INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

1 - LÓGICA E MÉTODOS DE PROVA

- 1.1) Lógica Proposicional
- 1.2) Lógica de Primeira Ordem
- 1.3) Métodos de Prova

LÓGICA FORMAL

- Lógica é a disciplina que lida com os métodos de raciocínio.
- A Lógica provê regras e técnicas para determinar se um dado argumento é válido.
- Aplicações diretas:
 - projeto de circuitos computacionais
 - construção e verificação de programas
- Sistemas lógicos formais da Lógica Clássica:
 - Lógica Proposicional
 - Lógica de Predicados

Proposições Lógicas

- Asserção: uma declaração (afirmação, sentença declarativa).
- Proposição: uma asserção que é verdadeira (V) ou falsa (F), mas não ambos.
- ✔ Valor verdade: resultado da avaliação de uma proposição (V ou F).

PROPOSIÇÕES

- Exemplo: Quais das seguintes asserções são proposições?
 - 1. 2+3=5
 - 2. 3 não é um número par.
 - 3. A Terra é arredondada.
 - 4. x > 5
 - 5. Esta declaração é falsa.
 - 6. Você fala francês?
 - 7. Leia o livro texto.

PROPOSIÇÕES

Exemplo: Quais das seguintes asserções são proposições?

1.
$$2 + 3 = 5$$

4.
$$x > 5$$

→ asserção, mas não proposição

5. Esta declaração é falsa.

→ asserção, não proposição

6. Você fala francês?

→ nem asserção, nem proposição

7. Leia o livro texto.

→ nem asserção, nem proposição

Proposições

- Observe que o valor verdade (V ou F) de uma proposição não é necessariamente conhecido.
 - **Exemplo**: "A temperatura na superfície do planeta Vênus é de $400^{o}C$ " é uma proposição.

VARIÁVEIS PROPOSICIONAIS

- m P Em Lógica, as proposições podem ser denotadas por símbolos, tais como p,q,r,\ldots , os quais são chamados de **variáveis** proposicionais.
- Assim, pode-se escrever:
 - p: o Sol está brilhando hoje.
 - 9: 2+3=5

Proposições Compostas

- Normalmente, uma argumentação não se limita ao uso de sentenças simples.
- Novas proposições podem ser construídas a partir de proposições existentes
 - com o auxílio de operadores lógicos
 - para obter proposições compostas

Proposições Compostas

- A sentença: "Não é verdade que p"
 - é uma outra proposição
 - chamada de a negação de p.
 - Notação: $\neg p$, $\sim p$, not p

Exemplos:

- p: 2+3>1
 - $\neg p: 2+3$ não é maior do que 1, (ou $2+3 \le 1$)
- q : "Hoje é quarta-feira"
 - $\neg q$: "Não é verdade que hoje é quarta-feira", ou
 - $\neg q$: "Hoje não é quarta-feira"

TABELAS VERDADE

- Da definição de negação segue que:
 - se p é Verdadeiro, então $\neg p$ é Falso
 - se p é Falso, então $\neg p$ é Verdadeiro
- **Description** Logo, o valor verdade de $\neg p$, relativo a p, é dado por:

Tabela verdade da negação:

TABELA VERDADE

- Fornece os valores verdade de uma proposição composta em termos dos valores verdade de suas partes componentes.
- Útil na determinação dos valores verdade de proposições construídas a partir de sentenças mais simples.

CONECTIVOS LÓGICOS

- Operador negação: constrói uma nova proposição a partir de uma única proposição existente.
- Conectivos: operadores lógicos usados para formar novas proposições a partir de duas ou mais proposições já existentes.

Conjunção (operação "e"):

- Notação: $p \wedge q$, p e q, p and q
- Definição:

$$egin{array}{c|cccc} p & q & p \wedge q \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & F \\ \hline \end{array}$$

Observe que há 4 possibilidades.

