一元函数微分学

- 数一 (题号标红色为第二章内容, 其余为第三章内容)
 - 2-1(87) 当 $x = ____$ 时,函数 $y = x2^x$ 取得极小值.

2-2(87) 设
$$\lim_{x\to a} \frac{f(x) - f(a)}{(x-a)^2} = -1$$
,则在 $x = a$ 处 ()

- (A) f(x) 的导数存在,且 $f'(a) \neq 0$. (B) f(x) 取得极大值.

(C) f(x) 取得极小值.

- (D) f(x) 的导数不存在.
- 2-3(87) 设函数 f(x) 在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数 f(x)的值都在 开区间(0,1)内,且 $f'(x) \neq 1$,证明在(0,1)区间内有且仅有一个 x ,使得 f(x) = x .
 - 2-4(88) 若 $f(t) = \lim_{x \to \infty} t(1 + \frac{1}{r})^{2tx}$,则 f'(t) =____.
 - 2-5(88) 设 f(x) 可导且 $f'(x_0) = \frac{1}{2}$,则 $\Delta x \to 0$ 时, f(x) 在点 x_0 处的微分 dy 是 ().
 - (A) 与 Δx 等价的无穷小.
- (B) 与Δx 同阶的无穷小.
- (C) 比 Δx 低阶的无穷小.
- (D) 比 Δx 高阶的无穷小.
- 2-6(88) 设 y = f(x) 是方程 y'' 2y' + 4y = 0 的一个解,且 $f(x_0) > 0$, $f'(x_0) = 0$,则函数 f(x)在点 x_0 处()
 - (A) 取得极大值.
- (B) 取得极小值.
- (C) 某邻域内单调增加.
- (D) 某邻域内单调减少.

2-7(89) 已知
$$f'(3) = 2$$
,则 $\lim_{h \to 0} \frac{f(3-h) - f(3)}{2h} = _____.$

- 2-8(89) 当 x > 0 时,曲线 $y = x \sin \frac{1}{x}$ ()
 - (A) 有且仅有水平渐近线.
- (B) 有且仅有铅直渐近线.
- (C) 既有水平渐近线,也有铅直渐近线. (D) 既无水平渐近线,也无铅直渐近线.
- **2-9**(90) 已知函数 f(x) 具有任意阶导数,且 $f'(x) = [f(x)]^2$,则当n 为大于 2 的正整数时, f(x)的n阶导数 $f^{(n)}(x)$ 为()
 - (A) $n![f(x)]^{n+1}$. (B) $n[f(x)]^{n+1}$. (C) $[f(x)]^{2n}$. (D) $n![f(x)]^{2n}$.

- 2-10(90) 已知 f(x) 在 x = 0 的某个邻域内连续,且 f(0) = 0, $\lim_{x \to 0} \frac{f(x)}{1 \cos x} = 2$,则在点 x = 0处 f(x) ()
 - (A) 不可导.
- (B) 可导且 f'(0) ≠ 0.
- (C) 取得极大值.
- (D) 取得极小值.
- 2-11(90) 设不恒为常数的函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,且 f(a) = f(b). 证明在 (a,b) 内至少存在一点 ξ , 使得 $f'(\xi) > 0$.

2-12(91)
$$\[rac{1}{2} \left\{ x = 1 + t^2 \right\}, \] \[\lim \frac{d^2 y}{dx^2} = \underline{\qquad}. \]$$

- 2-13(91) 曲线 $y = \frac{1 + e^{-x^2}}{1 e^{-x^2}}$ ()

- (A) 没有渐近线. (B) 仅有水平渐近线. (C) 仅有铅直渐近线. (D) 既有水平渐近线又有铅直渐近线.

2-14(92) 设函数
$$y = y(x)$$
 由方程 $e^{x+y} + \cos(xy) = 0$ 确定,则 $\frac{dy}{dx} =$ _____.

- 2-15(92) 设 $f(x) = 3x^3 + x^2 |x|$, 则使 $f^{(n)}(0)$ 存在的最高阶数 n 为 ()

- 2-16(92) $\Re \lim_{x\to 0} \frac{e^x \sin x 1}{1 \sqrt{1 x^2}}$.

