

Sunday, 13 November 2022 20:03

Rules Maximization Minimization Number of constraints Number of variables Number of variables Number of constraints Objective function coefficient Right hand side in constraints Right hand side in constraints Objective function coefficient

Know this:

In Maximization	you have	≤
In Minimization	you have	≥

It's important to make all the variables ≥ 0 , in both min and max problems

Primal	Standard form	Dual
Max	$Max\ with \leq$	$Min\ with \geq$
Min	$Min \ with \geq$	Max with ≤

Dealing with an equal to constraint:

$$2X_1 + X_2 = 400$$
 .

For max problem, we want ≤:

• First, write it as two constraints

$$2X_1 + X_2 \le 400 2X_1 + X_2 \ge 400$$

• Now, convert these two into a less than or equal to constraint.

$$2X_1 + X_2 \le 400$$
$$-2X_1 - X_2 \le -400$$

One important thing to know:

Let's say we have a Max optimization problem:

And we also have the optimal solutions. Let's say the optimal solutions satisfy the constraints:

Binding: A constraint is called "binding" or "active" if it is satisfied as an equality at the optimal solution

Now, we already know that in Dual: # variable ⇒ # constraints # constraints ⇒ #variables

If primal variables: X_1 , X_2 , X_3 and dual variables: Y_1, Y_2

The dual variable corresponding to:

- Constraint $\mathbf{0}$ will be Y_1 .
- Constraint ② will be Y_2 .

The dual variables corresponding to:

- Binding constraint: will be some positive
- Non-binding constraint: will be 0. o meaning strict inequality

Conclusion:

```
Constraint ①: LHS = RHS (binding)
Constraint ②: LHS < RHS (not binding)
           Y_1 +ve quantity,
                Y_2 = 0
```

```
Q1. Convert the given Primal to dual
                Min 120000Y_1 + 140000Y_2
```

```
subject to
|15Y_1 + 20Y_2| \ge 500000
|20Y_1 + 50Y_2| \ge 1000000
|60Y_1 + 100Y_2| \ge 2500000
Y_1, Y_2 \geq 0
```

This problem is already in Standard form.

Dual:

- 1. $Min \Rightarrow Max$
- 2. # variable ⇒ # constraints
- 3. # constraints ⇒ #variables
- **4.** ≥ ⇒ ≤

 $Max \ 500000X_1 + 1000000X_2 + 2500000X_3$

subject to

 $15X_1 + 20X_2 + 60X_3 \le 120000$

$$20X_1 + 50X_2 + 100X_3 \le 140000$$

 $X_1, X_2, X_3 \geq 0$

```
Q2. Convert the given Primal to dual
```

$$Max 500X_1 + 100X_2 + 200X_3$$

subject to

$$\begin{vmatrix} 15X_1 + 20X_2 + 60X_3 \ge 1200 \\ 20X_1 + 50X_2 + 100X_3 \le 1400 \end{vmatrix}$$

$$X_1 \ge 0, X_2 \le 0, X_3 \ unrestricted$$

Notice, not all variables are > 0

$$\therefore$$
 Let, $X_4 - X_5 = X_3$ ($\because X_3$ is unrestriced) and,

$$X_2 = -X_6$$

Now, the problem becomes

$$Min\ 500X_1-100X_6+200X_4\ -200X_5$$

subject to

$$\begin{array}{l} \text{Subject to} \\ 15X_1 - 20X_6 + 60X_4 - 60X_5 \, \geq 1200 \\ 20X_1 - 50X_6 + 100X_4 - 100X_5 \, \leq 1400 \\ X_1, \, X_4, \, X_5, \, X_6 \geq 0 \end{array}$$

Convert it to Standard form:

(Max with <)

$$Max \ 500X_1 - 100X_6 + 200X_4 \ -200X_5$$

$$\begin{vmatrix}
-15X_1 + 20X_6 - 60X_4 + 60X_5 & \le -1200 \\
20X_1 - 50X_6 + 100X_4 - 100X_5 & \le 1400 \\
X_1, X_4, X_5, X_6 \ge 0
\end{vmatrix}$$

Dual:

- 1. $Max \Rightarrow Min$
- 2. # variable ⇒ # constraints
- 3. # constraints ⇒ #variables
- **4.** ≤ ⇒ ≥

: Dual:

$$Min - 1200Y_1 + 1400Y_2$$

subject to

$$-15Y_1 + 20Y_2 \ge 500$$

$$20Y_1 - 50Y_2 \geq -100$$

$$\begin{vmatrix}
-60Y_1 + 100Y_2 \ge 200 \\
60Y_1 - 100Y_2 \ge -200
\end{vmatrix}$$

$$Y_1, Y_2 \geq 0$$

(I'm getting constraints' RHS wrong, I don't

know why)

Q3. Convert the given Primal to dual
$$Max X_1 + 2X_2 + X_3$$

$$2X_1+X_2-X_3\ \leq 2$$

$$egin{array}{c} -2X_1 + X_2 - 5X_3 & \geq -6 \ 4X_1 + X_2 + X_3 & \leq 6 \end{array}$$

$$X_1, X_2, X_3 \ge 0$$
 $X_1, X_2, X_3 \ge 0$

Convert it to Standard form:

(Max with ≤)

$$Max \ X_1 + 2X_2 + X_3$$

subject to

$$\left| 2X_1+X_2-X_3 \right| \leq 2$$

$$X_1,X_2,X_3 \geq 0$$

Dual:

- 1. $Max \Rightarrow Min$
- 2. # variable ⇒ # constraints
- 3. # constraints ⇒ #variables
- 4. ≤ ⇒ ≥

∴ Dual:

$$Max \ 2Y_1 + 6Y_2 + 6Y_3$$

subject to $2Y_1 + 2Y_2 + 4Y_3 > 1$

 $Y_1-Y_2+Y_3\geq 2$

 $-Y_1+5Y_2+Y_3\geq 1$

 $Y_1,\ Y_2,\ Y_3\geq 0$