An Axiomatic Basis for Computer Programming

Paper by: "Tony" Hoare

Presentation by: Valentin Robert

@Ptival

Presented at: Papers We Love San Diego

On: Aug. 3rd 2017

Context of the paper (1969)

FORTRAN

LISP

ALGOL

BASIC

• Soon to be created:

C

Prolog

ML

Soon to be born:

Linus Torvalds

The problem

Tony Hoare's starting point

Program execution is an exact science,

 so we can reason about programs deductively,

 therefore, we should elucidate the axioms and rules of reasoning about programs.

Where to start!?

 Coming up with axioms for computer arithmetic is already challenging:

$$x + y = y + x$$

$$x + 1 > x$$

$$(x + y) - y = x$$

Sure...

...overflows?

...floating point?

What about entire programs?

 We would like to know whether certain assertions about variables of the program are true at certain times of the execution.

- Those assertions will not necessarily ascribe concrete values to variables, but rather describe relations between variables of the program.
 - i.e. "X must be equal to y + 1"

Swap

```
swap(x, y) {
x = x_0 \Lambda y = y_0
    y := x + y
x = x_0 \Lambda y = y_0 + x_0
    x := y - x
        \Lambda \quad y = y_0 + x_0
    y := y - x
        \Lambda y = X_0
```

Floyd-Hoare triple

 The main idea of this paper is to define a notation to capture this relation between:

```
What we know before {P}
some_instruction() S
What we know after {Q}
```

Floyd-Hoare triple^{[1][2]}

A Floyd-Hoare triple is an assertion noted:

{ P } S { Q }

whose meaning is:

- from any starting state such that P holds (pre-condition)
- if running the program S terminates
- then the final state is such that Q holds (post-condition)

Note: the paper uses the older convention "P {S} Q"

^[1] Floyd, Robert W. "Assigning meanings to programs." *Program Verification*. Springer Netherlands, 1993. 65-81.

^[2] Hoare, Charles Antony Richard. "An axiomatic basis for computer programming." *Communications of the ACM* 12.10 (1969): 576-580.

Floyd-Hoare triple (examples)

```
\{ x = 41 \} x := x + 1 \{ x = 42 \}
{ True } x := 0 { x = 0 }
\{ b = true \land a = 21 \}
if b
  then x := a
  else x := -a
\{ x = -21 \}
```

Floyd-Hoare triple (weird examples)

Some triples are invalid:

$$\{ x = 41 \} x := x + 1 \{ x = 23 \}$$

Some triples are imprecise:

```
\{ x = 41 \} x := x + 1 \{ x > 23 \}
```

- How do we know which ones are valid?
- How do we know which ones are precise?

Axiom of assignment (example)

```
????? }
x := (6 * y) - 2
x := 23 \land b = true }
```

Under what precondition will the postcondition be true?

Axiom of assignment (example)

```
{ (6 * y) - 2 = 23 \land b = true }

x := (6 * y) - 2

{ x = 23 \land b = true }
```

Surely, if the value on the right-hand-side satisfies the condition, then the variable on the left-hand-side satisfies the condition after it is assigned.

Axiom of assignment (example)

```
\{ P((6 * y) - 2) \}
x := (6 * y) - 2
\{ P(x) \}
```

Surely, if the value on the right-hand-side satisfies the condition, then the variable on the left-hand-side satisfies the condition once it is assigned.

