Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra

Denis Helic

KTI, TU Graz

Oct 9, 2014

1 / 74

Big picture: KDDM

Outline

- Matrices and Vectors
- Matrix Multiplication
- Operations and Properties
- 4 Eigenvalues and Eigenvectors

Matrix

Matrix

Matrix is a rectangular array of numbers, i.e. $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Matrix: Examples

$$\mathbf{A} = \begin{pmatrix} 23 & 12 & 56 \\ 18 & 89 & 45 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 45 & 17 \\ 22 & 15 \\ -18 & 14 \\ 21 & -13.6 \end{pmatrix}$$

- $\bullet \ \boldsymbol{A} \in \mathbb{R}^{2 \times 3}$
- ullet $\mathbf{B} \in \mathbb{R}^{4 \times 2}$
- m and n are matrix dimensions

Multiplication with a scalar

Scalar multiplication

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a scalar $\alpha \in \mathbb{R}$ the scalar multiplication of \mathbf{A} with α is the matrix $\mathbf{B} = \alpha \mathbf{A} \in \mathbb{R}^{m \times n}$, where

$$B_{ij} = \alpha A_{ij}$$

$$\alpha \mathbf{A} = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \dots & \alpha a_{mn} \end{pmatrix}$$

Multiplication with a scalar: example

$$2 \cdot \begin{pmatrix} 23 & 12 & 56 \\ 18 & 89 & 45 \end{pmatrix} = \begin{pmatrix} 46 & 24 & 112 \\ 36 & 178 & 90 \end{pmatrix}$$

Vector

Vector

Vector is a matrix consisting of one column, i.e. $\mathbf{x} \in \mathbb{R}^n$. A row vector is a matrix consisting of one row.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Vector: Example

$$\mathbf{x} = \begin{pmatrix} 10\\12\\15\\-100 \end{pmatrix}$$

- ullet $\mathbf{x} \in \mathbb{R}^4$
- *n* is the vector dimension

Matrix Multiplication

Matrix Multiplication

The product of two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ is the matrix

 $\mathbf{C} = \mathbf{AB} \in \mathbb{R}^{m \times p}$, where

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \tag{1}$$

 For the product to exist: the number of columns in A must equal the number of rows in B

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 10 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 10 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
$$a_{11} = 1 \cdot 4 +$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 10 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
$$a_{11} = 1 \cdot 4 + 2 \cdot 10 +$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 10 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} 30 & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$a_{11} = 1 \cdot 4 + 2 \cdot 10 + 3 \cdot 2 = 30$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 10 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} 30 & 39 \\ a_{21} & a_{22} \end{pmatrix}$$

$$a_{12} = 1 \cdot 5 + 2 \cdot 2 + 3 \cdot 10 = 39$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 10 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} 30 & 39 \\ 34 & a_{22} \end{pmatrix}$$

$$a_{21} = 3 \cdot 4 + 2 \cdot 10 + 1 \cdot 2 = 34$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 10 & 2 \\ 2 & 10 \end{pmatrix} = \begin{pmatrix} 30 & 39 \\ 34 & 29 \end{pmatrix}$$

$$a_{22} = 3 \cdot 5 + 2 \cdot 2 + 1 \cdot 10 = 29$$

Vector-Vector products

Inner product

Given two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ the quantity $\mathbf{x}^T \mathbf{y}$, sometimes called the inner product or dot product, is a real number given by

$$\mathbf{x}^T \mathbf{y} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots & y_n \end{pmatrix} = \sum_{i=1}^n x_i y_i$$

• The inner products are just special cases of matrix multiplication

Inner product: Example

$$\begin{pmatrix} 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \\ 10 \end{pmatrix} = 29$$

$$\mathbf{x}^T \mathbf{y} = 3 \cdot 5 + 2 \cdot 2 + 1 \cdot 10 = 29$$

Vector-Vector products

Outer product

Given two vectors $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$ the matrix $\mathbf{x}\mathbf{y}^T$ is called the outer product of the vectors. The elements of the matrix are given by $(\mathbf{x}\mathbf{y}^T)_{ii} = x_i y_i$, i.e.

$$\mathbf{x}\mathbf{y}^{\mathsf{T}} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \begin{pmatrix} y_1 & y_2 & \dots & y_n \end{pmatrix} = \begin{pmatrix} x_1y_1 & x_1y_2 & \dots & x_1y_n \\ x_2y_1 & x_2y_2 & \dots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \dots & x_my_n \end{pmatrix}$$

Matrix-Vector products

Matrix-vector product

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^n$, their product is a vector $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^m$, i.e.

