第七組2018數學競賽題目

410631118傅子銓 410831134鄭朧玥 410831111莊峻評 410731217周 捷 410631212程鉉喨

第一題

考慮代幣在平面上的排列,而不是在清楚的點上。我們被允許採用以下幾種動作:

在A和B處選擇一對代幣並將它們都移到A和B的中點。 我們認為n個代幣的排列是可縮減的,假如在有限數量的移動中,有可能在同一點上獲得所有的代幣。

證明在n個代幣的排列中皆是可縮減的,若且唯若,n為2的次方。

第二題

證明RE垂直於QR

讓圓上的五個點按順時針順序標記為A,B,C,D,E。假設 $\overline{AE} = \overline{DE}$ 且P為 \overline{AC} 與 \overline{BD} 的交點。 設Q為通過A和B線上的點,使得A在B和Q之間,且 $\overline{AQ} = \overline{DP}$ 。 同樣地,設R為通過C和D線上的點,使得D在C和R之間且 $\overline{DR} = \overline{AP}$ 。

第三題(數論)

► 若雨正整數a與b滿足a = pb or b = pa , p是質數 , 則稱a與 b為質相關(prime-related)。找出所有可能的正整數n , 使 得n不僅至少有三個因數以上 , 且n的所有因數可排成一個圓 圈 , 當中相鄰任兩數為質相關。

▶ 舉例:6

1	3
2	6

6是其中一個

▶ 9不是:

1	3			
9				

1×9=9 , 9不是質數

(提示)

- ▶ 1.一定不是1也不是質數
- \triangleright 2. 若n作質因數分解成 p^k (其中p是質數, k為正整數)也一定不是 (因為1旁邊只能放p)

若6可以 36可不可以?

(解答)將n作質因數分解成 $p_1^a \times p_2^b$

$p_1^{\ 0}p_2^{\ 0}$	$p_1^{\ 1}p_2^{\ 0}$	$p_1^{\ 2}p_2^{\ 0}$	•••	$p_1^{\ a}p_2^{\ 0}$
$p_1^{\ 0}p_2^{\ 1}$	$p_1^{\ 1}p_2^{\ 1}$	$p_1^2 p_2^1$	•••	$p_1^{\ a}p_2^{\ 1}$
:	•	•	•••	•
$p_1{}^0p_2{}^b$	$p_1^{\ 1}p_2^{\ b}$	$p_1^2 p_2^b$	•••	$p_1^a p_2^b$

$p_1^{\ 0}p_2^{\ 0}$	$p_1^{\ 1}p_2^{\ 0}$	$p_1^{\ 2}p_2^{\ 0}$	$p_1^{\ 3}p_2^{\ 0}$
$p_1^{\ 0}p_2^{\ 1}$	$p_1^{\ 1}p_2^{\ 1}$	$p_1^{\ 2}p_2^{\ 1}$	$p_1^{\ 3}p_2^{\ 1}$
$p_1^{\ 0}p_2^{\ 2}$	$p_1^{\ 1}p_2^{\ 2}$	$p_1^{\ 2}p_2^{\ 2}$	$p_1^{\ 3}p_2^{\ 2}$
$p_1^{\ 0}p_2^{\ 3}$	$p_1^{\ 1}p_2^{\ 3}$	$p_1^2 p_2^3$	$p_1^{\ 3}p_2^{\ 3}$
$p_1^{\ 0}p_2^{\ 4}$	$p_1^{\ 1}p_2^{\ 4}$	$p_1^{\ 2}p_2^{\ 4}$	$p_1^{\ 3}p_2^{\ 4}$
$p_1^{\ 0}p_2^{\ 5}$	$p_1^{\ 1}p_2^{\ 5}$	$p_1^2 p_2^5$	$p_1^{\ 3}p_2^{\ 5}$

$p_1{}^0p_2{}^0$	$p_1^{\ 1}p_2^{\ 0}$	$p_1^{\ 2}p_2^{\ 0}$
$p_1^{\ 0}p_2^{\ 1}$	$p_1^{\ 1}p_2^{\ 1}$	$p_1^{\ 2}p_2^{\ 1}$

$p_1^{0}p_2^{0}$	$p_1^{\ 1}p_2^{\ 0}$	$p_1^{\ 2}p_2^{\ 0}$
$p_1^{\ 0}p_2^{\ 1}$	$p_1^{\ 1}p_2^{\ 1}$	$p_1^{\ 2}p_2^{\ 1}$
$p_1^{\ 0}p_2^{\ 2}$	$p_1^{\ 1}p_2^{\ 2}$	$p_1^2 p_2^2$

(解答) $n = p_1^a \times p_2^b$, a與b可能都偶數?

