

Apostila de Lógica para Computação

Lógica Matemática

1

<u>Linguagem Natural x Linguagem Lógica</u>

Linguagem natural é qualquer linguagem que os seres humanos aprendem em seu ambiente de vida e comunicação com outros seres humanos, como é o caso do português.

Cabe não nos esquecermos de que a **linguagem natural é vaga, ambígua e imprecisa**, sendo adequada para a poesia, literatura e folclore, mas não para a ciência e a tecnologia.

Linguagem artificial/formal/simbólica é a linguagem construída para fins específicos, como as linguagens de programação e os diversos cálculos da Lógica e da Matemática.

Linguagens artificiais exprimem com correção e exatidão o pensamento e os resultados do conhecimento científico, de forma sintética.

Exemplo:

O produto de um número pela soma de dois outros é igual ao produto do primeiro pelo segundo somado ao produto do primeiro pelo terceiro.

Simbolicamente temos:

Se X,Y,Z são números arbitrários, x. $(y + z) = x \cdot y + x \cdot z$

Proposições

Conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. São expressões a respeito das quais tem sentido dizer que são verdadeiras ou falsas.

Exemplo:

- (a) A Lua é um satélite da Terra
- (b) Recife é a capital de Pernambuco
- (c) 4 > 3
- (d) 2 > 5
- (e) Vitória é a capital de Minas Gerais.

A lógica matemática adota como regras fundamentais do pensamento os dois seguintes axiomas:

- (I) **Princípio da não contradição:** uma proposição não pode ser verdadeira e falsa ao mesmo tempo.
- (II) **Princípio do terceiro excluído:** toda a proposição ou é verdadeira ou é falsa, isto é, verifica-se sempre um destes casos e nunca um terceiro.

Valores lógicos das proposições: Chama-se valor lógico de uma proposição a verdade (V) se ela é verdadeira e a falsidade (F) se ela é falsa.

Classificação das proposições:

- a) **Simples** ou **atômica**: é aquela proposição que não contem nenhuma outra proposição como parte integrante de si. São designadas por letras minúsculas.
- p: Carlos é careca
- q: Pedro é estudante
- r: Mônica é jovem
- b) **Composta** ou **molecular**: é aquela formada pela combinação de duas ou mais proposições. São designadas por letras maiúsculas.
- P: Carlos é careca e Pedro é estudante
- Q: Carlos é careca **ou** Pedro é estudante
- R: **Se** Carlos é careca, **então** é infeliz.

Conectivos:

São palavras (e, ou, não, se... então, se e somente se...) que possibilitam formar novas proposições a partir de outras proposições.

Tabela-verdade:

Segundo do *Princípio do terceiro excluído*, toda proposição simples p é verdadeira ou falsa.

р
V
F

Em se tratando de uma proposição composta, a determinação do seu valor se faz com base no seguinte princípio:

O valor lógico de qualquer proposição composta depende unicamente dos valores lógicos das proposições simples componentes, ficando por eles univocamente determinado.

Exemplo: Considere uma proposição composta cujas proposições simples são p e q. Os valores lógicos possíveis são:

р	q
V	V
V	F
F	V
F	F

Exemplo: Considere uma proposição composta cujas proposições simples são p, q e r. Os valores lógicos possíveis são:

р	q	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

Notação:

V(p) = V assim p é verdadeira

V(p) = F assim p é falsa

Operações lógicas sobre proposições:

a) **Negação:** Chame-se a negação de uma proposição p a proposição representada por "não p", cujo valor lógico é verdade quando p é falsa e é falsidade quando p é verdadeira. Assim "não p" tem o valor oposto de p.

р	~ p
V	F
F	V

Ou seja:

$$V(\sim p) = \sim V(p)$$

Exemplos:

p: O Sol é uma estrela

~p: O Sol não é uma estrela

q: Carlos é mecânico

~q: Carlos não é mecânico

~q: Não é verdade que Carlos é mecânico

~q: É falso que Carlos é mecânico

$$r: 2 + 3 = 5$$

$$\sim$$
r: 2 + 3 \neq 5

b) **Conjunção:** Chame-se conjunção de duas proposições p e q a proposição representada por "p e q", cujo valor lógico é verdade quando p e q são verdadeiras e é falsidade nos demais casos.

р	q	p∧q
V	V	V
V	F	F
F	V	F
F	F	F

Ou seja:

$$V \wedge V = V$$

$$V \wedge F = F$$

$$F \wedge V = F$$

$$F \wedge F = F$$

$$V(p \wedge q) = V(p) \wedge V(q)$$

Exemplos:

1.

p: A neve é branca

q: 2 < 5

 $p \land q$: A neve é branca **e** 2 < 5

$$V(p \wedge q) = V(p) \wedge V(q) = V \wedge V = V$$

2.

p: O enxofre é verde

q: 7 é um número primo

p ∧ q: O enxofre é verde **e** 7 é um número primo

$$V(p \wedge q) = V(p) \wedge V(q) = F \wedge V = F$$

c) **Disjunção:** Chame-se disjunção de duas proposições p e q a proposição representada por "p ou q", cujo valor lógico é verdade quando ao menos uma das proposições p e q é verdadeira e é falsidade quando p e q são falsas.

р	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

Ou seja:

$$V \vee V = V$$

$$V \vee F = V$$

$$F \vee V = V$$

$$F \vee F = F$$

$$V(p \vee q) = V(p) \vee V(q)$$

Exemplos:

1.

p: A neve é branca

q: 2 < 5

 $p \lor q$: A neve é branca **ou** 2 < 5

 $V(p \lor q) = V(p) \lor V(q) = V \lor V = V$

2.

p: O enxofre é verde

q: 7 é um número primo

p v q: O enxofre é verde **ou** 7 é um número primo

 $V(p \lor q) = V(p) \lor V(q) = F \lor V = V$

d) **Disjunção exclusiva:** Chame-se disjunção exclusiva de duas proposições p e q a proposição representada por "ou p ou q", cujo valor lógico é verdade quando p é verdadeira ou q é verdadeira, mas não ambas; e é falsidade quando p e q são ambas verdadeiras ou ambas falsas.

р	q	p⊻q
V	V	F
V	F	V
F	V	V
F	F	F

Ou seja:

 $V \vee V = F$

 $V \vee F = V$

 $F \vee V = V$

 $F \vee F = F$

 $V(p \vee q) = V(p) \vee V(q)$

Exemplos:

P: Carlos é médico **ou** professor (disjunção inclusiva)

Q: Mário é alagoano **ou** Gaúcho (disjunção exclusiva)

e) **Condicional:** Chame-se condicional uma proposição representada por "se p então q", cujo valor lógico é falsidade quando p é verdadeira e q é falsa; e é verdade nos demais casos.

р	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

Ou seja:

 $V \rightarrow \dot{V} = V$

 $V \rightarrow F = F$

 $F \rightarrow V = V$

 $F \rightarrow F = V$

$$V(p \rightarrow q) = V(p) \rightarrow V(q)$$

Uma condicional p \rightarrow q não afirma que o conseqüente q se deduz ou é conseqüência do antecedente p, o que uma condicional afirma é unicamente uma relação entre os valores lógicos do antecedente e do conseqüente de acordo com uma tabela-verdade.

Exemplos:

1.

p: A neve é branca

q: 2 < 5

 $p \rightarrow q$: **Se** a neve é branca, **então** 2 < 5

$$V(p \rightarrow q) = V(p) \rightarrow V(q) = V \rightarrow V = V$$

2.

p: O enxofre é verde

q: 7 é um número primo

p → q: **Se** o enxofre é verde, **então** 7 é um número primo

$$V(p \rightarrow q) = V(p) \rightarrow V(q) = F \rightarrow V = V$$

Bicondicional: Chame-se bicondicional uma proposição representada por "p se e somente se q", cujo valor lógico é verdade quando p e q são ambas verdadeiras ou ambas falsa, e é falsidade nos demais casos.

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Ou seia:

$$V \leftrightarrow V = V$$

$$V \leftrightarrow F = F$$

$$F \leftrightarrow V = F$$

$$F \leftrightarrow F = V$$

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q)$$

Exemplos:

1.

p: A neve é branca

q: 2 < 5

 $p \leftrightarrow q$: A neve é branca se e somente se 2 < 5

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = V \leftrightarrow V = V$$

2.

p: O enxofre é verde

q: 7 é um número primo

 $p \leftrightarrow q$: O enxofre é verde **se e somente se** 7 é um número primo

$$V(p \leftrightarrow q) = V(p) \leftrightarrow V(q) = F \leftrightarrow V = F$$

Construção de Tabelas-Verdade

Dadas várias proposições simples, podemos combiná-las pelos conectivos e construir proposições compostas.

Com o emprego das tabelas-verdade das operações lógicas fundamentais é possível construir a tabela-verdade correspondente a qualquer proposição composta.

Número de linhas de uma tabela-verdade: A tabela-verdade de uma proposição composta com n proposições simples contém **2**ⁿ **linhas**.

Exemplo:

Construir a tabela-verdade da proposição: $P(p, q) = \sim (p \land \sim q)$

1ª Solução

- 1. Forma-se o par de colunas correspondente às duas proposições simples;
- 2. Forma-se a coluna para o ~q;
- 3. Forma-se a coluna para $p \land \sim q$;
- 4. Forma-se a coluna para \sim (p \wedge \sim q).

р	q	~q	p ∧ ~q	~(p ^~q)
V	V	F	F	V
V	F	V	V	F
F	V	F	F	V
F	F	V	F	V

2ª Solução (Não utilizaremos nesta disciplina)

- 1. Forma-se o par de colunas correspondente às duas proposições simples;
- 2. Traça-se uma coluna para cada uma das proposições e conectivos.
- 3. Completam-se essas colunas numa certa ordem;
- 4. O resultado está na coluna completada em último lugar.

р	q	~	(p	^	~	q)
V	V	V	V	F	F	V
V	F	F	V	V	V	F
F	V	V	F	F	F	V
F	F	V	F	F	V	F
		4	1	3	2	1

3ª Solução

- 1. Traça-se uma coluna para cada uma das proposições e conectivos.
- 2. Completam-se essas colunas numa certa ordem;
- 3. O resultado está na coluna completada em último lugar.

~	(p	^	?	q)
V	V	F	F	V
F	V	V	V	F
V	F	F	F	V
V	F	F	V	F
4	1	3	2	1

Logo: P(VV,VF,FV,FF) = VFVV

~	р	٨	2	q
F	V	F	F	V
F	V	F	V	F
V	F	F	F	V
V	F	٧	V	F
2	1	3	2	1

Uso de parênteses: É necessário o uso de parênteses na simbolização das proposições para evitar qualquer tipo de ambigüidade.

Exemplo: $p \land q \lor r$ (<u>NÃO PODE SER ESCRITO SEM PARÊNTESIS</u>)

(i) Disjunção: (p ∧ q) ∨ r(ii) Conjunção: p ∧ (q ∨ r)

(p	٨	q)	V	r
V	V	V	V	V
V	V	V	V	F
V	F	F	V	V
V	F	F	F	F
F	F	V	V	V
F	F	V	F	F
F	F	F	V	V
F	F	F	F	F
1	2	1	3	1

р	^	(q	V	r)
V	V	V	V	V
V	V	V	V	F
V	V	F	V	V
V	F	F	F	F
F	F	V	V	V
F	F	V	V	F
F	F	F	V	V
F	F	F	F	F
1	3	1	2	1

A ordem de precedência do os conectivos, do mais fraco para o mais forte é:

- (i)
- (ii) \wedge e \vee
- (iii) \rightarrow
- (iv) \leftrightarrow

Exemplo:
$$(p \lor q) \leftrightarrow (-r) \rightarrow (s \land (-t))$$

- 4. Determinar P(VVV, VVF, VFV, VFF, FVV, FVF, FFV, FFF) em cada um dos seguintes casos:
 - (a) $P(p, q, r) = p \vee (q \wedge r)$
 - (b) $P(p, q, r) = (p \land \sim q) \lor r$
 - (c) $P(p, q, r) = \sim p \lor (q \land \sim r)$

 - (d) $P(p, q, r) = (p \lor q) \land (p \lor r)$ (e) $P(p, q, r) = (p \lor \neg r) \land (q \lor \neg r)$
 - (f) $P(p, q, r) = \sim (p \lor \sim q) \land (\sim p \lor r)$

Resoluções:

a)

p V	V	(q V	٨	r)
V	٧		V	V
V	٧	V	F	F
V	V	F F	F	V
V	٧		F	F
F	V	V	V	V
F F	F	V	F	F
F	F	F F	F	V
F	F	F	F F	F
1	3	1	2	1

b) Resolução:

р	q	r	~q	p ∧ ~q	(p ∧~q) ∨ r
٧	٧	٧	F	F	V
٧	٧	F	F	F	F
٧	F	٧	٧	V	V
٧	F	F	V	V	V
F	٧	٧	F	F	V
F	٧	F	F	F	F
F	F	٧	٧	F	V
F	F	F	٧	F	F

5. Determinar P(VFV) em cada um dos seguintes casos:

- (a) $P(p, q, r) = p \land \sim r \rightarrow \sim q$
- (b) $P(p, q, r) = \sim p \wedge (q \vee \sim r)$
- (c) $P(p, q, r) = \sim (p \land q) \longleftrightarrow \sim (p \lor \sim r)$
- (d) $P(p, q, r) = (r \land (p \lor \sim q)) \land \sim (\sim r \lor (p \land q))$
- (e) $P(p, q, r) = (p \lor q \rightarrow r) \rightarrow q \lor \sim r$
- (f) $P(p, q, r) = (p \lor (q \rightarrow \sim r)) \land (\sim p \lor r \longleftrightarrow \sim q)$

Valor lógico de uma proposição composta: Dada uma proposição composta P(p, q, r, ...), pode-se sempre determinar o seu valo lógico quando são dados ou conhecidos os valores lógicos respectivos das proposições simples.

