- ¹ Supplementary materials for "The imbricated foreshock
- and aftershock activities of the Balsorano (Italy) M_w
- 4.4 normal fault earthquake and implications for
- earthquake initiation"
 - H. S. Sánchez-Reyes¹, D. Essing¹, E. Beaucé², P. Poli¹¹
- ¹Institute of Earth Sciences, University Grenoble Alpes, Grenoble 38100, France
- ²Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
- 8 Technology, Cambridge, MA, United States
- $^* Corresponding \ author: \ hugo.sanchez-reyes@univ-grenoble-alpes.fr$

10 Contents of this file

5

- 1. Tables S1 to S4
- 2. Figures S1 to S2

13 Additional Supporting Information

1. Seismic catalog for the seismic sequence associated to the 2019 (M_W 4.4) Balsorano earthquake

Table S1: General information of the 2019 M_w 4.4 Balsorano earthquake. All this information is taken from the INGV's online catalog.

Mainshock data	
Magnitude	$M_w 4.4$
Lat () / Lon ()	13.61 / 41.78
Depth (km)	14.0
NP1: Strike / Dip / Rake	299 / 58 / -120
NP2: Strike / Dip / Rake	166 / 42 / -51
Reported activity	≈ 150 events
# Stations $< 100 km$	6

Table S2: Receiver locations. The distances reported are measured with respect to the mainshock epicentral location (taken from the INGV).

Receiver	Lon. $\binom{o}{}$	Lat. $\binom{o}{}$	Dist. (km)
CERT	41.94903	12.98176	72.297
GUAR	41.79450	13.31229	33.093
INTR	42.01154	13.90460	41.820
POFI	41.71743	13.71202	13.112
PTQR	42.02193	13.40057	35.780
VVLD	41.86965	13.62324	10.411

Table S3: Velocity model used for the relocation process. A V_P/V_S ratio equal to 1.73 is assumed. Slightly modified version from the model proposed by Bagh et al. (2007)

Depth of top of layer (km)	P-wave velocity (km/s)
0.0	5.360
3.0	5.360
6.0	5.800
14.0	6.650
25.0	6.900

Table S4: Reference templates and phase traveltimes at the six available stations (estimated from INGV data).

