### CS5489 - Machine Learning

## Lecture 10a - Deep Learning

#### Prof. Antoni B. Chan

#### Dept. of Computer Science, City University of Hong Kong

### **Outline**

- · Going deeper
  - ReLU and Batchnorm
- · Optimization methods
- · Deep architectures and Image classification
- Transfer learning

### **Problems with Going Deeper**

- Vanishing Gradient Problem 1
  - successive multiplications of small gradients gives smaller gradients, and converges to 0
  - the gradients backpropagated to the first few layers has small signal.
- Example: for 4-layers,



- Vanishing Gradient Problem 2
  - ullet using backprop, the gradient at a node is the summation over  $O(H^D)$  paths
    - $\circ \ D$  is the number of layers to the output layer.
    - $\circ \ H$  is the number of nodes in the layer.
  - the original loss signal gets "washed out".



#### Dataset Size

- a "small" network with just 40 inputs, 30 hidden nodes, and 1 output has ~1200 parameters.
- if we don't have enough samples:
  - large variance in the parameter estimator (what you get may be far from the truth)
  - o deeper networks are more complex, which are easier to overfit the training data.

- How many samples do we need?
  - Theorem (Bartlett, Maiorov, Meir, 1998)

Suppose  ${\mathcal N}$  is a feed-forward network with W weights, L layers, and all non-output gates having a fixed piecewise-polynomial activation function with a fixed number of pieces (e.g., ReLU). Then  $VCdim(\mathcal{N}) = O(WL \log W + WL^2).$ 

- If the sample size is large compared to the VC dimension, then the learned classifier will generalize well.
  - for the same number of parameters, the deeper network requires more data  $(WL^2)$ .
  - increasing the number of weights, requires a super-linear increase in sample size  $(W \log W)$ .

### **ReLU** activation function

- Rectified Linear Unit:  $\operatorname{ReLU}(z) = \max(0, z)$ 
  - easier to train with: gradient is either 0 or 1.
  - faster: don't need to calculate exponential
  - sparse representation: most nodes will output zero.

In [10]: actfig

Out[10]:



### Advantage of Sparsity

- if a hidden node h=0, then  $\frac{dL}{dh}=0$ .
  - This blocks some paths when computing the gradients.
  - Gradient signal is less washed out.
  - Reduces the vanishing gradient problem.



### **Better Network Parameterization**

- There are equivalent parameterizations of the network by scaling up/down the weights in successive layers.
  - $\bullet \ f(\mathbf{x}) = \mathbf{A}^T r(\mathbf{B}^T \mathbf{x}) = \frac{1}{\epsilon} \mathbf{A}^T r(\epsilon \mathbf{B}^T \mathbf{x})$ 
    - $\circ \ \epsilon > 0$  and  $r(\cdot)$  is the ReLU activation.
- Problem:

• "internal covariate shift" - change in the distribution of activations during training, due to changes in the parameters.



## Why is it bad?

- suppose, we have a linear network:
- $y = xw_1w_2w_3w_4$
- gradient of each layer is  $(g_1, \dots, g_4)$
- update the parameters with GD:
  - $y = x(w_1 \eta g_1)(w_2 \eta g_2)(w_3 \eta g_3)(w_4 \eta g_4)$ 
    - there are many higher-order terms, e.g.,  $w_1w_2\eta^2g_3g_4$
  - although  $w_i$  are updated independently, they strongly affect each other.
  - hence, if the distribution of activations changes in 1 layer, then all layers are affected, and we need to adjust other layers.

#### Solution: Batch Normalization

- For each node in each layer, normalize the outputs to zero mean and unit variance, over each mini-batch.
  - this is analogous to the idea of normalizing the input feature vector to (0,1) Gaussian with standard ML models!
- · Place batchnorm layer after linear transformation.



- Let  $\{y_i\}_{i=1}^N$  be the output of the linear transform in one minibatch.
- For each node (dimension) in the layer:
  - lacksquare normalize:  $\hat{y}_i = rac{y_i \mu}{\sqrt{\sigma^2 + \epsilon}}$ 
    - $\circ \mu, \sigma^2$  are the mean and variance of  $\{y_i\}$  in the mini-batch.
    - $\circ$   $\epsilon$  is a small constant for numerical stability.
  - scale-shift:  $z_i = \gamma \hat{y}_i + \beta$ 
    - $\circ \ \gamma, \beta$  are learnable parameters
    - o puts the output in the proper regime of the non-linear activation.
  - The final distribution has mean  $\beta$  and variance  $\gamma^2$ .
- · Notes:
  - batchnorm is applied to each node independently.
  - should put the batchnorm layer after the linear transformation layer.
  - the bias of the linear layer is not necessary since it is removed by batchnorm

- Training:
  - gradients can be computed through the batchnorm layer as usual.
- · Training effects:
  - training is accelerated; can use higher learning rates
  - more stable gradients during training
    - o increasing the scale of the activations decreases the gradient
    - self-correcting stabilization.
  - better generalization
    - no need for dropout or L2 regularization.

