### $12n_{0544} (K12n_{0544})$



A knot diagram<sup>1</sup>

#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle b-u, \ -297940u^{22} + 1271608u^{21} + \dots + 35873a - 1822970, \ u^{23} - u^{22} + \dots + 2u - 1 \rangle \\ I_2^u &= \langle -3.19561 \times 10^{118}u^{57} + 9.66229 \times 10^{118}u^{56} + \dots + 3.56639 \times 10^{118}b + 1.16120 \times 10^{121}, \\ &- 5.59702 \times 10^{119}u^{57} + 1.70818 \times 10^{120}u^{56} + \dots + 1.13768 \times 10^{121}a - 1.17564 \times 10^{123}, \\ u^{58} - 3u^{57} + \dots - 1554u + 319 \rangle \\ I_3^u &= \langle b+u, \ u^{11} - 2u^{10} + 6u^9 - 9u^8 + 14u^7 - 14u^6 + 15u^5 - 10u^4 + 8u^3 - 4u^2 + a + 3u, \\ u^{12} - u^{11} + 5u^{10} - 4u^9 + 10u^8 - 5u^7 + 11u^6 - 2u^5 + 8u^4 + u^3 + 4u^2 + 2u + 1 \rangle \\ I_4^u &= \langle -u^9 - 6u^7 + 2u^6 - 13u^5 + 5u^4 - 13u^3 + 2u^2 + b - 6u, \ 2u^8 + 11u^6 - 4u^5 + 20u^4 - 8u^3 + 14u^2 + a + u + 3, \\ u^{10} + 6u^8 - 2u^7 + 13u^6 - 5u^5 + 13u^4 - 2u^3 + 6u^2 + 1 \rangle \end{split}$$

\* 4 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 103 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle b-u, \ -2.98 \times 10^5 u^{22} + 1.27 \times 10^6 u^{21} + \cdots + 3.59 \times 10^4 a - 1.82 \times 10^6, \ u^{23} - u^{22} + \cdots + 2u - 1 \rangle$$

$$a_{44} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 8.30541u^{22} - 35.4475u^{21} + \dots - 119.158u + 50.8173 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -6.42670u^{22} + 32.7476u^{21} + \dots + 118.160u - 51.7962 \\ 2.08212u^{22} - 9.08254u^{21} + \dots - 29.5331u + 12.6710 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -6.2329u^{22} + 26.3650u^{21} + \dots + 88.6247u - 38.1463 \\ 2.15839u^{22} - 6.69484u^{21} + \dots - 16.9712u + 6.49179 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 8.30541u^{22} - 35.4475u^{21} + \dots - 120.158u + 50.8173 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 27.1421u^{22} - 24.0277u^{21} + \dots - 34.2065u - 7.30541 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -3.87484u^{22} + 24.8029u^{21} + \dots + 100.302u - 45.5822 \\ 3.11435u^{22} - 17.5854u^{21} + \dots - 61.5896u + 27.1421 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 4.63399u^{22} - 17.0272u^{21} + \dots - 47.3917u + 18.8850 \\ 1.03222u^{22} - 8.50286u^{21} + \dots - 31.0564u + 14.4711 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.909765u^{22} + 6.70869u^{21} + \dots + 19.6352u - 10.1222 \\ 2.15839u^{22} - 6.69484u^{21} + \dots - 16.9712u + 6.49179 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = 
$$-\frac{1000543}{35873}u^{22} - \frac{712577}{35873}u^{21} + \dots - \frac{3006108}{35873}u + \frac{2311747}{35873}u^{21} + \dots$$

| Crossings                | u-Polynomials at each crossing            |
|--------------------------|-------------------------------------------|
| $c_1$                    | $u^{23} + 8u^{22} + \dots + 224u + 64$    |
| $c_2, c_5$               | $u^{23} + 8u^{22} + \dots - 56u - 8$      |
| $c_3, c_4, c_7$ $c_{11}$ | $u^{23} + u^{22} + \dots + 2u + 1$        |
| $c_6, c_8, c_9$ $c_{12}$ | $u^{23} + u^{22} + \dots - u + 1$         |
| $c_{10}$                 | $u^{23} + 19u^{22} + \dots + 1792u + 256$ |

| Crossings                | Riley Polynomials at each crossing           |
|--------------------------|----------------------------------------------|
| $c_1$                    | $y^{23} + 4y^{22} + \dots - 46592y - 4096$   |
| $c_2, c_5$               | $y^{23} - 8y^{22} + \dots + 224y - 64$       |
| $c_3, c_4, c_7$ $c_{11}$ | $y^{23} + 9y^{22} + \dots - 14y - 1$         |
| $c_6, c_8, c_9$ $c_{12}$ | $y^{23} - 7y^{22} + \dots + 7y - 1$          |
| $c_{10}$                 | $y^{23} + 3y^{22} + \dots - 917504y - 65536$ |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = 0.595557 + 0.724305I  |                                       |                      |
| a = 0.588152 + 0.605726I  | -3.26156 - 2.02161I                   | -7.52324 + 1.29376I  |
| b = 0.595557 + 0.724305I  |                                       |                      |
| u = 0.595557 - 0.724305I  |                                       |                      |
| a = 0.588152 - 0.605726I  | -3.26156 + 2.02161I                   | -7.52324 - 1.29376I  |
| b = 0.595557 - 0.724305I  |                                       |                      |
| u = -0.076288 + 0.784165I |                                       |                      |
| a = -1.76014 - 1.54801I   | -4.83015 - 0.57289I                   | -12.62080 + 1.94666I |
| b = -0.076288 + 0.784165I |                                       |                      |
| u = -0.076288 - 0.784165I |                                       |                      |
| a = -1.76014 + 1.54801I   | -4.83015 + 0.57289I                   | -12.62080 - 1.94666I |
| b = -0.076288 - 0.784165I |                                       |                      |
| u = 0.034883 + 0.769214I  |                                       |                      |
| a = -2.73995 - 0.59974I   | -3.21113 + 6.60809I                   | -8.60360 - 5.54346I  |
| b = 0.034883 + 0.769214I  |                                       |                      |
| u = 0.034883 - 0.769214I  |                                       |                      |
| a = -2.73995 + 0.59974I   | -3.21113 - 6.60809I                   | -8.60360 + 5.54346I  |
| b = 0.034883 - 0.769214I  |                                       |                      |
| u = 0.892857 + 0.857700I  |                                       |                      |
| a = 0.995548 - 0.607995I  | 2.59080 - 3.50765I                    | -2.16401 + 2.34355I  |
| b = 0.892857 + 0.857700I  |                                       |                      |
| u = 0.892857 - 0.857700I  |                                       |                      |
| a = 0.995548 + 0.607995I  | 2.59080 + 3.50765I                    | -2.16401 - 2.34355I  |
| b = 0.892857 - 0.857700I  |                                       |                      |
| u = -0.954684 + 0.841112I |                                       |                      |
| a = -0.696145 + 0.071332I | 0.46179 - 3.67942I                    | -15.1455 + 3.7839I   |
| b = -0.954684 + 0.841112I |                                       |                      |
| u = -0.954684 - 0.841112I |                                       |                      |
| a = -0.696145 - 0.071332I | 0.46179 + 3.67942I                    | -15.1455 - 3.7839I   |
| b = -0.954684 - 0.841112I |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.030245 + 0.711475I |                                       |                     |
| a = 1.98396 - 0.44610I    | -1.04488 - 2.00499I                   | -5.60935 + 2.44566I |
| b = -0.030245 + 0.711475I |                                       |                     |
| u = -0.030245 - 0.711475I |                                       |                     |
| a = 1.98396 + 0.44610I    | -1.04488 + 2.00499I                   | -5.60935 - 2.44566I |
| b = -0.030245 - 0.711475I |                                       |                     |
| u = -0.820681 + 1.010850I |                                       |                     |
| a = -0.875561 - 0.658608I | 3.30522 - 2.73850I                    | -1.61112 + 1.01002I |
| b = -0.820681 + 1.010850I |                                       |                     |
| u = -0.820681 - 1.010850I |                                       |                     |
| a = -0.875561 + 0.658608I | 3.30522 + 2.73850I                    | -1.61112 - 1.01002I |
| b = -0.820681 - 1.010850I |                                       |                     |
| u = 0.771841 + 1.092470I  |                                       |                     |
| a = 1.131310 - 0.059859I  | -5.97493 + 8.04810I                   | -9.91244 - 7.34824I |
| b = 0.771841 + 1.092470I  |                                       |                     |
| u = 0.771841 - 1.092470I  |                                       |                     |
| a = 1.131310 + 0.059859I  | -5.97493 - 8.04810I                   | -9.91244 + 7.34824I |
| b = 0.771841 - 1.092470I  |                                       |                     |
| u = -0.134711 + 0.539165I |                                       |                     |
| a = 0.665406 + 0.037719I  | -0.392979 - 1.193410I                 | -3.74262 + 6.17586I |
| b = -0.134711 + 0.539165I |                                       |                     |
| u = -0.134711 - 0.539165I |                                       |                     |
| a = 0.665406 - 0.037719I  | -0.392979 + 1.193410I                 | -3.74262 - 6.17586I |
| b = -0.134711 - 0.539165I |                                       |                     |
| u = 0.518072              |                                       |                     |
| a = 2.27868               | -2.81486                              | 2.60140             |
| b = 0.518072              |                                       |                     |
| u = -0.83900 + 1.23581I   |                                       |                     |
| a = -1.080680 - 0.355800I | 1.69434 - 10.77260I                   | -3.35458 + 6.38544I |
| b = -0.83900 + 1.23581I   |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.83900 - 1.23581I   |                                       |                     |
| a = -1.080680 + 0.355800I | 1.69434 + 10.77260I                   | -3.35458 - 6.38544I |
| b = -0.83900 - 1.23581I   |                                       |                     |
| u = 0.80144 + 1.27487I    |                                       |                     |
| a = 1.148760 - 0.417261I  | -0.2661 + 17.0711I                    | -5.51346 - 9.58728I |
| b = 0.80144 + 1.27487I    |                                       |                     |
| u = 0.80144 - 1.27487I    |                                       |                     |
| a = 1.148760 + 0.417261I  | -0.2661 - 17.0711I                    | -5.51346 + 9.58728I |
| b = 0.80144 - 1.27487I    |                                       |                     |

II. 
$$I_2^u = \langle -3.20 \times 10^{118} u^{57} + 9.66 \times 10^{118} u^{56} + \cdots + 3.57 \times 10^{118} b + 1.16 \times 10^{121}, \ -5.60 \times 10^{119} u^{57} + 1.71 \times 10^{120} u^{56} + \cdots + 1.14 \times 10^{121} a - 1.18 \times 10^{123}, \ u^{58} - 3u^{57} + \cdots - 1554u + 319 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0491969u^{57} - 0.150146u^{56} + \cdots - 319.134u + 103.337 \\ 0.896035u^{57} - 2.70926u^{56} + \cdots + 2187.69u - 325.595 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.697741u^{57} - 2.72311u^{56} + \cdots + 4242.50u - 894.659 \\ 0.446252u^{57} - 0.981013u^{56} + \cdots - 427.855u + 208.612 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.128099u^{57} - 0.508562u^{56} + \cdots + 3468.94u - 902.338 \\ 0.631071u^{57} - 1.40121u^{56} + \cdots - 573.075u + 292.501 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.846838u^{57} + 2.55911u^{56} + \cdots - 2506.82u + 428.932 \\ 0.896035u^{57} - 2.70926u^{56} + \cdots + 2187.69u - 325.595 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.624323u^{57} + 2.17283u^{56} + \cdots - 2326.98u + 416.764 \\ 0.138074u^{57} - 1.25210u^{56} + \cdots + 3319.00u - 821.619 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.567460u^{57} - 2.49194u^{56} + \cdots + 4488.01u - 991.415 \\ -0.538016u^{57} + 1.58442u^{56} + \cdots + 1160.49u + 155.114 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.58726u^{57} - 5.10882u^{56} + \cdots + 5564.88u - 1026.14 \\ -0.716147u^{57} + 1.76858u^{56} + \cdots + 559.740u - 36.0934 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.295318u^{57} + 0.123708u^{56} + \cdots + 2668.23u - 756.863 \\ 0.248161u^{57} - 0.642225u^{56} + \cdots + 25.6544u + 48.6724 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $7.52804u^{57} 17.2152u^{56} + \cdots 2223.72u + 2324.01$

| Crossings                | u-Polynomials at each crossing              |
|--------------------------|---------------------------------------------|
| $c_1$                    | $(u^{29} + 12u^{28} + \dots + 221u + 25)^2$ |
| $c_2, c_5$               | $(u^{29} - 2u^{28} + \dots + 9u - 5)^2$     |
| $c_3, c_4, c_7$ $c_{11}$ | $u^{58} + 3u^{57} + \dots + 1554u + 319$    |
| $c_6, c_8, c_9$ $c_{12}$ | $u^{58} + 2u^{57} + \dots - 174u + 71$      |
| $c_{10}$                 | $(u^{29} - 6u^{28} + \dots + 16u - 1)^2$    |

| Crossings                | Riley Polynomials at each crossing              |
|--------------------------|-------------------------------------------------|
| $c_1$                    | $(y^{29} + 20y^{28} + \dots + 2541y - 625)^2$   |
| $c_2, c_5$               | $(y^{29} - 12y^{28} + \dots + 221y - 25)^2$     |
| $c_3, c_4, c_7$ $c_{11}$ | $y^{58} + 27y^{57} + \dots + 2796268y + 101761$ |
| $c_6, c_8, c_9$ $c_{12}$ | $y^{58} - 22y^{57} + \dots - 163614y + 5041$    |
| $c_{10}$                 | $(y^{29} - 16y^{28} + \dots + 54y - 1)^2$       |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.127047 + 0.952571I  |                                       |                     |
| a = 0.23783 - 1.58753I    | -6.73564 - 2.26625I                   | -7.53399 + 2.10986I |
| b = -0.01551 + 1.47649I   |                                       |                     |
| u = 0.127047 - 0.952571I  |                                       |                     |
| a = 0.23783 + 1.58753I    | -6.73564 + 2.26625I                   | -7.53399 - 2.10986I |
| b = -0.01551 - 1.47649I   |                                       |                     |
| u = 0.977889 + 0.395391I  |                                       |                     |
| a = -0.936601 + 0.438187I | 4.63913 - 2.75586I                    | 0                   |
| b = -0.993488 + 0.566307I |                                       |                     |
| u = 0.977889 - 0.395391I  |                                       |                     |
| a = -0.936601 - 0.438187I | 4.63913 + 2.75586I                    | 0                   |
| b = -0.993488 - 0.566307I |                                       |                     |
| u = -0.668662 + 0.632286I |                                       |                     |
| a = 0.556317 + 0.387986I  | -0.167430 - 0.855798I                 | -5.76721 + 5.00765I |
| b = 0.387221 + 0.812398I  |                                       |                     |
| u = -0.668662 - 0.632286I |                                       |                     |
| a = 0.556317 - 0.387986I  | -0.167430 + 0.855798I                 | -5.76721 - 5.00765I |
| b = 0.387221 - 0.812398I  |                                       |                     |
| u = 0.387221 + 0.812398I  |                                       |                     |
| a = -0.202528 + 0.663324I | -0.167430 - 0.855798I                 | -5.76721 + 5.00765I |
| b = -0.668662 + 0.632286I |                                       |                     |
| u = 0.387221 - 0.812398I  |                                       |                     |
| a = -0.202528 - 0.663324I | -0.167430 + 0.855798I                 | -5.76721 - 5.00765I |
| b = -0.668662 - 0.632286I |                                       |                     |
| u = -0.110836 + 0.876726I |                                       |                     |
| a = 1.96629 + 0.41853I    | -3.66053 - 6.90208I                   | -9.96617 + 6.29904I |
| b = 0.654584 - 0.910489I  |                                       |                     |
| u = -0.110836 - 0.876726I |                                       |                     |
| a = 1.96629 - 0.41853I    | -3.66053 + 6.90208I                   | -9.96617 - 6.29904I |
| b = 0.654584 + 0.910489I  |                                       |                     |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 0.654584 + 0.910489I  |                                       |            |
| a = -1.51908 - 0.44975I   | -3.66053 + 6.90208I                   | 0          |
| b = -0.110836 - 0.876726I |                                       |            |
| u = 0.654584 - 0.910489I  |                                       |            |
| a = -1.51908 + 0.44975I   | -3.66053 - 6.90208I                   | 0          |
| b = -0.110836 + 0.876726I |                                       |            |
| u = 0.814690 + 0.780723I  |                                       |            |
| a = -1.40132 + 0.34702I   | 2.61948 + 3.58008I                    | 0          |
| b = -0.726543 - 1.203870I |                                       |            |
| u = 0.814690 - 0.780723I  |                                       |            |
| a = -1.40132 - 0.34702I   | 2.61948 - 3.58008I                    | 0          |
| b = -0.726543 + 1.203870I |                                       |            |
| u = -0.993488 + 0.566307I |                                       |            |
| a = 0.852627 + 0.427457I  | 4.63913 - 2.75586I                    | 0          |
| b = 0.977889 + 0.395391I  |                                       |            |
| u = -0.993488 - 0.566307I |                                       |            |
| a = 0.852627 - 0.427457I  | 4.63913 + 2.75586I                    | 0          |
| b = 0.977889 - 0.395391I  |                                       |            |
| u = 0.443209 + 1.072830I  |                                       |            |
| a = -1.48211 + 0.72163I   | -1.23755 + 4.31563I                   | 0          |
| b = -0.650204 - 1.000790I |                                       |            |
| u = 0.443209 - 1.072830I  |                                       |            |
| a = -1.48211 - 0.72163I   | -1.23755 - 4.31563I                   | 0          |
| b = -0.650204 + 1.000790I |                                       |            |
| u = -0.850210 + 0.803191I |                                       |            |
| a = -0.634473 - 0.269123I | 3.93086 - 3.48812I                    | 0          |
| b = -1.234730 - 0.504043I |                                       |            |
| u = -0.850210 - 0.803191I |                                       |            |
| a = -0.634473 + 0.269123I | 3.93086 + 3.48812I                    | 0          |
| b = -1.234730 + 0.504043I |                                       |            |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.650204 + 1.000790I |                                       |                      |
| a = 1.54577 + 0.42567I    | -1.23755 - 4.31563I                   | 0                    |
| b = 0.443209 - 1.072830I  |                                       |                      |
| u = -0.650204 - 1.000790I |                                       |                      |
| a = 1.54577 - 0.42567I    | -1.23755 + 4.31563I                   | 0                    |
| b = 0.443209 + 1.072830I  |                                       |                      |
| u = 0.961290 + 0.747797I  |                                       |                      |
| a = -0.214703 - 0.719788I | -4.70521 - 1.62785I                   | 0                    |
| b = 0.293154 - 0.718460I  |                                       |                      |