Notation warning

Axiom	Rule
	$\{P_1\}S_1\{Q_1\} \{P_2\}S_2\{Q_2\}$
{P}S{Q}	{P}S{Q}

Axiom of assignment

$$\{ P[x \leftarrow e] \} x := e \{ P \}$$

- This says:
 - a property P of \times will hold after the assignment
 - as long as the property already holds for e instead of x before the assignment

Swap

```
swap(x, y) {
               = y_0 \Lambda
     y := x + y
         y - x = y_0 \Lambda
     x := y - x
              \overline{x} = y_0 \wedge y - x
                                              = x_0
              x = y_0 \Lambda
```

Compositional reasoning

We would like a set of axioms to capture
 precisely the effect of each instruction on the
 facts we know to be true,

 and a set of rules to derive the meaning of complex programs as a combination of the meaning of its instructions

Rule of composition

```
\{P\} S_1 \{R\} \{R\} S_2 \{Q\}
```

 $\{P\} S_1 ; S_2 \{Q\}$

Rule of composition

not very compositional...

$$\{P\} S_1 \{R\} \{R\} S_2 \{Q\}$$

$$\{P\} S_1 ; S_2 \{Q\}$$

Rules of consequence

$$\{P\} S \{R\} R \Rightarrow Q$$

{P} S {Q}

weakens the post-condition

$$P \Rightarrow R$$

 $\{P\} S \{Q\}$

strengthens the pre-condition

Composition + Consequence

```
\{P\} \ S_1 \ \{A\} \ A \Rightarrow B \ \{B\} \ S_2 \ \{Q\} \ \{P\} \ S_1 \ ; \ S_2 \ \{Q\} \
```

REASONING BACKWARD AND FORWARD

Hoare's axiom of assignment

```
{ Q[x←e] }
x := e
{ Q }
```

This axiom goes backward:

- given a post-condition Q
- it gives us the pre-condition

How do we go forward?

```
{ P }
x := e
{ ??? }
```

This axiom goes forward:

- given a pre-condition P
- it gives us the post-condition

```
\{ x = 40 \land y = 2 \land b = 0 \}
x := x + y
\{ ... \}
```

```
{ x = 40 \land y = 2 \land b = 0 }

x := x + y

{ \exists x_0.

x = (x + y)[x \lefta x_0]

\lambda (x = 40 \lambda y = 2 \lambda b = 0)[x \lefta x_0]

}
```

```
{ x = 40 \land y = 2 \land b = 0 }

x := x + y

{ \exists x_0.

x = x_0 + y

\land (x_0 = 40 \land y = 2 \land b = 0)

}
```

```
\{ x = 40 \land y = 2 \land b = 0 \}
x := x + y
\{ x = 40 + y \land y = 2 \land b = 0 \}
```

Two modes of reasoning

Forward reasoning

I know some facts at the beginning of execution...

...I can compute the set of known facts at the end of execution

Backward reasoning

I want some facts to be true at the end of execution...

...I can compute the necessary conditions for the beginning of execution

Automating the reasoning

- A couple years later, Dijkstra will discover that:
 - given a post-condition, there exists a weakest precondition, i.e. a minimal set of conditions to ensure the post-condition
 - given a pre-condition, there exists a strongest post-condition, i.e. a maximal amount of facts that are ensured by the pre-condition
 - and those can often be derived automatically!

Automating the reasoning

 Hoare's axiom of assignment was the weakest pre-condition for assignment!

 Floyd's axiom of assignment was the strongest post-condition for assignment!

Those capture the notion of preciseness we cared about earlier

A LOOPY PROBLEM

A loopy problem

```
{ P<sub>1</sub>(x) ∧ P<sub>2</sub>(y) }
while !done do
    x := f(x)
    done := done?(x)
{ ??? }
```

What do we know after the loop ends?

Rule of iteration

```
{ I ∧ C } S { I }
```

```
\{ I \}  while C do S \{ I \land \neg C \}
```

 This rule introduces the notion of a loop invariant: a property I that is preserved by the loop body

Loop invariant

```
m \geqslant 0 \land \exists n \geqslant 0, a = n*b + m
m := a
while (m \geqslant b) {
I \wedge m \geqslant b
   m := m - b
 I \wedge \neg (m \geqslant b)
```

Let's boogie!

http://rise4fun.com/Boogie

Boogie is an automated verifier from Microsoft Research based on Floyd-Hoare automatic verification

+ lot of cool work on "guessing" loop invariants!

