Exercices: Groupe symétrique, déterminants

Groupe symétrique

Décomposition en produit de cycles

Décomposer la permutation suivante en produit de cycles de support disjoints :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 4 & 3 & 8 & 7 & 10 & 1 & 2 & 5 & 6 \end{pmatrix}$$

En déduire sa signature.

Générateurs du groupe symétrique

- 1. Montrer que les transpositions $(1 \ i)$ (pour $i \in [2, n]$) engendrent le groupe symétrique \mathcal{S}_n .
- 2. Montrer que les cycles de longueur 3 engendrent A_n .

1.3 Exercice

Déterminer l'ordre maximal d'un élément de S_{10} .

1.4 Exercice

Montrer que S_n s'injecte dans A_{n+2} . Montrer que S_4 ne s'injecte pas dans A_5 .

Définition de la signature

Soit $n \ge 2$. Le but de cet exercice est de démontrer qu'il existe deux et seulement deux morphismes de groupe de (S_n, \circ) dans (\mathbb{C}^*, \times) :

- l'application $\bar{1}$ qui a toute permutation σ associe 1
- un autre morphisme ε que l'on définira comme étant la signature
- 1. Le but de cette partie est de montrer qu'il existe au plus un seul morphisme φ de (\mathcal{S}_n, \circ) dans (\mathbb{C}^*, \times) différent de $\bar{1}$.
 - Soit φ un morphisme de (\mathcal{S}_n, \circ) dans (\mathbb{C}^*, \times) .
 - (a) Soit τ une transposition. Monter que $\varphi(\tau) \in \{-1, 1\}$.
 - (b) En déduire que φ est à valeurs dans $\{-1, 1\}$.
 - (c) Soit τ_1 et τ_2 deux transpositions.
 - i. Montrer que τ_1 et τ_2 sont conjuguées, c'est-à-dire qu'il existe une permutation σ telle que :

$$\tau_1 = \sigma^{-1} \tau_2 \sigma$$

ii. En déduire que $\varphi(\tau_1) = \varphi(\tau_2)$.

- (d) Conclure
- 2. Le but de cette partie est de montrer l'existence d'un morphisme de (S_n, \circ) dans (\mathbb{C}^*,\times) différent de $\bar{1}$.

On dit qu'une partie A de $[1, n]^2$ est une représentation des couples d'éléments de [1, n] lorsque:

$$\forall i, j \in [1, n] \quad \begin{cases} (i, j) \in A \Longrightarrow (j, i) \not\in A \\ i \neq j \Longrightarrow [(i, j) \in A \text{ ou } (j, i) \in A] \end{cases}$$

(a) Soit A une représentation des couples d'éléments de [1,n] et σ une permutation de [1, n]. Montrer que :

$$\sigma(A) = \{(\sigma(i), \sigma(j)) : (i, j) \in A\}$$

est une représentation des couples d'éléments de [1, n]

(b) Soit A une représentation des couples d'éléments de [1, n] et σ une permutation de [1, n]. On note n_A le nombre d'inversion de σ , c'est-à-dire le nombre d'éléments (i,j) de A tels que j-i et $\sigma(j)-\sigma(i)$ soient de signes distincts. On définit alors la signature de σ par :

$$\varepsilon(\sigma) = (-1)^{n_A}$$

- i. Montrer que la signature ne dépend pas du choix de A.
- ii. Montrer que :

$$\varepsilon(\sigma) = \prod_{(i,j)\in A} \frac{\sigma(j) - \sigma(i)}{j - i}$$

- iii. En déduire que ε est un morphisme de groupe
- (c) Montrer que ε est différent de $\bar{1}$ et conclure.
- 3. En déduire qu'il existe un unique morphisme de S_n dans $\{-1,1\}$ qui vaut -1 sur les transpositions. Ce morphisme est appelé signature.

Déterminant

2.1Calculs de déterminant

Calculer et factoriser les déterminants suivants :

$$\begin{vmatrix} 1 & 1 & 1 \\ a+b & c+a & b+c \\ ab & ca & bc \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 \\ a+b & c+a & b+c \\ ab & ca & bc \end{vmatrix}$$

$$\begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 & (c+a)^2 & c^2 \\ a^2 & b^2 & (a+b)^2 \end{vmatrix}$$

2.2 Calculs de déterminant

Calculer les déterminants suivants :

$$\begin{vmatrix} 1+x^2 & x & & & 0 \\ x & 1+x^2 & x & & & \\ & \ddots & \ddots & \ddots & \\ & & x & 1+x^2 & x \\ 0 & & & x & 1+x^2 \end{vmatrix}$$

$$\begin{vmatrix} a_1+b_1 & a_1 & \dots & \dots & a_1 \\ a_2 & a_2+b_2 & a_2 & \dots & a_2 \\ & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ a_n & & \dots & & \dots & a_n & a_n+b_n \end{vmatrix}$$

2.3 Calculs de déterminants

Soit a_1, \ldots, a_n sont n réels. Calculer les déterminants :

$$\begin{vmatrix} \sin(a_1 + a_1) & \sin(a_1 + a_2) & \dots & \sin(a_1 + a_n) \\ \sin(a_2 + a_1) & & \vdots \\ \vdots & & \sin(a_{n-1} + a_n) \\ \sin(a_n + a_1) & \sin(a_n + a_2) & \dots & \sin(a_n + a_n) \end{vmatrix}$$

$$\begin{vmatrix} 1 & \dots & \dots & 1 \\ \cos a_1 & \dots & \dots & \cos a_n \\ \vdots & & & \vdots \\ \cos((n-1)a_1) & \dots & \dots & \cos((n-1)a_n) \end{vmatrix}$$

2.4 Déterminant de la transposition

Soit φ l'application de $\mathcal{M}_n(\mathbb{K})$ dans lui-même qui à la matrice M associe sa transposée. Calculer le déterminant de φ .

2.5 Calcul de déterminant

Soit $n \in \mathbb{N}^*$ et $p \in [1, n]$. On définit la matrice A_p de $\mathcal{M}_{p+1}(\mathbb{R})$ par :

$$A_{n,p} = \begin{pmatrix} 1 & \binom{n}{1} & \binom{n}{2} & \dots & \binom{n}{p} \\ 1 & \binom{n+1}{1} & \binom{n+1}{2} & \dots & \binom{n+1}{p} \\ \vdots & \vdots & & & \vdots \\ 1 & \binom{n+p}{1} & \binom{n+p}{2} & \dots & \binom{n+p}{p} \end{pmatrix}$$

Calculer $\det A_{n,p}$.