Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Инженерно-технические средства защиты информации»

КУРСОВАЯ РАБОТА

«Проектировать системы защиты от утечки информации по различным источникам»

Выполнил:
Бульба Н.А., студент группы N34481
breits
(подпись)
Проверил:
Попов И.Ю., к.т.н., доцент ФБИТ
(отметка о выполнении)
(подпись)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студент	Бульба Никита Ален	ульба Никита Александрович			
		(фамилия И.О.)			
Факультет	Безопасность Ин	Безопасность Информационных Технологий			
Группа	N34481				
Направление (Направление (специальность) 10.03.01 (Технологии защиты информации 2020)				
Руководитель	Попов Илья Юрь	Попов Илья Юрьевич, к.т.н., доцент ФБИТ			
		(Фамилия И.О., должность, ученое звание, степень)			
Дисциплина	Инженерно-техн	Инженерно-технические средства защиты информации			
Наименование темы Разработка комплекса инженерно-технической защиты информации в помещении					
Задание	Разработка комп.	Разработка комплекса инженерно-технической защиты информации в помещении			

Краткие методические указания

- 1. Курсовая работа выполняется в рамках изучения дисциплины «Инженерно-технические средства защиты информации»;
- 2. Порядок выполнения и защиты курсовой работы представлен в методических указаниях, размещенных на коммуникационной площадке дисциплины;
- 3. Объект исследований курсовой работы ограничивается заданным помещением.

Содержание пояснительной записки

- 1. Введение
- Анализ организации
- 3. Оценка угроз
- 4. Анализ руководящих документов
- 5. Выбор средств защиты информации
- 6. Расположение средств защиты

Рекомендуемая литература

	ская защита информации: учеб. счки информации. М.: НПЦ «А	. пособие для студентов вузов. В 3-х т. Т. 1. Аналитика», 2010 436
Руководитель		
		(Подпись, дата)
Студент	Cress	
		(Подпись, дата)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ГРАФИК ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ

Студент	Бульба Н	Бульба Никита Александрович		
•			(фамилия И.О.)	
Факультет	Безопа	Безопасность Информационных Технологий		
Группа	N3448	31		
Направление (специальность) 10.03.01 (Технологии защиты информации 2020)			10.03.01 (Технологии защиты информации 2020)	
Руководитель	итель Попов Илья Юрьевич, к.т.н., доцент ФБИТ		ич, к.т.н., доцент ФБИТ	
	(Фамилия И.О., должность, ученое звание, степень)			
Дисциплина	Инже	Инженерно-технические средства защиты информации		
Наименование темы Разработка комплекса инженерно-технической защиты информации в помещении				

№	Наименование этапа	Дата за	Оценка и	
п/	паименование этапа	Планируем ая	Фактическая	подпись руководите
		471		ля
1	Разработка и утверждение задания и календарного плана на курсовую работу	01.10.2023	01.11.2023	
2	Анализ источников	01.11.2023	10.12.2023	
3	Написание отчета	15.11.2023	15.12.2023	
4	Представление выполненной курсовой работы	01.12.2023	19.12.23	

Руководитель			
		(Подпись, дата)	
Студент	Crep		
		(Полпись, лата)	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

АННОТАЦИЯ НА КУРСОВУЮ РАБОТУ

Студент бу	льоа пикита Александрович			
	(фамилия И.О.)			
Факультет	Безопасность Информационных Технологий			
Группа	N34481			
Направление (спе	равление (специальность) 10.03.01 (Технологии защиты информации 2020)			
Руководитель	Попов Илья Юрьевич, к.т.н., доцент ФБИТ			
	(Фамилия И.О., должность, ученое звание, степень)			
Дисциплина -	Инженерно-технические средства защиты информации			
Наименование тем	мы Разработка комплекса инженерно-технической защиты информации в помещении			
	ХАРАКТЕРИСТИКА КУРСОВОГО ПРОЕКТА (РАБОТЫ)			
Цель и задачи работы				
Характер работы Конструирование				
7. Введение 8. Анализ организации 9. Оценка угроз 10. Анализ руководящих документов 11. Выбор средств защиты информации 12. Расположение средств защиты 13. Заключение 14. Список используемых источников				
Руководитель				
Студент	ous			
·	 12. Расположение средств защиты 13. Заключение 14. Список используемых источников В результате работы был произведен комплексный анализ возможных технических каналов утечки информации в предложенных помещениях, предложены меры пассивной и активной защиты информации. 			

