CS 446/ECE 449: Machine Learning

Shenlong Wang

University of Illinois at Urbana-Champaign, 2024

Attention and Transformers

Goals of this lecture

Goals of this lecture

• Getting to know attention mechanisms

Goals of this lecture

- Getting to know attention mechanisms
- Learning about transformers

More flexibility regarding inputs and outputs:

More flexibility regarding inputs and outputs:

Sequences of inputs

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many many to one

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many many to one many to many

More flexibility regarding inputs and outputs:

- Sequences of inputs
- Sequences of outputs

Length of sequences may vary

one to one one to many many to one many to many many to many

Recurrent Neural Net (RNNs)

- Recurrent Neural Net (RNNs)
- Long-short-term-memory (LSTM) unit

- Recurrent Neural Net (RNNs)
- Long-short-term-memory (LSTM) unit
- Gated recurrent unit (GRU)

Attention mechanisms and Transformers

Attention mechanisms and Transformers

Why:

Attention mechanisms and Transformers

Why:

 RNNs, LSTMs, GRUs are not parallelizable (process data sequentially)

Attention mechanisms and Transformers

Why:

- RNNs, LSTMs, GRUs are not parallelizable (process data sequentially)
- Still bottleneck for very long sequences

Let's consider an example:

Input:

• Input: $(x_1, x_2, ...)$

- Input: $(x_1, x_2, ...)$
- Output:

- Input: $(x_1, x_2, ...)$
- Output: $(y_1, y_2, ...)$

- Input: $(x_1, x_2, ...)$
- Output: $(y_1, y_2, ...)$
- Encoder:

- Input: $(x_1, x_2,...)$
- Output: $(y_1, y_2, ...)$
- Encoder: $h_t = f(x_t, h_{t-1})$

- Input: $(x_1, x_2, ...)$
- Output: $(y_1, y_2, ...)$
- Encoder: $h_t = f(x_t, h_{t-1})$
- Decoder:

- Input: $(x_1, x_2,...)$
- Output: $(y_1, y_2,...)$
- Encoder: $h_t = f(x_t, h_{t-1})$
- Decoder: $s_t = g(y_{t-1}, s_{t-1}, c)$

- Input: $(x_1, x_2,...)$
- Output: $(y_1, y_2,...)$
- Encoder: $h_t = f(x_t, h_{t-1})$
- Decoder: $s_t = g(y_{t-1}, s_{t-1}, c)$
- Initial input/Context:

- Input: $(x_1, x_2, ...)$
- Output: $(y_1, y_2,...)$
- Encoder: $h_t = f(x_t, h_{t-1})$
- Decoder: $s_t = g(y_{t-1}, s_{t-1}, c)$
- Initial input/Context: e.g., $s_0 = 0, c = h_T$

Problem:

- Input: $(x_1, x_2, ...)$
- Output: $(y_1, y_2,...)$
- Encoder: $h_t = f(x_t, h_{t-1})$
- Decoder: $s_t = g(y_{t-1}, s_{t-1}, c)$
- Initial input/Context: e.g., $s_0 = 0$, $c = h_T$

Problem: What if sequence very long?

Fix:

- Input: $(x_1, x_2, ...)$
- Output: $(y_1, y_2,...)$
- Encoder: $h_t = f(x_t, h_{t-1})$
- Decoder: $s_t = g(y_{t-1}, s_{t-1}, c)$
- Initial input/Context: e.g., $s_0 = 0$, $c = h_T$

Problem: What if sequence very long?

Fix: Use a new context vector for every output.

What is a good context vector for each element?

What is a good context vector for each element?

What is a good context vector for each element?

• Alignment scores:

$$e_{t,i} = f_{\mathsf{att}}(s_{t-1}, h_i) \in \mathbb{R}$$
 f_{att} is an MLP

Alignment scores:

$$e_{t,i} = f_{\mathsf{att}}(s_{t-1}, h_i) \in \mathbb{R}$$
 f_{att} is an MLP

 Normalize via softmax to obtain attention weights 0 ≤ a_{t,i} ≤ 1 (∑_i a_{t,i} = 1)

• Alignment scores:

$$e_{t,i} = f_{\mathsf{att}}(s_{t-1}, h_i) \in \mathbb{R}$$
 f_{att} is an MLP

- Normalize via softmax to obtain attention weights 0 ≤ a_{t,i} ≤ 1 (∑_i a_{t,i} = 1)
- Compute attended representation via linear combination:

$$c_t = \sum_i a_{t,i} h_i$$

Next time step:

Next time step:

All differentiable. Don't supervise. Backprop through entire net.

Observation:

By re-computing context vectors c_t at every decoding step we avoid the bottleneck obtained when using a single vector for the input data.

At every decoding step the context vector "looks at" different parts of the input sequence. The attention weight $a_{t,i}$ determines the strength.

 Input: "The agreement on the European Economic Area was signed in August 1992."

- Input: "The agreement on the European Economic Area was signed in August 1992."
- Output: "L'accord sur la zone économique européenne a été signé en août 1992."

- Input: "The agreement on the European Economic Area was signed in August 1992."
- Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Observe:

Decoder treats h_i as an unordered set.

Consequence:

Observe:

Decoder treats h_i as an unordered set.

Consequence:

Similar architecture can be used for any set of vectors h_i .

Observe:

Decoder treats h_i as an unordered set.

Consequence:

Similar architecture can be used for any set of vectors h_i .

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Generalizing: Towards the Attention Layer

We started with

Inputs:

- Query vector: q
- Input vectors: X
- Similarity function: f_{att}

- Scores: $e_i = f_{att}(q, X_i)$
- Attention: a = softmax(e)
- Attended representation: $y = \sum_i a_i X_i$

Inputs:

• Query vectors: $Q \in \mathbb{R}^{N_Q \times D_Q}$

• Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$

Inputs:

• Query vectors: $Q \in \mathbb{R}^{N_Q \times D_Q}$

• Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$

• Key matrix: $W_K \in \mathbb{R}^{D_X \times D_Q}$

- Query vectors: $Q \in \mathbb{R}^{N_Q \times D_Q}$
- Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$
- Key matrix: $W_K \in \mathbb{R}^{D_X \times D_Q}$
- Value matrix: $W_V \in \mathbb{R}^{D_X \times D_V}$

Inputs:

- Query vectors: $Q \in \mathbb{R}^{N_Q \times D_Q}$
- Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$
- Key matrix: $W_K \in \mathbb{R}^{D_X \times D_Q}$
- Value matrix: $W_V \in \mathbb{R}^{D_X \times D_V}$

- Key vectors: $K = XW_K$
- Value vectors: V = XW_V
- Scores: $E = QK^T/\sqrt{D_Q}$
- Attention:
 - $A = \operatorname{softmax}(E, \dim = 1)$
- Representation: Y = AV

Inputs:

• Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$

- Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$
- Key matrix: $W_K \in \mathbb{R}^{D_X \times D_Q}$

- Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$
- Key matrix: $W_K \in \mathbb{R}^{D_X \times D_Q}$
- Value matrix: $W_V \in \mathbb{R}^{D_X \times D_V}$

- Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$
- Key matrix: $W_K \in \mathbb{R}^{D_X \times D_Q}$
- Value matrix: $W_V \in \mathbb{R}^{D_X \times D_V}$
- Query matrix: $W_O \in \mathbb{R}^{D_X \times D_Q}$

Inputs:

- Input vectors: $X \in \mathbb{R}^{N_X \times D_X}$
- Key matrix: $W_K \in \mathbb{R}^{D_X \times D_Q}$
- Value matrix: $W_V \in \mathbb{R}^{D_X \times D_V}$
- Query matrix: $W_Q \in \mathbb{R}^{D_X \times D_Q}$

- Query vectors Q = XW_Q
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$
- Scores: $E = QK^T/\sqrt{D_Q}$
- Attention:
 - A = softmax(E, dim = 1)
- Representation: Y = AV

Why a **Self-**Attention Layer?

Computations:

• Query vectors $Q = XW_Q$

- Query vectors Q = XW_Q
- Key vectors: $K = XW_K$

- Query vectors Q = XW_Q
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$

- Query vectors Q = XW_Q
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$
- Scores: $E = QK^T/\sqrt{D_Q}$

Why a **Self-**Attention Layer? What happens when we permute the input vectors?

Computations:

- Query vectors Q = XW_Q
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$
- Scores: $E = QK^T/\sqrt{D_Q}$
- Attention:

$$A = softmax(E, dim = 1)$$

Why a **Self-**Attention Layer? What happens when we permute the input vectors?

Computations:

- Query vectors Q = XW_Q
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$
- Scores: $E = QK^T/\sqrt{D_Q}$
- Attention:
 - $A = \operatorname{softmax}(E, \dim = 1)$
- Representation: Y = AV

Why a **Self-**Attention Layer? What happens when we permute the input vectors?

Computations:

- Query vectors Q = XW_Q
- Key vectors: $K = XW_K$
- Value vectors: $V = XW_V$
- Scores: $E = QK^T/\sqrt{D_Q}$
- Attention:
 - $A = \operatorname{softmax}(E, \dim = 1)$
- Representation: Y = AV

Self-Attention Layer:

- Permuting inputs results in permuted outputs
- Self-attention layer is permutation equivariant f(s(x)) = s(f(x))
- Self-attention layer operates on sets of vectors

However:

Self-Attention Layer:

- Permuting inputs results in permuted outputs
- Self-attention layer is permutation equivariant f(s(x)) = s(f(x))
- Self-attention layer operates on sets of vectors

However:

Sometimes we want to take the order into account. How?

Self-Attention Layer:

- Permuting inputs results in permuted outputs
- Self-attention layer is permutation equivariant f(s(x)) = s(f(x))
- Self-attention layer operates on sets of vectors

However:

Sometimes we want to take the order into account. How?

Use positional encoding E

Problem: How to use this to encode text where we shouldn't look ahead?

Problem: How to use this to encode text where we shouldn't look

ahead?

Fix: Use masking

Problem: How to use this to encode text where we shouldn't look

ahead?

Fix: Use masking

Masked Attention

Problem: How to use this to encode text where we shouldn't look ahead?

Fix: Use masking

Masked Attention

Multihead Self-Attention Layer

Use a set of independent attention heads

Multihead Self-Attention Layer

Use a set of independent attention heads

Ways to process sequence data:

Classical RNNs

- (+) Reasonably good at long sequences
- (-) Not parallelizable

1D Convolutions

- (-) Bad at long sequences
- (+) Trivially parallelizable

Self-Attention

- (+) Good at long sequences
- (+) Trivially parallelizable
- (-) Memory intensive

Transformer block:

- Input: set of vectors
- Output: set of vectors
- Computation:

Transformer block:

- Input: set of vectors
- Output: set of vectors
- Computation:

Transformer block:

- Input: set of vectors
- Output: set of vectors
- Computation:
 - self-interaction is the only interaction between vectors
 - normalization and MLP operate independently
 - position of normalization may change

A **Transformer** consists of a sequence of transformer blocks

A **Transformer** consists of a sequence of transformer blocks

A **Transformer** consists of a sequence of transformer blocks

Revolutionized (?) natural language processing:

- Download a lot of text
- Train a giant transformer model
- Fine-tune on desired task with little data

Scaling Natural Language Processing:

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hours)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)
BERT-Base	12	768	12	110M	13 GB	
BERT-Large	24	1024	16	340M	13 GB	
XLNet-Large	24	1024	16	~340M	126 GB	512x TPU-v3 (2.5 days)
RoBERTa	24	1024	16	355M	160 GB	1024x V100 GPU (1 day)
GPT-2	48	1600	?	1.5B	40 GB	
Megatron-LM	72	3072	32	8.3B	174 GB	512x V100 GPU (9 days)
Turing-NLG	78	4256	28	17B	?	256x V100 GPU
GPT-3	96	12288	96	175B	694GB	?

Plenty of website demos: ChatGPT, GPT4, Llama2, etc.

Improving Computer Vision:

VIT, MaskFormer, MaskGIT, etc.

• What is attention?

- What is attention?
- Properties of self-attention?

- What is attention?
- Properties of self-attention?
- What is a transformer?

Important topics of this lecture

Important topics of this lecture

• Getting to know different attention mechanisms

Important topics of this lecture

- Getting to know different attention mechanisms
- Understanding the transformer layer