第二章非线性方程求根

王志明

wangzhiming@ustb.edu.cn

§ 2 非线性方程求根

- 求f(x)=0的根; $ax^2 + bx + c = 0$, $a \neq 0$
- 对多项式方程 $P_n(x)=0$,在n>=5式没有一般形式的解。
- 三四阶方程求解公式
- 三个基本问题:
 - 根的存在性;
 - 根的隔离(分成小区间);
 - 根的精确化。

第二章非线性方程求根

- 2.1 二分法
- 2.2 迭代法
- 2.3 牛顿迭代法与弦割法
- 2.4 非线性方组牛顿迭代求根
- 2.5 迭代法的收敛性和加速收敛方法
- 2.6 Matlab应用实例

§ 2.1 二分法

若f(x)在[a,b]上连续,

 $\mathbb{H}_{f}(a) f(b) < 0$

(1)取
$$x_0 = \frac{a+b}{2}$$
,计算 $f(x_0)$ 若 $f(a)f(x_0) < 0$,则根位于 $[a, x_0]$ 取 $a_1 = a, b_1 = x_0$

若 $f(a) f(x_0) > 0$,则根位于 $[x_0, b]$ 取 $a_1 = x_0, b_1 = b$

(2)取
$$x_1 = \frac{a_1 + b_1}{2}$$
,计算 $f(x_1)$

 $[a_0,b_0]\supset [a_1,b_1]\supset \cdots \supset [a_n,b_n]\cdots$

$$[a_n,b_n]$$
长度为: $b_n-a_n=\frac{b_{n-1}-a_{n-1}}{2}=...=\frac{b-a}{2^n}$

以 $x_n = \frac{b_n + a_n}{2}$ 以近似解,误差满足:

$$|\alpha - x_n| \leq \frac{b_n - a_n}{2} = \frac{b - a}{2^{n+1}} | 3 \times 3$$

若设定误差不大于 ε

则
$$|\alpha - x_n| \le \frac{b-a}{2^{n+1}} < \varepsilon$$

$$2^{n+1} > \frac{b-a}{\varepsilon}$$

估计所需迭代次数:
$$n+1 \ge [(\ln(b-a)-\ln\varepsilon)/\ln 2]$$

$$n \ge \log_2(b-a) - \log_2 \varepsilon - 1$$

5

例 证明方程 $e^x + 10 x - 2 = 0$ 存在唯一实 根 $x^* \in (0,1)$, 用二分法求根, 要求误差不超过 $0.5*10^{-2}$ \circ 严格单调: $f'(x) = e^x + 10 > 0$ 解存在: f(0) = -1 < 0, f(1) = e + 8 > 0 $k+1 \ge [(\ln(1-0) - \ln(0.5 \cdot 10^{-2})) / \ln 2]$ $k+1 \ge \ln(200)/\ln 2 \approx 7.64$

k	$a_k(f(a_k)$ 的符号)	$x_k(f(x_k)$ 的符号)	$b_k(f(b_k)$ 的符号)
0	0(-)	0.5(+)	1(+)
1	0(-)	0.25(+)	0.5(+)
2	0(-)	0.125(+)	0.25(+)
3	0(-)	0.0625(-)	0.125(+)
4	0.0625(-)	0.09375(+)	0.125(十)
5	0.0625(-)	0.078125(-)	0.09375(+)
6	0.078125(-)	0.0859375(-)	0.09375(+)
7	0.0859375(-)	0.08984375(+)	0.09375(+)

例1 设
$$f(x) = \sin x - x^2 / 4$$

已知
$$f(2) < 0, f(1.5) > 0$$

求 f(x) = 0 在区间[1.5,2]内根的近似值.

