Backtesting Using a Neural Network Blackbox Algorithm to Analyze Delta Airlines Stock

Analysis by Eric Lehmphul & Brigitte Sowa

Introduction

Using a Machine Learning Algorithm to assess profitability of trading stock.

Machine Learning Algorithm

Black Box Algorithm

- Neural Network
- 3 Hidden Nodes

Input

- Predicted Low/High/SD Price
- Predicted Low/High Return
- Predicted Slope

Output

- Buy, Sell, Keep decisions

Definition

 Input is defined by respective minimum/maximum prices for past n days, n=5

Parameters

- Logistic Regression
- Threshold = between 1 and .4
- Stepmax = 1e⁶

Stocks

- Delta Airlines (DAL)
- S&P 500 (^GSPC)

Using The Neural Network

A Neural Network "recognize[s] underlying relationships in a set of data through a process that mimics the way the human brain operates" [1]

Use of Hidden Nodes

- "Fine-tune the input weightings until the neural network's margin of error is minimal" (1)
- "Extrapolate salient features in the input data that have predictive power regarding the outputs" (1)

What we found

Overall result

- Neural Network ⇒ effective in generating profitable returns

Best trading strategy

- Williams Percent Range for single stock
- Williams Percent Range for stock portfolio
- Neural network

Data

Descriptive Analysis of Delta Airlines and S&P 500

DAL - Summary

Summary of DAL Stock Data							
	Date	Open	High	Low	Close	Adj. Close	Volume
Min	2/12/16	18.80	19.54	17.51	19.19	19.19	1076000
1st Qu.	5/13/17	41.38	41.88	40.75	41.35	39.43	5802550
Median	8/13/18	50.03	50.53	49.53	50.01	47.03	8003600
Mean	8/12/18	47.48	48.08	46.85	47.45	45.44	12269337
3rd Qu.	11/11/19	54.83	55.35	54.26	54.74	54.74	12053600
Max	2/11/21	63.23	63.44	62.38	63.16	63.16	134626500

DAL - Time Series Close Price

DAL - Return

S&P 500 - Summary

Summary of S&P 500 Data									
	Date	Open	High	Low	Close	Adj. Close	Volume	Market Return	Return
Min	2/12/16	1833	1865	1833	1865	1865	1.30E+09	-0.12	-0.12
1st Qu.	5/13/17	2392	2399	2381	2391	2391	3.30E+09	0.00	0.00
Median	8/13/18	2730	2743	2712	2728	2728	3.64E+09	0.00	0.00
Mean	8/12/18	2727	2740	2712	2727	2727	3.89E+09	0.00	0.00
3rd Qu.	11/11/19	2971	2986	2957	2974	2974	4.15E+09	0.01	0.01
Max	2/11/21	3921	3932	3903	3916	3916	9.88E+09	0.09	0.09
NA's								1	1

S&P 500 - Time Series Close Price

S&P 500 - **Return**

Method

How we approached the problem.

1. Data and Libraries

Obtaining and importing necessary data

- DAL & ^GSPC

Completed Descriptive Analysis

- Data summary
- Closing prices
- Return

Libraries used in Analysis

- devtools
- neuralnet
- dplyr

2. Creating Signals & Inputs

Signals

- Return 5 days ahead > 0.02 ⇒ Buy (B)
- Return 5 days ahead < -0.01 ⇒ Sell (S)
- Return 5 days ahead -0.01 $\leq x \leq 0.02 \Rightarrow \text{Keep (K)}$

Inputs

- Predicted Low/High/SD Price
- Predicted Low/High Return
- Predicted Slope

3. Building the Model - Our Model

```
NNyear<-neuralnet(
           data = datayear,
           Decision ~ Pred.LoPrcPast + Pred.HiPrcPast + Pred.LoRetPast +
           Pred.HiRetPast + Pred.StdPrcPast + Pred.SlopePast,
           hidden = 3,
           act.fct = "logistic",
           linear.output = FALSE,
           stepmax = le^6
          threshold = .1 <u>or</u> .15 <u>or</u> .4)
```

