GSE118020 Sample1 RAW

KimPankyung 2022-08-12

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com (http://rmarkdown.rstudio.com).

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
##github. (2020). GitHub. Retrieved from https://github.com/MarcElosua/SPOTlight/tree/spotlight-0.1.7
#Load packages to CreateSeuratObject
library(SingleCellExperiment)
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
      colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
      colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
      colDiffs, collQRDiffs, collQRs, colLogSumExps, colMadDiffs,
##
      colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
      colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
      colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
      colWeightedMeans, colWeightedMedians, colWeightedSds,
##
      rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##
      rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
      rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
      rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
##
      rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
      rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
      rowWeightedSds, rowWeightedVars
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
      IQR. mad. sd. var. xtabs
## The following objects are masked from 'package:base':
      anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
      dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
      grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
      order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
      rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
      union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
## Attaching package: 'S4Vectors'
```

```
## The following objects are masked from 'package:base':
##
      expand.grid, I, unname
## Loading required package: IRanges
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
##
      windows
## Loading required package: GenomeInfoDb
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
      Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
      'citation("Biobase")', and for packages 'citation("pkgname")'.
##
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
      rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
      anyMissing, rowMedians
library(Seurat)
## Attaching SeuratObject
## Attaching sp
## Attaching package: 'Seurat'
## The following object is masked from 'package:SummarizedExperiment':
##
##
      Assays
library(tidyverse)
## —— Attaching packages
## tidyverse 1.3.2 ---
## \checkmark ggplot2 3.3.6 \checkmark purrr 0.3.4
## √ tibble 3.1.8
                     √ dplyr 1.0.9
                    ✓ upry:
✓ stringr 1.4.0
## J tidyr 1.2.0 J stringr 1.4.0 ## J readr 2.1.2 J forcats 0.5.1
## -- Conflicts -
                                                                                                  — tidyverse_conflicts() —
## X dplyr::collapse() masks IRanges::collapse()
## × dplyr::count()
mathixStats::co
masks !Ranges::desc()
## X tidyr::expand()
## X dolvr:::
                        masks S4Vectors::expand()
## × dplyr::filter()
                        masks stats::filter()
## × dplyr::first()
                        masks S4Vectors::first()
## × dplyr::lag()
                        masks stats::lag()
## X ggplot2::Position() masks BiocGenerics::Position(), base::Position()
## X purrr::reduce() masks GenomicRanges::reduce(), IRanges::reduce()
## X dplyr::rename()
                        masks S4Vectors::rename()
## X dplyr::slice()
                        masks | Ranges::slice()
```

```
library(Matrix)
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
##
## The following object is masked from 'package:S4Vectors':
##
       expand
library(scales)
## Attaching package: 'scales'
##
## The following object is masked from 'package:purrr':
##
##
## The following object is masked from 'package:readr':
##
##
       col_factor
library(cowplot)
library(RCurl)
## Attaching package: 'RCurl'
##
## The following object is masked from 'package:tidyr':
##
##
       complete
#Download the file in GEO, and create the counts file for CreateSeuratObject
#set the path
getwd()
## [1] "D:/pankyung/intern_back_up/sub/GSE118020_RAW"
data_dir <- 'D:/pankyung/intern_back_up/sub/GSE118020_RAW'
#The list should show barcodes.tsv, features.tsv, and matrix.mtx
list.files(data_dir)
## [1] "barcodes.tsv.gz"
                                            "cortex_sc_a.rds"
## [3] "cortex_sc_a_o.rds"
                                            "features.tsv.gz"
## [5] "GSE118020_RAW.R"
                                            "GSE118020_RAW.Rmd"
## [7] "GSE118020_RAW_nn.R"
                                            "GSE118020_RAW_sam1_bar_feat_mat.R"
## [9] "markers_sc_a.rds"
                                            "markers_sc_a_o.rds"
## [11] "matrix.mtx.gz"
                                            "posterior.R"
## [13] "spotlight_ls_a.rds"
                                            "spotlight_ls_a_o.rds"
## [15] "spotlight_ls_p_o.rds"
                                            "spotlight_ls_sss_o.rds"
## [17] "tissue_lowres_image(2).png"
                                            "tissue_lowres_image.png"
#Use Read10X to create expression matrix
expression_matrix <- Read10X(data.dir = data_dir)
#Set the min.cells, min.features number for samples
cortex_sc_a = CreateSeuratObject(counts = expression_matrix, project='seurat', min.cells = 3,min.features = 200)
#This is the way that I can create contents in meta.data
cortex_sc_a[["percent.mt"]]<-PercentageFeatureSet(cortex_sc_a, pattern ="^MT-")</pre>
cortex_sc_a <- FindVariableFeatures(cortex_sc_a, selection.method = "vst", nfeatures = 2000)</pre>
#Bring the gene name
all.genes <- rownames(cortex_sc_a)
#Run RunPCA, RunUMAP to create object for SPotlight
set.seed(0812) #Set seed
cortex_sc_a <- Seurat::SCTransform(cortex_sc_a, verbose = FALSE) %>%
 Seurat::RunPCA(., verbose = FALSE) %>%
 Seurat::RunUMAP(., dims = 1:30, verbose = FALSE)
```

