CUADRILÁTEROS – 3ro de secundaria.

DEFINICIÓN:

Un cuadrilátero es un polígono de cuatro lados; puede ser convexo o no convexo.

A. Cuadrilátero convexo

B. Cuadrilátero no convexo (cóncavo)

El cuadrilátero ABCD es no convexo.

* Diagonales: AC y BD.

Clasificación de cuadriláteros convexos

Según el paralelismo de sus lados opuestos, los cuadriláteros convexos se clasifican de la siguiente manera:

1. Trapezoide

Es aquel cuadrilátero convexo que no presenta lados opuestos.

ABCD es un trapezoide cualquiera.

2. Trapecio

Es aquel cuadrilátero convexo que solo tiene un par de lados opuestos paralelos.

En la figura, si $\overline{BC}/\!/\overline{AD}$ entonces el cuadrilátero ABCD es un trapecio.

- ♦ Bases: BC y AD
- ♦ Laterales: AB y CD
- ❖ Altura: BH

Propiedades de los trapecios

1. En todo trapecio, la base media es paralela a sus bases y su longitud es igual a la semisuma de las longitudes de sus bases.

En la figura, \overline{MN} es la base media del trapecio ABCD.

Se cumple:

$$\overline{MN}/\overline{BC}/\overline{AD} \rightarrow x = \frac{a+b}{2}$$

2. En todo trapecio, el segmento que une los puntos medios de sus diagonales es paralelo a sus bases, y su longitud es igual a la semidiferencia de las longitudes de dichas bases.

En la figura: $\overline{BC}/\overline{AD}$, P y Q son los puntos medios de \overline{AC} y BD, respectivamente. Se cumple: $PQ/\overline{BC}/\overline{AD}$.

$$\Rightarrow$$
 $x = \frac{a-b}{2}$

3. En la figura, M es punto medio de AC y MHLBD.

Se cumple: BH = HD

3. Paralelogramos

Son aquellos cuadriláteros convexos que tienen sus pares de lados opuestos paralelos.

Si $\overline{AB}/\overline{CD}$ y $\overline{AD}/\overline{BC} \rightarrow$ paralelogramo.

Propiedadesa) En todo paralelogramo los lados opuestos son congruentes.

b) En todo paralelogramo los ángulos opuestos son congruentes.

∠BAD **≅ ∠**BCD ∠ABC ≅ ∠ADC

c) En todo paralelogramo las diagonales se bisecan.

$$AO = OC$$

 $BO = OD$

Clasificación de los paralelogramos

a) Romboide

Es aquel paralelogramo que tiene los lados consecutivos de diferente longitud y sus ángulos interiores tienen medidas distintas de 90°.

ABCD es un romboide.

b) Rombo

Es aquel paralelogramo que tiene sus lados de igual longitud, y sus ángulos interiores presentan medidas distintas de 90°.

ABCD es un rombo.

c) Rectángulo

Es aquel paralelogramo que tiene sus lados consecutivos de diferente longitud, y las medidas de sus ángulos interiores son iguales a 90°.

ABCD es un rectángulo.

d) Cuadrado

Es aquel paralelogramo que tiene sus lados de igual longitud y la medida de sus ángulos interiores igual a 90°.

ABCD es un cuadrado. O es centro del cuadrado.

Ejercicios propuestos:

1. Calcula la m∠BCD si ABCD es un trapezoide.

2. Calcula AD en el romboide ABCD, si \overline{AE} y \overline{DE} son bisectrices.

- 3. En un trapecio, calcula la longitud de la mediana, si el segmento que une los puntos medios de las diagonales mide 48 m y la medida de la base mayor es el cuádruple de la medida de la base menor.
- **4.** Calcula la mediana del trapecio ABCD (BC//AD), si BC = 7 m y CD = 14 m.

Resolución:

Nos piden la mediana:

Se traza la bisectriz CE del ∠BCD

- ⇒ ABCE: romboide y CED: triángulo isósceles.
- \Rightarrow AE = 7 m y ED = 14 m.

Luego:
$$Me = \frac{21+7}{2}$$
 \Rightarrow $Me = 14 \text{ m}$

5. Calcula la mediana del trapecio ABCD (BC//AD), si BC = 9 m y AB = 16 m.

Calcula "x" si ABCD es un romboide.

7. Calcula "x" si ABCD es un rectángulo.

8. En un cuadrado ABCD, desde el vértice B se traza la bisectriz exterior que interseca a la prolongación de \overline{DA} en E, si BE = 12m. Calcula la longit<u>ud d</u>el segmento que une los puntos medios de BD y CE.

Resolución:

BE: bisectriz exterior \implies m \angle EBA = 45° Por № 45°

$$EA = AB = BC = AD = 6\sqrt{2} \text{ m}$$

P: punto medio de EC

Q: punto medio de BD

$$\frac{12\sqrt{2}-6\sqrt{2}}{2} \Rightarrow x = 3\sqrt{2} m$$

- 9. En un rectángulo ABCD, desde el vértice C se traza la bisectriz exterior que interseca a la prolongación de \overline{AD} en E, si $\overline{CE} = \sqrt[8]{2}$ m y $\overline{AD} = 2\overline{DE}$, calcula la longitud del segmento que une los puntos medios de \overline{BE} y \overline{AC} .
- 10. Calcula la medida del segmento que une los puntos medios de AEyBD, si ABCDes un paralelogramo cuyo lado menor mide 16m y DE es bisectriz del ∠ADC.

11. Calcula la longitud del lado del rombo ABCD si AE = 18 m.

12. Calcula la mZAMB, si mZADO = 25°, ABCD es un rectángulo y AOM es un triángulo equilátero.

Resolución

Trazamos BM: Piden $m\angle AMB = x$.

O: centro del rectángulo \Rightarrow AO = OC = BO = OD

△AOD: isósceles m∠ODA = m∠OAD = 25° y m∠BOA = 50°

 \triangle AOM: equilátero AO = OM = AM

ΔBOM: isósceles m∠MBO = m∠OMB = 35°

Luego: $x + 35^{\circ} = 60^{\circ}$ $\Rightarrow x = 25^{\circ}$

13. Calcula la m∠CMD, si m∠DAO = 35°, ABCD es un rectángulo y DOM es un triángulo equilátero.

14. Calcula el valor de "x" si ABCD es un trapezoide, CN = ND, BC = 6 m, BM = 5 m y AB = 20 m y $m\angle BAD = 45^{\circ}$.

Ejercicios pre-uni y concursos nacionales:

- 1. En un rombo ABCD, BD = 4 y $< BAD = 28^{\circ}$. Calcule el perímetro de la región rombal.
- 2. En un trapezoide ABCD, la mediatriz de \overline{AD} interseca a \overline{BC} en P, tal que < $CPD = 26^{\circ}$. Si < $ABC = 70^{\circ}$ y < ADP = 2 < PDC, calcule el < BCD. Considere que AB = PD.
- 3. En un trapezoide *ABCD*, AB = 24, CD = 10 y $< BAD + < CDA = 90^{\circ}$. Calcule la distancia entre los puntos medios de \overline{BC} y \overline{AD} .
- 4. Se tiene un triángulo *ABC*. Sean *D* y *E* puntos del lado *AC* (*A*, *D*, *E*, *C* estan en ese orden) y sea *F* un punto del lado *BC* tales que los triángulos *ABD* y *DEF* son equiláteros. Si *AD* = 8 y *EC* = 18. Halla *DE*.
- 5. Sea ABCD un paralelogramo. Una recta que pasa por A corta a BD en E, a BC en E y a la prolongación de DC en E. Si EF = 4 y E y E Halla E Halla E en E y a la prolongación de E en E y E en E en E y E en E en