# Econ 600: taught by Prof. Shaowei Ke

### Linfeng Li llinfeng@umich.edu

August 25, 2015

#### Disclaimer

This is a personal note of mine. I will try to follow professor Ke's lecture as close as possible. However, neither is this an official lecture note, nor will Linfeng be responsible for any errors + typos. Nevertheless, corrections and suggestions are always welcomed.

As this lecture note will be maintained on Github, PLEASE:

- Use the "Issues" feature on Github to post suggestions;
- Feel free to fork this repo and send me pull requests.

Paragraphs starting with "Note that ..." are most likely my personal reflections. Please be aware of this.

## 1 Lecture 1: Logic, Sets and some Real Analysis<sup>1</sup>

#### 1.1 Logic

**Definition 1.1. Proposition** is a sentence that is either *true* or *false*. It cannot be both true and false.

Note: "true" and "false" may not necessarily be based on any (subjective) factual basis. However, to give a concrete example, contextually correct propositions are employed.

**Definition 1.2.** Logic Connectives:  $\wedge$  and  $\vee$ . Let P and Q be propositions

- Conjunction of P and Q is denoted as  $P \wedge Q$ ;
- Disjunction of P and Q is denoted as  $P \vee Q$ .
- Negation of P is denoted as:  $\neg P$ .

| P | Q | $P \wedge Q$ | $P \lor Q$ | $\neg P$ |
|---|---|--------------|------------|----------|
| 1 | 1 | 1            | 1          | 0        |
| 1 | 0 | 0            | 1          | 0        |
| 0 | 1 | 0            | 1          | 0        |
| 0 | 0 | 0            | 0          | 1        |

Table 1: Truth Table for logic connectives

**Truth Table** is vaguely defined, with each row being a possible "state of the world". On top of this,

**Definition 1.3** (Conditionals and Biconditionals). Let P, Q, R be propositions,

- 1. Conditional of P and Q is  $P \implies Q$ ;
- 2. Biconditional of P and Q is  $P \iff Q$ .

| P | Q | $P \implies Q$ | $P \iff Q$ |
|---|---|----------------|------------|
| 1 | 1 | 1              | 1          |
| 1 | 0 | 0              | 0          |
| 0 | 1 | 1              | 0          |
| 0 | 0 | 1              | 1          |

Table 2: Truth Table for Conditionals and Biconditionals

Note that, the two 1's are obtained for free. Conditional of P and Q are trivially true if P is false (thus the conditional is not entered, thereby cannot be disproved?). Additionally, from an external source ( $\leftarrow$  click me!):

←Check This.

Conditionals are FALSE only when the first condition (if) is true and the second condition (then) is false. All other cases are TRUE.

**Definition 1.4.** Two propositions are **equivalent** if they have the same truth table, denoted using " $\equiv$ ".

**Example 1.** Claim: that  $P \implies Q$  and  $\neg Q \implies \neg P$  are equivalent.

*Proof.* Refer to table 3: that by definition, the truth table of the two conditionals are the same.  $\Box$ 

Note, (it seems that)<sup>a</sup> truth tables are the same if the two "column vectors" denoting the true/false status are the same.

<sup>a</sup>Since "truth table" was not explicitly defined.

 $<sup>^{1}</sup>$  Relation, Function, Correspondence and Sequences in  $\mathbb{R}$ 

Table 3: Truth Table: equivalence of  $P \implies Q$  and  $\neg Q \implies \neg P$ 

| P | Q | $P \implies Q$ | $  \neg Q \implies \neg P$ |
|---|---|----------------|----------------------------|
| 1 | 1 | 1              | 1                          |
| 1 | 0 | 0              | 0                          |
| 0 | 1 | 1              | 1                          |
| 0 | 0 | 1              | 1                          |

