	le error ess of the data itself. The only way to reduce this part of the error is to clean up the data (e.g.detect and remove outliers). a model's complexity will typically increase its variance and reduce its bias. Reducing a model's complexity increaseduces its variance.
• There a	are two major problems related to training models: overfitting and underfitting. verfitting: the model performs well on the training set but not so well on unseen (test) data. inderfitting: neither performs well on the train set nor on the test set. arization is implemented to avoid overfitting of the data, especially when there is a large variance between train and test
With reThere aTh	arization is implemented to avoid overfitting of the data, especially when there is a large variance between train and test mances. egularization, the number of features used in training is kept constant, yet the magnitude of the coefficients is reduced. are different ways of reducing model complexity and preventing overfitting in linear models. is includes Ridge and Lasso Regression Models. Regression
 the mo We see RSS as 	the linear model: $Y=\beta_0+\beta_1x_1+\ldots+\beta_px_p$ sek the values $\beta_0,\beta_1,\ldots\beta_p$ that minimize the Residual Sum of Squares (RSS): $RSS=\sum_{i=1}^n e_i^2=\sum_{i=1}^n \left(f(x_i)-\hat{f}\left(x_i\right)\right)^2=\sum_{i=1}^n \left(y_i-\beta_0-\sum_{j=1}^p\beta_jx_{ij}\right)^2$ Loss Function
Least S	$\hat{\beta_1} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$ $\hat{\beta_0} = \overline{y} - \hat{\beta_1} \overline{x}$ $\frac{1}{N} \sum_{i=1}^n (x_i) \text{ and } \overline{y} = \frac{1}{N} \sum_{i=1}^n (y_i)$ Squares - the need of alternatives tion Accuracy: especially when $p > n$, to control the variance. Interpretability: By removing irrelevant features (by setting the corresponding coefficient estimates to zero) we can obtain
We willClasseSubsetId	that is more easily interpreted. I present some approaches for automatically performing feature selection s of methods Selection entify a subset of the p predictors (we believe to be related to the response). t a model using least squares on the reduced set of variables. arization
es Th Dimen Pr Th	t a model involving all p predictors, but the estimated coefficients are shrunken towards zero relative to the least squares timates. This shrinkage (or regularization) has the effect of reducing variance and can also perform variable selection. Sion Reduction The predictors into a M-dimensional subspace, where $M < p$. This is achieved by computing M different linear combinations, or projections, of the variables. The projections are used as predictors to fit a linear regression model by least squares. The projections and the Lasso Regression and the Lasso
 The subset As an alterestimates, of It may not can significe 	et selection methods use least squares to fit a linear model that contains a subset of the predictors. Frantive, we can fit a model containing all p predictors using a technique that constrains or regularizes the coefficient or equivalently, that shrinks the coefficient estimates towards zero. It be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimantly reduce their variance. Regression — short introduction
 Is a var In linear observ Ho M an 	riation of linear regression, specifically designed to address multicollinearity in the dataset. Ar regression, the goal is to find the best-fitting hyperplane that minimizes the sum of squared differences between the red and predicted values. Dowever, when there are highly correlated variables, linear regression may become unstable and provide unreliable estimate ulticollinearity exists when two or more of the predictors in a regression model are moderately or highly correlated with conther. Tregression introduces a regularization term (L2 penalty) that penalizes large coefficients, helping to stabilize the model are
Ridge The Rid	Regression introduces a regularization term (EZ penalty) that penaltzes large coefficients, neighing to stabilize the moder at the overfitting.
The objection The second it is a se	PREGRESSION We of Ridge is to minimize the RSS & Square of cofficient cond term, $\lambda \sum_{j=1}^p \beta^2$ (shrinkage penalty), is small when β_1,\ldots,β_p are close to zero, has the effect of shrinking the estimates of β_j towards zero. Ining parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates.
