11/8/2019

Solve SE for H-alon .
- get 4 Quantum #1s.

1) n - principal - n=1,2,3,...

- size of 4, E of 4

(2) l - angular mom. QN - l=0,1,...,n-1
- shape of 4

(3) Mg - magnetic QN - Mg = -l, ..., O, ..., +l -orientation of 4

(4) Electron-spin QN, Ms

Ms=-1, or +1/2

$$M_s = +\frac{1}{2}$$
, $M_s = -\frac{1}{2}$

Describing an Orbital

- Each set of n, l, and m_l describes one orbital.
- Orbitals with the same value of n are in the same principal energy level.
 - Also called the principal shell
- Orbitals with the same values of n and l are said to be in the same sublevel.
 - Also called a subshell

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

71

72

Ch9: Periodic properties of elements. Dmitri Mendeleer, late 1860's -organized Known elements by "atomic mass" - chemical properties lined up in columns. - reordered a few elements to match up bette! Te I 127.6 126.9 - left gaps ... undiscovered elements Al Si P Zn ??? As In Sn Sh Moscley, early 1900s - discovered pt in nucleus #p+ = Z

Mendeleev's Predictions

Germanium (eka-silic	on)	
	Mendeleev's predicted properties	Actual properties
Atomic mass	About 72 amu	72.64 amu
Density	5.5 g/cm ³	5.35 g/cm ³
Formula of oxide	XO ₂	GeO ₂
Formula of chloride	XCl ₄	GeCl ₄

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

4

What Versus Why

- Mendeleev's periodic law allows us to predict what the properties of an element will be based on its position on the table.
- It doesn't explain why the pattern exists.
- Quantum mechanics is a theory that explains why the periodic trends in the properties exist.
 - Knowing why allows us to predict what.

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

5

Electron configuration
-arrangement of es in orbitals. -lowest E (ground state) - put es in orbitals up lower energies E before higher energies.
- lowest F (amound = b+)
Lare la
I put es in orbitals up tower energies
before higher energies.
5.6
building-up Auf Ban principle principle
- Cincide
1 2 principa
For multi-electron atoms, order is:
1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s <
lower E higher E
#te3
ev:
·
subshell configuration
(n,l)
$M_{s} = +\frac{1}{2}$
(orbital diagram)
ls
n=(l=0
$M_0 = 0$

