DM872 – Spring 2021 Math Optimization at Work

Lagrangian Relaxation

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

[Partly based on slides by David Pisinger, DIKU (now DTU)]

Relaxation

In branch and bound we find upper bounds by relaxing the problem

Relaxation

$$\max_{s \in P} g(s) \ge \left\{ \max_{s \in S} g(s) \right\} \ge \max_{s \in S} f(s)$$

- P: candidate solutions;
- $S \subseteq P$ feasible solutions;
- $g(x) \geq f(x)$

Which constraints should be relaxed?

- Quality of bound (tightness of relaxation)
- Remaining problem can be solved efficiently
- Proper multipliers can be found efficiently
- Constraints difficult to formulate mathematically
- Constraints which are too expensive to write up

Relevant Relaxations

Different relaxations

- LP-relaxation
- Deleting constraint
- Lagrange relaxation
- Surrogate relaxation
- Semidefinite relaxation

Tighter

Best surrogate relaxation

Best Lagrangian relaxation

LP relaxation

Surrogate Relaxation

Integer Programming Problem: $\max\{cx \mid Ax \leq b, Dx \leq d, x \in \mathbb{Z}_+^n\}$ Relax complicating constraints $Dx \leq d$. Surrogate Relax $Dx \leq d$ using multipliers $\lambda \geq 0$, i.e., add together constraints using weights λ

$$z_{SR}(\lambda) = \max cx$$

s.t. $Ax \le b$
 $\lambda Dx \le \lambda d$
 $x \in \mathbb{Z}_+^n$

Proposition: Optimal Solution to relaxed problem gives an upper bound on original problem **Proof:** show that it is a relaxation

Each multiplier λ_i is a weighting of the corresponding constraint If λ_i large \Longrightarrow constraint satisfied (at expenses of other constraints) If $\lambda_i = 0 \Longrightarrow$ drop the constraint

5

Surrogate relaxation, example

maximize
$$4x_1 + x_2$$

subject to $3x_1 - x_2 \le 6$
 $x_2 \le 3$
 $5x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$, integer

IP solution $(x_1, x_2) = (2, 3)$ with $z_{IP} = 11$ LP solution $(x_1, x_2) = (\frac{30}{11}, \frac{24}{11})$ with $z_{LP} = \frac{144}{11} = 13.1$

First and third constraint complicating, surrogate relax using multipliers $\lambda_1=2$, and $\lambda_3=1$

maximize
$$4x_1 + x_2$$

subject to $x_2 \le 3$
 $11x_1 \le 30$
 $x_1, x_2 \ge 0$, integer

Solution
$$(x_1, x_2) = (2,3)$$
 with $z_{SR} = 4 \cdot 2 + 3 = 11$
Upper bound

Tightness of Relaxations (1/2)

Integer Linear Programming problem

$$z = \max cx$$
s.t. $Ax \le b$

$$Dx \le d$$

$$x \in \mathbb{Z}_+^n$$

It corresponds to:

$$z = \max \{cx : x \in conv(Ax \le b, Dx \le d, x \in \mathbb{Z}_+^n)\}$$

 $z_{LP} = \max \{ cx : x \in Ax \leq b, Dx \leq d, x \in \mathbb{R}^n_+ \}$

LP-relaxation:

Lagrangian Relaxation,
$$\lambda \geq 0$$
:

$$z_{LR}(\lambda) = \max cx - \lambda(Dx - d)$$

s.t. $Ax \le b$
 $x \in \mathbb{Z}_+^n$

with best multipliers λ it corresponds to:

$$z_{LD} = \max \left\{ cx : Dx \leq d, x \in \text{conv}(Ax \leq b, x \in \mathbb{Z}_+^n) \right\}$$

 $z_{LD} = \min_{\lambda \geq 0} z_{LR}(\lambda)$

Fig 16.6 from [AMO]

Tightness of Relaxations (2/2)

Surrogate Relaxation, $\lambda \geq 0$

Surrogate Dual Problem

$$z_{SR}(\lambda) = \max cx$$

s.t. $Ax \le b$
 $\lambda Dx \le \lambda d$
 $x \in \mathbb{Z}_+^n$

$$z_{SD} = \min_{\lambda \ge 0} z_{SR}(\lambda)$$

with best multipliers λ :

$$z_{SD} = \max \{cx : x \in conv(Ax \le b, \lambda Dx \le \lambda d, x \in \mathbb{Z}_+^n)\}$$

ightharpoonup Best surrogate relaxation (i.e., best λ multipliers) is tighter than best Lagrangian relaxation.

