dsPIC33 controllers with MPLAB C30 compiler

Šimon Řeřucha (res@isibrno.cz)

- Controller
- @ General purpose I/O ports
- 3 Timers
- 4 Interrupts
- 5 PWM
- 6 Pin Mapping
- UART
- 8 Libraries
- Oelay
- Redirecting STDIO
 - Builtin functions
- Misc
- Compiler

Harvard vs. von Neumann

HARVARD ARCHITECTURE MICROPROCESSOR

VON NEUMANN ARCHITECTURE MICROPROCESSOR

Family

						Rem	appabl	e Per	iphera	al								Ĕ		
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Data Converter Interface	UART	SPI	ECAN [™]	External Interrupts ⁽³⁾	RTCC	I ² C™	CRC Generator	10-bit/12-bit ADC (Channels)	16-bit Audio DAC (Pins)	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins
dsPIC33FJ128GP804	44	128	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35

- 16-bit Digital Signal Controller
- Modified-Harvard architecture
- 24-bit address

Memory Map

Compiler: Accessing SFR

Special Function Registers Example:

TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	-	-	-	-	-	TRISA10	TRISA9	TRISAS	TRISA7	-	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	-	-	-	-	_	RA10	RA9	RA8	RA7	-	-	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	_	_	-	_	_	LATA10	LATA9	LATA8	LATA7	_	-	LATA4	LATA3	LATA2	LATA1	LATAO	XXXX
ODCA	02C6	-	-	-	-	-	ODCA10	ODCA9	ODCA8	ODCA7	-	-	-	-	-	-	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal

```
// set all to outputs
TRISA = 0x0000;

// set RA4 to input
TRISAbits.TRISA4 = 1;
```

Configuration Bits (fuses)

- small block of non-volatile memory
- basic initial configuration, e.g.
- security setting
- oscillator setting
- watchdog, ...

For description, see datasheet Chapter 28.1

Ex. Fuses

```
//External XTAL
_FOSCSEL ( FNOSC_PRI );

// HS mode, 10-40MHZ + IO mapping lock
_FOSC( POSCMD_HS & IOL1WAY_OFF );

// turn off watchdog
_FWDT(FWDTEN_OFF);
```

μ C Pinout

For description, see datasheet p. 17-19.

Parallel I/O

Parallel I/O

- general purpose digital I/O
- I/O pins shared with peripherals
- bidirectional ports, output latched
- Schmitt-triggered
- optionally open collector

Parallel I/O

PIO registers

All I/O ports have four registers directly associated with the operation of the port, where 'x' is a letter that denotes the particular I/O port:

- TRISx: Data Direction registers
- PORTx: I/O Port registers
- LATx: I/O Latch registers
- · ODCx: Open-Drain Control registers

Each I/O pin on the device has an associated bit in the TRISx, PORTx, and LATx registers.

The differences between the PORTx and LATx registers can be summarized as follows:

- · A write to the PORTx register writes the data value to the port latch
- · A write to the LATx register writes the data value to the port latch
- · A read of the PORTx register reads the data value on the I/O pin
- A read of the LATx register reads the data value held in the port latch

GPIO on dsPIC33-FJ128-MC804

- three (incomplete) 16-bit ports A[10:7,4:0], B[15:0], C[9:0]
- Peripheral Pin Select technique arbitrary remapping of peripheral I/O
- optional pull-ups
- optional Change Notification (generates interrupt on state change)
- note the analog / digital multiplexing (register AD1PCFG)

