Algoritmos en teoría de números Parte V

Segundo semestre 2022

IIC2283

Prof. Nicolás Van Sint Jan

Recordatorio: segunda versión del test de primalidad

Una observación importante: si n es compuesto, entonces puede existir $a \in \mathbb{Z}_n^*$ tal que $a^{n-1} \not\equiv 1 \pmod n$

Por ejemplo: $3^{15} \mod 16 = 11$

En lugar de considerar \mathbb{Z}_n^* en el test de primalidad, consideramos:

$$J_n = \{a \in \mathbb{Z}_n^* \mid a^{n-1} \equiv 1 \pmod{n}\}$$

Si demostramos que para cada número compuesto n se tiene que $|J_n| \leq \frac{1}{2} \cdot |\mathbb{Z}_n^*|$, entonces tenemos un test de primalidad.

Puesto que para p primo: $|J_p| = |\mathbb{Z}_p^*| = p-1$

Recordatorio: segunda versión del test de primalidad

Recuerde que en nuestros algoritmos consideramos $n \ge 2$

```
 \begin{aligned} \textbf{TestPrimalidad3}(n, \ k) \\ & \text{sea } a_1, \dots, a_k \text{ una secuencia de números elegidos de} \\ & \text{manera uniforme e independiente desde } \{1, \dots, n-1\} \\ & \textbf{for } i := 1 \textbf{ to } k \textbf{ do} \\ & \textbf{ if MCD}(a_i, n) > 1 \textbf{ then return COMPUESTO} \\ & \textbf{ else} \\ & \textbf{ if EXP}(a_i, n-1, n) \neq 1 \\ & \textbf{ then return COMPUESTO} \\ & \textbf{ return PRIMO} \end{aligned}
```

Recordatorio: Teoría de grupos

Definición

Un conjunto G y una función (total) $\circ: G \times G \to G$ forman un grupo si:

1. (Asociatividad) Para cada $a, b, c \in G$:

$$(a \circ b) \circ c = a \circ (b \circ c)$$

2. (**Elemento neutro**) Existe $e \in G$ tal que para cada $a \in G$:

$$a \circ e = e \circ a = a$$

3. (Inverso) Para cada $a \in G$, existe $b \in G$:

$$a \circ b = b \circ a = e$$

Propiedades básicas

- Neutro es único: Si e_1 y e_2 satisfacen 2, entonces $e_1 = e_2$
- Inverso de cada elemento a es único: Si $a \circ b = b \circ a = e$ y $a \circ c = c \circ a = e$, entonces b = c

Teoría de grupos: subgrupos

Definición

 (H, \circ) es un subgrupo de un grupo (G, \circ) , para $\emptyset \subsetneq H \subseteq G$, si (H, \circ) es un grupo.

Ejercicio

Demuestre que (J_n,\cdot) es un subgrupo de (\mathbb{Z}_n^*,\cdot)

Propiedades básicas

- Si e_1 es el neutro en (G, \circ) y e_2 es el neutro de (H, \circ) , entonces $e_1 = e_2$
- Para cada $a \in H$, si b es el inverso de a en (G, \circ) y c es el inverso de a en (H, \circ) , entonces c = b

Teoría de grupos: una propiedad fundamental

Teorema de Lagrange

Si (G, \circ) es un grupo finito y (H, \circ) es un subgrupo de (G, \circ) , entonces |H| divide a |G|

Outline

Test de primalidad: segunda versión (cont.)

Test de primalidad: tercera versión

Test de primalidad: segunda versión (continuación)

Dejamos pendiente la siguiente pregunta:

¿Qué enfoque podríamos usar para demostrar que $|J_n| \leq \frac{1}{2} \cdot |\mathbb{Z}_n^*|$?

R: Usamos el Teorema de Lagrange.

Dado que (J_n, \cdot) es un subgrupo de (\mathbb{Z}_n^*, \cdot) :

Si existe $a \in (\mathbb{Z}_n^* \setminus J_n)$, entonces $|J_n| \leq \frac{1}{2} \cdot |\mathbb{Z}_n^*|$

¿Tenemos entonces nuestro test de primalidad?

Test de primalidad: segunda versión (continuación)

Definición

Un número n es de Carmichael si $n \geq 2$, n es compuesto y $|J_n| = |\mathbb{Z}_n^*|$

Ejemplo

561, 1105 y 1729 son números de Carmichael.

Teorema (Alford-Granville-Pomerance)

Existe un número infinito de números de Carmichael.

Conclusión: Este test de primalidad no va a funcionar.

Outline

Test de primalidad: segunda versión (cont.)

Test de primalidad: tercera versión

Test de primalidad: tercera versión

No todo está perdido.

En lugar de utilizar J_n , vamos a usar las herramientas que desarrollamos sobre el siguiente conjunto (n impar):

$$S_n = \{a \in \mathbb{Z}_n^* \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n} \text{ ó } a^{\frac{n-1}{2}} \equiv -1 \pmod{n}\}$$

Spoiler: Ahora sí va a funcionar.

