# Lecture 21

Dynamic Programming: Optimal Binary Search Trees & its Time Complexity.





### Binary Tree

Keys: 10, 20, 30, 40, 50, 60, 70





#### How many different Binary Search Trees?

> Keys: 10, 20, 30; For n=3 Keys, 5 different binary trees are possible





To find cost, add comparisons and divide it with total number of comparison i.e. for (a) (1 + 2 + 3)/3 = 2, (b) 2, (c) 5/3, (d) 2 and (e) 2

- > Cost of searching an element: Average Comparisons in a tree
- > Average number of comparison for (C) are less, so it is a balanced binary tree due its less height.



#### Optimal Binary Search Tree

- > In OBST, we consider frequencies of searching of Keys
  - Keys: 10, 20, 30
  - Freqs: 3, 2, 5 (Supposition of frequencies)
- To find the optimal tree, multiply freqs with comparisons, (as shown in (b))
- (a) 22, (b) 19 (c) 18 (d) 17 (e) 18



> Thus, Tree (d) is optimal due to minimum cost based on freqs.



|           | 1  | 2  | 3  | 4  |  |
|-----------|----|----|----|----|--|
| KEYS      | 10 | 20 | 30 | 40 |  |
| FREQUENCY | 4  | 2  | 6  | 3  |  |

Keys are from 1 onward, while table is 0 onward, suitable for formula



| i∖j | 0   | 1 | 2   | 3   | 4   | l=j-i=0 | l, j  | C[0, 0] | C[1, 1] | C[2, 2] | C[3, 3] | C[4, 4] |
|-----|-----|---|-----|-----|-----|---------|-------|---------|---------|---------|---------|---------|
| 0   | 0   |   |     |     |     | 0-0     | (0,0) | 0       | 0       |         | 0       | 0       |
| 1   |     | 0 | 3 4 | 3 6 |     | 1-1     | (1,1) |         |         |         |         |         |
| 2   |     |   | 0   |     |     | 2-2     | (2,2) |         |         |         |         |         |
| 3   | 100 |   | 3 4 | 0   | 100 | 3-3     | (3,3) |         |         |         |         |         |
| 4   |     |   |     |     | 0   | 4-4     | (4,4) |         |         |         |         |         |
|     |     |   |     |     |     |         |       |         |         |         |         |         |
| i∖j | 0   | 1 | 2   | 3   | 4   | l=j-i=1 | l, j  |         | C[0,1]  | C[1,2]  | C[2, 3] | C[3, 4] |
| 0   | 0   | 4 | 3 6 | 3.6 |     | 1-0     | (0,1) | Key     | 10      | 20      | 30      | 40      |
| 1   |     | 0 | 2   |     |     | 2-1     | (1,2) | freq    | 4       | 2       | 6       | 3       |
| 2   |     |   | 0   | 6   |     | 3-2     | (2,3) |         |         |         |         |         |
| 3   |     |   |     | 0   | 3   | 4-3     | (3,4) |         |         |         |         |         |
| 4   | 15  | 2 | 34  | 340 | 0   |         |       |         |         |         |         |         |















| i\j | 0       | 1        | 2        | 3       | 4        | l=j-i=4    | l,j        | 1/4         | 1            | 2        | 3           | 4        | w(0,4)        |      |
|-----|---------|----------|----------|---------|----------|------------|------------|-------------|--------------|----------|-------------|----------|---------------|------|
| 0   | 0       | 4        | 8^1      | 20^3    | 26^3     | 4-0        | (0,4)      | Key         | 10           | 20       | 30          | 40       | 15            |      |
| 1   |         | 0        | 2        | 10^3    | 16^3     |            |            | freq        | 4            | 2        | 6           | 3        | 15            |      |
| 2   |         |          | 0        | 6       | 12^3     |            |            |             |              |          |             |          |               |      |
| 3   |         |          |          | 0       | 3        |            |            |             |              |          |             |          |               |      |
| 4   |         | 111111   |          |         | 0        |            |            |             |              |          |             |          |               |      |
|     | ^3 show | vs the n | ode as r | ninimu  | m cost f | or a given | tree       |             |              |          |             |          |               |      |
|     |         |          |          | C[0,4]= | min { C[ | 0,0]+C[1,4 | l]+w[0,4], | C[0,1]+C[2  | 2,4]+w[0,4], | C[0,2]+C | [3,4]+w[0,4 | ], C[0,3 | ]+C[4,4]+w[0, | ,4]} |
|     |         |          |          | C[0,4]= | min{0+1  | 16+15, 4+1 | 2+15, 8+3  | +15, 20+0+1 | .5}          |          |             |          |               |      |
|     |         |          |          | C[0,4]= | min{31,  | 31, 26, 35 | }          |             |              | w[1,4]=  | 2+6+3=11    |          |               |      |
|     |         |          |          | C[0,4]= | 26       |            |            |             | Root is      | 3 here   |             |          |               |      |



