BocharnikovDP 30112024-110053

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 4818 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 5 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 1315 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 15810 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 6134 МГц до 6176 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -71 дБм 2) -74 дБм 3) -77 дБм 4) -80 дБм 5) -83 дБм 6) -86 дБм 7) -89 дБм 8) -92 дБм 9) -95 дБм

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 0.1 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 18 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 9.9 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 7.1 дБ 2) 7.7 дБ 3) 8.3 дБ 4) 8.9 дБ 5) 9.5 дБ 6) 10.1 дБ 7) 10.7 дБ 8) 11.3 дБ
- 9) 11.9 дБ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.17717 + 0.24953i, \ s_{31} = -0.26239 + 0.1863i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

- 1) -26 дБн 2) -28 дБн 3) -30 дБн 4) -32 дБн 5) -34 дБн 6) -36 дБн 7) -38 дБн
- 8) -40 дБн 9) 0 дБн

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 28 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 119 М Γ_{Π} ?

Варианты ОТВЕТА:

1) 75.7 нГн 2) 59 нГн 3) 111.3 нГн 4) 40.2 нГн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 1?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 - Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{6; -43\} \quad 2) \ \{5; -28\} \quad 3) \ \{3; -38\} \quad 4) \ \{2; 7\} \quad 5) \ \{3; -13\} \quad 6) \ \{5; -8\} \quad 7) \ \{5; 2\}$$

8) $\{5; -13\}$ 9) $\{2; -13\}$

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 237 МГц, частота ПЧ 36 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 165 MΓ_Ц
- 2) 948 MΓ_{II}
- 3) 273 MΓ_{II}
- 4) 675 MΓ_Ц.