Introducción y wavelets ortogonales

Sea $f = (f_1, ..., f_N) \in \mathbb{R}^N$, $N = 2^k$, con k Máximo nivel de descomposición. La energía viene dado por:

$$E(f) = \sum_{j=0}^{N} f_j^2 = ||f||^2.$$

Una aproximación *A* a primer nivel viene dado por el promedio de la primera y segunda pareja de términos. Es decir, se aproxima a la señal original. Y el detalle *D* viene dado por la diferencia de la primera y segunda pareja de términos. Es decir, aquello que necesito añadir para recuperar la señal original.

Cuando se tiene una aproximación de último nivel la señal se queda plana, por ejemplo:

$$A^{2}(3.75, 3.75, 3.75, 3.75).$$

En este caso, como las entradas son, k = 2, en consecuencia $2^2 = 4$, solo se puede realizar dos niveles de aproximación.

Ahora bien para entender de mejor manera el concepto de wavelets necesitamos recordar las siguientes definiciones de algebra lineal:

- Si $\{v_1,\ldots,v_m\}\subset\mathbb{R}^N$, la envoltura lineal de dicho conjunto de vectores en lin $\{v_1,\ldots,v_m\}$.
- Si $v, w \in \mathbb{R}^N$, su producto escalar es $v \cdot w = v_1 w_1 + \ldots + v_N w_N$.
- Un sistema de vectores $\{v_1, \ldots, v_m\}$ es ortonormal si cada uno tiene norma 1 y $v_i \cdot v_j = 0$ para $i \neq j$. En ese caso, cada vector $u \in lin\{v_1, \ldots, v_m\}$ se expresa de forma única como $u = (u \cdot v_1)v_1 + \cdots + (u \cdot v_m)v_m$.
- Si tenemos un sistema ortonormal, cualquier elemento que sea combinación lineal es fácil obtener los coeficientes. Es decir, no hay que resolver un sistema de ecuaciones.
- La proyección ortogonal es el punto más cercano a un subespacio.
- Si yo hago la imagen de dos vectores el producto de las imágenes

- Dos subespacios $V, W \subset \mathbb{R}^N$ son ortogonales si cada elemento de V es ortogonal a cada uno de W, y su suma es directa (y ortogonal), la cual denotamos por $V \oplus^{\perp} W$.
- Si $v \in \mathbb{R}^N$ y W es un subespacio de \mathbb{R}^N , la proyección ortogonal w de v sobre W es el único vector $w \in W$ tal que v-w es ortogonal a W (y coincide con el de mínima distancia en W a v).
- Una aplicación lineal $T: \mathbb{R}^N \to \mathbb{R}^N$ es una transformación ortogonal si $Tu \cdot Tv = u \cdot v$ para $u,v \in \mathbb{R}^N$ arbitrarios (equivalencia a ||Tu|| = ||u|| para todo u). También, que su expresión matricial en una base ortonormal sea una matriz A ortogonal $(A \cdot A^T = I)$.

es igual al producto de las entradas.

 La norma de partida sea igual a la norma de llegada. Es decir, es transformación ortonormal si conserva la energía.

1.1 Wavelets de Haar

Cuando se toma el sistema

$$\left\{v_1^1, \dots, v_{N/2}^1, w_1^1, \dots, w_{N/2}^1\right\}$$

de scaling y Wavelets, si se proyecta en el espacio de la scaling la proyección me sale A^1 , y si proyecto ortogonalmente en el espacio de Wavelets la proyección me sale D^1 . En otras palabras,

$$f = \left((f_1 \cdot v_1^1) v_1^1 + \dots + (f_{N/2} \cdot v_{N/2}^1) v_{N/2}^1 \right)$$

$$+ \left((f \cdot w_1^1) w_1^1 + \dots + (f \cdot w_{N/2}^1) w_{N/2}^1 \right)$$

$$= A^1 + D^1.$$

De esta manera, el espacio scaling a nivel 1 es la envoltura lineal de $v_1^1,\ldots,v_{N/2}^1$ y el espacio Wavelets a nivel 1 es la envoltura lineal de $w_1^1,\ldots,w_{N/2}^1$. Dado que scaling y wevelets son perpendiculares entre si, la suma directa de estos dos espacios nos da:

$$\mathbb{R}^N = V^1 \oplus^\perp W^1.$$

Con V, dim N/2 y W dim N/2.

Análisis de Frecuencia

Las Transformadas Wavelet tiene un reflejo en la frecuencia por lo que recordaremos como es la Transformada de Fourier.

2.1 Análisis de la frecuencia en la Transformada Wavelet (DFT)

Notación:

$$f = (f(0), f(1), \dots, f(N-1)) \in \mathbb{R}^{N}.$$

De lo que la transformada discreta de Fourier lo definimos como:

$$\hat{f}(k) = \sum_{j=0}^{N-1} f(j)e^{-i2\pi kj/N}, \quad k = 0, 1, \dots, N-1.$$
 (2.1)

Comenzamos en 0 debido a que $e^0=1$. Luego voy corriendo una posición cada vez el circulo en N trozos. Cuando tenemos j=1. Entonces, $e^{-i2\pi k/N}$.

Ahora, la inversa de la transformada de Fourier está definida como:

$$f(j) = \frac{1}{N} \sum_{k=0}^{N-1} \hat{f}(k)e^{i2\pi kj/N}, \quad j = 0, 1, \dots, N-1.$$
 (2.2)

Otra de las propiedades de la transformada de Fourier es periódica.

Geométricamente,

• Tomamos como entrada vectores en $\mathbb R$ y nos devuelve vectores en

Es decir, para k = N, el ciclo se repite. Dado que,

$$e^{i2\pi kj/N} = e^{i2\pi Nj/N} = e^{i2\pi j} = e^0 = 1.$$

Por la igualdad de Parseval, sabemos que la energía mas o menos se conserva. Es decir.

$$E(f) = \frac{1}{N}E(\hat{f}).$$

2.1.1 Implementación computacional

Vemos que (1.1) tiene N multiplicaciones para N entradas k. Donde si aplicamos computacionalmente, se tiene un costo de orden de N^2 . Por lo que, se tiene un costo computacional alto. Por lo tanto, usamos la trasformada rápida de Fourier (FFT). La cual tiene un costo computacional de $N \log N$.

Luego, para visualizar las señales de la transformada de Fourier, usamos el espectro de la señal. Es decir, consideramos los módulos al cuadrado de las entradas $|\hat{f}|^2$. La energía de f resulta ser el valor medio del espectro

$$E(f) = \frac{1}{N} \sum_{k=0}^{N-1} |\hat{f}(k)|^2.$$

Que es la media del espectro, dado por:

$$(|\hat{f}(0)|^2 + |\hat{f}(1)|^2 + \ldots + |\hat{f}(N-1)|^2).$$

Ahora bien cuando separamos las señales, mediante promedios y diferencias, y aplicamos la transformada wavelet a estas separaciones de A^1 y D^1 . Entonces, en A^1 se queda las frecuencias bajas y en D^1 las frecuencias altas. Esto se conoce como filtros pasa bajos y pasa altos. Esto lo podemos verificar en general a partir de las formulas de las señales de promedio y detalle y por la linealidad de la transformada de Fourier discreta:

$$A^{1} = (f \cdot v_{1}^{1})v_{1}^{1} + \dots + (f \cdot v_{N/2}^{1}v_{N/2}^{1}.$$

$$D^{1} = (f \cdot w_{1}^{1})w_{1}^{1} + \dots + (f \cdot w_{N/2}^{1}w_{N/2}^{1}.$$

Aplicando la transformada de Fourier a A^1 y D^1 se tiene:

$$\hat{A}^1 = (f \cdot v_1^1) \hat{v}_1^1 + \dots + (f \cdot v_{N/2}^1) \hat{v}_{N/2}^1 \quad \text{(Deja pasar free bajas)}.$$

$$\hat{D}^1 = (f \cdot w_1^1) \hat{w}_1^1 + \dots + (f \cdot w_{N/2}^1) \hat{w}_{N/2}^1 \quad \text{(Dejan pasar las altas)}.$$

Ahora para el nivel 2, hago una aproximación promediando más términos por lo que la meseta lo estrecho, es decir má filtro es de fre-

Cuando tomamos la energía E(f)
que serán números complejos, no
tomamos los cuadrados de las entradas, si no los cuadrados de los
módulos de las entradas.

- Al descomponer una señal, lo que estoy realizando son proyecciones ortogonales.
- Sabemos que con aproximación numérica se va promediando la energía.
- En tema de detalle es como fluctúan los coeficientes entre si.

A partir del espectro podemos analizar el efecto que produce el tratamiento de señales mediante wavelets a nivel de frecuencia. cuencias más bajas. Recordando la composición de la señal:

$$f = A^2 + D^2 + D^1.$$

Donde D^1 ya se tiene la frecuencias altas, A^2 tiene las frecuencias bajas y D^2 tiene las frecuencias medias o filtro pasa bandas, con

$$A^2 = \sum_{j=0}^{N/2-1} f(2j)\hat{v}_j^2,$$

pasa bajas y

$$D^2 = \sum_{j=0}^{N/2-1} f(2j+1)\hat{w}_j^2.$$

pasa bandas.