Question 3.20

We want to show the Cauchy sequence $\{p_n\}$ converges to p, by given its subsequence $\{p_{n_k}\}$ converges to p.

Since $\{p_n\}$ is Cauchy sequence, for any $\delta>0$, there exist such N that n>N&m>N, then $d(p_m,p_n)<\delta$.

Also because subsequence $\{p_{n_k}\}$ converges to p, for any given δ above, there exist such N' that $k > N' \leq N$, then $d(d_{n_k}, p) < \delta$.

We let $\epsilon = 2\delta$. Thus, For any $\epsilon > 0$, you can construct such N' as above that $d(d_n, p) < d(p_n, p_{N'}) + d(p_{N'}, p) < \delta + \delta = \epsilon$. $\{p_n\}$ converges to p.

Question 3.21

First of all, we will show there is no distinct points in $\cap_1^{\infty} E_n$ if $\cap_1^{\infty} E_n \neq \emptyset$.

If $p \in \cap_1^{\infty} E_n$ and $q \in \cap_1^{\infty} E_n$. Then $p \in \lim_{n \to \infty} E_n$ and $q \in \lim_{n \to \infty} E_n$. Then $0 \le d(p,q) \le \lim_{n \to \infty} diam E_n = 0$, that is p = q.

Secondly, we will show $\cap_{1}^{\infty} E_{n}$ has at least one element.

 $E_n \supset E_{n+1}$ and $\lim_{n\to\infty} diam E_n = 0$ imply E_n is Cauchy sequence for all n. Because X is a complete space, that means $\{p_m\} = E_n$ converges to p. Since E_n is closed, the limit point $p \in E_n$ for all n. Therefore there at least exists $p \in \bigcap_{n=1}^{\infty} E_n$.

To sum up, $\bigcap_{1}^{\infty} E_n$ consist exactly one point, which is the limit point of sequence E_n .

Question 3.22

In order to utilize the result from Problem 3.21, We want to construct a closed bounded shrinking sequence of sets, $\overline{E_n} \in G_n$

Since $\{G_n\}$ is dense and open in X, the complement set $F_n = G_n^c$ is closed and has no interier points (otherwise such a point won't be a limit point of G_n). Thus for any open set $U \subset X$, $U \not\subset F_n$ and $U \setminus F_n$ is a open set.

If $x \in U \setminus F_1$, there is a $N_{r_1}(x) \subset U \setminus F_1$. We Let $E_1 = N_{\frac{r_1}{2}}(x) \subset N_{r_1}(x) \subset U \setminus F_n$. We choose r_n by letting $N_{r_n}(x) \subset E_{n-1} \cap U \setminus F_{n-1}$, and $E_n = N_{\frac{r_n}{2}}(x)$. Then $\overline{E_{n+1}} = \overline{N_{\frac{r_{n+1}}{2}}(x)} \subset N_{r_{n+1}}(x) \subset E_n \subset \overline{E_n}$

Because of $N_{r_{n+1}}(x) \subset E_n \subset N_{\frac{r_n}{2}}(x)$, then $r_{n+1} < \frac{r_n}{2} < \frac{1}{2^{n-1}}r_1$. Therefore, as $n \to \infty$, $r_n \to 0$ and diam $\overline{E_n} \to 0$.

We know

$$\overline{E_n} \subset N_{r_n}(x) \subset E_{n-1} \cap (U \backslash F_n)
\subset E_{n-2} \cap (U \backslash F_{n-1}) \cap (U \backslash F_n)
\subset \bigcap_{i=1}^n (U \backslash F_i) = U \backslash (\bigcup_{i=1}^n F_i)
= U \backslash (\bigcup_{i=1}^n G_i^c) = U \backslash (\bigcap_{i=1}^n G_i)^c
= U \cap (\bigcap_{i=1}^n G_i)$$
(1)

Thus

$$\bigcap_{i=1}^{\infty} \overline{E_n} \subset \bigcap_{i=1}^{\infty} (U \cap (\cap_{j=1}^i G_j))
= U \cap (\bigcap_{i=1}^{\infty} G_i)$$
(2)

According to result from Problem 3.21, we know $\bigcap_{i=1}^{\infty} \overline{E_n} \neq \emptyset$, that is $U \cap (\bigcap_{i=1}^{\infty} G_i) \neq \emptyset$, then $\bigcap_{i=1}^{\infty} G_i \neq \emptyset$.

