

THE ACM-ICPC 2017

VIETNAM SOUTHERN PROGRAMMING CONTEST Host: University of Science, VNU-HCM

October 29, 2017

Problem H Save My Files!

Time Limit: 1 second

Alice's computer is infected by a malware. Her personal files are encrypted, thus she cannot read the content of any document. Within only 5 hours, you should find a way to restore her files, otherwise, these files will be encrypted forever.

You know that the author of the malware in Alice's computer loves to play with permutations of a set of N integers. An integer

 $x \in \{1, 2, ..., N\}$ is mapped into $\pi(x) \in \{1, 2, ..., N\}$. Of course, $\pi(x) \neq \pi(y)$ for $x \neq y$. All permutations of a set of N integers $\{1, 2, ..., N\}$ are sorted in lexical order.

You know that the malware in Alice's computer uses a very simple encryption method - **Permutation Cipher**: an integer $x \in \{1, 2, ..., N\}$ is encrypted into $\pi(x) \in \{1, 2, ..., N\}$.

You also know that this malware only uses **Self-Reversible Permutation.** A permutation is called Self-Reversible Permutation if it satisfies the following condition:

$$\pi (\pi(x)) = x \text{ for all } x \in \{1, 2, ..., N\}$$

You should recover the permutation π that was used to encrypt Alice's files.

Luckily, you find that the malware in her computer left a secret file containing a secret sequence of numbers $A = (a_1, a_2, ..., a_N)$, a permutation of the set of N integers from 1 to N. The secret permutation π is the Self-Reversible Permutation with the **smallest lexical order**, and its lexical order must be greater than the lexical order of the sequence A.

Input

The first line contains an integer N ($2 \le N \le 100$).

The second line contains N distinct integers $a_1, a_2, ..., a_N$, a permutation of $\{1, 2, ..., N\}$.

Output

Display in one line N distinct integers $\pi(1)$, $\pi(2)$,... $\pi(N)$ of the permutation that was used to encrypt Alice's files. In any test case, you can always find such permutation.

Sample Input

Sample Output

5	3 2 1 4 5
3 1 2 4 5	

Explanation: In the output of this example, $\pi(\pi(3)) = \pi(1) = 3$; $\pi(\pi(2)) = \pi(2) = 2...$