Supplementary File

Fig. S1. Relationship between $\tilde{\mathcal{A}}$ and \mathcal{P} in Eq. 8.

Fig. S2 A snapshot of restorative sampling of UR3's

Fig. S3 Six kinds of unseen objects.

```
Algorithm A1 Restorative Sampling
1:
       Capture I_i and obtain O_i.
2:
       Obtain G_i given O_i.
3:
       // Perform restorative manipulation M_i next.
4:
       Gripper moves first to T_i^l and rotates \phi_i around Z-axis.
5:
       Gripper moves to T_i along T_i.
6:
       Close Gripper.
7:
       if the grasp is successful then
          Gripper moves backward to T_i^l along \mathcal{T}_i^-.
8:
9:
          if the object is held during the return then
10:
             Places the object back to T_i along T_i.
11:
             Set g_i = 1, capture \mathcal{O}_i^+, and calculate \mathcal{S}_i.
12:
             Perform G_i again to take the object to its goal
             place.
13:
          else
14:
             Set g_i = 0 and S_i = 0.
15:
16:
17:
          Set g_i = 0 and S_i = 0.
18:
19:
       Robot goes backs to its home.
20:
       Store (\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i) into D.
```

```
Algorithm A2 Training of FAGL
1:
         Initialize RA-Net Q_{\theta} and Target RA-Net Q_{\theta}-.
2:
         Set hyperparameters \alpha = 10^{-3}, B=16, step_{max} =
          2500, \epsilon = 0.5, \tau = 3, step = 0, and D = \emptyset.
3:
         while step < step_{max} do
4:
             Obtain \mathcal{O}_i.
5:
             \epsilon = explore\_schedule(), p = rand().
                     (argmaxQ_{\theta}(\mathcal{O},\mathcal{G}) \quad if \ p \leq 1 - \epsilon)
6:
                      7:
             Obtain \mathcal{A}_i, g_i, and \mathcal{S}_i(\hat{\mathcal{A}}_i, g_i).
             D = D \cup \{(\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i)\}.
8:
9:
             step = step + 1.
10:
             if |D| > B then
11:
                 Random sample \{(\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i)\}_{i \in [0,B]} in D.
                 Update Q_{\theta}(\mathcal{O}, \mathcal{G}) on \{(\mathcal{O}_i, \mathcal{G}_i, \mathcal{S}_i)\}_{i \in [0,B]}.
12:
13:
14:
             if step \% \tau == 0 then
                \theta^- = \theta.
15:
16:
             end if
17
             end while
18:
         Q_{\theta}^*(\mathcal{O},\mathcal{G}) = Q_{\theta}(\mathcal{O},\mathcal{G}).
19:
         Output: optimal action-value function Q_{\theta}^*(\mathcal{O}, \mathcal{G}).
```

TABLE S-I A TABLE OF ABBREVIATIONS

A Table of Abbreviations									
${\cal P}$	Disturbance by a grasp (DG) to the environment								
${\mathcal G}$	A grasp								
T=(x,y,z)	The position of a grasp								
ϕ	rotation around Z-axis								
ω	Initial distance between the two fingers of a								
	gripper								
I_{hc}^-	Color heightmap of the scene before restorative								
	manipulation								
I_{hc}^+	Color heightmap of the scene after restorative								
	manipulation								
${\mathcal M}$	A restorative manipulation								
${\mathcal B}$	An OTSU operation								
${\mathcal A}$	An antipodal degree of a grasp (ADG)								
O	Observation space								
${\mathcal G}$	Robotic grasp space								
${\mathcal R}$	Feedback (rewards)								
ho	A transition probability								
${\cal H}$	The maximum step till termination								
$\hat{\mathcal{A}}$	A discrete version of ADG								
${\mathcal T}$	Trajectory $\mathcal T$								
\mathcal{T}^-	The inverse trajectory of \mathcal{T}								
Н	Weight of I_{hc}^- And I_{hc}^+								
W	Height of I_{hc}^- and I_{hc}^+								
I	An RGB-D image								
I_c	An RGB image								
I_d	A depth map								
g	Grasp flag								
$\mathcal C$	Destruction tolerance								
r	A primary basic reward								
e	A secondary basic reward								
\mathcal{Q}	A multi-channel grasp affordance								
q	Affordance planes								
I_{hc_i}	Color heightmap images								
I_{hd}	Depth heightmap images								
\mathcal{V}_{sd}	A shallow depth feature								
\mathcal{V}_{sc}^{sa}	A shallow color feature								
\mathcal{V}_m	A latent feature								

TABLE S-II
ABLATION EXPERIMENT ON FAGL

	7.02.11011.271.21111.2111.011.71.02												
Scenarios				Single object			Scattered objects			Cluttered objects			
Method	Fusion module	Decoder module	Augmented feedback	GSR	AADG	F	GSR	AADG	F	GSR	AADG	F	
FAGL(a)	×	×	×	0.55	0.31	0.43	0.54	0.18	0.36	0.39	0.11	0.25	
FAGL(b)	$\sqrt{}$	×	×	0.84	0.32	0.58	0.76	0.24	0.50	0.69	0.15	0.42	
FAGL(c)	$\sqrt{}$	$\sqrt{}$	×	0.92	0.29	0.61	0.87	0.23	0.55	0.80	0.13	0.47	
FAGL	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0.93	0.89	0.91	0.87	0.66	0.77	0.82	0.56	0.69	