Υπολογιστική Νοημοσύνη - Στατιστική μάθηση Δεύτερη Εργασία

Κωστινούδης Ευάγγελος ΑΕΜ: 112

30 Δεκεμβοίου 2022

1 Περιγραφή προβλήματος που επιλέχτηκε

Οι βάσεις που επιλέχτηκαν, οι οποίες είναι ίδιες με την προηγούμενη εργασία, είναι:

- 1. MNIST
- 2. Cifar-10

2 Υλοποίηση

Ο αλγόριθμος KPCA plus LDA υλοποιήθηκε σύμφωνα με το [Yan+05] και η υλοποίηση βρίσκεται στο αρχείο kpca_plus_lda.py.

Για την εκπαίδευση των μοντέλων χρησιμοποιούνται τα δεδομένα εκπαίδευσης που δίνονται από τις δύο βάσεις που αναφέρονται παραπάνω. Αντίστοιχα χρησιμοποιούνται τα δεδομένα ελέγχουν για τον έλεγχο των μοντέλων.

2.1 Επιλογή δειγμάτων

Επειδή ο αλγόριθμος KPCA plus LDA έχει πολυπλοκότητα χώρου $O(n_{sample})$, γεγονός που καθιστά αδύνατο να τρέξει στο σύστημα μου, επιλέχτηκε ένα υποσύνολο των δεδομένων εκπαίδευσης. Συγκεκριμένα, και για τις δύο βάσεις, χρησιμοποιήθηκαν 1.200 δήγματα για κάθε κλάση δηλαδή 12.000 συνολικά για το σύνολο εκπαίδευσης. Αυτό φαίνεται και από το Σχήμα 1, όπου παρουσιάζονται τα ιστογράμματα των κλάσεων για τα δεδομένα εκπαίδευσης πριν και μετά την υποδειγματοληψία.

(Ι) Ιστόγραμμα κλάσεων ποιν και μετά την υποδειγματοληψία (ΙΙ) Ιστόγραμμα κλάσεων ποιν και μετά την υποδειγματοληψία για τη βάση MNIST

Σχήμα 1: Ιστογράμματα κλάσεων για τις βάσεις δεδομένων

2.2 Προεπεξεργασία δεδομένων

Η μόνη προεπεξεργασία που έγινε στα δεδομένα πριν την χρήση τους στον αλγόριθμο KPCA plus LDA είναι ο μετασχηματισμός των δεδομένων στο διάστημα [0,1] για κάθε χαρακτηριστικό των δεδομένων.

2.3 Επιλογή παραμέτρων

Για την εύρεση των καλύτερων παραμέτρων το σύνολο εκπαίδευσης χωρίστηκε σε σύνολο εκπαίδευσης και επικύρωσης, όπου το σύνολο εκπαίδευσης αποτελείται από 7.000 δείγματα και το σύνολο επικύρωσης από 5.000 δείγματα και για τις δύο βάσεις.

Όσο αφορά τον αλγόριθμο KPCA plus LDA οι παράμετροι αφορούν τον πυρήνα και τις επιμέρους παραμέτρους. Για τη βάση MNIST οι παράμετροι είναι:

- 1. Γραμμικός πυρήνας.
- 2. Πολυωνυμικός πυρήνας: $d: 2, \gamma: (0.1, 1, 10)$.

- 3. RBF $\pi\nu\rho\dot{n}\nu\alpha\varsigma$: $\gamma:(0.05,0.1,0.5)$.
- 4. Σιγμοειδής πυρήνας: γ : (0.00001, 0.0001, 0.001).

Και για τη βάση Cifar-10:

- 1. Γραμμικός πυρήνας.
- 2. Πολυωνυμικός πυρήνας: $d: 2, \gamma: (0.01, 0.1, 1)$.
- 3. RBF $\pi \nu \rho \dot{\nu} \alpha \varsigma$: $\gamma : (0.001, 0.01, 0.1)$.
- 4. Σιγμοειδής πυρήνας: γ : (0.00001, 0.0001, 0.001).

