Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный исследовательский Томский политехнический университет

Школа – ИШИТР

Направление – Информатика и вычислительная техника

Определение момента инерции тела по методу крутильных колебаний

Лабораторная работа № 1-06

По дисциплине «Физика»

Исполнитель		
Студент, гр. (8В32)		
(укажите свои инициалы)	· · · · · · · · · · · · · · · · · · ·	
(подпись)	(дата)	
Руководитель		
Филимонова В. С.	(70,777,01)	(7070)
	(подпись)	(дата)

Томск 2024

ЛАБОРАТОРНАЯ РАБОТА 1-06

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА ПО МЕТОДУ КРУТИЛЬНЫХ КОЛЕБАНИЙ

Цель работы: определение момента инерции тела методом крутильных колебаний, проверка справедливости теоремы Гюйгенса—Штейнера.

Приборы и принадлежности: лабораторная установка, грузы сферической формы, электронный секундомер, штангенциркуль, весы и разновески.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Поступательное и вращательное движения являются частными проявлениями общего процесса механического движения материи. Физическое единство отражается в аналогии математической формы записи законов, описывающих эти виды движения. Основной закон динамики поступательного движения описывается выражением

$$\mathbf{F} = \frac{d\mathbf{P}}{dt} \quad \text{или} \quad \mathbf{F} = m\mathbf{a} = m\frac{d^2\mathbf{r}}{dt^2} \quad . \tag{1}$$

Величина m — масса тела — выражает численно меру инертности тела, т.е. его способность изменять состояние поступательного движения под действием силы \mathbf{F} . Основной закон динамики вращательного движения твердого тела, вращающегося вокруг оси симметрии тела, записывается в виде

$$\mathbf{M} = \frac{d\mathbf{L}}{dt}$$
 или $\mathbf{M} = J\mathbf{\varepsilon} = J\frac{d^2\mathbf{\phi}}{dt^2}$, (1a)

где ${\bf L}$ – момент импульса тела; ${f \phi}$ – вектор углового перемещения; ${f \epsilon}$ – угловое ускорение; ${\bf M}$ – момент силы.

Коэффициент пропорциональности J носит название момента инерции. Момент инерции является мерой инерции тела во вращательном движении и определяет способность тела изменять состояние вращательного движения под действием момента силы \mathbf{M} . Размерность момента инерции в системе $\mathrm{CU}-[\mathrm{Kr}\cdot\mathrm{m}^2]$. Исходя из размерности момента инерции, можно дать определение момента инерции материальной точки относительно оси вращения в виде

$$J_i = m_i \ r_i^2 \,, \tag{2}$$

где r_i — радиус вращения материальной точки, а m_i — ее масса. Масса реального тела представляется в виде суммы масс материальных точек, его составляющих. Аналогично этому, момент инерции тела есть совокупность моментов инерции его частей, рассматриваемых как материальные точки:

$$J = \sum_{i} J_{i} . (3)$$

Для тел правильной геометрической формы суммирование (а в пределе – интегрирование) по (3) дает следующие результаты для моментов инерции,

вычисленных относительно оси, проходящей через центр симметрии этих тел:

обруч
$$J=mr^2;$$
 диск $J=rac{1}{2}mr^2;$ шар $J=rac{2}{5}mr^2;$

здесь r – радиус соответствующих тел, а m – их масса.

Рис. 1

Если необходимо рассчитать момент инерции тела относительно оси AA, не проходящей через центр симметрии, но параллельной ей (рис. 1), можно воспользоваться теоремой Гюйгенса—Штейнера: «Момент инерции тела J_{AA} относительно любой оси AA параллельной оси OO, проходящей через центр симметрии тела, равен моменту инерции J_{oo} этого тела относительно оси OO, сложенному с величиной $m\ell^2$; ℓ – рас-

стояние между осями AA и OO; m – масса тела

$$J_{AA} = J_{oo} + m\ell^2. (4)$$

Используя формулы (3) и (4), можно аналитически рассчитать момент инерции любого тела, условно разделяя его на составные части правильной геометрической формы и определяя расстояния, на которых они находятся от общей оси вращения тела. В случаях, когда аналитическое определение момента инерции затруднено сложностью формы тела или неоднородностью распределения массы, его определяют опытным путем, что является одной из целей настоящей работы.

