

King Mongkut's University of Technology Thonburi

Midterm Exam of First Semester, Academic Year 2016

CPE 325 Computer Architecture and Systems

Computer Engineering Department, 3rd Yr.

Section: ABCD

Monday 19th September 2016

13.00-16.00

Instructions

- 1. This examination contains 5 problems, 10 pages (including this cover page).
- 2. The answers must be written in this exam paper. Please read the instructions carefully.
- 3. A calculator and a paper dictionary are allowed.
- 4. A single A4-sized note may be taken into the examination room. The note has to be handed in with the exam.

Students will be punished if they violate any examination rules. The highest punishment is dismissal.

This examination is designed by Assoc. Prof. Tiranee Achalakul, Ph.D. Asst. Prof. Marong Phadoongsidhi, Ph.D. Tel. 081-922-8466 Name: Student ID: Section:

Instruction: This exam has 5 questions for a total of 100 points. Write your NAME, ID, Section on EVERY page of the exam, else your question might not be graded. This is a closed-book exam. However, you are allowed to bring with you one A4 sheet of paper of notes. Hand in your note sheet with the exam before leaving the room. Calculator is allowed.

1. (25 points) -- Basic C & MIPS Instructions

For questions 1.1 and 1.2, assume that the variables f, g, h, i and j are assigned to registers \$s0, \$s1, \$s2, \$s3 and \$s4 respectively, and that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.

1.1 (5 pts) For a C statement B[j] = f + A[g+i], what is a corresponding MIPS assembly code?

1.2 (10 pts) Write a C code version of the following MIPS assembly code

addi \$t0, \$s7, 4 add \$t1, \$s7, \$zero sw \$t1, 0(\$t0) lw \$t0, 0(\$t0) add \$s3, \$t1, \$t0

- 1.3 (5 pts) What is a hexadecimal representation of the MIPS instruction lw \$t0, 16(\$s0)?
- 1.4 (5 pts) What instruction does the hexadecimal value 0xAD090012 represent?

Name: Student ID: Section:

2. (30 points) -- Conditionals and Procedures in MIPS Assembly

Given the following C code segment for question 2.1 and 2.2:

```
for (i = 0; i < n; i++) {
    if (A[i] < B[i] {
        t = A[i];
        A[i] = B[i];
        B[i] = t;
    }
}</pre>
```

Assume that registers \$a0 and \$a1 contain the base address of arrays A and B, respectively, and that the values of n, t and i are in registers \$s0, \$t0 and \$t1, respectively

2.1 (10 pts) Write a MIPS assembly version of this code. Do not forget to comment your code.

2.2 (10 pts) Assume that the loop starts at location 80000 in a one-word (4-byte) wide instruction memory. Convert your MIPS assembly code in question 2.1 to the MIPS machine language code (in decimal format). Enter your code in the table below.

	Main	ор	rs	rt	rd	shamt	funct
Instruction	address	ор	rs	rt	immed	diate	
		ор	addres	S			
	80000						
	80004						
							
					12124 - 1400 - 1 - 1		
							-
	-						
	-						
	L						

2.3 (10 pts) A function h(n) is defined recursively as follow:

$$h(n) = 1$$

if
$$n = 1$$

$$h(n) = 2 \times h(n-1) + 1$$

Write a recursive C function to calculate h(n), then convert this C function to a MIPS procedure. Make sure you follow the MIPS register name and procedure call convention (see the MIPS reference sheet at the back of the exam paper). Do not forget to comment your code.

- 3. (10 points) -- Computer Arithmetics

3.2 (5 pts) Show the 32-bit IEEE 754 binary representation of the decimal number -210.25 in single precision.

4. (20 points - Processor datapath) Consider the processor diagram below.

4.1 (10 pts) In order to allow the processor to execute the 'j target' instruction. Do we need to add more datapath(s) or component(s) to the MIPS diagram above? If so, draw new data path(s) and/or new components to the Figure above. Note that 'j' = jump to an address with no condition. It is a pseudo-direct addressing mode with the following implementation:

Take the top 4 bits of the PC, concatenate that with the 26 bits target address, and concatenate that with 00 to produce a 32 bit address (PC <- PC_{31-28} :: IR_{25-0} ::00).

łame:	Student ID:	Section

4.2 (10 pts) Explain the detailed data flow when the 'j target' instruction is executed.

- 5. (15 points) -- Pipelining
 - 5.1 (5 pts) How does the technique of pipelining increase performance? Explain the increased instruction throughput, compared with a multicycle non-pipelined processor. Does pipelining reduce the execution time for individual instructions? Why?

