HSEDA

High Speed Dual Channel AD Acquisition Module User Manual

VER2.0

Wuhan Huasheng Tek Electronic Technology Co., Ltd.

http://www.hseda.com

content

ntent		2
lodule parameters		
odule structure		3
roduction to AD9226		4
, AD9226 functional block diagram		5
D9226 Timing Diagram		5
tenuator circuit		8
t, AD8065 operational amplifier		9
, interface definition		9
D experiment operation steps		
SignalTap II waveforms		11
experiment Display		14
requestly Asked Questions about Ex	vaciments	

1. Module parameters

ÿModule model: HSAD9226V2.0

ÿ AD model: AD9226;

ÿNumber of channels: 2 channels;

ÿ AD digits: 12bit;

ÿ Maximum sampling rate: 65MSPS;

ÿInput signal voltage range: -5V~+5V;

ÿ Power supply: single 5V or 6-12V input

ÿThe number of PCB layers of the module: 2 layers, senior engineer wiring, separation of digital and analog power supply and GND;

ÿ Module interface: 40-pin 2.54mm pitch row seat, the direction is downward;

ÿWorking temperature: -40°~85° The chips used in the module meet the industrial temperature range

ÿInput interface: SMA interface and 2.54MM pitch pin header

2. Module structure

双高速AD9226扩展板系统结构图 - 电源模块 (±5V,3.3V) - 高速 AD(AD9226) - 高速 AD(AD9226) - 信号衰減(衰減到1-3V) - 信号輸入接口 (-5V到+5V) - 信号輸入接口 (-5V到+5V)

3. Introduction to AD9226

The dual-channel 12bit AD acquisition module adopts two pieces of AD9226 from ADI. This chip is a single-chip,

12-bit, 65 MSPS analog-to-digital converter (ADC) with single-supply operation and an on-chip high-performance track-and-hold amplifier

and reference voltage source. It uses a multi-stage differential pipeline architecture with data rates up to 65 MSPS over the entire operating temperature range Guaranteed no missing codes.

The ADC uses a high-speed, low-cost CMOS process and a novel architecture that achieves the resolution and speed of existing bipolar the level of performance solutions at a much lower cost of power consumption.

The input of the AD9226 enables easy interfacing with imaging, ultrasound, and communication systems. Using a true differential input structure, the user can to select various input ranges and offsets including single-ended applications. Dynamic performance is excellent. Sample-and-hold amplifiers are suitable for multiplexed systems that switch full-scale levels in consecutive channels, or

Suitable for sampling single-channel inputs at the highest Nyquist rate and higher.

Four, AD9226 functional block diagram

Five, AD9226 timing diagram

Through this timing diagram, we can see that there is no need to configure the AD chip, we only need to provide the clock

CLOCK, the chip can directly collect data, and the operation is very simple.

Six, AD9226 configuration

Module power supply

options: There are two

power supply methods. The first: we can choose to use J6's 1 pin or 40 pin to provide 5V power supply directly from the FPGA core board.

The second: we can use J5 on the board to provide 6-12 power supply, because there is a 5V LDO chip on the board. Therefore, low noise and high stability can be obtained. fixed 5V power supply. To supply power in this way, first remove the R35 resistor on the board. Only then can the module be powered individually. Otherwise it is possible

The 5V power is input to the FPGA core board through the J6 input through this resistor. Thus damaging the FPGA core board. Please be careful after removing R35

can be powered in this way.

AD chip working mode configuration description:

According to the figure above, we configure the AD9226 as a single-ended input mode with an input range of 1.0V-3.0V. In this mode

In the formula, VREF is the reference voltage of 2V, and the input range of VINA is 1.0-3.0V.

Let me explain here that there are a few points to pay attention to in the AD9226 when designing the hardware:

1. AD9226 This chip supports differential input and single-ended input, and can be used according to the design requirements.

To make a choice, we choose the single-ended input mode when designing. For other modes, see AD9226 chip hand book.

