MBA - Inteligência Artificial e Big Data

Aplicação de Redes Neurais Convolucionais na Classificação de Imagens de Raio-X do Tórax para Auxílio no Diagnóstico da COVID-19

Aluna: Flávia Guimarães Gaia Paula

flaviaggpaula@gmail.com

Orientador: Prof. Dr. Zhao Liang

Turma 1

Introdução

Normal

Problema a ser Resolvido: Diagnóstico Preciso e Rápido da COVID-19.

Neste trabalho, explorei a aplicação de Redes Neurais Convolucionais para enfrentar os desafios do diagnóstico da COVID-19.

Trabalhos relacionados

Tabela 1 – Comparação dos Trabalhos Correlatos

Trabalho	Metodologia	Dados	Objetivo
(RESHI et al., 2021)	CNN profunda	Imagens de raio-x do	Detecção de COVID-
10011		tórax	19
(OHATA et al., 2020)	Transfer Learning	Imagens de raio-x do	Detecção de COVID-
		tórax	19
(BARBOSA; COE-	CNN	Imagens de raio-x do	Detecção de COVID-
LHO; BAFFA, 2021)		tórax	19
(CHRISTOFOLLETT)	; CNN	Imagens de raio-x do	Detecção de COVID-
ATTUX, 2022)		tórax	19 e Pneumonia viral
(SILVA et al., 2020)	InceptionResNetV2	Imagens de raio-x do	Detecção de
	e Res-	tórax	COVID-19
	NetX50		e Pneumo-
			nia viral

Aplicação das CNNs na análise e classificação de imagens médicas

- (RESHI et al., 2021): Utiliza CNNs na classificação de imagens de raio-x do tórax relacionadas à COVID-19. A estratégia empregada, que utiliza uma CNN profunda, alcança uma precisão surpreendentemente próxima de 100%.
- (OHATA et al., 2020): Experimenta com várias arquiteturas de CNNs que foram inicialmente treinadas com o conjunto de dados ImageNet. Utilizando técnicas de Transfer Learning, o estudo avalia a eficácia dessas redes em conjunto com algoritmos tradicionais, como k-Nearest Neighbor e SVM. As combinações mais eficientes alcançaram precisão e pontuação F1 superiores a 95%.
- (BARBOSA; COELHO; BAFFA, 2021): Otimiza uma CNN para reduzir o custo de processamento sem sacrificar a acurácia na detecção da COVID-19. A rede, que é relativamente simplificada com apenas três camadas convolucionais, demonstrou uma notável precisão de 99,36%.
- (CHRISTOFOLLETTI; ATTUX, 2022): As Dense Convolutional Networks foram utilizadas para identificar outras doenças com resultados encorajadores.
- (SILVA et al, 2020): Adotou as arquiteturas InceptionResNetV2 e ResNetX50 para classificar imagens de raio-x. Dentre as arquiteturas testadas, a ResNetX50 mostrou-se superior conforme as métricas utilizadas.

Tabela 2 – Distribuição do número de imagens por classe em diferentes conjuntos de dados

Dataset	Classe	Nº de imagens extraídas da classe	Total de imagens
(KERMANY et al., 2018)	Covid	504	504
	Normal	00	
(JAMDADE, 2020)	Covid	01	80
	Normal	79	
(COHEN et al., 2020)	Covid	00	1502
	Normal	1502	

- Uma base de dados foi criada para este projeto, composta por imagens de raio-x classificadas em duas categorias: "Covid" e "Normal". Essas imagens foram coletadas de vários conjuntos de dados.
- A base de dados, que foi filtrada para remover duplicatas, contém um total de 2.089 imagens.

 Dessas, 505 são diagnosticadas como COVID-19 (aproximadamente 24.18%) e 1.580 são

 classificadas como normais (aproximadamente 75.82%).

Figura 5 - Efeito das técnicas do ImageDataGenerator em uma imagem de raio-x.

- Aumento de dados com ImageDataGenerator: reescalonamento, zoom, range de cisalhamento e virar as imagens horizontalmente.
- Para o conjunto de teste, apenas o reescalonamento foi aplicado, pois, durante o teste, não queremos alterar ou aumentar os dados.
- Por fim as imagens foram redimensionadas para 64x64 pixels e foram organizadas em lotes de 16 imagens para otimizar o processo de treinamento.

A otimização de hiperparâmetros com o Grid Search foi essencial para escolher a combinação ideal de número de épocas, tamanho do lote e taxa de aprendizado para o modelo.

