Inferencia Estadística Métodos de Inferencia Basados en Remuestreos

Gabriel Martos Venturini gmartos@utdt.edu

UTDT

Monographs on Statistics and Applied Probability 57

An Introduction to the Bootstrap

Bradley Efron Robert J. Tibshirani

- Introducción
- 2 Jackknife
- 3 Bootstrap
- Permutation test

Motivación (Jackknife y Bootstrap)

Con
$$\underline{x} \equiv \{x_1, \dots, x_n\} \stackrel{iid}{\sim} F$$
 y $\widehat{\theta}_n(\underline{x})$, pretendo estimar $\operatorname{se}(\widehat{\theta}_n) \equiv \sqrt{\operatorname{Var}(\widehat{\theta}_n)}$.

- $\widehat{\theta}_n(\underline{x})$ es virtualmente cualquier función de los datos.
- En general resulta complejo (o imposible) obtener una expresión cerrada para (la estimación de) el error estandard de un estimador.
- ¿Y para qué quiero estimar se $(\widehat{\theta}_n)$?
 - Cuantificar la incertidumbre respecto del parámetro estimado.
- Si pudiera samplear muchas veces de F, podríamos aproximar se $(\widehat{\theta}_n)$ a partir de la distribución empírica de $\widehat{\theta}_n$ (imposible en la práctica!).
 - Jackknife y Bootstrap proponen re-muestrar (de maneras diferentes) de la única muestra que disponemos $(\underline{X} = \underline{x})$ con el fin de estimar se $(\widehat{\theta}_n)$.
 - Jackknife tiene algunas ventajas computacionales.
 - ► Bootstrap tiene algunas propiedades estadísticas.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ ○壹 ・ 釣९@

- Introducción
- 2 Jackknife
- Bootstrap
- Permutation test

- Disponemos de datos $\underline{x} = \{x_1, \dots, x_n\}$ y un estadístico $\widehat{\theta}_n(\underline{x})$.
- Consideremos $\underline{x}_{-i} \equiv \{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n\}$, para $i = 1, \dots, n$.
- Sea $\widehat{\theta}_{-i} \equiv \widehat{\theta}_{n-1}(\underline{x}_{-i})$, la estimación Jackknife de $Var(\widehat{\theta}_n)$ es:

$$v_{\mathsf{jack}}(\widehat{\theta}_n) = \frac{n-1}{n} \sum_{i=1}^n (\widehat{\theta}_{-i} - \overline{\theta}_n)^2 \text{ y se}_{\mathsf{jack}} = \sqrt{v_{\mathsf{jack}}},$$

donde $\overline{\theta}_n = \sum_{i=1}^n \widehat{\theta}_{-i}/n$.

• La estimación Jackknife del sesgo es:

$$b_{\mathsf{jack}}(\widehat{\theta}_n) = (n-1)(\overline{\theta}_n - \widehat{\theta}_n).$$

• Por lo que la estimación Jackknife del parámetro se escribe como:

$$\widehat{\theta}_{\mathsf{jack}} = \widehat{\theta}_n - \mathsf{b}_{\mathsf{jack}}(\widehat{\theta}_n) = n\widehat{\theta}_n - (n-1)\overline{\theta}_n.$$

• Ejemplo en R.

Algunas consideraciones importantes

- El método sirve para aproximar la varianza de cualquier estadístico de interés sin necesidad de asumir un modelo particular para los datos.
- ¿Porqué estimar $Var(\widehat{\theta}_n)$ con $v_{jack}(\widehat{\theta}_n)$?
 - ▶ Porque quizá no se estimar $Var(\widehat{\theta}_n)$ (ej: Estimador de correlación).
- Cuando $\widehat{\theta}_n$ no es una función suave de los datos (i.e. $\widehat{\theta}_n = \text{mediana}$ muestral), $v_{\text{jack}}(\widehat{\theta}_n)$ es un estimador inconsistente de $\text{Var}(\widehat{\theta}_n)$.
- La estimación Jackknife de $Var(\widehat{\theta}_n)$ es más rápida de computar en comparación con la estimación Bootstrap (eficiencia computacional).
- ¿Porqué utilizar $\widehat{\theta}_{jack}$ en lugar de $\widehat{\theta}_n$?
 - ▶ Recordemos que $MSE(\widehat{\theta}_n, \theta) = bias^2(\widehat{\theta}_n) + var(\widehat{\theta}_n)$. Resulta que en general $bias^2(\widehat{\theta}_n)$ converge más lento a 0 que $bias^2(\widehat{\theta}_{jack})$.

