

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 1 of 49

FCC TEST REPORT

Client Name : Jetway Information Co., Ltd.

Address 9F., No.207, Sec.3, Beixin Rd., Xindian City, Taipei

County, Taiwan

Product Name : IPC BAREBONE SYSTEM

Date : Nov. 22, 2019

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: ZHD-HBJC924R

Page 2 of 49

Contents

 General Ir 	ıformation					5
1.1. Clie	nt Informationcription of Device (EUT)	Ann	botek	Anbor	bu.	5
1.2. Des	cription of Device (EUT)	Anbo.	Profisik	hupote.	An	5
1.3 Aux	iliary Equipment Used During	Test botter				6
1.4. Des	cription of Test Modes	00,,,,,,,,,,,,	ier Anbo		iek bupo,	6
1.5. List	cription of Test Modesof channels	- SP	betek prob	Or Arra		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.6. Des	cription Of Test Setup	los V		inpoten V		8
1.7. Tes	Equipment List	Mpoter	And		Anbore	8
1.8. Mea	Equipment Listsures	potek	Aupor	wordt.	Anboten	10
1.9. Des	cription of Test Facility	r. vek	abote	VII.	wołek .	10
2. Summary	of Test Results	VII.	. v	v Vupo		11
3. Conducted	d Emission Test	k Vupo,	A. A.	hok hopo,	V. Ville	12
3.1. Tes	Standard and Limit	, e [†]	oote, Anv	V	wołek Anl	12
3.2. Tes	Setup		anto Oten	Upa In	e/k	12
3.3. Tes	Procedure	Up.	botek	Aupore	bu.	12
3.4. Tes	: Data	Pupore	Pris.	Arriboter	Anby	12
4. Radiation	Spurious Emission and Band	Edge	Anbe	, potek	Anbore	15
4.1. Tes	Standard and Limit		k Vupore		ek	15
4.2. Tes	: Setup		orek Kribo	ler Wipa		15
4.3. Tes	Procedure	yer Ant		, 1016 ^k A11	00. V.	16
4.4 Test	· Data					17
5. Maximum	Peak Output Power Test		Hupoter.	Ann	Motek	25
5.1. Tes	Standard and Limit					25
5.2. Tes	Setup		k Pri	hopoyer	Anv	25
5.3. Test	Procedure	pobote	Am	, Washington	N Anbo	25
5.4. Tes	Data		otek Anbo		orek hup.	25
6. 20DB Occ	upy Bandwidth Test		na ^{Vot} on	Posts. Yur	V	29
0.1.165	. Stariuaru					Z9
	Setup					
6.3. Tes	Procedure	- Apolok	Aupore	br. br.	Wipoley.	29
6.4. Tes	Data	bris.	Arbotek	Anbu	, , , otek	29
7. Carrier Fre	equency Separation Test Standard and Limit	And	tek	Anboro	- A	33
7.1. Tes	Standard and Limit	ek Anbo	. bi.		otes And	33
7.2. Test	Setup	Yav	PL.			33
7.3. Tes	Procedure	V	Mootek	Wilpo.		33
7.4. Tes	Data	Vupo,	P. Porek	poboter	Vun.	33
8. Number o	f Hopping Channel Test Standard and Limit	popole.	VUr.	bojek	Anbo.	37
8.1. Tes	Standard and Limit	Mootek	Anbo.	Motey	nbote	37
8.2. Tes	Setup	······································	ek popoje	Vu.	,ak	37
					90	40-

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Report No.: SZAWW190705006-02	FCC ID: ZHD-HBJC924R	Page 3 of 49
8.3. Test Procedure	Andrew Heater	37
8.4. Test Data	ank phore. And	37
9. Dwell Time Test	my motek pupo, by	39
9.1. Test Standard and Limit	upo. A.	39
9.2. Test Setup	and the second s	39
9.3. Test Procedure	A CONTRACTOR OF THE CONTRACTOR	39
		39
10. 100kHz Bandwidth of Frequency Band	d Edge Requirement	43
10.1. Test Standard and Limit	New York	43
	week hupore Au	43
10.3. Test Procedure	Molek Anbo	43
10.4. Test Data	Nugar Proposition	43
11. Antenna Requirement		48
11.1. Test Standard and Requirement	t	48
11.2. Antenna Connected Construction		48
	All self unboter And	49

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 4 of 49

TEST REPORT

Applicant Jetway Information Co., Ltd.

