

# Gate-level minimization

Computer Organization 502044

#### Acknowledgement

This slide show is intended for use in class, and is not a complete document. Students need to refer to the book to read more lessons and exercises. Students have the right to download and store lecture slides for reference purposes; Do not redistribute or use for purposes outside of the course.

[1] Morris R. Mano (Author), Michael D. Ciletti, [2019] **Digital Design: With an Introduction to the Verilog HDL**, chapter 3 - Gate level minimization, 5th Edition.

**™** trantrungtin.tdtu.edu.vn

#### Chapter Objectives



- 1. Simplification digital circuits
- 2. The map method
- 3. Don't care condition
- 4. NAND and NOR implementation
- 5. +Hardware language

# Syllabus

- 3.1 Introduction
- 3.2 The Map Method
- 3.3 Four-Variable K-Map
- 3.4 Product-of-Sums Simplification
- 3.5 Don't-Care Conditions

- 3.6 NAND and NOR Implementation
- 3.7 Other Two-Level Implementations
- 3.8 Exclusive-OR Function
- 3.9 Hardware Description Language

#### 3.1 Introduction

- Gate-level minimization is the design task of finding an optimal gate-level implementation of the Boolean functions describing a digital circuit.
- Computer-based logic synthesis tools can minimize a large set of Boolean equations efficiently and quickly.
- Why simplify?
  - Simpler expression uses fewer logic gates.
  - o Thus cheaper, uses less power, (sometimes) faster.

### 3.2 The Map Method

- The complexity of the digital logic gates
  - The complexity of the algebraic expression
- Logic minimization
  - Algebraic approaches: lack specific rules
  - The Karnaugh map
    - A simple straight forward procedure
    - A pictorial form of a truth table
    - Applicable if the # of variables < 7</li>
- A diagram made up of squares
  - Each square represents one minterm



### Review of Boolean Function

#### Boolean function

- Sum of minterms
- Sum of products (or product of sum) in the simplest form
- A minimum number of terms
- A minimum number of literals
- The simplified expression may not be unique

### Two-Variable Map

#### A two-variable map

- Four minterms
- $\circ$  x' = row 0; x = row 1
- y' = column 0; y = column 1
- A truth table in square diagram

Fig. 3.2(a): 
$$xy = m3$$

Fig. 3.2(b): 
$$x+y = x'y+xy' +xy = m1+m2+m3$$



Figure 3.1 Two-variable Map



Figure 3.2 Representation of functions in the map

#### A Three-variable Map

- A three-variable map
  - Eight minterms
  - The Gray code sequence
  - Any two adjacent squares in the map differ by only on variable
    - Primed in one square and unprimed in the other
    - e.g., m5 and m7 can be simplified
    - m5+m7 = xy'z + xyz = xz (y'+y) = xz

|                         | $m_0$ | $m_1$ | $m_3$ | $m_2$ |
|-------------------------|-------|-------|-------|-------|
| $m_4$ $m_5$ $m_7$ $m_6$ | $m_4$ | $m_5$ | $m_7$ | $m_6$ |

(a)



#### A Three-variable Map

- o m0 and m2 (m4 and m6) are adjacent
- om 0+ m2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'
- $\circ$  m4+ m6 = xy'z' + xyz' = xz' (y'+y) = xz'

|       |       |       |       | <b>\</b> \ \                    | 7      |       |      | <i>y</i> |
|-------|-------|-------|-------|---------------------------------|--------|-------|------|----------|
|       |       |       |       | x                               | 00     | 0 1   | 11   | 10       |
| $m_0$ | $m_1$ | $m_3$ | $m_2$ | 0                               | x'y'z' | x'y'z | x'yz | x'yz'    |
| $m_4$ | $m_5$ | $m_7$ | $m_6$ | $x \begin{cases} 1 \end{cases}$ | xy'z'  | xy'z  | xyz  | xyz'     |
|       |       |       |       |                                 |        |       | 7    | ,        |
|       | (:    | a)    |       |                                 |        | (     | b)   |          |

Fig. 3-3 Three-variable Map

• Example 3.1: simplify the Boolean function  $F(x, y, z) = \Sigma(2, 3, 4, 5)$ 

$$\circ$$
 F(x, y, z) =  $\Sigma(2, 3, 4, 5) = x'y + xy'$ 



Figure 3.4 Map for Example 3.1,  $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$ 

- Example 3.2: simplify  $F(x, y, z) = \Sigma(3, 4, 6, 7)$ 
  - $\circ$  F(x, y, z) =  $\Sigma$ (3, 4, 6, 7) = yz+ xz'



Figure 3.5 Map for Example 3-2;  $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$ 

#### Four adjacent Squares

- Consider four adjacent squares
  - 2, 4, and 8 squares
  - 0 m0+m2+m4+m6 = x'y'z'+x'yz'+xy'z'+xyz' = x'z'(y'+y) +xz'(y'+y) = x'z' + xz' = z'
  - m1+m3+m5+m7 = x'y'z+x'yz+xy'z+xyz = x'z(y'+y) + xz(y'+y) = x'z + xz = z

|       |       |       |       |   | , ,                               | x 7    |       |      | <i>y</i> |
|-------|-------|-------|-------|---|-----------------------------------|--------|-------|------|----------|
|       |       |       |       |   | x                                 | 00     | 0 1   | 11   | 10       |
| $m_0$ | $m_1$ | $m_3$ | $m_2$ |   |                                   | x'y'z' | x'y'z | x'yz | x'yz'    |
| $m_4$ | $m_5$ | $m_7$ | $m_6$ | x | $\begin{bmatrix} 1 \end{bmatrix}$ | xy'z'  | xy'z  | xyz  | xyz'     |
|       |       |       |       |   | •                                 |        | 2     | Z    |          |
|       | (     | a)    |       |   |                                   |        | (     | b)   |          |

Figure 3.3 Three-variable Map

- $\circ$  Example 3.3: simplify F(x, y, z) =  $\Sigma(0, 2, 4, 5, 6)$
- $\circ$  F(x, y, z) =  $\Sigma$ (0, 2, 4, 5, 6) = z'+ xy'



Figure 3.6 Map for Example 3-3,  $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$ 

- Example 3.4: let **F** = **A'C** + **A'B** + **AB'C** + **BC** 
  - Express it in sum of minterms.
  - Find the minimal sum of products expression.
  - o Ans:

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$$



Figure 3.7 Map for Example 3.4, A'C + A'B + AB'C + BC = C + A'B

### 3.3 Four-Variable Map

- The map
  - 16 minterms
  - Combinations of 2, 4, 8, and 16 adjacent squares

| $m_0$    | $m_1$    | $m_3$    | $m_2$    |  |  |
|----------|----------|----------|----------|--|--|
| $m_4$    | $m_5$    | $m_7$    | $m_6$    |  |  |
| $m_{12}$ | $m_{13}$ | $m_{15}$ | $m_{14}$ |  |  |
| $m_8$    | $m_9$    | $m_{11}$ | $m_{10}$ |  |  |
| (a)      |          |          |          |  |  |

|              | yz       |                                       | 7      | 7       |                                                                                                                                                                                                                                                                                          |  |  |
|--------------|----------|---------------------------------------|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| vx           | 0.0      | 01                                    | 11     | 10      |                                                                                                                                                                                                                                                                                          |  |  |
| 00           | w'x'y'z' | w'x'y'z                               | w'x'yz | w'x'yz' |                                                                                                                                                                                                                                                                                          |  |  |
| 01           | w'xy'z'  | w'xy'z                                | w'xyz  | w'xyz'  |                                                                                                                                                                                                                                                                                          |  |  |
| 11           | wxy'z'   | wxy'z                                 | wxyz   | wxyz'   | $\begin{cases} x \\ \end{cases}$                                                                                                                                                                                                                                                         |  |  |
| 10           | wx'y'z'  | wx'y'z                                | wx'yz  | wx'yz'  | ,                                                                                                                                                                                                                                                                                        |  |  |
| <i>z</i> (b) |          |                                       |        |         |                                                                                                                                                                                                                                                                                          |  |  |
|              | 00 01 11 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00     | 00      | 00       01       11       10         00       w'x'y'z'       w'x'y'z       w'x'yz       w'x'yz'         01       w'xy'z'       w'xyz       w'xyz       w'xyz'         11       wxy'z'       wxy'z       wxyz       wxyz'         10       wx'y'z'       wx'yz'       wx'yz       wx'yz' |  |  |

Figure 3.8 Four-variable Map

• Example 3.5: simplify  $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ 



Figure 3.9 Map for Example 3-5;  $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$ 

Example 3-6: simplify F = A'B'C' + B'CD' + A'B'C'D' + AB'C'



Note: 
$$A'B'C'D' + A'B'CD' = A'B'D'$$
  
 $AB'C'D' + AB'CD' = AB'D'$   
 $A'B'D' + AB'D' = B'D'$   
 $A'B'C' + AB'C' = B'C'$ 

Figure 3.9 Map for Example 3-6; A'B'C' + B'CD' + A'B'C'D' + AB'C' = B'D' + B'C' + A'CD'

# Prime Implicants

#### Prime Implicants

- All the minterms are covered.
- Minimize the number of terms.
- A prime implicant: a product term obtained by combining the maximum possible number of adjacent squares (combining all possible maximum numbers of squares).
- Essential P.I.: a minterm is covered by only one prime implicant.
- The essential P.I. must be included.

#### Prime Implicants

- Consider F(A, B, C, D) =  $\Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$ 
  - The simplified expression may not be unique
  - $\circ$  F = BD+B'D'+CD+AD = BD+B'D'+CD+AB'
  - $\circ = BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'$



Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D'A'B'D' + AB'D' = B'D'

(a) Essential prime implicants *BD* and *B'D'* 



(b) Prime implicants CD, B'C, AD, and AB'

Figure 3.11 Simplification Using Prime Implicants

#### 3.4 Five-Variable Map

- Map for more than four variables becomes complicated
  - Five-variable map: two four-variable map (one on the top of the other).

|     |    | A = 0 |     |    |    |                                                       |  |  |
|-----|----|-------|-----|----|----|-------------------------------------------------------|--|--|
|     |    | DE    |     |    | 9  |                                                       |  |  |
| i   | BC | 0.0   | 0 1 | 11 | 10 | •                                                     |  |  |
|     | 00 | 0     | 1   | 3  | 2  |                                                       |  |  |
|     | 01 | 4     | 5   | 7  | 6  | $\left  \begin{array}{c} \\ \\ C \end{array} \right $ |  |  |
| B   | 11 | 12    | 13  | 15 | 14 |                                                       |  |  |
| D · | 10 | 8     | 9   | 11 | 10 |                                                       |  |  |

 $\boldsymbol{E}$ 

| A = 1 |    |     |    |    |    |                      |  |
|-------|----|-----|----|----|----|----------------------|--|
|       |    | DE  |    |    | )  |                      |  |
| i     | BC | 0 0 | 01 | 11 | 10 |                      |  |
|       | 00 | 16  | 17 | 19 | 18 |                      |  |
|       | 01 | 20  | 21 | 23 | 22 | $\left. \right _{C}$ |  |
| B     | 11 | 28  | 29 | 31 | 30 |                      |  |
| D.    | 10 | 24  | 25 | 27 | 26 |                      |  |
|       |    |     |    |    |    |                      |  |

 $\boldsymbol{E}$ 

Figure 3.12 Five-variable Map

#### Notes: number of literals in a term

• Table 3.1 shows the relationship between the number of adjacent squares and the number of literals in the term.

**Table 3.1**The Relationship between the Number of Adjacent Squares and the Number of Literals in the Term

|   | Number of<br>Adjacent<br>Squares | in a  |       | of Literals<br>n <i>n</i> -variabl |       |
|---|----------------------------------|-------|-------|------------------------------------|-------|
| K | <b>2</b> <sup>k</sup>            | n = 2 | n = 3 | n = 4                              | n = 5 |
| 0 | 1                                | 2     | 3     | 4                                  | 5     |
| 1 | 2                                | 1     | 2     | 3                                  | 4     |
| 2 | 4                                | 0     | 1     | 2                                  | 3     |
| 3 | 8                                |       | 0     | 1                                  | 2     |
| 4 | 16                               |       |       | 0                                  | 1     |
| 5 | 32                               |       |       |                                    | 0     |

• Example 3.7: simplify  $F = \Sigma(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$ 



Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE

$$F = A'B'E' + BD'E + ACE$$

# Example 3.7 (cont.)

Another Map for Example 3-7



A = 0

Figure 3.13 Map for Example 3.7, F = A'B'E' + BD'E + ACE

### 3.5 Product of Sums simplification

- Approach #1
  - Simplified F' in the form of sum of products
  - Apply DeMorgan's theorem F = (F')'
  - $\circ$  F': sum of products → F: product of sums
- Approach #2: duality
  - Combinations of maxterms (it was minterms)
  - $\circ$  M0M1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C

|      | CD       |          |          |          |
|------|----------|----------|----------|----------|
| AB \ | 00       | 01       | 11       | 10       |
| 00   | $M_0$    | $M_1$    | $M_3$    | $M_2$    |
| 01   | $M_4$    | $M_5$    | $M_7$    | $M_6$    |
| 11   | $M_{12}$ | $M_{13}$ | $M_{15}$ | $M_{14}$ |
| 10   | $M_8$    | $M_9$    | $M_{11}$ | $M_{10}$ |

• Example 3.8: simplify  $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$  into (a) sum-of-products form, and (b) product-of-sums form:



*Note:* BC'D' + BCD' = BD'

a)  $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$ 

$$(b) \quad F' = AB + CD + BD'$$

- » Apply DeMorgan's theorem; F=(A'+B')(C'+D')(B'+D)
- » Or think in terms of maxterms

Figure 3.14 Map for Example 3.8,  $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$ 

### Example 3.8 (cont.)

Gate implementation of the function of Example 3.8





Sum-of products form

Product-of sums form

Figure 3.15 Gate Implementation of the Function of Example 3.8

#### Sum-of-Minterm procedure

- Consider the function defined in Table 3.2.
  - In sum-of-minterm:

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

In sum-of-maxterm:

$$F'(x, y, z) = \Pi(0, 2, 5, 7)$$

Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

**Table 3.2** *Truth Table of Function F* 

| X | y | z | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

#### Sum-of-Minterm Procedure

- Consider the function defined in Table 3.2.
  - Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

Combine the 0's:

$$F(x, y, z) = xz + x'z'$$



Figure 3.16 Map for the function of Table 3.2

#### 3.6 Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
  - BCD; 1010-1111: don't care
- The don't-care conditions can be utilized in logic minimization
  - o Can be implemented as 0 or 1
- Example 3.9: simplify  $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$  which has the don't-care conditions  $d(w, x, y, z) = \Sigma(0, 2, 5)$ .

# Example 3.9 (cont.)

- $\circ$  F = yz + w'x'; F = yz + w'z
- $\circ \quad F = \Sigma(0, 1, 2, 3, 7, 11, 15); F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable



Figure 3.17 Example with don't-care Conditions

### 3.7 NAND and NOR Implementation

- NAND gate is a universal gate
  - Can implement any digital system



Figure 3.18 Logic Operations with NAND Gates

#### NAND Gate

Two graphic symbols for a NAND gate



Figure 3.19 Two Graphic Symbols for NAND Gate

#### Two-level Implementation

#### **Two-level logic**

- NAND-NAND = sum of products
- Example: F = AB+CD
- F = ((AB)' (CD)' )' =AB+CD





Figure 3.20 Three ways to implement F = AB + CD

• Example 3-10: implement F(x, y, z) =

(b)

$$F(x, y, z) = \sum (1, 2, 3, 4, 5, 7)$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

$$F(x, y, z) = xy' + x'y + z$$

(c)

#### Procedure with Two Levels NAND

#### The procedure

- Simplified in the form of sum of products;
- A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
- A single NAND gate for the second sum term (the second level);
- A term with a single literal requires an inverter in the first level.

#### Multilevel NAND Circuits

- Boolean function implementation
  - AND-OR logic → NAND-NAND logic
    - AND  $\rightarrow$  AND + inverter

OR: inverter + OR = NAND

■ For every bubble that is not compensated by another small circle along the same line, insert an inverter.



(b) NAND gates

Figure 3.22 Implementing F = A(CD + B) + BC'

### NAND Implementation



38

### NOR Implementation

- NOR function is the dual of NAND function.
- The NOR gate is also universal.



Figure 3.24 Logic Operation with NOR Gates

### Two Graphic Symbols for a NOR Gate



Figure 3.25 Two Graphic Symbols for NOR Gate



Figure 3.26 Implementing F = (A + B)(C + D)E

# Example

Example: F = (AB' + A'B)(C + D')



Figure 3.27 Implementing F = (AB' + A'B)(C + D') with NOR gates