ChernyshovDS 19022025-160502

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.328	-164.0	11.236	88.0	0.043	68.4	0.309	-60.4
1.4	0.338	-169.8	9.669	84.3	0.049	68.2	0.276	-64.1
1.6	0.343	-174.9	8.358	80.5	0.055	67.5	0.248	-67.9
1.8	0.350	-179.0	7.456	77.7	0.060	67.1	0.225	-71.8
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
2.4	0.359	170.7	5.465	69.5	0.078	64.4	0.185	-84.2
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5
3.5	0.375	156.7	3.707	57.7	0.110	58.9	0.159	-102.4
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6

и частоты $f_{\mbox{\tiny H}}=1.2$ $\Gamma\Gamma\mbox{\scriptsize I}\mbox{\scriptsize I},$ $f_{\mbox{\tiny B}}=4.5$ $\Gamma\Gamma\mbox{\scriptsize I}\mbox{\scriptsize I}$.

Найти усиление на $f_{\scriptscriptstyle \mathrm{H}}.$

- 1) 9.2 дБ
- 2) 10.5 дБ
- 3) 4.6 дБ
- 4) 21 дБ

Задан двухполюсник на рисунке 1, причём R1 = 298.59 Ом.

Рисунок 1 – Двухполюсник

Найти полуокружность (см. рисунок 2), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок2— Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 3), соответствующую s_{22} на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 3 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса $z=0.53+0.28\mathrm{i}$.

Рисунок 4 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3
3.5	0.691	100.0	1.641	17.4	0.141	38.3	0.212	-98.4
3.6	0.696	98.3	1.592	15.8	0.144	37.3	0.211	-101.7
3.7	0.702	96.7	1.544	14.1	0.147	36.3	0.211	-105.1
3.8	0.709	95.1	1.497	12.2	0.150	35.3	0.212	-108.4
3.9	0.716	93.5	1.452	10.3	0.153	34.4	0.213	-111.7
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.1	0.728	90.5	1.369	6.6	0.159	32.5	0.215	-118.4
4.2	0.732	89.0	1.330	4.9	0.161	31.6	0.217	-121.7
4.3	0.737	87.5	1.292	3.1	0.164	30.7	0.219	-125.0

и частоты $f_{\scriptscriptstyle \rm H}=3.4~\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=4.1~\Gamma\Gamma$ ц. **Найти** модуль s_{12} в дБ на частоте $f_{\scriptscriptstyle \rm H}$.

- 1) -3.3 дБ
- 2) -17.2 дБ
- 3) 4.6 дБ
- 4) -13.5 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.9	0.731	92.9	1.357	9.0	0.154	35.4	0.220	-112.8
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.1	0.742	89.9	1.279	5.3	0.159	33.5	0.223	-119.5
4.2	0.748	88.4	1.242	3.6	0.162	32.5	0.225	-122.8
4.3	0.753	87.0	1.207	1.9	0.165	31.6	0.227	-126.1
4.4	0.759	85.5	1.172	-0.0	0.167	30.7	0.231	-129.3
4.5	0.766	84.1	1.139	-2.0	0.170	29.8	0.234	-132.4
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2
4.7	0.771	81.7	1.081	-4.7	0.175	28.5	0.240	-138.0
4.8	0.774	80.5	1.053	-6.1	0.178	27.8	0.243	-140.7
4.9	0.778	79.4	1.026	-7.6	0.180	27.2	0.247	-143.3

и частоты $f_{\scriptscriptstyle \rm H}=4.3$ ГГц, $f_{\scriptscriptstyle \rm B}=4.8$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

- 1) 1.2 дБ
- 2) 1 дБ
- 3) 2.4 дБ
- 4) 0.6 дБ