notation. $P \Leftrightarrow Q$ stands for "P if and only if Q" or "P iff Q".

Example

Let x be a real number. Then $x^2 = 5x - 6$ if and only if x = 2 or x = 3, which can be seen by a chain of biconditionals:

Conditional and Biconditional

Theorem 4

Let P and Q be sentences. Then $P\Leftrightarrow Q$ is logically equivalent to $(P\Rightarrow Q)\land (Q\Rightarrow P).$

Proof. (Using a truth table)

P	Q	$P \Leftrightarrow Q$	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
Т	Т	Т	Т		
T	F	F	F		
F	Т	F	Т		
F	F	Т	Т		

As a consequence of this theorem, $P \Leftrightarrow Q$ is synonymous to saying "P is necessary and sufficient for Q".

Homework for 1/11/2022

Do exercises

Sec. 2: 1, 2, 3, 5, 7, 8