Lara Malinov malinov@stanford.edu

Multi-Task Zero-Shot modeling with Test Domain Shift: an exploration of sampling and fine-tuning techniques on DistilGPT-2 and BIG-bench

Summary

Motivation: how to make small models learn better different skills in order to adapt to new situations

Method: Train DistilGPT-2 on a subset of BIG-bench tasks using sampling techniques and different fine-tune techniques and evaluate on out-of-domain tasks

Result:

- Training the linear layer with no sampling procedures achieves the best ROUGE-LSum scores
- Training with domain weighted sample performs better than task weighted samples on evaluation tasks
- Testing results show that the model with best OOS training scores are for logical reasoning and mathematics and performs best on evaluation tasks in emotional intelligence and emotional understanding

Background

- MetalCL Research [1]: Used 142 datasets for different experimental settings and 0-shot and in-context learning models. Result shows how models perform on unseen domains.
- **CS330 Multi-Task and Meta-Learning**
- Surgical fine tuning [2]

Method

- Training using pretrained DistilGPT-2 (82M parameters, 6 Transformers Blocks)
- 3 training scenarios:
- using all the training data
- task weighted sample: up/down sampling each task; 500 observations per task
- domain weighted sample: tasks are sampled s.t. all domains are equally represented
- 7 finetune approaches, training:
- Linear layer (LL)
- First block and LL

- 3 epochs) as well as LL Third block and LL Reverse Cascade: linear layer trained for Last block and LL

Cascade: blocks are trained one after the

other (Block 0 for 5 epochs, the following for

5 epochs, Blocks 5, 4 and 3 for 3 epochs; All parameters Blocks 1 and 0 for 2 epochs) as well as LL

[1] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2022. MetalCL: Learning to Learn In Context. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2791–2809, Seattle, United States. Association for Computational Linguistics. [2] Lee, Y., Chen, A.S., Tajwar, F., Kumar, A., Yao, H., Liang, P. and Finn, C., 2022. Surgical

fine-tuning improves adaptation to distribution shifts. arXiv preprint arXiv:2210.11466.

Data

- BIG-bench tasks were first run on GPT-2 and filtered by selecting the tasks which had ROUGE-1 scores larger than 0
- Apriori itemset algorithm was applied on the keywords of the tasks to select the most common keywords/ domains
- 26 training tasks with main keywords: common sense, mathematics, numerical response, social reasoning, reading comprehension, contextual question-answering, logical reasoning, free response (~10,000 obs) Of the training examples: 707 observations are held out for validation and testing
- 6 evaluation tasks with no overlap with training tasks keywords: analogical reasoning, emotional understanding, morphology, non-English, medicine, emotional intelligence, dialogue system, intent recognition (~4,000 obs)
- Validation dataset: 25% of the held-out training observations, 25% of the evaluation task observations (~1,000 obs)
- Test dataset: remaining 75% of the held out training tasks and evaluation tasks $(^3,000 \text{ obs})$
- 80% of both validation and test dataset are evaluations task observations

Experiments

- As the training loss decreases the validation ROUGE-LSum scores are relatively stable across all training sample scenarios; lowest losses achieved by Cascade (no sampling, task weighted) and R-cascade (domain weighted)
- Except: Fine-tuning the last linear reaches the highest validation ROUGE-LSum in a couple of epochs even though the training loss is still the highest across fine-tuning approaches
- Overall best model: training the last linear layer indifferent of the sampling technique

- For testing, model checkpoints are selected with the highest validation ROUGE-LSum
- Results show that training the linear layer on the training tasks achieves the best scores across sampling procedure
- Highest scores on test training task observations is achieved by training the last block together with a task weighted training sample
- Domain weighted training sample is better than task weighting samples for evaluation tasks (with linear layer finetuning)
- **Best evaluation score** attained by training the linear layer with no sampling procedure.

	-			task weighted			domain weighted		
	All	Train	Evaluation	All	Train	Evaluation	All	Train	Evaluation
Raw DistilGPT-2	1.73	4.92	0.93	-	-	-	-	-	-
Middle	2.13	5.89	1.19	2.48	6.2	1.55	2.22	5.94	1.29
All	2.33	6.47	1.29	2.32	6.45	1.28	0.88	2.08	0.58
Last	2.53	5.40	1.82	3.25	11.08	1.29	2.97	10.23	1.15
Cascade	2.58	5.76	1.78	2.88	6.04	2.09	2.51	6.14	1.6
First	2.60	6.19	1.70	2.81	6.86	1.79	2.51	6.14	1.6
R-Cascade	7.97	6.11	8.44	8.14	6.12	8.65	8.75	6.31	9.36
Linear layer	9.40	6.73	10.06	8.26	6.11	8.8	8.78	6.3	9.39

^{*}Note R-Cascade is selected at epoch 2, thus it is equivalent to Linear Layer fine-tuning. The only difference is that R-Cascade is trained in batches of 16 and Linear Layer in batches of 32.

Analysis

Tasks have multiple keywords, thus the visualization represents the average ROUGE-LSum testing tasks scores for pairs of keywords using the model trained without sampling procedures and fine-tuned on the linear layer

- Model performs best on OOS training observations with pairs of keywords: logical reasoning, mathematics, contextual question-answering and numerical response
- BUT on testing evaluation observations the highest score is for the keyword pair: emotional intelligence - emotional understanding

