MT09-A2014 – Examen médian – Questions de cours

Durée : 30mn. Sans documents ni outils électroniques - Rédiger sur l'énoncé

NOM PRÉNOM:

ATTENTION, il y a TROIS exercices indépendants pour cette partie questions de cours!

Exercice 1 (barème approximatif: 1 points)

Soit $g: \mathbb{R} \to \mathbb{R}$, une fonction définissant la méthode de point fixe : x_0 donné, $x_n = g(x_{n-1})$, pour $n = 1, 2, \ldots$

- 1. Énoncer sans le démontrer le théorème de convergence globale pour cette méthode. On précisera bien les hypothèses et les conclusions.
- 2. Énoncer sans le démontrer le théorème de convergence locale pour cette méthode. On précisera bien les hypothèses et les conclusions.

Exercice 2 (barème approximatif: 2 points)

Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$, une matrice inversible (avec n > 0). On cherche une matrice $C \in \mathcal{M}_{nn}(\mathbb{R})$, vérifiant : Ctriangulaire inférieure, $c_{ii} > 0 \ (\forall i, i = 1, ..., n)$ et $A = CC^T$.

- 1. Montrer que si C existe, alors A est symétrique.
- 2. Montrer que si C existe, alors C et C^T sont inversibles.
- 3. Montrer que si C existe, alors A est définie positive.
- 4. En déduire une condition nécessaire sur A, pour que cette décomposition existe.
- 5. Montrer, en la calculant, que C existe pour $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 8 & 4 \\ 3 & 4 & 11 \end{pmatrix}$.

Expliquer brièvement le principe des calculs avant de les effectuer.

Exercice 3 (barème approximatif : 2 points) Soit un réel ε et soit la matrice $A = \begin{pmatrix} \varepsilon & 1 \\ 1 & 1 \end{pmatrix}$ et le vecteur $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

1. À quelles conditions sur ε la matrice A admet-elle une factorisation A = LU?

(On ne demande pas de faire cette factorisation dans cette question.)

- 2. On suppose les conditions de la question 1. vérifiées.
 - (a) Effectuer la factorisation A = LU.
 - (b) Résoudre le système Ax = b en utilisant la factorisation A = LU.
- 3. On travaille en arithmétique flottante en décimal, avec une mantisse de 3 chiffres et un exposant de 1 chiffre.
 - (a) Dire quelle forme prennent les nombres à virgule flottante.
 - (b) Donner les résultats des calculs de L, U et x en arithmétique flottante, quand $\varepsilon = 5 \ 10^{-4}$. Bien expliquer.
 - (c) Comment pourrait-on simplement améliorer ces résultats?

MT09-A14- Examen médian

Durée: 1h30.

Polycopiés de cours et scilab autorisés - pas d'outils numériques

Questions de cours déjà traitées : environ 5 points.

Exercice 1: (barème approximatif: 5,5 points) CHANGEZ DE COPIE

Soit A une matrice symétrique appartenant à $\mathcal{M}_{nn}(\mathbb{R})$ $(n \geq 1)$. On note $\lambda_1, \lambda_2, \ldots, \lambda_n$ ses valeurs propres, distinctes ou non. On note également y_1, y_2, \ldots, y_n les vecteurs propres associés, qu'on suppose normalisés : $||y_i||_2 = 1, \forall i = 1, \ldots, n$.

- 1. (a) Déterminer les valeurs propres de A^2 en fonction des $(\lambda_i)_{i=1,\dots,n}$.
 - (b) En déduire que $\rho(A^2) = (\rho(A))^2$.
 - (c) En déduire que $||A||_2 = \rho(A)$.

On suppose dans toute la suite que A est symétrique définie positive. On ordonne les valeurs propres de façon que $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.

- 2. (a) Montrer que $\lambda_1 > 0$. En déduire que A est inversible.
 - (b) Déterminer les valeurs propres de A^{-1} , puis $||A^{-1}||_2$, en fonction des λ_i , $i=1,\ldots,n$.
 - (c) En déduire le conditionnement $\chi_2(A)$.
- 3. On veut résoudre Ax = b.
 - (a) On prend $b = \lambda_n y_n$. Que vaut x?
 - (b) On résout en réalité un système perturbé : $A(x + \delta x) = b + \delta b$. On prend $\delta b = \lambda_1 y_1$. Que vaut δx ?
 - (c) Comparer l'erreur relative $\frac{||\delta x||_2}{||x||_2}$ à l'erreur relative faite sur le second membre. Rappeler l'inégalité du cours. Commenter.
 - (d) On suppose que $\lambda_n \gg \lambda_1$. Commenter.
- 4. On perturbe à présent volontairement le système pour essayer d'améliorer la solution : on modifie A afin de diminuer δx . On étudie le système $(A + \alpha I)v = c$.
 - (a) Calculer $(A + \alpha I)y_i$, i = 1, ..., n. En déduire les valeurs propres de $A + \alpha I$.
 - (b) On prend $c = b + \delta b = \lambda_n y_n + \lambda_1 y_1$. Déterminer v sous la forme $v = k_n y_n + k_1 y_1$, où k_1 et k_n sont des scalaires. Calculer k_1 et k_n .
 - (c) Calculer v x.
 - (d) On choisit α de façon à avoir $\lambda_1 \ll \alpha \ll \lambda_n$. Comparer $||v-x||_2$ à $||\delta x||_2$. (Dans cette question, on suppose que la base des vecteurs propres est orthonormalisée.)

