

Information Redundancy

- ◆ Code, codeword, binary code
- ◆ Error detection, error correction
- ◆ Hamming distance:
 - number of bits in which two words differ
- ◆ Odd/even parity
 - the total number of 1s is odd/even
- ◆ Basic parity approaches
 - bit-per-word
 - bit-per-byte
 - bit-per-chip
 - bit-per-multiple-chips
 - interlaced parity

Error Detection/Correction

- ◆ Let's look at an old principle to error correction
 - Hamming Code
 - any computer organization book will be a good reference
 - » e.g. William Stallings' *Computer Organization and Architecture*
 - rely on check bits to identify whether bit has been changed
 - identification of changed bit allows for correction

Overlapped Parity

12	11	10	9	8	7	6	5	4	3	2	1	Bit Position
0	1	0	1	0	1	0	1	0	1	0	1	
0	1	1	0	0	1	1	0	0	1	1	0	
1	0	0	0	0	1	1	1	1	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	
				C4			C3		C2	C1	Check Bit	
D8	D7	D6	D5		D4	D3	D2		D1			Data Bit

$$2^k - 1 \geq m + k$$

m = data bits
k = parity bits

Overlapped Parity

- ◆ Syndrome is derived from comparing, i.e. XOR, transmitted and received/recomputed check bits.
- ◆ Syndrome has following characteristics (previous example)
 - if syndrome contains all 0's
 - » no error has been detected
 - if syndrome contains one and only one bit set to 1
 - » error has occurred in one of the 4 check bits
 - if syndrome contains more than one bit set to 1
 - » numerical value of the syndrome indicates the position of the data-bit error
 - » this bit is then inverted for correction

Compute Check

$$C_1 = D_1 \oplus D_2 \oplus D_4 \oplus D_5 \oplus D_7$$

$$C_2 = D_1 \oplus D_3 \oplus D_4 \oplus D_6 \oplus D_7$$

$$C_3 = D_2 \oplus D_3 \oplus D_4 \oplus D_8$$

$$C_4 = D_5 \oplus D_6 \oplus D_7 \oplus D_8$$

Overlapped Parity

◆ Example

- data = 1110 0001
- compute check bits:

$$C_1 = D_1 \oplus D_2 \oplus D_4 \oplus D_5 \oplus D_7$$

$$C_2 = D_1 \oplus D_3 \oplus D_4 \oplus D_6 \oplus D_7$$

$$C_3 = D_2 \oplus D_3 \oplus D_4 \oplus D_8$$

$$C_4 = D_5 \oplus D_6 \oplus D_7 \oplus D_8$$

$$C_1 = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0 \quad \text{--- least significant bit}$$

$$C_2 = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$C_3 = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

$$C_4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1 \quad \text{--- most significant bit}$$

Overlapped Parity

◆ Example

- data sent is 1110 0001 and transmitted check bits are 1110
- received data is: 01100001
 - » Note the most sig. bit has been corrupted
- received check bits are: 1110
- recomputed check bits:

$$C1 = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$$

$$C2 = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1$$

$$C3 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

$$C4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

- Syndrome: 1110 XOR 0010 = 1100

Applying Syndrome

12	11	10	9	8	7	6	5	4	3	2	1	Bit Position
0	1	0	1	0	1	0	1	0	1	0	1	
0	1	1	0	0	1	1	0	0	1	1	0	
1	0	0	0	0	1	1	1	1	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	
					C4			C3		C2	C1	Check Bit
D8	D7	D6	D5		D4	D3	D2		D1			Data Bit

Syndrome 1100 detects D8 as faulty

m-of-n codes

- ◆ All code words are n bits in length and contain exactly m 1s
- ◆ Simple implementation:
 - add/append second data word
 - select word such that code word contains m 1s
 - code is separable
 - 100% overhead
- ◆ Hamming distance is 2
 - e.g. 1st error sets bit, 2nd error resets other bit

Checksum

- ◆ Separable code to achieve error detection capability
- ◆ Checksum is the sum of the original data
- ◆ Single-precision checksum
 - overflow problem, i.e. adding n bits modulo 2^n
- ◆ Double-precision checksum
 - uses double precision, i.e. compute $2n$ -bit checksum from n -bit words using modulo- 2^{2n} arithmetic.
- ◆ Honeywell checksum
 - compose word of double length by concatenating 2 consecutive words
 - compute checksum on these double words
- ◆ Residue checksum
 - like single-precision checksum, but overflow is now fed back as carry

Cyclic codes

- ◆ Cyclic Redundancy Checks (CRC)
 - Parity bits still subject to burst noise, uses large overhead (potentially) for improvement of 2-4 orders of magnitude in probability of detection.
 - CRC is based on a mathematical calculation performed on message. We will use the following terms:
 - » M - message to be sent (k bits)
 - » F - Frame check sequence (FCS) to be appended to message (n bits)
 - » T - Transmitted message includes both M and F
 $=>(k+n \text{ bits})$
 - » G - a $n+1$ bit pattern (called generator) used to calculate F and check T

Cyclic codes

- ◆ Idea behind CRC
 - given a k -bit frame (message)
 - transmitter generates a n -bit sequence called frame check sequence (FCS)
 - so that resulting frame of size $k+n$ is exactly divisible by some predetermined number
- ◆ Multiply M by 2^n to shift and add F to padded 0s

$$T = 2^n M + F$$

Cyclic codes

- ◆ Dividing $2^n M$ by G gives quotient and remainder

$$\frac{2^n M}{G} = Q + \frac{R}{G}$$

remainder
is 1 bit less
than divisor

then using R as our FCS we get

$$T = 2^n M + R$$

on the receiving end, division by G leads to

$$\frac{T}{G} = \frac{2^n M + R}{G} = Q + \frac{R}{G} + \frac{R}{G} = Q$$

Note:
mod 2 addition,
no remainder

Cyclic codes

- ◆ Therefore, if the remainder of dividing the incoming signal by the generator G is zero, no transmission error occurred.
- ◆ Assume $T + E$ was received (Note: E is the error)

$$\frac{T + E}{G} = \frac{T}{G} + \frac{E}{G}$$

since T/G does not produce a remainder, an error is detected only if E/G produces a non-zero value

Cyclic codes

- ◆ example, assume generator $G(X)$ has at least 3 terms
 - $G(x)$ has three 1-bits
 - » detects all single bit errors
 - » detects all double bit errors
 - » detects odd #'s of errors if $G(X)$ contains the factor $(X + 1)$
 - » any burst errors < length of FCS
 - » most larger burst errors
 - » it has been shown that if all error patterns likely, then the likelihood of a long burst not being detected is $1/2^n$

Cyclic codes

- ◆ What does all of this mean?
 - A polynomial view:
 - » View CRC process with all values expressed as polynomials in a dummy variable X with binary coefficients, where the coefficients correspond to the bits in the number.
 - for $M = 110011$ we get $M(X) = X^5 + X^4 + X + 1$
 - for $G = 11001$ we get $G(X) = X^4 + X^3 + 1$
 - Math is still mod 2
 - » An error $E(X)$ is received and **undetected** iff it is divisible by $G(X)$

Cyclic codes

- Common CRCs
 - » $\text{CRC-12} = X^{12} + X^{11} + X^3 + X^2 + X + 1$
 - » $\text{CRC-16} = X^{16} + X^{15} + X^2 + 1$
 - » $\text{CRC-CCITT} = X^{16} + X^{12} + X^5 + 1$
 - » $\text{CRC-32} = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$

◆ Hardware Implementation:

