SET Lab Assignment 2

Name: Sanket Sonawane

PRN: 2019BTECS00048

Batch: T6

Q1. Provide answers for the below questions for "Google Colab"

- Original author
 Developers at Google
- DevelopersDevelopers at Google
- Initial release
 Made public in late 2017
- 4. Stable releaseIt is a web app no listed releases.
- 5. Preview releaseIt is a web app no listed releases.
- 6. Repository (with cloud support) https://github.com/googlecolab
- 7. Written in (Languages)
 Information not available publicly.
- 8. Operating System support
 It is a web app. Works on all operating systems having support for web browsers. No installation required.

- 9. Platform, portability
 It is a cloud-based web app. No installation required.
- 10. Available in (Total languages)It is a web app. Can be translated into any language.
- List of languages supported
 Only Python language is supported.
- 12. Type (Programming tool, integrated development environment etc.)Integrated Development Environment
- 13. Website https://colab.research.google.com/

14. Features

- Interactive tutorials to learn machine learning and neural networks.
- Write and execute Python 3 code without having a local setup.
- Execute terminal commands from the Notebook.
- Import datasets from external sources such as Kaggle.
- Save your Notebooks to Google Drive.
- Import Notebooks from Google Drive.
- Free cloud service, GPUs and TPUs.
- Integrate with PyTorch, Tensor Flow, Open CV.
- Import or publish directly from/to GitHub.
- 15. Size (in MB, GB etc.)
 It is a web app. No need to install.

16. Privacy and Security Same as Google's other services.

17. Type of software (Open source/License) Free closed source.

18. If License- Provide details. Apache-2.0

19. Latest versionIt is a web app. No listed versions

20. Cloud support (Yes/No)

It is a cloud-based web app.

21. Applicability

It is very useful and applicable for data science and machine learning projects. It provides free GPUs and TPUs as well as cloud collaboration services.

22. Drawbacks (if any)

- Closed environment
- Repetitive tasks
- No live editing
- Saving and storage problems
- Limited space and time

Q2. Perform linear regression on dataset.

```
# r2 score, mse, rmse
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
# predicting the accuracy score
score=r2_score(y_test,y_predict)
print("r2 socre is ", score)
print("mean_sqrd_error is ",mean_squared_error(y_test,y_predict))
print("root_mean_squared error of is ",np.sqrt(mean_squared_error(y_test,y_predict)))
... r2 socre is 0.7682224581057615
mean_sqrd_error is 2.372077071667475e-05
root_mean_squared error of is 0.004870397387962788
```

```
fig, ax = plt.subplots()
ax.scatter(y_predict, y_test, edgecolors=(0, 0, 1))
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=3)
ax.set_xlabel('Predicted')
ax.set_ylabel('Actual')
plt.show()
 0.03
 0.02
 0.01
 0.00
-0.01
-0.02
-0.03
        -0.02
              -0.01
                         0.01
                              0.02
                                   0.03
                    0.00
                                        0.04
```