

Práctica de laboratorio 8.4.2: Práctica de laboratorio del reto de show ip route

Tabla de direccionamiento

Dispositivo	Interfaz	Dirección IP	Máscara de subred
R1			
R2			
R3			
R4 R5			

Objetivos de aprendizaje

Al completar esta práctica de laboratorio, usted podrá:

- Determinar la topología de red según los resultados del comando show ip route.
- Conectar una red de acuerdo con el Diagrama de topología.
- Determinar el direccionamiento de interfaz del router según los resultados.
- Realizar tareas de configuración básicas en un router.
- Determinar rutas de nivel 1 y nivel 2.

Situación

En esta actividad de laboratorio, podrá determinar la topología de una red utilizando los resultados del comando show ip route. Debe dibujar un diagrama de topología y determinar el direccionamiento de interfaz de cada router. Luego debe crear y configurar la red basándose en los resultados. Las asignaciones de DTE y DCE quedan a su criterio. Al finalizar, los resultados de la red deben coincidir con los que se detallan a continuación.

Tarea 1: Examinar los resultados del router.

Paso 1: Examine el resultado del router R1.

```
R1#show ip route
```

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/30 is subnetted, 4 subnets
R
        10.10.10.0 [120/1] via 10.10.10.6, 00:00:09, Serial0/0/0
С
        10.10.10.4 is directly connected, Serial0/0/0
C
        10.10.10.8 is directly connected, Serial0/0/1
        10.10.10.12 [120/1] via 10.10.10.10, 00:00:09, Serial0/0/1
R
     172.16.0.0/16 is variably subnetted, 10 subnets, 5 masks
С
        172.16.1.0/27 is directly connected, FastEthernet0/0
R
        172.16.1.32/28 [120/2] via 10.10.10.10, 00:00:09, Serial0/0/1
R
        172.16.1.192/26 [120/1] via 10.10.10.6, 00:00:09, Serial0/0/0
R
        172.16.2.0/26 [120/2] via 10.10.10.6, 00:00:09, Serial0/0/0
R
        172.16.2.64/27 [120/1] via 10.10.10.10, 00:00:09, Serial0/0/1
С
        172.16.3.0/25 is directly connected, FastEthernet0/1
R
        172.16.3.128/26 [120/1] via 10.10.10.6, 00:00:09, Serial0/0/0
R
        172.16.3.192/29 [120/2] via 10.10.10.6, 00:00:09, Serial0/0/0
R
        172.16.4.0/27 [120/1] via 10.10.10.10, 00:00:09, Serial0/0/1
        172.16.4.128/25 [120/2] via 10.10.10.10, 00:00:09, Serial0/0/1
R
     192.168.1.0/24 is directly connected, Loopback0
С
     0.0.0.0/0 is directly connected, Loopback0
```

Paso 2: Examine el resultado del router R2.

R2#show ip route

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
```

```
Gateway of last resort is 10.10.10.2 to network 0.0.0.0
     10.0.0.0/30 is subnetted, 4 subnets
        10.10.10.0 is directly connected, Serial0/0/0
       10.10.10.4 [120/1] via 10.10.10.2, 00:00:04, Serial0/0/0
R
       10.10.10.8 [120/2] via 10.10.10.2, 00:00:04, Serial0/0/0
R
       10.10.10.12 [120/3] via 10.10.10.2, 00:00:04, Serial0/0/0
R
     172.16.0.0/16 is variably subnetted, 10 subnets, 5 masks
        172.16.1.0/27 [120/2] via 10.10.10.2, 00:00:04, Serial0/0/0
R
        172.16.1.32/28 [120/4] via 10.10.10.2, 00:00:04, Serial0/0/0
R
       172.16.1.192/26 [120/1] via 10.10.10.2, 00:00:04, Serial0/0/0
R
С
       172.16.2.0/26 is directly connected, FastEthernet0/0
R
       172.16.2.64/27 [120/3] via 10.10.10.2, 00:00:04, Serial0/0/0
       172.16.3.0/25 [120/2] via 10.10.10.2, 00:00:04, Serial0/0/0
R
       172.16.3.128/26 [120/1] via 10.10.10.2, 00:00:04, Serial0/0/0
R
С
       172.16.3.192/29 is directly connected, FastEthernet0/1
R
       172.16.4.0/27 [120/3] via 10.10.10.2, 00:00:04, Serial0/0/0
R
       172.16.4.128/25 [120/4] via 10.10.10.2, 00:00:04, Serial0/0/0
R
     192.168.1.0/24 [120/2] via 10.10.10.2, 00:00:04, Serial0/0/0
     0.0.0.0/0 [120/2] via 10.10.10.2, 00:00:04, Serial0/0/0
```

Paso 3: Examine el resultado del router R3.

