Exercises for Computational Physics (physik760) WS 2019/2020

B. Kostrzewa and C. Urbach

Exercises for the week from 2nd to 6th of December 2019.

Simulated Annealing

1: Consider the following data

t	\overline{x}
1	0.94(11)
2	1.95(10)
3	3.15(13)

to which we want to fit the two-parameter function

$$f(t; a, b) = at + b$$

minimizing the χ^2 . We assume that the data points are independent.

Implement simulated annealing to minimize the χ^2 -function. Compare your result with the standard estimator for linear regressions \bar{T}_{β} .

For your implementation

- make sure you keep track of the minimal value for the χ^2 -function and the corresponding parameters the algorithm found.
- optimise the proposal distribution, which is typically a Gaussian distribution with a certain width.
- \bullet optimise the number of iterations you perform at fixed temperature T.
- \bullet optimise your strategy of reducing the temperature T.