4 Relatório

4.1 Introdução

A maior aplicação do diodo Zener reside na regulação de tensão de saída de fontes de alimentação. Através da utilização do diodo Zener, em conjunto com um resistor, pode-se conseguir que uma fonte de alimentação forneça tensão praticamente constante à carga. O comportamento do diodo Zener na região de ruptura permite a montagem de circuitos reguladores de tensão, que serão extremamente utéis para a fontes de corrente contínua, a fim de reduzir o fator de ripple destas, assim como ilustrado na Figura 5.

Figura 5: Diagrama de blocos de uma fonte DC.

A Figura 6 nos mostra detalhes da operação do diodo na região de ruptura. Observamos a existência de uma resistência dinâmica, r_z , o que implicará que a tensão que será aplicada na carga, V_o , terá uma pequena dependência na fonte de tensão, V_s . Em outras palavras, esperamos que se V_s aumente, V_o também será acrescido de um pequeno valor. O parâmetro que relaciona a variação de V_o e de V_s é chamado de regulação de linha.

Usando o raciocínio análogo ao parágrafo anterior, podemos relacionar a variação na corrente da carga e na tensão de saída, dado que temos uma resistência dinâmica r_z . No entanto, também há a possibilidade de pensarmos em termos de resistência, já que $i_l = \frac{V_o}{R_l}$. Logo, teremos uma pequena dependência entre a resistência da carga, R_l , e a tensão da carga V_o . O parâmetro que relaciona a variação de V-o e i_l é chamado de regulação de carga.

Neste experimento, estudaremos ambos os parâmetros e ainda exploraremos um componente mais sofisticado para regulagem de tensão, um circuito integrado da família 78xx. O circuito integrado 7805 é um regulador linear de tensão, e será utilizado em diversas configurações, cada qual com sua própria aplicação. Um regulador linear tensão, garante que se a tensão é garantidamente maior que um certo valor, um outro valor, mais baixo, será dado como saída.

Figura 6: Relação detalhada da corrente e tensão de um Diodo Zener operando na região de ruptura.

4.2 Análises

Para V_{in} :

$$\begin{split} V_{medio} &= 19.3V \\ V_{rms} &= 140mV \\ V_{min} &= 19.1V \\ V_{max} &= 19.7V \end{split}$$

Para V_{out} :

$$V_{medio} = 8.6V$$

$$V_{rms} = 140mV$$

$$V_{min} = 8.4V$$

$$V_{max} = 8.8V$$

Para V_{in} :

Figura 7:

Figura 8:

$$\begin{split} V_{medio} &= 19.5V \\ V_{rms} &= 90mV \\ V_{min} &= 19.2V \\ V_{max} &= 19.7V \end{split}$$

Para V_{out} :

$$V_{medio} = 4.4V$$

$$V_{rms} = 60mV$$

$$V_{min} = 4.4V$$

$$V_{max} = 4.8V$$

Figura 9:

Figura 10:

Tabela 1: caption

$[\Omega]$	Médio $[V]$	Mínimo $[V]$	Máximo $[V]$
100	320×10^{-3}	200×10^{-3}	400×10^{-3}
470	2.3	2.2	2.4
820	4.15	4	4.2

Tabela 2: caption

$[\Omega]$	$V_l[V]$	$i_l[mA]$
47	20.35	111.5
100	2.3	56.1

4.3 Discussões

4.4 Conclusão