للمزيد من الإمتحانات مع التصحيح زوروا موقعنا الآن www.Taalime.ma

الصفحة 1	الامتحان الوطني الموحد للبكالوريا المسالك الدولية – خيار فرنسية				وزارة التربية الولمنية (١٤٥٥ - ١٤٥٥ عـ ١٩٥٤١٥) مع الممتر الممتر (١٤٥٥ ما ١١٥٥٤١٥ م			
•		لدورة الاستدراكية 2019 - الموضوع -	المركز الوطني للتقويم والامتحانات والتوجيه					

3	فيزياء والكيمياء مدة الانجاز			المادة				
7	المعامل	م الفيزيائية - خيار فرنسية	الشعبة أو المسلك					

L'usage de la calculatrice scientifique non programmable est autorisé.

On donnera les expressions littérales avant de passer aux applications numériques.

Le sujet comporte quatre exercices

Exercice I (7 points):

- Etude de la pile nickel-cadmium
- Etude de quelques réactions de l'acide acétylsalicylique

Exercice II (2,5 points):

- Diffraction de la lumière

Exercice III (5 points):

- Dipôle RL et circuit RLC série
- Modulation d'amplitude

Exercice IV(5,5 points):

- Mouvement d'un solide dans le champ de pesanteur
- Etude énergétique d'un pendule de torsion

الصفحة 2 7

RS28F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة الاستدراكية 2019 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيانية - خيار فرنسية

Barème

EXERCICE I (7 points)

Les parties 1 et 2 sont indépendantes

Partie 1 : Etude de la pile nickel-cadmium.

Lors de leur fonctionnement, les piles électrochimiques convertissent une partie de l'énergie chimique en énergie électrique. On étudie dans cette partie de l'exercice le principe de fonctionnement de la pile nickel-cadmium.

On réalise la pile nickel-cadmium en utilisant le matériel et les produits suivants :

- un bécher contenant une solution aqueuse de sulfate de nickel $Ni_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ de concentration initiale $C = 1 \, \text{mol.} L^{-1}$:
- un bécher contenant une solution aqueuse de sulfate de cadmium $Cd_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ de concentration initiale $C = 1 \, \text{mol.} L^{-1}$;
- une lame de nickel et une lame de cadmium;
- un pont salin.

On relie les électrodes de la pile à un conducteur ohmique en série avec un ampèremètre. En fermant le circuit, l'ampèremètre indique le passage d'un courant électrique d'intensité constante I = 0,3 A.

Données:

- $-1 \text{ F} = 9.65.10^4 \text{ C.mol}^{-1}$;
- •Masse molaire atomique du nickel: $M(Ni) = 58.7 \text{ g.mol}^{-1}$;
- $^{\blacksquare}La \ constante \ d'équilibre \ associée \ \grave{a} \ l'équation \ Ni_{(aq)}^{2^{+}} + Cd_{(s)} \xrightarrow[(2)]{(1)} Ni_{(s)} + Cd_{(aq)}^{2^{+}} \ est: \ K = 4,5.10^{5}$
- **0.5 1.** Calculer la valeur du quotient de réaction Q_{r,i} dans l'état initial du système chimique. En déduire le sens d'évolution spontanée de ce système.
- **0.5** 2. Donner le schéma conventionnel de cette pile.
- **0.5** | 3. Ecrire l'équation de la réaction à chaque électrode.
- **0.5** | **4.** La pile fonctionne pendant une durée $\Delta t = 5h$. Calculer la variation Δm de la masse du nickel pendant Δt .

Partie 2 : Etude de quelques réactions de l'acide acétylsalicylique

L'acide acétylsalicylique de formule $C_9H_8O_4$ est l'un des médicaments les plus utilisés, pour ses effets calmants et curatifs sur de multiples pathologies.

On se propose dans une première étape de déterminer, par dosage, la masse de l'acide acétylsalicylique contenue dans un comprimé de médicament d'aspirine, puis d'étudier, dans une seconde étape, l'évolution temporelle de la réaction entre les ions hydrogénocarbonate $HCO_{3(aq)}^-$ et cet acide.

Donnée:

- La masse molaire de l'acide acétylsalicylique : $M(C_9H_8O_4) = 180 \text{ g.mol}^{-1}$.

I- Dosage d'une solution d'acide acétylsalicylique

On dissout un comprimé d'aspirine dans l'eau distillée. On obtient ainsi une solution aqueuse $\,S\,$ d'acide acétylsalicylique de concentration $\,C_A\,$, de volume $\,V=278\,$ mL et contenant une quantité de masse $\,m$ de cet acide .

