

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 01217415 A

(43) Date of publication of application: 31 . 08 . 89

(51) Int. Cl

G02B 23/26
A61B 1/04
A61B 1/06
G02B 23/24

(21) Application number: 63044707

(22) Date of filing: 26 . 02 . 88

(71) Applicant: OLYMPUS OPTICAL CO LTD

(72) Inventor: NAKAMURA KAZUNARI
NISHIGORI TOSHIAKI
ONODA FUMIYUKI
MIYAZAKI AKIHIKO
NAKAMURA TAKEAKI
OOAKI YOSHINAO
SUZUKI HIROMASA

(54) LIGHT SOURCE DEVICE FOR ENDOSCOPE

(57) Abstract:

PURPOSE: To supply various illuminating beams including face sequential beams capable of forming a color image and to obtain various images having different observation wave length areas or the like in accordance with an observing portion, an observing purpose or the like by switching filters by a filter switching means.

CONSTITUTION: The title device is provided with plural kinds of filters 51aW51c arranged so as to be optionally loaded/unloaded to/from the illuminating optical path of a light source 21 and including filters capable of separating beams projected from the light source 21 time sequentially at least into three wavelength areas capable of forming a color image and the filter switching means 43 capable of inserting one of the filters 51aW51c into the illuminating optical path. Thereby, plural kinds of illuminating beams including face sequential beams capable of forming a color image can be supplied by switching the filter by means of the filter switching means. Consequently, various illuminating beams can be supplied so that various images having different observation wavelength areas or

the like can be obtained in accordance with an observing portion, an observing purpose or the like.

COPYRIGHT: (C)1989,JPO&Japio

A 1 - 3

BEST AVAILABLE COPY

⑫ 公開特許公報 (A) 平1-217415

⑬ Int. Cl.

G 02 B 23/26
A 61 B 1/04
1/06

識別記号

370

庁内整理番号

B-8507-2H
7305-4C
B-7305-4C※

⑭ 公開 平成1年(1989)8月31日

審査請求 未請求 請求項の数 1 (全11頁)

⑮ 発明の名称 内視鏡用光源装置

⑯ 特 願 昭63-44707

⑰ 出 願 昭63(1988)2月26日

⑱ 発明者 中村一成 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業株式会社内

⑲ 発明者 錦織俊明 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業株式会社内

⑳ 発明者 小野田文幸 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業株式会社内

㉑ 出願人 オリンパス光学工業株式会社 東京都渋谷区幡ヶ谷2丁目43番2号

㉒ 代理人 弁理士伊藤進

最終頁に続く

明細書

1. 発明の名称

内視鏡用光源装置

2. 特許請求の範囲

面順次式の撮像手段を備えた内視鏡に適合する照明光を供給可能な内視鏡用光源装置であって、光路と、この光路の照明光路に操作自在に設けられ、少なくとも前記光路から出射された光をカラーカメラを形成可能な3つの波長領域に時系列的に分離可能なフィルタを含む複数種のフィルタと、前記複数種のフィルタのうちの1つを選択的に照明光路に挿入可能なフィルタ切換手段とを備えたことを特徴とする内視鏡用光源装置。

3. 発明の詳細な説明

【産業上の利用分野】

本発明は、観察波長領域等が異なる種々の画像が得られるように、種々の照明光を供給可能な内視鏡用光源装置に関するもの。

【従来の技術と発明が解決しようとする問題点】

近年、体腔内に細長いの挿入部を挿入することに

より、体腔内臓器等を観察したり、必要に応じ処置具チャンネル内に挿入した処置具を用いて各種治療処置のできる内視鏡が広く利用されている。

また、電荷結合素子(CCD)等の固体撮像素子を撮像手段に用いた電子内視鏡も種々提案されている。

ところで、血液中のヘモグロビンの量や酸素飽和度の分布を知ることが、病変の早期発見等に役立つことが知られている。血液中のヘモグロビンの量や酸素飽和度を求める方法としては、例えば、実開昭61-151705号公報に示されるように、血液中のヘモグロビンに関連のある複数の特定の波長領域の画像から求める方法がある。

しかしながら、前記従来例に示されるカメラでは、観察波長領域が固定されているため、一般的に可視領域の画像が得られず、また、観察部位や観察目的等に応じた最適な観察を行うことができなかった。

また、例えば特開昭56-3033号公報には、可視領域以外の領域、例えば赤外波長領域では色

調の変化が大きくなるものもあることに着目して、少なくとも一つの赤外波長領域を持つ分光光を時系列的に導光して被観察体を照明し、被観察体からの反射光を固体画像装置に結像させ、電気信号に変換し、波長領域に応じて電気信号を処理し、特定の色信号により波長領域の画像を表示するようにした技術が暗示されている。この従来例によれば、赤外波長領域で用られる不可視情報を可視情報に変換することができ、例えば皮膚と正常部の識別を迅速、容易に行うことが可能になる。

しかしながら、この従来例においても、觀察波長領域が固定されているため、例えば、赤外光を利用した場合には、一般的な可視領域の画像が得られず、一般画像と特殊画像の比較が困難であり、また、他の波長領域に特徴のある被観察体については効果がない等の問題点がある。

