INFORMATION TECHNOLOGY & SOLUTIONS

Cours Sécurité Réseau

Roland Inan
Didier Law-Tho

Pour commencer...

"Program testing can be used to show the presence of bugs, but never to show their absence!

"Le test de programmes peut être une façon très efficace de montrer la présence de bugs mais est désespérément inadéquat pour prouver leur absence!"

"Computer Science is no more about computers than astronomy is about telescopes."

«L'informatique n'est pas plus la science des ordinateurs que l'astronomie n'est celle des télescopes."

Edsger W. Dijkstra Computer scientist

A propos de moi...

Plan du cours

- Rappels des concepts réseau
- Bases de la cryptographie
- Composants de sécurité réseau
 - Zones démilitarisées (DMZ)
 - Serveurs mandataires (Proxies)
 - Pare-feux (Firewalls)
 - VPN (Virtual Private Network)
- Etude de cas:
 - Projet de mise en place de services de diffusion vidéo live
- Perspectives
 - · Introduction à la Cybersécurité

Rappels des concepts réseau

- Modèle en couches
- Classes d'adresses IP
- Adresses privées/publiques (RFC 1918)
- En-tête des 4 couches de TCP/IP
- Étude d'un échange client-serveur

Modèle en couches

	Modèle OSI	Péı	riphérique / Description	Modèle TCP/IP
7	Application	www	Services applicatifs au plus proche des utilisateurs	
6	Présentation	It I	Encode, chiffre, compresse les données utiles	Application
5	Session		Etablit des sessions entre des applications	
4	Transport		Etablit, maintien et termine des sessions entre des périphériques terminaux	Transport
3	Réseau		Adresse les interfaces globalement et détermine les meilleurs chemins à travers un inter-réseau	Internet
2	Liaison de Données		Adresse localement les interfaces, livre les informations localement, méthode MAC	Accès au Réseau
1	Physique		Encodage du signal, câblage et connecteurs, spécifications physiques	, looes au reseau

Modèle en couches

Normes IEEE

En-tête Ethernet

Pont et Commutateur (Switch)

Architecture d'un pont ou d'un commutateur.

Architecture d'un routeur.

En-tête des 4 couches de TCP/IP

En-tête IPV4

Classes d'adresses IP

7 bits		24		
0 Net_id (ad	dresse réseau)	Host_id (adresse	Classe A	
25	14		_	
10	Net_id		Host_id	Classe B
		21	. 8	_
110		Net_id	Host_id	Classe C
		28		_
1110		Adresse de Multicast		Classe D
		28		
11110		Format non défini		Classe E

Classes d'adresses IP

Classe	Début	Fin	Notation CIDR	Masque de sous-réseau par défaut
Classe A	0.0.0.0	127.255.255.255	/8	255.0.0.0
Classe B	128.0.0.0	191.255.255.255	/16	255.255.0.0
Classe C	192.0.0.0	223.255.255.255	/24	255.255.255.0
Classe D (multicast)	224.0.0.0	239.255.255.255	/4	non défini
Classe E (réservée)	240.0.0.0	255.255.255.255		non défini

	Nombre de réseaux	Nombre d'hôtes	Plage d'identificateur de réseau (1 ^{er} octet)		
Classe A	2 ⁷ -2=126	2 ²⁴ -2=16777214	0-127		
Classe B	2 ¹⁴ -2=16382	2 ¹⁶ -2=65534	128-191		
Classe C	2 ²¹ -2=2097150	2 ⁸ -2=254	192-223		

Résumé des classes d'adresse

Adressage de sous-réseaux (subnetting)

Exemple de segmentation en sous-réseaux.

Subnetting et masques

Réorganisation du host_id.

Cours Sécurité Réseaux

Subnetting et masques


```
Net_id Subnet_id Host_id = 15

Adresse IP : 192.44.77.79 = 1100 0000 . 0010 1100 . 0100 1101 . 01 00 1111

Netmask : 255.255.255.192 = 1111 1111 . 1111 1111 . 1111 1111 . 1111 1111 . 11 00 0000

Adresse de sous-réseau : 192.44.77.64 = 1100 0000 . 0010 1100 . 0100 1101 . 01 00 0000
```

Exemple d'utilisation du masque.

- 192.44.77.**00**00 0000 = 192.44.77.0
- 192.44.77.**01**00 0000 = 192.44.77.64
- 192.44.77.**10**00 0000 = 192.44.77.128
- 192.44.77.**11**00 0000 = 192.44.77.192

Les masques de longueur variable VLSM

Exemple

Un routeur possède trois interfaces pour connecter trois réseaux N1, N2 et N3. L'administrateur réseau impose les conditions suivantes :

- capacité d'adressage de N1, 40 stations ;
- capacité d'adressage de N2, 80 stations ;
- capacité d'adressage de N3, 140 stations ;
- utilisation au mieux du bloc 128.203.0.0 / 20.

La première étape consiste à trouver le nombre de bits pour la partie host_id, ce qui correspond à la puissance de 2 immédiatement supérieure au nombre de stations:

```
- N1 : 40 stations donc 6 bits (2^5 < 40 < 2^6);
- N2 : 80 stations donc 7 bits (2^6 < 80 < 2^7):
```

- N3 : 140 stations donc 8 bits $(2^7 < 140 < 2^8)$.

Les masques sont donc :

```
- N1 : 255.255.255.192 (/26) → 26 bits à 1 ; 6 bits à 0 ;
```

- N2: 255.255.255.128 (/25) → 25 bits à 1; 7 bits à 0;
- N3 : 255.255.255.0 (/24) → 24 bits à 1 ; 8 bits à 0.

Les masques de longueur variable VLSM

On alloue ensuite les blocs d'adresse du plus grand au plus petit :

- Premier bloc, le plus grand : N3. Masque 255.255.255.0 soit 128.203.0.0/24. Espace d'adressage d'e N3 : 128.203.0.0 à 128.203.0.255 (254 stations).

Deuxième bloc : N2.

Masque 255.255.255.128 (/25).

On utilise le sous-bloc contigu à N3, donc : 128.203.1.0/25.

Espace d'adressage de N2 : 128.203.1.0 à 128.203.1.127 (126 stations).

- Le plus petit sous-réseau : N1.

Masque 255.255.255.192 (/26).

On utilise le sous-bloc contigu à N2, soit : 128.203.1.128/26.

Espace d'adressage de N1 : 128.203.1.128 à 128.203.1.191 (62 stations).

En utilisant cet algorithme, l'adressage IP est optimisé au maximum, C'est la façon dont les ISP gèrent, en principe, leurs espaces d'adressage IP.

Notation CIDR et Supernetting

Réseaux privés et la translation d'adresses NAT

Exemple de translation d'adresses.

Réseaux privés et la translation d'adresses NAPT

Table de translation

	Inter	ne			Externe			
@src	@dst	Port src	Port dst	@src	@dst	Port src	Port dst	
10.0.0.1	212.45.8.3	1025	80	193.55.45.2	212.45.8.3	5001	80	
10.0.0.2	212.45.8.3	1025	80	193.55.45.2	212.45.8.3	5002	80	

Adressage IPV6 versus IPV4

IPv4 vs. IPv6

Deployed 1981

32-bit IP address

4.3 billion addresses
Addresses must be reused and masked

Numeric dot-decimal notation 192.168.5.18

DHCP or manual configuration

Deployed 1998

128-bit IP address

7.9x10²⁸ addresses
Every device can have a unique address

Alphanumeric hexadecimal notation 50b2:6400:0000:0000:6c3a:b17d:0000:10a9

(Simplified - 50b2:6400::6c3a:b17d:0:10a9)

Supports autoconfiguration

Le protocole ARP

Le protocole ICMP

Format du paquet ICMP.

Le protocole DHCP

Échange DHCP.

Principe du routage

Principe du routage

Exemple de table de routage.

Adresse du réseau destination	Masque du réseau destination	Adresse du prochain routeur	Interface empruntée	Nombre de sauts
193.17.52.128	255.255.255.192	193.17.52.129	Ethernet 1	0 (direct)
193.48.32.0	255.255.255.0	193.48.32.2	Ethernet 2	0 (direct)
193.17.52.0	255.255.255.192	193.17.52.1	Ethernet 3	0 (direct)
193.17.52.64	255.255.255.192	193.17.52.65	Ethernet 4	0 (direct)
193.17.52.192	255.255.255.192	193.17.52.131	Ethernet 1	1
212.1.23.0	255.255.255.0	193.17.52.131	Ethernet 1	2
0.0.0.0	0.0.0.0	193.48.32.1	Ethernet 2	0

Le protocole de bout en bout (TCP)

En-tête TCP/UDP

		Ī	FCP Segm	nent	Header	Forma	ıt	
Bit #	0	7	8	15	16	23	24	31
0	Source Port Destination Port							
32	Sequence Number							
64	Acknowledgment Number							
96	Data Offset Res Flags Window Size							
128	He	Header and Data Checksum Urgent Pointer						
160				Opt	ions			

UDP Datagram Header Format									
Bit#	0	7	8	15	16	23	24	31	
0	Source Port				Destination Port				
32	Length				Header and Data Checksum				

Affectation des numéros de port client et serveur.

Numéros de port UDP et TCP usuels.

N° de port	7	20	21	22	25	53	80	110	161
Process	Echo	FTP-data	FTP	SSH	SMTP	DNS	НТТР	РОР3	SNMP

Ouverture d'une connexion TCP

Exemple de connexion réussie.

Transfert de données TCP

Exemple d'échange TCP.

Fenêtre glissante TCP

Gestion de la fenêtre d'émission.

Fermeture de la connexionTCP

Exemple de fermeture réussie.

Étude d'un échange client-serveur

Soit la trame provenant d'un échange entre un ordinateur et l'application DropBox

- La couche Transport utilise le protocole UDP
- La couche Réseau utilise une communication en IPv4
- La couche Liaison utilise l'Ethernet

Étude d'un échange client-serveur

- Nombre d'octets par couche :
 - · Couche Liaison: 14 octets
 - Couche Réseau : 20 octets
 - · Couche Transport: 8 octets
- On peut décomposer la trame :

Ce qu'il faut retenir!

- Les équipements d'interconnexion des réseaux interviennent à différents niveaux : le répéteur ou le hub pour la couche physique ; le pont ou le commutateur Ethernet pour la couche liaison ; le routeur pour la couche réseau et la passerelle pour l'ensemble des 7 couches.
- Les protocoles **TCP** et **IP** situés respectivement dans les **couches 4 et 3** du modèle OSI sont utilisés sur la majorité des équipements pour l'interconnexion des réseaux locaux et à l'échelle d'Internet.
- **IP** est un protocole de niveau réseau responsable de la fragmentation des données, de la transmission des datagrammes en mode sans connexion, de l'adressage et du routage des paquets entre stations par l'intermédiaire de routeurs.
- Les adresses IPv4, codées sur 32 bits, sont exprimées en décimal et séparées par des points (137.15.223.2). Chaque machine possède dans son réseau une adresse unique. Le masque de réseau permet de préciser le nombre de bits dédiés à l'identification du réseau (net_id) et le nombre de bits réservés pour la numérotation des machines (host_id). Organisés à l'origine suivant la dimension en quatre classes (A, B, C et D), les réseaux IP sont aujourd'hui désignés grâce au couple adresse/préfixe (137.15.128.0/19) qui permet de désigner simplement l'importance du réseau. Pour pallier à la pénurie d'adresses IPv4, l'adressage IPv6 permet d'étendre le nombre d'adresses en les codant sur 128 bits et en utilisant une notation du type : 805B:2D9D:0000:DC28:12F7:000A:765C:D4C8

Ce qu'il faut retenir!

- D'autres protocoles sont associés à IP : ARP pour la correspondance entre les adresses IP et les adresses physiques ; ICMP pour le contrôle du trafic IP ; DHCP pour la transmission dynamique des adresses IP aux clients.
- Le routage consiste à trouver des chemins dans les réseaux interconnectés à partir des adresses de destination. Les routeurs concernés doivent être capables de gérer ces chemins dans leurs tables de routage et de maintenir ces dernières à jour à l'aide de protocoles de routage spécifiques (RIP, OSPF, BGP ...).
- Le protocole de niveau transport **UDP** est non connecté et non fiable. Il permet de désigner simplement les numéros de port des applications utilisées avec des temps de réponse courts.
- Le protocole de transport **TCP** fonctionne en mode connecté, ses principales caractéristiques sont la segmentation et le réassemblage des messages, la retransmission en cas d'échec et le contrôle de flux.
- On distingue principalement trois phases TCP: l'ouverture de la connexion, le transfert des données et la fermeture. Des bits dans l'en-tête TCP (flags) des segments envoyés et reçus permettent de savoir dans quel état se trouve la machine émettrice ou réceptrice. Des numéros de séquence et d'acquittement dans l'en-tête TCP permettent à tout moment de connaître, dans les deux sens, le nombre d'octets envoyés et le nombre d'octets acquittés et donc de réguler le flux des données et de provoquer une retransmission en cas de perte.

Questions/Réponses

QCM et Exercices

MASTER SYSTÈMES D'INFORMATION, RÉSEAUX ET NUMÉRIQUE

