Case No.: 56313US009

Amendments

Amendments to the Claims:

The following Listing of Claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Originally Presented) A fluorochemical composition comprising a major amount of organic solvent and 0.05% by weight to 5% by weight of fluorochemical oligomer dispersed or dissolved in said organic solvent and said fluorochemical oligomer being represented by the general formula:

wherein X represents the residue of an initiator or hydrogen; M^f represents units derived from fluorinated monomers; M^h represents units derived from a non-fluorinated monomers; M^a represents units having a silyl group represented by the formula:

wherein each of Y⁴,Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group; G is a monovalent organic group comprising the residue of a chain transfer agent; n represents a value of 1 to 100; m represents a value of 0 to 100;

r represents a value of 0 to 100; and n+m+r is at least 2;

with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

Case No.: 56313US009

wherein Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group.

- 2. (Presently Amended) Fluorochemical composition according to claim 1 wherein at least one of Y¹, Y² and Y³ and/or at least one of Y⁴, Y⁵ and Y⁶ is a hydrolyzable group selected from the group consisting of halogen, an alkoxy group, an acyloxy group, an acyloxy group, and an aryloxy group.
- 3. (Originally Presented) Fluorochemical composition according to claim 1 wherein said monovalent organic group G corresponds to the general formula:

wherein Y¹,Y², Y³ have the meaning as defined in claim 1 or 2 and wherein Q¹ represents an organic divalent linking group.

4. (Originally Presented) Fluorochemical composition according to claim 1 wherein M^f comprises a unit derived from a fluorinated monomer of the formula:

$$C_4F_9-Q^2-E^1$$

wherein E^1 represents a free radical polymerizable group and Q^2 represents an organic divalent linking group.

5. (Presently Amended) Fluorochemical composition according to claim 1 wherein Ma is a unit derived corresponding to the formula:

Case No.: 56313US009

wherein R^1 , R^2 and R^3 each independently represents hydrogen, an alkyl group, an aryl group or halogen, Q^3 represents an organic divalent linking group, Q^4 represents an organic divalent linking group, T represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^4 , Y^5 and Y^6 have the meaning as defined in claim 1.

6. (Originally Presented) Fluorochemical composition according to claim 1 wherein G corresponds to the formula:

$$\begin{array}{c|c}O&Y^1\\ &|&|\\ \text{-S-Q}^1\text{-T}^2\text{-C-NH-Q}^5\text{-Si-Y}^2\\ &|&\\ &Y^3\end{array}$$

wherein Q^1 and Q^5 each independently represents an organic divalent linking group, T^2 represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^1 , Y^2 and Y^3 have the meaning as defined in claim 1.

- 7. (Originally Presented) Fluorochemical composition according to claim 1 wherein the composition is a homogeneous composition further comprising water and an organic or inorganic acid.
- 8. (Presently Amended) Fluorochemical composition according to claim 1 wherein the units derived from non-fluorinated monomers are units derived from non-fluorinated monomers corresponding to the general formula:

$$R^h-Q^6_s-E^3$$

Case No.: 56313US009

wherein R^h represents a hydrocarbon group, Q^6 is a divalent linking group, s is 0 or 1 and E^3 is a free radical polymerizable group.

- (Originally Presented) Method of treating a substrate comprising applying to said substrate a composition according to claim 1.
- 10. (Originally Presented) Method of treating a substrate comprising applying to said substrate a composition according to claim 1 and exposing a thus obtained coated substrate to water and an organic or inorganic acid.
- 11. (Originally Presented) Method of treating a substrate according to claim 9 further comprising the step of exposing the coated substrate to an elevated temperature of 60°C to 300°C.
- 12. (Presently Amended) Method according to claim 9 wherein said substrate is selected from the group consisting of plastics, ceramics, and glass.
- 13. (Presently Amended) Substrate comprising a coating derivable from the coating composition of any of claim 1 wherein the substrate is selected from the group consisting of plastics, ceramics, and glass.
 - 14. (Originally Presented) Fluorochemical oligomer corresponding to the formula:

 $X-M^f_nM^h_mM^a_r-G$

wherein X represents the residue of an initiator or hydrogen; $M^{f} \text{ represents units derived from fluorinated monomers having the formula:} \\ C_{4}F_{9} \cdot Q^{2} \cdot E^{1}$

Case No.: 56313US009

wherein E¹ represents a free radical polymerizable group and Q² represents an organic divalent linking group; M^h represents units derived from non-fluorinated monomers; M^a represents units having a silyl group represented by the formula:

wherein each of Y⁴,Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group; G represents a monovalent organic group comprising the residue of a chain transfer agent; n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 0 to 100; and n+m+r is at least 2;

with the proviso that at least one of the following conditions is fulfilled: (a) G is a monovalent organic group that contains a silyl group of the formula:

wherein Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group; or (b) r is at least 1 and at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group.

15. (Presently Amended) Fluorochemical oligomer having the formula:

$$X-M^{f}_{n}M^{h}_{m}M^{a}_{r}-G$$

wherein X represents the residue of an initiator or hydrogen; M^f represents units derived from fluorinated monomers; M^h represents units derived from non-fluorinated monomers; M^a represents units having the formula:

Case No.: 56313US009

wherein R¹, R² and R³ each independently represents hydrogen, an alkyl group, an aryl group or halogen, Q³ represents an organic divalent linking group, Q⁴ represents an organic divalent. linking group, T represents O or NR with R being hydrogen, an aryl or a C₁-C₄ alkyl group, and wherein each of Y⁴, Y⁵ and Y⁶ independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y⁴, Y⁵ and Y⁶ represents a hydrolyzable group; G represents a monovalent organic group comprising the residue of a chain transfer agent; n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 1 to 100; and n+m+r is at least 2.

16. (Originally Presented) Fluorochemical oligomer according to claim 15 wherein G corresponds to the formula:

wherein Q^1 and Q^5 each independently represents an organic divalent linking group, T^2 represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group.

17. (Originally Presented) Fluorochemical oligomer having the formula:

Case No.: 56313US009

wherein X represents the residue of an initiator or hydrogen; M^f represents units derived from fluorinated monomers; M^h represents units derived from a non-fluorinated monomers; M^a represents units having a silyl group represented by the formula:

wherein each of Y^4, Y^5 and Y^6 independently represents an alkyl group, an aryl group or a hydrolyzable group, with the proviso that at least one of Y^4 , Y^5 and Y^6 represents a hydrolyzable group; G corresponds to the formula:

wherein Q^1 and Q^5 each independently represents an organic divalent linking group, T^2 represents O or NR with R being hydrogen, an aryl or a C_1 - C_4 alkyl group, and Y^1 , Y^2 and Y^3 each independently represents an alkyl group, an aryl group or a hydrolyzable group with at least one of Y^1 , Y^2 and Y^3 representing a hydrolyzable group; n represents an integer of 1 to 100; m represents an integer of 0 to 100; r represents an integer of 0 to 100; and n+m+r is at least 2.