ТЕОРИЯ МЕТОДА ОПРЕДЕЛЕНИЯ МОМЕНТА ИНЕРЦИИ ТВЕРДОГО ТЕЛА И ПРОВЕРКИ ТЕОРЕМЫ ГЮЙГЕНСА— ШТЕЙНЕРА

Тело, момент инерции которого необходимо определить относительно некоторой оси вращения OO, проходящей через центр симметрии C тела, жестко скрепляют с этой осью. Если концы оси фиксировать, тело с осью можно рассматривать как крутильный (торсионный) маятник (рис. 2). Выведенный из состояния равновесия маятник будет совершать колебания с периодом

 $T = 2\pi \sqrt{J/\kappa} \ . \tag{5}$

Здесь к (каппа) называется коэффициентом угловой жесткости или модулем кручения подвеса (оси). Численно к выражает величину момента силы, возникающего в материале при его закручивании на единичный угол. Для

тела, момент инерции J_{oo} которого необходимо определить в опыте, период колебаний будет иметь величину T_0

$$T_0 = 2\pi \sqrt{J_{oo}/\kappa} \,. \tag{5a}$$

Если коэффициент угловой жесткости известен, то J_{oo} легко определить из формулы (5a). Однако часто коэффициент угловой жесткости неизвестен. Тогда для определения момента инерции тела J_{oo} , чтобы исключить из формулы (5a) к, поступают следующим образом: добавляют к телу, момент инерции которого определяют, дополнительное тело правильной геометрической формы, момент инерции J которого относительно оси OO маятника легко вычислить по теореме Гюйгенса—Штейнера. Период колебаний такого усложненного маятника станет равным

$$T = 2\pi \sqrt{\frac{J + J_{oo}}{\kappa}} \,. \tag{6}$$

Из уравнений (5a) и (6) выражаем искомый момент инерции J_{oo}

$$J_{oo} = \frac{T_0^2}{T^2 - T_0^2} \cdot J \ . \tag{7}$$

Если в качестве дополнительного груза использовать два одинаковых шара, массы m_0 и радиуса r каждый, расположенных симметрично относительно оси маятника OO, то момент инерции J будет записан, применяя теорему Гюйгенса–Штейнера, в виде

$$J = \frac{2}{5}mr^2 + m\ell^2 \,. \tag{8}$$

Здесь m — общая масса двух шаров; ℓ — расстояние между осью OO и центром каждого шара.

С учетом (8) получаем формулу для искомого момента инерции

$$J_{00} = \frac{T_0^2}{T_1^2 - T_0^2} \left(\frac{2}{5}mr^2 + ml^2\right). \tag{9}$$

Подчеркнем, что формула (9) позволяет определить момент инерции J_{oo} крутильного маятника при условии, что теорема Гюйгенса — Штейнера справедлива. Чтобы убедиться в справедливости теоремы, проведем следующие рассуждения. Допустим, что с помощью устройства, изображенного на рис. 4, измерена зависимость периода колебаний маятника T с

дополнительными грузами шарообразной формы от расстояния ℓ между центрами шаров и осью OO. Построим график зависимости T^2 от ℓ^2 . Покажем, что если теорема Гюйгенса — Штейнера справедлива, этот график должен изображаться прямой (рис. 3), пересекающей ось ординат в точке

$$\left(\frac{4\pi^2}{\kappa}\frac{2}{5}mr^2 + \frac{4\pi^2}{\kappa}J_{oo}\right)$$
. Наклон этой прямой равен величине $\frac{4\pi^2m}{\kappa}$. В самом

деле, если действительно справедливо, что $J = \frac{2}{5}mr^2 + m\ell^2$, формула (6) лег-ко приводится к виду

$$T^2 = \frac{4\pi^2 m\ell^2}{\kappa} + \frac{4\pi^2}{\kappa} \bigg(J_{00} + \frac{2}{5} m r^2 \bigg),$$
 то есть $T^2 = a\,\ell^2 + C$, где $a = \frac{4\pi^2}{\kappa} \cdot m$; $C = \frac{4\pi^2}{\kappa} \bigg(J_{00} + \frac{2}{5} m r^2 \bigg).$

Полученное уравнение есть уравнение прямой, что доказывает справедливость теоремы Гюйгенса—Штейнера. Наклон этой прямой равен $\frac{4\pi^2}{\kappa}m$, что дает возможность экспериментально определить значение модуля кручения подвеса (оси OO).

