Prova 2 - Álgebra Linear 2022-1 - Prof. João Paixão

Justifique suas respostas e coloque cada item em uma página.

- 1. Seja P um plano onde os vetores são perpendículares ao vetor $c = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
 - (a) Determine a menor distância do vetor $v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ até o plano P.
 - (b) Seja $M_{3\times3}$ a matriz que projeta ortogonalmente todos os vetores de \mathbb{R}^3 no plano P. Determine um vetor $w_{3\times1}$ com norma igual à 3, tal que Mw=0.
 - (c) Determine a terceira (somente a terceira) coluna da matriz $M_{3\times3}$ do item anterior.
 - (d) Determine todos os vetores no plano P.
- 2. Seja $R=\{x|x^ta=0,x^tb=0,x^tc=0\}$ uma reta em \mathbb{R}^3 com $a=\begin{bmatrix}1\\0\\9\end{bmatrix},$

 $b = \begin{bmatrix} 1 \\ 1 \\ 13 \end{bmatrix}, c = \begin{bmatrix} 0 \\ 1 \\ k \end{bmatrix}. \text{ Determine } k \in \mathbb{R} \text{ (usando o fato que } R \text{ \'e uma reta)}$ e depois determine um vetor v na reta R tal que $\|v\| = 1$.

Seja

$$\begin{bmatrix} | & | & | & | \\ a_1 & a_2 & a_3 & a_4 \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & v_3 & v_4 \\ | & | & | & | \end{bmatrix} \begin{bmatrix} 3 & 4 & 2 & 4 \\ 0 & 7 & 0 & 5 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

e v_1, v_2, v_3 e $v_4 \in \mathbb{R}^4$ tem norma igual à 1 e são perpendiculares entre si.

- (a) Usando as propriedades algébricas do produto interno, determine o cosseno entre a_3 e a_1 .
- (b) Determine $c_1, c_2 \in \mathbb{R}$ tal que para todo $d_1, d_2 \in \mathbb{R}$, $dist(c_1v_1 + c_2v_2, a_3) \leq dist(d_1v_1 + d_2v_2, a_3)$.
- (c) Usando as propriedades algébricas do produto interno, determine $z \in \mathbb{R}$ não-nulo tal que $zv_1 = v_2$, se possível. Justifique algebricamente se não for possível.

$$(a) 2\sqrt{2} = \sqrt{8} = \frac{4}{\sqrt{2}} \text{ OK}$$

$$\begin{array}{c} (0) \begin{bmatrix} 3/\sqrt{2} \\ 0 \\ 3/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 3\sqrt{2}/2 \\ 0 \\ 3/\sqrt{2} \end{bmatrix} \quad \text{OK}$$

$$C) \begin{bmatrix} -1/2 \\ 0 \\ 1/2 \end{bmatrix}$$

$$\begin{array}{c} A \\ \chi_2 \\ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\ + \begin{array}{c} \chi_3 \\ 0 \\ 1 \end{bmatrix} \\ = \begin{array}{c} -\chi_3 \\ \chi_2 \\ \chi_3 \end{array} \end{array}$$

2) parte 1
$$K = 4$$
 ok

parte 2 $\frac{1}{\sqrt{98}} \begin{bmatrix} -9 \\ -4 \end{bmatrix} = \frac{1}{7\sqrt{2}} \begin{bmatrix} -9 \\ -4 \end{bmatrix} = \begin{bmatrix} -9\sqrt{2}/4 \\ -2\sqrt{3}/44 \end{bmatrix}$ ok

$$\binom{3}{4}$$
 $\binom{2}{13} = \frac{2\sqrt{13}}{13}$ $\frac{6}{15}$

$$\left[\begin{array}{c} 5 \end{array}\right] \left[\begin{array}{c} 2 \\ 0 \end{array}\right] \text{ oil } dist = \sqrt{17}$$

$$V_i^T(ZV_i) = V_i^TV_2$$