Introduction to Spatial Statistics

Jay Ver Hoef

National Marine Mammal Lab NOAA Fisheries International Arctic Research Center Fairbanks, Alaska, USA

Outline

Introduction

•000000

- Introduction
- Autocorrelation
- Types of Spatial Data
- Prediction
- Regression
- Design of Experiments
- Sampling
- Summary

What are Statistics?

areenhouse 11%

$$\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i$$

Value of Crops Sold: 1997 U.S. Total: \$98 Billion Corn for grain 19% and berries 13% Tobacco 3% Cotton 6% Nursery and All other

Wheat 7%

crops 16%

Vegetables, sweet corn, and melons 9%

A statistic is a function of data

Introduction

Introduction

What is a Model?

Introduction

- What does it look like?
- Structural

- ▶ How does it work?
- Functional

Spatial Statistical Models and Inference

Introduction

Spatial Linear Model

$$z_i = \beta_0 + x_{1,i}\beta_1 + x_{2,i}\beta_2 + \ldots + \epsilon_i$$

$$z_{j,k,i}$$
 = $\beta_0 + \tau_j + \delta_k + (\tau \delta)_{j,k} + \ldots + \epsilon_{j,k,i}$

$$\begin{pmatrix} \mathbf{z}_{\text{observed}} \\ \mathbf{z}_{\text{unchearwed}} \end{pmatrix} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \operatorname{var}(\boldsymbol{\epsilon}) = \boldsymbol{\Sigma}(\boldsymbol{\theta})$$

- ▶ Point Prediction
- ► Block Prediction
- Sampling

- Regression
- Design of Experiments

Covariance Matrix in Spatial Linear Models

Reduce the number of parameters in the probability model by using spatial relationships

$$\Sigma = \begin{pmatrix} \sigma_{1,1} & \sigma_{1,2} & \cdots & \sigma_{1,n} \\ \sigma_{2,1} & \sigma_{2,2} & \cdots & \sigma_{2,n} \\ \vdots & \vdots & \cdots & \vdots \\ \sigma_{n,1} & \sigma_{n,2} & \cdots & \sigma_{n,n} \end{pmatrix} \stackrel{\circ}{\underset{n}{\overset{\circ}{\longrightarrow}}} \stackrel{\circ}{\underset{n}{\longrightarrow}} \stackrel{\circ}{\underset{n}{$$

Introduction

The Many Faces of "Autocorrelation": DATA

```
x < -1:100

z < -6 - ((x - 50)/20)^2 + rnorm(100)

plot(x, z, pch = 19, cex = 2, cex.lab = 2, cex.axis = 1.5)
```


The Many Faces of "Autocorrelation": MODEL

```
x < -1:100 gamma < -\exp(-x/50) plot(x, gamma, type = "l", lwd = 2, cex.lab = 2, cex.axis = 1.5, col = "blue")
```


The Many Faces of "Autocorrelation": PROCESS

```
set.seed(4)
x <- 1:100
y <- rep(1, times = 100)
xyz <- geoStatSim(x, y, range = 100, nugget = 0.01, parsil = 6)
plot(xyz$x, xyz$z, pch = 19, cex = 2, cex.lab = 2, cex.axis = 1.5)</pre>
```


The Many Faces of "Autocorrelation": STATISTIC

```
spDF <- SpatialPointsDataFrame(cbind(xyz$x, xyz$y), data.frame(z = xyz$z))
esv <- empSemivariogram(spDF, "z", EmpVarMeth = "CovMean")
plot(esv$hx, esv$qamma, pch = 19, cex = esv$np/100, cex.lab = 2, cex.axis = 1.5)</pre>
```


