Grafos

Conceitos, representações, algoritmos

Definição de grafo

Um **grafo G=(V,E)** é uma estrutura matemática composta por:

- Um conjunto V de vértices ou nós
- Um conjunto E de pares de nós, designados por ramos, conexões, ligações ou arcos, cada um ligando dois nós. Estes arcos podem ter uma orientação (pares ordenados) ou não.

Exemplo de um grafo orientado

Grafos orientados e não orientados

Grafos orientados:

 Grafos onde as ligações entre os nós (arcos) têm um sentido (elementos de E são pares ordenados)

Grafos não orientados:

 Grafos onde os arcos não têm um sentido definido (elementos de E são pares não ordenados)

Grafos pesados

- Como estruturas de dados, é comum os grafos terem associados aos nós e/ ou aos arcos informação de vários tipos
- No caso mais comum, os arcos podem ter associados valores numéricos, comummente chamados de pesos (grafos pesados), sendo os elementos de E tripletos incluindo como último elemento o peso

Representações computacionais de grafos

- Os grafos podem ser representados computacionalmente de várias formas distintas
- A escolha depende do tipo de aplicação, do tipo de grafos, da densidade de ligações e dos algoritmos que se pretendem implementar sobre estes
- Representações mais comuns:
 - Matrizes
 - Listas de adjacência

Matrizes de adjacência

- As matrizes de adjacência representam grafos como matrizes em que
 - as linhas correspondem aos nós origem das ligações
 - as colunas correspondem aos nós destino
 - se existe ligação entre nó i e j, então o valor na matriz (M[i][j]) será 1; caso contrário, será 0
 - em grafos não orientados, a matriz é simétrica podendo apenas representar-se uma matriz triangular
 - no caso dos grafos pesados, os pesos nas ligações podem ser representados como valores na matriz
- Esta representação traz vantagens em casos em que a densidade de ligação do grafo é grande, i.e. há um grande nº médio de ligações por nó e quando o nº de nós é baixo
- Em casos onde a densidade é baixa e o nº de nós elevado, a matriz torna-se pesada em termos de memória

Matrizes de adjacência - exemplos

Listas de adjacência

- Apenas se representam as ligações existentes; para cada nó i temos uma lista com os arcos originados em i; representação mais compacta para grafos com número limitado de ligações.
- Se o grafo é não orientado, poderá haver informação redundante representando-se ambos os sentidos da ligação
- Esta representação pode ser adaptada representando-se cada nó como um objecto e as ligações como listas de referência a objetos desta classe.

Grafo G:

Nós adjacentes, sucessores e antecessores

- Num grafo orientado G = (V,E):
 - Um vértice s é sucessor do vértice v se existe em E o par ordenado (v,s)
 - Um vértice p é **antecessor** do vértice v se existe em E o par ordenado (p,v)
 - Se existe em E o par ordenado (p,s), os vértices p e s dizemse adjacentes (i.e. dois vértices são adjacentes se um é sucessor do outro)
- Num grafo não orientado G=(V,E), os vértices x e y são adjacentes se existe em E o par não ordenado (x,y) (i.e. existe (x,y) ou (y,x))

Grau de um nó

- O grau de um nó é definido como o número de ligações que ligam esse nó a outros nós, i.e. é o nº de nós adjacentes
- Se grafo é **orientado**, podem definir-se:
 - o grau de entrada: número de ligações que chegam a esse nó (n° de predecessores)
 - o grau de saída: número de ligações que saem desse nó (nº de sucessores)
- Para o grafo completo pode definir-se:
 - Grau médio <k>: média do grau calculada sobre todos os nós
 - Distribuição do grau P(k): probabilidade que um nó tenha grau k, calculadas para cada valor de k = 1, ..., nº de nós do grafo

Caminhos

- Num grafo orientado G = (V,E), um caminho P entre dois nós x e y é definido como uma sequência de nós $P_1, P_2, ..., P_n$ onde $P_1 = x, P_n = y$ e todos os pares ordenados (P_i, P_{i+1}) são arcos pertencentes ao grafo (i.e. pertencem a E), sendo E0 comprimento do caminho E1
- Num grafo não orientado, a definição é semelhante sendo que a condição é a de que o par não ordenado (P_i, P_{i+1}) pertence ao grafo (note que num par não ordenado não interessa a ordem dos nós)

Nós atingíveis

- Para um dado nó origem v, os nós atingíveis são aqueles para os quais existe um caminho com origem em v e final nesse mesmo nó
- Para identificar todos os nós atingíveis de um nó origem é necessário realizar uma travessia do grafo, onde o algoritmo passa por:
 - Iniciar no nó origem
 - Visitar todos os sucessores do nó origem, todos os sucessores desses nós, e assim sucessivamente até visitar todos os nós atingíveis

Travessia do grafo

- Duas estratégias podem ser usadas para definir a ordem de exploração dos nós numa travessia:
 - Em largura: começa pelo nó origem, depois explora todos os seus sucessores, depois os sucessores destes, e assim sucessivamente até todos os nós atingíveis terem sido explorados
 - Em profundidade: começa pelo nó origem e explora o 1° sucessor, seguido pelo 1° sucessor deste e assim sucessivamente até não haver mais sucessores e ter que se fazer "backtracking"

Caminhos mais curtos / distâncias

- O caminho mais curto entre dois nós define-se como o caminho P entre esses nós cujo comprimento (nº de nós) seja o menor de entre todos os possíveis caminhos entre eles
- O caminho mais curto pode ser encontrado com uma travessia do grafo em largura terminada quando o nó desejado é atingido
- A distância entre dois nós define-se como o comprimento do caminho mais curto entre ambos, i.e. o número de nós visitados (incluindo o destino); se não existir nenhum caminho a distância é considerada infinita

Ciclos e grafos cíclicos/ acíclicos

- Um caminho é chamado de fechado se começa e termina no mesmo nó do grafo
- Um caminho fechado chama-se de ciclo (simples) se não tem vértices ou arcos repetidos
- Num grafo orientado, qualquer caminho fechado inclui um ciclo (simples)
- Um grafo que contém ciclos é designado por **cíclico**, enquanto um grafo que não contém ciclos é designado por **acíclico**
- Os grafos orientados acíclicos (designados por DAGs) são bastante importantes e têm propriedades matemáticas únicas (como a ordenação topológica)
- As árvores são casos particulares de grafos acíclicos em que os nós são todos ligados