Package 'EconCausal'

October 8, 2025

Type Package

Title Causal Analysis for Macroeconomic Time Series (ECM-MARS, BSTS, Bayesian GLM-AR(1))

Version 1.0.2

Description

Implements three complementary pipelines for causal analysis on macroeconomic time series:

- (1) Error-Correction Models with Multivariate Adaptive Regression Splines (ECM-MARS),
- (2) Bayesian Structural Time Series (BSTS), and
- (3) Bayesian GLM with AR(1) errors validated with Leave-Future-Out (LFO). Heavy backends (Stan) are optional and never used in examples or tests.

VignetteBuilder knitr

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 4.1)

Imports brms, readxl, dplyr, tidyr, tibble, purrr, bsts,

BoomSpikeSlab, tseries, urca, vars, progressr, future.apply,

rlang, magrittr, parallel, stats, utils

Suggests knitr, cmdstanr, rstan, future, RhpcBLASctl, rmarkdown, testthat (>= 3.0.0)

URL https://github.com/IsadoreNabi/EconCausal

BugReports https://github.com/IsadoreNabi/EconCausal/issues

Additional_repositories https://stan-dev.r-universe.dev

RoxygenNote 7.3.3

Config/testthat/edition 3

Language en-US

NeedsCompilation no

Author José Mauricio Gómez Julián [aut, cre]

Maintainer José Mauricio Gómez Julián <isadore.nabi@pm.me>

Repository CRAN

Date/Publication 2025-10-08 08:40:24 UTC

2 bglmar1

Contents

Index																						9
	ecm_mars	 	•		•	•		•								 •	•		•	 •		6
	bsts_model																					
	bglmar1																					

bglmar1

Bayesian Generalized Linear Model with AR(1) Errors

Description

Implements a Bayesian GLM with autoregressive errors of order 1 for causal inference between economic variables, with emphasis on temporal stability through Leave-Future-Out cross-validation.

Usage

```
bglmar1(
  data_path,
  circ_vars,
  prod_vars,
  \max_{\log 2} = 3,
  initial_frac = 0.7,
  initial_min = 90,
  test_h = 12,
  step_h = 12,
  lfo_window = "sliding",
  chains = 4,
  parallel_chains = 4,
  iter = 1500,
  warmup = 750,
  adapt_delta = 0.95,
  trees = 12,
  seed = 2025,
  support_min = 0.6,
  folds_min = 5,
  sup_hi = 0.7,
  sup_lo = 0.6,
  backend = c("auto", "rstan", "cmdstanr")
)
```

Arguments

data_path	Path to Excel file containing the data
circ_vars	Character vector of circulation variable names
prod_vars	Character vector of production variable names

bglmar1 3

max_lag Maximum number of lags for independent variables (default: 3)

initial_frac Initial fraction of data for training (default: 0.7)

initial_min Minimum number of observations for initial training (default: 90)

test_h Test horizon in months (default: 12)

step_h Step size between folds in months (default: 12)

1fo_window Type of window for LFO ("sliding" or "expanding", default: "sliding")

chains Number of MCMC chains (default: 4)

parallel_chains

Number of parallel chains (default: 4)

iter Total iterations per chain (default: 1500)

warmup Warmup iterations per chain (default: 750)

adapt_delta Adapt delta parameter for NUTS (default: 0.95)

trees Maximum tree depth for NUTS (default: 12)

seed Random seed (default: 2025)

support_min Minimum support threshold for stable relationships (default: 0.6)

folds_min Minimum number of folds required (default: 5)

sup_hi High support threshold (default: 0.7) sup_lo Low support threshold (default: 0.6)

backend Backend for Stan compilation: "auto" (default), "rstan", or "cmdstanr". If "auto",

the function uses 'rstan' when available, otherwise tries 'cmdstanr'.

Details

This function implements a Bayesian GLM with AR(1) errors for assessing causal relationships between economic variables. It uses Leave-Future-Out cross-validation with sliding windows to evaluate temporal stability of relationships. The function no longer requires 'cmdstanr' at install time; if 'backend = "cmdstanr" is requested but 'cmdstanr' (and a working CmdStan) are not available, it gracefully falls back to 'rstan'. In any case, heavy computations are not run in package examples or tests.

Value

A list containing:

bench_bayes Full results for all pairs

winners_070 Pairs with support >= 0.70

winners_060 Pairs with support >= 0.60

rank_out Output from ranking function

bsts_model

Examples

bsts_model

Bayesian Structural Time Series Model

Description

Implements Bayesian Structural Time Series models with Leave-Future-Out validation for assessing causal relationships between economic variables with temporal stability.

