Simulation Result for Manuscript

Yi

2023 - 04 - 02

 $\begin{aligned} \text{Biomarker1}: \tilde{X} &= \begin{cases} 0.7 + 0.1e & \text{if } \tilde{T} \leq 2\\ 0.3 + 0.3e & \text{if } \tilde{T} > 2 \end{cases} \\ \text{Biomarker2}: \tilde{X} &= \begin{cases} 0.6 + 0.2e & \text{if } \tilde{T} \leq 2\\ 0.4 + 0.3e & \text{if } \tilde{T} > 2 \end{cases} \end{aligned}$

Table 1: Scenarios of simulation

Censoring	Biomarker	Subjects	β	$\alpha_{0.7}$	$\alpha_{0.5}$	$\alpha_{0.3}$
Exp(0.2)	1	U(50, 150)	1	-2.431	-3.199	-3.961
		U(50, 300)	1	-3.277	-4.178	-5.083
	2	U(50, 150)	1	-0.518	-1.270	-2.020
		U(50, 300)	1	-0.878	-1.649	-2.427
U(1, 4)	1	U(50, 150)	1	-2.968	-3.713	-4.452
		U(50, 300)	1	-3.945	-4.899	-5.818
	2	U(50, 150)	1	-0.795	-1.547	-2.286
		U(50, 300)	1	-1.233	-2.020	-2.802

Table 2: Summary of the estimated SAUC when the true censoring is distributed as Exp(0.2).

				Biomarker1		Biomarker2	
Patients	\mathbf{S}	p	Methods	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	70		HZ_P	0.00 (73.70, 75.65)	100	0.00 (61.55, 62.84)	100
		0.7	HZ_O	1.09 (74.59, 76.84)	100	1.78 (63.33, 64.68)	100
			$Prop_{(0.7)}$	$0.64\ (73.90,\ 76.84)$	77.3	$0.02 \ (61.34, \ 63.09)$	64
			$\operatorname{Prop}_{(0.7)}^*$	$0.49 \ (73.77, 76.77)$	82	$0.05 \ (61.42, \ 63.06)$	77
		0.5	HZ_O	$1.64 \ (74.80, \ 77.76)$	100	$2.80 \ (64.07, \ 65.82)$	100
			$Prop_{(0.5)}$	$0.70 \ (73.51, 77.38)$	76.3	$0.01 \ (60.92, \ 64.01)$	72
			$\mathrm{Prop}_{(0.5)}^*$	$0.21\ (72.99,\ 76.77)$	74.8	-0.45 (60.63, 62.97)	73.4
		0.3	HZ_O	$2.63\ (75.29,\ 79.32)$	100	4.18 (65.14, 67.40)	99.9
			$Prop_{(0.3)}$	$0.88 \ (72.86, 78.31)$	67.5	$2.51 \ (60.89, 66.78)$	79.1
			$\operatorname{Prop}_{(0.3)}^*$	$0.08 \ (72.01, \ 77.14)$	63.6	-0.99 (59.70, 63.19)	64.2
	200		HZ_P	$0.00\ (73.92,\ 75.13)$	100	$0.00 \ (61.86, \ 62.58)$	100
		0.7	HZ_O	$1.03\ (74.83,\ 76.19)$	100	$1.82\ (63.59,\ 64.43)$	100
			$Prop_{(0.7)}$	$0.49 \ (73.98, 75.94)$	72.2	-0.14 (61.54, 62.56)	63
			$\operatorname{Prop}_{(0.7)}^*$	$0.45 \ (73.95, 75.99)$	86	$-0.10 \ (61.57, \ 62.62)$	75.4
		0.5	HZ_O	$1.64\ (75.25,\ 76.93)$	100	$2.85\ (64.59,\ 65.57)$	100
			$Prop_{(0.5)}$	$0.50 \ (73.68, 76.26)$	76.3	-0.46 (61.03, 62.50)	67.2
			$\mathrm{Prop}_{(0.5)}^*$	$0.33\ (73.48,\ 75.99)$	85.4	-0.55 (60.90, 62.27)	77.8
		0.3	HZ_O	$2.29\ (75.79,\ 77.85)$	100	$4.08\ (65.67,\ 66.96)$	100
			$Prop_{(0.3)}$	$0.30\ (72.95,\ 76.73)$	76.8	-0.17 (60.31, 66.21)	73.1
			$\operatorname{Prop}_{(0.3)}^*$	-0.31 (72.53, 75.87)	83.1	-1.20 (59.88, 62.04)	73.1