Exemplos:

1. Sabendo que os valores lógicos das proposições p e q são respectivamente V e F, determinar o valor lógico da proposição: P(p, q) = \sim (p \vee q) $\leftrightarrow \sim$ p $\wedge \sim$ q

$$V(P) = \sim (V \vee F) \leftrightarrow \sim V \wedge \sim F = \sim V \leftrightarrow F \wedge V = F \leftrightarrow F = V$$

2. Sejam as proposições p: $\pi = 3$ e q: sen $(\pi/2) = 0$, determine o valor lógico da proposição: $P(q,p) = (p \rightarrow q) \rightarrow (p \rightarrow p \land q)$

$$V(p) = F e V(q) = F$$

$$V(P) = (F \rightarrow F) \rightarrow (F \rightarrow F \land F) = V \rightarrow (F \rightarrow F) = V \rightarrow V = V$$

Tautologia

Chama-se tautologia toda a proposição composta cujo o valor lógico é sempre V (verdade).

Exemplos:

A proposição $\mathbf{p} \rightarrow \mathbf{p}$ é tautológica ?

р	р	$p \rightarrow p$
V	V	V
F	F	V

A proposição **p** ↔ **p** é tautológica ?

р	р	$p \leftrightarrow p$
V	V	V
F	F	V

A proposição ~(p ∧ ~p) é tautológica?

р	~p	p ∧ ~p	~(p ^ ~p)
V	F	F	V
F	V	F	V

A proposição **p v ~p** é tautológica ?

р	~p	p v ~p
V	F	V
F	V	V

Contradição

Chama-se contradição toda a proposição composta cujo valor lógico é sempre F (falsidade).

Logo, P(p, q, r,..) é uma tautologia se e somente se ~P(p, q, r,..) é uma contradição.

Exemplos:

A proposição **p** ∧ ~**p** é uma contradição?

р	~p	p ∧ ~p
V	F	F
F	V	F

A proposição **p** ↔ ~**p** é uma contradição?

р	~ p	p ↔ ~p
V	F	F
F	V	F

A proposição $(p \land q) \land \sim (p \lor q)$ é uma contradição?

р	q	p∧q	p v q	~(p ∨ q)	$(p \land q) \land \sim (p \lor q)$
V	V	V	V	F	F
V	F	F	V	F	F
F	V	F	V	F	F
F	F	F	F	V	F

A proposição ~p ∧ (p ∧ ~q) é uma contradição ???

р	q	~p	~q	(p ∧ ~q)	~p ^ (p ^ ~q)
V	V	F	F	F	F
V	F	F	V	V	F
F	V	V	F	F	F
F	F	V	V	F	F

Contingência

Chama-se contingência toda a proposição composta que não é tautologia nem contradição.

Exemplos:

A proposição $\mathbf{p} \rightarrow \mathbf{p}$ é uma contingência?

р	~p	p → ~p
V	F	F
F	V	V

A proposição $\mathbf{p} \vee \mathbf{q} \rightarrow \mathbf{p}$ é uma contingência?

р	q	$p \lor q$	$p \lor q \rightarrow p$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	V

A proposição $x = 3 \land (x \ne y \rightarrow x \ne 3)$ é uma contingência? Primeiro será obrigatório a conversão para linguagem simbólica da seguinte forma: p: x = 3; q: x = y; note que o deve ser traduzido de forma que $x \ne y = \sim q!$

р	q	~p	~q	~q → ~p	$p \wedge (\sim q \rightarrow \sim p)$
V	V	F	F	V	V
V	F	F	V	F	F
F	V	V	F	V	F
F	F	V	V	V	F

Princípio da Substituição para as Tautologias

Seja P(p, q, r, ...) uma tautologia e sejam $P_0(p,q,r,...)$, $Q_0(p,q,r,...)$, $R_0(p,q,r,...)$, ... proposições quaisquer.

Se P(p, q, r, ...) é uma tautologia, então P(P₀, Q₀, R₀, ...) também é uma tautologia, quaisquer que sejam as proposições Po, Qo, Ro,...

Isto significa que se trocarmos uma proposição simples de em uma tautologia a mesma continuará sendo tautológica. Exemplo: P(p): p v ~p é tautológica. Se substituirmos o p por qualquer proposição composta, digamos: $p \rightarrow q$, a proposição composta resultante P(p, q): $(p \rightarrow q) v \sim (p \rightarrow q)$ continua sendo uma tautologia. Fica como exercício verificar tal fato.

EXERCÍCIOS

1. Mostrar que as seguintes proposições são tautológicas:

(a)
$$(p \rightarrow p) \lor (p \rightarrow \sim p)$$

(a)
$$(p \rightarrow p) \lor (p \rightarrow \sim p)$$
 (b) $(p \longleftrightarrow p \land \sim p) \longleftrightarrow \sim p$

4. Determinar quais das seguintes proposições são tautológicas, contraválidas, ou contingentes:

(a)
$$p \rightarrow (\sim p \rightarrow q)$$

(b)
$$\sim p \lor q \to (p \to q)$$

(c)
$$p \rightarrow (q \rightarrow (q \rightarrow p))$$

(d)
$$((p \rightarrow q) \longleftrightarrow q) \rightarrow p$$

a)
$$p \rightarrow (\sim p \rightarrow q)$$

р	\rightarrow	(~	р	\rightarrow	q)
V	V	F	V	V	V
V	V	F	V	V	F
F	V	V	F	V	V
F	V	V	F	F	F
1	4	2	1	3	1

b)
$$\sim p \lor q \to (p \to q)$$

c)
$$p \rightarrow (q \rightarrow (q \rightarrow p))$$

d)
$$((p \rightarrow q) \leftrightarrow q) \rightarrow p)$$

((p	\rightarrow	q)	\leftrightarrow	q)	\rightarrow	p)
V	V	V	V	V	V	V
V	F	F	V	F	V	V
F	V	V	V	V	F	F
F	V	F	F	F	V	F
1	2	1	3	1	4	1

11. Ano: 2016Banca: FCC

Considere as afirmações e seus respectivos valores lógicos.

- I. André não é analista ou Bruno é biblioteconomista. Afirmação VERDADEIRA.
- II. Se Carlos não é cerimonialista, então Dorival é contador. Afirmação FALSA.
- III. André não é analista e Dorival não é contador. Afirmação FALSA.
- IV. Se Bruno é biblioteconomista, então Ernani é economista. Afirmação VERDADEIRA.

A partir dessas afirmações, é correto concluir que

- a) Se Ernani é economista, então André não é analista.
- b) Carlos não é cerimonialista e Bruno não é biblioteconomista.
- c) Carlos é cerimonialista e Ernani é economista.
- d) André não é analista ou Dorival é contador.
- e) Bruno não é biblioteconomista ou Dorival não é contador.

Implicação Lógica

Diz-se que uma proposição P(p, q, r,...) implica logicamente (ou abreviadamente, implica) uma proposição Q(p, q, r, ...), se Q é verdadeira *todas as vezes* que P é verdadeira.

Notação:

$$P(p, q, r, ...) \Rightarrow Q(p, q, r, ...)$$

Exemplos:

1)
$$p \land q \Rightarrow p \lor q$$

р	q	p∧q	$p \lor q$
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	F

Podemos também afirmar:

(i)
$$p \Rightarrow p \lor q e q \Rightarrow p \lor q$$
 (Adição)

(ii)
$$p \land q \Rightarrow p e p \land q \Rightarrow q$$
 (Simplificação)

2)
$$(p \lor q) \land \sim p \Rightarrow q$$
 (Silogismo disjuntivo)

р	q	p v q	~p	(p ∨ q) ∧ ~p
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

3)
$$(p \rightarrow q) \land p \Rightarrow q \text{ (Modus ponens)}$$

р	q	$p \rightarrow q$	$(p \rightarrow q) \land p$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

4)
$$(p \rightarrow q) \land \sim q \Rightarrow \sim p$$
 (Modus tollens)

р	q	~q	~p	$p \rightarrow q$	$(p \rightarrow q) \wedge \sim q$
V	V	F	F	V	F
V	F	V	F	F	F
F	V	F	V	V	F
F	F	V	V	V	V

Tautologias e Implicação Lógica

 $P(p, q, r, ...) \Rightarrow Q(p, q, r, ...)$ se e somente se a condicional $P(p, q, r, ...) \rightarrow Q(p, q, r, ...)$ é uma tautologia.

Demonstração:

Se P(p, q, r, ...) \Rightarrow Q(p, q, r, ...) então não ocorre em nenhum momento que V(P) = V e V(Q) = F simultaneamente, portanto a condicional P(p, q, r, ...) \rightarrow Q(p, q, r, ...) é uma tautologia.

Se P(p, q, r, ...) \rightarrow Q(p, q, r, ...) é uma tautologia não ocorre em nenhum momento V(P) = V e V(Q) = F simultaneamente, e portanto P(p, q, r, ...) \Rightarrow Q(p, q, r, ...).

Exemplos:

1)
$$p \land \neg p \Rightarrow q$$

р	q	~p	p ∧ ~p	$p \land \sim p \rightarrow q$
V	V	F	F	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

Podemos afirmar que $\mathbf{p} \wedge \mathbf{p} \to \mathbf{q}$ é tautológica, logo subsiste a implicação lógica $\mathbf{p} \wedge \mathbf{p} \Rightarrow \mathbf{q}$.

2)
$$(p \leftrightarrow q) \land p \Rightarrow q$$

р	q	$p \leftrightarrow q$	$(p \leftrightarrow q) \land p$	$(p \leftrightarrow q) \land p \to q$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	V	F	V

Podemos afirmar que $(p \leftrightarrow q) \land p \rightarrow q$ é tautológica, logo subsiste a implicação lógica $(p \leftrightarrow q) \land p \Rightarrow q$.

Propriedades da Implicação Lógica

Reflexiva:

$$P(p, q, r, ...) \Rightarrow P(p, q, r, ...)$$

• Transitiva:

Se P(p, q, r, ...)
$$\Rightarrow$$
 Q(p, q, r, ...) e Q(p, q, r, ...) \Rightarrow R(p, q, r, ...) então P(p, q, r, ...) \Rightarrow R(p, q, r, ...)

Equivalência Lógica

Diz-se que uma proposição P(p, q, r, ...) é logicamente equivalente (ou abreviadamente, equivalente) a proposição Q(p, q, r, ...), se a tabela verdade dessas duas proposições são idênticas.

Notação:

$$P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$$

Ficará claro mais tarde que, em certas circunstâncias, é necessário "transformar" uma proposição composta em outra proposição. Isto é feito substituindo uma proposição composta (em uma proposição composta) por outra proposição composta equivalente. Este processo é repetido até que a forma desejada para a proposição composta seja obtida.

Exemplo:

1)
$$p \land (p \lor q) \Leftrightarrow p$$

р	q	p∨q	$p \wedge (p \vee q)$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	F

2)
$$(p \leftrightarrow q) \land p \Leftrightarrow p \leftrightarrow q$$
?

р	q	$p \leftrightarrow q$	$(p \leftrightarrow q) \land p$
V	V	V	V
V	F	F	F
F	V	F	F
F	F	V	F

Tautologias e Equivalência Lógica

 $P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...)$ se e somente se a bicondicional $P(p, q, r, ...) \leftrightarrow Q(p, q, r, ...)$ é uma tautologia.

Demonstração:

Se P(p, q, r, ...) e Q(p, q, r, ...) são equivalentes suas tabelas verdades são idênticas, portanto o valor lógico da bicondicional é sempre verdade (tautológico).

Se a bicondicional é tautológica (somente verdade) os valores lógicos de P(p, q, r, ...) e Q(p, q, r, ...) são sempre idênticos, isto é, P(p, q, r, ...) e Q(p, q, r, ...) são equivalentes.

Exemplos:

1)
$$(p \land q \rightarrow r) \Leftrightarrow (p \rightarrow (q \rightarrow r))$$

(p	^	q	\rightarrow	r)	\leftrightarrow	(p	\rightarrow	(q	\rightarrow	r))
V	V	V	V	V	V	V	V	V	V	V
V	>	>	F	F	V	>	F	>	F	F
V	F	F	V	>	V	>	V	F	>	V
V	F	F	V	F	V	V	V	F	V	F
F	F	V	V	V	V	F	V	V	V	V
F	F	V	V	F	V	F	V	V	F	F
F	F	F	V	V	V	F	V	F	V	V
F	F	F	V	F	V	F	V	F	V	F
1	2	1	3	1	4	1	3	1	2	1

2)
$$(x = 1 \lor x < 3) \Leftrightarrow \sim (x < 3 \land x = 1) \text{ \'e falso } !!!$$

(x = 1	V	x \place 3)	\leftrightarrow	?	(x < 3	٨	x = 1)
V	V	F	F	F	V	V	V
V	V	V	V	V	F	F	V
F	F	F	F	V	V	F	F
F	V	V	V	V	F	F	F
1	3	2	5	4	2	3	1

Propriedades da Equivalência Lógica

• Reflexiva:

$$P(p, q, r, ...) \Leftrightarrow P(p, q, r, ...)$$

• Transitiva:

Se P(p, q, r, ...)
$$\Leftrightarrow$$
 Q(p, q, r, ...) e Q(p, q, r, ...) \Leftrightarrow R(p, q, r, ...) então P(p, q, r, ...) \Leftrightarrow R(p, q, r, ...)

• Simétrica:

Se P(p, q, r, ...)
$$\Leftrightarrow$$
 Q(p, q, r, ...) então Q(p, q, r, ...) \Leftrightarrow P(p, q, r, ...)

Proposições associadas a uma condicional

Dada a condicional p \to q, chama-se proposições associadas a p \to q as três seguintes proposições condicionais que contêm p e q:

- Proposição recíproca de $p \rightarrow q : q \rightarrow p$
- Proposição contrária de $p \rightarrow q : \sim p \rightarrow \sim q$
- Proposição contrapositiva de p → q : ~q → ~p

р	q	$p \rightarrow q$	$q \rightarrow p$	~p → ~q	~q → ~p
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

Podemos afirmar que:

- (i) A condicional p \rightarrow q e sua contrapositiva \sim q \rightarrow \sim p são equivalentes;
- (ii) A recíproca $q \to p$ e a contrária $\sim p \to \sim q$ da condicional $p \to q$ são equivalentes.

Negação conjunta de duas proposições

Chama-se negação conjunta de duas proposições p e q a proposição "não p e não q", isto é, simbolicamente $\sim p \wedge \sim q$.

A negação conjunta de duas preposições pode ser indicada por $\mathbf{p} \downarrow \mathbf{q}$.

Logo: $\mathbf{p} \downarrow \mathbf{q} \Leftrightarrow \mathbf{p} \land \mathbf{q}$

р	q	p↓q
V	V	F
V	F	F
F	V	F
F	F	V

Negação disjunta de duas proposições

Chama-se negação disjunta de duas proposições p e q a proposição "não p ou não q", isto é, simbolicamente $\sim p \vee \sim q$.

A negação disjunta de duas preposições pode ser indicada por $\mathbf{p} \uparrow \mathbf{q}$.

Logo: **p** ↑ **q** ⇔ ~**p** ∨~**q**

р	q	p↑q
V	V	F
V	F	V
F	V	V
F	F	V

Álgebra das proposições

Propriedades da conjunção:

(a) Idempotente: $\mathbf{p} \wedge \mathbf{p} \Leftrightarrow \mathbf{p}$

р	p∧p	$p \land p \leftrightarrow p$
V	V	V
F	F	V

Exemplo: $x \neq 1 \land x \neq 1 \Leftrightarrow x \neq 1$

(b) Comutativa: $\mathbf{p} \wedge \mathbf{q} \Leftrightarrow \mathbf{q} \wedge \mathbf{p}$

р	q	p∧q	q∧p	$p \land q \leftrightarrow q \land p$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	F	F	V

Exemplo: $x \ne 1 \land x < 0 \iff x < 0 \land x \ne 1$

(c) Associativa: $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

р	q	r	p∧q	q∧r	(p ∧ q) ∧ r	p ∧ (q ∧ r)
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	F
V	F	F	F	F	F	F
F	V	V	F	V	F	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

Exemplo: $(x \neq 1 \land x < 0) \land y \neq 1 \Leftrightarrow x \neq 1 \land (x < 0 \land y \neq 1)$

(d) Identidade: $\mathbf{p} \wedge \mathbf{t} \Leftrightarrow \mathbf{p} \in \mathbf{p} \wedge \mathbf{c} \Leftrightarrow \mathbf{c}$, para t elemento neutro e c elemento absorvente.

р	t	С	p∧t	p∧c	$p \wedge t \leftrightarrow p$	$p \land c \leftrightarrow c$
V	V	F	V	F	V	V
F	V	F	F	F	V	V

Exemplo: $x \neq 1 \land |x| \ge 0 \Leftrightarrow x \ne 1$

 $x \neq 1 \, \land \, |x| < 0 \Leftrightarrow |x| < 0$

Propriedades da disjunção:

(a) Idempotente: $\mathbf{p} \vee \mathbf{p} \Leftrightarrow \mathbf{p}$

р	$p \lor p$	$p \lor p \leftrightarrow p$
V	V	V
F	F	V

Exemplo: $x \neq 1 \lor x \neq 1 \Leftrightarrow x \neq 1$

(b) Comutativa: $\mathbf{p} \vee \mathbf{q} \Leftrightarrow \mathbf{q} \vee \mathbf{p}$

р	q	p ∨ q	q∨p	$p \lor q \leftrightarrow q \lor p$
V	V	V	V	V
V	F	V	V	V
F	V	V	V	V
F	F	F	F	V

Exemplo: $x \ne 1 \lor x < 0 \iff x < 0 \lor x \ne 1$

(c) Associativa: $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$

р	q	r	p v q	q v r	(p ∨ q) ∨ r	p ∨ (q ∨ r)
V	V	V	V	V	V	V
V	V	F	V	V	V	V
V	F	V	V	V	V	V
V	F	F	V	F	V	V
F	V	V	V	V	V	V
F	V	F	V	V	V	V
F	F	V	F	V	V	V
F	F	F	F	F	F	F

Exemplo: $(x \ne 1 \lor x < 0) \lor y \ne 1 \Leftrightarrow x \ne 1 \lor (x < 0 \lor y \ne 1)$

(d) Identidade: $\mathbf{p} \lor \mathbf{t} \Leftrightarrow \mathbf{t} \in \mathbf{p} \lor \mathbf{c} \Leftrightarrow \mathbf{p}$, para t elemento absorvente e c elemento neutro.

р	t	С	p v t	p v c	$p \lor t \leftrightarrow t$	$p \lor c \leftrightarrow p$
V	V	F	V	V	V	V
F	V	F	V	F	V	V

Exemplo:
$$x \neq 1 \lor |x| \ge 0 \Leftrightarrow |x| \ge 0$$

 $x \neq 1 \lor |x| < 0 \Leftrightarrow x \neq 1$

Propriedades da conjunção e da disjunção:

(a) Distributivas:

(i)
$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

р	q	r	p∧q	q∨r	p∧r	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$
V	V	V	V	V	V	V	V
V	V	F	V	V	F	V	V
V	F	V	F	V	V	V	V
V	F	F	F	F	F	F	F
F	V	V	F	V	F	F	F
F	V	F	F	V	F	F	F
F	F	V	F	V	F	F	F
F	F	F	F	F	F	F	F

(ii)
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

р	q	r	q∧r	p v q	p∨r	p ∨ (q ∧ r)	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V	V	V
V	V	F	F	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	F	V	F	F	F
F	F	V	F	F	V	F	F
F	F	F	F	F	F	F	F

Exemplo:

- (i) "Carlos estuda e *Jorge ouve música ou lê*", é equivalente à seguinte proposição:
 - "Carlos estuda e Jorge ouve música ou Carlos estuda e Jorge lê".
- (ii) "Chove ou faz vento e frio", é equivalente a seguinte proposição: "Chove ou faz vento e Chove ou faz frio".

(b) Absorção:

(i) $p \land (p \lor q) \Leftrightarrow p$

р	q	$p \lor q$	p ∧ (p ∨ q)	$p \land (p \lor q) \leftrightarrow p$
V	>	V	V	V
V	F	V	V	V
F	V	V	F	V
F	F	F	F	V

(ii) $p \lor (p \land q) \Leftrightarrow p$

р	q	p∧q	p ∨ (p ∧ q)	$p \lor (p \land q) \leftrightarrow p$
V	V	V	V	V
V	F	F	V	V
F	V	F	F	V
F	F	F	F	V

(c) Regras de Morgan:

(i) $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$

р	q	p∧q	~(p ∧ q)	~p ∨ ~q
V	V	V	F	F
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

(ii) $\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$

р	q	$p \lor q$	~(p ∨ q)	~p ^ ~q
V	V	V	F	F
V	F	V	F	F
F	V	V	F	F
F	F	F	V	V

Negação da condicional:

(a)
$$\sim$$
 (p \rightarrow q) \Leftrightarrow p \wedge \sim q

р	q	$p \rightarrow q$	\sim (p \rightarrow q)	p ∧ ~q
V	V	V	F	F
V	F	F	V	V
F	V	V	F	F
F	F	V	F	F

Nota: A condicional $p \to q$ não é idempotente, comutativa e associativa, pois, as tabelas das proposições $p \to p$ e p, $p \to q$ e $q \to p$, $(p \to q) \to r$ e p $\to (q \to r)$ não são idênticas.

Negação da bicondicional:

(a)
$$\sim$$
(p \leftrightarrow q) \Leftrightarrow (p \wedge \sim q) \vee (\sim p \wedge q)

р	q	\sim (p \leftrightarrow q)	(p ∧ ~q)	(~p ∧ q)	$(p \land \neg q) \lor (\neg p \land q)$
V	V	F	F	F	F
V	F	V	V	F	V
F	V	V	F	V	V
F	F	F	F	F	F

(b)
$$\sim$$
 (p \leftrightarrow q) \Leftrightarrow p \leftrightarrow \sim q \Leftrightarrow \sim p \leftrightarrow q

р	q	\sim (p \leftrightarrow q)	p ↔ ~q	~p ↔ q
V	V	F	F	F
V	F	V	V	V
F	V	V	V	V
F	F	F	F	F

Nota: A bicondicional $\mathbf{p} \leftrightarrow \mathbf{p}$ não é idempotente, pois, é imediato que não são idênticas as tabelas de $\mathbf{p} \leftrightarrow \mathbf{p}$ e p, mas é comutativa e associativa.

Resumo das equivalências mais usadas:

Nº	Equivalência	
1	$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$	
2	$p \rightarrow q \Leftrightarrow \sim p \vee q$	
3	$p \land q \Leftrightarrow q \land p$	
4	$p \lor q \Leftrightarrow q \lor p$	
5	$(p \land q) \land r \Leftrightarrow p \land (q \land r)$	
6	$(p \vee q) \vee r \Leftrightarrow p \vee (q \vee r)$	
7	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	
8	$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$	
9	$p \wedge t \Leftrightarrow p$	t=Tautologia
10	$p \lor c \Leftrightarrow p$	c=Contradição
11	p∧c ⇔ c	c=Contradição
12	$p \lor t \Leftrightarrow t$	t=Tautologia
13	p ∨ ~p ⇔ t	t=Tautologia
14	p ∧ ~p ⇔ c	c=Contradição
15	~~p ⇔ p	5 ••
16	$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$	De Morgan
17	~(p ∨ q) ⇔ ~p ∧ ~q	De Morgan
18	$p \wedge (p \vee q) \Leftrightarrow p$	
19	$p \lor (p \land q) \Leftrightarrow p$	
20	$\sim (p \rightarrow q) \Leftrightarrow p \land \sim q$	
21 22	$\sim (p \leftrightarrow q) \Leftrightarrow (p \land \sim q) \lor (\sim p \land q)$	
23	$\sim (p \leftrightarrow q) \Leftrightarrow p \leftrightarrow \sim q \Leftrightarrow \sim p \leftrightarrow q$	Idompotância do o
23 24	$p \wedge p \Leftrightarrow p$	Idempotência do e Idempotência do ou
2 4 25	$\mathbf{p} \vee \mathbf{p} \Leftrightarrow \mathbf{p}$	Negação conjunta
26	p	Negação disjunta
27	p q ⇔ ~p ∨ ~q ~ p ⇔ p ↑ p	Negação disjunta
28	~ p ⇔ p ↓ p	
29	$p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$	Contrapositiva
30	$p \vee q \Leftrightarrow \neg q \vee \neg p$ $p \vee q \Leftrightarrow \neg (p \leftrightarrow q)$	Contrapositiva
31	~t ⇔ c	Negação da Tautologia
32	~c ⇔ t	Negação da Contradição
33	$p \rightarrow p \Leftrightarrow t$	3
34	$p \leftrightarrow p \Leftrightarrow t$	
-	L , , L , ,	

Método dedutivo

Todas as implicações e equivalências foram demonstradas até então por tabelas verdades.

Vamos usar um método mais eficiente chamado método dedutivo, que utiliza as equivalências lógicas apresentadas anteriormente.

Exemplos:

Demonstre as implicações usando o método dedutivo e o teorema das implicações x tautologia.

1) $c \Rightarrow p$, onde c é uma proposição cujo valor lógico é sempre falsidade.

Sabemos que $c \Rightarrow p$ se somente se $c \rightarrow p$ é uma tautologia, portanto, temos que provar que $c \rightarrow p$ é uma tautologia. Considere t uma proposição cujo valor lógico é sempre verdade.

$$c \rightarrow p \Leftrightarrow \neg c \lor p \Leftrightarrow t \lor p \Leftrightarrow t$$

Passos 2, 12

2) p \Rightarrow t, onde t é uma proposição cujo valor lógico é sempre verdade.

Sabemos que $p \Rightarrow t$ se somente se $p \to t$ é uma tautologia, portanto, temos que provar que $p \to t$ é uma tautologia.

$$p \rightarrow t \Leftrightarrow \sim p \lor t \Leftrightarrow t$$

Passos 2, 12

3)
$$p \land q \Rightarrow p$$

Sabemos que p \land q \Rightarrow p se somente se (p \land q) \rightarrow p é uma tautologia, portanto, temos que provar que (p \land q) \rightarrow p é uma tautologia. Considere t uma proposição cujo valor lógico é sempre verdade.

$$(p \land q) \rightarrow p \Leftrightarrow \neg(p \land q) \lor p \Leftrightarrow (\neg p \lor \neg q) \lor p \Leftrightarrow \neg p \lor (\neg q \lor p) \Leftrightarrow \neg p \lor (p \lor \neg q) \Leftrightarrow (\neg p \lor p) \lor \neg q \Leftrightarrow t \lor \neg q \Leftrightarrow t$$

Passos 2, 16, 6, 4, 6

4)
$$(p \rightarrow q) \land p \Rightarrow q$$

Sabemos que $(p \to q) \land p \Rightarrow q$ se somente se $((p \to q) \land p) \to q$ é uma tautologia, portanto, temos que provar que $((p \to q) \land p) \to q$ é uma tautologia. Considere t uma proposição cujo valor lógico é sempre verdade e c uma proposição cujo valor lógico é sempre falsidade.

$$((p \rightarrow q) \land p) \rightarrow q \Leftrightarrow \sim ((p \rightarrow q) \land p) \lor q \Leftrightarrow \\ \sim ((\sim p \lor q) \land p) \lor q \Leftrightarrow \sim (p \land (\sim p \lor q)) \lor q \Leftrightarrow \\ \sim ((p \land \sim p) \lor (p \land q)) \lor q \Leftrightarrow \sim (c \lor (p \land q)) \lor q \Leftrightarrow \\ \sim (p \land q) \lor q \Leftrightarrow (\sim p \lor \sim q) \lor q \Leftrightarrow \sim p \lor (\sim q \lor q) \Leftrightarrow \\ \sim p \lor t \Leftrightarrow t$$

Passos 2, 2, 7, 10, 16, 6

5)
$$(p \rightarrow q) \land \neg q \Rightarrow \neg p$$

Sabemos que $(p \to q) \land p \Rightarrow q$ se somente se $((p \to q) \land \neg q) \to \neg p$ é uma tautologia, portanto, temos que provar que $((p \to q) \land \neg q) \to \neg p$ é uma tautologia. Considere t uma proposição cujo valor lógico é sempre verdade e c uma proposição cujo valor lógico é sempre falsidade.

6)
$$(p \lor q) \land \neg p \Rightarrow q$$

Sabemos que $(p \lor q) \land \neg p \Rightarrow q$ se somente se $((p \lor q) \land \neg p) \rightarrow q$ é uma tautologia, portanto, temos que provar que $((p \lor q) \land \neg p) \rightarrow q$ é uma tautologia. Considere t uma proposição cujo valor lógico é sempre verdade e c uma proposição cujo valor lógico é sempre falsidade.

$$((\mathbf{p} \vee \mathbf{q}) \wedge \sim \mathbf{p}) \rightarrow \mathbf{q} \Leftrightarrow \sim ((\mathbf{p} \vee \mathbf{q}) \wedge \sim \mathbf{p}) \vee \mathbf{q} \Leftrightarrow$$

$$\sim (\sim \mathbf{p} \wedge (\mathbf{p} \vee \mathbf{q})) \vee \mathbf{q} \Leftrightarrow \sim ((\sim \mathbf{p} \wedge \mathbf{p}) \vee (\sim \mathbf{p} \wedge \mathbf{q})) \vee \mathbf{q} \Leftrightarrow$$

$$\sim (\mathbf{c} \vee (\sim \mathbf{p} \wedge \mathbf{q})) \vee \mathbf{q} \Leftrightarrow \sim (\sim \mathbf{p} \wedge \mathbf{q}) \vee \mathbf{q} \Leftrightarrow$$

$$(\sim \sim \mathbf{p} \vee \sim \mathbf{q}) \vee \mathbf{q} \Leftrightarrow (\mathbf{p} \vee \sim \mathbf{q}) \vee \mathbf{q} \Leftrightarrow \mathbf{p} \vee (\sim \mathbf{q} \vee \mathbf{q}) \Leftrightarrow$$

$$\mathbf{p} \vee \mathbf{t} \Leftrightarrow \mathbf{t}$$

Exemplos:

Demonstre as equivalências usando o método dedutivo e o teorema das equivalências x tautologia.

1)
$$p \rightarrow q \Leftrightarrow p \land \sim q \rightarrow c$$

Sabemos que p \rightarrow q \Leftrightarrow p \land \sim q \rightarrow c se somente se (p \rightarrow q) \leftrightarrow (p \land \sim q \rightarrow c) é uma tautologia, portanto, temos que provar que (p \rightarrow q) \leftrightarrow (p \land \sim q \rightarrow c) é uma tautologia. Considere t uma proposição cujo valor lógico é sempre verdade e c uma proposição cujo valor lógico é sempre falsidade.

$$(p \rightarrow q) \leftrightarrow (p \land \neg q \rightarrow c) \Leftrightarrow (\neg p \lor q) \leftrightarrow (\neg (p \land \neg q) \lor c) \Leftrightarrow (\neg p \lor q) \leftrightarrow \neg (p \ Passos 2, 10, 16, 15 \land \neg q) \Leftrightarrow (\neg p \lor q) \leftrightarrow (\neg p \lor \neg q) \Leftrightarrow (\neg p \lor q) \Leftrightarrow t$$

2)
$$p \rightarrow q \Leftrightarrow p \lor q \rightarrow q$$

Sabemos que p \rightarrow q \Leftrightarrow p \vee q \rightarrow q se somente se (p \rightarrow q) \leftrightarrow (p \vee q \rightarrow q) é uma tautologia, portanto, temos que provar que (p \rightarrow q) \leftrightarrow (p \vee q \rightarrow q) é uma tautologia. Considere t uma proposição cujo valor lógico é sempre verdade e c uma proposição cujo valor lógico é sempre falsidade.

$$\begin{array}{l} (\textbf{p} \rightarrow \textbf{q}) \leftrightarrow (\textbf{p} \lor \textbf{q} \rightarrow \textbf{q}) \Leftrightarrow (\textbf{\neg} \textbf{p} \lor \textbf{q}) \leftrightarrow (\textbf{\neg} (\textbf{p} \lor \textbf{q}) \lor \textbf{q}) \Leftrightarrow (\textbf{\neg} \textbf{p} \lor \textbf{q}) \leftrightarrow ((\textbf{\neg} \textbf{p} \land Passos \ 2, \ 17, \ 8, \ \textbf{\neg} \textbf{q}) \lor \textbf{q}) \Leftrightarrow (\textbf{\neg} \textbf{p} \lor \textbf{q}) \leftrightarrow (\textbf{q} \lor (\textbf{\neg} \textbf{p} \land \textbf{\neg} \textbf{q})) \Leftrightarrow (\textbf{\neg} \textbf{p} \lor \textbf{q}) \leftrightarrow (\textbf{q} \lor \textbf{\neg} \textbf{p}) \land (\textbf{q} \lor \textbf{\neg} \textbf{q})) \ \ \begin{array}{l} 13, \ 9 \\ \Leftrightarrow \\ (\textbf{\neg} \textbf{p} \lor \textbf{q}) \leftrightarrow ((\textbf{q} \lor \textbf{\neg} \textbf{p}) \land \textbf{t}) \Leftrightarrow (\textbf{\neg} \textbf{p} \lor \textbf{q}) \leftrightarrow (\textbf{q} \lor \textbf{\neg} \textbf{p}) \Leftrightarrow \\ (\textbf{\neg} \textbf{p} \lor \textbf{q}) \leftrightarrow (\textbf{\neg} \textbf{p} \lor \textbf{q}) \Leftrightarrow \textbf{t} \end{array}$$

Redução do número de conectivos

Entre os 5 conectivos fundamentais (\sim , \wedge , \vee , \rightarrow , \leftrightarrow), 3 exprimem-se em termos de apenas 2:

- (i) $\wedge, \rightarrow, \leftrightarrow$ exprimem-se em termos de \sim, \vee
- (ii) \vee , \rightarrow , \leftrightarrow exprimem-se em termos de \sim , \wedge
- (iii) $\wedge, \vee, \leftrightarrow$ exprimem-se em termos de \sim, \rightarrow

Exemplos:

(i)
$$p \wedge q \Leftrightarrow \neg \neg p \wedge \neg \neg q \Leftrightarrow \neg (\neg p \vee \neg q)$$

$$p \rightarrow q \Leftrightarrow \neg p \vee q$$

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \wedge (q \rightarrow p) \Leftrightarrow \neg (\neg (\neg p \vee q) \vee \neg (\neg q \vee p))$$
(ii)
$$p \vee q \Leftrightarrow \neg \neg p \vee \neg \neg q \Leftrightarrow \neg (\neg p \wedge \neg q)$$

$$p \rightarrow q \Leftrightarrow \neg p \vee q \Leftrightarrow \neg (p \wedge \neg q)$$

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \wedge (q \rightarrow p) \Leftrightarrow \neg (p \wedge \neg q) \wedge \neg (\neg p \wedge q)$$
(iii)
$$p \wedge q \Leftrightarrow \neg (\neg p \vee \neg q) \Leftrightarrow \neg (p \rightarrow \neg q)$$

$$p \vee q \Leftrightarrow \neg \neg p \vee \neg \neg q \Leftrightarrow \neg p \rightarrow q$$

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \wedge (q \rightarrow p) \Leftrightarrow \neg ((p \rightarrow q) \rightarrow \neg (q \rightarrow p))$$

Forma Normal das Proposições

Diz-se que uma proposição está na forma normal (FN) se e somente se, quando muito, contém os conectivos \sim , \wedge e \vee .

Exemplos:

- (i) ~p ∧ ~q
- (ii) $\sim (\sim p \vee \sim q)$
- (iii) $(p \lor q) \lor (\sim q \land r)$

Exemplos de Proposições que NÃO estão na forma normal:

- (i) $p \leftrightarrow q \vee \sim r$;
- (ii) $p \rightarrow q$;

Forma normal conjuntiva

Diz-se que uma proposição está na forma normal conjuntiva (FNC) se e somente se são verificadas as seguintes condições:

- 1. Contém, quando muito, os conectivos ~, ∧ e ∨ (Tem que estar FN);
- 2. ~ não aparece repetido (como ~~p) e não tem alcance sobre \land e \lor (como ~(p \lor q) ou ~(p \land q));
- 3. \vee não tem alcance sobre \wedge (isto é, não há componentes do tipo p \vee (q \wedge r)).

Exemplos:

- (i) $(\sim p \vee \sim q)$
- (ii) $(\sim p) \land (q) \land (r)$
- (iii) $(\sim p \lor q) \land (\sim q \lor \sim r)$

Para toda proposição pode-se determinar a FNC equivalente, mediante as seguintes transformações:

- Eliminando os conectivos → e ↔ mediante a substituição de p → q por ~p ∨ q e de p ↔ q por (~p ∨ q) ∧ (p ∨ ~q);
- 2. Eliminando ~~ e parêntesis precedidos de ~ pelas regras da "Dupla negação" e "Morgan";
- 4. Substituindo **p** ∨ (**q** ∧ **r**) pela a sua equivalente pela regra de "Distribuição".

Exemplos:

Determinar a FNC da proposição $P(p,q,r) = \sim (((p \lor q) \land \sim q) \lor (q \land r)).$

$$P \Leftrightarrow \sim (((p \lor q) \land \neg q) \lor (q \land r)) \Leftrightarrow \sim ((p \lor q) \land \neg q) \land (\neg q \land r)) \Leftrightarrow (\sim (p \lor q) \land (\sim q \lor \neg r)) \Leftrightarrow (\sim p \land \neg q) \land (\sim q \lor \neg r)) \Leftrightarrow (\sim p \lor q) \land (\sim q \lor \neg r)$$

Faça você:

- 1. Determinar a FNC da proposição $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$.
- 2. Determinar a FNC da proposição p ↔ q ∨ ~r.

Forma normal disjuntiva

Diz-se que uma proposição está na forma normal disjuntiva (FND) se e somente se são verificadas as seguintes condições:

- 1. Contém, quando muito, os conectivos ~, \land e \v;
- 2. ~ não aparece repetido (como ~~p) e não tem alcance sobre \land e \lor (como ~(p \lor q) ou ~(p \land q));
- 3. \wedge não tem alcance sobre \vee (isto é, não há componentes do tipo p \wedge (q \vee r)).

Exemplos:

- (i) $(\sim p) \vee (q)$
- (ii) $p \vee (q \wedge r)$
- (iii) $(p \land \sim q) \lor (\sim p \land \sim q \land r)$

Para toda proposição pode-se determinar a FND equivalente, mediante as seguintes transformações:

- Eliminando os conectivos → e ↔ mediante a substituição de p → q por ~p ∨ q e de p ↔ q por (~p ∨ q) ∧ (p ∨ ~a):
- 2. Eliminando ~~ e parêntesis precedidos de ~ pelas regras da "Dupla negação" e "Morgan";
- 3. Substituindo **p** ∧ (**q** ∨ **r**) pela a sua equivalente pela regra de "Distribuição".

Exemplos:

Determinar a FND da proposição $P(p,q) = (p \rightarrow q) \land (q \rightarrow p)$.

$$(\neg p \lor q) \land (\neg q \lor p) \Leftrightarrow ((\neg p \lor q) \land \neg q) \lor ((\neg p \lor q) \land p) \Leftrightarrow (\neg p \land \neg q) \lor (q \land \neg p) \lor (q \land p) \Leftrightarrow (\neg p \land \neg q) \lor (q \land p) - Onde c \'e uma contradição$$

Faca você:

1. Determinar a FND da proposição $\sim (((p \lor q) \land \sim q) \lor (q \land r))$

Princípio de Dualidade

Seja P uma proposição que só contém os conectivos \sim , \wedge e \vee . A proposição que resulta de P trocando cada símbolo \wedge por \vee e cada símbolo \vee por \wedge chama-se **dual**.

Teorema: Se P e Q são proposições equivalentes que só contêm conectivos ~, ∧ e ∨, então as suas **duais** P₁ e Q₁ também são equivalentes.

Exercícios de fixação: Pág. 86 do livro texto - Exercícios 7 e 8

32

Argumentos

Sejam P_1 , P_2 ,..., P_n (n >= 1) e Q proposições quaisquer, simples ou composta.

Chama-se **argumento** toda a afirmação de que uma dada **seqüência** finita de proposições P_1 , P_2 ,..., P_n (n >= 1) tem como **conseqüência** uma proposição final Q.

Notação: P₁, P₂,..., P_n | Q

As proposições P₁, P₂,..., P_n são ditas **premissas do argumento**.

A proposição Q é dita conclusão do argumento.

Podemos ler o argumento de uma das formas abaixo:

- (i) P₁, P₂,..., P_n tem como conseqüência Q
- (ii) P₁, P₂,..., P_n acarretam Q
- (iii) Q decorre de P₁, P₂,..., P_n
- (iv) Q se deduz de P_1 , P_2 ,..., P_n
- (v) Q se infere de P_1 , P_2 ,..., P_n

Um argumento P₁, P₂,..., P_n — Q é **válido** se e somente se a conclusão Q é **verdadeira** todas as vezes que as premissas P₁, P₂,..., P_n são **verdadeiras**. Afirmar que um dado argumento é válido significa afirmar que as premissas estão de tal modo relacionadas com a conclusão que não é possível ter uma conclusão falsa se as premissas são verdadeiras.

Um argumento não válido é dito um SOFISMA.

Teorema: Um argumento P_1 , P_2 ,..., $P_n \models Q$ é válido se somente se a condicional associada $(P_1 \land P_2 \land ... \land P_n \rightarrow Q)$ é tautológica.

Prova: O argumento P_1 , P_2 ,..., $P_n \models Q$ é válido se somente se Q é verdade sempre que P_1 , P_2 ,..., P_n sejam verdadeiras.

Tomando P_1 , P_2 ,..., P_n como verdadeiras temos que $P_1 \land P_2 \land ... \land P_n$ é verdadeira.

Logo, podemos dizer que o argumento é válido se somente se Q é verdade sempre que $P_1 \wedge P_2 \wedge ... \wedge P_n$ é verdadeira, ou seja, $P_1 \wedge P_2 \wedge ... \wedge P_n \Rightarrow Q$.

Sabemos que $r \Rightarrow s$ se e somente se $r \rightarrow s$ é tautológica. Portanto, $P_1, P_2,..., P_n \models Q$ se somente se $P_1 \land P_2 \land ... \land P_n \rightarrow Q$ é tautológica.

De acordo com o teorema acima, a todo argumento $P_1, P_2,..., P_n \models Q$ corresponde uma condicional com a estrutura $P_1 \land P_2 \land ... \land P_n \rightarrow Q$. Reciprocamente, a toda condicional $P_1 \land P_2 \land ... \land P_n \rightarrow Q$ corresponde um argumento com a estrutura $P_1, P_2,..., P_n \models Q$.

Exemplos:

Argumento: $p \land \neg q$, $p \rightarrow \neg r$, $q \lor \neg s \models \neg (r \lor s)$ Condicional associada: $(p \land \neg q) \land (p \rightarrow \neg r) \land (q \lor \neg s) \rightarrow \neg (r \lor s)$

Condicional associada: $(p \rightarrow q \lor r) \land \neg s \land (q \lor r \rightarrow s) \rightarrow (s \rightarrow p \lor \neg q)$ Argumento: $(p \rightarrow q \lor r)$, $\neg s$, $(q \lor r \rightarrow s) \models (s \rightarrow p \lor \neg q)$

Exercícios de fixação: Pág. 96 do livro texto - Exercícios 1 e 2

Argumentos válidos e fundamentais

- 1. Adição (AD):
- (i) $p \vdash (p \lor q)$

р	q	p∨q	$p \rightarrow (p \lor q)$
V	V	V	V
V	F	V	V
F	V	V	V
F	F	F	V

- (ii) $q \vdash (q \lor p)$
- 2. Simplificação (SIMP):
- (i) $p \wedge q \vdash p$
- (ii) $p \land q \vdash q$
- 3. Conjunção (CONJ):
- (i) p , q $-p \land q$
- (ii) p , q $\mid --$ q \wedge p
- 4. Absorção (ABS):
- (i) $p \rightarrow q \mid p \rightarrow (p \land q)$

5. Modus Ponens (MP):

(i)
$$(p \rightarrow q)$$
, $p \mid --q$

6. Modus Tollens (MT):

(i)
$$(p \rightarrow q)$$
, $\sim q \mid - \sim p$

7. Silogismo Disjuntivo (SD):

(i)
$$(p \lor q)$$
, $\sim p \vdash q$

(ii)
$$(p \lor q)$$
, $\sim q \vdash p$

8. Silogismo Hipotético (SH):

(i)
$$(p \rightarrow q)$$
, $(q \rightarrow r) \vdash (p \rightarrow r)$

9. Dilema Construtivo (DC):

(i)
$$(p \rightarrow q)$$
, $(r \rightarrow s)$, $(p \lor r) \vdash (q \lor s)$

10. Dilema Destrutivo (DD):

(i)
$$(p \rightarrow q)$$
, $(r \rightarrow s)$, $(\sim q \lor \sim s)$ |— $(\sim p \lor \sim r)$

Regras de Inferência

Os argumentos fundamentais da lista anterior são usados para fazer inferências, isto é, efetuar os passos de uma dedução ou demonstração, e por isso são também chamados de Regras de Inferência. É habitual escreve-los na forma abaixo indicada:

Premissa 1 Premissa 2

..

Premissa n Conclusão

Exemplos:

1. Adição (AD):

(i)
$$p \vdash (p \lor q)$$
 (ii) $q \vdash (q \lor p)$

$$\frac{\mathsf{p}}{(\mathsf{p}\vee\mathsf{q})} \qquad \qquad \frac{\mathsf{q}}{(\mathsf{q}\vee\mathsf{p})}$$

2. Simplificação (SIMP):

(i)
$$p \land q \vdash p$$
 (ii) $p \land q \vdash q$

$$\begin{array}{ccc} \underline{p} \wedge \underline{q} & & \underline{p} \wedge \underline{q} \\ p & & q \end{array}$$

3. Conjunção (CONJ):

(i) p, q
$$\vdash p \land q$$

(ii) p, q
$$\vdash q \land p$$

$$\frac{\mathsf{q}}{\mathsf{p} \wedge \mathsf{q}}$$

4. Absorção (ABS):

(i)
$$p \rightarrow q \mid p \rightarrow (p \land q)$$

$$\frac{p \to q}{p \to (p \land q)}$$

5. Modus Ponens (MP):

(i)
$$(p \rightarrow q)$$
, $p \mid --q$

$$p \rightarrow d$$

Exercícios:

Sabendo que um argumento P_1 , P_2 ,..., $P_n \models Q$ é válido se somente se a condicional associada $P_1 \land P_2 \land ... \land P_n \rightarrow Q$ é tautológica, verifique se são válidos os argumentos abaixo:

a)	p -	\rightarrow	a.	a	<u> </u>	g
ч	,	۲	,	ч,	М	1	Μ.

р	q	$p \rightarrow q$	$(p \rightarrow q) \land q$	$((p \to q) \land q) \to p$
٧	V	V	V	V
V	F	F	F	V
F	V	V	V	F
F	F	V	F	V

Logo, o argumento acima não é válido. É um SOFISMA.

b) $p \leftrightarrow q, q \vdash p$

р	q	$p \leftrightarrow q$	$(p \leftrightarrow q) \land q$	$((p \leftrightarrow q) \land q) \rightarrow p$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	V	F	V

Logo, o argumento acima é válido.

c) Se
$$(x = 0)$$
 e $(y = z)$ então $y > 1$, $y <= 1 \mid --- x \neq z$

Representando os fatos através de proposições temos:

p:
$$x = 0$$
 q: $y = z$ r: $y > 1$

$$(p \land q) \rightarrow r, \sim r \models \sim q$$

р	q	r	$(p \land q) \rightarrow r$	$((p \land q) \rightarrow r) \land \sim r$	$(((p \land q) \rightarrow r) \land \neg r) \rightarrow \neg q$
V	V	V	V	F	V
V	V	F	F	F	V
V	F	V	V	F	V
V	F	F	V	V	V
F	V	V	V	F	V
F	V	F	V	V	F
F	F	V	V	F	V
F	F	F	V	V	V

Logo, o argumento acima não é válido. É um SOFISMA.

Prova de Não-Validade

Para testar a não validade de um argumento, devemos encontrar valores lógicos para cada uma das proposições simples, que tornem as premissas Verdadeiras e a conclusão Falsa.

Exemplo:

Demonstrar a Não-Validade do argumento:

$$(p \rightarrow q) \lor \sim (r \land s), p \lor s \models r \rightarrow q$$

Demonstração:

Basta encontrar uma interpretação onde as premissas são V e a conclusão F. Sugestão: Inicie com a conclusão:

Conclusão: $V(r \rightarrow q) = V \rightarrow F = F$

1ª Premissa: V((p
$$\rightarrow$$
 q) \vee \sim (r \wedge s)) = (F \rightarrow F) \vee \sim (V \wedge V) = V \vee (F \vee F) = V

2ª Premissa: $V(p \lor s) = F \lor V = V$

Assim, com a seguinte atribuição de valores lógicos às proposições simples, os valores lógicos das duas premissas são **V** e o valor lógico da conclusão é **F**:

٧	F
r	р
S	q

Exercícios de fixação: Pág. 110 do livro texto - Exercícios 1 a 5

Validade mediante regras de Inferência

O método de **tabelas verdades** permite demonstrar a validade de qualquer **argumento**, mas o seu **emprego torna-se traba**lhoso a medida que aumenta o número de proposições simples componentes do argumento.

Um método mais eficiente neste caso consiste em deduzir a conclusão do argumento a partir das **premissas**, usando as **regras de inferência**.

10 regras de inferência:

10 regras de inferência:		
Adição (AD)	<u>P</u> (P ∨ Q)	$\frac{Q}{(P \vee Q)}$
Simplificação (SIMP)	P \ Q P	P ^ Q Q
Conjunção (CONJ)	P <u>Q</u> P∧Q	P Q Q ^ P
Absorção (ABS)	$\frac{P \to Q}{P \to (P \land Q)}$	
Modus Ponens (MP)	$\begin{array}{c} P \to Q \\ \underline{P} \\ Q \end{array}$	
Modus Tollens (MT)	$P \rightarrow Q$ $\frac{\sim Q}{\sim P}$	
Silogismo Disjuntivo (SD)	(P ∨ Q) <u>~P</u> Q	(P ∨ Q) <u>~Q</u> P
Silogismo Hipotético (SH)	$P \to Q$ $Q \to R$ $P \to R$	
Dilema Construtivo (DC)	$P \rightarrow Q$ $R \rightarrow S$ $P \lor R$ $Q \lor S)$	
Dilema Destrutivo (DD)	$P \rightarrow Q$ $R \rightarrow S$ $\frac{\sim Q \vee \sim S}{\sim P \vee \sim R}$	

Exemplos:

- 1. Verificar que é válido o argumento: $(p \rightarrow q)$, $p \land r \vdash q$
- $\begin{array}{ccc} (1) & \mathbf{p} \rightarrow \mathbf{q} & P_1 \\ (2) & \mathbf{p} \wedge \mathbf{r} & P_2 \end{array}$
- (3) p 2 SIMP
- (4) q 1,3 MP
- 2. Verificar que é válido o argumento: $\mathbf{p} \wedge \mathbf{q}, \mathbf{p} \vee \mathbf{r} \rightarrow \mathbf{s} \models \mathbf{p} \wedge \mathbf{s}$
- (1) $\mathbf{p} \wedge \mathbf{q}$ P_1
- $(2) p \lor r \to s P_2$
- (3) p 1 SIMP
- (4) p v r 3 AD
- (5) s 2,4 MP
- (6) p∧s 3,5 CONJ
- 3. Verificar que é válido o argumento: $p \rightarrow (q \rightarrow r)$, $p \rightarrow q$, $p \mid -r$
- (1) $\mathbf{p} \rightarrow (\mathbf{q} \rightarrow \mathbf{r})$ P_1
- (2) $\mathbf{p} \rightarrow \mathbf{q}$ P_2
- (3) **p** P₃
- (4) $q \rightarrow r$ 1,3 MP
- (5) q 2,3 MP
- (6) r 2,5 MP

Exercícios de fixação: Pág. 118 do livro texto – Exercícios 5, 6, 8, 10, 15 e 17.

Validade mediante regras de Inferência e Equivalência

Há muitos argumentos cuja validade não se pode demonstrar com o uso exclusivo das dez regras de inferência dadas anteriormente. Neste caso é necessário recorrer ao princípio da "Regra de Substituição".

Regra de Substituição: Uma proposição qualquer P ou apenas parte de P pode ser substituída por uma proposição equivalente, e a proposição Q que assim se obtém é equivalente à P.

Exemplos:

1. Demonstrar que é válido o argumento: $\mathbf{p} \rightarrow \mathbf{\neg q}$, $\mathbf{q} \models \mathbf{\neg p}$

- (1) $p \rightarrow \sim q$ P_1 P_2
- (3) $\sim \neg q \rightarrow \neg p$ 1 CP (4) $q \rightarrow \neg p$ 3 - DN (5) $\sim p$ 2,4 - MP

2. Demonstrar que é válido o argumento: $\mathbf{p} \rightarrow \mathbf{q}, \mathbf{r} \rightarrow \mathbf{q} \mid \mathbf{p} \rightarrow \mathbf{r}$

- (1) $\mathbf{p} \rightarrow \mathbf{q}$ P_1 (2) $\mathbf{r} \rightarrow \sim \mathbf{q}$ P_2
- (3) $\sim q \rightarrow r$ 2 CP (4) $q \rightarrow r$ 3 - DN (5) $p \rightarrow r$ 1,4 - SH
- 3. Demonstrar que é válido o argumento:

$$p \lor (q \land r), p \lor q \rightarrow s \models p \lor s$$

- (1) $\mathbf{p} \vee (\mathbf{q} \wedge \mathbf{r})$ P_1 (2) $\mathbf{p} \vee \mathbf{q} \rightarrow \mathbf{s}$ P_2
- $\begin{array}{llll} (3) & (p \lor q) \land (p \lor r) & 1 DIST \\ (4) & (p \lor q) & 3 SIMP \\ (5) & s & 2,4 MP \\ (6) & p \lor s & 5 AD \end{array}$

Exercícios de fixação: Pág. 141 do livro texto - Exercícios 1 e 3.

Inconsistência

Um argumento se diz inconsistente se as suas **premissas** não podem ser **simultaneamente verdadeiras**.

Exemplo:

1. Demonstrar que as proposições \sim ($p \lor \sim q$), $p \lor \sim r$ e $q \to r$ são inconsistentes:

р	q	r	~q	~r	p ∨ ~q	~(p ∨ ~q)	p ∨ ~r	$q \rightarrow r$
V	V	V	F	F	V	F	V	V
V	V	F	F	V	V	F	V	F
V	F	V	V	F	V	F	V	V
V	F	F	V	V	V	F	V	V
F	V	V	F	F	F	V	F	V
F	V	F	F	V	F	V	V	F
F	F	V	V	F	V	F	F	V
F	F	F	V	V	V	F	V	V

È impossível encontrar uma atribuição de valores Verdade simultâneos às proposições, logo as proposições são inconsistentes entre si.

Também se pode demonstrar que as 3 proposições são inconsistentes deduzindo de seu conjunto uma contradição qualquer:

- (1) $\sim (\mathbf{p} \vee \sim \mathbf{q})$ P_1 (2) $\mathbf{p} \vee \sim \mathbf{r}$ P_2
- $\begin{array}{ccc} (3) & \mathbf{q} \rightarrow \mathbf{r} & & \mathsf{P}_3 \end{array}$

- (4) $\sim p \land \sim \sim q$ 1 DM (5) $\sim p \land q$ 4 - DN
- (6) $\sim p \land q$ 4 DIN 5 SIMPL
- (7) r 3,6 MP (8) ~p 5 SIMPL
- (9) $\sim r$ 2,8 SD (10) $r \wedge \sim r$ 7,9 CONJ

Exercícios de fixação: Pág. 141 do livro texto - Exercícios 4 e 5.

10 regras de equivalência:

io regras de equivalencia.	
Idempotente (ID)	$p \lor p \Leftrightarrow p$
	$p \land p \Leftrightarrow p$
Comutativa (COM)	$p \lor q \Leftrightarrow q \lor p$
	$p \land q \Leftrightarrow q \land p$
Associativa (ASSOC)	$(p \land q) \land r \Leftrightarrow p \land (q \land r)$
	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$
Distributivas (DIST)	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
Dupla negação (DN)	p ⇔ ~~p
Regras de Morgan (DM)	\sim (p \wedge q) \Leftrightarrow \sim p \vee \sim q
	\sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q
Condicional (COND)	$p \rightarrow q \Leftrightarrow \sim p \vee q$
Bicondicional (BICOND)	$p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p)$
	$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$
Contraposição (CP)	$p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$
Exportação-Importação (EI)	$p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$

10 regras de inferência:

p
p
p ∧ q — p
p ∧ q — q
$p \land q \vdash p \land q$
$p \land q \vdash q \land p$
$p \rightarrow q \mid p \rightarrow (p \land q)$
$(p \rightarrow q) \land p \vdash q$
$(p \rightarrow q) \land \sim q \mid \sim p$
(p ∨ q) ∧ ~p — q
(p ∨ q) ∧ ~q — p
$(p \to q) \land (q \to r) \models (p \to r)$
$(p \rightarrow q) \land (r \rightarrow s) \land (p \lor r) \vdash (q \lor s)$
$(p \rightarrow q) \land (r \rightarrow s) \land (\sim q \lor \sim s) \models (\sim p \lor \sim r)$

10 regras de inferência:

Adição (AD)	$\frac{P}{(P\veeQ)}$	$\frac{Q}{(P \lor Q)}$
Simplificação (SIMP)	P ∧ Q P	<u>P ∧ Q</u> Q
Conjunção (CONJ)	P Q	Р
	<u>Q</u> P∧Q	<u>Q</u> Q ∧ P
Absorção (ABS)	$ \frac{P \to Q}{P \to (P \land Q)} P \to Q $	
Modus Ponens (MP)	$ \begin{array}{c} P \to Q \\ \underline{P} \\ Q \end{array} $	
Modus Tollens (MT)	$\begin{array}{c} P \to Q \\ \frac{\sim Q}{\sim P} \end{array}$	
Silogismo Disjuntivo (SD)	(P ∨ Q) <u>~P</u> Q	(P ∨ Q) <u>~Q</u> P
Silogismo Hipotético (SH)	$P \to Q$ $Q \to R$ $P \to R$	
Dilema Construtivo (DC)	$\begin{array}{c} P \rightarrow Q \\ R \rightarrow S \\ \underline{P \vee R} \\ Q \vee S) \end{array}$	
Dilema Destrutivo (DD)	$P \rightarrow Q$ $R \rightarrow S$ $\frac{\sim Q \vee \sim S}{\sim P \vee \sim R}$	

Demonstração Condicional

Outro método muito útil para demonstrar a validade de um argumento é a "demonstração condicional". Esta demonstração só pode ser usada se a conclusão do argumento tem a forma de uma condicional.

Seja o argumento: P_1 , P_2 , P_3 , ..., $P_n \vdash A \rightarrow B$

Sabemos que este argumento é valido se sua condicional associada, $(P_1 \land P_2 \land P_3 \land ... \land P_n) \rightarrow (A \rightarrow B)$ é tautológica.

Pela regra de importação, $p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$, a condicional associada é equivalente à (P₁ \land P₂ \land P₃ \land ... \land P_n) \land A) \rightarrow B.

Assim, o argumento P_1 , P_2 , P_3 , ..., $P_n \vdash A \rightarrow B$ é válido se e somente se também é válido o argumento P_1 , P_2 , P_3 , ..., P_n , $A \vdash B$.

Exemplo: Usando DC:

Se tivermos o argumento p \rightarrow q, q \leftrightarrow s, t \vee (r \wedge ~s) |— p \rightarrow t podemos transformá-lo em p \rightarrow q, q \leftrightarrow s, t \vee (r \wedge ~s) ,p |— t Dem.:

DC111		
(1)	$p \rightarrow q$	P ₁
(2)	$q \leftrightarrow s$	P_2
(3)	t ∨ (r ∧~s)	P ₃
(4)	р	PA-DC
(5)	q	1, 4 - MP
(6)	$(q \rightarrow s) \land (s \rightarrow q)$	2 – BICOND
(7)	q →s	6 - SIMP
(8)	S	5, 7 - MP
(9)	(t ∨ r) ∧ (t ∨~s)	3 – DIST
(10)	(t ∨~s)	9 – SIMP
(11)	t	10, 8 – SD

c.q.d.

Demonstração Indireta

Outro método muito útil para demonstrar a validade de um argumento é a "demonstração indireta ou demonstração por absurdo".

Seja o argumento: P₁, P₂, P₃, ..., P_n | Q

Considerando a proposição **C** uma contradição, podemos substituir Q por ~**Q** → **C**, pois sabemos que:

$$\sim Q \rightarrow C \Leftrightarrow \sim \sim Q \lor C \Leftrightarrow Q \lor C \Leftrightarrow Q$$

Temos então: P_1 , P_2 , P_3 , ..., $P_n \longmapsto {}^{\sim} Q \to C$

Logo: P₁, P₂, P₃, ..., P_n, ~Q ├— C

Assim, o argumento P1, P2, P3, ..., Pn | Q é válido se e somente se o argumento P1, P2, P3, ..., P_n, ~Q ├─ C deduze-se uma contradição.

Exemplos:

1. Demonstrar a validade do argumento $p \vee (q \rightarrow r)$, $\sim r \vdash q \rightarrow p$, usando **Demonstração** Condicional.

 $p \vee (q \rightarrow r)$, $\sim r$, $q \vdash p$

- $p \vee (q \rightarrow r)$ (1)
- P_1 P_2
- (2)~r (3)q

- PA DC
- (4) $p \vee (\sim q \vee r)$
- 1 COND
- (5) $(p \lor \sim q) \lor r$
- 4 ASSOC

(6) p ∨ ~q 2.5 - SD

(7) ~~q

3 - DN

(8)р 6,7 - SD

Obs.: Poderíamos aplicar DI ao argumento depois de aplicar DC:

- $p \vee (q \rightarrow r)$, $\sim r$, $q \vdash p$ teríamos: $p \vee (q \rightarrow r)$, $\sim r$, q, $\sim p \vdash C$

2. Demonstrar a validade do argumento $p \to \sim q$, $r \to q \models \sim (p \land r)$, usando **Demonstração Indireta**.

(1)	$p \rightarrow \sim q$	P ₁
(2)	$r \rightarrow q$	P_2
(3)	p ^ r	PA-DI
(4)	р	3 – SIMP
(5)	r	3 – SIMP
(6)	~q	1,4 – MP
(7)	q	2,5 - MP
(8)	q ∧ ~ q	6,7 – CONJ

Exercícios de fixação: Pág. 153 do livro texto - Exercícios 3 e 6.

Exercício Extra: Verificar a validade do argumento:

$$p \rightarrow \neg q \land r, r \rightarrow q \lor \neg s, \neg p \lor \neg t \leftrightarrow u, \neg q \leftrightarrow \neg v, \neg r \rightarrow \neg p \vdash \neg (p \land r) \rightarrow ((q \land v) \lor x)$$

c.q.d

Dica: Tente primeiro verificar se o argumento é um sofisma.

(g)
$$\sim (p \rightarrow \sim q) \rightarrow ((r \leftrightarrow s) \lor t)$$
, p, q, $\sim t \vdash r \rightarrow s$

Dem.:

(1)	~(p -> ~q)	-> (r <-> s) v t) P1
	.				

