盘古 50 开发板(MES50HP) 硬件使用手册 V1.0

紫光同创 logos 系列 FPGA 开发平台 版本日期: 2024-7-19

Administrator: 深圳市小眼睛科技有限公司

联系邮箱: support@meyesemi.com

QQ 群: 808770961

公司网址: www.meyesemi.com

微信公众号: 小眼睛 FPGA 购买渠道: 小眼睛半导体

客服微信: 17665247134

目录

1、	开发系统介绍	2
	1.1 开发系统概述	2
	1.2 开发系统简介	3
	1.2.1 开发系统外设资源	3
	1.2.2 开发系统功能框图	
2、	核心板	
	2.1 核心板简介	
	2.2 核心板资源	7
	2.2.1 FPGA	7
	2.2.2 时钟	7
	2.2.3 DDR3	9
	2.2.4 FLASH	12
	2.2.5 扩展接口	13
	2.3 电源	19
	2.4 尺寸结构图	20
3、	扩展底板	20
	3.1 扩展底板简介	20
	3.2 外接通信口	21
	3.2.1 网口	21
	3.2.2 SFP 光纤接口	23
	3.2.3 PCIe X2 接口	25
	3.2.4 串口	26
	3.2.5 JTAG	26
	3.3 HDMI	27
	3.3.1 HDMI 输入接口	
	3.3.2 HDMI 输出接口	
	3.4 按键/指示灯/存储接口	
	3.4.1 按键	31
	3.4.2 Led 灯	
	3.4.3 EEPROM	33
	3.4.4 SD CARD	
	3.5 扩展口	
	3.5.1 40pin 扩展口	
	3.5.2 PMOD 扩展口	36
	3.6 供电电源	
	37 尺寸结构图	37

1、 开发系统介绍

1.1 开发系统概述

盘古-50 开发板(MES50HP)采用了核心板+扩展板的结构,核心板与扩展 板之间使用高速板对板连接器进行连接。

核心板主要由 FPGA+2 颗 DDR3+Flash+电源及复位构成,承担了 FPGA 的最小系统运行及高速数据处理和存储的功能。FPGA 选用的是紫光同创 40nm 工艺的 FPGA(logos 系列: PGL50H-6IFBG484); PGL50H 和 DDR3 之间的数据交互时钟频率最高到 400MHz,2 颗 DDR3 的数据位宽为 32bit,总数据带宽最高到25600(800×32) Mbps,充分满足了高速多路数据存储的需求;另外PGL50HFPGA 带有 4 路 HSST 高速收发器,每路速度高达 6.375Gb/s,非常适合用于光纤通信和 PCle 数据通信;电源采用多颗 EZ8303(艾诺)来产生不同的电源电压。

底板为核心板扩展了丰富的外围接口,预留 HDMI 收发接口用于图像验证及处理;预留的光纤接口、10/100/1000M 以太网接口,PCIE 接口,方便各类高速通信系统验证;预留了一个 40pin 的 IO 扩展连接器,方便用户在开发平台基础上验证模块电路功能。

1.2 开发系统简介

1.2.1 开发系统外设资源

- ◆ HDMI 输入接口*1
- ◆ 光纤接口*2
- ◆ PCIE X2 接口*1
- ◆ SD 卡接口*1
- ◆ IO 扩展口*1
- ◆ 按键 *8

- ◆ HDMI 输出接口*1
- ◆ 10/100/1000M 以太网接口*2
- ◆ Jtag 调试接口*1
- ◆ PMOD接口 *1
- ◆ USB 转串口*1
- ◆ LED *8

1.2.2 开发系统功能框图

图 1-1 开发系统功能框图

综上描述,盘古-50开发平台可实现的功能细节如下:

◎ LogosFPGA 核心板

由 PGL50H+2 片 512MB DDR3+128MB QSPI FLASH 组成,另外板上有一个高精度的 50MHz 和 125MHz 晶振,为 FPGA 系统和高速串行收发器 HSST 模块提供稳定的时钟输入。

◎ 10/100M/1000M 以太网 RJ-45 接口 *2

网口 PHY 芯片采用 RTL8211E, RTL8211E 支持 10/100M/1000Mbps 网络传输数据率;支持全双工工作模式及数据率自适应。

◎ PCle X2 接口 * 1

支持 PCI Express 2.0 标准,提供 PCIe X2 高速数据传输接口,单通道通信速率可高达 5GBaud。

◎ SFP 高速光纤接口 * 2

Logos FPGA 的 HSST 收发器的 2 路高速收发器连接到 2 个光模块的发送和接收,实现 2 路高速的光纤通信接口。每路的光纤数据通信接收和发送的速度高达 6.375Gb/s。

◎ HDMI输出 * 1

选用了国产宏晶微公司的 MS7210 HMDI 发送芯片,兼容 HDMI1.4b 及 HDMI 1.4b 下标准视频的 3D 传输格式。支持的最高分辨率高达 4K@30Hz,最高采样率达到 300MHz;支持 HBR 音频。

◎ HDMI 输入 * 1

选用了国产宏晶微公司的 MS7200 HMDI 接收芯片,兼容 HDMI1.4b 及 HDMI 1.4b 下标准视频的 3D 传输格式。支持的最高分辨率高达 4K@30Hz,最高;采样率达到 300MHz;支持 HBR 音频。

◎ USB 转串口 * 1

用于和电脑通信,方便用户调试。串口芯片采用 Silicon Labs 的 USB-UAR 芯片: CP2102, USB 接口采用 USB Type C接口。

◎ Micro SD 卡座

支持 SDIO 模式和 SPI 模式。

- © EEPROM
 - 板载一片 IIC 接口的 EEPROM: 24C02;
- ◎ JTAG 接口

10 针 2.54mm 间距的双排排针口,用于 FPGA 程序的下载和调试。

◎ PMOD 座

预留1个12脚(2×6)的PMOD接口。

◎ 40 针扩展口

预留 1 个 40 针 2.54mm 间距的扩展口,可以外接的各种模块。扩展口包含 5V 电源 1 路, 3.3V 电源 2 路, 地 3 路, I/O 口 34 路。

- ◎ LED 灯
 - 8个用户发光二极管;
- ◎ 按键
 - 8个用户按键,1个复位按键:

2、 核心板

2.1 核心板简介

MES50HP核心板是基于紫光同创 logos系列 FPGA (PGL50H-6IFBG484)开发的高性能核心板,具有高数据带宽、高存储容量的特点,适用于高速数据通信、处理、采集等方面的应用。

这款核心板使用了 2 片 MICRON 公司的 MT41K256M16TW-107:P 这款 DDR3 芯片,每片 DDR 的容量为 4Gbit; 2 片 DDR 芯片组合成 32bit 的数据总线宽度, FPGA 和 DDR3 之间的读写数据带宽高达 25Gb; 这样的配置可以满足高带宽的数据处理需求。

这款核心板扩展出 195 个默认电平标准为 3.3V 普通 IO 口,其中有 113 个 IO 电压标准可调,12 个 1.5V 电平标准的普通 IO 口,还有 4 对 HSST 高速 RX/TX 差分信号和 1 对 HSST 高速接口的参考输入时钟。对于需要大量 IO 的用户,此核心板将是不错的选择。而且,FPGA 芯片到接口之间走线做了等长和差分处理。核心板尺寸仅为 50*58(mm),对于二次开发来说非常适合。

