Index:

- 1. Introduction and Project Objective
- 2. Data Collection and Preparation
- 3. Data Cleaning
- 4. Data Exploration and Analysis
- 5. Feature Engineering
- 6. Churn Prediction Model
- 7. SQL Database Design and Implementation
- 8. Visualizations and Reporting
- 9. Challenges and Learnings
- 10. Conclusion and Future Work
- 11. Introduction and Project Objective:
 - Objective: The objective of this project is to analyze customer retention and churn patterns for an e-commerce platform using data-driven insights. We aim to build a predictive model to identify potential churned customers and suggest strategic actions to improve retention.
- 12. Data Collection and Preparation:
 - o Data Sources: Synthetic data was generated for three main datasets:
 - Customers Data
 - Transactions Data
 - Engagements Data
 - Libraries Used: pandas, numpy
 - Functions and Logic:

- Data loading using pd.read_csv()
- Basic data inspection using df.head(), df.info(), df.describe()

13. Data Cleaning:

- Objective: Handle missing values, correct data types, and standardize column names.
- Libraries Used: pandas, numpy
- Functions and Logic:
 - Column names standardized to lowercase using df.columns = df.columns.str.lower()
 - Missing values handled using df.fillna() and df.dropna()
 - Data types adjusted using pd.to_datetime() for dates, astype() for numerics.
 - Outlier detection using z-score method.

14. Data Exploration and Analysis:

- Objective: Analyze customer demographics, transaction patterns, and engagement levels.
- Libraries Used: pandas, matplotlib, seaborn, scipy, statsmodels
- Functions and Logic:
 - Descriptive statistics using df.describe()
 - Churn rate analysis using customer tenure and transaction frequency.
 - Time series analysis using ARIMA model to forecast sales trends.
 - Clustering using K-Means to segment customers based on age and transaction amount.

15. Feature Engineering:

- Objective: Extract relevant features to improve model accuracy.
- Libraries Used: pandas, numpy, sklearn
- Functions and Logic:
 - Creation of Recency, Frequency, and Monetary (RFM) metrics.
 - Binning customer ages into categorical segments.
 - Extraction of year, month, and day components from transaction dates.

16. Churn Prediction Model:

- Objective: Develop and evaluate a churn prediction model.
- o Libraries Used: scikit-learn, xgboost, imbalanced-learn
- Functions and Logic:
 - Data split using train test split()
 - Model training using Logistic Regression, Random Forest, and XGBoost.
 - Evaluation using accuracy_score(), precision_score(), recall_score(), and ROC-AUC score.

17. SQL Database Design and Implementation:

- Objective: Store cleaned and processed data for structured querying.
- Database: SQLite
- o Tables: customers, transactions, engagements
- SQL Scripts: Data insertion, querying, and analysis.

18. Visualizations and Reporting:

- Objective: Present key findings using visualizations.
- Libraries Used: matplotlib, seaborn

- Visualizations:
 - Churn rate trends over time.
 - Transaction frequency distribution.
 - Cluster analysis visualization.

19. Challenges and Learnings:

- o Challenges encountered: Data inconsistencies, missing values, model tuning.
- Learnings: Importance of data preprocessing, feature selection, and hyperparameter tuning.

20. Conclusion and Future Work:

- Summary of findings and their implications.
- Recommendations for further analysis and model improvements.