Lecture 37 - Bipolar Junction Transistor (cont.)

May 7, 2007

Contents:

1. Common-emitter short-circuit current-gain cut-off frequency, f_T

Reading material:

del Alamo, Ch. 11, §11.4.2

Key questions

- How is the frequency response of a transistor assessed?
- What determines the frequency response of an ideal BJT?
- How can the frequency response of a BJT be engineered?

1. Common-emitter short-circuit current-gain cut-off frequency, f_T

 f_T : high-frequency figure of merit for transistors

Short-circuit means from the small-signal point of view.

BJT is biased in FAR.

Focus on small-signal current gain:

$$h_{21} = \frac{i_c}{i_b}|_{v_{ce} = 0}$$

For low frequency, $h_{21} \to \beta_F$, for high frequency h_{21} rolls off due to capacitors.

Definition of f_T : frequency at which $|h_{21}| = 1$.

Small-signal equivalent circuit model:

$$i_c = g_m v_{be} - j\omega C_{jc}$$

$$i_b = [g_{\pi} + j\omega (C_{\pi} + C_{je} + C_{jc})] v_{be}$$

Then:

$$h_{21} = \frac{g_m - j\omega C_{jc}}{g_\pi + j\omega (C_\pi + C_{je} + C_{jc})}$$

Magnitude of h_{21} :

$$|h_{21}| = \frac{\sqrt{g_m^2 + \omega^2 C_{jc}^2}}{\sqrt{g_\pi^2 + \omega^2 (C_\pi + C_{je} + C_{jc})^2}}$$

$$|h_{21}| = \frac{\sqrt{g_m^2 + \omega^2 C_{jc}^2}}{\sqrt{g_\pi^2 + \omega^2 (C_\pi + C_{je} + C_{jc})^2}}$$

Bode plot of $|h_{21}|$:

Three regimes in $|h_{21}|$:

• low frequency, $\omega \ll \omega_{\beta}$:

$$|h_{21}| \simeq \frac{g_m}{g_\pi} = \beta_F$$

• intermediate frequency, $\omega_{\beta} \ll \omega \ll \omega_c$:

$$|h_{21}| \simeq \frac{g_m}{\omega(C_\pi + C_{je} + C_{jc})}$$

• high frequency, $\omega \gg \omega_c$:

$$|h_{21}| \simeq \frac{C_{jc}}{C_{\pi} + C_{je} + C_{jc}}$$

Angular frequencies that separate three regimes:

$$\omega_{\beta} = \frac{g_{\pi}}{C_{\pi} + C_{je} + C_{jc}}$$

$$\omega_{c} = \frac{g_{m}}{C_{jc}}$$

Angular frequency at which $|h_{21}| = 1$:

$$\omega_T = \frac{g_m}{C_\pi + C_{je} + C_{jc}}$$

In terms of frequency:

$$f_T = \frac{g_m}{2\pi (C_{\pi} + C_{je} + C_{jc})}$$

Note:

$$\omega_{\beta} = \frac{\omega_T}{\beta_F}$$

\square Physical meaning of f_T

 $1/2\pi f_T$ has units of time. Define delay time:

$$\tau_d = \frac{1}{2\pi f_T} = \frac{C_{\pi}}{g_m} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m} = \tau_{tB} + \frac{\tau_{tE}}{\beta_F} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m}$$

Four delay components in τ_d .

Consider response of BJT to a step-input base current:

At
$$t = 0$$

$$I_B \to I_B + i_b$$

As
$$t \to \infty$$

$$V_{BE} \to V_{BE} + v_{be}$$

$$I_C \to I_C + i_c = I_C + \beta_F i_b.$$

How much time does it take for i_C to reach its final value? Charge must be delivered to four regions in BJT:

• Quasi-neutral emitter

$$q_e = \tau_{tE} i_b$$

• Quasi-neutral base

$$q_b = \tau_{tB} i_c$$

• Emitter-base depletion region

$$q_{je} = C_{je} v_{be} = \frac{C_{je}}{g_m} i_c$$

• Base-collector depletion region

$$q_{jc} = C_{jc}v_{bc} = C_{jc}v_{be} = \frac{C_{jc}}{g_m}i_c$$

Charge delivered at constant rate to base. Time that it takes for all charge to be delivered:

$$\tau_{\beta} = \frac{q_e + q_b + q_{je} + q_{jc}}{i_b} = \tau_{tE} + \beta_F (\tau_{tB} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m}) = \frac{1}{2\pi f_{\beta}}$$

How much time does it take for i_C to build up to $I_C + i_b$?

Since $i_c = \beta_F i_b$,

$$\tau_d = \frac{\tau_\beta}{\beta_F} = \frac{\tau_{tE}}{\beta_F} + \tau_{tB} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m} = \frac{1}{2\pi f_T}$$

- $\tau_d = \frac{1}{2\pi f_T}$: delay time before i_C increases to $I_C + i_b$
- $\tau_{\beta} = \frac{1}{2\pi f_{\beta}}$: delay time before i_C increases to $I_C + \beta_F i_b$

With sinusoidal input:

 $f \uparrow \Rightarrow$ fraction of i_b that goes into capacitors $\uparrow \Rightarrow v_{be} \downarrow \Rightarrow i_c \downarrow$.

At $f_T: |i_c| = |i_b|$

\square Key dependencies of f_T in ideal BJT

 $\star f_T$ dependence on I_C :

Rewrite f_T :

$$f_T = \frac{g_m}{2\pi(C_\pi + C_{je} + C_{jc})} = \frac{1}{2\pi\tau_F} \frac{1}{1 + \frac{kT}{q\tau_F} \frac{C_{je} + C_{jc}}{I_C}}$$

Two limits:

• Small I_C : limited by depletion capacitances

$$f_T \simeq \frac{q}{2\pi kT} \frac{I_C}{C_{je} + C_{jc}}$$

• Large I_C : limited by intrinsic delay (dominated by τ_{tB})

$$f_T \simeq \frac{1}{2\pi\tau_F}$$

Alternative view of I_C dependence:

$$\tau_d = \frac{\tau_{tE}}{\beta_F} + \tau_{tB} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m} = \frac{1}{2\pi f_T}$$

Standard experimental technique to extract τ_F and $C_{je} + C_{jc}$:

 $\star f_T$ dependence on V_{BC} :

 $V_{CB} \uparrow \text{ (B-C junction is more reverse biased)} \Rightarrow C_{jc} \downarrow \Rightarrow f_T \uparrow$ [but only in low I_C regime of f_T]

- $\star f_T$ dependence on device layout:
 - For low I_C : f_T dominated by C_{je} , C_{jc}

$$\frac{C_{je}}{g_m} \propto \frac{A_E C_{jeo}}{I_C}$$

$$\frac{C_{jc}}{g_m} \propto \frac{A_C C_{jco}}{I_C}$$

If $A_E \uparrow \text{ or } A_C \uparrow \text{ (keeping } I_C \text{ constant)} \Rightarrow f_T \downarrow$

• For high I_C : f_T dominated by τ_F ; f_T independent of A_E or A_C

\square Device design strategies for improving f_T

Four delay terms in f_T :

$$\tau_d = \frac{1}{2\pi f_T} = \frac{\tau_{tE}}{\beta_F} + \tau_{tB} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m}$$

Strategies to reduce each delay component:

- \star Emitter charging time, $\frac{\tau_{tE}}{\beta_F}$, minimized by
 - enhancing β_F ,
 - having a shallow emitter $(\tau_{tE} \sim W_E^2)$,
 - building steep doping profile in emitter.

 $\frac{\tau_{tE}}{\beta_F}$ small contribution to τ_d , not much payoff.

- $\star Base transit time, \tau_{tB}$, minimized by
 - reducing W_B ($\tau_{tB} \sim W_B^2$),
 - introducing drift field in base (through impurity gradient or SiGe composition gradient).

Significant device engineering towards minimizing τ_{tB} .

Example 1 [Kasper 1993]:

Fig. 2: Transit frequency f_T versus SiGe thickness (effective base width)

[Kasper, 1993]

Kasper, E., and A. Gruhle. "Silicon Germanium Heterobipolar Transistor for High Speed Operation." *Proceedings of the IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, August 2-4, 1993*. New York, NY: IEEE Electron Devices Society, 1993, pp. 23-30. ISBN: 9780780308954. Copyright 1993 IEEE. Used with permission.

Example 2 [Yamazaki, IEDM 1990, p. 309]:

Fig. 5 Cutoff frequency as a function of collector current.

Yamazaki, T., et al. "A 11.7 GHz 1/8-divider Using 43 GHz Si High Speed Bipolar Transistor with Photoepitaxially Grown Ultra-thin Base." *Technical Digest of the International Electron Devices Meeting, San Francisco, CA, December 9-12, 1990.* New York, NY: Institute of Electrical and Electronics Engineers, 1990, pp. 309-312. Copyright 1990 IEEE. Used with permission.

Fig. 4 Current gain versus collector current characteristics.

Yamazaki, T., et al. "A 11.7 GHz 1/8-divider Using 43 GHz Si High Speed Bipolar Transistor with Photoepitaxially Grown Ultra-thin Base." *Technical Digest of the International Electron Devices Meeting, San Francisco, CA, December 9-12, 1990.* New York, NY: Institute of Electrical and Electronics Engineers, 1990, pp. 309-312. Copyright 1990 IEEE. Used with permission.

Cite as: Jesús del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Example 3 [Crabbé, IEDM 1990, p. 17]:

Fig. 10. Collector current dependence of f_T at 298K and 85K for Si and SiGe devices. In both cases, the peak f_T increases at lower temperature as well as the associated collector current.

Crabbe, E. F., et. al. "Low Temperature Operation of Si and SiGe Bipolar Transistors." *Technical Digest of the International Electron Devices Meeting, San Francisco, CA, December 9-12, 1990.* New York, NY: Institute of Electrical and Electronics Engineers, 1990, pp. 17-20. Copyright 1990 IEEE. Used with permission.

* E-B SCR charging time, C_{je}/g_m :

$$\frac{C_{je}}{g_m} \propto \frac{A_E C_{jeo}}{I_C} = \frac{C_{jeo}}{J_C}$$

Minimized by:

- \bullet $N_B \downarrow$
- tailoring doping profiles at E-B junction

* B-C SCR charging time, C_{jc}/g_m :

$$\frac{C_{jc}}{g_m} \propto \frac{A_C C_{jco}}{I_C} = \frac{A_C C_{jco}}{A_E J_C}$$

Minimized by:

- $\bullet N_C \downarrow$
- tailoring doping profiles at B-C junction.
- tightening layout of transistor: $\frac{A_C}{A_E} \rightarrow 1$

Key conclusions

- f_T : high-frequency figure of merit for transistors: frequency at which $|h_{21}| = 1$.
- f_T of ideal BJT:

$$f_T = \frac{g_m}{2\pi (C_\pi + C_{je} + C_{jc})}$$

- Delay time, $\tau_d = \frac{1}{2\pi f_T}$: time it takes for step increase in i_B to yield an identical step increase in i_C .
- Most effective ways to engineer f_T :
 - reduce W_B
 - introduce drift field in base (through impurity gradient or SiGe composition gradient)
 - tighten layout: $\frac{A_C}{A_E} \rightarrow 1$