em Documentation

Release 0.1a1

Marcell Marosvolgyi

CONTENTS

1	College Elektrische en Magnetische velden				
	1.1 Elektrische velden	3			
	1.2 Elektrisch veld van verschillende symmetrische ladingsverdelingen	5			
	1.3 Potentiaal	6			
	1.4 Capaciteit	9			
	1.5 Magnetische velden	14			
	1.6 Magnetisch veld van verschillende symmetrische stroomverdelingen				
	1.7 Inductie	14			
2	Software 2.1 EM module	15			
3	3 Indices and tables				
Рy	ython Module Index	21			
-	,				

W.I.P.

CONTENTS 1

2 CONTENTS

COLLEGE ELEKTRISCHE EN MAGNETISCHE VELDEN

Elektrische velden

Krachtveld van ladingen en elektrisch veld

Begrippen: Elektrische kracht, elektrisch veld, vector, scalar, lading, permittiviteit Elektrische kracht ten gevolge van twee ladingen q_1 en q_2 op lading q_1 .

$$\vec{F}_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{|r_{21}|^2} \hat{r}_{21}$$
 (Wet van Coulomb)

Hierbij heeft \hat{r}_{12} de richting van \vec{r}_{12} maar de lengte is precies 1. $|\vec{r}_{12}|$ is de lengte van vector \vec{r}_{12} .

Elektrisch veld

als **vector**:

$$\vec{E}\left(\vec{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{q}{\vec{r}^2} \hat{r}$$

en de grootte (als scalar):

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

Kracht op en testlading *q* in een elektrisch veld:

$$\vec{F} = q\vec{E}$$

Superpositie

$$\vec{E} = \vec{E_1} + \vec{E_2} + \vec{E_3} + \cdots$$

Een voorbeeld:

Stel we hebben twee ladingen q_1 en q_2 die even groot zijn ($q_1 = q_2 = q = 1$ nC). q_1 bevindt zich op (-1m,0m) en q_2 op (+1m,0m). Bereken het elektrische veld in de oorsprong (0m,0m). (Grootte en richting).

Uitwerking:

We hebben een veld ten gevolge van de 'linker' lading en ten gevolge van de 'rechter' lading. We gaan dus twee keer een veldsterkte bepalen (richting en grootte) en de resultaten optellen (superpositie).

We beginnen met de linker lading. De lading bevindt zich in het punt (-1,0) en we willen de veldsterkte in (0,0). Dus het punt waar we het veld willen weten bevindt zicht *rechts* van de lading. Afstand is dus 1m en de richting is naar rechts.

$$E = \frac{1}{4\pi\epsilon_0} \frac{1 \cdot 1nC}{r^2}$$
$$= 9 \cdot 10^9 \cdot \frac{1 \cdot 1nC}{1m^2}$$
$$= 9\frac{N}{C}$$

waarbij

$$r = \sqrt{x^2 + y^2} = \sqrt{+1m^2 + 0m^2} = 1m$$

We kunnen dit met de software narekenen:

```
>>> import em
>>> E = em.EField()
>>> E.add(-1,0,1e-9)
>>> E.add(1,0,1e-9)
>>> E_in_oorsprong = E.probe(0,0)
>>> print (E_in_oorsprong)
norm:0.0, x=0.0,y=0.0
>>> E.plot()
>>> E.save('./pics/tweeladingvoorbeeld.pdf')
```


Interpretatie van het resultaat

Als we een (positieve) testlading zouden plaatsen in de oorsprong, q_{test} , dan zouden de beide ladingen een even groote maar in richting tegenovergestelde kracht uitoefenen op de testlading. De krachten zouden elkaar dus opheffen.

