

Small Angle Neutron Scattering

Sans_Spheres.comp

Name	Unit	Description	Default
R	AA	Radius of scattering hard spheres	100
Phi	1	Particle volume fraction	1e-3
Delta_rho	fm/AA^3	Excess scattering length density	0.6
sigma_abs	m^-1	Absorption cross section density at 2200 m/s	0.50
xwidth	m	horiz. dimension of sample, as a width	0
yheight	m	vert . dimension of sample, as a height for cylinder/box	0
zdepth	m	depth of sample	0
radius	m	Outer radius of sample in (x,z) plane for cylinder/sphere	0
target_x	-		0
target_y	m	position of target to focus at	0
target_z	-		6
target_index	1	Relative index of component to focus at, e.g. next is +1	0
focus_xw	m	horiz. dimension of a rectangular area	0
focus_yh	m	vert. dimension of a rectangular area	0
focus_aw	deg	horiz. angular dimension of a rectangular area	0
focus_ah	deg	vert. angular dimension of a rectangular area	0
focus_r	m	Detector (disk-shaped) radius	0

MORE SANS SAMPLES

Try ellipsoidal and cylindrical particles
-orElliptic cylinders
Go for Nanodiscs and Liposomes

Sample form: Box only Particle concentration: MOLAR

- · SANS_AnySamp.comp
- · SANS_DebyeS.comp
- SANSCylinders.comp
- · SANSEllipticCylinders.comp
- SANSGuinier.comp
- · SANSLiposomes.comp
- · SANSNanodiscs.comp
- · SASview.comp

- SANSNanodiscsFast.comp
- · SANSNanodiscsWithTags.
- SANSNanodiscsWithTagsFast
- SANSPDB.comp
- · SANSPDBFAST.comp
- · SANSShells.comp
- SANSSpheres.comp

As always, more info at http://mcstas.org/download/components

MORE SANS SAMPLES

[Identification | Description | Input parameters | Output parameters | Links]

The Sasview_model Component

This SANS sample exposes SasView's scattering kernels to McStas. In this way SasView's monodisperse scattering kernels can be call from McStas.

Identification

- Author: Jakob Garde, Torben Nielsen, Peter Willendrup
- Origin: SasView, DTU, European Spallation Source ERIC
- Date: 03.02.2016
- Version:(Unknown)

... Or use one of many SASmodels Definitions directly from SASview...

Description

Sample for use in SANS instruments. The models describe mono disperse particles in thin solution. The sample geometry may have the shape:

Shape

- A filled box with dimensions xwidth, yheight and zdepth.
- A cylinder with dimensions radius and yheight.
- A filled sphere given by radius.

These parameters are mutually exclusive.

Example using spheres in thin solution, with radius=200 AA and a delta_sld=0.6 fm/AA^3:

SasView_model(model_index=47, model_scale=1.0, model_pars={1, 7, 200}, model_abs=0.0, xwidth=0.01, yheight=0.01, zdepth=0.005,)

The algorithm of this component requires use of the ISO C standard c99. You could use MCSTAS_CFLAGS like MCSTAS_CFLAGS = -std=c99 -g -O2 Or, add the flag "-std=c99" to "C flags" in the mcgui or mcgui-py config.

The list of scattering models in SasView is called sasmodels. The list of McStas available SasView sasmodels are found in the table below

A few models may require manual documentation lookup using the above link to the SasView site.

McStas does currently not support multiplication of formfactor models with structure factor models.

The 2D scattering scattering kernels are denoted by modelname xy. I.e. to evalulate scattering from aligned cylinders use model index=10

C MD

ORN

1						
	Model no. SasView name		Parameters			
			None			
			(sld, solvent_sld, bell_radius, radius, length)			
	2	barbell_xy	(sld, solvent_sld, bell_radius, radius, length, theta, phi)			
	3	bcc_paracrystal	(dnn, d_factor, radius, sld, solvent_sld)			
	4	bcc_paracrystal_xy	(dnn, d_factor, radius, sld, solvent_sld, theta, phi, psi)			
	5	<u>capped_cylinder</u>	(sld, solvent_sld, radius, cap_radius, length)			
	6	capped_cylinder_xy	(sld, solvent_sld, radius, cap_radius, length, theta, phi)			

