Cockoba: EAИ April 23, 2010

1.3.7 Разрешими проблеми за контекстно-свободни езици

Проблемът за празнота

Function is Empty($G = (V, \Sigma, P, S)$) $\text{Marked} := \Sigma$ $\text{while } \exists A \to \alpha \in P : A \not\in \text{Marked} \land \alpha \in \text{Marked}^* \text{ do}$ $\text{Marked} := \text{Marked} \cup \{A\}$ $\text{return } S \not\in \text{Marked}$

Изпълнено е т.т.к. $L(G) = \emptyset$

Cockoba: EAM April 23, 2010

Проблемът за крайност

Дадено: гарматика $G = (V, \Sigma, P, S)$

Въпрос: $|L(G)| < \infty$?

Нека n е числото от Pumping лемата.

Наблюдение: $|L(G)| = \infty \Leftrightarrow \exists z \in L(G) : n \le |z| < 2n$

Д-во:

 $z \in L(G), n \leq |z| < 2n \longrightarrow \text{Pumping лемата дава } |L| = \infty.$

Случай $|L(G)|=\infty$ да разгледаме $z\in L(G)$ с минимална $|z|\geq n.$

Да допуснем, че $|z| \ge 2n$.

Pumping лемата $z = uvwxy, |vx| \ge 1, uwy \in L(G), |uwy| \ge n.$

Противоречие с минималността на |z|.

Cockoba: EAM April 23, 2010

Проблемът за крайност

Дадено: гарматика $G = (V, \Sigma, P, S)$

Въпрос: $|L(G)| < \infty$?

Нека n е числото от Pumping лемата.

Изпълнено е: $|L(G)| = \infty \Leftrightarrow \exists z \in L(G) : n \leq |z| < 2n$

Пълно изчепване алгоритъм:

Проблемът за принадлежностт
с за всички думи z с дължина $n \leq |z| < 2n$.

Bpeme:
$$\mathcal{O}\left(8 \cdot 2^{3|V|} \cdot |\mathbf{\Sigma}|^{2 \cdot 2^{|V|}}\right)$$

Забележка: Има и по-ефективен алгоритъм.

Разрешими проблеми за DstackA

 \square Еквивалентност: $L(K_1) = L(K_2)$?

Неразрешими проблеми за CFG

- \square $L(G_1) \cap L(G_2) = \emptyset$? Нямат общи елементи
- $\square |L(G_1) \cap L(G_2)| = \infty?$
- \square $L(G_1) \cap L(G_2)$ контекстно-свободен?
- \square $L(G_1) \subseteq L(G_2)$?
- $\square L(G_1) = L(G_2)?$
- \square Нееднозначност: $\exists x \in L(G) : |\{\text{syntax tree}(x)\}| \ge 2$
- \square Дали L(G) е контекстно-свободен?
- \square Дали L(G) е регулярен?
- \square Дали L(G) е дет. контекстно-свободен?

Неразрешимост на $L(G_1) \cap L(G_2) = \emptyset$?

Paspeшaвame PCP- Post Correspondence System

$$K = (x_1, y_1) \cdots (x_k, y_k) \in (\{a, b\}^* \times \{a, b\}^*)^*$$
 с помощта на disjoint (G_1, G_2) :

Дефинираме $\Sigma = \{a, b, 1, \dots, k\}$

$$G_1 = (\{S\}, \Sigma, P_1, S),$$

$$G_2 = (\{S\}, \Sigma, P_2, S),$$
 където

$$P_1 = \{S \rightarrow iSx_i, S \rightarrow ix_i : i \in 1..k\}$$

$$P_2 = \{S \rightarrow iSy_i, S \rightarrow iy_i : i \in 1..k\}$$

$$L(G_1) = \{i_n \cdots i_1 x_{i_1} \cdots x_{i_n} : i_{\ell} \in 1..k\}$$

$$L(G_2) = \{i_n \cdots i_1 y_{i_1} \cdots y_{i_n} : i_{\ell} \in 1..k\}$$

$$L(G_1) \cap L(G_2) \neq \emptyset$$

T.T.K..

$$\exists i_1, \dots i_n : x_{i_1} \cdots x_{i_n} = y_{i_1} \cdots y_{i_n}$$
 т.т.к. K има решение.