Computer Vision HW4 Report

Student ID: R08222017

Name: 陳韋辰

Visualize the disparity map of 4 testing images.

Report the bad pixel ratio of 2 testing images with given ground truth (Tsukuba/Teddy).

	bad pixel ratio	
Tsukuba	4.19	
Teddy	9.80	

Describe your algorithm in terms of 4-step pipeline.

1. Cost computation:

此步驟使用了 Census cost 當作 matching cost,藉由 Hamming Distance 判斷 pixels 間的匹配程度,使用 Census cost 的好處是,可以藉由 Local binary pattern 得到與四周 pixels 的相對大小,不會受到太多左右圖光影的變化。在邊界上我使用了 cv2.BORDER_REPLICATE 的方

2. Cost aggregation:

此步驟使用了 Cost-volume filtering 的技巧,計算不同 disparity 下的不同 pixel 的 cost 值,並用 xip.jointBilateralFilter 以原圖為 joint 的方式進行 filter,以達到 cost aggregation 的效果。這個步驟是影響 disparity estimation 成效很重要的步驟之一,因為不同 xip.jointBilateralFilter 的參數直接影響了最終的 cost,所以針對參數的選擇,我做了一些實驗來找參數(以下實驗已通過 disparity refinement):

d	sigmaColor	sigmaSpace	Tsukuba	Teddy	total
70	3	23	4.23%	9.92%	14.15%
70	2	22	4.43%	10.34%	14.77%
70	2	24	4.33%	10.32%	14.65%
70	2	26	4.27%	10.22%	14.49%
70	2	28	4.29%	10.29%	14.58%
70	2	30	4.34%	10.23%	14.57%
70	3	17	4.28%	9.74%	<mark>14.02%</mark>
70	3	20	4.52%	9.80%	14.32%
70	3	22	4.26%	9.82%	14.08%
70	3	23	4.23%	9.92%	14.15%
70	3	24	4.14%	9.98%	14.12%
70	3	26	4.15%	10.02%	14.17%
70	3	28	4.11%	10.02%	14.13%
70	3	30	4.18%	10.01%	14.19%
70	4	16	4.45%	9.18%	13.63%
70	4	18	4.38%	9.76%	14.14%
70	4	20	4.41%	9.77%	14.18%
70	4	22	4.27%	9.68%	<mark>13.95%</mark>
<mark>70</mark>	<mark>4</mark>	<mark>24</mark>	<mark>4.18%</mark>	<mark>9.78%</mark>	<mark>13.96%</mark>
70	4	26	4.15%	9.86%	<mark>14.01%</mark>
70	4	28	4.18%	9.92%	14.10%
70	4	30	4.15%	9.93%	14.08%
70	4	32	4.15%	9.91%	14.06%
70	5	22	4.39%	9.77%	14.16%
70	5	24	4.39%	9.94%	14.33%
70	5	26	4.40%	10.00%	14.40%
70	5	28	4.38%	9.96%	14.34%
70	4	34	4.18%	10.00%	14.18%
70	4	36	4.17%	9.94%	14.11%

70	4	38	4.16%	9.82%	<mark>13.98%</mark>
	<14.05	min	4.11%	9.18%	13.63%
	min	max	4.52%	10.34%	14.77%

其中,d和 sigmaSpace 的參數如果太小(d < 60, sigmaSpace < 20),在 Venus 這張圖上,會有明顯的黑斑點,推測是因為混和的範圍如果不夠大,沒辦法將過大的雜訊去除,如下圖(70, 4, 16)所示。因此在最終 xip.jointBilateralFilter 的選擇上,使用了(70, 4, 24)的參數搭配,可以在Tsukuba 和 Teddy 上得到加總約 13.96%的 bad pixel ratio。

另外因為圖片位移後會有超出範圍,而無法對應比較 cost 的值,因此會將同一層 disparity 中最接近的 pixel cost 值補上,作為邊界上 cost 值的參考。

3. Disparity optimization:

在 disparity optimization 上,使用 Winner-take-all 的演算法,在 Cost-volume 中取每 pixels 中 cost 最小的 disparity 作為 disparity map 的值。

4. Disparity refinement:

在 Disparity refinement 上,使用了 Left-right consistency check 搭配 Hole filling 的方式,以及 Weighted median filtering 來 refine disparity estimation 的結果。

在 Hole filling 上,會先將左圖和右圖的 disparity map 中沒有配對在一起的點標示為 hole,再從 hole 的水平線上左右側去找最接近非 hole 的值,選小的填上,這個步驟可以將因為視差緣故或是其他不好配對的點重新給予合理 disparity 值,降低誤差。在 Tsukuba 中的實驗結果如下表:

Tsukuba	bad pixel ratio	
無使用 WMF 及 Hole filling	10.46%	图 1
使用 Hole filling	6.74%	圖 2
使用 WMF 及 Hole filling	4.19%	邑 3

圖 1

圖 3

使用 Hole filling 的 bad pixel ratio 值從原先的 10.46% 降為 6.74%, bad pixel ratio 縮小了約 36%,是一個很大的提升,可以發現在 disparity map 上,圖 2 大量邊界上和圖像中的噪點被去除,推測是主要 bad pixel ratio 縮小的原因。

在 Weighted median filtering 的演算法上,使用了 xip.weightedMedianFilter 及 xip.WMF_EXP 作為權重計算的方式(公式:exp(-|I1-I2|^2/(2*sigma^2))),利用原圖來給予 median filtering 權重,使 disparity map 更加平滑,且不會受差異太大的 pixels 影響,參數實驗 如下(xip.jointBilateralFilter 使用(70, 8, 20)):

r	sigma	Tsukuba	Teddy	total
6	20	5.28%	9.90%	15.18%
6	24	5.18%	9.92%	15.10%

6	28	5.11%	9.93%	15.04%
6	30	5.10%	9.97%	15.07%
6	32	5.04%	9.99%	15.03%
6	34	5.03%	9.94%	14.97%
6	36	5.04%	10.00%	15.04%
6	38	5.00%	9.99%	14.99%
6	40	5.01%	10.01%	15.02%
8	20	5.08%	10.11%	15.19%
8	24	5.00%	10.09%	15.09%
8	28	4.90%	10.14%	15.04%
8	30	4.88%	10.15%	15.03%
8	32	4.83%	10.13%	14.96%
8	34	4.83%	10.19%	15.02%
8	36	4.80%	10.22%	15.02%
8	<mark>38</mark>	<mark>4.78%</mark>	<mark>10.15%</mark>	14.93%
8	40	4.78%	10.25%	15.03%
10	20	4.98%	10.19%	15.17%
10	24	4.86%	10.32%	15.18%
10	28	4.79%	10.26%	15.05%
10	30	4.78%	10.33%	15.11%
10	32	4.73%	10.42%	15.15%
10	34	4.73%	10.38%	15.11%
10	36	4.75%	10.41%	15.16%
10	38	4.73%	10.47%	15.20%
10	40	4.72%	10.45%	15.17%
12	20	4.94%	10.53%	15.47%
12	24	4.82%	10.40%	15.22%
12	28	4.78%	10.48%	15.26%
12	30	4.67%	10.52%	15.19%
		4.700/	0.000/	14.020/
	min	4.72%	9.90%	14.93%
<mark>min</mark>	max	5.28%	10.53%	15.47%

最終選擇(8,38)參數的搭配,可以達到最小的 bad pixel ratio。在 disparity map 方面,如上圖 3 所示,將原本圖 2 很多不平整的區域和水平方向的異常的線條都改善了許多,bad pixel ratio 值從原先的 6.74% 降為 4.19%,bad pixel ratio 縮小了約 38%,也是一個很大幅度的成長。