Chapitre 1

Martingales et temps d'arrêt en temps discret

1.1 Espace de probabilite filtré

Pour modélisé un phénomène stochastique dépendant du temps, le modéle mathématique est donné par :

- 1. Un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$,
- 2. Une fonctionnelle

$$\begin{cases} X: (\mathbb{R}_+ \times \Omega, \mathcal{B}(\mathbb{R}_+) \otimes \mathcal{F}) \to (E, \xi), \\ (t, \omega) \to X(t, \omega). \end{cases}$$

Pour chaque t fixé, l'état du système est une variable c'est-à-dire $\omega \to X(t,\omega)$ est mesurable. Pour $\omega \in \Omega$ fixé $t \to X(t,\omega)$ est appellée une trajectoire.

Définition 1.1 On appelle processus stochastique $(X_t)_{t\in I}$ à valeur dans (E,ξ) une famille de variable aléatoire indixé par le temps $t \geq 0$.

- Si I est un intervalle [a,b], on dit que l'étude se fait en temps continu.
- Si $I \subseteq \mathbb{N}$, on dit que le processus est à temps discret.

[©]SAOULI. M.A

Définition 1.2 Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $(\mathcal{F}_n)_{n \in \mathbb{N}}$ une famille croissante de sous tribus de $(\mathcal{F}_n)_{n \in \mathbb{N}}$ au sens d'inclusion, i.e.

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset ... \subset \mathcal{F}.$$

 $(\mathcal{F}_n)_{n\in\mathbb{N}}$ est appellée filtration de (Ω,\mathcal{F}) .

Remarque 1.1 $(\mathcal{F}_n)_{n\in\mathbb{N}}$ representer d'information disponible à l'instant n, il est logique que cette quantité d'information augmenter avec le temps.

Remarque 1.2 On dit que $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ est un espace de probabilité filtré (ou simplement espace filtré).

Définition 1.3 Soit $(X_n)_{n\in\mathbb{N}}$ un processus définie sur $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\in\mathbb{N}}, \mathbb{P})$, on dit que $(X_n)_{n\in\mathbb{N}}$ est $(\mathcal{F}_n)_{n\in\mathbb{N}}$ adapté si $\forall n\in\mathbb{N}$, la variable aléatoire X_n est \mathcal{F}_n -mesurable.

Remarque 1.3 Un processus $(X_n)_{n\in\mathbb{N}}$ est toujours adapté à sa filtration canonique $\mathcal{F}_n = \sigma(X_n, n \in \mathbb{N})$.

Proposition 1.1 Si $(X_n)_{n\in\mathbb{N}}$ est $(\mathcal{F}_n)_{n\in\mathbb{N}}$ adapté, alors la variable aléatoire X_m est \mathcal{F}_n mesurable $\forall m \leq n$.

Preuve. Soit B un borélien de \mathbb{R} (i.e $B \in \mathcal{B}(\mathbb{R})$, alors $X_m^{-1}(B) \in \mathcal{F}_m$, mais $\mathcal{F}_m \subset \mathcal{F}_n$, donc $X_m^{-1}(B) \in \mathcal{F}_n$, c'est à dire X_m est \mathcal{F}_n -mesurable.

Définition 1.4 Soit $(\Omega, \mathcal{F}, \mathbb{P})$ est espace de probabilité, On dit que N est un ensemble négligeable, Si la propabilité $\mathbb{P}(M) = 0$ telle que $M \subset \mathcal{F}$ contenant N.

Définition 1.5 On dit la filtration $(\mathcal{F}_t)_{t\in\mathbb{R}_+}$ vérifie les conditions habituelles si elle est continue a droite (c'est à dire $\mathcal{F}_t = \mathcal{F}_{t^+}$ pour tout t) et si \mathcal{F}_0 contient tous les ensemble \mathbb{P} négligeables de \mathcal{F} .

Définition 1.6 On dit que un processus $(\mathcal{F}_n)_{n\in\mathbb{N}}$ adapté $(H_n)_{n\in\mathbb{N}}$ est un processus croissante et prévisible si :

- 1. $\forall n \in \mathbb{N} : H_{n-1} \leq H_n$.
- 2. $\forall n \in \mathbb{N} : H_n \text{ est } \mathcal{F}_{n-1}\text{-mesurable.}$

1.2 Martingales discrètes

Définition 1.7 Un processus stochastique $M = (M_n)_{n \in \mathbb{N}}$ est une martingale si :

- 1) M_n est \mathcal{F}_n -adapté.
- 2) Pour tout $n \in \mathbb{N}$, M_n -est intégrable, i.e. $\mathbb{E}(|M_n| < \infty)$.
- 3) Pour tout n, $\mathbb{E}(M_{n+1}|\mathcal{F}_n) = M_n$.

Définition 1.8 Un processus $M = (M_n)_{n \in \mathbb{N}}$ et une $(\mathcal{F}_n$ -sur martingale (resp \mathcal{F}_n -sousmartingale) à temps discrét si on a:

- 1) M_n est \mathcal{F}_n -adapté.
- 2) Pour tout $n \in \mathbb{N}$, M_n -est variable aléatoire intégrable, i.e. $\mathbb{E}(|M_n| < \infty)$.
- 3) Pour tout n, $\mathbb{E}(M_{n+1}|\mathcal{F}_n) \leq M_n$, $(resp \geq)$.

Exemple 1.1 Soit $(M_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes intégrables de même espérance m finie. Pour tout $n\geq 1$,

on pose $S_n = M_1 + ... + M_n$. Montrons que la marche aléatoire $(M_n)_{n \ge 1}$ est une sur martingale, une martingale, une sous-martingale suivant que : m > 0; m = 0; m < 0:

- 1) S_n est intégrable $car : \mathbb{E}(|S_n|) = \mathbb{E}(|\sum_{i=1:n} M_i|) \le \sum_{i=1:n} \mathbb{E}(|M_i|) < \infty$.
- 2) $(M_n)_{n\in\mathbb{N}^*}$ est adapté à la filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ car $S_n = \sum_{i=1:n} M_i$, on a pour tout $i \leq n$, M_i est \mathcal{F}_i -mesurable, donc \mathcal{F}_n -mesurable, alors S_n est \mathcal{F}_n -mesurable.
- 3) On a:

$$\mathbb{E}\left(\left.S_{n+1}\right|\mathcal{F}_{n}\right) = \mathbb{E}\left(\left.\sum_{i=1:n+1}M_{i}\right|\mathcal{F}_{n}\right) = \mathbb{E}\left(\left.S_{n} + M_{n+1}\right|\mathcal{F}_{n}\right)$$
$$= S_{n} + \mathbb{E}\left(M_{n+1}\right) = S_{n} + m.$$

On voit bien que : S_n est martingale si m = 0, sur martingale si m > 0, sous martingale si m < 0.

Remarque 1.4 1) Il est claire que le processus $(M_n)_{n\geq 0}$ est une sous-martingale si et seulement si $(-M_n)_{n\geq 0}$ est un sur-martingale.

2) Le processus $(M_n)_{n\geq 0}$ est une martingale si et seulement si elle est a la fois une sousmartingale et sur-martingale.

Proposition 1.2 Soit $(M_n)_{n\geq 0}$ une martingale par rapport à la filtration \mathcal{F}_n resp (surmartingale, sous-martingale). Alors la suite $(\mathbb{E}(M_n))_{n\geq 0}$ est constante (resp décroissante, croissante).

Preuve. Supposons que $(M_n)_{n\geq 0}$ une sur-martingale par rapport à la filtration \mathcal{F}_n i.e.

$$\mathbb{E}\left(\left.M_{n+1}\right|\mathcal{F}_{n}\right) \leq M_{n}, \quad \forall n \in \mathbb{N},$$

ceci implique

$$\mathbb{E}\left(\mathbb{E}\left(\left.M_{n+1}\right|\mathcal{F}_{n}\right)\right) \leq \mathbb{E}\left(M_{n}\right), \quad \forall n \in \mathbb{N},$$

c'est-à-dire

$$\mathbb{E}\left(M_{n+1}\right) \leq \mathbb{E}\left(M_n\right), \quad \forall n \in \mathbb{N}.$$

De même facons pour les martingales et les sous-martingales.

Proposition 1.3 Soit $(M_n)_{n\geq 0}$ une martingale par rapport à la filtration \mathcal{F}_n , et soit Θ une fonction convexe telsque, pour tout $n \in \mathbb{N}$, $\Theta(M_n)$ – est intégrable, i.e. $\mathbb{E}(|\Theta(M_n)| < \infty)$. Alors $(\Theta(M_n))_{n\in\mathbb{N}}$ est une sous martingale.

Preuve. Par l'inégalité de Jensen, on obtient l'inégalité suivante :

$$\mathbb{E}\left(\left.\Theta\left(M_{n+1}\right)\right|\mathcal{F}_{n}\right) \geq \Theta\left(\mathbb{E}\left(\left.M_{n+1}\right|\mathcal{F}_{n}\right)\right) = \Theta\left(M_{n}\right),$$

alors $(\Theta(M_n))_{n\in\mathbb{N}}$ est une sous martingale.

Définition 1.9 On dit que un processus $(\mathcal{F}_n)_{n\in\mathbb{N}}$ adapté $(X_n)_{n\in\mathbb{N}}$ est un processus croissante et prévisible si :

- 1) $\forall n \in \mathbb{N} : X_{n-1} \leq X_n$.
- 2) X_n est \mathcal{F}_{n-1} -mesurable.

Proposition 1.4 (Décomposition de Doop) Tout sous martingale $(S_n)_{n\geq 0}$ s'écrit d'une facons unique sous la forme

$$S_n = M_n + X_n$$

ou $(M_n)_{n\geq 0}$ est une martingale par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$ et $(X_n)_{n\in\mathbb{N}}$ est un processus $(\mathcal{F}_n)_{n\in\mathbb{N}}$ adapté, croissante et prévisible telsque $X_0=0$.

Preuve. Voir 1.

1.3 Temps d'arrêt discrets

Définition 1.10 Une variable aléatoire T, à valeurs dans $\mathbb{N} \cup \{\infty\}$ est un temps d'arrêt pour la filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ si : $\forall n\in\mathbb{N}, \{T\leq n\}\in\mathcal{F}_n$.

Remarque 1.5 Il est important d'autoriser aux temps d'arrêt de prendre la valeur $+\infty$: Noter que l'évènement $\{T = \infty\}$ est automatiquement \mathcal{F}_{∞} -mesurable.

Remarque 1.6 On peut definit un temps d'arret T comme une variable aleatoire a valeur dans \mathbb{N} tell que $\{T=n\} \in \mathcal{F}_n$, car

$${T = n} = {T \le n} \cap {T \le n - 1}^c \in \mathcal{F}_n.$$

Définition 1.11 Si T un temps d'arrêt, on difinit la tribu des évènements anterieur a T par :

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \le n \} \in \mathcal{F}_n, \ \forall n \in \mathbb{N} \},$$

ou

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T = n \} \in \mathcal{F}_n, \ \forall n \in \mathbb{N} \},$$

on verifier facilement que \mathcal{F}_T est une tribu. En effet :1) On a $\emptyset \cap \{T = n\} \in \mathcal{F}_n$, donc $\emptyset \in \mathcal{F}_T$.

2) Soit $A \in \mathcal{F}_T$, alors

$$A^c \cap \{T=n\} = \underbrace{(A \cap \{T=n\})^c}_{\in \mathcal{F}_n} \cap \underbrace{\{T=n\}}_{\in \mathcal{F}_n} \in \mathcal{F}_n.$$

3) Soit $(A_k) \subset \mathcal{F}_T$ alors $\forall n \ et \ \forall k$

$$A_k \cap \{T = n\} \in \mathcal{F}_n \Rightarrow \bigcup_k (A_k \cap \{T = n\}) \in \mathcal{F}_n,$$

donc

$$\left(\bigcup_{k} A_{k}\right) \cap \left\{T = n\right\} \in \mathcal{F}_{n},$$

et donc

$$\left(\bigcup_{k} A_{k}\right) \in \mathcal{F}_{T}.$$

Exemple 1.2 L'exemple fondamental de temps d'arrêt est le suivant : Soit $(X_n)_{n\in\mathbb{N}}$ un processus adapté et A_n une famille d'ensembles mesurables dans l'espace ou $(X_n)_{n\in\mathbb{N}}$ prend ses valeurs. Alors la variable

$$T(\omega) = \inf \left\{ n : X_n \in A_n \right\},\,$$

est un temps d'arrêt (Par convention, on pose $\inf\{\emptyset\} = +\infty$). Pour le voir, il suffit d'écrire

$${T = n} = \bigcap_{k=0}^{k=n-1} {X_k \notin A_k} \cap {X_n \in A_n} \in \mathcal{F}_n.$$

Exemple 1.3 Temps d'arrêt constant. Si $T = n_0$, alors T est un temps d'arrêt et \mathcal{F}_T coincide avec \mathcal{F}_{n_0} . En effet

$$\{T = n\} = \begin{cases} \emptyset \text{ si } n \neq n_0, \\ \Omega \text{ si } n = n_0, \end{cases}$$

et donc $\{T=n\} \in \mathcal{F}_n$, de plus $\forall A \in \mathcal{F}_T$ l'évènement $A \cap \{T=n\} \in \mathcal{F}_n$, $\forall n \in \mathbb{N}$. Inversement : Si $A \in \mathcal{F}_{n_0}$ tell que $A \cap \{T=n\} \in \mathcal{F}_n$ et donc $A \in \mathcal{F}_T$.

Exemple 1.4 Si T est un temps d'arrêt and $\inf (T, n)$ est encore un temps d'arrêt fini. En effet :

 $Si \ m > n : \{\inf (T, n) = m\} = \emptyset \in \mathcal{F}_m, \ \forall m \in \mathbb{N}.$

Si $m \le n : {\inf (T, n) = m} = {T = m} \in \mathcal{F}_m, \forall m \in \mathbb{N}.$

Donc inf (T, n) est un temps d'arrêt.

Proposition 1.5 Soit T_1 et T_2 sont deux temps d'arrêt, alors T_1+T_2 , inf (T_1, T_2) et sup (T_1, T_2) , sont aussi temps d'arrêts.

Preuve. TD. ■

Proposition 1.6 Soit T un temps d'arrêt et X une variable aléatoire appartenant a \mathcal{F}_T , verifiant $X \geq T$. Alors X est un temps d'arrêt.

Preuve. TD. ■

Lemme 1.1 Soit $(X_n)_{n\in\mathbb{N}}$ un processus $(\mathcal{F}_n)_{n\in\mathbb{N}}$ adapté et T un temps d'arrêt on definit une variable aléatoire X_T en posant $X_T(\omega) = X_{T(\omega)}(\omega)$ si $T(\omega) < \infty$ (la valeur \mathcal{F} -mesurable de $X_T(\omega)$ quand $T = \infty$ est indéfferent). Alors X_T est \mathcal{F}_T -mesurable.

Preuve. TD. ■

or éverable sur les processes shochastique on temps continue Un processes shochastique est un modèle moithématique du hasand w. et lu temps t Definition: Une famille de vaniable alientoine X = (X) + E Trachashigne generalement I = IN, 7, 10; 2) processes equivalent. Démition: Deux processus sont dit égnivalent s'il on les mêmes loi morgin als Soit $x_{\varepsilon}: (n, F, P) \longrightarrow (E, \varepsilon)$ et x_{ϵ} $(n, \overline{r}, \overline{r}) \longrightarrow (\overline{\epsilon}, \overline{\epsilon})$ denx processors, on lina que les processos x et x' sont equivalent si x (t, ..., tm), m= 22, ... et A ∈ \$(18°) (XE, Xt., Xtm), a la mêne loi que (Xt, Xty, ..., Xtm) P { (16, 18, ..., xm) e A } = \$\$\(\frac{1}{6}, 1 \frac{1}{6}, ..., \frac{1}{6} \) e A }

3. Modification d'un processes our dit gre your processor x set y Jefin c our in the sept of portion le même espace (N, F, P), à valeur das l'espace (F, E), sont modification residente l'autre s.: $x_t = y_t \quad P \quad p \quad s$ Remarque: I x st est, claire que si x est une modification le y. alos X et / sont égnivalent Emeffetto # 11 - II) a mesasero Soit $N_t = \frac{5}{5} \times \pm \frac{1}{5} \times \frac{5}{5} \times \frac{$ P { (x, x, x, x) \ A} = P { (x, x, x) \ A \ (N, x) \ tm} = A 5 (/t, /tm) & A (Nt, / Nta) } = 13 (/t/2/--//tn) + A5 4. Industrigulatet Definition: 19118 Soient x et y leux processes défine our le mems espace (N, F, B), à valeur des (E, E). Les processes brochestique (Xp) et (Ye) sont lit indistingables si et seulement si I (Ye) et EI IP } X = X, ++ I} = 1 3 N: (N) = 0, X (w) = 1/2 (w) + W & M t.09 $\mathbb{P}\left\{ x_{t} = y_{t} ; t \in \mathcal{I} \right\} = 1$

Klmargue Si X et y sort indistrigable alos X et y sont modification l'un de coutre : la reciproque est famse En elfet On emprose que x et y sont in les tingable ales JN: P(N)=0 My. / (w) = / (w), TW &N. Si on pase N = UN , on Trouver TteI BN+ 19 P(N+)=0: 1/ (w) = 1/1(w) xut y sont modification l'un de l'autre. * Si I = IN ; N = UN + et mégligable * Si X It y sort continue à traite, ales UN + est négligable pro position: inditingable >: modification > en invalents 5. Procesus, adapte, progressix. Soit (or, F, I) un espace de probabilité Maintenant or note I = IR,

Definition une piltration estre famille, croissante de Sous tribu de Fr ; c Ft de set Definition: La filhation est contine à hoite si F = F := 0 F . Y te12+ + opelique vousigne Work la page 5 Exemple: $Y_{L}:(N,F,P)\longrightarrow (E,E)$ F = V (X; S (t); (F) la filhation naturelle Le xi v ser a circ aire is con de l'autr Soit X un processes définie seus (2, 5, 1P) muni I'une filtration (Fx) + 12+ on lit one (xx) est (Fx) est (Fx) adapte si Y t E 12 + X ent F_ merualle Définition: X est un processus mesurable si (Dex 16 , File & (PE;) ... > (E, E) > X (w) 12 (W, F) est mesuable

4

Definition: Soit (Fx) + 612; une filtration sur (N,FT) On litage x est progressivement mesurable si Yte IR+ $X: (\mathcal{Q} \times \mathcal{L}_{0}, t), \mathcal{F} \otimes \beta(\mathcal{L}_{0}, t)) \longrightarrow (\mathcal{E}, \mathcal{E})$ (w,t) $\longrightarrow X_t(w)$ est mesurable processes préviaible, procesus optionsnels Soit (N, FT, P) un espace de probabilité muni d'une Délinitions: ÉEIR + * La filtration (Ft) est ramplets si tout les ensembles It & mégligable appartient, a F * the feltration (Fx) + +12 verifier les consitions habituelles Fé est contine à droite et, complet. * on lit one l'espace (N. F., R) et rangeet si tout les négligable par rapport, à 12 rapportiennent, a Fi (or x 12) la plus petit triber vandant mesurable tout les processes, adapte.

e) on applle triber previole & su or x12, la plus petit tribu Ymesurable les processes, contine à gauche Desinition: Un processos X est optionmel si X: Nx12, = (E, E) est d. mesmable et il est previsible si innesty of was or into the state of the state of mesmable processos, a pouroissement interpendent stationnaire Definition: on appelle processes dodastique à actroisement. in Lipendant stationnaire (PA IS) un procesus à valler das 12 telque i) \ s < t \ x_t - x est independent le \(\frac{5}{5} \) \ \ \(\frac{7}{5} \); \ \ \(\frac{5}{5} \); \ \ \(\frac{5}{5} \) ii) Loi (x+ x5) := ly ne defrend opre de t-s isis) le prossous (Xt) + E/Rt est contine à troite pavec une linite à gauche (callag)

Soit (xt) un processors lylinis our (or, F, P) sai valeur dans (E, {) F= V(xs; s < t) 4 G = V(Xs: s > t) Delution: i) I y v. a G, - mesurable. E (/ / F_) = E (/ / X_). Yy Gz-mesmable bonnée + 2 Fz mesmalile et bornée $E(YZ/X_t) = E(Y/X_t) \times E(Z/X_t)$ proposition: Un procesors à accroissement indépendant et staticemmaine est un processos de markal. premul: Il fant montrer me E(e1(4x)/Fs) = E(e1(4, x+)/F(x,)) on, a. (e'(", 1/5) = E(e'(", 1/2+1/5)+1'(", 1/5)/5) = 1 (e' (u, 1/4-1/5), e' (u, 1/5)/F5) = e' ("xs). E(e' ("1/4-xs)/5) $z e^{i \langle u, x_s \rangle} = (e^{i \langle u, x_{\ell} - x_s \rangle})$ $= e^{i \langle u, x_s \rangle} \times ct$ $= v. a - v(x_s) - mesurable$

MODERNO IL MANONI (- a - d : (u, X+)/Fs) = E(e'(u, X+)/F(Xs)) ize (eight) /xs) PAIS et loi infinment diesible Scort X, an praesons à paccronstenent indépendant et Y = X = + (X = = - X =) + (-- + (Y - X) les vanishles àléatoire = (xt - x 1) sont integendeurs et de même loi tel que X = 2 y : 12 12 20 200 of (u) = la function conacteratione de xt et & (u) la fenction caracteristique de yun \$ (a) = (a) Une loi de probabilité est infiniment devisible si sa fanction caracteristique q (a) s'écrit $\phi_{\epsilon}(a) = (\Phi_{m}(a))^{m}$ on on (u) la fametion ronaclin'thèpe d'une antre lor S de probabilité

plai le probabilité. 3 to probabilité by. KS X FX le product de convalution Exemples: 1) doi te nomale d (4, 52) f(11) 2 1 exp(- \frac{1}{2} (\frac{x}{C})^2) \$. (a) = exp(inp - 1/2 (Fa)2) = $\exp\left(\frac{\sin y}{n} - \frac{1}{2}\left(\frac{\sin^2 y}{\sqrt{2}}\right)^n\right)$ = exp(in # - 1 2 u2) m ty 1 2 1 1 1 2 2 (5)2 In (a) la fonction caracterit gel de V (m, 2) e) Lor le paisson: \$\phi_{\mathbb{e}}(u) = \exp(\hat{h(e^{nu} - n)})\$ P(X=11) 2 e- > hu ★EIN \$ (a) z exp(h(ein-n)) = exp(1 (ein_1)) m 2 (B (u))m.

fm/2 1+712 3) Loi de , concluz. = exp (- c |a|) m lar de Gamma (a) = 1 (1-wub) d (1-1 ub) of

Mouvement Brownien

On se donne un espace (Ω, \mathcal{F}, P) et un processus $(B_t, t \geq 0)$ sur cet espace.

Définition. 2.1.1

Le processus $(B_t, t \ge 0)$ est un mouvement Brownien (standard) si

- a) $P(B_0 = 0) = 1$ (le mouvement Brownien est issu de l'origine).
- b) $\forall s \leq t, B_t B_s$ est une variable réelle de loi gaussienne, centrée de variance (t s).
- c) $\forall n, \forall t_i, 0 \leq t_0 \leq t_1 \dots \leq t_n$, les variables $(B_{t_n} B_{t_{n-1}}, \dots, B_{t_1} B_{t_0}, B_{t_0})$ sont indépendantes.

La propriété b) est la stationarité des accroissements du mouvement Brownien, la propriété c) traduit que le mouvement Brownien est à accroissements indépendants. On peut aussi écrire c) sous la forme équivalente suivante:

c') Soit $s \leq t$. La variable $B_t - B_s$ est indépendante de la tribu du passé avant s, soit $\sigma(B_u, u \leq s)$.

2.1.2Généralisation.

Le processus $X_t = a + B_t$ est un Brownien issu de a. On dit que X est un Brownien généralisé ou un MB de drift μ si $X_t = x + \mu t + \sigma B_t$ où B est un mouvement Brownien. La variable X_t est une variable gaussienne d'espérance $x + \mu t$ et de variance $\sigma^2 t$. Les v.a. $(X_{t_{i+1}} - X_{t_i}, t_0 \le t_1 \dots \le t_n)$ sont indépendantes.

2.3**Propriétés**

Dans ce qui suit, $B = (B_t, t \ge 0)$ est un mouvement Brownien et $\mathcal{F}_t = \sigma\{B_s, s \le t\}$ est sa filtration naturelle.

Processus gaussien 2.3.1

Proposition 2.3.1 Le processus B est un processus gaussien, sa loi est caractérisée par son espérance nulle et sa covariance $Cov(B_t, B_s) = s \wedge t$.

DÉMONSTRATION: Le caractère gaussien résulte de $\sum_{i=0}^{n} a_i B_{t_i} = \sum_{i=0}^{n} b_i (B_{t_{i+1}} - B_{t_i})$ avec $a_i = \sum_{i=0}^{n} b_i (B_{t_{i+1}} - B_{t_i})$ $b_i - b_{i+1}, i \le n-1, a_n = b_n$. La covariance est égale à $E(B_t B_s)$ car le processus est centré. Si $s \leq t$,

$$E(B_t B_s) = E((B_t - B_s)B_s + B_s^2) = E(B_t - B_s)E(B_s) + E(B_s^2) = s$$

On peut généraliser: Le processus $(X_t = x + \mu t + \sigma B_t, t \ge 0)$ est un processus gaussien d'espérance $x + \mu t$ et de covariance $E[(X_t - E(X_t))(X_s - E(X_s))] = \sigma^2(s \wedge t)$.

2.3.3Scaling

Proposition 2.3.2 Si $(B_t, t \ge 0)$ est un mouvement Brownien, alors

- i) le processus \hat{B} défini par $\hat{B}_t = -B_t$ est un mouvement Brownien.
- ii) le processus \tilde{B} défini par $\tilde{B}_t = \frac{1}{c}B_{c^2t}$ est un mouvement Brownien. (Propriété de scaling) iii) le processus \bar{B} défini par $\bar{B}_t = tB_{\frac{1}{t}}, \forall t > 0$, $\bar{B}_0 = 0$ est un mouvement Brownien.

DÉMONSTRATION: Il suffir de vérifier le caractère Gaussien de ces processus et d'en calculer espérance et covariance.

2.3.4 Propriété de Markov

La propriété de Markov du mouvement Brownien est utilisée sous la forme (un peu plus forte que la propriété de Markov) : pour tout s, le processus $(W_t, t \ge 0)$ défini par $W_t \stackrel{def}{=} B_{t+s} - B_s$ est un mouvement Brownien indépendant de \mathcal{F}_s .

Théorème 2.3.1 Pour f borélienne bornée, $E(f(B_u)|\mathcal{F}_t) = E(f(B_u)|\sigma(B_t))$ pour u > t.

DÉMONSTRATION: On fait apparaître les accroissements et on utilise les propriétés de l'espérance conditionnelle :

$$E(f(B_u)|\mathcal{F}_t) = E(f(B_u - B_t + B_t)|\mathcal{F}_t) = \Phi(u - t, B_t)$$

avec $\Phi(u-t,x) = E(f(B_u-B_t+x)) = E(f(Y+x))$ où Y a même loi que B_u-B_t , soit une loi $\mathcal{N}(0,u-t)$. Par les mêmes arguments, $E(f(B_u)|\sigma(B_t)) = \Phi(u-t,B_t)$. On a très précisement

$$\Phi(s,x) = \frac{1}{\sqrt{2\pi s}} \int_{\mathbb{R}} f(y) \exp{-\frac{(y-x)^2}{2s}} \, dy$$

Une autre façon de décrire cette propriété est de dire que, pour u > t, conditionnellement à B_t , la v.a. B_u est de loi gaussienne d'espérance B_t et de variance u - t. Alors

$$E(\mathbb{1}_{B_u \le x} | \mathcal{F}_t) = E(\mathbb{1}_{B_u \le x} | \sigma(B_t)) = E(\mathbb{1}_{B_u \le x} | B_t)$$

pour $t \leq u$.

2.3.6 Trajectoires

Nous admettons les résultats suivants:

Les trajectoires du mouvement Brownien sont continues.

Les trajectoires du mouvement Brownien sont p.s. "nulle part différentiables".

Théorème 2.3.3 Soit n fixé et $t_j = \frac{j}{2^n}t$ pour j variant de 0 à 2^n . Alors $\sum_{j=1}^{2^n}[B(t_j)-B(t_{j-1})]^2 \to t$ quand $n \to \infty$, la convergence ayant lieu en moyenne quadratique et p.s..

DÉMONSTRATION: Soit $Z_t^n = \sum_{j=1}^{2^n} [B(t_j) - B(t_{j-1})]^2$. On a $E(Z_t^n) = t$. On doit montrer que $E((Z_t^n - t)^2) \to 0$, soit $\text{Var}(Z_t^n) \to 0$ ce qui se déduit de

$$\operatorname{Var}(Z_t^n) = \sum_{j=1}^{2^n} \operatorname{Var}[B(t_j) - B(t_{j-1})]^2 = \sum_{j=1}^{2^n} 2\left(\frac{t}{2^n}\right)^2 = 2^{n+1} \frac{t^2}{2^{2n}}$$

(Nous avons utilisé que si X est de loi $\mathcal{N}(0,\sigma^2)$, la variance de X^2 est $2\sigma^4$). On en déduit que $E(\sum_{n=1}^{\infty}(Z_t^n-t)^2)=\sum_{n=1}^{\infty}\frac{t}{2^n}<\infty$. D'où $\sum_{n=1}^{\infty}(Z_t^n-t)^2<\infty$ et le terme général converge p.s. vers 0.

Proposition 2.3.6 Soit σ une subdivision de l'intervalle [0,t] caractérisée par $0=t_0 \leq t_1 \ldots \leq t_n=t$. Soit V_t la variation de la trajectoire du Brownien sur [0,t] définie par $V_t(\omega)=\sup_{\sigma}\sum_i |B_{t_{i+1}}(\omega)-B_{t_i}(\omega)|$. Alors $V_t(\omega)=\infty$ p.s.

DÉMONSTRATION: $\sup_{\sigma} \sum_{i} |B_{t_{i+1}} - B_{t_{i}}| \ge \sup_{n} \sum_{k=0}^{2^{n}} |Y_{k}|$ avec $Y_{k} = B_{t_{k+1}}^{*} - B_{t_{k}}^{*}$ où les points sont choisis comme précédemment: $t_{k}^{*} = \frac{k}{2^{n}}t$. On peut majorer Z_{t}^{n} :

$$Z_t^n \le \left(\sup_k |B_{t_{k+1}^*} - B_{t_k^*}|\right) \sum_{k=0}^{2^n} |Y_k|.$$

Quand $n \to \infty$, le terme sup $|B_{t_{k+1}} - B_{t_k}|$ tend p.s. vers 0, par continuité uniforme des trajectoires sur [0,t]. Le terme $\sum_{k=0}^{2^n} |Y_k|$ est croissant en n et ne peut avoir de limite finie sans que Z_t^n ne converge vers 0, ce qui n'est pas le cas.

П

2.3.7 Propriétés de martingale

a. Cas du Brownien

Proposition 2.3.7 Le processus B est une martingale. Le processus $(B_t^2 - t, t \ge 0)$ est une martingale.

Réciproquement, si X est un processus continu tel que X et $(X_t^2 - t, t \ge 0)$ sont des martingales, X est un mouvement Brownien.

DÉMONSTRATION: Nous ne démontrons que la partie directe. La réciproque est plus difficile à établir (Voir Revuz-Yor) mais très utile.

L'idée est d'utiliser l'indépendance des accroissements pour calculer les espérances conditionnelles, et d'utiliser la propriété $E(X|\mathcal{G}) = E(X)$ quand X et \mathcal{G} sont indépendantes. Soit $s \leq t$.

$$E(B_t|\mathcal{F}_s) = E(B_t - B_s|\mathcal{F}_s) + E(B_s|\mathcal{F}_s) = 0 + B_s$$

De même $E((B_t - B_s)^2 | \mathcal{F}_s) = t - s$ et

$$E((B_t - B_s)^2 | \mathcal{F}_s) = E(B_t^2 + B_s^2 - 2B_t B_s | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - 2B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) - B_s^2 + B_s^2 - B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s^2 E(B_t | \mathcal{F}_s) = E(B_t^2 | \mathcal{F}_s) + B_s^2 - B_s^2 E(B_t | \mathcal{$$

On obtient alors

$$E(B_t^2 - t | \mathcal{F}_s) = B_s^2 - s.$$

Proposition 2.3.8 Soit B_1 et B_2 deux MB indépendants. Le produit B_1B_2 est une martingale.

DÉMONSTRATION: On peut le faire en utilisant le lemme suivant : Soit \mathcal{F} et \mathcal{G} deux tribus, X et Y deux v.a. telles que $X \vee \mathcal{F}$ et \mathcal{G} sont indépendantes ainsi que $Y \vee \mathcal{G}$ et \mathcal{F} . Alors $E(XY|\mathcal{F} \vee \mathcal{G}) = E(X|\mathcal{F})E(Y|\mathcal{G})$. Une autre méthode est d'utiliser que $\frac{1}{\sqrt{2}}(B_1 + B_2)$ est un processus gaussien de covariance $t \wedge s$, donc un mouvement Brownien et par suite $\frac{1}{2}(B_1(t) + B_2(t))^2 - t$ est une martingale. Comme

$$\frac{1}{2}(B_1(t)+B_2(t))^2-t=\frac{1}{2}(B_1^2(t)-t)+\frac{1}{2}(B_2^2(t)-t)+B_1(t)B_2(t)\,,$$

le résultat suit. □

Proposition 2.3.9 Pour tout λ réel, le processus $(\exp(\lambda B_t - \frac{1}{2}\lambda^2 t), t \geq 0)$ est une martingale. Réciproquement, si X est un processus continu tel que $(\exp(\lambda X_t - \frac{1}{2}\lambda^2 t), t \geq 0)$ est une martingale, pour tout λ réel, le processus X est un brownien.

DÉMONSTRATION: Par indépendance

$$E(\exp\{\lambda(B_t - B_s) - \frac{1}{2}\lambda^2(t - s)\}|\mathcal{F}_s) = E(\exp\{\lambda(B_t - B_s) - \frac{1}{2}\lambda^2(t - s)\})$$

L'espérance du second membre se calcule comme une transformée de Laplace d'une variable gaussienne. On trouve

$$E(\exp{\{\lambda(B_t - B_s) - \frac{1}{2}\lambda^2(t - s)\}}) = 1$$

et

$$E(\exp\{\lambda B_t - \frac{1}{2}\lambda^2 t\} | \mathcal{F}_s) = \exp\{\lambda B_s - \frac{1}{2}\lambda^2 s\}$$

La réciproque, facile, utilise la caractérisation des v.a. gaussiennes au moyen de leur transformée de Laplace. \Box

Chapitre 2

Intégrale stochastique et formule d'Itô

2.1 Variation total et variation quadratique

Définition 2.1 La variation infinitésimale d'ordere p d'un processus X_t associée à une subdivision $\Pi_n = (t_1^n, t_2^n, t_n^n)$ est défini par

$$V_T^p(\Pi_n) = \sum_{i=1}^n \left| X_{t_i^n} - X_{t_{i-1}^n} \right|^p \qquad X_t \in [0, T].$$

Si $V_T^p(\Pi_n)$ admet une limite dans un certain sens (converge presque sûrement, converge \mathbb{L}_p) lorsque:

$$\Pi_n = ||\Pi_n||_{\infty} = \sup_{i>1} |t_{i+1}^n - t_i^n| \underset{n\to\infty}{\to} 0.$$

La limite ne dépend pas de la subdivision choisie et nous l'appellerons alors la variation d'ordre p de X_t sur [0,t].

Maintenant on note

$$V_T^p = \lim_{\|\Pi_n\|_{\infty} \to 0} V_T^p(\Pi_n), \text{ tel que } \|\Pi_n\|_{\infty} = \sup_{i \ge 1} |t_{i+1}^n - t_i^n|,$$
 (2.1)

en particulier :

– Si p=1, la limite 2.1 s'appelle la variation totale de X_t sur [0,T].

– Si p=2, la limite 2.1 s'appelle la variation quadratique de X_t sur [0,T] et on la note $V_T^2=\langle X,X\rangle_T$.

Variation bornée : Un processus X_t est à variation bornée sur [0,T] s'il est à variation bornée trajectoire par trajectoire, c'est à dire que

$$\sup_{\Pi_n} \sum_{i=1}^n |X_{t_i} - X_{t_{i-1}}| < \infty, \qquad \mathbb{P} - p.s.$$

Remarque 2.1 Si la variation totale d'un processus existe p.s alors elle est égale à :

$$V_T^1(X) = \sup_{\pi \in \mathcal{P}} \sum_{i=1}^n |X_{t_i} - X_{t_{i-1}}|,$$

où \mathcal{P} est l'ensemble des subdivisions possibles de [0,T].

Réciproqument, si ce supremum est fini ,le processus admet une variation totale d'un processus s'interpréte la langeur de ses trajectoires.

1. La variation quadratique d'un **M.B** sur [0,T] existe dans $\mathbb{L}^2(\Omega)$ et vaut T, c-à-d

$$V_T^2 = \langle B, B \rangle_T = T, \qquad \mathbb{P} - p.s.$$

2. Un processus X est à variations bornée s'il est difference de deux processus croissants(X^+ et X^-), c-à-d

$$X = X^+ - X^-$$
, telque X^+ et X^- sont deux processus croissants.

3. Si X est à variations bornée et à trajectoire continue alors

$$V_T^2 = \langle X, X \rangle_T = 0, \qquad \mathbb{P} - p.s.$$

2.2 L'intégrale stochastique

L'objectif de ce paragraphe est de définir integrale $\int_0^t \Phi_s dB_s$, Ceci n'est pas évident car les trajectoires du $\mathbf{M.B}$ ne sont pas à variation finie. Dans cette section, on fixe un réel T strictement positif.

Soit $\Phi = (\Phi_t)$, un processus élémentaire. Nous souhaitons donner un sens à la variable aléatoire

$$\int_0^t \Phi_s dB_s,\tag{2.2}$$

où B_t est un mouvement Brownien.

Pour cela, rappellons que lorsque nous intégrons une fonction g régulaire par rapport à une fonction dérivable f, alors

$$\int_0^t g(s)df(s) = \int_0^t g(s)f'(s)ds.$$

Dans le cas où f n'est pas dérivable, mais en supposant qu'elle est à variation bornée, alors l'integrale de stieltjes, définie par

$$\int_0^t g(s)df(s) = \lim_{\pi_n \to 0} \sum_{i=0}^{i=n-1} g(s_i)[f(s_{i+1}) - f(s_i)],$$

où $0 = s_0 < s_1 < \dots < s_n = t$ et $\pi_n = \max_{0 < i < n-1} |s_{i+1} - s_i|$ peut être utilisée.

Malheureusement, puisque le mouvement Brownien n'est pas à variation bornée, la définition précédente ne s'applique pas à l'integrale 2.2.

Cependant, puisque B_t est à variation quadratique finie, car pour tout t>0 nous avons :

$$\lim_{n \to +\infty} \langle B \rangle_t^{(n)} = t \ p.s,$$

Donc en peut de définir l'integrale par rapport au mouvement Brownien comme une limite dans l'espace \mathbb{L}^2 de variable aléatoire dont le moment d'ordre deux existe.

Ainsi, on définit

$$\int_0^t \Phi_s dB_s = \lim_{\pi_n \to 0} \sum_{i=0}^{i=n-1} \Phi(s_i) [B(s_{i+1}) - B(s_i)],$$

où le processus Φ_t appartient à l'espace \mathcal{L}^2 et Φ_t soit \mathcal{F} -adapté, de telle sort que Φ_{s_i} soit indépendant de $B(s_{i+1}) - B(s_i)$.

Pour des raisons technique, on supposons des conditions de régularité aux processus étudiés. En générale, il faut qu-ils soit présque sûrement continue à droite avec une limite à gauche (càdlag).

2.2.1 Cas d'un processus déterministe (Integrale de wiener)

Soit un processus Φ qui n'est pas aléatoire, mais simplement une fonction de temps t. Dans ce cas, nous pouvons écrire $\Phi_t = f(t)$ pour une certaine fonction $f: [0, T] \longrightarrow \mathbb{R}$.

Cette integrale s'appelle l'integrale de wiener.

Par la suite, on suppose $\mathbb{L}^2(\mathbb{R}_+)$ l'ensemble des applications mesurable défini sur \mathbb{R}_+ à valeur dans \mathbb{R} telle que

$$\int_0^t \Phi_s^2 ds < +\infty.$$

Si $(B_t)_t$ est un mouvement Brownien on veut definir

$$\Psi = \int_0^\infty \Phi_s dB_s.$$

Le cas simple (fonction étagé)

Soit
$$\Phi(\omega) = 1_{]u,v[}$$
, en pose $\int_0^\infty \Phi_s dB_s = B_v - B_u$.

Proposition 2.1 Si $\Phi_t = \sum_{i=1}^n \Phi_{i-1} 1_{]t_{i-1},t_i[}$, alors

- 1. $\Phi \longrightarrow \Psi$ est linéaire,
- 2. $t \longrightarrow \Psi$ est une variable aléatoire Gaussien,
- 3. $\mathbb{E}(\Psi) = 0$ et $\mathbf{Var}(\Psi) = \int_0^t \Phi_s^2 ds = ||\Phi||_{\mathbb{L}^2(\mathbb{R}_+)}^2$,
- 4. Ψ est une \mathcal{F}_t -martingale,

5. Le processus $\Psi^2 - \int_0^t \Phi_s^2 ds$ est une \mathcal{F}_t -martingale.

Preuve.

1. On va montrer

$$\Psi\left(\Phi^{1}+\Phi^{2}
ight)=\Psi\left(\Phi^{1}
ight)+\Psi\left(\Phi^{2}
ight)$$
 .

3. $\mathbb{E}(\Psi) = 0$?

$$\mathbb{E}\left[\Psi\right] = \mathbb{E}\left[\sum_{i=1}^{i=n} \Phi_{i-1}\left(B\left(t_{i}\right) - B\left(t_{i-1}\right)\right)\right],$$

$$= \sum_{i=1}^{i=n} \Phi_{i-1}\mathbb{E}\left[B\left(t_{i}\right) - B\left(t_{i-1}\right)\right],$$

$$= 0.$$

Maintenant on va montrer que $\mathbf{Var}(\Psi) = \mathbb{E}\left(\int_0^t \Phi_s^2 ds\right)$:

$$\mathbb{VAR}(\Psi) = \mathbb{E}\left[\Psi^{2}\right],$$

$$= \mathbb{E}\left[\left(\sum_{i=1}^{i=n} \Phi_{i-1}\left(B\left(t_{i}\right) - B\left(t_{i-1}\right)\right)\right)^{2}\right],$$

$$= \sum_{i=1}^{i=n} \left(\Phi_{i-1}\right)^{2} \mathbb{E}\left[\left(B\left(t_{i}\right) - B\left(t_{i-1}\right)\right)^{2}\right],$$

$$= \sum_{i=1}^{i=n} \left(\Phi_{i-1}\right)^{2} \left(t_{i} - t_{i-1}\right),$$

$$= \int_{0}^{\infty} \left(\Phi_{s}\right)^{2} ds.$$

Proposition 2.2 Si f et g sont des fonction en escalier, on a (i)

$$\mathbb{E}\left[\Psi_{t}\left(f\right)\Psi_{t}\left(g\right)\right] = \int_{0}^{\infty} f\left(s\right)g\left(s\right)ds = \langle f,g\rangle_{\mathbb{L}^{2}(\mathbb{R}_{+})}.$$

(ii)

$$VAR \left(\Psi_{t}\left(f+g\right)\right) = VAR \left(\Psi_{t}\left(f\right)\right) + VAR \left(\Psi_{t}\left(g\right)\right) + 2\mathbb{E}\left[\Psi_{t}\left(f\right)\Psi_{t}\left(g\right)\right],$$

$$= \int_{0}^{\infty} f\left(s\right)^{2} ds + \int_{0}^{\infty} g\left(s\right)^{2} ds + 2\int_{0}^{\infty} f\left(s\right) g\left(s\right) ds,$$

$$= \int_{0}^{\infty} \left(f\left(s\right) + g\left(s\right)\right)^{2} ds = \left|\left|f+g\right|\right|_{\mathbb{L}^{2}(\mathbb{R})}.$$

Proposition 2.3 Si le processus Φ est déterministe, alors

$$\Psi(f) = \int_0^\infty f(s)dB_s \sim \mathcal{N}(0, \int_0^\infty f^2(s)ds).$$

Cas général

On sait que si $f \in \mathbb{L}^2(\mathbb{R}^+)$, il existe une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions en escalier qui converge dans $\mathbb{L}^2(\mathbb{R}^+)$ vers f c-à-d :

$$\int_{0}^{\infty} \left| f_n(s) - f(s) \right|^2 ds \underset{n \to \infty}{\longrightarrow} 0.$$

La suit de variable aléatoire $F_n = \int_0^\infty f_n(s) dB_s$ est une suite de Cauchy dans $\mathbb{L}^2(\Omega)$ En effet :

$$||F_n - F_m||_2 = \mathbb{E}\left[\left(F_n - F_m\right)^2\right] = \mathbb{VAR}\left(F_n - F_m\right) = \int_0^\infty \left(f_n - f_m\right)^2 ds \underset{n, m \to \infty}{\longrightarrow} 0,$$

car $(f_n)_n$ est une suit convergent dans $\mathbb{L}^2(\Omega)$, ce qui implique que $(F_n)_n$ est une suit de Cauchy dans $\mathbb{L}^2(\Omega)$.

Comme $\mathbb{L}^2(\Omega)$ est un espace de Hilbert (donc complet) alors il existe $F \in \mathbb{L}^2(\Omega)$ telle que $||F_n - F||_2 \xrightarrow[n \to \infty]{} 0$. On note :

$$F = \Theta(f) = \int_0^\infty f(s) dB_s,$$

alors:

$$\Theta\left(f\right) = \int_{0}^{\infty} f\left(s\right) dB_{s} = \lim_{n \to \infty} \left(\int_{0}^{\infty} f_{n}\left(s\right) dB_{s}\right), \text{ La limite dans } \mathbb{L}^{2}\left(\Omega\right).$$

Remarque 2.2 Le sous espace de $\mathbb{L}^2(\Omega)$ engendré par les variable aléatoire $\int_0^\infty f(s) dB_s$ coïncid avec l'espace Gaussien engendré par les mouvement Brownien.

Proposition 2.4

1. L'application $f \longrightarrow \Theta(f)$ est linéaire et isométrique de $\mathbb{L}^{2}(\mathbb{R}^{+})$ dans $\mathbb{L}^{2}(\Omega)$ telle que

$$\Theta(f+g) = \Theta(f) + \Theta(g).$$
$$||\Theta(f)||_2 = ||f||_2.$$

- 2. $\mathbb{E}\left[\Theta_{t}\left(f\right)\Theta\left(g\right)\right] = \int_{0}^{+\infty}f\left(s\right)g\left(s\right)ds$ et $\langle\Theta_{t}\left(f\right),\Theta\left(g\right)\rangle_{\mathbb{L}^{2}\left(\Omega\right)} = \langle f,g\rangle_{\mathbb{L}^{2}\left(\mathbb{R}^{+}\right)}$.
- 3. Soit $f \in \mathbb{L}^2(\mathbb{R}^+)$, alors $\Theta_t(f)$ est une variable aléatoire gaussienne centrée de $\mathbb{VAR}(\Theta(f)) = \int_0^{+\infty} |f(s)|^2 ds$.
- 4. $\mathbb{E}\left[B_t \int_0^{+\infty} f(s) dB_s\right] = \int_0^t f(s) ds$.

2.2.2 Processus lié à l'integrale stochastique de wiener

On définit pour $f \in \mathbb{L}^2(\mathbb{R}^+)$ la variable aléatoire

$$\int_{0}^{t} f(s) dB_{s} = \int_{0}^{+\infty} f(s) 1_{[0,t]}(s) dB_{s}.$$

Théorème 2.1 Soit $f \in \mathbb{L}^2_{loc} = \left\{ f : \mathbb{R}_+ \to \mathbb{R} \text{ mesurable telque } \forall T > 0, \int_0^t f^2(s) \, ds < \infty \right\}$ et $M_t = \int_0^t f(s) \, dB_s$.

1. (M_t) est une martingale continue telleque :

$$\mathbb{E}\left[M_{t}\right] = 0.$$

$$VAR\left(M_{t}\right) = \int_{0}^{t} f^{2}\left(s\right) ds.$$

- 2. (M_t) est un processus Gaussienne centré de $\mathbb{COV}(M_t, M_s) = \int_0^{t \wedge s} f^2(u) du$ à accroissement indépendant.
- 3. Le processus $\left(M_t^2 \int_0^t f^2(s) ds, t \ge 0\right)$ est une martingale.
- 4. Si f et g sont dans \mathbb{L}^2_{loc} , alors

$$\mathbb{E}\left[\int_{0}^{t} f\left(u\right) dB_{u} \int_{0}^{s} g\left(u\right) dB_{u}\right] = \int_{0}^{t \wedge s} f\left(u\right) g\left(u\right) du.$$

2.2.3 Intégrale stochastique d'Itô

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et (B_t) un mouvement Brownien et $\mathcal{F}_t = \sigma(B_s, s \leq t)$. Notre objectif est de definir $\int_0^t \theta(s) dB_s$ avec $(\theta(s))_s$ un processus généralisant l'intégrale de wiener.

Cas des processus étagé

Processus élémentaire

Un processus $(\theta_t)_{0 \le t \le T}$ est dit élémentaire s'il existe une subdivision $0 = t_0 < t_1 < ... < t_n = T$ et un processus discret $(\theta_i)_{0 \le i \le n-1} \in \mathbb{L}^2(\Omega)$ telque θ_i est \mathcal{F}_{t_i} -mesurable et que

$$\theta_t(\omega) = \sum_{i=0}^{i=n-1} \theta_i \mathbf{1}_{]t_i, t_{i+1}[}(t).$$

L'integrale stochastique entre 0 et t < T d'un processus élémentaire θ_t est un variable aléatoire

$$\int_0^t \theta_s dB_s = \sum_{i=0}^{i=n-1} \theta_i (B_{\min(t,t_{i+1})} - B_{(\min(t_i,t))}).$$

De cette manière, nous associons à un processus θ élémentaire le processus

$$\Psi_{t} = \left(\int_{0}^{t} \theta\left(s\right) dB_{s} \right)_{0 \le t \le T}.$$

Proposition 2.5 Si $(\Phi_t)_{0 \le t \le T}$ est un processus élémentaire, alors $\mathbb{E}(\int_0^t \theta(s) dB_s) = 0$ et

$$VAR(\int_{0}^{t} \theta(s) dB_{s}) = \mathbb{E}\left(\int_{0}^{t} \theta^{2}(s) ds\right) = ||\Phi||_{\mathbb{L}^{2}(\Omega)}^{2}.$$

Cas général

Soit Γ espace des processus θ càglàd " continue à gauche avec une limite à droite" telque $\mathbb{E}\left(\int_0^\infty \theta^2(s)\,ds\right) < +\infty.$

Le processus étagé appartient a Γ , on dit que $\theta_n \to \theta$ dans $\mathbb{L}^2(\Omega \times \mathbb{R}_+)$ si

$$\mathbb{E} \int_{0}^{\infty} \left| \theta_{n} \left(s \right) - \theta \left(s \right) \right|^{2} ds \underset{n \to \infty}{\longrightarrow} 0.$$

On sait que \mathbb{L}^2 ($\Omega \times \mathbb{R}_+$, $\|\cdot\|_2$) est un espace de Hilbert (donc complet). Donc on peut définir pour tout $\theta \in \Gamma$ $\int_0^\infty \theta(s) dB_s$.

Si $\theta \in \Gamma$, $\exists \theta_n$ processus étagés

$$\theta_n(s) = \sum_{j=0}^{n-1} \tilde{\theta}_j^n 1_{[t_j, t_{j+1}[}; \ \tilde{\theta}_j^n \text{ mesurable par rapport à } \mathcal{F}_{t_j},$$

tel que $\lim_{n\to\infty} \theta_n(s) = \theta(s)$ dans $\mathbb{L}^2(\Omega \times \mathbb{R}_+)$. On sait que $\int_0^\infty \theta_n(s) dB_s$ existe est égale à $\sum_{j=0}^{n-1} \tilde{\theta}_j^n \left(B_{t_{j+1}} - B_{t_j}\right)$.

On définit

$$\int_{0}^{\infty} \theta(s) dB_{s} \stackrel{\triangle}{=} \lim_{n \to \infty} \int_{0}^{\infty} \theta_{n}(s) dB_{s}, \text{ dans } \mathbb{L}^{2}(\Omega).$$

 $\mathbb{E}\left(\int_{0}^{\infty} \theta\left(s\right) dB_{s}\right) = 0; \ \mathbb{VAR}\left(\int_{0}^{\infty} \theta\left(s\right) dB_{s}\right) = \mathbb{E}\left(\int_{0}^{\infty} \theta^{2}\left(s\right) ds\right), \ \operatorname{car} \ \mathbb{E}\left(\int_{0}^{\infty} \theta_{n}\left(s\right) dB_{s}\right) = 0;$ $\mathbb{VAR}\left(\int_{0}^{\infty} \theta_{n}\left(s\right) dB_{s}\right) = \mathbb{E}\left(\int_{0}^{\infty} \theta_{n}^{2}\left(s\right) ds\right).$

Proposition 2.6 On note Λ l'ensemble :

$$\mathbb{L}_{loc}^{2}\left(\Omega\times\mathbb{R}_{+}\right)=\left\{ \theta\ adapt\acute{e}\ c\grave{a}gl\grave{a}d,\ \forall t>0,\ \mathbb{E}\left(\int_{0}^{t}\theta^{2}\left(s\right)ds\right)<\infty\right\} .$$

Lineaire: Soit $\theta \in \Lambda$ et $\beta \in \Lambda$ deux processus, soit a et b deux constants

$$\int_0^t \left(a\theta\left(s\right) + b\beta\left(s\right)\right) dB_s = a \int_0^t \theta\left(s\right) dB_s + b \int_0^t \beta\left(s\right) dB_s.$$

Proposition 2.7 (Propriéte de martingale) Soit $M_t = \int_0^t \theta(s) dB_s$, $\theta \in \Lambda$.

a) $(M_t)_t$ est une martingale continue.

b)
$$N_t = \left(\left(\int_0^t \theta(s) dB_s \right)^2 - \int_0^t \theta^2(s) ds \right)_t$$
 est une martingale.

Corollaire 2.1 $i) \mathbb{E}(M_t) = 0, \mathbb{VAR}(M_t) = \mathbb{E}\int_0^t \theta^2(s) ds.$

$$ii) \mathbb{E}\left(\int_{0}^{t} \theta\left(s\right) dB_{s} \cdot \int_{0}^{t} \sigma\left(s\right) dB_{s}\right) = \mathbb{E}\left(\int_{0}^{t} \theta\left(s\right) \sigma\left(s\right) ds\right), \text{ pour tout } \theta, \sigma \in \Lambda.$$

$$(iii)$$
 $\left(\int_{0}^{t} \theta(s) dB_{s} \cdot \int_{0}^{t} \sigma(s) dB_{s} - \int_{0}^{t} \theta(s) \sigma(s) ds\right)_{t}$ est une martingale, pour tout $\theta, \sigma \in \Lambda$.

2.2.4 Définition de processus d'Itô

Soitent $(\Omega, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ un espace probabilisé muni d'une filtration et $(B_t)_{t\geq 0}$ un \mathcal{F}_t -mouvement Brownien.

Définition 2.2 (Processus d'Itô)

On appelle processus d'itô un processus $(X_t)_{0 \le t \le T}$ à valeur réelle tel que

$$\forall 0 \le s \le t, \ X_t = x_0 + \int_0^t b_s ds + \int_0^t \sigma_s dB_s, \quad \mathbb{P} - p.s.$$
 (2.3)

Où x_0 est \mathcal{F}_0 —mesurable, b et σ sont deux processus progressivement mesurable verifiant les conditions

$$\int_0^T |b_s| ds < +\infty \ et \int_0^T ||\sigma_s||^2 ds < +\infty, où \ ||\sigma|| = trace(\sigma\sigma^*),$$

le coefficient b est le drift ou la derivé, σ est le coefficient de diffusion.

L'equation 2.3 est notée de manière différentiale par :

$$\begin{cases} dX_t = b_t dt + \sigma_t dB_t, \\ X_0 = x_0. \end{cases}$$

Ceci entraine que la décomposition d'un processus d'Itô est unique ce qui signifie que si :

$$X_{t} = x_{0} + \int_{0}^{t} b_{s} ds + \int_{0}^{t} \sigma_{s} dB_{s},$$
$$= x'_{0} + \int_{0}^{t} b'_{s} ds + \int_{0}^{t} \sigma'_{s} dB_{s},$$

alors $\mathbb{P} - p.s.$ on a

$$\begin{cases} x_0 = x'_0, \\ b_s = b'_s, \ ds \otimes d\mathbb{P}, \\ \sigma_s = \sigma'_s, \ ds \otimes d\mathbb{P}. \end{cases}$$

Définition 2.3 Soitent X_t et Y_t des processus d'Itô definie par

$$dX_t = b_s ds + \sigma_s dB_s,$$

$$dY_t = b_s' ds + \sigma_s' dB_s.$$

alors, les variation quadratiques sur [0, t] sont donnée par

$$\langle X, X \rangle_t = \int_0^t \sigma_s^2 ds,$$

 $\langle Y, Y \rangle_t = \int_0^t \sigma_s'^2 ds,$

et la covariation quadratique entre X_t et Y_t est donnée par :

$$\langle X, Y \rangle_t = \int_0^t \sigma_s \sigma_s' ds.$$

2.2.5 Intégrale par rapport a un processus d'Itô

Si X_t est un processus d'itô, alors

$$\int_{0}^{t} \theta\left(s\right) dX_{s} \stackrel{\triangle}{=} \int_{0}^{t} \theta\left(s\right) b_{s} ds + \int_{0}^{t} \theta\left(s\right) \sigma_{s} dB_{s}.$$

2.3 Formule d'Itô

Théorème 2.2 Soit $(X_t)_{0 \le t \le T}$ un processus d'Itô, telque :

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dB_s,$$

et f une fonction deux foix continûement différentiabl $f \in \mathbb{C}^2$, alors

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle X, X \rangle_s,$$

oú, par définition

$$\int_0^t f'(X_s) dX_s = \int_0^t f'(X_s) b_s ds + \int_0^t f''(X_s) \sigma_s dB_s,$$

et

$$\langle X, X \rangle_t = \int_0^t \sigma_s^2 ds.$$

Théorème 2.3 Si $(t,x) \to f(t,x)$ est une fonction deux foix continûement différentiable en x et une fois continûement différentiable en t cés dérivées étant continus en (t,x), $f \in \mathcal{C}^{1,2}$, ona :

$$f(t, X_t) = f(0, X_0) + \int_0^t f_s'(s, X_s) \, ds + \int_0^t f_x'(s, X_s) \, dX_s + \frac{1}{2} \int_0^t f_{xx}''(s, X_s) \, d\langle X, X \rangle_s,$$

= $f(0, X_0) + \int_0^t \frac{\partial f}{\partial s}(s, X_s) \, ds + \int_0^t \frac{\partial f}{\partial x}(s, X_s) \, dX_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial^2 x^2}(s, X_s) \, d\langle X, X \rangle_s.$

Intégration par parties

La formule d'integration par parties décrite dans le résultat suivant est une conséquence de la formule d'Itô

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle X, X \rangle_s.$$

Proposition 2.8 Soient X_t et Y_t des processus d'Itô, nous avons

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dB_s,$$

$$Y_t = Y_0 + \int_0^t b_s' ds + \int_0^t \sigma_s' dB_s,$$

alors:

$$X_t Y_t = X_0 Y_0 + \int_0^t X_s dY_s + \int_0^t Y_s dX_s + \langle X, Y \rangle_t,$$

avec

$$\langle X, Y \rangle_t = \int_0^t \sigma_s \sigma_s' ds.$$

Formul d'Itô multidimensionnelle

Définition 2.4 On appelle \mathcal{F}_t -mouvement brownien p-dimensionnelle un processus à valeurs dans \mathbb{R}^p telque $(B_t)_{t\geq 0}$ adapté à \mathcal{F}_t avec $B_t = (B_t^1, B_t^2, ..., B_t^n)$, où les $(B_t^i)_{t\geq 0}$ sont des mouvement brownien standards indépendants.

Définition 2.5 On dit que $(X_t)_{0 \le t \le T}$ est un processus d'Itô si :

$$X_{t} = X_{0} + \int_{0}^{t} b_{s} ds + \sum_{i=1}^{p} \int_{0}^{t} \sigma_{s}^{i} dB_{s}^{i},$$

où K_t et H_s^i sont adapté à \mathcal{F}_t

$$\int_0^t |b_s| \, ds < \infty, \qquad \mathbb{P} - p.s$$

$$\int_0^t (\sigma_s^i)^2 \, ds < \infty, \qquad \mathbb{P} - p.s.$$

Proposition 2.9 soient $(X_t^1, X_t^2, ..., X_t^n)$ est un processus d'Itô

$$X_t^i = X_0^i + \int_0^t b_s^i ds + \sum_{i=1}^p \int_0^t \sigma_s^{i,j} dB_s^j,$$

alors si f est une fonction deux foix différentiables par rapport à x et un foix differntiables en t ces dérivées étant continue en (t,x) c-à-d $(f \in \mathcal{C}^{1,2})$, on a

$$\begin{split} f\left(t,X_{t}^{1},...,X_{t}^{n}\right) &= f\left(0,X_{0}^{1},...,X_{0}^{n}\right) + \int_{0}^{t} \frac{\partial f}{\partial s}\left(s,X_{s}^{1},...,X_{s}^{n}\right) ds \\ &+ \sum_{i=1}^{n} \int_{0}^{t} \frac{\partial f}{\partial x_{i}}\left(s,X_{s}^{1},...,X_{s}^{n}\right) dX_{s}^{i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \int_{0}^{t} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(s,X_{s}^{1},...,X_{s}^{n}\right) d\langle X^{i},X_{s}^{j}\rangle, \end{split}$$

telleque:

$$dX_s^i = b_s^i ds + \sum_{i=1}^n \sigma_s^{i,j} dB_s^j,$$

et

$$d\langle X^i, X^j \rangle = \sum_{m=1}^p \sigma_s^{i,m} \sigma_s^{j,m} ds.$$

Remarque 2.3 Si $(X_t)_{0 \le t \le T}$ et $(Y_t)_{0 \le t \le T}$ sont deux processuse d'Itô, on peut définir formellement le crochet de X et Y les régles suivant :

- 1. $\langle X, Y \rangle_t$ est bilinéaire et symetrique.
- 2. $\langle \int_0^{\cdot} b_s ds, X \rangle_t = 0.$
- 3. $\langle \int_0^{\cdot} \sigma_s dB_s^i, \int_0^{\cdot} \sigma_s' dB_s^j \rangle_t = 0 \text{ si } i \neq j.$
- 4. $\langle \int_0^{\cdot} \sigma_s dB_s^i, \int_0^{\cdot} \sigma_s' dB_s^i \rangle_t = \int_0^{\cdot} \sigma_s \sigma_s' ds \text{ si } i \neq j.$