Program: B. Sc Computer Science					Semester: IV	
Course: Linear Algebra with Python Teaching Scheme				Course Code: USMACS40		
				Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment an Evaluation (CA (Marks - 25)	AE) Examinations (TEE) (Marks-75	
02	02	-	2 + 1 = 3	25	75	

Learning Objectives:

 To offer the learner the relevant linear algebra concepts through computer science applications.

Course Outcomes:

After completion of the course, learners would be able to:

CO1: Students should be able to solve linear equations and do various matrix computations

CO2: Students should be able to derive Echelon form, Row canonical form, and deal with basis and change of basis computations

CO3: Students should be able to calculate eigenvalues and diagonalize using them and do various linear transformations.

Outline of Syllabus: (per session plan)

Module	Description	No of hours
1	Vectors, Linear Equations, Matrices	10
2	Solving Systems of Linear Equations, Vector spaces, Vector basis	10
3	Eigenvalues, Eigenvectors and Diagonalization, Inner Product, Orthogonality	10
	Total	30
RACTIC	ALS	30

Modul	E Linear Algebra with Python	No. of Hours/Credits 30/2			
1	Vectors, Linear Equations, Matrices	10			
	Vectors: Introduction, Vector addition and multiplication, Dot-product, Cross Product, The geometry of sets of vectors, Complex numbers Matrices: Matrices as vectors, Dot Product, Matrix Multiplication, Transpose, Inverse, Matrix Transformations, Determinant and its properties Linear Equations: Basics, Linear Systems of Equations, Homogeneous Systems and otherwise.				
2	Solving Systems of Linear Equations, Vector spaces, Vector basis	10			
	Solving Systems of Linear Equations: Solving triangular system of linear equations, Gaussian Elimination, Echelon form, Row Canonical form Vector spaces: Vector Spaces, Subspaces, Linear Combinations, Vector Span and Spanning Set, Linear Dependence and Independence Vector Basis: Basis and its Dimension & Rank, Change of Basis, Null space and finding a basis for the null space, The Rank of a Matrix and Applications.				
3	Eigenvalues, Eigenvectors and Diagonalization, Inner Product, Orthogonality	10			
	Eigenvalues, Eigenvectors and diagonalization: Eigenvalues and Eigenvectors, Existence of eigenvalues, Coordinate representation in terms of eigenvectors, Diagonalization Inner Product & Outer product: The inner product for vectors, Outer product for vectors Orthogonalization: Orthogonality, Projection orthogonal to multiple vectors, Projecting orthogonal to mutually orthogonal vectors				
DD : ==					
PRACT	TICALS				
Sr. No.	Горіс.				
1	Write a program to perform basic operations of complex number				

2	Write a program to perform basic operations of vectors		
3	Write a program to perform basic matrix operations		
4	Write a program to inverse a matrix		
5	Write a program to perform Gaussian Elimination		
6	Write a program to convert any matrix to its echelon form		
7	Write a program to convert any matrix to its row-canonical form		
8	Write a program to enter a given matrix and an eigen value of the same. Find its eigen vector		
9	Write a program to perform diagonalization of a matrix given its eigen values and eige vector.		
10	Write a program to do the following: 1. Enter a vector b and find the projection of b orthogonal to a given vector u. 2. Find the projection of b orthogonal to a set of given vectors		

RECOMMENDED READING:

Text Books:

- 1. B. Kolman, D. Hill, Introductory Linear Algebra, An Applied First Course, Pearson Edn; 8th Edn; (2008)
- Schaum's outlines Linear Algebra, Seymour Lipschutz, Marc Lars Lipson, 4th Edition, McGraw Hill

Reference Books

- Linear Algebra and Probability for Computer Science Applications, Ernest Davis, A K Peters/CRC Press (2012).
- 2. Coding the Matrix Linear Algebra through Applications to Computer Science Edition 1, PHILIP N. KLEIN, Newtonian Press (2013)
- 3. Linear Algebra and Its Applications, Gilbert Strang, Cengage Learning, 4th Edition (2007).
- 4. Linear Algebra and Its Applications, David C Lay, Pearson Education India; 3rd Edition
- 5. H.Anton, Chris Rorres, Linear Algebra with Applns., Wiley, 7th Edn; (1994)