Lec21 Note of Complex Analysis

Xuxuayame

日期: 2023年5月16日

孤立奇点 7

定义 7.1. 若 f 在 $0 < |z - z_0| < R$ 中全纯,在 z_0 处无定义,则称 z_0 为 f 的**孤立奇点**。

- (i) 若 $\lim_{z\to z_0} f(z)$ 存在,则称 z_0 为可去奇点。
- (ii) 若 $\lim_{z \to z_0}^{z \to z_0} f(z) = \infty$,则称 z_0 为 f 的极点。 (iii) 若 $\lim_{z \to z_0} f(z)$ 不存在,则 z_0 称为 f 的本性奇点。

定理 7.1. Riemann: z_0 为 f 的可去奇点 $\Leftrightarrow f$ 在 z_0 附近有界。

证明. ⇒: 显然。

$$|a_{-n}| = \left| \frac{1}{2\pi i} \int_{|z-z_0|=\rho} \frac{f(\zeta)}{(\zeta - z_0)^{-n+1}} \, \mathrm{d} \, \zeta \right| \le \frac{1}{2\pi} \frac{M}{\rho^{-n+1}} 2\pi \rho = M \rho^n \to 0, \ \rho \to 0$$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \ (0 < |z - z_0| < R) \Rightarrow \lim_{z \to z_0} f(z) = a_0 \in \mathbb{C} \Rightarrow z_0$$
 为 f 的可去奇点。

评论. 若 z_0 为 f 的可去奇点,补充定义 $f(z_0) = \lim_{z \to z_0} f(z)$,则 f 在 $|z - z_0| < R$ 中全纯。

定理 7.2. z_0 为 f 的极点 $\Leftrightarrow z_0$ 为 $\frac{1}{f}$ 的零点。

证明. z_0 为 f 的极点 $\Rightarrow \lim_{z \to z_0} f(z) = \infty \Rightarrow \exists \varepsilon > 0$,当 $0 < |z - z_0| < \varepsilon$ 时 $|f(z)| \neq 0 \Rightarrow \varphi(z) := \frac{1}{f(z)}$ 在 $0 < |z - z_0| < \varepsilon$ 中全纯,且 $\lim_{z \to z_0} \varphi(z) = 0 \Rightarrow z_0$ 为 φ 的可去奇点且 $\varphi(z_0)=0$.

反过来,设
$$\varphi(z_0)=0$$
,则 $\lim_{z\to z_0}f(z)=\lim_{z\to z_0}\frac{1}{\varphi(z)}=\infty$ 。

定义 7.2. z_0 称为 f 的 m 阶极点,如果 z_0 为 $\frac{1}{f}$ 的 m 阶零点。

定理 7.3. z_0 为 f 的 m 阶极点 $\Leftrightarrow a_{-m} \neq 0$ 且当 $n \geq m$ 时 $a_{-n} = 0$ 。

证明. ⇒: 设 z_0 为 f 的 m 阶极点,则 z_0 为 $\frac{1}{f}$ 的 m 阶零点。故在 z_0 附近 $\frac{1}{f(z)} = (z-z_0)^m g(z)$, g(z) 在 z_0 处全纯且 $g(z_0) \neq 0 \Rightarrow \frac{1}{g(z)}$ 在 z_0 处全纯,设 $\frac{1}{g(z)} = c_0 + c_1(z-z_0) + \cdots$ $(c_0 \neq 0) \Rightarrow f(z) = (z-z_0)^{-m} \frac{1}{g(z)} = \frac{c_0}{(z-z_0)^m} + \frac{c_1}{(z-z_0)^{m-1}} + \cdots$ 。

 \Leftarrow : 由条件知 $(z-z_0)^m f(z) = a_{-m} + a_{-(m-1)}(z-z_0) + \cdots =: \varphi(z)$,则 $\varphi(z)$ 在 z_0 处 全纯且 $\varphi(z_0) = a_{-m} \neq 0$,故 $\frac{1}{f(z)} = (z-z_0)^m \frac{1}{\varphi(z)} \Rightarrow z_0$ 为 $\frac{1}{f}$ 的 m 阶零点。

综上,设 f 在 $0 < |z - z_0| < R$ 中的 Laurent 展开式为 $f(z) = \sum_{m=-\infty}^{+\infty} a_m (z - z_0)^m$,则

