#### Standard Normal Distribution

## Objectives

1 Find the area under a normal curve given z score(s)

Find the z scores corresponding to a given area

#### Continuous Distributions

#### **Continuous Probability Distribution**

A **continuous probability distribution** is a probability distribution in which the observations are continuous variables.

#### Continuous Distributions

#### **Continuous Probability Distribution**

A **continuous probability distribution** is a probability distribution in which the observations are continuous variables.

In this section, we are going to discuss the **standard normal distribution**, whose histogram resembles a bell-shaped curve.

## Equation and Graph of Standard Normal Distribution

$$f(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$



• The mean is 0 and the standard deviation is 1

- The mean is 0 and the standard deviation is 1
- The graph is symmetric about the mean

- The mean is 0 and the standard deviation is 1
- The graph is symmetric about the mean
- The area under the curve represents the probability of obtaining a z score in that area.

- The mean is 0 and the standard deviation is 1
- The graph is symmetric about the mean
- The area under the curve represents the probability of obtaining a z score in that area.
- The total area under the curve equals 1

(a) 
$$z=0$$



















(a) 
$$z = -0.25$$







(b) 
$$z = 2$$







## Finding the Area Between Two z Scores



Find the area under the curve between the given z scores.

(a) 
$$z = -1$$
 and  $z = 1$ 

Find the area under the curve between the given z scores.

(a) 
$$z = -1$$
 and  $z = 1$ 



Find the area under the curve between the given z scores.

(a) 
$$z = -1$$
 and  $z = 1$ 



$$P(-1 \le z \le 1) = 0.6827$$

(b) 
$$z = -2$$
 and  $z = 2$ 





(b) 
$$z = -2$$
 and  $z = 2$ 



$$P(-2 \le z \le 2) = 0.9545$$

(c) 
$$z = -3$$
 and  $z = 3$ 





(c) 
$$z = -3$$
 and  $z = 3$ 



$$P(-3 \le z \le 3) = 0.9973$$

For normally distributed data, the Empirical (sometimes called 68-95-99.7 Rule) states that

For normally distributed data, the Empirical (sometimes called 68-95-99.7 Rule) states that

 About 68% of the data will lie within 1 standard deviation of the mean.

For normally distributed data, the Empirical (sometimes called 68-95-99.7 Rule) states that

- About 68% of the data will lie within 1 standard deviation of the mean.
- About 95% of the data will lie within 2 standard deviations of the mean.

For normally distributed data, the Empirical (sometimes called 68-95-99.7 Rule) states that

- About 68% of the data will lie within 1 standard deviation of the mean.
- About 95% of the data will lie within 2 standard deviations of the mean.
- About 99.7% of the data will lie within 3 standard deviations of the mean.







$$P(|z| \ge 2) =$$
  
= 1 -  $P(|z| \le 2)$ 



$$P(|z| \ge 2) =$$

$$= 1 - P(|z| \le 2)$$

$$\approx 0.0455$$

## Objectives

Find the area under a normal curve given z score(s)

2 Find the z scores corresponding to a given area

# Finding z Score for a Given Area

This is just working backwards from the our previous examples.

## Finding z Score for a Given Area

This is just working backwards from the our previous examples.

Keep in mind that most (not all) technology will ask you for the area to the *left* of the needed z score.

Find the z score which has the given area to the left of it. Round to 3 decimal places.

(a) 0.05

Find the z score which has the given area to the left of it. Round to 3 decimal places.



Find the z score which has the given area to the left of it. Round to 3 decimal places.



#### Area to the Left as a Percent

Since the area to the left of z = -1.645 in Example 4a is about 0.05, we would say that a z score of -1.645 is in the 5th percentile.

(b) What z score is in the 90th percentile?

(b) What z score is in the 90th percentile?



(b) What z score is in the 90th percentile?



Find the z score which has the given area to the *right* of it. Round to 3 decimal places.

(c) 0.3

Find the z score which has the given area to the *right* of it. Round to 3 decimal places.



Find the z score which has the given area to the *right* of it. Round to 3 decimal places.



(d) Area to the right is 0.5

(d) Area to the right is 0.5



(d) Area to the right is 0.5



$$z = 0$$

Find the z scores that separate the given middle percent of the data from the other values.

(a) 50%

Find the z scores that separate the given middle percent of the data from the other values.



Find the z scores that separate the given middle percent of the data from the other values.



(b) The middle 95%

(b) The middle 95%



(b) The middle 95%



$$z=\pm 1.960$$

(c) Find the z scores that separate the middle from the remaining 20%

(c) Find the z scores that separate the middle from the remaining 20%



(c) Find the z scores that separate the middle from the remaining 20%



$$z = \pm 1.282$$

(c) Find the z scores that separate the middle from the remaining 20%



The notation for the above problem is  $z_{0.1}$