Distribución de variables aleatorias

Grupo 3 - Correa Milagros, Pironio Bernardo, Caamaño Bresba Facundo Manuel.

The Uncertainty in Physical Measurements

Paolo Fornasini

Distributions of Random Variables	99
6.1 Binomial Distribution	99
6.2 Random Variables and Distribution Laws	.104
6.3 Numerical Characteristics of Distributions	.108
6.4 Poisson Distribution	115
6.5 Normal Distribution	. 121
6.6 Meaning of the Normal Distribution	. 126
6.7 The Cauchy-Lorentz Distribution	. 130
6.8 Multivariate Distributions	. 132
Problems	136

Distribución binomial

$$p$$
 Positivo $q=1-p$ Negativo

En **n** repeticiones:

- k resultados positivos
- **n k** resultados negativos

Distribución binomial

$$p$$
 Positivo $q=1-p$ Negativo

Probabilidad de obtener k éxitos en n ensayos

$$\mathcal{P}_{np}(k) = \binom{n}{k} p^k q^{n-k}$$

$$0 \le k \le n$$

Ejemplo - k caras en n lanzamientos de moneda

$$\mathcal{P}(k) = \binom{n}{k} 0.5^n$$

Simétrico respecto a

$$k = n/2$$

Condición de normalización

$$\sum_{k=0}^{n} \mathcal{P}(k) = \sum_{k=0}^{n} \binom{n}{k} p^{k} q^{n-k} = (p+q)^{n} = 1^{n} = 1$$

(Se mantiene para todas las distribuciones | | |)

Distribución de variables aleatorias

Discretas

$$\mathcal{P}(k_j) = p_j$$

Continuas

X: Variable aleatoria continua

x: Valores posibles

Función de distribución cumulativa (FDC)

$$F(x) = \mathcal{P}(X \le x)$$

Función de densidad de probabilidad (FDP)

$$f(x) = \mathrm{d}F(x)/\mathrm{d}x$$

FDC
$$F(x) = \mathcal{P}(X \le x)$$

$$\mathcal{P}(x_1 < X \le x_2) = \mathcal{P}(X \le x_2) - \mathcal{P}(X \le x_1) = F(x_2) - F(x_1)$$

Probabilidad de un único valor x,

$$\mathcal{P}(x_1) = \lim_{x_2 \to x_1} \left[F(x_2) - F(x_1) \right] = 0$$

Parámetros de posición

- Mediana
- Media (m)
- Moda

 $\begin{bmatrix}
 m_k &= \langle k \rangle &= \sum_j k_j p_j \\
 m_x &= \langle x \rangle &= \int_{-\infty}^{+\infty} x f(x) dx
\end{bmatrix}$

(discreta)

(continua)

Parámetros de dispersión

• Varianza (D)

Discreta:
$$\sum_{j} (k_j - m_k)^2 p_j$$

Continua:
$$\int_{-\infty}^{+\infty} (x - m_x)^2 f(x) dx$$

• Desviación estándar (σ)

$$\sigma = \sqrt{D}$$

- Coef. de asimetría (β)
- Curtosis (γ_2)

Momentos

• Iniciales (α_s)

Discretas: $\sum_{j} k_{j}^{s} p_{j}$

Continuas: $\int_{-\infty}^{+\infty} x^s f(x) dx$

Centrales (μ_s)

Discretas: $\sum_j (k_j - m_k)^s p_j$ Continuas: $\int_{-\infty}^{+\infty} (x - m_x)^s f(x) \, \mathrm{d}x$

Órdenes de los momentos (centrales)

$$\mu_{o} = \sum_{j} (k_{j} - m_{k})^{0} p_{j} = 1$$

(Cond. normalización)

$$\mu_1 = \sum_j (k_j - m_k) p_j =$$

(Media)

$$\boldsymbol{\mu_2} = \sum_{j} (k_j - m_k)^2 p_j = \mathbf{D_k}$$

(Varianza)

Órdenes de los momentos (centrales)

$$\beta = \mu_3 / \sigma^3$$

(Coeficiente de asimetría)

Órdenes de los momentos (centrales)

$$\gamma_2 = \mu_4 / \sigma^4 - 3 \qquad \text{(Curtosis)}$$

Distribución de Poisson

- Aproximación a distribución binomial
- Conteos de eventos aleatorios

$$\mathcal{P}_a(k) = \frac{a^k}{k!} e^{-a}$$

$$m=a$$
, $D=\mu_2=a$

Normalización de la distribución

$$\sum_{k=0}^{\infty} \frac{a^k}{k!} e^{-a} = e^{-a} \sum_{k=0}^{\infty} \frac{a^k}{k!} = e^{-a} e^a = 1$$

