Appendix of "Integration of Preferences in Decomposition Multi-Objective Optimization"

Ke Li¹, Kalyanmoy Deb² and Xin Yao³

¹College of Engineering, Mathematics and Physical Sciences, University of Exeter ²Department of Electrical and Computer Engineering, Michigan State University ³CERCIA, School of Computer Science, University of Birmingham *Email: k.li@exeter.ac.uk, kdeb@egr.msu.edu, x.yao@cs.bham.ac.uk

1 Choosing Pivot Point

In NUMS, the pivot point \mathbf{w}^p is used to represent the ROI on the simplex Ψ^m . In this paper, we use the projection of the DM supplied aspiration level vector \mathbf{z}^r onto Ψ^m to serve this purpose. In theory, finding such projection is equivalent to solve the following minimization problem:

$$\mathbf{w}^p = \underset{\mathbf{w} \in \Psi^m}{\operatorname{argmin}} \|\mathbf{w} - \mathbf{z}^r\| \tag{1}$$

As discussed in [1], the solution of (1) is nontrivial and there does not have an explicit form. Here, we use the theorem developed in [1] to find such projection. Algorithm 1 gives the corresponding pseudo-code and interested readers are recommended to [1] for detailed mathematical deductions.

```
Algorithm 1: Projection of \mathbf{z}^r \in \mathbb{R}^m onto the simplex \Psi^m

Input: DM supplied aspiration level vector \mathbf{z}^r

Output: Pivot point \mathbf{w}^p on \Psi^m

1 Sort \mathbf{z}^r in ascending order as z_1^r \leq \cdots \leq z_m^r;

2 for i \leftarrow m-1 to 1 do

3 \left|\begin{array}{c} t_i \leftarrow \frac{\sum_{j=i+1}^m z_j^r - 1}{m-i};\\ 4 & \text{if } t_i \geq z_i^r \text{ then} \end{array}\right|

5 \left|\begin{array}{c} \hat{t} \leftarrow t_i;\\ \mathbf{return} \ \mathbf{w}^p \leftarrow [\mathbf{z}^r - \hat{t}]_+ \end{array}\right|

7 \hat{t} \leftarrow \frac{\sum_{j=1}^m z_j^r - 1}{m};

8 return \mathbf{w}^p \leftarrow [\mathbf{z}^r - \hat{t}]_+
```

2 Proof of Theorem 1

Proof. Let us use a specific example shown in Fig. 1 to prove this theorem. Suppose the reference points are originally generated by the Das and Dennis's method [2]. Therefore, reference points are distributed on an unit m-simplex. Let the centroid of this simplex, i.e., $\mathbf{w}^p = (\frac{1}{m}, \dots, \frac{1}{m})^T$, be the

Figure 1: Illustrative example for η computation.

pivot point. Let us consider $\mathbf{v}^1 = (1,0,0)^T$ and $\mathbf{v}^2 = (0,0,1)^T$ as two vertices of an edge of this simplex. Obviously, the length of each edge of this simplex is the same, i.e., $\|\mathbf{v}^1 - \mathbf{v}^2\| = \sqrt{2}$. Suppose \mathbf{w}^1 and \mathbf{w}^2 are two reference points inside this simplex and closest to \mathbf{v}^1 and \mathbf{v}^2 . Since reference points are generated in a structured manner, we can use a geometric method to find the coordinates of \mathbf{w}^1 and \mathbf{w}^2 . As shown in Fig. 1, \mathbf{q}^1 and \mathbf{q}^2 are two reference points lying on the two edges and closest to \mathbf{v}^1 . Obviously, \mathbf{w}^1 is a linear combination of \mathbf{v}^1 , \mathbf{q}^1 and \mathbf{q}^2 as:

$$w_i^1 = (q_i^2 - v_i^1) + q_i^1 (2)$$

where $i \in \{1, \dots, m\}$. In summary, we can have $\mathbf{w}^1 = (1 - \frac{m-1}{H}, \dots, \frac{1}{H})^T$ and $\mathbf{w}^2 = (\frac{1}{H}, \dots, 1 - \frac{m-1}{H})^T$. Based on our non-uniform mapping scheme, we have the new locations of \mathbf{w}^1 and \mathbf{w}^2 can be calculated as:

$$\overline{\mathbf{w}}^i = \mathbf{w}^p + t \times \mathbf{u}^i \tag{3}$$

where $i \in \{1, 2\}$, $\mathbf{u}^i = \frac{\mathbf{v}^i - \mathbf{w}^p}{\|\mathbf{v}^i - \mathbf{w}^p\|}$ and

$$t = d - d(\frac{d - D}{d})^{\frac{1}{\eta + 1}} \tag{4}$$

where $d = \|\mathbf{v}^i - \mathbf{w}^p\|$ and $D = \|\mathbf{w}^i - \mathbf{w}^p\|$. Let $q = \frac{d-D}{d}$, we have:

$$t = d(1 - q^{\frac{1}{\eta + 1}}) \tag{5}$$

In order to have the extent of ROI become size of τ of the EF, we have the following equation:

$$\frac{\|\overline{\mathbf{w}}^1 - \overline{\mathbf{w}}^2\|}{\|\mathbf{v}^1 - \mathbf{v}^2\|} = \tau \tag{6}$$

Since $\|\mathbf{v}^1 - \mathbf{v}^2\| = \sqrt{2}$, we have:

$$\|\overline{\mathbf{w}}^1 - \overline{\mathbf{w}}^2\| = \sqrt{2}\tau\tag{7}$$

Using equation (3) to substitute $\overline{\mathbf{w}}^1$ and $\overline{\mathbf{w}}^2$ in equation (7), we have:

$$||t \times (\mathbf{u}^1 - \mathbf{u}^2)|| = \sqrt{2}\tau \tag{8}$$

Using equation (5) to substitute t in equation (8), we have:

$$d(1 - q^{\frac{1}{\eta + 1}}) \times \|\mathbf{u}^1 - \mathbf{u}^2\| = \sqrt{2}\tau \tag{9}$$

By substitution, we have:

$$(1 - q^{\frac{1}{\eta + 1}}) \times \|\mathbf{v}^{1} - \mathbf{v}^{2}\| = \sqrt{2}\tau$$

$$\implies q^{\frac{1}{\eta + 1}} = 1 - \tau$$

$$\implies \eta = \frac{\log q}{\log(1 - \tau)} - 1$$
(10)

Since the coordinates of \mathbf{v}^1 , \mathbf{w}^1 and \mathbf{w}^p are known, we have:

$$d = \sqrt{(1 - \frac{1}{m})^2 + (m - 1)\frac{1}{m^2}}$$

$$= \sqrt{1 - \frac{1}{m}}$$
(11)

and

$$D = \sqrt{(1 - \frac{m-1}{H} - \frac{1}{m})^2 + (m-1)(\frac{1}{m} - \frac{1}{H})^2}$$

$$= \sqrt{1 - \frac{1}{m}}(1 - \frac{m}{H})$$

$$= (1 - \frac{m}{H})d$$
(12)

Based on equation (11) and equation (12), we have:

$$q = \frac{d - D}{d}$$

$$= \frac{d - (1 - \frac{m}{H})d}{d}$$

$$= \frac{m}{H}$$
(13)

3 Proof of Corollary 1

Proof. As discussed in Section III-D, we should set $\eta > 0$ in the NUMS. Thus, based on Theorem 1, we have:

$$\frac{\log \frac{m}{H}}{\log(1-\tau)} > 1\tag{14}$$

Since $\frac{m}{H} < 1$ and $1 - \tau < 1$, we have:

$$\log \frac{m}{H} \le \log(1 - \tau) \implies 0 < \tau < 1 - \frac{m}{H} \tag{15}$$

4 Proof of Corollary 2

Proof. The proof of this corollary is similar to the Theorem 1. Let us use Fig. 1 for illustration again. As for the reference points \mathbf{w}^1 and \mathbf{w}^2 , we should have the following relationship after the

non-uniform mapping:

$$\frac{\|\overline{\mathbf{w}}^1 - \overline{\mathbf{w}}^2\|}{\|\mathbf{w}^1 - \mathbf{w}^2\|} = \tau \tag{16}$$

Since $\|\mathbf{w}^1 - \mathbf{w}^2\| = \sqrt{2}(1 - \frac{m}{H})$, we have:

$$\|\overline{\mathbf{w}}^1 - \overline{\mathbf{w}}^2\| = \sqrt{2}(1 - \frac{m}{H})\tau\tag{17}$$

Using equation (3) to substitute $\overline{\mathbf{w}}^1$ and $\overline{\mathbf{w}}^2$ in equation (17), we have:

$$||t \times (\mathbf{u}^1 - \mathbf{u}^2)|| = \sqrt{2}(1 - \frac{m}{H})\tau \tag{18}$$

Using equation (5) to substitute t in equation (18), we have:

$$d(1 - q^{\frac{1}{\eta + 1}}) \times \|\mathbf{u}^1 - \mathbf{u}^2\| = \sqrt{2}(1 - \frac{m}{H})\tau$$
(19)

Since $\|\mathbf{v}^1 - \mathbf{v}^2\| = \sqrt{2}$, by substitution, we have:

$$1 - q^{\frac{1}{\eta + 1}} = \left(1 - \frac{m}{H}\right)\tau$$

$$\implies \eta = \frac{\log q}{\log\left[1 - \left(1 - \frac{m}{H}\right)\tau\right]} - 1$$
(20)

where $q = \frac{m}{H}$ according to equation (13).

5 Proof of Corollary 3

Proof. Since $\eta > 0$, according to equation (20), we have:

$$\frac{\log q}{\log[1 - (1 - \frac{m}{H})\tau]} > 1 \tag{21}$$

Since $\frac{m}{H} < 1$ and $1 - (1 - \frac{m}{H})\tau < 1$, we have:

$$\log \frac{m}{H} < \log \left[1 - \left(1 - \frac{m}{H}\right)\tau\right] \implies 0 < \tau < 1 \tag{22}$$

6 Plots of Final Populations

This section provides the visual comparisons of different preference-based EMO algorithms. In particular, we plot the final solutions obtained by different algorithms that achieve the best R-IGD value.

Figure 2: Comparisons on 3-objective DTLZ1 where $\mathbf{z}^r = (0.05, 0.05, 0.2)$.

Figure 3: Comparisons on 3-objective DTLZ1 where $\mathbf{z}^r = (0.3, 0.3, 0.2)$.

Figure 4: Comparisons on 3-objective DTLZ2 where $\mathbf{z}^r = (0.2, 0.5, 0.6)$.

Figure 5: Comparisons on 3-objective DTLZ2 where $\mathbf{z}^r = (0.7, 0.8, 0.5)$.

Figure 6: Comparisons on 3-objective DTLZ3 where $\mathbf{z}^r = (0.2, 0.5, 0.6)$.

Figure 7: Comparisons on 3-objective DTLZ3 where $\mathbf{z}^r = (0.7, 0.8, 0.5)$.

Figure 8: Comparisons on 3-objective DTLZ4 where $\mathbf{z}^r = (0.2, 0.5, 0.6)$.

Figure 9: Comparisons on 3-objective DTLZ4 where $\mathbf{z}^r = (0.7, 0.8, 0.5)$.

Figure 10: Comparisons on 5-objective DTLZ1 where $\mathbf{z}^r = (0.05, 0.05, 0.1, 0.08, 0.03)^T$.

Figure 11: Comparisons on 5-objective DTLZ1 where $\mathbf{z}^r = (0.2, 0.1, 0.1, 0.3, 0.4)^T$.

Figure 12: Comparisons on 5-objective DTLZ2 where $\mathbf{z}^r = (0.3, 0.1, 0.4, 0.2, 0.3)^T$.

Figure 13: Comparisons on 5-objective DTLZ2 where $\mathbf{z}^r = (0.7, 0.6, 0.3, 0.8, 0.5)^T$.

Figure 14: Comparisons on 5-objective DTLZ3 where $\mathbf{z}^r = (0.3, 0.1, 0.4, 0.2, 0.3)^T$.

Figure 15: Comparisons on 5-objective DTLZ3 where $\mathbf{z}^r = (0.7, 0.6, 0.3, 0.8, 0.5)^T$.

Figure 16: Comparisons on 5-objective DTLZ4 where $\mathbf{z}^r = (0.3, 0.1, 0.4, 0.2, 0.3)^T$.

Figure 17: Comparisons on 5-objective DTLZ4 where $\mathbf{z}^r = (0.7, 0.6, 0.3, 0.8, 0.5)^T$.

Figure 18: Comparisons on 8-objective DTLZ1 where $\mathbf{z}^r = (0.01, 0.02, 0.07, 0.02, 0.06, 0.2, 0.1, 0.01)^T$.

Figure 19: Comparisons on 8-objective DTLZ1 where $\mathbf{z}^r = (0.1, 0.2, 0.1, 0.4, 0.4, 0.1, 0.3, 0.1)^T$.

Figure 20: Comparisons on 8-objective DTLZ2 where $\mathbf{z}^r = (0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)^T$.

Figure 21: Comparisons on 8-objective DTLZ2 where $\mathbf{z}^r = (0.6, 0.5, 0.75, 0.2, 0.3, 0.55, 0.7, 0.6)^T$.

Figure 22: Comparisons on 8-objective DTLZ3 where $\mathbf{z}^r = (0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)^T$.

Figure 23: Comparisons on 8-objective DTLZ3 where $\mathbf{z}^r = (0.6, 0.5, 0.75, 0.2, 0.3, 0.55, 0.7, 0.6)^T$.

Figure 24: Comparisons on 8-objective DTLZ4 where $\mathbf{z}^r = (0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)^T$.

Figure 25: Comparisons on 8-objective DTLZ4 where $\mathbf{z}^r = (0.6, 0.5, 0.75, 0.2, 0.3, 0.55, 0.7, 0.6)^T$.

Figure 26: Comparisons on 10-objective DTLZ1 where \mathbf{z}^r $(0.02, 0.01, 0.06, 0.04, 0.04, 0.01, 0.02, 0.03, 0.05, 0.08)^T$.

References

- [1] Y. Chen and X. Ye, "Projection onto a simplex," ArXiv e-prints, Jan 2011.
- [2] I. Das and J. E. Dennis, "Normal-Boundary Intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems," *SIAM Journal on Optimization*, vol. 8, pp. 631–657, 1998.

Figure 27: Comparisons on 10-objective DTLZ1 where $\mathbf{z}^r = (0.05, 0.1, 0.1, 0.05, 0.1, 0.2, 0.08, 0.03, 0.3, 0.1)^T$.

Figure 28: Comparisons on 10-objective DTLZ2 where $\mathbf{z}^r = (0.05, 0.1, 0.25, 0.3, 0.2, 0.4, 0.25, 0.15, 0.1, 0.4)^T$.

Figure 29: Comparisons on 10-objective DTLZ2 where $\mathbf{z}^r = (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45)^T$.

Figure 30: Comparisons on 10-objective DTLZ3 where $\mathbf{z}^r = (0.05, 0.1, 0.25, 0.3, 0.2, 0.4, 0.25, 0.15, 0.1, 0.4)^T$.

Figure 32: Comparisons on 10-objective DTLZ4 where $\mathbf{z}^r = (0.05, 0.1, 0.25, 0.3, 0.2, 0.4, 0.25, 0.15, 0.1, 0.4)^T$.

(d) NSGA-III

Figure 33: Comparisons on 10-objective DTLZ4 where $\mathbf{z}^r = (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45)^T$.