	质量守恒定律
1.	一定条件下 2.3g 甲与一定质量的乙恰好完全反应,生成 2.7g 丙和 4.4g 丁,微观的反应示意图如图所
	示。下列说法正确的是 ()
	A. 甲的化学式为 C ₂ H ₆
	B. 该反应中共涉及三种氧化物
	C. 反应前后分子总数增加
	D. 该反应中体现还原性的物质是乙
	○ 紅原子
	甲 十 章 千 章 氧原子
	乙 丙 丁 碳原子
2.	有 10g 某固体样品,可能由碳酸钙,碳酸镁,氢氧化镁中的一种或几种组成,向其中加入过量的稀盐
	酸, 充分反应后生成 4.4g 二氧化碳。下列有关该固体样品的组成的说法,不正确的是()
	A. 该固体样品可能是纯净物
	B. 碳酸钙的质量可能是 7.5g
	C. 碳酸镁的质量可能是 4.2g
	D. 氢氧化镁的质量可能是 2.9g
3.	FeCO ₃ 在空气中煅烧生成铁的氧化物和 CO ₂ 。现煅烧 11.6g 的 FeCO ₃ ,得到 7.92g Fe ₂ O ₃ 和 FeO 的固体混
	合物。下列叙述正确的是()
	A. 该反应有氧气参与且质量为 0.8g
	B. 该过程产生的 CO₂的质量为 2.2g
	C. 反应前后固体中的氧元素质量增加
	D. 生成的固体混合物中含有氧化亚铁 0.72g
4.	水和水溶液与人类生活关系密切
	(1) 在水蒸发的过程中,下列说法正确的是
	A. 水分子在不断运动
	B. 水分子之间间隔不变
	C. 水分子大小不发生变化
	D. 水分子可以保持水的物理性质
	(2) 在电解水的过程中,下列说法正确的是
	A. 水分子本身发生了改变
	B. 氢原子和氧原子数目没有发生变化
	C. 氢原子和氧原子种类发生了改变
	D. 氢原子和氧原子质量发生了变化
	氧气的性质
5.	下列物质能在空气中燃烧,且产生大量白烟的是()
	A. 红磷 B. 铁丝 C. 木炭 D. 硫粉
6.	空气是一种重要的资源。
	(1) 下列属于空气污染物的是。
	A. 臭氧 B. 二氧化氮 C. PM _{2.5} D. PM ₁₀
	(2) 氢气是清洁能源,写出氢气燃烧的化学方程式:。
	(3) 食品包装中充氮气可以防腐,是由于氮气。

- 甲,乙两种不含结晶水的固体物质的溶解度曲线如图所示,下列说法**错误**的是 ()
 - A. t₂℃时, 甲, 乙的溶解度相等
 - B. t₁℃时, 甲的饱和溶液中溶质与溶剂的质量比为 1:5
 - C. t₃℃时,分别将甲,乙固体溶于水,配成两种物质的饱和溶液各 100g,所需甲的质量小于乙的质
 - D. 甲中含有少量的乙,可采用冷却热的饱和溶液的方法提纯甲

- 8. A, B, C 三种不含结晶水的固体物质的溶解度曲线如图所示, 小洁同学由图得出以下几条结论:
 - (1) t_1 ℃时,A 的饱和溶液和 C 的饱和溶液中溶质的质量相等
 - (2) 要使 C 的饱和溶液转为不饱和溶液,可采用升温的方法
 - (3) 从含有少量 B 的 A 饱和溶液中得到较多的 A 晶体,通常可采用冷却热饱和溶液的方法
 - (4) t₂℃时, 若从 A 和 B 两种物质的饱和溶液中析出等质量的固体, 须蒸发掉较多水的是 A 物质的饱和 溶液
 - (5) 将 t_2 ℃时,A,B,C 的饱和溶液分别降温至 t_1 ℃,所得溶液中溶质的质量分数: B>A=C 以上正确的有()

A. 一个

B. 2 个 C. 3 个

D. 4 个

- 如图是甲,乙两种不含结晶水的固体物质的溶解度曲线,下列说法正确的是()
 - A. 图中 P 点所表示的溶液是 t₃℃时甲的饱和溶液
 - B. 可用 t₁℃时 20%的甲溶液配置 10%的甲溶液
 - C. 相同温度时, 甲的溶解度大于乙的溶解度
 - D. 分别将 t_3 °C的甲,乙饱和溶液降温至 t_3 °C,所得溶液中溶质质量分数相等

