Consider the Fisher's LDA for two populations. The original data are:

First population: $\mathbf{y}_{1i} = (y_{1i1}, \dots, y_{1ip})', i = 1, \dots, n_1$, with mean vector $\bar{\mathbf{y}}_1$; Second population: $\mathbf{y}_{2i} = (y_{2i1}, \dots, y_{2ip})', i = 1, \dots, n_2$, with mean vector $\bar{\mathbf{y}}_2$.

They have the common covariance matrix Σ , which is estimated by

$$\mathbf{S}_{pl \cdot y} = \frac{1}{n_1 + n_2 - 2} \sum_{k=1}^{2} \sum_{i=1}^{n_k} (\mathbf{y}_{ki} - \bar{\mathbf{y}}_k) (\mathbf{y}_{ki} - \bar{\mathbf{y}}_k)'$$

Correspondingly, the common correlation matrix is denoted by \mathbf{P}_{y} , estimated by \mathbf{R}_{y} .

The Fisher's LDA yields discriminant coefficient vector

$$\mathbf{a} = (a_1, \dots, a_p)' = \mathbf{S}_{pl \cdot y}^{-1} (\bar{\mathbf{y}}_1 - \bar{\mathbf{y}}_2),$$

and the discriminant function

$$z = \mathbf{a}'\mathbf{y} = (\bar{\mathbf{y}}_1 - \bar{\mathbf{y}}_2)'\mathbf{S}_{pl\cdot y}^{-1}\mathbf{y}.$$

That is, for original observations \mathbf{y}_{ki} , Fisher's LDA provides projected new observations

$$z_{ki} = \mathbf{a}' \mathbf{y}_{ki} = (\bar{\mathbf{y}}_1 - \bar{\mathbf{y}}_2)' \mathbf{S}_{pl \cdot y}^{-1} \mathbf{y}_{ki}, \ k = 1, 2; \ i = 1, \dots, n_k$$

to maximize the statistical distance between \bar{z}_1 and \bar{z}_2 . The corresponding maximized statistical distance is

$$(\bar{\mathbf{y}}_1 - \bar{\mathbf{y}}_2)' \mathbf{S}_{pl \cdot y}^{-1} (\bar{\mathbf{y}}_1 - \bar{\mathbf{y}}_2)$$

Remark: Each element a_j in **a** can be interpreted as the "contribution/relative importance" of the original variable Y_j in **y** to the discrimination. But this is reasonable only when Y_j , j = 1, ..., p are commensurate.

If not commensurate, a_j is highly influenced by the variability/measurement unit of Y_j itself, rather than its "contribution to discrimination". Therefore, under this circumstance, we often standardize each dimension of \mathbf{y} before conducting Fisher's LDA by taking the ratio between original observations and their individual standard deviations. That is, LDA is

applied to the standardized observations

First population:
$$\mathbf{w}_{1i} = (w_{1i1}, \dots, w_{1ip})', i = 1, \dots, n_1$$
, with mean vector $\bar{\mathbf{w}}_1$;
Second population: $\mathbf{w}_{2i} = (w_{2i1}, \dots, w_{2ip})', i = 1, \dots, n_2$, with mean vector $\bar{\mathbf{w}}_2$,

where $w_{kij} = y_{kij}/s_{j\cdot y}$, and $s_{j\cdot y}$ is the square root of the jth diagonal element of $\mathbf{S}_{pl\cdot y}$, i.e., the common standard deviation of the jth original variable.

- (1) Show that $\mathbf{w}_{ki} = \mathbf{D}_s^{-1} \mathbf{y}_{ki}$, where $\mathbf{D}_s = diag[\{diag(\mathbf{S}_{pl\cdot y})\}^{1/2}]$, the $p \times p$ diagonal matrix with each diagonal element $s_{j\cdot y}$. (The notation here is consistent with Chapter 2.)
- (2) Verify that the estimated covariance matrix of \mathbf{w}_{ki} is \mathbf{R}_{y} .
- (3) Apply Fisher's LDA to the standardized observations. You might directly use the result of LDA. Show that the discriminant coefficient vector **b** is

$$\mathbf{b} = \mathbf{D}_{s}\mathbf{a}$$
.

This implies the discriminant coefficient vector does change upon standardization - meaning the interpretation of "relative importance/contribution" of each variable to discrimination might change.

(4) Obtain the projected new observations. They should still be z_{ki} 's above. That is, the final result of discrimination remains nevertheless. So does the maximum distance.

In a word, individual standardization would change the coefficient vector and its interpretation, but would not affect the discrimination result. This is because we consider STATIS-TICAL distance anyways. If we do individual standardization first, it's like we are going through "two steps" - 1. individual standardization by \mathbf{D}_s ; 2. the covariance matrix \mathbf{S} used in the statistical distance degenerates to the correlation matrix \mathbf{R} . If we do not standardize first, we directly use \mathbf{S} in the statistical distance.