Eléments à retenir sur les matrices :

Propriétés d'une matrice :

- Eléments d'une matrice
- Nombre de lignes d'une matrice
- Nombre de colonnes d'une matrice

Matrices particulières:

- Matrice ligne : Matrice ne possédant qu'une seule ligne
- Matrice colonne : Matrice ne possédant qu'une seule colonne
- Matrice carrée : Matrice possédant autant de lignes que de colonnes
- Matrice nulle : Matrice dont tous les éléments sont à 0 :
 - La matrice nulle est neutre pour l'addition : A + Nulle = A
- Matrice identité : Matrice dont tous les éléments sont à 0 sauf la diagonale qui est à 1 :
 - La matrice identité est neutre pour la multiplication : A * Id = A

Opération sur les matrices :

- On ne peut additionner deux matrices seulement si elles ont le même nombre de lignes et le même nombre de colonnes
- L'addition matricielle est commutative : A + (B + C) = (A + B) + C
- Il est possible de multiplier une matrice par un scalaire
- -1 * A = -A : -A est la matrice opposée de A : A + (-A) = Matrice nulle
- On ne peut multiplier deux matrices que si le nombre de colonnes de la première est identique au nombre de lignes de la seconde.
 - Comprendre le raisonnement
 - Savoir le faire sur la calculatrice
- Si A x B est possible, cela ne veut pas dire que B x A le soit également.
- Si A⁻¹ est la matrice inverse de la matrice A, alors A * A⁻¹ = Matrice identité.
 - Comprendre comment calculer une matrice inverse
 - Savoir le faire sur la calculatrice

BTS SIO

Exercice type:

Nous travaillons dans une entreprise spécialisée dans l'éclairage. Notre travail quotidien est de proposer un bon éclairage suivant les besoins de nos clients. Pour cela nous nous appuyons essentiellement sur 3 types d'ampoules :

	Ampoule type 1	Ampoule type 2	Ampoule type 3
Luminosité en Kilolumens	2,4	0.8	0.2
Consommation en Watts	152	64	24
Prix en euros	8	4	2

La plupart du temps un client vient nous voir en nous donnant la taille du lieu à éclairer, la luminosité désirée et le nombre d'ampoules et nous nous adaptons à sa demande.

Comprendre et interpréter les données

- 1. Expliquer la mise en situation
 - a. Pour un devis nous voulons utiliser 50 ampoules de types 1, 10 de type 2 et 5 de type 3 :
 - i. Quelle est la luminosité totale en lumens de notre éclairage ?
 - ii. Quelle est la consommation totale en Watts de notre éclairage ?
 - iii. Quelle est le prix en euros de notre éclairage?
 - b. Nous voulons généraliser notre devis, cette fois nous voulons x
 ampoules de type 1, y ampoules de type 2 et z ampoules de type 3
 :
 - i. Quelle est la luminosité totale en lumens de notre éclairage ?
 - ii. Quelle est la consommation totale en Watts de notre éclairage ?
 - iii. Quelle est le prix en euros de notre éclairage?
 - c. Donner le système d'équation correspondant à notre généralisation de devis sachant que L est le total de lumens de notre éclairage, W est sa consommation totale en W et E est son prix de revient en euros.
- 2. Mettre le problème sous forme de matrice
 - a. On considère les matrices colonnes $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $Y = \begin{pmatrix} L \\ w \\ E \end{pmatrix}$.

Déterminer la matrice carré M telle que M x X = Y

b. Calculer Y lorsque
$$X = \begin{pmatrix} 20\\10\\30 \end{pmatrix}$$

c. Donner la signification des éléments de la matrice Y calculée.

BTS SIO

Exploiter ou calculer une matrice inverse

- 1. Vérifier si la relation entre la matrice inverse et la matrice identité est connue
 - a. Calculer la matrice inverse de M: M⁻¹
 - b. Comment peut-on vérifier que M⁻¹ est bien la matrice inverse de M ?
 - c. Montrer que si M x X = Y, alors X = M^{-1} x Y
- 2. Mise en place d'un problème à l'aide d'une matrice d'inconnues
 - a. Lorsque nous élaborons un devis, nous partons des spécifications de notre client. Par exemple, un client a besoin d'un éclairage de 800 000 Lumens, qui consomme 66 400 W et qui coûte 4400 euros. Poser la matrice Y qui reflète cette demande.
- 3. Calculer le résultat du système d'équation
 - a. Nous avons déterminé que X = M⁻¹ x Y, grâce a cette formule, calculer la matrice X
 - b. A quoi correspondent les éléments de X que nous venons de calculer ?