1.Read the given three CSV les to different pandas dataframes

```
import pandas as pd
x = pd.read_csv("Customers.csv")
y = pd.read_csv("Continent.csv")
z = pd.read_csv("Transaction.csv")
```

x.head()

	customer_id	region_id	start_date	end_date
0	1	3	02-01-2020	03-01- 2020
1	2	3	03-01-2020	17-01- 2020
2	3	5	27-01-2020	18-02- 2020
3	4	5	07-01-2020	19-01- 2020
4	5	3	15-01-2020	23-01- 2020

y.head()

	region_id	region_name
0	1	Australia
1	2	America
2	3	Africa
3		Asia
4	5	Europe

z.head()

	customer_id	txn_date	txn_type	txn_amount
0	429	21-01-2020	deposit	82
1	155	10-01-2020	deposit	712
2	398	01-01-2020	deposit	196
3	255	14-01-2020	deposit	563
4	185	29-01-2020	deposit	626

? 2. Merge the Customers and Transaction into a single dataframe.

merge_df = pd.merge(x,z)
print(merge_df.head())

```
customer_id region_id start_date end_date
                                                txn_date
                                                           txn_type
0
            1
                     3 02-01-2020 03-01-2020 02-01-2020 deposit
1
                      3 02-01-2020 03-01-2020 05-03-2020 purchase
            1
2
            1
                      3 02-01-2020 03-01-2020 17-03-2020 deposit
3
                      3 02-01-2020 03-01-2020 19-03-2020 purchase
4
            1
                      3 04-01-2020 14-01-2020 02-01-2020 deposit
  txn_amount
0
         312
1
         612
2
         324
3
         664
4
         312
```

3. Calculate the duration in days between start date and end date.

```
x['start_date'] = pd.to_datetime(x['start_date'],format='%d-%m-%Y', errors='coerce')
x['end_date'] = pd.to_datetime(x['end_date'],format='%d-%m-%Y', errors='coerce')
x['duration'] = (x['end_date']- x['start_date']).dt.days
x.head()
```

→		customer_id	region_id	start_date	end_date	duration
	0	1	3	2020-01-02	2020-01-03	1.0
	1	2	3	2020-01-03	2020-01-17	14.0
	2	3	5	2020-01-27	2020-02-18	22.0
	3	4	5	2020-01-07	2020-01-19	12.0
	4	5	3	2020-01-15	2020-01-23	8.0

2 4. Drop the duplicate rows in the merged dataframe if any.

```
merge_df = merge_df.drop_duplicates()
print(merge_df.head())
₹
       customer_id region_id start_date
                                          end_date
                                                     txn_date txn_type
    0
                            3 2020-01-02 2020-01-03 02-01-2020
                 1
                                                                deposit
    1
                 1
                            3 2020-01-02 2020-01-03 05-03-2020 purchase
     2
                 1
                            3 2020-01-02 2020-01-03 17-03-2020
                                                               deposit
     3
                 1
                            3 2020-01-02 2020-01-03
                                                    19-03-2020 purchase
                 1
                            3 2020-01-04 2020-01-14 02-01-2020
                                                                 deposit
       txn_amount date_difference date_difference_in_days
              312
    0
                                                      1.0
                          1 days
    1
              612
                          1 days
                                                      1.0
     2
              324
                                                      1.0
                          1 days
                          1 days
     3
              664
                                                      1.0
              312
    4
                          10 days
                                                     10.0
```

