Cheryl's Birthday Puzzle - worked out example

Definitions

Consider the following three public announcements made by Albert and Bernard.

Albert: "I don't know when Cheryl's birthday is, but I know that you (Bernard) don't know either."

$$\varphi_1 = \neg (K_A(m_5 \land d_{15}) \lor \dots \lor K_A(m_8 \land d_{17})) \land K_A \neg (K_B(m_5 \land d_{15}) \lor \dots \lor K_B(m_8 \land d_{17}))$$

(For all possible dates given by Cheryl.)

Bernard: "At first I didn't know when Cheryl's birthday is, but now I know."

The first part of the statement does not give new information, so we only consider "I know now" $\varphi_2 = K_B(m_5 \wedge d_{15}) \vee ... \vee K_B(m_8 \wedge d_{17})$ (For all possible dates given by Cheryl.)

Albert: "Now I also know when Cheryl's birthday is."

$$\varphi_3 = K_A(m_5 \wedge d_{15}) \vee ... \vee K_A(m_8 \wedge d_{17})$$

(For all possible dates given by Cheryl.)

(With this definition, φ_1 can also be written as $\varphi_1 = \neg \varphi_3 \wedge K_A \neg \varphi_2$.)

We define model M as the model after Cheryl's gave all the possible dates and told Albert the month and told Bernard the day, see Figure 1.

We define the reduced model $M_1 = M | \varphi_1$, see Figure 2.

Reduced model $M_2 = M_1 | \varphi_2$, see Figure 3.

Reduced model $M_3 = M_2 | \varphi_3$, see Figure 4.

The true state of Cheryl's Birthday is July 16, which Albert and Bernard don't know. Call this state (16, July).

$$(M, (16, July)) \models m_7 \wedge d_{16} \tag{1}$$

Figure 1: Model M. Reflexive and further transitive relations not shown. Albert's relations are shown in orange, Bernard's relations are shown in blue.

Figure 2: Reduced model M_1 . Grayed-out states are not included.

Figure 3: Reduced model M_2 .

Figure 4: Reduced model M_3 . Only a single state remains.

Derivation

We want to show that after the public announcements, $\varphi_1, \varphi_2, \varphi_3$, the exact date of Cheryl's birthday is known to Albert and Bernard.

Show that $(M, (16, July)) \models \langle \varphi_1 \rangle \langle \varphi_2 \rangle \langle \varphi_3 \rangle \top$ is true.

$$(M, (16, July)) \models \langle \varphi_1 \rangle \langle \varphi_2 \rangle \langle \varphi_3 \rangle \top$$
 \Leftrightarrow (Definition of $\langle \varphi_1 \rangle$) $(M, (16, July)) \models \varphi_1$ and $(M_1, (16, July)) \models \langle \varphi_2 \rangle \langle \varphi_3 \rangle \top$ Let's first show whether $(M, (16, July)) \models \varphi_1$ is true.

• $(M, (16, July)) \models \varphi_1$ \Leftrightarrow (Definition of φ_1) $(M, (16, July)) \models \neg (K_A(m_5 \land d_{15}) \lor ... \lor K_A(m_8 \land d_{17})) \land K_A \neg (K_B(m_5 \land d_{15}) \lor ... \lor K_B(m_8 \land d_{17}))$ \Leftrightarrow (Def of \land)

$$(M, (16, July)) \models \neg (K_A(m_5 \wedge d_{15}) \vee ... \vee K_A(m_8 \wedge d_{17}))$$

and $(M, (16, July)) \models K_A \neg (K_B(m_5 \wedge d_{15}) \vee ... \vee K_B(m_8 \wedge d_{17}))$
First conjunct:

 $-(M,(16,July)) \models \neg(K_A(m_5 \wedge d_{15}) \vee ... \vee K_A(m_8 \wedge d_{17})) \qquad \Leftrightarrow (\text{Definition of } \neg)$ $(M,(16,July)) \nvDash K_A(m_5 \wedge d_{15}) \vee ... \vee K_A(m_8 \wedge d_{17}) \qquad \Leftrightarrow (\text{Definition of } \vee)$ $(M,(16,July)) \nvDash K_A(m_5 \wedge d_{15}) \text{ or } ... \text{ or } (M,(16,July)) \nvDash K_A(m_8 \wedge d_{17}) \qquad \Leftrightarrow (\text{Def of } K_A)$ For all t with $(16,July) \sim_A t$, $(M,t) \nvDash (m_5 \wedge d_{15})$ or ...
or for all u with $(16,July) \sim_A u$, $(M,u) \nvDash (m_8 \wedge d_{17})$ $t = u \in \{(14,July), (16,July)\}. \text{ In the first state only the propositional atoms } m_7 \text{ and } d_{16} \text{ are true. Any choice}$

of d_i is not true in both states at the same time. So this statement is true.

