

Doubly robust estimation under a randomly censored covariate

Brian Richardson

Acknowledgements

Seong-Ho Lee, PhD Tanya Garcia, PhD

Yanyuan Ma, PhD

This research was supported by the National Institute of Environmental Health Sciences grant T32ES007018.

Huntington's Disease and Censored Covariates

Sarah C Lotspeich et al. "Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease". In: Annual Review of Statistics and Its Application 11 (2024)

• Regression model: $E(Y) = \beta_0 + \beta_1 X$

- Regression model: $E(Y) = \beta_0 + \beta_1 X$
- Estimate $\beta = (\beta_0, \beta_1)^T$ with least squares/maximum likelihood

Problem: X is censored by a random censoring time C

Problem: X is censored by a random censoring time C

- $W = \min(X, C)$
- $\Delta = I(X \le C)$

Problem: X is censored by a random censoring time C

- $W = \min(X, C)$
- $\Delta = I(X \leq C)$
- assume: $C \perp \!\!\! \perp (X, Y)$

Complete Case Analysis

Only use observations where X is uncensored

Complete Case Analysis

Only use observations where X is uncensored

✓ Consistent

Complete Case Analysis

Only use observations where *X* is *uncensored*

- ✓ Consistent
- Inefficient

$$f_{Y,W,\Delta}(y,w,\delta,\boldsymbol{\beta}, \boxed{\boldsymbol{\alpha}}) \propto \underbrace{\{f_{Y|X}(y,w,\boldsymbol{\beta})\}^{\delta}}_{\text{uncensored}} \underbrace{\left\{\int_{w}^{\infty} f_{Y|X}(y,x,\boldsymbol{\beta}) \boxed{f_{X}(x,\boldsymbol{\alpha})} dx\right\}^{1-\delta}}_{\text{censored}}$$

$$f_{Y,W,\Delta}(y,w,\delta,\boldsymbol{\beta}, \boldsymbol{\alpha}) \propto \underbrace{\{f_{Y|X}(y,w,\boldsymbol{\beta})\}^{\delta}}_{\text{uncensored}} \underbrace{\left\{\int_{w}^{\infty} f_{Y|X}(y,x,\boldsymbol{\beta}) f_{X}(x,\boldsymbol{\alpha}) dx\right\}^{1-\delta}}_{\text{censored}}$$

$$\mathbf{S}_{\boldsymbol{\beta}}(y, w, \delta, \boldsymbol{\beta}) \equiv \frac{\partial}{\partial \boldsymbol{\beta}} \log f_{Y, W, \Delta}(y, w, \delta, \boldsymbol{\beta}, \boldsymbol{\alpha}), \qquad \sum_{i=1}^{n} \mathbf{S}_{\boldsymbol{\beta}}(Y_i, W_i, \Delta_i, \boldsymbol{\beta}) = \mathbf{0}$$

$$f_{Y,W,\Delta}(y,w,\delta,\boldsymbol{\beta}, \boldsymbol{\alpha}) \propto \underbrace{\{f_{Y|X}(y,w,\boldsymbol{\beta})\}^{\delta}}_{\text{uncensored}} \underbrace{\left\{\int_{w}^{\infty} f_{Y|X}(y,x,\boldsymbol{\beta}) f_{X}(x,\boldsymbol{\alpha}) dx\right\}^{1-\delta}}_{\text{censored}}$$

$$\mathbf{S}_{\boldsymbol{\beta}}(y, w, \delta, \boldsymbol{\beta}) \equiv \frac{\partial}{\partial \boldsymbol{\beta}} \log f_{Y, W, \Delta}(y, w, \delta, \boldsymbol{\beta}, \boldsymbol{\alpha}), \qquad \sum_{i=1}^{n} \mathbf{S}_{\boldsymbol{\beta}}(Y_i, W_i, \Delta_i, \boldsymbol{\beta}) = \mathbf{0}$$

- ✓ consistent
- ✓ fully efficient

$$f_{Y,W,\Delta}(y,w,\delta,\boldsymbol{\beta}, \boxed{\boldsymbol{\alpha}}) \propto \underbrace{\{f_{Y|X}(y,w,\boldsymbol{\beta})\}^{\delta}}_{\text{uncensored}} \underbrace{\left\{\int_{w}^{\infty} f_{Y|X}(y,x,\boldsymbol{\beta}) \boxed{f_{X}(x,\boldsymbol{\alpha})} dx\right\}^{1-\delta}}_{\text{censored}}$$

$$\mathbf{S}_{\boldsymbol{\beta}}(y, w, \delta, \boldsymbol{\beta}) \equiv \frac{\partial}{\partial \boldsymbol{\beta}} \log f_{Y, W, \Delta}(y, w, \delta, \boldsymbol{\beta}, \boldsymbol{\alpha}), \qquad \sum_{i=1}^{n} \mathbf{S}_{\boldsymbol{\beta}}(Y_i, W_i, \Delta_i, \boldsymbol{\beta}) = \mathbf{0}$$

- ✓ consistent
- ✓ fully efficient

X inconsistent when model for nuisance parameter f_X is incorrect

Existing Methods

Existing Opportunity

A New Approach

• of interest: parameter β characterizing Y|X

- of interest: parameter β characterizing Y|X
- nuisance: distributions $(f_X, f_C) = \eta$

- of interest: parameter β characterizing Y|X
- nuisance: distributions $(f_X, f_C) = \eta$
- ullet semiparametric: avoid parametric assumptions for η

- of interest: parameter β characterizing Y|X
- nuisance: distributions $(f_X, f_C) = \eta$
- ullet semiparametric: avoid parametric assumptions for η
- goal: find semiparametric efficient estimating function

Hilbert space of estimating functions

- Hilbert space of estimating functions
- covariance inner product $\langle \pmb{h}, \pmb{g} \rangle \equiv \mathrm{E}(\pmb{h}^T\pmb{g})$

- Hilbert space of estimating functions
- covariance inner product $\langle \boldsymbol{h}, \boldsymbol{g} \rangle \equiv \mathrm{E}(\boldsymbol{h}^T \boldsymbol{g})$
- orthogonal ⇔ uncorrelated

$$\boldsymbol{h} \perp \boldsymbol{g} \iff \langle \boldsymbol{h}, \boldsymbol{g} \rangle = 0$$

Properties of the Proposed Estimator

The **semiparametric efficient estimator** $\widehat{\boldsymbol{\beta}}_{\scriptscriptstyle{\mathrm{eff}}}$ is the solution to

$$\sum_{i=1}^{n} \mathbf{S}_{\mathrm{eff}}(Y_i, W_i, \Delta_i, \boldsymbol{eta}) = \mathbf{0}$$

Properties of the Proposed Estimator

The **semiparametric efficient estimator** $\widehat{m{eta}}_{
m eff}$ is the solution to

$$\sum_{i=1}^{n} \mathbf{S}_{ ext{eff}}(Y_i, W_i, \Delta_i, oldsymbol{eta}) = \mathbf{0}$$

✓ **Doubly Robust**: $\widehat{\beta}_{\text{eff}}$ is consistent if at least one of f_X , f_C is correctly specified

Properties of the Proposed Estimator

The **semiparametric efficient estimator** $\widehat{m{eta}}_{ ext{eff}}$ is the solution to

$$\sum_{i=1}^n \mathbf{S}_{ ext{eff}}(Y_i, W_i, \Delta_i, oldsymbol{eta}) = \mathbf{0}$$

- ✓ **Doubly Robust**: $\widehat{\beta}_{\text{eff}}$ is consistent if at least one of f_X , f_C is correctly specified
- ✓ Locally Efficiency: If f_X , f_C are both correctly specified, then $\widehat{\beta}_{\text{eff}}$ achieves the semiparametric efficiency bound

• $Y|X \sim N(\beta_0 + \beta_1 X, \sigma^2)$

- $Y|X \sim N(\beta_0 + \beta_1 X, \sigma^2)$
- large sample size n=10,000

- $Y|X \sim N(\beta_0 + \beta_1 X, \sigma^2)$
- large sample size n = 10,000
- high censoring rate q = P(X > C) = 0.75

- $Y|X \sim N(\beta_0 + \beta_1 X, \sigma^2)$
- large sample size n = 10,000
- high censoring rate q = P(X > C) = 0.75
- $X, C \sim$ gamma distributions

- $Y|X \sim N(\beta_0 + \beta_1 X, \sigma^2)$
- large sample size n = 10,000
- high censoring rate q = P(X > C) = 0.75
- $X, C \sim$ gamma distributions
- X, C possibly **misspecified** as exponential

X, C correct

Simulation Setup

- $Y|X \sim N(\beta_0 + \beta_1 X, \sigma^2)$
- large sample size n = 10,000
- high censoring rate q = P(X > C) = 0.75
- $X, C \sim$ gamma distributions
- X, C possibly **misspecified** as exponential

X, C correct

Xincorrect, Ccorrect

➡ Oracle ➡ Complete Case ➡ MLE ➡ Semiparametric

Generalizations

The methods presented here extend to:

• Nonlinear $E(Y|X) = m(X, \beta)$

Generalizations

The methods presented here extend to:

- Nonlinear $E(Y|X) = m(X, \beta)$
- Additional uncensored covariates Z
 - $\mathrm{E}(Y|X,\mathbf{Z}) = m(X,\mathbf{Z},\boldsymbol{\beta})$
 - Nuisance distributions become $f_{X|\mathbf{Z}}, f_{C|\mathbf{Z}}, f_{\mathbf{z}}$

SPARCC: <u>Semiparametric Censored Covariate</u> Estimation

R package available at https://github.com/brian-d-richardson/sparcc

Appendix I: MLE Score Function

$$\mathbf{S}_{\beta}(y, w, \delta, \mathbf{z}, \boldsymbol{\beta}) = \underbrace{\delta \mathbf{S}^{\mathrm{F}}_{\beta}(y, w, \mathbf{z}, \boldsymbol{\beta})}_{\text{uncensored}} + \underbrace{(1 - \delta) \frac{\mathrm{E}\{\mathrm{I}(X > w) \mathbf{S}^{\mathrm{F}}_{\beta}(y, X, \mathbf{z}, \boldsymbol{\beta}) \mid y, \mathbf{z}\}}{\mathrm{E}\{\mathrm{I}(X > w) \mid y, \mathbf{z}\}}_{\text{censored}}$$

Appendix II: Efficient Score Function

$$\begin{split} \mathbf{S}_{\mathrm{eff}}(y,w,\delta,\mathbf{z},\boldsymbol{\beta}) &\equiv \delta\{\mathbf{S}_{\boldsymbol{\beta}}^{\mathrm{F}}(y,w,\mathbf{z},\boldsymbol{\beta}) - \boxed{\mathbf{a}(w,z,\boldsymbol{\beta})}\} \\ &+ (1-\delta) \frac{\mathrm{E}[\mathrm{I}(X>w)\{\mathbf{S}_{\boldsymbol{\beta}}^{\mathrm{F}}(y,X,\mathbf{z},\boldsymbol{\beta}) - \boxed{\mathbf{a}(X,\mathbf{z},\boldsymbol{\beta})}\} \mid y,\mathbf{z}]}{\mathrm{E}\{\mathrm{I}(X>w) \mid y,\mathbf{z}\}}, \end{split}$$

Appendix II: Efficient Score Function

$$\begin{split} \mathbf{S}_{\mathrm{eff}}(y,w,\delta,\mathbf{z},\boldsymbol{\beta}) &\equiv \delta\{\mathbf{S}_{\boldsymbol{\beta}}^{\mathrm{F}}(y,w,\mathbf{z},\boldsymbol{\beta}) - \boxed{\mathbf{a}(w,z,\boldsymbol{\beta})}\} \\ &+ (1-\delta) \frac{\mathrm{E}[\mathrm{I}(X>w)\{\mathbf{S}_{\boldsymbol{\beta}}^{\mathrm{F}}(y,X,\mathbf{z},\boldsymbol{\beta}) - \boxed{\mathbf{a}(X,\mathbf{z},\boldsymbol{\beta})}\} \mid y,\mathbf{z}]}{\mathrm{E}\{\mathrm{I}(X>w) \mid y,\mathbf{z}\}}, \end{split}$$

where $\mathbf{a}(x, \mathbf{z}, \boldsymbol{\beta})$ satisfies

$$E\{I(x \le C) \mid \mathbf{z}\}\mathbf{a}(x, \mathbf{z}, \boldsymbol{\beta}) + E\left[I(x > C)\frac{E\{I(X > C)\mathbf{a}(X, \mathbf{z}, \boldsymbol{\beta}) \mid Y, C, \mathbf{z}\}}{E\{I(X > C) \mid Y, C, \mathbf{z}\}} \mid x, \mathbf{z}\right]$$

$$= E\left[I(x > C)\frac{E\{I(X > C)\mathbf{S}_{\boldsymbol{\beta}}^{F}(Y, X, \mathbf{z}, \boldsymbol{\beta}) \mid Y, C, \mathbf{z}\}}{E\{I(X > C) \mid Y, C, \mathbf{z}\}} \mid x, \mathbf{z}\right]$$

Thank you! Any questions?

Brian Richardson

⊠: brichson@ad.unc.edu