MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS LINEARES

- •JACOBI-RICHARDSON
- •GAUSS-SEIDEL
- •CONVERGÊNCIA

- •MAT 271 Cálculo Numérico PER3/2021/UFV
- Professor Amarísio Araújo DMA/UFV

SISTEMA LINEAR Ax = b

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}, x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

$$(*) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Suponhamos que $det A \neq 0$. Seja \bar{x} a solução única do sistema. Vamos considerá-la como uma n-upla de \mathbb{R}^n : $\bar{x} = (\bar{x}_1, \bar{x}_2, ..., \bar{x}_n)$.

MÉTODOS ITERATIVOS PARA ENCONTRAR UMA APROXIMAÇÃO DA SOLUÇÃO \bar{x} DO SISTEMA

$$(*) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Suponhamos $a_{ii} \neq 0, i = 1, ..., n$.

$$(*) \Leftrightarrow (**) \begin{cases} x_1 = \frac{b_1}{a_{11}} - \frac{1}{a_{11}} (a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n) \\ x_2 = \frac{b_2}{a_{22}} - \frac{1}{a_{22}} (a_{21}x_1 + a_{23}x_3 + \dots + a_{2n}x_n) \\ \vdots \\ x_n = \frac{b_n}{a_{nn}} - \frac{1}{a_{nn}} (a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn-1}x_{n-1}) \end{cases}$$

O MÉTODO DE GAUSS-SEIDEL A PARTIR DO MÉTODO JACOBI-RICHARDSON

Como vimos, no método de Jacobi-Richardson, a sequência de aproximações para a solução $\bar{x}=(\bar{x}_1,\bar{x}_2,...,\bar{x}_n)$ do sistema é construída, considerando uma n-upla qualquer $x^{(0)}=\left(x_1^{(0)},x_2^{(0)},...,x_n^{(0)}\right)$ de \mathbb{R}^n (aproximação inicial) como o seu primeiro termo, e os demais termos obtidos segundo as seguintes equações de iteratividade (advindas de (**)):

$$\begin{cases} x_1^{(k+1)} = \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} - \dots - \frac{a_{1n}}{a_{11}} x_n^{(k)} \\ x_2^{(k+1)} = \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} - \dots - \frac{a_{2n}}{a_{22}} x_n^{(k)} \\ \vdots \\ x_n^{(k+1)} = \frac{b_n}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_1^{(k)} - \frac{a_{n2}}{a_{nn}} x_2^{(k)} - \dots - \frac{a_{nn-1}}{a_{nn}} x_{n-1}^{(k)} \end{cases}$$

O MÉTODO DE GAUSS-SEIDEL A PARTIR DOMÉTODO JACOBI-RICHARDSON

EQUAÇÕES DE ITERATIVIDADE DO MÉTODO DE JACOBI-RICHARDSON

$$\begin{cases} x_1^{(k+1)} = \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} - \dots - \frac{a_{1n}}{a_{11}} x_n^{(k)} \\ x_2^{(k+1)} = \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} - \dots - \frac{a_{2n}}{a_{22}} x_n^{(k)} \\ x_3^{(k+1)} = \frac{b_3}{a_3} - \frac{a_{31}}{a_{33}} x_1^{(k)} - \frac{a_{32}}{a_{33}} x_2^{(k)} - \dots - \frac{a_{3n}}{a_{33}} x_n^{(k)} \\ \vdots \\ x_n^{(k+1)} = \frac{b_n}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_1^{(k)} - \frac{a_{n2}}{a_{nn}} x_2^{(k)} - \dots - \frac{a_{nn-1}}{a_{nn}} x_{n-1}^{(k)} \end{cases}$$

Observe que, na segunda equação de iteratividade, $x_2^{(k+1)}$ (x_2 na iteração k+1) depende de $x_i^{(k)}$, $i\neq 2$.

Mas na primeira equação, já temos $x_1^{(k+1)}$ (x_1 na iteração k+1).

Portanto, é natural pensarmos em usar este $x_1^{(k+1)}$ no lugar de $x_1^{(k)}$ na segunda equação.

O mesmo raciocínio é válido na terceira equação, quando já teremos calculado $x_1^{(k+1)}$ (na primeira) e $x_2^{(k+1)}$ (na segunda), que poderão ser usados nos lugares de $x_1^{(k)}$ e $x_2^{(k)}$.