## Optimal Binary Search Tree

| i∖j | 0 | 1 | 2   | 3    | 4    |
|-----|---|---|-----|------|------|
| 0   | 0 | 4 | 8^1 | 20^3 | 26^3 |
| 1   |   | 0 | 2   | 10^3 | 16^3 |
| 2   |   |   | 0   | 6    | 12^3 |
| 3   |   |   |     | 0    | 3    |
| 4   |   |   |     |      | 0    |







#### Optimal binary search trees

```
> n identifiers : a_1 < a_2 < a_3 < \dots < a_n
P_i, 1 \le i \le n : the probability that a_i is searched.
Q_i, 1 \le i \le n : the probability that x is searched where a_i < x < a_{i+1} (a_0 = -\infty, a_{n+1} = \infty).
\sum_{i=1}^n P_i + \sum_{i=1}^n Q_i = 1
```





■The expected cost of a binary tree:

$$\sum_{n=1}^{n} P_{i} * level(a_{i}) + \sum_{n=0}^{n} Q_{i} * (level(E_{i}) - 1)$$

■The level of the root: 1



#### The dynamic programming approach

- > Let C(i, j) denote the cost of an optimal binary search tree containing  $a_i, ..., a_i$ .
- The cost of the optimal binary search tree with a<sub>k</sub> as its root:

$$C(1,n) = \min_{1 \le k \le n} \left\{ P_k + \left[ Q_0 + \sum_{i=1}^{k-1} (P_i + Q_i) + C(1,k-1) \right] + \left[ Q_k + \sum_{i=k+1}^{n} (P_i + Q_i) + C(k+1,n) \right] \right\}$$



#### General formula



$$\begin{split} C(i,j) &= \min_{i \leq k \leq j} \bigg\{ P_k + \bigg[ Q_{i-1} + \sum_{m=i}^{k-1} \big( P_m + Q_m \big) + C(i,k-1) \bigg] \\ &+ \bigg[ Q_k + \sum_{m=k+1}^{j} \big( P_m + Q_m \big) + C(k+1,j) \bigg] \bigg\} \\ &= \min_{i \leq k \leq j} \bigg\{ C(i,k-1) + C(k+1,j) + Q_{i-1} + \sum_{m=i}^{j} \big( P_m + Q_m \big) \bigg\} \end{split}$$





#### Computation relationships of subtrees

 $\rightarrow$  e.g. n=4



> Time complexity: O(n³)
when j-i=m, there are (n-m) C(i, j)'s to compute.
Each C(i, j) with j-i=m can be computed in O(m) time.

$$O(\sum_{1 \le m \le n} m(n-m)) = O(n^3)$$



# Algorithm OBST and its time complexity

$$T(n) = \sum_{m=1}^{n} \sum_{i=1}^{n} \sum_{j=i}^{\infty} \Theta(1)$$

$$= \sum_{m=1}^{n} \sum_{i=1}^{n-m+1} \sum_{m=1}^{n} n^{2}$$

$$= \sum_{m=1}^{n} \sum_{i=1}^{n} n = \sum_{m=1}^{n} n^{2}$$

$$= \Theta(n^{3})$$

```
Algorithm OBST(p, q, n)
// e[1...n+1, 0...n ] : Optimal sub tree
// w[1...n+1, 0...n] : Sum of probability
// root[1...n, 1...n] : Used to construct OBST
for i \leftarrow 1 to n + 1 do
    e[i, i-1] \leftarrow qi-1
    w[i, i-1] \leftarrow qi-1
end
for m + 1 to n do
    for i \leftarrow 1 to n - m + 1 do
        j ← i + m - 1
  e[i, j] ← ∞
     w[i, j] + w[i, j - 1] + pj + qj
       for r ← i to j do
        t = e[i, r - 1] + e[r + 1, j] + w[i, j]
            if t < e[i, j] then
                 e[i, j] + t
                root[i, j] + r
            end
        end
    end
end
return (e, root)
```

# Thank You!!!

Have a good day