计算结果列表如下:

$$\Re \quad \widetilde{\alpha} = x_6$$

$$= \frac{1}{2}(1.921875 + 1.9375)$$

误差限
$$\frac{1}{2(n)}(b-a) = \frac{1}{12}$$

n	函数值符号	有根区间
	f(1.5)>0	
0	f(2)<0	(1.5, 2)
1	f(1.75)>0	(1.75, 2)
2	f(1.875)>0	(1.875, 2)
3	f (1. 9375) <0	(1. 875, 1. 9375)
4	f (1. 90625)>0	(1. 90625, 1. 9375)
5	f(1.921875)>0	(1. 921875, 1. 9375)

§ 2.2 迭代法

§ 2.2.1 简单迭代法

• 将方程f(x)=0化为另一个与它同解的方程:

$$x = g(x)$$

• 取初值x₀代入右边得到:

$$x_1 = g(x_0)$$

• 如果迭代收敛,则结果为所求根。

例 用简单的迭代法求解:

$$f(x) = 2x^3 - x - 1 = 0$$

$$f(x) = 2x^3 - x - 1 = 0$$

方法一:
$$x = \sqrt[3]{\frac{x+1}{2}} = g(x)$$

取初值 x_0 =0得到迭代序列:

0.79, 0.964, 0.994, ...

方法二:

$$x = 2x^3 - 1 = g(x)$$

取初值 x_0 =0得到迭代序列:

$$-1, -3, -55, \cdots$$

什么条件下才收敛呢?

§ 2.2.2 迭代法的几何意义

• 求直线y=x与曲线y=g(x)的交点;

收敛条件是什么?

定理1 若迭代函数g(x)满足条件:

$$(1)$$
存在 $0 < L < 1$,对任意 $x \in [a,b]$ 有 $|g'(x)| \nleq L$

$$(2)$$
当 $x \in [a,b]$ 时, $a \leq g(x) \leq b$

则: (1)对任意 $x_0 \in [a,b], x_{k+1} = g(x_k)$ 收敛于 x^*

$$(2) | x_{k} - x^{*} | \leq \frac{1}{1 - L} | x_{k+1} - x_{k} |$$

$$(3) | x_k - x^* | \leq \frac{L^k}{1 - L} | x_1 - x_0 |$$

$$|(2^*)| x_k - x^*| \le \frac{L}{1-L} |x_k - x_{k-1}|$$

证明: 存在性:
$$(1) \diamondsuit \phi(x) = x - g(x)$$

 $\phi(a) = a - g(a) \le 0, \phi(b) = b - g(b) \ge 0$

唯一性:
$$|x_1^* - x_2^*| = |g(x_1^*) - g(x_2^*)|$$

$$= g'(\zeta) |x_1^* - x_2^*| \le L |x_1^* - x_2^*|$$
收敛性: $|x^* - x_k| = |g(x^*) - g(x_{k-1})| = g'(\zeta_k) |x^* - x_{k-1}|$

$$\le L |x^* - x_{k-1}| \le ... \le L^k |x^* - x_0|$$

$$L < 1, \lim_{k \to \infty} |x^* - x_k| = 0, \ \text{ If } \lim_{k \to \infty} x_k = x^*$$

$$(2) |x_{k} - x^{*}| \leq \frac{1}{1 - L} |x_{k+1} - x_{k}|$$

$$|x_{k+1} - x_k| = |(x^* - x_k) - (x^* - x_{k+1})|$$

$$\ge |x^* - x_k| - |x^* - x_{k+1}| \ge |x^* - x_k| - L|x^* - x_k|$$

$$= (1 - L)|x^* - x_k|$$

$$(3) |x_{k} - x^{*}| \leq \frac{L^{k}}{1 - L} |x_{1} - x_{0}|$$

$$|x_{k} - x^{*}| \leq \frac{1}{1 - L} |x_{k+1} - x_{k}| \leq \frac{L}{1 - L} |x_{k} - x_{k-1}|$$

$$\leq \frac{L^{2}}{1 - L} |x_{k-1} - x_{k-2}| \leq \dots \leq \frac{L^{k}}{1 - L} |x_{1} - x_{0}|$$

$$f(x) = 2x^3 - x - 1 = 0$$

方法一:
$$x = \sqrt[3]{\frac{x+1}{2}} = g(x)$$

$$g'(x) = \frac{1}{6} \cdot \left(\frac{x+1}{2}\right)^{-\frac{2}{3}}$$

$$|g'(0)| = 0.2646 < 1 |g'(1)| = 0.166 < 1$$

方法二:
$$x = 2x^3 - 1 = g(x)$$

 $g'(x) = 6x$
 $|g'(0)| = 0 < 1$ $|g'(1)| = 6 > 1$

$$f(x) = x^3 - x - 1 = 0$$

$$x = \sqrt[3]{x+1} = g(x)$$

$$g'(x) = \frac{1}{3}(x+1)^{-\frac{2}{3}} \le \frac{1}{3\sqrt[3]{4}} < 1$$

区间[1,2]:

$$1 < g(1) \le g(x) \le g(2) < 2$$

精度估计: $\frac{L^k}{1-L} |x_1 - x_0| \le 10^{-5}$

代入x₀=1.5, x₁=1.35721, L≈0.2100, 得:

定理2若存在区间(c,d),使

(1)方程x = g(x)在区间(c,d)内有实根 x^* ;

(2)g'(x)在区间内连续且|g'(x*)(<1.)

则迭代法 $x_{k+1}=g(x_k)$ 在x*附近具有局部收敛性.

例3 求方程 $x = e^{-x}$ 在x = 0.5附近的一个根,要求精度 $\delta = 10^{-3}$

$$\varphi'(x) = -e^{-x}$$

当 $x \in [0.4,0.6]$ 时, $|\varphi'(x)| < 0.671 < 1$, 收敛

x_k	e^{-x_k}	$ x_{k+1}-x_k $
0.5	0.606 531	35.
0.606 531	0.545 239	0.061 292
0.545 239	0.579 703	0.034 464
0.579 703	0.560 065	0.019 638
0.560 065	0.571 172	0.011 107
0.571 172	0.564 863	0.006 309
0.564 863	0.568 439	0.003 576
0.568 439	0.566 409	0.002 030
0.566 409	0.567 560	0.001 151
0.567 560	0.566 907	0.000 653
0.566 907	0.567 277	0.000 370
	0.5 0.606 531 0.545 239 0.579 703 0.560 065 0.571 172 0.564 863 0.568 439 0.566 409 0.567 560	0.5 0.606 531 0.606 531 0.545 239 0.545 239 0.579 703 0.579 703 0.560 065 0.560 065 0.571 172 0.571 172 0.564 863 0.564 863 0.568 439 0.566 409 0.567 560 0.567 560 0.566 907

§ 2.3 牛顿迭代法与弦割法

牛顿迭代法又称为切线法。

设 x_k 是f(x) = 0根 x^* 附近的近似值,

过 $(x_k, f(x_k))$ 作切线:

$$L_k(x) = f(x_k) + f'(x_k)(x - x_k)$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

当 $f'(x^*) \neq 0$ 时, $\varphi'(x^*) = 0$,至少平方收敛。

定理3 对于方程f(x)=0,若存在区间(a,b),使

- (1)在区间(a,b)内存在方程的单根x*;
- (2)f"(x)在区间内连续.

则牛顿迭代法在x*附近有局部收敛性.

$$f(x^*) \equiv 0, f'(x^*) \neq 0$$

$$g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$
$$|g'(x^*)| = 0 < 1$$

定理4 对于方程f(x)=0,若存在区间(a,b),使

(1)f"(x)在区间[a,b]上连续;

(2)f(a)f(b)<0;

(3)对任意x∈[a,b]都有f′(x)≠0;

(4)f"(x)在[a,b]上保号.

则当初值 $x_0 \in [a,b]$ 且 $f(x_0)f''(x_0)>0$ 时,牛顿迭代法产生的迭代序列收敛于方程的唯一实根 x^* .

牛顿迭代程序步骤:

- (1)输入精度 $\varepsilon_1, \varepsilon_2$,最大迭代次数N、初值 x_0 ,计算 $f(x_0)$ 、 $f'(x_0)$,记k=0
- (2) $\exists k \ge N$ 或 $f'(x_k) = 0$,终止并输出失败标志;

(3) 计算
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

(4)若 $|x_{k+1}-x_k|$ < ε_1 或 $f(x_{k+1})$ < ε_2 , 终止并输出 $\alpha \approx x_{k+1}$; 否则k=k+1, 转(2)。

图2-8 牛顿迭代法 程序框图

例 用牛顿迭代法求 $9x^2 - \sin x - 1 = 0$ 在[0,1]内的一个根。

$$f(1) = 9 - \sin 1 - 1 > 0, f(\frac{1}{3}) = 1 - \sin \frac{1}{3} - 1 < 0$$

在[1/3,1]区间内满足:

Matlab演示

$$f'(x) = 18 x - \cos x + 6 - 1 > 0$$
$$f''(x) = 18 + \sin x \ge 18 > 0$$

$$f(0.4) = 9 \cdot 0.4^2 - \sin 0.4 - 1 \approx 0.0506 > 0$$

k	$\mathbf{x_k}$	k	$\mathbf{x}_{\mathbf{k}}$
0	0.4	3	0. 39184690700265
1	0. 39194423490290	4	0. 39184690700265
2	0. 39184692120359		

牛顿下山法

为了防止迭代发散,附加条件:

$$|f(x_{k+1})| < |f(x_k)|$$

引入
$$0 < \lambda \le 1$$

引入
$$0 < \lambda \le 1$$

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

λ为下山因子,一般取不同值进行试探:

$$\lambda = 1, \frac{1}{2}, \frac{1}{2^2}, \dots$$

例用牛顿下山法求解方程: $x^3/3-x=0$ 的一个根,取 $x_0 = -0.99, 误差 |x_k - x_{k-1}| \le 10^{-5}$

Newton 下山法计算结果

k	λ	x_k	$f(x_k)$	$f'(x_k)$	$\frac{f(x_k)}{f'(x_k)}$
0		-0.99	0.66657	-0,01990	-33.49589
1	1	32, 50598	11416. 51989	E-27, 20 1 %	Sedi in a
	1/2	15. 75799	1288, 5516		
	1/4	7. 38400	126. 81613		
	1/8	3. 19700	7.69495		
de	1/16	1, 10350	-0.65559	0. 21771	-3,01131
2	1	4. 11481	19. 10899		
	1/2	2.60916	3.31162		24 A 105
	1/4	1,85633	0.27594	2. 44594	0.11281
3	1	1.74352	0.02316	2. 03985	0.01135
4	1	1,73217	0.00024	2, 00041	0.00012
5	1	1.73205	0.00000	2,00000	0.00000
6	1	1.73205	117 0	0.000 0.000	

例 用牛顿迭代法求 \sqrt{c} > 0

作函数 $f(x) = x^2 - c$ 则 f(x) = 0 的正根就是 \sqrt{c} .

$$f'(x) = 2x, \quad \varphi(x) = x - \frac{x^2 - c}{2x} \quad f(x) = x - c = 0$$
页迭代公式如下:
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k)}$$

牛顿迭代公式如下:

$$X_{k+1} = X_k - \frac{f(X_k)}{f(X_k)}$$

$$x_{k+1} = x_k - \frac{x_k^2 - c}{2x_k} = \frac{1}{2} (x_k + \frac{c}{x_k})$$

$$x_{k+1} = x_k - \frac{x_k^2 - c}{2x_k} = \frac{1}{2} (x_k + \frac{c}{x_k})$$

$$x_{k+1} = x_k - \frac{x_k^2 - c}{2x_k} = \frac{1}{2} (x_k + \frac{c}{x_k})$$

简化的牛顿迭代公式

应用牛顿迭代公式,每一步需要计算 $f'(x_n)$.

为了避免计算导数值,将

$$x_{k+1} = x_k - f(x_k) / f'(x_k)$$

修改为:

$$x_{k+1} = x_k - f(x_k) / f'(x_0)$$

可进一步简化为: $x_{k+1} = x_k - f(x_k)/c$

迭代公式为:
$$\varphi(x) = x - \frac{f(x)}{c}$$

根据收敛条件 $|\varphi'(x)| \not\in L < 1$ 可得:

$$\varphi'(x) = 1 - \frac{f'(x)}{c}$$

$$0 < \frac{f'(x)}{c} < 2$$

异号时可能发散!

Hex

简单迭代法

11

0.0000000000 1.000000000 0.3678794412 0.6922006276 0.5004735006 0.6062435351 0.5453957860 0.5796123355 0.5601154614 0.5711431151 0.5648793474

0.5684287250 0.5664147331 0.5675566373 0.5669089119 0.5672762322 0.5670678984 0.5671860501 0.5671190401

 $f_{x} = 0.5671190401 >$

例用简化牛顿迭代法求 $x-e^{-x}=0$ 的根,

取 $x_0 = 0$, 迭代至 $|x_k - x_{k-1}| \le 10^{-4}$.

