LTR MODEL API

[검색 시스템 고도화 - LTR 2.0]

기간: 2024.11 ~ 2025.01

목적: 검색 시스템의 LTR 모델 서빙 아키텍처 개선

인원 : 5명 (백엔드 2, 추천 모델러 1, PM 2)

담당: 모델 서빙 백엔드 API 개발

Elasticsearch 플러그인 기반 LTR 시스템을 독립적인 모델 서빙 아키텍처로 전환하는 프로젝트입니다. Kotlin과 Spring Boot 기반으로 구축했으며, gRPC를 도입하여 성능을 크게 개선했습니다. Blue-Green 배포 전략으로 무중단 운영을 실현했으며, 영역 CTR 2.44%p 증가 등 가시적인 성과를 달성했습니다.

LTR 2.0 프로젝트 개요

프로젝트 배경

LTR 이란?

LTR(Learning to Rank)은 머신러닝을 활용하여 검색 결과의 순위를 최적화하는 기술 문서나 상품의 텍스트 관련성, 사용자 행동 데이터(클릭률, 구매율), 메타데이터(가격, 리뷰 수, 평점) 등 다양한 특성을 입력으로 활용하여 가장 관련성 높은 결과를 상위에 노출시키는 것을 목표로 한다

Elasticsearch에서는 이를 플러그인 형태로 제공하여 feature 저장, 모델 저장, 로깅 등의 기능을 지원한다

LTR 1.0

기존 프로세스

- 1. 사용자 검색 요청 접수
- 2. Query API에서 ES 쿼리 생성 (Top K 상품 선정, feature 계산, 모델 지정)
- 3. Elasticsearch(ES)에서 검색 및 기본 LTR 플러그인을 통해 순위(랭킹) 결정
 - 관련 상품 검색
 - feature 계산 및 LTR 모델 적용
 - 최종 점수 계산 및 정렬

기존 시스템의 한계

기존 LTR 1.0 시스템은 Elasticsearch(ES)의 외부 플러그인 기반으로 운영되고 있었으나, 다음과 같은 주요 한계점들이 존재했습니다:

1. 알고리즘 제약

- ES 플러그인에서 제공하는 기본 LTR 알고리즘으로만 제한
- 새로운 알고리즘 적용 및 실험의 어려움

2. **기술적 제약**

- feature 엔지니어링의 제한
 - 。 모든 feature를 ES 쿼리 형태로 변환해야 하는 번거로움
 - 。 복잡한 feature 생성의 어려움
- 인프라 부하
 - 。 ES 클러스터 용량 증가
 - 。 시스템 부하 가중

이러한 문제점들로 인하여 다음 방향으로 LTR 프로젝트를 개선하고자 한다

- 알고리즘 및 랭킹 모델 선택의 자유도 확보
- ES 클러스터 부하 감소
- 시스템 확장성 개선

LTR 2.0

핵심 목표

- ES 플러그인 의존도 제거: 독립적인 모델 서빙 시스템 구축
- 유연한 모델 운영: 모델과 알고리즘의 자유로운 교체 가능
- 데이터 기반 개선: AB 테스트를 통한 지속적인 성능 검증
- 검색 품질 향상: 랭킹 최적화를 통한 사용자 경험 개선

