VIP Cheatsheet: Transformery a Velké Jazykové Modely

Afshine AMIDI a Shervine AMIDI Přeložil Aleš Horák

25. července 2025

Tento tahák poskytuje přehled toho, co obsahuje kniha "Super studijní příručka: Transformery a velké jazykové modely", ve které je ~600 ilustrací na více než 250 stranách a která se do hloubky zabývá následujícími pojmy. Další podrobnosti najdete na adrese https://superstudy.guide.

1 Základy

1.1 Tokeny

 $\hfill \hfill \hfill$ Definice – Tokenje nedělitelná jednotka textu, například slovo, podslovo nebo znak, a je součástí předem definovaného slovníku.

Poznámka: Token neznámé slovo [UNK] představuje neznámé části textu, zatímco výplňový (padding) token [PAD] se používá k vyplnění prázdných pozic, aby se zajistila konzistentní délka vstupní sekvence.

□ Tokenizér – Tokenizér T rozděluje text na tokeny s různou úrovní granularity.

tento plyšový medvídek je fááákt roztomilý \longrightarrow T \longrightarrow [tento] plyšový medvídek je [[UNK]] roztomilý] [[PAD] ...[[PAD]]

Hlavní typy tokenizérů jsou:

Тур	Výhody	Nevýhody	Ukázka
Slovo	Snadno interpretovatelný Krátké sekvence	Rozsáhlý slovník Nezpracuje varianty slov	plyšový medvídek
Podslovo	Využije kořeny slov Intuitivní významové vektory	Delší sekvence Složitější tokenizace	plyš ##ový med ##videk
Znak Bajt	Žádné problémy s neznámými slovy Malý slovník	Mnohem delší sekvence Vzory se obtížně interpretují, protože jsou na příliš nízké úrovni	pijysový medvid

Poznámka: BPE (Byte-Pair Encoding) a Unigram jsou často používané podslovní tokenizéry.

1.2 Slovní vektory

- \square Definice Slovní/větný vektor je numerická reprezentace (významu) prvku (např. tokenu, věty) a je zadán jako vektor $x \in \mathbb{R}^n$.
- \square Podobnost Kosinová podobnost mezi dvěma tokeny t_1, t_2 se vypočítá jako:

$$\boxed{\text{podobnost}(t_1, t_2) = \frac{t_1 \cdot t_2}{||t_1|| \ ||t_2||} = \cos(\theta)} \in [-1, 1]$$

Úhel θ vyjadřuje podobnost dvou tokenů:

Poznámka: Approximate Nearest Neighbors (ANN) a Locality Sensitive Hashing (LSH) jsou metody, které efektivně provádějí aproximaci operace podobnosti v rozsáhlých databázích.

2 Transformery

2.1 Pozornost

 $\hfill\Box$ Výpočet – Pro daný dotaz (query) qchceme vědět, kterému klíči (key) kmá dotaz věnovat "pozornost" (attention) vzhledem k související hodnotě (value) v.

Pozornost jde efektivně vypočítat pomocí matic Q,K,V, které obsahují dotazy q, klíče k a hodnoty v spolu s dimenzí klíčů d_k :

$$pozornost = softmax \left(\frac{QK^T}{\sqrt{d_k}}\right) V$$

 $\hfill \Box$ MHA – Vrstva vícehlavá pozornost (Multi-Head Attention, MHA) provádí výpočty pozornosti paralelně ve více hlavách a výsledek promítá do výstupního prostoru.

Skládá se z h hlav pozornosti a matic W^Q, W^K, W^V , které promítají vstupní data a získávají dotazy Q, klíče K a hodnoty V. Projekce se provádí pomocí matice W^O .

Poznámka: Grouped-Query Attention (GQA) a Multi-Query Attention (MQA) jsou varianty MHA, které snižují výpočetní režii sdílením klíčů a hodnot mezi hlavami pozornosti.

2.2 Architektura

□ Popis – Transformer je referenční model, který se opírá o mechanizmus sebepozornosti (self-attention) a využívá propojení kodéru a dekodéru. Kodéry počítají vektorové reprezentace významu vstupu, které pak dekodéry používají k předpovědi dalšího tokenu v sekvenci.

Poznámka: Přestože byl transformer původně navržen jako model pro překladatelské úlohy, je nyní široce používán v mnoha dalších aplikacích.

