Práctica 3 Algoritmos Greedy

ÓSCAR BERMÚDEZ, FRANCISCO DAVID CHARTE, IGNACIO CORDÓN, JOSÉ CARLOS ENTRENA, MARIO ROMÁN Universidad de Granada 17 de abril de 2014

Resumen

Índice

1.	Terminales de venta 1.1. Implementación	2 2
2.	Red de comunicaciones 2.1. Algoritmo	2 2
	2.2. Triangulación de Delaunay	3
3.	Segmentación de clientes	3
4.	Asignación de trabajos	3
5.	Asignación de aulas	3
6.	Memorias caché	3
7.	El problema de asignación cuadrática	3

1. Terminales de venta

1.1. Implementación

Implementamos en Ruby la heurítica pedida.

```
#!/usr/bin/env ruby
# encoding: utf-8

def cambio (monedas, precio)
  vuelta = []

monedas.sort.reverse.each { |moneda|
    numero_monedas = precio / moneda
    precio = precio - numero_monedas*moneda
    vuelta.push [moneda, numero_monedas]
}

return vuelta
end
```

2. Red de comunicaciones

2.1. Algoritmo

Dado un conjunto de ciudades, buscamos interconectarlas con una red que minimice la longitud de red. Modelizaremos el problema como un grafo completo G del conjunto de ciudades E. Con aristas $V = \{[a,b] | a,b \in C\}$, donde la arista conectando los nodos a y b tiene peso igual a la distancia que los separa:

$$\forall [a,b] \in V: \quad w([a,b]) = dist(a,b) \tag{1}$$

Pretendemos interconectar ciudades de manera que la suma total de las distancias de los caminos hechos sea mínima. Es decir, buscamos el subgrafo recubridor de menor peso. Como un grafo recubridor con ciclos tiene siempre un subgrafo recubridor estrictamente contenido en él, buscamos sólo entre los grafos acíclicos. El subgrafo acíclico recubridor de menor costo es el árbol recubridor minimal.

Son conocidos los algoritmos de Prim y Kruskal para calcular el árbol recubridor minimal. Ambos alcanzan una complejidad temporal de $\mathcal{O}(|E|log|V|)$ usando árboles binarios y listas de adyacencia para representar el grafo.

2.2. Triangulación de Delaunay

Para reducir la carga del algoritmo, podemos reducir el grafo sobre que que buscamos el árbol generador minimal. El grafo inicial es completo, ya que toda ciudad es suceptible de ser comunicada con cualquiera otra. Por lo tanto, buscamos el árbol generador minimal en todas las aristas posibles.

Sin embargo, podemos demostrar que el árbol generador minimal está contenido la triangulación de Delaunay; y que, por tanto, sólo es necesario aplicar el algoritmo de Kruskal o Prim al subgrafo resultante de la triangulación.

Demostración. Demostraremos que cada arista del árbol generador está contenida en la triangulación de Delaunay. Sea (p,q) una arista arbitraria del árbol generador. Consideramos el círculo que tiene como diámetro \overline{pq} , si hubiera otro punto r en este círculo, tendríamos:

$$\overrightarrow{pr} \leq \overrightarrow{pq} \qquad \overrightarrow{rq} \leq \overrightarrow{pq}$$
 (2)

Y entonces podríamos formar el ciclo p, r, q, p. Sabemos que la arista de mayor peso en un ciclo no forma parte del árbol generador minimal y por tanto \overline{pq} no pertenecería a él, llegando a contradicción.

Así, no puede haber ningún punto en el círculo que tiene como diámetro a \overline{pq} . Una arista que cumple esto está forzosamente en el diagrama de Delaunay.

- 3. Segmentación de clientes
- 4. Asignación de trabajos
- 5. Asignación de aulas
- 6. Memorias caché
- 7. El problema de asignación cuadrática