U.N.E.R.

FACULTAD DE INGENIERÍA BIOINFORMÁTICA

ASIGNATURA:

INTRODUCCIÓN A LA FÍSICA

TRABAJO PRACTICO DE LABORATORIO Nº 2:

DINÁMICA DEL MOVIMIENTO DE ROTACIÓN UTILIZANDO DISPOSITIVO PASCO

AUTORES:

- · Godoy Moreno, Thomas
- La Madrid, Leonel Federico.
- Regner, Francisco Hugo.
- · Salim Taleb, Nasim Aníbal.
- Sanguezo, Franco.
- · Schmidt, Leandro.

FECHA DE REALIZACIÓN: 06/06/2019

FECHA DE ENTREGA: 18/06/2019

INTRODUCCIÓN

Este Trabajo Practico consiste en el análisis de la aceleración angular y como esta se ve afectada al modificar distintos parámetros, como la masa que afecta la fuerza aplicada a un disco, y la distancia a la cual la fuerza afecta a un disco.

OBJETIVOS

Con la realización de este Trabajo Práctico de Laboratorio se pretende lograr que el estudiante sea capaz de:

- Analizar el movimiento rotacional uniformemente acelerado que experimenta un cuerpo rígido.
- Construir, a partir del modelo real, los diagramas de cuerpo libre de los cuerpos en movimiento
- ullet Establecer la relación entre el momento Torsor τ y la aceleración angular α del movimiento rotacional.
- Aplicar la teoría de incertezas en las mediciones de laboratorio.
- Inferir las aproximaciones del modelo matemático y los resultados obtenidos.

MATERIALES A UTILIZAR

La siguiente figura muestra el equipo preparado, en la cual pueden identificarse, como partes relevantes: base, disco, polea, 1 pesa de 200 g e hilo. Además, se utilizarán: el denominado Dispositivo PASCO que cuenta con un sensor infrarrojo e interface Xplorer, PC, balanza masadora, calibre y cinta métrica.

Figura. Sistema Rotacional

FUNDAMENTO TEÓRICO

La segunda Ley de Newton permite establecer la relación entre fuerza neta F aplicada a un cuerpo de masa m y la aceleración a que experimenta:

 $F = m \cdot a$

Si ella se considera aplicada sobre un cuerpo en rotación se puede expresar su equivalente mediante la relación entre el momento torsor τ aplicado sobre un cuerpo, de momento de inercia I, y la aceleración angular α lograda en el mismo:

 $T = I \cdot \alpha$

PROCEDIMIENTO:

- a) Medir, una vez, la masa M y el radio R, del disco. Expresar cada medida.
- b) Considerando despreciable el momento de inercia de la polea pequeña, calcular el momento de inercia, ID, del disco.
- c) Medir una vez, con el calibre, el diámetro d de una de las bobinas (preferentemente la de menor diámetro). Calcular su radio r = d/2 y utilícelo de ahora en más.
- d) Ensamblar el equipo enrollando el hilo en forma tensa, comenzando en el eje de diámetro seleccionado.
- e) Configurar la interface Xplorer para medir la velocidad angular del disco.
- f) Encender la interface (Star).
- g) Habiendo determinado una posición inicial y final de referencia en la vertical (por ejemplo, sobre la mesa), liberar la pesa.
- h) Interrumpir la medición al llegar la pesa a la posición final. Grabar en un archivo la medición de la velocidad angular.
- i) Repetir la operación 10 veces desde el punto e) verificando que el hilo se enrolle en la misma bobina, en cada lanzamiento.

ACTIVIDADES:

- 1- Comparar el momento de inercia I del disco I = $(0,0097 \pm 0,0001)$ kg.m2, con el momento de inercia ID medido en el punto b), calculando la diferencia porcentual.
- 2- I) Realizar los diagramas de cuerpo libre para la pesa y para el disco;
- II) plantear las ecuaciones que describen el modelo físico del sistema, en función de r, I, α , g y m de la pesa.
- III) expresar el momento torsor τ y la aceleración angular α ;
- 3- III) Aplicando la segunda Ley de Newton, calcular:
- a- la aceleración angular α;
- b- momento torsor T.r:
- IV) justificar la elección del momento de inercia utilizado (tabulado u obtenido)
- 4- A- Determinar la relación matemática, entre α y la masa m de la pesa.
- B- ¿Qué sucedería si aumentara la masa m? Comprobar su inferencia utilizando el dispositivo y una pesa extra.
- C- Determinar la relación matemática, entre α y el radio r de la bobina.
- D- ¿Qué sucede si aumenta el radio r? Comprobar su inferencia utilizando el dispositivo.
- 5- Utilizando una hoja de cálculo, lograr la información necesaria para completar un cuadro de valores con las velocidades angulares y los tiempos correspondientes.
- 6- Graficar, en una sola hoja milimetrada, los diez pares: velocidad angular vs tiempo, suministradas por el equipo.
- 7- Calcular, a partir de la información obtenida de la gráfica en el ítem anterior, α del sistema.
- 8- Comparar los resultados de las aceleraciones angulares obtenidas en el punto 3) a- y 7-
- 9- Elaborar conclusiones.

