

Radar Systems

Lecture 10.

Radar Transmitter/Receiver

구 자 열

차 례

- Introduction
- Radar Transmitter
- Radar Waveform Generator and Receiver
- Radar Transmitter/Receiver Architecture

Radar Block Diagram

Simplified Radar Transmitter/Receiver System Block Diagram

- Radar transmitter and receiver can be divided into two important subsystems
 - High power transmitter sections
 - Low power sections

Radar waveform generator and receiver

Radar Range Equation Revisited

Parameters Affected by Transmitter/Receiver

 Radar range equation for search (S/N = signal to noise ratio)

$$S/N = \frac{P_{av} A_e t_s \sigma}{4\pi \Omega R^4 k T_s L}$$

- S/N of target can be enhanced by
 - Higher transmitted power P_{av}
 - Lower system losses L
 - Minimize system temperature T_s

P_{av} = average power

A_e = antenna area

 $t_s = scan time for \Omega$

P_{av} = average power

σ = radar cross section

 Ω = solid angle searched

R = target range

T_s = system temperature

L = system loss

The design of radar transmitter/receiver affects these three parameters directly

Introduction

- Ideal Transmitter
 - Provides sufficient energy to detect the target
 - Easily modulated to produce desired waveforms
 - Generate stable noise free signal for good clutter rejection
 - Provide needed tunable bandwidth
 - High efficiency
 - High reliability
 - Easily maintainable
 - Long life
 - Small and light weight for the intended application
 - Affordable
- Obviously compromise is necessary!

차 례

- Introduction
- Radar Transmitter
- Radar Waveform Generator and Receiver
- Radar Transmitter/Receiver Architecture

Power Amplification Process

- Amplification occurs in multiple stages
 - Driver amplifiers
 - High power amplifier
- Requirement for power amplifier
 - Low noise
 - Minimum distortion to input signal

Method to Obtain Higher Power

1 – Single amplifier transmitter Single antenna

2 – Parallel combining of HPA's Single antenna

- Higher transmitted power can be obtained by combining multiple amplifiers in parallel
 - Lower efficiency (due to combiner losses)
 - Increased complexity

Types of High Power Amplifiers

Vacuum tube amplifiers and solid state amplifiers

	Vacuum Tube Amplifiers	Solid State Amplifiers	
Output Power	High (10 kW to 1 MW)	Low (10's to 100's W)	
Cost per Unit	High (\$10's K to \$300 K)	Low (\$100's)	
Cost per Watt	\$1 – 3	Varied	
Size	Bulky and heavy	Small foot print	
Applications	Dish antenna Passive array	Active array Digital array	

Average Power Output Versus Frequency

Tube Amplifiers versus Solid State Amplifiers

Tube Amplifiers versus Solid State Amplifiers

Methods of Power Amplification

- Tube amplifiers
 - Krystrons
 - Travelling wave tubes
 - CFAs
- Solid State amplifiers
 - Solid state power transistors

Issues to be traded off in choice of high power amplifier

- Average power output at desired operating frequency
- Amplifier efficiency
- Instantaneous and tunable bandwidth
- Duty cycle
- Gain
- Reliability
- Cost

Klystron – High Power Amplifier

- First developed in early 1950s
- Bandwidth as great as 12%
- RF conversion efficiency 35 50%
- Coherent- pulse to pulse

Adapted from Skolnik Reference 1

MIT/LL Millstone Hill Radar

Klystron Tubes (Vacuum Devices)

Output device	Klystrons (2)	
Center Frequency	1295 MHz	
Bandwidth	8 MHz	
Peak Power	3 MW	
Average Power	120 kW	
Pulse Width	1 ms	
Beam Width	0.6°	
Antenna Diameter	84 ft	

Originally designed in early 1960's

How Big are High Power Klystron Tubes?

