ABE 201 Biological Thermodynamics 1

Degree of Freedom Analysis and Multiple Unit Operations

Topics for Today

Analyzing complex biological processes

Defining systems and subsystems

Using Degree of Freedom Analysis

Complex Biological Systems

- Biological processes have multiple unit operations
- Processes can be broken into multiple systems for analysis
- Determine which individual system (unit) to solve first by degree of freedom analysis

Solve each of the systems, in order by DOF

Process Flow Diagrams/Sheets "PFD" or "PFS"

- Made of <u>Unit Operations</u>
 - Filtration, Fermentation, Distillation, Centrifugation, Drying
- Example from NREL
 - Processing Facility to Convert Corn Stalks to Biofuel (ethanol) and Biopower (electricity)
 - 25 PFDs with all stream compositions
 - 28 "compounds" tracked and balanced
 - Thermal energy tracked and balanced

28 "Compounds" in Mass Balance

Individual	Soluble Solids	
Compounds	(SS)	Insoluble Solids (IS)
Water	Glucose	Cellulose
Ethanol	Xylose	Xylan
Acetic Acid	Arabinose	Arabinan
Sulfuric Acid	Other Sugars	Other Sugar Polymers
Furfural	Cellobiose	Lignin
HMF	Glucose Oligomers	Gypsum
Carbon Dioxide	Xylose Oligomers	Ca(OH)2
Methane	Other Oligomers	
	"Corn Steep	
Oxygen	Liquor"	
Nitrogen	Other SS	
Others		

COMPONENT	UNIS	22	301A	3015	302	303	304	306	308	311	311A	312	502	551	500	591	
Total Flow	ROTT	423,764	425,764	435,530	300,029	43,559	41,391	412,222	22,420	136	1,067	6,824	449,353	37,130	9,400	9,480	
reckutre States	%	11.2%	11.2%	5.0%	5.0%	5.0%	5.7%	5.5%	00%	0.0%	0.0%	8.3%	5.0%	00%	00%	0.0%	
SOLUTION SOLUTION	%	90%	30%	10.7%	15.7%	10.7%	4.5%	40%	00%	0.0%	100.0%	0.0%	3.6%	00%	0.0%	0.0%	
Temperature	C	- 51	8	9	41	41	41	41	4	20	20	20	41	39	189	145	
Pressure	1901	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	0.90	0.00	4.42	4.42	
Vispor Fraction		0.00	0.00	0.00	0.00	0.00	0.00	0.00	100	0.00	0.00	0.00	0.00	0.00	100	0.00	
Bird	ROFF	47	47	47	43	5	2,335	24,032	663				24,825	793			
Viking	legitir	335,811	335,811	339,136	305,289	33,919	33,881	338,544	710			6,255	374,828	38,284	9,490	9,490	
Oluccion (ISS)	light	2,432	2,432	31,198	28,074	2,139	903	82					82				
Xytose (SS)	light.	18,087	18,087	10,067	16,279	1,839	156	909					909				
Antonose (58)	ROFF	2,528	2,528	2,528	2.275	253	32	237					217				
Other Sugars (SS)	kghr	2,982	2,982	2,982	2,688	296	37	254					254				
Calobsen (SS)	Egit	312	312	360	324	36	36	380					360				
Okocea Oligomers (58)	Egit	716	716	1,853	1,588	100	100	1,863					1,863				
Xyose Olgoners (SS)	ROTT	68	8	646	8	65	65	646					546				
Oher Olgomers (SS)	ROTT	989	360	969	872	97	97	989					989				
Com Steep Liquor (SS)	legenr	270	260	270	243	27	224	1,466	3		1,067		1,450	4			
Others (Southle Solids)	ROTT	9,581	9,581	9,581	8,823	950	950	9,581					9,581				
ApelicAdd	ROTT	4,477	4,477	4,477	4,029	446	527	5251	0				5,258	7			
SUID CAGO	NO.	104	104	104	129	10	10	154	0				104	e			
Furuni	legenr	676	576	676	5%	56	67	568	7				576	8			
HMF	ROTT	90	93	90	81	9	9	89	-				90	_			
Carbon Draidin	ROTT	29	22	29	25	3	40	406	20,793				440	34			
Matrices	logara.																
Chygan	ROTT	O O	9	0	0	0	0	0	226				0	0			
Neogen	ROTT	ū	0	0	0	0	0	0	0				0	0			
CHRIS	NO.	354	354	324	039	35	206	4270	0	130			4,270	e			
Ceruicse (IS)	IQ071	26,432	28,432	1365	1,228	136	136	1,365					1,385				
Xyllan (TS)	ROTT	439	439	4.5)	350	44	44	439					439				
Antitron (IS)	legitir	61	61	61	8	6	6	61					61				
Other Sugar Polymers (IS	(Qrr	73	73	73	8	7	7	73					73				
Certaine (15)	ROTT	81	81	650	580	65	65	650				568	650				
Borness (15)	legitir	0	0	0	0	0	0	0					0				
Zymo(IS)	leght	136	136	136	122	14	193	1,088					1,088				
Ligan (S)	light.	14,252	14,252	14,252	12,827	1,425	1,425	14,252					14,202				
Opern (IS)	light	28	28	28	25	- 3	- 3	28					28				
O(C)+(12 (82)	legiter																
Others (Insolutive School)	light	4,630	4830	4,530	4,158	462	462	4530					4,500				
Enthopy Flow (milions)		-1389.4	-1384.5		-1275.5	-141.7	-137.7	-1372.7	47.5	0.4	-41	-24.2	-1510.9		-29.8	-34.7	
Avenue Density	9211	1.072	1099	1,082	1,075	1,075	1.018	1,010	0.002	1010	0.000	1.040	0.962	0905	0.002	0.885	

Heat Stream No.	MM kcalifir	Work Stream No.	KW
QF300A	0.09	WP300	345.
QF300	2.40	WP306	119.
QH301	-4.09	WP310	122.
QH302	0.49	WT300	430.
		WT306	113.
		WT310	645.

APROP APROP	SS304 SS304
	88304
10000	
	88304
-BTM-STORAG	88304
E-FRAME	88304
E-FRAME	88
E-FRAME	88304
E-FRAME	88304
RFUGAL.	88304
RFUGAL.	88304
RFUGAL	88304
BTM-STORAG	88304
-BTM-STORAD	88304
ww.Down	DDD WOLF
Center for fu	at Air Dini
	NATIONAL I DIENBY LA CENTER FOR FU N A300

PFD-P110-A302 B

Example:

Systems:

Have We Drawn All Systems...

Systems:

Systems: **√**7 Out = 3 + 5 + 6 + 7

Systems:

Solving Complex Processes

- Some systems may have unique solutions
- Some systems may not have unique solutions
- How do we go about deciding how to proceed?

Degree of Freedom Analysis

Variables	Equations	Unique Solution
X	2X = 16	X = 8
X	2X + Y = 7	X = 2
Y	X + 4 Y = 14	Y = 3
X	2X + Y + Z = 7	X = 1
Y	X + 4Y - 3Z = 0	Y = 2
Z	3X - Y + 5Z = 16	Z = 3

Degrees of Freedom Cont'd.

- Once your system is defined and knowns & unknowns identified:
 - Count unknown variables (V)
 - Count independent eqns.
 - Material balances (B) on individual components or the total system, note: maximum number of eqns. Is equal to the number of chemical species for a non reactive system.
 - Physical property eqns. (P): (ie. relations of mass, volume, density, specific gravity etc..)
 - Physical constraints (C): fractions of moles or mass must add to one because they are fractions.

Degrees of Freedom Cont'd.

DF = # Unknowns - # Independent Eqns.

DF = V-B-P-C

DF > 0 - underspecified problem, infinite solns.

DF = 0 - problem can be solved exactly

DF < 0 - overspecified, contains redundancy, and possibly an erroneous relationship if indeed all of your equations are "independent".

Sodium Hydroxide Example

- •A 5.00% wt solution of sodium hydroxide is being diluted by a 10.0 gpm stream of pure water.
- •What is the weight percent of sodium hydroxide in the stream exiting the system at 2.00 x 10² lbm/min?

Assume steady-state conditions.

Composition	1	2	3
NaOH	0.05	0	?
Water	x1w	1	?

Mass	1	2	3
NaOH	?	0	?
Water	?	?	?
Total	?	?	200 lbm

Mass Balance	1	2	3
NaOH	0.05 * m1	0	X3n * 200
Water	0.95 * m1	83.4 lbm	X3w * 200
Total	m1	83.4 lbm	200 lbm

$$DF = V-B-P-C = 3 - 2 - 0 - 1 = 0$$

System is solvable

Tips for DOF Analysis

- Solve what you can without complex algebra!
- If you have a physical property that allows you to calculate mass or energy, use it to eliminate a variable!
- Remember that fractions must sum to 1 (physical constraint). If you can solve missing fractions based on what you're given, do so! Eliminate a variable!

Summary

- Defining Systems in Complex Processes
 - Boundaries must be contiguous
 - Boundaries define what's in and what's out!
 - Careful selection of system boundaries can be used to solve complex problems
- Degree of Freedom Analysis
 - Determine if a unique solution is possible for the system as you have defined it.
 - The number of equations must equal or exceed the number of unknown variables