Chapter 1

Systems of Linear Equations and Matrices

- 1.1. Introduction to Systems of Linear Equations
- 1.2. Gaussian Elimination
- 1.3. Matrices and Matrix Operations
- 1.4. Inverses; Algebraic Properties of Matrices
- 1.5. Elementary Matrices and a Method for Finding Inverse
- 1.6. More on Linear Systems and Invertible Matrices
- 1.7. Diagonal, Triangular, and Symmetric Matrices
- 1.8. Introduction to Linear Transformations

Chapter 1.6

More on Linear Systems and
Invertible Matrices

Number of Solutions of a Linear System

THEOREM 1.6.1

A system of linear equations has zero, one, or infinitely many solutions.

There are no other possibilities.

Proof

If $A\mathbf{x} = \mathbf{b}$ is a system of linear equations, exactly one of the following is true:

- (a) the system has no solutions,
- (b) the system has exactly one solution, or
- (c) the system has more than one solution.

The proof will be complete if we can show that the system has infinitely many solutions in case (c).

Number of Solutions of a Linear System

THEOREM 1.6.1

Proof

Assume that $A\mathbf{x} = \mathbf{b}$ has more than one solution,

suppose x_1 and x_2 are any two distinct solutions.

let
$$\mathbf{x}_0 = \mathbf{x}_1 - \mathbf{x}_2$$
,

Because \mathbf{x}_1 and \mathbf{x}_2 are distinct, the matrix \mathbf{x}_0 is nonzero;

$$A\mathbf{x}_0 = A(\mathbf{x}_1 - \mathbf{x}_2) = A\mathbf{x}_1 - A\mathbf{x}_2 = \mathbf{b} - \mathbf{b} = \mathbf{0}$$

If we now let k be any scalar, then

$$A(\mathbf{x}_1 + k\mathbf{x}_0) = A\mathbf{x}_1 + A(k\mathbf{x}_0) = A\mathbf{x}_1 + k(A\mathbf{x}_0)$$
$$= \mathbf{b} + k\mathbf{0} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

So $\mathbf{x}_1 + k\mathbf{x}_0$ is a solution of $A\mathbf{x} = \mathbf{b}$.

Since \mathbf{x}_0 is nonzero and there are infinitely many choices for k, the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.

Solving Linear Systems by Matrix Inversion

THEOREM 1.6.2

If *A* is an invertible $n \times n$ matrix, then for every $n \times 1$ matrix **b**, the system of equations $A\mathbf{x} = \mathbf{b}$ has exactly one solution, namely, $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof

[Note]

Solving Linear Systems by Matrix Inversion

EXAMPLE 1 Solution of a Linear System Using A^{-1}

$$x_1 + 2x_2 + 3x_3 = 5$$

 $2x_1 + 5x_2 + 3x_3 = 3$
 $x_1 + 8x_3 = 17$

In matrix form this system can be written as $A\mathbf{x} = \mathbf{b}$,

Then,
$$\mathbf{x} = A^{-1}\mathbf{b}$$

exe

EXAMPLE 1 Solution of a Linear System Using A^{-1}

$$x_1 + 2x_2 + 3x_3 = 5$$

 $2x_1 + 5x_2 + 3x_3 = 3$
 $x_1 + 8x_3 = 17$

In matrix form this system can be written as $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix}$$

In Example 4 of the preceding section, we showed that A is invertible and

$$A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$$

By Theorem 1.6.2, the solution of the system is

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

or
$$x_1 = 1$$
, $x_2 = -1$, $x_3 = 2$.

Solve Multiple Linear Systems

EXAMPLE 2 Solving Two Linear Systems at Once

Solve the systems

(a)
$$x_1 + 2x_2 + 3x_3 = 4$$

 $2x_1 + 5x_2 + 3x_3 = 5$
 $x_1 + 8x_3 = 9$

(a)
$$x_1 + 2x_2 + 3x_3 = 4$$
 (b) $x_1 + 2x_2 + 3x_3 = 1$
 $2x_1 + 5x_2 + 3x_3 = 5$ $2x_1 + 5x_2 + 3x_3 = 6$
 $x_1 + 8x_3 = 9$ $x_1 + 8x_3 = -6$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 2 & 5 & 3 & 5 & 6 \\ 1 & 0 & 8 & 9 & -6 \end{bmatrix}$$

Reducing this matrix to reduced row echelon form yields (verify)

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$

(a) is
$$x_1 = 1$$
, $x_2 = 0$, $x_3 = 1$

(b) is
$$x_1 = 2$$
, $x_2 = 1$, $x_3 = -1$.

Properties of Invertible Matrices

THEOREM 1.6.3

Let *A* be a square matrix.

- (a) If B is a square matrix satisfying BA = I, then $B = A^{-1}$.
- (b) If B is a square matrix satisfying AB = I, then $B = A^{-1}$.

Proof

[Note]

Equivalence Theorem

THEOREM 1.6.4

Equivalent Statements

If *A* is an $n \times n$ matrix, then the following are equivalent.

- (a) A is invertible.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- \rightarrow (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- \rightarrow (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .

Equivalence Theorem

THEOREM 1.6.4

- Proof
- $(a) \Rightarrow (f)$ This was already proved in Theorem 1.6.2.
- $(f) \Rightarrow (e)$ This is almost self-evident
- (e) \Rightarrow (a) If the system $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} ,

then, in particular,

$$A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad A\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ be solutions of the respective systems,

Equivalence Theorem

THEOREM 1.6.4

Proof
$$(e) \Rightarrow (a)$$

let us form an $n \times n$ matrix C having these solutions as columns.

$$C = [\mathbf{x}_1 \mid \mathbf{x}_2 \mid \cdots \mid \mathbf{x}_n]$$

$$AC = [A\mathbf{x}_1 \mid A\mathbf{x}_2 \mid \dots \mid A\mathbf{x}_n] = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = I$$

By part (b) of Theorem 1.6.3, it follows that $C = A^{-1}$. Thus, A is invertible.

Properties of Invertible Matrices

THEOREM 1.6.5

Let A and B be square matrices of the same size. If AB is invertible, then A and B must also be invertible.

(note: compare to Theorem 1.4.6)

Proof

[Note]

A Fundamental Problem

A Fundamental Problem

Let *A* be a fixed $m \times n$ matrix. Find all $m \times 1$ matrices **b** such that the system of equations $A\mathbf{x} = \mathbf{b}$ is consistent.

EXAMPLE 3 Determining Consistency by Elimination

What conditions must b_1 , b_2 , and b_3 satisfy in order for the system of equations

$$x_1 + x_2 + 2x_3 = b_1$$

 $x_1 + x_3 = b_2$
 $2x_1 + x_2 + 3x_3 = b_3$

to be consistent?

The augmented matrix is

$$\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 1 & 0 & 1 & b_2 \\ 2 & 1 & 3 & b_3 \end{bmatrix}$$

which can be reduced to row echelon form as follows:

$$\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 1 & 1 & b_1 - b_2 \\ 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}$$

the system has a solution if and only if b_1 , b_2 , and b_3 satisfy the condition

EXAMPLE 3

$$\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 1 & 1 & b_1 - b_2 \\ 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}$$

the system has a solution if and only if b_1 , b_2 , and b_3 satisfy the condition

$$b_3 - b_2 - b_1 = 0$$
 or $b_3 = b_1 + b_2$

 $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is a matrix of the form

$$\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_1 + b_2 \end{bmatrix}$$

where b_1 and b_2 are arbitrary.

EXAMPLE 4 Determining Consistency by Elimination

What conditions must b_1 , b_2 , and b_3 satisfy in order for the system of equations

$$x_1 + 2x_2 + 3x_3 = b_1$$

 $2x_1 + 5x_2 + 3x_3 = b_2$
 $x_1 + 8x_3 = b_3$

to be consistent?

The augmented matrix is

$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 2 & 5 & 3 & b_2 \\ 1 & 0 & 8 & b_3 \end{bmatrix}$$

Reducing this to reduced row echelon form yields (verify)

$$\begin{bmatrix} 1 & 0 & 0 & -40b_1 + 16b_2 + 9b_3 \\ 0 & 1 & 0 & 13b_1 - 5b_2 - 3b_3 \\ 0 & 0 & 1 & 5b_1 - 2b_2 - b_3 \end{bmatrix}$$

EXAMPLE 4

Reducing this to reduced row echelon form yields (verify)

$$\begin{bmatrix} 1 & 0 & 0 & -40b_1 + 16b_2 + 9b_3 \\ 0 & 1 & 0 & 13b_1 - 5b_2 - 3b_3 \\ 0 & 0 & 1 & 5b_1 - 2b_2 - b_3 \end{bmatrix}$$

In this case there are no restrictions on b_1 , b_2 , and b_3 , so the system has the unique solution

$$x_1 = -40b_1 + 16b_2 + 9b_3$$
, $x_2 = 13b_1 - 5b_2 - 3b_3$, $x_3 = 5b_1 - 2b_2 - b_3$

for all values of b_1 , b_2 , and b_3 .

Chapter 1-6 Objectives

- Determine whether a linear system of equations has no solutions, exactly one solution, or infinitely many solutions.
- Solve linear systems by inverting its coefficient matrix.
- Solve multiple linear systems with the same coefficient matrix simultaneously.
- Be familiar with the additional conditions of invertibility stated in the Equivalence Theorem.