Manufacturer Dongguan branch of fujian xinyida industrial co., LTD

Product Name IPC BAREBONE SYSTEM

Model No. HBJC924R3288DG2NS, HBJC924RXXXXDGYNS, HBJC923RXXXXDGYNS

Trade Mark N/A

Input: AC 100~240V, 50-60Hz, 0.5A Rating(s)

Output: DC 5V, 3A

Test Standard(s) FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) ANSI C63.10: 2013

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt Jul. 05, 2019 Date of Test Jul. 05~Nov. 20, 2019 Compliance (%) **Anbotek** Prepared by (Engineer / Dolly Mo) Approved * this Thank Reviewer (Supervisor / Bibo Zhang) Sally zhang Approved & Authorized Signer (Manager / Sally Zhang)

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 5 of 49

1. General Information

1.1. Client Information

Applicant	: Jetway Information Co., Ltd.	nbotek
Address	9F., No.207, Sec.3, Beixin Rd., Xindian City, Taipei County, Taiwan	Anbot
Manufacturer	Dongguan branch of fujian xinyida industrial co., LTD	An
Address	: Mayor of dongguan changan changan vanke center green south road no 605 8 commercial office building). 1
Factory	Dongguan branch of fujian xinyida industrial co., LTD	nbotek
Address	Mayor of dongguan changan changan vanke center green south road no 605 8 commercial office building	o. 1 _{pot}

1.2. Description of Device (EUT)

Product Name	:	IPC BAREBONE SYSTI	EM Anbotek Anbotek Anbotek						
Model No.	:	HBJC924R3288DG2NS, HBJC924RXXXXDGYNS, HBJC923RXXXXDGYNS (Note: "X' can represent the number "1 to 9" in arabesques) (Note: All samples are the same except the appearance, so we prepare "HBJC924R3288DG2NS" for test only.)							
Trade Mark	:	N/A	Anbotek Anbotek Anbotek Anbotek						
Test Power Supply	:	AC 120V, 60Hz for adapter							
Test Sample No.		1-2-1(Normal Sample),	1-2-2(Engineering Sample)						
		Operation Frequency:	WiFi: 802.11b/ g/ n(HT20) 2412-2462MHz BT: 2402-2480MHz						
		Transfer Rate:	EDR: 1/2/3 Mbits/s BLE: 1 Mbits/s						
Product		Number of Channel:	WiFi: 11 Channels for 802.11b/ g/ n(HT20) BDR&EDR: 79 Channels BLE: 40 Channels						
Description		Modulation Type:	WiFi: 802.11b CCK; 802.11g/n OFDM BDR&EDR: GFSK, π/4-DQPSK, 8-DPSK BLE: GFSK						
		Antenna Type:	FPC Antenna						
		Antenna Gain(Peak):	2 dBi						

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for BDR&EDR module.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 6 of 49

1.3. Auxiliary Equipment Used During Test

Adapter	1:	Model: MP18-050300-HU
		Input: AC 100-240V, 50/60Hz, 0.5A Max
		Output: DC 5V, 3A
KEYBOARD	:	Manufacturer: DELL
		M/N: SK-8120
		S/N: CN-0DJ365-71616-49J-0MVR-A00
		Input Rating: DC 5V, 0.05A
		CE, FCC, VCCI, KCC, TUV-GS
		Cable: 1.8m, unshielded
MOUSE	:	Manufacturer: DELL
		M/N: MS111-T
		S/N: CN-0KW2YH-71616-488-1CBJ
		Input Rating: DC 5V, 0.1A
		Cable: 1.8m, unshielded
		CE, FCC, VCCI, KCC, TUV-GS
TV	:	Manufacturer: SONY
		M/N: KDL-26EX550
		S/N: 1012240
		CE, FCC: DOC

