アメリカ式統計学-統計検定2級範囲-

第4回

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

・コイン投げの結果集計

1回目	2回目	3回目	4回目	5 回目	6回目
表	裏	表	表	裏	裏

・コイン投げの結果集計

1回目	2回目	3回目	4回目	5回目	6回目
表	裏	表	表	裏	裏

結果は質的(数値でない)データのため、 平均や分散などが計算できない

・コイン投げの結果集計

1回目	2回目	3回目	4回目	5回目	6回目
表	裏	表	表	裏	裏

結果は質的(数値でない)データのため、 平均や分散などが計算できない

確率変数 =

確率変数 =

確率変数

確率変数

確率変数

確率変数

確率変数

確率変数

Copyright © 2020 Wakara Corp. All Rights Reserved.

確率変数

標本空間上の確率変数 X とは、標本空間を<mark>定義域</mark>とし、実数を 値域とする関数である。それぞれ決まった確率が与えられる。

Copyright © 2020 Wakara Corp. All Rights Reserved.

確率変数

確率変数

例:コイン投げ

例:コイン投げ

例:コイン投げ

例:コイン投げ

例:コイン投げ

例:コイン投げ

例:コイン投げ

例:コイン投げ

例:コイン投げ

赤玉と青玉が1つずつ入っている袋から 玉を取り出して戻す操作を2回繰り返す。 赤の出た数を確率変数とし、それぞれの 確率を求めてください

1回目

確率変数 Xの確率

$$P(X=0)=\frac{1}{4}$$

$$P(X = 1) = \frac{2}{4}$$

$$0 \quad 1 \quad 2$$

$$X$$

$$P(X=2)=\frac{1}{4}$$

P(X):確率質量関数

X	0	1	2
P(X)	1	2	1
	$\frac{\overline{4}}{4}$	$\frac{}{4}$	$\frac{\overline{4}}{4}$

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を 作成してください

Copyright © 2020 Wakara Corp. All Rights Reserved.

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

Copyright © 2020 Wakara Corp. All Rights Reserved.

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を 作成してください

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を 作成してください

$$P(X=0)=\frac{1}{8}$$

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

$$P(X=1) = \frac{3}{8}$$

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を 作成してください

$$P(X=2) = \frac{3}{8}$$

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を 作成してください

$$P(X=3) = \frac{1}{8}$$

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とし、確率変数それぞれの確率を求め、確率質量関数の表を 作成してください

X	0	1	2	3
P(X)	1	3	3	1
	8	8	8	8

確率変数質量関数

X	0	1	2	3
P(X)	1	3	3	1
	8	8	8	8

確率質量関数

コイン投げの試行を3回繰り返した時の、表の出る数を 確率変数とする確率質量関数

X	0	1	2	3
P(X)	1	3	3	1
	8	8	8	8

確率質量関数

コイン投げの試行を3回繰り返した時の、表の出る数を 確率変数とする確率質量関数

X	0	1	2	_3_
P(X)	1	3	3	1
	8	8	$\sqrt{\frac{8}{8}}$	$\frac{8}{8}$
	_			

表が2回以上出る確率は?

$$P(X \ge 2) = \frac{4}{8}$$

確率質量関数

コイン投げの試行を3回繰り返した時の、表の出る数を 確率変数とする確率質量関数

X	0	1	2	3
D(V)	1	3	3	1
P(X)	8	8	$\frac{\overline{8}}{}$) 8

・ 表が2回以上出る確率は?

$$P(X \ge 2) = \frac{4}{8}$$

・ 表が0回以上2回以下の確率は?

$$P(0 \le X \le 2) = \frac{7}{8}$$

コイン投げの試行を3回繰り返した時の、**連続して出た表の数を確率変数とし**、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

$$P(X=0)=\frac{1}{8}$$

コイン投げの試行を3回繰り返した時の、**連続して出た表の数を確率変数とし**、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

$$P(X=1) = \frac{4}{8}$$

コイン投げの試行を3回繰り返した時の、**連続して出た表の数を確率変数とし**、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

$$P(X=2)=\frac{2}{8}$$

コイン投げの試行を3回繰り返した時の、**連続して出た表の数を確率変数とし**、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

