

Unidade Universitária: Faculdade de Computação e Informática				
Curso: Ciência da Computação			Núcleo Temático: Tecnologia e Infra	
Disciplina: Álgebra Booleana e Circuitos Digitais			Código da Disciplina: ENEX50007	
Professor(es): Jamil Kalil Naufal Júnior Wallace Rodrigues de Santana		DRT: 115682-6 116574-4	Etapa: 02	
Carga horária: 4 h/a (2 Teoria 2 Laboratório)	`) Teórica) Prática	Semestre Letivo: 2024/1º Semestre	

Ementa:

Estudo da álgebra booleana, com ênfase em operações e funções binárias presentes em sistemas computacionais. Estudo do mapeamento de operações e funções binárias em circuitos digitais como portas lógicas, circuitos sequenciais, somadores, multiplexadores, demultiplexadores, deslocadores, registradores e memórias.

Objetis

Objetivos:				
Fatos e Conceitos Procedimentos e Habilidades		Atitudes, Normas e Valores		
 Entender as operações básicas da álgebra booleana. Conhecer expressões duais e complementares para simplificação de expressões. Validar teoremas da Álgebra de Boole. Entender como circuitos digitais são construídos através do uso da álgebra de Boole. Como podem ser analisados e projetados a partir de expressões booleanas ou tabelas. 	 Aplicar a metodologia de desenvolvimento de projetos na implementação de circuitos digitais; Resolver problemas através de raciocínio lógico; Executar trabalhos em equipe. Definir blocos lógicos e aritméticos digitais básicos que constituem diferentes organizações de computadores. 	 Iniciativa, independência e responsabilidade no aprendizado; Capacidade de realizar trabalhos em grupo e individualmente nas aulas práticas, em prazos determinados; Conscientização de um estudo contínuo e sistemático da disciplina durante o curso para o aproveitamento do mesmo com auxílio dos livros indicados na bibliografia; Respeitar a produção intelectual de terceiros, sejam colegas, professores ou autores de textos disponibilizados através de algum meio de pesquisa; respeitar os princípios éticos na tomada de decisões tecnológicas que influenciam diretamente na vida de terceiros. 		

Conteúdo Programático:

- 1. Apresentação do Plano de Ensino e dos Pré-requisitos
- 2. Sistemas de numeração posicionais
- 3. Álgebra booleana.
 - 3.1. Portas lógicas
 - 3.1.1. Inversão
 - 3.1.2. Operação E
 - 3.1.3. Operação OU
 - 3.2. Expressões duais e complementares.
 - 3.3. Teoremas
 - 3.3.1. Aniquilador, Identidade, Idempotência, Complementaridade, Comutativa, De Morgan, Associativa, Distributiva, Combinação, Absorção, Eliminação, Consenso.
- 4. Circuitos Lógicos básicos
- 4.1. Expressões booleanas e tabela verdade.
- 4.2. Blocos lógicos (NAND, NOR, XOR, XNOR)
- 4.3. Implementação de função usando uma operação lógica.
- 4.4. Obtenção de expressões lógicas por tabelas
- 4.5. Forma canônica (maxtermos e mintermos)
- 5. Circuitos digitais combinatórios
 - 1.1. Implementação de funções lógicas
 - 1.2. Codificadores
 - 1.3. Decodificadores
 - 1.4. Multiplexadores
 - 1.5. Demultiplexadores
- 2. Circuitos digitais aritméticos
 - 2.1. Soma, subtração, multiplicação e divisão binárias
 - 2.2. Somadores,
 - 2.3. Subtratores,
 - 2.4. Divisores
- 3. Estudo de Circuitos digitais sequenciais
 - 3.1. Latches
 - 3.2. Flip-flops
 - 3.3. Contadores
 - 3.4. Registradores de deslocamento.
- 4. Estudo de Circuitos digitais de memórias.
- 5. Unidade lógica e aritmética.
- 6. Unidade Central de Processamento.
- 7. Organização básica de computadores.
- **8.** Simulação de circuitos digitais e prática de montagem de circuitos digitais com circuitos integrados da família 74XXX.

Metodologia:

- Aulas teóricas expositivas.
- Discussão teórica sobre as soluções implementadas.
- Atividades em grupo e individuais de pesquisa bibliográfica e desenvolvimento de material de referência
- Aulas práticas em laboratório para desenvolvimento de atividades relacionadas ao conteúdo teórico
- Utilização do ambiente virtual e demais recursos em rede para questionários, postagem de notas de aula e entrega de atividades e projeto

Critério de Avaliação:

Nota do 1º bimestre (NI1) composta por:

- [A] Prova parcial 1 (P1): peso 4
- [B] Atividades em laboratório (LAB1): peso 3
- [C] Entrega do Projeto (PROJ1): peso 3

$$NI1 = (4 \times P1 + 3 \times LAB1 + 3 \times PROJ1) / 10$$

Nota do 2º bimestre (NI2) composta por:

- [F] Prova parcial 2 (P2): peso 4
- [G] Atividades em laboratório (LAB2): peso 3
- [H] Entrega do Projeto (PROJ2): peso 3

$$NI2 = (4 \times P2 + 3 \times LAB2 + 3 \times PROJ2) / 10$$

Média intermediária (MI):

$$MI = (NI1 + NI2) / 2 + NP$$

Nota de Participação (NP):

½ ponto proporcional a nota obtida pela prova integrada (AvaliA) mais ½ ponto pela entrega das listas de exercícios das aulas de teoria.

Critério de aprovação conforme regulamento acadêmico vigente.

Bibliografia Básica:

TOCCI, R.J., WIDMER, N.S., MOSS, G.L. Sistemas Digitais: Princípios e Aplicações. 12ª ed. São Paulo: Pearson, 2018.

Bibliografia Complementar:

PIMENTA, T.C. Circuitos Digitais. São Paulo: Elsevier, 2017.

BIGNELL, J.W., DONOVAN, R. Eletrônica Digital. São Paulo: CENGAGE Learning. 2009.

FLOYD, T. Digital Fundamentals. New York: Pearson, 2014.

TOOLEY, M. **Electronic Circuits: Fundamentals and Applications.** 4.ed. New York: Routledge, 2015.

HUGHES, J.M. **Practical Electronics: Components and Techniques**. New York: O'Reilly Media, 2015.

SCHERZ, P., MONK, S. **Practical Electronics for Inventors**. New York: McGraw Hill, 2016. KUMAR, A.A. **Fundamentals of Digital Circuits**. New York: Prentice Hall, 2014.