Enamples Linear bernel $\mathcal{L} = \{f: f(x) = \sum_{j=1}^{n} \alpha_j \times j \times f \text{ for some } n \in \mathbb{N} \mid \alpha \in \mathbb{R}^n \mid x, \dots \times n \in \mathbb{R}^p \}$ on $\mathcal{X} = \{f: f(x) = B^T x \text{ for some } B \in \mathbb{R}^p \}$ f f(x) = βTx, i.e. f(·) = k(·,β), then lflx = < k(·,β), k(·,β)) = k(B,B) = 11B1/2 Sobolu lumb k(x, x!) = min(x,x!), x,x'E[0,1] Xincludes linear combinations of functions x +> min(x,x') for x' ∈ [0,1] and the worm (Sof'(x)2 dx)1/2 eg $\|m'n(\cdot, x')\|_{\mathcal{X}}^2 = \min(x', x') = x'$ Also $\int_0^1 |^2 dx = x^1 V$ What aptions ration problem is bornel rodge regression tolving? An alternative way of worting the usual rodge optimisation of 1.4.3 The syprescutur theorem ary min { $\sum_{i=1}^{n} (Y_i - f(x_i))^2 + \lambda \|f\|_X^2$ where \mathcal{H} is the MIRKHS of the branch small. Theorem 6 (the supremuter theorem) Let che on arbitrary loss function and suppose J is startly increasing. Let $\mathcal K$ be on RKHS with reproducing hereel $\mathcal K$ be. Then $f \in \mathcal K$ mainimises Q,(f) = c(Y, X, f(x,), ..., f(xn)) + J(11/11/2) over + iff f(·) = Zizi \ai k(·, xi) and \aiger R" minamarky Q2(x) = c(Y, X, Kx) + J(x+Kx) over x ER".

Kernanhe Specifining to ridge, (x) it equivalent to minimaining NY-KXN2 + xTKx. Example 1 gn 9 hours that Annemin nour à rahatis Kô = K(K+XI) 'Y. Thus KRR is weetly (*). Proof Suppose of minimum Q. We may waite f= u+v when u e V = spon { k(·, x,),..., k(·, xn)} and v ∈ V +. Then $\hat{f}(x_i) = \langle \hat{f}, k(\cdot, x_i) \rangle = \langle u+y, k(\cdot, x_i) \rangle = u(x_i)$ Memulik J(11fl) = J(11ulx2 + 11ulx2) = J(11ulx2) with equality if v=0. By optimality of \hat{f} , v = 0. So $\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{x}_i | k(\cdot, x_i)$, and again by optimality of \hat{f} , $\hat{\alpha}$ must miminise Q_2 . Now repose à minimiel de and set $\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_{i} k(\cdot, x_{i})$ if $f \in \mathcal{H}$ with $Q_{\mathfrak{l}}(f) \leq Q_{\mathfrak{l}}(f)$, by the agreement above, we can write $f = \mathfrak{u} + \mathfrak{v}$ with $u \in V$, $v \in V^{\perp}$ and we know $Q_i(u) \leq Q_i(\tilde{f})$. But by aptimality of \tilde{f} , $Q_{i}(\hat{f}) \leq Q_{i}(u) \leq Q_{i}(\hat{f}) = Q_{i}(\hat{f})$. \square the representar theorem gives the form of the entire fetted regission for (not just the fitted rate).

l.g. with KRR, given a new obs X, our prediction would be $f(x) = \sum_{i=1}^{n} \hat{x}_i \, l_i(x_i \, x_i)$ 1.5 Knuel molge registration Convoler a madel $Y_i^{\vee} = f^{\circ}(x_i^{\vee}) + \epsilon_i^{\vee}$, $Var(\epsilon) = \sigma^2 I$, $E \epsilon = 0$.

Assume $f^{\circ} \in \mathcal{X}$ where \mathcal{X} is a RKHS with reproducing bornel k. Assume $\|f^{\circ}\|_{\mathcal{X}} \leq 1$ Let K lie the burnel materx Kij = le(xi, xj) with eigenvalues de Marked, zdz z... zd, 20.

Define Îx = arguin 22: (Y: - +(x:))2 + > 11+1123. Theorem 7 The mean squared pudiction error of fl (MSPE) it

LE Zizi (f°(xi) - fλ(xi))2 ≤ = Σizi di+λ)2 + λ (xi) + λ