

বাস্তব সংখ্যা

প্রতিদিন নানা কাজে আমরা বিভিন্ন রকম সংখ্যা ব্যবহার করি। তোমার শ্রেণিতে বা শিক্ষা প্রতিষ্ঠানে কতজন শিক্ষার্থী আছে? শ্রেণিকক্ষে কতগুলো জানালা আছে? এই ধরনের গণনার সঙ্গে পূর্ণসংখ্যা যা সম্পর্কিত থাকে। আবার উচ্চতা, ওজন ইত্যাদি পরিমাপে অধিকাংশ ক্ষেত্রে ভগ্নাংশ বা দশমিক চলে আসে। কখনো অনেক বিশাল সংখ্যা হলে সূচকের মাধ্যমেও প্রকাশ করা হয়। তোমরা ভগ্নাংশ, দশমিক এবং সূচকের সঙ্গে আগেই পরিচিত আছ। যেমন, 1/2, 2/3, 5/4 ইত্যাদি ভগ্নাংশ আকার। আবার ০.২৫, ৩.৩৩, ৫.২৫৫৫...দশমিক আকার এবং ৪^{১০} সূচক আকার। এই ধরনের সংখ্যা মূলদ সংখ্যা। এছাড়া অসংখ্য অমূলদ সংখ্যাও রয়েছে। এ অভিজ্ঞতায় আমরা মূলদ সংখ্যা ছাড়াও অমূলদ সংখ্যার সঙ্গে পরিচিত হব। বাস্তব জীবনে ব্যবহৃত এই সকল সংখ্যাকে আমরা বাস্তব সংখ্যা (real number) বলি। এই শিখন অভিজ্ঞতায় আমরা বিভিন্ন রকম বাস্তব সংখ্যা ও তাদের বৈশিষ্টট্য সম্পর্কে জানব এই অধ্যায়ের অনুশীলনীর সকল গাণিতিক সমস্যার সমাধান করার মাধ্যমে। তাহলে শুরু করি।

অনুশীলনী-২ (৮ম শ্রেণি)

১. ক্রীড়া প্রতিযোগিতায় একটি মজার খেলা হলো দীর্ঘ লাফ। ধরা যাক তোমাকে দীর্ঘ লাফ প্রতিযোগিতায় ১০ মিটার দূরের একটি দেয়াল ছুতুঁ হবে কিন্তু তুমি প্রতি লাফে শুধু অর্ধেক পথ যেতে পারবে। যেমন, প্রথম লাফে $^{5o}/_{5} = c$ মিটার পথ গেলে, এরপরের লাফে $^{6}/_{5} = 2.c$ মিটার পথ গেলে দেয়াল ছুতুঁ কটি লাফ দিতে হবে তা কি বের করতে পারবে?

সমাধানঃ

এখানে.

১ম লাফের দূরত্ব, a = 5 মিটার;

সাধারণ অন্তর, $a = \frac{2.5}{5} = \frac{1}{2}$;

মোট অতিক্রান্ত দূরত্ব s = 10 মিটার।

এখন, গুনোত্তর ধারা অনুসারে, r<1 হলে, nতম পদের সমষ্টি

 $= a(1-r^n)/(1-r)$

বা, a(1-rⁿ)/(1-r) = s

বা, $a(1-r^n) = s(1-r)$

বা, $5(1-\frac{1}{2}^n) = 10(1-\frac{1}{2})$

বা, 5(1-½n) = 10×½

বা, 5(1-½n) = 5

বা, (1-1/2ⁿ) = 1

বা, -½n = 1-1

বা, -½ⁿ = 0 যা গাণিতিকভাবে সম্ভব নয়।

অর্থাৎ, n এর মান বা লাফ সংখ্যা অগণিত হবে।

২. একটি বর্গাকার আমবাগানে ১৩৬৯টি আমগাছ আছে। বাগানের দৈর্ঘ্য ও প্রস্থ উভয় দিকে সমান সংখ্যক আমগাছ থাকলে, প্রত্যেক সারিতে গাছের সংখ্যা যুক্তিসহকারে উপস্থাপন করো। দৈর্ঘ্য ও প্রস্থে দুটি গাছের মধ্যে দূরত্ব ১০০ ফুট হলে, বাগানের ক্ষেত্রফল আনুমানিক কত হবে বলে তুমি মনে করো? সমাধানঃ

ধরি,

a = দৈর্ঘ্য বরাবর আমগাছের সংখ্যা = প্রস্থ বরাবর আমগাছের সংখ্যা। প্রশ্নমতে,

 $a \times a = 1369$

বা, a² = 1369

বা, a = √1369 = 37

অর্থাৎ, আম বাগানটিতে দৈর্ঘ্য বরাবর যে সারিটি আছে সেখানে 37 টি আমগাছ আছে, একইভাবে প্রস্থ বরাবর সারিতেও 37 টি আমগাছ আছে।

এখন দৈর্ঘ্য বা প্রস্থ বরাবর যেহেতু 37 টি করে আমগাছ আছে সেহেতু বাগানটিতে মোট সারি আছে = $^{1369}/_{37} = 37$ টি।

এখন, শর্তমতে,

১ম গাছ থেকে ২য় গাছের দূরত্ব = 100 ফুট

- ∵ ১ম থেকে ৩য় গাছের দূরত = 200 ফুট
- : ১ম থেকে ৩৭তম গাছের দূরত্ব = 3600 ফুট

অর্থাৎ, বাগানের দৈর্ঘ্য = 3600 ফুট = বাগানের প্রস্থ।

- : বাগানের ক্ষেত্রফল
- = 3600×3600 বর্গ ফুট
- = 12960000 বর্গ ফুট।

৩. ১ থেকে ১০০ পর্যন্ত সকল পূর্ণবর্গ সংখ্যার বর্গমূল ও পূর্ণঘন সংখ্যার ঘনমূল নির্ণয় করো। সমাধানঃ

১ থেকে ১০০ পর্যন্ত সকল পূর্ণবর্গ সংখ্যার বর্গমূল নির্ণয়ের জন্য নিচের সারণিটি তৈরি করিঃ

সংখ্যার বর্গের আকার	ফলাফল
7,	٥
३ः	8
৩২	৯
83	১৬
€ ²	২ ৫
৬৾	৩৬
٩٠	85
₽ ²	\\ \\ \ 8
δ ²	৮ ኔ
3 0°	\$00

ः ১ থেকে ১০০ পর্যন্ত সকল পূর্ণবর্গ সংখ্যা হলোঃ ১,৪,৯,১৬,২৫,৩৬,৪৯,৬৪,৮১,১০০ যাদের বর্গমূল হলোঃ ১,২,৩,৪,৫,৬,৭,৮,৯,১০।

আবার.

১ থেকে ১০০ পর্যন্ত সকল পূর্ণঘন সংখ্যার ঘনমূল নির্ণয়ের জন্য নিচের সারণিটি তৈরি করিঃ

সংখ্যার ঘনের আকার	ফল্ফিল
>°	٥
₹°	ъ
೨ °	২৭
8°	৬৪
€°	> >&

😯 ১ থেকে ১০০ পর্যন্ত সকল পূর্ণঘন সংখ্যা হলোঃ ১,৮,২৭,৬৪ যাদের ঘনমূল হলোঃ ১,২,৩,৪।

8. একটি সংখ্যারেখায় P, Q, R, S, T, U, A এবং B বিন্দুগুলো এমনভাবে আছে যে, TR = RS = SU এবং AP = PQ = QB. এমতাবস্থায় P, Q, R এবং S মূলদ সংখ্যাসমূহের মান নির্ণয় করো।

সমাধানঃ

সংখ্যারেখায়, TU = -৩-(-২) = -৩+২ = -১

দেওয়া আছে.

TR = RS = SU

: TR = -³/₃

:: TS = -[₹]/₂

এখন, সংখ্যারেখায় T এর মান = -২

∵ সংখ্যারেখায় R এর মান = -২ -¹/₀ = -৬-¹/₀ = - ⁴/₀

∵ সংখ্যারেখায় S এর মান = -২ -^২/₀ = -৬-২/₀ = - ^৮/₀

আবার.

সংখ্যারেখায়, AB = ২-১ = ১

দেওয়া আছে.

AP = PQ = QB

 $\therefore AP = \frac{3}{2}$

 $\therefore AQ = \sqrt[3]{2}$

এখন, সংখ্যারেখায় A এর মান = 3

∴ সংখ্যারেখায় P এর মান = $3 + \frac{1}{2} = \frac{0+\frac{1}{2}}{2} = \frac{8}{2}$

∵ সংখ্যারেখায় Q এর মান = ১ + ²/₀ = °+²/₀ = °/₀

৫. নিচের সংখ্যাগুলো মূলদ নাকি অমূলদ যুক্তিসহ ব্যাখ্যা দাও।

৮.৯২৯২৯২..., ০.১০১০০১০০০১..., ৬৫৩৪.৭৮৯৭৮৯..., ২.১৮২৮১৮২৮, ০.১২২৩৩৩...

সমাধানঃ

(i) **b**.あ**2**あ**2**あ**2**......

এটি একটি পৌনঃপুনিক দশমিক সংখ্যা।

অর্থাৎ একে ^p/_a আকারে প্রকাশ করা যাবে যেখানে p ও q পূর্ণসংখ্যা এবং q≠0।

· এটি একটি মূলদ সংখ্যা।

(ii) 0.3030003...

এটি পৌনঃপনিক দশমিক সংখ্যা নয়।

অর্থাৎ একে P/Q আকারে প্রকাশ করা যাবে না যেখানে $p \otimes q$ পূর্ণসংখ্যা এবং $q \neq 0$ ।

∴ এটি একটি অমূলদ সংখ্যা।

(iii) ৬৫৩৪.৭৮৯৭৮৯...

এটি একটি পৌনঃপনিক দশমিক সংখ্যা।

অর্থাৎ একে ^p/_a আকারে প্রকাশ করা যাবে যেখানে p ও q পূর্ণসংখ্যা এবং q≠0।

· এটি একটি মূলদ সংখ্যা।

😝 🖸 🕡 / Courstika

এটি একটি পৌনঃপুনিক দশমিক সংখ্যা। অর্থাৎ একে P/q আকারে প্রকাশ করা যাবে যেখানে p ও q পূর্ণসংখ্যা এবং $q\neq 0$ । \because এটি একটি মূলদ সংখ্যা। (v) ০.১২২৩৩৩... এটি একটি পৌনঃপুনিক দশমিক সংখ্যা। অর্থাৎ একে P/q আকারে প্রকাশ করা যাবে যেখানে p ও q পূর্ণসংখ্যা এবং $q\neq 0$ । \because এটি একটি মূলদ সংখ্যা।

৬. ২ $\sqrt{2}+&\sqrt{6}$ এবং ৭ $\sqrt{6}-8\sqrt{2}$ সংখ্যা দুটির যোগ, বিয়োগ, গুণ, ভাগ করে সংখ্যারেখায় উপস্থাপন করো।

সমাধানঃ

১ম সংখ্যা

- $=2\sqrt{2}+6\sqrt{6}$
- $=2\sqrt{2}+6\sqrt{(2\times2\times2)}$
- $= 2\sqrt{2} + (2 \times 2\sqrt{2})$
- $=2\sqrt{2+20\sqrt{2}}$
- =>>/>
- ২য় সংখ্যা
- 9√6-8√5
- $= 9\sqrt{(2\times2\times2)}-8\sqrt{2}$
- $=9*2\sqrt{2-8}\sqrt{2}$
- = $38\sqrt{2-8\sqrt{2}}$
- = 30/2
- : ১ম ও ২য় সংখ্যার যোগঃ
- >>√>+>0√>
- = **₹**₹√₹
- ১ম ও ২য় সংখ্যার বিয়োগঃ
- 25/5-20/5
- = $\sqrt{2}$
- : ১ম ও ২য় সংখ্যার গুণঃ
- 25/5×20/5
- = >>×>0×√>×√>
- = ><×>0×<
- = 280
- : ১ম ও ২য় সংখ্যার ভাগঃ
- >>/>÷>0/>
- = >2÷>0
- = %/&
- = 3.2

সংখ্যারেখায় উপস্থাপনঃ

পরে যুক্ত করা হবে; এই সমাধান পেতে আমাদেরকে লিখে জানাও-তাহলে আমরা দ্রুত এটার সমাধান নিয়ে আসব।

৭. সরল করোঃ $\sqrt(^{\circ}/_{e})$ + $\sqrt[\circ]{_{e}}$ - $\sqrt[\circ]{_{b}}$

সমাধানঃ

6

৮. নিশিত চাকমার দুইটি বর্গাকার সবজি বাগান আছে। একটির দৈর্ঘ্য ২√২ একক এবং অন্যটির ক্ষেত্রফল এটির ক্ষেত্রফলের দিগুণ। তাহলে অন্য বাগানের দৈর্ঘ্য কত?

সমাধানঃ

নিশিত চাকমার একটি বাগানের প্রতি বাহুর দৈর্ঘ্য = ২√২ একক

- : এই বাগানের ক্ষেত্রফল
- = (২√২×২√২) বৰ্গ একক
- = ২×২× $\sqrt{2}$ × $\sqrt{2}$ বর্গ একক
- = 8×২ বর্গ একক
- = ৮ বর্গ একক

শর্তমতে, অন্য বাগানের ক্ষেত্রফল = ২×৮ বর্গ একক = ১৬ বর্গ একক

- ∵ অন্য বাগানের দৈর্ঘ্য = √১৬ একক = ৪ একক।
- ৯. তোমার দুইটি ঘনক আকৃতির বক্স আছে। একটির আয়তন ১৬ ঘনফুট এবং অন্যটির আয়তন ১১ ঘনফুট। প্রতিটি বক্সের প্রতি বাহুর দৈর্ঘ্য কত? যদি উক্ত বক্স দুটি ভেঙ্গে তাদের আয়তনের যোগফলের সমান আয়তনের একটি ঘনক আকৃতির বক্স বানানো হয় তবে সেটির প্রতি বাহুর দৈর্ঘ্য কত হবে? সমাধানঃ

আমার ১ম ঘনক আকৃতির বক্স এর আয়তন = ১৬ ঘনফুট

 \because ১ম বক্সের প্রতি বাহুর দৈর্ঘ্য = $\sqrt[9]{3}$ ৬ ফুট = $\sqrt[9]{(2 \times 2 \times 2)}$ ফুট = ২ ফুট। আবার

আমার ২য় ঘনক আকৃতির বক্স এর আয়তন = ১১ ঘনফুট

২য় বয়ের প্রতি বাহুর দৈর্ঘ্য = °√১১ ফুট

এখন, ১ম ও ২য় বক্সের আয়তনের যোগফল = (১৬+১১) ঘনফুট = ২৭ ঘনফুট অর্থাৎ, দুইটি বক্স ভেঙ্গে যে নতুন বক্স বানানো হয় তার আয়ুতন = ২৭ ঘনফুট

∵ নতুন বক্সের প্রতি বাহুর দৈর্ঘ্য = °√২৭ ফুট = °√(৩×৩×৩) ফুট = ৩ ফুট।

ঘনবস্তুতে দ্বিপদী ও ত্রিপদী রাশি খুঁজি

পূর্বের শ্রেণিতে তোমরা তোমাদের অভিজ্ঞতা অর্জনে চলক, বীজগাণিতিক রাশি, পদ, বীজগাণিতিক রাশির উৎপাদক, লসাগু, গসাগু ইত্যাদি ব্যবহার করেছ। বাস্তব জীবনে সমস্যা সমাধানে বীজগাণিতিক রাশি খুবই গুরুত্বপূর্ণ ভূমিকা পালন করে। তোমরা বর্গক্ষেত্র এবং আয়তক্ষেত্রের বিষয়ে দ্বিপদী এবং ত্রিপদী রাশির ব্যবহার শিখেছ। তোমরা শিখেছ, আয়তক্ষেত্র একটি দ্বিমাত্রিক আকৃতি। অর্থাৎ এটি পরিমাপের দুটি মাত্রা– দৈর্ঘ্য এবং প্রস্থ। বর্গক্ষেত্র আয়তক্ষেত্রের একটি বিশেষ অবস্থা। বর্গক্ষেত্রের দৈর্ঘ্য এবং প্রস্থ সমান। মজার ব্যাপার হলো, আমাদের চারপার্শ্বে দ্বিমাত্রিক বস্তুর চেয়ে ত্রিমাত্রিক বস্তুই বেশি। যেমন— বই, খাতা, আলমারি, শোকেস, বুকশেল্ফ ইত্যাদি। ত্রিমাত্রিক বস্তুতে দৈর্ঘ্য, প্রস্থ ছাড়াও একটি মাত্রা যোগ হয়, সেটি হলো— উচ্চতা। দৈর্ঘ্য ও প্রস্থ সম্বলিত দ্বিমাত্রিক বস্তুকে আমরা যেমন আয়তাকার বলি, তেমনি দৈর্ঘ্য, প্রস্থ ও উচ্চতা সম্বলিত ত্রিমাত্রিক বস্তুকে ঘনক আকার বলি। এই অভিজ্ঞতায় আমরা এ সকল ঘনবস্তুর মাধ্যমে দ্বিপদী এবং ত্রিপদী রাশির ব্যবহার শিখব। আমরা ঘনবস্তুতে দ্বিপদী ও ত্রিপদী

রাশি খুঁজি অধ্যায়ের উপরের ভূমিকা দিয়েছি কিছুটা ধারণা দেবার জন্য, কিন্তু আমরা মূলত এখানে ৮ম শ্রেণির ৩য় অধ্যায়ের অনুশীলনীর সমাধান করেছি। তাহলে শুরু করি-

অনুশীলনী-৩ (৮ম শ্রেণি)

- ১. নিচের কোনটি দ্বিপদী রাশি নয়? তোমার উত্তরের সপক্ষে যুক্তি দাও।
- ¬¬) xy+3x
- খ) xy
- গ) x+y-1
- ঘ) x²-2x+1
- ঙ) y²

সমাধানঃ

- ক) xy+3x একটি দ্বিপদী রাশি কারণ এই রাশিটিতে দুইটি পদ xy ও 3x আছে।
- খ) xy একটি দ্বিপদী রাশি নয় কারণ এই রাশিটিতে ১টি পদ xy আছে।
- গ) x+y-1 একটি দ্বিপদী রাশি নয় কারণ এই রাশিটিতে ৩টি পদ x, y, 1 আছে।
- ঘ) x^2-2x+1 একটি দ্বিপদী রাশি নয় কারণ এই রাশিটিতে ৩টি পদ x^2 , 2x, 1 আছে।
- ঙ) y² একটি দ্বিপদী রাশি নয় কারণ এই রাশিটিতে ১টি পদ y² আছে।
- ২. নিচের দ্বিপদী রাশিগুলো থেকে এক চলক ও দুই চলকবিশিষ্ট দ্বিপদী রাশি চিহ্নিত করো।
- ক) x+1
- খ) 3x+5
- গ) x-3
- ঘ) 5x-2
- ঙ) 2x+3y
- ∇) $X^2 + 1$
- ছ) x²-y
- জ) x²+y²

সমাধানঃ

- ক) x+1 হলো একটি এক চলক বিশিষ্ট দ্বিপদী রাশি।
- খ) 3x+5 হলো একটি এক চলক বিশিষ্ট দ্বিপদী রাশি।
- গ) x-3 হলো একটি এক চলক বিশিষ্ট দ্বিপদী রাশি।
- ঘ) 5x-2 হলো একটি এক চলক বিশিষ্ট দ্বিপদী রাশি।
- ঙ) 2x+3y হলো একটি দুই চলক বিশিষ্ট দ্বিপদী রাশি।
- চ) x²+1 হলো একটি এক চলক বিশিষ্ট দ্বিপদী রাশি।
- ছ) x²-y হলো একটি দুই চলক বিশিষ্ট দ্বিপদী রাশি।
- জ) x²+y² হলো একটি দুই চলক বিশিষ্ট দ্বিপদী রাশি।
- ৩. নিচের বীজগাণিতিক রাশি থেকে এক চলক, দুই চলক ও তিন চলকবিশিষ্ট ত্রিপদী রাশি চিহ্নিত করো।
- क) x+y+3

- খ) x²+3x+5
- গ) xy+z-3
- ঘ) 5x+y²-2
- ঙ) 2x+3y-z
- \overline{b}) $y^2 y + 1$
- ছ) x²-yz+2
- জ) x²+y²-y

সমাধানঃ

- ক) x+y+3 হলো একটি দুই চলক বিশিষ্ট ত্রিপদী রাশি।
- খ) x²+3x+5 হলো একটি এক চলক বিশিষ্ট ত্রিপদী রাশি।
- গ) xy+z-3 হলো একটি তিন চলক বিশিষ্ট ত্রিপদী রাশি।
- ঘ) 5x+y²-2 হলো একটি দুই চলক বিশিষ্ট ত্রিপদী রাশি।
- ঙ) 2x+3y-z হলো একটি তিন চলক বিশিষ্ট ত্রিপদী রাশি।
- চ) y²-y+1 হলো একটি এক চলক বিশিষ্ট ত্রিপদী রাশি।
- ছ) x²-yz+2 হলো একটি তিন চলক বিশিষ্ট ত্রিপদী রাশি।
- জ) x²+y²-y হলো একটি দুই চলক বিশিষ্ট ত্রিপদী রাশি।
- 8. নিচের ত্রিপদী রাশির ঘন নির্ণয় করো।
- **季**) x+y+3

সমাধানঃ

 $(x+y+3)^3$

- $=\{(x+y)+3\}^3$
- $=(x+y)^3+3(x+y)^2\times3+3(x+y)\times3^2+3^3$ [সূত্রানুসারে]
- $=x^3+3x^2y+3xy^2+y^3+3(x^2+2xy+y^2)\times3+3(x+y)\times9+27$
- $= x^3 + 3x^2y + 3xy^2 + y^3 + 9(x^2 + 2xy + y^2) + 27(x+y) + 27$
- $= x^3 + 3x^2y + 3xy^2 + y^3 + 9x^2 + 18xy + 9y^2 + 27x + 27y + 27$

খ) 2x+3y-z

সমাধানঃ

 $(2x+3y-z)^3$

- $=\{(2x+3y)-z\}^3$
- =(2x+3y)³-3(2x+3y)²×z+3(2x+3y)×z²-z³ [সূত্রানুসারে]
- $=(2x)^3+3.(2x)^2.3y+3.2x.(3y)^2+(3y)^3-3\{(2x)^2+2.2x.3y+(3y)^2\}\times z+3z^2(2x+3y)-z^2$
- $=8x^3+36x^2y+6x.9y^2+27y^3-3(4x^2+12xy+9y^2)\times z+6z^2x+9z^2y-z^2$
- $=8x^3+36x^2y+54xy^2+27y^3-12x^2z-36xyz-27y^2z+6z^2x+9z^2y-z^2$
- গ) x²+3x+5

সমাধানঃ

 $(x^2+3x+5)^3$

 $= \{(x^2+3x)+5\}^3$

- = $(x^2+3x)^3+3(x^2+3x)^2.5+3(x^2+3x).5^2+5^3$
- = $(x^2)^3+3.(x^2)^2.3x+3x^2.(3x)^2+(3x)^3+15(x^2+3x)^2+3(x^2+3x).25+125$
- $= x^{6}+3.x^{4}.3x+3x^{2}.9x^{2}+27x^{3}+15\{(x^{2})^{2}+2x^{2}.3x+(3x)^{2}\}+75(x^{2}+3x)+125$
- $= x^{6}+9x^{5}+27x^{4}+27x^{3}+15x^{4}+90x^{3}+135x^{2}+75x^{2}+225x+125$
- $= x^{6} + 9x^{5} + 42x^{4} + 117x^{3} + 210x^{2} + 225x + 125$

ঘ) xy+z-3

সমাধানঃ

 $(xy+z-3)^3$

- $=\{(xy+z)-3\}^3$
- = $(xy+z)^3-3(xy+z)^2.3+3(xy+z).3^2-3^3$
- = $(xy)^3+3(xy)^2.z+3xy.z^2+z^3-9\{(xy)^2+2xyz+z^2\}+3(xy+z).9-27$
- $= x^3y^3+3x^2y^2z+3xyz^2+z^3-9\{x^2y^2+2xyz+z^2\}+27(xy+z)-27$
- $= x^3y^3+3x^2y^2z+3xyz^2+z^3-9x^2y^2-18xyz-9z^2+27xy+27z-27$

৫. বীজগাণিতিক নিয়ম ব্যবহার করে উৎপাদকে বিশ্লেষণ করোঃ

ক) x³+1

সমাধানঃ

- $x^3 + 1$
- $=X^3+1^3$
- $= (x+1)(x^2-x.1+1^2)$
- $= (x+1)(x^2-x+1)$

খ) x³-1

সমাধানঃ

- x^3-1
- $= x^3 1^3$
- $= (x-1)(x^2+x.1+1^2)$
- $= (x-1)(x^2+x+1)$

গ) x⁶-729

সমাধানঃ

- $=(x^3)^2-27^2$
- $=(x^3-27)(x^3+27)$
- $= (x^3-3^3)(x^3+3^3)$
- $= (x-3)(x^2+x.3+3^2)(x+3)(x^2-x.3+3^2)$
- $=(x-3)(x^2+3x+9)(x+3)(x^2-3x+9)$

সমাধানঃ

 x^3+3x^2+3x+9

 $= X^3 + 3.X^2.1 + 3.X.1^2 + 1^3 + 8$

 $= (x+1)^3 + 2^3$

 $= (x+1+2)\{(x+1)^2-(x+1).2+2^2\}$

 $= (x+3)(x^2+2x+1-2x-2+4)$

 $=(x+3)(x^2+3)$

৬. একটি চকোলেট তৈরির ফ্যাক্টরিতে 2 ফুট এবং 3 ফুট দৈর্ঘ্যবিশিষ্ট দুইটি ঘনক আকৃতির কন্টেইনারে পূর্ণকরে চকোলেটের কাচামাল রাখা আছে।

ক) কোনো কাঁচামাল নষ্ট না হলে, দুইটি কন্টেইনারের কাচামালকে একত্র করে 1"×1"×2" আকারের কতগুলো চকোলেট তৈরি করা যাবে?

সমাধানঃ

আমরা জানি,

1 ফুট =12 ইঞ্চি

∵2 ফুট = 12×2 = 24 ইঞ্চি

∵3 ফুট = 12×3 = 36 ইঞ্চি

তাহলে.

2 ফুট দৈর্ঘ্যবিশিষ্ট ঘনক আকৃতির কন্টেইনারের আয়তন = 24×24×24 ঘন ইঞ্চি = 13824 ঘন ইঞ্চি।

এবং, 3 ফুট দৈর্ঘ্যবিশিষ্ট ঘনক আকৃতির কন্টেইনারের আয়তন = 36×36×36 ঘন ইঞ্চি = 46656 ঘন ইঞ্চি।

·· দুইটি কন্টেইনারের মোট আয়তন = 13824+46656 = 60480 ঘন ইঞ্চি।

এখন, একটি চকলেটের আয়তন বা আকার = 1"×1"×2" = 2 ঘন ইঞ্চি।

· পরিপূর্ণ দুইটি কন্টেইনারের কাচামালে চকলেট তৈরি করা যাবে (60480÷2) টি = 30240 টি।

খ) কোনো কাঁচামাল নষ্ট না হলে, দুইটি কন্টেইনারের কাচামালকে একত্র করে 5"×7"×1" আকারের কভগুলো চকোলেট তৈরি করা যাবে?

সমাধানঃ

ক হতে পাই.

দুইটি কন্টেইনারের মোট আয়তন 60480 ঘন ইঞ্চি।

এখন, একটি চকলেটের আয়তন বা আকার = 5"×7"×1" = 35 ঘন ইঞ্চি।

∵ পরিপূর্ণ দুইটি কন্টেইনারের কাচামালে চকলেট তৈরি করা যাবে (60480÷35) টি = 1728 টি।

গ) 5"×7"×1" আকারের 1440 টি চকোলেট বার তৈরি হলে কী পরিমাণ কাঁচামাল নষ্ট হয়েছে। সমাধানঃ

5"×7"×1" = 35 ঘন ইঞ্চি;

∵ 5"×7"×1" আকারের 1440 টি চকোলেট বার এর মোট আয়তন = 35×1440 ঘন ইঞ্চি = 50400 ঘন ইঞ্চি।

এখন, ক হতে পাই,

দুইটি কন্টেইনারের মোট আয়তন 60480 ঘন ইঞ্চি;

অর্থাৎ, পরিপূর্ণ কন্টেইনারে 60480 ঘন ইঞ্চি পরিমাণ কাঁচামালের থেকে 50400 ঘন ইঞ্চি দিয়ে চকলেট বার তৈরি হয়েছে এবং বাকী অংশ নষ্ট হয়েছে।

- ∵ কাঁচামাল নষ্ট হয়েছে = (60480-50400) ঘন ইঞ্চি = 10080 ঘন ইঞ্চি।
- ৭. লতার বাবার একটি মাছ চাষের খামার আছে। খামারে একটি পুকুর আছে যার দৈর্ঘ্য, প্রস্থ ও পানির গভীরতা যথাক্রমে 50 মিটার, 40 মিটার এবং 5 মিটার। আয়তন ঠিক রেখে পানির গভীরতা 3 মিটার কমালে দৈর্ঘ্য কী পরিমাণ বাড়বে?

সমাধানঃ

১ম শর্তে.

পুকুরের আয়তন

- = দৈর্ঘ্য×প্রস্থ×গভীরতা
- = 50×40×5 ঘন মিটার
- = 10000 ঘন মিটার

২য় শর্তমতে,

গভীরতা = 5-3 মিটার = 2 মিটার:

প্রস্থ = 40 মিটার:

দৈর্ঘ্য = x (ধরি);

আয়তন = 10000 ঘন মিটার।

x.40.2 = 10000

বা, 80x = 10000

বা, $X = \frac{10000}{80} = 125$

😳 আয়তন ঠিক রেখে পানির গভীরতা 3 মিটার কমালে দৈর্ঘ্য বাড়বে = 125-50 মিটার = 75 মিটার।

অনুশীলনী - 8 (৮ম শ্রেণি)

১. রইস ৩৫০০০ টাকা ৩ বছরের জন্য ব্যাংকে জমা রাখল। যদি সরল মুনাফার হার ৭% হয়, তবে ৩ বছর পরে রইছের কত টাকা মুনাফা হবে? [এটা ক্ষুদ্র সঞ্চয়ে ভবিষ্যৎ গড়ি এর ১ম প্রশ্ন]

সমাধানঃ

সরল মুনাফার সূত্র থেকে আমরা জানি,

I = Pnr

যেখানে,

আসল, P = ৩৫০০০ টাকা;

সময়. n = ৩ বছর:

মুনাফার হার, r = 9% = ⁹/_{১০০}

∴ মুনাফা I = ৩৫০০০×৩×(^٩/₂००) টাকা

= ৭৩৫০ টাকা।

তাহলে, ৩ বছর পরে রইছের মুনাফা হবে ৭৩৫০ টাকা।

২. জেবিন তার বন্ধুর সঙ্গে ব্যবসার শেয়ার থেকে ৬ মাসে ২৩০০০ টাকা মুনাফা পেল। মুনাফার হার ৮% হলে, ঐ ব্যবসায় জেবিনের মূলধন কত?

সমাধানঃ

```
দেওয়া আছে,
সময়, n = ৬ মাস = <sup>১</sup>/<sub>২</sub> বছর;
মুনাফা, I = ২৩০০০ টাকা;
মুনাফার হার, r = ৮% = <sup>৮</sup>/<sub>১০০</sub> = ০.০৮
আসল, P = ?
এখন, সরল মুনাফার ক্ষেত্রে,
I = Pnr
বা, P = <sup>1</sup>/<sub>nr</sub>
বা, P = ২৩০০০/(<sup>১</sup>/<sub>২</sub>×০.০৮)
বা, P = ৫৭৫০০০ টাকা।
∴ ঐ ব্যবসায় জেবিনের মূলধন ৫৭৫০০০ টাকা।
```

৩. শিমুল ৮০০০০ টাকা কোনো ব্যবসায় খাটিয়ে ২ বছরে ১৭৫০০০ টাকা মুনাফা পেল। শিমুলের শতকরা কত টাকা মুনাফা হলো?

সমাধানঃ

```
দেওয়া আছে,
সময়, n = ২ বছর;
মুনাফা, I = ১৭৫০০০ টাকা;
আসল, P = ৮০০০০ টাকা
মুনাফার হার, r = ?
এখন, সরল মুনাফার ক্ষেত্রে,
I = Pnr
বা, r = ¹/Pn
বা, r = ²৭৫০০০/(৮০০০০×২)
বা, r = ১.০৯৩৭৫ = ১০.৯৩৭৫%
∴ শিমুলের শতকরা মুনাফা হলো ১০.৯৩৭৫%।
```

8. জনি ৫০০০০ টাকা ব্যাংকে জমা রাখল। মুনাফার হার ৭.৫% হলে কত বছরে জনি ৩০০০০০ টাকা মুনাফা পাবে?

সমাধানঃ

```
দেওয়া আছে,
মুনাফা, I = ৩০০০০ টাকা;
আসল, P = ৫০০০০ টাকা;
মুনাফার হার, r = ৭.৫% = ০.০৭৫;
সময়, n = ?;
এখন, সরল মুনাফার ক্ষেত্রে,
I = Pnr
```



```
বা, n = <sup>1</sup>/<sub>Pr</sub>
বা, n = <sup>∞∞∞∞</sup>/<sub>(৫∞∞∞∞,∞۹৫)</sub>
বা, n = ৮০ বছর
∴ নির্ণেয় সময় = ৮০ বছর।
```

৫. ১০% মুনাফা হারে ৩ লক্ষ টাকা কত বছরের মুনাফা-আসলে দ্বিগুণ হবে?

সমাধা*নঃ

দেওয়া আছে.

মুনাফার হার, r = ১০% = 0.১

আসল, P = ৩০০০০ টাকা

মুনাফা-আসল = ৩০০০০০×২ টাকা = ৬০০০০ টাকা

মুনাফা, I = মুনাফা-আসল — আসল = (৬০০০০০-৩০০০০০) টাকা = ৩০০০০০ টাকা।

সময়, n = ?

এখন, আমরা জানি,

I = Pnr

বা, n = ¹/_{Pr}

বা, n = ৩০০০০০/(৩০০০০০×০.১)

বা, n =১০ বছর।

: ১০% মুনাফা হারে ৩ লক্ষ টাকা ১০ বছরের মুনাফা-আসলে দ্বিগুণ হবে।

৬. ৫০০০০ টাকা ৭ বছরে মুনাফা-আসলে ১২০০০০ টাকা হলে মুনাফার হার কত?

সমাধা*নঃ

দেওয়া আছে.

মুনাফা-আসল = ১২০০০০ টাকা

আসল, P = ৫০০০০ টাকা

∴ মুনাফা, I = (১২০০০০-৫০০০০) টাকা = ৭০০০০ টাকা।

এবং, n = ৭ বছর;

মুনাফার হার, r = ?

এখন, আমরা জানি,

I = Pnr

বা, r = ¹/_{Pn}

বা, r = ৭০০০০/(৫০০০০×৭)

বা, r = o.২ = ২০%

: মুনাফার হার ২০%

৭. কোনো মূলধন ৫ বছরে যে মুনাফা হারে মুনাফা-আসলে দ্বিগুণ হয়, সেই মুনাফা হারে ৮ বছরে মুনাফা- আসলে ২৬০০০ টাকা হবে। মূলধন কত?