Para ilustrar o desempenho das diferentes combinações de hiperparâmetros, um gráfico de calor foi gerado.

- Número de épocas: 15.
- Tamanho do lote: 16.
- Taxa de aprendizado: 0.001.

Arquitetura do modelo:

- O modelo utilizado é uma CNN, uma arquitetura profunda amplamente empregada em tarefas de processamento de imagens.
- A arquitetura da CNN foi projetada especificamente para extrair características relevantes de imagens radiográficas do tórax.
- Camadas convolucionais: Aplicam filtros às imagens de entrada para detectar padrões e características específicas. Utilizam funções de ativação ReLU para introduzir não linearidade.
- Camadas de pooling: Seguem as camadas convolucionais e reduzem a dimensionalidade da saída das camadas anteriores, preservando as características mais importantes.
- Camadas densas: A saída das camadas de pooling é achatada para criar um vetor unidimensional que serve como entrada para essas camadas. Elas realizam a classificação final com base nas características extraídas das camadas anteriores.
- Camada de saída: Utiliza uma função de ativação sigmoidal, adequada para problemas de classificação binária, e fornece a probabilidade de pertencimento a uma das classes ("Covid" ou "Normal").

A divisão da base de dados para treinamento e teste foi feita na proporção de 80% para treinamento e 20% para teste.

Ilustra o gráfico da acurácia do modelo ao longo das épocas no conjunto de treinamento (linha azul) e no conjunto de teste (linha laranja).

As duas curvas estão subindo e mantendo-se próximas uma da outra, o que indica que o modelo está aprendendo bem e generalizando para novos dados.

O gráfico de perda exibe como a perda do modelo se comportou durante o treinamento.

É possível notar ambas as curvas de treinamento e teste estão diminuindo, o que significa que o modelo está ajustando seus pesos para minimizar a perda e, portanto, fazendo previsões mais precisa.

Resultados

 A matriz de confusão revela que o modelo acertou 132 diagnósticos de Covid e 472 de Normal; errou ao prever 20 casos de Covid e um de Normal.

400

O relatório de classificação apresenta métricas como precisão, recall, f1-score e support.

- Precisão: Indica a habilidade do classificador em não rotular como positiva uma amostra negativa.
- **Recall**: Representa a habilidade do modelo em identificar todas as amostras positivas.
- **F1-score**: Média harmônica ponderada entre precisão e recall.
- **Support**: Número de ocorrências de cada classe no conjunto real.

- A métrica AUC-ROC foi aplicada para medir a capacidade do modelo em distinguir as classes e alcançou o valor de 0.9759, aproximando-se bastante de 1, evidenciando a excelente capacidade discriminativa do modelo.
- A posição da curva em relação à diagonal no gráfico ROC indica que o modelo tem uma alta taxa de verdadeiros positivos e uma baixa taxa de falsos positivos.

Resultados

Tabela 3 – Comparação de Resultados com Trabalhos Correlatos

Trabalho	Acurácia (%)
Este Estudo	98.40
(RESHI et al., 2021)	100.00
(OHATA et al., 2020)	95.00
(BARBOSA; COELHO; BAFFA, 2021)	99.36
(CHRISTOFOLLETTI; ATTUX, 2022)	90.26
ResNetX50 (SILVA et al., 2020)	99.33
InceptionResNetV2 (SILVA et al., 2020)	98.00

• O modelo deste estudo demonstrou uma alta acurácia de 98.4% na detecção de COVID-19 em imagens de raio-x do tórax.

 Ao comparar esses resultados com os trabalhos correlatos, observamos que nosso modelo se aproxima do desempenho alcançado pelo primeiro estudo com 100.0% de acurácia e supera o segundo estudo que obteve 95.0% de acurácia.

Conclusão e trabalhos futuros

- A implementação da CNN, conforme detalhado no código, revelou-se robusta.
- Este trabalho ressalta a viabilidade e eficácia de se usar CNNs na análise de imagens para detecção da Covid-19. Atingir acurácias tão altas em um cenário real tem implicações potenciais para aplicações clínicas, onde a detecção rápida e precisa pode fazer uma diferença significativa no tratamento e isolamento dos pacientes.
- Expandir a base de dados para aumentar a precisão e resiliência do modelo.
- Exploração de arquiteturas de redes mais complexas para melhorar ainda mais o desempenho.
- Incorporar técnicas adicionais de pré-processamento e aumento de dados.
- Investigação de abordagens de transferência de aprendizado, que podem ser proveitosas.

