

Climate Scenarios for extreme events

Ole Bøssing Christensen, Cathrine Fox Maule (DMI)
Clare Goodess, Richard Cornes (CRU)

Future climate extremes

- In order to look at extremes, we need regional models due to their higher resolution
- We cannot know in advance, which model is "right"
- We therefore need to explore the spread of available results

Regional Models

- Regional climate models are embedded into global coupledmodel simulations to obtain higher spatial resolution, typically down to 8-12km grid distance.
- They can potentially output all meteorological variables in all grid points and levels, at all time steps. Typically, daily time resolution is used, sometimes hourly.
- Both emission scenario, driving global model and regional model add variability to the results.

Regional Model Output

- Regional climate models are embedded into global coupled-model simulations to obtain higher spatial resolution, typically down to 8-12km grid distance. The Euro-CORDEX project aims at collecting 12km simulations covering the entire European area
- For all simulations, there are gridded daily data for daily maximum and minimum temperature plus precipitation on a common grid, both non-corrected and bias corrected.
- Other fields, e.g. incoming solar radiation, actual and potential evaporation etc. are available, but cannot be bias corrected

Sources of climate change data

- CORDEX (http://www.cordex.org)
- Regional models covering land areas of the World

Regional Simulations over Europe

ModExtreme ience Workshop wember 3, 2015

Previous analyses of changes in extremes

- ➤ ENSEMBLES and CORDEX
- > Focus on Europe

Change in Average Fields

Change in Extremes 30-y return value of Daily Max. T

MODEXTREME

- CORDEX results, bias corrected towards observed time series
- PCA selection of models for various relevant extremes

Model selection

➤ We choose to select up to 4 models per area, one central and 3 to span the variation within a set of 8 indices based on precipitation: Average precipitation plus

RX1day	Highest precipitation amount in one-day period.	-	•
RX5day	Highest precipitation amount in five-day period.	-	•
SDII	Simple daily intensity index	Mean of precipitation (RR) on days when rain occurred (days when RR \geq 1mm).	•
R10mm	Heavy precipitation days	Count of days where RR (daily precipitation amount) ≥ 10 mm.	•
R20mm	Very heavy precipitation days	Count of days where RR (daily precipitation amount) ≥ 20 mm.	•
CDD	Consecutive dry days	Maximum length of dry spell (RR < 1 mm).	•
CWD	Consecutive wet days	Maximum length of wet spell (RR ≥ 1 mm)	•

Model selection

- Principal Component Analysis in index/model space: Identify which models and which indices follow each others, and which are independent.
- Select one central and 3 others spanning the independent directions subjectively
- Selected simulations for SW Europe: ECEARTH-HIRHAM (central), CERFACS-RCA, ECEARTH-RACMO, MPIESM-CCLM
- For Ukraine: CERFACS-RCA, ECEARTH-RACMO, HadGEM-RCA, MPIESM-CCLM

Choice of models for South Africa

Differences in climate change

Extremes Indices: full list

	Standard Indices: Temperature			Standard Indices: Precipitation		
1	FD	Frost days (Tmin < 0°C)	8	RX1day	Highest precipitation amount in one-day period.	
2	SU	Summer days (Tmax > 25°C)	9	RX5day	Highest precipitation amount in five-day period.	
3	TR	Tropical nights (Tmin > 20°C)	10	SDII	Simple daily intensity index	
4	GSL	Growing season length	12	R10mm	Heavy precipitation days (RR > 10mm)	
5	WSDI	Warm Spell Duration Index	12	R20mm	Very heavy precipitation days (RR > 20mm)	
6	WSDImax	Length of longest Warm Spell	13	CDD	Consecutive dry days	
7	CSDI	Cold spell duration index	14	CWD	Consecutive wet days	

	Phenological Indices: Cold Temperatures			Phenological Indices: Extreme Heat		
15	S.EM.CRIT.8	Sowing-emergence critical days (< -8°C)	22	TMAX.40	Ceiling temperature for development (Tmax > 40°C)	
16	S.EM.CRIT.3	Sowing-emergence critical days (< -3°C)	23	TMAX.45	Ceiling temperature for development (Tmax > 45°C)	
17	EM.AN.CRIT.2	Emergence-flowering critical days (< -2°C)			Phenological Indices: Grasslands	
18	LASTFROST.0	Final frost day (0°C)	24	GSL.GRASS	Growing Season length for Grasses/Clover mix	
19	LASTFROST.8	Final frost day (-8°C)	25	VHOT.DAYS	Very Hot Days (Tmax > 35°C)	
20	LASTFROST.3	Final frost day (-3°C)				
21	LASTFROST.2	Final frost day (-2°C)			* Bold Indicates the six "core" indices	

Indices from corrected model data

Annual Frost Days
Number of days where Tmin < 0°C

Indices from corrected model data

Annual Summer Days
Number of days where Tmax > 25 °C

MPIESM-CCLM

Observations (E-OBS)

ECEARTH-HIRHAM

Conclusions

- ➤ Generally, there are large uncertainties in projections of extreme events. It requires careful analysis of large model ensembles to obtain robust results
- Such robust results do, however, exist. Extreme precipitation will probably increase in drying regions
- With principal-component analysis it is possible to estimate this span with fewer models

