Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[5558]-108

F.E. EXAMINATION, 2019

ENGINEERING MATHEMATICS—II

(2015 **PATTERN**)

Time: Three Hours

Maximum Marks: 60

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Solve the following differential equations:

(i)
$$ye^{x/y} dx = (xe^{x/y} + y^2) dy$$
 [4]

(ii)
$$(1 + xy^2) dx + (1 + x^2y) dy = 0.$$
 [4]

(b) A particle of mass m is projected vertically upward with velocity V_0 . Assuming that the air resistance is k times the velocity, show that particle will reach maximum height in time $\frac{m}{k}$ log

$$\left(1 + \frac{kv_0}{mg}\right) . ag{4}$$

P.T.O.

- 2. [4]
- Solve: $xy \frac{dy}{dx} = y^3 e^{-x^2}$. (i) A body (*b*) A body originally at 80°C cools to 60°C in 20 minutes, the temperature of air being 40°C, what will be the temperature of the body after 40 minutes. [4]
 - (ii) A circuit consists of resistance R ohms and condenser of ϵ farads connected to a constant e.m.f. ϵ volts. If q/is the voltage of condenser at time t after closing the circuit, show that : $q/c = \varepsilon(1 - e^{-t/RC}).$ [4]

- Find half-range cosine series for $f(x) = x^2$, $0 \le x \le \pi$. [5] 3. (a)
 - Evaluate : $\int_{0}^{\infty} \frac{dx}{3^{4x^2}}$. (*b*) [3]
 - Trace the curve (any one): (c)

- $\int_{0}^{\infty} \frac{e^{-x} e^{-ax}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{a^{2} + 1}{2} \right), \ a > 0.$ Evaluate: $\int_{0}^{2a} x^{7/2} (2a - x)^{-1/2} dx$. 4.
 - Using DUIS, show that: (*b*)

$$\int_{0}^{\infty} \frac{e^{-x} - e^{-ax}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{a^{2} + 1}{2} \right), \ a > 0$$

[5558]-108

(c)	Find	the	perimeter	of	cardioide	r	=	a(1	+	cos	θ).		[4]
-----	------	-----	-----------	----	-----------	---	---	-----	---	-----	-------------	--	-----

- Find the centre and radius of the circle $x^2 + y^2 + z^2 2x$ **5.** (a)+ 4y + 2z - 6 = 0, x + 2y + 2z - 4 = 0.[5]
 - Find the equation of right circular cone with vertex at (*b*) (0, 0, 2), direction ratios of the generator are 0, 3, -2 and [4]the axis is z-axis.
 - Find the equation of right circular cylinder of radius 'a', whose (c)axis passes through the origin and makes equal angles with the coordinates axes. [4]

- Find the equation of the sphere through the circle $x^2 + y^2$ 6. (a)+ z^2 = 4, z = 0 and cutting the sphere x^2 + y^2 + z^2 + 10y - 4z - 8 = 0 orthogonally.
 - Find the equation of right circular cone whose vertex is (*b*) at (0, 0, 0), semi-vertical angle $\frac{\pi}{4}$ and axis along the line x = -2y = z.[4]
 - Find the equation of right circular cylinder of radius 2 whose (c)axis is the line: [4]

$$\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1}$$

Attempt any two of the following: **7.**

(a) Evaluate :
$$\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dx \, dy}{1+x^2+y^2}$$
. [6]
(b) Evaluate : $\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} \, dx \, dy \, dz$. [7]

(b) Evaluate:
$$\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dz$$
. [7]

Find the C.G. of one loop of $r = a \sin 2\theta$. (c)[6]

Or

Attempt any two of the following: 8.

- Find the area bounded by the parabola $y = x^2$ and the line y = x. [6]
- Find the volume of the paraboloid $x^2 + y^2 = 4z$ cut-off by (*b*) the plane z = 4. [7]
- Find the moment of inertia of the portion of the parabola (c) $y^2 = 4ax$, bounded by the x-axis and the latus rectum, about ape of the part of X-axis if density at each point varies as the cube of the abscissa.