Results are obtained with h_0^P estimated

ONLY h_0^Q IS CALIBRATED, THEN 1 WEEK UPDATED UNDER Q WITH MLEP PARAMS									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	4.2761e - 09	3.2992e - 07	3.3621e - 08	3.8491e - 07	1.2742e - 07	4.4951e - 08	2.5272e - 08	3.9321e - 08	3.5745e - 08
std	(1.6791e - 08)	(1.5604e - 06)	(1.6575e - 07)	(1.3052e - 06)	(4.5656e - 07)	(2.0855e - 07)	(1.4770e - 07)	(1.7009e - 07)	(2.2435e - 07)
median	5.6987e - 10	1.1448e - 09	6.6046e - 10	1.3899e - 09	7.7997e - 10	1.5014e - 09	9.8128e - 10	4.0373e - 10	6.4399e - 10
α	1.8271e - 05	1.6271e - 05	9.0113e - 06	6.1070e - 06	7.6345e - 06	7.2374e - 06	5.1346e - 06	2.3951e - 06	1.2001e - 05
std	(1.9462e - 05)	(2.1985e - 05)	(1.2043e - 05)	(7.9519e - 06)	(9.6825e - 06)	(7.2754e - 06)	(5.8307e - 06)	(3.0938e - 06)	(1.6017e - 05)
median	1.0250e - 05	7.6580e - 06	4.5292e - 06	3.1281e - 06	3.2390e - 06	4.3350e - 06	2.9817e - 06	1.4483e - 06	2.7054e - 06
β	0.6224	0.5560	0.7081	0.7258	0.6010	0.5520	0.6269	0.7263	0.4570
$\operatorname{\mathbf{std}}$	(0.2827)	(0.2971)	(0.2368)	(0.2478)	(0.3170)	(0.2466)	(0.2257)	(0.2586)	(0.3938)
median	0.7270	0.6567	0.7970	0.8149	0.7403	0.6572	0.6945	0.8054	0.5535
γ^*	133.2216	191.7168	181.9972	254.4028	268.1967	280.6426	298.3299	331.9039	208.9947
std	(51.0662)	(93.1766)	(80.1860)	(194.7410)	(238.2579)	(175.7277)	(157.3293)	(112.0556)	(137.7996)
median	128.3648	175.8916	174.2587	184.1932	220.4021	257.4585	297.1472	333.3806	190.6912
h_0^Q	4.7767e - 04	2.1653e - 04	8.5563e - 05	2.6095e - 04	2.4089e - 04	0.0001	1.6159e - 04	3.4061e - 05	1.0676e - 04
\mathbf{std}	(2.4107e - 03)	(2.0426e - 04)	(5.6283e - 05)	(1.4411e - 03)	(1.0002e - 03)	(1.0574e - 04)	(5.2330e - 04)	(3.0939e - 05)	(1.4845e - 04)
median	1.0057e - 04	1.2388e - 04	6.6106e - 05	4.7964e - 05	3.7544e - 05	6.7174e - 05	5.4301e - 05	2.1801e - 05	3.5323e - 05
persistency	0.8690	0.9140	0.8979	0.9104	0.8538	0.9184	0.9374	0.9523	0.7164
std	(0.1807)	(0.0899)	(0.1795)	(0.1125)	(0.2138)	(0.0760)	(0.0690)	(0.0709)	(0.3333)
median	0.9423	0.9529	0.9625	0.9574	0.9396	0.9499	0.9650	0.9764	0.8877
MSE	59.5684	21.5457	9.0664	403.7466	451.1287	49.7411	812.9444	55.9945	68.3024
median MSE	1.2333	2.3206	2.4374	2.2888	4.0268	8.1603	12.5478	7.7920	15.7990
IVRMSE	0.2189	0.2208	0.1539	0.2841	0.3760	0.2757	0.4036	0.2322	0.2187
· · · · · ·									
MAPE	0.7236	0.3772	0.3341	2.4033	1.8808	0.8533	1.7965	1.0300	0.4708
OptLL	175.9604	175.4595	211.0642	283.2932	256.0749	309.9453	380.5977	466.0165	462.1938