面順次式で撮像する内視鏡装置の場合、面順次の照明光の波長領域を変えることにより、上述のような特殊画像を得ることが可能になるが、面順次式の内視鏡に対する従来の光源装置では、照明

光を時系列的に分離する回転フィルタが、照明光路内に固定されているため、照明光の種類を切換えるためには、光源装置を換えなくてはならなかった。

【発明の目的】

本発明は、上記事例に鑑みてなされたものであり、觀察部位や觀察目的等に応じて觀察波長領域等が異なる種々の画像が得られるように、種々の照明光を供給できるようにした内視鏡用光源装置を提供することを目的としている。

【問題点を解決するための手段及び作用】

本発明の内視鏡用光源装置は、光源と、この光源の照明光路に構成自在に設けられ、少なくとも前記光源から出射された光をカラー画像を形成可能な3つの波長領域に時系列的に分離可能なフィルタを含む複数種のフィルタと、前記複数種のフィルタのうちの1つを選択的に照明光路に挿入可能なフィルタ切換手段とを備え、フィルタ切換手段によってフィルタを切換えることにより、カラー画像を形成可能な面順次光を含む複数種の照明

光を供給できるようにしたものである。

【実施例】

以下、図面を参照して本発明の実施例を説明する。

第1図ないし第15図は本発明の一実施例に係り、第1図は内視鏡装置の構成を示すブロック図、第2図は内視鏡装置の全体を示す側面図、第3図は回転フィルタを示すためのフィルタカセットの断面図、第4図は第3図のA-A'線断面図、第5図はフィルタカセットチャンジャーの斜視図、第6図はフィルタカセットチャンジャーの平面図、第7図はフィルタカセットチャンジャーの背面図を示す斜視図、第8図は第6図のB-B'線断面図、第9図は通常観察用の回転フィルタの各フィルタの透過特性を示す説明図、第10図及び第11図は特殊画像用の回転フィルタの各フィルタの透過特性を示す説明図、第12図及び第13図はヘモグロビンの酸素飽和度の変化による血流の吸光度の変化を示す説明図、第14図は通常観察用の回転フィルタの他の例を示すためのフィルタカ

セットの断面図、第15図は本実施例の变形例における回転フィルタを示すためのフィルタカセットの断面図である。

第2図に示すように、本実施例の光源装置に接続される電子内視鏡1は、細長で例えば可搬性の挿入部2を有し、この挿入部2の後端に太径の操作部3が取付かれている。前記操作部3の後端部からは側方に可搬性のケーブル4が延設され、このケーブル4の先端部にコネクタ5が設けられている。前記電子内視鏡1は、前記コネクタ5を通して、光源装置及び信号処理回路が内蔵されたビデオプロセッサ6に接続されるようになっている。さらに、前記ビデオプロセッサ6には、モニタ7が接続されるようになっている。

前記挿入部2の先端側には、硬性の先端部9及びこの先端部9に隣接する後方側に弯曲可能な弯曲部10が順次設けられている。また、前記操作部3に設けられた弯曲操作ノブ11を回動操作することによって、前記弯曲部10を左右方向あるいは上下方向に弯曲できるようになっている。ま

た、前記操作部3には、前記印入部2内に設けられた知覚具チャンネルに通じる印入口12が設けられている。

第1図に示すように、電子内視鏡1の印入部2内には、照明光を伝達するライトガイド14が通されている。このライトガイド14の先端面は、印入部2の先端部9に配置され、この先端部9から照明光を出射できるようになっている。また、前記ライトガイド14の入射端側は、ユニバーサルコード4内に挿入されてコネクタ5に接続されている。また、前記先端部9には、対物レンズ系15が設けられ、この対物レンズ系15の結像位置に、固体撮像素子16が配置されている。この固体撮像素子16は、可視領域を含め紫外領域から赤外領域に至る広い波長域で感度を有している。前記固体撮像素子16には、信号線26、27が接続され、これら信号線26、27は、前記印入部2及びユニバーサルコード4内に挿入されて前記コネクタ5に接続されている。

一方、ビデオプロセッサ6内に設けられた光源

装置20は、紫外光から赤外光に至る広帯域の光を発光するランプ21を備えている。このランプ21としては、一般的なキセノンランプやストロボランプ等を用いることができる。前記キセノンランプやストロボランプは、可視光のみならず紫外光及び赤外光を大量に発光する。このランプ21は、電源部22によって電力が供給されるようになっている。前記ランプ21の前方には、複数(図では3つの組合を示している。)のフィルタカセット50が設けられている。このフィルタカセット50は、フィルタカセットチャーンジャー70によって、選択的に照明光路に挿入されるようになっている。また、前記フィルタカセットチャーンジャー70は、切換回路43からの制御信号によって制御されるようになっている。また、各フィルタカセット50は、回転フィルタ51を有し、照明光路に挿入されたときには、前記回転フィルタ51が、モータ23に連結され、このモータ23によって回転されるようになっている。このモータ23は、モータドライバ25によって回

