WIPO

日本国特許庁 JAPAN PATENT OFFICE

27. 9. 2004

RECEIVED 2 1 OCT 2004

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月18日

出 願 番 号 Application Number:

特願2003-325405

[ST. 10/C]:

[] P 2 0 0 3 - 3 2 5 4 0 5]

出 願 人 Applicant(s):

株式会社不二越

.

PRIORITY DOCUM

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 9月15日

特許庁長官 Commissioner, Japan Patent Office 1) 11

【書類名】 特許願 【整理番号】 PT30930

【提出日】 平成15年 9月18日

【あて先】 特許庁長官 太田 信一郎 殿

【国際特許分類】 C23C 14/32 C23C 8/38 H05H 1/48

【発明者】

【住所又は居所】 富山県富山市不二越本町一丁目1番1号株式会社不二越内

【氏名】 安岡 学

【発明者】

【住所又は居所】 富山県富山市不二越本町一丁目1番1号株式会社不二越内

【氏名】 加藤 範博

【発明者】

【住所又は居所】 富山県富山市不二越本町一丁目1番1号株式会社不二越内

【氏名】 園部 勝

【発明者】

【住所又は居所】 富山県富山市不二越本町一丁目1番1号株式会社不二越内

【氏名】 佐藤 嗣紀

【特許出願人】

【識別番号】 000005197

【氏名又は名称】 株式会社不二越

【代表者】 井村 健輔

【代理人】

【識別番号】 100077997

【弁理士】

【氏名又は名称】 河内 潤二 【電話番号】 03-3433-3257

【先の出願に基づく優先権主張】

【出願番号】 特願2003-187564 【出願日】 平成15年 6月30日

【手数料の表示】

 【予納台帳番号】
 052652

 【納付金額】
 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0008371

【請求項1】

少なくとも2種類以上の金属、合金もしくは金属間化合物を含む焼結体または圧粉成型体を蒸発原料とし、電界または磁界により収束されたプラズマを用いて原料を単一のルツボ 又はハースから溶解・蒸発させる多元系被膜の製造装置において、

前記蒸発原料を蒸発させる際に原料を溶解するために用いる電力供給装置は、前記蒸発原料を蒸発させるに必要な最初の電力供給と、所定時間を置いて前記最初の電力より順次増大した電力を加えた電力の供給を、必要な最大の電力供給に至るまで繰り返して増大させて供給して、未溶融部位を順次溶解させるようにした逐次増大電力供給装置を有し、

又は、代わりに、前記蒸発原料を蒸発させる際に原料を溶解するために用いる電力供給装置、及び前記蒸発原料を蒸発させる際に、プラズマを収束させるために用いる電界または磁界を制御するプラズマ制御装置は、前記蒸発原料を蒸発させるに必要な最初のプラズマ領域にプラズマを収束させるために用いるプラズマ制御と、前記最初のプラズマ領域よりプラズマを順次移動・拡大せしめて最大のプラズマ領域に至るまで連続的に順次移動・拡大させるプラズマ制御を行い、未溶融部位を順次溶解させるようにしたプラズマ制御装置を有する、ことを特徴とする溶融蒸発型イオンプレーティング法により作製する多元系被膜の製造安定化装置。

【請求項2】

少なくとも2種類以上の金属もしくは金属間化合物を含む焼結体または圧粉成型体を蒸発 原料とし、電界または磁界により収束されたプラズマを用いて原料を単一のルツボ又はハ ースから溶解・蒸発させる多元系被膜の製造方法において、

前記蒸発原料を蒸発させる際に原料を溶解するために用いる電力供給装置は、前記蒸発 原料を蒸発させるに必要な最初の電力供給と、所定時間を置いて前記最初の電力より順次 増大した電力を加えた電力の供給を、必要な最大の電力供給に至るまで繰り返して増大さ せて供給して、未溶融部位を順次溶解させるようにした逐次増大電力供給装置を使用し、

又は、代わりに、前記蒸発原料を蒸発させる際に原料を溶解するために用いる電力供給装置、及び前記蒸発原料を蒸発させる際に、プラズマを収束させるために用いる電界または磁界を制御するプラズマ制御装置は、前記蒸発原料を蒸発させるに必要な最初のプラズマ領域にプラズマを収束させるために用いるプラズマ制御と、前記最初のプラズマ領域よりプラズマを順次移動・拡大せしめて最大のプラズマ領域に至るまで連続的に順次移動・拡大させるプラズマ制御を行い、未溶融部位を順次溶解させるようにしたプラズマ制御装置を使用する、ことを特徴とする溶融蒸発型イオンプレーティング法により作製する多元系被膜の製造安定化方法。