5. Drop rows with missing values in the merged dataframe if any

```
merge_df = merge_df.dropna()
print(merge_df.head())
 ₹
        customer_id region_id start_date end_date
                                                     txn_date txn_type \
     0
                            3 2020-01-02 2020-01-03 02-01-2020 deposit
     1
                            3 2020-01-02 2020-01-03 05-03-2020 purchase
     2
                 1
                            3 2020-01-02 2020-01-03 17-03-2020
                                                               deposit
     3
                 1
                           3 2020-01-02 2020-01-03 19-03-2020 purchase
                            3 2020-01-04 2020-01-14 02-01-2020 deposit
                 1
        txn_amount date_difference date_difference_in_days
     0
               312
                          1 days
                                                      1.0
              612
                          1 days
                                                      1.0
     2
              324
                          1 days
                                                      1.0
     3
              664
                          1 days
                                                     1.0
              312
     4
                       10 days
                                                     10.0
121 6. Calculate the average duration of each customer.
average_duration = merge_df.groupby('customer_id')['date_difference_in_days'].mean()
print(average_duration)
     customer id
           11.500000
     1
     2
           10.833333
     3
           13.833333
           13.333333
     4
            7.500000
              . . .
     496
            7.333333
     497
           18.666667
     498
           11.833333
     499
            4.333333
```

? 7. Display the unique transaction types

Name: date_difference_in_days, Length: 500, dtype: float64

500

14.000000

2 8.Display the count of each transaction type with respect to each continent.

```
transac_counts = merge_df.groupby(['region_id', 'txn_type']).size().reset_index(name='Count')
print(transac_counts)
```

₹		region_id	txn_type	Count
	0	1	deposit	3474
	1	1	purchase	2280
	2	1	withdrawal	2052
	3	2	deposit	3480
	4	2	purchase	2022

```
5
          2 withdrawal
                         2046
6
               deposit 3222
              purchase 2004
8
          3 withdrawal 1986
9
          4
               deposit 3156
         4 deposit 3130
4 purchase 1842
10
             deposit 2694
11
         4 withdrawal 1818
12
13
               purchase 1554
         5 withdrawal 1578
14
```

9. Find out the selling cost average for packages developed in Pascal

```
software_df = pd.read_csv('Software.csv')
print(software_df.head())
₹
         PNAME
                       TITLE DEVELOPIN
                                        SCOST DCOST SOLD
    0
         MARY
                      README CPP 300.00
                                                        84
                                               1200
         ANAND
                  PARACHUTES
                                BASIC 399.95
                                               6000
                                                        43
        ANAND VIDEO TITLING PASCAL 7500.00 16000
                              COBOL 3000.00 3500
    3 JULIANA
                  INVENTORY
                                                         0
                PAYROLL PKG.
       KAMALA
                                DBASE 9000.00 20000
sellavg = software_df.groupby('DEVELOPIN')['SCOST'].mean()
pascal = software df[software df['DEVELOPIN']=='PASCAL']
pascalavg = pascal['SCOST'].mean()
print('The average selling cost for packages developed in Pascal is:',pascalavg)
→ The average selling cost for packages developed in Pascal is: 3066.65
```

10. Display the names of those who have done the DAP Course.

int64

```
stu_df = pd.read_csv('Studies.csv')
print(stu df.head())
₹
         PNAME INSTITUTE COURSE COURSE FEE
    0
        ANAND
              SABHARI PGDCA
                                 4500
    1
        ALTAF
                  COIT
                        DCA
                                   7200
    2 JULIANA
                  BDPS
                         MCA
                                  22000
       KAMALA PRAGATHI
                        DCA
    3
                                   5000
    4
              SABHARI PGDCA
                                   4500
         MARY
```

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 13 entries, 0 to 12
    Data columns (total 4 columns):
    # Column
                  Non-Null Count Dtype
                   13 non-null
    0
        PNAME
                                 object
    1 INSTITUTE 13 non-null
                                 object
     2
                  13 non-null
                                 object
```

3 COURSE FEE 13 non-null dtypes: int64(1), object(3) memory usage: 544.0+ bytes

COURSE

stu_df.info()

```
stu_df['COURSE']
          PGDCA
    1
           DCA
     2
            MCA
            DCA
         PGDCA
     5
            DAP
     6
           DCAP
          HDCA
    8
          PGDCA
          DCAP
    10
           DCS
    11
            DAP
    12
            DCA
    Name: COURSE, dtype: object
```

stu_df[stu_df["COURSE"]=="DAP"]

₹

PNAME INSTITUTE COURSE COURSE FEE

5	NELSON	PRAGATHI	DAP	6200
11	REVATHI	SABHARI	DAP	5000

11. Display the lowest course fee.

