Last name	
First name	
Group	

 \mathbf{Grade}

 $\begin{array}{c} \textbf{Algorithmics} \\ \textbf{Undergraduate} \ \mathbf{2}^{nd} \ \textbf{year} \ (\textbf{s3}) \end{array}$ Final Exam #3 (P3) 22 Dec. 2015 - 9:30

I	
II	
III	
IV	
V	

Ar

		(D.S.308973.68~BW) Answer Sheets	IV V		
nsu	vers	$1 \ ({ m Miscillaneous \ questions} - 3 \ points)$		ı	<u>I</u>
1.	(a)	Circle the correct answer: YES – NO			
	(b)	Graphic justification			
2.	(a)	Circle the correct answer: YES – NO			
	(b)	Graphic justification			

	how that there can not also be a path $y' \rightsquigarrow y$ in G .	
٠		
we	$ers~2~{ m (Directed~acyclic~graph}-2.5~points)$	
_		
. (Concerning the classification of arcs, what is the particularity of a directed acyclic graph?	
. (Concerning the classification of arcs, what is the particularity of a directed acyclic graph?	
. (Concerning the classification of arcs, what is the particularity of a directed acyclic graph?	
	Concerning the classification of arcs, what is the particularity of a directed acyclic graph?	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	
	how that for any pair of distinct vertices $x, y \in S$, if there exist an arc from x to y in	

Answers 3 (Red-black Trees - 4 points)

1. Red-black tree? YES - NO

Node (nodes) to remove:

2. Specifications:

The procedure measures (t_rbt T, entier n, h) calculates the size (n) and height (h) of the 2-4 tree by represented the red-black tree T.

 $\begin{array}{ccc} algorithm \ procedure \ measures \\ local \ parameters \\ t_rbt & T \\ global \ parameters \\ integer & n, \ h \end{array}$

variables

begin

end algorithm procedure measures

The algorithm will be called as follows:

 $\begin{array}{l} n \;\leftarrow\; 0 \\ h \;\leftarrow\; 0 \\ \\ \text{measures(T, n, h)} \end{array}$

Answers 4 (Bipartite graph - 7 points)

 \circ Graph G_1 is bipartite: YES – NO 1.

Yes:
$$S_1 =$$

$$S_2 =$$

 \circ Graph G_2 is bipartite: YES – NO

Yes:
$$S_1 =$$

$$S_2=$$

 \circ Graph G_3 is bipartite: YES – NO

$$S_2 =$$

2. Specifications:

The function bipartite ($t_graph_dyn G$) tests whether the graph G is bipartite.

Comment:

This is the "calling function" of the recursive one you have to write next page.

algorithm function bipartite : boolean

local parameters

t_graph_dyn

variables

t_int_vect integer

begin

end algorithm function bipartite

Specifications:

The function $test_rec$ (t_listsom ps, t_int_vect M) tests whether the subgraph traveled from the vertex pointed by ps is bipartite.

variables

begin

end algorithm function test_rec

Answers 5 (What is this? - 5,5 points)

1. $build_graph(G_4, 5, 2, NG)$:

(a) dist ⊢	1	2	3	4	5	6	7	8	9	10
(a) uist										

(b) map -	1	2	3	4	5	6	7	8	9	10
(b) map										

(c) The built graph (NG):

- 2. build_graph(G, s, n, NG) (any G, $s \in G$, n > 0) :
 - (a) What does the array dist represent?
 - (b) What is the array map used for?
 - (c) What does the graph NG represent?