

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1971

Spectral radiance measurements in Monterey Bay.

Michelini, Raymond Theodore.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/15910

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

United States Naval Postgraduate School

THESIS

SPECTRAL RADIANCE MEASUREMENTS IN MONTEREY BAY

by

Raymond Theodore Michelini

Thesis Advisor:

Stevens P. Tucker

September 1971

Thesis M57534

Approved for public release; distribution wilimited.

United States Naval Postgraduate School

THESIS

SPECTRAL RADIANCE MEASUREMENTS IN MONTEREY BAY

by

Raymond Theodore Michelini

Thesis Advisor:

Stevens P. Tucker

September 1971

TATE SCHOOL

Spectral Radiance Measurements in Monterey Bay

by

Raymond Theodore Michelini Lieutenant, United States Navy B.S., United States Naval Academy, 1964

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL September 1971 M 57534 C 2

ABSTRACT

An underwater spectral radiance meter having a rotating spectral wedge filter and capable of operating to depths of 300 meters was designed and constructed. It was used to obtain measurements of spectral radiance to a depth of 60 meters at two stations in southern Monterey Bay, California, on an overcast day during July 1971. Variations of the spectral radiance distribution with depth were plotted for vertical angles of 0, 45, 90, 135 and 166 degrees at an azimuth angle of zero degrees with respect to the sun.

The results of the measurements are reasonable in all cases and indicate that the spectral wedge filter provides a practical means of determining spectral radiance distributions.

TABLE OF CONTENTS

I.	INTRODUCTION					
	Α.	PURPOSE	8			
	В.	PREVIOUS INVESTIGATIONS				
II.	EQUIPMENT					
	Α.	NPS SPECTRAL RADIANCE METER	12			
		1. Photometer Unit	12			
		2. Motor Housing Unit	23			
		3. Junction Box	23			
		4. Battery Supply	24			
	В.	CALIBRATION	24			
		1. Azimuth and Vertical Angles	24			
		2. Spectral Wedge Filter	24			
		3. Acceptance Angle	29			
		4. Photometer	29			
III.	DATA	A COLLECTION	34			
	A. STATION LOCATIONS					
	В.	OPERATIONAL PROCEDURES				
IV.						
٧.	CONCLUSIONS					
	APPENDIX A Figures of Spectral Radiance Distribution with Depth at $\phi = 0^{\circ}$ and $\theta = 0$, 45, 90, 135, and 166° for Stations 1 and 2					

APPENDIX B	Spectral Radiance Calibration Nomograms for 25 nm Wavelength Bands from 400-725 nm	52		
APPENDIX C	Station Data: Location, Date, Time, Depth, Weather, Altitude of the Sun, Azimuth of the Sun, Radiance Measurements	65		
BIBLIOGRAPHY		77		
INITIAL DISTRIBUTION LIST				
FORM DD 1473		25		

LIST OF FIGURES

Figure						
1.	Location of Stations in Monterey Bay	9				
2.	Spectral Radiance Meter	13				
3.	Radiance Meter Before Submergence	14				
4.	General Arrangement of Radiance Meter	15				
5.	General Arrangement of Photometer Unit					
6.	Block Electrical Diagram of Underwater Unit					
7.	Circuit Diagram of Shipboard Recording System					
8.	Spectral Wedge Filter Characteristics	20				
9.	Photometer Circuitry	2]				
10.	Overall Sensitivity Versus Overall Voltage	22				
11.	Photomultiplier Tube Spectral Response	22				
12.	Vertical Angle Calibration Curve in Downward Direction	25				
13.	Vertical Angle Calibration Curve in Upward Direction	26				
14.	Azimuth Angle Calibration Curve	27				
15.	Spectral Wedge Filter Rotation Calibration Curve	28				
16.	Acceptance Angle Calibration Arrangement	30				
17.	Acceptance Angle Calibration Curve	3 1				
18.	System Calibration Arrangement	32				
19.	Calibration Curve for Standard Lamp	33				
20.	Uncorrected Spectral Radiance Variation with Depth at ϕ = 0° and θ = 0, 45, 90, 135, and 166°	35				
21.	Sample of Spectral Radiance Output	38				

22-31.	Spectral Radiance Distribution with Depth at $\phi = 0^\circ$; $\theta = 0$, 45, 90, 135, and 166° for Stations 1 and 2	42
32-44.	Spectral Radiance Calibration Nomograms for 25 nm Wavelength Bands from 400-725 nm	52

ACKNOWLEDGEMENTS

The author gratefully acknowledges the support of all those people who helped in the preparation of this thesis. I am particularly indebted to my advisor, Stevens P. Tucker, for his continual support, cooperation, and technical guidance and to those personnel of the Naval Postgraduate School Machine Shop, particularly Mr. Peter Wisler, Mr. Jerry D. Smith, and MRCM Robert L. Wolfgram, USN, and to Mr. Dana Mayberry, our Oceanographic Electronic Technician, for their participation in the construction of the spectral radiance meter. This work was supported in part by Naval Air Systems Command.

I also wish to thank Professor Jerry A. Calt and the crew of the Naval Postgraduate School Hydrographic Boat for their assistance. Lastly, sincere thanks to my wife, Susanne, for her typing assistance, endless encouragement, and the positive manner in which she accepted my neglect during this effort.

I. INTRODUCTION

A. PURPOSE

With the increasing application of optical properties in the fields of water mass characterization, marine optical systems and biological studies there exists a strong need for more measurements of these properties and, in particular, measurements of underwater radiance with depth. 1

The purpose of my investigation was to measure the spectral radiance distribution of submarine daylight as a function of depth in Monterey Bay, California. To acquire these measurements a radiance meter using a rotating spectral wedge filter capable of continuous rotation in the vertical and horizontal planes was constructed between January and June 1971 at the Naval Postgreduate School. Measurements of spectral distribution of submarine daylight with depth were then made to a depth of 60 meters at two stations in Monterey Bay during July 1971 (Figure 1).

B. PREVIOUS INVESTIGATIONS

Historically, initial studies of radiant light intensity in the sea began during the early 1900's when scientists were successful in measuring spectral radiance with photographic techniques. Until about 1940

lRadiant intensity (of a source in a given direction) is defined as the radiant flux emitted by a source, or by an element of a source, in an infinitesimal cone containing the given direction divided by the solid angle of that cone. The unit of measurement is expressed in watts per steradian. Radiance is the radiant flux per unit solid angle per unit projected area of a surface. Its units are watts per square meter per steradian.

FIGURE 1. LOCATION OF STATIONS IN MONTEREY BAY

such recording systems were used to measure the variation of spectral radiance of submarine daylight with depth. Although the photographic techniques had many limitations the results were qualitatively useful.

With the development of sensitive photoelectric detectors and improvements in spectrographic instruments, the way was paved for much of the pioneer work in the field by Darby, Le Grand, Le Noble, Duntley, Jerlov, Tyler, Ivanoff, and many others. Since then, research progress has paralleled instrumental techniques.

Sasaki, et al., [1955a] initiated studies utilizing the photomultiplier tube in making radiance measurements from the underwater observation chamber KUROSHIO in Hakodate Bay, Japan. Using three Wratten gelatin filters he was able to determine the angular distribution pattern of light as a function of particular wavelengths. Employing the same photometer, Sasaki, et al., [1955b] examined natural light in the red, yellow, green, blue, and violet wavelength regions in waters of the Kuroshio Current, which enabled him to make some extinction coefficient determinations for the oceanic region. Similar studies were also being carried out by Duntley and Tyler at Lake Pend Oreille, Idaho [Duntley The results of the latter studies supported the asymptotic radi-1963]. ance distribution hypothesis of the light field from the surface to great depths which was speculated by L. V. Whitney [1941]. Theoretical proof of the existence of this distribution was given by Preisendorfer [1959].

With the advent of the second generation of radiance meters, interesting studies were subsequently made by Sasaki, Tyler, Jerlov, and many others throughout the world. A cumulative analysis of all their results clearly indicates that radiance becomes more symmetrical about the vertical and horizontal axes with depth; that a strong radiance maximum exists in the apparent direction of the sun; that radiance approaches an asymptotic distribution; that the variation of sea surface, sky and turbidity of the water have a large effect on the radiance distribution; and that the light window in the sea is in the 480 nanometer wavelength region.

