http://www.bupt.edu.cn email@bupt.edu.cn

DOI: 10.13700/j.bh.1001-5965.****.***

迁移学习实现猫狗图像分类

邓心一,姜百淳,刘姜旺

(北京邮电大学 信息与通信工程学院, 北京 100876)

摘 要: 不少于 200 字,应完整概括出文章的目的、方法、结果及结论; 简洁,排除常识内容,避免重复题目;独立,不得引用文中参考文献号、图号和公式号; 具体,尽量用具体数字来说明该项工作取得的进展或成效,例如某项性能指标提高了百分之多少,避免"效果很好"这类的含糊其辞;便于收录,摘要、题目中避免包含公式、上下标等,以方便 EI 等文摘和题录数据库收录文本数据。高质量的摘要有利于文摘被国际权威数据库收录,及引起同行的重视。用第 3 人称,建议采用"对……进行了研究"、"报告了……现状"、"进行了……调查"等记述方法,不必使用"本文"、"作者"等作为主语。缩写词应提供中文全称。

关键词: 迁移学习;图像分类;卷积神经网络;模型融合

中图分类号: V221+.3; TB553

文献标识码: A 文章编号: 1001-5965 (XXXX) XX-XXXX-XX

由于卷积神经网络在机器视觉任务中的优秀 表现,Kaggle 竞赛中与图像相关的题目,绝大多 数参赛者采用的是深度学习的解决方案。本小组 选择了经典的图像分类任务,在问题的解决过程 中,熟悉了一般 CNN 网络模型的构建方式,尝试 运用一些数据挖掘的技巧,提升模型的表现,最 终模型分类的准确率令人满意,也在一定程度上 减少了模型训练的代价。挖掘任务的详细解决过 程陈述如下。

1 任务描述

1.1 竞赛题目

竞赛题目选用 Kaggle 竞赛中,类型为 Playground 的 Dogs vs. Cats Redux: Kernels Edition。题 目提供已标注的训练集和未标注的测试集,要求 参赛者提交测试集中每一张图片为狗的概率。

$$Loss = -\frac{1}{n} \sum_{n=1}^{i=1} [y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i)]$$
 (1)

收稿日期: 2018-01-01; 录用日期: 2018-01-01

网络出版地址:(无)基金项目:(无)

通信作者: E-mail: @bupt.edu.cn

提交的结果用公式 (1),即对数损失来衡量。式中,n 是测试集的图片数量, \hat{y}_i 是图片为狗的预测概率,图片实际为猫时, y_i 取 0,否则取 1。对数损失越小,预测结果越好。

1.2 数据集

数据集分为训练集和测试集,jpg 格式。训练集包括 12500 张猫的图片和 12500 张狗的图片,大小为 543MB,分辨率不等,来自某个宠物领养的网站,推测为程序自动爬取获得,分类标签存在一定程度的错误。测试集包括 12500 张猫与狗的图片,大小为 271MB,来源与训练集相同。

2 问题定义

赛题是一个典型的图像分类问题,即根据一定的分类规则将图像自动分到一组预定义类别中。图像分类在多领域有着广泛的实际应用。实际应用中,图像分类任务会受到视角的变化,大小的变化,物体的形变,遮挡,光照条件,背景

2 北京邮电大学

干扰和多种子类型等各方面因素[1]的挑战。

对于传统的数据挖掘算法,如 K 近邻算法 (K-Nearest Neighbor, KNN), 支持向量机 (Support Vector Machine, SVM), 图像分类任务是非常复杂甚至难以胜任的。卷积神经网络,以其在图像识别方面的优异表现,从诞生起就备受瞩目。因此,本小组选择 CNN 作为图像分类算法的核心部分,再利用迁移学习的思想,减少计算量和过拟合的风险。最终将数据挖掘任务划分为以下三个子任务: (1) 图像数据的预处理; (2) 数据特征的提取; (3) 特征处理,对提取出的特征进行分类。

3 解决方案

经过多次实验和迭代,本小组最终提出了对 图像仅进行简单预处理,以多个卷积神经网络作 为特征提取器,训练前馈神经网络 (Feedforward Neural Network, FNN) 作为分类器,最后进行模型 融合的解决方案。

3.1 方案提出

较深的卷积神经网络的训练和计算,需要相当大的计算能力。Google 团队 2016 年提出的Xception 模型,使用了 60 块 Nvidia K80 GPUs,在 ImageNet 数据集上训练了 3 天^[2],达到 79%的Top1 准确率。小组最终采用的模型为 Inception 系列的三个深度均达到 100 层以上的 CNN,而拥有的计算资源仅仅是笔记本上的入门级 GPU GTX 1050m,这对计算资源提出了不小的挑战。

此外,虽然相对于小组拥有的计算资源,题目所给训练集数据量较大,但是对于深度神经网络的训练,提供的数据又稍显不足,容易出现过拟合的情况。针对这些问题,在查阅相关资料后,决定采取迁移学习的方式解决。在深度学习的分类器之外,小组也采用了经典的 SVM 分类器与 FNN作出对比。由于采用提取特征向量的方式,需要数据集相对固定,因此难以在短时间内尝试多种数据预处理方式。本小组把模型调整的重心放在网络的后半部分,节约出训练网络的时间来对模型做出优化。因此,形成了简单预处理 \rightarrow CNN 提取特征向量 \rightarrow FNN 作为分类器 \rightarrow 模型融合的方案结构。

以下将从 CNN 网络、迁移学习和模型融合 三个方面来进行算法的介绍。

3.2 Inception 系列网络

方案选取了在 ImageNet 数据集中,表现优秀的 Inception 系列网络,作为特征提取部分的

模型。Inception 系列网络是 Google 团队提出的一系列不断改进的 CNN 模型,名字来源于电影盗梦空间 (Inception) 中的一句台词: "We need to go deeper"。经典的 CNN 网络,由负责特征提取的卷积层和负责降采样的池化层交替堆叠而成。Inception 系列网络在经典 CNN 结构的基础上,改进了卷积层的结构,取得了一定的性能提升。

CNN中的卷积核大小,很大程度上影响着提取到的特征图像。一般来说,卷积核越大,感受野越大,越能发现全局的图像特征;卷积核越小,对图像局部的特征更加敏感。传统的 CNN,每一层采用的是一组大小相同的卷积核。为了加强网络的泛化能力,对不同尺度的目标都能良好地识别,InceptionV1 提出在同一层采用多种大小的卷积核,将卷积得到的特征向量进行拼接,作为下一层的输入。这就给下一层网络提供了不同尺度上的特征向量信息,使网络能够自由选择,提高了网络的泛化能力。

多个卷积核带来了性能的提升,也带来了极大的计算量。为了减少网络的计算,InceptionV1提出了 1×1 的卷积核。1×1 的卷积核并不会改变特征图像在空间上的相对关系,而是把同一空间位置上的多个通道融合在一起,通过减少输出特征图像的通道数量,达到减少计算量的目的。

为了进一步减少神经网络中的计算, Inception 用两个 3×3 的卷积核代替了一个 5×5 的卷积核, 网络参数由 25 个下降到 18 个, 还进一步增加了网络的深度。更重要的是, 卷积核的感受野是不变的, 仍然能够包含 5×5 的特征图像区域。

此外, $1 \times n$ 和 $n \times 1$ 的网络也被引入到 Inception 网络结构中。

Xecption 网络则在另一个角度上对传统 CNN 的结构作出了改进。区别于传统的卷积核, Xception 网络使每一个卷积核仅仅进行一个通道的二位卷积操作,这就将空间上的相关性与通道之间的相关性分离开来。

3.3 迁移学习

迁移学习

3.4 模型融合

模型融合

4 数据处理

4.1 数据预处理

作为特征提取器的 CNN 网络需要 299×299 像素、RGB 通道的图像输入。此外,为了加强神经网络的性能,防止过拟合,对图像进行一定程度的数据增强是相当有必要的。为此,需要先对数据做一些预处理工作。

训练集中的图像比例不均,若简单将其拉伸为正方形,则会使物体发生形变。因此需要为图像填充背景后拉伸,以保持图像的比例。背景颜色对图像来说是人为引入的噪声,需要将其影响降到最低。Inception 系列网络在输入图像时,会利用公式 $x=(x/255-0.5)\times 2$ 对每个像素进行正则化,映射到 [-1,+1] 范围内。因此,将背景色填充为 (127,127,127),使其正则化之后最接近0,能在最大程度上减少背景色对数据的影响。

