

Members: 朱偉綸、黃秉茂、許齊崴

Abstract

- Graph Embedding Model can effectively transform Node information, but is vulnerable to specific adversarial attacks
- Many researches now focus on White-box Attack, which can learn information such as model, model parameters, gradient direction, etc.
- This research proposes GF-Attack to attack Graph Embedding Model from the perspective of Graph Signal Processing
- In order to examine the generalization of the attack, this article will focus on model verification of GCN, SGN, DeepWalk, LINE, etc.

Introduction

- We try to understand the graph embedding model from a new perspective and propose an attack framework: GF-Attack, which can perform adversarial attack on various kinds of graph embedding models.
- We formulate the graph embedding model as a general graph signal processing with corresponding graph filter which can be computed by the input adjacency matrix.
- GF-Attack is capable to perform the adversarial attack on any graph embedding models which can be formulate to a general graph signal processing.

Preliminary /

Spectral-Based Convolution

將Graph Data與Graph Filter都做Fourier Transform, 也就是將Graph Data與Graph Filter從Spatial Domain轉換至Frequency Domain, 如此一來對要Graph Data做 Convolution直接相乘就好, 比較簡單, 做完後再將Graph Data做Inverse Fourior Transform, 使其從Frequency Domain變回Spatial Domain。

• 考慮一無向圖,Graph Signal通常反應在Graph Node上(ie. Node Feature)

Graph:
$$G = (V, E), N = |V|$$

 $A \in \mathbb{R}^{N \times N}$, adjacency matrix (weight matrix).

$$A_{i,j} = 0$$
 if $e_{i,j} \notin E$, else $A_{i,j} = w(i,j)$

We only consider undirected graph

 $D \in \mathbb{R}^{N \times N}$, degree matrix

$$D_{i,j} = \begin{cases} d(i) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 (Sum of row $i \text{ in } A$)

 $f: V \to \mathbb{R}^N$, signal on graph (vertices). f(i) denotes the signal on vertex i

• 假設一簡單圖G有VO、V1、V2、V3等節點, f(0)、f(1)、f(2)、f(3)指節點訊號

定義Laplacian Matrix,屬於半正定矩陣,對L特徵分解則可以得到Eigen-Vector U和Eigen-Value λ。下圖將Eigenvalue定義為Frequency, Eigenvector定義為Basis,也就是說L可以作為一運算子,對Graph Signal進行處理

Graph Laplacian L = D - A, $L \ge 0$ (Positive semidefinite)

L is symmetric (for undirected graph)

 $L = U\Lambda U^{\mathrm{T}}$ (spectral decomposition)

$$\Lambda = \operatorname{diag}(\lambda_0, ..., \lambda_{N-1}) \in \mathbb{R}^{N \times N}$$

$$U = [u_0, ..., u_{N-1}] \in \mathbb{R}^{N \times N}$$
, orthonormal

 λ_l is the frequency, u_l is the basis corresponding to λ_l

根據G,可以得到下圖矩陣,f為事先定義之Signal,對L特徵分解可以得到對應的 Eigenvalue和Eigenvector

$$f = \begin{bmatrix} 4 \\ 2 \\ 4 \\ -3 \end{bmatrix}$$

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \quad \Lambda = \begin{bmatrix} \mathbf{0} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{3} & 0 \\ 0 & 0 & 0 & \mathbf{4} \end{bmatrix}$$

$$U = \begin{bmatrix} 0.5 & -0.41 & 0.71 & -0.29 \\ 0.5 & 0 & 0 & 0.87 \\ 0.5 & -0.41 & -0.71 & -0.29 \\ 0.5 & 0.82 & 0 & -0.29 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\Lambda = \begin{bmatrix} \mathbf{0} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{3} & 0 \\ 0 & 0 & 0 & \mathbf{4} \end{bmatrix}$$

• 若將Eigenvalue視為Frequency,則不同Eigenvalue會對應不同Eigenvector,而它能被視為影響Signal大小的Transform

