

Customized Subgraph Selection and Encoding for Drug-drug Interaction Prediction

Haotong Du, Quanming Yao, Juzheng Zhang, Yang Liu, Zhen Wang

NeurIPS 2024

Background – Drug-drug Interaction

side effect

S. No.	Drugs Interaction Combination	Frequency	Outcome
1	Ceftriaxone + Calcium Gluconate	6	Precipitation of ceftriaxone-calcium salt
2	Furosemide + Amikacin	5	Potentiate the risk of oto- and nephrotoxicity
3	Atracurium + Amikacin	3	Severe and/or prolonged respiratory depression
4	Omeprazole + Clopidogril	2	Decreased effectiveness of Clopidogril
5	Aspirin + Clopidogril	2	Increased platelet inhibition effect

5 Common Drug Combinations and Consequences of Combinations

- 15% of the U.S. population is affected by unwanted side effects.
- About 0.32% (about 100,000 people) of hospitalised patients were exposed to lifethreatening drug side effects.

 Annual costs in treating side effects exceed \$177 billion in the U.S. alone.

——Source: U.S. Food and Drug Administration[1]

Background - Drug-drug Interaction

- Experimental methods
 - Drug pharmacokinetics parameters
 - Drug metabolism information (e.g., CYP enzymes)
- Disadvantages
 - Labor-intensive and time-consuming
 - Not scalable and often low throughput

Background – Drug-drug Interaction

- Computational methods
 - Save the cost of biological experiments
 - Provide relevant guidance for combination therapy to some extent

- Network-based methods(our focus)
 - Cast the prediction as a link prediction problem on DDI graph
 - Subgraph-based method is SOTA.

Background – Drug-drug Interaction

Subgraph-based method

- I. Select local subgraph as support context
- 2. Encode the local subgraph to reasoning

Motivation

- Subgraph selection
 - Existing methods sample subgraphs using a fixed subgraph range, which may lead to an imprecise collection of evidence for interaction reasoning

- Subgraph encoding
 - Manually designed encoding functions are limited in their ability to accommodate both types of distinct semantic patterns simultaneously

Diverse semantic properties in drug-drug interactions.

Dataset	Interaction Type	Examples	Semantic Property
DrugBank	Metabolic levels-based	#Drug1 may decrease the excretion rate of #Drug2	asymmetry $(r(x, y) \Rightarrow r(y, x))$
TWOSIDES	Phenotype-based	Combination of #Drug 1 and #Drug 2 may cause headaches	symmetry $(r(x, y) \Rightarrow r(y, x))$

Motivation

Subgraph-based method

Customization by NAS

- I. Select local subgraph as support context
- 2. Encode the local subgraph to reasoning

Select more informative subgraph

Design more expressive encoding function

Subgraph Selection Space

• We define a drug-pair subgraph selection space containing a range of subgraphs of different sizes for a given query (u, v):

$$\mathcal{S}_{u,v} = \{ \mathcal{G}_{u,v}^{i,j} \mid 1 \le i, j \le \eta \}$$

- where $\mathcal{G}_{u,v}^{i,j}$ is generated by taking the union of the i-hop ego-network of node u and the j-hop ego-network of node v, i.e., $\mathcal{G}_{u,v_j}^{i,j} = \left\{z \in \mathcal{V} \middle| z \in (u \cup \mathcal{N}_i(u) \cup v \cup \mathcal{N}_j(v))\right\}$
- ullet the threshold η constrains the maximum subgraph range
- Since each drug-pair has a specific subgraph selection space, the overall size of space in a whole graph is $\eta^{2|\mathcal{E}|}$, where $|\mathcal{E}|$ represents the number of edges in a drug interaction network

Subgraph Encoding Space

 We adopt a unified message passing framework comprising several key modules: the message-computing function MES, the aggregation function AGG, the combination function COM, and the activation function ACT, as follows:

$$\begin{aligned} &\texttt{step 1: } & \mathbf{m}_u \leftarrow \texttt{AGG}(\texttt{MES}(\mathbf{h}_v, \mathbf{h}_{r(u,v)})_{v \in \mathcal{N}_1(u)}) \\ &\texttt{step 2: } & \mathbf{h}_u \leftarrow \texttt{ACT}(\texttt{COM}(\mathbf{h}_u, \mathbf{m}_u)) \end{aligned}$$

Function name	Operations
Message Computing Function	SUB, MULT, CORR, ROTATE
Aggregation Function	SUM, MAX,MEAN
Combination Function	MLP, CONCAT
Activation Function	RELU, TANH, IDENTITY

Customized Search Problem

• Based on the well-designed search space described above, we formulate a bilevel optimization problem to adaptively search for the optimal configuration of subgraph-based pipelines:

Definition 1 (Customized Subgraph-based Pipeline Search Problem). Let A denote the subgraph encoding space, $S_{u,v}$ represent the subgraph selection space for the query (u,v), α be a candidate encoding function in A, W represent the parameters of a model from the search space, and $W^*(\mathcal{G}_{u,v};\alpha)$ denote the trained operation parameters. Let \mathcal{D}_{tra} and \mathcal{D}_{val} denote the training and validation sets, respectively. The search problem is formulated as follows:

$$rg \max_{oldsymbol{lpha} \in \mathcal{A}, \mathcal{G}_{u,v} \in \mathcal{S}_{u,v}} \sum_{(u,r,v) \in \mathcal{D}_{ ext{val}}} \mathcal{M}(\mathbf{W}^*(\mathcal{G}_{u,v}; oldsymbol{lpha}); \mathcal{G}_{u,v}; oldsymbol{lpha}),$$
s.t. $\mathbf{W}^*(\mathcal{G}_{u,v}; oldsymbol{lpha}) = rg \min_{\mathbf{W}} \sum_{(u,r,v) \in \mathcal{D}_{ ext{tra}}} \mathcal{L}(\mathbf{W}; \mathcal{G}_{u,v}; oldsymbol{lpha}),$

where the classification loss \mathcal{L} is minimized for all interactions, while the performance measurement \mathcal{M} is expected to be maximized.

Customized Search Problem

- Solving the proposed bi-level optimization problem is non-trivial:
 - For the subgraph selection space, the traditional continuous relaxation strategy is not directly applicable due to the structural mismatch between graphs and vectors.
 - To enable searching within the subgraph selection space, we would need to first generate all subgraphs in the space. However, sampling such a large number of subgraphs is computationally intractable.

Subgraph Space Relaxation

- We first utilize encoding function $f(\cdot)$ to encode subgraphs with different scopes, making it feasible to implement a relaxation strategy
- Additionally, inspired by the reparameterization trick, we adopt the Gumbel-Softmax function to facilitate differentiable learning over a discrete space:

$$\hat{\mathbf{z}}_{u,v}^{i,j} = \sum_{1 \le i,j \le \eta} \frac{\exp(\log(g(f(\mathcal{G}_{u,v}^{i,j})) + \mathbf{G}_{i,j})/\tau)}{\sum_{i',j'=1}^{\eta} \exp(\log(g(f(\mathcal{G}_{u,v}^{i',j'})) + \mathbf{G}_{i',j'})/\tau)} f(\mathcal{G}_{u,v}^{i,j})$$

• where $g(\cdot)$ scores the subgraph representations using multiple linear layers, $\mathbf{G}_{i,j} = -\log(-\log\mathbf{U}_{i,j})$ is the Gumbel random variable, $\mathbf{U}_{i,j}$ is a uniform random variable, and τ is the temperature parameter controlling sharpness. $\hat{z}_{u,v}^{i,j}$ is the mixed selection operation of subgraph $\mathcal{G}_{u,v}^{i,j}$ used to optimize searching process.

Subgraph Approximation Strategy

• Inspired by the k-subtree extractor, we apply an encoding function to the entire graph and use the resulting node representations of u and v as the ego-network representations for these nodes:

$$f(\mathcal{G}_{u,v}^{i,j}) \approx \mathtt{CONCAT}(f(\mathcal{G}_{\mathrm{DDI}},u,i),f(\mathcal{G}_{\mathrm{DDI}},v,j))$$

 No need to explicitly sampling subgraphs, improving the efficiency in solving the bilevel optimization problem