Continuing with the other conjunct:

```
(M, (16, July)) \models K_A \neg (K_B(m_5 \land d_{15}) \lor \dots \lor K_B(m_8 \land d_{17}))
                                                                                                         \Leftrightarrow (Definition of K_A)
For all t with (16, July) \sim_A t, (M, t) \models \neg(K_B(m_5 \wedge d_{15}) \vee ... \vee K_B(m_8 \wedge d_{17}))
                                                                                                           ⇔ (De Morgan law)
For all t with (16, July) \sim_A t, (M, t) \models \neg K_B(m_5 \wedge d_{15}) \wedge ... \wedge \neg K_B(m_8 \wedge d_{17})
t \in \{(14, July), (16, July)\}, specifying both states:
(M,(14,July)) \models \neg K_B(m_5 \wedge d_{15}) \wedge ... \wedge \neg K_B(m_8 \wedge d_{17})
and (M, (16, July)) \models \neg K_B(m_5 \wedge d_{15}) \wedge ... \wedge \neg K_B(m_8 \wedge d_{17})
                                                                                                           \Leftrightarrow (Definition of \land)
(M, (14, July)) \models \neg K_B(m_5 \land d_{15}) \text{ and } ... \text{ and } (M, (14, July)) \models \neg K_B(m_8 \land d_{17})
and (M,(16,July)) \models \neg K_B(m_5 \wedge d_{15}) and ... and (M,(16,July)) \models \neg K_B(m_8 \wedge d_{17}) \Leftrightarrow (\text{Def } \neg)
(M, (14, July)) \nvDash K_B(m_5 \wedge d_{15}) and ... and (M, (14, July)) \nvDash K_B(m_8 \wedge d_{17})
and (M,(16,July)) \nvDash K_B(m_5 \wedge d_{15}) and ... and (M,(16,July)) \nvDash K_B(m_8 \wedge d_{17}) \Leftrightarrow (\text{Def } K_B)
For all t with (14, July) \sim_B t, (M, t) \nvDash m_5 \wedge d_{15} and ...
and for all u with (14, July)\sim_B u, (M,u) \nvDash m_8 \wedge d_{17} and ...
and for all v with (16, July) \sim_B v, (M, v) \nvDash m_5 \wedge d_{15} and ...
and for all w with (16, July) \sim_B w, (M, w) \nvDash m_8 \wedge d_{17}.
t = u \in \{(14, July), (14, August)\}, v = w \in \{(16, May), (16, July)\}. With similar reasoning as
before, any choice of propositional atom m_i is not true in two different states at the same time.
```

Continuing with the other conjunct:

So this statement is true.

$$(M_1, (16, July)) \models \langle \varphi_2 \rangle \langle \varphi_3 \rangle \top$$
 \Leftrightarrow (Definition of $\langle \varphi_2 \rangle$)

```
(M_1, (16, July)) \models \varphi_2 and (M_2, (16, July)) \models \langle \varphi_3 \rangle \top
Let's show whether (M_1, (16, July)) \models \varphi_2 is true.
```

```
• (M_1, (16, July)) \models \varphi_2 \Leftrightarrow (Definition of \varphi_2)

(M_1, (16, July)) \models K_B(m_5 \wedge d_{15}) \vee ... \vee K_B(m_8 \wedge d_{17}) \Leftrightarrow (Definition of \vee)

(M_1, (16, July)) \models K_B(m_5 \wedge d_{15}) or ... or (M_1, (16, July)) \models K_B(m_8 \wedge d_{17}) \Leftrightarrow (Def of K_B)

For all t with (16, July) \sim_B t, (M_1, t) \models (m_5 \wedge d_{15}) or ...

or for all u with (16, July) \sim_B u, (M_1, u) \models (m_7 \wedge d_{16}) or ...

or for all v with (16, July) \sim_B v, (M_1, v) \models (m_8 \wedge d_{17})

t = u = v \in \{(16, July)\}. (M_1, (16, July)) \models (m_7 \wedge d_{16}) is true by Equation 1.

Therefore (M_1, (16, July)) \models \varphi_2 is true.
```

Continuing with the other conjunct:

$$(M_2,(16,July)) \models \langle \varphi_3 \rangle \top \qquad \Leftrightarrow (\text{Definition of } \langle \varphi_3 \rangle)$$

$$(M_2,(16,July)) \models \varphi_3 \text{ and } (M_3,(16,July)) \models \top$$

$$(M_3,(16,July)) \models \varphi_3 \qquad \Leftrightarrow (\text{Definition of } \varphi_3)$$

$$(M_2,(16,July)) \models \varphi_3 \qquad \Leftrightarrow (\text{Definition of } \varphi_3)$$

$$(M_2,(16,July)) \models K_A(m_5 \wedge d_{15}) \vee ... \vee K_A(m_8 \wedge d_{17}) \qquad \Leftrightarrow (\text{Definition of } \vee)$$

$$(M_2,(16,July)) \models K_A(m_5 \wedge d_{15}) \text{ or } ... \text{ or } (M_2,(16,July)) \models K_A(m_8 \wedge d_{17}) \qquad \Leftrightarrow (\text{Definition of } K_A)$$
For all t with $(16,July) \sim_A t$, $(M_2,t) \models (m_5 \wedge d_{15}) \text{ or } ...$
or for all u with $(16,July) \sim_A u$, $(M_2,u) \models (m_7 \wedge d_{16}) \text{ or } ...$
or for all v with $(16,July) \sim_A v$, $(M_2,v) \models (m_8 \wedge d_{17})$

$$t = u = v \in \{(16,July)\}. \quad (M_2,(16,July)) \models (m_7 \wedge d_{16}) \text{ is true by Equation 1.}$$
Therefore $(M,(16,July)) \models \langle \varphi_1 \rangle \langle \varphi_2 \rangle \langle \varphi_3 \rangle \top \text{ is true.}$