A244

(19) World Intellectual Property Organization International Bureau

OMP)

| 1881 | 1880 | 1880 | 1881 | 1880 | 1880 | 1880 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881

(43) International Publication Date 24 March 2005 (24.03.2005)

PCT

(10) International Publication Number WO 2005/026370 A2

(51) International Patent Classification7:

C12N 15/86

(21) International Application Number:

PCT/US2004/028751

(22) International Filing Date:

3 September 2004 (03.09.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/500,572 60/504,007 5 September 2003 (05.09.2003) US 18 September 2003 (18.09.2003) US

(71) Applicants (for all designated States except US): AVENTIS PASTEUR LIMTED [CA/CA]; 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4 (CA). THERION BIOLOGICS, INC. [US/US]; 76 Rodgers Street, Cambridge, MA 02142-1119 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BERINSTEIN, Neil [CA/CA]; Aventis Pasteur Limited, 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4 (CA). TARTAGLIA, Jim [CA/CA]; Aventis Pasteur Limited, 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4 (CA). PARRINGTON, Mark [CA/CA]; Aventis Pasteur Limited, 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4 (CA). PANICALI, Dennis [US/US]; 76 Rogers Street, Cambridge, MA 02142-1119 (US). GRITZ, Linda [US/US]; 76 Rogers Street, Cambridge, MA 02142-1119 (US).
- (74) Agent: HALLORAN, Patrick, J.; Aventis Pasteur, Discovery Drive, Swiftwater, PA 18370 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

[Continued on next page]

(54) Title: MULTI-ANTIGEN VECTORS FOR MELANOMA

(57) Abstract: The present invention relates to peptides, polypeptides, and nucleic acids and the use of the peptide, polypeptide or nucleic acid in preventing and / or treating cancer. In particular, the invention relates to peptides and nucleic acid sequences encoding such peptides for use in diagnosing, treating, or preventing melanoma.

WO 2005/026370 A2

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

PCT/US2004/028751 WO 2005/026370

Multi-Antigen Vectors for Melanoma

FIELD OF THE INVENTION

The present invention relates to multi-antigen vectors for use in preventing and / or treating cancer. In particular, the invention relates to multi-antigen vectors for use in treating and/or preventing melanoma.

BACKGROUND OF THE INVENTION

There has been tremendous increase in last few years in the development of cancer vaccines with tumour-associated antigens (TAAs) due to the great advances in identification of molecules based on the expression profiling on primary tumours and normal cells with the help of several techniques such as high density microarray, SEREX, immunohistochemistry (IHC), RT-PCR, in-situ hybridization (ISH) and laser capture microscopy (Rosenberg, Immunity, 1999; Sgroi et al, 1999, Schena et al, 1995, Offringa et al, 2000). The TAAs are antigens expressed or over-expressed by tumour cells and could be specific to one or several tumours for example CEA antigen is expressed in colorectal, breast and lung cancers. Sgroi et al (1999) identified several genes differentially expressed in invasive and metastatic carcinoma cells with combined use of laser capture microdissection and cDNA microarrays. Several delivery systems like DNA or viruses could be used for therapeutic vaccination against human cancers (Bonnet et al, 2000) and 20 can elicit immune responses and also break immune tolerance against TAAs. Tumour cells can be rendered more immunogenic by inserting transgenes encoding T cell co-stimulatory molecules such as B7.1 or cytokines such as IFN-y, IL2, or GM-CSF, among others. Coexpression of a TAA and a cytokine or a co-stimulatory molecule can develop effective therapeutic vaccine (Hodge et al, 95, Bronte et al, 1995, Chamberlain et al, 1996).

There is a need in the art for reagents and methodologies useful in stimulating an immune response to prevent or treat cancers. The present invention provides such reagents and methodologies that overcome many of the difficulties encountered by others in attempting to treat cancer.

25

5

10

15

PCT/US2004/028751 WO 2005/026370

SUMMARY OF THE INVENTION

The present invention provides multi-antigen vectors for administration to a patient to prevent and / or treat cancer. In particular, the multi-antigen vector encodes one or more tumor antigens ("TA"). The multi-antigen vector may also encode an immune stimulator such as a costimulatory molecule and/or be administered with an adjuvant.

BRIEF DESCRIPTION OF THE DRAWINGS

- Figure 1. Schematic of plasmids pALVAC.Tricom(#33) and pT1132.
- Figure 2. DNA sequence of plasmid pALVAC.Tricom(#33).
- Figure 3. DNA sequence of plasmid pT1132. 10

5

15

20

25

- Figure 4. Schematic of plasmid pT3217.
- Figure 5. DNA sequence of plasmid pT3217.
- Figure 6. Amino acid sequences of exemplary NY-ESO-1, TRP-2, gp100, gp100M, MART-1, MAGE-1, MAGE-3, B7.1, LFA-3, and ICAM-1 proteins.

DETAILED DESCRIPTION

The present invention provides reagents and methodologies useful for treating and / or preventing cancer. All references cited within this application are incorporated by reference.

In one embodiment, the present invention relates to the induction or enhancement of an immune response against one or more tumor antigens ("TA") to prevent and / or treat cancer. In certain embodiments, one or more TAs may be combined. In preferred embodiments, the immune response results from expression of a TA in a host cell following administration of a nucleic acid vector encoding the tumor antigen or the tumor antigen itself in the form of a peptide or polypeptide, for example.

As used herein, an "antigen" is a molecule (such as a polypeptide) or a portion thereof that produces an immune response in a host to whom the antigen has been administered. The immune response may include the production of antibodies that bind to at least one epitope of the antigen and / or the generation of a cellular immune response against cells expressing an epitope of the antigen. The response may be an enhancement of a current immune response by, for example, causing increased antibody production, production of antibodies with increased affinity for the antigen, or an increase in the cellular immune response (i.e., increased number or activity

of immunoreactive T cells). An antigen that produces an immune response may alternatively be referred to as being immunogenic or as an immunogen. In describing the present invention, a TA may be referred to as an "immunogenic target". The present invention provide expression vectors for expressing in a host one or more immunogenic targets.

The term TA includes both tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs), where a cancerous cell is the source of the antigen. A TAA is an antigen that is expressed on the surface of a tumor cell in higher amounts than is observed on normal cells or an antigen that is expressed on normal cells during fetal development. A TSA is an antigen that is unique to tumor cells and is not expressed on normal cells. TA further includes TAAs or TSAs, antigenic fragments thereof, and modified versions that retain their antigenicity.

5

15

TAs are typically classified into five categories according to their expression pattern, function, or genetic origin: cancer-testis (CT) antigens (i.e., MAGE, NY-ESO-1); melanocyte differentiation antigens (i.e., Melan A/MART-1, tyrosinase, gp100); mutational antigens (i.e., MUM-1, p53, CDK-4); overexpressed 'self' antigens (i.e., HER-2/neu, p53); and, viral antigens (i.e., HPV, EBV). For the purposes of practicing the present invention, a suitable TA is any TA that induces or enhances an anti-tumor immune response in a host to whom the TA has been administered. Suitable TAs include, for example, species of gp100 (Cox et al., Science, 264:716-719 (1994); U.S. Pat. No. 6,500,919 B1 and WO 01/30847 with Val at residue 162, also referred to as "gp100M"; U.S. Pat. No. 6,537,560 B1 with Phe at residue 162), MART-1/Melan A (Kawakami et al., J. Exp. Med., 180:347-352 (1994); U.S. Pat. No. 5,874,560), gp75 (TRP-1) (Wang et al., J. Exp. Med., 186:1131-1140 (1996)), TRP-2 (Wang et al. 1996 J. Exp. Med. 184:2207; U.S. Pat. Nos. 5,831,016 and 6,083,783), tyrosinase (Wolfel et al., Eur. J. Immunol., 24:759-764 (1994); WO 200175117; WO 200175016; WO 200175007), NY-ESO-1 (WO 98/14464; WO 99/18206; GenBank Accession No. P78358; U.S. Pat. No. 5,804,381), melanoma proteoglycan (Hellstrom et al., J. Immunol., 130:1467-1472 (1983)), MAGE family antigens (i.e., MAGE-1, 2,3,4,6,12, 51; Van der Bruggen et al., Science, 254:1643-1647 (1991); U.S. Pat. Nos. 6,235,525; CN 1319611), BAGE family antigens (Boel et al., Immunity, 2:167-175 (1995)), GAGE family antigens (i.e., GAGE-1,2; Van den Eynde et al., J. Exp. Med., 182:689-698 (1995); U.S. Pat. No. 6,013,765), RAGE family antigens (i.e., RAGE-1; Gaugler et at., Immunogenetics, 44:323-330 (1996); U.S. Pat. No. 5,939,526), N-acetylglucosaminyltransferase-V (Guilloux et at., J. Exp. Med., 183:1173-1183 (1996)), p15 (Robbins et al., J. Immunol.

154:5944-5950 (1995)), B-catenin (Robbins et al., J. Exp. Med., 183:1185-1192 (1996)), MUM-1 (Coulie et al., Proc. Natl. Acad. Sci. USA, 92:7976-7980 (1995)), cyclin dependent kinase-4 (CDK4) (Wolfel et al., Science, 269:1281-1284 (1995)), p21-ras (Fossum et at., Int. J. Cancer, 56:40-45 (1994)), BCR-abl (Bocchia et al., Blood, 85:2680-2684 (1995)), p53 (Theobald et al., Proc. Natl. Acad. Sci. USA, 92:11993-11997 (1995)), p185 HER2/neu (erb-B1; Fisk et al., J. Exp. Med., 181:2109-2117 (1995)), epidermal growth factor receptor (EGFR) (Harris et al., Breast Cancer Res. Treat, 29:1-2 (1994)), carcinoembryonic antigens (CEA) (Kwong et al., J. Natl. Cancer Inst., 85:982-990 (1995) U.S. Pat. Nos. 5,756,103; 5,274,087; 5,571,710; 6,071,716; 5,698,530; 6,045,802; EP 263933; EP 346710; and, EP 784483); carcinomaassociated mutated mucins (i.e., MUC-1 gene products; Jerome et al., J. Immunol., 151:1654-1662 (1993)); EBNA gene products of EBV (i.e., EBNA-1; Rickinson et al., Cancer Surveys, 13:53-80 (1992)); E7, E6 proteins of human papillomavirus (Ressing et al., J. Immunol, 154:5934-5943 (1995)); prostate specific antigen (PSA; Xue et al., The Prostate, 30:73-78 (1997)); prostate specific membrane antigen (PSMA; Israeli, et al., Cancer Res., 54:1807-1811 (1994)); idiotypic epitopes or antigens, for example, immunoglobulin idiotypes or T cell receptor idiotypes (Chen et al., J. Immunol., 153:4775-4787 (1994)); KSA (U.S. Patent No. 5,348,887), kinesin 2 (Dietz, et al. Biochem Biophys Res Commun 2000 Sep 7;275(3):731-8), HIP-55, TGFβ-1 anti-apoptotic factor (Toomey, et al. Br J Biomed Sci 2001;58(3):177-83), tumor protein D52 (Bryne J.A., et al., Genomics, 35:523-532 (1996)), H1FT, NY-BR-1 (WO 01/47959), NY-BR-62, NY-BR-75, NY-BR-85, NY-BR-87, NY-BR-96 (Scanlan, M. Serologic and Bioinformatic Approaches to the Identification of Human Tumor Antigens, in Cancer Vaccines 2000, Cancer Research Institute, New York, NY), including "wild-type" (i.e., normally encoded by the genome, naturally-occurring), modified, and mutated versions as well as other fragments and derivatives thereof. Any of these TAs may be utilized alone or in combination with one another in a co-immunization protocol.

15

. 20

25

30

Preferred TAs are useful for inducing an immune response against melanoma cells. The term "melanoma" includes but is not limited to melanomas, metastatic melanomas, melanomas derived from either melanocytes or melanocyte related nevus cells, melanocarcinomas, melanoepitheliomas, melanosarcomas, melanoma in situ, superficial spreading melanoma, nodular melanoma, lentigo maligna melanoma, acral lentiginous melanoma, invasive melanoma and familial atypical mole and melanoma (FAM-M) syndrome, for example. In general,

melanomas result from chromosomal abnormalities, degenerative growth and development disorders, mitogenic agents, ultraviolet radiation (UV), viral infections, inappropriate tissue expression of a gene, alterations in expression of a gene or carcinogenic agents, for example.

5

10

15

25

In certain cases, it may be beneficial to co-immunize patients with both TA and other antigens, such as angiogenesis-associated antigens ("AA"). An AA is an immunogenic molecule (i.e., peptide, polypeptide) associated with cells involved in the induction and / or continued development of blood vessels. For example, an AA may be expressed on an endothelial cell ("EC"), which is a primary structural component of blood vessels. Where the cancer is cancer, it is preferred that that the AA be found within or near blood vessels that supply a tumor. Immunization of a patient against an AA preferably results in an anti-AA immune response whereby angiogenic processes that occur near or within tumors are prevented and / or inhibited. Exemplary AAs include, for example, vascular endothelial growth factor (i.e., VEGF; Bernardini, et al. J. Urol., 2001, 166(4): 1275-9; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23; Dias, et al. Blood, 2002, 99: 2179-2184), the VEGF receptor (i.e., VEGF-R, flk-1/KDR; Starnes, et al. J. Thorac. Cardiovasc. Surg., 2001, 122(3): 518-23), EPH receptors (i.e., EPHA2; Gerety, et al. 1999, Cell, 4: 403-414), epidermal growth factor receptor (i.e., EGFR; Ciardeillo, et al. Clin. Cancer Res., 2001, 7(10): 2958-70), basic fibroblast growth factor (i.e., bFGF; Davidson, et al. Clin. Exp. Metastasis 2000,18(6): 501-7; Poon, et al. Am J. Surg., 2001, 182(3):298-304), platelet-derived cell growth factor (i.e., PDGF-B), platelet-derived endothelial cell growth factor (PD-ECGF; Hong, et al. J. Mol. Med., 2001, 8(2):141-8), transforming growth factors (i.e., TGF-a; Hong, et al. J. Mol. Med., 2001, 8(2):141-8), endoglin (Balza, et al. Int. J. Cancer, 2001, 94: 579-585), Id proteins (Benezra, R. Trends Cardiovasc. Med., 2001, 11(6):237-41), proteases such as uPA, uPAR, and matrix metalloproteinases (MMP-2, MMP-9; Djonov, et al. J. Pathol., 2001, 195(2):147-55), nitric oxide synthase (Am. J. Ophthalmol., 2001, 132(4):551-6), aminopeptidase (Rouslhati, E. Nature Cancer, 2: 84-90, 2002), thrombospondins (i.e., TSP-1, TSP-2; Alvarez, et al. Gynecol. Oncol., 2001, 82(2):273-8; Seki, et al. Int. J. Oncol., 2001, 19(2):305-10), k-ras (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), Wnt (Zhang, et al. Cancer Res., 2001, 61(16):6050-4), cyclin-dependent kinases (CDKs; Drug Resist. Updat. 2000, 3(2):83-88), microtubules (Timar, et al. 2001. Path. Oncol. Res., 7(2): 85-94), heat shock proteins (i.e., HSP90 (Timar, supra)), heparin-binding factors (i.e., heparinase; Gohji, et al. Int. J. Cancer, 2001, 95(5):295-301), synthases (i.e., ATP synthase,

thymidilate synthase), collagen receptors, integrins (i.e., $\alpha \nu \beta 3$, $\alpha \nu \beta 5$, $\alpha 1\beta 1$, $\alpha 2\beta 1$, $\alpha 5\beta 1$), the surface proteolglycan NG2, AAC2-1, or AAC2-2, among others, including "wild-type" (i.e., normally encoded by the genome, naturally-occurring), modified, mutated versions as well as other fragments and derivatives thereof. Any of these targets may be suitable in practicing the present invention, either alone or in combination with one another or with other agents.

5

10

15

.20

The nucleic acid molecule may comprise or consist of a nucleotide sequence encoding one or more immunogenic targets, or fragments or derivatives thereof, such as that contained in a DNA insert in an ATCC Deposit. The term "nucleic acid sequence" or "nucleic acid molecule" refers to a DNA or RNA sequence. The term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetylcytosine, 8-hydroxy-N6-methyladenosine, aziridinyl-cytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxy-5-carboxymethylaminomethyl-2-thiouracil, 5-bromouracil, 5-fluorouracil, methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5' methoxycarbonyl-methyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2.6-diaminopurine, among others.

An isolated nucleic acid molecule is one that: (1) is separated from at least about 50 percent of proteins, lipids, carbohydrates, or other materials with which it is naturally found when total nucleic acid is isolated from the source cells; (2) is not be linked to all or a portion of a polynucleotide to which the nucleic acid molecule is linked in nature; (3) is operably linked to a polynucleotide which it is not linked to in nature; and / or, (4) does not occur in nature as part of a larger polynucleotide sequence. Preferably, the isolated nucleic acid molecule of the present invention is substantially free from any other contaminating nucleic acid molecule(s) or other contaminants that are found in its natural environment that would interfere with its use in 30 polypeptide production or its therapeutic, diagnostic, prophylactic or research use. As used herein, the term "naturally occurring" or "nature" or "naturally found" when used in connection

with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to materials which are found in nature and are not manipulated by man. Similarly, "non-naturally occurring" or "non-native" as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.

5

10

15

30

The identity of two or more nucleic acid or amino acid sequences is determined by comparing the sequences. As known in the art, "identity" means the degree of sequence relatedness between nucleic acid or amino acid sequences as determined by the match between the units making up the molecules (i.e., nucleotides or amino acid residues). Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., an algorithm). Identity between nucleic acid sequences may also be determined by the ability of the nucleic acid sequences to hybridize to one another. In defining the process of hybridization, the term "highly stringent conditions" and "moderately stringent conditions" refer to conditions that permit hybridization of nucleic acid strands whose sequences are complementary, and to exclude hybridization of significantly mismatched nucleic acids. Examples of "highly stringent conditions" for hybridization and washing are 0.015 M sodium chloride, 0.0015 M sodium citrate at 65-68°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 50% formamide at 42°C. (see, for example, Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory, 1989); Anderson et al., Nucleic Acid Hybridisation: A Practical Approach Ch. 4 (IRL Press Limited)). The term "moderately stringent conditions" refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under "highly stringent conditions" is able to form. Exemplary moderately stringent conditions are 0.015 M sodium chloride, 0.0015 M sodium citrate at 50-65°C or 0.015 M sodium chloride, 0.0015 M sodium citrate, and 20% formamide at 37-50°C. By way of example, moderately stringent conditions of 50°C in 0.015 M sodium ion will allow about a 21% mismatch. During hybridization, other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate, NaDodSO₄, (SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or another non-complementary DNA), and dextran sulfate, although other suitable agents can also be used. The concentration and types of these

additives can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4; however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH.

5

10

.15

25

In preferred embodiments of the present invention, vectors are used to transfer a nucleic acid sequence encoding an immunogenic target to a cell. A vector is any molecule used to transfer a nucleic acid sequence to a host cell. In certain cases, an expression vector is utilized. An expression vector is a nucleic acid molecule that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and / or control the expression of the transferred nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and splicing, if introns are present. Expression vectors typically comprise one or more flanking sequences operably linked to a heterologous nucleic acid sequence encoding a polypeptide. Flanking sequences may be homologous (i.e., from the same species and / or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), or synthetic, for example.

A flanking sequence is preferably capable of effecting the replication, transcription and / or translation of the coding sequence and is operably linked to a coding sequence. As used herein, the term operably linked refers to a linkage of polynucleotide elements in a functional relationship. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence. However, a flanking sequence need not necessarily be contiguous with the coding sequence, so long as it functions correctly. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence may still be considered operably linked to the coding sequence. Similarly, an enhancer sequence may be located upstream or downstream from the coding sequence and affect transcription of the sequence.

In certain embodiments, it is preferred that the flanking sequence is a transcriptional regulatory region that drives high-level gene expression in the target cell. The transcriptional regulatory region may comprise, for example, a promoter, enhancer, silencer, repressor element, or combinations thereof. The transcriptional regulatory region may be either constitutive, tissue-specific, cell-type specific (i.e., the region is drives higher levels of transcription in a one type of tissue or cell as compared to another), or regulatable (i.e., responsive to interaction with a

R

compound such as tetracycline). The source of a transcriptional regulatory region may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence functions in a cell by causing transcription of a nucleic acid within that cell. A wide variety of transcriptional regulatory regions may be utilized in practicing the present invention.

5

10

20

30

Suitable transcriptional regulatory regions include the CMV promoter (i.e., the CMVimmediate early promoter); promoters from eukaryotic genes (i.e., the estrogen-inducible chicken ovalbumin gene, the interferon genes, the gluco-corticoid-inducible tyrosine aminotransferase gene, and the thymidine kinase gene); and the major early and late adenovirus gene promoters; the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290:304-10); the promoter contained in the 3' long terminal repeat (LTR) of Rous sarcoma virus (RSV) (Yamamoto, et al., 1980, Cell 22:787-97); the herpes simplex virus thymidine kinase (HSV-TK) promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1444-45); the regulatory sequences of the metallothionine gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the beta-lactamase promoter (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. U.S.A., 75:3727-31); or the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. U.S.A., 80:21-25). Tissue- and / or cell-type specific transcriptional control regions include, for example, the elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-46; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409 (1986); MacDonald, 1987, Hepatology 7:425-515); the insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-22); the immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-58; Adames et al., 1985, Nature 318:533-38; Alexander et al., 1987, Mol. Cell. Biol., 7:1436-44); the mouse mammary tumor virus control region in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-95); the albumin gene control region in liver (Pinkert et al., 1987, Genes and Devel. 1:268-76); the alpha-feto-protein gene control region in liver (Krumlauf et al., 1985, Mol. Cell. Biol., 5:1639-48; Hammer et al., 1987, Science 235:53-58); the alpha 1-antitrypsin gene control region in liver (Kelsey et al., 1987, Genes and Devel. 1:161-71); the beta-globin gene control region in myeloid cells (Mogram et al., 1985, Nature 315:338-40; Kollias et al., 1986, Cell 46:89-94); the myelin basic protein gene control region in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-12); the myosin light chain-2 gene control region in

9

skeletal muscle (Sani, 1985, *Nature* 314:283-86); the gonadotropic releasing hormone gene control region in the hypothalamus (Mason *et al.*, 1986, *Science* 234:1372-78), and the tyrosinase promoter in melanoma cells (Hart, I. Semin Oncol 1996 Feb;23(1):154-8; Siders, et al. Cancer Gene Ther 1998 Sep-Oct;5(5):281-91), among others. Inducible promoters that are activated in the presence of a certain compound or condition such as light, heat, radiation, tetracycline, or heat shock proteins, for example, may also be utilized (see, for example, WO 00/10612). Other suitable promoters are known in the art.

As described above, enhancers may also be suitable flanking sequences. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are typically orientation- and position-independent, having been identified both 5' and 3' to controlled coding sequences. Several enhancer sequences available from mammalian genes are known (i.e., globin, elastase, albumin, alpha-feto-protein and insulin). Similarly, the SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are useful with eukaryotic promoter sequences. While an enhancer may be spliced into the vector at a position 5' or 3' to nucleic acid coding sequence, it is typically located at a site 5' from the promoter. Other suitable enhancers are known in the art, and would be applicable to the present invention.

10

15

20

25

30

While preparing reagents of the present invention, cells may need to be transfected or transformed. Transfection refers to the uptake of foreign or exogenous DNA by a cell, and a cell has been transfected when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art (i.e., Graham et al., 1973, Virology 52:456; Sambrook et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratories, 1989); Davis et al., Basic Methods in Molecular Biology (Elsevier, 1986); and Chu et al., 1981, Gene 13:197). Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.

In certain embodiments, it is preferred that transfection of a cell results in transformation of that cell. A cell is transformed when there is a change in a characteristic of the cell, being transformed when it has been modified to contain a new nucleic acid. Following transfection, the transfected nucleic acid may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an episomal element without being

replicated, or may replicate independently as a plasmid. A cell is stably transformed when the nucleic acid is replicated with the division of the cell.

The expression vectors of the present invention also provide for expression of fragments of immunogenic targets. Fragments may include sequences truncated at the amino terminus (with or without a leader sequence) and / or the carboxy terminus. Fragments may also include variants (i.e., allelic, splice), orthologs, homologues, and other variants having one or more amino acid additions or substitutions or internal deletions as compared to the parental sequence. In preferred embodiments, truncations and/or deletions comprise about 1-5 amino acids, 5-10 amino acids, 10-20 amino acids, 20-30 amino acids, 30-40 amino acids, 40-50 amino acids, or more. Such polypeptide fragments may optionally comprise an amino terminal methionine residue. It will be appreciated that such fragments can be used, for example, to generate antibodies or cellular immune responses to immunogenic targets.

5

10

.15

. 20

25

30

A variant is a sequence having one or more sequence substitutions, deletions, and/or additions as compared to the subject sequence. Variants may be naturally occurring or artificially constructed. Such variants may be prepared from the corresponding nucleic acid molecules. In preferred embodiments, the variants have from 1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 30, or from 1 to 40, or from 1 to 50, or more than 50 amino acid substitutions, insertions, additions and/or deletions.

An allelic variant is one of several possible naturally-occurring alternate forms of a sequence occupying a given locus on a chromosome of an organism or a population of organisms. A splice variant is a polypeptide generated from one of several RNA transcript resulting from splicing of a primary transcript. An ortholog is a similar nucleic acid or polypeptide sequence from another species. For example, the mouse and human versions of an immunogenic target may be considered orthologs of each other. A derivative of a sequence is one that is derived from a parental sequence those sequences having substitutions, additions, deletions, or chemically modified variants. Variants may also include fusion proteins, which refers to the fusion of one or more first sequences (such as a peptide) at the amino or carboxy terminus of at least one other sequence (such as a heterologous peptide).

"Similarity" is a concept related to identity, except that similarity refers to a measure of relatedness which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all

non-conservative substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are five more positions where there are conservative substitutions, then the percent identity remains 50%, but the percent similarity would be 75% (15/20). Therefore, in cases where there are conservative substitutions, the percent similarity between two polypeptides will be higher than the percent identity between those two polypeptides.

Substitutions may be conservative, or non-conservative, or any combination thereof. Conservative amino acid modifications to the sequence of a polypeptide (and the corresponding modifications to the encoding nucleotides) may produce polypeptides having functional and chemical characteristics similar to those of a parental polypeptide. For example, a "conservative amino acid substitution" may involve a substitution of a native amino acid residue with a non-native residue such that there is little or no effect on the size, polarity, charge, hydrophobicity, or hydrophilicity of the amino acid residue at that position and, in particlar, does not result in decreased immunogenicity. Suitable conservative amino acid substitutions are shown in Table I.

10

15

Table I

Exemplary Substitutions	Preferred
	Substitutions
Val, Leu, Ile	Val
Lys, Gln, Asn	Lys
Gln	Gln
Glu	Glu
Ser, Ala	Ser
Asn	Asn
Asp	Asp
Pro, Ala	Ala
Asn, Gln, Lys, Arg	Arg
Leu, Val, Met, Ala, Phe, Norleucine	Leu
Norleucine, Ile, Val, Met, Ala, Phe	Ile
Arg, 1,4 Diamino-butyric Acid, Gln, Asn	Arg
Leu, Phe, Ile	Leu
Leu, Val, Ile, Ala, Tyr	Leu
Ala	Gly
Thr, Ala, Cys	Thr
Ser	Ser
Tyr, Phe	Tyr
Trp, Phe, Thr, Ser	Phe
Ile, Met, Leu, Phe, Ala, Norleucine	Leu
	Lys, Gln, Asn Gln Glu Ser, Ala Asn Asp Pro, Ala Asn, Gln, Lys, Arg Leu, Val, Met, Ala, Phe, Norleucine Norleucine, Ile, Val, Met, Ala, Phe Arg, 1,4 Diamino-butyric Acid, Gln, Asn Leu, Phe, Ile Leu, Val, Ile, Ala, Tyr Ala Thr, Ala, Cys Ser Tyr, Phe Trp, Phe, Thr, Ser

A skilled artisan will be able to determine suitable variants of an immunogenic target using well-known techniques. For identifying suitable areas of the molecule that may be changed without destroying biological activity (i.e., MHC binding, immunogenicity), one skilled in the art may target areas not believed to be important for that activity. For example, when immunogenic targets with similar activities from the same species or from other species are known, one skilled in the art may compare the amino acid sequence of a polypeptide to such similar polypeptides. By performing such analyses, one can identify residues and portions of the molecules that are conserved. It will be appreciated that changes in areas of the molecule that are not conserved relative to such similar immunogenic targets would be less likely to adversely affect the biological activity and/or structure of a polypeptide. Similarly, the residues required for binding to MHC are known, and may be modified to improve binding. However, modifications resulting in decreased binding to MHC will not be appropriate in most situations. One skilled in the art would also know that, even in relatively conserved regions, one may substitute chemically similar amino acids for the naturally occurring residues while retaining activity. Therefore, even areas that may be important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the structure of the immunogenic target.

Other preferred polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites have been altered compared to the subject amino acid sequence. In one embodiment, polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the subject amino acid sequence. An N-linked glycosylation site is characterized by the sequence Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created. To affect O-linked glycosylation of a polypeptide, one would modify serine and / or threonine residues.

30

Additional preferred variants include cysteine variants, wherein one or more cysteine residues are deleted or substituted with another amino acid (e.g., serine) as compared to the subject amino acid sequence set. Cysteine variants are useful when peptides or polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.

5

10

15

20

30

In other embodiments, the peptides or polypeptides may be attached to one or more fusion segments that assist in purification of the polypeptides. Fusions can be made either at the amino terminus or at the carboxy terminus of the subject polypeptide variant thereof. Fusions may be direct with no linker or adapter molecule or may be through a linker or adapter molecule. A linker or adapter molecule may be one or more amino acid residues, typically from about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties. It will be appreciated that once constructed, the fusion polypeptides can be derivatized according to the methods described herein. Suitable fusion segments include, among others, metal binding domains (e.g., a poly-histidine segment), immunoglobulin binding domains (i.e., Protein A, Protein G, T cell, B cell, Fc receptor, or complement protein antibody-binding domains), sugar binding domains (e.g., a maltose binding domain), and/or a "tag" domain (i.e., at least a portion of α-galactosidase, a strep tag peptide, a T7 tag peptide, a FLAG peptide, or other domains that can be purified using compounds that bind to the domain, such as monoclonal antibodies). This tag is typically fused to the peptide or polypeptide and upon expression may serve as a means for affinity purification of the sequence of interest polypeptide from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified sequence of interest polypeptide by various means such as using certain peptidases for cleavage. As described below, fusions may also be made between a TA and a costimulatory components such as the chemokines CXC10 (IP-10), CCL7 (MCP-3), or CCL5 (RANTES), for example.

