Navegação Indoor para Deficientes Visuais: Otimização da Distribuição de Beacons e Busca pelo Caminho Mínimo

Grupo 1

2022004574 - Daniel Enrique Gonzalez de Aguiar

2022004823 - Huandy Calini de Camargo Silva

2022004242 - João Lúcas Moraes de Oliveira

2022002542 - Letícia Vitória dos Santos

Contextualização

O mundo no qual vivemos é majoritariamente construído visando atender as necessidades de pessoas sem deficiência.

Isso implica que pessoas com deficiência precisam encontrar formas alternativas para executar tarefas cotidianas, incluindo locomover-se em determinados ambientes.

Técnicas de locomoção e mobilidade utilizadas por pessoas com deficiência visual

- Bengala branca;
- Cão guia;
- Mapas mentais Memorização de características físicas de um ambiente, isto é, disposição de objetos e trajetórias acessíveis entre dois ou mais pontos.

Desafios enfrentados por pessoas com deficiência visual ao locomover-se em ambientes pouco familiares

Ambientes não familiares ou pouco frequentados trazem consigo uma série de desafios, entre os quais podem ser citados:

- Inexistência de mapas mentais referentes a aquele ambiente;
- Ausência de sinalizações táteis e/ou sonoras;
- Orientações por meio de sistemas gps podem não estar disponíveis.

Navegação indoor

Capacidade de orientação e locomoção em ambientes internos.

- Pode ser obtida por meio de tecnologias como dispositivos beacon e wifi;
- Auxilia pessoas com deficiência visual ao fornecer orientações não visuais acerca do ambiente em que se encontram, isto é, contribui para a minimização dos desafios supracitados.

Problemática

- O estudo considera como cenário de estudo o Instituto de Matemática e Computação (IMC) da Universidade Federal de Itajubá (UNIFEI);
- Poucas soluções no instituto para torná-lo mais acessível.
- Desafios para implementação de uma aplicação válida:
 - Mapeamento de distribuição de beacons com a menor quantidade possível;
 - Encontrar caminho mínimo a partir desse mapeamento.

Mapeamento

Piso 1

Piso 2

Mapeamento

Piso 1

Piso 2

Grafo resultante

Características:

- Valorado;
- Não dirigido;
- Peso das arestas indica distância em metros entre pontos conectados;
- Estrutura composta por 29 vértices e 31 arestas;

Matriz de Adjacência

O uso da matriz tem como objetivo fazer uma tradução do que se encontra nos mapas elaborados durante o trabalho, para uma forma que permita ser usada pelo algoritmo de caminho mínimo desenvolvido.

Algoritmo de Dijkstra

```
1 def dijkstra (matriz, vInicio, vTermino,
       preferencias):
       n - len (matriz)
       custo = [float('inf')] . n
       rota = [-1] + n
       visitados = [False] . n
       custo[vInicio] = 0
       fila_prioridade = [(0, vInicio)]
11
       while fila prioridade:
            (atual_custo, u) = heapq.heappop(
               fila prioridade)
13
            if visitados [u]:
14
                continue
15
            visitados [u] = True
19
           for v in range(n):
               if not visitados[v] and matriz[
20
                   u][v] != -1:
                    custo_atualizado = custo[u]
21
                         + matriz[u][v] +
                        preferencias [u][v]
                    if custo atualizado < custo
22
                        [v]:
23
                        custo[v] =
                            custo atualizado
                        rota[v] = u
24
                        heapq.heappush(
25
                            fila prioridade, (
                            custo[v], v))
```

Foi escolhido este algoritmo pela capacidade que proporciona para encontrar o caminho mínimo desde um vértice de início para todos os outros vértices com peso positivo, demonstrando, ao mesmo tempo, um bom rendimento computacional.

