Stat 300A Theory of Statistics

Homework 1

Andrea Montanari

Due on October 3, 2018

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (https://www.gradescope.com) for homework submission (you should have received an invitation) no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: Properties of exponential families

Recall that an exponential family in canonical form is a class of probability measures on \mathbb{R}^n , taking the form

$$\mathsf{P}_{\boldsymbol{\theta}}(\mathrm{d}\boldsymbol{x}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left\{ \langle \boldsymbol{\theta}, \boldsymbol{T}(\boldsymbol{x}) \rangle \right\} \nu(\mathrm{d}\boldsymbol{x}), \tag{1}$$

where $\nu(d\mathbf{x})$ is a reference measure on \mathbb{R}^n . For the purpose of this problem, you can assume that P_{θ} has a density with respect to the Lebesgue measure on \mathbb{R}^n , which therefore can be written as

$$p_{\theta}(x) = \frac{1}{Z(\theta)} \exp \{ \langle \theta, T(x) \rangle \} h(x), \qquad (2)$$

where $h: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is a measurable function. Alternatively, you can assume that P_{θ} is supported on \mathbb{Z}^d , with probability mass function of the form (2). Recall that the log partition function is defined as $\phi(\theta) = \log Z(\theta)$, which is finite for $\theta \in \Theta_N$ (the natural parameter space). (In the following, you are not required to justify the exchange of order of derivative and integrals.)

- (a) Prove that Θ_N is convex and $\phi:\Theta_N\to\mathbb{R}$ is a convex function.
- (b) Prove the following identities hold for $\theta \in \Theta_N^{\circ}$ (the interior of Θ_N)

$$\frac{\partial \phi}{\partial \theta_i}(\boldsymbol{\theta}) = \mathsf{E}_{\boldsymbol{\theta}}\{T_i(\boldsymbol{X})\}\,,\tag{3}$$

$$\frac{\partial^2 \phi}{\partial \theta_i \partial \theta_j}(\boldsymbol{\theta}) = \operatorname{Cov}_{\boldsymbol{\theta}} \{ T_i(\boldsymbol{X}); T_j(\boldsymbol{X}) \}. \tag{4}$$

(c) Assume that $x \mapsto h(x)$, $x \mapsto T(x)$ are differentiable. Prove that the following identity (Stein's identity) hold for any differentiable function $g: \mathbb{R}^n \to \mathbb{R}$ such that both sides make sense:

$$\mathsf{E}_{\boldsymbol{\theta}} \left\{ \left[\frac{1}{h(\boldsymbol{x})} \frac{\partial h}{\partial x_i}(\boldsymbol{x}) + \langle \boldsymbol{\theta}, \frac{\partial \boldsymbol{T}}{\partial x_i}(\boldsymbol{x}) \rangle \right] g(\boldsymbol{x}) \right\} + \mathsf{E}_{\boldsymbol{\theta}} \left\{ \frac{\partial g}{\partial x_i}(\boldsymbol{x}) \right\} = 0 \tag{5}$$

(d) Assume that **p** is a multivariate Gaussian density, namely

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2} \det(\boldsymbol{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}\langle (\boldsymbol{x} - \boldsymbol{\mu})\boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\rangle\right\}. \tag{6}$$

Show that Stein's identity in this case reduces to

$$\mathbb{E}\{(\boldsymbol{x} - \boldsymbol{\mu}) g(\boldsymbol{x})\} = \boldsymbol{\Sigma} \mathbb{E}\{\nabla g(\boldsymbol{x})\}. \tag{7}$$

2: Exercises on sufficient statistics

(a) Consider a statistical model composed of k probability distributions. Namely

$$\mathscr{P} = \left\{ \mathsf{p}_1, \mathsf{p}_2, \dots, \mathsf{p}_k \right\},\tag{8}$$

where p_{ℓ} are densities on \mathbb{R}^n (we identify the probability distribution with its density). Show that there exists a set of k-1 sufficient statistics.

- (b) Let $\theta = (\theta_1, \theta_2) \in \mathbb{R}^2$ with $\theta_1 < \theta_2$ and define P_{θ} to be the distribution of n i.i.d. random variables $X_1, \ldots, X_n \sim \mathsf{Unif}([\theta_1, \theta_2])$. Let $x_{\min} = \min(x_1, \ldots, x_n)$, and $x_{\max} = \max(x_1, \ldots, x_n)$. Prove that (x_{\min}, x_{\max}) is a sufficient statistics for the model $\mathscr{P} = (P_{\theta})$.
- (c) Consider the Gaussian linear model. Namely, for a fixed design matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$, we have $\mathsf{P}_{\boldsymbol{\theta}} = \mathsf{N}(\mathbf{A}\boldsymbol{\theta}, \sigma^2 \mathsf{I}_n), \ \boldsymbol{\theta} \in \Theta = \mathbb{R}^d$. Show that there exists a sufficient statistic of dimension d.

3: Optimal linear estimation in heteroscedastic Gaussian model

Assume $\sigma_1, \ldots, \sigma_d > 0$ to be known, and consider the statistical model $\mathsf{P}_{\theta} = \mathsf{N}(\theta \mathbf{1}, \mathbf{\Sigma})$, where $\mathbf{\Sigma} = \mathrm{diag}(\sigma_1^2, \ldots, \sigma_d^2)$, and $\theta \in \Theta = \mathbb{R}$ (with **1** denoting the all-ones vector). In other words, $X_i = \theta + \sigma_i G_i$ where $(G_i)_{i \leq d} \sim_{iid} \mathsf{N}(0, 1)$. (Here $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{i=1}^m u_i v_i$ denotes the usual scalar product of $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^m$.)

- (a) Show that there exists a sufficient statistics of the form $\ell(x) = \langle c, x \rangle$, where $c \in \mathbb{R}^d$, and determine the vector c.
- (b) Using the result at the previous point, determine the optimal linear estimator $\hat{\theta}(\boldsymbol{x}) = \langle \boldsymbol{a}, \boldsymbol{x} \rangle$, with respect to the square loss $L(\hat{\theta}, \theta) = (\hat{\theta} \theta)^2$. Here optimality is to be understood in minimax sense, that is we want to minimize $R_{\rm M}(\hat{\theta})$ among all linear estimators.
- (c) Generalize the above to the case of general correlated Gaussian noise (i.e. Σ not necessarily diagonal, but strictly positive definite).