第5章 输入输出系统

- 5.1 概述
- 5.2 外部设备
- 5.3 I/O接口
- 5.4 程序查询方式
- 5.5 程序中断方式
- 5.6 DMA方式

5.1 概述

- 一、输入输出系统的发展概况
- 二、输入输出系统的组成
- · 三、I/O 设备与主机的联系方式
- 四、I/O设备与主机信息传送的控制 方式

5.1 概述

- 一、输入输出系统的发展概况
 - 1. 早期

分散连接

CPU 和 I/O设备 串行 工作 程序查询方式

2. 接口模块和 DMA 阶段

总线连接

CPU和I/O设备并行工作 { 中断方式 DMA方式

- 3. 具有通道结构的阶段
- 4. 具有 I/O 处理机的阶段

二、输入输出系统的组成

5.1

- 1. I/O 软件
- (1) I/O 指令
 CPU 指令的一部分

 操作码 命令码 设备码
- (2) 通道指令 通道自身的指令 指出数组的首地址、传送字数、操作命令 如 IBM/370 通道指令为 64 位
- 2. I/O 硬件

设备 I/O 接口

设备 设备控制器 通道

三、I/O 设备与主机的联系方式 5.1

- 1. I/O 设备编址方式
 - (1) 统一编址 用取数、存数指令
 - (2) 不统一编址 有专门的 I/O 指令
- 2. 设备选址

用设备选择电路识别是否被选中

- 3. 传送方式
 - (1) 串行
 - (2) 并行

4. 联络方式

5.1

- (1) 立即响应
- (2) 异步工作采用应答信号

(3) 同步工作采用同步时标

5. I/O 设备与主机的连接方式

(1) 辐射式连接

5.1

(2) 总线连接

便于增删设备

四、I/O设备与主机信息传送的控制方式 5.1

1. 程序查询方式

2. 程序中断方式

3. DMA 方式

四、I/O设备与主机信息传送的控制方式 5.1

1. 程序查询方式

CPU和I/O串行工作

踏步等待

2. 程序中断方式

5.1

I/O 工作 { 自身准备 CPU 不查询 与主机交换信息 CPU 暂停现行程序

CPU 和 I/O 部分的并行工作

没有踏步等待现象

中断现行程序

程序中断方式流程

5.1

3. DMA 方式

5.1

主存和 I/O 之间有一条直接数据通道

不中断现行程序

周期挪用(周期窃取)

CPU 和 I/O 并行工作

四、I/O设备与主机信息传送的控制方式 5.1

1. 程序查询方式

2. 程序中断方式

3. DMA 方式

V 系的治力来强 统自能与越

第5章 输入输出系统

- 5.1 概述
- 5.2 外部设备
- 5.3 I/O接口
- 5.4 程序查询方式
- 5.5 程序中断方式
- 5.6 DMA方式

5.2 外部设备

- 一、概述
- 二、输入设备
- 三、输出设备
- 四、其它
- 五、多媒体设备

5.2 I/O设备

一、概述

外部设备大致分三类

1. 人机交互设备

- 键盘、鼠标、打印机、显示器
- 2. 计算机信息存储设备 磁盘、光盘、磁带
- 3. 机一机通信设备 调制解调器等

二、输入设备

5.2

1. 键盘

按键

判断哪个键按下

将此键翻译成 ASCII 码 (编码键盘法)

2. 鼠标

机械式 金属球 电位器

光电式 光电转换器

3. 触摸屏

三、输出设备

5.2

1. 显示器

(1) 字符显示 字符发生器

(2) 图形显示 主观图像

(3) 图像显示 客观图像

2. 打印机

(1) 击打式 点阵式(逐字、逐行)

(2) 非击打式 激光(逐页)喷墨(逐字)

四、其他 5.2

- 1. A/D、D/A 模拟/数字(数字/模拟)转换器
- 2. 终端 由键盘和显示器组成 完成显示控制与存储、键盘管理及通信控制
- 3. 汉字处理 汉字输入、汉字存储、汉字输出

五、多媒体技术

- 1. 什么是多媒体
- 2. 多媒体计算机的关键技术

5.3 I/O接口

- 一、概述
- 二、接口的功能和组成
- 三、接口类型

5.3 I/O接口

一、概述

为什么要设置接口?