সমাধানঃ

ধরি, মুলধন = x এবং মুনাফা হার = r

∴ x মুলধনে ৫ বছরে r হারে মুনাফা = ৫xr টাকা।

১ম শর্তমতে.

৫xr = ২x [∴ মুলধন মুনাফা-আসলে দ্বিগুণ হয়]

বা, &r = ২

বা, r = ^২/_৫ = 0.8

আবার.

x মুলধনে ৮ বছরে ০.৪ হারে মুনাফা = ৮×x×০.৪ টাকা ৩.২x টাকা।

: x মুলধনে ৮ বছরে ০.৪ হারে মুনাফা-আসল = (x + ৩.২x) টাকা = 8.২x টাকা। আবার, ২য় শর্তমতে,

8.2x = 25000

বা, x = ২৬০০০/৪.২ = ৬১৯০.৪৭৬১৯ টাকা।

∴ মূলধন = ৬১৯০.৪৭৬১৯ টাকা।

৮. ৯% হারে ২০০০ টাকার ১০ বছরের মুনাফা, ৮% হারে ৫০০০ টাকার কত বছরের মুনাফার সমান?

সমাধা*নঃ

৯% হারে ২০০০ টাকার ১০ বছরের মুনাফা

- = ২০০০×১০×৯% টাকা
- = ২০০০×১০×০.০৯ টাকা
- = ১৮০০ টাকা।

আবার.

৮% হারে ৫০০০ টাকার n বছরের মুনাফা

- = ৫০০০×n×৮% টাকা
- = ৫০০০×n×০.০৮ টাকা
- = 800n টাকা।

শর্তমতে,

800n = \$b00

বা, n = ১৮০০/_{৪০০} = ৪.৫ বছর।

∴ নির্ণেয় সময় = 8.৫ বছর।

৯. ১৩% হারে ২৫০০০ টাকার ৬ বছরের মুনাফা, কত মুনাফা হারে ২০০০০ টাকার ৮ বছরের মুনাফার সমান?

সমা*ধানঃ

১৩% হারে ২৫০০০ টাকার ৬ বছরের মুনাফা

- = ২৫০০০×৬×১৩% টাকা
- = ২৫০০০×৬×০.১৩ টাকা
- = ১৯৫০০ টাকা।

আবার.

r মুনাফা হারে ২০০০০ টাকার ৮ বছরের মুনাফা

- = ২০০০০×৮×r টাকা
- = ১৬০০০ টাকা।

♀ ♀ ⊘ / Courstika

শর্তমতে.

১৬0000r = ১৯৫00

বা, $r = \frac{35600}{350000} = 0.323$ ৮৭৫ = 32.3৮৭৫%

∴ নির্ণেয় মুনাফা হার = ১২.১৮৭৫%

১০. তানজিলা ৩০ হাজার টাকা ৫ বছরের জন্য এবং রায়হান ২০ হাজার টাকা ৭ বছরের জন্য ব্যাংকে জমা রাখল। যদি উভয়ের জন্য মুনাফা হার ৮% হয়, তবে কে এবং কত বেশি লাভবান হবে?

সমা*ধানঃ

৮% হারে ৩০০০০ টাকার ৫ বছরের মুনাফা

- = ৩০০০০×৫×৮% টাকা
- = ৩০০০০×৫×০.০৮ টাকা
- = ১২০০০ টাকা।

আবার.

৮% হারে ২০০০০ টাকার ৭ বছরের মুনাফা

- = ২০০০০×৭×৮% টাকা
- = ২০০০০×৭×০.০৮ টাকা
- = ১১২০০ টাকা।
- ∴ তানজিলা বেশি লাভবান হবে এবং এই বেশি লাভের পরিমাণ = (১২০০০-১১২০০) টাকা = ৮০০ টাকা।
- ১১. শরিফা ৭০ হাজার টাকা ৮% মুনাফা হারে এবং জহির ৫০ হাজার টাকা ১২% মুনাফা হারে ব্যাংকে জমা রাখল। ৬ বছর পরে কে এবং কত বেশি লাভবান হবে?

সমা*ধানঃ

৭০ হাজার টাকা ৮% মুনাফা হারে ৬ বছরের মুনাফা

- = ৭০০০০×৬×৮% টাকা
- = ৭০০০০×৬×০.০৮ টাকা
- = ৩৩৬০০ টাকা।

আবার.

৫০ হাজার টাকা ১২% মুনাফা হারে ৬ বছরের মুনাফা

- = ৫০০০০×৬×১২% টাকা
- = ৫০০০০×৬×০.১২ টাকা
- = ৩৬০০০ টাকা।
- ∴ জহির বেশি লাভবান হবে এবং এই বেশি লাভের পরিমাণ = (৩৬০০০-৩৩৬০০০) টাকা =২৪০০ টাকা।
- ১২. ৮% মুনাফা হারে ৭৫ হাজার টাকার ৫ বছরের –
- (ক) সরল মুনাফা কত?

সমা-ধানঃ

এখানে.

r = b% = 0.0b;

P = ৭৫০০০ টাকা:

n = ৫ বছর;

∴ সরল মুনাফা, I

= Pnr

= 96000×6×0.0b

= ৩০০০০ টাকা।

(খ) চক্ৰবৃদ্ধি মুনাফা কত?

সমা-ধানঃ

এখানে.

r = b% = 0.0b;

P = ৭৫০০০ টাকা:

n = ৫ বছর:

∴ চক্রবৃদ্ধি মুনাফা, C

 $= P[(1+r)^n-3]$

 $= 9(000[(\lambda+0.0b)^{\alpha}-\lambda]$

= 96000[3.0b°-3]

= **৩৫১৯৯.৬০৬** টাকা।

(গ) সরল মুনাফা এবং চক্রবৃদ্ধি মুনাফার পার্থক্য কত?

সমা-ধানঃ

ক ও খ হতে প্রাপ্ত তথ্য থেকে পাই,

চক্রবৃদ্ধি মুনাফা - সরল মুনাফা

= ৩৫১৯৯.৬০৬ টাকা - ৩০০০০ টাকা

= ৫১৯৯.৬০৬ টাকা।

সরল মুনাফা এবং চক্রবৃদ্ধি মুনাফার পার্থক্য ৫১৯৯.৬০৬ টাকা।

(ঘ) ৪ মাস অন্তর মুনাফাভিত্তিক চক্রবৃদ্ধি মুনাফা কত?

সমা-ধানঃ

এখানে.

8 মাস = ⁸/১২ বছর = ^১/৩ বছর।

এক বছরে মুনাফা প্রাপ্তির সংখ্যা = \$২÷8 = ৩ বার।

∴ ৫ বছরে মুনাফা প্রাপ্তির সংখ্যা = ৩×৫ = ১৫ বার, অর্থাৎ n = ১৫

৪ মাস বা ^১/_৩ বছরে চক্রবৃদ্ধি মুনাফার হার, r = ^১/_৩×৮% = ^৮/_{৩০০}

∴ চক্রবৃদ্ধি মুনাফা, C

 $= P[(1+r)^n-3]$

 $= 9(000[(3+^{1}/_{000})^{3(-3)}]$

= ৩৬৩০২.০৬২৫ টাকা।

(৬) ৩ মাস অন্তর মুনাফাভিত্তিক চক্রবৃদ্ধি মুনাফা কত?

🙃 🕞 🕡 / Courstika

সমা-ধানঃ

```
এখানে,
```

৩ মাস = °/১২ বছর = ^১/_৪ বছর।

এক বছরে মুনাফা প্রাপ্তির সংখ্যা = ১২÷৩ = ৪ বার।

∴ ৫ বছরে মুনাফা প্রাপ্তির সংখ্যা = 8×৫ = ২০ বার, অর্থাৎ n = ২০

৩ মাস বা $\frac{1}{8}$ বছরে চক্রবৃদ্ধি মুনাফার হার, $r = \frac{1}{8} \times b\% = 0.02$

∴ চক্রবৃদ্ধি মুনাফা, C

 $= P[(1+r)^n-3]$

= 9@000[(\(\frac{1}{2}\)-0.0\(\frac{1}{2}\))-\(\frac{1}{2}\)

= ৩৬৪৪৬.০৫৫ টাকা।

১৩. জুবায়ের এবং রিয়া উভয়ে ৭% হারে ৬ বছরের জন্য ২৫ হাজার টাকা করে ব্যাংকে জমা রাখল। যদি জুবায়ের সরল হারে এবং রিয়া চক্রবৃদ্ধি হারে মুনাফা পায়, তবে কে বেশি লাভবান হবে এবং ৬ বছর পরে মুনাফা-আসলে কার কত টাকা হবে?

সমা.ধানঃ

এখানে,

r = 9% = 0.09

n = ৬

P = 26000

জুবায়েরের ক্ষেত্রে,

সরল মুনাফা, I

= Pnr

= **২**৫০০০×৬×০.০৭

= ১০৫০০ টাকা।

এবং মুনাফা-আসল = (২৫০০০+১০৫০০) টাকা = ৩৫৫০০ টাকা।

আবার.

রিয়ার ক্ষেত্রে.

চক্রবৃদ্ধির মুনাফা, C

 $= P[(3+r)^n-3]$

= 26000[(2+0.09)6-2]

= ১২৫১৮.২৫৮৭ টাকা।

এবং মুনাফা-আসল = (২৫০০০+১২৫১৮.২৫৮৭) টাকা = ৩৭৫১৮.২৫৮৭ টাকা।

∴ উপরোক্ত প্রাপ্ত তথ্য হতে পাই.

১২৫১৮.২৫৮৭ > ১০৫০০; অর্থাৎ, রিয়া বেশি লাভবান হবে।

জুবায়ের এর মুনাফা-আসল হবে = ৩৫৫০০ টাকা

এবং.

রিয়া এর মুনাফা-আসল হবে = ৩৭৫১৮.২৫৮৭ টাকা।

১৪. আহসান এবং তাহসিনা উভয়ে ১১% মুনাফা হারে ৫ বছরের জন্য ২০ হাজার টাকা করে ব্যাংকে জমা রাখল। যদি আহসান ৬ মাস অন্তর মুনাফাভিত্তিক এবং তাহসিনা ৪ মাস অন্তর মুনাফাভিত্তিক চক্রবৃদ্ধি হারে মুনাফা পায়, তবে কে বেশি লাভবান হবে এবং ৫ বছর পরে কার কত টাকা মূলধন হবে? সমা ধানঃ

৬ মাস অন্তর মুনাফার ক্ষেত্রেঃ

- ৬ মাস = ৬/১২ বছর = ১/২ বছর।
- এক বছরে মুনাফা প্রাপ্তির সংখ্যা = ১২÷৬ = ২ বার।
- ∴ ৫ বছরে মুনাফা প্রাপ্তির সংখ্যা = ২×৫ = ১০ বার, অর্থাৎ n = ১০
- ৬ মাস বা ^১/২ বছরে চক্রবৃদ্ধি মুনাফার হার, r = ^১/২×১১% = 0.0৫৫
- ∴ চক্রবৃদ্ধি মুনাফা, C
- = P[(1+r)ⁿ-১] [এখানে, P=২০০০০]
- = 20000[(3+0.066)30-3]
- = ১৪১৬২.৮৮৯২ টাকা।
- ∴ মুনাফা-আসল বা মূলধন = (২০০০+১৪১৬২.৮৮৯২) টাকা = ৩৪১৬২.৮৮৯২ টাকা।

৪ মাস অন্তর মুনাফার ক্ষেত্রেঃ

- 8 মাস = ⁸/১২ বছর = ^১/৬ বছর।
- এক বছরে মুনাফা প্রাপ্তির সংখ্যা = ১২÷৪ = ৩ বার।
- ∴ ৫ বছরে মুনাফা প্রাপ্তির সংখ্যা = ৩×৫ = ১৫ বার, অর্থাৎ n = ১৫
- 8 মাস বা ¹/_৩ বছরে চক্রবৃদ্ধি মুনাফার হার, r = ¹/_৩×১১% = ¹¹/_{৩০০}
- ∴ চক্রবৃদ্ধি মুনাফা, C
- = P[(1+r)ⁿ-১] [এখানে, P=২০০০০]
- $= 20000[(2+22/200)^{20}-2]$
- = ১৪৩২৫.৫১১ টাকা।
- ∴ মুনাফা-আসল বা মূলধন = (২০০০+১৪৩২৫.৫১১) টাকা = ৩৪৩২৫.৫১১ টাকা।
- : উপরোক্ত প্রাপ্ত তথ্য হতে পাই,
- ১৪১৬২.৮৮৯২ < ১৪৩২৫.৫১১; অর্থাৎ, তাহসিনা বেশি লাভবান হবে।
- ে ৫ বছর পর আহসান এবং তাহসিনা এর মূলধন হবে যথাক্রমে ৩৪১৬২.৮৮৯২ এবং ৩৪৩২৫.৫১১ টাকা।
- ১৫. এক ব্যক্তি একটি ঋণদান সংস্থা থেকে ১১% চক্রবৃদ্ধি হারে প্রতি মাস অন্তর মুনাফা ভিত্তিক ৫০ হাজার টাকা ঋণ নিলেন। যদি ঐ ব্যক্তি প্রতি মাসে ১২০০০ টাকা করে ঋণ পরিশোধ করে, তবে-
- (ক) ১ মাস পরে আর কত টাকা ঋণ থাকবে?
- (খ) ২ মাস পরে আর কত টাকা ঋণ থাকবে?
- (গ) ৩ মাস পরে আর কত টাকা ঋণ থাকবে?

সমাধানঃ

১ মাস অন্তর ঋণের ক্ষেত্রেঃ

১ মাস = ¹/১২ বছর।

এক বছরে ঋণ বৃদ্ধির সংখ্যা = ১২÷১ = ১২ বার।

- : প্রতি মাসে ১ বার করে ঋণ বৃদ্ধি হবে অর্থাৎ n =মাস সংখ্যা।
- ১ মাস বা ^১/১২ বছরে চক্রবৃদ্ধি ঋণ বৃদ্ধির হার, r = ^১/১২×১১% = ^{১১}/১২০০

🕠 🕞 🕡 / Courstika

(ক)

- ১ মাস পর চক্রবৃদ্ধি মূলঋণ, A1
- = P(1+r)ⁿ [এখানে, P=৫০০০০]
- = (cooo()+,,/,>(o)),
- = ৫০৪৫৮.৩৩৩৫ টাকা।
- ঐ ব্যক্তি ১ মাসে ঋণ শোধ করে = ১২০০০ টাকা।
- ∴ ১ মাস পরে ঐ ব্যক্তির আর ঋণ থাকবে = (৫০৪৫৮.৩৩৩৫-১২০০০) টাকা = ৩৮৪৫৮.৩৩৫ টাকা।

(খ)

- ২ মাস পর চক্রবৃদ্ধি মূলঋণ, A2
- = P(1+r)ⁿ [এখানে, P=৫০০০০]
- $= (20000(2+2)/2500)^{2}$
- = ৫০৯২০.৮৬৮৫ টাকা।
- ঐ ব্যক্তি ২ মাসে ঋণ শোধ করে = ১২০০০×২ টাকা = ২৪০০০ টাকা।
- ∴ ২ মাস পরে ঐ ব্যক্তির আর ঋণ থাকবে = (৫০৯২০.৮৬৮৫-২৪০০০) টাকা = ২৬৯২০.৮৬৮৫ টাকা।

(গ)

- ৩ মাস পর চক্রবৃদ্ধি মূলঋণ, A₃
- = P(1+r)ⁿ [এখানে, P=৫০০০০]
- = (cooo()+²²/₂₂₀₀)°
- = ৫১৩৮৭.৬৪২৫ টাকা।
- ঐ ব্যক্তি ৩ মাসে ঋণ শোধ করে = ১২০০০×৩ টাকা = ৩৬০০০ টাকা।
- ∴ ৩ মাস পরে ঐ ব্যক্তির আর ঋণ থাকবে = (৫১৩৮৭.৬৪২৫-৩৬০০০) টাকা = ১৫৩৮৭.৬৪২৫ টাকা।
- ১৬. করিম ৯% চক্রবৃদ্ধি মুনাফা হারে ৫ বছরের জন্য ৫০ হাজার টাকা এবং মরিয়ম ৭% চক্রবৃদ্ধি মুনাফা হারে ৫ বছরের জন্য ৮০ হাজার টাকা ব্যাংকে জমা রাখল। ব্যাংক থেকে কার বেশি আয় হবে এবং কত টাকা বেশি আয় হবে?

সমাধা.নঃ

করিমের আয়ের ক্ষেত্রে.

$$r = \% = 0.0\%$$
:

n = &:

P = (0000);

- ∴ চক্রবৃদ্ধি মুনাফা, C= P[(১+r)ⁿ-১]
 - $= (60.00)(5+0.05)^{\circ}$
 - = ২৬৯৩১.১৯৭৫ টাকা।

আবার.

মরিয়মের আয়ের ক্ষেত্রে,

$$r = 9\% = 0.09;$$

n = C;

P = 80000:

- ∴ চক্রবৃদ্ধি মুনাফা, C= P[(১+r)ⁿ-১]
 - $= b0000[(1+0.09)^{\circ}-1]$
 - = ৩২২০৪.১৩৮৪ টাকা।

এখন, ৩২২০৪.১৩৮৪ > ২৬৯৩১.১৯৭৫

∴ মরিয়মের বেশি আয় হবে য়য়র পরিয়াণ = (৩২২০৪.১৩৮৪ - ২৬৯৩১.১৯৭৫) টাকা = ৫২৭২.৯৪০৯ টাকা।

১৭. তাহসিনা ৩৫০ টাকা দরে ৮টি মুরগি ক্রয় করে মোট ২৫০০ টাকায় বিক্রয় করলে কত লাভ বা ক্ষতি হবে? তাহসিনার মূলধন কত?

