Lecture 13: Kernels

<u>previous</u> <u>back</u> <u>next</u>

Video II

Linear classifiers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to incorporate non-linearities into most linear classifiers.

Handcrafted Feature Expansion

We can make linear classifiers non-linear by applying basis function (feature transformations) on the input feature vectors. Formally, for a data vector $\mathbf{x} \in \mathbb{R}^d$, we apply the transformation $\mathbf{x} \to \phi(\mathbf{x})$ where $\phi(\mathbf{x}) \in \mathbb{R}^D$. Usually $D \gg d$ because we add dimensions that capture non-linear interactions among the original features.

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can still use your original gradient descent code, just with the higher dimensional representation)

Disadvantage: $\phi(\mathbf{x})$ might be very high dimensional.

Consider the following example:
$$\mathbf{x}=\begin{pmatrix}x_1\\x_2\\\vdots\\x_d\end{pmatrix}$$
 , and define $\phi(\mathbf{x})=\begin{pmatrix}1\\x_1\\\vdots\\x_d\\x_1x_2\\\vdots\\x_{d-1}x_d\\\vdots\\x_1x_2\cdots x_d\end{pmatrix}$.

Quiz: What is the dimensionality of $\phi(\mathbf{x})$?

This new representation, $\phi(\mathbf{x})$, is very expressive and allows for complicated non-linear decision boundaries - but the dimensionality is extremely high. This makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector $\phi(\mathbf{x})$ or ever computing the full vector \mathbf{w} . It is a little magical.

It is based on the following observation: If we use gradient descent with any one of our standard <u>loss functions</u>, the gradient is a linear combination of the input samples. For example, let us take a look at the squared loss:

$$\ell(\mathbf{w}) = \sum_{i=1}^n (\mathbf{w}^ op \mathbf{x}_i - y_i)^2$$

The gradient descent rule, with step-size/learning-rate s>0 (we denoted this as $\alpha>0$ in our <u>previous lectures</u>), updates ${\bf w}$ over time,

$$w_{t+1} \leftarrow w_t - s(\frac{\partial \ell}{\partial \mathbf{w}}) \text{ where: } \frac{\partial \ell}{\partial \mathbf{w}} = \sum_{i=1}^n \underbrace{2(\mathbf{w}^ op \mathbf{x}_i - y_i)}_{\gamma_i \text{ : function of } \mathbf{x}_i, y_i} \mathbf{x}_i = \sum_{i=1}^n \gamma_i \mathbf{x}_i$$

We will now show that we can express \mathbf{w} as a linear combination of all input vectors,

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i.$$

Since the loss is convex, the final solution is independent of the initialization, and we can initialize ${f w}^0$

to be whatever we want. For convenience, let us pick $\mathbf{w}_0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$. For this initial choice of \mathbf{w}_0 , the

linear combination in $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$ is trivially $\alpha_1 = \cdots = \alpha_n = 0$. We now show that throughout the entire gradient descent optimization such coefficients $\alpha_1, \ldots, \alpha_n$ must always exist, as we can rewrite the gradient updates entirely in terms of updating the α_i coefficients:

$$\mathbf{w}_{1} = \mathbf{w}_{0} - s \sum_{i=1}^{n} 2(\mathbf{w}_{0}^{\top} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{0} \mathbf{x}_{i} - s \sum_{i=1}^{n} \gamma_{i}^{0} \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{1} \mathbf{x}_{i}$$

$$(\text{with } \alpha_{i}^{1} = \alpha_{i}^{0} - s \gamma_{i}^{0})$$

$$\mathbf{w}_{2} = \mathbf{w}_{1} - s \sum_{i=1}^{n} 2(\mathbf{w}_{1}^{\top} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{1} \mathbf{x}_{i} - s \sum_{i=1}^{n} \gamma_{i}^{1} \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{2} \mathbf{x}_{i}$$

