

Data Aesthetics

++++ + a b | e a u

1st June 2019 | 10am - 1pm

Venue: 91Springboard,
Hitech City

presented by

Srihari Pramod

Ex Lead - 3D Visualization and Technical MYOS Property.com

"The greatest value of a picture is when it forces us to notice what we never expected to see"

- John Tukey

Data Visualization

Applications:

- Exploratory Data Analysis
 - Understanding Distributions of data
 - **Understanding correlations**
- Data Mining Finding hidden insights
- Presenting the results

Dataset

	Name	Subject	Score	score_ranked	group_rank
0	Alisa	Mathematics	62	6.0	1.0
1	Bobby	Mathematics	47	8.0	3.0
2	Cathrine	Mathematics	55	7.0	2.0
3	Alisa	Science	74	4.0	2.0
4	Bobby	Science	31	10.0	3.0
5	Cathrine	Science	77	3.0	1.0
6	Alisa	History	85	2.0	1.0
7	Bobby	History	63	5.0	2.0
8	Cathrine	History	42	9.0	3.0
9	Alisa	Economics	62	6.0	3.0
10	Bobby	Economics	89	1.0	1.0
11	Cathrine	Economics	85	2.0	2.0

Data Types:

- Numeric (Continuous | Discrete)
- Categorical (Binary | Multi class)
- Nominal, Ordinal etc.

Classification of Charts based on datatypes

Categorical vs Numerical

- Bar
- Line
- Area
- Pie
- Geographical Map

Numerical Distribution

- Box
- Histogram

Numerical vs Numerical

Scatter

Classification of Charts based on dimensions

1-D

Numerical Distribution

- Box
- Histogram

2-D

Categorical vs Numerical

- Bar
- Line
- Area
- Pie
- Geographical Map

Numerical vs Numerical

• Scatter

3-D

Numerical as a function of two (or more) categorical

- Heat Map
- Tree Map

Three Numerical

- Surface
- 3D scatter

Bar Charts/ Column Charts

Independent Variable — Categorical Dependent Variable - Numeric

Bins

Grouped

Horizontal Bars (Stacked)

Line Charts

- Trend in numeric data
- X axis is time based, chronological or sequential

Box Plots

- Helps Comparing distributions among the columns
- Helps to detect outliers

Histograms

- Helps understanding distribution of single feature
- 1 Dimensional

Scatter Plots

- Numerical variable on both axis
- Plot shows correlation between X and Y

Colour | Shape | Size

Other Plot types

Pie Charts

Harvest of local farmers (in tons/year)

cucumber - 0.8 2.4 2.5 3.9 0.0 4.0 0.0

tomato - 2.4 0.0 4.0 1.0 2.7 0.0 0.0

lettuce - 1.1 2.4 0.8 4.3 1.9 4.4 0.0

asparagus - 0.6 0.0 0.3 0.0 3.1 0.0 0.0

potato - 0.7 1.7 0.6 2.6 2.2 6.2 0.0

wheat - 1.3 1.2 0.0 0.0 0.0 3.2 5.1

barley - 0.1 2.0 0.0 1.4 0.0 1.9 6.3

Heat Maps

Tree maps

Summary

Graph Type	Usage	Additional Comments	
Bar graphs	Comparing data values within or across categories; Discrete data	Consider Line graphs for Continuous data	
Histograms	Distribution of values across a possible range		
Line graphs Continuous data; Display trends			
Time series	Data with a time dimension		
Pie graphs	Comparing fractions of a whole; Very few fractions and precision is not important	Avoid to the extent possible	
Gauge charts	Comparing values between a small number of variables		
Scatter plots	Understanding correlations between two quantitative dimensions of data	3 or 4 dimensions possible by encoding data points as bubbles, etc.	
Heat maps	Area graphs that use colour or brightness to indicate values (or changes in value) of large data sets; Show relationships between 2 factors		
Box plots	Understanding distribution of a numerical data; Comparing distributions across categories; Identify outliers		
Tree maps	Display hierarchical data in rectangles		

Tableau Hands-on workshop

Global Indicators

Gap-minder_data

Global GDP Scenario

GDP_Growthrate over the years - 2012

Global Life Expectancy over the

Global Fertility rate

Components & Characteristics of a Good Data Visualization

Components							
Justification • Right plot choice	InformationRight variable and numbers	ConclusionRight insights. Bottom line or final learning					

Characteristics						
SimplicityMinimum ink with maximum information	Readability • Labels, legends, title, fonts	IntegrityConcluding only what exists				

In good information visualization, there are no rules, no guidelines, no templates, no standard technologies, no stylebooks ... You must simply do whatever it takes.

-Edward Tufte

Thank you!

https://www.kaggle.com/sriharipramod

https://medium.com/@sriharipramod

https://twitter.com/@sriharipramod

https://www.instagram.com/sriharipramod

https://github.com/SrihariPramod

Srihari Pramod

Ex Lead – 3D Visualization and Technical

MYOS Property.com

Dataset:

https://www.kaggle.com/sriharipramod/gap-minder-gdpgrowth

Further Reference if interested:

https://www.gapminder.org/data/

https://www.gapminder.org/videos/hans-rosling-on-cnn-us-in-a-converging-world/#

https://www.edwardtufte.com/tufte/