More recently, extensive studies by Tyler and Smith [1970] of spectral irradiance underwater were made during 1968 with the Scripps Cpactrarediometer at six locations in the Northern Hemisphere and yielded quantitative information related to the optical attenuation properties and the spectral distribution of underwater light.

Locally, the only previous study of underwater illumination was made by Bassett and Furminger in Monterey Bay in 1964 [Bassett and Furminger 1965]. They found the diffuse attenuation coefficient (vertical extinction coefficient) to be about .090 m⁻¹ at 536 nm for their Monterey Bay stations in January 1965.

II. EQUIPMENT

A. NPS SPECTRAL RADIANCE METER

A spectral radiance meter capable of continuously measuring the spectral intensity of submarine daylight over 4π steradians to a depth of 750 feet was designed by the author and Stevens P. Tucker. Since the results of Sasaki's shallow water studies [Sasaki, et al. 1955b] have shown that the direction of the maximum value of the angular distribution of submarine daylight in the horizontal plane is always identified with the solar bearing, it was decided not to include a direction sensor to determine the orientation of the meter when submerged.

The radiance meter (Figures 2 and 3) consists of three major units plus an underwater battery supply: the photometer unit, the motor housing, and the junction box. The general arrangement of the components within the meter is shown in Figure 4. A block electrical diagram of the entire underwater unit and the shipboard recording system are shown in Figures 6 and 7.

During operation the entire underwater unit is suspended from a 3/16-inch O.D., 4-conductor, armored electrical cable.

1. Photometer Unit

The photometer is housed in a 12-inch long aluminum tube having a 3/4-inch wall thickness and an inside diameter of 6 inches.

The unit is attached by clamps to the horizontal shaft of the motor housing,

13

FIGURE 4. GENERAL ARRANGEMENT OF RADIANCE METER (SEE PAGE 16 FOR KEY)

Key to Figure 4

- A. One-half inch thick clear Pittsburgh plate glass window.
- B. Achromatic lens, 33m diameter, 100mm focal length.
- C. Achromatic microscope objective, 3mm focal length.
- D. Spectral wedge filter, 4-inch diameter, 180° segment. (Optical Coating Laboratory, Inc.)
- E. Filter drive motor, Model 41-25, 42 rpm, 35 v reversible D.C. (Hansen Manufacturing Co.)
- F. Photomultiplier tube (EMI 9524B).
- G. Electronic circuitry for PM tube.
- H. Burr-Brown Model 520/25, ± 15 volt dual regulator power supply.
- J. Mu-metal shield.
- K. Geared 26vdc motor, Globe Model C5Al106, reversible, 24,000 rpm nominal with 4126:1 gear reducer, 500 oz-in maximum continuous torque.
- I Geared 26 vdc motor, Globe Model C5A1092, reversible 24,000 rpm nominal with 2273:1 gear reducer, 370 oz-in maximum continuous torque.
- M. Potentiometer, azimuth angle (φ), Model 130 SRD, 10K, 0.5% linearity. (Spectral Instrument Co.)
- N. Potentiometer, vertical angle (θ), Model 130 SRD, 10K, 0.5% linearity. (Spectral Instrument Co.)
- P. Reversing switches, DPDT.
- Q. Lead counterbalance weights.
- R. Stand.
- S. Junction Box.
- T. Aluminum Rudder (20 inches X 19 inches).
- U. Three-sixteenths inch, 4-conductor, externally armored, well logging cable.
- V. Mecca No. 2047 seven-pin underwater electrical connector.

FIGURE 5. GENERAL ARRANGEMENT OF PHOTOMETER UNIT

FIGURE 6. BLOCK ELECTRICAL DIAGRAM OF UNDERWATER UNIT

FIGURE 7. CIRCUIT DIAGRAM OF SHIPBOARD RECORDING SYSTEM

(SEE PAGE 16 FOR KEY)

allowing it to rotate 180° in a vertical plane while simultaneously rotating 360° in a horizontal plane. The optical system (Figure 5) allows light to enter through a 1/2-inch thick, clear, plate glass window within an angle of acceptance of 0.00119 steradians. Light passing through the achromatic objective lens (f = 100mm) is collimated by an inverted achromatic microscope objective (f = 3mm) before passing through the spectral wedge filter. After passing through the filter the rays are then diverged by another achromatic microscope objective, identical to the first, in order to spread the light beam over the photocathode of the detector.

A 4-inch diameter spectral wedge filter, manufactured by Optical Coating Laboratory, Inc., and having the transmission characteristics shown in Figure 8, is used. The filter is driven at 24 rpm by a small D.C. motor. Alignment of the optical system was accomplished on an optical bench with a neon laser.

The photometer circuitry was designed by Mr. Floyd Miller of the Visibility Laboratory of Scripps Institution of Oceanography, La Jolla, California. An 11-stage EMI 9524B high gain photomultiplier tube having a 0.91-inch window and S-11 response is employed. The photometer circuitry is illustrated in Figure 9, and graphs of the photomultiplier characteristics are shown in Figures 10 and 11. Operating power for the photomultiplier tube circuitry and the Burr-Brown Model 520/25, \pm 15 vdc power supply maintains an output which is constant to within \pm 0.25% over the input voltages used. The photometer output signal, which varies from 0 to -10 vdc, is recorded at the surface on a two-channel strip-chart recorder.

19

WAVELENGTH (m/L)

FIGURE 8. SPECTRAL WEDGE FILTER CHARACTERISTICS

FIGURE 10. OVERALL SENSITIVITY VS OVERALL VOLTAGE

FIGURE 11. PHOTOMULTIPLIER TUBE SPECTRAL RESPONSE

2. Motor Housing Unit

The motor housing is constructed of stainless steel periscope stock having an internal diameter of 6 1/2 inches, a length of 8 inches, and 1/2-inch walls. The end plates are made of 3/4-inch aluminum. Brass bearings provide lateral support for the rotating stainless steel shafts. O-rings seal the shafts and end plates of the unit from the sea water. Inside the motor housing (Figure 4) are two reversible D.C. motors, azimuth (ϕ) and vertical (θ) angle potentiometers, and reversing switches, which provide for continuous photometer rotation through 180° in a vertical plane and 360° in a horizontal plane. The ϕ -shaft motor is driven at 5.33 degrees/second by a small 35 vdc motor while the θ -shaft is driven by another motor at 13.4 degrees/second. Angular rotations are measured with two potentiometers having 0.5% linearity, the outputs of which are displayed on a shipboard two-channel strip-chart recorder.

3. <u>Junction Box</u>

The junction box is constructed of 1/2-inch thick aluminum tubing having an internal diameter of 4 inches and length of 5 inches. The end plates are made of 3/4-inch aluminum. A hollow stainless steel shaft connects the motor housing to the junction box and provides a passage for electrical wires between the two units. To the junction box is attached a 20-inch by 19-inch rudder to stabilize the meter with respect to a vertical plane. The signals from the two angle potentiometers are brought out through two single-pin underwater connectors located at one end of the cylinder.

4. Battery Supply

The battery housing is 8 inches long with 3/4-inch end plates and is made of the same periscope stock used for the motor housing. Nickel-cadmium cells having 4 ampere-hour capacity are used in the battery packages. One package contains 10 cells (12v) and provides power to operate the spectral wedge filter motor, the photometer circuitry, and the angle potentiometers. The other package contains 7 cells (8.4 v) and provides operating power to the ϕ and θ drive shafts.

B. CALIBRATION

1. Azimuth and Vertical Angles

A Lietz three-arm vernier protractor and a Brush two-channel strip-chart recorder were used to measure chart line deflection as a function of angular rotation in the vertical and horizontal planes. Calibration curves for azimuth and vertical angles are shown in Figures 12, 13, and 14.

2. Spectral Wedge Filter

Narrow-band interference filters were used with sodium and mercury arc lamps in the calibration of the spectral wedge filter for wavelengths as a function of angle of rotation. The only sodium line used was that at 568.82 nm, while the mercury lines used were at 365.01, 404.66, 435.84, 546.10, 576.96 and 690.72 nm. Figure 15 gives transmission wavelength of the wedge filter as a function of angle of rotation.