此外,本小组还尝试了几种数据增强的方式: 图像翻转,椒盐噪声,直方图均衡。

图像的翻转、旋转是 CNN 图像处理中最常见的数据增强方式,简单高效,能够有效减少神经网络的过拟合风险。但随着数据量的增大,所需的计算量也随之增加。考虑到现实中(以及测试集中)猫狗图像一般不会有上下颠倒的情况,仅仅采取了水平翻转的方式,实际训练中,在验证集上取得了一定的准确率提升。

添加椒盐噪声,是指按一定的信噪比随机在 图片中添加纯白或纯黑像素点。小组尝试了 0.8 和 0.9 的信噪比,发现预测准确率均存在一定程 度的下降。推测是椒盐噪声虽然增加了网络的鲁 棒性,然而也破坏了图片中携带的信息,使得网络 难以辨认图像,从而影响预测的结果。此外,CNN 网络是固定不变的,椒盐噪声带来的鲁棒性提升 很难被网络所利用。因此,此方案最后并未被采 用。

直方图均衡是为了解决部分图像亮度条件较差的问题而采用的方案。它的原理是统计彩色图像中RGB值的累积概率函数,再将其线性化,使得像素点的取值在[0,255]之间接近均匀分布,从而增加图像全局的对比度。自适应直方图均衡克服了直方图均衡的缺陷,将图片划分为多个子块,在子块上平衡累积概率分布,从而避免了图像分布被整体移动、背景噪声被加强的缺陷。小组尝试了直方图均衡和自适应直方图均衡两种方式,在实际训练中,并未发现此方法对预测结果有提

升。由于预处理之后需要重新进行特征向量的提取,在直方图均衡效果不明显的情况下,将此方案舍弃。

图像随机切割也是一种较好的数据增强方式,考虑随机切割会极大增加数据量,并且极有可能将目标物体排除(一些图片中猫狗的体积非常小),因此并未采用。随机调整对比度、亮度的方案也因为极大地增加了计算量,并未实际采用。

4.2 特征向量提取

小组采用在 ImageNet 数据集中,预训练的 InceptionV3, Xception, InceptionResNetV2 网络,取最后一层卷积层的输出,经过全局平均池化(即对输出特征图像的每个通道取平均值,三个网络都是 2048 个通道)后,作为提取出的特征向量。

ImageNet 数据集包含至少 1000 类物体的图像,并且三种 Inception 网络为了迁移学习的需要,在网络最后一层均保留了 1000 类的全连接层,所以最后的卷积层得到的特征向量具有良好的泛化能力。网络将同时提取训练集和测试集的特征向量,训练集的特征向量用于训练 FNN 分类器,测试集的特征向量则用于给出最终的预测结果。

利用本组现有的计算资源,每一个网络提取特征向量的时间平均30分钟,相当于在网络中计算一遍所有图片的前向传播所花费的时间。如果按照通常的训练策略,将所有图片在网络中迭代十次,每个网络,前向传播加上反向传播的时间,可以预计将超过10×2×30=10h,远远不如单独提取特征向量的运算效率。

4.3 FNN 分类器

实际使用的 FNN 分类器是一个两层的前馈神经网络,为了防止过拟合,第一层的输出经过Dropout 之后,再输出到第二层网络。理论上,取得特征向量之后,所采用的分类器可以自由选择,为了与 FNN 做对比,小组采用了传统的 SVM 分类器进行分类,效果不如 FNN。鉴于 FNN 能够自由调节网络结构,并且在数据量较多时,FNN的分类结果比 SVM 更为准确^[3],采用 FNN 作为模型的分类器。

通过迭代次数和网络参数的调节,可以有效地防止 FNN 出现过拟合,另外,采用验证集,结合 early stopping 技术,也可以使网络达到局部最优的训练结果。经过多次训练和调试,选择第一层 1024 个神经元,第二层 512 个神经元,50% 的Dropout 比例为参数,20% 的数据划分为验证集,为每个网络分别构建 FNN 分类器,迭代次数根据

4 北京邮电大学

CNN 表达能力的强弱进行了相应调整,梯度下降 算法是 adam,可以自适应地改变学习率。

除了为每个网络独立分配 FNN 分类器之外,小组也尝试了将三个网络提取出的特征向量直接拼接,再用同一个 FNN 分类器进行分类的方案,发现方案的效果不及模型融合,为了得到模型融合的优势,采用了多个分类器的方式。

4.4 模型融合

简单起见,小组采用的是加权求平均的方式,将三个网络的预测值,按照其在 ImageNet 数据集中的 Top1 准确率进行加权平均。相比仅仅拼接特征向量的方式,模型融合对预测结果有可观的提升。最终网络在本地验证集上的准确率,甚至可以达到 99.8% 左右(不排除出现了过拟合现象)。