### **Example: MNIST**

- for each Conv2D/Dense layer:
  - change activation to linear (default); remove bias term
  - append batch-norm and ReLU activation

```
In [11]: def build_nn():
             K.clear session() # cleanup
             random.seed(4487); tf.random.set seed(4487) # initialize random seed
             # build the network
             nn = Sequential()
             nn.add(Conv2D(10, (5,5), strides=(2,2), input_shape=(28,28,1),
                           padding='same', use_bias=False))
             nn.add(BatchNormalization(axis=3)) # apply batchnorm on channels
             nn.add(Activation("relu"))
             nn.add(Conv2D(40, (5,5), strides=(2,2), padding='same', use_bias=False))
             nn.add(BatchNormalization(axis=3))
             nn.add(Activation("relu"))
             nn.add(Conv2D(80, (5,5), strides=(1,1), padding='same', use bias=False))
             nn.add(BatchNormalization(axis=3))
             nn.add(Activation("relu"))
             nn.add(Flatten())
             nn.add(Dense(units=50, use bias=False))
             nn.add(BatchNormalization())
             nn.add(Activation("relu"))
             nn.add(Dense(units=10, activation='softmax'))
             return nn
In [12]: nn = build_nn()
```

```
# setup early stopping callback function
earlystop = keras.callbacks.EarlyStopping(
   monitor='val_loss', # look at the validation loss
   min_delta=0.0001,
                         # threshold to consider as no change
   patience=5,
                           # stop if 5 epochs with no change
   verbose=1, mode='auto'
callbacks_list = [earlystop]
# compile and fit the network
nn.compile(loss=keras.losses.categorical crossentropy,
          optimizer=keras.optimizers.SGD(learning_rate=0.02, momentum=0.9, nesterov=True),
         metrics=['accuracy'])
history = nn.fit(vtrainI, vtrainYb, epochs=100, batch size=50,
                callbacks=callbacks_list,
                validation data=validsetI, verbose=False)
```

Metal device set to: Apple M1 Max

```
2023-01-23 15:43:30.688074: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:305] Could not identify NUMA node of platform GPU ID 0, de faulting to 0. Your kernel may not have been built with NUMA support. 2023-01-23 15:43:30.688564: I tensorflow/core/common_runtime/pluggable_device/plug
```

```
gable_device_factory.cc:271] Created TensorFlow device (/job:localhost/replica:0/t ask:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: <undefined>)
2023-01-23 15:43:31.399733: W tensorflow/core/platform/profile_utils/cpu_utils.cc:
128] Failed to get CPU frequency: 0 Hz
2023-01-23 15:43:31.593293: I tensorflow/core/grappler/optimizers/custom_graph_opt imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
2023-01-23 15:43:36.994830: I tensorflow/core/grappler/optimizers/custom_graph_opt imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```

Epoch 13: early stopping

- · Test results
  - compared with L2-regularization (0.971), dropout (0.972), ensemble (0.982)

imizer\_registry.cc:113] Plugin optimizer for device\_type GPU is enabled.

```
In [13]: plot_history(history)
    predY = argmax(nn.predict(testI, verbose=False), axis=-1)
    acc = metrics.accuracy_score(testY, predY)
    print("test accuracy:", acc)

2023-01-23 15:44:02.983904: I tensorflow/core/grappler/optimizers/custom_graph_opt
```

test accuracy: 0.9817



#### **Outline**

- · Going deeper
  - ReLU and Batchnorm
- · Optimization methods
- Deep architectures and Image classification
- · Transfer learning

## Optimization with SGD

- Ideally, we would like to use all the samples to compute the gradient, but this is too time consuming.
- Use a minibatch (a few samples) at a time to estimate the gradient.
  - creates an unbiased estimator of the gradient.
  - the variance (expected squared error) depends on the number of samples.
    - i.e., the estimated gradient is noisy.

### Learning rates

- **Problem:** For gradient descent, at the minimum we should have  $\frac{dL}{d\mathbf{w}} = 0$ .
- What about for SGD?
  - at the minimum  $\frac{dL}{d\mathbf{w}} \neq 0$  because of noise in the gradient.
    - o SGD still moves around.
- Solution: reduce the learning rate during the epochs.
  - Examples: for iteration/epoch k,
    - $\circ$  linear change:  $\eta_k=(1-lpha)\eta_0+lpha\eta_T$ , where lpha=k/T, and  $\eta_0,\eta_T$  given.
    - $\circ$  decay:  $\eta_k = rac{1}{1+\delta k} \eta_0$  , where  $0 < \delta < 1$  .
  - we want a small learning rate when we are close to the minimum.
    - o needs to be set empirically by examining the learning curves.

## Example: Keras decay

- · use the built-in decay parameter.
  - applied after each batch.

