

Laboratório 4: (resolução)

Exercício 13: Bases de Numeração

Base 2 (binário)	Base 8 (octal)	Base 10 (decimal)	Base 16 (hexadecimal)
11010111	327	215	D7
10010100	224	148	94
100011	43	35	23
101100	54	44	2C

Exercício 14: Conversor Código (BCD8421 → 2-em-5)

Considera-se na seguinte resolução, a saída 'P' como exemplo. São apresentadas algumas soluções possíveis.

Solução 1:

Utilização de um Descodificador de 4 Entradas e Lógica adicional:

	8	4	2	1	Ρ'
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	Х
11	1	0	1	1	Х
12	1	1	0	0	Х
13	1	1	0	1	Х
14	1	1	1	0	Х
15	1	1	1	1	х

Neste caso cada linha da tabela de verdade corresponde a uma saída do descodificador.

Note-se que não está a ser considerada a entrada Enable, assume-se que não existe ou está sempre ativa.

O número de portas lógicas usadas nesta solução é então,

$$2^4 + 1 = 17 Portas Lógicas$$

Solução 2:

Utilização de um Descodificador de 3 Entradas, considerando como entradas os 3 bits **mais** significativos do código BCD8421. Desta forma, a tabela de verdade será dividida em oito regiões, que se encontram seguidamente assinaladas com cores diferentes.

	8	4	2	1	Ρ'
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
8 9	1 1	0 0	0 0	0	0
9	1	0	0	1	0
9 10	1	0	0 1	1 0	0 x=0
9 10 11	1 1 1	0 0 0	0 1 1	1 0 1	0 x=0 x=0
9 10 11 12	1 1 1 1	0 0 0 1	0 1 1 0	1 0 1 0	0 x=0 x=0 x=0
9 10 11 12 13	1 1 1 1	0 0 0 1	0 1 1 0	1 0 1 0	0 x=0 x=0 x=0 x=0

Cada uma das regiões coloridas corresponde a uma saída do descodificador (note-se os valores 0 assumidos para os *don't cares*), sendo a dependência da variável menos significativa do código (BCD1) incluída entre as saídas do descodificador e as entradas da porta OU. Desta forma, obtém-se:

Nesta solução são usadas,

$$2^3 + 5 = 13 Portas Lógicas$$

Solução 3:

Utilização de um Descodificador de 3 Entradas, considerando como entradas os 3 bits **menos** significativos do código BCD8421. Desta forma, a tabela de verdade será dividida em oito regiões, que se encontram seguidamente assinaladas com cores diferentes, sendo a dependência da variável restante (o BCD8) incluída entre o descodificador e a porta OU.

	8	4	2	1	P'
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	x=1
11	1	0	1	1	x=0
12	1	1	0	0	x=1
13	1	1	0	1	x=0
14	1	1	1	0	x=0
15	1	1	1	1	x=1

Neste caso, a solução seria a seguinte:

Nesta solução são usadas,

 $2^3 + 2 = 10 Portas Lógicas$

Solução 4:

Utilização de um Descodificador de 2 Entradas, considerando como entradas os 2 bits **mais** significativos do código BCD8421, e Lógica adicional:

	8	4	2	1	P'
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	x=0
11	1	0	1	1	x=0
12	1	1	0	0	x=0
13	1	1	0	1	x=0
14	1	1	1	0	x=0
15	1	1	1	1	x=0

Sendo que cada região colorida corresponde a uma saída do descodificador (note-se os valores assumidos para os *don't cares*), obtem-se,

Ou,

Note-se a equivalência dos esquemáticos. Nesta solução são usadas,

$$2^2 + 5 = 9 Portas Lógicas$$

Solução 5:

Utilização de Descodificadores de 2 Entradas usando o enable e Lógica adicional:

Nesta solução são usadas (assumindo todos os don't care a 0),

$$2^2 * 5 + 1 = 21$$
 Portas Lógicas

Note-se que com uma inspeção mais cuidada observa-se que temos dois descodificadores que não são utilizados na saída, obtem-se então o seguinte esquemático,

Em que temos,

$$2^2 * 3 + 1 = 13 Portas Lógicas$$