

ADC 제어 SW 설계

학습목표

- STM32F429의 ADC와 관련 레지스터를 설명할 수 있다.
- STM32F429의 ADC 제어 소프트웨어를 설계하고 테스트할 수 있다.

학습내용

- STM32F429의 ADC
- STM32F429의 ADC 제어 SW 설계하기

STM32F429al ADC

O ADC란?

Analog to Digital Converter

아날로그 신호를 디지털로 변환해주는 장치

O ADC란?

아나리그 시층로 디지터리 병히

ADC 전기기호

STM32F429al ADC

STM32F429의 ADC 소개

- O STM32F429의 ADC 특징
 - → 3개의 ADC 컨트롤러
 - → 각각 최대 12비트의 해상도
 - ··· 12비트는 2의 12승이므로 0~4095까지의 범위로 디지털 값을 얻음
 - ₩ 최대 24개의 채널
 - 동시에 아날로그 신호를 24개까지 처리할 수 있다는 의미
 - → 처리속도는 7.2MSPS
 - MSPS는 Mega Sampling Per Second이며 초당 7.2mega의 속도로 샘플링 가능

ADC main features

- 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
- Interrupt generation at the end of conversion, end of injected conversion, and in case of analog watchdog or overrun events
- Single and continuous conversion modes
- Scan mode for automatic conversion of channel 0 to channel 'n'
- Data alignment with in-built data coherency
- Channel-wise programmable sampling time
- External trigger option with configurable polarity for both regular and injected conversions
- Discontinuous mode
- Dual/Triple mode (on devices with 2 ADCs or more)
- Configurable DMA data storage in Dual/Triple ADC mode
- Configurable delay between conversions in Dual/Triple interleaved mode
- ADC conversion type (refer to the datasheets)
- ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower speed
- ADC input range: $V_{REF-} \le V_{IN} \le V_{REF+}$
- DMA request generation during regular channel conversion

Figure 44 shows the block diagram of the ADC.

Note:

 V_{REF-} , if available (depending on package), must be tied to V_{SSA}

STM32F429의 ADC 주요 특징

O STM32F429의 ADC의 블록도

- 📀 STM32F429의 ADC 소개
 - O STM32F429의 ADC의 블록도

V_{RFF+} 와 V_{RFF-}

··· V_{RFF+}와 V_{RFF-}라는 이름의 기준 전압을 입력 받음

기준 전압

아날로그 신호의 음과 양의 최대 범위

ADCx_IN0~ADCx_IN15

→ ADCx_IN0부터 ADCx_IN15까지 16개의 입력

- 🧿 STM32F429의 ADC 소개
 - STM32F429의 ADC의 블록도

Temp sensor

── Temp sensor는 온도센서로 내부에 온도센서가 있어 ADC를 통해 디지털 온도 값을 받을 수 있음

ADCCLK

→ ADCCLK라는 clock을 입력받아 컨트롤러를 동작시킴

OVR, EOC, JEOC, AWD

··· ADC 인터럽트의 종류

⑤ STM32F429의 ADC 소개

O STM32F429의 ADC 신호들

Name	Signal type	Remarks
V _{REF+}	Input, analog reference positive	The higher/positive reference voltage for the ADC, $1.8V \le V_{REF+} \le V_{DDA}$
V _{DDA}	Input, analog supply	Analog power supply equal to V_{DD} and 2.4 $V \le V_{DDA} \le V_{DD}$ (3.6V) for full speed 1.8V $\le V_{DDA} \le V_{DD}$ (3.6V) for reduced speed
V _{REF} -	Input, analog reference negative	The lower/negative reference voltage for the ADC, $V_{REF} = V_{SSA}$
V_{SSA}	Input, analog supply ground	Ground for analog power supply equal to V _{SS}
ADCx_IN[15:0]	Analog input signals	16 analog input channels

