UTILIZAÇÃO DE SENSOR MQ-135 NA QUANTIFICAÇÃO DE GÁS CARBÔNICO PROVENIENTE DE DECOMPOSIÇÃO DE PALHADA DE SOJA

Jean Marcel Milaré Araujo¹, Igor da Silva Dantas², Wagner Henrique Moreira³, Fernando Rodrigues Conceição⁴

¹Acadêmico do curso de Agronomia, Instituto Federal de Educação Ciências e Tecnologia de Mato Grosso do Sul - IFMS. Bolsista PIBITI/IFMS. jeam.10marcel@gmail.com

²Acadêmico do curso de Agronomia, Instituto Federal de Educação Ciências e Tecnologia de Mato Grosso do Sul - IFMS. Bolsista PIBITI/ CNPq. igor.dantas1502@hotmail.com

³Orientador, Doutor, Professor EBTT, Instituto Federal de Educação Ciências e Tecnologia de Mato Grosso do Sul - IFMS. wagner.moreira@ifms.edu.br

⁴Coorientador, Mestre, Professor EBTT, Instituto Federal de Educação Ciências e Tecnologia de Mato Grosso do Sul - IFMS. fernando.conceicao@ifms.edu.br

RESUMO

A qualidade dos solos é um dos fatores fundamentais na produção agrícola, e a utilização da tecnologia aplicada no sentido de melhorar as condições de produção vem se tornando uma das grandes inovações da área, adaptando e modernizando os métodos de cultivo. A matéria orgânica, que é um dos componentes mais importantes do solo tem inúmeras funções que interferem diretamente na qualidade do solo, sendo assim sua manutenção é crucial para o aumento da produção e produtividade. Este trabalho teve como objetivo avaliar a possibilidade da utilização do sensor de gases tóxicos (MQ-135) na quantificação do gás carbônico (CO₂) emitido pela decomposição de palhada de soja e seu comportamento de acordo com a umidade e temperatura (sensor DHT22), através da utilização da plataforma Arduino. A verificação ocorreu visando testar a resposta do sensor ao contado do CO₂, onde foi possível representar graficamente o comportamento do sinal do sensor, e depois a tentativa de calibração para proporcionar obtenção direta do CO₂ emitido, em que os resultados mostraram uma grande correspondência nos dados, porém o sistema de calibração sofreu danos que podem ter adicionado impurezas nas medidas coletadas, exigindo que haja estudos complementares para validação.

PALAVRA-CHAVE: Arduino; Calibração; Monitoramento.

1 INTRODUÇÃO

A matéria orgânica dos solos (MOS) é um fator determinante quando falamos em qualidade do solo, atuando na estruturação do solo, retenção de água, disponibilização de nutrientes, entre outros, e como um dos principais componentes temos o carbono, em que pode ser adicionado a MOS via decomposição de resíduos vegetais, porém uma parte é adicionada diretamente à MOS e outra parte é perdida, sendo liberada na forma de gás carbônico (CO₂) para a atmosfera (BRADY; WEIL, 2013).

O processo de determinação do carbono na matéria orgânica é realizado com vários métodos analíticos, que tem de ser calibrados levando em conta o método da queima seca, em uma amostra de solo, porém essa metodologia mostra uma amplitude nos resultados, além de não demonstrar a quantidade perdida para a atmosfera (CARMO; SILVA, 2012).

Portanto os estudos sobre a utilização de tecnologias empregadas na determinação de CO₂ são importantes e apresentam potencial de inovação, contribuindo para melhorar o monitoramento da qualidade do solo. O objetivo deste trabalho foi desenvolver um protótipo para determinação da emissão de CO₂ de baixo custo, para monitoramento da decomposição da matéria orgânica do solo.

2 MATERIAIS E MÉTODOS

Para testar a resposta do sensor foi construído um ambiente que simula as condições ideais de decomposição de CO₂, ou seja, com solo, matéria orgânica em decomposição (palhada de soja), luminosidade e umidade, condições que possibilitam a volatilização de CO₂ para sua detecção pelo sensor MQ-135. O protótipo foi montado com uma garrafa pet

perfurada nas duas extremidades laterais na altura de 0,10 m, com ajuda de um ferro de solda, o sensor MQ-135 e o DHT22 foram inseridos por um corte na parte superior. O primeiro foi alocado na parte mais alta possível e o outro no nível dos furos, o corte foi selado com cola quente. O solo adicionado é um Latossolo vermelho (SANTOS et al, 2018), coletado a 0-0,1 m de profundidade e colocado até atingir uma altura de 0,1 m na garrafa pet, também foi adicionado palhada de soja sobre o solo para decomposição. A coleta dos dados deste sistema foram realizadas em torno das 12:00 e das 21:00, e os dados obtidos pelo sistema foram tratados nas plataformas Origin® e Excel®.

