Forces centrales et solides

/7 1 Soit un point M soumis à une unique force centrale \vec{F} . Démontrer que son moment cinétique se conserve, justifier que son mouvement est plan et démontrer la loi des aires à l'aide d'un schéma. Pas besoin d'introduire la constante des aires.

Force centrale
$$\Leftrightarrow \overrightarrow{F}/\!\!/ \overrightarrow{\mathrm{OM}} \Rightarrow \overrightarrow{\mathcal{M}}_{\mathrm{O}}(\overrightarrow{F}) = \overrightarrow{\mathrm{OM}} \wedge \overrightarrow{F} = \overrightarrow{0}$$

TMC:
$$\overrightarrow{\frac{d\vec{\mathcal{L}}_{O}}{dt}} = \overrightarrow{0} \Leftrightarrow \overrightarrow{\mathcal{L}}(0) = \mathcal{L}_{0} \overrightarrow{u_{z}} = \overrightarrow{\mathcal{L}}(t)$$

Ainsi,
$$\overrightarrow{\mathrm{OM}}(t) \wedge m \overrightarrow{v}(t) = \mathcal{L}_0 \overrightarrow{u_z}$$

Pendant une durée dt, le point M balaye une aire dA

$$d\mathcal{A} = \frac{1}{2} \|\overrightarrow{OM} \wedge \overrightarrow{v} dt\| \Leftrightarrow d\mathcal{A} = \frac{1}{2} \|\overrightarrow{OM} \wedge m \overrightarrow{v}\| \frac{dt}{m}$$
$$\Leftrightarrow \left[\frac{d\mathcal{A}}{dt} = \frac{\|\overrightarrow{\mathcal{L}}_O\|}{2m} = cte \right]$$

FIGURE 20.1 – Moment cinétique et aire balayée

/4 2 Compléter le tableau de comparaison suivant :

Tableau 20.1 – Analogie mécanique du point et solide en rotation

	Inertie	Déplac <u>t</u>	Quantité	Causes	Évolu°	\mathcal{E}_c	\mathcal{P}
Point	m	\overrightarrow{v}	$\vec{p} = m\vec{v}$	\overrightarrow{F}	$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F}_{\mathrm{ext}}$	$\frac{1}{2}mv^2$	$ec{F} \cdot ec{v}$
Solide	J_{Δ}	$\vec{\omega}$	$\vec{\mathcal{L}} = \overrightarrow{\mathrm{OM}} \wedge \vec{p} = J_{\Delta} \vec{\omega}$	$\overrightarrow{\mathcal{M}} = \overrightarrow{\mathrm{OM}} \wedge \overrightarrow{F}$	$\frac{\mathrm{d}\vec{\mathcal{L}}_{\mathrm{O}}}{\mathrm{d}t} = \overrightarrow{\mathcal{M}}_{\mathrm{O,ext}}$	$\frac{1}{2}J_{\Delta}\omega^{2}$	$\overrightarrow{\mathcal{M}}\cdot\overrightarrow{\omega}$

- /10 3 Compléter le schéma du pendule pesant avec les forces et leurs moments, calculés **par le bras de levier**. On suppose la liaison pivot parfaite. Trouver alors l'équation du mouvement par application du **TMC scalaire d'abord** puis **TPC ensuite**.
 - $\boxed{1}$ Système : {pendule} solide indéformable de masse m
 - $\fbox{2}$ Référentiel : terrestre, supposé galiléen.
 - $\boxed{3}$ Repère : cylindrique $(O, \overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$ avec O centre de la liaison pivot.
 - 4 Repérage : $\overrightarrow{OG} = d \overrightarrow{e_r}$

Figure 20.2 – Pendule pesant

6 **TMC**:

$$\frac{\mathrm{d}\mathcal{L}_z}{\mathrm{d}t} = J_z \ddot{\theta} = \mathcal{M}_z(\vec{P}) \Leftrightarrow \boxed{\ddot{\theta} + \frac{mgd}{J_z} \sin(\theta) = 0}$$

7 **TPC**: on calcule \mathcal{E}_c et \mathcal{P} :

$$\mathcal{E}_c = \frac{1}{2} J_z \omega^2 \quad \text{et} \quad \mathcal{P}(\vec{P}) = \mathcal{M}_z(\vec{P}) \omega \quad \Rightarrow \quad \frac{\mathrm{d}\mathcal{E}_c}{\mathrm{d}t} = \mathcal{P}(\vec{P}) \Leftrightarrow J_z \dot{\omega} \omega = -mgd \sin(\theta) \omega \Leftrightarrow \boxed{\ddot{\theta} + \frac{mgd}{J_z} \sin(\theta) = 0}$$