A fusion motif may enhance transport of an immunogenic target to an MHC processing compartment, such as the endoplasmic reticulum. These sequences, referred to as tranduction or

PCT/US2004/028751 WO 2005/026370

transcytosis sequences, include sequences derived from HIV tat (see Kim et al. 1997 J. Immunol. 159:1666), Drosophila antennapedia (see Schutze-Redelmeier et al. 1996 J. Immunol. 157:650), or human period-1 protein (hPER1; in particular, SRRHHCRSKAKRSRHH).

In addition, the polypeptide or variant thereof may be fused to a homologous peptide or polypeptide to form a homodimer or to a heterologous peptide or polypeptide to form a heterodimer. Heterologous peptides and polypeptides include, but are not limited to an epitope to allow for the detection and/or isolation of a fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain or a transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; a peptide or polypeptide which has a therapeutic activity different from the peptide or polypeptide; and/or variants thereof.

15

In certain embodiments, it may be advantageous to combine a nucleic acid sequence encoding an immunogenic target with one or more co-stimulatory component(s) such as cell surface proteins, cytokines or chemokines in a composition of the present invention. The costimulatory component may be included in the composition as a polypeptide or as a nucleic acid encoding the polypeptide, for example. Suitable co-stimulatory molecules include, for instance, polypeptides that bind members of the CD28 family (i.e., CD28, ICOS; Hutloff, et al. Nature 1999, 397: 263-265; Peach, et al. J Exp Med 1994, 180: 2049-2058) such as the CD28 binding polypeptides B7.1 (CD80; Schwartz, 1992; Chen et al, 1992; Ellis, et al. J. Immunol., 156(8): 2700-9), B7.2 (CD86; Ellis, et al. J. Immunol., 156(8): 2700-9), and mutants / variants thereof (WO 00/66162); polypeptides which bind members of the integrin family (i.e., LFA-1 (CD11a / CD18); Sedwick, et al. J Immunol 1999, 162: 1367-1375; Wülfing, et al. Science 1998, 282: 2266-2269; Lub, et al. Immunol Today 1995, 16: 479-483) including members of the ICAM family (i.e., ICAM-1, -2 or -3); polypeptides which bind CD2 family members (i.e., CD2, signalling lymphocyte activation molecule (CDw150 or "SLAM"; Aversa, et al. J Immunol 1997, 158: 4036-4044)) such as CD58 (LFA-3; CD2 ligand; Davis, et al. Immunol Today 1996, 17: 177-187) or SLAM ligands (Sayos, et al. Nature 1998, 395: 462-469); 30 polypeptides which bind heat stable antigen (HSA or CD24; Zhou, et al. Eur J Immunol 1997, 27: 2524-2528); polypeptides which bind to members of the TNF receptor (TNFR) family (i.e.,

4-1BB (CD137; Vinay, et al. Semin Immunol 1998, 10: 481–489), OX40 (CD134; Weinberg, et al. Semin Immunol 1998, 10: 471–480; Higgins, et al. J Immunol 1999, 162: 486–493), and CD27 (Lens, et al. Semin Immunol 1998, 10: 491–499)) such as 4-1BBL (4-1BB ligand; Vinay, et al. Semin Immunol 1998, 10: 481–48; DeBenedette, et al. J Immunol 1997, 158: 551–559), TNFR associated factor-1 (TRAF-1; 4-1BB ligand; Saoulli, et al. J Exp Med 1998, 187: 1849–1862, Arch, et al. Mol Cell Biol 1998, 18: 558–565), TRAF-2 (4-1BB and OX40 ligand; Saoulli, et al. J Exp Med 1998, 187: 1849–1862; Oshima, et al. Int Immunol 1998, 10: 517–526, Kawamata, et al. J Biol Chem 1998, 273: 5808–5814), TRAF-3 (4-1BB and OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558–565; Jang, et al. Biochem Biophys Res Commun 1998, 242: 613–620; Kawamata S, et al. J Biol Chem 1998, 273: 5808–5814), OX40L (OX40 ligand; Gramaglia, et al. J Immunol 1998, 161: 6510–6517), TRAF-5 (OX40 ligand; Arch, et al. Mol Cell Biol 1998, 18: 558–565; Kawamata, et al. J Biol Chem 1998, 273: 5808–5814), and CD70 (CD27 ligand; Couderc, et al. Cancer Gene Ther., 5(3): 163-75). CD154 (CD40 ligand or "CD40L"; Gurunathan, et al. J. Immunol., 1998, 161: 4563-4571; Sine, et al. Hum. Gene Ther., 2001, 12: 1091-1102) may also be suitable.

10

.15

One or more cytokines may also be suitable co-stimulatory components or "adjuvants", either as polypeptides or being encoded by nucleic acids contained within the compositions of the present invention (Parmiani, et al. Immunol Lett 2000 Sep 15; 74(1): 41-4; Berzofsky, et al. Nature Immunol. 1: 209-219). Suitable cytokines include, for example, interleukin-2 (IL-2) (Rosenberg, et al. *Nature Med.* 4: 321-327 (1998)), IL-4, IL-7, IL-12 (reviewed by Pardoll, 1992; Harries, et al. J. Gene Med. 2000 Jul-Aug;2(4):243-9; Rao, et al. J. Immunol. 156: 3357-3365 (1996)), IL-15 (Xin, et al. *Vaccine*, 17:858-866, 1999), IL-16 (Cruikshank, et al. J. Leuk Biol. 67(6): 757-66, 2000), IL-18 (J. Cancer Res. Clin. Oncol. 2001. 127(12): 718-726), GM-CSF (CSF (Disis, et al. Blood, 88: 202-210 (1996)), tumor necrosis factor-alpha (TNF-α), or interferons such as IFN-α or INF-γ. Other cytokines may also be suitable for practicing the present invention, as is known in the art.

Chemokines may also be utilized, in either polypeptide or nucleic acid form. Fusion proteins comprising CXCL10 (IP-10) and CCL7 (MCP-3) fused to a tumor self-antigen have been shown to induce anti-tumor immunity (Biragyn, et al. *Nature Biotech.* 1999, 17: 253-258). The chemokines CCL3 (MIP-1 α) and CCL5 (RANTES) (Boyer, et al. *Vaccine*, 1999, 17 (Supp.

2): S53-S64) may also be of use in practicing the present invention. Other suitable chemokines are known in the art.

It is also known in the art that suppressive or negative regulatory immune mechanisms may be blocked, resulting in enhanced immune responses. For instance, treatment with anti-CTLA-4 (Shrikant, et al. *Immunity*, 1996, 14: 145-155; Sutmuller, et al. *J. Exp. Med.*, 2001, 194: 823-832), anti-CD25 (Sutmuller, *supra*), anti-CD4 (Matsui, et al. *J. Immunol.*, 1999, 163: 184-193), the fusion protein IL13Ra2-Fc (Terabe, et al. *Nature Immunol.*, 2000, 1: 515-520), and combinations thereof (i.e., anti-CTLA-4 and anti-CD25, Sutmuller, *supra*) have been shown to upregulate anti-tumor immune responses and would be suitable in practicing the present invention. Such treatments, among others, may also be combined with the one or more immunogenic targets of the present invention.

10

15

20

25

Any of these components may be used alone or in combination with other agents. For instance, it has been shown that a combination of CD80, ICAM-1 and LFA-3 ("TRICOM") may potentiate anti-cancer immune responses (Hodge, et al. *Cancer Res.* 59: 5800-5807 (1999). Other effective combinations include, for example, IL-12 + GM-CSF (Ahlers, et al. *J. Immunol.*, 158: 3947-3958 (1997); Iwasaki, et al. *J. Immunol.* 158: 4591-4601 (1997)), IL-12 + GM-CSF + TNF-α (Ahlers, et al. *Int. Immunol.* 13: 897-908 (2001)), CD80 + IL-12 (Fruend, et al. *Int. J. Cancer*, 85: 508-517 (2000); Rao, et al. *supra*), and CD86 + GM-CSF + IL-12 (Iwasaki, supra). One of skill in the art would be aware of additional combinations useful in carrying out the present invention. In addition, the skilled artisan would be aware of additional reagents or methods that may be used to modulate such mechanisms. These reagents and methods, as well as others known by those of skill in the art, may be utilized in practicing the present invention.

Additional strategies for improving the efficiency of nucleic acid-based immunization may also be used including, for example, the use of self-replicating viral replicons (Caley, et al. 1999. Vaccine, 17: 3124-2135; Dubensky, et al. 2000. Mol. Med. 6: 723-732; Leitner, et al. 2000. Cancer Res. 60: 51-55), codon optimization (Liu, et al. 2000. Mol. Ther., 1: 497-500; Dubensky, supra; Huang, et al. 2001. J. Virol. 75: 4947-4951), in vivo electroporation (Widera, et al. 2000. J. Immunol. 164: 4635-3640), incorporation of CpG stimulatory motifs (Gurunathan, et al. Ann. Rev. Immunol., 2000, 18: 927-974; Leitner, supra; Cho, et al. J. Immunol. 168(10):4907-13), sequences for targeting of the endocytic or ubiquitin-processing pathways (Thomson, et al. 1998. J. Virol. 72: 2246-2252; Velders, et al. 2001. J. Immunol.

166: 5366-5373), Marek's disease virus type 1 VP22 sequences (J. Virol. 76(6):2676-82, 2002), prime-boost regimens (Gurunathan, supra; Sullivan, et al. 2000. Nature, 408: 605-609; Hanke, et al. 1998. Vaccine, 16: 439-445; Amara, et al. 2001. Science, 292: 69-74), and the use of mucosal delivery vectors such as Salmonella (Darji, et al. 1997. Cell, 91: 765-775; Woo, et al. 2001. Vaccine, 19: 2945-2954). Other methods are known in the art, some of which are described below.

Chemotherapeutic agents, radiation, anti-angiogenic compounds, or other agents may also be utilized in treating and / or preventing cancer using immunogenic targets (Sebti, et al. Oncogene 2000 Dec 27;19(56):6566-73). For example, in treating metastatic melanoma, suitable chemotherapeutic regimens may include BELD (bleomycin, vindesine, lomustine, and deacarbazine; Young, et al. 1985. Cancer, 55: 1879-81), BOLD (bleomycin, vincristine, lomustine, dacarbazine; Seigler, et al. 1980. Cancer, 46: 2346-8); DD (dacarbazine, actinomycin; Hochster, et al. Cancer Treatment Reports, 69: 39-42), or POC (procarbazine, vincristine, lomustine; Carmo-Pereira, et al. 1984. Cancer Treatment Reports, 68: 1211-4) among others. Other suitable chemotherapeutic regimens may also be utilized.

15

25

Many anti-angiogenic agents are known in the art and would be suitable for coadministration with the immunogenic target vaccines and/or chemotherapeutic regimens (see, for example, Timar, et al. 2001. Pathology Oncol. Res., 7(2): 85-94). Such agents include, for example, physiological agents such as growth factors (i.e., ANG-2, NK1,2,4 (HGF), transforming growth factor beta (TGF- β)), cytokines (i.e., interferons such as IFN- α , - β , - γ , platelet factor 4 (PF-4), PR-39), proteases (i.e., cleaved AT-III, collagen XVIII fragment (Endostatin)), HmwKallikrein-d5 plasmin fragment (Angiostatin), prothrombin-F1-2, TSP-1), protease inhibitors (i.e., tissue inhibitor of metalloproteases such as TIMP-1, -2, or -3; maspin; plasminogen activator-inhibitors such as PAI-1; pigment epithelium derived factor (PEDF)), Tumstatin (available through ILEX, Inc.), antibody products (i.e., the collagen-binding antibodies HUIV26, HUI77, XL313; anti-VEGF; anti-integrin (i.e., Vitaxin, (Lxsys))), and glycosidases (i.e., heparinase-I, -III). "Chemical" or modified physiological agents known or believed to have anti-angiogenic potential include, for example, vinblastine, taxol, ketoconazole, thalidomide, dolestatin, combrestatin A, rapamycin (Guba, et al. 2002, Nature Med., 8: 128-135), CEP-7055 (available from Cephalon, Inc.), flavone acetic acid, Bay 12-9566 (Bayer Corp.), AG3340 (Agouron, Inc.), CGS 27023A (Novartis), tetracylcine derivatives (i.e., COL-3

(Collagenix, Inc.)), Neovastat (Aeterna), BMS-275291 (Bristol-Myers Squibb), low dose 5-FU, low dose methotrexate (MTX), irsofladine, radicicol, cyclosporine, captopril, celecoxib, D45152-sulphated polysaccharide, cationic protein (Protamine), cationic peptide-VEGF, Suramin (polysulphonated napthyl urea), compounds that interfere with the function or production of VEGF (i.e., SU5416 or SU6668 (Sugen), PTK787/ZK22584 (Novartis)), Distamycin A, Angiozyme (ribozyme), isoflavinoids, staurosporine derivatives, genistein, EMD121974 (Merck KcgaA), tyrphostins, isoquinolones, retinoic acid, carboxyamidotriazole, TNP-470, octreotide, 2-methoxyestradiol, aminosterols (i.e., squalamine), glutathione analogues (i.e., N-acteyl-L-cysteine), combretastatin A-4 (Oxigene), Eph receptor blocking agents (Nature, 414:933-938, 2001), Rh-Angiostatin, Rh-Endostatin (WO 01/93897), cyclic-RGD peptide, accutin-disintegrin, benzodiazepenes, humanized anti-avb3 Ab, Rh-PAI-2, amiloride, p-amidobenzamidine, anti-uPA ab, anti-uPAR Ab, L-phanylalanin-N-methylamides (i.e., Batimistat, Marimastat), AG3340, and minocycline. Many other suitable agents are known in the art and would suffice in practicing the present invention.

5

10

15

20

25

The present invention may also be utilized in combination with "non-traditional" methods of treating cancer. For example, it has recently been demonstrated that administration of certain anaerobic bacteria may assist in slowing tumor growth. In one study, Clostridium novyi was modified to eliminate a toxin gene carried on a phage episome and administered to mice with colorectal tumors (Dang, et al. P.N.A.S. USA, 98(26): 15155-15160, 2001). In combination with chemotherapy, the treatment was shown to cause tumor necrosis in the animals. The reagents and methodologies described in this application may be combined with such treatment methodologies.

Nucleic acids encoding immunogenic targets may be administered to patients by any of several available techniques. Various viral vectors that have been successfully utilized for introducing a nucleic acid to a host include retrovirus, adenovirus, adeno-associated virus (AAV), herpes virus, and poxvirus, among others. It is understood in the art that many such viral vectors are available in the art. The vectors of the present invention may be constructed using standard recombinant techniques widely available to one skilled in the art. Such techniques may be found in common molecular biology references such as *Molecular Cloning: A Laboratory Manual* (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), *Gene Expression Technology* (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press,

San Diego, CA), and PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, CA).

5

15

Preferred retroviral vectors are derivatives of lentivirus as well as derivatives of murine or avian retroviruses. Examples of suitable retroviral vectors include, for example, Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), SIV, BIV, HIV and Rous Sarcoma Virus (RSV). A number of retroviral vectors can incorporate multiple exogenous nucleic acid sequences. As recombinant retroviruses are defective, they require assistance in order to produce infectious vector particles. This assistance can be provided by, for example, helper cell lines encoding retrovirus structural genes. Suitable helper cell lines include Ψ2, PA317 and PA12, among others. The vector virions produced using such cell lines may then be used to infect a tissue cell line, such as NIH 3T3 cells, to produce large quantities of chimeric retroviral virions. Retroviral vectors may be administered by traditional methods (i.e., injection) or by implantation of a "producer cell line" in proximity to the target cell population (Culver, K., et al., 1994, Hum. Gene Ther., 5 (3): 343-79; Culver, K., et al., Cold Spring Harb. Symp. Quant. Biol., 59: 685-90); Oldfield, E., 1993, Hum. Gene Ther., 4 (1): 39-69). The producer cell line is engineered to produce a viral vector and releases viral particles in the vicinity of the target cell. A portion of the released viral particles contact the target cells and infect those cells, thus delivering a nucleic acid of the present invention to the target cell. Following infection of the target cell, expression of the nucleic acid of the vector occurs.

Adenoviral vectors have proven especially useful for gene transfer into eukaryotic cells (Rosenfeld, M., et al., 1991, Science, 252 (5004): 431-4; Crystal, R., et al., 1994, Nat. Genet., 8 (1): 42-51), the study eukaryotic gene expression (Levrero, M., et al., 1991, Gene, 101 (2): 195-202), vaccine development (Graham, F. and Prevec, L., 1992, Biotechnology, 20: 363-90), and in animal models (Stratford-Perricaudet, L., et al., 1992, Bone Marrow Transplant., 9 (Suppl. 1): 151-2; Rich, D., et al., 1993, Hum. Gene Ther., 4 (4): 461-76). Experimental routes for administrating recombinant Ad to different tissues in vivo have included intratracheal instillation (Rosenfeld, M., et al., 1992, Cell, 68 (1): 143-55) injection into muscle (Quantin, B., et al., 1992, Proc. Natl. Acad. Sci. U.S.A., 89 (7): 2581-4), peripheral intravenous injection (Herz, J., and Gerard, R., 1993, Proc. Natl. Acad. Sci. U.S.A., 90 (7): 2812-6) and stereotactic inoculation to brain (Le Gal La Salle, G., et al., 1993, Science, 259 (5097): 988-90), among others.

Adeno-associated virus (AAV) demonstrates high-level infectivity, broad host range and specificity in integrating into the host cell genome (Hermonat, P., et al., 1984, *Proc. Natl. Acad. Sci. U.S.A.*, 81 (20): 6466-70). And Herpes Simplex Virus type-1 (HSV-1) is yet another attractive vector system, especially for use in the nervous system because of its neurotropic property (Geller, A., et al., 1991, *Trends Neurosci.*, 14 (10): 428-32; Glorioso, et al., 1995, *Mol. Biotechnol.*, 4 (1): 87-99; Glorioso, et al., 1995, *Annu. Rev. Microbiol.*, 49: 675-710).

Poxvirus is another useful expression vector (Smith, et al. 1983, Gene, 25 (1): 21-8; Moss, et al, 1992, Biotechnology, 20: 345-62; Moss, et al, 1992, Curr. Top. Microbiol. Immunol., 158: 25-38; Moss, et al. 1991. Science, 252: 1662-1667). Poxviruses shown to be useful include vaccinia, NYVAC, avipox, fowlpox, canarypox, ALVAC, and ALVAC(2), among others.

10

15

20

25

30

NYVAC (vP866) was derived from the Copenhagen vaccine strain of vaccinia virus by deleting six nonessential regions of the genome encoding known or potential virulence factors (see, for example, U.S. Pat. Nos. 5,364,773 and 5,494,807). The deletion loci were also engineered as recipient loci for the insertion of foreign genes. The deleted regions are: thymidine kinase gene (TK; J2R); hemorrhagic region (u; B13R+B14R); A type inclusion body region (ATI; A26L); hemagglutinin gene (HA; A56R); host range gene region (C7L-K1L); and, large subunit, ribonucleotide reductase (I4L). NYVAC is a genetically engineered vaccinia virus strain that was generated by the specific deletion of eighteen open reading frames encoding gene products associated with virulence and host range. NYVAC has been show to be useful for expressing TAs (see, for example, U.S. Pat. No. 6,265,189). NYVAC (vP866), vP994, vCP205, vCP1433, placZH6H4Lreverse, pMPC6H6K3E3 and pC3H6FHVB were also deposited with the ATCC under the terms of the Budapest Treaty, accession numbers VR-2559, VR-2558, VR-2557, VR-2556, ATCC-97913, ATCC-97912, and ATCC-97914, respectively.

ALVAC-based recombinant viruses (i.e., ALVAC-1 and ALVAC-2) are also suitable for use in practicing the present invention (see, for example, U.S. Pat. No. 5,756,103). ALVAC(2) is identical to ALVAC(1) except that ALVAC(2) genome comprises the vaccinia E3L and K3L genes under the control of vaccinia promoters (U.S. Pat. No. 6,130,066; Beattie et al., 1995a, 1995b, 1991; Chang et al., 1992; Davies et al., 1993). Both ALVAC(1) and ALVAC(2) have been demonstrated to be useful in expressing foreign DNA sequences, such as TAs (Tartaglia et al., 1993 a,b; U.S. Pat. No. 5,833,975). ALVAC was deposited under the terms of the Budapest

Treaty with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA, ATCC accession number VR-2547.

Another useful poxvirus vector is TROVAC. TROVAC refers to an attenuated fowlpox that was a plaque-cloned isolate derived from the FP-1 vaccine strain of fowlpoxvirus which is licensed for vaccination of 1 day old chicks. TROVAC was likewise deposited under the terms of the Budapest Treaty with the ATCC, accession number 2553.

5

15

25

30

"Non-viral" plasmid vectors may also be suitable in practicing the present invention. Preferred plasmid vectors are compatible with bacterial, insect, and / or mammalian host cells. Such vectors include, for example, PCR-II, pCR3, and pcDNA3.1 (Invitrogen, San Diego, CA), pBSII (Stratagene, La Jolla, CA), pET15 (Novagen, Madison, WI), pGEX (Pharmacia Biotech, Piscataway, NJ), pEGFP-N2 (Clontech, Palo Alto, CA), pETL (BlueBacII, Invitrogen), pDSR-alpha (PCT pub. No. WO 90/14363) and pFastBacDual (Gibco-BRL, Grand Island, NY) as well as Bluescript plasmid derivatives (a high copy number COLE1-based phagemid, Stratagene Cloning Systems, La Jolla, CA), PCR cloning plasmids designed for cloning Taq-amplified PCR products (e.g., TOPOTM TA cloning kit, PCR2.1 plasmid derivatives, Invitrogen, Carlsbad, CA). Bacterial vectors may also be used with the current invention. These vectors include, for example, Shigella, Salmonella, Vibrio cholerae, Lactobacillus, Bacille calmette guérin (BCG), and Streptococcus (see for example, WO 88/6626; WO 90/0594; WO 91/13157; WO 92/1796; and WO 92/21376). Many other non-viral plasmid expression vectors and systems are known in the art and could be used with the current invention.

Suitable nucleic acid delivery techniques include DNA-ligand complexes, adenovirus-ligand-DNA complexes, direct injection of DNA, CaPO₄ precipitation, gene gun techniques, electroporation, and colloidal dispersion systems, among others. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a liposome, which are artificial membrane vesicles useful as delivery vehicles *in vitro* and *in vivo*. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, R., *et al.*, 1981, *Trends Biochem. Sci.*, 6: 77). The composition of the liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in

combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the Examples of lipids useful in liposome production include presence of divalent cations. phosphatidylcholine, phosphatidylglycerol, compounds, such as phosphatidyl phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated. Illustrative phospholipids dipalmitoylphosphatidylcholine and phosphatidylcholine, include egg distearoylphosphatidylcholine.

An immunogenic target may also be administered in combination with one or more adjuvants to boost the immune response. Exemplary adjuvants are shown in Table II below:

10

<u>Table II</u>

Types of Immunologic Adjuvants

Type of Adjuvant	General Examples	Specific Examples/References	
Gel-type	Aluminum hydroxide/phosphate ("alum adjuvants")	(Aggerbeck and Heron, 1995)	
	Calcium phosphate	(Relyveld, 1986)	
Microbial	Muramyl dipeptide (MDP)	(Chedid et al., 1986)	
Microbia	Bacterial exotoxins	Cholera toxin (CT), E.coli labile toxin (LT)(Freytag and Clements, 1999)	
	Endotoxin-based adjuvants	Monophosphoryl lipid A (MPL) (Ulrich and Myers, 1995)	
	Other bacterial	CpG oligonucleotides (Corral and Petray, 2000), BCG sequences (Krieg, et al. Nature, 374:576), tetanus toxoid (Rice, et al. J. Immunol., 2001, 167: 1558-1565)	
Particulate	Biodegradable Polymer microspheres	(Gupta et al., 1998)	
·	Immunostimulatory complexes (ISCOMs)	(Morein and Bengtsson, 1999)	
	Liposomes	(Wassef et al., 1994)	
Oil-emulsion	Freund's incomplete adjuvant	(Jensen et al., 1998)	
and	Microfluidized emulsions	MF59 (Ott et al., 1995)	
surfactant- based	Microlandized citations	SAF (Allison and Byars, 1992) (Allison, 1999)	
adjuvants	Saponins	QS-21 (Kensil, 1996)	
Synthetic	Muramyl peptide derivatives	Murabutide (Lederer, 1986) Threony-MDP (Allison, 1997)	
	Nonionic block copolymers	L121 (Allison, 1999)	
	Polyphosphazene (PCPP)	(Payne et al., 1995)	

•		
	Synthetic polynucleotides	Poly A:U, Poly I:C (Johnson, 1994)
1 .	Thalidomide derivatives	CC-4047/ACTIMID (J. Immunol.,
' '	Thursday, and the second	168(10):4914-9)
l .	<u> </u>	

Administration of a composition of the present invention to a host may be accomplished using any of a variety of techniques known to those of skill in the art. The composition(s) may be processed in accordance with conventional methods of pharmacy to produce medicinal agents for administration to patients, including humans and other mammals (i.e., a "pharmaceutical composition"). The pharmaceutical composition is preferably made in the form of a dosage unit containing a given amount of DNA, viral vector particles, polypeptide or peptide, for example. A suitable daily dose for a human or other mammal may vary widely depending on the condition of the patient and other factors, but, once again, can be determined using routine methods.

5

10

15

20.

25

The pharmaceutical composition may be administered orally, parentally, by inhalation spray, rectally, intranodally, or topically in dosage unit formulations containing conventional pharmaceutically acceptable carriers, adjuvants, and vehicles. The term "pharmaceutically acceptable carrier" or "physiologically acceptable carrier" as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of a nucleic acid, polypeptide, or peptide as a pharmaceutical composition. A "pharmaceutical composition" is a composition comprising a therapeutically effective amount of a nucleic acid or polypeptide. The terms "effective amount" and "therapeutically effective amount" each refer to the amount of a nucleic acid or polypeptide used to induce or enhance an effective immune response. It is preferred that compositions of the present invention provide for the induction or enhancement of an anti-tumor immune response in a host which protects the host from the development of a tumor and / or allows the host to eliminate an existing tumor from the body.

For oral administration, the pharmaceutical composition may be of any of several forms including, for example, a capsule, a tablet, a suspension, or liquid, among others. Liquids may be administered by injection as a composition with suitable carriers including saline, dextrose, or water. The term parenteral as used herein includes subcutaneous, intravenous, intramuscular, intrasternal, infusion, or intraperitoneal administration. Suppositories for rectal administration of the drug can be prepared by mixing the drug with a suitable non-irritating excipient such as cocoa butter and polyethylene glycols that are solid at ordinary temperatures but liquid at the rectal temperature.

The dosage regimen for immunizing a host or otherwise treating a disorder or a disease with a composition of this invention is based on a variety of factors, including the type of disease, the age, weight, sex, medical condition of the patient, the severity of the condition, the route of administration, and the particular compound employed. For example, a poxviral vector may be administered as a composition comprising 1×10^6 infectious particles per dose. Thus, the dosage regimen may vary widely, but can be determined routinely using standard methods.

A prime-boost regimen may also be utilized (WO 01/30382 A1) in which the targeted immunogen is initially administered in a priming step in one form followed by a boosting step in which the targeted immunogen is administered in another form. The form of the targeted immunogen in the priming and boosting steps are different. For instance, if the priming step utilized a nucleic acid, the boost may be administered as a peptide. Similarly, where a priming step utilized one type of recombinant virus (i.e., ALVAC), the boost step may utilize another type of virus (i.e., NYVAC). This prime-boost method of administration has been shown to induce strong immunological responses. Various combinations of forms are suitable in practicing the present invention.

While the compositions of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more other compositions or agents (i.e., other immunogenic targets, co-stimulatory molecules, adjuvants). When administered as a combination, the individual components can be formulated as separate compositions administered at the same time or different times, or the components can be combined as a single composition.

. 15

20

25

Injectable preparations, such as sterile injectable aqueous or oleaginous suspensions, may be formulated according to known methods using suitable dispersing or wetting agents and suspending agents. The injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent. Suitable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution, among others. For instance, a viral vector such as a poxvirus may be prepared in 0.4% NaCl. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed, including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

For topical administration, a suitable topical dose of a composition may be administered one to four, and preferably two or three times daily. The dose may also be administered with intervening days during which no does is applied. Suitable compositions may comprise from 0.001% to 10% w/w, for example, from 1% to 2% by weight of the formulation, although it may comprise as much as 10% w/w, but preferably not more than 5% w/w, and more preferably from 0.1% to 1% of the formulation. Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin (e.g., liniments, lotions, ointments, creams, or pastes) and drops suitable for administration to the eye, ear, or nose.

The pharmaceutical compositions may also be prepared in a solid form (including granules, powders or suppositories). The pharmaceutical compositions may be subjected to conventional pharmaceutical operations such as sterilization and/or may contain conventional adjuvants, such as preservatives, stabilizers, wetting agents, emulsifiers, buffers etc. Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound may be admixed with at least one inert diluent such as sucrose, lactose, or starch. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. Liquid dosage forms for oral administration may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting sweetening, flavoring, and perfuming agents.

15

20

Pharmaceutical compositions comprising a nucleic acid or polypeptide of the present invention may take any of several forms and may be administered by any of several routes. In preferred embodiments, the compositions are administered via a parenteral route (intradermal, intramuscular or subcutaneous) to induce an immune response in the host. Alternatively, the composition may be administered directly into a lymph node (intranodal) or tumor mass (i.e., intratumoral administration). For example, the dose could be administered subcutaneously at days 0, 7, and 14. Suitable methods for immunization using compositions comprising TAs are known in the art, as shown for p53 (Hollstein et al., 1991), p21-ras (Almoguera et al., 1988), HER-2 (Fendly et al., 1990), the melanoma-associated antigens (MAGE-1; MAGE-2) (van der

Bruggen et al., 1991), p97 (Hu et al., 1988), melanoma-associated antigen E (WO 99/30737) and carcinoembryonic antigen (CEA) (Kantor et al., 1993; Fishbein et al., 1992; Kaufman et al., 1991), among others.