সমাধানঃ

তাহসিনা ১টি মুরগি ক্রয় করে ৩৫০ টাকায়

: তাহসিনা ৮টি মুরগি ক্রয় করে ৩৫০×৮ টাকায় = ২৮০০ টাকায়।

এবং ৮টি মুরগি বিক্রয় করে ২৫০০ টাকায়।

তাহলে, তাহসিনার ক্ষতি হয় (২৮০০-২৫০০) = ৩০০ টাকা।

তাহসিনার মূলধনঃ

তাসসিনার মূলধন ২৮০০ টাকা।

১৮. একজন মাছচাষি তার পুকুরে ৫০০০ টাকার পোনামাছ ছাড়লেন। সে মাছের খাবারের জন্য ৬০০০০ টাকা এবং মাছচাষের শ্রমিকের জন্য ২৫০০০ টাকা খরচ করলো। ঐ মাছচাষির মূলধন কত? যদি তিনি তার পুকুরের মাছ ২০০০০০ টাকা বিক্রি করেন, তবে তার কত টাকা লাভ হবে।

সমাধানঃ

প্রশ্নমতে মাছ চাষির মোট বিনিয়োগ

- = (৫০০০ + ৬০০০০ + ২৫০০০) টাকা
- = ৯০০০০ টাকা।
- 😯 ঐ মাছচাষির মূলধন = ৯০০০০ টাকা।

তার লাভের পরিমাণ

- = মাছ বিক্রয়মূল্য মোট বিনিয়োগ
- = (২০০০০ ৯০০০০) টাকা
- = ১১০০০০ টাকা।

১৯. একজন কৃষক এক দোকানে ৪০ কেজি ধান দিয়ে ২০ কেজি চাল, ৫ কেজি আটা এবং ১ কেজি ডাল নিল। যদি এক কেজি ধানের দাম ১২ টাকা, এক কেজি চালের দাম ১৬ টাকা, এক কেজি আটার দাম ১৮ টাকা এবং এক কেজি ডালের দাম ২৮ টাকা হয়, তবে কৃষকের কত টাকা লাভ বা ক্ষতি হলো?

সমাধানঃ

- ১ কেজি ধানের দাম ১২ টাকা
- ∵ ৪০ কেজি ধানের দাম ১২×৪০ টাকা = ৪৮০ টাকা। আবার.
- ১ কেজি চালের দাম ১৬ টাকা
- : ২০ কেজি চালের দাম ২০×১৬ টাকা = ৩২০ টাকা।

🙃 🕞 🕡 / Courstika

১ কেজি আটার দাম ১৮ টাকা

এবং ১ কেজি ডালের দাম ২৮ টাকা।

তাহলে,

২০ কেজি চাল, ৫ কেজি আটা, ১ কেজি চালের মোট দাম = (৩২০+৯০+২৮) টাকা = ৪৩৮ টাকা।
∵ কৃষকের ক্ষতি হলো =(৪৮০-৪৩৮) টাকা = ৪২ টাকা।

২০. একজন ফলবিক্রেতা ১৫০০০ টাকা দিয়ে ১২০ শত লিচু ক্রয় করলেন। যাতায়াতের সময় ৬ শত লিচু নষ্ট হয়ে গেল। বাকি প্রতি শত লিচু কত টাকা দরে বিক্রয় করলে তার মোট ২০০০ টাকা লাভ হবে?

সমাধাণঃ

ফলবিক্রেতা ক্রয় করেন ১২০ শত লিচু যাতায়াতে নষ্ট হয় ৬ শত লিচু

∵ লিচু ভালো থাকে = (১২০-৬) শত = ১১৪ শত
এখন.

লিচুর ক্রয়মূল্য = ১৫০০০ টাকা

শর্তমতে, বিক্রয়মূল্য হতে হবে (১৫০০০+২০০০) = ১৭০০০ টাকা। এবং.

১১৪ শত লিচুর বিক্রয়মূল্য হবে ১৭০০০ টাকা

∴ ১ শত লিচুর বিক্রয়মূল্য হবে = ১৭০০০/১১৪ টাকা = ১৪৯.১২২৮ টাকা (প্রায়)।

২১. একটি সাইকেল ৫,০০০ টাকা দিয়ে ক্রয় করে ১২% লাভে বিক্রয় করলে মোট কত টাকা লাভ হবে? সাইকেলটির বিক্রয়মূল্য কত?

সমাধাণঃ

১২% লাভে,

সাইকেলের ক্রয়মূল্য ১০০ টাকা সাইকেল বিক্রয়ে লাভ ১২ টাকা

- · সাইকেলের ক্রয়মূল্য ১ টাকা সাইকেল বিক্রয়ে লাভ ^{১২}/১০০ টাকা
- ः সাইকেলের ক্রয়মূল্য ৫০০০ টাকা সাইকেল বিক্রয়ে লাভ ১২/১০০×৫০০০ টাকা = ৬০০ টাকা। অতএব,

মোট লাভ = ৬০০ টাকা

এবং বিক্রয়মূল্য = (৫০০০+৬০০) টাকা = ৫৬০০ টাকা।

২২. একজন ব্যবসায়ী তার পণ্য ৫% ক্ষতিতে বিক্রয় করলেন। যদি তিনি ১২৩০ টাকা বেশি দামে বিক্রি করতে পারতেন তবে তার ৫% লাভ হতো, ব্যবসায়ীর পণ্যের ক্রয়মূল্য কত?

সমাধাণঃ

ধরি, পন্যটির ক্রয়মূল্য = ক টাকা।

৫% ক্ষতিতে,

পণ্যটির বিক্রয়মূল্য = (ক – ক×৫%) টাকা = (ক – ক×০.০৫) টাকা = ০.৯৫ক টাকা। ৫% লাভে.

🕡 🖸 🕡 / Courstika

পণ্যটির বিক্রয়মূল্য = (ক + ক×৫%) টাকা = (ক + ক×০.০৫) টাকা = ১.০৫ক টাকা। শর্তমতে,

০.৯৫ক + ১২৩০ = ১.০৫ক

বা, ১.০৫ক – ০.৯৫ক = ১২৩০

বা, ০.১ক = ১২৩০

বা, ক = ১২৩০/০.১ = ১২৩০০

পন্যটির ক্রয়মূল্য = ১২৩০০ টাকা।

২৩.উৎপন্নকারী, পাইকারী বিক্রেতা এবং খুচরা বিক্রেতা সকলে ৫% লাভে একটি পণ্য বিক্রয় করেন। একজন খরিদ্দার পণ্যটি খুচরা বিক্রেতার কাছ থেকে ১০৫০ টাকা দিয়ে ক্রয় করলে এর উৎপন্ন খরচ কত?

সমাধানঃ

এখানে, পন্যটি তিন ধাপে বিক্রি হয় অর্থাৎ n=3; লাভের চক্রবৃদ্ধির হার, r=6%=0.06 চক্রবৃদ্ধির হারে সর্বশেষ বিক্রয়মূল্য, A=5060 টাকা। তাহলে, উৎপন্ন খরচ P হলে সূত্র প্রয়োগ করে পাই, $A=P(5+r)^n$ বা, $5060=P(5+0.06)^0$ বা, $5060=P\times5.569826$ বা, $P=\frac{5000}{5.569826}=509.00$ টাকা (প্রায়)। \therefore উৎপন্ন খরচ = 509.00 টাকা (প্রায়)

অনুশীলনী – ৫ (৮ম শ্রেণি)

১। চিত্র ক-এ প্রদত্ত আকৃতি পরিমাপের ক্ষেত্রে কীভাবে সমকোণী ত্রিভুজের বৈশিষ্টট্য ব্যবহার করবে? সমস্যাটি সমাধান করো এবং পিথাগোরাসের উপপাদ্য কীভাবে সাহায্য করল যুক্তি দাও। AD = 12 cm হলে BC এর দৈর্ঘ্য নির্ণয় করো।

সমাধানঃ

চিত্র ক-এ প্রদত্ত আকৃতি পরিমাপের ক্ষেত্রে সমকোণী ত্রিভুজের একটি বৈশিষ্টট্য ব্যবহার করা যায়। সেটি হলোঃ-

সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফল অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টির সমান।

এখানে, দুইটি সমকোণী ত্রিভুজ ΔABD ও ΔACD আছে; তাহলে উপরোক্ত সমকোণী ত্রিভুজের বৈশিষ্ট অনুসারে আমরা লিখতে পারি-

$$AC^2 = AD^2 + DC^2 \dots (i)$$

$$AB^2 = AD^2 + BD^2 \dots (ii)$$

এবং এই দুই সমীকরণ থেকে আমরা চিত্র ক-এ প্রদত্ত আকৃতি পরিমাপ করতে পারি।

BC এর মান নির্ণয়ঃ

(i) নং এ, AD = 12 cm; AC = 37 cm বসিয়ে পাই,

$$37^2 = 12^2 + DC^2$$

অনুরুপভাবে, (ii) নং থেকে পাই,

$$BD = 35$$

$$: BC = BD + DC = 35 + 35 = 70 \text{ cm}$$

২। চিত্র এঁকে বা কাগজ কেটে প্রমাণ করো— বর্গের কর্ণদ্বয় পরস্পর সমান। সমাধানঃ

মনে করি, ABCD একটি বর্গ যাদের AC ও BD দুইটি কর্ণ। নিন্মের চিত্রে বর্গ ও তার কর্ণদ্বয়কে এঁকে দেখানো হলো। এখন এই চিত্র থেকে প্রমাণ করতে হবে যে, AC = BD.

প্রমাণঃ

ABCD বর্গে, AB = BC = CD = DA = a [\cdot বর্গের চারটি বাহুর দৈর্ঘ্য সমান হয়]; আবার, \angle BCD = 90° [যেহেতু, ABCD একটি বর্গ]

· ΔBCD হতে পিথাগোরাসের সূত্রানুসারে পাই,

$$BD^2 = BC^2 + DC^2 = a^2 + a^2 = 2a^2$$

বা, BD =
$$\sqrt{(2a^2)} = \sqrt{2.a}$$
(i)

অনুরুপভাবে,

$$AC^2 = CD^2 + DA^2 = a^2 + a^2 = 2a^2$$

বা,
$$AC = \sqrt{(2a^2)} = \sqrt{2.a}$$
(ii)

এখন, (i) ও (ii) হতে পাই,

AC = BD [প্রমাণিত]

৩। ধরো চারটি বাহুর দৈর্ঘ্য দেওয়া আছে 4 cm, 3 cm, 3.5 cm, 5 cm এবং যে কোনো একটি কোণ দেওয়া আছে 60 ডিগ্রি। চতুর্ভুজটি অঙ্কন করো। [জমির নকশায় ত্রিভুজ ও চতুর্ভুজ এর ৩ নং প্রশ্ন এটি; পর্যায়ক্রমে সব দেয়া হয়েছে।]

সমাধানঃ

চারটি বাহুর দৈর্ঘ্য দেওয়া আছে a = 4 cm, b= 3 cm, c = 3.5 cm, d = 5 cm এবং যে কোনো একটি কোণ দেওয়া আছে 60 ডিগ্রি দেওয়া আছে। চতুর্ভুজটি অঙ্কন করতে হবে।

অঙ্কনের বিবরণঃ

- (ক) যেকোনো একটি রশ্মি AF নেই এবং A কে কেন্দ্র করে যেকোনো ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি যা AF কে P বিন্দুতে ছেদ করে।
- (খ) P কে কেন্দ্র করে ঐ একই ব্যাসার্ধ নিয়ে আরও একটি বৃত্তচাপ আঁকি যা পূর্বের বৃত্তচাপকে Q বিন্দুতে ছেদ করে।
- (গ) A,Q যোগ করে AE রশ্মি আঁকি। তাহলে ∠EAF = 60° অঙ্কিত হলো।
- (ঘ) এখন, AF থেকে AB = a এবং AE থেকে AD = d অংশ কেটে নিই।
- (ঙ) B কে কেন্দ্র করে b ও D কে কেন্দ্র করে c এর সমান ব্যাসার্ধ নিয়ে ∠DAB এর অভ্যন্তরে দুটি বৃত্তচাপ আঁকি। বৃত্তচাপদ্বয় পরস্পরকে C বিন্দুতে ছেদ করে।
- (চ) D,C; B,C যোগ করি; তাহলে ABCD নির্নেয় চতুর্ভুজ অঙ্কিত হলো।

8। চিত্র : খ-এ AB = ?

সমাধানঃ

C বিন্দু থেকে AB এর উপর লম্ব AB কে যে বিন্দুতে ছেদ করে তাকে D দ্বারা চিহ্নিত করি।

AB নির্ণয়ঃ

চিত্রানুসারে,

∆BCD-এ,

BD²+CD²=CB² [পিথাগোরাসের সূত্রানুসারে]

বা, $BD^2 = CB^2 - CD^2$

বা. BD² = 5²-3²

বা, $BD^2 = 25 - 9$

বা, BD² = 16

বা, BD = 4 cm [বর্গমূল করে]

আবার.

∆ACD-এ,

 $AD^2+CD^2=AC^2$ [পিথাগোরাসের সূত্রানুসারে]

বা, $AD^2 = AC^2 - CD^2$

বা, $AD^2 = 12^2 - 3^2$

বা, $AD^2 = 144 - 9$

বা, AD² = 135

বা, BD = 3√15 [বর্গমূল করে]

∴ AB = AD+BD = $(3\sqrt{15}+4)$ cm

৫। তোমার স্কুলের একটি দেয়াল রঙ করার জন্য যদি 15 m একটি মইকে দেয়াল থেকে 12 m দূরত্বে স্থাপন করা হয় (চিত্র : গ)। তাহলে ভূমি থেকে মইয়ের শীর্ষবিন্দু পর্যন্ত দেয়ালের উচ্চতা নির্ণয় করো।

সমাধানঃ

চিত্র অনুসারে,

AB = মইয়ের দৈর্ঘ্য = 15m

BC = ভূমির দৈর্ঘ্য = 12m

AC = ভূমি থেকে মইয়ের শীর্ষবিন্দু পর্যন্ত দেয়ালের উচ্চতা

এখন, AB, BC, AC মিলিত হয়ে একটি সমকোণী ত্রিভুজ উৎপন্ন করেছে যেখানে, ∠BCA = 90°।

 $AB^2 = BC^2 + AC^2$

বা, $AC^2 = AB^2 - BC^2$

বা, $AC^2 = 15^2 - 12^2$

বা, AC²= 225-144

বা, AC² = 81

বা, AC = 9 [বর্গমূল করে]

∵ ভূমি থেকে মইয়ের শীর্ষবিন্দু পর্যন্ত দেয়ালের উচ্চতা 9m.

৬। চিত্র : ঘ এর আয়তক্ষেত্রটির পরিসীমা নির্ণয় করো।

সমাধানঃ

চিত্র অনুসারে,

∆ABD-এ,

 $BD^2 = AD^2 + AB^2$

বা. $AD^2 = BD^2 - AB^2$

বা, AD²= 41²-40²

বা, AD²=1681-1600

বা, AD² = 81

বা, AD = 9 [বর্গমূল করে]

অর্থাৎ.

আয়তক্ষেত্রটির প্রস্থ = AD = BC = 9 cm;

আয়তক্ষেত্রটির দৈর্ঘ্য = AB = CD = 40 cm.

: আয়তক্ষেত্রটির পরিসীমা

= 2(দৈর্ঘ্য+প্রস্থ) একক

= 2(40+9) cm

 $= 2 \times 49 \text{ cm}$

= 98 cm

৭। চিত্র : ৬ এর রম্বসের কর্ণ AC = 30 cm. ও BD = 16 cm. হলে রম্বসের পরিধি নির্ণয় করো।

সমাধানঃ

আমরা জানি,

রম্বসের কর্ণদ্বয় নিজেদের ছেদবিন্দুতে নিজেদেরকে সমান দৈর্ঘ্যে দ্বিখন্ডিত করে এবং একে অপরের সাথে লম্বভাবে অবস্থান করে।

এখন, AC ও BD এর ছেদবিন্দু O হলে,

 $AO = \frac{1}{2} \times 30 \text{ cm} = 15 \text{ cm};$

 $BO = \frac{1}{2} \times 16 \text{ cm} = 8 \text{ cm};$

∵ ∆ABO-এ,

 $AB^2 = AO^2 + OB^2$

বা. AB²=15²+8²

বা, AB²=225+64

বা, AB²=289

বা, AB = 17 [বর্গমূল করে]

অর্থাৎ, রম্বসটির বাহুর দৈর্ঘ্য = 17 cm

রম্বসটির পরিধি = 4×17 cm = 68 cm.

৮। যদি (3, 4 ও 5) পিথাগোরিয়ান ত্রয়ী হয়, তবে (3k, 4k ও 5k) পিথাগোরিয়ান ত্রয়ী হবে, যেখানে k যে কোনো ধনাত্মক পূর্ণ সংখ্যা। উক্তিটির যথার্থতা যাচাই করো।

সমাধানঃ

যেহেতু $(3, 4 \circ 5)$ পিথাগোরিয়ান ত্রয়ী সেহেতু, $3^2+4^2=5^2$

এখন, $(3k)^2 + (4k)^2 = (5k)^2$ এর ক্ষেত্রে k এর জন্য ধণাত্মক ও ঋণাতমক মান ধরে হিসাব করি-

K=1 হলে,

 $(3.1)^2+(4.1)^2=(5.1)^2$

বা, $3^2+4^2=5^2$

বা, 9+16=25

বা, 25=25, যা যথার্থ।

আবার.

K=-1 হলে.

 $(3.-1)^2+(4.-1)^2=(5.-1)^2$

বা, (-3)²+(-4)²=(-5)², কিন্তু সমকোণী ত্রিভুজের বাহুর দৈর্ঘ্যের মান ঋণাত্মক হতে পারে না। আবার.