نحة	الصة
	3
7	

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة الاستدراكية 2019 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزياء

On prélève un volume $V_A = 10$ mL de la solution S et on le dose par une solution aqueuse S_B d'hydroxyde de sodium $Na_{(aq)}^+ + HO_{(aq)}^-$ de concentration $C_B = 10^{-2}$ mol.L⁻¹, en utilisant un indicateur coloré convenable.

- **0,5** | **1.** Ecrire l'équation de la réaction de dosage. (On notera AH pour désigner l'acide acétylsalicylique et A pour désigner sa base conjuguée).
 - 2. Pour obtenir l'équivalence, on doit verser le volume $V_{BE} = 10$ mL de la solution S_B .
- **0,5** | **2.1.** Déterminer la concentration C_A de la solution S.
- **0.5** 2.2. Montrer que m = 0.5 g.
- **0,5** | **3.** Choisir, parmi les indicateurs colorés dans le tableau ci-dessous, l'indicateur convenable à ce dosage. Justifier la réponse.

Indicateur coloré	Jaune de méthyle	Hélianthine	Rouge de crésol
Zone de virage	2,9 – 4	3,1 – 4,4	7,2 – 8,8

II- Etude de la réaction entre les ions hydrogénocarbonate et l'acide acétylsalicylique

L'équation de la réaction chimique entre les ions hydrogénocarbonate $HCO_{3(aq)}^{\cdot}$ et l'acide acétylsalicylique s'écrit :

$$C_9H_8O_{4(aq)} + HCO_{3(aq)}^- \rightarrow C_9H_7O_{4(aq)}^- + CO_{2(g)} + H_2O_{(\ell)}$$

Afin de suivre l'évolution de cette réaction, on introduit dans un ballon, un volume $V=10\,\text{mL}$ d'une solution aqueuse d'hydrogénocarbonate de sodium $Na_{(aq)}^+ + HCO_{3(aq)}^-$ dont la concentration initiale effective des ions hydrogénocarbonate est : $\left[HCO_3^-\right]_0 = C = 0,5\,\text{mol.L}^{-1}$ puis à un instant choisi comme origine des dates (t=0), on ajoute à la solution une quantité d'acide acétylsalicylique de masse $m=0,5\,$ g .(On considère que le volume du mélange réactionnel reste constant $V=10\,\text{mL}$). La courbe de la figure ci-dessous représente l'évolution temporelle de l'avancement de la réaction x.

1. Montrer que les quantités de matière initiales des réactifs sont : $n_0(C_9H_8O_4) \approx 2.8 \text{ mmol et}$ $n_0(HCO_3^-) = 5 \text{ mmol}.$

- **2.** Dresser le tableau descriptif d'avancement de la réaction.
- **0,5** 3. Trouver la valeur de l'avancement maximal x_{max} .

4. Calculer la vitesse volumique de la réaction, en mol.L⁻¹.s⁻¹, à l'instant t = 100 s.

(T) représente la tangente à la courbe à l'instant t = 100 s.

0,75 5. Déterminer graphiquement le temps de demi réaction $t_{1/2}$.

الصفحة 4 7

RS28F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة الاستدراكية 2019 - الموضوع - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيانية - خيار فرنسية

EXERCICE II (2,5 points)

Etude de la diffraction de la lumière :

La diffraction de la lumière met en évidence l'aspect ondulatoire de la lumière. De nombreuses applications dans des domaines tels que l'industrie, les nouvelles technologies... sont basées sur ce phénomène.

Cet exercice se propose de déterminer la longueur d'onde d'une radiation émise par une source laser. Une source laser émet une radiation rouge, de longueur d'onde λ_R , vers une fente horizontale de largeur $a=0,3\,\mathrm{mm}$. On observe, sur un écran situé à une distance $D=2\,\mathrm{m}$ de la fente, des taches lumineuses réparties sur une ligne verticale.

La tache centrale a une largeur $L_R = 8.5 \,\text{mm}$ (figure ci-dessous).

- **1.** On propose quatre expressions pour la longueur d'onde λ d'une onde lumineuse diffractée. Choisir, en se basant sur une analyse dimensionnelle, l'expression juste :
- $= \lambda = \frac{a}{L.D}$
- 2. Recopier le numéro de la question et répondre par vrai ou faux.

