DSBDAL Assignment 2 Shrikrushna Zirape 31284 N2 batch

Data Wrangling II

Create an "Academic performance" dataset of students and perform the following operations using Python.

- 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
- 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
- 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution. Reason and document your approach properly.

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
   from sklearn.preprocessing import LabelEncoder
```

```
In [2]: data = pd.read_csv("StudentsPerformance_modified.csv")
    data.shape
```

Out[2]: (1000, 8)

In [3]: data.describe()

Out[3]:

	reading score	writing score
count	994.000000	991.000000
mean	68.008048	69.487386
std	16.602270	29.563757
min	3.000000	10.000000
25%	58.000000	57.000000
50%	69.500000	69.000000
75%	79.000000	79.000000
max	100.000000	567.000000

```
In [4]: data.head()
```

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72.0	74.0
1	female	group C	some college	standard	completed	69	90.0	88.0
2	female	group B	master's degree	standard	none	90	95.0	93.0
3	male	group A	associate's degree	free/reduced	none	47	57.0	44.0
4	male	group C	some college	standard	none	76	78.0	75.0

```
In [5]: data.dtypes
Out[5]: gender
                                         object
                                         object
        race/ethnicity
        parental level of education
                                         object
        lunch
                                         object
        test preparation course
                                         object
        math score
                                         object
        reading score
                                        float64
                                        float64
        writing score
        dtype: object
In [6]: data['race/ethnicity'].unique()
Out[6]: array(['group B', 'group C', 'group A', 'group D', 'group E'],
              dtype=object)
In [7]: data['parental level of education'].unique()
Out[7]: array(["bachelor's degree", 'some college', "master's degree",
                "associate's degree", 'high school', 'some high school'],
              dtype=object)
In [8]: | data['lunch'].unique()
Out[8]: array(['standard', 'free/reduced'], dtype=object)
In [9]: | data['test preparation course'].unique()
Out[9]: array(['none', 'completed'], dtype=object)
```

```
In [10]: data['math score'].unique()
Out[10]: array(['72', '69', '90', '47', '76', '71', '88', '40', '64', '38', '58',
                  '65', '78', '50', nan, '74', '73', '67', '70', '62', '63', '56',
                  '81', '75', '57', '55', '53', '59', '66', '82', '77', '33', '52',
                  '0', '79', '39', '45', '60', '61', '41', '49', '44', '30', '80',
                 '42', '27', '43', '68', '85', '98', '87', '54', '51', '99', '84'
                 '91', '83', '89', '22', '100', '96', '94', '46', '97', '48', '35', '34', '86', '92', '37', '28', '24', '113', '123', '?', '-89', '26',
                  '334', '95', '36', '29', '32', '93', '19', '23', '8'], dtype=object)
In [11]: | data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1000 entries, 0 to 999
          Data columns (total 8 columns):
           #
               Column
                                               Non-Null Count Dtype
           0
               gender
                                               1000 non-null
                                                                object
           1
                                               1000 non-null
                                                                object
               race/ethnicity
           2
               parental level of education
                                              1000 non-null
                                                                object
           3
               lunch
                                               1000 non-null
                                                                object
           4
               test preparation course
                                               1000 non-null
                                                                object
           5
               math score
                                               992 non-null
                                                                object
           6
               reading score
                                               994 non-null
                                                                float64
           7
               writing score
                                               991 non-null
                                                                float64
          dtypes: float64(2), object(6)
          memory usage: 62.6+ KB
In [12]: |data.isnull().sum()
Out[12]: gender
                                           0
                                           0
          race/ethnicity
          parental level of education
                                           0
          lunch
                                           0
          test preparation course
                                           0
          math score
                                           8
          reading score
                                           6
                                           9
          writing score
          dtype: int64
```

In [13]: data.isnull()

Out[13]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False

995	False	False	False	False	False	False	False	False
996	False	False	False	False	False	False	False	False
997	False	False	False	False	False	False	False	False
998	False	False	False	False	False	False	False	False
999	False	False	False	False	False	False	False	False

1000 rows × 8 columns

In [14]: data2 = data
data2

Out[14]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72.0	74.0
1	female	group C	some college	standard	completed	69	90.0	88.0
2	female	group B	master's degree	standard	none	90	95.0	93.0
3	male	group A	associate's degree	free/reduced	none	47	57.0	44.0
4	male	group C	some college	standard	none	76	78.0	75.0
995	female	group E	master's degree	standard	completed	88	99.0	95.0
996	male	group C	high school	free/reduced	none	62	55.0	55.0
997	female	group C	high school	free/reduced	completed	59	71.0	65.0
998	female	group D	some college	standard	completed	68	78.0	77.0
999	female	group D	some college	free/reduced	none	77	86.0	86.0

1000 rows × 8 columns

Converting Categorical values into Quantitative Values