СОДЕРЖАНИЕ

Вве	едение	6
1	Анализ организации	7
1	.1 Общее описание	7
1	.2 Информационные потоки	7
1	.3 Защищаемое помещение	8
2	Оценка угроз	11
2	2.1 Оптический канал утечки	11
2	2.2 Акустический, виброакустический каналы	11
2	2.3 Электромагнитны канал	11
2	2.4 Закладные устройства	12
3	анализ руководящих документов	13
3	3.1 Перечень руководящих документов:	13
3	3.2 Требования к составу мер защиты	14
4	выбор средств защиты информации	16
4	1.1 Защита оптического канала	16
4	1.1 Защита акустического и виброакустического каналов	16
4	1.1 Защита электромагнитного канала	19
4	1.2 Защита от закладных устройств	22
5	расположение средств защиты	27
Зак	лючение	28
Спи	исок использованных источников	29

ВВЕДЕНИЕ

Цель работы – провести мероприятия по организации защиты рассматриваемого помещения.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ защищаемого помещения;
- провести оценку каналов утечки информации;
- выбрать меры активной и пассивной защиты информации.

1 АНАЛИЗ ОРГАНИЗАЦИИ

1.1 Общее описание

Наименование организации: "Инновационные Технологии и Безопасность (ИТБ)"

Область деятельности: специализированные разработки в области информационных технологий с акцентом на создание секретного программного обеспечения.

Тип взаимодействия: организация работает в формате B2B и B2G, предоставляя свои уникальные разработки и экспертизу в области информационной безопасности для других корпораций и государственных учреждений.

С увеличением объема государственных заказов руководство ООО "ИТБ" осознало важность надежной защиты информации, в особенности информации, которая относится к государственной тайне уровня "секретно". Работая в формате В2G, мы осознаем необходимость обеспечения офисного помещения техническими средствами защиты информации.

1.2 Информационные потоки

Внутренняя структура организации "ИТБ" представляет собой слаженную систему, нацеленную на эффективную разработку секретного программного обеспечения (ПО) с учетом требующихся стандартов безопасности.

Разработка подразделена на небольшие группы, каждая из которых фокусируется на отдельных проектах.

Взаимодействие с заказчиками осуществляется через отдел продаж, где специалисты по связям обеспечивают эффективное взаимопонимание, снижая распространенность сведений конфиденциального характера.

Отдел HR занимается подбором и управлением персоналом, включая обеспечение безопасности информации при приеме и увольнении сотрудников.

Финансовый отдел занимается финансовым планированием и контролем, включая вопросы финансирования проектов.

Разработанная схема информационных потоков, представлен на рисунке 1, наглядно демонстрирует направление информации в организации. Красным выделен контур, по которому передаются сведения, составляющие государственную тайну, обеспечивая их защищенность и минимизацию доступа к ним внутри организации. Зеленым выделен периметр организации.

Рисунок 1 – Схема организационной структуры предприятия

Рисунок 2 – Схема информационных потоков в организации

1.3 Защищаемое помещение

Офис нашей организации находится на 5 этаже в 7 этажном здании, сверху и снизу находятся другие арендуемые офисы, на северной стороне расположены окна, которые выходят на улицу, напротив расположены другие офисные здания, южная стена граничит с другими арендуемыми офисами в здании, а западная и восточные стены частично выходят на улицы, на которых расположены другие офисные здания и частично граничат с другими помещениями офисного здания. Стены здания и внутренние перегородки железобетонные с толщиной не менее 10 см.

Доступ к помещениям здания ограничен системой контроля и управления доступом. Доступ в здание и общие помещения здания имеют все сотрудники компаний, арендующих помещения в здании, доступ в офис нашей организации имеют только наши сотрудники.

Арендуемое помещение состоит из:

- два внутренних коридоров;
- складского помещения;

- серверной;
- зала для конференций (переговорная);
- open-space рабочая зона;
- зона для ведения закрытых разработок.

Работа со сведениями содержащими государственную тайну будет осуществляться в зоне для ведения закрытых разработок, также в зале для конференций (переговорной), будут происходить совещания, связанные с разработками данного типа.