Les facteurs, intervenant dans la diffraction d'une radiation, varient ainsi :

- **0,5** | **2.1.** l'écart angulaire θ augmente si la longueur d'onde λ de la radiation émise augmente.
- 0,5 | 2.2. la largeur L de la tache centrale est proportionnelle à la largeur a de la fente.
- **0,5** 3. Déterminer la longueur d'onde λ_R de la radiation émise par cette source laser.
- **4.** On remplace la source de radiation rouge par une source de radiation bleue ayant une longueur d'onde $\lambda_B = 450$ nm. Comparer les largeurs L_R et L_B des deux taches centrales obtenues successivement avec les radiations rouge et bleue.

EXERCICE III (5 points)

Les parties 1 et 2 sont indépendantes

Les condensateurs et les bobines jouent des rôles fondamentaux dans la plupart des appareils utilisés dans la vie courante tels que les systèmes d'alarme, les dispositifs de diagnostic médical et les sondes thermiques...

Cet exercice se propose de déterminer, dans sa première partie, les grandeurs caractéristiques d'une bobine et d'un condensateur et d'étudier la modulation d'amplitude dans sa deuxième partie.

Partie 1- Etude du dipôle RL et du circuit RLC série

I – Etude du dipôle RL

On réalise le montage schématisé sur la figure 1 (page 5/7), constitué des éléments suivants :

- un générateur idéal de tension de force électromotrice E = 10V;
- un conducteur ohmique de résistance $\,R=\!40\,\Omega\,;\,$
- une bobine d'inductance L et de résistance r ;

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة الاستدراكية 2019 – الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزياء

- un interrupteur K.

On ferme l'interrupteur K à un instant choisi comme origine des dates (t=0). A l'aide d'un système d'acquisition informatisé adéquat, on obtient les deux courbes de la figure 2 représentant l'évolution de la tension $u_R(t)$ aux bornes du conducteur ohmique ainsi que celle de la tension $\,u_{_B}(t)$ aux bornes de la bobine.

Figure1

(T) représente la tangente à la courbe (2) à l'instant t = 0.

- 1. Choisir, parmi les courbes (1) et (2), celle qui représente l'évolution de la tension u_R (t) .Justifier votre réponse.
- 2. Montrer que l'équation différentielle vérifiée par la tension 0,5 u_R(t) s'écrit ainsi:

$$\frac{du_{R}}{dt} + \left(\frac{R+r}{L}\right)u_{R} = \frac{R.E}{L}$$

- 0,25 3. En déduire, qu'en régime permanent, la tension aux bornes du conducteur ohmique a pour expression : $U_R = \frac{R.E}{(R+r)}$
- 0,5 **4.** Calculer la valeur de r.
- 5. Déterminer graphiquement la valeur de la constante de 0,25 temps τ .

Figure 2

0,25 **6.** Vérifier que L = 0.5 H.

II- Etude du circuit RLC série

On charge totalement un condensateur de capacité C, puis on le monte en série, à un instant choisi comme origine des dates (t=0), avec la bobine et le conducteur ohmique précédents (figure 3).

Les courbes de la figure 4 représentent l'évolution de la tension $u_c(t)$ aux bornes du condensateur et celle de l'intensité i(t) du courant qui circule dans le circuit.

Figure 4

حة	الصة
	6
7	

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة الاستدراكية 2019 - الموضوع - مادة: الفيزياء والكيمياء – شَعبُهُ العلوم التجريبية مسلك العلوم الفيزيانية – خيار ف

- 1. Quel régime correspond aux courbes de la figure 4? 0,25
- 2. Sachant que la pseudo-période est approximativement égale à la période propre T_0 de l'oscillateur 0,5 électrique, déterminer la valeur de la capacité C. (On prend $\pi^2 = 10$).
- 3. A l'aide des deux courbes de la figure 4, calculer l'énergie totale E_{t1} du circuit à l'instant $t_1 = 9 \,\text{ms}$. 0,75

Partie 2 - modulation d'amplitude

Pour obtenir un signal sinusoïdal modulé en amplitude, on réalise le montage schématisé sur la

figure 5, où X représente un circuit intégré multiplieur, ayant deux entrées E_1 et E_2 et une sortie S. On applique :

- à l'entrée E_1 la tension $u_1(t)$ d'expression
- $u_1(t) = U_0 + U_1 \cos(2\pi f_1.t)$ avec U_0 la composante continue de la tension.
- à l'entrée E_2 la tension $u_2(t)$ d'expression

$$u_2(t) = U_2 \cos(2\pi f_2.t)$$
.

