Choosing a Solver

On this page...

Optimization Decision Table

Choosing the Algorithm

Problems Handled by Optimization Toolbox Functions

Optimization Decision Table

The following table is designed to help you choose a solver. It does not address multiobjective optimization or equation solving. There are more details on all the solvers in Problems Handled by Optimization Toolbox Functions.

Use the table as follows:

- 1. Identify your objective function as one of five types:
 - Linear
 - Quadratic
 - Sum-of-squares (Least squares)
 - Smooth nonlinear
 - Nonsmooth
- 2. Identify your constraints as one of five types:
 - None (unconstrained)
 - Bound
 - Linear (including bound)
 - General smooth
 - Discrete (integer)
- 3. Use the table to identify a relevant solver.

In this table:

- * means relevant solvers are found in <u>Global Optimization Toolbox</u> functions (licensed separately from Optimization Toolbox solvers).
- fmincon applies to most smooth objective functions with smooth constraints. It is not listed as a preferred solver for least squares or linear or quadratic programming because the listed solvers are usually more efficient.
- The table has suggested functions, but it is not meant to unduly restrict your choices. For example, fmincon can be effective on some nonsmooth problems.
- The Global Optimization Toolbox ga function can address mixed integer programming problems.

Solvers by Objective and Constraint

Constraint Type	Objective Type				
	Linear	Quadratic	Least Squares	Smooth nonlinear	Nonsmooth
None	n/a (f = const, or min = $-\infty$)	quadprog, Theory, Examples	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	fminsearch, fminunc, Theory, Examples	fminsearch, *

Bound	linprog, Theory, Examples	quadprog, Theory, Examples	lsqcurvefit, lsqlin, lsqnonlin, lsqnonneg, Theory, Examples	fminbnd, fmincon, fseminf, Theory, Examples	fminbnd, *
Linear	linprog, Theory, Examples	quadprog, Theory, Examples	lsqlin, Theory, Examples	fmincon, fseminf, Theory, Examples	*
General smooth	fmincon, Theory, Examples	fmincon, Theory, Examples	fmincon, Theory, Examples	fmincon, fseminf, Theory, Examples	*
Discrete	bintprog, *, Theory, Example	*	*	*	*

Note This table does not list multiobjective solvers nor equation solvers. See <u>Problems Handled</u> <u>by Optimization Toolbox Functions</u> for a complete list of problems addressed by Optimization Toolbox functions.

Note Some solvers have several algorithms. For help choosing, see **Choosing the Algorithm**.

Back to Top

Choosing the Algorithm

- fmincon Algorithms
- fsolve Algorithms
- fminunc Algorithms
- Least Squares Algorithms
- Linear Programming Algorithms
- Quadratic Programming Algorithms

fmincon Algorithms

fmincon has four algorithm options:

- 'interior-point'
- 'sqp'
- 'active-set'
- 'trust-region-reflective' (default)

Use optimset to set the Algorithm option at the command line.

Recommendations

- Use the 'interior-point' algorithm first.

 For help if the minimization fails, see When the Solver Fails or When the Solver Might Have Succeeded.
- To run an optimization again to obtain more speed on small- to medium-sized problems, try 'sqp' next, and 'active-set' last.
- Use 'trust-region-reflective' when applicable. Your problem must have: objective function includes gradient, only bounds, or only linear equality constraints (but not both).

Reasoning Behind the Recommendations.

- 'interior-point' handles large, sparse problems, as well as small dense problems. The algorithm satisfies bounds at all iterations, and can recover from NaN or Inf results. It is a large-scale algorithm; see Large-Scale vs. Medium-Scale Algorithms. The algorithm can use special techniques for large-scale problems. For details, see Interior-Point Algorithm.
- 'sqp' satisfies bounds at all iterations. The algorithm can recover from NaN or Inf results. It is not a large-scale algorithm; see <u>Large-Scale vs. Medium-Scale Algorithms</u>.
- 'active-set' can take large steps, which adds speed. The algorithm is effective on some problems with nonsmooth constraints. It is not a large-scale algorithm; see <u>Large-Scale vs. Medium-Scale Algorithms.</u>
- 'trust-region-reflective' requires you to provide a gradient, and allows only bounds or linear equality constraints, but not both. Within these limitations, the algorithm handles both large sparse problems and small dense problems efficiently. It is a large-scale algorithm; see Large-Scale vs.
 Medium-Scale Algorithms. The algorithm can use special techniques to save memory usage, such as a Hessian multiply function. For details, see Trust-Region-Reflective Algorithm.
 - u'trust-region-reflective' is the default algorithm for historical reasons. It is effective when applicable, but it has many restrictions, so is not always applicable.

fsolve Algorithms

fsolve has three algorithms:

- 'trust-region-dogleg' (default)
- 'trust-region-reflective'
- 'levenberg-marguardt'

Use optimset to set the Algorithm option at the command line.

Recommendations

- Use the 'trust-region-dogleg' algorithm first.

 For help if fsolve fails, see When the Solver Fails or When the Solver Might Have Succeeded.
- To solve equations again if you have a Jacobian multiply function, or want to tune the internal algorithm (see Trust-Region-Reflective Algorithm Only), try 'trust-region-reflective'.
- Try timing all the algorithms, including 'levenberg-marquardt', to find the algorithm that works best on your problem.

Reasoning Behind the Recommendations.

- 'trust-region-dogleg' is the only algorithm that is specially designed to solve nonlinear equations. The others attempt to minimize the sum of squares of the function.
- The 'trust-region-reflective' algorithm is effective on sparse problems. It can use special

techniques such as a Jacobian multiply function for large-scale problems.

fminunc Algorithms

fminunc has two algorithms:

- Large-scale
- Medium-scale

Choose between them at the command line by using optimset to set the LargeScale option to:

- 'on' (default) for Large-scale
- 'off' for Medium-scale

Recommendations

- If your objective function includes a gradient, use 'LargeScale' = 'on'.
- Otherwise, use 'LargeScale' = 'off'.

For help if the minimization fails, see When the Solver Fails or When the Solver Might Have Succeeded.

Least Squares Algorithms

Isqlin. lsqlin has two algorithms:

- Large-scale
- Medium-scale

Choose between them at the command line by using optimset to set the LargeScale option to:

- 'on' (default) for Large-scale
- 'off' for Medium-scale

Recommendations

- If you have no constraints or only bound constraints, use 'LargeScale' = 'on'.
- If you have linear constraints, use 'LargeScale' = 'off'.

For help if the minimization fails, see When the Solver Fails or When the Solver Might Have Succeeded.

Isqcurvefit and Isqnonlin. lsqcurvefit and lsqnonlin have two algorithms:

- 'trust-region-reflective' (default)
- 'levenberg-marquardt'

Use optimset to set the Algorithm option at the command line.

Recommendations

- If you have no constraints or only bound constraints, use 'trust-region-reflective'.
- If your problem is underdetermined (fewer equations than dimensions), use 'levenberg-marguardt'.

For help if the minimization fails, see When the Solver Fails or When the Solver Might Have Succeeded.

Linear Programming Algorithms

linprog has three algorithms:

- Large-scale interior-point
- Medium-scale active set
- Medium-scale Simplex

Choose between them at the command line by using optimset to set the LargeScale option to:

- 'on' (default) for large-scale interior-point
- 'off' for one of the other two

When LargeScale is 'off', choose between the two remaining algorithms by setting the Simplex option to:

```
□ 'on' for Simplex
□ 'off' (default) for active set
```

Recommendations

```
Use 'LargeScale' = 'on'
```

For help if the minimization fails, see When the Solver Fails or When the Solver Might Have Succeeded.

Quadratic Programming Algorithms

quadprog has three algorithms:

- trust-region-reflective (formerly LargeScale = 'on'), the default
- active-set (formerly LargeScale = 'off')
- interior-point-convex

Use optimset to set the Algorithm option at the command line.