• L的物理意義在於作為一運算子,能考量不同鄰居間的Node Signal進行運算。以下圖VO節 點的Signal為例,它會需要考慮V1和V2的Signal影響

Spectral Graph Theory

- ✓ Interpreting vertex frequency
 - >L as an operator on graph
 - \triangleright Given a graph signal f, what does Lf mean?

$$\triangleright Lf = (D - A)f = Df - Af$$

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$f = \begin{bmatrix} 4 \\ 2 \\ 4 \\ -3 \end{bmatrix} \quad Lf = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

68

Lets focus on the first row of Lf

$$a = [2\ 0\ 0\ 0] \cdot [4\ 2\ 4\ -3] - [0\ 1\ 1\ 0] \cdot [4\ 2\ 4\ -3]$$

of neighbors of v_0 Signal on v_0 's neighbors

$$= 2 \times 4 - 2 - 4 = (4 - 2) + (4 - 4) = 2$$

Signal on v_0 Sum of difference between v_0 and its neighbors

• 受到其他Signal影響可以定義為下圖公式,也就是計算Signal之間的平滑程度

$$\checkmark (Lf)(v_i) = \sum_{v_j \in V} w_{i,j}(f(v_i) - f(v_j)), \text{ where } w_{i,j} \text{ is the } (i,j)^{th}$$

$$\text{entry of } A$$

$$f^T L f = \sum_{v_i \in V} f(v_i) \sum_{v_j \in V} w_{i,j}(f(v_i) - f(v_j))$$

$$= \sum_{v_i \in V} \sum_{v_j \in V} w_{i,j}(f^2(v_i) - f(v_i)f(v_j))$$

$$= \frac{1}{2} \sum_{v_i \in V} \sum_{v_j \in V} w_{i,j}(f^2(v_i) - f(v_i)f(v_j) + f^2(j) - f(v_j)f(v_i))$$

$$= \frac{1}{2} \sum_{v_i \in V} \sum_{v_j \in V} w_{i,j}(f(v_i) - f(v_j))^2$$

$$\text{"Power" of signal variation between nodes, i.e., smoothness of graph signal s$$

• 根據上述公式,可以將Eigenvalue視為Frequency

(DC component)

- $\checkmark u_i^T L u_i = u_i^T \lambda_i u_i = \lambda u_i^T u_i = \lambda_i$
- \checkmark The eigenvectors corresponding to small λ belong to the low-pass part of a graph signal

Low frequency — High frequency

				, ,
λ	0	1	3	4
и	[0.5 0.5 0.5 0.5] ^T	$[-0.41 0 -0.41 0.82]^{T}$	$[0.71 0 -0.71 0]^{\mathrm{T}}$	$[-0.29 0.87 -0.29 -0.29]^{T}$
	V. V.	V ₂ V ₂	V ₂	v ₃

• 以下圖證明Eigenvalue擁有Frequency特性

Spectral Graph Theory

✓ A special example: a line graph with 20 nodes

72

Graph Fourier Transform

• 應用Fourier Transform的概念,將Vertex Domain(Spatial Domain)的訊號,透過 Eigenvector Transpose投射到Spectral Domain上

Inverse Graph Fourier Transform

Filtering

• 針對不同頻率間的訊號進行過濾

Filtering

modifying the amplitude/ phase of the different frequency components in a signal, including eliminating some frequency components entirely

- frequency shaping, frequency selective

Filtering

• 定義一 $g(\theta)$ function,作為Convolution Function,讓Spectral Domain Signal進行捲積

Spectral Graph Theory

✓ Filtering: Convolution in time domain is multiplication in frequency domain

$$\checkmark \hat{y} = g_{\theta}(\Lambda) \hat{x}$$

$$g_{\theta}(\lambda_i) = \theta_i$$

Inverse Graph Fourier Transform

 最後得到下圖式子,但這樣會遇到第一個問題,整體會受限於Input Data的N維大小,效率 為O(N)

 $g_{\theta}(\cdot)$ can be any function. For example,

$$g_{\theta}(L) = \log(I + L) = L - \frac{L^2}{2} + \frac{L^3}{3} \dots, \lambda_{max} < 1$$

Problem 1: Learning complexity is O(N)!!!