Seguindo este raciocínio, chegamos às seguintes equações de iteratividade do MÉTODO DE GAUSS-SEIDEL:

O MÉTODO DE GAUSS-SEIDEL – EQUAÇÕES DE ITERATIVIDADE

$$\begin{cases} x_1^{(k+1)} = \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} - \dots - \frac{a_{1n}}{a_{11}} x_n^{(k)} \\ x_2^{(k+1)} = \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k+1)} - \frac{a_{23}}{a_{22}} x_3^{(k)} - \dots - \frac{a_{2n}}{a_{22}} x_n^{(k)} \\ x_3^{(k+1)} = \frac{b_3}{a_3} - \frac{a_{31}}{a_{33}} x_1^{(k+1)} - \frac{a_{32}}{a_{33}} x_2^{(k+1)} - \frac{a_{34}}{a_{33}} x_4^{(k)} - \dots - \frac{a_{3n}}{a_{33}} x_n^{(k)} & k = 0,1,2,\dots \\ \vdots \\ x_n^{(k+1)} = \frac{b_n}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_1^{(k+1)} - \frac{a_{n2}}{a_{nn}} x_2^{(k+1)} - \dots - \frac{a_{nn-1}}{a_{nn}} x_{n-1}^{(k+1)} \end{cases}$$

$$x^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)}\right)$$
, $n-upla\ qualquer\ de\mathbb{R}^n$ (aproximação inicial).

Seja o sistema linear:
$$\begin{cases} 10x_1 + 2x_2 + x_3 = 14 \\ x_1 + 5x_2 + x_3 = 11 \\ 2x_1 + 3x_2 + 10x_3 = 8 \end{cases}$$
 .(O MESMO DA AULA ANTERIOR)

O determinante da matriz dos coeficientes é 447. O sistema tem solução única.

Vamos usar as equações de iteratividade do método de Gauss-Seidel e construir alguns termos da sequência de aproximações para a solução do sistema, supondo que haja convergência.

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 14 \\ x_1 + 5x_2 + x_3 = 11 \\ 2x_1 + 3x_2 + 10x_3 = 8 \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{14}{10} - \frac{2}{10}x_2 - \frac{1}{10}x_3 \\ x_2 = \frac{11}{5} - \frac{1}{5}x_1 - \frac{1}{5}x_3 \\ x_3 = \frac{8}{10} - \frac{2}{10}x_1 - \frac{3}{10}x_2 \end{cases}$$

Equações de iteratividade: $\begin{cases} x_1^{(k+1)} = \frac{14}{10} - \frac{2}{10} x_2^{(k)} - \frac{1}{10} x_3^{(k)} \\ x_2^{(k+1)} = \frac{11}{5} - \frac{1}{5} x_1^{(k+1)} - \frac{1}{5} x_3^{(k)} \\ x_3^{(k+1)} = \frac{8}{10} - \frac{2}{10} x_1^{(k+1)} - \frac{3}{10} x_2^{(k+1)} \end{cases}$

Vamos usar a aproximação inicial $x^{(0)} = (0,0,0)$.

$$k = 0 \Rightarrow \begin{cases} x_1^{(1)} = \frac{14}{10} - \frac{2}{10} \times 0 - \frac{1}{10} \times 0 = 1.4000 \\ x_2^{(1)} = \frac{11}{5} - \frac{1}{5} \times 1.4 - \frac{1}{5} \times 0 = 1.9200 \\ x_3^{(1)} = \frac{8}{10} - \frac{2}{10} \times 1.4 - \frac{3}{10} \times 1.92 = -0.0560 \end{cases} \Rightarrow x^{(1)} = (1.4000, 1.9200, -0.0560)$$

$$\begin{cases} x_1^{(k+1)} = \frac{14}{10} - \frac{2}{10} x_2^{(k)} - \frac{1}{10} x_3^{(k)} \\ x_2^{(k+1)} = \frac{11}{5} - \frac{1}{5} x_1^{(k+1)} - \frac{1}{5} x_3^{(k)} \\ x_3^{(k+1)} = \frac{8}{10} - \frac{2}{10} x_1^{(k+1)} - \frac{3}{10} x_2^{(k+1)} \end{cases}$$

$$x^{(0)} = (0,0,0)$$

$$x^{(1)} = (1.4000, 1.9200, -0.0560)$$

$$k = 1 \Longrightarrow \begin{cases} x_1^{(2)} = \frac{14}{10} - \frac{2}{10} \times 1.92 - \frac{1}{10} \times (-0.056) = 1.0216 \\ x_2^{(2)} = \frac{11}{5} - \frac{1}{5} \times 1.0216 - \frac{1}{5} \times (-0.056) = 2.0069 \\ x_3^{(2)} = \frac{8}{10} - \frac{2}{10} \times 1.0216 - \frac{3}{10} \times 2.0069 = -0.0064 \end{cases} \Longrightarrow x^{(2)} = (1.0216, 2.0069, -0.0064)$$

