Fundamentals of Video Processing

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.
Indian Institute of Technology, Kharagpur

Video

Analog video scanning

A process of conversion of 3D spatio-temporal signal into a 1D temporal signal by periodic vertical-temporal sampling.

- The analog-video signal: a one-dimensional signal s(t) of time
- Obtained by sampling V(x, y, t) in the vertical(y) and temporal(t) coordinates.
- $s(t) = Sampling_{y,t}(V(x,y,t))$
 - Video (3D)
 - Spatial 2D+tempor al 1D

Temporal sampling

- Frame (2D)
- Spatial 2D

• Scan signal (1D)

Analog video

Progressive and interlaced scan

Progressive

Interlaced

- Scans a frame in every ∆t sec
- B->C : horizontal retrace
- D-> A: Vertical retrace
- Computer monitor, with To red $\Delta t = 1/72$ sec. extra Courtesy: Dr. Kallol Mullick, Azure Software

- A frame: Odd field + even field
- Solid line: odd field
 - F->A: vertical trace
- Dotted line: even field
 - D->E: vertical trace
- To reduce flickering in TV without extra transmission bandwidth

Digital video

- Spatial digitization:
 - Pixels in each frame/field
 - Horizontal & vertical resolution
 - HDTV
 - wider aspect ratio 16:9
- Temporal digitization:
 - Frames per second
 - Typically 50/60 Hz
 - 50i: 50 fields per second of interlaced fields
 - 60p: 60 progressive *frames* per second

Ultra HD: 3840 x 2160

Full HD: 1920 x 1080

HD: 1280 x 720

SD: 720 x

576
720 x 488

Advantages

Storage, compression
Processing (access, edit, filtering, noise reduction, etc.)
Error-free transmission – noise tolerance, encryption

Ultra HD: 3840 x 2160

Full HD: 1920 x

HD: 1280 x 1080

SD: 720 x 20 576

720 x 488

ITU-R TV standards	Pixels	
VGA	640 x 480	4:3
WXGA	1366 x 768	16:9
SDTV (BT.601-7 480i)	720 x 486	2:1 interlaced, 30 Hz
SDTV (BT.601-7 576i)	720 x 576	2:1 interlaced, 25 Hz
HDTV (BT.709-5 720p)	1280 x 720	Progressive, 50/60 Hz
Full HD (BT.709-5 1080i)	1920 x 1080	Interlaced, 25/30Hz
Full HD (BT.709-5 1080p)	1920 x 1080	Progressive

Digital Video Format-II

- Used for digital teleconferencing
- Common compromise and easily convertible from NTSC and PAL

Full HD: 1920 x
HD: 1280 x
SD: 720 x 20
576
720 x 488

Common standards	Pixels	
QCIF (Quarter CIF)	176 x 144	30 fps, 4:2:0
CIF (Common Intermediate Format)	352 x 288	30 fps, 4:2:0
SIF (Source Input Format) (625/525)	352 × 288 or 352 x 240	25/30 fps, 4:2:0
4CIF	704 x 576	Corresponds to SDTV (BT.601-7 576i)
16CIF	1408 x 1152	

Digital Video: Color

- Luminance and Chroma
 - U and V for analog = Cr and Cb for digital video
- ITU-R BT.709 defines
 - \bullet Y = 0.299 R + 0.587 G + 0.114 B
 - Cr = 0.499 R 0.418 G 0.0813 B + 128
 - Cb = -0.169 R 0.331 G + 0.499 B + 128

Courtesy: Dr. Kallol Mullick, Azure Software

Digital Video: Chroma sampling

- Sub-sample Chroma to reduce bandwidth
- Sub-sampling schemes
 - A:B:C Given 4 pixels width (A = 4),
 - B = number of samples of color pixels in row 1
 - C = number of samples of color pixels in row 2
 - 4:4:4 each pixel Y, Cr and Cb
 - 4:2:2 each pixel Y; in each row alternate pixel Cr, Cb
 - 4:2:0 each pixel Y; in alternate row, every alternate pixel Cr, Cb
 - 4:1:1 each pixel Y; in each row every 4th pixel Cr, Cb
 - 4:1:0 each pixel Y; in alternate row every 4th pixel Cr, Cb

- most commonly used
- Reduces image size by approx. 17%

Digital Video – Chroma

Digital Video: Bit rate and Bandwidth

Pixels/frame	640 x 480	
Frames/sec	25	fps
Bits/pixel	24	bits
Duration	1	Hr

Huge bandwidth requirement for transmission and space requirement for storage.