Question 3.23

By the hints,

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_n, q_m)$$

$$d(p_n, q_n) - d(p_m, q_m) \le d(p_n, p_m) + d(q_n, q_m)$$

$$|d(p_n, q_n) - d(p_m, q_m)| \le d(p_n, p_m) + d(q_n, q_m)$$

Since $\{p_n\}$ $\{q_n\}$ are cauchy sequence, then for any $\frac{\epsilon}{2} > 0$, there exists N_1 and N_2 such that if $n > N_1$ and $n > N_2$ $d(p_n, p_m) < \frac{\epsilon}{2}$, also if $n > N_2$ and $n > N_2$ $d(q_n, q_m) < \frac{\epsilon}{2}$.

Then we let $N = max(N_1, N_2)$, we have For any $\epsilon > 0$, if n > N and n > N, then $|d(p_n, q_n) - d(p_m, q_m)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. So it is a Cauchy Sequenc. Because $d(p_n, q_n) \in R$, and R is a complete metric space, therefore the sequence $\{d(p_n, q_n)\}$ converges on R.

Question 3.24

3.24 a

- 1. $d(p_n, p_n) = |p_n p_n| = 0;$
- 2. $d(q_n, p_n) = |q_n p_n| = |p_n q_n| = d(q_n, p_n);$
- 3. By triangle inequality, let $\{r_n\}$ be sequence in X, $d(p_n, r_n) \leq d(p_n, q_n) + d(q_n, r_n)$, then $\lim_{n\to\infty} d(p_n, q_n) = 0$ and $\lim_{n\to\infty} d(q_n, r_n) = 0$ implies $\lim_{n\to\infty} d(p_n, r_n) = 0$.

3.24 b

In question 3.24a, we have showed that for equivalent sequences, $\lim_{n\to\infty} d(p_n,p_n') = 0$

 $\lim_{n\to\infty} d(p_n',q_n') \leq \lim_{n\to\infty} d(p_n,p_n') + \lim_{n\to\infty} d(p_n,q_n) + \lim_{n\to\infty} d(q_n,q_n') = \lim_{n\to\infty} d(p_n,q_n)$

Again, using the triangle inequality from the otherside, we will show $\lim_{n\to\infty} d(p'_n, q'_n) = \lim_{n\to\infty} d(p_n, q_n)$.

 $\Delta(P,Q) = \lim_{n\to\infty} d(p_n,q_n) = \lim_{n\to\infty} d(p'_n,q'_n)$. Therefore it is unchanged by replacing equivalent sequences.

Question 1

1 a

 $f(x) = \frac{1}{2}(x + \frac{\alpha}{x})$, then let $\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \frac{1}{2}(1 - \frac{\alpha}{x^2}) = 0$ we have minimum x at $\sqrt{\alpha}$. Therefore, any $x_n > 0$, $x_n > \sqrt{\alpha}$.

1 b

In part a, we shall show $x_{n+1} > x_n$, by given $x_n > \sqrt{\alpha}$. Given $x_n > \sqrt{\alpha}$, we have

$$x_{n+1} - x_n = \frac{1}{2}(x_n + \frac{\alpha}{x_n}) - x_n$$

$$= \frac{x_n^2 + \alpha - 2x_n^2}{2x_n}$$

$$= \frac{\alpha - 2x_n^2}{2x_n} < 0$$
(3)

Therefore the sequence is monotonically decreasing.