Οι παράμετροι για κάθε πυρήνα είναι:

- 1. Πολυωνυμικός πυρήνας: $K(\mathbf{x}_i, \mathbf{x}_i) = (\gamma \mathbf{x}_i^T \mathbf{x}_i)^d$.
- 2. RBF πυρήνας: $K(x_i, x_i) = exp(-\gamma ||x_i x_i||^2)$.
- 3. Σιγμοειδή πυρήνας: $K(\mathbf{x}_i, \mathbf{x}_i) = tanh(\gamma \mathbf{x}_i^T \mathbf{x}_i)$.

Για την ταξινόμηση χρησιμοποιήθηκαν οι μέθοδοι πλησιέστερων γειτόνων (Nearest Neighbors) και πλησιέστερου κέντρου κλάσης (Nearest Class Centroid). Για το μοντέλο πλησιέστερων γειτόνων και για τις δύο βάσεις χρησιμοποιήθηκε $n_neighbors: (1,3,5,10,15)$ όπου $n_neighbors$ ο αριθμός των γειτόνων.

Για το μοντέλο πλησιέστερων γειτόνων, για την απόσταση των γειτόνων χρησιμοποιήθηκε η fused απόσταση που δίνεται στο [Yan+05] με $\theta=1$. Για το μοντέλο του πλησιέστερου κέντρου κλάσης χρησιμοποιήθηκαν τα regular and irregular discriminant features που παρουσιάζονται στο [Yan+05]. Το μέγεθος του διανύσματος των χαρακτηριστικών είναι 18 από τα οποία 9 αφορούν τα regular και 9 irregular discriminant features και για τις δύο βάσης.

3 Αποτελέσματα

Τα πειράματα εκτελέστηκαν σε επεξεργαστή Intel i7-4510U και 8GB μνήμη. Επίσης, για τις μετρικές precision, recall και F1 χρησιμοποιήθηκε η macro εκδοχή τους που είναι ο μέσος όρος των μετρικών αυτών για κάθε κλάση.

3.1 Επιλογή παραμέτρων

3.1.1 MNIST

Πλησιέστερων γειτόνων Στο Πίνακας 1 παρουσιάζονται τα αποτελέσματα στο σύνολο επικύρωσης. Παρατηρείται ότι το καλύτερο μοντέλο βάση της μετρικής accuracy είναι αυτό με RBF πυρήνα, $\gamma=0.05$ και αριθμό γειτόνων 1.

Model	Best n	Accuracy	Precision	Recall	F1
kernel: linear	1	0,1	0,01	0,1	0,0182
kernel: poly degree: 2 gamma: 0.1	1	0,2468	0,2038	0,2468	0,1831
kernel: poly degree: 2 gamma: 1	3	0,2944	0,3749	0,2944	0,23
kernel: poly degree: 2 gamma: 10	1	0,1	0,01	0,1	0,0182
kernel: rbf gamma: 0.05	1	0,965	0,9652	0,965	0,965
kernel: rbf gamma: 0.1	1	0,8762	0,9264	0,8762	0,8892
kernel: rbf gamma: 0.5	10	0,2628	0,9015	0,2628	0,2604
kernel: sigmoid gamma: 1e-05	3	0,1002	0,06	0,1002	0,0186
kernel: sigmoid gamma: 0.0001	1	0,1	0,01	0,1	0,0182
kernel: sigmoid gamma: 0.001	3	0,1574	0,0812	0,1574	0,0829

Πίνακας 1: Αποτελέσματα επιλογής παραμέτρων για την μέθοδο πλησιέστερων γειτόνων και τη βάση ΜΝΙSΤ

Πλησιέστερου κέντρου κλάσης Στο Πίνακας 2 παρουσιάζονται τα αποτελέσματα στο σύνολο επικύρωσης. Παρατηρείται ότι το καλύτερο μοντέλο βάση της μετρικής accuracy είναι αυτό με RBF πυρήνα και $\gamma=0.05$.

