Lecture 4. Logistic Regression. Basis Expansion

COMP90051 Statistical Machine Learning

Semester 2, 2017 Lecturer: Andrey Kan

This lecture

- Logistic regression
 - * Binary classification problem
 - Logistic regression model
- Basis expansion
 - Examples for linear and logistic regression
 - Theoretical notes

Logistic Regression Model

A linear method for binary classification

Binary classification problem

- <u>Example</u>: given body mass index (BMI) does a patient have type 2 diabetes (T2D)?
- This type of problems is called binary classification
- One can use linear regression
 - Fit a line/hyperplane to data (find weights w)
 - * Denote $s \equiv x'w$
 - * Predict "Yes" if $s \ge 0.5$
 - * Predict "No" if s < 0.5

Approaches to classification

- This approach can be susceptible to outliers
- Overall, the least squares criterion looks unnatural in this setting
- There are many methods developed specifically with binary classification in mind
- Examples include logistic regression, perceptron, support vector machines (SVM)

Logistic regression model

- Probabilistic approach to classification
 - * $P(\mathcal{Y} = 1 | \mathbf{x}) = f(\mathbf{x}) = ?$
 - * Use a linear function? E.g., s(x) = x'w
- Problem: the probability needs to be between 0 and 1. Need to squash the function
- Logistic function $f(s) = \frac{1}{1 + \exp(-s)}$
- Logistic regression model

$$P(\mathcal{Y} = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

Equivalent to linear model for log-odds

$$\log \frac{P(\mathcal{Y}=1|\mathbf{x})}{P(\mathcal{Y}=0|\mathbf{x})} = \mathbf{x}'\mathbf{w}$$

Logistic regression model

- Probabilistic approach to classification
 - * $P(\mathcal{Y} = 1|x) = f(x) = ?$
 - * Use a linear function? E.g., s(x) = x'w
- Problem: the probability needs to be between 0 and 1. Need to squash the function
- Logistic function $f(s) = \frac{1}{1 + \exp(-s)}$
- Logistic regression model

$$P(\mathcal{Y} = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

Equivalent to linear model for log-odds

$$\log \frac{P(\mathcal{Y} = 1|\mathbf{x})}{P(\mathcal{Y} = 0|\mathbf{x})} = \mathbf{x}'\mathbf{w}$$

Effect of parameter vector (2D problem)

- Decision boundary is the line where $P(\mathcal{Y} = 1 | x) = 0.5$
 - * In higher dimensional problems, the decision boundary is a plane or hyperplane
- Vector w is perpendicular to the decision boundary
 - * That is, w is a normal to the decision boundary
 - Note: in this illustration we assume $w_0 = 0$ for simplicity

Linear and logistic probabilistic models

Linear regression assumes a <u>Normal distribution</u> with a fixed variance and mean given by linear model

$$p(y|\mathbf{x}) = Normal(y|\mathbf{x}'\mathbf{w}, \sigma^2)$$

 Logistic regression assumes a <u>Bernoulli distribution</u> with parameter given by logistic transform of linear model

$$p(y|\mathbf{x}) = Bernoulli\left(y|\theta(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{x}'\mathbf{w})}\right)$$

Recall that Bernoulli distribution is defined as

$$p(1) = \theta$$
 and $p(0) = 1 - \theta$ for $\theta \in [0,1]$

• Equivalently $p(y) = \theta^y (1 - \theta)^{(1-y)}$ for $y \in \{0,1\}$

Training as maximising likelihood estimation

Assuming independence, probability of data

$$p(y_1, ..., y_n | \mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1}^n p(y_i | \mathbf{x}_i)$$

Assuming Bernoulli distribution we have

$$p(y_i|\mathbf{x}_i) = \theta(\mathbf{x}_i)^{y_i} \left(1 - \theta(\mathbf{x}_i)\right)^{(1-y_i)}$$
 where $\theta(\mathbf{x}_i) = \frac{1}{1 + \exp(-x_i'w)}$

 "Training" amounts to maximising this expression with respect to weights w

Old good trick

 "Log trick": Instead of maximising the likelihood, maximise its logarithm

$$\log\left(\prod_{i=1}^{n} p(y_i|\mathbf{x}_i)\right) = \sum_{i=1}^{n} \log p(y_i|\mathbf{x}_i)$$

$$= \sum_{i=1}^{n} \log\left(\theta(\mathbf{x}_i)^{y_i} (1 - \theta(\mathbf{x}_i))^{(1-y_i)}\right)$$

$$= \sum_{i=1}^{n} (y_i \log(\theta(\mathbf{x}_i)) + (1 - y_i) \log(1 - \theta(\mathbf{x}_i)))$$

$$= \sum_{i=1}^{n} ((y_i - 1)\mathbf{x}_i'\mathbf{w} - \log(1 + \exp(-\mathbf{x}_i'\mathbf{w})))$$