R3#show ip route

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       {\tt E1} - OSPF external type 1, {\tt E2} - OSPF external type 2, {\tt E} - {\tt EGP}
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 10.10.10.5 to network 0.0.0.0
     10.0.0.0/30 is subnetted, 4 subnets
С
        10.10.10.0 is directly connected, Serial0/0/1
С
        10.10.10.4 is directly connected, Serial0/0/0
        10.10.10.8 [120/1] via 10.10.10.5, 00:00:04, Serial0/0/0
R
R
        10.10.10.12 [120/2] via 10.10.10.5, 00:00:04, Serial0/0/0
     172.16.0.0/16 is variably subnetted, 10 subnets, 5 masks
        172.16.1.0/27 [120/1] via 10.10.10.5, 00:00:04, Serial0/0/0
R
R
        172.16.1.32/28 [120/3] via 10.10.10.5, 00:00:04, Serial0/0/0
С
        172.16.1.192/26 is directly connected, FastEthernet0/1
R
        172.16.2.0/26 [120/1] via 10.10.10.1, 00:00:03, Serial0/0/1
R
        172.16.2.64/27 [120/2] via 10.10.10.5, 00:00:04, Serial0/0/0
R
        172.16.3.0/25 [120/1] via 10.10.10.5, 00:00:04, Serial0/0/0
С
        172.16.3.128/26 is directly connected, FastEthernet0/0
        172.16.3.192/29 [120/1] via 10.10.10.1, 00:00:03, Serial0/0/1
R
        172.16.4.0/27 [120/2] via 10.10.10.5, 00:00:04, Serial0/0/0
R
        172.16.4.128/25 [120/3] via 10.10.10.5, 00:00:04, Serial0/0/0
R
     192.168.1.0/24 [120/1] via 10.10.10.5, 00:00:04, Serial0/0/0
R
R*
     0.0.0.0/0 [120/1] via 10.10.10.5, 00:00:04, Serial0/0/0
```

Paso 4: Examine el resultado del router R4.

R4#show ip route

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 10.10.10.9 to network 0.0.0.0
     10.0.0.0/30 is subnetted, 4 subnets
        10.10.10.0 [120/2] via 10.10.10.9, 00:00:14, Serial0/0/0
R
R
       10.10.10.4 [120/1] via 10.10.10.9, 00:00:14, Serial0/0/0
       10.10.10.8 is directly connected, Serial0/0/0
С
С
       10.10.10.12 is directly connected, Serial0/0/1
     172.16.0.0/16 is variably subnetted, 10 subnets, 5 masks
        172.16.1.0/27 [120/1] via 10.10.10.9, 00:00:14, Serial0/0/0
R
       172.16.1.32/28 [120/1] via 10.10.10.14, 00:00:17, Serial0/0/1
R
       172.16.1.192/26 [120/2] via 10.10.10.9, 00:00:14, Serial0/0/0
R
       172.16.2.0/26 [120/3] via 10.10.10.9, 00:00:14, Serial0/0/0
R
С
       172.16.2.64/27 is directly connected, FastEthernet0/1
       172.16.3.0/25 [120/1] via 10.10.10.9, 00:00:14, Serial0/0/0
R
R
       172.16.3.128/26 [120/2] via 10.10.10.9, 00:00:14, Serial0/0/0
R
       172.16.3.192/29 [120/3] via 10.10.10.9, 00:00:14, Serial0/0/0
С
       172.16.4.0/27 is directly connected, FastEthernet0/0
       172.16.4.128/25 [120/1] via 10.10.10.14, 00:00:17, Serial0/0/1
R
R
     192.168.1.0/24 [120/1] via 10.10.10.9, 00:00:14, Serial0/0/0
     0.0.0.0/0 [120/1] via 10.10.10.9, 00:00:14, Serial0/0/0
```

Paso 5: Examine el resultado del router R5.

