Lecture 8: Policy Gradient

Chonggang Wang

Outline

- Policy Gradient RL
- Actor-Critic Methods
- Policy Gradient w/ Advantage Function

^{*}materials are modified from David Silver's RL lecture notes

Outline

- Policy Gradient RL
- Actor-Critic Methods
- Policy Gradient w/ Advantage Function

Lecture 7 – Value Approximation

• Parameterized value function $\hat{v}(s, w)$ and action-value function $\hat{q}(s, a, w)$ using a parameter column vector w, to approximate true value functions $V_{\pi}(s)$ and $Q_{\pi}(s)$

$$\hat{v}(s, \mathbf{w}) \approx V_{\pi}(s)$$

 $\hat{q}(s, a, \mathbf{w}) \approx Q_{\pi}(s, a)$

- How to obtain $\hat{v}(s, w)$ and $\hat{q}(s, a, w)$
 - Stochastic Gradient Descent: $\Delta w = \alpha * (V_{\pi}(s) \hat{v}(s, w)) * \nabla_{w} \hat{v}(s, w)$
 - Calculate the gradient $\nabla_w \hat{v}(s, w)$: Represent a state by a feature vector
 - Linear Approach: $\hat{v}(s, w) = x(s)^T w$
 - Non-Linear Approach: Neural Network (e.g., DQN)
- Use the action-value function to determine/select next action based on a pre-configured policy (e.g., greedy, ε -greedy)
- Question: Can we determine next action directly from a parameterized probability function which only depends on the states: Policy-based RL

$$\pi_{\boldsymbol{\theta}}(s,a) = p(a|s,\boldsymbol{\theta})$$

Why Policy-based RL

Advantages

- Action probabilities change more smoothly → better convergence
- Easy to learn stochastic policies -> better exploration
- Avoid "argmax(q(s, a))" → Lower complexity and more effective in high-dimensional or continuous action spaces

Disadvantages

- Value-based approaches could be more efficient for a small number of states and actions
- Hard to get unbiased estimates of policy gradient through sampling
- Basic policy gradient approaches (e.g., REINFOCE as a Monte Carlo Method) introduce high variance and lead to a lower convergence speed

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality of a policy π_{θ} ?
- In episodic environments we can use the start value

$$J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1]$$

In continuing environments we can use the average value

$$J_{avV}(\theta) = \sum_{s} \underline{d^{\pi_{\theta}}(s)} V^{\pi_{\theta}}(s)$$

Or the average reward per time-step

$$J_{avR}(\theta) = \sum_{s} \underline{d^{\pi_{\theta}}(s)} \sum_{a} \pi_{\theta}(s, a) \mathcal{R}_{s}^{a}$$

where $d^{\pi_{\theta}}(s)$ is stationary distribution of Markov chain for π_{θ}

Policy Optimization

- Policy based reinforcement learning is an optimisation problem
- Find θ that maximises $J(\theta)$
- Similar to the value based function approximation, we focus on gradient method
 - Gradient is a key to connect neural network with RL algorithms
- Other approaches are possible

Gradient Descent (recap)

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector w, a column vector
- Define the gradient of $J(\mathbf{w})$ to be

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} & \text{Partial} \\ \vdots & \text{Derivatives} \\ \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} & \text{with} \\ \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} & \text{respect} \\ \text{to } \mathbf{w} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$
- Adjust **w** in direction of -ve gradient to reduce $J(\mathbf{w})$ (i.e., the Value Error (VE)) $\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

Gradient Ascent

- $I(\theta)$ is the policy-related performance function to be maximized
- $J(\theta)$ is differentiable with respect to θ , which is a column parameter vector $\theta = (\theta_1, ..., \theta_n)^T$
- $\nabla_{\theta} J(\theta)$: The Gradient of $J(\theta)$ can be calculated

$$\nabla_{\theta} J(\theta) = \begin{pmatrix} \frac{\partial J(\theta)}{\theta_1} \\ \vdots \\ \vdots \\ \frac{\partial J(\theta)}{\theta_n} \end{pmatrix}$$
 Partial Derivatives with respect to θ

- Gradient Ascent
 - To find the optimal parameter vector which maximizes $J(\theta)$

$$\Delta \boldsymbol{\theta} = \boldsymbol{\alpha} * \boldsymbol{\nabla}_{\boldsymbol{\theta}} \boldsymbol{J}(\boldsymbol{\theta})$$

