## CS1231S Chapter 6

# Equivalence relations

### 6.1 Representation

**Definition 6.1.1.** Call  $\mathscr{C}$  a partition of a set A if

- (1)  $\mathscr{C}$  is a set of which all elements are *nonempty* subsets of A; and
- (2) every element of A is in exactly one element of  $\mathscr{C}$ .

Elements of a partition are called *components* of the partition.

**Remark 6.1.2.** One can rewrite the two conditions in the definition of partitions respectively as follows:

- (1)  $\varnothing \neq S \subseteq A$  for all  $S \in \mathscr{C}$ ;
- (2)  $\forall x \in A \ \exists S \in \mathscr{C} \ (x \in S) \ \text{and} \ \forall x \in A \ \forall S_1, S_2 \in \mathscr{C} \ (x \in S_1 \ \land \ x \in S_2 \ \Rightarrow \ S_1 = S_2).$

Yet another way to formulate this is to say that  $\mathscr C$  is a set of mutually disjoint nonempty subsets of A whose union is A.

**Example 6.1.3.** One partition of the set  $A = \{1, 2, 3\}$  is  $\{\{1\}, \{2, 3\}\}$ . The others are

$$\{\{1\},\{2\},\{3\}\}, \{\{2\},\{1,3\}\}, \{\{3\},\{1,2\}\}, \{\{1,2,3\}\}.$$

**Example 6.1.4.** One partition of  $\mathbb{Z}$  is

$$\{\{2k: k \in \mathbb{Z}\}, \{2k+1: k \in \mathbb{Z}\}\}.$$

**Definition 6.1.5.** Let A, B be sets.

- (1) A relation from A to B is a subset of  $A \times B$ .
- (2) Let R be a relation from A to B and  $(x,y) \in A \times B$ . Then we may write

$$x R y$$
 for  $(x, y) \in R$  and  $x \not R y$  for  $(x, y) \notin R$ .

We read "x R y" as "x is R-related to y" or simply "x is related to y".

**Example 6.1.6.** Let S be the set of all NUS students and M be the set of all modules offered by the NUS. Then the predicate "is enrolled in" is represented by the relation

$$\{(x,y) \in S \times M : x \text{ is enrolled in } y\}$$

from S to M.

**Example 6.1.7.** Let  $A = \{0, 1, 2\}$  and  $B = \{1, 2, 3, 4\}$ . Define the relation R from A to B by setting

$$x R y \Leftrightarrow x < y.$$

Then 0 R 1 and 0 R 2, but 2 R 1. Thus

$$R = \{(0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4)\}.$$



Figure 6.1: Reflexivity, symmetry, and transitivity

#### 6.2 Reflexivity, symmetry, and transitivity

**Definition 6.2.1.** A (binary) relation on a set A is a relation from A to A.

**Remark 6.2.2.** It follows from Definition 6.1.5 and Definition 6.2.1 that the relations on a set A are precisely the subsets of  $A \times A$ .

Arrow diagrams (for relations on a set). One can draw an arrow diagram representing a relation R on a set A as follows.

- (1) Draw all the elements of A.
- (2) For all  $x, y \in A$ , draw an arrow from x to y if and only if x R y.

Example 6.2.3. The arrow diagram

$$\begin{array}{ccc} C & B \nearrow P \nearrow \\ C & F & K \nearrow \\ M & N \\ V & V \end{array}$$

represents the relation

$$\{(B,P),(P,B),(F,M),(M,F),(B,B),(P,P),(F,F),(M,M),(K,K),(E,E)\}$$
 on the set  $\{B,P,F,M,K,E\}.$ 

**Definition 6.2.4.** Let A be a set and R be a relation on A.

(1) R is reflexive if every element of A is R-related to itself, i.e.,

$$\forall x \in A \ (x R x).$$

(2) R is symmetric if x is R-related to y implies y is R-related to x, for all  $x, y \in A$ , i.e.,

$$\forall x, y \in A \ (x R y \Rightarrow y R x).$$

(3) R is transitive if x is R-related to y and y is R-related to z imply x is R-related to z, for all  $x, y, z \in A$ , i.e.,

$$\forall x, y, z \in A \ (x R y \land y R z \Rightarrow x R z).$$

**Example 6.2.5.** Let R be the relation represented by the following arrow diagram.



Then R is reflexive. It is not symmetric because b R a but a R b. It is transitive, as one can show by exhaustion:

$$a R a \wedge a R a \Rightarrow a R a;$$

$$a R a \wedge a R b \Rightarrow a R b;$$

$$a R a \wedge a R c \Rightarrow a R c;$$

$$a R b \wedge b R a \Rightarrow a R a;$$

$$\vdots$$

$$c R c \wedge c R b \Rightarrow c R b;$$

$$c R c \wedge c R c \Rightarrow c R c.$$

**Example 6.2.6.** Let R denote the equality relation on a set A, i.e., for all  $x, y \in A$ ,

$$x R y \Leftrightarrow x = y.$$

Then R is reflexive, symmetric, and transitive.

**Example 6.2.7.** Let R' denote the subset relation on a set U of sets, i.e., for all  $x, y \in U$ ,

$$x R' y \Leftrightarrow x \subseteq y.$$

Then R' is reflexive, may not be symmetric (when U contains x, y such that  $x \subseteq y$ ), but is transitive.

Exercise 6.2.8. Write down a proof of the transitivity claim in Example 6.2.7.

@ 6a

**Example 6.2.9.** Let R denote the non-strict less-than relation on  $\mathbb{Q}$ , i.e., for all  $x, y \in \mathbb{Q}$ ,

$$x R y \Leftrightarrow x \leqslant y.$$

Then R is reflexive, not symmetric, but transitive.

**Example 6.2.10.** Let R' denote the strict less-than relation on  $\mathbb{Q}$ , i.e., for all  $x, y \in \mathbb{Q}$ ,

$$x R' y \Leftrightarrow x < y.$$

Then R' is not reflexive as  $0 \neq 0$ . It is not symmetric because 0 < 1 but  $1 \neq 0$ . It is transitive.

**Definition 6.2.11.** Let  $n, d \in \mathbb{Z}$ . Then d is said to divide n if

$$n = dk$$
 for some  $k \in \mathbb{Z}$ .

We write  $d \mid n$  for "d divides n", and  $d \nmid n$  for "d does not divide n". We also say

"n is divisible by d" or "n is a multiple of d" or "d is a factor/divisor of n" for "d divides n".

**Example 6.2.12.** Let R denote the divisibility relation on  $\mathbb{Z}$ , i.e., for all  $x, y \in \mathbb{Z}$ ,

$$x R y \Leftrightarrow x \mid y$$
.

Is R reflexive? Is R symmetric? Is R transitive?

Ø 6b

**Definition 6.2.13.** An *equivalence relation* is a relation that is reflexive, symmetric and transitive.

**Convention 6.2.14.** People usually use equality-like symbols such as  $\sim$ ,  $\approx$ ,  $\simeq$ ,  $\cong$ , and  $\equiv$  to denote equivalence relations. These symbols are often defined and redefined to mean different equivalence relations in different situations. We may read  $\sim$  as "is equivalent to".

**Example 6.2.15.** The equality relation on a set, as defined in Example 6.2.6, is an equivalence relation.

**Proposition 6.2.16.** Let  $\mathscr{C}$  be a partition of a set A. Denote by  $\sim_{\mathscr{C}}$  the same-component relation with respect to  $\mathscr{C}$ , i.e., for all  $x, y \in A$ ,

$$x \sim_{\mathscr{C}} y \quad \Leftrightarrow \quad x \text{ is in the same component of } \mathscr{C} \text{ as } y$$
  
  $\Leftrightarrow \quad x, y \in S \text{ for some } S \in \mathscr{C}.$ 

Then  $\sim_{\mathscr{C}}$  is an equivalence relation on A.

**Proof.** 1. (Reflexivity.) Every element is in the same component as itself.

- 2. (Symmetry.) If x is in the same component as y, then y is in the same component as x.
- 3. (Transitivity.) If x is in the same component as y, and y is in the same component as z, then x is in the same component as z.

**Example 6.2.17.** Let R be the relation represented by the following arrow diagram.



Then R is reflexive, symmetric, and transitive. So it is an equivalence relation on  $\{a, b, c\}$ .

**Exercise 6.2.18.** Let  $A = \{1, 2, 3\}$  and  $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$ . Is R reflexive? Is R symmetric? Is R transitive?

