

Anticaline

Publication number: DE19742706

Publication date: 1999-04-15

Inventor: SKERRA ARNE DR (DE); SCHMIDT FRANK DR (DE); BESTE GERALD (DE); STIBORA THOMAS DR (DE)

Applicant: SKERRA ARNE PROF DR (DE)

Classification:

- international: **C07K14/435; C07K14/47; C12N15/12; C07K14/435; C12N15/12;** (IPC1-7): C07K14/435; C12N15/62; C12N15/63; G01N33/53; G01N33/68

- European:

Application number: DE19971042706 19970926

Priority number(s): DE19971042706 19970926

Also published as:

- WO9916873 (A1)
- EP1017814 (A1)
- US2006058510 (A1)
- EP1017814 (A0)
- EP1017814 (B1)

[View INPADOC patent family](#)

[View list of citing documents](#)

[Report a data error here](#)

Abstract of DE19742706

The invention relates to the production of novel proteins exhibiting bonding activity for certain ligands, the so-called anticalins. To this end, the structure of peptides of the lipocalin family is modified by amino acid replacement in their natural ligand binding pocket using genetic engineering methods. Alike immunoglobulin, the anticalin thus obtained can be used to identify or bond molecular structures.

Description of DE19742706

[Translate this text](#)

Die vorliegende Erfindung betrifft neue Polypeptide, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Bindung oder Erkennung vorgegebener Liganden.

Die Lipocaline (Pervaiz and Brew, FASEB J. 1 (1987), 209-214) sind eine Familie kleiner, oft monomerer sekretorischer Proteine, die aus unterschiedlichen Organismen isoliert wurden, und deren physiologische Rolle in der Speicherung oder dem Transport verschiedener Liganden, wie auch in komplexeren biologischen Funktionen besteht (Flower, Biochem. J. 318 (1996), 1-14). Die Lipocaline weisen untereinander relativ geringe Sequenzähnlichkeit auf, und ihre Zugehörigkeit zu derselben Proteinstrukturfamilie wurde erst durch die Röntgenstrukturanalyse aufgedeckt (Sawyer et al., Nature 327 (1987), 659).

Das erste Lipocalin mit bekannter Raumstruktur war das menschliche Retinol-Bindungsprotein, Rbp, das den Transport des wasserunlöslichen Vitamin A im Blutserum bewirkt (Newcomer et al., EMBO J. 3 (1984), 1451-1454). Kurze Zeit später wurde die Tertiärstruktur des Bilin-Bindungsproteins, Bbp, aus dem Schmetterling *Pieris brassicae* aufgeklärt (Huber et al., J. Mol. Biol. 195 (1987), 423-434). Anhand der Raumstruktur dieses Lipocalins, die in Fig. 1A schematisch wiedergegeben ist, lassen sich die wesentlichen Strukturmerkmale dieser Proteinklasse erläutern. Zentrales Element in der Faltungsarchitektur der Lipocaline ist die zylindrische Faltblattstruktur, das sogenannte beta -Barrel, die sich aus acht nahezu kreisförmig angeordneten antiparallelen beta -Faltblattsträngen zusammensetzt.

Dieses Supersekundärstrukturelement lässt sich auch als "Sandwich"-Anordnung zweier viersträngiger beta -Faltblattstrukturen auffassen. Zusätzliche Strukturelemente sind ein gestrecktes Segment am Aminoterminus der Polypeptidkette und eine alpha -Helix in der Nähe des Carboxyterminus, die wiederum von einem gestreckten Segment gefolgt ist. Diese zusätzlichen Merkmale sind jedoch nicht notwendigerweise in allen Lipocalinen ausgeprägt. So fehlt z. B. ein erheblicher Teil des N-terminalen Segments in dem epididymalen Retinsäure-Bindungsprotein (Newcomer, Structure 1 (1993), 7-18). Ferner sind auch zusätzliche, spezielle Strukturelemente bekannt, wie beispielsweise Membrananker (Bishop und Weiner, Trends Biochem. Sci. 21 (1996), 127), die nur in bestimmten Lipocalinen vorkommen.

An einem Ende ist das beta -Barrel durch dichte Aminosäurepackung sowie durch Schleifensegmente verschlossen. Am anderen Ende bildet das beta -Barrel eine Bindungstasche, in der der jeweilige Ligand des Lipocalins komplexiert wird. Dort sind die acht benachbarten antiparallelen beta -Faltblattstränge jeweils paarweise durch Kehren in der Polypeptidkette verbunden, die zusammen mit den angrenzenden Aminosäuren, die sich teilweise noch im Bereich der zylindrischen Faltblattstruktur befinden, jeweils ein Schleifensegment bilden. Die Bindungstasche für den Liganden wird von diesen insgesamt vier Peptidschleifen gebildet. Im Fall des Bbp wird das Biliverdin IX gamma in dieser Bindungstasche komplexiert. Ein anderer typischer Ligand für Lipocaline ist das Vitamin A im Fall des Rbp wie auch des beta -Lactoglobulins (Papiz et al., Nature 324 (1986), 383-385).

Gegenüberstellungen der Sequenzen von verschiedenen Vertretern der Lipocalinfamilie sind unter anderem in der Veröffentlichung von Cowan et al. (Proteins: Struct., Funct., Genet. 8 (1990), 44-61) und in dem Übersichtsartikel von Flower (FEBS Lett. 354 (1994), 7-11) zu finden. Unter den derzeit weit mehr als 20 unterschiedlichen bekannten Lipocalinen befinden sich vor allem zwei menschliche Proteine, die bereits näher biochemisch charakterisiert wurden: das Retinol-Bindungsprotein und das Apolipoprotein D,

ApoD (Yang et al., Biochemistry 33 (1994), 12451-12455). Das ApoD ist besonders interessant, da es enge strukturelle Verwandtschaft mit dem oben erwähnten Bbp aufweist (Peitsch und Boguski, New Biologist 2 (1990), 197-206).

Ein klassisches Beispiel für Proteine, die mittels nicht kovalenter Wechselwirkungen Liganden selektiv binden, stellen die Antikörper, d. h. Immunglobuline, dar. Diese Proteine spielen als Reagenzien auf den Gebieten der Biotechnologie, der Medizin, der Bioanalytik sowie ganz allgemein in den Biowissenschaften eine herausragende Rolle. Trotz der Vielfalt der gegebenen Einsatzmöglichkeiten im Zusammenhang mit der Erkennung, Bindung oder Abtrennung von Liganden werden heute beinahe ausschliesslich Immunglobuline für entsprechende Zwecke eingesetzt. Die Anwendung anderer Proteine mit definierten Liganden-Bindungseigenschaften, wie z. B. der Lektine, ist dagegen auf Spezialfälle beschränkt geblieben.

Spezifische Antikörper lassen sich gegen verschiedenartigste Zielstrukturen, sogenannte Haptene bzw. Antigene, gezielt herstellen. Neben dem inzwischen allgemein etablierten Verfahren zur Produktion monoklonaler Antikörper werden dazu neuerdings auch biosynthetische Methoden eingesetzt, beispielsweise unter Verwendung der "Phage Display"-Technik (Hoess, Curr. Opin. Struct. Biol. 3 (1993), 572-579; Wells and Lowman, Curr. Opin. Struct. Biol. 2 (1992), 597-604). Ist erst einmal die genetische Information für die Bindungsregion (variable Domänen VH und VL) eines Immunglobulins mit der gewünschten Hapten- oder Antigenspezifität bekannt, so stehen dem Fachmann für die Produktion dieses Antikörpers, seiner Fragmente oder davon abgeleiteter Hybridproteine zahlreiche gentechnische Verfahren unter Verwendung von eukaryontischen oder bakteriellen Expressionssystemen zur Verfügung. Dennoch zeichnen sich mitunter Nachteile beim praktischen Einsatz dieser Proteinklasse ab.

Beispielsweise ist es bei medizinischen Anwendungen wie z. B. dem "Tumor Imaging" oder dem "Drug Targeting" (Chester und Hawkins, Trends Biotechnol. 13 (1995) 294-300) wünschenswert, möglichst kleine Bindungsdomänen einzusetzen, da man sich davon eine verbesserte Gewebepenetration verspricht. Nach allgemeiner Ansicht ist das Fv-Fragment, welches sich aus der variablen Domäne der leichten Polypeptidkette (VL) und der variablen Domäne der schweren Polypeptidkette (VH) eines Antikörpers zusammensetzt, in der Regel das kleinste Immunglobulinfragment, welches eine strukturell intakte Antigen-Bindungsstelle ausbildet. Typischerweise besteht ein Fv-Fragment allerdings aus ungefähr 240 Aminosäuren, so dass ein solches Protein immer noch verhältnismässig grosse Moleküldimensionen aufweist.

Des weiteren kann der Aufbau der Antikörper aus zwei verschiedenen Polypeptidketten (leichte und schwere Kette) zu unerwünschten Effekten führen. Da jeweils ein Paar kodierender Regionen kloniert und ggf. exprimiert werden muss, ist die gentechnische Produktion und Handhabung im Vergleich zu Proteinen aus einer einzelnen Polypeptidkette erschwert. Zudem hat sich gezeigt, dass Fv-Fragmente nicht selten über geringe proteinchemische Stabilität verfügen, da ihre VL- und VH-Domänen bloss über nicht kovalente Wechselwirkungen aneinander gebunden sind. Mit verschiedenen Strategien wurde daher schon versucht, die Assoziation der beiden variablen Domänen in dem heterodimeren Fv-Fragment zu stabilisieren. Eine dieser Methoden bedient sich der Verknüpfung der beiden Polypeptidketten auf der Ebene der Translation, wobei sogenannte scFv-Fragmente (Bird und Walker, Trends Biotechnol. 9 (1991), 132-137) erhalten werden. Allerdings hat sich gezeigt, dass diese Vorgehensweise mitunter andere Nachteile mit sich bringt, wie zum Beispiel Einbussen in der Affinität für den Liganden oder ein unerwünschtes Oligomerisierungsverhalten (Desplancq et al., Protein Eng. 7 (1994), 1027-1033).

Der Erfindung liegt deshalb die Aufgabe zugrunde, andere Polypeptidreagenzien, die wie die Antikörper spezifische Bindungseigenschaften für vorgegebene Liganden aufweisen, zu entwickeln. Erfindungsgemäss wird diese Aufgabe gelöst mit den Anticalinen, die herstellbar sind ausgehend von Polypeptiden der Lipocalinfamilie, indem Aminosäuren im Bereich der vier Peptidschleifen, die an einem Ende der zylindrischen Faltblattstruktur angeordnet sind, mutiert werden, und die dadurch charakterisiert

sind, dass sie einen vorgegebenen Liganden mit bestimmbarer Affinität binden.

Ein topographischer Vergleich des Verlaufs der Polypeptidkette in der Proteinfaltung der Lipocaline mit den Fv-Fragmenten der Immunglobuline wird aus Fig. 2 ersichtlich. In den Immunglobulinen wird die Bindungsstelle für das Antigen von sechs strukturell hypervariablen Peptidschleifen, auch CDRs (engl.: Complementarity Determining Regions) genannt, gebildet. Beide variable Domänen, VH und VL, tragen drei CDRs zur Antigen-Bindungsstelle bei. Die beiden variablen Domänen bestehen jeweils aus zwei schichtartig angeordneten beta -Faltblattstrukturen, die das strukturell konservierte Gerüst bilden, welches die hypervariablen Peptidschleifen trägt. In dem Fv-Fragment entsteht so ein innerer und ein äusserer Ring von beta -Faltblattsträngen, wobei zwei CDRs zwischen benachbarten Strängen des inneren Rings und vier CDRs zwischen Strängen des inneren und des äusseren Rings aufgespannt sind.

Im Vergleich dazu sind die Liganden-Bindungsstellen der Lipocaline einfacher aufgebaut. In diesem Fall liegt nur ein Ring von 8 antiparallelen beta -Faltblattsträngen vor: das beta -Barrel. Diese zyklische Faltblattstruktur ist in der Proteinfaltung der Lipocaline konserviert. Die Bindungsstelle wird im Eingangsbereich des beta -Barrels von den vier Peptidschleifen gebildet, die jeweils zwei benachbarte beta -Faltblattstränge miteinander verbinden. Diese Peptidschleifen können sich in ihrer Struktur erheblich zwischen den einzelnen Mitgliedern der Lipocalinfamilie unterscheiden.

Trotz der scheinbaren Analogie im strukturellen Aufbau der Immunglobuline und der Lipocaline, d. h. konservierte Gerüstbereiche einerseits und hypervariable, spezifitätsbestimmende Abschnitte andererseits, gibt es einen wesentlichen Unterschied zwischen diesen beiden Proteinklassen. Während nämlich im menschlichen Körper ca. 100 Millionen verschiedene Antikörper zirkulieren und ständig neu gebildet werden, bringt derselbe Organismus nur wenige verschiedene Lipocaline - wie z. B. das oben erwähnte Rbp oder das ApoD - hervor. Entstehen im Immunsystem eines Säugetiers durch somatische Genrekombination und Mutation fortwährend Antikörper mit neuen Antigenspezifitäten, so sind die Lipocaline im Gegensatz dazu im Verlauf der Evolution in der Struktur und Funktion ihrer jeweiligen Liganden-Bindungsstellen weitestgehend konserviert geblieben. Als Beispiel dafür kann das Rbp dienen, dessen Aminosäuresequenz aus verschiedenen Organismen bekannt ist. Der Sequenzvergleich mit dem menschlichen Rbp (SWISS-PROT Datenbank-Zugriffscode P02753) zeigt, dass beispielsweise zu dem Rbp des Schweins (SWISS-PROT Datenbank-Zugriffscode P27485) bloss 13 und zu dem des Rinds (SWISS-PROT Datenbank-Zugriffscode P18902) bloss 14 Unterschiede bestehen. Alle diese Aminosäuresubstitutionen befinden sich zudem in der Raumstruktur fernab der Bindungsstelle für das Retinol (s. die Fig. 13 in der Veröffentlichung von Cowan et al., supra).

In dem erfindungsgemässen Verfahren wird diese Lücke zwischen den funktionellen Eigenschaften der Antikörper und der Lipocaline geschlossen, indem eine oder mehrere der vier Peptidschleifen, die die Liganden-Bindungsstelle eines Lipocalins bilden, einer Mutagenese unterzogen werden und im Anschluss daran solche Proteinvarianten (Muteine) ausgewählt, d. h. selektiert werden, die die gewünschte Bindungsaktivität für einen vorgegebenen Liganden aufweisen. Die dabei erhaltenen Lipocalinmuteine werden hier als Anticaline bezeichnet.

