1 Mengen

1.1 Definition:

- 1. Eine Menge ist eine Ansammlung verschiedener Objekte
- 2. Die Objekte in einer Menge heißen Elemente

```
Notation: a \in M heißt a ist Element der Menge M a \notin M heißt a ist kein Element der Menge M
```

3. Sei M eine Menge. Eine Menge U heißt Teilmenge von M, von der jedes Element von U auch Element von M ist

```
Notation: U \subseteq M heißt U ist Teilmenge von M

U \not\subseteq M heißt U ist keine Teilmenge von M
```

1.2 Beispiele

Sei M die Menge aller Studierenden in L1
 W die Menge aller weiblichen Studierenden in L1
 F die Menge aller Frauen

Dann gilt:
$$W \subseteq M$$
, $W \subseteq F$, $M \not\subseteq F$, $F \not\subseteq M$

- 2. Die Menge der natürlichen Zahlen $\mathbb{N} = \{1, 2, 3, 4...\}$ G sei die Menge der geraden natürlichen Zahlen $G := \{n \in \mathbb{N} | \text{n ist gerade}\} = \{2m | m \in \mathbb{N}\} = \{2, 4, 6, 8...\}$ Es gilt $G \subseteq \mathbb{N}, \mathbb{N} \subseteq G$
- 3. Die Menge der ganzen Zahlen $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \dots\}$
- 4. Die Menge der rationalen Zahlen $\mathbb{Q} = \{a/b | a, b \in \mathbb{Z}, b \neq 0\}$
- 5. Die Menge ohne Element heißt die leere Menge Symbol: $\emptyset = \{\}$

Bemerkung:

- 1. Für jede Menge M gilt $\setminus \subseteq M$
- 2. $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$

1.3 Definition: Sei M eine Menge und U,V ⊂ M Teilmengen

- 1. Die Vereinbarung von U und V ist $U \cup V := \{x \in M \mid x \in Uoderx \in V\}$
- 2. Der Durchschnitt von U und V ist $U \cap V := \{x \in M \mid x \in Uoderx \in V\}$ U und V heißen disjunkt, wenn $U \cap V = \emptyset$
- 3. Die Differenzmenge von U und V ist $U \setminus V := \{x \in U \mid x \in V\}$
- 4. Das Keinhalement von U ist $U^C = M \setminus U = \{x \in M \mid x \notin U\}$ Bsp:

```
 \begin{array}{l} \{1,3\} \cup \{3,5\} = \{1,3,5\} \\ \{1,3\} \cap \{3,5\} = \{3\} \\ \{1,3\} \cap \{2,4,7\} = \emptyset \leftarrow \text{disjunkt} \\ \{1,2,3\} \setminus \{3,4,5\} = \{1,2\} \\ \{1,3,5\}^C = \{2,4,6,7,8,\dots \} \end{array}
```

1.4 Satz (de Morjensche Regeln)

Sei M eine Menge, $U,V \subseteq M$ Teilmengen Dann:

1.
$$(U \cap V)^C = U^C \cup V^C$$

2.
$$(U \cup V)^C = U^C \cap V^C$$

Beweis:

1. Sei $x \in M$

Es gilt:
$$\mathbf{x} \in (U \cap V)^C \Leftrightarrow x \notin U \cap V \Leftrightarrow x \notin U \text{ oder } \mathbf{x} \notin V \Leftrightarrow x \in U^C \text{ oder } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cup V^C$$

2. Sei $x \in M$

Es gilt:
$$\mathbf{x} \in (U \cup V)^C \Leftrightarrow x \notin U \cup V \Leftrightarrow x \notin U \text{ und } \mathbf{x} \notin V \Leftrightarrow x \in U^C \text{ und } \mathbf{x} \in V^C \Leftrightarrow x \in U^C \cap V^C$$

1.5 Prinzip der Vollständigen Induktion

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gegeben

Ziel: Beweisen, Dass A(n) für jedes $n \in \mathbb{N}$ mehr ist dafür reicht es zu zeigen

- 1. Induktionsanfang (IA): A(1) ist wahr
- 2. Induktionsschrit (IS): Wenn für ein $n \in \mathbb{N}$ A(n) wahr ist, dann ist auch A(n+1) wahr

1.6 Satz:

Für jede natürliche Zahl n gilt: $1+2+3+4+5+\ldots+n=\frac{n(n+1)}{2}$

Probe:

n	1	2	3	4
1+2+3+n	1	3	6	10
$\frac{n(n+1)}{2}$	1	3	6	10

Beweis des Satzes mit Induktion

Abkürzung: S(n) := 1 + 2 + 3 + ... + n Aussage: A(n): $S(n) = \frac{n(n+1)}{2}$

1. Induktions
anfang (IA): n=1
$$S(1) = 1 = \frac{1 \cdot 2}{2}$$

ok!

2. Induktionsschritt (IS): $n \rightarrow n + 1$

Annahme: A(n) gilt:
$$S(n) = \frac{n(n+1)}{2}$$

Zu zeigen: A(n+1) gilt:
$$S(n) = \frac{1}{2}$$

$$S(n+1) = S(n) + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$
Das beendet den Beweis

Das beendet den Beweis

Zur Vereinfachung der Notation:

Seien $a_1, a_2, a_3, ..., a_n$ Zahlen $n \in \mathbb{N}$

Setze:
$$\sum_{k=1}^{n} a_k := a_1 + a_2 + a_3 + \dots + a_n$$

Allgemeiner: Sei $l, m \in \mathbb{N}, l \leq m \leq n$ $\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \ldots + a_m$

$$\sum_{k=l}^{m} a_k = a_l + a_{l+1} + \dots + a_m$$

Aussage des Satzes:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Kombinatorik (mathematisches Zählen)

1.7 Definition:

Seien A, B Mengen. Das kartesische Produkt von A und B ist definiert als $A \times B := \{(a,b) | a \in A, b \in B\}$ Die Elemente von $A \times B$ heißen geordnete Paare

Bsp.:
$$\{1,7\} \times \{2,3\} = \{(1,2),(1,3),(7,2),(7,3)\}$$

Allgemeiner: Gegeben seien Mengen A_1, \ldots, A_k mit $k \in \mathbb{N}$. Das kartesische Produkt von A_1, \ldots, A_k ist $A_1 \times \ldots \times A_k = \{(a_1, \ldots, a_k) | a \in A, \text{für } i = 1, \ldots, k\}$

Elemente von $A_1 \times \ldots \times A_k$ heißen k-Tupel

Falls
$$A_1 = A_2 = \dots = A_k = A$$
, schreibe $\underbrace{A \times \dots \times A}_{k-mal} = A^k$

1.8 Definition

Eine Menge A ist endlich, wenn A nur endlich viele Elemente hat. Dann bezeichnet $\#A = \{|A|\}$ die Anzahl der Elemente von A und somit dessen Kardinalität oder Mächtigkeit. Wenn A nicht endlich ist, so schreibe: $\#A = \infty$

Bsp.:
$$\#\emptyset = 0, \#\mathbb{N} = \infty, \#\{1, 3, 5\} = 3$$

1.9 Bemerkung

- 1. Sei A endliche Menge. $U,V\subseteq A$ disjunkte Teilmengen Dann $\#(U\cup V)=\#U+\#V$
- 2. Seien $A_1, ..., A_k$ endliche Mengen $k \in \mathbb{N}$ Dann: $\#(A_1 \times ... \times A_k) = (\#A_1)(\#A_2)...(\#A_k)$

1.10 Definition

- 1. Für $n \in \mathbb{N}$ setze $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{k=1}^{n} k$ Setze 0! = 1

Beispiel:

Vorlesung Nr. 1

Wiederholung

Angeordneter Körper:

Menge K mit $+,\cdot,<$

so dass gewisse Eigenschaften erfüllt sind

Beispiel:

Q sind ein angeordneter Körper

Sei K angeordneter Körper, $M\subseteq K$ Teilmenge $a\in K$ ist obere Schranke von M, wenn $U\subseteq a,$ d.h.:

 $a \in K$ ist kleinste obere Schranke, wenn

1.
$$M \le a$$

2. Wenn $b < a$, dann nicht $M \le b$ Bezeichnung $a = sup(M)$

Beispiel:

$$K = \mathbb{Q}$$
 $M = \{-\frac{1}{n}|n \in \mathbb{N}\} = \{-1, -\frac{1}{2}, -\frac{1}{3}, ?\}$

Behauptung

$$sup(M) = 0$$

Beweis:

1. Zeige:
$$M \leq 0$$
, d.h.: $\frac{1}{n} < 0$ für alle $n \in \mathbb{N}$

2. Wenn
$$b = \mathbb{Q}, \ b < 0$$
, dann nicht $M \leq b$

Schreibe $b = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$

$$b < 0$$
 heißt $m < 0, \ m \le -1$

$$b = \frac{m}{n} \le \frac{-1}{n} \le \frac{-1}{n+1} \in M$$

$$\Rightarrow M \not\leq b \text{ (nicht } M \leq b)$$

Vollständigkeit

1.11 Definition:

Ein angeordneter Körper K heißt Dedekind-vollständig, wenn jede nach oben beschränkte Teilmenge von K eine kleinste obere Schranke hat.

