*6-16.

If the maximum force that any member can support is 4 kN in tension and 3 kN in compression, determine the maximum force P that can be applied at joint B. Take d = 1 m.

SOLUTION

Support Reactions:

$$\zeta + \Sigma M_E = 0;$$
 $P(2d) - A_y \left(\frac{3}{2}d\right) = 0$ $A_y = \frac{4}{3}P$

$$+\uparrow \Sigma F_y = 0;$$
 $\frac{4}{3}P - E_y = 0$ $E_y = \frac{4}{3}P$

$$\stackrel{+}{\Rightarrow} \Sigma F_x = 0; \qquad E_x - P = 0 \qquad E_x = P$$

Method of Joints: By inspection of joint C, members CB and CD are zero force members. Hence

$$F_{CR} = F_{CD} = 0$$

Joint A:

$$+\uparrow \Sigma F_y = 0;$$
 $F_{AB} \left(\frac{1}{\sqrt{3.25}} \right) - \frac{4}{3} P = 0$ $F_{AB} = 2.404 P \text{ (C)}$

$$\pm \Sigma F_x = 0;$$
 $F_{AF} - 2.404P\left(\frac{1.5}{\sqrt{3.25}}\right) = 0$ $F_{AF} = 2.00P$ (T)

Joint B:

$$+ \uparrow \Sigma F_y = 0; \qquad 2.404 P \left(\frac{1}{\sqrt{3.25}} \right) + F_{BD} \left(\frac{1}{\sqrt{1.25}} \right) - F_{BF} \left(\frac{1}{\sqrt{1.25}} \right) = 0$$

$$1.333 P + 0.8944 F_{BD} - 0.8944 F_{BF} = 0$$

Solving Eqs. (1) and (2) yield,

$$F_{BF} = 1.863P \text{ (T)}$$
 $F_{BD} = 0.3727P \text{ (C)}$

Joint F:

$$+\uparrow \Sigma F_y = 0;$$
 $1.863P\left(\frac{1}{\sqrt{1.25}}\right) - F_{FE}\left(\frac{1}{\sqrt{1.25}}\right) = 0$

$$F_{FE} = 1.863P \text{ (T)}$$

$$\Rightarrow \Sigma F_x = 0;$$
 $F_{FD} + 2 \left[1.863 P \left(\frac{0.5}{\sqrt{1.25}} \right) \right] - 2.00 P = 0$

$$F_{FD} = 0.3333P (T)$$

Joint D:

$$+\uparrow \Sigma F_y = 0;$$
 $F_{DE}\left(\frac{1}{\sqrt{1.25}}\right) - 0.3727P\left(\frac{1}{\sqrt{1.25}}\right) = 0$

$$F_{DE} = 0.3727P(C)$$

$$\Rightarrow \Sigma F_y = 0;$$
 $2 \left[0.3727 P \left(\frac{0.5}{\sqrt{1.25}} \right) \right] - 0.3333 P = 0 (Check!)$

From the above analysis, the maximum compression and tension in the truss members are 2.404P and 2.00P, respectively. For this case, compression controls which requires

$$2.404P = 3$$

$$P = 1.25 \text{ kN}$$

Ans:

P = 1.25 kN

(2)

7–74.

Draw the shear and moment diagrams for the beam.

SOLUTION

Support Reactions:

$$\zeta + \Sigma M_A = 0;$$
 $F_C(\frac{3}{5})(4) - 500(2) - 500(1) = 0$ $F_C = 625 \text{ N}$
 $+ \uparrow \Sigma F_y = 0;$ $A_y + 625(\frac{3}{5}) - 500 - 500 = 0$ $A_y = 625 \text{ N}$

Ans:

$$x = 2^+$$

 $V = -375 \text{ N}$
 $M = 750 \text{ N} \cdot \text{m}$

Ans.

Ans.

17-77.