【請求項3】

請求項2の方法により高速度工具鋼、ダイス鋼、超硬合金およびサーメット等の切削工具 基材に複数の金属元素を含む窒化物、炭化物、硼化物、酸化物または珪化物被膜を被覆し た被覆工具。

【書類名】明細書

【発明の名称】多元系被膜の製造安定化装置及び多元系膜被覆工具

【技術分野】

[0001]

本発明はTiAIN などの2元素以上の金属成分を有す窒化物、炭化物、硼化物、酸化物又は珪化物を従来技術よりも容易に製造することができる製造安定化装置、製造安定化方法及び製造安定化方法を使用した被覆工具に関する。

【背景技術】

[0002]

耐摩耗性、耐酸化性、耐食性あるいは表面に何らかの機能を施すために製品表面を被覆 する方法としてPVD(Physical Vapor Deposition)法が知られている。PVD 法の一形態とし て使用される真空蒸着法に一部とスパッタリングプロセスを組み合わせたイオンプレーテ ィング法は、金属炭化物、金属窒化物、金属酸化物等の金属化合物、又はこれらの複合物 の被膜を形成する表面処理法であり、現在では、特に摺動部材及び切削工具等の表面を被 覆する方法として重要である。従来、TiAIN 膜などの金属成分を2 元素以上有する窒化物 などはもっぱらアーク法もしくはスパッタリング法により製造されている。しかし、これ らの方法では蒸発材となる合金ターゲットが高価であり、目的の膜組成に応じた組成のタ ーゲットを用意する必要がある。また、電磁場やターゲット保持の関係から、原料の全体 を使用することは困難である。さらに、アーク法においては不可避な未反応金属ドロップ レットの付着があり、膜質がよいとは言えない。一方、スパッタリング法においては非常 に平滑な被膜を作成できる反面、一般的に成膜速度が遅い。一方、溶融蒸発型イオンプレ ーティング法(以後溶解法と略記する)では投入原料のほとんどを蒸発させることができ るため、原料金属の利用率が高いという利点がある。このため原料単価の高い金属や加工 が困難な金属を原料にした場合に特に有利である。しかしながら、従来の溶解法では融点 の著しく異なる2種類以上の金属原料を均一に蒸発させることは困難であった。かかる課 題を克服するため、例えば特許文献1のように、イオンプーイティング装置に複数の蒸発 源を装着するなどの方法が採られてきた。

【特許文献1】実開平6-33956号 図1

【発明の開示】

【発明が解決しようとする課題】

[0003]

しかしながら特許文献1の技術では、そのために電源装置の追加などが必要であった。さらに、溶解法における成膜速度は蒸発源との距離や位置関係などに依存するため、複数の蒸発源を使用した場合、被蒸着物と複数の蒸発源との位置関係を均一にすることは難しく、組成の均一な被膜を得ることは不可能であった。例えばTiとAlのように、融点が大きく異なる2種類以上の金属元素を従来の方法で同一のるつば中で溶融させた場合、融点の低いAlが優先的に溶融蒸発し、低融点の材料が蒸発した後でTiが蒸発するため、得られる被膜の組成は融点の差に依存し、母材側の被膜は低融点金属の割合が多く、表層に向かって高融点金属の割合が多い膜となる。その組成分布はもっぱら融点に依存しており、膜方向に対して被膜の組成を制御することは難しく、母材側の被膜に対して高融点金属の割合を多くして、かつ、表面側の被膜に対して低融点金属の割合を多くするという制御はほとんど不可能であった。従来の合金製溶解材料を使用したTiAlN被膜の成膜状態の要別明図である、図2に示すように、特に合金製溶解材料を出発原料とした場合、下す説明図である、図2に示すように、特に合金製溶解材料を出発原料とした場合、で、溶解部位と未溶解部位とが重なって蒸発面積が少なく、溶融部位を移動させるための制御装置も大がかりな物が必要となった。

[0004]

本発明の課題は、TiAIN 等の融点の大きく異なる金属成分を持つ多元系被膜を、目的の膜組成に厳密に一致させる必要はなく目的の膜組成にほぼ近い、金属成分を持つ焼結体または圧粉成型体を蒸発原料とし、ほぼその全体を有効に使用でき、原料利用効率が高く、

【課題を解決するための手段】

[0005]

このため本発明は、少なくとも2種類以上の金属、合金もしくは金属間化合物を含む焼結体または圧粉成型体を蒸発原料とし、電料または磁界により収束されたプラズマを用いて原料を単一のルツボ又はハースから溶解・蒸発させる多元系被膜の製造装置において、

