

SMT-Based Variability Analyses in FeatureIDE

Technische

Joshua Sprey, <u>Chico Sundermann</u>, <u>Sebastian Krieter</u>, Michel Nieke, Jacopo Mauro, Thomas Thüm, Ina Schaefer, February 5, 2020

Carbody = Automatic + -Bluetooth

Explain

Operations

Prop

Typically SAT solver are employed

Carbody = Automatic A -Bluetooth

Analyses of Feature Models W Ports Carbody Navigation | Bluetooth Marual Eti Automostic g Mandatony GearboyTest Optional A Or Group Navigation - USB Feature Dead Feature M Europe → Gearbox False-Optional Feature Redundant Constraint GPSAntenna → USB ECarborty & Gearboy Gearboy & Bartin - Navigation

Analyses of Feature Models

Analyses of Configurations

Attribute Range Analysis

Calories (long)
 Number of occurences: 19
 Minimal sum of value: 203
 Maximal sum of value: 679
 Crganic Food (boolean)
 Number of occurences: 19
 Winimal sum of value: 1.99
 Minimal sum of value: 1.99
 Maximal sum of value: 1.99

- Input
 - Feature Model
- Operations (14)
 - Verification
 - Statistics

Carbody = Automatic A -Bluetooth

Analyses of Feature Models (Catoo) (Rido) (

- Input
 - Feature Model
 - Configuration
- Operations (5)
 - Verification
 - Support

- Input
 - Extended Feature Model
 - Configuration
- Operations (1)
 - Attribute Ranges

Facing Complex Systems

N_370025078_F_01627E3604E8

Execute Comment and Comment an

Satisfiability Module Theories (SMT)

Functionality: SAT < SMT

Satisfiability Module Theories (SMT)

Functionality: SAT < SMT

Efficiency: SAT ? SMT

Contributions

1. Overview of variability analyses

Contributions

- 1. Overview of variability analyses
- 2. Tool support to compare SAT and SMT

Contributions

- 1. Overview of variability analyses
- 2. Tool support to compare SAT and SMT
- 3. Empirical evaluation of SAT vs SMT
 - RQ₁ Are SMT solvers superior to SAT solvers regarding efficiency when performing variability analyses?
 - RQ₂ Is a combination of SAT and SMT solvers more efficient for variability analyses?
 - RQ₃ Is it efficient to calculate attribute ranges for partial configurations with SMT solvers?

Tool Support With SAT and SMT Solvers

Sat4J •SAT Solver •FeatureIDE	VS	SMTInterpol SMT Solver JavaSMT	Z3 •SMT Solver •JavaSMT
1	Feature Models		_/
1	Configurations		_/
1	Realization Artifacts		1
X	Pure SMT Analyses	X	1

Experiment 1

Analyses of Feature Models

- 116 real-world feature models
- Features:

$$1,178 - 1,408$$

CTCs:

$$816 - 956$$

Experiment 1

Analyses of Feature Models

- 116 real-world feature models
- Features:

$$1,178 - 1,408$$

CTCs:

816 - 956

Experiment 2

Analyses of Configurations

- 1 large-scale real-world feature model
- Features:

18,616

CTCs:

1,369

Experiment 1

Analyses of Feature Models

- 116 real-world feature models
- Features:

$$1,178 - 1,408$$

CTCs:

816 - 956

Experiment 2

Analyses of Configurations

- 1 large-scale real-world feature model
- Features:

18,616

CTCs:

1,369

Experiment 3

Optimization Analysis

- 3 real-world extended feature models
- Features:

$$19 - 377$$

CTCs:

$$0 - 12$$

Results Experiment 1

Results Experiment 2

Discussion RQ₁ & RQ₂

RQ₁: **Are SMT solvers superior** to SAT solvers **regarding efficiency** when performing variability analyses?

- No, but ...
 - JavaSMT overhead
 - Missing optimizations
 - Suboptimal encoding

Discussion RQ₁ & RQ₂

RQ₁: **Are SMT solvers superior** to SAT solvers **regarding efficiency** when performing variability analyses?

- No, but ...
 - JavaSMT overhead
 - Missing optimizations
 - Suboptimal encoding

RQ₂: Is a combination of SAT and SMT solvers more efficient for variability analyses?

- Yes, for ...
 - Explanations
 - Decision propagation
 - Redundant constraints
 - Dead features

Results Experiment 3

Discussion RQ₃

RQ₃: Is it efficient to calculate attribute ranges for partial configurations with SMT solvers?

- It depends...
 - For small models: on-the-fly
 - For larger models: on-demand
- Possible improvements
 - JavaSMT overhead
 - Missing optimizations
- Approximation as an alternative

Conclusion