Model	Accuracy	Precision	Recall	F1	
kernel: linear	0,195	0,1683	0,195	0,098	
kernel: poly					
degree: 2	0,9156	0,9254	0,9156	0,9161	
gamma: 0.1					
kernel: poly					
degree: 2	0,7542	0,8715	0,7542	0,7506	
gamma: 1					
kernel: poly					
degree: 2	0,1	0,01	0,1	0,0182	
gamma: 10					
kernel: rbf	0,9292	0,932	0,9292	0,9299	
gamma: 0.05	0,0202	0,332	0,0202	0,0200	
kernel: rbf	0,6912	0,8712	0,6912	0,7356	
gamma: 0.1	0,0312	0,0712	0,0312	0,7330	
kernel: rbf	0,1526	0,1723	0,1526	0,0916	
gamma: 0.5	0,1020	0,1720	0,1020	0,0010	
kernel: sigmoid	0,1152	0,206	0,1152	0,0453	
gamma: 1e-05	0,1132	0,200	0,1102	0,0400	
kernel: sigmoid	0,1278	0,1024	0,1278	0,0614	
gamma: 0.0001	0,1270	0,1024	0,1270	0,0014	
kernel: sigmoid	0,133	0,2562	0,133	0,0739	
gamma: 0.001	0,133	0,2302	0,100	0,0139	

Πίνακας 2: Αποτελέσματα επιλογής παραμέτρων για την μέθοδο πλησιέστερου κέντρου κλάσης και τη βάση MNIST

3.1.2 Cifar-10

Πλησιέστερων γειτόνων Στο Πίνακας 3 παρουσιάζονται τα αποτελέσματα στο σύνολο επικύρωσης. Παρατηρείται ότι το καλύτερο μοντέλο βάση της μετρικής accuracy είναι αυτό με RBF πυρήνα, $\gamma=0.01$

και αριθμό γειτόνων 15.

Model	Best n	Accuracy	Precision	Recall	F1
kernel: linear	1	0,1	0,01	0,1	0,0182
kernel: poly degree: 2 gamma: 0.01	1	0,1	0,01	0,1	0,0182
kernel: poly degree: 2 gamma: 0.1	3	0,1058	0,0278	0,1058	0,029
kernel: poly degree: 2 gamma: 1	1	0,1	0,01	0,1	0,0182
kernel: rbf gamma: 0.001	1	0,1	0,01	0,1	0,0182
kernel: rbf gamma: 0.01	15	0,4198	0,5173	0,4198	0,4233
kernel: rbf gamma: 0.1	10	0,1868	0,3889	0,1868	0,1686
kernel: sigmoid gamma: 1e-05	1	0,1	0,01	0,1	0,0182
kernel: sigmoid gamma: 0.0001	1	0,1	0,01	0,1	0,0182
kernel: sigmoid gamma: 0.001	1	0,1	0,01	0,1	0,0182

Πίνακας 3: Αποτελέσματα επιλογής παραμέτρων για την μέθοδο πλησιέστερων γειτόνων και τη βάση Cifar-10

Πλησιέστερου κέντρου κλάσης Στο Πίνακας 4 παρουσιάζονται τα αποτελέσματα στο σύνολο επικύρωσης. Παρατηρείται ότι το καλύτερο μοντέλο βάση της μετρικής accuracy είναι αυτό με RBF πυρήνα και $\gamma=0.01$.

Model	Accuracy	Precision	Recall	F1	
kernel: linear	0,1246	0,027	0,1246	0,0419	
kernel: poly					
degree: 2	0,1002	0,11	0,1002	0,0186	
gamma: 0.01					
kernel: poly					
degree: 2	0,1	0,01	0,1	0,0182	
gamma: 0.1					
kernel: poly					
degree: 2	0,1	0,01	0,1	0,0182	
gamma: 1					
kernel: rbf	0,146	0,1267	0,146	0,0686	
gamma: 0.001	0,140	0,1207	0,140	0,0000	
kernel: rbf	0,4512	0,4597	0,4512	0,4461	
gamma: 0.01	0,4012	0,4001	0,4012	0,4401	
kernel: rbf	0,1696	0,3601	0,1696	0,1273	
gamma: 0.1	0,1030	0,5001	0,1030	0,1270	
kernel: sigmoid	0,128	0,0258	0,128	0,0427	
gamma: 1e-05	0,120	0,0230	0,120	0,0421	
kernel: sigmoid	0,1	0,01	0,1	0,0182	
gamma: 0.0001	0,1	0,01	0,1	0,0102	
kernel: sigmoid	0,1	0,01	0,1	0,0182	
gamma: 0.001	0,1	0,01	0,1	0,0102	

Πίνακας 4: Αποτελέσματα επιλογής παραμέτρων για την μέθοδο πλησιέστερου κέντρου κλάσης και τη βάση Cifar-10

3.2 Απόδοση καλύτερων μοντέλων

3.2.1 MNIST

Το καλύτερο μοντέλο για τη βάση MNIST είναι αυτό με RBF πυρήνα και $\gamma=0.05$. Γι' αυτό το μοντέλο εφαρμόζεται η μέθοδος KPCA plus LDA με τις βέλτιστες παραμέτρους που αναφέρθηκαν και γίνεται ταξινόμηση με τη μέθοδο πλησιέστερων γειτόνων και πλησιέστερου κέντρου κλάσης.

Πλησιέστερων γειτόνων Στα Πίνακας 5 και Πίνακας 6 παρουσιάζονται μετρικές και χρόνος εκτέλεσης του καλύτερου μοντέλου.

Model	Best n	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	kNN Time
kernel: rbf gamma: 0.05	1	1	1	1	1	8818,2817	2,8122

Πίνακας 5: Αποτελέσματα καλύτερου μοντέλου πλησιέστερων γειτόνων στο σύνολο εκπαίδευσης για τη βάση ΜΝΙSΤ

Model	Best n	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	kNN Time
kernel: rbf gamma: 0.05	1	0,9726	0,9726	0,9726	0,9725	8818,2817	2,8122

Πίνακας 6: Αποτελέσματα καλύτερου μοντέλου πλησιέστερων γειτόνων στο σύνολο ελέγχου για τη βάση ΜΝΙSΤ

Στο Σχήμα 2 φαίνεται το confusion matrix γι' αυτό το μοντέλο. Από το σχήμα αυτό παρατηρείται ότι οι περισσότερες εσφαλμένες ταξινομήσεις γίνονται όταν:

- Η πραγματική κλάση είναι 7 ενώ το μοντέλο την ταξινομεί στη 2.
- Η πραγματική κλάση είναι 4 ενώ το μοντέλο την ταξινομεί στη 9.
- Η πραγματική κλάση είναι 2 ενώ το μοντέλο την ταξινομεί στη 8.
- Η πραγματική κλάση είναι 9 ενώ το μοντέλο την ταξινομεί στη 4.

Από το Σχήμα 3 φαίνονται μερικές από τις λάθος ταξινομήσεις του μοντέλου.

Σχήμα 2: Confusion matrix για τη μέθοδο πλησιέστερων γειτόνων για τη βάση MNIST

Σχήμα 3: Λάθος ταξινομήσεις του καλύτερου μοντέλου για τη μέθοδο πλησιέστερων γειτόνων και τη βάση ΜΝΙSΤ

Πλησιέστερου κέντρου κλάσης Στα Πίνακας 7 και Πίνακας 8 παρουσιάζονται μετρικές και χρόνος εκτέλεσης του καλύτερου μοντέλου.

Model	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	Nearest Centroid Time
kernel: rbf	0.9145	0,9158	0,9145	0,9149	8818,2817	0,0125
gamma: 0.05	0,3143	0,3136	0,3143	0,3143	0010,2017	0,0123

Πίνακας 7: Αποτελέσματα καλύτερου μοντέλου πλησιέστερου κέντρου κλάσης στο σύνολο εκπαίδευσης για τη βάση ΜΝΙSΤ

]	Model	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	Nearest Centroid Time
	kernel: rbf	0,9484	0.9487	0.9482	0,9482	8818,2817	0,0125
1 8	gamma: 0.05	0,3404	0,3401	0,3402	0,3402	0010,2017	0,0123

Πίνακας 8: Αποτελέσματα καλύτερου μοντέλου πλησιέστερου κέντρου κλάσης στο σύνολο ελέγχου για τη βάση ΜΝΙSΤ

Στο Σχήμα 4 φαίνεται το confusion matrix γι' αυτό το μοντέλο. Από το σχήμα αυτό παρατηρείται ότι οι περισσότερες εσφαλμένες ταξινομήσεις γίνονται όταν:

- Η πραγματική κλάση είναι 7 ενώ το μοντέλο την ταξινομεί στη 2.
- Η πραγματική κλάση είναι 7 ενώ το μοντέλο την ταξινομεί στη 9.
- Η πραγματική κλάση είναι 9 ενώ το μοντέλο την ταξινομεί στη 4.
- Η πραγματική κλάση είναι 2 ενώ το μοντέλο την ταξινομεί στη 8.

Από το Σχήμα 5 φαίνονται μερικές από τις λάθος ταξινομήσεις του μοντέλου.

Σχήμα 4: Confusion matrix για τη μέθοδο πλησιέστερου κέντρου κλάσης για τη βάση MNIST

Σχήμα 5: Λάθος ταξινομήσεις του καλύτερου μοντέλου για τη μέθοδο πλησιέστερου κέντρου κλάσης και τη βάση ΜΝΙSΤ

3.2.2 Cifar-10

Το καλύτερο μοντέλο για τη βάση Cifar-10 είναι αυτό με RBF πυρήνα και $\gamma=0.01$. Γι' αυτό το μοντέλο εφαρμόζεται η μέθοδος KPCA plus LDA με τις βέλτιστες παραμέτρους που αναφέρθηκαν και γίνεται ταξινόμηση με τη μέθοδο πλησιέστερων γειτόνων και πλησιέστερου κέντρου κλάσης.

Πλησιέστερων γειτόνων Στα Πίνακας 9 και Πίνακας 10 παρουσιάζονται μετρικές και χρόνος εκτέλεσης του καλύτερου μοντέλου.

Model	Best n	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	kNN Time
kernel: rbf gamma: 0.01	15	0,9992	0,9992	0,9992	0,9992	13608,5766	5,3204

Πίνακας 9: Αποτελέσματα καλύτερου μοντέλου πλησιέστερων γειτόνων στο σύνολο εκπαίδευσης για τη βάση Cifar-10

Model	Best n	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	kNN Time
kernel: rbf gamma: 0.01	15	0,449	0,5304	0,449	0,4499	13608,5766	5,3204

Πίνακας 10: Αποτελέσματα καλύτερου μοντέλου πλησιέστερων γειτόνων στο σύνολο ελέγχου για τη βάση Cifar-10

Στο Σχήμα 6 φαίνεται το confusion matrix γι' αυτό το μοντέλο. Από το σχήμα αυτό παρατηρείται ότι οι περισσότερες εσφαλμένες ταξινομήσεις γίνονται όταν:

- Η πραγματική κλάση είναι γάτα ενώ το μοντέλο την ταξινομεί στη σκύλος.
- Η πραγματική κλάση είναι πουλί ενώ το μοντέλο την ταξινομεί στη ελάφι.
- Η πραγματική κλάση είναι βάτραχος ενώ το μοντέλο την ταξινομεί στη ελάφι.
- Η πραγματική κλάση είναι φορτηγό ενώ το μοντέλο την ταξινομεί στη αεροπλάνο.

Στο Σχήμα 7 παρουσιάζονται μερικές λάθος ταξινομήσεις του μοντέλου.

Σχήμα 6: Confusion matrix για τη μέθοδο πλησιέστερων γειτόνων και τη βάση Cifar-10

Σχήμα 7: Λάθος ταξινομήσεις του καλύτερου μοντέλου για τη μέθοδο πλησιέστερων γειτόνων και τη βάση Cifar-10

Πλησιέστεφου κέντφου κλάσης Στα Πίνακας 11 και Πίνακας 12 παφουσιάζονται μετφικές και χφόνος εκτέλεσης του καλύτεφου μοντέλου.

