N89 - 13652

513-27 181373 15P.

DESTABILIZATION OF YTTRIA-STABILIZED ZIRCONIA INDUCED BY MOLTEN SODIUM VANADATE-SODIUM SULFATE MELTS*

A.S. Nagelberg and J.C. Hamilton Combustion Research Facility Sandia National Laboratories Livermore, California 94550

The extent of surface destabilization of ZrO2 - 8 wt % Y2O3 ceramic disks was determined after exposure to molten salt mixtures of sodium sulfate containing up to 15 mole% sodium metavanadate (NaVO₃) at 1173 K. The ceramic surface was observed to transform from the cubic/tetragonal to monoclinic phase, concurrent with chemical changes in the molten salt layer in contact with the ceramic. Significant attack rates were observed in both pure sulfate and metavanadate-sulfate melts. The rate of attack was found to be quite sensitive to the mole fraction of vanadate in the molten salt solution and the partial pressure of sulfur trioxide $(1\times10^6$ to 1×10^{-3} atm) in equilibrium with the salt melt. The observed parabolic rate of attack is interpreted to be caused by a reaction controlled by diffusion in the salt that penetrates into the porous layer formed by the destabilization. The parabolic rate constant in mixed sodium metavanadate - sodium sulfate melts was found to be proportional to the SO3 partial pressure and the square of the metavanadate concentration. In-situ Raman spectroscopic measurements allowed simultaneous observations of the ceramic phases and salt chemistry during the attack process.

¹ This work supported by the U.S. Dept. of Energy, Office of Basic Energy Sciences.

PRECEDING PAGE BLANK NOT FILMED

Initial Gas	Composition	Equilibriu	m Composit	ion at 1173	3 K
02	so ₂	02	so ₂	so ₃	
90	10	90	7.7	2.4	
99	1	99	.76	.24	
99.9	0.1	99.9	7.6x10 ⁻²	2.5x10 ⁻²	
99.985	0.015	99.99	1.1x10 ⁻²	3.7x10 ⁻³	
1	99	.25	97.	.15	

Table II

Parabolic Rate Constants $(Para = 2.4 \times 10^{-3})$

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	= 2.4 x 10 -)		
NaVO3 Concentration	Parabolic Rate Constant		
(mole percent)	(cm2/sec)		
0.0	1×10 ⁻¹¹		
0.2%	1×10-11		
1.0%	1.7X10 ⁻¹⁰		
2.0%	5.4x10 ⁻¹⁰		
3.9%	1.5x10 ⁻⁹		

RAMAN EFFECT

$$\omega_1 - \omega_S = \omega_{VIB}$$

Figure 1.

Figure 2.

RAMAN ADVANTAGES

- 1. NON-PERTURBING
- 2. IN SITU
- 3. QUANTITATIVE CHEMICAL COMPOUND IDENTIFICATION
- 4. SENSITIVE TO LATTICE SYMMETRY
- 5. LATERAL RESOLUTION 1 μm
- 6. DEPTH RESOLUTION (100 $^{\circ}$ 100 μ m)
- 7. GAS ENVIRONMENT CHARACTERIZATION
- 8. SAMPLE/GAS TEMPERATURE
- 9. TEMPORAL RESOLUTION (ms hs)

Figure 3.

Figure 4.

Experimental Proceedure

- Stabilized zirconia ceramics immersed in sulfate-vanadate melts contained in platinum crucibles.
- Temperature, sulfur dioxide and sulfur trioxide content varied.
- Post-exposure analysis by electron microscopy, electron microprobe and Raman spectroscopy.

Figure 5.

$ZrO_2 - 8 wt\% Y_2O_3$

Exposure:

900°C

Pure Na₂V₂O₆

10 min.

I hr.

Figure 6.

ORIGINAL PAGE IS OF POOR QUALITY

$ZrO_2 - 8wt\% Y_2O_3$ NaVO₃ 24hr 700°C

Figure 9.

Figure 10.

 $ZrO_2 - 8 wt\% Y_2O_3$

Exposure:

900°C 24 hr.

2 mol% $Na_2V_2O_6$ in Na_2SO_4

Exposed in air

Exposed to 93% SO₂ 5% SO₃ 2% O₂

Figure 12.

Figure 13.

Figure 14.

YTTRIUM LEACHING REACTIONS

- in sulfate melts

$$Y_2O_3 + 3 SO_3 \rightleftharpoons 2 Y^{+3} + 3 SO_4^{-2}$$

- in sulfate-vanadate melts

$$Y_2O_3 + V_2O_5 \rightleftharpoons 2 Y^{+3} + 2 VO_4^{-3}$$

Figure 19.

$$SO_2 + 1/2 O_2 \rightleftharpoons SO_3$$

 $Na_2 SO_4 \rightleftharpoons Na_2 O + SO_3$

$$a_{Na_2O} = \frac{K_2}{P_{SO_3}} a_{Na_2SO_4}$$

2 NaVO₃
$$\rightleftharpoons$$
 Na₂O + V₂O₅

$${}^{a}V_{2}O_{5} = \frac{K_{3} {}^{a}N_{a}VO_{3}^{2}}{{}^{a}N_{a}_{2}O}$$
$$= \frac{K_{3} {}^{p}SO_{3} {}^{a}N_{a}VO_{3}^{2}}{K_{2} {}^{a}N_{a}_{2}SO_{4}}$$

Figure 20.

Moiten Salt

Figure 21.

1173 K 1% SO_2 in O_2

 $ZrO_2 - 1.5 \text{ wt\% MgO}$ 96 hr

 ZrO_2 - 8 wt% Y_2O_3 164 hr

Figure 22.

Summary

- * Attack of zirconia ceramics is sensitive to sodium metavanadate concentration, and thus to vanadium impurity level in fuel.
- The attack is also sensitive to sulfur dioxide content of the environment.
- The attack follows parabolic kinetics and is proportional to the square root of the sulfur trioxide partial pressure.

Figure 23.