Отчет о выполнении лабораторной работы 1.3.1

Калашников Михаил, Б03-205

І. Определение модуля Юнга по измерениям растяжения проволоки

Площадь поперечного	
сечения проволоки, S	$0.42 \ mm^2$
Длина	
рычага, r	$13 \ mm$
Длина	
проволоки, $l \pm \sigma_l$	$175.5 \pm 0.5 \ cm$
Расстояние от шкалы	
до зеркальца, $h\pm\sigma_h$	$137.3 \pm 0.5 \ cm$

Таблица 1: Параметры установки

Формула, связывающая смещение изображения линейки Δx , величины $h,\,r$ и удлинение Δl :

$$\Delta x = \alpha h = \frac{\Delta l}{r} h$$
$$\Delta l = \Delta x \frac{r}{h}$$

Проведем измерения положения изображения линейки при постепенном увеличении и уменьшении нагрузки Δm на проволоку. Рассчитаем смещение изображения относительно начального положения. Усредним полученные значения и вычислим среднекватратические отклонения по формуле:

$$\sigma_{a} = \sqrt{\frac{\sum_{i=1}^{N} (a - a_{i})}{N(N - 1)}}$$

$$\sigma_{\Delta x} = \sqrt{\frac{\sum_{i=1}^{N} (\Delta x - \Delta x_{i})}{N(N - 1)}}$$

После этого рассчитаем удлинение проволоки. Погрешность данной величины найдем по формуле:

$$\sigma_Y = \sqrt{\sum_{i=1}^{N} \left(\frac{\delta Y}{\delta X_i} \sigma_{X_i}\right)^2},$$

$$\sigma_{\Delta l} = \Delta l \sqrt{\left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}.$$

$\Delta m, g$	0.0	245.6	491.7	737.5	983.6
	17.6	18.9	20.0	20.9	22.0
	17.3	18.6	19.9	21.1	22.0
r. em	17.3	18.8	19.8	21.0	22.1
x_i, cm	17.4	18.5	19.8	20.9	22.1
	17.3	18.5	19.6	20.9	22.0
	17.2	18.5	19.5	20.7	22.0
	0.0	1.3	2.4	3.3	4.4
$\Delta x_i, cm$	0.0	1.3	2.6	3.8	4.7
	0.0	1.5	2.5	3.7	4.8
	0.0	1.1	2.4	3.5	4.7
	0.0	1.2	2.3	3.6	4.7
	0.0	1.3	2.3	3.5	4.8
$\Delta x \pm \sigma_{\Delta x}, cm$	0.0	1.28 ± 0.05	2.42 ± 0.05	3.57 ± 0.07	4.68 ± 0.06
$\Delta l \pm \sigma_{\Delta l}, mm$	0.0	0.12 ± 0.005	0.23 ± 0.005	0.34 ± 0.007	0.44 ± 0.006

Таблица 2: Измерение положения изображения линейки и расчет удлинения проволоки

Построим график зависимости $\Delta l(P)$, где $P = \Delta mg \ (g = 9.8154 \ m \cdot s^{-2})$.

По графику определим, что $k=22.47~kN\cdot m^{-1}$. Модуль Юнга найдем по формуле:

$$\begin{split} E &= \frac{F}{S} \cdot \frac{l}{\Delta l} = k \frac{l}{S} = 94.2 \ GPa. \\ \sigma_E &= E \frac{\sigma_l}{l} = k \frac{\sigma_l}{S} = 0.3 \ GPa \end{split}$$

Данное значение соответсвует модулю Юнга латуни.

II. Определение модуля Юнга по измерениям изгиба балки

Расстояние между призмами $l\pm\sigma_l=50\pm0.1~cm.$

Эксперимент будет проводиться с тремя брусками: одним металлическим и двумя деревянными. Измерим их параметры.

Брусок №1 (металл)										
Толщина, тт	3.84	3.81	4.17	3.77	3.95	4.09	3.89	4.07	3.86	3.98
Ширина, тт	21.21	21.30	21.21	21.27	21.10	21.13	21.30	21.47	21.28	21.21
Брусок №2 (дерево)										
Толщина, тт	10.45	10.39	10.05	10.06	10.24	10.48	10.55	10.32	10.32	10.40
Ширина, тт	20.11	20.11	20.02	20.05	20.33	20.23	20.27	20.11	20.09	20.30
Брусок №3 (дерево)										
Толщина, тт	10.83	11.05	10.74	10.78	11.05	10.70	10.67	10.34	10.35	10.55
Ширина, тт	18.89	18.57	18.52	18.55	18.77	18.80	19.31	19.26	18.93	18.64

Таблица 3: Измерение геометрических параметров брусков

Брусок	1	2	3
Толщина, $b \pm \sigma_b$, mm	3.94 ± 0.04	10.33 ± 0.05	10.71 ± 0.08
Ширина, $a \pm \sigma_a$, mm	21.25 ± 0.03	20.16 ± 0.03	18.82 ± 0.09

Таблица 4: Геометрические параметры брусков

Проведем измерения относительного изменения значения прогиба при различной нагрузке и построим график зависимости $\Delta x(m)$.

Брусок	Масса нагрузки, т, д	461.8	482.5	511.0	944.3	972.8	993.5	1455.3
1		0.67	0.70	0.72	1.28	1.31	1.33	1.96
2	Смещение, Δx , mm	0.58	0.63	0.62	1.15	1.19	1.23	1.74
3		0.4	0.45	0.47	0.79	0.88	0.84	1.22

Таблица 5: Измерения величины деформации брусков

Зная, что эти две велиничы связаны формулой

$$\Delta x = \frac{gl^3}{4ab^3E}m,$$

определим модуль Юнга из углового коэффициента k прямой, проведенной через полученные точки:

$$E = \frac{gl^3}{4ab^3k},$$

$$\sigma_E = E\sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(3\frac{\sigma_b}{b}\right)^2 + \left(3\frac{\sigma_l}{l}\right)^2}.$$

Брусок	1	2	3
Коэффициент, $k, m \cdot g^{-1}$	1.29	1.17	0.81
Модуль Юнга, E , GPa	182.5 ± 5.9	11.8 ± 0.2	16.4 ± 0.4

Таблица 6: Модуль Юнга брусков