Procella: A Fast Versatile SQL Query Engine

Presenter: Michael Lanthier

Slides adapted from Aniket Mokashi

Agenda

- Products at YouTube and Google using Procella
- Use cases
- Architecture
- Optimizations
- Evaluation
- Related Systems
- Comments/Questions

Youtube Analytics (youtube.com/analytics)

Youtube Music Insights (youtube.com/artists)

And more...

- Youtube Metrics
- Firebase Performance Console
- Google Play Console
- Youtube Internal Analytics
- ...

External Reporting/Analytics

- Use cases
 - YouTube Analytics
 - Firebase Performance
 - Monitoring
 - Google Play Console
 - Data Studio
- Properties
 - High QPS, low latency ingestion and queries
 - Hundreds of metrics across dozens of dimensions
 - SQL

Internal Reporting/Dashboards

- Use cases
 - Dashboards
 - Experiments Analysis
 - Custom reporting
- Properties
 - Low QPS
 - Speed & scale
 - o SQL

Real Time Insights/Monitoring

- Use cases
 - YTA Real Time (External)
 - YTA Insights (External)
 - YT Site Health (Internal)
- Properties
 - Native time-series support
 - High scan rate
 - Very high real time ingestion rate

Real Time Stats Serving

- Use cases
 - YouTube metrics (subscriptions, likes, etc.) on various YT pages
- Properties
 - Millions of rows ingested per second
 - Millions of queries per second
 - Milliseconds response time
 - Simple point queries
 - Many replicas

Ad-hoc Analytics

- Use cases
 - Data Science
 - Analytics
- Properties
 - Complex SQL queries
 - Multi-stage queries
 - Semi structured and complex data (eg user profiles)
 - Joins

Why build something new?

A widely used SQL query engine at Google

- Moving data between multiple systems is expensive
 - Extract, Transform, and Load processes are not cheap
 - Slower time to market when adding new systems
- Reduced usability and high learning costs
 - Different APIs
 - Different languages
- Performance and scalability issues

About Procella

A widely used SQL query engine at Google

- Fully featured: Most of SQL++: Structured, joins, set ops, analytic functions
- Super fast: Most queries are sub-second.
- Highly scalable: Petabytes of data, thousands of tables, trillions of rows, ...
- High QPS: Millions of point queries @ msec, thousands of reporting queries @ sub-second, hundreds of ad-hoc queries @ seconds
- Designed for real-time: Millions QPS instant ingestion, highly efficient, ...
- Easy to use: SQL, DDL, Virtual tables, ...

Architecture

Architecture

Google Services

- Storage using Colossus
 - Disaggregated storage
 - Immutable (Append only until finalized)
 - High cost RPCs to get data.
- Computations done on Borg
 - Supports small tasks best.
 - Machines go up and down fairly frequently so tasks must recover well.
 - Varying hardware platforms results in unpredictable performance.

Data and Metadata Storage

Data

- Organized via Tables
 - Stored in multiple files (tablets)
- Columnar format
 - Artus
 - Capacitor
- Durably stored in Colossus

Metadata

- Uses secondary structures
 - Zone maps
 - Bitmaps
 - o Bloom filters ...
- Structures collected during file registration.
- Served by the Metadata Server
- Stored in the metadata store
 - Bigtable
 - Spanner

Table Management

- Standard DDL commands
 - CREATE, ALTER, DROP
- Handled by the Registration Server
 - Information then stored in the metadata store
- User can specify table information
 - Column names, data types
 - Partitioning and sorting
 - Data ingestion method

Data Ingestion

Batch

- Takes data from offline batch processes and registers it.
- Controlled by Registration Server
 - Extracts mapping of table to files
 - Creates some secondary structures
- Data servers may lazily generate expensive secondary structures.

Realtime

- Handled by Ingestion Server
 - Supports RPC or PubSub
- Data written to both Colossus WAL and Data Servers
 - Allows for queries to access data during writing.
 - WAL is eventually compacted to disk.
- Small files are periodically aggregated and compacted into large files

Queries

- Client connects to Root Server
 - Performs query rewrites, parsing, optimization
 - Metadata Server provides table information
- Builds a tree plan
 - Query blocks as nodes
 - Data streams as edges
 - Aggregate, Execute Remotely, Stagger Execution
 - Allows for optimization with distributed queries
- Plan is executed on other Data Servers
 - Receives plan fragments
 - Reads data from Colossus, remote memory, or local memory

Optimizations

Caching

- Aggressive caching to avoid RPCs
- Colossus metadata
 - File handles are cached to avoid open calls to Colossus name server
- Columnar file headers and footers
 - o Data servers maintain a LRU cache for offset, column size...
- Columnar data and metadata
 - Expensive operations and bloom filters also are cached
 - Data holds same format in cache as in Colossus
 - Metadata servers cache information in a LRU cache
- Affinity scheduling
 - Operations on similar data goes to the same server.
 - Improves cache hit ratio

Artus File Format

Google

- Multi-pass adaptive encoding
 - Avoids generic encoding
 - Multiple passes finds an optimal encoding
- O(log n) lookups, O(1) seeks
- Novel tree like representation of table fields
 - Prunes nested and repeated values
 - Sparse values take up little space
- Exposes dictionary, RLE information to execution engine
- Allows for rich metadata and inverted indexes
 - o Encodes sorting, mins, maxs, bloom filters...
 - Allows tablets to be pruned without data being read.