Score Function

- We now compute the policy gradient analytically
- Assume policy π_{θ} is differentiable whenever it is non-zero and we know the gradient $\nabla_{\theta}\pi_{\theta}(s,a)$
- Likelihood ratios exploit the following identity

$$abla_{ heta}\pi_{ heta}(s,a) = \pi_{ heta}(s,a) rac{
abla_{ heta}\pi_{ heta}(s,a)}{\pi_{ heta}(s,a)}$$

$$= \pi_{ heta}(s,a) \overline{
abla_{ heta} \ln \pi_{ heta}(s,a)}$$

• The score function is $\nabla_{\theta} \ln \pi_{\theta}(s, a)$

Example: Softmax Policy

- We will use a softmax policy as a running example
- Weight actions using linear combination of features $\phi(s, a)^{\top}\theta$
- Probability of action is proportional to exponentiated weight

$$\pi_{\theta}(s,a) = p(a|s,\theta) = \frac{e^{\phi(s,a)^T \theta}}{\sum_a e^{\phi(s,a)^T \theta}}$$

The score function is

$$\nabla_{\theta} \ln \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E}_{\pi_{\theta}} [\phi(s, \cdot)]$$

Example: Softmax Policy

• Proof:
$$\nabla \ln \pi_{\theta}(s, a) = \nabla \ln \frac{e^{\phi(s, a)^{T}\theta}}{\sum_{a} e^{\phi(s, a)^{T}\theta}} \qquad --Eq. (1)$$

$$\nabla \ln \left(\frac{x}{y}\right) = \nabla \ln(x) - \nabla \ln(y) \qquad = \nabla \phi(s, a)^{T}\theta - \nabla \ln \left(\sum_{a} e^{\phi(s, a)^{T}\theta}\right) \qquad --Eq. (2)$$

$$\nabla \ln(g(x)) = \frac{\nabla g(x)}{g(x)} \qquad = \phi(s, a) - \frac{\sum_{a} (e^{\phi(s, a)^{T}\theta}\phi(s, a))}{\sum_{a} e^{\phi(s, a)^{T}\theta}} \qquad --Eq. (3)$$

$$= \phi(s, a) - \sum_{a} \frac{e^{\phi(s, a)^{T}\theta}}{\sum_{a} e^{\phi(s, a)^{T}\theta}}\phi(s, a) \qquad --Eq. (4)$$

$$= \phi(s, a) - \sum_{a} \frac{\pi_{\theta}(s, a)\phi(s, a)}{\sum_{a} e^{\phi(s, a)^{T}\theta}} \qquad --Eq. (5)$$

$$= \phi(s, a) - \mathbb{E}_{\pi_{\theta}}[\phi(s, \cdot)] \qquad --Eq. (6)$$

Example: Gaussian Policy

- In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features $\mu(s) = \phi(s)^{\top} \theta$
- Variance may be fixed σ^2 , or can also parametrised
- Policy is Gaussian, $a \sim \mathcal{N}(\mu(s), \sigma^2)$ $\pi_{\theta}(a|s, \theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{(-\frac{(a-\mu(s,\theta))^2}{2\sigma^2})}$
- The score function is

$$\nabla_{\theta} \ln \pi_{\theta}(s, a) = \frac{(a - \mu(s))\phi(s)}{\sigma^2}$$

One-Step MDP

- Consider a simple class of one-step MDPs

 Starting in state $s \sim d(s)$ Terminating after one time-step with reward $r = \mathcal{R}_{s,a}$
- Use likelihood ratios to compute the policy gradient

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} [r]$$

$$= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \underline{\pi_{\theta}(s, a)} \underline{\nabla_{\theta} \ln \pi_{\theta}(s, a)} \mathcal{R}_{s, a}$$

$$= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \ln \pi_{\theta}(s, a) r]$$

Generalized MDP

- The policy gradient theorem generalises the likelihood ratio approach to multi-step MDPs
- Replaces instantaneous reward r with long-term value $Q^{\pi}(s,a)$
- Policy gradient theorem applies to start state objective, average reward and average value objective

For any differentiable policy $\pi_{\theta}(s,a)$, for any of the policy objective functions $J=J_1,J_{avR},\ or\ \frac{1}{1-\gamma}J_{avV}$, the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \pi_{\theta}(s, a) \ Q^{\pi_{\theta}}(s, a) \right]$$

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

- Update parameters by stochastic gradient ascent
- Using policy gradient theorem
- Using return G_t as an unbiased sample of $Q^{\pi_{\theta}}(s_t, a_t)$

```
High Variance \Delta \theta_t = \alpha \nabla_{\theta} \ln \pi_{\theta}(s_t, a_t) G_t
```

Policy Gradient

```
1— function REINFORCE
2— Initialise \theta arbitrarily
3— for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do
4— for t = 1 to T - 1 do
5— \theta \leftarrow \theta + \alpha \nabla_{\theta} \ln \pi_{\theta}(s_t, a_t) G_t
6— end for
7— end for
8— return \theta
9— end function
```

