J-K Flip-Flop

Joshua Gould

12/5/2018 ECE 09.414 VLSI Design

Dept. of ECE
Henry M. Rowan College of Engineering
Rowan University

Outline

- J-K Flip-Flop Overview / Description
- Features / Problems
- Block Diagram
- Truth Table
- Master Slave Design
- Design Choices
- Logical Design
- Worst Case Design
- Logical Effort, Number of Stages, Delay
- Gate Sizes for Optimized Design
- Standard Cell Library & Layout Simulations
- Conclusion

Overview

JK Flip-Flop with Clear

- like the SR flip-flop, includes a "toggle" function when inputs are set to 1.
- Outputs only change with a clock pulse (Synchronous)
- J (set) and K (reset)
 - In other words:

```
J=1, K=0 sets the flip-flop
```

Block Diagram

Input			Output		Description
J	K	С	Q	$\overline{\mathbf{Q}}$	Description
0	0	0	0	0	Memory No change
0	0	0	0	1	
0	1	0	1	0	Reset Q >> 0
0	1	0	1	1	
1	0	0	0	0	Set Q >> 1
1	0	0	0	1	
1	1	0	1	0	Toggle
1	1	0	1	1	
X	X	1	0	1	Clear

Master/Slave Flip-Flop

- Single flip-flops suffer from "race" timing problems
- Race timing occurs if the output Q changes state before the timing pulse of the clock input has time to go "OFF".

Master/Slave Flip-Flop

- Two latch stages in a cascaded configuration
- Activated with opposite clock phases
- Eliminates uncontrolled oscillations since only one stage is active at any given time

Master/Slave Flip-Flop

 Uncontrolled toggling when clock is high

 Slave toggles half a clock cycle after the master latch

- POSSIBILITY 1: Simple NAND Logic Gate
 - PROS:
 - Simple design
 - Small design area
 - Easily understandable
 - CONS:
 - Some constraints on the clock pulse width
 - Minimized features
 - 32 Transistors Required

- POSSIBILITY 2.1: Edge Triggered NAND-NOR
 - PROS:
 - Edge-triggered
 - Easily understandable
 - CONS:
 - Inputs must be stable for some time before clock goes low.

- Larger design area than NAND only (+2 NOR +2 NOT)
- 44+ Transistors Required (Highest)
- Timing is slower

- POSSIBILITY 2.2: LS73A Based
 - PROS:
 - Edge-triggered
 - Professional Based
 - Fast Switching

- CONS:

 Inputs must be stable for some time before clock goes low.

- Larger design area than NAND only (+4 AND +8 NOT)
- Timing is slower
- Power consumption is higher

POSSIBILITY 3: Pass Transistors

- POSSIBILITY 3: Pass Transistors
 - PROS
 - 18 Transistors
 - Smallest Logic Area
 - CONS
 - Additional components in latch area
 - Bad for pull-up level

Logic Design

Transistor Design

Transistor Design

Worst Case Logical Path

Logical Effort, Number of Stages, Delay

Variable		Sta	N = 4		
Variable	1	2	3	4	Path
b	1	2	1	3	B = 6
g	5/3	5/3	4/3	4/3	G = 400/81
h	0.364	0.364	0.455	0.455	H = 90/3 = 30
р	3	3	2	2	P = 10
$\hat{f} = F^{\frac{1}{N}}$	5.46	5.46	5.46	5.46	F = GBH = 888.88

$$D = N\hat{f} + P = 4 * 5.46 + 10 =$$

Spreadsheet Comparing Different Designs

Gate Sizes for Optimized Design

R	9.828
S	32.197
Т	131.84
U	21.978

Standard Cell Library

Standard Cell Library Layouts

Standard Cell Library Extracted Layouts

Standard Cell Library Simulation "Spectre" Netlist

Standard Cell Library Simulation Input / Output Waveforms

Snap-together Standard Cells Circuit Layout

Snap-together Standard Cells Simulation Input / Output Waveform

Delay Comparison Logical Effort vs. Spectre

Conclusions