$$P(X=3) = \frac{1}{8}$$

コイン投げの試行を3回繰り返した時の、**連続して出た表の数を確率変数とし**、確率変数それぞれの確率を求め、確率質量関数の表を作成してください

X	0	1	2	3
D(V)	1	4	2	1
P(X)	8	8	8	8

確率変数質量関数

(1)
$$0 \le P(x_i) \le 1$$

(2) $\sum_{i=1}^{n} p(x_i) = 1$

(1)
$$0 \le P(x_i) \le 1$$

(2) $\sum_{i=1}^{n} p(x_i) = 1$

コインを3回投げ、表の出る数を確率 変数とした時の確率質量関数

X	0	1	2	3
D(V)	1	3	3	1
P(X)	8	8	8	8

$$(1) \ 0 \le P(x_i) \le 1$$

(1)
$$0 \le P(x_i) \le 1$$

(2) $\sum_{i=1}^{n} p(x_i) = 1$

コインを3回投げ、表の出る数を確率 変数とした時の確率質量関数

X	0	1	2	3
ח(ע)	1	3	3	1
P(X)	8	8	8	8

(1)
$$0 \le P(x_i) \le 1$$

(1)
$$0 \le P(x_i) \le 1$$

(1)
$$0 \le P(x_i) \le 1$$

(2) $\sum_{i=1}^{n} p(x_i) = 1$

(2)
$$\sum_{i=1}^{n} p(x_i) = 1$$

コインを3回投げ、表の出る数を確率 変数とした時の確率質量関数

X	0	1	2	3
D(V)	1	3	3	1
P(X)	8	8	8	8

$$\sum_{i=1}^{4} p(x_i) = p(x_1 = 0) + p(x_2 = 1) + p(x_3 = 2) + p(x_4 = 3)$$

$$(1) \ 0 \le P(x_i) \le 1$$

(1)
$$0 \le P(x_i) \le 1$$

(2) $\sum_{i=1}^{n} p(x_i) = 1$

(2)
$$\sum_{i=1}^{n} p(x_i) = 1$$

コインを3回投げ、表の出る数を確率 変数とした時の確率質量関数

X	0	1	2	3
D(V)	1	3	3	1
P(X)	8	8	8	8

$$\sum_{i=1}^{1} p(x_i) = p(x_1 = 0) + p(x_2 = 1) + p(x_3 = 2) + p(x_4 = 3)$$
$$= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$$

Copyright © 2020 Wakara Corp. All Rights Reserved.

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

確率変数の期待値 ==

X	x_1	x_2	•••	x_n
P(X)	p_1	p_2	•••	p_n

確率変数の期待値 =

確率変数がとる値

確率変数の期待値 =

その値をとる確率

確率変数の期待値 =

X	x_1	x_2	•••	x_n
P(X)	p_1	p_2	•••	p_n

期待値の定義式
$$\mu = E[X] = \sum_{i=1}^{n} x_i \times p_i$$

確率変数の期待値:

確率変数の期待値とは、確率変数がとる値と、その値をとる確率の積を全て足し合わせたものである。

X	x_1	x_2	•••	x_n
P(X)	p_1	p_2	•••	p_n

期待値の定義式

Copyright © 2020 Wakara Corp. All Rights Reserved.

$$\mu = E[X] = \sum_{i=1}^{n} x_i \times p_i$$
期待値
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\mu = E[X] = \sum_{i=1}^{n} x_i \times p_i$$
期待値
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

5	6	3	5	3	6	4	4	6	3
•	•	•	•			· •	· •	•	

植物10本の茎の太さを計測したところ、次のようなデータを得た

	5	6	3	5	3	6	4	4	6	3
- 1			l		I	l	l	I	l	

$$\mu = \mathrm{E}[X] = \sum_{i=1}^{n} x_i \times p_i$$
期待値
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

	5	6	3	5	3	6	4	4	6	3
1		l		l	l	l			l	i

$$\mu = \frac{5+6+3+5+3+6+4+4+6+3}{10}$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

	5	6	3	5	3	6	4	4	6	3
1		l		l	l	l			l	i

$$\mu = \frac{5+6+3+5+3+6+4+4+6+3}{10}$$

$$\mu = \mathrm{E}[X] = \sum_{i=1}^{n} x_i \times p_i$$
期待値
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

	5	6	3	5	3	6	4	4	6	3
1		l		l	l	l		l	l	1

$$\mu = \frac{5+6+3+5+3+6+4+4+6+3}{10}$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

|--|

$$\mu = \frac{5+6+3+5+3+6+4+4+6+3}{10}$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

|--|

$$\mu = \frac{5 + 6 + 3 + 5 + 3 + 6 + 4 + 4 + 6 + 3}{10}$$

$$\mu = \mathrm{E}[X] = \sum_{i=1}^{n} x_i \times p_i$$
期待値
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

5	6	3	5	3	6	4	4	6	3
1			l	l			l	l	

$$\mu = \frac{3 \cdot 3 + 4 \cdot 2 + 5 \cdot 2 + 3 \cdot 6}{10}$$

$$\mu = E[X] = \sum_{i=1}^{n} x_i \times p_i$$
期待値
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

	5	6	3	5	3	6	4	4	6	3
1		l		l	l	l		l	l	1

$$\mu = 3\frac{3}{10} + 4\frac{2}{10} + 5\frac{2}{10} + 6\frac{3}{10}$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

5 6 3 5 3 6 4 4 6 3

茎の太さの平均は?

確率変数の値

$$\mu = 3\frac{3}{10} + 4\frac{2}{10} + 5\frac{2}{10} + 6\frac{3}{10}$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

|--|

茎の太さの平均は?

確率変数の確率

$$\mu = 3 \frac{3}{10} + 4 \frac{2}{10} + 5 \frac{2}{10} + 6 \frac{3}{10}$$

$$\mu = E[X] = \sum_{i=1}^{n} x_i \times p_i$$
期待値
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

植物10本の茎の太さを計測したところ、次のようなデータを得た

|--|

$$\mu = 3\frac{3}{10} + 4\frac{2}{10} + 5\frac{2}{10} + 6\frac{3}{10} = 4.5$$

確率変数の期待値 ===

確率変数の期待値 =

X	0	1	2	3
D(V)	1	3	3	1
P(X)	8	8	8	8

Copyright © 2020 Wakara Corp. All Rights Reserved.

確率変数の期待値

X	0	1	2	3
P(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

$$\mu = E[X]$$
= $0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$

確率変数の期待値

X	0	1	2	3
P(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

$$\mu = E[X]$$
= $0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$
= 1.5

Copyright © 2020 Wakara Corp. All Rights Reserved.

