Computer Vision A.Y. 23-24

Real-Time Posture Correction with MediaPipe and OpenCV

BY LUCIA FORES 1836451

Country Income (World Bank Classification ^a)	Countries (n)	Median of mean sitting times median hours (IQR)
Low-income	6	2.7 (2.6–3.3)
Lower-middle income	6	3.1 (2.6–3.6)
Upper-middle income	12	3.9 (3.2–5.1)
High-income ^b	38	4.9 (4.7–5.3)
Total	62	4.7 (3.5–5.1)

Median of mean sitting times by country income classification [1]

Rank	Trend
1	Wearable technology
2	Strength training with free weights
3	Body weight training
4	Fitness programs for older adults
5	Functional fitness training
6	Outdoor activities
7	High-intensity interval training (HIIT)
8	Exercise for weight loss
9	Employing certified fitness professionals
10	Personal training
11	Core training
12	Circuit training
13	Home exercise gyms
14	Group exercise training
15	Exercise is Medicine
16	Lifestyle medicine
17	Yoga
18	Licensure for fitness professionals
19	Health/well-being coaching
20	Mobile exercise apps

Top 20 Worldwide Fitness Trends for 2023 [3]

Project Introduction

During COVID-19 restrictions home exercise became widely spread among people [2]

Problem Statement

- Home workout can easily bring to injuries [4]
- Having a bad posture for a long time can affect the musculo-skeleteal system and the lungs [5]

Proposed Solution

- Implementation of the algorithm proposed by Yejin Kwon and Dongho Kim in [6] to correct the user posture while executing the squat and push-up exercises
- Expansion of the algorithm to the **sitting** posture
- Integration of the correction system for the sitting posture with an handed Arduino system

Main Technologies

The project was made thanks to the use of MediaPipe Pose and OpenCV

MediaPipe Pose

MediaPipe Pose is a ML solution developed by Google.

The pose landmarker enabled the detection of **points of interest** on the user's body for posture calculation

OpenCV

OpenCV is the biggest open-source library for computer vision.

Thanks to its usage, a **real time video capture** of the user and a consequent **feedback** has been made

Handed Arduino System

The alarm system device for the sit posture correction has been made thanks to Arduino

Arduino

Arduino is an open-source electronic prototyping platform.

The electronic prototype system created is an **alarm system** that reacts to the posture correction algorithm

Circuit scheme of the realized handed system

Landmarks

The landmarks needed for the project are specific for each one of the postures detected.

- sitting (x, y):
 - Ears (7/8)
 - Shoulders (11/12)
 - Hips (23/24)
- pushup (x, y, z):
 - Wrists (15/16)
 - Elbows (13/14)
 - Shoulders (11/12)
 - Ankles (27/28)
 - Hips (23/24)

- squat (x, y, z):
 - Knees (25/26)
 - Hips (23/24)
 - Shoulders (11/12)
 - Foot (31/32)

17. left_pinky 0. nose 1. left_eye_inner 18. right_pinky 2. left_eye 19. left_index 20. right_index 3. left_eye_outer 4. right_eye_inner 21. left_thumb 5. right_eye 22. right_thumb 23. left_hip 6. right_eye_outer 24. right_hip 7. left ear 8. right_ear 25. left_knee 9. mouth_left 26. right_knee 10. mouth_right 27. left_ankle 11. left_shoulder 28. right_ankle 29. left_heel 12. right_shoulder 13. left_elbow 30. right_heel 14. right_elbow 31. left foot index

32. right_foot_index

Google's MediaPipe Pose Landmark map

Proposed Algorithm

The proposed algorithms rely on angles and distances computations.

Notice that the loop for the posture correction is entirely executed for each frame of the video capture and for this reason it is executed while the webcam is open

Given the selected posture the corresponding landmarks are saved

2 Thanks to the saved landmarks the needed angles and distances are computed

The angles and distances are compared with the ones indicated by the heuristics

Given the result of the compare a feedback to the user is created

The feedback and the angles are presented in real-time to the user

Formulas and Heuristics – 1 –

Sitting Posture

$$dist = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

$$\theta = \arccos\left(\frac{(y^2 - y^1) \cdot (-y^1)}{\sqrt{(x^2 - y^2)^2 + (y^2 - y^1)^2} \cdot y^1}\right)$$

$$degree = \left| \frac{180}{\pi} \right| \cdot \theta$$

- shoulders distance < 100
- neck angle < 70 (shoulder ear angle)
- torso angle < 70 (hip shoulder angle)

Formulas and Heuristics – 2 –

Exercises Postures

$$\overrightarrow{CA} = (x1 - x3, y1 - y3, z1 - z3)$$

$$\overrightarrow{CB} = (x2 - x3, y2 - y3, z2 - z3)$$

$$\overrightarrow{CA} \cdot \overrightarrow{CB} = |\overrightarrow{CA}| |\overrightarrow{CB}| \cos(\theta)$$

$$\theta = \cos^{-1} \frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CA}| |\overrightarrow{CB}|}$$

$$height = \text{round}(|y_1 - y_2|, 3)$$

width = round
$$(|x_1 - x_2|, 3)$$

Squat

- 60 <= hip angle <= 120(knee hip shoulder angle)
 - knee hip height <= 0.2
 - foot knee width <= 0.1

Push-Up

- 70 <= elbow angle <= 100
- (wrist elbow shoulder angle)
 - 160 <= body angle <= 200
- (ankle hip shoulder angle)

Discussion and Analysis

The sitting posture correction algorithm works only with the user placed in profile. The right side has been chosen in the project

Right and left body angles can be different so an average of the two is used as the reference angle

The video capture of the user is saved so that it can be later viewed to check one's errors

The handed Arduino system has been thought to be used as a system alert when the user cannot focus on the video capture

Future Work and Recommendations

- Integration of exercises repetition counter
- Expansion of the Arduino integration to all exercises
- Voice feedback
- Implementation of several difficulties for each exercise
- Implementation of other exercises

Preview

Let's see it in action!

References

- [1] Mclaughlin, M., Atkin, A.J., Starr, L. et al. Worldwide surveillance of self-reported sitting time: a scoping review. Int J Behav Nutr Phys Act 17, 111 (2020). https://doi.org/10.1186/s12966-020-01008-4
- [2] J. Wilke et al., "Restrictercise! Preferences Regarding Digital Home Training Programs during Confinements Associated with the COVID-19 Pandemic",
- International Journal of Environmental Research and Public Health, Vol. 17, No. 18, Sep. 2020.
- https://dx.doi.org/10.3390%2Fijerph17186515
- [3] Thompson, Walter R. Ph.D., FACSM. Worldwide Survey of Fitness Trends for 2023. ACSM's Health & Fitness Journal 27(1):p 9–18, 1/2 2023. | DOI: 10.1249/FIT.0000000000000834
- [4] Hertel G, Hochrein A, Suren C, Minzlaff P, Banke IJ, Willers J, von Eisenhart-Rothe R, Prodinger PM. Injury incidence and specific injury patterns in app-based bodyweight training (Freeletics): results of an international survey with 3668 participants. BMC Sports Sci Med Rehabil. 2022 Jul 26;14(1):145.
- doi: 10.1186/s13102-022-00525-y. PMID: 35883184; PMCID: PMC9321304.
- [5] Szczygieł E, Zielonka K, Mętel S, Golec J. Musculo-skeletal and pulmonary effects of sitting position a systematic review. Ann Agric Environ Med. 2017;24(1):8–12. doi:10.5604/12321966.1227647.
- [6] Kwon, Yejin & Kim, Dongho. (2022). Real-Time Workout Posture Correction using OpenCV and MediaPipe. The Journal of Korean Institute of Information Technology. 20. 199–208.
- https://dx.doi.org/10.14801/jkiit.2022.20.1.199.

Thank you!

Questions?

BY LUCIA FORES 1836451