Preferred embodiments of administratable compositions include, for example, nucleic acids or polypeptides in liquid preparations such as suspensions, syrups, or elixirs. Preferred injectable preparations include, for example, nucleic acids or polypeptides suitable for parental, subcutaneous, intradermal, intramuscular or intravenous administration such as sterile suspensions or emulsions. For example, a recombinant poxvirus may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose or the like. The composition may also be provided in lyophilized form for reconstituting, for instance, in isotonic aqueous, saline buffer. In addition, the compositions can be co-administered or sequentially administered with other antineoplastic, anti-tumor or anti-cancer agents and/or with agents which reduce or alleviate ill effects of antineoplastic, anti-tumor or anti-cancer agents.

A kit comprising a composition of the present invention is also provided. The kit can include a separate container containing a suitable carrier, diluent or excipient. The kit can also include an additional anti-cancer, anti-tumor or antineoplastic agent and/or an agent that reduces or alleviates ill effects of antineoplastic, anti-tumor or anti-cancer agents for co- or sequential-administration. Additionally, the kit can include instructions for mixing or combining ingredients and/or administration.

. 20

.15

A better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration.

EXAMPLES

25

30

Example 1

Construction of the Multi-Antigen Construct vT416

The expression vector vT416 (ALVAC-NY-ESO-1/Trp-2-LFA-3/ICAM-1/B7.1-E3L/K3L) was constructed in the ALVAC vector using standard techniques. DNA sequences encoding NY-ESO-1, Trp-2, LFA-3, ICAM-1, B7.1, vvE3L and vvK3L were inserted into various loci within the ALVAC genome. DNA sequences encoding NY-ESO-1 (Chen et al. 1997 PNAS 94:1914) and TRP-2 (Wang et al. 1996 J. Exp. Med. 184:2207) were inserted into

the C5 locus. DNA sequences encoding LFA-3 (Wallner, et al. (1987) J. Exp. Med. 166:923-932), ICAM-1 (Staunton, et al. (1988) Cell 52:925-933) and B7.1 (Chen, et al. (1992) Cell 71:1093-1102) were inserted into the C3 locus. LFA-3, ICAM-1 and B7.1 form an expression cassette known as TRICOM. DNA sequences encoding vvE3L (Chang, et al. 1992. Proc. Natl. Acad. Sci. U. S. A 89:4825-4829) and vvK3L (Beattie, et al. 1991. Virology 183:419-422) were inserted into the C6 locus. Promoters were utilized as follows:

Table III

DNA sequence	Promoter		
E3L	vaccinia E3L		
K3L	vaccinia H6		
LFA-3	vaccinia 30K		
ICAM-1	vaccinia I3		
B7.1	sE/L		
NY-ESO-1	vaccinia H6		
TRP-2	sE/L		

· 10

15

Promoter sE/L is described by Chakrabarti, et al. (BioTechniques 23: 1094-1097, 1997).

The donor plasmids utilized are shown below:

Table IV

Plasmid	Size (bp)	Vector	Antibiotic Resitance Gene
рМРС6Н6К3Е3	-	pBS-SK	Amp.
pALVAC.Tricom(C3) #33	10,470	pBS-SK	Amp
pT1132	11,154	pBS-SK	Amp

20 pT

NY-ESO-1 and TRP-2 DNA sequences were inserted into the ALVAC donor plasmid pT1132. This donor plasmid was then used with pALVAC.Tricom(C3) #33 to generate the ALVAC-TRICOM recombinant expressing these genes using standard techniques. The plasmids pALVAC.Tricom(C3) #33 and pT1132 are shown in Figure 1. The DNA sequences of pALVAC.Tricom(C3) #33 and pT1132 are shown in Figures 2 and 3, respectively.

Example 2 Construction of the Multi-Antigen Construct vT419

The expression vector vT419 (ALVAC-gp100M/Mart-1/ Mage-1,3 minigene-LFA-3/ICAM-1/B7.1-E3L/K3L) was constructed in the ALVAC vector using standard techniques. DNA sequences encoding the gp100M/MART-1/MAGE-1,3 minigene, LFA-3, ICAM-1, B7.1, vvE3L and vvK3L were inserted into various loci within the ALVAC genome. The gp100M/MART-1/MAGE-1,3 minigene was inserted into the C5 locus. DNA sequences encoding LFA-3 (Wallner, et al. (1987) J. Exp. Med. 166:923-932), ICAM-1 (Staunton, et al. (1988) Cell 52:925-933) and B7.1 (Chen, et al. (1992) Cell 71:1093-1102) were inserted into the C3 locus. LFA-3, ICAM-1 and B7.1 form an expression cassette known as TRICOM. DNA sequences encoding vvE3L (Chang, et al. 1992. Proc. Natl. Acad. Sci. U. S. A 89:4825-4829) and vvK3L (Beattie, et al. 1991. Virology 183:419-422) were inserted into the C6 locus. Promoters were utilized as follows:

15

10

Table V

Gene	Promoter		
E3L	vaccinia E3L		
K3L	vaccinia H6		
LFA-3	vaccinia 30K		
ICAM-1	vaccinia I3		
B7.1	sE/L		
gp100(M)	vaccinia H6		
Mart-1	vaccinia 42K		

Promoter sE/L is described by Chakrabarti, et al. (BioTechniques 23: 1094-1097, 1997).

20 The donor plasmids utilized are shown below:

Table VI

Plasmid	Size (bp)	Vector	Antibiotic Resitance Gene
РМРС6Н6К3Е3	-	pBS-SK	Amp
pALVAC.Tricom(C3) #33	10,470	pBS-SK	Amp
pT3217	11,465	pBS-SK	Amp

gp100(M), Mart-1 and Mage-1,3 minigene were inserted into the ALVAC C5 donor plasmid pT3217. This donor plasmid was then used with pALVAC.Tricom(C3) #33 to generate the ALVAC-TRICOM recombinant expressing these genes using standard techniques. This donor plasmid inserts into the C5 site. pALVAC.Tricom(C3) #33 is shown in Figures 1 and 2. The pT3217 plasmid is shown in Figure 4. The DNA sequence of pT3217 is shown in Figure 5.

5

15

. 20

25

30

EXAMPLE 3

Immunological Assessment of Multi-Antigen Vectors

The results of the first animal experiment indicated a trend toward higher immunological responses to three (Mart 1, NY-ESO-1 and gp100) of the four antigens when the vaccine was given as two separate injections. However, these differences were not statistically significant. In detail, HLA-A2/Kb transgenic mice (5/group) were immunized subcutaneously with vT419 (ALVAC(2)-gp100M/MART-1/MAGE-1/3 minigene/TRICOM) and vT416 (ALVAC(2)-TRP-2/NY-ESO-1/TRICOM) either combined at one site or given as separate injections. Control mice were immunized with parental ALVAC(2). Mice were vaccinated three times (at three week intervals), and three weeks after the last boost T cell responses in individual mice were analyzed by IFN-g ELISPOT and CTL assays following in vitro restimulation with peptide. Compared to control animals, mice vaccinated with the multi-antigen vectors (at 2 sites) exhibited statistically significant ELISPOT responses against MART-1. The IFN-gamma response to gp100M and NY-ESO-1 were also detectable, although these responses were not statistically significant due to response variability and the small number of cultures tested. ELISPOT responses against the TRP-2 antigen were elevated in all groups tested (including control animals), presumably due to the fact that the dominant A2-restricted TRP-2 peptide (180-188) cross-reacts with H-2Kb and can induce low avidity T cell responses in naïve mice following in vitro culture, and were therefore not statistically significant. Interestingly, ELISPOT responses in mice injected with an admixture of vT416 and vT419 were generally lower than in mice receiving each virus separately, although these differences did not achieve statistical significance. The CTL data were largely negative, except for one strong anti-gp100 response and one marginal anti-MART-1 response, both of which occurred in mice vaccinated with vT416 and vT419 (two sites). Overall, these results provided encouraging data that establish that the multi-antigen vectors can generate

responses against MART-1, and suggest that anti-gp100 and anti-NY-ESO-1 responses can also be induced.

Two additional pre-clinical animal studies have been completed using the melanoma multi-antigen ALVAC recombinants. In these experiments, HLA-A2/K^b transgenic mice (5/group) were immunized subcutaneously with vT419 (ALVAC(2)-gp100M/MART-1/MAGE-1/3 minigene/TRICOM) and vT416 (ALVAC(2)-TRP-2/NY-ESO-1/TRICOM) either combined at one site or given as separate injections. Control mice were immunized with parental ALVAC(2). After vaccination, the T cell responses in individual mice were assessed by IFN-gamma ELISPOT assay following in vitro restimulation with peptide. Unlike the previous multi-antigen experiment, which provided encouraging immunogenicity data, the two most recent studies generated inconclusive data, due to high background responses in control immunized animals. Therefore, overall the results were deemed as inconclusive.

To confirm the immunogenicity of the multi-antigen constructs, and to repeat results from the first study, another pre-clinical animal study has been completed. HLA-A2/K^b transgenic mice (10/group) were immunized subcutaneously with vT419 (ALVAC(2)-gp100M/MART-1/MAGE-1/3 minigene/TRICOM) and vT416 (ALVAC(2)-TRP-2/NY-ESO-1/TRICOM) given as separate injections. Control mice were immunized with parental ALVAC(2). Statistically significant ELISPOT responses were detectable against gp100, Mart-1 and TRP-2, and some responses were detected against NY-ESO-1, which were at the border of being statistically significant.

20

25

While the present invention has been described in terms of the preferred embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations that come within the scope of the invention as claimed.

CLAIMS

What is claimed is:

5

10

. 15

20

1. An expression vector for co-expressing at least two immunogenic targets, wherein said immunogenic targets are selected from the group consisting of NY-ESO-1, TRP-2, gp100, gp100M, a MART antigen, MART-1, a MAGE antigen, MAGE-1, and MAGE-3.

- 2. The expression vector of claim 1 wherein the vector is a plasmid or a viral vector.
- 3. The expression vector of claim 2 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
- 4. The expression vector of claim 3 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
- 5. The expression vector of claim 4 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
- 6. The expression vector of claim 1 further comprising at least one nucleic sequence encoding an angiogenesis-associated antigen.
- 7. The expression vector of claim 6 wherein the vector is a plasmid or a viral vector.
- 8. The expression vector of claim 7 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
- The expression vector of claim 8 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.
 - 10. The expression vector of claim 9 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).
- 11. The expression vector of claim 1 or 6 further comprising at least one nucleic acid sequence encoding a co-stimulatory component.
 - 12. The expression vector of claim 11 wherein the vector is a plasmid or a viral vector.
 - 13. The expression vector of claim 12 wherein the viral vector is selected from the group consisting of poxvirus, adenovirus, retrovirus, herpesvirus, and adeno-associated virus.
- 14. The expression vector of claim 13 wherein the viral vector is a poxvirus selected from the group consisting of vaccinia, NYVAC, avipox, canarypox, ALVAC, ALVAC(2), fowlpox, and TROVAC.

15. The expression vector of claim 14 wherein the viral vector is a poxvirus selected from the group consisting of NYVAC, ALVAC, and ALVAC(2).

- 16. The expression vector of any one claims 11-15 wherein the co-stimulatory component is human B7.1.
- 5 17. A composition comprising an expression vector of any one of claims 1-16 in a pharmaceutically acceptable carrier.
 - 18. A method for preventing or treating cancer comprising administering to a host an expression vector of any one of claims 1-16.
 - 19. A method for preventing or treating cancer comprising administering to a host a composition of claim 17.

10

FIGURE 1

FIGURE 2

DNA Sequence of pALVAC. Tricom(C3) #33 GGAAATTGTA AACGTTAATA TTTTGTTAAA ATTCGCGTTA AATTTTTGTT CCTTTAACAT TTGCAATTAT AAAACAATTT TAAGCGCAAT TTAAAAAACAA 51 AAATCAGCTC ATTTTTTAAC CAATAGGCCG AAATCGGCAA AATCCCTTAT , · , 5 TTTAGTCGAG TAAAAAATTG GTTATCCGGC TTTAGCCGTT TTAGGGAATA 101 AAATCAAAAG AATAGACCGA GATAGGGTTG AGTGTTGTTC CAGTTTGGAA TTTAGTTTTC TTATCTGGCT CTATCCCAAC TCACAACAAG GTCAAACCTT 151 CAAGAGTCCA CTATTAAAGA ACGTGGACTC CAACGTCAAA GGGCGAAAAA GTTCTCAGGT GATAATTTCT TGCACCTGAG GTTGCAGTTT CCCGCTTTTT 10 201 CCGTCTATCA GGGCGATGGC CCACTACGTG AACCATCACC CTAATCAAGT GGCAGATAGT CCCGCTACCG GGTGATGCAC TTGGTAGTGG GATTAGTTCA 251 TTTTTGGGGT CGAGGTGCCG TAAAGCACTA AATCGGAACC CTAAAGGGAG AAAAACCCCA GCTCCACGGC ATTTCGTGAT TTAGCCTTGG GATTTCCCTC 301 CCCCCGATTT AGAGCTTGAC GGGGAAAGCC GGCGAACGTG GCGAGAAAGG 15 GGGGGCTAAA TCTCGAACTG CCCCTTTCGG CCGCTTGCAC CGCTCTTTCC 351 AAGGGAAGAA AGCGAAAGGA GCGGGCGCTA GGGCGCTGGC AAGTGTAGCG TTCCCTTCTT TCGCTTTCCT CGCCCGCGAT CCCGCGACCG TTCACATCGC 401 GTCACGCTGC GCGTAACCAC CACACCCGCC GCGCTTAATG CGCCGCTACA CAGTGCGACG CGCATTGGTG GTGTGGGCGG CGCGAATTAC GCGGCGATGT 20 451 GGGCGCGTCG CGCCATTCGC CATTCAGGCT GCGCAACTGT TGGGAAGGGC CCCGCGCAGC GCGGTAAGCG GTAAGTCCGA CGCGTTGACA ACCCTTCCCG 501 GATCGGTGCG GGCCTCTTCG CTATTACGCC AGCTGGCGAA AGGGGGATGT CTAGCCACGC CCGGAGAAGC GATAATGCGG TCGACCGCTT TCCCCCTACA 25 551 GCTGCAAGGC GATTAAGTTG GGTAACGCCA GGGTTTTCCC AGTCACGACG CGACGTTCCG CTAATTCAAC CCATTGCGGT CCCAAAAGGG TCAGTGCTGC TTGTAAAACG ACGGCCAGTG AATTGTAATA CGACTCACTA TAGGGCGAAT 601 AACATTTTGC TGCCGGTCAC TTAACATTAT GCTGAGTGAT ATCCCGCTTA 651 TGGGTACCGC GGCCGCGTCG ACATGCATTG TTAGTTCTGT AGATCAGTAA ACCCATGGCG CCGGCGCAGC TGTACGTAAC AATCAAGACA TCTAGTCATT 30 Left Arm 701 CGTATAGCAT ACGAGTATAA TTATCGTAGG TAGTAGGTAT CCTAAAATAA GCATATCGTA TGCTCATATT AATAGCATCC ATCATCCATA GGATTTTATT 35 Left Arm ATCTGATACA GATAATAACT TTGTAAATCA ATTCAGCAAT TTCTCTATTA TAGACTATGT CTATTATTGA AACATTTAGT TAAGTCGTTA AAGAGATAAT 40 Left Arm 801 TCATGATAAT GATTAATACA CAGCGTGTCG TTATTTTTTG TTACGATAGT AGTACTATTA CTAATTATGT GTCGCACAGC AATAAAAAAC AATGCTATCA Left Arm 45 ATTTCTAAAG TAAAGAGCAG GAATCCCTAG TATAATAGAA ATAATCCATA 851 TAAAGATTTC ATTTCTCGTC CTTAGGGATC ATATTATCTT TATTAGGTAT Left Arm ' 901 TGAAAAATAT AGTAATGTAC ATATTTCTAA TGTTAACATA TTTATAGGTA ACTTTTTATA TCATTACATG TATAAAGATT ACAATTGTAT AAATATCCAT 50 • . • Left Arm 951 AATCCAGGAA GGGTAATTTT TACATATCTA TATACGCTTA TTACAGTTAT TTAGGTCCTT CCCATTAAAA ATGTATAGAT ATATGCGAAT AATGTCAATA

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	•	Left Arm
	1001	TAAAAATATA CTTGCAAACA TGTTAGAAGT AAAAAAGAAA GAACTAATTT
		ATTTTTATAT GAACGTTTGT ACAATCTTCA TTTTTTCTTT CTTGATTAAA
5		
•		Left Arm
	1051	TACAAAGTGC TTTACCAAAA TGCCAATGGA AATTACTTAG TATGTATATA
	1031	,
		ATGTTTCACG AAATGGTTTT ACGGTTACCT TTAATGAATC ATACATATAT
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10		Left Arm
	1101	ATGTATAAAG GTATGAATAT CACAAACAGC AAATCGGCTA TTCCCAAGTT
		TACATATTTC CATACTTATA GTGTTTGTCG TTTAGCCGAT AAGGGTTCAA
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Left Arm
15		
		•
	1151	GAGAAACGGT ATAATAGATA TATTTCTAGA TACCATTAAT AACCTTATAA
	1131	·
		CTCTTTGCCA TATTATCTAT ATAAAGATCT ATGGTAATTA TTGGAATATT
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20 .		Left Arm
	1201	GCTTGACGTT TCCTATAATG CCTACTAAGA AAACTAGAAG ATACATACAT
		CGAACTGCAA AGGATATTAC GGATGATTCT TTTGATCTTC TATGTATGTA
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•		Left Arm
25	1251	ACTAACGCCA TACGAGAGTA ACTACTCATC GTATAACTAC TGTTGCTAAC
<u>~</u>	1201	TGATTGCGGT ATGCTCTCAT TGATGAGTAG CATATTGATG ACAACGATTG
		TOATIGOGGI AIGCICICAT IGAIGAGIAG CATATIGATG ACAACGATIG
		Left Arm
	1301	AGTGACACTG ATGTTATAAC TCATCTTTGA TGTGGTATAA ATGTATAATA
30		TCACTGTGAC TACAATATTG AGTAGAAACT ACACCATATT TACATATTAT
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Left Arm
	1351	ACTATATTAC ACTGGTATTT TATTTCAGTT ATATACTATA TAGTATTAAA
		TGATATAATG TGACCATAAA ATAAAGTCAA TATATGATAT ATCATAATTT
35		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Left Arm
	1401	AATTATATTT GTATAATTAT ATTATTATAT TCAGTGTAGA AAGTAAAATA
	1.01	TTAATATAAA CATATTAATA TAATAATATA AGTCACATCT TTCATTTAT
		TIMINIMA CAINTIANIA TANTANIANA AGICACATCI TICATTITAT
40	•	
40	1 451	Left Arm
	1451	CTATAAATAT GTATCTCTTA TTTATAACTT ATTAGTAAAG TATGTACTAT
		GATATTTATA CATAGAGAAT AAATATTGAA TAATCATTTC ATACATGATA
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Left Arm
45	1501	TCAGTTATAT TGTTTTATAA AAGCTAAATG CTACTAGATT GATATAAATG
		AGTCAATATA ACAAAATATT TTCGATTTAC GATGATCTAA CTATATTTAC
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Left Arm
	1551	AATATGTAAT AAATTAGTAA TGTAGTATAC TAATATTAAC TCACATTTGA
50	1331	
50		TTATACATTA TTTAATCATT ACATCATATG ATTATAATTG AGTGTAAACT
	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Left Arm
		30K Pr.

55	1601	CTAATTAGCT ATAAAAACCC TAAGGTAGGC GGCCGCACTA GAGGATTCGA
•		GATTAATCGA TATTTTTGGG ATTCCATCCG CCGGCGTGAT CTCCTAAGCT

30K Pr. CAAACACCAA TAATTCCCTT CTCTTCATTC CGGACATTAA ATTGGCTATA GTTTGTGGTT ATTAAGGGAA GAGAAGTAAG GCCTGTAATT TAACCGATAT 30K Pr. 1701 GATAATAAAG ACATTGAGAT GTTACAGGCT CTGTTCAAAT ACGACATTAA CTATTATTTC TGTAACTCTA CAATGTCCGA GACAAGTTTA TGCTGTAATT 30K Pr. . .10 TATCTATTCT GCTAATCTGG AAAATGTACT ATTGGATGAT GCCGAAATAG 1751 ATAGATAAGA CGATTAGACC TTTTACATGA TAACCTACTA CGGCTTTATC 30K Pr. - 15 1801 CTAAAATGAT TATAGAAAAG CATGTTGAAT ACAAGTCTGA CTCCTATACA GATTTTACTA ATATCTTTTC GTACAACTTA TGTTCAGACT GAGGATATGT 30K Pr. 1851 AAAGATCTCG ATATAGTCAA GAATAATAAA TTGGATGAAA TAATTAGCAA 20 TTTCTAGAGC TATATCAGTT CTTATTATTT AACCTACTTT ATTAATCGTT 30K Pr. 1901 AAACAAGGAA CTCAGACTCA TGTACGTCAA TTGTGTAAAG AAAAACTAAT TTTGTTCCTT GAGTCTGAGT ACATGCAGTT AACACATTTC TTTTTGATTA 25 · 30K Pr. TAGATTCTCC CACATTTTG TTAACATTAC ACTAACTAAT TGGTAAAATT 1951 ATCTAAGAGG GTGTAAAAAC AATTGTAATG TGATTGATTA ACCATTTTAA 30K Pr. 30 2001 GATAGAATAA TTATGTGTAT ATAAGATAGA TTTCCTATTG TCTTACTCAT CTATCTTATT AATACACATA TATTCTATCT AAAGGATAAC AGAATGAGTA 30K Pr. 35 2051 TGCATCGTGG GAATTCAGAT CAGCTTCCGC GGCATGGTTG CTGGGAGCGA ACGTAGCACC CTTAAGTCTA GTCGAAGGCG CCGTACCAAC GACCCTCGCT

hLFA-3 2101 CGCGGGGCGG GCCCTGGGGG TCCTCAGCGT GGTCTGCCTG CTGCACTGCT GCGCCCCGCC CGGGACCCCC AGGAGTCGCA CCAGACGGAC GACGTGACGA hLFA-3 TTGGTTTCAT CAGCTGTTTT TCCCAACAAA TATATGGTGT TGTGTATGGG 2151 AACCAAAGTA GTCGACAAAA AGGGTTGTTT ATATACCACA ACACATACCC hLFA-3 10 2201 AATGTAACTT TCCATGTACC AAGCAATGTG CCTTTAAAAG AGGTCCTATG TTACATTGAA AGGTACATGG TTCGTTACAC GGAAATTTTC TCCAGGATAC hLFA-3 15 2251 GAAAAAACAA AAGGATAAAG TTGCAGAACT GGAAAATTCT GAATTCAGAG CTTTTTTGTT TTCCTATTTC AACGTCTTGA CCTTTTAAGA CTTAAGTCTC hLFA-3 2301 CTTTCTCATC TTTTAAAAAT AGGGTTTATT TAGACACTGT GTCAGGTAGC GAAAGAGTAG AAAATTTTTA TCCCAAATAA ATCTGTGACA CAGTCCATCG 20 . hLFA-3 2351 CTCACTATCT ACAACTTAAC ATCATCAGAT GAAGATGAGT ATGAAATGGA GAGTGATAGA TGTTGAATTG TAGTAGTCTA CTTCTACTCA TACTTTACCT 25 hLFA-3 . ************************************** ATCGCCAAAT ATTACTGATA CCATGAAGTT CTTTCTTTAT GTGCTTGAGT 2401 TAGCGGTTTA TAATGACTAT GGTACTTCAA GAAAGAAATA CACGAACTCA hLFA-3 30 2451 CTCTTCCATC TCCCACACTA ACTTGTGCAT TGACTAATGG AAGCATTGAA GAGAAGGTAG AGGGTGTGAT TGAACACGTA ACTGATTACC TTCGTAACTT hLFA-3 GTCCAATGCA TGATACCAGA GCATTACAAC AGCCATCGAG GACTTATAAT 35 2501 CAGGTTACGT ACTATGGTCT CGTAATGTTG TCGGTAGCTC CTGAATATTA hLFA-3 GTACTCATGG GATTGTCCTA TGGAGCAATG TAAACGTAAC TCAACCAGTA 2551 40 CATGAGTACC CTAACAGGAT ACCTCGTTAC ATTTGCATTG AGTTGGTCAT hLFA-3 TATATTTTAA GATGGAAAAT GATCTTCCAC AAAAAATACA GTGTACTCTT 2601 ATATAAAATT CTACCTTTTA CTAGAAGGTG TTTTTTATGT CACATGAGAA 45 hLFA-3 2651 AGCAATCCAT TATTTAATAC AACATCATCA ATCATTTTGA CAACCTGTAT TCGTTAGGTA ATAAATTATG TTGTAGTAGT TAGTAAAACT GTTGGACATA hLFA-3 CCCAAGCAGC GGTCATTCAA GACACAGATA TGCACTTATA CCCATACCAT GGGTTCGTCG CCAGTAAGTT CTGTGTCTAT ACGTGAATAT GGGTATGGTA hLFA-3 55 · 2751 TAGCAGTAAT TACAACATGT ATTGTGCTGT ATATGAATGG TATTCTGAAA ATCGTCATTA ATGTTGTACA TAACACGACA TATACTTACC ATAAGACTTT

		hLFA-3	3	I3 Pr.
5	2801	ACACTGTCTT TTGGTCTGTC	AACCAACTCC AATTGATTGG TTGGTTGAGG TTAACTAACC I3 Pr.	GAGCTGGCCC
10 ·	2851 ·	AATGTACTAT CTACGTACGATTACATGATA GATGCATGCT	A AACCCGCATC CGCTCCCATT TTGGGCGTAG GCGAGGGTAA I3 Pr.	CAATTCACAT GTTAAGTGTA
10	2901	TGGACAAGGA TAAAATAAAA ACCTGTTCCT ATTTTATTTT	CCACTGGTGG TTTGCGATTC GGTGACCACC AAACGCTAAG I3 Pr.	CGAAATCTGT GCTTTAGACA
15	2951	ACATCATGCA GTGGTTAAAC TGTAGTACGT CACCAATTTG	AAAAACATTT TTATTCTCAA TTTTTGTAAA AATAAGAGTT I3 Pr.	ATGAGATAAA TACTCTATTT
20 .	3001	GTGAAAATAT ATATCATTAT CACTTTTATA TATAGTAATA 13 Pr.	ATTACAAAGT ACAATTATTT TAATGTTTCA TGTTAATAAA hICAM	AGGTTTAATC TCCAAATTAG
25	3051	AATCCCGCGG GCTATGGCTC TTAGGGCGCC CGATACCGAG	CCAGCAGCCC CCGGCCCGCG GGTCGTCGGG GGCCGGGCGC hICAM	CTGCCCGCAC GACGGGCGTG
	3101	TCCTGGTCCT GCTCGGGGCT AGGACCAGGA CGAGCCCCGA	CTGTTCCCAG GACCTGGCAA GACAAGGGTC CTGGACCGTT hicam	TGCCCAGACA ACGGGTCTGT
30	3151	TCTGTGTCCC CCTCAAAAGT AGACACAGGG GGAGTTTTCA	CATCCTGCCC CGGGGAGGCT (GTAGGACGGG GCCCCTCCGA (hICAM	CCGTGCTGGT GGCACGACCA
35	3201	GACATGCAGC ACCTCCTGTG CTGTACGTCG TGGAGGACAC	ACCAGCCCAA GTTGTTGGGC A TGGTCGGGTT CAACAACCCG S hICAM	ATAGAGACCC IATCTCTGGG
40 .	3251	CGTTGCCTAA AAAGGAGTTG GCAACGGATT TTTCCTCAAC	CTCCTGCCTG GGAACAACCG (GAGGACGGAC CCTTGTTGGC (hICAM	GAAGGTGTAT CTTCCACATA
45	3301	GAACTGAGCA ATGTGCAAGA	AGATAGCCAA CCAATGTGCT A TCTATCGGTT GGTTACACGA 1 hICAM	ATTCAAACTG
	3351	GGGACTACCC GTCAGTTGTC	CTAAAACCTT CCTCACCGTG T GATTTTGGAA GGAGTGGCAC F hICAM	TGACCTGAG
50	3401	CAGAACGGGT GGAACTGGCA GTCTTGCCCA CCTTGACCGT	CCCCTCCCT CTTGGCAGCC A GGGGAGGGGA GAACCGTCGG T hICAM	GTGGGCAAG CACCCGTTC
55 ·	3451	AACCTTACCC TACGCTGCCA TTGGAATGGG ATGCGACGGT	GGTGGAGGGT GGGGCACCCC G	GGCCAACCT

hICAM

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5	3501	CACCGTGGTG CTGCTCCGTG GGGAGAAGGA GCTGAAACGG GAGCCAGCTG GTGGCACCAC GACGAGGCAC CCCTCTTCCT CGACTTTGCC CTCGGTCGAC hICAM
10	355 <u>1</u>	TGGGGGAGCC CGCTGAGGTC ACGACCACGG TGCTGGTGAG GAGAGATCAC ACCCCCTCGG GCGACTCCAG TGCTGGTGCC ACGACCACTC CTCTCTAGTG hlcam
10	3601	CATGGAGCCA ATTTCTCGTG CCGCACTGAA CTGGACCTGC GGCCCCAAGG GTACCTCGGT TAAAGAGCAC GGCGTGACTT GACCTGGACG CCGGGGTTCC hICAM
15	3651	GCTGGAGCTG TTTGAGAACA CCTCGGCCCC CTACCAGCTC CAGACCTTTG CGACCTCGAC AAACTCTTGT GGAGCCGGGG GATGGTCGAG GTCTGGAAAC hICAM
20	3701	TCCTGCCAGC GACTCCCCA CAACTTGTCA GCCCCCGGGT CCTAGAGGTG AGGACGGTCG CTGAGGGGGT GTTGAACAGT CGGGGGCCCA GGATCTCCAC hICAM
.25	3751	GACACGCAGG GGACCGTGGT CTGTTCCCTG GACGGGCTGT TCCCAGTCTC CTGTGCGTCC CCTGGCACCA GACAAGGGAC CTGCCCGACA AGGGTCAGAG hICAM
	3801	GGAGGCCCAG GTCCACCTGG CACTGGGGGA CCAGAGGTTG AACCCCACAG CCTCCGGGTC CAGGTGGACC GTGACCCCCT GGTCTCCAAC TTGGGGTGTC hICAM
30	3851	TCACCTATGG CAACGACTCC TTCTCGGCCA AGGCCTCAGT CAGTGTGACC AGTGGATACC GTTGCTGAGG AAGAGCCGGT TCCGGAGTCA GTCACACTGG hICAM
35	3901	GCAGAGGACG AGGGCACCCA GCGGCTGACG TGTGCAGTAA TACTGGGGAA CGTCTCCTGC TCCCGTGGGT CGCCGACTGC ACACGTCATT ATGACCCCTT hICAM
<b>40</b>	3951	CCAGAGCCAG GAGACACTGC AGACAGTGAC CATCTACAGC TTTCCGGCGC GGTCTCGGTC CTCTGTGACG TCTGTCACTG GTAGATGTCG AAAGGCCGCG hICAM
45 .	4001	CCAACGTGAT TCTGACGAAG CCAGAGGTCT CAGAAGGGAC CGAGGTGACA GGTTGCACTA AGACTGCTTC GGTCTCCAGA GTCTTCCCTG GCTCCACTGT hICAM
<b>5</b> 0	4051	GTGAAGTGTG AGGCCCACCC TAGAGCCAAG GTGACGCTGA ATGGGGTTCC CACTTCACAC TCCGGGTGGG ATCTCGGTTC CACTGCGACT TACCCCAAGG hICAM
50	4101	AGCCCAGCCA CTGGGCCCGA GGGCCCAGCT CCTGCTGAAG GCCACCCCAG TCGGGTCGGT GACCCGGGCT CCCGGGTCGA GGACGACTTC CGGTGGGGTC hicam
55	4151	AGGACAACGG GCGCAGCTTC TCCTGCTCTG CAACCCTGGA GGTGGCCGGC TCCTGTTGCC CGCGTCGAAG AGGACGAGAC GTTGGGACCT CCACCGGCCG