2. The circuit we designed selects the AD9226 internal reference source, VREF is the reference voltage output port, which can provide

Two reference voltages, 1V and 2V. It is selected by SENSE. When SENSE is connected to GND, it provides

2V reference; 1V reference is provided when SENSE is connected to VREF. The connection we choose is

Provides a connection for a 2V reference voltage. We use this 2V reference voltage in the circuit to design the attenuation

circuit, please refer to the schematic diagram for details.

3. The input range of VINA is determined by VREF. When VREF=2V, the input range of VINA is

2V (3V-1V=2V); when VREF=1V, the input range of VINA is 1V (1.5V-0.5V=1V).

Pin 35 and pin 43 MODE have the function of data format selection, the output data format of AD9226 has two

kinds, Binary Output Mode and Two's Complement Mode.

The following table shows the mode selection,

Table II. DFS Pin Controls

DFS Function	Pin 35 Connection		
Straight Binary	AVSS		
Two's Complement	AVDD		

Table III. Clock Stabilizer Pin

Clock Restore Function	Pin 43 Connection		
Clock Stabilizer Enabled	AVDD		
Clock Stabilizer Disabled	AVSS		

From this table, we can see that when pin 35 is connected to AVDD, the selection mode is Two's Complement

Mode, when connected to AVSS, the selection mode is Binary Output Mode. When designing, we chose

 $Binary\ Output\ Mode\ means\ that\ R27\ and\ R29\ on\ the\ board\ are\ not\ installed.\ If\ installed,\ it\ is\ Two's\ Complement$

Mode.

The following table shows the difference between the two modes and the output data format

Note: This table is provided by the official document, but we think there are still errors in it. After our test, when VREF=2V

When it should be VIN-VINB=-1/2VREF=-1 or 1/2VREF=1, the corresponding values are 1000 000

000 or 0111 1111 1111, not -VREF or VREF as mentioned above, because at this time, VINB=2V, and

The range of VINA is 1V~3V, and the range of VINA-VINB is -1V~1V, namely -1/2VREF~1/2VREF. everyone can

Test to see if this is the case, if there is a problem, you can contact us to discuss and correct it.

The OTR pin of AD9226 is Out of Range, that is, the input voltage range detection function.

We can judge whether the input voltage exceeds the range where the chip is designed. The following table is the truth table

When OTR is 1, it means that the voltage range we have collected exceeds the design range.

Input (V)	Condition (V)	Binary Output Mode	Two's Complement Mode	OTR
VINA-VINB	<-VREF	0000 0000 0000	1000 0000 0000	1
VINA-VINB	=-VREF	0000 0000 0000	1000 0000 0000	0
VINA-VINB	= 0	1000 0000 0000	0000 0000 0000	0
VINA-VINB	= + VREF - 1 LSB	1111 1111 1111	0111 1111 1110	0
VINA-VINB	≥ + VREF	1111 1111 1111	0111 1111 1111	1.

OTR	MSB	Analog Input Is		
0	0	In Range		
0	1	In Range		
1	0	Underrange		
1	1	Overrange		

Seven, attenuation circuit

The function of the attenuation circuit is to reduce the input voltage according to a certain proportion to make it meet the input of the AD input.

Scope. Generally, the input range of the AD input terminal is very small. Take AD9226 as an example. We set its voltage input range as

1.0V-3.0V, and we need to meet the voltage input range of -5V to +5V, then we will be -5V to +5V voltage

It can be reduced to the range of 1V-3V. Therefore, the function of the attenuation circuit is produced. We have designed a meeting

For the attenuation circuit required above, his conversion formula is:

Vout=(1/5)Vin+2

When Vin=-5V, Vout=1V; When Vin=5V, Vout=3V;

Just meet our above requirements. After converting to a digital signal, reverse the above conversion formula to convert the digital signal Amplify to get the true value of the input voltage.

Note: After the signal passes through the attenuation circuit, there will be a certain error, we can regard its error as a linear error, Manual calibration of the signal reduces the margin of error.

Eight, AD8065 operational amplifier

In the attenuation circuit, we use a high-performance, 145MHz operational amplifier AD8065, AD8065

FastFET The amplifiers are voltage feedback amplifiers with FET inputs for excellent performance and ease of use. AD8065 is

Single amplifier, fabricated on Analog Devices' proprietary XFCB process, operates with very low noise (7.0 nV/ÿHz and 0.6

fA/ÿHz), the input impedance is very high.

The AD8065 has a wide supply voltage range of 5V to 24V, can operate from a single supply, and has a bandwidth of 145MHz, suitable for

various applications. Additionally, these amplifiers feature rail-to-rail outputs, making them even more versatile.

Despite the low cost, these devices still provide excellent overall performance. The differential gain and phase error of these amplifiers

0.02% and 0.02°, and 0.1 dB flatness at 7 MHz, ideal for video applications. In addition, these devices

Features a high slew rate of 180 V/is, excellent distortion performance (-88 dBc spurious free dynamic range (SFDR) at 1 MHz),

Very high common-mode rejection (ÿ100 dB) and low input offset voltage (1.5 mV, max at warm-up).

With only a typical supply current of 6.4 mA per amplifier, the AD8065/AD8066 are capable of driving up to 30 mA

load current.

9. Interface Definition

illustrate

The data bits of AD9226 are reversed. For example, AD2DB11 corresponds to data bit D0. AD2DB0 corresponds to data D11. Be careful, if the user when using it yourself.

(The triangle arrow pin with a box on the $\ensuremath{\text{PCB}}$ is pin 1)

Dual AD9226 corresponding pins (EP4CE30 VER2.0/3.0/4.0 Core board J11)				AD9226 correspoi R2.0/3.0/4.0 core b	nding pins (EP4CE	E30	
Device Name	U1 AD1	U2 AD2	FPGA mapping	Device Name	e U1 AD1	U2 AD2	FPGA mapping shoot pin
J11-1			5V	J6-1			5V
J11-2			GND	J6-2			GND

MULTINESS THE STREET			
J11-3			PIN_B22
J11-4			PIN_C20
J11-5			GND
J11-6			PIN_C22
J11-7			PIN_D20
J11-8			PIN_D21
J11-9		AD2CLK PIN_	D22
J11-10		AD2DB11 PIN_	E21
J11-11		AD2DB10 PIN_	E22
J11-12		AD2DB9 PIN_	F17
J11-13		AD2DB8 PIN_	F19
J11-14		AD2DB7 PIN_	F20
J11-15		AD2DB6 PIN_	F21
J11-16		AD2DB5 PIN_	F22
J11-17		AD2DB4 PIN_	G17
J11-18		AD2DB3 PIN_	G18
J11-19			PIN_H17
J11-20			PIN_H18
J11-21		AD2DB2 PIN_	H19
J11-22		AD2DB1 PIN_	H20
J11-23		AD2DB0 PIN_	H21
J11-24		AD2_OTR PIN	H22
J11-25			PIN_J17
J11-26 AD	1CLK		PIN_J18
J11-27 AD	1DB11		PIN_J21
J11-28 AD	1DB10		PIN_J22
J11-29	AD1DB9	13	PIN_K17
J11-30	AD1DB8		PIN_K18
J11-31	AD1DB7	\ \	PIN_K19
J11-32	AD1DB6		PIN_K21
J11-33	AD1DB5		PIN_K22
J11-34	AD1DB4		PIN_L21
J11-35	AD1DB3		PIN_L22
J11-36	AD1DB2		PIN_M19
J11-37	AD1DB1		PIN_M20
J11-38	AD1DB0		PIN_M21
J11-39 AD	1_OTR		PIN_M22
J11-40			5V

J6-3	PIN_A11
J6-4	PIN_B12
J6-5	GND
J6-6	PIN_F11
J6-7	PIN_E11
J6-8	PIN_E12
J6-9	AD2CLK PIN_G13
J6-10	AD2DB11 PIN_F13
J6-11	AD2DB10 PIN_E13
J6-12	AD2DB9 PIN_D13
J6-13	AD2DB8 PIN_C13
J6-14	AD2DB7 PIN_B13
J6-15	AD2DB6 PIN_A13
J6-16	AD2DB5 PIN_G14
J6-17	AD2DB4 PIN_F14
J6-18	AD2DB3 PIN_E14
J6-19	PIN_B14
J6-20	PIN_A14
J6-21	AD2DB2 PIN_G15
J6-22	AD2DB1 PIN_F15
J6-23	AD2DB0 PIN_E15
J6-24	AD2_OTR PIN_D15
J6-25	PIN_C15
J6-26 AD1CLK	PIN_B15
J6-27 AD1DB11	PIN_A15
J6-28 AD1DB10	PIN_D17
J6-29 AD1DB9	PIN_C17
J6-30 AD1DB8	PIN_B17
J6-31 AD1DB7	PIN_A17
J6-32 AD1DB6	PIN_B18
J6-33 AD1DB5	PIN_A18
J6-34 AD1DB4	PIN_D19
J6-35 AD1DB3	PIN_C19
J6-36 AD1DB2	PIN_B19
J6-37 AD1DB1	PIN_A19
J6-38 AD1DB0	PIN_B20
J6-39 AD1_OTR	PIN_A20
J6-40	5V

Ten, AD experiment operation steps

- 1. First, connect the AD module to the 40-pin standard expansion port of the FPGA development board (in the case of power down).
- 2. Connect your signal source to the AD input port (Note: AD port input range: -5V~+5V).

- 3. Using the Quartus II software, download the program to the FPGA (the test program is available for download in our forum).
- 4. Data was acquired in real time using SignalTap II.

11. SignalTap II waveform

The waveform below is the data waveform collected by the tool SignalTap II in Quartus II

12. System combination photos

13. Experimental display

双通道高速AD9226采集信号到TFT屏显示

虚拟仪器AD采集数据通过USB 传输到PC端显示和保存数据

14. Experiment FAQ

1. Why can't the AD module run at low frequency? Answer: Because our

AD chip is a high-speed chip, we have performed RC shaping processing on the clock to the AD chip. If you want the AD chip to run at a lower frequency, you can remove

the isolation capacitor C2, that is, short-circuit C2. Our best acquisition is preferably a clock frequency above 1Mhz. The running clock frequency of our supporting routine is 50MHZ. The actual measurement can reach up to 100MHZ. If the wiring distance between the FPGA core board and the AD module is very short.

2. Why is there noise or voltage instability when the AD module is connected to the FPGA target board with a DuPont cable? Answer: Because our AD chip

runs in high-speed parallel mode, our recommended connection method is board-to-board connection, and the FPGA is connected to the IO port The distance should not be too long, otherwise it will affect the speed and

If the user uses a DuPont cable to connect, the connection should not exceed 5CM, otherwise noise interference will occur, because the AD module has a large working current, and

And pay attention to the good connection with the target board GND. The AD module is best powered separately, 5V power supply, pay attention to the stability of the power supply.

It is recommended to use this type of cable connection, and the length should not exceed 5CM, otherwise it will cause noise interference or reduce the sampling frequency

3 Why is the temperature high when the AD chip is working? Answer:

Because AD9226 is a high-speed digital-analog hybrid chip, the operating temperature will be very high, which is normal. Don't worry about damage.

4 How does the AD module of Huasheng EDA connect to the development boards of other

companies? A: For the convenience of users, we have specially designed the corresponding interface adapter board for users. The development board interface commonly used in the market can be connected through the adapter board. For example, Taiwan Youjing, or Shanghai Black Gold Development Board. Adapter board purchase link: https://item.taobao.com/item.htm?spm=a1z10.5c.w4002-17218964840.81.fc5735fbLmOzLZ&id=562759035971

