

抽象代数复习指南

1<sup>th</sup> Edition, 2021 年 12 月 14 日

# 前言

开坑时间:2021.12.11.

本篇为复习资料, 顺便试用一下新模板.

有问题可随时联系我, 知乎:Infty

考试比我写过的随笔简单很多, 这篇复习资料不太清楚的地方, 只需稍作思考就能明白.

更多内容可以参考我的随笔.

给兄弟征婚:qq 号 1747330735, 本人长相为封面 logo

写在随笔前言的内容依旧贴在这里, 以菲尔兹奖得主的经历送给所有读者:

"在我看来,数学书(包括论文)是最晦涩难懂的读物。将一本几百页的数学书从头到尾读一遍更是难上加难。翻开数学书,定义、公理扑面而来,定理、证明接踵而至。数学这种东西,一旦理解则非常简单明了,所以我读数学书的时候,一般都只看定理,努力去理解定理,然后自己独立思考数学证明。不过,大多数情况下都是百思不得其解,最终只好参考书中的证明。然而,有时候反复阅读证明过程也难解其意,这种情况下,我便会尝试在笔记本中抄写这些数学证明。在抄写过程中,我会发现证明中有些地方不尽如人意,于是转而寻求是否存在更好的证明方法。如果能顺利找到还好,若一时难以觅得,则多会陷入苦思,至无路可走、油尽灯枯才会作罢。按照这种方法,读至一章末尾,已是月余,开篇的内容则早被忘到九霄云外。没办法,只好折返回去从头来过。之后,我又注意到书中整个章节的排列顺序不甚合理。比如,我会考虑将定理七的证明置于定理三的证明之前的话,是否更加合适。于是我又开始撰写调整章节顺序的笔记。完成这项工作后,我才有真正掌握第一章的感觉,终于送了一口气,同时又因太耗费精力而心生烦忧。从时间上来说,想要真正理解一本几百页的数学书,几乎是一件不可能完成的任务。真希望有人告诉我,如何才能快速阅读数学书"

Infty 2021 年 12 月 14 日

# 目录

| 1 | 第一题                   |                 | 1  |
|---|-----------------------|-----------------|----|
|   | 1.1 题目                | 既述              |    |
|   | 1.2 第一                | <mark>小问</mark> |    |
|   | 1.3 第二                | <mark>小问</mark> |    |
|   | 1.4 第三                | <mark>小问</mark> |    |
|   | 1.5 第四                | <mark>小问</mark> |    |
|   | ** PT                 |                 |    |
| 2 | 第二题                   |                 |    |
|   | . – .                 | 既述              |    |
|   | 2.2 第一                | 小问              | ;  |
|   | 2.3 第二                | 小问              | (  |
|   | 2.4 第三                | 小问              | (  |
| _ | 65 — DT               |                 |    |
| 3 | 第三题                   |                 | ę  |
|   |                       | 既述              |    |
|   | 3.2 第一                | <mark>小问</mark> |    |
| 1 | 第四题                   |                 | 11 |
| • |                       | 既述              |    |
|   |                       |                 |    |
|   | 4.2 弗-                | <mark>小问</mark> | 1. |
| 5 | 第五题                   |                 | 13 |
|   | 5.1 题目                | 既述              | 15 |
|   | 5.2 第-                | 小问              | 13 |
|   |                       |                 |    |
| 6 | 第六题                   |                 | 15 |
|   | 6.1 题目                | 既述              | 18 |
|   | 6.2 第一                | 小问              | 1  |
|   | <b>**</b>   <b>**</b> |                 |    |
| 7 | 第七题                   |                 | 17 |
|   | 7.1 题目                | 既述              | 17 |
|   | 72 第-                 | <b>小</b> 间      | 1' |

| 8 | 第八  | 题    |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |  |  |  |  |  | 19 |
|---|-----|------|--|--|--|--|--|--|--|--|--|----|--|--|--|--|--|--|--|--|--|--|--|--|--|----|
|   | 8.1 | 题目概述 |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |  |  |  |  |  | 19 |
|   | 8.2 | 第一小问 |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |  |  |  |  |  | 19 |
| 9 | 第九题 |      |  |  |  |  |  |  |  |  |  | 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |    |
|   | 9.1 | 题目概述 |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |  |  |  |  |  | 21 |
|   | 9.2 | 第一小间 |  |  |  |  |  |  |  |  |  |    |  |  |  |  |  |  |  |  |  |  |  |  |  | 21 |

