Probabilidades

Johan Van Horebeek

1. Construcción

Punto de partida: **un experimento**

- Resultado del experimento es $\omega \in \Omega$.
- Interés en ciertos eventos $A \subset \Omega$.
- \bullet Una probabilidad P es una función sobre ciertos eventos: $P:A\to P(A)\in [0,1]$

1. Construcción

Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega$.
- Interés en ciertos eventos $A \subset \Omega$.
- \bullet Una probabilidad P es una función sobre ciertos eventos: $P:A\to P(A)\in [0,1]$

Ejemplo 1

Experimento: lanzar un dado.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Algunos eventos:

$$A_1 = \{2, 4, 6\}$$
, obtener un número par

$$A_2 = \{3\}, \text{ obtener } 3$$

¿Cómo definir P()? ¿Cómo interpretarla?

1. Construcción

Punto de partida: un experimento

- Resultado del experimento es $\omega \in \Omega$.
- Interés en ciertos eventos $A \subset \Omega$.
- \bullet Una probabilidad P es una función sobre ciertos eventos: $P:A\to P(A)\in [0,1]$

Hablando mal ...

P(A): mal dicho: la probalidad de obtener A

 $P(A \cup B)$: mal dicho: la probabilidad de obtener A o B

 $P(A \cap B)$: mal dicho: la probabilidad de obtener A y B

 $P(A^c)$: mal dicho: la probabilidad de no obtener A

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Distribución de conteo o distribución uniforme

Corresponde a *elegir un elemento al azar*, i.e. sin ninguna preferencia.

$$P(\{\omega\}) = \frac{1}{\# \Omega}$$

y en general para cada $A \subset \Omega$:

$$P(A) = \frac{\# A}{\# \Omega}.\tag{1}$$

Definimos P sobre todos los subconjuntos de Ω .

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Distribución de conteo o distribución uniforme

Corresponde a elegir un elemento al azar, i.e. sin ninguna preferencia.

$$P(\{\omega\}) = \frac{1}{\# \Omega}$$

y en general para cada $A \subset \Omega$:

$$P(A) = \frac{\# A}{\# \Omega}.\tag{2}$$

Definimos P sobre todos los subconjuntos de Ω .

Ejemplo 2

Experimento: lanzar un dado.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$P(\{\omega\}) = \frac{1}{6}$$

Probabilidad de obtener un número par: $A_1 = \{2, 4, 6\}$: $P(A_1) = \frac{3}{6} = \frac{1}{2}$.

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Distribución de conteo o distribución uniforme

$$P(A) = \frac{\# A}{\# \Omega}.\tag{3}$$

Propiedades

Para cada A y B eventos,

- 1. $P(A) \in [0, 1];$
- 2. $P(\Omega) = 1$
- 3. Si $\{A_i\}$ es una sucesión de conjuntos ajenos, i.e. $A_i \cap A_j = \emptyset$, $\forall i \neq j$, se tiene:

$$P(\cup A_i) = \sum_i P(A_i); \tag{4}$$

4.
$$P(A) = 1 - P(A^c)$$
.

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Distribución de conteo o distribución uniforme

$$P(A) = \frac{\# A}{\# \Omega}.\tag{5}$$

Propiedades

Para cada A y B eventos,

- 1. $P(A) \in [0, 1];$
- 2. $P(\Omega) = 1$
- 3. Si $\{A_i\}$ es una sucesión de conjuntos ajenos, i.e. $A_i \cap A_j = \emptyset$, $\forall i \neq j$, se tiene:

$$P(\cup A_i) = \sum_i P(A_i); \tag{6}$$

4. $P(A) = 1 - P(A^c)$.

Consequencias:

$$P(A \setminus B) = P(A) - P(A \cap B). \tag{7}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B). \tag{8}$$

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Caso general

Dado $\Omega = \{\omega_1, \dots, \omega_k\}$, si la secuencia $\{p_i\}$ satisface:

- 1. $p_i \geq 0, \forall i;$
- 2. $\sum_{i=1}^{k} p_i = 1;$

entonces llamamos $P(\cdot)$ definido por $P(A) = \sum_{\omega_i \in A} p_i$ para cada $A \subset \Omega$ una función de probabilidad sobre Ω .

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Caso general

Dado $\Omega = \{\omega_1, \dots, \omega_k\}$, si la secuencia $\{p_i\}$ satisface:

- 1. $p_i \geq 0, \forall i;$
- 2. $\sum_{i=1}^{k} p_i = 1;$

entonces llamamos $P(\cdot)$ definido por $P(A) = \sum_{\omega_i \in A} p_i$ para cada $A \subset \Omega$ una función de probabilidad sobre Ω .

Propiedades

Para cada A y B eventos,

- 1. $P(A) \in [0, 1];$
- 2. $P(\Omega) = 1$
- 3. Si $\{A_i\}$ es una sucesión de conjuntos ajenos, i.e. $A_i \cap A_j = \emptyset$, $\forall i \neq j$, se tiene:

$$P(\cup A_i) = \sum_i P(A_i); \tag{9}$$

4.
$$P(A) = 1 - P(A^c)$$
.

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Distribución de conteo/uniforme: $P(A) = \frac{\# A}{\# \Omega}$.

Caso general: $P(A) = \sum_{\omega_i \in A} p_i$, con $p_i \ge 0$, $\sum_i p_i = 1$

Ejemplo 1 Calcula la probabilidad que en un grupo de n personas hay al menos una que cumple años el 12 de octubre.

Ejemplo 2 Calcula la probabilidad que en un grupo de n personas hay al menos dos personas que cumplen en el mismo dia.

$$\Omega = \{\omega_1, \cdots, \omega_k\}$$

Distribución de conteo/uniforme: $P(A) = \frac{\# A}{\# \Omega}$.

Caso general: $P(A) = \sum_{\omega_i \in A} p_i$, con $p_i \ge 0$, $\sum_i p_i = 1$

Ejemplo 1 Calcula la probabilidad que en un grupo de n personas hay al menos una que cumple años el 12 de octubre.

Ejemplo 2 Calcula la probabilidad que en un grupo de n personas hay al menos dos personas que cumplen en el mismo dia.

tamaño del grupo	15	25	35	45	55
P(al menos dos cumpleaños coinciden)	0.25	0.56	0.8	0.94	0.98
Tabla 1.					

8 1		25			55
P(al menos un compleaños coincide con el tuyo)	0.03	0.06	0.08	0.11	0.13
Tabla 2.					

3. Caso $\Omega \subset \mathcal{R}^d$

Experimento: elegir al azar un número de [0,2].