

ADVANCED PROCESS MODELLING FORUM

Advanced Process Modelling

Transforming the way the process industries design & operate

Costas Pantelides – Managing Director

Advanced Process Modelling

- 1. What is it?
- 2. What can it do?
- 3. Why is it possible now?

Advanced Process Modelling What is it?

Dimensions of process modelling

Process Modelling

Flowsheeting tools

Process Modelling

Flowsheeting tools

Process Modelling

Current drivers for process modelling technology

Model application

Advanced Process Modelling What can it do?

Region-wide optimisation of natural gas production & processing

Legend: **IR** Raw Gas Iran Raw Gas Delivery Points Unconnected Delivery Mainoor Sales Gas Gas to LNG W. Qurna Ph1 → NGLs Gas Treatment Unit (GTU) Zubair1 Rumaila NGL **Plant** Kaz NGL LPG Shipping **LPG** Plant Offshore LNG

Presentation by Daniel Aluma tomorrow afternoon

Systems-based Pharmaceutics

Systems-based Pharmaceutics

A holistic, integrated view of drug manufacturing & biological effect

Accelerated development of **higher-quality** pharmaceuticals

Objectives & Constraints Product KPIs: Critical Quality Attributes (CQAs)

Product KPIs: Critical Quality Attributes (CQAs)

Process KPIs: Economics, Safety, Operability, Environmental Impact

Presentation
by Sean Bermingham
& sessions on Formulated Products
today

Oilfield optimisation

Presentation by James Marriott tomorrow afternoon

Oilfield Production Optimisation

New advanced optimisation technology leading to higher-quality solutions

O(\$m/day) benefit

Online monitoring of olefins steam cracking furnaces

Presentation by Mark Matzopoulos tomorrow morning

Model-based monitoring

Accurate real-time estimates of product yields
Real-time monitoring of accumulated coke
& coking rates

Improved severity control in cracking furnaces

More realistic basis for day-to-day olefin plant optimisation

Safer operation

Advanced Process Modelling Why is it possible now?

Sequential Modular vs. Equation Oriented modelling

PSE

The Sequential Modular (SM) approach

Sequential Modular

- Advantages
 - easy to use; quick for simple calculations
 - failure is rare; clear diagnostics issued
- Disadvantages
 - 'downstream' specifications difficult to handle
 - recycles slow to converge;
 multiple recycles difficult
 - adding new custom models –
 need to code solution method
 - poor optimisation capability
 - many other limitations

The Equation Oriented (EO) approach

$$f(x) = 0$$

One large set of equations (10³-10⁶ variables)
Solved simultaneously

Conceptually much simpler ...

SM vs EO - 2

Sequential Modular

- Advantages
 - easy to use; quick for simple calculations
 - failure is rare; clear diagnostics issued
- Disadvantages
 - 'downstream' specifications
 - recycles slow to converge;
 multiple recycles difficult
 - adding new custom models –
 need to code solution method
 - poor optimisation capability
 - many other limitations

Equation-oriented

- Advantages
 - can specify any variable subject
 to degrees of freedom –
 'downstream' specifications easy
 - fast, robust convergence of multiple recycles
 - powerful custom modelling easy to create new unit operations
 - very powerful optimisation
- Disadvantages
 - may fail to find an <u>initial</u> solution easily
 - often difficult to diagnose reason for failure

Sequential Modular vs. Equation Oriented

A 30+ year consensus

Sequential Modular

Robustness (real/perceived)

Key consideration

Well-understood advantages

Equation Oriented

- Recycle handling
- Non-standard (e.g. design) specifications
- Optimisation
- Custom modelling

Aspen HYSYS® Aspen Plus® CHEMCAD® Petro-SIM®

PRO/II®

Prosim[®]

UniSim®

A well-understood & widely accepted trade-off since the early 1980s

SPEEDUP® → ACM® gPROMS ModelBuilder®

Aspen Plus® (EO mode)
RomEO®

So what's changed?

Model Initialisation Procedures (MIPs)

- Objective: comprehensively address robustness issues in EO flowsheeting technology
 - a long-term fundamental R&D project
- Complexity arises at two levels
 - Flowsheet-level complexity
 - increasingly wider envelopes
 - tighter integration of material& energy
 - Unit-level complexity
 - increasingly detailed models of process equipment

Unit-level

Sequential Modular vs. Equation Oriented

A 30+ year consensus

Sequential Modular

Robustness

Equation Oriented

- Recycle handling
- Non-standard (e.g. design) specifications
- Optimisation
- Custom modelling
- → Robustness

Potentially disruptive technology

→ Enables many of the things you

will see in this APMF

APM > ADVANCED PROCESS MODELLING FORUM 2016

Advanced Process Modelling In summary...

Advanced Process Modelling

■ What is it?

APM is about describing process systems...

- to a breadth that ensures that all relevant interactions are within the model envelope
- to a depth that provides confidence in the model predictions
- in a way that allows the modelling investment to be leveraged across the process lifecycle and the organisation in a consistent, cost-effective manner

What can it do?

APM allows significant value to be extracted at all stages of the process lifecycle via the combination of

- process models that are sufficiently broad & deep (see above)
- advanced computational techniques that allow comprehensive exploration of large decision spaces

■ Why is it possible now?

APM has been made possible

- by significant recent breakthroughs in modelling methodologies & solution methods
- coupled with advances in computing hardware and software engineering

Thank you

Equation-oriented process flowsheeting

- Equation-oriented technology
 - Convergence of tightly integrated flowsheets
 - multiple recycles, thermal couplings etc.
 - fast solution → rigorous sensitivity analysis
 - Handling of non-standard specifications
- Drag-and-drop flowsheeting
 - Standard model libraries
 - User-defined custom models
- 2. Analysis of process behaviour via steady-state & dynamic simulation
- Optimisation of design & operation via steady-state & dynamic optimisation
 - Rigorous mathematical optimisation
 - no need for trial & error simulation
 - Continuous and discrete decisions

Detailed model, ~18,000 equations First solution : **35 CPU s**

Subsequent solutions: 0.5 CPU s

Complex recycles Air Separation Unit (ASU)

Complex dynamics

FRESHING SWING CASS ON DOTING SAND 2016

1. Use of <u>detailed</u>, <u>validated</u> equipment models within <u>integrated</u> flowsheets

Styrene monomer plant

2. Simultaneous whole-plant optimisation with structural+continuous decisions

Objective function: Total annualised profit (MMUSD)

= Annual revenue – annualised capital cost – operating cost

2. Simultaneous whole-plant optimisation with structural+continuous decisions

Optimisation decision variables

- High-pressure steam generation
- Feed stage and total number of stages of 1st column
- Boil up ratio of 1st column
- Fresh ethylbenzene flowrate
- Superheated high pressure steam
- Reactor radius

Applications presented at this Advanced Process Modelling Forum