### hICAM

	_	~~~~~~~	~~~~	III Chi	~~~~~~~	
5	4201	CAGCTTATAC GTCGAATATG	ACAAGAACCA TGTTCTTGGT	GACCCGGGAG CTGGGCCCTC hICAM	CTTCGTGTCC GAAGCACAGG	TGTATGGCCC ACATACCGGG
	4251	CCGACTGGAC	GAGAGGGATT	GTCCGGGAAA	CTGGACGTGG GACCTGCACC	CCAGAAAATT
	4301	•	AGGTTACACG	GTCCGAACCC hICAM	CCTTGGGTAA	CGGGCTCGAG
15	4351	AAGTGTCTAA TTCACAGATT	AGGATGGCAC TCCTACCGTG	TTTCCCACTG AAAGGGTGAC hICAM	CCCATCGGGG GGGTAGCCCC	AATCAGTGAC TTAGTCACTG
20	4401	TGTCACTCGA ACAGTGAGCT	GATCTTGAGG CTAGAACTCC	GCACCTACCT CGTGGATGGA hICAM	CTGTCGGGCC GACAGCCCGG	AGGAGCACTC TCCTCGTGAG
25	4451	AAGGGGAGGT TTCCCCTCCA	CACCCGCGAG GTGGGCGCTC	GTGACCGTGA CACTGGCACT hICAM	ATGTGCTCTC TACACGAGAG	CCCCCGGTAT GGGGGCCATA
	4501	GAGATTGTCA CTCTAACAGT	TCATCACTGT AGTAGTGACA	GGTAGCAGCC CCATCGTCGG hICAM	GCAGTCATAA CGTCAGTATT	TGGGCACTGC ACCCGTGACG
30	4551	AGGCCTCAGC TCCGGAGTCG	ACGTACCTCT TGCATGGAGA	ATAACCGCCA TATTGGCGGT hICAM	GCGGAAGATC CGCCTTCTAG	AAGAAATACA TTCTTTATGT
35	4601	GACTACAACA	GGCCCAAAAA CCGGGTTTTT	GGGACCCCCA CCCTGGGGGT	TGAAACCGAA ACTTTGGCTT sE/L Pr.	CACACAAGCC GTGTGTTCGG
40	4651	ACGCCTCCCT	GAGCATGCAT CTCGTACGTA	GTAGCTTAAA	AATTGAAATT TTAACTTTAA	
45	4701	AAAAACCTTA	TATTTATTCG	AGCTTCAGCT hB7.1	AATTCCTGCA TTAAGGACGT	ceeccccee
50	4751	ATGGGCCACA TACCCGGTGT	CACGGAGGCA GTGCCTCCGT	GGGAACATCA CCCTTGTAGT hB7.1	CCATCCAAGT GGTAGGTTCA	GTCCATACCT CAGGTATGGA
50	4801	CAATTTCTTT GTTAAAGAAA	CAGCTCTTGG GTCGAGAACC	TGCTGGCTGG ACGACCGACC hB7.1	TCTTTCTCAC AGAAAGAGTG	TTCTGTTCAG AAGACAAGTC
55 ·	. 4851	GTGTTATCCA	CGTGACCAAG	GAAGTGAAAG	AAGTGGCAAC TTCACCGTTG	GCTGTCCTGT

## hB7.1

				UB/•I		
5	4901	GGTCACAATO		AGAGCTGGCA TCTCGACCGT hB7.1	CAAACTCGCA	TCTACTGGCA AGATGACCGT
	4951	TTTCCTCTTC	AAAATGGTGC TTTTACCACG	ACTGATACTA hB7.1	CAGACCTCTG	TACTTATATA
. 10	5001	GGCCCGAGTA	CAAGAACCGG GTTCTTGGCC	ACCATCTTTG	ATATCACTAA TATAGTGATT	TAACCTCTCC ATTGGAGAGG
15	5051	ATTGTGATCC	TGGCTCTGCG ACCGAGACGC	CCCATCTGAC GGGTAGACTG hB7.1	GAGGGCACAT	ACGAGTGTGT TGCTCACACA
20	5101	ACAAGACTTC	TATGAAAAAG ATACTTTTTC	TGCGAAAGTT hB7.1	CGCCCTTGTG	GACCGACTTC
25	5151	TGACGTTATC ACTGCAATAG	AGTCAAAGCT TCAGTTTCGA	GACTTCCCTA CTGAAGGGAT hB7.1	CACCTAGTAT GTGGATCATA	ATCTGACTTT TAGACTGAAA
	5201	GAAATTCCAA	CTTCTAATAT GAAGATTATA	TAGAAGGATA	ATTTGCTCAA	CCTCTGGAGG
30	5251	AAAAGGTCTC	CCTCACCTCT GGAGTGGAGA	CCTGGTTGGA GGACCAACCT hB7.1	TTTACCTCTT	GAATTAAATG CTTAATTTAC
35 ·	5301	CCATCAACAC GGTAGTTGTG	AACAGTTTCC TTGTCAAAGG	CAAGATCCTG GTTCTAGGAC hB7.1	AAACTGAGCT TTTGACTCGA	CTATGCTGTT GATACGACAA
40	5351	AGCAGCAAAC	TGGATTTCAA ACCTAAAGTT	TATGACAACC ATACTGTTGG hB7.1	AACCACAGCT	TCATGTGTCT
45	5401	GTAGTTCATA	GGAČATTTAA CCTGTAAATT	GAGTGAATCA CTCACTTAGT hB7.1	CTGGAAGTTG	ACCTTATGTT
50	5451	CCAAGCAAGA GGTTCGTTCT	GCATTTTCCT CGTAAAAGGA	GATAACCTGC CTATTGGACG hB7.1	TCCCATCCTG AGGGTAGGAC	GGCCATTACC CCGGTAATGG
	5501	TTAATCTCAG' AATTAGAGTC	TAAATGGAAT ATTTACCTTA	TTTCGTGATA AAAGCACTAT hB7.1	ACGACGGACT	CCTACTGCTT GGATGACGAA
55	5551	TGCCCCACGC	TGCAGAGAGA ACGTCTCTCT	GAAGGAGGAA	TGAGAGATTG	AGAAGGGAAA

## hB7.1

		1101 • 1
	5601	GTGTACGCCC TGTATAAAAG CTTTCTAGGT TTTTGTTTAG GGCTGCAGGA CACATGCGGG ACATATTTTC GAAAGATCCA AAAACAAATC CCGACGTCCT
5	5651	ATTCCTCGAG GGATCCCGAT TTTTATGACT AGTTAATCAA ATAAAAAGCA TAAGGAGCTC CCTAGGGCTA AAAATACTGA TCAATTAGTT TATTTTTCGT Ric
10	5701	TACAAGCTAT TGCTTCGCTA TCGTTACAAA ATGGCAGGAA TTTTGTGTAA ATGTTCGATA ACGAAGCGAT AGCAATGTTT TACCGTCCTT AAAACACATT
٠.	5751	Right Arm  ACTAAGCCAC ATACTTGCCA ATGAAAAAA TAGTAGAAAG GATACTATTT TGATTCGGTG TATGAACGGT TACTTTTTTT ATCATCTTC CTATGATAAA
15	5801	Right Arm TAATGGGATT AGATGTTAAG GTTCCTTGGG ATTATAGTAA CTGGGCATCT ATTACCCTAA TCTACAATTC CAAGGAACCC TAATATCATT GACCCGTAGA
20	 5851	Right Arm GTTAACTTTT ACGACGTTAG GTTAGATACT GATGTTACAG ATTATAATAA CAATTGAAAA TGCTGCAATC CAATCTATGA CTACAATGTC TAATATTATT
25	· 5901	Right Arm TGTTACAATA AAATACATGA CAGGATGTGA TATTTTTCCT CATATAACTC ACAATGTTAT TTTATGTACT GTCCTACACT ATAAAAAGGA GTATATTGAG
30	5951	Right Arm TTGGAATAGC AAATATGGAT CAATGTGATA GATTTGAAAA TTTCAAAAAG AACCTTATCG TTTATACCTA GTTACACTAT CTAAACTTTT AAAGTTTTTC
	6001	Right Arm CAAATAACTG ATCAAGATTT ACAGACTATT TCTATAGTCT GTAAAGAAGA GTTTATTGAC TAGTTCTAAA TGTCTGATAA AGATATCAGA CATTTCTTCT
35	6051	Right Arm GATGTGTTTT CCTCAGAGTA ACGCCTCTAA ACAGTTGGGA GCGAAAGGAT CTACACAAAA GGAGTCTCAT TGCGGAGATT TGTCAACCCT CGCTTTCCTA
<b>40</b>	6101	Right Arm GCGCTGTAGT TATGAAACTG GAGGTATCTG ATGAACTTAG AGCCCTAAGA CGCGACATCA ATACTTTGAC CTCCATAGAC TACTTGAATC TCGGGATTCT
45	6151	Right Arm  AATGTTCTGC TGAATGCGGT ACCCTGTTCG AAGGACGTGT TTGGTGATAT TTACAAGACG ACTTACGCCA TGGGACAAGC TTCCTGCACA AACCACTATA
50	6201	Right Arm CACAGTAGAT AATCCGTGGA ATCCTCACAT AACAGTAGGA TATGTTAAGG GTGTCATCTA TTAGGCACCT TAGGAGTGTA TTGTCATCCT ATACAATTCC
J0	6251	Right Arm AGGACGATGT CGAAAACAAG AAACGCCTAA TGGAGTGCAT GTCCAAGTTT TCCTGCTACA GCTTTTGTTC TTTGCGGATT ACCTCACGTA CAGGTTCAAA
55		Right Arm

	6301	AGGGGGCAAG AAATACAAGT TCTAGGATGG TATTAATAAG TATCTAAGTA TCCCCCGTTC TTTATGTTCA AGATCCTACC ATAATTATTC ATAGATTCAT					
	Disk benefit						
_	6251	Right Arm					
Э.	6351	TTTGGTATAA TTTATTAAAT AGTATAATTA TAACAAATAA TAAATAACAT AAACCATATT AAATAATTTA TCATATTAAT ATTGTTTATT ATTTATTGTA					
		AMACCAINII AMAIMAIIIM ICAIMIIMAI MIIGIIIMII AIIIMIIGIA					
		Right Arm					
	6401	GATAACGGTT TTTATTAGAA TAAAATAGAG ATAATATCAT AATGATATAT					
10		CTATTGCCAA AAATAATCTT ATTTTATCTC TATTATAGTA TTACTATATA					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
		Right, Arm					
	6451	AATACTTCAT TACCAGAAAT GAGTAATGGA AGACTTATAA ATGAACTGCA					
•		TTATGAAGTA ATGGTCTTTA CTCATTACCT TCTGAATATT TACTTGACGT					
15	•						
	•	Right Arm					
	6501	TAAAGCTATA AGGTATAGAG ATATAAATTT AGTAAGGTAT ATACTTAAAA					
		ATTTCGATAT TCCATATCTC TATATTTAAA TCATTCCATA TATGAATTTT					
20		n n					
20	· 6551	Right Arm AATGCAAATA CAATAACGTA AATATACTAT CAACGTCTTT GTATTTAGCC					
	. 6221	TTACGTTTAT GTTATTGCAT TTATATGATA GTTGCAGAAA CATAAATCGG					
	7	TIACGITIAT GITATIGCAT TIATATGATA GITGCAGAAA CATAAATCGG					
		Right Arm					
25	6601	GTAAGTATTT CTGATATAGA AATGGTAAAA TTATTACTAG AACACGGTGC					
		CATTCATAAA GACTATATCT TTACCATTTT AATAATGATC TTGTGCCACG					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
		Right Arm					
	6651	CGATATTTTA AAATGTAAAA ATCCTCCTCT TCATAAAGCT GCTAGTTTAG					
30		GCTATAAAAT TTTACATTTT TAGGAGGAGA AGTATTTCGA CGATCAAATC					
		71					
•	6701	Right Arm ATAATACAGA AATTGCTAAA CTACTAATAG ATTCTGGGGC TGACATAGAA					
	0701	TATTATGTCT TTAACGATTT GATGATTATC TAAGACCGCG ACTGTATCTT					
35	•						
		Right Arm					
	6751.	CAGATACATT CTGGAAATAG TCCGTTATAT ATTTCTGTAT ATAGAAACAA					
		GTCTATGTAA GACCTTTATC AGGCAATATA TAAAGACATA TATCTTTGTT					
	-	_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
40		Right Arm					
	6801	TAAGTCATTA ACTAGATATT TATTAAAAAA AGGTGTTAAT TGTAATAGAT					
		ATTCAGTAAT TGATCTATAA ATAATTTTTT TCCACAATTA ACATTATCTA					
45		Right Arm					
45	6851	TCTTTCTAAA TTATTACGAT GTACTGTATG ATAAGATATC TGATGATATG					
		AGAAAGATTT AATAATGCTA CATGACATAC TATTCTATAG ACTACTATAC					
		Right Arm					
	6901	TATAAAATAT TTATAGATTT TAATATTGAT CTTAATATAC AAACTAGAAA					
50		ATATTTTATA AATATCTAAA ATTATAACTA GAATTATATG TTTGATCTTT					
٠.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	•	Right Arm					
	6951	TTTTGAAACT CCGTTACATT ACGCTATAAA GTATAAGAAT ATAGATTTAA					
• •	•	AAAACTTTGA GGCAATGTAA TGCGATATTT CATATTCTTA TATCTAAATT					
55		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
		Right Arm					

	7001	TTAGGATATT GTTAGATAAT AGTATTAAAA TAGATAAAAG TTTATTTTTG AATCCTATAA CAATCTATTA TCATAATTTT ATCTATTTTC AAATAAAAAC				
		Right Arm				
5	7051	CATAAACAGT ATCTCATAAA GGCACTTAAA AATAATTGTA GTTACGATAT GTATTTGTCA TAGAGTATTT CCGTGAATTT TTATTAACAT CAATGCTATA				
		Right Arm				
10	7101	AATAGCGTTA CTTATAAATC ACGGAGTGCC TATAAACGAA CAAGATGATT TTATCGCAAT GAATATTTAG TGCCTCACGG ATATTTGCTT GTTCTACTAA				
		Right Arm				
	7151	TAGGTAAAAC CCCATTACAT CATTCGGTAA TTAATAGAAG AAAAGATGTA				
		ATCCATTTIG GGGTAATGTA GTAAGCCATT AATTATCTTC TTTTCTACAT				
15		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	7201	Right Arm				
	7201	ACAGCACTTC TGTTAAATCT AGGAGCTGAT ATAAACGTAA TAGATGACTG TGTCGTGAAG ACAATTTAGA TCCTCGACTA TATTTGCATT ATCTACTGAC				
	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
20		Right Arm				
	7251	TATGGGCAGT CCCTTACATT ACGCTGTTTC ACGTAACGAT ATCGAAACAA				
	. •	ATACCCGTCA GGGAATGTAA TGCGACAAAG TGCATTGCTA TAGCTTTGTT				
		Right Arm				
25	7301	CAAAGACACT TTTAGAAAGA GGATCTAATG TTAATGTGGT TAATAATCAT				
		GTTTCTGTGA AAATCTTTCT CCTAGATTAC AATTACACCA ATTATTAGTA				
		Right Arm				
	7351	ATAGATACCG TTCTAAATAT AGCTGTTGCA TCTAAAAACA AAACTATAGT				
30		TATCTATGGC AAGATTTATA TCGACAACGT AGATTTTTGT TTTGATATCA				
•	7401	Right Arm AAACTTATTA CTGAAGTACG GTACTGATAC AAAGTTGGTA GGATTAGATA				
•	7401	TTTGAATAAT GACTTCATGC CATGACTATG TTTCAACCAT CCTAATCTAT				
35		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
•		Right Arm				
	7451	AACATGTTAT TCACATAGCT ATAGAAATGA AAGATATTAA TATACTGAAT TTGTACAATA AGTGTATCGA TATCTTTACT TTCTATAATT ATATGACTTA				
	•	TIGIACAATA AGIGIATCGA TATCTITACT TICTATAATT ATATGACTTA				
40		Right Arm				
	7501	GCGATCTTAT TATATGGTTG CTATGTAAAC GTCTATAATC ATAAAGGTTT				
•	•	CGCTAGAATA ATATACCAAC GATACATTTG CAGATATTAG TATTTCCAAA				
	•	Right Arm				
45	7551	CACTCCTCTA TACATGGCAG TTAGTTCTAT GAAAACAGAA TTTGTTAAAC				
		GTGAGGAGAT ATGTACCGTC AATCAAGATA CTTTTGTCTT AAACAATTTG				
		***************************************				
	7601	Right Arm TCTTACTTGA CCACGGTGCT TACGTAAATG CTAAAGCTAA GTTATCTGGA				
50	, ,	AGAATGAACT GGTGCCACGA ATGCATTTAC GATTTCGATT CAATAGACCT				
	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	7655	Right Arm				
	7,651	AATACTCCTT TACATAAAGC TATGTTATCT AATAGTTTTA ATAATATAAA TTATGAGGAA ATGTATTTCG ATACAATAGA TTATCAAAAT TATTATATTT				
55	•	TIMIGMOGMA MIGIMITICS MIMCMATAGA TTATCAMAAT TATTATATTT				

					•	•
			R	ight Arm		
	7701	ATTACTTTTA	TCTTATAACG	CCGACTATAA	TTCTCTAAAT	AATCACGGTA
		TAATGAAAAT	AGAATATTGC	GGCTGATATT	AAGAGATTTA	TTAGTGCCAT
5		~~~~~~~		ight Arm	~~~~~~~~	~~~~~~~
,	7751	ATACGCCTCT			ATGACAAGAT	accupate auc
		TATGCGGAGA	TTGAACACAA	TCGAAAAATC	TACTGTTCTA	TCGATAATAC
		~~~~~~~	~~~~~~	~~~~~~~~	~~~~~~~	~~~~~~
				ight Arm		
10	7801				AAAAATCCTG	
		TATTATAGAT	TTTACTACAA	TCTTTATAGA	TTTTTAGGAC	TTTATCĢATT
		~~~~~~~	~~~~~~~~	~~~~~~~~~~. ! ~b.t 7	~~~~~~~	~~~~~~~
	7851	ጥጥሮ እር ል አርርጥ		ight Arm	TATAAACAGT	እእመአአአአርክር
15	7031				ATATTTGTCA	
		~~~~~~~	~~~~~~~	~~~~~~~~	~~~~~~~~	
			R.	ight Arm		
	7901	TACTATCTAT	AAAAGAATCA	TGCGAAAAAG	AACTAGATGT	TATAACACAT
		ATGATAGATA	TTTTCTTAGT	ACGCTTTTTC	TTGATCTACA	ATATTGTGTA
20 .		~~~~~~~	~~~~~~~~	~~~~~~~~~~~. }b_b	~~~~~~~	~~~~~~
	7951	ስ ጥ ስ ስ ስ ር ጥ ጥ ስ ስ	K: מיייריים מייים את	ight Arm	ATCTTTCTTG	,
	, 7931	TATTTCAATT	TAACATATAT	ADCADATTA	TAGAAAGAAC	TCTTATCTA
		~~~~~~~	~~~~~~~~	~~~~~~~~~~		
25				ight Arm		
	8001	AGATCTTATG	GTAAAGTTCG	TAACTAATCC	TAGAGTTAAT	AAGATACCTG
•		TCTAGAATAC	CATTTCAAGC	ATTGATTAGG	ATCTCAATTA	TTCTATGGAC
		~~~~~~~		laht Aum		~~~~~~~
30	8051	CATGTATACG		ight Arm	GGAAAAATAA	አ ጥር አጥጥአር ርጥ
		GTACATATGC	ATATATATCC	CTTAATTATG	CCTTTTTATT	TAGTAATCGA
		~~~~~~			~~~~~~~~	~~~~~~~~
		•	R	ight Arm		
25	8101	TTTCATAGAC	ATCAGCTAAT	AGTTAAAGCT	GTAAAAGAGA	GTAAGAATCT
35		AAAGTATCTG	TAGTCGATTA	TCAATTTCGA	CATTTTCTCT	CATTCTTAGA
			Ri	ght Arm	. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.~~~~~~~
	8151	AGGAATAATA	GGTAGGTTAC	CTATAGATAT	CAAACATATA	ATAATGGAAC
					GTTTGTATAT	
40	•	~~~~~~~				.~~~~~~
				ght Arm		
•	8201				TCACCAGCTG	
		ATAATICATI	ATTACTAAAT	GTAAGACAAT	AGTGGTCGAC	AACATTGGGT
45			Ri	ght Arm		
-	8251	GTAGTATAAA	GAGCTCCAGC	TTTTGTTCCC	TTTAGTGAGG	GTTAATTCCG
		CATCATATTT	CTCGAGGTCG	AAAACAAGGG	AAATCACTCC	CAATTAAGGC
		~~~~~~	.~~~~			
·50	0005	Right Ar				
50	8301				CCTGTGTGAA	
	0251	CCTCACAATT	CCACACACA	TATCGACAAA	GGACACACTT	TAACAATAGG
	8351	CGAGTGTTAA	GGTGTGTTGT	ATCCTCCCCC	AAGCATAAAG TTCGTATTTC	TGTAAAGCCT ACATTTCCCA
	8401	GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT	GCGCTCACTC
55	-	CCCCACGGAT	TACTCACTCG	ATTGAGTGTA	ATTAACGCAA	CGCGAGTGAC
	8451	CCCGCTTTCC	AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG

						•
		GGGCGAAAGG	TCAGCCCTTT	GGACAGCACG	GTCGACGTAA	TTACTTAGCC
	8501				TGGGCGCTCT	
		GGTTGCGCGC	CCCTCTCCGC	CAAACGCATA	ACCÇGCGAGA	AGGCGAAGGA
	8551				GGCTGCGGCG	
5	•	GCGAGTGACT	GAGCGACGCG	AGCCAGCAAC	CCGACGCCGC	TCGCCATAGT
	8601	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	GGGATAACGC
•	•	CGAGTGAGTT	TCCGCCATTA	TGCCAATAGG	TGTCTTAGTC	CCCTATTGCG
	8651	AGGAAAGAAC	ATGTGAGCAA	AAGGCCAGCA	AAAGGCCAGG	AACCGTAAAA
		TCCTTTCTTG	TACACTCGTT	TTCCGGTCGT	TTTCCGGTCC	TTGGCATTTT
10	8701 ·	• AGGCCGCGTT	GCTGGCGTTT	TTCCATAGGC	TCÇGCCCCC	TGACGAGCAT
	•	TCCGGCGCAA	CGACCGCAAA	AAGGTATCCG	AGGCGGGGG	ACTGCTCGTA
	8751	CACAAAAATC	GACGCTCAAG	TCAGAGGTGG	CGAAACCCGA	CAGGACTATA
	•	GTGTTTTTAG	CTGCGAGTTC	AGTCTCCACC	GCTTTGGGCT	GTCCTGATAT
	· 8801	AAGATACCAG	GCGTTTCCCC	CTGGAAGCTC	CCTCGTGCGC	TCTCCTGTTC
15		TTCTATGGTC	CGCAAAGGGG	GACCTTCGAG	GGAGCACGCG	AGAGGACAAG
	8851	CGACCCTGCC	GCTTACCGGA	TACCTGTCCG	CCTTTCTCCC	TTCGGGAAGC
•		GCTGGGACGG	CGAATGGCCT	ATGGACAGGC	GGAAAGAGGG	AAGCCCTTCG
	8901	GTGGCGCTTT	CTCATAGCTC	ACGCTGTAGG	TATCTCAGTT	CGGTGTAGGT
		CACCGCGAAA	GAGTATCGAG	TGCGACATCC	ATAGAGTCAA	GCCACATCCA
20	8951	CGTTCGCTCC	AAGCTGGGCT	GTGTGCACGA	ACCECCCGTT	CAGCCCGACC
. •	• .	GCAAGCGAGG	TTCGACCCGA	CACACGTGCT	TGGGGGGCAA	GTCGGGCTGG
	9001	GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG	AGTCCAACCC	GGTAAGACAC
	•	CGACGCGGAA	TAGGCCATTG	ATAGCAGAAC	TCAGGTTGGG	CCATTCTGTG
	9051	GACTTATCGC	CACTGGCAGC	AGCCACTGGT	AACAGGATTA	GCAGAGCGAG
.25		CTGAATAGCG	GTGACCGTCG	TCGGTGACCA	TTGTCCTAAT	CGTCTCGCTC
.*	9101	GTATGTAGGC	GGTGCTACAG	AGTTCTTGAA	GTGGTGGCCT	AACTACGGCT
٠.		CATACATCCG	CCACGATGTC	TCAAGAACTT	CACCACCGGA.	TTGATGCCGA
	9151	ACACTAGAAG	GACAGTATTT	GGTATCTGCG	CTCTGCTGAA	GCCAGTTACC
		TGTGATCTTC	CTGTCATAAA	CCATAGACGC	GAGACGACTT	CGGTCAATGG
30	9201	TTCGGAAAAA	GAGTTGGTAG	CTCTTGATCC	GGCAAACAAA	CCACCCCTCC
		AAGCCTTTTT	CTCAACCATC	GAGAACTAGG	CCGTTTGTTT	GGTGGCGACC
	9251	TAGCGGTGGT	TTTTTTGTTT	GCAAGCAGCA	GATTACGCGC.	ACAAAAAAAC
		ATCGCCACCA	AAAAAACAAA	CGTTCGTCGT	CTAATGCGCG	ТСТТТТТТ
. •	9301	GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA	CGGGGTCTGA	CGCTCAGTGG
35		CTAGAGTTCT	TCTAGGAAAC	TAGAAAAGAT	GCCCCAGACT	GCGAGTCACC
	9351	AACGAAAACT	CACGTTAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT
			GTGCAATTCC	CTAAAACCAG	TACTCTAATA	GTTTTTTCCT1
	9401	CTTCACCTAG	ATCCTTTTAA	ATTAAAAATG	AAGTTTTAAA	TCDATCTDAD
	• •	GAAGTGGATC	TAGGAAAATT	TAATTTTTAC	TTCAAAATTT	AGTTAGATTT
40	9451	GTATATATGA	GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	AATCAGTGAG
		CATATATACT	CATTTGAACC	AGACTGTCAA	TGGTTACGAA	TTACTCACTC
·	9501	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	TTGCCTGACT
		CGTGGATAGA	GTCGCTAGAC	AGATAAAGCA	AGTAGGTATC	AACGGACTGA
	9551	CCCCGTCGTG	TAGATAACTA	CGATACGGGA	GGGCTTACCA	TCTCCCCCCA
45	-	GGGGCAGCAC	ATCTATTGAT	GCTATGCCCT	CCCGAATGGT	AGACCCCCCT
	9601	GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	ACATTTATCA
		CACGACGTTA	CTATGGCGCT	CTGGGTGCGA	GTGGCCGAGG	TOTADATACT
•	9651	GCAATAAACC	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	CHCCHCCNVC
		CGTTATTTGG	TOGGTOGGCC	TTCCCGGCTC	GCGTCTTCAC	CACCACCOMC
50	9701	TTTATCCGCC	TCCATCCAGT	СПРАППРАВППС	TTGCCGGGAA	CAGGACGIIG
·		AAATAGGCGG	AGGTAGGTCA	CATABTTAAC	AACGGCCCTT	CCAMCMCAMM ·
	9751	GTAGTTCGCC	АСТТАВТАСТ	TTGCGCAACC	TTGTTGCCAT	TCCTACATT
	- · 	CATCAAGCGG	ТСДДТТДТТСТ	AACCCCTTCC	AACAACGGTA	TGC THCHGGC
. .	9801	ATCGTGGTGT	CACGCTCGTC	CTTTCCCG11GC		ACGATGTCCG
55		TAGCACCACA	GTCCCTCGTC	CITIOGINIG	CCTICATICA	GCICCGGTTC
JJ		INCONCONCA	GIGCGAGCAG	CAAACCATAC	CGAAGTAAGT	CGAGGCCAAG

25	10451	TCCCCGAAAA	A GTGCCACCI	G AGGGGCTT	TT CACGGTG	GAC
		TATAAACTTA	CATAAATCTT	TTTATTTGTT	TATCCCCAAG	GCGCGTGTAA
•	10401	ATATTTGAAT	GTATTTAGAA	AAATAAACAA	ATAGGGGTTC	CGCGCACATT
		AAGTTATAAT	AACTTCGTAA	ATAGTCCCAA	TAACAGAGTA	CTCGCCTATG
	10351	TTCAATATTA	TTGAAGCATT	TATCAGGGTT	ATTGTCTCAT	GAGCGGATAC
20 .		TTTCCCTTAT	TCCCGCTGTG	CCTTTACAAC	TTATGAGTAT	GAGAAGGAAA
•	10301	AAAGGGAATA	AGGGCGACAC	GGAAATGTTG	AATACTCATA.	CTCTTCCTTT
•		AAGTGGTCGC	AAAGACCCAC	TCGTTTTTGT	CCTTCCGTTT	TACGGCGTTT
	10251	TTCACCAGCG	TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA
		CAAGCTACAT	TGGGTGAGCA	CGTGGGTTGA	CTAGAAGTCG	TAGAAAATGA
15	10201	GTTCGATGTA	ACCCACTCGT	GCACCCAACT		
		TGCAAGAAGC	CCCGCTTTTG	AGAGTTCCTA	GAATGGCGAC	AACTCTAGGT
٠.	10151	ACGTTCTTCG		TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA
		CTATTATGGC			TTTCACGAGT	AGTAACCTTT
	10101 .		CGCCACATAG			TCATTGGAAA
10			ATACGCCGCT			CAGTTATGCC
	10051		TATGCGGCGA			GTCAATACGG
		TAGGCATTCT	ACGAAAAGAC			TTCAGTAAGA
	10001	ATCCGTAAGA			GTACTCAACC	
-			ACCAATACCG			
5	9951		TGGTTATGGC			
			GCCAGGAGGC			
	9901					GGCCGCAGTG
		GGTTGCTAGT			GTACAACACG	
	9851	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	AAAAAAGCGG

FIGURE 3: Donor plasmid p1132

•			C5	Right Arm		
		~~~~~~~	~~~~~~~~	~~~~~~~		~~~~~~
5	1	TGAATGTTAA ACTTACAATT	TACAATATGA	TTGGATGAA( AACCTACTT( Right Arm	G CTATAAATAT C GATATTTATA	GCATTGGAAA CGTAACCTTT
10	51	AATAATCCAT TTATTAGGTA	AATTTCTTTC C5	GATTCAAATA CTAAGTTTAT Right Arm	CTACAAAACC GATGTTTTGG	TAAGCGATAA ATTCGCTATT
15	101	TATGTTAACT ATACAATTGA	AAGCTTATTC TTCGAATAAG C5	TTAACGACGC AATTGCTGCC Right Arm		GTGTTTATTT
	<b>151</b>	CATAATTTTT GTATTAAAAA	GTATAACCTA CATATTGGAT	ACAAATAACT	AAAACATAAA TTTTGTATTT	ААТААТААА
20	201	GGAAATGTAA CCTTTACATT	ATAGCATTAA C5	TAAAATGAGT Right Arm	GGAATGGGGT	TAAATATTTA ATTTATAAAT
25	251	TATCACGTGT ATAGTGCACA	ATATCTATAC TATAGATATG	TGTTATCGTA ACAATAGCAT Right Arm	TACTCTTTAC ATGAGAAATG	AATTACTATT TTAATGATAA
30	301	ACGAATATGC TGCTTATACG	AAGAGATAAT TTCTCTATTA C5	AAGATTACGT	ATTTAAGAGA TAAATTCTCT	ATCTTGTCAT TAGAACAGTA
35	351	GATAATTGGG CTATTAACCC	TACGACATAG ATGCTGTATC C5	TGATAAATGC ACTATTTACG Right Arm	TATTTCGCAT ATAAAGCGTA	GCAATGTATT
	401	AGTCAGTTGG TCAGTCAACC	AAAGATGGAT TTTCTACCTA	TTGACAGATG	TAACTTAATA ATTGAATTAT	GGTGCAAAAA
40	451	TGTTAAATAA ACAATTTATT	GTCGTAAGAT	TCGGAAGATA AGCCTTCTAT Right Arm	GGATACCAGT CCTATGGTCA	TATATTATAC ATATAATATG
45	501	AAAAATCACT TTTTTAGTGA	CCAACCTATT	TTGTCTAAGA Right Arm	GCAATATTCG CGTTATAAGC	ATTTTCTACT
<b>50</b> _.	. 551	AGATTACTGC (	CTTAAACATT C5	ACTATGACAA TGATACTGTT Right Arm	TAAAAAGCCA ATTTTTCGGT	TTTATCTCAA
	601	CGACATCGTG CGCTGTAGCAC	TAATTCTTCC ATTAAGAAGG	ATGTTTTATG	TATGTGTTTC ATACACAAAG	AGATATTATG TCTATAATAC

