Fundamentals of theory of computation 2

1st (midterm) test

1. $A = q \rightarrow \neg p \lor \neg q \land r$

Make the truth table of A.

- 2. Give a formula in conjunctive normal form (CNF) equivalent with $(\neg(\neg r \land p) \rightarrow q) \rightarrow \neg r$.
- 3. Prove by resolution procedure, that the following set of formulas is unsatisfiable.

$$\{p \lor \neg q \lor r, \quad \neg p \lor \neg q, \quad q, \quad \neg q \lor \neg s, \quad \neg r \lor s\}.$$

4. In first order logic suppose, that p is a predicate symbol of arity 2, q is a predicate symbol of arity 1, f is a function symbol of arity 2, and a is a constant symbol.

Consider the interpretation $\langle \{0,1,2\}, \{P,Q\}, \{F\}, \{1\} \rangle$ (i.e., predicate and function symbols denoted by small letters are interpreted as relations and functions denoted by the corresponding capital letters, and a is interpreted as 1), where

$P^{\mathcal{I}}$	0	1	2	$Q^{\mathcal{I}}$		$f^{\mathcal{I}}$	0	1	2
0	h	i	i	0	h	0	0	1	2
1	h	i	i	1	i	1	1	2	0
2	h	h	h	2	i	2	2	0	1

(Rows correspond to 1st argument, columns correspond to 2nd argument.) For the assignment σ let $\sigma(x) = 2$, $\sigma(y) = 1$. Determine the following values (give your calculations as well, not just your final answer).

- (a) $\mathcal{D}_{I,\sigma}(f(f(y,f(a,x)),y))$
- (b) $v_{I,\sigma}(p(x,y) \vee q(a) \rightarrow \neg q(f(x,y))$
- (c) $v_{I,\sigma}(\forall y p(y,x) \to \neg q(f(y,y)))$
- 5. Consider the following functions

$$f(n) = 3^n + 2n^3$$
, $g(n) = n^2 3^n + n^3 2^n$, $h(n) = (n^2 + n)3^n$.

Which of the following statements hold?

$$f(n) = \Omega(g(n)), \qquad g(n) = \Omega(f(n)), \qquad g(n) = O(h(n)), \qquad h(n) = O(g(n)).$$

Support your answers with an argument.

6. Give a Turing machine deciding the following language L.

 $L = \{u \in \{a, b, c\}^* \mid \text{ the last letter of } u \text{ occurs no more in } u \}.$