1. Oriented Intersection Number

The following will be assumed in this section: X, Y, Z are boundaryless manifolds, X is compact, Z is a closed submanifold of Y and dim $X + \dim Z = \dim$ Y.

Definition 1.1. If $f: X \to Y$ is transversal to Z, then $f^{-1}(Z)$ is a finite number of points, each with orientation number 1 or -1 by the preimage orientation. Define the intersection number I(f, Z) to be the sum of these orientation numbers.

Given any point x, such that $f(x) = z \in Z$, we have

$$(1.2) df_x T_x(X) \oplus T_z(Z) = T_z(Z)$$

by our assumptions. Then the orientation number at x is 1 if the orientation on $df_xT_x(X) \oplus T_z(Z)$ is the same as the prescribed orientation on $T_z(Y)$, and -1 otherwise.

Proposition 1.3. If $X = \partial W$ and $f: X \to Y$ extends to W, then I(f, Z) = 0.

Proof. Suppose f extends to F, we may assume F transversal to Z by the Extension Theorem. And thus $f^{-1}(Z) = \partial F^{-1}(Z)$. Since $F^{-1}(Z)$ is an one-manifold with boundary, I(f, Z) = 0.

Proposition 1.4. In particular, homotopic maps always have the same intersection number.

Then we can define the intersection number for any arbitrary function.

Definition 1.5. Given any $g: X \to Y$, pick f such that f homotopic to g and f transversal to Z. Define intersection number I(q, Z) = I(f, Z).

By the previous proposition, the intersection number is well defined.

Definition 1.6. When Y is connected and has the same dimension as X, we define the degree of an arbitrary smooth map $f: X \to Y$ to be the intersection number $I(f,\{y\}).$

Proposition 1.7. Suppose that $f: X \to Y$ is a smooth map of compact oriented manifolds having the same dimension and that $X = \partial W$. If f can be extended to all of W, then deg(f) = 0.

Proposition 1.8. Let W be a smooth compact region in \mathbb{C} whose boundary contains no zeros of the polynomial p. Then the total number of zeros of p inside W counting multiplicaties is the degree of the map $p/|p|: \partial W \to S^1$.

Lemma 1.9. Let U and W be subspaces of the vector space V. Then $U \oplus W = V$ if and only if $U \times W \oplus \Delta = V \times V$. Assume also, that U and W are oriented, and give V the direct sum orientation. Now assign Δ the orientation carried from V by the natural isomorphism $V \to \Delta$. Then the product orientation on $V \times V$ agrees with the direct sum orientation form $U \times W \oplus \Delta$ if and only if W is even dimension.

Proposition 1.10. $f \sqcap g$ if and only if $f \times g \sqcap \Delta$, and then

(1.11)
$$I(f,g) = (-1)^{\dim Z} I(f \times g, \Delta).$$

Definition 1.12. For arbitrary maps $f: X \to Y$, $g: Z \to Y$, we define $I(f,g) = (-1)^{\dim Z} I(f \times g, \Delta)$.

Proposition 1.13. If f_0 and g_0 are respectively homotopic to f_1 and g_1 , then $I(f_0, g_0) = I(f_1, g_1)$.

Corollary 1.14. If Z is a submanifold of Y and $i: Z \to Y$ is its inclusion map, then I(f,i) = I(f,Z) for any map $f: X \to Y$.

Corollary 1.15. If dim $X = \dim Y$ and Y is connected, then $I(f, \{y\})$ is the same for every $y \in Y$. Thus deg(f) is well defined.

Proposition 1.16. $I(f,g) = (-1)^{(dim X)(dim Z)} I(f,g)$.

2. Exercise

Proposition 2.1. Suppose that $f: X \to Y$ is a diffeomorphism of compact connected manifolds. Then deg(f) = 1 if f preserves orientation, and -1 otherwise.

Proof. f diffeomorphism, then $\deg(f) = I(f, \{y\}) = sign(f^{-1}(y))$. If f orientation preserving, we have $sign(f^{-1}(y)) = 1$ and -1 otherwise.

Proposition 2.2. The antipodal map is homotopic to the identity if and only if k is odd.

Proof. Degree of antipodal map is $(-1)^{k+1}$. If antipodal map is homotopic to the identity, then degree= 1, which implies that k is odd. When k is odd, we can find a homopoty between antipodal map and identity.

Proposition 2.3. Suppose that $f: X \to Y$ and $g: Y \to Z$, then we have $deg(g \circ f) = deg(f)deg(g)$.

Proof. Given any $z \in Z$, we have $deg(g \circ f) = I(g \circ f, \{z\}) = \sum_{(g \circ f)(x) = z} sign(x) = \sum_{y:g(y) = z} \sum_{x:f(x) = y} sign(x) = \sum_{y} deg(g)sign(y) = deg(f)deg(g)$. \square

Proposition 2.4. Assume that $X \overline{\cap} Z$ both compact oriented and then

(2.5)
$$I(X,Z) = (-1)^{(dimX)(dimZ)}I(Z,X).$$

Proof. Since $X \ \overline{\sqcap} Z$, we have

$$(2.6) di_x T_x(X) \oplus T_z(Z) = T_z(Y),$$

where i is the inclusion map $X \to Z$. Similarly, we have

$$(2.7) di'_z T_z(Z) \oplus T_x(X) = T_x(Y),$$

where i' is the inclusion map $Z \to X$. And it takes (dim X)(dim Z) transposition to switch the basis.

Proposition 2.8. The map $S^1 \to S^1$ given by $z \to \bar{z}^m$ has degree -m.

Proof. Define $f: S^1 \to S^1$ and $g: S^1 \to S^1$ such that $f(z) = \bar{z}, g(z) = z^m$. We have deg(f) = -1 and deg(g) = m. Then degree of the map is deg(f)deg(g) = -m. \square