$12n_{0639} (K12n_{0639})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 11u^{19} - 95u^{18} + \dots + 2b - 86, \ -49u^{19} + 435u^{18} + \dots + 4a + 508, \ u^{20} - 9u^{19} + \dots - 22u + 4 \rangle \\ I_2^u &= \langle u^{14} + 4u^{13} + 10u^{12} + 15u^{11} + 15u^{10} + 6u^9 - 6u^8 - 16u^7 - 16u^6 - 13u^5 - 6u^4 - 3u^3 + b + u + 2, \\ &- 4u^{14} - 18u^{13} + \dots + a + 5, \\ u^{15} + 6u^{14} + 19u^{13} + 38u^{12} + 50u^{11} + 37u^{10} - 4u^9 - 52u^8 - 74u^7 - 57u^6 - 18u^5 + 12u^4 + 18u^3 + 8u^2 - 1 \rangle \\ I_3^u &= \langle -a^3 - 2a^2u + 3u^2a - a^2 + 4au + u^2 + b + 3a + u + 3, \\ a^3u^2 + a^4 + 2a^3u - 5a^2u^2 + a^3 - 4a^2u - 3u^2a - a^2 - 5au - 2u^2 - 4a - 1, \ u^3 + u^2 - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 47 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 11u^{19} - 95u^{18} + \dots + 2b - 86, \ -49u^{19} + 435u^{18} + \dots + 4a + 508, \ u^{20} - 9u^{19} + \dots - 22u + 4 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{49}{4}u^{19} - \frac{435}{4}u^{18} + \dots + \frac{1743}{4}u - 127 \\ -\frac{11}{2}u^{19} + \frac{95}{2}u^{18} + \dots - \frac{317}{2}u + 43 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{19} + 4u^{18} + \dots - \frac{27}{2}u + \frac{7}{2} \\ -\frac{1}{2}u^{19} + \frac{7}{2}u^{18} + \dots + 6u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{43}{4}u^{19} - \frac{365}{4}u^{18} + \dots + \frac{1173}{4}u - 78 \\ \frac{1}{2}u^{19} - \frac{3}{2}u^{18} + \dots - \frac{129}{2}u + 27 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{41}{4}u^{19} - \frac{359}{4}u^{18} + \dots + \frac{1431}{4}u - 105 \\ \frac{1}{2}u^{19} - \frac{3}{2}u^{18} + \dots - \frac{129}{2}u + 27 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{18} - \frac{7}{2}u^{17} + \dots - 5u + \frac{3}{2} \\ \frac{1}{2}u^{19} - \frac{9}{2}u^{18} + \dots + \frac{21}{2}u - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{19} - 4u^{18} + \dots + \frac{11}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{19} - \frac{9}{2}u^{18} + \dots + \frac{21}{2}u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 12u^{19} - \frac{209}{2}u^{18} + \dots + 404u - \frac{237}{2} \\ -\frac{13}{2}u^{19} + \frac{107}{2}u^{18} + \dots - \frac{345}{2}u + 48 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{169}{4}u^{19} - \frac{1407}{4}u^{18} + \dots + \frac{4055}{4}u - 251 \\ -\frac{63}{2}u^{19} + \frac{521}{2}u^{18} + \dots - \frac{1243}{2}u + 173 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{55}{2}u^{19} + 227u^{18} + \dots - \frac{1243}{2}u + \frac{285}{2} \\ \frac{57}{2}u^{19} - \frac{469}{2}u^{18} + \dots + \frac{1243}{2}u - 146 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $90u^{19} - 751u^{18} + 3199u^{17} - 8714u^{16} + 17011u^{15} - 25494u^{14} + 31435u^{13} - 32365u^{12} + 24669u^{11} - 4672u^{10} - 23026u^9 + 47119u^8 - 58278u^7 + 55306u^6 - 40524u^5 + 20676u^4 - 5078u^3 - 2030u^2 + 2210u - 566$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{20} + 35u^{19} + \dots - 6u + 1$
