Physik und Materialwissenschaften

Praktikum Physik

5. April 2022

Praktikum Physik Versuch 2.1: Schwingungen

Inhaltsverzeichnis

1 Häusliche Vorarbeit:

1.1 Aufgabe 3.1.1

$$(m * \frac{d^2}{dt} + b * \frac{dx}{dt} + k * x = 0) \tag{1}$$

Auslenkung: $x \Rightarrow \varphi$

Masse: $m \Rightarrow J(Tr\"{a}gheitsmoment)$

Geschwindigkeit: $v = \frac{dx}{dt}$ $\Rightarrow \omega(Winkelgeschwindigeit)$

Beschleunigung: $a = \frac{d^2x}{dt^2}$ $\Rightarrow \alpha(Winkelbeschleunigung)$

Newton: $m \cdot a$ $\Rightarrow J \cdot \alpha = J \frac{d\varphi}{dt}$

Dämpfungsgrad: $b \cdot v$ $\Rightarrow b \cdot \omega = J \frac{d^2 \varphi}{dt^2}$

Beschleunigung: $k \cdot x \Rightarrow k \cdot \varphi$

$$\Rightarrow$$
 DGL. Torsionsschwinger: $J * \frac{d^{\varphi}}{dt} + b * \frac{d\varphi}{dt} + k * \varphi = 0$ (2)

Aufgabe 3.1.2

Definition Drehfederkonstante:

$$M = k \cdot \varphi \tag{3}$$

Definition Drehmoment:

$$M = r \cdot F \tag{4}$$

Federkonstante aus Auslenkung und Kraft am Radius r:

$$k = \frac{r \cdot F}{\varphi} \tag{5}$$

$$\Rightarrow \text{Federkonstante:} \quad \overline{k} \approx 18, 1 \frac{Nmm}{rad} = 18, 1 \cdot 10^{-3} \frac{Nm}{rad}$$

Maximilian Spahn		
φ/rad	F/N	$k/\frac{Nmm}{rad}$
0,6	0,1	15,83
0,8	1,15	17,81
1,1	0,2	17,27
1,3	0,25	18,26
1,6	0,3	17,81
1,8	0,35	18,47
2,0	0,4	19
2,3	0,46	19
2,4	0,48	19

Aufgabe 3.1.3

$$A_{qes} = \Pi \cdot r^2 = 28352,87mm^2 \tag{6}$$

$$A_r = A_{qes} - A_s = 24872,87mm^2 (7)$$

$$A_r = A_{ges} - A_s = 24872,87mm^2$$

$$m_r = \frac{m_{ges}}{A_{qes} \cdot A_r = 22,47g}$$
(8)

Massenträgheitsmoment Hohlzylinder:

$$J_r = \frac{1}{2} \cdot (r_{innen}^2 + r_{au\beta en}^2) = 1629,59kg \cdot mm^2$$
 (9)

Massenträgheitsmoment Gesamt:

$$J_{ges} = J_s + J_r = 1829,61629,59kg \cdot mm^2 = 1829,6 \cdot 10^{-6}kg \cdot m^2$$
 (10)

Aufgabe 3.1.3

Eigenfrequenz:

$$\omega_{0,theor.} = \sqrt{\frac{k}{J}} = 3,145 \frac{rad}{s} \tag{11}$$

Periodendauer:

$$T_{0,theor.} = \frac{2\Pi}{\omega_{0,theor.}} = 1,99s$$
 (12)

Aufgabe 3.2.1

Eine Spule besteht aus einem (dünnen) gewickelten Draht, welcher selbst einen Leitungswiederstand aufweist. Dieser kann ersatzweise als Widerstand in Reihe zu der Spule dargestellt werden.

Aufgabe 3.2.2

$$R_{ges} = R_1 + R_2 + R_3 \tag{13}$$

$$R_{3,min} = (0 + \dots)\Omega \Rightarrow R_{ges,min} = (6, 45 + \dots)k\Omega$$

 $R_{3,max} = (10 \mp \dots)k\Omega \Rightarrow R_{ges,min} = (16, 45 \mp \dots)k\Omega$