# **Energy-Efficient Speaker Identification Using Low-Precision Networks**

ICASSP 2018

Skanda Koppula, Jim Glass, A.P. Chandrakasan

Massachusetts Institute of Technology

#### **Outline**

- Motivation and Prior Work
- 2a. Smorgasboard of Techniques a Small-Footprint Speaker ID
  - a. Normalization Folding
  - b. [-1,1]-Fixed Point Quant.
  - c. Trained Ternary Quant.
  - d. Model Pruning and Distillation
- 2b. Experiments on RSR2015
- 3. Translating Model Evaluation to FPGA
- 4. Conclusion

## **Motivating Small Footprint Speaker ID**

- Recent work to match human benchmarks have made models wider, deeper, and increased connectivity
  - Large networks (e.g. VGG-X/Listen-Attend-Spell/Tacotron) are upwards of 100+ MB for parameter storage
- Embedded devices (wearables, sensors) have memory and energy constraints (flash on some microcontrollers < 1MB)</li>
- Speaker identification useful for authenticating users and is performed on-device for privacy and security reasons

## Tiny Models Have Energy and Latency Benefits!



i5 L2 Cache: ~1 MB i7 L2 Cache: ~1.5 MB

| Operation         | Energy [pJ] | Relative Cost |
|-------------------|-------------|---------------|
| 32 bit int ADD    | 0.1         | 1             |
| 32 bit float ADD  | 0.9         | 9             |
| 32 bit int MULT   | 3.1         | 31            |
| 32 bit float MULT | 3.7         | 37            |
| 32 bit 32KB SRAM  | 5           | 50            |
| 32 bit DRAM       | 640         | 6400          |

Application Specific Integrated Circuit (65nm CMOS, DDR3 DRAM)

### Prior Work Has Focused on Model Architecture Search

- End-to-end speaker ID wary of parameter explosion:
  - □ FCN<sup>1,2</sup>/CNN<sup>3</sup>/LCN<sup>3</sup>/Depthwise-Separable Conv<sup>4</sup>/Maxout<sup>5</sup> with Batch Norm ~ 10MB
  - log-mel features to speaker classification softmax or d-vector
- Hardware-focused SID:
  - $\Box$  On FPGA: systems that use SVM<sup>6</sup> and GMM-UBM<sup>7</sup>
- Recent work on quantization and compression:
  - ☐ Huffman-encoding parameters<sup>8</sup>, pruning<sup>8</sup>, quantization<sup>9,10</sup>

### Prior Work Has Focused on Model Architecture Search

- End-to-end speaker ID wary of parameter explosion:
  - ☐ FCN<sup>1,2</sup>/CNN<sup>3</sup>/LCN<sup>3</sup>/Depthwise-Separable Conv<sup>4</sup>/Maxout<sup>5</sup> with Batch Norm ~ 10MB
  - □ log-mel features to speaker classification softmax or d-vector
- Hardware-focused SID:
  - $\Box$  On FPGA: systems that use SVM<sup>6</sup> and GMM-UBM<sup>7</sup>
- Recent work on quantization and compression:
  - ☐ Huffman-encoding parameters<sup>8</sup>, pruning<sup>8</sup>, quantization<sup>9,10</sup>

# Our four steps for tiny models:

- Normalization Folding
- Quantization
  - [0,1]-FxPt Quantization
  - Trained Ternary Quantization
- Model Pruning
- Digital Accelerator Architecture

## Measuring models with a constructed metric:

$$\mathtt{score} = \log_{10}(\# \mathrm{multiplies} \times \mathrm{bytesize} \times \mathrm{classification} \ \mathrm{error})$$

#### Initial Speaker ID Setup

- Closed Speaker Set, Text-Dependent (softmax error, not d-vector)
- Size-20 Log-Mel Feature Input, 25 Frame Context
- Averaging classifications across the utterance
- RSR2015 (255 speakers, 100 unique text utterances)
- Prior Work: FCN, CNN, Maxout, Depth-wise Seperable Conv.

