AGO targetome

Melina Klostermann

04 April, 2023

Contents

1	Libraries and settings	1
2	What was done?	1
3	Files	1
4	Chimeric reads	2
5	Assign chimeric reads to binding sites	7
6	Session Info	9

1 Libraries and settings

2 What was done?

- Overview of the detected chimeric reads in all conditions.
- Chimeric reads are assigned to AGO-binding sites (chimeric AGO sites).
- Co-ocurrence of miRs in the same AGO binding site (fisher-test heatmap).

We obtain chimeric reads from 4 different conditions: - AGO eCLIP (IP_WT) - AGO eCLIP with mir181a KO and mir181b KO (IP_KO) - AGO eCLIP with mir181 enrichment (IP_mir181_WT) - AGO eCLIP with mir181 enrichment and with mir181a KO and mir181b KO (IP_mir181_KO)

3 Files

sample	number_of_crosslinks
Inp1_KO1	946
Inp2_KO2	737
Inp3_KO3	717
Inp4_WT1	854
Inp5_WT2	951
Inp6_WT3	698
IP1_KO1	60,789
IP2_KO2	67,639
IP3_KO3	52,100
IP4_WT1	117,849
IP5_WT2	69,074
IP6_WT3	43,983
IP7_KO1_miR181	12,186
IP8_KO2_miR181	19,264
IP9_KO3_miR181	6,832
IP10_WT1_miR181	293,149
IP11_WT2_miR181	253,502
IP12_WT3_miR181	194,628

4 Chimeric reads

These are the chimeric reads that were isolated during the read processing via raccon (link TODO)

4.1 Number of chimeric reads per sample

```
# clean files
mir_crosslinks <- map(mir_crosslinks, ~ as.data.frame(.x) %>%
                        mutate(strand = Strand, Strand = NULL))
sample_names <- c("Inp1_K01", "Inp2_K02", "Inp3_K03",</pre>
                  "Inp4_WT1", "Inp5_WT2", "Inp6_WT3",
                  "IP1_K01", "IP2_K02", "IP3_K03",
                  "IP4_WT1", "IP5_WT2", "IP6_WT3",
                  "IP7_K01_miR181", "IP8_K02_miR181", "IP9_K03_miR181",
                  "IP10_WT1_miR181", "IP11_WT2_miR181", "IP12_WT3_miR181"
mir_crosslinks <- map( sample_names , ~bind_rows(mir_crosslinks[grepl(names(mir_crosslinks), pattern =
names(mir_crosslinks) <- sample_names</pre>
table_num_crosslinks <- map_dfr(mir_crosslinks, ~c(number_of_crosslinks = NROW(.x)))
table_num_crosslinks$sample <- sample_names</pre>
kable(table_num_crosslinks[,c(2,1)], format.args = list(big.mark = ",")) %>%
  kable_material(c("striped", "hover")) %>%
  scroll_box(width = "100%", height = "500px")
```

4.2 FigureS1C Barchart chimeric reads per sample

Chimeric reads per sample

4.3 Detected mirs per sample

4.4 Detected mirs per condition

```
condition_regex <- list("Inp.+KO", "Inp.+WT",</pre>
                   "IP.+KO[1-3]+$", "IP.+WT[1-3]+$",
                   "IP.+KO.+_miR181", "IP.+_WT.+_miR181")
condition_names <- list("Inp_KO", "Inp_WT",</pre>
                  "IP_KO", "IP_WT",
                   "IP_KO_miR181", "IP_WT_miR181")
mir_crosslinks_per_cond <- map(condition_regex,</pre>
                    ~bind_rows(mir_crosslinks[grepl(names(mir_crosslinks), pattern =.x)] ))
names(mir_crosslinks_per_cond ) <- condition_names</pre>
detected_mirs_per_cond <- map(mir_crosslinks_per_cond, ~.x %>%
                        group_by(`Name`) %>%
                        summarise(n = sum(Score), .groups= "keep",
                                  mean = n/3) )
detected_mirs_per_cond <- map(detected_mirs_per_cond , ~arrange(.x, desc(n)))</pre>
detected mirs per cond top 10 <- map(detected mirs per cond, ~.x[1:10,] %>%
                               arrange(., n))
```

4.5 Supplementary Table XX

4.5.1 Figure1E Barchart IP_WT/KO topb mirs & Figure1G IP_mir181_WT/KO

```
#####################
# different version of barcharts for paper
#####################
# Barchart of AGO IP
######################
# make one df with all conditions
conditions_of_samples_list <- rep(condition_names, each =3)</pre>
mirs <- pmap(list(x=detected_mirs, y=as.list(sample_names), z= conditions_of_samples_list),
                             function(x,y,z) mutate(x, Sample = y,
                                                     condition = z)) %>%
 map_dfr(~.x)
# qet conditions
mirs_ago_wt_ko <- mirs %>% subset(condition %in% c("IP_WT", "IP_KO"))
# calculate relative amount per condition
mirs_ago_wt_ko <- mirs_ago_wt_ko %>%
  mutate( n_total = case_when(condition == "IP_WT" ~ sum(detected_mirs_per_cond$IP_WT$n),
                              condition == "IP KO" ~ sum(detected mirs per cond$IP KO$n))) %>%
 group_by(condition, Name) %>%
 mutate(
   n_per_cond_rel = sum(n)/n_total,
  sum = sum(n)
```

Ago chimeric reads (non normalised)


```
group_by(condition, Name) %>%
mutate(
    n_per_cond_rel = sum(n)/n_total,
    sum = sum(n))

# select top 10 from wt condition
mirs_t10_181_wt_ko <- mirs_181_wt_ko %>% subset(Name %in% c(detected_mirs_per_cond_top_10$IP_WT$Name, "sarrange(desc(condition), n_per_cond_rel)

p3 <- ggplot(mirs_t10_181_wt_ko, aes(x = factor(Name, levels = unique(mirs_t10_ago_wt_ko$Name)), y = sum geom_col( stat="identity",position = "dodge")+
    #scale_x_discrete(guide = guide_axis(angle = 45)) +
scale_fill_manual(values = c(farbe1, farbe3))+
xlab("") +
ylab("miR_chimeric_reads")+
coord_flip()

p3 + ggtitle("181_enriched_chimeric_reads_(non-normalised)")</pre>
```

181 enriched chimeric reads (non-normalised)

5 Assign chimeric reads to binding sites

We assign chimeric reads that are in a window of 10nt before the binding site until 10nt after the binding site to the respective binding site.

5.1 Enriched sharing of binding sites by two miRs

Ago binding sites can contain more than one miR. Here we look at which miR sharing is enriched. The heatmap shows the r p-values of fisher-tests after bh adjustment.

```
# get co-occurences of top 10 mirs
t <- ago_bs_chi %>% mutate(n_different_mirs = map(data, ~length(unique(.x$mir_IP_WT))) %>% unlist(.),
                  c_mir181a = map(data, ~ "mmu-miR-181a-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_mir181b = map(data, ~ "mmu-miR-181b-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_mir142a = map(data, ~ "mmu-miR-142a-3p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_mir16 = map(data, ~ "mmu-miR-16-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_mir20a = map(data, ~ "mmu-miR-20a-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_let_7a = map(data, ~ "mmu-let-7a-5p" %in% .x$mir_IP_WT) %% unlist(.),
                  c_mir17 = map(data, ~ "mmu-miR-17-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_mir181c = map(data, ~ "mmu-miR-181c-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_mir181d = map(data, ~ "mmu-miR-181d-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_let_7f = map(data, ~ "mmu-let-7f-5p" %in% .x$mir_IP_WT) %>% unlist(.),
                  c_mir93 = map(data, ~ "mmu-miR-93-5p" %in% .x$mir_IP_WT) %>% unlist(.)
# function for fisher test
fisher_fun <- function(v){</pre>
  overlap_m <- eulerr::euler(data.frame(m[,v[[1]]], m[, v[[2]]] ))</pre>
  plot(overlap_m , quantities = TRUE, shape = "ellipse")
  v <- overlap_m$original.values</pre>
  v \leftarrow matrix(c(v[3], v[1], v[2], length(m[,1])), ncol = 2)
  f <- fisher.test(v)</pre>
  f$p.value
```

```
# make matix of top 10 miRs
m <- as.matrix(t[ ,grepl(colnames(t), pattern = "c_")])</pre>
\# calc p-value and adj p-value from pairwise fisher tests
p.values \leftarrow combn(x = 1:ncol(m), m = 2, fisher_fun)
p.adj <- p.adjust(p.values)</pre>
# make plotable matirx
n \leftarrow ncol(m)
mat <- `dimnames<-`(matrix(0,n,n), list(colnames(m), colnames(m)))</pre>
mat[lower.tri(mat, diag = F)] <- as.vector(p.adj)</pre>
mat <- t(mat) +mat</pre>
mat <- -log10(mat)</pre>
mat[mat==Inf] <- 200</pre>
mat[mat < log10(0.01)] < - 0
# plot with ComplexHeatmap
col_fun = colorRamp2(c(0, 20, 200), c("white", "orange", "firebrick"))
lgd = list(grid_width = unit(2, "cm"), grid_height= unit(100, "cm"), labels_gp = gpar(fontsize = 30))
h <- Heatmap(mat, col = col_fun,
         row_names_gp = gpar(fontsize = 30),
        row_names_max_width = unit(10, "cm"),
         column_names_gp = gpar(fontsize = 30),
        column_names_max_height = unit(10, "cm"),
        heatmap_legend_param = lgd)
```


6 Session Info

```
sessionInfo()
```

```
## R version 4.2.2 (2022-10-31)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur ... 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
```

```
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] grid
                                     graphics grDevices utils
                                                                    datasets
                 stats4
                           stats
## [8] methods
                 base
##
## other attached packages:
## [1] circlize_0.4.15
                                           BSgenome.Mmusculus.UCSC.mm10_1.4.3
## [3] BSgenome_1.66.2
                                           Biostrings_2.66.0
## [5] XVector_0.38.0
                                           ComplexHeatmap_2.14.0
## [7] kableExtra_1.3.4
                                           rtracklayer_1.58.0
## [9] GenomicRanges_1.50.2
                                           GenomeInfoDb_1.34.7
## [11] IRanges_2.32.0
                                           S4Vectors_0.36.1
## [13] BiocGenerics_0.44.0
                                           purrr_1.0.1
                                           ggplot2_3.4.0
## [15] dplyr_1.0.10
## [17] knitr_1.42
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7
                                    matrixStats_0.63.0
   [3] doParallel 1.0.17
                                    webshot 0.5.4
## [5] RColorBrewer_1.1-3
                                    httr_1.4.4
## [7] tools 4.2.2
                                    backports_1.4.1
## [9] utf8_1.2.2
                                    R6 2.5.1
## [11] DBI 1.1.3
                                    colorspace 2.1-0
## [13] GetoptLong_1.0.5
                                    withr 2.5.0
## [15] tidyselect_1.2.0
                                    compiler_4.2.2
## [17] cli_3.6.0
                                    rvest_1.0.3
## [19] Biobase_2.58.0
                                    Cairo_1.6-0
## [21] xml2_1.3.3
                                    DelayedArray_0.24.0
## [23] labeling_0.4.2
                                    scales_1.2.1
## [25] systemfonts_1.0.4
                                    stringr_1.5.0
## [27] digest_0.6.31
                                    Rsamtools_2.14.0
## [29] rmarkdown_2.20
                                    svglite_2.1.1
## [31] pkgconfig_2.0.3
                                    htmltools_0.5.4
## [33] MatrixGenerics_1.10.0
                                    highr_0.10
## [35] fastmap_1.1.0
                                    rlang_1.0.6
## [37] GlobalOptions 0.1.2
                                    rstudioapi 0.14
## [39] farver_2.1.1
                                    shape_1.4.6
## [41] BiocIO 1.8.0
                                    generics_0.1.3
## [43] BiocParallel_1.32.5
                                    car_3.1-1
## [45] RCurl 1.98-1.9
                                    magrittr_2.0.3
## [47] GenomeInfoDbData_1.2.9
                                    Matrix 1.5-3
## [49] Rcpp_1.0.10
                                    munsell_0.5.0
## [51] fansi_1.0.4
                                    abind_1.4-5
## [53] lifecycle_1.0.3
                                    stringi_1.7.12
## [55] yaml_2.3.7
                                    carData_3.0-5
## [57] SummarizedExperiment_1.28.0 zlibbioc_1.44.0
## [59] parallel_4.2.2
                                    crayon_1.5.2
## [61] lattice_0.20-45
                                    magick_2.7.3
## [63] polylabelr_0.2.0
                                    pillar_1.8.1
## [65] ggpubr_0.5.0
                                    rjson_0.2.21
## [67] ggsignif_0.6.4
                                    codetools_0.2-18
## [69] XML_3.99-0.13
                                    glue_1.6.2
## [71] evaluate_0.20
                                    vctrs_0.5.2
```

## [73]	png_0.1-8	foreach_1.5.2
## [75]	polyclip_1.10-4	gtable_0.3.1
## [77]	tidyr_1.3.0	clue_0.3-63
## [79]	assertthat_0.2.1	xfun_0.36
## [81]	eulerr_7.0.0	broom_1.0.3
## [83]	restfulr_0.0.15	rstatix_0.7.1
## [85]	viridisLite_0.4.1	tibble_3.1.8
## [87]	iterators_1.0.14	GenomicAlignments_1.34.0
## [89]	cluster_2.1.4	