Processus aléatoires avec application en finance Prof Olivier Scaillet TA Alexandre Engulatov

TP 4

Exercice 1

Une usine de biscuits fabrique des biscuits contenant des éclats de chocolat. La répartition des éclats suit une distribution de Poisson de paramètre $\lambda=0.08$ par cm². Les biscuits sont rectangulaires et mesurent 3×4 cm. Les clients appellent le service des réclamations s'ils ne trouvent pas d'éclats dans le biscuit.

- 1. Quelle est la probabilité de ne trouver aucun éclat dans le biscuit?
- 2. Quelle doit être la valeur de λ pour que le taux de réclamation soit inférieur à 1%?

Exercice 2

Lors d'un bombardement, la chute des bombes suit une distribution de Poisson de paramètre $\lambda=10$ bombes par km².

- 1. Quelle est la probabilité de ne pas trouver de bombes dans un rayon de 350 mètres?
- 2. Quelle est la distance moyenne pour trouver une bombe (en supposant par exemple que l'on soit parachuté en un point quelconque du champs de bataille)?
- 3. Que devrait être la taux de bombardement pour que la distance moyenne jusqu'à la prochaine bombe soit de 100 m?

Exercice 3

Soit $\{N_t, t \geq 0\}$ un processus de Poisson tel qu'en moyenne le nombre d'évènements survenant entre 0 et t soit égal à λt . Montrez que la variable $M_t = N_t - \lambda t$ est une martingale. Identifiez la partie prévisible de N_t .

Exercice 4

Les marchés financiers sont influencés par des "bonnes" et des "mauvaises" nouvelles. Soit N_t^B le nombre total d'arrivées de "bonnes" nouvelles jusqu'au moment t et N_t^M le nombre total d'arrivées de "mauvaises" nouvelles jusqu'au moment t. N_t^M et N_t^B sont des processus de Poisson indépendants de paramètre λt . Montrez que la variable $M_t = N_t^B - N_t^M$ est une martingale par rapport à la filtration

- $\mathcal{F}_t = \sigma(N_s^B, N_s^M, s \leq t),$
- $\mathcal{G}_t = \sigma(M_s, s < t)$.

Exercice 5

Soit S_t une variable telle que les incréments $S_t - S_s, t > s$ sont indépendants et de loi $\mathcal{N}(0, \sigma^2(t-s))$, et $S_0 = 0$. Les variables suivantes sont-elles des martingales?

a.
$$Z_t = S_t^2$$
.

b.
$$Z_t = S_t^2 - \sigma^2 t$$
.

Exercice 6

Soit X une chaîne de Markov avec l'espace des états S et la matrice de transition $P = (p_{ij})$. Soit $\psi \colon S \to \mathbb{R}$ une fonction qui satisfait

$$\sum_{i \in S} p_{ij} \psi(j) = \lambda \psi(i),$$

pour un $\lambda \neq 0$. Montrez que, si $\mathbb{E}|\psi(X_n)| < \infty$, alors $\lambda^{-n}\psi(X_n)$ définit une martingale.

Exercice 7

Montrez que si Z_t est une martingale par rapport à la filtration \mathcal{F}_t nous avons

$$E[Z_t] = k$$
, $\forall t$, et où k est une constante.

Exercice 8

Soit Z_1, Z_2, Z_3, \ldots des v.a. indépendantes et identiquement distribuées telles que

$$P[Z_n = 1] = P[Z_n = -1] = \frac{1}{2}, \ \forall n$$

Soit

$$X_n = \sum_{i=0}^n Z_i, \quad n = 1, 2, \dots$$

avec $X_0 = 0$. Le processus X_n est une marche aléatoire symétrique.

- 1. Montrez que les filtrations $\mathcal{F}_n = \sigma\left(X_0, X_1, \dots, X_n\right)$ et $\mathcal{G}_n = \sigma\left(Z_0, Z_1, \dots, Z_n\right)$ contiennent la même information.
- 2. Montrez que X_n est une martingale par rapport à la filtration \mathcal{F}_n .
- 3. Montrez que $X_n^2 n$ est une martingale par rapport à la filtration \mathcal{G}_n .

Exercice 9

Soit W_t un mouvement brownien standard. Les variables suivantes sont-elles des Martingales?

- 1. W_t
- 2. $Z_t = W_t \mu t$
- 3. $Z_t = W_t^2 t$

Exercice 10

Soient X_t des v.a. indépendantes de distribution normale standard. Quelle est la distribution des incréments de $Z_t = \sqrt{t}X_t$? Z_t est-il un mouvement brownien?

Exercice 11

Montrez que $Z_t = -W_t$ est un processus de Wiener si W_t l'est.

Exercice 12

Si W_t et \widetilde{W}_t sont deux mouvements browniens indépendants et ρ une constante entre -1 et 1. Quelle est la distribution de $Z_t = \rho W_t + \sqrt{1-\rho^2}\widetilde{W}_t$? Z_t est-il un mouvement brownien?