```
## Warning: Invalid name supplied, making object name syntactically valid. New
## object name is Seurat..SCTransform.RNA; see ?make.names for more details on
## syntax validity
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the c
osine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
#Run FindNeighbors, FindClusters to create object for SPotlight
cortex_sc_a <- FindNeighbors(cortex_sc_a, dims=1:10)</pre>
## Computing nearest neighbor graph
## Computing SNN
cortex_sc_a <- FindClusters(cortex_sc_a,resolution=0.5)</pre>
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
##
## Number of nodes: 6081
## Number of edges: 195802
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9209
## Number of communities: 14
## Elapsed time: 0 seconds
#Use levels to find out how many clusters in Seurat object
d<-levels(cortex_sc_a)
#Use for loop to name each cluster easily
dl<-length(d)-1 #Cluseter starts at 0
nx<-c()
for (i in 0:dl){
 cc<-paste0('Ty',i)
 nx<-c(nx,cc)
#In this case, cell type will be just number, but if you can give cell name
#Name the levels with cell type
new.cluster.ids <- nx
names(new.cluster.ids) <- levels(cortex_sc_a) #Match the levels with cell type</pre>
cortex_sc_a <- RenameIdents(cortex_sc_a, new.cluster.ids) #Change the level of each ident to cell type
#Add the subclass chapter in meta.data
cortex_sc_a[["subclass"]] <- as.character(Idents(object = cortex_sc_a))</pre>
#Save the cortex_sc_a in rds file
saveRDS(object = cortex_sc_a,file = "D:/pankyung/intern_back_up/sub/GSE118020_RAW/cortex_sc_a.rds")
cluster_markers_all_a <- Seurat::FindAllMarkers(object = cortex_sc_a,</pre>
                                              assav = "SCT".
                                               slot = "data"
                                               verbose = TRUE,
                                              only.pos = TRUE)
## Calculating cluster Ty0
## Calculating cluster Ty1
## Calculating cluster Ty2
## Calculating cluster Ty3
## Calculating cluster Ty4
## Calculating cluster Ty5
## Calculating cluster Ty6
## Calculating cluster Tv7
## Calculating cluster Ty8
## Calculating cluster Ty9
## Calculating cluster Tv10
## Calculating cluster Ty11
## Calculating cluster Ty12
## Calculating cluster Ty13
```

```
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
      between, first, last
##
## The following object is masked from 'package:purrr':
##
##
##
## The following object is masked from 'package:SummarizedExperiment':
##
      shift
##
## The following object is masked from 'package:GenomicRanges':
##
##
##
## The following object is masked from 'package: |Ranges':
##
##
       shift
## The following objects are masked from 'package:S4Vectors':
##
      first, second
```

