HW0414_Pinyo 312712017

8.6

8.6 Consider the wage equation

$$WAGE_i = \beta_1 + \beta_2 EDUC_i + \beta_3 EXPER_i + \beta_4 METRO_i + e_i$$
 (XR8.6a)

where wage is measured in dollars per hour, education and experience are in years, and METRO = 1 if the person lives in a metropolitan area. We have N = 1000 observations from 2013.

a.

- Number of **male** observations: n-Male = 577
- Sum of Squared Errors for males: SSE-Male = 97161.9174
- Number of **female** observations: n-Female = 423
- Estimated **standard deviation** for females: σ^F=12.024

From this, we can compute:

Variance for females:

$$\sigma$$
-Female^2 = (12.024)^2 = 144.577

Variance for males (from SSE and degrees of freedom): Degrees of freedom for residuals = n-k, where k = 4 So:

$$\sigma$$
-Male^2 = SSE-M / ((n-M)-4) = 97161.9174 / (577-4) = 169.533

Compute the test statistic (F-statistic)

We use the **larger variance divided by the smaller variance** (since the F-distribution is always right-tailed):

$$F = \sigma - M^2 / \sigma - F^2 = 169.533 / 144.577 \approx 1.1727$$

Determine the rejection region

We are performing a **two-tailed F-test** at the 5% significance level.

Degrees of freedom:

- df1 = n, M-4 = 573
- df2 = n,F-4 = 419

We look up the **critical values** for a two-tailed test at the 5% level (2.5% in each tail) using an F-distribution table or software.

Because df1 and df2 are large, we approximate the critical values using software or a calculator:

- Lower critical value F(0.025,573,419) ≈ 0.838
- Upper critical value F(0.975,573,419) ≈ 1.193

Our test statistic:

F = 1.1727

Compare it with the critical values:

• 0.838 < 1.1727 < 1.193

Conclusion:

- The test statistic does not fall in the rejection region.
- Therefore, we fail to reject the null hypothesis.

b.

We want to test whether married individuals have more variable wages than singles.

- **Null hypothesis H0:** σ ,MARRIED^2 = σ ,SINGLE^2
- Alternative hypothesis H1H: σ,MARRIED^2 > σ,SINGLE^2

This is a **one-sided F-test**.

From the problem:

- Single individuals (group 1):
 - o n1 = 400
 - o SSE1=56,231.0382
- Married individuals (group 2):
 - o n2 = 600
 - o SSE2=100,703.0471

There are **5 explanatory variables** (including the intercept), so:

- Degrees of freedom for singles: df1 = 400 5=395
- Degrees of freedom for married: df2 = 600 5 = 595

Now calculate **sample variances (residual variances)**:

$$s1^2 = SSE1 / df1 = 56231.0382 / 395 \approx 142.365$$

$$s2^2 = SSE2 / df2 = 100703.0471 / 595 \approx 169.4236$$

Since our alternative hypothesis is σ ,MARRIED^2 > σ ,SINGLE^2, we compute:

$$F = s2^2 / s1^2 = 169.4236 / 142.365 \approx 1.1901$$

We are doing a **one-tailed** F-test at the 5% level of significance.

- Degrees of freedom: df1 = 595, df2 = 395
- Rejection region: F > F(0.95,595,395)

 $F(0.95,595,395) \approx 1.17$

Since 1.1901 > 1.17, we are in the rejection region.

c.

Breusch-Pagan test for heteroskedasticity) checks whether the **variance of the error term** depends on the independent variables.

- The test regresses the **squared residuals** from the original regression on the original **explanatory variables**.
- Then, we calculate:

Test statistic = $N \cdot R^2$

where R² is from the regression of the squared residuals, and N is the number of observations.

State the Hypotheses

Null hypothesis H0: Homoskedasticity (constant variance of errors)

Alternative hypothesis H1: Heteroskedasticity (variance of errors depends on regressors)

From the question:

- **Test statistic (NR²)** = 59.03
- Significance level = 5%
- Number of independent variables in the auxiliary regression = number of regressors in model (XR8.6b) = 5 (EDUC, EXPER, METRO, FEMALE, intercept not counted)

So, the degrees of freedom for the chi-squared distribution = 4 (since we exclude the intercept).

Determine the Rejection Region

Use the **Chi-squared distribution with 4 degrees of freedom**:

• Critical value $\chi^2(0.05,42) \approx 9.49$

Since 59.03 > 9.49, we reject the null hypothesis.