- **•** Exemplos de conjunção $(p \land q)$:
 - p: hoje é terça-feira
 - q: está chovendo hoje
 - $p \wedge q$: hoje é terça-feira e está chovendo hoje
 - p: 2 < 3
 - q: -5 > -8
 - $p \wedge q$: 2 < 3 **e** -5 > -8
 - p: está chovendo hoje
 - q: 3 < 5
 - $p \wedge q$: está chovendo hoje e 3 < 5

Disjunção (operação "ou inclusivo"):

- Notação: $p \lor q$, p ou q, p or q
- Definição:

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

- **•** Exemplos de disjunção $(p \lor q)$:
 - p: 2 é um inteiro positivo
 - q: $\sqrt{2}$ é um número racional
 - $p \lor q$: 2 é um inteiro positivo ou $\sqrt{2}$ é um número racional
 - $p: 2+3 \neq 5$
 - q: Curitiba é a capital de Santa Catarina
 - $p \lor q$: $2+3 \neq 5$ ou Curitiba é a capital de Santa Catarina

- O conectivo "ou" pode ser interpretado de duas maneiras distintas:
 - Ou inclusivo (e/ou):
 - "Eu passei em Cálculo ou eu rodei em Álgebra Linear"
 - pelo menos uma das possibilidades ocorre, mas ambas podem ocorrer
 - Ou exclusivo:
 - "Eu vim de carro para a UFSC ou eu vim a pé para a UFSC"
 - somente uma das possibilidades pode ocorrer

- Disjunção exclusiva (operação "xor"):
 - ▶ Notação: $p \oplus q$, p xor q, p ou q (mas não ambos)
 - Definição:

$$egin{array}{c|cccc} p & q & p \oplus q \\ \hline V & V & F \\ V & F & V \\ F & V & V \\ F & F & F \\ \hline \end{array}$$

V quando exatamente um dos dois é V

Condicional ou implicação (se p, então q):

- Notação: $p \rightarrow q$
- Definição:

- V quando:
 - $\cdot p$ e q são ambos V
 - · $p \notin F$ (não importando q)

- Maneiras de expressar $p \rightarrow q$:
 - ullet se p, então q
 - $m{p}$ é condição suficiente para q
 - $m{ ilde{ }} q$ é condição necessária para p
 - ightharpoonup p somente se q
 - q é conseqüência lógica de p
- Na expressão $p \rightarrow q$:
 - p é chamado de hipótese ou antecedente
 - q é chamado de conclusão ou consequente

- Exemplo: "Fogo é uma condição necessária para fumaça":
 - Esta sentença pode ser reformulada como:
 "Se há fumaça, então há fogo"
 - Logo:
 - o antecedente é: "Há fumaça"
 - o consequente é: "Há fogo"

- Exemplo: Indique o antecedente e o consequente em:
 - "Se a chuva continuar, o rio vai transbordar".
 - "Uma condição suficiente para a falha de uma rede é que a chave geral páre de funcionar".
 - "Os abacates só estão maduros quando estão escuros e macios".

OBSERVAÇÃO

- Na linguagem usual, a implicação $p \rightarrow q$ supõe uma relação de causa e efeito entre p e q.
 - Exemplo: "Se fizer sol amanhã, eu vou à praia".
- Em lógica, $p \rightarrow q$ diz apenas que não teremos p verdadeiro e q falso ao mesmo tempo.
 - **Exemplo:** "Se hoje é domingo, então 2+2=5".

- Note que se p é F, então $p \rightarrow q$ é V para qualquer q:
 - "Uma falsa hipótese implica em qualquer conclusão".
- Exemplo: "Se 2+2=5, então no Brasil não há corrupção".
- Exemplo: Quando é que a implicação "Se hoje é terça-feira, então 2+3=6" é Verdadeira?

