Exercice 1 - (Système)

Trouver l'ensemble des réels
$$x$$
 tels que
$$\begin{cases} 2\cos(x) - \sin(x) &= \sqrt{3} + \frac{1}{2} \\ \cos(x) + 2\sin(x) &= \frac{\sqrt{3}}{2} - 1 \end{cases}$$

Exercice 2 – $(\pi/12)$

Déterminer la valeur de $\sin(\pi/12)$ et $\cos(\pi/12)$

Exercice 3 – (Périodicité)

Soit $\alpha \in \mathbb{R}$ et $f : \mathbb{R} \mapsto \mathbb{R}$ telle que $f(x) = \cos(x) + \cos(\alpha x)$. On souhaite montrer que f est périodique si et seulement si $\alpha \in \mathbb{Q}$.

- 1. On suppose que $\alpha = \frac{p}{q} \in \mathbb{Q}$. Montrer que f est périodique.
- 2. On suppose que $\alpha \notin \mathbb{Q}$. Résoudre l'équation f(x) = 2. En déduire que f n'est pas périodique.
- 3. Conclure.

Exercice 4 - (Somme de fonctions hyperboliques)

 $\forall (x,y) \in \mathbb{R} \times \mathbb{R}$, montrer que :

1.
$$sh(x+y) = sh(x)ch(y) + ch(x)sh(y)$$

2.
$$ch(x+y) = ch(x)ch(y) + sh(x)sh(y)$$

Exercice 5 - (Inégalités de fonctions hyperboliques)

 $\forall x \in \mathbb{R}$, montrer que :

- 1. $sh(x) \geq x$
- 2. $ch(x) \ge 1 + \frac{x^2}{2}$

Exercice 6 - (Equation)

Résoudre l'équation ch(x) = 2.

Exercice 7 – (Majoration de sin(nx))

Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |\sin(nx)| \leq n|\sin(x)|$.

Exercice 8 - (Divisibilité)

Déterminer les entiers relatifs n tels que n-4 divise 3n-17.

Exercice 9 - (Somme des n premiers entiers)

Soit $n \geq 1$. Déterminer le reste dans la division euclidienne par n de la somme des n premiers entiers strictement positifs.

Exercice 10 - (Division euclidienne avec des grands nombres)

Soit a, b et n trois entiers supérieurs ou égaux à 1. On note q le quotient de la division euclidienne de a-1 par b et r le reste. Déterminer le quotient et le reste de la division euclidienne de ab^n-1 par b^{n+1} .

Exercice 11 – (Une caractérisation des éléments de U)

Soit z un nombre complexe tel que $z \neq 1$. Montrer que $|z| = 1 \Leftrightarrow \frac{1+z}{1-z} \in i\mathbb{R}$

Exercice 12 - (Une somme complexe...)

Calculer
$$\sum_{k=0}^{n} {n \choose k} \cos(x+ky)$$
.

Exercice 13 - (Racine carré d'un complexe)

Déterminer les racines carrés de $Z=\sqrt{3}+i$ sous forme algébrique, puis sous forme trigonométrique. En déduire la valeur de $\cos(\frac{\pi}{12})$.

<u>Note</u>: Une racine carré d'un nombre complexe z est un nombre complexe w tel que $w^2 = z$.