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_{1i}x_i \\ \sum_{i=1}^n a_{2i}x_i \\ \vdots \\ \sum_{i=1}^n a_{mi}x_i \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1^\mathsf{T}\mathbf{x} \\ \mathbf{a}_2^\mathsf{T}\mathbf{x} \\ \vdots \\ \mathbf{a}_m^\mathsf{T}\mathbf{x} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 10 \\ 2 \end{pmatrix} = \begin{pmatrix} 30 \\ y_2 \end{pmatrix}$$

$$y_1 = 1 \cdot 4 + 2 \cdot 10 + 3 \cdot 2 = 30$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 10 \\ 2 \end{pmatrix} = \begin{pmatrix} 30 \\ 34 \end{pmatrix}$$

$$y_2 = 3 \cdot 4 + 2 \cdot 10 + 1 \cdot 2 = 34$$

Matrix-Vector products

Matrix-vector product

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{x} \in \mathbb{R}^m$, their (left row) product is a vector $\mathbf{y}^t = \mathbf{x}^T \mathbf{A} \in \mathbb{R}^n$, i.e.

$$\mathbf{x}^{\mathsf{T}}\mathbf{A} = (x_{1} \quad x_{2} \quad \dots \quad x_{m}) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$= (\sum_{i=1}^{m} a_{i1}x_{i} \quad \sum_{i=1}^{m} a_{i2}x_{i} \quad \dots \quad \sum_{i=1}^{m} a_{in}x_{i}) = (\mathbf{x}^{\mathsf{T}}\mathbf{a}_{1} \quad \mathbf{x}^{\mathsf{T}}\mathbf{a}_{2} \quad \dots \quad \mathbf{x}^{\mathsf{T}}\mathbf{a}_{m})$$

$$\begin{pmatrix} 4 & 10 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 34 & y_2 & y_3 \end{pmatrix}$$
$$y_1 = 4 \cdot 1 + 10 \cdot 3 = 34$$

$$\begin{pmatrix} 4 & 10 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 34 & 28 & y_3 \end{pmatrix}$$
$$y_2 = 4 \cdot 2 + 10 \cdot 2 = 28$$

$$\begin{pmatrix} 4 & 10 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 34 & 28 & 22 \end{pmatrix}$$
$$y_3 = 4 \cdot 3 + 10 \cdot 1 = 22$$

Properties of matrix multiplication

- Matrix multiplication is associative: (AB)C = A(BC)
- Matrix multiplication is distributive: A(B + C) = AB + AC
- Matrix multiplication is not commutative: $AB \neq BA$

Matrix Sum

Matrix Sum

The sum of two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{m \times n}$ is the matrix $\mathbf{C} = \mathbf{A} + \mathbf{B} \in \mathbb{R}^{m \times n}$, where

$$C_{ij} = A_{ij} + B_{ij} (2)$$

• For the sum to exist: the dimension of **A** and **B** must be equal

Matrix Sum: Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 4 & 5 & 10 \\ 2 & 2 & 10 \end{pmatrix} = \begin{pmatrix} 5 & 7 & 13 \\ 5 & 4 & 11 \end{pmatrix}$$

Linear combinations of vectors

Linear combination

Given are k vectors $\mathbf{x}_i \in \mathbb{R}^n$ and k scalars $\alpha_i \in \mathbb{R}$. Then the linear combination of those vectors with those scalars is defined as:

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_k \mathbf{x}_k = \sum_{i=1}^k \alpha_i \mathbf{x}_i$$
 (3)

Linear combinations of vectors: example

$$\begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 6 \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{4}$$

ullet In fact, any vector in \mathbb{R}^3 is a linear combination of those three vectors

Identity matrix

Identity matrix

The identity matrix, denoted $\mathbf{I} \in \mathbb{R}^{n \times n}$ is a square matrix with ones on the diagonal and zeros everywhere else, that is

$$I_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

ullet The identity matrix has the property that for all $oldsymbol{A} \in \mathbb{R}^{m imes n}$

$$AI = A = IA \tag{5}$$

Identity matrix

$$\mathbf{I} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Diagonal matrix

Diagonal matrix

A diagonal matrix, denoted $\mathbf{D} \in \mathbb{R}^{n \times n}$ is a square matrix with all non-diagonal elements zero. This is typically denoted $\mathbf{D} = \operatorname{diag}(d_1, d_2, \dots, d_n)$, with

$$D_{ij} = \begin{cases} d_i, & i = j \\ 0, & i \neq j \end{cases}$$

• The identity matrix is then I = diag(1, 1, ..., 1)

