Aim: To predict whether a wine is red or white, based on the metrics provided

1. Generate the dataset

	fixed acidity	volatile acidity		residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	type	
0	6.8	0.56	0.22	1.8	0.074	15.0	24.0	0.99438	3.40	0.82	11.2	6	1	
1	6.4	0.30	0.36	2.0	0.052	18.0	141.0	0.99273	3.38	0.53	10.5	6	0	
2	5.9	0.17	0.29	3.1	0.030	32.0	123.0	0.98913	3.41	0.33	13.7	7	0	
3	7.0	0.24	0.24	1.8	0.047	29.0	91.0	0.99251	3.30	0.43	9.9	6	0	
4	6.4	0.45	0.07	1.1	0.030	10.0	131.0	0.99050	2.97	0.28	10.8	5	0	

2. a) Check for null values

fived esidity	False
fixed acidity	raise
volatile acidity	False
citric acid	False
residual sugar	False
chlorides	False
free sulfur dioxide	False
total sulfur dioxide	False
density	False
pH	False
sulphates	False
alcohol	False
quality	False
type	False
dtype: bool	

2. b) Check for missing values

fixed acidity volatile acidity citric acid residual sugar chlorides	0 0 0 0
free sulfur dioxide	0
total sulfur dioxide	0
density	0
рН	0
sulphates	0
alcohol	0
quality	0
type dtype: int64	0

4898

1 1599

Name: type, dtype: int64

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
count	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	(
mean	7.215307	0.339666	0.318633	5.443235	0.056034	30.525319	115.744574	0.994697	
std	1.296434	0.164636	0.145318	4.757804	0.035034	17.749400	56.521855	0.002999	
min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.000000	0.987110	
25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.000000	0.992340	
50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.000000	0.994890	
75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.000000	0.996990	
max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.000000	1.038980	

3. Feature set analysis

Correlations using a heat map

<AxesSubplot:>

From the heat map above, we see that the positive correlations are seen in the following features: volatile acidity, chlorides, fixed acidity, and sulphates

Highly negative correlations are seen in this feature: total sulfur dioxide

Extra-trees classifier to fit a number of randomized decision trees on sub-samples of the dataset. Using averaging, it improves the predictive accuracy and controls over-fitting.

```
[0.08725983 0.14409015 0.03196323 0.06846117 0.14484194 0.05081832 0.24356034 0.09896197 0.04713687 0.06417429 0.0187319 ]
```


We see that total sulfur dioxide, volatile acidity, chlorides, density and sulphates have strong importances.

From both these methods, we can say that total sulfur dioxide, volatile acidity, chlorides, and sulphates are important features to consider. Features like fixed acidity and density may also play a role in classification.

4. Creating the training and test datasets with an 80:20 split

Also creating a subset of the wine data consisting only of the top features as per the analysis above

5. Creating classification models

Analyses on both the original wine dataset and the subset with the important features

Decision tree classification on full wine dataset

Confusion matrix: [[960 10] [17 313]]

Accuracy score: 0.9792307692307692

Classification report: precision recall f1-score support 0.98 0.99 0.99 970 1 0.97 0.95 0.96 330 accuracy 0.98 1300 0.98 0.97 0.97 1300 macro avg weighted avg 0.98 0.98 0.98 1300

SVM classification on full wine dataset

Confusion matrix:
 [[967 3]

[16 314]]

Accuracy score: 0.9853846153846154

Classification report:

214331, 124210	precision	recall	f1-score	support
0	0.98	1.00	0.99	970
1	0.99	0.95	0.97	330
accuracy			0.99	1300
macro avg weighted avg	0.99 0.99	0.97 0.99	0.98 0.99	1300 1300

KNN classification on full wine dataset

Confusion matrix:

[[945 25] [38 292]]

Accuracy score: 0.9515384615384616

Classification report:

	precision	recall	f1-score	support
0 1	0.96 0.92	0.97 0.88	0.97 0.90	970 330
accuracy macro avg weighted avg	0.94 0.95	0.93 0.95	0.95 0.94 0.95	1300 1300 1300

Decision tree classification on subset of wine dataset

Confusion matrix:

[[962 8] [15 315]]

Accuracy score: 0.9823076923076923

Classification report:

	precision	recall	f1-score	support
0	0.98	0.99	0.99	970
1	0.98	0.95	0.96	330
accuracy macro avg	0.98	0.97	0.98 0.98	1300 1300
weighted avg	0.98	0.98	0.98	1300

SVM classification on subset of wine dataset

Confusion matrix:

[[963 7] [21 309]]

Accuracy score: 0.9784615384615385

Classification report:

	precision	recall	f1-score	support
0 1	0.98 0.98	0.99 0.94	0.99 0.96	970 330
accuracy macro avg weighted avg	0.98 0.98	0.96 0.98	0.98 0.97 0.98	1300 1300 1300

KNN classification on subset of wine dataset

Confusion matrix: [[946 24] [44 286]]

Accuracy score: 0.9476923076923077

Classification report:

	precision	recall	f1-score	support
0	0.96	0.98	0.97	970
1	0.92	0.87	0.89	330
accuracy			0.95	1300
macro avg	0.94	0.92	0.93	1300
weighted avg	0.95	0.95	0.95	1300

Some observations

- We see that all the models perform well on this dataset
- The best performing was the simple Linear Support Vector Machine on the entire dataset, followed by the Decision Tree classification model on the subset of important features
- Choosing a subset of important features via feature selection created comparably accurate models

Using StandardScaler to standardize features by removing the mean and scaling to unit variance

Decision tree classification on scaled input (entire dataset)

Confusion matrix:

[[961 9] [18 312]]

Accuracy score: 0.9792307692307692

Classification report:

CIUDDITTCUCIO	ii i cpoi c.			
	precision	recall	f1-score	support
0	0.98	0.99	0.99	970
		1111	1111	111
1	0.97	0.95	0.96	330
accuracy			0.98	1300
macro avg	0.98	0.97	0.97	1300
weighted avg	0.98	0.98	0.98	1300

Support Vectore classification on scaled input (entire dataset)

Confusion matrix:

[[967 3] [6 324]]

Accuracy score: 0.9930769230769231

Classification report:

CIUSSIII	CUCTO	ii i cpoi c.			
		precision	recall	f1-score	support
	0	0.99	1.00	1.00	970
	1	0.99	0.98	0.99	330
accur	acy			0.99	1300
macro	avg	0.99	0.99	0.99	1300
weighted	avg	0.99	0.99	0.99	1300

KNN classification on scaled input (entire dataset)

Confusion matrix:

[[967 3] [7 323]]

Accuracy score: 0.9923076923076923

Classification report:

	precision	recall	f1-score	support
0	0.99	1.00	0.99	970
1	0.99	0.98	0.98	330
accuracy			0.99	1300
macro avg	0.99	0.99	0.99	1300
weighted avg	0.99	0.99	0.99	1300