Quiz 4

Rob Navarro

May 6, 2015

1.Let $A = \{x | 2 < x < 5\}$, $B = \{x | 4 \le x \le 7\}$ and $C = \{x | 2 \le x < 6\}$, where x represents a real number. Determine the sets

$$A = \{3,4\}, B = \{4,5,6,7\}, C = \{2,3,4,5\}$$

$$(A-C) \cup A = \{3,4\}$$

$$(A \cap B) - C = \{\emptyset\}$$

$$B \cap \overline{C} = \{6,7\}$$

2. For any sets A, B and C, prove that $A - (B \cap C) \subseteq (A - B) \cup (A - C).$

Assume: $x \in A - (B \cap C)$ then: $x \in A \land (x \notin B \lor x \notin C)$

then: $(x \in A \land x \notin B) \lor (x \in A \land x \notin C)$

then: $(x \in A - B) \lor (x \in A - C)$

then: $x \in (A - B) \cup (A - C)$

Assume: $x \in (A - B) \cup (A - C)$

then: $(x \in A - B) \lor (x \in A - C)$

then: $(x \in A \land x \notin B) \lor (x \in A \land x \notin C)$

then: $x \in A \land (x \notin B \lor x \notin C)$

then: $x \in A - (B \cap C)$

3. Let A and B are the sets . Use the laws from the following table to show that

$$\frac{\overline{\overline{\mathbf{A}} \cup \overline{\mathbf{B}} - \mathbf{A}}}{\overline{\mathbf{A}} \cup \overline{\mathbf{B}} - \mathbf{A}} = A$$

 $\equiv (A \cap B) - \overline{A}$

$$\equiv (A - \overline{A}) \cup (B - \overline{A})$$

 $\equiv A$ When subtracting the compliment of A from A we are left with just A. When subtracting the compliment of A from B we are left with only elements that are in A. The union between these two differences will then give us A.

4. 1.
$$a_0 = 1, a_1 = -1, a_2 = 8, a_3 = -27$$

2. $a_0 = 2, a_1 = 2, a_2 = 2, a_3 = 2$

5. 1)
$$\sum_{k=50}^{100} 4k^2 = 4 * \sum_{k=50}^{100} k^2 = 4 * \sum_{k=1}^{100} k^2 - \sum_{k=1}^{49} k^2 = 4 * (\frac{100*101*201}{6} - \frac{49*50*99}{6})$$

$$2)\sum_{i=0}^{9} (3^{i} - 2) = \sum_{i=0}^{9} 3^{i} - \sum_{i=0}^{9} 2 = \frac{3^{10} - 1}{2} - 18$$

3)
$$\sum_{i=8}^{10} 6i + 3 = \sum_{i=8}^{10} 6i + \sum_{i=8}^{10} 3 = 6 * (\frac{10*11}{2} - \frac{7*8}{2}) - 9$$

$$4)\sum_{i=0}^{10} \frac{1}{2} * -1^{i} = \frac{1}{2} \left(\frac{-1^{11} - 1}{-2} \right)$$