Numerical Integration Methods Applied Stochastic Processes (FIN 514)

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2023-24 Module 3 (Spring 2024)

Numerical Integration

• In stochastic finance, numerical integral is often required to calculate the expectation (over the probability density):

$$E(f(X)) = \int_{-\infty}^{\infty} f(x)w(x)dx,$$

where w(x) is the PDF of X.

Trapezoid Rule

One period (2 points):

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{f(a) + f(b)}{2}$$

Chained rule:

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{2} \left(f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right) + \varepsilon,$$

where $x_0 = a$, $x_n = b$, and $\Delta x = (b - a)/n$.

The error is given by

$$\varepsilon = -\frac{(b-a)(\Delta x)^2}{12}f''(\xi)$$
 for $\xi \in (a,b)$

Simpson's Rule

One period (3 points):

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{f(a) + 4f(\frac{a+b}{2}) + f(b)}{6}$$

For derivation, see 2023-24 exam.

Chained rule (for even N):

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)) + \varepsilon,$$

where $x_0 = a$, $x_n = b$, and $\Delta x = (b - a)/n$.

The error is given by

$$\varepsilon = -\frac{(b-a)(\Delta x)^4}{180} f^{(4)}(\xi) \quad \text{for} \quad \xi \in (a,b)$$

Lagrange Interpolation

- (Wikipedia)
- We want to interpolate f(x) with order n-1 polynomial :

$$\{(x_k, y_k := f(x_k)) : k = 1, \dots, n \text{ and } a \le x_k \le b\}.$$

Define

$$L(x) = (x - x_1)(x - x_2) \cdots (x - x_N)$$
 and
$$l_k(x) = \frac{L(x)}{L'(x_k)(x - x_k)}$$

• Then, $l_k(x)$ has nice properties:

$$l_k(x_j) = 0$$
 for $j \neq k$ and $l_k(x_k) = 1$ (L'hopital rule).

So $\{l_k(x)\}$ serve as a basis of the interpolation.

• Interpolating polynomial:

$$p(x) = y_1 l_1(x) + \dots + y_n l_n(x)$$
 satisfies $p(x_k) = y_k = f(x_k)$.

Integral using Lagrange Interpolation

How to approximate the integral

$$\int_{a}^{b} f(x)dx = ?$$

• We use the Lagrange polynomial p(x):

$$f(x) \approx p(x) = y_1 l_1(x) + \dots + y_n l_n(x).$$

• Pre-calculate the integral of the $l_k(x)$:

$$w_k = \int_a^b l_k(x) dx.$$

• Integral of f(x) is approximated as

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p(x)dx = \sum_{k=1}^{n} y_{k} w_{k}.$$

• Exact when f(x) is a polynomial of order up to n-1.

Gaussian Quadrature

- A set of point and weight $\{(x_k, w_k) : k = 1, \dots n\}$ associated with a weight function w(x).
- When w(x) is a PDF of X,

$$E(f(X)) = \int_{a}^{b} f(x)w(x)dx \approx \sum_{k=1}^{n} f(x_k)w_k$$

- $\{(x_k, w_k)\}$ are the most optimal in that they exactly evaluate the integral when f(x) is a polynomial of order up to 2n-1.
- When w(x) is a PDF, the moments up to order 2n-1 is exact!

$$E(X^n) = \sum_{k=1}^n x_k^n w_k$$
 for $n = 0, 1, \dots, 2n - 1$

Quadratures and Special Polynomials

- How to find the points and weights with respect to w(x)?
- Orthogonal polynomials $p_n(x)$ (of degree n) are well-known for various w(x):

$$\int_{a}^{b} p_{i}(x)p_{j}(x)w(x)dx = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$

• The points $\{x_k\}$ of the Gaussian quadrature is chosen as the roots of $p_n(x)$:

$$p_n(x) = (x - x_1) \cdots (x - x_n).$$

• The weights $\{w_k\}$ are pre-calculated as

$$w_k = \frac{1}{p'_n(x_k)} \int_a^b \frac{p_n(x)}{(x - x_k)} w(x) dx.$$

• Integral of f(x) is approximated as (exact up to order n-1):

$$\int_a^b f(x)dx \approx \int_a^b p_n(x)dx = \sum_{k=1}^n y_k w_k.$$

Why 2n - 1?

- $\{p_0(x), p_1(x), \dots, p_n(x)\}$ form basis for polynomial of order up to n.
- If f(x) is a polynomial of order 2n-1, it can be divided by $p_n(x)$:

$$f(x) = q(x)p_n(x) + r(x),$$

where q(x) and r(x) are of order n-1.

• For any polynomial f(x) of order 2n-1, integral is exact!

$$\int_{a}^{b} f(x)w(x)dx = \underbrace{\int_{a}^{b} q(x)p_{n}(x)w(x)dx}_{=0} + \int_{a}^{b} r(x)w(x)dx$$
$$= \underbrace{\sum_{a}^{b} r(x)w(x)dx}_{=0} + \underbrace{\sum_{a}^{b} r(x)w(x)dx}_{=0} + \underbrace{\sum_{a}^{b} r(x)w(x)dx}_{=0}$$

- The first integral is zero because $p_n(x)$ is orthogonal to q(x).
- The second integral is exact because r(x) is of order n-1.

Various Gaussian Quadratures

Various Gaussian quadratures for w(x):

Polynomial	Quadrature	(a,b)	w(x)	Distribution
Hermite	Gauss–Hermite	$(-\infty,\infty)$	n(x)	Normal
Legendre	Gauss–Legendre	[-1, 1]	1	Uniform
(Gen) Laguerre	Gauss-Laguerre	$[0,\infty)$	$x^{a-1}e^{-x}$	Gamma
Jacobi	Gauss–Jacobi	(-1,1)	$(x-1)^{\alpha}$	Beta
			$(x+1)^{\beta}$	

• See Gaussian quadrature (WIKIPEDIA)