由 $f'(x_0) = 2$ 可得迭代公式为:

$$x_{k+1} = x_k - f(x_k) / 2$$

一柳用名	简化牛顿迭代	法求	$x-e^{-x}=0$ 的根	, –	分法:
,,,,,				n	X
		(全)	$ x_k - x_{k-1} \le 10^{-4}.$	0	0.5
由f	$(x_0) = 2$ 可得	1	0.7500000000		
				2	0.6250000000
x	$x_{k+1} = x_k - f(x_k)$	$(x_k)/\zeta$		3	0.5625000000
简化	牛顿法:	牛顿	法:	4	0.5937500000
n	X	n	X	5	0.5781250000
0	0	0	0	6	0.5703125000
1	0.5	1	0.5	7	0.5664062500
2	0.5532653299	2	0.5663110032	8	0.5683593750
3	0.5641671406	3	0.5671431650	9	0.5673828125
4	0.5665004243	4	0.5671432904	10	0.5668945313
5	0.5670042146			1:	0.5671386719
6	0.5671131932			12	2 0.5672607422
7	0.5671367766			13	0.5671997070
	wangzh	mina@	ustb.edu.cn		33

§ 2.3.3 弦割法

为了避免计算导数值,用下式近似导数:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

迭代公式为:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

以直代曲,需要两点函数值开始迭代。

几何意义:

过点
$$(x_0, f(x_0))$$
与 $(x_1, f(x_1))$ 作直线

$$y = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_1)$$

令:
$$y = 0$$
, 得: $x = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0)$

记:
$$x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)} (x_1 - x_0).$$

一般形式:
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

例5 分别用牛顿法和截弦法求解方程在x=1.5附近

根:

$$x^3 - x - 1 = 0$$

$$|\chi_{k-}\chi_{k-1}| < 10^{-6}$$

(1) 牛顿法:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

$$x_1 = x_0 - \frac{x_0^3 - x_0 - 1}{3x_0^2 - 1} = 1.5 - \frac{(1.5)^3 - 1.5 - 1}{3(1.5)^2 - 1} \approx 1.34783$$

$$x_2 = x_1 - \frac{x_1^3 - x_1 - 1}{3x_1^2 - 1} \approx 1.32520$$

$$x_3 = x_2 - \frac{x_2^3 - x_2 - 1}{3x_2^2 - 1} \approx 1.32472$$

$$x_4 = x_3 - \frac{x_3^3 - x_3 - 1}{3x_3^2 - 1} \approx 1.32472$$

(2)弦割法:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

$$= x_k - \frac{x_k^3 - x_k - 1}{x_k^2 - x_{k-1} \cdot x_k + x_{k-1}^2 - 1}$$

$$\mathbb{R}x_0 = 1.5, \quad x_1 = 1.4$$

$$x_2 = 1.4 - \frac{(1.4)^3 - 1.4 - 1}{(1.4)^2 + 1.4 \times 1.5 + (1.5)^2 - 1} \approx 1.33522$$

$$x_3 = 1.33522 - \frac{(1.33522)^3 - 1.33522 - 1}{(1.33522)^2 + 1.33522 \times 1.4 + (1.4)^2 - 1} \approx 1.32541$$

k	牛顿法	f(x)	弦割法	f (x)
0	1	-1	1	-1
1	1.5000000000	0.8750000000	1.5	0.875
2	1.3478260870	0.1006821731	1.266666667	-0.2343703704
3	1.3252003990	0.0020583619	1.3159616733	-0.0370383005
4	1.3247181740	0.0000009244	1.3252141140	0.0021169048
5	1.3247179572	0.000000000	1.3247138858	-0.0000173631
6			1.3247179554	-0.0000000080
7			1.3247179572	0.000000000

牛顿法快于弦割法!

