Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Plan

§ 11.1 Introduction

- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Mode
- § 11.A Appendix Multiple/Multivariate Linear Regressior
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

§ 11.1 Introduction

- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Mode
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Regression analysis

FITS A STRAIGHT LINE TO THIS MESSY SCATTERPLOT. 2 15 CALLED THE INDEPENDENT OR PREDICTOR VARIABLE, AND 2/15 THE PEPENDENT OR RESPONSE VARIABLE. THE RESRESSION OR PREDICTION LINE HAS THE FORM

y = a + bx

https://madhureshkumar.wordpress.com/

https://xkcd.com/

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

 A random sample of size n, where Y_i follows a distribution depending on X_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

3. A random sample of size n, where (X_i, Y_i) follow some joint distribution.

ŝ

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

 A random sample of size n, where Y_i follows a distribution depending or x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

3. A random sample of size n, where (X_i, Y_i) follow some joint distribution.

6

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

 A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

3. A random sample of size n, where (X_i, Y_i) follow some joint distribution

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

2. A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

3. A random sample of size n, where (X_i, Y_i) follow some joint distribution.

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

2. A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

3. A random sample of size n, where (X_i, Y_i) follow some joint distribution.

$$(x_1,y_1),\cdots,(x_n,y_n)$$

1. Purely data, no probability structure assumed.

$$(x_1, Y_1), \cdots, (x_n, Y_n)$$

2. A random sample of size n, where Y_i follows a distribution depending on x_i which is deterministic.

$$(X_1, Y_1), \cdots, (X_n, Y_n)$$

3. A random sample of size n, where (X_i, Y_i) follow some joint distribution.

Plan

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regressior
- § 11.5 The Bivariate Normal Distribution

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_x \sigma_y} \ \, \Big] \ \, \text{Covarianced normalized by Standard Deviation} \\ \text{Correlation between X and Y} \\ \text{Standard deviation of X} \\ \text{Standard deviation of Y}$$

Notation:
$$Corr(X, Y) = \rho(X, Y) = \rho_{XY}$$

Computing:
$$Var(X) = \sigma_X^2$$
, $Var(Y) = \sigma_Y^2$, $Cov(X, Y) = \sigma_{XY}$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

Notation:
$$Corr(X, Y) = \rho(X, Y) = \rho_{XY}$$

Computing:
$$\operatorname{Var}(X) = \sigma_X^2$$
, $\operatorname{Var}(Y) = \sigma_Y^2$, $\operatorname{Cov}(X,Y) = \sigma_{XY}$

$$\downarrow \rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_x \sigma_y} \ \ \, \int$$
 Covarianced normalized by Standard Deviation Correlation between X and Y
$$\int\limits_{\text{Standard deviation of Y}} \text{Correlation between X and Y}$$

Notation:
$$Corr(X, Y) = \rho(X, Y) = \rho_{XY}$$

Computing:
$$\operatorname{Var}(X) = \sigma_X^2$$
, $\operatorname{Var}(Y) = \sigma_Y^2$, $\operatorname{Cov}(X,Y) = \sigma_{XY}$

$$\psi$$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality

a.
$$|\rho(X, Y)| \leq 1$$

b. $\rho(X,Y)=1$ if and only if Y=aX+b for some a>0 and $b\in\mathbb{R}$; $\rho(X,Y)=-1$ if and only if Y=aX+b for some a<0 and $b\in\mathbb{R}$

Proof. (a)

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality.

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$;

$$\rho(X,Y)=-1$$
 if and only if $Y=aX+b$ for some $a<0$ and $b\in\mathbb{R}$

Proof. (a

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a

$$|\rho(X, Y)| \le 1$$

1

$$\begin{split} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\text{Var}(X)\text{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{split}$$

which is nothing but the Cauchy-Schwartz inequality

- a. $|\rho(X, Y)| \le 1$
- **b.** $\rho(X, Y) = 1$ if and only if Y = aX + b for some a > 0 and $b \in \mathbb{R}$; $\rho(X, Y) = -1$ if and only if Y = aX + b for some a < 0 and $b \in \mathbb{R}$.

Proof. (a)

$$|\rho(X, Y)| \leq 1$$

1

$$\begin{aligned} |\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)| &\leq \sqrt{\mathsf{Var}(X)\mathsf{Var}(Y)} \\ &= \sqrt{\mathbb{E}\left((X - \mathbb{E}(X))^2\right)}\sqrt{\mathbb{E}\left((Y - \mathbb{E}(Y))^2\right)} \end{aligned}$$

which is nothing but the Cauchy-Schwartz inequality.

(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$X - \mathbb{E}(X) = a[Y - E(Y)]$$

namely,

$$X = aY + b$$
, with $b = \mathbb{E}(X) - a\mathbb{E}(Y)$.

In particular, a > 0 corresponds to the case $\rho(X, Y) = 1$ and a < 0 to $\rho(X, Y) = -1$.

(b) In the Cauchy-Schwartz inequality, the equality holds if and only if for some $a \neq 0$,

$$X - \mathbb{E}(X) = a[Y - E(Y)]$$

namely,

$$X = aY + b$$
, with $b = \mathbb{E}(X) - a\mathbb{E}(Y)$.

In particular, a > 0 corresponds to the case $\rho(X, Y) = 1$ and a < 0 to $\rho(X, Y) = -1$.

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \end{split}$$

$$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$$

Pearson product-moment correlation coefficient

01

Sample correlation coefficien

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \\ & \qquad \qquad \downarrow \end{split}$$

$$R = \frac{n \sum_{i=1}^{n} X_i Y_i - \left(\sum_{i=1}^{n} X_i\right) \left(\sum_{i=1}^{n} Y_i\right)}{\sqrt{n \sum_{i=1}^{n} X_i^2 - \left(\sum_{i=1}^{n} X_i\right)^2} \sqrt{n \sum_{i=1}^{n} Y_i^2 - \left(\sum_{i=1}^{n} Y_i\right)^2}}$$

Pearson product-moment correlation coefficient

or

Sample correlation coefficien

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \\ & \quad \quad \downarrow \end{split}$$

$$R = \frac{n\sum_{i=1}^{n} X_{i}Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n\sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}} \sqrt{n\sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}$$

Pearson product-moment correlation coefficient

01

Sample correlation coefficien

$$\begin{split} \rho(X,Y) &= \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ &= \frac{\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]}{\sqrt{\mathbb{E}[X^2] - \mathbb{E}[X]^2}\sqrt{\mathbb{E}[Y^2] - \mathbb{E}[Y]^2}} \\ & \qquad \qquad \downarrow \end{split}$$

$$R = \frac{n \sum_{i=1}^{n} X_{i} Y_{i} - \left(\sum_{i=1}^{n} X_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{\sqrt{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2} \sqrt{n \sum_{i=1}^{n} Y_{i}^{2} - \left(\sum_{i=1}^{n} Y_{i}\right)^{2}}}}$$

Pearson product-moment correlation coefficient

or

Sample correlation coefficient

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2, \quad \widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$$
, and $SSTR = SST - SSE$.

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$SSE = \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$$
, and $SSTR = SST - SSE$.

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2, \quad \widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_i$$

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$$
, and $SSTR = SST - SSE$.

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$\begin{split} SSE &= \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \\ SST &= \sum_{i=1}^n \left(Y_i - \overline{Y}_i \right)^2, \quad \text{and} \quad SSTR = SST - SSE. \end{split}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$\begin{split} SSE &= \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \\ SST &= \sum_{i=1}^n \left(Y_i - \overline{Y}_i \right)^2, \quad \text{and} \quad SSTR = SST - SSE. \end{split}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSTR}{SST}$$

where

$$\begin{split} SSE &= \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \quad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i \\ SST &= \sum_{i=1}^n \left(Y_i - \overline{Y}_i \right)^2, \quad \text{and} \quad SSTR = SST - SSE. \end{split}$$

Remark SSE: sum of square errors \sim the variation in y_i 's not explained by L.M.

SST: Total sum of squares \sim total variability.

SSTR: Treatment sum of sqrs. \sim the variation in y_i 's explained by L.M.

 R^2 (or r^2 when X_i and Y_i are replaced by x_i and y_i) \sim proportion of total variation in the y_i 's that can be attributed to L.M.

Proof

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - rac{\textit{MSE}}{\textit{MST}}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

$$extit{MSR} = extit{MSTR} = rac{ extit{SSTR}}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

$$MSR = MSTR = rac{SSTR}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total

$$extit{MSR} = extit{MSTR} = rac{ extit{SSTR}}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - rac{ extit{MSE}}{ extit{MST}}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

$$extit{MSR} = extit{MSTR} = rac{ extit{SSTR}}{q-1}$$

Def. The adjusted R-squareed:

$$R_{adj}^2 := 1 - \frac{MSE}{MST}$$

where

$$MSE = \frac{SSE}{n-q}$$
 and $MST = \frac{SST}{n-1}$

and *q* is number of parameters in the model.

Relation:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-q}$$

MSE: Mean squared error.

MST: Mean squared total.

$$MSR = MSTR = \frac{SSTR}{q-1}$$

Plan

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Mode
- § 11.A Appendix Multiple/Multivariate Linear Regressior
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Mode
- § 11.A Appendix Multiple/Multivariate Linear Regressior
- § 11.5 The Bivariate Normal Distribution

Goal: Find a blue line that minimizes the sum of the square of the green lines

Thm. Given *n* points $(x_1, y_1), \dots, (x_n, y_n)$, the straight line y = a + bx minimizing

$$L(a,b) = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

when

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} x_i\right)^2}$$

and

$$a = \frac{\sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i}{n} = \bar{y} - b\bar{x}.$$

$$\begin{cases} \frac{\partial}{\partial a} L(a,b) = \sum_{i=1}^{n} (-2) \left[y_i - (a+bx_i) \right] = 0\\ \frac{\partial}{\partial b} L(a,b) = \sum_{i=1}^{n} (-2x_i) \left[y_i - (a+bx_i) \right] = 0 \end{cases}$$
(Normal equations)

Thm. Given n points $(x_1, y_1), \dots, (x_n, y_n)$, the straight line y = a + bx minimizing

$$L(a,b) = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

when

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} x_i\right)^2}$$

and

$$a = \frac{\sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i}{n} = \bar{y} - b\bar{x}.$$

$$\begin{cases} \frac{\partial}{\partial a} L(a,b) = \sum_{i=1}^{n} (-2) \left[y_i - (a+bx_i) \right] = 0\\ \frac{\partial}{\partial b} L(a,b) = \sum_{i=1}^{n} (-2x_i) \left[y_i - (a+bx_i) \right] = 0 \end{cases}$$
 (Normal equations)

$$\iff \begin{cases} \sum_{i=1}^{n} y_{i} - na - b \sum_{i=1}^{n} x_{i} = 0 \\ \sum_{i=1}^{n} x_{i} y_{i} - a \sum_{i=1}^{n} x_{i} - b \sum_{i=1}^{n} x_{i}^{2} = 0 \end{cases}$$
 (1)

(1)
$$\implies$$
 $a = \bar{y} - b\bar{x}$

$$(1) \times \sum_{i=1}^{n} x_{i} - (2) \times n \implies b = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

Γ

(Moore-Penrose) Pseudoinverse

1. Well determined system

$$Ax = b \implies x = A^{-1}y.$$

2. Overdetermined system

$$Ax = y$$

$$A^{T}Ax = A^{T}y$$

$$A^{T}A)^{-1}A^{T}A = (A^{T}A)^{-1}A^{T}y$$

$$X = \underbrace{(A^{T}A)^{-1}A^{T}}_{-\cdot A^{+}}y$$

3. Under determined system

$$Ax = y \implies x = \underbrace{A^{T}(AA^{T})^{-1}}_{A^{\perp}} y$$

(Moore-Penrose) Pseudoinverse

1. Well determined system

$$Ax = b \implies x = A^{-1}y.$$

2. Overdetermined system

$$Ax = y$$

$$A^{T}Ax = A^{T}y$$

$$\underbrace{(A^{T}A)^{-1}A^{T}A}_{=I} x = (A^{T}A)^{-1}A^{T}y$$

$$x = \underbrace{(A^{T}A)^{-1}A^{T}}_{=:A^{+}} y$$

3. Under determined system

$$Ax = y \implies x = \underbrace{A^{T}(AA^{T})^{-1}}_{-A+}y$$

(Moore-Penrose) Pseudoinverse

1. Well determined system

$$Ax = b \implies x = A^{-1}y.$$

2. Overdetermined system

$$Ax = y$$

$$A^{T}Ax = A^{T}y$$

$$\underbrace{(A^{T}A)^{-1}A^{T}A}_{=I} x = (A^{T}A)^{-1}A^{T}y$$

$$x = \underbrace{(A^{T}A)^{-1}A^{T}}_{=:A^{+}} y$$

3. Under determined system

$$Ax = y \implies x = \underbrace{A^T (AA^T)^{-1}}_{-\cdot A^+} y.$$

Proof. (Another proof based on pseudoinverse)

$$A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}_{n \times 2}, \qquad x = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}_{2 \times 1}, \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{1 \times n}$$

$$A^{T}A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \end{pmatrix} \begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix} = \begin{pmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{pmatrix}$$

$$(A^{T}A)^{-1} = \frac{1}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \begin{pmatrix} \sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\ -\sum_{i=1}^{n} x_{i} & n \end{pmatrix}$$

Proof. (Another proof based on pseudoinverse)

$$A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}_{n \times 2}, \qquad x = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}_{2 \times 1}, \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{1 \times n}$$

$$A^{T}A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \end{pmatrix} \begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix} = \begin{pmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{pmatrix}$$

$$(A^{T}A)^{-1} = \frac{1}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \begin{pmatrix} \sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\ -\sum_{i=1}^{n} x_{i} & n \end{pmatrix}$$

Proof. (Another proof based on pseudoinverse)

$$A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}_{n \times 2}, \qquad x = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}_{2 \times 1}, \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{1 \times n}$$

$$A^{\mathsf{T}}A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \mathsf{x}_1 & \mathsf{x}_2 & \cdots & \mathsf{x}_n \end{pmatrix} \begin{pmatrix} 1 & \mathsf{x}_1 \\ 1 & \mathsf{x}_2 \\ \vdots & \vdots \\ 1 & \mathsf{x}_n \end{pmatrix} = \begin{pmatrix} \mathsf{n} & \sum_{i=1}^n \mathsf{x}_i \\ \sum_{i=1}^n \mathsf{x}_i & \sum_{i=1}^n \mathsf{x}_i^2 \end{pmatrix}$$

$$(\mathbf{A}^{T}\mathbf{A})^{-1} = \frac{1}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \begin{pmatrix} \sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\ -\sum_{i=1}^{n} x_{i} & n \end{pmatrix}$$

$$A^{T}y = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = x = (A^{T}A)^{-1}A^{T}y$$

$$= \frac{1}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \begin{pmatrix} \sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\ -\sum_{i=1}^{n} x_{i} & n \end{pmatrix} \begin{pmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ \frac{n \sum_{i=1}^{n} x_{i}y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \end{pmatrix}$$

$$A^{\mathsf{T}}y = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_i y_i \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = x = (A^T A)^{-1} A^T y$$

$$= \frac{1}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} \begin{pmatrix} \sum_{i=1}^n x_i^2 & -\sum_{i=1}^n x_i \\ -\sum_{i=1}^n x_i & n \end{pmatrix} \begin{pmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_i y_i \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ \frac{n\sum_{i=1}^{n} x_{i}y_{i} - \left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \end{pmatrix}$$

$$b = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}.$$

$$a = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right)\left[\left(\sum_{i=1}^{n} x_{i}y_{i}\right) - \frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)\right]}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$-\frac{\frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2} \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$=\frac{1}{n}\sum_{i=1}^{n}y_{i}-b\frac{1}{n}\sum_{i=1}^{n}x_{i}=\bar{y}-b\bar{x}.$$

Г

A probabilistic view ...

