Categorical and ordinal features

Categorical

Titanic dataset

	Passen	gerld	Survived	Pclass				Name
0		1	0	3		Braund, Mr. Owen Harris		
1		2	1	1	Cumings, Mrs.	Cumings, Mrs. John Bradley (Florence Briggs Th		
2		3	1	3		Heikkinen, Miss. Laina		
3		4	1	1	Futrelle, Mrs.	Jacques He	eath (Lil	y May Peel)
4		5	0	3		Aller	, Mr. W	illiam Henry
5		6	0	3			Moran	, Mr. James
6		7	0	1		McCarthy, Mr. Timothy J		
7		8	0	3	Pa	Palsson, Master. Gosta Leonard		
	Sex	A	ge SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	male	22.0000	00 1	0	A/5 21171	7.2500	NaN	S
1	female	38.0000	00 1	0	PC 17599	71.2833	C85	С
2	female	26.0000	00 0	0	STON/O2. 3101282	7.9250	NaN	s
3	female	35.0000	00 1	0	113803	53.1000	C123	S
4	male	35.0000	00 0	0	373450	8.0500	NaN	S
5	male	29.6991	18 0	0	330877	8.4583	NaN	Q
6	male	54.0000	00 0	0	17463	51.8625	E46	S

349909 21.0750

NaN

3

male

2.000000

Ordinal features

Ticket class: 1,2,3

Driver's license: A, B, C, D

Education: kindergarden, school, undergraduate,

bachelor, master, doctoral

pclass	1	2	3
target	1	0	1

pclass	1	2	3
target	1	0	1

pclass	1	2	3
target	1	0	1

K
embarked
S
С
S
S
S
Q
S
S
S
С
S
S

Alphabetical (sorted)
 [S,C,Q] -> [2, 1, 3]

sklearn.preprocessing.LabelEncoder

2. Order of appearance [S,C,Q] -> [1, 2, 3]

Pandas.factorize

Frequency encoding

K
embarked
S
C
S
S
S
Q
S
S
S
С
S
S

```
encoding = titanic grouphy('Embarked') size()
```

 $[S,C,Q] \rightarrow [0.5, 0.3, 0.2]$

```
encoding = titanic.groupby('Embarked').size()
encoding = encoding/len(titanic)
titanic['enc'] = titanic.Embarked.map(encoding)
```

Frequency encoding

K	
embarke	d
S	
C	
S	
S	
S	
Q	
S	
S	
S	
С	
S	
S	

```
[S,C,Q] -> [0.5, 0.3, 0.2]
encoding = titanic.groupby('Embarked').size()
encoding = encoding/len(titanic)
titanic['enc'] = titanic.Embarked.map(encoding)
```

from scipy.stats import rankdata

Categorical features

So here, for each unique value of Pclass feature, we just created a new column. As I said, this works well for linear methods, kNN, or neural networks. Furthermore, one -hot encoding feature is already scaled because minimum this feature is zero, and maximum is one. Note that if you care for a fewer important numeric features, and hundreds of binary features are used by one-hot encoding, it could become difficult for tree-methods they use first ones efficiently.

One-hot encoding

pclass	pclass==1	pclass==2	pclass==3
1	1		
2		1	
1	1		
3			1

pandas.get_dummies, sklearn.preprocessing.OneHotEncoder

Sparse matrices are often useful when they work with categorical features or text data. Most of the popular libraries can work with these sparse matrices directly namely, XGBoost, LightGBM, sklearn, and others.

Categorical features Feature Generation

pclass	sex	pclass_sex
3	male	3male
1	female	1female
3	female	3female
1	female	1female

Pclass_sex==							
1male	1female	2male	2female	3male	3female		
				1			
	1						
					1		
	1						

Categorical features

- Values in ordinal features are sorted in some meaningful order
- 2. Label encoding maps categories to numbers
- 3. Frequency encoding maps categories to their frequencies
- 4. Label and Frequency encodings are often used for treebased models
- 5. One-hot encoding is often used for non-tree-based models
- 6. Interactions of categorical features can help linear models and KNN