

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 2° semestre de 2019 GABARITO

Professores: Otton Teixeira da Silveira Filho e Regina Célia de Paula Toledo

- 1 Primeira questão (2,0 pontos)
- a) Na figura abaixo (que não está em escala uniforme) está esquematizada uma proposta de distribuição de probabilidade que é linear no intervalo [0, 1/2] e se anula fora deste intervalo.

a) Calcule o coeficiente angular da reta de tal forma que esta proposta seja realmente uma distribuição de probabilidade e apresente a distribuição de probabilidade obtida.

Resolução:

Observe que a função acima é não negativa, vejamos sua integral. No caso desta função, a integral é igual à área do triângulo de base 1/2 e altura desconhecida. Se desejamos que a função seja normalizada, teremos que ter a área do triângulo igual a 1, daí

$$A_T = \frac{b \times h}{2} = \frac{1/2 \times h}{2} = 1 \Rightarrow h = 4$$
.

No entanto, desejamos a expressão da distribuição de probabilidade que é não nula no segmento de reta determinado por (0,0) e (1/2,4) . Usando a equação da reta dada por

$$y=ax+b$$

teremos para estes pontos $0=a\times 0+b\Rightarrow b=0$ e $4=a\times 1/2\Rightarrow a=8$ e a equação será y=8x. Esta é nossa distribuição de probabilidade.

b) Calcule a média da distribuição de probabilidade dada por $f(x) = \frac{6}{5}(x^2 - x); x \in [1,2]$;

Resolução:

A média de uma distribuição de probabilidade f(x) é dada por

$$\mu = \int_{-\infty}^{+\infty} x f(x) dx$$

que neste caso será dado por

$$\mu = \frac{6}{5} \int_{1}^{2} x(x^{2} - x) dx = \frac{6}{5} \left[\int_{1}^{2} x^{3} dx - \int_{1}^{2} x^{2} dx \right] = \frac{6}{5} \left[\frac{x^{4}}{4} |_{1}^{2} - \frac{x^{3}}{3} |_{1}^{2} \right]$$

ou

$$\mu = \frac{6}{5} \left[\frac{2^4 - 1^4}{4} - \frac{2^3 - 1^3}{3} \right] = \frac{6}{5} \left(\frac{15}{4} - \frac{7}{3} \right) = \frac{6}{5} \frac{17}{12} = \frac{17}{10} = 1,7$$

c) Calcule a variância da distribuição de probabilidade dada por $f(x) = \frac{x(x+2)}{18}$; $x \in [0,3]$;

Resolução:

A variância é calculada usando

$$\sigma^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2 .$$

Com isto, precisamos de calcular a média para obter a variância. Calculemos a média desta distribuição

$$\mu = \int_{0}^{3} x \frac{x(x+2)}{18} dx = \frac{1}{18} \left[\int_{0}^{3} x^{3} dx + 2 \int_{0}^{3} x^{2} dx \right] = \frac{1}{18} \left[\frac{x^{4}}{4} \Big|_{0}^{3} + 2 \frac{x^{3}}{3} \Big|_{0}^{3} \right] = \frac{1}{18} \left[\frac{3^{4} - 0}{4} + \frac{2}{3} (3^{3} - 0) \right]$$

ou

$$\mu = \int_{0}^{3} x \frac{x(x+2)}{18} dx = \frac{1}{18} \left(\frac{81}{4} + 18 \right) = \frac{17}{8} = 2,125 .$$

Calculemos agora a integral associada à variância, ou seja,

$$\frac{1}{18} \int_{0}^{3} x^{2} x(x+2) dx = \frac{1}{18} \left[\int_{0}^{3} x^{4} dx + 2 \int_{0}^{3} x^{3} dx \right] = \frac{1}{18} \left[\frac{x^{5}}{5} \Big|_{0}^{3} + 2 \frac{x^{4}}{4} \Big|_{0}^{3} \right] = \frac{1}{18} \left(\frac{3^{5}}{5} + \frac{3^{4}}{2} \right) = \frac{1}{18} \left[\frac{243}{5} + \frac{81}{2} \right] = \frac{99}{20} = 4,95$$

que nos leva a

$$\sigma^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx - \mu^2 = 4,95 - 2,125^2 \approx 0,4344 \quad .$$

d) Dê a moda da distribuição de probabilidade $\frac{sen(x)}{2}$; $x \in [0,\pi]$.

Resolução:

A função sen(x) tem seu ponto de máximo em $\pi/2$, que é também o ponto de máxima probabilidade desta distribuição. Portanto, a moda é $\pi/2$.