Outline

- Policy Gradient RL
- Actor-Critic Methods
- Policy Gradient w/ Advantage Function

^{*}materials are modified from David Silver's RL lecture notes

Reducing Variance Using a Critic

- Monte-Carlo policy gradient still has high variance
- We use a critic to estimate the action-value function,

$$Q_w(s,a) \approx Q^{\pi_{\theta}}(s,a)$$

- Actor-critic algorithms maintain two sets of parameters

 Critic Updates action-value function parameters wActor Updates policy parameters θ , in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$abla_{\theta} J(\theta) \approx \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \pi_{\theta}(s, a) \ Q_{w}(s, a) \right]$$

$$\Delta \theta = \alpha \nabla_{\theta} \ln \pi_{\theta}(s, a) \ Q_{w}(s, a)$$

Example: TD(0)-based Actor-Critic Algorithm

- Simple actor-critic algorithm based on action-value critic
- Using linear value fn approx. $Q_w(s, a) = \phi(s, a)^\top w$ Critic Updates w by linear TD(0) Actor Updates θ by policy gradient

```
1— function QAC
2— Initialise s, \theta
3— Sample a \sim \pi_{\theta}
4— for each step do
5— Sample reward r = \mathcal{R}_s^a; sample transition s' \sim \mathcal{P}_{s,\cdot}^a.
6— Sample action a' \sim \pi_{\theta}(s', a')
7— \delta = r + \gamma Q_w(s', a') - Q_w(s, a)
8— \theta = \theta + \alpha \nabla_{\theta} \ln \pi_{\theta}(s, a) Q_w(s, a)
9— w \leftarrow w + \beta \delta \phi(s, a) \longleftarrow w = w + \beta * \delta * (\nabla_w Q_w(s, a))
10— a \leftarrow a', s \leftarrow s'
11— end for
12— end function
```

Problem: Bias in Actor-Critic Algorithms

- Approximating the policy gradient introduces bias
- A biased policy gradient may not find the right solution

- Luckily, if we choose value function approximation carefully
- Then we can avoid introducing any bias
 - i.e. We can still follow the exact policy gradient

Compatible Function Approximation Theorem*

If the following two conditions are satisfied:

Value function approximator is compatible to the policy

$$\nabla_w Q_w(s,a) = \nabla_\theta \ln \pi_\theta(s,a)$$

Value function parameters w minimise the mean-squared error

$$\varepsilon = \mathbb{E}_{\pi_{\theta}}\left[\left(Q^{\pi_{\theta}}(s, a) - Q_{w}(s, a)\right)^{2}\right]^{\frac{1}{2}}$$

Then the policy gradient is exact,

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \; ln \, \pi_{ heta}(s, a) \; Q_{w}(s, a)
ight]$$

^{*}R. Sutton, et al. "Policy gradient methods for reinforcement learning with function approximation", 2000

Outline

- Policy Gradient RL
- Actor-Critic Methods
- Policy Gradient w/ Advantage Function

Reducing Variance Using a Baseline

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \pi_{\theta}(s, a) \ Q^{\pi_{\theta}}(s, a) \right]$$
 (Without a Baseline)

- We subtract a baseline function B(s) from the policy gradient
- This can reduce variance, without changing expectation

$$\mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \pi_{\theta}(s, a) B(s) \right] = \sum_{s \in \mathcal{S}} d^{\pi_{\theta}}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(s, a) B(s)$$

$$= \sum_{s \in \mathcal{S}} d^{\pi_{\theta}} B(s) \nabla_{\theta} \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a)$$

$$= 0$$

- A good baseline is the state value function $B(s) = V^{\pi_{ heta}}(s)$
- So we can rewrite the policy gradient using the advantage function $A^{\pi_{\theta}}(s,a)$

$$A^{\pi_{\theta}}(s,a) = Q^{\pi_{\theta}}(s,a) - V^{\pi_{\theta}}(s)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \pi_{\theta}(s,a) A^{\pi_{\theta}}(s,a) \right] \quad \text{(Using a Baseline)}$$

[&]quot;Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines" - ICLR 2018

Estimating the Advantage Function

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function For example, by estimating both $V^{\pi_{\theta}}(s)$ and $Q^{\pi_{\theta}}(s,a)$
- Using two function approximators and two parameter vectors,

$$egin{aligned} V_{\scriptscriptstyle V}(s) &pprox V^{\pi_{ heta}}(s) \ Q_{\scriptscriptstyle W}(s,a) &pprox Q^{\pi_{ heta}}(s,a) \ A(s,a) &= Q_{\scriptscriptstyle W}(s,a) - V_{\scriptscriptstyle V}(s) \end{aligned}$$

And updating both value functions by e.g. TD learning

Estimating the Advantage Function (cont.)