Test de primalidad: un intento exitoso

Vamos a diseñar un test de primalidad considerando los conjuntos:

$$S_n^+ = \{ a \in \mathbb{Z}_n^* \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n} \}$$

$$S_n^- = \{ a \in \mathbb{Z}_n^* \mid a^{\frac{n-1}{2}} \equiv -1 \pmod{n} \}$$

Así, podemos definir S_n a partir de estos conjuntos:

$$S_n = S_n^+ \cup S_n^-$$

Para hacer esto necesitamos estudiar algunas propiedades de los conjuntos S_n^+ , S_n^- y S_n .

 Consideramos primero el caso en que n es primo, y luego el caso en que n es compuesto

Una propiedad fundamental de S_n para n primo

Proposición 1

Si $n \geq 3$ es primo, entonces $S_n = \mathbb{Z}_n^*$.

Demostración

Si
$$a \in \{1, \dots, n-1\}$$
, tenemos que $a^{n-1} \equiv 1 \pmod{n}$

Por lo tanto $\left(a^{\frac{n-1}{2}}\right)^2 \equiv 1 \pmod{n}$, de lo cual se deduce que:

$$(a^{\frac{n-1}{2}}+1)\cdot(a^{\frac{n-1}{2}}-1)\equiv 0\pmod{n}$$

Así, dado que n es primo se concluye que $a^{\frac{n-1}{2}} \equiv 1 \pmod{n}$ ó $a^{\frac{n-1}{2}} \equiv -1 \pmod{n}$ (; Por qué?)

Una propiedad fundamental de S_n^+ y S_n^- para n primo

Proposición 2

Si
$$n \ge 3$$
 es primo: $|S_n^+| = |S_n^-| = \frac{n-1}{2}$

Para demostrar la proposición, primero vamos a demostrar un lema.

Sea p(x) un polinomio:

$$p(x) = \sum_{i=0}^k a_i x^i,$$

donde $k \geq 1$, cada $a_j \in \{0, \dots, n-1\}$ para $0 \leq j \leq k-1$, y $a_k \neq 0$.

Decimos que a es una raíz de p(x) en módulo n si

$$p(a) \equiv 0 \pmod{n}$$

Lema

p(x) tiene a lo más k raíces en módulo n

Demostración

Decimos que dos polinomios $p_1(x)$ y $p_2(x)$ son congruentes en módulo n si para todo $a \in \{0, ..., n-1\}$:

$$p_1(a) \equiv p_2(a) \pmod{n}$$

Para esto usamos la notación $p_1(x) \equiv p_2(x) \pmod{n}$.

Sea a una raíz de p(x) en módulo n. Vamos a demostrar que existe un polinomio q(x) de grado k-1 tal que:

$$p(x) \equiv (x-a) \cdot q(x) \pmod{n}$$

Demostración

Veamos que al demostrar esta propiedad se concluye que el lema es cierto.

Si c es una raíz de p(x) en módulo n, entonces $p(c) \equiv 0 \pmod{n}$

Como $p(x) \equiv (x - a) \cdot q(x) \pmod{n}$, concluimos que $(c - a) \cdot q(c) \equiv 0 \pmod{n}$

$$(c-a) \cdot q(c) \equiv 0 \pmod{n}$$

Dado que n es primo, si $d \cdot e \equiv 0 \pmod n$, entonces $d \equiv 0 \pmod n$ o $e \equiv 0 \pmod n$

■ Tenemos entonces que $c \equiv a \pmod{n}$ o $q(c) \equiv 0 \pmod{n}$

Demostración

Así, tenemos que c es la raíz a que ya habíamos identificado o es una raíz de q(x) en módulo n

Concluimos que el número de raíces de p(x) en módulo n es menor o igual a uno más el número de raíces de q(x) en módulo n

Como q(x) tiene grado k-1, si continuamos usando este argumento (o usamos inducción) concluimos que el número de raíces de p(x) es menor o igual a k

Demostración

Nótese que el argumento anterior no funciona si n es compuesto.

■ Dado que podemos tener d y e tales que $d \cdot e \equiv 0 \pmod{n}$, $d \not\equiv 0 \pmod{n}$ y $e \not\equiv 0 \pmod{n}$

De hecho, si n es compuesto no es necesariamente cierto que el número de raíces de un polinomio está acotado superiormente por su grado.