План помещения предоставлен на рисунке 2, также на нем будут представлено описание элементы на плане, список комнат и их площадей приведены в таблице 1.

Рисунок 3 – План здания с описанием

Таблица 1 – Комнаты на плане

Номер на плане	Название	Площадь, м ²
1	Коридор 1	15.62
2	Коридор 2	5.04
3	Зал для конференций (переговорная)	18.94
4	Склад	5.53
5	Серверная	4.48
6	Open-space рабочая зона	30.83
7	Зона для ведения закрытых разработок	8.57
8	Кабинет директора	3.60

Два коридора не содержат никакой мебели, только вентиляционные выходы.

В зале для конференций (переговорной) находятся кресал, маркерная доска, три розетки, два растения в горшках, стол и выход для вентиляции.

На складе расположены шкафы и полки с различными материалами и оборудованием.

В серверной находятся три серверные стойки, две розетки и одно АРМ.

Ореп-space зона содержит 11 рабочих мест, включая место руководителя с сейфом, шкаф для бумаг, 7 розеток, 6 окон, две маркерные доски, 4 растения в горшке, два дивана, входы для вентиляции и 6 радиаторов отопления.

В комнате для закрытых разработок, расположены: 4 рабочих места, 2 розетки, 3 окна и 3 радиатора, одна серверная стойка и два растения в горшках.

2 ОЦЕНКА УГРОЗ

2.1 Оптический канал утечки

Описание: оптический канал утечки представляет серьезную потенциальную угрозу для безопасности предприятия. С учетом расположения окон на стене офисного здания, существует реальная вероятность визуального наблюдения за внутренними процессами.

Оценка угроз: визуальное наблюдение включает в себя возможность фотографирования деятельности внутри помещения. Перехват визуальной информации может привести к утечке конфиденциальных данных, в том числе государственной тайны.

2.2 Акустический, виброакустический каналы

Описание: акустический и виброакустический каналы представляют собой значительные потенциальные угрозы для безопасности предприятия, особенно в контексте проведения совещаний и ведения разработок в специальных помещениях.

Оценка угроз: угроза заключается в возможности записи и анализа звуковых данных изнутри помещения. Такие подслушивающие устройства могут стать источником утечки конфиденциальной информации, включая обсуждения проектов и другие чувствительные данные. В комнатах, где ведутся обсуждения секретной информации имеется вентиляция и радиаторы, возможно прослушивание через общую систему отопления или вентиляции, также из-за наличия окон с выходом на другие здания, появляется возможность съем информации через оконные стекла.

2.3 Электромагнитны канал

Описание: электромагнитный канал представляет серьезную угрозу для безопасности предприятия, особенно при обработке и хранении конфиденциальной информации.

Оценка угроз: угроза включает в себя возможность перехвата электромагнитных излучений, которые могут содержать конфиденциальную информацию. Это может быть осуществлено с использованием специальных устройств, способных захватывать электромагнитные сигналы и преобразовывать их в читаемую форму. Также в каждой комнате у нас находятся розетки, отсюда появляется возможность считывать информацию через систему электропитания. Все работы с секретными данными и разработками осуществляются через компьютеры.

2.4 Закладные устройства

Описание: закладные устройства, представляющие собой скрытные устройства для снятия информации, они могут стать серьезной угрозой для безопасности предприятия. Эти устройства могут использоваться для тайного сбора информации и неприметного наблюдения за деятельностью внутри помещений, создавая потенциальный риск утечки конфиденциальных данных.

Оценка угроз: угроза заключается в возможности установки закладных устройств для визуального и аудиослежения за сотрудниками и процессами внутри предприятия. Это может привести к компрометации конфиденциальной информации, а также к утечке государственной тайны. Эти устройства могут быть либо спрятаны где-то на территории офиса, либо быть замаскированными под другие устройства, розетки, лампы и т.п.

