International Islamic University Chittagong Department of Electrical and Electronic Engineering

Cours Time:	Examination Spring 2020 e Code: Math-1107 5 hours (Writing - 4 hours 30 minutes + 30 es submission time)	Program: B.Sc. Engg. (EEE) Course Title: Mathematics I Full Marks: 50 (Written 30 + Vi	va/Viva	-Quiz-2	20)
[Answer each of the questions (1-5) from the followings; Figures in the right margin indicate full marks.]					
1(a).	Investigate the maximum and minimum values of $f(x)$ first time derivative, where P is the last two digits a two digits of your ID number.	$(x) = (x + p)^6 \cdot (x - Q)^5$ by using	CO2	Cr	2
1(b).	If $V = (x^2 + y^2 - z^2)^{\frac{1}{M}}$ then evaluate $V_{xx} + V_{yy} + V_{zz}$, where Mthe sum of all digits		CO1	\mathbf{E}	2
1(c).	of your ID number is. Verify Euler's theorem to consider a homogeneous function of x, y, r whose degree is the sum of all digits of your ID number.		CO2	E	2
2(a).	Evaluate the following Integrals:		CO ₂	An	4
	$(i)\int \frac{dx}{x(x+n)(x^n+2)} (ii)\int \frac{dx}{a+b\cos x}$				
	Where n is the sum of all digits of your ID number.				
2(b).	Explain the physical meaning of $\int f(x)dx$ and also its	s effect in EEE.	CO1	An	2
3(a). 3(b).	Establish the reduction formula for $\int \tan^m x x^n dx$ and hence evaluate I_5 . Write two properties of definite integral and verify it with considering an example which degree is sum of last two digit of your ID number		CO1 CO2	Ap Ap	2 2
3(c).	Evaluate $\int_0^{\pi/2} \sin^5\theta \cos^4\theta d\theta$ by using Gamma-Beta function and also verify the result.		CO1	E	2
4(a).	Evaluate $\iiint_R (Ax^2 + By - Cz^2x) dx dy dz$, where $z \le C$ where A be the first, B be the third digit of your oot of sum of all digits of course code.		CO1	E	3
4 (b).	Apply the limit of a sum to find $\int_{a}^{b} x^3 dx$.		CO2	Ap	3
5(a).	Evaluate the area of the region bounded by the p	parabolas $y^2 = 4ax$ and $x^2 =$	CO2	\mathbf{E}	3
	Kay, where K is the sum of largest two digits of y				
5(b).	Obtain the volume of $r = a(1 + \cos\theta)$, Also write the a, r.		CO1	Ap	3

20

Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in Google classroom.

6.