Imie i nazwisko	Sylwester Macura
Kierunek	Informatyka Stosowana
Rok	3
Grupa	2
Temat	Wyznaczanie objętości i momentu bezwładności kuli metodą Monte Carlo

1. Wstęp teoretyczny

Metoda Monte Carlo stosuje się do modelowania procesów zbyt skomplikowanych aby dokonać tego analitycznie. W tej metodzie interesuje nas wyznaczenie parametrów zmiennej losowej z=z(x)

która jest funkcją wektora zmiennych losowych $x=[x_1,x_2,x_3,x_4,...,x_m]$ rozkład gęstości prawdopodobieństwa opisuje funkcja

$$\int_{V} f(x) dx = 1$$

co możemy zapisać

$$\int_{V} z(x) f(x) dx$$

wartość tej całki jest w przybliżeniu równa

$$\frac{1}{N} \sum_{i=1}^{N} z(x)$$

błąd oszacowania wynosi

$$\sigma(I) = s \frac{(z)}{\sqrt{(N)}}$$

Zazwyczaj obszarem całkowanie jest podzbiór przestrzeni R^m W takim przypadku obliczaną całkę określamy

$$I = \int_{\Omega} 1_{V}(x)z(x)f(x)dx$$

gdzie

$$1_V(x) = 1 dla x \in V 0 dla x \notin V$$

dla metody orzeł reszka metoda przyjmuje postać

$$\frac{\Omega}{N} \sum_{i=1}^{N} 1_{V}(x) z(x)$$

2. Zadania do wykonania

- oszacować metodą MC objętość kuli oraz błąd oszacowania
- oszacować metoda MC moment bezwładności kuli względem osi przechodzącej przez jej środek
- oszacować metoda MC moment bezwładności kuli względem osi równoległej wględem osi przechodzącej przez jej środek

3. Wykonanie zadania

oszacować metodą MC objętość kuli

• oraz błąd oszacowania

oszacować metoda MC moment bezwładności kuli względem osi przechodzącej przez jej

oraz jej błąd

oszacować metoda MC moment bezwładności kuli względem osi równoległej wględem osi

przechodzącej przez jej środek

oraz błąd

4.Wnioski

Jak można było się spodziewać im więcej iteracji tym otrzymujemy dokładniejszy wynik. Co prawda nie otrzymaliśmy wyniku dokładnego, ale w metodzie Monte Carlo nie wyznaczamy dokładnych parametrów tylko je estymujemy. Sprawia to że metoda MC jest niedokładna jej zaletą jest natomiast możliwość uzyskania wyniku w miarę dokładnego w akceptowalnym przedziale czasowym. Drugą wadą tej metody jest to że gdy podniesiemy wymiar musimy wygenerować więcej zmiennych losowych ponieważ coraz więcej próbek trafia poza interesujący nas obszar. W tym przypadku dopiero po wylosowaniu 10000 otrzymaliśmy akceptowalny wynik.