MATH 567: Lecture 6 (01/28/2025)

Today: * comparing formulations

* sharp/ideal formulation

Recall Farkas' lemma. We present one more version now.

3
$$\exists x : A \bar{x} = \bar{b} \iff \not\exists \bar{u} \neq \bar{0} : \bar{u}^T A = \bar{b}^T, \bar{u}^T \bar{b} = -1$$
 can be any nonzero #

Ax=b: [A16] EROS [] echelon form

If the echelon form has as row of the form [00...0] \uparrow the system $A\bar{x} = b$ is inconsistent.

Naturally, we can prove the other versions if we assume one version of Farkas' lemma (i.e., they are equivalent).

Def $P = \{(x, \overline{y}) | Ax + B\overline{y} \leq \overline{b}\}$, then the projection of Pon to the space of x variables is

 $P_{roj_{\overline{X}}}(P) = {\overline{X} \mid \overline{J} \overline{y} : (\overline{x}, \overline{y}) \in P}.$

It "push down" P on to the x-axis

$$\text{Proj}_{x}(P) = \{x \mid x \ge 0\}.$$

In words, all nonnegative linear combinations of $A\hat{x}+B\hat{y}=\bar{b}$ that eliminate the "unwanted" \bar{y} variables.

Proof \subseteq : $\overline{X} \in Proj_{\overline{X}}(P) \Rightarrow \overline{J}\overline{y} | A\overline{X} + B\overline{y} \leq \overline{b}$ $\Rightarrow \overline{v}^{T}A\overline{X} \leq \overline{v}^{T}\overline{b} \text{ holds } \forall \overline{v} \geq 0, \overline{v}^{T}B = \overline{0}^{T}.$

'=': Show that if $x \notin Proj_{\overline{x}}(P)$, then $\overline{x} \notin (RHS)$.

Can use Forkas' lemma!

 $\exists y : By \leq \overline{b} - Ax, i.e., the system <math>By \leq \overline{b} - Ax$ has no solutions (in y).

 \Rightarrow $\exists \bar{v} = \bar{0}$, $\bar{v}^T B = \bar{0}^T$ and $\bar{v}^T (\bar{b} - A\bar{x}) < 0$.

 $\Rightarrow \exists \bar{v} = \bar{v}, \; \bar{v} = \bar{v} \text{ for which } \bar{v} = \bar{v$

Back to 2D example:

Equivalently,
$$\begin{cases} -y \leq -1 \\ -x + y \leq 1 \end{cases} \equiv \begin{bmatrix} 0 \\ -1 \end{bmatrix} \times + \begin{bmatrix} -1 \\ 1 \end{bmatrix} y \leq \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

What TO = 0 with To B=0 can we take to eliminate y?

$$\overline{v} = \begin{bmatrix} \lambda \\ \lambda \end{bmatrix}$$
, $\lambda \ge 0$ works! Or, $\overline{v} = \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda \ge 0$ are all the multipliers!

Could we generalize this result illustrated in the example, i.e., could we describe $\text{Proj}_{\overline{x}}(P)$ using only a finite # \overline{v}_{s}^{i} ?

Theorem 5
$$\{ \overline{v} = \overline{o}, \overline{v} = \overline{o} \} = cone \{ \overline{v}, ..., \overline{v}^k \}$$

 $\stackrel{\text{def}}{=} \{ \sum_{i=1}^{k} \lambda_i \overline{v}^i \mid \lambda_i = 0 \}$, then is finitely generated

$$\operatorname{Proj}_{\overline{X}}\left(P\right) = \left\{ \overline{X} \middle| (\overline{v}^{i})^{T} A \overline{X} \leq (\overline{v}^{i})^{T} \overline{b}, i = 1, \dots, k \right\}.$$

Def The set $\{\bar{v} | \bar{v} \neq \bar{0}, \bar{v} = \bar{0}\}$ is called the projection core of $\text{Proj}_{\bar{x}}(P)$.

