Machine Learning Basics

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Supervised Learning Process

Key Ingredients in ML Models

- > Training data $\mathcal{D} = \{(x^{(i)}, y^{(i)}): 1 \le i \le n\}$
- \triangleright Machine learning model $f(x; \mathbf{w})$
- \triangleright Error function (or loss function) $E(\mathbf{w})$
- > An optimization algorithm
- > Test data

Goal of Supervised Learning

$$y = f(x)$$

- > Training: Given a training dataset, estimate the function f(x) that minimizes the error on the training dataset.
- ► Testing: Apply f(x) to an unseen test example x_{new} and return the predicted value $\hat{y} = f(x_{new})$.

Goal of Supervised Learning

- For Given training data $\mathcal{D} = \{(x^{(i)}, y^{(i)}): 1 \leq i \leq n\}$, we want to find the best function that describes the relationship between x and y.
 - Let w denote a parameter vector for the function (or model) f.
 - Let $f(x; \mathbf{w})$ denote explicit representation with parameters.

> Finding the parameter that best describes a given data

f(x; 1.0, 1.0, 1.0)

Given x, let \hat{y} denote a predicted value for x by $f(x; \mathbf{w})$.

> Finding the parameter that best describes a given data

> Finding the parameter that best describes a given data

$$f(x; 1.7, -1.2, 1.5)$$

- > How to search an optimal parameter for a given data?
- > It is converted to the optimization problem.

Error Function (or Loss Function)

> To find an optimal parameter, we minimize the error function between $f(x; \mathbf{w})$ and y.

$$Error(\mathbf{w}) = \frac{1}{n} \sum_{(x,y) \in \mathcal{D}} (y - f(x; \mathbf{w}))^2$$

Let \mathcal{D} be a training dataset.

How to Find an Optimal Parameter?

- > The error depends on w.
 - → Let's find w which minimizes the error function.

$$Error(\mathbf{w}) = \frac{1}{n} \sum_{(x,y) \in \mathcal{D}} (y - f(x; \mathbf{w}))^{2}$$

Optimal parameter

Testing: Predicting y from new x

> Predicting y from x using the trained model

$$3 = f(5; 1.7, -1.2, 1.5)$$

Simple Optimization Examples

Solving the Optimization Problem

 \triangleright How to solve the optimization problem with d parameters?

Finding $w_1, w_2, ..., w_d$ that minimize the error function:

$$E(w_1, w_2, ..., w_d) = \frac{1}{n} \sum_{(\mathbf{x}, y) \in \mathcal{D}} (y - f(\mathbf{x}; w_1, w_2, ..., w_d))^2$$

> Let's first solve an easy problem.

Finding w that minimizes the following error function:

$$E(w) = w^2 + 2w + 3$$

Optimization with One Variable

 \triangleright Find w that minimizes the following function.

$$f(w) = w^2 + 2w - 3$$

> How??

Optimization with One Variable

- > We can find the minimum value.
 - ◆ The minimum value occurs where the slope of the curve is 0.
 - ◆ The first derivative of the function = slope of the curve
 - Set the first derivative to 0 and solve it for x.

Optimization with One Variable

$$f(w) = w^{2} + 2w - 3$$

 $df(w) / dw = 2w + 2$
 $2w + 2 = 0$
 $w = -1$

is value of w where f(w) is minimum.

Optimization with Two Variables

> Quadratic function with two variables

$$f(w_1, w_2) = w_1^2 + w_1 w_2 - 2w_1 - w_2^2$$

 $\succ f(\mathbf{w})$ is the minimum, where the derivative of $f(\mathbf{w})$ is zero in all directions.

Optimization with Two Variables

> It is still simple enough that we can find the minimum directly.

$$f(w_1, w_2) = w_1^2 + w_1 w_2 - 2w_1 - w_2^2$$

$$\nabla f(w_1, w_2) = [2w_1 + w_2 - 2, \quad w_1 - 2w_2]$$

- Set both elements of the derivative to 0.
- Give two linear equations in two variables.
- Solve for w_1 , w_2 .

$$2w_1 + w_2 = 2$$
, $w_1 - 2w_2 = 0$

$$w_1 = 4/5, w_2 = 2/5$$

Math: Derivative Calculation

Review: Scalar Derivative

> Derivative means the slope of the tangent line.

у	а	x^n	e^x	$\log x$
$\frac{dy}{dx}$	0	nx^{n-1}	e^x	$\frac{1}{x}$

Note: α is not a function of x.