```
In [14]: plt.figure(figsize=(5,3))
    its = arange(0,50*5400/50) # 50 epochs, 5400/50 iterations per epoch
    lr = 0.02*(1./(1+its*1e-3))
    plt.plot(its, lr)
    plt.grid(); plt.xlabel('iteration (batch)'); plt.ylabel('learning rate');
```



```
In [16]: plot_history(history)
    predY = argmax(nn.predict(testI, verbose=False), axis=-1)
    acc = metrics.accuracy_score(testY, predY)
    print("test accuracy:", acc)

2023-01-23 15:45:15.109995: I tensorflow/core/grappler/optimizers/custom_graph_opt
    imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
```

```
test accuracy: 0.9806
```



### Adaptive schedule

- reduce the learning rate when the validation loss no longer improves
  - similar to early stopping criteria
- · implemented as a callback function

```
# reduce LR by a factor of 0.1, if no change in 5 epochs
         lrschedule = keras.callbacks.ReduceLROnPlateau(monitor='val loss',
                                          factor=0.1, patience=5, verbose=1)
         callbacks_list = [lrschedule]
In [18]: nn = build_nn()
         # compile and fit the network
         nn.compile(loss=keras.losses.categorical_crossentropy,
                    optimizer=keras.optimizers.SGD(learning_rate=0.02, momentum=0.9, nesterov=True),
                   metrics=['accuracy'])
         history = nn.fit(vtrainI, vtrainYb, epochs=50, batch size=50,
                          callbacks=callbacks list,
                          validation_data=validsetI, verbose=False)
          2023-01-23 15:45:25.304520: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          2023-01-23 15:45:26.355509: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          Epoch 13: ReduceLROnPlateau reducing learning rate to 0.0019999999552965165.
          Epoch 18: ReduceLROnPlateau reducing learning rate to 0.0001999999862164259.
          Epoch 23: ReduceLROnPlateau reducing learning rate to 1.9999998039565982e-05.
          Epoch 28: ReduceLROnPlateau reducing learning rate to 1.99999976757681e-06.
          Epoch 33: ReduceLROnPlateau reducing learning rate to 1.99999976757681e-07.
          Epoch 38: ReduceLROnPlateau reducing learning rate to 1.9999997391551008e-08.
          Epoch 43: ReduceLROnPlateau reducing learning rate to 1.999999810209374e-09.
          Epoch 48: ReduceLROnPlateau reducing learning rate to 1.9999997213915323e-10.
In [19]: plot_history(history)
         predY = argmax(nn.predict(testI, verbose=False), axis=-1)
         acc = metrics.accuracy_score(testY, predY)
         print("test accuracy:", acc)
```

2023-01-23 15:46:10.480098: I tensorflow/core/grappler/optimizers/custom\_graph\_optimizer registry.cc:113] Plugin optimizer for device type GPU is enabled.

test accuracy: 0.9816



### Fixed schedule

- specify our own schedule using callback LearningRateScheduler
- · pass a schedule function
- inputs are the epoch and current learning rate.
- outputs the learning rate for this epoch.

```
In [20]:
    def sc(epoch, curlr):
        alpha = minimum(epoch/50, 1.)
        return 0.02*(1-alpha)+0.0001*alpha
        epoch = arange(0,70)
        plt.figure(figsize=(5,2))
        plt.plot(epoch, sc(epoch, None))
        plt.grid(); plt.xlabel('epoch'); plt.ylabel('learning rate');
```



2023-01-23 15:46:22.006395: I tensorflow/core/grappler/optimizers/custom graph opt

imizer registry.cc:113] Plugin optimizer for device type GPU is enabled.