$$(\text{with } \alpha_{i}^{2} = \alpha_{i}^{1} \mathbf{x}_{i} - s \gamma_{i}^{1})$$

$$\mathbf{w}_{3} = \mathbf{w}_{2} - s \sum_{i=1}^{n} 2(\mathbf{w}_{2}^{\top} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{2} \mathbf{x}_{i} - s \sum_{i=1}^{n} \gamma_{i}^{2} \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{3} \mathbf{x}_{i}$$

$$(\text{with } \alpha_{i}^{3} = \alpha_{i}^{2} - s \gamma_{i}^{2})$$

$$\dots$$

$$\dots$$

$$\mathbf{w}_{t} = \mathbf{w}_{t-1} - s \sum_{i=1}^{n} 2(\mathbf{w}_{t-1}^{\top} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{t-1} \mathbf{x}_{i} - s \sum_{i=1}^{n} \gamma_{i}^{t-1} \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{t} \mathbf{x}_{i} \quad \text{(with } \alpha_{i}^{t} = \alpha_{i}^{t-1} - s \gamma_{i}^{t-1})$$

Formally, the argument is by induction. \mathbf{w} is trivially a linear combination of our training vectors for \mathbf{w}_0 (base case). If we apply the inductive hypothesis for \mathbf{w}_t it follows for \mathbf{w}_{t+1} .

The update-rule for α_i^t is thus

$$lpha_i^t = lpha_i^{t-1} - s \gamma_i^{t-1}, ext{ and we have } lpha_i^t = -s \sum_{r=0}^{t-1} \gamma_i^r.$$

In other words, we can perform the entire gradient descent update rule without ever expressing \mathbf{w} explicitly. We just keep track of the n coefficients α_1,\ldots,α_n . Now that \mathbf{w} can be written as a linear combination of the training set, we can also express the inner-product of \mathbf{w} with any input \mathbf{x}_i purely in terms of inner-products between training inputs:

$$\mathbf{w}^ op \mathbf{x}_j = \sum_{i=1}^n lpha_i \mathbf{x}_i^ op \mathbf{x}_j.$$

Consequently, we can also re-write the squared-loss from $\ell(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2$ entirely in terms of inner-product between training inputs:

$$\ell(lpha) = \sum_{i=1}^n \left(\sum_{j=1}^n lpha_j \mathbf{x}_j^ op \mathbf{x}_i - y_i
ight)^2$$

During test-time we also only need these coefficients to make a prediction on a test-input x_t , and can write the entire classifier in terms of inner-products between the test point and training points:

$$h(\mathbf{x}_t) = \mathbf{w}^ op \mathbf{x}_t = \sum_{j=1}^n lpha_j \mathbf{x}_j^ op \mathbf{x}_t.$$

Do you notice a theme? The only information we ever need in order to learn a hyper-plane classifier with the squared-loss is inner-products between all pairs of data vectors.

Inner-Product Computation

Let's go back to the previous example, $\phi(\mathbf{x})=egin{pmatrix} x_1 & & & & \\ & x_d & & \\ & x_1x_2 & & \\ & & \vdots & \\ & x_{d-1}x_d & & \\ & & \vdots & \\ & x_1x_2\cdots x_d \end{pmatrix}.$

The inner product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ can be formulated as:

$$\phi(\mathbf{x})^ op \phi(\mathbf{z}) = 1 \cdot 1 + x_1 z_1 + x_2 z_2 + \dots + x_1 x_2 z_1 z_2 + \dots + x_1 \dots x_d z_1 \dots z_d = \prod_{k=1}^d (1 + x_k z_k).$$

The sum of 2^d terms becomes the product of d terms. We can compute the inner-product from the above formula in time O(d) instead of $O(2^d)$! We define the function

$$\underbrace{\mathsf{k}(\mathbf{x}_i,\mathbf{x}_j)}_{\text{this is called the \mathbf{kernel function}}} = \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j).$$