3. Acceptance Angle

A He-Ne laser (λ = 632.8 nm) was used with a neutral density filter to measure the acceptance angle of the photometer (Figure 16). The photometer unit was rotated at small angular increments, and radiance (chart line deflection) was recorded as a function of half-angle rotation (Figure 17). The acceptance angle was determined to be 2° 14' or 0.00119 steradians.

4. Photometer

A Gamma Scientific Model 220 calibrated optical source system with a Model 220-1A radiance head was used in absolute intensity calibration of the photometer (Figure 18). The Model 220-1A radiance head has a light output of 100±2 footlamberts, color temperature equal to 2854±50°K, and a uniformity of ±1.5% within the 3-inch diameter luminous surface. The Model 220-1A output curve is shown in Figure 19.

Wratten No. 96 neutral density filters were used in density increments of 0.1 to calibrate the photometer in terms of intensity and wavelength in absolute units (Figures 32-44).

ARRANGEMENT CALBRATION ANGLE ACCEPTANCE FIGURE 16.

ARRANGEMENT SYSTEM CALIBRATION FIGURE 18.

FIGURE 19. CALIBRATION CURVE FOR STANDARD LAMP

III. DATA COLLECTION

A. STATION LOCATIONS

During July 1971 spectral radiance measurements were made in Monterey Bay, California, aboard the Naval Postgraduate School's 63-foot boat. The two stations occupied are shown in Figure 1. Station positions were determined every fifteen minutes by visual bearings. These, along with the time, weather, altitude of the sun, and azimuth of the sun for each station are presented in Appendix C.

B. OPERATIONAL PROCEDURES

At each station the spectral radiance meter was lowered to the desired depths by means or a four-conductor, externally armored, electrical cable and allowed to rotate continuously through several rotational cycles in the horizontal and vertical planes at each depth. Continuous measurements of the angular and spectral distribution of submarine daylight were recorded on two dual-channel strip-chart recorders. Instrument depths were indicated by meter wheel readings. The wire angle for each case was negligible. Typical recordings of raw data are presented in Figure 20.

FIGURE 20. UNCORRECTED SPECTRAL RADIANCE VARIATION WITH DEPTH AT ϕ = 0. THE DARK CURRENT REFERENCE LEVEL IS INDICATED TO THE RIGHT OF EACH CURVE.

WAVELENGTH (nm)

IV. DATA ANALYSIS

A manual analysis of the uncorrected strip-chart records (Figure 21) was made, and values of absolute spectral radiance are shown in Appendix C. Using these data graphs of spectral radiance variation with depth were plotted for $\phi = 0$ and $\theta = 0$, 45, 90, 135, and 166 degrees (Figures 22-31). In the analysis the following assumptions were used:

- (1) The maximum intensity of light in the horizontal plane is in the azimuth of the sun.
- (2) The vertical and horizontal axes of the meter remained stationary at a given depth during scans.

Angular rotation in the vertical and horizontal planes was determined by measuring vertical chart line deflections on the recorder output and then entering Figures 12-14 with these values to obtain the azimuth and vertical angle of a selected point of observation. Observed azimuth angles were expressed in relative angles to the direction of the sun by applying assumption (1).

Since the spectral wedge filter revolves at a constant angular speed, wavelength can be expressed in terms of time, $\lambda = \lambda$ (t), and recorded on the strip-chart recorder. Wavelength was then determined from the ratio of the partial angular rotation to the total angular rotation of the spectral wedge filter (Figure 15).

As shown in Figure 21, the spectral output shows the radiance of unfiltered light (high light levels) followed by spectral radiance (low light

0 ш DIAN • 4 SPECIR O F SAMPLE FIGURE

 \supset

levels) from 350 to 725 nm, which is followed by unfiltered light. The end points of 0° and 180° on the spectral wedge filter are shown clearly as the sharp vertical lines. Overshooting of the curve is due to the rapid transition from filtered to unfiltered light.

Radiance was determined for the angle of acceptance of the meter by using the nomograms shown in Figures 32-44 (Appendix B). Measurements of vertical chart line deflections of the recorder output signal were converted to a corresponding intensity expressed by the neutral density filter used in the photometer system calibration for a selected wavelength band (Curve A). Radiance for the given wavelength band was then determined by using Curve B. Curve B represents a plot of the values of inadiance (Figure 19) of the standard lamp source over a 25 nm wavelength band as a function of transmittance. To express the spectral radiance in terms of w/cm²/sr, a multiplying factor of 838.22 was applied to account for the acceptance angle of 0.00119 steradians.

When these figures were prepared the different Fresnel light reflection coefficients at normal incidence between the observational case (water and glass) and the calibration case (air and glass) were not taken into account. Thus the radiance values presented in the figures are all high by a constant factor, $\frac{n_{air}}{n_{sw}} \cdot \left(\frac{n_{glass} + n_{sw}}{n_{glass} + n_{air}}\right)^2$, where the n's are the indices of refraction for air, sea water, and the glass window used for the meter.

Figures 22-31 (Appendix A), which are plots of the spectral radiance distribution with depth, $\theta=0$, 45, 90, 135, and 166 degrees at $\phi=0$ degrees, show spectral peaks at about 570 nm. Peaks at about this wavelength were observed at Lake San Vicente by Tyler and Smith [1970].

The figures also show an apparent high radiance in the 400-450 nm region which is probably instrumental in nature and due to the relatively slow recovery time of the photometer when subjected to sudden large steps in light intensity during filter rotation from unfiltered to filtered light. A similar feature is observed following the overshooting in the curves from filtered to unfiltered light (Figure 21).

In many of the figures the plots of spectral radiance at $\theta=0$ and 45 degrees for shallow depths were not drawn because the radiant intensity in these regions exceeded the limitations of the standard lamp used in the photometer calibration.

V. CONCLUSIONS

A spectral radiance meter having a spectral wedge filter was designed, constructed and used to obtain measurements of spectral radiance with depth at two stations in southern Monterey Bay, California, on an overcast day. Variations of the spectral radiance distribution with depth were plotted for the following vertical angles (θ): 0, 45, 90, 135, and 166 degrees. The azimuth angle (ϕ) was zero degrees with respect to the sun. The results seem reasonable in all cases.

A rotating spectral wedge filter is a practical means of obtaining a spectral radiance response.

The manner in which data was recorded imposed severe limitations on analysis. In future studies the radiance meter will be wired directly to the multiplexer and A-to-D converter of a PDP-8/S computer. This will greatly simplify the problem of data handling.

It is recommended that horizontal and vertical reference sensors be installed to improve the accuracy of the results.

Its size and shape make the instrument convenient for performing frequent observations, and future studies with this instrument are planned.

In future research, simultaneous measurements of transmissivity, scattering and spectral radiance will be made in Monterey Bay to provide sufficient empirical data to test the theoretical laws of light distribution in the sea.

In addition, the meter will be used in base-line studies of California coastal

waters.

APPENDIX A

Figures of Spectral Radiance Distribution with Depth at $\phi=0^{\circ}$ and $\theta=0$, 45, 90, 135, and 166° for Stations 1 and 2.

FIGURE 22. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT $\Theta \colon 0^\circ$ AND $\phi \colon 0^\circ$, STA 1

FIGURE 23. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT Θ : 45° AND ϕ : 0°, STA 1

FIGURE 24. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT θ : 90° AND ϕ : 0°, STA 1

FIGURE 25. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT θ : 135° and ϕ : 0°, STA 1

FIGURE 26. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT Θ : 166° AND ϕ : 0°, STA 1

FIGURE 27. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT Θ : 0° AND ϕ : 0°, STA 2

FIGURE 28. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT Θ : 45° AND ϕ : 0°, STA 2.

FIGURE 29. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT θ = 90° AND ϕ = 0°, STA 2

FIGURE 30. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT Θ : 135° AND ϕ : 0°, STA 2

FIGURE 31. SPECTRAL RADIANCE DISTRIBUTION WITH DEPTH AT Θ : 166° AND ϕ : 0°, STA 2

Spectral Radiance Calibration Nomograms for 25 nm Wavelength Bands from 400 to 725 nm.

nm WAVELENGTH

400 - 425

SPECTRAL RADIANCE CALIBRATION HOMOGRAM FOR

FIGURE 32.

52

nm WAVELENGTH BAND 425 - 450 SPECTRAL RADIANCE CALIBRATION NOMOGRAM FOR FIGURE 33.

nm WAVELENGTH BAND 450 - 475 SPECTRAL RADIANCE CALIBRATION NUMOGRAM FOR FIGURE 34.

nm WAVELENGTH BAND 475 - 500 SPECTRAL RADIANCE CALIBRATION NOMOGRAM FOR FIGURE 35.

nm WAVELENGTH BAND 700 - 725 SPECTRAL RADIANCE CALIBRATION NUMOGRAM FOR FIGURE 36.

nm WAVELENGTH BAND 675 - 700 SPECTRAL RADIANCE CALIBRATION NOMOGRAM FOR FIGURE 37.

nm WAVELENGTH BAND 650-675 SPECTRAL RADIANCE CALIBRATION NOMOGRAM FOR FIGURE 38.

625-650 nm WAVELENGTH BAND SPECTRAL RADIANCE CALIBRATION NCMOGRAM FOR FIGURE 39

nm WAVELENGTH BAND 600-625 SPECTRAL RADIANCE CALIBRATION HOMOGRAM FOR FIGURE 40.

575 - 600 nm WAVELENGTH BAND SPECTRAL RADIANCE CALIBRATION NOMOGRAM FOR FIGURE 41.

nm WAVELENGTH BAND 550-575 SPECTRAL RADIANCE CALIBRATION HOMOGRAM FOR FIGURE 42.

nm WAVELENGTH BAND 525-550 SPECTRAL RADIANCE CALIBRATION HOMOGRAM FOR FIGURE 43.

500 - 525 nm WAVELENGTH BAND SPECTRAL RADIANCE CALIBRATION NOMOGRAM FOR FIGURE 44.

APPENLITY C

Station Data: Location, Date, Time, Depth, Weather, Altitude of the Sun, Azimuth of the Sun, Radiance Measurements.

Station 1

Partially Overcast Average Allicude of the Sun: 69° Average Azimuth of the Sun: 180°T Longitude: 121-52.6 W Date: 16 July 1971 Local Time: 1255-1325 Sea: 230-1/2 Radiance ($\mu w/cm^2/sr \times 10^3$) Swell: 260-2 Sky: Latitude: 36-38.8 N

	-002	725	*	*	*	11.74		41.07	*		19.28		*	64.54	37.72	
		200	*	*	*	9.01	6.71	11.24	*	63.70	12.57	*	*	39.40	18.48	
	650-	675	52.81	*	*	5.36	4.61	6.29	*	54.48	6.71	*	39.40	24.31	8.38	
	625-	650	24.73	*	*	3.35	3,35	6.29	*	39.40	5.45	*	47.78	39.40	12.57	
		625	8.22			2.10	2.51	2.18	*	*	2.93	*	*	46,10		
	75-	00	9.89	40.23	*	2.31	5.03	2.35	*	*	5.45	*	*	39.40		
,	Fands (nm) 550- 5	75 (*	*	*	17.60	17.60	20.18	*	*	15.09		*	17.60		
	ength ra 525- 5	550 5	*	*	*	24		13		*	14.17	*	*	12.57		,
	wavelength 500- 525-	525	*	*	21.79	2.85		17.60		*	3.52	17.18	*	5.36	17.18	,
		200	20.45	21.46	16.76	1.68	1.68	10.56	16.60	16.76		10.48	17.02	3.02	10.48	1
	450-	475	15.09	15.09	8.80	. 59	.67	6.54	6.71	8.80	1.09	4.61	11.32	1.68	6.71	
	425-	450			8.21	0.59	0.75	3.27	3.35	8.21	.84	4.19	8.30	1.17	5.87	
	400-	425		9.14	*	5.45	*	*	3.47	*	.50	3.73	*	1.00	*	
		0	264	000	270	130	000	166	184	081	122	039	000	263	292	
		Depth	0° 10m			20m		5°10m								
		Θ	0					4								

8.80 12.57

63.70 *

54.48 5.87

39.40 6.71

5.03

10.90

10.90

7.71

16.85 16.76 5.28

6.87

19.28

16.60

234 1.59 181 3.47

039

700- 725	*	2.10	1.09	3.19	3.77 4.61	9.64
675-	*	1.34	.42	2.51	3.77	6.29
650- 675	5.45	.63	.42	1.68	3.35	3,35
625- 650	5.51	.42	.08	1.68	.84	1.26
600-	5.45	.42	.25	2.10	8 2.26 4.53 5.03 2.93 2.60	2.93
575- 600	5.03	.84	1.05	2.93	2.93	6.87
550- 575	5.0 4.7	2.51	1.20	36	5.03	6.71
525- 550	*	1.42	2.26	4.19	4.53	5.87
500- 525	*	.92	1.51	1.84	2.26	2.26
475-	21.4	т. •	1.0	1.0	1.6	1.0
450- 475	15.09	.17	. 59	.42	.84	.42
425- 450	8.21	.17	.51	.34	5.03	.42
400-	234 8.21 8.21	*	*	.17	341 2.93	000 2.51
+	234	105	309	194	341	000
θ Depth	45° 20m					

						88 1
700 - 725	69.15 61.11 *	2.6	4. 7. 9.		7.12 10.06 10.06 6.71 10.06 5.03	0.
675-	5.2	4.4.	7.09 7.7 8.4	. 1.	5.87 6.29 5.45 6.29	0044400
650 - 675	0.0	6.7 9.7 9.5	0.000	E 7. 60		
625 - 650	.1	4.1 7.7 5.8	24.2	0,0,0,	2.10 4.61 4.61 4.61 2.93	
600 - 625	4.2.1	2.5 8.3 5.1	9.7.9	0.2.6.	2.10 14.67 2.93 2.51 2.10 2.51	008891
575- 600	12.74 11.31 8.99	ω	0.000	2.1.1.	7 7 1 1 4 4	
550- 575	4.2.	24.0	4		- 12 6 6 6 6	
525- 550	1.0	2 2 5	. 2	v. 0	1.0.6.4.1.2.	
500- 525	2.0	0	2.5.2.	ກຸ ຕຸ ຜູ	2.51 2.51 2.51 1.68 1.68	.17 .34 .586 .42 .167 .17
475- 500		1.68 10.73 5.02		•	2.18 1.21 1.84 1.68	.17 .25 .251 .167 .13
450- 475	6 6 6	302	24.4.	.17	1.26 .50 .75 1.27	.01 .08 .008 .017 .008
425 - 450		.2	7.8.6.			.001 .08 .042 .042 .001
400- 425	.2				.21 .46 .38 .50 1.01	0000
~	0 7 4	2 0 2	0 0 0 0	9 7 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 167 294 067 137 104 000
θ Depth	90°3m	5m	7 m	10m		20m

-002	2	0.1	2.6	φ.	8.9	1.19	9.	∞	∞	∞	2.51	∞	9	5			00		00		9	4.2	5.1	5.1	6.	6.	9		1.68	9
675-	0	3.3	1.2	16.55	6.5	1.10	. 5			ω.		Ψ	_		00	.001	L,	L,	Α,	7	16,76	0.4	6.7	6.7	Ψ	ω.	1.01	∞	1.01	
650-	~		.2	.7	.7	3.54	.22	0	00	\sim	.84	(,)		\cup	\sim	00	$\overline{}$		$\overline{}$. 7	\vdash	.	.5	2.5	ω.			4		
625-	2	ω.	.2	4.	4.	4.03	4.	00	0	0	က	က	.2	2	00	\circ	_	\sim	\sim 1	4.51	Ų'		℧.	7.	4	4.		00	.42	2
-009	7	-	.	6.	6.	4.25	• 5	0	00	.5	2	. 2	9•	. 1	00.	0	00.	00.	.50	Φ,	2.93	-	5	6	5	•	$^{\circ}$	$^{\circ}$.84	6
575-	0	9.	.	.	.	5.28	-	\circ	0.	9.	$\overline{}$	9.	.5	.5	00	.001	17	0.	.03	. 2	/		ω.	. 7	6.	2.10		∞		9.
550-	^		.2	9.	9.	1.81	4.		2	9		∞	\vdash	0.	0		0	0	∞	6	2.51	7	0.	4.	9	1.68	.82	∞	.50	∞
525-	2	0.	0.	0.		3.65	0.	4	$^{\circ}$	2	2	2	\vdash	2	• 2	$^{\circ}$. 2	. 2	.2	Ξ.	∞	.5	.	∞	.2	1.26	2	2		9
200-	2	0.		0.	2.01	.5		ά		3		က်	4		.001		$\overline{}$		\vdash	9	0	.	ω.	φ.	. 1	1.01	_	_	4	က
475-	0	2	3	92	0	2.31	∞	$^{\circ}$	\vdash	\vdash	2	2	2		00	0	0	00	00	ω.	∞	ς,	0.	0	9	.82	0	0		
2	475	2.52	9•	92	.922	1.15	.75	0	.08	.08	.17	.08	.17	.08	00.	0.	00.	00.	00.	Τ.	6	. 7		6	5	. 59		80.	.008	
425-		. 1	.	92	2	1.29	8	0	.08	.08	0	.08	.08	.08	0	.001	0	0	0	7	5	6	1.01	6	7	.75	0	.08	90.	• 08
0	425	.92	.85	92	.922	1.27	∞	0	.04	.04	.04	.05	80.	.59	0	.0007	0	0	04	.7		6	6	6		. 59			.042	
		0	က	2	0	0	4	2	4	0	0	4	0	က	4		7	2	0	000	\sim	0	0		0	က	က	4	0	2
	θ Depth	135°3m		5m		7 m		10m							20m					166° 3m			5m		7m		10m			

*Values exceed limitations of standard lamp

Station 2

Latitude: 36-39.7 N Longitude: 121-53.7 W Dare: 16 July 1971 Local Sun Time 1410-1440 Sea: 230-1/2. Swell: 230-2. Sky: Overcast, Wrerage Altitude of the Sun: 65% Average Azimuth of the Sun: 230°T

Radiance ($\mu w/cm^2/sr \times 10^3$)

Wavelength Bands (nm)

1				.2	5,30	0.	4.	.2	9.	2.51	67	4	∞		0	0	.419	0	0	0	.419	.335
75- 700	00 725	*	*	9	.74 1	.35	.19	.03	6	.68	.671	4	.503		0		167	0			.167	16
9 -0	75 7(*	*	.70	.52	. 1	Η.	33	5.45	2.10	41		41	0.42	.42		.419	.42	9	$\overline{}$.419	.419
25 - 6	50 6		*	.40	0	•	•	•	5.45	•	.251	.251	.419	0.42	.42	.42	.017	.42	.42	•	•	•
-0	625 6	*	*	*	*	· 3	0	9.		٠.	∞	2	.838	∞	2	.34	9 .335	1.26	.34	.25	6.838	.33
5-		*	*	*	*	4.3		-	!	.2	.51	9•	2.096	0.	1.86	. 2	41		. 2	67	67	_
-09	575	*	*	*	3.5	0.	0.0	.5	5.0	2.10	.00	9•	1.676	.50	.84	∞	_	.84	∞		1.005	1.005
2.5	550	*	*	14.00	_		. 51	•	7: 61	. 67	3	3.096	2.514	.29	.29	.34	.251	. 29	. 34	4,	1 2	l. 6
-00	25	3.6	22.64	.2	0.	د	.	3	.7	.34	.335	.754	1.090	.17	.17	.17	.084	.17	.17	4	.167	.008
2-	500 5	•	23.10	•	•	.50	.34	1.68	1.01	.17	.168	.042	.335	.083	.042	.042	<₩	<₩	711	α	.084	<1 1
450- 4	75 5	.51	16.43 2	.17	.34	.17	.17	.25	.17	.04	.034	.025	.084	.001	.034	.034	.0008	.034	.034	.00°	8000.	800.
	450 4		98.0	.84	.92								.008									
400- 4	425 4	.12	5.00 1	.67	1.09	.34	.17	.21	.08	.08	.075	.034	.050	.04	.008	.008	.0008	.008	.008	.0008	.017	.025
				000	020	235	000	074	185	000	000	024	161	240	188	032	292	188	032	136	000	020
	Depth ϕ	5m									25m				30m							
	θ]	0 °																				

0	725	0	0	08		08	08		0		$\tilde{\circ}$.419	\sim	0	0	0	0	0	*	*	*	*	*	*	*	*	*	*
675-	0	0	0	*0008	0	0	.084		0	0	.008	.083	.083	0	0	0	0	0	*	*	*	*	*	*	*	*	*	*
650-	7	∞	∞	\vdash	.419	Н	41	0	0	0	00	.419	41	0	0	0	0	0	*	*	*	*	*	*	*	*	*	*
625-	5	25	08	08	.050	05	∞	0	0	0	04	.419	41		0	0		.167	*	*.	*	*	*	*	*	*	*	*
-009	625	.42	4	10	.168	LO	83	0	0	0	33	.251	33		0	00	.008	00	*	*	*	*	*	*	*	*	*	*
575-	009	.628	.628	.838	.838	.671	960:	.167	.167	.251	.671	.838	.754	0	0	.042	.042	.042	*	*	*	*	*	*	*	*	*	*
150-	/	(25	25	51	87	03	.4192	29	95	က	ω	00	ω			42	.042	34	*	*	*	*	*	*	*	*	*	*
	550	~ 1	ഗ	က	50		.419	$^{\circ}$	08	08	41	41	41	08	\circ	.16	.16	8 .1(*	*	*	*	*	*	*	*	*	*
200-	525	∞	08	16	.168	08	4	0	0	0	.008	.042	41	0	0		.084	0	*	*	*	*	*	*	*	*	*	20.12
75-	0	0	0	16	.083	04	04	0	0	0	01	.042	08			00	04	00	25.3	22.6	24.8	24.8	24.4	24.8		24,3	24.3	20.9
10	75 5	0	0	.042	0	0		0	0	0	0		0		0	0	0	0	.3	3.7	3.7	~	\sim	~	16.35		17.17	0.0
25 - 4	0 4	0	0	0	.042	83	\vdash	0	0	0	\vdash	.001	\vdash		0	0	0	0	ω.	0.	4.	4.	9.	0	10.81	9.	∞	9.
-0	425	0	0	8000.	03	.034	04	0	0	0		.042	03	0	0	0	.017	00	9.	5	.2	. 7	. 2	.4	5.45	. 7	ω.	4.86
7.	φ.	87	27	4	0	7	194	4	0	\vdash	က	0	0	4	9	$^{\circ}$	0	50	34	39	00	9	\vdash	0	0	7	4	2
	Depth	40m						50m						60m					lm					5m				
	0																		45°									

700 - 725	18.86 44.41 20.96 20.96	5.87 5.87 5.87 5.45 6.287 2.934	0 .82 0 0	. 419 . 838 . 502 . 419 0	0000
675- 700	11.32 23.47 11.32 12.57	5.28 5.03 5.45 5.45 5.029	0 1.68 .670 0	. 503 .670 .670 .502 .419 0	0000
650- 675	6.71 15.51 7.96 10.06	3.77 3.77 3.77 3.77 3.352 2.096	.63 .419 .42	. 419 . 419 . 419 0 0 0 0	0000
625-	.38	5.45 4.19 4.19 4.19 2.515 2.933	41 82 419 92 01	083 083 35 35 35 08	0000
600-	38.56	3.77 8.38 5.45 7.12 2.682 2.682	.82 2.51 .838 2.93 .042	. 042 . 587 . 587 . 587 . 042 . 042 . 042 . 042 . 042	.008
575- 600	7.2	88978	.31 .93 .63 .63	63 25 25 25 25 25 25 25 25 25 25 25 25 25	m n m 10
550- 575	8.55 * 17.60 *	3.44 5.62 8.47 8.47 17.602	0 0 1 0 0	.08 .251 .922 .671 .676 .251 .21 .0	.001 .001 .001
525-	2.18 12.74 5.28 8.23	1.09 2.18 2.13 2.13 7.7[1	.34 .63 1.675 .003	.03 .853 .419 .868 1.844 .167 .167 .167 .167	.08 .03 .034
500- 525	1.34 8.55 1.93 6.20	1.51 1.51 1.26 3.856 2.347	.17	. 335 . 084 . 084 . 168 . 08 . 08 . 008 . 008	04 04 02
- 475- 500	.84 3.77 1.01 3.02		• • • • • • •	3 .008 8 .167 08 .008 8 .084 2 .168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00
450 475	1 2 2 2	.01 .17 .17 .17 .08	0000	0 .001 .000 .004 .000	00
425 - 450		.042 .083 .13 .17 .251	.01.		
400 -	34 34 34 35	08 08 08 13 13 16 11	00248	.034 .059 .042 .042 .050 .075 .050	
Φ	$\sim \sim \sim \sim$		40001	101 044 000 334 018 162 136 036 341 181 018	1 4 0 0
0 Depth	45° 10m	15m	20m 25m	30m	40m

	725		.510	7	0	0	0	0	0	*	*	*	*	*	*	*	*	*	36.0		5.45		. 7	∞	
675-	0	_	.400	\vdash	0	0	0	0	0	*	*	*	*	*	*	*	*	*	2	12.15	•	•	•	•	•
650 -	_	5	.335	$^{\circ}$	0	0	0	0	0	*	*	*	*	*	*	*	*	27.42	7.5		5 2.9	3 3.7	8 1.9	9 3.7	9 4.1
625-	5	3	.335	$^{\circ}$	0	0	0	0	0	*	*	*	*	*	*	*	*	*	.75 6.2	38.9	26	3 5.	56 1.	80 4.1	89 4.1
-009		.083	.671	.671	0	0	0	0	0	*	*	*	*	*	*	*	*	*	1.74 14	*	4	9.8 24.	.29	98.	9
575-	0	.168	.838	.838	.008	.008	.008	.008	.017	*	3.53 *	*	*	3.53 *	*	*	*	*	.62).11 *	-	.963	33	6	.45
- 550-	575	2	, 335	$^{\circ}$	0	0	0	0	0	*	1.033	*	*	.37 33	*	*	*	* 90.	•	.4	.55	.35		. 1	9 ; .
. 525-		9	,168	5	0	0	0	0	0	*	18 17	*	*	96 20	*	*	*	0	34	∞	01	51			6
500-		.008	.017	.008	0	0	0	0	0		17.	*	*	20.		*	*		i.			_	7	1.	
475-	200	.001	.001	.0008	0	0	0	0	0	1.7	0.3	0.4	1.7	0.2	0.2	20.12	1.9	.5	5	3	3	0	.16	.42	.03
450-	/	.0008	.0017	.0017	0	0	0	0	0	.3	9•	5.2	9.	5.0	4.9	8.21	.3	.3	0.	0.	.08	.42	.08	.17	.08
425-			.025	2	0	0	0	0	0	10.98	•	0	•	•	9.89	7.96	•	1.51	.75	. 59	.08	.34	.01	,17	.03
400-	425	2	.025	4	0	0	0	0	0	.53	69.	.03	.11	.03	.03	4.61	.36	0.							
	~	/	0	5	∞	0	5	$^{\circ}$	0	0	9	5	∞	-	9	053	0	7	_	0	7	2	9	\mathcal{C}	4
	θ Depth	40m			50m		09			90° 1m					5 m					10m					

700-			₹	\sim	2.35	68	93	0	00	0	0	0	0	*	*	.838	.922	.587	0	0	0	0	0	0	0	0	0	, 0
675-		34	80	21	10	89	514	838	754							251	671	503		0	0	0	0	0	0	0	0	0
650-		.42	.24	2.10	1.26	1.26	1.676	.838	.838	.42	0	0	0	*	*	16	.168	17	0	0	0	0	0	0	0	0	0	0
625-		.80	.80	2.93	2.93	2.77	1.257	029.	.67	.42	0	0	0	*	*	.251	.168	.251	0	Ó	.008	.008	0	.008	0	0	0	0
600-)	89																								0	0	0
575-)	•	4.	•	6	•	8	•	4.191	•	•	4.	•	*	.17	.419	.335	029.	.17	.04	.251	.251	.251	.168	.168	0	0	0
550-)	-	.75	.44	89	.27	.688		1.676	•	ω	99.	.418			.042	· 08¢	.084	0		98)4	00	VI.	.042	00	(1)	CLI
525-)	.59	.21	1.09	.42	1.09	3.352	4.191	.839	.21	.08	.63	.042	*	*	•	•	•			16	08	04	.16	991. 80	0.8	.16	.16
525	3			.42	.25	.59	.335	.503	.168						*					0	08	01	\vdash		800.	00.	00.	00.
475-)	.08			.17	.251	.168	.335	.042	0	0	.08	.008	*	*	00	.001	00		0		$\overline{}$			0	0	0	0
450-		.001	.01	.08	.001	.008	800	.034	.001	0	0	.001	.001	*	*	.001	.001	.001	0	0	.0003	.0002	.0002	0	0	0	0	0
425-)	.001	.01	.042	80	.04	.042	.084	.034	04	.08	.001	.001	*	*		.034			0	.034	.034	.034	0	0	0	0	0
400-	1	.04	.03	0.08	0.08	0.08	. 042	LC)	.084	(2)	08	.042	ω	08	.08	.067	S)	0	4	.042	04		0	0	0	0
-		261	306	000	075	125	094	043	315	256	000	040	089	039	321	179	154	000	351	299	000	031	235	306	083	28	142	000
Denth	וויקט רו	15m								20m			25m						30m							40m		
Œ	>																											

	.57	• • • •	4. 4.	. 4.2 2 C C C C	. 42 . 084 . 084
700- 725	* * \$ 63 0	47 15 13	29 1 42 0 42 0		42 084 838
675-	* * * * * * * * * * * * * * * * * * *		9 0	50 0 59 0 59 0 42 0	50 251 008
650 -	* * -1 0 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	m	010	· · ·
625 - 650	9.2.2	ന വ	1.8.4.	0.84.0	.084
600-	44 9 17		3.77 2.18 1.26 1.47	. 84 . 84 . 08	.68 .419 .419
575- (29.34 , 9.22 , 14.67		4.61 3.77 2.51 2.18	2.01 4.36 2.01 .13	. 63 . 335 . 838
550- 5 575 6	200 200 200 200 200 200 200 200 200 200	61 20 61 35	. 5 1 2 4 2 3 4 3 4	. 42 1.17 . 01 . 08	.17
525	6 8 8 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.05 2.05 2.00 1.38	22.2.2.	. 25	.08 .419 .084
500- 525	1.79 2 6.79 2.68 4.86	10.00.00.	. 82 . 17 . 17		0 .083 .0008
475- E	7.60 2 6.20 3.02 3.02		0 0 0 1 0 0 1	.001 .001 .001	00008
450 - 475	. 83 . 95 . 95 . 95 . 95	. 67 . 67 . 59	.25 .001 .001		.0001
2-0	.72 14 11 5 18 2 18 2	. 59 . 59 . 67	. 42 . 04 . 008	800.	.003 .001 .0008
400 – 42	8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	34 04 04 44	4000000	008 001 034 0008
*	00 4 19 4 25 2 90 3	115 118 100 23	2 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	55 00 00 40 00 00	022 124 355 246
9 Depth	135° lm	5m	10m	15m	

-002	725	0	0	0	0	0	0	0	0	0	0	0	0
675-	200	0	0	0	0	0	0	0	0	0	0	0	0
650-	675	0	0	0	0	0	0	0	0	0	0	0	0
625-	650	0	0	0	0	.017	.008	0	0	0	0	0	0
-009	625	0	0.1	.08	0	.419	.001	0	0	0	.042	.084	.084
575-	000	80.	2.28	.08	.08	.419	.419	0	0	0	.0001	.419	.419
_,	575						.084						
	550	0	0.1	1.4	0	.084	.059	0	0	.084	.084	.067	.067
	525	0	0	0.1	0	0	0	0	0	0	0	0	0
0-475-	475 500	0	0	0	0	0	0	0	0	0	0	0	0
45	47	0	0	0	0	3 0	0	0	0	0	0	0	0
400-425- 450-4	425 450	0	0	0		08000.	0	0	0	0	0	0	0
400-	425	0	0	0	.01	.017	0	0	0	0	0	0	0
	~	339	000	103	143	184	201	208	182	343	000	060	110
	θ Depth	20m	J		•	•		25m		.,	J	J	

				, -					Ţ	Ę		
700 - 725	*	*	*	10.06	11.32	.42	.08	.42	00.	00.	0	0
675 - 700	30.60 *	6.28	*	6.29	6.29	.42	0	0	.01		0	0
650 - 675	30.60	5.51	*	3.77	3,35	.59	.42	.50		.42	0	0
625- 650	31.43	7.96	16.764	2.77	4.19	.25	.08	.17	.001	.08	0	0
600 - 625	*	9.22	45.264	3.10	3.77	.84	.84	.50	.42	.50	.001	.042
575 - 600	*	10.06	39.396		6.29	2.01	.84	.84	.17	.21	.112	0
550- 575	33.53	5.87	15.088	2.51	2.51	.42	.42	.42	.08	.08	.0011	3000
525- 550	20.12	3.98	7.711	1.26	1.26	.13				.001	0	.067
500- 525	17.6	2.68	6.873	.92	.92	.08	80.	.08	.001	.001	0	0
475 - 500	9.72	2.68	6.538	.50	. 80	.001	.001	.001	.001	.001	0	8000.
450- 475	12.57	1.93	5.700	.25	.34	.001	.001	.001	.001	.001	0	0
425 - 450	9.47	1.68	5.196	.34	.50	.01	.01	.01	.001	.01	0	0
400-	4.95	1.84	*	.34	.34	.04	.04	.03	.04	.03	0	0
Φ	000	082	150	000	205	000	270	055	120	000	000	000
θ Depth	166° 1m			5m		10m			15m		20m	25m

* Values exceed limitations of standard lamp

BIBLIOGRAPHY

- Austin, R. W. and T. J. Petzold 1968. <u>An Underwater Transmissometer for Ocean Survey Work</u>. Scripps Institution of Oceanography Reference No. 68-9.
- Austin, R. W. and R. W. Loudermilk 1968. <u>An Oceanographic Illuminator for Light Penetration and Reflection Studies</u>.
 Scripps Institution of Oceanography Reference No. 68-11.
- 3. Bassett, C. H. and H. C. Furminger 1965. An Investigation of Light Scattering in Monterey Bay. M.S. Thesis, Naval Postgraduate School.
- 4. Burt, W. V. 1955. <u>Interpretation of Spectrophotometer Readings</u>
 on Chesapeake Bay Water. Journal of Marine Research,
 Vol. 14, pp. 33-47.
- 5. Busby, R. F. 1967. <u>Undersea Penetration by Ambient Light and Visibility</u>. Science, Vol. 158, No. 3805, pp. 1178-80.
- 6. Clarke, G. L. and E. J. Denton 1962. Light and Animal Life,

 The Sec. Vol. I, Fd. M N Hill. New York: Interscience.
- 7. Duntley, S. Q. 1963. <u>Light in the Sea</u>. Journal of the Optical Society of America, Vol. 53, No. 2, pp. 214-233.
- 8. Ivanoff, A. and T. H. Waterman 1958. Factors, Mainly Depth and Wavelength, Affecting the Degree of Underwater Light Polarization. Journal of Marine Research, Vol. 10, No. 3, pp. 283-307.
- 9. Ivanoff, A., N. G. Jerlov and T. H. Waterman 1961. A Comparative Study of Irradiance, Beam Transmittance and Scattering in the Sea Near Bermuda. Limnology and Oceanography, Vol. 8, No. 2, pp. 129-148.
- 10. Jerlov, N. G. 1953. <u>Influence of Suspended and Dissolved Matter on the Transparency of Sea Water</u>. Tellus, Vol. 5, No. 1, pp. 59-65.
- 11. Jerlov, N. G. and J. Piccard 1959. <u>Bathyscaph Measurements of Daylight Penetration in the Mediterranean</u>. Deep-Sea Research, Vol. 5, No. 3, pp. 201-204.
- Jerlov, N. G. and M. Fukuda 1960. <u>Radiance Distribution in the Upper Layers of the Sea</u>. Tellus, Vol. 12, No. 3, pp. 348-355.

- 13. Jerlov, N.G. 1964. Optical Classification of Ocean Water. In: Physical Aspects of Light in the Sea. Honolulu: Univ. Hawaii Press, pp. 45-49.
- 14. Jerlov, N.G. 1968. Optical Oceanography. Amsterdam: Elsevier Publishing Company.
- 15. Karabashev, G. S. 1966. <u>A Photometer for Measuring Spectral</u>

 <u>Function of Irradiance Attenuation in the Sea</u>. Oceanology,
 Vol. 6, No. 5, pp. 722-726.
- 16. Karelin, A. K. and V. N. Pelevin 1970. The FMPO-64 Marine

 <u>Underwater Irradiance Meter and Its Application in Hydro-Optical Studies</u>. Oceanology, Vol. 10, No. 2, pp. 282-285.
- 17. Kodak Wratten Filters for Scientific and Technical Use. 1965.22nd Ed., Eastman Kodak Company.
- 18. Lawrence, L.G. 1967. <u>Electronics in Oceanography</u>. Indianapolis: Howard W. Sams & Co., Inc., pp. 174-180.
- 19. Neumann, G. and W. J. Pierson, Jr., 1966. <u>Principles of Physical Oceanography</u>. Englewood Cliffs: Prentice Hall Inc.
- 20. Preisendorfer, R. W. 1959. Theoretical Proof of the Existence of Characteristic Diffuse Light in Natural Waters. Journal of Marine Roscaron, vol. 18, pp. 1-9.
- 21. Sasaki, T., et al. 1955a. Optical Properties of the Water in the Kuroshio Current. Records of Oceanographic Works in Japan, Vol. 2, No. 2, pp. 1-8.
- 22. Sasaki, T., et al. 1955b. Measurements of the Angular Distribution of Submarine Daylight. Journal of the Scientific Institute, No. 1,387, Vol. 49, pp. 103-106, Tokyo, Japan.
- 23. Sasaki, T., et al. 1957. <u>Measurements of the Angular Distribution of Daylight in the Sea</u>. Records of Oceanographic Works in Japan (Special Number, March 1957), pp. 42-45.
- 24. Sasaki, T., et al. 1960a. Measurements of Perpendicular and Horizontal Angular Distribution of Submarine Daylight by Means of New Remote Control Instrument. Records of Oceanographic Works in Japan (Special No. 4), pp. 197-205.
- 25. Sasaki, T., et al. 1960b. Angular Distribution of Scattered Light in Deep Sea Water. Records of Oceanographic Works in Japan, Vol. 5, No. 2, pp. 1-10.
- 26. Sasaki, T., et al. 1962. On the Instrument for Measuring Angular

 <u>Distribution of Underwater Radiance</u>. Bulletin of the Japanese
 Society of Scientific Fisheries, Vol. 28, No. 5, pp. 489-496.

- 27. Sasaki, T., G. Oshiba and M. Kishino 1966. <u>A 4 π Underwater</u>

 <u>Irradiance Meter</u>. Journal of Oceanographic Society of Japan,
 Vol. 22, No. 4, pp. 1-6.
- 28. Sasaki, T., et al. 1968. Optical Properties of the Water in Adjacent Regions of the Kuroshio. Journal of Oceanographic Society of Japan, Vol. 24, No. 2, pp. 45-50.
- 29. Smith, R. C. and J. E. Tyler 1967. Optical Properties of Clear

 Natural Water. Journal of the Optical Society of America,
 Vol. 57, No. 5, pp. 589-595.
- 30. Tyler, J. E. and R. W. Preisendorfer 1962. Transmission of Energy Within the Sea, <u>The Sea</u>, Vol I., Ed. M. N. Hill, New York: Interscience.
- 31. Tyler, J. E. and R. C. Smith 1966. Submersible Spectroradiometer.

 Journal of the Optical Society of America, Vol. 56, No. 10,

 pp. 1390-1396.
- 32. Tyler, J. E. and R. C. Smith 1967. <u>Spectroradiometric Character-istics of Natural Light Underwater</u>. Journal of the Optical Society of America, Vol. 57, No. 5, pp. 595-601.
- 33. Tyler, J. E. and R. C. Smith 1970. Measurements of Spectral Irradiance underwater. New York: Lorgon and Breach, Science Publishers.
- 34. Whitney L. V. 1961. General Law of Diminution of Light Intensity in Natural Waters and % of Diffuse Light at Different Depths.

 Journal of Optical Society of America, Vol. 31, No. 12, pp. 714-722.
- 35. Williams, Jerome 1970. Optical Properties of the Sea. Annapolis: United States Naval Institute.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
3.	Assistant Professor Stevens P. Tucker, Code 58Tc Department of Oceanography Naval Postgraduate School Monterey, California 93940	6
4.	LT Raymond T. Michelini, USN COMCRUDESFLOT TWELVE FPO New York 09501	3
5.	Department of Oceanography Navai Posignaduale School Monterey, California 93940	3
6.	Commanding Officer and Director Naval Undersea Research & Development Center Attn: Code 2230 San Diego, California 92152	1
7.	Director, Naval Research Laboratory Attn: Tech. Services Info. Officer Washington, D. C. 20390	1
8.	Office of Naval Research Department of the Navy Washington, D. C. 20360	1
9.	Oceanographer of the Navy The Madison Building 732 N. Washington Street Alexandria, Virginia 22314	1
10.	Library USCG Oceanographic Unit Bldg. 159E, Navy Yard Annex Washington, D. C. 20390	1

11.	Prof. Kendall L. Carder Marine Science Institute University of South Florida 830 First Street South St. Petersburg, Florida 33701	1
12.	Naval Oceanographic Office Attn: Library Washington, D. C. 20390	1
13.	Director, Maury Center of Ocean Sciences Naval Research Laboratory Washington, D. C. 20390	1
14.	Mr. Roswell W. Austin Visibility Laboratory Scripps Institution of Oceanography La Jolla, California 92037	1
15.	Dr. Wayne V. Burt Department of Oceanography Oregon State University Corvallis, Oregon 97331	1
16.	Dr. Peyton Cunningham Department of Physics Naval Postgraduate School Monterey, California 93940	6
17.	Dr. Siebert Q. Duntley Visibility Laboratory Scripps Institution of Oceanography La Jolla, California 92037	1
18.	Mr. George Eck Naval Air Development Center Johnsville, Warminster, Pennsylvania 18974	1
19.	Mr. Gary Gilbert Stanford Research Institute Menlo Park, California 94025	1
20.	Dr. R. C. Honey Stanford Research Institute Menlo Park, California 94025	1

21.	Mr. Kenneth V. Mackenzie Ocean Sciences Department, Code D503 Naval Undersea Research & Development Center San Diego Division San Diego, California 92152	1
22.	Dr. Robert E. Morrison AE1 Office of Environmental Systems N.O.A.A. 6010 Executive Blvd. Rockville, Maryland 20852	1
23.	Mr. Larry Ott Naval Air Development Center Johnsville, Warminster, Pennsylvania 18974	2
24.	Mr. Robert Owen National Marine Fisheries Service P.O. Box 271, La Jolla, California 92037	1
25.	Mr. James Reese Coon Sciences Department Code D503 Naval Undersea Research & Development Center San Diego Division San Diego, California 92152	1
26.	Mr. John E. Tyler Visibility Laboratory Scripps Institution of Oceanography La Jolla, California 92037	1
27.	Dr. Hasong Pak Department of Oceanography Oregon State University Corvallis, Oregon 97331	1
28.	Mr. John Arvesen Mail Stop 234-1 Ames Research Center Moffett Field, California 94035	1
29.	Mr. Alan Baldridge, Librarian Hopkins Marine Station Pacific Grove, California 93950	1

30.	Mr. Ted Petzold Visibility Laboratory Scripps Institution of Oceanography La Jolla, California 92037	1
31.	Director Moss Landing Marine Laboratories Moss Landing, California 95039	1
32.	Mrs. Elsie F. DuPre Oceanography Branch, Optical Sciences Division Naval Research Laboratory Washington, D. C. 20390	1
33.	Mr. W. J. Stachnik Optical Systems U. S. Navy Underwater Sound Laboratory Fort Trumbull New London, Connecticut 06320	1
34.	Mr. Raymond N. Vranicar Code AIR-370D Naval Air Cystems Command Washington, D. C. 20360	2
35.	Mr. Irvin H. Gatzke Code AIR-370 Naval Air Systems Command Washington, D. C. 20360	2
36.	Mr. Joseph R. Gerber 9 Colonial Drive Allendale, New Jersey 07401	1
37.	Dr. Sydney H. Kalmbach Department of Physics Naval Postgraduate School Monterey, California 93940	1
38.	Dr. Ned A. Ostenso Office of Naval Research Code 480D Arlington, Virginia 22217	1

39.	DZ.Y2B Yavuz Ergengil Muhtesip Iskender Mah. Akseki Cad. No. 24 Fatih-Istanbul, Turkey	1
40.	Department of Oceanography United States Naval Academy Annapolis, Maryland 21402	1

Ol - fraction		
Security Classification	JMENT CONTROL DATA - R & D	D
(Security classification of title, body of abstr	act and indexing annotation must be enter	ered when the overall report is classified)
ORIGINATING ACTIVITY (Corporate author)	20.	a. REPORT SECURITY CLASSIFICATION Unclassified
Naval Postgraduate School	24	b. GROUP
Monterey, California 93940	20	b. GROOT
REPORT TITLE		
Spectral Radiance Measureme	nts in Monterey Bay	
Specual Radiano		
4 DESCRIPTIVE NOTES (Type of report and inclusive	e dates)	
Master's Thesis; September 1	.971	
5. AUTHOR(5) (First name, middle initial, last name)		
Raymond Theodore Michelini		
6. REPORT DATE	78. TOTAL NO. OF F	
September 1971	86	35
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S R	REPORT NUMBER(5)
b. PROJECT NO.		
	9b. OTHER REPORT	RT NO(S) (Any other numbers that may be assig
c.	this tepony	
d.		
10. DISTRIBUTION STATEMENT		
Approved for public release:	distribution unlimited.	
11. SUPPLEMENTARY NOTES		MILITARY ACTIVITY
THE SUFFICIENCY THE STATE OF TH		
	Naval Post	tgraduate School
	Monterey,	, California 93940

An underwater spectral radiance meter having a rotating spectral wedge filter and capable of operating to depths of 300 meters was designed and constructed. It was used to obtain measurements of spectral radiance to a depth of 60 meters at two stations in southern Monterey Bay, California, on an overcast day during July 1971. Variations of the spectral radiance distribution with depth were plotted for vertical angles of 0, 45, 90, 135 and 166 degrees at an azimuth angle of zero degrees with respect to the sun.

The results of the measurements are reasonable in all cases and indicate that the spectral wedge filter provides a practical means of determining spectral radiance distributions.

13. ABSTRACT

- Security Classification		LINK A		LINK B		LINK C	
KEY WORDS	ROLE	wT	RÔLE	wT	ROLE	wT	
Radiance							
Optical Oceanography							
Spectral Radiance							
Hydrological Optics							
Optical Properties of Sea Water							
Light Penetration of Sea Water, Monterey Bay, C	Calif.						
Light in the Sea							
Eight In the Bed							
	1			 			

Thesis M57534 c.2 131296

Michelini
Spectral radiance
measurments in Monterey Bay.

Thesis M57534 131296

34 Michelini

c.2 Spectral radiance measurments in Mon-terey Bay.

thesM57534
Spectral radiance measurements in Monter

3 2768 001 88313 5
DUDLEY KNOX LIBRARY