Im folgenden wird an einem Beispiel, nämlich dem Bbp, erläutert, was unter dem Begriff Peptidschleifen in dieser Erfindung anhand der Polypeptidsequenz verstanden werden soll. Die vier Peptidschleifen der Lipocaline, die bei der erfindungsgemässen Herstellung der Anticaline durch Mutagenese in ihrer Sequenz abgewandelt werden, sind durch diejenigen Abschnitte in der linearen Polypeptidsequenz gekennzeichnet, die die Aminosäurepositionen 28 bis 45, 58 bis 69, 86 bis 99 und 114 bis 129 des Bbp umfassen. Diese Sequenzabschnitte beginnen jeweils vor dem C-Terminus eines der konservierten beta -Faltblattstränge an der offenen Seite des beta -Barrels, schliessen die eigentliche Peptidkehre ein, und enden nach dem N-Terminus des in der Sequenz folgenden, ebenfalls konservierten beta -Faltblattstrangs.

Anhand veröffentlichter oder vom Fachmann selbst durchführbarer Sequenz-Gegenüberstellungen (Alignments) oder Strukturüberlagerungen lässt sich die Definition der für das Bbp angegebenen Sequenzpositionen auf andere Lipocaline übertragen. Beispielsweise kann man aus der in Fig. 3 wiedergegebenen Sequenz-Gegenüberstellung, die dem von Peitsch und Boguski (New Biologist 2 (1990), 197-206) veröffentlichten Alignment entspricht, ablesen, dass die vier Peptidschleifen im Fall des ApoD die Aminosäurepositionen 28 bis 44, 59 bis 70, 85 bis 98 und 113 bis 127 umfassen. Mit der beschriebenen Vorgehensweise ist es möglich, auch in neuen Lipocalinen die entsprechenden Peptidschleifen zu identifizieren, die sich für eine erfindungsgemäße Mutagenese eignen.

Als problematisch bei der Ermittlung der konservierten beta -Faltblattstränge kann sich in manchen Fällen die relativ schwach ausgeprägte Sequenzhomologie der Lipocaline erweisen. Entscheidend ist daher die Fähigkeit der Polypeptidsequenz, die zyklische Faltblattstruktur aus 8 antiparallelen beta -Faltblattsträngen auszubilden. Diese lässt sich ggf. unter Einsatz strukturanalytischer Methoden wie der Proteinkristallographie oder der multidimensionalen Kernresonanz-Spektroskopie nachweisen.

Die zur Mutagenese geeigneten Sequenzabschnitte können bei anderen Lipocalinen, wie z. B. dem ApoD oder dem Rbp, aufgrund der jeweils variierenden Struktur der Peptidschleifen durchaus länger oder kürzer sein als beim Bbp (vgl. Fig. 3). Es kann sogar von Vorteil sein, einen oder mehrere der Sequenzabschnitte durch Deletion oder Insertion von einer oder mehreren Aminosäuren zusätzlich in seiner Länge zu verändern. In einer bevorzugten Ausführung der Erfindung werden diejenigen Aminosäurepositionen in diesen Sequenzabschnitten, die den Sequenzpositionen 34 bis 37, 58, 60, 69, 88, 90, 93, 95, 97, 114, 116, 125 und 127 des Bbp entsprechen, und die in den Fig. 1B und 3 hervorgehoben sind, mutiert. Im Fall des ApoD sind demgemäß die Sequenzpositionen 34 bis 37, 59, 61, 70, 87, 89, 92, 94, 96, 113, 115, 123 und 125 für die Mutagenese bevorzugt. Für die Herstellung von Anticalinen müssen jedoch nicht alle hier angegebenen Sequenzpositionen einer Mutagenese unterzogen werden.

Als Grundstruktur zur Herstellung von Anticalinen sind selbstverständlich neben den hier genannten Beispielen auch andere Lipocaline geeignet. Bevorzugt sind die zur Zeit bereits sehr gründlich biochemisch untersuchten Lipocaline Rbp, Bbp oder ApoD zu verwenden. Besonders bevorzugt sind Lipocaline humanen Ursprungs zur Herstellung von Anticalinen zu verwenden. Dies gilt vor allem, wenn eine Anwendung des oder der resultierenden Anticaline am Menschen beabsichtigt ist, da beispielsweise bei diagnostischen oder therapeutischen Anwendungen *in vivo* im Vergleich zu den Lipocalinen aus anderen Organismen minimale immunogene Wirkung zu erwarten ist. Jedoch können sich auch andere und ggf. künftig erst neu zu entdeckende Lipocaline als besonders vorteilhaft zur Herstellung von Anticalinen erweisen. Ebenso können künstliche Proteine mit einem dem beta -Barrel der Lipocaline strukturell äquivalenten Faltungselement dazu verwendet werden.

Vorzugsweise sollen die erfindungsgemäßen Anticaline den gewünschten Liganden mit bestimmbarer Affinität, d. h. mit einer Affinitätskonstante von mindestens $10^{<5>} \text{ M}^{-1}$ binden. Niedrigere Affinitäten lassen sich mit den üblichen Messmethoden in der Regel nicht mehr exakt erfassen und sind daher für praktische Anwendungen von untergeordneter Bedeutung. Besonders bevorzugt sollen die Anticaline den gewünschten Liganden mit einer Affinität von mindestens $10^{<6>} \text{ M}^{-1}$, entsprechend einer Komplex-Dissoziationskonstante von 1 μM , binden. Die Bindungsaaffinität eines Anticalins zu dem gewünschten Liganden kann vom Fachmann mit einer Vielzahl von Methoden ermittelt werden, beispielsweise mit dem Verfahren der Fluoreszenztitration, durch Kompetitions-ELISA oder mittels der Oberflächen-Plasmonresonanztechnik.

Als Ausgangspunkt zur Mutagenese der Peptidschleifen kann die cDNA eines Lipocalins dienen, die mit dem Fachmann bekannten Methoden hergestellt und kloniert werden kann, wie es beispielsweise für das Bbp beschrieben wurde (Schmidt und Skerra, Eur. J. Biochem. 219 (1994), 855-863). Alternativ kann auch genomische DNA eingesetzt oder eine Gensynthese oder eine Kombination dieser Verfahren durchgeführt

werden. Zur Mutagenese der Aminosäuren in den vier Peptidschleifen stehen dem Fachmann die verschiedenen bekannten Verfahren zur ortsspezifischen Mutagenese oder zur Mutagenese mittels der Polymerase-Kettenreaktion zur Verfügung. Die Mutageneseverfahren können beispielsweise dadurch gekennzeichnet sein, dass Mischungen synthetischer Oligodesoxynukleotide, die an den gewünschten Positionen degenerierte Basenzusammensetzung aufweisen, zur Einführung der Mutationen verwendet werden. Auch der Einsatz von Nukleotidbausteinen mit reduzierter Basenpaarungsspezifität, wie z. B. Inosin, kommt zur Einführung von Mutationen in den ausgewählten Sequenzabschnitten oder Aminosäurepositionen in Betracht. Im Vergleich zu den Antikörpern ist die Vorgehensweise zur Mutagenese der Liganden-Bindungsstelle vereinfacht, da bei den Lipocalinen dafür nur vier anstelle von sechs Sequenzabschnitten - entsprechend den vier oben genannten Peptidschleifen - manipuliert werden müssen.

Bei den Methoden der ortsgerichteten Zufallsmutagenese unter Einsatz von synthetischen Oligodesoxynukleotiden lassen sich die betreffenden Aminosäurepositionen in der Lipocalinstruktur, die mutiert werden sollen, vorherbestimmen. Die ideale Auswahl der zu mutierenden Aminosäurepositionen kann von dem verwendeten Lipocalin einerseits und dem gewünschten Liganden andererseits abhängen. Dabei kann es sinnvoll sein, die Gesamtzahl der mutierten Aminosäurepositionen innerhalb eines Experiments so gering zu halten, dass die Sammlung der bei der Mutagenese erhaltenen Varianten, d. h. die sogenannte Bibliothek, in ihrer Gesamtheit oder wenigstens in einer repräsentativen Auswahl davon sowohl auf der Ebene der kodierenden Nukleinsäure als auch auf der Ebene der Genprodukte in ihrer kombinatorischen Komplexität möglichst vollständig realisiert werden kann.

Die zu mutierenden Aminosäurepositionen sollten sich vor allem dann sinnvoll auswählen lassen, wenn Strukturinformationen über das verwendete Lipocalin selbst, wie im Fall des Rbp und des Bbp, oder zumindest über ein Lipocalin mit ähnlicher Struktur vorliegen, wie z. B. im Fall des ApoD. Der Satz der ausgewählten Aminosäurepositionen kann außerdem von den Eigenschaften des gewünschten Liganden abhängen. Z. B. kann es im Fall eines kleinen, haptenartigen Liganden sinnvoll sein, vor allem Aminosäurepositionen am Zentrum der Liganden-Bindungstasche, also noch in oder nahe dem Bereich des beta-Barrels, der Mutagenese zu unterziehen. Im Fall eines grösseren, antigenartigen Liganden dagegen sollte die Mutagenese auch diejenigen Aminosäurepositionen in den Peptidschleifen betreffen, die besonders exponiert an der Proteinoberfläche angeordnet sind, und die sich eher in der Mitte der entsprechenden Sequenzabschnitte befinden. Abgesehen von einer solchen funktionellen Betrachtung kann es sich zudem als vorteilhaft erweisen, einzelne Aminosäurepositionen im Bereich der Liganden-Bindungstasche von einer Mutagenese aus zunehmen, wenn diese sich beispielsweise als essentiell für die Faltungseffizienz oder -stabilität des Proteins erweisen.

Eine der zahlreichen anwendbaren Methoden zur Einführung von Mutationen im Bereich der vier Peptidschleifen eines Lipocalins basiert auf der Verwendung von vier Oligodesoxynukleotiden, die jeweils von einem der vier entsprechenden zu mutierenden Sequenzabschnitte abgeleitet sind. Bei der Herstellung dieser Oligodesoxynukleotide kann der Fachmann zur Synthese derjenigen Nukleotidtriplets, die den zu mutierenden Aminosäurepositionen entsprechen, Gemische von Nukleinsäurebausteinen einsetzen, so dass zufällig Codons bzw. Anticodons für alle Aminosäuren oder, gemäss dem genetischen Code und der Zusammensetzung dieser Mischung, für eine Auswahl der an dieser Position gewünschten Aminosäuren zustandekommen.

Beispielsweise entspricht das erste Oligodesoxynukleotid in seiner Sequenz - abgesehen von den mutierten Positionen - zumindest teilweise dem kodierenden Strang für diejenige Peptidschleife, die in der Polypeptidsequenz des Lipocalins am weitesten N-terminal liegt. Das zweite Oligodesoxynukleotid entspricht demgemäß zumindest teilweise dem nichtkodierenden Strang für den in der Polypeptidsequenz folgenden zweiten Sequenzabschnitt. Das dritte Oligodesoxynukleotid entspricht wiederum zumindest teilweise dem kodierenden Strang für den entsprechenden dritten Sequenzabschnitt. Das vierte

Oligodesoxynukleotid entspricht schliesslich zumindest teilweise dem nichtkodierenden Strang für den vierten Sequenzabschnitt. Mit dem ersten und zweiten Oligodesoxynukleotid sowie mit dem dritten und vierten Oligodesoxynukleotid kann jeweils eine Polymerase-Kettenreaktion unter Verwendung der für das Lipocalin kodierenden Nukleinsäure und/oder ihres Gegenstrangs als Matrize durchgeführt werden.

Die Amplifizierungsprodukte dieser beiden Reaktionen können durch verschiedene bekannte Methoden zu einer Nukleinsäure zusammengesetzt werden, welche die Sequenz von dem ersten bis zum vierten Sequenzabschnitt umfasst und die Mutationen an den ausgewählten Aminosäurepositionen trägt. Beispielsweise können die beiden Produkte dazu einer erneuten Polymerase-Kettenreaktion unter Verwendung flankierender Oligodesoxynukleotide als Primer sowie eines oder mehrerer vermittelnder Nukleinsäuremoleküle, die die Sequenz zwischen dem zweiten und dem dritten Sequenzabschnitt beitragen, unterzogen werden. Diese Vorgehensweise ist in Fig. 4 schematisch wiedergegeben. Bei der Wahl der Anzahl der zur Mutagenese verwendeten Oligodesoxynukleotide und deren Anordnung innerhalb der Gensequenz des Lipocalins stehen dem Fachmann darüber hinaus vielfältige Alternativen zur Verfügung.

Die Nukleinsäuremoleküle, die für den Sequenzbereich mit den vier Peptidschleifen eines Lipocalins kodieren und Mutationen an den ausgewählten Positionen enthalten, können durch Legierung mit den fehlenden 5'- und 3'-Sequenzen einer für das Lipocalin kodierenden Nukleinsäure verbunden und in einem der bekannten Wirtsorganismen kloniert werden. Für die Legierung und Klonierung stehen wiederum vielfältige Vorgehensweisen zur Verfügung. Beispielsweise können im Verlauf einer Amplifizierung synthetische Nukleinsäuremoleküle mit Erkennungssequenzen für Restriktionsendonukleasen, welche an den entsprechenden Positionen in der Nukleinsäuresequenz für das Lipocalin ebenfalls vorhanden sind, an den beiden Enden der zu klonierenden Nukleinsäure angefügt werden, so dass nach der Hydrolyse mit dem entsprechenden Restriktionsenzym eine Legierung ermöglicht wird.

Die vorliegende Erfindung betrifft auch die gezielte Mutagenese einzelner Aminosäurepositionen innerhalb oder ausserhalb der vier Peptidschleifen, beispielsweise um durch Einführung von Schnittstellen für bestimmte Restriktionsenzyme die Subklonierung des mutierten Lipocalingens oder seiner Teile zu vereinfachen. Beispielsweise können in das Bbp-Gen die Mutationen Asn21 zu Gln und Lys135 zu Met eingeführt werden, um die Klonierung des mutierten Genabschnitts über zwei neue BstXI-Restriktionsschnittstellen an diesen Positionen zu erleichtern. Ebenso betrifft die vorliegende Erfindung die gezielte Einführung von Mutationen innerhalb oder ausserhalb der vier Peptidschleifen, um bestimmte Eigenschaften des Anticalins zu verbessern, z. B. seine Faltungsstabilität oder -effizienz oder seine Widerstandsfähigkeit gegenüber Proteasen. So kann beispielsweise durch den Aminosäureaustausch Lys87 zu Ser eine Spaltung des Bbp in zwei Fragmente, die ansonsten bei dessen Produktion in *E. coli* auftritt, unterdrückt werden. Eine Oligomerisierung des ursprünglichen Bbp kann zudem durch die Mutation Asn1 zu Asp vermieden werden. Auch kann durch den Austausch Cys116 zu Ser im ApoD dessen kovalente Quervernetzung mit anderen Proteinen verhindert und seine monomere Struktur stabilisiert werden.

