Carlingford High School

Mathematics Extension 2 Year 11

HSC ASSESSMENT TASK 1
Term 4 2013

Time Allowed: 60 minutes

	<u> </u>
Name:	Teacher: Ms Kellahan
i iui iio.	reaction, was reliation

- Start each question on a new page.
- Write on ONE SIDE of the paper only.
- · Marks may be deducted for careless or badly arranged work.
- · Only calculators approved by the Board of Studies may be used.
- All answers are to be completed in blue or black pen except graphs and diagrams.
- There is to be NO LENDING OR BORROWING.

	MC	Q6	Q7	Mark	
E3					%
Total	5	15	15	35	

E3: Uses the relationship between algebraic and geometric representations of complex numbers and of conic sections.

BLANK PAGE

Section 1 - Multiple Choice

Circle your answer.

If z = 2 + 3i and w = -5 - 2i, what is the value of zw?

1

B.
$$-3 + i$$

$$C. -4 - 19i$$

The argument of $(1+i)^3$ is: 2.

1

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{4}$$

A.
$$\frac{\pi}{2}$$
 B. $\frac{\pi}{4}$ C. π D. $\frac{3\pi}{4}$

If z and w are two complex numbers then: 3.

1

A.
$$\overline{z+w} = \overline{z} - \overline{w}$$

B.
$$\overline{z+w} = \overline{z} \times \overline{w}$$

C.
$$\overline{z+w} = \overline{z} \div \overline{w}$$

D.
$$\overline{z+w} = \overline{z} + \overline{w}$$

The reciprocal of 3i is: 4.

1

A.
$$\frac{1}{3i}$$
 B. $\frac{-i}{3}$ C. $-3i$

B.
$$\frac{-7}{3}$$

When the circle |z-(3+4i)|=5 is sketched on the Argand Diagram the 1 maximum value of |z| occurs when z lies at the end of the diameter that. passes through the centre and the origin.

What is the maximum value of |z|?

A. $\sqrt{5}$

B. 5

C. 10

D. $\sqrt{10}$

END OF SECTION 1

Section 2

Question 6 - Start a new page

(15 Marks)

a. Let z = 3 + i and w = I - i. Find in rectangular form:

i)
$$2z + iw$$

1

ii)
$$\overline{z}w$$

1

b. If $z = \frac{1 + \sqrt{3}i}{\sqrt{3} + i}$, find:

i)
$$|z|$$

1

ii)
$$Arg(z)$$

1

iii)
$$z^4$$

1

2

c. i) Find all pairs of integers a and b such that $(a + ib)^2 = 8 + 6i$

1

ii) Hence solve
$$z^2 + 2z(1+2i) - (11+2i) = 0$$

2

d. Sketch the region in the Argand plane consisting of those points z for which:

3

$$|\arg(z+1)| < \frac{\pi}{6}, z + \overline{z} \le 6 \text{ and } |z+1| > 2.$$

e. Show that for the complex number, $z = \frac{1 - t^2 + 2it}{1 + t^2}$, |z| = 1 for all values of t

Question 7- Start a new page

b.

(15 marks)

- a. Describe the following transformation $z \to \alpha z$ where $\alpha = 6 + 6i$. 2 Illustrate on an Argand diagram for z = 2i.
 - i) Use De Moivre's theorem to express $\cos 4\theta$ in terms of $\cos \theta$.
 - ii) Hence express $\cot 4\theta$ as a rational function of x where $x = \cot \theta$.
 - iii) By considering the roots of $\cot 4\theta = 0$, prove that:

$$\cot\frac{\pi}{8}\cdot\cot\frac{3\pi}{8}\cdot\cot\frac{5\pi}{8}\cdot\cot\frac{7\pi}{8}=1$$

- c. In an Argand diagram the points P, Q and R represent the complex numbers z_1 , z_2 and $z_2 + i(z_2 z_1)$.
 - i) Show that PQR is a right angled triangle 1
 - ii) Find in terms of z_1 and z_2 the complex number represented by the point S such that PQRS is a rectangle.
- d. The diagram shows two distinct points A and B that represent the complex numbers z and w respectively. The points A and B lie on the circle of radius r centred at O. The point C representing the complex number z + w also lies on this circle.

Copy the diagram into your paper.

i) Using the fact that C lies on the circle, show geometrically that $\angle AOB = \frac{2\pi}{3}$.

- ii) Hence show that $z^3 = w^3$
- iii) Show that $z^2 + w^2 + zw = 0$

END OF EXAM

EXTENSION 2 TERM 4-TRSK 1	
Southons	The state of the s
3 と) (- 5 - 2 と)	
= -IO - #L -I5C+6 = -4 -19:	4) 4 L Walla L
©	1) 2z + iw = 2(3+i) + i(1-i)
	= 6 + 2c + c + 1
2 , $(1+i) = 1^{+}(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4})$	(1) THE THE TABLE TO SEE THE TABLE TO SE
u	1) ZM = (3-i)(i-i)
	= 3 + 3 · + (- 1
)
3. (D) = = = = = = = = = = = = = = = = = = =	(d) 5. 1+(3.)
	E) X Y E7
4 - x - 3c - x - 3c	(3-C+3; +\3
J- =	\$ 42C
(B)) + M7 1:
2. (2)	1)
	= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	(1) Z = Cos T + cs. T
	$z^{+} = (\cos \pi + \sin \pi)^{+}$
	Cos 2π + is in 2π . (1)