Def. The function f(X) for which

$$\mathbb{E}\left[\left(Y-f(X)\right)^2\right]$$

is minimized is called the **regression curve of** Y **on** X.

Thm. Let (X, Y) be two random variables such that Var(X) and Var(Y) both exist. Then the regression cure of Y on X is given (for all x) by

$$f(x) = \mathbb{E}\left[Y|X=x\right].$$

A probabilistic view ...

Def. The function f(X) for which

$$\mathbb{E}\left[\left(Y-f(X)\right)^2\right]$$

is minimized is called the **regression curve of** Y **on** X.

Thm. Let (X, Y) be two random variables such that Var(X) and Var(Y) both exist. Then the regression cure of Y on X is given (for all x) by

$$f(x) = \mathbb{E}\left[Y|X=x\right].$$

$$\mathbb{E}\left[(Y - \phi(X))^2 \right] = \mathbb{E}\left[([Y - f(X)] + [f(X) - \phi(X)])^2 \right]$$
$$= \mathbb{E}\left[(Y - f(X))^2 \right] + \mathbb{E}\left[(f(X) - \phi(X))^2 \right]$$
$$+ \mathbb{E}\left[(Y - f(X)) (f(X) - \phi(X)) \right].$$

Let $\psi(x)$ be either f(x) or $\phi(x)$. We claim that

$$\mathbb{E}\left[\left(Y - f(X)\right)\psi(X)\right] = 0.$$

Indeed,

$$\mathbb{E}[Y\psi(X)] = \iint_{\mathbb{R}^2} f_{X,Y}(x,y)y\psi(x)dydx$$

$$= \int_{\mathbb{R}} dx\psi(x)f_X(x)\underbrace{\int_{\mathbb{R}} dy\frac{f_{X,Y}(x,y)}{f_X(x)}y}_{=\mathbb{E}[Y|X=x]}$$

$$= \mathbb{E}[f(X)\psi(X)].$$

Hence,

$$\mathbb{E}\left[\left(Y - \phi(X)\right)^{2}\right] = \mathbb{E}\left[\left(Y - f(X)\right)^{2}\right] + \mathbb{E}\left[\left(f(X) - \phi(X)\right)^{2}\right]$$

which is minimized when $\phi(x) = f(x)$.

$$\mathbb{E}\left[(Y - \phi(X))^2 \right] = \mathbb{E}\left[([Y - f(X)] + [f(X) - \phi(X)])^2 \right]$$
$$= \mathbb{E}\left[(Y - f(X))^2 \right] + \mathbb{E}\left[(f(X) - \phi(X))^2 \right]$$
$$+ \mathbb{E}\left[(Y - f(X)) (f(X) - \phi(X)) \right].$$

Let $\psi(x)$ be either f(x) or $\phi(x)$. We claim that

$$\mathbb{E}\left[\left(\mathbf{Y}-f(\mathbf{X})\right)\psi(\mathbf{X})\right]=0.$$

Indeed,

$$\mathbb{E}[Y\psi(X)] = \iint_{\mathbb{R}^2} f_{X,Y}(x,y)y\psi(x)dydx$$

$$= \int_{\mathbb{R}} dx\psi(x)f_X(x)\underbrace{\int_{\mathbb{R}} dy\frac{f_{X,Y}(x,y)}{f_X(x)}y}_{=\mathbb{E}[Y|X=x]}$$

$$= \mathbb{E}[f(X)\psi(X)].$$

Hence,

$$\mathbb{E}\left[\left(Y-\phi(X)\right)^2\right] = \mathbb{E}\left[\left(Y-f(X)\right)^2\right] + \mathbb{E}\left[\left(f(X)-\phi(X)\right)^2\right]$$

which is minimized when $\phi(x) = f(x)$

$$\mathbb{E}\left[(Y - \phi(X))^2 \right] = \mathbb{E}\left[([Y - f(X)] + [f(X) - \phi(X)])^2 \right]$$
$$= \mathbb{E}\left[(Y - f(X))^2 \right] + \mathbb{E}\left[(f(X) - \phi(X))^2 \right]$$
$$+ \mathbb{E}\left[(Y - f(X)) (f(X) - \phi(X)) \right].$$

Let $\psi(x)$ be either f(x) or $\phi(x)$. We claim that

$$\mathbb{E}\left[\left(\mathbf{Y}-f(\mathbf{X})\right)\psi(\mathbf{X})\right]=0.$$

Indeed,

$$\mathbb{E}[Y\psi(X)] = \iint_{\mathbb{R}^2} f_{X,Y}(x,y) y \psi(x) dy dx$$

$$= \int_{\mathbb{R}} dx \psi(x) f_X(x) \underbrace{\int_{\mathbb{R}} dy \frac{f_{X,Y}(x,y)}{f_X(x)} y}_{=\mathbb{E}[Y|X=x]}$$

$$= \mathbb{E}[f(X)\psi(X)].$$

Hence.

$$\mathbb{E}\left[(Y - \phi(X))^2\right] = \mathbb{E}\left[(Y - f(X))^2\right] + \mathbb{E}\left[(f(X) - \phi(X))^2\right]$$

which is minimized when $\phi(x) = f(x)$.

$$\mathbb{E}\left[(Y - \phi(X))^2 \right] = \mathbb{E}\left[([Y - f(X)] + [f(X) - \phi(X)])^2 \right]$$
$$= \mathbb{E}\left[(Y - f(X))^2 \right] + \mathbb{E}\left[(f(X) - \phi(X))^2 \right]$$
$$+ \mathbb{E}\left[(Y - f(X)) (f(X) - \phi(X)) \right].$$

Let $\psi(x)$ be either f(x) or $\phi(x)$. We claim that

$$\mathbb{E}\left[\left(\mathbf{Y} - f(\mathbf{X})\right)\psi(\mathbf{X})\right] = 0.$$

Indeed,

$$\mathbb{E}[Y\psi(X)] = \iint_{\mathbb{R}^2} f_{X,Y}(x,y)y\psi(x)dydx$$

$$= \int_{\mathbb{R}} dx \psi(x)f_X(x) \underbrace{\int_{\mathbb{R}} dy \frac{f_{X,Y}(x,y)}{f_X(x)}y}_{=\mathbb{E}[Y|X=x]}$$

$$= \mathbb{E}[f(X)\psi(X)].$$

Hence,

$$\mathbb{E}\left[\left(Y - \phi(X)\right)^{2}\right] = \mathbb{E}\left[\left(Y - f(X)\right)^{2}\right] + \mathbb{E}\left[\left(f(X) - \phi(X)\right)^{2}\right]$$

which is minimized when $\phi(x) = f(x)$.

If one imposes that f(x) = a + bx, then

Thm. The following squared error:

$$\mathbb{E}\left[\left\{Y-(a+bX)\right\}^2\right]$$

is minimized at

$$b =
ho_{XY} rac{\sigma_Y}{\sigma_X} = rac{\sigma_{XY}}{\sigma_X^2}$$
 and $a = \mathbb{E}[Y] - b\mathbb{E}[X]$

with the mean squared erro

$$\mathbb{E}\left[\left\{Y - (a + bX)\right\}^{2}\right] = \left(1 - \rho_{XY}^{2}\right)\sigma_{Y}^{2}$$

If one imposes that f(x) = a + bx, then

Thm. The following squared error:

$$\mathbb{E}\left[\left\{\mathbf{Y}-(\mathbf{a}+\mathbf{bX})\right\}^{2}\right]$$

is minimized at

$$b =
ho_{XY} rac{\sigma_Y}{\sigma_X} = rac{\sigma_{XY}}{\sigma_X^2}$$
 and $a = \mathbb{E}[Y] - b\mathbb{E}[X]$

with the mean squared error

$$\mathbb{E}\left[\left\{Y - (a + bX)\right\}^{2}\right] = \left(1 - \rho_{XY}^{2}\right)\sigma_{Y}^{2}.$$

If one imposes that $\overline{f(x)} = a + bx$, then

Thm. The following squared error:

$$\mathbb{E}\left[\left\{Y-(a+bX)\right\}^2\right]$$

is minimized at

$$b =
ho_{XY} rac{\sigma_Y}{\sigma_X} = rac{\sigma_{XY}}{\sigma_X^2}$$
 and $a = \mathbb{E}[Y] - b\mathbb{E}[X]$

with the mean squared error

$$\mathbb{E}\left[\left\{Y - (a + bX)\right\}^{2}\right] = \left(1 - \rho_{XY}^{2}\right)\sigma_{Y}^{2}$$

If one imposes that f(x) = a + bx, then

Thm. The following squared error:

$$\mathbb{E}\left[\left\{Y-(a+bX)\right\}^2\right]$$

is minimized at

$$b = \rho_{XY} \frac{\sigma_Y}{\sigma_X} = \frac{\sigma_{XY}}{\sigma_Y^2}$$
 and $a = \mathbb{E}[Y] - b\mathbb{E}[X]$

with the mean squared error

$$\mathbb{E}\left[\left\{\mathbf{Y}-\left(\mathbf{a}+\mathbf{b}\mathbf{X}\right)\right\}^{2}\right]=\left(1-\rho_{\mathbf{XY}}^{2}\right)\sigma_{\mathbf{Y}}^{2}.$$

28

$$\mathbb{E}\left[\left\{Y - (a + bX)\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{Y - \mathbb{E}(Y)\right] - b[X - \mathbb{E}(X)] - [a - \mathbb{E}[Y] + b\mathbb{E}(X)]\right\}^{2}\right]$$

$$\mathbb{E}\left[Y - \mathbb{E}(Y)\right]^{2}$$

$$+ b^{2}\mathbb{E}\left[X - \mathbb{E}(X)\right]^{2}$$

$$+ \left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]^{2}$$

$$2b\mathbb{E}\left[Y - \mathbb{E}(Y)\right]X - \mathbb{E}(X)$$

$$a - \mathbb{E}[Y] + b\mathbb{E}(X)\mathbb{E}[Y - \mathbb{E}(Y)]$$

$$\mathbb{E}\left[\left\{Y - (a + bX)\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{\left[Y - \mathbb{E}(Y)\right] - b[X - \mathbb{E}(X)] - \left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]\right\}^{2}\right]$$

$$\begin{aligned}
& \| & & \text{Var}(Y) \\
& \mathbb{E}\left[[Y - \mathbb{E}(Y)]^2\right] \\
& + b^2 \mathbb{E}\left[[X - \mathbb{E}(X)]^2\right] \\
& + \left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]^2 \\
& - 2b\mathbb{E}\left[[Y - \mathbb{E}(Y)][X - \mathbb{E}(X)]\right] \\
& - 2\left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]\mathbb{E}\left[Y - \mathbb{E}(Y)\right] \\
& + 2b\left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]\mathbb{E}\left[X - \mathbb{E}(X)\right] \\
& + 0
\end{aligned}$$

$$\mathbb{E}\left[\left\{Y - (a + bX)\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{\left[Y - \mathbb{E}(Y)\right] - b[X - \mathbb{E}(X)] - \left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]\right\}^{2}\right]$$

$$\begin{aligned}
& \| & & \text{Var}(Y) \\
& \mathbb{E}\left[[Y - \mathbb{E}(Y)]^2\right] \\
& + b^2 \mathbb{E}\left[[X - \mathbb{E}(X)]^2\right] \\
& + \left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]^2 \\
& - 2b\mathbb{E}\left[[Y - \mathbb{E}(Y)][X - \mathbb{E}(X)]\right] \\
& - 2\left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]\mathbb{E}\left[Y - \mathbb{E}(Y)\right] \\
& + 2b\left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]\mathbb{E}\left[X - \mathbb{E}(X)\right] \\
& + 0
\end{aligned}$$

$$\mathbb{E}\left[\left\{Y - (a + bX)\right\}^{2}\right]$$

$$= \mathbb{E}\left[\left\{\left[Y - \mathbb{E}(Y)\right] - b[X - \mathbb{E}(X)] - \left[a - \mathbb{E}[Y] + b\mathbb{E}(X)\right]\right\}^{2}\right]$$

29

$$\mathbb{E}\left[\left\{Y-(a+bX)\right\}^{2}\right]$$

$$\mid\mid$$

$$Var(Y)+b^{2}Var(X)+\left[a-\mathbb{E}[Y]+b\mathbb{E}(X)\right]^{2}-2b\operatorname{Cov}(X,Y)$$

The best a, called a*, should be such that

$$\begin{bmatrix} a^* - \mathbb{E}[Y] + b\mathbb{E}(X) \end{bmatrix}^2 = 0 \iff a^* = \mathbb{E}[Y] - b\mathbb{E}[X]$$

$$\mathbb{E}\left[\left\{Y-(a+bX)\right\}^{2}\right]$$

$$\mid\mid$$

$$Var(Y)+b^{2}Var(X)+\left[a-\mathbb{E}[Y]+b\mathbb{E}(X)\right]^{2}-2b\operatorname{Cov}(X,Y)$$

The best a, called a^* , should be such that

$$\left[a^* - \mathbb{E}[Y] + b\mathbb{E}(X)\right]^2 = 0 \quad \Longleftrightarrow \quad a^* = \mathbb{E}[Y] - b\mathbb{E}[X]$$

$$\downarrow \\ \mathbb{E}\left[\left\{Y-(a^*+bX)\right\}^2\right] \\ \mid | \\ \mathsf{Var}(Y)+b^2\mathsf{Var}(X)-2b\,\mathsf{Cov}(X,Y) \\ \mid | \\ \sigma_Y^2+b^2\sigma_X^2-2b\rho_{XY}\sigma_X\sigma_Y \\ \mid | \\ \left(1-\rho_{XY}^2\right)\sigma_Y^2+\left(b\sigma_X-\rho_{XY}\sigma_Y\right)^2$$

The best b, called b^* , should be

$$(b^*\sigma_X - \rho_{XY}\sigma_Y)^2 = 0 \iff b^* = \rho_{XY}\frac{\sigma_Y}{\sigma_Y}$$

$$\downarrow \\ \mathbb{E}\left[\left\{Y-(a^*+bX)\right\}^2\right] \\ \mid | \\ \mathsf{Var}(Y)+b^2\mathsf{Var}(X)-2b\,\mathsf{Cov}(X,Y) \\ \mid | \\ \sigma_Y^2+b^2\sigma_X^2-2b\rho_{XY}\sigma_X\sigma_Y \\ \mid | \\ \left(1-\rho_{XY}^2\right)\sigma_Y^2+\left(b\sigma_X-\rho_{XY}\sigma_Y\right)^2$$

The best b, called b^* , should be

$$(b^* \sigma_X - \rho_{XY} \sigma_Y)^2 = 0 \iff b^* = \rho_{XY} \frac{\sigma_Y}{\sigma_X}$$

$$\mathbb{E}\left[\left\{Y-\left(\pmb{a}^*+\pmb{b}^*\pmb{X}
ight)
ight\}^2
ight] \ \ \ \ \ \ \left(1-
ho_{m{X}m{Y}}^2
ight)\sigma_{m{Y}}^2$$

with

$$a^* =
ho_{XY} rac{\sigma_Y}{\sigma_X} = rac{\sigma_{XY}}{\sigma_Y^2}$$
 and $a^* = \mathbb{E}[Y] - b\mathbb{E}[X]$

$$\mathbb{E}\left[\left\{Y-\left(\pmb{a}^*+\pmb{b}^*\pmb{X}\right)\right\}^2\right]\\ ||\\ \left(1-\rho_{XY}^2\right)\sigma_Y^2$$

with

$$b^* =
ho_{XY} rac{\sigma_Y}{\sigma_X} = rac{\sigma_{XY}}{\sigma_X^2}$$
 and $a^* = \mathbb{E}[Y] - b\mathbb{E}[X]$

Г

Remark In practice, we have data $(x_1, y_1), \dots, (x_n, y_n)$ instead of the joint law of (X, Y)

