06_chi-squared/measurement_of_associations

chi-squared, Cramers V, Yules Q

Repetition: Statistical hypothesis testing

CAIU

Christian-Albrechts-Universität zu Kiel

Validation of an assumption about the population

A assumption (hypothesis) about the population is made and than its probability is checked against the sample.

Usual questions:

How probable is it that two or more samples descend from the different/the same population?

(eg. Is the custom of grave goods for man and women so different that two different social groups are visible?)

Two samples

Test for independence

How probable is it that a given sample descend from a population with certain parameters?

(Is the amount of grave goods random or is a pattern visible?)

Two samples

Goodness-of-fit-Test

Christian-Albrechts-Universität zu Kiel

Repetition: Nonparametric tests

Parametric vs. nonparametric

Parametric: The distribution of the values have to be in a certain form (e.g. normal distribution); assumptions about the distribution of the population are needed

non-parametric: no assumptions about the distribution of the sample and the population are needed

Nonparametric tests, advantages and disadvantages:

Advantage: Also appropriate if no statements about the distribution are possible or the distribution fits no for parametric tests. Also smaller samples are possible.

Disadvantages: Tests have general a lesser power.

Christian-Albrechts-Universität zu Kiel

X²-Test

CAU

Christian-Albrechts-Universität zu Kiel

X²-Test [1]

Possible Questions

Do settlements tend to be situated on rather good soil or is the distribution random?

Conclusions about settlement behaviour and economy would be possible

Do older individuals have more shoe-last celt as grave goods than younger?

If shoe-last celt would be signs of social rank than this situation would make conclusions possible about heredity or acquisition of social rank during life time.

Tests for nominale scaled variables are possible!

Therefore of particular value for archaeology because we have often to deal with such data.

Christian-Albrechts-Universität zu Kiel

X²-Test [2]

Test for independence of two distributions

Requirements: at least 1 nominal scaled variable (one sample case) and 1 nominal scaled grouping variable (two sample case)

Procedure with one sample: observed values are compared with expected values given a certain distribution, no expected value should be < 5; n should be > 50

Procedure with two samples: observed values of both distributions are compared with expected values if the samples would be even distributed, no expected value should be < 5; n should be > 50

Test statistics: χ2 Significance depend on degree of freedom (df)

Christian-Albrechts-Universität zu Kiel

Excursus degree of freedom

Number of slots free to vary given the margin sums

	male	female	total
cremation	123		201
inhumation			197
total	216	182	398

Christian-Albrechts-Universität zu Kiel

Excursus degree of freedom

Number of slots free to vary given the margin sums

	male	female	total
cremation	123	78	201
inhumation	93	104	197
total	216	182	398

df=1: if one value is chosen all other can be calculated with the help of the margins

(number of columns -1)*(number of rows -1)

Christian-Albrechts-Universität zu Kiel

Excursus degree of freedom

Number of slots free to vary given the margin sums

	male	female	uncertain	total
cremation		78		201
inhumation				197
total	196	179	23	398

Christian-Albrechts-Universität zu Kiel

Excursus degree of freedom

Number of slots free to vary given the margin sums

	male	female	uncertain	total
cremation	113	78		201
inhumation				197
total	196	179	23	398

Christian-Albrechts-Universität zu Kiel

Excursus degree of freedom

Number of slots free to vary given the margin sums

	male	female	uncertain	total
cremation	113	78	10	201
inhumation	83	101	13	197
total	196	179	23	398

df=2: if two values are chosen all other can be calculated with the help of the margins

(number of columns - 1)*(number of rows - 1)

Christian-Albrechts-Universität zu Kiel

Excursus degree of freedom

Number of slots free to vary given the margin sums

	male	female	uncertain	total
cremation				201
inhumation				197
uncertain				30
total	201	187	40	398

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

Number of slots free to vary given the margin sums

	male	female	uncertain	total
cremation		78		201
inhumation	83		13	197
uncertain		8		30
total	201	187	40	398

CAU

Christian-Albrechts-Universität zu Kiel

Exkurs Freiheitsgrade

Number of slots free to vary given the margin sums

	male	female	uncertain	total
cremation	113	78	10	201
inhumation	83	101	13	197
uncertain	5	8	17	30
total	201	187	40	398

df=4: if four values are chosen all other can be calculated with the help of the margins

(number of columns - 1)*(number of rows - 1)

CAU

Christian-Albrechts-Universität zu Kiel

X²-Test [3]

Test for one sample (example after Shennan)

Numbers of neolithic settlements by soil type in eastern france

Soil type	Number of settlements
Rendzina	26
Alluvial	9
Brown earth	18
total	53

Question: Is there a significant preference for a soil type? We calculate two versions:

- 1. even distributed
- 2. even distributed with consideration of the proportion of the soil types on the total area

Christian-Albrechts-Universität zu Kiel

X²-Test [4]

Version 1: even distributed

Soil type	Number of settlements	Proportion of soil type	Expected number of settlements
Rendzina	26	1/3	17,66667
Alluvial	9	1/3	17,66667
Brown earth	18	1/3	17,66667
total	53	1	53

1. even distributed

H₀: The settlements are evenly distributed on all soil types.

