Week 6: Collaborative Based RSs - Part II

CS3448: Recommender Systems / CSX4207/ITX4207: Decision Support and Recommender Systems

Asst. Prof. Dr. Rachsuda Setthawong

Objectives

• To introduce model-based collaborative based filtering algorithms

Asst. Prof. Dr. Rachsuda Setthawong

Outlines

Model-based collaborative based filtering algorithms

Asst. Prof. Dr. Rachsuda Setthawong

Recall the Main Idea of Collaborative Approach

- To exploit information about the past behavior/opinions of an existing user community.
- To predict which items the current user will most probably like.

How to Generate Recommendation Using Collaborative Based Filtering Approach

Memory-based VS Model-based Approaches

Memory-based approach

- Modeless (no model created)
- Directly applying rating matrix to find neighbors and to recommend items.
- Time consuming and not scalable
- Example, user-based NN

Model-based approach

- Offline process the raw data.
- At run time, require only the "learned" model to make prediction.
- Update/retrained the model periodically.
- Example, matrix factorization methods, association rule mining, etc.

Model-based Algorithms

- Association rule mining
- Probabilistic recommendation approaches
- Slope one predictor
- Matrix factorization methods

Association Rule Mining

Basic idea: identify rule-like relationship patterns
 (X -> Y) in large-scale sales transactions.

Example,

- If a customer buys baby food then he/she also buys diapers in 70 percent of the cases. {baby food} -> {diapers}
- In RSs, "If user X liked both item1 and item4, then X will most probably also like item3."

{Item1, Item4} -> {Item3}

Transaction ID	Baby Food	Bread	Beer	Diaper	Coke
1	Y		Y	Y	
2		Y			Y
3	Y		Y	Y	
4	Y	Y	Y	\mathbf{Y}	
5		Y			
6					Y
7	Y		Y	Y	Y
8	Y	Y	Y	Y	
9	Y	Y	Y	Y	
10	Y	Y	Y	Y	

Generating Association Rules

- Step 1: Frequent Itemset Generation
 - Generate all itemsets whose support ≥ min_support_threshold

- Step 2: Rule Generation
 - Generate high confidence rules from each frequent itemset, where
 each rule is a binary partitioning of a frequent itemset

Step 1: Frequent Itemset Generation

User-Item rating matrix

	Item1	Item2	Item3	Item4
User1	5	3	3	
User2	4	5	4	5
User3	5	5		4
User4	4	3	3	5
User5	5	4		4
User6				4

Terminologies:

```
Itemset_{length\_k} = a \text{ set of } k\text{-items}
```

e.g.,
$$Itemset_{length_2} = \{ \{Item1, Item2\}, \{Item1, Item3\}, \{Item1, Item4\}, \{Item2, Item3\}, \{Item2, Item4\}, \{Item3, Item4\} \}$$

 $min_support_threshold$: a user-defined value in the range [0-1].

 $FrequentItemset_{length_k} = a$ set of k-items whose **support** is greater than or equal to $min_support_threshold$

$$support(x) = \frac{count(x)}{n},$$

where

count(x): no. of rows that x present in a dataset

n: no. of rows in a dataset

x: an itemset in a dataset

Step 1: Frequent Itemset Generation - Cont.

User-Item rating matrix

	Item1	Item2	Item3	Item4
User1	5	3	3	
User2	4	5	4	5
User3	5	5		4
User4	4	3	3	5
User5	5	4		4
User6				4

```
Suppose that min\_support\_threshold = 4/6 = 0.67 Itemset_{length\_2} = \{ \{Item1, Item2\}, \{Item1, Item3\}, \{Item1, Item4\}, \{Item2, Item3\}, \{Item2, Item4\}, \{Item3, Item4\} \} FrequentItemset_{length\_2} = \{ \{Item1, Item2\}, \{Item1, Item4\}, \{Item2, Item4\} \} support(\{Item1, Item2\}) = 5/6 = 0.83 support(\{Item1, Item3\}) = 3/6 = 0.5 support(\{Item1, Item4\}) = 4/6 = 0.67 ... support(\{Item2, Item4\}) = 4/6 = 0.67
```

Terminologies:

Itemset_{length_k} = a set of k-items

min_support_threshold: a user-defined value in the range [0-1].

