

Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

WPISUJE ZDAJĄCY		Miejsce
KOD	PESEL	na naklejkę z kodem

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

LISTOPAD 2010

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem □ i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz i zakoduj swój numer PESEL.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1_1P-105

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Liczba |5-7|-|-3+4| jest równa

A. −3

B. −5

C. 1

D. 3

Zadanie 2. *(1 pkt)*

Wskaż rysunek, na którym jest przedstawiony zbiór rozwiązań nierówności $|x-2| \ge 3$.

Zadanie 3. (1 pkt)

Samochód kosztował 30000 zł. Jego cenę obniżono o 10%, a następnie cenę po tej obniżce ponownie obniżono o 10%. Po tych obniżkach samochód kosztował

A. 24400 zł

B. 24700 zł

C. 24000 zł

D. 24300 zł

5

x

Zadanie 4. (1 pkt)

Dana jest liczba $x = 63^2 \cdot \left(\frac{1}{3}\right)^4$. Wtedy

A. $x = 7^2$

B. $x = 7^{-2}$

C. $x = 3^8 \cdot 7^2$

D. x = 3.7

Zadanie 5. (1 pkt)

Kwadrat liczby $x = 5 + 2\sqrt{3}$ jest równy

A. 37

B. $25 + 4\sqrt{3}$

C. $37 + 20\sqrt{3}$

D. 147

Zadanie 6. (1 pkt)

Liczba $\log_5 5 - \log_5 125$ jest równa

A. −2

B. −1

C. $\frac{1}{25}$

D. 4

W zadaniach 7, 8 i 9 wykorzystaj przedstawiony poniżej wykres funkcji f.

Zadanie 7. *(1 pkt)*

Zbiorem wartości funkcji f jest

A.
$$\langle -2,5 \rangle$$

B.
$$\langle -4, 8 \rangle$$

B.
$$\langle -4,8 \rangle$$
 C. $\langle -1,4 \rangle$ **D.** $\langle 5,8 \rangle$

D.
$$(5,8)$$

Zadanie 8. (1 pkt)

Korzystając z wykresu funkcji f, wskaż nierówność prawdziwą.

A.
$$f(-1) < f(1)$$

B.
$$f(1) < f(3)$$

A.
$$f(-1) < f(1)$$
 B. $f(1) < f(3)$ **C.** $f(-1) < f(3)$ **D.** $f(3) < f(0)$

D.
$$f(3) < f(0)$$

Zadanie 9. *(1 pkt)*

Wykres funkcji g określonej wzorem g(x) = f(x) + 2 jest przedstawiony na rysunku

Zadanie 10. *(1 pkt)*

Liczby x_1 i x_2 są pierwiastkami równania $x^2 + 10x - 24 = 0$ i $x_1 < x_2$. Oblicz $2x_1 + x_2$.

Zadanie 11. *(1 pkt)*

Liczba 2 jest pierwiastkiem wielomianu $W(x) = x^3 + ax^2 + 6x - 4$. Współczynnik a jest równy

Zadanie 12. *(1 pkt)*

Wskaż m, dla którego funkcja liniowa określona wzorem f(x) = (m-1)x + 3 jest stała.

A.
$$m = 1$$

B.
$$m = 2$$

C.
$$m = 3$$

D.
$$m = -1$$

Zadanie 13. *(1 pkt)*

Zbiorem rozwiązań nierówności $(x-2)(x+3) \ge 0$ jest

A.
$$\langle -2,3 \rangle$$

B.
$$\langle -3, 2 \rangle$$

C.
$$\left(-\infty, -3\right) \cup \left\langle 2, +\infty \right\rangle$$

D.
$$\left(-\infty, -2\right) \cup \left\langle 3, +\infty \right)$$

Zadanie 14. (1 pkt)

W ciągu geometrycznym (a_n) dane są: $a_1 = 2$ i $a_2 = 12$. Wtedy

A.
$$a_4 = 26$$

C.
$$a_4 = 32$$

D.
$$a_4 = 2592$$

Zadanie 15. (1 pkt)

W ciągu arytmetycznym $a_1=3$ oraz $a_{20}=7$. Wtedy suma $S_{20}=a_1+a_2+...+a_{19}+a_{20}$ jest równa

Zadanie 16. *(1 pkt)*

Na rysunku zaznaczono długości boków i kąt α trójkąta prostokątnego (zobacz rysunek). Wtedy

$$\mathbf{A.} \quad \cos \alpha = \frac{5}{13}$$

B.
$$tg\alpha = \frac{13}{12}$$

B.
$$tg\alpha = \frac{13}{12}$$
 C. $cos\alpha = \frac{12}{13}$ **D.** $tg\alpha = \frac{12}{5}$

D.
$$tg\alpha = \frac{12}{5}$$

Zadanie 17. (1 pkt)

Ogród ma kształt prostokąta o bokach długości 20 m i 40 m. Na dwóch końcach przekątnej tego prostokąta wbito słupki. Odległość między tymi słupkami jest

A. równa 40 m

B. większa niż 50 m

C. większa niż 40 m i mniejsza niż 45 m

D. większa niż 45 m i mniejsza niż 50 m

Zadanie 18. *(1 pkt)*

Pionowy słupek o wysokości 90 cm rzuca cień o długości 60 cm. W tej samej chwili stojąca obok wieża rzuca cień długości 12 m. Jaka jest wysokość wieży?

A. 18 m

B. 8 m

C. 9 m

D. 16 m

Zadanie 19. (1 pkt)

Punkty A, B i C leżą na okręgu o środku S (zobacz rysunek). Miara zaznaczonego kąta wpisanego ACB jest równa

A. 65°

B. 100°

C. 115°

D. 130°

Zadanie 20. (1 pkt)

Dane są punkty S = (2,1), M = (6,4). Równanie okręgu o środku S i przechodzącego przez punkt M ma postać

A.
$$(x-2)^2 + (y-1)^2 = 5$$

B.
$$(x-2)^2 + (y-1)^2 = 25$$

C.
$$(x-6)^2 + (y-4)^2 = 5$$

D.
$$(x-6)^2 + (y-4)^2 = 25$$

Zadanie 21. (1 pkt)

Proste o równaniach y = 2x + 3 oraz $y = -\frac{1}{2}x + 2$

- **A.** są równoległe i różne
- **B.** są prostopadłe
- C. przecinają się pod kątem innym niż prosty
- D. pokrywają się

Zadanie 22. (1 pkt)

Wskaż równanie prostej, która jest osią symetrii paraboli o równaniu $y = x^2 - 4x + 2010$.

A.
$$x = 4$$

B.
$$x = -4$$
 C. $x = 2$

C.
$$x = 2$$

D.
$$x = -2$$

Zadanie 23. (1 pkt)

Kat α jest ostry i $\cos \alpha = \frac{3}{7}$. Wtedy

A.
$$\sin \alpha = \frac{2\sqrt{10}}{7}$$
 B. $\sin \alpha = \frac{\sqrt{10}}{7}$ **C.** $\sin \alpha = \frac{4}{7}$ **D.** $\sin \alpha = \frac{3}{4}$

B.
$$\sin \alpha = \frac{\sqrt{10}}{7}$$

$$\mathbf{C.} \quad \sin \alpha = \frac{4}{7}$$

D.
$$\sin \alpha = \frac{3}{4}$$

Zadanie 24. (1 pkt)

W karcie dań jest 5 zup i 4 drugie dania. Na ile sposobów można zamówić obiad składający się z jednej zupy i jednego drugiego dania?

Zadanie 25. (1 pkt)

W czterech rzutach sześcienną kostką do gry otrzymano następujące liczby oczek: 6, 3, 1, 4. Mediana tych danych jest równa

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 pkt)

Rozwiąż nierówność $x^2 + 11x + 30 \le 0$.

Odpowiedź:

Zadanie 27. *(2 pkt)*

Rozwiąż równanie $x^3 + 2x^2 - 5x - 10 = 0$.

Zadanie 28. *(2 pkt)*

Przeciwprostokątna trójkąta prostokątnego jest dłuższa od jednej przyprostokątnej o 1 cm i od drugiej przyprostokątnej o 32 cm. Oblicz długości boków tego trójkąta.

Odpowiedź:

Zadanie 29. (2 pkt)

Dany jest prostokąt ABCD. Okręgi o średnicach AB i AD przecinają się w punktach A i P (zobacz rysunek). Wykaż, że punkty B, P i D leżą na jednej prostej.

Zadanie 30. *(2 pkt)*

Uzasadnij, że jeśli $(a^2+b^2)(c^2+d^2)=(ac+bd)^2$, to ad=bc.

Zadanie 31. (2 pkt)

Oblicz, ile jest liczb naturalnych czterocyfrowych, w których zapisie pierwsza cyfra jest parzysta, a pozostałe nieparzyste.

Zadanie 32. (4 pkt)

Ciąg (1, x, y-1) jest arytmetyczny, natomiast ciąg (x, y, 12) jest geometryczny. Oblicz x oraz y i podaj ten ciąg geometryczny.

Zadanie 33. *(4 pkt)*

Punkty A = (1, 5), B = (14, 31), C = (4, 31) są wierzchołkami trójkąta. Prosta zawierająca wysokość tego trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz długość odcinka BD.

Zadanie 34. (5 pkt)

Droga z miasta A do miasta B ma długość 474 km. Samochód jadący z miasta A do miasta B wyrusza godzinę później niż samochód z miasta B do miasta A. Samochody te spotykają się w odległości 300 km od miasta B. Średnia prędkość samochodu, który wyjechał z miasta A, liczona od chwili wyjazdu z A do momentu spotkania, była o 17 km/h mniejsza od średniej prędkości drugiego samochodu liczonej od chwili wyjazdu z B do chwili spotkania. Oblicz średnią prędkość każdego samochodu do chwili spotkania.