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Mode 1	Anbotek Anbote An	CH00	Aupotek Auport
Mode 2	GFSK	CH39	ek Anbotek Anbot
Mode 3	Anborek Anbo	CH78	potek Anbotek Anbo
Mode 4	ek Vupoter Vupo	CH00	nbotek Anbotek Anbo
Mode 5	π/4-DQPSK	CH39	TX+Charging/TX Only
Mode 6	Aupotek Aupote, Vur	CH78	Anbotek Anbote
Mode 7	Anbotek Anbors Air	CH00	ek Aupotek Vupour
Mode 8	8-DPSK	CH39	otek Anbotek Anbo.
Mode 9	ek Anborek Anbo	CH78	abotek Anbotek Anbo

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 7 of 49

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2)The data rate was set in 1Mbps for radiated emission due to the highest RF output power.
- (3) During the test, pre-scan all the patterns and find the AC adaptor which is the worst case, only the worst case is recorded in the report.

1.5. List of channels

Channel	Freq. (MHz)								
00	2402	17 N	2419	34	2436	51 🗥	2453	68	2470
01	2403	18	2420	35	2437	52	2454	69	2471
02	2404	19	2421	36	2438	53	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71,000	2473
04	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
05	2408	23	2425	40	2442	57	2459	74	2476
07	2409	24	2426	41	2443	58	2460	75	2477
08	2410	25	2427	42	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	77	2479
10	2412	27	2429	44	2446	61	2463	78	2480
	2413	28	2430	45	2447	62	2464		
12	2414	29	2431	46	2448	63	2465		200
13	2415	30	2432	47	2449	64	2466		
14	2416	31	2433	48	2450	65	2467		
15,000	2417	32	2434	49	2451	66	2468		·
16	2418	33	2435	50 🗥	2452	67	2469		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

Hotline 400-003-0500 www.anbotek.com

Code: AB-RF-05

FCC ID: ZHD-HBJC924R

Page 8 of 49

1.6. Description Of Test Setup

CE

RE

FCC ID: ZHD-HBJC924R

Page 9 of 49

1.7. Test Equipment List

Item	Equipment	Equipment Manufacturer		Serial No.	Last Cal.	Cal.	
1. ^{Anb}	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 04, 2019	1 Year	
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 04, 2019	1 Year	
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 04, 2019	1 Year	
4.70	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 04, 2019	1 Year	
5. P	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 04, 2019	1 Year	
6.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 01, 2019	1 Year	
Anboit 7.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 01, 2019	1 Year	
8.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 01, 2019	1 Year	
9.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 01, 2019	1 Year	
10.	Pre-amplifier	SONOMA	310N	186860	Nov. 04, 2019	1 Year	
nboten 11.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A	
12.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 04, 2019	1 Year	
13.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 04, 2019	1 Year	
14.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 04, 2019	1 Year	
15.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 04, 2019	1 Year	
16.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 04, 2019	1 Year	
17.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 04, 2019	1 Year	
18.	DC Power Supply	LW	TPR-6420D	374470	Nov. 04, 2019	1 Year	
19.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80 B	N/A	Nov. 04, 2019	1 Year	

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 10 of 49

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	botek
		Ur = 3.8 dB (Vertical)	Anborek
		sorek Anbot Anborek Anborek Anborek	Anbor
Conduction Uncertainty	:	Uc = 3.4 dB	An

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, September 27, 2019.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A, March 07, 2019.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 11 of 49

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(1)	Conducted Peak Output Power	PASS
15.247(a)(1)	20dB Occupied Bandwidth	PASS
15.247(a)(1)	Carrier Frequencies Separation	PASS
15.247(a)(1)	Hopping Channel Number	PASS
15.247(a)(1)	Dwell Time	PASS
15.247(d)	Band Edge	PASS
Remark: "N/A" is an abbro	eviation for Not Applicable.	Anbotek Anboten

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 12 of 49

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	7 tek anbotek Anbe						
Test Limit	Francis	Maximum RF Line Voltage (dBuV)						
	Frequency	Quasi-peak Level	Average Level					
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
	500kHz~5MHz	56	46					
	5MHz~30MHz	60,04	50, botel					

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

During the test, pre-scan all the modes, and found Low channel(TX+Charging Mode) which is the worst case, only the worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 13 of 49

