

Fachbereich Mathematik Sommersemester 2014

Christian Eder Lucas Ruhstorfer

Einführung in die Topologie Übungsblatt 02

Abgabetermin: Mittwoch, 21.05.2014, 13:30 Uhr

Aufgabe 1. Sei $I := [0,1] \subset \mathbb{R}$ und $f : I \longrightarrow I$ stetig, dann existiert $x \in I$, so dass f(x) = x. Mit anderen Worten: f hat mindestens einen Fixpunkt.

Aufgabe 2. Sei *X* ein topologischer Raum. Zeige:

- (a) X ist unzusammenhängend genau dann, wenn ein stetige, surjektive Abbildung $f: X \longrightarrow \{0,1\}$ existiert, wobei wir den topologischen Raum $\{0,1\}$ mit diskreter Topologie annehmen.
- (b) Für $x \in X$ sei die Zusammenhangskomponente von x definiert durch

$$Z(x) := \bigcup_{x \in U, U \text{ zshgd}} U.$$

Ist $V \subset X$ zusammenhängend und $Z(x) \cap V \neq \emptyset$, dann gilt $V \subset Z(x)$.

Aufgabe 3. Eine Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ ist stetig genau dann, wenn der Graph

$$\Gamma_f := \{(x, f(x)) \mid x \in \mathbb{R}\} \subset \mathbb{R}^2$$

wegzusammenhängend ist. Mit anderen Worten: Wir können den Graphen von f zeichnen ohne den Stift abzusetzen.

Aufgabe 4.

- (a) Seien *X*, *Y* topologische Räume. Zeige:
 - (i) X irreduzibel $\Longrightarrow X$ zusammenhängend.
 - (ii) X irreduzibel \iff Jede nichtleere Menge $U \in \mathcal{T}_X$ ist dicht in X.
 - (iii) *X* irreduzibel, $f: X \longrightarrow Y$ stetig und surjektiv $\Longrightarrow Y$ irreduzibel.
- (b) Weise die Topologieeigenschaften der Zariski Topologie aus Beispiel 3.13 nach.