Situation Theory and the Situation-Theoretic Approach to Information

PART 1: OVERVIEW

Keith Devlin
Stanford University

Situation Theory 2000

Not a theory of information; rather a framework for describing, analyzing, and understanding information flow.

Information

So what is this stuff called information?

So what is this stuff called information?

Information seems to arise when people communicate "at a distance" (across space or time)

Information seems to arise when people communicate "at a distance" (across space or time)

Information seems to arise when people communicate "at a distance" (across space or time)

But ...

there is a problem.

What is the information in a message?

What is the information in a message?

There are infinitely many prime numbers.

What is the information in a message?

There are infinitely many prime numbers.

What information does my utterance convey?

A mathematical fact.

A mathematical fact.

Keith Devlin is alive.

A mathematical fact.

Keith Devlin is alive.

There are infinitely many prime numbers.

Keith Devlin speaks English.

A mathematical fact.

Keith Devlin is alive.

There are infinitely many prime numbers.

Keith Devlin speaks English.

A mathematical fact.

The microphone is (not) working.

There are infinitely many prime numbers.

Keith Devlin is alive.

Keith Devlin speaks English.

A mathematical fact.

The microphone is (not) working.

There are infinitely many prime numbers.

Keith Devlin is alive.

Keith Devlin speaks English.

A mathematical fact.

The microphone is (not) working.

There are infinitely many prime numbers.

Keith Devlin is alive.

Keith Devlin speaks English.

A mathematical fact.

The microphone is (not) working.

There are infinitely many prime numbers.

The speaker
Keith Devlin is alive.

Keith Devlin speaks English.

A mathematical fact.

The microphone is (not) working.

There are infinitely many prime numbers.

The speaker
Keith Devlin is alive.

A mathematical fact.

The microphone is (not) working.

There are infinitely many prime numbers.

The spectker Keith Devlin is alive.

If you don't know any mathematics

A mathematical fact.

The microphone is (not) working.

There are infinitely many prime numbers.

The speaker Keith Devlin is alive.

If you don't know any mathematics

The microphone is (not) working.

There are infinitely many prime numbers.

The speaker
Keith Devlin is alive.

If you don't know English

The microphone is (not) working.

There are infinitely many prime numbers.

The speaker
Keith Devlin is alive.

If you don't know English

The microphone is (not) working.

@!##¢£*%^\$((??` &&**??£∞\$¶¶•≤≥ The speaker
Keith Devlin is alive.

No single unique answer.

No single unique answer.

There are infinitely many prime numbers.

A lot depends on the recipient and his/her circumstances.

How does information arise?

The information level

Mental world

Information

Physical world

The representation of information

The representation of information

The representation of information

Task

We have to develop a framework to analyze the way signals encode (represent) information.

In the early 1980s, Jon Barwise and John Perry introduced a new mathematical theory — situation theory — to support an analysis of the way things in the world can represent and convey information.

- Basic framework (ontology) consists of: individuals, relations, situations, types, infons.
- Individuals are unanalyzed.
- Relations are complex, structured objects, and are not identified with sets of *n*-tuples.
- Situations are limited parts of the world; it may often be impossible to specify them extensionally.
- Cognitive agents use types to classify the world.
- Infons are items of information.

$$\sigma = \langle \langle R, a_1, ..., a_n, i \rangle \rangle$$

$$\sigma = \langle \langle R, a_1, ..., a_n, i \rangle \rangle$$

n-ary relation

$$\sigma = \langle \langle R, a_1, ..., a_n, i \rangle \rangle$$

n-ary relation

appropriate objects

Infons may be combined using AND, OR, and situation-bounded quantification.

Classification (entities can be typed):

s : T

Classification (entities can be typed):

s : T

Two-sorted logic:

$$S \models \sigma$$

Classification (entities can be typed):

s: T

Two-sorted logic:

$$S \models \sigma$$

Classification (entities can be typed):

s: T

Two-sorted logic:

Classification (entities can be typed):

s: T

Two-sorted logic:

Read this as supports σ

$$S \models \sigma$$

infon

 σ_1 σ_2

 σ_3

 σ_{n}

$$s_1 \models \sigma_1$$

 $s_2 \models \sigma_2$

$$s_2 \models \sigma_2$$

$$s_3 \models \sigma_3$$

$$s_n \models \sigma_n$$

$$s_1 \models \sigma_1$$

 $s_2 \models \sigma_2$

$$s_2 \models \sigma_2$$

$$s_3 \models \sigma_3$$

$$s_n \models \sigma_n$$

infons σ_i is the target information

 $\frac{situations}{s_i \text{ is the}} \\ context \\ for \sigma_i$

$$s_1 \models \sigma_1$$

$$s_2 \models \sigma_2$$

$$s_3 \models \sigma_3$$

•

$$s_n \models \sigma_n$$

infons σ_i is the target information

$$s_1 \models \sigma_1$$

$$s_2 \models \sigma_2$$

$$s_3 \models \sigma_3$$

•

$$s_n \models \sigma_n$$

How can situation sprovide information about situation r?

Me, reading a newspaper article about the launch of a rocket to Mars.

Palo Alto

Florida

Palo Alto

Florida

Something about this

Something about this gives me information

Something about this gives me information about that.

Florida

Something

Call this something a constraint

How can situation sprovide information about situation r?

How can information flow from situation r to situation s?

The key insight was provided by Fred Dretske in his 1981 book *Knowledge and the Flow of Information* (MIT Press):

The key insight was provided by Fred Dretske in his 1981 book *Knowledge and the Flow of Information* (MIT Press):

A signal S carries the information X by virtue of S being of a certain type T.

A signal S carries the information X by virtue of S being of a certain type T.

A signal *S* carries the information *X* by virtue of *S* being of a certain type *T*.

• It is by virtue of there being black clouds that the sky gives us the information that it might rain.

A signal *S* carries the information *X* by virtue of *S* being of a certain type *T*.

- It is by virtue of there being black clouds that the sky gives us the information that it might rain.
- It is by virtue of it ringing that the door bell provides information that there is someone at the door.

A signal *S* carries the information *X* by virtue of *S* being of a certain type *T*.

- It is by virtue of there being black clouds that the sky gives us the information that it might rain.
- It is by virtue of it ringing that the door bell provides information that there is someone at the door.
- It is by virtue of the marks on the paper being of a certain shape (type) that the newspaper provides me with information about NASA's rocket launch.

Inference

- Inference and reasoning are facilitated by constraints.
- Constraints are binary relations between situation types.
- An informational constraint:

[RINGING BELL] ⇒ [CLASS IS OVER]

An action constraint:

[COMMAND TO SIT] ⇒ [SITTING DOWN]

Example: Smoke implies fire

Example: Smoke implies fire

situation

Example: Smoke implies fire

Example: Smoke implies fire

Example: Smoke implies fire

Transmission of information

Transmission of information

Given a constraint *C* that links a situation type S with a situation type R.

Transmission of information

Given a constraint *C* that links a situation type S with a situation type R.

C can give rise to the acquisition or transmission of information as follows:

Transmission of information

Given a constraint *C* that links a situation type S with a situation type R.

C can give rise to the acquisition or transmission of information as follows:

If s is a situation of type S,

Transmission of information

Given a constraint *C* that links a situation type S with a situation type R.

C can give rise to the acquisition or transmission of information as follows:

If s is a situation of type S, then the constraint C tells you

Transmission of information

Given a constraint *C* that links a situation type S with a situation type R.

C can give rise to the acquisition or transmission of information as follows:

If *s* is a situation of type S, then the constraint *C* tells you there is a situation *r* of type R.

Transmission of information

Given a constraint *C* that links a situation type S with a situation type R.

C can give rise to the acquisition or transmission of information as follows:

If *s* is a situation of type S, then the constraint *C* tells you there is a situation *r* of type R.

Note: *r* may be equal to *s*, or be *s* at a later time, or be some entirely separate situation.

Information arises and flows as a result of the interplay of things in the world and things in minds.

Information arises and flows as a result of the interplay of things in the world and things in minds.

Situations/objects/configurations/ systems/etc. are in the world.

Information arises and flows as a result of the interplay of things in the world and things in minds.

- Situations/objects/configurations/ systems/etc. are in the world.
- Types/concepts/constraints/etc. are in the mind.

Where to find out more

Information

devlin@csli.stanford.edu