K=2 হলে.

 $(3.2)^2+(4.2)^2=(5.2)^2$

বা, 6²+8²=10²

বা, 36+64=100

বা. 100=100 যা যথার্থ।

আবার.

K=-2 হলে.

 $(3.-2)^2+(4.-2)^2=(5.-2)^2$

বা, (-6)²+(-8)²=(-10)², কিন্তু সমকোণী ত্রিভুজের বাহুর দৈর্ঘ্যের মান ঋণাত্মক হতে পারে না। অর্থাৎ, k এর মান ঋণাত্মক পূর্ণসংখ্যা হতে পারে না কিন্তু সকল ধনাত্মক পূর্ণসংখ্যা হতে পারে [উক্তিটির যথার্থতা যাচাই করা হলো]

৯। যেকোনো ত্রিভুজের দুই বাহুর মধ্যবিন্দুর সংযোগ রেখা তৃতীয় বাহুর সমান্তরাল ও অর্ধেক। যে কোনো আকৃতির ত্রিভুজ তৈরি করে বা কাগজ কেটে পরিমাপের মাধ্যমে উক্তিটির সত্যতা নিশ্চিত করো।

সমাধানঃ

যেকোনো আকৃতির ত্রিভুজ ABC তৈরি করি এবং AB ও AC এর মধ্যবিন্দু P ও Q সংযুক্ত করি। এখন নিচের সারণিতে বাহুর দৈর্ঘ্য পরিমাণ করে নিন্মোক্ত তথ্যগুলি পূরণ করে প্রদত্ত উক্তিটির সত্যতা নিশ্চিত করি।

বাহুর দৈর্ঘ্য	বাহুর দৈর্ঘ্য	অনুপাত
AP = 2.5 cm	BP = 2.5 cm	AP/BP = 1
AQ = 2.5 cm	CE = 2.5 cm	AQ/CE = 1
BC = 4 cm	PQ = 2 cm	BC/PQ = 2

সারণি থেকে পাই,

BP = CQ = 2.5 cm,

: BC || PQ

আবার,

BC/PQ = 2

বা, PQ = ½BC

অর্থাৎ, প্রদত্ত উক্তিটির সত্যতা যাচাই করা হলো।

১০। সামান্তরিকের দুইটি সন্নিহিত বাহুর দৈর্ঘ্য 6 cm ও 5 cm এবং বাহুদ্বয়ের অন্তর্ভুক্ত কোণ 50° হলে সামান্তরিকটি অঙ্কন করো।

সমাধানঃ

মনে করি, একটি সামন্তরিকের দুইটি সন্নিহিত বাহুর দৈর্ঘ্য a = 6 cm ও b=5 cm এবং এই বাহুদ্বয়ের অন্তর্ভুক্ত কোণ 50°। সামন্তরিকটি আঁকতে হবে।

🕠 🕩 🕡 / Courstika

অঙ্কনঃ

- (ক) যেকেনো রশ্মি AE লই।
- (খ) A কে কেন্দ্র করে যেকোনো ব্যাসার্ধ নিয়ে একটি বৃত্তচাপ আঁকি যা AE কে P বিন্দুতে ছেদ করে। এবং অনুরুপভাবে AP এর সমান ব্যাসার্ধ নিয়ে P কে কেন্দ্র করে Q, Q কে কেন্দ্র করে R ছেদ বিন্দু লই।
- (গ) Q ও R কে কেন্দ করে AE এর একই দিকে AR এর সমান ব্যাসার্ধ নিয়ে দুইটি বৃত্তচাপ আঁকি যারা পরস্পরকে F বিন্দুতে ছেদ করে। তাহলে, ∠EAF = 50° অঙ্কিত হলো।
- (ঘ) A, F যোগ করি।
- (ঙ) AE থেকে AB = a, AF থেকে AD = b কেটে নিই।
- (চ) D কে কেন্দ্র করে a এর সমান ব্যাসার্ধ ও B কে কেন্দ্র করে b এর সমান ব্যাসার্ধ নিয়্যে ∠DAB এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি যারা পরস্পরকে C বিন্দুতে ছেদ করে।
- (ছ) D,C ও A,B যোগ করি। তাহলে, ABCD-ই নির্ণেয় সামন্তরিক।

১১। একটি বর্গের এক বাহুর দৈর্ঘ্য 5 cm হলে বর্গটি অঙ্কন করো। সমাধানঃ

মনে করি একটি বর্গের এক বাহুর দৈর্ঘ্য a = 5 cm দেওয়া আছে, বর্গটি আঁকতে হবে।

অংকনঃ

- (ক) যেকোনো রশ্মি AE নিই।
- (খ) AE থেকে AB = a কেটে নিই।
- (গ) A বিন্দুতে AF লম্ব আঁকি এবং AF থেকে AD=a কেটে নিই।
- (ঘ) B ও D কে কেন্দ্র করে a এর সমান ব্যাসার্ধ নিয়ে ∠DAB এর অভ্যন্তরে দুইটি বৃত্তচাপ আঁকি যারা পরস্পরকে C বিন্দুতে ছেদ করে।
- (%) D,C ও B,C যোগ করি। তাহলে ABCD-ই নির্ণেয় বর্গ।

🕠 🕞 🕡 / Courstika

১২. একটি সামান্তরিক আকৃতির জমির দুটি সন্নিহিত বাহুর দৈর্ঘ্য 4 m ও 5 m এবং একটি কর্ণের দৈর্ঘ্য 7 m। সামান্তরিকটির ক্ষেত্রফল নির্ণয় করো।

সমাধানঃ

প্রদত্ত গাণিতিক প্রশ্ন অনুসারে নিন্মোক্ত মডেল চিত্রটি অঙ্কন করি-

চিত্র অনুসারে,

∆ABC-এ

পরিসীমা = (4+5+7) m = 16 m;

অর্ধ-পরিসীমা, s = ¹⁶/₂ m = 8 m;

এবং, তিনটি বাহু a, b, c এর মান যথাক্রমে 4m, 5m, 7m;

∵ ΔABC-এর ক্ষেত্রফল

= √{s(s-a)(s-b)(s-c)} বৰ্গ একক

= $\sqrt{8(8-4)(8-5)(8-7)}$ m²

 $=\sqrt{(8\times4\times3\times1)}$ m²

 $= \sqrt{96} \text{ m}^2$

এখন, সামন্তরিকের যেকোনো কর্ণ সামন্তরিকটিকে দুইটি সমান ত্রিভুজ ক্ষেত্রে বিভক্ত করে।

∵ সামন্তরিকটির ক্ষেত্রফল = 2×√96 m² = 19.5959 m² (প্রায়)

১৩। ABCD আয়তাকার জমির AB = 10 m এবং কর্ণ AC = 16 m । কর্ণদ্বয়ের ছেদবিন্দু G হলে \triangle AGB এর ক্ষেত্রফল নির্ণয় করো।

সমাধানঃ

প্রদত্ত প্রশ্নের একটি গাণিতিক মডেল চিত্র অঙ্কন করি যা নিন্মরূপঃ

চিত্র বা শর্ত অনুসারে,

আয়তাকার জমির কর্ণ = AC = BD = 16 m [যেহেতু আয়তক্ষেত্রের কর্ণদ্বয় সমান];

এবং AG = BG = $^{16}/_2$ m = 8 m [যেহেতু আয়তক্ষেত্রের কর্ণদ্বয় একে আপরকে সমদ্বিখন্ডিত করে];

তিনটি বাহু a, b, c এর দৈর্ঘ্য = 10m, 8m, 8m;

পরিসীমা = (10+8+8) m = 26 m;

∵ অর্ধ-পরিসীমা, s = 26/2 m = 13 m;

= √{s(s-a)(s-b)(s-c)} বৰ্গ একক

 $= \sqrt{\{13(13\text{-}10)(13\text{-}8)(13\text{-}8)\}} \ m^2$

 $= \sqrt{(13 \times 3 \times 5 \times 5)} \text{ m}^2$

 $= \sqrt{975} \text{ m}^2$

 $= 31.22499 \text{ m}^2$

১৪। প্রদত্ত আকৃতিগুলোর ক্ষেত্রফল পরিমাপ করো:

সমাধানঃ

(ক)

ক-আকৃতিকে আমরা দুইটি অংশে বিভক্ত করি-তাহলে,

- ক-আকৃতির ক্ষেত্রফল
- = ১ম আয়তের ক্ষেত্রফল + ২য় আয়তের ক্ষেত্রফল
- = 6cm×5cm + 8cm×4cm
- $= 30 \text{cm}^2 + 32 \text{cm}^2$
- $= 62 cm^2$

(খ)

খ-আকৃতিকে আমরা দুইটি অংশে বিভক্ত করি-তাহলে,

- খ-আকৃতির ক্ষেত্রফল
- = ১ম আয়তের ক্ষেত্রফল + ২য় আয়তের ক্ষেত্রফল
- $= 7 \text{cm} \times 3 \text{cm} + 2 \text{cm} \times 3 \text{cm}$
- $= 21cm^2 + 6cm^2$
- $= 27cm^2$

(গ)

গ-আকৃতিকে আমরা তিনটি অংশে বিভক্ত করি-তাহলে,


```
গ-আকৃতির ক্ষেত্রফল
```

- = ১ম আয়তের ক্ষেত্রফল + ২য় আয়তের ক্ষেত্রফল + ৩য় আয়তের ক্ষেত্রফল
- = 4cm×3cm + 4cm×3cm + 12cm×3cm
- $= 12cm^2 + 12cm^2 + 36cm^2$
- $= 60 cm^2$

(ঘ)

ঘ-আকৃতিকে আমরা তিনটি অংশে বিভক্ত করি-তাহলে,

ঘ-আকৃতির ক্ষেত্রফল

- = ১ম ত্রিভূজের ক্ষেত্রফল + ২য় ট্রপিজিয়ামের ক্ষেত্রফল + ৩য় আয়তের ক্ষেত্রফল
- $= \frac{1}{2} \times b \times h + \frac{1}{2} (d+e)h + a \times c$
- $= \frac{1}{2}bh + \frac{1}{2}dh + \frac{1}{2}eh + ac$
- $= \frac{1}{2}h(b+d+e)+ac$

অবস্থান মানচিত্রে স্থানাঙ্ক জ্যামিতি

আমরা এই অধ্যায়ে সরলরেখার ঢাল, সরলরেখার সমীকরণ, সমরেখ, বিন্দুর স্থানাঙ্ক থেকে ত্রিভুজের ক্ষেত্রফল নির্ণয় শিখব যা অবস্থান মানচিত্রে স্থানাঙ্ক জ্যামিতি এর প্রয়োগ অধ্যায়ের অংশ। গ্রাফ পেপারে যেভাবে আমরা স্থানাঙ্ক বা বিন্দু স্থাপন করে অবস্থান নির্ণয় করি তেমনি বাস্তব জীবনেও আমরা যেকোনো স্থানের স্থানাঙ্ক নির্ণয় করতে পারি। আমরা এই পোস্টে শুধুমাত্র অনুশীলনী ৬ (৮ম শ্রেণি) এর সমাধান সম্পন্ন করেছি।

১. একটি সরলরেখার সমীকরণ নির্ণয় করো যার ঢাল -2 এবং রেখাটি (4, -5) বিন্দু দিয়ে অতিক্রম করে।

সমাধানঃ

আমরা জানি,

m ঢালবিশিষ্ট $(x_{\scriptscriptstyle 1}\;,\;y_{\scriptscriptstyle 1})$ বিন্দুগামী সরলরেখার সমীকরণ y - $y_{\scriptscriptstyle 1}=m(x$ - $x_{\scriptscriptstyle 1})$

প্রদত্ত প্রশ্নে দেওয়া আছে.

$$m = -2 \Im (x_1, y_1) = (4, -5)$$

বা,
$$y = -2x + 8 - 3$$

বা, y = -2x + 3 [ইহাই নির্ণেয় সমীকরণ]

২. A(3, -3) ও B(4, -2) বিন্দুগামী সরলরেখার সমীকরণ নির্ণয় করো। সরলরেখাটির ঢাল কত?

সমাধানঃ

```
আমরা জানি.
সরলরেখার ঢাল, m
   y_1 - y_2
= -----
   X_1 - X_2
[এখানে, (x<sub>1</sub>,y<sub>1</sub>)=(3,-3); (x<sub>2</sub>,y<sub>2</sub>)=(4,-2)]
  -3-(-2)
= -----
    3-4
= {}^{-1}/_{-1}
= 1
আবার.
m ঢালবিশিষ্ট (x_1, y_1) বিন্দুগামী সরলরেখার সমীকরণ y - y_1 = m(x - x_1)
অর্থাৎ, y - (-3) = 1(x - 3) [A(3, -3 বিন্দুর প্রেক্ষিতে]
বা, y + 3 = x - 3
বা, y = x - 3 - 3
বা, y = x - 6
```

: A(3, -3) ও B(4, -2) বিন্দুগামী সরলরেখার সমীকরণ: y = x - 6 এবং ঢাল m = 1.

৩. দেখাও যে, A(0, -3), B(4, -2) এবং C(16, 1) বিন্দু তিনটি সমরেখ। [এটা হলো অবস্থান মানচিত্রে স্থানাঙ্ক জ্যামিতি এর ৩ নং প্রশ্ন, নিচে বিস্তারিত দেয়া আছে।]

সমাধানঃ

আমরা জানি,

m ঢালবিশিষ্ট (x_1,y_1) ও (x_2,y_2) বিন্দুগামী সরলরেখার সমীকরণঃ

 $y_1-y_2=m(x_1-x_2).$

∵ m ঢালবিশিষ্ট A(0, -3) ও B(4, -2) বিন্দুগামী সরলরেখার সমীকরণঃ

-3-(-2)=m(0-4)

বা, -3+2 = -4m

বা, -1 = -4m

বা, m = 1/4

আবার,

m ঢালবিশিষ্ট B(4, -2) এবং C(16, 1) বিন্দুগামী সরলরেখার সমীকরণঃ

-2-1=m(4-16)

বা, -3 = m(-12)

বা, m = ⁻³/₋₁₂

বা, m = 1/4

অর্থাৎ, A(0, -3) ও B(4, -2) বিন্দুগামী সলরেখার ঢাল এবং B(4, -2) ও C(16, 1) বিন্দুগামী সলরেখার ঢাল একই।

: A(0, -3), B(4, -2) এবং C(16, 1) বিন্দু তিনটি সমরেখ [দেখানো হলো]।

8. A(1, -1), B(t, 2) এবং C(t², t + 3) বিন্দু তিনটি সমরেখ হলে t এর সম্ভাব্য মান নির্ণয় করো। সমাধানঃ

m ঢালবিশিষ্ট (x_1,y_1) ও (x_2,y_2) বিন্দুগামী সরলরেখার সমীকরণঃ

 $y_1-y_2=m(x_1-x_2).$

∵ m ঢালবিশিষ্ট A(1, -1) ও B(t, 2) বিন্দুগামী সরলরেখার সমীকরণঃ

-1-2=m(1-t)

বা, -3 = m(1-t)

বা, m = -3/(1-t)(i)

আবার.

m ঢালবিশিষ্ট B $(t,\,2)$ এবং C $(t^2,\,t+3)$ বিন্দুগামী সরলরেখার সমীকরণঃ

 $2-(t+3) = m(t-t^2)$

বা, $2-t-3 = m(t-t^2)$

বা, -t-1 = m(t-t²)

বা, m = (-t-1)/(t-t²)(ii)

এখন, প্রদত্ত বিন্দু তিনটি সমরেখ; অতএব প্রত্যেক জোড় বিন্দুর সরলরেখার ঢাল এর মান সমান হবে।

∵ (i) ও (ii) হতে পাই,

 $-3/(1-t) = (-t-1)/(t-t^2)$

বা, -3(t-t²) = (1-t)(-t-1)

বা, -3t+3t² = -(1-t)(1+t)

বা, $-3t+3t^2 = -(1-t^2)$

বা, -3t+3t² = -1+t²

বা, -3t+3t² +1-t² = 0

বা, 2t²-3t+1 = 0

বা, 2t²-2t-t+1 = 0

বা, 2t(t-1)-1(t-1) = 0

বা, (2t-1)(t-1) = 0

বা, 2t-1 = 0 অথবা, t-1 = 0

최. 2t = 1 최. t = 1

বা, t = ½

 $: t = (1, \frac{1}{2})$

৫. A(2, 2), B(10, 1), C(11, 9) এবং D(3, 10) এই বিন্দুগুলো লেখচিত্রে বসাও এবং AB, BC, CD, AD রেখাংশ আঁকো। এই রেখাগুলো দারা কী ধরনের ক্ষেত্র তৈরি হয়েছে? তোমার উত্তরের সপক্ষে যুক্তি দাও।

সমাধানঃ

লেখচিত্রে x ও y অক্ষ বরাবর ক্ষুদ্রতম বর্গের বাহুর দৈর্ঘ্যকে 1 একক ধরে A(2, 2), B(10, 1), C(11, 9) এবং D(3, 10) বিন্দুগুলো স্থাপন করি। এবং AB, BC, CD, AD রেখাংশ আঁকি।

এই রেখাগুলো দারা একটি বর্গক্ষেত্র তৈরি হয়েছে।

যুক্তিঃ

দুইটি বিন্দুর স্থানাংকের ভিত্তিতে,

AB

$$= \sqrt{\{(10-2)^2+(1-2)^2\}}$$

$$= \sqrt{\{(8)^2 + (-1)^2\}}$$

$$=\sqrt{(64+1)}$$

$$= \sqrt{65}$$

BC

$$= \sqrt{\{(11-10)^2+(9-1)^2\}}$$

$$= \sqrt{\{(1)^2 + (8)^2\}}$$

$$=\sqrt{(1+64)}$$

CD

$$= \sqrt{(3-11)^2 + (10-9)^2}$$

$$= \sqrt{\{(-8)^2 + (1)^2\}}$$

$$=\sqrt{(64+1)}$$

$$= \sqrt{65}$$

AD

$$= \sqrt{(2-3)^2 + (2-10)^2}$$

$$= \sqrt{\{(-1)^2 + (-8)^2\}}$$

$$=\sqrt{(1+64)}$$

$$= \sqrt{65}$$

অর্থাৎ, AB = BC = CD = AD একইভাবে.

