Cálculo Diferencial e Integral II - Turma B

21 de Maio de 2015

Para cada função abaixo, calcule o gradiente.

(a) (10 points) $f(x,y) = x^2 + xy - 4y^2$

Solution: $\nabla f(x,y) = (2x+y)\hat{i} + (x-8y)\hat{j}$

(b) (10 points) $f(x, y, z) = x^2 - 2y^3 + 4z^2 - xyz$

Solution: $\nabla f(x, y, z) = (2x - yz)\hat{i} + (-6y^2 - xz)\hat{j} + (8z - xy)\hat{k}$

Calcule a seguinte derivada pela regra da cadeia

(a) (10 points) $\frac{\mathrm{d}f}{\mathrm{d}t}$, onde $f(x,y)=e^x+xy^2$, onde x=-t e $y=t^2$.

Solution: Temos

$$\frac{\partial f}{\partial x} = e^x + y^2$$
 e $\frac{\partial f}{\partial y} = 2xy$

е

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -1$$
 e $\frac{\mathrm{d}y}{\mathrm{d}t} = 2t$.

Daí,

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = (e^x + y^2)(-1) + 2xy2t = -e^{-t} - t^4 - 4t^4 = -e^{-t} - 5t^4$$

Considere a função $f(x, y, z) = 2x^2 + xy + y^2 + z^2 - 5x - 3y - 2z + 1$.

(a) (10 points) No ponto (0, -1, 1), qual a taxa de crescimento na direção que leva à origem?

Solution: Ponto P=(0,-1,1). Direção à origem: $d=(0,1,-1)=\hat{\jmath}-\hat{k}$. Módulo de d: $|d|=\sqrt{1^2+(-1)^2}=\sqrt{2}$. Gradiente:

$$\nabla f(x, y, z) = (4x + y - 5)\hat{\mathbf{i}} + (2y + x - 3)\hat{\mathbf{j}} + (2z - 2)\hat{\mathbf{k}}.$$

Gradiente no ponto: $\nabla f(0,-1,1) = -6\hat{\mathbf{i}} - 5\hat{\mathbf{j}}$. Taxa: Produto interno de $\nabla f(0,-1,1)$ e d, dividido pela norma de d. $(-6\hat{\mathbf{i}} - 5\hat{\mathbf{j}}) \cdot (\hat{\mathbf{j}} - \hat{\mathbf{k}})/\sqrt{2} = -5/\sqrt{2}$.

(b) (20 points) Encontre os pontos críticos do problema de minimizar f sujeito a -2x + 3y + 4z = 13.

Solution: Resolvendo pelo Método dos Multiplicadores de Lagrange: Devemos encontrar λ e (x,y,z) tais que

$$\nabla f(x, y, z) = \lambda \nabla h(x, y, z)$$
$$h(x, y, z) = 13,$$

onde h(x,y,z)=-2x+3y+4z. Como $\nabla h(x,y,z)+-2\hat{\mathbf{i}}+3\hat{\mathbf{j}}+4\hat{\mathbf{k}},$ então esse sistema fica

$$4x + y - 5 = -2\lambda$$
$$x + 2y - 3 = 3\lambda$$
$$2z - 2 = 4\lambda$$
$$-2x + 3y + 4z = 13$$

Podemos resolver esse sistema para encontra $x, y \in z$ em função de λ :

$$x = 1 - \lambda$$
 $y = 2\lambda + 1$ $z = 2\lambda + 1$

Substituindo na quarta equação, obtemos

$$-2(1 - \lambda) + 3(2\lambda + 1) + 4(2\lambda + 1) = 13$$
$$-2 + 3 + 4 + \lambda(2 + 6 + 8) = 13$$
$$\lambda = \frac{13 - 5}{16} = \frac{1}{2}$$

Portanto

$$x = \frac{1}{2}$$
 $y = 2$ $z = 2$.

Solution: Calculamos o gradiente e igualamos a 0.

$$\nabla f(x,y) = (3x^2 - 3 + 3y^2)\hat{i} + 6xy\hat{j} = 0.$$

Então, temos

$$3x^2 - 3 + 3y^2 = 0$$
$$6xy = 0.$$

Da segunda equação tiramos x=0 ou y=0. Se x=0, então a primeira equação fica $y^2=1$, de modo que a solução é $y=\pm 1$. Se y=0, então $x^2=1$, de modo que $x=\pm 1$.