This test provides **additional statistical evidence** that the error variance may vary **based on characteristics like marital status, gender, etc.**, which supports the findings from the F-test in part (b).

d.

White test checks for heteroskedasticity (non-constant error variance), allowing for more general forms than the NR² (Breusch-Pagan) test. The test statistic follows a **chi-squared distribution** with degrees of freedom equal to the number of regressors in the auxiliary (squared residual) regression, **excluding the intercept**.

In the White test, we include:

- 1. These 4 original variables
- 2. Their **squares** (4 terms)
- 3. Their **interactions** (cross-products)

Cross-products (interactions) among 4 variables:

There are $(4 \cdot (4-1)) / 2 = 6$ unique interaction terms.

So, the total number of regressors in the auxiliary regression is:

4 (originals) + 4 (squares) + 6 (interactions) = 14

White test statistic = 78.82

We use the chi-squared distribution with **14 degrees of freedom**:

 $\chi^2(0.05,142) \approx 23.685$

Since 78.82 > 23.685, we are in the **rejection region**

e.

We will compare each **robust SE** to the **usual SE**:

• **EDUC**: $0.16 > 0.14 \rightarrow$ **Wider**

• EXPER: $0.029 < 0.031 \rightarrow Narrower$

• METRO: $0.84 < 1.05 \rightarrow Narrower$

• **FEMALE**: $0.80 < 0.81 \rightarrow Narrower$

• Intercept: 2.50 > 2.36 → Wider

Robust SEs account for **heteroskedasticity**, while **usual SEs** assume homoskedasticity.

Whether the SEs get wider or narrower depends on **how the heteroskedasticity affects each variable**.

So it's **not inconsistent** that some robust SEs are smaller and others are larger than the usual SEs.

It just reflects that **error variance behaves differently** depending on which regressor you're considering.

Conclusion

- Narrower Cls: EXPER, METRO, FEMALE
- Wider Cls: EDUC, Intercept
- **No inconsistency** this pattern is a result of correcting for heteroskedasticity, and it is normal.

f.

A **t-value of 1.0** is **not statistically significant** at conventional levels (e.g., 5% significance level).

This suggests that **MARRIED** is not a strong linear predictor of the mean wage after controlling for the other variables.

We tested whether **error variances** (i.e., heteroskedasticity) **differ** between married and single individuals.

The **F-test showed** that the **error variance was significantly higher for married people** than for single people.

This tells us that being married affects the variance of wages, not necessarily the mean

The result in part (f) is **compatible** with the result in (b) because:

- In part (f), the low t-value shows that MARRIED does not significantly affect the mean wage.
- In part **(b)**, we found that MARRIED **does affect the variance** of wages (heteroskedasticity).

So, it's **entirely possible** for MARRIED to affect the **spread** of wages (i.e., error variance) without significantly affecting the **average level** of wages

a.

b.

Residuals vs INCOME

Residuals vs AGE

From residuals vs income plot, there is a shape that residuals will increase when the income is greater, while the residuals vs age plot is more symmetry scattering around 0 when income is greater.

Null hypothesis (H0): Homoskedasticity (constant variance) Alternative hypothesis (H1): Heteroskedasticity (variance increases with income) Goldfeld-Quandt test results: > print(gq_result) Goldfeld-Quandt test data: full_model GQ = 3.4142, df1 = 76, df2 = 76, p-value = 1.106e-07alternative hypothesis: variance increases from segment 1 to 2 d. 95% Robust Confidence Interval for effect of one more child (kid > cat(sprintf("[%.4f, %.4f]\n", ci_lower, ci_upper)) [-138.9680, -24.6849] While the interval in (a) is 95% Confidence Interval for kids effect: > print(kids_ci) 2.5 % 97.5 % kids -135.3298 -28.32302 The lower value from a is higher than d, while the higher value from a is lower than d.

The interval from a is narrower than d.

e.

```
95% Conventional GLS Confidence Interval for effect of one more ch
ild (kids):
> cat(sprintf("[%.4f, %.4f]\n\n", ci_lower_gls, ci_upper_gls))
[-118.4785, -30.4629]
> cat("95% Robust GLS Confidence Interval for effect of one more c
hild (kids):\n")
95% Robust GLS Confidence Interval for effect of one more child (k
> cat(sprintf("[%.4f, %.4f]\n\n", ci_lower_gls_robust, ci_upper_gl
s_robust))
[-121.7119, -27.2295]
```

The interval estimate of both conventional and robust GLS are narrower than (a) and (d)

a.

```
Goldfeld-Quandt test
data: wage_model
GQ = 0.96141, df1 = 4890, df2 = 4889, p-value = 0.1688
alternative hypothesis: variance changes from segment 1 to 2
> # Extract test statistic and p-value
> test_statistic <- gq_test_result$statistic
> p_value <- gq_test_result$p.value
> cat("Test Statistic:", test_statistic, "\n")
Test Statistic: 0.9614071
> cat("P-value:", p_value, "\n")
P-value: 0.1688468
> # Determine rejection region and conclusion
> alpha <- 0.05
> df1 <- gq_test_result$parameter[1]</pre>
> df2 <- gq_test_result$parameter[2]</pre>
> critical_value <- qf(1 - alpha/2, df1, df2)</pre>
> cat("Critical Value:", critical_value, "\n")
Critical Value: 1.057667
```

Conclusion: Fail to reject the null hypothesis. There is no significant evidence of heteroskedasticity related to gender.

b.

```
studentized Breusch-Pagan test

data: wage_model
BP = 109.42, df = 9, p-value < 2.2e-16

> # Extract test statistic and p-value
> test_statistic_full <- nr2_test_full$statistic
> p_value_full <- nr2_test_full$p.value
> 
> cat("Test Statistic (Full):", test_statistic_full, "\n")
Test Statistic (Full): 109.4243
> cat("P-value (Full):", p_value_full, "\n")
P-value (Full): 1.925849e-19
```

Conclusion: Reject the null hypothesis at the 1% level. There is evidence of heteroskedasticity.

studentized Breusch-Pagan test

```
data: wage_model
BP = 182.67, df = 35, p-value < 2.2e-16
> # Extract test statistic and p-value
> test_statistic <- white_test_result$statistic
> p_value <- white_test_result$p.value</pre>
> cat("Test Statistic:", test_statistic, "\n")
Test Statistic: 182.6723
> cat("P-value:", p_value, "\n")
P-value: 6.862181e-22
> # Determine the 5% critical value for the test
> degrees_of_freedom <- length(coef(wage_model)) + (length(coef(wa
ge_model)) * (length(coef(wage_model)) - 1)) / 2 - 1 # Degrees of
freedom for the Chi-squared distribution
> critical_value <- qchisq(0.95, df = degrees_of_freedom) # 5% cr</pre>
itical value
> cat("Degrees of Freedom:", degrees_of_freedom, "\n")
Degrees of Freedom: 54
> cat("5% Critical Value:", critical_value, "\n")
5% Critical Value: 72.15322
```