```
library(Seurat) #Single cell data package
library(SeuratData)
```

```
## — Installed datasets — SeuratData v0.2.2 — ## ✓ stxBrain 0.1.1 ## ## — Key — Key — ## ✓ Dataset loaded successfully ## > Dataset built with a newer version of Seurat than installed ## ? Unknown version of Seurat installed
```

```
library(dplyr) #data structure package
library(gt)
library(SPOTlight)
library(igraph)
```

```
## Attaching package: 'igraph'
## The following objects are masked from 'package:dplyr':
##
      as_data_frame, groups, union
##
## The following objects are masked from 'package:purrr':
##
##
       compose, simplify
##
## The following object is masked from 'package:tidyr':
##
##
      crossing
##
## The following object is masked from 'package:tibble':
##
##
## The following object is masked from 'package:GenomicRanges':
##
##
##
## The following object is masked from 'package: |Ranges':
##
##
      union
##
## The following object is masked from 'package:S4Vectors':
##
##
## The following objects are masked from 'package:BiocGenerics':
##
##
       normalize, path, union
##
## The following objects are masked from 'package:stats':
##
      decompose, spectrum
##
## The following object is masked from 'package:base':
##
      union
```

```
library(RColorBrewer)
library(NMF)
```

```
## Loading required package: pkgmaker
## Loading required package: registry
## Attaching package: 'pkgmaker'
##
## The following object is masked from 'package:S4Vectors':
##
##
       new2
## Loading required package: rngtools
## Loading required package: cluster
## NMF - BioConductor layer [OK] | Shared memory capabilities [NO: windows] | Cores 15/16
## Attaching package: 'NMF'
##
## The following objects are masked from 'package:igraph':
##
##
       algorithm, compare
## The following object is masked from 'package:S4Vectors':
##
##
       nrun
```

```
library(magrittr)
```

```
##
## Attaching package: 'magrittr'
##
## The following object is masked from 'package:purrr':
##
## set_names
##
## The following object is masked from 'package:tidyr':
##
## extract
##
## The following object is masked from 'package:GenomicRanges':
##
## subtract
```

subclass


```
#Check the cell type
cortex_sc_a@meta.data %>%
dplyr::count(subclass) %>%
gt::gt(.[-1, ]) %>%
gt::tab_header(
   title = "Cell types present in the reference dataset",
) %>%
gt::cols_label(
   subclass = gt::html("Cell Type")
)
```

```
## Warning in !is.null(rowname_col) && rowname_col %in% colnames(data_tbl):
## 'length(x) = 2 > 1' in coercion to 'logical(1)'
```

Cell types present in the reference dataset

• • •	
Cell Type	n
Ту0	1050
Ty1	1003

Cell types present in the reference dataset				
Ty10	132			
Ty11	130			
Ty12	91			
Ty13	31			
Ty2	864			
Ту3	835			
Ty4	482			
Ту5	477			
Ту6	382			
Ту7	255			
Ту8	196			
Ту9	153			

```
#I already found the markers at line 70
#Load markers
cluster_markers_all_a<- readRDS(file = "D:/pankyung/intern_back_up/sub/GSE118020_RAW/markers_sc_a.rds")

#SPOTlight Decomposition
set.seed(0812)
spotlight_ls_a <- spotlight_deconvolution(
    se_sc = cortex_sc_a,
    counts_spatial = anterior_a@assays$Spatial@counts,
    clust_vr = "subclass", # Variable in sc_seu containing the cell-type annotation
    cluster_markers = cluster_markers_all_a, # Dataframe with the marker genes
    cl_n = 100, # number of cells per cell type to use
    hvg = 3000, # Number of HVG to use
    ntop = NULL, # How many of the marker genes to use (by default all)
    transf = "uv", # Perform unit-variance scaling per cell and spot prior to factorzation and NLS
    method = "nsNMF", # Factorization method
    min_cont = 0 # Remove those cells contributing to a spot below a certain threshold
)
```