I/O Port A,B,C

TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
02C0	-	-	-	-	-	TRISA10	TRISA9	TRISAS	TRISA7	-	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
02C2	-	-	-	-	_	RA10	RA9	RA8	RA7	-	-	RA4	RA3	RA2	RA1	RA0	XXXX
02C4	-	-	_	_	_	LATA10	LATA9	LATA8	LATA7		-	LATA4	LATA3	LATA2	LATA1	LATAO	XXXX
0206	-	-	-	_	_	ODCA10	ODCA9	ODCA8	ODCA7	-	-	-	_	_	_	-	0000
0	02C0 02C2 02C4 02C6	0200 — 0202 — 0204 — 0206 —	02C0 — — — 02C2 — — 02C4 — —	02C0	2000	2000	2000 TRISA10 2002 RA10 2002 LATA10 2004 LATA10	02C0 TRISA10 TRISA9 20C2 RA10 RA2 20C4 LA7A10 LATA9 20C6 COCCA10 OCCA9	000 TRISA10 TRISA9 TRISA9 0000 RA10 RA9 RA9 0000 LATA10 LATA9 0000 LOTA10 CATA9 0000 COCA10 0000-0000000000000000000000000000000	0000 TRISA10 TRISA9 TRISA9 00002 RA10 FA0 FA0 FA0 00002 LATA10 LATA9 00000 LATA9 LATA9 000000 000000 000000 000000 000000 00000	0000 TRISA10 TRISA9 TRISA9 TRISA9 TRISA9	0000 178540 178549 178549 178547	000 TRSA10 TRSA9 T	0000 TRSA10 TRSA9 TR	0000 TRISA10 TRISA9 TRISA9 TRISA7 TRISA1 TRISA3 TRISA2 0000 RA10 FA0 RA1 FA1 RA7 RA1 FA1 RA2 0000 LATA10 LATA9 LATA9 LATA9 LATA9 LATA9 LATA9 LATA9 00000	000 TRISAN	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	-	-	-	-	ODCB11	ODCB10	ODCB9	ODCB8	ODC87	ODCB6	ODCB5	-	-	-	-	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTC REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	-	-	-	-	-	-	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISCO	03FF
PORTC	02D2	-	-	_	_	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	жжж
LATC	02D4	_	-	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	02D6	_	_	_	_	_	_	ODCC9	ODCC8	ODCC7	OD 0008	ODCC5	ODCC4	ODCC3	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal

Using GPIO

- locate your ports (Board / Kit documentation)
- set ports to digital (AD1PCFG)
 ANx are analog by default!
- set correct direction (TRISA, TRISB, TRISC)
 0 = output, 1 = input
- read from PORTA, PORTB, PORTC
- write to PORTA, PORTB, PORTC or LATA, LATB, LATC

Timers on dsPIC33-FJ128-MC804

- 5x 16-bit timers/counters
- Timer1: time counter for the real-time clock)
- Timer2+3 and 4+5 chaining for 32-bit counters

For description, see datasheet Chapters 12, 13 + Family Reference Manual, Chapter 11 (Timers)

TMR Registers

TABLE	4-5:	TIMES	REGIS	TER MA	AΡ													
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
TMR1	0100								Timer1	Register								0000
PR1	0102								Period R	Register 1								2222
TICON	0104	TON	_	TSIDL	-	_	-	-	-	-	TGATE	TCKP	3<1:0>	-	TSYNC	TCS	-	0000
TMR2	0106		-											0000				
TMR3HLD	0108						Tir	ner3 Holding	Register (fo	r 32-bit time	operations o	only)						XXXX
TMR3	010A								Timer3	Register								0000
PR2	010C								Period P	Register 2								FFFF
PR3	010E								Period P	Register 3								2222
T2CON	0110	TON	_	TSIDL	-	-	-	-	-	-	TGATE	TCKP	S<1:0>	T32	-	TCS	-	0000
T3CON	0112	TON	_	TSIDL	-	-	-	-	-	-	TGATE	TCKP	5<1:0>	-	-	TCS	-	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tir	ner5 Holding	Register (fo	r 32-bit time	operations o	only)						XXXX
TMR5	0118								Timer5	Register								0000
PR4	011A								Period I	Register 4								FFFF
PR5	011C								Period P	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	-	-	-	-	-	-	TGATE	TCKP	3<1:0>	T32	-	TCS	-	0000
TECCN	0120	TON		TODI						_	TGATE	TOKE	De 1 On	_		TOS	_	0000

Interrupts on dsPIC33-FJ128-MC804

- 15 priority levels
 Up to eight processor exceptions and software traps
 - Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 126 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies

For description, see datasheet Family Reference Manual, Chapter 6 (Interrupts)

Ex. Change Notification Interrupts

```
// button 1 on B4 / CN1
TRISBbits.TRISB4 = 1;
CNPU1bits.CN1PUE = 0;
CNEN1bits.CN1IE = 1;
//define interrupt handler
```

