

The Future of Colorectal Cancer Screening

John B. Kisiel, MD April 2015

Disclosures

- Exact Sciences (Madison WI)
 - Mayo Clinic
 - Minor equity investor
 - John B. Kisiel
 - Scientific advisor
 - Research support
 - Potential royalties

Goals and Objectives

- The present:
 - Overview of current recommendations
 - Strengths and weaknesses of colorectal cancer screening tools
- The future:
 - Improve compliance
 - Change the entire screening paradigm

Colorectal Cancer (CRC)

- Remains a major killer worldwide, #2 in USA
- Shift toward right colon
 - Now ~50% R-side in US
 - Olmsted county: ~60% R-side
- Conventional screening tools
 - Reduce mortality
 - Underutilized
- Imperative to improve

Siegel et al. CA Cancer J Clin 2015;65:5 Gupta et al. Clin Gastroenterol Hepatol. 2005;3:150 Shapiro et al. Cancer Epidemiol Biomarkers Prev. 2012;21:895

American Cancer Society Guidelines

Average-risk adults begin CRC screening at age 50 years with one of the following options:

- Annual high-sensitivity gFOBT or FIT
- Flexible sigmoidoscopy every 5 years
- Colonoscopy every 10 years
- Double-contrast barium enema every 5 years
- CT colonography every 5 years
- sDNA test every 3 years

Effectiveness of CRC Screening Tests

Test (evidence)	Incidence	Mortality	Left side rate	Right side rate	References
FOBT (RCT)	No effect	↓ 14-30%	30% CRC sensitivity	20% CRC sensitivity	Logan. Gut. 2012;61:1439 Heresbach. Euro J Gastroenterol Hepatol 2006;18:427 Haug. Br J Cancer. 2011 ;104:1779
Flex sig (RCT)	↓21-33%	↓26-43%	↓26-43% mortality	↓0% mortality	Atkin. <i>Lancet.</i> 2010;375(9726):1624 Schoen. <i>N Engl J</i> <i>Med.</i> 2012; 366:2345
Colonoscopy (Cohort, case-control)	↓54-70%	↓68-70%	↓70-82% mortality	↓0-53% mortality	Baxter. Ann Intern Med. 2009;150:1 Brenner. J Natl Cancer Inst. 2010;102:89 Nishihara. N Engl J Med. 2013;369:1095

Accuracy of New CRC Screening Tests

Test	CRC Sensitivity*	Adv Adenoma Sensitivity*	Specificity *	L>R CRC Bias	Reference
CT colonography	96%	83%	95%	NO	Pickhardt. Radiology. 201 1;259:393 deHaan. Eur Radiol. 2011;21 :1747

*vs colonoscopy

Why is CT colonography not in wider use?

- Availability
- Coverage
- Bowel prep
- ? Cost-effectiveness
- ? Diagnostic radiation exposure

Accuracy of Commercialized Multi-target Stool DNA Test vs FIT

- MT-sDNA test
 - Methylated BMP3 & NDRG4
 - Mutant KRAS
 - β-actin (human DNA)
 - Hemoglobin (FIT)
- 10,000 average risk patients
- MT-sDNA and FIT
- Prior to blinded colonoscopy

CRC Sensitivity by Stage

Advanced Adenoma Sensitivity by Size

The Future: Improve Compliance

- 2012 CRC screen rate 65%
- "80% by 2018 Initiative"
 - Educate clinicians
 - Reach newly insured
 - Target low socio-economic status populations
 - Communicate to unworried well
 - Engage payers
 - Medical neighborhoods/ partner organizations
 - Increase screening access

Providing Non-invasive Screening Option Increases Program Screening Rates

Impact of sDNA?

- Mailed
- Acceptable
- No prep
- No work time
- May improve access
- May improve compliance

Patient Compliance Within 1 Year

The Future: Stop Single Organ Screening

- Screen multiple cancers in a single test
- Aggregate incidence outweighs organ incidence
- The PERSON as the new unit of analysis
- Stool test: cancers of the GI tract, lung, ENT
- Blood test: all cancers

The Pan-GI Cancer Detection Concept

- Discovery:
 - Genome-wide
 - Each major cancer
- Integration & filtration of results:
 - Best overall cancer markers
 - Most site-specific for each cancer
- Validation:
 - Multiple assay platforms
 - Independent tissue sets
 - Local biological media
 - Distant biological media

Cornerstone Project

Anatomic Site	Lesion Category	RRBS/ qMSP	Validation	Clinical pilot
Oropharynx, lung	Tonsil, tongue Tracheal, bronchial	In progress	Partial	
Esophagus	Normal Barrett's (+/- dysplasia Adenocarcinoma, Squamous carcinoma	Complete	Complete	Complete
Stomach	Normal Adenoma Adenocarcinoma	Complete	Complete	In progress
Pancreas	Normal colon, WBC, Benign pancreas Ductal adenocarcinoma	Complete	Complete	Complete
Pancreas precursors	Main, branch duct IPMN PanIN I-III	Complete	In progress	
Bile duct	Normal bile duct, liver Intra-hepatic CCA, Peri-hilar CCA	Complete	iCCA complete eCCA in-progress	In progress
Liver	Hepatoma Cirrhotic, NASH controls	In progress		
Small bowel	Normal Adenocarcinoma	In progress		
Colon	Normal SSA > 1cm, Adenoma > 1 cm, CRC	Complete	Complete	\downarrow
IBD	Colitis LGD, HGD, CRC	In progress		Complete
Stool	Normal stools	Complete		
Peripheral blood	Buffy coat, plasma, cellular compartments	In progress		NV NV

Overall Model

	Predicted by model			
Tissue source	CTRLs	Colorectal neoplasia	Pancreatico- biliary cancer	Gastro- esophageal neoplasia
CTRLs	116	9	10	2
Colorectal neoplasia	1	86	1	7
Pancreatico- biliary cancer	1	0	65	4
Gastro- esophageal neoplasia	1	2	8	72
Overall accuracy 0.88. P<0.0001, chi-square				

Kisiel, et al. AACR 2015

Can this work non-invasively?

- 2 markers
 - BMP3
 - QKI
- 2ml plasma

	Pre				
Tissue source	Controls	Colorectal neoplasia	Pancreatic cancer	Error	
Controls (n=14)	12	0	2	0.14	
Colorectal neoplasia (n=14)	4	8	2	0.43	
Pancreatic cancer (n=14)	3	0	11	0.21	
Overall accuracy Fisher Exact					

Kisiel, et al. AACR 2015

Conclusions

The present

Current CRC screening reduces mortality

The Future

- Goal: eradicate CRC
- Improve performance & compliance & access
- Shift paradigm to multi-organ screening

Acknowledgements

- Jack and Maxine Zarrow Family Foundation of Tulsa Oklahoma
- Paul Calabresi Program in Clinical-Translational Research (NCI CA90628).
- Carol M. Gatton endowment for Digestive Diseases Research.
- Mayo Clinic SPORE in Pancreatic Cancer (P50 CA102701),
- Lustgarten Foundation for Pancreatic Cancer Research
- Clinical Core of the Mayo Clinic Center for Cell Signalling in Gastroenterology (P30DK084567).
- Reagents and RRBS sequencing costs were provided by Exact Sciences (Madison WI)
- Collaborators: Lewis Roberts, Navtej Buttar, Prasad Iyer, Lisa Boardman, Gloria Petersen,

GI Cancer Molecular Diagnostics Lab

