#### Technician License Course Chapter 2

Lesson Plan Module 3 – Modulation and Bandwidth



#### The Basic Radio Station





## What Happens During Radio Communication?

- Transmitting (sending a signal):
  - Information (voice, data, video, commands, etc.) is converted to electronic form.
  - The information in electronic form is added to a radio wave.
  - The radio wave carrying the information is sent from the station antenna into space.



## What Happens During Radio Communication?

#### • Receiving:

- The radio wave carrying the information is intercepted by the receiving station's antenna.
- The receiver extracts the information from the received wave.
- The information is then presented to the user in a format that can be understood (sound, picture, words on a computer screen, response to a command, etc.).



## What Happens During Radio Communication?

- Adding and extracting the information can be simple or complex.
- This makes ham radio fun...learning all about how radios work.
- Don't be intimidated. You will be required to only know the basics, but you can learn as much about the "art and science" of radio as you want.



## Adding Information – Modulation

- When we add some information to the radio wave, (the *carrier*) we *modulate* the wave.
  - Turn the wave on and off (Morse code)
  - Speech or music
  - Data
- Different modulation techniques vary different properties of the wave to add the information:
  - Amplitude, frequency, or phase



#### Phase

- Along with frequency and period, another important property of waves is *phase*.
- Phase is a position within a cycle.
- Phase is also a relative position between two waves.





#### CW - Morse Code - On and Off





#### Amplitude Modulation (AM)

• In AM, the amplitude of the carrier wave is modified in step with the waveform of the information (the tone shown here).





#### Composite Signals

- The process of adding information to an unmodulated radio wave creates additional signals called *sidebands*.
- The sidebands and carrier work together to carry the information.
- The combination of carrier and sidebands creates a composite signal.



#### Bandwidth

- The carrier and sidebands have different frequencies, occupying a range of spectrum space.
- The occupied range is the composite signal's bandwidth.
- Different types of modulation and information result in different signal bandwidths.



#### Characteristics of Voice AM

AM signals consist of three components:

- Carrier
- Lower sideband (LSB)
- Upper sideband (USB)
- AM bandwidth is twice the information bandwidth.



AM signal being modulated by a 600 Hz tone



## Characteristics of Voice Information

- Sounds that make up voice are a complex mixture of multiple frequencies from 300–3000 Hz
- Two mirror-image sets of sidebands are created, each up to 3000 Hz wide.
- AM voice signal bandwidth
  2 x 3000 Hz = 6000 Hz





#### Single Sideband Modulation (SSB)

- The two sets of voice sidebands carry duplicate information.
- We can improve efficiency by transmitting only one sideband and reconstructing the missing carrier in the receiver.
- SSB bandwidth is only 3000
  Hz for voice signals.





# Frequency and Phase Modulation (FM and PM)

- Instead of varying amplitude, if we use the information to vary the carrier's frequency, *frequency modulation* (FM) is produced.
- FM bandwidth (for voice) is between 5 and 15 kHz.

RRL The national association for AMATEUR RADIO

• We can also shift the signal's phase back and forth, creating *phase* modulation (PM) that is very similar to FM.



#### Typical Signal Bandwidths

#### Signal Bandwidths

Type of Signal Typical Bandwidth

AM voice 6 kHz

AM broadcast 10 kHz Commercial video broadcast 6 MHz

SSB voice 2 to 3 kHz

SSB digital 500 to 3000 Hz (0.5 to 3 kHz)

CW 150 Hz (0.15 kHz)

FM voice 10 to 15 kHz

FM broadcast 150 kHz



#### Practice Questions



# Why should you not set your transmit frequency to be exactly at the edge of an amateur band or sub-band?

- A. To allow for calibration error in the transmitter frequency display
- B. So that modulation sidebands do not extend beyond the band edge
- C. To allow for transmitter frequency drift
- D. All of these choices are correct

FCC Rule: [97.101(a), 97.301(a-e)] T1B09 HRLM (2-10)



# Why should you not set your transmit frequency to be exactly at the edge of an amateur band or sub-band?

- A. To allow for calibration error in the transmitter frequency display
- B. So that modulation sidebands do not extend beyond the band edge
- C. To allow for transmitter frequency drift
- D. All of these choices are correct

FCC Rule: [97.101(a), 97.301(a-e)] T1B09 HRLM (2-10)



### What determines the amount of deviation of an FM (as opposed to PM) signal?

- A. Both the frequency and amplitude of the modulating signal
- B. The frequency of the modulating signal
- C. The amplitude of the modulating signal
- D. The relative phase of the modulating signal

T2B05 HRLM (2-10)



### What determines the amount of deviation of an FM (as opposed to PM) signal?

- A. Both the frequency and amplitude of the modulating signal
- B. The frequency of the modulating signal
- C. The amplitude of the modulating signal
- D. The relative phase of the modulating signal

T2B05 HRLM (2-10)



#### What happens when the deviation of an FM transmitter is increased?

- A. Its signal occupies more bandwidth
- B. Its output power increases
- C. Its output power and bandwidth increases
- D. Asymmetric modulation occurs

T2B06 HRLM (2-9)



#### What happens when the deviation of an FM transmitter is increased?

- A. Its signal occupies more bandwidth
- B. Its output power increases
- C. Its output power and bandwidth increases
- D. Asymmetric modulation occurs

T2B06 HRLM (2-9)



#### Which of the following is a form of amplitude modulation?

- A. Spread spectrum
- B. Packet radio
- C. Single sideband
- D. Phase shift keying

T8A01 HRLM (2-9)



#### Which of the following is a form of amplitude modulation?

- A. Spread spectrum
- B. Packet radio
- C. Single sideband
- D. Phase shift keying

T8A01 HRLM (2-9)



## What type of modulation is most commonly used for VHF packet radio transmissions?

- A. FM
- B. SSB
- C. AM
- D. Spread spectrum

T8A02 HRLM (2-10)



## What type of modulation is most commonly used for VHF packet radio transmissions?

- A. FM
- B. SSB
- C. AM
- D. Spread spectrum

T8A02 HRLM (2-10)



# Which type of voice modulation is most often used for long-distance or weak signal contacts on the VHF and UHF bands?

A. FM

B. DRM

C. SSB

D. PM

T8A03 HRLM (2-11)



# Which type of voice modulation is most often used for long-distance or weak signal contacts on the VHF and UHF bands?

A. FM

B. DRM

C. SSB

D. PM

T8A03 HRLM (2-11)



### Which type of modulation is most commonly used for VHF and UHF voice repeaters?

A. AM

B. SSB

C. PSK

D. FM

T8A04 HRLM (2-10)



### Which type of modulation is most commonly used for VHF and UHF voice repeaters?

A. AM

B. SSB

C. PSK

D. FM

T8A04 HRLM (2-10)



#### Which of the following types of emission has the narrowest bandwidth?

- A. FM voice
- B. SSB voice
- C. CW
- D. Slow-scan TV

T8A05 HRLM (2-10)



#### Which of the following types of emission has the narrowest bandwidth?

- A. FM voice
- B. SSB voice
- C. CW
- D. Slow-scan TV

T8A05 HRLM (2-10)



# Which sideband is normally used for 10 meter HF, VHF and UHF single-sideband communications?

- A. Upper sideband
- B. Lower sideband
- C. Suppressed sideband
- D. Inverted sideband

T8A06 HRLM (2-11)



# Which sideband is normally used for 10 meter HF, VHF and UHF single-sideband communications?

- A. Upper sideband
- B. Lower sideband
- C. Suppressed sideband
- D. Inverted sideband

T8A06 HRLM (2-11)



#### What is the primary advantage of single sideband over FM for voice transmissions?

- A. SSB signals are easier to tune
- B. SSB signals are less susceptible to interference
- C. SSB signals have narrower bandwidth
- D. All of these choices are correct

T8A07 HRLM (2-11)



#### What is the primary advantage of single sideband over FM for voice transmissions?

- A. SSB signals are easier to tune
- B. SSB signals are less susceptible to interference
- C. SSB signals have narrower bandwidth
- D. All of these choices are correct

T8A07 HRLM (2-11)



## What is the approximate bandwidth of a single sideband voice signal?

A. 1 kHz

B. 3 kHz

C. 6 kHz

D. 15 kHz

T8A08 HRLM (2-5)



## What is the approximate bandwidth of a single sideband voice signal?

A. 1 kHz

B. 3 kHz

C. 6 kHz

D. 15 kHz

T8A08 HRLM (2-5)



### What is the approximate bandwidth of a VHF repeater FM phone signal?

- A. Less than 500 Hz
- B. About 150 kHz
- C. Between 10 and 15 kHz
- D. Between 50 and 125 kHz

T8A09 HRLM (2-5)



### What is the approximate bandwidth of a VHF repeater FM phone signal?

- A. Less than 500 Hz
- B. About 150 kHz
- C. Between 10 and 15 kHz
- D. Between 50 and 125 kHz

T8A09 HRLM (2-5)



#### What is the typical bandwidth of analog fastscan TV transmissions on the 70 cm band?

- A. More than 10 MHz
- B. About 6 MHz
- C. About 3 MHz
- D. About 1 MHz

T8A10 HRLM (2-5)



#### What is the typical bandwidth of analog fastscan TV transmissions on the 70 cm band?

- A. More than 10 MHz
- B. About 6 MHz
- C. About 3 MHz
- D. About 1 MHz

T8A10 HRLM (2-5)



### What is the approximate maximum bandwidth required to transmit a CW signal?

A. 2.4 kHz

B. 150 Hz

C. 1000 Hz

D. 15 kHz

T8A11 HRLM (2-5)



## What is the approximate maximum bandwidth required to transmit a CW signal?

A. 2.4 kHz

B. 150 Hz

C. 1000 Hz

D. 15 kHz

T8A11 HRLM (2-5)

