Introducción a Electrotecnia UNCuyo 2019 Unidad 3

Profesor Adjunto: Ing Marcos Saromé

Sistemas monofásicos

Sistema Polifásico

• Sistemas en que las fuentes operan en la misma frecuencia pero en fases diferentes.

Importancia de los Sistemas Trifásicos

- Casi toda la potencia se genera y distribuye en forma trifásica.
- La potencia instantánea en un sistema trifásico puede ser constante (no pulsante).
- La cantidad de alambre conductor para un sistema trifásico es menor que la requerida para un sistema monofásico equivalente.

Tensiones Trifásicas

Tensiones Balanceadas

 Las tensiones de fase estan balanceadas si son de igual magnitud y estan desfasadas 120° entre sí

$$\mathbf{V}_{an} + \mathbf{V}_{bn} + \mathbf{V}_{cn} = 0$$

$$|\mathbf{V}_{an}| = |\mathbf{V}_{bn}| = |\mathbf{V}_{cn}|$$

Secuencia Directa e Inversa

Es el orden en el que las tensiones pasan por su respectivo máximo o mínimo.

Secuencia Directa o positiva

Secuencia Inversa o negativa

Carga Balanceada

 Es aquella en que las impedancias de fase son iguales en magnitud y en fase.

$$\mathbf{Z}_{\Delta} = 3\mathbf{Z}_{Y}$$
 o $\mathbf{Z}_{Y} = \frac{1}{3}\mathbf{Z}_{\Delta}$

Ejemplo 1

 Determine la secuencia de fases del conjunto de tensiones

$$v_{an} = 200 \cos(\omega t + 10^{\circ})$$

$$v_{bn} = 200 \cos(\omega t + 230^{\circ})$$

$$v_{cn} = 200 \cos(\omega t - 110^{\circ})$$

Ejemplo 2

 Encuentre transforme una carga en estrella cuya impedancia es (20 Ω; 20°) en su equivalente en triángulo

Conexión estrella-estrella balanceada

 Un sistema Y-Y balanceado es un sistema trifásico con fuente balanceada conectada en Y y carga balanceada conectada en Y.

Análisis Por Fase

 Otra forma de analizar un sistema Y-Y balanceado es hacerlo "por fase". Se examina una fase, la fase a por ejemplo, y se analiza el circuito monofásico equivalente

Conexión Estrella-Delta Balanceada

Sistemas Trifásicos Desbalanceados

 Un sistema desbalanceado se debe a fuentes de tensión desbalanceadas o a una carga desbalanceada.

Método de las componentes simétricas

 Se utiliza para simplificar el análisis de los sistemas de energía trifásicos no balanceados, pues permite escribir de forma general un sistema polifásico desbalanceado (con n fases) como la suma de n sistemas simétricos aplicando el principio de superposición. Siempre y cuando las corrientes y tensiones del sistema se relacionen con impedancias lineales de otro modo el principio de superposición no es aplicable.

Teorema de Fortescue

• Establece que si se tiene un sistema trifásico cualquiera donde sus componentes simples sean I_a, I_b, I_c el sistema se puede representar de la siguiente manera

$$I_{a} = I_{a}^{0} + I_{a}^{d} + I_{a}^{i}$$

$$I_{b} = I_{b}^{0} + I_{b}^{d} + I_{b}^{i}$$

$$I_{c} = I_{c}^{0} + I_{c}^{d} + I_{c}^{i}$$

- Donde I_a⁰, I_b⁰, I_c⁰ constituyen un sistema en el cual
- $I_a^0 = I_b^0 = I_c^0$ iguales en magnitud y fase.
- $I_b = I_b^0 + I_b^d + I_b^i$ I_a^d , I_b^d , I_c^d constituyen un sistema de secuencia positiva
- $I_c = I_c^0 + I_c^d + I_c^i$ I_a^i, I_b^i, I_c^i constituyen un sistema de secuencia negativa

https://www.geogebra.org/classic/dprxz2dg

- Sistema de secuencia e directa
- Sistema de secuencia "1"
- Sistema de secuencia o positiva
- Sistema de secuencia inversa
- Sistema de secuencia "2"
- Sistema de secuencia
 negativa
- Sistema de secuencia homopolar
- Sistema de secuencia "0"
- Sistema de secuencia nula

Tensiónes Trifásicas

- Tensión de Fase
- Tensión de Línea
- Tensiones Balanceadas
- Secuencia de Fase: Secuencia directa y secuencia inversa.

Bibliografía

- Fundamentos de Circuitos Eléctricos 5Ed-Charles K Alexander y otros, capítulo 12
- Wikipedia, Teorema de Fortescue