Estimation Versus Prediction

```
E(\mathbf{z}, Z_0) = \mathbf{1}\mu, \quad \text{cov}(\mathbf{z}, Z_0) = \begin{pmatrix} \mathbf{\Sigma} & \mathbf{c} \\ \mathbf{c}' & \sigma_0^2 \end{pmatrix}
data mean = \mathbf{1}'\mathbf{z}/n
variance as estimator of \mu = \mathbf{1}' \mathbf{\Sigma} \mathbf{1}/n^2
variance as predictor = E(\mathbf{1}'\mathbf{z}/n - Z_0)^2 = \mathbf{1}'\Sigma\mathbf{1}/n^2 - 2\mathbf{1}'\mathbf{c}/n + \sigma_0^2
```

```
# Independence
SigmaInd <- diag(6)
# variance of mean estimator for first 5
sum (SigmaInd[1:5, 1:5])/5^2
## [1] 0.2
# variance of first 5 to predict the 6th
sum(SigmaInd[1:5, 1:5])/5^2 - 2 * sum(SigmaInd[6, 1:5])/5 + SigmaInd[6, 6]
## [1] 1.2
```


Estimation Versus Prediction

$$E(\mathbf{z}, Z_0) = \mathbf{1}\mu, \quad \operatorname{cov}(\mathbf{z}, Z_0) = \begin{pmatrix} \mathbf{\Sigma} & \mathbf{c} \\ \mathbf{c}' & \sigma_0^2 \end{pmatrix}$$
 data mean = $\mathbf{1}'\mathbf{z}/n$ variance as estimator of $\mu = \mathbf{1}'\mathbf{\Sigma}\mathbf{1}/n^2$ variance as predictor = $E(\mathbf{1}'\mathbf{z}/n - Z_0)^2 = \mathbf{1}'\mathbf{\Sigma}\mathbf{1}/n^2 - 2\mathbf{1}'\mathbf{c}/n + \sigma_0^2$

```
# lots of autocorrelation
SigmaAC <- matrix(0.9999, nrow = 6, ncol = 6)
diag(SigmaAC) <- 1
# variance of mean estimator for first 5
sum (SigmaAC[1:5, 1:5])/5^2
## [1] 0.9999
# variance of first 5 to predict the 6th
sum(SigmaAC[1:5, 1:5])/5^2 - 2 * sum(SigmaAC[6, 1:5])/5 + SigmaAC[6, 6]
## [1] 0.00012
```


Estimation Versus Prediction

```
1.0000
         0.9999
                   0.9999
                             0.9999
                                       0.9999
                                                0.9999
0 9999
         1.0000
                   0 9999
                             0 9999
                                       0 9999
                                                0 9999
0.9999
         0.9999
                   1.0000
                             0.9999
                                       0.9999
                                                0.9999
0.9999
         0.9999
                   0.9999
                             1.0000
                                       0.9999
                                                0.9999
0.9999
         0.9999
                   0.9999
                             0.9999
                                       1.0000
                                                 0.9999
0 9999
         0 9999
                   0.9999
                             0.9999
                                       0 9999
                                                 1.0000
```

```
set.seed(18)
z.AC <- t(chol(SigmaAC)) %*% rnorm(6)
z.ind <- t(chol(SigmaInd)) %*% rnorm(6)
plot(1:5, z.AC[1:5], ylim = c(-3, 3), xlim = c(1, 6), pch = 19, cex = 2, col = "green")
points(6, z.AC[6], pch = 19, cex = 2, col = "red")
lines(c(0, 6), c(0, 0), lwd = 3)
plot(1:5, z.ind[1:5], ylim = c(-3, 3), xlim = c(1, 6), pch = 19, cex = 2, col = "green")
points(6, z.ind[6], pch = 19, cex = 2, col = "red")
lines(c(0, 6), c(0, 0), lwd = 3, pch = 19, cex = 2)</pre>
```


Notation

- D is the spatial region or area of interest
- s contains the spatial coordinates
- Z is the value located at the spatial coordinates

Types of Spatial Data

- $\blacktriangleright \{Z(\mathbf{s}) : \mathbf{s} \in D\}$
- Geostatistical Data: Z random, D fixed, continuous, infinite
- Lattice/Aerial Data: Z random, D fixed, finite, (ir)regular grid
- Point Pattern Data: $Z \equiv 1$, D random, finite

