Package 'skewsamp'

September 15, 2021

Title Estimate Sample Sizes for Group Comparisons with Skewed Distributions	
Version 1.0.0	
Description Estimate necessary sample sizes for comparing the location of data from two groups or categories when the distribution of the data is skewed. The package offers a non-parametric method for a Wilcoxon Mann-Whity test of location shift as well as methods for several generalized linear models, for instance, Gamma regression.	
License MIT + file LICENSE	
Encoding UTF-8	
LazyData true	
Roxygen list(markdown = TRUE)	
RoxygenNote 7.1.1	
Imports stats	
Suggests testthat (>= 3.0.0)	
Config/testthat/edition 3	
R topics documented:	
1	2
_	2
=8	4 5
<i>-</i> €	<i>5</i>
——————————————————————————————————————	7
	8
n_poisson	0
pemp	1
qemp	2
remp	
resample_n_locshift	3
Index 1	5

2 n_binom

demp

Empirical probability density function (EPDF)

Description

Empirical probability density function based on a sample of observations, as described by Chakraborti (2006).

Usage

```
demp(x, sample)
```

Arguments

```
x numeric vector of values to evaluatesample numeric vector of sample values to base the EPDF on
```

Value

numeric vector of density values based on the EPDF

References

Chakraborti, S., Hong, B., & Van De Wiel, M. A. (2006). A note on sample size determination for a nonparametric test of location. Technometrics, 48(1), 88–94. https://doi.org/10.1198/004017005000000193

Examples

```
x <- 1:5
demp(1, x)
```

n_binom

Calculate sample size for binomial distribution

Description

Estimation of required sample size as given by Cundill & Alexander (2015).

Usage

```
n_binom(
   p0,
   effect,
   size = 1,
   alpha = 0.05,
   power = 0.9,
   q = 0.5,
   link = c("logit", "identity"),
   two_sided = TRUE
)
```

n_binom 3

Arguments

p0 probability of success in group0

effect Effect size, $1 - (\mu_1/\mu_0)$, where μ_0 is the mean in the control group (mean0) and

 μ_1 is the mean in the treatment group.

size number of trials (greater than zero)

alpha Type I error rate

power 1 - Type II error rate

q Proportion of observations allocated to the control group

link Link function to use. Currently implement: 'log' and 'identity'

two_sided logical, if TRUE the sample size will be calculated for a two-sided test. Other-

wise, the sample size will be calculated for a one-sided test.

Value

Returns an object of class "sample_size". It contains the following components:

N the total sample size

n0 sample size in Group 0 (control group)

n1 sample size in Group 1 (treatment group)

two_sided logical, TRUE, if the estimated sample size refers to a two-sided test

alpha type I error rate used in sample size estimation

power target power used in sample size estimation

effect effect size used in sample size estimation

effect_type short description of the type of effect size

comment additional comment, if there is any

call the matched call.

References

Cundill, B., & Alexander, N. D. E. (2015). Sample size calculations for skewed distributions. *BMC Medical Research Methodology*, 15(1), 1–9. https://doi.org/10.1186/s12874-015-0023-0

Examples

```
n_binom(p0 = 0.5, effect = 0.3)
```

n_gamma

n	_gamma	3

Calculate sample size for gamma distribution

Description

Estimation of required sample size as given by Cundill & Alexander (2015).

Usage

```
n_gamma(
  mean0,
  effect,
  shape0,
  shape1 = shape0,
  alpha = 0.05,
  power = 0.9,
  q = 0.5,
  link = c("log", "identity"),
  two_sided = TRUE
)
```

Arguments

mean0	Mean in control group
effect	Effect size, $1 - (\mu_1/\mu_0)$, where μ_0 is the mean in the control group (mean0) and μ_1 is the mean in the treatment group.
shape0	Shape parameter in control group
shape1	Shape parameter in treatment group. Defaults to shape0, because GLM assumes equal shape across groups.
alpha	Type I error rate
power	1 - Type II error rate
q	Proportion of observations allocated to the control group
link	Link function to use. Currently implement: 'log' and 'identity'
two_sided	logical, if TRUE the sample size will be calculated for a two-sided test. Otherwise, the sample size will be calculated for a one-sided test.