Patients denote the range of the number of patients. S denotes the number of the population studies. p denotes the approximate proportion of the published studies among the population. Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. HZ_P denotes the HZ model using the population studies; HZ_O denotes the HZ model using only the corresponding numbers of published studies; $Prop_{(p)}$ denotes the proposed sensitivity analysis method given p with initial values equal to the etimates from the trivariate normal model based on the published studies; $Prop_{(p)}^*$ denotes the proposed method given p with initial values equal to the etimates from the trivariate normal model based on the population studies. The medians are multiplied by 100.

Table 3: Summary of the estimated SAUC when the true censoring is distributed as Exp(0.2).

				Biomarker1		Biomarker2	
Patients	\mathbf{S}	p	Methods	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-300	70		HZ_P	0.00 (75.08, 76.48)	100	0.00 (62.05, 62.96)	100
		0.7	HZ_O	$0.77 \ (75.56, 77.47)$	100	$1.28 \ (63.35,\ 64.37)$	100
			$Prop_{(0.7)}$	$0.48 \ (75.02, 77.27)$	77.4	$0.62 \ (62.39, \ 63.86)$	73.9
			$\operatorname{Prop}_{(0.7)}^*$	$0.49 \ (75.08, 77.23)$	82.3	$0.13 \ (62.08, \ 63.34)$	69.4
		0.5	HZ_O	$1.23\ (75.69,\ 78.17)$	100	$2.06 \ (63.95, \ 65.26)$	100
			$Prop_{(0.5)}$	$0.43 \ (74.59, 77.54)$	74.8	$0.92\ (62.17,\ 64.50)$	66.2
			$\operatorname{Prop}_{(0.5)}^*$	$0.35 \ (74.73, \ 77.43)$	76.3	$0.05 \ (61.60, \ 63.57)$	68.7
		0.3	HZ_O	$1.57\ (75.07,\ 79.13)$	100	$2.97\ (64.68,\ 66.31)$	99.9
			$Prop_{(0.3)}$	-0.08 (72.84, 78.46)	75.7	1.90 (62.10, 65.79)	70.1
			$\operatorname{Prop}_{(0.3)}^*$	$0.00 \ (74.10, \ 77.87)$	62.2	-0.06 (61.16, 64.11)	58.5
	200		HZ_P	$0.00\ (75.07,\ 76.00)$	100	$0.00\ (62.25,\ 62.82)$	100
		0.7	HZ_O	$0.68 \ (75.62, 76.73)$	100	$1.31\ (63.55,\ 64.18)$	100
			$Prop_{(0.7)}$	$0.39\ (75.23,\ 76.56)$	78.9	$0.57 \ (62.51, \ 63.77)$	70.2
			$\operatorname{Prop}_{(0.7)}^*$	$0.39\ (75.21,\ 76.54)$	84.2	-0.01 (62.21, 62.92)	67.7
		0.5	HZ_O	$1.13\ (75.87,\ 77.24)$	100	$2.05 \ (64.25, \ 64.98)$	100
			$Prop_{(0.5)}$	$0.34\ (74.99,\ 76.63)$	75.3	-0.03 (61.97, 63.40)	59.9
			$\operatorname{Prop}_{(0.5)}^*$	$0.29 \ (74.98, 76.51)$	84	-0.24 (61.80, 62.87)	65.8
		0.3	HZ_O	$1.55\ (76.01,\ 78.06)$	100	$2.91\ (65.04,\ 66.03)$	100
			$Prop_{(0.3)}$	-0.03 (74.19, 76.81)	79.6	$0.09 \ (61.58, 65.08)$	69.3
			$\operatorname{Prop}_{(0.3)}^*$	$-0.06 \ (74.42, 76.54)$	85.3	$-0.54 \ (61.23, \ 62.75)$	68.7