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 23.5℃ Hum.: 54%

400-003-0500 www.anbotek.com

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 14 of 49

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 23.5℃ Hum.: 54%

Freq. (MHz)	(dBuV)	Factor (dB)	(dBuV)	Limit dBuV	(dB)	Detector	Remark
0.2220	29.98	19.90	49.88	62.74	-12.86	QP	
0.4820	27.58	19.97	47.55	56.30	-8.75	QP	
0.4940	10.54	19.98	30.52	46.10	-15.58	AVG	
0.6060	25.48	20.01	45.49	56.00	-10.51	QP	
0.7539	14.46	20.05	34.51	46.00	-11.49	AVG	
0.9100	22.28	20.10	42.38	56.00	-13.62	QP	
1.0900	8.33	20.12	28.45	46.00	-17.55	AVG	
1.7100	9.19	20.13	29.32	46.00	-16.68	AVG	
2.1540	21.48	20.14	41.62	56.00	-14.38	QP	
2.1540	9.61	20.14	29.75	46.00	-16.25	AVG	
4.4780	8.69	20.19	28.88	46.00	-17.12	AVG	
4.9940	21.17	20.21	41.38	56.00	-14.62	QP	
	(MHz) 0.2220 0.4820 0.4940 0.6060 0.7539 0.9100 1.0900 1.7100 2.1540 4.4780	(MHz) (dBuV) 0.2220 29.98 0.4820 27.58 0.4940 10.54 0.6060 25.48 0.7539 14.46 0.9100 22.28 1.0900 8.33 1.7100 9.19 2.1540 21.48 2.1540 9.61 4.4780 8.69	(MHz) (dBuV) (dB) 0.2220 29.98 19.90 0.4820 27.58 19.97 0.4940 10.54 19.98 0.6060 25.48 20.01 0.7539 14.46 20.05 0.9100 22.28 20.10 1.0900 8.33 20.12 1.7100 9.19 20.13 2.1540 21.48 20.14 2.1540 9.61 20.14 4.4780 8.69 20.19	(MHz) (dBuV) (dB) (dBuV) 0.2220 29.98 19.90 49.88 0.4820 27.58 19.97 47.55 0.4940 10.54 19.98 30.52 0.6060 25.48 20.01 45.49 0.7539 14.46 20.05 34.51 0.9100 22.28 20.10 42.38 1.0900 8.33 20.12 28.45 1.7100 9.19 20.13 29.32 2.1540 21.48 20.14 41.62 2.1540 9.61 20.14 29.75 4.4780 8.69 20.19 28.88	(MHz) (dBuV) (dB) (dBuV) dBuV 0.2220 29.98 19.90 49.88 62.74 0.4820 27.58 19.97 47.55 56.30 0.4940 10.54 19.98 30.52 46.10 0.6060 25.48 20.01 45.49 56.00 0.7539 14.46 20.05 34.51 46.00 0.9100 22.28 20.10 42.38 56.00 1.0900 8.33 20.12 28.45 46.00 1.7100 9.19 20.13 29.32 46.00 2.1540 21.48 20.14 41.62 56.00 2.1540 9.61 20.14 29.75 46.00 4.4780 8.69 20.19 28.88 46.00	(MHz) (dBuV) (dB) (dBuV) dBuV (dB) 0.2220 29.98 19.90 49.88 62.74 -12.86 0.4820 27.58 19.97 47.55 56.30 -8.75 0.4940 10.54 19.98 30.52 46.10 -15.58 0.6060 25.48 20.01 45.49 56.00 -10.51 0.7539 14.46 20.05 34.51 46.00 -11.49 0.9100 22.28 20.10 42.38 56.00 -13.62 1.0900 8.33 20.12 28.45 46.00 -17.55 1.7100 9.19 20.13 29.32 46.00 -16.68 2.1540 21.48 20.14 41.62 56.00 -14.38 2.1540 9.61 20.14 29.75 46.00 -16.25 4.4780 8.69 20.19 28.88 46.00 -17.12	(MHz) (dBuV) (dB) (dBuV) dBuV (dB) Detector 0.2220 29.98 19.90 49.88 62.74 -12.86 QP 0.4820 27.58 19.97 47.55 56.30 -8.75 QP 0.4940 10.54 19.98 30.52 46.10 -15.58 AVG 0.6060 25.48 20.01 45.49 56.00 -10.51 QP 0.7539 14.46 20.05 34.51 46.00 -11.49 AVG 0.9100 22.28 20.10 42.38 56.00 -13.62 QP 1.0900 8.33 20.12 28.45 46.00 -17.55 AVG 1.7100 9.19 20.13 29.32 46.00 -16.68 AVG 2.1540 21.48 20.14 41.62 56.00 -14.38 QP 2.1540 9.61 20.14 29.75 46.00 -16.25 AVG 4.4780 8.69 20.1

