

Ukraine International Airlines Flight 752

https://en.wikipedia.org/wiki/Ukraine_International_Airlines_Flight_752

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

DANIEL JURAFSKY & JAMES H. MARTIN

Naive Bayes and Sentiment Classification

CH04

Evaluate a Classifier

"We're addicted and annotated data is our heroine."

Gold Labels

aka. Golden Truth, Golden Standard

Human-defined classes/labels for each document

Human judgment Manually labeled Manually annotated

Gold Labels

to err is human!

Gold Labels

to err is human; to forgive, divine!

"Save This Word! All people commit sins and make mistakes. God forgives them, and people are acting in a godlike (divine) way when they forgive." - An Essay on Criticism, Alexander Pope.

Silver Labels

aka. Silver Truth, Silver Standard

Gold is very expensive! Finding gold is needs a lot of effort!

automated-defined classes/labels for each document

Machine judgment Machine labeled Machine annotated

Transduction

Transductive Inference

Data has the labels already! Language Models

Evaluation

$$(x,y) \rightarrow f(x) = y$$

Evaluation

Boolean (Binary) Classifier

	Gold Positive	Gold Negative
Model Positive	True Positive	False Positive
Model Negative	False Negative	True Negative

Perfect Classifier

	Gold Positive	Gold Negative
Model Positive	N+	0
Model Negative	0	N-

Other Metrics

		True condition				
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\sum Condition positive}{\sum Total population}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
Predicted	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds F ₁ score =	
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ = LR- 2 · Precision · Recall Precision + Recall	

Precision

High vs. Low

What scenarios require high precision?

Recall

High vs. Low

What scenarios require high recall?

Precision-Recall

Precision-Recall

Balance Classes ~50% Positive, ~50% Negative

	Gold Positive (50)	Gold Negative (50)
Model Positive	50	50
Model Negative	0	0

Precision =
$$\frac{50}{50+50}$$
 = 0.5

Recall=
$$\frac{50}{50+0}$$
 = 1.0

Precision-Recall

Balance Classes ~50% Positive, ~50% Negative

	Gold Positive (50)	Gold Negative (50)
Model Positive	0	0
Model Negative	50	50

$$Precision = \frac{0}{0+0} = 0.0$$

Recall=
$$\frac{0}{50+0} = 0.0$$

Precision-Recall

Balance Classes ~50% Positive, ~50% Negative

	Gold Positive (50)	Gold Negative (50)
Model Positive	25	25
Model Negative	25	25

Precision =
$$\frac{25}{25+25}$$
 = 0.5

Recall=
$$\frac{25}{25+25} = 0.5$$

Precision-Recall

Imbalance (Unbalanced) Classes ~10% Positive, ~90% Negative

Bias Positive Classifier?
Bias Negative Classifier?
Random Classifier?

Average of Precision and Recall: A Single Metric

$$AVG-PR = \frac{P+R}{2}$$

Same weights to Precision and Recall Not fair! high precision may discount low recall or vice versa

Average of Precision and Recall: A Single Metric

Harmonic AVG-PR =
$$\frac{2}{\frac{1}{P} + \frac{1}{R}} = 2 \left(\frac{\frac{P \times R}{P + R}}{\frac{P}{R}}\right)$$

Same weights to Precision and Recall Conservative! More toward the lower number.

HarmonicMean
$$(a_1, a_2, a_3, a_4, ..., a_n) = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n}}$$

F_{β} -Measure

Weights to Precision and Recall Separately

$$F \neq \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} \quad \text{or } \left(\text{with } \beta^2 = \frac{1 - \alpha}{\alpha} \right) \quad F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

$$\begin{cases} \beta > 1: & favors Recall \\ \beta = 1: & 2\left(\frac{P \times R}{P + R}\right) \\ 0 \le \beta < 1: & favors Precision \end{cases}$$

D	_	8	=0.42
Phappy	_	8+11	-0.42

		Truth			
		Нарру	Sad	Neutral	
	Нарру	8	10	1	
Model	Sad	5	60	50	
	Neutral	3	30	200	

		Truth for Sad	
		Sad	Not Sad
Madal	Sad	60	55
Model	Not Sad	40	212

D	_	60	= 0.52
rsad	_	60+55	=0.52

		Truth	for Happy
		Neutral	Not Neutral
Model	Neutral	200	33
	Not Neutral	51	83

$$P_{\text{neutral}} = \frac{200}{200 + 33} = 0.85$$

		Truth			
		Нарру	Sad	Neutral	
	Нарру	8	10	1	
Model	Sad	5	60	50	
	Neutral	3	30	200	

$$P_{happy} = \frac{8}{8+10+1} = 0.42$$

$$P_{sad} = \frac{60}{5+60+50} = 0.52$$

$$P_{neutral} = \frac{200}{3+30+200} = 0.85$$

$$R_{happy} = \frac{8}{8+5+3} = ?$$

$$R_{sad} = \frac{60}{10+60+30} = 1$$

$$R_{\text{happy}} = \frac{8}{8+5+3} = ?$$
 $R_{\text{sad}} = \frac{60}{10+60+30} = ?$ $R_{\text{neutral}} = \frac{200}{1+50+200} = ?$

Multiclass Evaluation: Macro-Avg

$$Macroavg = \frac{1}{K} \sum_{i=1}^{K} Metric_{K}$$

$$Macroavg = \frac{1}{3}[P_{happy} + P_{sad} + P_{neutral}]$$

Multiclass Evaluation: Micro-Avg

Macro vs. Micro Averaging

Macro vs. Micro

Micro is dominated by the more frequent class.

Micro better reflects the statistics of the smaller classes.

Micro more appropriate when performance on all the classes is equally important.

Calculate the Metrics

 ${Train} \cap {Test} \stackrel{?}{=} \emptyset$

Imbalance Labeled Data = {Train} U {Test}

$${Train} \cap {Test} \stackrel{?}{=} \emptyset$$

Train and test sets presumably follow same distribution!

Underfit → Balance fit ← Overfit

Model Tuning

Find the best running settings of the mode

- n-Gram LM: what is the best n?
- Probs. assumptions
- Neural Model: #layers, Activation functions

Find the best running settings of the mode

- Checking the performance of model on Train and Test
- For all different possibilities

Blind grid search! Brute-force

Find the best running settings of the mode

- Learn the performance of model on Train and Test
- For all different possibilities

Guided grid search!

Steal the labels for the test set!

Home

Compete

m Data

<> Code

Communities

Ourses Courses

More

https://www.kaggle.com/c/petfinder-adoption-prediction/discussion/125436

Mongrel Jedi

PetFinder.my Contest: 1st Place Winner Disqualified

Posted in petfinder-adoption-prediction a year ago

Dear Participants,

We would like to announce that the 1st Place Team, Bestpetting has been disqualified from the contest for cheating. The Kaggle Grandmaster cheater has also been permanently banned on this platform as the evidence points towards him being the key party behind this fraudulent activity.

Here is what the Bestpetting team did in the PetFinder.my contest:

 They fraudulently obtained adoption speed answers for the private test data (possibly by scraping our website)

Legally learn the labels for the test set by performance feedback.

Labeled Data = {{Train} U {Valid}} U {Test}

The model intentionally ignores parts of his available knowledge and challenges itself to uncover those parts!

Labeled Data = {Train}

Labeled Data = {{Subtrain} U {Subtest}

Labeled Data = {{Train} U {Valid}

Cross-Validation 1 practice vs. Multiple practice

Cross-Validation

Model Comparison

Test Sets	A-F1	E.g.,	B-F1	E.g.,
Test-1	A-F1 _{test-1}	0.99	B-F1 _{test-1}	0.6
	·			

A is better than B.

A is significantly better than B \rightarrow 0.99 >> 0.6

Test Sets	A-F1	E.g.,	B-F1	E.g.,
Test-1	A-F1 _{test-1}		B-F1 _{test-1}	0.6
Test-2	$A-F1_{test-2}$	0.5	B-F1 _{test-2}	0.6
Test-3	A-F1 _{test-3}	0.5	B-F1 _{test-3}	0.6
Test-4	$A-F1_{test-4}$	0.5	B-F1 _{test-4}	√ 0.6
AVG		0.6225		0.6

- 1) By average, A is better than B. However, clearly B is better than A.
- 2) By average, A is better than B but only slightly NOT significantly!

What is the problem here?

Test Sets	A-F1	E.g.,	B-F1	E.g., /
Test-1	A-F1 _{test-1}	0.99	B-F1 _{test-1}	0.6
Test-2	$A-F1_{\text{test-2}}$	0.5	B-F1 _{test-2}	0.6
Test-3	A-F1 _{test-3}	0.5	B-F1 _{test-3}	0.6
Test-4	A-F1 _{test-4}	0.5	B-F1 _{test-4}	0.6
AVG		0.6225		0.6

$$P(a < X < b) = \int_a^b f(x) dx.$$

Test Sets	A-F1	E.g.,	B-F1	E.g., /
Test-1	A-F1 _{test-1}	0.99	B-F1 _{test-1}	0.6
Test-2	A-F1 _{test-2}	0.5	B-F1 _{test-2}	0.6
Test-3	A-F1 _{test-3}	0.5	B-F1 _{test-3}	0.6
Test-4	A-F1 _{test-4}	0.5	B-F1 _{test-4}	0.6
AVG		0.6225		0.6

- 1) Labeled data is already expensive.
- 2) Sometimes testing is slow.

Reporting for a lot of runs on different test sets is very challenging!

t-test