- **Se** $p \rightarrow q$ é uma condicional. então:
 - ullet o **converso** de $p \rightarrow q$ é a implicação $q \rightarrow p$
 - o inverso de $p \to q$ é a implicação $\neg p \to \neg q$
 - ullet a contrapositiva de p o q é a implicação $\neg q o \neg p$
- Exemplo: "Se Murilo é catarinense, então Murilo é brasileiro".
 - $p \rightarrow q$: "Murilo é catarinense"
 - q: "Murilo é brasileiro"
 - $q \rightarrow p$: "Se Murilo é brasileiro, então Murilo é catarinense"
 - $\neg p \rightarrow \neg q$: "Se Murilo não é catarinense, Murilo não é brasileiro"
 - $\neg q \rightarrow \neg p$: "Se Murilo não é brasileiro, Murilo não é catarinense"

Bicondicional ou equivalência $(p \rightarrow q \land q \rightarrow p)$:

- Notação: $p \leftrightarrow q$
- Definição:

$$egin{array}{c|cccc} p & q & p \leftrightarrow q \\ \hline V & V & V \\ V & F & F \\ F & V & F \\ F & F & V \\ \end{array}$$

- V somente quando:
 - $\cdot p e q têm o mesmo valor verdade$

- Maneiras de representar $p \leftrightarrow q$:
 - p se, e somente se, q
 - m p é necessário e suficiente para q
 - ullet se p então q, e conversamente
- **Exemplo:** a equivalência "3 > 2" se e somente se 0 < 3 2" é Verdadeira?
 - p: 3 > 2 (V)
 - q: 0 < 3 2 (V)
 - logo: $p \leftrightarrow q$ é Verdadeira

Proposições Compostas

- Podem ter muitas partes componentes, cada parte sendo uma sentença representada por alguma variável proposicional.
- Construídas com o auxílio dos conectivos lógicos.

Exemplos:

$$s: p \to [q \land (p \to r)]$$

$$s: \neg(p \leftrightarrow q) \leftrightarrow [(p \land \neg q) \lor (q \land \neg p)]$$

$$r: [\neg p \land (p \lor q)] \to q$$

TRADUZINDO SENTENÇAS PARA LÓGICA

Exemplo: Encontrar a proposição que traduz a seguinte sentença:

"Você não pode andar de patins se você tem menos do que 1,20m, a não ser que você tenha mais do que 16 anos".

Definindo:

q: "você pode andar de patins"

r: "você tem menos do que 1,20m"

s: "você tem mais do que 16 anos"

a sentença pode ser traduzida por:

$$p: (r \land \neg s) \to \neg q$$

TABELAS VERDADE DE PROPOSIÇÕES COMPOSTAS

- **●** A sentença: $s: p \rightarrow [q \land (p \rightarrow r)]$
 - envolve 3 proposições independentes
 - logo, há $2^3 = 8$ situações possíveis:

p	$\mid q \mid$	$\mid r \mid$	$p \to [q \land (p \to r)]$
V	٧	V	?
V	V	F	?
V	F	V	?
V	F	F	?
F	V	V	?
F	V	F	?
F	F	V	?
F	F	F	?

- A tabela verdade de uma proposição composta de n variáveis proposicionais é obtida por:
 - 1. as primeiras n colunas da tabela devem ser rotuladas com as variáveis proposicionais
 - outras colunas servirão para combinações intermediárias
 - 2. sob cada uma das primeiras colunas, lista-se os 2^n possíveis conjuntos de valores verdade das variáveis proposicionais
 - 3. para cada linha, computa-se os valores verdade restantes

Exemplo: Tabela verdade de $(p \lor q) \to (r \leftrightarrow p)$: (1/3)

p	q	r
V	V	V
V	V	F
V	F	V
V	F	F
F	V	V
F	V	F
F	F	V
F	F	F

Exemplo: Tabela verdade de $(p \lor q) \to (r \leftrightarrow p)$: (2/3)

p	q	r	$p \lor q$	$r \leftrightarrow p$
V	V	V	V	V
V	V	F	V	F
V	F	V	V	V
V	F	F	V	F
F	V	V	V	F
F	V	F	V	V
F	F	V	F	F
F	F	F	F	V

