齐鲁工业大学 20/21 学年第一学期《概率论与数理统计 I》

期末考试试卷 A 卷

(本试卷共4页)

题号	_	11	III	四	五	六	总分
得分							

得分 阅卷人

- 一、填空题(满分24分,每小题3分)
- 1、事件 A, B 相互独立,且 $P(A) = 0.2, P(A \cup B) = 0.6$,则
- - 3、设离散型随机变量 X 服从参数为 2 的泊松分布,则 D(1-X)=
 - 4、设两个随机变量 X 与 Y 相互独立且同分布: $P(X = -1) = P(Y = -1) = \frac{1}{2}$, $P(X=1)=P(Y=1)=\frac{1}{2}$, $\mathbb{N}P(X=Y)=$ ______.
 - 5、设 $X \sim N(1,4)$,已知 $\Phi(1) = 0.8413$,则 P(1 < X < 3) =_____
 - 6、从两个独立正态总体 $X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2)$ 中分别抽取样本 x_1,x_2,\cdots,x_m 和 y_1, y_2, \dots, y_n ,则两样本均值差 $\overline{X} - \overline{Y} \sim$ ______分布.
 - 7、设随机变量 X_1, X_2, X_3, X_4 是来自正态总体N(0,1)的简单随机样本, $Y = (X_1 + X_2)^2 + (X_3 + X_4)^2$,若使得随机变量 $aY \sim \chi^2(2)$,则 $a = \underline{\qquad}$.
 - 8、已知一批零件的长度(单位: cm) 服从正态分布 $N(\mu,1)$, 从中随机抽取 16 个 零件,得到长度的平均值为 40cm,则 µ 对应于置信度为 0.95 的置信区间 为______ . ($u_{0.025} = 1.96$)

得分	
阅卷人	

- 二、选择题(满分20分,每小题4分)
- 1、设随机变量X与Y满足Y = -5X + 6,则 ρ_{XY} 为().
- (A) 1;
- (B) -1;
- (C) 0;
- (D) ± 1 .

2,	袋子中有3个白球和中恰有1个白球的概		牧回抽取 3 ·	次,每次取	一个,则取行	等的3球
	(A) 0.24;	(B) 0.72;	(C) 0	.288;	(D) 0.6.	
3、	设二维正态随机变量 (A) <i>X</i> 与 <i>Y</i> 不相关; (C) <i>E</i> (<i>XY</i>)=1;	(,0),则下3 (B) X与Y (D) cov(X	'独立;	确的是().
4、	设 $X_1, X_2, \cdots X_n$ 为总位	体 X 的简单随机抽样	E(X) =	$\mu, D(X) = \sigma$	\overline{X} , \overline{X} , S^2 分为	引为样本
	均值及方差,则下列	列结论不正确的是().			
	(A) \overline{X} 是 μ 的无偏估计量; (B) S^2 是 σ^2 的无偏估计量;					
	•		(D) $D(\overline{X})$,,,,,,	
	(C) $E(\overline{X}) = \mu$;		(D) D(X)	$=\sigma^2$.		
5、	设 X_1, X_2, \cdots, X_n 为来别为样本均值及方刻	\mathcal{R} 自正态总体 $N(\mu,\sigma^2)$ 度,则检验假设 H_0 : σ	/	-		$L\overline{X}$, S^2 分).
	$(\mathbf{A}) \ \frac{(n-1)S^2}{\sigma_0^2};$	(B) $\sqrt{n} \frac{\overline{X} - \mu}{\sigma_0}$;	(C) \sqrt{n}	$\frac{\overline{X}-\mu}{S}$;	(D) $\frac{nS^2}{\sigma_0^2}$.	
	得分	三、计算题(满分	16分,每小	小题8分)		
-	阅卷人	1、设二维离散型(X,Y)的联合分布律为				
L		Y	1	2	3	
		X 0	0.2	0.3	0.1	
		1	0.2	0	0.2	
	求 X 与 Y 的协方差。	cov(X,Y).				

2、设随机变量 X 在区间 [0,1] 上服从均匀分布,求随机变量 Y = 2X + 8 的概率密度函数 $f_Y(y)$.

得分 阅卷人

四、(本题满分20分,每小题10分)

1、设随机变量 X 与 Y 的联合概率密度函数为 $f(x,y) = \begin{cases} 3e^{-x-3y}, & x>0, y>0\\ 0, & \text{其它} \end{cases}$

(1) 求X与Y的边缘概率密度函数; (2) 判断X与Y的独立性.

2、随机变量 X,Y相互独立,且 $X \sim N(-1,9),Y \sim N(1,4),Z = X + 2Y$,

求(1)Z的概率密度函数 $f_Z(z)$ (2)Y,Z的相关系数 ρ_{YZ} .

得分	
阅卷人	

五、(本题满分12分)

设总体
$$X$$
 的概率密度函数为 $f(x;\theta) =$
$$\begin{cases} \theta, & 0 < x < 1 \\ (1-\theta), & 1 \le x < 2, & \text{其中} \\ 0, & \text{其它} \end{cases}$$

 θ $(0 < \theta < 1)$ 为未知参数, $X_1, X_2, \cdots X_n$ 为来自总体 X 的一个简单随机样本, \overline{X} 表示样本均值,(1) 求参数 θ 的矩估计量;(2) 判断 \overline{X}^2 是否为 θ^2 的无偏估计量,并说明理由.

得分	
阅卷人	

六、(本题满分8分)

某工厂生产的某电子元件的平均使用寿命为 2000 小时,今采用

新技术试制一批这种元件,从中随机中抽取 16 只,测得平均寿命x=2075 小时,标准差 s=80 小时. 已知元件使用寿命服从正态分布,试在显著性水平 $\alpha=0.01$ 下确定这批元件的平均使用寿命是否有显著提高?

$$(t_{0.005}(15) = 2.95, t_{0.01}(16) = 2.58, t_{0.01}(15) = 2.60, u_{0.01} = 2.33)$$