Replace

$$\mu_{\mathsf{X}}, \mu_{\mathsf{Y}}, \sigma_{\mathsf{X}}^2, \sigma_{\mathsf{Y}}^2, \rho_{\mathsf{X}\mathsf{Y}}, \sigma_{\mathsf{X}\mathsf{Y}}$$

by their maximum likelihood estimates

$$\bar{x}, \bar{y}, \hat{\sigma}_X^2, \hat{\sigma}_Y^2, r_{XY}, \hat{\sigma}_{XY}$$

1. $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \, \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

2.
$$\hat{\sigma}_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n^{2}}$$

$$\hat{\sigma}_{Y}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \bar{y}^{2} = \frac{n \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n^{2}}$$

3.
$$\hat{\sigma}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}$$

$$= \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n^2}$$

4.
$$r_{XY} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_{X}\hat{\sigma}}$$

JL

$$o = r_{XY} \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}, \qquad a = \bar{y} - b\bar{x}$$

1.
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \, \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2.
$$\hat{\sigma}_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n^{2}}$$

$$\hat{\sigma}_{Y}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \bar{y}^{2} = \frac{n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}}{n^{2}}$$

3.
$$\hat{\sigma}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}$$

$$= \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n^2}$$

4.
$$r_{XY} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_{Y}\hat{\sigma}_{Y}}$$

$$b = r_{XY} \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}, \qquad a = \bar{y} - b\bar{x}$$

1.
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \, \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2.
$$\hat{\sigma}_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n^{2}}$$

$$\hat{\sigma}_{Y}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \bar{y}^{2} = \frac{n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}}{n^{2}}$$

3.
$$\hat{\sigma}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}$$

$$= \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n^2}$$

4.
$$r_{XY} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_{Y}\hat{\sigma}_{Y}}$$

$$b = r_{XY} \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}, \qquad a = \bar{y} - b\bar{x}$$

1.
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2.
$$\hat{\sigma}_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n^{2}}$$

$$\hat{\sigma}_{Y}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \bar{y}^{2} = \frac{n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}}{n^{2}}$$

3.
$$\hat{\sigma}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}$$

$$= \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n^2}$$

4.
$$r_{XY} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X \hat{\sigma}_Y}$$

$$b = r_{XY} \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}, \qquad a = \bar{y} - b\bar{x}$$

1.
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2.
$$\hat{\sigma}_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n^{2}}$$

$$\hat{\sigma}_{Y}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \bar{y}^{2} = \frac{n \sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}}{n^{2}}$$

3.
$$\hat{\sigma}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}$$

$$= \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n^2}$$

$$4. r_{XY} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X \hat{\sigma}_Y}$$

$$b = r_{XY} \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}, \qquad a = \bar{y} - b\bar{x}$$

1.
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2.
$$\hat{\sigma}_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n^{2}}$$

$$\hat{\sigma}_{Y}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \bar{y}^{2} = \frac{n \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n^{2}}$$

3.
$$\hat{\sigma}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}$$

$$= \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)}{n^2}$$

4.
$$r_{XY} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X \hat{\sigma}_Y}$$

$$b = r_{XY} \frac{\hat{\sigma}_Y}{\hat{\sigma}_X} = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}, \qquad a = \bar{y} - b\bar{x}$$

Maximum likelihood estimates

$$\hat{\sigma}_{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$\hat{\sigma}_Y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2$$

$$\hat{\sigma}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

Sample (co)variances

$$s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$s_{\mathsf{Y}}^2 = \frac{1}{\mathsf{n}-1} \sum_{i=1}^{\mathsf{n}} (\mathsf{y}_i - \bar{\mathsf{y}})^2$$

$$s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

E.g. 1 Producing air conditioners. x = rough weight of a rod. y = finished weight. Find the best linear approximation of xy-relationship. Predict the weight when x = 2.71

E.g. 1 Producing air conditioners. x = rough weight of a rod. y = finished weight. Find the best linear approximation of xy-relationship. Predict the weight when x = 2.71

Table 11.2.1					
Rod Number	Rough Weight, x	Finished Weight, y	Rod Number	Rough Weight, x	Finished Weight, y
1	2.745	2.080	14	2.635	1.990
2	2.700	2.045	15	2.630	1.990
3	2.690	2.050	16	2.625	1.995
4	2.680	2.005	17	2.625	1.985
5	2.675	2.035	18	2.620	1.970
6	2.670	2.035	19	2.615	1.985
7	2.665	2.020	20	2.615	1.990
8	2.660	2.005	21	2.615	1.995
9	2.655	2.010	22	2.610	1.990
10	2.655	2.000	23	2.590	1.975
11	2.650	2.000	24	2.590	1.995
12	2.650	2.005	25	2.565	1.955
13	2.645	2.015			

Sol. ...

..

Sol. ...

...

$$\hat{y} = a + bx$$
: **predicted value** of y

$$y_i - \hat{y}_i = y_i - (a + bx_i)$$
: *i*th residual

$$\hat{y} = a + bx$$
: predicted value of y

$$y_i - \hat{y}_i = y_i - (a + bx_i)$$
: *i*th residual

$$\hat{y} = a + bx$$
: predicted value of y

$$y_i - \hat{y}_i = y_i - (a + bx_i)$$
: *i*th residual

 $\hat{y} = a + bx$: predicted value of y

 $y_i - \hat{y}_i = y_i - (a + bx_i)$: *i*th residual

E.g. 1' Here are the residues and their plots:

E.g. 1' Here are the residues and their plots:

Table 11.2.2				
X_{I}	y _i	\hat{y}_i	$y_i - \hat{y}_i$	
2.745	2.080	2.070	0.010	
2.700	2.045	2.041	0.004	
2.690	2.050	2.035	0.015	
2.680	2.005	2.029	-0.024	
2.675	2.035	2.025	0.010	
2.670	2.035	2.022	0.013	
2.665	2.020	2.019	0.001	
2.660	2.005	2.016	-0.011	
2.655	2.010	2.013	-0.003	
2.655	2.000	2.013	-0.013	
2.650	2.000	2.009	-0.009	
2.650	2.005	2.009	-0.004	
2.645	2.015	2.006	0.009	
2.635	1.990	2.000	-0.010	
2.630	1.990	1.996	-0.006	
2.625	1.995	1.993	0.002	
2.625	1.985	1.993	-0.008	
2.620	1.970	1.990	-0.020	
2.615	1.985	1.987	-0.002	
2.615	1.990	1.987	0.003	
2.615	1.995	1.987	0.008	
2.610	1.990	1.984	0.006	
2.590	1.975	1.971	0.004	
2.590	1.995	1.971	0.024	
2.565	1.955	1.955	0.000	

E.g. 2 Predict the Social Security expenditures.

Does the the least squares line y = -38.0 + 12.9x a good model to predict the cost in 2010 would be \$543, i.e., the case x = 45?

Sol

E.g. 2 Predict the Social Security expenditures.

Table 11.2.3				
Year	Years after 1965, x	Social Security Expenditures (\$ billions), y		
1965	0	19.2		
1970	5	33.1		
1975	10	69.2		
1980	15	123.6		
1985	20	190.6		
1990	25	253.1		
1995	30	339.8		
2000	35	415.1		
2005	40	529.9		
Source: www.socialsecurity.gov/history/trustfunds.html.				

Does the the least squares line y=-38.0+12.9x a good model to predict the cost in 2010 would be \$543, i.e., the case x=45?

Sol.

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Exponential Regression

$$y = ae^{bx} \iff \ln y = \ln a + bx$$

$$b = \frac{n \sum_{i=1}^{n} x_{i} \ln y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} \ln y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \qquad \ln a = \frac{\sum_{i=1}^{n} \ln y_{i} - b \sum_{i=1}^{n} x_{i}}{n}$$

Gordon Moore predicted in 1965 that the number of transistors per chip would double every 18 months.

- 1) Whether is the chip capacity doubling at a fixed rate?
- 2) Find out the rate

Gordon Moore predicted in 1965 that the number of transistors per chip would double every 18 months.

- 1) Whether is the chip capacity doubling at a fixed rate?
- 2) Find out the rate.

Gordon Moore predicted in 1965 that the number of transistors per chip would double every 18 months.

- 1) Whether is the chip capacity doubling at a fixed rate?
- 2) Find out the rate

Gordon Moore predicted in 1965 that the number of transistors per chip would double every 18 months.

- 1) Whether is the chip capacity doubling at a fixed rate?
- 2) Find out the rate.

Gordon Moore predicted in 1965 that the number of transistors per chip would double every 18 months.

- 1) Whether is the chip capacity doubling at a fixed rate?
- 2) Find out the rate.

Table 11.2.5				
Chip	Year	Years after 1975, x	Transistors per Chip, y	
8080	1975	0	4,500	
8086	1978	3	29,000	
80286	1982	7	90,000	
80386	1985	10	229,000	
80486	1989	14	1,200,000	
Pentium	1993	18	3,100,000	
Pentium Pro	1995	20	5,500,000	
Source: en.wikipedia.org/wiki/Transistor—count.				

Sol. To check whether chip capacity doubles in a fixed rate, one needs to carry out exponential regression:

$$\implies$$
 $b = \cdots = 0.342810$, $a = \cdots = e^{\ln a} = e^{8.89} = 7247.189$.

Sol. To check whether chip capacity doubles in a fixed rate, one needs to carry out exponential regression:

Table 11.2.6				
Years after 1975, x_i	x_i^2	Transistors per Chip, y_i	ln y _i	$x_i \cdot \ln y_i$
		4,500	8.41183	
		29,000	10.27505	30.82515
	49	90,000	11.40756	79.85292
10	100	229,000	12.34148	123.41480
14	196	1.200,000	13.99783	195.96962
18	324	3,100,000	14.94691	269.04438
20	400	5,500,000	15.52026	310.40520
72	1078		86.90093	1009.51207

$$\Rightarrow$$
 $b = \cdots = 0.342810$, $a = \cdots = e^{\ln a} = e^{8.89} = 7247.189$.

Finally, to find out the rate:

$$e^{0.343x} = e^{\ln 2 \times \frac{0.343}{\ln 2}x} = 2^{\frac{0.343}{\ln 2}x}$$

$$\frac{0.343}{\ln 2}x = 1 \implies x = \frac{\ln 2}{0.343} = 2.020837.$$

Other curvilinear models

Table 11.2.10

- **a.** If $y = ae^{bx}$, then ln y is linear with x.
- **b.** If $y = ax^b$, then $\log y$ is linear with $\log x$.
- **c.** If $y = L/(1 + e^{a+bx})$, then $\ln\left(\frac{L-y}{y}\right)$ is linear with x.
- **d.** If $y = \frac{1}{a + bx}$, then $\frac{1}{y}$ is linear with x.
- **e.** If $y = \frac{x}{a + bx}$, then $\frac{1}{y}$ is linear with $\frac{1}{x}$.
- **f.** If $y = 1 e^{-x^b/a}$, then $\ln \ln \left(\frac{1}{1-y}\right)$ is linear with $\ln x$.

Plan

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Recall For any two random variables *X* and *Y*, the regression curve of *Y* on *X*, namely,

$$f(x) = \mathbb{E}\left[Y|X=x\right].$$

minimizes the squared error

$$\mathbb{E}\left[(Y-f(X))^2\right]$$

Difficulties The regression curve $y = \mathbb{E}[Y|x]$ is complicated and hard to obtain.

Compromise Assume that f(x) = a + bx (i.e., the first order approximation)

Recall For any two random variables *X* and *Y*, the regression curve of *Y* on *X*, namely,

$$f(x) = \mathbb{E}\left[Y|X=x\right].$$

minimizes the squared error

$$\mathbb{E}\left[\left(Y-f(X)\right)^2\right]$$

Difficulties The regression curve $y = \mathbb{E}[Y|x]$ is complicated and hard to obtain.

Compromise Assume that f(x) = a + bx (i.e., the first order approximation)

Recall For any two random variables *X* and *Y*, the regression curve of *Y* on *X*, namely,

$$f(x) = \mathbb{E}\left[Y|X=x\right].$$

minimizes the squared error

$$\mathbb{E}\left[(Y-f(X))^2\right]$$

Difficulties The regression curve $y = \mathbb{E}[Y|x]$ is complicated and hard to obtain.

Compromise Assume that f(x) = a + bx (i.e., the first order approximation)

- 1. $f_{Y|x}(y)$ is a normal pdf for any x given.
- 2. The standard deviation, σ , of Y|x is the same for all x, i.e.

$$\sigma^2 \equiv \mathbb{E}[Y^2|X] - \mathbb{E}[Y|X]^2$$

3. The mean of Y|x is collinear, i.e.,

$$y = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X.$$

4. All of the conditional distributions represnt indep. random variables

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, ϵ_i are indep. and $\epsilon_i \sim N(0, \sigma^2)$

- 1. $f_{Y|X}(y)$ is a normal pdf for any x given.
- 2. The standard deviation, σ , of Y|x is the same for all x, i.e.,

$$\sigma^2 \equiv \mathbb{E}[Y^2|X] - \mathbb{E}[Y|X]^2.$$

3. The mean of Y|x is collinear, i.e.,

$$y = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X.$$

4. All of the conditional distributions represnt indep. random variables

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, ϵ_i are indep. and $\epsilon_i \sim N(0, \sigma^2)$

- 1. $f_{Y|x}(y)$ is a normal pdf for any x given.
- 2. The standard deviation, σ , of Y|x is the same for all x, i.e.,

$$\sigma^2 \equiv \mathbb{E}[\mathbf{Y}^2|\mathbf{x}] - \mathbb{E}[\mathbf{Y}|\mathbf{x}]^2.$$

3. The mean of Y|x is collinear, i.e.,

$$y = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X.$$

4. All of the conditional distributions represnt indep. random variables.

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, ϵ_i are indep. and $\epsilon_i \sim N(0, \sigma^2)$

- 1. $f_{Y|X}(y)$ is a normal pdf for any x given.
- 2. The standard deviation, σ , of Y|x is the same for all x, i.e.,

$$\sigma^2 \equiv \mathbb{E}[\mathbf{Y}^2|\mathbf{X}] - \mathbb{E}[\mathbf{Y}|\mathbf{X}]^2.$$

3. The mean of Y|x is collinear, i.e.,

$$y = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X.$$

4. All of the conditional distributions represnt indep. random variables.

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, ϵ_i are indep. and $\epsilon_i \sim N(0, \sigma^2)$

- 1. $f_{Y|X}(y)$ is a normal pdf for any x given.
- 2. The standard deviation, σ , of Y|x is the same for all x, i.e.,

$$\sigma^2 \equiv \mathbb{E}[\mathbf{Y}^2|\mathbf{X}] - \mathbb{E}[\mathbf{Y}|\mathbf{X}]^2.$$

3. The mean of Y|x is collinear, i.e.,

$$y = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X.$$

4. All of the conditional distributions represnt indep. random variables.

$$Y_i = eta_0 + eta_1 x_i + \epsilon_i, \quad \epsilon_i$$
 are indep. and $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

- 1. $f_{Y|x}(y)$ is a normal pdf for any x given.
- 2. The standard deviation, σ , of Y|x is the same for all x, i.e.,

$$\sigma^2 \equiv \mathbb{E}[\mathbf{Y}^2|\mathbf{X}] - \mathbb{E}[\mathbf{Y}|\mathbf{X}]^2.$$

3. The mean of Y|x is collinear, i.e.,

$$y = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X.$$

- 4. All of the conditional distributions represnt indep. random variables.
- Summary Let Y_1, \dots, Y_n be independent r.v.'s where $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ with x_i are known and β_0 , β_1 and σ^2 are unknown.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
, ϵ_i are indep. and $\epsilon_i \sim N(0, \sigma^2)$.

MLE for linear model

Thm. Let $(x_1, Y_1), \dots, (x_n, Y_n)$ be a set of points satisfying the linear model, $\mathbb{E}[Y|x] = \beta_0 + \beta_1 x$.

(\iff let Y_1, \dots, Y_n be independent r.v.'s where $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ with x_i are known and β_0, β_1 and σ^2 are unknown.)