 $\hfill \Box$ Komponenty – $Kod\acute{e}r$ a $dekod\acute{e}r$ jsou dvě základní součásti transformeru a mají odlišné úlohy:

Kodér

Kódované vektory tokenů zachycují význam vstupu

Dekodér

Dekódované vektory tokenů zachycují význam vstupu i dosud predikované části výstupu

□ Vektory pozice – Vektory pozice informují o tom, kde se token ve větě nachází, a mají stejný rozměr jako vektory tokenů. Mohou být buď definované předem nebo naučené z dat při trénování.

Poznámka: Rotary Position Embeddings (RoPE) jsou populární a efektivní variantou, která rotuje vektory dotazů (query) a klíčů (key) tak, aby zahrnovaly informace o relativní poloze.

2.3 Varianty

 \square Pouze kodér – Bidirectional Encoder Representations from Transformers (BERT) je model založený na transformerech, který se skládá z vrstev kodérů, na jejichž vstupu je text a výstupem jsou významové vektory, které jde později použít v navazujících klasifikačních úlohách.

Na začátek sekvence je přidán token [CLS], který zachycuje význam věty. Vektor [CLS] tokenu se často používá v navazujících úlohách, jako třeba analýza sentimentu.

□ Pouze dekodér – Generative Pre-trained Transformer (GPT) je model založený na autoregresivním transformeru, který se skládá z vrstev dekodérů. Na rozdíl od modelu BERT a jeho odvozenin se v GPT ke všem problémům přistupuje jako k problémům typu text-text.

Většina současných nejmodernějších velkých jazykových modelů je založena na architektuře dekodéru, jako třeba série GPT, LLaMA, Mistral, Gemma, DeepSeek a další.

Poznámka: Modely kodér-dekodér, jako například model T5, jsou také autoregresivní a mají mnoho společných znaků s modely samotného dekodéru.

2.4 Optimalizace

- \square Aproximace pozornosti Výpočty pozornosti jsou v $\mathcal{O}(n^2)$, což může být nákladné s rostoucí délkou sekvence n. Existují dvě hlavní metody aproximace výpočtů:
 - Řídkost: Sebepozornost (self-attention) se nepočítá pro celou sekvenci, ale pouze mezi relevantnějšími tokeny.

 Low-rank: Vzorec pozornosti je zjednodušený jako součin matic nižších hodností (rank), což snižuje výpočetní zátěž.

□ Flash attention – Flash attention (blesková pozornost) je přesná metoda, která optimalizuje výpočty pozornosti chytrým využitím hardwaru GPU a využívá rychlou paměť SRAM (Static Random-Access Memory) pro maticové operace před zápisem výsledků do pomalejší paměti HBM (High Bandwidth Memory).

Poznámka: V praxi to snižuje spotřebu paměti a zrychluje výpočty.

3 Velké jazykové modely

3.1 Popis

□ Definice – Velký jazykový model (Large Language Model, LLM) je model založený na transformerech se skvělými schopnostmi zpracování přirozeného jazyka. Je "velký" v tom smyslu, že obvykle obsahuje miliardy parametrů.

 \square Životní cyklus – LLM se trénuje ve třech krocích: předtrénování, vyladění a preferenční ladění.

Vyladění a preferenční ladění jsou post-tréninkové přístupy, jejichž cílem je přizpůsobit model k provádění určitých úkolů.

3.2 Dotazování

□ Délka kontextu – Délka kontextu modelu je maximální počet tokenů, které se vejdou na vstup. Obvykle se pohybuje od desítek tisíc až po miliony tokenů.

 \square Výběr tokenů pro generování – Generované tokeny jsou vzorkovány z predikované pravděpodobnostní distribuce pi, která je řízena hyperparametrem teplota T.

Poznámka: Vysoké teploty vedou ke kreativnějším výstupům, zatímco nízké teploty vedou k determinističtějším výstupům.

□ Myšlenkový postup – Myšlenkový postup (Chain-of-Thought, CoT) je proces uvažování, při kterém model rozkládá složitý problém na řadu mezikroků. To pomáhá modelu generovat správnou konečnou odpověď. Myšlenkový strom (Tree of Thoughts, ToT) je pokročilejší verze CoT.