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 15 of 49

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15	5.209 and 15.205	potek Anbor	ok bos	ek Anborek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	Anbo	n obotek	300
	0.490MHz-1.705MHz	24000/F(kHz)	anbo	k -nbotek	30
	1.705MHz-30MHz	30	oter Pup	orek - Anbor	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	jotek 3 Ambo
	88MHz~216MHz	150	43.5	Quasi-peak	Ambotek 3 Am
	216MHz~960MHz	200	46.0	Quasi-peak	Anbora 3
	960MHz~1000MHz	500	54.0	Quasi-peak	3
	Ab 4000MI	500	54.0	Average	3 botel
	Above 1000MHz	Anb. orek	74.0	Peak	otek 3 Anboti

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 17 of 49

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan the GFSK, π /4QPSK, 8DPSK modulation, and found the GFSK modulation Middle channel(TX+Charging Mode) which is the worst case, only the worst case is recorded in the report

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 18 of 49

Test Results (30~1000MHz)

Job No.: SZAWW190705006-02 Temp.(℃)/Hum.(%RH): 24.9℃/51%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Mode 2 Polarization: Horizontal

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 19 of 49

Test Results (30~1000MHz)

Job No.: SZAWW190705006-02 Temp.(℃)/Hum.(%RH): 24.9℃/51%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Mode 2 Polarization: Vertical

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 20 of 49

Test Results (1GHz-25GHz)

Test Mode:	CH00			Test	channel: Lov	vest		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	42.57	34.04	6.58	34.09	49.10	74.00	-24.90	V
7206.00	35.32	37.11	7.73	34.50	45.66	74.00	-28.34	V
9608.00	34.58	39.31	9.23	34.79	48.33	74.00	-25.67	V
12010.00	* totek	Anboren	Anbu	ek nap	otek Anb	74.00	potek p	Vodn
14412.00	* botek	Anbot	Aup.	otek	abotek A	74.00	botek	AnV
4804.00	47.93	34.04	6.58	34.09	54.46	74.00	-19.54	Ho
7206.00	37.54	37.11	7.73	34.50	47.88	74.00	-26.12	Н
9608.00	34.50	39.31	9.23	34.79	48.25	74.00	-25.75	tek H
12010.00	Yupour*	An- hotek	Aupotek	Anbo	tek vupc	74.00	bur.	Hotod.
14412.00	Aup *	Vien Post	K Anbore	Anb	rek	74.00	por p	H
			A۱	verage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4804.00	30.39	34.04	6.58	34.09	36.92	54.00	-17.08	V
7206.00	23.41	37.11	7.73	34.50	33.75	54.00	-20.25	Poster
9608.00	22.16	39.31	9.23	34.79	35.91	54.00	-18.09	AUPA
12010.00	* Put	4 Anb	of Str. Aug	atek .	anbotek	54.00	Projek.	V
14412.00	* * * * * * * * * * * * * * * * * * * *	otek b	Hotek P	inpo	Motek	54.00	An-	V
4804.00	35.20	34.04	6.58	34.09	41.73	54.00	-12.27	ek H
7206.00	25.94	37.11	7.73	34.50	36.28	54.00	-17.72	Hyprote
9608.00	22.33	39.31	9.23	34.79	36.08	54.00	-17.92	, He
12010.00	Vupolor.	bu.	sek Aups	HEK AN	or by	54.00	hopole	H.
14412.00	Aupole	Vien	otek N	botek	Anbo.	54.00	Aupole	Pur

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 21 of 49

Test Results (1GHz-25GHz)

Test Mode:	CH39			Test	channel: Mid	ldle		
Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	36.52	34.38	6.69	34.09	43.50	74.00	-30.50	V
7323.00	31.31	37.22	7.78	34.53	41.78	74.00	-32.22	V
9764.00	31.01	39.46	9.35	34.80	45.02	74.00	-28.98	V
12205.00	Ans *otek	Anborek	Anbo	ek anb	ojek bup,	74.00	potek p	Vodn
14646.00	Ann * Polek	Anbot	Anbo	.ek	abotek A	74.00	hotek.	AnV
4882.00	40.65	34.38	6.69	34.09	47.63	74.00	-26.37	Ho
7323.00	33.00	37.22	7.78	34.53	43.47	74.00	-30.53	Н
9764.00	30.35	39.46	9.35	34.80	44.36	74.00	-29.64	rek H
12205.00	Anbore*	Ann	Anbotek	Aupo	rek opc	74.00	PLID.	Horow
14646.00	Anb green	Vuga Pote	k anbote	Anbe	rek bu	74.00	DOJOT D	H
		- 110	A۱	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4882.00	25.49	34.38	6.69	34.09	32.47	54.00	-21.53	V
7323.00	20.09	37.22	7.78	34.53	30.56	54.00	-23.44	ooteV
9764.00	19.22	39.46	9.35	34.80	33.23	54.00	-20.77	Value
12205.00	Pur *	k Anb	olek Vup	*6/r	abotek	54.00	hun Potek	V
14646.00	***************************************	otek D	hpotek b	'upo,	abotek	54.00	Ann	V
4882.00	29.63	34.38	6.69	34.09	36.61	54.00	-17.39	≱ Н
7323.00	22.21	37.22	7.78	34.53	32.68	54.00	-21.32	Heto
9764.00	18.88	39.46	9.35	34.80	32.89	54.00	-21.11	H
12205.00	An*otek	Mupo	ek anbr	Hek An	Por Vi	54.00	hore	H
14646.00	*nbote*	Vup.	rek	botek	Aupor	54.00	Anboten	PUP.

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 22 of 49

Test Results (1GHz-25GHz)

Test Mode:	CH78			Test	channel: Hig	hest		
Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	37.60	34.72	6.79	34.09	45.02	74.00	-28.98	V
7440.00	32.02	37.34	7.82	34.57	42.61	74.00	-31.39	V
9920.00	31.64	39.62	9.46	34.81	45.91	74.00	-28.09	V
12400.00	And *otek	Anbotek	Anbo	ek anb	ojek bup,	74.00	potek s	Vo C
14880.00	An * work	Anbot	Anbe	iek .	abotek A	74.00	hotek	AnVite
4960.00	41.94	34.72	6.79	34.09	49.36	74.00	-24.64	Hair
7440.00	33.80	37.34	7.82	34.57	44.39	74.00	-29.61	Н
9920.00	31.09	39.62	9.46	34.81	45.36	74.00	-28.64	ek H
12400.00	Aupote*	prin botek	Anbotek	Aupo	rek opc	74.00	Y VUIN	word#
14880.00	Anb Press	VUD POLE	k anbote	Anbr	rek bu	74.00	DOJOL DI	Hie
833			A۱	verage Valu	е		1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	25.55	34.72	6.79	34.09	32.97	54.00	-21.03	V
7440.00	20.13	37.34	7.82	34.57	30.72	54.00	-23.28	ONEY
9920.00	19.25	39.62	9.46	34.81	33.52	54.00	-20.48	AnbViel
12400.00	A/12	k anb	olek bup	*6/r	abotek	54.00	parek.	Voc
14880.00	***************************************	stek b	Apolek P	upo, rek	pas	54.00	Ame	V
4960.00	29.70	34.72	6.79	34.09	37.12	54.00	-16.88	₩ Н
7440.00	22.25	37.34	7.82	34.57	32.84	54.00	-21.16	Heto
9920.00	18.92	39.62	9.46	34.81	33.19	54.00	-20.81	H.K
12400.00	An*orek	Aupr	ek anbo	HEK AN	Por Vi	54.00	hbore	Н
14880.00	*nbole*	Anbi	rek	botek	Aupor	54.00	Anboten	MUPO

