Math 421

Friday, September 19

Announcements

- Homework 2 due today make sure the submission has gone through and appears in gradescope!
- Information about makeup midterms have been posted – requires prior approval.

Proof Practice

Theorem. If x is a rational number and y is an irrational number, then x + y is irrational.

Discussion.

Determine proof method.

Use definitions.

Sketch out necessary algebra.

Proof.

Group Activity – Proof Practice

Theorem. If $x, y \in \mathbb{R}$, then |xy| = |x||y|.

Form groups of 4-6. Further divide in halves A & B. Each half proves 2 of the cases. Then regroup and compare.

Proof.

Case 1: Assume $x \ge 0$ and $y \ge 0$.

Case 2: Assume x < 0 and y < 0.

Case 3: Assume $x \ge 0$ and y < 0.

Case 4: Assume x < 0 and $y \ge 0$.

Distances

If $a, b \in \mathbb{R}$, then |a - b| is the distance between a and b.

Notice that if $c \in \mathbb{R}$, then

$$|a-b|=$$

$$\leq |a-c|+|c-b|$$

Proof Practice

Thm. Suppose $a, b \in \mathbb{R}$. Then a = b if and only if for every positive real number $\varepsilon > 0$ we have $|a - b| < \varepsilon$.

Discussion.

- What is this theorem saying in your own words? Do you believe it?
- What are the two conditional statements we will have to prove?

Proof Practice

Proof.

Chapter 1: Introduction

Section 4: The Completeness Axiom

Maximum & Minimum

Def. Let S be a nonempty subset of \mathbb{R} . If S contains a *largest* element, s_0 , then we call s_0 the **maximum of S** and write $s_0 = \max S$.

Activity - Find the max/min (if any!)

1. \mathbb{Z} 4. $\{1,2,3\}$

2. \mathbb{Q} **5.** (1,3)

3. \mathbb{N} 6. (a, b]

Upper & Lower Bounds

Def. Let S be a non-empty subset of \mathbb{R} . If a real number M satisfies $s \leq M$ for all $s \in S$, then M is an **upper bound** for S and the set S is **bounded above.**

Bounded

Def. Let S be a nonempty subset of \mathbb{R} . The set S is said to be **bounded** if there exist real numbers m and M such that $S \subseteq [m, M]$.

Activity – Is the set bounded?

1. \mathbb{Z}

4. {1,2,3}

2. \mathbb{Q}

5. (1,3)

3. N

6. (a, b]

Supremum & Infimum

Def. Let S be a nonempty subset of \mathbb{R} . If S is bounded above and S has a least upper bound, then we call it the **supremum of S** and denote it by $\sup S$.

Activity

Give an example of the following:

A bounded set that has a minimum value but no maximum value.

A set that has no least upper bound (or its least upper bound is infinite).

A set that contains its least upper bound.

Discussion Questions

❖ When is it true that $\sup S \in S$ and $\inf S \in S$?

❖ Are sup S and inf S unique?

Is the empty set bounded? Does it have a least upper bound? A greatest lower bound?

What does it mean for a set to be unbounded?

Activity

Find the supremum/infimum of the following sets (if they exist).

- 1. $\{n \in \mathbb{N} : n \text{ is prime and } n < 10\}$
- 2. $\{n^2 : n \in \mathbb{N}\}$
- 3. $\left\{\sin\frac{n\pi}{4}:n\in\mathbb{N}\right\}$
- 4. $\{x^3 : x > 3\}$
- 5. $\{n \in \mathbb{N} : 2 < n < 3\}$

Equivalent Definition

Thm. Let $s \in \mathbb{R}$ be an upper bound for a set $A \subseteq \mathbb{R}$. Then $s = \sup A$ if and only if for every $\varepsilon > 0$ there exits some $a \in A$ with $s - \varepsilon < a$.

Discussion Questions:

Describe what this theorem is saying in your own words.

Convince yourselves that this theorem is true, it might be helpful to think in terms of a specific example and then see how it can generalize.