2.2 核心板资源

2.2.1 FPGA

MES50HP 核心板使用的 FPGA 型号为 **PGL50H-6IFBG484**,属于紫光同创公司 Logos 系列的产品,速度等级为 6,温度等级为工业级。此型号为 FBG484 封装,484 个引脚。紫光同创 LogosFPGA 的芯片命名规则如下:

Logos系列FPGA产品型号的编号内容及意义如图1所示。

图 2-1 logos 系列 FPGA 命名规则

其中 FPGA 芯片 PGL50H 的主要参数如下所示:

名称	具体参数		
触发器(FF)	64200		
查找表 LUT6(LUT6=1.5LUT4)	42800		
DRM(18Kbits)个数	134		
APM 单元(乘法器)	84		
PCIe Gen2	1		
HSSTLP	4 路, 6.375Gb/s max		
速度等级	-6		
温度等级	工业级		

表 2-1 PGL50H-6IFBG484 的主要参数

2.2.2 时钟

MES50HP 核心板上配有 1 个 125MHz 有源差分晶振、1 个单端 50MHz 晶振和 1 个单端 27MHz 晶振。差分晶振用于 HSST 收发器的参考时钟输入; 单端 50MHz 用于 FPGA 的系统时钟源。

2.2.2.1 125MHz 差分晶振

下图中的 U7 为 125M 有源差分晶振电路,此时钟是给 FPGA 内部的 HSST 模块提供的参考输入时钟。晶振输出连接到 FPGA HSST BANK 的时钟管脚上。

图 2-2 有源差分晶振原理图

表 2-2 125MHz 晶振

信号	PGL50H Pin
HSST_CLK_P	A10
HSST_CLK_N	B10

2.2.2.2 单端晶振

下图中的 U9 即为 50M 有源晶振电路,此时钟接到给 FPGA 内部的全局时钟管脚上,可为 FPGA 提供的参考输入时钟。

图 2-3 有源单端晶振 50M 原理图

下图中的 U13 即为 27M 有源晶振电路,此时钟接到给 FPGA 内部的全局时钟管脚上,可为 FPGA 提供的参考输入时钟。

图 2-4 有源单端晶振 27M 原理图

具体管脚分配请看下表:

表 2-3 单端有源晶振

农 2 3 干圳 月冰 間 派						
信号	PGL50H Pin					
FPGA_GCLK_50M	P20					
FPGA_GCLK_27M	K21					

2.2.3 DDR3

MES50HP 核心板上配有两颗 4Gbit(512MB)的 DDR3 芯片(共计 8Gbit),型号为 MT41K256M16TW-107:P/XCCC256M16EP-EKNAY/QN3B256M16H-16A(具体型号以开发板实物为准)。DDR 的总线宽度共为 32bit。DDR3 SDRAM 的最高运行时钟速度可达 400MHz(数据速率 800Mbps)。该 DDR3 存储系统直接连接到了 FPGA 的 BANK B3, DDR3 DRAM 的硬件连接示意图如图 2.2 所示:

图 2-5 PGL50H 与 DDR 连接框图 9 / 38

www.meyesemi.com FPGA 微信公众号: 小眼睛

PGL50H 内可运行 DDR 控制器最大支持位宽可达 32bit, 速度高达 400MHz (800Mbps)。 DDR3 使用 1.5V SSTL 接口标准,在 MES50HP 开发板上 PGL50H与 DDR3 紧密的排列在一起,保持连接和匹配。

DDR3 布线采用 50 欧姆走线阻抗用于单端信号,DCI 电阻(VRP / VRN)以及 差分时钟设置为 100 欧姆。每个 DDR3 芯片在 ZQ 上都需要 240 欧姆电阻下拉。 DDR-VDDQ 设置为 1.5V,以支持所选的 DDR3 器件。 DDR-VTT 是与 DDR-VDDQ 始终电压跟随,保持为 $\frac{1}{2}$ 倍 DDR-VDDQ 的电压值。 DDR-VREF 是一个独立的缓冲输出,等于 $\frac{1}{2}$ 倍 DDR-VDDQ 的电压。 DDR-VREF 是隔离的,可为 DDR 电平转换提供更清晰的参考。

图 2-6 DDR3 参考电压及上拉跟随电压原理图

该 DDR3 存储系统直接连接到了 PGL50H 的 Bank 3 上; DDR3 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制,保证 DDR3 的高速稳定的工作。

DDR3 的具体管脚分配如下:

校 Z-4FGL30H 工 DDR3 建按引脚刀能及							
信号名称	PGL50H 管脚				信号名称	PGL50H 管脚	
ddr3_addr[0]	N6		ddr3_addr[14]	Т3			
ddr3_addr[1]	R4		ddr3_addr[15]	R7			
ddr3_addr[2]	P6		ddr3_ba[0]	F5			
ddr3_addr[3]	F3		ddr3_ba[1]	W4			
ddr3_addr[4]	dr3_addr[4] V5		ddr3_ba[2]	N7			

表 2-4PGI 50H 上 DDR3 连接引脚分配表

ddr3_addr[5]	E4		ddr3_cas_n	Н8
ddr3_addr[6]	V3		ddr3_ck_n	T5
ddr3_addr[7]	D2		ddr3_ck_p	Т6
ddr3_addr[8]	U4		ddr3_cke	Y3
ddr3_addr[9]	P5		ddr3_cs_n	G6
ddr3_addr[10]	P8		ddr3_odt	G7
ddr3_addr[11]	T4		ddr3_ras_n	J 7
ddr3_addr[12]	P7		ddr3_reset_n	C1
ddr3_addr[13]	P4		ddr3_we_n	Н6
ddr3_dm[0]	W3		ddr3_dm[2]	K2
ddr3_dm[1]	L1		ddr3_dm[3]	G1
ddr3_dq[0]	U1		ddr3_dq[16]	K4
ddr3_dq[1]	U3		ddr3_dq[17]	K 1
ddr3_dq[2]	T2		ddr3_dq[18]	Ј3
ddr3_dq[3]	Y2		ddr3_dq[19]	L4
ddr3_dq[4]	T1		ddr3_dq[20]	К3
ddr3_dq[5]	Y1		ddr3_dq[21]	М3
ddr3_dq[6]	M7		ddr3_dq[22]	J1
ddr3_dq[7]	W1		ddr3_dq[23]	M4
ddr3_dq[8]	P1		ddr3_dq[24]	J6
ddr3_dq[9]	M2		ddr3_dq[25]	F1
ddr3_dq[10]	R1		ddr3_dq[26]	K7
ddr3_dq[11]	M1		ddr3_dq[27]	F2
ddr3_dq[12]	P2		ddr3_dq[28]	Н5
ddr3_dq[13]	L3		ddr3_dq[29]	НЗ
ddr3_dq[14]	P3		ddr3_dq[30]	J4
ddr3_dq[15]	N4		ddr3_dq[31]	G3
ddr3_dqs_p[0]	V2		ddr3_dqs_n[0]	V1
ddr3_dqs_p[1]	N3		ddr3_dqs_n[1]	N1
	1	1 /	20	

ddr3_dqs_P[2]	M6	ddr3_dqs_n[2]	L6
ddr3_dqs_P[3]	E3	ddr3_dqs_n[3]	E1

2.2.4 FLASH

MES50HP 开发板具有 4 位 SPI(QSPI)串行 Nor 闪存,使用的是兆易创新的 W25Q128JVEIQ/华邦 GD25Q128EYIGR/芯天下 XT25BF128FSSIGU-W(具体型号以开发板实物为准)。连接在 PGL50H 的特定引脚上,采用 3.3V 电平标准。