H₁: The settlements are **not** evenly distributed on all soil types.

Christian-Albrechts-Universität zu Kiel

X²-Test [5]

Version 1: even distributed

Soil type	Number of settlements	Proportion of soil type	Expected number of settlements
Rendzina	26	1/3	17,66667
Alluvial	9	1/3	17,66667
Brown earth	18	1/3	17,66667
total	53	1	53

Formular for X²

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

 O_i : number of observed cases

 E_i : number of expected cases

 χ^2 : symbol for the test statistic chi – squared

Christian-Albrechts-Universität zu Kiel

X²-Test [6]

Version 1: even distributed

Procedure: Calculation of the X2-value

$\chi^2 - \sum_{k=1}^{k}$	$(O_i - E_i)^2$
$\chi - \sum_{i=1}^{n}$	$\overline{E_i}$

Soil type	Observed number of settlements	Expected number of settlements	O _i -E _i	(O _i -E _i) ²	$(O_i-E_i)^2/E_i$
Rendzina	26	17,66667	8,33333	69,44439	3,93081
Alluvial	9	17,66667	-8,66667	75,11117	4,25158
Brown earth	18	17,66667	0,33333	0,11111	0,00629
total	53	53			8,18868

Look up in a table (e.g. Shennan):

Df=2 (2 colums (expected, observed), 3 categories)

Level of significance: 0,05 Boundary value: 5,99145

Significant result: The distribution is uneven!

CAU

Christian-Albrechts-Universität zu Kiel

X²-Test [7]

Version 2: even distributed with consideration of the proportion of the soil types on the total area

Soil type	Number of settlements	Proportion of soil type	Expected number of settlements
Rendzina	26	32%	16,96
Alluvial	9	25%	13,25
Brown earth	18	34%	22,79
Gesamt	53	1	53

Formular for
$$X^2$$
 $\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$

Christian-Albrechts-Universität zu Kiel

X²-Test [8]

Version 2: even distributed with consideration of the proportion of the soil types on the total area $\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$

Soil type	Number of settlements	Expected number of settlements	O _i -E _i	$(O_i - E_i)^2$	$(O_i - E_i)^2 / E_i$
Rendzina	26	16,96	9,04	81,7216	4,81849
Alluvial	9	13,25	-4,25	18,0625	1,36321
Brown earth	18	22,79	-4,79	22,9441	1,00676
total	53	53			7,18846

Look up in a table (e.g. Shennan):

Df=2 (2 colums (expected, observed), 3 categories)

Level of significance: 0,05 Boundary value: 5,99145

Significant result: The distribution is uneven also if we consider the proportions of the soil types!

Christian-Albrechts-Universität zu Kiel

X²-Test [9]

```
In R
```

Version 1: even distributed

> chisq.test(siedlungen)

Chi-squared test for given probabilities

```
data: siedlungen
X-squared = 8.1887, df = 2, p-value = 0.01667
```

Version 2: even distributed with consideration of the proportion of the soil types on the total area

```
> chisq.test(siedlungen,p=c(0.32,0.25,0.43))
```

Chi-squared test for given probabilities

```
data: siedlungen
X-squared = 7.1885, df = 2, p-value = 0.02748
```


Christian-Albrechts-Universität zu Kiel

X2-Test [10]

Two sample case (Test for independence) (example after Hinz, beautified)

Comparison of amber in graves and settlements Classic 2x2 situation

Type of site	amber		total
	+	-	
settlement	6	18	24
grave	132	44	176
total	138	62	200

Is amber primary a grave good?

df=1

Level of significance = 0.05

CAU

Christian-Albrechts-Universität zu Kiel

X2-Test [11]

Procedure: Calculation of the expected values

Multiply the margins and divide the result by the total number

Type of site	amber +	_	total
settlement	6 E=24*138/200 =16,56	18 E=24*62/200 =7,44	24
grave	132 E=138*176/20 0 =121,44	44 E=62*176/200 =54,56	176
total	138	62	200

Christian-Albrechts-Universität zu Kiel

X²-Test [12]

Procedure: Calculation of the X²-value
(observed/expected) ² /expected

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

Type of site	amber		total
	+	-	
settlement	$(6-16,56)^2/16,56$ =6,73	$(18-7,44)^2/7,44$ =14,99	24
grave	(132- 121,44)²/121,44 =0,92	(44-54,56) ² /54,56 =2,04	176
total	138	62	200

Is amber primary a grave good?