サイコロの出る目を確率変数とする時、確率変数Xの期待値を 求めよ。

X	1	2	3	4	5	6
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

X	1	2	3	4	5	6
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$E[X] = \sum_{k=1}^{6} k \cdot P(X = k)$$

X	1	2	3	4	5	6
D(V)	1	1	1	1	1	1
$P(\lambda)$	6	6	6	6	6	6

$$E[X] = \sum_{k=1}^{6} k \cdot P(X = k)$$

$$= 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

X	1	2	3	4	5	6
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$E[X] = \sum_{k=1}^{6} k \cdot P(X = k)$$

$$= 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}$$

$$= 3.5$$

確率変数の分散 ===

確率変数の分散とは「確率変数の取り得る値と期待値の差 の2乗」と「確率」の積を全て足し合わせたもの。

X	x_1	x_2		x_n
P(X)	p_1	p_2	•••	p_n

分散の定義式
$$\sigma^2 = V[X] = \sum_{i=1}^n (x_i - \mu)^2 \times p_i$$

確率変数の分散 =====

確率変数の分散 ===

X	0	1	2	3
P(X)	1/8	3/8	3/8	1/8

$$V[X] = \sum_{i=1}^{4} (x_i - \mu)^2 \times p_i$$

確率変数の分散 =

X	0	1	2	3
P(X)	1/8	3/8	3/8	1/8

$$V[X] = \sum_{i=1}^{4} (x_i - \mu)^2 \langle p_i \rangle$$

確率変数の分散

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とする。 分散を求めてください。

X	0	1	2	3
P(X)	1/8	3/8	3/8	1/8

$$\mu = E[X \neq 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} = \boxed{1.5}$$

$$V[X] = \sum_{i=1}^{4} (x_i - \underline{u})^2 \times p_i$$

期待值

確率変数の分散 ===

X	0	1	2	3
P(X)	1/8	3/8	3/8	1/8
$(x_i-\mu)$	-1.5	-0.5	0.5	1.5

$$V[X] = \sum_{i=1}^{4} (x_i - \mu)^2 \times p_i$$

確率変数の分散 ===

X	0	1	2	3
P(X)	1/8	3/8	3/8	1/8
$(x_i-\mu)$	-1.5	-0.5	0.5	1.5
	_			

$$V[X] = \sum_{i=1}^{4} (x_i - \mu)^2 \times p_i$$

確率変数の分散 ===

X	0	1	2	3
P(X)	1/8	3/8	3/8	1/8
$(x_i-\mu)$	-1.5	-0.5	0.5	1.5
$(x_i-\mu)^2$	2.25	0.25	0.25	2.25
$\overline{(x_i - \mu)^2 \times p_i}$	0.28125	0.09375	0.09375	0.28125

$$V[X] = \sum_{i=1}^{4} (x_i - \mu)^2 \times p_i$$

確率変数の分散 ===

コイン投げの試行を3回繰り返した時の、表の出る数を確率変数とする。 分散を求めてください。

X	0	1	2	3	
P(X)	1/8	3/8	3/8	1/8	
$(x_i-\mu)$	-1.5	-0.5	0.5	1.5	
$(x_i-\mu)^2$	2.25	0.25	0.25	2.25	
$\overline{(x_i - \mu)^2 \times p_i}$	0.28125	0.09375	0.09375	0.28125	
V	$Y[X] = \sum_{i=1}^{4}$	$(x_i-\mu)^2$	$\langle p_i = 0.7$	75	

Copyright © 2020 Wakara Corp. All Rights Reserved.

確率変数の期待値と分散

Copyright © 2020 Wakara Corp. All Rights Reserved.

確率変数の期待値と分散

確率変数の期待値と分散

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

Copyright © 2020 Wakara Corp. All Rights Reserved.

問題

離散型か連続型の確率変数を区別してください

- 1. 1日に受け取るメールの件数
- 2. 書籍のページ数X
- 3. 大気中の気温X
- 4. お酒の中のアルコール度数X
- 5. ある成人女性の体重X
- 6. 1枚の歪みのないコインで表が出るまで連続で投げた回数X

解答

離散型か連続型の確率変数を区別してください

1. 1日に受け取るメールの件数 (離散型)

2. 書籍のページ数X (離散型)

3. 大気中の気温X (連続型)

4. お酒の中のアルコール度数X (連続型)

5. ある成人女性の体重X (連続型)

6. 1枚の歪みのないコインで表が出るまで連続で投げた回数X (離散型)

確率質量関数

$$(1) \ 0 \le P(x_i) \le 1$$

(2)
$$\sum_{i=1}^{\infty} p(x_i) = 1$$

期待値と分散

$$\mu = E[X] = \sum_{i=1}^{n} x_i \times p_i$$

$$\sigma^2 = V[X] = \sum_{i=1}^{n} (x_i - \mu)^2 \times p_i$$

確率密度関数

$$(1) \ 0 \le f(x)$$

$$(2) \int_{-\infty}^{\infty} f(x) dx = 1$$

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$\sigma^{2} = V[X]$$

$$= \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

「確率密度関数はヒストグラムの階級の幅をどんどん狭く していくとき,ヒストグラムの形が近づいていく曲線

問題演習1

次のような集計表が得られた。ヒストグラムを作成してください。 25 範囲 度数 20 0 -100 10 15 100 - 20020 10 200 - 30025 300 - 400 18 400 - 500 12 100 300 0 200 400 500

次のような集計表が得られた。ヒストグラムを作成してください。 25 範囲 度数 20 0 -100 22 15 100 - 15020 10 150 - 20025 200 - 300 30 300 - 500 32 100 300 0 200 400 500

範囲	度数		•						
0 -100	22		T						
100 - 150	20	30							
150 - 200	25								
200 - 300	30	25							
300 - 500	32	20							
節囲が一番な	小さいのは?	15							. – – -
		1 0							
		5							
		_	0	100	200	300	400	500	

Copyright © 2020 Wakara Corp. All Rights Reserved.

