# Modue 2: nsta ing Pack ages and Reading Data

#### **Functions**

```
sqrt(100)

[1] 10

median(c(3, 4, 5, 6, 7))

[1] 5
```

## Packages

- Packages are collections of functions and data sets developed by the community.
- Two steps to use a package
  - installed with the install.packages function (only once)
  - imported with the library function (once per session)

```
install.packages("package_name")
library(package_name)
```

#### Now Try it yourself

install.packages("tidyverse")

library(tidyverse)

starwars

## What is the Tidyverse?



• The tidyverse is an opinionated collection of R packages designed for data science with similar underlying philosophy and a common syntax.

## Loading data from files

```
getwd()
```

```
setwd("/Users/jacob/Downloads/Module 2")
```

## Loading Data from Files

1

2

3

```
wealth_data=read.csv("wealth_data.csv")
```

### Data Frame vs Vector vs List

|    |           |        |               |              | Data Fram |
|----|-----------|--------|---------------|--------------|-----------|
| •  | country   | year 🗘 | strike.volume | unemployment |           |
| 1  | Australia | 1951   | 296           | 1.3          |           |
| 2  | Australia | 1952   | 397           | 2.2          | List      |
| 3  | Australia | 1953   | 360           | 2.5          |           |
| 4  | Australia | 1954   | 3             | 1.7          |           |
| 5  | Australia | 1955   | 326           | 1.4          |           |
| 6  | Australia | 1956   | 352           | 1.8          |           |
| 7  | Australia | 1957   | 195           | 2.3          |           |
| 8  | Australia | 1958   | 133           | 2.7          |           |
| 9  | Australia | 1959   | 109           | 2.6          |           |
| 10 | Australia | 1960   | 208           | 2.5          |           |

## Data Frame

## Creating a Data Frame

| file type                     | package                  | function                                     |
|-------------------------------|--------------------------|----------------------------------------------|
| .csv<br>.dta (stata)<br>.xlsx | readr<br>haven<br>readxl | <pre>read_csv() read_dta() read_xlsx()</pre> |

## Obtaining Basic Information of Data Frame

- Overview of the data
- Attributes of the data

#### Overview of the Data

- view() or View() look at the table
- glimpse()-structure of data frame name, type and preview of data in each column
- summary() displays min, 1st quartile, median, mean, 3rd quartile and max values for numeric attributes.
- head() shows first 6 rows

```
view(wealth_data)
glimpse(wealth_data)
summary(wealth_data)
head(wealth_data)
```

#### Attributes of the Data

- names() or colnames() both show the names attribute for a data frame
- dim() returns the dimensions of data frame (i.e. number of rows and number of columns)
- nrow() number of rows
- ncol() number of columns

```
names(wealth_data)
dim(wealth_data)
nrow(wealth_data)
ncol(wealth_data)
```

## Accessing Data

- By index (slicing)
- By name (columns only)
- By logical vector (criteria)

#### Dataset: Starwars

```
starwars
view(starwars)
glimpse(starwars)
```

| • | name               | height <sup>‡</sup> | mass ‡ | hair_color <sup>‡</sup> | skin_color  |
|---|--------------------|---------------------|--------|-------------------------|-------------|
| 1 | Luke Skywalker     | 172                 | 77     | blond                   | fair        |
| 2 | C-3PO              | 167                 | 75     | NA                      | gold        |
| 3 | R2-D2              | 96                  | 32     | NA                      | white, blue |
| 4 | Darth Vader        | 202                 | 136    | none                    | white       |
| 5 | Leia Organa        | 150                 | 49     | brown                   | light       |
| 6 | Owen Lars          | 178                 | 120    | brown, grey             | light       |
| 7 | Beru Whitesun lars | 165                 | 75     | brown                   | light       |
| 8 | R5-D4              | 97                  | 32     | NA                      | white, red  |
| 9 | Biggs Darklighter  | 183                 | 84     | black                   | light       |
| 0 | Obi-Wan Kenobi     | 182                 | 77     | auburn, white           | fair        |

## Accessing by Index

What will be returned by starwars[1, 1]?



hair\_color = blond

gender = male

species = Human

height = 172 cm

birth\_year = 19 BBY (Before Battle of Yavin)

films = c("Revenge of the Sith",

"Return of the Jedi",

"The Empire Strikes Back",

"A New Hope",

"The Force Awakens")

What will be returned by starwars[, 2]? What will be returned by starwars[1, ]?

4:6

Use the colon operator to index just the hair color, skin color, and eye color (columns 4 to 6).

starwars[c(1, 5, 7, 9), 1:5]

Now try to return the name (column 1) and mass (column 3) values for the first 5 character.

## Accessing by Name

names(starwars)

starwars\$species

## Accessing by Name

#### **Best Practice**

Best practice is to address columns by name, often you will create or delete columns and the column position will change.

## Accessing by Logical Vector (Criteria)

Find all characters with species being Human (with missing values)?

```
criteria = starwars$species == "Human"
starwars[criteria,]$name
```

```
starwars[starwars$species == "Human",]$name
```

Exercise: Find all characters with height greater than 170 (with missing values)?

## Functions for Missing Values

- na.omit(dataframe) removes the missing values in data frame
- is.na(dataframe\$colname) indicates which elements are missing

```
na.omit(starwars)
starwars[!is.na(starwars$species),]
```

## Recap: Installing Packages and Reading Data

- install packages using install.packages() and load them using library()
  - particularly, the package tidyverse using library(tidyverse)
- Index into a dataframe by:
  - index (slicing)
  - name (columns only)
  - logical vector (criteria)