**Definition 1.5** (Tautology). A proposition whose truth table consists only 1's is called **tautology**.

**Example 2.** Claim:  $Q \implies (P \implies Q)$  is a tautology.

*Proof.* Refer to Table 4

Table 4: Truth Table: Tautology

| P | Q | $P \implies Q$ | $Q \implies (P \implies Q)$ |
|---|---|----------------|-----------------------------|
| 1 | 1 | 1              | 1                           |
| 1 | 0 | 0              | 1                           |
| 0 | 1 | 1              | 1                           |
| 0 | 0 | 1              | 1                           |

Remark 1.6. We introduce the following 4 types of proof:

- 1. Direct proof: to follow the direction of the statement.
  - **Proposition**: For odd integers x, y, x + y is an even integer.
- 2. Proof by contrapositive: (restate the proposition and prove the easier direction).
  - **Proposition**: If  $n^2$  is an odd integer (P), then n is an odd integer.

*Proof.* Prove instead that: "if n is an even integer, then  $n^2$  is an even integer".

- 3. Proof by contradiction: (construct a structure that leads to contradiction between derived conditions and given conditions.).
  - That  $\sqrt{2}$  is rational number<sup>2</sup>.
- 4. Proving a "if and only if" statement/proposition to be true: either one of the following 4 are valid strategies:
  - (a)  $P \implies Q$  and  $Q \implies P$ ;
  - (b)  $P \implies Q$  and  $\neg P \implies \neg Q$ ;
  - (c)  $\neg Q \implies \neg P \text{ and } Q \implies P$ ;
  - (d)  $\neg Q \implies \neg P \text{ and } \neg P \implies \neg Q$ .

#### 1.2 Sets

Remark 1.7 (Russell's paradox). The barber is a man who shaves all those and only those who do not shave themselves.

In terms of set theory, let  $R = \{x : x \notin x\}$ , then:

$$R \in R \iff R \notin R$$

which is very problematic.

**Definition 1.8** (Sets). There are two definition of sets:

1. (Enumerating all elements)

A set is a collection of objects, e.g.  $\{1, 2, \ldots\}$  <sup>3</sup> or  $\{1, 2\}$  <sup>4</sup>.

 $<sup>^{2}</sup>$ The set of rational numbers is denoted as Q.

<sup>&</sup>lt;sup>3</sup>a countably infinite set.

<sup>&</sup>lt;sup>4</sup>a finite set.

2. (Describing properties to be satisfied by elements in the set)

If A is a set of all objects that satisfies property P, then we can write

$$A = \{x : P(x)\}$$

where the colon means "such that", and P(x) means that x satisfies property P.

Now, we can define the following **sets** using the two definitions of sets:

- (Natural Number)  $N = \{1, 2, \ldots\};$
- (Integer)  $Z = \{x : x = n \text{ or } x = -n \text{ or } x = 0, \text{ for some } n \in N\};$
- (Rational number)  $Q = \{x : x = \frac{m}{n}, m, n \in Z\}.$

**Definition 1.9** (Set Equality). Two sets A and B are equal if they have the same elements. That is:

$$A = B$$
 if and only if  $x \in A \iff x \in B, \forall x$ 

Note, that the notion  $\forall x$  was used sloppily here. Without loss of generality, it shall better be  $\forall x \in A \mid JB$ .

**Definition 1.10** (Set Containment). A set A is contained in a set B, denoted by  $A \subseteq B$ , if  $\forall x \in A \implies x \in B$ .

As a consequence, A = B if and only if  $A \subseteq B$  and  $B \subseteq A$ .

**Definition 1.11** (Cardinality (finite case)). If a set A has  $n \in N^5$  distinct elements, then n is the cardinality of A and we call A a finite set. The **cardinality of** A is denoted by |A|.