```
## [1] "Preparing Gene set"
## [1] "Normalizing count matrix"
## [1] "Seeding initial matrices"
## [1] "Training..."
## [1] "Time to train NMF model was 17.68mins"
## [1] "Deconvoluting spots"
                                                              0%
                                                            1%
 =
                                                            1 1%
                                                               2%
 |==
                                                            2%
                                                               3%
 |==
 |==
                                                               4%
                                                            4%
 |===
 |===
                                                               5%
 |====
                                                               5%
                                                               6%
                                                            |====
                                                               6%
 1====
                                                               7%
                                                               8%
 |====
  |----
                                                               8%
                                                               9%
 |=====
                                                               9%
                                                            1 10%
  |----
                                                            1 11%
 |----
                                                            | 11%
 |----
                                                            12%
                                                            12%
                                                            13%
                                                            14%
 |----
                                                            14%
                                                            15%
 |----
                                                            15%
                                                            16%
 |----
                                                            16%
                                                            | 17%
 |-----
  |-----
                                                            18%
                                                            18%
                                                            1 19%
                                                            1 19%
  |----
                                                            20%
                                                            | 21%
  |-----
                                                            | 21%
  1=========
                                                            | 22%
```

3:51	GSE118020_Sampl
	22%
	23%
	24%
	24%
	25%
	25%
	26%
	26%
	27%
	28%
	28%
	29%
[29%
	30%
	31%
	31%
	32%
 	32%
 	33%
 	34%
 	34%
 	35%
 	35%
	36%
 	36%
 	37%
 	38%
	38%
 	39%
 	40%
 	41%
 	42%
======= 	42%
 	43%
 	44%
 	44%
 	45%
 	45%
 	46%
	46%

3:51	1	GSE118020	_sam
 ===		1	47%
 ===		1	48%
 ===		1	48%
 ===		1	49%
 ===		I	49%
 ===		I	50%
 ===		I	51%
 ===		I	51%
 ===		I	52%
 ===		I	52%
 ===		I	53%
 ===		I	54%
 -==		1	54%
 -==			55%
 -==		·	55%
į			56%
į		' 	56%
į			
İ		l	57%
į		ı	58%
===			58%
=== 		I	59%
=== 		I	59%
=== 		I	60%
=== 		I	61%
=== 		I	61%
=== 		I	62%
=== 		I	62%
=== 		1	63%
 ===		I	64%
 ===		I	64%
 ===		I	65%
===		I	65%
===		1	66%
===		I	66%
===		I	67%
===		1	68%
-==		1	68%
 ===		1	69%
 ===		1	69%
 ===		1	70%
 ===		1	71%
 ===		1	71%
		•	

3:51	10020	_oan
	ı	72%
	ı	72%
 	, I	73%
	'	74%
		74%
 		75%
 	l	75%
	I	76%
	I	76%
	I	77%
	I	78%
	I	78%
	1	79%
	I	79%
[=====================================	1	80%
 	1	81%
	I	81%
	ı	82%
	ı	82%
 	·	83%
	, I	84%
 	'	84%
į		
		85%
	I	85%
 	I	86%
	I	86%
	I	87%
	I	88%
	I	88%
	I	89%
	1	89%
	I	90%
	I	91%
[1	91%
 	I	92%
 	I	92%
 	I	93%
 	I	94%
 	1	94%
 	, I	95%
 		95%
	-	96%

```
saveRDS(object = spotlight_ls_a, file = here::here("D:/pankyung/intern_back_up/sub/GSE118020_RAW/spotlight_ls_a.rds"))
#Read spotlight object object
spotlight_ls_a <- readRDS(file = here::here("D:/pankyung/intern_back_up/sub/GSE118020_RAW/spotlight_ls_a.rds"))
nmf_mod <- spotlight_ls_a[[1]]
decon_mtrx <- spotlight_ls_a[[2]]

