semigroup property. Conditions for strong continuity are given in the following lemma.

Lemma 3.2. The following assertions are equivalent:

- (i) The mapping $\phi: \mathbb{R}_+ \times K \to K$ is continuous (where $\mathbb{R} \times K$ carries the product topology).
- (ii) The mapping ϕ is separately continuous.
- (iii) $(T(t))_{t\geq 0}$ is a strongly continuous semigroup on C(K) .

Proof. (i) trivially implies (ii).

If (ii) holds, then t \rightarrow T(t)f is weakly continuous for every f \in C(K) (by the theorem of dominated convergence). This implies strong continuity (see for example [Davies (1980); Prop. 1.23]).

It remains to show that (iii) implies (i). Because of (3.1) it suffices to show that the restriction $_{\varphi_O}$ of $_{\varphi}$ to [0,1] × K is continuous. By hypothesis, the mapping W : f + (t + T(t)f) from C(K) into C([0,1],C(K)) is continuous. Identifying C([0,1],C(K)) canonically with C([0,1] × K) the mapping W obtains the form f + f $_{\varphi_O}$. Since W is continuous, $_{\varphi_O}$ is continuous as well.

A semiflow is called <u>continuous</u> if it satisfies the equivalent conditions of Lemma 3.2.

<u>Definition</u> 3.3. An operator δ on C(K) is called <u>derivation</u> if $D(\delta)$ is a subalgebra of C(K) such that

- (3.4) $\delta(f \cdot g) = (\delta f)g + f(\delta g)$ for all $f,g \in D(\delta)$.
- (3.5) $1 \in D(\delta)$

Note that (3.4) implies $\delta 1 = 0$.

A lattice semigroup $(T(t))_{t\geq 0}$ on C(K) is called <u>Markovian</u> if T(t)1=1 for all $t\geq 0$.

Theorem 3.4. Let $(T(t))_{t\geq 0}$ be a semigroup on C(K) with generator A . The following assertions are equivalent.

- (i) $(T(t))_{t\geq 0}$ is a Markovian lattice semigroup.
- (ii) T(t) is an algebra homomorphism for every $t \ge 0$.
- (iii) There exists a continuous semiflow $\,\varphi\,$ on $\,K\,$ such that $\,T\,(t)\,f\,=\,f\circ\varphi_+\,$ (t \geqq 0) .
- (iv) A is a derivation.

<u>Proof.</u> (i) and (ii) are equivalent by the remark at the beginning of this section.