La tension, modulée en amplitude, obtenue à la sortie S du multiplieur est $u_3(t)$. Son expression est : $u_3(t) = 0, 1 [0,6\cos(2\pi 10^4.t) + 0,8]\cos(6\pi 10^5.t)$

Figure 5

- 1. Déterminer la fréquence $F_{\scriptscriptstyle p}$ de l'onde porteuse et la fréquence $f_{\scriptscriptstyle m}$ de l'onde modulante. 0,5
- 0,25 2. Calculer le taux de modulation m.
- 0,5 3. La modulation est-elle bonne? Justifier votre réponse.

EXERCICE IV (5,5 points)

Les parties 1 et 2 sont indépendantes

Partie 1 - Mouvement d'un solide dans le champ de pesanteur

L'étude des mouvements des solides dans le champ de pesanteur uniforme permet de déterminer les grandeurs caractéristiques de ces mouvements.

L'objectif de cette partie de l'exercice est d'étudier le mouvement d'une balle dans le champ de pesanteur uniforme.

On lance verticalement vers le haut avec une vitesse initiale \vec{V}_0 , à un instant choisi comme origine des dates (t=0), une balle de masse m d'un point A situé à une hauteur h = 1,2 m du sol.

On étudie le mouvement du centre d'inertie G de la balle dans un référentiel terrestre considéré galiléen. On repère la position de G,

à un instant t, dans le repère (O, \vec{k}) par la cote z (Figure 1).

On considère que les forces de frottement et la poussée d'Archimède sont négligeables.

- 1. Définir la chute libre. 0,5
- 2. En appliquant la deuxième loi de Newton, établir l'équation 0,5 différentielle vérifiée par la vitesse Vz du centre d'inertie G.
- 3. Monter que l'équation horaire du mouvement de G s'écrit : 0,5

$$z = -\frac{1}{2}gt^2 + V_0t + h$$

حة	الصف
	7
7	

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة الاستدراكية 2019 – الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزياء والكيمياء

- 0,75
 4. La courbe de la figure 2 représente les variations de la vitesse V_z en fonction du temps.
 En exploitant le graphe de la figure 2, écrire
- **5.** Le centre d'inertie G passe, au cours de la montée, par le point B situé à une hauteur D du sol, avec une vitesse $V_B = 3 \,\text{m.s}^{-1}$ (figure 1). Montrer que $D = 5.75 \,\text{m}$.

l'expression numérique de la vitesse $v_z = f(t)$.

0,75 6. On lance de nouveau, à un instant choisi comme nouvelle origine des dates (t=0), verticalement vers le haut, la balle du même point A avec une vitesse initiale $V_0 = 8 \, \text{m.s}^{-1}$. Le centre d'inertie G de la balle atteint-il le point B? Justifier votre réponse.

Figure 2

Partie 2 - Etude énergétique d'un pendule de torsion

Cette partie de l'exercice se propose de déterminer la constante de torsion d'un fil métallique à l'aide d'une étude énergétique d'un pendule de torsion.

Un pendule de torsion est constitué d'un disque homogène S suspendu en son centre d'inertie par un fil métallique vertical de constante de torsion C (figure 3).

On fait tourner le disque horizontalement, de sa position d'équilibre, dans le sens positif d'un angle $\theta_m = 0.5 \, \text{rad}$, autour de l'axe (Δ) matérialisé par le fil métallique, puis on l'abandonne sans vitesse initiale à un instant choisi comme origine des dates (t = 0). Il effectue alors, un mouvement de rotation sinusoïdal.

Figure 3

On étudie le mouvement du pendule dans un référentiel terrestre considéré galiléen.

A la date t, l'angle de rotation du disque est θ .

On prend le plan horizontal confondu avec le plan du disque comme référence de l'énergie potentielle de pesanteur, et la position d'équilibre du disque (0=0) comme référence de l'énergie potentielle de torsion.

Le graphe de la figure 4 représente les variations de l'énergie potentielle de torsion

E_{pt} en fonction du temps. En exploitant la courbe de la figure 4 :

1. Déterminer l'énergie potentielle de torsion maximale E_{ptmax} et déduire la constante de torsion C.

2. sachant que l'énergie mécanique $E_{\rm m}$ du pendule étudié se conserve, montrer que $E_{\rm m}$ =0,05 J .

0,75 3. Trouver la valeur de l'énergie cinétique E_{c1} du pendule à l'instant $t_1 = 0.3s$.