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 23 of 49

Radiated Band Edge:

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 24 of 49

Remark:

- 1. During the test, pre-scan the GFSK, π /4QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 25 of 49

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Se	CC Part15 C Section 15.247 (b)(3)				anbotek
Test Limit	125mW	Aupor	abotek	Anboten	And	Anbor

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode	:	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature	:	22.6℃
Test Result	:	PASS	Humidity	:	51%RH

Channel Frequency	Peak Power output	Limit	Dogulto	Modulation	
(MHz)	(dBm)	(dBm)	Results	Modulation	
2402	-0.581	20.96	PASS	BDR	
2441	-1.666	20.96	PASS	BDR	
2480	1.000	20.96	PASS	BDR	
2402	-1.165	20.96	PASS	EDR	
2441	-2.384	20.96	PASS	EDR	
2480	0.126	20.96	PASS	motel EDR nbotes	

Remark: The EDR was tested on (π /4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: ZHD-HBJC924R

Page 26 of 49

Test Mode: BDR---Low

Test Mode: BDR---Middle

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: ZHD-HBJC924R

Page 27 of 49

Test Mode: BDR---High

Test Mode: EDR---Low

FCC ID: ZHD-HBJC924R

Page 28 of 49

Test Mode: EDR---Middle

Test Mode: EDR---High

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 29 of 49

6. 20DB Occupy Bandwidth Test

6.1. Test Standard

Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbore	And	Anbotek

6.2. Test Setup

6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

6.4. Test Data

Test Item : 20dB BW Test Mode : CH Low ~ CH High Test Voltage : AC 120V, 60Hz for adapter Temperature : 22.6° C Test Result : PASS Humidity : 51%RH

Channel	Frequency(MHz)	20dB Down BW(kHz)	Modulation Mode
Low	2402	899.8	BDR MOON
Middle	2441	937.3	BDR
High	2480	937.0	BDR
Low	2402	1267	hotek EDR potek
Middle	2441	1266	abotek EDR Anbotek
High	2480	1266	EDR Anbore

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 30 of 49

Test Mode: BDR---Low

Test Mode: BDR---Middle

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 31 of 49

Test Mode: BDR---High

Test Mode: EDR---Low

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 32 of 49

Test Mode: EDR---Middle

Test Mode: EDR---High

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 33 of 49

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbore	Andhorek	Anborek
Test Limit	>25KHz or >two-thirds of the 20 dB bandwidth	Anbore	4 hotek	Anbor

7.2. Test Setup

7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

7.4. Test Data

Test Item	:	Frequency Separation	Test Mode :	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature :	22.6℃
Test Result	:	PASS	Humidity :	51%RH

Channel	Frequency (MHz)	Separation Read Value (kHz)	Limit (kHz)	Modulation Mode	
Low	2402	1000	899.8	BDR	
Middle	2441	1000	937.3	BDR Mills	
High	2480	1000	937.0	BDR	
Low	2402	1000	846.7	EDR	
Middle	2441	1000	844.0	EDR	
High	2480	1000	844.0	orek EDR	

Remark: (1)The limit is 2/3 of 20dB BW;

(2)The EDR was tested on (π /4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: ZHD-HBJC924R

Page 34 of 49

Test Mode: BDR---Low

Test Mode: BDR---Middle

FCC ID: ZHD-HBJC924R

Page 35 of 49

Test Mode: BDR---High

Test Mode: EDR---Low

FCC ID: ZHD-HBJC924R

Page 36 of 49

Test Mode: EDR---Middle

Test Mode: EDR---High

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R

8. Number of Hopping Channel Test

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Sec	ction 15.247 (a)	(1)	Anbore	Andhorek	Anborek
Test Limit	>15 channels	Anbo	nbotek	Anbore	Am	Anbo

8.2. Test Setup

8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8.4. Test Data

	Test Item :	Number of Hopping Frequency	Test Mode :	CH Low ~ CH High
51	Test Voltage :	AC 120V, 60Hz for adapter	Temperature :	22.6℃
	Test Result :	PASS	Humidity :	51%RH