Robust Search Algorithm

• Sampling-based NAS paradigm and message-aware partitioned supernet training strategy improve the efficiency, consistency and accuracy of supernet training.

```
Algorithm 1: The search algorithm of CSSE-DDI.
  Input: Supernet S, number of partitions based on message computing function categories M (M=4),
         subsupernet S_i, (i = 1, \dots, M).
  // supernet training phase
1 Train S by continuously sampling a single path until convergence;
 // supernet partition phase
2 Partition S into M sub-supernets S_1, \dots, S_M;
  // sub-supernet training phase
3 forall i=1,\cdots,M do
      Initialize S_i with weights transferred from S;
      Train S_i by continuously sampling a single path until convergence;
6 end
  // searching phase
7 Search the optimal encoding function from sub-supernets S_1, \dots, S_M on validation data by natural
   gradient descent:
8 Select the optimal subgraphs from sub-supernets S_1, \dots, S_M on validation data by preserving the
   subgraphs with the largest probabilities;
```

Comparison with existing works

• Previous methods rely on fixed subgraph selection strategy to sample subgraphs and employ hand-designed functions for encoding, as summarized in Table 1.

 CSSE-DDI is the first to customize the subgraph selection and encoding processes for subgraph-based DDI prediction

Table 1: Comparing with existing methods."" represents not applicable.

Method	Fine-grained Subgraph Selection	Data-specific Encoding Function
SEAL [18]	×	×
GraIL [19]	×	×
SumGNN [12]	×	×
SNRI [20]	×	×
KnowDDI [14]	\checkmark	-
MR-GNAS [21]		✓
AutoGEL [22]	-	✓
CSSE-DDI	✓	✓

Experimental Setup

- Dataset: DrugBank and TWOSIDES
- We examine two DDI prediction task settings: S0 and S1.
 - S0 setting: both drug nodes are present in the known DDI graph
 - SI setting: involves a pair where one drug is known and the other is a novel drug not represented in the known DDI graph

Known DDI Graph

Main Results in S0 setting

 Compared with GNN-based methods, subgraph-based methods, and NASbased methods

• CSSE-DDI consistently outperforms all baselines, demonstrating its effectiveness in searching for data-specific subgraph-based pipelines

Model	Dataset	Dataset 1: DrugBank			Dataset 2: TWOSIDES			
Туре	Task Type	Multi-class			Multi-label			
	Methods	F1 Score	Accuracy	Cohen's κ	ROC-AUC	PR-AUC	AP@50	
	Decagon	57.35±0.26	87.19±0.28	86.07±0.08	91.72±0.04	90.60±0.12	82.06±0.45	
	GAT	33.49 ± 0.36	77.18 ± 0.15	74.20 ± 0.23	91.18 ± 0.14	$89.86{\scriptstyle\pm0.05}$	82.80 ± 0.17	
GNN-	SkipGNN	59.66 ± 0.26	85.83 ± 0.18	84.20 ± 0.16	92.04 ± 0.08	90.90 ± 0.10	84.25 ± 0.25	
based	CompGCN	71.20 ± 0.70	88.30 ± 0.29	86.15 ± 0.35	93.00 ± 0.07	91.26 ± 0.07	86.18 ± 0.10	
	ACDGNN	86.24 ± 0.93	90.53 ± 0.38	87.81 ± 0.33	93.69 ± 0.47	92.12 ± 0.21	87.45 ± 0.24	
	TransFOL	$89.97{\scriptstyle\pm1.64}$	$91.92{\scriptstyle\pm0.89}$	$90.92{\scriptstyle\pm0.72}$	$94.16{\scriptstyle\pm0.62}$	$93.52{\scriptstyle\pm0.53}$	$88.13{\scriptstyle\pm0.39}$	
	SEAL	48.82±0.98	76.61±0.26	71.91±0.59	90.74 ± 0.22	90.11±0.17	84.13±0.13	
	GraIL	73.20 ± 0.69	85.40 ± 0.39	82.70 ± 0.47	92.93 ± 0.10	91.69 ± 0.14	87.43 ± 0.09	
Subgraph-	SumGNN	78.35 ± 0.51	89.05 ± 0.36	87.28 ± 0.08	92.62 ± 0.04	90.80 ± 0.40	85.75 ± 0.10	
based	SNRI	85.57 ± 0.32	90.15 ± 0.21	88.94 ± 0.36	93.12 ± 0.18	92.64 ± 0.12	87.53 ± 0.11	
	KnowDDI	90.06 ± 0.27	93.15 ± 0.19	$91.87{\scriptstyle\pm0.21}$	95.05 ± 0.06	93.75 ± 0.05	89.24 ± 0.06	
	LaGAT	$\overline{81.63\pm0.56}$	$\overline{86.21{\pm0.18}}$	$\overline{85.38{\pm}0.23}$	$\overline{89.78\pm0.21}$	$\overline{86.33{\scriptstyle\pm0.15}}$	$\overline{83.75{\scriptstyle\pm0.36}}$	
	MR-GNAS	74.24±0.45	88.17±0.24	87.31±0.11	93.85±0.07	91.80±0.03	87.16±0.05	
NAS- based	AutoGEL	$76.87{\scriptstyle\pm0.63}$	$89.35{\scriptstyle\pm0.59}$	$86.14{\scriptstyle\pm0.41}$	$94.11{\scriptstyle\pm0.32}$	$92.35{\scriptstyle\pm0.29}$	$88.13{\scriptstyle\pm0.41}$	
	CSSE-DDI-FS	86.31±0.36	91.08±0.21	89.17±0.27	94.35 ± 0.07	93.01±0.06	89.08±0.04	
	CSSE-DDI-FF	80.96 ± 0.65	90.27 ± 0.23	88.69 ± 0.31	94.26 ± 0.08	92.74 ± 0.06	88.91 ± 0.09	
	CSSE-DDI	92.08±0.22	95.56±0.15	94.72±0.26	95.47±0.02	94.21±0.05	89.76±0.05	

