所有点对的最短路径问题

G = (V, E)是一个有向图,其中每条边(i, j)有非负长度 l(i, j),如果顶点i到顶点j没有边,则 $l(i, j) = \infty$ 。假设 $V = \{1, 2, ..., n\}$, $i \neq j$,定义 d_{ij}^k 是从i到j,并且不经过 $\{k+1, k+2, ..., n\}$ 中任何顶点的最短路径长度,则可递归计算

$$d_{ij}^{k} = \begin{cases} l(i,j) & \text{if } k = 0\\ \min\{d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}\} & \text{if } 1 \le k \le n \end{cases}$$

1. 根据下面的有向图,用Floyd算法求所有点对的距离.

Floyd算法

如果 $i \neq j$ 并且(i,j)是G中的边,则置 $D_0[i,j] = l(i,j)$; 否则置 $D_0[i,j] = \infty$ 。然后执行n次迭代,在第k次迭中,

$$D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}.$$

Floyd算法

如果 $i \neq j$ 并且(i,j)是G中的边,则置 $D_0[i,j] = l(i,j)$;否则置 $D_0[i,j] = \infty$ 。然后执行n次迭代,在第k次迭中,

$$D_k[i,j] = \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\}.$$

D ₀	1	2	3
1	0	2	9
2	8	0	6
3	1	∞	0

初始状态

D ₂	1	2	3
1	0	2	8
2	8	0	6
3	1	3	0

D[1,3]<D[1,2]+D[2,3]=8,更新D[1,3]

D ₁	1	2	3
1	0	2	9
2	8	0	6
3	1	3	0

D[3,2]<D[3,1]+D[1,2]=3,更新D[3,2]

D ₃	1	2	3
1	0	2	8
2	7	0	6
3	1	3	0

D[2,1]<D[2,3]+D[3,1]=7,更新D[2,1]

2. 有容量为9的背包,要装入4种体积为2,3,4和5的物品,它们的价值分别为3,4,5和7。在不超出背包容量的前提下,尽可能多地在背包内装入物品,使总价值最大。

KNAPSACK算法

输入: 物品集合 $U=\{u_1,u_2,\cdots,u_n\}$,体积分别为 s_1,s_2,\cdots,s_n ,价值分别为 v_1,v_2,\cdots,v_n ,容量为C的背包。

输出: $\sum_{u_i \in S} v_i$ 的最大总价值,且满足 $\sum_{u_i \in S} s_i \leq C$,其中 $S \subseteq U$

- 1. for $i \leftarrow 0$ to n
- 2. $V[i, 0] \leftarrow 0$
- 3. for $j \leftarrow 0$ to C
- 4. $V[0,j] \leftarrow 0$
- 5. for $i \leftarrow 1$ to n
- 6. for $j \leftarrow 1$ to C
- 7. $V[i, j] \leftarrow V[i-1, j]$
- 8. if $s_i \le j$ then $V[i, j] \leftarrow \max\{V[i-1, j], V[i-1, j-s_i] + v_i\}$
- 9. return *V*[*n*, *C*]

$$v_1=3$$
, $v_2=4$, $v_3=5$, $v_4=7$
 $s_1=2$, $s_2=3$, $s_3=4$, $s_4=5$
 $C=9$

使用动态规划, 求V[4,9]。

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0									
2	0									
3	0									
4	0									

初始状态

$$v_1=3$$
, $v_2=4$, $v_3=5$, $v_4=7$
 $s_1=2$, $s_2=3$, $s_3=4$, $s_4=5$
 $C=9$

使用动态规划, 求V[4,9]。

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	3	3	3	3	3	3	3	3
2	0									
3	0									
4	0									

只考虑第一件物品,容量大于等于2时放入。

$$v_1=3$$
, $v_2=4$, $v_3=5$, $v_4=7$
 $s_1=2$, $s_2=3$, $s_3=4$, $s_4=5$
 $C=9$

使用动态规划,求V[4,9]。

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	3	3	3	3	3	3	3	3
2	0	0	3	4	4	7	7	7	7	7
3	0									
4	0									

考虑第一二件物品。容量为2时,放入第一件物品;容量为3 或4时,放入第二件;容量大于4时,放入第一、二件物品。

$$v_1=3$$
, $v_2=4$, $v_3=5$, $v_4=7$
 $s_1=2$, $s_2=3$, $s_3=4$, $s_4=5$
 $C=9$

使用动态规划, 求V[4,9]。

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	0	3	3	3	3	3	3	3	3
2	0	0	3	4	4	7	7	7	7	7
3	0	0	3	4	5	7	8	9	9	12
4	0	0	3	4	5	7	8	10	11	12

最大价值为12。