In einer bevorzugten Ausführung der Erfindung dient dementsprechend die Bbp-Variante mit der Substitution Lys87 zu Ser als Grundstruktur zur Herstellung von Anticalinen. Besonders bevorzugt wird die Bbp-Variante mit den Substitutionen Asn1 zu Asp, Asn21 zu Gln, Lys135 zu Met und Lys87 zu Ser zur Herstellung von Anticalinen eingesetzt.

Auch längere Sequenzabschnitte innerhalb des für das Lipocalin kodierenden Gens können mittels bekannter Methoden einer Zufallsmutagenese unterworfen werden, z. B. durch Einsatz der Polymerase-Kettenreaktion unter Bedingungen erhöhter Fehlerrate, durch chemische Mutagenese oder durch Verwendung bakterieller Mutatorstämme (Low et al., J. Mol. Biol. 260 (1996), 359-368). Derartige Methoden lassen sich auch zur weiteren Optimierung der Ligandenaffinität oder -spezifität eines bereits

herstellten Anticalins verwenden. Mutationen, die dabei möglicherweise ausserhalb der vier Schleifenregionen auftreten, können oft toleriert werden oder sich sogar als günstig erweisen, wenn sie z. B. zu einer verbesserten Faltungseffizienz oder -stabilität des Anticalins beitragen.

Nachdem die der Mutagenese unterzogenen kodierenden Nukleinsäuresequenzen zur Expression gebracht worden sind, können aus den verschiedenen Klonen der erhaltenen Bibliothek diejenigen Klone selektiert werden, die die genetische Information für Anticaline tragen, welche einen vorgegebenen Liganden binden. Zur Selektion dieser Klone können bekannte Expressionsstrategien und Selektionsstrategien eingesetzt werden. Derartige Methoden sind beispielsweise im Zusammenhang mit der Herstellung oder dem Engineering rekombinanter Antikörperfragmente beschrieben worden, wie die "Phage Display"-Technik oder "Colony Screening"-Methoden (Skerra et al., Anal. Biochem. 196 (1991), 151-155).

Als Beispiel für ein erfindungsgemässes Selektionsverfahren für Anticaline mit den gewünschten Bindungseigenschaften sei hier eine Ausführungsform der "Phage Display"-Technik (Hoess, supra; Wells and Lowman, supra; Kay et al., Phage Display of Peptides and Proteins - A Laboratory Manual (1996), Academic Press) genannt. Die verschiedenen anderen möglichen Ausführungsformen der "Phage Display"-Technik werden hiermit per Referenz in die Offenbarung einbezogen. Für das beispielhafte Selektionsverfahren werden Phasmide hergestellt, welche die Expression des mutierten Lipocalin-Strukturgens als Fusionsprotein mit einer Signalsequenz am N-Terminus, bevorzugt der OmpA-Signalsequenz, und mit dem Hüllprotein pIII des Phagen M13 (Model und Russel, in "The Bacteriophages", Vol. 2 (1988), Plenum Press, New York, 375-456) oder Fragmenten dieses Hüllproteins, welche in die Phagenhülle eingebaut werden, am C-Terminus bewirken. Bevorzugt wird das C-terminale Fragment DELTA pIII des Phagen-Hüllproteins, welches lediglich die Aminosäuren 217 bis 406 des natürlichen Hüllproteins pIII enthält, zur Herstellung der Fusionsproteine verwendet. Besonders bevorzugt wird ein C-terminales Fragment von pIII, in dem der Cysteinrest an der Position 201 fehlt oder durch eine andere Aminosäure ersetzt ist.

Das Fusionsprotein kann noch weitere Bestandteile enthalten, wie z. B. ein Affinitätsanhängsel oder eine Epitopsequenz für einen Antikörper, die den Nachweis, die Immobilisierung oder die spätere Reinigung des Fusionsproteins oder seiner Teile gestattet. Ferner kann sich zwischen der für das Lipocalin oder Anticalin kodierenden Region und dem Genabschnitt für das Hüllprotein oder sein Fragment ein Stopcodon, vorzugsweise ein Amber-Stopcodon, befinden, das in einem geeigneten Suppressorstamm bei der Translation zumindest teilweise in eine Aminosäure übersetzt wird.

Als Phasmide werden hier bakterielle Plasmide bezeichnet, die die intergenische Region eines filamentösen Bakteriophagen, wie z. B. M13 oder f1 (Beck und Zink, Gene 16 (1981), 35-58) oder einen funktionellen Teil davon tragen, so dass bei Superinfektion der Bakterienzelle mit einem Helperphagen, beispielsweise M13K07, VCS-M13 oder R408, ein Strang der zirkulären Phasmid-DNA mit Hüllproteinen verpackt und als sogenanntes Phagemid in das Medium ausgeschleust wird. Dieses Phagemid hat einerseits das von dem jeweiligen Phasmid kodierte Lipocalinmuttein als Fusion mit dem Hüllprotein pIII oder dessen Fragment an seiner Oberfläche eingebaut, wobei die Signalsequenz von dem Fusionsprotein in der Regel abgespalten wird. Andererseits trägt es eine oder mehrere Kopien des nativen Hüllproteins pIII von dem Helperphagen und ist somit in der Lage, einen Rezipienten - im allgemeinen einen Bakterienstamm, der ein F- oder F'-Plasmid trägt - zu infizieren. Auf diese Weise wird eine physikalische Kopplung zwischen der verpackten Nukleinsäure, die die genetische Information für das jeweilige Lipocalinmuttein oder Anticalin trägt, und dem kodierten Protein gewährleistet, das zumindest teilweise in funktioneller Form an der Oberfläche des Phagemids präsentiert wird.

Zur Konstruktion der Phasmide mit den für die Bbp-Mutante kodierenden Sequenzen kann beispielsweise der Vektor pBBP20 (Fig. 5) verwendet werden. Zur Selektion von Anticalinen ausgehend von einem

anderen Lipocalin wird ein analoger Vektor hergestellt, indem die DNA-Sequenz, die für dieses Lipocalin oder seine Muteine kodiert, anstelle der für das Bbp kodierenden Sequenz in den Vektor pBBP20 inseriert wird. Im Fall des Bbp oder seiner Muteine kann die für die vier Peptidschleifen kodierende Nukleinsäure beispielsweise über die beiden BstXI- Restriktionsschnittstellen in den Vektor pBBP20 inseriert werden. Rekombinante Phasmide werden durch Transformation in den E. coli-Stamm, beispielsweise XL1-Blue (Bullock et al., BioTechniques 5 (1987), 376-379) oder TG1, eingebracht. Auf diese Weise werden Klone hergestellt, die zahlreiche verschiedene Lipocalinmuteine als Fusionsproteine produzieren können.

Anschliessend wird diese Bibliothek, d. h. die Sammlung der erhaltenen Klone, nach bekannten Verfahren in Flüssigkultur mit einem M13-Helperphagen superinfiziert. Nach dieser Infektion kann die Inkubationstemperatur der Kultur zur Produktion der Phagemide abgesenkt werden. Bevorzugt werden Inkubationstemperaturen, bei denen eine optimale Faltung der Lipocalinmuteine als Bestandteil des Fusionsproteins mit dem Phagenhüllprotein oder seinem Fragment zu erwarten ist. Während oder nach der Infektionsphase kann in den Bakterienzellen die Expression des Gens für das Fusionsprotein mit dem Lipocaliumtein induziert werden. Die Induktionsbedingungen werden so gewählt, dass ein erheblicher Teil der produzierten Phagemide mindestens ein Lipocalinmtein präsentiert. Die Phagemide werden nach einer Inkubationsphase der Kultur von beispielsweise 6 bis 8 h isoliert. Zur Isolierung der Phagemide sind verschiedene Verfahren, wie z. B. die Präzipitation mit Polyethylenglykol bekannt.

Die isolierten Phagemide können durch Inkubation mit dem gewünschten Liganden einer Selektion unterworfen werden, wobei der Ligand in einer Form vorliegt, die eine zumindest vorübergehende Immobilisierung derjenigen Phagemide ermöglicht, die Anticaline mit der gewünschten Bindungsaktivität als Fusionsprotein in ihrer Hülle tragen. Unter den verschiedenen dem Fachmann bekannten Ausführungsformen kann der Ligand beispielsweise mit einem Trägerprotein, wie Serumalbumin, konjugiert und über dieses Trägerprotein an eine proteinbindende Oberfläche, beispielsweise Polystyrol, gebunden werden. Zu dieser Immobilisierung des Liganden lassen sich bevorzugt die für ELISA-Techniken geeigneten Mikrotiterplatten oder sogenannte "Immuno-Sticks" verwenden. Alternativ können auch Konjugate des Liganden mit anderen bindefähigen Gruppen, wie z. B. Biotin, eingesetzt werden. Der Ligand lässt sich dann an Oberflächen immobilisieren, die diese Gruppe selektiv binden, wie z. B. mit Streptavidin oder Avidin beschichtete Mikrotiterplatten oder paramagnetische Partikel.

Vorhandene Proteinbindungsstellen an den mit dem Liganden besetzten Oberflächen können mit den für ELISA-Verfahren bekannten Blockierungslösungen abgesättigt werden. Anschliessend werden die Phagemide beispielsweise in einem physiologischen Puffer mit dem an der Oberfläche immobilisierten Liganden in Kontakt gebracht. Ungebundene Phagemide werden durch mehrfaches Waschen entfernt. Die an der Oberfläche verbleibenden Phagemidpartikel werden anschliessend eluiert. Zur Elution kann der freie Ligand in gelöster Form zugegeben werden. Die Phagemide können aber auch durch Zugabe von Proteasen oder unter mässig denaturierenden Bedingungen, z. B. in Gegenwart von Säuren, Laugen, Detergentien oder chaotropen Salzen, eluiert werden. Eine bevorzugte Methode ist die Elution mittels Puffern mit pH 2,2, wobei das Eluat anschliessend neutralisiert wird.

Danach werden E. coli-Zellen mittels allgemein bekannter Methoden mit den eluierten Phagemiden infiziert. Die Nukleinsäure kann auch aus den eluierten Phagemiden extrahiert und auf andere Weise in die Zellen eingebracht werden. Ausgehend von den dabei erhaltenen E. coli-Klonen werden durch Superinfektion mit M13-Helperphagen nach dem oben beschriebenen Verfahren wiederum Phagemide erzeugt und die auf diese Weise vermehrten Phagemide erneut einer Selektion an der Oberfläche mit dem immobilisierten Liganden unterworfen. Oft sind mehrere Selektionszyklen notwendig, um die Phagemide mit den Anticalinen in angereicherter Form zu erhalten. Die Anzahl der Selektionszyklen wird bevorzugt so gewählt, dass bei der anschliessenden funktionellen Analyse mindestens 0,1% der untersuchten Klone Lipocalinmuteine mit nachweisbarer oder bestimmbarer Affinität zu dem vorgegebenen Liganden produzieren. Abhängig vom Umfang, d. h. der Komplexität der eingesetzten Bibliothek sind dazu

typischerweise 2 bis 8 Zyklen notwendig.

Zur funktionellen Analyse der selektierten Muteine wird ein *E. coli*-Stamm mit den nach den Selektionszyklen erhaltenen Phagemiden infiziert und die entsprechende doppelsträngige Phasmid-DNA isoliert. Ausgehend von dieser Phasmid-DNA oder auch von der aus den Phasmiden extrahierten einzelsträngigen DNA kann die Nukleinsäuresequenz der selektierten Lipocalinmuteine mittels der dazu üblichen Methoden bestimmt und die Aminosäuresequenz daraus abgeleitet werden. Die mutierte Region oder die Sequenz des gesamten Lipocalinmuteins oder Anticalins kann in einem anderen Expressionsvektor subkloniert und in einem geeigneten Wirtsorganismus exprimiert werden. Als Expressionsvektor kann beispielsweise pBBP21 verwendet werden, und die Expression mit pBBP21-Derivaten kann in *E. coli*-Stämmen, beispielsweise *E. coli*-TG1, durchgeführt werden. Die gentechnisch hergestellten Anticaline können durch verschiedene proteinchemische Verfahren gereinigt werden. Die beispielsweise mit pBBP21 produzierten Anticaline tragen das Affinitätspeptid Strep-Tag II (Schmidt et al., J. Mol. Biol. 255 (1996), 753-766) an ihrem C-Terminus und können daher bevorzugt mittels der Streptavidin-Affinitätschromatographie gereinigt werden.

Die Selektion kann ebenso mittels anderer Methoden durchgeführt werden. Eine Vielzahl entsprechender Ausführungsformen ist dem Fachmann bekannt oder in der Literatur beschrieben. Auch eine Kombination von Methoden kann angewandt werden. Beispielsweise können Klone, die durch "Phage Display" selektiert oder zumindest angereichert wurden, zusätzlich einem "Colony Screening" unterzogen werden. Diese Vorgehensweise hat den Vorteil, dass dabei direkt einzelne Klone hinsichtlich der Produktion von Anticalinen mit nachweisbarer Bindungsaffinität für einen Liganden isoliert werden können.

Neben der Verwendung von *E. coli* als Wirtsorganismus bei der "Phage Display"-Technik oder der "Colony Screening"-Methode lassen sich beispielsweise auch andere Bakterienstämme, Hefen oder auch Insekten- oder Säugerzellen dazu heranziehen. Zusätzlich zur Selektion eines Anticalins aus einer primären Bibliothek, die ausgehend von einer kodierenden Nukleinsäuresequenz für ein Lipocalin hergestellt wurde, können vergleichbare Methoden auch angewandt werden, um ein Anticalin durch wiederholte, ggf. eingeschränkte Mutagenese seiner kodierenden Nukleinsäuresequenz hinsichtlich Affinität oder Spezifität für den gewünschten Liganden zu optimieren.