SANSCurve.comp

Mimick the behaviour of a sample: Feed I(q) curve

Name	Unit	Description
DeltaRho	cm/AA^3	Excess scattering length density of the particles.
Volume	AA^3	Volume of the particles.
Concentration	mM	Concentration of sample.
AbsorptionCrosssection	1/m	Absorption cross section of the sample.
xwidth	m	Dimension of component in the x-direction.
yheight	m	Dimension of component in the y-direction.
zdepth	m	Dimension of component in the z-direction.
Sample To Detector Distance	m	Distance from sample to detector (for focusing the scattered neutrons).
DetectorRadius	m	Radius of the detector (for focusing the scattered neutrons).
FileWithCurve		

Revisit Monitors: PSD_monitor_rad.comp

Name	Unit	Description	Default
nr	1	Number of concentric circles	100
filename	text	Name of file in which to store the detector image	0
filename_av	text	Name of file in which to store the averaged detector image	0
rmax	m	Outer radius of detector	0.2

filename_av="radial_averag.dat", max=1)
AT (0, 0, 12) RELATIVE Sample

SANS Q MONITOR

I(r) and I(q) profiles

Input Parameters

RadiusDetector [m]
DistanceFromSample [m]
NumberOfBins
LambdaMin [AA]

Rfilename string qFilename string Restore_neutron

EXERCISE

Open the file Ex_5_5_SANS.instr given to you.

Study the file. Notice the two instrument parameters

- Insert a Sans_spheres_sample
 (R = 100, Phi = 1e-3, Delta_rho = 0.6, sigma_abs = 0, xwidth=0.01, yheight=0.01, zdepth=0.01, focus_r=?, target_z=?)
- Insert a PSD_monitor_rad 0.0001m behind the beamstop (rmax=0.2, nr=200, give filenames)
- Use the instrument parameters to complete the components
- Run a simulation with 1e7 neutrons
- Plot the I(r) curve.
- Change the sample-detector distance.
 What do you observe?

Curious? Lost? Need help?

Try \$ mcdoc or visit http://mcstas.org/
download/components

October 2018

SANS models

- Get a new instrument: We'll use the ISIS_SANS2d
- We'll explore some of the SANS-options that exist in McStas.
- The SANS2D-model does not include a sample, nor detector at present, so we'll add that
 in. Add Ls2d and RR to your DEFINE INSTRUMENT line in the top of the file to be able
 to scan them.

```
1) Add a PSD_monitor to replicate the detector:
    COMPONENT detector_front = PSD_monitor(
        nx = 200, ny = 200, filename = "PSD.dat",
        xwidth = 1, yheight=1, restore_neutron=1)
    AT(0,0,Ls2d) RELATIVE sample.
```

2) Add a sample – First we'll use the the standard SANS spheres comp:

```
COMPONENT sample = SANS_spheres(
    xwidth=0.01, yheight=0.01, zdepth=0.001,
    focus_xw=1, focus_yh=1, target_z=Ls2d,
    R=RR, Delta_rho=0.6)
AT (0, 0, 0.2) RELATIVE psd4
```

Now run a simulation to see what you get.

SASmodels

- Now we shall explore the possibilities that SasView_models can give us. Change the sample to a SasView_models.comp. Keep the target parameters but change the last line to: model index=51, model pars={1,7,50}
- The model_index indeicates which of a large number of models scattering fucntions) the sample is using. You can use mcdoc to find out which, and what the parameters mean. Try to generate a picture similar to the one before.
- Try a couple of the other SasView_models.
- ex. model_index=23, model_pars={50,0.2}

SANS models

 2D SANS images are all fine – but wouldn't it be better if we could let the computer do the radial integration for us?

recipe: Insert another monitor — for instance a
Monitor_nD with options="radius ..."

- or an instance of SANSQ_monitor
- Remember to use mcdoc it's your friend!

RESOURCES

- Need more information?
- Plan on doing a SANS experiment?
- Visit the SANS world directory
- Neutron scattering length densities
- https://www.ncnr.nist.gov/resources/activation/
- http://sld-calculator.appspot.com/
 - SASview