- 但若考慮 $g = L^N$ function, 則會考慮到N個Node的影響, 因此缺乏Localize特性
 - ✓ If we select $g_{\theta}(L) = cos(L) = I \frac{L^2}{2!} + \frac{L^4}{4!} ...$
 - ✓ If a connected graph has N nodes, then L^N will make the all nodes be able to share their signals with each other

Problems 2: Not localize!!!

ChebNet

- 將上述g function引入ChebNet機制,但會產生第三個問題為高Time Complexity
 - ✓ Solution to Problem 1 and 2:
 - ▶ Use polynomial to parametrize $g_{\theta}(L)$

$$\mathbf{g}_{\theta}(L) = \sum_{k=0}^{K} \theta_{k} L^{k}$$
 Parameters to be learnt: $O(K)$
$$\mathbf{g}_{\theta}(\Lambda) = \sum_{k=0}^{K} \theta_{k} \Lambda^{k}$$
 Problem 3: Time complexity: $O(N^{2})$
$$y = U\mathbf{g}_{\theta}(\Lambda)U^{T}x = U(\sum_{k=0}^{K} \theta_{k} \Lambda^{k}) U^{T}x$$

GCN

https://openreview.net/pdf?id=SJU4avYgl

$$\lambda_{max} \approx 2$$

 $\tilde{L} = \frac{2L}{2} - I$

$$= \theta_0' x + \theta_1' (L - I) x \qquad :: L = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$$

$$= \theta_0' x - \theta_1' (D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x \quad \because \theta = \theta_0' = -\theta_1'$$
$$= \theta (I + D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x$$

$$=\theta(I+D^{-2}AD^{-2})$$

renormalization trick:
$$I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} o \tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$$

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

GCN

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

Can be rewritten as:

$$h_v = f\left(rac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} W x_u + b
ight), \;\; orall v \in \mathcal{V}.$$

Methodology

GF Attack

- Attack on \mathcal{V} : Add/delete vertices in graphs. This operation may change the dimension of the adjacency matrix A.
- Attack on A: Add/delete edges in graphs. This operation would lead to the changes of entries in the adjacency matrix A. This kind of attack is also known as *structural attack*.
- Attack on X: Modify the attributes attached on vertices. Here, we mainly focus on adversarial attacks on graph structure A, since attacking A is more practical than others in real applications (Tong et al. 2012).

Architechture

Adversarial Attack Definition

• Adversarial Attack數學表示,beta指budget

$$\arg\max_{A'} \mathcal{L}(A', Z) \tag{1}$$

s.t.
$$Z = \mathscr{M}_{\Theta}(A', X)$$
,

$$\Theta^* = \arg\min_{\Theta} \mathcal{L}(\Theta; A', X), ||A' - A|| = 2\beta,$$

Methodologies

· Graph Signals According to Graph Filter H together with feature transformation.

$$\tilde{X} = \mathcal{H}(X), X' = \sigma(\tilde{X}\Theta),$$
 (2)

• 攻擊目標為quality of the output embedding Z, S'指干擾後的Graph Shift Filter

$$\mathcal{L}(A', Z) = \|h(S')X - h(S')_T X\|_F^2, \tag{3}$$

• 根據Low-rank Approximation可得下方式子

$$\mathcal{L}(A', Z) = \| \sum_{i=T+1}^{n} \lambda_i' \mathbf{u}_i \mathbf{u}_i^T X \|_F \le \sum_{i=T+1}^{n} {\lambda_i'}^2 \cdot \sum_{i=T+1}^{n} \| \mathbf{u}_i^T X \|_2^2,$$

Methodologies

• 以Upper Bound作為最後 Loss function

$$\arg \max_{A'} \sum_{i=T+1}^{n} {\lambda'_{i}}^{2} \cdot \sum_{i=T+1}^{n} \|\mathbf{u}_{i}^{T} X\|_{2}^{2},$$
s.t. $\|A' - A\| = 2\beta.$ (5)

Algorithm

Algorithm 1 Graph Filter Attack (GF-Attack) adversarial attack algorithm under RBA setting

Input:

Adjacent Matrix A; feature matrix X; target vertex t; number of top-T smallest singular values/vectors selected T; order of graph filter K; fixed budget β .