| u = 0.961290 - 0.747797I  |                                       |                      |
| a = -0.214703 + 0.719788I | -4.70521 + 1.62785I                   | 0                    |
| b = 0.293154 + 0.718460I  |                                       |                      |
| u = 0.293154 + 0.718460I  |                                       |                      |
| a = 1.178760 + 0.019061I  | -4.70521 + 1.62785I                   | -12.78119 - 2.62015I |
| b = 0.961290 - 0.747797I  |                                       |                      |
| u = 0.293154 - 0.718460I  |                                       |                      |
| a = 1.178760 - 0.019061I  | -4.70521 - 1.62785I                   | -12.78119 + 2.62015I |
| b = 0.961290 + 0.747797I  |                                       |                      |
| u = -0.750845 + 0.972729I |                                       |                      |
| a = 0.891287 - 0.126207I  | -0.54706 - 2.65768I                   | 0                    |
| b = 0.138741 - 0.574265I  |                                       |                      |
| u = -0.750845 - 0.972729I |                                       |                      |
| a = 0.891287 + 0.126207I  | -0.54706 + 2.65768I                   | 0                    |
| b = 0.138741 + 0.574265I  |                                       |                      |
| u = -0.835011 + 0.907349I |                                       |                      |
| a = 1.36765 + 0.44806I    | 1.86996 - 8.79177I                    | 0                    |
| b = 0.65037 - 1.27337I    |                                       |                      |
| u = -0.835011 - 0.907349I |                                       |                      |
| a = 1.36765 - 0.44806I    | 1.86996 + 8.79177I                    | 0                    |
| b = 0.65037 + 1.27337I    |                                       |                      |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -0.879347 + 0.893897I |                                       |            |
| a = 0.311886 + 0.304169I  | 1.92974 + 2.45935I                    | 0          |
| b = 0.794571 + 1.007140I  |                                       |            |
| u = -0.879347 - 0.893897I |                                       |            |
| a = 0.311886 - 0.304169I  | 1.92974 - 2.45935I                    | 0          |
| b = 0.794571 - 1.007140I  |                                       |            |
| u = 0.831284 + 0.944870I  |                                       |            |
| a = 0.644636 - 0.342540I  | 2.30912 + 9.86806I                    | 0          |
| b = 1.246010 - 0.447063I  |                                       |            |
| u = 0.831284 - 0.944870I  |                                       |            |
| a = 0.644636 + 0.342540I  | 2.30912 - 9.86806I                    | 0          |
| b = 1.246010 + 0.447063I  |                                       |            |
| u = 0.794571 + 1.007140I  |                                       |            |
| a = -0.256766 + 0.339709I | 1.92974 + 2.45935I                    | 0          |
| b = -0.879347 + 0.893897I |                                       |            |
| u = 0.794571 - 1.007140I  |                                       |            |
| a = -0.256766 - 0.339709I | 1.92974 - 2.45935I                    | 0          |
| b = -0.879347 - 0.893897I |                                       |            |
| u = 0.188057 + 1.304610I  |                                       |            |
| a = -0.034973 + 0.242616I | -11.0631                              | 0          |
| b = 0.188057 - 1.304610I  |                                       |            |
| u = 0.188057 - 1.304610I  |                                       |            |
| a = -0.034973 - 0.242616I | -11.0631                              | 0          |
| b = 0.188057 + 1.304610I  |                                       |            |
| u = 1.246010 + 0.447063I  |                                       |            |
| a = 0.528405 - 0.449901I  | 2.30912 - 9.86806I                    | 0          |
| b = 0.831284 - 0.944870I  |                                       |            |
| u = 1.246010 - 0.447063I  |                                       |            |
| a = 0.528405 + 0.449901I  | 2.30912 + 9.86806I                    | 0          |
| b = 0.831284 + 0.944870I  |                                       |            |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -1.234730 + 0.504043I |                                       |                     |
| a = -0.444964 - 0.409054I | 3.93086 + 3.48812I                    | 0                   |
| b = -0.850210 - 0.803191I |                                       |                     |
| u = -1.234730 - 0.504043I |                                       |                     |
| a = -0.444964 + 0.409054I | 3.93086 - 3.48812I                    | 0                   |
| b = -0.850210 + 0.803191I |                                       |                     |
| u = 0.191238 + 0.563226I  |                                       |                     |
| a = -0.019603 + 0.414508I | -5.12050 + 3.68484I                   | -9.5195 - 25.5363I  |
| b = 0.33099 - 1.93554I    |                                       |                     |
| u = 0.191238 - 0.563226I  |                                       |                     |
| a = -0.019603 - 0.414508I | -5.12050 - 3.68484I                   | -9.5195 + 25.5363I  |
| b = 0.33099 + 1.93554I    |                                       |                     |
| u = -0.726543 + 1.203870I |                                       |                     |
| a = 1.013080 + 0.561957I  | 2.61948 - 3.58008I                    | 0                   |
| b = 0.814690 - 0.780723I  |                                       |                     |
| u = -0.726543 - 1.203870I |                                       |                     |
| a = 1.013080 - 0.561957I  | 2.61948 + 3.58008I                    | 0                   |
| b = 0.814690 + 0.780723I  |                                       |                     |
| u = 0.138741 + 0.574265I  |                                       |                     |
| a = -1.79959 + 0.51679I   | -0.54706 + 2.65768I                   | -5.51240 - 3.43968I |
| b = -0.750845 - 0.972729I |                                       |                     |
| u = 0.138741 - 0.574265I  |                                       |                     |
| a = -1.79959 - 0.51679I   | -0.54706 - 2.65768I                   | -5.51240 + 3.43968I |
| b = -0.750845 + 0.972729I |                                       |                     |
| u = 0.65037 + 1.27337I    |                                       |                     |
| a = -1.032490 + 0.688756I | 1.86996 + 8.79177I                    | 0                   |
| b = -0.835011 - 0.907349I |                                       |                     |
| u = 0.65037 - 1.27337I    |                                       |                     |
| a = -1.032490 - 0.688756I | 1.86996 - 8.79177I                    | 0                   |
| b = -0.835011 + 0.907349I |                                       |                     |