Conclusion: Reject the null hypothesis. There is evidence of heteroskedasticity.

```
Coefficient
                               OLS_SE
                                         Robust_SE
(Intercept) (Intercept) 3.211489e-02 3.279417e-02
                   educ 1.758260e-03 1.905821e-03
educ
exper
                  exper 1.300342e-03 1.314908e-03
I(exper^2)
             I(exper^2) 2.635448e-05 2.759687e-05
female
                 female 9.529136e-03 9.488260e-03
black.
                  black 1.694240e-02 1.609369e-02
metro
                  metro 1.230675e-02 1.158215e-02
                  south 1.356134e-02 1.390164e-02
south
                midwest 1.410367e-02 1.372426e-02
midwest
                   west 1.440237e-02 1.455684e-02
west
             OLS_CI_Lower OLS_CI_Upper Robust_CI_Lower
             1.1384380041 1.2643260428
                                            1.1371066311
(Intercept)
             0.0977834864
                           0.1046757404
                                            0.0974942728
educ
exper
             0.0270730720 0.0321703197
                                            0.0270445234
           -0.0004974343 -0.0003941266
                                           -0.0004998693
I(exper^2)
            -0.1841787433 -0.1468252171
female
                                           -0.1840986284
black
            -0.1447317485 -0.0783187512
                                           -0.1430683103
             0.0948996191 0.1431412018
metro
                                            0.0963198055
south
            -0.0723351788 -0.0191756878
                                           -0.0730021386
midwest
            -0.0915859712 -0.0363006042
                                           -0.0908423361
west
            -0.0348172231 0.0216390188
                                           -0.0351199908
            Robust_CI_Upper Interval_Change
               1.2656574158
(Intercept)
                                       Wider
                                       Wider
educ
               0.1049649540
               0.0321988684
                                       Wider
exper
              -0.0003916916
                                       Wider
I(exper^2)
female
              -0.1469053321
                                    Narrower
black
              -0.0799821894
                                    Narrower
metro
               0.1417210154
                                    Narrower
south
              -0.0185087281
                                       Wider
              -0.0370442393
midwest
                                    Narrower
west
               0.0219417864
                                       Wider
```

```
Coefficient OLS_Estimate OLS_Robust_SE
(Intercept) (Intercept)
                         1.2013820235 3.279417e-02
educ
                   educ 0.1012296134 1.905821e-03
exper
                  exper 0.0296216959 1.314908e-03
I(exper^2)
             I(exper^2) -0.0004457805
                                        2.759687e-05
                 female -0.1655019802
female
                                        9.488260e-03
black.
                  black -0.1115252498
                                       1.609369e-02
                  metro 0.1190204104
metro
                                        1.158215e-02
south
                  south -0.0457554333
                                        1.390164e-02
midwest
                midwest -0.0639432877
                                        1.372426e-02
west
                   west -0.0065891022
                                        1.455684e-02
            OLS_Robust_CI_Lower OLS_Robust_CI_Upper
(Intercept)
                   1.1371066311
                                        1.2656574158
educ
                   0.0974942728
                                        0.1049649540
                   0.0270445234
exper
                                        0.0321988684
I(exper^2)
                  -0.0004998693
                                       -0.0003916916
                  -0.1840986284
female
                                       -0.1469053321
black
                  -0.1430683103
                                       -0.0799821894
metro
                   0.0963198055
                                        0.1417210154
south
                  -0.0730021386
                                       -0.0185087281
midwest
                  -0.0908423361
                                       -0.0370442393
                  -0.0351199908
west
                                        0.0219417864
            FGLS_Estimate FGLS_Robust_SE FGLS_Robust_CI_Lower
(Intercept)
            1.1896145475
                             3.232575e-02
                                                  1.1262572454
educ
             0.1018098159
                             1.890600e-03
                                                  0.0981043073
                                                  0.0275739241
             0.0301301328
                             1.304212e-03
exper
                             2.740318e-05
                                                 -0.0005103803
I(exper^2)
            -0.0004566711
female
            -0.1657287545
                             9.437891e-03
                                                 -0.1842266805
black
            -0.1108916715
                             1.586193e-02
                                                 -0.1419804780
metro
             0.1174653420
                             1.155748e-02
                                                  0.0948130961
south
            -0.0447417226
                             1.383295e-02
                                                 -0.0718537976
midwest
            -0.0632739118
                             1.370797e-02
                                                 -0.0901410395
west
            -0.0055680493
                             1.450387e-02
                                                 -0.0339951049
            FGLS_Robust_CI_Upper
                    1.2529718495
(Intercept)
                    0.1055153245
educ
exper
                    0.0326863414
I(exper^2)
                   -0.0004029618
female
                   -0.1472308286
black
                   -0.0798028651
metro
                    0.1401175879
south
                   -0.0176296476
midwest
                   -0.0364067841
west
                    0.0228590064
```

```
Coefficient OLS_Robust_Estimate OLS_Robust_SE
                              1.2013820235 3.279417e-02
(Intercept) (Intercept)
                              0.1012296134 1.905821e-03
educ
                  educ
                              0.0296216959 1.314908e-03
exper
                  exper
I(exper^2)
            I(exper^2)
                             -0.0004457805 2.759687e-05
                             -0.1655019802 9.488260e-03
female
                 female
                             -0.1115252498 1.609369e-02
black
                 black
metro
                  metro
                              0.1190204104 1.158215e-02
                             -0.0457554333 1.390164e-02
south
                  south
                             -0.0639432877 1.372426e-02
midwest
               midwest
west
                  west
                             -0.0065891022 1.455684e-02
           FGLS_Conv_Estimate FGLS_Conv_SE
                 1.1896145475 0.0315887613
(Intercept)
                  0.1018098159 0.0017643296
educ
exper
                 0.0301301328 0.0012953880
I(exper^2)
                -0.0004566711 0.0000267859
                -0.1657287545 0.0094830900
female
black
                -0.1108916715 0.0169753817
metro
                 0.1174653420 0.0115586008
south
                -0.0447417226 0.0135243868
midwest
                -0.0632739118 0.0139957621
west
                -0.0055680493 0.0143756121
           FGLS_Robust_Estimate FGLS_Robust_SE
(Intercept)
                  1.1896145475
                                 3.232575e-02
educ
                   0.1018098159
                                  1.890600e-03
                                  1.304212e-03
exper
                   0.0301301328
                                  2.740318e-05
I(exper^2)
                  -0.0004566711
female
                  -0.1657287545
                                  9.437891e-03
black
                  -0.1108916715
                                  1.586193e-02
                                  1.155748e-02
metro
                   0.1174653420
south
                  -0.0447417226
                                  1.383295e-02
                  -0.0632739118
midwest
                                  1.370797e-02
                  -0.0055680493 1.450387e-02
west
```

```
OLS_Robust_CI_Lower OLS_Robust_CI_Upper
(Intercept) 1.1371066311 1.2656574158
Exper 0.0270445234 0.0321988684 I(exper^2) -0.0004998693 -0.0003916916 female -0.1840986284 -0.1469053321 black -0.1430683103 -0.0799821894 metro 0.0963198055 0.1417210154 south -0.0730021386 midwest
                   -0.0730021386 -0.0185087281

-0.0908423361 -0.0370442393

-0.0351199908 -0.0310417007
midwest
            FGLS_Conv_CI_Lower FGLS_Conv_CI_Upper
(Intercept) 1.1277017131 1.2515273819 educ 0.0983517935 0.1052678383
educ
                                     0.0326690466
                   0.0275912189
exper
I(exper^2)
female
                 -0.0005091705
                                     -0.0004041717
                  -0.1843152694
                                      -0.1471422396
female
                                      -0.0776205348
black
                 -0.1441628082
metro
                  0.0948109008
                                       0.1401197832
south
                 -0.0712490337
                                       -0.0182344115
                 -0.0907051016 -0.0358427221
midwest
                  -0.0337437312
                                        0.0226076327
            FGLS_Robust_CI_Lower FGLS_Robust_CI_Upper
(Intercept) 1.1262572454 1.2529718495
                 0.1055153245
educ
                     0.0981043073
exper
I(exper^2)
female
black
metro
south
midwest
                    -0.0339951049
west
                                            0.0228590064
```

