Feuille d'exercice n° 04 : Quelques fondamentaux

Exercice 1 Soit P,Q deux propositions. La proposition $(P \land Q \Longrightarrow (\neg P) \lor Q)$ est-elle nécessairement vraie ?

Exercice 2 Soit la propriété suivante : P(z) : $\langle |z-1| \le 3 \Longrightarrow |z-5| \ge 1 \rangle$.

- 1) Quel est l'ensemble des $z \in \mathbb{C}$ tel que P(z) soit vraie? A-t-on : $\forall z \in \mathbb{C}, P(z)$ vraie?
- 2) Mêmes questions en remplaçant $|z-5| \ge 1$ par |z-5| > 1, puis par $|z-5| \ge 2$.

Exercice 3 ($^{\circ}$) Écrire la négation des assertions suivantes où P,Q,R,S sont des propositions.

1) $P \Rightarrow Q$

4) *P* ou (*Q* et *R*)

- **2)** P et non Q
- 3) $P ext{ et } (Q ext{ et } R)$

5) $(P \text{ et } Q) \Rightarrow (R \Rightarrow S)$

Exercice 4 Dans chacun des cas suivants, comprendre le sens des deux phrases proposées et déterminer leur valeur de vérité :

- 1) $\forall n \in \mathbb{N} \ \exists N \in \mathbb{N} \ n \leqslant N$
 - et $\exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ n \leq N$.
- **2)** $\forall y \in \mathbb{R}_+^* \ \exists x \in \mathbb{R} \ y = e^x$
- et $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R}^*_+, \ y = e^x.$
- 3) Soit f une fonction réelle définie sur \mathbb{R} . $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ y = f(x)$ et

$$\exists y \in \mathbb{R} \ \forall x \in \mathbb{R} \ y = f(x).$$

Exercice 5 ($^{\otimes}$) Soit f une fonction réelle définie sur \mathbb{R} . Quelle est la négation des propositions suivantes ?

1) $\exists M \in \mathbb{R} \ \forall x \in \mathbb{R}, \ f(x) \leqslant M$

- **4)** $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ y \leqslant f(x) \leqslant 2x + y$
- 2) $\forall x \in \mathbb{R}, \ f(x) \ge 1 \text{ ou } f(x) \le -1$
- **3)** $\forall x \in \mathbb{R}, \ f(x) \geqslant 0 \Rightarrow x \geqslant 0$

5) $\forall x \in \mathbb{R}, \ (\exists y \in \mathbb{R}, \ f(x) \geqslant y) \Rightarrow x \leqslant 0$

Exercice 6 Soient les quatre assertions suivantes :

(a) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0$;

(c) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0$;

(b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y > 0$;

- (d) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ y^2 > x$.
- 1) Les assertions (a), (b), (c) et (d) sont-elles vraies ou fausses?
- 2) Donner la négation de chacune.

Exercice 7 (\circlearrowleft) Soit f une fonction réelle définie sur \mathbb{R} . Écrire au moyen de quantificateurs les propositions suivantes :

1) f est croissante.

3) f s'annule au plus une fois.

2) f est périodique.

4) f prend au moins une fois la valeur 1.

Exercice 8 Résoudre sur \mathbb{R} l'équation $2|x-1| = x^2 - 2$.

Exercice 9 Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x, y \in \mathbb{R}, \ f(y - f(x)) = 2 - x - y.$$

Exercice 10 En quoi le raisonnement suivant est-il faux ?

Soit $\mathcal{P}(n)$: « n crayons de couleurs sont tous de la même couleur ».

- -- $\mathcal{P}(1)$ est vraie car un crayon de couleur est de la même couleur que lui-même.
- Supposons $\mathcal{P}(n)$. Soit n+1 crayons. On en retire 1. Les n crayons restants sont de la même couleur par hypothèse de récurrence.

Reposons ce crayon et retirons-en un autre ; les n nouveaux crayons sont à nouveau de la même couleur. Le premier crayon retiré était donc bien de la même couleur que les n autres. La proposition est donc vraie au rang n+1.

— On a donc démontré que tous les crayons en nombre infini dénombrable sont de la même couleur.

Exercice 11 Dans un match de rugby, une équipe peut marquer 3 points (pénalité ou drop), 5 points (essai non transformé) ou 7 points (essai transformé). Quel est l'ensemble des scores possibles ?

Exercice 12 Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant : $u_0 \leqslant 1$, $\forall n \in \mathbb{N}$ $u_{n+1} \leqslant \sum_{k=0}^n u_k$.

Montrer que $\forall n \in \mathbb{N} \ u_n \leq 2^n$.