Name:	Student ID:	Section

dentify all data dependenci	be run on a MIPS pipeline processor of form IF-ID-EX- es between each instruction by checking the appropriate
sub \$t2, \$t1, \$t3	 ○ No dependencies ○ Read after Write dependency ○ Write after Write dependency Depending on which register?
sit \$t4, \$t5, \$t4	 ○ No dependencies ○ Read after Write dependency ○ Write after Write dependency Depending on which register?
• • • •	 ○ No dependencies ○ Read after Write dependency ○ Write after Write dependency Depending on which register?
lw \$t1, 80(\$t5)	 ○ No dependencies ○ Read after Write dependency ○ Write after Write dependency Depending on which register?
	dentify all data dependencies the instruction. sub \$t2, \$t1, \$t3 slt \$t4, \$t5, \$t4 beq \$t4, \$zero, A somewhere else in a code)

5.3 (5 pts) Draw a multiple-cycle diagram to show the optimal pipeline schedule using forwarding from EX or MEM stages to any other stage, then compute the pipeline CPI (cycle per instruction). Assume that branch is not taken.

Store Conditional

Store Halfword

Subtract Unsigned

Store Word

Subtract

MIPS Reference Data

CORE INSTRUCTION	ON SE	:T			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT			(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]	٠,	0 / 20 _{hex}
Add Immediate	addi	l	R[rt] = R[rs] + SignExtImm	(1,2)	$8_{ m hex}$
Add Imm. Unsigned	addiu	1	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	chex
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	ì	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hox}
Jump	j	J	PC=JumpAddr	(5)	2 _{bex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{bex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[r]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtlmm](15:0)}	(2)	25 _{hex}
Load Linked	11	1	R[rt] = M[R[rs]+SignExtIrnm]	(2,7)	30 _{hex}
Load Upper Imm.	lui	3	R[rt] = {imm, 16'b0}		f _{hex}
Load Word	lw	i	R[rt] = M[R[rs] + SignExtImm]	(2)	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sitiu	1	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}
Set Less Than Unsig	.sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
Store Byte	da	j	$M[R[rs]+SignExtImm](7:0) \approx R[rt](7:0)$	(2)	28 _{hex}
			MODE TO STATE OF A STA		

1

R

sc

sw

subu

 $R \quad R[rd] = R[rs] - R[rt]$

R[rd] = R[rs] - R[rt]

subu R R[rd] = R[rs] - R[r] (7/25)
(1) May cause overflow exception
(2) SignExtImm = { 16{immediate[15]}, immediate }
(3) ZeroExtImm = { 16{ib'0}, immediate }
(4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 }
(5) JumpAddr = { PC+4[31:28], address, 2'b0 }
(6) Operands considered unsigned numbers (vs. 2's comp.)
(7) Atomic test&set pair; R[rt] = i if pair atomic, 0 if not atomic

M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0

M[R[rs]+SignExtImm](15:0) = R[rt](15:0)

M[R[rs]+SignExtImm] = R[rt]

BASIC INSTRUCTION FORMATS

R	opcode			rs			rt			rd	shamt		funct	
	31	26	25		21	20		16	15	11	10	6.5		0
ī	opcode			rs			rt				immedi	ate		
	31	26	25		21	20		16	15					0
J	opcode									ddress				
	31	26	25											0

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

ARITHMETIC CO	RE INS	STRU	CTION SET (2)	OPCODE
			•	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT		(Hex)
Branch On FP True		FI	if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False	bclf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0/-/-/1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; $Hi=R[rs]%R[rt]$ (6)	
FP Add Single	add.s	FR	F[fd]= F[fs] + F[ft]	11/10//0
FP Add Double	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$	11/11//0
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft])? 1:0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	•
Double	C.X.Q	rĸ	\{F[ft],F[ft+1]\})?1:0	11/11//y
			==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$	11/11//3
	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	mul.d	FR	${F[fd],F[fd+1]} \approx {F[fs],F[fs+1]}$	11/11/ 10
Double	mu1.a	rĸ	{F[n],F[n+1]}	11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double	sub.u	I'K	{F[ft],F[ft+1]}	11/11//1
Load FP Single	lwcl	I	F[rt]=M[R[rs]+SignExtImm] (2)	31/-/-/
Load FP	ldc1	ı	F[rt]=M[R[rs]+SignExtImm]; (2)	35///
Double	1401		F[rt+1]=M[R[rs]+SignExtlmm+4]	33//
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 //-/12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] \cdot R[rt]$	0///18
Multiply Unsigned	multu		$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith.	sra	R	R[rd] = R[rt] >> shamt	0///3
Store FP Single	swcl	I	M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP	sdc1	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d///
Double		_	M[R[rs]+SignExtImm+4] = F[rt+1]	

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 2	20 16	15 14	10 6	5 0
FI	opcode	fmt	A		immediat	
	31 26	35 3	20 1.6	15		^

PSEUDOINSTRUCTION SET

38_{hex}

29_{bex} (2) (2) 2b_{hex}

0 / 23_{hex}

(1) 0/22_{hex}

(2,7)

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] <r[rt]) pc="Label</th"></r[rt])>
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \leq R[rt]) PC = Label$
Branch Greater Than or Equal	bge	if(R[rs] >= R[rt]) PC = Label
Load Immediate	11	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
Şat	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.