		P_{tt}	P_{tt}	P_{tt}	P_{tt}	P_{tt}	P_{tt}	S_{tt}	S_{tt}	S_{tt}	S_{tt}	S_{tt}	S_{tt}
#	Origin time	CERT	GUAR	INTR	POFI	PTQR	VVLD	CERT	GUAR	INTR	POFI	PTQR	VVLD
_	2019/11/07 00:37:18	9.63	5.51	6.9	3.46	6.37	3.48	17.09	9.11	11.95	5.82	11.28	5.71
2	2019/11/07 03:21:00	9.72	5.38	6.92	3.57	6.62	3.57	17.15	9.4	12.12	5.87	11.36	5.82
3	$2019/11/07 \ 10:37:05$	69.6	5.39	6.93	3.7	6.52	3.54	17.15	9.15	12.05	00.9	11.38	5.82
4	2019/11/07 17:35:21		5.38	7.01	3.54	6.48	3.59	17.22	9.02	12.12	5.89	11.52	5.92
ಬ	2019/11/07 17:47:53	9.77	5.4	6.93	3.32	6.53	3.55	17.29	9.12	12.07	5.45	11.42	5.68
9	2019/11/07 18:04:55	9.74	5.35	6.9	3.39	6.54	3.49	17.21	9.12	11.86	5.68	11.45	5.72
7	2019/11/07 23:19:50	9.62	5.29	7.09	3.54	6.44	3.55	16.89	8.99	12.19	00.9	11.20	5.79
∞	2019/11/08 03:08:06		5.14	2.06	3.56	6.45	3.42	16.85	8.76	12.21	5.85	11.08	5.58
6	2019/11/08 08:10:56		5.56	6.75	3.17	6.72	3.37	17.33	9.23	11.69	5.39	11.58	5.48
10	$2019/11/08 \ 08:16:10$		5.44	88.9	3.44	6.51	3.54	17.40	9.49	12.00	5.76	11.53	5.71
11	2019/11/08 10:43:24		5.15	68.9	3.32	6.29	3.38	17.00	8.91	12.08	5.78	11.19	5.61
12	2019/11/08 12:00:43	9.75	5.44	7.04	3.34	6.61	3.55	17.29	9.13	12.44	5.70	11.35	5.77
13	2019/11/08 13:07:07		5.08	98.9	3.32	6.22	3.34	16.88	8.77	12.31	5.64	11.04	5.45
14	2019/11/08 14:22:12		5.14	6.92	3.39	6.48	3.38	16.99	8.79	12.39	5.69	11.19	5.56
15	$2019/11/09 \ 10.57.09$		5.35	6.87	3.21	6.54	3.46	17.20	9.03	11.98	5.52	11.33	5.70
16	2019/11/09 22:14:15		5.27	99.9	3.24	6.43	3.14	17.07	9.04	11.61	5.33	10.91	5.04
17	2019/11/09 23:09:52		5.49	06.90	3.62	6.61	3.59	17.48	9.12	11.88	5.69	11.66	5.91
18	2019/11/10 03:31:36		5.15	6.58	3.51	6.37	3.42	16.82	89.8	12.21	5.79	11.07	5.55
19	$2019/11/10\ 06:56:28$	9.62	5.15	6.56	3.15	6.40	3.07	17.04	9.04	11.92	5.42	11.39	5.09
20	2019/11/11 01:43:21	9.59	5.31	06.90	3.44	6.42	3.53	18.00	9.27	12.05	5.25	11.44	5.76
21	2019/11/11 13:41:33	9.46	5.11	7.00	3.49	6.22	3.39	16.81	8.79	12.20	5.85	11.10	5.54
22	2019/11/11 16:04:53	9.39	5.05	6.95	3.43	6.25	3.34	17.07	8.70	12.27	5.75	11.08	5.52
23	2019/11/11 17:46:53	9.61	5.22	98.9	3.32	6.40	3.43	17.05	8.97	12.44	5.22	11.23	5.62

Table S5: Velocity model used for the relocation process. A V_P/V_S ratio equal to 1.73 is assumed. Slightly modified version from the model proposed by Bagh et al. (2007)

INGV Mag.	1.2	1.4	1.3	4.4	2.2	1.4	3.5	1.6	1.5	1.6	2.6	1.1	1.8	1.3	1.1	1.3	1.4	1.4	1.5	1.7	1.7	1.7	1.2
INGV Depth	14.2	15.2	15.6	16.2	13.4	14.3	15.1	14.4	12.7	14.9	12.8	14	12.7	12.6	13.6	11.5	15.2	13.2	10.8	13.5	13.1	12.9	12.6
INGV Lat.	41.7778	41.7767	41.7775	41.7762	41.7667	41.7773	41.777	41.7643	41.778	41.7772	41.78	41.766	41.7817	41.773	41.7755	41.7847	41.7737	41.7775	41.7857	41.7682	41.7768	41.7767	41.772
INGV Lon.	13.6082	13.6117	13.6047	13.6043	13.6117	13.6128	13.5967	13.5908	13.6287	13.6192	13.5903	13.6063	13.5973	13.5997	13.6097	13.6147	13.6203	13.6018	13.6055	13.6125	13.5912	13.5938	13.6052
Est. Mag.	1.1734	1.3777	1.3494	4.2453	2.2965	1.4569	3.4788	1.4845	1.5235	1.6368	2.8811	1.1587	1.7611	1.3305	1.1306	1.296	1.2884	1.3393	1.4618	1.8014	1.6433	1.5086	1.2764
Depth (hh)	13.972	13.87	13.862	13.94	13.809	14.357	13.713	14.172	14.159	14.95	13.877	14.029	13.719	13.891	13.947	11.5	14.298	14.343	15.211	13.564	13.852	13.805	12.6
Lat. (hh)	41.7737	41.7744	41.7735	41.7746	41.7747	41.7739	41.7812	41.7778	41.7753	41.7704	41.7802	41.7767	41.7811	41.7754	41.7801	41.7847	41.7752	41.7795	41.7713	41.779	41.7765	41.779	41.772
Lon. (hh)	13.6061	13.6026	13.6039	13.6066	13.6054	13.6041	13.6066	13.608	13.6048	13.6065	13.6053	13.6088	13.6056	13.6035	13.601	13.6147	13.605	13.605	13.6069	13.6051	13.6058	13.6076	13.6052
Orig. time	2019-11-07 00:37:18	2019-11-07 03:21:00	2019-11-07 10:37:05	2019-11-07 17:35:21	2019-11-07 17:47:53	2019-11-07 18:04:55	2019-11-07 23:19:50	2019-11-08 03:08:06	2019-11-08 08:10:56	2019-11-08 08:16:10	2019-11-08 10:43:24	2019-11-08 12:00:43	2019-11-08 13:07:07	2019-11-08 14:22:12	2019-11-09 10:57:09	2019-11-09 22:14:15	2019-11-09 23:09:52	2019-11-10 03:31:36	2019-11-10 06:56:28	2019-11-11 01:43:21	2019-11-11 13:41:33	2019-11-11 16:04:53	2019-11-11 17:46:53
Orig	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-	2019-11-
	45	82	153	166	180	190	274	357	423	425	433	442	448	453	539	540	929	297	613	644	658	999	674

Figure S1: Dendrogram obtained from the waveform-based hierarchical clustering performed. The distance metric between two different waveforms (i and j) is estimated as 1-C_{ij}. Ward's minimum variance linkage technique is used. The distance threshold to define the final number of cluster is set to 5.5 (the largest separation observed form dendrogram).

Figure S2: Estimated focal mechanism and comparison of observed (solid lines) and estimated synthetic seismograms (dashed lines) for the Mw 4.4 mainshock. The three components at 22 receiver locations are shown. This figure is a modified version from the original one provided by the INGV (http://webservices.ingv.it/webservices/ingv_ws_map/data/tdmt/15111/73711301_86_tdmt_reviewer_solution.pdf).

Figure S3: Map view (left column), and cross-sections along the strike (middle column) and normal-strike (right column) directions for each of the five clusters identified in the sequence (as indicated). All of the locations are relative to the mainshock hypocenter (41.7746°N 13.6066°E; 13.94 km depth, black star). In all of the panels, the same color code is used as in Figures 3 and 4 to represent each different cluster. The solid black line represents a fault plane of 1 km² with the geometry of the second nodal plane (Supplementary Materials Table S1). The directions A-A' (along strike) and B-B' (normal to the strike) are the same as in Figure 1. Each cluster is represented by a correponding label a) Cluster 1, b) Cluster 2, c) Cluster 3, d) Cluster 4 and e) Cluster 5. The blue dashed line represent the assumed auxiliary plane.

Figure S4: Map view (left), and cross-sections along the strike (middle) and normal-strike (right) directions for the assumed main fault plane (solid black line). The dashed blue line illustrates the auxiliary plane listed in Table S1 (taken from the INGV moment tensor solution). The relative location of the 23 templates used for scanning the continuous recordings are represented by the center of the colored circles. The color code used defines to which cluster each of the templates belongs to. All of the locations are relative to the mainshock hypocenter (41.7746°N 13.6066°E; 13.94 km depth, black star). The directions A-A' (along strike) and B-B' (normal to the strike) are the same as in Figure 1 in the main manuscript.

16 References

- Bagh, S., Chiaraluce, L., De Gori, P., Moretti, M., Govoni, A., Chiarabba, C., Di Bar-
- tolomeo, P., and Romanelli, M. (2007). Background seismicity in the central apennines
- of italy: The abruzzo region case study. *Tectonophysics*, 444(1-4):80–92.