c_2, c_7, c_{12}	$u^{20} + u^{19} + \dots - 2u - 1$
<i>c</i> ₃	$u^{20} - 9u^{19} + \dots - 22u + 4$
c_4, c_8	$u^{20} + 15u^{18} + \dots - 3u - 1$
c_5, c_{10}, c_{11}	$u^{20} - 7u^{19} + \dots - 16u - 8$
c_6	$u^{20} + 21u^{19} + \dots + 23824u + 2664$
c_9	$u^{20} - 24u^{18} + \dots - 197u - 57$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} - 123y^{19} + \dots - 118y + 1$
c_2, c_7, c_{12}	$y^{20} - 35y^{19} + \dots + 6y + 1$
c_3	$y^{20} + y^{19} + \dots - 172y + 16$
c_4, c_8	$y^{20} + 30y^{19} + \dots - 41y + 1$
c_5, c_{10}, c_{11}	$y^{20} - 19y^{19} + \dots - 352y + 64$
c_6	$y^{20} - 7y^{19} + \dots - 72537184y + 7096896$
<i>c</i> ₉	$y^{20} - 48y^{19} + \dots + 66527y + 3249$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.263775 + 0.933613I		
a = 0.063867 + 0.469394I	1.90324 + 1.62770I	-2.35623 - 4.39456I
b = 0.635043 - 0.343749I		
u = -0.263775 - 0.933613I		
a = 0.063867 - 0.469394I	1.90324 - 1.62770I	-2.35623 + 4.39456I
b = 0.635043 + 0.343749I		
u = -1.08046		
a = 0.288950	-5.71917	-17.5810
b = 0.649514		
u = 0.288783 + 0.801332I		
a = 0.234474 - 0.843337I	-2.01141 - 1.38113I	-7.57284 - 0.08377I
b = -0.484200 + 0.635373I		
u = 0.288783 - 0.801332I		
a = 0.234474 + 0.843337I	-2.01141 + 1.38113I	-7.57284 + 0.08377I
b = -0.484200 - 0.635373I		
u = -0.626429 + 1.085280I		
a = -0.082861 - 0.296469I	-2.18377 + 5.21287I	-7.17987 - 5.41855I
b = -0.711687 + 0.249730I		
u = -0.626429 - 1.085280I		
a = -0.082861 + 0.296469I	-2.18377 - 5.21287I	-7.17987 + 5.41855I
b = -0.711687 - 0.249730I		
u = 0.727091 + 0.098566I		
a = 0.27452 - 2.08093I	-6.93044 - 4.62901I	-12.95845 - 0.90844I
b = 0.036016 + 0.445425I		
u = 0.727091 - 0.098566I		
a = 0.27452 + 2.08093I	-6.93044 + 4.62901I	-12.95845 + 0.90844I
b = 0.036016 - 0.445425I		
u = 0.622736 + 0.087717I		
a = -0.13935 + 1.89543I	-1.13986 - 1.75347I	-8.00254 + 2.62344I
b = -0.007001 - 0.462890I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.622736 - 0.087717I		
a = -0.13935 - 1.89543I	-1.13986 + 1.75347I	-8.00254 - 2.62344I
b = -0.007001 + 0.462890I		
u = 1.15558 + 1.02594I		
a = 0.454735 + 1.318780I	17.3877 - 12.0858I	-13.7130 + 4.9422I
b = -2.17085 - 0.53930I		
u = 1.15558 - 1.02594I		
a = 0.454735 - 1.318780I	17.3877 + 12.0858I	-13.7130 - 4.9422I
b = -2.17085 + 0.53930I		
u = 1.04701 + 1.18287I		
a = -0.989116 - 0.564620I	17.9143 + 3.9437I	-13.79737 - 1.18244I
b = 2.06593 - 0.51777I		
u = 1.04701 - 1.18287I		
