# Formal verification of RTL Systolic Arrays for GEMM

Pedro Palacios Almendros Adrian Schemel

École Polytechnique Fédérale de Lausanne

2024-2025

- **Verify** that a fast (O(n) time), parallel  $(O(n^2)$  processing elements), systolic array **RTL** hardware implementation matches the standard triple-loop  $O(n^3)$  mathematical definition.
- Explore the potential and behavior of industry RTL hardware formal verification tools.
- Explore the trade-off between verification capabilities and expressiveness of hardware interfaces.
- Explore the **impact** of carefully crafted **assertions** on verification speed.
- Perform Design Space Exploration to analyze the verification performance impact of different trade-offs.

# Systolic Arrays



## Temporal Logic

- Temporal logic extends boolean logic with primitives that express how properties evolve over time.
- Specific timings are abstracted away into time-steps or clock cycles.
- The fundamental primitive is next A, which means that A will be true on the **next time-step**.
- Henceforth operator  $\square A$ : Formula A is true now and will be true forever. Let  $next^0A = A$  and  $next^{n+1}A = next \, next^nA$ , then the temporal logic operator  $\Box A = \bigwedge_{i=0}^{\infty} next^i A$ .
- Used to **specify** and **verify hardware** systems, as done in our background paper<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>Bochmann. "Hardware Specification with Temporal Logic: An Example". In: IEEE Transactions on Computers C-31.3 (1982), pp. 223–231.

# System Verilog Assertions

- Part of the System Verilog HDL to express temporal properties.
- The next operator over clock cycles can be expressed through delay ##N and the function \$past.
- s1 |-> s2: whenever sequence  $s_1$  matches,  $s_2$  must match too.
- assert property have an implied □ operator.

```
assert property (
                                                            \Box (next A)
  ##1 A
                                            \equiv
);
assert property (
                                            \equiv \Box (A \land next (B \land next C))
  A ##1 B ##1 C
);
assert property (
                                            \equiv
                                                    \square (A \to (B \land next C))
  A |-> B ##1 C
);
```

### Liveness properties

- Liveness properties assert that a property will hold in some cycle, but specify no bound.
- Temporal logic operator  $\nabla A = \bigvee_{i=0}^{\infty} next^i A$ .
- In SVA, it's modelled by s\_eventually.
- Example modelling a liveness property  $Request \implies \nabla Response$ :

```
assert property (
  request_signal |-> s_eventually(response_signal)
);
```

Conclusion

# Bounded Model Checking & k-Induction

- Two different verification approaches:
  - **Bounded Model Checking**: Check sequences up to fixed length j.
  - k-Induction: Check sequences of any length.
- Bounded Model Checking (BMC) as seen in class:

Construct formula  $T_i$ , choosing j to be a relevant bound (in our case  $2 \cdot N + n_{input\_rows}$ , where N is the systolic array size), and prove UNSAT.

$$T_j \equiv Init[\overline{s} := \overline{s}^0] \wedge \left(\bigwedge_{i=0}^{j-1} R_i\right) \wedge E[\overline{s} := \overline{s}^j]$$

The formal verification tool constructs Init from the assumptions and reset hardware register values, R from the RTL hardware description and E from the System Verilog Assertions.

### k-Induction

- Prove that a property P(n) holds  $\forall n$  (for any sequence length).
- Middle-ground between strong induction and normal induction.
- Check  $P(0) \wedge ... \wedge P(k-1)$  and  $P(n-k) \wedge ... \wedge P(n-1) \implies P(n)$
- P(n) contains the SVA assertions at cycle n, and the formal verification tool also adds the hardware-defined relationship between the signals in the conjunction  $P(i) \wedge P(i+1)$ .
- Both the base and inductive case are converted to SAT problems.
- Carefully choose k: For a systolic array size N, need  $k \ge 2 \cdot (N+1)$ to relate the output of the systolic array with the relevant inputs.

# Challenges

- Due to **not having a license of JasperGold**, we used an evaluation license of SymbiYosys, which lacks some SVA features (such as sequences with local variable capturing).
- The formal verification tools required very precise configuration (such as clock and reset domains), which took a long time to debug through trial and error.
- It was impossible to determine a priori the correct hardware interface for the systolic array, requiring several iterations.
- We needed to **learn System Verilog Assertions**, and how to translate the correctness properties to SVA, reconciling the mathematical Temporal Logic description with the actual hardware implementation.

### Golden reference model

```
function logic golden_model_matrix_vector_multiply_check (
    input logic[INT_WIDTH-1:0] input_vector[SA_SIZE],
    input logic[INT_WIDTH-1:0] actual_sa_output[SA_SIZE]
):
    logic[INT_WIDTH-1:0] expected[SA_SIZE];
    logic does_match = 1'b1;
    // First compute expected result
    for (int i = 0; i < SA_SIZE; i++) begin</pre>
        expected[i] = '0;
        // Compute dot product
        for (int j = 0; j < SA_SIZE; j++) begin</pre>
            expected[i] += input_vector[j] * weights[j][i];
        end
    end
    // Now compare expected with actual
    for (int i = 0; i < SA_SIZE; i++) begin</pre>
        if (expected[i] != actual_sa_output[i]) begin
            does match = 1'b0:
        end
    end
    return does_match;
endfunction
```

### Interfaces

- The module interface with the outside world is essential for verification.
- **Impacts** the **definition of correctness**, **speed** of verification and even the **provability** using *k*-Induction.
- We have implemented and verified three different interfaces:
  - Preloaded weights, one input per cycle
  - 2 Preloaded weights, stallable (maybe multiple cycles per input)
  - 3 Fully programmable: weight-load and input-load commands

## Interface 1: Preloaded weights, one input per cycle

- The preloaded weights are modeled as (\* anyconst \*), so Yosys checks every possible weight assignment.
- As an input is loaded every cycle, we can precisely compute the delay from input to output as  $2 \cdot SA\_SIZE$ :

```
assert property (!output_valid |-> ##(2*SA_SIZE) output_valid);
```

• Therefore, the correctness check is simple:

```
assert property (
    output_valid |-> golden_model_mv_mult_check(
       $past(inputs, 2*SA_SIZE), out
     == 1'b1
);
```

We can also use s\_eventually for liveness (slower):

```
assert property (s_eventually(output_valid));
```

### Interface 1: Performance metrics

- $\bullet$  Verified BMC up to  $32 \times 32$  (28min, 10GB), prove up to  $16 \times 16$  (12 min, 29 GB). Memory usage explosion for prove!
- Liveness (s\_eventually) only verified up to  $2 \times 2$ . **Too slow!**
- Ran Yosys auto-benchmark to choose best SAT solver.

#### BMC vs Prove Performance Comparison for Interface 1



Conclusion

### Interface 2: Preloaded weights, stallable

- The weights are still modeled as (\* anyconst \*).
- We no longer have a fixed delay, need to add a counter for verification, and store input snapshots (MAX\_NUM\_INPUTS\_ROWS):

```
assert property (
    should_advance_computation &&
    should_advance_counter == 2*SA_SIZE-1 |=> output_valid
);
```

Correctness check much more complex (need counter):

```
assert property (output_valid &&
   (should_advance_counter < 2*SA_SIZE + MAX_INPUTS)
       |-> (should_advance_counter >= 2*SA_SIZE)
           && golden_model_matrix_vector_multiply_check(
                should_advance_counter - 2*SA_SIZE,
                out ) == 1'b1):
```

Liveness stays the same (very slow):

```
assert property (s_eventually(output_valid));
```

Conclusion

### Interface 2: Performance summary

- Cannot use k-Induction (arbitrary delay). Only BMC.
- Could only verify BMC up to  $2 \times 2$  (13min, 0.22 GB).  $4 \times 4$  aborted after > 2 hours. **Very slow:**  $2 \times 2$  takes the same as  $24 \times 24$  for interface 1.
- Liveness managed to verify up to  $12 \times 12$  (2 hours, 15.57GB)

#### Interface 2 Comparison (bmc)



Conclusion

# Interface 3: Fully programmable

- The module supports Weight-Load and Input-Load commands.
- As we saw in Interface 2 that arbitrary delays lead to terrible results, drive the module with a testbench state machine, that only initially loads the weights and loads inputs each cycle.
- Correctness check can use state-machine values:

### Interface 3: Performance summary

- Even though it should be possible in theory (fixed testbench state machine), Yosys is unable to use k-induction. Only BMC.
- Could only verify BMC up to  $4 \times 4$  (16min, 0.45 GB). **Very slow.**
- Liveness managed to verify up to  $4 \times 4$  (49min, 5 GB).

#### Interface 3 Comparison (bmc)



### Interfaces summary

- Interface choice matters a lot.
- Yosys strongly prefers one-input-per-cycle schemes for dataflow.
- s\_eventually liveness is very slow, try to instead find fixed bounds.
- Even a simple input scheme (one-input-per-cycle testbench state machine) is slow if the underlying interface is complex.

#### Interface Comparison (bmc)



Conclusion

### Custom assertions to accelerate verification

- We saw that verification is **slow**.
- Idea: add additional assertions or *invariants* that may help Yosys and the SAT solver **prove** the formulas **faster**.
- Describe intuitive and mathematical properties of the systolic array using System Verilog Assertions.
- Focus on interface 1 (the fastest) and k-induction proofs.

Conclusion

### Assertion 1: Sub-vector products

- Intuition: at each time step, the output of each PE is a product of 2 sub-vectors of the input and weight matrices.
- With  $\langle u, v \rangle$  being the vector dot product, and using colon notation:

$$\forall i, j \in \{1, \dots, n\}. \ \Box \left( \langle I(1:i), W(1:i,j) \rangle = \mathbf{next}^{i+j-1} \ Out(P_{i,j}) \right)$$

```
generate
  for (genvar i = 0; i < SA_SIZE - 1; i++) begin</pre>
    for (genvar j = 0; j < SA_SIZE; j++) begin</pre>
      assert property (
        ##(i+j+2) u_GEMM.u_SA.pe_outs[i][j] ==
        compute_sub_element(i,j,$past(inputs,i+j+1),weights)
      ):
    end
  end
endgenerate
```

### Assertion 1: Performance summary

• Unfortunately, this assertion makes the proof slower and consume more memory.

#### Assertion 1 Comparison (prove)



### Assertion 2: Input propagation

- Intuition: at each time step, the input of each PE is traceable back to a past input vector.
- Mathematically:

$$\forall i, j \in \{1, \dots, n\}, \ \Box \left(I_i = \mathbf{next}^{i+j-1} \ In_*(P_{i,j})\right)$$

```
generate
    for (genvar i = 0; i < SA_SIZE; i++) begin</pre>
        for (genvar j = 0; j < SA_SIZE; j++) begin
             assert property (
                 ##(i+j+2) u_GEMM.u_SA.pe_ins[i][j]
                    == $past(inputs[i],i+j+1)
             );
        end
    end
endgenerate
```

### Assertion 2: Performance summary

• This assertion does make the proof faster and consume less memory.

#### Assertion 2 Comparison (prove)



## Assertions summary

Project goals

- Carefully crafted assertions may lead to faster verification, but it's not a guarantee.
- We also played with other assertion ideas, with even worse results. It's hard to predict what will help the SAT solver and what will hinder it by adding more work.

#### Assertion Comparison (prove)



Conclusion

### Bonus: Matrix inversion and LU factoring through cover

- A fundamental part of SVA and hardware formal verification are cover statements.
- The formal verification tool generates the **shortest trace** that satisfies the SVA.
- Important in the initial stages of verification for **sanity checks**: constrain the inputs in some interesting ways and examine the trace. Important to prevent vacuous assertion passes.
- Can also use cover statements in a more interesting way: constrain the output in some interesting way, and let the tool figure out the necessary inputs / intermediate signals.
- Can therefore use **Yosys** as a **feature-rich** (can use the full System Verilog) constraint solver.

Conclusion

### Example simple cover trace

• cover trace for a  $2 \times 2$  matrix multiplication (Find output O such that  $I \cdot W = O$ ):

$$\begin{pmatrix} 2 & 5 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 10 \\ 9 & 4 \end{pmatrix}$$



### Bonus: Matrix inversion and LU factoring through cover

• Matrix Inversion (Find I such that  $I \cdot W = O \mod 2^8$ ):

$$\begin{pmatrix} 0x4C & 0x60 & 0x6B \\ 0xB5 & 0x86 & 0xBB \end{pmatrix} \cdot \begin{pmatrix} 3 & 255 & 1 \\ 4 & 2 & 7 \\ 23 & 42 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \mod 2^8$$

• LU factoring (Find L, U such that  $L \cdot U = O \mod 2^8$ ):

$$\begin{pmatrix} 0x81 & 0x00 & 0x00 \\ 0x04 & 0xDD & 0x00 \\ 0x83 & 0x46 & 0xD2 \end{pmatrix} \cdot \begin{pmatrix} 0x81 & 0x81 & 0x81 \\ 0x00 & 0x8B & 0xB7 \\ 0x00 & 0x00 & 0xC3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 3 & 255 \\ 3 & 5 & 3 \end{pmatrix}$$

- Systolic Arrays and other dataflow-intensive circuits can be verified with modern hardware formal verification tools up to  $32 \times 32$ .
- The chosen module interface has a huge impact on verification **speed** and **capabilities**.
- s\_eventually liveness properties are much slower than fixed delay bounds.
- Carefully-crafted assertions can speed-up verification, but they can also make it **slower**. It's hard to predict the effect of an assertion without trying it.
- Hardware formal verification tools can be used together with cover statements as feature-rich constraint solvers.

# Any questions?