Материалы к семинару по уравнениям в частных производных -21.04.2020

Краевые задачи для уравнения Лапласа и Пуассона. Функция Грина задачи Дирихле

Задачник под ред. Шамаева - параграф 5.2, задачник под ред. Владимирова - параграф 17, учебник Владимирова, гл.5, п.29

С основными краевыми задачами (задача Дирихле и Неймана) мы знакомы с прошлого семестра, для таких хороших областей на плоскости как круг, кольцо, внешность круга, прямоугольник, мы умеем их решать при помощи метода Фурье. В частности, помним, что решение задачи Дирихле в ограниченной области существует и единственно при любых гладких краевых условиях, решение задачи Неймана в ограниченной области может не существовать (лемма о потоке), а если существует, то единственно с точностью до константы. В неограниченных областях (внешности круга) для единственности надо накладывать условие ограниченности решения. Нам помогало, что в \mathbb{R}^2 нам известен общий вид гармонической функции в полярных координатах.

В пространстве произвольной размерности дело обстоит очень похоже. Постановки основных задач можно посмотреть в Шамаеве на стр. 56 и 57. Хочу подчеркнуть, что доказательство разрешимости краевых задач для произвольной области – нелегкое дело. Нужно обязательно требовать, чтобы граница области Ω была достаточно гладкой (будем требовать C^2 , чтобы не вдаваться в детали, это техническое условие, на первый взгляд неясно, зачем завышена гладкость). Если область Ω неограниченная, то для единственности нужно требовать при n>2 не просто ограниченности, но стремления решения к нулю на бесконечности.

Если мы хотим построить решение задачи Дирихле для произвольной области Ω , мы должны понимать, что лучшее, на что мы можем рассчитывать - это интегральное представление решения при помощи функции Грина G(x,y) задачи Дирихле для Ω есть в Шамаеве на стр.60 и во Владимирове в начале п.17. Если пересказать это определение попросту, то оно означает, что мы хотим построить функцию, отличающуюся от фундаментального решения $\mathcal{E}(x-y)$ на гармоническую по y функцию g(x,y), так, чтобы она обращалась в роль на границе области Ω . Функция Грина - функция двух переменных, x принадлежит внутренности области Ω , а y - замыканию области Ω , то есть может выходить на ее границу. Все искусство построении функции Грина состоит в подборе q(x,y).

У функции Грина есть интересные свойства (Шамаев,стр.60) из которых, в частности, следует, что внутри области переменные x и y равноправны, их можно менять местами.

Однако наша чисто практическая задача – научиться эту функцию строить, чтобы потом подставить ее в интегральное представление (1) (Владимиров) или конец стр.60 (Шамаев).

Хочу обратить внимание, что эти формулы отличаются знаком перед членом с интегралом по поверхности. Это связано с тем, что Владимиров использует функцию, отличающуюся от фундаментального решения знаком, а также использует минус перед f в формулировке задачи Дирихле (ср.(5.2) в Шамаеве). Также Владимиров отправляет в определении функции Грина x, а не y. Надеюсь, это не запутает вас.

При построении функции Грина нас будет интересовать в первую очередь трехмерный случай, так как в двумерном случае существует теория, связанная с построением конформных отображений, она коротко описана в задачнике Владимирова после задачи 17.10. Мы не будем ею заниматься сейчас, это предмет ТФКП.

Отмечу, что возможность построения функции Грина G(x,y) зависит от области Ω . Есть класс областей, как ограниченных, так и неограниченных, для которых успешно работает метод отражений. Это области, связанные с шаром и полупространством. Примеры такого рода хорошо разобраны в учебнике Владимирова в гл.5, п.29, пример 2. Там построены функции Грина для шара, полупространства, полушара и двугранного угла. Идея состоит в том, чтобы построить отображение всех точек относительно всех плоскостей и всех сфер, которые встречаются в задаче.

Идея очень простая.

• Разберем, например, случай полупространства $\Pi: x_3 > 0$. Как мы помним, надо искать гармоническую функцию g(x,y) так, чтобы в сумме с $\frac{1}{4\pi|x-y|}$ получился ноль, если x на границе области. Мы знаем, что $\frac{1}{4\pi|x-y|}$ – гармоническая функция, если $|x-y| \neq 0$. Пусть $g(x,y) = -\frac{1}{4\pi|x-\bar{y}|}$, где $\bar{y} = (y_1,y_2,-y_3)$, если $y = (y_1,y_2,y_3)$. Так как $|x-\bar{y}| \neq 0$, если $x,y \in \Pi$, то это то, что нам надо. Действительно, если взять $x = (x_1,x_2,0)$, то есть x на границе Π , то $|x-\bar{y}| = |x-\bar{y}|$, то есть

$$G(x,y) = \frac{1}{4\pi|x-y|} - \frac{1}{4\pi|x-\bar{y}|}.$$

Заметим, что $g \to 0$, $|x| \to \infty$.