以 $a = 2 \cdot b = 2$ 為例:

若a、b皆為偶數,則表格長與寬皆為奇數

不可能任意相鄰兩因數為質關係繞完一圈

$p_1{}^0p_2{}^0$	$p_1^{\ 1}p_2^{\ 0}$	$p_1^{\ 2}p_2^{\ 0}$
$p_1^{\ 0}p_2^{\ 1}$	$p_1^{\ 1}p_2^{\ 1}$	$p_1^{\ 2}p_2^{\ 1}$
$p_1^{\ 0}p_2^{\ 2}$	$p_1^{\ 1}p_2^{\ 2}$	$p_1^{\ 2}p_2^{\ 2}$

因此,a與b至少1數為奇數 → 即n不為完全平方數

(解答) $mn = p_1^a \times p_2^b \times \cdots \times p_r^k$ 呢?

同樣道理,子數 $(a \cdot b \cdot \dots \cdot k)$ 不可能皆是偶數 假設 $\mathbf{n} = p_1^{\ 1} \times p_2^{\ b} \times p_3^{\ c}$

$p_1^{\ 0}p_2^{\ 0}$	$p_1^{\ 1}p_2^{\ 0}$
$p_1^{\ 0}p_2^{\ 1}$	$p_1^{\ 1}p_2^{\ 1}$
$p_1^{\ 0}p_2^{\ 2}$	$p_1^{\ 1}p_2^{\ 2}$
$p_1^{\ 0}p_2^{\ 3}$	$p_1^{\ 1}p_2^{\ 3}$

把 $p_1^{\ 0}p_2^{\ 0}$ 、 $p_1^{\ 1}p_2^{\ 0}$ …到 $p_1^{\ 1}p_2^{\ 3}$ 重新排成一列

C不論為奇數還是偶數,還是能找到適當的方法排成能滿足相鄰兩數 為質關係的圓圈

$p_1^{\ 0}p_2^{\ 0}p_3^{\ 0}$	$p_1^{\ 1}p_2^{\ 0}p_3^{\ 0}$	$p_1^{\ 1}p_2^{\ 1}p_3^{\ 0}$	$p_1^{\ 1}p_2^{\ 2}p_3^{\ 0}$	$p_1^{\ 1}p_2^{\ 3}p_3^{\ 0}$	$p_1^{\ 0}p_2^{\ 3}p_3^{\ 0}$	$p_1^{\ 0}p_2^{\ 2}p_3^{\ 0}$	$p_1^{\ 0}p_2^{\ 1}p_3^{\ 0}$
$p_1^{\ 0}p_2^{\ 0}p_3^{\ 1}$	$p_1^{\ 1}p_2^{\ 0}p_3^{\ 1}$	$p_1^{\ 1}p_2^{\ 1}p_3^{\ 1}$	$p_1^{\ 1}p_2^{\ 2}p_3^{\ 1}$	$p_1^{\ 1}p_2^{\ 3}p_3^{\ 1}$	$p_1^{\ 0}p_2^{\ 3}p_3^{\ 1}$	$p_1^{\ 0}p_2^{\ 2}p_3^{\ 1}$	$p_1^{\ 0}p_2^{\ 1}p_3^{\ 1}$
:	:	:	:	:	:	:	:
$p_1^{\ 0}p_2^{\ 0}p_3^{\ c}$	$p_1^{\ 1}p_2^{\ 0}p_3^{\ c}$	$p_1^{\ 1}p_2^{\ 1}p_3^{\ c}$	$p_1^{\ 1}p_2^{\ 2}p_3^{\ c}$	$p_1^{\ 1}p_2^{\ 3}p_3^{\ c}$	$p_1^{\ 0}p_2^{\ 3}p_3^{\ c}$	$p_1^{\ 0}p_2^{\ 2}p_3^{\ c}$	$p_1^{\ 0}p_2^{\ 1}p_3^{\ c}$

(解答)結論

▶ 只要n不為1、質數、完全平方數及 p^k 皆是

延伸題:

► 找出大於2021的最小前五個能滿足因數圍成一圈使得 相鄰兩數為質關係的數

Ans:

- (1) $2022 = 2 \times 3 \times 337$
- (2) $2023 = 7 \times 17^2$
- (3) $2024 = 2 \times 2^6$
- $2025 = 3^4 \times 5^2$ (完全平方,不是)
- (4) 2026 = 2 × 1013
- 2027 = 1 × 2027(質數,不是)
- (5) $2028 = 2^2 \times 3 \times 13^2$

第四題(代數)

找出所有實係數多項式p(x)並滿足以下性質: 存在一個實係數多項式q(x)使得 p(1)+p(2)+p(3)+···+p(n)=p(n)q(n),對所有正整數n

第五題

令k為一個正整數且為偶數,首先Sarah挑選一個比1大的正整數N,接著以下面的條件進行改變:

每一分鐘,選擇一個當下N值的質因數p,然後用當下的N值去乘上 p^k-p^{-1} ,製造出一個新的N。

證明:有無限多個正偶數的k值,使得無論Sarah怎麼選擇,

得出的N值在某些值永遠會被2018除盡。