VE230: Electromagnetics I Homework V Due: July 3, 11.59pm

- **P.5-6** Lightning strikes a lossy dielectric sphere— $\epsilon = 1.2\epsilon_0$, $\sigma = 10$ (S/m)—of radius 0.1 (m) at time t = 0, depositing uniformly in the sphere a total charge 1 (mC). Determine, for all t,
 - a) the electric field intensity both inside and outside the sphere,
 - b) the current density in the sphere.
- **P.5-8** A d-c voltage of 6 (V) applied to the ends of 1 (km) of a conducting wire of 0.5 (mm) radius results in a current of 1/6 (A). Find
 - a) the conductivity of the wire,
 - b) the electric field intensity in the wire,
 - c) the power dissipated in the wire,
 - d) the electron drift velocity, assuming electron mobility in the wire to be 1.4×10^{-3} $(m^2/V\cdot s)$
- **P.5-10** The space between two parallel conducting plates each having an area S is filled with an inhomogeneous ohmic medium whose conductivity varies linearly from σ_1 at one plate (y = 0) to σ_2 at the other plate (y = d). A d-c voltage V_0 is applied across the plates as in Fig.5-11. Determine

- a) the total resistance between the plates,
- b) the surface charge densities on the plates,
- c) the volume charge density and the total amount of charge between the plates.
- **P.5-22** Assume a rectangular conducting sheet of conductivity σ , width a, and height b. A potential difference V_0 is applied to the side edges, as shown in Fig.5-14. Find

- a) the potential distribution,
- b) the current density everywhere within the sheet. (*Hint:* Solve Laplace's equation in Cartesian coordinates subject to appropriate boundary conditions.)