Прямая пересекает ось ординат в точке $\left(\frac{2}{5}mr^2 + J_{00}\right)\frac{4\pi^2}{\kappa}$, что позволяет рассчитать момент инерции J_{00} крутильного маятника с точностью, большей, чем это позволяет формула (9), т.к. для определения J_{00} в данном случае используется прямая, построенная с учетом погрешностей измерения всех экспериментальных точек.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Схема экспериментальной установки для проверки теоремы Гюйгенса—Штейнера и определения момента инерции твердого тела изображена на рис. 4. Тело I, момент инерции которого J_{00} необходимо определить, имеет форму шара с кольцом и двумя

симметрично расположенными стержнями. Дополнительные грузы 2 — малые шары — надеваются на стержни и могут быть установлены на различных расстояниях ℓ от оси симметрии установки. Ось OO прикреплена к телу I с двух сторон и закреплена в кронштейнах 3. Для приведения системы в колебательно-вращательное движение необходимо приложить момент силы — повернуть двумя руками стержни на угол 8—10°. (При малых углах период колебаний не зависит от амплитуды колебаний).

ЗАДАНИЕ НА ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

- 1. Проведите измерение периода колебаний T_0 крутильного маятника без дополнительных грузов не менее 3 раз. Определите его среднеарифметическое значение.
- 2. Проведите измерение зависимости периода T крутильного маятника с дополнительными грузами от расстояния ℓ между осью OO и центром шаров. Измерение периода для каждого значения ℓ проведите не менее 3 раз. Определите среднеарифметическое его значение для каждого ℓ .
- 3. Постройте график зависимости $T^2 = f(\ell^2)$; убедившись в справедливости теоремы Гюйгенса—Штейнера, определите из графика модуль кручения подвеса (оси OO) и момент инерции J_{00} маятника относительно оси OO.
- 4. Вычислите момент инерции J_{00} по формуле (9). Сравните полученные значения J_{00} .
- 5. Сделайте вывод о справедливости теоремы Гюйгенса—Штейнера и о совпадении момента инерции J_{00} маятника, рассчитанного по формуле и определенного из графика. В каком случае точность определения J_{00} больше и почему?

РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ РАБОТЫ

Для более точного измерения периода необходимо измерить время t не менее как десяти полных колебаний, а затем определить период как

$$T = t/N$$
,

где N — число полных колебаний.

Рекомендуется следующий порядок работы:

- 1. Определите период колебаний тела T_0 без дополнительных грузов.
- 2. Установите дополнительные грузы на концах стержней так, чтобы их край совпадал с краем стержня. В таком положении центры масс шаров будут находиться на расстоянии 0,2 м от оси вращения OO. Измерьте период T_1 .
- 3. Измерьте периоды T_2 , T_3 , ... T_6 , последовательно передвигая на 2 см шары к центру. Заполните таблицу.
- 4. Измерьте диаметр шаров-грузов, найдите величину их радиуса. Определите общую массу двух шаров.