The maximum likelihood estimators for β_0 , β_1 and σ^2 are given by

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\hat{\beta}_0 = \frac{\sum_{i=1}^n Y_i - \hat{\beta}_1 \sum_{i=1}^n X_i}{n} = \overline{Y} - \hat{\beta}_1 \overline{X}_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \qquad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i.$$

MLE for linear model

Thm. Let $(x_1, Y_1), \dots, (x_n, Y_n)$ be a set of points satisfying the linear model, $\mathbb{E}[Y|x] = \beta_0 + \beta_1 x$.

(\iff let Y_1, \dots, Y_n be independent r.v.'s where $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ with x_i are known and β_0 , β_1 and σ^2 are unknown.)

The maximum likelihood estimators for β_0 , β_1 and σ^2 are given by

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\hat{\beta}_0 = \frac{\sum_{i=1}^n Y_i - \hat{\beta}_1 \sum_{i=1}^n x_i}{n} = \overline{Y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \qquad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i.$$

MLE for linear model

Thm. Let $(x_1, Y_1), \dots, (x_n, Y_n)$ be a set of points satisfying the linear model, $\mathbb{E}[Y|x] = \beta_0 + \beta_1 x$.

(\iff let Y_1, \dots, Y_n be independent r.v.'s where $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$ with x_i are known and β_0 , β_1 and σ^2 are unknown.)

The maximum likelihood estimators for β_0 , β_1 and σ^2 are given by

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\hat{\beta}_0 = \frac{\sum_{i=1}^n Y_i - \hat{\beta}_1 \sum_{i=1}^n X_i}{n} = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2, \qquad \widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i.$$

Proof. Since $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$,

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f_{Y_i|x_i}(y_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right).$$

Then take partial derivatives and set them to zero:

$$\frac{\partial \ln L}{\partial \beta_0} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial \ln L}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{(\sigma^2)^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

Proof. Since $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$,

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f_{Y_i|x_i}(y_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right).$$

Then take partial derivatives and set them to zero:

$$\frac{\partial \ln L}{\partial \beta_0} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial \ln L}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

$$\frac{\partial \ln L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{(\sigma^2)^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = 0$$

Once β_0 and β_1 are solved from the first relations, then the third relation shows that

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}.$$

The first two relations give

$$\left(\sum_{i=1}^{n} y_i\right) - \beta_0 n - \beta_1 \left(\sum_{i=1}^{n} x_i\right) = 0$$

$$\left(\sum_{i=1}^{n} x_i y_i\right) - \beta_0 \left(\sum_{i=1}^{n} x_i\right) - \beta_1 \left(\sum_{i=1}^{n} x_i^2\right) = 0$$

 \cap

$$\begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{pmatrix}$$

Once β_0 and β_1 are solved from the first relations, then the third relation shows that

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

The first two relations give

$$\left(\sum_{i=1}^{n} y_i\right) - \beta_0 n - \beta_1 \left(\sum_{i=1}^{n} x_i\right) = 0$$

$$\left(\sum_{i=1}^{n} x_i y_i\right) - \beta_0 \left(\sum_{i=1}^{n} x_i\right) - \beta_1 \left(\sum_{i=1}^{n} x_i^2\right) = 0$$

or

$$\begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n} y_i \\ \sum_{i=1}^{n} x_i y_i \end{pmatrix}$$

Hence,

$$\begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix} = \begin{pmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{pmatrix}^{-1} \begin{pmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \end{pmatrix} \\
= \frac{1}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}} \begin{pmatrix} \sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\ -\sum_{i=1}^{n} x_{i} & n \end{pmatrix} \begin{pmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \end{pmatrix} \\
= \frac{1}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}} \begin{pmatrix} (\sum_{i=1}^{n} x_{i}^{2}) (\sum_{i=1}^{n} y_{i}) - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} x_{i} y_{i}) \\ - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} y_{i}) + n (\sum_{i=1}^{n} x_{i} y_{i}) \end{pmatrix} \\
\beta_{0} = \frac{(\sum_{i=1}^{n} x_{i}^{2}) (\sum_{i=1}^{n} y_{i}) - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} x_{i} y_{i})}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}} \\
= - (\sum_{i=1}^{n} x_{i}^{2}) (\sum_{i=1}^{n} y_{i}) + n (\sum_{i=1}^{n} x_{i} y_{i})
\end{pmatrix}$$

56

Hence,

$$\begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix} = \begin{pmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{pmatrix}^{-1} \begin{pmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \end{pmatrix}$$

$$= \frac{1}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}} \begin{pmatrix} \sum_{i=1}^{n} x_{i}^{2} & -\sum_{i=1}^{n} x_{i} \\ -\sum_{i=1}^{n} x_{i} & n \end{pmatrix} \begin{pmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \end{pmatrix}$$

$$= \frac{1}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}} \begin{pmatrix} (\sum_{i=1}^{n} x_{i}^{2}) (\sum_{i=1}^{n} y_{i}) - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} x_{i} y_{i}) \\ - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} y_{i}) + n (\sum_{i=1}^{n} x_{i} y_{i}) \end{pmatrix}$$

$$\downarrow \downarrow$$

$$\beta_{0} = \frac{(\sum_{i=1}^{n} x_{i}^{2}) (\sum_{i=1}^{n} y_{i}) - (\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} x_{i} y_{i})}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$\beta_{1} = \frac{-(\sum_{i=1}^{n} x_{i}) (\sum_{i=1}^{n} y_{i}) + n (\sum_{i=1}^{n} x_{i} y_{i})}{n(\sum_{i=1}^{n} x_{i}^{2}) - (\sum_{i=1}^{n} x_{i} y_{i})^{2}}$$

56

Recall

$$\beta_1 = \frac{n\left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n y_i\right)}{n\left(\sum_{i=1}^n x_i^2\right) - \left(\sum_{i=1}^n x_i\right)^2}$$

Let's simply β_0 :

$$\beta_{0} = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\left[\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$+ \frac{\frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2} \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_{i} + \frac{1}{n} \beta_{1} \sum_{i=1}^{n} x_{i}$$

Finally, replacing β_0 , β_1 , σ^2 and y_i by $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$ and Y_i , respectively, proves the theorem.

Recall

$$\beta_1 = \frac{n\left(\sum_{i=1}^{n} x_i y_i\right) - \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n\left(\sum_{i=1}^{n} x_i^2\right) - \left(\sum_{i=1}^{n} x_i\right)^2}$$

Let's simply β_0 :

$$\beta_{0} = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\left[\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$+ \frac{\frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2} \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_{i} + \frac{1}{n} \beta_{1} \sum_{i=1}^{n} x_{i}$$

Finally, replacing β_0 , β_1 , σ^2 and y_i by $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$ and Y_i , respectively, proves the theorem.

Recall

$$\beta_1 = \frac{n\left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n y_i\right)}{n\left(\sum_{i=1}^n x_i^2\right) - \left(\sum_{i=1}^n x_i\right)^2}$$

Let's simply β_0 :

$$\beta_{0} = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\left[\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$+ \frac{\frac{1}{n} \left(\sum_{i=1}^{n} x_{i}\right)^{2} \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i}y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{1}{n} \sum_{i=1}^{n} y_{i} + \frac{1}{n} \beta_{1} \sum_{i=1}^{n} x_{i}$$

Finally, replacing β_0 , β_1 , σ^2 and y_i by $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$ and Y_i , respectively, proves the theorem.

- 1. $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed.
- 2. $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased: $\mathbb{E}[\hat{\beta}_0] = \beta_0$ and $\mathbb{E}[\hat{\beta}_1] = \beta_1$
- 3. Variances are egal to

$$\begin{aligned} \text{Var}(\hat{\beta}_1) &= \frac{\sigma^2}{\sum_{i=1}^n (x - \bar{x})^2} \\ \text{Var}(\hat{\beta}_0) &= \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2} = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \end{aligned}$$

- 4. $\hat{\beta}_1$, \overline{Y} and $\hat{\sigma}^2$ are mutually independent.
- 5. $\frac{n\hat{\sigma}^2}{\sigma^2}$ ~ Chi Square with n-2 degrees of freedom. $\implies \mathbb{E}[\hat{\sigma}^2] = \frac{n-2}{n}\sigma^2$

- 1. $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed.
- **2.** $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased: $\mathbb{E}[\hat{\beta}_0] = \beta_0$ and $\mathbb{E}[\hat{\beta}_1] = \beta_1$.
- 3. Variances are egal to

$$\begin{aligned} \text{Var}(\hat{\beta}_1) &= \frac{\sigma^2}{\sum_{i=1}^n (x - \bar{x})^2} \\ \text{Var}(\hat{\beta}_0) &= \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2} = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \end{aligned}$$

- 4. $\hat{\beta}_1$, \overline{Y} and $\hat{\sigma}^2$ are mutually independent.
- 5. $\frac{n\hat{\sigma}^2}{\sigma^2}$ ~ Chi Square with n-2 degrees of freedom. $\implies \mathbb{E}[\hat{\sigma}^2] = \frac{n-2}{\sigma}\sigma^2$

- 1. $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed.
- **2**. $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased: $\mathbb{E}[\hat{\beta}_0] = \beta_0$ and $\mathbb{E}[\hat{\beta}_1] = \beta_1$.
- 3. Variances are eqal to

$$\begin{aligned} \text{Var}(\hat{\beta}_1) &= \frac{\sigma^2}{\sum_{i=1}^n (x - \bar{x})^2} \\ \text{Var}(\hat{\beta}_0) &= \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2} = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \end{aligned}$$

- **4.** $\hat{\beta}_1$, \overline{Y} and $\hat{\sigma}^2$ are mutually independent.
- **5.** $\frac{n\hat{\sigma}^2}{\sigma^2} \sim \text{Chi Square with } n-2 \text{ degrees of freedom.} \implies \mathbb{E}[\hat{\sigma}^2] = \frac{n-2}{n}\sigma^2$

Theorem:

- 1. $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed.
- **2.** $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased: $\mathbb{E}[\hat{\beta}_0] = \beta_0$ and $\mathbb{E}[\hat{\beta}_1] = \beta_1$.
- 3. Variances are eqal to

$$\begin{split} \text{Var}(\hat{\beta}_1) &= \frac{\sigma^2}{\sum_{i=1}^n (x - \bar{x})^2} \\ \text{Var}(\hat{\beta}_0) &= \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2} = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \end{split}$$

4. $\hat{\beta}_1$, \overline{Y} and $\hat{\sigma}^2$ are mutually independent.

5.
$$\frac{n\hat{\sigma}^2}{\sigma^2}$$
 ~ Chi Square with $n-2$ degrees of freedom. $\implies \mathbb{E}[\hat{\sigma}^2] = \frac{n-2}{n}\sigma^2$

- 1. $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed.
- **2.** $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased: $\mathbb{E}[\hat{\beta}_0] = \beta_0$ and $\mathbb{E}[\hat{\beta}_1] = \beta_1$.
- 3. Variances are eqal to

$$\begin{split} \text{Var}(\hat{\beta}_1) &= \frac{\sigma^2}{\sum_{i=1}^n (x - \bar{x})^2} \\ \text{Var}(\hat{\beta}_0) &= \frac{\sigma^2 \sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \bar{x})^2} = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \end{split}$$

- **4.** $\hat{\beta}_1$, \overline{Y} and $\hat{\sigma}^2$ are mutually independent.
- **5.** $\frac{n\hat{\sigma}^2}{\sigma^2} \sim \text{Chi Square with } n-2 \text{ degrees of freedom.} \implies \mathbb{E}[\hat{\sigma}^2] = \frac{n-2}{n}\sigma^2$

$$\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = \overline{Y} - \overline{x} \hat{\beta}_1 + \hat{\beta}_1 x_i = \overline{Y} + (x_i - \overline{x}) \hat{\beta}_1,$$

(4) implies that, for all $i = 1, \dots, n$,

$$\widehat{Y}_i \perp \hat{\sigma}^2$$

Remark 2 By (5)

$$\mathbb{E}\left[\frac{n\hat{\sigma}^2}{\sigma^2}\right] = n - 2 \iff \mathbb{E}[\hat{\sigma}^2] = \frac{n - 2}{n}\sigma^2$$

$$\iff \mathbb{E}\left[\frac{n}{n - 2}\hat{\sigma}^2\right] = \sigma^2$$

Or equivalently

 $\hat{\sigma}^2$ is a biased, but asymptotically unbiased, estimator for σ^2

$$\frac{n}{n-2}\hat{\sigma}^2$$
 is an unbiased estimator for σ^2

E0

$$\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = \overline{Y} - \overline{x} \hat{\beta}_1 + \hat{\beta}_1 x_i = \overline{Y} + (x_i - \overline{x}) \hat{\beta}_1,$$

(4) implies that, for all $i = 1, \dots, n$,

$$\widehat{Y}_i \perp \hat{\sigma}^2$$

Remark 2 By (5)

$$\mathbb{E}\left[\frac{n\hat{\sigma}^2}{\sigma^2}\right] = n - 2 \iff \mathbb{E}[\hat{\sigma}^2] = \frac{n - 2}{n}\sigma^2$$

$$\iff \mathbb{E}\left[\frac{n}{n - 2}\hat{\sigma}^2\right] = \sigma^2$$

Or equivalently,

 $\hat{\sigma}^2$ is a biased, but asymptotically unbiased, estimator for σ^2

$$\frac{n}{n-2}\hat{\sigma}^2$$
 is an unbiased estimator for σ^2

E0

$$\hat{\mathbf{Y}}_i = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}_i = \overline{\mathbf{Y}} - \overline{\mathbf{x}} \hat{\beta}_1 + \hat{\beta}_1 \mathbf{x}_i = \overline{\mathbf{Y}} + (\mathbf{x}_i - \overline{\mathbf{x}}) \hat{\beta}_1,$$

(4) implies that, for all $i = 1, \dots, n$,

$$\widehat{Y}_i \perp \hat{\sigma}^2$$

Remark 2 By (5)

$$\mathbb{E}\left[\frac{n\hat{\sigma}^2}{\sigma^2}\right] = n - 2 \iff \mathbb{E}[\hat{\sigma}^2] = \frac{n - 2}{n}\sigma^2$$

$$\iff \mathbb{E}\left[\frac{n}{n - 2}\hat{\sigma}^2\right] = \sigma^2$$

Or equivalently

 $\hat{\sigma}^2$ is a biased, but asymptotically unbiased, estimator for σ^2

$$\frac{n}{n-2}\hat{\sigma}^2$$
 is an unbiased estimator for σ^2

59

$$\widehat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = \overline{Y} - \overline{x} \hat{\beta}_1 + \hat{\beta}_1 x_i = \overline{Y} + (x_i - \overline{x}) \hat{\beta}_1,$$

(4) implies that, for all $i = 1, \dots, n$,

$$\widehat{Y}_i \perp \hat{\sigma}^2$$

Remark 2 By (5)

$$\mathbb{E}\left[\frac{n\hat{\sigma}^2}{\sigma^2}\right] = n - 2 \iff \mathbb{E}[\hat{\sigma}^2] = \frac{n - 2}{n}\sigma^2$$

$$\iff \mathbb{E}\left[\frac{n}{n - 2}\hat{\sigma}^2\right] = \sigma^2$$

Or equivalently,

 $\hat{\sigma}^2$ is a biased, but asymptotically unbiased, estimator for σ^2

$$\frac{n}{n-2}\hat{\sigma}^2$$
 is an unbiased estimator for σ^2 .

Proof. (1) Notice that both

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

and

$$\hat{\beta}_0 = \frac{\sum_{i=1}^{n} Y_i - \hat{\beta_1} \sum_{i=1}^{n} X_i}{n}$$

are linear combinations for normal random variables, we see that both β_0 and β_1 are normal.

(2) Because $\mathbb{E}[Y|x] = \beta_0 + \beta_1 x$, we see that

$$\begin{split} \mathbb{E}[\hat{\beta}_{1}] &= \frac{n \sum_{i=1}^{n} x_{i} \mathbb{E}[Y_{i}] - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} \mathbb{E}[Y_{i}]\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{n \sum_{i=1}^{n} x_{i} (\beta_{0} + \beta_{1} x_{i}) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} (\beta_{0} + \beta_{1} x_{i})\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{n \beta_{0} \sum_{i=1}^{n} x_{i} + \beta_{1} \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right) \left(n \beta_{0} + \beta_{1} \sum_{i=1}^{n} x_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \beta_{1}, \end{split}$$

and then

$$\mathbb{E}[\hat{\beta_0}] = \frac{\sum_{i=1}^n \mathbb{E}[Y_i] - \mathbb{E}[\hat{\beta_1}] \sum_{i=1}^n x_i}{n}$$
$$= \frac{\sum_{i=1}^n (\beta_0 + \beta_1 x_i) - \beta_1 \sum_{i=1}^n x_i}{n}$$
$$= \beta_0.$$

Hence, both $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators for β_0 and β_1 , respectively.

(2) Because $\mathbb{E}[Y|x] = \beta_0 + \beta_1 x$, we see that

$$\begin{split} \mathbb{E}[\hat{\beta}_{1}] &= \frac{n \sum_{i=1}^{n} x_{i} \mathbb{E}[Y_{i}] - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} \mathbb{E}[Y_{i}]\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{n \sum_{i=1}^{n} x_{i} (\beta_{0} + \beta_{1} x_{i}) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} (\beta_{0} + \beta_{1} x_{i})\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{n \beta_{0} \sum_{i=1}^{n} x_{i} + \beta_{1} \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right) \left(n \beta_{0} + \beta_{1} \sum_{i=1}^{n} x_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \beta_{1}, \end{split}$$

and then

$$\mathbb{E}[\hat{\beta_0}] = \frac{\sum_{i=1}^n \mathbb{E}[Y_i] - \mathbb{E}[\hat{\beta_1}] \sum_{i=1}^n X_i}{n}$$
$$= \frac{\sum_{i=1}^n (\beta_0 + \beta_1 X_i) - \beta_1 \sum_{i=1}^n X_i}{n}$$
$$= \beta_0.$$

Hence, both $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators for β_0 and β_1 respectively.

(2) Because $\mathbb{E}[Y|x] = \beta_0 + \beta_1 x$, we see that

$$\begin{split} \mathbb{E}[\hat{\beta}_{1}] &= \frac{n \sum_{i=1}^{n} x_{i} \mathbb{E}[Y_{i}] - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} \mathbb{E}[Y_{i}]\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{n \sum_{i=1}^{n} x_{i} (\beta_{0} + \beta_{1} x_{i}) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} (\beta_{0} + \beta_{1} x_{i})\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{n \beta_{0} \sum_{i=1}^{n} x_{i} + \beta_{1} \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right) \left(n \beta_{0} + \beta_{1} \sum_{i=1}^{n} x_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \beta_{1}, \end{split}$$

and then

$$\mathbb{E}[\hat{\beta_0}] = \frac{\sum_{i=1}^n \mathbb{E}[Y_i] - \mathbb{E}[\hat{\beta_1}] \sum_{i=1}^n X_i}{n}$$
$$= \frac{\sum_{i=1}^n (\beta_0 + \beta_1 X_i) - \beta_1 \sum_{i=1}^n X_i}{n}$$
$$= \beta_0$$

Hence, both $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators for β_0 and β_1 , respectively.

(3) Notice that

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\sum_{i=1}^{n} x_{i} Y_{i} - \overline{x} \sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) Y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} Y_{i}$$

By independence of Y_i , we see that

$$\operatorname{Var}\left(\hat{\beta}_{1}\right) = \sum_{i=1}^{n} \frac{\left(x_{i} - \overline{x}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}\right)^{2}} \operatorname{Var}\left(Y_{i}\right) = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}\right)^{2}} \sigma^{2}$$

Because $\sum_{i=1}^n (\mathit{x}_i - \overline{\mathit{x}})^2 = \sum_{i=1}^n \mathit{x}_i^2 - \mathit{n}\overline{\mathit{x}}^2$, we see tha

$$\operatorname{Var}\left(\hat{\beta}_{1}\right) = \frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

(3) Notice that

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\sum_{i=1}^{n} x_{i} Y_{i} - \overline{x} \sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) Y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} Y_{i}$$

By independence of Y_i , we see that

$$\operatorname{Var}\left(\hat{\beta}_{1}\right) = \sum_{i=1}^{n} \frac{\left(x_{i} - \overline{x}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}\right)^{2}} \operatorname{Var}\left(Y_{i}\right) = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}\right)^{2}} \sigma^{2}$$

Because $\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$, we see that

$$\mathsf{Var}\left(\hat{\beta}_1\right) = \frac{\sigma^2}{\sum_{i=1}^n \mathbf{x}_i^2 - \mathbf{n}\overline{\mathbf{x}}^2} = \frac{\sigma^2}{\sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}})^2}$$

(3) Notice that

$$\hat{\beta}_{1} = \frac{n \sum_{i=1}^{n} x_{i} Y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\sum_{i=1}^{n} x_{i} Y_{i} - \overline{x} \sum_{i=1}^{n} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) Y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} Y_{i}$$

By independence of Y_i , we see that

$$\operatorname{Var}\left(\hat{\beta}_{1}\right) = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}\right)^{2}} \operatorname{Var}\left(Y_{i}\right) = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}\right)^{2}} \sigma^{2}$$

Because $\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$, we see that

$$\mathsf{Var}\left(\hat{\beta}_1\right) = \frac{\sigma^2}{\sum_{i=1}^n \mathsf{x}_i^2 - \mathsf{n}\overline{\mathsf{x}}^2} = \frac{\sigma^2}{\sum_{i=1}^n (\mathsf{x}_i - \overline{\mathsf{x}})^2}.$$

60

 \blacktriangleright As for $\hat{\beta}_0$, notice that

$$\begin{split} \hat{\beta}_{0} &= \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} Y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i} Y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} Y_{i}\right) - \overline{x} \left(\sum_{i=1}^{n} x_{i} Y_{i}\right)}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} \\ &= \sum_{j=1}^{n} \frac{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x} x_{j}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} Y_{j} \end{split}$$

Hence.

$$\operatorname{Var}\left(\hat{\beta}_{0}\right) = \sum_{i=1}^{n} \left[\frac{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x} x_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} \right]^{2} \sigma^{2}$$

ightharpoonup As for $\hat{\beta}_0$, notice that

$$\begin{split} \hat{\beta}_{0} &= \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} Y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i} Y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\ &= \frac{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} Y_{i}\right) - \overline{x} \left(\sum_{i=1}^{n} x_{i} Y_{i}\right)}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} \\ &= \sum_{j=1}^{n} \frac{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x} x_{j}}{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}} Y_{j} \end{split}$$

Hence,

$$\operatorname{Var}\left(\hat{\beta}_{0}\right) = \sum_{i=1}^{n} \left[\frac{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x} x_{i}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} \right]^{2} \sigma^{2}$$

$$\begin{aligned} \operatorname{Var}\left(\hat{\beta}_{0}\right) &= \sum_{j=1}^{n} \left[\frac{\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x} x_{j}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} \right]^{2} \sigma^{2} \\ &= \sigma^{2} \frac{\sum_{j=1}^{n} \left[\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right) - \overline{x} x_{j} \right]^{2}}{\left[\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2} \right]^{2}} \\ &= \sigma^{2} \frac{\frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} \right)^{2} - \overline{x}^{2} \sum_{j=1}^{n} x_{j}^{2}}{\left[\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2} \right]^{2}} \\ &= \sigma^{2} \frac{\frac{1}{n} \left[\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2} \right]^{2} + 2 \overline{x}^{2} \left(\sum_{i=1}^{n} x_{i}^{2} \right) - n \overline{x}^{4} - \overline{x}^{2} \sum_{j=1}^{n} x_{j}^{2}}{\left[\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2} \right]^{2}} \\ &= \sigma^{2} \frac{\frac{1}{n} \left[\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2} \right]^{2} + \overline{x}^{2} \left(\sum_{i=1}^{n} x_{i}^{2} \right) - n \overline{x}^{4}}{\left[\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2} \right]^{2}} \\ &= \sigma^{2} \left[\frac{1}{n} + \frac{\overline{x}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n \overline{x}^{2}} \right] = \sigma^{2} \left[\frac{1}{n} + \frac{\overline{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \right] \end{aligned}$$

(4) Since both $\hat{\beta}_1$ and \overline{Y} are Gaussian, to show that they are independent, we need only to show that

$$\mathbb{E}[\hat{\beta}_1 \overline{\mathbf{Y}}] = \mathbb{E}[\hat{\beta}_1] \mathbb{E}[\overline{\mathbf{Y}}]$$

One can compute separately left- and right-hand sides and compare them. The computations are long and tedious but there is no fundamental difficulties.

The independence with $\hat{\sigma}^2$ is deeper and out of the scope of the book.

(5) See Appendix 11.A.1

(4) Since both $\hat{\beta}_1$ and \overline{Y} are Gaussian, to show that they are independent, we need only to show that

$$\mathbb{E}[\hat{\beta}_1 \overline{\mathbf{Y}}] = \mathbb{E}[\hat{\beta}_1] \mathbb{E}[\overline{\mathbf{Y}}]$$

One can compute separately left- and right-hand sides and compare them. The computations are long and tedious but there is no fundamental difficulties.

The independence with $\hat{\sigma}^2$ is deeper and out of the scope of the book.

(5) See Appendix 11.A.1

(4) Since both $\hat{\beta}_1$ and \overline{Y} are Gaussian, to show that they are independent, we need only to show that

$$\mathbb{E}[\hat{\beta}_1 \overline{\mathbf{Y}}] = \mathbb{E}[\hat{\beta}_1] \mathbb{E}[\overline{\mathbf{Y}}]$$

One can compute separately left- and right-hand sides and compare them. The computations are long and tedious but there is no fundamental difficulties.

The independence with $\hat{\sigma}^2$ is deeper and out of the scope of the book.

Estimating σ^2

1. MLE:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - \widehat{Y}_i \right)^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2.$$

2. The unbiased estimator:

$$MSE = S^2 = \frac{n}{n-2}\hat{\sigma}^2 = \frac{1}{n-2}\sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Estimating σ^2

1. MLE:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2.$$

2. The unbiased estimator:

$$MSE = S^2 = \frac{n}{n-2}\hat{\sigma}^2 = \frac{1}{n-2}\sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2.$$

Notation

Parameter	Estimator	Estimate
eta_1	\hat{eta}_1	eta_{1e}
eta_0	\hat{eta}_0	$eta_{0 extbf{e}}$
σ	S	s
σ^2	\mathcal{S}^2	s^2
σ^2	$\hat{\sigma}^2$	σ_{e}^{2}
	\overline{Y}	\bar{y}
	\widehat{Y}_i	$\hat{\mathbf{y}}_i = \beta_{0\mathbf{e}} + \beta_{1\mathbf{e}} \mathbf{x}_i$

- 1. the slope β_1
- **2.** the intercept β_0
- 3. shape parameter σ^2
- **4.** the regresion line itself $y = \mathbb{E}[Y|x] = \beta_0 + \beta_1 x$
- 5. the future observations
- 6. testing two slopes.

- 1. the slope β_1
- **2**. the intercept β_0
- 3. shape parameter σ^2
- 4. the regresion line itself $y = \mathbb{E}[Y|x] = \beta_0 + \beta_1 x$
- 5. the future observations
- 6. testing two slopes.

- 1. the slope β_1
- **2**. the intercept β_0
- 3. shape parameter σ^2
- 4. the regresion line itself $y = \mathbb{E}[Y|x] = eta_0 + eta_1 x$
- 5. the future observations
- 6. testing two slopes.

- 1. the slope β_1
- **2**. the intercept β_0
- 3. shape parameter σ^2
- 4. the regresion line itself $y = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X$
- 5. the future observations
- 6. testing two slopes.

- 1. the slope β_1
- **2**. the intercept β_0
- 3. shape parameter σ^2
- 4. the regresion line itself $y = \mathbb{E}[Y|x] = \beta_0 + \beta_1 x$
- the future observations
- 6. testing two slopes.

- 1. the slope β_1
- **2**. the intercept β_0
- 3. shape parameter σ^2
- **4.** the regresion line itself $y = \mathbb{E}[Y|x] = \beta_0 + \beta_1 x$
- 5. the future observations
- testing two slopes

- 1. the slope β_1
- **2**. the intercept β_0
- 3. shape parameter σ^2
- 4. the regresion line itself $y = \mathbb{E}[Y|x] = \beta_0 + \beta_1 x$
- 5. the future observations
- 6. testing two slopes.

Thm.
$$T_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{S / \sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}} \sim \text{Student t distribution with df} = n - 2.$$

- 1. Hypothesis test $H_0: \beta_1 = \beta_1'$ vs.
- **2.** C.I. for β_1 : $\beta_{1e} \pm t_{\alpha/2,n-2} \frac{s}{\sqrt{\sum_{j=1}^n (x_j \bar{x})}}$

Thm.
$$T_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{S / \sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}} \sim \text{Student t distribution with df} = n - 2.$$

1. Hypothesis test $H_0: \beta_1 = \beta_1'$ vs.

2. C.l. for
$$\beta_1$$
: $\beta_{1e} \pm t_{\alpha/2,n-2} \frac{s}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})}}$

Thm.
$$T_{n-2} = \frac{\hat{\beta}_1 - \beta_1}{S / \sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}} \sim \text{Student t distribution with df} = n - 2.$$

- 1. Hypothesis test $H_0: \beta_1 = \beta_1'$ vs.
- 2. C.I. for β_1 : $\beta_{1e} \pm t_{\alpha/2,n-2} \frac{s}{\sqrt{\sum_{i=1}^n (x_i \bar{x})}}$

The GLRT procedure for assessing the credibility of $H_0: \beta_0 = \beta_{0_o}$ is based on a Student t random variable with n-2 degrees of freedom:

$$T_{n-2} = \frac{(\hat{\boldsymbol{\beta}}_0 - \beta_{0_o})\sqrt{n}\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2}}{S\sqrt{\sum_{i=1}^{n}x_i^2}} = \frac{\hat{\boldsymbol{\beta}}_0 - \beta_{0_o}}{\sqrt{\widehat{\text{Var}}(\hat{\boldsymbol{\beta}}_0)}}$$
(11.3.6)

"Inverting" Equation 11.3.6 (recall the proof of Theorem 11.3.6) yields

$$\left[\hat{\beta}_{0} - t_{\alpha/2, n-2} \cdot \frac{s\sqrt{\sum_{i=1}^{n} x_{i}^{2}}}{\sqrt{n}\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}, \hat{\beta}_{0} + t_{\alpha/2, n-2} \cdot \frac{s\sqrt{\sum_{i=1}^{n} x_{i}^{2}}}{\sqrt{n}\sqrt{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}}\right]$$

as the formula for a $100(1-\alpha)\%$ confidence interval for β_0 .

3. Drawing inferences on σ^2

Since $(n-2)S^2/\sigma^2$ has a χ^2 pdf with n-2 df (if the *n* observations satisfy the stipulations implicit in the simple linear model), it follows that

$$P\left[\chi_{\alpha/2, n-2}^2 \le \frac{(n-2)S^2}{\sigma^2} \le \chi_{1-\alpha/2, n-2}^2\right] = 1 - \alpha$$

Equivalently,

$$P\left[\frac{(n-2)S^2}{\chi_{1-a/2,n-2}^2} \le \sigma^2 \le \frac{(n-2)S^2}{\chi_{a/2,n-2}^2}\right] = 1 - \alpha$$

in which case

$$\left[\frac{(n-2)s^2}{\chi^2_{1-\alpha/2,n-2}}, \frac{(n-2)s^2}{\chi^2_{\alpha/2,n-2}}\right]$$

becomes the $100(1-\alpha)\%$ confidence interval for σ^2 (recall Theorem 7.5.1). Testing $H_0: \sigma^2 = \sigma_n^2$ is done by calculating the ratio

$$\chi^2 = \frac{(n-2)s^2}{\sigma^2}$$

which has a χ^2 distribution with n-2 df when the null hypothesis is true. Except for the degrees of freedom (n-2) rather than n-1, the appropriate decision rules for one-sided and two-sided H_1 's are similar to those given in Theorem 7.5.2.

4. Drawing inference on the regression line

Intuition tells us that a reasonable point estimator for $E(Y \mid x)$ is the height of the regression line at x—that is, $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$. By Theorem 11.3.2, the latter is unbiased:

$$E(\hat{Y}) = E(\hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 x) = E(\hat{\boldsymbol{\beta}}_0) + x E(\hat{\boldsymbol{\beta}}_1) = \beta_0 + \beta_1 x$$

Of course, to use \hat{Y} in any inference procedure requires that we know its variance. But

$$\begin{aligned} \operatorname{Var}(\hat{Y}) &= \operatorname{Var}(\hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 x) = \operatorname{Var}(\bar{Y} - \hat{\boldsymbol{\beta}}_1 \bar{x} + \hat{\boldsymbol{\beta}}_1 x) \\ &= \operatorname{Var}[\bar{Y} + \hat{\boldsymbol{\beta}}_1 (x - \bar{x})] \\ &= \operatorname{Var}(\bar{Y}) + (x - \bar{x})^2 \operatorname{Var}(\hat{\boldsymbol{\beta}}_1) \quad \text{(why?)} \\ &= \frac{1}{n} \sigma^2 + \frac{(x - \bar{x})^2}{\sum\limits_{i=1}^n (x_i - \bar{x})^2} \sigma^2 \\ &= \sigma^2 \left[\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum\limits_{i=1}^n (x_i - \bar{x})^2} \right] \end{aligned}$$

An application of Definition 7.3.3, then, allows us to construct a Student t random variable based on \hat{Y} . Specifically,

$$T_{n-2} = \frac{\hat{Y} - (\beta_0 + \beta_1 x)}{\sigma \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}}} / \sqrt{\frac{(n-2)S^2}{\frac{\sigma^2}{n-2}}} = \frac{\hat{Y} - (\beta_0 + \beta_1 x)}{S \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}}}$$

has a Student t distribution with n-2 degrees of freedom. Isolating $\beta_0 + \beta_1 x = E(Y \mid x)$ in the center of the inequalities $P(-t_{\alpha/2,n-2} \le t_{\alpha/2,n-2}) = 1 - \alpha$ produces a $100(1-\alpha)\%$ confidence interval for $E(Y \mid x)$.

Figure 11.3.4

5. Drawing inference on future observations

Let $(x_1, Y_1), (x_2, Y_2), \ldots, (x_n, Y_n)$ be a set of n points that satisfy the assumptions of the simple linear model, and let (x, Y) be a hypothetical future observation, where Y is independent of the n Y_i 's. A prediction interval is a range of numbers that contains Y with a specified probability.

Consider the difference $\hat{Y} - Y$. Clearly,

$$E(\hat{Y} - Y) = E(\hat{Y}) - E(Y) = (\beta_0 + \beta_1 x) - (\beta_0 + \beta_1 x) = 0$$

and

$$\operatorname{Var}(\hat{Y} - Y) = \operatorname{Var}(\hat{Y}) + \operatorname{Var}(Y)$$

$$= \sigma^{2} \left[\frac{1}{n} + \frac{(x - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right] + \sigma^{2}$$

$$= \sigma^{2} \left[1 + \frac{1}{n} + \frac{(x - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \right]$$

Following exactly the same steps that were taken in the derivation of Theorem 11.3.7, a Student t random variable with n-2 degrees of freedom can be constructed from $\hat{Y}-Y$ (using Definition 7.3.3). Inverting the equation $P(-t_{\alpha/2,n-2} \le T_{n-2} \le t_{\alpha/2,n-2}) = 1-\alpha$ will then yield the prediction interval $(\hat{y}-w, \hat{y}+w)$ given in Theorem 11.3.8.

Theorem

Let $(x_1, Y_1), (x_2, Y_2), \dots$, and (x_n, Y_n) be a set of n points that satisfy the assumptions of the simple linear model. A $100(1-\alpha)\%$ prediction interval for Y at the fixed value x is given by $(\hat{y} - w, \hat{y} + w)$, where

$$w = t_{\alpha/2, n-2} \cdot s \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

and
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$
.

П

E.g. 1 Does smoking contribute to coronary heat disease?

- 1) Test $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 > 0$ at $\alpha = 0.05$.
- 2) Find C.I. for β_1 with the same c

E.g. 1 Does smoking contribute to coronary heat disease?

Table 11.3.1		
Country	Cigarette Consumption per Adult per Year, x	CHD Mortality per 100,000 (ages 35–64), y
United States	3900	256.9
Canada	3350	211.6
Australia	3220	238.1
New Zealand	3220	211.8
United Kingdom	2790	194.1
Switzerland	2780	124.5
Ireland	2770	187.3
Iceland	2290	110.5
Finland	2160	233.1
West Germany	1890	150.3
Netherlands	1810	124.7
Greece	1800	41.2
Austria	1770	182.1
Belgium	1700	118.1
Mexico	1680	31.9
Italy	1510	114.3
Denmark	1500	144.9
France	1410	59.7
Sweden	1270	126.9
Spain	1200	43.9
Ñorway	1090	136.3

¹⁾ Test $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 > 0$ at $\alpha = 0.05$.

2) Find C.I. for β_1 with the same α

E.g. 1 Does smoking contribute to coronary heat disease?

Table 11.3.1		
Country	Cigarette Consumption per Adult per Year, x	
Country	Addit per Tear, x	(ages 33=04), y
United States	3900	256.9
Canada	3350	211.6
Australia	3220	238.1
New Zealand	3220	211.8
United Kingdom	2790	194.1
Switzerland	2780	124.5
Ireland	2770	187.3
Iceland	2290	110.5
Finland	2160	233.1
West Germany	1890	150.3
Netherlands	1810	124.7
Greece	1800	41.2
Austria	1770	182.1
Belgium	1700	118.1
Mexico	1680	31.9
Italy	1510	114.3
Denmark	1500	144.9
France	1410	59.7
Sweden	1270	126.9
Spain	1200	43.9
Norway	1090	136.3

- 1) Test $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 > 0$ at $\alpha = 0.05$.
- 2) Find C.I. for β_1 with the same α .

Sol. http://r-statistics.co/Linear-Regression.html

Let's first take of look of the data by scatter plot

scatter.smooth(x=x, y=y, main="Cigarette ~ Mortality")

Suggests a linearly increasing relationship between x and y.

Sol. http://r-statistics.co/Linear-Regression.html

1. Let's first take of look of the data by scatter plot:

1 | scatter.smooth(x=x, y=y, main="Cigarette ~ Mortality")

Suggests a linearly increasing relationship between x and y

Sol. http://r-statistics.co/Linear-Regression.html

1. Let's first take of look of the data by scatter plot:

1 | scatter.smooth(x=x, y=y, main="Cigarette ~ Mortality")

Suggests a linearly increasing relationship between x and y.

2. Check outliers using boxplot.

Any datapoint that lies outside the $r \times IQR$ is considered an outlier.

Generally, r = 1.5

2. Check outliers using boxplot.

Any datapoint that lies outside the $r \times IQR$ is considered an outlier.

Generally, r = 1.5.

- 1 r <- 1.5
- par(mfrow=c(1, 2)) # divide graph area in 2 columns
- boxplot(x, main="Cigarette", range=r, sub=paste("Outlier rows: ", boxplot.stats(x, coef=r)\$out))
- 4 boxplot(y, main="Mortality", range=r, sub=paste("Outlier rows: ", boxplot.stats(y, coef=r)\$out))
 # box plot for 'Mortality'

3. Compute kernel density estimates

```
library (e1071)
plot (density(x), main="Density Plot: Cigarette", ylab="Frequency",
sub=paste("Skewness:", round(e1071::skewness(x), 2))) # density plot for 'Cigarette'
polygon(density(x), col="red")
plot (density(y), main="Density Plot: Mortality", ylab="Frequency",
sub=paste("Skewness:", round(e1071::skewness(y), 2))) # density plot for 'Mortality'
polygon(density(y), col="red")
```

3. Compute kernel density estimates

```
library (e1071)
plot (density(x), main="Density Plot: Cigarette", ylab="Frequency",
sub=paste("Skewness:", round(e1071::skewness(x), 2))) # density plot for 'Cigarette'
polygon(density(x), col="red")
plot (density(y), main="Density Plot: Mortality", ylab="Frequency",
sub=paste("Skewness:", round(e1071::skewness(y), 2))) # density plot for 'Mortality'
polygon(density(y), col="red")
```


4. Compute correlation coeficient.

Correlation is a statistical measure with values in [-1,1] that suggests the level of linear dependence between two variables.

A value closer to 0 suggests a weak relationship between the variables. A low correlation (-0.2,0.2) probably suggests that much of variation of the response variable Y is unexplained by the predictor X, in which case, we should probably look for better explanatory variables.

```
1 > cor(x,y)
2 [1] 0.7295154
```

4. Compute correlation coeficient.

Correlation is a statistical measure with values in [-1,1] that suggests the level of linear dependence between two variables.

4. Compute correlation coeficient.

Correlation is a statistical measure with values in [-1,1] that suggests the level of linear dependence between two variables.

A value closer to 0 suggests a weak relationship between the variables. A low correlation (-0.2,0.2) probably suggests that much of variation of the response variable Y is unexplained by the predictor X, in which case, we should probably look for better explanatory variables.

```
1 > cor(x,y)
2 [1] 0.7295154
```

5. Compute linear regression.

$$y = 15.7711 + 0.0601x$$

5. Compute linear regression.

$$y = 15.7711 + 0.0601x$$

5. Compute linear regression.

$$y = 15.7711 + 0.0601x$$

6. Check statistical significance of the linear model

```
> summary(linearMod)
Call:
Im(formula = Mortality ~ Cigarette, data = CigMort)
Residuals:
    Min
            1Q Median
                           30
                                  Max
-84.835 -40.809 5.058 28.814 87.518
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.77115 29.57889 0.533 0.600085
            0.06010 0.01293 4.649 0.000175 ***
Cigarette
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
Residual standard error: 46.71 on 19 degrees of freedom
Multiple R-squared: 0.5322, Adjusted R-squared: 0.5076
F- statistic: 21.62 on 1 and 19 DF, p-value: 0.0001749
```

- 0.1 By default, p-values are computed for $H_0: \beta_i = 0$ vs. $H_1: \beta_i \neq 0, i = 0, 1$
- 0.2 The more stars by the variable's p-Value, the more significant the variable.

6. Check statistical significance of the linear model

```
> summary(linearMod)
Call:
Im(formula = Mortality ~ Cigarette, data = CigMort)
Residuals:
    Min
             1Q Median
                           30
                                  Max
-84.835 -40.809 5.058 28.814 87.518
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.77115 29.57889 0.533 0.600085
            0.06010 0.01293 4.649 0.000175 ***
Cigarette
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
Residual standard error: 46.71 on 19 degrees of freedom
Multiple R-squared: 0.5322, Adjusted R-squared: 0.5076
F- statistic: 21.62 on 1 and 19 DF, p-value: 0.0001749
```

^{0.1} By default, p-values are computed for $H_0: \beta_i = 0$ vs. $H_1: \beta_i \neq 0, i = 0, 1$. 0.2 The more stars by the variable's p-Value, the more significant the variable.

6. Check statistical significance of the linear model

```
> summary(linearMod)
  Call:
  Im(formula = Mortality ~ Cigarette, data = CigMort)
   Residuals:
      Min
               1Q Median
                              30
                                    Max
8 -84.835 -40.809 5.058 28.814 87.518
   Coefficients:
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) 15.77115 29.57889 0.533 0.600085
   Cigarette
              0.06010 0.01293 4.649 0.000175 ***
   Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
   Residual standard error: 46.71 on 19 degrees of freedom
Multiple R-squared: 0.5322, Adjusted R-squared: 0.5076
  F- statistic: 21.62 on 1 and 19 DF, p-value: 0.0001749
```

- 0.1 By default, p-values are computed for $H_0: \beta_i = 0$ vs. $H_1: \beta_i \neq 0, i = 0, 1$.
- $0.2\,\,$ The more stars by the variable's p-Value, the more significant the variable.

Testing $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$

t-score is 4.4649.

p-value= 0.000175

Conclusion: reject as $\alpha = 0.05$.

95% C.I. for β_1 :

Testing $H_0: \beta_0 = 0$ v.s. $H_1: \beta_0 \neq 0$

t-score is 0.533

p-value= 0.600

Conclusion: fail to reject a $\alpha = 0.05$.

Testing $H_0: \beta_1 = 0$ v.s.

 $H_1:\beta_1\neq 0$

t-score is 4.4649.

p-value= 0.000175

Conclusion: reject a $\alpha = 0.05$.

95% C.I. for β_1 :

Testing $H_0: \beta_0 = 0$ v.s. $H_1: \beta_0 \neq 0$

t-score is 0.533

p-value= 0.600

Conclusion: fail to reject at $\alpha = 0.05$

```
1 > # 95% C.I. for slope parameter beta_1
2 > alpha <- 0.05
3 > for (i in c(1,0)) {
4 + coef <- summary(linearMod)$coefficient
5 + df <- linearMod$df.residual
6 + lbd <- coef[i+1,1] - pt(1-alpha/2,df) * coef[i+1,2]
7 + ubd <- coef[i+1,1] + pt(1-alpha/2,df) * coef[i+1,2]
8 + print(paste("95% C.I. for the slope is beta_",i,
9 + " is (", round(lbd,3), ",", round(ubd,3),")"))
10 + }
11 [1] "95% C.I. for the slope is beta_1 is (0.049, 0.071)"
12 [1] "95% C.I. for the slope is beta_0 is (-8.753, 40.295)"
```

Testing $H_0: \beta_1=0$ v.s. $H_1: \beta_1 \neq 0$

t-score is 4.4649.

p-value= 0.000175

Conclusion: reject at $\alpha = 0.05$.

95% C.I. for β_1 :

Testing $H_0: \beta_0 = 0$ v.s. $H_1: \beta_0 \neq 0$

t-score is 0.533

p-value= 0.600

Conclusion: fail to reject a $\alpha = 0.05$

Testing $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$ t-score is 4.4649.

p-value= 0.000175

Conclusion: reject at

 $\alpha = 0.05$.

Testing $H_0: \beta_0 = 0$ v.s. $H_1: \beta_0 \neq 0$

t-score is 0.533

1-80016 18 0.000

Conclusion: fail to reject at

 $\alpha = 0.05$

95% C.I. for β_1 :

Testing $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$ t-score is 4.4649. p-value= 0.000175

Conclusion: reject at $\alpha = 0.05$.

95% C.I. for β_1 :

Testing $H_0: \beta_0 = 0$ v.s. $H_1: \beta_0 \neq 0$

p-value= 0.600

Conclusion: fail to reject a $\alpha = 0.05$

Testing $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$ t-score is 4.4649.

p-value= 0.000175

Conclusion: reject at $\alpha = 0.05$.

95% C.I. for β_1 :

Testing $H_0: \beta_0 = 0$ v.s.

 $H_1:\beta_0\neq 0$

t-score is 0.533

p-value= 0.600

Conclusion: fail to reject a

 $\alpha = 0.05$.

Testing $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$

t-score is 4.4649.

p-value= 0.000175

Conclusion: reject at

 $\alpha = 0.05$.

95% C.I. for β_1 :

Testing $H_0: \beta_0 = 0$ v.s.

 $H_1:\beta_0\neq 0$

t-score is 0.533.

p-value= 0.600

Conclusion: fail to reject a

 $\alpha = 0.05$.

Testing $H_0: \beta_1=0$ v.s. $H_1: \beta_1 \neq 0$ t-score is 4.4649.

p-value= 0.000175

Conclusion: reject at $\alpha = 0.05$.