5 结果分析

5.1 预测结果

以下是各个模型预测结果提交后的损失得分和最终排名(由于比赛已经结束,排名参考的是public leaderboard 中的 LogLoss 值)。

- 5.2 **误差分析** 误差分析
- 5.3 **改进方案** 改进方案

6 正文

6.1 量、单位、公式

6.1.1 公式编排

《北京航空航天大学学报》一般不编排单独的符号表,对于公式中的变量含义需要说明的,请在公式后的段落中,采用"式中: *A* 为某某; *B* 为某某; ……"的方式加以说明。

$$p_1(h) = \frac{n_{\text{He}}RT}{V} - \rho_{\text{He}}gh \tag{2}$$

式中: n_{He} 和 ρ_{He} 分别为艇囊内部氦气的物质的量和氦气在温度 T 时的平均密度; V=36 893.426 m^3 为 艇 囊 体 积; T=216.65 K为艇囊内稳态温度; h 为距离艇囊中心轴线 (x 轴)的垂直高度. 请使用 Mathtype 编辑。公式中字体的定义尺寸为 10 磅,上标/下标 68%,次下标/上标 42%,符号 150%,次符号 100%(设置方法: Mathtype-尺寸-定义)。长公式如需转行,应在记号=,+,—等之后断开,而在下一行开头不再重复这一记号。

6.1.2 量和单位

有关记号的使用应符合国家标准,例如: \sin^{-1} 应为 arcsin,ctg 应为 cot,tg 应为 tan,不要使用非国家法定单位,如 ppm 等表示法已要求停止使用 (rpm 应写为 r/min): 除 Re, Ma (其中 e, a 不是下标)等几个特征数外,变量应使用单个字母表示,可以带上标和下标(否则由多个字母表示单个变量,易被误解为多个变量相乘)。

6.1.3 字体

矩阵、向量请用粗斜体表示,变量用一般斜体表示;下标字母若为说明性的(如英文缩写)则用正体表示,若为量和变动性数字及坐标轴的符号则用一般斜体表示(设置方法: Mathtype-样式-定义-高级)。

所有文中出现的符号请另附文档说明其是变量、向量等,并说明各变量上下标的含义,以便编辑确定它们应采用的排版字体(变量符号说明表)。

请作者对易于混淆的字母和数字,如数字 0 和字母 o,英文 a 和希腊字母 α , O,P,S,C 等的大小写,批注"英大"(代表英文大写)、"数字 0"、"希小"(代表希腊字母小写)等。

6.2 图、表

图、表需给出中英文图题、表题(子图也需给出图题),但图表中图例、线型说明等一律用中文。图表一般不超过7.7 cm 宽。金相图和计算机云图,其中的比例尺等字编辑过程中都不再重贴,按照照片处理,如有这两类图请保证美观清晰,字体用 times new roman。

6.2.1 图片

对于函数曲线图,采用全框图,并注意检查以下各项:

- 1) 横纵坐标的标目(即变量名),尽量使用 国标变量符号,变量名要在正文中交待,且与正 文中符号一致;若正文中无,也可使用中文名称。
- 2) 坐标轴标目的量纲,对于无量纲化或无单位的,请注明"无单位"。
- 3)坐标轴上的刻度线朝内,刻度值完整(坐标轴始末点均应有完整刻度值)。
 - 4)不同线型或图符是否有说明。
- 5)是否矢量图格式,从软件中输出或拷贝矢 量图格式直接插入文档中,避免用拷屏办法插图 图片,否则后期无法编辑。
 - 6) 类似图片尺寸尽量相同。

《北航学报》自2014年起可提供彩版印刷,如有彩印需求请作者在"出版工作单"中注明。若不需彩印,请作者作图时注意用可区分的线形或符号区分不同曲线,以保证黑白图清晰可分辨。

图中文字均用中文或变量名称表示!