```
min_coursefee = stu_df['COURSE FEE'].min()
min_coursefee
```

₹ 4500

12. Display the details of the packages for which development costs have been recoverd

```
earnings = software_df['SCOST']*software_df["SOLD"]
software_df[earnings>=software_df['DCOST']]
```

	PNAME	TITLE	DEVELOPIN	SCOST	DCOST	SOLD
0	MARY	README	CPP	300.00	1200	84
1	ANAND	PARACHUTES	BASIC	399.95	6000	43
2	ANAND	VIDEO TITLING	PASCAL	7500.00	16000	9
4	KAMALA	PAYROLL PKG.	DBASE	9000.00	20000	
6	MARY	CODE GENERATOR	С	4500.00	20000	23
7	PATTRICK	README	CPP	300.00	1200	84
8	QADIR	BOMBS AWAY	ASSEMBLY	750.00	3000	11
9	QADIR	VACCINES	С	1900.00	3100	21
10	RAMESH	HOTEL MGMT.	DBASE	13000.00	35000	4
11	RAMESH	DEAD LEE	PASCAL	599.95	4500	73
12	REMITHA	PC UTILITIES	С	725.00	5000	51
13	REMITHA	TSR HELP PKG.	ASSEMBLY	2500.00	6000	7
15	VIJAYA	TSR EDITOR	С	900.00	700	6

13. What is the cost of the costliest software development in Basic.

```
software_df[software_df['DEVELOPIN']=='BASIC']
software_df[software_df['DEVELOPIN']=='BASIC']['DCOST'].max()
```

→ 6000

14. how many programmers paid 5000 to 10000 for their course.

```
prog_df = pd.read_csv("Programmer.csv")
print(prog_df)
```

PNAME DOB DOJ GENDER PROF1 PROF2 SALARY ANAND 12-Apr-66 21-Apr-92 M PASCAL BASIC 3200

```
ALTAF 02-Jul-64 13-Nov-90 M
1
                                                                     CLIPPER
                                                                                       COBOL
                                                                                                         2800
         JULIANA 31-Jan-60 21-Apr-90 F
KAMALA 30-Oct-68 02-Jan-92 F
MARY 24-Jun-70 01-Feb-91 F
        JULIANA 31-Jan-60 21-Apr-90
                                                                                        DBASE
2
                                                                        COBOL
                                                                                                        3000
                                                                                        DBASE
                                                                                                       2900
3
                                                                              С
                                                                             CPP ORACLE 4500
4
      NELSON 11-Sep-85 11-Oct-89 M COBOL DBASE
PATTRICK 10-Nov-65 21-Apr-90 M PASCAL CLIPPER
QADIR 31-Aug-65 21-Apr-91 M ASSEMBLY C
                                                                                                       2500
6
                                                                                                      2800
                                                                                                       3000
8 RAMESH 03-May-67 28-Feb-91 M PASCAL DBASE
9 REBECCA 01-Jan-67 01-Dec-90 F BASIC COBOL
10 REMITHA 19-Apr-70 20-Apr-93 F C ASSEMBLY
11 REVATHI 02-Dec-69 02-Jan-92 F PASCAL BASIC
12 VIJAYA 14-Dec-65 02-May-92 F FOXPRO C
                                                                                                        3200
                                                                                                         2500
                                                                         C ASSEMBLY
                                                                                                        3600
                                                                                                        3700
                                                                                                         3500
```

n_programmers = prog_df[(prog_df["SALARY"]>5000) & (prog_df["SALARY"]<10000)]
print("no.of programmers paid between 5000 to 10000:",len(n_programmers))</pre>

no.of programmers paid between 5000 to 10000: 0

2 15. How many programmers know either COBOL or Pascal

```
co_pas = prog_df[(prog_df['PROF1']=='COBOL')| (prog_df['PROF2']=='COBOL') | (prog_df['PROF1']=='PASC
co_pas
print("Programmers know either cobol or pascal:", len(co_pas))
```

Programmers know either cobol or pascal: 8