•

Relaxation strategies

Which constraints should be relaxed

- "the complicating ones"
- remaining problem is polynomially solvable
 (e.g. min spanning tree, assignment problem, linear programming)
- remaining problem is totally unimodular (e.g. network problems)
- remaining problem is NP-hard but good techniques exist (e.g. knapsack)
- constraints which cannot be expressed in MIP terms (e.g. cutting)
- constraints which are too extensive to express (e.g. subtour elimination in TSP)

Subgradient optimization Lagrange multipliers

$$z = \max \ cx$$
 s. t. $Ax \le b$
$$Dx \le d$$

$$x \in \mathbb{Z}_+^n$$

Lagrange Relaxation, multipliers $\lambda \geq 0$

$$z_{LR}(\lambda) = \max cx - \lambda(Dx - d)$$

s.t. $Ax \le b$
 $x \in \mathbb{Z}_+^n$

- We do not need best multipliers in B&B algorithm
- Subgradient optimization fast method
- Works well due to convexity
- Roots in nonlinear programming, Held and Karp (1971)

Lagrange Dual Problem

$$z_{LD} = \min_{\lambda \geq 0} z_{LR}(\lambda)$$

11

Subgradient optimization, motivation

Lagrange function $z_{LR}(\lambda)$ is piecewise linear and convex

Netwon-like method to minimize a function in one variable

Digression: Gradient methods

Gradient methods are iterative approaches:

- find a descent direction with respect to the objective function f
- move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient descent, Newton-Raphson method and others. The step size can be computed either exactly or loosely by solving a line search problem.

Example: gradient descent

- 1. Set iteration counter t = 0, and make an initial guess x_0 for the minimum
- 2. Repeat:
- 3. Compute a descent direction $\Delta_t = \nabla(f(x_t))$
- 4. Choose α_t to minimize $f(x_t \alpha \Delta_t)$ over $\alpha \in \mathbb{R}_+$
- 5. Update $x_{t+1} = x_t \alpha_t \Delta_t$, and t = t+1
- 6. Until $\|\nabla f(x_k)\| < tolerance$

Step 4 can be solved 'loosely' by taking a fixed small enough value lpha>0

Newton-Raphson method

[from Wikipedia]

Find zeros of a real-valued derivable function

$$x:f(x)=0.$$

- Start with a guess x₀
- Repeat: Move to a better approximation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

until a sufficiently accurate value is reached.

Geometrically, $(x_n, 0)$ is the intersection with the x-axis of a line tangent to f at $(x_n, f(x_n))$.

$$f'(x_n) = \frac{\Delta y}{\Delta x} = \frac{f(x_n) - 0}{x_n - x_{n+1}}.$$

Subgradient

Generalization of gradients to non-differentiable functions.

Definition

An *m*-vector γ is subgradient of $f(\lambda)$ at $\bar{\lambda}$ if

$$f(\lambda) \ge f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$$

The inequality says that the hyperplane

$$y = f(\bar{\lambda}) + \gamma(\lambda - \bar{\lambda})$$

is tangent to $y=f(\lambda)$ at $\lambda=\bar{\lambda}$ and supports $f(\lambda)$ from below

Proposition Given a choice of nonnegative multipliers $\bar{\lambda}$. If x' is an optimal solution to $z_{LR}(\lambda)$ then

$$\gamma = d - Dx'$$

is a subgradient of $z_{LR}(\lambda)$ at $\lambda = \bar{\lambda}$.

Proof We wish to prove that from the subgradient definition:

$$\max_{Ax \le b} \left(cx - \lambda(Dx - d) \right) \ge \max_{Ax \le b} \left(cx - \bar{\lambda}(Dx - d) \right) + \gamma(\lambda - \bar{\lambda})$$

Using:

- an opt. solution to $f(\bar{\lambda}) = \max_{Ax \leq b} (cx \bar{\lambda}(Dx d))$ is x'
- the definition of γ

$$\max_{Ax \le b} (cx - \lambda(Dx - d)) \ge (cx' - \bar{\lambda}(Dx' - d)) + (d - Dx')(\lambda - \bar{\lambda})$$
$$= cx' - \lambda(Dx' - d)$$

Intuition

Lagrange dual:

min
$$z_{LR}(\lambda) = cx - \lambda(Dx - d)$$

s.t. $Ax \le b$
 $x \in \mathbb{Z}_+^n$

Gradient in x' is

$$\gamma = d - Dx'$$

Subgradient Iteration

Recursion

$$\lambda^{k+1} = \max \left\{ \lambda^k - \theta \gamma^k, 0 \right\}$$

where $\theta > 0$ is step-size

If $\gamma > 0$ and θ is sufficiently small $z_{LR}(\lambda)$ will decrease.

- Small θ slow convergence
- Large θ unstable

Held and Karp procedure (gradient descent)

Initially

$$\lambda^{(0)} = \{0, \dots, 0\}$$

compute the new multipliers by recursion

$$\lambda_i^{(k+1)} := \begin{cases} \lambda_i^{(k)} & \text{if } |\gamma_i| \le \epsilon \\ \max(\lambda_i^{(k)} - \theta \gamma_i, 0) & \text{if } |\gamma_i| > \epsilon \end{cases}$$

where γ is subgradient.

The step θ is defined by

$$\theta = \mu \frac{z_{LR}(\lambda^k) - \underline{z}}{\sum_i \lambda_i^2}$$

where μ is an appropriate constant and \underline{z} a heuristic lower bound for the original ILP problem. E.g. $\mu = 1$ and halved if upper bound not decreased in 20 iterations.

Lagrange relaxation and LP

For an LP-problem where we Lagrange relax all constraints

- Dual variables are best choice of Lagrange multipliers
- Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

- Iterative algorithms
- Polynomial algorithms