Αλγοριθμική Επιχειρησιακή Έρευνα

Εργασία 2η

Προκύπτει ο πίνακας:

			ΔΥΝΑΜΙΚΟΤΗΤΑ						
ПНГН	Bos	ston	Chicago		St. Louis		Lexington		ΠΑΡΆΓΩΓΗΣ
Cleveland	X ₁₁	3	X ₁₂	2	X ₁₃	7	X ₁₄	6	5.000
Bedford	X ₂₁	7	X ₂₂	5	X ₂₃	2	X ₂₄	3	6.000
York	X ₃₁	7	X ₃₂	5	X ₃₃	4	X ₃₄	5	2.500
ΑΠΑΙΤΗΣΗ ΠΡΟΟΡΙΣΜΟΥ	6.000		4.000		2.000		1.500		13.500

α) Ακολουθεί η γραφική αναπαράσταση:

β)

Η βέλτιστη λύση βρίσκεται ως εξής:

Για το Cleveland, πρέπει να ισχύει ότι $x_{11} + x_{12} + x_{13} + x_{14} \le 5000$.

Για το Bedford, πρέπει να ισχύει ότι $x_{21} + x_{22} + x_{23} + x_{24} \le 6000$.

Για το York, πρέπει να ισχύει ότι $x_{31} + x_{32} + x_{33} + x_{34} \le 2500$.

Επιπλέον, πρέπει κάθε προορισμός να λάβει τις μονάδες που απαιτεί, άρα:

Για τη Boston, έχουμε: $x_{11} + x_{21} + x_{31} = 6000$.

Για το Chicago, έχουμε: $x_{12} + x_{22} + x_{32} = 4000$.

Για το St. Louis, έχουμε: $x_{13} + x_{23} + x_{33} = 2000$.

Για το Lexington, έχουμε: $x_{14} + x_{24} + x_{34} = 1500$.

Αν αποστείλουμε x_{11} μονάδες από το Cleveland στη Boston, προκύπτει το συνολικό κόστος μεταφοράς της τιμής του $3x_{11}$. Με αντίστοιχο τρόπο προκύπτουν όλα τα κόστη, άρα τελικά έχουμε: Συνολικό Κόστος = $3x_{11} + 2x_{12} + 7x_{13} + 6x_{14} + 7x_{21} + 5x_{22} + 2x_{23} + 3x_{24} + 7x_{31} + 5x_{32} + 4x_{33} + 5x_{34}$. Επίσης ισχύει ότι $x_{ij} \ge 0$.

Επιθυμούμε την ελαχιστοποίηση του Συνολικού Κόστους (ΣΚ):

Η λύση είναι η εξής:

Με simplex, έχουμε ότι:

$$x_{11} = 3500$$
, $x_{12} = 1500$, $x_{13} = 0$, $x_{14} = 0$

$$x_{21} = 0$$
, $x_{22} = 2500$, $x_{23} = 2000$, $x_{24} = 1500$

$$x_{31} = 0$$
, $x_{32} = 0$, $x_{33} = 2500$, $x_{34} = 0$

Βέλτιστη τιμή =
$$3*3500 + 2*1500 + 7*0 + 6*0 + 7*0 + 5*2500 + 2*2000 + 3*1500 + 7*0 + 5*0 + 4*2500 + 5*0 = 44500$$
\$

2.

α) Αρχικά λύνουμε το πρόβλημα με τη μέθοδο της βορειοδυτικής γωνίας.

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά
Σιλό 1	10	2	20	11	15
Σιλό 2	12	7	9	20	25
Σιλό 3	4	14	16	18	10
Ζήτηση	5	15	15	15	

$$x_{11} = min(15,5) = 5$$
, $d_1' = 15-5 = 10$, $b_1' = 5-5=0$
 $x_{12} = min(15,10) = 10$, $d_1'' = 10-10 = 0$, $b_2' = 15-10=5$

$$x_{22} = min(5,25) = 5$$
, $d_2' = 25-5 = 20$, $b_2'' = 5-5=0$
 $x_{23} = min(20,15) = 15$, $d_2'' = 20-15=5$, $b_3' = 15-15=0$
 $x_{24} = min(5,15) = 5$, $d_2''' = 5-5=0$, $b_4 = 15-5=10$
 $x_{34} = min(10,10) = 10$, $d_3 = 0$, $b_4' = 0$

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά
Σιλό 1	5	10			0
Σιλό 2		5	15	5	0
Σιλό 3				10	0
Ζήτηση	0	0	0	0	

Πολλαπλασιάζω τις τιμές αυτές με τους συντελεστές: 5*10+2*10+5*7+15*9+5*20+10*18=520

β) Λύνουμε το πρόβλημα με τη μέθοδο Reduced Costs

$$y_{m+n} = y_{4+3} = y_7 = 0$$

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά
Σιλό 1	+10	+2			+15
Σιλό 2		+7	+9	+20	+20
Σιλό 3				+18	+18
Ζήτηση	-5	-13	-11	0	

$$m + n - 1 = 3 + 4 - 1 = 6$$

$$\begin{aligned} c_{34} &= y_3 + y_7 = y_3 + 0 = y_3 \Rightarrow y_3 = 18 \\ c_{24} &= y_2 + y_7 = y_2 + 0 = y_2 \Rightarrow y_2 = 20 \\ c_{23} &= y_2 + y_6 \Rightarrow y_6 = 9 - 20 = -11 \\ c_{22} &= y_2 + y_5 \Rightarrow y_5 = 7 - 20 = -13 \\ c_{12} &= y_1 + y_5 \Rightarrow y_1 = 2 - (-13) = 15 \\ c_{11} &= y_1 + y_4 \Rightarrow y_4 = 10 - 15 = -5 \end{aligned}$$

Υπολογισμός των d_{ij} :

	Μύλος 1		Μύλο	Μύλος 2		Μύλος 3		ς 4	Προσφορά
Σιλό 1	10	O	2	O	20	16	11	-4	+15
Σιλό 2	12	-3	7	0	9	0	20	0	+20
Σιλό 3	4	-9	14	9	16	9	18	0	+18
Ζήτηση	-5		-13	-13		-11		·	

Από τον τύπο
$$d_{ij} = c_{ij} - (y_i + y_{m+j})$$
 με $m = 6$, έχουμε: $d_{13} = 20 - 15$ - $(-11) = 5 + 11 = 16$ $d_{14} = 11 - 15 - 0 = -4$

Εργασία 2η – 2017-2018

$$d_{21} = 12 - 20 + 5 = -3$$

$$d_{31} = 4 - 18 + 5 = -9$$

$$d_{32} = 14 - 18 - (-13) = 9$$

$$d_{33} = 16 - 18 - (-11) = 9$$

$$min(d_{ij}) = d_{31} = -9$$

Εισαγωγή μεταβλητής $x_{31} = \theta$:

	Μύλος 1	Μύλος 1		Μύλος 2		Μύλος 3			Προσφορά
Σιλό 1		5-θ		10+θ					15
Σιλό 2				5-θ		15		5+θ	25
Σιλό 3		+θ						10-θ	10
Ζήτηση	5	5		15		15			

Πρώτη μηδενίζεται η μεταβλητή x_{11} (και η x_{22}), οπότε αυτή αφαιρούμε από το γράφο για να μην έχει κύκλο, δηλαδή να ξαναγίνει δένδρο. ($\theta = 5$)

	Μύλος 1	Μύλος 1		Μύλος 2		Μύλος 3			Προσφορά
Σιλό 1		0		15					+12
Σιλό 2				0		15		10	+36
Σιλό 3		5						5	+18
Ζήτηση	10		9		9		38		

Ξανά, $y_7 = 0$, οπότε υπολογίζω τα νέα y_i :

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά
Σιλό 1		2			15
Σιλό 2		7	9	20	20
Σιλό 3	4			18	18
Ζήτηση	-14	-13	-11	0	

Υπολογίζω τα νέα d_{ii}:

	Μύλο	Μύλος 1		Μύλος 2		Μύλος 3		ς 4	Προσφορά
Σιλό 1	10	-9	2	O	20	16	11	-4	15
Σιλό 2	12	6	7	O	9	0	20	0	20
Σιλό 3	4	0	14	9	16	9	18	0	18
Ζήτηση	-14	-14		-13		-11		·	

 $min(d_{ij}) = -4$

Επαναλαμβάνουμε την διαδικασία, εισάγοντας την μεταβλητή x_{14} :

	Μύλος 1	Μύλος 1		Μύλος 2		Μύλος 3		Προσφορά
Σιλό 1			5				+0	
Σιλό 2			10		15			
Σιλό 3	5+θ						5-θ	
Ζήτηση								

Ξανά, $y_7 = 0$, οπότε υπολογίζω τα νέα y_i :

	Μύλος 1	Μύλος 1		Μύλος 2		Μύλος 3			Προσφορά
Σιλό 1			2				11		11
Σιλό 2			7		9				16
Σιλό 3	4						18		18
Ζήτηση	-14		-9		-7		0		

Υπολογίζω τα νέα d_{ii}:

	Μύλο	Μύλος 1		Μύλος 2		Μύλος 3		ς 4	Προσφορά
Σιλό 1	10	7	2	0	20	16	11	0	11
Σιλό 2	12	10	7	0	9	0	20	4	20
Σιλό 3	4	0	14	5	16	5	18	0	18
Ζήτηση	-14		-9	-9		-11		<u>'</u>	

Όλα τα d_{ij} είναι θετικά, οπότε τέλος.

Υπολογίζω την τιμή της συνάρτησης: z = 435.

γ) Λύνουμε το πρόβλημα με τη μέθοδο Vogel

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά
		-	, -	, -	

Σιλό 1	10	2	20	11	15
Σιλό 2	12	7	9	20	25
Σιλό 3	4	14	16	18	10
Ζήτηση	5	15	15	15	

1η επανάληψη:

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά	Δc_i
Σιλό 1	10	2	20	11	15	10 – 2 = 8
Σιλό 2	12	7	9	20	25	9 - 7 = 2
Σιλό 3	4	14	16	18	10	14 – 4 = 10
Ζήτηση	5	15	15	15		
Δc_j	10 – 4 = 6	7 – 2 = 5	16 – 9 = 7	18 – 11 = 7		

Max(8,2,10,6,5,7,7) = 10, επιλέγουμε την γραμμή 3, που έχει ελάχιστο c_{ij} το $c_{31} = 4$:

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά	Δc_i
Σιλό 1	10	2	20	11	15	11 – 2 = 9
Σιλό 2	12	7	9	20	25	9 - 7 = 2
Σιλό 3	4 (5)	14	16	18	10	16 – 14 = 2
Ζήτηση	0	15	15	15		
Δc_{j}	-	7 – 2 = 5	16 – 9 = 7	18 – 11 = 7		

 $\max(9,2,2,5,7,7) = 9$ άρα επιλέγουμε την γραμμή 1. Αύξηση της μεταβλητής $x_{12} = 2$:

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά	Δc_i
Σιλό 1	10	2(16)	20	11	0	-
Σιλό 2	12	7	9	20	25	20 – 9 = 11
Σιλό 3	4 (5)	14	16	18	10	18 – 16 = 2
Ζήτηση	0	0	15	15		
Δc_j	-	-	16 – 9 = 7	20 – 18 = 2		

 $\max(11,2,7,2) = 9$ άρα επιλέγουμε την γραμμή 2. Αύξηση της μεταβλητής $x_{23} = 9$:

- ()))	<i>_</i>	_, _ , _ , _ , , , , , , , , , , , , ,		1 · 1 / F · · · F 1 · 1 / 25 · · · · · · · · · · · · · · · · · ·		
	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά	Δc_i
Σιλό 1	10	2 (16)	20	11	0	-
Σιλό 2	12	7	9 (15)	20	10	20
Σιλό 3	4 (5)	14	16	18	5	18
Ζήτηση	0	0	0	15		
$\Delta c_{\rm j}$	-	-	-	20 – 18 = 2		

 $\max(20,18,2) = 20$ άρα επιλέγω την γραμμή 2, αύξηση της μεταβλητής $x_{24} = 20$:

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά	Δc_i
Σιλό 1	10	2 (16)	20	11	0	-
Σιλό 2	12	7	9 (16)	20 (10)	0	-

Σιλό 3	4(5)	14	16	18	5	18
Ζήτηση	0	0	0	5		
$\Delta c_{\rm j}$				18		

Max(18,18) = 18 άρα επιλέγω την γραμμή 3, αύξηση της μεταβλητής $x_{34} = 18$:

	Μύλος 1	Μύλος 2	Μύλος 3	Μύλος 4	Προσφορά	Δc_i
Σιλό 1	10	2 (15)	20	11	15	8 9 - - -
Σιλό 2	12	7	9 (15)	20 (10)	25	2 2 11 20 -
Σιλό 3	4 (5)	14	16	18 (5)	10	10 2 2 18 18
Ζήτηση	5	15	15	15		
Δc_{j}	6 - - - -	5 5 - - -	7 7 7 - -	7 7 2 2 18		

Το μέγιστο κόστος μεταφοράς είναι 2*15+9*15+20*10+4*5+18+85=475 Το πλήθος των κελιών που έχουν κατανεμηθεί είναι 5 < m+n-1=6

3. α) Λύνουμε το πρόβλημα με τη μέθοδο Reduced Costs

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	3	2	3	4	1	75
Λ2	4	1	2	4	2	150
Λ3	1	0	5	3	2	75
ΖΗΤΗΣΗ	100	60	40	75	25	

Απο εκτέλεση της μεθόδου ΒΔ γωνίας, καταλήγουμε στο ότι:

	K1	K2	K3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	75					0
Λ2	25	60	40	25		0
Λ3				50	25	0
ΖΗΤΗΣΗ	0	0	0	0	0	

Με κόστος ίσο με 3*75+4*25+1*60+2*40+4*25+3*50+2*25=765 μονάδες.

 $m+n=5+3=8 \; \acute{\alpha}\rho\alpha \; m+n-1=7$

 $y_{m^+n}=y_8=0$

Όπως και στην άσκηση 2, προκύπτουν οι ακόλουθες τιμές για τα y_i :

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ
Λ1	3					2
Λ2	4	1	2	4		3
Λ3				3	2	2
ΖΗΤΗΣΗ	1	-2	-1	1	0	

Υπολογίζω τα d_{ij} :

Εργασία 2η – 2017-2018

	K1		K 2		К3		K4		K 5		ΠΑΡΆΓΩΓΗ
Λ1	3	0	2	2	3	1	4	1	1	-1	2
Λ2	4	0	1	0	2	0	4	0	2	-1	3
Λ3	1	-2	0	0	5	2	3	0	2	O	2
ΖΗΤΗΣΗ	1		-2		-1		1		0		

Επιλέγουμε την μεταβλητή x_{31} :

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	75					75
Λ2	25-θ	60	40	25+θ		150
Λ3	+θ			50-θ	25	75
ΖΗΤΗΣΗ	100	60	40	75	15	

Βάσει των περιορισμών, πρέπει κάθε τιμή να είναι θετική, δηλαδή:

25-θ≥0

 $\theta \ge 0$

25+θ≥0

50-θ≥0

Τελικά, θ=25:

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	75					
Λ2	0	60	40	50		
Λ3	25			25	25	
ΖΗΤΗΣΗ						

Υπολογίζουμε τα νέα y_i:

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ
Λ1	3					4
Λ2		1	2	4		3
Λ3	1			3	2	2
ΖΗΤΗΣΗ	-1	-2	-1	1	0	

Υπολογίζουμε τα νέα d_{ij} :

	K1		K2		K 3		K4		K 5		ΠΑΡΆΓΩΓΗ
Λ1	3	0	2	0	3	0	4	-1	1	-3	4
Λ2	4	2	1	0	2	0	4	0	2	-1	3
Λ3	1	0	0	0	5	4	3	0	2	O	2
ΖΗΤΗΣΗ	-1		-2		-1		1		0		

Επιλέγουμε την μεταβλητή x_{15} :

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	75-θ				+θ	75

Λ2		60	40	50		150
Λ3	25+θ			25	25-θ	75
ΖΗΤΗΣΗ	100	60	40	75	25	

Αντίστοιχα με πριν, θ=25.

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ
Λ1	50				25	
Λ2		60	40	50		
Λ3	50			25	0	
ΖΗΤΗΣΗ						

Επιλέγουμε την μεταβλητή x_{35} :

Υπολογίζουμε τα νέα y_i:

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	3				1	1
Λ2		1	2	4		0
Λ3	1			3		-1
ΖΗΤΗΣΗ	2	1	2	4	0	

Υπολογίζουμε τα νέα d_{ij}:

	K1		K2		K 3		K4		K 5		ΠΑΡΆΓΩΓΗ
Λ1	3	0	2	0	3	0	4	-1	1	0	1
Λ2	4	2	1	0	2	0	4	0	2	2	0
Λ3	1	0	0	0	5	4	3	0	2	3	-1
ΖΗΤΗΣΗ	2		1		2		4		0		

Επιλέγουμε την x₁₄:

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	50-θ			+θ	25	75
Λ2		60	40	50		150
Λ3	50+θ			25-θ		75
ΖΗΤΗΣΗ	100	60	40	75	25	

Πάλι, θ=25, οπότε εξάγουμε την ακμή που ενώνει τα Λ3 και Κ4:

Υπολογίζουμε τα νέα y_i :

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	3			4	1	1
Λ2		1	2	4		1
Λ3	1					-1
ΖΗΤΗΣΗ	2	0	1	3	0	

Υπολογίζουμε τα νέα dij:

	K1		K2		К3		K4		K5		ΠΑΡΆΓΩΓΗ
Λ1	3	0	2	1	3	1	4	0	1	O	1
Λ2	4	1	1	0	2	0	4	0	2	1	1
Λ3	1	0	0	1	5	5	3	1	2	3	-1
ΖΗΤΗΣΗ	2	•	0		1	•	3	·	0		

Πλέον κάθε $d_{ij} \ge 0$ οπότε ο αλγόριθμος λήγει.

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ
Λ1	25			25	25	75
Λ2		60	40	50		150
Λ3	75					75
ΖΗΤΗΣΗ	100	60	40	75	25	

Το κόστος που προκύπτει είναι: 3*25+4*25+1*25+1*60+2*40+4*50+1*75=615

β) Λύνουμε το πρόβλημα με τη μέθοδο Vogel

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ	Δc_i
Λ1	3	2	3	4	1	75	2-1=1
Λ2	4	1	2	4	2	150	2 - 1 = 1
Λ3	1	0	5	3	2	75	1-0=1
ΖΗΤΗΣΗ	100	60	40	75	25		
Δc_{j}	3 - 1 = 2	1 - 0 = 1	3 - 2 = 1	4-3=1	2-1=1		

Η μέγιστη διαφορά βρίσκεται στην στήλη 1, με ελάχιστη τιμή $c_{31} = 1$:

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ	Δc_i
Λ1	3	2	3	4	1	75	2 – 1 = 1
Λ2	4	1	2	4	2	150	2 – 1 = 1
Λ3	1(75)	θ	5	3	2	0	-
ΖΗΤΗΣΗ	25	60	40	75	25		
Δc_{j}	4-3=1	2-1=1	3 - 2 = 1	4 - 4 = 0	2-1=1		

Η μέγιστη διαφορά έχει την τιμή 1, αλλά βάσει θεωρίας, επιλέγουμε την γραμμή ή στήλη με την μικρότερη τιμή κόστους, εδώ την γραμμή 1, με ελάχιστη τιμή την $c_{15} = 1$:

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ	Δc_i
Λ1	3	2	3	4	1 (25)	50	3 - 2 = 1
Λ2	4	1	2	4	2	150	2-1=1
Λ3	1(75)	θ	5	3	2	0	-

ΖΗΤΗΣΗ	25	60	40	75	0	
Δc_{j}	4 - 3 = 1	2 - 1 = 1	3 - 2 = 1	4 - 4 = 0	-	

Με ίδια σκέψη με πριν, επιλέγουμε την γραμμή 1, με ελάχιστη τιμή την $c_{12} = 2$:

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ	Δc_i
Λ1	3	2 (50)	3	4	1 (25)	0	-
Λ2	4	1	2	4	2	150	2-1=1
Λ3	1(75)	θ	5	3	2	0	-
ΖΗΤΗΣΗ	25	10	40	75	0		
Δc_j	4	1	2	4	-		

Η μέγιστη διαφορά έχει την τιμή 4, οπότε επιλέγω την στήλη 4, για τον ίδιο λόγο με παραπάνω, με ελάχιστη τιμή κόστους την $c_{21} = 4$:

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ	Δc_i
Λ1	3	2 (50)	3	4	1 (25)	0	-
Λ2	4 (25)	1	2	4	2	125	2-1=1
Λ3	1(75)	θ	5	3	2	0	-
ΖΗΤΗΣΗ	0	10	40	75	0		
Δc_{j}	-	1	2	4	-		

Η μέγιστη διαφορά έχει την τιμή 4 και επιλέγουμε την στήλη 4, με ελάχιστη τιμή την $c_{24} = 4$:

	K1	K2	К3	K4	K5	ΠΑΡΑΓΩΓΗ	Δc_i
Λ1	3	2 (50)	3	4	1 (25)	0	-
Λ2	4 (25)	1	2	4 (75)	2	50	2 – 1 = 1
Λ3	1(75)	θ	5	3	2	0	-
ΖΗΤΗΣΗ	0	10	40	0	0		
Δc_{j}	-	1	2	-	-		

Η μέγιστη διαφορά έχει την τιμή 2 και επιλέγουμε την στήλη 3, με ελάχιστη τιμή την $c_{23} = 2$:

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ	Δc_i
Λ1	3	2 (50)	3	4	1 (25)	0	-
Λ2	4 (25)	1	2(40)	4 (75)	2	10	1
Λ3	1(75)	θ	5	3	2	0	-
ΖΗΤΗΣΗ	0	10	0	0	0		
Δc_j	-	1	-	-	-		

Επιλέγουμε την γραμμή 2, με τιμή $c_{22} = 1$.

Προκύπτει η λύση:

	K1	K2	К3	K4	K5	ΠΑΡΆΓΩΓΗ	Δc_i
Λ1	3	2 (50)	3	4	1 (25)	75	1 1 1 - - -
Λ2	4 (25)	1 (10)	2(40)	4 (75)	2	150	1 1 1 1 1 1
Λ3	1(75)	0	5	3	2	75	1 - - - -
ΖΗΤΗΣΗ	100	60	40	75	25		
Δc_j	2 1 1 4 - - -	1 1 1 1 1 1	1 1 1 2 2 2 -	1 0 0 4 4 - -	1 1 - - - -		

Το ελάχιστο κόστος μεταφοράς είναι: 2*50+1*25+4*25+1*10+2*40+4*75+1*75=690

4.

α) Το σχετικό μοντέλο μεταφοράς έχει ως εξής:

Παρατηρούμε ότι ο πίνακας δεν έχει συμπεριλάβει τις πληροφορίες για το κόστος μεταφοράς φορτηγών καθώς και το πόσα αυτοκίνητα χωράει κάθε φορτηγό.
Πρέπει για κάθε ποσότητα αυτοκινήτων από κέντρο προς έμπορο να βρούμε την τιμή του 18

αντί για σκέτες τις μονάδες x, καθώς και στους συντελεστές, να πολλαπλασιάσουμε επί 25 για να βρούμε το τελικό κόστος.

Συνεπώς έχουμε:

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια
Κέντρο 1	2500	3750	5000	3500	875	400
Κέντρο 2	1250	1750	1500	1625	2000	200
Κέντρο 3	1000	2250	2500	3750	3250	150
Ζήτηση	100	200	150	160	140	

Με αντικειμενική συνάρτηση z = min{

$$2500*\left\lceil\frac{x_{11}}{18}\right\rceil + 3750*\left\lceil\frac{x_{12}}{18}\right\rceil + 5000*\left\lceil\frac{x_{13}}{18}\right\rceil + 3500*\left\lceil\frac{x_{14}}{18}\right\rceil + 2500*\left\lceil\frac{x_{15}}{18}\right\rceil + \\ 1250*\left\lceil\frac{x_{21}}{18}\right\rceil + 1750*\left\lceil\frac{x_{22}}{18}\right\rceil + 1500*\left\lceil\frac{x_{23}}{18}\right\rceil + 1625*\left\lceil\frac{x_{24}}{18}\right\rceil + 2000*\left\lceil\frac{x_{25}}{18}\right\rceil + \\ 1000*\left\lceil\frac{x_{31}}{18}\right\rceil + 2250*\left\lceil\frac{x_{32}}{18}\right\rceil + 2500*\left\lceil\frac{x_{33}}{18}\right\rceil + 3750*\left\lceil\frac{x_{34}}{18}\right\rceil + 3250*\left\lceil\frac{x_{35}}{18}\right\rceil + \\$$

β) Το βέλτιστο πρόγραμμα μεταφοράς έχει ως εξής: (λύση με χρήση μεθόδου Vogel)

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100	150	200	140	35	400	100-35=65
Κέντρο 2	50	70	60	65	80	200	60-50=10
Κέντρο 3	40	90	100	150	130	150	90-40=50
Ζήτηση	100	200	150	160	140		

ΙΛ.	50-40=10	90-70=20	100-60=40	140-65=75	80-35=45	
ΔCi	50-40=10	30-/0-20	100-00-40	140-03-73	00-33-43	
, J						

Η μέγιστη διαφορά προκύπτει στην στήλη 4 με τιμή 75, με ελάχιστη τιμή κόστους $c_{24} = 65$.

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100	150	200	140	35	400	100-35=65
Κέντρο 2	50	70	60	65 (160)	80	40	60-50=10
Κέντρο 3	40	90	100	150	130	150	90-40=50
Ζήτηση	100	200	150	0	140		
Δc_j	50-40=10	90-70=20	100-60=40	-	80-35=45		

Η μέγιστη διαφορά προκύπτει στην γραμμή 1 με τιμή 65, με ελάχιστη τιμή κόστους c_{15} = 35.

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100	150	200	140	35 (140)	260	150-100=50
Κέντρο 2	50	70	60	65 (160)	80	40	60-50=10
Κέντρο 3	40	90	100	150	130	150	90-40=50
Ζήτηση	100	200	150	0	0		
$\Delta c_{\rm j}$	50-40=10	90-70=20	100-60=40	-	-		

Η μέγιστη διαφορά προκύπτει στην γραμμή 1 με τιμή 50, με ελάχιστη τιμή κόστους c_{11} = 100.

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100(100)	150	200	140	35 (140)	160	200-150=50
Κέντρο 2	50	70	60	65 (160)	80	40	60-50=10
Κέντρο 3	40	90	100	150	130	150	90-40=50
Ζήτηση	0	200	150	0	0		
Δc_i	_	90-70=20	100-60=40	-	-		

Η μέγιστη διαφορά προκύπτει στην γραμμή 1 με τιμή 50, με ελάχιστη τιμή κόστους $c_{12} = 150$.

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100(100)	150(160)	200	140	35(140)	0	-
Κέντρο 2	50	70	60	65 (160)	80	40	60-50=10
Κέντρο 3	40	90	100	150	130	150	90-40=50
Ζήτηση	0	40	150	0	0		
Δc_j	_	90-70=20	100-60=40	-	-		

Η μέγιστη διαφορά προκύπτει στην στήλη 3 με τιμή 40, με ελάχιστη τιμή κόστους $c_{23} = 60$.

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100(100)	150(160)	200	140	35(140)	0	-
Κέντρο 2	50	70	60(40)	65(160)	80	0	-
Κέντρο 3	40	90	100	150	130	150	90-40=50
Ζήτηση	0	40	110	0	0		
Δc_{j}	-	90	100	-	-		

Η μέγιστη διαφορά προκύπτει στην στήλη 3 με τιμή 100, με ελάχιστη τιμή κόστους $c_{33} = 100$.

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100(100)	150(160)	200	140	35(140)	0	-
Κέντρο 2	50	70	60(40)	65(160)	80	0	-
Κέντρο 3	40	90	100 (110)	150	130	40	90
Ζήτηση	0	40	0	0	0		
Δc_j	-	90	-	-	-		

Η μέγιστη διαφορά προκύπτει στην γραμμή 3 με τιμή 90, με τιμή κόστους $c_{32} = 90$. Τελικά:

	Έμπορος 1	Έμπορος 2	Έμπορος 3	Έμπορος 4	Έμπορος 5	Προμήθεια	Δc_i
Κέντρο 1	100(100)	150 (160)	200	140	35 (140)	400	
Κέντρο 2	50	70	60(40)	65 (160)	80	200	
Κέντρο 3	40	90(40)	100(110)	150	130	150	
Ζήτηση	100	200	150	160	140		
Δc_j							

Με ελάχιστη τιμή κόστους = 100*100+150*160+35*140+60*40+65*165+90*40+100*110 = 66.300

Από την εκφώνηση ξέρουμε ότι ένα πλήρες φορτηγό μεταφέρει 18 αυτοκίνητα, και το κόστος ανά μίλι ανά φορτηγό, ανεξάρτητα από το αν αυτό είναι πλήρες ή όχι, είναι 25\$. Συνεπώς, έχουμε το εξής:

АПО	ΠΡΟΣ	ΜΟΝΑΔΕΣ	ΣΥΝΤ/ΤΗΣ	ΠΛΗΘΟΣ ΦΟΡΤΗΓΩΝ	ΤΕΛΙΚΟ ΚΟΣΤΟΣ
K1	E1	100	100	5 πλήρη + 1 (10/18) = 6	6 * 25 * 100 = 15000
K1	E2	160	150	8 πλήρη + 1 (16/18) = 9	9 * 25 * 150 = 33750
K1	E5	140	35	7 πλήρη + 1 (14/18) = 8	8 * 25 * 35 = 7000
K2	E3	40	60	2 πλήρη + 1 (14/18) = 3	3 * 25 * 60 = 4500
K2	E4	160	65	8 πλήρη + 1 (16/18) = 9	9 * 25 * 65 = 14625
K3	E2	40	90	2 πλήρη + 1 (14/18) = 3	3 * 25 * 90 = 6750
K3	E3	110	100	6 πλήρη + 1 (2/18) = 7	7 * 25 * 100 = 17500

Άρα τελικά έχουμε ότι το αθροιστικό τελικό κόστος είναι 15000+33570+7000+4500+14625+6750+17500 = 98945\$

5. Ελέγχουμε:

	K1	K2	К3	K4	ΠΡΟΣΦΟΡΑ
X	5	2	4	3	22
Ψ	4	8	1	6	15
Z	4	6	7	5	8

ΖΗΤΗΣΗ	7	12	17	9	

Το σχέδιο του αρμόδιου υπαλλήλου δίνει κόστος = 2*7+6*4+9*3+8*5+1*10+4*7+7*1 = 137. Παρατηρούμε όμως ότι με εκτέλεση της μεθόδου Vogel, προκύπτει μικρότερη τιμή κόστους. Πιο συγκεκριμένα:

	K1	K2	К3	K4	ΠΡΟΣΦΟΡΑ	Δc_i
X	5	2	4	3	22	3-2=1
Ψ	4	8	1	6	15	4-1=3
Z	4	6	7	5	8	5-4=1
ΖΗΤΗΣΗ	7	12	17	9		
$\Delta c_{\rm j}$	4-4=0	6-2=4	4-1=3	5-3=2		

Η μέγιστη διαφορά έχει την τιμή 4 στην στήλη 2, με ελάχιστη τιμή κόστους $c_{12} = 2$.

	K1	K2	К3	K4	ΠΡΟΣΦΟΡΑ	Δc_i
X	5	2 (12)	4	3	10	4-3=1
Ψ	4	8	1	6	15	4-1=3
Z	4	6	7	5	8	5-4=1
ΖΗΤΗΣΗ	7	0	17	9		
$\Delta c_{\rm j}$	4-4=0	-	4-1=3	5-3=2		

Η μέγιστη διαφορά έχει την τιμή 3 στην γραμμή 2, με ελάχιστη τιμή κόστους $c_{23} = 1$.

	K1	K2	К3	K4	ΠΡΟΣΦΟΡΑ	Δc_i
X	5	2 (12)	4	3	10	4-3=1
Ψ	4	8	1 (15)	6	0	-
Z	4	6	7	5	8	5-4=1
ΖΗΤΗΣΗ	7	0	2	9		
Δc_{j}	5-4=1	-	7-4=3	5-3=2		

Η μέγιστη διαφορά έχει την τιμή 3 στην στήλη 3, με ελάχιστη τιμή κόστους $c_{13} = 4$.

	K1	K2	К3	K4	ΠΡΟΣΦΟΡΑ	Δc_i
X	5	2 (12)	4 (2)	3	8	5-3=2
Ψ	4	8	1 (15)	6	0	-
Z	4	6	7	5	8	5-4=1
ΖΗΤΗΣΗ	7	0	0	9		
Δc_{j}	5-4=1	-	-	5-3=2		

Η μέγιστη διαφορά έχει την τιμή 2 στην γραμμή 1, με ελάχιστη τιμή κόστους $c_{14} = 3$.

	K1	K 2	К3	K4	ΠΡΟΣΦΟΡΑ	Δc_i
X	5	2 (12)	4 (2)	3 (8)	0	-
Ψ	4	8	1 (15)	6	0	-

Z	4	6	7	5	8	5-4=1
ΖΗΤΗΣΗ	7	0	0	1		
Δc_j	4	-	-	5		

Η μέγιστη διαφορά έχει την τιμή 5 στην στήλη 4, με ελάχιστη τιμή κόστους $c_{34} = 5$.

	K1	K2	К3	K4	ΠΡΟΣΦΟΡΑ	Δc_i
X	5	2 (12)	4 (2)	3 (8)	0	-
Ψ	4	8	1 (15)	6	0	-
Z	4	6	7	5 (1)	7	4
ΖΗΤΗΣΗ	7	0	0	0		
Δc_{j}	4	-	-	-		

Η μέγιστη διαφορά έχει την τιμή 4 στην γραμμή 3, με τιμή κόστους $c_{31} = 4$. Τελικά:

	K1	K2	К3	K4	ΠΡΟΣΦΟΡΑ	Δc_i
X	5	2 (12)	4 (2)	3 (8)	22	
Ψ	4	8	1 (15)	6	15	
Z	4 (7)	6	7	5 (1)	8	
ΖΗΤΗΣΗ	7	12	17	9		
Δc_j						

Το τελικό ελάχιστο κόστος είναι: 2*12+4*2+3*8+1*15+4*7+5*1=104<137.

6. Επιλύουμε:

Η συνολική ζήτηση = 70 < 90 = Συνολική προσφορά άρα προσθέτω μία ψευδή ζήτηση για να συμπληρώσω το κενό:

Βρίσκω τις διαφορές:

	Προορισμός 1	Προορισμός 2	Προορισμός 3	Προορισμός Ψ	Προσφορά	Δc_i
Πηγή 1	1	2	1	0	20	1-0=1
Πηγή 2	3	4	5	0	40	3-0=3
Πηγή 3	2	3	3	0	30	2-0=2
Ζήτηση	30	20	20	20		
Δc_j	2-1=1	3-2=1	3-1=2	0-0=0		

Η μέγιστη διαφορά έχει την τιμή 3 στην γραμμή 2, με ελάχιστη τιμή κόστους $c_{24} = 0$

	Προορισμός 1	Προορισμός 2	Προορισμός 3	Προορισμός Ψ	Προσφορά	Δc_i
Πηγή 1	1	2	1	0	20	1-0=1
Πηγή 2	3	4	5	0 (20)	20	4-3=1
Πηγή 3	2	3	3	0	30	2-0=2
Ζήτηση	30	20	20	0		
Δc_{j}	2-1=1	3-2=1	3-1=2	-		

Η μέγιστη διαφορά έχει την τιμή 2 (στήλη 3 και γραμμή 3, επιλέγουμε την στήλη 3 γιατί έχει την ελάχιστη τιμή κόστους $c_{13} = 1$)

	Προορισμός 1	Προορισμός 2	Προορισμός 3	Προορισμός Ψ	Προσφορά	Δc_i
Πηγή 1	1	2	1 (20)	θ	0	-
Πηγή 2	3	4	5	0 (20)	20	4-3=1
Πηγή 3	2	3	3	0	30	3-2=1
Ζήτηση	30	20	0	0		
Δc_j	3-2=1	4-3=1	-	-		

Για τον ίδιο λόγο επιλέγουμε την γραμμή 2, με ελάχιστη τιμή την $c_{21} = 3$

	Προορισμός 1	Προορισμός 2	Προορισμός 3	Προορισμός Ψ	Προσφορά	Δc_i
Πηγή 1	1	2	1 (20)	θ	0	-
Πηγή 2	3 (20)	4	5	0 (20)	0	-
Πηγή 3	2	3	3	0	30	3-2=1
Ζήτηση	10	20	0	0		
Δc_{j}	2	3	-	-		

Επιλέγουμε τη στήλη 2 με μέγιστη τιμή διαφοράς 3 και ελάχιστη τιμή κόστους c_{32} = 3:

	Προορισμός 1	Προορισμός 2	Προορισμός 3	Προορισμός Ψ	Προσφορά	Δc_i
Πηγή 1	1	2	1 (0)	θ	0	-
Πηγή 2	3 (20)	4	5	0 (20)	0	-
Πηγή 3	2	3 (20)	3	0	10	2
Ζήτηση	10	0	0	0		
$\Delta c_{\rm j}$	2	-	-	-		

Επιλέγουμε τελικά την γραμμή 3, με τιμή κόστους $c_{31} = 2$:

	Προορισμός 1	Προορισμός 2	Προορισμός 3	Προορισμός Ψ	Προσφορά	Δc_i
Πηγή 1	1	2	1 (20)	0	20	
Πηγή 2	3 (20)	4	5	0 (20)	40	
Πηγή 3	2 (10)	3 (20)	3	0	10	
Ζήτηση	30	20	20	20		
Δc_{j}						

Το ελάχιστο κόστος μεταφοράς είναι το εξής: 1*20+3*20+0*20+2*10+3*20 = 160.

Αν μία μονάδα δεν αποσταλεί από μία πηγή προς κάπου, προκύπτει κόστος 5\$, 4\$, 3\$ ανά μονάδα για τις πηγές 1, 2, 3 αντίστοιχα.

Παρατηρούμε ότι περισσεύουν 20 μονάδες από την πηγή 2, οπότε έχουμε ένα κόστος επιπλέον 4*20=80

Άρα τελικά έχουμε 160+80 = 240\$ κόστος.

7.

$$\begin{aligned} maxz &= 3x_1 + 5x_2 + 8x_3 + 3x_4 + 10x_5 + x_6 \\ s.t. & x_1 + 2x_2 + 5x_3 + 2x_4 + 8x_5 + 3x_6 \leq 12 \end{aligned}$$

Διατάσσουμε τις μεταβλητές:

Xi	1	2	3	4	5	6
Ci	3	5	8	3	10	1
$\mathbf{a}_{\mathbf{i}}$	1	2	5	2	8	3
c _i /a _i	3	2.5	1.6	1.5	1.25	0.33

Παρατηρούμε ότι οι μεταβλητές είναι διατεταγμένες από την μεγαλύτερη στη μικρότερη.

Επίλυση με χρήση μεθόδου Best First:

Επίλυση με χρήση μεθόδου DFS:

Επίλυση με χρήση μεθόδου BFS:

8. ...

9.

β) Μια εφικτή λύση με τη μέθοδο ΒΔ γωνίας είναι η εξής:

	D1	D2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ
S1	1	1	2	6	3	11
S2	4	3	4	8	8	12
S 3	5	6	7	12	10	7
ΖΗΤΗΣΗ	6	6	3	2	13	

min(11,6) = 6

	D1	D2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ
S1	1 (6)	1	2	6	3	5
S2	4	3	4	8	8	12
S3	5	6	7	12	10	7
ΖΗΤΗΣΗ	0	6	3	2	13	

 $\overline{\min(5,6)} = 5$

	D1	D 2	D 3	D4	D 5	ПРОΣФОРА
S1	1 (6)	1 (5)	2	6	3	0
S2	4	3	4	8	8	12
S3	5	6	7	12	10	7
ΖΗΤΗΣΗ	0	1	3	2	13	
min(12,1) = 1	1					
	D1	D 2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ
S1	1 (6)	1 (5)	2	6	3	0
S2	4	3 (1)	4	8	8	11
S3	5	6	7	12	10	7
ΖΗΤΗΣΗ	0	0	3	2	13	
min(11,3) = 3	3	,	'	'	'	
	D1	D 2	D 3	D 4	D 5	ΠΡΟΣΦΟΡΑ
S1	1 (6)	1 (5)	2	6	3	0
S2	4	3 (1)	4 (3)	8	8	8
S3	5	6	7	12	10	7
ΖΗΤΗΣΗ	0	0	0	2	13	
min(8,2) = 2						
	D1	D 2	D 3	D 4	D 5	ΠΡΟΣΦΟΡΑ
S1	1 (6)	1 (5)	2	6	3	0
S2	4	3 (1)	4 (3)	8 (2)	8	6
S3	5	6	7	12	10	7
ΖΗΤΗΣΗ	0	0	0	0	13	
min(6,13) = 6	5					
	D1	D 2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ
S1	1 (6)	1 (5)	2	6	3	0
S2	4	3 (1)	4 (3)	8 (2)	8 (6)	0
S3	5	6	7	12	10	7
ΖΗΤΗΣΗ	0	0	0	0	7	
Γελικά:		1			1	'
	D1	D 2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ
S1	1 (6)	1 (5)	2	6	3	0
S2	4	3 (1)	4 (3)	8 (2)	8 (6)	0
S3	5	6	7	12	10 (7)	0
ΖΗΤΗΣΗ	0	0	0	0	0	

γ) Με χρήση της μεθόδου Vogel:

	D1	D2	D 3	D 4	D 5	ΠΡΟΣΦΟΡΑ	Δc_i
S1	1	1	2	6	3	11	1-1=0
S2	4	3	4	8	8	12	4-3=1
S 3	5	6	7	12	10	7	6-5=1
ΖΗΤΗΣΗ	6	6	3	2	13		
Δc_{j}	4-1=3	3-1=2	4-2=2	8-6=2	8-3=5		

Μέγιστη διαφορά 5, στήλη 5, ελάχιστο κόστος $c_{15} = 3$.

	D1	D2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ	Δc_i
S1	1	1	2	6	3 (11)	0	-
S2	4	3	4	8	8	12	4-3=1
S 3	5	6	7	12	10	7	6-5=1
ΖΗΤΗΣΗ	6	6	3	2	2		
$\Delta c_{\rm j}$	5-4=1	6-3=3	7-4=3	12-8=4	10-8=2		

Μέγιστη διαφορά 4, στήλη 4, ελάχιστο κόστος $c_{24} = 8$.

	D1	D2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ	Δc_i
S1	1	1	2	6	3 (11)	0	-
S2	4	3	4	8 (2)	8	10	4-3=1
S3	5	6	7	12	10	7	6-5=1
ΖΗΤΗΣΗ	6	6	3	0	2		
Δc_j	5-4=1	6-3=3	7-4=3	-	10-8=2		

Μέγιστη διαφορά 3, στήλη 2, ελάχιστο κόστος $c_{22} = 3$.

	D1	D 2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ	Δc_i
S1	1	1	2	6	3 (11)	0	-
S2	4	3 (6)	4	8 (2)	8	4	4-4=0
S 3	5	6	7	12	10	7	7-5=2
ΖΗΤΗΣΗ	6	0	3	0	2		
Δc_{j}	5-4=1	-	7-4=3	-	10-8=2		

Μέγιστη διαφορά 3, στήλη 3, ελάχιστο κόστος $c_{23} = 4$.

	D1	D2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ	Δc_i
S1	1	1	2	6	3 (11)	0	-
S2	4	3 (6)	4 (3)	8 (2)	8	1	8-4=4
S3	5	6	7	12	10	7	10-5=5
ΖΗΤΗΣΗ	6	0	0	0	2		

Δc_i	5-4=1	-	-	-	10-8=2	
, ,						

Μέγιστη διαφορά 5, γραμμή 3, ελάχιστο κόστος $c_{31} = 5$.

	D1	D2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ	Δc_i
S1	1	1	2	6	3 (11)	0	-
S2	4	3 (6)	4 (3)	8 (2)	8	1	8
S3	5 (6)	6	7	12	10	1	10
ΖΗΤΗΣΗ	0	0	0	0	2		
Δc_{j}	-	-	-	-	10-8=2		

Μέγιστη διαφορά 10, γραμμή 3, ελάχιστο κόστος $c_{35} = 10$.

	D1	D 2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ	Δc_i
S1	1	1	2	6	3 (11)	0	-
S2	4	3 (6)	4 (3)	8 (2)	8	1	8
S3	5 (6)	6	7	12	10 (1)	0	-
ΖΗΤΗΣΗ	0	0	0	0	1		
Δc_j	-	-	-	-	8		

Μέγιστη διαφορά 8, γραμμή 2, ελάχιστο κόστος $c_{25} = 8$.

	D1	D 2	D 3	D4	D 5	ΠΡΟΣΦΟΡΑ	Δc_{i}
S1	1	1	2	6	3 (11)	0	-
S2	4	3 (6)	4 (3)	8 (2)	8 (1)	0	-
S 3	5 (6)	6	7	12	10 (1)	0	-
ΖΗΤΗΣΗ	0	0	0	0	0		
Δc_j	-	-	-	-	-		

Τελικά έχουμε 3*11 + 3*6 + 4*3 + 8*2 + 8*1 + 5*6 + 10*1 = 127

δ)

10. ...

α) ...

β) ...

γ) ...