Lecture 10: Physical and Link Layers

Administrative

- Exams will be back by Monday
- Lab 4 is, um, a lot of work
- Real due date versus extension date

Topics Today

- Physical layer: chips versus bits
- Link layer
- Media access control (MAC)
- Ethernet
- MPLS

Protocol Layering

7	Application					
6	Presentation					
5	Session Transport					
4						
3	Network					
2	Link					
1	Physical					

Protocol Layering

7	Application						
6	Presentation						
5	Session						
4	Transport						
3	Network						
2	Link						
1	Physical						

Physical Layer (Layer 1)

• Responsible for specifying the physical medium

- Category 5 cable (Cat5): 8 wires, twisted pair, RJ45 jack
- WiFi wireless: 2.4GHz

Responsible for specifying the signal

- 100BASE-T: 5-level pulse amplitude modulation (PAM-5)
- 802.11b: Binary and quadrature phase shift keying (BPSK/QPSK)

Responsible for specifying the bits

- 100BASE-T: 4-to-6 bit-to-chip encoding, 3 chip symbols
- 802.11b: Barker code (1-2Mbps), complementary code keying (5.5-11Mbps)

Specifying the signal

- Chips versus bits
 - Chips: data (in bits) at the physical layer
 - Bits: data above the physical layer
- Physical layer states the analog signal/chip mapping
 - On-off keying (OOK): voltage of 0 is 0, +V is 1
 - PAM-5: 000 is 0, 001 is +1, 010 is -1, 011 is -2, 100 is +2
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)
 - Don't worry about this too much now: we'll cover it in greater depth when we look at wireless

Manchester Encoding

- Map a 0 bit to 01 in chips
- Map a 1 bit to 10 in chips
 - E.g., $1100 \rightarrow 10100101$
 - E.g., $0110 \rightarrow 01101001$

Encoding Motivations

- DC balancing (same number of 0s and 1s)
- Synchronization
- Can recover from some chip errors
- Can constrain analog signal patterns to make signal more robust
- Higher encoding → fewer bps, more robust
- Lower encoding → more bps, less robust

Physical Layer Encoding

- Break bits up into *symbols*, encode symbols into chips
- Example: 802.15.4 uses a 32-to-4 chip-to-bit encoding

Physical Layer Frames

- \bullet Usually minimalist: "here's N bytes"
 - Start symbol/preamble
 - Length field
 - Payload (link layer frame)

Link Layer Responsibilities

- Single-hop addressing (e.g., Ethernet addresses)
- Media access control
 - Link-layer congestion control
 - Collision detection/collision avoidance
- Single-hop acknowledgements

Ethernet: 802.3

- Dominant wired LAN technology
 - 10BASE5 (vampire taps)
 - 10BASE-T, 100BASE-TX, 1000BASE-T

• Frame format:

Physical			Link			Layer 3	Link	
	Preamble	SFD	Src	Dest	Type/ Len	Payload	CRC	Gap 96 ns,
	7 x 10101010	10101011	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes	960 ns, 9600 ns

Ethernet Addressing

- Each Ethernet card has a unique 48-bit ID
 - Example: bramble
 - Example: market
- 24-bit organizationally unique identifier, 24-bit ID
 - 0x000000-0x000009: Xerox
 - 0x0007e9: Intel (market.scs)
 - 0x001372: Dell (bramble09)
 - http://standards.ieee.org/regauth/oui/oui.txt

Media Access Control (MAC)

- Link layer regulates access to a shared, physical medium
- If everyone talks at once, no-one hears anything
- Need to control when nodes send packets, to prevent collisions
- Variety of approaches
 - Time Division Multiple Access (TDMA)
 - Carrier Sense Multiple Access, Collision Detection (CSMA/CD)
 - Carrier Sense Multiple Access, Collision Avoidance (CSMA/CA)
 - Request-to-send, clear-to-send (RTS/CTS)

MAC Goals

- Be able to use all of the link capacity
- One node can get 100%
- Multiple nodes can each get a share, don't collide