Need Compression

Resolution: Pixels/frame	640 * 480	307,200	pixels
Bits/frame:	307,200 * 24	7,372,800	bits
Bit rate:	7,372,800 * 25	184.25	Mbps
Video size:	184.25 * 3600	662,400	Mbits
		82.8	Gbytes

Video compression

The H.264 Video Coding Standard by Hari Kalva, in IEEE multimedia 13.4 (2006): 86-90.

Video compression

- Video frame organization
 - GOP, Frame, Slice, MB
- Exploit Redundancy
 - Spatial
 - Intra-frame
 - Temporal –Inter-frame

- Motion estimation
 - Motion Vector (MV) –
 Displacement between the current block and the reference block.
 - Transmit (MV, ref) and diff.
 between current block and ref block
 - Block Matching Algorithms find closest match block in spatial and temporal neighborhood.

I: Intra Coded Frame

P: Predicted Coded Frame

B: Bi-directionally

Predicted Coded Frame

I Frame used for fast forwarding

A typical GOP: IBBPBBP...

1

Intra-frame prediction

- Intra prediction modes vertical
 - Intra 16x16
 - 4 modes
 - Intra 4x4
 - 9 modes
 - I_PCM

Directly encode values

5 (Vert-R)

6 (Horz-Dn)

Motion Estimation

$$\Psi_1 = \Psi(x,y,t_1) \quad \Psi_2 = \Psi(x,y,t_2)$$

- Reference frame: $\Psi_1 = \Psi(x, y, t_1)$
- Current frame $\Psi_2 = \Psi(x, y, t_2)$
 - Point (x, y) in Ψ_1 moved to $(x + d_x, y + d_y)$ in Ψ_2
 - $MV_{t_1}^{t_2}(x,y) = \left(d_x, d_y\right)$
- Motion estimation types
 - $t_1 < t_2$: forward motion estimation
 - $t_1 > t_2$: backward motion estimation

"Video Processing and Communication", by Y. Wang, Y.-Q. Zhang, and Ostermann

Motion search

- With motion vector $MV_{t_1}^{t_2}(x, y)$, motion compensated estimate,
 - $\Psi_2' = MC\left(\Psi_1, MV_{t_1}^{t_2}(x, y)\right)$
 - Residual for a motion vector $MV_{t_1}^{t_2}(x, y)$
 - $R(x,y) = \Psi_2(x,y) \Psi_2'(x,y)$
- Motion search: $D(x,y) = \underset{\Psi_1,t_1}{\operatorname{argmin}} D\left(\Psi_2, MV_{t_1}^{t_2}(x,y)\right)$
 - $D\left(\Psi_{2}, MV_{t_{1}}^{t_{2}}(x, y)\right) = \sum_{x,y \in A} |\Psi_{2}(x, y) \Psi'_{2}(x, y)|^{p}, p > 0$ • $p = 1 : \text{MAD}; \ p = 2 : \text{MSE}$
 - Selection over reference frame, reference block

Motion estimation-inter-frame

- Different MV for each partition of MB
- Flexible partitioning (modes)

- SKIP mode
 - Neither MV, nor residual is transmitted
 - MV is predicted from neighboring MBs

Motion Search: Block Matching

- Exhaustive search Block Matching Algorithm (EBMA)
- Reduced neighborhood search
- Fractional pixel Accuracy

- Bi-directional MV
- Multiple reference frames
 - Weighted average

Motion compensation

KIEMSAN TO THE TOTAL THE TOTAL TO THE TOTAL

"Video Processing and Communication", by Y. Wang, Y.-Q. Zhang, and Ostermann

- [LT] Current frame
- [RT] Reference frame
- [LB] Motion vectors
- [RB] Motion compensated image

Video Shot

- Shot a set of consecutive frames
 - Maximal continuous partition of video sequence in temporal domain
 - Without interruption
 - Single capture device (camera)
 - GOP fixed length syntactical segment;
 - Shot variable length (max-length) semantical segment

Shot detection: Objective and Applications

- Objective
 - Information about specific objects or events
- Video analysis
 - Video abstraction or summarization,
 - Annotation, indexing
 - Video semantic analysis,
 - Content based retrieval,
 - Classification.