Artus vs Capacitor

Figure 2: Artus vs Capacitor Performance.

Superluminal Evaluation Engine

- Uses extensive C++ templating
- Data processed in blocks
 - Blocks estimated to sit in the L1 cache
- Operates on native data encoding where possible.
- Does not use intermediate representations
- Filters are pushed down the execution plan

Superluminal Performance

Figure 3: Superluminal vs Supersonic.

Figure 4: Superluminal performance on Artus & Capacitor.

Partitioning

- Supports partitioning and clustering.
 - YouTube partitions many tables based on date.
 - Allows for tablets to be pruned easily.
- Metadata Server retrieves and stores this information.

Distributed Joins

- Broadcast
 - One side is small enough to be loaded in memory of each Data Server running the query.
- Co-partitioned
 - Data Servers only load a small subset of data to join.
- Shuffle
 - No partitioning so intermediate servers must be used.
- Pipelined
 - One side can be reduced to a smaller set and pipelined to the other.
- Remote lookup
 - Use RPCs to get data.
 - Must push down filters to ensure that the minimum amount of data is fetched.

Tail Latency

- Root server monitors Data Server response latency during query execution.
- Slow requests are re-run on backup Data Servers.
- The number of requests to Data Servers are limited.
- Requests are given priorities.
 - Data servers handle high priority requests first.

Virtual Tables

- Generate multiple aggregates of the base table.
- Index aware aggregate selection
 - o Data organization is taken into account to minimize data scans
- Supports combining batch and streaming data
- Stitched tables allow combining tables for UNION ALL queries

Query Optimizer

- Uses static and adaptive techniques
 - Rule based optimizer at query compile time
 - Adaptive techniques during execution time
- Statistics collected at execution time
 - Expensive to do before query occurs
 - Can be done during the shuffle step
- Adaptive techniques require overhead
 - Small queries double in time
 - Reserved for large queries

Data Ingestion

- Properly data formatting is extremely important.
 - Partitioned, clustered, sorted...
- Offline data generation tool provided
 - Artus files can be generated via MapReduce
 - Avoids expensive formatting operations

Embedded Statistics

- Serving statistics is an important use case for YouTube
 - Must hande high QPS with low latency.
 - Procella adds a statistics serving mode.
- Registered data is loaded into memory immediately.
- Metadata module is loaded onto Root Server
 - Reduces RPCs to Metadata Server
- Asynchronous updating of metadata
 - Avoid remote access to metadata at query time.
- Query plans are aggressively cached.
- Adaptive joins and shuffles are disabled.

Evaluation

Procella Scale

Property	Value	
Queries executed	450+ million per day	
Queries on real-time data	200+ million per day	
Leaf plans executed	90+ billion per day	
Rows scanned	20+ quadrillion per day	
Rows returned	100+ billion per day	
Peak scan rate per query	100+ billion rows per second	
Schema size	200+ metrics and dimensions	
Tables	100+	

Procella Latencies

Property	p50	p99	p99.9
E2E Latency	25 ms	450 ms	3000 ms
Rows Scanned	17 M	270 M	1000 M
MDS Latency	6 ms	120 ms	250 ms
DS Latency	1 ms	75 ms	220 ms
Query Size	300B	4.7KB	10KB

Metadata Server Latencies

Percentile	Latency (ms)	Tablets Pruned	Tablets Scanned
p50	6	110,000	60
p90	11	900,000	250
p95	15	1,000,000	310
p99	120	33,000,000	4000
p99.9	250	38,000,000	7200
p99.99	5100	38,050,000	11,500

TPC-H queries

Figure 6: TPC-H Scalability - 1T Expected Execution Time vs. 10T Execution Times.

Figure 7: TPC-H 10T Per Query Throughput Execution times.

Run of TPC-H queries on:

- Static artus data
- Large shared instance
- Manually optimized queries
- 3000 core, 20 TB RAM

Google

Related Systems

- Dremel
 - Exa-scale SQL Query Engine
 - Uses RPCs, SQL Parser, Colossus and Borg
 - Differences
 - Stateless caching
 - Non indexable file format (Capacitor)
 - Can specify when a query is "good enough"
- F1
 - Supports OLTP, ad-hoc
 - Uses Spanner as underlying storage.
 - Globally distributed and consistent

Questions/Comments

- How much extra storage is required when implementing virtual tables? Are these tables always user defined or could they be generated automatically by Procella?
- Is there a scenario where real time data will be evicted from the Data Servers buffers before it is compacted from the Colossus WAL?
- Should they have brought up network speed more?