Simple Interrupts

TABLE 8-4: INTERRUPT VECTORS - dsPIC33F DSCs/PIC24H MCUs

IRQ#	Primary Name	Alternate Name	Vector Function
N/A	_ReservedTrap0	_AltReservedTrap0	Reserved
N/A	_OscillatorFail	_AltOscillatorFail	Oscillator fail trap
N/A	_AddressError	_AltAddressError	Address error trap
N/A	_StackError	_AltStackError	Stack error trap
0	_INT0Interrupt	_AltINT0Interrupt	INT0 External interrupt 0
1	_IC1Interrupt	_AltIC1Interrupt	IC1 Input capture 1
2	_OC1Interrupt	_AltOC1Interrupt	OC1 Output compare 1
3	_T1Interrupt	_AltT1Interrupt	TMR1 Timer 1 expired
4	_DMA0Interrupt	_AltDMA0Interrupt	DMA 0 interrupt
5	_IC2Interrupt	_AltIC2Interrupt	IC2 Input capture 2
6	_OC2Interrupt	_AltOC2Interrupt	OC2 Output compare 2
7	_T2Interrupt	_AltT2Interrupt	TMR2 Timer 2 expired
8	_T3Interrupt	_AltT3Interrupt	TMR3 Timer 3 expired
9	_SPI1ErrInterrupt	_AltSPI1ErrInterrupt	SPI1 error interrupt
10	_SPI1Interrupt	_AltSPI1Interrupt	SPI1 transfer completed interrupt
11	_U1RXInterrupt	_AltU1RXInterrupt	UART1RX Uart 1 Receiver
12	_U1TXInterrupt	_AltU1TXInterrupt	UART1TX Uart 1 Transmitter
13	_ADC1Interrupt	_AltADC1Interrupt	ADC 1 convert completed
14	_DMA1Interrupt	_AltDMA1Interrupt	DMA 1 interrupt
19	CNInterrupt	AltCNInterrupt	CN Input change interrupt
20	INT1Interrupt	AltINT1Interrupt	INT1 External interrupt 1
		1-	
25	_OC3Interrupt	_AltOC3Interrupt	OC3 Output compare 3
26	_OC4Interrupt	_AltOC4Interrupt	OC4 Output compare 4

Ex. Change Notification Interrupts

Technique for generating interrupts on port change (see Family Reference Manual, Chapter 10).

```
//define interrupt handler
void __attribute__((interrupt, no_auto_psv)) _CNInterrupt (void)
// state evaluation
if(PORTBbits.RB4 == 0) ... mach etwas ...
// Clear interrupt flag
IFS1bits.CNIF = 0;
return:
```

Port Change Interrupts

TABL	E 4-3:	CHA	ANGE N	OTIFICA	TION R	EGISTE	R MAP F	OR dsP	IC33FJ1	28MC20	04/804,	dsPIC33	FJ64MC	204/804	AND d	sPIC33F	J32MC3	804
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Ви 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12E	CN11IE	CN10IE	CN9IE	CNBIE	CN7IE	CNSIE	CNSIE	CN4IE	CN3IE	CN2IE	CN1IE	CNGE	0000
CNEN2	0062	-	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2	006A	-	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Pulse Width Modulation

PWM modes

The MCPWM module can be configured for one of four modes of operation using the PWM Time Base Mode Select (PTMOD) Control bits in the PWM Time Base Control register (PxTCON<1:0>). The four operating modes are described in the following four sections.

14.7.1 Free Running Mode (PTMOD<1:0> = 0b00)

In this mode, the PWM Time Base register (PxTMR) will count upward until the value in the PWM Time Base Period register (PxTPER) is matched. The PxTMR register is reset on the following input clock edge. The timer will continue counting upward and resetting as long as the PWM Time Base Timer Enable bit (PTEN) in the PWM Time Base Control register (PxTCON<15>) remains set.

14.7.2 Single Event Mode (PTMOD<1:0> = 0b01)

The PWM timer (PxTMR) will begin counting upward when the PTEN bit is set. When the PxTMR value matches the PxTPER register value, the PxTMR register is reset on the following input clock edge and the PTEN bit is cleared by the hardware to halt the timer.

14.7.3 Continuous Up/Down Count Mode (PTMOD<1:0> = 0b10)

In this mode, the PWM timer (PxTMR) will count upward until the value in the PxTPER register is matched. The timer will start counting downward on the following clock edge and continue counting down until it reaches zero. The PWM Time Base Count Direction Status bit (PTDIR) in the PWM Time Base register (PxTMR-15>) indicates the counting direction. This bit is set when the timer starts counting downward.

14.7.4 Continuous Up/Down Count Mode with Interrupts for Double Update of Duty Cycle (PTMOD<1:0> = 0b11)

This mode is similar to the Continuous Up/Down Count mode, with the exception that an interrupt event is generated twice per time base: once when the PxTMR register is equal to zero and a second time when a period match occurs.