		ℓ_1 , M	ℓ2, M	ℓ3, M	ℓ4, M	ℓ ₅ , M	ℓ ₆ , M	Примеча- ние
	<i>T</i> ₀ , c	T_1 , c	T_2 ,c	<i>T</i> ₃ , c	<i>T</i> ₄ , c	<i>T</i> ₅ , c	<i>T</i> ₆ , c	r, M =
1								= 0.023 M
2								
3								m_0 , $\kappa\Gamma = =$
T ² cp								0,18 кг
ℓ^2 , M^2								

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ И ИНДИВИДУАЛЬНОЙ РАБОТЫ

- 1. В чем проявляется физическое единство законов, описывающих поступательное и вращательное движения?
 - 2. В чем проявляется отличие момента инерции от массы тела?
- 3. Сформулируйте теорему Гюйгенса—Штейнера. Можно ли изменять ориентацию оси AA?
- 4. В каких случаях является затруднительным аналитический расчет момента инерции тела? Как поступают в этом случае?
- 5. Под действием касательной силы F диск массой m и радиусом R приобретает угловое ускорение ε относительно оси, проходящей через центр инерции диска. При каких значениях массы и радиуса диска может быть получено прежнее значение углового ускорения ε , если касательная вращающая сила уменьшена в k раз. Дайте обоснованный ответ в виде аналитического доказательства.
- 6. Каков физический смысл коэффициента угловой жесткости или модуля кручения подвеса?
- 7. В чем состоит метод дополнительных грузов, используемый в данной работе? Какие дополнительные грузы используются в данной работе?
- 8. В чем состоит метод проверки справедливости теоремы Гюйгенса Штейнера, используемый в данной работе?
- 9. Зависимость T от ℓ^2 в предлагаемой работе является линейной? Объясните цели, которые преследуются построением такого графика.
- 10. Объясните метод определения модуля кручения подвеса, используемый в данной работе. Как учитывается погрешность измерений данного метода?
- 11. Какие физические величины должны быть измерены для определения момента инерции цилиндра относительно оси, проходящей параллельно оси симметрии цилиндра?
- 12. Какие физические величины влияют на период колебаний маятника, используемого в данной работе?
- 13. Исследуйте зависимость периода колебаний T от параметров маятника. Имеются ли максимумы и минимумы у T?
- 14. Каким образом размеры стержней, по которым скользят шары, влияют на период колебаний маятника?
- 15. Докажите, что при углах поворота стержней маятника на угол, больший, чем $8-10^{\circ}$, период колебаний зависит от амплитуды колебаний.
- 16. Каким образом влияет амплитуда колебаний на погрешности определения момента маятника инерции и его модуля жесткости подвеса.
- 17. Предложите наиболее точный метод определения радиуса шаров, используемых в данной работе.
- 18. Момент инерции маятника определяют графическим и аналитическим путем. В каком случае точность выше и почему?

- 19. При длительном пребывании в невесомости космонавты обычно худеют. Как можно измерить массы тела космонавтов в невесомости?
- 20. Как рассчитывают момент инерции шаров, имеющих внутреннюю полость в виде шара, стержня, прямоугольного параллелепипеда?
 - 21. Как измерить момент инерции Земли, Луны?
 - 22. Как измерить орбитальный момент импульса электрона?
 - 23. Как измерить момент инерции молекулы водорода, кислорода.
- 24. Как измерить начальную (конечную) кинетическую энергию маятника, применяемого в данной работе?
- 25. Как измерить угловую скорость и угловое ускорение маятника в данной работе?

Таблица 1

	T ₀	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	l ₁	ΔΙ
1	0,87	1,56	1,49	1,48	1,32	1,23	1,15	0,22	0,02
2	0,89	1,62	1,48	1,45	1,32	1,26	1,14		
3	0,89	1,69	1,53	1,46	1,32	1,24	1,15		
$\langle T^2 \rangle$	0, 780367	2,63803	2,25047	2,1415	1,7424	1,54603	1,31487		
²	0	0,0484	0,04	0,0324	0,0256	0,0196	0,0144		

Вычисления

Исходные данные:

Масса (т): 0.18 кг

Радиус (r): 0.023 м

Расстояние (I): 0.22 м

Период T0²: 0.780366666666667 Период T1²: 2.6380333333333333

Коэффициент Т (Т0^2/(Т1^2-Т0^2)): 0.42008

Рассчитанные значения:

ј00 по формуле (9): 0.00368

Модуль кручения (к): 0.18595

ј00 по графику: 0.00368

Погрешность (inaccuracy): -0.19%