STM32F429al ADC

- STM32F429의 ADC 소개
 - O STM32F429의 ADC 신호들

- O Nucleo-F429 보드의 ADC
 - O Nucleo-F429 보드의 ADC 포트

Zio커넥터는 아두이노와 호환됨

아두이노 아날로그 입력 핀과 동일한 위치에 ADC 포트가 존재함

- **⋯** 아두이노의 아날로그 입력핀과 동일한 위치의 핀들임
- ··· 녹색 블록의 A0~A5로 표시된 핀들임

STM32F429al ADC

- O Nucleo-F429 보드의 ADC
 - O Nucleo-F429 보드의 ADC 핀

녹색 블록의 A0~A5로 표시된 핀은 Nucleo-F429보드의 회로도를 살펴보면 CN9의 1,3,5,7,9,11번 핀임

A0로 표시된 핀은 STM32F429의 PA3번 핀

A1로 표시된 핀은 STM32F429의 PC0번 핀

A2로 표시된 핀은 STM32F429의 PC3번 핀

A3로 표시된 핀은 STM32F429의 PF3번 핀이나 PD11, PC1번 핀 중 선택 가능

- O Nucleo-F429 보드의 ADC
 - O Nucleo-F429 보드의 ADC 핀

A4로 표시된 핀은 STM32F429의 PF5번 핀이나 PD12, PC4번 핀 중 선택 가능

A5로 표시된 핀은 STM32F429의 PF10번 핀이나 PD13, PC5번 핀 중 선택 가능

- ··· 즉, 납을 사용하여 간단하게 연결하거나 연결을 끊을 수 있음

- 🧿 ADC 제어 실습 환경
 - O ADC 포트에 가변저항 연결

ADC 실습을 위해 ADC 포트에 가변저항을 연결하여 실습 진행

- 🧿 ADC 제어 실습 환경
 - O ADC 포트에 가변저항 연결

→ 그림은 Nucleo-144 보드가 아닌 Nucleo-32 보드이지만 아두이노 핀 배열은 동일함

- 🧿 ADC 제어 실습 환경
 - O ADC 포트에 가변저항 연결

→ 아두이노 핀 기준 A0핀인Nucleo-F429 보드의 CN9커넥터의1번 핀에 가변저항의 가운데 선과 연결

- 🧿 ADC 제어 실습 환경
 - O ADC 포트에 가변저항 연결

··· 가변저항의 양 끝단 핀은 각각 3.3V 전원과 GND에 연결

- 🧿 ADC 제어 실습 환경
 - O ADC 모드의 설정

PA3번 핀

ADC1_IN3, ADC2_IN3, ADC3_IN3 중 하나를 선택할 수 있음

- 🧿 ADC 제어 실습 환경
 - O ADC 모드의 설정

일단 ADC1_IN3으로 선택

ADC컨트롤러 1번에 채널 3번으로 선택한 것임

- 🧿 ADC 제어 실습 환경
 - O ADC 모드의 설정

ADC는 폴링 모드나 인터럽트 모드를 선택할 수 있음

폴링 모드 사용

→ ADC1 Configuration에서NVIC Settings의Enabled를 선택하지 않음

인터럽트 모드 사용

→ ADC1 Configuration에서NVIC Settings의Enabled 선택

- 🙆 ADC 제어 SW 코딩 및 테스트
 - 교수님 폴링 모드 실습 영상
 - 1 CubeMX를 사용하여 코드 생성
 - 2 Main.c의 main 함수에 ADC 폴링 모드 제어 코드 작성
 - HAL ADC Start
 - HAL_ADC_PollForConversion
 - HAL_ADC_GetValue
 - HAL_ADC_Stop
 - 3 컴파일 후 펌웨어를 보드에 다운로드
 - 4 가변저항을 조정하여 ADC 값을 메시지 출력해 봄으로써 ADC 제어 SW 검증

- 🙆 ADC 제어 SW 코딩 및 테스트
 - 교수님 인터럽트 실습 영상
 - 1 CubeMX를 사용하여 코드 생성
 - 2 Main.c의 main 함수에 ADC 인터럽트 모드 제어 코드 작성
 - NVIC Settings의 Enabled를 선택하여 인터럽트 모드 enable
 - Src/stm32f4xx_it.c에 ADC 인터럽트 핸들러인 ADC_IRQHandler가 생성됨
 - Main.c에 ADC 인터럽트 callback 함수인 HAL_ADC_ConvCpltCallback 추가
 - Main 함수 while문에서 adc value 값을 UART로 확인
 - 컴파일 후 펌웨어를 보드에 다운로드
 - 4 가변저항을 조정하여 ADC 값을 메시지 출력해 봄으로써 ADC 제어 SW 검증

요점노트

1. STM32F429의 ADC

- STM32F429의
 - ADC는 아날로그 신호를 디지털로 변환해주는 장치임
 - STM32F429의 ADC는 3개의 ADC 컨트롤러를 가지며 각각 최대 12비트의 해상도를 가짐
 - Nucleo-F429 보드의 ADC 포트를 사용하기 위해 Zio 커넥터 핀맵을 사용함

요점노트

2. STM32F429의 ADC 제어 SW 설계하기

- STM32F429의 ADC 제어 SW 설계하기
 - ADC 실습을 위해 ADC 포트에 가변저항을 연결하여 실습을 진행하면 편리함
 - CubeMX를 사용하여 ADC를 폴링 모드나 인터럽트 모드를 선택할 수 있음
 - ADC 폴링 모드는 ADC 폴링 모드 관련 코드를 사용하여 제어할 수 있음
 - 인터럽트 모드는 ADC 인터럽트 callback 함수인 HAL_ADC_ConvCpltCallback 함수를 사용하여 구현할 수 있음