개선 프로세스

1. 검색 요청 접수

• 사용자가 검색어 입력 후 상품 목록 요청

2. 기본 검색 수행

- Query API를 통해 ES 상품 목록 조회
- 기본 검색 파라미터 적용

3. feature 추출

• 조회된 상품들의 특성(feature) 정보를 DB에서 수집

4. LTR Model API를 통해 feature 점수 계산

• 학습된 모델을 호출하여 각 상품의 최종 feature score 계산

5. **최종 결과 제공**

- 계산된 점수를 기준으로 상품 순서 재정렬
- 최종 결과로 반환

기대 효과

• 기술적 성과

- 。 학습 모델 교체가 용이한 아키텍쳐 도입으로 다양한 알고리즘 적용
- 。 ES 클러스터 부하 감소 및 시스템 자원 최적화

• 시스템 운영 효율성

- 。 실시간 모니터링 체계 구축
- 。 독립적인 확장성 확보

• 검색 품질 및 사용자 경험 개선

- 。 고객에게 더 매력적인 상품 리스트 제공
- 。 CTR(클릭률) 2%p 상승

적용 범위

- 서비스: 통합 검색결과
- 플랫폼: 모바일 앱, 모바일 웹
- 단계적 적용: AB 테스트를 통한 검증 후 확대

프로젝트 구성

팀 구성

• 백엔드 개발자 (2명)

- 。 검색 결과 re-rank 시스템 개발
- 。 모델 서빙 API 개발

• 추천 모델러 (1명)

。 LTR 모델 개발 및 성능 최적화

• PM (2명)

- 。 프로젝트 기획 및 관리
- 성과 지표 정의 및 측정

협업 체계

- 주 1회 정기 프로젝트 전체 회의를 통한 진행 상황 공유 및 리뷰
- 백엔드 개발자 간 수시 대면 미팅으로 요구사항 상세화
- 장애 상황 발생 시 즉각적인 공동 대응 체계 운영
- Confluence를 통한 체계적인 문서화 및 지식 공유

담당 역할

모델 서빙을 위한 백엔드 API 개발을 담당하였으며, 주요 책임은 다음과 같습니다:

- LTR 모델 서빙 시스템 설계 및 구현
- 분산 모델 인스턴스 관리 시스템 구축
- gRPC 통신 환경 구축 (rerank-api, ltr-model-api)
- Jenkins 기반 CI/CD 파이프라인 구축 및 무중단 배포 환경 구성

LTR MODEL API

기술 설계 및 구현

시스템 아키텍처 개요

기술 스택

백엔드 개발 환경

서버: Kotlin, Spring Boot

모델: XGBoost 통신: gRPC

모니터링 : Grafana, Prometheus Service Discovery : Spring Eureka

CI/CD: Jenkins

부하테스트: nGrinder, k6

예상 트래픽 및 목표 QPS

• 예상 트래픽: 초당 700 QPS (peak time 기준)

• 목표 응답 시간: 10ms 이내

주요 설계 결정사항

모델 인스턴스 복제 및 교체 전략

- 인스턴스 구성
 - 。 서버당 4개의 모델 인스턴스를 운영하도록 구성
 - o nGrinder 성능 테스트 결과:
 - 4개 인스턴스가 가장 높은 TPS(883.0) 기록
 - 인스턴스 수를 늘려도 성능이 선형적으로 증가하지 않음
 - 모델이 차지하는 메모리 크기를 고려했을 때 4개가 가장 효율적
 - 。 Round-robin 방식으로 요청을 균등하게 분산

• 모델 교체 프로세스 개선

- 。 기존 Rolling 배포 방식의 한계
 - 4대의 서버 순차 배포로 10분 이상 소요
 - 실시간으로 모델 변경 반영 불가능
 - 배포 중 트래픽 처리 불안정성 존재
 - 기존 요청 처리중에 model dispose 하여 에러 발생 위험
- 。 Blue-Green 배포 도입 효과
 - Scheduler를 통해 실시간으로 모델 변경을 감지하여 운영 중에도 교체
 - 신규 요청은 새 모델로, 진행 중인 요청은 기존 모델로 처리
 - 무중단 배포로 서비스 안정성 확보

				model pool XGBoost
				model #1
Rerank		→*GRPC—	→ ((((((((((model #2
API	Spring Eureka	gRPC 요청	Spring Boot	xGBoost model #3
	Edieku	т.	boot	model #4
) Gr	afana Prome	etheus	

