Komisja Egzaminacyjna dla Aktuariuszy

XLVI Egzamin dla Aktuariuszy z 2 czerwca 2008 r.

Część I

Matematyka finansowa

WERSJA TESTU A

Imię i	nazwisko	osoby	egzaminowanej:

Czas egzaminu: 100 minut

- Inwestor kupuje po zaproponowanej przez siebie cenie europejską opcję kupna po cenie średniej na akcje spółki X. Do wyznaczenia tej ceny przyjmuje on następujące założenia dotyczące kursu akcji w kolejnych trzech okresach:
 - w każdym z okresów cena akcji spółki może wzrosnąć o 30% z prawdopodobieństwem 60% lub zmaleć o 20%,
 - obecna cena akcji wynosi 100,
 - oczekiwana przez inwestora efektywna stopa zwrotu z tej inwestycji wynosi i = 15% w skali jednego okresu.

Po upływie trzech okresów okazuje się, że cena akcji kształtowała się następująco: 120 na koniec pierwszego okresu, 160 na koniec drugiego okresu i 150 na koniec trzeciego. Efektywna stopa zwrotu z tej inwestycji, w skali jednego okresu, wyniosła:

- A) -57.6%
- B) -5.8%
- C) 7.6%
- D) 15.0%
- E) 21.3%

Uwaga: Europejska opcja kupna po cenie średniej wypłaca na koniec trzeciego okresu różnicę pomiędzy ceną końcową a ceną średnią w całym okresie ważności opcji liczoną z uwzględnieniem ceny początkowej oraz końcowej, o ile ta różnica jest dodatnia.

- 2. Pan Jan zamierza nabyć za 3 lata 3 letnią rentę pewną płatną na koniec każdego roku o stałych płatnościach 10 000 PLN. Do tego czasu planuje on wpłacać na koniec każdego miesiąca na konto oszczędnościowe taką stałą kwotę aby suma wpłat wraz z odsetkami sfinansowała zakup renty. Wiadomo, że oprocentowanie konta oszczędnościowego wynosi 0.4% w ujęciu miesięcznym, a stopa rynkowa służąca do wyznaczenia ceny renty za 3 lata ma rozkład jednostajny na przedziale (3%, 7%). Jaką kwotę powinien co miesiąc wpłacać Pan Jan? Podać najbliższą odpowiedź.
 - A) 705 PLN
 - B) 709 PLN
 - C) 715 PLN
 - D) 758 PLN
 - E) 814 PLN

3. Przez bieżącą rentowność transakcji nabycia europejskich opcji nie płacących dywidendy rozumiemy wielkość R_C(t) = K + C - S_t dla opcji kupna o cenie C oraz R_P(t) = K - P - S_t dla opcji sprzedaży o cenie P, z instrumentem podstawowym (akcja nie płacąca dywidendy) o bieżącej cenie S_t, po cenie wykonania K. Na rynku Blacka-Scholesa rozważmy dwie roczne opcje europejskie, kupna i sprzedaży przy K = 50, wygasające za 9 miesięcy, wolna od ryzyka stopa r = 10% rocznie, a zmienność cen akcji σ = 20%. Bieżąca cena akcji wynosi 53. Jak powinna się zmienić bieżąca cena akcji, aby bieżące rentowności transakcji nabycia opcji kupna i opcji były takie same co do wartości bezwzględnej i miały przeciwny znak? Odpowiedź:

- A) spaść o 6.5
- B) spaść o 0.3
- C) nie zmienić się
- D) wzrosnąć o 0.3
- E) wzrosnąć o 6.5

Uwaga: Należy użyć przybliżonych tablic rozkładu normalnego, nie używając aproksymacji liniowej, odczytując jedynie najbliższą wartość dystrybuanty.

d	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35
N(d)	0.5000	0.5199	0.5398	0.5596	0.5793	0.5987	0.6179	0.6368
d	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75
N(d)	0.6554	0.6736	0.6915	0.7088	0.7257	0.7422	0.7580	0.7734
d	0.8	0.85	0.9	0.95	1	1.05	1.1	1.15
N(d)	0.7881	0.8023	0.8159	0.8289	0.8413	0.8531	0.8643	0.8749
d	1.2	1.25	1.3	1.35	1.4	1.45	1.5	1.55
N(d)	0.8849	0.8944	0.9032	0.9115	0.9192	0.9265	0.9332	0.9394
d	1.6	1.6500	1.7	1.75	1.8	1.85	1.9	1.95
N(d)	0.9452	0.9505	0.9554	0.9599	0.9641	0.9678	0.9713	0.9744
d	2	2.05	2.1	2.15	2.2	2.25	2.3	2.35
N(d)	0.9772	0.9798	0.9821	0.9842	0.9861	0.9878	0.9893	0.9906
d	2.4	2.45	2.5	2.55	2.6	2.65	2.7	2.75
N(d)	0.9918	0.9929	0.9938	0.9946	0.9953	0.9960	0.9965	0.9970
d	2.8	2.85	2.9	2.95	3	3.05	3.1	3.15
N(d)	0.9974	0.9978	0.9981	0.9984	0.9987	0.9989	0.9990	0.9992