## C5 Right Arm

		oo my
5	651	AGATTACTAT AAACTTTTTG TATACTTATA TTCCGTAAAC TATATTAATC TCTAATGATA TTTGAAAAAC ATATGAATAT AAGGCATTTG ATATAATTAG C5 Right Arm
10	701	ATGAAGAAA TGAAAAAGTA TAGAAGCTGT TCACGAGCGG TTGTTGAAAA TACTTCTTTT ACTTTTCAT ATCTTCGACA AGTGCTCGCC AACAACTTTT C5 Right Arm
1£	<b>751</b> .	CAACAAAATT ATACATTCAA GATGGCTTAC ATATACGTCT GTGAGGCTAT GTTGTTTTAA TATGTAAGTT CTACCGAATG TATATGCAGA CACTCCGATA C5 Right Arm
15	801	
20	851	
25	901	ATGTTCAAGA ATACCGAGGC TATAAAAATC TTGATGAGGT ATGGAGCTAA TACAAGTTCT TATGGCTCCG ATATTTTTAG AACTACTCCA TACCTCGATT C5 Right Arm
30	951	ACCTGTAGTT ACTGAATGCA CAACTTCTTG TCTGCATGAT GCGGTGTTGA TGGACATCAA TGACTTACGT GTTGAAGAAC AGACGTACTA CGCCACAACT C5 Right Arm
35	1001	GAGACGACTA CAAAATAGTG AAAGATCTGT TGAAGAATAA CTATGTAAAC CTCTGCTGAT GTTTTATCAC TTTCTAGACA ACTTCTTATT GATACATTTG C5 Right Arm
	1051	AATGTTCTTT ACAGCGGAGG CTTTACTCCT TTGTGTTTGG CAGCTTACCT TTACAAGAAA TGTCGCCTCC GAAATGAGGA AACACAAACC GTCGAATGGA C5 Right Arm
40	1101	TAACAAAGTT AATTTGGTTA AACTTCTATT GGCTCATTCG GCGGATGTAG ATTGTTTCAA TTAAACCAAT TTGAAGATAA CCGAGTAAGC CGCCTACATC C5 Right Arm
45	1151	ATATTTCAAA CACGGATCGG TTAACTCCTC TACATATAGC CGTATCAAAT TATAAAGTTT GTGCCTAGCC AATTGAGGAG ATGTATATCG GCATAGTTTA  C5 Right Arm
50	1201	AAAAATTTAA CAATGGTTAA ACTTCTATTG AACAAAGGTG CTGATACTGA TTTTTAAATT GTTACCAATT TGAAGATAAC TTGTTTCCAC GACTATGACT  C5 Right Arm
	1251	CTTGCTGGAT AACATGGGAT GTACTCCTTT AATGATCGCT GTACAATCTG GAACGACCTA TTGTACCCTA CATGAGGAAA TTACTAGCGA CATGTTAGAC

55 ·

#### C5 Right Arm 1301 GAAATATTGA AATATGTAGC ACACTACTTA AAAAAAATAA AATGTCCAGA C5 Right Arm ACTGGGAAAA ATTGATCTTG CCAGCTGTAA TTCATGGTAG AAAAGAAGTG 1351 TGACCCTTTT TAACTAGAAC GGTCGACATT AAGTACCATC TTTTCTTCAC C5 Right Arm 10 1401 CTCAGGCTAC TTTTCAACAA AGGAGCAGAT GTAAACTACA TCTTTGAAAG GAGTCCGATG AAAAGTTGTT TCCTCGTCTA CATTTGATGT AGAAACTTTC C5 Right Arm 1451 AAATGGAAAA TCATATACTG TTTTGGAATT GATTAAAGAA AGTTACTCTG 15 TTTACCTTTT AGTATATGAC AAAACCTTAA CTAATTTCTT TCAATGAGAC . C5 Right Arm AGACACAAAA GAGGTAGCTG AAGTGGTACT CTCAAAGGTA CGTGACTAAT 1501 20 TCTGTGTTTT CTCCATCGAC TTCACCATGA GAGTTTCCAT GCACTGATTA Repeat Region 1551 TAGCTATAAA AAGGATCGGC CGCTCTAGAA CTAGTGGATC GGGTTCTTTA ATCGATATTT TTCCTAGCCG GCGAGATCTT GATCACCTAG CCCAAGAAAT 25 Repeat Region . TTCTATACTT AAAAAGTGAA AATAAATACA AAGGTTCTTG AGGGTTGTGT 1601 AAGATATGAA TTTTTCACTT TTATTTATGT TTCCAAGAAC TCCCAACACA Repeat Region 30 1651 TAAATTGAAA GCGAGAAATA ATCATAAATT ATTTCATTAT CGCGATATCC ATTTAACTTT CGCTCTTTAT TAGTATTTAA TAAAGTAATA GCGCTATAGG Repeat Region 35 GTTAAGTTTG TATCGTACCC CGATCCCCCG AGCCATGCAG GCCGAAGGCC 1701 CAATTCAAAC ATAGCATGGG GCTAGGGGGC TCGGTACGTC CGGCTTCCGG Repeat Region GGGGCACAGG GGGTTCGACG GGCGATGCTG ATGGCCCAGG AGGCCCTGGC 1751 CCCCGTGTCC CCCAAGCTGC CCGCTACGAC TACCGGGTCC TCCGGGACCG 40 Repeat Region ATTCCTGATG GCCCAGGGGG-CAATGCTGGC GGCCCAGGAG AGGCGGGTGC 1801 TAAGGACTAC CGGGTCCCC GTTACGACCG CCGGGTCCTC TCCGCCCACG 45 Repeat Region CACGGGCGC AGAGGTCCCC GGGGCGCAGG GGCAGCAAGG GCCTCGGGGC 1851 GTGCCCGCCG TCTCCAGGGG CCCCGCGTCC CCGTCGTTCC CGGAGCCCCG Repeat Region 50 1901 Repeat Region 55 1951 AATGGATGCT GCAGATGCGG GGCCAGGGGG CCGGAGAGCC GCCTGCTTGA TTACCTACGA CGTCTACGCC CCGGTCCCCC GGCCTCTCGG CGGACGAACT

## Repeat Region

		~~~~~~~	~~~~~~~	 ~~~~~~~~~~	~~~	•
5	2001					ATAGCTTAAG r
	2051		GTGATCAAGA	AGAGGATCAT TCTCCTAGTA B promoter	TATTTAACGT ATAAATTGCA	AAACTAAATG TTTGATTTAC
10	2101		AATGTCCATG C1	ATACGGTGTT TATGCCACAA B promoter	AAAGACCTTA	CAAATGATTC GTTTACTAAG
15	2151	ACTAAAACTC	GATTTTATCA CTAAAATAGT C11	ATACAATAAT TATGTTATTA B promoter	GACAGTGCTA CTGTCACGAT	ACTGGTAAAA TGACCATTTT
20	2201	AAGAAAGCAA TTCTTTCGTT	ACAATTATCA TGTTAATAGT Cli	TGGCTAACAA ACCGATTGTT B promoter	TTTTTATTAT	ATTTGTAGTA
25	2251	TGCATAGTGG	AGAAATGCAA oter	TCTTTATTTA AGAAATAAAT		CAATTCTAAT
	2301	AATGGAGTAA	TTGGATCCCC	CATCGATGGG GTAGCTACCC LacZ	GAATTCACTG	GCCGTCGTTT
30	2351	TACAACGTCG ATGTTGCAGC	ACTGACCCTT	AACCCTGGCG TTGGGACCGC LacZ	AATGGGTTGA	TAATCGCCTT ATTAGCGGAA
35	2401	GCAGCACATC	CCCCTTTCGC	CAGCTGGCGT GTCGACCGCA LacZ	AATAGCGAAG	AGGCCCGCAC
40	2451	GCTAGCGGGA	AGGGTTGTCA	TGCGCAGCCT ACGCGTCGGA LacZ	CTTACCGCTT	ACCGCGAAAC
45	2501	CCTGGTTTCC	CCGTGGTCTT	GCGGTGCCGG CGCCACGGCC LacZ	TTTCGACCGA	GGAGTGCGAT CCTCACGCTA
	2551		CCGATACTGT	CGTCGTCCCC GCAGCAGGGG Lacz	TCAAACTGGC	AGATGCACGG
50	2601	TTACGATGCG AATGCTACGC	CCCATCTACA GGGTAGATGT	LacZ	CTATCCCATT GATAGGGTAA	ACGGTCAATC TGCCAGTTAG
55	2651	CGCCGTTTGT	TCCCACGGAG	AATCCGACGG TTAGGCTGCC	GTTGTTACTC	GCTCACATTT

Lac2 2701 AATGTTGATG AAAGCTGGCT ACAGGAAGGC CAGACGCGAA TTATTTTTGA TTACAACTAC TTTCGACCGA TGTCCTTCCG GTCTGCGCTT AATAAAAACT 5 TGGCGTTAAC TCGGCGTTTC ATCTGTGGTG CAACGGGCGC TGGGTCGGTT ACCGCAATTG AGCCGCAAAG TAGACACCAC GTTGCCCGCG ACCCAGCCAA LacZ 10 2801 ACGGCCAGGA CAGTCGTTTG CCGTCTGAAT TTGACCTGAG CGCATTTTTA TGCCGGTCCT GTCAGCAAAC GGCAGACTTA AACTGGACTC GCGTAAAAAT LacZ 15 CGCGCCGGAG AAAACCGCCT CGCGGTGATG GTGCTGCGCT GGAGTGACGG GCGCGGCCTC TTTTGGCGGA GCGCCACTAC CACGACGCGA CCTCACTGCC LaçZ 2901 CAGTTATCTG GAAGATCAGG ATATGTGGCG GATGAGCGGC ATTTTCCGTG 20 GTCAATAGAC CTTCTAGTCC TATACACCGC CTACTCGCCG TAAAAGGCAC LacZ ACGTCTCGTT GCTGCATAAA CCGACTACAC AAATCAGCGA TTTCCATGTT 2951 TGCAGAGCAA CGACGTATTT GGCTGATGTG TTTAGTCGCT AAAGGTACAA 25 LacZ 3001 GCCACTCGCT TTAATGATGA TTTCAGCCGC GCTGTACTGG AGGCTGAAGT CGGTGAGCGA AATTACTACT AAAGTCGGCG CGACATGACC TCCGACTTCA LacZ 30 TCAGATGTGC GGCGAGTTGC GTGACTACCT ACGGGTAACA GTTTCTTTAT AGTCTACACG CCGCTCAACG CACTGATGGA TGCCCATTGT CAAAGAAATA 35 3101 . GGCAGGGTGA AACGCAGGTC GCCAGCGGCA CCGCGCCTTT CGGCGGTGAA CCGTCCCACT TTGCGTCCAG CGGTCGCCGT GGCGCGGAAA GCCGCCACTT LacZ ATTATCGATG AGCGTGGTGG TTATGCCGAT CGCGTCACAC TACGTCTGAA 40 TAATAGCTAC TCGCACCACC AATACGGCTA GCGCAGTGTG ATGCAGACTT LacZ CGTCGAAAAC CCGAAACTGT GGAGCGCCGA AATCCCGAAT CTCTATCGTG GCAGCTTTTG GGCTTTGACA CCTCGCGGCT TTAGGGCTTA GAGATAGCAC 45 LacZ 3251 CGGTGGTTGA ACTGCACACC GCCGACGGCA CGCTGATTGA AGCAGAAGCC GCCACCAACT TGACGTGTGG CGGCTGCCGT GCGACTAACT TCGTCTTCGG LacZ 50 3301 TGCGATGTCG GTTTCCGCGA GGTGCGGATT GAAAATGGTC TGCTGCTGCT ACGCTACAGC CAAAGGCGCT CCACGCCTAA CTTTTACCAG ACGACGACGA LacZ **55** 3351 GAACGGCAAG CCGTTGCTGA TTCGAGGCGT TAACCGTCAC GAGCATCATC CTTGCCGTTC GGCAACGACT AAGCTCCGCA ATTGGCAGTG CTCGTAGTAG

LacZ CTCTGCATGG TCAGGTCATG GATGAGCAGA CGATGGTGCA GGATATCCTG 3401 GAGACGTACC AGTCCAGTAC CTACTCGTCT GCTACCACGT CCTATAGGAC 5 LacZ 3451 CTGATGAAGC AGAACAACTT TAACGCCGTG CGCTGTTCGC ATTATCCGAA GACTACTTCG TCTTGTTGAA ATTGCGGCAC GCGACAAGCG TAATAGGCTT LacZ . 10 CCATCCGCTG TGGTACACGC TGTGCGACCG CTACGGCCTG TATGTGGTGG 3501 GGTAGGCGAC ACCATGTGCG ACACGCTGGC GATGCCGGAC ATACACCACC LacZ 3551 ATGAAGCCAA TATTGAAACC CACGGCATGG TGCCAATGAA TCGTCTGACC . 15 TACTTCGGTT ATAACTTTGG GTGCCGTACC ACGGTTACTT AGCAGACTGG LácZ 3601 GATGATCCGC GCTGGCTACC GGCGATGAGC GAACGCGTAA CGCGAATGGT CTACTAGGCG CGACCGATGG CCGCTACTCG CTTGCGCATT GCGCTTACCA 20 LacZ 3651 GCAGCGCGAT CGTAATCACC CGAGTGTGAT CATCTGGTCG CTGGGGAATG CGTCGCGCTA GCATTAGTGG GCTCACACTA GTAGACCAGC GACCCCTTAC 25 LacZ AATCAGGCCA CGGCGCTAAT CACGACGCGC TGTATCGCTG GATCAAATCT TTAGTCCGGT GCCGCGATTA GTGCTGCGCG ACATAGCGAC CTAGTTTAGA LacZ 30 3751 GTCGATCCTT CCCGCCCGGT GCAGTATGAA GGCGGCGGAG CCGACACCAC CAGCTAGGAA GGGCGGCCA CGTCATACTT CCGCCGCCTC GGCTGTGGTG · LacZ 35 · 3801 GGCCACCGAT ATTATTTGCC CGATGTACGC GCGCGTGGAT GAAGACCAGC CCGGTGGCTA TAATAAACGG GCTACATGCG CGCGCACCTA CTTCTGGTCG LacZ 3851 . CCTTCCCGGC TGTGCCGAAA TGGTCCATCA AAAAATGGCT TTCGCTACCT GGAAGGGCCG ACACGGCTTT ACCAGGTAGT TTTTTACCGA AAGCGATGGA 40 Lac2 GGAGAGACGC GCCCGCTGAT CCTTTGCGAA TACGCCCACG CGATGGGTAA 3901 CCTCTCTGCG CGGGCGACTA GGAAACGCTT ATGCGGGTGC GCTACCCATT 45 · LacZ CAGTCTTGGC GGTTTCGCTA AATACTGGCA GGCGTTTCGT CAGTATCCCC 3951 GTCAGAACCG CCAAAGCGAT TTATGACCGT CCGCAAAGCA GTCATAGGGG LacZ 50 ~~~~~~~~~~~~~~~~~~~ 4001 GTTTACAGGG CGGCTTCGTC TGGGACTGGG TGGATCAGTC GCTGATTAAA CAAATGTCCC GCCGAAGCAG ACCCTGACCC ACCTAGTCAG CGACTAATTT LacZ . . . 55 4051 TATGATGAAA ACGGCAACCC GTGGTCGGCT TACGGCGGTG ATTTTGGCGA ATACTACTTT TGCCGTTGGG CACCAGCCGA ATGCCGCCAC TAAAACCGCT

4101 TACGCCGAAC GATCGCCAGT TCTGTATGAA CGGTCTGGTC TTTGCCGACC ATGCGGCTTG CTAGCGGTCA AGACATACTT GCCAGACCAG AAACGGCTGG 5 GCACGCCGCA TCCAGCGCTG ACGGAAGCAA AACACCAGCA GCAGTTTTTC 4151 CGTGCGGCGT AGGTCGCGAC TGCCTTCGTT TTGTGGTCGT CGTCAAAAAG LacZ 10 CAGTTCCGTT TATCCGGGCA AACCATCGAA GTGACCAGCG AATACCTGTT GTCAAGGCAA ATAGGCCCGT TTGGTAGCTT CACTGGTCGC TTATGGACAA LacZ 4251 · 15 CCGTCATAGC GATAACGAGC TCCTGCACTG GATGGTGGCG CTGGATGGTA GGCAGTATCG CTATTGCTCG AGGACGTGAC CTACCACCGC GACCTACCAT LacZ 4301 AGCCGCTGGC AAGCGGTGAA GTGCCTCTGG ATGTCGCTCC ACAAGGTAAA 20 TCGGCGACCG TTCGCCACTT CACGGAGACC TACAGCGAGG TGTTCCATTT LacZ 4351 CAGTTGATTG AACTGCCTGA ACTACCGCAG CCGGAGAGCG CCGGGCAACT GTCAACTAAC TTGACGGACT TGATGGCGTC GGCCTCTCGC GGCCCGTTGA 25 LacZ CTGGCTCACA GTACGCGTAG TGCAACCGAA CGCGACCGCA TGGTCAGAAG 4401 GACCGAGTGT CATGCGCATC ACGTTGGCTT GCGCTGGCGT ACCAGTCTTC LacZ 30 CCGGGCACAT CAGCGCCTGG CAGCAGTGGC GTCTGGCGGA AAACCTCAGT 4451 GGCCCGTGTA GTCGCGGACC GTCGTCACCG CAGACCGCCT TTTGGAGTCA LacZ GTGACGCTCC CCGCCGCGTC CCACGCCATC CCGCATCTGA CCACCAGCGA 35 CACTGCGAGG GGCGCGCAG GGTGCGGTAG GGCGTAGACT GGTGGTCGCT LacZ AATGGATTTT TGCATCGAGC TGGGTAATAA GCGTTGGCAA TTTAACCGCC. 4551 40 TTACCTAAAA ACGTAGCTCG ACCCATTATT CGCAACCGTT AAATTGGCGG LacZ AGTCAGGCTT TCTTTCACAG ATGTGGATTG GCGATAAAAA ACAACTGCTG 4601 TCAGTCCGAA AGAAAGTGTC TACACCTAAC CGCTATTTTT TGTTGACGAC 45 LacZ ACGCCGCTGC GCGATCAGTT CACCCGTGCA CCGCTGGATA ACGACATTGG 4651 TGCGGCGACG CGCTAGTCAA GTGGGCACGT GGCGACCTAT TGCTGTAACC LacZ 50 4701 CGTAAGTGAA GCGACCCGCA TTGACCCTAA CGCCTGGGTC GAACGCTGGA GCATTCACTT CGCTGGGCGT AACTGGGATT GCGGACCCAG CTTGCGACCT LacZ 4751 AGGCGGCGG CCATTACCAG GCCGAAGCAG CGTTGTTGCA GTGCACGGCA TCCGCCGCCC GGTAATGGTC CGGCTTCGTC GCAACAACGT CACGTGCCGT

LacZ 4801 GATACACTTG CTGATGCGGT GCTGATTACG ACCGCTCACG CGTGGCAGCA CTATGTGAAC GACTACGCCA CGACTAATGC TGGCGAGTGC GCACCGTCGT LacZ 4851 TCAGGGGAAA ACCTTATTTA TCAGCCGGAA AACCTACCGG ATTGATGGTA AGTCCCCTTT TGGAATAAAT AGTCGGCCTT TTGGATGGCC TAACTACCAT LacZ GTGGTCAAAT GGCGATTACC GTTGATGTTG AAGTGGCGAG CGATACACCG 4901 CACCAGTTTA CCGCTAATGG CAACTACAAC TTCACCGCTC GCTATGTGGC LacZ 13 CATCCGGCGC GGATTGGCCT GAACTGCCAG CTGGCGCAGG TAGCAGAGCG 4951 GTAGGCCGCG CCTAACCGGA CTTGACGGTC GACCGCGTCC ATCGTCTCGC LacZ 5001 GGTAAACTGG CTCGGATTAG GGCCGCAAGA AAACTATCCC GACCGCCTTA 20 CCATTTGACC GAGCCTAATC CCGGCGTTCT TTTGATAGGG CTGGCGGAAT LacZ 5051 CTGCCGCCTG TTTTGACCGC TGGGATCTGC CATTGTCAGA CATGTATACC GACGGCGGAC AAAACTGGCG ACCCTAGACG GTAACAGTCT GTACATATGG LacZ 5101 CCGTACGTCT TCCCGAGCGA AAACGGTCTG CGCTGCGGGA CGCGCGAATT GGCATGCAGA AGGGCTCGCT TTTGCCAGAC GCGACGCCCT GCGCGCTTAA LacZ 30 GAATTATGGC CCACACCAGT GGCGCGGCGA CTTCCAGTTC AACATCAGCC CTTAATACCG GGTGTGGTCA CCGCGCCGCT GAAGGTCAAG TTGTAGTCGG LacZ 35 5201 GGTACAGTCA ACAGCAATTG ATGGAAACCA GCCATTCGCC ATCTGCTGCA CCATGTCAGT TGTCGTTAAC TACCTTTGGT CGGTAAGCGG TAGACGACGT LacZ CGCGGAAGAG GCACATGGCT GAATATCGAC GGTTTCCATA TGGGGATTGG 5251 40 GCGCCTTCTC CGTGTACCGA CTTATAGCTG CCAAAGGTAT ACCCCTAACC LacZ TGGCGACGAC TCCTGGAGCC CGTCAGTATC GGCGGAATTC CAGCTGAGCG 5301 ACCGCTGCTG AGGACCTCGG GCAGTCATAG CCGCCTTAAG GTCGACTCGC 45 . Lacz CCGGTCGCTA CCATTACCAG TTGGTCTGGT GTCAAAAATA ATAATAACCG 5351 GGCCAGCGAT GGTAATGGTC AACCAGACCA CAGTTTTTAT TATTATTGGC GGCAGGGGG ATCCGGAGCT TATCGCAGAT CAATTCGATA TCAAGCTTAT CCGTCCCCC TAGGCCTCGA ATAGCGTCTA GTTAAGCTAT AGTTCGAATA H6 Promoter 5451 CGATACCGTC GACGGTATCG ATAAGCTCTA GTGGAGGGTT CTTTATTCTA GCTATGGCAG CTGCCATAGC TATTCGAGAT CACCTCCCAA GAAATAAGAT 55 H6 Promoter

	5501	TACTTAAAAA GTGAAAATAA ATACAAAGGT TCTTGAGGGT TGTGTTAAAT
		ATGAATTTTT CACTTTTATT TATGTTTCCA AGAACTCCCA ACACAATTTA H6 Promoter
5 .	5551	TGAAAGCGAG AAATAATCAT AAATTATTTC ATTATCGCGA TATCCGTTAA ACTTTCGCTC TTTATTAGTA TTTAATAAAG TAATAGCGCT ATAGGCAATT H6 Promoter NYESO-1
10	5601	GTTTGTATCG TACCCCCCC GAGCCATGCA GGCCGAAGGC CGGGGCACAG CAAACATAGC ATGGGGGGG CTCGGTACGT CCGGCTTCCG GCCCCGTGTC NYESO-1
15	5651	GGGGTTCGAC GGGCGATGCT GATGGCCCAG GAGGCCCTGG CATTCCTGAT CCCCAAGCTG CCCGCTACGA CTACCGGGTC CTCCGGGACC GTAAGGACTA NYESO-1
	5701	GGCCCAGGG GCAATGCTGG CGGCCCAGGA GAGGCGGGTG CCACGGGCGG CCGGGTCCC CGTTACGACC GCCGGGTCCT CTCCGCCCAC GGTGCCCGCC NYESO-1
20	5751	CAGAGGTCCC CGGGGCGCAG GGGCAGCAAG GGCCTCGGGG CCGGGAGGAG GTCTCCAGGG GCCCCGCGTC CCCGTCGTTC CCGGAGCCCC GGCCCTCCTC NYESO-1
25	5801	GCGCCCGCG GGGTCCGCAT GGCGGCGCGC CTTCAGGGCT GAATGGATGC CGCGGGGCCC CCCAGGCGTA CCGCCGCGC GAAGTCCCGA CTTACCTACG NYESO-1
30	5851	TGCAGATGCG GGGCCAGGGG GCCGGAGAGC CGCCTGCTTG AGTTCTACCT ACGTCTACGC CCCGGTCCCC CGGCCTCTCG GCGGACGAAC TCAAGATGGA NYESO-1
35	5901	CGCCATGCCT TTCGCGACAC CCATGGAAGC AGAGCTGGCC CGCAGGAGCC GCGGTACGGA AAGCGCTGTG GGTACCTTCG TCTCGACCGG GCGTCCTCGG NYESO-1
	5951	TGGCCCAGGA TGCCCCACCG CTTCCCGTGC CAGGGGTGCT TCTGAAGGAG ACCGGGTCCT ACGGGGTGGC GAAGGGCACG GTCCCCACGA AGACTTCCTC NYESO-1
40	6001	TTCACTGTGT CCGGCAACAT ACTGACTATC CGACTGACTG CTGCAGACCA AAGTGACACA GGCCGTTGTA TGACTGATAG GCTGACTGAC GACGTCTGGT NYESO-1
45	6051	CCGCCAACTG CAGCTCTCA TCAGCTCCTG TCTCCAGCAG CTTTCCCTGT GGCGGTTGAC GTCGAGAGGT AGTCGAGGAC AGAGGTCGTC GAAAGGGACA NYESO-1
50	6101	TGATGTGGAT CACGCAGGTG TTTCTGCCCG TGTTTTTGGC TCAGCCTCCC ACTACACCTA GTGCGTCCAC AAAGACGGGC ACAAAAACCG AGTCGGAGGG NYESO-1
	6151	TCAGGGCAGA GGCGCTAAGT AATTAATTTT TTTTTGGGCT GCAGGATCGC AGTCCCGTCT CCGCGATTCA TTAATTAAAA AAAAACCCGA CGTCCTAGCG

sE/L Promoter ·

