

## **Exercise Sheet 2**

## **Machine Learning for Computer Security**

In this exercise, we will review the python unit and implement an estimate of an unknown probability distribution based on observed data to further test our python skills.

## Exercise 2 Numpy and Matplotlib

Recreate the plots shown in Figure 1 as closely as possible.



Figure 1: Recreate these plots as closely as possible.

- 1. Recreate the plot shown in Figure 1a. To do so, you need to superposition two Gaussian distributions, with a standard deviation of 0.5 and 2.0 respectively. The first Gaussian is centered at (-5.0, -5.0) while the second is centered at (5.0, 0.0).
- 2. Recreate the plot shown in Figure 1b by implementing a function that splits the image into  $4 \times 4$  squares and inverts every second piece pixelwise. You will find the required image data here: https://www.sec.tu-bs.de/teaching/ss22/mlsec/mlsec-exer02.tar.
- 3. Recreate the plot shown in Figure 1c. Use as few instructions as possible to draw a circle of different diameters. Make sure the circles are perfectly centered. *Make use of functions offered by Numpy only*.

## **Exercise 3** *Density estimation*

Density estimation is a classical approach of unsupervised machine learning that is used to construct a simple model for unlabeled data. We assume that a finite set of samples  $X = \{x_1, ..., x_n\} \subset \mathbb{R}$  has been drawn from the unknown probability distribution P. Our goal is to find a good approximation to P solely based on X. These are the necessary steps:

- 1. We choose *P* to be a Gaussian distribution with a mean value of 0.2 and a variance of 1. Draw 1000 samples from this distribution as your data set *X*. Verify that the samples are normally distributed by calculating the mean and variance for *X*.
- 2. To approximate P on the interval [-3;3] generate 1000 equally spaced values in this interval and store the resulting set in a variable named S.
- 3. For a fixed s from S, derive an expression  $C_h(s, X)$  to calculate the number of elements from X that are located within a window of size h centered at s.
- 4. The density estimate at a point *s* is then obtained by dividing the number of data points in the window by the size of the window and the number of data points, or formally

$$\hat{P}_h(s) = \frac{1}{n} \frac{1}{h} \cdot C_h(s, X)$$

Calculate and plot three estimates of  $\hat{P}_h$  using different values for h to illustrate overfitting and underfitting. Label and explain the plots accordingly.