nGrinder 테스트	소요 시간	TPS	에러율	Vuser
model-1	10분	624.2	0.0%	99
model-2	10분	794.0	0.0%	99
model-4	10분	883.0	0.0%	99
model-8	10분	830.0	0.0%	99
model-16	10분	827.0	0.0%	99

gRPC 도입

- 결정 사항: 기존 REST 요청은 목표 응답시간을 달성하지 못하여 gRPC로 전환 (응답시간 10ms 초과)
- 근거:
 - 대용량 데이터 전송 최적화 필요 (200개 상품 × 40개 Feature Matrix)
 - 。 낮은 레이턴시 요구사항 충족
 - 。 Client-Server 간 주고받는 데이터 형식이 명확하여 Protocol Buffers 정의

1. 메시지 크기 비교

지표	REST	gRPC	개선율
요청 크기	455.15 KB	177.73 KB	60.95% 감소
응답 크기	44.53 KB	22.48 KB	49.52% 감소

2. 단일 요청 응답시간

통계 지표	REST	gRPC	개선율
평균 응답시간	7.11ms	1.69ms	76.2% 감소
최소 응답시간	6.38ms	1.54ms	75.9% 감소
최대 응답시간	9.59ms	3.18ms	66.8% 감소
표준편차	0.62ms	0.19ms	69.4% 감소
95% 백분위수	8.25ms	1.87ms	77.3% 감소
99% 백분위수	9.36ms	2.66ms	71.6% 감소

3. nGrinder 부하 테스트 (100명의 동시 사용자)

지표	REST	gRPC	비교
QPS (초당 처리량)	894.4	2,196.4	2.46배 향상
총 처리 요청 수	8,948	21,966	2.46배 많은 처리량
평균 응답시간	10.68ms	4.05ms	62.1% 감소
에러 발생률	0%	0%	동일

주요 성능 향상 포인트

1. 메시지 효율성

• Protocol Buffer의 효율적인 직렬화로 메시지 크기 대폭 감소

2. **응답 속도**

- 모든 응답시간 지표에서 60% 이상의 개선
- 평균 응답시간 기준 62.1% 향상
- 목표 응답속도 달성 (10ms 이하)
- 안정적인 성능 (낮은 표준편차)

3. **처리량**

- 2.46배 높은 QPS
- 동일 시간, 동일 리소스로 2.46배 많은 요청 처리
- 에러 없는 안정적인 처리

운영 및 모니터링

AB 테스트를 통한 단계적 검증

1차 AB 테스트

• 테스트 설계

- 。 운영 환경의 실제 트래픽으로 시스템 안정성과 성능을 검증
- 。 트래픽 분배 비율을 점진적으로 증가시키며 시스템 수용 능력 측정
- 。 기존 LTR과 신규 LTR의 응답 속도 비교 측정

• 테스트 결과

- 。 트래픽이 증가할수록 캐시 적중률 상승하면서 응답속도 개선
- 미사용중인 여유 몽고디비 세트로 전환하면 부하 문제 없이 시스 템을 운영할 수 있을 것으로 예상

차수	비율		TOP K (feature)		속도 비교		
	A(LTR 1.0)	B(LTR 2.0)	A(LTR 1.0)	B(LTR 2.0)	query api	rerank api	DIFF
1	9	1	1000(20)	400(40)	57ms	83ms	26ms
2	2	8	1000(20)	400(40)	57ms	71ms	14ms
3	6	4	1000(20)	400(40)	57ms	75ms	18ms
4	9	1	1000(20)	1000(40)	60ms	107ms	47ms

2차 AB 테스트

• 테스트 설계

- 。 신규 LTR 2.0와 기존 LTR 1.0과 서비스를 5:5 비율로 트래픽 분배
- 。 동일한 검색 환경에서 두 서비스의 성능 비교 평가
- 。 CTR을 핵심 지표로 선정하여 사용자 만족도 측정 및 비교

• 테스트 결과

。 응답속도 측정

차수	비율		TOP K (feature)		속도 비교	
	A(LTR 2.0)	B(LTR 1.0)	A(LTR 2.0)	B(LTR 1.0)	rerank api	query api
1	5	5	200(40)	1000(20)	66ms	65ms