| Solutions to $I_2^u$        | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|-----------------------------|---------------------------------------|---------------------|
| u = 0.03227 + 1.44258I      |                                       |                     |
| a = 0.078303 - 1.166600I    | -7.68709 + 1.70661I                   | 0                   |
| b = 0.152775 + 0.491791I    |                                       |                     |
| u = 0.03227 - 1.44258I      |                                       |                     |
| a = 0.078303 + 1.166600I    | -7.68709 - 1.70661I                   | 0                   |
| b = 0.152775 - 0.491791I    |                                       |                     |
| u = -0.01551 + 1.47649I     |                                       |                     |
| a = 0.005861 - 1.044740I    | -6.73564 - 2.26625I                   | 0                   |
| b = 0.127047 + 0.952571I    |                                       |                     |
| u = -0.01551 - 1.47649I     |                                       |                     |
| a = 0.005861 + 1.044740I    | -6.73564 + 2.26625I                   | 0                   |
| b = 0.127047 - 0.952571I    |                                       |                     |
| u = 0.152775 + 0.491791I    |                                       |                     |
| a = 1.11061 - 3.08212I      | -7.68709 + 1.70661I                   | -3.08074 - 5.87302I |
| b = 0.03227 + 1.44258I      |                                       |                     |
| u = 0.152775 - 0.491791I    |                                       |                     |
| a = 1.11061 + 3.08212I      | -7.68709 - 1.70661I                   | -3.08074 + 5.87302I |
| b = 0.03227 - 1.44258I      |                                       |                     |
| u = 0.33099 + 1.93554I      |                                       |                     |
| a = -0.0546110 + 0.1132170I | -5.12050 - 3.68484I                   | 0                   |
| b = 0.191238 - 0.563226I    |                                       |                     |
| u = 0.33099 - 1.93554I      |                                       |                     |
| a = -0.0546110 - 0.1132170I | -5.12050 + 3.68484I                   | 0                   |
| b = 0.191238 + 0.563226I    |                                       |                     |

III. 
$$I_3^u = \langle b + u, u^{11} - 2u^{10} + \dots + a + 3u, u^{12} - u^{11} + \dots + 2u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{11} + 2u^{10} + \dots + 4u^{2} - 3u \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{11} - 2u^{10} + \dots + 3u - 1 \\ -u^{10} + u^{9} - 4u^{8} + 3u^{7} - 6u^{6} + 2u^{5} - 5u^{4} + u^{3} - 3u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{11} - u^{10} + 5u^{9} - 5u^{8} + 11u^{7} - 8u^{6} + 13u^{5} - 5u^{4} + 8u^{3} - u^{2} + 4u + 1 \\ -2u^{10} + 2u^{9} - 7u^{8} + 5u^{7} - 10u^{6} + 3u^{5} - 9u^{4} + u^{3} - 5u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{11} + 2u^{10} + \dots + 4u^{2} - 2u \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{11} - u^{10} + 5u^{9} - 4u^{8} + 9u^{7} - 4u^{6} + 8u^{5} + 5u^{3} + 2u^{2} + 2u + 2 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} - 2u^{8} + 5u^{7} - 8u^{6} + 10u^{5} - 10u^{4} + 8u^{3} - 5u^{2} + u - 2 \\ -u^{8} + u^{7} - 3u^{6} + 2u^{5} - 3u^{4} - 2u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{11} + u^{10} - 4u^{9} + 3u^{8} - 6u^{7} + u^{6} - 4u^{5} - 3u^{4} - u^{3} - 3u^{2} - 2u - 2 \\ u^{10} - u^{9} + 3u^{8} - 2u^{7} + 3u^{6} + 2u^{4} + u^{2} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{10} + u^{9} - 3u^{8} + u^{7} - 2u^{6} - 3u^{5} + u^{4} - 4u^{3} + u^{2} - 3u \\ 2u^{10} - 2u^{9} + 7u^{8} - 5u^{7} + 10u^{6} - 3u^{5} + 9u^{4} - u^{3} + 5u^{2} + 2u + 2 \end{pmatrix}$$

