EDA-Exploitary Data Analysis -Drug Dataset

import libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib as pp
```

import dataset

```
In [2]: data=pd.read_csv(r"E:\154\4_drug200.csv")
```

In [3]: display(data)

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

To display top 10 rows

In [4]: data.head(10)

Out[4]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
5	22	F	NORMAL	HIGH	8.607	drugX
6	49	F	NORMAL	HIGH	16.275	drugY
7	41	М	LOW	HIGH	11.037	drugC
8	60	М	NORMAL	HIGH	15.171	drugY
9	43	М	LOW	NORMAL	19.368	drugY

In []:

To display last 5 rows

In [5]: data.tail()

Out[5]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
195	56	F	LOW	H I GH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

In [6]: data.dtypes

Out[6]: Age int64
Sex object
BP object
Cholesterol object
Na_to_K float64
Drug object
dtype: object

localhost:8888/notebooks/Pandas/DRUG-EDA.ipynb

To view statistical summary

```
In [7]: data.describe()
```

Out[7]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

To Print no of elements

```
In [8]: data.size
Out[8]: 1200
In [9]: data.ndim
Out[9]: 2
```

To print no of rows and columns

```
In [10]: data.shape
Out[10]: (200, 6)
```

To find missing values

In [11]: data.isna()

Out[11]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
195	False	False	False	False	False	False
196	False	False	False	False	False	False
197	False	False	False	False	False	False
198	False	False	False	False	False	False
199	False	False	False	False	False	False

200 rows × 6 columns

To drop nullI values with constatns

In [12]: data.fillna(5)

Out[12]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [13]: data.dropna()

Out[13]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

Line Plot

Type $\mathit{Markdown}$ and LaTeX : α^2

In [14]: data.plot.line()

Out[14]: <AxesSubplot:>

Scatter Plot

```
In [15]: data.plot.scatter(x='Age',y='Na_to_K')
```

Out[15]: <AxesSubplot:xlabel='Age', ylabel='Na_to_K'>

Bar Chart

```
In [16]: data.plot.bar()
```

Out[16]: <AxesSubplot:>

Histogram

```
In [17]: data.plot.hist()
```

Out[17]: <AxesSubplot:ylabel='Frequency'>

Box Plot

In [18]: data.plot.box()

Out[18]: <AxesSubplot:>

Pie Chart

```
In [32]: data.plot.pie(y="Na_to_K")
Out[32]: <AxesSubplot:ylabel='Na_to_K'>
```


Area

```
In [20]: data.plot.area()
```

Out[20]: <AxesSubplot:>

To Find Mean

In [21]: data.mean()

Out[21]: Age 44.315000 Na_to_K 16.084485

dtype: float64

To Find Median

In [22]: data.median()

Out[22]: Age 45.0000

Na_to_K 13.9365 dtype: float64

To Find Mode

In [23]: data.mode()

Out[23]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	47.0	М	HIGH	HIGH	12.006	drugY
1	NaN	NaN	NaN	NaN	18.295	NaN

Describe

In [24]: data.describe()

Out[24]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

Sum

In [25]: data.sum()
Out[25]: Age 8863

Age 8863
Sex FMMFFFFMMMFFMFFFMMMFFMFFMFMMMMMFFMFF...
BP HIGHLOWLOWNORMALLOWNORMALLOWNORMALLOWNORMALLOWLOW...
Cholesterol HIGHHIGHHIGHHIGHHIGHHIGHHIGHNORMALHIGH...
Na_to_K 3216.897

Drug drugYdrugCdrugCdrugXdrugYdrugXdrugYdrugCdrugYd...

dtype: object

Cumulative Sum

In [26]: data.cumsum()

Out[26]:

	Age	Sex					
0	23	F	_				
1	70	FM					
2	117	FMM					
3	145	FMMF					
4	206	FMMFF					
195	8732	${\bf FMMFFFFMMMFMMMFFFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWNOF				
196	8748	${\sf FMMFFFFMMMFMMFFMFMFMMFMMMMFMFFMFF}$	HIGHLOWLOWNOF				
197	8800	${\bf FMMFFFFMMMFMMMFFFMFMMFMMMMFMFFMMFF}$	HIGHLOWLOWNOF				
198	8823	${\sf FMMFFFFMMMFMMFFMFMFMMFMMMMFMFFMFF}$	HIGHLOWLOWNOF				
199	8863	${\bf FMMFFFFMMMFMMFFFMFMFMMFMMMMFMFFMFF}$	HIGHLOWLOWNOF				
200 rows × 6 columns							

Minimum Values

Maximum Values

Correlation

```
In [29]: from scipy.stats import spearmanr
print(spearmanr(data['Age'],data['Na_to_K']))
```

SpearmanrResult(correlation=-0.047273882688479915, pvalue=0.5062200581387418)

Covariance

Count