Analog Electronic Circuits - 2015-2016 Design Project Report

1. Group data

Group number	8
Name - Student 1	Gauthier Duchêne
Name - Student 2	Nathan Dwek
Name - Student 3	Sacha Maes

2. Circuit Schematic

3. Performance summary

Metric	Units	Specification	Matlab	Spectre
C _{load}	рF	50		
DC gain	dB	48	52.53	51.86
f_{GBW}	MHz	70	82.72	84.69
Phase margin	0	>60	83.78	90.78
Output swing	V	>0.8	0.871	0.866
Dominant pole	kHz		195.4	191
Input common mode range	V			0.724
Current consumption (I _{DC,S1} + I _{DC,S2})	Α		1.89m	2.02m
FoM $(f_{GBW}.C_{load}/(I_{DC,S1}+I_{DC,S2}))$	MHz.pF/mA	Maximize	2184.4	2094
(input-referred noise)	V_{rms}	Minimize		1.3m

4. Device sizes and bias point parameters

Device	W [µm]	L [nm]	Ι _{ds} [μΑ]	V _{overdrive} [V]	g _m [S]	g _{ds} [S]	g _m /g _{ds} [-]	V _{ds,sat}	V _{ds} [V]
M_{p1}	497	212	241	0.05	5.4m	119u	43.8	-0.055	-0.508
M_{p2}	497	212	241	0.05	5.4m	119u	43.8	-0.055	-0.508
M _{n3}	75.1	400	241	0.128	4.53m	162u	28.7	0.073	0.252
M _{n4}	75.1	400	241	0.128	4.53m	162u	28.7	0.073	0.252
M _{p5}	229	500	1540	-0.2	12.5m	364u	23.8	-0.182	-0.681
M _{n6}	493	132	1540	0.01	35m	1339u	33.6	0.05	0.418
M _{p7}	80.4	500	482	-0.2	3.9m	246u	15	-0.184	-0.338
M _{p8}	0.767	500	4.51	-0.194	38u	1.64u	23.16	-0.176	-0.434