QSPI 的电路连接如下:

图 2-7 Flash 电路图

管脚分配如下

表 2-5 QSPI Flash 引脚图

77 - 1 (
信号	描述	PGL50H Pin	QSPI Pin					
CS	S 片选 AA3		1					
DQ0	数据位 0	AB20	5					
DQ1	数据位1	AA20	2					
DQ2	数据位 2	R13	3					
DQ3	数据位3	T14	7					
SCK	串行数据时钟	Y20	6					

2.2.5 扩展接口

核心板的背面一共扩展出 4 个高速扩展口,使用 4 个 80Pin 的板间连接器和底板连接。FPGA 的 IO 口通过差分走线方式连接到这 4 个扩展口上。连接器的 PIN 脚间距为 0.5mm,和底板的母座连接器配置实现高速数据通信。

扩展接口1: J2

80Pin 的连接器 J2 用来扩展 FPGA 的 BANK B1 的普通 IO, B1 的电压标准是 3.3V 的, J2 扩展口的管脚分配如下表所示:

表 2-6 12 引脚图

表 2-6 J2 引脚图									
J2 管脚	信号名称	FPGA 管脚	电平 标准		J2 管脚	信号名称	FPGA 管脚	电平标 准	
Pin1	B1_L36_P	田 邓 W20	3.3V		Pin2	B1_L37_P	Y21	3.3V	
Pin3	B1_L36_N	W22	3.3V		Pin4	B1_L37_N	Y22	3.3V	
Pin5	B1_L34_P	U20	3.3V		Pin6	B1_L35_P	V21	3.3V	
Pin7	B1_L34_N	U22	3.3V		Pin8	B1_L35_N	V22	3.3V	
Pin9	GND	\	地		Pin10	GND	\	地	
Pin11	B1_L41_P	U19	3.3V		Pin12	B1_L33_P	T21	3.3V	
Pin13	B1_L41_N	T20	3.3V		Pin14	B1_L33_N	T22	3.3V	
Pin15	B1_L31_P	P21	3.3V		Pin16	B1_L32_P	R20	3.3V	
Pin17	B1_L31_N	P22	3.3V		Pin18	B1_L32_N	R22	3.3V	
Pin19	GND	\	地		Pin20	GND	\	地	
Pin21	B1_L52_P	P17	3.3V		Pin22	B1_L38_N	R19	3.3V	
Pin23	B1_L52_N	P18	3.3V		Pin24	B1_L38_P	P19	3.3V	
Pin25	B1_L25_N	M19	3.3V		Pin26	B1_L29_P	M21	3.3V	
Pin27	B1_L25_P	M20	3.3V		Pin28	B1_L29_N	M22	3.3V	
Pin29	GND	\	地		Pin30	GND	\	地	
Pin31	B1_L30_P	N20	3.3V		Pin32	B1_L43_P	M17	3.3V	
Pin33	B1_L30_N	N22	3.3V		Pin34	B1_L43_N	M18	3.3V	
Pin35	B1_L42_N	P16	3.3V		Pin36	B1_L40_P	M16	3.3V	
Pin37	B1_L42_P	N16	3.3V		Pin38	B1_L40_N	N15	3.3V	
Pin39	B1_L28_P	L20	3.3V		Pin40	B1_L23_N	L19	3.3V	
Pin41	B1_L28_N	L22	3.3V		Pin42	B1_L23_P	K20	3.3V	
Pin43	B1_L19_P	K19	3.3V		Pin44	B1_L21_N	L17	3.3V	

Pin45	B1_L19_N	K18	3.3V	Pin46	B1_L21_P	K17	3.3V
Pin47	B1_L39_P	L15	3.3V	Pin48	B1_IO_N19	N19	3.3V
Pin49	B1_L39_N	K16	3.3V	Pin50	B1_L24_N	J22	3.3V
Pin51	B1_L11_N	J17	3.3V	Pin52	B1_L24_P	J20	3.3V
Pin53	B1_L11_P	J16	3.3V	Pin54	B1_IO_K22	K22	3.3V
Pin55	B1_L18_P	J19	3.3V	Pin56	B1_L22_P	H21	3.3V
Pin57	B1_L18_N	H20	3.3V	Pin58	B1_L22_N	H22	3.3V
Pin59	B1_L1_N	H17	3.3V	Pin60	B1_L15_N	H19	3.3V
Pin61	B1_L1_P	H16	3.3V	Pin62	B1_L15_P	H18	3.3V
Pin63	GND	\	地	Pin64	GND	\	地
Pin65	B1_L14_P	G19	3.3V	Pin66	B1_L20_N	G22	3.3V
Pin67	B1_L14_N	F20	3.3V	Pin68	B1_L20_P	G20	3.3V
Pin67 Pin69	B1_L14_N B1_L0_N	F20 F19	3.3V 3.3V	Pin68 Pin70	B1_L20_P B1_L16_N	G20 F22	3.3V 3.3V
Pin69	B1_L0_N	F19	3.3V	Pin70	B1_L16_N	F22	3.3V
Pin69 Pin71	B1_L0_N B1_L0_P	F19 F18	3.3V 3.3V	Pin70 Pin72	B1_L16_N B1_L16_P	F22 F21	3.3V 3.3V
Pin69 Pin71 Pin73	B1_L0_N B1_L0_P B1_L13_N	F19 F18 D22	3.3V 3.3V 3.3V	Pin70 Pin72 Pin74	B1_L16_N B1_L16_P B1_L17_N	F22 F21 E22	3.3V 3.3V 3.3V

扩展接口 2: J3

80Pin 的连接器 J3 用来连接底板的 VCCIN 电源(+5V), 地和 FPGA 的 BANK2 及 BANK1 的普通 IO, B2 的 IO 口的电压标准是 3.3V 的,如果用户想输出其它标准的 电平,可以通过修改电源进行, J3 扩展口的管脚分配如下表所示:

表 2-7 J3 引脚图

J3	台 里 	FPGA	电平	Ј3	台口互扬	FPGA	电平
管脚	信号名称	管脚	标准	管脚	信号名称	管脚	标 准
Pin1	A5V0	\	+5V	Pin2	A5V0	\	+5V
Pin3	A5V0	\	+5V	Pin4	A5V0	\	+5V
Pin5	A5V0	\	+5V	Pin6	A5V0	\	+5V
Pin7	A5V0	\	+5V	Pin8	A5V0	\	+5V
Pin9	GND	\	地	Pin10	GND	\	
Pin11	A3V3_JTAG	\		Pin12	GND	\	

	1	1			1		1
Pin13	B2_L13_P	U9	3.3V	Pin14	B2_L20_P	Y9	3.3V
Pin15	B2_L13_N	V9	3.3V	Pin16	B2_L20_N	AB9	3.3V
Pin17	B2_L17_P	T10	3.3V	Pin18	B2_L29_P	R11	3.3V
Pin19	B2_L17_N	U10	3.3V	Pin20	B2_L29_N	T11	3.3V
Pin21	GND			Pin22	GND		
Pin23	B2_L19_P	W10	3.3V	Pin24	B2_L22_P	AA10	3.3V
Pin25	B2_L19_N	Y10	3.3V	Pin26	B2_L22_N	AB10	3.3V
Pin27	B2_L21_P	V11	3.3V	Pin28	B2_L24_P	Y11	3.3V
Pin29	B2_L21_N	W11	3.3V	Pin30	B2_L24_N	AB11	3.3V
Pin31	GND			Pin32	GND		
Pin33	B2_L27_N	U12	3.3V	Pin34	B2_L23_N	Y12	3.3V
Pin35	B2_L27_P	T12	3.3V	Pin36	B2_L23_P	W12	3.3V
Pin37	B2_L25_N	AB12	3.3V	Pin38	B2_L26_N	AB13	3.3V
Pin39	B2_L25_P	AA12	3.3V	Pin40	B2_L26_P	Y13	3.3V
Pin41	GND			Pin42	GND		
Pin43	B2_L33_N	W13	3.3V	Pin44	B2_L35_N	U13	3.3V
Pin45	B2_L33_P	V13	3.3V	Pin46	B2_L35_P	U14	3.3V
Pin47	B2_L31_N	Y14	3.3V	Pin48	B2_L28_N	U15	3.3V
Pin49	B2_L31_P	W14	3.3V	Pin50	B2_L28_P	T15	3.3V
Pin51	GND			Pin52	GND		
Pin53	B2_L45_N	AB14	3.3V	Pin54	B2_L34_N	W15	3.3V
Pin55	B2_L45_P	AA14	3.3V	Pin56	B2_L34_P	Y16	3.3V
Pin57	B2_L47_N	V15	3.3V	Pin58	B2_L32_N	AB16	3.3V
Pin59	B2_L47_P	U16	3.3V	Pin60	B2_L32_P	AA16	3.3V
Pin61	B2_L30_N	AB15	3.3V	Pin62	B2_L36_N	AB17	3.3V
Pin63	B2_L30_P	Y15	3.3V	Pin64	B2_L36_P	Y17	3.3V
Pin65	B2_L46_P	W17	3.3V	Pin66	B2_L53_P	V17	3.3V
Pin67	B2_L46_N	Y18	3.3V	Pin68	B2_L53_N	W18	3.3V
Pin69	B2_L37_N	AB18	3.3V	Pin70	B2_IO_AB19	AB19	3.3V
Pin71	B2_L37_P	AA18	3.3V	Pin72	B1_L53_N	T17	3.3V
Pin73	B1_L51_P	R15	3.3V	Pin74	B1_L53_P	R17	3.3V
Pin75	B1_L51_N	R16	3.3V	Pin76	B1_L55_P	V19	3.3V
	•	•		•	•	•	

Pin77	B1_L54_N	T18	3.3V	Pin78	B1_L55_N	V20	3.3V
Pin79	B1_L54_P	T19	3.3V	Pin80	GND		

扩展接口3: J4

80Pin 的连接器 J4 用来连接底板的 VCCIN 电源(+5V),地和 FPGA 的 BANK2 及 BANK3 的普通 IO,B2 的 IO 口的电压标准是 3.3V 的,如果用户想输出其它标准的 电平,可以通过修改电源进行, Bank3 由于挂载了 DDR3,所以 IO 口的电压标准固定 为 1.5V, J4 扩展口的管脚分配如下表所示:

表 2-8 J4 引脚图

表 2-8 J4 引脚图								
J4 管脚	信号名称	FPGA 管脚	电平 标准		J 4 管脚	信号名称	FPGA 管脚	电平标 准
Pin1	A5V0	\	+5V		Pin2	A5V0	\	+5V
Pin3	A5V0	\	+5V		Pin4	A5V0	\	+5V
Pin5	A5V0	\	+5V		Pin6	A5V0	\	+5V
Pin7	A5V0	\	+5V		Pin8	A5V0	\	+5V
Pin9	GND	\	地		Pin10	GND	\	地
Pin11	B3_L52_N	AA1	1.5V		Pin12	NC	\	
Pin13	B3_L52_P	AA2	1.5V		Pin14	REST	\	3.3V
Pin15	B2_L3_N	AB4	3.3V		Pin16	B2_L4_N	AB5	3.3V
Pin17	B2_L3_P	AA4	3.3V		Pin18	B2_L4_P	Y5	3.3V
Pin19	GND	\	地		Pin20	GND	\	地
Pin21	B2_L14_N	AB6	3.3V		Pin22	B2_L5_N	Y6	3.3V
Pin23	B2_L14_P	AA6	3.3V		Pin24	B2_L5_P	W6	3.3V
Pin25	B2_L16_N	AB7	3.3V		Pin26	B2_L18_N	AB8	3.3V
Pin27	B2_L16_P	Y7	3.3V		Pin28	B2_L18_P	AA8	3.3V
Pin29	GND	\	地		Pin30	GND	\	地
Pin31	B2_L15_N	Y8	3.3V		Pin32	B2_L7_N	W8	3.3V
Pin33	B2_L15_P	W9	3.3V		Pin34	B2_L7_P	V7	3.3V
Pin35	B2_L2_P	T7	3.3V		Pin36	B2_L8_N	U8	3.3V
Pin37	B2_L2_N	U6	3.3V		Pin38	B2_L8_P	Т8	3.3V
Pin39	GND	\			Pin40	GND	\	
Pin41	B2_L6_N	R8	3.3V		Pin42	B3_IO_R3	R3	1.5V
Pin43	B2_L6_P	R9	3.3V		Pin44	B3_IO_M5	M5	1.5V

Pin45	GND	\	地	Pin46	GND	\	地
Pin47	NC	\		Pin48	NC	\	
Pin49	GND	\	地	Pin50	GND	\	
Pin51	NC	\		Pin52	NC	\	
Pin53	GND	\	地	Pin54	GND	\	地
Pin55	NC	\		Pin56	NC	\	
Pin57	NC	\		Pin58	NC	\	
Pin59	GND	\	地	Pin60	GND	\	地
Pin61	NC	\		Pin62	NC	\	
Pin63	NC	\		Pin64	NC	\	
Pin65	GND	\	地	Pin66	GND	\	地
Pin67	NC	\		Pin68	NC	\	
Pin69	GND	\	地	Pin70	GND	\	地
Pin71	NC	\		Pin72	B3_L19_N	H1	1.5V
Pin73	B3_IO_B1	B1	1.5V	Pin74	B3_L19_P	H2	1.5V
Pin75	B3_L39_N	G4	1.5V	Pin76	B3_L20_P	K6	1.5V
Pin77	B3_L39_P	H4	1.5V	Pin78	B3_L20_N	K5	1.5V
Pin79	GND	\	地	Pin80	GND	\	地

扩展接口 4:J5

80Pin 的连接器 J5 用来扩展 FPGA 的 BANK B0 的普通 IO 和 HSST 的高速数据和时钟信号。B0 的 IO 口的电压标准可以通过修改电源电阻的阻值调整,默认是 3.3V,如果用户想输出其它标准的电平,可以通过修改电源进行。HSST 的高速数据和时钟信号在核心板上严格差分走线,数据线等长及保持一定的间隔,防止信号干扰。J5 扩展口的管脚分配如表 2-7-4 所示:

表 2-9 J5 引脚图

				_	71177 P4			
J 5 管脚	信号名称	FPGA 管脚	电平标准		J 5 管脚	信号名称	FPGA 管脚	电平标 准
Pin1	B0_L1_P	D4	3.3V		Pin2	B0_L2_P	B2	3.3V
Pin3	B0_L1_N	D5	3.3V		Pin4	B0_L2_N	A2	3.3V
Pin5	B0_L6_P	C4	3.3V		Pin6	B0_L4_P	В3	3.3V

Pin7	B0_L6_N	A4	3.3V	Pin8	B0_L4_N	A3	3.3V
Pin9	B0_L3_P	E5	3.3V	Pin10	B0_L9_P	C5	3.3V
Pin11	B0_L3_N	E6	3.3V	Pin12	B0_L9_N	A5	3.3V
Pin13	GND	\	地	Pin14	GND	\	地
Pin15	MGT_TX0_P	В6	差分	Pin16	MGT_RX0_P	D7	差分
Pin17	MGT_TX0_N	A6	差分	Pin18	MGT_RX0_N	C7	差分
Pin19	GND	\	地	Pin20	GND	\	地
Pin21	MGT_TX1_P	B8	差分	Pin22	MGT_RX1_P	D9	差分
Pin23	MGT_TX1_N	A8	差分	Pin24	MGT_RX1_N	C9	差分
Pin25	GND	\	地	Pin26	GND	\	地
Pin27	MGT_CLK_P	A12	差分	Pin28	MGT_TX2_N	A14	差分
Pin29	MGT_CLK_N	B12	差分	Pin30	MGT_TX2_P	B14	差分
Pin31	GND	\	地	Pin32	GND	\	地
Pin33	MGT_RX2_N	C13	差分	Pin34	MGT_TX3_N	A16	差分
Pin35	MGT_RX2_P	D13	差分	Pin36	MGT_TX3_P	B16	差分
Pin37	GND	\	地	Pin38	GND	\	地
Pin39	MGT_RX3_N	C15	差分	Pin40	B0_L7_P	F7	差分
Pin41	MGT_RX3_P	D15	差分	Pin42	B0_L7_N	F8	差分
Pin43	GND	\	地	Pin44	GND	\	地
Pin45	B0_L10_P	G8	3.3V	Pin46	B0_L13_P	G9	3.3V
Pin47	B0_L10_N	F9	3.3V	Pin48	B0_L13_N	F10	3.3V
Pin49	B0_L11_P	H10	3.3V	Pin50	B0_L14_N	G11	3.3V
Pin51	B0_L11_N	H11	3.3V	Pin52	B0_L14_P	H12	3.3V
Pin53	B0_L17_N	G13	3.3V	Pin54	B0_L23_P	H14	3.3V
Pin55	B0_L17_P	H13	3.3V	Pin56	B0_L23_N	G15	3.3V
Pin57	B0_L15_P	F14	3.3V	Pin58	B0_L16_P	E16	3.3V
Pin59	B0_L15_N	F15	3.3V	Pin60	B0_L16_N	F16	3.3V
Pin61	GND			Pin62	GND		
Pin63	B0_L25_P	G16	3.3V	Pin64	B0_L24_N	A17	3.3V
Pin65	B0_L25_N	F17	3.3V	Pin66	B0_L24_P	C17	3.3V
Pin67	B0_L30_P	D17	3.3V	Pin68	B0_L26_P	D18	3.3V
Pin69	B0_L30_N	C18	3.3V	Pin70	B0_L26_N	D19	3.3V
Pin71	B0_L27_N	A18	3.3V	Pin72	B0_L28_N	A19	3.3V

Pin73	B0_L27_P	B18	3.3V	Pin74	B0_L28_P	C19	3.3V
Pin75	B0_L29_P	B20	3.3V	Pin76	B0_L29_N	A20	3.3V
Pin77	TDI	E18	3.3V	Pin78	TCK	A21	3.3V
Pin79	TMS	D20	3.3V	Pin80	TDO	G17	3.3V

2.3 电源

MES50HP 核心板供电电压为 VCCIN,输入电压为 5V,需通过板对板连接器供 电,连接底板时通过底板供电。板上的电源设计示意图如下图所示:

图 2-8 核心板电源树

核心板通过+5V 供电, 通过 4 路 DC/DC 艾诺电源芯片 EZ8303 转化成+3.3V, +1.5V, HSST VCC12、+1.2V 4 路电源, 4 路输出电流可高达 3A。其中 VCCADJ产 生 VCCIO 的电压可调, VCCADJ 主要是对 FPGA 的 BO 进行供电, 用户可以通过修改 电源电阻的阻值调整电压,使得 BO 的 IO 适应不同的电压标准。HSST VCC12 是高 速收发器的 PLL 及通道电源。1.5V 通过圣邦微的 SGM2054 生成 DDR3 需要的 VTT 和 VREF 电压。各个电源分配的功能如下表所示:

	表 2-10 各路电源功能
电源	功能用途
5.0V	输入电源
1.2V	PGL50H 的内核电压
3.3V	I/O 电压,辅助电源,部分接口(晶振,FLASH)供电电压

VADJ	可调 I/O 电压
1.5V	DDR3 供电电压,PGL50H Bank 3 电源
VTT(0.75V)	DDR3 控制线与地址线的上拉电压,保持信号完整性
VREF(0.75V)	DDR3 参考电压
HSST_1.2V	PGL50H HSST 收发器通道及锁相环电源

2.4 尺寸结构图

图 2-9 核心板尺寸结构图

3、 扩展底板

3.1 扩展底板简介

通过前面开发系统的介绍可知,扩展底板的外设资源如下:

- ◆ HDMI 输入接口*1
- ◆ 光纤接口*2
- ◆ PCIE X2 接口*1
- ◆ SD 卡接口*1

- ◆ HDMI 输出接口*1
- ◆ 10/100/1000M 以太网接口*2
- ◆ Jtag 调试接口*1
- ◆ PMOD 接口 *1

20 / 38

微信公众号: 小眼睛

- ◆ 40 pin IO 扩展口*1
- ◆ 按键 *8

- ◆ USB 转串口*1
- ◆ LED *8

3.2 外接通信口

3.2.1 网口

MES50HP 开发板使用 Realtek RTL8211 PHY 实现了一个 10/100/1000 以太网端口,用于网络连接。 该器件工作电压为支持 2.5V、3.3V。PHY 连接到 BANK R3,并通过 RGMII 接口连接到 PGL50H。RJ-45 连接器是 HFJ11-1G01E-L12RL,具有集成的自动缠绕磁性元件,可提高性能,质量和可靠性。RJ-45 有两个状态指示灯 LED,用于指示流量和有效链路状态。