Poznámka: Sebekonzistence (self-consistency) je metoda, která agreguje odpovědi napříč cestami uvažování CoT.

3.3 Vvladění

 $\hfill {\fill} {\bf SFT} - \mbox{\it Vyladění} \ s \ dohledem (Supervised Fine Tuning, SFT) je post-tréninkový přístup, který přizpůsobuje chování modelu konečné úloze. Opírá se o kvalitní vstupně-výstupní páry sladěné s úlohou.$

Poznámka: Pokud se data SFT týkají instrukcí nebo dialogu, pak se tento krok nazývá "instrukční ladění" (instruction tuning).

□ PEFT – Parameter-Efficient Fine Tuning (PEFT) je kategorie metod, které se používají k efektivnímu provádění SFT. Zejména Low-Rank Adaptation (LoRA) aproximuje trénovatelné váhy W tím, že zafixuje W_0 a místo toho se učí matice A, B s nízkou hodností:

Poznámka: Mezi další techniky PEFT patří ladění prefixů a vkládání adaptérové vrstvy.

3.4 Preferenční ladění

□ Model odměn – Model odměn (Reward Model, RM) je model, který předpovídá, jak dobře výstup \hat{y} odpovídá požadovanému chování vzhledem ke vstupu x. Vzorkování Best-of-N (BoN), nazývané také rejection sampling, je metoda, která používá model odměn k výběru nejlepší odpovědi z N vygenerovaných.

$$x \longrightarrow \boxed{f} \longrightarrow \hat{y}_1, \, \hat{y}_2, \, ..., \, \hat{y}_N \longrightarrow \boxed{\mathrm{RM}} \longrightarrow k = \operatorname*{argmax}_{i \, \in \, \llbracket 1, N \rrbracket} r(x, \hat{y}_i)$$

 \square Zpětnovazební učení – Zpětnovazební učení (Reinforcement Learning, RL) je přístup, který využívá RM a aktualizuje model f na základě odměn za jeho generované výstupy. Pokud je RM založen na lidských preferencích, nazývá se tento proces Reinforcement Learning from Human Feedback (RLHF).

Proximal Policy Optimization (PPO) je populární RL algoritmus, který motivuje k vyšším odměnám a zároveň udržuje model v blízkosti základního modelu, aby se zabránilo nabourání odměn (reward hacking).

Poznámka: Existují také přístupy s dohledem, jako je Direct Preference Optimization (DPO), které kombinují RM a RL v jednom kroku s dohledem.

3.5 Optimalizace

 \square Směs expertů – Směs expertů (Mixture of Experts, MoE) je model, který v době inference aktivuje pouze část svých neuronů. Je založen na bráně G a expertech $E_1, ..., E_n$.

LLM založené na MoE používají tento mechanizmus bran ve svých vrstvách neuronových sítí s předním vstupem (FFNN).

Poznámka: Trénování LLM založeného na MoE je notoricky náročné, jak je zmíněno v článku LLaMA, jehož autoři se rozhodli tuto architekturu nepoužít i přes její efektivitu při inferenci.

 $\hfill \hfill \hfill$

$$KL(\hat{y}_T||\hat{y}_S) = \sum_{i} \hat{y}_T^{(i)} \log \left(\frac{\hat{y}_T^{(i)}}{\hat{y}_S^{(i)}} \right)$$

Poznámka: Trénovací výstupy (labels) jsou považovány za "měkké" hodnoty, protože představují pravděpodobnosti tříd.

 \square Kvantizace – Kvantizace modelu je kategorie technik, která snižuje přesnost vah modelu a zároveň omezuje dopad přesnosti na výsledný výkon modelu. V důsledku toho se snižuje paměťová náročnost modelu a zrychluje se inference.

Poznámka: QLoRA je běžně používaná kvantizační varianta LoRA.

4 Aplikace

4.1 LLM jako posuzovatel

□ Definice – LLM jako posuzovatel (*LLM-as-a-Judge*, LaaJ) je metoda, která využívá LLM k hodnocení zadaných výstupů podle určitých kritérií. Za zmínku stojí fakt, že LaaJ je schopna generovat i zdůvodnění svého skóre, což napomáhá jeho interpretovatelnosti.