Millstone Hill Radar Transmitter Room

Traveling Wave Tube

Capable of wide bandwidth at high power

Adapted from Skolnik Reference 1

- Expensive
- Similar to Klystron, linear beam tubes
- Interaction between RF field and electron beam over length of tube
 - RF wave mixes with electron beam and transfers DC energy from electron beam to increase energy of RF wave, causing wave to be amplified

Photograph of Traveling Wave Tubes

Another Type of Tube Amplifiers

Center Freq: 3.3 GHz Bandwidth: 400 MHz Peak Power: 160 kW Duty Cycle: 8 % S Band VTS-5753 COUPLED CAVITY TWT

Center Freq: 10.0 GHz
Bandwidth: 1 GHz
Peak Power: 100 kW
Duty Cycle: 35 %
Gain: 50 dB

S-Band Transmitter

Crossed Field Amplifier (CFA)

- Capable of :
 - High coherent power
 - Good efficiency
 - Wide bandwidth
- Relatively low gain (10 dB)
- Generally noisier and less stable

- Resembles magnetron and employs crossed electric and magnetic fields
 - Electrons emitted from cylindrical cathode
 - Under action of crossed electromagnetic fields, electrons form rotating bunches
 - Bunches of electrons drift in phase with RF signal and transfer their
 DC energy to the RF wave to produce amplification

Crossed Field Amplifier

CPI SFD 233G

Courtesy of CPI. Used with permission.

X-Band (9.0 to 9.5 GHZ)

Peak Output Power 900 kW

Duty Cycle .1%

Pulsewidth 0.83 µsec

Liquid cooled

Comparison of Different Types of High Power Amplifier Tubes

	Klystron	Traveling Wave Tube	Crossed Field Amplifier
Voltage	1 MW requires 90kV	1 MW requires 90kV	1 MW requires 40kV
Gain	30 - 70 dB	30 - 70 dB	8 - 30 dB
Bandwidth	1 - 8 %	10 - 35 %	10 - 15 %
X-Rays	Severe, but lead is reliable	Severe, but lead is reliable	Not a Problem
Efficiency			
Basic	15 - 30 %	15 - 30 %	35 - 45 %
With Depressed	40 - 60 %	40 - 60 %	NA
Collectors			
Ion Pump	Required with Large Tubes	Required with Large Tubes	Self Pumping
Weight	Higher	Higher	Lower
Size	Larger	Larger	Smaller
Cost	Medium	Higher	Medium
Spurious Noise	- dB 90	- dB 90	- dB 55 to 70
Usable Dynamic Range	40-80 dB	40-80 dB	a few dB

Coaxial Cavity Magnetron

Lines

Power Oscillator not an power amplifier

Poor noise and stability characteristics

Restricted use for MTI

Average power is limited

1 - 2 kilowatts

Good for short-medium range radars

Not coherent pulse to pulse

Coaxial Cavity Magnetron

Well suited for civil marine radars

Magnetron Operation

Electric and magnetic field are perpendicular

- Electrons emitted from cathode travel around circular path in bunches
- Electrons interact with e-m fields and give up their DC energy to the RF field
- RF energy is output with coupling slot

Adapted from Skolnik Reference 3

Coaxial Magnetrons

X-Band (9.275 to 9.325 GHZ)

S-Band (2.7 to 2.9 GHZ)

Courtesy of CPI. Used with permission.

Model SFD 303B

Peak Output Power 1 MW
Duty Cycle .1%
Pulsewidth 3.5 µsec
Liquid cooled
Fixed frequency

Model VMS 1143B

Peak Output Power 3 MW
Duty Cycle .08%
Pulsewidth 2.0 µsec
Liquid cooled
Mechanically tunable

Solid State Power Transistors

Available Commercial Devices

Bipolar PH3135-90S Pulsed Power Transistor 3.1-3.5 GHz, 90 W

PHA2731-190M Pulsed Power Amplifier Module 190 Watts 2.7 - 3.1 GHz, 200 us Pulse, 10% Duty

UF28150J MOSFET Power Transistor 100-500 MHz, 150 W

- Solid state power transistors are basic building blocks of solid state amplifiers
- Advantages of solid state power amplifiers
 - Small footprint
 - Low profile
 - High reliability

Courtesy of MA/COM Technology Solutions Used with permission

Solid State RF Power Amplifiers

- Solid state power generation device
 - Transistor amplifier (silicon bipolar and gallium arsenide)
- Inherently low power and low gain
- Operates with low voltages and has high reliability
- To increase output power, transistors are operated in parallel with more than 1 stage
- A module might consist of 8 transistors
 - Four in parallel as the final stage, followed by
 - Two in parallel, as the second stage, followed by
 - Two in series, as the driver stages
- Solid state power devices cannot operate at high peak power
 - Fifty watt average power transistor cannot operate at much more than 200 watts of peak power without overheating
 - Pulse compression needed for reasonable range resolution

