Lehrstuhl für Informatik 1 Prof. Dr. Gerhard Woeginger Jan Böker, Tim Hartmann

Übung zur Vorlesung Berechenbarkeit und Komplexität

Lösung Blatt 10

Hausaufgabe 10.1 (3 Punkte)

Zeigen Sie für das Traveling Salesman Problem (TSP), dass, falls die Entscheidungsvariante in P ist, so kann auch die Optimierungsvariante in polynomialer Zeit gelöst werden.

Wir nehmen also an, dass die Entscheidungsvariante von TSP in P ist und konstruieren einen Polynomialzeit-Algorithmus \mathcal{A}_{OPT} , der eine optimale Lösung des TSP berechnet und dabei den Polynomialzeit-Algorithmus für die Entscheidungsvariante \mathcal{A}_{ENT} als Unterprogramm benutzt.

Als Eingabe erhält der Algorithmus $\mathcal{A}_{\mathrm{OPT}}$ einen gewichteten vollständigen Graphen G mit n Knoten. Wir bezeichnen mit d_{max} das maximale Kantengewicht in G. Jede Rundreise in G hat höchstens Kosten von nd_{max} . Folglich können wir eine Kante aus G "löschen", indem wir ihre Kosten auf $nd_{\mathrm{max}}+1$ setzen.

Wir können durch eine binäre Suche den Wert $b_{opt} \leq nd_{max}$ der optimalen Lösung bestimmen und damit b_{opt} in Polynomialzeit finden. Die Laufzeit der binären Suche ist $\mathcal{O}(\log_2(n \cdot d_{max})) = \mathcal{O}(\log_2(N \cdot 2^N)) = \mathcal{O}(N)$ für ursprüngliche Eingabegröße N.

Der Algorithmus $\mathcal{A}_{\mathrm{OPT}}$ zur Berechnung der optimalen Rundreise geht nun wie folgt vor:

- \mathcal{A}_{OPT} iteriert über alle Kanten e des Graphen G.
- Dabei "löscht" $\mathcal{A}_{\mathrm{OPT}}$ die Kante e und prüft mit Hilfe von $\mathcal{A}_{\mathrm{ENT}}$, ob es eine Rundreise mit Kosten b_{opt} gibt.
 - Falls ja, dann gibt es eine optimale Rundreise, die nicht über e führt. $\mathcal{A}_{\mathrm{OPT}}$ "löscht" die Kante e aus dem Graphen und wählt eine andere Kante, bis nur noch n Kanten vorhanden sind.
 - Falls nein, dann führt jede optimale Rundreise über die Kante e und die Kante e wird nicht gelöscht. $\mathcal{A}_{\mathrm{OPT}}$ wählt nun eine andere Kante.

Nachdem über alle Kanten iteriert wurde, sind nur noch die Kanten einer optimalen Rundreise im Graphen vorhanden. $\mathcal{A}_{\mathrm{OPT}}$ gibt diese als optimale Lösung aus.

Jede Kante wird höchstens einmal aus G entfernt. Dabei wird jeweils der Algorithmus \mathcal{A}_{ENT} einmal aufgerufen mit Eingabegröße $\mathcal{O}(N + \log(n + d_{\text{max}})) = \mathcal{O}(2N)$. Folglich ist die Laufzeit von \mathcal{A}_{OPT} polynomiell in der Eingabelänge beschränkt.

Eine Knotenmenge $R \subseteq V$ spannt eine Kante $\{u, v\} \in E$ auf, falls $u \in R$ und $v \in R$. Wir betrachten folgendes Entscheidungsproblem.

KANTEN AUFSPANNEN

Eingabe: Ein Graph G = (V, E); zwei Zahlen r und s.

Frage: Gibt es eine Menge $R \subseteq V$ mit |R| = r, die mindestens s Kanten aufspannt?

(a) Zeigen Sie, dass Kanten Aufspannen in NP liegt.

Wir verwenden eine geeignete Kodierung der Knotenmenge $R \subseteq V$ als Zertifikat. Dieses hat polynomielle Größe.

Der Verifizierer arbeitet wie folgt: Prüfe ob |R| = r, sonst verwerfe. Zähle die Kanten $\{u, v\} \in E$ mit $u, v \in R$. Akzeptiere, falls mindestens s Kanten gezählt worden sind, sonst verwerfe. Die Laufzeit des Verifizierers ist polynomiell.

(b) Zeigen Sie, dass CLIQUE \leq_p KANTEN AUFSPANNEN. Wie bald in der Vorlesung gezeigt wird, gilt SAT \leq_p CLIQUE. Was folgt daraus für KANTEN AUFSPANNEN?

Konstruktion: Sei Graph G = (V, E) und natürliche Zahl k eine CLIQUE-Instanz. Setzte r := k, $s := \binom{k}{2}$ und übernehme den Graphen G.

Die Konstruktion benötigt polynomielle Zeit.

Korrektheit: Wir zeigen, dass G eine Clique der Größe mindestens k hat gdw. G eine Knotenmenge $R \subseteq V, |R| = k$ hat welche mindestens $\binom{k}{2}$ Kanten aufspannt.

- (⇒) Sei $W' \subseteq V$ eine Clique der Größe mindestens k in G. Dann ist $W \subseteq W'$, |W'| = k eine k-Clique. Dann spannt W jede Kante $\{u,v\}$ mit $u,v \in W, u \neq w$ auf, also $\binom{k}{2}$ Kanten. Also ist R := W eine Knotenmenge der Größe k, welche $\binom{k}{2}$ Kanten aufspannt.
- (\Leftarrow) Sei $R \subseteq V, |R| = k$ eine Knotenmenge, welche mindestens $\binom{k}{2}$ Knoten aufspannt. Es gibt höchstens $\binom{k}{2}$ viele Kanten mit Knoten aus R. Da R mindestens $\binom{k}{2}$ Knoten aufspannt, gilt für alle $u, v \in R, u \neq v$, dass $\{u, v\} \in E$. Demnach ist R eine Clique der Größe k.