The disk has a mass of 20 kg and is originally spinning at the end of the strut with an angular velocity of $\omega=60\,\mathrm{rad/s}$. If it is then placed against the wall, where the coefficient of kinetic friction is $\mu_k=0.3$, determine the time required for the motion to stop. What is the force in strut BC during this time?

SOLUTION

$$\frac{+}{\to} \Sigma F_x = m(a_G)_x; \qquad F_{CB} \sin 30^\circ - N_A = 0
+ \uparrow \Sigma F_y = m(a_G)_y; \qquad F_{CB} \cos 30^\circ - 20(9.81) + 0.3N_A = 0
\zeta + \Sigma M_B = I_B \alpha; \qquad 0.3N_A (0.15) = \left[\frac{1}{2}(20)(0.15)^2\right] \alpha
N_A = 96.6 \text{ N}
F_{CB} = 193 \text{ N}
\alpha = 19.3 \text{ rad/s}^2$$

 $\alpha = 19.3 \text{ rad/s}^2$ $\zeta + \qquad \omega = \omega_0 + \alpha_c t$ 0 = 60 + (-19.3) t t = 3.11 s

20(9.81) N P C X NA FG = 0.3 NA

Ans:

 $F_{CB} = 193 \text{ N}$ t = 3.11 s

*16-116.

At a given instant the slider block A is moving to the right with the motion shown. Determine the angular acceleration of link AB and the acceleration of point B at this instant.

SOLUTION

General Plane Motion. The IC of the link can be located using \mathbf{v}_A and \mathbf{v}_B , which in this case is at infinity as shown in Fig. a. Thus

$$r_{A/IC} = r_{B/IC} = \infty$$

Then the kinematics gives

$$v_A = \omega r_{A/IC}; \quad 4 = \omega (\infty) \quad \omega = 0$$

 $v_B = v_A = 4 \text{ m/s}$

Since *B* moves along a circular path, its acceleration will have tangential and normal components. Hence $(a_B)_n = \frac{v_B^2}{r_B} = \frac{4^2}{2} = 8 \text{ m/s}^2$

Applying the relative acceleration equation by referring to Fig. b,

$$\mathbf{a}_{B} = \mathbf{a}_{A} + \alpha \times \mathbf{r}_{B/A} - \omega^{2} \mathbf{r}_{B/A}$$

$$(a_{B})_{t} \mathbf{i} - 8\mathbf{j} = 6\mathbf{i} + (\alpha \mathbf{k}) \times (-2\cos 30^{\circ} \mathbf{i} - 2\sin 30^{\circ} \mathbf{j}) - 0$$

$$(a_{B})_{t} \mathbf{i} - 8\mathbf{j} = (\alpha + 6)\mathbf{i} - \sqrt{3}\alpha\mathbf{j}$$

Equating i and j componenets,

$$-8 = -\sqrt{3}\alpha; \quad \alpha = \frac{8\sqrt{3}}{3} \operatorname{rad/s^2} = 4.62 \operatorname{rad/s^2}$$

$$(a_B)_t = \alpha + 6; \quad (a_B)_t = \frac{8\sqrt{3}}{3} + 6 = 10.62 \operatorname{m/s^2}$$
Ans.

Thus, the magnitude of \mathbf{a}_B is

$$a_B = \sqrt{(a_B)_t^2 + (a_B)_n^2} = \sqrt{10.62^2 + 8^2} = 13.30 \text{ m/s}^2 = 13.3 \text{ m/s}^2$$
 Ans.

And its direction is defined by

$$\theta = \tan^{-1} \left[\frac{(a_B)_n}{(a_B)_t} \right] = \tan^{-1} \left(\frac{8}{10.62} \right) = 36.99^\circ = 37.0^\circ$$

Ans: $\alpha_{AB} = 4.62 \text{ rad/s}^2$ $\alpha_{AB} = 13.3 \text{ m/s}^2$ $\alpha_{AB} = 37.0^{\circ} \text{ A}$