0,75

0,5

0,75

Correction de l'examen national du baccalauréat international Science physique - session rattrapage 2019

EXERCICE I (7 points)

Partie 1 : Etude de la pile nickel-calcium

1. Calcul de $Q_{r,i}$:

Equation de la réaction : $Ni_{(aq)}^{2+} + Cd_{(s)} \rightleftarrows Ni_{(s)} + Cd_{(aq)}^{2+}$

L'expression du quotient de réaction :

$$Q_{r,i} = \frac{[Cd^{2+}]_i}{[Ni^{2+}]_i} = \frac{C}{C} = 1$$

On a : $Q_{r,i} < K = 4,5.10^5$ donc l'ensemble évolue spontanément dans le sens direct (sens de formation de Ni et Cd^{2+}).

2. Le schéma conventionnel de la pile :

Au niveau de la cathode se produit la réduction donc l'électrode de *Ni* représente le pôle positif de la pile.

Le schéma conventionnel est : $\bigoplus Ni_{(s)}/Ni_{(aa)}^{2+} :: Cd_{(aa)}^{2+}/Cd_{(s)} \ominus$

3. Equation de la réaction à chaque électrode :

Au niveau de la cathode (électrode de nickel) se produit la réduction des ions Ni^{2+} :

$$Ni_{(aq)}^{2+} + 2e^{-} \rightleftharpoons Ni_{(s)}$$

Au niveau de l'anode (électrode de cadmium) se produit l'oxydation de Ni:

$$Cd_{(s)} \rightleftharpoons Cd_{(aa)}^{2+} + 2e^{-}$$

4. Calcul de la variation Δm pendant Δt :

Tableau d'avancement de la réaction de réduction :

Equation de la réac	$Ni^{2+}_{(aq)}$ +	$2e^-$	≓ Λ	Quantité de	
التقدم Etat du système		Quantité de matière en (mol)			matière d'e
Etat initial 0		$n_i(Ni^{2+})$		$n_i(N$	$i) \qquad n(e^-) = 0$
L'état après la durée Δt	x	$n_i(Ni^{2+})-x$		$n_i(Ni^{2+})$	$)+x \qquad n(e^-)=2x$

D'après le tableau :

$$\begin{cases} \Delta n(Ni) = x \\ n(e^{-}) = 2x \end{cases} \Rightarrow \Delta n(Ni) = \frac{n(e^{-})}{2} \Rightarrow \frac{\Delta m}{M(Ni)} = \frac{I.\Delta t}{2F} \Rightarrow \Delta m = \frac{I.\Delta t}{2F} . M(Ni)$$

A.N:
$$\Delta m = \frac{0.3 \times 5 \times 3600}{2 \times 9.65.10^4} \times 58,7 \Rightarrow \Delta m = 1.64 g$$

Partie 2 : Etude de quelques réaction de l'acide acétylsalicylique

- I Dosage d'une solution d'acide acétylsalicylique
- 1. L'équation de la réaction de dosage :

1

للمزيد من الإمتحانات مع التصحيح زوروا موقعنا الأن www.Taalime.ma

$$AH_{(aq)} + HO_{(aq)}^{-} \rightarrow A_{(aq)}^{-} + H_2O_{(l)}$$

2.1. Détermination de la concentration C_A :

D'après la relation d'équivalence : C_A . $V_A = C_B$. V_{BE} d'où : $C_A = \frac{C_B.V_{BE}}{V_A}$

A.N:
$$C_A = \frac{10^{-2} \times 10}{10} \Longrightarrow C_A = 10^{-2} \ mol. L^{-1}$$

2.2. Montrons la valeur de m :

On a :
$$C_A = \frac{n}{V} = \frac{m}{M(C_0 H_0 O_4) V}$$
 alors : $m = C_A . M(C_9 H_8 O_4) . V$

A.N:
$$m = 10^{-2} \times 180 \times 278.10^{-3} = 0.5 g$$

3. Le choix de l'indicateur coloré :

L'indicateur coloré convenable est celui dont la zone de virage contient le pH_E .

D'prés l'équation de la réaction de dosage à l'équivalence le mélange réactionnel contient les ions

 A^- et l'eau et les ions Na^+ , donc le milieu est basique et son $pH_E > 7$

L'indicateur coloré convenable est le rouge de crésol.