у	u + v	uv	y = f(u), $u = g(x)$
$\frac{dy}{dx}$	$\frac{du}{dx} + \frac{dv}{dx}$	$\frac{du}{dx}v + \frac{dv}{dx}u$	$\frac{dy}{du}\frac{du}{dx}$

It is called a chain rule.

Gradients

> Generalize derivatives into vectors.

Derivative $\partial y/\partial x$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \frac{\partial y}{\partial \mathbf{x}} = \left[\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \dots, \frac{\partial y}{\partial x_n} \right]$$

x

x

y

 $\frac{dy}{dx}$

 $\frac{dy}{dx}$

y

 $\frac{d\mathbf{y}}{dx}$

 $\frac{d\mathbf{y}}{d\mathbf{x}}$

> Example:
$$f(x_1, x_2) = x_1^2 + 2x_2^2$$

$$\frac{\partial f}{\partial \mathbf{x}} = [2x_1, 4x_2]$$

Given (1, 1), the direction (2, 4) is the gradient, perpendicular to the contour line.

Example: Derivative $\partial y/\partial x$

у	а	аи	$ \mathbf{x} ^2$
$\frac{dy}{d\mathbf{x}}$	0^T	$a\frac{du}{d\mathbf{x}}$	$2\mathbf{x}^{\mathrm{T}}$

a is not a function of x

0 is zero vector.

у	u + v	uv	$\langle \mathbf{u}, \mathbf{v} \rangle$	
$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}}$	$\frac{\partial u}{\partial \mathbf{x}}v + \frac{\partial v}{\partial \mathbf{x}}u$	$\mathbf{u}^{\mathrm{T}} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^{\mathrm{T}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	

Derivative $\partial y/\partial x$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \qquad \frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_m}{\partial x} \end{bmatrix} \qquad \mathbf{y} \qquad \frac{\frac{dy}{dx}}{\frac{dy}{dx}} \qquad \frac{\frac{dy}{dx}}{\frac{dy}{dx}}$$

- \triangleright While $\partial y/\partial x$ is a row vector, $\partial y/\partial x$ is a column vector.
 - It is called numerator-layout notation.

Derivative $\partial y/\partial x$

> It is the generalized derivative representation.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial \mathbf{x}} \\ \frac{\partial y_2}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial y_m}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1}, \frac{\partial y_1}{\partial x_2}, \dots, \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1}, \frac{\partial y_2}{\partial x_2}, \dots, \frac{\partial y_2}{\partial x_n} \\ \vdots \\ \frac{\partial y_m}{\partial x_1}, \frac{\partial y_m}{\partial x_2}, \dots, \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

$$\frac{dy}{d\mathbf{x}}$$

X

y

$$\frac{d\mathbf{y}}{dx}$$

$$\frac{d\mathbf{y}}{d\mathbf{x}}$$

Example: Derivative $\partial y/\partial x$

 \mathbb{R}^{m}

Bold uppercase font indicates a matrix.

у	a	X	Ax	$\mathbf{x}^{T}\mathbf{A}$	$\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^n$
$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	0	I	A	$\mathbf{A}^{\mathbf{T}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n}$

a is A are not a function of x.

0 and **I** are matrices.

y	$a\mathbf{u}$	$\mathbf{u} + \mathbf{v}$
$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$

Generalize to Matrices

			Scalar	Vector		Matrix	
			<i>x</i> (1,)	x (1	n, 1)	X	(n,k)
Scala	r y	(1,)	$\frac{dy}{dx}$ (1,)	$\frac{dy}{d\mathbf{x}}$	(1, n)	$\frac{dy}{d\mathbf{X}}$	(k, n)
Vecto	r y	(<i>m</i> , 1)	$\frac{d\mathbf{y}}{dx}$ (m, 1)	$\frac{d\mathbf{y}}{d\mathbf{x}}$	(m,n)	$\frac{d\mathbf{y}}{d\mathbf{X}}$	(m, k, n)
Matrix	Y		$\frac{d\mathbf{Y}}{d\mathbf{x}}$	$\frac{d\mathbf{Y}}{d\mathbf{x}}$		$\frac{d\mathbf{Y}}{d\mathbf{X}}$	
	(n	n, l)	(m, l)	(m, l,	(n)		(m,l,k,n)

What is the Chain Rule?

> If y = f(u) and u = g(x) are differentiable functions, then y = f(g(x)) is a differentiable function of x.

> The chain rule is

Multiply by the derivative of the inside

Derivative of u in terms of x

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = f'(g(x))g'(x)$$

Derivative of y in terms of u

Keep the inside and take the derivative of the outside

Example: Chain Rule

$$ightharpoonup$$
 Given $y = (3x^2 - 5x + 2)^4$

 \triangleright Use a substitution, u = "the inside function."

$$u = 3x^2 - 5x + 2 \qquad \Rightarrow \qquad y = u^4$$

> Break up functions using the chain rule.

