Precalculus

Find extremum of quadratic, text problem.

Todor Miley

2019

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

• Therefore if a > 0 then $f(x) = a(square) - \frac{D}{4a}$

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let D be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

• Therefore if a > 0 then $f(x) = a(\text{square}) - \frac{D}{4a} \ge -\frac{D}{4a}$.

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Therefore if a > 0 then $f(x) = a(\text{square}) \frac{D}{4a} \ge -\frac{D}{4a}$.
- Similarly if a < 0 then $f(x) = a(square) \frac{D}{4a} \le -\frac{D}{4a}$.

- Let $f(x) = ax^2 + bx + c$ quadratic $(a \neq 0)$.
- Let *D* be the discriminant $D = b^2 4ac$.

$$f(x) = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
 complete the square

- Therefore if a > 0 then $f(x) = a(\text{square}) \frac{D}{4a} \ge -\frac{D}{4a}$.
- Similarly if a < 0 then $f(x) = a(\text{square}) \frac{D}{4a} \le -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Recall
$$f(x) = ax^2 + bx + c = a\left(x - \left(-\frac{b}{2a}\right)\right)^2 - \frac{D}{4a}$$
.

Proposition

Let $f(x) = ax^2 + bx + c$, $a \neq 0$ and let $D = b^2 - 4ac$.

- If a > 0 then f(x) has no maximum and has minimum at $x = -\frac{b}{2a}$.
- If a < 0 then f(x) has no minimum and has maximum at $x = -\frac{b}{2a}$.
- In both cases, the extremal value (either maximum or minimum) is $f\left(-\frac{b}{2a}\right) = -\frac{b^2-4ac}{4a} = -\frac{D}{4a}$.

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

Maximizing:

ΧZ

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$

Maximizing:

ΧZ

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

ΧZ

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$X = ?$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$

= $-x^2 + 12x$

$$x = -\frac{b}{2a}$$
$$= -\frac{12}{-2}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$\begin{array}{rcl}
x & = & -\frac{b}{2a} \\
& = & -\frac{12}{-2}
\end{array}$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$
$$= -\frac{12}{-2} = 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$
$$= -\frac{12}{-2} = 6$$
$$z = 12 - x$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a} = -\frac{12}{-2} = 6 z = 12 - x = 12 - 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = xz

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Max. product = $xz = 6 \cdot 6$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6$

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{5}{2a}$$

$$= -\frac{12}{-2} = 6$$

$$z = 12 - x = 12 - 6 = 6$$

Max. product = $xz = 6 \cdot 6 = 36$.

Let x, z be two numbers that add to 12. Choose x and z so that the product $x \cdot z$ is maximal.

$$x + z = 12$$
$$z = 12 - x$$

Maximizing:

$$xz = x(12-x)$$
$$= -x^2 + 12x$$

Parabola opens down ⇒ has maximum, attained at:

$$x = -\frac{b}{2a}$$

= $-\frac{12}{-2} = 6$
 $z = 12 - x = 12 - 6 = 6$

Max. product $= xz = 6 \cdot 6 = 36$.