Side note: Cross entropy

- Cross entropy is a method for comparing two distributions
- Cross entropy is a measure of a divergence between reference distribution $g_{ref}(a)$ and estimated distribution $g_{est}(a)$. For discrete distributions:

$$H(g_{ref}, g_{est}) = -\sum_{a \in A} g_{ref}(a) \log g_{est}(a)$$

A is support of the distributions, e.g., $A = \{0,1\}$

Training as cross entropy minimisation

- Consider log-likelihood for a single data point $\log p(y_i|x_i) = y_i \log(\theta(x_i)) + (1 y_i) \log(1 \theta(x_i))$
- This expression is the negative cross entropy
- Cross entropy $H(g_{ref}, g_{est}) = -\sum_{a} g_{ref}(a) \log g_{est}(a)$
- The reference (true) distribution is

$$g_{ref}(1) = y_i \text{ and } g_{ref}(0) = 1 - y_i$$

Logistic regression aims to estimate this distribution as

$$g_{est}(1) = \theta(\mathbf{x}_i)$$
 and $g_{est}(0) = 1 - \theta(\mathbf{x}_i)$

Notes on optimisation

- Training logistic regression amounts to finding w that maximise log-likelihood
 - * Equivalently, finding w that minimise the sum of cross entropies for each training point
- The usual routine is to set derivatives of the objective function to zero and solve
- Bad news: There is no closed form solution, iterative methods are used instead (e.g., stochastic gradient descent)
- Good news: The problem is strictly convex (like a bowl) if there are no irrelevant features
- With irrelevant features, the problem is convex (like a ridge). Regularisation methods can be applied

Basis Expansion

Extending the utility of models via data transformation

Basis expansion for linear regression

- Let's take a step back. Back to linear regression and least squares
- Real data is likely to be non-linear
- What if we still wanted to use a linear regression?
 - * It's simple, easier to understand, computationally efficient, etc.
- How to marry non-linear data to a linear method?
- if the mountain won't come to Muhammad then Muhammad must go to the mountain

Transform the data

- The trick is to transform the data: Map the data onto another features space, such that the data is linear in that space
- Denote this transformation $\varphi: \mathbb{R}^m \to \mathbb{R}^k$. If x is the original set of features $\varphi(x)$ denotes the new set of features
- Example: suppose there is just one feature x, and the data is scattered around a parabola rather than a straight line y^{\uparrow} .

Example: Polynomial regression

No worries, just define

$$\varphi_1(x) = x$$
$$\varphi_2(x) = x^2$$

• Next, apply linear regression to φ_1, φ_2

$$y = w_0 + w_1 \varphi_1(x) + w_2 \varphi_2(x) = w_0 + w_1 x + w_2 x^2$$

and here you have quadratic regression

• More generally, obtain **polynomial regression** if the new set of attributes are powers of x

Basis expansion

- Data transformation, also known as basis expansion, is a general technique
 - * We'll see more examples throughout the course
- It can be applied for both regression and classification
- There are many possible choices of φ

Basis expansion for logistic regression

- Consider the following binary classification problem (left). This dataset cannot be linearly separated
- Define transformation as

$$\varphi_i(x) = ||x - z_i||$$
, where z_i some pre-defined constants

• Choose $\mathbf{z}_1 = [0,0]'$, $\mathbf{z}_2 = [0,1]'$, $\mathbf{z}_3 = [1,0]'$, $\mathbf{z}_4 = [1,1]'$

x_1	x_2	у
0	0	Class A
0	1	Class B
1	0	Class B
1	1	Class A

there exist weights that make data separable, e.g.:

w_1	W_2	W_3	w_4
1	0	0	1

$arphi_1$	$arphi_2$	$arphi_3$	$arphi_4$
0	1	1	$\sqrt{2}$
1	0	$\sqrt{2}$	1
1	$\sqrt{2}$	0	1
$\sqrt{2}$	1	1	0

The transformed data is linearly separable!

$\boldsymbol{\varphi}'\boldsymbol{w}$	у
$\sqrt{2}$	Class A
2	Class B
2	Class B
$\sqrt{2}$	Class A

Radial basis functions

- The above transformation is an example of the use of radial basis functions (RBFs)
 - * Their use has been motivated from the approximation theory, where sums of RBFs are used to approximate given functions
- A radial basis function is a function of the form $\varphi(x) = \psi(\|x z\|)$, where z is a constant
- Examples:
- $\varphi(\mathbf{x}) = \exp\left(-\frac{1}{\sigma}\|\mathbf{x} \mathbf{z}\|^2\right)$

Challenges of basis expansion

- Basis expansion can significantly increase the utility of methods, especially, linear methods
- In the above examples, one limitation is that the transformation needs to be defined beforehand
 - Need to choose the size of the new feature set
 - * If using RBFs, need to choose z_i
- Regarding z_i , one can choose uniformly space points, or cluster training data and use cluster centroids
- Another popular idea is to use training data $z_i \equiv x_i$
 - * E.g., $\varphi_i(x) = \psi(||x x_i||)$
 - Nowever, for large datasets, this results in a large number of features → computational hurdle

Further directions

- There are several avenues for taking the idea of basis expansion to the next level
 - Will be covered later in this subject
- One idea is to *learn* the transformation φ from data
 - * E.g., Artificial Neural Networks
- Another powerful extension is the use of the kernel trick
 - * "Kernelised" methods, e.g., kernelised perceptron
- Finally, in sparse kernel machines, training depends only on a few data points
 - * E.g., SVM

This lecture

- Logistic regression
 - * Binary classification problem
 - Logistic regression model
- Basis expansion
 - Examples for linear and logistic regression
 - Theoretical notes