hw4

May 15, 2024

1 Support Vector Machine Algorithm

1.1 Loading train and test datasets

```
Test dataset
```

```
[]: test_data = pd.read_csv('./data/SalaryData_Test.csv')
print(test_data.head(10))
```

	age	workclass	education	n educat	ionno	maritalstatus	\
0	25	Private	11tl	ı	7	Never-married	
1	38	Private	HS-grad	i	9	Married-civ-spouse	
2	28	Local-gov	Assoc-acdr	n	12	Married-civ-spouse	
3	44	Private	Some-college	Э	10	Married-civ-spouse	
4	34	Private	10tl	ı	6	Never-married	
5	63	Self-emp-not-inc	Prof-school	L	15	Married-civ-spouse	
6	24	Private	Some-college	Э	10	Never-married	
7	55	Private	7th-8tl	ı	4	Married-civ-spouse	
8	65	Private	HS-grad	i	9	Married-civ-spouse	
9	36	Federal-gov	Bachelors	5	13	Married-civ-spouse	
		occupation r	elationship	race	sex	capitalgain \	
0	Mach	nine-op-inspct	Own-child	Black	Male	0	
1	Fa	arming-fishing	Husband	White	Male	0	
2	Protective-serv		Husband	White	Male	0	

```
4
                                                White
                                                          Male
             Other-service
                              Not-in-family
                                                                            0
    5
                                                                         3103
            Prof-specialty
                                     Husband
                                                White
                                                          Male
    6
             Other-service
                                   Unmarried
                                                White
                                                        Female
                                                                            0
    7
                                                White
                                                          Male
                                                                            0
              Craft-repair
                                     Husband
    8
        Machine-op-inspct
                                     Husband
                                                White
                                                          Male
                                                                         6418
    9
              Adm-clerical
                                     Husband
                                                White
                                                          Male
                                                                            0
        capitalloss
                     hoursperweek
                                                      Salary
                                             native
    0
                                                       <=50K
                  0
                                 40
                                      United-States
    1
                  0
                                 50
                                      United-States
                                                       <=50K
    2
                  0
                                 40
                                      United-States
                                                        >50K
    3
                  0
                                 40
                                      United-States
                                                        >50K
    4
                  0
                                 30
                                      United-States
                                                       <=50K
    5
                  0
                                 32
                                      United-States
                                                        >50K
    6
                  0
                                 40
                                      United-States
                                                       <=50K
    7
                  0
                                 10
                                      United-States
                                                       <=50K
    8
                  0
                                 40
                                      United-States
                                                        >50K
    9
                  0
                                 40
                                      United-States
                                                       <=50K
    Train dataset
[]: train_data = pd.read_csv('./data/SalaryData_Train.csv')
     print(train_data.head(10))
                      workclass
                                   education
                                              educationno
                                                                      maritalstatus
        age
    0
        39
                      State-gov
                                   Bachelors
                                                        13
                                                                      Never-married
    1
        50
              Self-emp-not-inc
                                   Bachelors
                                                        13
                                                                 Married-civ-spouse
    2
         38
                                     HS-grad
                                                         9
                        Private
                                                                            Divorced
    3
                                        11th
                                                         7
         53
                        Private
                                                                 Married-civ-spouse
    4
         28
                        Private
                                   Bachelors
                                                        13
                                                                 Married-civ-spouse
    5
         37
                                     Masters
                        Private
                                                        14
                                                                 Married-civ-spouse
    6
         49
                        Private
                                         9th
                                                         5
                                                              Married-spouse-absent
    7
        52
                                     HS-grad
                                                         9
                                                                 Married-civ-spouse
              Self-emp-not-inc
    8
         31
                        Private
                                     Masters
                                                        14
                                                                      Never-married
    9
         42
                        Private
                                   Bachelors
                                                        13
                                                                 Married-civ-spouse
                occupation
                               relationship
                                                                 capitalgain
                                                race
                                                            sex
    0
              Adm-clerical
                              Not-in-family
                                                White
                                                          Male
                                                                         2174
                                                          Male
    1
           Exec-managerial
                                     Husband
                                                White
                                                                            0
    2
        Handlers-cleaners
                              Not-in-family
                                                White
                                                          Male
                                                                            0
                                               Black
    3
                                                          Male
                                                                            0
         Handlers-cleaners
                                     Husband
    4
            Prof-specialty
                                        Wife
                                                Black
                                                        Female
                                                                            0
    5
                                        Wife
                                                White
                                                        Female
                                                                            0
           Exec-managerial
```

Husband

Black

Male

7688

3

6

7

8

9

Other-service

Exec-managerial

Prof-specialty

Exec-managerial

Machine-op-inspct

Black

White

White

White

Not-in-family

Not-in-family

Husband

Husband

Female

Female

Male

Male

0

0

14084

5178

	capitalloss	hoursperweek	native	Salary
0	0	40	United-States	<=50K
1	0	13	United-States	<=50K
2	0	40	United-States	<=50K
3	0	40	United-States	<=50K
4	0	40	Cuba	<=50K
5	0	40	United-States	<=50K
6	0	16	Jamaica	<=50K
7	0	45	United-States	>50K
8	0	50	United-States	>50K
9	0	40	United-States	>50K

1.2 Data understanding

1.2.1 Dataset size

```
[]: print(
    f"Test dataset size: {test_data.shape[0]}\n"
    f"Train dataset size: {train_data.shape[0]}"
    )
```

Test dataset size: 15060 Train dataset size: 30161

```
[]: print(train_data.describe())
print(train_data.info())
```

	age	educationno	capitalgain	capitalloss	hoursperweek
count	30161.000000	30161.000000	30161.000000	30161.000000	30161.000000
mean	38.438115	10.121316	1092.044064	88.302311	40.931269
std	13.134830	2.550037	7406.466611	404.121321	11.980182
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	47.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	4356.000000	99.000000

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160

Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object

8	sex	30161	non-null	object
9	capitalgain	30161	non-null	int64
10	capitalloss	30161	non-null	int64
11	hoursperweek	30161	non-null	int64
12	native	30161	non-null	object
13	Salary	30161	non-null	object

dtypes: int64(5), object(9)

memory usage: 3.2+ MB

None

1.2.2 Data Description

Term	Definition
Education	Highest level of education
workclass	Which business sector a person works for
educationno	Years spent in school?
maritalstatus	Relationship status
occupation	Current occupation
relationship	If they have a spouse or child
race	A social construct to group people
sex	Gender
capitalgain	Profit gained from the sale of property or investment
capitalloss	Value lost from the seller when selling property or investment at a lower cost
hourseperweek	Hours worked per week
native	A person's country of citizenship
Salary	Category on whether a person makes less than or greater than or equal to $\$50,\!000$

1.3 Data Visualization

1.3.1 Data Scatterplot

```
[]: sns.pairplot(train_data)
```

[]: <seaborn.axisgrid.PairGrid at 0x137ca67b0>


```
[]: sns.pairplot(train_data, hue='sex')
```

[]: <seaborn.axisgrid.PairGrid at 0x30960c920>

[]: sns.pairplot(train_data, hue='workclass', y_vars=['Salary'])

[]: <seaborn.axisgrid.PairGrid at 0x30c1d8770>

1.4 Data Processing

1.4.1 Label Encoder

In order for a model to work with the data provided, especially strings, the data must be categorized with discrete values.

Setting train_data columns with object values into enumerated integers.

```
[]: le = LabelEncoder()
    train_data['Salary'] = le.fit_transform(train_data['Salary'])
    train_data['workclass'] = le.fit_transform(train_data['workclass'])
    train_data['education'] = le.fit_transform(train_data['education'])
    train_data['maritalstatus'] = le.fit_transform(train_data['maritalstatus'])
    train_data['occupation'] = le.fit_transform(train_data['occupation'])
    train_data['relationship'] = le.fit_transform(train_data['relationship'])
    train_data['race'] = le.fit_transform(train_data['race'])
    train_data['sex'] = le.fit_transform(train_data['sex'])
    train_data['native'] = le.fit_transform(train_data['native'])
```

1.5 Model Building

1.5.1 Preparing the train and test values

```
[]: x_train = train_data
y_train = train_data['Salary']
x_test = test_data
y_test = test_data['Salary']

# Perform label encoding
x_test['education'] = le.fit_transform(x_test['education'])
x_test['relationship'] = le.fit_transform(x_test['relationship'])
y_test = le.fit_transform(y_test)

print(f"x_train shape: {x_train.shape}\n"
    f"y_train shape: {y_train.shape}\n"
    f"x_test shape: {x_test.shape}\n"
    f"y_test shape: {y_test.shape}")
x_train shape: (30161, 14)
```

```
x_train shape: (30161, 14)
y_train shape: (30161,)
x_test shape: (15060, 14)
y_test shape: (15060,)
```

1.5.2 Factors that I believe affect salary the most

I've chosen the following factors that affect salary the most: - Education - A person's level of education gives the access to higher paying opportunities. - Relationship - Dependents may or may not affect a person's ability to work more

```
[]: from sklearn import svm
from sklearn.inspection import DecisionBoundaryDisplay

x_train = x_train[['education', 'relationship']].copy()
x_test = x_test[['education', 'relationship']].copy()
```

1.5.3 Training the data

Training with polynomial kernel causes the whole program to freeze

Accuracy of kernel linear: 75.43% Accuracy of kernel rbf: 81.59%

1.5.4 Plotting model boundary

```
[]: x_min, x_max = train_data['education'].min() - 1, train_data['education'].max()_u
     →+ 1
     y_min, y_max = train_data['relationship'].min() - 1, train_data['relationship'].
      \rightarrowmax() + 1
     fig, ax = plt.subplots(figsize=(6,4))
     ax.set(xlim=(x_min, x_max), ylim=(y_min, y_max))
     common_params = {
         "estimator": clf,
         "X": x_train,
         "ax": ax
     }
     DecisionBoundaryDisplay.from_estimator(**common_params,
                                              response_method="predict",
                                              plot_method='pcolormesh',
                                              alpha=0.3)
     DecisionBoundaryDisplay.from_estimator(**common_params,
                                              response_method="decision_function",
                                              plot_method="contour",
     scatter = ax.scatter(
         train_data['education'], train_data['relationship'], c=y_train
```

```
)
ax.legend(*scatter.legend_elements(), loc="upper right", title="Salary")
ax.set_title(kernel)
plt.show()
```


[]: