

DIGITAL EXPANSIONS WITH NEGATIVE REAL BASES

WOLFGANG STEINER

ABSTRACT. Similarly to Parry's characterization of β -expansions of real numbers in real bases $\beta > 1$, Ito and Sadahiro characterized digital expansions in negative bases, by the expansions of the endpoints of the fundamental interval. Parry also described the possible expansions of 1 in base $\beta > 1$. In the same vein, we characterize the sequences that occur as $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$. These sequences also describe the itineraries of 1 by linear mod one transformations with negative slope.

1. INTRODUCTION

Digital expansions in real bases $\beta > 1$ were introduced by Rényi [Rén57]: The (greedy) β -expansion of a real number $x \in [0, 1]$ is

$$x = \frac{\varepsilon_1(x)}{\beta} + \frac{\varepsilon_2(x)}{\beta^2} + \dots \quad \text{with} \quad \varepsilon_n(x) = \lfloor \beta T_\beta^{n-1}(x) \rfloor,$$

where $\lfloor \cdot \rfloor$ denotes the floor function and T_β is the β -transformation

$$T_\beta : [0, 1) \rightarrow [0, 1), \quad x \mapsto \beta x - \lfloor \beta x \rfloor.$$

Rényi suggested representing arbitrary $x \in \mathbb{R}$ by

$$x = \lfloor x \rfloor + \frac{\varepsilon_1(\lfloor x \rfloor)}{\beta} + \frac{\varepsilon_2(\lfloor x \rfloor)}{\beta^2} + \dots,$$

whereas nowadays it is more usual (for $x \geq 0$) to multiply the β -expansion of $x\beta^{-k}$ by β^k , with k an arbitrary integer satisfying $x\beta^{-k} \in [0, 1)$. Anyway, the possible expansions can be described by those of $x \in [0, 1)$. A sequence $b_1 b_2 \dots$ is called β -admissible if and only if it is (the digit sequence of) the β -expansion of a number $x \in [0, 1)$, i.e., $b_n = \varepsilon_n(x)$ for all $n \geq 1$. Parry [Par60] showed that an integer sequence $b_1 b_2 \dots$ is β -admissible if and only if

$$00 \dots \leq_{\text{lex}} b_k b_{k+1} \dots <_{\text{lex}} a_1 a_2 \dots \quad \text{for all } k \geq 1,$$

where $<_{\text{lex}}$ denotes the lexicographic order and $a_1 a_2 \dots$ is the (quasi-greedy) β -expansion of 1, i.e., $a_n = \lim_{x \rightarrow 1^-} \varepsilon_n(x)$. Moreover, a sequence of integers $a_1 a_2 \dots$ is the (quasi-greedy) β -expansion of 1 for some $\beta > 1$ if and only if

$$00 \dots <_{\text{lex}} a_k a_{k+1} \dots \leq_{\text{lex}} a_1 a_2 \dots \quad \text{for all } k \geq 2.$$

(These results are stated in a slightly different way in [Par60].)

Part of this research was conducted while the author was visiting academic at the Department of Computing of the Macquarie University, Sydney.

Following [Rén57] and [Par60], a lot of papers were dedicated to the study of β -expansions and β -transformations, but surprisingly little attention was given to digital expansions in negative bases. This changed only in recent years, after Ito and Sadahiro [IS09] considered $(-\beta)$ -expansions, $\beta > 1$, defined for $x \in [\frac{-\beta}{\beta+1}, \frac{1}{\beta+1})$ by

$$(1.1) \quad x = \frac{\varepsilon_1(x)}{-\beta} + \frac{\varepsilon_2(x)}{(-\beta)^2} + \cdots \quad \text{with} \quad \varepsilon_n(x) = \left\lfloor \frac{\beta}{\beta+1} - \beta T_{-\beta}^{n-1}(x) \right\rfloor,$$

where the $(-\beta)$ -transformation is defined by

$$T_{-\beta} : [\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}) \rightarrow [\frac{-\beta}{\beta+1}, \frac{1}{\beta+1}), \quad x \mapsto -\beta x - \left\lfloor \frac{\beta}{\beta+1} - \beta x \right\rfloor.$$

A sequence $b_1 b_2 \dots$ is $(-\beta)$ -admissible if and only if it is the $(-\beta)$ -expansion of some $x \in [\frac{-\beta}{\beta+1}, \frac{1}{\beta+1})$, i.e., $b_n = \varepsilon_n(x)$ for all $n \geq 1$. Since the map $x \mapsto -\beta x$ is order-reversing, the $(-\beta)$ -admissible sequences are characterized using the alternating lexicographic order. By [IS09], a sequence $b_1 b_2 \dots$ is $(-\beta)$ -admissible if and only if

$$(1.2) \quad a_1 a_2 \dots \geq_{\text{alt}} b_k b_{k+1} \dots >_{\text{alt}} 0 a_1 a_2 \dots \quad \text{for all } k \geq 1,$$

where $a_1 a_2 \dots$ is the $(-\beta)$ -expansion of the left endpoint $\frac{-\beta}{\beta+1}$, i.e., $a_n = \varepsilon_n(\frac{-\beta}{\beta+1})$, which is supposed not to be periodic with odd period length. If $a_1 a_2 \dots = \overline{a_1 a_2 \dots a_{2\ell+1}}$ for some $\ell \geq 0$, and ℓ is minimal with this property, then the condition (1.2) is replaced by

$$(1.3) \quad a_1 a_2 \dots \geq_{\text{alt}} b_k b_{k+1} \dots >_{\text{alt}} \overline{0 a_1 \dots a_{2\ell}(a_{2\ell+1}-1)} \quad \text{for all } k \geq 1.$$

Recall that the alternating lexicographic order is defined on sequences $x_1 x_2 \dots$, $y_1 y_2 \dots$ with $x_1 \dots x_{k-1} = y_1 \dots y_{k-1}$ and $x_k \neq y_k$ by

$$x_1 x_2 \dots <_{\text{alt}} y_1 y_2 \dots \quad \text{if and only if} \quad \begin{cases} x_k < y_k & \text{when } k \text{ is odd,} \\ y_k < x_k & \text{when } k \text{ is even.} \end{cases}$$

The main result of this paper is a characterization of the sequences $a_1 a_2 \dots$ that are the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$. This turns out to be more complicated than the corresponding problem for β -expansions, and we will see that several proofs cannot be directly carried over from positive to negative bases. From (1.2) and (1.3), one deduces that

$$(1.4) \quad a_k a_{k+1} \dots \leq_{\text{alt}} a_1 a_2 \dots \quad \text{for all } k \geq 2.$$

The proof of Proposition 3.5 in [LS] (see also Theorem 3 below) shows that

$$(1.5) \quad a_1 a_2 \dots >_{\text{alt}} u_1 u_2 \dots = 100111001001001110011 \dots,$$

where $u_1 u_2 \dots$ is the sequence starting with $\varphi^n(1)$ for all $n \geq 0$, with φ being the morphism of words on the alphabet $\{0, 1\}$ defined by $\varphi(1) = 100$, $\varphi(0) = 1$. (See the remarks following Theorem 3 and note that the alphabet is shifted by 1 in [LS].) Our first result states that a sequence satisfying (1.4) and (1.5) is “almost” the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$.

Theorem 1. Let $a_1a_2\cdots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). Then there exists a unique $\beta > 1$ such that

$$(1.6) \quad \sum_{j=1}^{\infty} \frac{a_j}{(-\beta)^j} = \frac{-\beta}{\beta+1} \quad \text{and} \quad \sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1} \right] \quad \text{for all } k \geq 1.$$

For a $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$, we have to exclude the possibility that $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} = \frac{1}{\beta+1}$ for some $k \geq 1$. If $\overline{a_1 \cdots a_k} >_{\text{alt}} u_1u_2\cdots$, then out of $\{a_1 \cdots a_k, a_1 \cdots a_{k-1}(a_k-1)0\}^\omega$, which is the set of infinite sequences composed of blocks $a_1 \cdots a_k$ and $a_1 \cdots a_{k-1}(a_k-1)0$, only the periodic sequence $\overline{a_1 \cdots a_k}$ is possibly the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$, see Section 4. This implies that

$$(1.7) \quad a_1a_2\cdots \notin \{a_1 \cdots a_k, a_1 \cdots a_{k-1}(a_k-1)0\}^\omega \setminus \{\overline{a_1 \cdots a_k}\} \quad \text{for all } k \geq 1 \text{ with } \overline{a_1 \cdots a_k} \succ u_1u_2\cdots,$$

$$(1.8) \quad a_1a_2\cdots \notin \{a_1 \cdots a_k0, a_1 \cdots a_{k-1}(a_k+1)\}^\omega \quad \text{for all } k \geq 1 \text{ with } \overline{a_1 \cdots a_{k-1}(a_k+1)} \succ u_1u_2\cdots.$$

The main result states that there are no other conditions on $a_1a_2\cdots$.

Theorem 2. A sequence of non-negative integers $a_1a_2\cdots$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some (unique) $\beta > 1$ if and only if it satisfies (1.4), (1.5), (1.7), and (1.8).

It is easy to see that the natural order of bases $\beta > 1$ is reflected by the lexicographical order of the (quasi-greedy) β -expansions of 1 [Par60]. For negative bases, a similar relation with the alternating lexicographic order holds, although it is a bit harder to prove.

Theorem 3. Let $a_1a_2\cdots$ be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and $a'_1a'_2\cdots$ be the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$, with $\beta, \beta' > 1$. Then $\beta < \beta'$ if and only if $a_1a_2\cdots <_{\text{alt}} a'_1a'_2\cdots$.

It is often convenient to study a slightly different $(-\beta)$ -transformation,

$$\tilde{T}_{-\beta} : (0, 1] \rightarrow (0, 1], \quad x \mapsto -\beta x + \lfloor \beta x \rfloor + 1.$$

As already noted in [LS], the transformations $T_{-\beta}$ and $\tilde{T}_{-\beta}$ are conjugate via the involution $\phi(x) = \frac{1}{\beta+1} - x$, i.e.,

$$T_{-\beta} \circ \phi(x) = \phi \circ \tilde{T}_{-\beta}(x) \quad \text{for all } x \in (0, 1].$$

Setting $\tilde{\varepsilon}_n(x) = \lfloor \beta \tilde{T}_{-\beta}^{n-1}(x) \rfloor$ for $x \in (0, 1]$, we have $x = -\sum_{n=1}^{\infty} \frac{\tilde{\varepsilon}_n(x)+1}{(-\beta)^n} = \frac{1}{\beta+1} - \sum_{n=1}^{\infty} \frac{\tilde{\varepsilon}_n(x)}{(-\beta)^n}$, and $\tilde{\varepsilon}_n(x) = \varepsilon_n(\phi(x))$. Note that $\tilde{T}_{-\beta}(x) = -\beta x - \lfloor -\beta x \rfloor$ except for finitely many points, hence $\tilde{T}_{-\beta}$ is a natural generalization of the beta-transformation. The map $\tilde{T}_{-\beta}$ was studied e.g. by Góra [Gór07], where it corresponds to the case $E = [1, 1, \dots, 1]$, and in [LS]. The following corollary is an immediate consequence of Theorems 1 and 2.

Corollary 1. *Let $a_1a_2\cdots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). Then there exists a unique $\beta > 1$ such that*

$$(1.9) \quad -\sum_{j=1}^{\infty} \frac{a_j + 1}{(-\beta)^j} = 1 \quad \text{and} \quad -\sum_{j=1}^{\infty} \frac{a_{k+j} + 1}{(-\beta)^j} \in [0, 1] \quad \text{for all } k \geq 1.$$

Moreover, $\sum_{j=1}^{\infty} \frac{a_{k+j} + 1}{(-\beta)^j} \neq 0$ for all $k \geq 1$ if and only if (1.7) and (1.8) hold.

With the notation of [Gór07], this means, for $E = [1, 1, \dots, 1]$, that $a_1a_2\cdots$ is the itinerary $\text{It}_\beta(1)$ for some $\beta > 1$ if and only if (1.4), (1.5), (1.7), and (1.8) hold. Note that Góra [Gór07, Theorems 25 and 28] claims that already (1.4) is sufficient when $a_1 \geq 2$, and he has a less explicit statement for $a_1 = 1$. However, his proof deals only with the first part of the theorem, i.e., that there exists a unique $\beta > 1$ satisfying (1.9). To see that this is not sufficient, consider the sequences $a_1a_2\cdots \in \{2, 10\}^\omega$. They all satisfy (1.9) with $\beta = 2$, and there are uncountably many of them satisfying (1.4) and $a_1 = 2$. All these uncountably many sequences would have to be equal to $\text{It}_2(1)$ by [Gór07, Theorem 25], which is of course not true. (See also [DMP11].) Moreover, Góra's proof of the existence of a unique $\beta > 1$ satisfying (1.9) is incorrect when β is small, see Remark 1.

2. PROOF OF THEOREM 3

Let $\beta > 1$. For a sequence of digits $b_1 \cdots b_n$, set

$$I_{b_1 \cdots b_n} = \left\{ x \in \left[\frac{-\beta}{\beta+1}, \frac{1}{\beta+1} \right) : \varepsilon_1(x) \cdots \varepsilon_n(x) = b_1 \cdots b_n \right\},$$

with $\varepsilon_j(x)$ as in (1.1). Let $L_{\beta,n}$ be the number of different sequences $b_1 \cdots b_n$ such that $I_{b_1 \cdots b_n} \neq \emptyset$, and let $L'_{\beta,n}$ be the number of different sequences $b_1 \cdots b_n$ such that $I_{b_1 \cdots b_n}$ is an interval of positive length. (The latter is called the lap number of $T_{-\beta}^n$.)

Lemma 1. *For any $\beta > 1$, we have that $\lim_{n \rightarrow \infty} \frac{1}{n} \log L_{\beta,n} = \lim_{n \rightarrow \infty} \frac{1}{n} \log L'_{\beta,n} = \log \beta$.*

Proof. It is well known that the entropy of $T_{-\beta}$, which is a piecewise linear map of constant slope $-\beta$, is $\log \beta$. The lemma can be derived from this fact, see [FL11], but we prefer giving a short elementary proof, following Faller [Fal08, Proposition 3.6]. As $|\frac{d}{dx} T_{-\beta}^n(x)| = \beta^n$ at all points of continuity of $T_{-\beta}^n$, the length of any interval $I_{b_1 \cdots b_n}$ is at most β^{-n} . Since the intervals $I_{b_1 \cdots b_n}$ form a partition of an interval of length 1, we obtain that $L_{\beta,n} \geq L'_{\beta,n} \geq \beta^n$.

To get an upper bound for $L'_{\beta,n}$, let m be the smallest positive integer such that $\beta^m > 2$, and let δ be the minimal positive length of an interval $I_{b_1 \cdots b_m}$. Consider an interval $I_{b_1 \cdots b_n}$, $n > m$, such that $b_1 \cdots b_n$ is neither the minimal nor the maximal sequence (with respect to the alternating lexicographic order) starting with $b_1 \cdots b_{n-m}$ and satisfying $I_{b_1 \cdots b_n} \neq \emptyset$. Then each prolongation $b_1 b_2 \cdots$ satisfies the inequalities in (1.2) and (1.3), respectively, for $1 \leq k \leq n-m$. Therefore, $b_1 b_2 \cdots$ is $(-\beta)$ -admissible if and only if $b_{n-m+1} b_{n-m+2} \cdots$ is $(-\beta)$ -admissible. This implies that $T_{-\beta}^{n-m}(I_{b_1 \cdots b_n}) = I_{b_{n-m+1} \cdots b_m}$, and the length of $I_{b_1 \cdots b_n}$ is β^{m-n} times the length of $I_{b_{n-m+1} \cdots b_m}$, thus at least $\beta^{m-n} \delta$ when the length is positive. There are at least $L'_{\beta,n} - 2L'_{\beta,n-m}$ sequences $b_1 \cdots b_n$ such that $I_{b_1 \cdots b_n}$ has positive length

and $b_1 \cdots b_n$ is neither the minimal nor the maximal sequence starting with $b_1 \cdots b_{n-m}$ and satisfying $I_{b_1 \cdots b_n} \neq \emptyset$. This yields that $(L'_{\beta,n} - 2L'_{\beta,n-m})\beta^{m-n}\delta \leq 1$ for all $n > m$, thus

$$\begin{aligned} L'_{\beta,n} &\leq \frac{\beta^{n-m}}{\delta} + 2L'_{\beta,n-m} \leq \frac{\beta^{n-m}}{\delta} + \frac{2\beta^{n-2m}}{\delta} + 4L'_{\beta,n-2m} \leq \cdots \\ &\leq \frac{\beta^{n-m}}{\delta} \sum_{j=0}^{\lceil n/m \rceil - 2} \left(\frac{2}{\beta^m} \right)^j + 2^{\lceil n/m \rceil - 1} L'_{\beta,n-\lceil n/m \rceil m+m} < \frac{\beta^n}{\delta} \frac{1}{\beta^m - 2} + \beta^n L'_{\beta,m} \leq \frac{\beta^n}{\delta} \frac{\beta^m - 1}{\beta^m - 2}. \end{aligned}$$

This shows that $\lim_{n \rightarrow \infty} \frac{1}{n} \log L'_{\beta,n} = \beta$.

An interval $I_{b_1 \cdots b_n}$ consists only of one point if and only if $I_{b_1 \cdots b_k} = \left\{ \frac{-\beta}{\beta+1} \right\}$ and $b_{k+1} \cdots b_n = a_1 \cdots a_{n-k}$ for some $k \leq n$. (This can happen only in case that $a_1 a_2 \cdots$ is periodic with odd period length.) Therefore, we can estimate $L_{\beta,n} - L'_{\beta,n} \leq L'_{\beta,0} + L'_{\beta,1} + \cdots + L'_{\beta,n} \leq C\beta^n$ for some constant $C > 0$, thus $\lim_{n \rightarrow \infty} \frac{1}{n} \log L_{\beta,n} = \lim_{n \rightarrow \infty} \frac{1}{n} \log L'_{\beta,n}$. \square

For the proof of Theorem 3, let $a_1 a_2 \cdots$ be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and $a'_1 a'_2 \cdots$ be the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$, $\beta, \beta' > 1$. If $\beta = \beta'$, then we clearly have that $a_1 a_2 \cdots = a'_1 a'_2 \cdots$. If $a_1 a_2 \cdots = a'_1 a'_2 \cdots$, then the $(-\beta)$ -admissible sequences are equal to the $(-\beta')$ -admissible sequences, thus $L_{\beta,n} = L_{\beta',n}$ for all $n \geq 1$, and $\beta = \beta'$ by Lemma 1. Therefore, the equations $\beta = \beta'$ and $a_1 a_2 \cdots = a'_1 a'_2 \cdots$ are equivalent. Hence, it suffices to show that $a_1 a_2 \cdots <_{\text{alt}} a'_1 a'_2 \cdots$ implies that $\beta < \beta'$, as the other direction follows by contraposition.

Assume that $a_1 a_2 \cdots <_{\text{alt}} a'_1 a'_2 \cdots$, and let $b_1 b_2 \cdots$ be a $(-\beta)$ -admissible sequence. By (1.2) and (1.3) respectively, we have that

$$(2.1) \quad b_k b_{k+1} \cdots \leq_{\text{alt}} a_1 a_2 \cdots <_{\text{alt}} a'_1 a'_2 \cdots.$$

Furthermore, as $\overline{0a_1 \cdots a_{2\ell}(a_{2\ell+1}-1)} >_{\text{alt}} 0a_1 a_2 \cdots$ for all $\ell \geq 0$, we obtain that

$$(2.2) \quad b_k b_{k+1} \cdots >_{\text{alt}} 0a_1 a_2 \cdots >_{\text{alt}} 0a'_1 a'_2 \cdots.$$

If $a'_1 a'_2 \cdots$ is not periodic with odd period length, then (2.1) and (2.2) show that $b_1 b_2 \cdots$ is $(-\beta')$ -admissible, thus $L_{\beta,n} \leq L_{\beta',n}$ for all $n \geq 1$, and $\beta \leq \beta'$ by Lemma 1. Since $a_1 a_2 \cdots \neq a'_1 a'_2 \cdots$, this yields that $\beta < \beta'$. In case $a'_1 a'_2 \cdots = a'_1 \cdots a'_{2\ell'+1}$, we show that

$$(2.3) \quad a_1 a_2 \cdots \leq_{\text{alt}} \overline{a'_1 \cdots a'_{2\ell'}(a'_{2\ell'+1}-1)0}.$$

This is clearly true when $a_1 \cdots a_{2\ell'+1} <_{\text{alt}} a'_1 \cdots a'_{2\ell'}(a'_{2\ell'+1}-1)$. If $a_1 \cdots a_{2\ell'+1} = a'_1 \cdots a'_{2\ell'+1}$, then $a_{2\ell'+2} a_{2\ell'+3} \cdots >_{\text{alt}} a'_{2\ell'+2} a'_{2\ell'+3} \cdots = a'_1 a'_2 \cdots >_{\text{alt}} a_1 a_2 \cdots$, contradicting (1.4). It remains to consider the case that $a_1 \cdots a_{2\ell'+1} = a'_1 \cdots a'_{2\ell'}(a'_{2\ell'+1}-1)$. If $a_{2\ell'+1} > 0$, then (2.3) holds, otherwise $a_1 \cdots a_{2\ell'+2} = a'_1 \cdots a'_{2\ell'}(a'_{2\ell'+1}-1)0$. In the latter case, (1.4) implies that $a_{2\ell'+3} \cdots a_{4\ell'+4} \leq_{\text{alt}} a_1 \cdots a_{2\ell'+2} = a'_1 \cdots a'_{2\ell'}(a'_{2\ell'+1}-1)0$, and we obtain inductively that (2.3) holds. Now, (2.1), (2.2), and (2.3) show that $b_1 b_2 \cdots$ is $(-\beta')$ -admissible, which yields as above that $\beta < \beta'$.

3. PROOF OF THEOREM 1

Let $a_1 a_2 \dots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). We show that there exists a unique $\beta > 1$ satisfying (1.9), which is equivalent to (1.6). For $n \geq 1$, set

$$P_n(x) = (-x)^n + \sum_{j=1}^n (a_j + 1) (-x)^{n-j},$$

$$J_n = \{x > 1 \mid P_j(x) \in [0, 1] \text{ for all } 1 \leq j \leq n\}.$$

Then $J_1 \supseteq J_2 \supseteq J_3 \supseteq \dots$, and J_n is compact if and only if $\inf J_n \neq 1$.

First note that, for $\beta > 1$, (1.9) is equivalent to $\beta \in \bigcap_{n \geq 1} J_n$. Indeed, if (1.9) holds, then $P_n(\beta) = -\sum_{j=1}^{\infty} \frac{a_{n+j}+1}{(-\beta)^j} \in [0, 1]$ for all $n \geq 1$. On the other hand, if $P_n(\beta) \in [0, 1]$ for all $n \geq 1$, then $|1 + \sum_{j=1}^{\infty} \frac{a_j+1}{(-\beta)^j}| = \lim_{n \rightarrow \infty} \frac{P_n(\beta)}{(-\beta)^n} = 0$, thus (1.9) holds.

Inductively for $n \geq 1$, we show the following statements, where we use the abbreviations $v_{[j,k]}$ for $v_j v_{j+1} \cdots v_k$ and $v_{[j,k]}$ for $v_j v_{j+1} \cdots v_{k-1}$:

- (1) J_n is a non-empty interval, with $\inf J_n = 1$ if and only if $a_{[1,n]} = u_{[1,n]}$.
If $P_n(\beta) = P_n(\beta') \in \{0, 1\}$ with $\beta, \beta' \in J_n$, then $\beta = \beta'$.
- (2) If n is even, $a_{[1,n-2m+1]} = u_{[1,n-2m+1]}$ or $a_{[n-2m+2,n]} \neq a_{[1,2m]}$ for all $1 \leq m \leq n/2$, and $a_{[1,n]} \neq u_{[1,n]}$, then $P_n(\min J_n) = 0$.
If n is odd and $a_{[n-2m+2,n]} \neq a_{[1,2m]}$ for all $1 \leq m \leq n/2$, then $P_n(\max J_n) = 0$.
- (3) If n is even, $a_{[1,n-2m+1]} \neq u_{[1,n-2m+1]}$ and $a_{[n-2m+2,n]} = a_{[1,2m]}$ for some $1 \leq m \leq n/2$, and m is maximal with this property, then $P_n(\min J_n) = P_{2m-1}(\min J_n)$.
If n is odd, $a_{[n-2m+2,n]} = a_{[1,2m]}$ for some $1 \leq m \leq n/2$, and m is maximal with this property, then $P_n(\max J_n) = P_{2m-1}(\max J_n)$.
- (4) If n is even and $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, then $P_n(\max J_n) = 1$.
If n is odd, $a_{[1,n-2m]} = u_{[1,n-2m]}$ or $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, and $a_{[1,n]} \neq u_{[1,n]}$, then $P_n(\min J_n) = 1$.
- (5) If n is even, $a_{[n-2m+1,n]} = a_{[1,2m]}$ for some $1 \leq m < n/2$, and m is maximal with this property, then $P_n(\max J_n) = P_{2m}(\max J_n)$.
If n is odd, $a_{[1,n-2m]} \neq u_{[1,n-2m]}$ and $a_{[n-2m+1,n]} = a_{[1,2m]}$ for some $1 \leq m < n/2$, and m is maximal with this property, then $P_n(\min J_n) = P_{2m}(\min J_n)$.

We have that $P_1(x) = a_1 + 1 - x$, and $a_1 \geq 1$ by (1.5). If $a_1 \geq 2$, then $J_1 = [a_1, a_1 + 1]$, $P_1(a_1) = 1$ and $P_1(a_1 + 1) = 0$; if $a_1 = 1$, then $J_1 = (1, 2]$ and $P_1(2) = 0$. Therefore, the statements hold for $n = 1$. Assume that they hold for $n - 1$, and set

$$B = \{b \in \{0, 1, \dots, a_1\} : b + 1 - x P_{n-1}(x) \in [0, 1] \text{ for some } x \in J_{n-1}\},$$

i.e., $J_n \neq \emptyset$ if and only if $a_n \in B$.

Assume first that $a_{[1,n]} \neq u_{[1,n]}$, i.e., $\inf J_{n-1} = \min J_{n-1} > 1$, and that n is even.

- (i) If $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, then $P_{n-1}(\max J_{n-1}) = 0$, thus

$$1 - (\max J_{n-1}) P_{n-1}(\max J_{n-1}) = 1.$$

This implies that $0 \in B$, and $P_n(\max J_n) = P_n(\max J_{n-1}) = 1$ if $a_n = 0$. Since the map $x \mapsto x P_{n-1}(x)$ is continuous and J_{n-1} is an interval, we get that $P_n(\max J_n) = 1$

for $a_n > 0$ as well, when $J_n \neq \emptyset$. Moreover, we clearly have that $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, thus (4) holds when $a_n \in B$.

- (ii) If $a_{[n-2m+1,n]} = a_{[1,2m]}$ for some $1 \leq m < n/2$, and m is maximal with this property, then $P_{n-1}(\max J_{n-1}) = P_{2m-1}(\max J_{n-1})$, thus

$$a_{2m} + 1 - (\max J_{n-1}) P_{n-1}(\max J_{n-1}) = P_{2m}(\max J_{n-1}) \in [0, 1],$$

where we have used that $J_{n-1} \subseteq J_{2m}$ and $P_{2m}(J_{2m}) \subseteq [0, 1]$. This gives $a_{2m} \in B$.

If $a_n = a_{2m}$, then $\max J_n = \max J_{n-1}$ and $P_n(\max J_{n-1}) = P_{2m}(\max J_{n-1})$, thus $P_n(\max J_n) = P_{2m}(\max J_n)$ and $a_{[n-2m+1,n]} = a_{[1,2m]}$. By the maximality of m , we have that $a_{[n-2\ell+1,n]} \neq a_{[1,2\ell]}$ for all $m < \ell < n/2$, thus (5) holds.

If $a_n \neq a_{2m}$, then the equation $a_{[n-2m+1,n]} = a_{[1,2m]}$ and (1.4) yield that $a_n > a_{2m}$, thus $P_n(\max J_n) = 1$ when $J_n \neq \emptyset$, similarly to (i). If $a_{[1,2\ell]} = a_{[n-2\ell+1,n]}$, $1 \leq \ell < m$, then we also have that $a_{[1,2\ell]} = a_{[2m-2\ell+1,2m]}$, thus $a_{2\ell} \leq a_{2m} < a_n$. This implies that $a_{[n-2\ell+1,n]} \neq a_{[1,2\ell]}$ for all $1 \leq \ell < n/2$, thus (4) holds when $a_n \in B$.

- (iii) If $a_{[1,n-2m]} = u_{[1,n-2m]}$ or $a_{[n-2m,n]} \neq a_{[1,2m]}$ for all $1 \leq m \leq n/2 - 1$, then we have that $P_{n-1}(\min J_{n-1}) = 1$, thus

$$a_1 + 1 - (\min J_{n-1}) P_{n-1}(\min J_{n-1}) = P_1(\min J_{n-1}) \in [0, 1],$$

and $a_1 \in B$. If $a_n = a_1$, then $\min J_n = \min J_{n-1}$ and $P_n(\min J_{n-1}) = P_1(\min J_{n-1})$, thus $P_n(\min J_n) = P_1(\min J_n)$, and $a_{[1,n-2m+1]} = u_{[1,n-2m+1]}$ or $a_{[n-2m+2,n]} \neq a_{[1,2m]}$ for all $2 \leq m \leq n/2$. Therefore, (3) holds. If $a_n < a_1$, then $P_n(\min J_n) = 0$ when $J_n \neq \emptyset$, $a_{[1,n-2m+1]} = u_{[1,n-2m+1]}$ or $a_{[n-2m+2,n]} \neq a_{[1,2m]}$ for all $1 \leq m \leq n/2$, thus (2) holds when $a_n \in B$.

- (iv) If $a_{[1,n-2m]} \neq u_{[1,n-2m]}$ and $a_{[n-2m,n]} = a_{[1,2m]}$ for some $1 \leq m \leq n/2 - 1$, and m is maximal with this property, then $P_{n-1}(\min J_{n-1}) = P_{2m}(\min J_{n-1})$, thus

$$a_{2m+1} + 1 - (\min J_{n-1}) P_{n-1}(\min J_{n-1}) = P_{2m+1}(\min J_{n-1}) \in [0, 1],$$

hence $a_{2m+1} \in B$. If $a_n = a_{2m+1}$, then $\min J_n = \min J_{n-1}$ and $P_n(\min J_{n-1}) = P_{2m+1}(\min J_{n-1})$, thus $P_n(\min J_n) = P_{2m+1}(\min J_n)$, and $a_{[n-2m,n]} = a_{[1,2m+1]}$. The maximality of m yields that $a_{[1,n-2\ell+1]} = u_{[1,n-2\ell+1]}$ or $a_{[n-2\ell+2,n]} \neq a_{[1,2\ell]}$ for all $m+1 < \ell \leq n/2$, thus (3) holds. If $a_n \neq a_{2m+1}$, then $a_n < a_{2m+1}$ by (1.4). If moreover $a_{[1,2\ell-2]} = a_{[n-2\ell+2,n]}$, $1 \leq \ell \leq m$, then we have that $a_{[1,2\ell-2]} = a_{[2m-2\ell+3,2m]}$, thus $a_{2\ell-1} \geq a_{2m+1} > a_n$. Then we get that $P_n(\min J_n) = 0$ when $J_n \neq \emptyset$, $a_{[1,n-2\ell+1]} = u_{[1,n-2\ell+1]}$ and $a_{[n-2\ell+2,n]} \neq a_{[1,2\ell]}$ for all $1 \leq \ell \leq n/2$, thus (2) holds when $a_n \in B$.

Since $x \mapsto xP_{n-1}(x)$ is continuous and J_{n-1} is an interval, the set B is an interval of integers. The paragraphs (i) and (ii) show that a_n is not smaller than the smallest element of B , (iii) and (iv) show that a_n is not larger than the largest element of B , thus $a_n \in B$. We have therefore proved that $J_n \neq \emptyset$ and (2)–(5) hold, when $a_{[1,n]} \neq u_{[1,n]}$ and n is even. For odd n , the proof runs along the same lines and is left to the reader.

If $a_{[1,n]} = u_{[1,n]}$, then $\inf J_{n-1} = 1$. From [LS, Proposition 3.5], we know that $u_n \in B$, that $\inf J_n = 1$ when $a_n = u_n$, and that $\min J_n > 1$ when $u_n \neq a_n \in B$. Let first n be even, thus $a_n \leq u_n$ by (1.5). If $a_{[n-2m+1,n]} \neq a_{[1,2m]}$ for all $1 \leq m < n/2$, then we obtain as in (i) that $0 \in B$, thus $a_n \in B$, and (4) holds. If $a_{[n-2m+1,n]} = a_{[1,2m]}$ for some $1 \leq m < n/2$, and

m is maximal with this property, then (ii) yields that $a_{2m} \in B$ and $a_{2m} \leq a_n$, thus $a_n \in B$. If $a_n = a_{2m}$, then (5) holds; if $a_n > a_{2m}$, then (4) holds. Moreover, if $a_n < u_n$, then we get that $P_n(\min J_n) = 0$, thus (2) holds. Again, if n is odd, then similar arguments apply. Hence, we have proved that $J_n \neq \emptyset$ and (2)–(5) hold for the case that $a_{[1,n]} = u_{[1,n]}$ too.

If J_n is not an interval, then the continuity of $x \mapsto xP_{n-1}(x)$ on the interval J_{n-1} implies that P_n meets the lower bound 0 or the upper bound 1 at least twice within J_n . Therefore, suppose that $P_n(\beta) = P_n(\beta') \in \{0, 1\}$ for $\beta, \beta' \in J_n$. If $P_j(\beta) \in (0, 1]$ and $P_j(\beta') \in (0, 1]$ for all $1 \leq j < n$, then the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$ are both $\overline{a_{[1,n]}}$ (if $P_n(\beta) = 1$) or $\overline{a_{[1,n]}(a_n+1)}$ (if $P_n(\beta) = 0$), thus $\beta = \beta'$ by Theorem 3.

Suppose in the following that $P_j(\beta') = 0$ for some $1 \leq j < n$, and let $\ell \geq 1$ be minimal such that $P_\ell(\beta') \in \{0, 1\}$. If $P_\ell(\beta') = 0$, then $a_{\ell+1} = 0$ and $P_{\ell+1}(\beta') = 1$, hence $a_{[1,n]}$ is a concatenation of blocks $a_{[1,\ell]}0$ and $a_{[1,\ell]}(a_\ell+1)$, except possibly for the last block, which is $a_{[1,\ell]}$ when $P_n(\beta') = 0$. If $P_\ell(\beta') = 1$, then $a_{[1,n]}$ is a concatenation of blocks $a_{[1,\ell]}$ and $a_{[1,\ell]}(a_\ell-1)0$, ending with $a_{[1,\ell]}(a_\ell-1)$ when $P_n(\beta') = 0$. We obtain that

$$P_n(x) = P_n(\beta') + (P_\ell(x) - P_\ell(\beta')) Q(x)$$

for some polynomial $Q(x) = \sum_{j=0}^{n-\ell} q_j (-x)^j$ with coefficients $q_j \in \{0, 1\}$, and $q_{j-1} = q_{j-2} = \dots = q_{j-\ell+1} = 0$ whenever $q_j = 1$. If $P_\ell(\beta) = P_\ell(\beta')$, then the induction hypotheses yield that $\beta = \beta'$. If $P_\ell(\beta) \neq P_\ell(\beta')$, then $Q(\beta) = 0$, which implies that $1 < \frac{1}{\beta^{\ell+1}} + \frac{1}{\beta^{2\ell+1}} + \dots = \frac{1}{\beta^{\ell+1}-\beta}$ when ℓ is even, $1 < \frac{1}{\beta^\ell} + \frac{1}{\beta^{2\ell+1}} + \dots = \frac{\beta}{\beta^{2\ell+1}-1}$ when ℓ is odd, i.e., $\beta^{\ell+1} < \beta + 1$.

To exclude the latter case, suppose that $P_n(\beta) = P_n(\beta') \in \{0, 1\}$ for $\beta, \beta' \in J_n$, $\beta \neq \beta'$, and that $\beta^{\ell+1} < \beta + 1$ for the minimal $\ell \geq 1$ such that $P_\ell(\beta') \in \{0, 1\}$. Set $g_k = \lfloor 2^{k+1}/3 \rfloor$, and let, for $k \geq 1$, γ_k and η_k be the real numbers greater than 1 satisfying $\gamma_k^{g_k+1} = \gamma_k + 1$, $\eta_k^{g_k+1} = \eta_k^{g_{k-1}+1} + 1$ when k is even, $\eta_k^{g_k} = \eta_k^{g_{k-1}} + 1$ when k is odd, as in [LS]. For the positive integer m satisfying $g_m \leq \ell < g_{m+1}$, we have that $\beta < \gamma_m < \eta_m$. By Proposition 3.5 in [LS] and its proof, $\beta < \eta_m$ implies that the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ starts with $\varphi^m(1)$ and that $\tilde{T}_{-\beta}^j(1) \notin \{0, 1\}$ for all $1 \leq j \leq |\varphi^m(1)| = g_{m+1} + \frac{1-(-1)^m}{2}$, where $|w|$ denotes the length of the word w . Since $\beta \in J_n$ and $P_n(\beta) \in \{0, 1\}$, we obtain that $a_1 a_2 \dots$ starts with $\varphi^m(1)$ and that $n > |\varphi^m(1)|$. By equation (3.2) in [LS], we have that $P_{2^m}(x) > 1$ for all $x > \eta_m$ (note that $2^m = |\varphi^{m-1}(10)| < |\varphi^m(1)|$), thus $J_{2^m} = (1, \eta_m]$, and $\ell < g_{m+1}$ yields that $\beta' = \eta_m$, $\ell = 2^m$. As β and β' are in the interval J_{n-1} , we also have that $\gamma_m \in J_{n-1}$. The $(-\gamma_m)$ -expansion of $\frac{-\gamma_m}{\gamma_m+1}$ is $\varphi^{m-1}(1) \overline{\varphi^{m-1}(0)}$ by [LS, Theorem 2.5]. Since $n \geq 2\ell$ by the above block decomposition of $a_{[1,n]}$, we obtain that $a_1 a_2 \dots$ starts with $\varphi^{m-1}(1000)$ if $m \geq 2$, and with 100 if $m = 1$. In case $m = 1$, we get that $P_3(2) \notin J_3$, contradicting that $2 = \eta_1 = \beta' \in J_n$. For $m \geq 2$, we have that $P_{|\varphi^{m-1}(1000)|}(\eta_m) > P_{|\varphi^{m-1}(10)|}(\eta_m) = 1$ because $P_{|\varphi^{m-1}(1000)|}(\eta_m) = P_{|\varphi^m(1)|}(\eta_m) < P_{|\varphi^{m-1}(1)|}(\eta_m)$ by equation (3.4) in [LS] and, using the notation of [LS], the function $f_{\gamma_m, \varphi^{m-1}(0)}$ is order-reversing. Again, this contradicts that $\eta_m = \beta' \in J_n$. Therefore, we have shown that $\beta = \beta'$ whenever $P_n(\beta) = P_n(\beta') \in \{0, 1\}$, $\beta, \beta' \in J_n$. Hence, J_n is an interval, and (1)–(5) hold for all $n \geq 1$.

As the J_n form a sequence of nested non-empty intervals that are compact for sufficiently large n , we have that $\bigcap_{n \geq 1} J_n \neq \emptyset$, thus there exists some $\beta > 1$ satisfying (1.9), which is

equivalent to (1.6). To show that β is unique, suppose that $\bigcap_{n \geq 1} J_n$ is not a single point. Then $\bigcap_{n \geq 1} J_n$ is an interval of positive length, thus there exist $\beta, \beta' \in \bigcap_{n \geq 1} J_n$, $\beta \neq \beta'$, such that $P_n(\beta) \in (0, 1]$ and $P_n(\beta') \in (0, 1]$ for all $n \geq 1$. This means that $a_1 a_2 \dots$ is both the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ and the $(-\beta')$ -expansion of $\frac{-\beta'}{\beta'+1}$, which contradicts that $\beta \neq \beta'$ by Theorem 3. This concludes the proof of Theorem 1.

Remark 1. Some parts of the proofs of Theorems 1 and 3 can be simplified when one is only interested in $\beta > 1$ not too close to 1. Since $P_n(x) = a_n + 1 - xP_{n-1}(x)$ for $n \geq 2$, and $P'_1(x) = -1$, the derivative of $P_n(x)$ is

$$P'_n(x) = (-1) (P_{n-1}(x) + xP'_{n-1}(x)) = \dots = (-1)^n x^{n-1} \left(1 + \sum_{j=1}^{n-1} \frac{P_j(x)}{(-x)^j} \right).$$

If $x \in J_{n-1}$, then $1 + \sum_{j=1}^{n-1} \frac{P_j(x)}{(-x)^j} > 1 - \frac{1}{x} - \frac{1}{x^3} - \dots = \frac{x^2 - x - 1}{x^2 - 1}$. If moreover $x \geq (1 + \sqrt{5})/2$, then we get that $(-1)^n P'_n(x) > 0$, hence P'_n is a strictly increasing (decreasing) function on $J_{n-1} \cap [(1 + \sqrt{5})/2, \infty)$ when n is even (odd). Moreover, $\lim_{n \rightarrow \infty} |P'_n(x)| = \infty$ if $x \geq (1 + \sqrt{5})/2$ and $x \in J_n$ for all $n \geq 1$.

However, it is not true that P'_n is always increasing (decreasing) on J_{n-1} when n is even (odd). For instance, if $a_1 a_2 \dots$ starts with 1001, then $P_4(x) = x^4 - 2x^3 + x^2 - x + 2$ and $J_3 = (1, \beta]$ with $\beta^3 = 2\beta^2 - \beta + 1$ ($\beta \approx 1.755$). The function P_4 decreases on $(1, \beta]$, with $\beta' \approx 1.261$, and increases on $[\beta', \infty)$. Note that this is a major flaw in the proof of Theorem 28 of [Gór07] (besides the fact that the statement is incorrect, as explained in the Introduction). This lack of monotonicity is what makes Theorems 1 and 3 more difficult to prove than the corresponding statements for β -expansions.

4. PROOF OF THEOREM 2

Let $a_1 a_2 \dots$ be a sequence of non-negative integers satisfying (1.4) and (1.5). We have already seen in the Introduction that these conditions are necessary to be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$. Moreover, β can only be the number given by Theorem 1. Then $a_1 a_2 \dots$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ if and only if $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} \neq \frac{1}{\beta+1}$ for all $k \geq 1$.

Suppose first that $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} = \frac{1}{\beta+1}$ for some $k \geq 1$, and let $\ell \geq 1$ be minimal such that $\sum_{j=1}^{\infty} \frac{a_{\ell+j}}{(-\beta)^j} \in \left\{ \frac{-\beta}{\beta+1}, \frac{1}{\beta+1} \right\}$. If $\sum_{j=1}^{\infty} \frac{a_{\ell+j}}{(-\beta)^j} = \frac{-\beta}{\beta+1}$, then the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ is $\overline{a_{[1,\ell]}}$. Then $a_1 a_2 \dots$ is composed of blocks $a_{[1,\ell]}$ and $a_{[1,\ell]}(a_\ell - 1)0$. Since $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} = \frac{1}{\beta+1}$ for some $k \geq 1$, we have at least one block $a_{[1,\ell]}(a_\ell - 1)0$, i.e., $a_1 a_2 \dots \in \{a_{[1,\ell]}, a_{[1,\ell]}(a_\ell - 1)0\}^\omega \setminus \{\overline{a_{[1,\ell]}}\}$. As $\overline{a_{[1,\ell]}}$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$, we have that $\overline{a_{[1,\ell]}} >_{\text{alt}} u_1 u_2 \dots$, thus (1.7) does not hold. If $\sum_{j=1}^{\infty} \frac{a_{\ell+j}}{(-\beta)^j} = \frac{1}{\beta+1}$, then the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ is $\overline{a_{[1,\ell]}(a_\ell + 1)}$, $a_1 a_2 \dots$ is composed of blocks $a_{[1,\ell]}0$ and $a_{[1,\ell]}(a_\ell + 1)$, and we have that $\overline{a_{[1,\ell]}(a_\ell + 1)} >_{\text{alt}} u_1 u_2 \dots$, thus (1.8) does not hold. Therefore, (1.4), (1.5), (1.7), and (1.8) imply that $a_1 a_2 \dots$ is the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some (unique) $\beta > 1$.

Suppose now that (1.7) does not hold, i.e., $a_1 a_2 \dots \in \{a_{[1,k]}, a_{[1,k]}(a_k - 1)0\}^\omega \setminus \{\overline{a_{[1,k]}}\}$ for some $k \geq 1$ with $\overline{a_{[1,k]}} >_{\text{alt}} u_1 u_2 \dots$. We show that the sequence $\overline{a_{[1,k]}}$ satisfies (1.4).

Suppose on the contrary that $a_{[j,k]} \overline{a_{[1,k]}} >_{\text{alt}} \overline{a_{[1,k]}}$ for some $2 \leq j \leq k$. This implies that $a_{[j,k]} a_{[1,j]} >_{\text{alt}} a_{[1,k]}$. Since $a_{[k+1,2k]} = a_{[1,k]}$, we obtain that $a_{[j,j+k]} = a_{[j,k]} a_{[1,j]} >_{\text{alt}} a_{[1,k]}$, thus $a_j a_{j+1} \dots >_{\text{alt}} a_1 a_2 \dots$, contradicting that $a_1 a_2 \dots$ satisfies (1.4). Therefore, $\overline{a_{[1,k]}}$ satisfies (1.4) and (1.5), and we can apply Theorem 1 for this sequence. Let $\beta' > 1$ be the number satisfying (1.6) for the sequence $\overline{a_{[1,k]}}$. Then β' also satisfies (1.6) for the original sequence $a_1 a_2 \dots$, thus $\beta' = \beta$. Therefore, $a_1 a_2 \dots$ is not the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$.

Suppose finally that (1.8) does not hold, i.e., $a_1 a_2 \dots \in \{a_{[1,k]} 0, a_{[1,k]}(a_k + 1)\}^\omega$ for some $k \geq 1$ with $\overline{a_{[1,k]}(a_k + 1)} >_{\text{alt}} u_1 u_2 \dots$. If $a_1 a_2 \dots = \overline{a_{[1,k]} 0}$, then $\sum_{j=1}^{\infty} \frac{a_{k+j}}{(-\beta)^j} = \frac{1}{\beta+1}$, thus $a_1 a_2 \dots$ is not the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$. If $a_1 a_2 \dots \neq \overline{a_{[1,k]} 0}$, then we show that the sequence $\overline{a_{[1,k]}(a_k + 1)}$ satisfies (1.4). Suppose that $a_{[j,k]}(a_k + 1) \overline{a_{[1,k]}(a_k + 1)} >_{\text{alt}} \overline{a_{[1,k]}(a_k + 1)}$ for some $2 \leq j \leq k$. This implies that $a_{[j,k]}(a_k + 1) a_{[1,j]} >_{\text{alt}} a_{[1,k]}(a_k + 1)$. Since $a_{[j,k]}(a_k + 1) a_{[1,j]} = a_{[\ell,\ell+k]}$ for some $\ell \geq 2$, we have that $a_\ell a_{\ell+1} \dots >_{\text{alt}} a_1 a_2 \dots$, contradicting that $a_1 a_2 \dots$ satisfies (1.4). As in the preceding paragraph, the number given by Theorem 1 for the sequence $a_{[1,k]}(a_k + 1)$ is β , thus $a_1 a_2 \dots$ is not the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$. Therefore, (1.7) and (1.8) are necessary for $a_1 a_2 \dots$ to be the $(-\beta)$ -expansion of $\frac{-\beta}{\beta+1}$ for some $\beta > 1$.

ACKNOWLEDGMENTS

The author would like to thank Edita Pelantová for many fruitful discussions.

REFERENCES

- [DMP11] D. Dombek, Z. Masáková, and E. Pelantová, *Number representation using generalized $(-\beta)$ -transformation*, Theoret. Comput. Sci. **412** (2011), no. 48, 6653–6665.
- [Fal08] B. Faller, *Contribution to the ergodic theory of piecewise monotone continuous maps*, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2008.
- [FL11] C. Frougny and A. C. Lai, *Negative bases and automata*, Discrete Math. Theor. Comput. Sci. **13** (2011), no. 1, 75–94.
- [Gór07] P. Góra, *Invariant densities for generalized β -maps*, Ergodic Theory Dynam. Systems **27** (2007), no. 5, 1583–1598.
- [IS09] S. Ito and T. Sadahiro, *Beta-expansions with negative bases*, Integers **9** (2009), A22, 239–259.
- [LS] L. Liao and W. Steiner, *Dynamical properties of the negative beta-transformation*, Ergodic Theory Dynam. Systems, to appear.
- [Par60] W. Parry, *On the β -expansions of real numbers*, Acta Math. Acad. Sci. Hungar. **11** (1960), 401–416.
- [Rén57] A. Rényi, *Representations for real numbers and their ergodic properties*, Acta Math. Acad. Sci. Hungar. **8** (1957), 477–493.

LIAFA, CNRS UMR 7089, UNIVERSITÉ PARIS DIDEROT – PARIS 7, CASE 7014, 75205 PARIS CEDEX 13, FRANCE

E-mail address: steiner@liafa.jussieu.fr