Layered Architecture for MCU2

ECU1 Components

1. MCAL

• DIO Driver:

Driver interface with ECU DIO peripheral which interduce DIO_Set, DIO_Reset, DIO_Toggle, DIO_Read APIs to upper layers.

• TIMER Driver:

Driver interface with ECU TIMER peripheral which interduce TIMER_Init, TIMERDelay_ms, Interrupts set call back APIs to upper layers.

• CAN Driver:

Driver interface with ECU CAN peripheral which interduce CAN_Init, CAN_Read, CAN_Write APIs to upper layers

2. HAL

• Light Driver:

Module responsible for interface with right light and left light providing API LightOn and LightOff to control he car lights.

• Buzzer Driver:

 Module responsible for interface with Buzzer providing API BuzzerOn and BuzzerOff to control he car Buzzer.

3. SERVICES LAYER

• BIT MATH:

A header file contains functions like macros which perform bit manipulation SET_BIT, RESET_BIT, TOGGLE_BIT, GETVAL_BIT.

STD_TYPES:

A header file contains standard types u8, u16, u32, u64, s8, s16, s32, s64, f32, f64.

4. APPLICATION LAYER

The system has 3 tasks and 1 queue

• Light task:

The task is responsible for controlling the car lights on or off.

• Buzzer task:

The task is responsible for controlling the car Buzzer on or off.

• Receive status task:

The task is responsible for receive the system status sent from MCU1 through CAN bus.

• Status queue:

Intercommunication to sync status messages form Receive status task to the tasks.

ECU2 APIs Discerption

1. MCAL

• DIO Driver:

```
DIO

+ DIO_Init( void ) : void
+ DIO_Set( u8, u8) : void
+ DIO_Reset( u8,u8 ) : void
+ DIO_Toggle( u8,u8 ) : void
+ DIO_Read( u8,u8 ) : u8
```

DIO_Init

Description: This API use to initialize DIO ports

directions

Arguments: void

Return: void

DIO_Set

Description: This API use to set the value of a

DIO bin

Arguments: DIO_PORT,BIN_NUM

Return: void

DIO_Reset

Description: This API use to Reset the value of

a DIO bin

Arguments: DIO_PORT,BIN_NUM

Return: void

DIO_Toggle

Description: This API use to Toggle the value

of a DIO bin

Arguments: DIO_PORT,BIN_NUM

Return: void

DIO_Read

Description: This API use to Read the value of

a DIO bin

Arguments: DIO_PORT,BIN_NUM

Return: Boolean 0 or 1

• TIMER Driver:

TIMER_Init

Description: This API use to initialize TIMER

tick time

Arguments: void

Return: void

TIMEROutpoutCompareMatchInterrupt_SetCallBack

Description: This API use to assign the address of timer compare match interrupt handler in

his right place in vector table

Arguments: pointer to timer compare match

interrupt handler

Return: void

TIMEROverFlowInterrupt_SetCallBack

Description: This API use to assign the address of timer over flow interrupt handler in his

right place in vector table

Arguments: pointer to timer over flow

interrupt handler

Return: void

TIMERDelay_ms

Description: This API use to a delay using

timer in milliseconds

Arguments: u16 which represent the desired

delay in milliseconds

• CAN Driver:

CAN_Init

Description: This API use to initialize CAN

Arguments: void

Return: void

CAN_Read

Description: This API use to read data sent

through CAN bus

Arguments: void

Return: u8 data

CAN_Write

Description: This API use to write data

through CAN bus

Arguments: u8 data

2. HAL

• Light Driver:

LightOn

Description: This API use to turn on the right and the left lights of the car.

Arguments: first argument reg_name which is the DIO port that the car lights connected to it.

which represent a pointer to the address of the DIO register.

Second argument bit_num which represent the bit number in the same register.

LightOff

Description: This API use to turn off the right and the left lights of the car.

Arguments: first argument reg_name which is the DIO port that the car lights connected to it.

which represent a pointer to the address of the DIO register.

Second argument bit_num which represent the bit number in the same register.

Return: void

• Buzzer Driver:

+BuzzerOn(u8*,u8): void +BuzzerOff(u8*,u8): void

BuzzerOn

Description: This API use to turn on the Buzzer of the car.

Arguments: first argument reg_name which is the DIO port that the car Buzzer connected to it.

which represent a pointer to the address of the DIO register.

Second argument bit_num which represent the bit number in the same register.

Return: void

BuzzerOff

Description: This API use to turn off the Buzzer of the car.

Arguments: first argument reg_name which is the DIO port that the car Buzzer connected to it.

which represent a pointer to the address of the DIO register.

Second argument bit_num which represent the bit number in the same register.

3. SERVICES Layer

• BIT_MATH:

BIT_MATH +SET_BIT(u8, u8) : void +RESET_BIT(u8, u8) : void +TOGGLE_BIT(u8, u8) : void +GETVAL_BIT(u8, u8) : u8

SET_BIT

Description: This is a function like macro which be replaced with reg_name | = (1 << bit_num) to set the value of a DIO bin

Arguments: reg_name which represent a pointer to the address of the register bit_num which represent the bit number in the same register

Return: void

RESET BIT

Description: This is a function like macro which be replaced with reg_name&=~(1<<bit_num) to reset the value of a DIO bin

Arguments: reg_name which represent a pointer to the address of the register

bit_num which represent the bit number in the same register

Return: void TOGGLE_BIT

Description: This is a function like macro which be replaced with reg_name^=(1<<bit_num) to toggle the value of a DIO bin

Arguments: reg_name which represent a pointer to the address of the register bit_num which represent the bit number in the same register

Return: void GITVAL_BIT

Description: This is a function like macro which be replaced with (reg_name>>bit_num)&1 to get the value of a DIO bin

Arguments: reg_name which represent a pointer to the address of the register bit_num which represent the bit number in the same register

Return: u8 which represent the bin value

• STD_TYPES:

+ typedef u8 : unsigned char + typedef u16 : unsigned short int + typedef u32 : unsigned int + typedef u64 : unsigned long int + typedef s8 : char + typedef s16 : short int + typedef s32 : int + typedef s64 : long int + typedef f32 : float + typedef f64 : double

Description: A header file contains standard types u8, u16, u32, u64, s8, s16, s32, s64, f32, f64.

4. APPLICATION Layer

• LightTask:

+UpdateLightStatus(struct Message*):void

UpdateLightStatus

Description: This is a function use to control the behavior of the right and the left lights based on sensors readings sent form MCU1

Arguments: pointer to struct Message

BuzzerTask:

BuzzerTask

+UpdateBuzzerStatus(struct Message*): void

UpdateBuzzerStatus

Description: This is a function use to control the behavior of the Buzzer based on sensors readings sent form MCU1

Arguments: pointer to struct Message

ReceiveStatusTask:

ReceiveStatus Task

- + MSG: struct Message
- + ReceiveData(void): struct Message

ReceiveData

Description: This is a function use to receive the reads of car sensors sent from MCU1

through CAN bus

Arguments: void

Return: struct Message

MSG

Description: a struct variable contains the

read of a car sensor sent from MCU1

ECU2 Class diagram