§ 2.4 非线性方程组牛顿迭代法求根

• 对非线性方程组:

$$\mathbf{F}(\mathbf{X}) = \mathbf{0} \Leftrightarrow \begin{cases} f(x, y) = 0 \\ g(x, y) = 0 \end{cases}$$

牛顿迭代法:

(1)给定初值 x^0, y^0 ;

$$(2) \begin{cases} f(x,y) \approx f(x^{0},y^{0}) + \frac{\partial f}{\partial x} \Big|_{(x^{0},y^{0})} (x-x^{0}) + \frac{\partial f}{\partial y} \Big|_{(x^{0},y^{0})} (y-y^{0}) = 0 \\ g(x,y) \approx g(x^{0},y^{0}) + \frac{\partial g}{\partial x} \Big|_{(x^{0},y^{0})} (x-x^{0}) + \frac{\partial g}{\partial y} \Big|_{(x^{0},y^{0})} (y-y^{0}) = 0 \end{cases}$$

(3)解出x, y.

$$\begin{bmatrix} f(x^{0}, y^{0}) \\ g(x^{0}, y^{0}) \end{bmatrix} + \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix} \begin{bmatrix} x - x^{0} \\ y - y^{0} \end{bmatrix} = \mathbf{0}$$

$$\mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} f(x, y) \\ g(x, y) \end{bmatrix} \qquad \mathbf{F'} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$$

$$\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} - \left[\mathbf{F'}(\mathbf{X}^{(k)}) \right]^{-1} \mathbf{F}(\mathbf{X}^{(k)})$$

$$\mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} f(x,y) \\ g(x,y) \end{bmatrix}$$

$$\mathbf{F'} = \begin{bmatrix} \partial x & \partial y \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}$$

$$\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} - \left[\mathbf{F}'(\mathbf{X}^{(k)})\right]^{-1} \mathbf{F}(\mathbf{X}^{(k)})$$

终止迭代条件: $|x-x^0|+|y-y^0|<\varepsilon$ $\max(|x-x^0|,|y-y^0|)<\varepsilon$

定理5 设F(X)的定义域为 $D \subset R^n, X^* \in D$ 满足 $F(X^*) = 0$,在 X^* 的开邻域 $S_0 \subset D \perp F'(X)$ 存在且连续,F'(X)非奇异,则牛顿法生成的序列 $\{X^{(k)}\}$ 在闭域 $S \subset S_0$ 上超线性收敛于 X^* ,若还存在常数L > 0,使 $\|F'(X)-F(X^*)\| \le L\|X-X^*\|$, $\forall X \in S$,则 $\{X^{(k)}\}$ 至少平方收敛.

党数

§ 2.5 迭代法的收敛性与加速收敛方法

判断是否收敛后,收敛速度如何度量?

设序列 $\{x_k\}$ 收敛于 x^* .若存在常数 $p(p \ge 1)$ 和c(c > 0),使

$$\lim_{k \to \infty} \frac{\left| x * - x_{k+1} \right|}{\left| x * - x_k \right|^p} = c$$

则称序列 $\{x_k\}$ 是p阶收敛.

p=1为线性收敛,p>1为超线性收敛,

p=2为平方收敛。

定理6 设x*是方程x=g(x)的根,g(x),g'(x),……, $g^{(p)}(x)$ 在x*附近连续,且

$$g'(x^*) = g''(x^*) = \dots = g^{(p-1)}(x^*) = 0$$

 $g^{(p)}(x^*) \neq 0$

则迭代法 $x_{k+1}=g(x_k)$ 在x*附近为p阶收敛.

根据泰勒展开式判断收敛速度:

$$x_{k+1} = g(x_k) = g(x^*) + g'(x^*)(x_k - x^*) + \frac{g''(x^*)}{2!}(x_k) + \dots + \frac{g^{(p-1)}(x^*)}{(p-1)!}(x_k - x^*)^{p-1} + \frac{g^{(p)}(\xi)}{p!}(x_k - x^*)^p$$

$$\iiint x_{k+1} - g(x^*) = x_{k+1} - x^* = \frac{g^{(p)}(\xi)}{p!}(x_k - x^*)^p$$

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = \lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^p} = \lim_{k \to \infty} \frac{|g^{(p)}(\xi)|}{p!} = \lim_{k \to \infty} \frac{|g^{(p)}(x^*)|}{p!}$$

p阶收敛!

例6 分析简单迭代法与牛顿迭代法的收敛速度.