- 2-17(92) 设 f''(x) < 0, f(0) = 0, 证明对任何 $x_1 > 0$, $x_2 > 0$, 有 $f(x_1 + x_2) < f(x_1) + f(x_2)$.
- 2-18(93) 设在 [0,+∞) 上函数 f(x) 有连续导数,且 $f'(x) \ge k > 0$, f(0) < 0,证明 f(x) 在 $(0,+\infty)$ 内有且仅有一个零点.
 - 2-19(93) 设b > a > e, 证明 $a^b > b^a$.
 - 2-20(94) $\lim_{x\to 0} \cot x \left(\frac{1}{\sin x} \frac{1}{x}\right) = \underline{\hspace{1cm}}$
- 2-21(95) 设在[0,1] 上 f''(x) > 0,则 f'(0), f'(1), f(1) f(0) 或 f(0) f(1) 的大小顺序是 ()
 - (A) f'(1) > f'(0) > f(1) f(0). (B) f'(1) > f(1) f(0) > f'(0).
 - (C) f(1)-f(0) > f'(1) > f'(0).
- (D) f'(1) > f(0) f(1) > f'(0).
- 2-22(95) 设 f(x) 可导, $F(x) = f(x)(1 + |\sin x|)$,则 f(0)=0是 F(x)在 x = 0处可导的(
- (B) 充分但非必要条件.
- (D) 既非充分又非必要条件.
- (C) 必要但非充分条件. (95) 假设函数 ~ 2-23(95) 假设函数 f(x) 和 g(x) 在 [a,b] 上存在二阶导数,并且 $g''(x) \neq 0$, f(a) = f(b)= g(a) = g(b) = 0,试证:
 - (1)在开区间 (a,b) 内 $g(x) \neq 0$;
 - (2)在开区间 (a,b) 内至少存在一点 ξ , 使 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$.
 - 2-24(96) 设 f(x) 有二阶连续导数,且 f'(0) = 0, $\lim_{x\to 0} \frac{f''(x)}{|x|} = 1$,则 ()
 - (A) f(0) 是 f(x) 的极大值.
 - (B) f(0) 是 f(x) 的极小值.
 - (C) (0, f(0)) 是曲线 y = f(x) 的拐点.
 - (D) f(0) 不是 f(x) 的极值, (0, f(0)) 也不是曲线 y = f(x) 的拐点.
- 2-25(96) 设 f(x) 在 [0,1]上具有二阶导数,且满足条件 $|f(x)| \le a, |f''(x)| \le b$,其中 a, b 都 是非负常数, c 是 (0,1)内任一点, 证明 $|f'(c)| \le 2a + \frac{b}{2}$.
 - **2-26**(97) 对数螺线 $\rho = e^{\theta}$ 在点 $(\rho, \theta) = (e^{\frac{\pi}{2}}, \frac{\pi}{2})$ 处的切线的直角坐标方程为_____.

2-27(98)
$$\lim_{x\to 0} \frac{\sqrt{1+x} + \sqrt{1-x} - 2}{x^2} = \underline{\hspace{1cm}}$$

- 2-28(98) 函数 $f(x) = (x^2 x 2)|x^3 x|$ 不可导点的个数是 ()
- (A)3. (B)2. (C)1. (D)0.
- 2-29(99) $\lim_{x\to 0} \left(\frac{1}{x^2} \frac{1}{x \tan x}\right) = \underline{\hspace{1cm}}$
- 2-30(99)试证: 当 x > 0 时, $(x^2 1) \ln x \ge (x 1)^2$.
- 2-31(00) 设 f(x),g(x) 是恒大于零的可导函数,且 f'(x)g(x)-f(x)g'(x)<0,则当 a < x < b 时,有 ()
 - (A) f(x)g(b) > f(b)g(x).
- (B) f(x)g(a) > f(a)g(x).
- (C) f(x)g(x) > f(b)g(b).
- (D) f(x)g(x) > f(a)g(a).
- 2-32(01) 设函数 f(x) 在定义域内可导, y = f(x) 的图形如图 2.1 所示,则导函数 y = f'(x)的图形为(见图 2.2)()

- 2-33(01) 设 f(0)=0,则 f(x) 在点 x=0 可导的充要条件为 (
 - (A) $\lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$ 存在. (B) $\lim_{h\to 0} \frac{1}{h} f(1-e^h)$ 存在.

 - (C) $\lim_{h\to 0} \frac{1}{h^2} f(h-\sin h)$ 存在. (D) $\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在.
- 2-34(01) 设 y = f(x) 在 (-1,1)内具有二阶连续导数且 $f''(x) \neq 0$,试证:
- (1)对于 (-1,1) 内的任一 $x \neq 0$, 存在唯一的 $\theta(x) \in (0,1)$, 使 $f(x) = f(0) + xf'(\theta(x)x)$ 成 立;
 - (2) $\lim_{x \to 0} \theta(x) = \frac{1}{2}$.
 - 2-35(02) 已知函数 y = y(x) 由方程 $e^y + 6xy + x^2 1 = 0$ 确定,则 $y''(0) = _____.$
 - 2-36(02) 设函数 y = f(x) 在 $(0,+\infty)$ 内有界且可导,则 ()
 - (A) 当 $\lim_{x \to \infty} f(x) = 0$ 时,必有 $\lim_{x \to \infty} f'(x) = 0$.
 - (B) 当 $\lim_{x\to a} f'(x)$ 存在时,必有 $\lim_{x\to a} f'(x) = 0$.
 - (C) 当 $\lim_{x\to 0^+} f(x) = 0$ 时,必有 $\lim_{x\to 0^+} f'(x) = 0$.
 - (D) 当 $\lim_{x \to 0} f'(x)$ 存在时,必有 $\lim_{x \to 0^+} f'(x) = 0$.
- 2-37(02) 设函数 f(x) 在 x=0 某邻域内有一阶连续导数,且 $f(0)\neq 0, f'(0)\neq 0$,若 af(h) + bf(2h) - f(0) 在 $h \to 0$ 时是比 h 高阶的无穷小,试确定 a,b 的值.
 - 2-38(03) 设函数 f(x) 在 $(-\infty, +\infty)$ 内连续,其导函数的图形如图所示,则 f(x) 有 ()

 - (A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点.

 - (C) 两个极小值点和两个极大值点. (D) 三个极小值点和一个极大值点.

- 2-39(04) 曲线 $y = \ln x$ 上与直线 x + y = 1 垂直的切线方程为_
- 2-40(04) 设函数 f(x) 连续,且 f'(0) > 0 ,则存在 $\delta > 0$,使得 (
 - (A) f(x) 在 (0, δ) 内单调增加.
- (B) f(x)在($-\delta$,0)内单调减少.
- (D) 对任意的 $x \in (-\delta, 0)$ 有 f(x) > f(0). (C) 对任意的 $x \in (0, \delta)$ 有 f(x) > f(0).
- 2-41(04)设 $e < a < b < e^2$, 证明 $\ln^2 b \ln^2 a > \frac{4}{c^2}(b-a)$.
- 2-42(05) 曲线 $y = \frac{x^2}{2x+1}$ 的斜渐近线方程为_____.
- 2-43(05) 设函数 $f(x) = \lim_{n \to \infty} \sqrt{1 + |x|^{3n}}$,则 f(x) 在 $(-\infty, +\infty)$ 内 ()
 - (A) 处处可导.

- (B) 恰有一个不可导点.
- (C) 恰有两个不可导点.
- (D) 至少有三个不可导点.

- 2-44(05) 已知函数 f(x) 在[0,1]上连续,在(0,1)内可导,且 f(0)=0, f(1)=1.证明:
 - (1)存在 ξ ∈ (0,1),使得 $f(\xi)$ = 1− ξ ;
 - (2)存在两个不同的点 $\eta, \zeta \in (0,1)$, 使得 $f'(\eta)f'(\zeta) = 1$.
- 2-45(06) 设函数 y = f(x) 具有二阶导数,且 f'(x) > 0, f''(x) > 0, Δx 为自变量 x 在 x_0 处的 增量, $\Delta y = dy$ 分别为 f(x) 在点 x_0 处对应的增量与微分,若 $\Delta x > 0$,则(
 - (A) $0 < dy < \Delta y$.
- (B) $0 < \Delta y < dy$.
- (C) $\Delta y < dy < 0$.
- (D) $dy < \Delta y < 0$.
- 2-46(07) 设函数 f(x) 在 x = 0 处连续,下列命题错误的是 (

 - (A) 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0)=0. (B) 若 $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则 f(0)=0.

 - (C) 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f'(0) 存在. (D) 若 $\lim_{x\to 0} \frac{f(x) f(-x)}{x}$ 存在,则 f'(0) 存在.
- 2-47(07) 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为 ()
- (C)2. (D)3.
- 2-48(07) 设函数 f(x) 在 $(0,+\infty)$ 内具有二阶导数,且 f''(x) > 0,令 $u_n = f(n)$ $(n = 1,2,\cdots)$, 则下列结论正确的是()
 - (A) 若 $u_1 > u_2$,则 $\{u_n\}$ 必收敛. (B) 若 $u_1 > u_2$,则 $\{u_n\}$ 必发散. (C) 若 $u_1 < u_2$,则 $\{u_n\}$ 必收敛. (D) 若 $u_1 < u_2$,则 $\{u_n\}$ 必发散.
- 2-49(07) 设函数 f(x), g(x) 在 [a,b] 上连续, 在 (a,b) 内具有二阶导数且存在相等的最 大值, f(a) = g(a), f(b) = g(b), 证明: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = g''(\xi)$.
 - 2-50(08) 曲线 $\sin(xy) + \ln(y-x) = x$ 在点 (0,1) 处的切线方程是_____
 - 2-51(08) 设函数 $f(x) = \int_0^{x^2} \ln(2+t)dt$, 则 f'(x) 的零点个数为 ()
- 2-52(09) (1)证明拉格朗日中值定理: 若函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导,则存 在 $\xi \in (a,b)$,使得 $f(b) - f(a) = f'(\xi)(b-a)$.
- (2)证明: 若函数 f(x) 在 x = 0 处连续,在 $(0,\delta)$ ($\delta > 0$) 内可导,且 $\lim_{x \to 0^+} f'(x) = A$,则 $f'_+(0)$ 存在且 $f'_{+}(0) = A$.

2-53(10)
$$\begin{tabular}{l} \begin{tabular}{l} $x=e^{-t}$ \\ $y=\int_0^t \ln(1+u^2)du$, } \begin{tabular}{l} \begin{tabular}{l} d^2y \\ dx^2 \\ $t=0$ \\ \hline \end{tabular} = \underline{\hspace{1cm}}.$$

- 2-54(10) 求函数 $f(x) = \int_{1}^{x^2} (x^2 t)e^{-t^2} dt$ 的单调区间与极值.
- 2-55(11) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是 (
 - (A) (1,0). (B) (2,0). (C) (3,0).

- (D) (4,0).
- 2-56(11) 求方程 k arctan x-x=0 不同实根的个数,其中 k 为参数.
- 2-57(12) 曲线 $y = \frac{x^2 + x}{x^2 1}$ 渐近线的条数为 ()
 - (B)1. (C)2. (D)3.
- 2-58(12) 设函数 $f(x) = (e^x 1)(e^{2x} 2)\cdots(e^{nx} n)$, 其中 n 为正整数,则 f'(0) = ().
 - (A) $(-1)^{n-1}(n-1)!$. (B) $(-1)^n(n-1)!$. (C) $(-1)^{n-1}n!$. (D) $(-1)^nn!$.

- 2-59(12)证明: $x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}$ (-1 < x < 1).
- 2-60(13) 设函数 y = f(x) 由方程 $y x = e^{x(1-y)}$ 确定,则 $\lim_{n \to \infty} n(f\left(\frac{1}{n}\right) 1) = _____.$

- 2-61(13) 设 $\left\{ x = \sin t \\ y = t \sin t + \cos t \right. (t 为参数), \quad 则 \left. \frac{d^2 y}{dx^2} \right|_{t = \frac{\pi}{4}} = \underline{\qquad}.$
- 2-62(13) 设奇函数 f(x) 在[-1,1]上具有 2 阶导数, f(1)=1.证明:
 - (1)存在 $\xi \in (0,1)$,使得 $f'(\xi) = 1$;
 - (2)存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$.
- 2-63(14) 下列曲线中有渐近线的是()

 - (A) $y = x + \sin x$. (B) $y = x^2 + \sin x$.
 - (C) $y = x + \sin \frac{1}{x}$. (D) $y = x^2 + \sin \frac{1}{x}$.
- 2-64 (14) 设函数 f(x) 具有 2 阶导数,g(x) = f(0)(1-x) + f(1)x,则在区间[0,1]上()

 - (C) $\pm f''(x) \ge 0$ $\forall f(x) \ge g(x)$. (D) $\pm f''(x) \ge 0$ $\forall f(x) \le g(x)$.
- 2-65(14) 设 f(x) 是周期为 4 的可导奇函数,且 $f'(x) = 2(x-1), x \in [0,2]$,则 $f(7) = _____.$
- 2-66(14) 设函数 y = f(x) 由方程 $y^3 + xy^2 + x^2y + 6 = 0$ 确定, 求 f(x) 的极值.
- 2-67(15) 设函数 f(x) 在 (-∞, +∞) 内连续, 其 2 阶导函数 f''(x) 的图形如图所示,则曲线 y = f(x) 的拐点个数为 ()
 - (A)0.
- (B)1.
- (C)2.
- (D)3.

- 2-68(15) (1)设函数 u(x), v(x) 可导,利用导数定义证明 $\left[u(x)v(x)\right]' = u'(x)v(x) + u(x)v'(x)$;
 - (2) 设函数 $u_1(x), u_2(x), \dots, u_n(x)$ 可导, $f(x) = u_1(x)u_2(x) \dots u_n(x)$,写出f(x)的求导公式.
- 2-69(16) 已知函数 $f(x) = \begin{cases} x, & x \le 0 \\ \frac{1}{n}, \frac{1}{n+1} < x \le \frac{1}{n} \end{cases}$, $n = 1, 2, \dots, \mathbb{N}$ ()

 - (A) x = 0 是 f(x) 的第一类间断点. (B) x = 0 是 f(x) 的第二类间断点.
 - (C) f(x)在x=0处连续但不可导.
 - (D) f(x)在 x = 0 处可导.
- 2-70(16) 设函数 $f(x) = \arctan x \frac{x}{1 + ax^2}$,且 f'''(0) = 1,则 $a = \underline{\hspace{1cm}}$
- 2-71(17) 设函数 f(x) 可导,且 f(x)f'(x) > 0,则 ()

- (A) f(1) > f(-1). (B) f(1) < f(-1). (C) |f(1)| > |f(-1)|. (D) |f(1)| < |f(-1)|.
- 2-72(17) 已知函数 $f(x) = \frac{1}{1+x^2}$,则 $f^{(3)}(0) = \underline{\hspace{1cm}}$
- 2-73(17) 已知函数 y(x) 由方程 $x^3 + y^3 3x + 3y 2 = 0$ 确定, 求 y(x) 的极值.
- 2-74(17) 设函数 f(x) 在区间[0,1]上具有 2 阶导数,且 f(1) > 0, $\lim_{x \to 0^+} \frac{f(x)}{x} < 0$.证明:
 - (1)方程 f(x) = 0 在区间 (0,1) 内至少存在一个实根;
 - (2) 方程 $f(x)f''(x)+(f'(x))^2=0$ 在区间(0,1)内至少存在两个不同实根.
- 2-75(18) 下列函数中,在x = 0 处不可导的是()
 - (A) $f(x) = |x| \sin |x|$. (B) $f(x) = |x| \sin \sqrt{|x|}$. (C) $f(x) = \cos |x|$. (D) $f(x) = \cos \sqrt{|x|}$.