DES算法的详细设计

算法原理概述

- DES算法是一种典型的块加密算法,以64位为一组的明文块作为输入,经过加密后输出同样64位的密文。
- DES算法使用加密密钥定义变换过程,算法认为只有使用加密所使用的密钥才可以解密
- DES算法使用64位密钥,但是实际上64位密钥被分成8个分组,每个分组的最后一位为奇偶校验位,实际的密钥长度为56位。
- DES算法的基本过程是换位和置换

总体结构

DES算法的总体结构—— Feistel 结构

- ◆ 输入64位明文 M 时,密钥按 (K₁K₂ ... K₁₆)
 次序调度,是加密过程。
- ◆ 输入64位密文 C 时,密钥按 (K₁₆K₁₅ ... K₁)
 次序调度,是解密过程。

模块分解

- 密钥调度模块
 - o 子密钥生成模块
 - PC-1置换模块
 - 循环左移模块
 - PC-2压缩置换模块
- *IP* 与*IP*⁻¹ 置换模块
- 16 轮迭代 T 模块

- o 迭代逻辑模块
- o Feistel 轮函数 $f(R_{i-1},K_i)$
 - E-扩展模块
 - S-盒模块
 - P-置换模块

数据结构

类-C语言算法过程