Assignment 3

Samuel Fraley
Daniel Campos
Elvis Casco

October 18, 2025

Contents

Question 1: Assumptions for Random Samples

(a) Rewrite assumptions [A1]–[A4] from class for i.i.d. random samples $\{(x_i, y_i)\}$.

Hint: Express each assumption mathematically and briefly justify its meaning under i.i.d. sampling.

Example structure:

[A1]:
$$E[\varepsilon_i \mid X_i] = 0$$

[A2]: $Var(\varepsilon_i \mid X_i) = \sigma^2 < \infty$
:

Insert explanations and intuition below.

Question 2: Conditional vs. Unconditional Properties of OLS

(a) (i) Prove that OLS is unconditionally unbiased given $E(\hat{\beta}_k \mid X) = \beta_k$. (ii) Explain in one sentence the interpretation of unconditional unbiasedness.

Hint: Use the law of iterated expectations. Insert derivation:

$$E(\hat{\beta}_k) = E[E(\hat{\beta}_k \mid X)] = \dots$$

(b) Starting from $\operatorname{Var}(\hat{\beta}_k \mid X) \leq \operatorname{Var}(\tilde{\beta}_k \mid X)$, show that $\operatorname{Var}(\hat{\beta}_k) \leq \operatorname{Var}(\tilde{\beta}_k)$.

Hint: Use the law of total variance: $\operatorname{Var}(Z) = \operatorname{Var}(E[Z \mid W]) + E[\operatorname{Var}(Z \mid W)]$.

Insert derivation here.

Question 3: One-Sided Hypothesis Test

(a) Draw the acceptance and rejection regions for H_0 : $\beta_2=0$ vs. H_1 : $\beta_2<0$ at $\alpha=5\%$.

Include a clear plot below (hand-drawn or generated in R/Python):

(b) Explain the intuition behind the location of the critical region.

Write short reasoning below.

Question 4: Monte Carlo Simulation (Assig3Q4.R / Assig3Q4.py)

(a) Provide the expression of the DGP (data generating process) used to simulate samples.

Hint: Derive from line 8 in the code, e.g.

$$y_i = 10 + 5x_{2i} + \varepsilon_i, \quad \varepsilon_i \sim N(0, 6^2)$$

(b) (i) How many samples does the code generate? (ii) What do all samples have in common? (iii) Describe lines 1–16 (R) or 6–30 (Python) of the code.

Insert concise explanation below.

- (c) Describe the function of lines 18–23 (R) or 32–39 (Python).
- (d) Describe the function of lines 25–40 (R) or 41–56 (Python).
- (e) Run the code and report the value of ratiog and include the plot below.

Q4e_plot.png

Comment on whether you are surprised by the value of ratiog.

- (f) Explain what the plot illustrates and provide a rigorous interpretation.
- (g) Discuss how increasing M from 100 to 10,000 would affect ratiog.
- (h) Explain how changing confidence level (from 0.025/0.975 to 0.005/0.995) affects Ratio and the plot.
- (i) What is the purpose of this simulation exercise? Summarize the econometric concept it illustrates.

Question 5: Fair's Model of U.S. Presidential Elections

(a) For each of Fair's four conditions, identify the relevant parameter(s) and expected sign.

Example Table:

Condition	Parameter	Expected Sign
Incumbent running again	β_3 (DPER)	+
Duration in power	$\beta_4 \text{ (DUR)}$	_
Republican bias	β_2 (I)	_
State of economy	$\beta_6, \beta_7, \beta_8$	+

Table 1: Expected signs of parameters in Fair's model.

Q5b_stata_	output.png		

- (c) Define and compute:
 - (i) $se(\hat{\beta}_6)$

(ii) t-value and p-value for regressor I

Include Python/R calculations and verify against Stata.

(d) Test $H_0: \beta_7 = 0$ vs. $H_1: \beta_7 \neq 0$ at 5% significance. Draw acceptance and rejection regions.

Q5d_ttest_plot.png

- (e) Draw the p-value region and indicate the minimum significance level that makes β_7 significant.
- (f) Test joint significance of $(G \cdot I)$, $(P \cdot I)$, and $(Z \cdot I)$ ("It's the economy, stupid!"). Include Stata output and steps.
- (g) Compute prediction error for 2024 using given VP = 49.25, G = 1.7, P = 4.54, Z = 4. Interpret and comment on Fair's predictive method.

References

- Angrist, J.D. & Pischke, J.S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion.
- Fair, R. (2024). U.S. Presidential Vote Equation. Yale University, https://fairmodel.econ.yale.edu/.
- Enikolopov, R., Makarin, A., Petrova, M. (2018). "Social Media and Corruption." American Economic Journal: Applied Economics.