Para confirmar se o sensor pode ser utilizado foi idealizado um método de calibração. Foi montado um sistema fechado e resistente ao vácuo, com peças de cano PVC, tais como: luvas, tampas e reduções, e também peças de aço galvanizado, como registros, "nipples" e saída. Além disso, também foram utilizados uma bomba de vácuo com mangueira e abraçadeira, uma seringa para adaptação, e peças para colagem e montagem, como cola PVC, cola quente, cola de silicone, durepox e veda rosca, além de chaves de fenda para apertar as abraçadeiras e uma chave de cano para apertar as peças de rosca. A figura 1 representa o esquema montado com esses materiais acima.

Figura 1. Esquema do sistema de calibração. A) Saída do Vácuo; B) Sensor MQ-135; C) Entrada de ar; D) Entrada dos reagentes; Es) Registros.

FONTE: Dados da Pesquisa.

Com o sistema montado, foi adicionado uma mistura de ácido acético com bicarbonato de sódio com 99,7% de pureza, onde foram diluídos em 50mL de água destilada e calculadas concentrações para 250, 500, 750, 1000 e 10000 ppm de CO₂. Para cada coleta de dados seguiu a metodologia de deixar sistema exposto ao vácuo em torno de 3 minutos. Em seguida a reação foi iniciada e o sinal analógico foi coletado durante 15 minutos até a sua estabilização. Os dados obtidos pelo sistema foram tratados nas plataformas Origin® e Excel®.

3 RESULTADOS E DISCUSSÕES

Utilizando os dados obtidos de umidade, temperatura e o sinal do sensor, podemos observar no Gráfico 1 que o sinal analógico se intensifica de acordo com o aumento da temperatura e varia de intensidade com a mudança da umidade, e também, que a maior emissão de sinal pelo sensor ocorre altas temperaturas, com umidade próxima de 84%.

Conforme literatura, a emissão de gases como o CO₂ pode ser correlacionada com a temperatura, em que, conforme há aumento de temperatura há maior liberação de gás na atmosfera (OMONODE, *et al*, 2007). Com os testes realizado, foi possível obter correlação entre o sinal analógico obtido pelo sensor e temperatura medida no momento da coleta, que apresentou R de 0,87.

Em relação a calibração (Gráfico 2) foi possível obter a variação do sinal análogico em função do número de medidas variando a concentração de CO₂ em ppm. O sinal

aumentou de acordo com o aumento das concentrações, e consequentemente é possível gerar uma curva de calibração, mostrando o comportamento do sinal nas diferentes concentrações de ppm.

Gráfico 1. Comportamento do sinal analógico (eixo Z) de acordo com a temperatura (eixo X) e a umidade (eixo Y).

FONTE: Dados da Pesquisa.

Conforme, Gráfico 2 é possível verificar que o sinal analógico do sensor sofreu uma variação exponencial com R² de 0,99, mostrando-se suficiente para ser aplicada no sistema de monitoramento da decomposição de MOS. Porém o sistema se desgastou internamente devido a oxidação nas peças de aço galvanizado devido ao uso do ácido acético, que pode causar interferências indesejadas na calibração de outros sensores, inviabilizando seu uso para calibrações futuras.

Gráfico 2. Curva de calibração do sistema desenvolvido no presente trabalho **FONTE:** Dados da Pesquisa.

4 CONSIDERAÇÃO FINAIS

De acordo com os dados apresentados, o sistema de monitoramento desenvolvido no presente trabalho utilizando o sensor MQ-135 apresenta alto potencial de aplicabilidade na determinação da decomposição de MOS. Porém por se tratar de um sistema muito sensível e volátil, visto que os materiais se oxidaram e tornaram as medidas não confiáveis, torna-se necessário realizar mais testes de calibração, com materiais mais resistentes,

metodologia mais elaborada, e verificar a sua estabilidade bem como correlacionar dados de outros sensores de CO₂ para confirmar o comportamento aqui apresentado.

REFERÊNCIAS

BRADY, N. C.; WEIL, R. R. Elementos da natureza e propriedades dos solos. 3. Porto Alegre: Bookman, 2013. 686p.

CARMO, D. L. D.; SILVA, C. A. Métodos de quantificação de carbono e matéria orgância em resíduos orgânicos. **Scielo**, Lavras. 10p. 2012.

OMONODE, R. A.; VYN, t. J.; SMITH D. R.; HEGYMEGIC, P.; GÁLC, A. Soil carbon dioxide and methane fluxes from long-term tillage. **Science Direct**, p. 182–195, 2007.

SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A.; ARAÚJO FILHO, J. C. et al. **Sistema Brasileiro de Classificação de Solos**. 5. revista e ampliada - Brasília: EMBRAPA, 2018. 590p.