Diagonal matrix

$$\mathbf{D} = egin{pmatrix} 5 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 6 & 0 \ 0 & 0 & 0 & -10 \end{pmatrix}$$

The Transpose

Transpose

The transpose of a matrix results from "flipping" the rows and columns. Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, its transpose $\mathbf{A}^T \in \mathbb{R}^{n \times m}$, is the $n \times m$ matrix whose entries are given

$$A_{ij}^T = A_{ji}$$

- We have been using the transpose for describing row vectors
- Transpose of a column vector is a row vector

Properties of transpose

- $\bullet (\mathbf{A}^T)^T = \mathbf{A}$
- \bullet $(AB)^T = B^T A^T$
- $\bullet (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$

Transpose: Example

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}^{\mathsf{T}} = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{pmatrix}$$

Symmetric Matrices

Symmetric matrices

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A} = \mathbf{A}^T$.

- ullet For any matrix $oldsymbol{A} \in \mathbb{R}^{n \times n}$, the matrix $oldsymbol{A} oldsymbol{A}^T$ is symmetric
- Proof left for exercise;)
- Symmetric matrices occur very often in practice and they have many nice properties

Symmetric Matrices: Example

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix} \tag{6}$$

4□ > 4ⓓ > 4≧ > 4≧ > ½ 990

Trace

Trace

The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted by $tr(\mathbf{A})$ is the sum of diagonal elements in the matrix:

$$tr(\mathbf{A}) = \sum_{i=1}^{n} A_{ii} \tag{7}$$

Trace: example

$$tr(\mathbf{A}) = tr(\begin{pmatrix} 5 & 0 & 15 & 0 \\ 0 & 1 & 0 & 21 \\ 0 & -19 & 6 & 0 \\ 10 & 12 & 16 & -10 \end{pmatrix}) = 2$$

Norms

Norm

A norm of a vector $||\mathbf{x}||$ is informally a measure of the "length" of the vector. For example, we have the commonly used Euclidean or ℓ_2 norm,

$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
 (8)

• Note that: $||\mathbf{x}||_2^2 = \mathbf{x}^T \mathbf{x}$

⟨□⟩ ⟨□⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨≡⟩ ⟨□⟩

Norms

Norm

A norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies 4 properties:

- For all $\mathbf{x} \in \mathbb{R}^n$, $f(\mathbf{x}) \ge 0$ (non-negativity)
- 2 $f(\mathbf{x}) = 0$, if and only if $\mathbf{x} = \mathbf{0}$ (definiteness)
- **3** For all $\mathbf{x} \in \mathbb{R}^n$, $t \in \mathbb{R}$, $f(t\mathbf{x}) = |t|f(\mathbf{x})$ (homogeneity)
- For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (triangle inequality)
 - Norms are used to normalize vectors and obtain unit vectors (vectors of "length" 1)

Norms

• Other examples of norms include ℓ_1 , ℓ_∞ , or more generally ℓ_p , with $p \geq 1$

$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$

$$||\mathbf{x}||_{\infty} = \max_{i} |x_{i}|$$

$$||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Norms: example

$$\mathbf{x} = \begin{pmatrix} 4 \\ -10 \\ 2 \end{pmatrix}$$

$$||\mathbf{x}||_1 = 16$$

$$||\mathbf{x}||_2 = 10.95$$

$$||\mathbf{x}||_{\infty} = 10$$

Linear independence

Linear independence

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} \subset \mathbb{R}^n$ is said to be linearly independent if no vector can be represented as a linear combination of the remaining vectors.

Linear independence

A set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} \subset \mathbb{R}^n$ is said to be linearly independent if no scalars $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ exist such that

$$\sum_{i=1}^k \alpha_i \mathbf{x}_i = \mathbf{0}$$

Linear independence: example

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{x}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{x}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Linear dependence

 Conversly, if one vector belonging to the set can be represented as a linear combination of the remaining vectors the vectors are linearly dependent

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 $\mathbf{x}_2 = \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix}$ $\mathbf{x}_3 = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}$

• Dependent because: $\mathbf{x}_3 = -2\mathbf{x}_1 + \mathbf{x}_2$

Vector bases

Span

A set of n vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \subset \mathbb{R}^n$ is said to span \mathbb{R}^n , i.e. they form a basis for the space. Any vector $\mathbf{v} \in \mathbb{R}^n$ can be written as a linear combination of \mathbf{x}_1 through \mathbf{x}_n .