Value

Ν

Returns an object of class "sample_size". It contains the following components:

the total sample size

•
sample size in Group 0 (control group)
sample size in Group 1 (treatment group)
logical, TRUE, if the estimated sample size refers to a two-sided test
type I error rate used in sample size estimation
target power used in sample size estimation
effect size used in sample size estimation

n_glm 5

```
effect_type short description of the type of effect size comment additional comment, if there is any the matched call.
```

References

Cundill, B., & Alexander, N. D. E. (2015). Sample size calculations for skewed distributions. *BMC Medical Research Methodology*, 15(1), 1–9. https://doi.org/10.1186/s12874-015-0023-0

Examples

```
n_{gamma}(mean0 = 8.46, effect = 0.7, shape0 = 0.639, alpha = 0.05, power = 0.9)
```

n_glm

Calculate sample size for a group comparison via generalized linear models

Description

Estimation of required sample size as given by Cundill & Alexander (2015).

Usage

```
n_glm(
  mean0,
  mean1,
  dispersion0,
  dispersion1,
  alpha,
  power,
  link_fun = function(mu) NULL,
  variance_fun = function(mu, dispersion) NULL,
  dmu_deta_fun = function(mu) NULL,
  q
)
```

Arguments

mean0 Mean in control group mean1 Mean in treatment group

dispersion0 Dispersion parameter in control group dispersion1 Dispersion parameter in treatment group.

alpha Type I error rate
power 1 - Type II error rate

link_fun function object, the link function to create the response η .

variance_fun function object, function for computing the variance based on a mean and a

dispersion parameter

dmu_deta_fun function object, derivative of the original mean with respect to the link: $d\mu/d\eta$.

q Number between 0 and 1, the proportion of observations allocated to the control

group

6 n_locshift

Value

Total sample size (numeric)

References

Cundill, B., & Alexander, N. D. E. (2015). Sample size calculations for skewed distributions. *BMC Medical Research Methodology*, 15(1), 1–9. https://doi.org/10.1186/s12874-015-0023-0

n_locshift

Estimate N on the basis of two pilot samples.

Description

Estimation as described by Chakraborti, Hong, & van de Wiel (2006).

Usage

```
n_{locshift}(s1, s2, delta, alpha = 0.05, power = 0.9, q = 0.5)
```

Arguments

s1, s2 pilot samples

delta numeric value, location shift parameter δ

alpha type-I error probability

power 1 - type-II error probability, the desired statistical power

q size of group0 relative to total sample size.

Details

WARNING: Note that the estimation has high variability due to its dependence on pilot samples. The smaller the pilot sample, the more uncertain is the estimation of the required sample size. In a simulation study, we found that the method may also be inaccurate on average, depending on the investigated data.

Value

Returns an object of class "sample_size". It contains the following components:

N the total sample size

n0 sample size in Group 0 (control group)n1 sample size in Group 1 (treatment group)

two_sided logical, TRUE, if the estimated sample size refers to a two-sided test

alpha type I error rate used in sample size estimation
power target power used in sample size estimation
effect effect size used in sample size estimation
effect_type short description of the type of effect size
comment additional comment, if there is any

call the matched call.

n_locshift_bound 7

References

Chakraborti, S., Hong, B., & van de Wiel, M. A. (2006). A note on sample size determination for a nonparametric test of location. Technometrics, 48(1), 88–94. https://doi.org/10.1198/004017005000000193

Examples

```
n_{sol} = rexp(10), s2 = rexp(10),

alpha = 0.05, power = 0.9, delta = 0.35)
```

n_locshift_bound

Compute an upper bound the sample size based on two pilot samples.

Description

Based on the procedure described by Chakraborti, Hong, & van de Wiel (2006)

Usage

```
n_locshift_bound(
    s1,
    s2,
    delta,
    alpha = 0.05,
    power = 0.9,
    quantile = 0.9,
    n_resamples = 500,
    q = 0.5
)
```

Arguments

```
s1, s2 Pilot samples
delta numeric value, location shift parameter \delta
alpha Type I error probability
power 1 - Type II error probability, the desired statistical power
quantile Quantile to use as the upper bound.
n_resamples number of resamples to use in bootstrapping
q size of group0 relative to total sample size.
```

Details

WARNING: Note that the underlying estimation has high variability due to its dependence on pilot samples. The smaller the pilot sample, the more uncertain is the estimation of the required sample size. In a simulation study, we found that the underlying method may also be inaccurate on average, depending on the investigated data.