2 – Segunda questão (2,0 ponto)

Demonstre quais das funções abaixo são distribuições de probabilidade. Caso alguma das funções não seja distribuição devido à constante de normalização, apresente a função normalizada.

a)
$$f(x)=x(1-x^2); x \in [0,1]$$

Resolução:

Observe que por simples inspeção esta função é não negativa no intervalo especificado. Integremos agora esta função

$$\int_{0}^{1} x(1-x^{2})dx = \int_{0}^{1} x dx - \int_{0}^{1} x^{3} dx = \frac{x^{2}}{2} \Big|_{0}^{1} - \frac{x^{4}}{4} \Big|_{0}^{1} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} .$$

Deste resultado tiramos que o abaixo é uma distribuição de probabilidade

$$f(x)=4x(1-x^2); x \in [0,1]$$
.

b)
$$f(x)=x^4-x+1; x \in [-1,1]$$

Resolução

Com um estudo cuidadoso mas simples, vemos que a função acima é não negativa. Integremos

$$\int_{-1}^{1} (x^4 - x + 1) dx = \int_{-1}^{1} x^4 dx - \int_{-1}^{1} x dx + \int_{-1}^{1} dx = \frac{x^5}{5} \Big|_{-1}^{1} - \frac{x^2}{2} \Big|_{-1}^{1} + x \Big|_{-1}^{1} = \frac{1^5 - (-1)^5}{5} - \frac{1^2 - (-1)^2}{2} + [1 - (-1)]$$

logo o valor da integral será

$$\int_{-1}^{1} (x^4 - x + 1) dx = \frac{2}{5} + 2 = \frac{12}{5} .$$

Assim, a distribuição de probabilidade será expressa por $f(x) = \frac{5}{12}(x^4 - x + 1); x \in [-1, 1]$

c)
$$f(x)=x^3-x^2; x \in [1,2]$$

Resolução:

Observe que esta função neste intervalo toma valores não negativos. Integremos a função

$$\int_{1}^{2} (x^{3} - x^{2}) dx = \int_{1}^{2} x^{3} dx - \int_{1}^{2} x^{2} dx = \frac{x^{4}}{4} \Big|_{1}^{2} - \frac{x^{3}}{3} \Big|_{1}^{2} = \frac{2^{4} - 1^{4}}{4} - \frac{2^{3} - 1^{3}}{3} = \frac{15}{4} - \frac{7}{3} = \frac{17}{12} ,$$

e, portanto a distribuição será expressa por $f(x) = \frac{12}{17}(x^3 - x^2); x \in [1,2]$

d)
$$f(x)=x^3-x^2; x \in [0,1]$$

Resolução:

Observe que neste intervalo a função só toma valores negativos ou nulos, por exemplo, no ponto x=1/2 a função toma o valor -1/8 . Logo, esta função não pode ser uma distribuição de probabilidade.

3 – Terceira questão (1,5 pontos)

Numa empresa o tempo de atendimento de cada cliente (em minutos, T) foi modelado por uma densidade Exponencial (0,8), ou seja, α =0,8 .

Lembremos que a probabilidade para a distribuição Exponencial é dada por

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

Calcule:

a) P(T < 1,5)

Resolução:

Neste caso o solicitado resulta em

$$P(0 < X < 1,5) = e^{0} - e^{-0.8 \times 1.5b} = 1 - e^{-1.2} \approx 1 - 0.3012 = 0.6988$$
.

b) P(T>2.5)

Resolução:

Aqui obteremos a probabilidade usando o complemento. No caso da distribuição Exponencial teremos

$$P(T>2,5)=1-(e^0-e^{-0,8\times2,5})=1-1+e^{-2}\approx0,1353$$
.

c) P(0.6 < T < 1.8)

Resolução:

Neste caso será de aplicação direta da expressão acima

$$P(0,6 < X < 1,8) = e^{-0,8 \times 0,6} - e^{-0,8 \times 1,8} = e^{-0,48} - e^{-1,44} \approx 0,6188 - 0,2369 = 0,3819$$
.

4 – Quarta questão (2,0 pontos)

Calcule as probabilidades solicitadas:

a) $P(0,1 \le X \le 0,7)$ para a distribuição de probabilidade obtida no item a) da primeira questão;

Resolução:

Observemos que a função de distribuição solicitada tem valor diferente de zero no intervalo $\begin{bmatrix} 0,1/2 \end{bmatrix}$. Sendo assim, basta calcularmos a probabilidade no intervalo $\begin{bmatrix} 0,1;1/2 \end{bmatrix}$. Assim teremos

$$P(0,1 < X < 0,7) = 8 \int_{0.1}^{0.5} x \, dx = 8 \frac{x^2}{2} \Big|_{0,1}^{0.5} = 4 (0,5^2 - 0,1^2) = 4 \times 0,24 = 0,96$$
.

b) $P(0,1 \le X \le 0,7)$ para distribuição Normal com média 1,1 e variância 20,25;

Resolução:

ou

Usemos a fórmula $P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$ que com os parâmetros dados nos dará

$$P(0,1 < X < 0,7) = P\left(\frac{0,1-1,1}{\sqrt{20,25}} < Z < \frac{0,7-1,1}{\sqrt{20,25}}\right) = P\left(-\frac{1,0}{4,5} < Z < -\frac{0,4}{4,5}\right)$$

