Федеральное государственное бюджетное образовательное учереждение высшего образования

Омский государственный университет им. Ф.М. Достоевского

Кафедра теоритической физики

Отчет о выполнении учебного задания по «Методам обработки массивов численных данных»
Исследование точки фазового перехода в двумерной модели Изинга

Выполнил: студент группы ФПБ - 603 Ковалев Юрий Викторович

Заведующий кафедрой: доктор физ.-мат. наук, профессор Прудников В.В.

Омск-2019

Содержание

1	Этап - первичные результаты	3
2	Этап - проверка полученных результатов	3
3	Этап - уточнение критической температуры	4
4	Этап - что не так ?	5
5	Вывод и оценка масштаба трагедии	6

Введение

В даной работе будет исследоваться точка фазового перехода второго рода в двухмерной модели Изинга. Температуру фазового перехода будем определять с помощью метода кумулянтов Биндера. Поиск критической точки осуществим наложением графиков зависимости кумулянты Биндера от времени. Кумулянта Биндера определятся как $U = \frac{1}{2}(3 - \frac{\langle M^4 \rangle}{\langle M^2 \rangle^2})$, так же нам известно, что $\frac{dU}{dt} \sim (T - T_C)$, это означает , что кумулянта систем с разными размерами будет иметь точку пересечения в T_C , но так как рассчитанная кумулянта прерывна(расчитывается в отдельно взятых точках), вместо точки мы получим треугольник, центр тяжести которого мы выберем в качестве T_C . Для исследования были выбраны системы с линейными размерами L=128,256,512

1 Этап - первичные результаты

Для первичного исследования критической температуры T_C был взят интервал $T \in [1.8, 2.8]$ с шагом $\delta T = 0.02$. Для каждого линейного размера кумулянта усреднялась по 2000 конфигураций, а на время релаксации для L = 128, 256, 512 было виделено 1500, 900, 600 шагов Монте-Карло (MCS) соответственно. На представленных ниже графикоф кумулянт мы видем, где локализована T_C . Так же на графике можно заметить хаотичное поведение кумулянт. Объеснение этого поведения будет ниже.

2 Этап - проверка полученных результатов

Неплохо было бы как то закрепить правильность полученных результатов. Мы можем это сделать, взглянув на поведение других характеристик системы, критическое поведение которых нам известно. И сравнить локализацию области, где проявлятся это поведение, с полученными результатами. Восприимчивость системы имеет пик, несовпадающий с T_C , в силу конечности размеров системы, но с ростом размеров системы, пик восприимчивости в нее стремиться. $T_p = T_C + L^{-\frac{1}{\nu}}$, где T_p точка пика. Мы можем экстраполировать по пикам, тем самым найти найти значение T_p для системы с $L = \infty$. Но размеры на-

шей системы велики и $L^{-\frac{1}{\nu}}$ мало, так что мы можем увидеть, что критическое поведение восприимчивости проявляется а той области, в которой и предполагалось.

Так же мы можем рассмотреть намагниченность системы. Как мы знаем, в T_C система перестает обладать «спонтанной намагниченостью». В области T_C мы должны наблюдать резкий спад намагниченности системы, что мы и видим из графика

3 Этап - уточнение критической температуры

Для дальнейшего исследования T_C был взят интервал $T \in [2.26, 2.28]$ с шагом $\delta T = 0.001$. Для каждого линейного размера кумулянта усреднялась по 2000 конфигураций, а на время релаксации для L = 128, 256, 512 было виделено 3000, 1800, 1200 (MCS) соответственно. На представленных ниже графикоф кумулянт мы видем, где локализована T_C .

Теперь апроксимируем вблизи места пересечения кумулянт и окончательно получим результат.

 T_C это центр - тяжести нашего треугольника, а в качестве погрешности возьмем половину проекции его наибольшей стороны на ось T. Итог $T_C = 2.26847(21)$

4 Этап - что не так?

В данной работе мы не шли путем первопроходцев, а в учебных целях повторяли этот путь, поэтомц мы можем сравнить наш результат с проверенным $T_C=2.26919$. На первый взгляд исследование было проведено корректно, но, сравнивая полученный ответ с известным мы получим разницу в 0.00072, что совсем не укладывается в погрешность. Итог: Исследование проведено не корректно. И так, давайте разбираться. Нехватка статистики

дала бы нам большую погрешность, так будем считать, что на этом фронте у нас все хорошо. Анализ програмного обеспечения говорит нам о том, что ошибок при написании кода допущено не было. Остается один вариант - начальные параметры. И это действительно оно. В начале отчета было сакцентировано внимание на хаотичном поведении кумулянт выше T_C . А еще если учесть тот факт, что исследование равновесных характеристик начинается из высокотемпературной области (области выше T_C), с последующим понижением температуры, то становится ясным тот факт, что для исследования было взято слишком маленькое время релаксации.

5 Вывод и оценка масштаба трагедии

Несмотря на допущенную ошибку, неопытность и халатность, был получен результат, который нельзя назвать вкорне неверным. Если убрать вышеперечисленные недостатки, то исследование можно назвать «успешным».