第三章 多维随机变量及其分布

§1 二维随机变量

§2 边缘分布

§1 二维随机变量

1.1 二维随机变量的定义

定义:设E是一个随机试验,它的样本空间是 $\Omega = \{e\}$,设X = X(e)和Y = Y(e)是定义在 Ω 上的随机变量。由它们构成的一个向量(X,Y),叫做二维随机向量,或二维随机变量

多维随机变量本质上是从单个试验同时获得的多个

随机变量

研究多维随机变量的目的

随机变量之间存在某种关系

例:身高与体重

依赖于随机变量的结果同时与多个随机变量相关

例:健康状况的多个化验指标

应该把二维随机变量(X,Y) = (X(e),Y(e)) $(e \in \Omega)$ 看作一个整体,因为X和Y是有关联的几何上(X,Y)可以看作是平面坐标系上的点

二维随机变量的一些例子

例1. 一个地区成年男子的身体状况。令:

X-----身高,Y-----体重

则,(X,Y)就是一个二维随机变量

例2. 在投掷飞镖游戏中,

X——距靶心的水平距离,Y——距靶心的垂直距离

则,(X,Y)就是一个二维随机变量

例3. 考察某地区的气候, X——温度,Y——气压 则,(X,Y)就是一个二维随机变量

1.2 二维随机变量的联合分布函数

定义:设(X,Y)是二维随机变量,对任意实数x,y,

二元函数:

$$F(x,y) = P\{(X \le x) \cap (Y \le y)\} = P(X \le x, Y \le y)$$
 称为二维随机变量(X,Y)的联合分布(Joint Distribution)函数,或简称为分布函数

分布函数的几何意义

F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以(x,y)为右上角顶点的无穷矩形区域内的概率

一个基本公式

若 $x_1 < x_2, y_1 < y_2$,则 $P(x_1 < X \le x_2, y_1 < Y \le y_2)$ $= (F(x_2, y_2)) - (F(x_2, y_1)) - (F(x_1, y_2)) + (F(x_1, y_1))$

1.3 分布函数的基本性质

1. 单调性: F(x,y)是变量x,y的不减函数,即对于任意固定的 y, 当 $x_1 < x_2$ 时, $F(x_1,y) \le F(x_2,y)$

同样地,对于任意固定的x,当 $y_1 < y_2$

 $F(x, y_1) \le F(x, y_2)$

3. 右连续:

$$F(x + 0, y) = F(x, y)$$
, $F(x, y + 0) = F(x, y)$

4. 非负性:若 $x_1 < x_2, y_1 < y_2$,则 $F(x_2, y_2) + F(x_1, y_1) - F(x_2, y_1) - F(x_1, y_2) \ge 0$

四条性质是二维随机变量分布函数的充要条件

- 任何二维随机变量的分布函数都满足这四条性质
- 任一具有这四条性质的二元函数均是二维随机 变量的分布函数

1.4 二维离散型随机变量

定义:若二维随机变量(X,Y)的取值是有限个或可列 无限多对时,则称(X,Y)为二维离散型随机变量

设(X,Y)为二维离散型随机变量 , (X,Y)的取值为 (x_i,y_i) (i,j=1,2,...) , 并且记 $P(X=x_i,Y=y_i)=p_{ij}$, 则称 p_{ij} 为(X,Y)的分布率或X和Y的联合分布率

二维离散型随机变量的联合分布律可以枚举,也可以用表格形式表现。

离散型随机变量联合分布律表示

Y	x_1	x_2	•••	x_i	•••
y ₁	p_{11}	p_{21}	•••	p_{i1}	•••
y_2	p_{12}	p_{22}	•••	p_{i1}	•••
:	•	•	•••	:	•••
y_j	p_{1j}	p_{2j}	•••	p_{ij}	•••
:	•	•	•••	:	•••

