Deep Learning

Language Modelling

Syed Irtaza Muzaffar

Output Loss Text Generation Language Translation Beam Search

Outline

1. Modelling input text as numeric vectors

- 2. Text generation
- 3. Language translation

Output Loss Text Generation Language Translation Beam Search

Modelling text as numeric vectors

- Corpus: Consider a dataset of news articles.
- ightharpoonup Vocabulary: Set V^{in} of (all or most frequent) unique words in the corpus.
- Assume size of vocabulary is Kⁱⁿ words.
- ► Each word can be represented using 1-of-K coding.
- For example, k-th word in V can be represented as

where 1 appears at the k-th index.

Inefficiency of 1-hot vectors

- ► 1-of-*K* coding is
 - 1. tremendously inefficient since K^2 numbers represent K words only, and
 - 2. *highly unrealistic* since 1-hot vectors are orthogonal while words have similarities.

Workaround: Embedding Matrix

Project word vectors onto lower dimensional space via projection/embedding matrix E.

$$e = Ey$$

- Matrix E is of size $D \times K^{\text{in}}$ where $D \ll K^{\text{in}}$.
- Optimal matrix E can be learned as part of the network parameters.

rt Output Loss Text Generation Language Translation Beam Sec

Output

- Let output language have a vocabulary V^{out} of K^{out} words.
- ightharpoonup Then output layer is softmax on $K^{
 m out}$ neurons.

- Let output language have a vocabulary (Vout) of Kout words.
- Then output layer is softmax on K_{out} neurons.

Loss

▶ For a sentence of T_n words, we can use cross-entropy between output sequence and target sequence.

$$\mathcal{L}_{n}\left(\left(\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(T_{n})}\right), \left(\mathbf{t}^{(1)}, \mathbf{t}^{(2)}, \dots, \mathbf{t}^{(T_{n})}\right)\right) = -\sum_{t=1}^{T_{n}} \sum_{j=1}^{K^{\text{out}}} t_{j}^{(t)} \ln y_{j}^{(t)}$$

$$= -\sum_{t=1}^{T_{n}} \ln y_{\text{target}}^{(t)}$$

- Training can be performed using BPTT on a corpus (typically) containing millions of words.
- ► Each sentence constitutes one training example.

For a sentence of T_n words, we can use cross-entropy between output

Loss

sequence and target sequence.

millions of words.

n-th training sample { = (1) = (2) ... } , { ; (1) = (4) ... } , { ; (1) = (7) } , { ; (1) = (7) } , { ; (1) = (7) }

 $\mathcal{L}_{n}\left(\left(\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \dots, \mathbf{y}^{(T_{n})}\right), \left(\mathbf{t}^{(1)}, \mathbf{t}^{(2)}, \dots, \mathbf{t}^{(T_{n})}\right)\right) = -\sum_{t=1}^{T_{n}} \sum_{i=1}^{J} t_{j}^{(t)} \ln y_{j}^{(t)}$

 $\begin{bmatrix} P(V_1) \\ P(V_k) \\ \vdots \\ P(V_T) \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \cdots \begin{bmatrix} \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} 1 \text{-het } 1 \text{-het } \\ J_{xl} \end{bmatrix} \begin{bmatrix} 1 \text{-het } 1 \text{-het } \\ J_{xl} \end{bmatrix} = -\sum_{i=1}^{t-1} \ln y_{\text{target}}^{(t)}$

Training can be performed using BPTT on a corpus (typically) containing

Each sentence constitutes one training example.

Ŧ (') = [;]

- ▶ Problem: generate a sequence of words $w^{(1)}, w^{(2)}, \dots$
- We will add two new words to each vocabulary.
 - sos: start of sentence
 - eos: end of sentence
- Solution:
 - 1. At time t=1, feed $w^{(0)}$ the sos word. That is, starting vector is $\mathbf{x}^{(0)}=\mathbf{0}$.
 - **2.** Compute probability distribution $\mathbf{y}^{(1)}$.
 - 3. Sample a word $w^{(1)}$ from this distribution.
 - 3.1 argmax, or
 - 3.2 random sampling based on probabilities in $\mathbf{v}^{(1)}$, or
 - 3.3 any other sampling method.
 - **4.** At every time step $t=1,\ldots$, feed w(t-1) as input, generate probability distribution $\mathbf{v}^{(t)}$ and sample next word w(t) from it.
 - **5.** Continue until eos is sampled.

Language Translation

Zaid slapped Khalid
$$\longrightarrow$$
 ازید نے خالد کو تھپڑ مارا $\mathbf{x}^{(1)}$ $\mathbf{x}^{(2)}$ $\mathbf{x}^{(3)}$ $\mathbf{y}^{(6)}$ $\mathbf{y}^{(5)}$ $\mathbf{y}^{(4)}$ $\mathbf{y}^{(3)}$ $\mathbf{y}^{(2)}$ $\mathbf{y}^{(1)}$

Language Translation

Language Translation

encoding of the whole input sequence.

Language TranslationA better decoder

Make probability distribution $\mathbf{y}^{(t+1)}$ depend on word drawn from $\mathbf{y}^{(t)}$ as well.

$$y_j^{(t)} = P(o^{(t)} = V_j | \underbrace{o^{(t-1)}, o^{(t-2)}, \dots, o^{(1)}}_{\text{all words output so far}}, \underbrace{w^{(1)}, w^{(2)}, \dots, w^{(T_{\text{in}})}}_{\text{all input words}})$$

Language Translation *Training*

tput Loss Text Generation Language Translation Beam Search

Language Translation

Testing: Finding the most likely output

- As mentioned earlier, sampling of words can be accomplished via
 - 1. argmax on each $\mathbf{y}^{(t)}$, or
- **2.** random sampling from each $\mathbf{y}^{(t)}$
- Both sampling methods produce locally optimal words.
- ▶ A better but costlier alternative is to find a globally optimal output sequence.

Beam Search

At time t = 1, pick the M most probable options instead of all K^{out} options.

$$t=1$$

Beam Search

Conditioned on each option at t = 1, pick the M most probable options at t = 2.

$$t = 1$$
 $t = 2$

t = 2.

Beam Search

Conditioned on each option at t = 1, pick the M most probable options at

t = 1

t = 2

Beam Search

Conditioned on each option at t = 1, pick the M most probable options at t = 2.

Beam Search

Conditioned on each path at t = 2, pick the M most probable options at t = 3.

Output Loss Text Generation Language Translation Beam Search

Beam Search

- ► A sequence is terminated when eos is drawn.
- ▶ When no unterminated sequence remains, select the most likely sequence across all terminating sequences.

Output Loss Text Generation Language Translation Beam Search

Summary

Words in a language can be modeled as 1-hot vectors.

- ► Learnable embedding matrices can reduce dimensions.
- ► Text generation models are *stochastic parrots*.
- Language translation can be achieved through the encoder-decoder framework.
- ▶ Beam-search makes decoding approximate but tractable.