# 第一题

## 1.1 题目概述

- (1)  $Z_m$  的定义, $Z_m$  的加法和乘法的定义,对加法构成群,对乘法不构成群.从加群的角度看待生成元,以及作为循环群的全部子群
- (2) 对乘法有可逆元, 单位元是哪个, 找到逆元素
- (3) 对于这类环来说, 不是可逆元就是零因子
- (4) 可逆元构成单位群, 元素的阶怎么算

## 1.2 第一小问

#### Definition 1: 模 m 剩余类

Z 的一个分类: $Z_m:\bar{0},\bar{1},\cdots,m-1$ , 称为模 m 的剩余类, 每个元素称为一个同余类或剩余类.

#### Definition 2: 模 m 剩余类加群

定义模 m 剩余类的加法, $\bar{a} + \bar{b} = a + b$ , 模 m 剩余类按照这个加法构成群

### Definition 3: 模 m 剩余类单位群

定义模 m 剩余类的乘法, $\bar{a}\bar{b} = \bar{a}b$ , 模 m 剩余类按照这个乘法构成不一定构成群, 原因是有些元素没有可逆元, 有可逆元的元素构成的集合对模 m 剩余类的乘法构成群, 称之为模 m 剩余类单位群.

#### Definition 4: 模 m 剩余类加群的生成元

模 m 剩余类加群的生成元为  $\bar{1}$ , 但注意单位元是  $\bar{0}$ , 因此单位元是不等于生成元的. 模 m 剩余类加群中每个元素都可以写成模 m 剩余类加群生成元  $\bar{1}$  的倍数

#### Theorem 1: 无限循环群的子群

无限循环群  $G = \langle a \rangle$  的全部子群为  $H_k = \langle a^k \rangle, k = 0, 1, 2, \cdots$ 

#### Theorem 2: 有限循环群的子群

对于 n 阶循环群  $G = \langle a \rangle$  的阶的每一个正因子都存在唯一的一个 s 阶子群, 他们构成 G 的全部子群.

#### Exercice 1

下列各组整数中,哪两个模4同余.

- 3 与 7
- -11 与 2
- 21 与-7

#### Solution:

a 与 b 模 m 同余  $\Leftrightarrow$  m|(a-b), 也就是说 a-b 是 m 的倍数

7-3=4 是 4 的倍数, 故模 4 同余,2-(-11)=13 不是 4 的倍数, 故不同余,21-(-7)=28 是 4 的倍数, 故模 4 同余.

#### Exercice 2

在模 4 的剩余类中, 下列哪两个剩余类相等?

- -3 与 9
- -1与-11
- -12 与 32

#### Solution:

看代表元相减是否是 4 的倍数

9-(-3)=12 是 4 的倍数, 故两个剩余类相等, -1-(-11)=10 不是 4 的倍数, 故不相等, 32-(-12)=44 是 4 的倍数, 故相等.

#### Exercice 3

找出 Z<sub>10</sub> 的加群的全部子群

Solution: 有一个好用的定理:

#### Theorem 3

设 G 是群, $a \in G$ , |a| = n 则

- (1)  $a^m = e \Leftrightarrow n \mid m$
- $(2) |a^k| = \frac{n}{(n,k)}, \forall k \in \mathbb{Z}^+$

6 的因子有 1,2,3,6.

对应 1 阶的子群为  $\{\bar{0}\}$ 

对应 2 阶的子群为  $\{\bar{0},\bar{3}\}$ 

对应 3 阶的子群为 {0,2,4}

对应 6 阶的子群为 {0,1,2,3,4,5}

## 1.3 第二小问

#### Theorem 4

 $\bar{a} \in Z_m \ \exists \ \not \equiv (a,m) = 1, 0 \le a \le m-1$ 

#### Exercice 4

求出 Z, 中所有的可逆元, 并指出相应的逆元素

Solution: 与 9 互素的元素有 1,2,4,5,7,8

 $\bar{1}^{-1} = \bar{1}$ 

 $\bar{2}^{-1} = \bar{5}$ 

 $\bar{4}^{-1} = \bar{7}$ 

 $\bar{5}^{-1} = \bar{2}$ 

 $\bar{7}^{-1} = \bar{4}$ 

 $\bar{8}^{-1}=\bar{8}$ 

事实上,Z<sub>m</sub> 中可逆的元素集合构成单位群,因此逆元也在这个单位群中.

