Foundation Algebra for Physical Sciences & Engineering

CELEN036

Topic: Trigonometry 1

Practice Problems SET-4

Type 1: Trigonometric Identities

1. Prove the following trigonometric identities:

(i)
$$\frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} = 2\sec x$$

$$(ii) \qquad \frac{\cos \theta}{1 + \cot \theta} = \frac{\sin \theta}{1 + \tan \theta}$$

(iii)
$$(1 + \tan^2 \theta)(1 - \sin^2 \theta) = 1$$

$$(iv)$$
 $(\csc^2 \theta - 1) = \cos^2 \theta \csc^2 \theta$

$$(v) \qquad \cot^2 x - \cos^2 x = \cot^2 x \cos^2 x$$

$$(vi) \qquad \cos^4 \theta + \sin^4 \theta = 1 - 2\cos^2 \theta \sin^2 \theta$$

$$(vii)$$
 $\cos^6 \theta + \sin^6 \theta = 1 - 3\cos^2 \theta \sin^2 \theta$

$$(viii) \cos^8 \theta - \sin^8 \theta = (\cos^2 \theta - \sin^2 \theta)(1 - 2\sin^2 \theta \cos^2 \theta)$$

$$(ix) \qquad \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}} = \sin \theta$$

$$(x) \qquad (\sec \theta + \tan \theta)^2 = \frac{\csc \theta + 1}{\csc \theta - 1}$$

$$(xi) \qquad \sqrt{\frac{1+\sin^2\theta\sec^2\theta}{1+\cos^2\theta\csc^2\theta}} = \tan\theta$$

2. Given $p = \sec \theta - \tan \theta$ and $q = \sec \theta + \tan \theta$, show that $p = \frac{1}{q}$.

3. Derive the identity $1 + \cot^2 \theta = \csc^2 \theta$ by dividing $x^2 + y^2 = r^2$ by y^2 .

4. Derive the quotient identity $\frac{\cos \theta}{\sin \theta} = \cot \theta$.

5. Verify that the following equation is an identity: $\frac{\tan t - \cot t}{\sin t \cos t} = \sec^2 t - \csc^2 t.$

6. Verify that the following equation is an identity (working from both sides):

$$\frac{\sec \alpha + \tan \alpha}{\sec \alpha - \tan \alpha} = \frac{1 + 2\sin \alpha + \sin^2 \alpha}{\cos^2 \alpha}$$

7. Prove the following trigonometric identity: $\tan^2 x (1 + \cot^2 x) = \frac{1}{1 - \sin^2 x}$

- 8. Write $\cos x$ in terms of $\tan x$.
- 9. Write $\frac{1+\cot^2\theta}{1-\csc^2\theta}$ in terms of $\sin\theta$ and $\cos\theta$, and then simplify the expression so that no quotients appear.

Type 2: Conversion formulae

- 10. Convert the following degrees to radians or vice-versa:

- $(iv) \frac{16\pi}{7}$ $(v) \frac{71\pi}{35}$ $(vi) \frac{6\pi}{13}$

Type 3: Range and period of trigonometric functions

- 11. Find the range and period of the following trigonometric functions:
- (i) $3\csc(3-4x)$ (ii) $2\tan(3x-7)$ (iii) $7\sin\left(-\frac{3\pi x}{4} \frac{\pi}{4}\right) + 6$
- (iv) $-5\cos\left(\frac{\pi x}{8}\right) + 3$ (v) $-3\cos(\pi x + 2) 6$ (vi) $-4\cos(5x 9) 7$

Type 4: Finding values of trigonometric function

- 12. Given $\cos \theta = -\frac{4}{5}$; $\frac{\pi}{2} < \theta < \pi$. Find the value of $\csc \theta + \cot \theta$.
- 13. Given $\cot\theta = -\frac{15}{8}$; $\frac{3\pi}{2} < \theta < 2\pi$. Find the value of $\sin\theta + \cos\theta$.
- 14. Given that $\sec \theta = -3$, and θ is obtuse. Find the values of $\tan \theta$ and $\csc \theta$.
- 15. If $\tan\theta=-\frac{5}{3}$ and θ is in quadrant II, find each function value.
 - (i) $\sec \theta$
- (ii) $\sin \theta$
- (iii) $\cot(-\theta)$

Type 5: Solving trigonometric equations

- 16. Solve $\tan^2 \theta = \sec 2\theta 1$; $\theta \in [0, 180^{\circ}]$.
- 17. Solve the equation $\cos^2 x + \cos x = \sin^2 x$ for $0 \le x \le \pi$.
- 18. Find all the solutions of the equation in the given range: $\tan^2 x = 2\sec^2 x 3$ for $-\pi \le x \le \pi$.
- 19. Solve the trigonometric equation: $3\cos^2 x 6\cos x = \sin^2 x 3$ for $-\pi \le x \le \pi$.
- 20. Solve the following equations for θ in given interval:

 - (i) $\sin \theta = \frac{1}{\sqrt{2}}; \ \theta \in [0, \pi]$ (ii) $\tan \theta = \frac{1}{\sqrt{3}}; \ \theta \in [0, 2\pi]$
 - (iii) $\sin 2\theta = 0.5$; $\theta \in [0, 2\pi]$ (iv) $\cos 3\theta = -0.5$; $\theta \in [0, 180^{\circ}]$

Answers

$$8 \qquad \frac{\pm\sqrt{1+\tan^2x}}{1+\tan^2x}$$

9
$$-\sec^2\theta$$

10 (i)
$$-\frac{8}{9}\pi$$
 (ii) 4π (iii) $\frac{17}{12}\pi$ (iv) $-\frac{2880}{7}^{\circ}$ (v) $\frac{2556}{7}^{\circ}$

$$(ii)$$
 4π

$$(iii)$$
 $\frac{17}{12}\tau$

$$(iv) - \frac{2880}{7}$$

$$(v) \quad \frac{2556}{7}$$

$$(vi)$$
 $\frac{1080}{13}^{\circ}$

		(i)	(ii)	(iii)	(iv)	(v)	(vi)
11	Range	$\mathbb{R}-(-3,3)$	\mathbb{R}	[-1, 13]	[-2, 8]	[-9, -3]	[-11, -3]
	Period	$rac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{8}{3}$	16	2	$\frac{2\pi}{5}$

12
$$\frac{1}{3}$$

13
$$\frac{7}{17}$$

$$14 \qquad -2\sqrt{2} \quad \text{and} \quad \frac{3\sqrt{2}}{4}$$

15 (i)
$$-\frac{\sqrt{34}}{3}$$
 (ii) $\frac{5\sqrt{34}}{\sqrt{34}}$ (iii) $\frac{3}{5}$

$$(ii) \quad \frac{5\sqrt{34}}{\sqrt{34}}$$

$$(iii)$$
 $\frac{3}{5}$

16
$$0^{\circ}$$
 or 180°

17
$$\frac{\pi}{3}$$
 or π

$$18 \qquad \pm \frac{\pi}{4} \text{ or } \pm \frac{3\pi}{4}$$

19
$$\pm \frac{\pi}{3}$$
 or 0

20 (i)
$$\frac{\pi}{4}$$
 or $\frac{3\pi}{4}$

(ii)
$$\frac{\pi}{6}$$
 or $\frac{7\pi}{6}$

$$\mathbf{20} \quad (i) \quad \frac{\pi}{4} \text{ or } \frac{3\pi}{4} \qquad (ii) \quad \frac{\pi}{6} \text{ or } \frac{7\pi}{6} \qquad (iii) \quad \frac{\pi}{12} \text{ or } \frac{5\pi}{12} \text{ or } \frac{13\pi}{12} \text{ or } \frac{17\pi}{12} \qquad (iv) \quad 40^{\circ} \text{ or } 80^{\circ} \text{ or } 160^{\circ}$$

$$(iv)$$
 40° or 80° or 160°