Celestial Mechanics - Homework n. 1

Giacomo Menegatti

March 3 2024

1 Problem 1

The canonical equation of an ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

with the two foci at (c,0), (-c,0). The eccentricity is defined as c=ea, $0 \le e < 1$, and $a^2=b^2+c^2$ which gives $b=a\sqrt{1-e^2}$.

Now I apply the transformation in polar coordinates centered on the focus at (c,0).

$$\begin{cases} x = c + r\cos\theta \\ y = r\sin\theta \end{cases}$$

Substituting x and y in the equation gives

$$\frac{(c + r\cos\theta)^2}{a^2} + \frac{(r\sin\theta)^2}{a^2(1 - e^2)} = 1$$

that after some manipulating becomes

$$\frac{1 - e^2 \cos^2 \theta}{1 - e^2} + 2rc \cos \theta - a^2 (1 - e^2) = 0$$

This quadratic equation gives two solutions

$$r_{1,2} = \frac{-ae\cos\theta \pm a}{(1 - e\cos\theta)(1 + e\cos\theta)}(1 - e^2) = \pm \frac{a(1 - e^2)}{1 \mp e\cos\theta}$$

Now because r > 0, the correct solution is

$$r = \frac{a(1 - e^2)}{1 - e\cos\theta}$$

2 Problem 2

The Stokes theorem states that the integral of a vectorial field F calculated over a closed path C is equal to the integral of the curl of the field over the surface Σ enclosed by C

$$\int_{\Sigma} \nabla \times \boldsymbol{F} \cdot d\boldsymbol{\Sigma} = \oint_{C} \boldsymbol{F} \cdot d\boldsymbol{\Gamma}$$

In this case, I will use $d\Sigma = \hat{\boldsymbol{n}} dx dy$ with $\hat{\boldsymbol{n}} = \boldsymbol{e}_z$, so $\nabla \times \boldsymbol{F} \cdot d\Sigma = (\partial_x \boldsymbol{F}_y - \partial_y \boldsymbol{F}_x) \hat{\boldsymbol{n}}$. To calculate the area inside C I choose $\boldsymbol{F} = (-y, x, 0)$, so

$$\int_{\Sigma} (\partial_x \mathbf{F}_y - \partial_y \mathbf{F}_x) dx dy = \int_{\Sigma} 2 dx dy = 2A$$

By doing the change of coordinates

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

I get the differentiation

$$\begin{cases} dx = dr \cos \theta - r \sin \theta d\theta \\ dy = dr \sin \theta + r \cos \theta d\theta \end{cases}$$

1

and by substituting in the path integral $\oint_C \mathbf{F}_x dx + \mathbf{F}_y dy = \oint_C -y dx + x dy$ I obtain

$$\oint_C -rdr\sin\theta\cos\theta + r^2\sin^2\theta d\theta + rdr\cos\theta\sin\theta + r^2\cos^2\theta d\theta = \int_0^{2\pi} r^2d\theta$$

Now I choose as a coordinate basis (e_r, e_θ, e_z) . In this basis the radius r has representation (r, 0, 0), $dr = (0, rd\theta, 0)$ and the cross product between the two gives indeed $r^2d\theta e_z$, which proves that

$$A = \frac{1}{2} \int_0^{2\pi} \boldsymbol{r} \times d\boldsymbol{r}$$

For the ellipse $A = \frac{1}{2} \int_0^{2\pi} \frac{a^2(1-e^2)^2}{(1-e\cos\theta)^2} d\theta = \frac{a^2(1-e^2)^2}{2} \int_0^{2\pi} \frac{d\theta}{(1-e\cos\theta)^2}$. The indefinite integral $\int \frac{d\theta}{(1-e\cos\theta)^2}$ has been solved by Wolfram Alpha by substituting $u = \tan\frac{\theta}{2}$ and the solution is

$$F(\theta) = \frac{2e \tan\left(\frac{\theta}{2}\right)}{\left(1 - e^2\right) \left(e \tan^2\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\theta}{2}\right) - e + 1\right)} + \frac{2 \arctan\left(\frac{\sqrt{e+1} \tan\left(\frac{\theta}{2}\right)}{\sqrt{1 - e^2}}\right)}{\sqrt{1 - e^2} \left(1 - e^2\right)} + C$$

This integral function is not continue in $\theta = \pi$, so the value of the definite integral is $F(2\pi) - \lim_{\theta \to \pi^+} F(\theta) + \lim_{\theta \to \pi^-} F(\theta) - F(0)$. In 0 and $2\pi \tan \frac{\theta}{2} = 0$ and so $\arctan(...) = 0$, while $\lim_{\theta \to \pi^+} \tan \frac{\theta}{2} = -\infty$: the first part goes to zero while the second one gives $\frac{-\pi}{(1-e^2)^{1.5}}$. Similarly, $\lim_{\theta \to \pi^-} \tan \frac{\theta}{2} = +\infty$ and the result is $\frac{\pi}{(1-e^2)^{1.5}}$. Combining all of this together gives

$$A = \frac{a^2(1 - e^2)^2}{2} \left(\frac{2\pi}{(1 - e^2)^{1.5}}\right) = \pi a \cdot a\sqrt{1 - e^2} = \pi ab$$

3 Problem 3

Given the position at a given time $s(t) = \frac{g}{2\omega}(\sinh \omega t - \sin \omega t)$ and the value s(1) = 1, to find the value of ω a root finding algorithm is used with function $f(\omega) = \frac{\sinh \omega - \sin \omega}{\omega} - \frac{2}{g}$. The calculation are done in different ways in the python file attached. The result, with an accuracy of 10^{-8} , is $\omega = 0.782286418$.

4 Problem 4

Given the ODE

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$$

with m, c, k > 0, this is solved by a linear combination of solutions of the type $x = e^{zt}$, where z is a complex number.

The conditions on z are found by substituting the solution inside the ODE, giving

$$mz^2 + cz + k = 0 \implies z_{1,2} = \frac{-c \pm \sqrt{c^2 - 4mk}}{2m}$$

Using $\gamma = \frac{c}{2m}$ and $\omega_0^2 = \frac{k}{m}$, the solution becomes

$$z_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega_0^2}$$

Now there are three cases:

1. $\gamma > \omega_0$ ($c^2 > 4mk$): the roots are two real numbers, and the general solution is

$$x = Ae^{(-\gamma + \omega)t} + Be^{(-\gamma - \omega)t}$$

with $\omega = \sqrt{\gamma^2 - \omega_0^2}$ and A, B to be determined from the initial conditions $x(t_0)$ and $\dot{x}(t_0)$. The system is in the overdampened regime and quickly tends to zero.

2. $\gamma = \omega_0 \ (c^2 = 4mk)$: the solution has one root of molteplicity two, and the general solution is

$$x = (A + Bt)e^{-\gamma t}$$

The system is said to be critically dampened.

3. $\gamma < \omega_0$ ($c^2 < 4mk$): the roots are complex numbers $z_{1,2} = -\gamma \pm i\omega$, with $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Grouping together the imaginary parts in a trigonometric function, the general solution is

$$x = Ae^{-\gamma t}cos(\omega t + \phi)$$

The system is in the underdampened regime and oscillates around zero with increasingly smaller amplitude. If c = 0 the system reduces to a lossless harmonic oscillator.

In the graph are plotted several solution with initial conditions x(0) = 1, $\dot{x}(0) = 0$ for different values of $\eta = \frac{\gamma}{\omega_0} = \frac{c}{2\sqrt{mk}}$: for $\eta > 1$ the system is overdampened, for $\eta = 1$ is critically dampened, for $\eta < 1$ is underdampened. In this plot I used m = k = 1, so $\eta = \frac{c}{2}$.

5 Problem 5

The formula describing the relationship between the angles and the sides of a spherical triangle is known as the law of cosines.

Because the sides of the triangle are circle segments of circles with radius 1, the length of the segment is equal to the angle between the vectors e_i (expressed in radians). So $e_1 \cdot e_2 = \cos b$, $e_2 \cdot e_3 = \cos a$, $e_1 \cdot e_3 = \cos c$. Then the vectors $e_1 \times e_2$ and $e_1 \times e_3$ are each normal to the plane described by the two vectors and have norms $\sin b$ and $\sin c$. The angle α is the angle between the two planes found before, so

$$\cos \alpha = \frac{(\mathbf{e}_1 \times \mathbf{e}_2) \cdot (\mathbf{e}_1 \times \mathbf{e}_3)}{\sin b \sin c}$$

and by applying the rule $(\boldsymbol{a} \times \boldsymbol{b}) \cdot (\boldsymbol{c} \times \boldsymbol{d}) = (\boldsymbol{a} \cdot \boldsymbol{c}) \cdot (\boldsymbol{b} \cdot \boldsymbol{d}) - (\boldsymbol{a} \cdot \boldsymbol{d}) \cdot (\boldsymbol{b} \cdot \boldsymbol{c})$, this gives $\cos \alpha \sin b \sin c = 1 \cdot \cos a - \cos b \cos c$ which can be arranged in the final form

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$