Main Results in SI setting

- A significant performance drop from the transductive setting (S0) to the inductive setting (S1) demonstrates that DDI prediction for new drugs is more challenging.
- CSSE-DDI still demonstrates impressive results, outperforming existing GNN-based and subgraphbased methods.
- This strong performance is largely due to the robust learning capability of NAS technology in handling unknown data.

Dataset	Dataset 1: DrugBank			Dataset 2: TWOSIDES			
Task Type		Multi-class			Multi-label		
Methods	F1 Score	Accuracy	Cohen's κ	ROC-AUC	PR-AUC	Accuracy	
CompGCN	30.98±3.26	52.76±0.46	37.87±1.28	84.83±1.02	83.68±1.86	74.64±0.79	
Decagon	11.39 ± 0.79	32.56 ± 0.92	20.29 ± 1.33	57.49 ± 1.75	59.38 ± 1.09	$52.27{\scriptstyle\pm1.48}$	
SumGNN	$26.57{\scriptstyle\pm1.59}$	$44.30{\scriptstyle\pm1.04}$	$40.24{\scriptstyle\pm1.26}$	$80.02{\scriptstyle\pm2.17}$	$78.42{\scriptstyle\pm1.62}$	69.81 ± 1.77	
KnowDDI	31.14 ± 1.24	53.44 ± 1.73	43.93 ± 1.17	84.23 ± 2.63	$82.58{\scriptstyle\pm1.94}$	74.72 ± 1.51	
EmerGNN	$\textbf{58.13} {\pm} \textbf{1.36}$	$\textbf{69.53} \!\pm\! 1.97$	$\textbf{62.19} {\pm} \textbf{1.62}$	$\underline{87.42{\pm0.39}}$	$\underline{86.20{\scriptstyle\pm0.71}}$	$\underline{79.23{\scriptstyle\pm0.54}}$	
CSSE-DDI	37.24±1.13	$\underline{58.57 \pm 0.85}$	$\underline{49.97{\scriptstyle\pm1.01}}$	88.33±0.52	86.47±0.27	80.01±0.39	

Visualization of Searched Results

- Data-specific subgraph encoding functions are obtained.
- CSSE-DDI can effectively learn different subgraph scope distributions for various datasets.

Case Study

 CSSE-DDI can identify distinctive subgraphs containing semantic information to support inference for different queries, revealing pharmacokinetic and metabolic relationships

Summary

- We present CSSE-DDI, a searchable framework for DDI prediction that adaptively customizes the subgraph selection and encoding processes
 - Refined search spaces to enable fine-grained subgraph selection and data-specific encoding function optimization.
 - A relaxation mechanism that uses an approximation strategy to efficiently explore optimal subgraph configurations.

• The search results generated by CSSE-DDI offer interpretability in the context of drug interactions, revealing domain-specific concepts such as pharmacokinetics and metabolism.

Thanks for your listening!