Algorithmes génétiques

Dupont Croguenne

Introduction

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème à plusieurs

Peut-elle être

Pour aller plu

Conclusion

Bibliographic

Algorithmes génétiques

Dupont Ronan - Croguennec Guillaume

Seatech - Université de Toulon

Mai 2020

Sommaire

Algorithmes génétiques

Croguennec

ntroduc

Théorie

Application simple

Toujours la plus efficace

Faire face à un problème à plusieurs contraintes

Peut-elle être améliorée ?

Pour aller plu

Conclusion

- Introduction
- 2 Théorie
- 3 Application simple
- 4 Toujours la plus efficace?
- 5 Faire face à un problème à plusieurs contraintes
- 6 Peut-elle être améliorée?
- Pour aller plus loin
- 8 Conclusion
- 9 Bibliographie

Introduction

Algorithmes génétiques

Dupont Croguenne

Introduction

Théori

Application simple

Toujours la

Faire face à un problème plusieurs contraintes

Peut-elle êtr améliorée?

Pour aller plu loin

Conclusion

Théorie de la méthode génétique

Algorithmes génétiques

Dupont Croguenne

Introduction

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème à plusieurs

Peut-elle être

Pour aller plus

Conclusion

Voyageur de commerce : description du problème

Algorithmes génétiques

Dupont Croguenne

Introduction

Théorie

Application simple

Toujours la

Faire face à un problème : plusieurs

Peut-elle être améliorée ?

Pour aller plu loin

Conclusion

FIGURE – Problème du voyageur pour 4 villes

Voyageur de commerce : résolution par algorithme génétique

Algorithmes génétiques

Croguenne

Introductio

Théorie

Application simple

Toujours la

Faire face à un problème : plusieurs

Peut-elle être

Pour aller plus

Conclusion

FIGURE - Schéma de l'algorithme génétique

Voyageur de commerce : résultats - influence itérations

Algorithmes génétiques

Croguenne

Indiana di Lagrandia

Th4......

Application simple

Toujours la

Faire face à un problème plusieurs contraintes

Peut-elle être améliorée ?

Pour aller plus

Conclusion

Voyageur de commerce : résultats - influence du nombre de villes

Algorithmes génétiques

Dupont Croguenne

TI. (.

Application simple

Toujours la plus efficace

Faire face à un problème : plusieurs

Peut-elle être améliorée ?

Pour aller plus loin

Conclusion

Voyageur de commerce : Essai sur le territoire français

Algorithmes génétiques

Croguenne

atroductio

_. . .

Application simple

Toujours la plus efficace?

Faire face à un problème à plusieurs

Peut-elle être

Pour aller plus

Conclusion

FIGURE – La France avec 15 grandes villes

Voyageur de commerce : Essai sur le territoire français

Algorithmes génétiques

Dupont Croguenn

Introduction

T1. (.

Application simple

Toujours la

Faire face à un problème : plusieurs

Peut-elle être améliorée?

Pour aller plu loin

Conclusion

FIGURE - La France avec 15 grandes villes

Voyageur de commerce : Essai sur le territoire français

Algorithmes génétiques

Croguenne

Introduction

Théorie

Application simple

Toujours la

Faire face à un problème : plusieurs

Peut-elle être

Pour aller plus

Conclusion

FIGURE – La France avec 15 grandes villes

Résolution de sudoku

Algorithmes génétiques

Dupont Croguennec

Introductio

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème à plusieurs contraintes

Peut-elle être améliorée ?

Pour aller plu loin

Conclusion

Résolution de sudoku par algorithme génétique

Algorithmes génétiques

Croguennec

Introduction

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème à plusieurs

Peut-elle être

Pour aller plus

Conclusion

FIGURE – Schéma de l'algorithme génétique

Résolution de sudoku : temps de calcul et nombre d'itérations

Algorithmes génétiques

Croguenn

...............................

Théoria

Applicatioi simple

Toujours la plus efficace?

Faire face à un problème plusieurs contraintes

Peut-elle êtr améliorée ?

Pour aller plu Ioin

Conclusion

Grille facile	Nombre d'itérations	Temps de calcul
N = 10	4998	4.19430000000001E-002 s
N = 25	1191	1.073199999999998E-002 s
N = 40	1702	1.534700000000000E-002 s
N = 100	8187	8.315100000000003E-002 s
N = 1000	36091	0.3057599999999999 s

Grille moyenne	Nombre d'itérations	Temps de calcul
<i>N</i> = 10	81234	0.5818529999999999 s
N = 25	2660	2.169199999999999E-002 s
<i>N</i> = 40	568090	3.7907160000000002 s
N = 100	77185	0.5376259999999999 s
<i>N</i> = 1000	46325	0.3485409999999999 s

Grille difficile	Nombre d'itérations	Temps de calcul	
N = 15	425700	2.9116449999999996 s	
N = 20	225904	1.5805190000000000 s	
N = 25	87356	0.6340359999999999 s	
N - 200	131725	1=03391700000000002 \$	90

Résolution de sudoku : temps de calcul et nombre d'itérations

Algorithmes génétiques

Croguenne

T1 / :

Applicatio

simple

Toujours la plus efficace?

Faire face à un problème plusieurs contraintes

Peut-elle êti améliorée ?

Pour aller pl loin

Conclusio

Grille SER=10.5	Nombre d'itérations	Temps de calcul
<i>N</i> = 40	24229170	191.42896100000002 s
N = 45	8202729	66.567461999999999 s

Grille SER=11.9	Nombre d'itérations	Temps de calcul
N = 35	104713171	970.00205099999994 s
N = 35	79876986	761.570166999999997 s
N = 40	5079672	37.313479000000001 s
N = 41	30292802	482.82095900000002 s

Résolution de sudoku : méthode backtracking

Algorithmes génétiques

Dupont Croguennec

Introduction

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème plusieurs

Peut-elle être améliorée ?

Pour aller plus

Conclusion

FIGURE - Principe du backtracking

Résolution de sudoku : résultats backtracking

Algorithmes génétiques

Dupont Croguenned

Introductio

Théorie

Application

Toujours la plus efficace?

Faire face à un problème à plusieurs

Peut-elle être

Pour aller plu

Conclusion

Différentes grilles	Temps de calcul
Grille facile	7.7e-05 s
Grille moyenne	8.7e-05 s
Grille difficile	0.000571 s
Grille Al	0.002518 s
Grille plus dure au monde	0.07401 s

Thermodynamique inversée : description du problème

Algorithmes génétiques

Croguenn

Théorie

Application simple

Toujours la

Faire face à un problème à plusieurs contraintes

améliorée ?

Pour aller plu

Conclusion

FIGURE – Description du problème de thermodynamique inversé

Thermodynamique inversée : méthode génétique

Algorithmes génétiques

Croguenne

Introduction

Théorie

Application simple

Toujours la

Faire face à un problème à plusieurs contraintes

Peut-elle être

Pour aller plus

Conclusion

Thermodynamique inversée : résultats

Algorithmes génétiques

Croguenn

Introduction

Théorie

simple

Toujours la plus efficace

Faire face à un problème à plusieurs contraintes

améliorée ?

Pour aller plus

Conclusion

FIGURE - Résultats de la simulation

Coloration de graphe : description du problème

Algorithmes génétiques

Dupont Croguenne

Introductio

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème plusieurs

Peut-elle être améliorée ?

loin

Conclusion

FIGURE – Description du problème : coloration de graphe

Coloration de graphe : méthode génétique

Algorithmes génétiques

Croguenned

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème plusieurs contraintes

Peut-elle être améliorée ?

Pour aller plus

Conclusion

FIGURE – Schéma de l'algorithme génétique

Coloration de graphe : cas traités

Algorithmes génétiques

Dupont Croguennec

Introduction

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème plusieurs contraintes

Peut-elle être améliorée ?

Pour aller plu loin

Conclusion

FIGURE – Cas 1 et 2 de coloration de graphe

Pour aller plus loin

Algorithmes génétiques

Croguenne

Introduction

Théorie

Application simple

Toujours la plus efficace?

Faire face à un problème plusieurs contraintes

Peut-elle ét améliorée?

Pour aller plus

Conclusion

FIGURE – Cas 1 et 2 de coloration de graphe

Conclusion

Algorithmes génétiques

Dupont Croguenne

Théori

Application

Toujours la

Faire face à un problème plusieurs contraintes

améliorée ?

Pour aller plu loin

Conclusion

Bibliographie

Algorithmes génétiques

Croguenn

Introduction

Théorie

Application simple

Toujours la plus efficace

Faire face à un problème à plusieurs contraintes

Peut-elle être améliorée ?

Pour aller plu loin

Conclusion

- MAIRE SYLVAIN. Cours sur les méthodes Monte Carlo, 2020.
- MAIRE SYLVAIN. *Projet Sudoku automatique Seatech*, 2021.
- Wikipédia, Problème du voyageur de commerce, Coloration de graphe.
- CHI-OK HWANG, MICHAEL MASCAGNI, JAMES A. GIVEN. A Feynman—Kac path-integral implementation for Poisson's equation using an h-conditioned Green's function, 2003.