微电子专业基础实验作业

PB21511897 李霄奕

模拟部分

实验1

1

器件 标号	单元名	W/L(um)	betaeff	Cdb	Cgd	Cgs	gm(uS)	id(uA)	Vth(mV)
NM0	n18	0.22/ 0.18	502.7u	488.7a	244.5a	303.9a	24.64	11.54	435.2
PM0	p18	0.22/ 0.18	144.9u	309.9a	105.1a	338.0a	47.69	11.54	490.2
NM1	n18	1.8/ 0.18	3.685m	1.325f	624.6a	2.396f	793.6	236.8	473.7
PM1	p18	1.8/ 0.18	930.2u	1.523f	705.2a	2.264f	188.9	73.50	480.9
NM2	n18	8/ 0.8	3.280m	5.696f	2.954f	40.26f	1143	317.8	418.8
PM2	p18	8/ 0.8	671.3u	6.649f	3.370f	42.00f	241.4	63.52	430.6
NM3	nmvt18	8/ 0.8	3.433m	6.306f	3.403f	40.67f	1486	543.0	285.8
NM4	n18_ ckt_rf	1.8/ 0.18	7.132m	1.246a	34.75a	3.509f	1608	474.2	473.6
NM5	n18	1.8/ 0.18	2.802m	4.742f	2.947f	41.59f	1608	1060	504.5

器件	W/L	Vd1=1V,Id1(uA)	Vd2=0.8V,Id2(uA)	Vd=0.9V,Id(uA)	输出电 阻(kΩ)	$\lambda(V^{-1})$ (保留小数 点后3位)
NM1	1.8/0.18	239.842	233.395	236.779	31.022	0.136
PM1	1.8/0.18	-72.145	-74.743	-73.499	76.982	-0.177
NM2	8/0.8	318.889	316.476	317.803	82.884	0.0380
PM2	8/0.8	-63.317	-63.711	-63.524	507.61	-0.031

2

Α

Q:nmvt18 和n18管的阈值电压大约相差多少?

A:由上表, nmvt18 的阈值电压为285.8mV, n18 的阈值电压为473.7mV, 大约相差187.9mV

В

Q:衬偏电压 0.3V 时,由于衬偏效应导致 NM5 阈值电压增大多少?

A:NM5和NM1的W/L相同,因此拿来做对比。NM5的阈值电压为504.5mV,NM1的阈值电压为473.7mV,NM5 阈值电压增大30.8mV

C

Q:射频管n18_ckt_rf与普通n18管相比,射频管的cgd有什么特点?

A:射频管n18_ckt_rf的cgd为34.75aF,普通n18管的cgd为624.6aF,射频管的cgd更小,这说明在高频下,射频管的参数受到的影响更小,拥有更加优异的性能。

D

Q:L=0.8um 时, n18的 λ_n 和p18 λ_p 的分别是多少?

A:
$$\lambda_n=0.0380$$
, $\lambda_p=-0.031$

E

Q:L=0.8um 时,n18的 $\mu_n C_{ox}$ 和p18 $\mu_p C_{ox}$ 的(工艺跨导)分别是多少?给出单位量纲,注意工艺跨导的数量级。

A:由公式
$$I_D=rac{1}{2}\mu_n C_{ox}rac{W}{L}(V_{GS}-V_{TH})^2$$
,得到 $\mu_n C_{ox}=rac{2I_D}{W/L(V_{GS}-V_{TH})^2}$

n18选用位于饱和区的NM2,W=8um,L=0.8um,vgs=900mV,vth=418.775mV,id=317.803uA,求得 $\mu_n C_{ox} = 2.745 \times 10^{-4} A \cdot V^{-2}$

p18选用位于饱和区的PM2,W=8um,L=0.8um,vgs=-900mV,vth=-430.562mV,id=63.5241uA,求得 $\mu_p C_{ox} = 5.765 imes 10^{-5} A \cdot V^{-2}$

F

Q:NM2 和 PM2 的 cgs、cgd、cds 分别是多少?

A:NM2的cgs=40.26fF, cgd=2.954fF, cds=43.08aF

PM2的cgs=42.00fF, cgd=3.370fF, cds=41.16aF