简单迭代法
$$x^* - x_{k+1} = g(x^*) - g(x_k) = g'(\zeta_k)(x_k - x^*)$$

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|} = \lim_{k \to \infty} |g'(\zeta_k)| = |g'(x^*)|$$

当 $g'(x^*) \neq 0$ 时简单迭代法是线性收敛的.

牛顿迭代法(单根)

$$g(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

$$\therefore f(x^*) = 0 \quad \therefore g'(x^*) = 0 \quad \text{平方收敛!}$$

牛顿迭代法(复根)

代法(复根)
$$f(x) = (x - x^*)^m q(x), (q(x^*) \neq 0)$$

$$g'(x^*) = \lim_{x \to x^*} g'(x) = \lim_{x \to x^*} \frac{f(x)f''(x)}{[f'(x)]^2} = 1 - \frac{1}{m} \neq 0$$

线性收敛!

改写方程为:
$$F(x) = \frac{f(x)}{f'(x)} = \frac{(x-x^*)q(x)}{m \cdot q(x) + q'(x)(x-x^*)}$$

则x*为单根,具有二阶收敛速度.

艾特肯(Aitken)加速法:

设序列
$$\{x_k\}$$
收敛于 x^* ,且 $\lim_{k\to\infty}\frac{x^*-x_{k+1}}{x^*-x_k}=c\ (0<|c|<1)$,由

$$\frac{x^* - x_{k+1}}{x^* - x_k} \approx \frac{x^* - x_{k+2}}{x^* - x_{k+1}}$$

解得:
$$x^* \approx x_k - \frac{(x_{k+1} - x_k)^2}{(x_{k+1} - 2x_{k+1}) + x_k}$$

解得:
$$x^* - x_k$$
 $x^* - x_{k+1}$ (1) $y_k = g(x_k)$ (2) $z_k = g(y_k)$ (3) $x_{k+1} = x_k - \frac{(x_{k+1} - x_k)^2}{z_k - 2x_k + x_k}$

 $(1)y_k = g(x_k)$

例7 用迭代法求方程f(x)=x-2-x=0在区间[0,1]内根的 近似值,精确到: $|x_{\nu+1}-x_{\nu}|<10^{-4}$

简单迭代法
$$x_{k+1} = 2^{-x_k}$$
 収仅

牛顿迭代法

$$x_{k+1} = x_k - \frac{x_k - 2^{-x_k}}{1 + 2^{-x_k} \ln 2}$$

艾特肯加速法

$$(1) y_k = 2^{-x_k}$$

$$(2)z_k = 2^{-y_k}$$

Matlab演示

$$(3)x_{k+1} \approx x_k - \frac{(y_k - x_k)^2}{z_k - 2y_k + x_k}$$

§ 2.6 Matlab应用实例

• 用牛顿法求解下列方程:

$$e^{5x} - \sin x + x^3 - 20 = 0$$

控制精度eps=10⁻¹⁰,最大迭代次数M=40。分别取初始值x=1和x=0进行计算。

clear; Clc; close all;

- M = 40;
- x = 0;
- eps = 10^{-10} ; while(k<M)
- c2 = f1(x);
- if $c1 == 0 \parallel c2 == 0$
- break;
- end
- x1 = x-c1/c2;
- res = abs(x1-x);
- k = k+1;
- x = x1;

- sprintf('%d %12.10f',k,x);
- disp(ss);
- if res<eps
- break;
- end

end

Matlab演示

- function z = f(x)
- $z = \exp(5*x) \sin(x) + x^3 20;$
- function z=f1(x)
- $z = 5*exp(5*x)-cos(x)+3*x^2;$

本章小结

- 1. 二分法
- 2. 简单迭代法
- 3. 牛顿迭代法
- 4. 弦割法
- 5. 牛顿下山法

$$(b-a)/\varepsilon$$

$$x = \varphi(x), \quad \varphi'(x) < 1$$

$$x_{k+1} = x_k - f(x_k) / f'(x_k)$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

6. 收敛的阶、艾特肯加速法。

课后作业

第二章习题的2、3、5、6、8、9。 注:

- (1)第3题仅估计次数,不计算结果!
- (2)第8题计算过程保留到小数点后4位,收敛 条件改为 $|x_k-x_{k-1}|$ <10-4.