Patients denote the range of the number of patients. S denotes the number of the population studies. p denotes the approximate proportion of the published studies among the population. Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. HZ_P denotes the HZ model using the population studies; HZ_O denotes the HZ model using only the corresponding numbers of published studies; $Prop_{(p)}$ denotes the proposed sensitivity analysis method given p with initial values equal to the etimates from the trivariate normal model based on the published studies; $Prop_{(p)}^*$ denotes the proposed method given p with initial values equal to the etimates from the trivariate normal model based on the population studies. The medians are multiplied by 100.

Table 4: Summary of the estimated SAUC when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

				Biomarker1		Biomarker2	
Patients	\mathbf{S}	p	Methods	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	70		HZ_P	0.00 (74.12, 75.80)	100	0.00 (61.71, 62.82)	100
		0.7	HZ_O	0.92 (74.88, 77.02)	100	1.98 (63.61, 64.92)	100
			$Prop_{(0.7)}$	$0.58 \ (74.23, 77.04)$	63.9	0.29 (61.79, 63.41)	44
			$\text{Prop}_{(0.7)}^*$	$0.60\ (74.18,\ 77.06)$	64.8	$0.41\ (61.87,\ 63.51)$	49.6
		0.5	HZ_O	$1.58 \ (75.20, 77.97)$	100	$3.08 \ (64.61, \ 66.19)$	100
			$Prop_{(0.5)}$	0.04 (73.40, 76.78)	56.8	0.67 (61.31, 65.20)	51.5
			$\operatorname{Prop}_{(0.5)}^*$	$0.15 \ (73.46, 76.81)$	58.1	$0.25 \ (61.35, \ 64.03)$	51.3
		0.3	HZ_O	2.32 (75.46, 79.32)	100	4.42 (65.71, 67.75)	100
			$Prop_{(0.3)}$	-0.34 (71.97, 77.27)	45.4	3.98 (62.86, 67.51)	64.4
			$\text{Prop}_{(0.3)}^*$	$-0.52 \ (72.00, \ 76.63)$	43.1	$0.39\ (60.41,\ 65.50)$	43.3
	200		HZ_P	$0.00\ (74.17,\ 75.26)$	100	$0.00 \ (61.92, \ 62.61)$	100
		0.7	HZ_O	$0.99\ (75.13,\ 76.39)$	100	1.97 (63.88, 64.62)	100
			$\text{Prop}_{(0.7)}$	$0.66 \ (74.50, 76.38)$	79.6	-0.03 (61.72, 62.73)	39.2
			$\operatorname{Prop}_{(0.7)}^*$	$0.63\ (74.46,\ 76.34)$	81	$0.03 \ (61.86, \ 62.74)$	46.1
		0.5	HZ_O	$1.52\ (75.48,\ 77.05)$	100	3.15 (64.98, 65.82)	100
			$Prop_{(0.5)}$	-0.03 (73.57, 75.94)	72.9	-0.32 (61.30, 62.84)	45.8
			$\text{Prop}_{(0.5)}^{*}$	$-0.06 \ (73.54,\ 75.94)$	77.8	$-0.43 \ (61.25, \ 62.47)$	49.6
		0.3	HZ_O	$2.17\ (75.85,\ 77.98)$	100	$4.45 \ (66.07, \ 67.28)$	100
			$\text{Prop}_{(0.3)}$	-0.79 (72.54, 75.53)	67.9	3.68 (61.18, 66.96)	59.6
			$\operatorname{Prop}_{(0.3)}^*$	$-0.79 \ (72.61, 75.58)$	70.1	-1.19 (60.13, 62.01)	49.7

Patients denote the range of the number of patients. S denotes the number of the population studies. p denotes the approximate proportion of the published studies among the population. Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. HZ_P denotes the HZ model using the population studies; HZ_O denotes the HZ model using only the corresponding numbers of published studies; $\mathrm{Prop}_{(p)}$ denotes the proposed sensitivity analysis method given p with initial values equal to the etimates from the trivariate normal model based on the published studies; $\mathrm{Prop}_{(p)}^*$ denotes the proposed method given p with initial values equal to the etimates from the trivariate normal model based on the population studies. The medians are multiplied by 100.

Table 5: Summary of the estimated SAUC when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

				Biomarker1		Biomarker2	
Patients	\mathbf{S}	p	Methods	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-300	70		HZ_P	0.00 (75.28, 76.70)	100	0.00 (62.11, 62.93)	100
		0.7	HZ_O	0.74 (75.78, 77.68)	100	1.41 (63.50, 64.43)	100
			$\text{Prop}_{(0.7)}$	$0.23\ (75.13,\ 77.37)$	62.3	$0.18\ (62.08,\ 63.38)$	40.6
			$\operatorname{Prop}_{(0.7)}^*$	$0.31\ (75.19,\ 77.41)$	62.3	$0.12\ (62.03,\ 63.21)$	41.2
		0.5	HZ_O	1.14 (75.76, 78.42)	100	$2.29\ (64.23,\ 65.37)$	100
			$Prop_{(0.5)}$	-0.22 (74.31, 76.98)	58.1	0.55 (61.88, 64.49)	41.5
			$\operatorname{Prop}_{(0.5)}^*$	-0.03 (74.73, 77.17)	57.5	-0.16 (61.51, 63.15)	35
		0.3	HZ_O	$1.38\ (74.34,\ 79.47)$	100	$3.25 \ (64.98, 66.45)$	100
			$Prop_{(0.3)}$	-2.46 (34.02, 76.50)	54.7	$2.41 \ (62.12, 66.19)$	50.6
			$\operatorname{Prop}_{(0.3)}^*$	-0.32 (73.60, 77.48)	42.3	-0.49 (60.90, 63.35)	31.7
	200		HZ_P	$0.00\ (75.33,\ 76.18)$	100	$0.00 \ (62.33, \ 62.86)$	100
		0.7	HZ_O	$0.62\ (75.88,\ 76.93)$	100	$1.38 \ (63.69, \ 64.29)$	100
			$Prop_{(0.7)}$	$0.40 \ (75.56, 76.77)$	72.5	$0.01\ (62.24,\ 62.95)$	34.6
			$\operatorname{Prop}_{(0.7)}^*$	$0.38 \ (75.56, 76.79)$	72.1	$0.03 \ (62.28, \ 62.98)$	37.8
		0.5	HZ_O	$1.05\ (76.10,\ 77.52)$	100	$2.21\ (64.46,\ 65.15)$	100
			$Prop_{(0.5)}$	$0.10\ (75.02,\ 76.71)$	74	-0.32 (61.82, 62.84)	36.8
			$\text{Prop}_{(0.5)}^{*}$	$0.10\ (75.04,\ 76.70)$	72.3	-0.23 (61.91, 62.84)	40.2
		0.3	HZ_O	$1.42\ (76.11,\ 78.26)$	100	$3.15 \ (65.28, 66.17)$	100
			$Prop_{(0.3)}$	-0.83 (73.69, 76.01)	69.4	$-0.42 \ (61.54, \ 64.68)$	42.3
			$\text{Prop}_{(0.3)}^*$	-0.48 (74.32, 76.41)	68	-0.74 (61.17, 62.42)	40.7

Patients denote the range of the number of patients. S denotes the number of the population studies. p denotes the approximate proportion of the published studies among the population. Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. HZ_P denotes the HZ model using the population studies; HZ_O denotes the HZ model using only the corresponding numbers of published studies; $Prop_{(p)}$ denotes the proposed sensitivity analysis method given p with initial values equal to the etimates from the trivariate normal model based on the published studies; $Prop_{(p)}^*$ denotes the proposed method given p with initial values equal to the etimates from the trivariate normal model based on the population studies. The medians are multiplied by 100.