**Definition 1.12** (Empty set  $\emptyset$ ). The empty set is the set with no element.

**Definition 1.13** (Power set  $2^A$ ). Let A be a set. The **power set of** A is the collection of all subsets of A.

Note that, A is an arbitrary set. It could be finite, in which case  $2^A$  easy to envision; At the other extreme, it could be a uncountable set. Nevertheless, the following equality shall hold:

$$|2^A| = 2^{|A|}$$

**Example 3.** Let  $A = \{1, 3\}$ , then  $2^A = \{\emptyset, \{1\}, \{3\}, \{1, 3\}\}$ . In terms of notation, note that 1 is an element in A, thus  $1 \in A$ ; yet,  $\{1\}$  is a subset of A, thus  $\{1\} \subset A$ .

<sup>&</sup>lt;sup>5</sup>Natural number.

**Definition 1.14** (Operations on sets:  $\bigcup$ ,  $\bigcap$ ,  $\setminus$  and  $\cdot^c$ .). Let A and B be two sets:

- Union:  $A \bigcup B := \{x : x \in A \lor x \in B\};$
- Intersection:  $A \cap B := \{x : x \in A \land x \in B\};$
- A and B is disjoint if  $A \cup B = \emptyset$ ;
- Difference of A and B is defined as:  $A \setminus B := \{x \in A \land x \notin B\};$
- Complements of  $A: A^c := \{x : x \notin A\}.$

Side note: Index set I is a countable set.

$$\bigcup_{i \in I} A_i = \{x : x \in A_i \text{ for some } i \in I\}$$

**Definition 1.15** (de Morgan's law).

$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} \left(A_i^c\right) \text{ and } \left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} \left(A_i^c\right)$$

**Exercise 1.16.** Prove that  $(A \bigcup B)^c = A^c \cap B^c$ .

*Proof.* Prove mutual containment using element argument.

#### Counters reset

This is a side note

### 1.3 Relation, Function and Correspondence

**Definition 1.1** (Ordered pair). For two sets A and B, an ordered pair is (a, b) such that  $a \in A$  and  $b \in B$ .

**Definition 1.2** (*n*-taple). Let there be *n* sets:  $A_1, \ldots, A_n$ , an *n*-taple is  $(a_1, \ldots, a_n)$  such that  $a_i \in A_i$ ,  $\forall i = 1, 2, \ldots n$ .

**Definition 1.3** (Cartesian Product). Let  $A_1, \ldots, A_n$  be non-empty sets. Cartesian product of  $A_1, \ldots, A_n$  is  $A_1 \times \cdots \times A_n$ , defined as:

$$\Pi_{i=1}^n A_i = \{(a_1, \dots, a_n) : a_i \in A_i, \forall i = 1, \dots, n\}$$

**Definition 1.4** (Relation). A relation from set A to set B is a subset of  $A \times B$ , denoted by R.

$$aRb \iff (a,b) \in R$$

A relation on A is a subset of  $A \times A$ .

**Definition 1.5.** A relation  $R \subseteq A \times A$  is said to be:

- reflective if  $aRa \ \forall a \in A$ . (That is,  $(a, a) \in R, \ \forall a \in A$ .);
- complete if either aRb or bRa,  $\forall a, b \in A$ ;
- symmetric if  $\forall a, b \in A, aRb \implies bRa$ ;
- antisymmetric if  $\forall a, b \in A$ , aRb and  $bRa \implies a = b$ .
- transitive if  $\forall a, b, c \in A$  s.t. aRb and bRc, aRc (is implied).

Table 5: Property of common relations

|               | < | $ $ $\leq$ | $\mid$ $\in$ | $\subseteq$ | $\succeq$ |
|---------------|---|------------|--------------|-------------|-----------|
| reflective    | X | 1          | X            | 1           | 1         |
| complete      | X | 1          | X            | X           | 1         |
| symmetric     | X | X          | X            | X           | X         |
| antisymmetric | 1 | 1          | 1            | 1           | X         |
| transitive    | 1 | 1          | X            | 1           | ✓         |

Note that, < and  $\le$  are defined on  $\mathbb{R}$ ;  $\in$  and  $\subseteq$  are defined on sets;  $\succeq$  is preference relation that represents "weakly prefer".

Also note that, completeness implies reflectiveness.