Часть 6

ОСНОВЫ КЛАССИЧЕСКОЙ ТЕОРИИ ИНФОРМАЦИИ

Классическая энтропия. Биты и наты

Классические компьютеры работают в двоичной логике "1" и "0" (есть напряжение в ячейке или нет). В этом случае считают, что каждая ячейка содержит один бит информации. Регистр из N ячеек, очевидно, содержит N бит информации. С их помощью можно записать 2^N сообщений. Если сообщения равновероятны, то вероятность каждого сообщения $w_N=1/2^N$. Введем информационную энтропию по формуле: $H=-\log_2 w_N$. Для нашего простейшего случая H=N. На самом деле, есть сообщения более вероятные и менее вероятные. Поэтому Клод Шеннон обобщил информационную энтропию следующим образом:

$$H=-\sum_{N}w_{N} \ln (w_{N}).$$

Последняя формула записана через натуральный логарифм, а не через \log_2 . Поэтому информацию по Шеннону измеряют в "натах":

$$1$$
бит = 1 нат/ $\ln 2 \approx 1,44$ нат.

Энтропия и информация

Вернемся к записи сообщений в регистр из N ячеек. Если все сообщения равновероятны, то до прочтения содержания регистра мы не имеем никакой информации о том, какое из 2^N сообщений в нем записано. Пусть I — мера информации. Тогда до прочтения регистра $I_{in}=0$, но энтропия $H_{in}=N$. Когда сообщение из регистра прочитано, то мы стали обладать информацией в N бит, то есть $I_{fin}=N$. При этом мы точно знаем, какое сообщение записано в регистре. Поэтому $w_{N \ fin}=1 \Rightarrow H_{fin}=0$. Таком образом, в нашем примере выполняется следующее равенство

$$H_{in} + I_{in} = N = H_{fin} + I_{fin}$$
.

В общем случае, связь энтропии и информации задается следующим образом: H + I = const

или $\Delta H = -\Delta I$.

Следовательно, шенноновскую информационную энтропию можно рассматривать как меру недостатка информации о классической системе. Чем меньше энтропия, тем больше информация. В этом случае говорят о том, что система упорядочена. Чем больше энтропия, тем меньше информации о системе. Часто говорят о том, что система приближается к состоянию хаоса. 105 / 250

Декогеренция и парадокс кота Шредингера

С понятием энтропии тесно связан вопрос о переходе суперпозиции состояний в смесь состояний.

Пусть живой котик помещен в непрозрачный ящик с атомом в возбужденном состоянии. У атома (для простоты) имеются всего две возможности: 1) остаться в возбужденном состоянии; 2) испустить фотон и перейти в основное состояние. Предположим, что испущенный фотон всегда попадает в гранату, которая, непременно, взрывается после поглощения фотона, и, естественно, убивает котика своими осколками.

Пусть $\hat{\rho}_1$ – матрица плотности системы, когда атом не излучал, граната не взорвалась и котик жив. А $\hat{\rho}_2$ – матрица плотности для случая, когда атом излучил фотон, граната взорвалась и котик погиб ради идеалов абстрактной науки.

Из раздела "Суперпозиция или смесь!" ясно, что матрица плотности системы "атом + граната + котик" описывается либо смесью, либо суперпозицией матриц плотности $\hat{\rho}_1$ и $\hat{\rho}_2$.

Если в любой момент времени экспериментатор Аленушка откроет непрозрачный ящик, то она увидит либо живого, либо (печалька!) мертвого котика, но никогда живо-мертвого или мертво-живого. То есть, Аленушка всегда увидит смесь макроскопически различных состояний, но никогда не увидит их суперпозицию. Вопрос: почему так происходит, ведь ясно, что атом находился в суперпозиции состояний? Где и как произошла декогеренция и суперпозиция превратилась в смесь?

Короткий ответ на поставленные вопросы: во всем виновато наше... Солнце!

В более развернутой форме. Все предметы на Земле, в том числе и макроприборы, находятся в потоке излучения Солнца, который у поверхности Земли составляет $\frac{\Delta Q}{\Delta t} \approx 1,4\cdot 10^6~{\rm spr/cm^2~cek}$ (так называемая солнечная постоянная). Этот поток излучения, в конечном счете, преобразуется в тепловую энергию атомов и молекул со средней температурой $< T > \sim 300~{\rm K}$. Тогда поток изменения энтропии от Солнца (в битах!) у поверхности Земли равен:

$$\frac{\Delta H_{\odot}}{\Delta t} \sim -\frac{1}{\Delta t}\,\frac{\Delta Q}{k_B < \mathcal{T} >} = -\,\frac{1}{k_B < \mathcal{T} >}\,\frac{\Delta Q}{\Delta t} \approx -\,3\cdot 10^{19}\,\frac{\text{Gut}}{\text{cm}^2\,\text{cek}},$$

где k_B — постоянная Больцмана. Потоку солнечной энтропии должен соответствовать поток информации

$$\frac{\Delta I_{\odot}}{\Delta t} = -\frac{\Delta H_{\odot}}{\Delta t} \, \approx \, 3 \cdot 10^{19} \, \frac{\text{dut}}{\text{cm}^2 \, \text{cek}}.$$

В этом потоке информации "купаются" все макроприборы. Взаимодействие с потоком информации от Солнца приводит к постоянному измерению состояния макроприбора внешней средой и, следовательно, к редукции матрицы плотности макроприбора. Но редукция матрицы плотности макроприбора автоматически приводит к редукции запутанной (в смысле модели измерения фон Неймана) матрицы плотности "микросистема + макроприбор" (в рассматриваемом случае это матрица плотности $\hat{\rho}$ системы "атом + граната + котик").

Оценим время Δt_R между актами редукции. Чтобы произошла редукция, необходимо передать информацию о состоянии макроприбора. Минимальное количество требуемой информации – 1 бит. Поэтому:

$$1$$
 бит $\sim \frac{\Delta I_{\odot}}{\Delta t} \, \Delta t_R \, L^2$,

где L — характерный размер макроприбора. Примем $L=10\,$ см. Тогда

$$\Delta t_R \sim 3 \cdot 10^{-22} \text{ cek}.$$

Это время необходимо сравнить с характерным временем срабатывания макроприбора. Даже для лучших макроприборов оно не превосходит $\Delta t_D \sim 10^{-10}$ сек.

Поэтому, пока макроприбор производит одно измерение над микросистемой, в объединенной системе происходит порядка $\Delta t_D/\Delta t_R\approx 10^{11}$ актов редукции. Столько же раз меняется относительная фаза между состояниями $\hat{\rho}_1$ и $\hat{\rho}_2$! Следовательно, процесс измерения должен включать в себя усреднение по огромному числу этих различных относительных фаз. Основываясь на данной оценке и результатах раздела "Суперпозиция или смесь!" приходим к выводу, что в земных условиях появление мертво-живых и живо-мертвых котиков маловероятно. Этим и разрешается парадокс кота Шредингера.

Парадокс был предложен Э.Шредингером в 1935 году в процессе полемики вокруг другого парадокса — парадокса Эйнштейна-Подольского-Розена — и, по вполне понятным причинам, получил название парадокса кота Шредингера.

Граница между мирами

Исходя из представленной выше модели декогеренции мы способны оценить масштаб, начиная с которого систему уже можно считать микроскопической и применять к ней квантовые законы.

Согласно соотношению неопределенностей, $\Delta p \Delta x \sim \hbar$. Положим $\Delta x \sim L$, а характерное изменение импульса оценим как:

$$\Delta p \sim \mathit{mv} \sim \mathit{m} \frac{\mathit{L}}{\Delta \mathit{t}_R} \sim \rho \, \mathit{L}^3 \, \mathit{L} \, \frac{\Delta \mathit{I}_{\odot}}{\Delta \mathit{t}} \, \mathit{L}^2 = \rho \, \frac{\Delta \mathit{I}_{\odot}}{\Delta \mathit{t}} \, \mathit{L}^6,$$

гдн ρ — характерная плотность тела. Таким образом:

$$rac{
ho}{\hbar} rac{\Delta I_{\odot}}{\Delta t} L^7 \sim 1 \quad \Rightarrow \quad L \sim \left(rac{\hbar}{
ho} rac{1}{\Delta I_{\odot}/\Delta t}
ight)^{1/7}.$$

Если принять $\rho \sim 10$ гр/см 3 , то $L \sim 10^{-7}$ см $\ll 10^{-4}$ см — длины волны видимого света. Таким образом, квантовые явления нельзя видеть невооруженным глазом. Заметим, что L порядка размеров типичных молекул.

А так "на самом деле" выглядит граница между квантовым и классическим мирами по мнению знакомого нам W.Zurek-а – одного из авторов "No-cloning theorem".

Или так, пока наблюдатель на границе спит...

Ограничения на величину шенноновской энтропии

Введенную выше энтропии по Шеннону $H=-\sum\limits_{N}w_{N}\;\ln\left(w_{N}\right)$ мож-

но определить более строго (как это принято в теории информации). Пусть имеется набор из N величин x_ℓ , каждая из которых может появляться с вероятностью $1 \geq w(x_\ell) \geq 0$ (например, буквы в тексте, грани несимметричной игральной кости и т.д.). Тогда говорят, что задан ансамбль $X = \{x_\ell, w(x_\ell)\}$, шенноновская энтропия которого есть

$$H(X) = -\sum_{\ell=1}^N w(x_\ell) \, \ln \big(w(x_\ell) \big), \quad$$
 где $\sum_{\ell=1}^N w(x_\ell) = 1.$

Поскольку все $w(x_\ell)$ неотрицательны и не превосходят единицы, то очевидно, что $H(X) \geq 0$. Равенство достигается, когда $w(x_k) = 1$ и $w(x_1) = \ldots = w(x_{k-1}) = w(x_{k+1}) = \ldots = w(x_N) = 0$.

Теперь найдем максимальное значение энтропии H(X). Из условия нормировки вероятности имеем:

$$w(x_N) = 1 - \sum_{\ell=1}^{N-1} w(x_\ell).$$

Тогда энтропию можно записать в виде

$$H(X) = -\sum_{\ell=1}^{N-1} w(x_{\ell}) \ln(w(x_{\ell})) - w(x_{N}) \ln(w(x_{N})).$$

При $k \neq N$ с учетом условия нормировки получаем

$$\frac{\partial}{\partial w(x_k)}\left(w(x_N)\,\ln\left(w(x_N)\right)\,\right)\,=\,-\,\ln\left(w(x_N)\right)\,-\,1.$$

Максимум H(X) находим из условия

$$0 = \frac{\partial H(X)}{\partial w(x_k)} = \ln(w(x_N)) - \ln(w(x_k)).$$

Таким образом, $w(x_k) = w(x_N)$. Поскольку k пробегает любые целые значения от 1 до N-1, то максимум функции H(X) достигается, когда вероятности $w(x_1) = w(x_2) = \ldots = w(x_{N-1}) = w(x_N) = 1/N$. И этот максимум равен $H_{max}(X) = -N \frac{1}{N} \ln \left(\frac{1}{N} \right) = \ln (N)$.

Из вышесказанного следует, что энтропия Шеннона H(X) лежит в диапазоне

$$0 \leq H(X) \leq \ln(N)$$
.

где N - количество элементов в ансамбле X.

Двоичная энтропия

В теории информации (как классической, так и квантовой) важную роль играет ансамбль X_2 , который состоит всего из двух элементов x_1 и x_2 , каждый из которых возникает с вероятностью $W(x_1)=\rho$ и $W(x_2)=1-\rho$ соответственно $(0\leq \rho\leq 1)$. Энтропия такого ансамбля

$$H(X_2) \equiv H(p) = -p \ln p - (1-p) \ln (1-p)$$

носит название двоичной энтропии.

Очевидно, что двоичная энтропия обладает симметрией относительно значения p=1/2, то есть

$$H(p) = H(1-p).$$

Легко проверить, что максимальное значение двоичной энтропии $H_{max} = \ln 2$ достигается при p=1/2, минимальное — $H_{min}=0$ — при p=0 и p=1 в полном согласии с общими ограничениями, полученными на предыдущей странице.

График функции H(p) ведет себя следующим образом:

Из графика видно, что двоичная энтропия является вогнутой функцией (то есть любая прямая, соединяющая две точки на графике лежит ниже графика самой функции H(p)). Отсюда сразу получаем, что

$$H(px_1 + (1-p)x_2) \ge pH(x_1) + (1-p)H(x_2).$$

Равенство достигается только если $x_1 = x_2$ или p = 0, или p = 1. Данное свойство называется вогнутостью двоичной энтропии.

Неравенство Йенсена и вогнутость энтропии Шеннона

Свойство вогнутости можно сформулировать математически более строго. Функция f(x) называется вогнутой при $x \in [a, b]$, если $f_{xx}^{''} \leq 0$.

Для вогнутой функции выполняется следующее неравенство, которое носит название неравенства Йенсена. Пусть функция f(x) вогнутая на интервале [a, b] и пусть точки $x_1, ..., x_n$ принадлежат этому интервалу. Кроме того, пусть $w_1, ..., w_n$ — некоторые положительные числа, удовлетворяющие условию $\sum_{\ell=1}^n w_\ell = 1$. Тогда:

$$f\left(\sum_{\ell=1}^n w_\ell x_\ell\right) \geq \sum_{\ell=1}^n w_\ell f(x_\ell).$$

Элементарное доказательство этого факта можно найти, например, на стр.10 книги Ю. П. Соловьёва "Неравенства", Издательство Московского центра непрерывного математического образования, Москва, 2005 г.

Наконец, в качестве функции f(x) рассмотрим функцию $f(x) = -x \ln x$. Легко проверить, что эта функция является вогнутой при $x \geq 0$. Тогда неравенство Йенсена приводит к свойству вогнутости для энтропии Шеннона: $H\left(\sum_{\ell=0}^n w_\ell x_\ell\right) \geq \sum_{\ell=0}^n w_\ell H\left(x_\ell\right).$

178 / 250

Классическая относительная энтропия и неравенство Гиббса

Пусть теперь для величин x_ℓ существуют два различных набора вероятностей $P=\{x_\ell,\ p(x_\ell)\}$ и $Q=\{x_\ell,\ q(x_\ell)\}$, где $0\leq p(x_\ell)\leq 1$, $0\leq q(x_\ell)\leq 1$ и $\sum\limits_{\ell=1}^N p(x_\ell)=\sum\limits_{\ell=1}^N q(x_\ell)=1.$ Тогда классической относительной энтропией распределения "P" относительно распределения "Q" (relative entropy) называется величина

$$H(P || Q) = -\sum_{\ell=1}^{N} p(x_{\ell}) \ln q(x_{\ell}) - H(P) = \sum_{\ell=1}^{N} p(x_{\ell}) \ln \left(\frac{p(x_{\ell})}{q(x_{\ell})}\right).$$

С аналогичной величиной мы уже встречались в разделе "Количественное сравнение квантовых состояний". И там эта величина носила название метрики Кульбака-Лейблера.

Поэтому H(P || Q) нужно рассматривать как классическую меру различия двух вероятностных распределений одного и того же набора величин $\{x_\ell\}$.

В дальнейших вычислениях всегда будем полагать, что $0 \ln 0 = 0$ и $-p(x_\ell) \ln 0 = +\infty$.

Теперь докажем, что классическая относительная энтропия неотрицательна, т.е. что

$$H(P || Q) \geq 0.$$

Это неравенство называется неравенством Гиббса. Доказательство основано на простом факте, что при $x \ge 0$ верно неравенство $-\ln x \ge 1-x$ (проверьте это самостоятельно при помощи разложения в ряд Тейлора). Тогда:

$$egin{array}{lll} Hig(P\,||\,Qig) &=& -\sum_{\ell=1}^N p(x_\ell)\,\ln\left(rac{q(x_\ell)}{p(x_\ell)}
ight)\,\geq\,\sum_{\ell=1}^N p(x_\ell)\,\left(1-rac{q(x_\ell)}{p(x_\ell)}
ight)\,= \ &=& \sum_{\ell=1}^N p(x_\ell)\,-\,\sum_{\ell=1}^N q(x_\ell)\,=\,1-1=0, \quad extbf{4.1.д.} \end{array}$$

Равенство достигается, когда оба распределения совпадают, т.е. когда $p(x_\ell) = q(x_\ell)$. Неравенство Гиббса удобно использовать для исследования свойств других энтропийных величин.

Классическая совместная энтропия и субаддитивность

Пусть имеется два набора случайных величин $X = \{x_\ell\}$ и $Y = \{y_m\}$, для которых определены совместные вероятности $w(x_\ell, y_m)$. Тогда для этих наборов естественно определить понятие классической совместной энтропии (joint entropy)

$$H(X, Y) = -\sum_{\ell, m} w(x_{\ell}, y_{m}) \ln w(x_{\ell}, y_{m}).$$

Поскольку
$$w(x_\ell,\,y_m)=w(y_m,\,x_\ell)$$
 и $\sum\limits_{\ell,\,m}\ldots=\sum\limits_{m,\,\ell}\ldots$, то

$$H(X, Y) = H(Y, X).$$

Совместная энтропия является мерой полной неопределенности для пары наборов случайных величин (X, Y). Она обладает свойством субаддитивности (доказательство будет дано позже)

$$H(X, Y) \leq H(X) + H(Y).$$

Равенство достигается, когда наборы X и Y являются независимыми, т.е. когда $w(x_{\ell}, y_m) = w(x_{\ell}) w(y_m)$.

Очевидно, что понятие совместной энтропии может быть расширено на любое число наборов случайных величин.

Условная вероятность и теорема Байеса

Обозначим через $w\left(y_{m}|x_{\ell}\right)$ – условную вероятность найти величину y_{m} при условии, что величина x_{ℓ} уже известна. Тогда по теореме Байеса

$$w(y_m|x_\ell) = \frac{w(y_m, x_\ell)}{w(x_\ell)} = \frac{w(x_\ell, y_m)}{w(x_\ell)}.$$

При этом

$$w(y_m) = \sum_{\ell} w(y_m, x_{\ell}) = \sum_{\ell} w(y_m|x_{\ell}) w(x_{\ell})$$

и

$$w(x_{\ell}) = \sum_{m} w(x_{\ell}, y_{m}) = \sum_{m} w(x_{\ell}|y_{m}) w(y_{m}).$$

Из теоремы Байеса сразу следует, что

$$w(x_{\ell}|y_m) w(y_m) = w(x_{\ell}, y_m) = w(y_m, x_{\ell}) = w(y_m|x_{\ell}) w(x_{\ell}).$$

Классическая условная энтропия

Распишем выражение для совместной энтропии с учетом теоремы Байеса. Имеем:

$$H(X, Y) = -\sum_{\ell,m} w(x_{\ell}, y_{m}) \ln w(x_{\ell}, y_{m}) =$$

$$= -\sum_{\ell,m} w(x_{\ell}, y_{m}) \ln \left(w(y_{m}|x_{\ell}) w(x_{\ell}) \right) =$$

$$= -\sum_{\ell,m} w(x_{\ell}, y_{m}) \ln w(y_{m}|x_{\ell}) - \sum_{\ell,m} w(x_{\ell}, y_{m}) \ln w(x_{\ell}) =$$

$$= -\sum_{\ell,m} w(y_{m}, x_{\ell}) \ln w(y_{m}|x_{\ell}) - \sum_{\ell} w(x_{\ell}) \ln w(x_{\ell}) =$$

$$= H(Y|X) + H(X).$$

Величина

$$H(Y|X) = -\sum_{\ell,m} w(y_m, x_{\ell}) \ln w (y_m|x_{\ell}) =$$

$$= -\sum_{\ell} w(x_{\ell}) \sum_{m} w (y_m|x_{\ell}) \ln w (y_m|x_{\ell}) = \sum_{\ell} w(x_{\ell}) H(Y|x_{\ell})$$

называется классической условной энтропией (conditional entropy) или общей классической условной энтропией.

А величина

$$H(Y|x_{\ell}) = -\sum_{m} w(y_{m}|x_{\ell}) \ln w(y_{m}|x_{\ell})$$

носит название частной классической условной энтропии.

Функция H(Y|X) служит мерой неопределенности ансамбля Y при известном значении ансамбля X. А функция $H(Y|x_{\ell})$ служит мерой неопределенности ансамбля Y при известном значении случайной величины x_{ℓ} .

Поскольку
$$0 \le w\left(y_m|x_\ell\right) \le 1$$
, то $-\ln w\left(y_m|x_\ell\right) \ge 0$. Поэтому

$$H(Y|X) \ge 0$$
 u $H(Y|x_{\ell}) \ge 0$.

Аналогично величине H(Y|X) можно определить классическую условную энтропию H(X|Y) из соотношения:

$$H(X|Y) = H(X, Y) - H(Y).$$

Очевидно, что $H(X|Y) \ge 0$.

Доказательство субаддитивности

Выше было получено, что $H(Y|X) \ge 0$ и $H(X|Y) \ge 0$. Отсюда немедленно следуют неравенства:

$$H(X, Y) \ge H(X)$$
 u $H(X, Y) \ge H(Y)$.

Теперь исполним обещание и докажем субаддитивность энтропии. Для этого воспользуемся неравенством Гиббса. Рассмотрим наборы $P = \{x_\ell, y_m, w(x_\ell, y_m)\}$ и $Q = \{x_\ell, y_m, w(x_\ell) w(y_m)\}$. Тогда:

$$0 \leq H(P||Q) = -\sum_{\ell, m} w(x_{\ell}, y_{m}) \ln \left(\frac{w(x_{\ell}) w(y_{m})}{w(x_{\ell}, y_{m})}\right) =$$

$$= -\sum_{\ell} \ln w(x_{\ell}) \sum_{m} w(x_{\ell}, y_{m}) - \sum_{m} \ln w(y_{m}) \sum_{\ell} w(x_{\ell}, y_{m}) +$$

$$+ \sum_{\ell, m} w(x_{\ell}, y_{m}) \ln w(x_{\ell}, y_{m}) = -\sum_{\ell} w(x_{\ell}) \ln w(x_{\ell}) -$$

$$- \sum_{m} w(y_{m}) \ln w(y_{m}) - H(X, Y) = H(X) + H(Y) - H(X, Y).$$

Неравенство доказано. Окончательно получаем, что

$$2 \cdot H(X, Y) \ge H(X) + H(Y) \ge H(X, Y).$$

Классическая взаимная информация

Классической взаимной информацией (mutual information) называется информация, которая является общей для наборов X и Y. Она записывается в виде:

$$I(X : Y) = H(X) + H(Y) - H(X, Y).$$

откуда немедленно следует, что $I(X:Y) \geq 0$ (см. неравенство в конце предыдущего слайда). По своему определению I(X:Y) должна быть симметричной функцией наборов X и Y, то есть:

$$I(X:Y) = I(Y:X) \geq 0.$$

Отметим полезное равенство

$$I(X : Y) = H(X) - H(X|Y) = H(Y) - H(Y|X).$$

Из этого равенства и неотрицательности взаимной информации сразу получаем, что

$$H(X) \ge H(X|Y)$$
 u $H(Y) \ge H(Y|X)$.

Заметим, что взаимная информация НЕ обладает свойством субаддитивности, т.е.

$$I(X, Y : Z) \nleq I(X : Z) + I(Y : Z).$$

Наглядная связь между различными энтропиями и взаимной информацией

Сильная субаддитивность

Довольно очевидно, что можно узнать больше информации о наборе X, если известна информация о наборах Y и Z, которые каким то образом связанны с набором X (например, при помощи совместных распределений вероятностей или найденных на опыте эмпирических корреляций), чем когда известна информация только об одном таком наборе Y. В силу соотношения между энтропией и информацией для условной энтропии должно иметь место обратное неравенство

$$H(X|Y,Z) \leq H(X|Y).$$

Распишем правую и левую части данного неравенств согласно определению условной энтропии. Имеем

$$H(X|Y,Z) = H(X,Y,Z) - H(Y,Z)$$
 in $H(X|Y) = H(X,Y) - H(Y)$.

Отсюда немедленно получаем свойство сильной субаддитивности для энтропии Шеннона

$$H(X,Y,Z) + H(Y) \leq H(H,Y) + H(Y,Z).$$