Finite Elements for Engineers

Lecture 2: Preparing for Isoparametric Formulation - Shape Functions and Numerical Integration

S. D. Rajan

Family of 1D-C⁰ Elements

Quadratic

Meshing 2D Domains

Automatic Nonuniform Mesh

Mapped Uniform Mesh

Generating Shape Functions

Pascal Triangle (2D Elements)

Properties

- (1) Geometric Isotropy
- (2) Complete

Family of C⁰ Triangular Elements

$$u(x, y) = a_0 + a_1 x + a_2 y$$

$$u(x, y) = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 xy + a_5 y^2$$

Oubic
$$\begin{array}{c|c}
y & 3 & (x_3, y_3) \\
8 & 7 & \\
\hline
9 & 10 & 6 \\
(x_2, y_2) & 4 & 5 & (x_2, y_2)
\end{array}$$

$$(x_3, y_4) & (x_2, y_2) & (x_3, y_2) & (x_3, y_3) & (x_3, y_3) & (x_4, y_4) & (x_4, y_4)$$

$$u(x, y) = a_0 + a_1 x + a_2 y + a_3 x^2$$

$$+ a_4 xy + a_5 y^2 + a_6 x^3$$

$$+ a_7 x^2 y + a_8 xy^2 + a_9 y^3$$
5

Family of "Serendipity" C⁰ Quadrilateral Elements

Linear

$$u(x, y) = a_0 + a_1 x + a_2 y + a_3 xy$$

Quadratic

$$u(x, y) = a_0 + a_1 x + a_2 y + a_3 xy$$
$$+ a_4 x^2 + a_5 y^2 + a_6 x^2 y$$
$$+ a_7 x y^2$$

$$u(x, y) = a_0 + a_1 x + a_2 y + a_3 xy$$

$$+ a_4 x^2 + a_5 y^2 + a_6 x^2 y + a_7 xy^2$$

$$+ a_8 x^3 + a_9 y^3 + a_{10} x^3 y + a_{11} xy^3$$

Family of "Lagrange" C⁰ Quadrilateral Elements

$$u(x, y) = a_0 + a_1 x + a_2 y + a_3 xy$$

 $u(x, y) = a_0 + a_1 x + a_2 y + a_3 xy$ $+ a_4 x^2 + a_5 y^2 + a_6 x^2 y$ $+ a_7 x y^2 + a_8 x^2 y^2$

$$u(x, y) = a_0 + a_1 x + a_2 y + a_3 xy$$

$$+ a_4 x^2 + a_5 y^2 + a_6 x^2 y + a_7 xy^2$$

$$+ a_8 x^3 + a_9 y^3 + a_{10} x^3 y + a_{11} xy^3$$

$$+ a_{12} x^2 y^2 + a_{13} x^4 + a_{14} y^4 + a_{15} x^3 y^3$$

Beware

• This approach of generating and using shape functions in the cartesian coordinate system will lead to difficulties because we need to evaluate integrals in triangular and quadrilateral domains.

$$\iint\limits_{R_{xy}} f(x,y) dxdy$$

Natural Coordinates

These are "normalized" coordinate systems where the coordinate values are between -1 and 1, or between 0 and 1.

1D-C⁰ Linear Element

Natural Coordinates

2D-C⁰ Bilinear Quadrilateral Element

Master or Parent

Mapping Functions

$$x = x(\xi, \eta)$$

$$y = y(\xi, \eta)$$

$$-1 \le \xi \le 1$$

$$-1 \le \eta \le 1$$

Area Coordinates

Natural Coordinates

2D-C⁰ Bilinear Triangular Element

Area Coordinates

$$\xi + \eta + \zeta = 1$$

$$x = x(\xi, \eta) \qquad y = y(\xi, \eta)$$
$$0 \le \xi \le 1 \qquad 0 \le \eta \le 1$$

$$0 \le \xi \le 1 \qquad 0 \le \eta \le 1$$

Generating Shape Functions

Lagrange Polynomial (unit value at k and zero elsewhere)

$$l_k^n(\xi) = \frac{(\xi - \xi_0)(\xi - \xi_1)...(\xi - \xi_{k-1})(\xi - \xi_{k+1})...(\xi - \xi_n)}{(\xi_k - \xi_0)(\xi_k - \xi_1)...(\xi_k - \xi_{k-1})(\xi_k - \xi_{k+1})...(\xi_k - \xi_n)}$$

By definition $l_0^0 = 1$

Typical Shape Function

Parent Element

1D Elements

1D C⁰ Linear Element

Node 1
$$\phi_1 = l_0^1 = \frac{(\xi - \xi_1)}{(\xi_0 - \xi_1)} = \frac{(\xi - 1)}{(-1 - 1)} = \frac{1 - \xi}{2}$$

Node 2
$$\phi_2 = l_1^1 = \frac{(\xi - \xi_0)}{(\xi_1 - \xi_0)} = \frac{(\xi - (-1))}{(1 - (-1))} = \frac{1 + \xi}{2}$$

1D C⁰ Quadratic Element

Node 1
$$\phi_1 = l_0^2 = \frac{(\xi - \xi_1)(\xi - \xi_2)}{(\xi_0 - \xi_1)(\xi_0 - \xi_2)} = \frac{(\xi - 0)(\xi - 1)}{(-1 - 0)(-1 - 1)} = \frac{1}{2}\xi(\xi - 1)$$

Node 2
$$\phi_2 = l_1^2 = \frac{(\xi - \xi_0)(\xi - \xi_2)}{(\xi_1 - \xi_0)(\xi_1 - \xi_2)} = \frac{(\xi - (-1))(\xi - 1)}{(0 - (-1))(0 - 1)} = 1 - \xi^2$$

Node 3
$$\phi_3 = l_2^2 = \frac{(\xi - \xi_0)(\xi - \xi_1)}{(\xi_2 - \xi_0)(\xi_2 - \xi_1)} = \frac{(\xi - (-1))(\xi - 0)}{(1 - (-1))(1 - 0)} = \frac{1}{2}\xi(\xi + 1)$$

2D Lagrange Elements

$$\phi_i \equiv \phi_{IJ} = l_I^n(\xi) l_J^m(\eta)$$

2D Lagrange Elements

2D-C⁰ Bilinear Quadrilateral Element

2D-C⁰ Quadratic Quadrilateral Element

Shape Functions

2D-C⁰ Bilinear Quadrilateral Element

Node 3
$$\phi_3 = N_{11} = l_1^1(\xi)l_1^1(\eta) = \frac{(\xi - \xi_0)}{(\xi_1 - \xi_0)} \frac{(\eta - \eta_0)}{(\eta_1 - \eta_0)} = \frac{(\xi - (-1))}{(1 - (-1))} \frac{(\eta - (-1))}{(1 - (-1))}$$

$$\phi_3 = \frac{1}{4} (1 + \xi) (1 + \eta)$$

2D-C⁰ Quadratic Quadrilateral Element

Node 6
$$\phi_6 = N_{21} = l_2^2(\xi)l_1^2(\eta) = \frac{(\xi - \xi_0)(\xi - \xi_1)}{(\xi_2 - \xi_0)(\xi_2 - \xi_1)} \frac{(\eta - \eta_0)(\eta - \eta_2)}{(\eta_1 - \eta_0)(\eta_1 - \eta_2)}$$

$$\phi_6 = \frac{(\xi+1)(\xi-0)}{(1+1)(1-0)} \frac{(\eta+1)(\eta-1)}{(0+1)(0-1)} = \frac{1}{2} \xi (1+\xi) (1-\eta^2)$$

2D Triangular Elements

$$\phi_i = l_I^I(\xi) l_J^J(\eta) l_K^K(\zeta)$$

$$I + J + K = M$$

2D Triangular Elements

2D-C⁰ Linear Triangular Element

2D-C⁰ Quadratic Triangular Element

Shape Functions

2D-C⁰ Linear Triangular Element

Node 3
$$\phi_3 = l_0^0(\xi) l_1^1(\eta) l_0^0(\zeta) = (1) \frac{(\eta - \eta_0)}{(\eta_1 - \eta_0)} (1) = \frac{(\eta - 0)}{(1 - 0)} = \eta$$

$$\phi_3 = \eta$$

2D-C⁰ Quadratic Triangular Element

Node 4
$$\phi_4 = l_1^1(\xi) l_0^0(\eta) l_1^1(\zeta) = \frac{\left(\xi - \xi_0\right)}{\left(\xi_1 - \xi_0\right)} (1) \frac{\left(\zeta - \zeta_0\right)}{\left(\zeta_1 - \zeta_0\right)} = \frac{\left(\xi - 0\right)}{\left(1/2 - 0\right)} \frac{\left(\zeta - 0\right)}{\left(1/2 - 0\right)}$$

$$\phi_4 = 4\xi\zeta = 4\xi(1 - \xi - \eta)$$

2D-C⁰ Bilinear Quadrilateral Element

$$u(\xi,\eta) = \sum_{i=1}^{4} \phi_i(\xi,\eta) u_i$$

$$\phi_1 = \frac{1}{4} (1 - \xi) (1 - \eta)$$

$$\phi_2 = \frac{1}{4} (1 + \xi) (1 - \eta)$$

$$\phi_3 = \frac{1}{4} (1 + \xi) (1 + \eta)$$

$$\phi_4 = \frac{1}{4} (1 - \xi) (1 + \eta)$$

2D-C⁰ Linear Triangular Element

$$u(\xi,\eta) = \sum_{i=1}^{3} \phi_i(\xi,\eta) u_i$$

$$\phi_1 = \zeta = 1 - \xi - \eta$$

$$\phi_2 = \xi$$

$$\phi_3 = \eta$$

2D-C⁰ Quadratic Triangular Element

$$u(\xi,\eta) = \sum_{i=1}^{6} \phi_i(\xi,\eta) u_i$$

$$\phi_1 = \zeta (2\zeta - 1)$$

$$\phi_2 = \xi (2\xi - 1)$$

$$\phi_3 = \eta (2\eta - 1)$$

$$\phi_4 = 4\xi\zeta$$

$$\phi_5 = 4\xi\eta$$

$$\phi = 4\eta\zeta$$

Numerical Integration

Integral

$$I = \int_{a}^{b} F(x) \, dx$$

- (1) F(x) is dependent on a jacobian
- (2) F(x) is known at a few discrete points

Numerical Integration

Gauss-Legendre Quadrature

$$\int_{a}^{b} F(x) dx = \int_{1}^{1} \widehat{F}(\xi) d\xi = \sum_{i=1}^{n} w_{i} \widehat{F}(\xi_{i})$$

$$w_{i} : weights$$

$$\xi_{i} : locations$$

where
$$F(x) dx = F(x(\xi)) \frac{dx}{d\xi} d\xi = F(x(\xi)) \cdot J(\xi) d\xi = \widehat{F}(\xi)$$

Note

- (1) G-LQ requires fewer base points than Newton Cotes.
- (2) A polynomial of degree n is integrated exactly by (n+1)/2 Gauss points.

Gauss-Quadrature

Gauss points and weights

Order, n	Weight	Location
1	2.0	0.0
2	1.0	0.57735 02691
	1.0	-0.57735 02691
3	0.55555 55555	0.77459 66692
	0.55555 55555	-0.77459 66692
	0.88888 88888	0.0

Example 1

$$I = \int_{-1}^{1} x^4 dx = \int_{-1}^{1} \xi^4 d\xi = \sum_{i=1}^{n} w_i \xi_i^4$$

n	w	ξ	$f(\xi) = \xi^4$	$w_i \xi_i^4$	I
1	2	0	0	0	0
2	1	0.577350269	0.111111	0.111111	
	1	-0.577350269	0.111111	0.111111	0.222222
3	0.555556	0.774596669	0.36	0.2	
	0.555556	-0.774596669	0.36	0.2	
	0.888889	0	0	0	0.4

Example 2

$$I = \int_{2}^{5} x^{4} dx = \sum_{i=1}^{n} w_{i} \widehat{F} \left(\xi_{i} \right)$$

Preprocessing

$$x = \frac{1 - \xi}{2} x_1 + \frac{1 + \xi}{2} x_2 = \frac{3}{2} \xi + \frac{7}{2} \Rightarrow J = \frac{dx}{d\xi} = \frac{3}{2}$$

$$\widehat{F}(\xi) = F\left(x(\xi)\right)J = \left(\frac{3}{2}\xi + \frac{7}{2}\right)^4 \frac{3}{2}$$

Example 2 (cont'd)

n	w	ξ	$\widehat{F}(\xi)$	$w_i \widehat{F}(\xi_i)$	I
1	2	0	225.09	450.19	450.19
2	1	0.577350269	545.05	545.05	
	1	-0.577350269	72.2	72.2	617.25
3	0.555556	0.774596669		393.609	
	0.555556	-0.774596669		24.9048	
	0.888889	0		200.083	618.6

2D Example

$$I = \int_{c}^{d} \int_{a}^{b} F(x, y) dx dy = \int_{-1}^{1} \int_{-1}^{1} F(x(\xi, \eta), y(\xi, \eta)) |J| d\xi d\eta$$

$$I = \sum_{j=1}^{n} \sum_{i=1}^{n} w_i w_j f\left(\xi_i, \eta_j\right)$$

$$|J| = \det(\mathbf{J}) = \det\begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}_{2 \times 2}$$

Example 3

$$I = \int_{-1}^{1} \int_{-1}^{1} x^{2} dx dy = \int_{-1}^{1} \int_{-1}^{1} \xi^{2} d\xi d\eta = \sum_{j=1}^{n} \sum_{i=1}^{n} w_{i} w_{j} \xi_{i}^{2}$$

ξ_i	$\eta_{_{j}}$	W_i	w_j	$f(\xi_i, \eta_j)$	$w_i w_j f(\xi_i, \eta_j)$
-0.5773502691	-0.5773502691	1.0	1.0	0.333333333	0.333333333
0.5773502691	-0.5773502691	1.0	1.0	0.333333333	0.333333333
0.5773502691	0.5773502691	1.0	1.0	0.333333333	0.333333333
-0.5773502691	0.5773502691	1.0	1.0	0.333333333	0.333333333
				TOTAL	1.333333333

n=2

$I = \iint_{R_{xy}} (x+y)^3 dxdy$ $x = \int_{R_{xy}} \int_{R_{xy}} (x+y)^3 dxdy$

Node	X	y
1	1	0
2	3	1
3	2	2
4	0	1

Example 4

$$x = \sum_{i=1}^{4} \phi_i \left(\xi, \eta \right) x_i$$

$$y = \sum_{i=1}^{4} \phi_i \left(\xi, \eta \right) y_i$$

$$\mathbf{J} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}_{2 \times 2} = \frac{1}{4} \begin{bmatrix} 4 & 2 \\ -2 & 2 \end{bmatrix}$$

$$\det(\mathbf{J}) = \frac{3}{4}$$

Example 4

$$I = \iint_{R_{xy}} (x+y)^3 dxdy = \int_{-1}^{1} \int_{-1}^{1} \widehat{F}(\xi_i, \eta_j) d\xi d\eta = \sum_{j=1}^{n} \sum_{i=1}^{n} w_i w_j \widehat{F}(\xi_i, \eta_j)$$

n=1

	ξ_i	$oldsymbol{\eta}_j$	W_i	W_j	$F(\xi_i,\eta_j)$	$w_i w_j \det(\mathbf{J}) F(\xi_i, \eta_j)$	
0		0	2.0	2.0	$\left(\frac{5}{2}\right)^3$	46.875	

$$x + y = \left(\sum_{i=1}^{4} \phi_i x_i\right) + \left(\sum_{i=1}^{4} \phi_i y_i\right) = \left(\frac{1}{4} \left(1 + 3 + 2 + 0\right) + \frac{1}{4} \left(0 + 1 + 2 + 1\right)\right) = \frac{5}{2}$$

Example 4

n=2

Šί	η_{j}	w_i	w_{j}	ϕ_1	ϕ_2	ϕ_3	ϕ_4	x	y	$(x+y)^3$
-0.57735	-0.57735	1.0	1.0	0.622008	0.166667	0.044658	0.166667	1.21133	0.42265	4.362508
0.57735	-0.57735	1.0	1.0	0.166667	0.622008	0.166667	0.044658	2.36603	1	38.13748
0.57735	0.57735	1.0	1.0	0.044658	0.166667	0.622008	0.166667	1.78868	1.57735	38.13748
-0.57735	0.57735	1.0	1.0	0.166667	0.044658	0.166667	0.622008	0.63398	1	4.362508
								$I = \det(J)$	$\sum (x+y)^3$	63.75

Summary

- Generating Shape Functions
 - Properties (geometric isotropy, complete, linearly independent)
 - Lagrange Polynomials
- Shape Functions for
 - 1D-C⁰ elements
 - Quadrilateral "Serendipity" elements
 - Quadrilateral Lagrange elements
 - Triangular elements

Summary

- Natural coordinates
- Area coordinates
- Numerical Integration
 - Gauss-Legendre Quadrature
 - Mapping
 - Jacobian

Further Reading

• Web sites

http://www.cs.kuleuven.ac.be/~ronald/