		~~~~	_~~~~~	~~~~~~~~~~	- ~~~~~~~~~~~~	~~~~~~~~~
5	6201		ACTTTAAAAT		AACCTTATAT -2	AATAAGCTCG TTATTCGAGC
		sE/L Promo	ter			•
10	6251	AAGCTCGAGC TTCGAGCTCG	GTACTCGGGG	GAAACCACCC hTRP-2	GGTTTCTGCT CCAAAGACGA	GTCAACGAAC
15	6301	GGCTGCAAAA	TCCTGCCAGG	AGCCCAGGGT	CAGTTCCCCC GTCAAGGGGG	GAGTCTGCAT
	6351		TCGGATCACT	TGTTCCTCAC hTRP-2	CTGCCCACGC GACGGGTGCG	GACCCACGTC
20	64.01		TGTCTGTGGC	TCTCAGCAAG	GCCGGGGGCA CGGCCCCCGT	GTGCACAGAG
25	6451	CACGCTCGGC		GACCTCACCA hTRP-2	CCCTACATCC GGGATGTAGG	ATGCTTTGGT
30	6501	GGATGACCGT CCTACTGGCA	GAGCTGTGGC CTCGACACCG	CAAGAAAATT GTTCTTTTAA hTRP-2	CTTCCACCGG GAAGGTGGCC	ACCTGCAAGT TGGACGTTCA
35	6551	GCACAGGAAA	CTTTGCCGGC	TATAATTGTG	GAGACTGCAA CTCTGACGTT	GTTTGGCTGG
40	6601		TGACGCTCGC	CTTCTTTGGT hTRP-2	CCAGTGATTC GGTCACTAAG	CCGTCTTGTA
40	6651	CCATTCCTTG GGTAAGGAAC	AGTCCTCAGG	AAAGAGAGCA TTTCTCTCGT hTRP-2	GTTCTTGGGC	GCCTTAGATC CGGAATCTAG
45	6701	AGCGCTTCTT	CTCTCATGTG	CCCGACTACG GGGCTGATGC hTRP-2	TGATCACCAC ACTAGTGGTG	ACAACACTGG TGTTGTGACC
50	6751	CTGGGCCTGC GACCCGGACG	TTGGGCCCAA AACCCGGGTT	TGGAACCCAG ACCTTGGGTC hTRP-2	CCGCAGTTTG	CCAACTGCAG GGTTGACGTC
55	6801	TGTTTATGAT ACAAATACTA	TTCTTCGTGT	GGCTCCATTA	TTATTCTGTT	AGAGATACAT

		hTRP-2
5	6851	TATTAGGACC AGGACGCCCC TACAGGGCCA TAGATTTCTC ACATCAAGGA ATAATCCTGG TCCTGCGGGG ATGTCCCGGT ATCTAAAGAG TGTAGTTCCT http-2
10	6901	CCTGCATTTG TTACCTGGCA CCGGTACCAT TTGTTGTGTC TGGAAAGAGA GGACGTAAAC AATGGACCGT GGCCATGGTA AACAACACAG ACCTTTCTCT hTRP-2
.10	6951	TCTCCAGCGA CTCATTGGCA ATGAGTCTTT TGCTTTGCCC TACTGGAACT AGAGGTCGCT GAGTAACCGT TACTCAGAAA ACGAAACGGG ATGACCTTGA hTRP-2
15	7001	TTGCCACTGG GAGGAACGAG TGTGATGTGT GTACAGACCA GCTGTTTGGG AACGGTGACC CTCCTTGCTC ACACTACACA CATGTCTGGT CGACAAACCC hTRP-2
20	7051	GCAGCGAGAC CAGACGATCC GACTCTGATT AGTCGGAACT CAAGATTCTC CGTCGCTCTG GTCTGCTAGG CTGAGACTAA TCAGCCTTGA GTTCTAAGAG hTRP-2
25	7101	CAGCTGGGAA ACTGTCTGTG ATAGCTTGGA TGACTACAAC CACCTGGTCA GTCGACCCTT TGACAGACAC TATCGAACCT ACTGATGTTG GTGGACCAGT hTRP-2
20	7151	CCTTGTGCAA TGGAACCTAT GAAGGTTTGC TGAGAAGAAA TCAAATGGGA GGAACACGTT ACCTTGGATA CTTCCAAACG ACTCTTCTTT AGTTTACCCT hTRP-2
	7201	AGAAACAGCA TGAAATTGCC AACCTTAAAA GACATACGAG ATTGCCTGTC TCTTTGTCGT ACTTTAACGG TTGGAATTTT CTGTATGCTC TAACGGACAG hTRP-2
35	7251	TCTCCAGAAG TTTGACAATC CTCCCTTCTT CCAGAACTCT ACCTTCAGTT AGAGGTCTTC AAACTGTTAG GAGGGAAGAA GGTCTTGAGA TGGAAGTCAA hTRP-2
40	" <b>7301</b> .	TCAGGAATGC TTTGGAAGGG TTTGATAAAG CAGATGGGAC TCTGGATTCT AGTCCTTACG AAACCTTCCC AAACTATTTC GTCTACCCTG AGACCTAAGA hTRP-2
45	7351	CAAGTGATGA GCCTTCATAA TTTGGTTCAT TCCTTCCTGA ACGGGACAAA GTTCACTACT CGGAAGTATT AAACCAAGTA AGGAAGGACT TGCCCTGTTT hTRP-2
50	7401	CGCTTTGCCA CATTCAGCCG CCAATGATCC CATCTTCGTG GTGATTTCTA GCGAAACGGT GTAAGTCGGC GGTTACTAGG GTAGAAGCAC CACTAAAGAT hTRP-2
, ·	7451	ATCGTTTGCT TTACAATGCT ACAACAACA TCCTTGAACA TGTAAGAAAA TAGCAAACGA AATGTTACGA TGTTGTTTGT AGGAACTTGT ACATTCTTTT hTRP-2
55	7501 ·	GAGAAAGCGA CCAAGGAACT CCCTTCCCTG CATGTGCTGG TTCTTCATTC CTCTTTCGCT GGTTCCTTGA GGGAAGGGAC GTACACGACC AAGAAGTAAG

## hTRP-2

		,		hTRP-2	•	
5	7551	CTTTACTGAT GAAATGACTA	GCCATCTTTG	ATGAGTGGAT TACTCACCTA hTRP-2	GAAAAGATTT CTTTTCTAAA	AATCCTCCTG TTAGGAGGAC
10	7601	CAGATGCCTG GTCTACGGAC	GCCTCAGGAG CGGAGTCCTC	CTGGCCCCTA GACCGGGGAT hTRP-2	TTGGTCACAA AACCAGTGTT	TCGGATGTAC AGCCTACATG
10	7651	AACATGGTTC TTGTACCAAG	GAAAGAAGGG	TCCAGTGACT AGGTCACTGA hTRP-2	AATGAAGAAC TTACTTCTTG	TCTTTTTAAC AGAAAAATTG
15	7701	CTCAGACCAA GAGTCTGGTT	GAACCGATGT	GCTATGCCAT CGATACGGTA hTRP-2	CGATCTGCCA GCTAGACGGT	GTTTCAGTTG CAAAGTCAAC
20	7751	AAGAAACTCC TTCTTTGAGG	TCCAACCGGG	ACAACTCTCT TGTTGAGAGA hTRP-2	ATCATCAGTA	GGGAACACTG CCCTTGTGAC
25	· 7801 · :	GTGGCTTTGG CACCGAAACC	TTGGTCTGTT AACCAGACAA	CGTGCTGTTG GCACGACAAC hTRP-2	GCTTTTCTTC CGAAAAGAAG	AATATAGAAG TTATATCTTC
	7851	ACTTCGAAAA	GGATATACAC CCTATATGTG	CCCTAATGGA	GACACATTTA	AGCAGCAAGA
30	7901	GATACACAGA	AGAAGCCTAG TCTTCGGATC	TTTTTTAATT	TTCGTACGAG C5 Lef	ATCTTAGCTA
35	7951	GGGCCCAAAA	TATGACTAGT ATACTGATCA C5	ATTAGTGCCG Left Arm	CGCTTATAAA GCGAATATTT	GATCTAAAAT CTAGATTTTA
40 .	8001	GCATAATTTC CGTATTAAAG	TAAATAATGA ATTTATTACT C5	AAAAAAAGTA TTTTTTTCAT Left Arm	CATCATGAGC GTAGTACTCG	AACGCGTTAG
45	8051	TATATTTTAC ATATAAAATG	AATGGAGATT TTACCTCTAA C5	AACGCTCTAT TTGCGAGATA Left Arm	ACCGTTCTAT TGGCAAGATA	GTTTATTGAT CAAATAACTA
50	8101	AGTCTACTAC	TTTTAGAAAA AAAATCTTTT C5	GAAAGTTATT CTTTCAATAA Left Arm	GAATATGAAA CTTATACTTT	ACTTTAATGA TGAAATTACT
50	8151	AGATGAAGAT TCTACTTCTA	GACGACGATG CTGCTGCTAC C5	ATTATTGTTG TAATAACAAC Left Arm	TAAATCTGTT	TTAGATGAAG
55 ·	8201	AAGATGACGC TTCTACTGCG	GCTAAAGTAT	ACTATGGTTA	~~~~~~~~ CAAAGTATAA GTTTCATATT	~~~~~~~ GTCTATACTA CAGATATGAT

## C5 Left Arm

		~~~~~~~	~~~~~~~~	·~~~~~~~~~		
5	8251	CTAATGGCGZ GATTACCGCZ	r gaacacgtto	AAGGTATAG TTCCATATCA	F ATAGTGAAAF A TATCACTTTI	TGTTGTTAGA ACAACAATCT
	8301	TTATGATTA	GAAAAACCA	A ATAAATCAGA	TCCATATCTA	AAGGTATCTC
· 10		AATACTAATA	C	Left Arm	: AGGTATAGAT	TTCCATAGAG
	8351	CTTTGCACA? GAAACGTGTA	TTAAAGTAGA	ATTCCTAGTT A TAAGGATCAA 6 Left Arm	TAGAATACTT ATCTTATGAA	TTCATTATAT AAGTAATATA
15	8401	TTGTTTACAG AACAAATGTO	CTGAAGACGA GACTTCTGCT	AAAAAATATA TTTTTTTATAT	TCGATAATAG AGCTATTATC	AAGATTATGT
			C5 Le	ft Arm	•	
20	8451	TAACTCTGCT ATTGAGACGA	AATAAGATGA	AATTGAATGA TTAACTTACT	GTCTGTGACT CAGACACTGA	GCAGCCAAGC
	8501	TTGGCACTGG	CCGTCGTTTT	ACAACGTCGT	GACTGGGAAA CTGACCCTTT	ACCCTGGCGT
٠.	8551	TACCCAACTT ATGGGTTGAA	AATCGCCTTG TTAGCGGAAC	CAGCACATCC GTCGTGTAGG	CCCTTTCGCC GGGAAAGCGG	AGCTGGCGTA TCGACCGCAT
25	8601	ATAGCGAAGA TATCGCTTCT	GGCCCGCACC CCGGGCGTGG	GATCGCCCTT CTAGCGGGAA	CCCAACAGTT GGGTTGTCAA	GCGCAGCCTG CGCGTCGGAC
	8651 8701	TTACCGCTTA	CCGCGGACTA	CGCCATAAAA	CTCCTTACGC GAGGAATGCG	TAGACACGCC
30	8751 ·	ATAAAGTGTG	GCGTATACCA	CGTGAGAGTC	TACAATCTGC ATGTTAGACG CACCCGCTGA	AGACTACGGC
	8801	GTATCAATTC	GGTCGGGGCT	GTGGGCGGTT	GTGGGCGACT AGACAAGCTG	GCGCGGGACT
35	8851	GCCCGAACAG CGGGAGCTGC	ACGAGGGCCG ATGTGTCAGA	TAGGCGAATG GGTTTTCACC	TCTGTTCGAC GTCATCACCG	ACTGGCAGAG AAACGCGCGA
	8901	GACGAAAGGG	CCTCGTGATA	CGCCTATTTT	CAGTAGTGGC TATAGGTTAA ATATCCAATT	TGTCATGATA
40	8951	ATAATGGTTT	CTTAGACGTC	AGGTGGCACT	TTTCGGGGAA AAAGCCCCTT	ATGTGCGCGG
	9001	AACCCCTATT TTGGGGATAA	TGTTTATTTT ACAAATAAAA	TCTAAATACA AGATTTATGT	TTCAAATATG AAGTTTATAC	TATCCGCTCA ATAGGCGAGT
45	9051	TGAGACAATA	ACCCTGATAA	ATGCTTCAAT	AATATTGAAA TTATAACTTT	AAGGAAGAGT
	9101	ATGAGTATTC	AACATTTCCG	TGTCGCCCTT	ATTCCCTTTT	TTGCGGCATT
50					TAAGGGAAAA	
	9151	TTGCCTTCCT AACGGAAGGA	GTTTTTGCTC CAAAAACGAG	ACCCAGAAAC TGGGTCTTTG Amp(R)	GCTGGTGAAA CGACCACTTT	GTAAAAGATG CATTTTCTAC
55	9201	CTGAAGATCA	GTTGGGTGCA	CGAGTGGGTT	ACATCGAACT TGTAGCTTGA	GGATCTCAAC

Amp(R) AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC GAAGAACGTT TTCCAATGAT TCGCCATTCT AGGAACTCTC AAAAGCGGGG CTTCTTGCAA AAGGTTACTA 5 Amp (R) GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTATTGACG CTCGTGAAAA TTTCAAGACG ATACACCGCG CCATAATAGG GCATAACTGC Amp (R) 10 9351 CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG GGCCCGTTCT CGTTGAGCCA GCGGCGTATG TGATAAGAGT CTTACTGAAC Amp(R) 15 9401 GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT CAACTCATGA GTGGTCAGTG TCTTTTCGTA GAATGCCTAC CGTACTGTCA Amp(R) 9451 AAGAGAATTA TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA 20 . TTCTCTTAAT ACGTCACGAC GGTATTGGTA CTCACTATTG TGACGCCGGT Amp(R) 9501 ACTTACTTCT GACAACGATC GGAGGACCGA AGGAGCTAAC CGCTTTTTTG TGAATGAAGA CTGTTGCTAG CCTCCTGGCT TCCTCGATTG GCGAAAAAAC 25 · Amp (R) 9551 CACAACATGG GGGATCATGT AACTCGCCTT GATCGTTGGG AACCGGAGCT GTGTTGTACC CCCTAGTACA TTGAGCGGAA CTAGCAACCC TTGGCCTCGA Amp(R) 30 GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG CCTGTAGCAA 9601 CTTACTTCGG TATGGTTTGC TGCTCGCACT GTGGTGCTAC GGACATCGTT Amp (R) TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTACT TACTCTAGCT 9651 ACCGTTGTTG CAACGCGTTT GATAATTGAC CGCTTGATGA ATGAGATCGA Amp(R) TCCCGGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAG TTGCAGGACC 40 AGGGCCGTTG TTAATTATCT GACCTACCTC CGCCTATTTC AACGTCCTGG Amp (R) ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG GTTTATTGCT GATAAATCTG 9751 TGAAGACGCG AGCCGGGAAG GCCGACCGAC CAAATAACGA CTATTTAGAC 45 Amp(R) GAGCCGGTGA GCGTGGGTCT CGCGGTATCA TTGCAGCACT GGGGCCAGAT 9801 CTCGGCCACT CGCACCCAGA GCGCCATAGT AACGTCGTGA CCCCGGTCTA Amp(R) 50 GGTAAGCCCT CCCGTATCGT AGTTATCTAC ACGACGGGGA GTCAGGCAAC CCATTCGGGA GGGCATAGCA TCAATAGATG TGCTGCCCCT CAGTCCGTTG Amp (R) 55 9901 TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC TCACTGATTA ATACCTACTT GCTTTATCTG TCTAGCGACT CTATCCACGG AGTGACTAAT

Amp(R)

		~~~~~~				
	9951	AGCATTGGTA	ACTGTCAGAC	CAAGTTTACT	CATATATACT	TTAGATTGAT
		TCGTAACCAT	TGACAGTCTG	GTTCAAATGA	GTATATATGA	AATCTAACTA
5	10001	TTAAAACTTC	ATTTTTAATT	TAAAAGGATC	TAGGTGAAGA	TCCTTTTTGA
		AATTTTGAAG	TAAAAATTAA	ATTTTCCTAG	ATCCACTTCT	AGGAAAAACT
	10051	TAATCTCATG	ACCAAAATCC	CTTAACGTGA	GTTTTCGTTC	CACTGAGCGT
		ATTAGAGTAC	TGGTTTTAGG	GAATTGCACT	CAAAAGCAAG	GTGACTCGCA
	10101	CAGACCCCGT	AGAAAAGATC	AAAGGATCTT	CTTGAGATCC	TTTTTTTCTG
10 -		GTCTGGGGCA	TCTTTTCTAG	TTTCCTAGAA	GAACTCTAGG	AAAAAAAGAC
	10151	CGCGTAATCT	GCTGCTTGCA	ААСААААААА	CCACCGCTAC	CAGCGGTGGT
		GCGCATTAGA			GGTGGCGATG	
	10201	TTGTTTGCCG	GATCAAGAGC	TACCAACTCT	TTTTCCGAAG	GTAACTGGCT
•		AACAAACGGC	CTAGTTCTCG	ATGGTTGAGA	AAAAGGCTTC	CATTGACCGA
15	10251	TCAGCAGAGC	GCAGATACCA	AATACTGTCC	TTCTAGTGTA	GCCGTAGTTA
	٠.	AGTCGTCTCG	CGTCTATGGT	TTATGACAGG	AAGATCACAT	CGGCATCAAT
	10301	GGCCACCACT	TCAAGAACTC	TGTAGCACCG	CCTACATACC	TCGCTCTGCT
		CCGGTGGTGA	AGTTCTTGAG	ACATCGTGGC	GGATGTATGG	AGCGAGACGA
	10351	AATCCTGTTA	CCAGTGGCTG	CTGCCAGTGG	CGATAAGTCG	TGTĆTTACCG
20		TTAGGACAAT	GGTCACCGAC	GACGGTCACC	GCTATTCAGC	ACAGAATGGC
	10401	GGTTGGACTC	AAGACGATAG	TTACCGGATA	AGGCGCAGCG	GTCGGGCTGA
		CCAACCTGAG	TTCTGCTATC	AATGGCCTAT	TCCGCGTCGC	CAGCCCGACT
	10451	ACGGGGGGTT	CGTGCACACA	GCCCAGCTTG	GAGCGAACGA	CCTACACCGA
•		TGCCCCCCAA	GCACGTGTGT	CGGGTCGAAC	CTCGCTTGCT	GGATGTGGCT
25	10501	ACTGAGATAC	CTACAGCGTG	AGCTATGAGA	AAGCGCCACG	CTTCCCGAAG
		TGACTCTATG	GATGTCGCAC	TCGATACTCT	TTCGCGGTGC	GAAGGGCTTC
	10551	GGAGAAAGGC	GGACAGGTAT	CCGGTAAGCG	GCAGGGTCGG	AACAGGAGAG
		CCTCTTTCCG	CCTGTCCATA	GGCCATTCGC	CGTCCCAGCC	TTGTCCTCTC
	10601	CGCACGAGGG	AGCTTCCAGG	GGGAAACGCC	TGGTATCTTT	ATAGTCCTGT
30		GCGTGCTCCC	TCGAAGGTCC	CCCTTTGCGG	ACCATAGAAA	TATCAGGACA
	10651	CGGGTTTCGC	CACCTCTGAC	TTGAGCGTCG	ATTTTTGTGA	TGCTCGTCAG
		GCCCAAAGCG	GTGGAGACTG	AACTCGCAGC	TAAAAACACT	ACGAGCAGTC
	10701	GGGGGCGGAG	CCTATGGAAA	AACGCCAGCA	ACGCGGCCTT	TTTACGGTTC
		CCCCCCCCTC	GGATACCTTT	TTGCGGTCGT	TGCGCCGGAA	AAATGCCAAG
35	10751	CTGGCCTTTT	GCTGGCCTTT	TGCTCACATG	TTCTTTCCTG	CGTTATCCCC
		GACCGGAAAA	CGACCGGAAA	ACGAGTGTAC	AAGAAAGGAC	GCAATAGGGG
•	10801	TGATTCTGTG	GATAACCGTA	TTACCGCCTT	TGAGTGAGCT	GATACCGCTC
		ACTAAGACAC	CTATTGGCAT	AATGGCGGAA	ACTCACTCGA	CTATGGCGAG
_	10851	GCCGCAGCCG	AACGACCGAG	CGCAGCGAGT	CAGTGAGCGA	GGAAGCGGAA.
40		CGGCGTCGGC	TTGCTGGCTC	GCGTCGCTCA	GTCACTCGCT	CCTTCGCCTT
	10901	GAGCGCCCAA	TACGCAAACC	GCCTCTCCCC	GCGCGTTGGC	CGATTCATTA
		CTCGCGGGTT	ATGCGTTTGG	CGGAGAGGGG	CGCGCAACCG	GCTAAGTAAT .
	10951		CACGACAGGT			
	•	TACGTCGACC	GTGCTGTCCA	AAGGGCTGAC	CTTTCGCCCG	TCACTCGCGT
45	11001	ACGCAATTAA	TGTGAGTTAG	CTCACTCATT	AGGCACCCCA	GGCTTTACAC
		TGCGTTAATT	ACACTCAATC	GAGTGAGTAA	TCCGTGGGGT	CCGAAATGTG
	11051		CGGCTCGTAT			
			GCCGAGCATA			
·.	11101	TCACACAGGA	AACAGCTATG	ACCATGATTA	CGAATTGAAT	TGCGGCCGCA
50			TTGTCGATAC	TGGTACTAAT	GCTTAACTTA	AUGUUGGUGT
	11151	ATTCTAAG		٠		

# FIGURE 4



## FIGURE 5

# DNA Sequence of donor plasmid pT3217

						•	
_			. C5	Right Arm			
5	1	TGAATGTTAA ACTTACAATT	TACAATATGA C5	TTGGATGAAG AACCTACTTC Right Arm	CTATAAATAT GATATTTATA	GCATTGGAAA CGTAACCTTT	
10	51	AATAATCCAT TTATTAGGTA	TTAAAGAAAG AATTTCTTTC C5	GATTCAAATA CTAAGTTTAT Right Arm	CTACAAAACC GATGTTTTGG	TAAGCGATAA	
15	101	TATGTTAACT ATACAATTGA	AAGCTTATTC TTCGAATAAG C5	TTAACGACGC AATTGCTGCG Right Arm	ТТТАААТАТА АААТТТАТАТ	CACAAATAAA GTGTTTATTT	
20	151	CATAATTTTT GTATTAAAAA	GTATAACCTA CATATTGGAT C5	ACAAATAACT TGTTTATTGA Right Arm	AAAACATAAA TTTTGTATTT	AATAATAAAA TTATTATTTT	
25	201	CCTTTACATT	TATCGTAATT ATAGCATTAA	ATTTTACTCA TAAAATGAGT	GGAATGGGGT CCTTACCCCA	TAAATATTTA ATTTATAAAT	
	251	TATCACGTGT ATAGTGCACA	ATATCTATAC TATAGATATG	TGTTATCGTA ACAATAGCAT Right Arm	TACTCTTTAC ATGAGAAATG	AATTACTATT TTAATGATAA	
30	301	ACGAATATGC	AAGAGATAAT TTCTCTATTA C5	AAGATTACGT TTCTAATGCA Right Arm	ATTTAAGAGA TAAATTCTCT	ATCTTGTCAT TAGAACAGTA	
35	351	GATAATTGGG CTATTAACCC	TACGACATAG ATGCTGTATC C5	TGATAAATGC ACTATTTACG Right Arm	TATTTCGCAT	CGTTACATAA GCAATGTATT	
40	401	AGTCAGTTGG TCAGTCAACC	AAAGATGGAT TTTCTACCTA C5	TTGACAGATG AACTGTCTAC Right Arm	TAACTTAATA	GGTGCAAAAA CCACGTTTTT	
15	451	ACAATTTATT	CAGCATTCTA GTCGTAAGAT C5	TCGGAAGATA AGCCTTCTAT Right Arm	GGATACCAGT CCTATGGTCA	TATATTATAC ATATAATATG	•
45	501	AAAAATCACT TTTTTAGTGA	CCAACCTATT C5	AACAGATTCT TTGTCTAAGA Right Arm	GCAATATTCG CGTTATAAGC	TAAAAGATGA ATTTTCTACT	
50	551	AGATTACTGC TCTAATGACG	GAATTTGTAA CTTAAACATT	ACTATGACAA	TAAAAAGCCA	TTTATCTCAA	

	•	C5 Right Arm	
. <b>5</b> ·	601	CGACATCGTG TAATTCTTCC ATGTTTTATG TATGTGTTTC AGAS GCTGTAGCAC ATTAAGAAGG TACAAAATAC ATACACAAAG TCTA C5 Right Arm	TATTATG ATAATAC
	65,1	AGATTACTAT AAACTTTTTG TATACTTATA TTCCGTAAAC TATATCTAATGATA TTTGAAAAAC ATATGAATAT AAGGCATTTG ATATCCTAATGATA TTTGAAAAAAC ATATGAATAT AAGGCATTTG ATATCCTAATGATAT AAGGCATTTG ATATCCTAATGATATA TTCCGTAAAC TATATCTAATGATATATATCTAATATATATATATATATAT	ATTAATC FAATTAG
.10	701	ATGAAGAAAA TGAAAAAGTA TAGAAGCTGT TCACGAGCGG TTGT TACTTCTTTT ACTTTTCAT ATCTTCGACA AGTGCTCGCC AACA C5 Right Arm	TTGAAAA
15	751	CAACAAAATT ATACATTCAA GATGGCTTAC ATATACGTCT GTGA GTTGTTTTAA TATGTAAGTT CTACCGAATG TATATGCAGA CACT C5 Right Arm	CCGATA
20	801	CATGGATAAT GACAATGCAT CTCTAAATAG GTTTTTGGAC AATG GTACCTATTA CTGTTACGTA GAGATTTATC CAAAAACCTG TTAC C5 Right Arm	GATTCG CTAAGC
25	851	ACCCTAACAC GGAATATGGT ACTCTACAAT CTCCTCTTGA AATG	GCTGTA CCGACAT
30	901	ATGTTCAAGA ATACCGAGGC TATAAAAATC TTGATGAGGT ATGG TACAAGTTCT TATGGCTCCG ATATTTTTAG AACTACTCCA TACC C5 Right Arm	AGCTAA
	951	ACCTGTAGTT ACTGAATGCA CAACTTCTTG TCTGCATGAT GCGG TGGACATCAA TGACTTACGT GTTGAAGAAC AGACGTACTA CGCC C5 Right Arm	ACAACT
35	1001	GAGACGACTA CAAAATAGTG AAAGATCTGT TGAAGAATAA CTAT CTCTGCTGAT GTTTTATCAC TTTCTAGACA ACTTCTTATT GATA C5 Right Arm	GTAAAC CATTTG
40	1051	AATGTTCTTT ACAGCGGAGG CTTTACTCCT TTGTGTTTGG CAGC TTACAAGAAA TGTCGCCTCC GAAATGAGGA AACACAAACC GTCG C5 Right Arm	TTACCT
45	1101	TAACAAAGTT AATTTGGTTA AACTTCTATT GGCTCATTCG GCGG ATTGTTTCAA TTAAACCAAT TTGAAGATAA CCGAGTAAGC CGCC C5 Right Arm	
50	1151	ATATTTCAAA CACGGATCGG TTAACTCCTC TACATATAGC CGTA TATAAAGTTT GTGCCTAGCC AATTGAGGAG ATGTATATCG GCAT  C5 Right Arm	
	. 1201	AAAAATTTAA CAATGGTTAA ACTTCTATTG AACAAAGGTG CTGA TTTTTTAAATT GTTACCAATT TGAAGATAAC TTGTTTCCAC GACT.  C5 Right Arm	ATGACT
55	1251	CTTGCTGGAT AACATGGGAT GTACTCCTTT AATGATCGCT GTAC GAACGACCTA TTGTACCCTA CATGAGGAAA TTACTAGCGA CATG	AATCTG

#### C5 Right Arm 1301 GAAATATTGA AATATGTAGC ACACTACTTA AAAAAAATAA AATGTCCAGA 5 C5 Right Arm 1351 ACTGGGAAAA ATTGATCTTG CCAGCTGTAA TTCATGGTAG AAAAGAAGTG TGACCCTTTT TAACTAGAAC GGTCGACATT AAGTACCATC TTTTCTTCAC C5 Right Arm 10 1401 CTCAGGCTAC TTTTCAACAA AGGAGCAGAT GTAAACTACA TCTTTGAAAG GAGTCCGATG AAAAGTTGTT TCCTCGTCTA CATTTGATGT AGAAACTTTC C5 Right Arm 1451 AAATGGAAAA TCATATACTG TTTTGGAATT GATTAAAGAA AGTTACTCTG 15 TTTACCTTTT AGTATATGAC AAAACCTTAA CTAATTTCTT TCAATGAGAC . C5 Right Arm 1501 AGACACAAAA GAGGTAGCTG AAGTGGTACT CTCAAAGGTA CGTGACTAAT 20 . TCTGTGTTTT CTCCATCGAC TTCACCATGA GAGTTTCCAT GCACTGATTA Repeat Region 1551 TAGCTATAAA AAGGATCGGG TTCTTTATTC TATACTTAAA AAGTGAAAAT ATCGATATTT TTCCTAGCCC AAGAAATAAG ATATGAATTT TTCACTTTTA 25 Repeat Region ******************************** AAATACAAAG GTTCTTGAGG GTTGTGTTAA ATTGAAAGCG AGAAATAATC 1601 TTTATGTTTC CAAGAACTCC CAACACAATT TAACTTTCGC TCTTTATTAG Repeat Region 30 1651 ATAAATTATT TCATTATCGC GATATCCGTT AAGTTTGTAT CGTAATCTGC TATTTAATAA AGTAATAGCG CTATAGGCAA TTCAAACATA GCATTAGACG Repeat Region AGCCCCCACC ATGGATCTGG TGCTAAAAAG ATGCCTTCTT CATTTGGCTG 35 1701 TCGGGGGTGG TACCTAGACC ACGATTTTTC TACGGAAGAA GTAAACCGAC Repeat Region 1751 TGATAGGTGC TTTGCTGGCT GTGGGGGCTA CAAAAGTACC CAGAAACCAG 40 ACTATCCACG AAACGACCGA CACCCCCGAT GTTTTCATGG GTCTTTGGTC Repeat Region GACTGGCTTG GTGTCTCAAG GCAACTCAGA ACCAAAGCCT GGAACAGGCA 1801 CTGACCGAAC CACAGAGTTC CGTTGAGTCT TGGTTTCGGA CCTTGTCCGT 45 Repeat Region 1851 GCTGTATCCA GAGTGGACAG AAGCCCAGAG ACTTGACTGC TGGAGAGGTG CGACATAGGT CTCACCTGTC TTCGGGTCTC TGAACTGACG ACCTCTCCAC Repeat Region 50 1901 GTCAAGTGTC CCTCAAGGTC AGTAATGATG GGCCTACACT GATTGGTGCA CAGTTCACAG GGAGTTCCAG TCATTACTAC CCGGATGTGA CTAACCACGT Repeat Region 55 . 1951 AATGCCTCCT TCTCTATTGC CTTGAACTTC CCTGGAAGCC AAAAGGTATT TTACGGAGGA AGAGATAACG GAACTTGAAG GGACCTTCGG TTTTCCATAA