HowevSelectiCr	λ =0, the penalty has no effect, and ridge regression reduces to the ordinary least squares method. For any λ are the impact of the penalty grows, and the estimates of the coefficients β_j in ridge regression shrink towards any a good value for λ is very important coss-validation is used for this expression
 Right κ β ₂ α 	Innel: each curve corresponds to the ridge regression coefficient estimate for one of the ten variables, plotted as a function panel: for the same ridge coefficient estimates, we now display $\frac{\ \beta_{\lambda}^R\ _2}{\ \beta\ _2}$, where β is the least squares coefficient estimates. Henotes de L_2 of a vector , $\ \beta\ _2 = \sqrt{\sum_{j=1}^p \beta_j^2}$
Standardized Coefficients -300 -100 0 100 200 300	Standardized Coeffi 2 1e+00 1e+02 1e+04 0.0 0.2 0.4 0.6 0.8 1.0
09 -	- Bias-Variance tradeoff $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{vmatrix} \hat{b} & \hat{b} & \hat{b} \\ \hat{b} & \hat{b} \end{vmatrix} = 0 $ The productions, $p = 45$ predictors, all having nonzero coefficients. Squared bias (black), variance (green than the production of the production
# Import import pa from skle from skle from skle from skle import no	ean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\frac{\ \beta_{\lambda}^{R}\ _{2}}{\ \beta\ _{2}}$. The dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which callest. all libraries and as pd earn.model_selection import train_test_split earn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet earn.metrics import mean_squared_error earn.preprocessing import PolynomialFeatures, StandardScaler import as np
import no import se import	the sklearn package to perform Ridge Regression and the Lasso. unctions in this package that we care about are Ridge(), which can be used to fit ridge regression models, and Lasso() which models. They also have cross-validated counterparts: RidgeCV() and LassoCV(). teeding, let's prepare our data. Tead_csv('Hitters.csv').dropna() ##.drop('Player', axis = 1)
<pre>df.info() <class #="" 'p="" 26="" colu="" colu<="" data="" index:="" td=""><td><pre>pandas.core.frame.DataFrame'> 3 entries, 1 to 321 mns (total 20 columns): mn Non-Null Count</pre></td></class></pre>	<pre>pandas.core.frame.DataFrame'> 3 entries, 1 to 321 mns (total 20 columns): mn Non-Null Count</pre>
7 CAtB 8 CHit 9 CHmR 10 CRun 11 CRBI 12 CWal 13 Leag 14 Divi 15 PutO 16 Assi 17 Erro 18 Sala 19 NewL dtypes: f	263 non-null int64 263 non-null object 263 non-null object 263 non-null int64 265 263 non-null int64 266 non-null int64 267 263 non-null object 268 non-null object 269 non-null object
memory us df.head(5 AtBat H 1 315 2 479	age: 43.1+ KB
5 594 # Null va	169 4 74 51 35 11 4408 1133 19 501 336 194 A W 282 42
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
y = df.Sa # Drop th X_ = df.c # Define X = pd.cc X.info() <class 'p="" 26="" column<="" data="" index:="" td=""><td>ne column with the independent variable (Salary), and columns for which we created dummy variable drop(['Salary', 'League', 'Division', 'NewLeague'], axis = 1).astype('float64') the feature set X. concat([X_, dummies[['League_N', 'Division_W', 'NewLeague_N']]], axis = 1) candas.core.frame.DataFrame'> 33 entries, 1 to 321 mns (total 19 columns):</td></class>	ne column with the independent variable (Salary), and columns for which we created dummy variable drop(['Salary', 'League', 'Division', 'NewLeague'], axis = 1).astype('float64') the feature set X. concat([X_, dummies[['League_N', 'Division_W', 'NewLeague_N']]], axis = 1) candas.core.frame.DataFrame'> 33 entries, 1 to 321 mns (total 19 columns):
# Colu 0 AtBa 1 Hits 2 HmRu 3 Runs 4 RBI 5 Walk 6 Year 7 CAtB 8 CHit 9 CHmR 10 CRun 11 CRBI	mn Non-Null Count Dtype
11 CRBI 12 CWal 13 PutO 14 Assi 15 Erro 16 Leag 17 Divi 18 NewL dtypes: b memory us from skle labelence	263 non-null float64 ks 263 non-null float64 buts 263 non-null float64 sts 263 non-null float64 buts 263 non-null float64 buts 263 non-null bool sion_W 263 non-null bool seague_N 263 non-null bool bool(3), float64(16) age: 35.7 KB searn.preprocessing import LabelEncoder, StandardScaler but 263 non-null bool standardScaler but 263 non-null bool bool(3), float64(16) but 263 non-null bool bool(3), float64(16) but 263 non-null bool