PWM registers

Table 14-8: Registers Associated with 2-Output MCPWM2 Module

SFR Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Reset
IFS3	FLT1AIF	-	-	_	-	-	PWM1IF	-	-	-	-	-	-	-	-	_	0000 0000 0000 0000
IFS4	_	_	-	FLT2BIF	-	FLT2AIF	PWM2IF	-	-	_	_	_	-	_	_	FLT1BIF	0000 0000 0000 0000
IEC3	FLT1AIE	_	-	-	_	_	PWM1IE	-	-	_	_	_	-	-	_	_	0000 0000 0000 0000
IEC4	_	_	_	FLT2BIE	_	FLT2AIE	PWM2IE	_	-	_	-	_	-	-	_	FLT1BIE	0000 0000 0000 0000
IPC18	_	-	_	-	_	FI	LT2AIP<2:0	D	-	PI	WM2IP<2:	:0>	_	_	-	-	0000 0100 0100 0000
IPC19	_	-	_	-	-				-	_	_	_	_	F	LT2BIP<2:	0>	0000 0000 0000 0100
P2TCON	PTEN	-	PTSIDL	-	_					PTOP	S<3:0>		PTCKP	S<1:0>	PTMO	D<1:0>	0000 0000 0000 0000
P2TMR	PTDIR						PWM Timer C			ue Registe	r						0000 0000 0000 0000
P2TPER	-						P	WM Time E	lase Perio	d Registe	r						0000 0000 0000 0000
P2SECMP	SEVTDIR						PWN	1 Special E	vent Com	pare Regi	ster						0000 0000 0000 0000
PWM2CON1	-	-	_	-	_	_	_	PMOD1	_	_	_	PEN1H	_	_	_	PEN1L	0000 0000 000y 000y ⁽¹⁾
PWM2CON2	-	_	-	-		SEVOF	PS<3:0>		_	_	_	_	-	IUE	OSYNC	UDIS	0000 0000 0000 0000
P2DTCON1	DTBPS	<1:0>			DTE	3<5:0>			DTAP:	S<1:0>			DTA	<5:0>			0000 0000 0000 0000
P2DTCON2	-	_	-	_	-	-	_	-	-	_	-	_	_	-	DTS1A	DTS1I	0000 0000 0000 0000
P2FLTACON	-	-	-	-	-	-	FAOV1H	FAOV1L	FLTAM	_	-	-	-	-	_	FAEN1	0000 0000 0000 000y ⁽²⁾
P2OVDCON	_	_	_	_	_	_	POVD1H	POVD1L	_	_	_	_	_	_	POUT1H	POUT1L	1111 1111 0000 0000
P2DC1							PWM	Duty Cycle	1 Regist	er							0000 0000 0000 0000

PWM setting

Equation 14-1: PWM Period Calculation for Free Running Count Mode (PTMOD = 00 or 01)

$$PxTPER = \frac{FCY}{FPWM \times (PxTMR \ Prescaler)} - 1$$

Remapable pins

- dynamic assignment of I/O ports (peripherals) to physical ports RPx
- for input: input function has register, pin address is assigned
- for output: physical pin has register, function code is assigned
- secured: (un)locking sequence, fuse

Remapable input pins

- RPx is used as an input pin for peripheral pin Func
- set in RPINRy, bits FuncR

Input remapping

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
PWM1 Fault	FLTA1	RPINR12	FLTA1R<4:0>
PWM2 Fault	FLTA2	RPINR13	FLTA2R<4:0>
QEI1 Phase A	QEA1	RPINR14	QEA1R<4:0>
QEI1 Phase B	QEB1	RPINR14	QEB1R<4:0>
QEI1 Index	INDX1	RPINR15	INDX1R<4:0>
QEI2 Phase A	QEA2	RPINR16	QEA2R<4:0>
QEI2Phase B	QEB2	RPINR16	QEB2R<4:0>
QEI2 Index	INDX2	RPINR17	INDX2R<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	Ū1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

