第一周作业1529721 冯励:

1、阅读《数据库系统教程》第一章,遇到不懂的地方,可以对照其它书一起来看,看后按照自己的思路写出读书小结,上传EOL。要求: 小结中需要将你认为重要的新名词、新术语——列举出来,并给出你对这个名词或术语的理解。罗列出阻碍你深入阅读或深入理解的问题,或者阅读过程中想到的问题; 写出你的收获按照规范的参考文献形式,写出你参考的图书或者文章列表上传截至时间: 20172.27早8: 15之前每天阅读一小时,每天进步一点点。

基本术语

1. 数据库(database/db)

db 是长期存储在计算机内、有组织的、统一管理的相关数据的集合。db 能为各种用户共享,具有较小冗余度、数据间联系紧密而又有较高的数据独立性等特点。

2. 数据库管理系统(database management system / 简称为dbms)

dbms 是位于用户与操作系统之间的一层数据管理软件,它为用户或应用程序提供访问 db 的方法、包括 db 的建立、查询、更新及各种数据控制。

3. 数据库系统 (database system/dbs)

dbs是实现有组织地、动态地存储大量关联数据、方便多用户访问的计算机硬件、软件和数据资源组成的系统,即它是采用数据库技术的计算机系统

4. 数据库技术

数据库技术是研究数据库的结构、存储、设计、管理和使用的一门软件课程.是一门综合性较强的课程

数据库的发展历史

数据管理技术的发展经历了以下四个阶段:人工管理阶段、文件系统阶 段、数据库阶段和高级数据库阶段。

人工管理阶段

- 1. 数据不保存在计算机内。计算机主要用于计算
- 2. **没有专用的软件对数据进行管理。**每个应用程序都要包括存储结构、存 取方法、输入,输出方式 等内容。

- 3. **只有程序(programe)的概念,没有文件(file)的概念**。数据的组织方式必须 由程序员自行设计与安排。
- 4. 数据面向程序。即一组数据对应一个程序

文件系统阶段

类似全国大学都有的c语言大作业--学生信息管理系统,csv格式储存,自己实现增改删查。。

- 1. 数据以"文件"形式可长期保存在外部存储器的磁盘上。
- 2. 数据的逻辑结构与物理结构有了区别,但比较简单。程序与数据之间具 有"设备独立性",即程序只需用文件名就可与数据打交道,不必关心数据的物理位 置。由操作系统的文件系统提供存取方法。
- 3. 文件组织已多样化。有索引文件、链接文件和直接存取文件等。但文件 之间相互独立、缺乏联系。数据之间的联系要通过程序去构造。
- 4. 数据不再属于某个特定的程序,可以重复使用。

但与此同时、文件系统也有三个明显的缺点。

- 1. 数据冗余
- 2. 数据不一致
- 3. 数据联系弱

由于这些原因, 人们只好研究新的数据库理论...

数据库阶段

20世纪 60 年代末,磁盘技术取得重要进展,具有数百兆字节容量和快速存取的磁 盘陆续进入市场,成本也不高,这就为数据库技术的产生提供了良好的物质条件。 数据管理技术进入数据库阶段的标志是 20 世纪 60 年代末的三件大事:

- 1. 1968年美国 IBM 公司推出层次模型的 IMS 系统;
- 2. 1969年美国 CODASYL 组织发布了 DBTG 报告。总结了当时各式各样的 数据库,提出网状模型;
- 3. 1970年美国 IBM 公司的 E.f.Codd 连续发表论文,提出关系模型,奠定了 关系数据库的理论基础。

数据库阶段的数据管理具有以下特点:

- 1. 采用数据模型表示复杂的数据结构。数据模型不仅描述数据本身的特征,还要描述数据之间的联系。
- 2. 有较高的数据独立性。数据的逻辑结构与物理结构之间的差别可以很 大。用户以简单的逻辑结构操作数据而无需考虑数据的物理结构。
- 3. 数据库系统为用户提供了方便的用户接口。
- 4. 增加了系统的灵活性:对数据的操作不一定以记录为单位,可以以数据项为单位。 **从文件系统发展 到数据库系统是信息处理领域的一个重大变化。数据结构的设计成为信息系统首先关心的问题,而**

利用这些数据的 应用程序设计则退居到以既定的数据结构为基础的外围地位。

高级数据库技术阶段

这一阶段的主要标志是 80 年代的分布式数据库系统、90 年代的对象数据库系统和 21 世纪初的网络数据库系统的出现。

数据描述

在数据处理中,数据描述将涉及到不同的范畴。从事物的特性到计算机中的 具体表示,实际上经历了三个阶段———概念设计中的数据描述、逻辑设计中的数据 描述和物理设计中的数据描述

概念设计中的数据描述

enitity

客观存在,可以相互区别的事物称为实体。实体可以是具体的对象,例如一名男学生,一辆汽车等。也可以是抽象的对象,例如一次借书,一场足球比赛等。

entity set

性质相同的同类实体的集合称为实体集。例如所有的男学生、全国足球锦标赛的所有比赛等。

attribute

实体有很多特性,每一个特性称为属性。每个属性有一个值域,其类型可以是整数型、实数型、字符串型等。例如学生有学号、姓名、年龄、性别等属性。

identifier

能惟一标识实体的属性或属性集的标识符称为实 体标识符。有时也称为关键码(key),或简称为键。例如学生的学号可以作为学生 实体的标识符。

逻辑设计中的数据描述

field

标记实体属性的命名单位称为字段,或数据项。它是可以命名的最小信息单位,所以又称为数据元素或初等项。字段的命名往往和属性名相同。例如学生有学号、姓名、年龄、性别等字段。