。 CTR 측정

CTR_40				ITEM_CTR_40			
VISIT_DT	A(LTR 2.0)	B(LTR 1.0)	DIFF %	VISIT_DT	A(LTR 2.0)	B(LTR 1.0)	DIFF %
2024-12-19	74.44	72.09	2.35	2024-12-19	5.95	5.75	0.2
2024-12-20	75.01	72.73	2.28	2024-12-20	6.05	5.82	0.23
2024-12-21	78.46	76.03	2.43	2024-12-21	6.08	5.88	0.2
2024-12-22	81.06	78.52	2.54	2024-12-22	6.19	6	0.19
2024-12-23	78.41	76.23	2.18	2024-12-23	6.12	5.92	0.2
2024-12-24	79.04	76.8	2.24	2024-12-24	6.12	5.92	0.2
평균	77.74	75.40	2.34	평균	6.09	5.88	0.20

최종 AB 결과 [전체]

- 영역 CTR ▲ 2.34%p 상승 (A:77.74% / B:75.40%)
- 상품 CTR ▲ 0.20%p 상승 (A: 6.09% / B: 5.88%)
 - 。 영역 CTR: 상품 클릭 / 영역 노출 (검색결과의 검색 횟수만큼 카운트) 상품 CTR: 상품 클릭 / 상품 노출 (검색결과의 상품 노출만큼 카운트)

비즈니스 성과

LTR 2.0 프로젝트를 통해 **검색 품질이 크게 개선**되었습니다.

A/B 테스트 결과, **영역 CTR이 2.34%p 증가**했으며, **상품 CTR도 0.20%p 상승**했습니다.

이는 사용자들이 **검색 결과에서 더 많은 클릭을 수행**하고 원하는 상품을 더 쉽게 찾을 수 있게 되었음을 의미합니다.

운영 효율성 향상

Blue-Green 배포 방식 도입으로 **서비스 무중단 모델 업데이트**가 가능해졌습니다.

Grafana, Prometheus를 통해 **체계적인 모니터링 시스템 구축**으로 안정적인 서비스 운영 기반을 마련했습니다.

특히 장애 상황에 서킷이 열리어 기존 LTR 1.0 서비스를 호출하도록 대응 체계를 구축하여 **시스템 안정성을 크게 향상**시켰습니다.

기술적 성과

검색 시스템의 구조를 기존의 ES 플러그인 의존적인 구조 기반에서 **독립적인 모델 서 빙 구조로 전환**하는데 성공했습니다.

이를 통해 **모델 및 LTR 알고리즘 선택의 자유도 확보**로 확장성이 높아졌고, **ES 클러스 터의 부하**도 줄일 수 있었습니다.

gRPC 도입과 로컬 캐시 최적화를 통해 **시스템의 응답 속도도 개선**되었습니다.

현재는 ES 버전 업그레이드 프로젝트도 병렬적으로 진행되어 기존 **평균 65ms 응답시간에서 55ms 응답시간 까지 감소**하였습니다.

Troubleshooting

모델 갱신 과정의 안정성 확보

Issue

운영 중인 모델의 버전 교체 과정에서 진행 중이던 요청들이 완료되지 않은 채 모델이 dispose 되어 inference 실패 발생

Approach

- Blue-Green 배포 전략 기반의 모델 서빙 아키텍처 설계
- 서버당 두 개의 모델 인스턴스 그룹을 운영하며 트래픽 점진적 전환
- 기존 모델의 Graceful Shutdown을 통한 안전한 요청 처리 보장