Input remapping registers

TABLE 4-24: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	-	-	_			INT1R<4:0>			_	-	_	_	_	-	_	_	1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	_	_			INT2R<4:0	-		001F
RPINR3	0686	_	_	_			T3CKR<4:0>			_	_	_			T2CKR<4:0	>		1919
RPINR4	0688	_	_	_			T5CKR<4:0>			_	_	_			T4CKR<4:0	>		1515
RPINR7	068E	_	_	_			IC2R<4:0>			_	_	-			IC1R<4:0:			1515
RPINR10	0694	_	_	_			IC8R<4:0>			_	_	-			IC7R<4:0:			1515
RPINR11	0696	_	_	_	_	_	_	_	_	_	_	-			OCFAR<4:0	i>		001F
RPINR12	0698	_	_	_	_	_	_	_	_	_	_			FLTA1R<4:	Þ		001F	
RPINR13	069A	_	_	_	_	_	_	_	_	_	_			FLTA2R<4:0	Þ		001F	
RPINR14	069C	_	_	_			QEB1R<4:0>			_	_	_			QEA1R<4:0	Þ		1F1F
RPINR15	069E	_	_	-	_	_	_	_	_	-	_	-			INDX1R<4:)>		001F
RPINR16	06A0	-	-	-			QEB2R<4:0>			-	-	-			QEA2R<4:0	Þ		1F1F
RPINR17	06A2	-	-	-	_	_	-	-	_	-	-	-			INDX2R<4:	1>		001F
RPINR18	06A4	-	-	-			U1CTSR<4:0	,		-	_	-			U1RXR<4:0	Þ		1515
RPINR19	06A6	_	_	_			U2CTSR<4:0	,		-	_	_			U2RXR<4:0	Þ		1F1F
RPINR20	06A8	_	_	_			SCK1R<4:0>			-	_	_			SDI1R<4:0	>		1F1F
RPINR21	06AA	_	_	_	_	_	_	_	_	_	_	_			SS1R<4:0			001F
RPINR22	06AC	_	_	-			SCK2R<4:0>			-	_	_			SDI2R<4:0	>		1F1F
RPINR23	06AE	-	-	_	_	_	_	-	-	-	-	_			SS2R<4:0			001F
RPINR26 ⁽¹⁾	06B4	-	-	-	-	-	-	-	-	-	-	-			C1RXR<4:0	Þ		001F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is present in dsPIC33FJ128MC802/804 and dsPIC33FJ64MC802/804 devices only.

Remapable output pins

FIGURE 11-3: MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

- peripheral pin Func with code is used as an output pin RPx
- set in RPOUTRy, bits RPxR

Output remapping

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C1OUT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK1	01000	RPn tied to SPI1 Clock Output
SS1	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2	01011	RPn tied to SPI2 Clock Output
SS2	01100	RPn tied to SPI2 Slave Select Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4
UPDN1	11010	RPn tied to QEI1 direction (UPDN) status
UPDN2	11011	RPn tied to QEI2 direction (UPDN) status

Output remapping registers

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND dsPIC33FJ32MC304

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	-	-	-	RP1R<4:0>						-	-	RP0R<4:0>					0000
RPOR1	06C2	-	-	-		_	-	_	RP2R<4.0>					0000				
RPOR2	06C4	-	-	_		_	_	_	RP4R<4:0>					0000				
RPOR3	0606	-	-	-	RP7R<4:0>					-	-	-	RP6R<4:0>					0000
RPOR4	06CB	-	-	-		-	-	-	RP8R<4:0>					0000				
RPOR5	06CA	-	-	_	RP11R<4:0>					_	_	_	RP10R<4:0>					0000
RPOR6	05CC	-	-	-	RP13R<4.0>						_	-	RP12R<4:0>					0000
RPOR7	08CE	_	-	-	RP15R<4:0>					_	_	_	RP14R<4:0>					0000
RPOR8	06D0	-	-	-	RP17R<4:0>						_	_	RP16R<4:0>					0000
RPOR9	06D2	-	-	-	RP19R<4:0>					-	-	-	RP18R<4:0>					0000
RPOR10	06D4	-	-	-	RP21R<4:0>						_	_	RP20R<4:0>					0000
RPOR11	06D6	-	-	-	RP23R<4:0>					-	_	-	RP22R<4:0>					0000
RPOR12	06D8	_	-	-	RP25R<4:0>					-	_	_	RP24R<4:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0

Remapping security

```
//unlock procedure
OSCCON = 0x46;
OSCCON = 0x57;
OSCCONbits.IOLOCK = 0;

// some manipulation
RPORIObits.RP21R = 0x3;
RPINR18bits.U1RXR = 20;

// lock procedure
OSCCON = 0x46;
OSCCON = 0x57;
OSCCONbits.IOLOCK = 1:
```