$$k = 2 \Longrightarrow \begin{cases} x_1^{(3)} = \frac{14}{10} - \frac{2}{10} \times 2.0069 - \frac{1}{10} \times (-0.0064) = 0.9993 \\ x_2^{(3)} = \frac{11}{5} - \frac{1}{5} \times 0.9993 - \frac{1}{5} \times (-0.0064) = 2.0014 \\ x_3^{(3)} = \frac{8}{10} - \frac{2}{10} \times 0.9993 - \frac{3}{10} \times 2.0014 = -0.0003 \end{cases} \Longrightarrow x^{(2)} = (1.0216, 2.0069, -0.0064)$$

$$x^{(0)} = (0,0,0)$$

$$x^{(1)} = (1.4000, 1.9200, -0.0560)$$

$$x^{(2)} = (1.0216, 2.0069, -0.0064)$$

$$x^{(3)} = (0.9993, 2.0014, -0.0003)$$

$$k = 3 \Rightarrow \begin{cases} x_1^{(4)} = \frac{14}{10} - \frac{2}{10}x_2^{(3)} - \frac{1}{10}x_3^{(3)} = 0.9997 \\ x_2^{(4)} = \frac{11}{5} - \frac{1}{5}x_1^{(4)} - \frac{1}{5}x_3^{(3)} = 2.0001 \Rightarrow x^{(4)} = (0.9997, 2.0001, 0.0001) \\ x_3^{(4)} = \frac{8}{10} - \frac{2}{10}x_1^{(4)} - \frac{3}{10}x_2^{(4)} = 0.0001 \end{cases}$$

Lembrando: a solução exata do sistema
$$\begin{cases} 10x_1 + 2x_2 + x_3 = 14 \\ x_1 + 5x_2 + x_3 = 11 & \text{\'e } x = (1,2,0). \\ 2x_1 + 3x_2 + 10x_3 = 8 \end{cases}$$

COMPARANDO AS SEQUÊNCIAS PELOS DOIS MÉTODOS ITERATIVOS:

JACOBI-RICHARDSON, k = 0,1,2,3,4.

$$x^{(0)} = (0,0,0)$$

$$x^{(1)} = (1.4000, 2.2000, 0.8000)$$

$$x^{(2)} = (0.8800, 1.7600, -0.1400)$$

$$x^{(3)} = (1.0620, 2.0520, 0.0960)$$

$$x^{(4)} = (0.9800, 1.9684, -0.0280)$$

$$x^{(5)} = (1.0091, 2.0096, 0.0135)$$

GAUS-SEIDEL, k = 0,1,2,3.

$$x^{(0)} = (0,0,0)$$

$$x^{(1)} = (1.4000, 1.9200, -0.0560)$$

$$x^{(2)} = (1.0216, 2.0069, -0.0064)$$

$$x^{(3)} = (0.9993, 2.0014, -0.0003)$$

$$x^{(4)} = (0.9987, 2.0001, 0.0001)$$

CONDIÇÕES DE CONVERGÊNCIA - JACOBI-RICHARDSON

$$\begin{cases} x_1 = \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2 - \frac{a_{13}}{a_{11}} x_3 - \dots - \frac{a_{1n}}{a_{11}} x_n \\ x_2 = \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1 - \frac{a_{23}}{a_{22}} x_3 - \dots - \frac{a_{2n}}{a_{22}} x_n \\ \vdots \\ x_n = \frac{b_n}{a_{nn}} - \frac{a_{n1}}{a_{nn}} x_1 - \frac{a_{n2}}{a_{nn}} x_2 - \dots - \frac{a_{nn}}{a_{nn-1}} x_{n-1} \end{cases} \Leftrightarrow \begin{cases} x_1 = b_1^* - a_{12}^* x_2 - a_{13}^* x_3 - \dots - a_{1n}^* x_n \\ x_2 = b_2^* - a_{21}^* x_1 - a_{23}^* x_3 - \dots - a_{2n}^* x_n \\ \vdots \\ x_n = b_n^* - a_{n1}^* x_1 - a_{n2}^* x_2 - \dots - a_{nn-1}^* x_{n-1} \end{cases}$$

$$a_{ij}^* = \frac{a_{ij}}{a_{ii}}, i \neq j \qquad a_{ii}^* = 0 \qquad b_i^* = \frac{b_i}{a_{ii}}$$