Na rozdíl od metrik z doby před používáním LLM, jako je *Recall-Oriented Understudy for Gisting Evaluation* (ROUGE), LaaJ nepotřebuje žádný referenční text, což tuto metodu činí vhodnou pro vyhodnocení jakéhokoli druhu úlohy. LaaJ vykazuje silnou korelaci s lidským hodnocením zejména tehdy, když se opírá o velký výkonný model (např. GPT-4), protože k dobrému výkonu potřebuje schopnosti uvažování (reasoning).

Poznámka: LaaJ je užitečná pro provádění rychlých kol hodnocení, ale je důležité sledovat shodu mezi výstupy LaaJ a lidskými hodnoceními, aby se zajistilo, že nedochází k žádným odchylkám.

☐ Předpojatost modelu – Modely LaaJ se mohou "chovat předpojatě" (biased):

	Předpojatost k pozici	Předpojatost k délce textu	Předpojatost k vlastnímu výstupu
Problém	Upřednostňuje první pozici v párových srovnáních	Upřednostňuje obsáhlejší texty	Upřednostňuje výstupy, které generuje sám
Řešení	Zprůměrování metriky na náhodně vybraných pozicích	Přidání penalizace za délku výstupu	Použití posuzovatele sestaveného z jiného základního modelu

Řešením těchto problémů může být vyladění vlastního LaaJ, což však vyžaduje velké úsilí.

Poznámka: Výše uvedený seznam předpojatostí není úplný.

4.2 RAG

□ Definice – Generování založené na vyhledávání (Retrieval-Augmented Generation, RAG) je metoda, která umožňuje LLM přistupovat k relevantním externím znalostem pro zodpovězení zadané otázky. To je užitečné zejména v případě, že chceme zahrnout informace z doby po ukončení procesu předtrénování LLM.

Pro danou bázi znalostí \mathcal{D} a dotaz vybere vyhledávač nejrelevantnější dokumenty, následně rozšíří dotaz o relevantní informace a vygeneruje výstup.

 $Poznámka: \ Fáze\ výběru\ nejrelevantnějších\ dokumentů\ se\ obvykle\ opírá\ o\ vektorov\'e\ reprezentace\ z\ k\'odovacích\ (encoder-only)\ modelů.$

 \square Hyperparametry – Báze znalostí \mathscr{D} se inicializuje rozdělením dokumentů na části o velikosti n_c a jejich převedení na vektory dimenze \mathbb{R}^d .

4.3 Agenti

 $\hfill \Box$ Definice – Agent je systém, který autonomně sleduje cíle a plní úkoly jménem uživatele. Může k tomu používat různé řetězce volání LLM.

□ ReAct – *Uvažuj + proveď* (*Reason + Act*, ReAct) je postup, který umožňuje více řetězců volání LLM k dokončení složitých úloh:

Tento postup se skládá z následujících kroků:

- Pozorování: Syntéza předchozích akcí a explicitní vyjádření toho, co je v současné době známo.
- Plánování: Podrobný popis úkolů, které je potřeba splnit, a nástrojů, které se mají použít.
- Provedení: Vykonání akce prostřednictvím rozhraní API nebo vyhledání relevantních informací v bázi znalostí.

Poznámka: Evaluace agentního systému je náročná. Přesto ji lze provádět jak na úrovni komponent prostřednictvím lokálních vstupů a výstupů, tak na úrovni systému prostřednictvím řetězců volání.

4.4 Argumentační modely

□ Definice – Argumentační (reasoning) model je model, který při řešení složitějších úloh v matematice, programování a logice vychází z vlastních argumentací založených na CoT. Mezi příklady argumentačních modelů patří série o společnosti OpenAI, DeepSeek-R1 a Gemini Flash Thinking společnosti Google.

Poznámka: DeepSeek-R1 explicitně vypisuje svou argumentaci mezi značkami <think>.

□ Škálování – K posílení argumentačních schopností se používají dva typy škálovacích metod:

	Popis	Schéma
Škálování v průběhu trénování	Spustit RL na delší dobu, aby se model naučil vytvářet argumentace ve stylu CoT předtím, než poskytne odpověď.	Výkon Kroky RL
Škálování v průběhu testování	Nechat model déle přemýšlet před poskytnutím odpovědi pomocí slov pro vynucení argumentace, jako třeba "Počkat,".	Výkon Délka CoT