离散型随机变量联合分布律表示

例4. 设随机变量X在1,2,3,4四个整数中等可能地取值,另一个随机变量Y在1~X之间等可能地取值,求(X,Y)的分布律

Y	1	2	3	4
1	$\frac{1}{4}$	$\left \begin{array}{c} \frac{1}{8} \end{array} \right $	$\left \frac{1}{12} \right $	$\left \frac{1}{16} \right $
2		$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{16}$
3			$\frac{1}{12}$	1/16
4				$\frac{1}{16}$

二维离散型随机变量联合分布律的性质

1. 非负性: 对任意(i,j)(i,j=1,2,...),有 $p_{ij} = P\{X = x_i, Y = y_i\} \ge 0$

2. 规范性:

$$\sum_{i,j} p_{ij} = 1$$

二维离散型随机变量分布律举例

例5. 将一枚均匀的硬币抛3次,令

X:3次中出现正面的次数;

Y:3次中正面出现次数与反面次数只差的绝对值给出(X,Y)的联合分布律。

解:

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTT, \}$ 对应的X的可能取值为0,1,2,3,Y为1,3

Y	0	1	2	3
1		$\frac{3}{8}$	3 8	
3	<u>1</u> 8			$\frac{1}{8}$

二维离散型随机变量的联合分布函数

类似一维情况,并考虑与连续情况的对应,引入分 布函数

设二维离散型随机变量(X,Y)的联合分布律为

$$p_{ij}(i,j=1,2,...,)$$

则 (X,Y)的联合分布函数为

$$F(x,y) = \sum_{x_i \le x, y_i \le y} p_{ij}$$

1.5 二维连续型随机变量

对于二维随机变量(X,Y)的分布函数F(x,y), 如果存在非负可积函数f(x,y), 使得对于任意的实数x,y, 有

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$

则称 (X,Y)是连续型的二维随机变量 , 函数 f(x,y) 称为二维随机变量 (X,Y) 的概率密度 , 或称为 X和 Y的联合概率密度

概率密度的性质

- 1. 非负性: $f(x,y) \ge 0$
- 2. 规范性: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u,v) du dv = F(\infty,\infty) = 1$
- 3. 设G是xOy平面上的一个区域,点(X,Y)落在G内的概率为

$$P\{(x,y) \in G\} = \iint_{(x,y)\in G} f(x,y)dxdy$$

4. 若f(x,y)在点(x,y)连续,则

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$

局部概率 $P\{(X,Y) \in G\}$ 的几何意义

在几何上 z = f(x, y) 表示空间的一个曲面,

$$P\{(x,y) \in G\} = \iint\limits_{(x,y) \in G} f(x,y) dx dy$$

即表示 $P\{(X,Y) \in G\}$ 的值等于以 G 为底,以曲面 z = f(x,y)为顶的柱体体积

一些连续型二维随机变量

1. 二维均匀分布

设D是平面上的有界区域,其面积为A,如果二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{A} & (x,y) \in D \\ 0 & (x,y) \notin D \end{cases}$$

则称二维随机变量(X,Y)服从 区域D上的均匀分布

一些连续型二维随机变量

2. 二维正态分布

设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}$$

则称随机变量(X,Y)服从参数为 $(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$ 的正态分布

记为:

$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$

其中:

$$-\infty < \mu_i < \infty$$
, $\sigma_i > 0$ $(i = 1,2)$

$$-1 < \rho < 1$$

例6. 设二维随机变量(X,Y)的密度函数为

$$f(x,y) = \begin{cases} c(R - \sqrt{x^2 + y^2}) & x^2 + y^2 < R^2 \\ 0 &$$
 其他

- (1) 求常数c;
- (2) 求(X,Y)落入圆 $x^2 + y^2 < r^2$ (0 < r < R)内的概率。

解:由概率归一化的特性有

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) dx dy$$

$$= \iint_{x^2 + y^2 \le R^2} c \left(R - \sqrt{x^2 + y^2} \right) dx dy = 1$$

变换到极坐标下: $x = \rho \cos \theta$, $y = \rho \sin \theta$, 于是有

$$\int_{0}^{2\pi} d\theta \int_{0}^{R} c(R - \rho) \rho d\rho = \frac{1}{3} \pi c R^{3} = 1$$

