Write a proof that all positive integers ≥ 2 are either prime or can be written as the product of primes.

There are two conditions:

- 1. Assume k is a prime, no further work needs to be done.
- 2. Assume k is a non-prime $\in N$

a and $b \in N$

k = ab where $1 \le a, b, < k$

Our Base Case begins at 2.

2 is a prime, and therefore fulfills our first condition.

Thus:

For the purpose of the proof we will assume these statements are true up through n. Using induction we shall prove it holds true for n + 1.

If n+1 is a prime it fulfills the first condition, and therefore the theorem holds true.

If n+1 is not a prime it can be written as (n+1)=ab where $1 \le a,b,<(n+1)$

As both a, b < n, they fall under the previous proof and the theorm holds true.

Using induction, we can show that $a = p_1 p_2 p_3 \dots p_h$ and $b = q_1 q_2 q_3 \dots q_i$ are composed of primes. As n = ab, $n = p_1 q_1 p_2 q_2 \dots p_h q_i$