Hopping Channel	Quantity of Hopping	Quantity of Hopping	Modulation Mode
Frequency Range	Channel	Channel	Modulation Mode
2402-2480MHz	79 motel	>15	BDR
2402-2480MHz	79 Ambo	>15	EDR Model

Remark: The EDR was tested on (π/4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

FCC ID: ZHD-HBJC924R

Page 38 of 49

BDR Mode

EDR Mode

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924I

9. Dwell Time Test

9.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbores	Annahorek	Anbotek
Test Limit	0.4 sec	tek Anbore	y Ans hotek	Anbo

9.2. Test Setup

9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

9.4. Test Data

Test Mode Test Item Time of Occupancy CH Low ~ CH High Test Voltage AC 120V, 60Hz for adapter Temperature **22.6**℃ Test Result **PASS** Humidity 51%RH

Package Type	Pulse width (ms)	Time slot length(ms)	Dwell time (ms)	Limit (s)	Modulation
DH1	0.374	time slot length *1600/2 /79 * 31.6	119.68	0.4	BDR
DH3	1.630	time slot length *1600/4 /79 * 31.6	260.80	0.4	BDR
DH5 M	2.880	time slot length *1600/6 /79 * 31.6	307.20	0.4	BDR
3DH1	0.382	time slot length *1600/2 /79 * 31.6	122.24	0.4	EDR
3DH3	1.630	time slot length *1600/4 /79 * 31.6	260.80	0.4	EDR
3DH5	2.880	time slot length *1600/6 /79 * 31.6	307.20	0.4	EDR

Remark: The EDR was tested on (π/4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 40 of 49

Test Mode: BDR---DH1

Test Mode: BDR---DH3

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 41 of 49

Test Mode: BDR---DH5

Test Mode: EDR---3DH1

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 42 of 49

Test Mode: EDR---3DH3

Test Mode: EDR---3DH5

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 43 of 49

10. 100kHz Bandwidth of Frequency Band Edge Requirement

10.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the
	desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

10.2. Test Setup

10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

10.4. Test Data

Test Item : Band edge : CH Low ~ CH High

Test Voltage : AC 120V, 60Hz for adapter Temperature : $22.6\,^{\circ}$ C Test Result : PASS Humidity : 51%RH

Remark: The EDR was tested on (π /4QPSK, 8DPSK) modes, only the worst data of (π /4DQPSK) is attached in the following pages.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

FCC ID: ZHD-HBJC924R

Page 44 of 49

For Hopping Mode

BDR mode

EDR mode

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: ZHD-HBJC924R

Page 45 of 49

For Non-Hopping Mode

BDR mode -- Lowest

BDR mode -- Highest

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: ZHD-HBJC924R

Page 46 of 49

For Non-Hopping Mode

EDR mode -- Lowest

EDR mode -- Highest

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 47 of 49 Conducted Emission Method Stort Freq 30.0000000 MHz PHO: Fast Freq 30.000000 MHz PHO: Fast Freq 30.0000000 MHz PHO: Fast Freq 30.000000 MHz PHO: Fast Freq 30.00000 MHz PHO: Fast Freq 30.000000 MHz PHO: Fast Freq 30.000000 MHz PHO: Fast Freq 30.00000 MHz PHO: Fast Freq 30.0000

Test Mode: BDR---Low

| Address | Section | Audyland | Section | S

Test Mode: EDR---High

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 48 of 49

11. Antenna Requirement

11.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator, the manufacturer may design the unit so that a broken antenna
	can be replaced by the user, but the use of a standard antenna jack or electrical
Requirement	connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain
	greater than 6dBi provided the maximum conducted output power of the intentional
	radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna

11.2. Antenna Connected Construction

The antenna is FPC Antenna which permanently attached, and the best case gain of the antenna is 2 dBi. It complies with the standard requirement.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Report No.: SZAWW190705006-02 FCC ID: ZHD-HBJC924R Page 49 of 49

APPENDIX I -- PHOTOGRAPH

Reference to the test report SZAWW190705006-01.

----- End of Report ------