Elektrisch veld van verschillende symmetrische ladingsverdelingen

```
E = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \qquad \qquad \text{puntlading} E = \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} \qquad \qquad \text{buiten een bol r>R} E = 0 \qquad \qquad \text{binnen een bol r<R} E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r} \qquad \text{lange geleider, ladingsdichtheid } \lambda E = \frac{\sigma}{2\epsilon_0} \qquad \qquad \text{plaat, ladingsdichtheid } \sigma E = \frac{\sigma}{\epsilon_0} \qquad \qquad \text{tussen platen, ladingsdichtheid } \sigma
```

```
>>> import em
>>> E = em.EField()
>>> E.add(0,0,2e-9)
>>> E.plot()
>>> em.plt.title('field of pointcharge')
>>> E.save('./pics/point.pdf')
```


Potentiaal

 $\label{eq:continuous} Termen: \ Elektrische \ potentia a [J/C] \ , \ elektrisch \ veld [V/m,N/C], \ elektrische \ kracht [F].$

Als er een kracht \vec{F} werkt op een deeltje dat van a naar b beweegt, dan heeft de kracht een arbeid verricht

van

$$W = \int \vec{F} \cdot d\vec{l}$$

Dit is algemeen genoteerd. Meer specifiek, als de kracht evenwijdig is aan de verplaatsing en constant, dan

$$W = F \cdot s$$

waarbij s de totale verplaatsing.

In het geval van een homogene elektrische potentiaal waarin we een testlading q_0 verplaatsen over een afstand s_r kunnen we schrijven:

$$W = q_0 \cdot E \cdot s$$

We kunnen op twee manieren interpreteren:

Het potentiaalverschil tussen a en b is gelijk aan de arbeid die de elektrische kracht verricht als een lading van a naar b verplaatst.

Het potentiaalverschil tussen a en b is gelijk aan arbeid die verricht moet worden om een lading van potentiaal U_a naar potentiaal U_b te verplaatsen.

Elektrische potentiaal definieren we als de elektrische potentiele energie per ladingseenheid.

$$V = \frac{E_{\text{pot}}}{q_0}$$

Om de verwarring de bevorderen: *U* wordt gebruikt voor elektrische potentiele energie maar ook voor elektrische potentiaal(denk aan elektrische netwerken).

Elektrische potentiaal van een puntlading

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

Het elektrische veld vinden we door de afgeleide te nemen van de potentiaal. Dit ligt wat ingewikkelder dan dat we nu gaan behandelen, V is scalaire grootheid en \vec{E} is een vectoriele grootheid.

In het bovenstaande geval nemen we de afgeleide in de richting van de lijn tussen de puntlading en het punt waar we het veld willen bereken. In de richting van *r* dus.

$$\frac{\partial V}{\partial r} = -E_r$$

Algemener:

$$E_x = -\frac{\partial V}{\partial x}$$

$$E_y = -\frac{\partial V}{\partial y}$$

$$E_z = -\frac{\partial V}{\partial z}$$

Zo kun je dus uit de scalaire potentiaal V de vectoriele \vec{E} verkrijgen:

$$\vec{E} = \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} = \begin{pmatrix} -\frac{\partial V}{\partial x} \\ -\frac{\partial V}{\partial y} \\ -\frac{\partial V}{\partial z} \end{pmatrix}$$

1.3. Potentiaal 7

voorbeeld

Twee grote geleidende platen zijn evenwijdig aan elkaar opgesteld. Ze worden aangesloten op een spanningsbron met spanning *V*=10V. Afstand is 1mm. zie afbeelding.

We nemen aan dat de spanning in de y-richting en z-richting (loodrecht op het plaatje) constant is. Dus

$$\frac{\partial V}{\partial y} = 0$$

$$\frac{\partial V}{\partial z} = 0$$

Uit een meting blijkt dat de potentiaal tussen de platen als volgt van de waarde van x afhangt:

$$V(x) = -a \cdot x + 10$$

De oorsprong (0,0) ligt in de plaat die aan de positieve pool van de bron is verbonden. Waarbij a de richtingscoefficient.

We kunnen nu E_x bepalen:

$$\frac{\partial V}{\partial x} = -E_x = \frac{\partial (-ax + 10)}{\partial x}$$

Dus $E_x = a$. Anders gezegd: Het elektrische veld is gelijk aan het hellingsgetal van de potentiaal tussen de platen. Het hellingsgetal heeft de eenheid Volt per meter. (je berekent $\Delta V/\Delta x$)

Capaciteit

We kunnen het voorgaande ook andersom bekijken. We weten dat tussen evenwijdige geleidende geladen platen het elektrisch veld constant is en is gegeven door:

$$E = \frac{\sigma}{\varepsilon_0}$$

Hier is $\sigma = \frac{Q}{A}$ de ladingsdichtheid.

