Tema 1

Vertex Cover

a)

Algoritmul descris poate face maxim m iteratii prin multimea C, unde m este lungimea multii C. Acest caz se intampla atunci cand se alege aleator din C_j un x_i care nu se mai afla in niciun alt predicat din C.

Algoritmul optim poate face cel putin 1 iteratie prin multimea C. Acest caz se intampla atunci cand se alege un x_i din multimea X pentru a fi true, acest x_i facand parte din toate predicatele din C.

Worst-case-ul factorului de aproximare al algoritmului este dat de cazul in care in multimea X exista un singur x_i care se afla in toare predicatele din C, iar algoritmul Greedy-3CNF (C, X) nu-l va alege la nicio iteratie prin multimea C pe x_i . In acest caz, algoritmul Greedy va face numarul maxim de m iteratii, iar cel optim o singura iteratie.

Astfel, factorul de aproximare al algoritmului este m, deci algoritmul este m-aproximativ.

b)

1: $C = \{C_1, \dots C_m\}$ mulțimea de predicate, $X = \{x_1, \dots x_n\}$ - mulțime de variabile

2: cât timp $C \neq \emptyset$ execută

3: Alegem aleator $C_i \in C$.

4: Fie a_1 , a_2 , a_3 variabilele din C_j .

5: $a_1 \leftarrow true$; $a_2 \leftarrow true$; $a_3 \leftarrow true$.

6: Eliminăm din C toate predicatele care conțin una dintre variabilele a₁, a₂, a₃.

7: return X

Fie $T = \{x_i \mid x_i = true\}$ dupa executarea algoritmului propus mai sus

Trebuie sa aratam ca $|T| \le 3$ OPT, unde OPT este numarul de elemente din X care care au valorea *true*, rezultat in urma executarii algoritmului optim.

Fie C* multimea de predicate selectate la pasul 3 al algoritmului (*Alegem aleator* $C_j \in C$). Cum la pasul 6 eliminam din C toate predicatele ce contin pe oricare dintre variabilele a_1 , a_2 , a_3 extrase la pasul 5, in multimea C* vor fi numai predicate ce contin variabile diferite.

Fie $S = \{x_i \mid x_i = \textit{true}\}$ dupa executarea algoritmului optim. Cum in multimea C^* vor fi numai predicate ce contin variabile diferite, atunci fiecare variabila din S este continuta in cel mult un predicat din C^* , de unde rezulta ca $|S| = OPT \ge |C^*|$

$$|\mathbf{C}^*| = \frac{1}{3} * |T|$$

Deci:

$$OPT \ge |C^*| = \frac{1}{3} * |T|$$

$$OPT \ge \frac{1}{3} * |T|$$

$$3OPT \ge |T|$$

Deci algoritmul propus mai sus este 3-aproximativ.

c)

Fie
$$f(x_i) = \begin{cases} 1, daca \ x_i = true \ in multimea \ X \ aleasa \ de mine \\ 0, \ alt fel \end{cases}$$

Trebuie sa minimizam $\sum_{1 \le i \le n} f(x_i)$

Constrangeri:

$$f(x_j) + f(x_k) + f(x_l) \ge 1$$
, pentru oricare $C_i(x_j, x_k, x_l) \in C$;

$$0 \le f(x_i) \le 1$$
, pentru orice $i \in \{1, 2, ..., n\}$