	範囲	度数		•						
	0 -100	22								
	100 – 150	20	30	-						
	150 – 200	25								
	200 – 300	30	25							
	300 – 500	32	20	-						
軍	節囲が一番!	いさいのは~	2 15	-						
山三	i = 50		1 0	1						
ΨŒ	1 – 30		5	-						
				 	0 10	0	200	300	400	500

Copyright © 2020 Wakara Corp. All Rights Reserved.

	範囲	度数		•						
	0 -100	22								
	100 – 150	20	30							
	150 – 200	25								
	200 – 300	30	25							
	300 - 500	32	20							
軍	色囲が一番!	いさいのはつ	2 15							
₼⋿	T	<u> </u>	1 0							
甲	i=50 \-	輔="1"★情	5							
(この幅を基	準にとする	.)	0	100	200	300	400	500	→

Copyright © 2020 Wakara Corp. All Rights Reserved.

	範囲	度数		そのままプロットする
	0 -100	22	_	
	100 - 150	20	30	
	150 – 200	25		
	200 – 300	30	25	
	300 – 500	32	20	
争	節囲が一番!	いさいのは?	15	
ф Е	-		10	
	≣=50 基準幅)		5 -	

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 - 150	20
150 – 200	25
200 – 300	30
300 - 500	32

幅=100 (基準幅の2倍)

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 – 150	20
150 – 200	25
200 – 300	30
300 – 500	32

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 - 150	20
150 – 200	25
200 – 300	30
300 - 500	32

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 – 150	20
150 – 200	25
200 – 300	30
300 – 500	32

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 - 150	20
150 – 200	25
200 – 300	30
300 - 500	32

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 - 150	20
150 – 200	25
200 – 300	30
300 - 500	32

幅 = 200 (基準幅の4倍)

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 - 150	20
150 – 200	25
200 – 300	30
300 - 500	32

Copyright © 2020 Wakara Corp. All Rights Reserved.

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 – 150	20
150 – 200	25
200 – 300	30
300 - 500	32

Copyright © 2020 Wakara Corp. All Rights Reserved.

範囲	度数
0 -100	22
100 - 150	20
150 – 200	25
200 – 300	30
300 - 500	32

Copyright © 2020 Wakara Corp. All Rights Reserved.

ヒストグラムの意味

ヒストグラムの3つの構成要素

- ・横軸 データの数値軸
 ・棒の高さ 起こりやすさ (注目すべき事柄)
 ・棒の面積 割合・度数

分布のチェックポイント

「単峰」か「多峰」 か?

2峰性のヒストグラム

2峰性の例

松坂投手の球速のヒストグラム

分布のチェックポイント

「対称」か「非対称」か?

ヒストグラムを使った分析例

ヒストグラムを使った分析例

ヒストグラムを使った分析例

日付	応募者数
6月1日	657
6月2日	814
6月3日	718
6月4日	554
6月5日	569
6月6日	664
6月7日	1059
6月8日	950

日付	応募者数	曜日
6月1日	657	木曜
6月2日	814	金曜
6月3日	718	土曜
6月4日	554	日曜
6月5日	569	月曜
6月6日	664	火曜
6月7日	1059	水曜
6月8日	950	木曜

日付	応募者数	曜日
6月1日	657	木曜
6月2日	814	金曜
6月3日	718	土曜
6月4日	554	日曜
6月5日	569	月曜
6月6日	664	火曜
6月7日	1059	水曜
6月8日	950	木曜

日付	応募者数	曜日
6月1日	657	木曜
6月2日	814	金曜
6月3日	718	土曜
6月4日	554	日曜
6月5日	569	月曜
6月6日	664	火曜
6月7日	1059	水曜
6月8日	950	木曜

曜日毎のデータに分 解

クラスターに分解してヒストグラム

クラスターに分解してヒストグラム

クラスターに分解してヒストグラム

クラスターに分解してヒストグラム

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

問題

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

問題

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は1~5までの実数をとるので**連続分布**

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

1未満の数、5より大きな数を引く確率は0

Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

X は $1\sim5$ までの実数をとるので**連続分布** どのカードも**一様に同じ確率**。

Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

Xの確率分布(連続一様分布U(1,5)) Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

2のカードを引く確率 P(X=2)

Xの確率分布(連続一様分布U(1,5)) Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

2のカードを引く確率 P(X=2)=0 (測れない)

Xの確率分布(連続一様分布U(1,5)) Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

 $2\sim4$ のカードを引く確率 $P(2 \le X \le 4)$

Xの確率分布(連続一様分布U(1,5)) Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

 $2\sim4$ のカードを引く確率 $P(2 \le X \le 4)$

Xの確率分布(連続一様分布U(1,5)) Copyright © 2020 Wakara Corp. All Rights Reserved.

箱の中に1~5までの実数の番号がついたカードが入っている。 その中から取り出したカード番号をXとするとき、Xの確率分布 はどのようになるか。

Xの確率分布(連続一様分布U(1,5)) Copyright © 2020 Wakara Corp. All Rights Reserved.

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値

2つのパラメータで形が決まる

N(220,32)

N(220,32)

N(220,50)

N(220,50)

N(220,50)

株価が185円から225円の間にある確率は?

株価が185円から225円の間にある確率は?

正規分布の面積の総和は?

正規分布の面積の総和は?

次の面積を求めよ

次の面積を求めよ

次の面積は? (1σルール)

次の面積は? (2σルール)

次の面積は? (2σルール)

次の面積は? (2σルール)

次の面積は? (3σルール)

Copyright © 2020 Wakara Corp. All Rights Reserved.

一つの正規分布に統一する

一つの正規分布に統一する

N(220,32)の正規分布において、255以下の確率を求めよ

N(220,32)の正規分布において、255以下の確率を求めよ

N(220,32)の正規分布において、255以下の確率を求めよ

Copyright © 2020 Wakara Corp. All Rights Reserved.

Standard Normal Probabilities

z = 1.09

_	.00	.01	.02	.оз	.04	.05	.06	.07	.08	.09
z										
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

z = 1.09

= (1.0) + 0.09

					_					
_ z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	<i>6</i> 328	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7251	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.788	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0 🧲	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

.9918

.9938

.9953

.9965

.9974

.9981

.9987

.9990

.9993

.9995

.9997

.9920

.9940

.9955

.9966

.9975

.9982

.9987

.9991

.9993

.9995

.9997

.9922

.9941

.9956

.9967

.9976

.9982

.9987

.9991

.9994

.9995

.9997

.9925

.9943

.9957

.9968

.9977

.9983

.9988

.9991

.9994

.9996

.9997

.9927

.9945

.9959

.9969

.9977

.9984

.9988

.9992

.9994

.9996

.9997

.9932

.9949

.9962

.9972

.9979

.9985

.9989

.9992

.9995

.9996

.9997

.9934

.9951

.9963

.9973

.9980

.9986

.9990

.9993

.9995

.9996

.9997

.9936

.9952

.9964

.9974

.9981

.9986

.9990

.9993

.9995

.9997

.9998

.9931

.9948

.9961

.9971

.9979

.9985

.9989

.9992

.9994

.9996

.9997

.9929

.9946

.9960

.9970

.9978

.9984

.9989

.9992

.9994

.9996

.9997

N(220,32)の正規分布において、255以下の確率を求めよ

Copyright © 2020 Wakara Corp. All Rights Reserved.

N(220,32)の正規分布において、255以下の確率を求めよ

Copyright © 2020 Wakara Corp. All Rights Reserved.

N(220,32)の正規分布において、255以上の確率を求めよ

N(220,32)の正規分布において、255以上の確率を求めよ

Copyright © 2020 Wakara Corp. All Rights Reserved.

問題:zの値を特定せよ

問題:zの値を特定せよ

問題:zの値を特定せよ

Standard Normal Probabilities

_ z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Standard Normal Probabilities

0.975を探す!

Table entry for \boldsymbol{z} is the area under the standard normal curve to the left of \boldsymbol{z} .

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Standard Normal Probabilities

0.975を探す!

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678		.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798		.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Standard Normal Probabilities

0.975を探す!

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5/36	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.64 06	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7: 23	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.77 64	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8(51	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8: 15	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8: 54	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.87 70	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9: 31	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9: 79	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.94 06	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9! 15	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.96 08	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678		.9693	.9699	.9706
1.9							.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798		.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

Standard Normal Probabilities

0.975を探す! Z = 1.96

Table entry for \boldsymbol{z} is the area under the standard normal curve to the left of \boldsymbol{z} .

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5/36	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.64 06	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7: 23	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.74 54	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.77 64	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8(51	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.83 15	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8! 54	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.87 70	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9: 31	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.94 06	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9! 15	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.96 08	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678		.9693	.9699	.9706
1.9							.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798		.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

z=1.96は重要な数値!

問題

ある企業がイベントを開催すると、過去のデータから来客数 の平均が320人、標準偏差が35人であることが分かっている。 この企業が開催する次回のイベントで

- (1) 来客数が350人以上である確率を求めよ。
- (2) 客数が300人以下である確率を求めよ。

300人以下の確率(z表を使った求め方)

300人以下の確率(z表を使った求め方)

Table entry

1 - 0.7157 = 0.2843

Table entry for z is the area under the standard normal curve to the left of z.

			z		co cine icire					
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5:79	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5: 79	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.e 4	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6 43	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772		.6844	.6879
0.5								.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.745		.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

エクセル関数を使った確率の求め方

エクセル関数を使った確率の求め方

問題1(Excel) 演習

株価Aは平均株価が290円、標準偏差が30円の正規分布に従い、変動することがわかっています。この時、

- (1) 株価Aが280円以下を変動する確率を求めよ。
- (2) 株価Aが270円以上を変動する確率を求めよ。

株価Aが280円以下を変動する確率

株価Aが270円以上を変動する確率

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

4. 確率変数と確率分布

今日のコンテンツ

- 4-1 確率変数
- 4-2 期待値と分散
- 4-3 離散型と連続型確率変数
- 4-4 確率密度関数と確率
- 4-5 正規分布とz値
- 4-6 t分布

理論分布の例

- ▼現象を表現
 - 2項分布
 - 負の2項分布
 - 幾何分布
 - 超幾何分布
 - ポアソン分布
 - 正規分布
 - 指数分布
 - ワイブル分布

— . . .

- ▼統計量の分布
 - t分布
 - F分布
 - X2乗分布
 - _ ...

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2) t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2)t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

 $N(\mu, \sigma^2)$ に従う母集団からn個のサンプルが抽出された場合、統計量tは、自由度(n-1)のt分布に従う。

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2) t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2) t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2) t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2) t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2) t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

- (1) t分布は母平均についての推定 や検定の問題に利用される分布。
- (2) t分布は標準正規分布とよく似た形の分布で、パラメータである 「自由度」によって分布の形が変わるという特徴を持っている
- (3) 自由度が大きくなるにつれて、標準正規分布に近づく

t分布表(危険率 α 、両側)

	- 11
	01
	3.657
	9.925
3 2.353 3.182 4.541 5	5.841
	1.604
5 2.015 2.571 3.365 4	1.032
	3.707
	3.499
	3.355
	3.250
10 1.812 2.228 2.764 3	3.169
11 1.796 2.201 2.718 3	3.106
12 1.782 2.179 2.681 3	3.055
13 1.771 2.160 2.650 3	3.012
14 1.761 2.145 2.624 2	2.977
15 1.753 2.131 2.602 2	2.947
16 1.746 2.120 2.583 2	2.921
17 1.740 2.110 2.567 2	2.898
18 1.734 2.101 2.552 2	2.878
19 1.729 2.093 2.539 2	2.851
20 1.725 2.086 2.528 2	2.845
21 1.721 2.080 2.518 2	2.831
22 1.717 2.074 2.508 2	2.819
23 1.714 2.069 2.500 2	2.807
24 1.711 2.064 2.492 2	2.797
25 1.708 2.060 2.485 2	2.787
26 1.706 2.056 2.479 2	2.779
	2.771
	2.763
	2.758
30 1.697 2.042 2.457 2	2.750

t分布表(危険率 α 、両側)

自由度			α	
f	0.1	0.05	0.02	0.01
1	6.314	12.706	31.821	63.657
2	2.920	4.303	6.965	9.925
2	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9	1.833	2.262	2.821	3,250
10	1.812	2.228	2.764	3.169
11	1.796	2.201	2.718	3.106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
	100	2.101	2.002	2.047
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
20	120	2.000	2.020	2.010
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2.492	2.797
25	1.708	2.060	2.485	2.787
20	1.700	2.000	2.400	2.767
26	1.706	2.056	2,479	2.779
27	1.703	2.052	2.473	2.771
28	1.703	2.032	2.467	2.763
29	1.699	2.046	2.462	2.758
30	1.699	2.043	2.457	2.750
30	1.697	2.042	2.457	2.750

t分布表(危険率 α 、両側)

自由度			α	
f	0.1	0.05	0.02	0.01
1	6.314	12.706	31.821	63.657
2	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9	1.833	2.262	2.821	3.250
10	1.812	2.228	2.764	3.169
11	1.796	2.201	2.718	3.106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
16	1.746	2.120	2.583	2.921
17	1,740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2,492	2.797
25	1.708	2.060	2.485	2.787
26	1.706	2.056	2.479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048	2.467	2.763
29	1.699	2.045	2.462	2.758
30	1.697	2.042	2.457	2.750

t分布表(危険率 α 、両側)

自由度			α		
f	0.1	0.05		02	0.01
1	6.314	12.70		1.821	63.657
2 3	2.920	4.30		6.965	9.925
3	2.353	3.18		4.541	5.841
4	2.132	2.77		3.747	4.604
5	2.015	2.57	1 :	3.365	4.032
6	1.943	2.44		3.143	3.707
7	1.895	2.36		2.998	3.499
8	1.860	2.30	6	2.896	3.355
9	1.833	2.26	2 :	2.821	3.250
10	1.812	2.22	3	2.764	3.169
					ll l
11	1.796	2.20	1 :	2.718	3.106
12	1.782	2.179	9 :	2.681	3.055
13	1.771	2.160		2.650	3.012
14	1.761	2.14	5	2.624	2.977
15	1.753	2.13		2.602	2.947
			1		
16	1.746	2.120	o l :	2.583	2.921
17	1.740	2.110		2.567	2.898
18	1.734	2.10		2.552	2.878
19	1.729	2.09		2.539	2.851
20	1.725	2.086		2.528	2.845
20	1.720	2.00	1		2.0.0
21	1.721	2.080	n :	2.518	2.831
22	1.717	2.074		2.508	2.819
23	1.714	2.069		2.500	2.807
24	1.711	2.064		2.492	2.797
25	1.708	2.06		2.485	2.787
20	1.700	2.00	1	2.400	2.707
26	1.706	2.05	a :	2.479	2.779
27	1.703	2.05		2.473	2.771
28	1.701	2.04		2.467	2.763
29	1.699	2.04		2.462	2.758
30	1.697	2.043		2.462 2.457	2.750
30	1.097	2.04	•	2.437	2.750

		t分布表(危険率 a 、両側)					
1							
	自由度			α			
J	f	0.1	0.05		02	0.01	
	1	6.314	12.70		1.821	63.657	
١	3	2.920	4.30		6.965	9.925	
		2.353	3.18		4.541	5.841	
	4	2.132	2.77		3.747	4.604	
	5	2.015	2.57	1 :	3.365	4.032	
						ll ll	
	6	1.943	2.44		3.143	3.707	
	7	1.895	2.36		2.998	3.499	
	8	1.860	2.30		2.896	3.355	
	9	1.833	2.26		2.821	3.250	
	10	1.812	2.22	8 :	2.764	3.169	
						ll ll	
	11	1.796	2.20		2.718	3.106	
	12	1.782	2.17	9 :	2.681	3.055	
	13	1.771	2.16	o :	2.650	3.012	
	14	1.761	2.14	5 :	2.624	2.977	
	15	1.753	2.13	1 :	2.602	2.947	
	16	1.746	2.12	o :	2.583	2.921	
	17	1.740	2.11	0 :	2.567	2.898	
	18	1.734	2.10	1	2.552	2.878	
	19	1.729	2.09	3	2.539	2.851	
	20	1.725	2.08	6	2.528	2.845	
	21	1.721	2.08	o :	2.518	2.831	
	22	1.717	2.07		2.508	2.819	
	23	1,714	2.06		2.500	2.807	
	24	1.711	2.06		2.492	2.797	
	25	1.708	2.06		2.485	2.787	
			2.50	1	,,,,	0,	
	26	1,706	2.05	6	2.479	2.779	
	27	1.703	2.05		2.473	2.771	
	28	1.701	2.04		2.467	2.763	
	29	1.699	2.04		2.462	2.758	
	30	1.697	2.04		2.457	2.750	

	ti	(危険率α、同	5側)	
and the sales				
自由度	0.1	0.05	α .02	0.01
1	6.314	12.706		63.657
	2.920	4.303		9.925
3	2.353	3.182		5.841
4	2.132	2.776		4.604
5	2.015	2.571	3.365	4.032
3	2.013	2.571	3.303	4.032
6	1.943	2,447	3.143	3.707
7	1.895	2.365		3.499
8	1.860	2.306		3.355
9	1.833	2.262		3.250
10	1.812	2.228		3.169
				000
11	1.796	2.201	2.718	3.106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2,602	2.947
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2.492	2.797
25	1.708	2.060	2.485	2.787
26	1.706	2.056	2,479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048		2.763
29	1.699	2.045		2.758
30	1.697	2.042		2.750
	1	2.072	2.407	, 00

		t 分布表(危険率 α 、両側)				
自由	rite			α	П	
f f	~	0.1	0.05	J.02	0.01	
1		6.314	12.706	31.821	63.657	
_		2.920	4.303	6.965	9.925	
3		2.353	3.182	4.541	5.841	
4		2.132	2.776	3.747	4.604	
5		2.015	2.571	3.365	4.032	
6		1.943	2.447	3.143	3.707	
7		1.895	2.365	2.998	3.499	
8		1.860	2.306	2.896	3.355	
9		1.833	2.262	2.821	3.250	
10		1.812	2.228	2.764	3.169	
11		1.796	2.201	2.718	3.106	
12		1.782	2.179	2.681	3.055	
13		1.771	2.160	2.650	3.012	
14		1.761	2.145	2.624	2.977	
15		1.753	2.131	2.602	2.947	
16		1.746	2.120	2.583	2.921	
17		1.740	2.110	2.567	2.898	
18		1.734	2.101	2.552	2.878	
10		4 720	2.002	2.520	2 954	
20		1.725	2.086	2.528	2.845	
21		1.721	2.080	2.518	2.831	
22		1.717	2.074	2.508	2.819	
23		1.714	2.069	2.500	2.807	
24		1.711	2.064	2.492	2.797	
25		1.708	2.060	2.485	2.787	
26		1.706	2.056	2.479	2.779	
27		1.703	2.052	2.473	2.771	
28		1.701	2.048	2.467	2.763	
29		1.699	2.045	2.462	2.758	
30		1.697	2.042	2.457	2.750	

Copyright © 2020 Wakara Corp. All Rights Reserved.

データ数	T値
3	
11	
31	
101	

自由度			α	
f	0.1	0.05	0.02	0.01
1	6.314	12.706	31.821	63.657
2	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
				l l
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9	1.833	2.262	2.821	3.250
10	1.812	2.228	2.764	3.169
				l l
11	1.796	2.201	2.718	3.106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
				l l
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
				l l
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2.492	2.797
25	1.708	2.060	2.485	2.787
				l l
26	1.706	2.056	2.479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048	2.467	2.763
29	1.699	2.045	2.462	2.758
30	1.697	2.042	2.457	2.750

データ数	T値
3	4.303
11	
31	
101	

自由度			v	П
f F	0.1	0.05	0.02	0.01
1	6.314	12.706	31.821	63.657
2	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
_				
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9	1.833	2.262	2.821	3.250
10	1.812	2.228	2.764	3.169
11	1.796	2,201	2.718	3,106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
10	1.700	2.101	2.002	2.047
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
21	4 704	2.080	0.540	2.831
	1.721	2.080	2.518	
22	1.717	2.074	2.508	2.819
23	1.714		2.500	2.807
24 25	1.711	2.064	2.492	2.797
25	1.708	2.060	2.485	2.787
26	1.706	2.056	2.479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048	2.467	2.763
29	1.699	2.045	2.462	2.758
30	1.697	2.042	2.457	2.750
1				

データ数	T値
3	4.303
11	2.228
31	
101	

do de ele				
自由度 <i>f</i>	0.1	0.05	χ 0.02	0.01
	6.314	12.706	31.821	63,657
2 3	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9	1.833	2.262	2.821	3.250
10	1.812	2.228	2.764	3.169
11	1.796	2.201	2,718	3,106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
10	1.700	2.101	2.002	2.047
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
21	1,721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24		2.069	2.492	
	1.711			2.797
25	1.708	2.060	2.485	2.787
26	1.706	2.056	2.479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048	2.467	2.763
29	1.699	2.045	2.462	2.758
30	1.697	2.042	2.457	2.750
				- 11

データ数	T値
3	4.303
11	2.228
31	2.042
101	

自由度	do de ele				
1 6.314 12.706 31.821 63.657 2 2.920 4.303 6.965 9.925 3 2.353 3.182 4.541 5.841 4 2.132 2.776 3.747 4.604 5 2.015 2.571 3.365 4.032 6 1.943 2.447 3.143 3.707 7 1.895 2.365 2.998 3.459 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.779 25 1.708 2.060 2.485 2.763 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 2.064 2.462 2.467 2.763 2.91 1.699 2.045 2.4667 2.763 2.91 1.699 2.045		0.1			0.01
2 2.920 4.303 6.965 9.925 3 2.353 3.182 4.541 5.841 4 2.132 2.776 3.747 4.604 5 2.015 2.571 3.365 4.032 6 1.943 2.447 3.143 3.707 7 1.895 2.365 2.998 3.499 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110					
4 2.132 2.776 3.747 4.604 5 2.015 2.571 3.365 4.032 6 1.943 2.447 3.143 3.707 7 1.895 2.365 2.998 3.499 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.850 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.587 2.988 18 1.734 2.101 2.552 2.878 19 1.729 2.093 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
4 2.132 2.776 3.747 4.604 5 2.015 2.571 3.365 4.032 6 1.943 2.447 3.143 3.707 7 1.895 2.365 2.998 3.499 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.850 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.587 2.988 18 1.734 2.101 2.552 2.878 19 1.729 2.093 <t< td=""><td>2</td><td></td><td></td><td></td><td></td></t<>	2				
5 2.015 2.571 3.365 4.032 6 1.943 2.447 3.143 3.707 7 1.895 2.365 2.998 3.499 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.06 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 <t< td=""><td>3</td><td></td><td></td><td></td><td></td></t<>	3				
6 1.943 2.447 3.143 3.707 7 1.895 2.365 2.998 3.499 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.567 2.898 18 1.734 2.101 2.567 2.898 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.758 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 2.99 1.699 2.050					
7 1.895 2.365 2.998 3.499 8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074	5	2.015	2.571	3.365	4.032
8 1.860 2.306 2.896 3.355 9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.065 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.998 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069		1.943	2.447	3.143	3.707
9 1.833 2.262 2.821 3.250 10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.562 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 2.9 1.699 2.045	7	1.895	2.365	2.998	3.499
10 1.812 2.228 2.764 3.169 11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.567 2.898 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.778 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.050 2.465	8	1.860	2.306	2.896	3.355
11 1.796 2.201 2.718 3.106 12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.75 26 1.706 2.056	9	1.833	2.262	2.821	3.250
12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.850 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.758 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758	10	1.812	2.228	2.764	3.169
12 1.782 2.179 2.681 3.055 13 1.771 2.160 2.850 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.758 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758	11	1 796	2 201	2 718	3 106
13 1.771 2.160 2.650 3.012 14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.988 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.485 2.787 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048					
14 1.761 2.145 2.624 2.977 15 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045					
16 1.753 2.131 2.602 2.947 16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.78 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758					
16 1.746 2.120 2.583 2.921 17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.763					
17 1.740 2.110 2.567 2.898 18 1.734 2.101 2.552 2.878 19 1.729 2.993 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758	15	1.755	2.131	2.002	2.547
18 1.734 2.101 2.552 2.878 19 1.729 2.093 2.539 2.551 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.467 2.763	16	1.746	2.120	2.583	2.921
19 1.729 2.093 2.539 2.851 20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.467 2.763	17	1.740	2.110	2.567	2.898
20 1.725 2.086 2.528 2.845 21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.465 2.758	18	1.734	2.101	2.552	2.878
21 1.721 2.080 2.518 2.831 22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758	19	1.729	2.093	2.539	2.851
22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.462	20	1.725	2.086	2.528	2.845
22 1.717 2.074 2.508 2.819 23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.462	21	1 721	2.000	2 5 1 9	2 924
23 1.714 2.069 2.500 2.807 24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758					
24 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.462					
25 1.708 2.060 2.485 2.787 26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758					
26 1.706 2.056 2.479 2.779 27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758					
27 1.703 2.052 2.473 2.771 28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758	25	1.708	2.060	2.485	2.787
28 1.701 2.048 2.467 2.763 29 1.699 2.045 2.462 2.758					
29 1.699 2.045 2.462 2.758	27	1.703		2.473	2.771
20 1.000 202	28	1.701	2.048	2.467	2.763
30 1.697 2.042 2.457 2.750	29	1.699	2.045	2.462	2.758
	30	1.697	2.042	2.457	2.750

データ数	T値
3	4.303
11	2.228
31	2.042
101	?

also related				
自由度	0.1	0.05	α 0.02	0.01
1				
	6.314	12.706	31.821	63.657
2 3	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9	1.833	2.262	2.821	3.250
	1.833	2.202		
10	1.812	2.228	2.764	3.169
11	1.796	2.201	2.718	3.106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
		2	2.002	2.01.
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2.492	2.797
25	1.708	2.060	2.485	2.787
26	1.706	2.056	2.479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048	2.467	2.763
29	1.699	2.045	2.462	2.758
30	1.697	2.042	2.457	2.750

エクセル関数を使ったt値の求め方

エクセル関数を使ったt値の求め方

エクセル関数を使ったt値の求め方

データ数	T値
3	4.303
11	2.228
31	2.042
101	1.9839

to the state				
自由度	0.1	0.05	α 0.02	0.01
1				
	6.314	12.706	31.821	63.657
2	2.920	4.303	6.965	9.925
3	2.353	3.182	4.541	5.841
4	2.132	2.776	3.747	4.604
5	2.015	2.571	3.365	4.032
6	1.943	2.447	3.143	3.707
7	1.895	2.365	2.998	3.499
8	1.860	2.306	2.896	3.355
9				
	1.833	2.262	2.821	3.250
10	1.812	2.228	2.764	3.169
11	1.796	2.201	2,718	3,106
12	1.782	2.179	2.681	3.055
13	1.771	2.160	2.650	3.012
14	1.761	2.145	2.624	2.977
15	1.753	2.131	2.602	2.947
		2	2.002	2.01.
16	1.746	2.120	2.583	2.921
17	1.740	2.110	2.567	2.898
18	1.734	2.101	2.552	2.878
19	1.729	2.093	2.539	2.851
20	1.725	2.086	2.528	2.845
21	1.721	2.080	2.518	2.831
22	1.717	2.074	2.508	2.819
23	1.714	2.069	2.500	2.807
24	1.711	2.064	2.492	2.797
25	1.708	2.060	2.485	2.787
26	1.706	2.056	2.479	2.779
27	1.703	2.052	2.473	2.771
28	1.701	2.048	2.467	2.763
29	1.699	2.045	2.462	2.758
30	1.697	2.042	2.457	2.750