AC

- $= \sqrt{(11-2)^2+(9-2)^2}$
- $=\sqrt{(9)^2+(7)^2}$
- $=\sqrt{(81+49)}$
- $= \sqrt{130}$

BD

- $= \sqrt{(3-10)^2 + (10-1)^2}$
- $=\sqrt{(-7)^2+(9)^2}$
- $=\sqrt{(49+81)}$
- $= \sqrt{130}$

অর্থাৎ, ABCD এর কর্ণদ্বয় (AC ও BD) পরস্পর সমান।

· AB, BC, CD, AD রেখাগুলো দারা একটি বর্গক্ষেত্র তৈরি হয়েছে।

৬. তিনটি বিন্দুর স্থানাঙ্ক A(-2, 1), B(10, 6) এবং C(a, -6). যদি AB = BC হয়, তবে a এর সম্ভাব্য মানসমূহ নির্ণয় করো। a এর প্রতিটি মানের জন্য গঠিত ABC ত্রিভুজের ক্ষেত্রফল নির্ণয় করো।

সমাধানঃ

দেওয়া আছে.

তিনটি বিন্দুর স্থানাঙ্ক A(-2, 1), B(10, 6) এবং C(a, -6).

দুইটি বিন্দুর স্থানাংকের ভিত্তিতে পাই,

AB

- $=\sqrt{(10+2)^2+(6-1)^2}$
- $=\sqrt{(12)^2+(5)^2}$
- $=\sqrt{(144+25)}$
- $= \sqrt{169}$
- = 13
- এবং,

BC

- $=\sqrt{(a-10)^2+(-6-6)^2}$
- $=\sqrt{(a-10)^2+(-12)^2}$
- $\sqrt{(a-10)^2+144}$

প্রশ্ন অনুসারে,

$$AB = BC$$

- বা, $13 = \sqrt{(a-10)^2+144}$
- বা, 169 = (a-10)²+144 [উভয়পক্ষকে বর্গ করে]
- বা, (a-10)² = 169-144
- বা, (a-10)² = 25
- বা, $a^2-20a+10^2-25=0$
- বা, a²-20a+100-25=0


```
বা. a<sup>2</sup>-15a-5a+75=0
```

বা, a(a-15)-5(a-15)=0

বা, (a-5)(a-15)=0

বা, a-5 = 0 অথবা, a-15=0

বা, a=5 বা, a = 15

: a = (5,15)

এখন.

a=5 হলে, তিনটি বিন্দুর স্থানাঙ্ক A(-2, 1), B(10, 6) এবং C(5, -6);

- ∴ ΔABC এর ক্ষেত্রফল
- $= \frac{1}{2}[X_1(y_2-y_3)+X_2(y_3-y_1)+X_3(y_1-y_2)]$ [সূত্রানুসারে]
- $= \frac{1}{2}[-2(6+6)+10(-6-1)+5(1-6)]$
- $= \frac{1}{2}[-2 \times 12 + 10(-7) + 5(-5)]$
- $= \frac{1}{2}[-24-70-25]$
- $= \frac{1}{2} \times (-119)$
- = -59.5

কিন্তু ক্ষেত্ৰফল ঋণাত্মক হয় না।

∵ a=5 হলে, ∆ABC এর ক্ষেত্রফল 59.5 বর্গ একক।

আবার.

a=15 হলে, তিনটি বিন্দুর স্থানাঙ্ক A(-2, 1), B(10, 6) এবং C(15, -6);

- ∴ ΔABC এর ক্ষেত্রফল
- $= \frac{1}{2}[X_1(y_2-y_3)+X_2(y_3-y_1)+X_3(y_1-y_2)]$ [সূত্রানুসারে]
- $= \frac{1}{2}[-2(6+6)+10(-6-1)+15(1-6)]$
- $= \frac{1}{2}[-2 \times 12 + 10(-7) + 15(-5)]$
- $= \frac{1}{2}[-24-70-75]$
- $= \frac{1}{2} \times (-169)$
- = -84.5

কিন্তু ক্ষেত্ৰফল ঋণাত্মক হয় না।

- : a=15 হলে, ΔABC এর ক্ষেত্রফল 84.5 বর্গ একক।
- ৭. চারটি বিন্দুর স্থানাঙ্ক A(-1, 1), B(2, -1), C(0, 3) ও D(3, 3)। বিন্দুগুলো দ্বারা গঠিত চতুর্ভুজের ক্ষেত্রফল নির্ণয় করো।

সমাধানঃ

দেওয়া আছে.

চারটি বিন্দুর স্থানাঙ্ক A(-1, 1), B(2, -1), C(0, 3) ও D(3, 3)। বিন্দুগুলোকে গ্রাফ কাগজে বসালে নিন্মোক্ত চতুর্ভুজ ABDC পাই।

SSSSSS

- ∴ △ABC এর ক্ষেত্রফল
- = $\frac{1}{2}[X_1(y_2-y_3)+X_2(y_3-y_1)+X_3(y_1-y_2)]$ [সূত্রানুসারে]
- $= \frac{1}{2}[-1(-1-3)+2(3-1)+0(1+1)]$
- $= \frac{1}{2}[-1 \times (-4) + 2(2) + 0(2)]$
- $= \frac{1}{2}[4+4+0]$
- $= \frac{1}{2} \times (8)$
- = 4 বর্গ একক।

এবং,

ΔBDC এর ক্ষেত্রফল

- $= \frac{1}{2}[X_1(y_2-y_3)+X_2(y_3-y_1)+X_3(y_1-y_2)]$ [সূত্রানুসারে]
- $= \frac{1}{2}[2(3-3)+3(3+1)+0(-1-3)]$
- $= \frac{1}{2}[2\times0+3(4)+0(-4)]$
- $= \frac{1}{2}[0+12+0]$
- $= \frac{1}{2} \times (12)$
- = 6 বর্গ একক।
- ে বিন্দুগুলো দ্বারা গঠিত চতুর্ভুজের ক্ষেত্রফল
- $= \Delta \mathsf{ABC}$ এর ক্ষেত্রফল $+ \Delta \mathsf{BDC}$ এর ক্ষেত্রফল
- = (4+6) বৰ্গ একক
- = 10 বর্গ একক।

বৃত্তের খুঁটিনাটি

বৃত্তের খুঁটিনাটি যেমন বৃত্তের ব্যাসার্ধ, বৃত্তের জ্যা, স্পর্শক, বৃত্তকলার ক্ষেত্রফল, পরিধি, বৃত্তচাপের দৈর্ঘ্য ইত্যাদি বিষয়ের গাণিতিক প্রশ্নের উত্তর প্রদান করেছি এই অনুশীলনীতে। এখানে মোট ৫টি প্রশ্ন আছে, অধ্যায় ৭ (৮ম শ্রেণি); অধ্য্যায়ের নাম বৃত্তের খুঁটিনাটি। তাহলে চলো-শুরু করি।

৭ম অধ্যায় (৮ম শ্রেণি)

১। O কেন্দ্রবিশিষ্ট বৃত্তে জ্যা PQ = x cm এবং ORLPQ।

ক) ∠QOS এর পরিমাণ কত?

সমাধানঃ

ΔPOQ-4,

PO = OQ [একই বৃত্তের ব্যাসার্ধ বলে]

∴ ∠QPO = ∠PQO = 30° [সমদ্বিবাহু ত্রিভুজের বাহুদ্বয়ের বিপরীত কোণদ্বয় সমান]
এখন.

∠QPO + ∠PQO + ∠POQ = 180° [ত্রিভুজের তিন কোণের সমষ্টি 180°]

বা, 30° + 30° + ∠POQ = 180°

বা, ∠POQ = 180° - 30° - 30°

বা, ∠POQ = 120°(i)

আবার.

∠POS = 180° [: 1 সরলকোণ = 180°]

বা, ∠QOS + ∠POQ = 180°

বা, ∠QOS = 180° - ∠POQ

বা, ∠QOS = 180° - 120° [(i) নং হতে মান বসিয়ে]

বা, ∠QOS = 60°

খ) OR = (x/2 - 2) cm হলে, x এর মান নির্ণয় করো।

সমাধাণঃ

দেওয়া আছে.

OR = (x/2 - 2) cm;

PQ = x cm;

এখন.

ΔPOR ³ ΔQOR -4,

OR সাধারণ বাহু;

PO = QO [∵ একই বৃত্তের ব্যাসার্ধ];

 $\angle ORP = \angle ORQ = 90^{\circ} [\because OR \bot PQ];$

 $: \Delta POR \cong \Delta QOR$

∵ PR = QR

বা, PR = ½PQ = ½x(i)
আবার,
△POR-এ,
∠ORP = 90° [∵ OR⊥PQ];
∠RPO = 30° [∵PQ=OR]
∵ ∠POR = 180°-90°-30° = 60°
∵ ∠POR = 2∠RPO
বা, PR = 2OR = 2(*/₂ - 2)(ii)
এখন, (i) ও (ii) হতে পাই,
½x = 2(*/₂ - 2)
বা, ½x = x - 4
বা, x = 2x - 8
বা, x - 2x = - 8
বা, -x = -8
বা, x = 8

২। 10 cm ও 24 cm দৈর্ঘের PQ ও RS সমান্তরাল জ্যা দুইটি O কেন্দ্রীয় বৃত্তের কেন্দ্রের বিপরীত পাশে অবস্থিত। যদি PQ ও RS জ্যা দুইটির মধ্যবর্তী দূরত্ব 17 cm হলে, বৃত্তের ব্যাসার্ধ নির্ণয় করো। সমাধানঃ

মনে করি, O কেন্দ্রবিশিষ্ট PQSR বৃত্তে PQ ও RS দুইটি সমান্তরাল জ্যা যারা O এর দুই বিপরীত পাশে অবস্থিত এবং PQ = 10 cm ও RS = 24 cm. এবং PQ ও RS এর মধ্যবর্তী দূরত্ব 17 cm. ব্রুরে ব্যাসার্ধ নির্ণয় করতে হবে।

অঙ্কনঃ

O,R; O,P যোগ করি এবং O থেকে PQ এর উপর OM লম্ব এবং RS এর উপর ON লম্ব আঁকি। বতের ব্যাসার্ধ নির্ণয়ঃ

PQ = 10 cm

 $: PM = {}^{10}/_2 cm = 5 cm$ [বৃত্তের কেন্দ্র থেকে জ্যা এর উপর অঙ্কিত লম্ব জ্যা কে সমদ্বিখন্ডিত করে] তাহলে, ΔOPM -এ,

 $OP^2 = PM^2 + OM^2$

বা, $OP^2 = 5^2 + OM^2$(i)

আবার.

RS = 24 cm

 $: RN = \frac{24}{2} cm = 12 cm;$

∆NRO-এ,

 $RO^2 = RN^2 + ON^2$

বা, OP² = 12² + (MN-OM)².....(ii) [∵RO=OP=বৃত্তের ব্যাসার্ধ;]

এখন,

(i) ও (ii) হতে পাই,

 $5^2 + OM^2 = 12^2 + (MN-OM)^2$

4 $\frac{1}{3}$ $\frac{1}{3}$

4, $25 + OM^2 = 144 + 17^2 - 2.17.OM + OM^2$

 $\sqrt{1}$, 25 + OM² = 144 + 289 - 34OM+OM²

বা, $25 + OM^2 - 144 - 289 + 34OM - OM^2 = 0$

বা, 340M -408 = 0

বা, 340M = 408

বা, $OM = {}^{408}/_{34} = 12 \text{ cm}$

এখন, OM এর মান (i) নং এ বসিয়ে পাই,

 $OP^2 = 5^2 + 12^2$

বা, OP² = 25 + 144

বা. OP² = 169

বা, OP = 13

বা, বৃত্তের ব্যাসার্ধ = 13 cm.

৩। ধরো, তোমাদের একটি ত্রিভুজাকৃতি জমি আছে। জমিটির পরিসীমা 124 মিটার। ঐ জমির সবচেয়ে বেশি জায়গা জুড়ে সবজি চাষ করতে চাও। যদি সবজি চাষের জায়গার পরিধি 84 মিটার হয়, তবে জমিটির ক্ষেত্রফল নির্ণয় করো।

সমাধানঃ

ধরি, আমার একটি সবজি বাগান আছে যা নিন্মের চিত্রে ABC ত্রিভুজের ন্যায়। AB+BC+CA = 124 মিটার। ঐ জমির সবচেয়ে বেশি জায়গায় আমি সবজি করতে চাই, যার পরিধি 84 মিটার। এখন পরিধি বৃত্তক্ষেত্রের হয়ে থাকে অর্থাৎ বৃত্ত ক্ষেত্রটি এমন হবে যেন সেটি ত্রিভুজের সকল বাহুলে স্পর্শ করে ফলত সবজি চাষে বেশি জায়গা পাব। বৃত্তটি BC বাহুকে M; CA বাহুকে N; AB বাহুকে P বিন্দুতে স্পর্শ করে। বৃত্তের কেন্দ্র O; O,M; O,N; O,P যোগ করি। এখন,

O কেন্দ্র বিশিষ্ট বৃত্তের ব্যাসার্ধ r হলে, প্রশ্নমতে,

 $2\pi r = 84$

বা, $r = \frac{84}{2\pi}$

বা, r = 13.368984 [∵π=3.1416]

চিত্রনুসারে, OM=ON=OP=r=13.368984

এখন, আমরা জানি,

ব্তুরে কোনো বিন্দুতে অঙ্কিত স্পর্শকি, স্পর্শবিন্দুগামী ব্যাসার্ধের উপর লম্ব।

∵ OM⊥BC; ON⊥AC; OP⊥AB

তাহলে.

OM, OBC ত্রিভুজের উচ্চতা।

- ∴ ΔΟΒC এর ক্ষেত্রফল
- $= \frac{1}{2} \times BC \times OM$
- $= \frac{1}{2} \times BC \times 13.368984$
- = 6.684492×BC

অনুরুপভাবে,

△AOC এর ক্ষেত্রফল = 6.684492×AC

△AOB এর ক্ষেত্রফল = 6.684492×AB

তাহলে.

△ABC এর ক্ষেত্রফল

- $= \Delta OBC$ এর ক্ষেত্রফল $+ \Delta AOC$ এর ক্ষেত্রফল $+ \Delta AOB$ এর ক্ষেত্রফল
- $= 6.684492 \times BC + 6.684492 \times ON + 6.684492 \times OP$
- = 6.684492(BC+AC+AB)
- $=6.684492 \times 124$
- = 828.877008 বর্গ মিটার ı

8। চিত্রে O বৃত্তের কেন্দ্র এবং TA ও TC দুইটি স্পর্শক। ∠ATC = 60° হলে, x, y ও z এর মান নির্ণয় করো।

সমাধানঃ

চিত্রে O বৃত্তের কেন্দ্র এবং TA ও TC দুইটি স্পর্শক;

∵ ATCO-এ.

 $\angle OAT = 90^{\circ}; \angle OCT = 90^{\circ}$

বা, 90° + 90° + 60° + x = 360°

বা, 240° + x = 360°

বা, x = 360° - 240°

বা, x = 120°.....(i)

আবার.

x + ∠AOB = 180° [এক সরলকোণ]

বা, ∠AOB = 180°-120° = 60°

আবার,

কেন্দ্রস্থ ∠AOC = 2×পরিধিস্থ ∠ADC [বৃত্তে কেন্দ্রস্থ কোণ পরিধিস্থ কোণের দ্বিগুণ]

বা, 120° = 2×∠ADC [(i) নং থেকে মান বসিয়ে]

বা, ∠ADC = $^{120^{\circ}/}_{2}$ = 60°(ii)

আবার,

কেন্দ্রস্থ ∠COB = 2×পরিধিস্থ ∠CDB [বৃত্তে কেন্দ্রস্থ কোণ পরিধিস্থ কোণের দ্বিগুণ]

বা, 180° = 2×∠CDB

বা, ∠CDB = $^{180^{\circ}/}_{2}$

বা, ∠CDB = 90°

বা, ∠ADC+∠ADB = 90°

বা, 60° + z = 90° [(ii) নং থেকে মান বসিয়ে]

বা, z = 90° -60° = 30°(iii)

আবার,

360° - x

= 360° - 120°

= 240° যা x কোণ এর বিপরীত দিকের কেন্দ্রস্থ কোণ

= 2×পরিধিস্থ ∠ABC

 $= 2 \times y$

 $: 2y = 240^{\circ}$

বা, y = 240°/2 = 120°(iv)

অতএব, x = 120°; y = 120°; z = 30°

৫। একই আকারের (একই রকমের) কয়েকটি এক (১) টাকার কয়েন সংগ্রহ করো। কয়েনগুলোর যে কোনো একটিকে তোমার খাতার মাঝখানে রাখো। এবার এর চারপাশে পরস্পরকে স্পর্শ করে চিত্রের মতো কয়েনগুলো বসাও। অনেকটা ক্যারম বোর্ডে গুটি সাজানোর মতো।

ক) উপরের শর্ত মেনে 'x' চিহ্নিত কয়েনকে স্পর্শ করে চারপাশে সর্বোচ্চ কটি কয়েন বসানো যাবে? চিত্রটি সম্পূর্ণ করে তা নির্ণয় করো।

সমাধানঃ

ধরি, x কয়েনের ব্যাসার্ধ = a

এখন, x কয়েনের কেন্দ্রে ∠BOA = 60° আঁকি।

O কে কেন্দ্র করে 2a এর সমান ব্যাসার্ধ নিয়ে একটি বৃত্ত ABCDEF আঁকি যা অঙ্কিত কোণের দুই বাহুকে যথাক্রমে A ও B তে ছেদ করে।

এখন, ABCDEF এর পরিধি = 2.П.2а = 4Па

এবং, AB চাপের দৈর্ঘ্য = 60/360×4Па

· x কয়েনের চারপাশে সর্বোচ্চ কয়েন বসানো যাবে

 $= 4\Pi a \div {}^{60}/_{360} \times 4\Pi a$ ប៊ិ

= 6 টি।

উপরে চিত্রটি সম্পূর্ণ করা হলো এবং গণনা করে কয়েন সংখ্যা পেলাম 6 টি।

খ) চিত্রের '1', '2' ও 'x' চিহ্নিত বৃত্ত তিনটির কেন্দ্রগুলো যোগ করো। যে ত্রিভুজটি পেলে তার পরিসীমা 18 সেমি। চিত্রের সবুজ অংশের ক্ষেত্রফল নির্ণয় করো।

সমাধানঃ

মনে করি,

কয়েন 1, 2 ও x এর কেন্দ্র যথাক্রমে A, B ও C. এবং প্রতিটি কয়েনের ব্যাসার্ধ = a. তাহলে,

AB = a + a = 2a;

BC = a + a = 2a;

CA = a + a = 2a.

