

Otimização e Simulação

Designação de Tarefas:

O Método Húngaro

Prof. Dr. Daniel Rodrigues da Silva

O problema abordado nesta aula é bem semelhante ao problema de transportes, porém com algumas modificações.

Suponhamos que \underline{m} tarefas (ou trabalhadores) devem ser alocadas em \underline{n} máquinas. Cada tarefa \underline{i} (i = 1, 2, ..., m) alocada a uma máquina j (j = 1, 2, ..., n) tem um custo c_{ij} .

O objetivo é então **designar** para cada máquina especificada, a tarefa adequada, tal que se tenha um custo mínimo total.

Se alguma tarefa não puder ser feita em alguma máquina, o custo correspondente deve ser arbitrado como um valor "muito alto", de modo a impedir essa designação.

Algumas Considerações importantes:

Todas as tarefas precisam ser executadas e só podem ser executadas uma única vez (não pode haver retrabalho).

Todas as máquinas devem ser utilizadas e também só podem ser utilizadas uma única vez.

Como todas as tarefas devem ser executadas só uma vez e como cada máquina deve ser usada uma única vez, então temos que o número de tarefas deve ser igual ao número de máquinas, isto é: n = m. Então, antes de modelar, devemos fazer com que m = n, ou seja, introduzir máquinas ou tarefas quando for necessário.

Modelo Matemático: Variáveis de decisão:

 x_{ii} representam se uma tarefa i será feita na máquina j. Assim teremos sempre: $x_{ij} = \{0,1\}$

Função objetivo:

Min.
$$C = c_{11}x_{11} + c_{12}x_{12} + \dots + c_{1n}x_{1n} + c_{21}x_{21} + c_{22}x_{22} + \dots + c_{2n}x_{2n} + c_{n1}x_{n1} + c_{n2}x_{n2} + \dots + c_{nn}x_{nn}$$

Restrições: S. a:
$$\begin{cases} x_{11} + x_{12} + \cdots x_{1n} = 1 \\ x_{21} + x_{22} + \cdots x_{2n} = 1 \\ \vdots \\ x_{m1} + x_{m2} + \cdots x_{mn} = 1 \end{cases}$$

O Método Húngaro: O algoritmo tradicionalmente utilizado para resolução do problema de designação de tarefas é o chamado Método Húngaro. Para que o problema de designação possa ser resolvido pelo Método Húngaro, ele deve estar representado em uma matriz de custos *mxm*, conforme figura abaixo:

		Máquina					
		1	2		m		
Tarefa	1	C_{11}	C ₁₂	:	C _{1m}		
	2	C ₂₁	C ₂₂	:	C _{2m}		
	:	:	:	:			
	m	C_{m1}	C _{m2}		$C_{\scriptscriptstyle{mm}}$		

Algoritmo : Escreva a tabela de custos como uma matriz *mxm*.

Passo 1. Subtraia de todos os elementos de cada linha o menor elemento da linha.

Passo 2. Subtrair de todos os elementos de cada coluna o menor elemento da coluna.

Passo 3. Cubra com retas horizontais e verticais o menor número possível de linhas e colunas, de forma que todos os elementos com valores nulos da matriz de custos reduzidos sejam cobertos. Se m retas são necessárias, há uma solução ótima entre os elementos com valores nulos cobertos na matriz. Se foram utilizadas menos de m retas, vá para o passo 4.

Passo 4. Dentre os elementos não cobertos pelo passo 3, selecione aquele com menor valor, chamado k. Construa uma nova matriz de custos, subtraindo k de cada elemento não coberto na matriz de custo reduzido, e adicionando o mesmo k aos números que se encontram nas interseções de retas.. Os demais valores ficam inalterados. **Retorne ao passo 3**.

O Problema da Designação de Tarefas

Observações:

A designação ótima nem sempre é única. Pode-se obter outra com o mesmo custo. No exemplo abaixo, uma outra designação possível seria: Tarefa 1 na máquina 1, tarefa 2 na máquina 3 e tarefa 3 na máquina 2. O que daria o mesmo custo, 6.

Nem sempre é possível fazer a designação apenas com os passos da fase 1.

Nesse caso a solução ótima se obtém em 3 fases.

Exemplo: Três tarefas devem ser designadas a três máquinas e todas as tarefas podendo ser feitas em qualquer máquina, mas com custos diferentes, conforme descrito no esquema abaixo.

		Maquinas						
		1	2	3	Capacidade			
	1	2	4	3	1			
Tarefas	2	1	3	2	1			
	3	5	2	4	1			
Demanda		1	1	1				

Passo 0: Matriz Original

2	4	3
1	3	2
5	2	4

Passo 1. Selecione o menor elemento de cada linha e subtraia esse elemento de todos os outros elementos da respectiva linha, resultando na matriz abaixo:

0	2	1
0	2	1
3	0	2

Passo 2. Selecione o menor elemento de cada coluna e subtraia esse elemento de todos os outros elementos da respectiva coluna, resultando na matriz ao lado

0	2	0
0	2	0
3	0	1

Passo 3. Cubra com retas horizontais e verticais o menor número possível de linhas e colunas, de modo que todos os elementos com valores nulos da matriz de custo reduzido sejam cobertos. Nesse caso, foram necessárias m=3 retas.

Portanto, há uma solução ótima entre os elementos com valores nulos cobertos na nova matriz .

Encontrando a solução ótima: $x_{11}=1$, $x_{23}=1$ e $x_{32}=1$. Outra possibilidade é designar $x_{21}=1$, $x_{13}=1$ e $x_{32}=1$ e as outras iguais a zero

Portanto, a SBF ótima é $x_{11} = 1$, $x_{23} = 1$ e $x_{32} = 1$ com z = 6.

Exemplo 1: Uma indústria do setor de autopeças possui três máquinas: M1, M2 e M3 e três atividades que devem ser

executadas no processo de fabricação de bancos: acabamento, montagem e pintura. Cada atividade pode ser designada a apenas uma máquina, e cada máquina pode processar apenas uma atividade. O tempo de processamento de cada atividade em cada máquina está ilustrado na Tabela abaixo. Resolva o problema pelo método Húngaro.

	M1	M2	М3	linha mínima
Acabamento	8	10	12	8
Montagem	15	13	12	12
Pintura	8	12	10	8

Passo 1. Selecionam-se os menores elementos de cada linha. Subtrai-se de cada elemento original o menor elemento da linha correspondente, resultando na matriz ao lado

8	10	12	8
15	13	12	12
8	12	10	8

0	2	4
3	1	0
0	4	2

PUC-SP

Passo 2. Selecionam-se os menores elementos de cada coluna. Subtrai-se de cada elemento original o menor elemento da coluna correspondente.

0	2	4
3	1	0
0	4	2
0	1	0

Passo 3. Cubra com retas horizontais e verticais o menor número possível de linhas e colunas, de forma que todos os elementos com valores nulos da matriz de custo reduzido sejam cobertos. Nesse caso, foram necessárias apenas 2 retas (ver Tabela abaixo. Como 2 < m, vá para o passo 4. *Note que aqui não é possível fazer uma designação*.

Construa uma nova matriz de custos, subtraindo k de cada elemento não coberto na matriz de custo reduzido, e adicionando k para cada elemento coberto tanto por linha como por coluna (intersecção das retas: x_{21}). Os demais elementos permanecem inalterados. Retorne ao passo 3.

Passo 5. Cubra com retas horizontais e verticais o menor número possível de linhas e colunas, de forma que todos os elementos com valores nulos da matriz de custo reduzido sejam cobertos. Nesse caso, foram necessárias m=3 retas. Portanto, há uma solução ótima entre os elementos com valores nulos cobertos na

nova matriz

Solução Ótima: $x_{12} = 1$; $x_{23} = 1$ e $x_{31} = 1$ com z = 30.

Exemplo 2: O presidente de uma empresa deseja transferir 4 de seus diretores para 4 filiais diferentes.

Quais diretores ele deve mandar para quais lugares de modo a minimizar o custo da transferência. A tabela abaixo mostra o custo de transferência de cada diretor para cada lugar.

LOCAL

		1	2	3	4
DIRETOR	1	2	1	4	2
	2	3	4	1	6
	3	1	2	6	5
	4	1	3	3	7

Exercícios: Fazer o modelo matemático e resolver os problemas pelo Método Húngaro, determinando a designação e o custo mínimo do processo.

Ex. 1: Designar 4 operários para realizarem 4 tarefas de maneira que o tempo total para o término de todas as tarefas seja mínimo. Na tabela abaixo temos os tempos de realização de cada tarefa por funcionário.

TAREFA

		1	2	3	4
OPERÁRIO	A	5	24	13	7
	В	10	25	3	23
	С	28	9	8	5
	D	10	17	15	3

Ex. 2: Designar 4 operários para trabalhar em 4 máquinas, sabendo que qualquer operário pode trabalhar em qualquer máquina, porém com custos diferentes. Os custos para cada operário trabalhar em cada máquina estão dispostos na tabela abaixo:

MÁQUINAS

		M1	M2	M3	M4
OPERÁRIO	1	4	2	8	4
	2	6	8	2	12
	3	2	4	12	10
	4	2	6	6	14

Determine qual operário deve trabalhar em qual máquina de modo que o custo total seja mínimo. Qual o custo mínimo?

Ex. 3: A Prefeitura de uma cidade precisa preencher vagas em 4 postos de saúde e para isso ela dispõe de 6 médicos

nas especialidades exigidas. Cada médico pode ser alocado para um único posto, no máximo e cada posto demanda um único médico. Na tabela abaixo temos o custo diário de locomoção de cada médico para cada posto de saúde. Faça a modelagem matemática e determine a designação e o custo mínimo.

MÉDICOS

		M1	M2	M3	M4	M5	M6
OS	1	6	9	9	9	8	7
	2	3	5	6	9	7	5
	3	8	7	5	8	7	6
	4	3	4	8	5	7	4

POSTOS

1/16

Antes de aplicar o método Húngaro, precisamos balancear o problema acrescentando duas novas.

MÉDICOS

		1V1 1	1 V1 Z	1 V1 3	1V1 4	IVIO	1010
S	1	6	9	9	9	8	7
	2	3	5	6	9	7	5
	3	8	7	5	8	7	6
	4	3	4	8	5	7	4
	5	0	0	0	0	0	0
	6	0	0	0	0	0	0

POSTOS

As tarefas podem ser executadas em qualquer uma das máquinas. A tabela abaixo representa os tempos de processamento, em horas, de cada tarefa em cada uma das máquinas. Designar uma máquina para cada tarefa de tal modo a minimizar o tempo total gasto.

MÁQUINAS

		M1	M2	M3	M4
	1	10	12	15	16
TO TO A	2	14	12	13	18
EFA	3	10	16	19	15
	4	14	12	13	15

TAREFA