Lecture #23, March 4th, 2022

- Will focus on 10 (Stability and Compensation).
- Homework #4 due next Monday don't wait until the day before to start the homework.
- Project 2 due this Saturday March 5th, at 11:59pm
- Today
 - Finish Feedback Basics
 - Begin Stability and Compensation

Current-Current Feedback: Example

- Above figure shows an example of current-current feedback
- Since the source and drain currents of M_1 are equal (at low frequencies), resistor R_S is inserted in the source network to monitor the output current
- Resistor R_F senses the output voltage and returns a current to the input

8.7. The circuit of Fig. 8.42 can operate as a transimpedance amplifier if I_{out} flows through a resistor, R_{D2} , connected to V_{DD} , producing an output voltage. Replacing R_S with an ideal current source and assuming that $\lambda = \gamma = 0$, calculate the transimpedance of the resulting circuit. Also, calculate the input-referred noise current per unit bandwidth.

8.10. Using feedback techniques, calculate the input and output impedance and voltage gain of each circuit in Fig. 8.95.

