A First Order Hyperbolic Reformulation of the Black-Scholes Equation

Haran Jackson^{a,**}, Geraint Harcombe^a

^aCavendish Laboratory, JJ Thomson Ave, Cambridge, UK, CB3 0HE

Abstract

Abstract goes here.

Keywords: Black-Scholes, First Order, Hyperbolic Relaxation, ADER

Contents

1	Background		1
	1.1	Motivation	1
	1.2	The Black-Scholes Model	1
	1.3	Hyperbolic Relaxation Models	1
	1.4	ADER Methods	2
2	2 Reformulation of the Black-Scholes Equation		2
3	Num	nerical Results	2
4	Cone	clusions	2
5	Refe	rences	2

1. Background

- 1.1. Motivation
- 1.2. The Black-Scholes Model
- 1.3. Hyperbolic Relaxation Models

We should reference this article Montecinos et al. [1].

Email address: hj305@cam.ac.uk (Haran Jackson)

 $^{{}^*\}mbox{Corresponding author}$

^{**}Principal corresponding author

1.4. ADER Methods

2. Reformulation of the Black-Scholes Equation

Reformulation goes here.

3. Numerical Results

Numerical results go here.

4. Conclusions

Conclusions go here.

5. References

[1] Montecinos, G. I., Müller, L. O., Toro, E. F., 2014. Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. Journal of Computational Physics 266, 101–123.