FrequentItemset_{length_k} = a set of k-items whose support is greater than or equal to $min_support_threshold$

$$support(x) = \frac{count(x)}{n},$$

$$where \qquad count(x): \text{ no. of rows that } x \text{ presents in}$$

$$\text{a dataset}$$

n: no. of rows in a dataset

x: an itemset in a dataset

Step 2: Rule Generation

Generate frequent rules (high confidence rules) from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset

User-Item rating matrix

	Item1	Item2	Item3	Item4
User1	5	3	3	
User2	4	5	4	5
User3	5	5		4
User4	4	3	3	5
User5	5	4		4
User6				4

Terminologies:

```
a rule, x \rightarrow y = a co-occurrence of two itemsets, x and y
e.g., the candidate rules created from the frequent itemset;

Given

Frequent_Itemset<sub>length_2</sub> = {{Item1, Item2}, {Item1, Item4}, {Item2, Item4}}}

∴ Candidate Rules = { Item1 -> Item2, Item2, Item1 -> Item1, Item1 -> Item1, Item1 -> Item1, Item2 -> Item1, Item2 -> Item1, Item2 -> Item4, Item4 -> Item2 }
```

Step 2: Rule Generation - Cont.

• Generate frequent rules (*high confidence rules*) from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

User-Item rating matrix

	Item1	Item2	Item3	Item4
User1	5	3	3	
User2	4	5	4	5
User3	5	5		4
User4	4	3	3	5
User5	5	4		4
User6				4

Terminologies:

Item4 -> Item2 (conf = 4/5 = 0.8)

```
a rule, x \rightarrow y = a co-occurrence of two itemsets, x and y confident of the rule, conf(x \rightarrow y) = \frac{support(x \cap y)}{support(x)} = \frac{count(x \cap y)}{count(x)}

min_confident_threshold: a user-defined value in the range [0-1].

Given

Frequent_Itemset<sub>length2</sub> = {{Item1, Item2}, {Item1, Item4}},

and suppose that Min_confident_threshold = 0.8

∴ Frequent Rules = {
Item1 -> Item2 (conf = 5/5 = 1),
Item2 -> Item1 (conf = 5/5 = 1),
Item2 -> Item4 (conf = 4/5 = 0.8),
Item4 -> Item1 (conf = 4/5 = 0.8),
Item2 -> Item4 (conf = 4/5 = 0.8),
Item2 -> Item4 (conf = 4/5 = 0.8),
Item2 -> Item4 (conf = 4/5 = 0.8),
```

Step 2: Rule Generation - Cont.

Another example,

Alter the dataset

	Item1	Item2	Item3	Item4
User1	5	3	3	4
User2	4	5	4	5
User3	5	5		4
User4	4	3	3	5
User5	5	4		4
User6				4

```
Given
 Frequent_Itemset<sub>length_3</sub> = { {Item1, Item2, Item4} },
 and suppose that min_confident_threshold = 0.9
Candidate Rules = {
Item1 -> Item2, Item4 (conf = 5/5 = 1.0),
Item2 -> Item1, Item4 (conf = 5/5 = 1.0),
Item4 -> Item1, Item2 (conf = 5/6 = 0.8),
                                              << not frequent!!
Item1, Item2 -> Item4 (conf = 5/5 = 1.0),
Item1, Item4 -> Item2 (conf = 5/5 = 1.0),
Item2, Item4 -> Item1 (conf = 5/5 = 1.0)
Frequent Rules = {
Item1 -> Item2, Item4 (conf = 5/5 = 1.0),
Item2 -> Item1, Item4 (conf = 5/5 = 1.0),
 Item1, Item2 -> Item4 (conf = 5/5 = 1.0),
Item1, Item4 -> Item2 (conf = 5/5 = 1.0),
Item2, Item4 -> Item1 (conf = 5/5 = 1.0)
```

Applying Association Rules in RSs - 1/4

- Calculation of the set of interesting association rules with high confidence and support is performed offline.
 - 1. Determine the set of $X \rightarrow Y$ association rules that are relevant for the target user.
 - 2. Compute the union of items appearing in the consequent *Y* of these association rules not previously experienced by the target user.
 - 3. Sort the products according to the confidence of the rule.
 - 4. Return the first *N* elements of this ordered list as a recommendation.

