Sea un conjunto aleatorio de tuplas en $T = \{x_i\}$ se busca obtener la función de densidad de probabilidad $p : \mathbb{R}^n \to [0, 1]$

Aproximación de la función de densidad acumulada, caso elemental Si consideramos la función indicatriz $p_{\epsilon}(x,y)$

$$\begin{array}{cccc} 1 & si & \|x\| \leq \epsilon \\ 0 & si & \|x\| > \epsilon \end{array}$$

$$p_{\epsilon}(x,y) = 1si||x|| \le \epsilon$$

$$\sum c_{i,j} p_{\epsilon}(x - x_i, y - y_j)$$

0.1. Anexos

Problema 1. Sea

$$\Phi = \{(x,y) \in \mathbb{R}^2 | (x,y) \in \mathit{convexhull}(p_1,p_2,p_3,p_4) \}$$

encontrar una transformación desde Φ a P

Problema 2. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ y sea ∂A la curva orientada en sentido antihorario por los punros p_1, p_2, p_3, p_4 encontrar el cambio de variable adecuado para encontrar

$$\int_{A} f(x,y)dA$$

Problema 3.