Newton Method: Comments

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})} \qquad \lim_{i \to \infty} \left| \frac{e^{(i+1)}}{[e^{(i)}]^2} \right| = \left| \frac{f''(\xi)}{2f'(\xi)} \right|$$

Writing as fixed-point scheme,

$$\phi(x) = x - \frac{f(x)}{f'(x)} \Rightarrow \phi'(x) = 1 - \frac{f'(x)}{f'(x)} + \frac{f(x)f''(x)}{[f'(x)]^2} \Rightarrow \phi'(\xi) = 0$$

Second-order convergence.

- More computations, because of derivative
- May compute the derivative by taking a nearby point and doing a "finite" difference, but round-off errors
- Secant method has similar philosophy

Newton Method: Example

•Find the root near -1, starting with $x^{(0)}=-1$

$$f(x) = x^3 - 1.25020000x^2 - 1.56249999x + 1.95343750 = 0$$

Iteration scheme :
$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

	f	$\mathbf{T}'(x) = 3x^{2}$	$^2 - 2.500$	40000x -	1.562499	199
ration	•	$\mathbf{v}^{(i)}$	£	£1	$\mathbf{v}^{(i+1)}$	

Iteration, i	x ⁽ⁱ⁾	f	f'	X ⁽ⁱ⁺¹⁾	ε _a (%)
0	-1	1.265737	3.9379	-1.32142	24.32409
1	-1.32142	-0.47231	6.980078	-1.25376	5.397022
2	-1.25376	-0.02357	6.288132	-1.25001	0.299805
3	-1.25001	-7E-05	6.250613	-1.25	0.0009

 To find root near 1:
 (Note linear convergence, which is due to double root)

i	$\mathbf{x}^{(i)}$	f	f'	$\mathbf{x}^{(i+1)}$	ε _a (%)
0	1	0.140738	-1.0629	1.132409	11.69268
1	1.132409	0.032999	-0.54693	1.192745	5.058566
2	1.192745	0.008036	-0.27692	1.221763	2.375112
3	1.221763	0.001985	-0.13928	1.236013	1.152908
4	1.236013	0.000493	-0.06984	1.243076	0.56821

Newton Method: Multiple Roots

Instead of f, find zeroes of f/f'

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})/f'(x^{(i)})}{\frac{d}{dx} [f(x^{(i)})/f'(x^{(i)})]} = x^{(i)} - \frac{f_i f_i'}{(f_i')^2 - f_i f_i''}$$
$$f''(x) = 6x - 2.50040000$$

i	x ⁽ⁱ⁾	f	f'	f''	x ⁽ⁱ⁺¹⁾	ε _a (%)
0	1.000000	0.140738	-1.062900	3.499600	1.234750	19.011928
1	1.234750	0.000585	-0.076048	4.908098	1.250052	1.224103
2	1.250052	0.000000	-0.000242	4.999910	1.250034	0.001403
3	1.250034	0.000000	-0.000329	4.999805	1.250029	0.000371

Secant Method: Algorithm

Difference from False Position method?

Not necessarily bracketing the root!

Secant Method: Iterations

Generally, $x^{(i-1)}$ is discarded, when $x^{(i+1)}$ is computed. Sometimes, the point out of i-1, i, i+1, which has largest function magnitude is discarded.

Secant Method: Example

Find the root near -1, starting with $x^{(-1)}=-2$, $x^{(0)}=-1$

$$f(x) = x^3 - 1.25020000x^2 - 1.56249999x + 1.95343750 = 0$$

Iteration scheme:
$$x^{(i+1)} = x^{(i)} + \frac{x^{(i)} - x^{(i-1)}}{f_i - f_{i-1}} (-f_i)$$

i	x ⁽ⁱ⁾	f	$\mathbf{x}^{(i+1)}$	ε _a (%)	
	-2	-7.92236			
0	-1	1.265737	-1.13776	12.10787	
1	-1.13776	0.639987	-1.27865	11.01884	
2	-1.27865	-0.18321	-1.24729	2.513998	
3	-1.24729	0.016878	-1.24994	0.211612	
4	-1.24994	0.000382	-1.25	0.004896	

