You have n chairs that are to seat mathematicians and physicists. But no two physicists should be seated next to each other. If n = 3, these are some valid seatings: MMP, MPM. But PPM is not a valid seating.

What are the number of valid seatings given n?

Find a recurrence relation f(n) to give the number of valid seatings for any n.

Show your work

Solution:

For n = 2 We can have the following combination of seating

So for 2 seats we can have 3 ways for seating ->

F(2) = 3

For n = 3
We have the following combinations of seating

For n = 4
We have the following combinations of seating

М	М	M	М
М	М	M	Р
М	M	Р	М
M	Р	M	М
Р	M	M	М
M	Р	M	Р
Р	М	Р	М
Р	М	M	Р

So for 4 seats we can have 8 ways for seating ->

$$F(4) = 8$$

If we continue to do this we will get 13, 21

So this leads that every solution is the sum of the previous 2 numbers this will lead us to recurrence equation of

$$F(n) = F(n-1) + F(n-2)$$

Where it's valid as $n \ge 2$ and F(0) = 1 F(1) = 2

$$F(n) = 1$$
 $n = 0$
 $F(n) = 2$ $n = 1$
 $F(n) = F(n-1) + F(n-2)$ $n >= 2$