Parámetros de la distribución

Coef. de kurtosis y asimetría

$$\beta = \frac{\mu_3}{\sigma^3} = \frac{1}{\sqrt{a}}$$

$$\gamma_2 = \frac{\mu_4}{\sigma^4} - 3 = \frac{1}{a}$$

Recuerdo de distribución binomial

Binomial m=npPoisson a=m=np

 $n \to \infty$

Distribución binomial y de Poisson

$$\mathcal{P}(k) = \frac{n(n-1)\cdots(n-k+1)}{k!} \left(\frac{a}{n}\right)^k \left(1 - \frac{a}{n}\right)^{n-k}$$

$$= \frac{n(n-1)\cdots(n-k+1)}{n^k} \frac{a^k}{k!} \left(1 - \frac{a}{n}\right)^n \left(1 - \frac{a}{n}\right)^{-k}$$

$$\longrightarrow 1$$

 $\lim_{n \to \infty} \left(1 - \frac{a}{n} \right)^n = e^{-a}$

22

Ejemplo: Maquinas de fabrica

Binomial

$$\mathcal{P}_{50,0.04}(4) = \frac{50!}{46! \ 4!} \ 0.04^4 \ 0.96^{46} = 0.09016$$

Poisson

$$\mathcal{P}_2(4) = \frac{2^4}{4!} e^{-2} = 0.0902$$

Proceso estacionario de Poisson

Parámetro de densidad $\lambda = n/\Delta T$

$$\mathcal{P}_a(k) = \frac{a^k}{k!} e^{-a} = \frac{(\lambda \Delta t)^k}{k!} e^{-\lambda \Delta t}$$

Estadísticas de conteo

Medición única

k partículas detectadas en un tiempo Δt

$$\mathcal{P}_a(k) = \frac{a^k}{k!} e^{-a}; \quad a = \lambda \Delta t$$

Medición única

k partículas detectadas en un tiempo Δt

$$\mathcal{P}_a(k) = \frac{a^k}{k!} e^{-a}; \quad a = \lambda \Delta t$$

$$m_k^* = a^* = k$$

$$\tilde{\sigma} = \sqrt{\tilde{a}}$$

Medición única

k partículas detectadas en un tiempo Δt

$$\mathcal{P}_a(k) = \frac{a^k}{k!} e^{-a}; \quad a = \lambda \Delta t$$

$$m_k^* = a^* = k \qquad \qquad \tilde{a} = k \qquad ; \; \delta \lambda / \tilde{\lambda} = 1/\sqrt{k}$$

$$\tilde{\sigma} = \sqrt{\tilde{a}} \qquad \qquad \tilde{\lambda} = k/\Delta t \; ; \qquad \delta \lambda = \sqrt{k}/\Delta t$$

Varias mediciones

N mediciones con Δt y k_i :

$$D_k^* = \frac{1}{N} \sum_{i=1}^{N} (k_i - m_k^*)^2$$

$$m_k^* = \frac{1}{N} \sum_{i=1}^N k_i$$

Varias mediciones

N mediciones con Δt y k_i :

$$D_k^* = \frac{1}{N} \sum_{i=1}^N (k_i - m_k^*)^2$$

$$m_k^* = \frac{1}{N} \sum_{i=1}^N k_i$$

$$\tilde{a} = m_k^*$$

$$\delta \tilde{a} = \sigma[m_k^*] \simeq \frac{\sqrt{D_k^*}}{\sqrt{N}}$$

Ejemplo

Distribución Normal

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right]$$

Características

$$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right] dx = 1$$

Momentos centrales de la distribución normal

$$\mu_s = (s-1) \,\sigma^2 \,\mu_{s-2} \qquad (s \ge 2)$$

$$\mu_s = 0 \ \forall s \ \mathrm{impar}$$
 (simetría respecto a $x = m$)

$$\gamma_2 = \mu_4 / \sigma^4 - 3 = 0$$

Probabilidades |

$$z = \frac{x - m}{\sigma} \longrightarrow \phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{z^2}{2}\right]$$

$$\mathcal{P}(\alpha < x < \beta) = \frac{1}{\sqrt{2\pi}} \int_{z_{\alpha}}^{z_{\beta}} \exp\left[-\frac{z^2}{2}\right] dz$$

$$\mathcal{P}(m - \sigma < x < m + \sigma) = 0.6826$$

 $\mathcal{P}(m - 2\sigma < x < m + 2\sigma) = 0.9544$
 $\mathcal{P}(m - 3\sigma < x < m + 3\sigma) = 0.9974$

Muchas gracias

Apéndice: ejemplo de proceso de Poisson

□ Llaman 150 veces por hora \longrightarrow $\lambda = 150 \text{ l/h}$

Quiero saber la probabilidad de tener 6 $\longrightarrow \alpha = \lambda \Delta t = 150 \text{ l/h } (1/60) \text{ h}$ llamadas en 1 min

$$\mathcal{P}(6) = \frac{2.5^6}{6!} e^{-2.5} = 0.278$$

Ejemplo - k caras en n lanzamientos de moneda

Distribución uniforme

$$f(x) = \begin{cases} 0 & \text{for } x < x_1, \\ C & \text{for } x_1 \le x < x_2, \\ 0 & \text{for } x \ge x_2, \end{cases}$$