Remapping security II.

```
// allow multiple port remapping
_FOSC( ... & IOL1WAY_OFF )

// allow multiple port just once between two resets
_FOSC( ... & IOL1WAY_ON )
```

Ex. Remapping security II.

```
// remapping input
// assign RP20 to UART1 RX
RPINR18bits.U1RXR = 20;

// remapping output
// assign function of UART1 TX to port RP21
RPOR10bits.RP21R = 0x3;
```

Universal Asynchroneous Receiver-Transmitter

Baud-rate Generator

Equation 17-1: UART Baud Rate (BRGH = 0)

Baud Rate =
$$\frac{F_{CY}}{16 \times (UxBRG + 1)}$$
.....(1)

$$UxBRG = \frac{F_{CY}}{16 \times Baud\ Rate} - 1 \dots (2)$$

Note: F_{CY} denotes the instruction cycle clock frequency (Fosc/2).

Equation 17-2: UART Baud Rate (BRGH = 1)

Baud Rate =
$$\frac{F_{CY}}{4 \times (UxRRG+1)}$$
(1)

$$UxBRG = \frac{F_{CY}}{A + B_{CY} + B_{CY}} - 1$$
(2)

Note: F_{CY} denotes the instruction cycle clock frequency.

UART Registers

TABLE 4-13: UART1 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	-	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISELO	-	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	-	-	_	-	-	-	_	UTX8			L	JART Transmit Register			XXXX		
U1RXREG	0226	-	-	_	_	-	-	-	URX8			U	ART Receiv	ed Register				0000
U1BRG	0228	Baud Rate Generator Prescaler 4					0000											
A constant																		

Legenia. x - anniown value on reset, — - annipenenieu, read as virreset values are snown in nexadecinis

UART initialization

```
TRISCbits.TRISC4 = 1; // uart1 RX input (RP20)
TRISCbits.TRISC5 = 0; // wart1 TX output (RP21)
// reg UIMODE, see dsh p216
U1MODEbits.UARTEN = 0; // stop it now
U1MODEbits.STSEL = 0; // 1 stop bit
U1MODEbits.PDSEL = 0b00; // 8 bit, no parity
U1MODEbits.BRGH = 0: // 16 clocks per bit period
U1BRG = 64; // (10e6 / (4 * 9600)) - 1
U1STA = 0; // clear status reg
OSCCON = Ox46; OSCCON = Ox57;
OSCCONbits.IOLOCK = 0;
RPOR10bits.RP21R = 0x3:
RPINR18bits.U1RXR = 20;
OSCCON = Ox46: OSCCON = Ox57:
OSCCONbits.IOLOCK = 1;
U1MODEbits.UARTEN = 1: // enable UART peripheral
U1STAbits.UTXEN = 1; // enable TX
```

UART use

```
void UART_PutChar(char c) {
   while (UISTAbits.UTXBF); // Wait for space in UART2 Tx buffer
   UITXREG = c; // Write character to UART2
}
int UART_GetChar() {
   // buffer overrun error
   if(UISTAbits.OERR == 1) {
      UISTAbits.OERR = 0;
      return -1;
   }
   while(UISTAbits.URXDA == 0);
   a = UIRXREG;
   return a;
}
```

Delay Functions

__delay32

Description: Produce a delay of a specified number of clock cycles.

Include: libpic30.h>

Prototype: void __delay32(unsigned long cycles);

Argument: cycles number of cycles to delay

Remarks: None.

Default Behavior: This function will effect a delay of the requested number of cycles. The

minimum supported delay is 12 cycles (an argument of less than 12 will result in 12 cycles). The delay includes the *call* and *return* statements, but not any cycles required to set up the argument (typically this

would be two for a literal value).

File: delay32.s

delay_ms	
Description:	Produce a delay of a specified number of milliseconds (ms).
Include:	<1ibpic30.h>
Prototype:	<pre>voiddelay_ms(unsigned int time);</pre>
Argument:	time number of ms to delay
Remarks:	This function is implemented as a macro.
delay_us	
Description:	Produce a delay of a specified number of microseconds (us).
Include:	libpic30.h>
Prototype:	<pre>voiddelay_us(unsigned int time);</pre>
Argument:	time number of us to delay
Remarks:	This function is implemented as a macro. The minimum delay is equivalent to 12 instruction cycles.