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = (4u^3)(6x - 5) = 4(x^2 - 5x + 2)^3(6x - 5)$$

Example: Chain Rule

$$\triangleright$$
 Given $y = \log 3x^2$

 \triangleright Use a substitution, u = "the inside function."

$$u = 3x^2 \qquad \Rightarrow \qquad y = \log u$$

> Break up functions using the chain rule.

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \left(\frac{1}{u}\right)6x = \left(\frac{1}{3x^2}\right)6x = \frac{2}{x}$$

Example: Chain Rule

$$\Rightarrow Given y = \log(2x - 1)^3$$

 \triangleright Use a substitution, u = "the inside function."

$$u = v^3 = (2x - 1)^3 \qquad \Rightarrow \qquad y = \log u$$
$$v = (2x - 1)$$

> Break up functions using the chain rule.

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dv}\frac{dv}{dx} = \left(\frac{1}{u}\right)3v^{2}(2) = \left(\frac{1}{(2x-1)^{3}}\right)6(2x-1)^{2} = 6\left(\frac{1}{2x-1}\right)$$

Generalize to Vectors

> Chain rule for scalars

$$y = f(g(x)) \qquad \Rightarrow \qquad \frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

> Generalize to vectors straightforwardly.

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$$

$$(1,n)$$
 $(1,)$ $(1,n)$

$$\frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$$

$$(1,n) \quad (1,k) \ (k,n)$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

$$(m,n)$$
 (m,k) (k,n)

Example: Generalize to Vectors

 \triangleright Assume $x, w \in \mathbb{R}^n$, $y \in \mathbb{R}$

$$z = (\langle \mathbf{x}, \mathbf{w} \rangle - y)^2$$

$$ightharpoonup$$
 Compute $\frac{\partial z}{\partial \mathbf{w}}$

> Decompose

$$a = \langle \mathbf{x}, \mathbf{w} \rangle$$

$$b = a - y$$

$$z = b^2$$

$$\frac{\partial z}{\partial \mathbf{w}} = \frac{\partial z}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial \mathbf{w}}$$

$$= 2b \cdot 1 \cdot \mathbf{x}^{\mathrm{T}}$$

$$= 2(\langle \mathbf{x}, \mathbf{w} \rangle - y) \cdot \mathbf{x}^{\mathsf{T}}$$

Example: Generalize to Vectors

 \succ Assume $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{w} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^m$

$$\mathbf{z} = (\mathbf{X}\mathbf{w} - \mathbf{y})^2$$

$$ightharpoonup$$
 Compute $\frac{\partial z}{\partial \mathbf{w}}$

$$\mathbf{a} = \mathbf{X}\mathbf{w}$$

$$\mathbf{b} = \mathbf{a} - \mathbf{y}$$

$$z = ||b||^2$$

$$\frac{\partial \mathbf{z}}{\partial \mathbf{w}} = \frac{\partial z}{\partial \mathbf{b}} \frac{\partial \mathbf{b}}{\partial \mathbf{a}} \frac{\partial \mathbf{a}}{\partial \mathbf{w}}$$

$$= 2\mathbf{b}^{\mathrm{T}} \cdot \mathbf{I} \cdot \mathbf{X}$$

$$= 2(\mathbf{X}\mathbf{w} - \mathbf{y})^{\mathrm{T}} \cdot \mathbf{X}$$

Example: Simple Linear Regression

Regression Models

➤ Modeling the relationship between input feature vector **x** and a label **y**

> Predicting and forecasting the continuous value

Linear Model Formulation

- \triangleright Given d-dimensional input $\mathbf{x} = [x_1, x_2, ..., x_d]^T$,
- \triangleright The linear model has a d-dimensional weight and a bias

$$\mathbf{w} = [w_1, w_2, \dots, w_d]^{\mathrm{T}}$$

b

> The output is a weighted sum of the inputs

$$y = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$

> Vectorized version

$$y = \langle \mathbf{w}, \mathbf{x} \rangle + b = \mathbf{w}^{\mathrm{T}} \mathbf{x} + b$$

Training Data

- > Data samples to fit model parameters
 - The more the better

 \triangleright Assume that we collect n samples (or instances, examples).

$$\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_n]^{\mathrm{T}}$$
 $y = [y_1, ..., y_n]^{\mathrm{T}}$ $y_i \in \mathbb{R}$

- ullet Each sample is represented by a d-dimensional vector.
- Each label is scalar.

$$\mathbf{x} = [x_1, x_2, \dots, x_d]^{\mathrm{T}}$$

Measuring Errors

- > Compare the true value vs. the estimated value.
 - Let y be the **true value**.
 - E.g., the actual sale price for used cars
 - Let \hat{y} be the **estimated value** by our model.
 - E.g., the estimated price for used cars

- > Formulate the error function to minimize the difference between the true value and the estimated value.
- \triangleright E.g., squared loss $(y \hat{y})^2$

Error Function (or Loss Function)

> Minimize the squared residual between the actual value and the predicted value.