8 n_negbinom

Value

Returns an object of class "sample_size". It contains the following components:

the total sample size n sample size in Group 0 (control group) n0 sample size in Group 1 (treatment group) n1 two_sided logical, TRUE, if the estimated sample size refers to a two-sided test alpha type I error rate used in sample size estimation power target power used in sample size estimation effect effect size used in sample size estimation short description of the type of effect size effect_type comment additional comment, if there is any the matched call. call

References

Chakraborti, S., Hong, B., & van de Wiel, M. A. (2006). A note on sample size determination for a nonparametric test of location. Technometrics, 48(1), 88–94. https://doi.org/10.1198/004017005000000193

Examples

```
n_locshift_bound(s1 = rexp(10), s2 = rexp(10),

delta = 0.35, alpha = 0.05, power = 0.9)
```

 $n_negbinom$

Calculate sample size for negative binomial distribution

Description

Estimation of required sample size as given by Cundill & Alexander (2015).

Usage

```
n_negbinom(
  mean0,
  effect,
  dispersion0,
  dispersion1 = dispersion0,
  alpha = 0.05,
  power = 0.9,
  q = 0.5,
  link = c("log", "identity"),
  two_sided = TRUE
)
```

n_negbinom 9

Arguments

mean0 Mean in control group

effect Effect size, $1 - (\mu_1/\mu_0)$, where μ_0 is the mean in the control group (mean0) and

 μ_1 is the mean in the treatment group.

dispersion0 Dispersion parameter in control group

dispersion1 Dispersion parameter in treatment group. Defaults to shape0, because GLM

assumes equal shape across groups.

alpha Type I error rate

power 1 - Type II error rate

q Proportion of observations allocated to the control group

link Link function to use. Currently implement: 'log' and 'identity'

two_sided logical, if TRUE the sample size will be calculated for a two-sided test. Other-

wise, the sample size will be calculated for a one-sided test.

Value

Returns an object of class "sample_size". It contains the following components:

N the total sample size

n0 sample size in Group 0 (control group)n1 sample size in Group 1 (treatment group)

two_sided logical, TRUE, if the estimated sample size refers to a two-sided test

alpha type I error rate used in sample size estimation

power target power used in sample size estimation

effect effect size used in sample size estimation

effect_type short description of the type of effect size

comment additional comment, if there is any

call the matched call.

References

Cundill, B., & Alexander, N. D. E. (2015). Sample size calculations for skewed distributions. *BMC Medical Research Methodology*, 15(1), 1–9. https://doi.org/10.1186/s12874-015-0023-0

Examples

```
n_negbinom(mean0 = 71.4, effect = 0.7, dispersion0 = 0.33, alpha = 0.05, power = 0.9)
```

n_poisson

n	100	sson

Calculate sample size for poisson distribution

Description

Estimation of required sample size as given by Cundill & Alexander (2015).

Usage

```
n_poisson(
  mean0,
  effect,
  alpha = 0.05,
  power = 0.9,
  q = 0.5,
  link = c("log", "identity"),
  two_sided = TRUE
)
```

Arguments

mean0	Mean in control group
effect	Effect size, $1 - (\mu_1/\mu_0)$, where μ_0 is the mean in the control group (mean0) and μ_1 is the mean in the treatment group.
alpha	Type I error rate
power	1 - Type II error rate
q	Proportion of observations allocated to the control group
link	Link function to use. Currently implement: 'log' and 'identity'
two_sided	logical, if TRUE the sample size will be calculated for a two-sided test. Otherwise, the sample size will be calculated for a one-sided test.

