Heuristic Analysis

Introduction

This document describes the comparison and analysis of several parameterised heuristics in their performance in playing Knight Isolation. The evaluation method is running a tournament agains several benchmark players. Each match starts with a randomly initialized game board, and each player pair with get to play the game twice as 1st player and 2nd player respectively for the match to be fair.

The custom players are defined in game_agent.py

The benchmark players are defined in sample_players.py

The tournament is run by tournament.py (a number of revisions are made to the original file in order to run more than three custom players)

Github: https://github.com/dingran1019/aind-2017may/tree/master/Isolation

Benchmark players

- Random: player that selects next move randomly without tree search
- MM_Open: player use minimax for search and score moves based on the number of available next moves
- MM_Center: player use minimax for search and score moves based on distance to center
- MM_Improved: player use minimax for search and score moves based on own number of available moves minus opponent's number of available moves
- AB_Open: same as MM_Open but has alpha-beta pruning and iterative deepening
- AB_Center: same as MM_Center but has alpha-beta pruning and iterative deepening
- AB_Improved: same as MM_Improved but has alpha-beta pruning and iterative deepening

Custom players

All custom players will use alpha-beta pruning and iterative deepening by default.

1. Diff_Agg_{aggressiveness}

This set of players call game_agent.score_differential_open_move() with parameter aggressiveness.

```
score = number_of_own_open_moves - aggressiveness * number_of_opponent_open_moves
```

Here we will study the following cases

- aggressiveness = 0: this is equivalent to the AB_Open case
- aggressiveness = 1: this is equivalent to the AB_Improved case
- aggressiveness = 2.5: more aggressive case
- aggressiveness = 0.5: less aggressive case
- aggressiveness = 1e6: this is similar to setting score = number_of_opponent_open_moves, i.e. soley focused on chasing opponent out of open moves

2. TV_Diff_V1 and TV_Diff_V2

These two players are time-variant (TV) differential score. The players have a aggressiveness setting based on the stage of the game (calculated by the percentage of blank positions on the board). TV_Diff_V1 uses aggressiveness of 2.5 in the first half of the game and aggressiveness of 0.5 in the second half of the game. TV_Diff_V2 is exactly the opposite.

3. LA_Diff_{aggressiveness}

This set of players call game_agent.score_look_ahead_differential_move() with parameter aggressiveness. Instead of looking at the available next moves, we look one step further.

For this player, we scan aggressiveness = 0, 0.5, 1, 2, 1e6. The aggressiveness has the same meaning as explained in Diff_Agg_{aggressiveness} section.

4. Wall and corner aware player

Out of curiosity, I implemented a variant of what was described here https://github.com/arjunmitrareddy/Artifical-Intelligence---Isolation-Game-Agent/blob/master/game_agent.py

The function is game_agent.score_wall_corner_aware_differential_open_move()

Results and discussions

Due to the close scores in some of the player pairs a large number of matches were executed to reduce the random fluctuations seen in tournament with a small number of matches (20~50).

The results from a tournament of 19600 matches (7 benchmark players x 14 custom players x 200 matches) are summarized below.

Diff_Agg_{x} players

Match #	Opponent	AB_Improved	Diff_Agg_0	Diff_Agg_0.5	Diff_Agg_1	Diff_Agg_2.5	Diff_Agg_inf
		Won Lost	Won Lost	Won Lost	Won Lost	Won Lost	Won Lost
1	AB_Improved	97 103	91 109	97 103	104 96	93 107	98 102
2	AB_Center	116 84	105 95	116 84	108 92	106 94	111 89
3	AB_Open	103 97	95 105	94 106	104 96	102 98	104 96
4	MM_Improved	147 53	141 59	138 62	143 57	147 53	139 61
5	MM_Center	178 22	169 31	177 23	178 22	175 25	184 16
6	MM_Open	154 46	148 52	152 48	150 50	146 54	154 46
7	Random	178 22	185 15	186 14	182 18	188 12	190 10
	Win Rate:	69.5%	66.7%	 68 . 6%	69.2%	68 . 4%	70.0%

TV_Diff_{x} and Wall_and_Corner players

Match #	Opponent	AB_Improved	TV_Diff_V1	TV_Diff_V2	Wall_and_Corner
		Won Lost	Won Lost	Won Lost	Won Lost
1	AB_Improved	97 103	101 99	92 108	88 112
2	AB_Center	116 84	106 94	98 102	101 99
3	AB_Open	103 97	95 105	104 96	91 109
4	MM_Improved	147 53	152 48	141 59	143 57
5	MM_Center	178 22	167 33	176 24	174 26
6	MM_Open	154 46	154 46	152 48	145 55
7	Random	178 22	185 15	187 13	190 10
	Win Rate:	69,5%	68.6%	67.9%	66.6%

Match #	Opponent	AB_Improved	LA_Agg_0	LA_Agg_0.5	LA_Agg_1	LA_Agg_2	LA_Agg_inf
		Won Lost	Won Lost	Won Lost	Won Lost	Won Lost	Won Lost
1	AB_Improved	97 103	96 104	105 95	111 89	99 101	103 97
2	AB_Center	116 84	111 89	109 91	110 90	111 89	106 94
3	AB_Open	103 97	104 96	118 82	112 88	116 84	107 93
4	MM_Improved	147 53	139 61	157 43	167 33	148 52	147 53
5	MM_Center	178 22	179 21	176 24	179 21	172 28	182 18
6	MM_Open	154 46	153 47	159 41	159 41	154 46	164 36
7	Random	178 22	176 24	189 11	183 17	178 22	181 19
	Win Rate:	69.5%	68 . 4%	72 . 4%	72 . 9%	69 . 9%	70 . 7%

(Y axis is win rate in %)

Considering the overall win rates:

- Diff_Agg_{x} did not show significant improvement over AB_Improved (equivalent to aggressiveness=1). With a setting of totally aggressive, i.e. aggressiveness = 1e6 (inf) being slightly better.
- The time-variant players also did not show benefit over AB_Improved either, related to the lack of performance in Diff_Agg_{x}.
- The look-ahead players LA_Agg_{x} consistently outperform AB_Improved with LA_Agg_1 being the best choice.
- The wall and corner aware player did not perform well, at least partially due to high complexity in evaluation.

Overall, I choose LA_Agg_1 as the best heuristic, with the following reasons:

- The overall win rates clearly indicate LA_Agg_1 is the best performing heuristic.
- In addition, several aggressiveness settings under this player family yielded top win rates somewhat suggesting robustness with this heuristic.
- The look-ahead action in LA_Agg_{x} is intuitive. It is a more complex evaluation compared to Diff_Agg{x} and TV_Diff_{x}, but the look-ahead action proves to indeed add game-play advantage.
- The look-ahead is different than searching one more depth because the board remains unchanged in such look-ahead action. So, the look-ahead of available next-next moves is only an estimate. This turned out to be a good tradeoff in terms of keep computation complexity low enough to go deeper with limited time. This might be the reason wall and corner aware player did not perform well due to overly complex evaluation functions.

(Y axis is win rate in %)