Es ist überraschend, dass mit dem erfindungsgemäßen Verfahren Anticaline gewonnen werden können, die hohe Affinität zu einem vorgegebenen Liganden zeigen. Mit den in den Beispielen beschriebenen Anticalinen wurden für verschiedene Fluoresceinderivate Bindungskonstanten bestimmt, die mehr als 10^{6} M⁻¹ betragen. Diese Affinitätswerte liegen in derselben Größenordnung wie die Affinitäten der Lipocaline zu ihren natürlichen Liganden, beispielsweise von Rbp zu Vitamin A (Cogan et al., Eur. J. Biochem. 65 (1976), 71-78). Im Gegensatz zu den natürlichen Liganden der Lipocaline, die in der Regel wasserunlöslich und chemisch unbeständig sind, handelt es sich allerdings bei Fluorescein um eine relativ hydrophile Verbindung, die auch in immunologischen Studien als Hapten mit Modellcharakter eingesetzt wurde (Voss, Fluorescein Hapten: An Immunological Probe (1984), CRC Press). Zudem zeigt das Fluorescein mit dem Biliverdin IX gamma, dem ursprünglichen Liganden des Bbp, keinerlei strukturelle Verwandtschaft.

Solche mit den Anticalinen erzielbare Affinitäten für neue Liganden sind vergleichbar mit den Affinitäten, welche für Antikörper aus der sekundären Immunantwort bekannt sind. Darüber hinaus besteht zusätzlich die Möglichkeit, die hergestellten Anticaline einer weiteren, ggf. partiellen Zufallsmutagenese zu unterwerfen, um aus der dabei erhaltenen neuen Bibliothek Varianten mit noch höherer Affinität zu selektieren. Entsprechende Vorgehensweisen wurden bereits im Fall rekombinanter Antikörperfragmente zum Zweck einer "Affinitätsmaturierung" beschrieben (Low et al., supra; Barbas und Burton, Trends Biotechnol. 14 (1996), 230-234) und lassen sich vom Fachmann auch auf die Anticaline in entsprechender Weise anwenden.

Überraschenderweise zeigte sich weiterhin, dass die vier Peptidschleifen, welche die Liganden-Bindungstasche der Lipocaline bilden, hohe Toleranz für Aminosäuresubstitutionen aufweisen, ohne dass die Faltung der Polypeptidkette in den gewonnenen Anticalinen dadurch wesentlich beeinträchtigt wird. Dementsprechend ist es möglich, Anticaline zu generieren, die Bindungstaschen mit vielfältigen Oberflächeneigenschaften aufweisen, so dass die molekulare Erkennung von unterschiedlichsten Liganden, auch von Peptiden oder Polypeptiden sowie anderen Makromolekülen, realisiert werden kann.

Ist die genetische Information für ein Anticalin erst einmal vorhanden oder seine Aminosäuresequenz bekannt, so lässt es sich mit allgemein bekannten gentechnischen Verfahren produzieren. Bevorzugt sind Verfahren zur Herstellung von Anticalinen, wobei das Anticalin, ein Fragment des Anticalins oder ein Fusionsprotein aus dem Anticalin und einem anderen Polypeptid ausgehend von der für das Anticalin kodierenden Nukleinsäure mittels gentechnischer Methoden in einem bakteriellen oder eukaryontischen Wirtsorganismus produziert und aus diesem Wirtsorganismus oder dessen Kultur gewonnen wird. Die Tatsache, dass dabei in der Regel nur ein Strukturgen zur Expression gebracht werden muss, stellt eine erhebliche Vereinfachung im Vergleich zu den Antikörpern oder ihren Fragmenten dar.

Eine Vielzahl von Wirtsorganismen, wie *E. coli* und andere Gram-negative oder auch Gram-positive Bakterien, Hefen und andere eukaryontische Zellen, kann zur gentechnischen Herstellung eingesetzt werden. Auch die Wahl zwischen diversen Expressionsstrategien ist möglich. So führt beispielsweise im Wirtsorganismus *E. coli* die Sekretion mit einer geeigneten Signalsequenz, wie in den Beispielen beschrieben, zum korrekt gefalteten, funktionellen Protein, in dem die Disulfidbindungen ausgebildet sind. Andererseits ist es ebenfalls möglich, ein Anticalin im Cytosol einer Bakterienzelle zu produzieren und, falls das Lipocalin im Cytosol nicht funktionell gefaltet wird, dieses erst *in vitro* funktionell zu falten. Selbst eine Faltung aus Aggregaten, welche sich bei der Sekretion ggf. im Periplasma des Bakteriums ansammeln, ist möglich.

Gentechnisch hergestellte Anticaline können mittels einer Vielzahl etablierter Methoden gereinigt werden. Die Eignung der Methode hängt jeweils vom verwendeten Wirtsorganismus, der Expressionsstrategie und anderen Faktoren ab, die dem in der Expression und Reinigung rekombinanter Proteine erfahrenen Fachmann bekannt sind. Die Reinigung kann ggf. vereinfacht werden, indem das Anticalin mit einer oder mehreren Peptidsequenzen fusioniert wird. Bevorzugt sind zur Fusion solche Peptide oder Proteine zu verwenden, die dem resultierenden rekombinanten Protein Affinität zu bestimmten Säulenmaterialien verleihen. Solche Fusionen sollten die Funktion des Anticalins nicht negativ beeinflussen oder müssen z. B. durch Einfügung geeigneter Proteaseschnittstellen abspaltbar sein. Als typische Beispiele für Fusionspartner seien Oligohistidin-Anhängsel, das Strep-Tag oder das Strep-Tag II, die Glutathion-S-Transferase, das Maltose-Bindungsprotein oder die Albumin-Bindungsdomäne des Protein G genannt. Ebenso können Anticaline über ihre jeweilige Liganden-Bindungsstelle mittels einer Affinitätschromatographie an dem an einer Säulenmatrix immobilisierten zugehörigen Liganden, bzw. geeigneten Derivaten dieses Liganden, gereinigt werden. Der Aufbau der Anticaline aus einer einzelnen Polypeptidkette ist im Vergleich mit rekombinanten Antikörperfragmenten bei der Reinigung von Vorteil, da keine Massnahmen ergriffen werden müssen, um die intakte Assoziation von Untereinheiten zu gewährleisten.

Die Struktur eines Anticalins kann zum Zweck der verbesserten Produktion, Reinigung oder Anwendbarkeit zusätzlich modifiziert werden. So kann beispielsweise das N- oder das C-terminale Peptidsegment, welches nicht Bestandteil der beta-Barrel-Struktur ist, entfernt werden. Vorhandene Disulfidbindungen können durch Substitution der Cysteinreste eliminiert, oder neue Disulfidbindungen können an anderer Stelle eingeführt werden. Freie Cysteinreste, wie der Rest 116 im ApoD, können entfernt werden, wenn sie z. B. die Produktion oder die Stabilität des Anticalins beeinträchtigen. Ggf.

können auch Cysteinreste neu eingeführt werden, um z. B. entsprechende Proteinkonjugate durch chemische Kopplung mit anderen Komponenten herzustellen. Auch können ausserhalb der eigentlichen Ligandenbindungstasche Bindungsstellen für weitere Liganden, wie z. B. Metallionen, in das Anticalin eingebaut werden. Schliesslich können auch zu anderen Zwecken als der Proteinproduktion oder -reinigung Fusionsproteine aus Anticalinen und anderen Polypeptiden, Proteinen oder Proteindomänen mittels dem Fachmann bekannter Methoden hergestellt werden. Die Fusion kann bevorzugt am N-Terminus oder auch am C-Terminus des Anticalins erfolgen.

Derartige Fusionen können geeignet sein, um dem Anticalin neue Eigenschaften zu vermitteln, wie z. B. enzymatische Aktivität oder Affinität zu anderen Molekülen, wie Proteinen, Makromolekülen oder niedermolekularen Liganden. Beispielsweise sind Fusionen mit Enzymen, welche chromogene oder fluorogene Reaktionen katalysieren oder zur Freisetzung von cytotoxischen Agenzien dienen können, möglich. Weitere Beispiele für Fusionspartner, die in der Praxis von Vorteil sein können, sind Bindungsdomänen wie die Albumin-Bindungsdomäne von Protein G, Protein A, Antikörperfragmente, Oligomerisierungsdomänen, Toxine oder auch Anticaline mit anderer oder derselben Ligandenspezifität. Alternativ zur Herstellung von Fusionsproteinen können auch Konjugate aus Anticalinen und Proteinen, Nukleinsäuren oder nahezu beliebigen Biomolekülen und chemischen Verbindungen anhand dem Fachmann bekannter Methoden hergestellt werden.

Anticaline und ihre Derivate können ähnlich wie die Antikörper oder deren Fragmente in vielen Bereichen eingesetzt werden. Bevorzugt werden Anticaline verwendet zur Bindung an eine Festphase, so dass der Ligand des Anticalins oder ein Konjugat oder Fusionsprotein dieses Liganden immobilisiert oder abgetrennt werden kann. Weiterhin bevorzugt ist die Verwendung von Anticalinen zur Markierung mit einem Enzym, einem Antikörper, einer radioaktiven Substanz oder einer anderen Gruppe mit einer biochemischen Aktivität oder mit definierten Bindungseigenschaften, so dass der Ligand des Anticalins oder ein Konjugat oder Fusionsprotein dieses Liganden damit nachgewiesen oder in Kontakt gebracht werden kann. Anticaline können beispielsweise zum Nachweis chemischer Strukturen mittels etablierter bioanalytischer Methoden wie ELISA oder Westernblot, in der Mikroskopie oder in der Immunsensorik dienen. Das Nachweissignal kann dabei entweder direkt unter Einsatz eines geeigneten Anticalinkonjugats oder -fusionsproteins erzeugt werden oder indirekt durch Detektion des gebundenen Anticalins mittels eines dagegen gerichteten Antikörpers oder z. B. unter Verwendung eines Affinitätsanhängsels.

Bevorzugte Liganden für Anticaline sind einerseits chemische Verbindungen in freier oder konjugierter Form, die Merkmale eines immunologischen Haptens aufweisen, und andererseits Peptide, Polypeptide oder andere Makromoleküle wie auch entsprechende Konjugate davon. Ein interessantes Anwendungsgebiet ist der Einsatz der Anticaline zum Zweck des Nachweises von nicht radioaktiv markierten Biomolekülen, insbesondere Nukleinsäuren. So sind zum Beispiel chemisch reaktive Derivate des Fluoresceins zur Markierung von Proteinen oder von Nukleinsäuren kommerziell verfügbar, und auch Verfahren zum Einbau von Fluoresceingruppen bei der Synthese oder Replikation von Nukleinsäuren sind bekannt. Entsprechend modifizierte Nukleinsäuren lassen sich als spezifische Gensonden verwenden und anschliessend mit den in den Beispielen beschriebenen Anticalinen nachweisen.

Zahlreiche Anwendungsmöglichkeiten für die Anticaline liegen in der Medizin. Neben dem Einsatz in der Diagnostik können auch Anticaline hergestellt werden, welche beispielsweise gewebs- oder tumorspezifische zelluläre Oberflächenmoleküle binden. Entsprechende Anticaline können in konjugierter Form oder als Fusionsproteine zum "Tumor Imaging" oder direkt zur Krebstherapie eingesetzt werden. Zur Herstellung solcher Anticaline kann es zweckmässig sein, von einem menschlichen Lipocalin auszugehen, wie z. B. dem Rbp oder dem ApoD. Die geringe Grösse der Anticaline oder ihrer Derivate hat dabei gegenüber den Antikörpern neue und vorteilhafte Eigenschaften zur Folge.

Die Erfindung wird weiter veranschaulicht durch die nachstehenden Beispiele und die beigefügten

Zeichnungen, in denen:

Fig. 1 die molekulare Raumstruktur des Bbp mit seinem Liganden Biliverdin IX gamma schematisch darstellt (A) und die räumliche Position derjenigen Aminosäuren angibt (B), die bevorzugt Gegenstand der Mutagenese zur Herstellung von Anticalinen sind;

Fig. 2 die Topographie der Polypeptidkette für die Liganden- Bindungsstellen von Antikörpern (A) und von Lipocalinen (B) miteinander vergleicht;

Fig. 3 die Aminosäuresequenzen verschiedener Lipocaline gegenüberstellt;

Fig. 4 die Herstellung der Bibliothek der Lipocalinmutante auf der Ebene der Nukleinsäuren schematisch veranschaulicht;

Fig. 5 den Phasmidvektor pBBP20 schematisch wiedergibt;

Fig. 6 die Expressionsvektoren pBBP21 (A) und pBBP22 (B) schematisch darstellt;

Fig. 7 die Bindung eines Peptids durch Anticaline in einem ELISA demonstriert.

Fig. 1 zeigt die Kristallstruktur des Bbp (Datei 1BBP aus der Brookhaven Protein Data Bank; Molekül A), die mit Hilfe des Programms MOLSCRIPT (Kraulis, J. Appl. Cryst. 24 (1991), 946- 950) graphisch dargestellt wurde. In (A) sind der gebundene Ligand wie auch die beiden Disulfidbindungen in dem Polypeptid als "Ball and Stick" wiedergegeben (Kohlenstoff: schwarz; Stickstoff, Schwefel: dunkelgrau; Sauerstoff: hellgrau). Die einzelnen beta -Faltblattstränge sind als Bänder und die alpha -Helix ist als Spirale abgebildet. Die kelchartige Form der Liganden- Bindungsstelle ist oben am offenen Ende des aus den acht antiparallelen beta -Faltblattsträngen gebildeten beta -Barrels zu erkennen. In (B) sind die C<alpha>-Positionen der Aminosäuren als entlang der Polypeptidkette miteinander verbundene Kugeln wiedergegeben. Der N- und der C-Terminus des Polypeptids ist markiert. Die schwarz dargestellten C<alpha>-Positionen sind mit den Sequenznummern bezeichnet und geben die Lage der in den Beispielen mutierten Aminosäuren in der Struktur des Bbp an.

Fig. 2 zeigt eine Aufsicht (A) auf die Antigen-Bindungsstelle im Fv-Fragment eines Immunglobulins, welche gemeinsam von den variablen Domänen VL und VH gebildet wird, und (B) auf die Liganden-Bindungsstelle eines Lipocalins. Die beta -Faltblattstränge sind jeweils angenähert senkrecht zur Papierebene angeordnet und als Balken dargestellt. Die sechs CDRs (L1, L2, L3, H1, H2, H3) im Immunglobulin sowie die vier Peptidschleifen im Lipocalin verbinden jeweils zwei beta -Faltblattstränge miteinander. Die anderen Verbindungssegmente und Strukturelemente sind weggelassen.