<pre># Encode le = Labe df[categ] y=labelen df.head(5)</pre>	Categorical Columns ElEncoder() = df[categ].apply(le.fit_transform) acode.fit_transform(y) Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI CWalks League Division PutOuts Assist 81 7 24 38 39 14 3449 835 69 321 414 375 1 1 632 4
 2 479 3 496 4 321 5 594 	130 18 66 72 76 3 1624 457 63 224 266 263 0 1 880 8 141 20 65 78 37 11 5628 1575 225 828 838 354 1 0 200 1 87 10 39 42 30 2 396 101 12 48 46 33 1 0 805 4
	g standard scaler
###MINMAX #from ski #X_train= #X_test=s # Split of X_train, The Ridge() values range intercept, to alphas = alphas array([5. 1. 5. 1. 6. 2. 7. 2. 8. 2. 9. 3. 1. Associated to standard	StandardScaler() * scaler.fit_transform(X_test) ** ** ** ** ** ** ** ** **
###MINMAX #from skl #X_train= #X_test=s # Split of X_train, The Ridge() values rang intercept, to alphas = alphas array([5. 1. 5. 1. 6. 2. 7. 2. 8. 2. 9. 3. 1. Associated to standard from skle ridge = F coefs = [for a in ridge ridge ridge ridge ridge ridge ridge soefs np.shape() (100, 19) We expect small value	StandardScaler () * scaler.fit_transform(X_train) * scaler.fi
###MINMAX #from skl #X_train= #X_test=s # Split of X_train, The Ridge() values range intercept, to alphas = alphas array([5. 1. 6. 2. 7. 2. 8. 8. 2. 9. 3. 1. Associated to standard from skle ridge = F coefs = [for a in ridge	ScandardScaler() * scaler.fit_transform(X_train) * scaler.fit
###MINMAX #from skl #X_train= #X_test=s # Split of X_train, The Ridge() values range intercept, to alphas = alphas array([5. 1. 6. 2. 7. 2. 8. 8. 2. 9. 3. 1. Associated to standard from skle ridge = F coefs = [for a in ridge ridge	### Scaler fit transform(X_train)
###MINMAX #from ski #X_train= #X_train, The Ridge() values rang intercept, to alphas = alphas array([5. 1. 6. 2. 7. 2. 8. 2. 7. 2. 8. 2. 9. 3. 1. Associated to standard from skle ridge = F coefs = [for a in ridge ridge ridge coefs np.shape((100, 19) We expect small value ax = plt. ax.plot(a ax.set_xs plt.axis(a plt.ylabe plt.ylabe plt.ylabe Text(0, 0) 7.5 - 5.0 - 7.5 - 5.0 - 7.5 - 5.0 - 7.5 - 7.5 - 7.5 - 7.6 - 7.7 -	### Scaler fit transform(X_train)
###MINMAX #from skil #X_train= #X_tr	second-codepations approve administration of the control of the code of the co
##MINMAX ##FORMAX ##F	Studios (Section 1) Social Conference (or program of content of the content of t
## MINMAX # # MINMAX #	Supplications in the property of the property
###MINMAX #from ski #X_train= #X_test=s # Split of X_train, The Ridge() values rang intercept, to alphas = alp	The control of the co
#### MINMAN #from ski #X_train= #X_t	State of the responsibility support coloring contents of the content of the conte
#### MINMAN #from ski #X_train= #X_t	The second control of the control of
### MINMAN ### MINMAN ## T as in ### MINMAN ## T as in ## Split or ### Split or ### Split or ### Split or ### Split or ## Split or ### S	Translational Comments of Translational Comm
#### ### ### ### ### ### ### ### ### #	The control of the co
###MINMAN ####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MIN #####MINMAN ###### ####MINMAN ###### ####MINMAN ###### ##### ##### ##### ##### ##### ####	The control of the co
###MINMAN ####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MINMAN #####MIN #####MINMAN ###### ####MINMAN ###### ####MINMAN ###### ##### ##### ##### ##### ##### ####	The control of the co
#### MINMAR ##FORMAR #### ##FORMAR ### #### #### #### #### #### #### #	The control of the co
######################################	The control of the co
#### ### ### ### ### ### ### ### ### #	And the control of th
### MIN MARY #### MIN	
### ### ### ### ### ### ### ### ### ##	
### MINIMAR ### M	
### ### ### ### ### ### ### ### ### ##	A contraction of the contraction
### ### ### ### ### ### ### ### ### ##	And the second control of the second control
### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 #### 1969 ##### 1969 ##### 1969 ##### 1969 ###### 1969 ##################################	The second control of
### Part	The control of the co
### A Part	
### A Part of the standard of	
### Part	
######################################	