Secant Method: Error Analysis

• Similar to Linear interpolation, applied at the root, ξ ,

$$0 = f_i + \left(\xi - x^{(i)}\right) \frac{f_i - f_{i-1}}{x^{(i)} - x^{(i-1)}} + \left(\xi - x^{(i)}\right) \left(\xi - x^{(i-1)}\right) \frac{f''(\zeta)}{2}; \zeta \in \left(x^{(i-1)}, x^{(i)}, \xi\right)$$

• Iteration
$$x^{(i+1)} = x^{(i)} + \frac{x^{(i)} - x^{(i-1)}}{f_i - f_{i-1}} (-f_i)$$

• Error:
$$\xi - x^{(i+1)} = \xi - x^{(i)} + f_i \frac{x^{(i)} - x^{(i-1)}}{f_i - f_{i-1}} \Rightarrow e^{(i+1)} = -e^{(i)} e^{(i-1)} \frac{f''(\zeta_1)}{2f'(\zeta_2)}$$

$$\zeta_1 \in (x^{(i-1)}, x^{(i)}, \xi), \zeta_2 \in (x^{(i-1)}, x^{(i)})$$

•Recall:
$$\lim_{i \to \infty} \frac{\left| e^{(i+1)} \right|}{\left| e^{(i)} \right|^p} = C; \Rightarrow \left| e^{(i+1)} \right| = C \left| e^{(i)} \right|^p \text{ and } \left| e^{(i-1)} \right| = \left| \frac{e^{(i)}}{C} \right|^{1/p}$$

Secant Method: Error Analysis

As the iterations approach the root

$$C|e^{(i)}|^{p} = |e^{(i)}| \frac{e^{(i)}}{C}|^{1/p} \frac{f''(\xi)}{2f'(\xi)}| \Rightarrow C^{1+\frac{1}{p}} |e^{(i)}|^{p-1-\frac{1}{p}} = \frac{f''(\xi)}{2f'(\xi)}|$$

• Therefore, $p - 1 - 1/p = 0 \Rightarrow p=1.618$ (Golden Ratio)

and
$$C = \left| \frac{f''(\xi)}{2f'(\xi)} \right|^{0.618}$$

- Better than bisection and false position
- Not as good as Newton
- Can we improve the order by using three points and approximating the function by a quadratic instead of linear?

Muller Method: Algorithm

 $\Delta x^{(i)}$ is obtained by interpolating a quadratic function through the three points (*i*, *i*-1, *i*-2) and finding its intersection with the x-axis

Muller Method: Algorithm

It can be shown that

$$\Delta x^{(i)} = \frac{\pm \sqrt{b^2 - 4ac - b}}{2a} = -\frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$

Where

$$a = \frac{\frac{f_{i} - f_{i-1}}{x^{(i)} - x^{(i-1)}} - \frac{f_{i-1} - f_{i-2}}{x^{(i-1)} - x^{(i-2)}}}{x^{(i)} - x^{(i-2)}}$$

$$b = \frac{f_{i} - f_{i-1}}{x^{(i)} - x^{(i-1)}} + a(x^{(i)} - x^{(i-1)})$$

$$c = f_{i}$$

Two roots, choose the smaller magnitude (i.e., +/- based on sign(b))

Muller Method: Example

Find the root near –1, starting with $x^{(-2)} = -2$, $x^{(-1)} = -1$, $x^{(0)} = 0$ $f(x) = x^3 - 1.25020000x^2 - 1.56249999x + 1.95343750 = 0$

Iteration scheme:
$$x^{(i+1)} = x^{(i)} - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$

i	x ⁽ⁱ⁾	f	a	b	c	Δx	$\Delta x2$	$\mathbf{x}^{(i+1)}$	ε _a (%)
	-2	-7.922							
	-1	1.2657							
0	0	1.9534	-4.25	-3.562	1.9534	0.3779	-1.216	0.3779	
1	0.3779	1.2383	-1.872	-2.6	1.2383	0.375	-1.764	0.753	49.808
2	0.753	0.495	-0.119	-2.027	0.495	0.2408	-17.23	0.9938	24.233
3	0.9938	0.1474	0.8745	-1.233	0.1474	0.1319	1.2778	1.1257	11.718
4	1.1257	0.0368	1.6223	-0.625	0.0368	0.0725	0.3126	1.1982	6.05
5	1.1982	0.0066	2.0675	-0.266	0.0066	0.0335	0.0953	1.2317	2.7176
6	1.2317	0.0008	2.3054	-0.095	0.0008	0.0131	0.028	1.2447	1.0488
7	1.2447	7E-05	2.4244	-0.027	7E-05	0.0042	0.0071	1.2489	0.3342

Muller Method: Error Analysis

• Quadratic interpolation, applied at the root, ξ ,

$$0 = f_{i} + \left(\xi - x^{(i)}\right) \frac{f_{i} - f_{i-1}}{x^{(i)} - x^{(i-1)}} + \left(\xi - x^{(i)}\right) \left(\xi - x^{(i-1)}\right) \frac{\frac{f_{i} - f_{i-1}}{x^{(i)} - x^{(i-1)}} - \frac{f_{i-1} - f_{i-2}}{x^{(i-1)} - x^{(i-2)}}}{x^{(i)} - x^{(i-2)}} + \left(\xi - x^{(i)}\right) \left(\xi - x^{(i-1)}\right) \frac{f'''(\zeta)}{6}; \zeta \in \left(x^{(i-2)}, x^{(i-1)}, x^{(i)}, \xi\right)$$

• From the Iteration scheme, it can be shown (as before) that

$$e^{(i+1)} = -e^{(i)}e^{(i-1)}e^{(i-2)}\frac{f'''(\xi)}{6f'(\xi)}$$

• Order of convergence: $p^3 - p^2 - p - 1 = 0 \Rightarrow p = 1.839$ and $C = \left| \frac{f'''(\xi)}{6 f'(\xi)} \right|^{0.4196}$

• Better than Secant

Roots of polynomials: General

- Polynomial equations are very common in Eigenvalue problems and approximations of functions
- Any of the methods discussed so far should work
- After finding one root, we may deflate the polynomial and find other roots successively
- If some roots are complex, we may run into problems. This
 may happen even with polynomials which have all real
 coefficients.
- We will look at polynomials with real coefficients only
- The complex roots will occur in conjugate pairs, implying that a quadratic factor with real coefficients will be present

$$(x-[a+ib])(x-[a-ib]) = x^2 - 2ax + a^2 + b^2$$

Bairstow Method

Roots of polynomials: Bairstow Method

- Find a quadratic factor of the polynomial f(x) as $x^2 \alpha_1 x \alpha_0$
- Find the two roots (real or complex conjugates) as

$$r_{1,2} = 0.5 \left(\alpha_1 \pm \sqrt{\alpha_1^2 + 4\alpha_0} \right)$$

- Algorithm: Express the given function as $f(x) = \sum_{j=0}^{n} c_j x^j$
- Perform a synthetic division by the quadratic factor

$$x^{2} - \alpha_{1}x - \alpha_{0})\overline{c_{n}x^{n} + c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + c_{n-3}x^{n-3} + \dots + c_{1}x + c_{0}}(c_{n}x^{n-2} + (c_{n-1} + \alpha_{1}c_{n})x^{n-3} + \dots + c_{n-2}x^{n-2} + (c_{n-1} + \alpha_{1}c_{n})x^{n-1} + (c_{n-2} + \alpha_{0}c_{n})x^{n-2} + c_{n-3}x^{n-3}$$

$$\overline{(c_{n-1} + \alpha_{1}c_{n})x^{n-1} + (c_{n-2} + \alpha_{0}c_{n})x^{n-2} + c_{n-3}x^{n-3}}$$

$$\underline{(c_{n-1} + \alpha_{1}c_{n})x^{n-1} + \alpha_{1}(c_{n-1} + \alpha_{1}c_{n})x^{n-2} + \alpha_{0}(c_{n-1} + \alpha_{1}c_{n})x^{n-3}}$$