3 АНАЛИЗ РУКОВОДЯЩИХ ДОКУМЕНТОВ

3.1 Перечень руководящих документов:

В процессе разработки комплекса мер по обеспечению безопасности информации в организации "Инновационные Технологии и Безопасность (ИТБ)", мы руководствуемся рядом ключевых руководящих документов, которые структурируют и определяют основные принципы работы в области информационной безопасности:

- Федеральный Закон №149 "Об информации, информационных технологиях и защите информации": регламентирует основные нормы в области информационной безопасности и устанавливает требования к обработке и защите информации.
- Закон "О государственной тайне": устанавливает общие принципы и порядок обращения с государственной тайной, формирует юридическую основу для работы с конфиденциальной информацией.
- Указ Президента РФ от 30.11.1995 №1203 "Об утверждении Перечня сведений, отнесенных к государственной тайне": формирует перечень информации, считающейся государственной тайной, и определяет правила ее обращения.
- Постановление Правительства РФ от 15 апреля 1995 г. №333 "О лицензировании деятельности предприятий, учреждений и организаций по проведению работ, связанных с использованием сведений, составляющих государственную тайну": устанавливает порядок лицензирования деятельности, связанной с государственной тайной, и контроля за соблюдением установленных правил.
- Постановление Правительства РФ от 06.02.2010 N 63 (ред. от 29.10.2022) "Об утверждении Инструкции о порядке допуска должностных лиц и граждан Российской Федерации к государственной тайне": регламентирует процедуры допуска персонала к работе с государственной тайной.
- Постановление Правительства РФ от 26 июня 1995 г, №608 "О сертификации средств защиты информации": устанавливает процедуры и требования к сертификации средств защиты информации, обеспечивая их соответствие стандартам безопасности.
- ГОСТ Р ИСО/МЭК 27001-2021 "Системы менеджмента информационной безопасности. Требования": устанавливает требования к системам менеджмента информационной безопасности.

- ГОСТ Р ИСО/МЭК 27002-2021 "Свод норм и правил менеджмента информационной безопасности": содержит рекомендации и указания по применению систем менеджмента информационной безопасности.
- ГОСТ Р ИСО/МЭК 27033-2011 "Безопасность сетей": регулирует вопросы обеспечения безопасности в сетевых средах и управления информационными ресурсами.
- Приказ ФСТЭК России от 18 марта 2013 г. № 21 "Об утверждении Правил оказания услуг по технической защите конфиденциальной информации": определяет стандарты и правила для фирм, предоставляющих услуги по технической защите информации.

3.2 Требования к составу мер защиты

Для обеспечения безопасности информации и соблюдения законодательных требований, предприятие "ИТБ" руководствуется следующими принципами:

- специализированные помещения: все помещения, где будет проводиться работа с государственной тайной, должны быть отдельными и оборудованы с учетом требований безопасности. Стены и перегородки между обычными и защищенными помещениями должны быть выполнены из бетона, железобетона или металла с минимальной толщиной стен не менее 10 см. Защищенные помещения должны иметь ограниченный доступ и обеспечиваться системой контроля и управления доступом;
- технические меры защиты: все используемые технические средства, включая аппаратуру, периферийные устройства и программное обеспечение, должны подлежать сертификации и соответствовать требованиям ФСТЭК. Применение технологий шифрования данных на всех этапах обработки, передачи и хранения конфиденциальной информации;
- организационные меры: регулярные обучения сотрудников по вопросам безопасности, включая правила работы с государственной тайной и выявление попыток социальной инженерии. Проведение обучающих-мероприятий для сотрудников с целью предотвращения утечек информации;
- стандарты и нормативы: соблюдение требований Закона "О государственной тайне", Федерального Закона №149 "Об информации, информационных технологиях и защите информации" и других документов, регулирующих работу с конфиденциальной информацией;
- физическая безопасность: обеспечение контроля и мониторинга физической безопасности с использованием систем видеонаблюдения и датчиков движения.

Регулярные инспекции и аудиты безопасности для выявления слабых мест в системе безопасности;

- аварийная готовность: оборудование всех режимных помещений аварийным освещением для обеспечения безопасной эвакуации персонала в случае чрезвычайных ситуаций;
- управление доступом: применение принципов минимальных привилегий при управлении доступом к информации. Контроль учетных записей и регулярное обновление списков лиц, имеющих доступ к государственной тайне.

4 ВЫБОР СРЕДСТВ ЗАЩИТЫ ИНФОРМАЦИИ

4.1 Защита оптического канала

В качестве средств защиты от утечек по информационному каналу через окна, мы использовали плотные офисные рулонные шторы на окна, в таблице 2 представлена стоимость данного решения

Таблица 2 – Расчет стоимости штор и их установки

Наименование товара	Кол-во, шт.	Цена, руб.	Сумма, руб.
или услуги			
Шторы рулонные блекаут	4	1400	4200
Установка	1	2500	2500
Итог			8100

Также для защиты утечек по оптическому каналу через приоткрытые двери используется дверные заводчики. В таблице 3 представлен расчет стоимости.

