La courbe ci-dessous représente une fonction .

- 1. Déterminer son ensemble de définition.
- 2. Donner le tableau de variations de la fonction .
- 3. Quel est le maximum de la fonction sur :
 - **a.** son ensemble de définition
 - **b.** [-3; 2]
- 4. Quel est le minimum de la fonction sur :
 - a. son ensemble de définition
 - **b.** [2; 4]

Exercice 2

Indiquez les erreurs dans les tableaux de variation suivants :

Tableau 1

х	0	1	2	5
f(x)	-1	_1_	$\sqrt{\frac{4}{5}}$	→ ₂

Tableau 2

x	-3 $\frac{7}{2}$	2 10
g(x)	3	100

Voici le tableau de variation d'une fonction définie sur l'intervalle.

x	-3	0	2	4
g(x)	1	-4	_ 0 _	-3

- 1. Décrire les variations de la fonction.
- 2. Comparer lorsque cela est possible :
 - g(-3) et g(-1)
 - g(1) et g(3)
- 3. Lire le maximum de g sur [0; 4] et le minimum de g sur [-3; 4].
- 4. Tracer une courbe susceptible de représenter graphiquement la fonction .

Exercice 4

Donner le tableau de variations de la fonction f définie sur [-1;3] dont la courbe est représentée cidessous.

Exercice 5

Quel est le nombre dérivé de f en x=1? Ecris sous la forme y=mx+p l'<u>équation de la tangente</u> à la courbe au point d'abscisse 1.

Combien vaut f'(2)? Ecris sous la forme y=mx+p l'<u>équation de la tangente</u> à la courbe au point d'abscisse 2.

Exercice 7

On considère la fonction $f: x \mapsto x^2$. Combien vaut f'(-2)?

Exercice 8

Ecris sous la forme y=mx+p l'<u>équation de la tangente</u> à la courbe de $f: x \mapsto x^2$ au point d'abscisse 1.

Exercice 9

On considère la fonction $f: x \mapsto \frac{1}{x}$. Combien vaut f'(-2)?

Exercice 10

Déterminer l'ensemble de définition et le sens de variation des fonctions suivantes :

1.
$$f(x) = -3x^2 + 12x - 5$$

2.
$$f(x)=x^3-9x^2-21x+4$$

3.
$$f(x)=(x^2-x-1)(x-2)$$

4.
$$f(x) = \frac{5x-3}{x-1}$$

5.
$$f(x) = \frac{x^2 - 1}{x + 2}$$

Exercice 11

On considère la fonction définie sur $[0;+\infty]$ par $f(x)=x+\frac{1}{x}$.

Démontrer que cette fonction admet un minimum qu'on précisera.

Exercice 12

On considère la fonction définie par $f(x) = \frac{x^2 - 4}{2x - 5}$ et on note C_f sa représentation graphique.

1. Déterminer l'ensemble de définition de f noté D_f .

- 2. Déterminer l'expression de f'(x).
- 3. Dresser le tableau de variation de la fonction sur son ensemble de définition.
- 4. Déterminer une équation de la tangente T à C_f au point d'abscisse 3.
- 5. Donner les coordonnées des points où la tangente à la courbe est parallèle à l'axe des abcisses.
- 6. Tracer dans un repère orthonormé, la courbe C_f , la droite T et les tangentes trouvées à la question précédente.

Soit la fonction définie sur \mathbb{R} par $f(x) = \frac{10x+4}{5x^2+1}$.

- 1. Déterminer pour tout \mathbb{R} l'expression de f'(x).
- 2. En déduire le sens de variation de f sur \mathbb{R} et dresser son tableau de variations.
- 3. Donner l'équation de la tangente à la courbe représentant f au point A d'abscisse 0.
- 4. Étudier la position relative de cette tangente et de la courbe représentant la fonction f.