Analyse I – Corrigé de la Série 2

Echauffement 1.

- i) On a $X \times Y = \{(1,3), (1,4), (2,3), (2,4)\}$. Le couple (3,2) n'est donc pas un élément du produit cartésien $X \times Y$.
- ii) En utilisant la définition du produit cartésien, on trouve que les deux ensembles sont

$$(X \times Y) \times Z = \{(1,3), (1,4), (2,3), (2,4)\} \times \{5,6\}$$

$$= \{((1,3),5), ((1,4),5), ((2,3),5), ((2,4),5), ((1,3),6), ((1,4),6), ((2,3),6), ((2,4),6)\},$$

et

$$X \times (Y \times Z) = \{1, 2\} \times \{(3, 5), (3, 6), (4, 5), (4, 6)\}$$

$$= \{(1, (3, 5)), (1, (3, 6)), (1, (4, 5)), (1, (4, 6)), (2, (3, 5)), (2, (4, 5)), (2, (4, 6))\}.$$

Ils ne sont donc pas égaux.

Remarque:

Les deux ensembles $(X \times Y) \times Z$ et $X \times (Y \times Z)$ sont équivalents dans le sens que la fonction qui associe à $((a,b),c) \in (X \times Y) \times Z$ l'élément $(a,(b,c)) \in X \times (Y \times Z)$ est bijective. On écrit donc souvent simplement $X \times Y \times Z$ au lieu de $(X \times Y) \times Z$ ou $X \times (Y \times Z)$, et (a,b,c) au lieu de ((a,b),c) ou (a,(b,c)).

Echauffement 2.

a) Pour $n_0 = 1$ on a

$$1 = \frac{1(1+1)}{2} \; ,$$

c.-à-d. P(1) est vraie.

b) Pour $n \ge n_0 = 1$ on a (on indique par $\stackrel{P(n)}{=}$ l'égalité où on utilise la propriété P(n)),

$$1 + 2 + \dots + (n+1) = (1 + 2 + \dots + n) + (n+1) \stackrel{P(n)}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1) + 1)}{2},$$

et P(n) implique donc P(n+1) pour $n \ge n_0$.

Exercice 1.

Q1: FAUX.

Prendre par exemple A = [0, 2] et B = [1, 3]. Dans ce cas on a

$$\mathbb{R} \setminus (A \cap B) = \mathbb{R} \setminus [1, 2]$$

et

$$(\mathbb{R} \setminus A) \cap (\mathbb{R} \setminus B) = (\mathbb{R} \setminus [0, 2]) \cap (\mathbb{R} \setminus [1, 3]) = \mathbb{R} \setminus [0, 3].$$

Q2: VRAI.

La réciproque (\Leftarrow) est triviale.

Pour démontrer l'implication directe (\Rightarrow), on procède par l'absurde. Supposons que $A \times B = B \times A$ et que $A \neq B$. Sans perte de généralité, on peut supposer que $A \not\subset B$ et donc il existe $a \in A$ tel que $a \notin B$. Soit encore $b \in B$. Ainsi $(a,b) \in A \times B = B \times A$, ce qui veut dire que $a \in B$. Contradiction.

Q3: VRAI.

La preuve se fait par double-inclusion.

 \subset : Soit $(x,y) \in A \times (B \cap C)$. Alors $x \in A$, $y \in B$ et $y \in C$ et donc $(x,y) \in A \times B$ et $(x,y) \in A \times C$. Cela montre que $A \times (B \cap C) \subset (A \times B) \cap (A \times C)$.

 \supset : Soit maintenant $(x,y) \in (A \times B) \cap (A \times C)$. Alors $(x,y) \in A \times B$ et $(x,y) \in A \times C$ et donc $x \in A, y \in B$ et $y \in C$. Cela prouve que $(x,y) \in A \times (B \cap C)$ et donc $(A \times B) \cap (A \times C) \subset A \times (B \cap C)$.

Exercice 2.

- i) On a $x \sim x$ car x = x; $x \sim y$ implique $y \sim x$ car x = y implique y = x; et $x \sim y$ et $y \sim z$ impliquent que $x \sim z$ car x = y et y = z impliquent que x = z. L'égalité = est donc un cas particulier d'une relation d'équivalence. Les classes d'équivalences, c'est-à-dire les ensembles qui sont les éléments de $X/_{\sim}$, contiennent chacune exactement un élément de X.
- ii) Puisque $x \sim y$ pour tout $x, y \in X$, les conditions d'une relation d'équivalence sont trivialement satisfaite. L'ensemble quotient $X/_{\sim}$ contient l'ensemble X comme unique élément.

Exercice 3.

- i) Pour tout $x \in \mathbb{Z}^*$ on a $x^2 > 0$ et donc $x \sim x$. Si xy > 0 on a aussi yx > 0, si bien que $x \sim y$ implique $y \sim x$. Finalement, si xy > 0 et yz > 0 on a que $0 < (xy)(yz) = xzy^2$. Il s'en suit que xz > 0 si bien que $x \sim y$ et $y \sim z$ impliquent $x \sim z$. Il s'agit donc bien d'une relation d'équivalence. L'ensemble quotient contient deux éléments, l'ensemble des entiers positifs et l'ensemble des entiers négatifs.
- ii) Pour tout $x \in \mathbb{Z}$ on a x-x=0. Puisque 0 est un nombre pair il s'en suit que $x \sim x$. Si x-y est un nombre pair, y-x est aussi un nombre pair et $x\sim y$ implique donc $y\sim x$. Finalement, si x-y est pair et y-z est pair, il s'en suit que x-z=(x-y)+(y-z) est pair, et $x\sim y$ et $y\sim z$ impliquent donc que $x\sim z$. Il s'agit donc bien d'une relation d'équivalence. L'ensemble quotient contient deux éléments, l'ensemble des entiers pairs et l'ensemble des entiers impairs.
- iii) La relation $x \sim y$ si x y impair ne définit pas une relation d'équivalence sur \mathbb{Z} . Pour tout x on a que x x = 0, et puisque 0 est un nombre pair il en suit que x n'est pas en relation avec x ce qui viole la condition de réflexivité. (La relation est symétrique, mais la transitivité est aussi compromise.)

Exercice 4.

i) On a $X \times Y = \{(1,3), (1,4), (2,3), (2,4)\}$. Les sous-ensembles recherchés sont

$$G_1 = \{(1,3),(2,3)\}, \quad G_2 = \{(1,3),(2,4)\}, \quad G_3 = \{(1,4),(2,3)\}, \quad G_4 = \{(1,4),(2,4)\}.$$

Soit $f_i: X \to Y$, i = 1, 2, 3, 4, la fonction qui a comme graphe G_i . On a par exemple $f_2(1) = 3$ et $f_1(2) = 3$.

- ii) Les fonctions f_2 et f_3 sont injectives et surjectives et donc bijectives. Les fonctions f_1 et f_4 ne sont ni injectives ni surjectives (et donc pas bijectives). La réponse est donc : il y a deux fonctions qui sont injectives, surjectives et bijectives.
- iii) Seulement les fonctions f_2 et f_3 admettent une fonction réciproque $f_i^{-1}: Y \to X$, i=2,3 avec graphe H_i :

$$H_2 = \{(3,1), (4,2)\}$$
 et $H_3 = \{(3,2), (4,1)\}.$

On a par exemple $f_2^{-1}(3) = 1$ et $f_3^{-1}(3) = 2$.

Remarque concernant la terminologie :

Le sous-ensemble $G = \{(1,3)\} \subset X \times Y$ est le graphe d'une fonction $f: D \to Y$ avec domaine de définition $D = \{1\} \subset X$. Dans l'exercise 4 nous nous intéressons qu'aux fonctions avec domaine de définition X (voir le cours).

Exercice 5.

Q1: FAUX.

Prendre par exemple f(1) = 1, f(0) = 0, g(1) = g(0) = 1. Alors $(f \circ g)(1) = f(g(1)) = f(1) = 1 = (g \circ f)(1)$, $(f \circ g)(0) = f(1) = 1 = (g \circ f)(0)$, et donc $f \circ g = g \circ f$ mais $f \neq g$.

Q2: VRAI.

Soient $x_1, x_2 \in X$ tels que $f(g(x_1)) = f(g(x_2))$. Comme f est injective, on a $g(x_1) = g(x_2)$, et par l'injectivité de g, il suit que $x_1 = x_2$. Ainsi $f \circ g$ est bien injective.

Q3: VRAI.

Soient $x_1, x_2 \in X$ tels que $f(x_1) = f(x_2)$. Donc on a $f(f(x_1)) = f(f(x_2))$. Comme $f \circ f$ est injective, on conclut que $x_1 = x_2$ et donc f est injective.

Q4: VRAI.

Soient $x_1, x_2 \in X$ tels que $g(x_1) = g(x_2)$. Donc on a $f(g(x_1)) = f(g(x_2))$. Comme $f \circ g$ est injective, on conclut que $x_1 = x_2$ et donc g est injective.

Q5: VRAI.

Il n'existe que quatre fonctions de X dans X (lesquels?, voir Exercice 4) dont deux sont bijectives et deux ne sont ni injectives ni surjectives. Toute fonction de X dans X qui est injective est donc surjective et vice versa. Puisque $f \circ g$ est supposée injective, $f \circ g$ est donc surjective et f est surjective par Q6. Donc f est injective. (Remarque : le fait que toutes les fonctions de X dans X qui sont injectives sont aussi surjectives est une conséquence du fait que X ne contient qu'un nombre fini d'éléments.)

Q6: VRAI.

Soit $y \in X$. Comme $f \circ g$ est surjective, il existe $x \in X$ tel que $(f \circ g)(x) = y$. En posant z = g(x) on a trouvé un $z \in X$ tel que f(z) = y. Ainsi f est surjective.

Exercice 6.

Dans les deux cas, on applique l'algorithme de Joseph Stein. Pour i) on trouve successivement :

$$\begin{aligned} \operatorname{pgcd}(2796203, 1046527) &= \operatorname{pgcd}(1046527, 874838) = \operatorname{pgcd}(1046527, 437419) \\ &= \operatorname{pgcd}(437419, 304554) = \operatorname{pgcd}(437419, 152277) \\ &= \operatorname{pgcd}(152277, 142571) = \operatorname{pgcd}(142571, 4853) = \operatorname{pgcd}(68859, 4853) \\ &= \operatorname{pgcd}(32003, 4853) = \operatorname{pgcd}(13575, 4853) = \operatorname{pgcd}(4853, 4361) \\ &= \operatorname{pgcd}(4361, 246) = \operatorname{pgcd}(4361, 123) = \operatorname{pgcd}(2119, 123) \\ &= \operatorname{pgcd}(998, 123) = \operatorname{pgcd}(499, 123) = \operatorname{pgcd}(188, 123) = \operatorname{pgcd}(123, 94) \\ &= \operatorname{pgcd}(123, 47) = \operatorname{pgcd}(47, 38) = \operatorname{pgcd}(47, 19) = \operatorname{pgcd}(19, 14) \\ &= \operatorname{pgcd}(19, 7) = \operatorname{pgcd}(7, 6) = \operatorname{pgcd}(7, 3) = \operatorname{pgcd}(3, 2) = \operatorname{pgcd}(3, 1) \\ &= \operatorname{pgcd}(1, 1) = \operatorname{pgcd}(1, 0) = 1 \end{aligned}$$

Il s'agit en fait de deux nombres premiers (mais rappelez-vous que pas que a et b sont premiers).

Pour ii), les étapes sont :

$$\begin{aligned} \operatorname{pgcd}(132316,24092) &= 2\operatorname{pgcd}(66158,12046) = 4\operatorname{pgcd}(33079,6023) = 4\operatorname{pgcd}(13528,6023) \\ &= 4\operatorname{pgcd}(6764,6023) = 4\operatorname{pgcd}(6023,3382) = 4\operatorname{pgcd}(6023,1691) \\ &= 4\operatorname{pgcd}(2166,1691) = 4\operatorname{pgcd}(1691,1083) = 4\operatorname{pgcd}(1083,304) \\ &= 4\operatorname{pgcd}(1083,152) = 4\operatorname{pgcd}(1083,76) = 4\operatorname{pgcd}(1083,38) \\ &= 4\operatorname{pgcd}(1083,19) = 4\operatorname{pgcd}(532,19) = 4\operatorname{pgcd}(266,19) = 4\operatorname{pgcd}(133,19) \\ &= 4\operatorname{pgcd}(57,19) = 4\operatorname{pgcd}(19,19) = 4\operatorname{pgcd}(19,0) = 4\cdot19 = 76 \end{aligned}$$

Exercice 7.

i) a) Pour $n_0 = 1$ on a

$$1 = \sum_{k=1}^{1} k^2 = \frac{1(1+1)(2+1)}{6} = 1 ,$$

et P(1) est donc vraie.

b) Pour $n \ge n_0 = 1$ on a

$$\sum_{k=1}^{n+1} k^2 = \left(\sum_{k=1}^n k^2\right) + (n+1)^2 \stackrel{P(n)}{=} \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} = \frac{(n+1)(2n^2 + n + 6n + 6)}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6} = \frac{(n+1)\left((n+2)(2n+3)\right)}{6}$$

$$= \frac{(n+1)\left((n+1) + 1\right)\left(2(n+1) + 1\right)}{6},$$

et P(n) implique donc P(n+1) pour $n \ge n_0$.

ii) a) Pour $n_0 = 1$ on a (avec $(-1)^0 = 1$),

$$1 = \sum_{k=1}^{1} (-1)^{1-k} k^2 = \frac{1(1+1)}{2} = 1 ,$$

et P(1) est donc vraie.

b) Pour $n \ge n_0 = 1$ on a

$$\sum_{k=1}^{n+1} (-1)^{n+1-k} k^2 = \left(\sum_{k=1}^n (-1)^{n+1-k} k^2\right) + (n+1)^2$$

$$= -\left(\sum_{k=1}^n (-1)^{n-k} k^2\right) + (n+1)^2$$

$$\stackrel{P(n)}{=} -\frac{n(n+1)}{2} + (n+1)^2 = \frac{-n(n+1) + 2(n+1)^2}{2}$$

$$= \frac{(n+1)(-n+2n+2)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2} ,$$

et P(n) implique donc P(n+1) pour $n \ge n_0$.

iii) a) Pour $n_0 = 1$ on a

$$1 = \sum_{k=1}^{1} k^3 = \left(\frac{1}{2} \cdot 1 \cdot 2\right)^2 = 1 ,$$

et P(1) est donc vraie.

b) Pour $n \ge n_0 = 1$ on a

$$\sum_{k=1}^{n+1} k^3 = \left(\sum_{k=1}^n k^3\right) + (n+1)^3 \stackrel{P(n)}{=} \left(\frac{1}{2}n(n+1)\right)^2 + (n+1)^3$$

$$= \frac{1}{2^2}n^2(n+1)^2 + (n+1)^3 = \frac{1}{2^2}(n+1)^2(n^2+2^2(n+1))$$

$$= \frac{1}{2^2}(n+1)^2(n^2+4n+4) = \frac{1}{2^2}(n+1)^2(n+2)^2$$

$$= \left(\frac{1}{2}(n+1)((n+1)+1)\right)^2$$

et P(n) implique donc P(n+1) pour $n \ge n_0$.

Pour calculer la dernière somme on utilise les résultats précédents. On a

$$\sum_{k=0}^{1000} (k+1)(3k+2) = \sum_{k=1}^{1001} k(3k-1) = 3\sum_{k=1}^{1001} k^2 - \sum_{k=1}^{1001} k$$

$$= 3\frac{1001 \cdot 1002 \cdot 2003}{6} - \frac{1001 \cdot 1002}{2} = \frac{1001 \cdot 1002}{2} (2003 - 1)$$

$$= 1001^2 \cdot 1002 = 1004005002.$$

Exercice 8.

a) On a $F_0=2^{(2^0)}+1=2^1+1=3$, et $F_1=2^{(2^1)}+1=2^2+1=5$. Pour $n_0=1$ on a $5=F_1=\left(\prod_{i=1}^0F_k\right)+2=F_0+2=3+2=5$,

et P(1) est donc vraie.

b) Pour $n \ge n_0 = 1$ on a

$$F_{n+1} = 2^{(2^{n+1})} + 1 = 2^{(2 \cdot 2^n)} + 1 = \left(2^{(2^n)}\right)^2 + 1 = \left(2^{(2^n)}\right)\left(2^{(2^n)}\right) + 1 = (F_n - 1)^2 + 1$$
$$= F_n\left(F_n - 2\right) + 2 \stackrel{P(n)}{=} F_n\left(\prod_{k=0}^{n-1} F_k\right) + 2 = \left(\prod_{k=0}^n F_k\right) + 2 = \left(\prod_{k=0}^{(n+1)-1} F_k\right) + 2$$

et P(n) implique donc P(n+1) pour $n \geq n_0$.