- Calculates all three different confidence intervals: OLS robust, FGLS conventional, and FGLS robust.
- Reproducibility: Assumes you have the data and loads it in the code
- Comprehensive comparison: Presents all three results in a single data frame.
- **More robust**: Includes only necessary libraries to reduce dependency and prevent problems that arise from library conflicts.

Model Selection Guidance:

Choosing which set of estimates to report depends on your research goals and the properties of the data:

1. OLS with Conventional Standard Errors:

- When to Use: Only appropriate if you are confident that the assumptions of OLS (linearity, independence, homoskedasticity, and normality of errors) are met.
- Why It Might Be Inappropriate: If heteroskedasticity is present, the standard errors and confidence intervals will be biased, leading to incorrect inferences.

2. OLS with Robust Standard Errors (from part d):

- When to Use: When heteroskedasticity is suspected or detected, but you don't
 have a strong theoretical reason to believe that specific variables account for the
 heteroskedasticity.
- Advantages: Provides valid inference even in the presence of heteroskedasticity, without requiring a specific model for the heteroskedasticity.
- **Limitations**: Less efficient than FGLS if the heteroskedasticity is correctly modeled.

3. FGLS Estimates (from part e, conventional standard errors):

- When to Use: When you believe you have correctly identified the variables
 causing heteroskedasticity and the model for heteroskedasticity is correct (in this
 case, METRO and EXPER).
- **Advantages**: Can provide more efficient estimates (smaller standard errors) than OLS with robust standard errors *if* the heteroskedasticity is correctly modeled.
- **Limitations**: If the model for heteroskedasticity is misspecified, FGLS can be worse than OLS. The conventional standard errors are only valid if the heteroskedasticity model is correct.

4. FGLS Estimates with Robust Standard Errors (from part f):

 When to Use: When you want to use FGLS to improve efficiency but are concerned that your model for heteroskedasticity might be misspecified.

- **Advantages**: Combines the potential efficiency gains of FGLS with the robustness of heteroskedasticity-consistent standard errors.
- **Limitations**: If the heteroskedasticity model is badly misspecified, the robust standard errors might not fully correct the problem.