Mean squared error (MSE) function

$$E(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$

Optimization Problem

> Find an optimal parameter w* minimizing the total errors for all training samples.

Example: Simple Linear Regression

- \succ Given training data $\mathcal{D} = \{(x^{(i)}, y^{(i)}): 1 \leq i \leq n\}$,
- > We want to train a linear function.

$$f(x; w_0, w_1) = w_1 x + w_0$$

 w_0 : bias, intercept

Which line is the best?

Simple Linear Regression Model

> Finding a linear model that fits a training dataset

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$Data = \{(0.0, 0.0), (1.0, 1.0), (1.0, 2.0)\}$$

 \triangleright Finding $\mathbf{w} = (w_0, w_1)$ that minimizes an error function

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$f(0.0; w_0, w_1) \approx 0.0$$

 $f(1.0; w_0, w_1) \approx 1.0$
 $f(1.0; w_0, w_1) \approx 2.0$

 $Data = \{(0.0, 0.0), (1.0, 1.0), (1.0, 2.0)\}$

 \triangleright Finding $\mathbf{w} = (w_0, w_1)$ that minimizes an error function

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$f(0.0; w_0, w_1) \approx 0.0$$

$$f(1.0; w_0, w_1) \approx 1.0$$

$$f(1.0; w_0, w_1) \approx 2.0$$

$$[f(1.0; w_0, w_1) - 1.0]^2$$

$$[f(1.0; w_0, w_1) - 2.0]^2$$

Finding $\mathbf{w} = (w_0, w_1)$ that minimizes $E(w_0, w_1)$

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$f(0.0; w_0, w_1) \approx 0.0$$

$$f(1.0; w_0, w_1) \approx 1.0$$

$$f(1.0; w_0, w_1) \approx 2.0$$

$$E(w_0, w_1) = \sum_{(x,y) \in \mathcal{D}} (y - f(x; w_0, w_1))^2$$

- Finding $\mathbf{w} = (w_0, w_1)$ that minimizes $E(w_0, w_1)$
 - For simplicity, we use sum instead of mean.

$$E(w_0, w_1) = \sum_{(x,y)\in\mathcal{D}} (y - f(x; w_0, w_1))^2$$

$$f(x; w_0, w_1) = w_1 x + w_0$$

$$Data = \{(0.0, 0.0), (1.0, 1.0), (1.0, 2.0)\}$$

$$E(w_0, w_1) = (0.0 - f(0.0; w_0, w_1))^2 + (1.0 - f(1.0; w_0, w_1))^2 + (2.0 - f(1.0; w_0, w_1))^2$$

$$E(w_0, w_1) = (0.0 - w_0)^2 + (1.0 - (w_0 + w_1))^2 + (2.0 - (w_0 + w_1))^2$$

$$E(w_0, w_1) = 2w_1^2 + 3w_0^2 - 6w_1 - 6w_0 + 4w_1w_0 + 5$$

Finding $\mathbf{w} = (w_0, w_1)$ that minimizes $E(w_0, w_1)$

$$E(w_0, w_1) = (0.0 - w_0)^2 + (1.0 - (w_0 + w_1))^2 + (2.0 - (w_0 + w_1))^2$$

$$E(w_0, w_1) = 2w_1^2 + 3w_0^2 - 6w_1 - 6w_0 + 4w_1w_0 + 5$$

$$\frac{\partial E}{\partial w_1} = 4w_1 + 4w_0 - 6$$

$$\frac{\partial E}{\partial w_0} = 4w_1 + 6w_0 - 6$$

$$4w_1 + 4w_0 - 6 = 0$$

$$4w_1 + 6w_0 - 6 = 0$$

$$w_1 = 1.5$$

Solution of the Linear Model

> Finally, we have learned a linear model that fits a given training dataset.

$$f(x; w_0, w_1) = 1.5x + 0.0$$

$$Data = \{(0.0, 0.0), (1.0, 1.0), (1.0, 2.0)\}$$

Q&A

