TEST MATLAB (STATISTIEK EN (1 ^{ste} zit '20-'21, reeks A) Opleiding industrieel ingenieur	WISKUNDIGE DATA-ANALYSE) FACULTEIT INGENIEURSWETENSCHAPPI EN ARCHITECTUUR	EN
Naam :	Richting:	/20

Schrijf netjes. Vul in op de opengelaten plaatsen. De MATLAB-code komt in de kadertjes. Geen gsm, smartphone, rekentoestel Veel succes!

1. Het verbruik x (in kWh) van een nieuw type elektromotor wordt onderzocht. Onder dezelfde omstandigheden werden 6 dergelijke motoren getest en werden volgende verbruikswaarden opgemeten:

/4

0.22 $0.30 \quad 0.19$ 0.23

(a) Kunnen we met 95% betrouwbaarheid aannemen dat de gegevens komen uit een normale verdeling met gemiddelde 0.25 kWh? Leg uit waarom.

KS-test

the: mormale verdeling mut $\mu = 0.25$ aanwerig

Ho: geen mormale verdeling met $\mu = 0.25$ aanwerig

Ho: geen mormale verdeling met $\mu = 0.25$ aanwerig

Sexten = 0.4027

Xver X => met 95% betrouwbaard

wordt Ho aanvaard

(b) Wat is a als P(x < a) = 0.6, berekend op basis van de gemeten data?

$$a = 0.2413$$

morminy (0.6, mean (A), std (A))

Wat is a als P(y < a) = 0.6, berekend op basis van de theoretische verdelingsfunctie N(0.25, s) voor y (met s de standaarddeviatie van de gegeven data)?

$$a = 0.26.13$$

morminv (0.6, 0.25, std (A))

2. Bepaal de grootste eigenwaarde van
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix}$$
.

$$\lambda = 2.3429$$
 (numeriek, 4 cijfers na de komma)
$$A = [1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0; 1 \ 0 \ 0 \ -1; 1 \ 0 \ -1 \ 0];$$

$$V = eig(A)$$

/2.5

3. Bereken
$$S=\sum_{k=2}^{1000}\frac{1+3\,k}{\sqrt{k^5}}.$$
 (numeriek, 4 cijfers na de komma)

$$S = 4.988.9$$

Bereken
$$S = \sum_{k=2}^{1000} \frac{1+3k}{\sqrt{k^5}}$$
. (numeriek, 4 cijfers na de komma) $x = 2:1:m$; $f = \omega(t)(1+3.4t)./\sqrt{14}$ $f = \omega(t)(1+3.4t)./\sqrt{14}$

/2.5

/5

4. Teken (op 1 tekening!) de krommen
$$y = 1 - \frac{x}{8}$$
 en $y = (x^2 - 5x + 4)\sqrt{x}e^{-x}$ voor $x < 4$. Gebruik deze tekening om een numerieke oplossing (4 cijfers na de komma) te vinden van de vergelijking $1 - \frac{x}{8} = (x^2 - 5x + 4)\sqrt{x}e^{-x}$.

Gebruik deze tekening om een numerieke oplossing (4 cijfers na de komma) te vinden van de vergelijking
$$1-\frac{x}{8}=(x^2-5x+4)\sqrt{x}e^{-x}$$
.
$$\mathcal{X}=0:0.03:4; \\ \text{plot}(x,(x.^2-5*x+4).*\text{Mpl}(x).*\text{exp}(-x); \\ \text{hold on} \\ \text{plot}(x,1-x./8) \\ \text{f}=\omega(x)(x^2-5*x+4)*\text{Mpl}(x)*\text{exp}(-x)-1+x/8; \\ \text{Oplossing: 0.3753} \\ \text{fzero}(f,0.2)$$

Oplossing: 0.3753

of 0.0942

Tekening:

5. De levensduur (in minuten) van een machinecomponent wordt in verband gebracht met het voltage waaronder die werkt en de motorsnelheid (toerental per minuut). Een experiment leverde volgende data op:

Levensduur	Voltage	Toerental
2145	110	750
2155	110	850
2220	110	1000
2260	120	750
2266	120	850
2334	120	1000

Is er een significant verschil op populatieniveau in levensduur volgens het voltage en volgens de motorsnelheid. Zo ja, waartussen? Leg je besluitvorming uit. Je mag veronderstellen dat de nodige veronderstellingen om de gebruikte test uit te voeren,

block design the: U₇₅₀ = U₈₅₀ = U₈₀₀ H₁: er is een verschil in gemiddelde levenduur volgens toerental p=0.000647 < α = 0.05 => Ho verwerren met 95% betrouwbaarheid

Ho: Mnov = Mnov Hn: Mnov = Mnov p=0.0001124 < x=0.05 => Ho verwerpen met 95% letrouwbaarheid

post-hoc: M350=M800 (x=0.05): M350=M800 Mnov + Mno M80+M000 (alles met 95% betrouwlaarheid)

Wat is de de standaardafwijking bij deze 6 gemeten waarden voor levensduur?

1=72.0583

Wat is het 90%-betrouwbaarheidsinterval voor de $\mu_{110V} - \mu_{120V}$? (pepaard bektyken) [-116.842, -109.8239]