## Deep Learning Issues

#### Challenges in Deep Learning

- Difficulties in deep learning
  - Backpropagation algorithm does not work or slow
  - Not better than shallow networks
- Why?
  - The vanishing/exploding gradient problem
  - Local minima, saddle points, plateaus
  - Overfitting
  - Internal covariate shift [loffe15]
  - Scattered gradient problem [Balduzzi17]
  - Many unknown reasons

#### Vanishing Gradient Problem

 Conventional back-propagation algorithm does not work well for deep networks.

#### VANISHING GRADIENT PROBLEM



**Gradient** 

#### Vanishing Gradient Problem

- Conventional back-propagation algorithm does not work well for deep networks.
  - Backpropagation formula

$$\frac{\partial L}{\partial X_{i}^{l}} = \frac{\partial L}{\partial X_{i}^{l+1}} \frac{\partial X_{i}^{l+1}}{\partial X_{i}^{l}} = f'(net_{j}^{l+1}) \sum_{j} w_{ij}^{l+1} \frac{\partial L}{\partial X_{j}^{l+1}}$$

$$\frac{\partial L}{\partial X_{i}^{l}} = \frac{\partial L}{\partial X_{i}^{l+1}} \frac{\partial X_{i}^{l}}{\partial X_{i}^{l}} = f'(net_{j}^{l+1}) \sum_{j} w_{ij}^{l+1} \frac{\partial L}{\partial X_{j}^{l+1}}$$



#### Saturated regime of Activation functions



#### Blended gradient



### Vanishing/Exploding Gradient on RNN

One step propagation on RNN

$$oldsymbol{h}^{(t)} = oldsymbol{W}^{ op} oldsymbol{h}^{(t-1)}$$
 $oldsymbol{h}^{(t)} = oldsymbol{W}^{t})^{ op} oldsymbol{h}^{(0)}$ 
 $oldsymbol{W}^{t} oldsymbol{h}^{t} oldsymbol{h}^{t} oldsymbol{\phi}^{t} oldsymbol{\phi}^{t}$ 

lacksquare Eigen decomposition of  $W^{-arepsilon}$ 

$$egin{aligned} oldsymbol{W} &= oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q} \ oldsymbol{h}^{(t)} &= oldsymbol{Q}^ op oldsymbol{\Lambda}^t oldsymbol{Q} oldsymbol{h}^{(0)} \end{aligned}$$



• Gradients propagated over many stages tend to either vanish ( $|\lambda_i|<1$ ) or explode ( $|\lambda_i|>1$ )

## Solutions of Vanishing Gradient Problem

- Layer-wise unsupervised pre-training
  - DBN. stacked auto-encoders
- Architectures to avoid vanishing gradient problem
  - Convolutional neural networks (CNN)
    - Sparse connection, shared weights
  - Gated units (LSTM, GRU, GLU)
- Improved structures and learning algorithms
  - Piece-wise linear activation functions
    - max-out, ReLU, LReLU, PReLU, ELU, etc....
  - Skip connection (ResNet, DenseNet, DPN)
     Batch normalization

  - Xavier initialization, He initialization, LL-initialization
  - Transfer learning, multi-task learning
  - Auxiliary networks, deeply supervised network

### Local Minima, Saddle Point, Plateau

- Learning sometimes stops at local minima, saddle points or plateaus
  - Small networks: local minima is major issues
  - Large networks: plateau or saddle points are major issues





## Overfitting

- Overfitting occurs when a model is excessively complex relative to the number of observations.
  - Large capacity model + insufficient data



#### Overfitting

Large gab between training and test accuracy



- Remedies
  - More data or simpler model
  - Regularization, transfer learning, batch norm, dropout, etc.

#### Generalization of Deep Networks

- Traditional knowledge
  - Model with too large capacity does not generalize well
- New observations in deep learning
  - Network depth helps improve generalization
  - Many huge networks generalize well.
    - □ Train VGG19 (20M parameters) on CIFAR10 (50K samples)
  - → Generalization of deep networks is not explainable with conventional knowledge
- Current trend: powerful model + additional techniques
  - Regularization techniques
  - Data augmentation → ३३1-00-tc
  - Unsupervised pretraining / semi-supervised learning

#### Overfitting in Deep Learning

In deep learning, over-parameterization is often successful



#### Regularization

- Introduce additional information to solve ill-posed problems or reduce overfitting
- Add regularization term to loss function

$$E(W) + \lambda ||W||$$

- $\blacksquare$  E(W): main loss function
- λ: regularization factor
- $\parallel W \parallel$ : norm of W
  - □ L2-norm is more popular
  - □ L1-norm is used for some models (e.g. sparse autoencoder)
- Related topics
  - Support vector machines
  - Prior probability

[Wikipedia]



# Thank you for your attention!

