

planetmath.org

Math for the people, by the people.

proof of spaces homeomorphic to Baire space

 ${\bf Canonical\ name} \quad {\bf ProofOfSpacesHomeomorphicToBaireSpace}$

Date of creation 2013-03-22 18:46:51 Last modified on 2013-03-22 18:46:51

Owner gel (22282)Last modified by gel (22282)

Numerical id 7

Author gel (22282) Entry type Proof Classification msc 54E50 We show that a topological space X is homeomorphic to Baire space, \mathcal{N} , if and only if the following are satisfied.

- 1. It is a nonempty Polish space.
- 2. It is zero dimensional.
- 3. No nonempty and open subsets are compact.

As Baire space is easily shown to satisfy these properties, we just need to show that if they are satisfied then there exists a homeomorphism $f: \mathcal{N} \to X$. By property ?? there is a complete metric d on X.

We choose subsets $C(n_1, \ldots, n_k)$ of X for integers $k \geq 0$ and n_1, \ldots, n_k satisfying the following.

- (i) $C(n_1, \ldots, n_k)$ is a nonempty clopen set with diameter no more than 2^{-k} .
- (ii) C() = X.
- (iii) For any n_1, \ldots, n_k then $C(n_1, \ldots, n_k, m)$ are pairwise disjoint as m ranges over the natural numbers and,

$$\bigcup_{m=1}^{\infty} C(n_1, \dots, n_k, m) = C(n_1, \dots, n_k).$$
(1)

This can be done inductively. Suppose that $S = C(n_1, \ldots, n_k)$ has already been chosen. As it is open, condition $\ref{thm:prop}$ says that it is not compact. Therefore, there is a $\delta > 0$ such that S has no finite open cover consisting of sets of diameter no more than δ (see http://planetmath.org/ProofThatAMetricSpaceIsCompactIfAndCHowever, as Polish spaces are separable, there is a countable sequence S_1, S_2, \ldots of open sets with diameter less than δ and covering S. As the space is zero dimensional, these can be taken to be clopen. By replacing S_j by $S_j \cap S$ we can assume that $S_j \subseteq S$. Then, replacing by $S_j \setminus \bigcup_{i < j} S_i$, the sets S_j can be taken to be pairwise disjoint.

By eliminating empty sets we suppose that $S_j \neq \emptyset$ for each j, and since S has no finite open cover consisting of sets of diameter less than δ , the sequence S_j will still be infinite. Defining

$$C(n_1, \dots, n_k, n_{k+1}) = S_{n_{k+1}}$$

satisfies the required properties.

We now define a function $f: \mathcal{N} \to X$ such that $f(n) \in C(n_1, \ldots, n_k)$ for each $n \in \mathcal{N}$ and $k \geq 0$. Choose any $n \in \mathcal{N}$ there is a sequence $x_k \in C(n_1, \ldots, n_k)$. This set has diameter bounded by 2^{-k} and, so, $d(x_k, x_j) \leq 2^{-k}$ for $j \geq k$. This sequence is http://planetmath.org/CauchySequenceCauchy and, by completeness of the metric, must converge to a limit x. As $C(n_1, \ldots, n_k)$ is closed, it contains x for each k and therefore

$$\bigcap_{k} C(n_1, \dots, n_k) \neq \emptyset.$$

In fact, as it has zero diameter, this set must contain a single element, which we define to be f(n).

So, we have defined a function $f: \mathcal{N} \to X$. If $m, n \in \mathcal{N}$ satisfy $m_j = n_j$ for $j \leq k$ then f(m), f(n) are both contained in $C(m_1, \ldots, m_k)$ and $d(f(m), f(n)) \leq 2^{-k}$. Therefore, f is continuous.

It only remains to show that f has continuous inverse. Given any $x \in X$ then $x \in C()$ and equation (??) allows us to choose a sequence $n_k \in \mathbb{N}$ such that $x \in C(n_1, \ldots, n_k)$ for each k. Then, f(n) = x showing that f is onto.

If $m \neq n \in \mathcal{N}$ then, letting k be the first integer for which $m_k \neq n_k$, the sets $C(m_1, \ldots, m_k)$ and $C(n_1, \ldots, n_k)$ are disjoint and, therefore, $f(m) \neq f(n)$ and f is one to one.

Finally, we show that f is an open map, so that its inverse is continuous. Sets of the form

$$\mathcal{N}(n_1,\ldots,n_k) = \{m \in \mathcal{N} : m_j = n_j \text{ for } j \leq k\}$$

form a basis for the topology on \mathcal{N} . Then, $f(\mathcal{N}(n_1,\ldots,n_k)) = C(n_1,\ldots,n_k)$ is open and, therefore, f is an open map.