		•		•		•
		Repeat Reg	ion	C:	1B promoter	
5 ·	2001	GCCAGATACT CGGTCTATGA	TCAAGATCTC	GATCATTATT CTAGTAATAA B promoter	TAACGTAAAC ATTGCATTTG	TAAATGGAAA ATTTACCTTT
3	: .	~~~~~~	·~~~~~~~			·~~~~~~~
	2051		TCCATGTATG		TGGAATCAAA ACCTTAGTTT	
.10	2101		AATAGTTATG Cli	TTATTACTGT. 3 promoter	GTGCTAACTG CACGATTGAC	
15	2151		TTATCATGGC AATAGTACCG		ATAATATAAA	
20	2201		ATGCAAAGAA er	ATAAAȚTTCA	TAATGTGTTA ATTACACAAT LacZ	TCTAATTTAC
25	2251	GAGTAATTGG	ATCCCCCATC	GATGGGGAAT	TCACTGGCCG AGTGACCGGC	TCGTTTTACA
	2301	TGCAGCACTG	ACCCTTTTGG	GACCGCAATG LacZ	CCAACTTAAT GGTTGAATTA	GCGGAACGTC
30	2351	CACATCCCCC	TTTCGCCAGC	TGGCGTAATA	GCGAAGAGGC CGCTTCTCCG	CCGCACCGAT
35	2401	CGCCCTTCCC	AACAGTTGCG		GGCGAATGGC CCGCTTACCG	
40	2451		CCAGAAGCGG	TGCCGGAAAG	CTGGCTGGAG GACCGACCTC	TGCGATCTTC
45	2501	CTGAGGCCGA GACTCCGGCT	TACTGTCGTC ATGACAGCAG	GTCCCCTCAA CAGGGGAGTT Lac2	ACTGGCAGAT TGACCGTCTA	GCACGGTTAC CGTGCCAATG
50	2551	CTACGCGGGT	AGATGTGGTT	GCACTGGATA LacZ	CCCATTACGG GGGTAATGCC	AGTTAGGCGG
50	2601	GTTTGTTCCC	ACGGAGAATC TGCCTCTTAG	CGACGGGTTG	TTACTCGCTC AATGAGCGAG	ACATTTAATG
55	2651		CTGGCTACAG	GAAGGCCAGA	CGCGAATTAT GCGCTTAATA	

#### LacZ GTTAACTCGG CGTTTCATCT GTGGTGCAAC GGGCGCTGGG TCGGTTACGG 2701 CAATTGAGCC GCAAAGTAGA CACCACGTTG CCCGCGACCC AGCCAATGCC LacZ 5 · CCAGGACAGT CGTTTGCCGT CTGAATTTGA CCTGAGCGCA TTTTTACGCG 2751 GGTCCTGTCA GCAAACGGCA GACTTAAACT GGACTCGCGT AAAAATGCGC LacZ 10 CCGGAGAAAA CCGCCTCGCG GTGATGGTGC TGCGCTGGAG TGACGGCAGT 2801 GGCCTCTTTT GGCGGAGCGC CACTACCACG ACGCGACCTC ACTGCCGTCA · LacZ 2851 TATCTGGAAG ATCAGGATAT GTGGCGGATG AGCGGCATTT TCCGTGACGT ATAGACCTTC TAGTCCTATA CACCGCCTAC TCGCCGTAAA AGGCACTGCA LacZ ______ 2901 CTCGTTGCTG CATAAACCGA CTACACAAAT CAGCGATTTC CATGTTGCCA GAGCAACGAC GTATTTGGCT GATGTGTTTA GTCGCTAAAG GTACAACGGT 20 $\mathtt{Lac2}$ CTCGCTTTAA TGATGATTTC AGCCGCGCTG TACTGGAGGC TGAAGTTCAG GAGCGAAATT ACTACTAAAG TCGGCGCGAC ATGACCTCCG ACTTCAAGTC 25 _______ ${\tt ATGTGCGGCG} \ \ {\tt AGTTGCGTGA} \cdot {\tt CTACCTACGG} \ \ {\tt GTAACAGTTT} \cdot {\tt CTTTATGGCA}$ 3001 TACACGCCGC TCAACGCACT GATGGATGCC CATTGTCAAA GAAATACCGT LacZ 30 GGGTGAAACG CAGGTCGCCA GCGGCACCGC GCCTTTCGGC GGTGAAATTA 3051 CCCACTTTGC GTCCAGCGGT CGCCGTGGCG CGGAAAGCCG CCACTTTAAT LacZ TCGATGAGCG TGGTGGTTAT GCCGATCGCG TCACACTACG TCTGAACGTC 3101 AGCTACTCGC ACCACCAATA CGGCTAGCGC AGTGTGATGC AGACTTGCAG LacZ 3151 GAAAACCCGA AACTGTGGAG CGCCGAAATC CCGAATCTCT ATCGTGCGGT CTTTTGGGCT TTGACACCTC GCGGCTTTAG GGCTTAGAGA TAGCACGCCA LacZ GGTTGAACTG CACACCGCCG ACGGCACGCT GATTGAAGCA GAAGCCTGCG 3201 CCAACTTGAC GTGTGGCGGC TGCCGTGCGA CTAACTTCGT CTTCGGACGC 45 LacZ ATGTCGGTTT CCGCGAGGTG CGGATTGAAA ATGGTCTGCT GCTGCTGAAC 3251 TACAGCCAAA GGCGCTCCAC GCCTAACTTT TACCAGACGA CGACGACTTG GGCAAGCCGT TGCTGATTCG AGGCGTTAAC CGTCACGAGC ATCATCCTCT 3301 CCGTTCGGCA ACGACTAAGC TCCGCAATTG GCAGTGCTCG TAGTAGGAGA . LacZ GCATGGTCAG GTCATGGATG AGCAGACGAT GGTGCAGGAT ATCCTGCTGA 3351 55 CGTACCAGTC CAGTACCTAC TCGTCTGCTA CCACGTCCTA TAGGACGACT

### LacZ

			~~~~~~~~	шасы		
5	3401	TGAAGCAGAA ACTTCGTCTT	CAACTTTAAC	GCCGTGCGCT CGGCACGCGA LacZ	GTTCGCATTA CAAGCGTAAT	TCCGAACCAT AGGCTTGGTA
	3451	CCGCTGTGGT GGCGACACCA		CGACCGCTAC GCTGGCGATG LacZ	GGCCTGTATG CCGGACATAC	TGGTGGATGA ACCACCTACT
10	3501	AGCCAATATT TCGGTTATAA	GAAACCCACG CTTTGGGTGC	GCATGGTGCC CGTACCACGG LacZ	TTACTTAGCA	CTGACCGATG GACTGGCTAC
15	3551	ATCCGCGCTG TAGGCGCGAC	GCTACCGGCG CGATGGCCGC	ATGAGCGAAC TACTCGCTTG LacZ	GCGTAACGCG CGCATTGCGC	AATGGTGCAG TTACCACGTC
20	3601	CGCGATCGTA GCGCTAGCAT	ATCACCCGAG TAGTGGGCTC	TGTGATCATC ACACTAGTAG LacZ	TGGTCGCTGG ACCAGCGACC	GGAATGAATC CCTTACTTAG
25	3651	AGGCCACGGC TCCGGTGCCG	GCTAATCACG CGATTAGTGC	ACGCGCTGTA TGCGCGACAT .LacZ	TCGCTGGATC AGCGACCTAG	AAATCTGTCG TTTAGACAGC
	3701	ATCCTTCCCG	CCCGGTGCAG GGGCCACGTC	TATGAAGGCG	GCGGAGCCGA	CACCACGGCC
30	3751	ACCGATATTA TGGCTATAAT	TTTGCCCGAT AAACGGGCTA	GTACGCGCGC CATGCGCGCG LacZ	GTGGATGAAG CACCTACTTC	ACCAGCCCTT TGGTCGGGAA
35	3801	CCCGGCTGTG GGGCCGACAC	CCGAAATGGT GGCTTTACCA	CCATCAAAAA GGTAGTTTTT LacZ	ATGGCTTTCG TACCGAAAGC	CTACCTGGAG GATGGACCTC
40	3851	AGACGCGCCC TCTGCGCGGG	GCTGATCCTT CGACTAGGAA	TGCGAATACG ACGCTTATGC LacZ	CCCACGCGAT GGGTGCGCTA	GGGTAACAGT.
45	3901	CTTGGCGGTT GAACCGCCAA	TCGCTAAATA AGCGATTTAT	CTGGCAGGCG GACCGTCCGC LacZ	TTTCGTCAGT AAAGCAGTCA	ATCCCCGTTT TAGGGGCAAA
50	3951	ACAGGGCGGC TGTCCCGCCG	TTCGTCTGGG AAGCAGACCC	ACTGGGTGGA TGACCCACCT LacZ	TCAGTCGCTG AGTCAGCGAC	ATTAAATATG TAATTTATAC
50	4001	ATGAAAACGG TACTTTTGCC	CAACCCGTGG GTTGGGCACC	TCGGCTTACG AGCCGAATGC Lac2	GCGGTGATTT CGCCACTAAA	TGGCGATACG ACCGCTATGC
55 ·	4051	CCGAACGATC	GCCAGTTCTG CGGTCAAGAC	TATGAACGGT	CTGGTCTTTG	

		•	•	. '		
	•			LacZ		
						~~~~~~
	4101			AAGCAAAACA		
		CGGCGTAGGT	CGCGACTGCC	TTCGTTTTGT	GGTCGTCGTC	AAAAAGGTCA
5 ·				LacZ		
		~~~~~~~~~			·~~~~~~~~~	
	4151			ATCGAAGTGA		
		AGGCAAATAG	GCCCGTTTGG	TAGCTTCACT	GGTCGCTTAT	GGACAAGGCA
10				LacZ		
. 10	4201	CATACCCATA	» CC » CC TC CT	GCACTGGATG	CTCCCCCTCC	ATGGTAAGCC
	4201			CGTGACCTAC		
		GIRICGCIRI	1001001001	LacZ	000000.00	
		~~~~~~~~		·~~~~~		
15	4251	GCTGGCAAGC	GGTGAAGTGC	CTCTGGATGT	CGCTCCACAA	GGTAAACAGT
		CGACCGTTCG				
				LacZ	•	•
		~~~~~~~				
•	4301	•		CCGCAGCCGG		
20		ACTAACTTGA	CGGACTTGAT	GGCGTCGGCC	TCTCGCGGCC	CGTTGAGACC
	•.	•		LacZ		
	4664	~~~~~~~~				
	4351			ACCGAACGCG		
25		GAGTGTCATG	CGCATCACGT	LacZ	TGGCGTACCA	GTCTTCGGCC
.25		~~~~~~~~				
•	4401		•	AGTGGCGTCT	GGCGGAAAAC	CTCAGTGTGA
				TCACCGCAGA		
	,			LacZ	:	
30		~~~~~				
	4451 ·			GCCATCCCGC		
•		GCGAGGGGCG	GCGCAGGGTG	CGGTAGGGCG	TAGACTGGTG	GTCGCTTTAC
				LacZ		
35	4501			TAATAAGCGT		
	•	CTAAAAACGT	AGCTCGACCC	ATTATTCGCA LacZ	ACCGTTAAAT	TGGCGGTCAG
				Lacz	~~~~~~~~~	
-	4551	AGGCTTTCTT	TCACAGATGT	GGATTGGCGA	ТАВАВАВСАВ	CTGCTGACGC
40	4551			CCTAACCGCT		
				LacZ		
•		~~~~~~~		·~~~~~~		
	4601			CGTGCACCGC		
		GCGACGCGCT	AGTCAAGTGG	GCACGTGGCG	ACCTATTGCT	GTAACCGCAT
45				LacZ		
						• •
	4651			CCCTAACGCC		
		TCACTTCGCT.	GGGCGTAACT	GGGATTGCGG	ACCCAGCTTG	CGACCTTCCG
50			•	LacZ,		.~~~~~~
50	4701					
•	4701			AAGCAGCGTT TTCGTCGCAA		
		CCGCCCGGTA	VIOOICCOCC	LacZ	CANCELCACE	IGCCGICIAI
			. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
55	4751			ATTACGACCG	•	
				TAATGCTGGC		
						

LacZ 4801 GGGAAAACCT TATTTATCAG CCGGAAAACC TACCGGATTG ATGGTAGTGG CCCTTTTGGA ATAAATAGTC GGCCTTTTGG ATGGCCTAAC TACCATCACC 5 LacZ TCAAATGGCG ATTACCGTTG ATGTTGAAGT GGCGAGCGAT ACACCGCATC AGTTTACCGC TAATGGCAAC TACAACTTCA CCGCTCGCTA TGTGGCGTAG \mathtt{LacZ} 10 4901 . CGGCGCGGAT TGGCCTGAAC TGCCAGCTGG CGCAGGTAGC AGAGCGGGTA GCCGCGCCTA ACCGGACTTG ACGGTCGACC GCGTCCATCG TCTCGCCCAT LacZ AACTGGCTCG GATTAGGGCC GCAAGAAAAC TATCCCGACC GCCTTACTGC 15 TTGACCGAGC CTAATCCCGG CGTTCTTTTG ATAGGGCTGG CGGAATGACG LacZ 5001 CGCCTGTTTT GACCGCTGGG ATCTGCCATT GTCAGACATG TATACCCCGT 20 . GCGGACAAAA CTGGCGACCC TAGACGGTAA CAGTCTGTAC ATATGGGGCA LacZ 5051 ACGTCTTCCC GAGCGAAAAC GGTCTGCGCT GCGGGACGCG CGAATTGAAT TGCAGAAGGG CTCGCTTTTG CCAGACGCGA CGCCCTGCGC GCTTAACTTA 25 · .LacZ 5101 TATGGCCCAC ACCAGTGGCG CGGCGACTTC CAGTTCAACA TCAGCCGGTA ATACCGGGTG TGGTCACCGC GCCGCTGAAG GTCAAGTTGT AGTCGGCCAT LacZ 30 CAGTCAACAG CAATTGATGG AAACCAGCCA TTCGCCATCT GCTGCACGCG 5151 GTCAGTTGTC GTTAACTACC TTTGGTCGGT AAGCGGTAGA CGACGTGCGC LacZ 35 5201 GAAGAGGCAC ATGGCTGAAT ATCGACGGTT TCCATATGGG GATTGGTGGC CTTCTCCGTG TACCGACTTA TAGCTGCCAA AGGTATACCC CTAACCACCG LacZ GACGACTCCT GGAGCCCGTC AGTATCGGCG GAATTCCAGC TGAGCGCCGG. -5251 CTGCTGAGGA CCTCGGGCAG TCATAGCCGC CTTAAGGTCG ACTCGCGGCC LacZ TCGCTACCAT TACCAGTTGG TCTGGTGTCA AAAATAATAA TAACCGGGCA 5301 AGCGATGGTA ATGGTCAACC AGACCACAGT TTTTATTATT ATTGGCCCGT 45 5351 GGGGGGATCC GGAGCTTATC GCAGATCAAT TCGATATCAA GCTTATCGAT CCCCCTAGG CCTCGAATAG CGTCTAGTTA AGCTATAGTT CGAATAGCTA H6 Promoter 5401 ACCGTCGACC TCGAGTCTAG AATCGATCCC GGGTTCTTTA TTCTATACTT 50 TGGCAGCTGG AGCTCAGATC TTAGCTAGGG CCCAAGAAAT AAGATATGAA H6 Promoter 5451 AAAAAGTGAA AATAAATACA AAGGTTCTTG AGGGTTGTGT TAAATTGAAA TTTTTCACTT TTATTTATGT TTCCAAGAAC TCCCAACACA ATTTAACTTT 55 ·

		H6 Promoter
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5	5501	GCGAGAAATA ATCATAAATT ATTTCATTAT CGCGATATCC GTTAAGTTTG CGCTCTTTAT TAGTATTTAA TAAAGTAATA GCGCTATAGG CAATTCAAAC H6 Promoter gp100(M)
	555 <u>1</u>	TATCGTAATC TGCAGCCCCC ACCATGGATC TGGTGCTAAA AAGATGCCTT ATAGCATTAG ACGTCGGGGG TGGTACCTAG ACCACGATTT TTCTACGGAA gp100(M)
.10	5601	CTTCATTTGG CTGTGATAGG TGCTTTGCTG GCTGTGGGGG CTACAAAAGT GAAGTAAACC GACACTATCC ACGAAACGAC CGACACCCCC GATGTTTTCA gp100(M)
15	5651	ACCCAGAAAC CAGGACTGGC TTGGTGTCTC AAGGCAACTC AGAACCAAAG TGGGTCTTTG GTCCTGACCG AACCACAGAG TTCCGTTGAG TCTTGGTTTC gpl00(M)
20	5701	CCTGGAACAG GCAGCTGTAT CCAGAGTGGA CAGAAGCCCA GAGACTTGAC GGACCTTGTC CGTCGACATA GGTCTCACCT GTCTTCGGGT CTCTGAACTG gp100(M)
25	5751	TGCTGGAGAG GTGGTCAAGT GTCCCTCAAG GTCAGTAATG ATGGGCCTAC ACGACCTCTC CACCAGTTCA CAGGGAGTTC CAGTCATTAC TACCCGGATG gp100(M)
20	5801	ACTGATTGGT GCAAATGCCT CCTTCTCTAT TGCCTTGAAC TTCCCTGGAA TGACTAACCA CGTTTACGGA GGAAGAGATA ACGGAACTTG AAGGGACCTT gp100(M)
30	5851	GCCAAAAGGT ATTGCCAGAT GGGCAGGTTA TCTGGGTCAA CAATACCATC CGGTTTTCCA TAACGGTCTA CCCGTCCAAT AGACCCAGTT GTTATGGTAG gp100(M)
35	5901	ATCAATGGGA GCCAGGTGTG GGGAGGACAG CCAGTGTATC CCCAGGAAAC TAGTTACCCT CGGTCCACAC CCCTCCTGTC GGTCACATAG GGGTCCTTTG gp100(M)
40	5951 .	TGACGATGCC TGCATCTTCC CTGATGGTGG ACCTTGCCCA TCTGGCTCTT ACTGCTACGG ACGTAGAAGG GACTACCACC TGGAACGGGT AGACCGAGAA gp100(M)
45	6001	GGTCTCAGAA GAGAAGCTTT GTTTATGTCT GGAAGACCTG GGGCCAATAC CCAGAGTCTT CTCTTCGAAA CAAATACAGA CCTTCTGGAC CCCGGTTATG gp100(M)
50	6051	TGGCAAGTTC TAGGGGGCCC AGTGTCTGGG CTGAGCATTG GGACAGGCAG ACCGTTCAAG ATCCCCGGG TCACAGACCC GACTCGTAAC CCTGTCCGTC gp100(M)
	6101	GGCAATGCTG GGCACACAC CGATGGAAGT GACTGTCTAC CATCGCCGGG CCGTTACGAC CCGTGTGTGT GCTACCTTCA CTGACAGATG GTAGCGGCCC GD100(M)
55	6151	GATCCCGGAG CTATGTGCCT CTTGCTCATT CCAGCTCAGC CTTCACCATT CTAGGGCCTC GATACACGGA GAACGAGTAA GGTCGAGTCG GAAGTGGTAA

PCT/US2004/028751 WO 2005/026370

gp100(M) 6201

5

10

15

25

30

40

45

50

ATGGACCAGG TGCCTTTCTC CGTGAGCGTG TCCCAGTTGC GGGCCTTGGA TACCTGGTCC ACGGAAGAG GCACTCGCAC AGGGTCAACG CCCGGAACCT gp100(M)

6251 TGGAGGGAAC AAGCACTTCC TGAGAAATCA GCCTCTGACC TTTGCCCTCC ACCTCCCTTG TTCGTGAAGG ACTCTTTAGT CGGAGACTGG AAACGGGAGG gp100(M)

6301 AGCTCCATGA CCCCAGTGGC TATCTGGCTG AAGCTGACCT CTCCTACACC TCGAGGTACT GGGGTCACCG ATAGACCGAC TTCGACTGGA GAGGATGTGG gp100(M) 

TGGGACTTTG GAGACAGTAG TGGAACCCTG ATCTCTCGGG CACTTGTGGT ACCCTGAAAC CTCTGTCATC ACCTTGGGAC TAGAGAGCCC GTGAACACCA gp100(M) 

6401 CACTCATACT TACCTGGAGC CTGGCCCAGT CACTGTTCAG GTGGTCCTGC GTGAGTATGA ÁTGGACCTCG GACCGGGTCA GTGACAAGTC CACCAGGACG 20 gp100(M) 

6451 AGGCTGCCAT TCCTCTCACC TCCTGTGGCT CCTCCCCAGT TCCAGGCACC TCCGACGGTA AGGAGAGTGG AGGACACCGA GGAGGGGTCA AGGTCCGTGG gp100(M) .............

ACAGATGGGC ACAGGCCAAC TGCAGAGGCC CCTAACACCA CAGCTGGCCA 6501 TGTCTACCCG TGTCCGGTTG ACGTCTCCGG GGATTGTGGT GTCGACCGGT gp100(M)

AGTGCCTACT ACAGAAGTTG TGGGTACTAC ACCTGGTCAG GCGCCAACTG 6551 TCACGGATGA TGTCTTCAAC ACCCATGATG TGGACCAGTC CGCGGTTGAC . gp100(M)

35 CAGAGCCCTC TGGAACCACA TCTGTGCAGG TGCCAACCAC TGAAGTCATA GTCTCGGGAG ACCTTGGTGT AGACACGTCC ACGGTTGGTG ACTTCAGTAT gp100(M) 

AGCACTGCAC CTGTGCAGAT GCCAACTGCA GAGAGCACAG GTATGACACC 6651 TCGTGACGTG GACACGTCTA CGGTTGACGT CTCTCGTGTC CATACTGTGG gp100(M)

TGAGAAGGTG CCAGTTTCAG AGGTCATGGG TACCACACTG GCAGAGATGT 6701 ACTCTTCCAC GGTCAAAGTC TCCAGTACCC ATGGTGTGAC CGTCTCTACA gp100(M) 

CAACTCCAGA GGCTACAGGT ATGACACCTG CAGAGGTATC AATTGTGGTG 6751 GTTGAGGTCT CCGATGTCCA TACTGTGGAC GTCTCCATAG TTAACACCAC gp100(M)

~~~~~~~~~~~ CTTTCTGGAA CCACAGCTGC ACAGGTAACA ACTACAGAGT GGGTGGAGAC 6801 GAAAGACCTT GGTGTCGACG TGTCCATTGT TGATGTCTCA CCCACCTCTG · gp100(M)

CACAGCTAGA GAGCTACCTA TCCCTGAGCC TGAAGGTCCA GATGCCAGCT 55 6851 GTGTCGATCT CTCGATGGAT AGGGACTCGG ACTTCCAGGT CTACGGTCGA

gp100(M)

| | | dbtno(u) |
|----|------|---|
| 5 | 6901 | CAATCATGTC TACGGAAAGT ATTACAGGTT CCCTGGGCCC CCTGCTGGAT GTTAGTACAG ATGCCTTTCA TAATGTCCAA GGGACCCGGG GGACGACCTA gp100(M) |
| 10 | 6951 | GGTACAGCCA CCTTAAGGCT GGTGAAGAGA CAAGTCCCCC TGGATTGTGT
CCATGTCGGT GGAATTCCGA CCACTTCTCT GTTCAGGGGG ACCTAACACA
gp100(M) |
| | 7001 | TCTGTATCGA TATGGTTCCT TTTCCGTCAC CCTGGACATT GTCCAGGGTA AGACATAGCT ATACCAAGGA AAAGGCAGTG GGACCTGTAA CAGGTCCCAT gp100(M) |
| 15 | 7051 | TTGAAAGTGC CGAGATCCTG CAGGCTGTGC CGTCCGGTGA GGGGGATGCA AACTTTCACG GCTCTAGGAC GTCCGACACG GCAGGCCACT CCCCCTACGT gp100(M) |
| 20 | 7101 | TTTGAGCTGA CTGTGTCCTG CCAAGGCGGG CTGCCCAAGG AAGCCTGCAT AAACTCGACT GACACAGGAC GGTTCCGCCC GACGGGTTCC TTCGGACGTA gp100(M) |
| 25 | 7151 | GGAGATCTCA TCGCCAGGGT GCCAGCCCC TGCCCAGCGG CTGTGCCAGC
CCTCTAGAGT AGCGGTCCCA CGGTCGGGGG ACGGGTCGCC GACACGGTCG
gp100(M) |
| | 7201 | CTGTGCTACC CAGCCCAGCC TGCCAGCTGG TTCTGCACCA GATACTGAAG
GACACGATGG GTCGGGTCGG ACGGTCGACC AAGACGTGGT CTATGACTTC
gp100(M) |
| 30 | 7251 | GGTGGCTCGG GGACATACTG CCTCAATGTG TCTCTGGCTG ATACCAACAG CCACCGAGCC CCTGTATGAC GGAGTTACAC AGAGACCGAC TATGGTTGTC gp100(M) |
| 35 | 7301 | CCTGGCAGTG GTCAGCACCC AGCTTATCAT GCCTGGTCAA GAAGCAGGCC GGACCGTCAC CAGTCGTGGG TCGAATAGTA CGGACCAGTT CTTCGTCCGG gp100(M) |
| 40 | 7351 | TTGGGCAGGT TCCGCTGATC GTGGGCATCT TGCTGGTGTT GATGGCTGTG AACCCGTCCA AGGCGACTAG CACCCGTAGA ACGACCACAA CTACCGACAC gp100(M) |
| 45 | 7401 | GTCCTTGCAT CTCTGATATA TAGGCGCAGA CTTATGAAGC AAGACTTCTC CAGGAACGTA GAGACTATAT ATCCGCGTCT GAATACTTCG TTCTGAAGAG gp100(M) |
| 50 | 7451 | CGTACCCCAG TTGCCACATA GCAGCAGTCA CTGGCTGCGT CTACCCCGCA
GCATGGGGTC AACGGTGTAT CGTCGTCAGT GACCGACGCA GATGGGGCGT
gp100(M) |
| JU | 7501 | TCTTCTGCTC TTGTCCCATT GGTGAGAACA GCCCCCTCCT CAGTGGGCAG AGAAGACGAG AACAGGGTAA CCACTCTTGT CGGGGGAGGA GTCACCCGTC gpl00(M) 42K promoter |
| 55 | 7551 | CAGGTCTGAT TTTTATTCTA GTTCAAAAAA ATATAAATGA TTCACCATCT
GTCCAGACTA AAAATAAGAT CAAGTTTTTT TATATTTACT AAGTGGTAGA |

42K promoter

| | | ~~~~~~~ | ~~~~~~~ | | .~~~~~~~~. | |
|----|------|--------------------------------------|------------------------------------|---|--------------------------|--------------------------|
| 5 | 7601 | | | CCTCTTATAC | TATTATAAA | |
| ٠. | 7651 | AATTGAAAAT Z | АТАТААТТАС | AATATAAATC | TAGACCACCA | TGCCAAGAGA |
| 10 | 7701 | AGATGCTCAC 1 | | | | |
| 15 | 7751 | ACACCACGGC 1 | ACTTCTCCGG | | | |
| 20 | 7801 | GGAGTCTTAC T | IGCTCATCGG. | CTGTTGGTAT | | GAAATGGATA |
| 25 | 7851 | CAGAGCCTTG A | PACCTATTTT | CAGAAGTACA
Mart-1 | ACCGTGAGTT | ACACGGAATT |
| | 7901 | CAAGAAGATG C | CCCACAAGAA
GGTGTTCTT | GGGTTTGATC | | CAAAGTGTCT |
| 30 | 7951 | GAAGTTCTCT 1 | TTTGACACT
Ma | TGGACACCAA
rt-1 | GGGTTACGAG | GTGGACGAAT |
| 35 | 8001 | TGAGAAACTC T | CTGCAGAAC | AGTCACCACC
TCAGTGGTGG | ACCTTATTCA | CCTTAATCTA |
| 40 | 8051 | GAGTCGACCT GCTCAGCTGGA CSE/L Promote | CGTCCGTACG | | | |
| | | | | Mage 1-3 mi | nigene | |
| 45 | 8101 | AATATAAATA A | ACCTCAGGA
Mage 1 | ACGTCGACCA
-3 minigene | GAAACCGTAA | CTGCACTTCC |
| 50 | 8151 | AAGCAGACCC C | CACCGGCCAC
STGGCCGGTG
Mage 1 | TCCTATGTCC
AGGATACAGG
-3 minigene | TTGTCACCTG
AACAGTGGAC | CCTAGGTCTC
GGATCCAGAG |
| 55 | 8201 | TCCTATGATG G
AGGATACTAC C | CAATAAGCG | TAAAGAAGTG | GACCCCATCG | GCCACTTGTA |

| | Mag | ge 1-3 minige | ene | • | • | C5 Left | |
|------|------|---|--------------------------------|--------------------------------------|--------------------------|----------------------|-------------|
| 5 | 8251 | GATCAAAAAT | AGGGCCCAAA
C5 | | TTAATCACGG
AATTAGTGCC | | AATA |
| 10 | 8301 | AGATCTAAAA | TGCATAATTT
ACGTATTAAA
C5 | CTAAATAATG
GATTTATTAC
Left Arm | AAAAAAAAGT
TTTTTTTTCA | ACATCAT
TGTAGTA | GAG
ACTÇ |
| 10 | 8351 | CAACGCGTTA
GTTGCGCAAT | GTATATTTTA
CATATAAAAT
C5 | GTTACCTCTA
Left Arm | TAACGCTCTA
ATTGCGAGAT | ATGGCAA | GAT
· |
| 15 | 8401 | | TTCAGATGAT
AAGTCTACTA | GTTTTAGAAA | AGAAAGTTAT
TCTTTCAATA | TGAATAT | GAA |
| 20 | 8451 | AACTTTAATG
TTGAAATTAC | TTCTACTTCT
C5 | ACTGCTGCTA
Left Arm | GATTATTGTT
CTAATAACAA | CATTTAG | ACA |
| 25 | 8501 | | GAAGATGACG
CTTCTACTGC
C5 | CGCTAAAGTA
GCGATTTCAT
Left Arm | TACTATGGTT
ATGATACCAA | ACAAAGT | ATA |
| | 8551 | • | ACTAATGGCG
TGATTACCGC
C5 | TGAACACGTT
Left Arm | GAAGGTATAG
CTTCCATATC | ATATCAC | TTT |
| 30 | 8601 | ATGTTGTTAG | ATTATGATTA
TAATACTAAT
C5 | TGAAAAACCA
ACTTTTTGGT
Left Arm | TTATTTAGTC | ATCCAȚA
TAGGTAT | TCT |
| 35 | 8651 | AAAGGTATCT
TTTCCATAGA | CCTTTGCACA
GGAAACGTGT
C5 | TAATTTCATC
ATTAAAGTAG
Left Arm | | TTAGAAT
AATCTTA | |
| 40 | 8701 | TTTCATTATA
AAAGTAATAT | TTTGTTTACA
AAACAAATGT | GCTGAAGACG
CGACTTCTGC
Left Arm | AAAAAAATAT
TTTTTTTATA | ATCGATA
TAGCTAT | TAT |
| 45 | 8751 | GAAGATTATG
CTTCTAATAC
C5 Left Arm | AATTGAGACG | TAATAAGATG | AAATTGAATG
TTTAACTTAC | AGTCTGT | GAC |
| | 8801 | TGCAGCCAAG
ACGTCGGTTC | CTTGGCACTG | GCCGTCGTTT | TACAACGTCG | ŢGACTGG | GAA |
| 50 | 8851 | AACCCTGGCG TTGGGACCGC | TTACCCAACT
AATGGGTTGA | TAATCGCCTT ATTAGCGGAA | GCAGCACATC
CGTCGTGTAG | CCCCTTT(| CGC
GCG |
| | 8901 | CAGCTGGCGT Z | TTATCGCTTC | TCCGGGCGTG | GCTAGCGGGA | AGGGTTG | ГCA |
| | 8951 | TGCGCAGCCT (ACGCGTCGGA) | GAATGGCGAA
CTTACCGCTT | TGGCGCCTGA
ACCGCGGACT | TGCGGTATTT
ACGCCATAAA | TCTCCTTI
AGAGGAA: | ACG
IGC |
| 55 · | 9001 | CATCTGTGCG (GTAGACACGC | GTATTTCACA
CATAAAGTGT | CCGCATATGG
GGCGTATACC | TGCACTCTCA
ACGTGAGAGT | GTACAAT(
CATGTTA(| CTG
SAC |

| | | ' . | | | | |
|------|---------|------------------|-------------|--------------|---|---------------|
| | 9051 | CTCTGATGCC | GCATAGTTAA | GCCAGCCCCG | ACACCCGCCA | ACACCCGCTG |
| | | GAGACTACGG | CGTATCAATT | CGGTCGGGC | TGTGGGCGGT | TGTGGGCGAC |
| | 9101 | ACGCGCCCTG | ACGGGCTTGT | CTGCTCCCGG | CATÇCGCTTA | CAGACAAGCT |
| | | TGCGCGGGAC | TGCCCGAACA | GACGAGGGCC | GTAGGCGAAT | GTCTGTTCGA |
| 5 · | 9151 | GTGACCGTCT | CCGGGAGCTG | CATGTGTCAG | AGGTTTTCAC | CGTCATCACC |
| | - | CACTGGCAGA | GGCCCTCGAC | GTACACAGTC | TCCAAAAGTG | GCAGTAGTGG |
| | 9201 | GAAACGCGCG | AGACGAAAGG | GCCTCGTGAT | ACGCCTATTT | TTATAGGTTA |
| | 320- | CTTTCCCCCC | TOTOCTTTTCC | CGGAGCACTA | TGCGGATAAA | AATATCCAAT |
| | 9251 | AMCMCAMCAM | አአመአአጥፎርጥጥ | TCTTAGACGT | CACCTCCCAC | TTTTCGGGGA |
| 10 | 9231 | MIGICATOMI | MAIMAIGGII | AGAATCTGCA | CTCCACCCTC | ANANGCCCCCT |
| 10 | | TACAGTACTA | TTATTACCAA | MUANICICA | GICCACCGIG | AMMONTANTO |
| | 9301 | AATGTGCGCG | GAACCCCTAT | TTGTTTATTT | TICIMAMIAC | ATTCAMATAT |
| | | | | AACAAATAAA | | |
| | 9351 | GTATCCGCTC | ATGAGACAAT | AACCCTGATA | AATGCTTCAA | TAATATTGAA |
| | • | CATAGGCGAG | TACTCTGTTA | TTGGGACTAT | TTACGAAGTT | ATTATAACTT |
| 15 | | | | Amp (F | ₹) . | |
| | | • • | | | | ~~~~~~~ |
| | 9401 | AAAGGAAGAG | TATGAGTATT | CAACATTTCC | GTGTCGCCCT | TATTCCCTTT |
| | | | | GTTGTAAAGG | | |
| | | | | Amp(R) | • | |
| 20 | | ~~~~~~~~~~ | | ·~~~~~~~~ | .~~~~~~~ | .~~~~~~ |
| 20 | 9451 | пппсссссх п | 1 | TGTTTTTGCT | | |
| | 9451 | 7 7 7 CCCCCCC | TITGCCTTCC | ACAAAAACGA | CHCCCHCHHH | CCCACCACM |
| | | AAACGCCGTA | AAACGGAAGG | | GIGGGICIII | GCGACCACTI |
| | • | | | Amp(R) | | • |
| | | ~~~~~~~~ | | | | |
| 25 | 9501 | | | AGTTGGGTGC | | |
| | • | TCATTTTCTA | CGACTTCTAG | TCAACCCACG | TGCTCACCCA | ATGTAGCTTG |
| | | | | Amp(R) | | • |
| | | | ·~~~~~~~ | | .~~~~~~~ | |
| . ' | 9551 | TGGATÇTCAA | CAGCGGTAAG | ATCCTTGAGA | GTTTTCGCCC | CGAAGAACGT |
| 30 | • | ACCTAGAGTT | GTCGCCATTC | TAGGAACTCT | CAAAAGCGGG | GCTTCTTGCA |
| | | | | Amp(R) | | |
| | | ~~~~~~~ | | | | |
| | 9601 | TTTCCAATGA | TGAGCACTTT | TAAAGTTCTG | CTATGTGGCG | CGGTATTATC |
| | | AAAGGTTACT | ACTCGTGAAA | ATTTCAAGAC | GATACACCGC | GCCATAATAG |
| 35 · | • | | | Amp (R) | | |
| 55 | . · | ~~~~~ | | | | |
| | 9651 | СССТАТТСАС | GCCGGGCAAG | AGCAACTCGG | TCGCCGCATA | CACTATTCTC |
| | 3031 | | | TCGTTGAGCC | | |
| | | GGCATAACTG | COOCCOIIC | Amp(R) | nocococini | 0101111110110 |
| 40 | - | | | Amp (N) | | |
| 40 | 9701 | 'n Ca a mo a com | CCHTCACTAC | TCACCAGTCA | CACAAAACCA | mcmma cccam |
| • • | 9/01 | | | AGTGGTCAGT | | |
| | | TCTTACTGAA | CCAACTCATG | | | AGAATGCCIA |
| | • | | | Amp(R) | | * |
| | | ~~~~~~ | ~~~~~~~~ | ~~~~~~~~~ | | |
| 45 . | 9751 | | | | | TGAGTGATAA |
| | | CCGTACTGTC | ATTCTCTTAA | TACGTCACGA | CGGTATTGGT | ACTCACTATT |
| | | • | | Amp(R) | | |
| | • | ~~~~~~ | | | . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | •~~~~~~ |
| | 9801 | CACTGCGGCC | AACTTACTTC | TGACAACGAT | CGGAGGACCG | AAGGAGCTAA |
| 50 | | GTGACGCCGG | TTGAATGAAG | ACTGTTGCTA | GCCTCCTGGC | TTCCTCGATT |
| | | | | Amp (R) | | |
| | | ~~~~~~ | ~~~~~~~ | | | |
| | 9851 | CCGCTTTTTT | GCACAACATG | GGGGATCATG | TAACTCGCCT | TGATCGTTGG |
| | J U U L | | | CCCCTAGTAC | | |
| 55 | | COCCHININA | COLOTIGIAC | 555511161116 | | |
| 55 | | | | | 0.00 | |

Amp(R)

| | | ~~~~~~~ | . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | .~~~~~~~. | ~~~~~~~ |
|----|----------------------------------|---|---|--|---|--|
| 5 | 9901 | | TGAATGAAGC
ACTTACTTCG | | | |
| 10 | 9951 | | ATGGCAACAA
TACCGTTGTT | | | |
| 10 | 10001 | | TTCCCGGCAA
AAGGGCCGTT | | | |
| 15 | 10051 | | CACTTCTGCG
GTGAAGACGC | | | |
| 20 | 10101 | | GGAGCCGGTG
CCTCGGCCAC | TCGCACCCAG
Amp(R) | | |
| 25 | 10151 | | TGGTAAGCCC
ACCATTCGGG | TCCCGTATCG | TAGTTATCTA | |
| | 10201 | TCAGTCCGTT | CTATGGATGA
GATACCTACT | | | |
| 30 | 10251 | CTCACTGATT | AAGCATTGGT
TTCGTAACCA | AACTGTCAGA | | |
| | 10301 | TTTAGATTGA | TTTAAAACTT
AAATTTTGAA | CATTTTTAAT | TTAAAAGGAT | CTAGGTGAAG |
| 35 | 10351 | ATCCTTTTTG | ATAATCTCAT
TATTAGAGTA | GACCAAAATC | CCTTAACGTG | AGTTTTCGTT |
| | 10401 | GGTGACTCGC | TCAGACCCCG
AGTCTGGGGC | | | |
| 40 | 10451 | | | | | |
| | 10501 | | CGCGCATTAG | ACGACGAACG | AAACAAAAAA
TTTGTTTTTT | ACCACCGCTA
TGGTGGCGAT |
| | | GAAAAAAAGA
CCAGCGGTGG
GGTCGCCACC | CGCGCATTAG
TTTGTTTGCC
AAACAAACGG | ACGACGAACG
GGATCAAGAG
CCTAGTTCTC | AAACAAAAA
TTTGTTTTTT
CTACCAACTC
GATGGTTGAG | ACCACCGCTA
TGGTGGCGAT
TTTTTCCGAA
AAAAAGGCTT |
| 45 | 10501 · 10551 | GAAAAAAGA
CCAGCGGTGG
GGTCGCCACC
GGTAACTGGC
CCATTGACCG | CGCGCATTAG
TTTGTTTGCC
AAACAAACGG | ACGACGAACG
GGATCAAGAG
CCTAGTTCTC
CGCAGATACC
GCGTCTATGG | AAACAAAAA
TTTGTTTTTT
CTACCAACTC
GATGGTTGAG
AAATACTGTC
TTTATGACAG | ACCACCGCTA
TGGTGGCGAT
TTTTTCCGAA
AAAAAGGCTT.
CTTCTAGTGT
GAAGATCACA |
| - | 10551 | GAAAAAAGA
CCAGCGGTGG
GGTCGCCACC
GGTAACTGGC
CCATTGACCG
AGCCGTAGTT
TCGGCATCAA
CTCGCTCTGC | CGCGCATTAG
TTTGTTTGCC
AAACAAACGG
TTCAGCAGAG
AAGTCGTCTC
AGGCCACCAC
TCCGGTGGTG
TAATCCTGTT | ACGACGAACG
GGATCAAGAG
CCTAGTTCTC
CGCAGATACC
GCGTCTATGG
TTCAAGAACT
AAGTTCTTGA
ACCAGTGGCT | AAACAAAAA
TTTGTTTTTT
CTACCAACTC
GATGGTTGAG
AAATACTGTC
TTTATGACAG
CTGTAGCACC
GACATCGTGG
GCTGCCAGTG | ACCACCGCTA
TGGTGGCGAT
TTTTTCCGAA
AAAAAGGCTT
CTTCTAGTGT
GAAGATCACA
GCCTACATAC
CGGATGTATG
GCGATAAGTC |
| | 10551
10601 | GAAAAAAGA
CCAGCGGTGG
GGTCGCCACC
GGTAACTGGC
CCATTGACCG
AGCCGTAGTT
TCGGCATCAA
CTCGCTCTGC
GAGCGAGACG
GTGTCTTACC | CGCGCATTAG
TTTGTTTGCC
AAACAAACGG
TTCAGCAGAG
AAGTCGTCTC
AGGCCACCAC
TCCGGTGGTG
TAATCCTGTT
ATTAGGACAA
GGGTTGGACT | ACGACGAACG GGATCAAGAG CCTAGTTCTC CGCAGATACC GCGTCTATGG TTCAAGAACT AAGTTCTTGA ACCAGTGGCT TGGTCACCGA CAAGACGATA | AAACAAAAA
TTTGTTTTTT
CTACCAACTC
GATGGTTGAG
AAATACTGTC
TTTATGACAG
CTGTAGCACC
GACATCGTGG
GCTGCCAGTG
CGACGGTCAC
GTTACCGGAT | ACCACCGCTA
TGGTGGCGAT
TTTTTCCGAA
AAAAAGGCTT
CTTCTAGTGT
GAAGATCACA
GCCTACATAC
CGGATGTATG
GCGATAAGTC
CGCTATTCAG
AAGGCGCAGC |
| - | 10551
10601
10651 | GAAAAAAGA
CCAGCGGTGG
GGTCGCCACC
GGTAACTGGC
CCATTGACCG
AGCCGTAGTT
TCGGCATCAA
CTCGCTCTGC
GAGCGAGACG
GTGTCTTACC
CACAGAATGG
GGTCGGGCTG | CGCGCATTAG
TTTGTTTGCC
AAACAAACGG
TTCAGCAGAG
AAGTCGTCTC
AGGCCACCAC
TCCGGTGGTG
TAATCCTGTT
ATTAGGACAA | ACGACGAACG GGATCAAGAG CCTAGTTCTC CGCAGATACC GCGTCTATGG TTCAAGAACT AAGTTCTTGA ACCAGTGGCT TGGTCACCGA CAAGACGATA GTTCTGCTAT TCGTGCACAC | AAACAAAAA
TTTGTTTTTT
CTACCAACTC
GATGGTTGAG
AAATACTGTC
TTTATGACAG
CTGTAGCACC
GACATCGTGG
GCTGCCAGTG
CGACGGTCAC
GTTACCGGAT
CAATGGCCTA
AGCCCAGCTT | ACCACCGCTA
TGGTGGCGAT
TTTTTCCGAA
AAAAAGGCTT
CTTCTAGTGT
GAAGATCACA
GCCTACATAC
CGGATGTATG
GCGATAAGTC
CGCTATTCAG
AAGGCGCAGC
TTCCGCGTCG
GGAGCGAACG |
| | 10551
10601
10651
10701 | GAAAAAAGA CCAGCGGTGG GGTCGCCACC GGTAACTGGC CCATTGACCG AGCCGTAGTT TCGGCATCAA CTCGCTCTGC GAGCGAGACG GTGTCTTACC CACAGAATGG GGTCGGGCTG CCAGCCCGAC ACCTACACCG TGGATGTGGC | CGCGCATTAG
TTTGTTTGCC
AAACAAACGG
TTCAGCAGAG
AAGTCGTCTC
AGGCCACCAC
TCCGGTGGTG
TAATCCTGTT
ATTAGGACAA
GGGTTGGACT
CCCAACCTGA
AACGGGGGGGT | ACGACGAACG GGATCAAGAG CCTAGTTCTC CGCAGATACC GCGTCTATGG TTCAAGAACT AAGTTCTTGA ACCAGTGGCT TGGTCACCGA CAAGACGATA GTTCTGCTAT TCGTGCACAC AGCACGTGTG CCTACAGCGT GGATGTCGCA | AAACAAAAA TTTGTTTTT CTACCAACTC GATGGTTGAG AAATACTGTC TTTATGACAG CTGTAGCACC GACATCGTGG GCTGCCAGTG CGACGGTCAC GTTACCGGAT CAATGGCCTA AGCCCAGCTT TCGGGTCGAA GAGCTATGAG CTCGATACTC | ACCACCGCTA TGGTGGCGAT TTTTTCCGAA AAAAAGGCTT CTTCTAGTGT GAAGATCACA GCCTACATAC CGGATGTATG GCGATAAGTC CGCTATTCAG AAGGCGCAGC TTCCGCGTCG GGAGCGAACG CCTCGCTTGC AAAGCGCCAC TTTCGCGGTG |

| | 10901 | GAACAGGAGA | GCGCACGAGG | GAGCTTCCAG | GGGGAAACGC | CTGGTATCTT |
|-----|-------|------------|------------|------------|------------|------------|
| | | CTTGTCCTCT | CGCGTGCTCC | CTCGAAGGTC | CCCCTTTGCG | GACCATAGAA |
| | 10951 | TATAGTCCTG | TCGGGTTTCG | CCACCTCTGA | CTTGAGCGTC | GATTTTTGTG |
| | | ATATCAGGAC | AGCCCAAAGC | GGTGGAGACT | GAACTCGCAG | CTAAAAACAC |
| 5 · | 11001 | ATGCTCGTCA | GGGGGGCGGA | GCCTATGGAA | AAACGCCAGC | AACGCGGCCT |
| | ٠. | TACGAGCAGT | CCCCCCCCCT | CGGATACCTT | TTTGCGGTCG | TTGCGCCGGA |
| | 11051 | TTTTACGGTT | CCTGGCCTTT | TGCTGGCCTT | TTGCTCACAT | GTTCTTTCCT |
| • | | AAAATGCCAA | GGACCGGAAA | ACGACCGGAA | AACGAGTGTA | CAAGAAAGGA |
| | 11101 | GCGTTATCCC | CTGATTCTGT | GGATAACCGT | ATTACCGCCT | TTGAGTGAGC |
| 10 | | CGCAATAGGG | GACTAAGACA | CCTATTGGCA | TAATGGCGGA | AACTCACTCG |
| | 11151 | TGATACCGCT | CGCCGCAGCC | GAACGACCGA | GCGCAGCGAG | TCAGTGAGCG |
| | • | ACTATGGCGA | GCGGCGTCGG | CTTGCTGGCT | CGCGTCGCTC | AGTCACTCGC |
| | 11201 | AGGAAGCGGA | AGAGCGCCCA | ATACGCAAAC | CGCCTCTCCC | CGCGCGTTGG |
| | | TCCTTCGCCT | TCTCGCGGGT | TATGCGTTTG | GCGGAGAGGG | GCGCGCAACC |
| 15 | 11251 | CCGATTCATT | AATGCAGCTG | GCACGACAGG | TTTCCCGACT | GGAAAGCGGG |
| | | GGCTAAGTAA | TTACGTCGAC | CGTGCTGTCC | AAAGGGCTGA | CCTTTCGCCC |
| | 11301 | CAGTGAGCGC | AACGCAATTA | ATGTGAGTTA | GCTCACTCAT | TAGGCACCCC |
| • | | GTCACTCGCG | TTGCGTTAAT | TACACTCAAT | CGAGTGAGTA | ATCCGTGGGG |
| ٠ | 11351 | AGGCTTTACA | CTTTATGCTT | CCGGCTCGTA | TGTTGTGTGG | AATTGTGAGC |
| 20 | • , | TCCGAAATGT | GAAATACGAA | GGCCGAGCAT | ACAACACACC | TTAACACTCG |
| : | 11401 | GGATAACAAT | TTCACACAGG | AAACAGCTAT | GACCATGATT | ACGAATTGAA |
| | | CCTATTGTTA | AAGTGTGTCC | TTTGTCGATA | CTGGTACTAA | TGCTTAACTT |
| | 11451 | TTGCGGCCGC | AATTCAACGC | CGGCGTTAAG | | • |

FIGURE 6A

NY-ESO-1

Met Gln Ala Glu Gly Arg Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp Gly Pro Gly Gly Gly Asn Ala Gly Gly Pro Gly Gly Gly Ala Gly Ala Gly Ala Gly Gly Ala Ala Gly Ala Ala Ala Arg Ala Ser Gly Pro Gly Gly Gly Ala Pro Arg Gly Pro His Gly Gly Ala Ala Ser Gly Leu Asn Gly Cys Cys Arg Cys Gly Ala Ala Arg Gly Gly Ala Ala Ser Gly Leu Asn Gly Cys Cys Arg Cys Gly Ala Ala Arg Gly Gly Ala Ala Arg Ala Ser Gly Leu Ala Arg Arg Ser Leu Ala Gln Asp Ala Thr Pro Met Glu Ala Glu Leu Ala Arg Arg Ser Leu Ala Gln Asp Ala Pro Pro Leu Pro Val Pro Gly Val Leu Leu Lys Glu Phe Thr Val Ser Gly Asn Ile Leu Thr Ile Arg Leu Thr Ala Ala Asp His Arg Gln Leu Gln Leu Gln Leu Gln Leu Ser Leu Leu Met Trp Ile Thr Gln Cys Phe Leu Pro Val Phe Leu Ala Gln Pro Pro Ser Gly Gln Arg Arg

15

10

5 .

FIGURE 6C

TRP-2

Met Ser Pro Leu Trp Trp Gly Phe Leu Leu Ser Cys Leu Gly Cys Lys Ile Leu Pro Gly Ala Gln Gly Gln Phe Pro Arg Val Cys Met Thr Val Asp Ser Leu Val Asn Lys Glu Cys Cys Pro Arg Leu Gly Ala Glu Ser Ala Asn Val 5 Cys Gly Ser Gln Gln Gly Arg Gly Gln Cys Thr Glu Val Arg Ala Asp Thr Arg Pro Trp Ser Gly Pro Tyr Ile Leu Arg Asn Gln Asp Asp Arg Glu Leu Trp Pro Arg Lys Phe Phe His Arg Thr Cys Lys Cys Thr Gly Asn Phe Ala Gly Tyr Asn Cys Gly Asp Cys Lys Phe Gly Trp Thr Gly Pro Asn Cys Glu Arg Lys Lys Pro Pro Val Ile Arg Gln Asn Ile His Ser Leu Ser Pro Gln 10 Glu Arg Glu Gln Phe Leu Gly Ala Leu Asp Leu Ala Lys Lys Arg Val His Pro Asp Tyr Val Ile Thr Thr Gln His Trp Leu Gly Leu Leu Gly Pro Asn Gly Thr Gln Pro Gln Phe Ala Asn Cys Ser Val Tyr Asp Phe Phe Val Trp Leu His Tyr Tyr Ser Val Arg Asp Thr Leu Leu Gly Pro Gly Arg Pro Tyr Arg Ala Ile Asp Phe Ser His Gln Gly Pro Ala Phe Val Thr Trp His Arg 15 Tyr His Leu Leu Cys Leu Glu Arg Asp Leu Gln Arg Leu Ile Gly Asn Glu Ser Phe Ala Leu Pro Tyr Trp Asn Phe Ala Thr Gly Arg Asn Glu Cys Asp Val Cys Thr Asp Gln Leu Phe Gly Ala Ala Arg Pro Asp Asp Pro Thr Leu Ile Ser Arg Asn Ser Arg Phe Ser Ser Trp Glu Thr Val Cys Asp Ser Leu Asp Asp Tyr Asn His Leu Val Thr Leu Cys Asn Gly Thr Tyr Glu Gly Leu 20 Leu Arg Arg Asn Gln Met Gly Arg Asn Ser Met Lys Leu Pro Thr Leu Lys Asp Ile Arg Asp Cys Leu Ser Leu Gln Lys Phe Asp Asn Pro Pro Phe Phe Gln Asn Ser Thr Phe Ser Phe Arg Asn Ala Leu Glu Gly Phe Asp Lys Ala Asp Gly Thr Leu Asp Ser Gln Val Met Ser Leu His Asn Leu Val His Ser Phe Leu Asn Gly Thr Asn Ala Leu Pro His Ser Ala Ala Asn Asp Pro Ile 25 Phe Val Val Leu His Ser Phe Thr Asp Ala Ile Phe Asp Glu Trp Met Lys Arg Phe Asn Pro Pro Ala Asp Ala Trp Pro Gln Glu Leu Ala Pro Ile Gly His Asn Arg Met Tyr Asn Met Val Pro Phe Phe Pro Pro Val Thr Asn Glu Glu Leu Phe Leu Thr Ser Asp Gln Leu Gly Tyr Ser Tyr Ala Ile Asp Leu Pro Val Ser Val Glu Glu Thr Pro Gly Trp Pro Thr Thr Leu Leu Val Val 30 Met Gly Thr Leu Val Ala Leu Val Gly Leu Phe Val Leu Leu Ala Phe Leu Gln Tyr Arg Arg Leu Arg Lys Gly Tyr Thr Pro Leu Met Glu Thr His Leu Ser Ser Lys Arg Tyr Thr Glu Glu Ala

FIGURE 6D gp100 and gp100M

| 5 | : . | 1 | MDL
*** | VLKRCLLHLA | VIGALLAVGA | TKVPRNQDWL | GVSRQLRTKA | WNRQLYPEWT |
|----|-------|---------|----------------|-----------------------|-----------------------|-------------------------|-----------------------|-------------------------|
| | · | 1
2 | EAQRLDCWRG | GQVSLKVSND | GPTLIGANAS | FSIALNFPGS | QKVLPDGQVI | WVNNTIINGS ******* |
| 10 | , | 1
2 | QVWGGQPVYP | QETDDACIFP
******* | DGGPCPSGSW | SQKRSFVYVW | KTWGQYWQFL
******* | GGPVSGLSIG |
| 15 | · . | 1
2 | TGRAMLGTHT | MEVTVYHRRG | SRSYVPLAHS | SSAFTITDQV
********* | PFSVSVSQLR | ALDGGNKHFL |
| 13 | · , . | 1
2 | RNQPLTFALQ | LHDPSGYLAE | ADLSYTWDFG | DSSGTLISRA
******* | LVVTHTYLEP ******* | GPVTAQVVLQ
****V**** |
| 20 | | 1
2 | AAIPLTSCGS | SPVPGTTDGH | RPTAEAPNTT | AGQVPTTEVV | GTTPGQAPTA | EPSGTTSVQV |
| | | 1
2 | PTTEVISTAP | VQMPTAESTG | MTPEKVPVSE
******* | VMGTTLAEMS | TPEATGMTPA | EVSIVVLSGT |
| 25 | · | 1
2 | TAAQVTTTEW | VETTARELPI | PEPEGPDASS
****** | IMSTESITGS | LGPLLDGTAT | LRLVKRQVPL |
| 30 | •. | 1
2 | DCVLYRYGSF | SVTLDIVQGI
******* | ESAEILQAVP | SGEGDAFELT | VSCQGGLPKE | ACMEISSPGC |
| | | 1
2 | QPPAQRLCQP | VLPSPACQLV | LHQILKGGSG | TYCLNVSLAD | TNSLAVVSTQ | LIMPGQEAGL |
| 35 | | | | LVLMAVVLAS | | | | |
| | | 1
Ke | PLLSGQQV2 | ***** | | • | • | , |
| 40 | | 1: | -4- | amino acidi | residue | | | |
| | | | | | | | | |

FIGURE 6E

MART-1

5

10

Met Pro Arg Glu Asp Ala His Phe Ile Tyr Gly Tyr Pro Lys Lys Gly His Gly His Ser Tyr Thr Thr Ala Glu Glu Ala Ala Gly Ile Gly Ile Leu Thr Val Ile Leu Gly Val Leu Leu Leu Leu Ile Gly Cys Trp Tyr Cys Arg Arg Arg Asn Gly Tyr Arg Ala Leu Met Asp Lys Ser Leu His Val Gly Thr Gln Cys Ala Leu Thr Arg Arg Cys Pro Gln Glu Gly Phe Asp His Arg Asp Ser Lys Val Ser Leu Gln Glu Lys Asn Cys Glu Pro Val Val Pro Asn Ala Pro Pro Ala Tyr Glu Lys Leu Ser Ala Glu Gln Ser Pro Pro Pro Tyr Ser Pro

FIGURE 6F

MAGE-1

10

15

FIGURE 6G

MAGE-3

mpleqrsqhc kpeeglearg ealglvgaqa pateeqeaas ssstlvevtl gevpaaespd ppqspqgass lpttmnyplw sqsyedssnq eeegpstfpd lesefqaals rkvaelvhfl llkyrarepv tkaemlgsvv gnwqyffpvi fskassslql vfgielmevd pighlyifat clglsydgll gdnqimpkag lliivlaiia regdcapeek iweelsvlev fegredsilg dpkklltqhf vqenyleyrq vpgsdpacye flwgpralve tsyvkvlhhm vkisggphis ypplhewvlr egee

FIGURE 6H B7.1

| _ | | | . Б | /•A | | |
|------|-------------|--------------------------|---------------------|--|------------------|------------|
| 5 | | , , , , , | | ,
, , , , , , , , , , , , , , , , , , , | | _ |
| | | pskcpylnff | | | | |
| | | kmvltmmsgd | | | | |
| | | laevtlsvka | | | | |
| 10 | | qdpetelyav | | | | wntrkdeurb |
| 10 | dhiipswait | lisvngifvi | ccrtycrapr | creffineri | rresvrpv | |
| | | | FIGU | RE 6I | | |
| | | | | 'A-3 | ٠. | |
| | | | | | • | |
| 15 | mvagsdagra | lgvlsvvcll | hcfgfiscfs | qqiygvvygn | vtfhvpsnvp | lkevlwkkqk |
| | | frafssfknr | | | | |
| | | caltngsiev | | | | |
| | | nplfnttssi | ilttcipssg | hsrhryalip | iplavittci | vlymngilkc |
| | drkpdrtnsn | | | • | • | • |
| 20 . | • | | • | | | |
| | | | | RE 6J | | |
| | • | | ICA | M-1* | • | |
| | | | 5 t | | | |
| 25 | mapssprpal | pallvllgal | ipgpgna q ts | vspskvilpr | ggsvivtcst | scadbkTTd1 |
| | erbrbkkerr | lpgnnrkvye | Isnvqeasqp | mcysncpagq | staktritvy | wtpervelap |
| | | ltlrcqvegg
dlrpqglelf | | | | |
| • | ganiscreer | hlalgdqrln | ptytygndef | crytbacbbd | adeatarlta | rddrancac |
| | tlatutivsf | papnviltkp | evsentevty | kceahnraku | tlngmaml | aviignqsqe |
| 30 | tpednarsfs | csatlevagq | lihknatrel | rylyanride | rdcpanwtwp | ensagtima |
| | awonplpelk | clkdgtfplp | igesytytrd | legtylcrar | stagevtrev | tynylsnrve |
| | | vimgtaglst | | | | |
| | | | 3 -31 | 3 472-403 | -E-2000E-2-2-400 | FF |
| | *mature sec | quence begin | ns at residu | ie 28 (q) | . , | • |
| 35 | | , in the second | | | | |