a = -0.989116 + 0.564620I	17.9143 - 3.9437I	-13.79737 + 1.18244I
b = 2.06593 + 0.51777I		
u = -0.408607		
a = -0.763027	-0.693185	-14.4620
b = -0.439173		
u = 1.16573 + 1.09145I		
a = -0.587075 - 1.041030I	-14.6724 - 7.3263I	-11.70204 + 4.29722I
b = 2.09877 + 0.18587I		
u = 1.16573 - 1.09145I		
a = -0.587075 + 1.041030I	-14.6724 + 7.3263I	-11.70204 - 4.29722I
b = 2.09877 - 0.18587I		
u = 1.12782 + 1.15737I		
a = 0.757846 + 0.799117I	-14.4635 - 1.0817I	-11.69610 + 0.I
b = -2.06719 + 0.14611I		
u = 1.12782 - 1.15737I		
a = 0.757846 - 0.799117I	-14.4635 + 1.0817I	-11.69610 + 0.I
b = -2.06719 - 0.14611I		

$$I_2^u = \langle u^{14} + 4u^{13} + \dots + b + 2, -4u^{14} - 18u^{13} + \dots + a + 5, u^{15} + 6u^{14} + \dots + 8u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 4u^{14} + 18u^{13} + \dots - 11u - 5 \\ -u^{14} - 4u^{13} + \dots - u - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{12} - 5u^{11} + \dots - 10u - 7 \\ -u^{14} - 6u^{13} + \dots - 17u^{2} - 8u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{14} - 13u^{13} + \dots - 16u - 1 \\ -4u^{14} - 22u^{13} + \dots - 7u + 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{14} + 9u^{13} + \dots - 9u - 4 \\ -4u^{14} - 22u^{13} + \dots - 7u + 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{13} - 6u^{12} + \dots - 18u - 7 \\ -u^{14} - 6u^{13} + \dots - 8u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{14} - 7u^{13} + \dots - 26u - 8 \\ -u^{14} - 6u^{13} + \dots - 8u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 4u^{14} + 22u^{13} + \dots - 26u - 8 \\ -u^{14} - 6u^{13} + \dots + 16u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 4u^{14} + 22u^{13} + \dots + 29u + 9 \\ 2u^{14} + 13u^{13} + \dots + 16u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 5u^{14} - 11u^{13} + \dots + 4u + 7 \\ 4u^{14} + 24u^{13} + \dots + 12u - 6 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 5u^{14} + 29u^{13} + \dots + 22u - 2 \\ -4u^{14} - 23u^{13} + \dots - 4u + 9 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$15u^{14} + 84u^{13} + 246u^{12} + 446u^{11} + 504u^{10} + 245u^9 - 262u^8 - 701u^7 - 742u^6 - 398u^5 + 24u^4 + 221u^3 + 159u^2 + 17u - 32$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{15} - 15u^{14} + \dots + 9u - 1$
c_2	$u^{15} + u^{14} + \dots - u - 1$
<i>C</i> 3	$u^{15} + 6u^{14} + \dots + 8u^2 - 1$
C ₄	$u^{15} + 3u^{13} + \dots - 4u^2 - 1$
<i>C</i> 5	$u^{15} - 8u^{13} + \dots - 12u^3 - 1$
<i>C</i> ₆	$u^{15} + 8u^{12} + \dots + 3u^2 - 1$
c_7, c_{12}	$u^{15} - u^{14} + \dots - u + 1$
C ₈	$u^{15} + 3u^{13} + \dots + 4u^2 + 1$
<i>C</i> 9	$u^{15} - 8u^{13} + \dots + 2u^2 + 1$
c_{10}, c_{11}	$u^{15} - 8u^{13} + \dots - 12u^3 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} - 31y^{14} + \dots - 11y - 1$
c_2, c_7, c_{12}	$y^{15} - 15y^{14} + \dots + 9y - 1$
c_3	$y^{15} + 2y^{14} + \dots + 16y - 1$
c_4, c_8	$y^{15} + 6y^{14} + \dots - 8y - 1$
c_5, c_{10}, c_{11}	$y^{15} - 16y^{14} + \dots + 12y^2 - 1$
c_6	$y^{15} - 22y^{13} + \dots + 6y - 1$
<i>c</i> ₉	$y^{15} - 16y^{14} + \dots - 4y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.02838		
a = -0.673279	-8.97607	-19.1120
b = -1.40442		
u = -0.865049 + 0.608135I		
a = -0.280256 + 1.131020I	-1.66725 + 3.23030I	-7.54630 - 5.89815I
b = 0.638534 - 0.425883I		
u = -0.865049 - 0.608135I		
a = -0.280256 - 1.131020I	-1.66725 - 3.23030I	-7.54630 + 5.89815I
b = 0.638534 + 0.425883I		
u = -0.034033 + 1.074520I		
a = -0.708776 - 0.233805I	-3.77019 - 2.56256I	-12.71337 + 2.06324I
b = 1.075770 - 0.432119I		
u = -0.034033 - 1.074520I		
a = -0.708776 + 0.233805I	-3.77019 + 2.56256I	-12.71337 - 2.06324I
b = 1.075770 + 0.432119I		
u = -0.764295 + 0.414957I		
a = 0.38774 - 1.74222I	-6.94753 + 5.39923I	-13.2804 - 8.9655I
b = -0.518757 + 0.528802I		
u = -0.764295 - 0.414957I		
a = 0.38774 + 1.74222I	-6.94753 - 5.39923I	-13.2804 + 8.9655I
b = -0.518757 - 0.528802I		
u = -0.410448 + 1.166870I		
a = 0.612112 - 0.171673I	0.60597 + 1.58539I	-9.91315 - 2.10632I
b = -0.945688 + 0.403215I		
u = -0.410448 - 1.166870I		
a = 0.612112 + 0.171673I	0.60597 - 1.58539I	-9.91315 + 2.10632I
b = -0.945688 - 0.403215I		
u = -1.122950 + 0.658583I		
a = -0.067419 - 0.819750I	-5.15231 + 1.54512I	-15.9184 - 2.4740I
b = -0.652697 + 0.297689I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.122950 - 0.658583I		
a = -0.067419 + 0.819750I	-5.15231 - 1.54512I	-15.9184 + 2.4740I
b = -0.652697 - 0.297689I		
u = 0.625489		
a = 1.58555	-6.43860	-4.48120
b = 1.61206		
u = -0.76860 + 1.27462I		
a = -0.362430 + 0.320539I	-2.95721 + 5.51163I	-16.1590 - 8.3531I
b = 0.872760 - 0.329613I		
u = -0.76860 - 1.27462I		
a = -0.362430 - 0.320539I	-2.95721 - 5.51163I	-16.1590 + 8.3531I
b = 0.872760 + 0.329613I		
u = 0.276879		
a = -6.07420	-13.8955	-11.3460
b = -2.14748		

III.
$$I_3^u = \langle 3u^2a + u^2 + \dots + 3a + 3, \ a^3u^2 - 5a^2u^2 + \dots - 4a - 1, \ u^3 + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a^{3} + 2a^{2}u - 3u^{2}a + a^{2} - 4au - u^{2} - 3a - u - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{3}u^{2} - a^{2}u^{2} - 2u^{2}a + 2a^{2} - 4au - 2u^{2} - a \\ -2a^{3}u^{2} + 3a^{2}u^{2} + 4u^{2}a - 4a^{2} + 8au + 4u^{2} + 2a - 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a^{3} + 2a^{2}u - 4u^{2}a + a^{2} - 4au - u^{2} - 2a - u - 3 \\ a^{3}u^{2} - a^{2}u^{2} + a^{3} + 2a^{2}u - 6u^{2}a + 3a^{2} - 8au - 4u^{2} - 3a - 2u - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a^{3}u^{2} - a^{2}u^{2} + a^{3} + 2a^{2}u - 6u^{2}a + 3a^{2} - 8au - 4u^{2} - 3a - 2u - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{3}u^{2} - a^{2}u^{2} + a^{3} + 2a^{2}u - 6u^{2}a + 3a^{2} - 8au - 4u^{2} - 3a - 2u - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a^{3}u^{2} - 2a^{2}u^{2} - 2u^{2}a + 2a^{2} - 4au - 2u^{2} - a \\ -a^{3}u^{2} + a^{3}u + 3a^{2}u^{2} - a^{3} - 2a^{2}u + 5u^{2}a - 2a^{2} + 6au - 4u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{3}u + a^{2}u^{2} - a^{3} - 2a^{2}u + 3u^{2}a + 2au - 2u^{2} - a - 4u + 2 \\ -a^{3}u^{2} + a^{3}u + 3a^{2}u^{2} - a^{3} - 2a^{2}u + 5u^{2}a - 2a^{2} + 6au - 4u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{3}u^{2} - 3a^{2}u^{2} - 6u^{2}a + 6a^{2} - 12au - 8u^{2} - 3a - 2u \\ -5a^{3}u^{2} + 4a^{2}u^{2} + \dots + 10a + 4 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{3}u^{2} - a^{2}u^{2} - 2u^{2}a + 2a^{2} - 4au - 3u^{2} - a - u \\ -2a^{3}u^{2} - a^{3}u - a^{2}u + 5u^{2}a - 4a^{2} + 10au + 6u^{2} + 5a + 5u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a^{3}u^{2} - a^{2}u^{2} - 2u^{2}a + 2a^{2} - 4au - 2u^{2} - a \\ -3a^{3}u^{2} + 2a^{2}u^{2} + \dots + 4a - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -4u 18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{12} + 21u^{11} + \dots + 54160u + 10201$
c_2, c_7, c_{12}	$u^{12} - u^{11} + \dots - 78u + 101$
c_3	$(u^3 + u^2 - 1)^4$
c_4, c_8	$u^{12} - 3u^{11} + \dots + 110u - 19$
c_5, c_{10}, c_{11}	$(u^2+u-1)^6$
c_6	$(u^2 - 3u + 1)^6$
<i>c</i> ₉	$u^{12} - u^{11} + \dots + 170u + 211$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} - 37y^{11} + \dots - 490778160y + 104060401$
c_2, c_7, c_{12}	$y^{12} - 21y^{11} + \dots - 54160y + 10201$
c_3	$(y^3 - y^2 + 2y - 1)^4$
c_4, c_8	$y^{12} + 7y^{11} + \dots - 7160y + 361$
c_5, c_{10}, c_{11}	$(y^2 - 3y + 1)^6$
c_6	$(y^2 - 7y + 1)^6$
<i>c</i> ₉	$y^{12} - 29y^{11} + \dots - 124272y + 44521$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0.290927 - 0.889122I	-2.89763 + 2.82812I	-14.4902 - 2.9794I
b = -0.901307 + 0.772844I		
u = -0.877439 + 0.744862I		
a = -0.624540 + 1.001960I	-2.89763 + 2.82812I	-14.4902 - 2.9794I
b = 0.768380 + 0.035014I		
u = -0.877439 + 0.744862I		
a = -0.550642 + 1.189890I	-10.79330 + 2.82812I	-14.4902 - 2.9794I
b = 1.58009 - 1.38831I		
u = -0.877439 + 0.744862I		
a = 1.42405 - 1.48532I	-10.79330 + 2.82812I	-14.4902 - 2.9794I
b = -1.23208 - 0.72669I		
u = -0.877439 - 0.744862I		
a = 0.290927 + 0.889122I	-2.89763 - 2.82812I	-14.4902 + 2.9794I
b = -0.901307 - 0.772844I		
u = -0.877439 - 0.744862I		
a = -0.624540 - 1.001960I	-2.89763 - 2.82812I	-14.4902 + 2.9794I
b = 0.768380 - 0.035014I		
u = -0.877439 - 0.744862I		
a = -0.550642 - 1.189890I	-10.79330 - 2.82812I	-14.4902 + 2.9794I
b = 1.58009 + 1.38831I		
u = -0.877439 - 0.744862I		
a = 1.42405 + 1.48532I	-10.79330 - 2.82812I	-14.4902 + 2.9794I
b = -1.23208 + 0.72669I		
u = 0.754878		
a = -0.777477	-14.9309	-21.0200
b = 2.73154		
u = 0.754878		
a = -0.297371	-7.03522	-21.0200
b = -1.83069		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.754878		
a = 2.20067	-7.03522	-21.0200
b = 1.47851		
u = 0.754878		
a = -4.20541	-14.9309	-21.0200
b = -1.80951		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{12} + 21u^{11} + \dots + 54160u + 10201)(u^{15} - 15u^{14} + \dots + 9u - 1)$ $\cdot (u^{20} + 35u^{19} + \dots - 6u + 1)$
c_2	$(u^{12} - u^{11} + \dots - 78u + 101)(u^{15} + u^{14} + \dots - u - 1)$ $\cdot (u^{20} + u^{19} + \dots - 2u - 1)$
c_3	$((u^3 + u^2 - 1)^4)(u^{15} + 6u^{14} + \dots + 8u^2 - 1)(u^{20} - 9u^{19} + \dots - 22u + 4)$
c_4	$(u^{12} - 3u^{11} + \dots + 110u - 19)(u^{15} + 3u^{13} + \dots - 4u^{2} - 1)$ $\cdot (u^{20} + 15u^{18} + \dots - 3u - 1)$
c_5	$((u^{2}+u-1)^{6})(u^{15}-8u^{13}+\cdots-12u^{3}-1)(u^{20}-7u^{19}+\cdots-16u-8)$
c_6	$((u^{2} - 3u + 1)^{6})(u^{15} + 8u^{12} + \dots + 3u^{2} - 1)$ $\cdot (u^{20} + 21u^{19} + \dots + 23824u + 2664)$
c_7, c_{12}	$(u^{12} - u^{11} + \dots - 78u + 101)(u^{15} - u^{14} + \dots - u + 1)$ $\cdot (u^{20} + u^{19} + \dots - 2u - 1)$
c_8	$(u^{12} - 3u^{11} + \dots + 110u - 19)(u^{15} + 3u^{13} + \dots + 4u^{2} + 1)$ $\cdot (u^{20} + 15u^{18} + \dots - 3u - 1)$
c_9	$(u^{12} - u^{11} + \dots + 170u + 211)(u^{15} - 8u^{13} + \dots + 2u^{2} + 1)$ $\cdot (u^{20} - 24u^{18} + \dots - 197u - 57)$
c_{10}, c_{11}	$((u^{2} + u - 1)^{6})(u^{15} - 8u^{13} + \dots - 12u^{3} + 1)(u^{20} - 7u^{19} + \dots - 16u - 8)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{12} - 37y^{11} + \dots - 490778160y + 104060401)$ $\cdot (y^{15} - 31y^{14} + \dots - 11y - 1)(y^{20} - 123y^{19} + \dots - 118y + 1)$
c_2, c_7, c_{12}	$(y^{12} - 21y^{11} + \dots - 54160y + 10201)(y^{15} - 15y^{14} + \dots + 9y - 1)$ $\cdot (y^{20} - 35y^{19} + \dots + 6y + 1)$
c_3	$((y^3 - y^2 + 2y - 1)^4)(y^{15} + 2y^{14} + \dots + 16y - 1)$ $\cdot (y^{20} + y^{19} + \dots - 172y + 16)$
c_4, c_8	$(y^{12} + 7y^{11} + \dots - 7160y + 361)(y^{15} + 6y^{14} + \dots - 8y - 1)$ $\cdot (y^{20} + 30y^{19} + \dots - 41y + 1)$
c_5, c_{10}, c_{11}	$((y^2 - 3y + 1)^6)(y^{15} - 16y^{14} + \dots + 12y^2 - 1)$ $\cdot (y^{20} - 19y^{19} + \dots - 352y + 64)$
<i>c</i> ₆	$((y^2 - 7y + 1)^6)(y^{15} - 22y^{13} + \dots + 6y - 1)$ $\cdot (y^{20} - 7y^{19} + \dots - 72537184y + 7096896)$
<i>c</i> ₉	$(y^{12} - 29y^{11} + \dots - 124272y + 44521)(y^{15} - 16y^{14} + \dots - 4y - 1)$ $\cdot (y^{20} - 48y^{19} + \dots + 66527y + 3249)$