Delay Functions - examples

EXAMPLE 4-3: MILLISECOND DELAY

```
#define FCY 1000000UL
#include <1ibpic30.h>

int main()
{
    /* at 1MHz, these are equivalent */
    __delay_ms(1);
    __delay32(1000);
}
```

EXAMPLE 4-4: MICROSECOND DELAY

```
#define FCY 1000000UL
#include <1ibpic30.h>

int main()
{
    /* at 1MHz, these are equivalent */
    __delay_us(1000);
    __delay32(1000);
}
```

Redirecting stdio

2.13.2 Customizing STDIO

The standard I/O relies on helper functions described in Chapter 4. "Standard C Libraries - Support Functions". These functions include read(), write(), open(), and close() which are called to read, write, open or close handles that are associated with standard I/O FILE pointers. The sources for these libraries are provided for you to customize as you wish.

The simplest way to redirect standard I/O to the pheripheral of your choice is to select one of the default handles already in use. Also, you could open files with a specific name, via fopen(), by rewriting open() to return a new handle to be recognized by read() or write(), as appropriate.

If only a specific peripheral is required, then you could associate handle 1 == stdout, or 2 == stdout, to another peripheral by writing the correct code to talk to the interested peripheral.

```
/* should be in a header file */
enum my_handles {
    handle stdin,
    handle stdout.
    handle stderr,
    handle_can1,
    handle can2.
    handle spil,
    handle_spi2,
};
int __attribute__((__weak__, __section__(".libc"))) open(const char
*name, int access, int mode) {
     switch (name[0]) {
       case 'i' : return handle_stdin;
       case 'o' : return handle stdout;
       case 'e' : return handle stderr;
       case 'c' : return handle can1:
       case 'C' : return handle can2;
       case 's' : return handle spil;
       case 'S' : return handle_spi2;
       default: return handle stderr;
}
```

```
In write(), you would write:
write(int handle, void *buffer, unsigned int len) (
     int i:
     volatile UxMODEBITS *umode = &U1MODEbits:
     volatile UxSTABITS *ustatus = &UISTAbits:
     volatile unsigned int *txreg = &UlTXREG;
     volatile unsigned int *brg = &U1BRG;
     switch (handle)
       default:
       case 0:
       case 1:
       case 2:
          if (( C30 UART != 1) && (&U2BRG)) {
             umode = &U2MODEbits;
             ustatus = &U2STAbits;
             txreq = &U2TXREG;
             brg = &U2BRG;
          if ((umode->UARTEN) == 0)
             *brg = 0;
             umode->UARTEN = 1:
          if ((ustatus->UTXEN) == 0)
             ustatus->UTXEN = 1;
          for (i = len; i; --i)
             while ((ustatus->TRMT) ==0);
             *txreg = *(char*)buffer++;
          break:
       case handle can1: /* code to support can1 */
       case handle_can2: /* code to support can2 */
       case handle_spil: /* code to support spil */
       case handle_spi2: /* code to support spi2 */
          break:
       return(len);
```

Ex. STDIO redirection

Now you can use the generic C STDIO features to write to another port:

```
FILE *can1 = fopen("c","w");
    fprintf(can1,"This will be output through the can\n");
```

Ex. STDIO redirection

```
#include <libpic30.h> /* a new header file for these defintions */
#include <stdio.h>
#include <p33Fxxxx.h>
FOSCSEL (FNOSC PRI ): //External XTAL
_FOSC( POSCMD_HS & IOL1WAY_OFF ); // HS mode, 10-40MHZ + IO mapping lock
_FWDT(FWDTEN_OFF);
main() {
 C30 UART=1:
 OSCCON = 0x46;
 OSCCON = 0x57;
 OSCCONbits.IOLOCK = 0:
 RPOR10bits.RP21R = 0x3;
 RPINR18bits.U1RXR = 20:
 OSCCON = 0x46;
 OSCCON = 0x57:
 OSCCONbits.IOLOCK = 1:
```

Ex. STDIO redirection II.

```
TRISCbits.TRISC4 = 1;  // uart1 RX input (RP20)
TRISCbits.TRISC5 = 0;  // uart1 TX output (RP21)

U1BRG = 64;
U1MODEbits.BRGH = 1;
U1MODEbits.UARTEN = 1;
while (1) {
   __builtin_btg(&LATA,6);
   printf("Hello world %d\n",U1BRG);
}
```

C30 Built-in functions

Built-in functions give the C programmer access to assembler operators or machine instructions that are currently only accessible using inline assembly, but are sufficiently useful that they are applicable to a broad range of applications. Built-in functions are coded in C source files syntactically like function calls, but they are compiled to assembly code that directly implements the function, and do not involve function calls or library routines. Why built-in functions is preferable to inline assembly:

- Providing built-in functions for specific purposes simplifies coding.
- 2. Certain optimizations are disabled when inline assembly is used. This is not the case for built-in functions.
- 3. For machine instructions that use dedicated registers, coding inline assembly while avoiding register allocation errors can require considerable care. The built-in functions make this process simpler as you do not need to be concerned with the particular register requirements for each individual machine instruction.

