TA

CK

23/11/2018

```
# Import ATUS Summary file
ATUS.SUM <- import('atussum 0317.csv', setclass = "tibble")
# Import ATUS CPS File
ATUS.CPS <- import('atuscps_0317.csv', setclass = "tibble")
# Create a diary date column
ATUS.SUM$TUDIARYDATE <- as.Date(paste0(substr(ATUS.SUM$TUCASEID, 1, 6), '01'), "%Y%m%d")
# Add months as a column as a derivative of the TUCASEID variable
ATUS.SUM$TUMONTH <- as.numeric(substr(ATUS.SUM$TUCASEID, 5, 6))
# Get birth year as a variable for purpose of classifying generation
ATUS.SUM$TUBIRTHYEAR <- ATUS.SUM$TUYEAR - ATUS.SUM$TEAGE
#Classify Generations
ATUS.SUM$TUGENERATION <- ifelse(ATUS.SUM$TUBIRTHYEAR < 1946, "Silent Generation",
                                 ifelse(ATUS.SUM$TUBIRTHYEAR < 1965, "Baby Boomers",</pre>
                                        ifelse(ATUS.SUM$TUBIRTHYEAR < 1981, "Generation X", "Millenials"</pre>
# Filter CPS down to just relevant variables. GEDSTFIPS is state, GEDIV is division and GEREG is region
ATUS.CPS.States <- select(ATUS.CPS, TUCASEID, GESTFIPS, GEDIV, GEREG)
ATUS.CPS.States <- distinct(ATUS.CPS.States)
# Create variables to be added to a data frame with relevant gender activities
Working <- ATUS.SUM[, grep("^t05", names(ATUS.SUM))]</pre>
House.Maintenance <- ATUS.SUM[, grep("^t0204", names(ATUS.SUM))]</pre>
Vehicle.Maintenance <- ATUS.SUM[, grep("^t0207", names(ATUS.SUM))]</pre>
Housework <- ATUS.SUM[, grep("^t0201", names(ATUS.SUM))]</pre>
Food.Preparation <- ATUS.SUM[, grep("^t0202", names(ATUS.SUM))] + ATUS.SUM$t070101 + ATUS.SUM$t070103
Childcare <- ATUS.SUM[, grep("^t03", names(ATUS.SUM))]</pre>
# Create a data frame from relevant variables within ATUS Summary
# Childnum there for future use
Gender.Roles.Data <- select(ATUS.SUM, TUCASEID, TESEX, TEAGE, TUFNWGTP, TUYEAR, TRCHILDNUM, TUMONTH, TU
# Join this dataset with the CPS states info by unique id number of particiannt
# Add in relevant categories
Gender.Roles.Data$Working <- rowSums(Working)</pre>
Gender.Roles.Data$House.Maintenance <- rowSums(House.Maintenance)</pre>
Gender.Roles.Data$Vehicle.Maintenance <- rowSums(Vehicle.Maintenance)
Gender.Roles.Data$Housework <- rowSums(Housework)</pre>
Gender.Roles.Data$Food.Preparation <- rowSums(Food.Preparation)
Gender.Roles.Data$Childcare <- rowSums(select(Childcare, t030101:t030399))</pre>
# Join this dataset with the CPS states info by unique id number of particiapnt
Gender.Roles.Data <- inner_join(Gender.Roles.Data, ATUS.CPS.States, by = 'TUCASEID')
Gender.Roles.Data <- filter(Gender.Roles.Data)</pre>
Gender.Roles.Data$TESEX[Gender.Roles.Data$TESEX == 1] <- "M"</pre>
Gender.Roles.Data$TESEX[Gender.Roles.Data$TESEX == 2] <- "F"</pre>
weighted.valuesM <- c()</pre>
weighted.valuesF <- c()</pre>
for (variable in c("Working", "House.Maintenance", "Vehicle.Maintenance", "Housework", "Food.Preparation
    Gender.Roles.Data[,paste0('weighted.', variable)] <- 0</pre>
    for (sex in c("M", "F")) {
      for (region in 1:4) {
```

```
for (year in unique(Gender.Roles.Data$TUYEAR)) {
            for (month in unique(Gender.Roles.Data$TUMONTH)) {
              for(generation in c("Silent Generation", "Baby Boomers", "Generation X", "Millenials")){
                Filtered.Data <- filter(Gender.Roles.Data, TESEX == sex, TUYEAR == year, TUMONTH == mon
                bottom.sum <- sum(Filtered.Data$TUFNWGTP)</pre>
                top.sum <- sum(Filtered.Data$TUFNWGTP * Filtered.Data[,variable])</pre>
                weighted.values <- top.sum / bottom.sum
                Gender.Roles.Data[Gender.Roles.Data$TESEX == sex & Gender.Roles.Data$TUYEAR == year & G
                if (Filtered.Data$TESEX[1] == "M") {
                  weighted.valuesM <- c(weighted.valuesM, weighted.values)</pre>
                  weighted.valuesF <- c(weighted.valuesF, weighted.values)</pre>
            }
          }
     }
    }
Difference <- abs(weighted.valuesM - weighted.valuesF)
Gender.Differences <- data.frame(Year = rep(rep(2003:2017, each = 48), 4), Month = rep(rep(1:12, each =
Gender.Differences <- data.frame(Gender.Differences, Difference[1:2880], Difference[2881:5760], Difference
Gender.Roles.Train <- filter(Gender.Roles.Data, TUMONTH %% 2 == 0)</pre>
Gender.Roles.Validate <- filter(Gender.Roles.Data, TUMONTH %% 2 != 0)</pre>
# Make a variable for all years.
Dates = c()
for (i in 4:17) {
    if (i < 10) {
        Dates[i-3] \leftarrow paste(paste0("200", i), "01", "01", sep = "-")
        Dates[i-3] \leftarrow paste(paste0("20", i), "01", "01", sep = "-")
}
# Commented out lines show how to introduce knots to the models
for (variable in c("Working", "House.Maintenance", "Vehicle.Maintenance", "Housework", "Food.Preparation
    # Start building models for the data
    n <- nrow(Gender.Roles.Train)</pre>
    # model1 <- glm(as.formula(paste0('weighted.',variable,' ~ ns(TUDIARYDATE, knots = (c(as.Date("2006
    model1 <- glm(as.formula(paste0('weighted.',variable,' ~ ns(TUDIARYDATE)')), data = Gender.Roles.Tr</pre>
    model2 <- update(model1, . ~ . + TESEX)</pre>
    \# model3 <- update(model1, . ~ -1 + TESEX + TESEX:ns(TUDIARYDATE, knots = (c(as.Date('2006-01-01'),
    model3 <- update(model1, . ~ -1 + TESEX + TESEX:ns(TUDIARYDATE, knots = c(as.Date(Dates))))</pre>
    model4 <- update(model3, .~. + GEREG + GEREG:ns(TUDIARYDATE, knots = c(as.Date(Dates))))</pre>
    model5 <- update(model3, .~. + TUGENERATION + TUGENERATION:ns(TUDIARYDATE, knots = c(as.Date(Dates)</pre>
    # model5 <- update(model3, .~. + GEREG + GEREG:ns(TUDIARYDATE, knots = c(as.Date(Dates))))</pre>
    # Use same method as in lab 5 to plot them
    # change the model number in the predict functions below for different models
    male.prediction <- predict.glm(model5, newdata = filter(Gender.Roles.Train, TESEX == 'M'), se = TRU
    female.prediction <- predict.glm(model5, newdata = filter(Gender.Roles.Train, TESEX == 'F'), se = T
    df <- data.frame(age = c(filter(Gender.Roles.Train, TESEX == 'M')$TEAGE, filter(Gender.Roles.Train,
    model3_plot <- ggplot(df, aes(x=date, y=prediction, colour=type)) +</pre>
```

```
geom_line() +
geom_ribbon(aes(ymin = prediction - prediction_error, ymax = prediction + prediction_error), alpha
print(model3_plot)
}
```

Warning: glm.fit: algorithm did not converge

Trends in working for each generation

Data Source: ATUS Survey

Warning: glm.fit: algorithm did not converge

Trends in house maintenance for each generation

Trends in vehicle maintenance for each generation

Trends in housework for each generation

Trends in food preparation for each generation

Trends in childcare for each generation

Data Source: ATUS Survey

Validate the data

```
# Make a variable for all years.
Dates <- c()
for (i in 4:17) {
         if (i < 10) {
                  Dates[i-3] \leftarrow paste(paste0("200", i), "01", "01", sep = "-")
                  Dates[i-3] \leftarrow paste(paste0("20", i), "01", "01", sep = "-")
        }
}
# Commented out lines show how to introduce knots to the models
for (variable in c("Working", "House.Maintenance", "Vehicle.Maintenance", "Housework", "Food.Preparation
         # Start building models for the data
        n <- nrow(Gender.Roles.Validate)</pre>
         \# model1 <- glm(as.formula(paste0('weighted.',variable,' ~ ns(TUDIARYDATE, knots = (c(as.Date("2006"))))
        model1 <- glm(as.formula(paste0('weighted.',variable,' ~ ns(TUDIARYDATE)')), data = Gender.Roles.Va</pre>
        model2 <- update(model1, . ~ . + TESEX)</pre>
         # model3 \leftarrow update(model1, ... \sim -1 + TESEX + TESEX:ns(TUDIARYDATE, knots = (c(as.Date('2006-01-01'), total = (c(as.Date('2006-01-01'), total
        model3 <- update(model1, . ~ -1 + TESEX + TESEX:ns(TUDIARYDATE, knots = c(as.Date(Dates))))</pre>
        model4 <- update(model3, .~. + GEREG + GEREG:ns(TUDIARYDATE, knots = c(as.Date(Dates))))</pre>
        model5 <- update(model3, .~. + TUGENERATION + TUGENERATION:ns(TUDIARYDATE, knots = c(as.Date(Dates)</pre>
         \# model5 <- update(model3, .~. + GEREG + GEREG:ns(TUDIARYDATE, knots = c(as.Date(Dates))))
         # Use same method as in lab 5 to plot them
         # change the model number in the predict functions below for different models
        male.prediction <- predict.glm(model5, newdata = filter(Gender.Roles.Validate, TESEX == 'M'), se = '
         female.prediction <- predict.glm(model5, newdata = filter(Gender.Roles.Validate, TESEX == 'F'), se
         df <- data.frame(age = c(filter(Gender.Roles.Validate, TESEX == 'M') TEAGE, filter(Gender.Roles.Val
```

```
model3_plot <- ggplot(df, aes(x=date, y=prediction, colour=type)) +
geom_line() +
geom_ribbon(aes(ymin = prediction - prediction_error, ymax = prediction + prediction_error), alpha
print(model3_plot)
}</pre>
```

Warning: glm.fit: algorithm did not converge

Trends in working for each generation

Data Source: ATUS Survey

Warning: glm.fit: algorithm did not converge

Trends in house maintenance for each generation

Trends in vehicle maintenance for each generation

Trends in housework for each generation

Trends in food preparation for each generation

Trends in childcare for each generation

Data Source: ATUS Survey

Do on entire dataset

```
# Make a variable for all years.
Dates <- c()
for (i in 4:17) {
         if (i < 10) {
                  Dates[i-3] \leftarrow paste(paste0("200", i), "01", "01", sep = "-")
                  Dates[i-3] \leftarrow paste(paste0("20", i), "01", "01", sep = "-")
        }
}
# Commented out lines show how to introduce knots to the models
for (variable in c("Working", "House.Maintenance", "Vehicle.Maintenance", "Housework", "Food.Preparation
         # Start building models for the data
        n <- nrow(Gender.Roles.Data)</pre>
         \# model1 <- glm(as.formula(paste0('weighted.',variable,' ~ ns(TUDIARYDATE, knots = (c(as.Date("2006"))))
        model1 <- glm(as.formula(paste0('weighted.',variable,' ~ ns(TUDIARYDATE)')), data = Gender.Roles.Da</pre>
        model2 <- update(model1, . ~ . + TESEX)</pre>
         # model3 \leftarrow update(model1, ... \sim -1 + TESEX + TESEX:ns(TUDIARYDATE, knots = (c(as.Date('2006-01-01'), total = (c(as.Date('2006-01-01'), total
        model3 <- update(model1, . ~ -1 + TESEX + TESEX:ns(TUDIARYDATE, knots = c(as.Date(Dates))))</pre>
        model4 <- update(model3, .~. + GEREG + GEREG:ns(TUDIARYDATE, knots = c(as.Date(Dates))))</pre>
        model5 <- update(model3, .~. + TUGENERATION + TUGENERATION:ns(TUDIARYDATE, knots = c(as.Date(Dates)</pre>
         \# model5 <- update(model3, .~. + GEREG + GEREG:ns(TUDIARYDATE, knots = c(as.Date(Dates))))
         # Use same method as in lab 5 to plot them
         # change the model number in the predict functions below for different models
        male.prediction <- predict.glm(model5, newdata = filter(Gender.Roles.Data, TESEX == 'M'), se = TRUE
         female.prediction <- predict.glm(model5, newdata = filter(Gender.Roles.Data, TESEX == 'F'), se = TR
         df <- data.frame(age = c(filter(Gender.Roles.Data, TESEX == 'M') TEAGE, filter(Gender.Roles.Data, T
```

```
model3_plot <- ggplot(df, aes(x=date, y=prediction, colour=type)) +
    geom_line() +
    geom_ribbon(aes(ymin = prediction - prediction_error, ymax = prediction + prediction_error), alpha
    print(model3_plot)
}</pre>
```

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: algorithm did not converge

Warning: glm.fit: algorithm did not converge

Trends in working for each generation

Trends in house maintenance for each generation

Trends in vehicle maintenance for each generation

Trends in housework for each generation

Trends in food preparation for each generation

Trends in childcare for each generation