Portanto, temos 4 soluções: (0,1), (0,-1), (1,0), (-1,0). Vamos classificá-los agora.

$$\frac{\partial^2 f}{\partial x^2}(x, y) = 6x$$
$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{\partial^2 f}{\partial x \partial y}(x, y) = 6y$$
$$\frac{\partial^2 f}{\partial y^2}(x, y) = 6x$$

O discriminante é $D(x,y) = f_{xx}(x,y)f_{yy}(x,y) - f_{xy}(x,y)^2 = 36(x^2 - y^2).$

Para $(0, \pm 1)$, temos $D(0, \pm 1) = -36 < 0$, então (0, 1) e (0, -1) são pontos de sela. Para $(\pm 1, 0)$, temos $D(\pm 1, 0) = 36 > 0$. Como $f_{xx}(1, 0) = 6 > 0$, então (1, 0) é minimizador local. Como $f_{xx}(-1, 0) = -6 < 0$, então (-1, 0) é maximizador local.

Considere as curvas de nível da função f, as elipses numeradas esboçadas abaixo, e uma curva h(x,y) = 0 também representada (sem numeração).

(a) (5 points) Desenhe no gráfico representações para o gradiente nos pontos (0,1), $(-\frac{1}{2},-1)$ e (-1,1).

Solution: Os gradiente são normais às curvas de nível no ponto, e apontam para longe do ponto (0.5, -0.25).

(b) (15 points) Pelo gráfico, indique os minimizadores e maximizadores locias e globais da função f com a restrição h(x,y)=0, **justificando**. Estime os valores da função nesses pontos conjunto.

Solution: O menor valor possível é logo abaixo de 1, perto do ponto (0.2, -0.2). O maior valor possível é perto de 36, perto do ponto (-1, -0.9). Perto do ponto (0.3, 0.5) temos um maximizador local, e perto do ponto (-0.25, 0.25) temos um minimizador local.

Calcule a integral dupla

$$\int_0^2 \int_0^3 x^2 y \mathrm{d}x \mathrm{d}y.$$

Solution:

$$\int_0^2 \int_0^3 x^2 y dx dy = \int_0^2 \frac{x^3}{3} y \Big|_0^3 dy = \frac{x^3}{3} \Big|_0^3 \frac{y^2}{2} \Big|_0^2 = 18$$

Calculo o volume da figura abaixo do plano 2x - 3y + z - 6 = 0 e acima do triângulo no plano x-y de vértices (0,0), (1,0) e (0,1).

Solution: O plano z=6-2x+3y está acima do triângulo dado em toda região, então o volume é

$$\iint_D (6 - 2x + 3y) \mathrm{d}A.$$

A região D é o triângulo dado. que pode ser descrito por $D=\{(x,y)\mid 0\leq x\leq 1, 0\leq y\leq 1, 0\leq y$ 1-x. Então a integral é

$$\int_0^1 \int_0^{1-x} (6 - 2x + 3y) dy dx = \int_0^1 \left[(6 - 2x)(1 - x) + \frac{3}{2}(1 - x)^2 \right] dx$$

$$= \int_0^1 \left[6 - 2x - 6x + 2x^2 + \frac{3}{2} - 3x + \frac{3}{2}x^2 \right] dx$$

$$= \int_0^1 \left[\frac{15}{2} - 11x + \frac{7}{2}x^2 \right] dx$$

$$= \frac{15}{2} - \frac{11}{2} + \frac{7}{6}$$

$$= \frac{19}{6}$$

Derivadas

$$\bullet \ \frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x)) = -\sin(x)$$
 • $\frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$

$$d_{\mathrm{d}x}(e^x) = e^x$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x)) = \cos(x)$$
 • $\frac{\mathrm{d}}{\mathrm{d}x}(\ln(x)) = \frac{1}{x}$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(x)) = \frac{1}{x}$$

Integrais

Regras

• Regra da cadeia com f(x, y), $x \in y$ dependendo de t.

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$