BFSI: CREDIT RISK ASSIGNMENT

Prepared By: Viraj Bhosale

INDEX:

- 1. Objective
- 2. Background
- 3. Data Analysis
 - Pre Processing of Data
 - **EDA**
 - Model Building
 - Interpreting the Results
 - Recommendations

OBJECTIVE

The objective is to build a statistical model to estimate borrowers' Loss
Given Default (LGD)

$$LGD = \frac{Loan Amount - (Collateral value + Sum of Repayments)}{Loan_Amount}$$

BACKGROUND

- Credit risk analytics in the context of the banking sector and model a common metric used for estimating the expected credit loss (ECL)
- ❖ ECL method is used for provisioning the capital buffer to protect banks against possible default of the customers.
 - Expected credit loss = Exposure at default x Probability of Default x Loss given default
- The loss given default (LGD) is a measure of the amount of loss that a bank is expected to incur in the event of a default by a borrower.

DATA SOURCES

- Used 3 Data sets for model Building
 - ❖ The main_loan_base data set contains information about loan accounts and other relevant information for the corresponding borrowers.
 - ❖ The repayment_base data set contains information about the repayments received by the banks in the form of EMIs or through other collection efforts.
 - The monthly_balance_base contains the information pertaining to the monthly balance statements in the borrower's accounts.

PRE PROCESSING OF DATA

- For each data set converted Data types if necessary
- Null values are handled using deletion and imputation techniques. As well duplicate values are removed from data sets.
- Merging the data sets and created target variable(LGD)
- Exploratory Data Analysis has been performed
- Variable Transformation
- Dummy Encoding
- Scaling using Standard Scaler

EDA

Number of loans in Two- wheeler is higher than all others.

EDA

But, the loan amount of car loan is the highest.

Monthly EMI

Car loan is much higher compared to other loans.

GRAPHICAL PRSENTATION:

Plotted histograms for the numerical columns to understand the distribution of data.

HEATMAP PRSENTATION:

Created Heatmap to understand the correlation between the variables.

STEPS PERFORMED:

- Used Power transformation to make numerical variables Normally distributed
- Dropped unnecessary columns for model building.
- Used One-hot encoding technique and created dummy variable for necessary categorical variables.

MODEL BUILDING

- Used various models like Multiple Linear Regression, Random Forest Regressor, Gradient Boosting Regressor, XGBoost Regressor, Adaboost Regressor, Elastic Net: Hybrid Regularized Model, LightGBM for model building.
- Used R Squared as a performance metrics.
- ❖ XGBoost has given us 99.5% R squared on test data across the models.

Residual plot of the finest model.

❖ Best fit line corresponding the prediction error.

Validation Curve

Feature Importance

RECOMMENDATIONS:

- ❖ We should focus more on Car and Two-wheeler loan types.
- Missed Repayment customers with high repayment amount should be highlighted.
- Customer's due factors and tenure are another subset of influencers to predict the Loss Given D efault of the customers.