II- Etude de la réaction entre les ions hydrogénocarbonate et l'acide acétylsalicylique

1. Les quantités de matière initiales des réactifs :

$$n_0(C_9H_8O_4) = \frac{m}{M(C_9H_8O_4)} \qquad \text{A.N}: \ n_0(C_9H_8O_4) = \frac{0.5}{180} \approx 2.8.10^{-3} \ mol = 2.8 \ mmol \\ n_0(HNO_3^-) = [HNO_3^-]_0. \ V = C.V \ \text{A.N}: \ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5.10^{-3} mol = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10.10^{-3} = 5 \ mmol \\ n_0(HNO_3^-) = 0.5 \times 10$$

2. Dressage du tableau d'avancement :

Equation de la réaction		$C_9H_8O_{4(aq)} + HNO_3^- \rightarrow C_9H_7O_{4(aq)}^- + CO_{2(g)} + H_2O_{(l)}$					
Etat du système	Avancement	Quantité de matière en (mmol)					
Etat initial	0	2,8	5		0	0	en excès
Etat intermédiaire	x	2, 8 - x	5 – x		x	x	en excès
Etat final	x_{max}	$2, 8 - x_{max}$	$5-x_{max}$		x_{max}	x_{max}	en excès

3- L'avancement maximal x_{max} :

On considère $C_9H_8O_4$ réactif limitant, on écrit : 2,8 - $x_{max} = 0$ donc : $x_{max} = 2,8$ mmol

On considère HNO_3^- réactif limitant, on écrit : $5-x_{max}=0$ donc : $x_{max}=5$ mmol

L'avancement maximal est : $x_{max} = 2.8 \ mmol$.

4. Calcul de la vitesse volumique de la réaction à t=100 s :

D'après la définition de la vitesse volumique : $V(t) = \frac{1}{v} \cdot \frac{dx}{dt}$

A l'instant t=100 s la vitesse s'écrit : $V(t) = \frac{1}{V} \cdot \left(\frac{\Delta x}{\Delta t}\right)_t$

 $\left(\frac{\Delta x}{\Delta t}\right)_t$ est le coefficient directeur de la tangente de la courbe x(t) à t=100 s.

$$V(t) = \frac{1}{10.10^{-3}} \cdot \left(\frac{1,5-0,75}{75-0}\right)_t = 1 \ mmol. L^{-1}. s^{-1} = 10^{-3} \ mol. L^{-1}. s^{-1}$$

5. La détermination graphique de $t_{1/2}$:

Au temps de demi-réaction on a : $x(t_{1/2}) = \frac{x_{max}}{2} = \frac{2.8}{2} = 1.4 \ mmol$

Graphiquement l'abscisse de l'avancement $1,4\ mmol$ donne la valeur $t_{1/2}=70\ \mathrm{s}$.

EXERCICE II ((2,5 points)

Etude de la diffraction de la lumière

1. L'expression juste:

L'analyse dimensionnelle de l'expression $\lambda = \frac{a.L}{2D}$: $[\lambda] = \frac{[a].\,[L]}{[D]} = \frac{[L].\,[L]}{[L]} = [L]$

$$[\lambda] = \frac{[a] \cdot [L]}{[D]} = \frac{[L] \cdot [L]}{[L]} = [L]$$

L'unité de la longueur d'onde λ est le mètre donc l'expression juste est : $\lambda = \frac{a.L}{2D}$.

2.1. L'écart angulaire θ augmente si la longueur d'onde λ augmente : juste.

D'après l'expression de l'écart angulaire $\theta = \frac{\lambda}{a}$, quand λ augmente θ augmente.

2.2. La largeur L de la tâche centrale est proportionnelle à la largeur a de la fente : Faux

D'après l'expression de la largeur L on a : $L = \frac{2\lambda . D}{a}$ donc : L est inversement proportionnelle à la largeur a de la fente.

3. Détermination de λ_R :

$$\lambda_R = \frac{a. L_R}{2D}$$

A.N:
$$\lambda_R = \frac{0.3.10^{-3} \times 8.5.10^{-3}}{2 \times 2} = 6.375.10^{-7} \text{ m} \implies \lambda_R = 637.5 \text{ nm}$$

4. Comparaison de L_R et L_B :

on a : $\lambda = \frac{a.L}{2D}$ donc : λ est proportionnelle à la largeur L .

$$\lambda_R > \lambda_B \implies L_R > L_B$$

EXERCICE III (5 points)

Partie 1 : Etude du dipôle RL et du circuit RLC série

I - Etude du dipôle RL

1. La courbe qui correspond à $u_R(t)$:

A t=0 on a : i(0) = 0 et d'après la loi d'ohm $u_R(0) = R$. i(0) = 0 donc la courbe $u_R(t)$ passe par l'origine des axes, elle correspond à la courbe 2.

2. L'équation différentielle vérifiée par la tension $u_R(t)$:

Loi d'additivité des tensions : $u_R + u_B = E$

$$\begin{aligned} \text{Loi d'ohm} : u_R &= R.i \text{ et } u_B = \text{L}.\frac{\text{di}}{\text{dt}} + \text{r.i} \\ \text{L}.\frac{\text{di}}{\text{dt}} + \text{r.i} + R.i &= E \implies \text{L}.\frac{\text{di}}{\text{dt}} + (\text{R} + r).i = E \\ \frac{\text{di}}{\text{dt}} + \left(\frac{R+r}{L}\right).i &= \frac{E}{L} \implies \frac{\text{d}(\text{Ri})}{\text{dt}} + \left(\frac{R+r}{L}\right).R.i &= \frac{R.E}{L} \\ \frac{\text{d}u_R}{\text{dt}} + \frac{R+r}{L}.u_R &= \frac{R.E}{L} \end{aligned}$$

3. Déduction de l'expression de U_R en régime permanent :

En régime permanent on a : $i = I = cte \implies u_R = U_R = R.I = Cte$

$$d'où: \frac{du_R}{dt} = 0$$

L'équation différentielle s'écrit : $\left(\frac{R+r}{L}\right)$. $U_R = \frac{R.E}{L} \implies (R+r)$. $U_R = R$. $E \implies U_R = \frac{R.E}{R+r}$

4. Calcul de r:

$$U_R = \frac{R.E}{R+r} \implies R+r = \frac{R.E}{U_R} \implies r = \frac{R.E}{U_R} - R \implies r = R\left(\frac{E}{U_R} - 1\right)$$

D'prés la courbe (2) de la figure 2 dans le régime permanent on a : $U_R = 8 \text{ V}$

U_{R=8}

 $\tau=0,01^{0,02}$

A.N:
$$r = 40 \times \left(\frac{10}{8} - 1\right) = 10 \Omega$$

5. La détermination graphique de τ :

$$\tau = 0.01 \, s$$

6. Vérification de la valeur de L:

L'expression de la constante de temps du dipôle RL :

$$\tau = \frac{L}{R+r} \implies L = \tau(R+r)$$
 A.N: $L = 0.01 \times (40 + 10) = 0.5 H$

1. Le régime correspond aux courbes de la figure 4 :

Est le régime pseudopériodique.

2. Détermination de la valeur de C:

L'expression de la période propre : $T_0 = 2\pi\sqrt{L.C} \implies T_0^2 = 4\pi^2L.C \implies C = \frac{T_0^2}{4\pi^2L}$

On a $T \approx T_0$ et d'après la courbe $u_C(t)$ de la figure 4 on trouve graphiquement $T = 10 \ ms$.

A.N:
$$C = \frac{(10.10^{-3})^2}{4 \times 10 \times 0.5} = 5.10^{-6} F$$
 d'où : $C = 5 \mu F$

3. Calcul de l'énergie totale E_{t1} à $t_1 = 9ms$:

$$E_T = E_e + E_m = \frac{1}{2}C.u_C^2 + \frac{1}{2}L.i^2$$

A $t_1 = 9ms$, en utilisant les deux courbes de la figure 4 les deux valeurs :

$$u_{C1} = 4.8 V \text{ et } i_1 = 12 \text{ mA}.$$

$$E_{t1} = \frac{1}{2}C.u_{C1}^2 + \frac{1}{2}L.i_1^2 \quad \text{A.N}: E_{t1} = \frac{1}{2} \times 5.10^{-6} \times 4.8^2 + \frac{1}{2} \times 0.5 \times (12.10^{-3})^2 = 9.36.10^{-5} J$$

Partie 2- modulation d'amplitude

1. Détermination de F_P et f_m :

L'expression de $u_3(t): u_3(t) = Ku_1(t).u_2(t) = K[U_0 + U_1cos(2\pi f_1.t)].U_2cos(2\pi f_2.t)$

$$u_3(t) = K.U_2.[U_1.cos(2\pi f_1.t) + U_0].cos(2\pi f_2.t)$$

 $u_3(t) = 0.1[0.6.cos(2\pi 10^4.t) + 0.8]cos(6\pi 10^5.t)$

On a: $F_P = f_2 = 3.10^5 \, Hz \, \text{ et } f_m = f_1 = 10^4 \, Hz$

2. Calcul du taux de modulation m:

$$m = \frac{U_1}{U_0}$$
 Avec: $U_1 = 0.6 V$ et $U_0 = 0.8 V$ d'où: $m = \frac{0.6}{0.8} = 0.75$

