План лекції

- Вплив температури на електропровідність металів та сплавів
- Металеві термометри опору
- Вплив температури на електропровідність напівпровідників
- > Напівпровідникові термометри опору

W

Вплив температури на електропровідність металів

$$\rho = \frac{m \cdot v_T}{q^2 \cdot n \cdot l_{cp}} \tag{1}$$

$$\rho = \frac{h}{K \cdot q^2 \cdot n^{2/3} \cdot l_{cp}}$$
 (2)

де m – маса електрона, v^{T} – середня швидкість теплового руху електрона всередині металу, l_{CP} – середня довжина вільного пробігу електрону, n – концентрація електронів, q – елементарний заряд, h – постійна Планка, K – стала

$$\rho_1 = \rho_0 \left[1 + \alpha \cdot \left(T_1 - T_0 \right) \right] \quad (3)$$

 ρ_1 – питомий опір металу при температурі T_1 , ρ_0 - питомий опір металу при температурі 0°C, α – температурний коефіцієнт опору (ТКО)

Температурна залежність питомого опору міді

 $\alpha > 0$

Біль

Вплив температури на електропровідність сплавів

Правило Маттіссена:

$$\rho = \rho_T + \rho_{3a3} \qquad (5)$$

де ρ_T – це опір, обумовлений розсіянням електронів на теплових коливаннях гратки, $\rho_{\text{зал}}$ - залишков й опір, пов'язаний з розсіянням електронів на неоднорідностях структури сплаву.

Закон Нордгейма:

$$\rho_{3a7} = C \cdot x_A \cdot x_B = C \cdot x_B (1 - x_B) \quad (6)$$

де С – константа, що залежить від природи сплаву, x_A та x_B - атомні долі компонентів в сплаві

Концентраційна залежність питомого опору (а) та ТКО (б) сплаву мідь-нікель

Металеві термометри опору

Вимоги до матеріалів для виготовлення металевих терморезисторів:

- ◆Стабільний ТКО
- ❖Відтворюваність опору при даній температурі
- ❖Стабільні хімічні та фізичні властивості принагріванні
- ❖Інертність до впливу досліджуваного середовища

Класифікація металевих терморезисторів

Дротові терморезистори

Тонкоплівкові терморезистори

Металеві термометри опору

Дротові терморезистори

Матеріал	TKO*10 ⁻³ , 1/°C	ρ, Ом*мм²/м	Робочий діапазон, °С
Платина	3,91	0,105	-260+1300 \(\)
Мідь	4,28	0,017	-40+200
Нікель	6,3	0,068	-50+850

Термодатчики на основі платинових терморезисторів РТ 100

Металеві термометри опору

Тонкоплівковітерморезистори

Матеріал	TKO*10-⁵, 1/°Ç	р*10 ⁻⁶ , Ом*см	Робочий діапазон, °С	Підкладка	Tomorrow Commission
Мідь	4,3	1,72	Вы не можете	э удалить эту презент	тацию
Молібден	3,0	5,7	-200+200	кераміка	
Платина	3,3	10,6	-60+350	кераміка, скло, корунд	Термодатчик у плівковому виконанні
\$ / B \$					-

Вплив температури на електропровідність напівпровідників

питома електропровідність власного напівпровідника:

$$\sigma = q \cdot n_i \cdot \left(\mu_n + \mu_p\right) \tag{7}$$

• питома електропровідність домішкового напівпровідника:

$$\sigma = q \cdot (n + p \cdot \mu_p) \tag{8}$$

• температурна залежність електропровідності напівпровідника:

Вплив температури на електропровідність напівпровідників

Температурна залежність концентрації та рухливості носії в заряду

|| meet.google.com

Вплив температури на електропровідність напівпровідників

Температурна залежність електропровідності

ТКО

Напівпровідникові термометри опору

Термістори

Термістор – це напівпровідниковий терморезистор з від'ємним ТКО

Фізичні явища, які лежать в основі роботи термісторів:

• збільшення концентрації носіїв зарядів (Si, Ge, SiC, A³B⁵);

❖збільшення інтенсивності обміну електронами між іонами зі змінною валентністю (оксиди Mn, Fe, Ni, Cu, Zn та Co);

фазові перетворення напівпровідникового матеріалу (V2O₄, V2O₃).

Напівпровідникові термометри опору

Позистори

Позистор – це напівпровідниковий терморезистор

з додатнім ТКО

Фізичні явища, які лежать в основі роботи позисторів:

- ❖збільшення розсіяння носіїв заряду на теплових коливаннях гратки (Si, Ge);

S

Термометри опору

Переваги напівпровідникових терморезисторів порівняно з металевими:

- малі габарити,
- мала інерційність,
- висока чутливість.

Однак напівпровідникові перетворювачі поступаються металевим в точності.

b