Vector bases

Orthogonal basis

An orthogonal basis $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \subset \mathbb{R}^n$ satisfies

$$\mathbf{x}_i^T \mathbf{x}_j = 0$$
, if $i \neq j$

Orthonormal basis

An orthonormal basis $\{\mathbf x_1, \mathbf x_2, \dots, \mathbf x_n\} \subset \mathbb R^n$ satisfies

$$\mathbf{x}_{i}^{T}\mathbf{x}_{j} = 0$$
, if $i \neq j$
 $\mathbf{x}_{i}^{T}\mathbf{x}_{i} = 1$, if $i = j$

Orthonormal basis: example

$$\mathbf{x}_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \qquad \mathbf{x}_2 = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \qquad \mathbf{x}_3 = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

ullet Orthonormal basis for \mathbb{R}^3

Rank

Rank

The column rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the size of the largest subset of columns that constitute a linearly independent set. The row rank is the largest subset of rows that constitute a linearly independent set.

• For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ the columns rank is equal to row rank and both quantities are referred to as the rank of \mathbf{A} , denoted as $rank(\mathbf{A})$

Rank: example

$$rank(\begin{pmatrix} 5 & 0 & 15 \\ 0 & 1 & 0 \\ -5 & 1 & -15 \end{pmatrix}) = 2$$

Properties of the matrix rank

- Some basic properties of the rank:
 - **⑤** For $A \in \mathbb{R}^{m \times n}$, $rank(A) \leq min(m, n)$. If rank(A) = min(m, n) then A is said to be full rank.
 - **2** For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $rank(\mathbf{A}) = rank(\mathbf{A}^T)$
 - **3** For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, $rank(\mathbf{AB}) = min(rank(\mathbf{A}), rank(\mathbf{B}))$
 - **4** For $A, B \in \mathbb{R}^{m \times n}$, $rank(A + B) \leq rank(A) + rank(B)$

The Inverse

Inverse

The inverse of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is denoted \mathbf{A}^{-1} and is a unique matrix such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}=\mathbf{A}\mathbf{A}^{-1}$$

- Not all matrices have inverses
- ullet If ${f A}^{-1}$ exists we say that ${f A}$ is invertible or non-singular
- ullet If $oldsymbol{\mathsf{A}}^{-1}$ does not exist we say that $oldsymbol{\mathsf{A}}$ is non-invertible or singular

The Inverse

- For A to be invertible it must be full rank
- There are many alternative conditions for invertability
- The inverse is used in e.g. solving the system of linear equations: $\mathbf{A}\mathbf{x} = \mathbf{b}$
- With $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$
- Then $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

Properties of inverse

- $\bullet (A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $\bullet (\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$

Inverse: Example

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$\begin{pmatrix} 6 & 2 \\ 1 & 5 \end{pmatrix}^{-1} = \frac{1}{28} \begin{pmatrix} 5 & -2 \\ -1 & 6 \end{pmatrix}$$

Orthogonal matrices

Inverse

A square matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthonormal (orthogonal to each other and normalized). It follows from the definition:

$$\mathbf{U}^T\mathbf{U} = \mathbf{I} = \mathbf{U}\mathbf{U}^T$$

• In other words, the inverse of an orthogonal matrix is its transpose

Orthogonal matrices: Example

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}^T \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}^T$$

The determinant

Determinant

The determinant is a real number associated with a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, denoted $det(\mathbf{A})$. Depending on n it can be calculated by different arithmetic expressions.

$$det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$
$$det\begin{pmatrix} 6 & 2 \\ 1 & 5 \end{pmatrix} = 28$$

Eigenvalues and eigenvectors

Given a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{A} and $\mathbf{x} \in \mathbb{C}^n$ is the corresponding eigenvector if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}, \mathbf{x} \neq \mathbf{0}$$

- Intuitively, multiplying A by the vector x does not change the direction of x
- \bullet The new vector points in the same direction but is scaled by factor λ