Exemplo: Tabela verdade de $(p \lor q) \to (r \leftrightarrow p)$: (3/3)

p	q	$\mid r \mid$	$p \lor q$	$r \leftrightarrow p$	
V	V	V	V	V	V
V	V	F	V	F	F
V	F	V	V	V	V
V	F	F	V	F	F
F	V	V	V	F	F
F	V	F	V	V	V
F	F	V	F	F	V
F	F	F	F	V	V

Exemplo: Tabela verdade de $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$: (1/3)

p	q
V	V
V	F
F	V
F	F

CONSTRUINDO TABELAS VERDADE

Exemplo: Tabela verdade de $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$: (2/3)

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\boxed{ \neg q \rightarrow \neg p}$
V	V	V	F	F	V
V	F	F	V	F	F
F	V	V	F	V	V
F	F	V	V	V	V

CONSTRUINDO TABELAS VERDADE

Exemplo: Tabela verdade de $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ (3/3):

p	q	$p \rightarrow q$	$\neg q$	$\neg p$	$\neg q ightarrow eg p$	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
V	V	V	F	F	V	V
V	F	F	V	F	F	V
F	V	V	F	V	V	V
F	F	V	V	V	V	V

equivalentes

Classificação de Proposições Compostas

- Tautologia: proposição que é sempre V (para todas as possíveis situações).
 - **•** Exemplo: $p \vee \neg p$ (verifique!)
- Contradição (ou absurdo): proposição que é sempre F (em todas as possíveis situações).
 - **•** Exemplo: $p \wedge \neg p$ (verifique!)
- Contingência: proposição que pode ser V ou F, dependendo dos valores verdade de suas variáveis proposicionais.
 - Nem tautologia nem contradição.

- Se $p \leftrightarrow q$ é uma tautologia, as proposições p e q são ditas logicamente equivalentes.
 - Notação: $p \Leftrightarrow q$
- Se $p \Leftrightarrow q$, os dois lados são simplesmente diferentes modos de construir a mesma sentença.
- Um importante recurso usado na argumentação lógica é a substituição de uma proposição por outra que seja equivalente.

Determinação da equivalência: Tabelas Verdade.

Exemplo: Mostre que $\neg(p \lor q)$ e $\neg p \land \neg q$ são equivalentes. (1/3)

p	q
V	٧
V	F
F	V
F	F

Determinação da equivalência: Tabelas Verdade.

Exemplo: Mostre que $\neg(p \lor q)$ e $\neg p \land \neg q$ são equivalentes. (2/3)

p	q	$p \lor q$	$\neg p$	$\neg q$
V	٧	V	F	F
V	F	V	F	V
F	V	V	V	F
F	F	F	V	V

Determinação da equivalência: Tabelas Verdade.

Exemplo: Mostre que $\neg (p \lor q)$ e $\neg p \land \neg q$ são equivalentes. (3/3)

p	q	$p \lor q$	$\neg p$	$\neg q$	$\neg (p \lor q)$	$\neg p \land \neg q$	
V	V	\ \	F	F	F	F	V
V	F	V	F	V	F	F	V
F	V	V	V	F	F	F	V
F	F	F	V	V	V	V	V

ALGUMAS EQUIVALÊNCIAS IMPORTANTES

Equivalência	Nome das leis
$p \lor p \Leftrightarrow p$	Idempotência
$p \wedge p \iff p$	
$\neg(\neg p) \Leftrightarrow p$	Dupla negação
$p \lor q \Leftrightarrow q \lor p$	Comutatividade
$p \wedge q \Leftrightarrow q \wedge p$	
$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$	Associatividade
$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$	
$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$	Distributividade
$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	
$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$	Leis de De Morgan
$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	

outras tautologias no livro-texto...