图片样例见图 1和图 2 (目前是位图格式,不能编辑,作者应提供可编辑的矢量图)。

6.2.2 表格

请使用三线表。选中表格,点右键打开"边框和底纹",可对表格的边框等格式进行编辑,三线表的一般格式见表 1。

表 1 传输线积冰条件

Table 1 Icing conditions of transmission line

编号	直径/m	静温/K	时间/min
4	0.0349	268.15	30
5	0.01905	268.15	30

6.2.3 计算、实验

文章以数值计算为主要内容的,应给出所求解的方程、重要的计算参数、初始或边界条件、难点问题的处理等,应对方法的适用性和计算精度估计有所说明;文章以实验为主要内容的,应说明实验设备、实验条件,对实验误差的估计等。便于同行重复再现所报道的内容,由于保密原因不

(a) 法向、径向电磁力峰值随线圈-铝板蒙皮间距变化曲线

(b) 法向、径向电磁力峰值随铝板蒙皮厚度变化曲线

图 1 电磁力峰值随线圈-铝板蒙皮间距和铝板蒙皮厚度变化曲线

Fig. 1 Curves of electromagnetic force peak changing with coil-aluminum-plate gap and thickness of aluminum plate

图 2 谐振腔输入光强波动对谐振曲线的影响

Fig. 2 Fluctuation influence of the resonator's input intensity on resonance curve

便公开某些内容的, 应向责任编辑说明。

7 参考文献

- 1) 引用文献应遵循"最新、关键、必要和亲自阅读过"的原则;
 - 2) 参考文献应是公开出版物;
- 3) 应在正文中顺次引述(按在正文中被提及 的先后来排列各篇参考文献的序号,所有参考文 献均应在正文中提及);
- 4) 文献条数 15 条以上,且有适量近两年文献;
- 5) 参考文献中作者为 3 人或少于 3 人应全部列出, 3 人以上只列出前 3 人, 后加"等"或"et al";
- 6) 参考文献中外国人名书写时一律姓前,名 后,姓用全称大写,名缩写为首字母(大写),不 加缩写点;
- 7) 为便于国际交流,对外文文献按外文著录; 对于中文文献首先按中文著录,同时提供英文对 照,并在其后注 "(in Chinese)"注意对中文期刊 刊名应使用其标准译法(通常在文章首页页眉可 以找到)。

具体样例详见文后参考文献部分。

8 其他有关事项说明

- 1) 文章应着重撰写创新性、关键性内容,并以一般专业人员看得懂为原则
- 2)返回时间:修改稿一般应在 10 天内返回,或以责任编辑的要求为准。如作者不能按时返回,请向责任编辑说明情况
 - 3) 返回文件(请从系统上传):
 - ① 论文电子版 (修改部分用不同颜色标识)

北京邮电大学

表 2 文献类型和标志代码

Table 2 Referrence type and identification code

	V 1		
参考文献	文献类型	参考文献	文献类型
类型	标识	类型	标识
专著	M	学位论文	D
会议录	C	报告	R
期刊	J	标准	S
报纸	N	专利	P
汇编	G	档案	A
计算机程序	CP	电子公告	EB
数据库	DB	美图	CM
数据集	DS	其他	Z

表 3 电子文献载体和标志代码

Table 3 Electronic literature and identification code

载体 类型	磁带 (magnetic tape)	磁盘 (disk)	光盘 (CD-ROM)	联机网络 (online)
标志代码	MT	DK	CD	OL

- ② 论文修改说明(写明对专家及编辑部所提 意见如何修改)
 - ③ 变量符号说明表 (模板见下载园地)
- ④ 稿件出版工作单(word 版,模板见下载园地); "稿件出版工作单"中有关事项请认真填写,联系电话最好有手机。后期编辑及发行过程中,会根据作者填写的信息与作者联系解决稿件问题,联系方式及寄刊地址有变更的,请及时通知责任编辑

稿件修改期间请对修改稿仔细审读、精加工, 一经排版,一般不允许做大的改动

- 4) 出版过程:责任编辑在编辑修改稿过程中常会有疑问请作者答复补正,请作者配合及时答复;稿件修改符合要求后,责任编辑将根据文章页码经电子信箱发送缴纳版面费通知单,作者应根据通知单要求及时缴纳版面费;编辑部有权对文章进行文字性修改,使之符合出版体例、规范要求和篇幅限制;责任编辑在编完稿件后,将其转至总编辑处,按来稿先后顺次发表;文章出版后,免费向作者提供样刊和抽印本,每篇文章1本样刊及5本抽印本,如作者需要可另购样刊,刊款可随版面费一并缴纳
- 5) 提前发表:本刊一般发表周期为1年,作者若有特殊情况确实需要提前发表的,请提前向

