Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Testul 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	\ I	,
1.	$\frac{1}{\sqrt{5}-2} - \sqrt{5} = \frac{\sqrt{5}+2}{\left(\sqrt{5}\right)^2 - 4} - \sqrt{5} =$	3p
	$=\sqrt{5}+2-\sqrt{5}=2$	2p
2.	$f(a) = 2a^2 + 5a + 2 \Rightarrow 2a^2 + 5a + 2 = a$	2p
	$2a^2 + 4a + 2 = 0$, de unde obținem $a = -1$	3 p
3.	$\log_4(3x+1) = 2 \Rightarrow 3x+1 = 4^2 \Rightarrow 3x+1 = 16$	3p
	x = 5, care convine	2p
4.	Mulțimea A are 6 elemente, deci sunt 6 cazuri posibile	2p
	Numerele $x \in A$ pentru care x^2 este număr impar sunt 5, 7 și 9, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{6} = \frac{1}{2}$	1p
5.	Mijlocul segmentului <i>BC</i> are coordonatele $\frac{4+a}{2}$, respectiv $\frac{3+b}{2} \Rightarrow 2 = \frac{4+a}{2}$, deci $a = 0$	3p
	$-1 = \frac{3+b}{2} \Longrightarrow b = -5$	2p
6.	BC = 15	2p
	$h = \frac{AB \cdot AC}{BC} = \frac{9 \cdot 12}{15} = 7,2$	3p

SUBIECTUL al II-lea (30 de nuncte)

501	(So de pune		icicj
1	.a)	$\det A = \begin{vmatrix} 4 & 2 \\ 3 & 2 \end{vmatrix} = 4 \cdot 2 - 2 \cdot 3 =$ $= 8 - 6 = 2$	3p 2p
	b)	$(A-2I_2)\cdot (A-4I_2) = \begin{pmatrix} 2 & 2 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 3 & -2 \end{pmatrix} =$	2p
		$= \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix} = 6I_2$	3 p
	c)	$A \cdot X = \begin{pmatrix} 4a + 2c & 4b + 2d \\ 3a + 2c & 3b + 2d \end{pmatrix}$ şi $3A + 4X = \begin{pmatrix} 12 + 4a & 6 + 4b \\ 9 + 4c & 6 + 4d \end{pmatrix}$, unde $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, cu a , b , c şi d numere reale	3p
		$ \begin{pmatrix} 4a + 2c & 4b + 2d \\ 3a + 2c & 3b + 2d \end{pmatrix} = \begin{pmatrix} 12 + 4a & 6 + 4b \\ 9 + 4c & 6 + 4d \end{pmatrix}, \text{ deci } a = 7, b = 4, c = 6 \text{ și } d = 3, \text{ de unde obținem} $ $ X = \begin{pmatrix} 7 & 4 \\ 6 & 3 \end{pmatrix} $	2 p

Probă scrisă la matematică M tehnologic

Testul 6

Barem de evaluare și de notare

2.a)	$1*3=1\cdot 3-\frac{12}{1+3}+\frac{3}{1}+\frac{3}{3}=$	3p
	=3-3+3+1=4	2p
b)	$x*x = x \cdot x - \frac{12}{x+x} + \frac{3}{x} + \frac{3}{x} =$	2p
	$=x^2 - \frac{6}{x} + \frac{3}{x} + \frac{3}{x} = x^2 - \frac{6}{x} + \frac{6}{x} = x^2$, pentru orice $x \in M$	3 p
c)	$n*n = n^2$, $(n*n)*(n*n) = n^2*n^2 = n^4$, pentru orice număr natural nenul n	3p
	$n^4 = 1$ și, cum n este număr natural nenul, obținem $n = 1$	2p

SUBIECTUL al III-lea		(30 de puncte)	
1.a)	$f'(x) = \frac{0 - 2(2x - 2)}{\left(x^2 - 2x + 2\right)^2} = \frac{4 - 4x}{\left(x^2 - 2x + 2\right)^2} =$	3р	
	$=\frac{4(1-x)}{\left(x^2-2x+2\right)^2}, \ x \in \mathbb{R}$	2p	
b)	f(2)=1, f'(2)=-1	2p	
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = -x + 3$	3 p	
c)	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a), \text{ pentru orice număr real } a$	2p	
	$f'(a) = 0 \Leftrightarrow \frac{4(1-a)}{\left(a^2 - 2a + 2\right)^2} = 0, \text{ de unde obţinem } a = 1$ $\int_{1}^{4} f(x) dx = \int_{1}^{4} e^x dx = e^x \Big _{1}^{4} = 1$	3р	
2.a)	$\int_{1}^{4} f(x) dx = \int_{1}^{4} e^{x} dx = e^{x} \Big _{1}^{4} =$	3р	
	$=e^4-e=e(e^3-1)$	2 p	
b)	$\int_{1}^{2} xf(x)dx = \int_{1}^{2} xe^{x}dx = \int_{1}^{2} x\left(e^{x}\right)'dx = \left(xe^{x} - e^{x}\right)\Big _{1}^{2} =$	3р	
	$=e^2-0=e^2$	2 p	
c)	Cum a este număr real, $a > 0$, obținem $\int_{-a}^{0} f(x) dx = \int_{-a}^{0} \left(\frac{2x}{x^2 + 1} + 1 \right) dx =$	2	
	$ = \int_{-a}^{0} \frac{(x^2 + 1)'}{x^2 + 1} dx + \int_{-a}^{0} 1 dx = \ln(x^2 + 1) \Big _{-a}^{0} + x \Big _{-a}^{0} = -\ln(a^2 + 1) + a $	3р	
	$a - \ln(a^2 + 1) = a - \ln(a + 1) \Rightarrow a^2 = a$ şi, cum $a > 0$, obţinem $a = 1$	2 p	