Dus:

$$\frac{\partial V}{\partial x} = E$$

$$= \frac{\sigma}{\varepsilon_0}$$

$$= \frac{Q}{A\varepsilon_0}$$
= constant!

Omdat de afgeleide een constante is concluderen we de V van de vorm y = ax + b is; in dit geval:

$$V\left(x\right) = -\frac{Q}{A\varepsilon_0} \cdot x + \text{offset}$$

Met dit resultaat kunnen we het spanningsverschil tussen de platen berekenen:

$$\begin{split} \Delta V &= V(0) - V(d) \\ &= -\frac{Q}{A\varepsilon_0} \cdot 0 + \text{offset} - \left(-\frac{Q}{A\varepsilon_0} \cdot d + \text{offset} \right) \\ &= \frac{Q}{A\varepsilon_0} \cdot d \end{split}$$

Dit kunnen we herschrijven als:

$$\frac{Q}{V} = \frac{\varepsilon_0 A}{d}$$

Blijkbaar is de verhouding tussen de lading op de platen en de opgedrukte spanning constant. Het hangt af van de grootte en de afstand tussen de platen.

De constante noemen we capaciteit en de configuratie van de twee geleidende platen noemen we een (parallele plaat) condensator. De condensator heeft een capaciteit. En in dit geval is die capaciteit gelijk aan $\frac{\varepsilon_0 A}{d}$.

Iedere configuratie van twee geleiders die zijn gescheiden door een isolator vormt een condensator.

De eenheid van capaciteit is farad, F, C/V.

Condensatoren kunnen dus hele andere geometrieen hebben. De capaciteit heeft dan meestal een andere uitdrukking dan hierboven. Enkele voorbeelden, zonder afleiding:

Een coaxiale cylindrische condensator:

$$C = \frac{2\pi\varepsilon_0 L}{\ln\frac{r_b}{r_a}}$$

Een voorbeeld hiervan is onbedoeld de coax kabel zoals we die in het lab gebruiken. Je kunt zelf nagaan dat deze een capaciteit heeft van ongeveer $100 \, \mathrm{pF}$ ($100 \, 10^{-12} \, \mathrm{F}$) per meter. We spreken wel van parasitaire capaciteit.

1.4. Capaciteit 9

Concentrische geladen bollen:

$$C = 4\pi\varepsilon_0 \frac{r_a r_b}{r_b - r_a}$$

Capaciteit in netwerken

Het symbool voor de condensator is:

Serie:

$$\begin{array}{c|cccc} C_1 & C_2 & C_3 \\ \hline - & & & & \\ \hline \end{array}$$

$$\frac{1}{C_{totaal}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

Parallel:

$$C_{\text{totaal}} = C_1 + C_2 + C_3 + \cdots$$

Energie

Om een condensator te laden moeten we arbeid verrichten. Dit is de arbeid die nodig is om de lading op de geleiders te scheiden. Er is dan een krachtveld aanwezig in de condensator. Dit veld zal bij ontladen arbeid verrichten. De condensator is dus in staat om energie op te slaan.

Energie opgeslagen in een condensator:

$$U = \frac{Q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

Hoe komen we hieraan?

Hieronder volgt een schets. Dit is niet een accurate beschrijving maar bedoeld als opmaat naar wat later met integraalrekening exact behandeld kan worden.

Stel we hebben een plaatcondensator. Ongeladen. We verplaatsen nu een negatieve lading -e van de linkerplaat naar de rechterplaat. Laten we zeggen, omdat er initeel nog geen veld is, hoeven we geen kracht uit te oefenen en kost de verplaatsing bij benadering geen arbeid.

Doordat er nu een positieve lading op de linkerplaat is en een negatieve op de rechterplaten is er een veld $E = \frac{e}{\varepsilon_0 A}$. Als we nu nog een negatieve lading van links naar rechts verplaatsen, dan moet dat tegen de kracht eE in. Er moet dus arbeid verricht worden: eEd. Waarbij d de afstand is tussen de platen. Als we nu nog een negatieve lading verplaatsen dan moeten we tegen een kracht 2eE in arbeid verrichten; 2eEd.

