线性代数期中试卷 (2018.11.17)

一. 简答与计算题(本题共5小题, 每小题8分, 共40分)

1. 设
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & -\lambda \end{pmatrix}$$
 经过多次初等行变换和列变换得到 $B = \begin{pmatrix} -5 & 17 & 6 \\ -7 & 0 & 5 \\ 13 & 9 & -8 \end{pmatrix}$,求参数 λ .

2. 设
$$A = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 2 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & n-1 \\ n & & & & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}, C = \begin{pmatrix} A & O \\ O & B \end{pmatrix}, 其中 $n \ge 2$, 求 C^{-1} .$$

- 3. 设 $A \in \mathbb{R}^{3\times 3}$, $|A| \neq 0$, 且有 $A_{ij} = 2a_{ij}$, i, j = 1, 2, 3, 其中 A_{ij} 为矩阵元素 a_{ij} 的代数余子式,求 $|A^*|$.
- 4. 设矩阵 $A = MN^{\mathrm{T}}$, 其中 $M, N \in \mathbb{R}^{n \times r}$ $(r \le n), |N^{\mathrm{T}}M| \ne 0$. 证明: $\mathbf{r}(A^2) = \mathbf{r}(A)$.

5. 计算行列式
$$D = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & n-1 \\ 3 & 4 & 5 & \cdots & n-2 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n-1 & n-2 & \cdots & 1 \end{vmatrix}$$
. (D的元素 $a_{ij} = \begin{cases} i+j-1, & \exists i+j \leq n+1, \\ 2n+1-i-j, \exists i+j > n+1. \end{cases}$)

二.(10分) 设有向量组

$$\alpha_{1} = \begin{pmatrix} 2 \\ -2 \\ -1 \\ 4 \end{pmatrix}, \alpha_{2} = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \alpha_{3} = \begin{pmatrix} 1 \\ -4 \\ 1 \\ -1 \end{pmatrix}, \alpha_{4} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \alpha_{5} = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 7 \end{pmatrix}.$$

- (1)求一个极大无关组,并用极大无关组表示其余向量
- (2) 在4维列向量组 e_1, e_2, e_3, e_4 中找出所有不能被向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 线性表示的向量,其中 $e_1 = (1,0,0,0)^{\mathrm{T}}, e_2 = (0,1,0,0)^{\mathrm{T}}, e_3 = (0,0,1,0)^{\mathrm{T}}, e_4 = (0,0,0,1)^{\mathrm{T}}.$

三.(10分) 设
$$A \in \mathbb{R}^{3\times 3}$$
, A 的第一列为 $\alpha_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$, 且 $\xi_1 = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$ 和 $\xi_2 = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$ 是齐次线性方程组 $(A - 2E)x = \theta$ 的非零解,求 A .

四. (15分)设下列非齐次线性方程组有3个线性无关的解向量:

$$\begin{cases} x_1 + 2x_2 - x_3 - x_4 &= 1, \\ \lambda x_1 + x_2 + 2x_3 + 7\mu x_4 &= -2, \\ 4x_1 + 9x_2 - 5x_3 - 6x_4 &= 5. \end{cases}$$

(1) 求出该方程组系数矩阵的秩; (2) 求出参数 λ, μ 的值以及方程组的通解.

五.(15分) 设
$$A = \begin{pmatrix} 2 & 6 & 6 \\ 3 & -1 & 3 \\ -3 & -3 & -7 \end{pmatrix}$$
.

(1) 计算矩阵 A 的特征值和特征向量; (2) 计算矩阵 $(A^2 + A^* + 2E)^{-1}$ 的特征值和特征向量.

1

六.(10分) 设矩阵 $A \in \mathbb{R}^{m \times n}$, $\mathbf{r}(A) < n$,列向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 是齐次线性方程组 $Ax = \theta$ 的基础解系,矩阵 $N = (\alpha_1, \alpha_2, \cdots, \alpha_s) \in \mathbb{R}^{n \times s}$. 证明: $\mathbf{r}(A^T, N) = n$.