#### (ii) Obstruction class = 1

| Crossings             | u-Polynomials at each crossing                                                      |
|-----------------------|-------------------------------------------------------------------------------------|
| $c_1$                 | $u^{12} - 5u^{11} + \dots - 6u + 1$                                                 |
| $c_2$                 | $u^{12} + u^{11} - 2u^{10} - 3u^9 + u^8 + 2u^7 + u^6 + 2u^5 - 4u^3 - u^2 + 2u + 1$  |
| $c_{3}, c_{7}$        | $u^{12} - u^{11} + \dots + 2u + 1$                                                  |
| $c_4, c_{11}$         | $u^{12} + u^{11} + \dots - 2u + 1$                                                  |
| <i>C</i> <sub>5</sub> | $u^{12} - u^{11} - 2u^{10} + 3u^9 + u^8 - 2u^7 + u^6 - 2u^5 + 4u^3 - u^2 - 2u + 1$  |
| $c_{6}, c_{8}$        | $u^{12} + u^{11} - 3u^{10} + u^9 + 5u^8 - 7u^7 + 7u^5 - 7u^4 + u^3 + 4u^2 - 3u + 1$ |
| $c_9, c_{12}$         | $u^{12} - u^{11} - 3u^{10} - u^9 + 5u^8 + 7u^7 - 7u^5 - 7u^4 - u^3 + 4u^2 + 3u + 1$ |
| $c_{10}$              | $u^{12} - 6u^{11} + \dots - 4u + 1$                                                 |

| Crossings                | Riley Polynomials at each crossing   |
|--------------------------|--------------------------------------|
| $c_1$                    | $y^{12} - y^{11} + \dots - 2y + 1$   |
| $c_2, c_5$               | $y^{12} - 5y^{11} + \dots - 6y + 1$  |
| $c_3, c_4, c_7$ $c_{11}$ | $y^{12} + 9y^{11} + \dots + 4y + 1$  |
| $c_6, c_8, c_9$ $c_{12}$ | $y^{12} - 7y^{11} + \dots - y + 1$   |
| $c_{10}$                 | $y^{12} + 4y^{11} + \dots + 28y + 1$ |

| Solutions to $I_3^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.466084 + 0.809264I |                                       |                      |
| a = 2.16254 - 0.39601I    | -2.49985 - 7.76270I                   | -3.72598 + 11.08235I |
| b = 0.466084 - 0.809264I  |                                       |                      |
| u = -0.466084 - 0.809264I |                                       |                      |
| a = 2.16254 + 0.39601I    | -2.49985 + 7.76270I                   | -3.72598 - 11.08235I |
| b = 0.466084 + 0.809264I  |                                       |                      |
| u = 0.519595 + 0.992665I  |                                       |                      |
| a = -1.68774 + 0.62888I   | -0.29532 + 4.35182I                   | 0.13392 - 4.24607I   |
| b = -0.519595 - 0.992665I |                                       |                      |
| u = 0.519595 - 0.992665I  |                                       |                      |
| a = -1.68774 - 0.62888I   | -0.29532 - 4.35182I                   | 0.13392 + 4.24607I   |
| b = -0.519595 + 0.992665I |                                       |                      |
| u = 0.854627 + 0.760787I  |                                       |                      |
| a = -0.871446 - 0.113522I | 0.91868 + 3.75006I                    | 3.14617 - 6.86627I   |
| b = -0.854627 - 0.760787I |                                       |                      |
| u = 0.854627 - 0.760787I  |                                       |                      |
| a = -0.871446 + 0.113522I | 0.91868 - 3.75006I                    | 3.14617 + 6.86627I   |
| b = -0.854627 + 0.760787I |                                       |                      |
| u = -0.017122 + 1.272490I |                                       |                      |
| a = -0.196657 + 0.030724I | -10.46040 - 1.58679I                  | -9.53450 + 4.49112I  |
| b = 0.017122 - 1.272490I  |                                       |                      |
| u = -0.017122 - 1.272490I |                                       |                      |
| a = -0.196657 - 0.030724I | -10.46040 + 1.58679I                  | -9.53450 - 4.49112I  |
| b = 0.017122 + 1.272490I  |                                       |                      |
| u = -0.050049 + 1.373520I |                                       |                      |
| a = -0.126746 + 0.670182I | -8.56258 + 2.71427I                   | -11.98375 - 3.60830I |
| b = 0.050049 - 1.373520I  |                                       |                      |
| u = -0.050049 - 1.373520I |                                       |                      |
| a = -0.126746 - 0.670182I | -8.56258 - 2.71427I                   | -11.98375 + 3.60830I |
| b = 0.050049 + 1.373520I  |                                       |                      |

| Solutions to $I_3^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.340967 + 0.334336I |                                       |                     |
| a = -0.27996 - 2.09817I   | -3.77450 + 0.33015I                   | -6.53587 + 0.59190I |
| b = 0.340967 - 0.334336I  |                                       |                     |
| u = -0.340967 - 0.334336I |                                       |                     |
| a = -0.27996 + 2.09817I   | -3.77450 - 0.33015I                   | -6.53587 - 0.59190I |
| b = 0.340967 + 0.334336I  |                                       |                     |

$$I_4^u = \langle -u^9 - 6u^7 + \dots + b - 6u, \ 2u^8 + 11u^6 + \dots + a + 3, \ u^{10} + 6u^8 + \dots + 6u^2 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{8} - 11u^{6} + 4u^{5} - 20u^{4} + 8u^{3} - 14u^{2} - u - 3 \\ u^{9} + 6u^{7} - 2u^{6} + 13u^{5} - 5u^{4} + 13u^{3} - 2u^{2} + 6u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 5u^{8} + 27u^{6} - 10u^{5} + 49u^{4} - 19u^{3} + 36u^{2} + 2u + 8 \\ -u^{9} - u^{8} - 6u^{7} - 3u^{6} - 11u^{5} - 3u^{4} - 9u^{3} - 3u^{2} - 6u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{9} + 3u^{8} + 6u^{7} + 14u^{6} + 7u^{5} + 23u^{4} + 2u^{3} + 17u^{2} + 8u + 4 \\ -u^{9} - 6u^{7} + 2u^{6} - 13u^{5} + 6u^{4} - 13u^{3} + 5u^{2} - 7u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{9} - 2u^{8} - 6u^{7} - 9u^{6} - 9u^{5} - 15u^{4} - 5u^{3} - 12u^{2} - 7u - 3 \\ u^{9} + 6u^{7} - 2u^{6} + 13u^{5} - 5u^{4} + 13u^{3} - 2u^{2} + 6u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 3u^{9} - u^{8} + 16u^{7} - 12u^{6} + 30u^{5} - 24u^{4} + 24u^{3} - 11u^{2} + 6u - 6 \\ u^{8} + 6u^{6} - 2u^{5} + 13u^{4} - 5u^{3} + 13u^{2} - 2u + 6 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} + 5u^{8} + 5u^{7} + 26u^{6} - 2u^{5} + 50u^{4} - 16u^{3} + 42u^{2} + u + 10 \\ -2u^{8} - 11u^{6} + 4u^{5} - 20u^{4} + 8u^{3} - 14u^{2} - 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{9} + 9u^{8} + 5u^{7} + 47u^{6} - 10u^{5} + 87u^{4} - 30u^{3} + 69u^{2} + 2u + 16 \\ -3u^{8} - 16u^{6} + 6u^{5} - 28u^{4} + 11u^{3} - 19u^{2} - u - 4 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{9} + 7u^{8} + 10u^{7} + 35u^{6} + u^{5} + 68u^{4} - 23u^{3} + 62u^{2} - 3u + 15 \\ u^{9} - 3u^{8} + 6u^{7} - 19u^{6} + 19u^{5} - 38u^{4} + 26u^{3} - 28u^{2} + 6u - 6 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =  $3u^9 + 9u^8 + 14u^7 + 43u^6 - 3u^5 + 85u^4 - 44u^3 + 87u^2 - 16u + 11$ 

| Crossings     | u-Polynomials at each crossing                                            |
|---------------|---------------------------------------------------------------------------|
| $c_1$         | $ (u^5 - 3u^4 + 7u^3 - 8u^2 + 5u - 1)^2 $                                 |
| $c_2$         | $(u^5 - u^4 - u^3 + 2u^2 + u - 1)^2$                                      |
| $c_3, c_7$    | $u^{10} + 6u^8 - 2u^7 + 13u^6 - 5u^5 + 13u^4 - 2u^3 + 6u^2 + 1$           |
| $c_4, c_{11}$ | $u^{10} + 6u^8 + 2u^7 + 13u^6 + 5u^5 + 13u^4 + 2u^3 + 6u^2 + 1$           |
| $c_5$         | $(u^5 + u^4 - u^3 - 2u^2 + u + 1)^2$                                      |
| $c_6, c_8$    | $u^{10} - 5u^9 + 6u^8 + 6u^7 - 15u^6 + 3u^5 + 9u^4 - 6u^3 - u^2 + 2u + 1$ |
| $c_9, c_{12}$ | $u^{10} + 5u^9 + 6u^8 - 6u^7 - 15u^6 - 3u^5 + 9u^4 + 6u^3 - u^2 - 2u + 1$ |
| $c_{10}$      | $(u^5 + 4u^4 + 4u^3 - u^2 - 2u - 1)^2$                                    |

| Crossings                | Riley Polynomials at each crossing       |
|--------------------------|------------------------------------------|
| $c_1$                    | $(y^5 + 5y^4 + 11y^3 + 9y - 1)^2$        |
| $c_{2}, c_{5}$           | $(y^5 - 3y^4 + 7y^3 - 8y^2 + 5y - 1)^2$  |
| $c_3, c_4, c_7$ $c_{11}$ | $y^{10} + 12y^9 + \dots + 12y + 1$       |
| $c_6, c_8, c_9$ $c_{12}$ | $y^{10} - 13y^9 + \dots - 6y + 1$        |
| $c_{10}$                 | $(y^5 - 8y^4 + 20y^3 - 9y^2 + 2y - 1)^2$ |

| Solutions to $I_4^u$                                 | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|------------------------------------------------------|---------------------------------------|--------------------|
| u = 0.581760 + 0.813360I                             |                                       |                    |
| a = -0.429730 + 0.600807I                            | 0.265516                              | -2.34553 + 0.I     |
| b = -0.581760 + 0.813360I                            |                                       |                    |
| u = 0.581760 - 0.813360I                             |                                       |                    |
| a = -0.429730 - 0.600807I                            | 0.265516                              | -2.34553 + 0.I     |
| b = -0.581760 - 0.813360I                            |                                       |                    |
| u = -0.021542 + 0.707790I                            |                                       |                    |
| a = 0.42920 - 2.79487I                               | -8.15907 + 1.42206I                   | -16.8796 + 1.7077I |
| b = 0.042962 + 1.411540I                             |                                       |                    |
| u = -0.021542 - 0.707790I                            | 0.15005 1.400065                      | 10.0000 1.0001     |
| a = 0.42920 + 2.79487I                               | -8.15907 - 1.42206I                   | -16.8796 - 1.7077I |
| b = 0.042962 - 1.411540I $u = -0.042962 + 1.411540I$ |                                       |                    |
| a = -0.30004 - 1.38575I $a = -0.30004 - 1.38575I$    | 0 15007 1 4990 <i>6</i> I             | 16 0706 1 7077 I   |
|                                                      | -8.15907 - 1.42206I                   | -16.8796 - 1.7077I |
| b = 0.021542 + 0.707790I $u = -0.042962 - 1.411540I$ |                                       |                    |
| a = -0.30004 + 1.38575I                              | -8.15907 + 1.42206I                   | -16.8796 + 1.7077I |
| b = 0.021542 - 0.707790I                             |                                       |                    |
| u = -0.122679 + 0.543931I                            |                                       |                    |
| a = 0.578758 - 0.866663I                             | -5.13317 - 3.45949I                   | -10.9476 - 9.1982I |
| b = 0.39458 + 1.74948I                               |                                       |                    |
| u = -0.122679 - 0.543931I                            |                                       |                    |
| a = 0.578758 + 0.866663I                             | -5.13317 + 3.45949I                   | -10.9476 + 9.1982I |
| b = 0.39458 - 1.74948I                               |                                       |                    |
| u = -0.39458 + 1.74948I                              |                                       |                    |
| a = -0.278184 - 0.166129I                            | -5.13317 + 3.45949I                   | -10.9476 + 9.1982I |
| b = 0.122679 + 0.543931I                             |                                       |                    |
| u = -0.39458 - 1.74948I                              |                                       |                    |
| a = -0.278184 + 0.166129I                            | -5.13317 - 3.45949I                   | -10.9476 - 9.1982I |
| b = 0.122679 - 0.543931I                             |                                       |                    |

#### V. u-Polynomials

| Crossings     | u-Polynomials at each crossing                                                                                                                                                                                                                          |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$         | $((u^{5} - 3u^{4} + 7u^{3} - 8u^{2} + 5u - 1)^{2})(u^{12} - 5u^{11} + \dots - 6u + 1)$ $\cdot (u^{23} + 8u^{22} + \dots + 224u + 64)(u^{29} + 12u^{28} + \dots + 221u + 25)^{2}$                                                                        |
| $c_2$         | $(u^{5} - u^{4} - u^{3} + 2u^{2} + u - 1)^{2}$ $\cdot (u^{12} + u^{11} - 2u^{10} - 3u^{9} + u^{8} + 2u^{7} + u^{6} + 2u^{5} - 4u^{3} - u^{2} + 2u + 1)$ $\cdot (u^{23} + 8u^{22} + \dots - 56u - 8)(u^{29} - 2u^{28} + \dots + 9u - 5)^{2}$             |
| $c_3, c_7$    | $(u^{10} + 6u^8 - 2u^7 + 13u^6 - 5u^5 + 13u^4 - 2u^3 + 6u^2 + 1)$ $\cdot (u^{12} - u^{11} + \dots + 2u + 1)(u^{23} + u^{22} + \dots + 2u + 1)$ $\cdot (u^{58} + 3u^{57} + \dots + 1554u + 319)$                                                         |
| $c_4, c_{11}$ | $(u^{10} + 6u^8 + 2u^7 + 13u^6 + 5u^5 + 13u^4 + 2u^3 + 6u^2 + 1)$ $\cdot (u^{12} + u^{11} + \dots - 2u + 1)(u^{23} + u^{22} + \dots + 2u + 1)$ $\cdot (u^{58} + 3u^{57} + \dots + 1554u + 319)$                                                         |
| $c_5$         | $(u^{5} + u^{4} - u^{3} - 2u^{2} + u + 1)^{2}$ $\cdot (u^{12} - u^{11} - 2u^{10} + 3u^{9} + u^{8} - 2u^{7} + u^{6} - 2u^{5} + 4u^{3} - u^{2} - 2u + 1)$ $\cdot (u^{23} + 8u^{22} + \dots - 56u - 8)(u^{29} - 2u^{28} + \dots + 9u - 5)^{2}$             |
| $c_6, c_8$    | $(u^{10} - 5u^9 + 6u^8 + 6u^7 - 15u^6 + 3u^5 + 9u^4 - 6u^3 - u^2 + 2u + 1)$ $\cdot (u^{12} + u^{11} - 3u^{10} + u^9 + 5u^8 - 7u^7 + 7u^5 - 7u^4 + u^3 + 4u^2 - 3u + 1)$ $\cdot (u^{23} + u^{22} + \dots - u + 1)(u^{58} + 2u^{57} + \dots - 174u + 71)$ |
| $c_9, c_{12}$ | $(u^{10} + 5u^9 + 6u^8 - 6u^7 - 15u^6 - 3u^5 + 9u^4 + 6u^3 - u^2 - 2u + 1)$ $\cdot (u^{12} - u^{11} - 3u^{10} - u^9 + 5u^8 + 7u^7 - 7u^5 - 7u^4 - u^3 + 4u^2 + 3u + 1)$ $\cdot (u^{23} + u^{22} + \dots - u + 1)(u^{58} + 2u^{57} + \dots - 174u + 71)$ |
| $c_{10}$      | $((u^5 + 4u^4 + 4u^3 - u^2 - 2u - 1)^2)(u^{12} - 6u^{11} + \dots - 4u + 1)$ $\cdot (u^{23} + 19u^{22} + \dots + 1792u + 256)(u^{29} - 6u^{28} + \dots + 16u - 1)^2$                                                                                     |

#### VI. Riley Polynomials

| Crossings                | Riley Polynomials at each crossing                                                                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$                    | $((y^5 + 5y^4 + 11y^3 + 9y - 1)^2)(y^{12} - y^{11} + \dots - 2y + 1)$ $\cdot (y^{23} + 4y^{22} + \dots - 46592y - 4096)$ $\cdot (y^{29} + 20y^{28} + \dots + 2541y - 625)^2$ |
| $c_2,c_5$                | $((y^5 - 3y^4 + 7y^3 - 8y^2 + 5y - 1)^2)(y^{12} - 5y^{11} + \dots - 6y + 1)$ $\cdot (y^{23} - 8y^{22} + \dots + 224y - 64)(y^{29} - 12y^{28} + \dots + 221y - 25)^2$         |
| $c_3, c_4, c_7$ $c_{11}$ | $(y^{10} + 12y^9 + \dots + 12y + 1)(y^{12} + 9y^{11} + \dots + 4y + 1)$ $\cdot (y^{23} + 9y^{22} + \dots - 14y - 1)(y^{58} + 27y^{57} + \dots + 2796268y + 101761)$          |
| $c_6, c_8, c_9$ $c_{12}$ | $(y^{10} - 13y^9 + \dots - 6y + 1)(y^{12} - 7y^{11} + \dots - y + 1)$ $\cdot (y^{23} - 7y^{22} + \dots + 7y - 1)(y^{58} - 22y^{57} + \dots - 163614y + 5041)$                |
| $c_{10}$                 | $((y^5 - 8y^4 + 20y^3 - 9y^2 + 2y - 1)^2)(y^{12} + 4y^{11} + \dots + 28y + 1)$ $\cdot (y^{23} + 3y^{22} + \dots - 917504y - 65536)(y^{29} - 16y^{28} + \dots + 54y - 1)^2$   |