Exercice 2: (barème approximatif: 4 points) CHANGEZ DE COPIE

Soit une matrice A inversible appartenant à $\mathcal{M}_{nn}(\mathbb{R})$ $(n \geq 1)$, M appartenant à $\mathcal{M}_{nn}(\mathbb{R})$ et b dans \mathbb{R}^n . On veut calculer $B = A^{-1}M$ et $c = A^{-1}b$. On rappelle que :

- la factorisation LU d'une matrice de $\mathcal{M}_{nn}(\mathbb{R})$ nécessite de l'ordre de $n^3/3$ multiplications,
- la résolution d'un système linéaire triangulaire (supérieur ou inférieur) de $\mathcal{M}_{nn}(\mathbb{R})$ nécessite de l'ordre de $n^2/2$ multiplications.

On suppose que la factorisation A = LU est faisable.

- 1. (a) Montrer que le nombre de multiplications nécessaires pour calculer A^{-1} est de l'ordre de αn^3 . On déterminera α et on justifiera clairement la réponse.
 - (b) Montrer que le nombre de multiplications nécessaires pour calculer B et c en utilisant A^{-1} est de l'ordre de βn^3 . On déterminera β .
- 2. (a) Montrer que le calcul de c peut se ramener à la résolution de systèmes linéaires dont on précisera les matrices et les seconds membres.
 - (b) Montrer que le calcul de *B* peut se ramener à la résolution de plusieurs systèmes linéaires dont on précisera, pour chacun d'eux, la matrice, le vecteur inconnu et le second membre.
 - (c) Évaluer le nombre de multiplications nécessaires pour calculer B et c en passant par cette méthode. Comparer avec le résultat du 1.
- 3. On calcule B et c par la méthode du 2. On dispose des fonctions ${\tt scilab}$:
 - function [L,U]=LU(K), qui, étant donnée une matrice K, calcule la factorisation LU : K=LU.
 - function [x]=solinf(L,b), qui, étant donnés la matrice triangulaire inférieure L et le vecteur colonne b, résout Lx = b.
 - function [x]=solsup(U,b), qui, étant donnés la matrice triangulaire supérieure U et le vecteur colonne b, résout Ux = b.

Utiliser les fonctions ci-dessus pour écrire une fonction scilab :

function [B,c]=calcule(A,M,b) qui calcule $B=A^{-1}M$ et $c=A^{-1}b$.

Exercice 3: (barème approximatif: 5,5 points) CHANGEZ DE COPIE

Soit la suite $(V^{(k)})_{k \in \mathbb{N}} = ((x^{(k)}\ y^{(k)}\ z^{(k)})^T)_{k \in \mathbb{N}}$ de vecteurs de \mathbb{R}^3 , définie par la relation :

$$\begin{cases} V^{(k+1)} = CV^{(k)} + d, & \forall k = 0, 1, \dots \text{ avec } C = \frac{1}{4} \begin{pmatrix} 0 & -2 & 0 \\ -1 & 0 & -1 \\ 0 & -2 & 0 \end{pmatrix} \text{ et } d = \frac{1}{4} \begin{pmatrix} 2a_1 \\ a_2 \\ 2a_3 \end{pmatrix}, \\ V^{(0)} \text{ donn\'e dans } \mathbb{R}^3, \end{cases}$$
(1)

où $a = (a_1 \ a_2 \ a_3)^T$ est un vecteur donné de \mathbb{R}^3 .

- 1. La suite (1) converge-t-elle? Justifier la réponse.
- 2. Si la suite converge vers un vecteur $V = (x \ y \ z)^T$, quel est le système d'équations AV = b que vérifie V? On précisera la matrice $A \in \mathcal{M}_3$ et le second membre $b \in \mathbb{R}^3$ de ce système. (On pourra exprimer b simplement en fonction du vecteur a).
- 3. La suite (1) aurait pu être obtenue en appliquant une méthode itérative connue au système AV=b. Quelle est cette méthode? Justifier.
- 4. Quel théorème du cours permettrait de répondre directement à la question 1.?
- 5. On applique la méthode de Gauss-Seidel au système AV = b. Exprimer $V^{(k+1)}$ en fonction de $V^{(k)}$. On précisera ce que vaut la matrice R de l'itération de Gauss-Seidel.
- 6. La méthode de Gauss-Seidel converge-t-elle? Justifier.