#Assess deconvolution
h <- NMF::coef(nmf_mod[[1]])
rownames(h) <- paste("Topic", 1:nrow(h), sep = "_")
topic_profile_plts_a <- SPOTlight::dot_plot_profiles_fun(
h = h,
    train_cell_clust = nmf_mod[[2]])

topic_profile_plts_a[[2]] + ggplot2::theme(
    axis.text.x = ggplot2::element_text(angle = 90),
    axis.text = ggplot2::element_text(size = 12))</pre>
```

NMF: Topic profiles by cell type

#Look at which genes are the most important
basis_spotlight_a <- data.frame(NMF::basis(nmf_mod[[1]]))

colnames(basis_spotlight_a) <- unique(stringr::str_wrap(nmf_mod[[2]], width = 30))

basis_spotlight_a %>%
 dplyr::arrange(desc(TyO)) %>%
 round(., 5) %>%
 DT::datatable(., filter = "top")

Show 10	✓ entries						Search:			
	Ту0	Ty1	Ty10	Ty11	Ty12	Ty13	Ty2	Ту3	Ty4	Ty5
Tac1	0.00155	0	0	0	0	0	0	0	0	0.00005
ltgb1bp1	0.00148	0.00005	0.00002	0.00007	0	0	0.00008	0.00101	0	0.0002
Fkbp1a	0.00146	0	0.00015	0	0	0	0.00032	0.00145	0	0.00039
Arpp21	0.00146	0	0	0	0	0	0	0.00139	0	0.00006
Chn1	0.00146	0	0	0.00004	0	0	0	0.00139	0	0.0002
Pdyn	0.00146	0	0	0.00004	0	0	0	0	0	0.0002
Calm2	0.00145	0	0	0.00052	0.00002	0	0	0.00135	0	0.00018
Ppp1r1b	0.00141	0	0	0	0	0	0	0.00123	0	0.0001
Ramp1	0.00139	0.00035	0	0	0	0	0	0.00103	0	C
Ap1s1	0.00137	0	0.00029	0.00007	0	0	0	0.00125	0	0.00031

```
#Visualization
# This is the equivalent to setting min_cont to 0.04
decon_mtrx_sub <- decon_mtrx[, colnames(decon_mtrx) != "res_ss"] #Exclude res_ss column</pre>
{\tt decon\_mtrx\_sub} [{\tt decon\_mtrx\_sub} < 0.08] < -0 \ {\tt \#Convert} \ {\tt the} \ {\tt value} \ {\tt that} \ {\tt smaller} \ {\tt that} \ 0.08 \ {\tt to} \ {\tt o}
decon_mtrx <- cbind(decon_mtrx_sub, "res_ss" = decon_mtrx[, "res_ss"]) #Add res_ss column again
rownames(decon_mtrx) <- colnames(anterior_a) #Give the spot information
#I guess, with single cell data, we can classify the Ty9, but there is no such cell type in tissue which is used in reference
#I used different single cell data in this project, so probably it can happen
decon_df_a <- decon_mtrx %>%
  data.frame() %>%
  tibble::rownames to column("barcodes")
anterior_a@meta.data <- anterior_a@meta.data %>%
 tibble::rownames_to_column("barcodes") %>%
  dplyr::left_join(decon_df_a, by = "barcodes") %>%
  tibble::column_to_rownames("barcodes")
#See the Specific cell-types plot
#View the whole cell type
nx
```

```
## [1] "Ty0" "Ty1" "Ty2" "Ty3" "Ty4" "Ty5" "Ty6" "Ty7" "Ty8" "Ty9"
## [11] "Ty10" "Ty11" "Ty12" "Ty13"
```

```
#Select cell types
nxs<-nx[1:4] #In this case, Ty1 to Ty4

#Draw the plot
Seurat::SpatialFeaturePlot(
  object = anterior_a,
  features = c(nxs),
  ncol = 2, #Set the display
  alpha = c(0.1, 1)) #Set the opacity</pre>
```



```
## Warning in SPOTlight::spatial_scatterpie(se_obj = anterior_a, cell_types_all =
## cell_types_all_a, : Using slice anterior1
```


Warning in SPOTlight::spatial_scatterpie(se_obj = anterior_a, cell_types_all = ## cell_types_all_a, : Using slice anterior1