Ø 6c

#### 6.3 Congruence

**Definition 6.3.1.** Let  $a, b \in \mathbb{Z}$  and  $n \in \mathbb{Z}^+$ . Then a is congruent to b modulo n if a - b = nk for some  $k \in \mathbb{Z}$ . In this case, we write  $a \equiv b \pmod{n}$ .

**Remark 6.3.2.** In terms of divisibility, for all  $a, b \in \mathbb{Z}$  and all  $n \in \mathbb{Z}^+$ ,

$$a \equiv b \pmod{n} \Leftrightarrow n \mid (a - b).$$

**Example 6.3.3.** (1)  $5 \equiv 1 \pmod{2}$  because  $5 - 1 = 4 = 2 \times 2$ .

- (2)  $-2 \equiv 4 \pmod{3}$  because  $-2 4 = -6 = 3 \times (-2)$ .
- (3)  $-4 \not\equiv 5 \pmod{7}$  because  $-4-5=-9 \not\equiv 7k$  for any  $k \in \mathbb{Z}$ .

**Proposition 6.3.4.** Let  $n \in \mathbb{Z}^+$  and  $\sim_n$  denote the congruence-mod-n relation on  $\mathbb{Z}$ , i.e., for all  $x, y \in \mathbb{Z}$ ,

$$x \sim_n y \iff x \equiv y \pmod{n}.$$

Then  $\sim_n$  is an equivalence relation.

**Proof.** 1. (Reflexivity.) For all  $a \in \mathbb{Z}$ , we know  $a - a = 0 = n \times 0$  and so  $a \equiv a \pmod{n}$  by the definition of congruence.

- 2. (Symmetry.)
  - 2.1. Let  $a, b \in \mathbb{Z}$  such that  $a \equiv b \pmod{n}$ .
  - 2.2. Use the definition of congruence to find  $k \in \mathbb{Z}$  such that a b = nk.
  - 2.3. Then b a = -(a b) = -nk = n(-k).
  - 2.4. Note that  $-k \in \mathbb{Z}$  as  $\mathbb{Z}$  is closed under -.
  - 2.5. So  $b \equiv a \pmod{n}$  by the definition of congruence.
- 3. (Transitivity.)
  - 3.1. Let  $a, b, c \in \mathbb{Z}$  such that  $a \equiv b \pmod{n}$  and  $b \equiv c \pmod{n}$ .
  - 3.2. Use the definition of congruence to find  $k, \ell \in \mathbb{Z}$  such that a-b=nk and  $b-c=n\ell$ .

- 3.3. Then  $a c = (a b) + (b c) = nk + n\ell = n(k + \ell)$ .
- 3.4. Note that  $k + \ell \in \mathbb{Z}$  as  $\mathbb{Z}$  is closed under +.
- 3.5. So  $a \equiv c \pmod{n}$  by the definition of congruence.

#### 6.4 Equivalence classes

**Definition 6.4.1.** Let  $\sim$  be an equivalence relation on a set A. For each  $x \in A$ , the equivalence class of x with respect to  $\sim$ , denoted  $[x]_{\sim}$ , is defined to be the set of all elements of A that are  $\sim$ -related to x, i.e.,

$$[x]_{\sim} = \{ y \in A : x \sim y \}.$$

When there is no risk of confusion, we may drop the subscript and write simply [x].

**Example 6.4.2.** Let A be a set. The equivalence classes with respect to the equality relation on A are of the form

$$[x] = \{y \in A : x = y\} = \{x\},\$$

where  $x \in A$ .

**Example 6.4.3.** Let  $n \in \mathbb{Z}^+$ . The equivalence classes with respect to the congruence-mod-n relation on  $\mathbb{Z}$  are of the form

$$[x] = \{ y \in \mathbb{Z} : x \equiv y \pmod{n} \} = \{ nk + x : k \in \mathbb{Z} \},$$

where  $x \in \mathbb{Z}$ . If n = 2, then there are two equivalence classes:

$$\{2k : k \in \mathbb{Z}\}$$
 and  $\{2k+1 : k \in \mathbb{Z}\}.$ 

**Lemma 6.4.4.** Let  $\sim$  be an equivalence relation on a set A. The following are equivalent for all  $x, y \in A$ .

- (i)  $x \sim y$ .
- (ii) [x] = [y].
- (iii)  $[x] \cap [y] \neq \emptyset$ .