Df=1, Level of significance = 0.05;

X²=24,68; boundary value (df=1 and p=0.05): 3,84146

The difference in the distribution is significant not by chance. Both variables are associated!

(archaeological) data analysis in R

X²-Test [13]

```
In R
```

```
> vergleich<-matrix(c(6,132,18,44),ncol=2)</pre>
> colnames(vergleich)<-c("mit Bernstein","ohne Bernstein")</pre>
> rownames (vergleich) <-c ("Siedlung", "Grab")</pre>
> vergleich
         mit Bernstein ohne Bernstein
Siedlung
                                     18
Grab
                    132
                                     44
> chisq.test(vergleich)
     Pearson's Chi-squared test with Yates' continuity correction
data: vergleich
X-squared = 22.4022, df = 1, p-value = 2.211e-06
> chisq.test(vergleich,correct=F)
     Pearson's Chi-squared test
data: vergleich
X-squared = 24.6844, df = 1, p-value = 6.753e-07
```

Correct: Yates correction for small samples $\rightarrow (|O-E|-0.5)^2/E$

Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Universität zu Kiel

X²-Test Exercise

Animal bones from middle and late neolithic strata in Wolkenwehe (Mischka et al. 2005)

The following counts are given

layer	Domestic animal	Wild animal
202 (late neolithic)	159	32
203 (middle neolithic)	84	54

Analyse if the observed differences are statistically significant!

Christian-Albrechts-Universität zu Kiel

X²-Test Aufgabe

Animal bones from middle and late neolithic strata in Wolkenwehe (Mischka et al. 2005)

layer	Domestic animal	Wild animal
202 (late neolithic)	159	32
203 (middle neolithic)	84	54

Pearson's Chi-squared test with Yates' continuity correction

```
data: test
X-squared = 19.6344, df = 1, p-value = 9.376e-06
```


Christian-Albrechts-Universität zu Kiel

Measurement of association [1]

Measurement of the strength of the association of two variables X² is already a Measurment of association:

Association $\uparrow X^2 \uparrow \leftrightarrow$ Association $\downarrow X^2 \downarrow$

But: X² depends on n

Type of site	amber		total	
	+	-		
settlement	6	18	24	
grave	132	44	176	
total	138	62	200	
Type of site	amber		total	
	+	-		
settlement	12	36	48	
grave	264	88	352	
grave	204	00	332	

$$X^2 = 24.6844$$

$$X^2 = 49.3689$$

Christian-Albrechts-Universität zu Kiel

Cramers V (or φ)

CAU

Christian-Albrechts-Universität zu Kiel

Measurement of association [2]

Cramers V

Normalise X² for the number of observations n, Square root,

Divide by the smaller value of (number of rows, number of colums) -1

Type of site	amber		total
	+	-	
settlement	6	18	24
grave	132	44	176
total	138	62	200
Type of site	amber		total
Type of site	amber +	-	total
Type of site settlement		- 36	total 48
	+	- 36 88	
settlement	+ 12		48

$$X^{2} = 24.6844$$

$$\Phi = \sqrt{\frac{\chi^{2}}{n*(min(rows,columns)-1)}}$$

$$\Phi = \sqrt{\frac{22,6844}{200*(min(2,2)-1)}}$$

$$\Phi = 0,351314901$$

$$X^{2} = 49.3689$$

$$\Phi = \sqrt{\frac{\chi^{2}}{n*(min(rows,columns)-1)}}$$

$$\Phi = \sqrt{\frac{49,3689}{400*(min(2,2)-1)}}$$

$$\Phi = 0,351314901$$

Christian-Albrechts-Universität zu Kiel

Measurement of association [3]

Cramers V

```
\Phi = \sqrt{\frac{\chi^2}{n * (min(rows, colums) - 1)}}
```

The value is between 0 and 1 0: no association 1: perfect association

```
In R:
```


Christian-Albrechts-Universität zu Kiel

Yules Q

Christian-Albrechts-Universität zu Kiel

Measurement of association [4]

Yule's Q

Another simple measurement of association, only in the 2x2 case applicable $\frac{1}{ad-bc}$

 $Q = \frac{ad - bc}{ad + bc}$

Idea: the bigger the number in the left upper field in relation to the total number the higher is the positive association

Type of site	amber		total
	+	-	
settlement	6	18	24
Grave (=no settlement)	132	44	176
total	138	62	200

$$Q = \frac{6*44 - 18*132}{6*44 + 18*132} = -0.8$$

Strong negative association: graves (not settlements) have a bigger possibility to contain amber finds.

But: Yules Q is not suitable for tables with a zero in one field

Christian-Albrechts-Universität zu Kiel

Measurement of association [5]

Yules Q

 $Q = \frac{ad - bc}{ad + bc}$

```
The value is between -1 and 1
-1: perfect negative association
0: no association
1: perfect positive association
In R:
calc.YQ <- function(x)
```

```
calc.YQ <- function(x)
{
YQ <- (x[1,1]*x[2,2]-x[1,2]*x[2,1])/(x[1,1]*x[2,2]+x[1,2]*x[2,1])
as.numeric(YQ)
}
> calc.YQ(matrix(c(6,132,18,44),ncol=2))
[1] -0.8
```


Christian-Albrechts-Universität zu Kiel

Measurement of association Exercise

Animal bones from middle and late neolithic strata in Wolkenwehe (Mischka et al. 2005)

The following counts are given

layer	Domestic animal	Wild animal
202 (late neolithic)	159	32
203 (middle neolithic)	84	54

Analyse how strong the association is!

CAU

Christian-Albrechts-Universität zu Kiel

Measurement of association Exercise

Animal bones from middle and late neolithic strata in Wolkenwehe (Mischka et al. 2005)

The following counts are given

layer	Domestic animal	Wild animal
202 (late neolithic)	159	32
203 (middle neolithic)	84	54

Analyse how strong the association is! > calc.CV(test)
[1] 0.2513021

Cramers V is 0,25 for the association of domestic animals with late and wild animals with middle Neolithic layers

> calc.YQ(test)
[1] 0.5231506

Yules Q is 0,52 for positive association of domestic animals and late neolithic layers

Christian-Albrechts-Universität zu Kiel

Fishers Test [1]

Problem with to low expected values

Fundkategorie	Bernstein +	_	Randsumme
Siedlung	3 E=12*69/100 =8,28	9 E=24*62/200 =3,72	12
Grab	66 E=138*176/20 0 =60,72	22 E=62*176/200 =27 28	88
Randsumme	69	31	200
		Smaller than 51	

Smaller than 5!

Christian-Albrechts-Universität zu Kiel

Fishers Test [2]

Test for two samples (test for independence) (example after Hinz, orginal)

Exact test after Fisher!

Type of site	amber		total
	+	-	
settlement	a: 3	b: 9	12
grave	c: 66	d: 22	88
total	69	31	n: 100

$$\varphi = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!} = \frac{(3+9)!(66+22)!(3+66)!(9+22)!}{100!3!9!66!22!}$$

Fishers Test [3]

```
In R
> vergleich<-matrix(c(3,66,9,22),ncol=2)</pre>
> colnames(vergleich)<-c("mit Bernstein", "ohne Bernstein")</pre>
> rownames (vergleich) <-c("Siedlung", "Grab")</pre>
> vergleich
         mit Bernstein ohne Bernstein
Siedlung
                      3
Grab
                     66
                                     22
> fisher.test(vergleich)
     Fisher's Exact Test for Count Data
data: vergleich
p-value = 0.001110
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.01825286 0.50879869
sample estimates:
odds ratio
 0.1141018
```


Christian-Albrechts-Universität zu Kiel

CAIU

Christian-Albrechts-Universität zu Kiel

Fishers Test Aufgabe

Boar teeth in globular amphora graves (Müller 2001, numbers changed)

Given are the following numbers

sex	Boar teeth	
	yes	no
male	11	7
female	1	6

Analyse if there is a significant association!

Christian-Albrechts-Universität zu Kiel

Fishers Test Aufgabe

Boar teeth in globular amphora graves (Müller 2001, numbers changed)

Given are the following numbers Analyse if there is a significant association!

> test<-matrix(c(11,7,1,6),ncol=2)

> chisq.test(test)

X-squared = 2.7501, df = 1, p-value = 0.09725

> chisq.test(test,correct=F)

X-squared = 4.4274, df = 1, p-value = 0.03537

> fisher.test(test)

p-value = 0.07304

sex	Boar teeth	
	yes	no
male	11	7
female	1	6

Christian-Albrechts-Universität zu Kiel

Interpretation of Tests

Statistical association not mean causal association!

Example after Shennan: Grave size and sex

Although there is a statistically significant association between grave size and sex this could be caused by a third factor (here height)

A conclusion which says that grave size are determined by sex would be wrong!