Таблица 3 – Расчет стоимости доводчиков и их установки

Наименование товара	Кол-во, шт.	Цена, руб.	Сумма, руб.
или услуги			
Дверной доводчик APECS	12	1400	15400
Vanger DC-120-SL 26414			
Установка	1	2500	2500
Итог		1	19300

4.1 Защита акустического и виброакустического каналов

Для обеспечения звукоизоляции комнат для закрытой разработки и переговорной, мы произведем шумоизолирующею отделку этих двух помещений. Все расчеты предоставлены в таблицах 4 и 5.

Таблица 4 – Расчет пассивной звукоизоляции

Наименование товара	Площадь, м ²	Цена	Сумма, руб.
или услуги			
Звукоизоляция стен	82	4200 руб./кв.метр	344 400
стоимость «под ключ» (работа + материалы)			

Звукоизоляции потолка	28	4500 руб./кв.метр	126 000
«под ключ» (работа +			
материалы)			
Звукоизоляции пола «под	28	4000 руб./кв.метр	112 000
ключ» (работа +			
материалы)			
Итог			582 400

Таблица 5 – Звукоизолирующая дверь с установкой

Наименование товара	Кол-во, шт.	Цена, руб.	Сумма, руб.
или услуги			
Стальная	2	63 200	126 400
звукоизолирующая дверь			
Experience 70 + установка			
Итог			126 400

Для обеспечения защиты от утечек по виброакустическим каналам, мы сравнили несколько вариантов излучателей виброакустических помех (таблица 6)

Таблица 6 – Сравнение излучателей виброакустических помех

Наименование	Характеристики	Стоимость,
устройства		руб.
ЛГШ-404	- генератор шума ЛГШ-404 (генераторный блок	35 100
	с 2 выходами);	
	- вибровозбудители ЛВП-10 для установки на	
	стекла, межкомнатные перегородки, трубы	
	инженерных коммуникаций;	
	- акустические излучатели ЛВП-2А, создающие	
	маскирующие помехи в дверных проемах,	
	вентиляционных воздуховодах и в прочих	
	закрытых пространствах;	
	- виброэкраны ЛИСТ-1 для установки на окна;	

	- провода для подключения, крепежные	
	элементы для монтажа	
Буран	 число помеховых каналов – три 	35 000
	(виброакустических – 2, акустических – 1);	
	- возможность подключения большого числа	
	преобразователей - до 50 шт.	
	(виброакустических – до 40 шт., акустических	
	– до 10 шт.);	
	- прецизионная система параллельного контроля	
	линий подключения преобразователей;	
	- вывод информации о состоянии работы	
	системы на жидкокристаллический индикатор;	
	- встроенная перестраиваемая система активной	
	защиты информации от утечки по техническим	
	каналам с программным управлением;	
	- оптимальное использование мощности каналов	
	за счет мониторинга уровня их нагрузки;	
	 возможность дистанционного включения 	
	системы по проводному каналу.	
Сонат АВ-4Б	Предназначена для защиты помещений от утечки	44 200
	речевой информации по акустическому и	
	виброакустическому каналам. В системе "Соната-	
	АВ-4Б" генераторы шумового сигнала встроены	
	непосредственно в каждый излучатель. Построение	
	осуществляется по принципу "единый источник	
	электропитания + генераторы-излучатели".	
	Расширенная полоса частот генерируемого	
	шумового сигнала позволяет использовать систему	
	для защиты выделенных помещений до 1	
	категории включительно.	

Был сделан выбор в пользу ЛГШ-404, так как он больше всего подходит нам по сравнению цена, качество и функционал устройства.

4.1 Защита электромагнитного канала

В таблице 7 указаны устройства для защиты от ПЭМИН, мы будем рассчитывать стоимость устройств на два помещения.