- 10. 水和溶液在生产,生活中具有广泛的用途
 - (1) 生理盐水是医疗上常用的一种溶液,100mL 生理盐水(其密度可近似看做1g/cm³)中含有0.9g 医用氯化钠,该溶液中溶质的质量分数为______;打开汽水瓶盖后,有大量气泡冒出,说明气体溶解度

(2) 下列实验可以用来验证水的组成的是_____

A. 水的电解

B. 过氧化氢的分解

C. 氢气在氧气中燃烧

D. 氢气和氧化铜反应

(多选)

- (3) 如图是甲, 乙两种不含结晶水的固体物质的溶解度曲线。请回答下列问题:
 - 1. t₁℃时, 乙物质的溶解度是 g。
 - 2. t₂℃时,20g 甲加入50g 水中,所得溶液中溶质和溶液的质量比是

(写最简整数比)。

- 3. t_1 °C时,对于 ag 图中 P 点所示的甲溶液和 bg 图中 P 点所示的乙溶液($a \neq b$),下列关系一定成立的是_____(填字母)。
 - A. 该温度下,两溶液中溶质的质量分数相等
 - B. 分别升温至 t₂℃, 所得溶液中溶质的质量分数相等
 - C. 该温度下,分别蒸发等质量的水,析出的晶体质量相等
 - D. 保持 t_1 ^{\circ} 不变,分别加入等质量的水,混合均匀后所得溶液中溶质的质量分数相等

- 11. 水和溶液在生活,生产中应用广泛。如图是 KNO3和 NaCl 两种物质的溶解度曲线。
 - (1) 将 t₃℃时等质量的 KNO₃饱和溶液和 NaCl 饱和溶液降温至 t₂℃,则 t₂℃时,所得到的 KNO₃溶液中溶质质量与 NaCl 溶液中溶质质量相比,前者与后者的关系是_____(填大于,等于,小于)。
 - (2) t1℃时,将 m g NaCl 不饱和溶液平均分成两份,并分别进行如图所示操作: 据此分析与计算,t1℃时 NaCl 的溶解度为 。

12. 20℃时, 氯化钠溶液的溶解度为 36g。20℃时, 将 68g 饱和氯化钠溶液稀释成质量分数为 18%的氯化钠溶液, 则需要水的质量为

- 13. 向硝酸银和硝酸铜固体的混合溶液中加入一定量的锌粉,充分反应后过滤,得到固体甲和溶液乙。下列说法不正确的是()
 - A. 固体甲中一定含有银,溶液乙中一定含有硝酸锌
 - B. 若溶液乙呈现无色,则溶液乙中只含有一种溶质
 - C. 向溶液乙中再加锌粉, 若有红色固体析出, 则固体甲的组成有两种可能
 - D. 向溶液乙中滴加稀盐酸, 若有白色沉淀生成, 则溶液乙中含有两种溶质
- 14. 向 200.0g AgNO₃ 溶液中加入 mgAl和 Cu 的混合粉末,搅拌,充分反应后过滤,洗涤,干燥后得到 32.4g 固体。向滤液中滴加稀盐酸,产生白色沉淀。下列说法正确的是()
 - A. 滤液的质量为 167.6g
 - B. 混合粉末的质量可能为 8.0g
 - C. 过滤所得固体中加入稀盐酸可能会有气体生成
 - D. 原 AgNO3溶液的溶质质量分数是 25.5%
- 15. 有一包金属粉末,可能由 Mg, Zn, Fe, Al, Ag 等金属中的一种或几种组成。取该样品 4.8g, 加入 100g 稀 硫酸恰好完全反应,只得到 0.4g H₂和无色溶液。下列说法正确的是()
 - A. 样品中一定只含有 Mg
 - B. 样品中一定不含有 Ag, 可能含有 Fe
 - C. 稀硫酸的溶质质量分数为 9.8%
 - D. 无色溶液中溶质总质量为 24g
- 16. 金属 R 放入稀硫酸中,没有气泡产生,放入硫酸铜溶液中,表面有红色物质析出。下列关于 R 的金属活动性判断,不合理的是()
 - A. R>Cu
- B. R>Fe
- C. Zn > R
- D. R>Ag
- - A. 取 a 点溶液,溶质为 Zn(NO₃)₂, Cu(NO₃)₂和 AgNO₃
 - B. 若取 bc 段固体,滴加稀盐酸,有气泡产生
 - C. c 点溶液中溶质为 Zn(NO₃)₂
 - D. 取 d 点的固体,加入稀盐酸,有气泡

18. 测定某铁粉的组成

钙铁粉中含有 Fe 和少量的 Fe_xC_y,某研究小组同学在老师的指导下进行以下实验。

【查阅资料】1. Fe, Fe_xC_y 在加热时与 O_2 反应能生成对应的氧化物。2. Fe_xC_y 不与酸反应。

【实验 1】取 14.76g 样品,加入足量稀硫酸,充分反应后生成 $0.5g\ H_2$ 。

【实验 2】另取 14.76g 样品,按如图 2 所示进行实验。通入足量的 O_2 充分反应。实验后 A 中固体全部 变红棕色,装置 B 的质量增加了 0.22g。

(1)	实验 2 反应结束后要继续通入一段时间 O ₂ 的目	目的是

(2) Fe _x C _v 中,x : y = (2) $Fe_xC_y + x : y =$	(填最简整数比)
--	------------------------	----------

19. 用如图所示装置进行实验,滴入甲,浸有丙的棉花不变红的是()

选项	甲	乙	丙
A	烧碱溶液	氯化铵	酚酞溶液
В	石灰水	纯碱	酚酞溶液
С	稀硫酸	小苏打	石蕊溶液
D	浓盐酸	锌粒	石蕊溶液

- 20. 按如图所示装置,在 C 处放入用石蕊溶液染成紫色的干燥纸花完成以下实验:在 A 处持续并缓缓地通入未经干燥且混有氯化氢的二氧化碳气体。当关闭 K 时, C 处的紫色石蕊纸花不变色;当打开 K 后,则 C 处的紫色石蕊纸花变为红色。则 B 瓶中盛放的溶液可能是()
 - ①饱和碳酸氢钠溶液
 - ②氢氧化钠溶液
 - ③浓硫酸
 - A. (1)(2) B. (1)(3) C. (2)(3) D. (1)(2)(3)
- 21. 某兴趣小组同学将 pH 传感器分别插入三只盛有相同体积蒸馏水的烧杯中,打开磁力搅拌器,同时采集数据,再向三只烧杯中同时分别加入适量的柠檬酸、氯化钠、氢氧化钠三种固体。实验数据如图所示。
 - 下列说法错误的是 ()
 - A. ①表示氢氧化钠溶于水,说明 OH 浓度越大 pH 越大
 - B. ②表示氯化钠溶于水, pH = 7 说明溶液中无自由移动的离子

pH'

- C. ③表示柠檬酸溶于水,说明 H⁺浓度越大 pH 越小
- D. 柠檬酸溶液和氢氧化钠能发生中和反应
- 22. 小张同学利用图 1 装置研究稀盐酸与氢氧化钠溶液反应的过程,并用 pH 和温度传感器测量反应过程中相关物理量的变化情况,记录得到图 2 和图 3。

100

pH|

10

7

5

据此,小张同学得到以下结论:

- ①图 1 的仪器 A 中盛装的是氢氧化钠溶液;
- ②图 2 中 b 点所示溶液中的溶质是 NaCl 和 NaOH;
- ③将图 2 中 d 点所示溶液加热蒸干所得固体为纯净物;
- ④图 2 中 c→d 所示溶液中 NaCl 的质量不断增加:
- ⑤图 3 中 V 的数值最接近 12;
- ⑥由图 3 中 e→f 的变化趋势可说明该反应是放热反应。
- 以上描述中,正确的是 ()
- A. (1)(4)(6)
- B. (2)(4)(5)(6)
- C.(2)(3)(5)(6)
- D. (2)(3)(4)(5)(6)

- 23. 分别用等体积的 Na₂CO₃ 和 NaHCO₃ 稀溶液与等体积、等浓度的足量稀盐酸在相同条件下反应,实验结果如图所示。下列实验结论正确的有()
 - (1) Na₂CO₃与 NaHCO₃的质量之比是 53:42
 - (2) Na₂CO₃与 NaHCO₃所含碳元素质量之比是 1:1
 - (3) Na₂CO₃ 与 NaHCO₃和稀盐酸完全反应产生 NaCl 的质量之比 是 2:1
 - (4) NaHCO₃ 与稀盐酸的反应速率比 Na₂CO₃ 与稀盐酸的反应速率快

- B. 2 个
- C. 3 个
- D. 4 个

- A. 甲表示碳酸钠和稀盐酸反应的情况
- B. a 点对应的溶液中溶质只有 NaCl
- C. 向 b 点对应溶液中滴入酚酞溶液,溶液显红色
- D. 从该图像中可知,相同情况下,碳酸氢钠固体与稀盐酸反应的速率比碳酸 钠固体与稀盐酸反应的速率快
- 25. 用氯离子传感器采集数据,向一定体积、一定浓度的氯化钠溶液中慢慢加入等体积、一定浓度的硝酸银溶液,恰好完全反应。实验数据如图所示。下列说法错误的是()

A. b 点时溶液不导电

- B. a 点溶液中的离子为 Na+, Cl-, NO₃-
- C. 反应时观察到有白色沉淀生成
- D. 该反应的基本反应类型为复分解反应
- 26. 某气体中可能含有 CO₂, O₂, N₂中的一种或几种,将该气体依次通过:
 - ①足量炽热的焦炭;②足量灼热的氧化铜;③足量的碱石灰(氢氧化钠和氧化钙的混合物)。

每一步均充分反应,最终得到的气体为纯净物。气体的分子数目与反应步骤的关系如图所示。下列说法错误的是()

- B. b 点气体由两种分子构成
- C. c 点气体中 CO2和 N2的分子数目比为 2:1
- D. 该过程中发生了化合反应、置换反应和复分解反应

甲

m (固体)

除杂和鉴别

27. 下列实验操作(或方案)能达到实验目的的是()

选项	实验目的	实验操作(或方案)
A	除去粗盐中混有的少量泥沙	溶解、过滤、蒸发
В	鉴别氢气和甲烷	点燃气体,用冷而干燥的烧杯分别罩在火焰上方,观察现象
С	稀释浓硫酸	将水沿烧杯壁缓缓倒入浓硫酸中,并用玻璃棒不断搅拌
D	检验二氧化碳	将燃着的木条伸入盛有气体的集气瓶中,观察现象

- 28. 下列各组物质鉴别方案的描述中,正确的是()
 - A. H₂, O₂, CO, CH₄ 四种气体,用燃着的木条就能将其鉴别出来
 - B. NH₄NO₃, NaOH, CaO, NaCl 四种固体,只用水就能将其鉴别出来
 - C. MgCl₂, NaOH, HCl, K₂SO₄ 四种溶液,只用酚酞溶液及相互反应不能将其鉴别出
 - D. 浓氨水、浓盐酸、稀硫酸、食盐水四种溶液,通过闻气味就能将其鉴别出来
- 29. 除去下列物质中的少量杂质 (括号内为杂质), 拟定的实验方案可行的是 ()
 - A. H₂气体 (HCl) 依次通过足量的碳酸氢钠溶液和浓硫酸
 - B. Cu 固体 (CuO) 加入过量稀硫酸,过滤、洗涤、干燥
 - C. NaCl 溶液 (MgCl₂) 加入适量的硫酸钠溶液,过滤
 - D. CaO 固体 (CaCO₃) 加水充分溶解、过滤、蒸发
- 30. 除去下列物质中混有的少量杂质 (括号内为杂质), 拟定的实验方案可行的是 ()
 - A. CO₂ 气体 (HCl 气体) 通过足量 NaOH 溶液, 干燥
 - B. CuO 固体 (Cu) 加入足量的稀盐酸,过滤,洗涤,干燥
 - C. FeCl₂溶液 (CuCl₂)——加入过量的铁粉,过滤
 - D. NaCl 溶液 (Na₂SO₄) ——加入适量的 Ba(NO₃)₂ 溶液, 过滤

31. 了解溶液的酸碱性对于生活、生产具有重要意义。

[知识回顾]指示剂遇酸或碱的溶液显示不同的颜色。例如,酚酞溶液遇盐酸显 色,石蕊溶液遇氢氧化 钠溶液显 色。

[实验探究]将一定量稀盐酸与稀氢氧化钠溶液混合,取混合后的溶液,分别进行下表所示实验。

	实验操作	实验现象
实验 1	取少量混合后的溶液于试管里,向其中加入少量铁粉	产生无色气体
实验 2	取少量混合后的溶液于试管里,向其中加入少量硫酸铜溶液	无明显变化
实验3	取少量混合后的溶液于试管里,向其中加入少量硝酸银溶液	

- (1) 由表中信息可知,混合后的溶液中溶质是 (填化学式)。
- (2) 从微观角度分析,盐酸与氢氧化钠反应的实质是。

[查阅资料]调节土壤的 pH 是改良土壤的方法之一。实验表明,硫酸亚铁、硫酸铵和磷酸二氢钾能够有效 降低碱性土壤的 pH。以改良 1m³ 某处碱性土壤(pH 为 8.6)为例,实验数据如下表所示。

土壤 pH 调节剂	用量/kg	单价/(元)	总价/元	施用 60 天后 pH 降低幅度
硫酸亚铁	4	1.6	6.4	0.41~2.28
硫酸铵	5	1.5	7.5	0.45~2
磷酸二氢钾	4	9.8	39.2	0.21~0.69

由表中信息可知, 硫酸亚铁、硫酸铵和磷酸二氢钾中, 是最好的土壤 pH 调节剂;除了用于

降低碱性土壤的 pH, 用作复合肥料。

[拓展提升]向一定量稀氢氧化钠溶液中非常缓慢地逐滴加入稀硫酸亚铁溶液(配制该硫酸亚铁溶液时需 加入几滴稀硫酸),利用磁力搅拌器不断搅拌,得到溶液的pH 随时间变化的曲线如右图所示。

(1) 请写出发生反应的化学方程式。

1		

- $3 ext{ 4Fe(OH)}_2 + O_2 + 2H_2O = 4Fe(OH)_3$. 白色沉淀 红褐色沉淀
- (2) 对于图中 a、b、c、d 点对应的溶液,请仿照示例完成相关比较。 示例:碱性 a>b>c>d。

① 氢氧根离子的浓度:	
-------------	--

- ② 钠离子的个数:
- ③ 硫酸根离子的个数:

32. 宋代画家王希孟绘制的《千里江山图》是一幅绢本设色画,其中使用了色彩鲜艳、性质稳定的矿物颜料 石青和石绿。某化学兴趣小组对石青和石绿进行了以下探究。

[查阅资料]

石青的主要成分是 $2CuCO_3 \cdot Cu(OH)_2$,石绿的主要成分是 $CuCO_3 \cdot Cu(OH)_2$,都可以称为碱式碳酸铜。碱式碳酸铜的化学式可表示为 x $CuCO_3 \cdot y$ $Cu(OH)_2$ 。

[实验探究]

(1) 如右图所示,取少量 $2CuCO_3 \cdot Cu(OH)_2$ 粉末于试管中,充分加热后观察到试管中固体变黑,烧杯中溶液变浑浊。试管中发生反应的化学方程式为 $2CuCO_3 \cdot Cu(OH)_2 ==$ ______ + $2CO_2 \uparrow + H_2O$,烧杯中发生反应的化学方程式为

(2) 取少量 CuCO₃ • Cu(OH)₂ 粉末于试管中,加入足量稀硫酸,观察到固体溶解,产生气泡,生成蓝色溶液,发生反应的化学方程式为 .

[拓展提升]

为测定某种碱式碳酸铜[化学式可表示为[x CuCO₃ • y Cu(OH)₂]的组成,利用下页图所示装置进行实验(说明:夹持仪器已省略,碱石灰能吸收二氧化碳和水,实验中每一步吸收都是完全的)。

步骤 1: 连接好装置并

步骤 2: 装入药品。

步骤 3: 打开活塞 K, 鼓入空气。

步骤 4: 一段时间后关闭活塞 K, 称量相关装置的质量。

步骤 5: 点燃酒精灯, 至装置 C 中无气泡产生。

步骤 6: 打开活塞 K, 鼓入空气。

步骤 7: 熄灭酒精灯。

步骤 8: 一段时间后关闭活塞 K, 称量相关装置的质量。

[实验分析]

(1) 步骤 3 和步骤 6 的操作相同,	但作用不同。	请从减小实验误差的角度,	简要分析步骤3和步骤6的
作用:			2

(2) 若碱式碳酸铜已完全分解,	实验后装置 C 增重 4.5g,	装置 D 增重 4.4g,	则该碱式碳酸铜的化物	学式
可表示为		: 实验后玻璃管中	剩余固体的质量为	g_{\circ}

33	酚、	础、	盐之间有可能发生复分解反应。
JJ.	FX.	1954	二人門戶 1

[知识回顾] 当两种化合物互相交换成分,生成物中有 生成时,复分解反应才可以发

生; 中和反应属于复分解反应。

[设计实验] 请设计实验证明稀盐酸与稀氢氧化钠溶液发生了中和反应,并完成实验报告。

实验用品包括烧杯、胶头滴管、玻璃棒、稀盐酸、稀氢氧化钠溶液、酚酞溶液。

实验步骤	实验现象	实验结论
	一段时间后溶液由红色变为无色	证明稀盐酸与稀氢氧化钠溶液发生了中和反应

[查阅资料] 电导率传感器用于测量溶液的导电性强弱;一定条件下电导率的大小能反映离子浓度的大小。

[实验探究] 取等量的滴有酚酞溶液的氢氧化钡溶液于两个烧杯中,分别向其中逐滴滴加 X、Y 两种液 体,利用磁力搅拌器不断搅拌,利用电导率传感器采集数据,得到图 1、图 2。

电导率/(μS·cm⁻¹) 15 000 10 000 b 5 000 100 200 300 时间/s 图 2 逐滴滴加 Y

[实验分析]

- (1) 根据图 1、图 2, X、Y 两种液体依次为 (填字母)。
- A. 氯化钠溶液
- B. 硫酸钠溶液 C. 蒸馏水
- D. 稀硫酸

(2) 请填写下表:

图像	烧杯中	的现象	化学方程式			
	相同点	不同点				
图 1						
图 2						

(3) 图 1 中, a 点所示溶液的溶质是	(酚酞除外);	图2中,	b 点所示溶液的电导率
不为零的原因是			•

【拓展题1】

取 2mL 饱和澄清石灰水于试管中,用 4mL 蒸馏水稀释,向其中缓慢通入足量 CO₂。测定反应体系的电导率变化如图 33 所示。(忽略反应前后溶液体积的变化)

- (1) 溶液的导电能力越强,溶液的电导率越大。
- (2) 单位体积溶液中某离子的个数越多,则该离子的浓度越大,溶液的导电能力越强。相同浓度的 不同离子导电能力不同。

(3) Ca(OH)₂溶于水能完全解离出 Ca²⁺和 OH⁻。 CaCO₃遇到溶有 CO₂的水时,能反应生成易溶于水的 Ca(HCO₃)₂,Ca(HCO₃)₂在水中能完全解离出 Ca²⁺和 HCO₃⁻。 ①石灰水中通入 CO2 气体,溶液的 电导率先逐渐降低的主要原因是 _______。 ②反应最终电导率的稳定值低于初始值的可能原因是 、

【拓展题2】

收集 CO_2 并验满。将集满 CO_2 的锥形瓶与盛有足量 NaOH 溶液的注射器和传感器密封连接,缓慢的 将 NaOH 溶液注入到锥形瓶中,采集信息形成图像 (见图-2)。

- (1) 检验图-1 装置 D 中 CO₂ 已经集满的方法是
- (2) 随着反应的进行,锥形瓶中压强降低的原因是
- (3) 反应结束后锥形瓶中的压强保持在 40kPa 说明

34. 馒头、面包等发面食品在制作时都需使用发酵粉,发酵粉的主要成分最常见的是碳酸钠、碳酸氢钠等。 某兴趣小组的同学对制作馒头用的发酵粉(白色粉末)进行探究。

[提出问题]白色粉末成分是什么?

[进行猜想]猜想I: 碳酸钠; 猜想Ⅱ: 碳酸氢钠; 猜想Ⅲ: 混合物。

[初步探究]取少量白色粉末于试管中,加适量水,测得溶液的 pH = 10.5,说明溶液呈_____性。 [查阅资料]

(1) 碳酸氢钠受热易分解,该反应可表示为 $2NaHCO_3 == Na_2CO_3 + H_2O + CO_2$ 而 碳酸钠很稳定,受热不易分解。

(2) 参照实验:

实验步骤	NaHCO₃稀溶液	Na ₂ CO ₃ 稀溶液
加入稀盐酸	产生气泡	产生气泡
加入 CaCl2溶液	无明显变化	溶液变浑浊

[实验探究]甲、乙、丙三位同学分别设计三种不同实验方案进行探究。甲同学方案:如图 1 所示,取适量发酵粉在铜片上加热,加热一段时间后,观察到烧杯内壁有液滴出现,将烧杯迅速倒转过来,倒入适量的澄清石灰水,振荡,观察到

甲得出结论:猜想Ⅱ正确。

乙同学方案:

实验步骤	实验现象	实验结论
①取少量发酵粉于加足量水后形	有白色沉淀产生	化学方程式:
成的无色稀溶液,再加入过量溶		
液,静置		
②再取步骤①的上层清液,加入	有气泡冒出	该清液中含:
稀盐酸		

乙得出结论:猜想Ⅲ正确。

丙同学方案:如图 2 所示,锥形瓶中分别盛有等质量的碳酸钠、碳酸氢钠和发酵粉样品,再注入等体积、等浓度的足量的稀硫酸,准确测量生成气体的体积。记录如下表:

实验编号	锥形瓶内物质		最终得到 CO2 体积/mL
	名称	质量	
1	碳酸钠	a	V_1
2	碳酸氢钠	a	V_2
3	发酵粉样品	a	V_3

[实验结论]经同学们讨论,最终确认:该发酵粉是碳酸钠和碳酸氢钠的混合物。

(1)	同学们讨论时认为: 甲同学方案不严密的原因是	°
(2)	乙同学方案中,实验①中加入 CaCl2 溶液要过量的目的是	°
(3)	丙同学方案也能得到正确结论应满足的条件是。	
(4)	制作馒头、面包时,将面粉发酵(产生有机酸),再加入适量的碳酸氢钠,可以使馒头、面包松软	次。
	原因是。	
(5)	将 12.0 g 该白色粉末加热至完全反应,剩余固体的质量为 8.9 g,该白色粉末中 Na ₂ CO ₃ 的质量分	数
	<u>4</u> ,	

中考

24: CaCO₃, Ca(HCO₃)₂

23: CaCO₃, HCl, CaCl₂

22: 酸碱, pH 图像

21: 碳酸, 柠檬酸等实验

20: NaCl, NaCl + AgNO3 的导电率探究

22 一模

联合体: CO₂的制备, 导电率探究相关性质

鼓楼:探究 CO2和 NaOH 发生反应

建邺: FeCO₃ • Fe(OH)₂

秦淮: CuCO₃ · Cu(OH)₂

玄武: FeCO3 的性质

25 一模

联合体: CO₂, K₂CO₃

鼓楼: 侯氏制碱法, 粗盐提纯

建邺: CO₂和 NaOH

秦淮: Fe, Cu 生锈, Al 和 NaOH

玄武: Na₂SO₃

24 一模

联合体: Fe, FexCy, Fe 生锈

鼓楼: HCl + CaCO₃ 用 Ba(OH)₂ 验,乳酸和氢氧化

钠中和以及微观角度

建邺: 有机物的化学式判断

秦淮:酸碱中和,离子的组成,质量分数判断

玄武: K₂CO₃

23 一模

联合体: Cu, CuSO₄, CuSO₄ • H₂O

鼓楼: CuSO4催化 H2O2

建邺:催化CO变CO2

秦淮: 用导电率判断粗盐提纯

玄武: 热成像仪探究 CaCO3 的分解