Real Analysis I: Continuity

Arjun Vardhan

†

Created: 25th February 2022 Last updated: 25th February 2022

1 Limits of Functions

• Let X and Y be metric spaces. Suppose $E \subset X$, f maps E into Y, and p is a limit point of E. Then, $\lim_{x \to p} f(x) = q$ if there exists a point $q \in Y$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that $d_X(x,p) < \delta \implies d_Y(f(x),q) < \epsilon$, where $x \in E$. Restated in \mathbb{R} , $\lim_{x \to p} f(x) = q$ if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|x - p| < \delta \implies |f(x) - q| < \epsilon$.

•

- 2 Continuous Functions
- 3 Continuity and Compactness
- 4 Continuity and Connectedness
- 5 Discontinuities
- 6 Monotonic Functions
- 7 Infinite Limits and Limits at Infinity