

PHYS 226 – Spring 2017 Final exam

Name:	
Pledged: _	
Please wr	ite your answer on the exam sheet.

v.1.0 © pHn 2017

Useful stuff that you may (or may not) need

Unit conversions

Length and Volume

1 m = 100 cm = 39.370 in = 3.2808 ft

1 mi = 1.6093 km = 5280 ft

1 in = 2.54 cm

 $1 \text{ nm} = 10^{-9} \text{ m} = 1 \text{ Å}$

 $1 \text{ m}^3 = 1000 \text{ L} = 264.17 \text{ gal (US)}$

 $1 \text{ mL} = 10^{-3} \text{ L} = 10^{-6} \text{ m}^3 = 1 \text{ cm}^3$

Speed and Time

 $1 \text{ m} \cdot \text{s}^{-1} = 2.2369 \text{ mi} \cdot \text{h}^{-1}$

1 h = 3600 s

Force and Pressure

 $1 \text{ N} = 10^6 \text{ dyne} = 0.22481 \text{ lb}$

1 ton (US) = 2000 lb

 $1 \text{ Pa} = 1 \text{ N} \cdot \text{m}^{-2}$

 $1 \text{ atm} = 760 \text{ mmHg} = 1.01325 \times 10^5 \text{ Pa}$

= 14.696 psi

Energy and Power

 $1 J = 1 N \cdot m = 1 kg \cdot m^2 \cdot s^{-2} = 0.23901 cal$

 $1 \text{ eV} = 1.60217 \times 10^{-19} \text{ J}$

1 hp (US) = 0.74570 kW

Physical constants

Gravitational field at sea level $g = 9.80 \text{ m} \cdot \text{s}^{-2} = 9.80 \text{ N} \cdot \text{kg}^{-1}$

Gravitational constant $G = 6.67384 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

Avogadro constant $N_A = 6.0221 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant $R = 8.3145 \,\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1} = 0.082057 \,\mathrm{L}\cdot\mathrm{atm}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$

Boltzmann constant $k_B = 1.38065 \times 10^{-23} \,\text{J} \cdot \text{K}^{-1}$

Mass of Earth $M_E = 5.972 \times 10^{24} \text{ kg}$

Mean radius of Earth $R_E = 6.371 \times 10^6 \text{ m}$

Density of water (3.98° C) $\rho_w = 1.000 \times 10^3 \text{ kg} \cdot \text{m}^3$

Elementary charge $e = 1.6022 \times 10^{-19} \,\mathrm{C}$

Electron mass $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Proton mass $m_P = 1.6726 \times 10^{-27} \text{ kg}$

Coulomb constant $k = 1/4\pi\varepsilon_0 = 8.98755 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \cdot \mathrm{C}^{-2}$

Permittivity of free space $\varepsilon_0 = 8.8542 \times 10^{-12} \,\mathrm{C}^2 \cdot \mathrm{N}^{-1} \cdot \mathrm{m}^{-2}$

Permeability of free space $\mu_0 = 1.2566 \times 10^{-6} \text{ N} \cdot \text{A}^{-2}$

Refractive index of freshwater = 1.33

Refractive index of seawater = 1.35

Q.1 Shipping container A shipping container is floating in the ocean with 23.0% of its height submerged in the seawater (density 1030 kg/m³). The container is 40.0 ft long by 8.00 ft wide by 8.50 ft high and has a mass of 3802 kg when it's empty. The

police want you to estimate the mass of the container's contents.

Q.2 FCC volume *Calculate* the actual volume occupied by the spheres in the face-centered cubic structure shown in the figure as a percentage of the total volume.

Q.3 Strain Calculate the strain in a steel wire under a tensile stress of 1.0×10^7 N/m². What is percentage contraction in diameter of the wire under such a load? For the steel in the wire: Young's modulus is $Y = 210 \times 10^9$ N/m², the modulus of rigidity is $G = 84 \times 10^9$ N/m², the bulk modulus is $K = 210 \times 10^9$ N/m² and Poisson's ratio is V = 0.29.

Q.4 Fermi energy The Fermi energy for lithium is 4.72 eV at T=0 K. (a) *Calculate* the number of conduction electrons per unit volume in lithium. (b) How many electrons per atom is this? The density of lithium is 535 kg/m³.

Q.5 Lizzie's show-that problem From pages 156 and 157 of chapter 6 of Turton, Lizzie knows that

$$N_d l_n = N_a l_p \tag{6.5}$$

and

$$\phi = \frac{e}{2\varepsilon\varepsilon_0} \left(N_d l_n^2 + N_a l_p^2 \right) \tag{6.6}$$

Using equations (6.5) and (6.6), *show that* the widths of the depletion layer on the p- and n-sides of a p-n junction are given by equations (6.7) and (6.8), respectively.

$$l_p = \sqrt{\frac{\phi 2\varepsilon \varepsilon_0}{eN_a} \frac{N_d}{N_a + N_d}} \tag{6.7}$$

$$l_n = \sqrt{\frac{\phi 2\varepsilon \varepsilon_0}{eN_d} \frac{N_a}{N_a + N_d}} \tag{6.8}$$

- Q.6 Salt on the driveway The constitutional phase diagram for salt and water is shown on the right.
- (a) Using this diagram, *briefly explain* how spreading salt on ice that's below 0°C can cause the ice to melt.
- (b) What wt% of salt is necessary to completely melt ice at -10° C?
- (c) What wt% of salt is necessary to have a 50% ice 50% liquid brine at -10° C?
- (d) What is the composition of the resulting brine?
- **(e)** According to the <u>solute blocking model</u>, what process is slowed down by the presence of salt in the brine?

Q.7 Magnetization Consider a solid consisting of N atoms each with magnetic moment $\mu = 1\mu_B$ where $\mu_B = e\hbar/2m_e$. In the presence of an external magnetic field of strength B_0 , each atom has two possible energy states — parallel to the field (with energy $E = -\mu_B B_0$), and antiparallel to the field (with energy $E = \mu_B B_0$). The probability of finding one atom with an energy E is given by $p(E) = A\exp(-E/k_B T)$.

(a) Determine A.

Hint: The two probabilities must add up to one.

(b) Show that the average magnetic moment is $\langle \mu \rangle = \mu_B \tanh \frac{\mu_B B_0}{k_B T}$, so that the magnetization M is given by $M = N \langle \mu \rangle = N \mu_B \tanh \frac{\mu_B B_0}{k_B T}$.

Hint: $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

- (c) What does this equation give for the magnetization at low fields and at very large fields?
- (d) Compare your answer to part (c) for low fields with Curie's law $M = CB_0/T$.
- (e) Is this solid diamagnetic, paramagnetic, or ferromagnetic?

Q.8 Superconductor For a superconducting material at a temperature T below the critical temperature T_c , the critical field $H_c(T)$, depends on temperature according to the relationship

$$H_c(T) = H_c(0) \left(1 - \frac{T^2}{T_c^2} \right)$$

where $H_c(0)$ is the critical field at 0 K.

(a) Using the data in Table 18.7, calculate the critical magnetic fields for lead at 1.5 K and 3.5 K.

Table 18.7 Critical Temperatures and Magnetic Fluxes for Selected Superconducting Materials

	Critical Temperature	Critical Magnetic
Material	$T_{C}(K)$	Flux Density B_c (tesla)
	Elements ^b	
Tungsten	0.02	0.0001
Titanium	0.40	0.0056
Aluminum	1.18	0.0105
Tin	3.72	0.0305
Mercury (α)	4.15	0.0411
Lead	7.19	0.0803
	Compounds and Alloys	6
Nb-Ti alloy	10.2	12
Nb-Zr alloy	10.8	11
PbMo ₆ S ₈	14.0	45
V₃Ga	16.5	22
Nb ₃ Sn	18.3	22
Nb_3Al	18.9	32
Nb ₃ Ge	23.0	30
	Ceramic Compounds	
YBa ₂ Cu ₃ O ₇	92	_
$Bi_2Sr_2Ca_2Cu_3O_{10}$	110	_
$Tl_2Ba_2Ca_2Cu_3O_{10}$	125	_
HgBa ₂ Ca ₂ Cu ₂ O ₈	153	<u> </u>

(b) To what temperature must lead be cooled in a magnetic field of 20,000 A/m for it to be superconductive?