3. Building the Model - Our Model

Subset data by year

- 2016, 2017, 2018, 2019, 2020, 2021

Yearly data was used as training data set for each year

Used model to predict the next year's investment

4. Implement Trading

Six Scenarios	Current Signal ⇒ Buy	Current Signal ⇒ Sell	Current Signal ⇒ Keep
Previously Holding ⇒ Yes	Keep Stock, Generate investment return	Sell stock, No Investment return	Keep Stock, Generate investment return
Previously Holding ⇒ No	Buy stock, Investment return stays the same	No Stock, Investment return stays the same	No Stock, Investment return stays the same

5. Evaluate Performance

Sharpe Ratio

- Compares return on investment to risk of stock
- Calculated for
 - Investment Strategy; One Time Investment; One Time Market

Jensen Alpha

- Average return on investment
- Positive values ⇒ Greater performance
- Calculated for
 - Investment Strategy; One Time Investment

Analysis

Attacking the problem.

Assessing Performance - Sharpe Ratio

Sharpe Ratio					
	Investment	Stock	Market		
2017	0.63	0.67	2.7		
2018	0.43	-0.28	-0.29		
2019	1.02	0.8	2.1		
2020	NaN	-0.06	0.61		
2021	2.56	0.67	2.01		
	-	-	-		
5-year period	0.7	0.13	0.76		

- 2020: All predictions were classified as a "K" or Keep.
 - COVID-19
 - Model Parameter Constraints

Assessing Performance - Jensen Alpha

Jensen Alpha					
	Investment	Stock			
2017	0.01	-0.19			
2018	0.05	-0.03			
2019	0.03	-0.11			
2020	0	-0.32			
2021	0.51	-0.26			
	-	-			
5-year period	0.06	-0.13			

- 2020: All predictions were classified as a "K" or Keep.
 - COVID-19
 - Model Parameter
 Constraints

Comparing Performance - Sharpe Ratio

Mini project 1: Williams Percent Range analysis of a single stock

Sharpe Ratio, P = 10		
DAL Stock Evaluation	-0.839	
One-time Investment into DAL	0.153	
One-time Investment into S&P 500	0.832	

Mini project 2: Williams Percent Range analysis of a stock portfolio

Sharpe Ratio (By Year)						
Year	Portfolio	Benchmark	Market			
2016	-2.21	1.01	1.52			
2017	-1.93	2.35	2.7			
2018	-2.64	-0.15	-0.29			
2019	-1.42	1.20	2.10			
2020	-1.29	0.45	0.61			
2021	-0.79	1.95	2.47			
-	-	-	-			
entire period	-1.54	0.69	0.83			

Comparing Performance - Jensen Alpha

Mini project 1: Williams Percent Range analysis of a single stock

Jensen Alpha, P = 10		
DAL Stock Evaluation	-0.451	
One-time Investment into DAL	-0.136	

Mini project 2: Williams Percent Range analysis of a stock portfolio

Jensen Alpha (By Year)					
Year	Portfolio	Benchmark			
2016	-0.39	0.04			
2017	-0.46	0.02			
2018	-0.54	-0.11			
2019	-0.70	-0.04			
2020	-0.43	0.1			
2021	-0.40	-0.04			
-	-	-			
entire period	-0.50	-0.01			

Conclusion

Our findings.

Findings

Neural Network generated positive returns for each year, with the exception of 2020

- Restrictions of our model
- COVID-19

Most Effective Trading Strategy

Of three trading strategies, Neural Network was the most effective

Neural Network came close to outperforming the market

- Sharpe Ratio _{investment} = 0.70
- Sharpe Ratio _{market} = 0.76

Continuation of this strategy would result in long term profits

Ways to improve our analysis going forward

Adjust the model

- Increase the number of hidden nodes

Change our Parameters

- Alter the threshold values
- Alter the stepmax values

Work Cited

1. https://www.investopedia.com/terms/n/neuralnetwork.asp

Free templates for all your presentation needs

For PowerPoint and Google Slides

100% free for personal or commercial use

Ready to use, professional and customizable

Blow your audience away with attractive visuals