Exemplo:

- $p \lor q$: "O rio é raso ou poluído."
- $\neg (p \lor q)$: ??
- pelas leis de De Morgan:

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

logo:

 $\neg(p \lor q)$: "O rio não é raso E não é poluído."

▶ Note que $\neg(p \lor q)$ não é equivalente a:

"O rio não é raso OU não é poluído."

■ Exemplo: Mostre que $\neg[(p \lor (\neg p \land q)]$ e $\neg p \land \neg q$ são logicamente equivalentes.

■ Exemplo: Mostre que $\neg[(p \lor (\neg p \land q)]$ e $\neg p \land \neg q$ são logicamente equivalentes. (1/6)

$$\neg [(p \lor (\neg p \land q)] \Leftrightarrow \neg p \land \neg (\neg p \land q)$$
 2^a lei de De Morgan

■ Exemplo: Mostre que $\neg[(p \lor (\neg p \land q)]$ e $\neg p \land \neg q$ são logicamente equivalentes. (2/6)

$$\neg[(p \lor (\neg p \land q)] \Leftrightarrow \neg p \land \neg(\neg p \land q)$$
 2^a lei de De Morgan
$$\Leftrightarrow \neg p \land [\neg(\neg p) \lor \neg q)]$$
 1^a lei de De Morgan

■ Exemplo: Mostre que $\neg[(p \lor (\neg p \land q)]$ e $\neg p \land \neg q$ são logicamente equivalentes. (3/6)

$$\neg [(p \lor (\neg p \land q)] \Leftrightarrow \neg p \land \neg (\neg p \land q) \qquad \qquad \textbf{2}^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land [\neg (\neg p) \lor \neg q)] \qquad \textbf{1}^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land (p \lor \neg q) \qquad \qquad \textbf{Dupla negação}$$

Exemplo: Mostre que $\neg[(p \lor (\neg p \land q)]$ e $\neg p \land \neg q$ são logicamente equivalentes. (4/6)

$$\neg[(p \lor (\neg p \land q)] \Leftrightarrow \neg p \land \neg(\neg p \land q) \qquad \qquad 2^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land [\neg(\neg p) \lor \neg q)] \qquad \qquad 1^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land (p \lor \neg q) \qquad \qquad \text{Dupla negação} \\ \Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{Distributividade}$$

Exemplo: Mostre que $\neg[(p \lor (\neg p \land q)]$ e $\neg p \land \neg q$ são logicamente equivalentes. (5/6)

$$\neg [(p \lor (\neg p \land q)] \Leftrightarrow \neg p \land \neg (\neg p \land q) \qquad 2^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land [\neg (\neg p) \lor \neg q)] \qquad 1^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land (p \lor \neg q) \qquad \text{Dupla negação} \\ \Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{Distributividade} \\ \Leftrightarrow F \lor (\neg p \land \neg q) \qquad \neg p \land p \text{ \'e contradição}$$

■ Exemplo: Mostre que $\neg[(p \lor (\neg p \land q)]$ e $\neg p \land \neg q$ são logicamente equivalentes. (6/6)

$$\neg [(p \lor (\neg p \land q)] \Leftrightarrow \neg p \land \neg (\neg p \land q) \qquad 2^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land [\neg (\neg p) \lor \neg q)] \qquad 1^a \text{ lei de De Morgan} \\ \Leftrightarrow \neg p \land (p \lor \neg q) \qquad \text{Dupla negação} \\ \Leftrightarrow (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{Distributividade} \\ \Leftrightarrow F \lor (\neg p \land \neg q) \qquad \neg p \land p \text{ \'e contradição} \\ \Leftrightarrow \neg p \land \neg q \qquad p \lor F \Leftrightarrow p \qquad \Box$$

LÓGICA PROPOSICIONAL

Final deste item.

Dica: fazer exercícios sobre Lógica Proposicional...