Работа 3.4.2

Закон Кюри-Вейсса

Панферов Андрей

1 Экспериментальная установка

В работе используются: катушка самоиндукции с образцом из гадолиния, гермостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Экспериментальная установка. Схема установки для проверки Закона Кюри Вейсса показана на рис. $\ref{pullipsi}$. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC -автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонтирован в виде отдельного блока.

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (~ 50 к Γ ц), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером $\sim 0,5$ мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближённой оценки температуры.

При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер. Закон Кюри Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{(\tau^2 - \tau_o^2)}$$

где τ_o - период колебаний в отсутствие образца. Измерения проводятся в интервале температур от 12°C до 40°C. С целью эКономии времени следует начинать измерения с низких температур.

Для охлаждения образца используется холодная водопроводная вода, циркулирующая вокруг сосуда с рабочей жидкостью (дистиллированной водой); рабочая жидкость постоянно перемешивается.

Величина стабилизируемой температуры задаётся на дисплее 5 термостата. Для нагрева служит внутренний электронагреватель, не показанный на рисунке.

Когда температура рабочей жидкости в сосуде приближается к заданной, непрерывный режим работы нагревателя автоматически переходит в импульсный (нагреватель то включается, то выключается) - начинается процесс стабилизации температуры.

Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла Заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медноконстантановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружён в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится $\leq 0,5^{\circ}\mathrm{C}$. Чувствительность термопары $\mathrm{K}=24$ град $/\mathrm{B}$

2 Результаты измерений и их обработка

Измерим зависимоть τ от температуры образца и занесем результаты в Tаблицу ??

τ , MKC	U, MB	$T^{\circ}C$	$1/(\tau^2 - \tau_0^2)$	$T^{\circ}\mathrm{C}$
10.154	-0.02	12.0	0.0286	11.95
10.0868	-0.02	14.02	0.0297	13.97
9.9702	-0.02	16.02	0.0319	15.97
9.8791	-0.02	17.11	0.0339	17.06
9.7815	-0.02	18.0	0.0363	17.95
9.6377	-0.02	19.01	0.0403	18.96
9.459	-0.02	20.01	0.0468	19.96
9.0662	-0.019	22.01	0.0709	21.96
8.7512	-0.02	24.02	0.1178	23.97
8.6131	-0.02	26.02	0.1642	25.97
8.5365	-0.02	28.02	0.2094	27.97
8.4882	-0.02	30.01	0.2529	29.96
8.4551	-0.02	32.0	0.2947	31.95
8.4302	-0.02	34.0	0.3364	33.95
8.4111	-0.02	36.01	0.3772	35.96
8.3966	-0.02	38.0	0.4154	37.95
8.3847	-0.02	40.0	0.453	39.95
$\sigma T_{true} \approx 0.02 + 0.03$ °C = 0.05 °C		$\delta 1/(\tau^2 - \tau_0^2) \approx 0.02$		

Таблица 1: Данные измерений

Зависимость $1/(\tau^2-\tau_0^2)$ от T

Экспериментальные точки

Построим график зависимости $1/(\tau^2-\tau_0^2)$ от T. Экстраполируем линейный участок зависимости, чтобы определить θ_p и θ_k для гадолиния. Находим:

$$\theta_p = 18.1 \pm 0.2$$
°C
 $\theta_k \approx 22 \pm 2$ °C

Погрешность θ_p оценим через МНК линейной области. Погрешность θ_k оценим по близлижащим точкам. Сравнивая с табличным $\theta_{k \, tab} = 20.2 ^{\circ} \mathrm{C},$ видим, что значение попадает в доверительный интервал.

3 Выводы

Мы проверили закон Кюри-Вейсса вблизи точки Кюри и получили результаты, согласующиеся с теорией. Значение температуры Кюри совпало с табличным.