Question 4 - Recursive Sum of Elements in an Array

Jaan Tollander de Balsch

2018-09-30

Devise a divide-and-conquer (recursive) algorithm for adding up all numbers in the array A[1...n]. Your algorithm should divide the array A into two equal subarrays.

- 1) Describe your algorithm in a clear pseudocode.
- 2) Analyze the running time of your algorithm. Prove your answer.

The pseudocode implementation in Julia of the algorithm.

```
function sum(A)
  n = lenght(A)
  if n == 1
    # If the array A has only one element return the element.
    return A[1] # 1-based indexing
  else
    # Otherwise divide the array into equal sized subarrays and
    # then add the sums of the subarrays together.
    mid = div(n, 2) # Integer division
    return sum(A[1:mid]) + sum(A[(mid+1):end])
  end
end
```

In the running time analysis we assume that operations length and [] (indexing and slicing) on arrays are constant time operations. We also assume that addition + and integer division div of two numbers are constant time operations. The recurrence relation therefore is of form

$$T(n) = 2T(n/2) + O(1).$$

By using the master theorem (1), the running time of the algorithm is

$$T(n) = O(n)$$
.

As we can see, the divide and conquer algorithm for the summation is no better than direct summation term by term.

References

1. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. MIT press (2009).