3. La qualité de modulation :

Pour la modulation soit bonne il faut que les deux conditions soient vérifiées :

$$m < 1$$
 et $F_P \ge 10 f_m$

$$F_P = 3.10^5 \ Hz$$
 et $10 \ f_m = 10^5 \ Hz$ donc : $F_P > 10 \ f_m$ et puisque $m < 1$

Donc la modulation est bonne.

EXERCICE IV (5,5 points)

Partie 1- Mouvement d'un solide dans le champ de pesanteur

1- Définition de la chute libre :

Un corps est en chute libre s'il est soumis seulement à son poids.

2. Etablissement de l'équation différentielle vérifiée par V_z :

Système étudié : { la balle}

Bilan des forces : \vec{P} poids de la balle

Application de la deuxième loi de Newton : $\vec{P} = m.\vec{a}_G$

$$m. \vec{g} = m. \vec{a}_G \implies \vec{a}_G = \vec{g}$$

Projection sur l'axe Oz : $a_z = -g$

L'équation différentielle : $\frac{dV_Z}{dt} = -g$

3. Montrons l'équation horaire du mouvement de G :

On a :
$$\frac{dV_Z}{dt} = -g$$
 intégration : $V_Z = \frac{dz}{dt} = -g.t + V_0$ intégration : $z = -\frac{1}{2}g.t^2 + V_{0z}.t + z_0$

A t=0 on a : $V_{0z} = V_0$ vitesse initiale et $z_0 = h$ l'équation horaire s'écrit :

$$z = -\frac{1}{2}g.t^2 + V_0.t + h$$

L'équation de la courbe de la figure 2 s'écrit :

$$a_z = \frac{\Delta V_z}{\Delta t} = \frac{10 - 0}{0 - 1} = -10 \text{ m. s}^{-2}$$

A t=0 on a : $V_0 = 10 \ m. \ s^{-1}$

$$V_z = -10t + 10$$

5. Montrons que D = 5,75 m:

D'après la courbe de la figure 2 quand $V_B=3\ m.\ s^{-1}$ on a : $t_B=0.7\ s.$

A.N:
$$z_B = D = -\frac{1}{2} \times 10 \times 0.7^2 + 10 \times 0.7 + 1.2 = 5.75 m$$

Figure 2

6. Le centre d'inertie G atteint-il le point B?

Cherchons t_1 l'instant ou la vitesse de la balle s'annule

$$0 = -10. t_1 + V_0'$$
 d'où: $t_1 = \frac{V'}{10} = \frac{8}{10} = 0.8 s$

On remplace dans l'équation horaire : $z_1 = -\frac{1}{2}g.t_1^2 + {V'}_0.t_1 + h$

A.N:
$$z_1 = d = -\frac{1}{2} \times 10 \times 0.8^2 + 10 \times 0.8 + 1.2 = 4.4 \text{ m}$$

On constate que d < D la balle n'atteint pas le point B.

1. Détermination de $E_{pt \ max}$:

A t=0 on a E_{pt} maximale sa valeur est $E_{pt max} = 0.05 J$

Déduction de C:

$$E_{pt\;max} = \frac{1}{2}C.\,\theta_{max}^2$$
 d'où : $C = \frac{2E_{pt\;max}}{\theta_{max}^2}$ A.N : $C = \frac{2\times0.05}{0.5^2} = 0.4\;N.\,m.\,rad^{-1}$

2. Montrons que E_m se conserve :

A t=0 la vitesse du disque est nulle donc : $E_{C0} = 0$ et $E_{pt0} = E_{pt max}$

$$E_{pt0} + E_{C0} = E_{pt \, max} = 0.05 \, J$$

Puisque $E_m = 0.05 J$ alors : $E_m = E_{pt} + E_C$

Donc l'énergie mécanique se conserve.

3. Valeur de E_{C1} à $t_1 = 0.3 s$:

D'après le graphe de la figure 4 à $t_1 = 0.3 s$ on trouve $E_{pt1} = 0.025 J$

$$E_m = E_{pt1} + E_{C1}$$
 d'où : $E_{C1} = E_m - E_{pt1}$

 $E_{C1} = 0.05 - 0.025 = 0.025 J$

A.N: