AN 3.1 - 1 Ableitungsfunktion einer linearen Funktion - OA - BIFIE

1. In der Abbildung ist der Graph einer linearen Funktion f dargestellt. ____/1 Zeichne die Ableitungsfunktion f' der Funktion f ein! AN 3.1

Die Aufgabe gilt als richtig gelöst, wenn der Graph von f' deutlich erkennbar eine konstante Funktion mit der Funktionsgleichung f'(x) = 0,5 ist. Die Funktionsgleichung der 1. Ableitung muss nicht angegeben sein.

AN 3.1 - 2 Stammfunktion - LT - BIFIE

2. Es gilt die Aussage: "Besitzt eine Funktion f eine Stammfunktion, so besitzt sie sogar unendlich viele. Ist nämlich F eine Stammfunktion von f, so ist für jede beliebige reelle Zahl c auch die durch G(x) = F(x) + c definierte Funktion G eine Stammfunktion von f."

____/1 AN 3.1

Quelle: Wikipedia

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

1)	
F(x) = f(x)	
F(x) = f'(x)	
F'(x) = f(x)	\boxtimes

2	
G'(x) = F'(x) = f(x)	\boxtimes
G(x) = F(x) = f'(x)	
G'(x) = F(x) = f'(x)	

AN 3.1 - 3 Aussagen zum Integral - MC - BIFIE

3. Nachstehend werden Aussagen zu Funktionen und deren Stammfunktionen angeführt.

AN 3.1

Kreuze die zutreffende(n) Aussage(n) an.

Ist F Stammfunktion von f , so gilt:	
$\int_{a}^{b} f(x)dx = F(b) - F(a)$	
Die Stammfunktion einer Summe von zwei Funktionen f und g ist (abgesehen von Integrationskonstanten) gleich der Summe der Stammfunktionen von f und g .	×
f ist immer eine Stammfunktion von f' .	\boxtimes
Wenn $\frac{dF(x)}{dx} = f(x)$, dann ist F eine Stammfunktion von f .	×
Für beliebige Funktionen f und g gilt:	
$\int [f(x) \cdot g(x)] dx = \int f(x) dx \cdot \int g(x) dx$	

AN 3.1 - 4 Ableitungs- und Stammfunktion - MC - Matura NT 2 15/16

Eine Funktion F heißt Stammfunktion der Funktion f , wenn gilt: $f(x) = F(X) + c \ (c \in \mathbb{R}).$	
Eine Funktion f' heißt Ableitungsfunktion von f , wenn gilt: $\int f(x)dx = f'(x).$	
Wenn die Funktion f an der Stelle x_0 definiert ist, gibt $f'(x_0)$ die Steigung der Tangente an den Graphen von f an dieser Stelle an.	\boxtimes
Die Funktion f hat unendlich viele Stammfunktionen, die sich nur durch eine additive Konstante unterscheiden.	\boxtimes
Wenn man die Stammfunktion F einmal integriert, dann erhält man die Funktion f .	