Função escolhaCaminho

13

14

16

17

21

23

25

31

32

```
def escolhaCaminho (preferencias):
       situacao = 0
2
3
       while situação != "0":
           # Limpar o terminal no sistema UNIX
               (Linux ou macOS)
           # os.system('clear')
           # Limpar o terminal no Windows
           os.system('cls')
           print ("[bold]----- Menu
               -----[/bold ]*)
           print ("1) Menor caminho \n2) Evitar
11
              escada\n3) Evitar rampa\n4)
              Evitar rampa e escada\n0) Sair
           situação = input ("Digite o numero
12
              correspondente a sua escolha:
```

```
if situação -- "1":
    return situação
elif situação == "2":
    # Adiciona um valor muito alto
       a aresta para invalidar o
       caminho
    preferencias [2][14] = 500
    preferencias [14][2] - 500
    return situação
elif situação == "3":
    # Adiciona um valor muito alto
       a aresta para invalidar o
       caminho
    preferencias [25][12] = 500
    preferencias [12][25] - 500
    return situação
elif situação == "4":
    # Adiciona um valor muito alto
        as arestas para invalidar o
         caminho
    preferencias [2][14] = 500
    preferencias [14][2] = 500
    preferencias [25][12] = 500
    preferencias [12][25] = 500
    return situação
clif situação != "0":
    print ("Entrada incorreta, por
        favor coloque uma das
        opcoes corretas")
```

Permite que pessoa que utilize o algoritmo possa ter a possibilidade de descartar uma ruta se esta inclui uma estrutura que representa uma dificuldade para deslocamento.

Execução do código

Desafios

Criação da Modelagem de Distribuição dos Dispositivos BLE

Implementação de um Algoritmo de Caminho Mínimo Eficiênte

- Fragilidade do mapeamento usando beacons na capacidade máxima;
- Referenciação do Elevador.

- Algoritmo de Dijkstra;
- Invalidar caminho de acordo com a escolha do usuário.

Resultados

Criação da Modelagem de Distribuição dos Dispositivos BLE

- Mapeamento sem utilizar os dispositivos BLE na capacidade máxima, totalizando 29 beacons;
- Valor médio para instalação: R\$14.500,00.

Resultados

Implementação de um Algoritmo de Caminho Mínimo Eficiênte

- Implementação que resulta no caminho a ser seguido, instruções a cada etapa e metragem total a ser percorrida;
- Diminuição de consumo de tempo do algoritmo de Dijkstra realizando a varredura da lista com Heap.

Origem	Destino	Preferência	Milissegundos
V5	V19	1	0.311699986923486
V2	V19	1	0.534399994648993
V0	V28	1	0.706099992385134
V0	V28	2	0.350299989804625
V25	V1	2	0.354100018739700
V6	V24	2	0.706999999238178
V19	V5	3	0.342199986334890
V0	V28	3	0.344100000802427
V2	V17	3	0.609000009717419
V0	V25	4	0.349099980667233
V1	V27	4	0.355499971192330
V26	V3	4	0.664699997287243

Referências

Martins, L. R. d. S., Silva, M. T., Moreira, B., Lima, D. A. d. S., Souza, C. F. S., Santos, L. G. F., & Junior, C. A. C. S. (2021). Guide2blind: Sistema háptico-sonoro de orientação para deficientes visuais em ambientes fechados-fase 2. *Brazilian Journal of Development, 7*(3), 23417–23435.

Melo, H. F. R. (1991). Deficiência Visual: Lições Práticas de Orientação e Mobilidade. Ed. UNICAMP: Campinas.

Oliveira, T. A. B., Santos, F. A. N., & Cinelli, M. J. (2017). Sistemas de navegação indoor e sistema de compras para pessoas com deficiência visual: potenciais no uso em supermercado. *Human Factors in Design, 6*(11), 022–042.

Ossada, J., Aparecida, S., Ossada, R., Kawamoto, L., Cristina, S., & Martini, S. (2016). Ic4u: O desenvolvimento de um método de navegação indoor para deficientes visuais de baixo custo. *REVERTE - Revista de Estudos e Reflexões Tecnológicas da Faculdade de Indaiatuba, 14*, 1–9.

Santos, C. A. A. (2014). Caminhos mais curtos em localização em espaços fechados. Master's thesis.

Silvio, d. L. P., Akamine, L. T., & de Lira, L. N. (2016). Busca assíncrona de caminhos mínimos. *Boletim Técnico, 41*, 7.

Simões, W. C. S., Silva, Y. M. L., & de Lucena Jr, V. F. (2016). Assistente de navegação indoor para deficientes visuais através de pedestrian dead reckoning e correção de estimativa de posição por reconhecimento de padrões.

West, D. B. (2001). *Introduction to Graph Theory*. University of Illinois - Urbana: Pearson Education, Inc., second edição.

Wohfahrt, E. A., Roque, A. d. S., & Santos, C. P. (2015). Navegação indoor baseada em etiquetas RFID: Possibilidades de orientação para deficientes visuais. Acessado em 20 de setembro de 2023.

Dúvidas?