Technische Universität Berlin

Fakultät II – Institut für Mathematik Grigorieff, Penn-Karras WS 03/04 23.2.04

Februar – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:						
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Es sind keine Taschenrechner und H	andys	zugela	ssen.			
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung lö	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt 60 Minu	iten.					
Die Gesamtklausur ist mit 32 von 80 beiden Teile der Klausur mindestens 16				,	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe

8 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ durch

$$f(x,y) = ax + by + c,$$

wobei $a, b, c \in \mathbb{R}$.

- a) Bestimmen Sie das Taylorpolynom 2. Ordnung von f an der Stelle (1,1).
- b) Bestimmen Sie die Richtung des stärksten Anstiegs im Punkt (x, y) = (3, 5).

2. Aufgabe

8 Punkte

Es sei $f: \mathbb{R}^3 \to \mathbb{R}$ gegeben durch

$$f(x, y, z) = \frac{1}{1 + y^2 + z^2}$$

und $\vec{v} := \operatorname{grad} f$. Weiter sei die Kurve C in \mathbb{R}^3 gegeben durch $\vec{\gamma} : [0, 2\pi] \to \mathbb{R}^3$,

$$\vec{\gamma}(t) = (\cos t, \sin t, t/\pi)$$
.

Bestimmen Sie das Kurvenintegral $\int_C \vec{v} \cdot d\vec{s}$.

3. Aufgabe

8 Punkte

Es sei $\vec{f}: \mathbb{R}^3 \to \mathbb{R}^3$ gegeben durch

$$\vec{f}(x,y,z) = (y,z,x) - (1,2,3)$$
.

Wie sieht die Ableitungsmatrix von \vec{f} aus?

4. Aufgabe

8 Punkte

Es sei $f:\mathbb{R}^3 \to \mathbb{R}$ gegeben durch

$$f(x, y, z) = (x + ay)^4$$

wobei a eine reelle Zahl ist und $\vec{v} := \operatorname{grad} f$.

- a) Für welche $a \in \mathbb{R}$ hat \vec{v} ein Potential auf \mathbb{R}^3 ?
- **b)** Für welche $a \in \mathbb{R}$ hat \vec{v} ein Vektorpotential auf \mathbb{R}^3 ?

5. Aufgabe 8 Punkte

Entscheiden Sie, ob folgende Aussagen richtig oder falsch sind. Sie brauchen Ihre Antworten hier nicht zu begründen. Jede richtige Antwort gibt 1 Punkt, jede falsche -1 Punkt, keine Antwort 0 Punkte und insgesamt gibt es keine negativen Punkte.

- a) In Kugelkoordinaten ist das Volumenelement $dx dy dz = \sin \theta r dr d\phi d\theta$.
- b) Eine differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ hat immer ein globales Minimum.
- c) Ist $f: [0, 1[\to \mathbb{R} \text{ stetig, dann existient das uneigentliche Integral } \int_0^1 f(x) dx$.
- d) Ein Kurvenintegral $\int_C \vec{v} \cdot d\vec{s}$ hängt nur vom Anfangspunkt und Endpunkt der Kurve C ab.
- e) Ist D die Kreisscheibe im \mathbb{R}^2 um den Ursprung mit Radius π , dann ist $\iint_D \sin x \, dx \, dy = 0$.
- f) Die 2π -periodische Fourierreihe der Funktion $f(x) = \sin^2 x$ hat nur endlich viele Terme.
- g) Ist grad f(0,0) = (0,0) und die Determinante der Hesseschen Matrix an der Stelle (0,0) negativ, dann hat f an der Stelle (0,0) ein lokales Maximum.
- h) Sei $D \subset \mathbb{R}^3$ offen und $\vec{v} \colon D \to \mathbb{R}^3$. Dann folgt aus rot $\vec{v} = \vec{0}$, dass \vec{v} auf ganz D ein Potential besitzt.