- (1) z_0 为 f(z) 的可去奇点 $\Leftrightarrow a_{-n} = 0, n \ge 1$ 时。
- (2) z_0 为 f 的 m 阶极点 $\Leftrightarrow a_{-m} \neq 0$ 且 n > m 时 $a_{-n} = 0$ 。
- (3) z_0 为 f 的本性奇点 \Leftrightarrow 有无穷多个 $n \ge 1$ 使得 $a_{-n} \ne 0$ 。

定理 7.4. Weierstrass: 设 z_0 为 f 的本性奇点,则对任意 $A \in \mathbb{C}_{\infty}$,存在 $z_n \to z_0$ 且 $\lim_{n \to \infty} f(z_n) = A$ 。

- 证明. (1) 设 $A=\infty$,由定理 7.1,f 在 z_0 附近无界 $\Rightarrow \forall n>0$, $\exists |z_n-z_0|<\frac{1}{n}$,且 |f(z)|>n,故 $\lim z_n=z_0$ 且 $\lim_{n\to\infty}f(z_n)=\infty$ 。
 - (2) 设 $A \in \mathbb{C}$, 设 $\varphi(z) = \frac{1}{f(z)-A}$, 若 $\varphi(z)$ 在 z_0 附近有界 $\Rightarrow z_0$ 为 $\varphi(z)$ 的可去奇点 $\Rightarrow \varphi(z)$ 在 z_0 处全纯。

- (i) 若 $\varphi(z_0) \neq 0$,则 $f(z) = A + \frac{1}{\varphi(z)}$ 在 z_0 处全纯,矛盾。
- (ii) 若 $\varphi(z_0) = 0$,则 $\lim_{z \to z_0} f(z) = \infty$,与 z_0 为本性奇点矛盾。

同理 $\varphi(z)$ 在 z_0 附近无界 $\Rightarrow \exists z_n \to z_0, f(z_n) \to A$ 。

对于 ∞ 为孤立奇点的情形:

定义 7.3. 若 f 在 $R < |z| < +\infty$ 中全纯,则称 ∞ 为 f 的孤立奇点。

令 $g(z) = f(\frac{1}{z})$,则 g(z) 在 $0 < |z| < \frac{1}{R}$ 中全纯。若 z = 0 为 g 的可去奇点 (m 阶极点,本性奇点),则称 ∞ 为 f 的可去奇点 (m 阶极点,本性奇点)。

设 f 在 |z|>R 中的 Laurent 级数为 $f(z)=\sum_{n=-\infty}^{+\infty}a_nz^n$,则 $g(z)=f(\frac{1}{z})=\sum_{n=-\infty}^{+\infty}a_nz^{-n}$ 。 故

- (1) ∞ 为 f 的可去奇点 $\Leftrightarrow n \ge 1$ 时 $a_n = 0 \Leftrightarrow f(z) = a_0 + \frac{a_{-1}}{z} + \frac{a_{-2}}{z^2} + \cdots$
- (2) ∞ 为 f 的 m 阶极点 $\Leftrightarrow \exists m \geq 1, \ a_m \neq 0$ 且当 n > m 时 $a_n = 0 \Leftrightarrow f(z) = a_m z^m + \dots + a_1 z + a_0 + \frac{a_{-1}}{z} + \dots$ 。
- (3) ∞ 为 f 的本性奇点 \Leftrightarrow 存在无穷多个 $n \ge 1$ s.t. $a_n \ne 0$ 。
- **例 7.1.** (1) 0 为 $e^{\frac{1}{z}}$ 的本性奇点。
 - (2) ∞ 为 e^z 的本性奇点。
- **例 7.2.** 非孤立奇点的例子: $f(z) = \frac{1}{\sin{\frac{1}{z}}}, z_n = \frac{1}{n\pi} 为 f$ 的奇点, z = 0 为 f 的非孤立奇点。

例 7.3. (1) $\frac{e^{\frac{1}{1-z}}}{e^z-1}$; (2) $e^{\cot \frac{1}{z}}$.

- (1) (a) $\lim_{z \to 1} \frac{1}{1-z} = \infty$ 而 $\lim_{z \to \infty} e^z$ 不存在 $\Rightarrow z = 1$ 为 f 的本性奇点。 (b) $e^{2k\pi i} 1 = 0$, $(e^z 1)'|_{z = 2k\pi i} = e^{2k\pi i} \neq 0 \Rightarrow 2k\pi i$ 为 $e^z 1$ 的 1 阶零点 $\Rightarrow 2k\pi i$ 为f的1阶极点。
 - (c) ∞ 为非孤立的奇点。
 - (2) 0 是非孤立奇点, $\infty, \frac{1}{k\pi}$ 为本性奇点。