故

$$c = \frac{3}{\pi R^3}$$

(2) 类似地:

$$P\{(X,Y) \in \{x^2 + y^2 < r^2\}\}$$

$$= \iint_{x^2+y^2 < r^2} \frac{3}{\pi R^3} \left(R - \sqrt{x^2 + y^2} \right) dx dy$$
$$= \frac{3r^2}{R^2} \left(1 - \frac{2r}{3R} \right)$$

1.6 从二维到n维的推广

定义(n维随机变量):设 E 是一个随机试验,它的样本空间是 Ω ={e},设 $X_i = X_i(e)$ ($e \in \Omega$, i = 1,2,...,n) 是定义在 Ω 上的n个随机变量。由它们构成的一个向量 $(X_1,X_2,...,X_n)$,叫做样本空间 Ω 上的n维随机向量,或n维随机变量

n维随机变量的分布函数

设 $(X_1, X_2, ..., X_n)$ 是一个n维随机变量,则对于任一n维实数组 $(x_1, x_2, ..., x_n)$

 $F(x_1, x_2, ..., x_n) = P(X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n)$ 称此函数为n维随机变量的分布函数

§2 边缘分布(Marginal distribution)

边缘分布的定义

设(X,Y)为二维随机向量,其分布函数为 F(x,y)

其中分量X或Y是一维随机变量,相应的存在一维分布,分别记为 $F_X(x)$ 和 $F_Y(y)$,

依次称 $F_X(x)$, $F_Y(y)$ 为(X,Y)关于X和关于Y的边缘分布函数。

边缘分布又翻译为"边际分布"或"边沿分布"

2.1 边缘分布函数

利用联合分布函数获得边缘分布函数

设二维随机变量(X,Y)的分布函数为F(x,y),则分量X的分布函数为

$$F_X(x) = P\{X \le x\} = P\{X \le x, Y < +\infty\}$$
$$= \lim_{y \to +\infty} F(x, y) = F(x, +\infty)$$

类似地,对分量Y的边缘分布函数为

$$F_Y(y) = P\{Y \le y\} = P\{Y \le y, x < +\infty\}$$
$$= \lim_{x \to +\infty} F(x, y) = F(+\infty, y)$$

适用于离散和连续

例7. 设二维随机变量(X,Y)的联合分布函数为

$$F(x,y) = A\left(B + \operatorname{atan}\frac{x}{2}\right)\left(C + \operatorname{atan}\frac{y}{5}\right),$$

(-\infty < x, y < +\infty)

求常数A,B,C以及边缘分布函数。

解:由分布函数性质有

$$F(+\infty, +\infty) = A\left(B + \frac{\pi}{2}\right)\left(C + \frac{\pi}{2}\right) = 1 \tag{1}$$

$$F(-\infty, +\infty) = A\left(B - \frac{\pi}{2}\right)\left(C + \frac{\pi}{2}\right) = 0 \tag{2}$$

$$F(+\infty, -\infty) = A\left(B + \frac{\pi}{2}\right)\left(C - \frac{\pi}{2}\right) = 0 \tag{3}$$

(1), (2)
$$\rightarrow$$
 $B = \frac{\pi}{2}$, (1), (3) \rightarrow $C = \frac{\pi}{2}$, 带入(1), 有

$$A = \frac{1}{\pi^2}$$

$$F_X(x) = \lim_{y \to +\infty} F(x, y)$$

$$= \lim_{y \to +\infty} \frac{1}{\pi^2} \left(\frac{\pi}{2} + \operatorname{atan} \frac{x}{2} \right) \left(\frac{\pi}{2} + \operatorname{atan} \frac{y}{5} \right)$$

$$= \frac{1}{\pi} \left(\frac{\pi}{2} + \operatorname{atan} \frac{x}{2} \right)$$

类似有

$$F_Y(y) = \lim_{x \to +\infty} F(x, y) = \frac{1}{\pi} \left(\frac{\pi}{2} + \operatorname{atan} \frac{y}{5} \right)$$