CONDIÇÕES DE CONVERGÊNCIA - JACOBI-RICHARDSON (J-R)

$$\begin{cases} x_1 = b_1^* - a_{12}^* x_2 - a_{13}^* x_3 - \dots - a_{1n}^* x_n \\ x_2 = b_2^* - a_{21}^* x_1 - a_{23}^* x_3 - \dots - a_{2n}^* x_n \\ \vdots \\ x_n = b_n^* - a_{n1}^* x_1 - a_{n2}^* x_2 - \dots - a_{nn-1}^* x_{n-1} \end{cases} \qquad a_{ij}^* = \frac{a_{ij}}{a_{ii}}, i \neq j \quad a_{ii}^* = 0 \quad b_i^* = \frac{b_i}{a_{ii}} \\ \beta_1 = |a_{12}^*| + |a_{13}^*| + \dots + |a_{1n}^*| \\ \beta_2 = |a_{21}^*| + |a_{23}^*| + \dots + |a_{2n}^*| \\ \beta_3 = |a_{31}^*| + |a_{32}^*| + |a_{34}^*| + \dots + |a_{3n}^*| \\ \vdots \\ \beta_n = |a_{n1}^*| + |a_{n2}^*| + \dots + |a_{nn-1}^*| \end{cases}$$

CRITÉRIO "NORMA LINHA < 1":

Se $\beta_i < 1$, para todo i, então o MÉTODO J-R é convergente.

Se as condições do critério acima não forem satisfeitas, o MÉTODO J-R pode convergir ou não.

Seja o sistema linear do exemplo 1:
$$\begin{cases} 10x_1 + 2x_2 + x_3 = 14 \\ x_1 + 5x_2 + x_3 = 11 \\ 2x_1 + 3x_2 + 10x_3 = 8 \end{cases}$$

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 14 \\ x_1 + 5x_2 + x_3 = 11 \\ 2x_1 + 3x_2 + 10x_3 = 8 \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{14}{10} - \frac{2}{10}x_2 - \frac{1}{10}x_3 \\ x_2 = \frac{11}{5} - \frac{1}{5}x_1 - \frac{1}{5}x_3 \\ x_3 = \frac{8}{10} - \frac{2}{10}x_1 - \frac{3}{10}x_2 \end{cases}$$

Vamos calcular os β_i , usando o critério "norma linha menor que 1":

$$\begin{cases} x_1 = \frac{14}{10} - \frac{2}{10}x_2 - \frac{1}{10}x_3 & \beta_1 = \left| -\frac{2}{10} \right| + \left| -\frac{1}{10} \right| = \frac{3}{10} \\ x_2 = \frac{11}{5} - \frac{1}{5}x_1 - \frac{1}{5}x_3 & \beta_2 = \left| -\frac{1}{5} \right| + \left| -\frac{1}{5} \right| = \frac{2}{5} \\ x_3 = \frac{8}{10} - \frac{2}{10}x_1 - \frac{3}{10}x_2 & \beta_3 = \left| -\frac{2}{10} \right| + \left| -\frac{3}{10} \right| = \frac{5}{10} = \frac{1}{2}. \end{cases}$$

$$\beta_1 = \left| -\frac{2}{10} \right| + \left| -\frac{1}{10} \right| = \frac{3}{10}$$

$$\beta_2 = \left| -\frac{1}{5} \right| + \left| -\frac{1}{5} \right| = \frac{2}{5}$$

Como $\beta_1 < 1$, $\beta_2 < 1$ e $\beta_3 < 1$, o método de Jacobi-Richardson pode ser usado para resolver o sistema com garantia de convergência.

CONDIÇÕES DE CONVERGÊNCIA – GAUSS-SEIDEL (G-S)

$$\begin{cases} x_1 = b_1^* - a_{12}^* x_2 - a_{13}^* x_3 - \dots - a_{1n}^* x_n \\ x_2 = b_2^* - a_{21}^* x_1 - a_{23}^* x_3 - \dots - a_{2n}^* x_n \\ \vdots \\ x_n = b_n^* - a_{n1}^* x_1 - a_{n2}^* x_2 - \dots - a_{nn-1}^* x_{n-1} \end{cases} \qquad a_{ij}^* = \frac{a_{ij}}{a_{ii}} \text{, } i \neq j \quad a_{ii}^* = 0 \quad b_i^* = \frac{b_i}{a_{ii}} \end{cases}$$

$$\beta_1^* = |a_{12}^*| + |a_{13}^*| + \dots + |a_{1n}^*|$$

$$\beta_2^* = \beta_1^* |a_{21}^*| + |a_{23}^*| + \dots + |a_{2n}^*|$$

$$\beta_3^* = \beta_1^* |a_{31}^*| + \beta_2^* |a_{32}^*| + |a_{34}^*| + \dots + |a_{3n}^*|$$

$$\vdots$$

$$\beta_n^* = \beta_1^* |a_{n1}^*| + \beta_2^* |a_{n2}^*| + \dots + \beta_{n-1}^* |a_{nn-1}^*|$$

CRITÉRIO DE SASSENFELD:

Se $\beta_i^* < 1$, para todo i, então o MÉTODO G-S é convergente.

