1. II have two functions, f(x) and g(x). Here is the graph of f(x):

Unfortunately, I lost the graph of g(x). Which of the following is true?

- A. The limit $\lim_{x\to 2} [f(x) + g(x)]$ exists.
- B. The limit $\lim_{x\to 2} [f(x) + g(x)]$ does not exist.
- C. There is not enough information to tell if $\lim_{x\to 2} [f(x) + g(x)]$ exists.
- 2. Given two infinite decimals a=0.3939393939... and b=0.67766777666..., their sum a+b:
 - A. is not defined because the sum of a rational and irrational number is not defined.
 - B. is not a number because not all infinite decimals are real numbers.
 - C. can be defined precisely by using successively better approximations
 - D. is not a real number because the pattern may not be predictable indefinitely.
- 3. "Whether or not $\lim_{x\to a} f(x)$ exists depends on how f(a) is defined" is true
 - A. Sometimes
 - B. Always
 - C. Never
- 4. What is the maximum number of horizontal asymptotes that a function can have?
 - A. One
 - B. Two
 - C. Three
 - D. There is no maximum number.

5. Find $\lim_{x\to 3} \frac{x^3 - 3x^2 - x + 3}{x^2 - 9}$, or explain why the limit does not exist.

6. Find $\lim_{x\to\infty} \frac{\sqrt{16x^4 + 52x - 307}}{2x^2 + 2x + 2}$, or explain why it does not exist.

7.
$$\lim_{x \to -3} \frac{x^3 - 3x^2 - x + 3}{x^2 - 9}$$

8. Use the following graph to find the values:

If the value does not exist, write DNE.

(a)
$$\lim_{x \to 1^{-}} f(x)$$

(i)
$$\lim_{x \to 3^-} f(x)$$

(b)
$$\lim_{x \to 1^+} f(x)$$

$$(j) \lim_{x \to 3^+} f(x) \underline{\hspace{1cm}}$$

(c)
$$\lim_{x \to 1} f(x)$$

(k)
$$\lim_{x \to 3} f(x)$$

(d)
$$f(1)$$

(l)
$$f(3)$$

(e)
$$\lim_{x \to 2^{-}} f(x)$$

(m)
$$\lim_{x \to 4^{-}} f(x)$$

(f)
$$\lim_{x \to 2^+} f(x)$$

(n)
$$\lim_{x \to 4^+} f(x)$$

(g)
$$\lim_{x\to 2} f(x)$$

(o)
$$\lim_{x \to 4} f(x)$$

(h)
$$f(2)$$

(p)
$$f(4)$$