Applying Association Rules in RSs - 2/4

- Calculation of the set of interesting association rules with high confidence and support is performed offline.
 - 1. Determine the set of $X \rightarrow Y$ association rules that are relevant for the target user (Item1).

```
Frequent Rules = {r1: Item1 -> Item2, r2: Item2 -> Item1, r3: Item1 -> Item4, r4: Item4 -> Item4, r5: Item4, r6: Item4 -> Item4, r6: Item4 -> Item2 | Item3 | Item4 | Item4 | Item3 | Item4 |
```

- 2. Compute the union of items appearing in the consequent *Y* of these association rules not previously experienced by the target user.
- 3. Sort the products according to the confidence of the rule.
- 4. Return the first *N* elements of this ordered list as a recommendation.

Applying Association Rules in RSs - 3/4

- Calculation of the set of interesting association rules with high confidence and support is performed offline.
 - 1. Determine the set of $X \to Y$ association rules that are relevant for the target user.

```
Frequent Rules = {r1: Item1 -> Item2, r2: Item2 -> Item1, r3: Item1 -> Item4, r4: Item4 -> Item1, r5: Item2 - Item4, r6: Item4 -> Item2}
```

2. Compute the **union** (\cup) of items appearing in the consequent Y of these association rules

NOT previously experienced by the target user.

	Item1	Item2	Item3	Item4
User7	4			

 ${Item1 \rightarrow Item2} \cup {Item1 \rightarrow Item4} = {Item2, Item4}$

- 3. Sort the products according to the confidence of the rule.
- 4. Return the first *N* elements of this ordered list as a recommendation.

	Item1	Item2	Item3	Item4
User1	5	3	3	
User2	4	5	4	5
User3	5	5		4
User4	4	3	3	5
User5	5	4		4
User6				4

Applying Association Rules in RSs - 4/4

- Calculation of the set of interesting association rules with high confidence and support is performed offline.
 - 1. Determine the set of $X \to Y$ association rules that are relevant for the target user.
 - 2. Compute the union of items appearing in the consequent *Y* of these association rules not previously experienced by the target user.
 - **3. Sort** the products according to the confidence of the rule.

```
Rank 1: Item2 (because Conf(r1: Item1 -> Item2)= 1)

Rank 2: Item4 (because Conf(r3: Item1 -> Item4)= 0.8)
```

- 4. Return the first *N* elements of this ordered list as a recommendation.
 - 1. Recommended items = {**Item2**, **Item4**}

Probabilistic Recommendation Approaches

- **Basic idea:** Assigning an object to one of several predefined categories (classification problem)
- Example, Naïve Bayes classifiers

Naïve Bayes Classifiers

1. With conditionally independent attributes, calculate conditional probabilities using Bayes Theorem for each possible rating value (Y) given the target user's other ratings.

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \frac{\prod_{i=1}^{d} P(X_i|Y)P(Y)}{P(X)}$$

2. Select the rating value with the highest probability as a prediction.

P(X|Item5=5) =

Example, given Alice's rating = {1, 3, 3, 2} Predict Alice's rating for item 5

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	1	3	3	2	, ,
	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	2	4	2	2/	4
User 2	1	3	3/	5	1
User 3	4	5	2	3	3
User 4	1	1	5	2	1

$$(Y) P(X|Item5=1) =$$

$$P(Item_{5}=1) = 2/4$$
 $P(Item_{1}=1/Item_{5}=1) *$

$$P(Item5=2) = 0$$
 $P(Item2=3|Item5=1)*$

$$P(Item5=3) = \frac{1}{4}$$
 $P(Item3=3 | Item5=1) *$

$$P(Item_5=4) = \frac{1}{4}$$
 $P(Item_4=2 | Item_5=1)$

$$P(Item5=5) = 0$$
 = 2/2 * 1/2 * 1/2 * 1/2

$$P(X|Item5=2) =$$

$$P(Item4=2|Item5=2)$$

$$= 0$$

Example - Cont.

•
$$P(Y|X) = \frac{\prod_{i=1}^{d} P(X_i|Y)P(Y)}{P(X)}$$
Constant

predicted rating of item 5 for Alice = 1

- P(Item5=1|X) = P(X|Item5=1) * P(Item5=1) = 0.125 * 2/4 = 0.0625
- P(Item5=2|X) = P(X|Item5=2) * P(Item5=2) = o * o = o
- P(Item5=3|X) = P(X|Item5=3) * P(Item5=3) = o * 1/4 = o
- $P(Item_5=4|X) = P(X|Item_5=4) * P(Item_5=4) = 0 * 1/4 = 0$
- $P(Item_5=5|X) = P(X|Item_5=5) * P(Item_5=5) = o * o = o$
- *Note: The data X exclude Alice's ratings*

Slope One Predictor - 1/3

• Basic Idea: calculate "popularity differential" between items for users.

Item1	Item5
2	?
Item1	Item5
1	2
	2

popularity differential = 2-1 = 1

- Example 1,
 - Predict rating of item 5 for Alice using Slope One Prediction:
 - = Alice's rating + popular differential

$$= 2 + (2-1) = 3$$

Asst. Prof. Dr. Rachsuda Setthawong

In reality,

- There are several items rated by the target user (e.g., Alice)
- There are several users rated the target item (e.g., item 5)

Therefore,

 The complete calculation of Slope One Prediction is shown in the next slide.

Slope One Predictor - 2/3

The average deviation dev between the target item j,
 and other items i of all users co-rated both items,

$$dev_{j,i} = \sum_{(u_j,u_i)\in S_{j,i}(R)} \frac{u_j - u_i}{|S_{j,i}(R)|}$$

Note: j is the target item that we want to predict rating for the target user u.

 u_j : rating that a user u gives on item j $S_{j,i}(R)$: no. of users rated both items i, j

Predicted rating on the target item j for the target user u,

$$pred(u,j) = \frac{\sum_{i \in Relevant(u,j)} (dev_{j,i} + u_i)}{|Relevant(u,j)|}$$

Note: u and u_i in the 2^{nd} and 3^{rd} formula refer to different users.

Weighted predicted rating on the target item j for the target user u

(weighting using no. of users co-rated both items),

$$pred(u,j) = \frac{\sum_{i \in S(u) - \{j\}} (|dev_{j,i}| + u_i) \times |S_{j,i}(R)|}{\sum_{i \in S(u) - \{j\}} |S_{j,i}(R)|}$$

Slope One Predictor - 3/3

	Item1	Item2	Item3
Alice	2	5	?
	Item1	Item2	Item3
User1	3	2	* 5
User2	4		3

- $dev_{Item_3, Item_1} = \Sigma (rating_{Item_3} rating_{Item_1}) / Num_users_rated_both_items$ = ((5-3) + (3-4)) / 2 = 0.5
- $dev_{Item_3, Item_2} = \Sigma(rating_{Item_3} rating_{Item_2})/Num_users_rated_both_items$ = (5-2)/1=3
- pred(Alice, Item3)

$$= [\Sigma(\text{dev}_{3,\,i} + \text{rating}_{\text{Alice},\text{Item}_i}) * \text{Num_users_rated_both_items}] / \Sigma(\text{Num_users_rated_both_items})$$

$$= \left[\frac{((0.5+2)*2) + ((3+5)*1)}{(2+1)} + \frac{(2+1)}{(2+1)} \right] = 4.33$$

$$pred(u,j) = \frac{\sum_{i \in S(u) - \{j\}} (dev_{j,i} + u_i) \times |S_{j,i}(R)|}{\sum_{i \in S(u) - \{j\}} |S_{j,i}(R)|}$$

Matrix Factorization Methods

- **Basic idea:** derive a set of latent (hidden) factors from the rating patterns and characterize both user and items by such vectors of factors.
- A recommendation for an item *i* is made when the target user and the item *i* are similar wrt these factors.
- Example,
 - Singular Value Decomposition (SVD)
 - Alternating Least Square (ALS)

Singular Value Decomposition (SVD)

SVD Theorem:

• A given matrix A can be decomposed into a product of three matrices using linear algebra

$$A = U\Sigma V^{T}$$

- where,
 - U = left singular vector
 - V = right singular vector
 - Σ = the singular values
- **Key idea:** retain only the most important features (with largest singular values) by taking only the first few columns of U and V^T.