```
In [22]: plot_history(history)

predY = argmax(nn.predict(testI, verbose=False), axis=-1)
acc = metrics.accuracy_score(testY, predY)
print("test accuracy:", acc)
```

2023-01-23 15:47:05.917733: I tensorflow/core/grappler/optimizers/custom\_graph\_optimizer registry.cc:113] Plugin optimizer for device type GPU is enabled.

test accuracy: 0.9819



#### Momentum

- Problem: The estimated gradient is noisy, can jump around.
- Solution: keep a running average of the gradients across mini-batches.
  - velocity:  $\mathrm{\infty}^{v}^{(t)} = \alpha \operatorname{thbf}\{v\}^{(t-1)} \epsilon$

 $\label{left.} $$\left(d_{d\mathbb{W}}\right)\simeq L_{\infty}(t-1)}$$ 

- accumulate the gradients
- ullet lpha is the momentum hyperparameter; how much it exponentially decays.
- lacktriangle parameter update:  $\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} + \mathbf{v}^{(t)}$
- Example:
  - red path is using momentum
  - black arrows show the gradient directions at each step
  - without momentum, the path would oscillate wildly.



### **Nesterov Momentum**

- Compute the gradient after the current velocity is applied.
  - interim update:  $\tilde{\mathbf{w}} = \mathbf{w}^{(t-1)} + \alpha \mathbf{v}^{(t-1)}$
  - velocity:  $\mathrm{\phi}^{(t)} = \alpha \mathrm{\phi}^{(t-1)} \cot$

- lacktriangle parameter update:  $\mathbf{w}^{(t)} \leftarrow \mathbf{w}^{(t-1)} + \mathbf{v}^{(t)}$
- Adds a correction factor to improve convergence (for convex batch case)

## Why does SGD work?

- The loss function has many local minima
- SGD adds "noise" to the true gradient.
  - the noise allows escaping/avoiding/jumping over small local minima.
- Example:
  - red arrow = true gradient
  - green arrow = added noise
  - black arrow = computed gradient



#### SGD smoothes the loss function

- the added gradient noise is equivalent to convolving the loss function with the noise density.
- higher learning rate  $\rightarrow$  larger noise  $\rightarrow$  smoother loss



- smoother loss removes the local minimum, making it easier to get near the global minimum.
  - but not exactly on it.



• need to reduce the learning rate in stages to converge to the global optimum.

### **Optimization with Adaptive Learning Rates**

- Introduce a separate learning rate for each parameter, and automatically adapt the learning rates during optimization.
- AdaGrad (keras.optimizers.Adagrad)
  - adapt individual learning rates by dividing by the square-root of the gradient energy accumulated over the iterations

$$\circ \mathbf{g} = \frac{dL}{d\mathbf{w}} 
\circ \mathbf{r}^{(t)} = \mathbf{r}^{(t-1)} + \mathbf{g}^{2} 
\circ \mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - \frac{\eta}{\delta + \sqrt{\mathbf{r}}} \mathbf{g}$$

- (operations are element-wise)
- RMSProp (keras.optimizers.RMSprop)
  - use exponential decay on the accumulated energy:

$$\mathbf{r}^{(t)} = \rho \mathbf{r}^{(t-1)} + (1-\rho) \mathbf{g}^2$$

- Adam (keras.optimizers.Adam)
  - use momentum with exponential weighting to estimate the gradient and gradient energy.

$$\mathbf{s}^{(t)} = \rho_1 \mathbf{s}^{(t-1)} + (1 - \rho_1) \mathbf{g}$$
  

$$\mathbf{r}^{(t)} = \rho_2 \mathbf{r}^{(t-1)} + (1 - \rho_2) \mathbf{g}^2$$

• adds a bias correction for these two estimates.

$$\circ \ \mathbf{\hat{s}}^{(t)} = \frac{1}{1 - \rho_1^t} \mathbf{s}^{(t)}$$

$$\circ \ \mathbf{\hat{r}}^{(t)} = \frac{1}{1 - \rho_2^t} \mathbf{r}^{(t)}$$

# compile and fit the network

update:

$$\mathbf{v}^{(t)} = \mathbf{w}^{(t-1)} - rac{\eta}{\delta + \sqrt{\hat{\mathbf{r}}^{(t)}}} \hat{\mathbf{s}}^{(t)}$$

### **Example**

• change the optimizer when compiling the network.

```
nn.compile(loss=keras.losses.categorical crossentropy,
                    optimizer=keras.optimizers.Adam(learning rate=0.01),
                                                                          # can set the initial lear
                   metrics=['accuracy'])
         history = nn.fit(vtrainI, vtrainYb, epochs=100, batch_size=50,
                          callbacks=callbacks list,
                          validation data=validsetI, verbose=False)
          2023-01-23 15:50:04.389863: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          2023-01-23 15:50:05.788572: I tensorflow/core/grappler/optimizers/custom graph opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
In [24]: plot_history(history)
         predY = argmax(nn.predict(testI, verbose=False), axis=-1)
         acc = metrics.accuracy_score(testY, predY)
         print("test accuracy:", acc)
          2023-01-23 15:51:44.202787: I tensorflow/core/grappler/optimizers/custom_graph_opt
          imizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.
          test accuracy: 0.9842
```



# Which optimizer is best?

- there's no best optimizer...
- based on the problem and own familiarity with tuning the hyperparmeters.