• For the true value function $V^{\pi_{\theta}}(s)$, the TD error $\delta^{\pi_{\theta}}$

$$\delta^{\pi_{\theta}} = r + \gamma V^{\pi_{\theta}}(s') - V^{\pi_{\theta}}(s)$$

is an unbiased estimate of the advantage function

$$egin{aligned} \mathbb{E}_{\pi_{ heta}}\left[\delta^{\pi_{ heta}}|s,a
ight] &= \mathbb{E}_{\pi_{ heta}}\left[r+\gamma V^{\pi_{ heta}}(s')|s,a
ight] - V^{\pi_{ heta}}(s) \ &= Q^{\pi_{ heta}}(s,a) - V^{\pi_{ heta}}(s) \ &= A^{\pi_{ heta}}(s,a) \end{aligned}$$

So we can use the TD error to compute the policy gradient

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \pi_{\theta}(s, a) \delta^{\pi_{\theta}} \right]$$

In practice we can use an approximate TD error

$$\delta_{v} = r + \gamma V_{v}(s') - V_{v}(s)$$

This approach only requires one set of critic parameters v

Critic at Different Time-Scales

• Critic can estimate value function $V_{\nu}(s)$ from many targets at different time-scales

For MC, the target is the return v_t

linear approximation

$$\Delta V = \alpha (G_t - V_v(s)) \phi(s) \longleftarrow$$

For TD(0), the target is the TD target $r + \gamma V(s')$

$$\Delta V = \alpha (r + \gamma V(s') - V_v(s)) \phi(s)$$

For forward-view TD(λ), the target is the λ -return v_t^{λ}

$$\Delta V = \alpha (G_t^{\lambda} - V_v(s)) \phi(s)$$

For backward-view $TD(\lambda)$, we use eligibility traces

$$\delta_{t} = r_{t+1} + \gamma V(s_{t+1}) - V(s_{t})$$

$$e_{t} = \gamma \lambda e_{t-1} + \phi(s_{t})$$

$$\Delta V = \alpha \delta_{t} e_{t}$$

Actor at Different Time-Scales

• The policy gradient can also be estimated at many time-scales

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} \left[
abla_{ heta} \, ln \; \pi_{ heta}(extsf{s}, extsf{a}) \, A^{\pi_{ heta}}(extsf{s}, extsf{a})
ight]$$

Monte-Carlo policy gradient uses error from complete return

$$\Delta \theta = \alpha (G_t - V_v(s_t)) \nabla_\theta \ln \pi_\theta(s_t, a_t)$$

Actor-critic policy gradient uses the one-step TD error

$$\Delta \theta = \alpha(\mathbf{r} + \gamma V_{\mathbf{v}}(\mathbf{s}_{t+1}) - V_{\mathbf{v}}(\mathbf{s}_t)) \nabla_{\theta} \ln \pi_{\theta}(\mathbf{s}_t, \mathbf{a}_t)$$

Policy Gradient with Eligibility Traces

• Just like forward-view $TD(\lambda)$, we can mix over time-scales

$$\Delta \theta = \alpha (G_t^{\lambda} - V_{\nu}(s_t)) \nabla_{\theta} \ln \pi_{\theta}(s_t, a_t)$$

where $G_t^{\lambda} - V_{\nu}(s_t)$ is a biased estimate of advantage fn

• Like backward-view $TD(\lambda)$, we can also use eligibility traces By equivalence with $TD(\lambda)$, substituting $\phi(s) = \nabla_{\theta} \ln \pi_{\theta}(s, a)$

$$\delta = r_{t+1} + \gamma V_{v}(s_{t+1}) - V_{v}(s_{t})$$
 $e_{t+1} = \lambda e_{t} + \nabla_{\theta} \ln \pi_{\theta}(s, a)$
 $\Delta \theta = \alpha \delta e_{t}$

This update can be applied online, to incomplete sequences

Summary of Policy Gradient Algorithms

The policy gradient has many equivalent forms

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \ \pi_{\theta}(s,a) \ \textit{G}_{t} \right] \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \ \pi_{\theta}(s,a) \ \textit{Q}^{w}(s,a) \right] \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \ \pi_{\theta}(s,a) \ \textit{A}^{w}(s,a) \right] \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \ \pi_{\theta}(s,a) \ \delta \right] \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \ \pi_{\theta}(s,a) \ \delta \right] \\ &= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \ln \ \pi_{\theta}(s,a) \ \delta e \right] \end{split} \qquad \text{Advantage Actor-Critic}$$

• Each leads to a stochastic gradient ascent algorithm.