প্রশ্নমতে,

2a + 2a + 2a = 18

বা, 6a = 18

বা, a = 18/6 = 3 সেম।

এবং, AB = 2.3 = 6; BC = 2.3 = 6; CA =2.3 = 6;

অর্থাৎ, AB=BC=CA = 6 সেম।

: ABC এর ক্ষেত্রফল

= $\sqrt{3}/4$.(বাহুর দৈর্ঘ্য)² বর্গ একক [সমবাহু ত্রিভুজের ক্ষেত্রফলের সূত্রমতে]

 $= \sqrt{3}/4.6^2$ বর্গ সেমি

= 15.58845 বর্গ সেমি (প্রায়)

আবার,

সমবাহু ত্রিভুজের প্রতিটি কোণের পরিমাণ 60°.

♠ ♠ ♠ / Courstika

এখন, 2 নং বৃত্তে PQ বৃত্তচাপ উৎপন্ন হয়েছে যার কেন্দ্রে কোণ 60°.

- : বৃত্তকলাটির ক্ষেত্রফল
- $= \frac{60}{360} \times \pi r^2$ বৰ্গ একক
- = 60/360 × 3.1416 × 32 বর্গ সেমি
- = 4.7124 বর্গ সেমি I

অনুরুপভাবে 1, 2, x কয়েনে উৎপন্ন বৃত্তকলাত্রয়ের ক্ষেত্রফলের সমষ্টি

- = 4.7124 বর্গ সেমি + 4.7124 বর্গ সেমি + 4.7124 বর্গ সেমি
- = 14.1372 বর্গ সেমি
- : বৃত্তকলা বাদে সবুজ অংশের ক্ষেত্রফল
- = 15.58845 বর্গ সেমি 14.1372 বর্গ সেমি
- = 1.45125 বর্গ সেমি.
- গ) খাতায় চিত্রের যে কোনো একটি কয়েন ছাপ দিয়ে বৃত্ত বানাও। তারপর বৃত্তটির কেন্দ্র নির্ণয় করো। সমাধানঃ

খাতায় x কয়েনের ছাপ দিয়ে ABC বৃত্তটি বানাই। এখন, ABC এর কেন্দ্র নির্ণয় করি। কেন্দ্র নির্ণয়ঃ

- (i) A, B; B, C যোগ করি।
- (ii) A কে কেন্দ্র করে AB এর অর্ধেকের বেশি ব্যাসার্ধ নিয়ে AB এর উভয় পাশে দুইটি বৃত্তচাপ আঁকি। এবং B কে কেন্দ্র ঐ একই ব্যাসার্ধ নিয়ে AB এর উভয় পাশে দুইটি বৃত্তচাপ আঁকি। ফলত, দুই পাশের দুইটি বৃত্তচাপ পরস্পরকে P ও Q বিন্দুতে ছেদ করে। P, Q যোগ করি।
- (iii) একইভাবে, B ও C কেন্দ্র করে বৃত্তচাপ আঁকি ফলত R ও S বিন্দু পাই। R, S যোগ করি।
- (iv) এখন, PQ ও RS পরস্পরকে O বিন্দুতে ছেদ করে। তাহলে, O-ই উক্ত বৃত্তের কেন্দ্র।
- ঘ) যে কোনো একটি কয়েনের ব্যাসার্ধের গুণিতক ব্যাসার্ধবিশিষ্ট দুইটি বৃত্ত আঁকো। বৃত্ত দুইটি পরস্পরকে বহিঃস্পর্শ করলে প্রমাণ করো যে, বৃত্ত দুইটির কেন্দ্রদ্বয়ের দূরত্ব তাদের সাধারণ ব্যাসার্ধের দিগুণ।

সমাধানঃ

এই গাণিতিক সমস্যায় বৃত্তের সাধারণ ব্যাসার্ধ বিষয়টি আমাদের বোধগম্য হয় নি; আরও সময় নিয়ে আমরা এই সমস্যা নিয়ে ভাবব। তোমরাও আমাদেরকৈ তোমাদের মতামত জানিও।

🕠 🕞 🕡 / Courstika

পরিমাপে প্রতিসমতার প্রয়োগ

আমাদের চারপাশে নানান বস্তু আছে যেগুলো পরিমাপে প্রতিসমতার প্রয়োগ করতে পারি। আর এই পরিমাপে আমরা যেগুলো গুরুত্ব দিয়ে থাকি সেগুলো হলোঃ ঘূর্ণন কোণ, ঘূর্ণন প্রতিসমতার মাত্রা, এবং প্রতিসমতা রেখা। আমরা এখানে অনুশীলনীর ১-৪ বা সম্পূর্ণ অংশ সমাধান করেছি, আলোচনা অংশ পরে নিয়ে আসব অন্য কোণ পোস্টে। তাহলে, শুরু করি-

১. নিচের চিত্রগুলোর ঘূর্ণন কোণ এবং ঘূর্ণন প্রতিসমতার মাত্রা নির্ণয় করো।

সমাধানঃ

(ক)

এখানে, 360° ÷ 4 = 90° [যেহেতু, চিত্রে সদৃশ অংশ 4টি] : ঘূর্ণন-কোণ = 90°

এবং ঘূর্ণন-প্রতিসমতার মাত্রা = 4

(왁)

এখানে, 360° ÷ 5 = 72° [যেহেতু, চিত্রে সদৃশ অংশ 5টি]

∵ ঘূৰ্ণন-কোণ = 72°

এবং ঘূর্ণন-প্রতিসমতার-মাত্রা = 5

(গ)

এখানে, 360° ÷ 6 = 60° [যেহেতু, চিত্রে সদৃশ অংশ 6টি]

ঘূর্ণন-কোণ = 60°

এবং ঘূর্ণন-প্রতিসমতার-মাত্রা = 6

(ঘ)

এখানে, 360° ÷ 3 = 120° [যেহেতু, চিত্রে সদৃশ অংশ 3টি]

ঘূর্ণন-কোণ = 120°

এবং ঘূর্ণন-প্রতিসমতার-মাত্রা = 3

(8)

এখানে, 360° ÷ 4 = 90° [যেহেতু, চিত্রে সদৃশ অংশ 4টি] : ঘূর্ণন কোণ = 90° এবং ঘূর্ণন প্রতিসমতার মাত্রা = 4
(চ)

২. (ক) এক মাত্রার ঘূর্ণন প্রতিসমতা বলতে কী বোঝ? একমাত্রার ঘূর্ণন প্রতিসমতার ঘূর্ণন কোণ কত? [পরিমাপে প্রতিসমতার প্রয়োগ অধ্যায়ের ২ নং এর ক প্রশ্ন এটি, উপরে নিয়ে সকল প্রশ্ন দেখ।] সমাধানঃ

কোণ বস্তু-ঘূর্ণন-প্রতিসমতার মাত্রা 1 হলে, তাকে এক মাত্রার ঘূর্ণন প্রতিসমতা বলে। এবং, একমাত্রার ঘূর্ণন প্রতিসমতার-ঘূর্ণন কোণ = 360° ÷ 1 = 360°.

(খ) প্রতিসাম্য কোণ 20 ডিগ্রি হতে পারে কি? কারণ উল্লখ করো।

সমাধানঃ

 $360^{\circ} \div 20^{\circ} = 18;$

অর্থাৎ, কোণ বস্তুর-প্রতিসাম্য-কোণ 20° হলে, এর প্রতিসমতার-মাত্রা 18 হতে হবে।

 প্রতিসাম্য কোণ 20 ডিগ্রি হতে পারে।

৩। নিচের চিত্রগুলোতে প্রতিসাম্য রেখা দেওয়া আছে। চিত্রগুলো সম্পন্ন করো।

সমাধানঃ

চিত্রগুলো সম্পন্ন করে নিচে দেওয়া হলোঃ

৪। নিচের চিত্রগুলোর প্রতিসাম্য রেখা অঙ্কন করো।

সমাধানঃ

চিত্রগুলোর প্রতিসাম্য-রেখা-অঙ্কন করা হলোঃ

৯ম অধ্যায় (৮ম শ্রেণি)

- ১। নিচের বাইনারি সংখ্যাগুলোকে দশভিত্তিক সংখ্যায় রূপান্তর করো।
- i) 010101
- ii) 110011
- iii) 100011
- iv) 101000

🕡 🖸 🕡 / Courstika

- v) 101100
- vi) 001100.101
- vii) 010010.111
- viii) 0010111111.11

সমাধানঃ

- i) (010101)₂
- $= 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
- = 0 + 16 + 0 + 4 + 0 + 1
- $=(21)_{10}$
- ii) (110011)₂
- $= 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
- = 32 + 16 + 0 + 0 + 2 + 1
- $= (51)_{10}$
- iii) (100011)₂
- $= 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
- = 32 + 0 + 0 + 0 + 2 + 1
- $=(35)_{10}$
- iv) (101000)₂
- $= 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
- = 32 + 0 + 8 + 0 + 0 + 0
- $= (40)_{10}$
- v) (101100)₂
- $= 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
- = 32 + 0 + 8 + 4 + 0 + 0
- $= (44)_{10}$
- vi) (001100.101)₂
- $= 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$
- = 0 + 0 + 8 + 4 + 0 + 0 + 0.5 + 0 + 0.125
- $=(12.625)_{10}$
- vii) (010010.111)₂
- $= 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$
- = 0 + 16 + 0 + 0 + 2 + 0 + 0.5 + 0.25 + 0.125
- $=(18.875)_{10}$

viii) (0010111111.11)₂

$$= 0 \times 2^{9} + 0 \times 2^{8} + 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 0 + 0 + 128 + 0 + 32 + 16 + 8 + 4 + 2 + 1 + 0.5 + 0.25$$

 $=(191.75)_{10}$

২। নিচের দশভিত্তিক সংখ্যাগুলোকে বাইনারিতে রূপান্তর করো।

- i) 6
- ii) 19
- iii) 56
- iv) 129
- v) 127
- vi) 96
- vii) 25
- viii) 200

সমাধানঃ

i) 6:

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 110

$$(6)_{10} = (110)_2$$

ii) 19:

19÷2=9; ভাগশেষ 1

9÷2=4; ভাগশেষ 1

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0: ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10011

$$(19)_{10} = (10011)_2$$

iii) 56:

56÷2=28; ভাগশেষ 0

28÷2=14; ভাগশেষ 0

14÷2=7; ভাগশেষ 0

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111000

 $(56)_{10} = (111000)_2$

iv) 129:

129÷2=64; ভাগশেষ 1

64÷2=32; ভাগশেষ 0

32÷2=16; ভাগশেষ 0

16÷2=8; ভাগশেষ 0

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10000001

 $(129)_{10} = (10000001)_2$

v) 127:

127÷2=63; ভাগশেষ 1

63÷2=31; ভাগশেষ 1

31÷2=15; ভাগশেষ 1

15÷2=7; ভাগশেষ 1

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1111111

 $\therefore (127)_{10} = (11111111)_2$

vi) 96:

96÷2=48; ভাগশেষ 0

48÷2=24; ভাগশেষ 0

24÷2=12; ভাগশেষ 0

12÷2=6; ভাগশেষ 0

6÷2=3; ভাগশেষ 0

3÷2=1; ভাগশেষ 1

1÷2=0: ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100000

 $(96)_{10} = (1100000)_2$

vii) 25:

25÷2=12; ভাগশেষ 1

12÷2=6; ভাগশেষ 0

6÷2=3; ভাগশেষ 0

+1000001 -----10010110

3÷2=1; ভাগশেষ 1 1÷2=0; ভাগশেষ 1 নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11001 $(25)_{10} = (11001)_2$ viii) 200: 200÷2=100; ভাগশেষ 0 100÷2=50; ভাগশেষ 0 50÷2=25; ভাগশেষ 0 25÷2=12; ভাগশেষ 1 12÷2=6; ভাগশেষ 0 6÷2=3: ভাগশেষ 0 3÷2=1; ভাগশেষ 1 1÷2=0: ভাগশেষ 1 নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11001000 $(200)_{10} = (11001000)_2$ ৩। নিচের বাইনারি সংখ্যাগুলোর যোগফল নির্ণয় করো। [এটা হলো বাইনারি সংখ্যা পদ্ধতি অধ্যায়ের ৩নং প্রশ্ন।] i) 101111 + 101101 ii) 10101 + 100010 iii) 1010101 + 1000001 সমাধানঃ (i) 101111 +101101-----1011100 (ii) 10101 +100010_____ 110111 (iii) 1010101

৪। নিচের দশভিত্তিক সংখ্যাগুলোকে বাইনারিতে রূপান্তর করে যোগগুলো সম্পন্ন করো।

- i) 6 + 19
- ii) 10 + 32
- iii) 56 + 16
- iv) 127 + 127

সমাধানঃ

(i) 6 + 19

6 কে বাইনারিতে রুপান্তরঃ

- 6÷2=3; ভাগশেষ 0
- 3÷2=1; ভাগশেষ 1
- 1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 110

$$(6)_{10} = (110)_2$$

19 কে বাইনারিতে রুপান্তরঃ

- 19÷2=9; ভাগশেষ 1
- 9÷2=4: ভাগশেষ 1
- 4÷2=2; ভাগশেষ 0
- 2÷2=1; ভাগশেষ 0
- 1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10011

$$(19)_{10} = (10011)_2$$

এখন,

$$(6)_{10} + (19)_{10}$$

$$= (110)_2 + (10011)_2$$

$$= (11001)_2$$

(ii) 10 + 32

10 কে বাইনারিতে রুপান্তরঃ

- 10÷2=5; ভাগশেষ 0
- 5÷2=2; ভাগশেষ 1
- 2÷2=1; ভাগশেষ 0
- 1÷2=0: ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1010

- $(10)_{10} = (1010)_2$
- 32 কে বাইনারিতে রুপান্তরঃ
- 32÷2=16; ভাগশেষ 0
- 16÷2=8; ভাগশেষ 0
- 8÷2=4; ভাগশেষ 0
- 4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100000

$$(32)_{10} = (100000)_2$$

এখন.

$$(10)_{10} + (32)_{10}$$

$$= (1010)_2 + (100000)_2$$

 $=(101010)_2$

iii) 56 + 16

56 কে বাইনারিতে রুপান্তরঃ

56÷2=28; ভাগশেষ 0

28÷2=14; ভাগশেষ 0

14÷2=7; ভাগশেষ 0

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0: ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111000

 $(56)_{10} = (111000)_2$

16 কে বাইনারিতে রূপান্তরঃ

16÷2=8; ভাগশেষ 0

8÷2=4; ভাগশেষ 0

4÷2=2; ভাগশেষ 0

2÷2=1; ভাগশেষ 0

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10000

$$(16)_{10} = (10000)_2$$

এখন.

$$(56)_{10} + (16)_{10}$$

$$= (111000)_2 + (10000)_2$$

 $=(1001000)_2$

iv) 127 + 127

127 কে বাইনারিতে রুপান্তরঃ

127÷2=63; ভাগশেষ 1

63÷2=31; ভাগশেষ 1

31÷2=15; ভাগশেষ 1

15÷2=7; ভাগশেষ 1

7÷2=3; ভাগশেষ 1

3÷2=1; ভাগশেষ 1

1÷2=0; ভাগশেষ 1

নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1111111

- $\therefore (127)_{10} = (11111111)_2$
- এখন,
- $(127)_{10} + (127)_{10}$
- $= (11111111)_2 + (11111111)_2$
- $=(111111110)_2$
- ৫। নিচের বাইনারি সংখ্যাগুলোর বিয়োগ করো। [এটা হলো বাইনারি সংখ্যা পদ্ধতি অধ্যায়ের ৪নং প্রশ্ন।]
- i) 1001 101
- ii) 11001 1011
- iii) 1010010 111011

সমাধানঃ

- i) 1001 101 = 100
- ii) 11001 1011 = 1110
- iii) 1010010 111011 = 10111
- ৬। নিচের দশভিত্তিক সংখ্যাগুলোর 10's Complement নির্ণয় করো।
- i) 2351
- ii) 90152
- iii) 10003
- iv) 9999