```
In [15]: encoder = LabelEncoder()
    data2['parental level of education'] = encoder.fit_transform(data2['parental level
    data2['test preparation course'] = encoder.fit_transform(data2['test preparation
    data2['lunch'] = encoder.fit_transform(data2['lunch'])
```

In [16]: data2.head()

Out[16]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	
0	female	group B	1	1	1	72	72.0	74.0	
1	female	group C	4	1	0	69	90.0	88.0	
2	female	group B	3	1	1	90	95.0	93.0	
3	male	group A	0	0	1	47	57.0	44.0	
4	male	group C	4	1	1	76	78.0	75.0	

Handling Missing Values

```
In [17]: data2.isnull().sum()
Out[17]: gender
                                          0
         race/ethnicity
                                          0
         parental level of education
                                          0
                                          0
                                          0
         test preparation course
         math score
                                          8
         reading score
                                          6
         writing score
                                          9
         dtype: int64
In [19]: import missingno as msno
```

In [20]: msno.matrix(data2)

Out[20]: <AxesSubplot:>


```
In [21]: data2.dtypes
Out[21]: gender
                                          object
         race/ethnicity
                                          object
         parental level of education
                                           int32
         lunch
                                           int32
                                           int32
         test preparation course
         math score
                                          object
         reading score
                                         float64
         writing score
                                         float64
         dtype: object
In [25]: data2['math score'] = data2["math score"].apply(pd.to_numeric, errors='coerce')
In [26]: data2['reading score']=data2['reading score'].fillna(data2['reading score'].media
```

```
In [27]: data2['writing score']=data2['writing score'].fillna(data2['writing score'].media
In [28]: | data2['math score']=data2['math score'].fillna(data2['math score'].median())
In [29]: data2.isnull().sum()
Out[29]: gender
                                         0
         race/ethnicity
                                         0
         parental level of education
                                         0
         lunch
                                         0
         test preparation course
                                         0
         math score
                                         0
         reading score
                                         0
         writing score
                                         0
         dtype: int64
In [30]: data2.dtypes
Out[30]: gender
                                          object
                                          object
         race/ethnicity
         parental level of education
                                           int32
                                           int32
         lunch
         test preparation course
                                           int32
                                         float64
         math score
                                         float64
         reading score
                                         float64
         writing score
         dtype: object
```

In [31]: | sns.distplot(data2['writing score'])

c:\users\lenovo\appdata\local\programs\python\python39\lib\site-packages\seabor n\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `disp lot` (a figure-level function with similar flexibility) or `histplot` (an axeslevel function for histograms).

warnings.warn(msg, FutureWarning)

Out[31]: <AxesSubplot:xlabel='writing score', ylabel='Density'>

In [32]: sns.distplot(data2['reading score'])

c:\users\lenovo\appdata\local\programs\python\python39\lib\site-packages\seabor n\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `disp lot` (a figure-level function with similar flexibility) or `histplot` (an axeslevel function for histograms).

warnings.warn(msg, FutureWarning)

Out[32]: <AxesSubplot:xlabel='reading score', ylabel='Density'>


```
In [33]: sns.distplot(data2['math score'])
```

c:\users\lenovo\appdata\local\programs\python\python39\lib\site-packages\seabor n\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `disp lot` (a figure-level function with similar flexibility) or `histplot` (an axeslevel function for histograms).

warnings.warn(msg, FutureWarning)

Out[33]: <AxesSubplot:xlabel='math score', ylabel='Density'>


```
In [34]: num_cols = ['test preparation course', 'math score', 'reading score', 'writing score']
```

In [36]: for col in num_cols :
 plt.figure(figsize = (17,5)) sns.boxplot(data=data2, x = col) 0.0 0.2 0.8 1.0 test preparation course 300 -100 200 math score reading score 300 writing score 100

```
In [37]: data2.dtypes
Out[37]: gender
                                          object
                                          object
         race/ethnicity
         parental level of education
                                           int32
         lunch
                                           int32
         test preparation course
                                           int32
         math score
                                         float64
         reading score
                                         float64
         writing score
                                         float64
         dtype: object
In [38]: ### getting interquartile range (IQR) to get variation of outliers:
         Q1=data2.quantile(0.25)
         Q3=data2.quantile(0.75)
         iq_range=Q3-Q1
         iq_range
Out[38]: parental level of education
                                          3.0
         lunch
                                          1.0
         test preparation course
                                          1.0
         math score
                                         19.0
         reading score
                                         21.0
         writing score
                                         21.0
         dtype: float64
In [39]: | for i in ["math score", "reading score", "writing score"]:
             q1 = data2[i].quantile(0.25)
             q2 = data2[i].median()
             q3 = data2[i].quantile(0.75)
             iqr = q3 - q1
             lower_limit = q1 - 1.5 * iqr
             upper_limit = q3 + 1.5 * iqr
             lower outliers = data2[i] < lower limit</pre>
             upper_outliers = data2[i] > upper_limit
             data2[i] = data2[i][~(lower_outliers | upper_outliers)]
         data2.dropna(inplace=True)
In [40]: |data2.shape
```

Out[40]: (960, 8)

```
In [42]: data2.boxplot(column=["math score", "reading score", "writing score"])
```

Out[42]: <AxesSubplot:>


```
In [43]: data3 =data2[["math score", "reading score", "writing score"]]
```

In [44]: data3.describe()

Out[44]:

	math score	reading score	writing score
count	960.000000	960.000000	960.000000
mean	66.598958	69.498958	68.490625
std	14.140093	14.079119	14.536421
min	29.000000	28.000000	27.000000
25%	58.000000	60.000000	58.000000
50%	66.000000	70.000000	69.000000
75%	76.000000	79.000000	79.000000
max	100.000000	100.000000	100.000000

```
In [45]: dfzscore = (data3 - data3.mean()) / data3.std()
print(dfzscore.describe())
```

```
math score reading score writing score
count 9.600000e+02
                    9.600000e+02
                                    9.600000e+02
mean
       3.312165e-16 -7.031412e-17
                                    4.033810e-16
std
      1.000000e+00
                     1.000000e+00
                                    1.000000e+00
min
      -2.659032e+00 -2.947554e+00 -2.854253e+00
25%
     -6.081260e-01 -6.746842e-01 -7.216787e-01
      -4.235887e-02
                     3.558757e-02
50%
                                    3.504129e-02
75%
       6.648501e-01
                     6.748321e-01
                                    7.229686e-01
       2.362151e+00
                     2.166403e+00
max
                                    2.167616e+00
```

In [46]: dfzscore.boxplot()

Out[46]: <AxesSubplot:>


```
In [47]: dfminmax = (data3 - data3.min()) / (data3.max() - data3.min())
print(dfminmax.describe())
```

	math score	reading score	writing score
count	960.000000	960.000000	960.000000
mean	0.529563	0.576374	0.568365
std	0.199156	0.195543	0.199129
min	0.000000	0.000000	0.000000
25%	0.408451	0.44444	0.424658
50%	0.521127	0.583333	0.575342
75%	0.661972	0.708333	0.712329
max	1.000000	1.000000	1.000000

In [48]: dfminmax.boxplot()

Out[48]: <AxesSubplot:>

In [49]: data3.head()

Out[49]:

	math score	reading score	writing score
0	72.0	72.0	74.0
1	69.0	90.0	88.0
2	90.0	95.0	93.0
3	47.0	57.0	44.0
4	76.0	78.0	75.0

In []:	
In []:	

```
In [74]: ### removing outliers using z-score.
### Any z-score greater than 3 or less than -3 is considered to be an outlier.
from scipy import stats
numeric_columns=["math score", "reading score", "writing score"]
z=np.abs(stats.zscore(data2[numeric_columns]))
print(z)

threshold1=-3
threshold2=3

# print(np.where(((z>threshold1) & (z<threshold2)), z))
# print(np.where(((z>threshold1) & (z<threshold2))))
z[(z>threshold1) & (z<threshold2)]</pre>
```

	math score	reading score	writing score
0	0.318347	0.240745	0.153558
1	0.150502	1.328723	0.629496
2	1.325422	1.630939	0.799474
3	1.080367	0.665903	0.866309
4	0.542142	0.603404	0.187554
		• • •	• • •
995	1.213525	1.872711	0.867465
996	0.241138	0.786789	0.492358
997	0.408984	0.180302	0.152402
998	0.094553	0.603404	0.255545
999	0.598090	1.086950	0.561505

[1000 rows x 3 columns]

Out[74]:

	math score	reading score	writing score
0	0.318347	0.240745	0.153558
1	0.150502	1.328723	0.629496
2	1.325422	1.630939	0.799474
3	1.080367	0.665903	0.866309
4	0.542142	0.603404	0.187554
995	1.213525	1.872711	0.867465
996	0.241138	0.786789	0.492358
997	0.408984	0.180302	0.152402
998	0.094553	0.603404	0.255545
999	0.598090	1.086950	0.561505

1000 rows × 3 columns

In []: