Kolektif Öğrenme Modelleri Karşılaştırma Yöntemleri

- •Weka'nın tanıtımı
- •Bir Deneyim

Weka Experimenter

- İhtiyacımız olanlar:
- Weka 3.6.0 sürümü
- Dersin web sitesindeki
 - 36 veri kümesi
 - ext standart.exp dosyası (konfigürasyon)
 - ext_standart.arff dosyası (sonuçlar)

ext_standart.exp dosyasını yüklediğinizde

ext_standart.arff dosyasını yüklediğinizde

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

• İlk alg. yerine başka bir alg. a göre başarıları görmek istersek test base i açıp istediğimiz algoritmayı seçip perform test deriz.

• Toplu karşılaştırma yapmak içinse, test base den summary ya da ranking i seçip perform test deriz.

Summary i seçersek

Ranking i seçersek

Algoritmaları şu ana dek percent correct leri üzerinden karşılaştırdık. Bunu değiştirmek için comparison field i kullanırız. Buna göre algoritmaları eğitim, test zamanı vb. ölçütlere göre benzer şekilde karşılaştırabiliriz.

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Our Motivation

- In literature,
 - Several works show higher performances of ensemble algorithms over single algorithms.
 - Lack of run time comparisons
- In this work, we compared single and ensemble algorithms in terms of accuracy and run time.
- Our results can provide clues to the algorithm selection process when the run time is another important factor.
- In this work, we also investigate the similarities of the algorithms and the datasets according to the performances.

Experimental Settings

- 36 UCI dataset
- 11 single, 12 ensemble algorithms
- 5*2 cross validation
- Default parameters
- The number of base learners in ensemble algorithms: 100

Dataset name	The number of features	The number of classes	The number of Samples	Dataset name	The number of features	The number of classes	The number of Samples
abalone	11	19	4153	iris	5	3	150
Anneal	63	4	890	kr-vs-kp	40	2	3196
audiology	70	5	169	labor	27	2	57
Autos	72	5	202	letter	17	26	20000
balance-scale	5	3	625	lymph	38	2	142
breast-cancer	39	2	286	mushroom	113	2	8124
breast-w	10	2	699	primary-tumor	24	11	302
col10	8	10	2019	ringnorm	21	2	7400
Colic	61	2	368	segment	19	7	2310
credit-a	43	2	690	sick	32	2	3772
credit-g	60	2	1000	sonar	61	2	208
d159	33	2	7182	soybean	84	18	675
diabetes	9	2	768	splice	288	3	3190
Glass	10	5	205	vehicle	19	4	846
heart-statlog	14	2	270	vote	17	2	435
hepatitis	20	2	155	vowel	12	11	990
hypothyroid	32	3	3770	waveform	41	3	5000
ionosphere	34	2	351	Zoo	17	4	84

Computer Engineering Dept.

Single Algorithms

Algorithm Name	Abbreviation	
Zero Rule	ZR	
Naïve Bayes	NB	
Support Vector Machines	SMO	
One Nearest Neighbor	KNN	
C4.5 Decision Tree	J48	
Functional Trees	FT	
Random Tree	RT	
Fast decision tree learner	REPT	
Classification and Regression Trees	CART	
Best First Tree	BFT	
Multiclass Alternating Decision Tree	LADT	
Naïve Bayes Tree	NBT	

Ensemble Algorithms

Algorithm Name	Abbre- viation	Base Learner
AdaBoost	ADB	Decision Stump
Bagging	BG	REPT
Random Forest	RNDF	Random Tree
Rotation Forest	ROTF	J48
Dagging	DG	SMO
Decorate	DEC	J48
Ensemble of nested dichotomies	END	nested dichotomies
LogitBoostAB	LB	Decision Stump
MultiBoostAB	MB	Decision Stump
Random Committee	RC	Random Tree
Random Subspace	RS	REPT

Performance Measures

- Average Rank: For each dataset, the performances of ensembles are ranked from 1 (the best) to 23 (the worst). Then all ranks are averaged over all datasets for each algorithm.
- Ranking test count: The ranking test ranks the algorithms according to the total significant wins and significant losses against the other algorithms. Each algorithm is compared with all the other algorithms. The ranking test count is the difference between the number of significant wins and the number of significant losses. The significances is determined by using a "t-test".

Algorithms' Average Ranks and Ranking Test Counts

Algorithm Abbreviation	Average Rank	Ranking Test Count
ZR	21.9130	-719
NB	12.7391	-148
SMO	10.2174	-14
KNN	16.4348	-133
J48	14.2174	24
FT	12.4348	50
RT	18.5217	-135
REPT	15.3478	-4
CART	13.1304	40
BFT	13.6957	36
LADT	10.8696	123
NBT	14.0435	61

Algorithm Abbreviation	Average Rank	Ranking Test Count
ADB	13.5652	-246
BG	8.5217	141
RNDF	5.3913	227
ROTF	4.1304	289
DG	12.5652	-127
DEC	7.8261	176
END	11.5652	126
LB	8.3043	179
MB	13.3913	-294
RC	6.9130	228
RS	10.2609	120

Yıldız Technical University Computer Engineering Dept.

The Best Algorithms

- According to average rank: Rotation Forest (ROTF), Random Forest (RNDF), Random Committees (RC), Decorate (DEC), Bagging (BG), Logit Boost (LB)
- Meaningful difference according to Nemenyi test:
 5.781= 3.616*sqrt((23*24)/(6*36))
- According to average ranking test count: Rotation Forest (ROTF), Random Committees (RC), Random Forest (RNDF), Logit Boost (LB), Decorate (DEC), Bagging (BG)

The Best Algorithms

- All of the 6 best performed algorithms are ensemble algorithms. (Parallel with the current literature)
- The best performed single algorithm is Support Vector Machines (SMO) according to average rank
- The best performed single algorithm is Multiclass Alternating Decision Tree (LADT) according to ranking test count

t-pair test results of 6 best performing algorithms

The first number represents the number of wins for the column with regard to the row. The second number is the number of significant wins.

	BG	RNDF	ROTF	DEC	LB	RC
BG	-	29(7)	32(8)	25(3)	20(5)	28(6)
RNDF	7(0)	-	25(6)	11(0)	8(2)	15(1)
ROTF	4(0)	10(0)	_	3(0)	9(0)	10(0)
DEC	11(1)	25(3)	32(6)	-	17(4)	25(4)
LB	15(4)	27(4)	27(5)	19(3)	-	25(4)
RC	8(0)	20(0)	26(5)	11(1)	10(2)	_

Speed is another important criterion

Training / Testing Times of the Algorithms on 3

datasets (the values are in seconds)

Algorithm	letter	mushroom	splice
ZR	0.01/0.09	0.00/0.03	0.00/0.01
NB	0.09/3.46	0.20/1.02	0.16/1.25
SMO	40.52/1.17	3.64/0.06	7.20/0.06
KNN	0.00/21.85	0.00/19.41	0.00/31.67
J48	1.84/0.17	0.65/0.03	0.96/0.01
FT	682.7/228.71	14.86/0.09	35.79/6.86
RT	0.29/0.06	0.07/0.04	0.11/0.02
REPT	0.52/0.05	0.40/0.03	0.55/0.01
CART	12.80/0.04	4.56/0.01	5.76/0.01
BFT	27.63/0.05	3.45/0.01	5.23/0.01
LADT	1064.09/0.20	139.43/0.02	144.21/0.01

Algorithm	letter	mushroom	splice
NBT	247.59/12.03	169.94/0.25	620.42/0.39
ADB	0.17/0.07	20.49/0.05	2.06/0.02
BG	36.98/1.13	30.86/0.06	55.49/0.04
RNDF	25.94/2.62	6.66/0.20	7.90/0.27
ROTF	289.57/69.86	250.6/348.7	324.2/442.7
DG	330.54/12.14	3.17/0.53	4.57/0.55
DEC	2160.04/3.51	200.82/0.08	587.15/0.05
END	525.17/222.5	0.79/0.66	4.01/0.64
LB	266.90/1.71	48.20/0.08	66.84/0.05
MB	0.18/0.05	20.04/0.04	2.05/0.01
RC	27.12/2.87	7.01/0.22	9.15/0.30
RS	27.74/3.25	20.76/1.24	37.60/0.89

Yıldız Technical University Computer Engineering Dept.

Run Times

- Among the 6 best performing algorithms (DEC, ROTF, LB, BG, RC, and RNDF), DEC and ROTF are the slowest algorithms over 3 largest datasets in term of training time. ROTF also needs very long testing time.
- RNDF and RC algorithms are the fastest algorithms over datasets among the 6 best performing algorithms.
- As a result, RNDF and RC algorithms can be considered as the best algorithms when accuracy and execution time are considered together.

Similarities of Algorithms

- Approach: considering each algorithm as a 36 dimensional point. 36 is the number of datasets.
- Each dimension corresponds to a performance of algorithm over a datasets.
- The similarities of the points were calculated using Euclidian distance metric. After the similarity values were obtained, the hierarchical clustering process was applied to have similar hierarchical groups.

Similarities of Algorithms

- Ensemble algorithms were grouped together.
- Decision tree based algorithms were grouped together.
- The similar ideas generate similar performances.

Similarities of Datasets

- Same approach with the Similarities of Algorithms. Each dimension of a dataset corresponds to the performance obtained by an algorithm with the dataset.
- Format: dataset name, # of features, # of classes, # of samples
- The most similar dataset pairs have similar sample, feature and class numbers. (red rectangles)
- Generally, datasets are grouped together according to their class numbers. (blue rectangle)

Conclusions

- 12 different ensemble algorithms, and 11 single classifiers are compared according to the accuracy and run times using a big dataset collection.
- Rotation Forest has the highest accuracy but it requires long run times.
- However, when accuracy and run time are considered together, Random Forest and Random Committees can be the best choices.