• В случае двугранного угла $\Pi_1: x_2 > 0, x_3 > 0$, граница состоит из двух плоскостей. При построении g(x,y) надо сначала рассмотреть точку, симметричную $y = (y_1, y_2, y_3)$ относительно плоскости $x_3 = 0$, получим $\bar{y} = (y_1, y_2, -y_3)$, потом относительно плоскости $x_2 = 0$, получим $y' = (y_1, -y_2, y_3)$, а потом $y' = (y_1, -y_2, y_3)$ относительно $x_3 = 0$

получим $\bar{y}'=(y_1,-y_2,-y_3)$. Функции $\frac{1}{4\pi|x-\bar{y}|},\,\frac{1}{4\pi|x-y'|},\,\frac{1}{4\pi|x-\bar{y}'|}$ гармонические, так как $|x-\bar{y}|\neq 0,\,|x-y'|\neq 0,\,|x-\bar{y}'|\neq 0,\,$ если $x,y\in\Pi$. Функция

$$G(x,y) = \frac{1}{4\pi|x-y|} - \frac{1}{4\pi|x-\bar{y}|} - \frac{1}{4\pi|x-y'|} + \frac{1}{4\pi|x-\bar{y}'|}$$

обращается в ноль как при $x = (x_1, x_2, 0)$, так и при $x = (x_1, 0, x_3)$, то есть это функция Грина.

• Чем больше поверхностей, от которых нужно проводить отражение, тем больше слагаемых нужно прибавлять, но их всегда четное число. Слагаемых может быть даже бесконечное количество, как в задаче 17.3, получается ряд. Иногда ряды такого рода удается просуммировать. Этот факт неявно говорит о том, что результат мог быть получен и другим методом.

Если мы хотим **решить задачу** Дирихле и функция Грина найдена, нам остается подставить ее в формулу (1) и посчитать интеграл. Ответ может быть получен в явном виде только в специальных случаях. Это приводит к мысли о том, что подсчет интеграла, довольно неприятное занятие, можно попытаться обойти. Если решение задачи Дирихле единственно, поэтому мы можем строить его любым способом.

Задача 17.4 как раз и представляет нам такие возможности.

Чтобы продемонстрировать основные идеи, остановимся только не случае f=0.

Итак,
$$\Omega = \Pi : x_3 > 0$$
, $\Delta u = 0$, $u|_{x_3=0} = u_0$.

- 17.4(2). $u_0 = \cos x_1 \cos x_2$. Ищем решение в виде $u(x_1, x_2, x_3) = Q(x_3) \cos x_1 \cos x_2$, Q(0) = 1.
- 17.4(4). $u_0 = \theta(x_2 x_1)$. Делаем замену $z = \frac{x_2 x_1}{\sqrt{2}}$. Получаем $u_{zz} + u_{x_3x_3} = 0$. $u = u(z, x_3)$ в полуплоскости $(z, x_3), x_3 > 0$. Переходим в полярные координаты (ρ, ϕ) , угол ϕ отсчитываем от вертикали. Начальные данные не зависят от ρ , ищем решение, также не зависящее от ρ . Тогда от лапласиана в полярных координатах остается $u_{\phi\phi} = 0$, $u(-\frac{\pi}{2}) = 0$, $u(\frac{\pi}{2}) = 1$. Решаем, возвращаемся в старые координаты.

• 17.4(5). $u_0 = \frac{1}{\sqrt{1+x_1^2+x_2^2}}$.

Вспоминаем, что

$$\frac{1}{\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}} = \frac{1}{|x - y|}$$

гармоническая, если $x \neq y$. Если $x \in \Pi$, то надо, чтобы $y \neq \Pi$. Подбираем y = (0,0,-1).

• Кстати, если u – гармоническая, то производная ее любого порядка – тоже гармоническая. Этот факт часто обыгрывается в задачах (например, 17.6(2), 17.12(3,5).)

Задачи для решения.

Владимиров: 17.2 (3, 2), 17.4 (2, 4, 5) (довести решение до конца), 17.4 (7), 17.6 (1, 2), 17.12 (2, 4, 5, 7) (вспоминайте, как в двумерном пространстве выглядит фундаментальное решение).

Шамаев: 5.29, 5.30, 5.40 (это мы уже решали, вспомните, как).