Statistical Data Analysis

Jana de Wiljes

December 7, 2022

Unsupervised learning

Problem setting

Goal: Approximate function f, that describes the link between two random variables X and Y which have the joint distribution $\pi(z) = \pi(x, y)$

Choice of parametrisation:

- \blacksquare choose model class ${\cal H}$
- \blacksquare and appropriate loss functional I(y, h(x))

Expected Risk

For $h \in \mathcal{H}$ we define the expected Risik as follows

$$R(h) = \int_{\mathbf{Z}} I(y, h(x))\pi(z)dz \tag{1}$$

Approach: Want to find $h \in \mathcal{H}$ so that

$$h^* = \arg\min_{h \in \mathcal{H}} R(h) \tag{2}$$

Empirical Risk

Given in practice: independent and identical distributed Samples

$$S = \{(x_i, y_i)\}_{i=1}^N$$
 with $(x_i, y_i) \sim \pi(x, y)$ for $i \in \{1, \dots, N\}$

Empirical Risk

For a given sample set S we define the corresponding empirical risk as follows:

$$R_S(h) = \frac{1}{N} \sum_{i=1}^{N} I(y_i, h(x_i))$$

2

Empirical Risk-Minimizer

Empirical Risk-Minimizer

A learning algorithm \hat{h}_N with $S = \{(x_i, y_i)\}_{i=1}^N$ where $(x_i, y_i) \sim \pi(x, y)$ of the form

$$\hat{h}_N \in \arg\min_{h \in \mathcal{H}} \frac{1}{N} \sum_{i=1}^N I(y_i, h(x_i))$$

is called Empirical Risk-Minimizer.

Unsupervised learning

Consider:

$$f: \mathcal{X} \rightarrow \{0, 1\}$$

$$f(x) = y$$

$$\pi(x,y) = \begin{cases} \pi(x) & \text{für } f(x) = y \\ 0 & \text{für } f(x) \neq y \end{cases}$$

But only x samples are observed

lacksquare Need to dhoose a different family of functions ${\cal H}$

Examples

Linear regression with regularisation

Data: $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}^h$ loss function:

$$I(x_i, f_w(x_i)) = \frac{1}{2} ||y_i - wx_i||_2^2 + ||w_k||_2^2$$

K-Means

Data: $x_i \in \mathbb{R}^d$, no labels y_i loss function:

$$I(x_i, f_w(x_i)) = \min_{w_k} \frac{1}{2} ||x_i - w_k||_2^2$$

where $w_1, \dots w_K$ are unknown cluster centres

Perceptron

Data: $x_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$ loss function:

$$I(x_i, f_w(x_i)) = \max(0, -yw^\top x)$$

Support Vector Machines

Data: $x_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$ loss function:

$$I(x_i, f_w(x_i)) = \lambda ||w||_2^2 + \max(0, 1 - yw^\top x_i)$$

with hyper parameter $\lambda > 0$

Clustering

K-means clustering

Algorithm 1 Kmeans

Input: Anzahl an Clustern K und Menge der zu klassifizierenden Punkte $\{x_1,\ldots,x_M\}$ Output: Mengen \mathcal{M}_k der verschiedenen Cluster Initialization: Initialisiere die Cluster Zentren $\theta_1,\ldots,\theta_K\in\mathbb{R}^n$ zufällig; while Bis Abbruchkriterium erfüllt do

end
$$k = 1 : K$$

$$\mathcal{M}_k := \{ \ \}$$
 for ($m = 1 : M$)
$$j = \arg\min_h ||\theta_h - x_m||_2$$

$$\mathcal{M}_j = \mathcal{M}_j \cup \{x_m\}$$
 for ($k = 1 : K$)
$$\theta_k = \frac{1}{|\mathcal{M}_k|} \sum_{x_m \in \mathcal{M}_k} x_m$$

Initialisation

- Random Partition Method
- Forgy Initialization
- kmeans++
 - 1. choose θ_1 uniformly at random from set of points
 - 2. Choose new center θ_i with probability

$$\frac{D(x_m)^2}{\sum_{x_l} D(x_l)^2}$$
 (3)

where $D(x_m)$ denotes the shortest distance from data point x_m to the closest center we have already chosen

3. Repeat Step 2 until we have all K centers

K-means clustering

Disadvantages

- true number of clusters *K* unknow (requires tuning)
- K-means algorithm dependents on the chosen initial values
- Clustering data of varying sizes and density
- Centroids can be dragged by outliers

Example: pattern recognition for

atmospheric circulation regimes

Regime

Time persistency constraint

$$\sum_{t=1}^{T-1} |\gamma_k(t+1) - \gamma_k(t)| \leq N_C \quad orall k$$

k-means clustering for different domains

k-means clustering for different domains

Optimisation problem

$$\mathbf{L}(\Theta,\Gamma) = \sum_{t=0}^{T} \sum_{n=1}^{N} \sum_{i=1}^{k} \gamma_i(t,n) \|\mathbf{x}_{t,n} - \theta_i\|^2$$

with

$$\sum_{i=1}^k \gamma_i(t,n) = 1, \qquad \forall t \in [0,T], \quad \forall n \in [1,N].$$

and

$$\sum_{i=1}^{\kappa} \sum_{n_1, n_2} |\gamma_i(t, n_1) - \gamma_i(t, n_2)| \le \phi \cdot C_{\text{eq}}, \qquad \forall t \in [0, T],$$

Ensemble persistency constraint

Ensemble persistency constraint

Occurrence rates

Optimal ϕ

K-Means vs Spectral Clustering

Spectral clustering

Eigenvalue and Eigenvectors

Definition: Let V be K-vector space, $f \colon V \to V$ an endomorphismus, $\lambda \in K$. A skalar λ is called **Eigenvalue** of f, if there is a vector $v \in V, v \neq 0$, so that

$$f(v) = \lambda \cdot v$$
.

Such a v is then called **Eigenvector** of f corresponding to λ .

Note: An eigenvalue λ can be $0 \in K$, but an eigenvector is always $\neq 0$.

Theorem

Theorem: Let V be a K- vector space, $n = \dim V < \infty$ and $f: V \to V$ an Endomorphismus. Then the following two statements are equivalent:

- 1. V has a basis of eigenvectors of f.
- 2. There is a basis \mathcal{B} of V, so that

$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$
 mit $\lambda_i \in K$.

Proof

Proof.

Let $M_{\mathcal{B}}^{\mathcal{B}}(f)$ be the representation with respect to für $\mathcal{B} = \{v_1, \dots, v_n\}$, then the following holds

$$f(v_i) = \lambda_i v_i \quad \forall i$$

 $\Leftrightarrow \quad v_1, \dots, v_n \text{ is a basis of eigenvectors}$

Characteristic polynom

Definition: Let $A \in K^{n \times n}$ and $\lambda \in K$ arbitrary. Then

$$\mathsf{Eig}(A,\lambda) := \{ v \in K^n \mid Av = \lambda v \}$$

is called the **Eigenspace** of A with respect to λ .

$$\chi_A(t) := \det(A - tE) \in K[t]$$

is called the **characteristic polynom** of *A*.

Bemerkung

For a Matrix $A \in K^{n \times n}$ the following holds:

$$\lambda \in K$$
 is an Eigenvalue of $A \Leftrightarrow \text{Eig}(A, \lambda) \neq 0$.

Theorem

Theorem: Let
$$A \in K^{n \times n}$$
 and $\lambda \in K$. Then

 λ is an Eigenvalue of $A \Leftrightarrow \lambda$ is a root of $\chi_A(t)$.

Proof: It holds that

$$\lambda$$
 Eigenvalue $\Leftrightarrow Av = \lambda v$ for a $v \neq 0$ $\Leftrightarrow (A - \lambda E) \cdot v = 0$ has a non trivial solution $v \neq 0$ \Leftrightarrow Eig $(A, \lambda) = \operatorname{Ker}(A - \lambda E) \neq 0$ $\Leftrightarrow \det(A - \lambda E) = 0$ $\Leftrightarrow \chi_A(\lambda) = 0$.

Example

We consider the matrix

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}.$$

The characteristic polynom of A is:

$$\chi_A(t) = \det \begin{pmatrix} 2-t & -1 \\ -1 & 2-t \end{pmatrix}$$

$$= (2-t)^2 - 1$$

$$= t^2 - 4t + 3$$

$$= (t-3)(t-1),$$

then the eigenvalues are $\lambda_1=3, \lambda_2=1.$

Example

The Eigenspaces of these eigenvalues are

$$\begin{split} \operatorname{Eig}(A,3) &= \operatorname{Ker}(A-3E) \\ &= \operatorname{Ker}\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rangle, \\ \operatorname{Eig}(A,1) &= \operatorname{Ker}\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle. \end{split}$$

What is a graph (formally)?

The objects on the following slides will play a role for spectral clustering

- $G = (V, E, \omega)$, where $V \neq \emptyset$ is a set (called the **vertex set**), $E \subset \binom{V}{2} = \{\{u, v\} : u, v \in V\}$ (called the **edge set**) and $\omega : E \to \mathbb{R}^+$, is called a (weighted) graph
- usually we choose (or rename) $V = \{1, 2, \dots, n\} \text{ and use the notations}$ $ij = \{i, j\} \text{ for } \{i, j\} \in E \text{ and } \omega_{ij} = \omega(ij)$
- for every i ∈ V define
 N(i) := {j ∈ V : ij ∈ E}, called the
 neighbourhood of i (in G); elements of N(i)
 are called neighbours of i (those elements are
 adjacent to i)
- $d_i := d(i) := |N(i)|$ is the **degree** of i

$$w({2,3}) = 1,$$

 $N(4) = {1},$
 $d(1) = |{3,4}| = 2$

Graph classes

Well known graph classes are:

- the path graph P_n has vertex set $\{1,2,\ldots,n\}$ and edge set $\{\{1,2\},\{2,3\},\ldots,\{n-1,n\}\}$
- the **cycle graph** C_n has vertex set $\{1, 2, ..., n\}$ and edge set $\{\{1, 2\}, \{2, 3\}, ..., \{n 1, n\}, \{n, 1\}\}$
- the **complete graph** K_n consists of n vertices which are all adjacent to each other
- the **complete bipartite graph** $K_{m,n}$ has two sets V_1 and V_2 of vertices of sizes m and n, such that the edge set consists of all possible edges between V_1 and V_2

A set of vertices in a graph which are all adjacent to each other (they **induce** a complete (sub)graph), is called **clique**.

The graph $K_{1,n}$ is called a **star**.

What is a digraph (formally)?

Edges can have a direction.

- $G = (V, E, \omega)$, where $V \neq \emptyset$ is a set, $E \subset V \times V$ (this is sometimes also called the set of arcs) and $\omega : E \to \mathbb{R}^+$, is called a (weighted) digraph
- for (i, j) ∈ E the vertex i is called predecessor of j and j is called successor of i
- similar notation simplifications as before
- $N^+(i) := \{j \in V : (i,j) \in E\}$ is the **out-neighbourhood** of i, $N^-(i) := \{j \in V : (j,i) \in E\}$ is the **in-neighbourhood** of i
- $d^+(i) := |N^+(i)|$ is the **out-degree** of i and $d^-(i) := |N^-(i)|$ is the **in-degree** of i

$$N^{-}(3) = \{1\},\$$

 $N^{+}(4) = \emptyset,\$
 $d^{+}(1) = 2,\$
 $d^{-}(2) = 1$

Example of a multigraph

It is sometimes necessary to allow multiple edges between two vertices or a **loop** (a self-edge). In that case we use the term **multigraph**.

What is a hypergraph (formally)?

Sometimes more than two vertices need to form an edge (certain real life situations' have this property).