请读者用以下题目练手

#### Exercice 5

求出 Z<sub>15</sub> 中所有的可逆元, 并指出相应的逆元素

## 1.4 第三小问

对于模 m 剩余类环来说, 元素不是可逆元就是零因子

#### Definition 5: 零因子

设 R 是环, $a,b \in R$  且  $a \neq 0, b \neq 0$ . 若 ab=0, 则称 a 为 R 的一个左零因子,b 为 R 的右零因子,都简称为零因子.

#### Theorem 5

零因子一定不可逆, 可逆元一定不是零因子

Solution: ab = 0b 是 a 的零因子, 假设 b 有可逆元记为  $b^{-1}$ , 有  $bb^{-1} = e$ , 两边同时左乘以 a, $abb^{-1} = ae$   $(ab)b^{-1} = a \Leftrightarrow 0b^{-1} = a$ , 而  $a \neq 0$  故矛盾, 故零因子不是可逆元, 同理可证可逆元不是零因子.

#### Theorem 6

对于模 m 剩余类环来说, 元素不是可逆元就是零因子

#### Exercice 6

写出 Z<sub>6</sub> 中非平凡的零因子.

Solution:  $Z_6 = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}\}$ , 其中可逆元为与 6 互素的, 为  $\bar{1}, \bar{5}$ , 故非平凡的零因子为  $\bar{2}, \bar{3}, \bar{4}$ 

## 1.5 第四小问

可逆元构成单位群,元素的阶怎么算

#### Exercice 7

求出 Z, 的单位群的各元素的阶.

Solution:  $Z_9^* = \{\bar{1}, \bar{2}, \bar{4}, \bar{5}, \bar{7}, \bar{8}\}$ 

- (1)  $\bar{1}^1 \Leftrightarrow |\bar{1}| = 1$
- (2)  $\bar{2}^6 \Leftrightarrow |\bar{2}| = 6$
- (3)  $\bar{4}^3 \Leftrightarrow |\bar{4}| = 3$
- $(4) \ \overline{5}^6 \Leftrightarrow |\overline{5}| = 6$
- (5)  $\bar{7}^3 \Leftrightarrow |\bar{7}| = 3$
- (6)  $\bar{8}^1 \Leftrightarrow |\bar{8}| = 2$

# 第二题

## 2.1 题目概述

- (1) n 元对称群的运算, 轮换的定义, 变换可以写成不相交轮换的乘积.
- (2) 轮换和奇偶性 (写成对换)
- (3) 置换的阶 (轮换的阶)

## 2.2 第一小问

#### Definition 6: n 元对称群

当  $\Omega$  为有限集合时, $\Omega$  到自身的一个双射叫做  $\Omega$  的一个置换. 设  $\Omega$  有 n 个元素, 这时  $\Omega$  的置换称为 n 元置换, 并称此时的全变换群为 n 元对称群

#### Definition 7: 轮换

设  $\sigma(i_1)=i_2, \sigma(i_2)=i_3, \cdots, \sigma(i_{r-1})=i_r, \sigma(i_r)=i_1$  并且保持其余的元素不变, 则称  $\sigma$  为  $S_n$  中的一个 r-轮换, 记作  $\sigma=(i_1i_2\cdots i_r)$ 

#### Exercice 8

在 S<sub>5</sub> 中, 设:

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$$
,  $\sigma_2 = \sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$ 

(1) 求  $\sigma_1\sigma_2$ ,  $\sigma_2\sigma_1$ 

#### Exercice 8

- (2) 分别写出  $\sigma_1, \sigma_2$  的轮换分解式
- (3) 求  $\sigma_1^{-1}$ ,  $\sigma_1\sigma_2\sigma_1^{-1}$
- (4) 分别写出  $\sigma_1, \sigma_2$  的一种对换分解式
- (5) 说出 σ<sub>1</sub>,σ<sub>2</sub> 是偶置换还是奇置换
- (6) 求出  $\sigma_1, \sigma_2$  的阶数