- 4. Załóżmy, że cena pewnego instrumentu finansowego jest zmienną losową o pewnym rozkładzie ze średnią 0 i wariancją 1. Rozważmy ciąg nieskończony takich wzajemnie niezależnych zmiennych losowych {X_n, n≥1}. Niech Φ_n = σ(X₁,...,X_n) będzie σ-ciałem generowanym przez X₁,...,X_n. Spośród stwierdzeń:
 - i. proces $S_n = \sum_{i=1}^n X_i$ jest martyngałem względem Φ_n ,
 - ii. proces S_n^2-n jest martyngałem względem Φ_n ,
 - iii. proces $\mathbb{E}(X_1 ig| \Phi_n)$ jest martyngałem względem Φ_n , prawdziwe są
 - A) żadne
 - B) i, ii
 - C) i, iii
 - D) ii, iii
 - E) wszystkie

Uwaga: Ciąg niezależnych zmiennych losowych $\{X_n, n \geq 1\}$ nazywamy martyngałem względem σ-ciała $\Phi_n = \sigma(X_1, \ldots, X_n)$, jeśli $E(X_{n+1} \mid \Phi_n) = X_n$.

5. Kredyt mieszkaniowy zaciągnięty w kwocie 300 000 spłacany jest w równych ratach na koniec roku, w ciągu 30 lat. Ile wynosi roczna rata kredytu, jeżeli oprocentowanie kredytu jest następujące:

```
10\% - w latach 6k + 1,
```

$$8\%$$
 - w latach $6k + 2$,

$$6\%$$
 - w latach $6k + 3$,

$$7\%$$
 - w latach $6k + 4$,

$$4\%$$
 - w latach $6k + 5$,

gdzie k = 0, 1,...,4. Podaj najbliższą wartość.

- A) 24 018
- B) 24 054
- C) 24 095
- D) 24 130
- E) 24 158

6. Bieżące kursy walutowe wynoszą : 1 USD = 2,2 PLN, 1 USD = 0,70 EUR. Oprocentowanie rocznych depozytów i kredytów:

	PLN	EUR	USD
kredyt	9%	6%	4%
depozyt	6%	4%	2%

Inwestor może dokonywać bez kosztów wszelkich operacji według wyżej określonych stawek rynkowych. Przy którym z poniższych kursów terminowych z rozliczeniem za rok jest możliwy arbitraż?

- A) 1 EUR = 3.27 PLN
- B) 1 USD = 2.35 PLN
- C) 1 USD = 0.72 EUR
- D) 1 EUR = 1.39 USD
- E) 1 PLN = 0.32 EUR

- 7. Przyszły Emeryt (PE) rozpoczyna z początkiem roku plan oszczędzania polegający na inwestowaniu w funduszu inwestycyjnym części swojego wynagrodzenia. Celem planu jest zgromadzenie na koniec 20 roku oszczędzania środków w wysokości wystarczającej do wypłaty 10 letniej renty pewnej płatnej z dołu w wysokości 2 000 PLN miesięcznie.
 - Stopa zwrotu w funduszu inwestycyjnym wynosi 0.3% miesięcznie w okresie pierwszych 10 lat oszczędzania, 0.25% miesięcznie w okresie następnych 10 lat i 0.2% miesięcznie w okresie pobierania renty (dla uproszczenia zakładamy, że fundusz również wypłaca rentę ze zgromadzonych przez PE środków).

Wynagrodzenie PE w chwili rozpoczęcia planu oszczędzania wynosi 3 500 PLN i będzie rosło o 30 PLN miesięcznie w całym 20 letnim okresie oszczędzania.

PE będzie przekazywać do funduszu na początku każdego miesiąca K% swojego wynagrodzenia przez pierwsze 10 lat oraz (K + 3)% wynagrodzenia przez pozostałe 10 lat oszczędzania.

Ile wynosi K (podaj najbliższą wartość)?

- A) 6.36
- B) 6.86
- C) 7.36
- D) 7.86
- E) 8.36

8. Na rynku finansowym dany jest instrument pochodny X zapadający za 3 lata od dziś, oraz pewien instrument bazowy Y. Instrumentem bazowym dla instrumentu X jest akcja A, o której wiadomo że jej cena S₃ za 3 lata jest funkcją ceny Y (zmiennej losowej) instrumentu bazowego Y o rozkładzie jednostajnym na przedziale [80,120] w następujący sposób:

$$S_3 = 4Y - 50, Y \sim U[80,120]$$

Wypłata V₃ z instrumentu X dana jest wzorem:

$$V_3 = Max(S_3 - 350, 0)e^{-0.08Y}$$

Ponadto na rynku dostępna jest zero-kuponowa obligacja rządowa o terminie zapadalności równym 3 lata, której cena obecna zależy od Y w następujący sposób:

$$P(0,3) = 10^6 e^{-0.12Y}$$
.

Na podstawie powyższych informacji oraz zakładając brak arbitrażu oblicz obecną wartość w instrumentu X w milionach jednostek (podaj najbliższą wartość):

- A) $2.5e^{-20}(1-5e^{-4})$
- B) $50e^{-12} 250e^{-400}$
- C) $10e^{-10}(1-20e^{-40})$
- D) $100e^{-12}(1-5e^{-40})$
- E) $2.5e^{-16}(5e^{-8}-3)$

Uwaga: Funkcja P(t,T) oznacza cenę w chwili t obligacji zapadającej w chwili T ($t \le T$).

- 9. Inwestor chce oszacować oczekiwaną stopę zwrotu z akcji X w oparciu o Model Wyceny Aktywów Kapitałowych CAPM (Capital Asset Pricing Model). Ma do dyspozycji następujące informacje:
 - stopa wolna od ryzyka wynosi 10%
 - oczekiwana stopa zwrotu z indeksu replikującego cały rynek wynosi 22%
 - korelacja między stopą zwrotu akcji i stopą zwrotu indeksu wynosi 14%
 - wariancja stopy zwrotu indeksu wynosi 36%
 - wariancja stopy zwrotu akcji wynosi 25%.

Wartość oczekiwanej stopy zwrotu z akcji X wynosi (podaj najbliższą wartość):

- A) 10.42%
- B) 10.84%
- C) 11.40%
- D) 12.02%
- E) 16.72%

- 10. Obecna wartość akcji wynosi S₀ = 110. Wartość ceny akcji w horyzoncie 2 lat opisuje proces S_t. Możliwe ceny akcji w każdym z momentów t=0,1,2 są przedstawione na wierzchołkach w₁, w₂, w₃, w₄, w₅, w₆ drzewka dwumianowego. Niezależnie od procesu ceny akcji S_t wprowadzamy miarę P determinująca prawdopodobieństwa wzrostu ceny p = 0.25 oraz spadku q = 0.75 w każdym z wierzchołków w stosunku do ceny z wierzchołka poprzedniego. Definiujemy filtrację (niemalejącą rodzinę σ-ciał) {F_t}, (t = 0,1,2) jako historię podróży procesu po drzewku do chwili t:
 - dla t = 0 $F_0 = \{w_1\}$
 - dla t = 1 $F_1 = \{\{w_1, w_2\}, \{w_1, w_3\}\}$
 - dla t = 2 $F_2 = (\{w_1, w_2, w_4\}, \{w_1, w_2, w_5\} \vee \{w_1, w_3, w_5\}, \{w_1, w_3, w_6\})$

czas:

t = 0

t = 1

 S_1

t = 2

cena akcji:

 S_0

 S_2

Wskaż prawdziwe stwierdzenie:

- A) wartość oczekiwana ceny S₂ względem miary P pod warunkiem, że proces znajduje się w wierzchołku w₂ wynosi 100
- B) wartość oczekiwana ceny S_2 względem miary \mathbb{P} pod warunkiem, że proces znajduje się w wierzchołku w_3 wynosi 130
- C) proces ceny akcji S_t jest martyngałem względem miary \mathbb{P} i filtracji $\{F_t\}_{t=0,1,2}$
- D) proces ceny akcji S_t jest podmartyngałem względem miary $\mathbb P$ i filtracji $\{F_t\}_{t=0,1,2}$
- E) proces ceny akcji S_t jest nadmartyngałem względem miary \mathbb{P} i filtracji $\{F_t\}_{t=0,1,2}$ Uwaga:

Proces S_t jest martyngałem względem miary P i filtracji $\{F_t\}_{t=0,1,2}$ jeśli $E^P[X_t|F_s] = X_s$ dla dowolnego $s \le t$. Proces S_t jest podmartyngałem względem miary P i filtracji $\{F_t\}_{t=0,1,2}$ jeśli $E^P[X_t|F_s] \ge X_s$ dla dowolnego $s \le t$. Proces S_t jest nadmartyngałem względem miary P i filtracji $\{F_t\}_{t=0,1,2}$ jeśli $E^P[X_t|F_s] \le X_s$ dla dowolnego $s \le t$.

Egzamin dla Aktuariuszy z 2 czerwca 2008 r.

Matematyka finansowa

Arkusz odpowiedzi*

Imię i nazwisko:	
Pesel:	
OZNACZENIE WERSJI TESTU	A.

Zadanie nr	Odpowiedź	Punktacja
1	C	
2	A	
3	D	
4	Е	
5	A	
6	Е	
7	D	
8	A	
9	С	
10	Е	