Interpretazione economica della dualità

- ▶ Interpretazione economica delle variabili duali
- ▶ Interpretazione economica del problema duale

BT 4.3; Fi 4.4

Interpretazione economica delle variabili duali

Consideriamo un problema $\{\min \mathbf{c}^T \mathbf{x} : \mathbf{A} \mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ e sia \mathbf{x}^* una soluzione ottima non degenere, associata alla base \mathbf{B} . Supponiamo di perturbare il vettore dei termini noti sostituendo \mathbf{b} con $\mathbf{b} + \mathbf{d}$. Allora:

- ▶ essendo $\bf B$ non degenere si ha $\bf x_B = \bf B^{-1} \bf b > 0$, ma allora anche $\bf x_B = \bf B^{-1} (\bf b + \bf d) > 0$ per $\bf d$ "piccolo"; quindi, per $\bf d$ sufficientemente piccolo $\bf B$ è ancora una base ammissibile
- ▶ essendo $\bf B$ ottima si ha ${\bf c}^T {\bf c}_B^T {\bf B}^{-1} {\bf A} \ge {\bf 0}$ e ciò non cambia dopo la perturbazione; quindi $\bf B$ è ancora una base ottima

Interpretazione economica delle variabili duali

quindi, il costo ottimo del problema perturbato è

$$\mathbf{c}_B^T \mathbf{B}^{-1}(b+d) = \mathbf{p}^T(b+d)$$

in cui p è una soluzione ottima duale

b di conseguenza, se l'i-mo requisito varia di d_i , il costo complessivo varia di p_id_i , quindi p_i può essere interpretato come il suo costo marginale

Il problema della dieta

Un nutrizionista deve programmare la dieta per una squadra sportiva, in modo da garantire un certo apporto b_i di ciascuno dei nutrienti fondamentali (zuccheri, grassi, proteine, etc.). Per ciascun alimento j sul mercato è noto

- ightharpoonup il costo unitario c_i
- la qtità a_{ij} di nutriente i contenuta in una unità di j

Determinare una dieta (qtità x_j di alimento $\forall j$) di costo minimo

$$z^* = \min \sum_{j=1}^n c_j x_j$$

$$\sum_{j=1}^n a_{ij} x_j \ge b_i, \quad i = 1, \dots, m$$

$$x_j \ge 0, \quad j = 1, \dots, n$$
(1)

Esempio

Alimento	Eur/Kg	Zuccheri	Grassi	Proteine	Vitamine
		g/Kg	g/Kg	g/Kg	g/Kg
pasta	2	300	0	1	12
carne	18	0	110	400	30
uova	5	0	300	280	50
latte	6	70	360	10	4
dose giornaliera		90	70	50	7

Il problema del produttore di integratori alimentari

Un'azienda farmaceutica produce "direttamente" i nutrienti e deve decidere il loro prezzo di immissione sul mercato. I suoi prodotti rappresentano alternative per il nutrizionista agli alimenti tradizionali.

Possiamo stimare il ricavo massimo dell'azienda?

Se i prezzi p_i dei nutrienti fossero troppo elevati, il nutrizionista non sarebbe incentivato ad acquistarli: se il prezzo di "sintesi" di un alimento j attraverso i suoi nutrienti fosse superiore al suo prezzo di acquisto, il nutrizionista preferirebbe acquistare l'alimento stesso

quindi, l'azienda ha il seguente vincolo:

$$\sum_{i=1}^{m} a_{ij} p_i \le c_j, \qquad j = 1, \dots, n$$

Esempio (cont.)

siano p_Z, p_G, p_P, p_V i prezzi risp. di zuccheri, grassi, proteine, vitamine

ad es. per "sintetizzare" $1~{\rm Kg}$ di pasta (che costa $2~{\rm Eur}$) occorrono $300~{\rm g}$ di zuccheri, $1~{\rm g}$ di proteine e $12~{\rm g}$ di vitamine, quindi:

$$300p_Z + p_P + 12p_V \le 2$$

Il produttore di integratori alimentari risolve il duale!

$$w^* = \max \sum_{i=1}^m b_i p_i$$

$$\sum_{i=1}^m a_{ij} p_i \le c_j, \qquad j = 1, \dots, n$$

$$p_i \ge 0, \qquad i = 1, \dots, m$$
(2)

- ▶ per qualunque scelta ammissibile dei prezzi si ha $\sum_{i=1}^m u_i b_i \leq \sum_{j=1}^n c_j x_j$: il nutrizionista preferirà gli integratori
- ▶ per il teorema della dualità forte, $z^* = w^*$: il mercato tende ad un equilibrio in cui l'acquirente ha due alternative equivalenti