1.12 Satz:

Es gibt genau einen Dedekind-vollständigen, angeordneten Körper K

Dieser heißt Körper der reellen Zahlen

Bezeichnung: \mathbb{R}

(Beweis ausgelassen)

1.13 Satz:

Die Teilmenge \mathbb{N} von \mathbb{R} ist unbeschränkt

Beweis:

(verwende nur die Axiome)

Indirekter Beweis: Angenommen, IN ist beschränkt

Vollständigkeit:

Vorlesung Nr. 1

 \mathbb{N} hat eine kleinste obere Schranke $a \in \mathbb{R}$

Es gilt $a-1 < a \Rightarrow a-1$ ist kleinste obere Schranke von \mathbb{N} $n \leq a$ $\forall n \in \mathbb{N}$

 $\Rightarrow n+1 \leq a$ $\forall n \in \mathbb{N}$

 $\Rightarrow n \leq a - 1$ $\forall n \in \mathbb{N} \text{ Widerspruch!}$

Also Annahme falsch, d.h. N ist unbeschränkt

= nach oben beschränkt und nach unten beschränkt

unbeschränkt nicht nach oben beschränkt oder nicht nach unten beschränkt

1.14 Folgerung (Prinzip des Archimedes)

Seien $x, y \in \mathbb{R}, x > 0$, Dann gibt es $n \in \mathbb{N}$ mit $n \cdot x > y$ SKIZZE

Beweis:

 $nx > y \Leftrightarrow n > \frac{y}{x} \text{ (weil } x > 0)$

 \mathbb{N} unbeschränkt und nicht nach oben beschränkt $\Rightarrow \frac{y}{x}$ ist keine obere Schranke von \mathbb{N} \Rightarrow es gibt $n \in \mathbb{N}$ mit $n > \frac{y}{x}$

1.15 Folgerung

Sei $x \in \mathbb{R}$, x > 0 Dann gibt es $n \in \mathbb{N}$ mit $\frac{1}{n} < x$ **SKIZZE**

Beweis:

 $\frac{1}{n} < x \Leftrightarrow 1 < n \cdot x \Leftrightarrow \frac{1}{x} < n \text{ (weil } x \text{ positiv)}$ $\frac{1}{x}$ keine obere Schranke von $\mathbb{N} \Rightarrow$ es gibt $n \in \mathbb{N}$ mit $\frac{1}{x} < n$

1.16 Satz:

Seien $x, y \in \mathbb{R}$ mit x < y

Dann gibt es $a \in \mathbb{Q}$ mit x < a < y, man sagt \mathbb{Q} liegen dicht in \mathbb{R} SKIZZE

Beweis:

y-x > 0 Wähle $n \in \mathbb{N}$ mit $\frac{1}{n} < y-x$

Ansatz: $a = \frac{m}{n}$ mit $m \in \mathbb{Z}$

Sei $M := \{m \in \mathbb{Z} | x < \frac{m}{n}\} = \{m \in \mathbb{Z} | nx < m\}$

M ist nach unten beschränkt und nicht leer (wegen Archimedes)

M hat Minimum

Sei m = min(M)

 $\begin{array}{l} m \in M \Rightarrow x < \frac{m}{n} \\ m-1 \not\in M \Rightarrow x \geq \frac{m-1}{n} \\ y-\frac{m}{n} = y-x+x-\frac{m}{n} > \frac{1}{n}+x-\frac{m}{n} = x-\frac{m-1}{n} \geq 0 \\ y > \frac{m}{n} \end{array}$

Wurzeln

1.17 Satz:

Es gibt kein $a \in \mathbb{Q}$ mit $a^2 = 2$

Beweis:

Angenommen $a\frac{m}{n} \in \mathbb{Q}, \ a^2 = 2, \ m, n \in \mathbb{N}$ Kürze den Bruch $\Rightarrow \frac{m}{n}$ teilerfremd

$$a^2 = 2 \Rightarrow \frac{m^2}{n^2} = 2 \Rightarrow m^2 = 2n^2 \Rightarrow m^2 \text{ gerade } \Rightarrow m \text{ gerade } \Rightarrow m = 2q, \ q \in \mathbb{N}$$

 $(2q)^2 = 2n^2 \Rightarrow 4q^2 = 2n^2 \Rightarrow 2q^2 = n^2 \Rightarrow n^2 \text{ gerade } \Rightarrow n \text{ gerade}$

Widerspruch zur Annahme m, n teilerfremd