Examples of Geostatistical Data

Examples of Lattice/Aerial Data

Examples of Point Pattern Data

Anemones

Estimation

minimize for θ

$$-2\ell(\boldsymbol{\theta}, \mathbf{z}) \propto \log|\mathbf{\Sigma}_{\boldsymbol{\theta}}| + \mathbf{r}_{\boldsymbol{\theta}}' \mathbf{\Sigma}^{-1} \mathbf{r}_{\boldsymbol{\theta}}$$

or

$$-2\ell_{\text{REML}}(\boldsymbol{\theta}, \mathbf{z}) \propto \log|\boldsymbol{\Sigma}_{\boldsymbol{\theta}}| + r_{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} r_{\boldsymbol{\theta}} + \log|\boldsymbol{X}' \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} \boldsymbol{X}|$$

where

$$\mathbf{r}_{\boldsymbol{\theta}} = \mathbf{z} - \mathbf{X} \hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}$$

and

$$\hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}} = (\mathbf{X}' \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} \mathbf{X})^{-1} \mathbf{X}' \boldsymbol{\Sigma}^{-1} \mathbf{z}$$

Prediction

$$\left(egin{array}{c} \mathbf{z}_{ ext{observed}} \ \mathbf{z}_{ ext{unobserved}} \end{array}
ight) = \mathbf{X} oldsymbol{eta} + \boldsymbol{\epsilon}, \ ext{var}(oldsymbol{\epsilon}) = \mathbf{\Sigma}(oldsymbol{ heta})$$

Spatial Regression

- Whiptail Lizard
- 148 locations in Southern California
- Measured the average number caught in traps over 80-90 trapping events in one year
- Data log-transformed, one outlier removed

Whiptail Lizard Data

$$\left(egin{array}{c} \mathbf{z}_{\mathrm{observed}} \ \mathbf{z}_{\mathrm{unobserved}} \end{array}
ight) = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \mathrm{var}(\boldsymbol{\epsilon}) = \boldsymbol{\Sigma}(\boldsymbol{\theta})$$

- Ant Abundance
- Percent Sandy Soil

- Matern Model
- Anisotropy

Fitted Model for Whiptail Lizard Data

$$\begin{pmatrix} \mathbf{z}_{\text{observed}} \\ \mathbf{z}_{\text{unobserved}} \end{pmatrix} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \operatorname{var}(\boldsymbol{\epsilon}) = \mathbf{\Sigma}(\boldsymbol{\theta})$$

Effect	Est	Std Error	t-value	df	$Pr(t:H_0)$
Intercept	0.716	0.574	146	1.25	0.2139
Ant Abund	0.252	0.107	146	2.36	0.0195
Sandy Soil	0.764	0.249	146	3.07	0.0026

Component	Parameter	Estimate
nugget	nugget	0.598
besselK	parsil	1.027
besselK	range	160313
besselK	minorp	0.042
besselK	rotate	18.5
besselK	extrap	0.539

Glades in the Ozarks

+6

+6

True

Value -4.00

6.00

10.00

2.00

0.00

Simulated Spatial Experimental Design

4 (1) (4)	4 🗐 🕨	2 E N	4 E K	_	000

Simulated Spatial Experimental Design

$$\begin{pmatrix} \mathbf{z}_{\text{observed}} \\ \mathbf{z}_{\text{unobserved}} \end{pmatrix} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \text{var}(\boldsymbol{\epsilon}) = \boldsymbol{\Sigma}(\boldsymbol{\theta})$$

True Value	Ind Est	Ind SE	Sp Est	Sp SE
-4	-2.4	1.29	-2.95	0.87
6	6.6	1.29	6.81	1.05
10	9.0	1.05	9.77	0.84
2	0.4	1.49	0.53	1.07
0	-2.4	1.49	-1.94	1.68

nugget: 5.56

nugget: 0.00 partial sill: 13.55

range: 9.36

Spatial Sampling

- Moose Survey
- South of Fairbanks
- \sim 4500 mi²

SRS

- $\hat{\tau} = 11535$
- $se(\hat{\tau}) = 985$

FPBK

- $\hat{\tau} = 11327$
- $se(\hat{\tau}) = 978$

Small Area

SRS(n=17)

- $\hat{\tau} = 1535$
- $se(\hat{\tau}) = 227$

FPBK

- $\hat{\tau} = 1437$
- $se(\hat{\tau}) = 153$