সমাধানঃ

i) 2351

ধরি, a = 2351 তাহলে, 9999 এর সাপেক্ষে,

- ∵ a এর 10's Complement, a** = 7648 + 1 = 7649

ii) 90152

ধরি. a = 90152 তাহলে, 99999 এর সাপেক্ষে,

- ∵ a এর 10's Complement, a** = 9847 + 1 = 9848

iii) 10003

ধরি, a = 10003 তাহলে, 99999 এর সাপেক্ষে,

- ∵ a এর 9's Complement, a* = 99999 10003 = 89996

iv) 9999


```
ধরি, a = 9999 তাহলে, 9999 এর সাপেক্ষে,

    a এর 10's Complement, a** = 0 + 1 = 1

৭। পুরক ব্যবহার করে নিচের দশভিত্তিক সংখ্যার বিয়োগফল নির্ণয় করো।
i) 43101 - 5032
ii) 70081 - 6919
iii) 2173901 - 5835
সমাধানঃ
i) 43101 - 5032
= 43101 + (99999 - 5032) - 99999 [: a^* = 99999 - 5032]
= 43101 + 94967 - 99999
= 43101 + (94967+1) - 99999 - 1 [: a^{**} = 94967+1]
= 43101 + 94968 - 100000
= 38069
ii) 70081 - 6919
= 70081 + (99999-6919) - 99999 [: a*=99999 - 6919]
= 70081 + 93080 - 99999
= 70081 + (93080+1) - 99999 - 1 [: a^{**} = 93080+1]
= 70081 + 93081 - 100000
= 63162
iii) 2173901 - 5835
= 2173901 + (9999999-5835) - 99999999 [: a = 99999999-5835]
= 2173901 + 9994164 - 9999999
= 2173901 + (9994164+1) - 99999999 - 1 [: a^{**} = 9994164+1]
= 2173901 + 9994165 - 10000000
= 2168066
৮। নিচের বাইনারি সংখ্যাগুলোর 2's Complement নির্ণয় করো।
i) 1111
ii) 1011001
iii) 1010101
iv) 1000001
সমাধানঃ
i) 1111
ধরি, a = 1111; তাহলে,
∵ a এর 1's complement, a* = 1111-1111 = 0

    a এর 2's complement, a** = 0 + 1 = 1
```


ii) 1011001

```
ধরি, a = 1011001; তাহলে,
```

- ∵ a এর 1's complement, a* = 11111111-1011001 = 0100110
- ∵ a এর 2's complement, a** = 0100110 + 1 = 0100111

iii) 1010101

```
ধরি, a = 1010101; তাহলে,
```

- ∵ a এর 1's complement, a* = 1111111-1010101 = 0101010
- ∵ a এর 2's complement, a** = 0101010 + 1 = 0101011

iv) 1000001

```
ধরি, a = 1000001; তাহলে,
```

- ∵ a এর 1's complement, a* = 1111111-1000001 = 0111110
- ∵ a এর 2's complement, a** = 0111110 + 1 = 0111111

৯। পূরক ব্যবহার করে নিচের বাইনারি সংখ্যার বিয়োগফল নির্ণয় করো।

- i) 11001 1001
- ii) 100101 10011
- iii) 11000101 101101

সমাধানঃ

i) 11001 - 1001

- = 11001 + (11111 1001) 111111[: $a^* = 11111 1001$]
- = 11001 + 10110 11111
- = 11001 + (10110 + 1) 11111 1[: $a^{**} = 10110 + 1$]
- = 11001 + 10111 100000
- = 110000 100000
- = 10000

ii) 100101 - 10011

- = 100101 + (111111 10011) 1111111[: $a^* = 1111111 10011$]
- = 100101 + 0101100 1111111
- = 100101 + (0101100+1) 1111111 1[$: a^{**} = 0101100 + 1$]
- = 100101 + 0101101 1000000
- = 01010010 1000000
- = 010010

iii) 11000101 - 101101

- = 11000101 + (111111111 101101) 111111111
- = 11000101 + 11010010 111111111


```
= 11000101 + (11010010 + 1) - 111111111 - 1
= 11000101 + 11010011 - 100000000
= 110011000 - 100000000
= 10011000
১০। নিচের দশভিত্তিক সংখ্যাগুলোকে বাইনারিতে রূপান্তর করে গুণ করে দেখাও।
i) 18 \times 6
ii) 32 × 23
iii) 21 \times 7
iv) 59 × 18
v) 118.2 × 46
vi) 180.50 × 65
vii) 192 × 22
viii) 111 × 101
সমাধানঃ
i) 18 \times 6
18 কে বাইনারিতে রুপান্তরঃ
18÷2=9; ভাগশেষ 0
9÷2=4; ভাগশেষ 1
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10010
(18)_{10} = (10010)_2
6 কে বাইনারিতে রুপান্তরঃ
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 110
(6)_{10} = (110)_2
এখন, 10010 × 110 নির্ণয়ঃ
10010
(x) 110
_____
  00000
 10010x
10010xx
-----
1101100
\therefore (18)<sub>10</sub> × (6)<sub>10</sub> = (1101100)<sub>2</sub>
```



```
ii) 32 \times 23
32 কে বাইনারিতে রুপান্তরঃ
32÷2=16; ভাগশেষ 0
16÷2=8; ভাগশেষ 0
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100000
(32)_{10} = (100000)_2
23 কে বাইনারিতে রুপান্তরঃ
23÷2=11; ভাগশেষ 1
11÷2=5; ভাগশেষ 1
5÷2=2: ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10111
(32)_{10} = (10111)_2
এখন, 100000 × 10111 নির্ণয়ঃ
100000
(x) 10111
    100000
  100000x
 100000xx
000000xxx
100000xxxx
-----
1011100000
(32)_{10} \times (23)_{10} = (1011100000)_2
iii) 21 \times 7
21 কে বাইনারিতে রুপান্তরঃ
21÷2=10; ভাগশেষ 1
10÷2=5; ভাগশেষ 0
5÷2=2; ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10101
```



```
\therefore (21)<sub>10</sub> = (10101)<sub>2</sub>
7 কে বাইনারিতে রূপান্তরঃ
7÷2=3; ভাগশেষ 1
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111
(7)_{10} = (111)_2
এখন, 10101 × 111 নির্ণয়ঃ
10101
(x) 111
    10101
  10101x
 10101xx
10010011
(21)_{10} \times (7)_{10} = (10010011)_2
iv) 59 \times 18
59 কে বাইনারিতে রুপান্তরঃ
59÷2=29; ভাগশেষ 1
29÷2=14; ভাগশেষ 1
14÷2=7; ভাগশেষ 0
7÷2=3; ভাগশেষ 1
3÷2=1; ভাগশেষ 1
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 111011
(59)_{10} = (111011)_2
18 কে বাইনারিতে রুপান্তরঃ
18÷2=9; ভাগশেষ 0
9÷2=4; ভাগশেষ 1
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10010
(18)_{10} = (10010)_2
এখন, 111011 × 10010 নির্ণয়ঃ
111011
(x) 10010
```



```
000000
  111011x
 000000xx
 000000xxx
111011xxxx
10000100110
(59)_{10} \times (18)_{10} = (10000100110)_2
v) 118.2 \times 46
118.2 কে বাইনারিতে রুপান্তরঃ
১ম অংশঃ
118÷2=59; ভাগশেষ 0
59÷2=29; ভাগশেষ 1
29÷2=14; ভাগশেষ 1
14÷2=7; ভাগশেষ 0
7÷2=3; ভাগশেষ 1
3÷2=1; ভাগশেষ 1
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1110110
(118)_{10} = (1110110)_2
২য় অংশঃ
0.2×2=0.4; পূর্ণসংখ্যা 0
0.4×2=0.8; পূর্ণসংখ্যা 0
0.8×2=1.6; পূর্ণসংখ্যা 1
0.6×2=1.2; পূর্ণসংখ্যা 1
0.2×2=0.4; পূর্ণসংখ্যা 0
0.4×2=0.8; পূর্ণসংখ্যা 0
0.8×2=1.6; পূর্ণসংখ্যা 1
0.6×2=1.2; পূর্ণসংখ্যা 1
উপর থেকে নিচে পূর্ণসংখ্যাগুলো সাজিয়ে পাই: 00110011...
(0.2)_{10} = (00110...)_2
তাহলে,
(118.2)_{10} = (1110110.00110011...)_2
46 কে বাইনারিতে রুপান্তরঃ
46÷2=23; ভাগশেষ 0
23÷2=11; ভাগশেষ 1
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
```



```
2÷2=1; ভাগশেষ 0
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 101110
(46)_{10} = (101110)_2
এখন, 1110110.00110011... × 101110 নির্ণয়ঃ
1110110.00110011...
(x) 101110
   0000000.00000000...
   11101100.0110011...
 111011000.110011...
 1110110001.10011...
0000000000.0000...
111011000110.011...
1010100111101.00110011...
(118.2)_{10} \times (46)_{10} = (10101001111101.00110...)_2
vi) 180.50 \times 65
180.50 কে বাইনারিতে রুপান্তরঃ
১ম অংশঃ
180÷2=90; ভাগশেষ 0
90÷2=45; ভাগশেষ 0
45÷2=22; ভাগশেষ 1
22÷2=11; ভাগশেষ 0
11÷2=5: ভাগশেষ 1
5÷2=2; ভাগণেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110100
(180)_{10} = (10110100)_2
২য় অংশঃ
0.5×2=1.0; পূর্ণসংখ্যা 1
(0.5)_{10} = (1)_2
তাহলে.
(180.5)_{10} = (10110100.1)_2
65 কে বাইনারিতে রুপান্তরঃ
65÷2=32; ভাগশেষ 1
32÷2=16; ভাগশেষ 0
16÷2=8; ভাগশেষ 0
```



```
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1000001
(65)_{10} = (1000001)_2
এখন, 10110100.1 × 1000001 নির্ণয়ঃ
10110100.1
(x) 1000001
      10110100.1
     0.00000000.0
    0.000000000.0
   0.0000000000.0
   0.000000000.0
 0.00000000000.0
10110100100000.0
10110111010100.1
(180.5)_{10} \times (65)_{10} = (10110111010100.1)_2
vii) 192 × 22
192 কে বাইনারিতে রূপান্তরঃ
192÷2=96; ভাগশেষ 0
96÷2=48; ভাগশেষ 0
48÷2=24: ভাগশেষ 0
24÷2=12; ভাগশেষ 0
12÷2=6; ভাগশেষ 0
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11000000
(192)_{10} = (11000000)_2
22 কে বাইনারিতে রুপান্তরঃ
22÷2=11; ভাগশেষ 0
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110
```



```
\therefore (22)<sub>10</sub> = (10110)<sub>2</sub>
এখন, 11000000 × 10110 নির্ণয়ঃ
11000000
(x) 10110
   0000000
  11000000x
 11000000xx
00000000xxx
11000000xxxx
  -----
1000010000000
(192)_{10} \times (22)_{10} = (1000010000000)_2
viii) 111 × 101
111 কে বাইনারিতে রূপান্তরঃ
111÷2=55; ভাগশেষ 1
55÷2=27; ভাগশেষ 1
27÷2=13; ভাগশেষ 1
13÷2=6; ভাগশেষ 1
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1101111
(111)_{10} = (1101111)_2
101 কে বাইনারিতে রুপান্তরঃ
101÷2=50; ভাগশেষ 1
50÷2=25; ভাগশেষ 0
25÷2=12; ভাগশেষ 1
12÷2=6; ভাগশেষ 0
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100101
(101)_{10} = (1100101)_2
এখন, 11011111 × 1100101 নির্ণয়ঃ
1101111
(x) 1100101
-----
       1101111
```



```
0000000x
     11011111xx
    0000000xxx
  0000000xxxx
 11011111xxxxx
11011111xxxxxx
10101111001011
(111)_{10} \times (101)_{10} = (10101111001011)_2
১১। নিচের দশভিত্তিক সংখ্যাগুলোকে বাইনারিতে রূপান্তর করে ভাগ করে দেখাও।
i) 16 \div 4
ii) 34 \div 17
iii) 15 ÷ 3
iv) 99 ÷ 99
v) 157 \div 46
vi) 180 ÷ 69
vii) 192 ÷ 22
viii) 111 ÷ 101
সমাধানঃ
i) 16 \div 4
16 কে বাইনারতে রুপান্তরঃ
16÷2=8; ভাগশেষ 0
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10000
(16)_{10} = (10000)_2
4 কে বাইনারতে রুপান্তরঃ
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100
(4)_{10} = (100)_2
এখন, (10000)<sub>2</sub> ÷ (100)<sub>2</sub> নির্ণয়ঃ
100)10000(100
    100
   _____
         00
```



```
00
          0

∵ নির্ণেয় ভাগফলঃ (100)₂
ii) 34 \div 17
34 কে বাইনারতে রুপান্তরঃ
34÷2=17; ভাগশেষ 0
17÷2=8; ভাগশেষ 1
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1: ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 100010
(34)_{10} = (100010)_2
17 কে বাইনারতে রুপান্তরঃ
17÷2=8; ভাগশেষ 1
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10001
(17)_{10} = (10001)_2
এখন, (100010)<sub>2</sub> ÷ (10001)<sub>2</sub> নির্ণয়ঃ
10001)100010(10
       10001
           0
           0
iii) 15 ÷ 3
15 কে বাইনারতে রুপান্তরঃ
15÷2=7; ভাগশেষ 1
7÷2=3; ভাগশেষ 1
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1111
```



```
\therefore (15)_{10} = (1111)_2
3 কে বাইনারতে রুপান্তরঃ
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11
(3)_{10} = (11)_2
এখন, (1111)<sub>2</sub> ÷ (11)<sub>2</sub> নির্ণয়ঃ
11)1111(101
    11
         11
         11
∵ নির্ণেয় ভাগফলঃ (101)₂
iv) 99 ÷ 99
99 কে বাইনারতে রুপান্তরঃ
99÷2=49; ভাগশেষ 1
49÷2=24; ভাগশেষ 1
24÷2=12; ভাগশেষ 0
12÷2=6; ভাগশেষ 0
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100011
(99)_{10} = (1100011)_2
এখন, (1100011)<sub>2</sub> ÷ (1100011)<sub>2</sub> নির্ণয়ঃ
1100011)1100011(1
         1100011
      -----

∵ নির্ণেয় ভাগফলঃ (1)₂

v) 157 \div 46
157 কে বাইনারতে রুপান্তরঃ
157÷2=78; ভাগশেষ 1
78÷2=39; ভাগশেষ 0
39÷2=19; ভাগশেষ 1
19÷2=9; ভাগশেষ 1
```



```
9÷2=4; ভাগশেষ 1
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10011101
(157)_{10} = (10011101)_2
46 কে বাইনারতে রুপান্তরঃ
46÷2=23; ভাগশেষ 0
23÷2=11; ভাগশেষ 1
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
2÷2=1: ভাগশেষ 0
1÷2=0: ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 101110
(46)_{10} = (101110)_2
এখন, (10011101)<sub>2</sub> ÷ (101110)<sub>2</sub> নির্ণয়ঃ
101110)10011101(011.011
       101110
      _____
        1000001
        101110
      _____
          1001000
           101110
     _____
            110100
            101110
              .....চলবে
vi) 180 ÷ 69
180 কে বাইনারতে রুপান্তরঃ
180÷2=90; ভাগশেষ 0
90÷2=45; ভাগশেষ 0
45÷2=22; ভাগশেষ 1
22÷2=11; ভাগশেষ 0
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগণেষ 1
2÷2=1; ভাগশেষ 0
```



```
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110100
(180)_{10} = (10110100)_2
69 কে বাইনারতে রুপান্তরঃ
69÷2=34; ভাগশেষ 1
34÷2=17; ভাগশেষ 0
17÷2=8; ভাগশেষ 1
8÷2=4; ভাগশেষ 0
4÷2=2; ভাগশেষ 0
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1000101
(69)_{10} = (1000101)_2
এখন, (10110100)<sub>2</sub> ÷ (1000101)<sub>2</sub> নির্ণয়ঃ
1000101)10110100(10.10011...
         1000101
      -----
         1010100
         1000101
       -----
           1111000
           1000101
            1100110
            1000101
             .....চলবে
vii) 192 ÷ 22
192 কে বাইনারতে রুপান্তরঃ
192÷2=96; ভাগশেষ 0
96÷2=48; ভাগশেষ 0
48÷2=24; ভাগশেষ 0
24÷2=12; ভাগশেষ 0
12÷2=6; ভাগশেষ 0
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 11000000
```



```
(192)_{10} = (11000000)_2
22 কে বাইনারতে রুপান্তরঃ
22÷2=11; ভাগশেষ 0
11÷2=5; ভাগশেষ 1
5÷2=2; ভাগশেষ 1
2÷2=1; ভাগশেষ 0
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 10110
(22)_{10} = (10110)_2
এখন, (11000000)<sub>2</sub> ÷ (10110)<sub>2</sub> নির্ণয়ঃ
10110)11000000(1000.10111...
      10110
        100000
        10110
         101000
          10110
           100100
            10110
         .....চলবে
viii) 111 ÷ 101
111 কে বাইনারতে রুপান্তরঃ
111÷2=55; ভাগশেষ 1
55÷2=27; ভাগশেষ 1
27÷2=13; ভাগশেষ 1
13÷2=6; ভাগশেষ 1
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1101111
(111)_{10} = (1101111)_2
101 কে বাইনারতে রুপান্তরঃ
101÷2=50; ভাগশেষ 1
50÷2=25; ভাগশেষ 0
25÷2=12; ভাগশেষ 1
```



```
12÷2=6; ভাগশেষ 0
6÷2=3; ভাগশেষ 0
3÷2=1; ভাগশেষ 1
1÷2=0; ভাগশেষ 1
নিচ থেকে উপরে ভাগশেষগুলো সাজিয়ে পাই: 1100101
(101)_{10} = (1100101)_2
এখন, (1101111)<sub>2</sub> ÷ (1100101)<sub>2</sub> নির্ণয়ঃ
1100101)1101111(1.00011..
         1100101
         10100000
          1100101
      -----
           1110110
           1100101
             10001 .....চলবে
∵ নির্ণেয় ভাগফলঃ (1.00011...)₂
```