Fig. 3 zeigt einen Sequenzvergleich (Angabe der Aminosäuren im Einbuchstaben-Code) zwischen dem Bilin-Bindungsprotein (SWISS-PROT Datenbank-Zugriffscode P09464), dem menschlichen Apolipoprotein D (SWISS-PROT Datenbank-Zugriffscode P05090) und dem Retinol-Bindungsprotein (SWISS-PROT Datenbank-Zugriffscode P02753) in Form der maturen Polypeptide. Die acht Segmente im Bereich des beta -Barrels, welche den konservierten beta -Faltblattsträngen entsprechen und in den Kristallstrukturen von Bbp und Rbp grosse Ähnlichkeit aufweisen, sind durch Unterstreichung hervorgehoben. Die Schleifenregionen, in denen Aminosäuren bevorzugt ausgetauscht werden sollen, sind unterhalb der Sequenz des Bbp durch doppeltes Unterstreichen gekennzeichnet. Diejenigen Positionen im Bbp, welche in den Beispielen mutiert wurden, sind zusätzlich durch Sterne markiert. Das Alignment zwischen den Sequenzen von Bbp und ApoD entspricht derjenigen in der Publikation von Peitsch und Boguski (New Biologist 2 (1990), 197-206).

Fig. 4 zeigt schematisch eine Strategie zur konzertierten Mutagenese von 16 ausgewählten Aminosäurepositionen im Bbp durch wiederholte Anwendung der Polymerase-Kettenreaktion (PCR). Für jede der vier Peptidschleifen des Lipocalins, in der Aminosäuren mutiert werden sollten, wurde ein Oligodesoxynukleotid synthetisiert, SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 und SEQ ID NO: 4, wobei an den Mutationsstellen jeweils die im Sequenzprotokoll angegebenen Mischungen der Basenbausteine eingesetzt wurden. Aufgrund der gewählten Zusammensetzung konnte an allen mutierten Codons aus den drei insgesamt möglichen Stopcodons ggf. nur das Amber-Stopcodon, TAG, entstehen, welches in den zur Genexpression verwendeten E. coli supE- Stämmen XL1-Blue oder TG1 als Glutamin translatiert wird. Für bestimmte Anwendungen, beispielsweise zur Genexpression in anderen Bakterienstämmen oder Organismen, kann ein solches Nonsense-Codon, wenn es im Strukturgen für ein selektiertes Anticalin auftritt, vom Fachmann z. B. mittels ortsgerichteter Mutagenese durch ein für Glutamin kodierendes Codon substituiert werden. Mit den Primern SEQ ID NO: 1 und SEQ ID NO: 2 wurde unter Verwendung der pBBP20-Plasmid-DNA (SEQ ID NO: 10), die das Bbp-Strukturgen enthält, als Matrize ein Nukleinsäurefragment mit 159 Basenpaaren amplifiziert (1. Schritt, A). Parallel dazu wurde mit den Primern SEQ ID NO: 3 und SEQ ID NO: 4, ebenfalls unter Verwendung von pBBP20 als Matrize, ein Nukleinsäurefragment mit 164 Basenpaaren amplifiziert (1. Schritt, B). Die Mischung dieser beiden Fragmente diente als Matrize in einem 2. Amplifizierungsschritt in Gegenwart eines mit den beiden Fragmenten hybridisierenden Oligodesoxynukleotids SEQ ID NO: 5 sowie der beiden flankierenden PCR-Primer SEQ ID NO: 6 und SEQ ID NO: 7, wobei ein Genfragment von 371 Basenpaaren erhalten wurde. Dieses enthielt alle 16 mutierten Codons und wurde anschliessend mittels der beiden BstXI-Schnittstellen in dem Vektor pBBP20 kloniert. Die Verwendung dieser beiden Restriktionsschnittstellen, die durch ihre spezielle Anordnung beim Restriktionsverdau zu zwei nicht kompatiblen überhängenden DNA-Enden führten, ermöglichte eine besonders effiziente Legierung. Zur Einführung der beiden BstXI-Schnittstellen in das Bbp-Strukturgen waren zuvor die beiden Aminosäuresubstitutionen Asn21 zu Gln und Lys135 zu Met gegenüber der ursprünglichen Sequenz vorgenommen worden.

Fig. 5 zeigt eine Zeichnung von pBBP20. Dieser Vektor kodiert für ein Fusionsprotein aus der OmpA-Signalsequenz, einem veränderten Bbp mit den vier Aminosäuresubstitutionen Asn1 zu Asp, Asn21 zu Gln, Lys87 zu Ser und Lys135 zu Met, dem Strep- Tag II-Affinitätsanhänger und einer verkürzten Form des Hüllproteins pIII von M13, umfassend die Aminosäuren 217 bis 406 (pIII). Das Strukturgen steht unter der Transkriptionskontrolle des Tetracyclin-Promotor/Operators (tet^{O}) und endet am Lipoprotein-Transkriptionsterminator (tlpp). Weitere Elemente des Vektors sind der Replikationsursprung (ori), die intergenische Region des filamentösen Bakteriophagen f1 (f1-IG), das für die beta-Lactamase kodierende Ampicillin-Resistenzgen (bla) und das Tetracyclin-Repressoren (tetR). Zwischen der kodierenden Region für das Bbp mit der OmpA-Signalsequenz und dem Strep-Tag II sowie der kodierenden Region für das verkürzte Phagenhüllprotein pIII befindet sich ein Amber-Stopcodon, welches in einem Amber-Suppressor-Wirtsstamm teilweise überlesen wird. Die beiden BstXI-Schnittstellen, die zur Klonierung der mutierten Genkassette verwendet wurden, und die das Strukturgen flankierenden Restriktionsschnittstellen sind markiert. Ein relevanter Ausschnitt aus der Nukleinsäuresequenz von pBBP20 ist mit der kodierten Aminosäuresequenz im Sequenzprotokoll als SEQ ID NO: 10 wiedergegeben. Der Ausschnitt beginnt mit einer Hexanukleotidsequenz, die durch Legierung eines XbaI-Überhangs mit einem dazu komplementären SpeI-Überhang erhalten wurde, und endet mit der HindIII- Schnittstelle. Die Vektorelemente ausserhalb dieses Bereichs sind identisch mit dem Vektor pASK75, dessen vollständige Nukleotidsequenz in der Offenlegungsschrift DE 44 17 598 A1 angegeben ist.

Fig. 6 zeigt eine Zeichnung von pBBP21 (A) und von pBBP22 (B). pBBP21 kodiert für ein Fusionsprotein aus der OmpA-Signalsequenz, einem veränderten Bbp gemäss Fig. 5 und dem Strep-Tag II-Affinitätsanhänger. Dieses Strukturgen wird von dem dsbC-Strukturgen (einschliesslich dessen ribosomaler Bindungsstelle) aus E. coli (Zapun et al., Biochemistry 34 (1995), 5075-5089) als einem

zweiten Cistron gefolgt. Das dadurch gebildete künstliche Operon steht unter gemeinsamer Transkriptionskontrolle des Tetracyclin-Promotor/Operators (*tet*<*p/o*>) und endet am Lipoprotein-Transkriptionsterminator (*tlpp*). Alle weiteren genetischen Elemente sind identisch mit pBBP20 gemäss Fig. 5. Die mit der Kosekretion verbundene Überproduktion der bakteriellen Disulfidisomerase DsbC kann die Knüpfung der richtigen Disulfidbrücken in dem Lipocalin unterstützen und so die Ausbeute an korrekt gefaltetem Polypeptid steigern. Allerdings ist die Produktion des Lipocalins oder der Anticaline auch ohne diese Massnahme möglich. Ein relevanter Ausschnitt aus der Nukleinsäuresequenz von pBBP21 ist mit der kodierten Aminosäuresequenz im Sequenzprotokoll als SEQ ID NO: 11 wiedergegeben. Der Ausschnitt beginnt mit der *XbaI*-Schnittstelle und endet mit einem Hexanukleotid, das durch Legierung eines stumpfen Strangendes mit einem aufgefüllten *HindIII*-Strangende erhalten wurde, wobei die ursprüngliche *HindIII*-Schnittstelle verloren ging. Die Vektorelemente ausserhalb dieses Bereichs sind identisch mit dem Vektor pASK75, dessen vollständige Nukleotidsequenz in der Offenlegungsschrift DE 44 17 598 A1 angegeben ist. pBBP22 kodiert für ein Fusionsprotein aus der OmpA-Signalsequenz, einem veränderten Bbp gemäss Fig. 5, dem Strep-Tag II-Affinitätsanhängsel und einer Albumin-Bindungsdomäne (*abd*) des Protein G aus Streptococcus (Kraulis et al., FEBS Lett. 378 (1996), 190-194). Alle weiteren genetischen Elemente sind identisch mit pBBP20. Ein relevanter Ausschnitt aus der Nukleinsäuresequenz von pBBP22 ist mit der kodierten Aminosäuresequenz im Sequenzprotokoll als SEQ ID NO: 12 wiedergegeben. Der Ausschnitt beginnt mit der *XbaI*-Schnittstelle und endet mit der *HindIII*-Schnittstelle. Die Vektorelemente ausserhalb dieses Bereichs sind identisch mit dem Vektor pASK75, dessen vollständige Nukleotidsequenz in der Offenlegungsschrift DE 44 17 598 A1 angegeben ist.

Fig. 7 zeigt eine graphische Darstellung der Daten aus Beispiel 7, in der ein synthetisiertes Peptidepitop des Hepatitis C-Virus mit den Anticalinen HepC1 (Quadrate) und HepC4 (Kreise) in einem ELISA nachgewiesen wurde. Zum Vergleich sind die mit dem Bbp (Dreiecke) erhaltenen Werte aufgetragen. "C" steht für die relative Proteinkonzentration innerhalb jeder Verdünnungsreihe.

Beispiele

Beispiel 1

Herstellung einer Bibliothek für Lipocalinmutante

Sofern nicht anders angegeben, wurden die dem Fachmann geläufigen gentechnischen Methoden, wie sie z. B. in Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989), Cold Spring Harbor Press) beschrieben sind, verwendet.

Zur konzentrierten Mutagenese von insgesamt 16 ausgewählten Aminosäurepositionen in den vier Peptidschleifen des Bbp wurde die PCR in mehreren Schritten gemäss Fig. 4 angewandt. Die PCR-Reaktionen wurden in den ersten beiden Amplifizierungsschritten in einem Volumen von 50 µl durchgeführt, wobei 10 ng pBBP20-Plasmid-DNA als Matrize sowie jeweils 25 pmol der Primer, welche nach der üblichen Phosphoramidit-Methode synthetisiert worden waren, eingesetzt wurden. Zudem enthielt der Reaktionsansatz 5 µl 10 x Taq-Puffer (100 mM Tris/HCl pH 9,0, 500 mM KCl, 1% v/v Triton X-100), 3 µl 25 mM MgCl₂, 4 µl 1 dNTP-Mix (2,5 mM dATP, dCTP, dGTP, dTTP). Nach Auffüllen mit Wasser wurde der Ansatz mit Mineralöl überschichtet und in einem programmierbaren

Thermostatisierblock für 2 min auf 94 DEG C erhitzt. Anschliessend wurden 2,5 μl Taq DNA-Polymerase (5 μl / μl, Promega) zugegeben und 20 Temperaturzyklen von 1 min bei 94 DEG C, 1 min bei 60 DEG C, 1,5 min bei 72 DEG C, gefolgt von einer Inkubation für 5 min bei 60 DEG C, durchgeführt. Die gewünschten Amplifizierungsprodukte wurden durch präparative Agarose-Gelelektrophorese unter Verwendung des Jetsorb DNA Extraction Kits (Genomed) nach den Angaben des Herstellers aus Low Melting Point Agarose (Gibco BRL) isoliert.

Der darauffolgende Amplifizierungsschritt wurde in einem 100 μl-Ansatz durchgeführt, wobei jeweils ca. 6 ng dieser beiden Fragmente als Matrize, je 50 pmol der beiden Primer SEQ ID NO: 6 und SEQ ID NO: 7 sowie 1 pmol des Oligodesoxynukleotids SEQ ID NO: 5 eingesetzt wurden. Die restlichen Komponenten des PCR-Ansatzes wurden wie in den vorangegangenen Amplifizierungsschritten mit der doppelten Menge zugesetzt. Die PCR fand bei 20 Temperaturzyklen von 1 min bei 94 DEG C, 1 min bei 55 DEG C, 1,5 min bei 72 DEG C statt, gefolgt von einer abschliessenden Inkubation für 5 min bei 60 DEG C. Das erwartete Fragment wurde erneut durch präparative Agarose-Gelelektrophorese isoliert.

Zur Klonierung dieses Fragments, welches die Bibliothek der Lipocalinmuttereine in Form der Nukleinsäure repräsentierte, wurde es zunächst mit dem Restriktionsenzym BstXI (New England Biolabs) nach den Angaben des Herstellers geschnitten. Die Reinigung des erhaltenen Nukleinsäurefragments (335 Basenpaare, bp) erfolgte wiederum mittels präparativer Agarose-Gelelektrophorese. Analog wurde die DNA des Vektors pBBP20 mit BstXI geschnitten und das grössere der beiden Fragmente (3971 bp) isoliert.

Zur Legierung wurden 0,93 μl g (4,2 pmol) des PCR-Fragments und 11 μl g (4,2 pmol) des Vektorfragments in Gegenwart von 102 Weiss Units T4 DNA-Ligase (New England Biolabs) in einem Gesamtvolumen von 500 μl (50 mM Tris/HCl pH 7,8, 10 mM MgCl₂, 10 mM DTT, 1 mM ATP, 50 μg/ml BSA) für zwei Tage bei 16 DEG C inkubiert. Anschliessend wurde die DNA gefällt, indem jeweils 24 μl des Legierungsansatzes mit 10 μl g tRNA aus Hefe (Boehringer Mannheim), 25 μl 1 M Ammoniumacetat und 100 μl Ethanol versetzt wurden. Nach Inkubation bei -20 DEG C für drei Tage wurde zentrifugiert (25 min, 16 000 g, 4 DEG C). Das Präzipitat wurde mit jeweils 200 μl Ethanol (70% v/v, -20 DEG C) gewaschen und unter Vakuum getrocknet. Die DNA wurde schliesslich in 43,6 μl TE/10 (1 mM Tris/HCl pH 8,0, 0,1 mM EDTA pH 8,0) aufgenommen. Die DNA-Konzentration der erhaltenen Lösung wurde durch analytische Agarose-Gelelektrophorese anhand der Fluoreszenzintensität der mit Ethidiumbromid angefärbten Banden im Vergleich mit einer Probe bekannter Konzentration abgeschätzt.

Die Präparation elektrokompetenter Zellen des *E. coli* K12-Stamms XL1-Blue (Bullock et al., supra) erfolgte gemäss den von Tung und Chow (Trends Genet. 11 (1995), 128-129) und von Hengen (Trends Biochem. Sci. 21 (1996), 75-76) beschriebenen Methoden. 1 l LB-Medium wurde durch Zugabe einer stationären XL1-Blue Übernachtkultur auf eine optische Dichte bei 600 nm, OD₆₀₀ = 0,08 eingestellt und bei 200 Upm und 26 DEG C in einem 2 l-Erlenmeyer-Kolben inkubiert. Nach Erreichen von OD₆₀₀ = 0,6 wurde die Kultur für 30 min auf Eis gekühlt und anschliessend für 15 min bei 4000 g und 4 DEG C zentrifugiert. Das Zellsediment wurde zweimal mit jeweils 500 ml eiskaltem 10% w/v Glycerin gewaschen und schliesslich in 2 ml eiskaltem GYT-Medium (10% w/v Glycerin, 0,125% w/v Hefezucker, 0,25% w/v Trypton) resuspendiert.

Zur Elektroporation wurde das Easyjec T Basic System (EquiBio) mit den dazugehörigen Küvetten (Elektrodenabstand 2 mm) verwendet. Alle Arbeitsschritte wurden im Kühlraum bei 4 DEG C durchgeführt. Jeweils 5 bis 6 μl der oben genannten DNA-Lösung (245 ng/ μl) wurde mit 40 μl der Zellsuspension gemischt, 1 min auf Eis inkubiert und anschliessend in die Küvette überführt. Nach der Elektroporation wurde die Suspension sofort in 2 ml frischem, eiskaltem SOC-Medium (2% w/v Trypton, 0,5% w/v Hefezucker, 10 mM NaCl, 10 mM MgSO₄, 10 mM MgCl₂) verdünnt und für 60 min bei 37

DEG C und 200 Upm geschüttelt. Die Zellen wurden anschliessend jeweils für 2 min bei 3600 g sedimentiert, in 1 ml LB-Medium mit 100 µg/ml Ampicillin (LB/Amp) resuspendiert und zu je 200 µl auf Agar-Platten (140 mm Durchmesser) mit LB/Amp-Medium ausplattiert. Unter Einsatz von insgesamt 10,7 µg der ligierten DNA wurden auf diese Weise mit acht Elektroporationsansätzen 3,73.10<8> Transformanden erhalten, die auf 40 Agar-Platten verteilt waren und gemäss Beispiel 2 weiter verwendet wurden.

Beispiel 2

Phagemidpräsentation und Selektion von Anticalinen gegen Fluorescein

Die auf LB/Amp-Agar ausplattierten Zellen, welche mit den Phasmidvektoren transformiert waren, die für die Bibliothek der Lipocalinmutanteine als Fusionsproteine kodierten, wurden für 14 h bei 32 DEG C inkubiert. Dann wurden die Kolonien unter Zusatz von je 10 ml 2 x YT/Amp-Medium von den Agar-Platten abgeschabt, in einen sterilen Erlenmeyerkolben überführt und zur vollständigen Resuspendierung für 20 min bei 37 DEG C, 200 Upm geschüttelt. 500 ml auf 37 DEG C vorgewärmtes 2 x YT/Amp-Medium wurden mit 2,3 ml dieser Suspension inkuliert, so dass die Zelldichte OD550 bei 0,08 lag.

Diese Kultur wurde bei 37 DEG C, 160 Upm bis zu einer Zelldichte von OD550 = 0,5 inkubiert, mit VCS-M13 Helperphage (Stratagene) infiziert (Multiplicity of Infection ca. 10) und für weitere 30 min bei 37 DEG C, 160 Upm geschüttelt. Anschliessend wurde Kanamycin (70 µg/ml) zugegeben, die Inkubatortemperatur auf 26 DEG C erniedrigt und nach 10 min mit 25 µg/l Anhydrotetracyclin (250 µl einer 50 µg/ml-Stammlösung in Dimethylformamid, DMF) zur Induktion der Genexpression versetzt. Anschliessend wurde für weitere 7 h bei 26 DEG C, 160 Upm inkubiert.

50 ml wurden aus dieser Kultur entnommen und die Zellen durch Zentrifugation (15 min, 12 000 g, 4 DEG C) sedimentiert. Der Überstand, der die Phagemidpartikel enthielt, wurde sterilfiltriert (0,45 µm), mit 1/4 Volumen (12,5 ml) 20% w/v PEG 8000, 15% w/v NaCl versetzt und über Nacht bei 4 DEG C inkubiert. Nach Zentrifugation (20 min, 18000 g, 4 DEG C) wurden die präzipitierten Phagemidpartikel in 2 ml kaltem PBS (4 mM KH₂PO₄, 16 mM Na₂HPO₄, 115 mM NaCl, pH 7,4) gelöst. Die Lösung wurde für 30 min auf Eis inkubiert und auf zwei 1,5 ml-Reaktionsgefässe verteilt. Nach Abzentrifugieren ungelöster Bestandteile (5 min, 18 500 g, 4 DEG C) wurde der Überstand jeweils in ein neues Reaktionsgefäß überführt.

Zur erneuten Fällung der Phagemidpartikel wurde mit 1/4 Volumen 20% w/v PEG 8000, 15% w/v NaCl gemischt und für 30 bis 60 min auf Eis inkubiert. Nach Zentrifugation (20 min, 18 500 g, 4 DEG C) wurde der Überstand entfernt und die präzipitierten Phagemidpartikel in insgesamt 1 ml PBS gelöst. Nach Inkubation für 30 min auf Eis wurde die Lösung zentrifugiert (5 min, 18 500 g, 4 DEG C) und der Überstand mit den Phagemidpartikeln direkt für die Affinitätsanreicherung eingesetzt.

Zur Affinitätsanreicherung der die Anticalain-Fusionsproteine tragenden rekombinanten Phagemide wurden Immuno-Sticks (NUNC) verwendet. Diese wurden über Nacht mit 800 µl eines Konjugats aus Rinderserum-Albumin (BSA) und 4-Glutarylarnido-fluorescein (100 µg/ml) in PBS beschichtet.

Zur Herstellung des Konjugats wurde 4-Amino-fluorescein (Fluoresceinamin Isomer I, Fluka) zunächst mit einem fünfzehnfachen molaren Überschuss an Glutarsäureanhydrid bei pH 7,0 gemäss der

Arbeitsvorschrift von Ogano et al. (Carbohydrate Res. 105 (1982), 69-85) umgesetzt, um später die sterische Zugänglichkeit der Fluoresceingruppe zu gewährleisten. Das Reaktionsprodukt 4-Glutarylarnido-fluorescein, welches eine zur Kopplung mit dem BSA geeignete Carbonsäuregruppe an einer aliphatischen Seitenkette trug, wurde anschliessend durch Umkristallisieren aus Aceton/Wasser gereinigt. Eine Lösung von 17,3 mg (37,5 μmol) dieser Substanz in 25 μl DMF wurde dann zur Aktivierung mit 4,31 mg (37,5 μmol) N-Hydroxysuccinimid in 25 μl DMF sowie mit 7,2 mg (37,5 μmol) 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid versetzt. Der Ansatz wurde für 1 h bei Raumtemperatur (RT) inkubiert. 20 μl dieser Lösung wurden mit einer Lösung von 10 mg BSA in 980 μl 5% w/v NaHCO₃ pH 8,1 versetzt und für 3 h bei RT inkubiert. Nach Abtrennung der überschüssigen Reaktanden von dem BSA-Konjugat mittels einer PD-10 Gelfiltrationssäule (Pharmacia) wurde eine Beladung von 8 Molekülen 4-Glutarylarnido-fluorescein pro BSA-Molekül anhand der Absorption der Fluoresceingruppe bei 495 nm (ε = 72 000 M⁻¹ cm⁻¹) bestimmt.

Unbelegte Bindungsstellen auf der Oberfläche des Immuno-Sticks wurden durch Inkubation mit 1,2 ml 2% w/v BSA in PBST (PBS mit 0,1% v/v Tween 20) für 2 h bei RT abgesättigt. Nach dreimaligem kurzen Waschen mit jeweils 1,2 ml PBST wurde der Immuno-Stick in einer Mischung aus 250 μl der Phagemidlösung und 500 μl Blockierungspuffer (2% w/v BSA in PBST) für 1 h bei RT inkubiert.

Zur Entfernung nicht gebundener Phagamide wurde achtmal (bei der ersten Selektion) bzw. zehnmal (bei den Selektionszyklen 2 bis 6) mit jeweils 950 μl PBST für 2 min gewaschen. Adsorbierte Phagamide wurden schliesslich durch 10minütige Behandlung des Immuno-Sticks mit 950 μl 0,1 M Glycin/HCl pH 2,2 eluiert, wobei der pH der Elutionsfraktion sofort anschliessend durch Mischen mit 160 μl 0,5 M Tris neutralisiert wurde.

Zur Amplifizierung wurde diese Phagemidlösung (1,1 ml, je nach Selektionszyklus zwischen 106 und 108 Colony-forming Units) kurz auf 37 DEG C erwärmt, mit 4 ml einer exponentiell wachsenden Kultur von E. coli XL1-Blue (OD550 = 0,5) gemischt und für 30 min bei 37 DEG C, 200 Upm inkubiert. Die mit den Phagamiden infizierten Zellen wurden anschliessend sedimentiert (2 min, 4420 g, 4 DEG C), in 800 μl des Kulturmediums resuspendiert und auf vier Agar-Platten mit LB/Amp-Medium (140 mm Durchmesser) ausplattiert.

Zur wiederholten Produktion und Affinitätsanreicherung von Phagemidpartikeln wurde verfahren, wie zu Beginn dieses Beispiels beschrieben. In diesen Fällen wurde mit 0,2 bis 1 ml der Suspension der auf den Agar-Platten gewachsenen Zellen jeweils 50 ml 2 x YT/Amp-Medium angeimpft. Auf diese Weise wurden fünf weitere Selektionszyklen mit dem BSA-Fluoresceinkonjugat durchgeführt.

Beispiel 3

Produktion der Anticaline

Zur präparativen Produktion der Anticaline wurde die Genkassette zwischen den beiden BstXI-Schnittstellen aus dem pBBP20-Vektor in das Expressionsplasmid pBBP21 subkloniert. Als Kontrolle wurde das auf pBBP21 ursprünglich kodierte Bbp ebenfalls produziert.

Zur Subklonierung wurde aus der Mischung der E.coli-Zellen aus Beispiel 2, die mit den Phagamiden des letzten Selektionszyklus infiziert waren, die Phasmid-DNA unter Verwendung des QIAprep Spin Miniprep Kits (QIAGEN) isoliert. Diese wurde mit dem Restriktionsenzym BstXI geschnitten und das kleinere der

beiden Fragmente (335 bp) durch präparative Agarose-Gelektrophorese wie in Beispiel 1 beschrieben gereinigt. In gleicher Weise wurde die DNA des Vektors pBBP21 mit BstXI geschnitten und das grössere der beiden Fragmente (4132 bp) isoliert.

Zur Legierung wurden jeweils 50 fmol der beiden DNA-Fragmente in einem Gesamtvolumen von 20 mu l (30 mM Tris/HCl pH 7,8, 10 mM MgCl₂, 10 mM DTT, 1 mM ATP) mit 1,5 Weiss Units T4 DNA Ligase (Promega) versetzt und 5 h bei 16 DEG C inkubiert. Mit 5 mu l dieses Legierungsansatzes wurde dann E.coli-TG1-F<-> (E. coli K12 TG1, der durch wiederholte Kultivierung unter nicht selektiven Bedingungen sein Episom verloren hatte) nach der CaCl₂-Methode transformiert (Sambrook et al., supra).

Aus zehn der erhaltenen Kolonien wurde die Plasmid-DNA isoliert und die Legierung durch Restriktionsanalyse mit den Enzymen HindIII und KpnI kontrolliert. Alle zehn Plasmide zeigten die erwarteten Fragmentgrössen von 342 und 4125 bp.

Die Sequenzanalyse der Bbp-Genkassetten erfolgte mit Hilfe des T7 Sequencing Kits (Pharmacia) nach Herstellerangaben unter Verwendung der Oligodesoxynukleotide SEQ ID NO: 8 und SEQ ID NO: 9. Dabei wurden unter den zehn isolierten Plasmiden nur vier verschiedene Sequenzen gefunden, deren Genprodukte als FluA, FluB, FluC und FluD bezeichnet wurden. Die DNA-Sequenz von FluA war zweimal, von FluB viermal, von FluC dreimal und von FluD einmal vertreten. Die Nukleotidsequenzen von FluA, FluB und FluC wurden in Aminosäuresequenzen übersetzt, und die vom Bbp abweichenden Aminosäuren sind in Tabelle 1 wiedergegeben.

Zur Untersuchung der Bindungsaktivität der Anticaline in einem ELISA (Beispiel 4) wurde die Proteinproduktion der entsprechenden Klone im 50 ml-Massstab durchgeführt. Dazu wurden jeweils 4 ml LB/Amp-Medium mit einer Einzelkolonie des TG1-F<->-Transformanden, der das jeweilige Plasmid trug, angeimpft und über Nacht bei 30 DEG C, 200 Upm inkubiert. 500 mu l dieser Vorkultur wurden dann jeweils auf 50 ml LB/Amp-Medium überimpft und bei 22 DEG C, 200 Upm bis zu einer OD₅₅₀ = 0,5 geschüttelt. Anschliessend wurde mit 200 mu g/l Anhydrotetracyclin (50 mu l einer 200 mu g/ml-Stammlösung in DMF) induziert und weitere 3 h bei 22 DEG C, 200 Upm geschüttelt. Die Zellen wurden durch Zentrifugation (15 min, 4420 g, 4 DEG C) sedimentiert und jeweils in 1 ml kaltem Periplasma-Aufschlusspuffer (100 mM Tris/HCl pH 8,0, 500 mM Saccharose, 1 mM EDTA) resuspendiert. Nach Zugabe von 25 mu l einer Lösung von 1 mg/ml Lysozym in dem Periplasma-Aufschlusspuffer wurde für 30 min auf Eis inkubiert. Die Sphäroplasten wurden durch Zentrifugation (15 min, 18 500 g, 4 DEG C) sedimentiert, und der Überstand wurde als periplasmatischer Proteinextrakt in ein neues Reaktionsgefäß überführt.

Zur Proteinproduktion im grösseren Massstab wurde eine 50 ml-Vorkultur (LB/Amp-Medium) direkt mit einer Einzelkolonie des mit dem entsprechenden Plasmid transformierten TG1-F<->-Stamms angeimpft und bei 30 DEG C, 200 Upm über Nacht geschüttelt. Im Fall der Anticaline FluA und FluB wurde der E. coli-Stamm JM83 (Yanisch-Perron et al., Gene 33 (1985), 103-119), der kein supE-Gen trägt, verwendet. Die gesamte Vorkultur wurde auf 2 l LB/Amp-Medium in einem 5 l-Erlenmeyerkolben überimpft, woraufhin die Kultur bei 22 DEG C, 200 Upm inkubiert wurde. Bei einer Zelldichte von OD₅₅₀ = 0,5 wurde mit 200 mu g/l Anhydrotetracyclin (200 mu l einer 2 mg/ml-Stammlösung in DMF) induziert und für weitere 3 h bei 22 DEG C, 200 Upm geschüttelt.

Die Zellen wurden abzentrifugiert (15 min, 4420 g, 4 DEG C) und nach Entfernung des Überstands unter Kühlung auf Eis in 20 ml des Periplasma-Aufschlusspuffers resuspendiert. Nach Zugabe von 50 mu g/ml Lysozym (100 mu l einer Lösung von 10 mg/ml Lysozym in dem Periplasma-Aufschlusspuffer) wurde für 30 min auf Eis inkubiert. Anschliessend wurden die Sphäroplasten in zwei aufeinanderfolgenden Zentrifugationsschritten abgetrennt (15 min, 4420 g, 4 DEG C und 15 min, 30 000 g, 4 DEG C). Der so gewonnene periplasmatische Proteinextrakt wurde gegen CP-Puffer (100 mM Tris/HCl pH 8,0, 150 mM

NaCl, 1 mM EDTA) dialysiert, sterilfiltriert und zur chromatographischen Reinigung eingesetzt.

Die Reinigung erfolgte mittels des an den C-Terminus der Lipocalinmuttereine fusionierten Strep-Tag II-Affinitätsanhängsels (Schmidt et al., *supra*). Im vorliegenden Fall wurde das Streptavidinmutterein "1" eingesetzt (Deutsche Patentanmeldung 196 41 876.3; Voss und Skerra, Protein Eng. 10 (1997), 975-982), welches an eine aktivierte Sepharose (5 mg/ml immobilisiertes Streptavidin, bezogen auf das Bettvolumen der Matrix) gekoppelt war.

Eine mit diesem Material gefüllte Chromatographiesäule mit 2 ml Bettvolumen wurde bei 4 DEG C und einer Flussrate von 20 ml/h mit 10 ml CP-Puffer äquilibriert. Die Chromatographie wurde durch Messung der Absorption bei 280 nm des Eluats in einem Durchfluss-Photometer verfolgt. Nach dem Auftragen des periplasmatischen Proteinextrakts wurde bis zum Erreichen der Basislinie mit CP-Puffer gewaschen und das gebundene Anticalin anschliessend mit 10 ml einer Lösung von 2,5 mM D-Desthiobiotin (Sigma) in CP-Puffer eluiert. Die Fraktionen, die das gereinigte Anticalin enthielten, wurden mittels der SDS-Polyacrylamid-Gelelektrophorese (Fling und Gregerson, Anal. Biochem. 155 (1986), 83-88) überprüft und vereinigt. Die Proteinausbeuten lagen zwischen 200 µg und 3 mg je 2 l Kultur.

Tabelle 1

Sequenzcharakteristika selektierter Anticaline EMI37.1

Beispiel 4

Ermittlung der Affinität der Anticaline für Fluorescein und dessen Derivate

Für den Bindungsnachweis im ELISA (Enzyme-linked Immunosorbent Assay) wurden zunächst die Vertiefungen einer Mikrotiterplatte (Micro Test III Flexible Assay Plate; Falcon) mit je 100 µl einer 100 µg/ml-Lösung des BSA-Fluorescein-Konjugats aus Beispiel 2 in PBS gefüllt und über Nacht bei RT inkubiert. Als Kontrolle diente nicht konjugiertes BSA. Die Lösung wurde entfernt und unbelegte Bindungsstellen wurden mit 200 µl 2% w/v BSA in PBST für 2 h abgesättigt. Nach dreimaligem Waschen mit PBST wurden 100 µl des periplasmatischen Proteinextrakts aus der Produktion im 50 ml-Massstab (Beispiel 3) in die Vertiefungen gefüllt. Ausgehend von diesen Proteinlösungen wurden Verdünnungsreihen in PBST hergestellt. Nach 1 h Inkubation bei RT wurde erneut dreimal mit PBST gewaschen und ein Streptavidin-Alkalische Phosphatase-Konjugat (Amersham), 1 : 1000 mit PBST verdünnt, in die Vertiefungen gefüllt. Dieses Enzymkonjugat diente zur Erkennung des Strep-Tag II-Anhängsels am C-Terminus der Anticaline. Es wurde für 1 h bei RT inkubiert und anschliessend zweimal mit PBST und zweimal mit PBS gewaschen. Der Nachweis der an die Fluoresceingruppen gebundenen Anticaline erfolgte schliesslich mittels der durch die Alkalische Phosphatase katalysierten Hydrolyse von p-Nitrophenylphosphat. Dazu wurden 100 µl einer Lösung von 0,5 mg/ml p-Nitrophenylphosphat (Amresco) in AP-Puffer (100 mM NaCl, 5 mM MgCl₂, 100 mM Tris/HCl pH 8,8) in die Vertiefungen gefüllt und die Produktbildung durch Messung der Absorption bei 405 nm in einem SpectraMax 250-Photometer (Molecular Devices) verfolgt.

Hierbei liess sich praktisch keine Bindung für FluD und das Bbp nachweisen, während FluA, FluB und FluC intensive Bindungssignale zeigten. Das Signal war in der Relation für FluC am stärksten, gefolgt von

FluA und FluB.

Die Liganden-Bindungseigenschaften der Anticaline wurden daraufhin mittels der Methode der Fluoreszenztitration bestimmt. Gemessen wurde dabei die Abnahme der intrinsischen Tyrosin- und Tryptophan-Fluoreszenz des Proteins bei Komplexbildung mit dem Liganden. Die Messungen erfolgten mit einem Fluoreszenzphotometer (MS III, Photon Technology International Inc.) bei einer Anregungswellenlänge von 280 nm (Spaltbreite 5 nm) und einer Emissionswellenlänge von 340 nm (Spaltbreite 10 nm). Als Liganden wurden Fluorescein, 4-Amino-fluorescein sowie dessen Konjugat mit Glutarsäure aus Beispiel 2 eingesetzt. Diese drei Liganden zeigten bei den angegebenen Wellenlängen keine signifikante Eigenfluoreszenz.

Als Puffersystem diente PBS unter Zusatz von 1 mM EDTA mit pH 7,4 (mit NaOH eingestellt). Alle verwendeten Lösungen wurden sterilfiltriert (0,45 µm). Die Lösung des jeweiligen gereinigten Anticalins aus Beispiel 3 wurde dreimal gegen diesen Puffer dialysiert und durch Verdünnen auf eine Konzentration von 1 µM eingestellt. Die Konzentrationsbestimmung erfolgte mittels der Absorption bei 280 nm unter Verwendung kalkulatorischer Extinktionskoeffizienten von $63\ 680\ M^{-1}\ cm^{-1}$ für FluB sowie $52\ 300\ M^{-1}\ cm^{-1}$ für FluC. Für FluA und Bbp wurden die nach Gill und von Hippel (Anal. Biochem. 182 (1989), 319-326) in Gegenwart von Guanidiniumchlorid korrigierten kalkulatorischen Extinktionskoeffizienten von $59\ 755\ M^{-1}\ cm^{-1}$ (FluA) sowie $54\ 150\ M^{-1}\ cm^{-1}$ (Bbp) verwendet.

Zur Messung wurde 2 ml der Anticalinlösung in einer Quarzküvette, die mit einem Rührfisch ausgestattet war, vorgelegt und im Probenhalter des Photometers auf 25 DEG C temperiert. Anschliessend wurden insgesamt 40 µl einer 250 µM bis 1 mM Lösung des Liganden in demselben Puffer in Schritten von 1 µl bis 4 µl zupipettiert. Die dabei stattfindende Verdünnung der vorgelegten Proteinlösung um maximal 2% blieb bei der nachfolgenden Auswertung der Daten unberücksichtigt. Nach jedem Titrationsschritt wurde zur Gleichgewichtseinstellung für 1 min unter Rühren inkubiert und das Fluoreszenzsignal als Mittelwert über 10 s gemessen. Nach Abzug des Fluoreszenzwertes für den Puffer wurden die Signale auf einen Anfangswert von 100% normiert und um den inneren Filtereffekt der Liganden korrigiert. Dazu wurden Fluoreszenztitrationen mit dem jeweiligen Ligand durchgeführt, bei denen die Anticalin-Lösung durch N-Acetyl-L-tryptophanamid (Sigma) ersetzt war.

Die so erhaltenen Messwerte einer Titrationsreihe wurden gemäss folgender Formel durch nicht-lineare Regression mit Hilfe des Computerprogramms Kaleidagraph (Abelbeck Software) angepasst:

EMI39.1

Dabei bedeuten F die normierte Fluoreszenzintensität und $[P]_t$ die Konzentration des Anticalins. $[L]_t$ ist die Gesamtkonzentration des Liganden bei dem jeweiligen Titrationsschritt. fPL und Kd wurden als freie Parameter an die gemessenen Daten angepasst und stehen für den Fluoreszenzkoeffizienten des Anticalin-Ligandkomplexes sowie für die thermodynamische Dissoziationskonstante dieses Komplexes. Im Fall von FluC wurde zusätzlich $[P]_t$ als freier Parameter angepasst. Die ermittelten Dissoziationskonstanten für die Anticaline FluA, FluB und FluC sind in Tabelle 2 wiedergegeben. Der Bindungseffekt bei der Vergleichsmessung mit Bbp war so schwach, dass eine Dissoziationskonstante in diesem Fall nicht bestimmt werden konnte.

Tabelle 2

Dissoziationskonstanten für die Komplexe aus Anticalinen und Fluoresceinderivaten
EMI40.1

Beispiel 5

Selektion von Anticalinen gegen ein Hepatitis C-Peptidepitop

Zur Selektion der Anticaline wurde die in Beispiel 1 hergestellte Bibliothek verwendet. Die Vermehrung und Isolierung der Phagemide erfolgte genauso wie in Beispiel 2 beschrieben.

Als Peptidligand wurde ein biotinyliertes synthetisches Hepatitis C-Peptidepitop eingesetzt, bei dem es sich um das Peptidfragment Nr. 59 aus dem Oberflächenprotein NS4 von HCV handelte (Khudyakow et al., Virology 206 (1995), 666-672). Das Peptid, SEQ ID NO: 13, wurde nach der üblichen Fmoc-Methode mittels eines PS3 Automaten (RAININ Instrument Co.) synthetisiert, wobei Rink Amid MBHA-Harz (novabiochem) eingesetzt wurde. Im Anschluss an die Kopplung der Aminosäurebausteine vom C- zum N-Terminus wurde Aminocapronsäure als Boc-geschütztes Derivat und im letzten Schritt D-Biotin (Sigma) gekoppelt. Das vom Harz abgespaltene und entschützte Peptid wurde mittels HPLC gereinigt, und seine Zusammensetzung wurde durch ESI-Massenspektrometrie überprüft.

Zur Affinitätsanreicherung der die Anticalin-Fusionsproteine tragenden rekombinanten Phagemide wurden mit Streptavidin beschichtete superparamagnetische Partikel (Dynabeads M-280 Streptavidin, Dynal) verwendet. Die Menge des Peptidliganden wurde so eingestellt, dass dieser einerseits im molaren Überschuss gegenüber den eingesetzten Phagemiden vorlag, und dass andererseits die Bindekapazität des Streptavidins für die Biotingruppen nicht überschritten wurde.

Dazu wurden 20 µl der Peptidlösung (20 µg/ml in PBS) mit 280 µl einer Lösung der frisch präparierten Phagemide (3,0.10<12> cfu/ml) gemischt und für 1 h bei RT inkubiert, woraufhin 100 µl einer Lösung von 8% w/v BSA, 0,4% v/v Tween 20 in PBS zugegeben wurde. Parallel wurden 100 µl der kommerziell erhältlichen Suspension der magnetischen Partikel dreimal mit jeweils 100 µl PBS gewaschen und zur Absättigung unspezifischer Bindungsstellen mit 100 µl 2% w/v BSA in PBST für 1 h bei RT inkubiert. Nach Entfernung des Überstandes wurden die magnetischen Partikel mit der Peptid/Phagemidmischung versetzt, resuspendiert und für 10 min bei RT inkubiert. Zur Absättigung freier Biotin-Bindungsstellen des Streptavidins wurde die Mischung schliesslich mit 10 µl einer Lösung von 4 µM Desthiobiotin in PBS versetzt und für 5 min bei RT inkubiert.

Zur Entfernung nicht gebundener Phagemide wurden die magnetischen Partikel achtmal mit jeweils 1 ml PBST, 0,1 µM Desthiobiotin gewaschen. Dazu wurden die magnetischen Partikel mit Hilfe eines Magneten an der Wand des 1,5 ml Eppendorfgefäßes gesammelt und der Überstand abgezogen. Danach wurden die magnetischen Partikel mit frischem Puffer resuspendiert und für 1 min durch Rotation des Gefäßes in Suspension gehalten. Die Elution der gebundenen Phagemide erfolgte durch 10minütige Inkubation der resuspendierten Partikel in 950 µl 0,1 M Gly<DP N=42>cin/HCl pH 2,2. Der pH-Wert der Lösung wurde im Anschluss daran sofort durch Zugabe von 160 µl 0,5 M Tris neutralisiert.

Anschliessend wurden die eluierten Phagemide wie in Beispiel 2 beschrieben vermehrt und für eine erneute Affinitätsselektion unter den oben angegebenen Bedingungen eingesetzt. Insgesamt wurden 6 Selektionszyklen durchgeführt.

Beispiel 6

Identifizierung peptidbindender Anticaline mittels der "Colony Screening"-Methode

Zur analytischen Produktion der Anticaline als Fusionsprotein mit dem Strep-Tag II sowie der Albumin-Bindungsdomäne und deren Charakterisierung durch "Colony Screening" wurde die Genkassette zwischen den beiden BstXI-Schnittstellen aus dem Vektor pBBP20 in pBBP22 subkloniert.

Dazu wurde aus der Mischung der E.coli-Klone, die durch Infektion mit den im letzten Selektionszyklus eluierten Phagemiden aus Beispiel 6 erhalten worden waren, die Phasmid-DNA unter Verwendung des QIAprep Spin Miniprep Kits (QIAGEN) isoliert. Die DNA wurde mit dem Restriktionsenzym BstXI geschnitten und das kleinere der beiden Fragmente (335 bp) durch präparative Agarose-Gelelektrophorese wie in Beispiel 1 beschrieben gereinigt. In gleicher Weise wurde die DNA des Vektors pBBP22 mit BstXI geschnitten und das grössere der beiden Fragmente (3545 bp) isoliert.

Zur Legierung wurden jeweils 50 fmol der beiden DNA-Fragmente in einem Gesamtvolumen von 20 mu l (30 mM Tris/HCl pH 7,8, 10 mM MgCl₂, 10 mM DTT, 1 mM ATP) mit 1,5 Weiss Units T4 DNA Ligase (Promega) versetzt und über Nacht bei 16 DEG C inkubiert. Mit 5 mu l dieses Legierungsansatzes wurde E.coli TG1-F<-> nach der CaCl₂-Methode transformiert.

Auf eine LB/Amp-Agarplatte wurde eine passend zurechtgeschnittene, an einer Stelle markierte hydrophile PVDF-Membran (Millipore, Typ GVWP, Porengröße 0,22 µm) aufgelegt und auf dieser Membran 150 µl der Zellsuspension aus dem Transformationsansatz gleichmässig ausplattiert. Die Menge des ausplattierten Transformationsansatzes war so bemessen, dass ca. 500 Kolonien erhalten wurden. Die Platte wurde für 6,5 h bei 37 DEG C im Brutschrank inkubiert, bis die Kolonien eine mit dem Auge gut erkennbare Größe erreicht hatten.

In der Zwischenzeit wurde eine ebenfalls passend zurechtgeschnittene hydrophobe Membran (Millipore, Immobilon P, Porengröße 0,45 µm) nach den Angaben des Herstellers mit PBS angefeuchtet. Anschliessend wurde sie für 4 h bei RT in einer Lösung von 10 mg/ml Human-Serumalbumin (HSA, Sigma) in PBS geschwenkt. Verbliebene Bindungsstellen auf der Membran wurden durch Inkubation mit 3% w/v BSA, 0,5% v/v Tween 20 in PBS für 2 h bei RT abgesättigt. Die Membran wurde zweimal für jeweils 10 min mit 20 ml PBS gewaschen und danach für 10 min in 10 ml LB/Amp-Medium, dem 200 µg/l Anhydrotetracyclin zugesetzt war, geschwenkt. Anschliessend wurde sie an einer Stelle markiert und auf eine Kulturplatte mit LB/Amp-Agar, der zusätzlich 200 µg/l Anhydrotetracyclin enthielt, gelegt. Die mit den Kolonien bewachsene hydrophile Membran wurde so auf die hydrophobe Membran aufgelegt, dass die beiden Markierungen zur Deckung kamen. Die Kulturplatte mit den beiden Membranen wurde bei 22 DEG C für 15 h inkubiert. Während dieser Phase wurden die jeweiligen Lipocalinmotive von den Kolonien sekretiert und mittels der Albumin-Bindungsdomäne an dem HSA auf der unteren Membran immobilisiert.

Danach wurde die obere Membran mit den Kolonien auf eine frische LB/Amp-Agarplatte transferiert und bei 4 DEG C aufbewahrt. Die hydrophile Membran wurde abgenommen, dreimal für jeweils 10 min mit 20 ml PBST gewaschen und anschliessend 1 h in 10 ml einer Lösung von 1 µM SEQ ID NO: 13 in PBST inkubiert. Nach zweimaligem Waschen in PBST wurde für 1 h mit 10 ml Avidin-Alkalische Phosphatase-Konjugat (ExtrAvidin-AP-Konjugat, Sigma, 1 : 1000 verdünnt in PBST) inkubiert. Die Membran wurde anschliessend für jeweils 5 min zweimal mit PBST und zweimal mit PBS gewaschen und für 10 min in AP-Puffer (0,1 M Tris/HCl pH 8,8, 0,1 M NaCl, 5 mM MgCl₂) geschwenkt. Zur

chromogenen Nachweisreaktion wurde die Membran in 10 ml AP-Puffer, dem 30 mu l BCIP (50 mu g/ml in Dimethylformamid) und 5 mu l NBT (75 mu g/ml in 70% v/v Dimethylformamid) zugesetzt waren, inkubiert, bis an den Positionen einiger der Kolonien deutliche Farbsignale zu erkennen waren. Auf diese Weise wurde die Bindungsaktivität der von diesen Kolonien produzierten Anticaline für den Peptidliganden nachgewiesen.

Acht dieser Kolonien wurden kultiviert. Ihre Plasmid-DNA wurde isoliert und die Bbp-Genkassette einer Sequenzanalyse wie in Beispiel 3 unterzogen. Alle Klone wiesen dabei unterschiedliche Sequenzen auf. Die charakteristischen Aminosäuren der Anticaline HepC1 und HepC4 sind in Tabelle 1 angegeben.

Beispiel 7

Verwendung der Anticaline zum Nachweis des Hepatitis C-Peptidepitops in einem Sandwich-ELISA

Ausgehend von den in Beispiel 6 gefundenen Klonen wurden die entsprechenden Anticaline als Fusionsproteine mit dem Strep- Tag II und der Albumin-Bindungsdomäne produziert. Die Genexpression erfolgte im 50 ml-Massstab. Dazu wurden jeweils 4 ml LB/Amp-Medium mit einer Einzelkolonie von TG1-F<->, die das jeweilige Plasmid trug, angeimpft und über Nacht bei 30 DEG C, 200 Upm inkubiert. 500 mu l dieser Vorkultur wurden dann jeweils auf 50 ml LB/Amp-Medium überimpft und bei 22 DEG C, 200 Upm bis zu einer OD550 = 0,5 geschüttelt. Anschliessend wurde mit 200 mu g/l Anhydrotetracyclin (50 mu l einer 200 mu g/ml-Stammlösung in DMF) induziert und weitere 3 h bei 22 DEG C, 200 Upm geschüttelt. Die Zellen wurden durch Zentrifugation (15 min, 4420 g, 4 DEG C) sedimentiert und jeweils in 1 ml kaltem Periplasma-Aufschlusspuffer (100 mM Tris/HCl pH 8,0, 500 mM Saccharose, 1 mM EDTA) resuspendiert. Nach Zugabe von 25 mu l einer Lösung von 1 mg/ml Lysozym in dem Periplasma-Aufschlusspuffer wurde für 30 min auf Eis inkubiert. Die Sphäroplasten wurden durch Zentrifugation (15 min, 18 500 g, 4 DEG C) sedimentiert, und der Überstand wurde als periplasmatischer Proteinextrakt in ein neues Reaktionsgefäß überführt.

Für den ELISA wurden die Vertiefungen einer Mikrotiterplatte (ELISA-STRIP, 2 x 8 Well, KO, F-Form, Bindekapazität hoch, Greiner) mit jeweils 200 mu l einer Lösung von 20 mg/ml HSA in 50 mM NaHCO3 pH 9,6 gefüllt und für 1 h bei RT inkubiert. Nach Entfernen der Lösung wurden unbelegte Bindungsstellen mit 200 mu l 3% w/v BSA in PBS mit 0,5% v/v Tween 20 für 1 h abgesättigt. Nach dreimaligem Waschen mit PBST wurde jeweils in die erste Vertiefung einer Reihe 50 mu l des unverdünnten periplasmatischen Proteinextrakts gefüllt. In den darauffolgenden Vertiefungen jeder Reihe wurde zunächst je 50 mu l PBS vorgelegt. Anschliessend wurde jeweils in die zweite Vertiefung 50 mu l des periplasmatischen Proteinextrakts pipettiert, gemischt und davon ausgehend in den weiteren Vertiefungen der Reihe schrittweise 1 : 2-Verdünnungen zubereitet. Als Kontrolle diente der periplasmatische Proteinextrakt mit dem Bbp, der unter Verwendung von pBBP22 als Expressionsplasmid hergestellt worden war.

Nach 1 h Inkubation bei RT wurde erneut dreimal mit PBST gewaschen und anschliessend jeweils 200 mu l der Ligandenlösung (SEQ ID NO: 13, 1 mu M in PBST) in die Vertiefung pipettiert. Nach 1 h Inkubation bei RT wurde dreimal mit PBST gewaschen und danach 50 mu l Avidin-Alkalische Phosphatase-Konjugat (ExtrAvidin-AP-Konjugat, Sigma), 1 : 1000 verdünnt in PBST, in jede Vertiefung gefüllt. Es wurde erneut für 1 h bei RT inkubiert und anschliessend zweimal mit PBST und zweimal mit PBS gewaschen. Der Nachweis der gebundenen Anticaline erfolgte mittels chromogener Reaktion in Gegenwart von p-Nitrophenylphosphat. Dazu wurden 100 mu l einer Lösung von 0,5 mg/ml p-Nitrophenylphosphat (Amresco) in AP-Puffer in jede Vertiefung gefüllt und die Produktbildung durch Messung der Absorption

bei 405 nm in einem SpectraMax 250-Photometer (Molecular Devices) als dA/dt-Wert gemessen.

Im Fall des Bbp liessen sich nur niedrige Signale nachweisen, während alle analysierten Anticaline eindeutige Bindung zeigten. Das Signal war für HepC1 am stärksten, gefolgt von HepC4. Die Bindungskurven für HepC1, HepC4 und Bbp sind in Fig. 7 dargestellt.

Sequenzprotokoll

EMI46.1

EMI47.1

EMI48.1

EMI49.1

EMI50.1

EMI51.1

EMI52.1

EMI53.1

EMI54.1

EMI55.1

EMI56.1

EMI57.1

EMI58.1

Data supplied from the *esp@cenet* database - Worldwide

Claims of DE19742706

 Translate this text

1. Anticaline, herstellbar ausgehend von Polypeptiden der Lipocalinfamilie, indem Aminosäuren im Bereich der vier Peptidschleifen, die an einem Ende der zylindrischen Faltblattstruktur angeordnet sind, mutiert werden, und die dadurch charakterisiert sind, dass sie einen vorgegebenen Liganden mit bestimmbarer Affinität binden.
2. Anticaline nach Anspruch 1, wobei das Lipocalin ausgewählt wird aus der Gruppe bestehend aus dem Bilin-Bindungsprotein aus *Pieris brassicae*, dem Retinol-Bindungsprotein des Menschen und dem Apolipoprotein D des Menschen.
3. Anticaline nach Anspruch 1 oder 2, wobei es sich bei den mutierten Aminosäuren im Bereich der vier

Peptidschleifen um die Sequenzpositionen 34 bis 37, 58, 60, 69, 88, 90, 93, 95, 97, 114, 116, 125 und 127 des Bilin-Bindungsproteins oder um die Sequenzpositionen 34 bis 37, 59, 61, 70, 87, 89, 92, 94, 96, 113, 115, 123 und 125 des Apolipoprotein D handelt.

4. Anticaline nach einem der Ansprüche 1 bis 3, wobei weitere Aminosäuren in dem Lipocalin oder Anticalin ausgetauscht werden, um die monomere Struktur des Anticalins zu stabilisieren, um Erkennungsstellen für Proteasen in dem Anticalin zu eliminieren oder um geeignete Restriktionsschnittstellen zur Manipulation der für die Lipocalinmuttereine oder das Anticalin kodierenden Nukleinsäuren einzuführen.
5. Anticaline nach einem der Ansprüche 1 bis 4, wobei der Ligand eine chemische Verbindung in freier oder konjugierter Form ist, die Merkmale eines immunologischen Haptens aufweist.
6. Anticaline nach einem der Ansprüche 1 bis 4, wobei der Ligand ein Peptid, ein Polypeptid oder ein anderes Makromolekül oder ein entsprechendes Konjugat davon ist.
7. Verfahren zur Herstellung von Anticalinen nach einem oder mehreren der Ansprüche 1 bis 6, wobei die aus der Mutagenese resultierende Nukleinsäure, die für die Bibliothek der Lipocalinmuttereine kodiert, zur Selektion des oder der Anticaline auf Bindung des vorgegebenen Liganden am 3'-Ende mit einem Gen, das für das Hüllprotein pIII eines filamentösen Bakteriophagen der M13-Familie oder für ein Fragment dieses Hüllproteins kodiert, in operabler Weise fusioniert wird.
8. Verfahren zur Herstellung von Anticalinen nach einem oder mehreren der Ansprüche 1 bis 6, wobei das Anticalin, ein Fragment des Anticalins oder ein Fusionsprotein aus dem Anticalin und einem anderen Polypeptid ausgehend von der für das Anticalin kodierenden Nukleinsäure mittels gentechnischer Methoden in einem bakteriellen oder eukaryontischen Wirtsorganismus produziert und aus diesem Wirtsorganismus oder dessen Kultur gewonnen wird.
9. Verwendung von Anticalinen oder von Fusionsproteinen aus Anticalinen und anderen Polypeptiden nach einem oder mehreren der Ansprüche 1 bis 6 zur Bindung an eine Festphase, so dass der Ligand des Anticalins oder ein Konjugat oder Fusionsprotein dieses Liganden immobilisiert oder abgetrennt werden kann.
10. Verwendung von Anticalinen oder von Fusionsproteinen aus Anticalinen und anderen Polypeptiden nach einem oder mehreren der Ansprüche 1 bis 6 zur Markierung mit einem Enzym, einem Antikörper, einer radioaktiven Substanz oder einer anderen Gruppe mit einer biochemischen Aktivität oder mit definierten Bindungseigenschaften, so dass der Ligand des Anticalins oder ein Konjugat oder Fusionsprotein dieses Liganden damit nachgewiesen oder in Kontakt gebracht werden kann.

Data supplied from the *esp@cenet* database - Worldwide