REMARKS

Added Claims 52 and 53 conform to cancelled composition claims 35 and 36. These claims were cancelled in response to the restriction requirement of February 8, 2001. Applicants have filed this Request for Continued Examination to obtain rejoinder of cancelled composition claims 35 and 36. Since method claims 1-34 and 37 -41 have been allowed and new claims 42-51 define subject matter which is within the scope of these allowed claims, it would not be an undue burden to examine the composition claims directed to a small number of compounds. Considering these composition claims in this application is no more burdensome than if they were presented in a continuation application.

The RCE was also filed to present additional prior art and additional claims which conform to copending application S.N. (09/640,780).

The amendments to claims 1, 3, 6, and 14 correct obvious typographical errors. The amendments to claims 28, 29, 30, and 31 serve to clarify the methods claimed. These amendments are not made for reasons of patentability. Claims 28, 29, 30, and 31 have already been found to be allowable.

New method claims 42-51 define subgeneric groups of compounds employed which are within the scope of allowed claim 1. These claims do not add new matter to the application.

Respectfully submitted,

Richard J. Traverso (Reg. No. 30,595)

Attorney for Applicant(s)

MILLEN, WHITE, ZELANO & BRANIGAN, P.C. Arlington Courthouse Plaza I 2200 Clarendon Boulevard, Suite 1400 Arlington, Virginia 22201

(703) 812-5310 [Direct Dial]

E-mail address: traverso@mwzb.com

Filed: December 2, 2002

RJT/lvb K:\Bayer\11\c1\preliminaryamd.doc

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE CLAIMS

Please amend claims 1, 3, 6, 14, 28, 29, 30, and 31 as follows:

1. (Amended) A method for the treatment of a disease mediated by p38 other than cancer, comprising administering a compound of formula I

wherein B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0-3 and each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'},

-NR 5 C(O)OR 5 ', -NR 5 C(O)R 5 ', C $_1$ -C $_{10}$ alkyl, C $_2$ -C $_{10}$ alkenyl, C $_1$ -C $_{10}$ alkoxy, C $_3$ -C $_{10}$ cycloalkyl, C $_6$ -C $_{14}$ aryl, C $_7$ -C $_{24}$ alkaryl, C $_3$ -C $_{13}$ heteroaryl, C $_4$ -C $_{23}$ alkheteroaryl, substituted C $_1$ -C $_{10}$ alkyl, substituted C $_2$ -C $_{10}$ alkenyl, substituted C $_1$ -C $_{10}$ alkoxy, substituted C $_3$ -C $_{10}$ cycloalkyl, substituted C $_4$ -C $_{23}$ alkheteroaryl and -Y-Ar;

wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^5$,

-C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to per-halosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_2 - C_{10} alkenyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

wherein Y is -O-, -S-, -N(R⁵)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a, -NR⁵C(O)NR⁵ R⁵'-, -NR⁵C(O)-,

-C(O)NR 5 -, -CX $^a{}_2$ -, -S-(CH2)m- and -N(R 5)(CH2)m-,

m = 1-3, and X^a is halogen; and

Ar is a 5-10 member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} ,

wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^{5'}$, $-C(O)-NR^5$, $-NO_2$, =O, $-OR^5$, $-SR^5$, $-NR^5R^{5'}$, $-C(O)R^5$, $-SO_2R^5$, $-SO_2NR^5R^{5'}$, $-NR^5C(O)OR^{5'}$, $-NR^5C(O)R^{5'}$, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} heteroaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{23} alkheteroaryl;

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, $-CO_2R^5$,

 $-C(O)R^{5'}, -C(O)NR^{5}R^{5'}, =O, -OR^{5}, -SR^{5}, -NO_{2}, -NR^{5}R^{5'}, -NR^{5}C(O)R^{5'},$

-NR 5 C(O)OR 5 , C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C-C₁₀ heteroaryl, C₆-C₁₄ aryl, C₄-C₂₄ alkheteroaryl and C₇-C₂₄ alkaryl.

A is a heteroaryl moiety selected from the group consisting of

wherein

 R^1 is selected from the group consisting of halogen, C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_1 - C_{13} heteroaryl, $C_{6^{-1}4}$ aryl, $C_{7^{-2}4}$ alkaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{13} heteroaryl, up to per-halosubstituted $C_{6^{-1}4}$ aryl, and up to per-halosubstituted $C_{7^{-2}4}$ alkaryl;

 R^2 is selected from the group consisting of H, $-C(O)R^4$, $-CO_2R^4$, $-C(O)NR^3R^{3'}$, C_1-C_{10} alkyl, C_3-C_{10} cycloalkyl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{23} alkheteroaryl,

where R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, - CO_2R^4 , -C(O)-NR³R^{3'}, -NO₂, -OR⁴, -SR⁴, and halogen up to per-halosubstitution,

wherein R^3 and $R^{3'}$ are independently selected from the group consisting of H, - OR^4 , - SR^4 , - $NR^4R^{4'}$, - $C(O)R^4$, - CO_2R^4 , - $C(O)NR^4R^{4'}$, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to perhalosubstituted C_3 - C_{10} cycloalkyl, up to perhalosubstituted C_3 - C_{13} heteroaryl; and

wherein R^4 and R^4 are independently selected from the group consisting of H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl; C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_6 - C_{14} aryl and up to per-halosubstituted C_3 - C_{13} heteroaryl,

 R^a is C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl; and

R^b is hydrogen or halogen,

 R^c is hydrogen, halogen, C_1 - C_{10} alkyl, up to per-halosubstituted C_1 - C_{10} alkyl or combines with R^1 and the ring carbon atoms to which R^1 and R^c are bound to form a 5- or 6-membered cycloalkyl, aryl or hetaryl ring with 0-2 members selected from O, N and S.

3. (Amended) A method of claim 1, wherein B is

wherein Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX^a₂, -CX^aH-, -CH₂O- and -OCH₂-, where X^a is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution;

Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution, and

X, Z, n and n1 are as defined in claim 1 and s is 0 or 1.

6. (Amended) A method as in claim 5, wherein B is 2,3-dichlorophenyl or of the formula

$$\begin{array}{c|c}
X_n \\
-Q - (Y - Q^1)_s Z_{n1}
\end{array}$$

wherein Q is phenyl, Q^1 is phenyl or pyridinyl, Y is -O-, -S-, -CH₂- or -SCH₂, X is CF₃, and Z is -OH, -Cl or NHC(O)-C_pH_{2p+1}, where p = 2-4, s = 0 or 1, n = 0 and n1 = 0 or 1.

14. (Amended) A method as in claim 13, wherein B is 2,3-dichlorophenyl or of the formula

$$X_n$$
 $-Q$
 $(Y$
 Q^1
 S
 Z_{n1}

wherein Q is phenyl, Q1 is phenyl, pyridinyl or benzothiazolyl, Y is -O-, -S-, -CH2- or -

NH-, Z is Cl, -CH₃ or -OCH₃, s = 0 or 1, n = 0 and n1 = 0 or 1.

- 28. (Amended) A method as in claim 1, wherein the compound for formula I displays p38 $\underline{\text{IC}_{50}}$'s activity (IC₅₀) better less than 10 μ m as determined by an in-vitro p38 kinase inhibition assay.
- **29.** (Amended) A method according to claim 1, wherein the disease is mediated by a cytokine or and/or protease (proteolytic enzyme) regulated by p38.
- 31. (Amended)A method according to claim ± 29, comprising administering an amount of a compound of formula I effective to inhibit production of a disease-mediating cytokine or protease.