MATH 299Q: Homework 1 Solutions Quiver Representations

Let k denote an algebraically-closed field.

- 1. (a) We have im $T := \{ w \in W \mid w = T(v), v \in V \}$ and $\ker T := \{ v \in V \mid T(v) = 0 \}$.
 - (b) There are various ways of describing these. For instance, T is injective if and only if $\ker T = \{0\}$, T is surjective if $\operatorname{im} T = W$. If T is an isomorphism then $\dim V = n = m = \dim W$.
 - (c) Proof. Let $f, g \in \text{Hom}(V, W)$. Define k-vector space structure of Hom(V, W) to be

$$(f+g)(v) = f(v) + g(v) \qquad (\lambda f)(v) = \lambda(f(v))$$

where $v \in V$ and $\lambda \in k$. It follows that since f and g are linear operators, the two operations preserve linearity and thus Hom(V, W) is a k-vector space.

2. For example,

(a)

(b)

With appropriate linear maps $\alpha, \beta, \gamma, \delta, \epsilon$.

3. Proof. It follows that a morphism $f:M\to N$ is a choice of scalars $a,b,c,d,e\in k$ such that the following diagram commutes:

We then get the following relations

$$a = c$$
, $b = d$, $c + d = e$.

Therefore, $a, b \in k$ completely determines the morphism. Since every choice of a and b yields a unique morphism we have that $\operatorname{Hom}(M, N) \cong k^2$.