Se as condições do critério de Sassenfeld não forem satisfeitas, o MÉTODO G-S pode convergir ou não.

ALGUMAS OBSERVAÇÕES SOBRE OS CRITÉRIOS DE CONVERGÊNCIA DOS DOIS MÉTODOS

A condição do Critério de Sassenfeld, ${\beta_i}^* < 1$, para todo i, é mais "fraca" do que a condição ${\beta_i} < 1$, para todo i, do Critério "Norma Linha menor que 1". Ou seja, sempre que o Critério "Norma Linha menor que 1" for satisfeito, o Critério de Sassenfeld também o será.

Logo, sempre que o Critério "Norma Linha menor que 1" for satisfeito, pode-se concluir que tanto o método de Jacobi-Richardson quanto o de Gauss-Seidel podem ser usados com garantia de convergência.

Ao se tentar usar o método de Gauss-Seidel para resolver um sistema linear, pode-se, inicialmente, verificar se o Critério "Norma Linha menor que 1" é satisfeito. Se sim, há garantia de convergência do método. Se não, verifica-se, então, se o Critério de Sassenfeld é satisfeito. Se este critério for satisfeito, há garantia de convergência. Se não, o método pode convergir ou não.

É importante entender que as condições que estabelecem os critérios de convergência aqui considerados são condições suficientes, mas não necessárias, de convergência: elas ocorrendo, há garantia de convergência; elas não ocorrendo, o método pode convergir ou não.

Seja o sistema linear:
$$\begin{cases} 10x_1 + 2x_2 + x_3 = 13 \\ 2x_1 + 5x_2 + 3x_3 = 7 \\ 2x_1 + 3x_2 + 5x_3 = 5 \end{cases}$$

$$\begin{cases} 10x_1 + 2x_2 + x_3 = 13 \\ 2x_1 + 5x_2 + 3x_3 = 7 \\ 2x_1 + 3x_2 + 5x_3 = 5 \end{cases} \Leftrightarrow \begin{cases} x_1 = \frac{13}{10} - \frac{2}{10}x_2 - \frac{1}{10}x_3 \\ x_2 = \frac{7}{5} - \frac{2}{5}x_1 - \frac{3}{5}x_3 \\ x_3 = 1 - \frac{2}{5}x_1 - \frac{3}{5}x_2 \end{cases}$$

$$\begin{cases} x_1 = \frac{13}{10} - \frac{2}{10}x_2 - \frac{1}{10}x_3 \\ x_2 = \frac{7}{5} - \frac{2}{5}x_1 - \frac{3}{5}x_3 \\ x_3 = 1 - \frac{2}{5}x_1 - \frac{3}{5}x_2 \end{cases}$$

Vamos calcular os β_i , usando o critério "norma linha menor que 1":

$$\beta_1 = \left| -\frac{2}{10} \right| + \left| -\frac{1}{10} \right| = \frac{3}{10}; \qquad \beta_2 = \left| -\frac{2}{5} \right| + \left| -\frac{3}{5} \right| = \frac{5}{5} = 1;$$

Como $\beta_2=1$, o critério "norma linha menor que 1" não é satisfeito e, portanto, não há garantia de convergência para o método de Jacobi-Richardson.

Vamos calcular os β_i^* pelo critério Sassenfeld:

$$\beta_1^* = \left| -\frac{2}{10} \right| + \left| -\frac{1}{10} \right| = \frac{3}{10} \qquad \beta_2^* = \frac{3}{10} \left| -\frac{2}{5} \right| + \left| -\frac{3}{5} \right| = \frac{18}{25} \qquad \beta_3^* = \frac{3}{10} \left| -\frac{2}{5} \right| + \frac{18}{25} \left| -\frac{3}{5} \right| = \frac{69}{125}$$

Como ${\beta_1}^* < 1$, ${\beta_2}^* < 1$ e ${\beta_3}^* < 1$, podemos garantir, pelo critério de Sassenfeld, que o método de Gauss-Seidel pode ser usado para resolver o sistema com garantia de convergência.

EXERCÍCIO: Usando $x^{(0)} = (0,0,0)$, encontre os três próximos termos da sequência de aproximações da solução do sistema pelo método de Gauss-Seidel.