1.6.1 不确定度

不确定度是建立在误差理论基础上的一个新概念,是误差的数字指标.它表示由于测量误差的存在而对被测量值不能肯定的程度,即测量结果不能肯定的误差范围.每个测量结果总存在着不确定度,作为一个完整的测量结果不仅要标明其量值大小,还要标出测量不确定度,以表明该测量结果的可信赖程度.

由于误差来源众多,测量结果不确定度一般包含几个分量.为了估算方便,按估计其数值的不同方法,它可以分为 A、B 两类分量.

A 类分量是能用统计方法计算出的标准误差,用符号 S_i表示.

B 类分量是能用其他方法估计出来的"等价标准误差",用符号 u_j 表示.

采用不确定度表示误差范围,改变了以往测量误差分系统误差和随机 误差的传统处理方法.它在将可修正的系统误差修正后,将余下的全部误差 划分为 A、B 两类分量,且均以标准误差形式表示.

下面介绍 A、B 两类分量简化的具体估算方法.

1.6.2 不确定度的简化估算方法

1.6.2.1 测量次数 n≤10 时 A 类分量的估算

由 1.3.1 小节可知,测量次数 $n\to\infty$ 时,随机误差呈现式(01-2)表征的正态分布.我们可用 S_{π} 来估算测量结果的标准误差,因此,在不确定度表示中,可以把它作为 Λ 类分量.

对有限次测量,由误差理论可知,要得到与无限次测量相同的置信概率,A 类分量应在 S_{t} 前乘一因子 $t_{p}(n-1)$,即 A 类不确定度为

$$S = t_p(n-1)S_{\overline{x}} \tag{01-18}$$

因子 $t_p(n-1)$ 的值,在置信概率P及测量次数n确定后,可从专门的数学表中查到.在置信概率P=0.683时,相应的部分n与 $t_p(n-1)$ 的数值,如表 01-5 所示.

测量次数n	2	3	4	5	6	7	8	9	10
自由度 ν=n−1	1	2	3	4	5	6	7	8	9
$t_{0.683}(n-1)$	1.84	1. 32	1.20	1. 14	1.11	1. 09	1.08	1. 07	1.06

表 01-5 P=0.683 时,不同测量次数下 $t_p(n-1)$ 的值

1.6.2.2 B 类分量的简化估算

B 类不确定度原则上应考虑影响量的各种可能值,作为基础训练,我们简化处理,主要考虑仪器误差限的"等价标准误差".

由 1.4.2 小节可知,当仪器误差的概率密度函数遵循正态分布时,其"等价标准误差" $\sigma_{\Omega} = \Delta_{\Omega}/3$ (P=0.683),此时 B 类分量为

$$u_j = \frac{\Delta_{fX}}{3} \quad (P = 0.683)$$
 (01-19a)

对于均匀分布,因为 $\sigma_{\Omega} = \Delta_{\Omega}/\sqrt{3}$,且置信概率 P = 0.577,要得到 P = 0.683的置信概率,应乘上系数 0.683/0.577,即对于均匀分布, P = 0.683的 B 类分量为

$$u_j = \left(\frac{0.683}{0.577}\right) \frac{\Delta_{/\dot{\chi}}}{\sqrt{3}} = 0.683 \Delta_{/\dot{\chi}} \quad (P = 0.683)$$
 (01-19b)

1.6.3 合成不确定度

最后测量结果的不确定度,应将 A , B 类分量合成.在 A 类 , B 类分量各只有一个以标准误差形式表示的、互相独立的分量 S_1 和 u_1 的简单情况下,合成不确定度 U 为

$$U = \sqrt{S_1^2 + u_1^2} \tag{01-20}$$

在本课程教学实验中,对一个物理量,一般在相同条件下测量次数 $n \leq 10$,A 类分量为 $S_1 = t_P(n-1)S_{\bar{x}}$;B 类分量简单地只考虑仪器误差,并取正态分布 $u_1 = \Delta_Q/3(P=0.683)$;均匀分布 $u_1 = 0.683\Delta_Q$,合成不确定度

$$U = \sqrt{\left[s_{0.583}(n-1)S_{\mp}\right]^2 + \left(\frac{A_{66}}{3}\right)^2}$$
 (P=0.683, B 类正态分布) (01-21a)

或

$$U=\sqrt{\left[t_{0.683}(n-1)S_{\bar{x}}\right]^2+(0.683\Delta_{\chi})^2}$$
 (P=0.683,B 类均匀分布) (01-21b)

最后结果写成

$$(\bar{x} \pm U)$$
 (P=0.683) (01-22)

若要置信概率提高到 P=0.95,应取 $U=1.96\sqrt{S_1^2+u_1^2}$,此时在表示最后结果时,括号中的置信概率通常省略不写.

对间接测量 $N=f(x,y,\cdots)$, 设各直接测量结果为 $\overline{x}\pm U_x$, $\overline{y}\pm U_y$, \cdots , 则间接测量的结果 $\overline{N}=f(\overline{x},\overline{y},\cdots)$, 不确定度 U_N 可套用标准误差传递公式

(01-17)进行估算.最后结果写成 $\overline{N} \pm U_N(P)$.

1.6.4 测量结果有效数字取舍原则

不确定度一般保留 1~2 位数字,当首位数字等于或大于 3 时,取一位;小于 3 时,则取两位,其后面的数字采用进位法.例如:计算结果得到不确定度为 0. 2414×10 $^{-1}$ m,则应取 U=0. 25×10 $^{-3}$ m.

测得值取几位,由不确定度来决定.即测得值的保留位数与不确定度的保留位数相等,后面的尾数则采用"小于 5 舍,大于 5 进,等于 5 将保留的数字凑成偶数"的原则取舍.若上例中测得最佳值为 \bar{x} = 46. 175 3×10^{-3} m,则最后结果表述为 x = (46. 18±0. 25)×10⁻³ m(P=0. 683).

【例 1】 使用 $0\sim25~\text{mm}$ 的一级螺旋测微器 ($\Delta_{(g)}=0.004~\text{mm}$) 测量钢球的直径 d(同-方位), 测得的数据如表 01-6~所示, 求测量的结果 $(\overline{d}\pm U)(P)$.

测量序号	初读数 z ₁ /mm	末读数 x ₂ /mm	直径 d=(x2-x1)/mm	
1	0, 004	6.002	5, 998	
2	0.003	6, 000	5. 997	
3	0.004	6. 000	5. 996	
4	0. 004	6. 001	5. 997	
5	0. 005	6. 001	5. 996	
6	0.004	6. 000	5, 996	
7	0.004	6. 001	5. 997	
8	0. 003	6. 002	5. 999	
9	0.005	6. 000	5. 995	
10	0.004	6. 000	5. 996	

表 01-6 螺旋测微器测量钢珠直径

【解】 计算直径的算术平均值得 $\overline{d}=5.996$ 7 mm, 计算平均值的标准误差

$$S_{\overline{d}} = \frac{S_d}{\sqrt{n}} = \sqrt{\frac{\sum_i (d_i - \overline{d})^2}{n(n-1)}} = 0.000 37 \text{ mm}$$

由 P=0.683, n=10, 及 $\nu=n-1=9$, 查表 01-5 可知 $t_{0.683}(10-1)=1.06$, 计算 得 A 类分量为

$$S_1 = t_{0.683}(n-1)S_{\overline{d}} = 0.00039 \text{ mm}$$

仪器误差为均匀分布 Aq = 0.004 mm, 故 B 类分量为

$$u_1 = 0.683 \Delta_{49} = 0.00273 \text{ mm}$$

合成不确定度为

$$U = \sqrt{S_1^2 + u_1^2} = 0.00276 \text{ mm}$$

取 0.002 8 mm,测量结果为

$$d = (5.9967 \pm 0.0028) \,\text{mm}$$
 ($P = 0.683$)

相对误差

$$E = \frac{0.0028}{5.0967} = 0.05\%$$

【例 2】 单摆法测定重力加速度实验中,测得周期 T=(2.014±0.003)s, 摆长 L=(1.002±0.002)m,它们的置信概率 P 均为 0.683.计算重力加速度 $g\pm U_g$.

【解】 因为 $g=f(L,T)=\frac{4\pi^2L}{T^2}$,所以

$$\bar{g} = \frac{4\pi^2 \bar{L}}{\bar{T}^2} = 9.752 \text{ 3 m/s}^2$$

由误差传递公式可得

$$U_g^2 = \left(\frac{\partial f}{\partial L}\right)^2 U_L^2 + \left(\frac{\partial f}{\partial T}\right)^2 U_T^2$$

式中, $\frac{\partial f}{\partial L} = \frac{4\pi^2}{T^2}, \frac{\partial f}{\partial T} = -\frac{8\pi^2 L}{T^3}$,从而得

$$\left(\frac{U_g}{g}\right)^2 = \left(\frac{U_L}{L}\right)^2 + \left(2\frac{U_T}{T}\right)^2$$

代人各数据得

$$\frac{U_g}{\overline{g}} = 4.2 \times 10^{-3}$$

$$U_{p} = 0.042 \text{ m/s}^{2} \approx 0.05 \text{ m/s}^{2}$$

重力加速度测得结果为

$$g = \overline{g} \pm U_g = (9.75 \pm 0.05) \,\text{m/s}^2 \quad (P = 0.683)$$

$$E = \frac{0.05}{9.75} = 0.5\%$$