Zusammen mit SAT \leq_p CLIQUE folgt, dass SAT \leq_p KANTEN AUFSPANNEN, also KANTEN AUFSPANNEN NP-schwer ist. Zusammen mit a) folgt, dass KANTEN AUFSPANNEN NP-vollständig ist.

Hausaufgabe 10.3

(1+4 Punkte)

Für Vektoren $c, d \in \mathbb{Z}^k$ sei $c \geq d$ falls für alle $i \in \{1, \ldots, k\}$ gilt, dass $c_i \geq d_i$. Wir betrachten folgendes Entscheidungsproblem:

 $\{-1,0,1\}$ RESTRICTED INTEGER PROGRAMING

Eingabe: Eine Matrix $A \in \{-1,0,1\}^{m \times n}$ und ein Vektor $b \in \{-1,0,1\}^m$.

Frage: Gibt es einen Vektor $x \in \{0,1\}^n$ mit $Ax \ge b$?

(a) Zeigen Sie, dass $\{-1,0,1\}$ RESTRICTED INTEGER PROGRAMING in NP liegt.

Als Zertifikat verwenden wir $x \in \{0,1\}^n$. Dieses hat polynomielle Größe in der Eingabegröße.

Der Verifzierer prüft ob $Ax \geq b$ in polynomieller Zeit.

(b) Zeigen Sie, dass $\{-1,0,1\}$ RESTRICTED INTEGER PROGRAMING NP-schwer ist.

Hinweis: Es bietet sich eine Reduktion von SAT an. Außerdem ist hilf-reich als Zwischenschritt auch Gleichungen der Art c+d=1 zu erlauben. Daraufhin kann man sich überlegen, wie man eine solche Gleichung in Ungleichungen übersetzten kann.

Wir zeigen, dass SAT $\leq_p \{-1,0,1\}$ RESTRICTED INTEGER PROGRAMING:

(Idee: Repräsentiere eine Varibele v_i durch eine *i*-te Spalten für x und eine (n+i)-te Spalte für \overline{x} . Wir erzwingen die Belegung von x so, dass $x_i \neq x_{n+i}$, sprich $x \neq \overline{x}$ gilt. Für eine Klausel der Form $v_1 + \overline{v_2} + v_3$ muss dann gelten $x_1 + x_{n+2} + x_3$.)

Konstruktion: Gegeben sei eine 3-SAT-Instanz bestehend aus einer Formel φ in CNF über Variablen $v_1,\ldots,v_{n'}$. Wir konstruieren eine Matrix A mit 2n' Spalten und Vektor b welche folgende Ungleichungen abbilden. Für jede Variable $v_i,i\in\{1,\ldots,n'\}$, fügen wir die Ungleichungen $x_i+x_{n'+i}\geq 1$ und $(-x_i)+(-x_{n'+i})\geq -1$ ein, so dass $x_i+x_{n'+i}=1$ gilt. Für jede Klausel der Form $v_{i_1}\vee\cdots\vee v_{i_{k'-1}}\vee\overline{v_{i_{k'}}}\vee\cdots\vee\overline{v_{i_k}}$ füge Ungleichung $x_{i_1}+\cdots+x_{i_{k'-1}}+x_{n'+i_{k'}}+\cdots+x_{n'+i_k}\geq 1$.

Die Laufzeit der Konstruktion ist polynomiell.

Korrektheit:

- (⇒) Sei φ in CNF Form mit erfüllender Belegung $I:\{v_1,\ldots,v_n\}\to\{0,1\}$. Sei $x_i:=I(v_i)$ und $x_{n+i}=1-I(v_i)$ für alle $i\in\{1,\ldots,n'\}$. Für jede Klausel $v_{i_1}\vee\dots\vee v_{i_{k'-1}}\vee\overline{v_{i_{k'}}}\vee\dots\vee\overline{v_{i_k}}$ gibt es ein positives oder ein negatives Literal v_i bzw. $\overline{v_i}$, welches wahr ist mit Belegung I. Dann ist die entsprechende Ungleichung erfüllt, da $x_i=1$ bzw. $x_{n'+i}=1$ ist und alle anderen Summanden ≥ 0 .
- (\Leftarrow) Sei $x \in \mathbb{N}^{2n'}$, so dass Ax = b, also alle Ungleichungen aus der Konstruktion erfüllt sind. Dann gilt, dass $x_i \neq x_{n+i}$, da $x_i + x_{n'+i} = 1$. Wir zeigen, dass die Variablenbelegung $I : \{v_1, \ldots, v_{n'}\} \to \{0, 1\}, v_i \mapsto x_i$ eine erfüllende Belegung für die ursprüngliche Formel φ ist. Für jede Klausel $v_{i_1} \vee \cdots \vee v_{i_{k'-1}} \vee \overline{v_{i_{k'}}} \vee \cdots \vee \overline{v_{i_k}}$ gilt, dass $x_{i_1} + \cdots + x_{i_{k'-1}} + x_{n'+i_{k'}} + \cdots + x_{n'+i_k} \geq 1$ erfüllt ist. Es gilt also, dass $v_j = 1$ für ein $j \in \{1, \ldots, k' 1\}$ oder $v_{n+j'} = 1$ für ein $j' \in \{k', \ldots, k\}$. Dann ist $I(v_j) = 1$ bzw., da $x_i \neq x_{n'+i}$, ist $I(v_{j'}) = 0$, und daher ist die Klausel erfüllt.