Outcome

• 무중단 모델 교체 시스템 구현으로 서비스 안정성 확보

gRPC 서비스 디스커버리 문제

Issue

• gRPC 서비스를 구축한 후 테스트 과정에서 Eureka가 서비스를 제대로 Discover 하지 못하는 문제 발생

Approach

- 서버 로그 분석을 통해 application.yml의 설정이 예상과 다르게 적용
- spring.profiles.active 설정이 다른 환경 설정까지 영향을 미치는 점 파악
- 환경별로 yml 파일을 완전히 분리하고 spring.config.activate.on-profile 방식 으로 구조를 변경

Outcome

- Eureka Service Discovery 정상적으로 동작
- 환경별 설정 관리 용이성 증가

spring: profiles: active: prod spring:
config:
activate:
on-profile: prod

로컬 캐시 메모리 최적화

Issue

- 로컬 캐시의 과도한 힙 메모리 사용으로 OOM 위험 발생
- GC 부하 증가로 인한 전반적인 시스템 성능 저하

Approach

- 캐시 엔트리 개수 및 힙 메모리 재설정
- JVM 프로파일링을 통한 메모리 사용량 상세 분석
- 대부분의 메모리를 차지하는 List<Float> 자료구조를 FloatArray로 최적화

Outcome

• 적용 후 메모리 사용량이 크게 감소하여 안정적인 운영 가능

XGBoost 호환성 문제

Issue

- Java와 Python 환경 간 XGBoost 라이브러리 호환성 문제 발생
- feature score를 계산하는 함수의 Missing value 처리 로직 차이로 인한 예측 결과 불일치

Approach

- 단기적으로는 null 대신 적절한 default value을 설정하여 대응
- 다양한 입력값에 대한 Cross-validation을 통해 두 환경의 결과값 일치 여부 검증

Outcome

• 근본적인 해결을 위해 Python 기반의 FastAPI로의 전환을 검토

회고 및 향후 과제

기술적 성장

시스템 설계 및 운영 경험

- 초당 700 QPS 처리가 가능한 모델 서빙 시스템 설계
- Round-robin 방식의 모델 인스턴스 로드밸런싱 구현
- gRPC 기반 MSA 환경에서의 서비스 간 통신 체계 구축
- A/B 테스트 기반의 점진적 트래픽 전환 및 Grafana/Prometheus 모니터링 체계 화리

성능 최적화 달성

- 복잡한 연산 추가에도 기존 응답 속도 15% 개선(65ms → 55ms)
- gRPC 도입, 로컬 캐시 최적화, 모델 인스턴스 복제 등 다양한 최적화 기법 적용

팀 문화 기여

지식 공유 활동

- 트러블슈팅 경험을 팀 내에 공유하여 유사 문제 해결에 기여
- 프로젝트 진행 과정과 기술적 의사결정 사항을 상세히 문서화
- 정기적인 팀 회의를 통한 프로젝트 현황 및 기술 지식 공유

협업 문화 개선

- 백엔드 개발자 간 긴밀한 협업으로 문제 해결 속도 향상
- 장애 상황에서의 공동 대응을 통한 팀 책임감 강화
- 상호 코드 리뷰를 통한 코드 품질 개선 및 지식 공유

당면 과제

기술 호환성 개선

- XGBoost의 Java-Python 환경 간 missing value 처리 불일치 해결
- Python 기반 FastAPI 전환 검토를 통한 안정성 확보
- 유지보수성 향상을 위한 기술 스택 개선

성능 개선 영역

- 레거시 ES Query API가 전체 응답 시간의 80%를 차지하는 문제 해결 필요
- 모델의 feature 개수 증가
- 피크 타임 트래픽 처리를 위한 시스템 확장성 확보

향후 발전 계획

시스템 고도화

- 레거시 시스템 의존성 감소
- 모델의 feature 개수 40개에서 80개로 확장
- 모델 처리 가능한 상품 수 200개에서 1,000개로 확장

MLOps 역량 강화

- 모델 서빙 시스템의 자동화 수준 향상
- 모델 갱신 파이프라인 고도화
- 타 도메인 랭킹 시스템으로의 확장 가능성 모색

LTR MODEL API 7