Conceptual Model of Wired Media Access

TDMA

- Divide time into slots, each device is allowed to transmit in some number of slots
- No collisions, when everyone transmits, link is fully utilized
- Single node cannot use all of the capacity $(\frac{1}{n})$

CSMA

- Node senses the channel for activity
- Transmits if it thinks the channel is idle
- CSMA/CD: can detect if there is a collision, and back off
 - Randomized
 - Grows exponentially on consecutive collisions ${\cal C}$
 - $rand(0, 2^C) \cdot 512$ bit times
 - Drop when *C* grows large (in practice)

Collision Detect

- Collision detection constrains maximum wire length and minimum frame length
- At least one node must detect a collision
- Hypothetical: propagation time is zero
 - Can there be collisions?
 - RX/TX turnaround time

Violating Timing Constraints

Ethernet Efficiency

- One node can use full link capacity
- Assuming RX/TX turnaround time of zero
 - As $n \rightarrow \inf$, use = $\frac{1}{1+5t_{prop}/t_{trans}}$
 - If $t_{prop} \rightarrow 0$, efficiency approaches 1
 - If $t_{trans} \rightarrow \inf$, efficiency approaches 1
 - if $t_{prop} = t_{trans}$, efficiency approaches 16%.

Ethernet Capture Effect

- Exponential backoff leads to self-adaptive use of channel
- When a node succeeds, it transmits the next packet immediately
- Result: bursts of packets from single nodes

Ethernet Speeds

• Network diameter limits:

- 10Mbps: 2800m

- 100Mbps: 205m

- Gigabit: 205m!

• Gigabit Ethernet

- Uses more of the CAT5 wires (125 MHz · 8 signals)
- Pad with dummy data (signal extension) for CD (512 bytes vs. bits)

Hubs vs. Switches

- Hub: connects multiple ethernet segments to act like a single segment (shared collision domain, physical layer connectivity)
- Switch: store and forward between segments (single collision domains, link layer connectivity)
- 10Gbps Ethernet is not a shared medium
- Very little Ethernet today is shared: collision detection never triggered (duplex, separate RX and TX wires)

Congestion Interaction

- Congestion can occur at layer 2 (collisions, high utilization)
- Congestion control can occur at layer 2 (backoff)
- Congestion can occur at layer 3 (packet drops)
- Congestion control can occur at layer 4 (rate adaptation)
- Interactions are non-trivial

ARP and DHCP, revisited

- Lecture 3: DHCP allows a node to dynamically obtain an IP address, netmask, and gateway
- Lecture 3: Address Resolution Protocol maps IP addresses to link address
- Common exchange:
 - Broadcast DHCP discover
 - Receive gateway IP address IP_G , local address IP_A
 - ARP gateway address IP_G (announcing self), receive $Ether_G$
 - Send packet to IP_B using $Ether_G$ as next hop
- What if node is on the subnet?

Layer 2 Acknowledgements

- Common in wireless (more on this in lecture 12)
- If layer 2 successfully receives a frame, it immediately sends an ACK
- Assumes $T_{prop} << T_{trans}$
- Hypothetical situation:
 - Let's say a router won't send an ACK if it drops the packet
 - Let's say a router will keep on retrying a packet until it is ACKed
 - Do we still need end-to-end ACKs?

Ack Effect on CSMA

- Layer 2 acks require two channel checks
- Want to make sure we don't check between packet and ACK

MPLS

- Multiprotocol Label Switching
- Sits between layer 2 and 3 ("layer 2.5")
- Prepend a "label" to frame
- Switch in terms of label, rather than destination address
 - Two packets to the same destination can take different paths
 - Separating addressing from forwarding enables traffic engineering
 - Label changes from input to output

MLPS Architecture

- Label Edge Router (LER)
- Label Switch Router (LSR)
- Label Distribution Protocol (LDP)
- Label Forwarding Information Base (LFIB)

Example MPLS (from Cisco)

Where Layer 2 is Going