- 1. 实现设备的选择
- 2. 实现数据缓冲达到速度匹配
- 3. 实现数据串一并格式转换
- 4. 实现电平转换
- 5. 传送控制命令
- 6. 反映设备的状态("忙"、"就绪"、 "中断请求")

二、接口的功能和组成

5.3

1. 总线连接方式的 I/O 接口电路

- (1) 设备选择线
- (2) 数据线
- (3) 命令线
- (4) 状态线

2. 接口的功能和组成

5.3

功能

组成

选址功能

设备选择电路

传送命令的功能

命令寄存器、命令译码器

传送数据的功能

数据缓冲寄存器

反映设备状态的功能

设备状态标记

完成触发器 D

工作触发器 B

中断请求触发器 INTR

屏蔽触发器 MASK

3. I/O 接口的基本组成

5.3

三、接口类型

5.3

1. 按数据 传送方式 分类

并行接口 Intel 8255

串行接口 Intel 8251

2. 按功能 选择的灵活性 分类

可编程接口 Intel 8255、Intel 8251

不可编程接口 Intel 8212

3. 按 通用性 分类

通用接口 Intel 8255、Intel 8251

专用接口 Intel 8279、Intel 8275

4. 按数据传送的 控制方式 分类

中断接口 Intel 8259

DMA 接口 Intel 8257

5.4程序查询方式

• 一、程序查询方式的流程

• 二、程序查询方式的接口电路

5.4 程序查询方式

一、程序查询流程

1. 查询流程

2. 程序流程

保存 寄存器内容

5.4

二、程序查询方式的接口电路

5.4

以输入为例

5.5 程序中断方式

- 一、中断的概念
- · 二、I/O中断的产生
- 三、程序中断方式的接口电路
- 四、I/O 中断处理过程
- 五、中断服务程序流程

5.5 程序中断方式

二、I/O 中断的产生

5.5

以打印机为例 CPU 与打印机部分并行工作

- 1. 配置中断请求触发器和中断屏蔽触发器
- 2. 排队器
- 3. 中断向量地址形成部件
- 4. 程序中断方式接口电路的基本组成

三、程序中断方式的接口电路

5.5

1. 配置中断请求触发器和中断屏蔽触发器

INTR

中断请求触发器

INTR = 1 有请求

MASK

中断屏蔽触发器

MASK = 1 被屏蔽

D 完成触发器

2. 排队器

5.5

排队 { 硬件 在 CPU 内或在接口电路中 (链式排队器) 软件 详见第八章

设备 1#、2#、3#、4# 优先级按 降序排列

 $INTR_i = 1$ 有请求 即 $INTR_i = 0$

2. 排队器

5.5

排队 { 硬件 在 CPU 内或在接口电路中 (链式排队器) 软件 详见第八章

3. 中断向量地址形成部件

5.5

入口地址 { 由软件产生 详见第八章 由 硬件 向量法 由 硬件 产生 向量地址 再由 向量地址 找到 入口地址

四、I/O 中断处理过程

5.5

- 1. CPU 响应中断的条件和时间
 - (1)条件

允许中断触发器 EINT = 1

用 开中断 指令将 EINT 置 "1"

用 关中断 指令将 EINT 置" 0" 或硬件 自动复位

(2) 时间

当 D = 1 (随机) 且 MASK = 0 时

在每条指令执行阶段的结束前

CPU 发中断查询信号(将 INTR 置"1")