95% C.I. for β_1 :

Testing $H_0: \beta_0 = 0$ v.s.

 $H_1:\beta_0\neq 0$

t-score is 0.533.

p-value= 0.600

Conclusion: fail to reject at

Testing $H_0: \beta_1=0$ v.s. $H_1: \beta_1\neq 0$ t-score is 4.4649. p-value= 0.000175 Conclusion: reject at

95% C.I. for β_1 :

 $\alpha = 0.05$.

Testing $H_0: \beta_0=0$ v.s. $H_1: \beta_0 \neq 0$ t-score is 0.533. p-value= 0.600 Conclusion: fail to reject at $\alpha=0.05$.

```
Testing H_0: \beta_1 = 0 v.s. Testing H_0: \beta_0 = 0 v.s. H_1: \beta_1 \neq 0 H_1: \beta_0 \neq 0 t-score is 4.4649. t-score is 0.533. p-value= 0.000175 p-value= 0.600 Conclusion: reject at \alpha = 0.05. Conclusion: fail to reject at \alpha = 0.05. 95% C.l. for \beta_1: 95% C.l. for \beta_0:
```

```
1 > # 95% C.I. for slope parameter beta_1
2 > alpha <- 0.05
3 > for (i in c(1,0)) {
4 + coef <- summary(linearMod)$coefficient
5 + df <- linearMod$df.residual
6 + lbd <- coef[i+1,1] - pt(1-alpha/2,df) * coef[i+1,2]
7 + ubd <- coef[i+1,1] + pt(1-alpha/2,df) * coef[i+1,2]
8 + print (paste("95% C.I. for the slope is beta_",i,
9 + "is (", round(lbd,3), ",", round(ubd,3),")"))
10 +}
11 [1] "95% C.I. for the slope is beta_1 is (0.049, 0.071)"
12 [11] "95% C.I. for the slope is beta_0 is (-8.753, 40.295)"
```

$$R^2 = 1 - \frac{SSE}{SST}$$
 and $R_{adj}^2 = 1 - \frac{MSE}{MST}$

```
| > names(summary(linearMod))
| [1] "call" "terms" "residuals" "coefficients"
| [5] "aliased" "sigma" "df" "r.squared"
| [9] "adj.r.squared" fstatistic " "cov.unscaled"
| 5 > summary(linearMod)$r.squared
| [1] 0.5321927
| > summary(linearMod)$adj.r.squared
| [1] 0.5075712
```

The large r^2 or r_{adi}^2 the better, the more powerful or expressive is the L.M.

$$R^2 = 1 - \frac{SSE}{SST}$$
 and $R_{adj}^2 = 1 - \frac{MSE}{MST}$

```
1 > names(summary(linearMod))
2 [1] "call" "terms" "residuals" "coefficients
3 [5] "alliased" "sigma" "df" "r.squared"
4 [9] "adj.r.squared" "fstatistic" "cov.unscaled"
5 > summary(linearMod)$r.squared
6 [1] 0.5321927
7 > summary(linearMod)$adj.r.squared
111 0.575712
```

The large r^2 or r_{adi}^2 the better, the more powerful or expressive is the L.M.

$$R^2 = 1 - \frac{SSE}{SST}$$
 and $R_{adj}^2 = 1 - \frac{MSE}{MST}$

```
        1
        > names(summary(linearMod))

        2
        [1] "call" "terms" "residuals" "coefficients"

        3
        [5] "aliased" "sigma" "df" "r.squared"

        4
        [9] "adj.r.squared" fstatistic "cov.unscaled"

        5
        > summary(linearMod)$r.squared

        6
        [1] 0.5321927

        7
        > summary(linearMod)$adj.r.squared

        8
        [1] 0.5075712
```

The large r^2 or r_{adi}^2 the better, the more powerful or expressive is the L.M

$$R^2 = 1 - \frac{SSE}{SST}$$
 and $R_{adj}^2 = 1 - \frac{MSE}{MST}$

```
1 > names(summary(linearMod))
2 [1] "call" "terms" "residuals" "coefficients"
3 [5] "aliased" "sigma" "df" "r.squared"
4 [9] "adj.r.squared" "fstatistic" "cov.unscaled"
5 > summary(linearMod)$r.squared
6 [1] 0.5321927
7 > summary(linearMod)$adj.r.squared
8 [1] 0.5075712
```

The large r^2 or r_{adi}^2 the better, the more powerful or expressive is the L.M.

Residue standard error =
$$\sqrt{MSE} = \sqrt{\frac{SSE}{n-q}}$$

$$F = rac{MSR}{MSE} = rac{SSR/(q-1)}{SSE/(n-q)} \sim ext{F-distribution } (extit{df}_1 = q-1, extit{df}_2 = n-q)$$

```
> names(summary(linearMod))

[1] "call" "terms" "residuals" "coefficients"

[5] "allased" "sigma" "df" "r.squared"

[9] "adj.r.squared" "fstatistic " "cov.unscaled"

> summary(linearMod)$sigma

[1] 46.70826

> summary(linearMod)$fstatistic

value numdf dendf

21.61501 1.00000 19.00000

> f <- summary(linearMod)$fstatistic

> pf(f[1], f[2], f[3], lower=FALSE)

value
```

Residue standard error =
$$\sqrt{MSE} = \sqrt{\frac{SSE}{n-q}}$$

$$F = rac{MSR}{MSE} = rac{SSR/(q-1)}{SSE/(n-q)} \sim ext{F-distribution} \ (extit{df}_1 = q-1, extit{df}_2 = n-q)$$

```
> names(summary(linearMod))
[1] "oall" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared"" fstatistic " "cov.unscaled"
> summary(linearMod)$sigma
[1] 46.70826
> summary(linearMod)$fstatistic
    value numdf dendf
21.61501 1.00000 19.00000
> f <= summary(linearMod)$fstatistic
    > pf(f [1], f [2], f [3], lower=FALSE)
    value
```

Residue standard error =
$$\sqrt{MSE} = \sqrt{\frac{SSE}{n-q}}$$

$$F = \frac{MSR}{MSE} = \frac{SSR/(q-1)}{SSE/(n-q)} \sim F$$
-distribution ($df_1 = q-1, df_2 = n-q$)

```
> names(summary(linearMod))

[1] "call" "terms" "residuals" "coefficients

[5] "aliased" "sigma" "df" "cov.unscaled"

[9] "adj.r.squared" "fstatistic "cov.unscaled"

5 > summary(linearMod)$sigma

[1] 46.70826

7 > summary(linearMod)$fstatistic

8 value numdf dendf

21.61501 1.00000 19.00000

2 > f <- summary(linearMod)$fstatistic

5 > pf(f [1], f [2], f [3], lower=FALSE)

8 value
```

Residue standard error =
$$\sqrt{MSE} = \sqrt{\frac{SSE}{n-q}}$$

$$F = \frac{\textit{MSR}}{\textit{MSE}} = \frac{\textit{SSR}/(q-1)}{\textit{SSE}/(n-q)} \sim \text{F-distribution} \ (\textit{df}_1 = q-1, \textit{df}_2 = n-q)$$

Akaike's information criterion — AIC (Akaike, 1974) — BIC (Schwarz, 1978)
$$AIC = -2\ln(\widehat{L}) + 2q \qquad \qquad BIC = -2\ln(\widehat{L}) + q\ln(n)$$

 \widehat{L} : the maximum of likelihood.

q: the number of parameters in the model.

n: the sample size.

Akaike's information criterion — AIC (Akaike, 1974) BIC (Schwarz, 1978)
$$AIC = -2\ln(\widehat{L}) + 2q \qquad BIC = -2\ln(\widehat{L}) + q\ln(n)$$

- \widehat{L} : the maximum of likelihood.
- q: the number of parameters in the model.
- *n*: the sample size.

Akaike's information criterion — AIC (Akaike, 1974) Bayesian information criterion — BIC (Schwarz, 1978)
$$AIC = -2\ln(\widehat{L}) + 2q \qquad BIC = -2\ln(\widehat{L}) + q\ln(n)$$

 \widehat{L} : the maximum of likelihood.

- q: the number of parameters in the model.
- n: the sample size.

Akaike's information criterion — AIC (Akaike, 1974) Bayesian information criterion — BIC (Schwarz, 1978)
$$AIC = -2\ln(\widehat{L}) + 2q \qquad BIC = -2\ln(\widehat{L}) + q\ln(n)$$

- \widehat{L} : the maximum of likelihood.
- q: the number of parameters in the model.
- n: the sample size.

9. Model selection:

Akaike's information criterion — AIC (Akaike, 1974) Bayesian information criterion — BIC (Schwarz, 1978)
$$AIC = -2\ln(\widehat{L}) + 2q \qquad BIC = -2\ln(\widehat{L}) + q\ln(n)$$

 \widehat{L} : the maximum of likelihood.

q: the number of parameters in the model.

n: the sample size.

The lower the better!

9. Model selection:

Akaike's information criterion — AIC (Akaike, 1974) Bayesian information criterion — BIC (Schwarz, 1978)
$$AIC = -2\ln(\widehat{L}) + 2q \qquad BIC = -2\ln(\widehat{L}) + q\ln(n)$$

 \widehat{L} : the maximum of likelihood.

q: the number of parameters in the model.

n: the sample size.

- 1 > AIC(linearMod)
- 2 [1] 224.9383
- 3 > BIC(linearMod)
- 4 [1] 228.0719

The lower the better!

10. Does L.M. fit our model?

Statistic	criterion	our case
R^2	Higher the better (>0.7)	0.53
$R^2_{\it adj}$	Higher the better	0.51
AIC	Lower the better	225
BIC	Lower the better	228

Find 95% C.I. for *Y* at x = 4200.

Find 95% C.I. for Y at x = 4200.

Find 95% C.I. for Y at x = 4200.

Find 95% C.I. for Y at x = 4200.

Here,
$$n = 21$$
, $t_{.025,19} = 2.0930$, $\sum_{i=1}^{21} (x_i - \bar{x})^2 = 13,056,523.81$, $s = 46.707$, $\hat{\beta}_0 = 15.7661$, $\hat{\beta}_1 = 0.0601$, and $\bar{x} = 2148.095$. From Theorem 11.3.7, then, $\hat{y} = 15.7661 + 0.0601(4200) = 268.1861$

$$w = 2.0930(46.707)\sqrt{\frac{1}{21} + \frac{(4200 - 2148.095)^2}{13.056.523.81}} = 59.4714$$

and the 95% confidence interval for E(Y|4200) is

$$(268.1861 - 59.4714, 268.1861 - 59.4714)$$

which rounded to two decimal places is

(208.71, 327.66)


```
1 s <- summary(linearMod)$sigma
2 beta <- linearMod$coefficients
3 z <- seq(1000,4500,1)
4 hatY <- beta[1]+beta[2]+z
5 w <- qt(0.975,19) * s * sqrt(1/21+(z-mean(x))^2/(sum((x-mean(x))^2)))
6 matplot(z,cbind(hatY,hatY+w,hatY-w),type = c("|","|","|"),lwd=c(3,4,4))
7 points(x, y, pch = 19)
8 abline(y=4200,col = "blue", lty = 4)
9 abline(h=208.71,col = "blue", lty = 4)
10 abline(h=327.66,col = "blue", lty = 4)
11 text(4200,50,4200)
12 text(1200,203,208.71)
13 text(1200,331,327.66)
```

Find 95% prediction interval for Y at x = 4200

Find 95% prediction interval for Y at x = 4200.

Find 95% prediction interval for Y at x = 4200.

Find 95% prediction interval for Y at x = 4200.

When x = 4200, $\hat{y} = 268.1861$ for both intervals. From Theorem 11.3.8, the width of the 95% prediction interval for Y is:

$$w = 2.0930(46.707)\sqrt{1 + \frac{1}{21} + \frac{(4200 - 2148.095)^2}{13,056,523.81}} = 114.4725$$

The 95% prediction interval, then, is

$$(268.1861 - 114.4725, 268.1861 + 114.4725)$$

which rounded to two decimal places is

which makes it 92% wider than the 95% confidence interval for E(Y|4200).


```
1 s <- summary(linearMod)$sigma
2 beta <- linearMod$coefficients</p>
3 Z <- seq(1000,4500,1)
4 hatY <- beta[1]+beta[2]*z
||w| < -qt(0.975.19) * s * sqrt(1/21+(z-mean(x))^2/(sum((x-mean(x))^2)))
6 f \leftarrow qt(0.975,19) * s * sqrt(1+1/21+(z-mean(x))^2/(sum((x-mean(x))^2)))
7 matplot(z,cbind(hatY,hatY+w,hatY-w,hatY+f,hatY-f),
           type = c("|","|","|","|","|"), |wd=c(3,4,4,4,4)
9 points(x, y, pch = 19)
abline (v=4200, col = "blue", lty = 4)
   abline(h=208.71,col = "blue", lty = 4)
abline (h=327.66.col = "blue". ltv = 4)
13 text (4200,50,4200)
   text(1200.208.71-5.208.71)
  text(1200,327.66+5,327.66)
  abline(h=153.76,col = "red", lty = 4)
   abline (h=382.61.col = "red", ltv = 4)
18 text (4200,50,4200)
  text (1200,153.76-5,153.76)
20 text (1200.382.61+5.382.61)
```

13. More about diagnozing the linear model:

- 1 # diagnostic plots
- 2 layout (matrix (c (1,2,3,4), 2,2)) # optional 4 graphs/page
- 3 plot (linearMod)

13. More about diagnozing the linear model:

- 1 # diagnostic plots
- 2 layout(matrix(c(1,2,3,4),2,2)) # optional 4 graphs/page
- 3 plot (linearMod)

E.g. 2 Find 95% C.I. for the amount of increas year-by-year in the cost of Toyota Camry sedan.

E.g. 2 Find 95% C.I. for the amount of increas year-by-year in the cost of Toyota Camry sedan.

	Year after Suggested	
Year	2005	Retail Price (\$)
2005	0	7,935
2006		8,495
2007		
2008		10,817
2009		11,078
		12,658
2012		13,844
2013		13,982
2014		14,629

Sol. We first find the regression:

Sol. We first find the regression:

The slope of the line, $\hat{\beta}_1$, represents the amount of increase year-by-year in the cost of an older model. Often a range of values is better than a single estimate, so a good way to provide this is using a confidence interval for the true value β_1 .

Here,
$$\sum_{i=0}^{9} (x_i - \bar{x})^2 = \sqrt{82.5} = 9.083$$

and from Equation 11.3.5,
$$s^2 = \frac{1}{10-2} \left(\sum_{i=0}^9 y_i^2 - \hat{\beta}_0 \sum_{i=0}^9 y_i - \hat{\beta}_1 \sum_{i=0}^9 x_i y_i \right)$$

$$\frac{1}{2}[1,382,678,777 - (8188.67)(115,565) - (748.41)(581,786)] = 117,727.98$$

so
$$s = \sqrt{117,727.98} = 343$$

Using $t_{.025.8} = 2.3060$, the expression given in Theorem 11.3.6 reduces to $(748.41 - 2.3060 \frac{343.11}{9.083}, 748.41 + 2.3060 \frac{343.11}{9.083}) = (\$661.30, \$835.52)$

7. Testing the equality of two slopes

Table 11.3.3					
Date	Day no., $x (= x^*)$	Strain A pop", y	Strain B pop ⁿ , y [*]		
Feb 2	0	100	100		
May 13	100	250	203		
Aug 21	200	304	214		
Nov 29	300	403	295		
Mar 8	400	446	330		
Jun 16	500	482	324		

Figure 11.3.5

Do you believe that $\beta_1 = \beta_1^*$?

Or is $\beta_1 > \beta_1^*$ statistically significantly?

Theorem

Let $(x_1, Y_1), (x_2, Y_2), \dots, (x_n, Y_n)$ and $(x_1^*, Y_1^*), (x_2^*, Y_2^*), \dots, (x_m^*, Y_m^*)$ be two independent sets of points, each satisfying the assumptions of the simple linear model—that is, $E(Y \mid x) = \beta_0 + \beta_1 x$ and $E(Y^* \mid x^*) = \beta_0^* + \beta_1^* x^*$.

a. Let

$$T = \frac{\hat{\pmb{\beta}}_1 - \hat{\pmb{\beta}}_1^* - (\beta_1 - \beta_1^*)}{S\sqrt{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2} + \sum\limits_{i=1}^{n} (x_i^* - \bar{x}^*)^2}}$$

where

$$S = \sqrt{\frac{\sum_{i=1}^{n} [Y_i - (\hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 x_i)]^2 + \sum_{i=1}^{m} [Y_i^* - (\hat{\boldsymbol{\beta}}_0^* + \hat{\boldsymbol{\beta}}_1^* x_i)]^2}{n + m - 4}}$$

Then T has a Student t distribution with n + m - 4 degrees of freedom.

b. To test $H_0: \beta_1 = \beta_1^*$ versus $H_1: \beta_1 \neq \beta_1^*$ at the α level of significance, reject H_0 if t is either $(1) \leq -t_{\alpha/2, n+m-4}$ or $(2) \geq t_{\alpha/2, n+m-4}$, where

$$t = \frac{\hat{\beta}_1 - \hat{\beta}_1^*}{s \sqrt{\frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2} + \frac{1}{\sum_{i=1}^{m} (x_i^* - \bar{x}^*)^2}}}$$

(One-sided tests are defined in the usual way by replacing $\pm t_{\alpha/2,n+m-4}$ with either $t_{\alpha,n+m-4}$ or $-t_{\alpha,n+m-4}$.)

$$S^2 = SSE$$
 and $q = 4$.

Theorem

Let $(x_1, Y_1), (x_2, Y_2), \ldots, (x_n, Y_n)$ and $(x_1^*, Y_1^*), (x_2^*, Y_2^*), \ldots, (x_m^*, Y_m^*)$ be two independent sets of points, each satisfying the assumptions of the simple linear model—that is, $E(Y \mid x) = \beta_0 + \beta_1 x$ and $E(Y^* \mid x^*) = \beta_0^* + \beta_1^* x^*$.

a. Let

$$T = \frac{\hat{\pmb{\beta}}_1 - \hat{\pmb{\beta}}_1^* - (\beta_1 - \beta_1^*)}{S\sqrt{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2} + \frac{1}{\sum\limits_{i=1}^{n} (x_i^* - \bar{x}^*)^2}}$$

where

$$S = \sqrt{\frac{\sum_{i=1}^{n} [Y_i - (\hat{\boldsymbol{\beta}}_0 + \hat{\boldsymbol{\beta}}_1 x_i)]^2 + \sum_{i=1}^{m} [Y_i^* - (\hat{\boldsymbol{\beta}}_0^* + \hat{\boldsymbol{\beta}}_1^* x_i)]^2}{n + m - 4}}$$

Then T has a Student t distribution with n + m - 4 degrees of freedom.

b. To test $H_0: \beta_1 = \beta_1^*$ versus $H_1: \beta_1 \neq \beta_1^*$ at the α level of significance, reject H_0 if t is either $(1) \leq -t_{\alpha/2, n+m-4}$ or $(2) \geq t_{\alpha/2, n+m-4}$, where

$$t = \frac{\hat{\beta}_1 - \hat{\beta}_1^*}{s \sqrt{\frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2} + \frac{1}{\sum_{i=1}^{m} (x_i^* - \bar{x}^*)^2}}}$$

(One-sided tests are defined in the usual way by replacing $\pm t_{\alpha/2,n+m-4}$ with either $t_{\alpha,n+m-4}$ or $-t_{\alpha,n+m-4}$.)

$$S^2 = SSE$$
 and $q = 4$.

$$H_0: \beta_1 = \beta_1^*$$
 v.s. $H_1: \beta_1 > \beta_1^*$.

Long computations ... t = 2.50.

Critical region: $t > t_{0.05,8} = 1.8595$

$$H_0: \beta_1 = \beta_1^*$$
 v.s. $H_1: \beta_1 > \beta_1^*$.

Long computations ... t = 2.50.

$$\label{lem:math.emory.edu/~lchen41/teaching/2020_Spring/} $$ Ex_11-3-4.R$$

Critical region: $t > t_{0.05,8} = 1.8595$

Reject.

$$H_0: \beta_1 = \beta_1^*$$
 v.s. $H_1: \beta_1 > \beta_1^*$.

Long computations ... t = 2.50.

$$\label{lem:math.emory.edu/~lchen41/teaching/2020_Spring/} $$ Ex_11-3-4.R$$

Critical region: $t > t_{0.05,8} = 1.8595$.

$$H_0: \beta_1 = \beta_1^*$$
 v.s. $H_1: \beta_1 > \beta_1^*$.

Long computations ... t = 2.50.

$$\label{lem:math.emory.edu/~lchen41/teaching/2020_Spring/} $$ Ex_11-3-4.R$$

Critical region: $t > t_{0.05,8} = 1.8595$.

```
> # Read data first
  > Input <- ("
  > Data = read.table(textConnection(Input),
                     header=TRUE)
14 > Data
      x yA yB
      0 100 100
   2 100 250 203
  3 200 304 214
  4 300 403 295
  5 400 446 330
  6 500 482 324
```

```
1 > # fit the first model ...
 2 > DataA <- data.frame(x = Data$x,yA = Data$yA)</p>
 3 > fitA <- Im(yA~x, DataA)
   > summary(fitA)
   Call:
   Im(formula = yA \sim x, data = DataA)
   Residuals:
   -45.333 30.467 10.267 35.067 3.867 -34.333
   Coefficients:
                Estimate Std. Error t value Pr(>|t|)
   (Intercept) 145.33333 26.86684 5.409 0.00566 **
                0.74200
                           0.08874 8.362 0.00112 **
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
   Residual standard error: 37.12 on 4 degrees of freedom
   Multiple R-squared: 0.9459, Adjusted R-squared: 0.9324
22 F- statistic: 69.92 on 1 and 4 DF, p-value: 0.001119
```

```
1 > # fit the second model ...
2 > DataB <- data.frame(x = Data$x,yB = Data$yB)</p>
3 > fitB <- Im(yB\sim x, DataB)
  > summary(fitB)
   Call:
   Im(formula = yB \sim x, data = DataB)
   Residuals:
   -31.333 26.467 -7.733 28.067 17.867 -33.333
   Coefficients:
                Estimate Std. Error t value Pr(>|t|)
   (Intercept) 131.33333 22.77255 5.767 0.00449 **
                0.45200
                           0.07522 6.009 0.00386 **
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
   Residual standard error: 31.46 on 4 degrees of freedom
   Multiple R-squared: 0.9003, Adjusted R-squared: 0.8754
22 F- statistic: 36.11 on 1 and 4 DF, p-value: 0.00386
```

```
2 > sA <- summary(fitA)$coefficients
3 > sA
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) 145.3333 26.86683800 5.409395 0.005656733
                0.7420 0.08873825 8.361671 0.001118570
6 X
7 > sB <- summary(fitB)$coefficients
8 > sB
              Estimate Std. Error t value Pr(>|t|)
10 (Intercept) 131.3333 22.77254682 5.767178 0.004486443
                0.4520 0.07521525 6.009420 0.003860274
|s| > db < (sA[2,1] - sB[2,1]) # difference of beta 1's
13 > db
14 [1] 0.29
|s| > sd < -sqrt(sB[2,2]^2+sA[2,2]^2) # standard deviation
16 > sd
17 [1] 0.1163263
| > df <- (fitA $df.residual+fitB $df.residual) # degrees of freedom
19 > df
20 [1] 8
21 > td <- db/sd # t-score
|p| > pv < -2*pt(-abs(td), df) # two-sided p-value
> print (paste("t-score is ", round(td,3),
24 + "and p-value is", round(pv,3)))
25 [1] "t-score is 2.493 and p-value is 0.037"
```


You should always visualize your data before any analysis

N = 157; X mean = 50.7333; X SD = 19.5661; Y mean = 46.495; Y SD = 27.2828; Pearson correlation = -0.1772

Plan

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Mode
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

	Indep. variables			Dependent variables		
Sample 1	X 11		X_{1m}	y 11		y_{1d}
				:		
Sample n	X _{n1}		X _{nm}	y _{n1}		Y nd

$$Y_{ij} = \sum_{k=1}^{m} \beta_{kj} X_{ik} + \epsilon_{ij}, \quad 1 \leq i \leq n, 1 \leq j \leq d, \ \epsilon_{ij} \ i.i.d. \sim N(0, \sigma^2).$$

m = d = 1	(Simple) linear regression
$m \ge 2$	Multiple linear regression
$d \ge 2$	Multivariate linear regression

1. Overdetermined system: Y = XB.

2. The least square solutions are (provided that X^TX is nonsignular)

$$B = (X^T X)^{-1} X^T Y$$

1. Overdetermined system: Y = XB.

2. The least square solutions are (provided that X^TX is nonsignular)

$$B = (X^T X)^{-1} X^T Y$$

E.g. Broadway shows¹

https://dasl.datadescription.com/datafile/broadway-shows/?_sfm_ pethods=Multiple+Regression& sfm_cases=4+59943&sort_order=title+asc

E.g. Broadway shows¹

```
1 > # This is an example of multimple regression.
2 > # Dataset is explained here:
        Regression& sfm cases=4+59943&sort order=title+asc
4 >
5 > # Read data from the URL link
6 > library (data.table)
> mydat <- fread('https://dasl.datadescription.com/download/data/3087')
   [100*] Downloaded 965 bytes...
9 > head(mvdat)
     Season Gross($M) Attendance Playing weeks New Productions Mean ticket Pct.sold
           LogGross
                           7 26
                                        1078
                                                               28 78788 0 04714286
       1984
                 209
        2.320146
                 190
                           6.54
                                        1041
                                                         34
                                                               29.05199 0.04397695
        2.278754
13 3:
       1986
                 208
                           7.04
                                        1039
                                                         41
                                                               29.54546 0.04743022
        2.318063
                                                              31 08108 0 05119497
14 4.
       1987
                           8.14
                                                         30
        2.403120
                           7.96
                                        1108
                                                         33
                                                               32.91457 0.05028881
15 5
       1988
        2.418301
16 6:
       1989
                           8.04
                                                         39
                                                              35.07463 0.05259813
        2.450249
```

¹https://dasl.datadescription.com/datafile/broadway-shows/?_sfm_methods=Multiple+Regression& sfm cases=4+59943&sort order=title+asc

```
1 > # Multiple Linear Regression Example with intercept
2 > fit <- Im('Gross($M)' ~ Season + Attendance + 'Playing weeks' + 'New Productions' + 'Mean
         ticket' + 'Pct.sold' + LogGross, data=mydat)
3 > summary(fit) # show results
  Call
  Im(formula = 'Gross($M)' ~ Season + Attendance + 'Playing weeks' +
      'New Productions' + 'Mean ticket' + Pct.sold + LogGross,
      data = mydat)
   Residuals:
      Min
               10 Median
                                    Max
12 -31.925 -5.756 -0.055 7.172 14.040
   Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                    -2.053e+04 7.348e+03 -2.795 0.00983 **
  (Intercept)
17 Season
                    1.132e+01 3.829e+00 2.957 0.00670 **
18 Attendance
                    9 745e+01 3 537e+01 2 755 0 01079 *
  'Playing weeks'
                    4.566e-02 3.084e-01 0.148 0.88348
  'New Productions' -9.560e-01 5.982e-01 -1.598 0.12255
  'Mean ticket'
                    1.680e+01 8.306e-01 20.221 < 2e-16 *
22 Pct.sold
                    1.779e+03 6.811e+03 0.261 0.79604
  LoaGross
                   -1.301e+03 1.610e+02 -8.085 1.94e-08 *
   Signif. codes: 0 '*' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Residual standard error: 10.61 on 25 degrees of freedom
   Multiple R-squared: 0.9994, Adjusted R-squared: 0.9992
29 F- statistic: 6068 on 7 and 25 DF, p-value: < 2.2e-16
```

```
1 > # Compute the coefficients using the generalized inverse (with intercept)
2 > library (matlib)
3 > m <-length(mydat)-1
  > M <- data.matrix(mydat, rownames.force = NA)
| > n < - \text{nrow}(M)
6 > m < - ncol(M)
7 > X < - cbind(rep(1,n),M[1:n,c(1,3:m)])
|8| > Y <- M[1:n,2]
  > inv((t(X)*X)) * t(X) * Y
                 -2 053451e+04
                 1.132227e+01
  Season
  Attendance
                  9.745043e+01
  Playing weeks 4.565847e-02
  New Productions -9.560446e-01
  Mean ticket 1.679521e+01
  Pct.sold
               1.779471e+03
  LogGross
                 -1.301463e+03
  > # Or you can compute the generalized inverse use the package pracma
  > library (pracma)
  > pinv(X) *Y
               [,1]
  [1,] -2.053451e+04
  [2,]
       1.132227e+01
       9.745043e+01
  [3,]
  [4.]
       4.565847e-02
  [5,]
      -9.560446e-01
       1.679521e+01
  [6.]
        1.779471e+03
  [7.]
      -1.301463e+03
```

```
1 > # Multiple Linear Regression Example without intercept
2 > fit2 <- Im('Gross($M)' ~ Season + Attendance + 'Playing weeks' + 'New Productions' + 'Mean
        ticket' + 'Pct.sold' + LogGross -1, data=mydat)
3 > summary(fit2) # show results
  Call
  Im(formula = 'Gross($M)' ~ Season + Attendance + 'Playing weeks' +
      'New Productions' + 'Mean ticket' + Pct.sold + LogGross -
      1. data = mydat)
  Residuals:
      Min
              10 Median
                                    Max
  -36.334 -3.758 2.570 6.282 18.324
  Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                      0.62744
                                0.15089 4.158 0.000309 *
  Season
  Attendance
                     91.28669 39.65848 2.302 0.029610 *
  'Plaving weeks'
                     0.04173  0.34641  0.120  0.905047
  'New Productions' -0.74486 0.66658 -1.117 0.274032
  'Mean ticket'
                     18.09840
                               0.77213 23.440 < 2e-16 *
  Pct.sold
                   1369.35407 7649.90823 0.179 0.859323
  LogGross
                   -990.63826 130.72506 -7.578 4.81e-08 *
  Signif. codes: 0 '*' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Residual standard error: 11.92 on 26 degrees of freedom
  Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
  F- statistic: 2.069e+04 on 7 and 26 DF, p-value: < 2.2e-16
```

```
1 > # Compute the coefficients using the generalized inverse (without intercept)
2 > library (matlib)
3 > m <-length(mydat)-1
4 > M <- data.matrix(mydat, rownames.force = NA)
| > n < - \text{nrow}(M)
6 > m < - ncol(M)
7 > X <- M[1:n,c(1,3:m)]
|8| > Y < -M[1:n,2]
  > inv((t(X)*X)) * t(X) * Y
                           [,1]
                     0.62744066
  Season
12 Attendance
                    91.28668689
  Plaving weeks
                     0.04172758
  New Productions -0.74485881
  Mean ticket
                    18.09839993
16 Pct.sold
                  1369.35406937
  LogGross
                  -990.63826155
  > library (pracma)
  > pinv(X) *Y
                [,1]
         0.62744066
   [2,]
         91.28668689
   [3.1
         0.04172758
         -0.74485881
   [4,]
   [5,]
         18.09839993
       1369.35406890
   [6.]
        -990.63826154
```

Plan

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regression
- § 11.5 The Bivariate Normal Distribution

Chapter 11. Regression

- § 11.1 Introduction
- § 11.4 Covariance and Correlation
- § 11.2 The Method of Least Squares
- § 11.3 The Linear Model
- § 11.A Appendix Multiple/Multivariate Linear Regressior
- § 11.5 The Bivariate Normal Distribution

§ 11.5 The Bivariate Normal Distribution