

Machine Learning Radar Perception for Autonomous Vehicles

Shane Murray, Radar Perception Lead, Automotive, NVIDIA | ICRA 2024, May 17, 2024

Agenda

- RadarNet Overview
- RadarNet Dynamic Obstacle Heads
- RadarNet Occupancy & Segmentation Heads
- Demo Videos

Radar Detector (NVIDIA RadarNet)

Data

- Global, multi-sensor, large volume
- Lidar-based ground truth

Input

- Point accumulation over a time window + ego motion compensation (increase density of sparse data)
- BEV projection of radar detections of surround radars
 - All radars to one image (computationally efficient)
- Multiple features (like an RBG stack)

Model (real-time emphasis)

- INT8 (QAT training)
- Few ms runtime on DRIVE Orin GPU / DLA

Output

- Obstacles (vehicle, pedestrian, motorcycle/cyclist)
 - Class head
 - Regression head
- Occupancy
 - Existence & visibility
 - Segmentation

Figure: accumulated radar point cloud toggling through multiple features

Dynamic Obstacle Heads

Clustered classification & bounding box parameter regression

- 3D Ground Truth manually labeled on lidar spins is projected into radar domain (BEV)
- Classification with 4 classes (vehicle, pedestrian, bicycle, background)
 - DNN predicts a single bounding box per object (OneNet) → No NMS needed
- Regression of multiple box parameters, such as width, length, orientation, and center offset

Figure: radar points overlaid with inference results from obstacle and free space detections

Ground Truth Generation for Dynamic Obstacles

2021: Al improves autonomous vehicles

- Radar is difficult for humans to label (especially for non-experts, and at scale)
- Labeling based on lidar and camera must therefore be propagated into the radar domain
- This leads to challenges, such as multi-sensor synchronization

Occupancy & Segmentation Heads

2023: Detecting obstacles and drivable free space with RadarNet

- RadarNet predicts dense occupancy and semantic segmentation
- General static obstacle detection
 - Covers road hazards, barriers, trees, bridges, and other ill-defined static objects
- Drivable free space can be extracted in post-processing if required

Figure: radar input accumulated point cloud (left), segmentation result (center), occupancy result (right)

GT and Inference for Occupancy

2023: Detecting obstacles and drivable free space with RadarNet

Figure: Visual representation of a semi-automatically generated occupancy training label, including observed and free areas (black), observed and occupied areas (white), unobserved areas (light gray), and partially observed areas (dark gray)

Figure: Inferred dense occupancy probability map, dark areas showing low probability (directly, free of any obstacles), bright areas showing high probability (observed directly, occupied), and red areas showing uncertain probability (unobserved)

Inference for Segmentation

2023: Detecting obstacles and drivable free space with RadarNet

Figure: Occupancy probability map overlaid with fine-grained semantic segmentation showing the ego vehicle (purple), other vehicles (green), general obstacles (blue), and elevated obstacles (red)

Self-Supervised Doppler Loss

Learned velocity without explicit labels

Question

Can we learn 2D BEV velocity using self-supervision?

Solution

Define loss function in terms of expected per-scan doppler

Implementation Challenges

Our input image is ego-motion compensated, which smears moving objects over a large region of the image

Dynamic Occupancy

Based on self-supervised velocity

Tunnel - classical failure mode for radars with no elevation resolution

Urban driving #1: busy street, pedestrians and cyclist on sidewalk

Urban driving #2: dense parked cars and pedestrian crossing

Urban driving #3: nighttime driving

Thank you!

- For more information, visit:

 •https://developer.nvidia.com/blog
 •https://www.nvidia.com/en-us/self-driving-cars/drive-videos/