Usage

```
bsts_model(
  data_path,
  circ_vars,
  prod_vars,
 max_lag = 6,
  lfo_init_frac = 0.8,
  1fo_h = 6,
  lfo_step = 6,
  niter = 2000,
  burn = 500,
  seed = 123,
  seasonality = NULL,
  support_min = 0.6,
  folds_min = 5,
  sup_hi = 0.7,
  sup_lo = 0.6,
  out_dir = NULL
)
```

bsts_model 5

Arguments

data_path	Path to Excel file containing the data
circ_vars	Character vector of circulation variable names
prod_vars	Character vector of production variable names
max_lag	Maximum number of lags for independent variables (default: 6)
lfo_init_frac	Initial fraction for LFO (default: 0.8)
lfo_h	Horizon for LFO (default: 6)
lfo_step	Step size for LFO (default: 6)
niter	Number of MCMC iterations (default: 2000)
burn	Number of burn-in iterations (default: 500)
seed	Random seed (default: 123)
seasonality	Seasonality parameter (NULL for none, 12 for monthly)
support_min	Minimum support threshold (default: 0.6)
folds_min	Minimum number of folds required (default: 5)
sup_hi	High support threshold (default: 0.7)
sup_lo	Low support threshold (default: 0.6)

Details

out_dir

This function implements Bayesian Structural Time Series models for assessing causal relationships between economic variables. It uses Leave-Future-Out cross-validation with tuning between Local Level and Local Linear Trend specifications. The methodology is described in detail in the methodological document "DETALLES METODOLOGICOS SPACESTATE MODEL.docx".

Output directory for results (default: "output_bsts")

Value

A list containing:

```
rank_ss_all Full results for all pairs
winners_ss_070 Pairs with support >= 0.70
winners_ss_060 Pairs with support >= 0.60
summaries_ss Summary statistics
```

Examples

6 ecm_mars

ecm_mars

Error Correction Model with Multivariate Adaptive Regression Splines

Description

Implements a robust ECM benchmark with MARS enhancement for analyzing cointegration relationships between economic variables with temporal stability validation.

Usage

```
ecm_mars(
  data_path,
  circ_vars,
 prod_vars,
  cointeg_rule = "either",
  eg_p_cutoff = 0.05,
  ecm_p_cutoff = 0.05,
  lag_max_ecm = 4,
 min_tr = 20,
 min_te = 8,
  rolling_cv_enable = TRUE,
  rolling_cv_window = "sliding",
  rolling_cv_initial_frac = 0.8,
  rolling_cv_initial_min = 40,
  rolling_cv_test = 12,
  rolling_cv_step = 12,
  nested_tune = TRUE,
  nested_initial_f = 0.6,
  nested\_test = 6,
  nested\_step = 3,
 mars_grid = expand.grid(degree = c(1, 2), nk = c(15, 25, 35, 50, 65)),
  support_min = 0.75,
  folds_min_abs = 5,
 parallel_enable = TRUE,
  parallel_workers = max(1, parallel::detectCores() - 1)
)
```

ecm_mars 7

Arguments

data_path	Path to Excel file containing the data
circ_vars	Character vector of circulation variable names
prod_vars	Character vector of production variable names
cointeg_rule	Cointegration rule ("either" for EG or Johansen, "both" for both)
eg_p_cutoff	Significance level for EG/Phillips-Ouliaris test (default: 0.05)
ecm_p_cutoff	Significance level for lambda<0 test in linear ECM (default: 0.05)
lag_max_ecm	Maximum lags in DeltaY and DeltaX for linear ECM (default: 4)
min_tr	Minimum training rows for MARS (default: 20)
min_te	Minimum test rows (default: 8)
rolling_cv_enab	le
	Whether to enable rolling CV (default: TRUE)
rolling_cv_wind	low
	Type of window for rolling CV ("sliding" or "expanding", default: "sliding")
rolling_cv_init	
	Initial fraction for rolling CV (default: 0.8)
rolling_cv_init	cial_min
	Minimum initial observations (default: 40)
rolling_cv_test	
	Test horizon for rolling CV (default: 12)
rolling_cv_step	
	Step size for rolling CV (default: 12)
nested_tune	Whether to enable nested tuning (default: TRUE)
nested_initial_	
	Initial fraction for nested tuning (default: 0.6)
nested_test	Test horizon for nested tuning (default: 6)
nested_step	Step size for nested tuning (default: 3)
mars_grid	Data frame with MARS tuning parameters
support_min	Minimum proportion of valid folds (default: 0.75)
folds_min_abs	Minimum absolute number of valid folds (default: 5)
parallel_enable	
	Whether to enable parallel processing (default: TRUE)
parallel_worker	
	Number of parallel workers (default: detectCores() - 1)

Details

This function implements an Error Correction Model enhanced with Multivariate Adaptive Regression Splines for analyzing cointegration relationships between economic variables. It includes comprehensive temporal validation through rolling-origin cross-validation and nested tuning for MARS parameters. The methodology is described in detail in the methodological document "DETALLES METODOLOGICOS DE ECM-MARS2.docx".

8 ecm_mars

Value

A data frame with evaluation results for all pairs

Examples

Index

```
bglmar1, 2
bsts_model, 4
```

 $\texttt{ecm_mars}, \textcolor{red}{6}$