A ADDITIONAL EXPERIMENTAL RESULTS

We present additional results for our sampling and mixture studies. As observed in the main body of the paper, the positive trends we observe for 3 bpc weaken for 4 bpc allocations.

Dataset -		Ember1 Bit	Error Rate		Ember2 Bit Error Rate					
	LA	FLA	LA+AC	FLA+AC	LA	FLA	LA+AC	FLA+AC		
25%	$11.0 \pm 1.4\%$	$11.0 \pm 1.4\%$	$11.0 \pm 1.4\%$	$11.0 \pm 1.3\%$	$10.0 \pm 1.2\%$	$10.0 \pm 1.2\%$	9.8 ± 1.1%	11.0 ± 1.1%		
50%	$10.0 \pm 0.88\%$	$10.0 \pm 0.88\%$	$9.3 \pm 0.57\%$	$9.1 \pm 0.48\%$	$11.0 \pm 0.77\%$	$11.0 \pm 0.77\%$	$8.8 \pm 0.86\%$	$9.3 \pm 0.83\%$		
75%	$9.4 \pm 0.65\%$	$9.4 \pm 0.65\%$	$8.6 \pm 0.4\%$	$8.4\pm0.37\%$	$9.5 \pm 0.53\%$	$9.5 \pm 0.53\%$	$8.0 \pm 0.43\%$	$7.9 \pm 0.35\%$		
90%	$9.1 \pm 0.41\%$	$9.1 \pm 0.41\%$	$8.1 \pm 0.012\%$	$8.1 \pm 0.012\%$	$9.8 \pm 0.92\%$	$9.8 \pm 0.92\%$	$7.8 \pm 0.33\%$	$7.8 \pm 0.41\%$		
100%	9.1%	9.1%	8.1%	8.1%	9.0%	9.0%	7.7%	7.6%		

Table 7: Effect of dataset size on ECC overhead in level allocation (3 bpc).

Dataset	Emb	er1 Bit Error	Rate	Ember2 Bit Error Rate					
	LA	FLA	LA+AC	LA	FLA	LA+AC			
25%	$3.8 \pm 0.17\%$	$4.1 \pm 0.35\%$	$3.7 \pm 0.1\%$	$4.0 \pm 0.14\%$	$4.4 \pm 0.21\%$	$3.9 \pm 0.082\%$			
50%	$3.6 \pm 0.22\%$	$4.1 \pm 0.26\%$	$3.6 \pm 0.17\%$	$3.9 \pm 0.13\%$	$4.3 \pm 0.22\%$	$3.7 \pm 0.12\%$			
75%	$3.7 \pm 0.19\%$	$3.9 \pm 0.12\%$	$3.5 \pm 0.11\%$	$3.9 \pm 0.15\%$	$4.2 \pm 0.16\%$	$3.8 \pm 0.11\%$			
90%	$3.6 \pm 0.1\%$	$4.0 \pm 0.09\%$	$3.5 \pm 0.11\%$	$3.8 \pm 0.12\%$	$4.2 \pm 0.2\%$	$3.7 \pm 0.12\%$			
100%	3.6%	3.7%	3.6%	3.7%	4.0%	3.5%			

Table 8: Effect of dataset size on bit error rate (BER) in level allocation (4 bpc).

Dataset	Em	ber1 Bit Error F	Rate	Ember2 Bit Error Rate					
	LA	FLA	LA+AC	LA	FLA	LA+AC			
25%	$32.0 \pm 1.1\%$	$32.0 \pm 1.1\%$	$32.0 \pm 0.68\%$	$34.0 \pm 0.97\%$	$34.0 \pm 0.97\%$	$33.0 \pm 0.54\%$			
50%	$31.0 \pm 1.4\%$	$31.0 \pm 1.4\%$	$31.0 \pm 1.1\%$	$33.0 \pm 0.84\%$	$33.0 \pm 0.84\%$	$32.0 \pm 0.74\%$			
75%	$32.0\pm1.2\%$	$32.0 \pm 1.2\%$	$31.0 \pm 0.73\%$	$33.0 \pm 0.99\%$	$33.0 \pm 0.99\%$	$32.0 \pm 0.63\%$			
90%	$31.0 \pm 0.67\%$	$31.0 \pm 0.67\%$	$31.0 \pm 0.76\%$	$33.0 \pm 0.77\%$	$33.0 \pm 0.77\%$	$32.0 \pm 0.78\%$			
100%	32%	32%	31%	32%	32%	31%			

Table 9: Effect of dataset size on ECC overhead in level allocation (4 bpc).