**Proof.** 1.  $((i) \Rightarrow (ii))$ 

- 1.1. Suppose  $x \sim y$ .
- 1.2. Then  $y \sim x$  by symmetry.
- 1.3. For every  $z \in [x]$ ,
  - 1.3.1.  $x \sim z$  by the definition of [x];
  - 1.3.2.  $y \sim z$  by transitivity, as  $y \sim x$ ;
  - 1.3.3.  $z \in [y]$  by the definition of [y].
- 1.4. This shows  $[x] \subseteq [y]$ .
- 1.5. Switching the roles of x and y, we see also that  $[y] \subseteq [x]$ .

- 1.6. So [x] = [y].
- 2.  $((ii) \Rightarrow (iii))$ 
  - 2.1. Suppose [x] = [y].
  - 2.2. Then  $[x] \cap [y] = [x]$  by the Idempotent Law for  $\cap$ .
  - 2.3. However, we know  $x \sim x$  by the reflexivity of  $\sim$ .
  - 2.4. So the definition of [x] and line 2.2 tell us  $x \in [x] = [x] \cap [y]$ .
  - 2.5. Hence  $[x] \cap [y] \neq \emptyset$ .
- 3.  $((iii) \Rightarrow (i))$ 
  - 3.1. Suppose  $[x] \cap [y] \neq \emptyset$ .
  - 3.2. Take  $z \in [x] \cap [y]$ .
  - 3.3. Then  $x \sim z$  and  $y \sim z$ .
  - 3.4. The latter implies  $z \sim y$  by symmetry.
  - 3.5. So  $x \sim y$  by transitivity.

**Question 6.4.5.** Consider an equivalence relation. Is it true that if x is an element of an equivalence class S, then S = [x]?

**Definition 6.4.6.** Let A be a set and  $\sim$  be an equivalence relation on A. Denote by  $A/\sim$  the set of all equivalence classes with respect to  $\sim$ , i.e.,

$$A/\sim = \{ [x]_\sim : x \in A \}.$$

We may read  $A/\sim$  as "the quotient of A by  $\sim$ ".

**Example 6.4.7.** Let A be a set. Then from Example 6.4.2 we know A/= is equal to  $\{\{x\}: x \in A\}$ .

**Example 6.4.8.** Let  $n \in \mathbb{Z}^+$ . If  $\sim_n$  denotes the congruence-mod-n relation on  $\mathbb{Z}$ , then from Example 6.4.3 we know

$$\mathbb{Z}/\sim_n = \{[x] : x \in \mathbb{Z}\} = \{\{nk : k \in \mathbb{Z}\}, \{nk+1 : k \in \mathbb{Z}\}, \dots, \{nk+(n-1) : k \in \mathbb{Z}\}\}.$$

**Theorem 6.4.9.** Let  $\sim$  be an equivalence relation on a set A. Then  $A/\sim$  is a partition of A.

**Proof.** 1.  $A/\sim$  is by definition a set.

- 2. We show that every element of  $A/\sim$  is a nonempty subset of A.
  - 2.1. Let  $S \in A/\sim$ .
  - 2.2. Use the definition of  $A/\sim$  to find  $x \in A$  such that S = [x].
  - 2.3. Then  $S = [x] \subseteq A$  in view of the definition of equivalence classes.
  - 2.4. Note that the reflexivity of  $\sim$  implies  $x \sim x$ .
  - 2.5. Hence  $x \in [x] = S$  by the definition of [x] and the choice of x.
  - 2.6. In particular, we know S is nonempty.
- 3. We show that every element of A is in at least one element of  $A/\sim$ .
  - 3.1. Let  $x \in A$ .
  - 3.2. Then  $x \sim x$  by reflexivity.
  - 3.3. So  $x \in [x] \in A/\sim$ .
- 4. We show that every element of A is in at most one element of  $A/\sim$ .
  - 4.1. Let  $x \in A$  that is in two elements of  $A/\sim$ , say  $S_1$  and  $S_2$ .
  - 4.2. Use the definition of  $A/\sim$  to find  $y_1, y_2 \in A$  such that  $S_1 = [y_1]$  and  $S_2 = [y_2]$ .
  - 4.3. Line 4.1 tells us  $x \in [y_1] \cap [y_2]$ .
  - 4.4. So  $[y_1] \cap [y_2] \neq \emptyset$ .
  - 4.5. Lemma 6.4.4 then implies  $S_1 = [y_1] = [y_2] = S_2$ .