- Introducción
- 2 Jackknife
- 3 Bootstrap
- Permutation test

- Cambiamos el esquema de re-muestreo:
 - ① Muestreamos $\underline{x}^* = \{x_1^*, \dots, x_n^*\}$ de $\{x_1, \dots, x_n\}$ con reemplazamiento $(\{X_1^*, \dots, X_n^*\} \stackrel{iid}{\sim} F_n)$ y con esta remuestra computamos $\widehat{\theta}_n^* \equiv \widehat{\theta}_n(\underline{x}_n^*)$.
 - $\textbf{②} \ \ \text{Repetimos} \ \ B \gg n \ \text{veces el paso anterior para obtener} \ \ \{\widehat{\theta}_{n,1}^*, \dots, \widehat{\theta}_{n,B}^*\}.$
 - 3 La estimación Bootstrap de $Var(\widehat{\theta}_n)$ es:

$$v_{\text{boot}}(\widehat{\theta}_n) = \frac{1}{B} \sum_{b=1}^{B} (\widehat{\theta}_{n,b}^* - \frac{1}{B} \sum_{b=1}^{B} \widehat{\theta}_{n,b}^*)^2 \text{ y se}_{\text{boot}} = \sqrt{v_{\text{boot}}}.$$

• Como $F_n \approx F$ cuando $n \gg 0$ ocurre que $v_{\text{boot}}(\widehat{\theta}_n) \approx \text{Var}(\widehat{\theta}_n)$.

$$F_n \overset{n \gg 0}{\approx} F \overset{iid \sim F_n}{\Longrightarrow} \{\underline{x}_1^*, \dots, \underline{x}_B^*\} \overset{B \gg 0}{\Longrightarrow} \mathsf{se}_\mathsf{boot} \approx \mathsf{se}(\widehat{\theta}_n).$$

- Idealmente $B\gg 0$ (B>200 para estimar $Var(\widehat{\theta}_n)$).
- Ejemplo: Estimando el error standard del R^2 .

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

UTDT

Intervalos de Confianza Bootstrap

• Empíricos: Con $\{\widehat{\theta}_b^*\}_{b=1}^B$ computamos $G_B(t) = \sum_{b=1}^B \mathbb{I}(\widehat{\theta}_b^* \leq t)/B$.

$$IC_{\alpha}(\theta) = [G_B^{-1}(\alpha/2), G_B^{-1}(1-\alpha/2)].$$

- Cuando $\widehat{\theta}_n$ tiene una distribución aproximadamente normal podemos considerar el intervalo: $\widehat{\theta}_n \pm z_{\alpha/2} se_{boot}$.
- Existen versiones más sofisticadas en torno a estos métodos (ver por ejemplo t-Bootstrap en § 12 de Efron y Tibshirani y en § 11 de CASI).
- Caso de estudio en R.

- Introducción
- 2 Jackknife
- 3 Bootstrap
- Permutation test

Marco general

- Habitualmente utilizado para comparar poblaciones (no normales).
- Test no paramétrico: $\{X_1,\ldots,X_n\}\stackrel{iid}{\sim} F_X$ e $\{Y_1,\ldots,Y_m\}\stackrel{iid}{\sim} F_Y$:

$$H_0: F_X = F_Y$$
 vs. $H_1: F_X \neq F_Y$.

- Sea $S \equiv S(X_1, \dots, X_n, Y_1, \dots, Y_m)$ un estadístico de contraste con el que generalmente rechazamos H_0 cuando S toma valores grandes:
 - ▶ Ej: $S_1 = |\overline{X}_n \overline{Y}_m|$, $S_2 = (S_X^2 S_Y^2)^2$, $S_3 = \sup_t |\widehat{F}_X(t) \widehat{F}_Y(t)|$
 - ▶ ¿Cómo proceder cuando no podemos aproximar la distribución de S?
- Bajo H_0 ocurre que: $\{X_1, \ldots, X_n, Y_1, \ldots, Y_m\} \stackrel{iid}{\sim} F = F_X = F_Y$.
- Llamemos $s^{\text{(obs)}} \equiv s(\underline{x}, \underline{y})$ al estadístico observado y consideremos las N = (n+m)! permutaciones de los datos para computar s^1, \ldots, s^N .

$$extsf{p-val} = \sum_{i=1}^{ extsf{N}} \mathbb{I}(s^i > s^{ extsf{obs})})/ extsf{N}.$$

Algunos detalles

- Cuando n y m son grandes aproximamos el p-valor utilizando el método de Monte Carlo (después de elegir un estadístico S):
 - Con los datos de las muestras computamos $s^{(obs)}$.
 - ② Para una secuencia de $K \ll N$ permutaciones aleatorias de los datos (muestreo sin reemplazamiento) calculamos s^1, \ldots, s^K y luego:

$$\operatorname{p-val} \approx \sum_{i=1}^K \mathbb{I}(s^i > s^{(\operatorname{obs})}) / K.$$

- Este tipo de test es particularmente útil cuando quiero comparar poblaciones y los tamaños muestrales son relativamente pequeños.
- Caso de estudio en R (próxima slide).

Caso de estudio

Figure: Diferencia en los patrones de consumo de 'alitas de pollo' entre hombres y mujeres (caso tomado de *Mathematical Statistics with resampling in R*).

• Tamaño muestral reducido: n = m = 15.

4□ > 4□ > 4 = > 4 = > = 90