# FCN/CNN/LCN Baselines Have Strongest Performance

| Model                        | Error    | Mults | Parameters | Score  |
|------------------------------|----------|-------|------------|--------|
| Fully Connected, Small       | 0.093959 | 519K  | 520K       | 10.404 |
| Fully Connected, Large       | 0.029713 | 1399K | 1399K      | 10.763 |
| Convolutional                | 0.12574  | 266K  | 260K       | 9.936  |
| Locally Connected            | 0.11322  | 276K  | 287K       | 9.954  |
| Maxout, Small                | 0.36653  | 1821K | 1822K      | 12.084 |
| Maxout, Large                | 0.26322  | 2134K | 2133K      | 12.077 |
| Depth-Seperable Conv., Small | 0.11144  | 1245K | 1227K      | 11.225 |
| Depth-Seperable Conv., Large | 0.29555  | 368K  | 335K       | 10.548 |

# "Normalization Folding" Trims BN Parameters

Batch normalization between layers of network:

$$x_{norm} = \gamma \frac{x - \mu}{\sqrt{\sigma}} + \beta$$

$$y = f(Wx_{norm} + b)$$

■ We "fold" norm into the second equation:

$$W' = \gamma \frac{W}{\sqrt{\sigma}} \quad b' = b + W \left(\beta - \frac{\gamma \mu}{\sqrt{\sigma}}\right)$$
$$y = f(W'x + b')$$

# Norm. Folding Offers Incremental Improvements

| Model                  | Error    | Mults | Params | Score  | Baseline Score |
|------------------------|----------|-------|--------|--------|----------------|
| Fully Connected, Small | 0.093962 | 517K  | 519K   | 10.402 | 10.404         |
| Fully Connected, Large | 0.029721 | 1394K | 1396K  | 10.762 | 10.763         |
| Convolutional          | 0.12604  | 263K  | 258K   | 9.935  | 9.936          |
| Locally Connected      | 0.11410  | 274K  | 286K   | 9.956  | 9.956          |

~1% decrease in model size, multiplications, and score \( \square\$

# [-1,1]-Fixed Pt. Quant. For Parameter Downsizing

Apply quantizing op within the net's training graph:

$$x_{[0,1]} = rac{x}{2\max|x|} + rac{1}{2}$$
  $x_{quant} = 2 \operatorname{quant}(x_{[0,1]}) - 1$   $\operatorname{quant}(x) = rac{1}{2^k} \operatorname{round}(2^k imes x)$ 

- Activations are clipped to [0,1] using clipped ReLU and quant(...)
  - Low-bitwidth arithmetic!

# **Error/Size Trade-off with [-1,1] FxPt Quant.**

Speaker ID Error vs. Bitwidth of Quantized Parameters



(Full Precision Activations)

# [-1,1] FtPt Quant. Improves Footprint and Score

| Model              | Error    | Mults | Params | Model Size | Score  | Baseline |
|--------------------|----------|-------|--------|------------|--------|----------|
| FCN, Large (4-bit) | 0.039581 | 1399K | 1399K  | 699.5KB    | 9.986  | 10.763   |
| FCN, Large (8-bit) | 0.026033 | 1399K | 1399K  | 1399KB     | 10.287 | 10.763   |
| FCN, Small (4-bit) | 0.23138  | 519K  | 520K   | 260KB      | 9.892  | 10.404   |
| FCN, Small (8-bit) | 0.22782  | 519K  | 520K   | 520KB      | 10.186 | 10.404   |
| CNN (4-bit)        | 0.1748   | 266K  | 260K   | 130KB      | 9.179  | 9.936    |
| CNN (8-bit)        | 0.11593  | 266K  | 260K   | 260KB      | 9.301  | 9.936    |
| LCN (4-bit)        | 0.26496  | 276K  | 287K   | 143.5KB    | 9.418  | 9.954    |
| LCN (8-bit)        | 0.24604  | 276K  | 287K   | 287KB      | 9.688  | 9.954    |

FCN: 75% memory reduction, 8% reduction in p-score, no error increase

# But Wait There's More: Trained Ternary Quant.

A different quantize op within the network's computation graph:

$$\widetilde{W}_{ijk}^l = \begin{cases} K_1^l & \text{if } W_{ijk}^l \geq \Delta^l \\ 0 & \text{if } -\Delta^l < W_{ijk}^l < \Delta^l \\ K_2^l & \text{if } W_{ijk}^l \leq -\Delta^l \end{cases} \qquad \begin{array}{l} \textit{K} \text{ is ternarized value} \\ \Delta \text{ is ternarization threshold} \end{cases}$$

Floating Point SID Kernels











Ternary SID Kernels











Activations are not quantized

# Ternary allows lazy multiplications

Normal multiply-and-accumulate during feed-forward evaluation:

$$Wx = W_{11}x_1 + W_{12}x_2 \dots$$

#### **Ternary:**

- $\square$  W is either  $W_n$  or  $W_n$
- **□** We accumulate-then-multiply for inference in our ternary system:

$$Wx = W_p(x_1 + x_4 + \dots + x_p) + W_n(x_2 + \dots + x_q)$$

# TTQ FCN: 100x Multiply, 8x Size Reduction

| Model                       | Error   | Mults  | Params | Model Size | Score  | Baseline        |
|-----------------------------|---------|--------|--------|------------|--------|-----------------|
| FCN, Large (Tern. Ends)     | 0.12884 | 6.56K  | 1399K  | 364.7KB    | 7.885  | 10.763          |
| FCN, Large (Non-Tern. Ends) | 0.11046 | 637.8K | 1399K  | 2736KB     | 10.683 | -0-0-10-00-00-0 |
| CNN (Tern. Ends)            | >0.99   | -      | -      | -          | -      | 9.936           |
| CNN (Non-Tern. Ends)        | 0.38439 | 72.8K  | 286K   | 262KB      | 9.301  |                 |
| LCN (Both)                  | >0.99   | -      | -      |            | -      | 9.954           |
| FCN, Small (Both)           | >0.99   | -      |        |            | -      | 10.404          |

- Bootstrapped models from floating point
- Most models diverging, despite LR tuning and initialization
- For large FCN:
  - 27% reduction in metric score; multiplication excise was a win
  - ☐ Hit in speaker classification error

## Running with Open Speaker Set and d-vectors

- Held-out set of speakers and the traditional d-vector/cosine distance
- ☐ Trial results match the trends witnessed using classification error: TTQ and 4-bit FxPt offer lowest metric scores

| Model                   | Mults | Params | Bytesize | EER   | EER-Score |
|-------------------------|-------|--------|----------|-------|-----------|
| FCN, Large (Full Prec.) | 1399K | 1399K  | 5596KB   | 7.03  | 13.740    |
| FCN, Large (8-bit)      | 1399K | 1399K  | 1399KB   | 7.94  | 13.191    |
| FCN, Large (4-bit)      | 1399K | 1399K  | 699.5KB  | 8.61  | 12.925    |
| FCN, Large (TTQ)        | 6.56K | 1399K  | 364.7KB  | 8.90  | 10.323    |
| CNN (Full Prec.)        | 266K  | 260K   | 1044KB   | 8.05  | 12.349    |
| CNN (8-bit)             | 266K  | 260K   | 261KB    | 9.44  | 11.816    |
| CNN (4-bit)             | 266K  | 260K   | 130KB    | 9.81  | 11.530    |
| CNN (TTQ, NT Ends)      | 72.8K | 260K   | 262KB    | 20.82 | 11.598    |

# Inducing Sparsity to Decrease Non-Zero Ops

Parameters in large ternary FCN are fairly sparse:



Sparsity decreases total op count, latency, and compressed storage footprint

# Inducing Sparsity to Decrease Non-Zero Ops

- Prune smallest weights to increase zero ops in 8-bit [-1,1]-FxPt models
- Twenty cycles of prune/retrain/prune/...



## Translating to FPGA: Ternary Speaker ID

- FPGA system in progress:
  - Exploit parallelizable dot products
  - □ Scale bitwidth of hardware to match desired model precision: power/area savings
- Improved critical path latency, lower-bound power improvements of 10-30%



|                                               | PU Power (μW)                     | Slack (pS)          |
|-----------------------------------------------|-----------------------------------|---------------------|
| Ternary, 16bit Act.                           | 100.142                           | 3188                |
| Ternary, 32-bit Act.                          | 447.547                           | 3130                |
| Full, 16-bit Act.                             | 158.451                           | 1420                |
| Full, 32-bit Act.<br>100MHz clock, simulation | 470.213<br>n using synthesis on l | 1376<br>P 65nm CMOS |

# Translating to FPGA: Ternary Speaker ID

- FPGA system in progress:
  - Exploit parallelizable dot products
  - □ Scale bitwidth of hardware to match desired model precision: power/area savings
- ☐ Improved critical path latency, **lower-bound** power improvements of 10-30%



#### **Conclusions**

- Speaker ID in memory-constrained embedded systems is feasible
- Achieve different points along the error/size trade-off applying:
  - Normalization Folding
  - [-1,1] Fixed Point Quantization
  - Trained Ternary Quantization (effective!)
  - Pruning
- Custom accelerators for speech tasks (VAD/Keyword/Speaker ID/ASR) offer power, area, and latency benefits

