Continuity

Nijat Aliyev

BHOS

Calculus

September 27, 2023

Theorem (Intermediate Value Theorem (IVT))

If f is any continuous function on a closed interval [a,b] and if N is any number between f(a) and f(b), then there exists $c \in (a,b)$ such that f(c) = N.

Theorem (Intermediate Value Theorem (IVT))

If f is any continuous function on a closed interval [a,b] and if N is any number between f(a) and f(b), then there exists $c \in (a,b)$ such that f(c) = N.

Theorem (Intermediate Value Theorem (IVT))

If f is any continuous function on a closed interval [a,b] and if N is any number between f(a) and f(b), then there exists $c \in (a,b)$ such that f(c) = N.

IVT tells that a continuous function takes on every intermediate value between f(a) and f(b).

Theorem (Intermediate Value Theorem (IVT))

If f is any continuous function on a closed interval [a,b] and if N is any number between f(a) and f(b), then there exists $c \in (a,b)$ such that f(c) = N.

IVT tells that a continuous function takes on every intermediate value between f(a) and f(b).

Note that the value N can be taken on once or more than once

Since a continuous function is a function whose graph has no hole or break, the Intermediate Value Theorem is natural result.

Since a continuous function is a function whose graph has no hole or break, the Intermediate Value Theorem is natural result.

Geometrically, IVT says that if any horizontal line y = N is given between f(a) and f(b), then the graph of f can not jump over the line.

Since a continuous function is a function whose graph has no hole or break, the Intermediate Value Theorem is natural result.

Geometrically, IVT says that if any horizontal line y = N is given between f(a) and f(b), then the graph of f can not jump over the line.

It must intersect y = N somewhere.

Since a continuous function is a function whose graph has no hole or break, the Intermediate Value Theorem is natural result.

Geometrically, IVT says that if any horizontal line y = N is given between f(a) and f(b), then the graph of f can not jump over the line.

It must intersect y = N somewhere.

It is important that the function in IVT be continuous.

It is important that the function in $\ensuremath{\mathsf{IVT}}$ be continuous.

Otherwise it may fail.

It is important that the function in IVT be continuous.

Otherwise it may fail.

Example: Consider the piece-wise defined function

$$y = \begin{cases} 2x - 2, & 1 \le x < 2 \\ 3, & 2 \le x < 4 \end{cases}$$

It is important that the function in IVT be continuous.

Otherwise it may fail.

Example: Consider the piece-wise defined function

$$y = \begin{cases} 2x - 2, & 1 \le x < 2 \\ 3, & 2 \le x < 4 \end{cases}$$

f does not take any value between 2 and 3.

Application for Root Finding.

A solution of the equation f(x) = 0 is called a **root** or a **zero** of the function f.

Application for Root Finding.

A solution of the equation f(x) = 0 is called a **root** or a **zero** of the function f.

IVT says that, if f is continuous and changes its sign on the interval [a, b], then f has a root on (a, b).

Example: Show that there is a root of the equation

$$4x^3 - 3x^2 + 2x - 1 = 0$$

on [0, 1].

Application for Root Finding.

A solution of the equation f(x) = 0 is called a **root** or a **zero** of the function f.

IVT says that, if f is continuous and changes its sign on the interval [a, b], then f has a root on (a, b).

Example: Show that there is a root of the equation

$$4x^3 - 3x^2 + 2x - 1 = 0$$

on [0,1].

Solution: Let $f(x) = 4x^3 - 3x^2 + 2x - 1$. Then it is continuous as it is a polynomial.

Application for Root Finding.

A solution of the equation f(x) = 0 is called a **root** or a **zero** of the function f.

IVT says that, if f is continuous and changes its sign on the interval [a, b], then f has a root on (a, b).

Example: Show that there is a root of the equation

$$4x^3 - 3x^2 + 2x - 1 = 0$$

on [0,1].

Solution: Let $f(x) = 4x^3 - 3x^2 + 2x - 1$. Then it is continuous as it is a polynomial.

Furthermore, f(0) = -1 < 0 and f(1) = 2 > 0.

Application for Root Finding.

A solution of the equation f(x) = 0 is called a **root** or a **zero** of the function f.

IVT says that, if f is continuous and changes its sign on the interval [a, b], then f has a root on (a, b).

Example: Show that there is a root of the equation

$$4x^3 - 3x^2 + 2x - 1 = 0$$

on [0, 1].

Solution: Let $f(x) = 4x^3 - 3x^2 + 2x - 1$. Then it is continuous as it is a polynomial.

Furthermore, f(0) = -1 < 0 and f(1) = 2 > 0.

Since 0 is between -1 and 2, by IVT, there is $c \in (0,1)$ such that f(c) = 0.

Application for Root Finding.

A solution of the equation f(x) = 0 is called a **root** or a **zero** of the function f.

IVT says that, if f is continuous and changes its sign on the interval [a, b], then f has a root on (a, b).

Example: Show that there is a root of the equation

$$4x^3 - 3x^2 + 2x - 1 = 0$$

on [0, 1].

Solution: Let $f(x) = 4x^3 - 3x^2 + 2x - 1$. Then it is continuous as it is a polynomial.

Furthermore, f(0) = -1 < 0 and f(1) = 2 > 0.

Since 0 is between -1 and 2, by IVT, there is $c \in (0,1)$ such that f(c) = 0.

In other words, $4x^3 - 3x^2 + 2x - 1 = 0$ has at least one root c in (0,1).

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Solution: Consider the function $f(x) = \sqrt{2x+9} + x^2$.

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Solution: Consider the function $f(x) = \sqrt{2x+9} + x^2$. It is a continuous function on $[-4.5, \infty)$.

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Solution: Consider the function $f(x) = \sqrt{2x+9} + x^2$. It is a continuous function on $[-4.5, \infty)$.

$$f(0) = \sqrt{9} = 3$$
. and $f(1) \approx 3.2 + 1 = 4.32$.

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Solution: Consider the function $f(x) = \sqrt{2x+9} + x^2$. It is a continuous function on $[-4.5, \infty)$.

$$f(0) = \sqrt{9} = 3$$
. and $f(1) \approx 3.2 + 1 = 4.32$.

Since 3 < 4 < 4.32, and since f is continuous on $[0,1] \subset [-4.5,\infty)$,

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Solution: Consider the function $f(x) = \sqrt{2x+9} + x^2$. It is a continuous function on $[-4.5, \infty)$.

$$f(0) = \sqrt{9} = 3$$
. and $f(1) \approx 3.2 + 1 = 4.32$.

Since 3 < 4 < 4.32, and since f is continuous on $[0,1] \subset [-4.5,\infty)$,

by IVT, there is a number $c \in (0,1)$ such that f(c) = 4.

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Solution: Consider the function $f(x) = \sqrt{2x+9} + x^2$. It is a continuous function on $[-4.5, \infty)$.

$$f(0) = \sqrt{9} = 3$$
. and $f(1) \approx 3.2 + 1 = 4.32$.

Since 3 < 4 < 4.32, and since f is continuous on $[0,1] \subset [-4.5,\infty)$,

by IVT, there is a number $c \in (0,1)$ such that f(c) = 4.

In other words, $\sqrt{2c+9}+c^2=4$

Application for Root Finding.

Example: Show that $\sqrt{2x+9} = 4 - x^2$ has a solution.

Solution: Consider the function $f(x) = \sqrt{2x+9} + x^2$. It is a continuous function on $[-4.5, \infty)$.

$$f(0) = \sqrt{9} = 3$$
. and $f(1) \approx 3.2 + 1 = 4.32$.

Since 3 < 4 < 4.32, and since f is continuous on $[0,1] \subset [-4.5,\infty)$,

by IVT, there is a number $c \in (0,1)$ such that f(c) = 4.

In other words,
$$\sqrt{2c+9}+c^2=4$$

$$\Longrightarrow \sqrt{2c+9}=4-c^2$$

Some functions with removable discontinuity can be made continuous by extending its domain.

Some functions with removable discontinuity can be made continuous by extending its domain.

Example: Consider $f(x) = \frac{\sin x}{x}$.

Some functions with removable discontinuity can be made continuous by extending its domain.

Example: Consider
$$f(x) = \frac{\sin x}{x}$$
.

f(x) is not defined at x = 0 and so is not continuous at x = 0.

Some functions with removable discontinuity can be made continuous by extending its domain.

Example: Consider $f(x) = \frac{\sin x}{x}$.

f(x) is not defined at x = 0 and so is not continuous at x = 0.

But continuous everywhere else.

Some functions with removable discontinuity can be made continuous by extending its domain.

Example: Consider $f(x) = \frac{\sin x}{x}$.

f(x) is not defined at x = 0 and so is not continuous at x = 0.

But continuous everywhere else.

Recall that $\lim_{x\to 0} f(x) = 1$.

Some functions with removable discontinuity can be made continuous by extending its domain.

Example: Consider $f(x) = \frac{\sin x}{x}$.

f(x) is not defined at x = 0 and so is not continuous at x = 0.

But continuous everywhere else.

Recall that $\lim_{x\to 0} f(x) = 1$.

We can define a new function so that its domain includes x = 0 as follows:

$$F(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

Some functions with removable discontinuity can be made continuous by extending its domain.

Example: Consider $f(x) = \frac{\sin x}{x}$.

f(x) is not defined at x = 0 and so is not continuous at x = 0.

But continuous everywhere else.

Recall that $\lim_{x\to 0} f(x) = 1$.

We can define a new function so that its domain includes x = 0 as follows:

$$F(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

F(x) is continuous at x = 0 because $\lim_{x \to 0} F(x) = F(0)$.

More generally, a function (such as a rational function) may have a limit at a point where it is not defined.

More generally, a function (such as a rational function) may have a limit at a point where it is not defined.

If f(c) is not defined but $\lim_{x\to c} f(x) = L$, then we can define a new function by

$$F(x) = \begin{cases} f(x), & x \in D_f \\ L, & x = c \end{cases}$$

More generally, a function (such as a rational function) may have a limit at a point where it is not defined.

If f(c) is not defined but $\lim_{x\to c} f(x) = L$, then we can define a new function by

$$F(x) = \begin{cases} f(x), & x \in D_f \\ L, & x = c \end{cases}$$

The function F(x) is continuous at x = c and is called **continuous extension** of f.

Example: Show that

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

has a continuous extension at x = 2 and find that extension.

Example: Show that

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

has a continuous extension at x = 2 and find that extension.

Solution:

f(2) is not defined but except x = 2 f is defined and continuous everywhere.

Example: Show that

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

has a continuous extension at x = 2 and find that extension.

Solution:

f(2) is not defined but except x = 2 f is defined and continuous everywhere.

For $x \neq 2$, we have

$$\frac{x^2+x-6}{x^2-4}=\frac{(x-2)(x+3)}{(x-2)(x+2)}=\frac{x+3}{x+2}.$$

Example: Show that

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

has a continuous extension at x = 2 and find that extension.

Solution:

f(2) is not defined but except x = 2 f is defined and continuous everywhere.

For $x \neq 2$, we have

$$\frac{x^2+x-6}{x^2-4}=\frac{(x-2)(x+3)}{(x-2)(x+2)}=\frac{x+3}{x+2}.$$

The new function

$$F(x) = \frac{x+3}{x+2}$$

is equal to f(x) for $x \neq 2$.

The new function

$$F(x) = \frac{x+3}{x+2}$$

is equal to f(x) for $x \neq 2$.

F(x) is continuous at x = 2 and has value 5/4.

The new function

$$F(x) = \frac{x+3}{x+2}$$

is equal to f(x) for $x \neq 2$.

F(x) is continuous at x = 2 and has value 5/4.

Thus, F is continuous extension of f to x = 2.

Example: Show that

$$f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

has a continuous extension at x = 1 and find that extension.

Example: Show that

$$f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

has a continuous extension at x=1 and find that extension.

Solution:

f(1) is not defined but except x = 1 f is defined and continuous everywhere.

Example: Show that

$$f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

has a continuous extension at x = 1 and find that extension.

Solution:

f(1) is not defined but except x = 1 f is defined and continuous everywhere.

For $x \neq 1$, we have

$$\frac{x^2+2x-3}{x^2-1}=\frac{(x-1)(x+3)}{(x-1)(x+1)}=\frac{x+3}{x+1}.$$

Example: Show that

$$f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

has a continuous extension at x = 1 and find that extension.

Solution:

f(1) is not defined but except x = 1 f is defined and continuous everywhere.

For $x \neq 1$, we have

$$\frac{x^2+2x-3}{x^2-1}=\frac{(x-1)(x+3)}{(x-1)(x+1)}=\frac{x+3}{x+1}.$$

The new function

$$F(x) = \frac{x+3}{x+1}$$

is equal to f(x) for $x \neq 1$.

Example: Show that

$$f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

has a continuous extension at x = 1 and find that extension.

Solution:

f(1) is not defined but except x = 1 f is defined and continuous everywhere.

For $x \neq 1$, we have

$$\frac{x^2+2x-3}{x^2-1}=\frac{(x-1)(x+3)}{(x-1)(x+1)}=\frac{x+3}{x+1}.$$

The new function

$$F(x) = \frac{x+3}{x+1}$$

is equal to f(x) for $x \neq 1$.

F(x) is continuous at x = 1 and has value 2.

Example: Show that

$$f(x) = \frac{x^2 + 2x - 3}{x^2 - 1}$$

has a continuous extension at x = 1 and find that extension.

Solution:

f(1) is not defined but except x = 1 f is defined and continuous everywhere.

For $x \neq 1$, we have

$$\frac{x^2+2x-3}{x^2-1}=\frac{(x-1)(x+3)}{(x-1)(x+1)}=\frac{x+3}{x+1}.$$

The new function

$$F(x) = \frac{x+3}{x+1}$$

is equal to f(x) for $x \neq 1$.

F(x) is continuous at x = 1 and has value 2.

Thus, F is continuous extension of f to x = 2.