転が制御されて駆動されるようになっている。

前記フィルタカセット50の構成を第3図及び第4図を用いて説明する。

第3図に示すように、回転フィルタ51には、3つのフィルタ51a、51b、51cが、周方向に沿って配列されている。通常観察用の回転フィルタの場合には、前記各フィルタ51a、51b、51cは、それぞれ、第9図に示すような赤(R)、緑(G)、青(B)の各波長領域の光を透過するフィルタになっている。前記各フィルタ51a、51b、51cの内周側には、回転フィルタ51の回転位置検出用の複数の孔53が、周方向に沿って配列されている。また、第4図に示すように、前記回転フィルタ51は、フィルタカセット50のハウジング52内に収納され、回転フィルタ51の回転軸54は、前記ハウジング52の中央部に設けられた玉軸受55、55によって回転自在に支持されている。

前記ハウジング52の正面板52a及び背面板52bには、互いに対向し、且つ、前記回転フィ

ルタ51の各フィルタ51a、51b、51cとも対向する位置に、窓56、56が設けられ、ランプ21から出射された光が、この窓56、56及び各フィルタ51a、51b、51cを透過できるようになっている。また、前記正面板52a及び背面板52bには、互いに対向し、且つ、前記回転フィルタ51の回転位置検出用の孔53とも対向する位置に、窓57、57が設けられている。一方の窓57の外側には、発光素子61が配設され、他方の窓57の外側には、フォトセンサ62が配設され、これら発光素子61とフォトセンサ62とで回転エンコーダ60が構成されている。すなわち、発光素子61から発光され、孔53を通過した光が、フォトセンサ62で受光され、このフォトセンサ62の出力が、システム全体のタイミングを作るタイミングジェネレータ42に入力されるようになっている。

また、前記回転フィルタ51の回転軸54は、ハウジング52の背面板52bより後方に突出されている。一方、前記モータ23の出力軸の端

部には、クラッチ64が設けられ、前記クラッチ64を介して、前記回転フィルタ51の回転軸54とモータ23の出力軸とが連結されるようになっている。

また、前記ハウジング52の底部のフィルタカセットチャンジャー70側の端部には、下側に突出するつめ65が設けられている。

前記回転フィルタ51としては、第9図に示すような透過特性を有するフィルタが配列された通常観察用の回転フィルタの他に、例えば、次のような特殊画像用の回転フィルタが用意されている。

1つの回転フィルタは、3つのフィルタ51a、51b、51cが、いずれも第10図に示すような805nmを中心とする狭帯域を透過する回転フィルタ（以下、これを805nm単波長型回転フィルタと呼ぶ。）である。

他の回転フィルタは、3つのフィルタ51a、51b、51cのうちの2つが、第11図に示すように、500nmを中心とする狭帯域を透過するフィルタと、650nmを中心とする狭帯域を

透光するフィルタである回転フィルタ（以下、これをヘモグロビン観察型回転フィルタと呼ぶ。）である。

更に他の回転フィルタは、3つのフィルタ51a、51b、51cの透光する波長域が、ヘモグロビンの吸収飽和度（以下、SO₂とも記す。）の変化により血液の吸光度の変化する波長と、その波長の近傍であって、SO₂の変化による血液の吸光度の変化の少ない2つの波長である回転フィルタ（以下、これをSO₂観察型回転フィルタと呼ぶ。）である。第13図は、500～650nm付近におけるSO₂の変化による血液の吸光度（散乱反射スペクトル）の変化を示している。この帯域におけるSO₂観察型回転フィルタの各フィルタの透光波長域としては、例えば、569nm、577nm、585nmの組が選択される。尚、SO₂観察型回転フィルタの各フィルタの透光波長域の組み合わせは、第13図に示すものに限らない。第12図は、オキシヘモグロビンとデオキシヘモグロビンの分光吸光特性を示している

が、この図から分かるように、SO₂観察型回転フィルタの各フィルタの透光波長域の組み合わせ、すなわち、オキシヘモグロビンとデオキシヘモグロビンの吸光度が略等しい2波長域と、オキシヘモグロビンとデオキシヘモグロビンの吸光度の差の大きい波長域の組み合わせは、幾つか選択可能である。

また更に他の回転フィルタは、第14図に示すように、通常観察用であるが、R、G、Bの各フィルタ51a、51b、51cの開口角を変化（第14図では、小さくした例を示す。）させた回転フィルタ（以下、これを開口角変化型回転フィルタと呼ぶ。）である。

このような種々の回転フィルタ51は、それぞれ、別個のフィルタカセット50のハウジング52内に収納されている。

次に、第5図ないし第8図を用いて、前記フィルタカセットチャンジャー70の構成を説明する。

第5図に示すように、フィルタカセットチャンジャー70は、複数（図では3つの場合を示して

いる。）のフィルタカセット50を収納可能なカセットユニット71を備えている。このカセットユニット71には、光軸24で示す照明光路側で開口する例えば3つのカセット収納部72が形成され、各カセット収納部72に、前述の複数種のフィルタカセット50が収納されている。前記カセットユニット71の底部には、照明光路の光軸24と平行に配置されたナット73が取付けられている。このナット73には、カセットチャンジャー75によって回転されるパイプスクリュー76が螺入されている。前記モータ75は、移動しないように、所定の位置に固定されている。そして、前記モータ75によってパイプスクリュー76を回転させることにより、第6図に示すように、ナット73と共にカセットユニット71を照明光路の光軸24と平行な方向に前後動できるようになっている。