Uses of Solid State Amplifiers in Radar

- Transmitter for low power application
- High power transmitter
 - A large number of microwave transistors are combined with microwave circuitry
- Many modules distributed on a mechanically steered planar array
 - A "3 D" radar
- A module at each of the many elements of an electronically scanned phased array
 - Called an "active aperture"

Solid State Radar Examples - TPS-59

TPS-59

- Air surveillance radar developed for the US Marine Corps
- •Rotating planar L-Band array 30 ft by 15 ft
- •Each transmitter module has 10 of 100 watt amplifier units consisting of two 55 watt silicon bipolar transistors (7 watts of gain) driven by a smaller 25 watt device
- •Each transmitter module feeds one of 54 rows

Courtesy of Lockheed Martin Used with Permission

Example of Solid State Transmitter

Radar Surveillance Technology Experimental Radar (RSTER)

- 14 channels with 140 kW total peak power
 - 8 kW average power
- Each channel is supplied by a power amplifier module
 - 10 kW peak power

Solid State Active Phased Array Radar PAVE PAWS

PAVE PAWS

- First all solid state active aperture electronically steered phased array radar
- UHF Band
- 1792 active transceiver T/R modules, 340 W of peak power each

Courtesy of Raytheon. Used with permission.

Courtesy of Raytheon. Used with permission.

Radar Transmitter/Receiver Timeline

- Sensitive radar receiver must be isolated from the powerful radar transmitter
 - Transmitted power typically 10 kW 1 MW
 - Receiver signal power in 10's μW 1 mW
- Isolation provided by duplexer switching

Duplexer Function

Antenna

Transmit Interval

Antenna

Receive Interval

Transmitter ON

- Connect antenna to transmitter with low loss
- Protect receiver during transmit interval

Receiver ON

- Connect Antenna to receiver with low loss
- (transmitter must be turned off in this interval)
- Limiter/switch is used for additional protection against strong interference

HPA = High Power Amplifier

차 례

- Introduction
- Radar Transmitter
- Radar Waveform Generator and Receiver
- Radar Transmitter/Receiver Architecture

Simplified Functional Descriptions

- Waveform generator and receiver share several similar functions
 - Amplification, filtering and frequency conversion

Frequency Conversion Concepts

Waveform Generator

Frequency Upconversion Baseband to L Band

- Upconverter translates the waveform frequency to a higher frequency
- Reason:
 - Waveform generation less expensive at lower frequency

Receiver

Frequency Downconversion
L Band to Baseband

- Downconverter translates the receive frequency to a lower frequency
- Reason:
 - Dynamic range of A/D converter higher at lower frequency

Simplified System Block Diagram

Waveform Generator and Receiver

- This example shows only a single stage conversion
 - In general, design based on multiple stage of frequency conversion are employed
- Multiple stages of amplification and filtering are also used

Block Diagram of Radar Receiver

Components from the Antenna to the First Amplifier are the most Important in Determining the Noise Level of a Radar Measurement

차 례

- Introduction
- Radar Transmitter
- Radar Waveform Generator and Receiver
- Radar Transmitter/Receiver Architecture

Dish Radars

KWAJALEIN

Conventional radar transmitter/receiver design employed

Radar Antenna Architecture Comparison

Dish Radar **Passive Array Radar Active Array Radar** Modules Beam agility · Beam agility Very low cost Effective radar resource Frequency diversity Effective radar resource management management Low loss High cost · Higher cost Dedicated function · More complex cooling · Requires custom Slow scan rate transmitter and high-power · Requires custom phase shifters transmitter High loss High loss

Active Phased Array Radar

Transmit/Receive function distributed to each module on array

Active Array Radars

Large Phased Arrays

Passive Array Radar

Active Array Radar

Courtesy of Raytheon. Used with permission.

Passive Array Radar

Cobra Dane 15.3K active elements

Courtesy of Raytheon. Used with permission.

Courtesy of Raytheon. Used with permission.

Digital Array Radar Architecture

Digital on Receive

- Each active analog T/R module is followed by an A/D for immediate digitization
 - Multiple received beams are formed digitally by the digital beamformer

Digital Array Example

Digital On Receive

RSTER (14 Digital Receivers)

Digital Array Radar Architecture II

Digital on Transmit & Receive

- Both waveform generation and receiver digitization are performed within each T/R module
 - Complete flexibility on transmit and receive

Q & A