Example (continued): The projection cone of $Proj_{x}(P)$ is $\begin{cases} |v_{1}| & |v_{1},v_{2}| > 0 \\ |v_{2}| & |v_{1}+v_{2}| = 0 \end{cases} = \begin{cases} |v_{1}| & |v_{2}| > 0 \\ |v_{2}| & |v_{1}+v_{2}| > 0 \end{cases}$

Definition of Comparison

Let $S \subseteq \mathbb{Z} \times \mathbb{R}^m$ have two formulations $P_1 = \{(\overline{x}, \overline{y}, \overline{u}', \overline{u}') \in \mathbb{R}^{n+m+p_1+q_1}, |A_1\overline{x} + B_1\overline{y} + C_1\overline{u}' + D_1\overline{u}' \leq \overline{b}'\}$ and $P_2 = \{(\overline{x}, \overline{y}, \overline{u}', \overline{u}') \in \mathbb{R}^{n+m+p_2+q_2}, |A_2\overline{x} + B_2\overline{y} + C_2\overline{u}' + D_2\overline{u}' \leq \overline{b}'\}$ where $P_1 \neq P_2$, $q_1 \neq q_2$ and $P_1 + q_1 \neq P_2 + q_2$

Then P_i is a better (stronger, tighter) formulation than P_2 if $Proj_{(\bar{x},\bar{y})}(P_i) \subset Proj_{(\bar{x},\bar{y})}(P_2)$.

P. j=1,2,3,4 are formulations of S.

Here, P3 CPj, j=1,2,4.

So, P3 is stronger than Pj.

Similarly, Pac Pi, so is stronger than Pi.

Example

$$S' = \{ \overline{x} \mid \overline{x} \in \mathcal{A}_{0} \mid \xi, (x_{1}=1) \Rightarrow (x_{2}=1) \land \dots \land (x_{n}=1) \}.$$

$$P_{1} = \{ \overline{x} \mid x_{1} \leq x_{2}, \dots, x_{1} \leq x_{n}, 0 \leq x_{i} \leq 1, i=1, \dots, n \} \text{ and }$$

$$P_{2} = \{ \overline{x} \mid (n-1)x_{1} \leq x_{2} + \dots + x_{n}, 0 \leq x_{i} \leq 1, i=1, \dots, n \}$$

are formulations for S. (PiNZⁿ gives S for i=1,2).

P, is the disaggregated formulation, while P2 is an aggregated formulation.

<u>Claim</u> P, CP₂.

 $P_1 \subseteq P_2$ is trivial — just add up $X_1 \leq X_1, 1=2,...,n$, fo get $(n-1)X_1 \leq X_1+...+X_2$.

To show $P_1 \subset P_2$, identify one point in P_2/P_1 . $\left(\frac{1}{n-1}, 1, 0, ..., 0\right) \in P_2/P_1$. For instance, $X_3 = X_1$ is violated here.

In fact, P, is the strongest formulation for S here!

Def Given $S \in \mathbb{Z}^n \times \mathbb{R}^m$, $P \subseteq \mathbb{R}^n \times \mathbb{R}^m$ is a sharp or ideal formulation for S if

(1) $H \left[\bar{\zeta} \right] \in \mathbb{R}^{n+m}$ such that $\max \left\{ c \bar{c}^T \bar{d}^T \right] \left[\bar{\chi} \right] \left[\bar{\chi} \right] \in \mathbb{P}^{3}$

is finite, the optimum is obtained for some element of S.

(2) An extended formulation of S (using extra variables) is sharp if its projection to (\bar{x}, \bar{y}) -space is sharp in the sense of (i) above.

Intuitively, all corner points of Pare integral.

P₃ is the sharp formulation of Shere: More generally, P is the convex hull of S.

Def For $X \subseteq \mathbb{R}^n$, the convex hall is defined as

conv (X) = $\begin{cases} \overline{x} \in \mathbb{R}^n | \overline{x} = \sum_{i=1}^k \lambda_i \overline{x}^i, \lambda_{i \geq 0}, \sum_{i=1}^k \lambda_i = 1, \text{ for all finite subsets } \{\overline{x}^i, \dots, \overline{x}^k\} \text{ of } X \end{cases}$

To show a formulation P is sharp for a set S, we can show every corner point of P is integral, i.e., all their entries are integers.

In 2D, any two non-parallel lines representing equations from P could intersect at a corner point, assuming it is feasible.

In general, in IR, we get a corner point from n linearly independent (LI) equations that define P, assuming their intersection is feasible.

We saw that $(\frac{1}{n-1}, 1, 0, 0..., 0) \in P_2$ (aggregated famulation). In fact, this point is a corner point of P_2 , defined by the n LI constraints.

more on this and other details in the next lecture...