2. Priors: estimating band-recovery and harvest probability

JAGS
Just Another Gibbs Sampler

What is a prior?

Your prior belief in the distribution of a parameter.

What is a posterior?

 The distribution of a parameter given your prior belief and the data.

A huge 'non-Bayesian' fear is that priors drive inference

'Uninformative*' priors

*Priors are never 'uninformative.'

Sometimes priors are too 'uninformed'

'Biologically informative' or 'reasonably vague' priors

What is the band-recovery probability for adult female blue-winged teal?

'Overly informative'

Normal($\mu = 70.875$, $\sigma = 0.1$)

Equally likely that they're between 2' and 10' tall

'Uninformative'

Uniform(24, 120)

'Biologically informative!'

Normal($\mu = 70$, $\sigma = 3$)

'Please stop talking to me.'

Also an acceptable answer.

'Biologically informative' or 'reasonably vague' priors

2'-10'

The beta distribution

Number of 'successes'

Beta (α, β)

$$\mu = \frac{\alpha}{\beta}$$

$$\sigma^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

The beta distribution: sports

^{*}hockey isn't a great example because they also have ties...

Number of recoveries Beta(1,9) Number of not recoveries

Number of recoveries Beta(10,90) Number of not recoveries

Number of recoveries

Number of not recoveries

Our first Bayesian analysis

Prior: Beta(α , β)

Likelihood: Beta(Successes, Failures)

Posterior: Beta(α + Successes, β + Failures)

Combining priors and data: ducks

Prior: Beta(α , β)

Likelihood: **Beta(100, 900)**

Prior: **Beta(1, 1)**

Likelihood: **Beta(100, 900)**

Prior: **Beta(1, 9)**

Likelihood: **Beta(100, 900)**

Prior: Beta(10, 90)

Likelihood: **Beta(100, 900)**

Prior: Beta(α , β)

Likelihood: **Beta(100, 900)**

Prior: Beta(α , β)

Likelihood: **Beta(100, 900)**

There's a subjective 'sweet spot'

- Don't go too far:
- e.g., Survival is 0.723458 with a SE of 0.00001*
- Don't pretend it could be any number:
- e.g., dispersal to the moon, hunting mortality is equally likely to be 0 or 1!**

^{*}A huge 'non-Bayesian' fear is that priors drive inference
**A 'hardcore Bayesian' fear is that we often use priors that are overly vague

'Biologically informative' or 'reasonably vague' priors

5' 10 ⁷/₈" ± ¹/₃"

There's a subjective 'sweet spot'

- Finding 'it' takes some time and careful thinking
- Spend time familiarizing yourself with distributions
- Make histograms!

```
> s1 <- rbeta(10000, 7, 3)
> s2 <- rbeta(10000, 14, 6)
> s3 <- rbeta(10000, 70, 30)
> s4 <- rbeta(10000, 700, 300)
> png("E:/o_Final/Duck_Symposium_9/band_recovery_workshop/figures/prior6.png",
+ height = 8, width = 8, units = 'in', res = 300)
> vioplot(s1, s2, s3, s4, names = c('Beta(7,3)', 'Beta(14,6)', 'Beta(70,30)', 'Beta(700,300)'),
+ drawRect = F, col = 'forestgreen', wex = 0.5)
> dev.off()
```


Our first example (script 0)!

Model

 $r \sim \text{binomial}(nR, f)$

Prior

r∼beta(1,1)

Simulating direct recoveries

Script 0

From band-recovery probability to k and harvest (script 1)

^{*}Killed but crippled (lost): K * C

^{*}Killed, recovered, but not reported: $\kappa * (1-c) * (1-\rho)$

^{*}Killed, recovered, and reported: $\kappa * (1-c) * \rho = f$

^{*}Brownie et al. uses c as a 'retrieval probability,' but here we treat it as 'crippling loss probability'

From band-recovery probability to k and harvest (script 1)

Model $r \sim \text{binomial}(nR, f)$ $f = \kappa \times (1 - c) \times \rho$

Prior $\kappa \sim \text{beta}(1,1)$ $\rho \sim \text{beta}(100,100)$ $c \sim \text{beta}(20,80)$

Script 1