

Metodologias de Otimização e Apoio à Decisão

Data: 23/02/2022 Exame – Época de Recurso Duração: 2h

Nota: Apresente todos os cálculos que efetuar e justifique convenientemente as suas respostas.

1. (Cotação prevista: 7,0 valores)

Considere o seguinte problema de programação linear com um só objetivo:

Minimizar
$$z = 3x_1 + 2 x_2$$

sujeito a
 $2x_1 + x_2 \ge 10$ (1)
 $-3x_1 + 2x_2 \le 6$ (2)
 $x_1 + x_2 \ge 6$ (3)
 $x_1 \ge 0, x_2 \ge 0$

Considerando x_3 e x_5 as variáveis *surplus* e *artificial* da restrição funcional (1), x_6 a variável *slack* da restrição funcional (2), e x_4 e x_7 as variáveis *surplus* e *artificial* da restrição funcional (3), o quadro ótimo do *simplex* (usando a técnica do grande M) é:

	Ci	-3	-2	0	0	-M	0	-M	
ΧB	c _B \ x i	X 1	\mathbf{X}_{2}	X 3	0 X 4	X 5	X 6	X 7	b
X ₁	-3	1	0	-1	1	1	0	-1	4
X 6	0	0	0	-5	7	5	1	-7	14
X 2	-2	0	1		-2	-1	0	2	2
z	j-cj	0	0	1	1	M-1	0	M-1	-16

Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de <u>pós-otimização</u>, **quais as implicações na solução ótima apresentada** (no valor de x*, no valor de z* e na base ótima), **decorrentes da variação**:

- a) Alteração do vetor dos termos independentes das restrições, de $\begin{bmatrix} 10 \\ 6 \\ 6 \end{bmatrix}$ para $\begin{bmatrix} 15 \\ 7 \\ 8 \end{bmatrix}$;
- b) Alteração do coeficiente da variável x2 na função objetivo, de 2 para 4;
- c) Introdução de uma nova restrição funcional no problema: $x_1 + 2x_2 \le 16$.

2. (Cotação prevista: 5,0 valores)

Considere agora o seguinte problema de programação linear inteira pura:

$$\begin{array}{c} \textit{Maximizar} \ \ z = -x_1 + 3x_2 \\ \text{sujeito a} \\ -x_1 + 2x_2 & \leq 4 \\ x_1 + x_2 & \leq 6 \\ x_1 + 3x_2 & \leq 9 \\ x_1 \geq 0, \ x_2 \geq 0 \\ x_1 \in x_2 \ \text{inteiros} \end{array} \tag{1}$$

Considerando **x**₃, **x**₄ e **x**₅ as variáveis *slack* das restrições funcionais (1), (2) e (3), respetivamente, suponha que se aplicou o algoritmo de Gomory a este mesmo problema e que no final do 1º passo se obteve o seguinte quadro ótimo do *simplex*:

	Ci	-1	3	0	0	0	
ХB	c _B \ x _i	X ₁	X ₂	X ₃	X ₄	X 5	b
X ₂	3	0	1	1/5	0	1/5	13/5
X_4	0	0	0	2/5	1	-3/5	11/5
X 1	-1	1	0	-3/5	0	2/5	6/5
Zj-cj		0	0	6/5	0	1/5	33/5

- a) Retire as suas conclusões e, se achar necessário, prossiga com o 2º passo do referido algoritmo, para resolver o problema apresentado;
- **b)** Se a variável **x**₁ deixasse de ter restrição de integralidade, considera que continuaríamos perante um problema de programação inteira? Justifique.

3. (Cotação prevista: 5,0 valores)

Considere agora o seguinte problema de programação por metas:

Minimizar Z =
$$\{d_1^+, d_3^-, d_2^-\}$$

sujeito a
 $3x_1 + 4x_2 + d_1^- - d_1^+ = 24$
 $2x_1 + x_2 + d_2^- - d_2^+ = 10$
 $x_2 + d_3^- - d_3^+ = 5$
 $2x_1 - 3x_2 + d_4^- = 6$
 $x_1 \ge 0, x_2 \ge 0, d_i^- \ge 0, d_i^+ \ge 0 \ (i = 1,2,3,4)$

a) Resolva este problema pelo método gráfico;

Nota: Pode usar a grelha da página 3, identificando-se com nome e nº de aluno.

b) Se houvesse necessidade de uma **nova meta** com **grau de prioridade 4** que especificasse que, na medida do possível, $x_1 + 2x_2$ deveria ser maior ou igual a 3, indique que alterações introduziria no modelo.

Departamento de Engenharia Informática e de Sistemas

Nome:	N ₀