ESP32-PICO-D4 技术规格书

Espressif Systems

2017年8月31日

关于本手册

本文档为用户提供 ESP32-PICO-D4 模组的技术规格信息。

文档结构如下:

章	标题	内容
第1章	概述	概括描述 ESP32-PICO-D4 模组。
第2章	管脚定义	介绍 ESP32-PICO-D4 管脚布局及描述。
第3章	功能描述	介绍 ESP32-PICO-D4 主要功能模块。
第4章	电气特性	提供 ESP32-PICO-D4 电气特性和数据。
第5章	原理图	提供 ESP32-PICO-D4 原理图。
第6章	外围设计原理图	提供 ESP32-PICO-D4 外围设计原理图。
第7章	封装信息	提供 ESP32-PICO-D4 封装细节。
第8章	学习资源	提供 ESP32 相关必读文档和必备资源。

发布说明

日期	版本	发布说明
2017.08	V1.0	首次发布。

文档变更通知

用户可以通过乐鑫官网订阅技术文档变更的电子邮件通知。

证书下载

用户可以通过乐鑫官网下载产品证书。

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2017 乐鑫所有。保留所有权利。

目录

1	概述	1
2	管脚定义	3
2.1		3
2.2	管脚描述	3
2.3	Strapping 管脚	5
3	功能描述	7
3.1		7
3.2	外部 Flash 和 SRAM	7
3.3		7
3.4	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8
3.5	RTC 和低功耗管理	8
4	电气特性	10
4.1		10
4.2	! Wi-Fi 射频	10
4.3		11
	4.3.1 接收器	11
4 4	4.3.2 发射器	11
4.4	回流焊温度曲线	12
5	原理图	13
6	外围设计原理图	14
7	封装信息	15
8	学习资源	16
8.1		16
8.2	2. 必备资源	16

表格

1	ESP32-PICO-D4 产品规格	1
2	管脚定义	3
3	Strapping 管脚	6
4	不同功耗模式下的功能	8
5	不同功耗模式下的功耗	9
6	极限参数	10
7	Wi-Fi 射频特性	10
8	低功耗蓝牙接收器特性	11
9	低功耗蓝牙发射器特性	11

插图

1	ESP32-PICO-D4 管脚布局图	3
2	回流焊温度曲线	12
3	ESP32-PICO-D4 模组原理图	13
4	ESP32-PICO-D4 模组外围设计原理图	14
5	ESP32-PICO-D4 封装图	15

1. 概述

ESP32-PICO-D4 是一款基于 ESP32 的系统级封装 (SIP) 模组,可提供完整的 Wi-Fi 和蓝牙功能。该模组的外观 尺寸仅为 7.0±0.1 mm×7.0±0.1 mm×0.94±0.1 mm,整体占用的 PCB 面积最小,已集成 1 个 4 MB 串行外围设备接口 (SPI) flash。

ESP32-PICO-D4 的核心是 ESP32 芯片 *。ESP32 是集成 2.4 GHz Wi-Fi 和蓝牙双模的单芯片方案,采用台积电 (TSMC) 超低功耗的 40 纳米工艺。ESP32-PICO-D4 模组已将晶振、flash、滤波电容、RF 匹配链路等所有外围器件无缝集成进封装内,不再需要外围元器件即可工作。此时,由于无需外围器件,模组焊接和测试过程也可以避免,因此 ESP32-PICO-D4 可以大大降低供应链的复杂程度并提升管控效率。

ESP32-PICO-D4 具备体积紧凑、性能强劲及功耗低等特点,适用于任何空间有限或电池供电的设备,比如可穿戴设备、医疗设备、传感器及其他 IoT 设备。

说明:

* 更多有关 ESP32 的信息,请参考 ESP32 技术规格书。

表 1 列出了 ESP32-PICO-D4 的产品规格。

表 1: ESP32-PICO-D4 产品规格

类别	项目	产品规格		
	L4-201	802.11 b/g/n/e/i (802.11n 的速度高达 150 Mbps)		
类别 Wi-Fi 蓝牙 硬件	沙以	支持 A-MPDU 和 A-MSDU 聚合;支持 0.4 μs 保护间隔		
VVI-FI	频率范围	802.11 b/g/n/e/i (802.11n 的速度高达 150 Mbps) 支持 A-MPDU 和 A-MSDU 聚合;支持 0.4 μs 保护间 2.4 GHz ~ 2.5 GHz 蓝牙 V4.2 BR/EDR 和 BLE 标准 NZIF 接收器,灵敏度达 -97 dBm Class-1、Class-2 和 Class-3 发射器 AFH CVSD 和 SBC ADC、LNA 前置放大器、DAC、触摸传感器。SD/SDIO/MMC 主机控制器、SPI、SDIO/SPI 从		
	协议	蓝牙 V4.2 BR/EDR 和 BLE 标准		
Wi-Fi 蓝牙		NZIF 接收器,灵敏度达 -97 dBm		
	音频	Class-1、Class-2 和 Class-3 发射器		
		AFH		
	协议 新率范围 协议 音频 音频 模组接口 片上传感器 板上时钟 工作电压/供电电压 工作电流	CVSD 和 SBC		
		ADC、LNA 前置放大器、DAC、触摸传感器、		
	 横组接口	SD/SDIO/MMC 主机控制器、SPI、SDIO/SPI 从机		
	· 沃坦坎 日	控制器、EMAC、电机 PWM、LED PWM、UART、I2C、		
		I2S、红外远程控制器、GPIO		
	片上传感器	霍尔传感器、温度传感器		
	板上时钟	40 MHz 晶振		
硬件	工作电压/供电电压	2.3V ~ 3.6V		
	工作电流	平均: 80 mA		
	供电电流	最小: 500 mA		
	工作温度范围	-40°C ~ 85°C		
	环境温度范围	正常温度		
	封装尺寸	7.0±0.1 mm x 7.0±0.1 mm x 0.94±0.1 mm		

类别	项目	产品规格
	Wi-Fi 模式	Station/SoftAP/SoftAP+Station/P2P
	Wi-Fi 安全机制	WPA/WPA2/WPA2-Enterprise/WPS
	加密类型	AES/RSA/ECC/SHA
软件	固件升级	UART 下载 / OTA (通过网络 / 通过主机下载和写固件)
	软件开发	支持云服务器开发 / SDK, 用于用户固件开发
	网络协议	IPv4、IPv6、SSL、TCP/UDP/HTTP/FTP/MQTT
	用户配置	AT+ 指令集、云服务器、安卓 / iOS app

2. 管脚定义

2.1 管脚布局

图 1: ESP32-PICO-D4 管脚布局图

2.2 管脚描述

ESP32-PICO-D4 模组共有 49 个管脚,具体描述参见表 2.

表 2: 管脚定义

名称	序号	类型	功能
VDDA	1	Р	模拟电源 (2.3V ~ 3.6V)
LNA_IN	2	I/O	射频输入输出
VDDA3P3	3	Р	放大器电源 (2.3V ~ 3.6V)
VDDA3P3	4	Р	放大器电源 (2.3V ~ 3.6V)

名称	序号	类型	功能	
			GPIO36、ADC_PRE_AMP, ADC1_CH0、RTC_GPIO0	
SENSOR_VP	5	1	注意:作为 ADC_PRE_AMP 使用时,将 270 pF 电容从 SEN-	
			SOR_VP 连接到 SENSOR_CAPP。	
			GPIO37, ADC_PRE_AMP, ADC1_CH1, RTC_GPIO1	
SENSOR_CAPP	6	1	注意:作为 ADC_PRE_AMP 使用时,将 270 pF 电容从 SEN-	
			SOR_VP 连接到 SENSOR_CAPP。	
			GPIO38、ADC1_CH2、ADC_PRE_AMP、RTC_GPIO2	
SENSOR_CAPN	7	1	注意:作为 ADC_PRE_AMP 使用时,将 270 pF 电容从 SEN-	
			SOR_VN 连接到 SENSOR_CAPN。	
	GPIO39, ADC1_CH3, ADC_PRE_AMP, RTC_GPIO		GPIO39, ADC1_CH3, ADC_PRE_AMP, RTC_GPIO3	
SENSOR_VN	8	1	注意:作为 ADC_PRE_AMP 使用时,将 270 pF 电容从 SEN-	
			SOR_VN 连接到 SENSOR_CAPN。	
			芯片使能(高电平有效)	
		١,	高电平: 上电, 芯片正常工作;	
EN	9	'	低电平: 断电, 芯片以最小功耗工作;	
			注意:不能让 CHIP_PU 管脚悬浮。	
IO34	10	I	ADC1_CH6、RTC_GPIO4	
IO35	11	1	ADC1_CH7、RTC_GPIO5	
1000	10	1/0	32K_XP(32.768 kHz 晶振输入)、ADC1_CH4、TOUCH9、	
IO32	12	1/0	RTC_GPIO9	
1000	10	1/0	32K_XN(32.768 kHz 晶振输出)、ADC1_CH5、TOUCH8、	
IO33	13	1/0	RTC_GPIO8	
IO25	14	I/O	GPIO25、DAC_1、ADC2_CH8、RTC_GPIO6、EMAC_RXD0	
IO26	15	I/O	GPIO26、DAC_2、ADC2_CH9、RTC_GPIO7、EMAC_RXD1	
IO27	16	I/O	GPIO27、ADC2_CH7、TOUCH7、RTC_GPIO17、EMAC_RX_DV	
IO14	17	1/0	ADC2_CH6、TOUCH6、RTC_GPIO16、MTMS、HSPICLK、	
1014	17	1/0	HS2_CLK、SD_CLK、EMAC_TXD2	
IO12	18	I/O	ADC2_CH5、TOUCH5、RTC_GPIO15、MTDI、HSPIQ、	
1012	10	1/0	HS2_DATA2、SD_DATA2、EMAC_TXD3	
VDD3P3_RTC	19	Р	RTC IO 电源输入 (1.8V ~ 3.6V)	
IO13	20	I/O	ADC2_CH4、TOUCH4、RTC_GPI014、MTCK、HSPID、	
1010	20	1/0	HS2_DATA3、SD_DATA3、EMAC_RX_ER	
IO15	21	I/O	ADC2_CH3、TOUCH3、RTC_GPIO13、MTDO、HSPICS0、	
1010	21	1/0	HS2_CMD、SD_CMD、EMAC_RXD3	
102	22	I/O	ADC2_CH2、TOUCH2、RTC_GPIO12、HSPIWP、HS2_DATA0、	
102	22	1/0	SD_DATA0	
100	23	I/O	ADC2_CH1、TOUCH1、RTC_GPIO11、CLK_OUT1、	
100	20	1/0	EMAC_TX_CLK	
IO4	24	I/O	ADC2_CH0、TOUCH0、RTC_GPIO10、HSPIHD、HS2_DATA1、	
104		1/ 0	SD_DATA1、EMAC_TX_ER	
IO16	25	I/O	GPIO16、HS1_DATA4、U2RXD、EMAC_CLK_OUT	
VDD_SDIO_NC	26	_	NC	
IO17	27	I/O	GPIO17、HS1_DATA5、U2TXD、EMAC_CLK_OUT_180	
SD2	28	I/O	GPIO9、SD_DATA2、SPIHD、HS1_DATA2、U1RXD	
SD3	29	I/O	GPIO10、SD_DATA3、SPIWP、HS1_DATA3、U1TXD	

名称	序号	类型	功能
CMD	30	I/O	GPIO11、SD_CMD、SPICSO、HS1_CMD、U1RTS
CLK	31	I/O	GPIO6、SD_CLK、SPICLK、HS1_CLK、U1CTS
SD0	32	I/O	GPIO7、SD_DATA0、SPIQ、HS1_DATA0、U2RTS
SD1	33	I/O	GPIO8、SD_DATA1、SPID、HS1_DATA1、U2CTS
IO5	34	I/O	GPIO5、VSPICSO、HS1_DATA6、EMAC_RX_CLK
IO18	35	I/O	GPIO18、VSPICLK、HS1_DATA7
IO23	36	I/O	GPIO23、VSPID、HS1_STROBE
VDD3P3_CPU	37	Р	CPU IO 电源输入 (1.8V ~ 3.6V)
IO19	38	I/O	GPIO19、VSPIQ、U0CTS、EMAC_TXD0
IO22	39	I/O	GPIO22、VSPIWP、U0RTS、EMAC_TXD1
U0RXD	40	I/O	GPIO3、U0RXD、CLK_OUT2
U0TXD	41	I/O	GPIO1、U0TXD、CLK_OUT3、EMAC_RXD2
IO21	42	I/O	GPIO21、VSPIHD、EMAC_TX_EN
VDDA	43	Р	模拟电源 (2.3V ~ 3.6V)
XTAL_N_NC	44	-	NC
XTAL_P_NC	45	-	NC
VDDA	46	Р	PLL 数字电源 (2.3V ~ 3.6V)
CAP2_NC	47	-	NC
CAP1_NC	48	-	NC
GND	49	Р	接地

说明:

ESP32-PICO-D4 的管脚 IO16、IO17、CMD、CLK、SD0 和 SD1 用于连接嵌入式 flash,不建议用于其他功能。

2.3 Strapping 管脚

ESP32 共有 5 个 Strapping 管脚,可参考章节 5 电路原理图:

- MTDI
- GPI00
- GPI02
- MTDO
- GPI05

软件可以读取寄存器 "GPIO_STRAPPING"中这 5 个位的值。

在芯片上电复位过程中,Strapping 管脚对电平采样并存储到锁存器中,锁存为"0"或"1",并一直保持到芯片掉电或关闭。锁存器中 Strapping 比特的值用于配置设备的启动模式,VDD_SDIO 工作电压和其他的系统初始设置。

每一个 Strapping 管脚都会连接内部上拉/下拉。如果一个 Strapping 管脚没有连接或者连接的外部线路处于高阻抗状态,内部弱上拉/下拉将决定 Strapping 管脚输入电平的默认值。

为改变 Strapping 比特的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32 上电复位时的 Strapping 管脚电平。

复位后,Strapping 管脚和普通管脚功能相同。

配置 Strapping 管脚的详细启动模式请参阅表 3。

表 3: Strapping 管脚

内置 LDO (VDD_SDIO) 电压								
管脚	默认	3.3	3V	1.8V				
MTDI	下拉	()	-	1			
		系统	E启动模式					
管脚	默认	SPI Flash	启动模式	下载启	动模式			
GPIO0	上拉	-		()			
GPIO2	下拉	无き		0				
		系统启动过程中, し	JOTXD 输出 log 打印	17信息				
管脚	默认	U0TXI	D翻转	U0TXI)静止			
MTDO	上拉	-		()			
		SDIO 从机作	言号输入输出时序					
管脚 默认		下降沿输入	下降沿输入	上升沿输入	上升沿输入			
自 网		下降沿输出	上升沿输出	下降沿输出	上升沿输出			
MTDO	上拉	0 0		1	1			
GPIO5	上拉	0	1	0	1			

说明:

固件可以通过配置一些寄存器比特位,在启动后改变"内置 LDO (VDD_SDIO) 电压"和"SDIO 从机信号输入输出时序"的设定。

3. 功能描述

本章描述 ESP32-PICO-D4 的具体功能。

3.1 CPU 和片上存储

ESP32-PICO-D4 搭载 2 个低功耗 Xtensa® 32-bit LX6 微处理器。

ESP32-PICO-D4 片上存储包括:

- 448-KB 的 ROM, 用于程序启动和内核功能调用
- 用于数据和指令存储的 520 KB 片上 SRAM (包括 8 KB RTC 快速存储器)
 - RTC 快速存储器,为 8 KB 的 SRAM,可以在 Deep-sleep 模式下 RTC 启动时用于数据存储以及被主 CPU 访问
- RTC 慢速存储器,为 8 KB的 SRAM,可以在 Deep-sleep模式下被协处理器访问
- 1 kbit 的 eFuse, 其中 256 bit 为系统专用 (MAC 地址和芯片设置); 其余 768 bit 保留给用户程序, 这些程序包括 Flash 加密和芯片 ID

3.2 外部 Flash 和 SRAM

ESP32 最多支持 4 个 16 MB 的外部 QSPI Flash 和静态随机存储器 (SRAM), 具有基于 AES 的硬件加密功能, 从而保护用户的程序和数据。

- ESP32 通过高速缓存访问外部 QSPI Flash 和 SRAM。高达 16 MB 的外部 Flash 映射到 CPU 代码空间,支持 8-bit、16-bit 和 32-bit 访问,并可执行代码。
- 高达 8 MB 的外部 Flash 和 SRAM 映射到 CPU 数据空间,支持 8-bit、16-bit 和 32-bit 访问。Flash 仅支持 读操作,SRAM 可支持读写操作。

ESP32-PICO-D4 集成了 4 MB 的外部 SPI flash,可以映射到 CPU 代码空间,支持 8-bit、16-bit 和 32-bit 访问,并可执行代码。

说明:

ESP32-PICO-D4 集成的外部 SPI flash 工作电压为 3.3V, 因此在上电复位过程中需保持 Strapping 管脚 MTDI 为低电平。

3.3 晶振

ESP32-PICO-D4 已集成 40 MHz 晶振。

3.4 外设接口和传感器

详见 ESP32 技术规格书中外设接口和传感器章节。

说明:

用户应注意,模组上 ESP32 芯片的一些管脚已用于连接 flash 或 PSRAM 等外围器件,不建议另作他用,详见 5 原理图。

3.5 RTC 和低功耗管理

ESP32 采用了先进的电源管理技术,可以在不同的省电模式之间切换。(参见表 4)。

• 省电模式

- Active 模式: 芯片射频处于工作状态。芯片可以接收、发射和侦听信号。
- Modem-sleep 模式: CPU 可运行, 时钟可被配置。Wi-Fi/蓝牙基带和射频关闭。
- Light-sleep 模式: CPU 暂停运行。RTC 存储器和外设以及 ULP 协处理器运行。任何唤醒事件 (MAC、主机、RTC 定时器或外部中断)都会唤醒芯片。
- Deep-sleep 模式: 只有 RTC 存储器和外设处于工作状态。Wi-Fi 和蓝牙连接数据存储在 RTC 中。ULP 协处理器可以工作。
- Hibernation 模式: 内置的 8 MHz 振荡器和 ULP 协处理器均被禁用。RTC 内存恢复电源被切断。只有 1 个位于慢时钟上的 RTC 时钟定时器和某些 RTC GPIO 在工作。RTC 时钟定时器或 RTC GPIO 可以 将芯片从 Hibernation 模式中唤醒。

• 睡眠方式

- 关联睡眠方式:省电模式在 Active、Modem-sleep、Light-sleep 模式之间切换。CPU、Wi-Fi、蓝牙和射频按照预设的时间间隔被唤醒,以保证 Wi-Fi/蓝牙的连接。
- 超低功耗传感器监测方式: 主系统处于 Deep-sleep 模式, ULP 协处理器定期被开启或关闭来测量传感器数据。根据传感器测量到的数据, ULP 协处理器决定是否唤醒主系统。

表 4: 不同功耗模式下的功能

功耗模式	Active	Modem-sleep	Light-sleep	Deep-sleep	Hibernation
睡眠方式		关联睡眠方式		超低功耗 传感器监测方式	
CPU	开启	开启	暂停	关闭	关闭
Wi-Fi/蓝牙基带和射频	开启	关闭	关闭	关闭	关闭
RTC 存储器和外设	开启	开启	开启	开启	关闭
ULP 协处理器	开启	开启	开启	开启/关闭	关闭

功耗随省电模式/睡眠方式以及功能模块的工作状态而改变(见表5)。

表 5: 不同功耗模式下的功耗

省电模式	描述	功耗	
	Wi-Fi Tx packet 14 dBm ~ 19.5 dBm		
Active (射频工作)	Wi-Fi/BT Tx packet 0 dBm	详见 ESP32 技术规格书	
ACtive (别 <u></u> 外工作)	Wi-Fi/BT Rx 和侦听		
	关联睡眠方式(与 Light-sleep 模式关联)	1 mA ~ 4 mA @DTIM3	
		最大速度 (240 MHz): 30 mA ~ 50 mA	
Modem-sleep	CPU 处于工作状态	正常速度 (80 MHz): 20 mA ~ 25 mA	
		慢速 (2 MHz): 2 mA ~ 4 mA	
Light-sleep	-	0.8 mA	
	ULP 协处理器处于工作状态	150 μΑ	
Deep-sleep	超低功耗传感器监测方式	100 μA @1% duty	
	RTC 定时器 +RTC 存储器	10 μΑ	
Hibernation	仅有 RTC 定时器处于工作状态	5 μΑ	
关闭	CHIP_PU 脚拉低,芯片处于关闭状态	0.1 μΑ	

说明:

- Deep-sleep 模式下,仅 ULP 协处理器处于工作状态时,可以操作 GPIO 及低功耗 I2C。
- 当系统处于超低功耗传感器监测模式时,ULP 协处理器和传感器周期性工作,ADC 以 1% 占空比工作,系统功 耗典型值为 100 μ A。

4. 电气特性

说明:

如无特别说明,本章参数测试条件如下: VDD = 3.3V, $T_A = 27$ °C。

4.1 极限参数

表 6: 极限参数

参数	名称	最小值	典型值	最大值	单位
供电电压 1	VDD	2.3	3.3	3.6	V
供电电流	$ I_{VDD} $	0.5	-	-	А
输入逻辑电平低	V_{IL}	-0.3	-	0.25×V _{IO} ²	V
输入逻辑电平高	V_{IH}	$0.75 \times V_{IO}^2$	-	V _{IO} ² +0.3	V
输入漏电流	$ I_{IL} $	-	-	50	nA
输入引脚电容	C_{pad}	-	-	2	pF
输出逻辑电平低	V_{OL}	-	-	0.1×V _{IO} ²	V
输出逻辑电平高	V_{OH}	0.8×V _{IO} ²	-	-	V
输出最大驱动能力	I_{MAX}	-	-	40	mA
存储温度范围	T_{STR}	-40	-	85	°C
工作温度范围	T_{OPR}	-40	-	85	°C

- 1. 供电电压包括 VDDA、VDD3P3、VDD3P3_RTC、VDD3P3_CPU、VDD_SDIO。其中 VDD_SDIO 另有 1.8V 模式。
- 2. V_{IO} 为 pad 的供电电源,具体请参考 ESP32 技术规格书中附录 IO_MUX,如 SD_CLK 的供电电源为 VDD_SDIO。

4.2 Wi-Fi 射频

表 7: Wi-Fi 射频特性

参数	最小值	典型值	最大值	单位
输入频率	2412	-	2484	MHz
输出阻抗	-	50	-	Ω
输入反射	-	-	-10	dB
	输出功率			
72.2 Mbps PA 输出功率	13	14	15	dBm
11b 模式下 PA 输出功率	19.5	20	20.5	dBm
	灵敏度			
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
OFDM, 6 Mbps	-	-93	-	dBm
OFDM, 54 Mbps	-	-75	-	dBm
HT20, MCS0	-	-93	-	dBm
HT20, MCS7	-	-73	-	dBm

参数	最小值	典型值	最大值	单位
HT40, MCS0	-	-90	-	dBm
HT40, MCS7	-	-70	-	dBm
MCS32	-	-89	-	dBm
	邻道抑制			
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

4.3 低功耗蓝牙射频

4.3.1 接收器

表 8: 低功耗蓝牙接收器特性

参数	条件	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	-	-	-97	-	dBm
最大接收信号 @30.8% PER	-	0	-	-	dBm
共信道抑制比 C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 - 1 MHz	-	-5	-	dB
邻道抑制比 C/I	F = F0 + 2 MHz	-	-25	-	dB
李拉里孙明比 0/1	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	_	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
世 41 粉 伊 世 四	2000 MHz ~ 2400	-27	-	-	dBm
带外数据带阻	MHz				
	2500 MHz ~ 3000	-27	-	-	dBm
	MHz				
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
互调	-	-36	-	-	dBm

4.3.2 发射器

表 9: 低功耗蓝牙发射器特性

参数	条件	最小值	典型值	最大值	单位
射频发射功率	-	-	0	-	dBm
增益控制步长	-	-	±3	-	dBm
射频功率控制范围	-	-12	-	+12	dBm
	F = F0 + 1 MHz	-	-14.6	-	dBm
	F = F0 - 1 MHz	-	-12.7	-	dBm
	F = F0 + 2 MHz	-	-44.3	-	dBm
邻道发射功率	F = F0 - 2 MHz	-	-38.7	-	dBm

参数	条件	最小值	典型值	最大值	单位
	F = F0 + 3 MHz	-	-49.2	-	dBm
	F = F0 - 3 MHz	-	-44.7	-	dBm
	F = F0 + > 3 MHz	-	-50	-	dBm
	F = F0 - > 3 MHz	-	-50	_	dBm
$\Delta f1_{\text{avg}}$	-	-	-	265	kHz
$\Delta f2_{ extsf{max}}$	-	247	-	-	kHz
$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
漂移速率	-	-	0.7	-	kHz/50 μs
偏移	-	-	2	-	kHz

4.4 回流焊温度曲线

升温区 — 温度: <150°C 时间: 60~90s 升温斜率: 1~3°C/s

预热恒温区 — 温度: $150 \sim 200^{\circ}$ C 时间: $60 \sim 120$ s 升温斜率: $0.3 \sim 0.8^{\circ}$ C/s 回流焊接区 — 峰值温度: $235 \sim 250^{\circ}$ C (建议不高于 245° C) 时间: $30 \sim 70$ s

冷却区 - 温度: 217~170℃ 降温斜率: 3~5℃/s

焊料 - 锡银铜合金无铅焊料 (SAC305)

图 2: 回流焊温度曲线

5.

图 3: ESP32-PICO-D4 模组原理图

Espressif Systems

6. 外围设计原理图

图 4: ESP32-PICO-D4 模组外围设计原理图

7. 封装信息

Top	View
-----	------

1 1	Dimension in mm			Dimen	sion in	inch
symbol	MIN	NOM	MAX	MIN	NOM	MAX
A	0.840	0. 940	1.040	0.033	0.037	0.041
С	0.220	0. 260	0.300	0.009	0.010	0.012
D	6.900	7.000	7. 100	0. 272	0.276	0. 280
Е	6.900	7.000	7. 100	0. 272	0. 276	0. 280
D1	5. 300	5. 400	5. 500	0. 209	0. 213	0. 217
E1	5. 300	5. 400	5. 500	0. 209	0. 213	0. 217
Н	l	0.300			0.012	
H1		0.300			0.012	
L	0.325	0.400	0. 475	0.013	0.016	0.019
L1	0.000	0.075	0.150	0.000	0.003	0.006
е		0.500			0.020	
b	0.200	0. 250	0.300	0.008	0.010	0.012

7. 封装信息

Side View

8. 学习资源

8.1 必读资料

访问以下链接可下载有关 ESP32 的文档资料。

• ESP32 技术规格书

本文档为用户提供 ESP32 硬件技术规格简介,包括概述、管脚定义、功能描述、外设接口、电气特性等。

• ESP32 技术参考手册

该手册提供了关于 ESP32 的具体信息,包括各个功能模块的内部架构、功能描述和寄存器配置等。

• ESP32 硬件资源

压缩包提供了 ESP32 模组和开发板的硬件原理图, PCB 布局图, 制造规范和物料清单。

• ESP32 硬件设计指南

该手册提供了 ESP32 系列产品的硬件信息,包括 ESP32 芯片,ESP-WROOM-32 模组以及 ESP32-DevKitC 开发板。

• ESP32 AT 指令集与使用示例

该文档描述 ESP32 AT 指令集功能以及使用方法,并介绍几种常见的 AT 指令使用示例。其中 AT 指令包括基础 AT 指令, Wi-Fi 功能 AT 指令, TCP/IP 相关 AT 指令等;使用示例包括单连接 TCP 客户端,UDP 传输,透传,多连接 TCP 服务器等。

8.2 必备资源

以下为有关 ESP32 的必备资源。

• ESP32 在线社区

工程师对工程师(E2E)的社区,用户可以在这里提出问题,分享知识,探索观点,并与其他工程师一起解决问题。

• ESP32 Github

乐鑫拥有 Github 的 MIT 许可证,可以在 Github 上自由发布 ESP32 开发项目。ESP32 Github 帮助开发者了解利用 ESP32 开发的硬软件。

• ESP32 工具

该页面提供了 ESP32 Flash 下载工具以及《ESP32 认证测试指南》。

• ESP32 IDF

该页面提供了ESP32 所有版本IDF。

• ESP32 资源合集

ESP32 的所有文档和工具资源。