Solution:  $(1).\sigma_1 = (13542), \sigma_2 = (143)(25)$ 

$$\sigma_1 \sigma_2 = (13542)(143)(25) = (1245)(3)$$

$$\sigma_2 \sigma_1 = (143)(25)(13542) = (1)(2453)$$

$$(2).\sigma_1 = (13542), \sigma_2 = (143)(25)$$

$$(3).\sigma_1^{-1} = (12453)$$

$$\sigma_1 \sigma_2 \sigma_1^{-1} = (1245)(3)(12453) = (14)(253)$$

### 2.3 第二小问

#### Definition 8: 对换

2-轮换也被称为对换

#### Theorem 7

每一个轮换都可以表示成一些对换的乘积  $(i_1i_2\cdots i_r)=(i_1i_r)(i_1i_{r-1})\cdots(i_1i_3)(i_1i_2)$ 

#### Definition 9: 奇偶性

一个 n 元置换  $\sigma$  称为偶 (奇) 置换当且仅当  $\sigma$  可以表示成偶 (奇) 数个对换的乘积

Solution: (4).  $\sigma_1 = (13542) = (12)(14)(15)(13)$ 

 $\sigma_2 = (143)(25) = (13)(14)(25)$ 

 $(5).\sigma_1$  是偶置换, $\sigma_2$  是奇置换

## 2.4 第三小问

#### Theorem 8

任一个 n 元置换都能表示成一些两两不相交的轮换的乘积, 出去排列次序以外, 表示法唯一

### Theorem 9

r-轮换的阶为 r

### Theorem 10

n 元置换的阶等于分解出的轮换的阶的最小公倍数

Solution:  $(6).|\sigma_1| = 5, |\sigma_2| = 6$ 

# 第三题

## 3.1 题目概述

验证群同态, 求群同态的核和像, 群同态基本定理得出结论.

## 3.2 第一小问

#### Definition 10: 群同态

设  $(G, \circ)$ , (G', \*) 是两个群, 如果存在映射  $\sigma: G \to G'$  使得  $\sigma(a \circ b) = \sigma(a) * \sigma(b)$ ,  $\forall a, b \in G$  其中  $\sigma$  称为 G 到 G'的一个同态映射, 进一步, 若  $\sigma$  是单射, 称为单同态; 若满射, 则称为满同态.

#### Definition 11: 核

设  $\sigma: G \to G'$  为群同态, 定义  $ker\sigma = \{a \in G | \sigma(a) = e'\} = \sigma^{-1}(e')$ 

#### Theorem 11: 群同态基本定理

设  $\sigma$  是群 G 到 G' 的一个同态, 则  $G/ker\sigma \cong Im\sigma$ 

#### Exercice 9

- 设 f 是实数加法群 R 到非零复数乘法群  $C^*$  的一个映射:  $f(x) = e^{2\pi i x}, \forall x \in R$  证明:
  - f 是一个同态
  - 求 Kerf 和 Imf

#### Exercice 9

•  $R/Z \cong C$ 

Solution: (1).

$$\forall x, y \in R$$
, 证明: $f(x + y) = f(x) * f(y)$   
 $f(x + y) = e^{2\pi i(x+y)} = e^{2\pi i x} * e^{2\pi i y} = f(x) * f(y)$ 

故同态

(2).

$$f(x) = 1 \Rightarrow f(x) = e^{2\pi i x} = e^{2\pi i n}, n \in \mathbb{Z}$$

$$x = n$$
,  $Kerf = Z$ ,  $Imf = C$ ,  $C$  为复平面上的单位圆盘

(3).

由群同态基本定理, $\varphi$  为同态映射, $C^*/Ker\varphi = Im\varphi$ , 故  $R/Z \cong C$ 

#### Exercice 10

设  $\varphi$  是非零复数乘法群  $C^*$  到自身的一个映射: $\varphi(z) = \frac{z}{|z|}, \forall z \in C^*$  证明:

- 证明 f 是一个同态
- 求 Kerf 和 Imf
- $C^*/R^+ = C,C$  是复平面上的单位元

Solution: (1). 
$$\varphi(ab) = \frac{ab}{|ab|} = \frac{a}{|a|} \frac{b}{|b|} = \varphi(a)\varphi(b)$$

$$(2).z \in \mathit{Ker} \varphi \Leftrightarrow \varphi(z) = 1 \Leftrightarrow z/|z| = 1 \Leftrightarrow z \in R^+$$

$$ker \varphi = R^+, Im \varphi = C$$

(3). 由群同态基本定理, $\varphi$  为同态映射, $C^*/Ker\varphi = Im\varphi$ , 故  $C^*/R^+ \cong C$ 

# 第四题

## 4.1 题目概述

了解群的定义, 验证是否能构成群

## 4.2 第一小问

#### Definition 12: 群

设 G 是一个非空集合, 如果满足下列 4 个条件:

- 在 G 中定义了一个代数运算 "∘", 即满足封闭性, $\forall a,b \in G$ , 有  $a \circ b \in G$
- 运算满足结合律: $\forall a, b, c \in G$ , 有  $(a \circ b) \circ c = a \circ (b \circ c)$
- 存在  $e \in G$ , 使得  $a \circ e = e \circ a = a$ ,  $\forall a \in G$
- 对每一个  $a \in G$ , 都存在  $b \in G$ , 使得  $a \circ b = b \circ a = e$

则称  $(G, \circ)$  是一个群, 简记 G.

如果一个群满足交换律, 我们称其为 abel 群.

#### Definition 13: 半群和幺半群

如果 G 只满足运算的封闭性和结合律,则称 G 为半群,如果半群 G 还含有单位元,则称之为幺半群.有时候单位元也称为幺元.

#### Exercice 11

试说明 Z 对运算  $a \circ b = a + b + 4$  是否构成群?

Solution: (1). 封闭性, 任取  $a,b \in Z, a \circ b = a + b + 4 \in Z$ 

- (2). 半群 (结合律): 任取  $a,b,c \in Z$ ,  $(a \circ b) \circ c = (a+b+4) \circ c = a+b+4+c+4 = a+(b+c+4)+4 = a \circ (b \circ c)$ 
  - (3). 幺元 (单位元): 任取 a,e 使得  $a \circ e = a + e + 4 = a \Leftrightarrow e = -4$
  - (4). 逆元: $\forall a \in \mathbb{Z}$ , 都有  $b \in \mathbb{Z}$ , 使得  $a \circ b = a + b + 4 = e \Leftrightarrow b = -8 a \in \mathbb{Z}$

# 第五题

### 5.1 题目概述

有限域的构造

### 5.2 第一小问

### Theorem 12: 有限域的构造

设  $F_q$  是含有 q 个元素的有限域, 其中  $q=p^r$ ,p 是素数, 如果  $m(x)=a_0+a_1x+\cdots+a_nx^n\in F_q[x]$  是 n 次不可约多项式,则  $F_q[x]/(m(x))$  是含有  $q^n$  个元素的有限域,且它的每一个元素可唯一地表示成  $c_0+c_1u+\cdots+c_{n-1}u^{n-1}$  其中  $c_i\in F_q$ ,  $0\leq i\leq n$ , u=x+(m(x)), u 满足 m(u)=0

事实上, 有限域 F 的元素个数一定是一个素数 p 的方幂.

#### Exercice 12

构造含有 125 个元素的有限域

Solution:  $125 = 5^3$ . 在  $Z_5[x]$  中找一个 3 次不可约多项式. 令  $m(x) = x^3 + x + 1$ . 直接计算可知,  $Z_5$  中,0,1,2,3,4 都不是 m(x) 的根,又由于 degm(x) = 3,因此 m(x) 是不可约多项式,从而  $Z_5[x]/(x^3 + x + 1)$  是含有  $5^3$  个元素的有限域. 令

$$u = x + (x^3 + x + 1)$$

则  $Z_5[x]/(x^3+x+1)=\{c_0+c_1u+c_2u^2|c_i\in Z_5, i=0,1,2\}$ , 其中 u 满足  $u^3+u+1=0$ , 即  $u^3=4u+4$ 

#### Exercice 13

构造 4 个元素的有限域, 写出它的加法表和乘法表

Solution:  $4 = 2^2$ , 在  $Z_2[x]$  中找一个 2 次不可约多项式. 令  $m(x) = x^2 + x + 1$ . 直接计算可知,  $Z_2$  中,0,1 都不是 m(x) 的根,又由于 degm(x) = 2,因此 m(x) 是不可约多项式,从而  $Z_2[x]/(x^2 + x + 1)$  是含有  $Z_2[x]/(x^2 + x + 1)$  是否有  $Z_2[x]/(x^2 + x + 1)$  是有  $Z_2[x]/(x^2 + x$ 

$$u = x + (x^2 + x + 1)$$

则  $Z_2[x]/(x^3+x+1)=\{c_0+c_1u|c_i\in Z_2, i=0,1\}$ , 其中 u 满足  $u^2+u+1=0$ , 即  $u^2=u+1$ 

#### Exercice 14

构造 9 个元素的有限域.

Solution:  $4 = 3^2$ , 在  $Z_3[x]$  中找一个 2 次不可约多项式. 令  $m(x) = x^2 + 1$ . 直接计算可知,  $Z_3$  中,0,1,2 都不是 m(x) 的根, 又由于 degm(x) = 2, 因此 m(x) 是不可约多项式, 从而  $Z_3[x]/(x^2 + 1)$  是含有  $3^2$  个元素的有限 域. 令

$$u = x + (x^2 + 1)$$

则  $Z_3[x]/(x^2+1) = \{c_0 + c_1 u | c_i \in Z_3, i = 0,1,2\}$ , 其中 u 满足  $u^2+1=0$ , 即  $u^2=2$ 

#### Exercice 15

构造含 8 个元素的有限域

Solution:  $4 = 2^3$ , 在  $Z_2[x]$  中找一个 3 次不可约多项式. 令  $m(x) = x^3 + x + 1$ . 直接计算可知,  $Z_3$  中,0,1,2 都不是 m(x) 的根, 又由于 degm(x) = 3, 因此 m(x) 是不可约多项式, 从而  $Z_3[x]/(x^3 + x + 1)$  是含有  $3^2$  个元素的有限域. 令

$$u = x + (x^3 + x + 1)$$

则  $Z_3[x]/(x^3+x+1)=\{c_0+c_1u+c_2u^2|c_i\in Z_3, i=0,1,2\}$ , 其中 u 满足  $u^3+u+1=0$ 

# 第六题

## 6.1 题目概述

对于整数环生成理想的乘法,并运算,以及生成理想的表达式.

### 6.2 第一小问

#### Definition 14: 生成理想

设 S 是环 R 的一个非空子集, 环 R 的包含 S 的所有理想的交称为由 S 生成的理想, 记作 (S), 如果  $S = \{a_1, a_2, \cdots, a_n\}$ , 则称 (S) 是有限生成的, 并且把 (S) 记成  $(a_1, a_2, \cdots, a_n)$ 

#### Theorem 13: 生成理想的结构

设 R 是一个环 (不一定有单位元, 也不一定是交换环), 则一个元素 a 生成的理想 (a) 为

$$(a) = \{r_1 a + a r_2 + m a + \sum_{i=1}^n x_i a y_i | r_1, r_2, x_i, y_i \in R, m \in Z, n \in Z^*\}$$

设 R 是有单位元的交换环, $a_1,a_2,\cdots,a_n\in R$  容易证明

$$(a_1, a_2, \cdots, a_n) = \{r_1a_1 + r_2a_2 + \cdots + r_na_n | r_i \in R, i = 1, 2, \cdots, n\}$$

#### Theorem 14: 整数环的运算

在整数环 Z 中, 容易看出

$$(n)(m) = (nm)$$

## Theorem 14:整数环的运算

$$(n)\cap(m)=([n,m])$$

$$(n) + (m) = ((n, m))$$

# 第七题

## 7.1 题目概述

代数数域的运算,Q(t)

## 7.2 第一小问

#### Definition 15: 极小多项式

#### 满足:

- 首项系数为1
- 不可约有理多项式
- 以 t 为复根

称其为t在Q上的极小多项式

#### Theorem 15: 整系数多项式有理根

设  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$  是一个整系数多项式, 而  $\frac{r}{s}$  是它的一个有理根, 其中 r,s 互素, 那么必有  $s \mid a_n, r \mid a_0$ , 特别地, 如果 f(x) 的首项系数为 1, 那么 f(x) 的有理根都是整根, 而且是  $a_0$  的因子.

#### Definition 16: 代数数和超越数

如果一个复数  $t \in Q[x]$  中某个非零多项式的根, 称 t 为一个代数数, 否则称 t 为一个超越数.

#### Definition 17: 代数数域

如果 t 是一个代数数, 则存在一个以 t 为根的次数最低的首项系数为 1 的多项式 p(x), 它一定是 Q[x] 中的不可约多项式, 并且  $Q[x]/(p(x)) \cong Q[t]$  于是 Q[t] 是一个域. 这表明有理数域 Q 添加一个代数数 t 得到的子环 Q[t] 是一个域, 称之为代数数域.

#### Exercice 16

设 t 为  $f(x) = x^3 - x + 1$  的一个复根. 在代数数域 Q[t] 中, 求  $(5t^2 + 3t - 1)(2t^2 - 2t + 6)$  和  $(3t^2 - t + 2)^{-1}$ 

Solution: 由本节定理, 显然  $f(x) = x^3 - x + 1$  为一个不可约多项式, 从而 f(x) 是 t 在 Q 上的极小多项式.  $Q[t] = \{c_0 + c_1 t + c_2 t^2 \mid c_0, c_1, c_2 \in Q\}$  且每一个元素的表示方式唯一, 其中  $f(t) = 0 \Rightarrow t^3 = t - 1$ .  $(5t^2 + 3t - 1)(2t^2 - 2t + 6) = 10t^4 - 4t^3 + 22t^2 + 20t - 6 = 32t^2 + 6t - 2$ 

$$(3t^{2} - t + 2)^{-1} = at^{2} + bt + c$$

$$(3t^{2} - t + 2)(at^{2} + bt + c) = 1$$

$$(3c - b + 5a)t^{2} + (5b - 4a - c)t + (2c - 3b + a) = 1$$

由元素表示唯一可知:

$$\begin{cases} 3c - b + 5a = 0 \\ 5b - 4a - c = 0 \\ 2c - 3b + a = 1 \end{cases}$$

$$\begin{cases} a = -\frac{2}{7} \\ b = -\frac{1}{7} \\ c = \frac{3}{7} \end{cases}$$

$$(3t^2 - t + 2)^{-1} = -\frac{2}{7}t^2 - \frac{1}{7}t + \frac{3}{7}$$

#### Exercice 17

证明: $t = \sqrt{2} + \sqrt{3}$  是一个代数数, 求 t 在 Q 上的极小多项式.

这就太简单了.

# 第八题

## 8.1 题目概述

内直积的概念以及性质, 子群是否为正规子群, 是否同构.

### 8.2 第一小问

#### Definition 18: 直积

设  $(G,\circ)$ , (G',\*) 是两个群, 在笛卡尔积  $G\times G'=\{(g,g')|g\in G,g'\in G'\}$  上, 定义运算:  $(g_1,g_1')(g_2,g_2')=(g_1\circ g_2,g_1'*g_2')$ , 容易得到  $G\times G'$  按上述运算构成一个群称为直积 其中单位元:(e,e'), 逆元  $(g,g')^{-1}=(g^{-1},g'^{-1})$ 

#### Theorem 16: 内直积的概念和性质

设 G 是群,H < G, K < G, 如果

- (1) G = HK
- (2)  $H \cap K = \{e\}$
- (3)  $hk = kh, \forall h \in H, k \in K$

则称  $G \cong H \times K$  此时称 G 是子群 H 与 K 的内直积, 记作  $G = H \times K$ 

#### Definition 19: 正规子群

设 G 是群,N < G, 如果 gH = Hg,  $\forall g \in G$ , 则称 N 是 G 的正规子群, 记作  $N \triangleleft G$  的正规子群, 记作  $N \triangleleft G$ , 特别的,abel 群的任一子群都是正规子群

#### Theorem 17: 正规子群的判定

设 H 是群 G 的子群, 则下列条件等价:

- (1)  $aH = Ha, \forall a \in G$
- (2)  $aHa^{-1} \subset H, \forall a \in G$
- (3)  $aha^{-1} \in H, \forall a \in G, h \in H$
- (4)  $aHa^{-1} = H, \forall a \in G$

#### Exercice 18

设群 G 是它的子群 H 和 K 的内直积, 证明:

- (1)  $H \triangleleft G, K \triangleleft G$
- (2)  $G/H \cong K, G/K \cong H$

Solution: 首先, 群 G 是 H 和 K 的内直积, 也就是说 G = HK, 且 HK 的元素满足内直积的性质.

首先证明  $H \triangleleft G$ , 即证明: $\forall h \in H, g \in G, ghg^{-1} \in H$ 

而 g 可以表示成  $g = h_1 k_1$  的形式

 $(h_1k_1)h(h_1k_1)^{-1} = (h_1k_1)h(k_1^{-1}h_1^{-1})$ 

K 是子群, $k \in K$ , $k^{-1} \in K$ ,由内直积的定义 (性质)hk = kh,因此

 $(h_1k_1)h(h_1k_1)^{-1} = (h_1h)k_1k_1^{-1}h_1^{-1} = h_1hh_1^{-1} \in H$ 

故 H 为正规子群, 同理 K 为正规子群.

其次, 设映射  $\sigma: G \to K, g = hk \to k$ .

下证明这是一个同态:

 $\sigma(g_1g_2) = \sigma((h_1k_1)(h_2k_2)) = \sigma((h_1h_2)(k_1k_2)) = k_1k_2 = \sigma(g_1)\sigma(g_2)$ 

故这确实是一个同态, 其中核为  $\sigma(g) = e_k, \sigma(hk) = e_k, k = e_k, g = he_k = h$ , 故  $ker\sigma = H$ 

显然像集为 H, 即  $Im\sigma = K$ 

由群同态基本定理, $\sigma$  为同态映射, $G/Ker\sigma = Im\sigma$ , 故  $G/H \cong K$ 

同理可以证明得: $G/K \cong H$ 

# 第九题

### 9.1 题目概述

一元多项式环和整数环的理想结构, 主理想, 极大理想, 素理想的概念, 一元多项式环的理想是主理想.

### 9.2 第一小问

#### Definition 20: 主理想

环 R 中由一个元素 a 生成的理想称为主理想, 记作 (a)

#### Definition 21: 极大理想

设 R 是环,M 是 R 的理想, 且  $M \neq R$ , 如果 R 中包含 M 的理想只有 M 和 R, 则 M 称为 R 的一个极大 理想

#### Definition 22: 素理想

设 R 是有单位元 1 的交换环,P 是 R 的一个理想, 且  $P \neq R$ , 如果从  $ab \in P$  可以退出  $a \in P$  或  $b \in P$ , 则称 P 为 R 的一个素理想

#### Exercice 19

整数环 Z 的每一个理想都是由一个非负整数生成的主理想

**Proof**: 设 I 是 Z 的一个理想, 如果 I = (0), 则 I 是主理想, 下面设  $I \neq (0)$ . 于是存在  $a \in I$ ,  $a \neq 0$ . 如果 a 是 负整数, 则  $-a = (-1)a \in I$  因此 I 必含有正整数. 在 I 里的正整数中取一个最小的数, 设为 m, 证明 I = (m), 任取  $b \in I$ , 作带余除法:

$$b = qm + r, 0 \le r < m$$

于是  $r = b - qm \in I$ , 假如  $r \neq 0$ , 则与 m 的取法矛盾, 因此  $r = 0, b = qm \in (m)$ , 因此  $I \subseteq (m)$ , 从而 I = (m)

#### Exercice 20

域 F 上的一元多项式环 F[x] 的每一个理想都是主理想, 其中非零理想可以由首项系数为 1 的多项式生成

Proof: I 是 F(x) 的理想, 显然 I 为零多项式生成的理想时一定是主理想, 设 f(x) 是 F[x] 中最小的多项式, 证:I=(f(x))

对  $\forall g(x) \in I, g(x) = q(x)f(x) + r(x)$ , 若  $r(x) \neq 0$ , 则 deg(r(x)) < deg((f(x))), 则 r(x) = g(x) - q(x)f(x), 由理想的吸收性,r(x) 也是 I 中的元素, 这与 f(x) 的选取矛盾, 因此 r(x) = 0.

因此 
$$g(x) = q(x)f(x)$$
,  $I \subseteq (f(x))$ , 从而  $I = (f(x))$