- natural generalisation is a hypergraph H = (V, E), where
 - $V \neq \emptyset$ is (also) a set, but
 - E can be an arbitrary subset (the elements are called hyperedges) of the power set P(V)
- if all hyperedges are of the same
 size r, then H is called r-uniform

Storing graphs

Certain matrices and lists can be associated with a graph (we will see more examples later).

affinity matrix W(G):

$$w_{ij} = \begin{cases} \omega_{ij} & \text{if } \{i,j\} \in E, \\ 0 & \text{else.} \end{cases}$$

- adjacency matrix A(G): special case of W(G), where $w_{ij} = 1$ for all $ij \in E$.
- adjacency list:
 - associate list to every vertex containing its neighbours
 - call list of these lists adjacency list of the graph (treated differently in the literature)
 - not very useful for mathematical arguments
 - especially useful (for storing) when A(G) is sparse

All the above constructions are valid for directed graphs.

How to transform a digraph into a graph?

Consider the following three approaches.

- ignore the directions
- carry out cocitation coupling
 - existence of common predecessors induce edges
 - weights are naturally given by number of common predecessors
- carry out bibliographic coupling
 - existence of common successors induce edges
 - weights are naturally given by number of common successors

Cocitation coupling

A (undirected) graph is constructed via:

- cocitation c_{ij} of $i, j \in V$ is the number of common predecessors of i and j
- the cocitation network has vertex set V and an edge between i and j iff $c_{ij}>0$
- \bullet it is also possible to obtain a weighted graph with weights c_{ij}
- note that $c_{ij} = \sum_{k=1}^{n} a_{ki} a_{kj}$, therefore $C = A^{T} A$

Bibliographic coupling

A (undirected) graph is constructed via:

- bibliographic coupling b_{ij} of $i,j \in V$ is the number of common successors of i and j
- the bibliographic coupling network has vertex set V and an edge between i and j iff $b_{ij} > 0$
- it is also possible to obtain a weighted graph with weights b_{ii}
- note that $b_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk}$, therefore $B = AA^{T}$

How to transform a hypergraph into a graph?

The following constructions are standard.

- clique expansion
 - \bullet the vertex set is V
 - each hyperedge e is replaced by an edge for every pair of vertices in e
 - this construction yields cliques for every hyperedge
- star expansion
 - vertex set is $V \cup F$
 - edge between u and e iff $u \in e$
 - every hyperedge corresponds to a star
- there are more...

Clique expansion

The clique expansion $G^{\times}=(V^{\times},E^{\times})$ is constructed from H=(V,E) via:

- $V^{\times} = V$
- $E^{\times} = \{\{i,j\} : \exists e \in E \text{ with } i,j \in e\}$

Star expansion

The star expansion $G^* = (V^*, E^*)$ is constructed from H = (V, E) via:

- $V^* = V \cup E$
- $E^* = \{\{i, e\} : i \in e, e \in E\}$

What if data without network structure is given?

Solution: Build your own graph!

- given a set of data points x₁, x₂ ..., x_n and some notion of similarity¹s_{ij} ≥ 0 between all pairs of data points x_i and x_j
- build graph G = (V, E), where the vertex i represents the data point x_i , so $V = \{1, 2, ..., n\}$
- $\{i,j\} \in E \text{ if } s_{ij} > 0$
- edge weight $\omega_{ij} = s_{ij}$ (edge weights represent similarities)
- G is called similarity graph (although with this particular choice of edges it is often referred to as the fully connected graph)

graph for $\{x_i, x_j, x_l\}$ with $s_{ij}, s_{jl} > 0$ and $s_{il} = 0$

The ε -neighbourhood graph

The ε -neighbourhood graph is constructed as follows:

- vertices are data points
- fix some $\varepsilon > 0$
- ullet connect all vertices whose similarities are smaller than arepsilon
- \bullet since ε is usually small, values of existing edges are roughly of the same scale
- hence usually unweighted

The (mutual) k-nearest neighbour graph

The k-nearest neighbour graph is constructed as follows:

- vertices are data points
- fix some k > 0
- connect i to the k nearest (w.r.t. s_{ij}) k vertices via an edge starting at i
- · obtain an undirected graph by ignoring the directions

The **mutual** *k*-**nearest neighbour graph** is constructed as follows:

- vertices are data points
- fix some k
- connect i to the k nearest (w.r.t. s_{ij}) k vertices via an edge starting at i
- · obtain an undirected graph by deleting all non symmetric edges

In both cases weights are just the similarities.