Recommendations

- If you have a convex problem, or if you don't know whether your problem is convex, use interior-point-convex.
- If you have only bounds, or only linear equalities, use trust-region-reflective.
- If you have a nonconvex problem that does not satisfy the restrictions of trust-region-reflective, use active-set.

For help if the minimization fails, see When the Solver Fails or When the Solver Might Have Succeeded.

Back to Top

Problems Handled by Optimization Toolbox Functions

The following tables show the functions available for minimization, equation solving, multiobjective optimization, and solving least-squares or data-fitting problems.

Minimization Problems

Scalar minimization	and a file of	fminbnd
Scalar IIIIIIIIIZation	$\min_{x} f(x)$	Imiliana
	such that $I < x < u$ (x is scalar)	
Unconstrained minimization	$\min_{x} f(x)$	fminunc, fminsearch
Linear programming	$\min_{x} f^{T} x$	linprog
	such that $A \cdot x \le b$, $Aeq \cdot x = beq$, $I \le x \le u$	
Quadratic programming	$\min_{x} \frac{1}{2} x^T H x + c^T x$	quadprog
	such that $A \cdot x \le b$, $Aeq \cdot x = beq$, $I \le x \le u$	
Constrained minimization	$\min_{x} f(x)$	fmincon
	such that $c(x) \le 0$, $ceq(x) = 0$, $A \cdot x \le b$, $Aeq \cdot x = beq$, $l \le x \le u$	
Semi-infinite minimization	$\min_{x} f(x)$	fseminf
	such that $K(x,w) \le 0$ for all w , $c(x) \le 0$, $ceq(x) = 0$, $A \cdot x \le b$, $Aeq \cdot x = beq$, $I \le x \le u$	
Binary integer programming	$\min_{x} f^{T} x$	bintprog
	such that $A \cdot x \le b$, $Aeq \cdot x = beq$, x binary	

Multiobjective Problems

Туре	Formulation	Solver
Goal attainment	$\min_{x,\gamma} \gamma$	fgoalattain
	such that $F(x) - w \cdot \gamma \le \text{goal}$, $c(x) \le 0$, $ceq(x) = 0$, $A \cdot x \le b$, $Aeq \cdot x = beq$, $I \le x \le u$	
Minimax	$\min_{x} \max_{i} F_{i}(x)$	<u>fminimax</u>
	such that $c(x) \le 0$, $ceq(x) = 0$, $A \cdot x \le b$, $Aeq \cdot x = beq$, $l \le x \le u$	

Equation Solving Problems

Туре	Formulation	Solver
Linear equations	$C \cdot x = d$, n equations, n variables	\(\) (matrix left division)
Nonlinear equation of one variable	f(x) = 0	fzero
Nonlinear equations	F(x) = 0, n equations, n variables	fsolve

Least-Squares (Model-Fitting) Problems

Type	Formulation	Solver
Linear least-squares	$\min_{x} \frac{1}{2} \left\ C \cdot x - d \right\ _{2}^{2}$	\(\) (matrix left division)
	<i>m</i> equations, <i>n</i> variables	
Nonnegative linear-least-squares	$\min_{x} \frac{1}{2} \left\ C \cdot x - d \right\ _{2}^{2}$	lsqnonneg
	such that $x \ge 0$	
Constrained linear-least-squares	$\min_x \frac{1}{2} \ C \cdot x - d\ _2^2$	lsqlin
	such that $A \cdot x \le b$, $Aeq \cdot x = beq$, $Ib \le x \le ub$	
Nonlinear least-squares	$\min_{x} \ F(x)\ _{2}^{2} = \min_{x} \sum_{i} F_{i}^{2}(x)$	lsqnonlin
	such that $lb \le x \le ub$	
Nonlinear curve fitting	$\min_{x} \left\ F(x, x data) - y data \right\ _{2}^{2}$	lsqcurvefit
	such that $lb \le x \le ub$	

Back to Top

Was this topic helpful? Yes No

Introduction to Optimization Toolbox Solvers

Writing Objective Functions

© 1984–2012 The MathWorks, Inc. • <u>Terms of Use</u> • <u>Patents</u> • <u>Trademarks</u> • <u>Acknowledgments</u>