Als we zo doorgaan dan krijgen we een reeks:

$$W = eEd + 2eEd + 3eEd + 4eEd + \cdots$$
(1.1)

$$= (1 + 2 + 3 + 4 + \cdots) eEd \tag{1.2}$$

(1.3)

Nu kun je schrijven:

$$1+2+3+\cdots+n=\frac{1}{2}n(n+1)$$

Zullen we hier verder niet bewijzen.

1.4. Capaciteit 11

Dus de arbeid die we moeten verrichten om n ladingen te verplaatsen van de ene condensatorplaat naar de andere is

$$W = \frac{1}{2}n(n+1)eEd$$

Laten we nu zeggen dat de totale lading die verplaatst is gelijk is aan *Q*:

$$Q = ne$$

en dat de spanning tussen de platen nu gelijk is aan

$$V = nEd$$

en dat n heel groot is en e heel klein, dan kunnen we bij benadering zeggen dat $n+1 \approx n$ dus krijgen we:

$$W \approx \frac{1}{2}n^2 e E d \tag{1.4}$$

$$=\frac{1}{2}n\cdot n\cdot e\cdot Ed\tag{1.5}$$

$$=\frac{1}{2}n\cdot e\cdot n\cdot Ed\tag{1.6}$$

$$=\frac{1}{2}Q\cdot V\tag{1.7}$$

Hieronder volgt een grafische representatie van voorgaande. De totale arbeid is het oppervlak onder de grafiek.

Als de trapjes klein genoeg zijn dan is half keer lengte keer hoogte een goede benadering.

Samenvattend

Capaciteit: $C = \frac{Q}{V}$.

Voor enkele gemoterieen: plaatcondensator $C = \frac{\varepsilon_0 A}{d}$ cylindriche condensator $C = \frac{2\pi\varepsilon_0 L}{\ln(\frac{r_b}{r_a})}$

Dielectricum

Tot nu toe hebben we condensatoren besproken waarbij de isolatie uit lucht bestond. Het is ook mogelijk om andere (isolerende) materialen te plaatsen tussen de geleiders. We spreken van een dielectricum.

Er zijn verschillende praktische redenen waarom je dit zou doen:

- 1. Afstandhouder tussen de platen
- 2. Betere isolator. Als de spanning hoog genoeg wordt, verliest een isolator zijn isolerend vermogen en wordt het geleidend. De spanning waarbij dat gebeurt noemen we de doorslagspanning. Je kunt ervoor kiezen een dielectricum te nemen dat een hogere doorslagspanning heeft dan bijvoorbeeld lucht.
- 3. Hogere Capaciteit. Het plaastsen van isolatoren anders dan vacuum of lucht verandert de capactieit.

$$\frac{C_{\text{spul}}}{C_{\text{vacuum}}} = \kappa$$

 κ is een constante en een eigenschap van het dielectricum. Wordt ook wel dielectrische constante genoemd of relatieve permittiviteit, en dan ook weergegeven met symbool ε_r .

Voor de plaatcondensator kunnen we zeggen:

$$C = \frac{\varepsilon_r \varepsilon_0 A}{d}$$

 ε_0 is de laagstmogelijke permittiviteit en $\varepsilon_r \geq 1$. De relatieve permittiviteit is de verhouding tussen capaciteiten en eenheidsloos.

voorbeelden

voorbeeld 1

Piet heeft een tellie met een batterij van 4000mAh. De batterij heeft het begeven en Piet vind het een goed idee om de batterij door een condensator te vervangen. Hij heeft immers geleerd bij EM dat een condensator energie kan opslaan.

$$C = \frac{2U}{V^2} \tag{1.8}$$

$$=72kJ/25\tag{1.9}$$

$$=5760F$$
 (1.10)

Hij berekent aldus de capaciteit en krijgt dus als waarde bijna 6kF.

Na wat zoeken op internet komt hij tot de conclusie dat deze condensatoren vrij groot zijn.