Desarrollo

1)
$$M = (1448 \pm 1) g = (1,448 \pm 0,001) Kg$$

$$R = (11.4 \pm 0.1) \text{ cm} = (0.114 \pm 0.001) \text{ m}$$

$$I_{cal} = \frac{1}{2} . M. R^2$$

$$I_{cal} = \frac{1}{2} . 1,45 Kg. (0,114 m)^2$$

$$I_{cal} = 9,44. 10^{-3} (kg. m^2)$$

$$\Delta I = 0.001 + 0.001.2$$

 $\Delta I = 0.003$

$$I_{cal} = (0,0094 \pm 0,0030) Kg. m^2$$

 $I_{fxu} = (0,0097 \pm 0,0001) Kg. m^2$

0,0097——— 100%

0,0094422 ---- x= 97,31 %

Dif. %= 2,69%

2- I)

Diagrama de la pesa:

Diagrama del disco:

II) III)

$$\sum Fy = m. g - T = m. a$$

$$m. g - m. a = T$$

$$T.r = I.\alpha$$

 $(m.g - m.a).r = I.\alpha$ $a = r.\alpha$
 $m.g.r - m.\alpha.r^2 = I.\alpha$
 $\alpha = \frac{m.g.r}{m.r^2 + I}$

$$\tau = I.\alpha = I.\frac{m.g.r}{m.r^2 + I}$$

3- III) a-

$$\alpha = \frac{0,200 Kg. 9,80 m/s^2. 0,015 m}{0,200 Kg. (0,015 m)^2 + 9,42. 10^{-3} Kg. m^2}$$
$$\alpha = \frac{0,0245 Kg. m^2/s^2}{9,43. 10^{-3} Kg. m^2}$$
$$\alpha = 2,59 \text{ rad/s}^2$$

b-

$$\tau = I. \alpha$$

$$\tau = 9,42. 10^{-3} Kg. m^2. 2,59 \text{ rad/}s^2$$

$$\tau = 0,244 Kg. m^2/s^2$$

IV) Utilizamos el momento de inercia que nosotros pudimos medir y calcular ya que desconocemos el método por el cual fue calculado el provisto por el fabricante.

4- A-

$$\alpha = \frac{m. g. r}{m. r^2 + I}$$

$$\lim_{m\to\infty} \frac{m.\,g.\,r}{m.\,r^2+I}$$

Dividendo ambos términos por m

$$\lim_{m \to \infty} \frac{g.r}{r^2 + \frac{I}{m}}$$

Despreciando I/m ya que tiende a 0:

$$\frac{g}{r} = \alpha$$

B- Al aumentar la masa aumenta la velocidad angular en la maquina ya que el radio r es menor a 1, y la aceleración angular depende directamente de la relación entre la gravedad y el radio r.

C-

$$\frac{m.\,g.\,r}{m.\,r^2+I}=\alpha$$

Dividendo ambos términos por r:

$$\frac{m.\,g}{m.\,r+I/r} = \alpha$$

D- Se puede analizar que como el radio en el denominador tiene mayor grado que el del numerador, al aumentar mucho el radio r el resultado del límite será 0, pero si el radio utilizado es menor a 1 como en el caso del ensayo practico, la aceleración angular aumentará, ya que, al elevar el radio, un número menor a 1, al cuadrado, el resultado será más pequeño que en el numerador, y como el momento de inercia I es muy pequeño, al aumentar un poco el radio, la aceleración angular aumentará.

5-

Νō	ti (s)	tf(s)	ωi (rad/s)	ωf (rad/s)	Δt	Δω
1	5,99	11,01	2,51	15,25	5,02	12,74
2	1,99	6,97	3,12	15,96	4,98	12,84
3	3,6	8,5	2,45	15,02	4,90	12,57
4	1,61	6,62	3,1	15,85	5,01	12,75
5	1,5	6,52	2,29	15,01	5,02	12,72
6	1,56	6,58	3,28	16,02	5,02	12,74
7	1,42	6,43	2,99	15,72	5,01	12,73
8	2,37	7,36	1,59	14,3	4,99	12,71
9	1,25	6,25	2,41	15,15	5,00	12,74
10	7,91	12,92	2,29	14,97	5,01	12,68
Promedios					5,00	12,72

2019

Licenciatura en Bioinformática

7-

$$\alpha = \frac{\Delta \omega}{\Delta t}$$

$$\alpha = \frac{12,72 \text{ rad/s}}{5,00 \text{ s}}$$
$$\alpha = 2,544 \text{ rad/s}^2$$

8- La aceleración angular calculada en 3) a- es de:

$$\alpha = 2,59 \text{ rad/}s^2$$

Y la obtenida en el punto 7 es de:

$$\alpha = 2,544 \text{ rad/}s^2$$

Al ver los resultados se puede observar que la aceleración obtenida de manera práctica es menor a la obtenida en el cálculo teórico, esto puede deberse a ciertos criterios que no se tuvieron en cuenta para el ensayo, como, por ejemplo, el rozamiento entre los mecanismos de la maquina utilizada.

9- Se puede notar que los resultados obtenidos del modo practico son muy cercanos a los obtenidos de manera teórica aun sin haber tenido en cuenta distintos factores durante el ensayo práctico, por el cual el ensayo practico resulto ser muy preciso.