List of Built-in Functions

Built-In Function List

builtin_addab	builtin_movsac	builtin_tblpage
builtin_add	builtin_mpy	builtin_tbloffset
builtin_btg	builtin_mpyn	builtin_tblrdh
builtin_clr	builtin_msc	builtin_tblrdl
builtin_clr_prefetch	builtin_mulss	builtin_tblwth
builtin_divf	builtin_mulsu	builtin_tblwtl
builtin_divmodsd	builtin_mulus	builtin_write_NVM
builtin_divmodud	builtin_muluu	builtin_write_RTCWEN
builtin_divsd	builtin_nop	builtin_write_OSCCONL
builtin_divud	builtin_psvpage	builtin_write_OSCCONH
builtin_dmaoffset	builtin_psvoffset	
builtin_ed	builtin_readsfr	
builtin_edac	builtin_return_address	
builtin_fbcl	builtin_sac	
builtin_lac	builtin_sacr	
builtin_mac	builtin_sftac	
builtin_modsd	builtin_subab	
builtin_modud	builtin_tbladdress	

Ex. Built-in Functions

builtin btg Description: This function will generate a btg machine instruction. Some examples include: int i; /* near by default */ int 1 _attribute__((far)); struct foo / int bit1:1: | barbits: int bar; void some_bittoggles() { register int j asm("w9"); int k: k = i: __builtin_btg(&i,1); builtin_btg(&j,3); builtin_btg(&k,4); builtin_btg(&1,11); return j+k; Note that taking the address of a variable in a register will produce warning by the compiler and cause the register to be saved onto the stack (so that its address may be taken); this form is not recommended. This caution only applies to variables explicitly placed in registers by the programmer. Prototype: void __builtin_btg(unsigned int *, unsigned int 0xn): Argument: A pointer to the data item for which a bit should be toggled. 0xn A literal value in the range of 0 to 15. Return Value: Returns a btg machine instruction. Assembler Operator / Machine Instruction: Error Messages An error message will be displayed if the parameter values are not within range

Power Saving

- Sleep() all shut down, interrupt possible
- Idle() peripherals operating

Compiler workflow

Integer Data Types

TABLE 5-1: INTEGER DATA TYPES

Туре	Bits	Min	Max
char, signed char	8	-128	127
unsigned char	8	0	255
short, signed short	16	-32768	32767
unsigned short	16	0	65535
int, signed int	16	-32768	32767
unsigned int	16	0	65535
long, signed long	32	-2 ³¹	2 ³¹ - 1
unsigned long	32	0	2 ³² - 1
long long**, signed long long**	64	-2 ⁶³	2 ⁶³ - 1
unsigned long long**	64	0	2 ⁶⁴ - 1

^{**} ANSI-89 extension

Real Data Types

TABLE 5-2: FLOATING POINT DATA TYPES

Туре	Bits	E Min	E Max	N Min	N Max
float	32	-126	127	2 ⁻¹²⁶	2 ¹²⁸
double*	32	-126	127	2 ⁻¹²⁶	2 ¹²⁸
long double	64	-1022	1023	2 ⁻¹⁰²²	2 ¹⁰²⁴

E = Exponent

N = Normalized (approximate)

^{*} double is equivalent to long double if -fno-short-double is used.

Endianity

dsPIC33 family is little-endian

Multibyte quantities are stored in "little endian" format, which means:

- The least significant byte is stored at the lowest address
- The least significant bit is stored at the lowest-numbered bit position

As an example, the long value of 0x12345678 is stored at address 0x100 as follows:

0x100	0x101	0x102	0X103		
0x78	0x56	0x34	0x12		

As another example, the long value of 0x12345678 is stored in registers w4 and w5:

w4	w5				
0x5678	0x1234				

Misc

- device support files
- built-in functions
- standard library
- assembler mixing