Waves

Paolo Bettelini

Contents

1	Way	ve
	1.1	Waves in different dimensions
	1.2	Direction of the wave
	1.3	Types of waves
2	Med	chanical waves
	2.1	Wave length
	2.2	Period
	2.3	Frequency
	2.4	Phase velocity
	2.5	Amplitude
3	Har	rmonic waves

1 Wave

A wave is a propagation of a disturbance (energy) which oscillates repeatedly.

1.1 Waves in different dimensions

Waves can expand in different dimensions. Here are examples of each dimension

- 1. 1 dimension: an oscillating rope
- 2. 2 dimensions: surface of water oscillating
- 3. 3 dimensions: sound propagating through the air

1.2 Direction of the wave

A wave is *transverse* when its oscillations are perpendicular to the direction of the wave propagation (e.g. slinky up and down).

A wave is *longitudinal* when its oscillations are parallel to the direction of the wave propagation (e.g. slinky left and right).

1.3 Types of waves

There are different types of waves, namely, mechanical waves, electromagnetic wave and gravitational waves. Electromagnetic and gravitational waves are always longitudinal.

2 Mechanical waves

2.1 Wave length

The wavelength λ of a wave describes how long the wave is.

2.2 Period

The $period\ T$ of a wave is the time it takes to complete a full oscillation.

2.3 Frequency

The frequency f of a wave represents how many oscillation completed in one unit of time (seconds).

$$f = \frac{1}{T}$$

2.4 Phase velocity

The phase velocity v is the rate at which the wave propagates.

$$v = \frac{\lambda}{T}$$
$$= f\lambda$$

2.5 Amplitude

The amplitude A of a mechanical wave is the measure of the maximum distance a point can reach from its equilibrium position.

3 Harmonic waves

$$s(t;x) = A \sin\left(\frac{2\pi x}{\lambda} - \frac{2\pi t}{\lambda} + \phi\right)$$