ANOTHER HEAP OF PROBLEMS

Pointers are tricky!

$$\{x\mapsto 0 \land y\mapsto 0\}$$
 [x] := 4 $\{x\mapsto 4 \land y\mapsto 0\}$

Aliasing

$$\{x\mapsto 0 \land y\mapsto 0\}$$
 [x] := 4 $\{x\mapsto 4 \land y\mapsto 0\}$

We say that x and y are aliases.

```
 \{x\mapsto?\ \land\ y\mapsto y_0\}   [x] := v   \{x\mapsto \lor\ \land\ ((x\neq y\land y\mapsto y_0)\ \lor\ (x=y\land y\mapsto \lor))\}
```

```
while i ≠ nil:
  tmp = [i + 1]
  [i + 1] = j
  i = tmp
```

```
while i ≠ nil:
\triangleright tmp = [i + 1]
   [i + 1] = j
  i = tmp
```

```
while i ≠ nil:
  tmp = [i + 1]
\triangleright [i + 1] = j
  i = tmp
```

```
while i ≠ nil:
  tmp = [i + 1]
  [i + 1] = j
▶ j = i
  i = tmp
```

while i ≠ nil:

```
tmp = [i + 1]
  [i + 1] = j
  j = i
▶ i = tmp
```

```
while i ≠ nil:
\triangleright tmp = [i + 1]
   [i + 1] = j
  i = tmp
```

```
while i ≠ nil:
  tmp = [i + 1]
\triangleright [i + 1] = j
  i = tmp
```

```
while i ≠ nil:
  tmp = [i + 1]
  [i + 1] = j
▶ j = i
  i = tmp
```

```
while i ≠ nil:
   tmp = [i + 1]
   [i + 1] = j
   j = i
   i = tmp
```

What is this loop's invariant?

Loop invariant (in plain logic)

```
(\exists \alpha \beta, linkedlist(i, \alpha))
        Λ linkedlist(j, β)
        \Lambda \ \alpha_{o}^{\dagger} = \alpha^{\dagger} \cdot \beta
Λ disjointlinkedlists(i, j)
Λ ... for all other data in the
program, guarantee that they are
disjoint from those two lists ...
```

Loop invariant (in separation logic)

- Separation logic introduces:
 - a notion of domain (or footprint) for each assertion
 - a notion of conjunction capturing the idea that the domains are disjoint and precise

Separation logic (disjointness)

These two assertions are now different:

x points to 0, and y points to 0

x points to 0, and y points to 0, and x and y do not alias

Aliasing

```
WRONG:
```

$$\{x\mapsto 0 \land y\mapsto 0\} *x = 4 \{x\mapsto 4 \land y\mapsto 0\}$$

CORRECT:

$$\{x\mapsto 0 * y\mapsto 0\} *x = 4 \{x\mapsto 4 * y\mapsto 0\}$$

Verifying linked list reversal

I: $\exists \alpha \beta$, $ll(i, \alpha) * ll(j, \beta) \wedge \alpha_0^{\dagger} = \alpha^{\dagger} \cdot \beta$

```
while i ≠ nil:
I ∧ i ≠ nil
  tmp = [i + 1]
  [i + 1] = j
  j = i
  i = tmp
```

Frame rule

Separation logic formulae are tight:

```
\{x\mapsto 0 * y\mapsto 0\} [x] := 4 \{x\mapsto 4\} is wrong!
```

The frame rule allows relaxing them:

$$\{P * R\} S \{Q * R\}$$

modularity in terms or memory!

FINAL NOTES

There's more!

- Separation logic is one of a multitude of substructural logics, which let us account for facts as "resources" within logic
 - see Rust's ownership/borrowing
- Functional languages can also benefit
 - see Hoare Type Theory
 - see work on dependent and linear types
- Lots of extensions (concurrent, probabilistic, ...)