Таблица 7 – Сравнение средств активной защиты от ПЭМИН

Наименование	Особенности	Стоимость,
устройства		руб.
СОНАТА-Р3.1	- комбинированный характер защиты	33 120 * 2
	(электромагнитное излучение + шумовое	
	напряжения в линии электропитания и	
	заземления);	
	- наличие регулятора интегрального уровня	
	формируемых электромагнитного поля шума и	
	шумовых напряжений;	
	- возможность, в случае необходимости,	
	дополнительного повышения уровня	
	излучаемого электромагнитного поля шума в	
	диапазоне частот 0.01100 МГц за счет	
	применения опционально поставляемой	
	дополнительной антенны;	
	- встроенная система контроля интегрального	
	уровня излучения со световой индикацией и	
	звуковой сигнализацией;	
	- возможность удаленного управления изделием	
	как в случае автономного использования	
	(непосредственно Пультом-ДУ4.4), так и в	
	случае использования в составе комплекса	
	ТСЗИ;	
	- наличие счетчика наработки в режиме	
	«Излучение».	
SEL SP-44	- Цифровое автономное управление и контроль за	24 000* 2
Устройство защиты	настройками с защитой от	
	несанкционированного доступа и выводом	

цепей электросети	информации на встроенный	
и заземления	жидкокристаллический экран.	
	- Применение двух некоррелируемых	
	формирователей шума для цепей «фаза»-	
	«земля» и «ноль»-«земля» позволяет исключить	
	возможность съёма информационного сигнала	
	как для противофазной, так и для синфазной	
	схем подключения.	
	- Наличие независимых регуляторов уровня для	
	низкочастотного и высокочастотного	
	диапазонов позволяет оптимизировать спектр	
	помехи по электромагнитной совместимости при	
	сохранении достаточной эффективности	
	маскировки.	
	- Устройство имеет высший класс устойчивости к	
	импульсным помехам и допускает длительную	
	работу в условиях эквивалентного короткого	
	замыкания.	
	- Наличие встроенного счётчика суммарного	
	времени наработки генератора помех с	
	регистрацией значений в защищённой	
	энергонезависимой памяти.	
	- Во время работы прибор постоянно	
	осуществляет самотестирование и в случае	
	неисправности выдаёт звуковой и световой	
	сигнал.	
ГЕНЕРАТОР	Изделие является техническим средством,	29 400 * 2
ШУМА ГАММА	предназначенным для маскировки информативных	
ГШ-18	ПЭМИН персональных компьютеров, рабочих	
	станций компьютерных сетей и комплексов на	
	объектах вычислительной техники путем	
	формирования и излучения в окружающее	
	пространство электромагнитного поля шума	
L.		1

(ЭМПШ) и введения напряжения шума в цепи	
электропитания и заземления, токоведущие линии и	
коммуникации в диапазоне рабочих частот от 9 кГц	
до 6 ГГц.	

По результатам нашего сравнения мы выбрали Гамма-ГШ18, так как там есть большие возможности по настройкам.

Далее в таблице 8 будет приведено сравнение комплексов ПЭВМ, стоимость будет записана с учетом количества рабочих мест занятых для ведения закрытых разработок.

Таблица 8 – Сравнение ПЭВМ в защищенном исполнении

Наименование	Характеристики	Стоимость,
устройства		руб.
ПЭВМ В	- Intel® Core TM i3-10110U с графическим ядром	260 000 * 4
ЗАЩИЩЁННОМ	Intel® UHD Graphics 620	
ИСПОЛНЕНИИ	- «Windows» (10 Pro)	
ЛИС-40.3	- DDR4, 8 Гбайт	
	- внутренний жесткий диск (3,5) 1 ТБ, 7200 об/мин	
	SATA	
	- Intel® UHD Graphics 620	
ПК В	- Intel® Core TM i5 / Intel® Core TM i7	125 000 * 4
ЗАЩИЩЁННОМ	- «Windows 10 Pro, Astra Linux, без ОС	
ИСПОЛНЕНИИ	- DDR4, 8 Гбайт	
ЛИС-40НС	– от 256 Гб, SSD / от 500 Гб, HDD	
	- интегрированная: Intel® UHD Graphics 620	
ЭВМ ГАММА МБ-	- Intel Bay Trail J1900 2.4GHz	280 000 * 4
16-01	- Free DOS	
	- интегрированный Intel HD Graphics 4000,	
	DirectX 11, OpenGL 3.0	
	– 2x2Gb DDR3L 1066 МГц	
	- 320Gb SATA	

Наиболее актуальными для выполнения наших задач ПЭВМ является ЛИС-40HC, мы будем использовать его.

