Problème du rectangle inscrit

Emanuel Morille

Table des matières

1.	Homologie	2
	1.1. Axiomes d'Eilenberg-Steenrod · · · · · · · · · · · · · · · · · · ·	2
	1.2. Homologie singulière · · · · · · · · · · · · · · · · · · ·	2

1. Homologie

1.1. Axiomes d'Eilenberg-Steenrod

Définition 1.1. Une théorie de l'homologie sur la catégorie des paires d'espaces topologiques dans la catégorie des groupes abéliens est une suite de couples de foncteur et de transformation naturelle, notée $(H_n, \partial_n)_{n \in \mathbb{Z}}$, vérifiant les axomes suivants.

Axiome 1.2. (Transport de l'homotopie) Soit (X,A) et (Y,B) deux paires d'espaces topologiques, $f_0, f_1: (X,A) \to (Y,B)$ deux applications. Si f_0 et f_1 sont homotopes, alors les applications induites en homologie f_{0*} et f_{1*} sont égales.

Axiome 1.3. (Transport de l'excision) Soit (X,A) une paire d'espaces topologiques et U un sousensemble de A. Alors l'inclusion $i:(X\setminus U,A\setminus U)\to (X,A)$ induit un isomorphisme en homologie.

Axiome 1.4. (Dimension) Soit P l'espace constitué d'un unique point. Alors le groupe $H_n(P, \emptyset)$ est non-trivial si et seulement si $n \neq 0$.

Axiome 1.5. (Additivité) Soit $(X_i)_{i \in I}$ une famille d'espaces topologiques deux à deux disjoints. Alors pour tout $n \in \mathbb{Z}$, les groupes $H_n(\bigsqcup_{i \in I} X_i)$ et $\bigoplus_{i \in I} H_n(X_i)$ sont isomorphes.

Axiome 1.6. (Exactitude) Soit (X,A) une paire d'espaces topologiques. Alors pour tout $n \in \mathbb{Z}$, la suite ... $\to H_{n+1}(X,A) \to H_n(A,\emptyset) \to H_n(X,\emptyset) \to H_n(X,A) \to ...$ est exacte.

1.2. Homologie singulière