With a finite training set of n samples, inner products are often pre-computed and stored in a Kernel Matrix:

$$\mathsf{K}_{ij} = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j).$$

If we store the matrix K, we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm. The final classifier becomes:

$$h(\mathbf{x}_t) = \sum_{j=1}^n lpha_j \mathsf{k}(\mathbf{x}_j, \mathbf{x}_t).$$

During training in the new high dimensional space of $\phi(\mathbf{x})$ we want to compute γ_i through kernels, without ever computing any $\phi(\mathbf{x}_i)$ or even \mathbf{w} . We previously established that $\mathbf{w} = \sum_{j=1}^n \alpha_j \phi(\mathbf{x}_j)$, and $\gamma_i = 2(\mathbf{w}^\top \phi(\mathbf{x}_i) - y_i)$. It follows that $\gamma_i = 2(\sum_{j=1}^n \alpha_j K_{ij}) - y_i)$. The gradient update in iteration t+1 becomes

$$lpha_i^{t+1} \leftarrow lpha_i^t - 2s(\sum_{j=1}^n lpha_j^t K_{ij}) - y_i).$$

As we have n such updates to do, the amount of work per gradient update in the transformed space is $O(n^2)$ --- far better than $O(2^d)$.

General Kernels

Below are some popular kernel functions:

Linear:
$$K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$$
.

(The linear kernel is equivalent to just using a good old linear classifier - but it can be faster to use a kernel matrix if the dimensionality d of the data is high.)

Polynomial:
$$K(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x}^{\top} \mathbf{z})^d$$
.

Radial Basis Function (RBF) (aka Gaussian Kernel):
$$\mathsf{K}(\mathbf{x},\mathbf{z})=e^{rac{-\|\mathbf{x}-\mathbf{z}\|^2}{\sigma^2}}$$

The RBF kernel is the most popular Kernel! It is a <u>Universal approximator</u>!! Its corresponding feature vector is infinite dimensional and cannot be computed. However, very effective low dimensional approximations exist (see <u>this paper</u>).

Exponential Kernel:
$$\mathsf{K}(\mathbf{x},\mathbf{z}) = e^{rac{-\|\mathbf{x}-\mathbf{z}\|}{2\sigma^2}}$$

Laplacian Kernel:
$$\mathsf{K}(\mathbf{x},\mathbf{z}) = e^{rac{-|\mathbf{x}-\mathbf{z}|}{\sigma}}$$

Sigmoid Kernel:
$$K(\mathbf{x}, \mathbf{z}) = \tanh(\mathbf{a}\mathbf{x}^{\top} + c)$$

Kernel functions

Can any function $\mathsf{K}(\cdot,\cdot) o \mathcal{R}$ be used as a kernel?

No, the matrix $K(\mathbf{x}_i, \mathbf{x}_j)$ has to correspond to real inner-products after some transformation $\mathbf{x} \to \phi(\mathbf{x})$. This is the case if and only if K is *positive semi-definite*.

Definition: A matrix
$$A \in \mathbb{R}^{n \times n}$$
 is positive semi-definite iff $\forall \mathbf{q} \in \mathbb{R}^n$, $\mathbf{q}^{\top} A \mathbf{q} \geq 0$.

Remember $\mathsf{K}_{ij} = \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j)$. So $\mathsf{K} = \Phi^\top \Phi$, where $\Phi = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]$. It follows that K is p.s.d., because $\mathbf{q}^\top \mathsf{K} \mathbf{q} = (\Phi^\top \mathbf{q})^2 \geq 0$. Inversely, if any matrix \mathbf{A} is p.s.d., it can be decomposed as $A = \Phi^\top \Phi$ for some realization of Φ .

You can even define kernels over sets, strings, graphs and molecules.

Figure 1: The demo shows how kernel function solves the problem linear classifiers can not solve. RBF works well with the decision boundary in this case.