Text Statistics

Lecture 6

Text Statistics

- Huge variety of words used in text <u>but</u>
- Many statistical characteristics of word occurrences are predictable
 - e.g., distribution of word counts
- Retrieval models and ranking algorithms depend heavily on statistical properties of words
 - e.g., important words occur often in documents
 but are not high frequency in collection

Zipf's law tells us

- Head words may take large portion of occurrence, but they are semantically meaningless
 - E.g., the, a, an, we, do, to
- Tail words take major portion of vocabulary, but they rarely occur in documents
 - E.g., dextrosinistral
- The rest is most representative
 - To be included in the controlled vocabulary

Statistical property of language

Zipf's law

discrete version of power law

- Frequency of any word is inversely proportional to its rank in the frequency table
- Formally

•
$$f = \frac{C}{k}$$

where k is rank of the word; \mathcal{C} is corpus specific constant

In the Brown Corpus of American English text, the word "the" is the most frequently occurring word, and by itself accounts for nearly **7%** of all word occurrences; the second-place word "of" accounts for slightly over **3.5%** of words.

Zipf's Law

- Distribution of word frequencies is very skewed
 - a few words occur very often, many words hardly ever occur
 - e.g., two most common words ("the", "of") make up about 10% of all word occurrences in text documents
- Zipf's "law":
 - observation that rank (r) of a word times its frequency
 (f) is approximately a constant (k)
 - assuming words are ranked in order of decreasing frequency
 - i.e., $r.f \approx k$ or $r.P_r \approx c$, where P_r is probability of word occurrence and $c \approx 0.1$ for English

Zipf's Law

Automatic text indexing

Remove non-informative words

Figure 2.1. A plot of the hyperbolic curve relating f, the frequency of occurrence and r, the rank order (Adaped from Schultz 44 page 120)

News Collection (AP89) Statistics

Total documents	84,678
Total word occurrences	39,749,179
Vocabulary size	198,763
Words occurring > 1000 times	4,169
Words occurring once	70,064

Word	Freq.	r	Pr(%)	r.Pr
assistant	5,095	1,021	.013	0.13
sewers	100	17,110	$2.56 \times 10-4$	0.04
toothbrush	10	51,555	2.56 × 10-5	0.01
hazmat	1	166,945	$2.56 \times 10-6$	0.04

Top 50 Words from AP89

Word	Freq.	r	$P_r(\%)$	$r.P_r$	Word	Freq	r	$P_r(\%)$	$r.P_r$
the	2,420,778	1	6.49	0.065	has	136,007	26	0.37	0.095
of	1,045,733	2	2.80	0.056	are	130,322	27	0.35	0.094
to	968,882	3	2.60	0.078	not	127,493	28	0.34	0.096
a	892,429	4	2.39	0.096	who	116,364	29	0.31	0.090
and	865,644	5	2.32	0.120	they	111,024	30	0.30	0.089
in	847,825	6	2.27	0.140	its	111,021	31	0.30	0.092
said	504,593	7	1.35	0.095	had	103,943	32	0.28	0.089
for	363,865	8	0.98	0.078	will	102,949	33	0.28	0.091
that	347,072	9	0.93	0.084	would	99,503	34	0.27	0.091
was	293,027	10	0.79	0.079	about	92,983	35	0.25	0.087
on	291,947	11	0.78	0.086	i	92,005	36	0.25	0.089
he	250,919	12	0.67	0.081	been	88,786	37	0.24	0.088
is	245,843	13	0.65	0.086	this	87,286	38	0.23	0.089
with	223,846	14	0.60	0.084	their	84,638	39	0.23	0.089
at	210,064	15	0.56	0.085	new	83,449	40	0.22	0.090
by	209,586	16	0.56	0.090	or	81,796	41	0.22	0.090
it	195,621	17	0.52	0.089	which	80,385	42	0.22	0.091
from	189,451	18	0.51	0.091	we	80,245	43	0.22	0.093
as	181,714	19	0.49	0.093	more	76,388	44	0.21	0.090
be	157,300	20	0.42	0.084	after	75,165	45	0.20	0.091
were	153,913	21	0.41	0.087	us	72,045	46	0.19	0.089
an	152,576	22	0.41	0.090	percent	71,956	47	0.19	0.091
have	149,749	23	0.40	0.092	up	71,082	48	0.19	0.092
his	142,285	24	0.38	0.092	one	70,266	49	0.19	0.092
but	140,880	25	0.38	0.094	people	68,988	50	0.19	0.093

Zipf's Law for AP89

Note problems at high and low frequencies

Vocabulary Growth

- As corpus grows, so does vocabulary size
 - Fewer new words when corpus is already large
- Observed relationship (Heaps' Law):

$$v = k n^{\theta}$$

where v is vocabulary size (number of unique words), n is the number of words in corpus, k, β are parameters that vary for each corpus (typical values given are $10 \le k \le 100$ and $\beta \approx 0.5$)

AP89 Example

Heaps' Law Predictions

- Predictions for TREC collections are accurate for large numbers of words
 - e.g., first 10,879,522 words of the AP89 collection scanned
 - prediction is 100,151 unique words
 - actual number is 100,024
- Predictions for small numbers of words (i.e.
 - < 1000) are much worse

GOV2 (Web) Example

Text Normalization

- Every NLP task needs to do text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

How many words?

- I do uh main- mainly business data processing
 - Fragments, filled pauses
- Seuss's cat in the hat is different from other cats!
 - Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

Issues in Tokenization

 Finland's capital → Finland Finlands Finland's ? • what're, I'm, isn't \rightarrow What are, I am, is not Hewlett-Packard \rightarrow Hewlett Packard? \rightarrow state of the art ? state-of-the-art Lowercase → lower-case lowercase lower case ? • San Francisco→ one token or two?

 \rightarrow 33

m.p.h., PhD.

Tokenization: language issues

- French
 - **L'ensemble** \rightarrow one token or two?
 - L?L'?Le?
 - Want l'ensemble to match with un ensemble

- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Tokenization: language issues

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - **莎拉波娃** 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats

Word Tokenization in Chinese

- Also called Word Segmentation
- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme.
 - Average word is 2.4 characters long.
- Standard baseline segmentation algorithm:
 - Maximum Matching (also called Greedy)

Max-match segmentation illustration

Thecatinthehat

the cat in the hat

Thetabledownthere

the table down there

Doesn't generally work in English! theta bled own there

- But works astonishingly well in Chinese
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
- Modern probabilistic segmentation algorithms even better

Stopping

- Function words (determiners, prepositions)
 have little meaning on their own
- High occurrence frequencies
- Treated as stopwords (i.e. removed)
 - reduce index space, improve response time, improve effectiveness
- Can be important in combinations
 - e.g., "to be or not to be"

Stopwords

Nouns	s Ver	bs	Adje	ctives	Prep	ositions O	the	rs
1. t	time	1. be	1.	good	1.	to	1.	the
2.	person	2. have	2.	new	2.	of	2.	and
3.)	year	3. do	3.	first	3.	in	3.	a
4. \	way	4. say	4.	last	4.	for	4.	that
5. (day	5. get	5.	long	5.	on	5.	I
6. t	thing	6. make	6.	great	6.	with	6.	it
7. 1	man	7. go	7.	little	7.	at	7.	not
8. 1	world	8. know	8.	own	8.	by	8.	he
9. 1	life	9. take	9.	other	9.	from	9.	as
10. I	hand 1	0. see	10.	old	10.	up	10.	you
11.	part 1	1. come	11.	right	11.	about	11.	this
12. (child 1	2. think	12.	big	12.	into	12.	but
13. 6	eye 1	3. look	13.	high	13.	over	13.	his
14. \	woman 1	4. want	14.	different	14.	after	14.	they
15.	place 1	5. give	15.	small	15.	beneath	15.	her
16. \	work 1	6. use	16.	large	16.	under	16.	she
17. \	week 1	7. find	17.	next	17.	above	17.	or
18. (case 1	8. tell	18.	early			18.	an
19.	point 1	9. ask	19.	young			19.	will
20. (government 2	0. work	20.	important			20.	my
21. (company 2	1. seem	21.	few			21.	one
22. 1	number 2	2. feel	22.	public			22.	all
23. (group 2	3. try	23.	bad			23.	would
24.	problem 2	4. leave	24.	same			24.	there
25. f	fact 2	5. call	25.	able			25.	their

Stopping

- Stopword list can be created from highfrequency words or based on a standard list
- Lists are customized for applications, domains, and even parts of documents
 - e.g., "click" is a good stopword for anchor text
- Best policy is to index all words in documents, make decisions about which words to use at query time

Normalization

- Convert different forms of a word to normalized form in the vocabulary
 - U.S.A -> USA, St. Louis -> Saint Louis
- Solution
 - Rule-based
 - Delete periods and hyphens
 - All in lower case
 - Dictionary-based
 - Construct equivalent class
 - Car -> "automobile, vehicle"
 - Mobile phone -> "cellphone"

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)

Morphology

Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

Stemming

- Stemming is crude chopping of affixes
 - Language dependant
 - E.g., automate(s), automatic, automation all reduce to automat

Stemming

- Many morphological variations of words
 - Inflectional (e.g. eats, called, marking, written)
 - Derivational (e.g. portable, natural, passage)

Porter Stemmer

- Algorithmic stemmer used in IR experiments since the 70s
- Consists of a series of rules designed to the longest possible suffix at each step
- Produces stems not words
- Makes a number of errors and difficult to modify

Porter's algorithm The most common English stemmer

Step 1a

```
sses \rightarrow ss caresses \rightarrow caress

ies \rightarrow i ponies \rightarrow poni

ss \rightarrow ss caress \rightarrow caress

s \rightarrow \phi cats \rightarrow cat
```

Step 1b

```
(*v*)ing \rightarrow \phi walking \rightarrow walk sing \rightarrow sing (*v*)ed \rightarrow \phi plastered \rightarrow plaster
```

Porter's algorithm

Step 2 (for long stems)

```
ational\rightarrow ate relational\rightarrow relate izer\rightarrow ize digitizer \rightarrow digitize ator\rightarrow ate operator \rightarrow operate
```

Step 3 (for longer stems)

```
al \rightarrow \phi revival \rightarrow revival able \rightarrow \phi adjustable \rightarrow adjust ate \rightarrow \phi activate \rightarrow activ
```

Viewing morphology in a corpus

- Given the description you saw on earlier slides, the Porter stemmer would stem the word 'aching' as
- A. aching
- B. ach
- C. ache
- D. aches

Viewing morphology in a corpus

 Given the description you saw on earlier slides, the Porter stemmer would stem the word 'aching' as

A. aching

B. ach

C. ache

D. aches

Answer: B