5.5 程序中断方式

- 一、中断的概念
- · 二、I/O中断的产生
- 三、程序中断方式的接口电路
- · 四、I/O 中断处理过程
- 五、中断服务程序流程

五、中断服务程序流程

5.5

- 1. 中断服务程序的流程
 - (1) 保护现场

{程序断点的保护 中断隐指令完成 寄存器内容的保护 进栈指令

(2) 中断服务 对不同的 I/O 设备具有不同内容的设备服务

(3) 恢复现场 出栈指令

(4) 中断返回 中断返回指令

2. 单重中断和多重中断

单重 中断 不允许中断 现行的 中断服务程序 多重 中断 允许级别更高 的中断源 中断 现行的 中断服务程序

4. 主程序和服务程序抢占 CPU 示意图 5.5

宏观 上 CPU 和 I/O 并行 工作 微观 上 CPU 中断现行程序 I/O 服务

5.6 DMA 方式

- 一、DMA 方式的特点
- · 二、DMA接口的功能和组成
- · 三、DMA 的工作过程

· 四、DMA接口的类型

一、DMA方式的特点

- 1. DMA 和程序中断两种方式的数据通路
- 2. DMA 与主存交换数据的三种方式
 - (1) 停止 CPU 访问主存
 - (2) 周期挪用(或周期窃取)
 - (3) DMA 与 CPU 交替访问

5.6 DMA 方式

一、DMA方式的特点

1. DMA 和程序中断两种方式的数据通路

2. DMA 与主存交换数据的三种方式 5.6

(1) 停止 CPU 访问主存 控制简单

CPU 处于不工作状态或保持状态

未充分发挥 CPU 对主存的利用率

(2) 周期挪用(或周期窃取)

5.6

DMA 访问主存有三种可能

- · CPU 此时不访存
- · CPU 正在访存
- · CPU 与 DMA 同时请求访存 此时 CPU 将总线控制权让给 DMA

(3) DMA 与 CPU 交替访问

5.6

CPU 工作周期 $\left\{ egin{aligned} & C_1 & \xi \in DMA & \xi \in C_2 \\ & C_2 & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in CPU & \xi \in CPU \\ & \xi \in$

不需要 申请建立和归还 总线的使用权

二、DMA接口的功能和组成

5.6

- 1. DMA接口功能
 - (1) 向 CPU 申请 DMA 传送
 - (2) 处理总线 控制权的转交
 - (3) 管理系统总线、控制数据传送
 - (4) 确定 数据传送的 首地址和长度

修正 传送过程中的数据 地址 和 长度

(5) DMA 传送结束时,给出操作完成信号

2. DMA接口组成

5.6

三、DMA的工作过程

5.6

1. DMA 传送过程

预处理、数据传送、后处理

(1) 预处理

通过几条输入输出指令预置如下信息

- 通知 DMA 控制逻辑传送方向(入/出)
- ·设备地址—→DMA的DAR
- 主存地址 → DMA 的 AR
- · 传送字数 → DMA 的 WC

(2) DMA 传送过程示意

CPU

预处理:

主存起始地址 → DMA 设备地址 → DMA 传送数据个数 → DMA 启动设备

数据传送:

继续执行主程序 同时完成一批数据传送

后处理:

中断服务程序 做 DMA 结束处理

继续执行主程序

(4) 数据传送过程(输出)

5.6

(5) 后处理

5.6

校验送入主存的数是否正确

是否继续用 DMA

测试传送过程是否正确,错则转诊断程序

由中断服务程序完成

2. DMA 接口与系统的连接方式

(1) 具有公共请求线的 DMA 请求

(2) 独立的 DMA 请求

5.6

3. DMA 方式与程序中断方式的比较 5.6

中断方式 DMA 方式 (1) 数据传送 程序 硬件 (2) 响应时间 指令执行结束 存取周期结束 能 不能 (3) 处理异常情况 (4) 中断请求 传送数据 后处理 (5) 优先级 低 高

四、DMA接口的类型

5.6

在物理上连接多个设备 1. 选择型 在逻辑上只允许连接一个设备 系统总线 DMA接口 设备1 字计数器 主存地址寄存器 设备 2 主存 CPU 数据缓冲寄存器 选 择线 控制状态寄存器 设备地址寄存器 设备n 时序电路

2. 多路型 在物理上连接多个设备 5.6 在逻辑上允许连接多个设备同时工作

3. 多路型 DMA 接口的工作原理 5.6

