Отчет о выполнении лабораторной работы 2.1.4

Определение теплоемкости твердых тел

Выполнил: Тимонин Андрей

Группа: Б01-208

Дата: 20.04.2023

1 Введение

Цели работы:

- 1. Измерение количества подведенного тепла и вызванного им нагрева твердого тела;
- 2. Определение теплоемкости по экстраполяции отношения $\frac{\triangle Q}{\triangle T}$ к нулевым потерям тепла.

В работе используются:

- 1. Калориметр с нагревателем и термометром сопротивления;
- 2. Амперметр;
- 3. Вольтметр;
- 4. Мост постоянного тока;
- 5. Источник питания 36 В.

2 Теоретические сведения

В данной работе теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T},\tag{1}$$

где ΔQ — количество тепла, подведенного к телу, и ΔT — изменение температуры тела, произошедшее в результате подвода тепла.

Температура исследуемого тела надежно измеряется термометром сопротивления, а определение количества тепла, поглощенного телом, обычно вызывает затруднение. В реальных условиях не вся энергия $P\Delta t$, выделенная нагревателем, идет на нагревание исследуемого тела и калориметра, часть ее уходит из калориметра благодаря теплопроводности его стенок. Оставшееся в калориметре количество тепла ΔQ равно

$$\Delta Q = P\Delta t - \lambda (T - T_{\kappa}) \Delta t, \tag{2}$$

где P – мощность нагревателя, λ – коэффициент теплоотдачи стенок, T – температура тела, T_{κ} – комнатная температура, Δt – время, в течение которого идет нагревание.

Из уравнений (1) и (2) получаем

$$C = \frac{P - \lambda (T - T_{\kappa})}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчетной формулой. Она определяет теплоемкость тела вместе с калориметром. Теплоемкость калориметра измеряется отдельно и вычитается из результата.

С увеличением температуры исследуемого тела растет утечка энергии, связанная с теплопроводностью стенок калориметра. Из формулы (2) видно что при постоянной мощности нагревателя по мере роста температуры количество тепла передаваемое телу, уменьшается, и, следовательно, понижается скорость изменения его температуры.

Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов и проводить все измерения при температурах, мало отличающихся от комнатной. Однако при небольших перегревах возникает большая ошибка при измерении $\Delta T = T - T_{\rm k}$, и точность определения теплоемкости не возрастает. Чтобы избежать этой трудности, в работе используется следующая методика измерений. Зависимость скорости нагревания тела $\Delta T/\Delta t$ от температуры измеряется в широком интервале изменения температур. По полученным данным строится график

$$\frac{\Delta T}{\Delta t} = f(T).$$

Этот график экстраполируется к температуре $T=T_{\rm k}$, и таким образом определяется скорость нагревания при комнатной температуре $(\Delta T/\Delta t)_{T_{\rm k}}$. Подставляя полученное выражение в формулу (3) и замечая, что при $T=T_{\rm k}$ член $\lambda(T-T_{\rm k})$ обращается в ноль, получаем

$$C = \frac{P}{(\Delta T/\Delta t)_{T_{\kappa}}} \tag{4}$$

Температура измеряется термометром сопротивления, который представляет собой медную проволоку, намотанную на теплопроводящий каркас внутренней стенки калориметра (рис. 1). Сопротивление проводника изменяется с температурой по закону

$$R_T = R_0(1 + \alpha \Delta T),\tag{5}$$

где R_T – сопротивление термеметра про $T^{\circ}C$, R_0 – его сопротивление при $0^{\circ}C$, α – температурный коэффициент сопротивления.

Дифференцируя (5) по времени, найдем

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt},\tag{6}$$

Выразим сопротивление R_0 через исмеренное значение R_{κ} – сопротивление термометра при комнатной температуре. Согласно (5), имеем

$$R_0 = \frac{R_{\kappa}}{1 + \alpha \Delta T_{\kappa}},\tag{7}$$

Подставляя (6) и (7) в (4), найдем

$$C = \frac{PR_{\kappa}\alpha}{(\frac{dR}{dt})_{T_{\kappa}}(1 + \alpha\Delta T_{\kappa})},$$
(8)

Входящий в формулу температурный коэффициент сопротивления меди равен $\alpha=4,28\cdot 10^{-3}~{\rm град}^{-1},$ все остальные величины определяются экспериментально.

3 Экспериментальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполненым из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усеченных конусов и плотно прилегают друг к другу. В стенку калориметра вмонтированы электронагреватель и термометр сопротивления. Схема включения нагревателя изображения на рис.2. Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая в нагревателе. Величина сопротивления термометра измеряется мостом постоянного тока.

Рис 1. Схема калориметра

4 Ход работы

Начальные данные:

Рис 2. График изменения комнатной температуры

Показания омметра во время всего эксперимента

Рис 3. График изменений показаний омметра

Рис 4. График нагрева пустого калориметра

Рис 5. График нагрева калориметра с алюминиевым конусом

Рис 6. График нагрева калориметра с железным конусом

Рис 7. График охлаждения пустого калориметра

Рис 8. График охлаждения калориметра с железным конусом

Рис 9. График охлаждения калориметра с алюминиевым конусом

$N_{\bar{0}}$	$\frac{dR}{dt}$
1	0.00152993
2	0.00148243
3	0.00150742
4	0.00139527
5	0.00136687
6	0.00134701
7	0.00133051
8	0.00126687

Таблица 1. Значения $\frac{dR}{dt}$ для пустого калориметра

	- 10
$N_{\bar{0}}$	$\frac{dR}{dt}$
1	0.00096340
2	0.00095203
3	0.00091032
4	0.00089963
5	0.00088850
6	0.00086551
7	0.00087666
8	0.00088192

Таблица 2. Значения $\frac{dR}{dt}$ для калориметра с алюминиевым конусом

Nº	$\frac{dR}{dt}$
1	0.00078839
2	0.00079701
3	0.00074330
4	0.00078119
5	0.00074826
6	0.00075064
7	0.00075375
8	0.00075512

График 10. График $\frac{dR}{dt}$ для различных комбинаций при нагреве