	h . ! " !		$\frac{\cos \frac{\pi}{6} + 2k\pi}{5}$ $\frac{\cos \frac{\pi}{6} + 2k\pi}{5}$
$\frac{7}{2} = \frac{-2(1+2i) \pm \sqrt{4(1+2i)^2 + 4(11+2i)}}{2}$ $= \frac{-2(1+2i) \pm \sqrt{32 + 24i}}{2}$ $= \frac{-2 + 4i \pm 2\sqrt{8 + 6i}}{2}$ $= \frac{-2 - 4i \pm 2(3 + i)}{2}$ $= \frac{2}{2 - i \text{ or } -4 - 3i}$	$b = \pm 1$ $\frac{1}{\sqrt{8+6i}} = \pm (3+i) = (11+2i) = 0$ $1 = \pm 1$	$\frac{a^{4} - 8a^{2} - 9 = 0}{(a^{2} - 9)(a^{2} + 1) = 0}$ $\frac{a^{4} - 8a^{2} - 9 = 0}{(a^{2} - 9)(a^{2} + 1) = 0}$ $\frac{a^{4} - 8a^{2} - 9 = 0}{(a^{2} + 1) = 0}$ $\frac{a^{4} + 3a^{2} - 9 = 0}{(a^{2} + 1) = 0}$ $\frac{a^{4} + 3a^{2} - 9 = 0}{(a^{2} + 1) = 0}$	

- t2 + 2tt

(D)

Transformation is # anticlockwise, and an enlargement of 61

$$= \frac{1 + 2t^2 + t^4}{(1+t^2)^2}$$

 $1-2t^2+t^4+4t^2$

$$= \sqrt{\frac{(1+t^2)^2}{(1+t^2)^2}}$$

. I. which is ordep.

$= \cot^{4}\Theta - 6\cot^{2}\Theta + 1$ $= \cot^{4}\Theta - 6\cot^{2}\Theta + 1$ $= \chi^{4} - 6\chi + 1$ $= 4\chi^{3} - 4\chi$	4cos6 4cos6 4cos6	$cot 4\theta = cos 4\theta$ $sin 4\theta$ $= -cos 4\theta - 6cos 9sin 2\theta + sin 4\theta$ $= 4cos 9sin 9 - 4cos 9sin 30$ $= 6cos 9sin 9 + sin 40$ $= 5in 40 - 6cos 9sin 9 + sin 40$	$\frac{1}{1} \sum_{i=1}^{n} \frac{1}{1} = \frac{1}{1} \cos \theta \sin \theta - \frac{1}{1} \cos \theta \sin \theta$	$\cos 4\theta = \cos^4\theta - 6\cos^2\theta + \sin^4\theta$ $= \cos^4\theta - (6\cos^2\theta + (1-\cos^2\theta) + (1-\cos^2\theta)^2$ $= \cos^4\theta - (\cos^2\theta + 6\cos^4\theta + 1 - 2\cos^4\theta + \cos^4\theta$ $= 2\cos^4\theta - 8\cos^2\theta + (6\cos^4\theta + 1)$ $= 8\cos^4\theta - 8\cos^2\theta + 1$	b) i) ; cis40 = (cis4) + 4:cos40 isin0 + 6:cos40 i2sin20 + 4:cos40 isin0 + 6:cos40 i2sin20 + 4:cos40 isin0 + 6:cos40 in0 + 6:cos
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1. ! ! ! !	From $x^4 - 6x^2 + 1 = 0$ Product of roots in 1 Cot $\frac{\pi}{8}$ x cot $\frac{3\pi}{8}$ x cot $\frac{7\pi}{8}$.	$A\Theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, \frac{7\pi}{3}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, \frac{7\pi}{3}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, \frac{7\pi}{3}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{7\pi}{3}$ $\Theta = \frac{\pi}{3}, \frac{3\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{7\pi}{3}$	$\frac{x^4-6x^2+1}{4x^2-4x}=0$

	120A=4 220B=a+21		Z = OA (_costxcA + isintxuB)	X	$\omega < 0.8 \left(\cos(\omega + 2\pi) + i\sin(\omega + 2\pi) \right)$		= r cos (x+2m) + isin(x+2m)		$Z^3 = \Gamma^3 \left(\cos 3\alpha + i\sin 3\alpha\right)$		 = 5	 		(2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	but-73=6V=23-6V=4-10		$\frac{(z-b)(z^2+z_M+M^2)}{2} \leq 0$	Noting z ≠ M then Z² + W²+ZW = 0.	
A B C Z, Z 4 Z+E.	10	, (1	0C = 0A + AC N+5 = N + AC		That is AC = OB & AC OB.	OACBIS a parallelogram.	AC = radius_of circle 08	. AOAC DOR FOR FAC FIF	A DARC is an equil A	LOAC = TI	 AOBC BC CEOBS K	 , CCOB-T	n	7AOB = LADC + LCOB	二十二	1.21	· · · · · · · · · · · · · · · · · · ·		

.