2.2 边缘分布律

利用联合分布律求边缘分布律

已知二维离散型随机变量(X,Y)的联合分布率为

$$p_{ij} = P\{X = x_i, Y = y_j\} (i, j = 1, 2, ...)$$

则随机变量X的边缘分布律为:

$$p_{i.} = P\{X = x_{i}\} = \bigcup_{j} P\{X = x_{i}, Y = y_{j}\}$$
$$= \sum_{i} p_{ij} (i = 1, 2, ...)$$

类似地,随机变量Y的边缘分布律为:

$$p_{\cdot j} = P\{Y = x_j\} = \sum_{i} p_{ij} (j = 1, 2, ...)$$

例8. 下表中给出了两种不同类型的鸟(A和B)寄生了两种类型的寄生虫---虱子和螨虫.由于这两种寄生虫相当大,鸟身上有同类寄生虫的数量不会超过两个.对每一种鸟身上具有的特定寄生虫数量的概率进行了统计.例如,在一只鸟身上有一只螨虫和两支虱子的概率为0.09,有两只螨虫和一只虱子的概率为0.06. 求两类鸟的边缘分布

虱子		Bird A		Bird B			
蝴虫	0	1	2	0	1	2	
0	0.20	0.15	0.15	0.33	0.08	0.09	
1	0.12	0.09	0.09	0.05	0.13	0.12	
2	0.08	0.06	0.06	0.02	0.09	0.09	

解:为求出每类鸟身上虱子的数量的边缘概率分布, 将每一列中的数字相加

> 例如A类鸟身上有一只虱子的概率为 0.15+0.09+0.06=0.3

类似的,螨虫数量的边缘分布为每一行中的数字相加,例如B类鸟身上有两只螨虫的概率为

0.02+0.09+0.09=0.2

	虱子		Bird A			Bird B			
	蝴虫	0	1	2		0	1	2	
	0	0.20	0.15	0.15	0.5	0.33	0.08	0.09	0.5
	1	0.12	0.09	0.09	0.3	0.05	0.13	0.12	0.3
	2	0.08	0.06	0.06	0.2	0.02	0.09	0.09	0.2
2018/09		0.4	0.3	0.3		0.4	0.3	0.3	

注意:尽管两类鸟身上昆虫的分布不同,但边缘分布是一样的,也就是从边缘分布不能唯一确定联合分布

从联合分布律求边缘分布律仅适用于离散分布

虱子	Bird A				Bird B			
蝴虫	0	1	2		0	1	2	
0	0.20	0.15	0.15	0.5	0.33	0.08	0.09	0.5
1	0.12	0.09	0.09	0.3	0.05	0.13	0.12	0.3
2	0.08	0.06	0.06	0.2	0.02	0.09	0.09	0.2
g	0.4	0.3	0.3		0.4	0.3	0.3	

2.3 边缘密度函数

利用联合概率密度函数求边缘密度函数

已知二维连续型随机变量(X,Y),已知其联合分布密度函数为f(x,y),则随机变量X的边缘分布为:

$$F_X(x) = P\{X \le x\} = F(x, +\infty)$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(x, y) dy dx = \int_{-\infty}^{x} f_X(x) dx$$

于是,

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

类似地,

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

例9. 设平面区域D是由抛物线 $y = x^2$ 及直线y = x所围成,随机变量(X,Y)服从区域D上的均匀分布,试求随机变量(X,Y)的联合密度函数及X,Y各自的边缘

密度函数

解:区域D的面积为

$$S = \int_{0}^{1} \int_{x^{2}}^{x} dy \, dx = \int_{0}^{1} (x - x^{2}) dx$$

$$= \frac{x^{2}}{2} - \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{6}$$

于是(X,Y)的联合概率密度函数为:

$$f(x,y) = \begin{cases} 6 & (x,y) \in D \\ 0 & (x,y) \notin D \end{cases}$$

$$f_X(x) = \int_{x^2}^x 6dy = 6(x - x^2), 0 \le x \le 1$$

于是
$$f_X(x) = \begin{cases} 6(x - x^2) & 0 \le x \le 1 \\ 0 &$$
其他

类似地,

$$f_Y(y) = \int_y^{\sqrt{y}} 6dx = 6(\sqrt{y} - y), 0 \le y \le 1$$

于是
$$f_Y(y) = \begin{cases} 6(\sqrt{y} - y) & 0 \le y \le 1 & y \\ 0 &$$
其他

$$f(x,y) = \begin{cases} 6 & (x,y) \in D \\ 0 & (x,y) \notin D \end{cases}$$

例10. 设二维随机变量(X,Y)服从参数为 ($\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho$)的正态分布,即密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right]}$$

给出X和Y的边缘分布

解:

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$
(为方便起见,记 $C = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}$)
$$= C \int_{-\infty}^{\infty} e^{-\frac{1}{2(1-\rho^{2})} \left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} + \frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}} \right]} dx$$

$$= C e^{-\frac{(y-\mu_{2})^{2}}{2(1-\rho^{2})\sigma_{2}^{2}}} \int_{-\infty}^{\infty} e^{-\frac{1}{2(1-\rho^{2})} \left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}} - \frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}} \right]} dx$$

$$= C e^{-\frac{(y-\mu_{2})^{2}}{2(1-\rho^{2})\sigma_{2}^{2}}} + \frac{\rho^{2}(y-\mu_{2})^{2}}{2(1-\rho^{2})\sigma_{2}^{2}}} \int_{-\infty}^{\infty} e^{-\frac{1}{2(1-\rho^{2})} \left[\frac{x-\mu_{1}}{\sigma_{1}} - \frac{\rho(y-\mu_{2})}{\sigma_{2}} \right]^{2}} dx$$

$$x' = \frac{x - \mu_1}{\sigma_1} - \frac{\rho(y - \mu_2)}{\sigma_2}$$
 $C = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}}$

$$C = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

于是

$$f_Y(y) = Ce^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2(1-\rho^2)} \left[\frac{x-\mu_1}{\sigma_1} \frac{\rho(y-\mu_2)}{\sigma_2}\right]^2} dx$$

$$= C\sigma_1 e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2(1-\rho^2)}x'^2} dx'$$

$$= C\sigma_1 e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}} \sqrt{2(1-\rho^2)\pi} = \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}$$

类似地

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

于是

$$X \sim N(\mu_1, \sigma_1^2)$$

 $Y \sim N(\mu_2, \sigma_2^2)$

几点有关的结论:

- 1. 二维正态分布的边缘分布还是正态分布,且与相关系数 ρ 无关
- 2. 相同的两个边缘分布不能唯一决定联合分布,这时 ρ 可以不同
- 3. 甚至两个正态的边缘可以来自一个非正态的二维分布

关于第三点的一个例子:

$$f(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{x^2 + y^2}{2}\right\} (1 + \sin x \sin y)$$
$$-\infty < x, y < +\infty$$

其边缘分布为

$$X, Y \sim N(\mu, \sigma^2)$$

2.4 从二维到n维

设 $(X_1, X_2, ..., X_n)$ 是一个n维随机变量,若存在非负函数 $f(x_1, x_2, ..., x_n)$,使得对任意实数 $x_1, x_2, ..., x_n$ 有 $F(x_1, x_2, ..., x_n)$

$$= \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

称 $f(x_1,x_2,...,x_n)$ 为n维随机变量 $(X_1,X_2,...,X_n)$ 的分布密度函数

相应地,一个k-维分布函数的例子为

$$F_{(X_1,X_2,...,X_k)}(x_1,x_2,...,x_k) = F(x_1,x_2,...,x_k,+\infty,...,+\infty)$$

一个k-维分布密度函数的例子为

$$f_{(X_{1},X_{2},...,X_{k})}(x_{1},x_{2},...,x_{k}) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(...,x_{k+1},x_{k+2},...,x_{n}) dx_{k+1} dx_{k+2} ... dx_{n}$$

作业

概率论与数理统计

•pp. 84-86, #1, #5, #6, #9