R5#show ip route

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
       {\tt E1} - OSPF external type 1, {\tt E2} - OSPF external type 2, {\tt E} - {\tt EGP}
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 10.10.10.13 to network 0.0.0.0
     10.0.0.0/30 is subnetted, 4 subnets
        10.10.10.0 [120/3] via 10.10.10.13, 00:00:21, Serial0/0/0
R
R
        10.10.10.4 [120/2] via 10.10.10.13, 00:00:21, Serial0/0/0
        10.10.10.8 [120/1] via 10.10.10.13, 00:00:21, Serial0/0/0
R
        10.10.10.12 is directly connected, Serial0/0/0
С
     172.16.0.0/16 is variably subnetted, 10 subnets, 5 masks
R
        172.16.1.0/27 [120/2] via 10.10.10.13, 00:00:21, Serial0/0/0
        172.16.1.32/28 is directly connected, FastEthernet0/1
С
```

```
172.16.1.192/26 [120/3] via 10.10.10.13, 00:00:21, Serial0/0/0
R
R
       172.16.2.0/26 [120/4] via 10.10.10.13, 00:00:21, Serial0/0/0
R
       172.16.2.64/27 [120/1] via 10.10.10.13, 00:00:21, Serial0/0/0
R
       172.16.3.0/25 [120/2] via 10.10.10.13, 00:00:21, Serial0/0/0
R
        172.16.3.128/26 [120/3] via 10.10.10.13, 00:00:21, Serial0/0/0
R
       172.16.3.192/29 [120/4] via 10.10.10.13, 00:00:21, Serial0/0/0
R
       172.16.4.0/27 [120/1] via 10.10.10.13, 00:00:21, Serial0/0/0
С
       172.16.4.128/25 is directly connected, FastEthernet0/0
R
    192.168.1.0/24 [120/2] via 10.10.10.13, 00:00:21, Serial0/0/0
R*
     0.0.0.0/0 [120/2] via 10.10.10.13, 00:00:21, Serial0/0/0
```

Tarea 2: Crear un diagrama de la red de acuerdo con los resultados del router.

Paso 2: Documente las direcciones de interfaz en la tabla de direccionamiento.

Tarea 3: Crear y configurar el diagrama con Packet Tracer.

- Paso 1: Cree el diagrama de topología en Packet Tracer. Utilice el router 1841 o el router 2811.
- Paso 2: Configure las interfaces con la dirección IP y máscara de subred correspondientes.
- Paso 3: Configure el protocolo de enrutamiento correspondiente para cada router y notifique a todas las redes conectadas directamente.
- Paso 4: Verifique que las configuraciones coincidan con los resultados de la Tarea 1.

Tarea 4: Identificar los procesos de enrutamiento

Paso 1: Examine la tabla de enrutamiento de R1.
¿Cuáles son las direcciones IP de los vecinos del router R1 conectados directamente?

¿Qué rutas tomó R1 de los vecinos conectados directamente?

Paso 2: Examine la tabla de enrutamiento de R2.
¿Cuántas redes o subredes totales tomó R2 de sus vecinos?
¿Dónde reenviará R2 los paquetes de redes que actualmente no se encuentren en la tabla de enrutamiento ¿Por qué?
¿Qué significa el extracto "R* 0.0.0.0/0 [120/2] via 10.10.10.2, 00:00:04, Serial0/0/0" al final de la tabla de enrutamiento de R2?

Paso 3: Examine la tabla de enrutamiento de R3.	
¿Qué rutas de Nivel 2 tomó R3 de sus vecinos?	
¿Qué redes están conectadas directamente a R3?	
Paso 4: Examine la tabla de enrutamiento de R4.	
¿Cuál es la red que se encuentra más lejos de R4 y a cuántos saltos se encuentra	a?
¿Cuántas direcciones de host disponibles hay en la red más alejada de R4?	
Paso 5: Examine la tabla de enrutamiento de R5.	
¿Cuántos routers debe atravesar un paquete para llegar desde R5 a la red 172.16 ¿Por qué el "gateway de último recurso" para R5 está identificado como 10.10.10.	