下图显示了 MES50HP 开发板上的网口连接框图。

图 3-1 RTL8211 连接示例

下表为网口1对应PGL50H与RTL8211的管脚连接。

表 3-1 PGL50H 连接 RTL8211 引脚情况

	表 3-1 PGL50H 连接 RTL8.	とエエコリが1目が	1
信号名称	描述	PGL50H 管脚	RTL8211 Pin
RX_CLK	接收时钟线	F14	40
RX_CTRL	接收控制线	F9	37
RXD[3]	接收数据线 3	H13	38
RXD[2]	接收数据线 2	G13	39
RXD[1]	接收数据线1	H11	41
RXD[0]	接收数据线 0	H10	42
TX_CLK	发送时钟线	G16	47
TX_CTRL	发送控制线	B18	2
TXD[3]	发送数据线3	A18	44
TXD[2]	发送数据线 2	C18	45
TXD[1]	发送数据线 1	D17	48
TXD[0]	发送数据线 0	F17	1
MDC	控制总线时钟	A20	5
MDIO	控制总线数据	C19	4
RSTN	复位控制线, 低有效	B20	29

下表为网口 2 对应 PGL50H 与 RTL8211 的管脚连接。

表 3-2 PGL50H 连接 RTL8211 引脚情况

信号名称	描述	PGL50H 管脚	RTL8211 Pin
RX_CLK	接收时钟线	M19	40
RX_CTRL	接收控制线	B21	37

22 / 38

RXD[3]	接收数据线3	F18	38
RXD[2]	接收数据线 2	D22	39
RXD[1]	接收数据线1	D21	41
RXD[0]	接收数据线 0	B22	42
TX_CLK	发送时钟线	C20	47
TX_CTRL	发送控制线	F22	2
TXD[3]	发送数据线3	F21	44
TXD[2]	发送数据线 2	E22	45
TXD[1]	发送数据线 1	E20	48
TXD[0]	发送数据线 0	C22	1
MDC	控制总线时钟	G20	5
MDIO	控制总线数据	G22	4
RSTN	复位控制线, 低有效	F19	29

3.2.2 SFP 光纤接口

MES50HP板上有 2 路光纤接口,用户可以购买光模块(市场上 1.25G, 2.5G 光模块)插入到这 2 个光纤接口中进行光纤数据通信。2 路光纤接口分别跟 FPGA 的 HSST 收发器的 2 路 RX/TX 相连接, TX 信号和 RX 信号都是以差分信号方式通过隔直电容连接 FPGA 和光模块,每路 TX 发送和 RX 接收数据速率高达 6.375Gb/s。HSST 收发器的参考时钟由板载的 125M 差分晶振提供。FPGA 和光纤设计示意图如下图所示:

图 3-2 PGL50H HSST 功能连接图

下表显示了 PGL50H 与 2 个 SFP 接口的管脚连接。

表 3-3 PGL50H 引脚分配情况

	表 3-3 PGL50H 引脚分配情况	
信号名称	描述	PGL50H 管脚
SFP0_TXP	SFP0 光模块数据发送 P 端	B14
SFP0_TXN	SFP0 光模块数据发送 N 端	A14
SFP0_RXP	SFP0 光模块数据接收 P 端	D13
SFP0_RXN	SFP0 光模块数据接收 N 端	C13
SFP0_LOS	SFP0 光模块接收 Loss 信号,高表示 没有接收到光信号	E16
SFP0_SC1	SFP0 光模块 I2C 通信时钟	G15
SFP0_SDA	SFP0 光模块 I2C 通信数据	H14
SPF0_TX_DIS	SFP0 光模块光发射禁止,高有效	H12
SFP1_TXP	SFP1 光模块数据发送 P 端	B16
SFP1_TXN	SFP1 光模块数据发送 N 端	A16
SFP1_RXP	SFP1 光模块数据接收 P 端	D15
SFP1_RXN	SFP1 光模块数据接收 N 端	C15

SFP1 LOS	SFP1 光模块接收 Loss 信号,高表示	D18	
	没有接收到光信号	D 10	
SFP1_SCl	SFP1 光模块 I2C 通信时钟	C17	
SFP1_SDA	SFP1 光模块 I2C 通信数据	A17	
SPF1_TX_DIS	SFP1 光模块光发射禁止,高有效	F16	

3.2.3 PCIe X2 接口

MES50HP 扩展底板上提供一个工业级高速数据传输 PCle x2 接口, PCIE 卡的外形尺寸符合标准 PCle 卡电气规范要求,可直接在普通 PC 的 x4 PCle 插槽上使用。

PCle 接口的收发信号直接跟 FPGA 的 HSST 收发器相连接,两通道的 TX 信号和 RX 信号都是以差分信号方式连接到 FPGA, 单通道通信速率可高达 5G bit 带宽。 PCle 的参考时钟由 PC 的 PCle 插槽提供给开发板,参考时钟 频率为 100Mhz。

开发板的 PCle 接口的设计示意图如上光纤连接参考图所示,其中 TX 发送信号和参考时钟 CLK 信号用 AC 耦合模式连接。

下表显示了 PGL50H 与 PCIe 卡槽的管脚连接。

表 3-4 PGL50H 引脚分配情况

信号名称	描述	PGL50H 管脚		
PCIE_TX0P	PCIe 通道 0 数据发送 P 端	В6		
PCIE_TX0N	PCIe 通道 0 数据发送 N 端	A6		
PCIE_TX1P	PCIe 通道 1 数据发送 P 端	В8		
PCIE_TX1N	PCIe 通道 1 数据发送 N 端	A8		
PCIE_RX0P	PCIe 通道 0 数据接收 P 端	D7		
PCIE_RX0N	PCIe 通道 0 数据接收 N 端	C7		
PCIE_RX1P	PCIe 通道 1 数据接收 P 端	D9		
PCIE_RX1N	PCIe 通道 1 数据接收 N 端	С9		
PCIE_refclk_P	PCIe 的参考时钟 P 端	A12		
PCIE_refclk_N	PCIe 的参考时钟 N 端	B12		
PCIE_PERST	PCIe 的复位引脚	A19		
PCIE_WAKE	PCIe 的唤醒引脚 D19			

3.2.4 串口

MES50HP 扩展底板上集成了一路 USB 转串口模块,采用的 USB-UART 芯片是 CP2102, USB 接口采用 USB Type C接口,可以用一根 USB Type C线将它连接到上 PC 的 USB 口进行串口数据通信。

USB Uart 电路设计的示意图如下图所示:

图 3-3 USB-UART 原理框图

图 3-4 USB-UART 电路

3.2.5 JTAG

MES50HP 开发板预留了一个 JTAG 接口,用于下载 FPGA 程序或者固化程序到 FLASH。为了带电插拔造成对 FPGA 芯片的损坏,我们在 JTAG 信号上添加了保护二极管来保证信号的电压在 FPGA 接受的范围,避免 FPGA 的损坏。

图 3-5 JTAG 连接座原理图

3.3 HDMI

3.3.1 HDMI 输入接口

HDMI 输入接口的实现,选用了国产宏晶微公司的 MS7200 HMDI 接收芯片, 兼容 HDMI1.4b 及 HDMI 1.4b 下标准视频的 3D 传输格式。支持的最高分辨率高达 4K@30Hz,最高采样率达到 300MHz; MS7200 支持 YUV 和 RGB 之间的色彩空间转换,数字接口支持 YUV 及 RGB 格式输出;

MS7200 支持通过 IIS 总线或 SPDIF 传输高清音频,同时还支持高比特音频 (HBR) 音频,在 HBR 模式下,音频采样率最高为 768KHz。

其中,MS7200 的 IIC 配置接口与 FPGA 的 IO 相连,通过 FPGA 的编程 来对 MS7200 进行初始化和控制操作,MES50HP 开发板上将 MS7200 的 SA 管 脚下拉到地,故 IIC 的 ID 地址为 0x56;

HDMI 输入接口的硬件连接如下图所示。

图 3-6 HDMI Receiver 连接示意图

具体管脚分配请看下表:

表 3-6 HDMI 管脚分配

表 3-6 HDMI 管脚分配					
信号	信号 功能描述				
HD_RX_PCLK	HDMI 显示图像像素时钟	AA12			
HD_RX_VS	HDMI 显示图像帧同步信号	W13			
HD_RX_HS	HDMI 显示图像行同步信号	V13			
HD_RX_DE	HDMI 显示图像有效像素点使能信号	U13			
HD_RX_D0	HDMI 显示图像像素点数据位[0]	U14			
HD_RX_D1	HDMI 显示图像像素点数据位[1]	U15			
HD_RX_D2	HDMI 显示图像像素点数据位[2]	T15			
HD_RX_D3	HDMI 显示图像像素点数据位[3]	W15			
HD_RX_D4	HDMI 显示图像像素点数据位[4]	Y16			
HD_RX_D5	HDMI 显示图像像素点数据位[5]	AB16			
HD_RX_D6	HDMI 显示图像像素点数据位[6]	AA16			
HD_RX_D7	HDMI 显示图像像素点数据位[7]	AB17			
HD_RX_D8	HDMI 显示图像像素点数据位[8]	Y17			
HD_RX_D9	HDMI 显示图像像素点数据位[9]	V17			
HD_RX_D10	HDMI 显示图像像素点数据位[10]	W18			
HD_RX_D11	HDMI 显示图像像素点数据位[11]	AB19			
HD_RX_D12	HDMI 显示图像像素点数据位[12]	AA18			
HD_RX_D13	HDMI 显示图像像素点数据位[13]	AB18			
HD_RX_D14	HDMI 显示图像像素点数据位[14]	Y18			
HD_RX_D15	HDMI 显示图像像素点数据位[15]	W17			

HD_RX_D16	HDMI 显示图像像素点数据位[16]	Y15
HD_RX_D17	HDMI 显示图像像素点数据位[17]	AB15
HD_RX_D18	HDMI 显示图像像素点数据位[18]	U16
HD_RX_D19	HDMI 显示图像像素点数据位[19]	V15
HD_RX_D20	HDMI 显示图像像素点数据位[20]	AA14
HD_RX_D21	HDMI 显示图像像素点数据位[21]	AB14
HD_RX_D22	HDMI 显示图像像素点数据位[22]	W14
HD_RX_D23	HDMI 显示图像像素点数据位[23]	Y14
HD_SCL	MS7200 控制通道 IIC 的时钟信号	V19
HD_SDA	MS7200 控制通道 IIC 的数据信号	V20
HD_RX_SC_MC	MS7200 音频通道 I2S 的串行时钟信号	T18
HD_RX_MU_MC	MS7200 音频通道 I2S 的主时钟信号或 Mute 信号	W22
HD_RX_I2S1	MS7200 音频通道 I2S 的数据通道 1	R16
HD_RX_I2S0	MS7200 音频通道 I2S 的数据通道 0	R15
HD_RX_WS_SP	MS7200 音频通道 I2S 的位时钟	T19
HD_RX_RSTN	MS7200 硬件复位信号,低电平有效	R17
HD_RX_INT	MS7200 输出中断信号	T17

3.3.2 HDMI 输出接口

HDMI 输出接口的实现,选用了国产宏晶微公司的 MS7210 HMDI 发送芯片, 兼容 HDMI1.4b 及 HDMI 1.4b 下标准视频的 3D 传输格式。内置可编程 EDID 缓 存,支持的最高分辨率高达 4K@30Hz,最高采样率达到 300MHz; MS7210 支持 YUV 和 RGB 之间的色彩空间转换,数字接口支持 YUV 及 RGB 格式输入;

MS7210 的 IIS 接口支持高清音频的传输,同时还支持高比特音频 (HBR) 音频,在 HBR 模式下,音频采样率最高为 768KHz。

其中,MS7210 的 IIC 配置接口与 FPGA 的 IO 相连,通过 FPGA 的编程 来对 MS7210 进行初始化和控制操作,MES50HP 开发板上将 MS7210 的 SA 管 脚上拉到电源电压,故 IIC 的 ID 地址为 0xB2;

HDMI 输出接口的硬件连接如下图所示。

图 3-7 HDMI Transmit 连接示意图

具体管脚分配请看下表:

表 3-7 HDMI 管脚分配

信号	信号 功能描述			
HD_TX_PCLK	HDMI 显示图像像素时钟	M22		
HD_TX_VS	HDMI 显示图像帧同步信号	W20		
HD_TX_HS	HDMI 显示图像行同步信号	Y21		
HD_TX_DE	HDMI 显示图像有效像素点使能信号	Y22		
HD_TX_D0	HDMI 显示图像像素点数据位[0]	V21		
HD_TX_D1	HDMI 显示图像像素点数据位[1]	V22		
HD_TX_D2	HDMI 显示图像像素点数据位[2]	T21		
HD_TX_D3	HDMI 显示图像像素点数据位[3]	T22		
HD_TX_D4	HDMI 显示图像像素点数据位[4]	R20		
HD_TX_D5	HDMI 显示图像像素点数据位[5]	R22		
HD_TX_D6	HDMI 显示图像像素点数据位[6]	R19		
HD_TX_D7	HDMI 显示图像像素点数据位[7]	P19		
HD_TX_D8	HDMI 显示图像像素点数据位[8]	M21		
HD_TX_D9	HDMI 显示图像像素点数据位[9]	M17		
HD_TX_D10	HDMI 显示图像像素点数据位[10]	M18		
HD_TX_D11	HDMI 显示图像像素点数据位[11]	M16		
HD_TX_D12	HDMI 显示图像像素点数据位[12]	N15		
HD_TX_D13	HDMI 显示图像像素点数据位[13]	L19		
HD_TX_D14	HDMI 显示图像像素点数据位[14]	K20		
HD_TX_D15	HDMI 显示图像像素点数据位[15]	L17		

HD_TX_D16	HDMI 显示图像像素点数据位[16]	K17
HD_TX_D17	HDMI 显示图像像素点数据位[17]	N19
HD_TX_D18	HDMI 显示图像像素点数据位[18]	J22
HD_TX_D19	HDMI 显示图像像素点数据位[19]	J20
HD_TX_D20	HDMI 显示图像像素点数据位[20]	K22
HD_TX_D21	HDMI 显示图像像素点数据位[21]	H21
HD_TX_D22	HDMI 显示图像像素点数据位[22]	H22
HD_TX_D23	HDMI 显示图像像素点数据位[23]	H19
HDMI_TX_SCL	MS7210 控制通道 IIC 的时钟信号	P17
HDMI_TX_SDA	MS7210 控制通道 IIC 的数据信号	P18
HD_TX_SC_MC	MS7210 音频通道 I2S 的时钟信号	W22
HD_TX_I2S1	MS7210 音频通道 I2S 的数据通道 1	P21
HD_TX_I2S0	MS7210 音频通道 I2S 的数据通道 0	U22
HD_TX_WS	MS7210 音频通道 I2S 的位时钟	U19
HD_TX_RSTN	MS7210 硬件复位信号,低电平有效	R17
HD_TX_INT	MS7210 输出中断	U20

3.4 按键/指示灯/存储接口

3.4.1 按键

MES50HP 扩展底板提供了 8 个用户按键(K1~8); 1 个重加载按键,重加载按键通过一个延时复位芯片连接到 PGL50H 的 RSTN 管脚; 8 个用户按键都连接到 PGL50H 的普通 IO 上,按键低电平有效,但按键按下时,IO 上的输入电压为低; 当没有按下按键时,IO 上的输入电压为高电平;

31 / 38

微信公众号: 小眼睛

图 3-8 用户按键电路图

具体管脚分配如下;

表 3-8 按键管脚分配

信号	PGL50H Pin
REST	重新加载固件按键
KEY1	K18
KEY2	L15
KEY3	J17
KEY4	K16
KEY5	J16
KEY6	J19
KEY7	H20
KEY8	H17

3.4.2 Led 灯

MES50HP 开发板有 11 个翠绿 LED 灯,其中 1 个是电源指示灯(POWER); 2 个是 FPGA 的运行的状态指示灯: INIT 和 DONE; 8 个是用户 LED 灯(LED1~8)。连接在 PGL50H BANK 0 的 IO 上,FPGA 输出高电平时对应的 LED 灯亮灯,板上 LED 灯功能电路图:

图 3-9 LED 灯电路原理图

具体管脚分配请看下表:

32 / 38

LED1	B2
LED2	A2
LED3	В3
LED4	A3
LED5	C5
LED6	A5
LED7	F7
LED8	F8

3.4.3 EEPROM

MES50HP 开发板板载了一片 EEPROM ,型号为 24LC02, 容量为: 2Kbit (1*256*8bit),由 1 个 256byte 的 block 组成,通过 IIC 总线进行通信。板载 EEPROM 就是为了学习 IIC 总线的通信方式。 EEPROM 的 I2C 信号连接的 FPGA 的 IO 口上。下图为 EEPROM 的设计示意图;

图 3-10 EEPROM 设计示意图

EEPROM 管脚分配如下:

表 3-10 EEPROM 引脚

信号	描述	PGL50H
IIC_SCL	EEPROM 时钟	F15
IIC_SDA	EEPROM 数据	G8

3.4.4 SD CARD

SD 卡是现在非常常用的存储设备,我们扩展出来的 SD 卡,支持 SPI 模式

和 SD 模式,使用的 SD 卡为 MicroSD 卡。原理图如下图所示。SD 卡是 3.3V 接口。

图 3-11 SDCARD 电路

信号	描述	PGL50H Pin	SD Card Pin
CLK	时钟	C4	5
CMD	命令串行线	A4	3
DATA[0:3]	数据线	D0: D5	7
		D1: D4	8
		D2: E6	1

卡识别

D3: E5

G9

表 3-11 SDCARD 引脚示例

3.5 扩展口

3.5.1 40pin 扩展口

DETECT

扩展板预留 1 个 2.54mm 标准间距的 40 针的扩展口 J8,用于连接各个模块或者用户自己设计的外面电路,扩展口有 40 个信号,其中,5V 电源 1 路,3.3V 电源 2 路,地 3 路,IO 口 34 路。切勿 IO 直接跟 5V 设备直接连接,以免烧坏 FPGA。如果要接 5V 设备,需要接电平转换芯片。

2

9

图 3-12 40pin 扩展 IO 原理图

表 3-12 40pin 扩展 IO

表 3-12 40pin 扩展 IO						
引脚编号	网络名称	PGL50H 管脚		引脚编号	网络名称	PGL50H 管脚
1	GND	\		2	5V0	\
3	EX_IO_11N	AB13		4	EX_IO_11P	Y13
5	EX_IO_9N	AB11		6	EX_IO_9P	Y11
7	EX_IO_10N	W11		8	EX_IO_10P	V11
9	EX_IO_12N	AB10		10	EX_IO_12P	AA10
11	EX_IO_15N	Y10		12	EX_IO_15P	W10
13	EX_IO_16N	T11		14	EX_IO_16P	R11
15	EX_IO_7N	Y12		16	EX_IO_7P	W12
17	EX_IO_8N	U12		18	EX_IO_8P	T12
19	EX_IO_14N	U10		20	EX_IO_14P	T10
21	EX_IO_13N	AB9		22	EX_IO_13P	Y9
23	EX_IO_17N	V9		24	EX_IO_17P	U9
25	EX_IO_3N	U8		26	EX_IO_3P	Т8
27	EX_IO_4N	W8		28	EX_IO_4P	V7
29	EX_IO_6N	AB8		30	EX_IO_6P	AA8
31	EX_IO_5N	Y6		32	EX_IO_5P	W6
33	EX_IO_2N	AB5		34	EX_IO_2P	Y5
35	EX_IO_1N	AB4		36	EX_IO_1P	AA4
37	GND	\		38	GND	\
39	A3V3	\		40	A3V3	\

3.5.2 PMOD 扩展口

MES50HP扩展底板预留了一个 12 针 2.54mm 间距的 PMOD 接口(J12)用于连接 FPGA 的 IO 和外部模块或电路。因为 BANK2 的 IO 是 3.3V 标准的,所以连接的外部 设备和电路的信号也需要 3.3V 电平标准。PMOD 连接器的原理图如下图所示

图 3-13 PMOD 座连接原理图

	农 3-13 FINIOD 自M为能					
引脚	网络名称	PGL50H		引脚	网络名称	PGL50H
编号	四年石柳	管脚		编号	网络石柳	管脚
1	D1_N	AB6		2	D1_P	AA6
3	D2_N	AB7		4	D2_P	Y7
5	D3_N	Y8		6	D3_P	W9
7	D4_N	U6		8	D4_P	Т7
9	GND	\		10	GND	\
11	A3V3	\		12	A3V3	\

表 3-13 PMOD 管脚分配

3.6 供电电源

开发板的电源输入电压为+12V,请使用开发板自带的电源,不要用其他规格的电源,以免损坏开发板。扩展板上通过 1 路 DC/DC 电源芯片 SGM61163 把+12V 电压转化成+5V 电源;另使用一路 DC/DC 电源芯片 SGM61032 把+5V 转换出+3.3V 供外设接口使用;扩展板上的+5V 电源通过板间连接器给核心板供电,扩展板上电源设计如下图所示:

图 3-14 12V 转 5V 原理图

图 3-15 5V 转 3.3V 原理图

3.7 尺寸结构图

图 3-16 扩展底板尺寸结构图