Better than N lg N?

at *if all you can do to keys is compare them,* then sorting $N \lg N$).

there are N! possible ways the input data could be

our program must be prepared to do N! different comdata-moving operations.

here must be N! possible combinations of outcomes of sts in your program, since those determine what move where (we're assuming that comparisons are 2-way).

CS61B Lectures #28

s on sorting by comparison counting, radix sorts

:46:10 2018

ay: DS(IJ), Chapter 8; Next topic: Chapter 9.

CS61B: Lecture #28 1

Beyond Comparison: Distribution

can do more than compare keys?

how can we sort a set of N integer keys whose values to kN, for some small constant k?

he: put the integers into N buckets, with an integer p ket $\lfloor p/k \rfloor$.

ys per bucket, so catenate and use insertion sort, which ast.

= 10:

:46:10 2018

| 10 13 4 2 19 17 0 9 |s: | 2 | 4 | | 9 | 10 | 13 | 14 | 17 | 19 |

n sort is fast. Putting in buckets takes time $\Theta(N)$, and t takes $\Theta(kN)$. When k is fixed (constant), we have ne $\Theta(N)$.

:46:10 2018 CS61B: Lecture #28 4

Necessary Choices

-test goes two ways, number of possible different outif-tests is 2^k

nough tests so that $2^k \geq N!$, which means $k \in \Omega(\lg N!)$. g's approximation,

$$\begin{split} &\sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \Theta\left(\frac{1}{N}\right)\right), \\ &1/2 (\lg 2\pi + \lg N) + N \lg N - N \lg e + \lg\left(1 + \Theta\left(\frac{1}{N}\right)\right) \\ &\Theta(N \lg N) \end{split}$$

that k, the worst-case number of tests needed to sort imparison sorting, is in $\Omega(N\lg N)$: there must be cases sed (some multiple of) $N\lg N$ comparisons to sort N

Distribution Counting Example

tems are between 0 and 9 as in this example:

gives # occurrences of each key.

" gives cumulative count of keys < each value...

s us where to put each key:

tance of key k goes into slot m, where m is the number uces that are < k.

Distribution Counting

hnique: count the number of items < 1, < 2, etc.

ems with value < p, then in sorted order, the j^{th} item must be item $\#M_n + j$.

r linear-time algorithm.

CS61B: Lecture #28 3 46:10 2018 CS61B: Lecture #28 5

istribution Counting Example (II)

istribution Counting Example (II)

MSD Radix Sort

omplicated: must keep lists from each step separate processing 1-element lists

A	posn
cat, cad, con, bat, can, be, let, bet	0
be, bet / cat, cad, con, can / let / set	1
* be, bet / cat, cad, con, can / let / set	2
be / bet / * cat, cad, con, can / let / set	1
be / bet / * cat, cad, can / con / let / set	2
be / bet / * cat, cad, can / con / let / set be / bet / cad / can / cat / con / let / set	
	ļ)

:46:10 2018 CS61B: Lecture #28 28

Radix Sort

ys one character at a time.

ribution counting for each digit.

her right to left (LSD radix sort) or left to right (MSD

rt is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

Pass 3 bet cat be can bet can can, can, can, con, let, set

:46:10 2018 CS61B: Lecture #28 27

And Don't Forget Search Trees

h tree is in sorted order, when read in inorder.

e to really use for sorting [next topic].

e, same performance as heapsort: N insertions in time us $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

:46:10 2018 C561B: Lecture #28 30

Performance of Radix Sort

ikes $\Theta(B)$ time where B is total size of the key data.

ed other sorts as function of #records.

are?

lifferent records, must have keys at least $\Theta(\lg N)$ long

, comparison actually takes time $\Theta(K)$ where K is size st case [why?]

mparisons really means $N(\lg N)^2$ operations.

sort would take $B = N \lg N$ time with minimal-length

r hand, must work to get good constant factors with

