Department of Applied Mathematics

Delhi Technological University, Delhi 110042

ASSIGNMENT-II

2019-2020

Course: Mathematics-II Code: MA-102

1. Find the general solution of the following homogeneous differential equations

a.
$$y'' - 8y' + 16y = 0$$
,

b.
$$y'''' - 4y''' + 8y'' - 8y' + 4y = 0$$
,

c.
$$4y'''' - 4y''' - 23y'' + 12y' + 36y = 0$$
.

2. Find the general solution of the following non-homogeneous differential equations

a.
$$(D^2 + a^2)y = \cot ax$$
,

b.
$$(D^3 - D^2 - 6D)y = x^2 + 1 + 3^x$$

c.
$$(D^4 + D^2 + 1)y = e^{-x/2} \cos\left(\frac{\sqrt{3}}{2}\right)$$
,
d. $(D^4 + 2D^2 + 1)y = x^2 \cos x$.

d.
$$(D^4 + 2D^2 + 1)y = x^2 \cos x$$
.

- 3. Consider the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 0$
 - a. Show that e^x and xe^x are two linearly independent solutions for all $x \in \mathbb{R}$.
 - b. Write the general solution of the given equation.
 - c. Find a particular solution which satisfies y(0) = 1 y'(0) = 4.
- 4. Consider $(D-m_1)(D-m_2)y=0$ such that $m_1\neq m_2$ and $m_1, m_2\in\mathbb{R}$. Then show that the general solution of the equation reads $(C_1x + C_2)e^{m_1x}$.
- 5. Find the solution of following differential equations using method of variation of parameters

1

a.
$$y'' - 3y + 2y = \frac{e^x}{1 + e^x}$$

a.
$$y'' - 3y + 2y = \frac{e^x}{1 + e^x}$$
,
b. $y'' - y = e^{-x} \sin(e^{-x}) + \cos(e^{-x})$,

c.
$$y'' + y = \frac{1}{1 + \sin x}$$
.

6. Find the complete solution of the following Euler-Cauchy equation

a.
$$x^3 \frac{d^3 y}{dx^3} - 4x^2 \frac{d^2 y}{dx^2} + 8x \frac{dy}{dx} - 8y = 4 \ln x$$
,
b. $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \ln x \sin(\ln x)$.

b.
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \ln x \sin(\ln x)$$
.

7. Solve the following system of simultaneous differential equations

a.
$$\frac{dx}{dt} + 4x + 3y = t$$
 and $\frac{dy}{dt} + 2x + 5y = e^t$,
b. $\frac{d^2x}{dt^2} + 2x - y = 0$ and $\frac{d^2y}{dt^2} - x + 2y = 0$.

8. Solve the initial value problems

$$\frac{d^2y}{dx^2} + y = \sin(x+a), \ y(0) = y'(0) = 0.$$

- 9. The positions of a particle executing simple harmonic motion at the end of 1st, 2nd and 3rd second of its motion are x_1 , x_2 and x_3 respectively. Show that the time period is $2\pi/\cos^{-1}\left(\frac{x_1+x_3}{2x_2}\right)$.
- 10. Consider the equation

$$y'' + y = 0 \tag{1}$$

- a. Verify that the boundary value problem for equation (1) with boundary conditions y(0) = 1, $y(\pi/2) = 1$ has a unique solution.
- b. Verify that the boundary value problem for equation (1) with boundary conditions y(0) = 1, $y(\pi) = 1$ has no solution.
- c. Verify that the boundary value problem for equation (1) with boundary conditions y(0) = 1, $y(2\pi) = 1$ has infinite many solutions.

 $\times \times \times$