Exercise 1:

 \square 2.25

1.	On considère la fonction $f(x,y) = \sqrt{6x - 8y}$. Quelle valeur approximative de $f(2.1,1)$ obtient- on en utilisant l'approximation linéaire $t_{(x_0,y_0)}(2.1,1)$ au point $(x_0,y_0) = (2,1)$?
	$\square \ 2.125$
	$\square \ 2.0125$
	$\square 2.025$

2. On considère la fonction $f(x,y) = xy^3 - 2x^3$. Quelle valeur approximative de f(2.01,2.98) obtient-on en utilisant l'approximation linéaire $t_{(x_0,y_0)}(2.01,2.98)$ au point $(x_0,y_0) = (2,3)$?

⋈ 36.95
□ 37.95
□ 39.95
□ 38.95
□ Aucune des réponses ci-dessus

☑ Aucune des réponses ci-dessus

3. Laquelle des expressions suivantes correspond à l'équation du plan tangent $t_{(x_0,y_0)}(x,y)$ de la fonction $f(x,y) = \ln(xy)$ au point $(x_0,y_0) = (\frac{1}{2},2)$?

☐ Aucune des réponses ci-dessus

4. Laquelle des expressions suivantes correspond à l'équation du plan tangent $t_{(x_0,y_0)}(x,y)$ de la fonction $f(x,y)=4x^2-y^2$ au point $(x_0,y_0)=(5,-8)$?

□ 16x - 40y - 36□ 16y + 40x + 36□ 40y + 16x - 36□ 16y + 40x - 36□ Aucune des réponses ci-dessus

5. En utilisant la différentielle, approximer la variation de la fonction $f(x,y) = 3x^2 - xy$ lorsque (x,y) varie entre (1,2) et (1.01,1.98) (poser $(x_0,y_0) = (1,2)$).

 $\Box \frac{6}{10}$

 \boxtimes (0,2)

	\square 0.006
	$\boxtimes 0.06$
	\square 0.6
	\Box Aucune des réponses ci-dessus
6.	Approximer la variation de la fonction $f(x) = x^2 - 3x^3y^2 + 4x - 2y^3 + 6$ en utilisant la différentielle, lorsque (x, y) varie entre $(-2, 3)$ et $(-2.02, 3.01)$ (poser $(x_0, y_0) = (-2, 3)$).
	□ 7.38
	\Box 7.39
	\Box 7.4
	\Box 7.37
	\Box Aucune des réponses ci-dessus
7.	On considère la fonction $f(x,y)=6\sqrt[3]{x^2y}$. Pour lequel (ou lesquels), parmi les points suivant l'approximation linéaire $t_{x_0,y_0}(x,y)$ au point $(x_0,y_0)=(1000,125)$ est-elle la meilleure?
	$\Box \ (1000, 126)$
	$\boxtimes (1001, 125)$
	$\Box \ (1001, 124.5)$
	$\Box \ (1000.5, 125.5)$
	\Box Aucune des réponses ci-dessus
8.	On considère la fonction $f(x,y)=x^4+y^3+32x-9y$. Au point $(x_0,y_0)=(2,-\sqrt{3}), f$ admet
	\square un maximum local
	\square un minimum local
	\square un maximum global
	\square un point-selle
	⊠ Aucune des réponses ci-dessus
9.	On considère la fonction $f(x,y)=-\frac{1}{3}x^3+xy+\frac{1}{2}y^2-12y$. Combien de points critiques possède-t-elle ?
	\square 0
	oxtimes 2
	\Box 4
	□ Aucune des réponses ci-dessus
0.	On considère la fonction $f(x,y) = \frac{1}{3}x^3 + \frac{1}{3}y^3 - \frac{3}{2}x^2 - 4y$. Parmi les points suivants, lesquels sont des points critiques de $f(x,y)$?

 \square (2,0)

 \boxtimes (3,-2)

 \Box (-3, 2)

☐ Aucune des réponses ci-dessus

Exercise 2:

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par:

$$f(x,y) = 2x^3 - x^2 + 2xy + 5y^2$$

1. Calculer les dérivées partielles premières et secondes de la fonction f.

Calculation is derived pair $\frac{\partial f}{\partial x}(x,y) = 6x^2 - 2x + 2y$ $\frac{\partial f}{\partial y}(x,y) = 2x + 10y$ $\frac{\partial^2 f}{\partial x^2}(x,y) = 12x - 2$ $\frac{\partial^2 f}{\partial y^2}(x,y) = 10$

 $\frac{\partial^2 f}{\partial x \partial y}(x, y) = 2$

2. Déterminer le(s) point(s) critique(s) de la fonction f. Conditions du premier ordre:

 $\frac{\partial f}{\partial x}(x,y) = 6x^2 - 2x + 2y = 0$ $\frac{\partial f}{\partial y}(x,y) = 2x + 10y = 0$

x=0 ou $x=\frac{2}{5} \Leftrightarrow y=0$ ou $y=-\frac{2}{25}$ respectivement

3. Déterminer si chaque point critique de la fonction f est un maximum local, un minimum local ou un point selle.

 $\Delta(x,y) = (12x-2)10-2^2 = 120x-20-4 = 120x-24$

a $\Delta(0,0) = 24 > 0$ point selle

b $\Delta(\frac{2}{5}, -\frac{2}{25}) = \frac{14}{5} > 0$ minimum local

Exercise 3:

Discuter l'existence et la nature des extremums de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$, définie par :

$$f(x,y) = \frac{a}{2}(x^2 + y^2) + xy - y + x + 7$$

en fonction du paramètre $a \in \mathbb{R}$

On calcule les conditions du 1er ordre:

$$\begin{cases} \frac{\partial f}{\partial x} = ax + a + 1 = 0\\ \frac{\partial f}{\partial y} = ay + x - 1 = 0 \end{cases}$$

La première équation donne : y=-ax-1 On remplace dans la deuxième : $-a^2x-a+x-1=0$ $\Rightarrow (1-a^2)x-(1+a)=0 \Rightarrow (1+a)\left[(1-a)x-1\right]=0$ a=-1 ou (1-a)x=1 On peut distinguer

Université de Genève Mathématiques I Mucyo Karemera

1.
$$a \neq \pm 1 \Rightarrow x = \frac{1}{1-a} \Rightarrow y = -\frac{a}{1-a} - 1 = -\frac{1}{1-a}$$
 On a un point critique : $\left(\frac{1}{1-a}, -\frac{1}{1-a}\right)$

2. $a=1 \Rightarrow 0x=1$ pas de solution On n'a pas de point critique, donc pas d'extremum dans ce

3.
$$a = -1 \Rightarrow y = x - 1$$
 Tout $(x, y) \in \mathbb{R}^2$ tel que $y = x - 1$ est un point critique.

On calcule les conditions du deuxième ordre:
$$\frac{\partial^2 f}{\partial x^2}(x,y) = a, \frac{\partial^2 f}{\partial y^2}(x,y) = a, \frac{\partial^2 f}{\partial x \partial y}(x,y) = 1$$

$$\Rightarrow \Delta(x,y) = a^1 - a \text{ On a :}$$

$$\Delta(x,y) < 0 \Leftrightarrow -1 < a < 1$$

$$\Rightarrow \Delta(x,y) = a^1 - a$$
 On a

$$\Delta(x,y) < 0 \Leftrightarrow -1 < a < 1$$

$$\Delta(x,y) > 0$$
 et $\frac{\partial^2 f}{\partial x^2}(x,y) < 0 \Leftrightarrow a < -1$

$$\Delta(x,y) > 0$$
 et $\frac{\partial^2 f}{\partial x^2}(x,y) > 0 \Leftrightarrow a > 1$

 $\begin{array}{l} \Delta(x,y)>0 \text{ et } \frac{\partial^2 f}{\partial x^2}(x,y)<0 \Leftrightarrow a<-1\\ \Delta(x,y)>0 \text{ et } \frac{\partial^2 f}{\partial x^2}(x,y)>0 \Leftrightarrow a>1\\ \text{Comme les signes de dépendent pas de } (x,y), \text{ on peut examiner la concacité ou la convexité de } \end{array}$ la fonction f et tirer des conclusions globales sur les extremums.

On peut distinguer 4 cas:

1.
$$-1 < a < 1 \Rightarrow \Delta(x,y) < 0$$

 $\Rightarrow f$ n'est ni concave ni convexe.

$$\Delta\left(\frac{1}{1-a}, -\frac{1}{1-a}\right) < 0 \Rightarrow \left(\frac{1}{1-a}, -\frac{1}{1-a}\right) \text{ est un point selle.}$$

$$\begin{array}{l} 2. \ \, a>1\Rightarrow \Delta(x,y)>0 \ \, {\rm et} \ \, \frac{\partial^2 f}{\partial x^2}(x,y)>0 \\ \Rightarrow f \ \, {\rm strictement \ \, convexe} \\ \Rightarrow (\frac{1}{1-a},-\frac{1}{1-a}) \ \, {\rm est \ \, un \ \, minimum \ \, global \ \, strict}. \end{array}$$

3.
$$a < -1 \Rightarrow \Delta(x, y) > 0$$
 et $\frac{\partial^2 f}{\partial x^2}(x, y) < 0$ $\Rightarrow f$ strictement concave $\Rightarrow (\frac{1}{1-a}, -\frac{1}{1-a})$ est un maximum global strict.

4.
$$a = -1 \Rightarrow \Delta(x, y) = 0$$
 et $\frac{\partial^2 f}{\partial x^2}(x, y) = -1 < 0$
 $\Rightarrow f$ concave

Tout (x, y) tel que y = x - 1 est un maximum gloabl.

(Notons que les conditions du deuxième ordre pour un extremum ne permettent pas de conclure dans ce cas)

Remarque: Si a = 1, la fonction f est convexe et n'a aucun extremum.