 $P(0,1< X<0,7) \approx P(-0,2222< Z<-0,0889) \approx P(-0,22< Z<-0,09)$

que pela simetria que esta distribuição tem, nos permite escrever

$$P(0,1, < X < 0,7) \approx P(0,22 < Z < 0,09) = P(Z < 0,22) - P(Z < 0,08) = 0,0871 - 0,0359 = 0,0512$$
.

c) $P(0,1 \le X \le 0,7)$ para a distribuição Normal com média - 0,2 e variância 20,25;

Resolução:

Aqui teremos

$$P(0,1 < X < 0,7) = P\left(\frac{0,1 - (-0,2)}{4,5} < Z < \frac{0,7 - (-0,2)}{4,5}\right) = P\left(\frac{0,3}{4,5} < Z < \frac{0,9}{4,5}\right) \approx P(0,0667 < Z < 0,2)$$

logo

$$P(0,1 < X < 0,7) \approx P(0,7 < Z < 0,20) = P(0,20 < Z) - P(0,07 < Z) = 0,0793 - 0,0279 = 0,0514$$
.

d) $P(0,1 \le X \le 0,7)$ para a distribuição Exponencial com $\alpha = 0,25$. **Resolução:**

$$P(0,1 < X < 0,7) = e^{-0.25 \times 0.1} - e^{-0.25 \times 0.7} = e^{-0.025} - e^{-0.175} \approx 0.9753 - 0.8395 = 0.1358$$
.

5 – Quinta questão (1,0 pontos)

Se avaliava a duração de conversas telefônicas numa empresa. Durante 8 horas o sistema de comunicação da empresa verificou 292 ligações telefônicas e média de 3,2 minutos de cada ligação. Suponha ser possível usar a distribuição Normal. Além destas informações, se estimava que o desvio padrão era de 4,3 minutos.

a) Avalie a média verdadeira com um coeficiente de confiança de 70%;

Resolução:

Sendo o intervalo de confiança apresentado por

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right]$$

calculemos inicialmente $\frac{\sigma}{\sqrt{n}} = \frac{4,3}{\sqrt{292}} \approx 0,2516$ e neste item para o coeficiente de confiança de

70% teremos $z_{y/2} = z_{0.35} = 1,04$, logo $\frac{\sigma}{\sqrt{n}} z_{y/2} = 0,2516 \times 1,04 \approx 0,2617$. Assim,

$$IC(\mu,\gamma)=[3,2-0,2617;3,2+0,2617]=[2,9383;3,4617]$$
.

b) Avalie a média verdadeira com um coeficiente de confiança de 95%.

Resolução:

Neste caso ficamos com $z_{\gamma/2}=z_{0,475}=1,96$ e então, $\frac{\sigma}{\sqrt{n}}z_{\gamma/2}=0,2516\times1,96\approx0,4931$, o que resulta no intervalo de confiança

$$IC(\mu, \gamma) = [3,2-0,4931;3,2+0,4931] = [2,7069;3,6931]$$
.

6 – Sexta questão (1,5 pontos)

Foi colhida uma amostra de pinos de montagem de certo equipamento. A amostra era de 40 pinos dos quais foi obtida a média amostral de 48 milímetros de comprimento. Havia uma estimativa, obtida em experimentações similares, que o desvio padrão seria de 12 milímetros. Suponha que peguemos aleatoriamente um pino do lote do qual retiramos a amostra. Calcule a probabilidade de encontramos:

a) Um pino com comprimento maior que 50 milímetros;

Resolução:

Suporemos que em todos estes casos possamos usar a distribuição Normal com a probabilidade calculada como

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma / \sqrt{n}} < Z < \frac{b - \mu}{\sigma / \sqrt{n}}\right)$$
.

Pelas informações dadas teremos $\frac{\sigma}{\sqrt{n}} = \frac{12}{\sqrt{40}} \approx 1,8974$.

Neste item trabalharemos com o complemento da probabilidade, ou seja,

$$P(X>50)=0.5-P(Z<\frac{50-48}{1.8974})\approx 0.5-P(Z<1.0540)\approx 0.5-P(Z<1.05)=0.5-0.3531=0.1469$$
.

b) Um pino menor que 46 milímetros;

Resolução:

$$P(X<46)=P(\frac{46-48}{1,8974}< Z)=P(-1,0540< Z)\approx 0,5-P(1,05< Z)=0,5-0,3531=0,1469$$
.

Observe que usamos a simetria da distribuição Normal e que este valor é o mesmo do item anterior, como era de se esperar.

c) Um pino maior que 44 milímetros e menor que 47 milímetros.

Resolução:

$$P(44 < X < 47) = P(\frac{44 - 48}{1,8974} < Z < \frac{47 - 48}{1,8974}) = P(-2,1081 < Z < -0,5270) \approx P(0,53 < Z < 2,11)$$

e então,

$$P(44 < X < 47) = P(2.11 < Z) - P(0.53 < Z) = 0.4826 - 0.2019 = 0.2807$$
.

Tabela da distribuição Normal N(0,1)

Z _c	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.