record

字段的有序集合称为记录。一般,用一个记录描述一个实体,所以记录又可以定义为能完整地描述一

个实体的字段集。例如一个学生记录, 由有序的字段集组成:(学号, 姓名, 年龄, 性别)。

file

同一类记录的集合称为文件

key

能惟一标识文件中每个记录的字段或字段集, 称为记录的 关键码(简称为键)。

物理设计中的数据描述

数据库的物理设计是设计数据库的物理结构

熟悉的:

bit, byte, word, block,

bucket

外存的逻辑单位,一个桶可以包含一个物理块或多个在空间 上不一定连续的物理块

volume

一个输入@输出设备所能装载的全部有用信息,称为"卷"。例如磁带机的一盘磁带就是一卷,磁盘的一个盘组也是一卷。

数据联系的描述

一对一,一对多, 多对多, 一元,二元,三元 ...n 元

数据模型的定义

这里的定义不是用DDL定义,说的是是数学定义。。。

逻辑数据模型应包含数据结构、数据操作和数据完整性约束三个部分.

enitity relationship model (er图)

没什么可说的。。。这东西还有个发明人。。。

层次模型

层次模型面对的是逻辑数据 而不是物理数据,用户不必花费大量的精力考虑数据的物理细节

只能表示 1:n 联系,虽然系统有多种辅助手段 实现 n:m 联系,但较复杂,用户不易掌握;且由于层次顺序的严格和复杂,引起数据的查询和更新操作很复杂,因此应用程序的编写也比较复杂。

网状模型

特点是记录之间联系通过指针实现,m:n 关系容易实现

缺点是数据结构复杂和编程复杂

由于层次系统和网状系统的天生缺点,因此从 20 世纪 80 年代中期起其市场已被关系模型取代

关系模型

relational model 的主要特征是用二维表格表示实体集。与前两种 模型相比,关系模型数据结构简单,容易为初学者理解

PART 关系

P#	PNAME	COLOR	WEIGHT
P1	SCREW	BLUE	14
P2	BOLT	GREEN	17
P3	NUT	RED	12
P4	SCREW	RED	19

PROJECT 关系

J#	JNAME	DATE
J1	JA	89.1
J2	JB	90.5
J3	JC	91.3

SUPPLIER 关系

S#	SNAME	SADDR
S1	PICC	SHANGHAI
S2	FADC	BEIJING

P_P关系

J#	P#	TOTAL
J1	P1	50
J2	P2	15
J3	P3	6
J1	P2	65
J2	P3	25
J1	P3	18

P_S关系

P#	S#	QUANTITY
P1	S1	100
P2	S2	200
P2	S1	150
P3	S2	300
P4	S2	100

图 1.22 关系模型的具体实例

对象模型

对象数据库是面向对象概念与 数据库技术相结合的产物。

object model中基本的概念是对象和类。

继承,重用等等对象数据库尚未达到关系数据库的普及程度。

	层次模型	网状模型	关系模型	对象模型
创始	1968 年 IBM 公司 的 IMS 系统	1969年 CODASYL 的 DBTG 报告(71年通过)	1970 年 E.F.Codd 提出关系模型	20 世纪 80 年代
数据结构	复杂(树结构)	复杂(有向图结构)	简单(二维表)	复杂(嵌套,递归)
数据联系	通过指针	通过指针	通过表间的公共属性	通过对象标识
查询语言	过程性语言	过程性语言	非过程性语言	面向对象语言
典型产品	IMS	IDS/ [], IMAGE/3000, IDMS, TOTAL	Oracle, Sybase, DB2, SQL Server, Informix	ONTOS DB
盛行期	20 世纪 70 年代	70 年代至 80 年代中期	80 年代至现在	90 年代至现在

图 1.24 四种逻辑数据模型的比较

数据库的体系结构

三级体系结构 五大要素 两级数据独立性

external, conceptual, internal..通俗易懂..

	**************************************	用数据定义语言 DBTG 打	DBTG 报告
	数据模型	描述后的称呼	中的称呼
外部级	外模型	外模式	子模式
概念级	概念模型	概念模式	模式
内部级	内模型	内模式	物理模式

图 1.26 数据抽象的术语

DBMS

DBMS 的功能:

- 1. 定义功能, 提供DDL
- 2. 操纵功能 , DML

- 3. 保护功能
- 4. 维护功能
- 5. 数据辞典,对数据库的操作都要通过 DD 才能实现。DD 中还存放数据库运行时的 统计信息,例如记录个数、访问次数等。管理 DD 的子系统称为"DD 系统" DBMS 由两大部分组成:查询处理器和存储管理器

终端mysql:

mysgl-workbranch 不是很好用(/ω\)

直观的数据库保护,会阻止不带where使用update。。。 certain operations. Safe Updates (rejects UPDATEs and DELETEs with no restrictions)	Formatted 1 statements.	
certain operations.	直观的数据库保护,会阻止不带where使用update。。。	
Safe Updates (rejects UPDATEs and DELETEs with no restrictions)	Internal Workbehort Schema. Intysquworkbehon	certain operations.
	Safe Updates (rejects UPDATEs and DELETEs with no re	estrictions)

数据库系统

由数据库, 硬件, 软件, 管理员组成 DBMS和磁盘间还有操作系统

图 1.31 DBS 的全局结构

sentiment

这一章应该只是打算给读者一个大致印象吧?难度应该在后面。。总之,我认为这门课十分重要,希望这学期在老师指导下能打好基础