Ultra low power integer-N ADPLL

Master's thesis project - meeting 12

Cole Nielsen
Department of Electronic Systems, NTNU
3 Apr 2020 (calendar week 14)

10b Capacitive DAC.

Architecture.

- Target: 10 bit differential, in ca. 25x50 μ m area. Achieved: 18x48 μ m area
- Try to maximize unit capacitance to address leakage through ring oscillator.
- Have arrived to using array of 16x64 capacitors.
- Maintain common centroid in 64 capacitor sub arrays, and likewise in 16x array of 64 capacitor banks.

10b Capacitive DAC.

64 capacitor sub-array.

- Settled on 12.8 μ m x 3 μ m area per 64 μ cap bank.
- MOM like configuration, with vertical interdigitation.
- Capacitor constructed on layers C1-C5
- Ca. 2 fF unit capacitance.

10b Capacitive DAC.

Switch cell.

Implemented as inverter

PLL components

Loop filter

- Loop filter
- Control/calibration logic
 - · Lock detect, gear switching
 - PVT cal
 - Estimate initial DCO control word
- Phase detectors
 - BBPD
 - Synchronous counter (7-8 bit)
 - · Counter phase error decoder
- Level shifter (0.5V → 0.8V)
- CDACs
 - 5 bit coarse
 - 10 bit fine
- Ring oscillator
- RO buffer

Architecture

Block Diagram

Power Targets (revised)

(Divider not necessary)

DCO	Phase detector	Digital (LF)	Other	SUM
70 μW	10 μW	10 μW	0 ≤ 5 μW	\leq 90 $\frac{100}{\mu}$ μ W

Specification

System Performance Targets

Parameter	Value	Unit	Notes
Frequency	2.4-2.4835	GHz	2.4G ISM Band
Ref. frequency	16	MHz	Yields 6 channels
Power	\leq 100 μ W	μW	Minimize!
FSK BER	≤ 1e-2		GFSK* with f_{dev} = ± 250 KHz
CNR	> 20	dBc	Yields -235 dB FOM _{jitter} ideally
Initial Lock Time	≤ 10	μs	Upon cold start
Re-lock Time	≤ 5	μS	Coming out of standby, $f_{error} < 1 \text{ MHz}$
Lock ∆f tolerance	100	kHz	
FOM _{jitter}	≤ -230	dB	For state of art in size/power
Area	< 0.01	mm ²	

^{*} Using BT=0.3, 1 MSymbols/s, 4 demodulated symbols averaged per bit to yield 250 kbps.

Specification

Component-level specs

Parameter	Value	Unit	
Counter range	256 steps	coverage of 150-155	
DCO gain K _{DCO}	10 ⁴	Hz/LSB	
DCO tuning range	10	MHz	
DCO DAC resolution	10	bit	
DCO Phase noise	< -80	dBc/Hz @ $\Delta f = 10^6$ Hz, $f_C = 2.448$ GHz	
DCO Power	≤ 50	μW	
Digital filter word resolution	≤ 16	bits (power grows as $\mathcal{O}(n^2)$)	
BB-PD jitter	≤ 12	ps _{rms}	

Time plan (pt. 1)

Week #	Dates	Tasks	Outcomes
4	20.1 - 26.1	Finalize high level modeling	Component level specification
5	27.1 - 2.2	Establish test bench in Virtuoso	With ideal PLL implementation
6	3.2 - 9.2	Schem. design: phase detector	TDC - flash and counter based
7	10.2 - 16.2	Schem. design: phase detector	Bang-bang phase detector
8	17.2 - 23.2	RTL, synthesis, place&route	Digital loop filter
9	24.2 - 1.3	RTL, synthesis, place&route	Digital loop filter
10	2.3 - 8.3	Schem. design: oscillator	Ring DCO
11	9.3 - 15.3	Layout: oscillator	
12	16.3 - 22.3	Layout: oscillator	
13	23.3 - 29.3	CDAC/Ring oscillator	
14	30.3 - 5.4	CDAC	
15	6.4 - 12.4	(Easter) Calibration/control logic	RTL, synth, PnR for calibration
16	13.4 - 19.4	Layout	Phase detectors
17	20.4 - 26.4	Layout/Integration	RO buffer, level shifter, whole PLL

Legend: Done Current Revised

Time plan (pt. 2)

Week #	Dates	Tasks	Outcomes
18	27.4 - 3.5	Layout/Integation	Finalization/system integration
19	4.5 - 10.5	Flex week (layout) OR yield improvement	Depending on progress
20	11.5 - 17.5	Report writing	
21	18.5 - 24.5	Report writing	
22	25.5 - 31.5	Report writing	
23	1.6 - 7.6	Report writing	Deadline 8.6

Legend: Done Current Revised

References

- [1] L. Dai and R. Harjani, "Analysis and design of low-phase-noise ring oscillators," ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514), Rapallo, Italy, 2000, pp. 289-294. doi: 10.1145/344166.344639
- [2] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
- [3] G. Jacquemod et al., "Study and reduction of variability in 28 nm FDSOI technology," 2015 International Workshop on CMOS Variability (VARI), Salvador, 2015, pp. 19-22.