MACHINE LEARNING PRINCIPLES

SICSS-NDSU

https://slides.com/zoltanpm/sicss-ndsu-ml

OVERVIEW

Statistical learning

Basic steps: data segmentation

Metrics

Traditional ML vs. deep learning

99

Modeling for explanation or modeling for prediction.

- ModernDive

https://moderndive.com/5-regression.html

SOME KEY POINTS

- ML code is hard. But good ML work = team work, and there are critical roles for noncoders
- ML is linear algebra + calculus + probability theory + statistics + SME
- ML is not Al is not Deep Learning
- ML iterates over data many times, making it susceptible to amplifying biases/imbalances in the data
- Never trust a model where accuracy is only measured on predictions of its own training data

ML IS STATISTICAL LEARNING

Input ==>

Input ==>

Input ==>

Input ==>

Input ==>

Input ==>

Features

linear regression
logistic regression
naive Bayes
knn
trees/random forest
SVM

==> Output

MLIS

DATA PRE-PROCESS

TRAINING

Human-coded data using discipline-specific standards for IRR/ICC

VALIDATING

Slice of human-coded data used for internal validations during training runs

TESTING

Data that's never been exposed to the model; special considerations for timeseries

STEPS

METRICS

- Confusion Matrix
- Recall/Sensitivity ~ Precision/Specificity
- Accuracy ... eh (*Accuracy Paradox*)
- ROC/AUC
- F1

TRADITIONAL ML VS. DEEP LEARNING: THE SICSS-RUTGERS EXAMPLE

```
model1 <- glm(outcome ~ lengthoftweet +
nnegative +
nprofanity +
capitals,
data = training_hate,
family=binomial(link = "logit"))</pre>
```

TOWARD DEEP LEARNING

from

TOWARD DEEP LEARNING

from

https://levity.ai/blog/difference-machine-learning-deep-learning, https://theconversation.com/deep-learning-and-neural-networks-77259 https://www.knime.com/blog/a-friendly-introduction-to-deep-neural-networks

STEPS

NOT BINARY

Full Sentence Inputs	Feature Engineering	Features for Expertise Classification?
computing-intensive	more efficient	
more variable	more intelligible	
easier	requires expertise	
removes judgment	requires judgment	

HOW IT LEARNS

- Backpropagation
- Learning rate and gradient descent

from https://towardsdatascience.com/gradient-descent-explained9b953fc0d2c