前記蒸発原料を蒸発させる際に原料を溶解するために用いる電力供給装置は、前記蒸発原料を蒸発させるに必要な最初の電力供給と、所定時間を置いて前記最初の電力より順次増大した電力を加えた電力の供給を、必要な最大の電力供給に至るまで繰り返して増大させて供給して、未溶融部位を順次溶解させるようにした逐次増大電力供給装置を有し、

又は、代わりに、前記蒸発原料を蒸発させる際に原料を溶解するために用いる電力供給装置、及び前記蒸発原料を蒸発させる際に、プラズマを収束させるために用いる電界または磁界を制御するプラズマ制御装置は、前記蒸発原料を蒸発させるに必要な最初のプラズマ領域にプラズマを収束させるために用いるプラズマ制御と、前記最初のプラズマ領域よりプラズマを順次移動・拡大せしめて最大のプラズマ領域に至るまで連続的に順次移動・拡大させるプラズマ制御を行い、未溶融部位を順次溶解させるようにしたプラズマ制御装置を有する、ことを特徴とする溶融蒸発型イオンプレーティング法により作製する多元系被膜の製造安定化装置及び製造安定化方法を提供することによって、上述した従来技術の課題を解決した。

【発明の効果】

[0006]

従来技術では、通常、溶融原料を溶解するために使用する電力は溶解の開始をのぞけば 、最初に最適と選択されたほほ一定の電力で制御するのが一般的であるが、発明者らはこ の電力を所定時間を置いてステップさせて溶解中に増大させることで未溶融部位が新たに 溶融しはじめ、未溶融部位に含まれる低融点金属を補充することができるのではないか、 と推論し、幾多の実験を重ねた結果、このことを実証できた。さらに、従来技術では、プ ラズマを収束させている電界または磁界を制御して未溶融部位を溶解することでも通常、 溶融原料を溶解するために使用するプラズマ領域は溶解の開始をのぞけば、最初に最適と 選択されたほぼ一定プラズマ領域で制御するのが一般的であるが、発明者らはこのプラズ マ領域を最初のプラズマ領域よりプラズマを順次移動・拡大せしめて最大のプラズマ領域 に至るまで連続的に順次移動・拡大させるプラズマ制御を行い、同様の効果を得ることが できるのではないか、と推論し、幾多の実験を重ねた結果、このことを実証できた。本発 明の上記した構成により、被覆処理中に未溶融部位を拡大させることにより、融点の低い 金属を補充することが可能となり、出発原料の組成と未溶融部位の溶解速度を制御するこ とで所望の膜組成分布を持った被膜を得ることが可能となった。これにより、TiAIN 等の 融点の大きく異なる金属成分を持つ多元系被膜を、目的の膜組成に厳密に一致させる必要 はなくほぼ近い金属成分を持つ、焼結体または圧粉成型体を蒸発原料として、ほぼその全 体を有効に使用できるので原料利用効率が高く、異なる金属の各成分が全膜厚にわたり所 望の被膜分布が得られるなど膜質の良い、溶融蒸発型イオンプレーティング法により作製 する多元系被膜の製造安定化装置及び製造安定化方法を提供するものとなった。

[0007]

従来技術では、特に合金を出発原料とした場合、厚い被膜を得るためには十分な未溶融部位が必要とされ、面積の広い出発原料を用いることになり、溶融部位を移動させるための制御装置も大がかりな物が必要となった。本発明の製造方法を使用することにより、図2に示すように、出発原料に焼結体又は圧粉成型体を用いた場合、出発原料の加熱により見かけ上の体積が膨張し、焼結体内部又は粉体の間に空隙が生じる。合金材料などと比較して空隙のある焼結体又は圧粉成型体は断熱作用が大きく、かつ、溶解した場合に体積が減少するため、溶解部位と未溶解部位を容易に分断することができる。

[0008]

請求項2の方法により高速度工具鋼、ダイス鋼、超硬合金およびサーメット等の切削工具基材に複数の金属元素を含む窒化物、炭化物、硼化物、酸化物または珪化物被膜を被覆した被覆工具により、所望の優れた膜組成分布を持った被膜を有する被覆工具を得ることができる。

【発明を実施するための最良の形態】

[0009]

はじめに、発明者らは溶解原料として 20 gのTiAl合金を用い、一般的なTiN を得る条件でTiAlN 膜の成膜を試みた。その結果、TiAl合金は溶融開始から数分以内に全体が溶融した。得られた被膜の組成は母材側でA1が多く、表層にいくにしたがってTi の割合が多い膜が得られた。これはA1の方がTi よりも融点が低く、優先的に溶解原料から蒸発するためであり、得られた被膜はTi N膜と比較して被膜硬度が低く、密着性も悪い膜であった。TiAl合金の重量を増やして溶融部位を一部とした場合においても融点の低いA1が優先的に蒸発し、同様の結果となった。そこで、我々は蒸発によって枯渇するA1を補給することを考えて溶解中の溶融部位へのA1の追加投入実験などを行ってきたが、溶融蒸発と供給のバランスを取ることが難しく、満足する結果は得られなかった。

[0010]

本発明の実施の形態は、少なくとも2種類以上の金属、合金もしくは金属間化合物を含 む合金を蒸発原料とし、電界または磁界により収束されたプラズマを用いて原料を単一の ルツボ又はハースから溶解・蒸発させる多元系被膜の製造装置において、蒸発原料を蒸発 させる際に原料を溶解するために用いる電力供給装置は、蒸発原料を蒸発させるに必要な 最初の電力、例えば3000Wの電力、の供給と、所定時間、例えば1分、を置いて最初の電 力より順次増大した電力、例えば 500W増大した電力、を加えた電力の供給を、必要な最 大の電力、例えば8000Wの電力、に至るまで繰り返して供給して、未溶融部位を順次溶解 させるようにした順次増大電力供給装置を使用し、又は、代わりに、蒸発原料を蒸発させ る際に原料を溶解するために用いる電力供給装置、及び前記蒸発原料を蒸発させる際にプ ラズマを収束させるために用いる電界または磁界を制御するプラズマ制御装置は、蒸発原 料を蒸発させるに必要な最初のプラズマ領域、例えば圧粉成型体のほぼ中心の直径10mmの 領域、にプラズマを収束させるために用いるプラズマ制御と、前記最初のプラズマ領域、 よりプラズマを順次移動・拡大せしめ、最大のプラズマ領域、例えば圧粉成型体のほぼ全 部にわたる直径40mmの領域、に至るまで連続的に順次移動・拡大させるプラズマ制御を行 い、未溶融部位を順次溶解させるようにしたプラズマ制御装置を有する、ことを特徴とす る溶融蒸発型イオンプレーティング法により作製する多元系被膜の製造安定化装置及び製 造安定化方法である。

[0011]

本発明の実施の形態の多元系被膜の製造安定化方法により高速度工具鋼、ダイス鋼、超硬合金およびサーメット等の切削工具基材に複数の金属元素を含む窒化物、炭化物、硼化物、酸化物または珪化物被膜を被覆した被覆工具により、所望の優れた膜組成分布を持った被膜を有する被覆工具を得ることができる。

【実施例1】

$[0\ 0\ 1\ 2\]$

目的の膜組成にほぼ近い金属成分を持つTi及びAlの混合粉末30g を直径40mmのTiAl合金板を円筒形金型を用いて2GPaにて成形した。この圧粉成型体をルツボ(ハースでもよい)に入れ、加熱およびクリーニングを行った後に約1Pa のアルゴン窒素混合雰囲気中で、圧粉成形体上面のプラズマビーム径が10mm程度となるよう収束させたHCD ガン(Hollow Cat hode Gun:ホロー陰極ガン)を用いて溶融蒸発させ、予め下地としてTiCNコーティングを施してあるハイスドリル及び超硬エンドミルにTiAlN 被膜を成膜した。この時のプラズマ出力はから8000W まで毎分500Wずつ上昇させた。又は、代わりに蒸発原料を蒸発させる際に原料を溶解するために用いる電力供給装置、及びプラズマビーム径を、圧粉成型体のほぼ中心の直径10mmの領域から、ほぼ直径40mmの圧粉成型体全部を覆うように、連続的に順

(ハイスドリル切削条件)

工具: φ6 ハイスドリル

切削方法:穴あけ加工、各5 本切削

被削材:S50C(硬さ210HB)

切削速度: 40m/min 、送り: 0.1mm/rev

切削長さ:20m(貫通穴)、潤滑剤:乾式(無し)

【0013】 【表1】

				13 3 17		1
	膜厚 * μm	膜硬さ HV0.05	ドリル寿命 (穴)	エンドミル 逃げ面摩耗 V _B (mm)	酸化厚さ μm	
TiCN+TiAIN (圧粉体溶解法)	表層 1.3 下地 1.6	3400	987	0.04	0.4	本発明
TiCN (溶解法)	2.1	2800	416	17m 中断	全酸化	比較例
TiN+TiAlN (アーク法)	表層 2.5 下地 0.2	3800	489	0.06	0.6	比較例
TiCN+TiAlN (合金溶解法)	表層 0.9 下地 1.7	3300	852	0.05	0.4	比較例

^{*} 膜厚は同時装着したハイステストピース(SKH51,Ra≦0.2μm)でのカロテスト法(擦過

痕法) による計測値

[0014]

表1 から明らかなように、本発明に係る硬質被膜ハイスドリルにおいては従来例と比較しほぼ倍と寿命が非常に長くなった。これは、溶解法ではドロップレットの生成がほとんどなく、表面粗さが小さいためである。TiAIN 等の融点の大きく異なる金属成分を持つ多元系被膜を、目的の膜組成に厳密に一致させる必要はなく、目的の膜組成にほぼ近い金属成分を持つ原材料合金を使用して、ほぼその全体を有効に使用できるので原料利用効率が高く、異なる金属の各成分が全膜厚にわたり所望の被膜分布が得られるなど膜質の良いものとなった。図2に示すように、本発明の製造方法を使用することにより、出発原料に焼結体又は圧粉成型体を用いた場合、出発原料の加熱により見かけ上の体積が膨張し、焼結体内部又は粉体の間に空隙が生じる。合金材料などと比較して空隙のある焼結体又は圧粉成型体は断熱作用が大きく、かつ、溶解した場合に体積が減少するため、溶解部位と未溶解部位を容易に分断することができる。

【実施例2】

[0015]

実施例1の条件で超硬インサート(A30)上にコーティング処理を実施し、大気中で900℃に1時間加熱保持した後、表面の酸化層の厚さを測定した結果を表1中に併記した。アーク法(従来例)と比較してドロップレットなどの被膜欠陥が少ないために酸化の進行が遅く、酸化層の厚さも薄くなる(耐酸化性が向上する)ことがわかる。

【実施例3】

[0016]

実施例1の条件であらかじめTiCN膜を被覆処理した超硬エンドミルにTiAlN被 膜を被覆した。超硬エンドミルは切削長60m 時での逃げ面摩耗幅を測定した。切削諸元を 次に示す。超硬エンドミルではT-D法により成膜したTiAlN膜と同等もしくは若干 優れた耐摩耗性を示した。被膜の成分自体は同等であるため、ドロップレットの低減による耐酸化性の向上が寄与していると考えられる。

(超硬エンドミル切削条件)

工具: ø 10超硬2 枚刃スクェアエンドミル

切削方法:側面切削ダウンカット

被削材:SKD61(硬さ53HRC)

切り込み:軸方向10mm、径方向0.2mm 切削速度:314m/min、送り:0.07mm/刃

切削長:60m 、潤滑剤:無し(エアーブロー)

【図面の簡単な説明】

[0017]

【図1】本発明の実施例1の圧粉成形体を使用したTiAlN 被膜の成膜状態の要部を示す説明図。

【図2】従来の合金製溶解材料を使用したTiAlN 被膜の成膜状態の要部を示す説明図

0

【書類名】図面 【図1】

圧粉成型体溶解原料を使用

【図2】

【要約】

【課題】TiAIN 等の融点の大きく異なる金属成分を持つ多元系被膜を、原料利用効率が高く、膜質の良い、溶融蒸発型イオンプレーティング法により作製する製造安定化装置、製造安定化方法及び製造方法を使用した被覆工具を提供。

【解決手段】焼結体または圧粉成型体を蒸発原料とし、蒸発原料を蒸発させるに必要な最初の電力より順次増大した電力を加えた電力の供給を、必要な最大の電力供給に至るまで繰り返して増大させて供給し、又は、代わりに、蒸発原料を蒸発させるに必要な最初のプラズマ領域にプラズマを収束させるために用いるプラズマ制御と、前記最初のプラズマ領域よりプラズマを順次移動・拡大せしめて最大のプラズマ領域に至るまで連続的に順次移動・拡大させるプラズマ制御を行い、未溶融部位を順次溶解させるようにした。

【選択図】図1

ページ: 1/E

特願2003-325405

認定・付加情報

特許出願の番号 特願2003-325405

受付番号 50301539714

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年 9月24日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000005197

【住所又は居所】 富山県富山市不二越本町一丁目1番1号

【氏名又は名称】 株式会社不二越

【代理人】 申請人

【識別番号】 100077997

【住所又は居所】 東京都港区浜松町2丁目4番1号 世界貿易セン

タービル15階 株式会社不二越内

【氏名又は名称】 河内 潤二

特願2003-325405

出願人履歴情報

識別番号

[000005197]

1. 変更年月日

1994年11月 2日

[変更理由]

住所変更

度 使 所

富山県富山市不二越本町一丁目1番1号

氏 名

株式会社不二越