Algorithmic complexity and graphs: compatibility graphs

14 septembre 2024

Compatibility graphs

- Yesterday we processed graphs describing relationship between data
- ► If two nodes were related, they were linked by an edge in the graph.
- ➤ Today we are interested in **building** such graphs directly from the data, we call them **compatibility graphs**, answering the following question: Given two nodes in a graph, should there be an edge between them?

Example applications

- ► Social networks management
- Recommendations

Euclidian distance and compatibility in 2D

Consider the following data:

Figure – Data : we would like to define edge between some of them

Is this set of edges a good solution?

Figure - Some definition of edges

Is this set of edges a good solution?

Figure - Some definition of edges

This seems to make more sense

Figure – A proposition of edges

Distances

Choosing a **metric** means choosing a method to compute a distance between two objects. Often, there are many possible ways to compute this distances. Some examples are provided in **documents/Math memo.pdf** in the repo.

Simple geometrical data

Exercice 1: Experiment with the method used to compute the distance, and with the threshold, in order to obtain compatibility graphs similar to the next examples.

Building compatibility graphs for non geometrical data

- Some data are not geometric : not numbers, strings, objects or categories (categorical data)
- ▶ in hybrid_data/ you can find a notebook contains example metrics for these hybrid data, using pandas.

