Input: Set system (U. Is...sm3) (each sign)

with weight w: [m] -> Rt.

Goal: Find CEIm] S.t. (UST)=U and

W(C) is minimized.

NP-Complete to solve exactly! So need approximation algorithms!

Parameters: n=(U1, m=(# sets)

k = max (S:1)

d = max (TEIm]: je S:31

mox set size max "degree"

Will see 4 algorithms, 2 guarantees.

LP Relaxation (vars: (X;); etr] Pual (vars: (4j)jeu)

min \sum_{i=1}^m \widehitsix_i

max Zeyj

S.t. Si= Xi21

JEU S. JESIUS TEIN

XZO

920

Kounding

O Solve the primal LP to get (fractional) optimal XER 2 "Round" x to an integral solution C.

Deterministic Rounding C = {i \in Im]: Xi \in 1/d?

*C is a set cover since JEU, 7; ∈[m] s.t. X: ≥1/d and j∈S;

(otherwise, $\sum_{i=1}^{2} X_i < d \cdot (\frac{1}{d}) = 1$, so

x is not feasible in the LP.)

* W(C) = Zw: = d. Zw:/d = d. Zw:.X: = d Zw:.X:=J. OPTLP by def. of C.

So, d-approximation!

Check when d=2, the problem is (Weighted) Versiex Cour.

Randonised Rounding. For each [E[m], put i to C w.p. min(d.l.gn.Xi, 1). Independently.

* JEU, if 35,) with X, > /2 logn, i is always in C. otherwise, $Pr[j \notin (\bigcup_{i \in C} S_i)] = TT(1-d \cdot l_{yn} \cdot X_i)$ $(1-y) \leq e^{-y} \leq TT e^{-d \cdot l_{yn} \cdot X_i}$ $e^{-d \cdot l_{yn} \cdot X_i} = N^{-l_{x_i}} \sum_{s_i \neq j} X_i$

$$\frac{(1-q) \geq e^{3}}{S_{i}} = \frac{1}{N} \left(\sum_{i \neq j} x_{i} \right)$$

$$= \frac{1}{N} \left(\sum_{i \neq j} x_{i} \right)$$

if d=2, Pr[3 s.e. j ∉ (iccsi)] ≤ n·n-d ≤ / by union bound.

*E	_ ~_([(:	۷,	l·I	Jn.	Z	<u>.</u>	iΧ'n,	So	•						
ن. p	. ≥	0.9	,	۵(۵	<u>(`</u>) ≤	lo	J.l	egn.	OPT	Гц.						
· .	ω.p.	>	0.4	7 - Y	΄ Λ,	С	ຜເ	ll be	a	S	C+ (Caver	шH	h w(c)	لە2ك	lyn-OPtu.
50,	mí	n(0	! , ()(l	og n)) –	app	ρισχι	mat(=	١.	Poth	are	2	aptimal)	
The	¥£>	0,	∌ (:	<u>-</u> ly-	tine	<u>.</u> ((–€	.) <i>L</i> n	n-	арр	ωχίμ	ation	a	lgaritha	unless	P#NP.
Thm	A E	ره <	7	¢	,	([d-	(٤)	_		",			41	a ssum	ing
											$^{\prime}$	niqu	e	Ganes	Conja	ecture
												-				

Dual Fitting

"Continatorial (often greedy) algo", analyzed by constructing a dual feasible solution.

Greedy -					
C ← Ø.	choose ser with				
While U + Ø.	best "bang-for-buck"				
i = argmin ω(i) Sinul.					
C = CU 1;* 1. U = U \ S;*					

that iteration 17

* C is a set cover at the end by design.

* In each iteration, $\forall j \in S_i^* \cap U$, for the first time

Let $\forall j = \frac{\omega(i^*)}{|S_i^* \cap U|}$.

Pual (vars: $(\forall j)_{j \in U}$)

At the end, $\omega(C) = \sum_{j \in U} \forall j$.

Want to show $(\forall j \mid H_k)$ is fearible $S \neq \sum_{j \in S_i} \forall j \leq \omega_i$.

For dual, which implies that $\omega(C) \leq H_k \cdot LP_{opt}$.

Pf. $\omega(C) = \sum_{j \in S_i} \forall j \leq \omega_i$. His:

Pf. $\omega(C) = \sum_{j \in S_i} \forall j \leq \omega_i$. His:

Pf. $\omega(C) = \sum_{j \in S_i} \forall j \leq \omega_i$. His:

Pf. $\omega(C) = \sum_{j \in S_i} \forall j \leq \omega_i$. His:

Note they are covered. Then $\forall j \in [S_i]$, $\forall j \leq \omega_i$, because, in the iteraction that

Covered j first time, |SiNV| > 15:1-j+1, implying that W(i*)/ 15:1-j+1 in

Si* when j is covered first time,

Sit 7s "better" than Si

Prinel-Dud

(When primal problem is "covering")

min < (x) s.t. Axzb, x 20

(A,6,c20)

Increase dual variables and pick primal variable corresponding to tight dual consening

Primal-Dual.

Pual (vars: $(y_j)_{j \in U}$) $y \in U$, $C \in \emptyset$.

While $\exists_j \in U \setminus (\bigcup_{i \in C} S_i)$ Choose an arbitrary such j. $S \neq \bigcup_{i \in S_i} y_i = W_i$ $C = \{i \in Im\}: \sum_{j \in S_i} y_j = W_i\}$

Corretness,

* y is feasible throughout the algo.

* When j is chosen, all Siej has Jesiyj < wi.

=> |C| will increase by at least 1 in each iteration.

* Algo will end and C will be a set cover.

Analysis. If x is a feasible primal soln, weat-duality goes like:

 $\sum_{i \in \mathbb{N}} \omega_i \cdot \chi_i \geq \sum_{i \in \mathbb{N}} \left(\sum_{j \in S_i} y_j \right) \chi_i = \sum_{j \in U} \left(\sum_{i : S_i \ni j} \chi_i \right) \geq \sum_{j \in U} y_j.$

NOW, let X be the indicator vector of C.

"=" holds since $V_i \in [m]$, either $X_i = 0$ or $W_i = \sum_{j \in S_i} y_j$.

" \leq d" holds since $\sum_{Si \ni i} \chi_i \leq |Si| \leq d$.

So, d. \subseteq \frac{1}{2} \omega(c) \ge OPTsc \ge LPsc \ge \frac{1}{2} \text{yj.} d-approximation