Value

Returns an object of class "sample_size". It contains the following components:

N	the total sample size
n0	sample size in Group 0 (control group)
n1	sample size in Group 1 (treatment group)
two_sided	logical, TRUE, if the estimated sample size refers to a two-sided test
alpha	type I error rate used in sample size estimation
power	target power used in sample size estimation
effect	effect size used in sample size estimation
effect_type	short description of the type of effect size
comment	additional comment, if there is any
call	the matched call.

pemp 11

References

Cundill, B., & Alexander, N. D. E. (2015). Sample size calculations for skewed distributions. *BMC Medical Research Methodology*, 15(1), 1–9. https://doi.org/10.1186/s12874-015-0023-0

Examples

```
n_{poisson(mean0 = 5, effect = 0.3)}
```

pemp

Empirical cumulative density function (ECDF)

Description

Empirical cumulative density function based on a sample of observations, as used by described by Chakraborti (2006).

Usage

```
pemp(q, sample)
```

Arguments

q numeric vector of values to evaluate

sample numeric vector of sample values to base the ECDF on

Value

Returns the probabilities that a value drawn at random from the empirical cumulative density based on *sample* is smaller than or equal to the elements of x.

References

Chakraborti, S., Hong, B., & Van De Wiel, M. A. (2006). A note on sample size determination for a nonparametric test of location. Technometrics, 48(1), 88–94. https://doi.org/10.1198/004017005000000193

Examples

```
x <- 1:5
pemp(1, x)
```

12 remp

qemp

Empirical quantile function

Description

Empirical quantile function, i.e. inverse of the empirical cumulative density function pemp(). Based on the latter function as presented by Chakraborti (2006).

Usage

```
qemp(p, sample)
```

Arguments

p probability, can be a vector

sample numeric vector of sample values to base the ECDF on

Value

Returns the value for which pemp(x, sample) = p, i.e. the probability that a value drawn at random from the ECDF is smaller or equal to x is p.

References

Chakraborti, S., Hong, B., & Van De Wiel, M. A. (2006). A note on sample size determination for a nonparametric test of location. Technometrics, 48(1), 88–94. https://doi.org/10.1198/004017005000000193

Examples

```
x <- 1:5
qemp(0.1, x)
```

remp

Draws random values from the ECDF obtained from sample

Description

Based on the empirical cumulative density function as presented by Chakraborti (2006).

Usage

```
remp(n, sample)
```

Arguments

n integer, number of samples to be drawn

sample numeric vector of sample values to base the ECDF on

Value

numeric vector of random values drawn from the ECDF

resample_n_locshift 13

References

Chakraborti, S., Hong, B., & Van De Wiel, M. A. (2006). A note on sample size determination for a nonparametric test of location. Technometrics, 48(1), 88–94. https://doi.org/10.1198/004017005000000193

Examples

```
x <- 1:5
remp(10, x)</pre>
```

resample_n_locshift

Compute a distribution of estimates of N based on two pilot samples.

Description

Estimation of sample sizes based on resampled pilot samples from the empirical cumulative density. Based on the work of Chakraborti, Hong, & van de Wiel (2006).

Usage

```
resample_n_locshift(
    s1,
    s2,
    delta,
    alpha = 0.05,
    power = 0.9,
    n_resamples = 500,
    q = 0.5
)
```

Arguments

```
s1, s2 Pilot samples

delta numeric value, location shift parameter \delta

alpha Type I error probability

power 1 - Type II error probability, the desired statistical power

n_resamples number of resamples to use in bootstrapping

q size of group0 relative to total sample size.
```

Details

WARNING: Note that the estimation has high variability due to its dependence on pilot samples. The smaller the pilot sample, the more uncertain is the estimation of the required sample size. In a simulation study, we found that the method may also be inaccurate on average, depending on the investigated data.

Value

numeric vector of sample size estimates (total sample size)

14 resample_n_locshift

References

Chakraborti, S., Hong, B., & van de Wiel, M. A. (2006). A note on sample size determination for a nonparametric test of location. Technometrics, 48(1), 88–94. https://doi.org/10.1198/004017005000000193

Index

```
demp, 2

n_binom, 2

n_gamma, 4

n_glm, 5

n_locshift, 6

n_locshift_bound, 7

n_negbinom, 8

n_poisson, 10

pemp, 11

pemp(), 12

qemp, 12

remp, 12

resample_n_locshift, 13
```