• Also, for any eigenvector $\mathbf{x} \in \mathbb{C}^n$, and scalar $c \in \mathbb{C}$:

$$\mathbf{A}(c\mathbf{x}) = c\mathbf{A}\mathbf{x} = c\lambda\mathbf{x} = \lambda(c\mathbf{x})$$

- ullet Thus, $c{f x}$ is also an eigenvector with eigenvalue λ
- ullet For this reason, we usually normalize the eigenvector ${f x}$ to have length 1

• We can rewrite the equation from above (it holds: $\mathbf{x} \neq \mathbf{0}$):

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{I}\mathbf{x}$$

$$\lambda \mathbf{I}\mathbf{x} - \mathbf{A}\mathbf{x} = 0$$

$$(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = 0$$

• $(\lambda \mathbf{I} - \mathbf{A})\mathbf{x} = 0, \mathbf{x} \neq \mathbf{0}$ has a non-zero solution only if the matrix $(\lambda \mathbf{I} - \mathbf{A})$ is singular, i.e.:

$$det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

- ullet This can be expanded in a very large polynomial in λ , with maximal degree n
- We then find the roots of that polynomial and obtain the eigenvalues $\lambda_1, \dots, \lambda_n$

• To find the eigenvector corresponding to the eigenvalue λ_i we simply solve the linear equation:

$$(\lambda_i \mathbf{I} - \mathbf{A})\mathbf{x} = 0$$

Eigenvalues and eigenvectors: example

$$\mathbf{A} = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$$

$$det(\lambda \mathbf{I} - \mathbf{A}) = det(\begin{pmatrix} \lambda - 2 & 4 \\ 1 & \lambda + 1 \end{pmatrix}) = (\lambda - 2)(\lambda + 1) - 4$$
$$= \lambda^2 - 2\lambda + \lambda - 2 - 4 = \lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2)$$

- Thus, $\lambda_1 = 3$, and $\lambda_2 = -2$ are eigenvalues of **A**
- We now solve $(\lambda_i \mathbf{I} \mathbf{A})\mathbf{x} = 0$ for each eigenvalue to find the corresponding eigenvectors

Eigenvalues and eigenvectors: example

• For $\lambda_1 = 3$

$$\begin{pmatrix} 1 & 4 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_1 + 4x_2 = 0$$

 $x_1 + 4x_2 = 0$

- Thus, $x_1 = -4x_2$, and we might pick $\mathbf{x} = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$
- And we normalize to: $\begin{pmatrix} -4/\sqrt{17} \\ 1/\sqrt{17} \end{pmatrix}$

Eigenvalues and eigenvectors: example

• For $\lambda_1 = -2$

$$\begin{pmatrix} -4 & 4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$-4x_1 + 4x_2 = 0$$
$$x_1 - x_2 = 0$$

- Thus, $x_1 = x_2$, and we might pick $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- And we normalize to: $\binom{1/\sqrt{2}}{1/\sqrt{2}}$

Properties of eigenvalues and eigenvectors

- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, eigenvalues $\lambda_1, \dots, \lambda_n$, and associated eigenvectors x_1, \ldots, x_n the following are properties:
 - The trace of **A** is equal to the sum of its eigenvalues:

$$tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

The determinant of **A** is equal to the product of its eigenvalues:

$$det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

Properties of eigenvalues and eigenvectors

- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, eigenvalues $\lambda_1, \dots, \lambda_n$, and associated eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ the following are properties:
 - The rank of A is equal to the number of non-zero eigenvalues of A
 - **4** If **A** is non-singular then $1/\lambda_i$ is an eigenvalue of \mathbf{A}^{-1} with associated vector \mathbf{x}_i , i.e. $\mathbf{A}^{-1}\mathbf{x}_i=(1/\lambda_i)\mathbf{x}_i$
 - **5** The eigenvalues of a diagonal matrix $\mathbf{D} = \operatorname{diag}(d_1, \ldots, d_n)$ are just the diagonal entries d_1, \ldots, d_n

Eigenvalues and eigenvectors of symmetric matrices

- There are two important properties of eigenvalues and eigenvectors of symmetric matrices
- All eigenvalues are real
- The eigenvectors are orthonormal
- If the eigenvectors are linearly independent then we can decompose ${\bf A}$ as ${\bf U}{\bf \Lambda}{\bf A}^T$
- **U** is an orthogonal matrix where colums are the eigenvectors
- $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$