第8図に示すように、前記カセットユニット71の各カセット収納部72内の上部及び下部には、レール77、77が設けられ、前記フィルタカセ

ット50は、このレール77、77に沿って移動し、照明光路に接続されるようになっている。また、前記フィルタカセット50のつめ65は、下部側のレール77より下側に突出され、このつめ65には、一端がカセット収納部72の奥部に固定された引っ張りばね78の他端が取付けられている。そして、このばね78によって、フィルタカセット50をカセット収納部72内に収納する方向に付勢している。

また、第7図に示すように、前記カセットユニット71の反照明光路側の面の下部には、全てのカセット収納部72に通過し、照明光路の光軸24と平行な長孔80が形成されている。この長孔80には、前記光軸24に対して垂直に配置され、モータ81によって回転されるバイブスクリュー82が挿入されている。第8図に示すように、このバイブスクリュー82には、カセットユニット71内において、ナット83が嵌合されている。このナット83は、回転が抑制されて、前記バイブスクリュー82の回転によって移動されると共

に、前記フィルタカセット50のつめ65に当接するようになっている。前記モータ81は、移動しないように、所定の位置に固定されている。そして、前記モータ81によってバイブスクリュー82を回転させることにより、ナット83と共に、フィルタカセット50を移動させて照明光路に接続できるようになっている。尚、フィルタカセット50を照明光路から退避させる方向に移動する場合には、ナット83を後退させることにより、ばね78の引っ張り力により、フィルタカセット50が後退する。

次に、フィルタカセットチェンジャー70の動作について説明する。

まず、モータ75を回転させることにより、希望するフィルタカセット50がナット83によって移動可能な位置にくるように、カセットユニット71を移動させる。次に、モータ81を回転させることにより、希望するフィルタカセット50のつめ83に当接するナット83を照明光路側に前進させ、フィルタカセット50を押出す。その

結果、第5図及び第6図に示すように、車52a、52bが、照明光路に介接される位置に、フィルタカセット50が配置される。この状態において、回転フィルタ回転用のモータ23の出力軸に設けられたクラッチ64が、回転フィルタ51の回転軸54に連結される。尚、前記クラッチ64と回転軸54の連結の際には、モータ23をフィルタカセット50側に移動するようにしても良いし、あるいは歯石を利用してクラッチ64と回転軸54とを連結するようにしても良い。

次に、フィルタカセット50を照明光路から退避する場合には、モータ81を回転させ、ナット83を後退させることにより、ばね78の引っ張り力により、フィルタカセット50が後退し、カセット収納部72に収納される。

第1図に示すように、前記フィルタカセットチェンジャー70によって選択され、照明光路に介接されたフィルタカセット50の回転フィルタ51を透過した光は、集光レンズ88で集光されて、ライトガイド14の入射端に入射され、このライ

トガイド14を介して先端部9に導かれ、この先端部9から出射されて、観察部位を照明するようになっている。

この照明光による観察部位からの戻り光は、対物レンズ系15によって、固体撮像素子16上に結像され、光電変換されるようになっている。この固体撮像素子16には、前記信号線26を介して、前記ビデオプロセッサ6内のドライバ回路31からの駆動バルスが印加され、この駆動バルスによって読み出し、転送が行われるようになっている。この固体撮像素子16から読み出された映像信号は、前記信号線27を介して、前記ビデオプロセッサ6内または電子内視鏡1内に設けられたプリアンプ32に入力されるようになっている。このプリアンプ32で増幅された映像信号は、プロセス回路33に入力され、アダプタ及びホワイトバランス等の信号処理を施され、A/Dコンバータ34によって、デジタル信号に変換されるようになっている。このデジタルの映像信号は、セレクト回路35によって、例えば赤(R)、緑(G)

。青(B)の各色に対応する3つのメモリ(1)36a, メモリ(2)36b, メモリ(3)36cに選択的に記憶されるようになっている。前記メモリ(1)36a, メモリ(2)36b, メモリ(3)36cは、同時に読み出され、D/Aコンバータ37によって、アナログ信号に変換され、R, G, B色信号として出力されると共に、エンコーダ38に入力され、このエンコーダ38からNTSCコンポジット信号として出力されるようになっている。

そして、前記R, G, B色信号または、NTSCコンポジット信号が、カラー モニタ7に入力され、このカラー モニタ7によって、観察部位がカラー表示されるようになっている。

また、前記タイミング クエネレータ42によって、モータドライバ25, ドライバ回路31, セレクト回路35等の各回路間の同期が取られている。

本実施例では、切換え回路43にて、フィルタカセット チェンジャー70を制御し、通常観察用

回転フィルタ51を内蔵したフィルタカセット50を、照明光路に介装すると、前記ランプ21から出射された光は、このフィルタカセット50内の通常観察用の回転フィルタ51のR, G, Bを透過するフィルタ51a, 51b, 51cを順次透過して、R, G, Bの各波長領域の光に時系列的に分別される。そして、このR, G, Bの光が、ライトガイド14を介して、先端部9に伝達され、被写体に照射される。この可視帯域におけるR, G, Bの面順次照明光による被写体からの戻り光は、対物レンズ系15によって固体撮像素子16上に結像され、この固体撮像素子16によって被写体像が撮像される。従って、モニタ7には、通常の可視画像がカラー表示される。

一方、前記切換え回路43にて、フィルタカセット チェンジャー70を制御し、他の特殊画像用回転フィルタ51が内蔵されたフィルタカセット50を照明光路中に介装すると、回転フィルタ51の種類に応じて、次のような画像が得られる。

まず、805nm単波長型回転フィルタを選択

すると、R, G, Bの全タイミングで、805nmを中心とする狭帯域の光が、この回転フィルタを透過し、805nmを中心とする狭帯域における被写体の画像が得られる。ところで、赤外線吸収色素であるICG (Indocyanine green) を混入した血液は、805nmに最大吸収を有する。そこで、例えば、静脈注射により、血液中に前記ICGを混入し、前記805nmを中心とする狭帯域における被写体の画像を観察することにより、IIbの癌や、粘膜下の血管の走行状態等の観察が可能となる。

また、ヘムoglobin型観察型回転フィルタを選択すると、500nmを中心とする狭帯域における被写体の画像と、650nmを中心とする狭帯域における被写体の画像とが得られる。第13図に示すように、500nm近傍と650nm近傍とでは血液の吸光度の差が大きい。従って、この2つの波長域における吸光度との差より、ヘムoglobin量の変化を観察することができる。

また、SO₂観察型回転フィルタを選択した場

合には、569nm, 577nm, 585nmの各波長域の画像が得られる。第13図に示すように、569nm, 585nmは、SO₂の変化によって血液の吸光度がほとんど変化しない波長であり、577nmは、SO₂の変化によって血液の吸光度が変化する波長である。従って、この3つの波長域の画像によって、SO₂の変化を観察することができる。

また、フィルタの開口角度を小さくした開口角変化型回転フィルタを選択した場合には、R, G, Bの各々についてぶれの少ない画像が得られる。尚、R, G, B間ににおける色ずれは、補正することが可能である。

また、照明光路に、いずれのフィルタカセット50も介装しない場合には、白色光を出力することができ、ファイバスコープ等の肉眼観察が可能な内視鏡や周時式の撮像手段を有する内視鏡に対しても、適合する照明光を供給することができる。

このように、本実施例によれば、フィルタカセット チェンジャー70によって、照明光路に介装

されるフィルタカセット50を切換えることにより、面順次照明光の組み合わせを、複数の組み合せの中から選択することができる。従って、観察部位や観察目的等に応じて波長領域等が異なる種々の組み合わせの面順次照明光を供給できる。そして、この種々の組み合わせの面順次照明光によって、種々の画像、例えば、通常画像、癌や血管の走行状態を示す画像、ヘモクロビン量の変化を示す画像、ヘモクロビンの酸素飽和度の変化を示す画像、R、G、Bの各々についてぶれの少ない画像を得ることが可能になる。

尚、回転フィルタ51の各フィルタ51a、51b、51cの開口角を変化させる場合、ホワイトバランスを取る等のために、R、G、Bの各フィルタの開口角が均等ではなく、例えば第15図に示すように、異なるようにしても良い。この図に示す例では、Rを透過するフィルタ51aが、他のGを透過するフィルタ51b、Bを透過するフィルタ51cに比べて、開口角が小さくなっている。

ンサ91を取り付けている。このように回転フィルタ51のバランスを取ることにより、回転フィルタ51の回転の立上がりがスムーズになり、且つ、回転が安定する。

尚、本発明は、上記実施例に限定されず、例えば、回転フィルタ51は、各フィルタ51a、51b、51cとして、赤外帯域や紫外帯域における異なる3波長領域を透過するフィルタを設けたものであっても良い。このような回転フィルタによって、赤外帯域や紫外帯域における被写体像が観察可能となる。また、回転フィルタではなく、常に所定の光を透過するフィルタを内蔵したフィルタカセットを設けても良い。

また、フィルタカセットを交換する機構は、実施例に示すものに限らず、交換可能なフィルタカセットの数も任意である。また、回転フィルタをフィルタカセットに内蔵することなく、交換可能にしても良い。

また、各フィルタカセット内に、回転フィルタと共に、モータ及び回転エンコーダを設けても良

ところで、回転フィルタ51の枠体90には、アルミニウム等が用いられ、各フィルタ51a、51b、51cにはガラス等が用いられるが、枠体90と各フィルタ51a、51b、51cの比重が異なる場合、第15図に示すように各フィルタ51a、51b、51cの開口角が異なるようになると、回転フィルタ51がアンバランスになってしまふ。このように、バランスの悪い回転フィルタ51を駆動すると、なかなか安定せず、まだ、フィードバック制御が働かないことがある。

そこで、第15図に示す变形例では、回転フィルタ51の枠体90の一部に、バランスサ91を取り付けることによって、バランスを取るようにしている。前記バランスサ91の位置及び重量は、バランスサ91を取り付ける前の回転フィルタ51の重心の位置等に応じて設定される。第15図に示す例では、枠体90の比重が各フィルタ51a、51b、51cの比重よりも大きいため、重心が回転中心よりもR透過フィルタ51a側に偏位しているので、このフィルタ51aの反対側にバラ

い。

尚、本発明は、被観察体の反射光を受光する内視鏡に限らず、被観察体を透過した光を受光して観察する内視鏡に対しても適用することができる。

また、本発明は、挿入部の先端部に固体撮像素子を有する電子内視鏡に限らず、ファイバースコープ等内眼鏡が可能な内視鏡の接眼部に、あるいは、前記接眼部と交換して、テレビカメラを接続して使用する内視鏡装置に対しても適用することができる。

【発明の効果】

以上説明したように本発明によれば、フィルタ切換手段によってフィルタを切換えることにより、カラー画像を形成可能な面順次光を含む種々の照明光を供給することができ、観察部位や観察目的等に応じて観察波長領域等が異なる種々の画像を得ることが可能になるという効果がある。

4. 図面の簡単な説明

第1図ないし第15図は本発明の一実施例に係り、第1図は内視鏡装置の構成を示すブロック図、

第2図は内視鏡装置の全体を示す側面図、第3図は回転フィルタを示すためのフィルタカセットの断面図、第4図は第3図のA-A'線断面図、第5図はフィルタカセットチェンジャーの斜視図、第6図はフィルタカセットチェンジャーの平面図、第7図はフィルタカセットチェンジャーの背面側を示す斜視図、第8図は第6図のB-B'線断面図、第9図は通常観察用の回転フィルタの各フィルタの透過特性を示す説明図、第10図及び第11図は特殊画像用の回転フィルタの各フィルタの透過特性を示す説明図、第12図及び第13図はヘモグロビンの酸素飽和度の変化による血液の吸光度の変化を示す説明図、第14図は通常観察用の回転フィルタの他の例を示すためのフィルタカセットの断面図、第15図は本実施例の变形例における回転フィルタを示すためのフィルタカセットの断面図である。

1…電子内視鏡
20…光源装置
50…フィルタカセット
6…ビデオプロセッサ
21…ランプ
32…アダプタ
33…プロセス
34…A/D
35…スイッチ
36a…メモリ(1)
36b…メモリ(2)
36c…メモリ(3)
37…D/A
38…エンコーダ
NTSC
R
G
B
39…切換回路
40…モータドライバ
41…ドライバ
42…タイミングジオレーティ
43…43
44…44
45…45
46…46
47…47
48…48
49…49
50…50
51…51
52…52
53…53
54…54
55…55
56…56
57…57
58…58
59…59
60…60
61…61
62…62
63…63
64…64
65…65
66…66
67…67
68…68
69…69
70…70
71…71
72…72
73…73
74…74
75…75
76…76
77…77
78…78
79…79
80…80
81…81
82…82
83…83
84…84
85…85
86…86
87…87
88…88
89…89
90…90
91…91
92…92
93…93
94…94
95…95
96…96
97…97
98…98
99…99
100…100
101…101
102…102
103…103
104…104
105…105
106…106
107…107
108…108
109…109
110…110
111…111
112…112
113…113
114…114
115…115
116…116
117…117
118…118
119…119
120…120
121…121
122…122
123…123
124…124
125…125
126…126
127…127
128…128
129…129
130…130
131…131
132…132
133…133
134…134
135…135
136…136
137…137
138…138
139…139
140…140
141…141
142…142
143…143
144…144
145…145
146…146
147…147
148…148
149…149
150…150
151…151
152…152
153…153
154…154
155…155
156…156
157…157
158…158
159…159
160…160
161…161
162…162
163…163
164…164
165…165
166…166
167…167
168…168
169…169
170…170
171…171
172…172
173…173
174…174
175…175
176…176
177…177
178…178
179…179
180…180
181…181
182…182
183…183
184…184
185…185
186…186
187…187
188…188
189…189
190…190
191…191
192…192
193…193
194…194
195…195
196…196
197…197
198…198
199…199
200…200
201…201
202…202
203…203
204…204
205…205
206…206
207…207
208…208
209…209
210…210
211…211
212…212
213…213
214…214
215…215
216…216
217…217
218…218
219…219
220…220
221…221
222…222
223…223
224…224
225…225
226…226
227…227
228…228
229…229
230…230
231…231
232…232
233…233
234…234
235…235
236…236
237…237
238…238
239…239
240…240
241…241
242…242
243…243
244…244
245…245
246…246
247…247
248…248
249…249
250…250
251…251
252…252
253…253
254…254
255…255
256…256
257…257
258…258
259…259
260…260
261…261
262…262
263…263
264…264
265…265
266…266
267…267
268…268
269…269
270…270
271…271
272…272
273…273
274…274
275…275
276…276
277…277
278…278
279…279
280…280
281…281
282…282
283…283
284…284
285…285
286…286
287…287
288…288
289…289
290…290
291…291
292…292
293…293
294…294
295…295
296…296
297…297
298…298
299…299
300…300
301…301
302…302
303…303
304…304
305…305
306…306
307…307
308…308
309…309
310…310
311…311
312…312
313…313
314…314
315…315
316…316
317…317
318…318
319…319
320…320
321…321
322…322
323…323
324…324
325…325
326…326
327…327
328…328
329…329
330…330
331…331
332…332
333…333
334…334
335…335
336…336
337…337
338…338
339…339
340…340
341…341
342…342
343…343
344…344
345…345
346…346
347…347
348…348
349…349
350…350
351…351
352…352
353…353
354…354
355…355
356…356
357…357
358…358
359…359
360…360
361…361
362…362
363…363
364…364
365…365
366…366
367…367
368…368
369…369
370…370
371…371
372…372
373…373
374…374
375…375
376…376
377…377
378…378
379…379
380…380
381…381
382…382
383…383
384…384
385…385
386…386
387…387
388…388
389…389
390…390
391…391
392…392
393…393
394…394
395…395
396…396
397…397
398…398
399…399
400…400
401…401
402…402
403…403
404…404
405…405
406…406
407…407
408…408
409…409
410…410
411…411
412…412
413…413
414…414
415…415
416…416
417…417
418…418
419…419
420…420
421…421
422…422
423…423
424…424
425…425
426…426
427…427
428…428
429…429
430…430
431…431
432…432
433…433
434…434
435…435
436…436
437…437
438…438
439…439
440…440
441…441
442…442
443…443
444…444
445…445
446…446
447…447
448…448
449…449
450…450
451…451
452…452
453…453
454…454
455…455
456…456
457…457
458…458
459…459
460…460
461…461
462…462
463…463
464…464
465…465
466…466
467…467
468…468
469…469
470…470
471…471
472…472
473…473
474…474
475…475
476…476
477…477
478…478
479…479
480…480
481…481
482…482
483…483
484…484
485…485
486…486
487…487
488…488
489…489
490…490
491…491
492…492
493…493
494…494
495…495
496…496
497…497
498…498
499…499
500…500
501…501
502…502
503…503
504…504
505…505
506…506
507…507
508…508
509…509
510…510
511…511
512…512
513…513
514…514
515…515
516…516
517…517
518…518
519…519
520…520
521…521
522…522
523…523
524…524
525…525
526…526
527…527
528…528
529…529
530…530
531…531
532…532
533…533
534…534
535…535
536…536
537…537
538…538
539…539
540…540
541…541
542…542
543…543
544…544
545…545
546…546
547…547
548…548
549…549
550…550
551…551
552…552
553…553
554…554
555…555
556…556
557…557
558…558
559…559
560…560
561…561
562…562
563…563
564…564
565…565
566…566
567…567
568…568
569…569
570…570
571…571
572…572
573…573
574…574
575…575
576…576
577…577
578…578
579…579
580…580
581…581
582…582
583…583
584…584
585…585
586…586
587…587
588…588
589…589
590…590
591…591
592…592
593…593
594…594
595…595
596…596
597…597
598…598
599…599
600…600
601…601
602…602
603…603
604…604
605…605
606…606
607…607
608…608
609…609
610…610
611…611
612…612
613…613
614…614
615…615
616…616
617…617
618…618
619…619
620…620
621…621
622…622
623…623
624…624
625…625
626…626
627…627
628…628
629…629
630…630
631…631
632…632
633…633
634…634
635…635
636…636
637…637
638…638
639…639
640…640
641…641
642…642
643…643
644…644
645…645
646…646
647…647
648…648
649…649
650…650
651…651
652…652
653…653
654…654
655…655
656…656
657…657
658…658
659…659
660…660
661…661
662…662
663…663
664…664
665…665
666…666
667…667
668…668
669…669
670…670
671…671
672…672
673…673
674…674
675…675
676…676
677…677
678…678
679…679
680…680
681…681
682…682
683…683
684…684
685…685
686…686
687…687
688…688
689…689
690…690
691…691
692…692
693…693
694…694
695…695
696…696
697…697
698…698
699…699
700…700
701…701
702…702
703…703
704…704
705…705
706…706
707…707
708…708
709…709
710…710
711…711
712…712
713…713
714…714
715…715
716…716
717…717
718…718
719…719
720…720
721…721
722…722
723…723
724…724
725…725
726…726
727…727
728…728
729…729
730…730
731…731
732…732
733…733
734…734
735…735
736…736
737…737
738…738
739…739
740…740
741…741
742…742
743…743
744…744
745…745
746…746
747…747
748…748
749…749
750…750
751…751
752…752
753…753
754…754
755…755
756…756
757…757
758…758
759…759
760…760
761…761
762…762
763…763
764…764
765…765
766…766
767…767
768…768
769…769
770…770
771…771
772…772
773…773
774…774
775…775
776…776
777…777
778…778
779…779
780…780
781…781
782…782
783…783
784…784
785…785
786…786
787…787
788…788
789…789
790…790
791…791
792…792
793…793
794…794
795…795
796…796
797…797
798…798
799…799
800…800
801…801
802…802
803…803
804…804
805…805
806…806
807…807
808…808
809…809
810…810
811…811
812…812
813…813
814…814
815…815
816…816
817…817
818…818
819…819
820…820
821…821
822…822
823…823
824…824
825…825
826…826
827…827
828…828
829…829
830…830
831…831
832…832
833…833
834…834
835…835
836…836
837…837
838…838
839…839
840…840
841…841
842…842
843…843
844…844
845…845
846…846
847…847
848…848
849…849
850…850
851…851
852…852
853…853
854…854
855…855
856…856
857…857
858…858
859…859
860…860
861…861
862…862
863…863
864…864
865…865
866…866
867…867
868…868
869…869
870…870
871…871
872…872
873…873
874…874
875…875
876…876
877…877
878…878
879…879
880…880
881…881
882…882
883…883
884…884
885…885
886…886
887…887
888…888
889…889
890…890
891…891
892…892
893…893
894…894
895…895
896…896
897…897
898…898
899…899
900…900
901…901
902…902
903…903
904…904
905…905
906…906
907…907
908…908
909…909
910…910
911…911
912…912
913…913
914…914
915…915
916…916
917…917
918…918
919…919
920…920
921…921
922…922
923…923
924…924
925…925
926…926
927…927
928…928
929…929
930…930
931…931
932…932
933…933
934…934
935…935
936…936
937…937
938…938
939…939
940…940
941…941
942…942
943…943
944…944
945…945
946…946
947…947
948…948
949…949
950…950
951…951
952…952
953…953
954…954
955…955
956…956
957…957
958…958
959…959
960…960
961…961
962…962
963…963
964…964
965…965
966…966
967…967
968…968
969…969
970…970
971…971
972…972
973…973
974…974
975…975
976…976
977…977
978…978
979…979
980…980
981…981
982…982
983…983
984…984
985…985
986…986
987…987
988…988
989…989
990…990
991…991
992…992
993…993
994…994
995…995
996…996
997…997
998…998
999…999
9000…9000
9001…9001
9002…9002
9003…9003
9004…9004
9005…9005
9006…9006
9007…9007
9008…9008
9009…9009
9010…9010
9011…9011
9012…9012
9013…9013
9014…9014
9015…9015
9016…9016
9017…9017
9018…9018
9019…9019
9020…9020
9021…9021
9022…9022
9023…9023
9024…9024
9025…9025
9026…9026
9027…9027
9028…9028
9029…9029
9030…9030
9031…9031
9032…9032
9033…9033
9034…9034
9035…9035
9036…9036
9037…9037
9038…9038
9039…9039
9040…9040
9041…9041
9042…9042
9043…9043
9044…9044
9045…9045
9046…9046
9047…9047
9048…9048
9049…9049
9050…9050
9051…9051
9052…9052
9053…9053
9054…9054
9055…9055
9056…9056
9057…9057
9058…9058
9059…9059
9060…9060
9061…9061
9062…9062
9063…9063
9064…9064
9065…9065
9066…9066
9067…9067
9068…9068
9069…9069
9070…9070
9071…9071
9072…9072
9073…9073
9074…9074
9075…9075
9076…9076
9077…9077
9078…9078
9079…9079
9080…9080
9081…9081
9082…9082
9083…9083
9084…9084
9085…9085
9086…9086
9087…9087
9088…9088
9089…9089
9090…9090
9091…9091
9092…9092
9093…9093
9094…9094
9095…9095
9096…9096
9097…9097
9098…9098
9099…9099
9100…9100
9101…9101
9102…9102
9103…9103
9104…9104
9105…9105
9106…9106
9107…9107
9108…9108
9109…9109
9110…9110
9111…9111
9112…9112
9113…9113
9114…9114
9115…9115
9116…9116
9117…9117
9118…9118
9119…9119
9120…9120
9121…9121
9122…9122
9123…9123
9124…9124
9125…9125
9126…9126
9127…9127
9128…9128
9129…9129
9130…9130
9131…9131
9132…9132
9133…9133
9134…9134
9135…9135
9136…9136
9137…9137
9138…9138
9139…9139
9140…9140
9141…9141
9142…9142
9143…9143
9144…9144
9145…9145
9146…9146
9147…9147
9148…9148
9149…9149
9150…9150
9151…9151
9152…9152
9153…9153
9154…9154
9155…9155
9156…9156
9157…9157
9158…9158
9159…9159
9160…9160
9161…9161
9162…9162
9163…9163
9164…9164
9165…9165
9166…9166
9167…9167
9168…9168
9169…9169
9170…9170
9171…9171
9172…9172
9173…9173
9174…9174
9175…9175
9176…9176
9177…9177
9178…9178
9179…9179
9180…9180
9181…9181
9182…9182
9183…9183
9184…9184
9185…9185
9186…9186
9187…9187
9188…9188
9189…9189
9190…9190
9191…9191
9192…9192
9193…9193
9194…9194
9195…9195
9196…9196
9197…9197
9198…9198
9199…9199
9200…9200
9201…9201
9202…9202
9203…9203
9204…9204
9205…9205
9206…9206<br

第3回

第4回

第5回

第 6 回

第 7 図

第 8 図

第9圖

第10回

第十一圖

第12図

第13図

第14図

第15図

第1頁の続き

⑥Int. Cl.
G 02 B 23/24

識別記号
B-8507-2H

⑦発明者 宮崎 昭彦 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業
株式会社内
⑦発明者 中村 剛明 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業
株式会社内
⑦発明者 大明 義直 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業
株式会社内
⑦発明者 鈴木 博雅 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業
株式会社内