4.2 Защита от закладных устройств

В таблице 9 показано сравнение средств обнаружение закладных устройств.

Таблица 9 – Сравнение средств для поиск закладных устройств

Наименование	Особенности	Стоимость,
устройства		руб.
Крона-М12	- Сверхвысокая скорость сканирования – до 25	1 980 000
	ГГц/сек	
	- Малые габариты и вес - выполнено в едином	
	компактном экранированном корпусе	
	- Встроенные аккумуляторы обеспечивают	
	автономную работу до 4 часов	
	- Режим «Водопад» позволяет оценить	
	изменения с течением времени и обнаружить	
	даже замаскированные сигналы	
	- Оснащается комплектом для обследования	
	проводных линий и ИК диапазона	
	- Мультисенсорный дисплей позволяет	
	управлять комплексом без дополнительных	
	устройств ввода	
	- Возможно подключение клавиатуры и мыши	
	для стационарной работы	
Крона-М6	- Сверхвысокая скорость сканирования – до 25	1 360 000
	ГГц/сек	
	 Малые габариты и вес – выполнено в едином 	
	компактном экранированном корпусе	
	- Встроенные аккумуляторы обеспечивают	
	автономную работу до 4 часов	
	- Режим «Водопад» позволяет оценить	
	изменения с течением времени и обнаружить	
	даже замаскированные сигналы	
	- Оснащается комплектом для обследования	
	проводных линий и ИК диапазона	

	_	Мультисенсорный дисплей позволяет	
		управлять комплексом без дополнительных	
		устройств ввода	
	_	Возможно подключение клавиатуры и мыши	
		для стационарной работы	
ST 600 ПИРАНЬЯ	_	РЕЖИМ «ДЕТЕКТОР МАГНИТНОГО	195 000
		ПОЛЯ» предназначен для поиска работающих	
		подслушивающих устройств. Режим	
		реализуется путем приема, преобразования и	
		индикации электромагнитных сигналов,	
		возникающих при работе электронных	
		устройств. Для приема сигналов используется	
		встроенная магнитная антенна.	
	_	Частотный диапазон антенны (0,04 - 30 кГц)	
		позволяет обнаруживать устройства в	
		экранированных корпусах.	
	_	РЕЖИМ «ТРАССОИСКАТЕЛЬ» предназначен	
		для трассировки кабелей при поиске	
		проводных подслушивающих устройств.	
	_	Режим реализуется путем подачи в проводную	
		линию тестового сигнала (частотой 455 кГц,	
		промодулированного двухтональным	
		низкочастотным сигналом) и его приемом	
		бесконтактным датчиком.	
	_	Тестовый сигнал формируется и подается в	
		кабель генератором. Для компенсации	
		затухания сигнала предусмотрена регулировка	
		мощности генератора.	

Был выбран комплекс ST 600 ПИРАНЬЯ как наиболее многофункциональный и подходящий для нашей организации по характеристикам и цене.

Также мы сравнили устройства для подавления сигналов закладных устройств (таблица 10).

Таблица 10 – Сравнение средств подавления сигналов закладных устройств

Наименование	Наименование Особенности	
устройства		руб.
Блокиратор	Изделие предназначено для блокировки	149 500
сотовой связи	(подавления) связи между базовыми станциями и	
ЛГШ-719	пользовательскими терминалами сетей сотовой	
	связи, работающих в стандартах: ІМТ-МС-450,	
	GSM900, E-GSM900, DSC/GSM-1800, DECT (ETS-	
	300 175), IMT-900/1800/UMTS (3G),	
	IMT-2000/UMTS, LTE-800 (4G), LTE-2600 и	
	WiMAX (4G), Bluetooth, WiFi 2,4 ГГц	
Блокиратор	Изделие предназначено для блокировки	74 700
сотовой связи	(подавления) связи между базовыми станциями и	
ЛГШ-715	пользовательскими терминалами сетей сотовой	
	связи, работающих в стандартах: ІМТ-МС-450,	
	GSM-900, E-GSM900, DSC/GSM-1800, DECT (ETS-	
	300 175), IMT-2000/UMTS (3G)	
Блокиратор	Изделие предназначено для блокировки	32 500
стандарта 4G (LTE-	(подавления) связи между базовыми станциями и	
800) ЛГШ-705	пользовательскими терминалами сетей сотовой	
	связи, работающих в стандартах: LTE-800 (4G)	
Блокиратор	Изделие предназначено для блокировки	247 000
сотовой связи	(подавления) связи между базовыми станциями и	
ЛГШ-725	пользовательскими терминалами сетей сотовой	
	связи, работающих в стандартах: ІМТ-МС-450,	
	GSM-900, E-GSM900, DSC/GSM-1800, DECT (ETS-	
	300 175), IMT-900/1800/UMTS (3G),	
	IMT-2000/UMTS, LTE-800(4G), LTE-2600 и	
	WiMAX (4G), Bluetooth, WiFi 2,4 ГГц и 5 ГГц	