Bekijk de tabel van energiedichtheden op internet: https://en.wikipedia.org/wiki/Energy_density

Een ander nadeel tov chemische batterijen is dat de spanning van een condensator afhankelijk is van de aanwezige lading, immers:

$$V = \frac{Q}{C}$$

Dus, tijdens gebruik zal de spanning gaan dalen. Dit is dus anders dan bij een batterij. Een batterij houdt de spanning redelijk constant gedurende de ontlading.

voorbeeld 2

Een parallele plaatcondensator bestaat uit twee platen van 20cmx20cm die op een afstand van 0.1mm vanelkaar zijn geplaatst. Er wordt een spanning van 10V op aangesloten.

1. Bereken de Capaciteit.

1.4. Capaciteit

- 2. Bereken de lading op een van de platen.
- 3. Bereken de energie die is opgeslagen in de configuratie.

De condensator wordt ingedrukt. Hierdoor neemt de afstand tussen de platen af, deze wordt 0.05mm.

- 4. Bereken opnieuw de capaciteit.
- 5. Bereken opnieuw de lading op een van de platen.
- 6. Wat is er gebeurd met de rest?

De spanningsbron wordt losgekoppeld. De ruimte tussen de platen wordt gevuld met plastic.

- 7. Bereken de spanning over de platen.
- 8. Bereken de energie die is opgeslagen in de condensator.

Uitwerking

Magnetische velden

Magnetisch veld van verschillende symmetrische stroomverdelingen

Inductie

CHAPTER

TWO

SOFTWARE

EM module

The em-module contains a field class (with derived \vec{B} and \vec{E} classes) which contains a model of a two-dimensional vector field. The vector field is calculated as a superposition of the fields generated by wires perpendicular to the sheet for the \vec{B} fields and point charges in the sheet for the \vec{E} fields.

The vectors are calculated at points on a grid. The grid parameters can be adjusted.

The actual value at *any* point can be retrieved by the command *probe*.

Contents:

class em.BField

Calculate the Magnetic Field using wire elements.

$$B = \frac{\mu_0 \cdot I}{2\pi r}$$

We calculate \vec{B} as being perpendicular to \vec{r}

Some examples:

```
>>> import em
>>> B = em.BField()
>>> B.add(0,0,1) #one Ampere into the sheet @ 0,0
>>> B.plot()
>>> B.save('./pics/oneWire.pdf')
```


$class \; \texttt{em.EField}$

Calculate the Electric Field using point charges.

$$E = \frac{1}{4\pi\varepsilon_0} \frac{|q|}{r^2}$$

We calculate \vec{E} as being parallel to \vec{r}

Some examples:

```
>>> import em
>>> E = em.EField()
>>> E.add(0,0,3e-9)
>>> E.plot()
>>> E.save('./pics/onecharge.pdf')
```


16 Chapter 2. Software

```
>>> import em
>>> E = em.EField()
>>> E.add(5,0,3e-9)
>>> E.add(-5,0,-3e-9)
>>> E.plot("line")
>>> E.save('./pics/twocharge.pdf')
```


class em.Field

The main field object, E and B are derived from this

Contains the meshgrid and plot functions

```
plot (<type>)
     plot("vector"), plot("line"), plot("vetor and line")
probe (x0, y0)
```

Probe the field @ x0, y0. The result will be a vector and its norm.

```
>>> import em
>>> E = em.EField()
>>> E.add(0,0,3e-9)
>>> vector = E.probe(1,1)
>>> print (vector)
norm:19.0891833784, x=13.4980910142,y=13.4980910142
```

```
>>> import em
>>> B = em.BField()
>>> B.add(0,0,1) #one Ampere into the sheet @ 0,0
>>> vector = B.probe(1,1)
>>> print (vector)
norm:1.99985858864e-07, x=1.41411356944e-07,y=-1.41411356944e-07
```

2.1. EM module 17

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

е

em, 15

22 Python Module Index

B BField (class in em), 3 E EField (class in em), 4 em (module), 3 F Field (class in em), 5 P plot() (em.Field method), 5 probe() (em.Field method), 5