Model	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	Nearest Centroid Time
kernel: rbf gamma: 0.01	0,7629	0,7637	0,7629	0,7631	13608,5766	0,0118

Πίνακας 11: Αποτελέσματα καλύτερου μοντέλου πλησιέστερου κέντρου κλάσης στο σύνολο εκπαίδευσης για τη βάση Cifar-10

Model	Accuracy	Precision	Recall	F1	KPCA+LDA Time (seconds)	Nearest Centroid Time
kernel: rbf gamma: 0.01	0,4866	0,4899	0,4866	0,4808	13608,5766	0,0118

Πίνακας 12: Αποτελέσματα καλύτερου μοντέλου πλησιέστερου κέντρου κλάσης στο σύνολο ελέγχου για τη βάση Cifar-10

Στο Σχήμα 8 φαίνεται το confusion matrix γι' αυτό το μοντέλο. Από το σχήμα αυτό παρατηρείται ότι οι περισσότερες εσφαλμένες ταξινομήσεις γίνονται όταν:

- Η πραγματική κλάση είναι γάτα ενώ το μοντέλο την ταξινομεί στη σκύλος.
- Η πραγματική κλάση είναι φορτηγό ενώ το μοντέλο την ταξινομεί στη αυτοκινητιστικό (automobile).
- Η πραγματική κλάση είναι γάτα ενώ το μοντέλο την ταξινομεί στη βάτραχος.
- Η πραγματική κλάση είναι ελάφι ενώ το μοντέλο την ταξινομεί στη βάτραχος.

Στο Σχήμα 9 παρουσιάζονται μερικές λάθος ταξινομήσεις του μοντέλου.

Σχήμα 8: Confusion matrix για τη μέθοδο πλησιέστερου κέντρου κλάσης και τη βάση Cifar-10

Σχήμα 9: Λάθος ταξινομήσεις του καλύτερου μοντέλου για τη μέθοδο πλησιέστερου κέντρου κλάσης και τη βάση Cifar-10

4 Σύγκριση με τα αποτελέσματα των SVMs

Θα γίνει σύγκριση μεταξύ των προηγούμενων αποτελεσμάτων σε σχέση με τα αποτελέσματα από τα SVMs. Θα πρέπει να γίνει η υπενθύμιση ότι το σύνολο εκπαίδευσης της μεθόδου KPCA plus LDA είναι πολύ μικρότερο σε σχέση με το σύνολο εκπαίδευσης που χρησιμοποιήθηκε στα SVMs. Παρόλα αυτά, θα παρουσιαστούν τα καλύτερα αποτελέσματα και από τις δύο μεθόδους.

Όπως θα αναφερθεί και παρακάτω τα αποτελέσματα από την αρχιτεκτονική των SVMs είναι καλύτερα και για τις δύο βάσεις. Ο χρόνος εκτέλεσης όμως είναι μικρότερος για τα SVMs αν και στη μέθοδο KPCA plus LDA ο αριθμός των δηγμάτων που χρησιμοποιήθηκαν για την εκπαίδευση είναι πολύ μικρότερος.

4.1 MNIST

Τα αποτελέσματα στο σύνολο ελέγχου για την αρχιτεκτονική του SVM είναι καλύτερα και παρουσιάζονται στο Πίνακας 13.

Model	Accuracy	Precision	Recall	F1
SVM	0,9841	0,984	0,9841	0,984
KPCA+LDA	0,9726	0,9726	0,9726	0,9725

Πίνακας 13: Αποτελέσματα για τα καλύτερα μοντέλα για τις αρχιτεκτονικές SVM και KPCA plus LDA στο σύνολο ελέγχου για τη βάση MNIST

4.2 Cifar-10

Τα αποτελέσματα στο σύνολο ελέγχου για την αρχιτεκτονική του SVM είναι καλύτερα και παρουσιάζονται στο Πίνακας 14.

Model	Accuracy	Precision	Recall	F1
SVM	0,56	0,5626	0,56	0,5607
KPCA+LDA	0,4866	0,4899	0,4866	0,4808

Πίνακας 14: Αποτελέσματα για τα καλύτερα μοντέλα για τις αρχιτεκτονικές SVM και KPCA plus LDA στο σύνολο ελέγχου για τη βάση Cifar-10

Βιβλιογοαφία

[Yan+05] Jian Yang et al. "KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition." In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 27.2 (2005), pp. 230–244. doi: 10.1109/TPAMI.2005.33.