Asst. Prof. Dr. Rachsuda Setthawong

SVD Example - 1/2

	User1	User2	User3	User4
Item1	3	4	3	1
Item2	1	3	2	6
Item3	2	4	1	5
Item4	3	3	5	2

U2 (Item)		
-0.4312	0.4931	
-0.5327	-0.5305	
-0.5237	-0.4052	
-0.5058	0.5578	

V2 (User)		
-0.3593	0.3676	
-0.5675	0.0879	
-0.4428	0.5686	
-0.5938	-0.7305	

$\Sigma 2$	
12.2215	0
0	4.9282

^{*:} The first two columns of U, V and Σ are used here.

Asst. Prof. Dr. Rachsuda Setthawong

SVD Example - 2/2
$$= \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- Given Alice's rating vector [5, 3, 4, 4],
 - Calculate Alice's vector in 2D space:

Alice_{2D} = Alice × U2 ×
$$\Sigma_2^{-1}$$

= [-0.64, 0.30]

To suggest items, find the most similar users using the using the
 2D matrix (V2), e.g., cosine sim, and suggest unseen, high-rating items

A plot of all users (items)' vector in 2D space:

	U2 (Item)			
Item1	-0.4312	0.4931		
Item2	-0.5327	-0.5305		
Item3	-0.5237	-0.4052		
Item4	-0.5058	0.5578		

-0.8			
	V2 (User)		
User1	-0.3593	0.3676	
User2	-0.5675	0.0879	
User3	-0.4428	0.5686	
User4	-0.5938	-0.7305	

Demonstration of Full SVD Calculation - 1/11

- Given
 - A rectangular matrix A
- Generate
 - An orthogonal matrix U
 - A diagonal matrix S
 - Transpose of an orthogonal matrix V^T

S.T.

• $A_{mn} = U_{mm}S_{mn}V_{nn}^{T}$ where

 $U^TU = I$; the columns of U are orthonormal eignenvector of AA^T , $V^TV = I$; the columns of V are orthonormal eignenvector of A^TA , and S is a diagonal matrix containing the square roots of eigenvalues from U or V in descending order

Demonstration of Full SVD Calculation - 2/11

Example:

$$A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

Step 1) Find U by start with

1.1. **Find AA**^T

$$A^{T} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix}$$

Demonstration of Full SVD Calculation - 3/11

1.2. Find Eigenvalues of AA^T

• By Solving equation $A\vec{v} = \lambda \vec{v}$

$$\begin{bmatrix} 11 & 1 \\ 1 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

rewrite this as the set of equations

$$11x_1 + x_2 = \lambda x_1$$
 \rightarrow $(11 - \lambda)x_1 + x_2 = 0$ eq. 1
 $x_1 + 11x_2 = \lambda x_2$ \rightarrow $x_1 + (11 - \lambda)x_2 = 0$ eq. 2

Solve for λ by setting the determinant of the coefficient matrix to zero,

$$\begin{vmatrix} (11 - \lambda) & 1 \\ 1 & (11 - \lambda) \end{vmatrix} = 0$$

Demonstration of Full SVD Calculation - 4/11

Solve for λ by setting the determinant of the coefficient matrix to zero,

$$\begin{vmatrix} (11 - \lambda) & 1 \\ 1 & (11 - \lambda) \end{vmatrix} = 0$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Equivalent to

$$|A| = ad - bc$$

$$(11 - \lambda)(11 - \lambda) - 1 \cdot 1 = 0$$
$$(\lambda - 10)(\lambda - 12) = 0$$
$$\lambda = 10,$$
$$\lambda = 12$$

Demonstration of Full SVD Calculation - 5/11

1.3. **Find corresponding eigenvectors** of the eigenvalues in 1.2. by substituting values in Eq. 1

For
$$\lambda = 10$$
,
 $(11 - 10)x_1 + x_2 = 0$ \Rightarrow $x_1 = -x_2$

From several valid values, let's select $x_1 = 1$ and $x_2 = -1$

For
$$\lambda = 12$$
,
 $(11 - 12)x_1 + x_2 = 0$ \Rightarrow $x_1 = x_2$

From several valid values, let's select $x_1 = 1$ and $x_2 = 1$

Construct a matrix from the eigenvectors sorted by eigenvalues in descending order: $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Demonstration of Full SVD Calculation - 6/11

• 1.4. Apply Gram-Schmidt orthonormalization process to the column vectors to **convert Eigenvectors (matrix) into an orthogonal matrix**.

$$\overrightarrow{v_1} \left\{ \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right\}$$

$$\overrightarrow{u_1} = \frac{\overrightarrow{v_1}}{|\overrightarrow{v_1}|} = \frac{[1,1]}{\sqrt{1^2 + 1^2}} = \frac{[1,1]}{\sqrt{2}} = [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]$$

Compute
$$\overrightarrow{w_2} = \overrightarrow{v_2} - \overrightarrow{u_1} \cdot \overrightarrow{v_2} * \overrightarrow{u_1} = [1, -1] - \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] \cdot [1, -1] * \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right] = [1, -1]$$

and normalize
$$\overline{u_2} = \frac{\overline{w_2}}{|\overline{w_2}|} = \left[\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right]$$

to give
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

Demonstration of Full SVD Calculation - 7/11

Step 2) Find V by starting with

2.1. Find $A^{T}A$

$$A^{T}A = \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 2 \\ 0 & 10 & 4 \\ 2 & 4 & 2 \end{bmatrix}$$

Demonstration of Full SVD Calculation - 8/11

2.2. Find Eigenvalues of A^TA

- By Solving equation $A\vec{v} = \lambda \vec{v}$ (Same as in 1.2.)

 - $\lambda = 10,$
 - $\lambda = 12$

Demonstration of Full SVD Calculation - 9/11

2.3. Find corresponding eigenvectors of the eigenvalues in 2.2.

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & 5 \end{bmatrix}$$

2.4. Apply Gram-Schmidt orthonormalization process to the column vectors to convert Eigenvectors (matrix) into an orthogonal matrix.

$$V = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\ \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{30}} \\ \frac{1}{\sqrt{6}} & 0 & \frac{-5}{\sqrt{30}} \end{bmatrix},$$

$$V = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\ \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{30}} \\ \frac{1}{\sqrt{6}} & 0 & \frac{-5}{\sqrt{30}} \end{bmatrix}, \quad \text{and calculate} \quad V^{T} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} \end{bmatrix}$$

Demonstration of Full SVD Calculation - 10/11

Step 3) Find S by taking the square roots of the non-zero eigenvalues and populate the diagonal with them, putting the largest in s_{11} , the next largest in s_{22} and so on.

$$\lambda = 10$$
,

$$\lambda = 12$$

$$S = \begin{bmatrix} \sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0 \end{bmatrix}$$

Demonstration of Full SVD Calculation - 11/11

$$\bullet A_{mn} = U_{mm} S_{mn} V_{nn}^{T}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$$

Root Mean Square Error (RMSE)

 Root mean square error takes the difference for each observed and predicted value.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \hat{x}_i)^2}{N}}$$

where

- x_i : actual rating
- \hat{x}_i : predicted rating
- N: number of predicted items in a test set.

Asst. Prof. Dr. Rachsuda Setthawong

Example

UserID	Item ID	Actual Rating	Predicted Rating
1	1	5	4.5
1	2	3	2.5
2	3	4	4
2	4	4	3.5
3	1	5	4.5
3	3	4	4

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \hat{x}_i)^2}{N}}$$

$$=\sqrt{\frac{(5-4.5)^2+(3-2.5)^2+(4-4)^2+(4-3.5)^2+(5-4.5)^2+(4-4)^2}{6}}$$

$$=0.41$$

Further reading

• SVD:

- https://alyssaq.github.io/2015/singular-value-decomposition-visualisation/
- https://alyssaq.github.io/2015/20150426-simple-movie-recommenderusing-svd/

• ALS:

https://towardsdatascience.com/prototyping-a-recommender-system-stepby-step-part-2-alternating-least-square-als-matrix-4a76c58714a1

• SLIM:

http://glaros.dtc.umn.edu/gkhome/node/774