学术编辑联系及说明情况,编辑部可根据实际情况适当安排

9 结论

分点总结,列出具体结论,其他背景、方法都不必赘述。不与摘要和前言重复。具体样例如下:

- 1) 算法可实现较为优异的检索性能,例如返回 10 张结果条件下算法检索正确率 83.15%, 召回率 8.42%, 在 60 张下正确率 39.33%, 召回率 24.61%。
- 2) 算法提出单张图片的引入不会造成原图片 库的特征向量集和主题概率分配发生严重畸变的 两个假设在一定范围(待检索图片与原图库特征 类似)内是成立的。
- 3) 算法的预备工作使检索范围由原先整个库缩小至某个子类中,虽使召回率有所损失,但检索时间得到较大的缩短。
- 4) 可预估对于特征较接近的图片库,比如人 脸库,图片预备工作会产生较大的分类误差,且 可能进一步影响检索性能。

为使本文提出的算法能处理各种类型的图片,仍需要优化预备工作和检索实现过程的各项 参数。

10 模板中一些问题

- 1) 所有间距都是手动设置,可能与 word 模板有些差别。包括正文行间距、各级节标题前后行间距、文本字与字间距、页面设置(页边距)、双栏间距、公式前后间距、图表(标题)前后间距、页眉页脚间距等等
- 2) 字体设置; 正文中文、英文均是五号字 (10.5pt),而公式中设置为 10pt,所以公式中数字会小于普通文本数字,如 x=5 和 5;带单位的量采用 siunitx 生成的话也有这个问题,如速度为5 m/s和 5 m/s。公式中上下标看起来与 word 版稍有差别;公式中 g 与 word 版 g 也不同,默认公式字体可能并不是 times new roman,本模板里未设置。
- 3) 双栏设置,采用的是 article 模板 twocolumn 选项; multicol 对浮动图表支持要差一些; twocolumn 也有些问题,比如首页跨两栏的脚注,没找到更好的办法,这里使用了\enlargethispage{} 预留出脚注位置,然后用 tikz 手动调 node 的位置。还有跨两栏的图表灵活性稍差,{figure*}。

- 4) 图表中英文题注,使用 ccaption 得到。公 式中向量矩阵粗斜体可以使用\bm 得到。
- 5) 参考文献,为了自动排序,引用方便,使用 BibTex,但是参考文献格式不属于标准的,所以所有参考文献只使用 misc 这个 entry,而且只用到 misc 中 note 这一个 field,也就是把整条参考文献都放到 note 里了。工作量与 word 差不多,但是引用、增删排序更方便些。
- 6) 变量符号说明表,里面加了一列符号所在位置,需要用到本文件生成的辅助文件,里面有可以引用的 label 信息。

致谢 感谢某某……注意:首页注明基金项目后,文末不必再致谢。

参考文献 (References)

- [1] http://cs231n.github.io/classification/.
- [2] Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions[J]. arXiv preprint arXiv:1610.02357, 2016.
- [3] Yang, Shaomei, and Qian Zhu. "Research on comparison and application of SVM and FNN Algorithm." Wireless Communications, Networking and Mobile Computing, 2008. WiCOM'08. 4th International Conference on. IEEE, 2008.

作者简介:

李某某 男,博士,教授,博士生导师。主要研究方向: xxxxxxxxxx。

附录 A:

若确有特殊需要设附录的, 附录部分置于作者简介后, 标题为"附录 A:"、"附录 B:"……。公式用大写字母和数字顺序编号, 例如"(A1)", "(A2)"。

北京邮电大学 Beijing University of Posts and Telecommunications

Transfer Learning for Image Classification of Cats and Dogs

DENG Xinyi, JIANG Baichun, LIU Jiangwang

(School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)

Abstract: (与中文摘要内容对应,英文摘要字数 150~200 个单词)英文摘要应和中文摘要对应,并请导师或专业人士把关,保证摘要质量,高质量的摘要有利于文摘被国际权威数据库收录,及引起同行的重视。如果英文摘要比中文摘要更详细,应另提供一份英文摘要的中文副本,以便于本刊英文编辑检查英文。首次出现英文缩写时应注意写明全称。

英文摘要的撰写规范请参考本刊网站"下载园地"中的《Ei 文摘要求》。

Key words: transfer learning; image classification; convolutional neural network; model ensembling

Received: 2018-01-01; Accepted: 2018-01-01

URL: (None)

Foundation item: (None)