QUIZ 3 SOLUTIONS

ADRIAN PĂCURAR

Time: 15 minutes

Problem 1. Evaluate the limit $\lim_{x\to 2} \frac{x-2}{\sqrt{x^2-4}}$. (Hint: rationalize the denominator.) (a) -2 (b) 2 (c) 0 (d) ∞ (e) $-\infty$

We multiply by $\frac{\sqrt{x^2-4}}{\sqrt{x^2-4}}$ to rationalize, giving us

$$\lim_{x \to 2} \frac{(x-2)\sqrt{x^2 - 4}}{x^2 - 4} = \lim_{x \to 2} \frac{(x-2)\sqrt{x^2 - 4}}{(x-2)(x+2)} = \lim_{x \to 2} \frac{\sqrt{x^2 - 4}}{x+2} = 0$$

so the correct answer is (c).

Problem 2. Evaluate $\lim_{x\to +\infty} \frac{7x^9 - 4x^5 + 2x - 13}{-3x^9 + x^8 - 5x^2 + 2x}$. (a) $\frac{7}{3}$ (b) 0 (c) $\frac{-7}{3}$ (d) ∞ (e) $-\infty$

We look at the leading terms (the terms with the highest exponent in the numerator and denominator), so our limit is the same as

$$\lim_{x \to +\infty} \frac{7x^9}{-3x^9} = -\frac{7}{3}$$

so the correct answer is (c).

Problem 3. For which value of c is the function f(x) continuous at x = 4?

$$f(x) = \begin{cases} c^2 - 2cx + 3x & x \le 4\\ \frac{cx}{-2} - x + 7 & x > 4 \end{cases}$$
(a) 7 (b) 1 (c) 3 (d) -1 (e) -3

We want the left and right limits be equal. To do so, we plug in x=4 for the top and bottom branches (they are both polynomials so they are continuous, and the limits equal the function values), and set them equal to each other, giving us

$$c^2 - 8c + 12 = -2c - 4 + 7$$

which is the same as $c^2 - 6c + 9 = 0$. This factors as a perfect square $(c-3)^2 = 0$, so c=3 is the unique solution that makes f continuous. So the correct answer is (c).

Problem 4. Compute the limit $\lim_{x\to-\infty}\frac{\sin x}{x}$. (Hint: Squeeze theorem). (a) $-\infty$ (b) ∞ (c) 1 (d) -1 (e)

(a)
$$-\infty$$

(b)
$$\infty$$

$$(d) -1$$

Notice that

$$\frac{-1}{x} \le \frac{\sin x}{x} \le \frac{+1}{x}$$

 $\frac{-1}{x} \leq \frac{\sin x}{x} \leq \frac{+1}{x}$ and that $\lim_{x \to -\infty} \frac{-1}{x} = \lim_{x \to -\infty} \frac{+1}{x} = 0$, so by Squeeze theorem

$$\lim_{x \to -\infty} \frac{\sin x}{x} = 0$$

and the correct answer is option (e).