(12)
$$(r < -> s)$$

(13)
$$(r -> s) \land (s -> r)$$

$$(14)$$
 $(r -> s)$

Dem.:

(1)	~(p -> ~q) -> ((r <-> s) v t) P1
-----	-----------	--------	----------------	------

 $(7) r^{<}s$ 5, 6 - CONJ

(8)
$$(r ^ r)$$
 7 - AD

(10)
$$(^{(rvs)} v^{(rsvr)}) ^{t} 2x9 - DM$$

(12)
$$\sim ((r -> s) \land (s -> r)) \land \sim t$$
 2 x 11 – CON

(14)
$$^{(r <-> s)} vt)$$

Sentenças abertas

Sentenças abertas com uma variável

Chama-se **sentença aberta com uma variável em um conjunto A**, uma expressão **p(x)**, que é falsa ou verdadeira todas as vezes que se substitui a variável "x" por qualquer elemento "a" do conjunto **A** ($a \in A$).

O conjunto A recebe o nome de **conjunto universo** ou **universo** ou **domínio**.

Se $a \in A$ é tal que p(a) é uma proposição verdadeira, diz-se que a **satisfaz** ou **verifica** p(x).

Uma sentença aberta com uma variável em A também se chama **função proposicional com uma variável em A**.

Chama-se **conjunto verdade** de uma sentença aberta p(x) em um conjunto A, o conjunto de todos os elementos $a \in A$ tais que p(a) é uma proposição **verdadeira**.

Este conjunto representa-se por **V**_p. Portanto, simbolicamente temos:

$$V_p = \{ x / x \in A \land p(x) \notin V \}$$
 ou
 $V_p = \{ x / x \in A \land p(x) \}$ ou
 $V_p = \{ x \in A / p(x) \}$

Obviamente, o **conjunto verdade V**_p de uma sentença aberta p(x) em A é sempre um **subconjunto** do conjunto $A(V_p \subset A)$.

Exemplos:

1. Seja a sentença aberta p(x) = "x + 1 > 8" em N (conjunto dos números naturais), o conjunto verdade é:

$$V_p = \{ x / x \in \mathbb{N} \land x + 1 > 8 \} = \{8,9,10,...\} \subset \mathbb{N}$$

p(x) exprime uma **condição possível** no conjunto N, pois $x(V_p \subset N)$ Note que neste caso temos $V_p \neq \phi$.

2. Seja a sentença aberta p(x) = "x + 7 < 5" em N (conjunto dos números naturais), o conjunto verdade é:

$$V_p = \{ x / x \in N \land x + 7 < 5 \} = \phi \subset N$$

p(x) exprime uma condição impossível no conjunto N, pois $x(V_p = \phi)$

3. Seja a sentença aberta p(x)="x + 5 > 3" em N (conjunto dos números naturais), o conjunto verdade é:

$$V_p = \{ x / x \in \mathbb{N} \land x + 5 > 3 \} = \mathbb{N} \subset \mathbb{N}$$

p(x) exprime uma **condição universal** no conjunto N, pois $x(V_p = N)$

Sentenças abertas com duas variáveis

Chama-se sentença aberta com duas variáveis em $A \times B$, uma expressão p(x,y), que é falsa ou verdadeira todas as vezes que se substitui as variáveis "x" e "y", pelos elementos "a" e "b" de qualquer par ordenado do produto cartesiano $A \times B$ dos conjuntos $A \in B$ ((a,b) $\in A \times B$), respectivamente.

O conjunto A x B recebe o nome de **conjunto universo** ou **universo** ou **domínio**.

Se $(a,b) \in A \times B$ é tal que p(a,b) é uma proposição verdadeira, diz-se que (a,b) satisfaz ou verifica p(x,y).

Uma sentença aberta com duas variáveis em A x B também se chama **função proposicional** com duas variáveis em A x B.

Chama-se **conjunto verdade** de uma sentença aberta p(x,y) em um conjunto A x B, o conjunto de todos os elementos $(a,b) \in A \times B$ tais que p(a,b) é uma proposição **verdadeira**.

Este conjunto representa-se por **V**_p. Portanto, simbolicamente temos:

$$V_p = \{ (x,y) / x \in A \land y \in B \land p(x,y) \in V \}$$
 ou $V_p = \{ (x,y) \in A \times B / p(x,y) \}$

Obviamente, o **conjunto verdade V**_p de uma sentença aberta p(x,y) em A x B é sempre um **subconjunto** do conjunto A x B($V_p \subset A \times B$).

Exemplos:

1. Sejam os conjuntos $A=\{1,2,3,4\}$ e $B=\{1,3,5\}$, o conjunto verdade da sentença aberta "x < y" em $A \times B$ é:

A x B = {(1,1), (1,3),(1,5),(2,1),(2,3),(2,5),....}
V_p = { (x,y) / x
$$\in$$
 A \land y \in B \land x < y} = {(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)} \subset A x B p(x,y) exprime uma condição possível em AxB

2. Sejam os conjuntos $A=\{2,3,4,5\}$ e $B=\{3,6,7,10\}$, o conjunto verdade de inteiros da sentença aberta "x divide y" em A x B é:

$$V_p = \{ (x,y) \mid x \in A \land y \in B \land x \mid y \} = \{ (2,6), (2,10), (3,3), (3,6), (5,10) \} \subset A \times B$$
 p(x,y) exprime uma condição possível em AxB

3. Sejam os conjuntos A={ 2, 4} e B={3, 5, 7, 11}, o conjunto verdade de inteiros da sentença aberta "x divide y" em A x B é:

$$V_p = \{ (x,y) \mid x \in A \land y \in B \land x \mid y \} = \phi \subset A \times B$$

p(x,y) exprime uma condição impossível em AxB

4. Sejam os conjuntos A={ 2, 4} e B={8, 12, 16}, o conjunto verdade de inteiros da sentença aberta "x divide y" em A x B é:

 $V_p = \{ (x,y) \mid x \in A \land y \in B \land x \mid y \} = \{ (2,8), (2,12), (2,16), (4,8), (4,12), (4,16) \} \subset A \times B$ p(x,y) exprime uma condição universal em AxB

Sentenças abertas com n variáveis - FORA

Chama-se sentença aberta com n variáveis em $A_1 \times A_2 \times ... A_n$, uma expressão $p(x_1,x_2,...,x_n)$, que é falsa ou verdadeira todas as vezes que se substitui as variáveis $x_1, x_2, ..., x_n$, pelos elementos $a_1, a_2, ..., a_n$ pertencentes ao produto cartesiano $A_1 \times A_2 \times ... A_n$ dos conjuntos $A_1, A_2, ..., A_n$ ($(a_1,a_2,...,a_n) \in A_1 \times A_2 \times ... A_n$), respectivamente.

O conjunto A₁ x A₂ x ... A_n recebe o nome de **conjunto universo** ou **universo** ou **domínio**.

Se $(a_1,a_2,...,a_n) \in A_1 \times A_2 \times ... \times A_n$ é tal que $p(a_1,a_2,...,a_n)$ é uma proposição verdadeira, diz-se que a **satisfaz** ou **verifica** $p(x_1,x_2,...,x_n)$.

Uma sentença aberta com n variáveis em A₁ x A₂ x ... x A_n também se chama **função proposicional com n variáveis em A₁ x A₂ x ... x A_n**.

Chama-se **conjunto verdade** de uma sentença aberta $p(x_1,x_2,...,x_n)$ em um conjunto $A_1 \times A_2 \times ... \times A_n$, o conjunto de todos os elementos $(a_1,a_2,...,a_n) \in A_1 \times A_2 \times ... \times A_n$ tais que $p(a_1,a_2,...,a_n)$ é uma proposição **verdadeira**.

Este conjunto representa-se por **V**_p. Portanto, simbolicamente temos:

$$V_p = \{ (x_1,x_2,...,x_n) / x_1 \in A_1 \land x_2 \in A_2 \land ... \land x_n \in A_n \land p(x_1,x_2,...,x_n) \in V \}$$
 OU
$$V_p = \{ (x_1,x_2,...,x_n) \in A_1 \times A_2 \times ... \times A_n / p(x_1,x_2,...,x_n) \}$$

Exercícios de fixação: Pág. 163 do livro texto – Exercícios 1, 3 e de 5 até 11.

Operações lógicas com sentenças abertas

Conjunção

Considere as seguintes sentenças abertas:

"x é médico", "x é professor"

Aplicando-se o conectivo de conjunção temos:

"x é médico" ∧ "x é professor"

A expressão acima é verificada por todos os indivíduos que satisfaçam ao mesmo tempo as duas sentenças. Portanto, o conjunto verdade $V_{p \wedge q}$ da sentença aberta $p(x) \wedge q(x)$ é a interseção dos conjuntos V_p e V_q das sentenças p(x) e q(x) em A. Temos simbolicamente:

$$V_{p \wedge q} = V_p \cap V_q = \{ x \in A / p(x) \} \cap \{ x \in A / q(x) \}$$

Exemplo:

Sejam as sentenças abertas em Z (conjunto dos números inteiros):

p(x): $x^2 + x - 2 = 0$

q(x): $x^2 - 4 = 0$

Temos:

$$V_{p \land q} = \{ x \in Z / x^2 + x - 2 = 0 \} \land \{ x \in Z / x^2 - 4 = 0 \} = \{-2,1\} \cap \{-2,2\} = \{-2\}$$

Disjunção

Considere as seguintes sentenças abertas:

"x é médico", "x é professor"

Aplicando-se o conectivo de disjunção temos:

"x é médico" v "x é professor"

A expressão acima é verificada por todos os indivíduos que satisfaçam pelo menos uma das duas sentenças. Portanto, o conjunto verdade $V_{p \vee q}$ da sentença aberta $p(x) \vee q(x)$ é a união dos conjuntos V_p e V_q das sentenças p(x) e q(x) em A. Temos simbolicamente:

$$V_{p \vee q} = V_p \cup V_q = \{ x \in A / p(x) \} \cup \{ x \in A / q(x) \}$$

Exemplo:

Sejam as sentenças abertas em Z (conjunto dos números inteiros):

p(x): $x^2 + x - 2 = 0$

q(x): $x^2 - 4 = 0$

Temos:

$$V_{p \vee q} = \{ x \in Z / x^2 + x - 2 = 0 \} \vee \{ x \in Z / x^2 - 4 = 0 \} = \{-2,1\} \cup \{-2,2\} = \{-2,1,2\}$$

Negação

Considere a seguinte sentença aberta:

"x tem menos de 21 anos"

Aplicando-se o conectivo de negação temos:

"~x tem menos de 21 anos"

ou

"x tem de 21 anos" v "x tem mais de 21 anos"

A 1ª expressão é verificada por todos os indivíduos que **não satisfaçam a ela**. Temos simbolicamente:

$$V_{p} = C_A V_P = A - V_P = A - \{ x \in A / p(x) \}$$

Exemplo:

Seja a sentença abertas em Z (conjunto dos números inteiros)

$$p(x)$$
: $x^2 + x - 2 = 0$

$$V_{P} = C_A V_P = A - V_P = A - \{ x \in A / p(x) \} = Z - \{-2,1\} = \{...,-3,-1,0,2,3,...\}$$

Condicional

Considere as seguintes sentenças abertas:

$$x^2 - 5x + 6 = 0$$
, $x^2 - 9 = 0$

Aplicando-se o conectivo da condicional temos:

"
$$x^2 - 5x + 6 = 0$$
" \rightarrow " $x^2 - 9 = 0$ "

A expressão acima é verificada por todos os indivíduos que **satisfaçam a tabela verdade da condicional, resultando em Verdadeiro**. Sendo $p(x) \to q(X) \Leftrightarrow \neg p(x) \lor q(x)$, o **conjunto verdade V_{p \to q}** da sentença aberta $p(x) \to q(x)$ é a **união** dos conjuntos $V_{\neg p}$ e V_q das sentenças p(x) e q(x) em A. Temos simbolicamente:

$$V_{p \to q} = V_{p} \cup V_{q} = C_{A}V_{P} \cup V_{q} = (A - \{ x \in A / p(x) \}) \cup \{ x \in A / q(x) \}$$

Exemplo:

Sejam as sentenças abertas em $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

$$p(x): x^2 \in A$$
 $V_p = \{ 1, 2, 3 \}$

$$q(x)$$
: x é impar $V_q = \{1, 3, 5, 7, 9\}$

Temos:

$$V_{p \to q} = (A - \{ x \in A / x^2 \in A \}) \cup \{ x \in A / x \text{ \'e impar } \} =$$

$$(\{1, 2, 3, 4, 5, 6, 7, 8, 9\} - \{1, 2, 3\}) \cup \{1, 3, 5, 7, 9\} =$$

$$\{4, 5, 6, 7, 8, 9\} \cup \{1, 3, 5, 7, 9\} =$$

$$\{1, 3, 4, 5, 6, 7, 8, 9\}$$

Bicondicional

Considere as seguintes sentenças abertas:

Aplicando-se o conectivo da bicondicional temos:

"
$$x > -5$$
" \leftrightarrow " $x < 0$ "

A expressão acima é verificada por todos os números inteiros maiores que -5 e menores que zero.

Sendo $p(x) \leftrightarrow q(x) \Leftrightarrow (p(x) \rightarrow q(x)) \land (q(x) \rightarrow p(x))$, daí temos: $(p(x) \rightarrow q(x)) \land (q(x) \rightarrow p(x)) \Leftrightarrow (\sim p(x) \lor q(x)) \land (\sim q(x) \lor p(x))$ o **conjunto verdade V_{p \leftrightarrow q}** da sentença aberta $p(x) \leftrightarrow q(x)$ é a **interseção** dos conjuntos $V_{p \rightarrow q}$ e $V_{q \rightarrow p}$ das sentenças $p(x) \rightarrow q(x) \Rightarrow q(x) \Rightarrow p(x) \Rightarrow q(x) \Rightarrow p(x) \Rightarrow q(x) \Rightarrow p(x) \Rightarrow q(x) \Rightarrow q(x)$

$$V_{p \leftrightarrow q} = ((A - \{ x \in A / p(x) \}) \cup \{ x \in A / q(x) \}) \cap ((A - \{ x \in A / q(x) \}) \cup \{ x \in A / p(x) \})$$

Exemplo:

Sejam as sentenças abertas em A = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ p(x): $x^2 \in A$ \rightarrow $Vp = \{1, 2, 3\}$ q(x): x é impar \rightarrow $Vq = \{1, 3, 5, 7, 9\}$

Temos:

$$\begin{aligned} \textbf{V}_{\textbf{p} \rightarrow \textbf{q}} &= (\textbf{A} - \{ \ x \in \textbf{A} \ / \ x^2 \in \textbf{A} \ \}) \ \cup \{ \ x \in \textbf{A} \ / \ x \ \text{\'e impar} \ \} = \\ & (\{1, 2, 3, 4, 5, 6, 7, 8, 9\} - \{1, 2, 3\}) \ \cup \{1, 3, 5, 7, 9\} = \\ & \{4, 5, 6, 7, 8, 9\} \ \cup \{1, 3, 5, 7, 9\} = \\ & \{1, 3, 4, 5, 6, 7, 8, 9\} \end{aligned}$$

$$\begin{aligned} \textbf{V}_{\textbf{q} \rightarrow \textbf{p}} &= (\textbf{A} - \{ \ x \in \textbf{A} \ / \ x \ \text{\'e impar} \}) \ \cup \{ \ x \in \textbf{A} \ / \ x^2 \in \textbf{A} \ \} = \\ & (\{1, 2, 3, 4, 5, 6, 7, 8, 9\} - \{1, 3, 5, 7, 9\}) \ \cup \{1, 2, 3\} = \\ & \{2, 4, 6, 8\} \ \cup \{1, 2, 3\} = \\ & \{1, 2, 3, 4, 6, 8\} \end{aligned}$$

$$\begin{aligned} \textbf{V}_{\textbf{q} \leftrightarrow \textbf{p}} &= \textbf{V}_{\textbf{p} \rightarrow \textbf{q}} \cap \textbf{V}_{\textbf{q} \rightarrow \textbf{p}} = \\ & \{1, 3, 4, 5, 6, 7, 8, 9\} \cap \{1, 2, 3, 4, 6, 8\} \end{aligned}$$

Exercícios de fixação: Pág. 172 a 174 do livro texto.

Quantificador Universal

Considere:

$$V_p = \{ x / x \in A \land p(x) \}$$

Quando $V_p = A$ podemos afirmar:

- (i) Para todo elemento x de A, p(x) é verdadeira.
- (ii) Qualquer que seja o elemento x de A, p(x) é verdadeira.

Na lógica matemática indica-se esse fato de uma das seguintes maneiras:

- (i) $(\forall x \in A) (p(x))$
- (ii) $\forall x \in A, p(x)$
- (iii) $\forall x \in A : p(x)$
- (iv) $(\forall x), (p(x))$
- $(v) \forall x, p(x)$
- (vi) $\forall x : p(x)$

Logo, podemos afirmar: ($\forall x \in A$) (p(x)) $\Leftrightarrow V_p = A$.

Sendo A um conjunto finito, podemos ainda:

$$(\forall x \in A) (p(x)) \Leftrightarrow (p(a_1) \land p(a_2) \land ... \land p(a_n))$$

Exemplo 01:

No universo finito $A = \{3, 5, 7\}$ e sendo p(x) a sentença aberta "x é primo", temos:

$$(\forall x \in A) (x \notin primo) \Leftrightarrow (3 \notin primo \land 5 \notin primo \land 7 \notin primo)$$

Como cada elemento do domínio é primo então ($\forall x \in A$) (x é primo) = V.

Exemplo 02:

No universo finito $A = \{3, 4, 5, 7\}$ e sendo p(x) a sentença aberta "x é primo", temos:

$$(\forall x \in A) (x \notin primo) \Leftrightarrow (3 \notin primo \land 4 \notin primo \land 5 \notin primo \land 7 \notin primo)$$

Como V(p(4)) = F, isto é, 4 NÃO é primo! Assim, usamos x = 4 como contra-exemplo para concluir que ($\forall x \in A$) ($x \in A$)

Quantificador Existencial

Considere:

$$V_p = \{ x / x \in A \land p(x) \}$$

Quando $V_p \neq \phi$ e pelo menos um elemento do conjunto A satisfaz a sentença aberta p(x), podemos afirmar:

- (i) Existe pelo menos um $x \in A$, tal que p(x) é verdadeira.
- (ii) Para algum $x \in A$, p(x) é verdadeira.

Na lógica matemática indica-se esse fato de uma das seguintes maneiras:

- (vii) $(\exists x \in A) (p(x))$
- (viii) $\exists x \in A, p(x)$
- (ix) $\exists x \in A : p(x)$
- (x) $(\exists x), (p(x))$
- (xi) $\exists x, p(x)$
- (xii) $\exists x : p(x)$

Logo, podemos afirmar: $(\exists x \in A) (p(x)) \Leftrightarrow V_p \neq \phi$.

Sendo A um conjunto **finito**, podemos ainda:

$$(\exists x \in A) (p(x)) \Leftrightarrow (p(a_1) \vee p(a_2) \vee ... \vee p(a_n))$$

Exemplo 1:

A proposição: (\exists **n** \in **N**) (**n** + 4 < 8) é verdadeira, pois, o conjunto verdade da sentença aberta p(n): n + 4 < 8 é:

$$V_p = \{ \ n \ / \ n \in N \land n + 4 < 8 \} = \{ 1, \, 2, \, 3 \} \neq \emptyset \ \text{ temos que } (\exists \ n \in N) \ (n + 4 < 8) = V.$$

Exemplo 2:

A proposição: (\exists $n \in \mathbb{N}$) (n + 7 < 8) é falsa, pois, o conjunto verdade da sentença aberta p(n): n + 7 < 8 é:

$$V_p = \{ n / n \in N \land n + 7 < 8 \} = \emptyset \text{ temos que } (\exists n \in N) (n + 4 < 8) = F.$$

Quantificador de Existência e Unicidade

(i) Considere em R a sentença aberta "x² = 16".

$$4^2 = 16$$
,

$$(-4)^2 = 16$$
 e

e
$$4 \neq -4$$

Temos dois valores que satisfazem a sentença acima, 4 e −4.

$$(\exists x, y \in R) (x^2 = 16 \land y^2 = 16 \land x \neq y) = V.$$

(ii) Considere em R a sentença aberta "x³ = 27".

Temos somente um valor que satisfaz a sentença acima, 3.

(∃! x ∈ R) ($x^3 = 27$) = V (Lê-se: Existe um único x em R tal que $x^3 = 27$, como mostrado acima esse x = 3. (Lembre-se que: (-3)(-3)(-3) = -27 ≠ 27)

Obviamente,
$$(\exists x \in R) (x^2 = 16) = V e (\exists ! x \in R) (x^2 = 16) = F$$
.

VARIÁVEL APARENTE E VARIÁVEL LIVRE

Quando há um quantificador a incidir sobre uma variável, esta diz-se aparente ou muda (ou ligada); caso contrário, a variável diz-se livre.

Exemplos onde x é uma variável livre: 3x - 1 = 14, x + 1 > x;

Exemplos de variáveis aparentes: $(\exists x)(3x - 1 = 14), (\forall x)(x+1>x).$

Escopo de um quantificador

Exemplo: $(\exists x)(3x - 1 = 14) \rightarrow 2x + 3 = 9$ é uma sentença aberta pois o x aparece ligado na primeira parte mas está livre na segunda parte. Supondo que o domínio é A= $\{3,4,5\}$ teríamos $\forall p = \{3\}$.

NEGAÇÃO DE PROPOSIÇÕES COM QUANTIFICADOR

$$\sim$$
($\exists x$)(p(x)) = ($\forall x$)(\sim p(x))

$$\sim (\forall x)(p(x)) = (\exists x)(\sim p(x))$$

Exemplos:

- a) Negar que todo **homem** foi à lua é o mesmo que existe pelo menos um **homem** que não foi à lua;
- b) Negar que existe uma **pessoa** que é trilhonária é o mesmo que todas as **pessoas** não são trilhonárias.

CONTRA-EXEMPLO

Para demonstrar que uma proposição quantificada com para todo é Falsa, basta encontrar um elemento no domínio que **NÃO** satisfaça a sentença aberta.

Exemplo:

 $(\forall x \in N)(x+1=2)$ é F pois existe pelo menos um numero natural que não satisfaz a sentença aberta x+1=2, por exemplo quando x=9.

Exercícios de fixação: Pág. 185 do livro texto – Exercícios 5, 8, 9 e 11.

Capítulo 17 - Quantificação de Senteças Abertas com Mais de Uma Variável

1. Quantificação Parcial

A quantificação parcial aparece quando apenas uma das variáveis da sentença aberta é quantificada:

Exemplo:

$$(\exists x \in A) (5x - 3y = 12)$$

onde o conjunto universo das variáveis x e y é $A = \{1,2,3,4,5\}$

Visto que não se sabe o valor de y, não se pode afirmar se existe o valor de x para que se tenha uma proposição falsa ou verdadeira.

Neste caso, a variável y é denominada de variável livre.

2. Quantificação Múltipla

Quando uma sentença aberta possui um quantificador para cada variável, pode-se então dizer que a sentença em questão é uma proposição, pois poder-se-á verificar se ela é uma declaração falsa ou verdadeira.

Note-se que os quantificadores podem ser diferentes para cada variável.

Exemplos (ALENCAR FILHO, 2002):

- a. $(\forall x \in A)(\forall y \in B)(p(x,y))$
- b. $(\exists x \in A)(\exists y \in B)(p(x,y))$
- c. $\sim (\exists x \in A)(\forall y \in B)(p(x,y))$
- d. $\sim (\exists x \in A)(\exists! y \in B)(p(x,y))$
- e. $(\forall x \in A)(\exists y \in B)(p(x,y))$

3. Comutatividade dos Quantificadores

Os quantificadores de uma dada fórmula somente podem ser comutados, de acordo com as seguintes regras:

(i) Quantificadores de mesmo tipo podem ser comutados.

Portanto a seguinte equivalência é válida:

$$(\forall x) (\forall y) (P(x,y)) \Leftrightarrow (\forall y) (\forall x) (P(x,y))$$

e também é válida a equivalência:

 $(\exists x) (\exists y) (P(x,y)) \Leftrightarrow (\exists y) (\exists x) (P(x,y))$ e outras equivalências similares.

(ii) Quantificadores de tipos distintos não podem ser comutados.

4. Negação de Proposições com Quantificadores

Qualquer expressão ou fórmula lógica quantificada também pode ser precedida do operador de negação (~). Por exemplo, considerando o domínio das pessoas atualmente vivas as expressões formais:

(∀x) (x fala Inglês)
~ (∀x) (x fala Inglês)
(∃x) (x foi à Antártida)
~ (∃x) (x foi à Antártida)
poderiam ser enunciadas, respectivamente, como:
Todas as pessoas falam inglês.
Nem todas as pessoas falam inglês.
Alguém foi a Antártida.
Ninguém foi a Antártida.

Analisando estas expressões deve ficar claro algumas equivalências intuitivas. Em primeiro lugar afirmar que nem todas as pessoas falam Inglês é claramente equivalente a afirmar que existe alguém que não fala Inglês. Formalizando temos:

```
\sim (\forall x) (x fala Inglês) \Leftrightarrow (\exists x) \sim (x \text{ fala Inglês})
```

E em segundo lugar afirmar que ninguém foi à Antártida é obviamente equivalente a afirmar que para todas as pessoas vivas atualmente não é verdade que elas tenham ido à Antártida. Formalizando este argumento temos:

```
~ (\exists x) (x foi à Antártida) \Leftrightarrow (\forall x) ~ (x foi à Antártida)
```

Esta análise pode ser generalizada pelas seguintes regras:

(i) A negação da fórmula $(\forall x)(P(x))$ é equivalente a afirmação de que, pelo menos para um $x \in A$, tem-se que P(x) é falsa, ou então que $\sim P(x)$ é verdadeira.

Portanto deve valer a seguinte equivalência:

$$\sim (\forall x \in A) (P(x)) \Leftrightarrow (\exists x \in A) \sim (P(x))$$

(ii) Da mesma forma negar a fórmula $(\exists x)(P(x))$ equivale a afirmar que para todos os $x \in A$, a sentença P(x) deve ser falsa, ou então que a sentença $\sim P(x)$ deve ser verdadeira, o que nos leva a seguinte equivalência:

$$\sim (\exists x \in A) (P(x)) \Leftrightarrow (\forall x \in A) \sim (P(x))$$

Exercícios da página 190 até a página 192.