Ejemplo

Si n=35, tenemos que $5\cdot 7\equiv 0\pmod 3$ 5, pero $5\not\equiv 0\pmod 3$ 5 y $7\not\equiv 0\pmod 3$ 5

En este caso tenemos cuatro raíces para el polinomio $p(x)=x^2-1$ Ya que $1^2\equiv 1\pmod 3$ 5, $6^2\equiv 1\pmod 3$ 5, $29^2\equiv 1\pmod 3$ 5 y $34^2\equiv 1\pmod 3$ 5

Demostración

Volvemos entonces a la demostración de que existe un polinomio q(x) de grado k-1 tal que:

$$p(x) \equiv (x-a) \cdot q(x) \pmod{n}$$

Definimos q(x) como:

$$q(x) = \sum_{i=0}^{k-1} b_i x^i,$$

donde
$$b_i = a_{i+1} + a_{i+2} \cdot a + \cdots + a_k \cdot a^{k-1-i}$$

Demostración

Se tiene que:

$$(x - a) \cdot q(x) = \left(\sum_{i=0}^{k-1} b_i x^{i+1}\right) + \left(\sum_{i=0}^{k-1} (-a \cdot b_i) x^i\right)$$
$$= \left(\sum_{i=1}^{k} b_{i-1} x^i\right) + \left(\sum_{i=0}^{k-1} (-a \cdot b_i) x^i\right)$$

$$= b_{k-1} \cdot x^k + \left(\sum_{i=1}^{k-1} (b_{i-1} - a \cdot b_i) x^i\right) - a \cdot b_0$$

Así, dado que:

$$b_{k-1} = a_k$$

Demostración

Y dado que para $i \in \{1, \dots, k-1\}$:

$$(b_{i-1} - a \cdot b_i) = a_i + a_{i+1} \cdot a + \dots + a_k \cdot a^{k-i} - a \cdot (a_{i+1} + a_{i+2} \cdot a + \dots + a_k \cdot a^{k-1-i})$$

$$= a_i + a_{i+1} \cdot a + \dots + a_k \cdot a^{k-i} - a_{i+1} \cdot a - a_{i+2} \cdot a^2 - \dots - a_k \cdot a^{k-1}$$

ai

Concluimos que:

$$(x-a)\cdot q(x) = \left(\sum_{i=1}^k a_i \cdot x^i\right) - a \cdot b_0$$

Demostración

Pero:

$$-a \cdot b_0 = -a \cdot (a_1 + a_2 \cdot a + \dots + a_k \cdot a^{k-1})$$
$$= -a_1 \cdot a - a_2 \cdot a^2 - \dots - a_k \cdot a^k$$

De lo cual deducimos que:

$$a_0 \equiv -a \cdot b_0 \pmod{n},$$

ya que
$$a_k \cdot a^k + \cdots + a_1 \cdot a + a_0 \equiv 0 \pmod{n}$$

Tenemos entonces que:

$$(x-a)\cdot q(x) \equiv p(x) \pmod{n}$$

Demostración de la proposición: continuación

Demostración

Sea
$$R = \{b^2 \mid 1 \le b \le \frac{n-1}{2}\}$$

Por el Teorema de Fermat, tenemos que:

$$R \subseteq \{a \in \{1,\ldots,n-1\} \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n}\}$$

Además, sabemos que si $1 \leq b < c \leq \frac{n-1}{2}$ y $b^2 \equiv c^2 \pmod{n}$:

$$(c-b)\cdot(c+b)\equiv 0\pmod{n}$$

Así, dado que $2 \le b + c \le n - 1$, concluimos que $b \equiv c \pmod{n}$

Dado que n es primo

Demostración de la proposición: continuación

Demostración

Pero $b \equiv c \pmod n$ no pueder ser cierto puesto que $1 \le (c-b) \le \frac{n-1}{2}$

Por lo tanto: $|R| = \frac{n-1}{2}$

Además, sabemos que $p(x) = x^{\frac{n-1}{2}} - 1$ tienes a lo más $\frac{n-1}{2}$ raíces en módulo n.

■ Por lo tanto: $|\{a \in \{1, ..., n-1\} \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n}\}| \leq \frac{n-1}{2}$

Demostración de la proposición: continuación

Demostración

Concluimos que:

$$\frac{n-1}{2} \ = \ |R| \ \le \ |\{a \in \{1, \dots, n-1\} \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n}\}| \ \le \ \frac{n-1}{2}$$

Por lo tanto:

$$|S_n^+| = |\{a \in \{1, \dots, n-1\} \mid a^{\frac{n-1}{2}} \equiv 1 \pmod{n}\}| = \frac{n-1}{2}$$

Así, dado que $|S_n|=|\mathbb{Z}_n^*|=n-1$ y $|S_n^+|+|S_n^-|=|S_n|$, concluimos que:

$$|S_n^-| = \frac{n-1}{2}$$

Una propiedad fundamental de S_n para n compuesto

Teorema

Sea $n=n_1\cdot n_2$, donde $n_1,n_2\geq 3$ y $\gcd(n_1,n_2)=1$. Si existe $a\in\mathbb{Z}_n^*$ tal que $a^{\frac{n-1}{2}}\equiv -1\pmod n$, entonces:

$$|S_n| \leq \frac{1}{2} \cdot |\mathbb{Z}_n^*|$$

Para demostrar el teorema necesitamos el Teorema Chino del resto