Мы выбрали устройство блокиратор сотовой связи ЛГШ-725, так как оно охватывал больше диапазонов чем остальные устройства, также мы можем контролировать мощность по каждому диапазону что важно в условиях работы вблизи помещений других организаций.

Также мы изучили устройства для подавления микрофонов (таблица 11). Таблица 11 — Сравнение средств подавления микрофонов или диктофонов

Наименование	Описание	Стоимость,
устройства		руб.
БУБЕН-УЛЬТРА	Прибор предназначен для подавления звукового	81 000 * 2
MAKC	сигнала при попытке записи на записывающие	
	устройства, специальные технические средства,	
	выносные микрофоны посредством генерации трех	
	типов помех. А именно:	
	- помехи в ультразвуковом диапазоне,	
	воздействующей непосредственно на мембрану	
	микрофона;	
	- сложной звуковой помехи, воздействующей на	
	АРУ записывающего устройства, тем самым	
	увеличивая воздействие УЗП;	
	- речеподобной помехи с периодической	
	перестройкой во времени, для затруднения ее	
	выделения из полезного сигнала.	
Супертонкий	Подавитель диктофонов и микрофонов SEL-324V	87 000 * 2
подавитель	«Веер» является эффективным устройством	
диктофонов и	подавления микрофонов в диктофонах, мобильных	
микрофонов SEL-	телефонах и других средствах аудиозаписи путём	
324V «Beep»	излучения сложной структурированной помехи в	
	ультразвуковом диапазоне, неслышимой для	
	человеческого уха, но воздействующей своим	
	звуковым давлением непосредственно на мембрану	
	микрофона.	
Портативный	Несмотря на свою малогабаритность, SEL-310	60 000 * 2
подавитель	«Комар» является мощным и самым эффективным	
диктофонов и	в своем классе устройством подавления	
микрофонов SEL-	микрофонов в диктофонах, мобильных телефонах и	
310 «Комар»	других средствах аудиозаписи за счёт	

направленного	излучения	сложной	
структурированной	помехи в у	ультразвуковом	
диапазоне, неслышимой для человеческого уха, но			
воздействующей с	воим звуковы	им давлением	
непосредственно на мембрану микрофона.			

Был сделан выбор в пользу системы БУБЕН-УЛЬТРА МАКС, так как он наиболее подходит для нашей организации согласно функционалу который у него есть.

5 РАСПОЛОЖЕНИЕ СРЕДСТВ ЗАЩИТЫ

Далее на схеме будут изображен план размещения оборудования и условные обозначения устанавливаемого оборудования (Рисунок 3).

Рисунок 4 – План здания с размещением технических средств защиты информации

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы мы изучили каналы утечки информации, произвели анализ потенциальных каналов утечки информации в данном нам помещении, также мы описали необходимые меры для защиты. Мы проанализировали рынок существующих технических средств и решений, после чего мы произвели план установки и произвели расчет стоимости предложенных активных и пассивных средств защиты информации.

В результаты были произведен защитные меры по утечкам из различных каналов. Итоговая стоимость защиты информации составила 1 934 100 рублей.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Кармановский Н.С., Михайличенко О.В., Савков С.В.. Организационноправовое и методическое обеспечение информационной безопасности. Учебное пособие – Санкт-Петербург: НИУ ИТМО, 2013. - 151 с. – экз.
- 2. Хорев А. А. Техническая защита информации: учеб. пособие для студентов вузов. В 3-х т. Т. 1. Технические каналы утечки информации. М.: НПЦ «Аналитика», 2010.- 436