Shot Boundary

Shot transition

Hard cut Soft cut

Fade

Dissolve

Wipe

Fade in

Fade out

Shot transition types

Shot Boundary Detection: Approaches

- Extract features intensity, color, edge, object
- Threshold Based Approach
 - d(n, m) = measure of dissimilarity between frame m and n
 - f(n) = discontinuity feature value for n-th frame:
 - f(n) = d(n-1, n)
 - Detect a cut if f(n) > Th, where Th is some threshold
 - Predefined or adaptive (e.g. sliding window)
- Classify frame as normal frame, hard cut of soft cut
 - Different approaches for classification

Shot Boundary Detection Approaches

Dissimilarity functions

- Minkowski distance:
 - $d(f_i, f_{i-1}) = (\sum_k |Z_i(k) Z_{i-1}(k)|^p)^{\frac{1}{p}}$, where Z(.) is a feature function
 - p = 1: City-block distance; p = 2: Euclidean distance
- [Local] Pixel based: $(\sum_{x} \sum_{y} |I_{f_i}(x, y) I_{f_{i-1}}(x, y)|) > T$
- [Local] Edge based: compare the number of edge pixels between consecutive frames
 - Missed spatial information on edges though

"Methods and Challenges in Shot Boundary Detection: A Review" by Abdulhussain, et.al. March 2018, Entropy 20(4)

Dissimilarity functions

- [Global] Histogram based: $(\sum_{v} |H_{f_i}(v) H_{f_{i-1}}(v)|) > T$
 - [v is the v-th bin in histogram]
 - Less sensitive to object and camera motion
- [Intermediate] Block based: use of statistical measures (mean/var), histogram, likelihood ratio

"Methods and Challenges in Shot Boundary Detection: A Review" by Abdulhussain, et.al. March 2018, Entropy 20(4)

SVM for shot boundary detection

- Support Vector Machine (SVM) classification
 - two-pass hierarchical supervised approach
 - 1st pass for cut detection, and 2nd pass for gradual transition
 - Formation of feature vectors
 - combining color histograms and few moment measures
 - Dissimilarity measures overall or with temporal neighbors (1, 2, 6)
 - SVM classifier 3 class: (normal sequences, abrupt cuts and gradual transitions)
 - K-means cluster or one-against-one
 - Active learning
- first minutes of a video used for training "Simultaneous detection of abrupt cuts and dissolves in videos using support vector machines" by Chasanis, Likas and Galatsanos, PRL (2009) 55-65

Spatio-Temporal Features

- 2D frame + time → 3D volume
 - 3D volume assumes 3 orthogonal filters.
 - the orthogonality not required for motion analysis
 - Gaussian filtering "smoothes out" motions regions
- STIP Spatio temporal interest point [Laptev 2003]

Spatio-Temporal Corners (STC) – Harris 3D

- Harris3D detector
 - linear scale-space representation L = f * g
 - Anisotropic Gaussian kernel,

$$g(x,y,t,\sigma^2,\tau^2) = \frac{1}{\sqrt{(2\pi)^3 \cdot \sigma^4 \cdot \tau^3}} \cdot e^{-\frac{x^2 + y^2}{2\sigma^2} - \frac{t^2}{2\tau^2}}$$

• independent spatial variance σ^2 and temporal variance τ^2

$$\mu = g(.) * \begin{bmatrix} L_{xx} & L_{xy} & L_{xt} \\ L_{yx} & L_{yy} & L_{yt} \\ L_{tx} & L_{ty} & L_{tt} \end{bmatrix}, \sigma_{\mu} = s_1 \sigma$$
 • non-maximum suppression. STC points by imposing some

• where $L_{xx} = 2^{nd}$ order derivative of L

- constraints
- Response function : $H = det(\mu) k.trace^{3}(\mu), k<1/27$

STB – Spatio temporal blob

- 3DLoG
 - extended from Laplace of Gaussian (LoG)
 - $3DLoG(x, y, t, \sigma, \tau) = \sigma^3 \nabla^2 g = \frac{x^2 + y^2 + t^2 3\sigma\tau}{2\pi\tau^3} e^{-\frac{x^2 + y^2 + t^2}{2\sigma\tau}}$
 - g-3D Gaussian kernel with the spatial and temporal scale parameters
 - \bullet σ Spatial scale parameter, τ temporal scale parameter
 - $\nabla^2 g$ is the Laplace operator of g
- The extreme values of the second-order
- May be approximated by 3D DoG. derivative.

Summary

- Video: A sequence of frames: I(x,y,t)
- Compressed representation required
 - Motion compensation, Residual error encoding + Motion
 Vectors + Intra frame prediction
- Shot boundary detection
 - Dissimilarity among consecutive frames
 - Classification of a frame to transition types
- Spatio Temporal Features
 - Spatio Temporal Corner (STC): Harris-3D detector
 - Spatio Temporal Blob (STB): 3D LoG, 3D DoG