Dataset -		Ember1 Bit Error Rate							Ember2 Bit Error Rate							
	LA	LA+FR	FLA	FLA+FR	LA+AC	LA+AC+FR	FLA+AC	FLA+AC+FR	LA	LA+FR	FLA	FLA+FR	LA+AC	LA+AC+FR	FLA+AC	FLA+AC+FR
100/0	9.1%	9.1%	.9.1%	9.1%	8.1%	8.1%	8.1%	8.1%	9.0%	9.0%	9.0%	9.0%	7.7%	7.6%	7.6%	7.6%
50/50	9.6%	9.6%	9.6%	9.6%	9.6%	9.1%	9.6%	9.2%	10.0%	10.0%	10.0%	10.0%	10.0%	10.0%	8.6%	8.6%
10/90	11.0%	11.0%	11.0%	11.0%	12.0%	12.0%	12.0%	12.0%	11.0%	11.0%	11.0%	11.0%	11.0%	11.0%	12.0%	11.0%
0/100	11.0%	11.0%	11.0%	11.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%	12.0%

Table 10: Interchip level allocation (3 bpc) comparison on ECC overhead. A mix of x/y = x% target chip's dataset plus y% from another chip.

Dataset	Ember1 Bit Error Rate							Ember2 Bit Error Rate						
	LA	LA+FR	FLA	FLA+FR	LA+AC	LA+AC+FR	LA	LA+FR	FLA	FLA+FR	LA+AC	LA+AC+FR		
100/0	3.6%	3.5%	3.7%	3.7%	3.6%	3.5%	3.7%	3.7%	4.0%	3.9%	3.5%	3.5%		
50/50	3.6%	3.6%	4.1%	4.2%	3.7%	3.5%	4.3%	4.3%	5.5%	5.1%	3.9%	3.9%		
10/90	4.1%	4.0%	4.4%	4.3%	4.1%	4.0%	4.8%	4.6%	5.3%	5.3%	4.3%	3.9%		
0/100	4.0%	4.1%	4.2%	4.9%	4.1%	4.1%	5.1%	5.0%	5.5%	5.3%	4.7%	4.4%		

Table 11: Interchip level allocation (4 bpc) comparison on bit error rate (BER). A mix of x/y = x% target chip's dataset plus y% from another chip.

Dataset	Ember1 Bit Error Rate							Ember2 Bit Error Rate						
	LA	LA+FR	FLA	FLA+FR	LA+AC	LA+AC+FR	LA	LA+FR	FLA	FLA+FR	LA+AC	LA+AC+FR		
100/0	32.0%	32.0%	32.0%	32.0%	31.0%	30.0%	32.0%	32.0%	32.0%	32.0%	31.0%	31.0%		
50/50	31.0%	31.0%	31.0%	31.0%	32.0%	31.0%	36.0%	36.0%	36.0%	36.0%	33.0%	33.0%		
10/90	34.0%	34.0%	34.0%	34.0%	35.0%	34.0%	39.0%	39.0%	39.0%	39.0%	36.0%	33.0%		
0/100	34.0%	34.0%	34.0%	34.0%	34.0%	35.0%	41.0%	41.0%	41.0%	41.0%	38.0%	36.0%		

Table 12: Interchip level allocation (4 bpc) comparison on ECC overhead. A mix of x/y = x% target chip's dataset plus y% from another chip.

B ADDITIONAL PSEUDOCODE

Additionally, we present pseudocode for both of our heuristic improvements, i.e., our FindAllCliques and FlexibleRefine subroutines.

B.1 FindAllCliques

Algorithm 2 FindAllCliques pseudocode.

```
1: function FINDALLCLIQUES(G, n, \epsilon)
       \gamma = \text{LevelAlloc}(n, \epsilon)
 2:
       Cands = CANDIDATEGEN(\gamma)
 3:
       Cliques = FINDMAXIMALCLIQUES(G)
 4:
       BestBER = 1, BestClique = None
       for c \in Cliques do
 6:
           if Size(c) == n then
 7:
              Levels = Sorted(List(c))
 8:
              BER = GetBERFromAlloc(Levels)
 9:
              if BER < BestBER then
10:
                  BestBER = BER, BestClique = Levels
11:
       return BestClique
12:
13:
14: function ConstructGraph(Cands)
       G = InitializeGraph()
15:
       for node \in Cands do
16:
           G.AddNode(node)
17:
       for CandPair \in Combinations(Cands, 2) do
18:
           if Not IsOverlap(CandPair) then
19:
              G.AddEdge(CandPair)
20:
       return G
21:
```

B.2 FlexibleRefine

Algorithm 3 FlexibleRefine (FR) pseudocode.

```
1: function FlexibleRefine(L, n)
      for i \in [0, ..., Len(L)] do
2:
          MinBer = GetBER(L, n)
3:
          MinBoundary = L[i][xh]
4:
          for j \in [L[i][xh] + 1, ..., L[i+1][xl]] do
             L[i][xh] = L[i+1][xl] = j
6:
             BER = GetBER(L)
             if BER < MinBER then
8:
                 MinBoundary = j
9:
                 MinBER=BER
10:
          L[i][xh] = L[i+1][xl] = MinBoundary
11:
      return L
12:
```