Output:

Perturbed adjacent Matrix A'.

- Initial the candidate flips set as C = {(v,t)|v ≠ t}, eigenvalue decomposition of = U_ÂΛ_ÂU^T_Â;
- 2: for $(v,t) \in \mathcal{C}$ do
- 3: Approximate $\Lambda'_{\hat{A}}$ resulting by removing/inserting edge (v, t) via Equation (9);
- 4: Update $Score_{(v,t)}$ from loss Equation (8) or Equation (12);
- 5: end for
- 6: C_{sel} ← edge flips with top-β Score;
- 7: $A' \leftarrow A \pm C_{sel}$;
- 8: return A'

Experiment Result

Dataset

scientific publications

links

unique words

classes

Dataset

	Cora	Citeseer	Pubmed
Task	Transductive	Transductive	Transductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)
# Edges	5429	4732	44338
# Features/Node	1433	3703	500
# Classes	7	6	3
# Training Nodes	140	120	60
# Validation Nodes	500	500	500
# Test Nodes	1000	1000	1000

Steps

train GCN

GF Attack

result

Our result

Cora

The test accuracy performance is: 0.8390

Final accuracy after attack is: 0.8109

Attack performance: -0.0281

Citeseer

The test accuracy performance is: 0.7465

Final accuracy after attack is: 0.73

Attack performance: -0.0165

perturbation under PRA setting I ower is better

-4.42

-5.62

-2.96

-9.73

-3.08

-5.24

-6.29

-5.31

-12.40

-10.38

-7.55

-13.27

-4.68

-6.50

-3.48

-7.78

-2.21

-5.20

-3.62

-7.60

Degree

RL-S2V

 \mathcal{A}_{class}

GF-Attack

perturbation u	nuci KD	A settin	ig. Lower is t	better.								
Dataset	rataset Cora					(Citeseer		Pubmed			
Models	GCN	SGC	DeepWalk	LINE	GCN	SGC	DeepWalk	LINE	GCN	SGC	DeepWalk	LINE
/ 1 1	00 00	70.00	77.00	7/75	70 50	10 10	(0 (0	10 10	00 10	00 01	70 (0	70 10

Table 1: Summary of the change in classification accuracy (in percent) compared to the clean/original graph. Single edge

Dataset			Cora			(liteseer			ŀ	ubmed	
Models	GCN	SGC	DeepWalk	LINE	GCN	SGC	DeepWalk	LINE	GCN	SGC	DeepWalk	LINE
(unattacked)	80.20	78.82	77.23	76.75	72.50	69.68	69.68	65.15	80.40	80.21	78.69	72.12

Models	GCN	SGC	DeepWalk	LINE	GCN	SGC	DeepWalk	LINE	GCN	SGC	DeepWalk	LINE
(unattacked)	80.20	78.82	77.23	76.75	72.50	69.68	69.68	65.15	80.40	80.21	78.69	72.12
Random	-1.90	-1.22	-1.76	-1.84	-2.86	-1.47	-6.62	-1.78	-1.75	-1.77	-1.25	-1.01

-5.21

-4.08

-2.83

-6.19

-9.67

-12.13

-12.56

-12.50

-12.55

-20.10

-10.28

-22.11

-3.86

-6.40

-4.21

-7.96

-4.44

-6.11

-2.25

-7.20

-2.43

-6.10

-3.05

-7.43

-13.05

-13.21

-6.75

-14.16

Figure 2: Comparison between order K of GF-Attack and number of layers in GCN/SGC on Citeseer.

Table 2: Running time (s) comparison over all baseline methods on Citeseer. We report the 10 times average running time of processing single node for each model.

Models	Random	Degree	RL-S2V	\mathcal{A}_{class}	GF-Attack
Citeseer	0.19	42.21	222.80	146.58	12.78

Figure 3: Multiple-edge attack results on Cora under RBA setting. Lower is better.