Planificação Semanal

Disciplina: Introdução à Instrumentação

Sigla: IINST (1º Ano)

Teoria

Ano Letivo: 2012 / 2013

Semestre: 1.º

1º SEMANA – Teórico-Práticas

Condutor e campo elétrico

- 1. Descreva a principal característica de um condutor metálico.
- 2. Diga qual o comportamento dos eletrões num condutor metálico.
- 3. Como faria para criar um movimento ordenado num condutor metálico?
- 4. O que entende por campo elétrico?
- 5. O que entende por linha de força de um campo elétrico? Dê um exemplo.
- 6. Apresente uma figura que represente o movimento de uma carga negativa num campo elétrico uniforme. Desenhe o vetor força elétrica.
- 7. Apresente a relação entre densidade de corrente elétrica e o campo elétrico que lhe dá origem e defina a grandeza que estabelece aquela relação.

Corrente elétrica e Diferença de Potencial

1. O que entende por diferença de potencial entre dois pontos de um campo elétrico? Apresente a relação entre esta grandeza e o campo elétrico. Faça uma figura elucidativa e legendada.

- 2. O que entende por corrente elétrica? O que é necessário fazer para manter a corrente elétrica num condutor?
- 3. Deduza a expressão da Lei de Ohm. Apresente a condição de validade desta lei.

Resistividade e Temperatura

- 1. O que entende por resistividade elétrica de um material. Faça uma figura elucidativa e legendada.
- Apresente a expressão que permite determinar a alteração da resistividade dentro de uma certa gama de temperaturas.

Unidades das grandezas (SI - Sistema Internacional de Unidades)

Diga as unidades SI das seguintes grandezas elétricas:
 Carga, campo, diferença de potencial, corrente, resistência, condutância, resistividade e condutividade.

Condutor e campo elétrico

- 1. Qual a quantidade de eletrões que forma uma carga de 40 C?
- 2. Se uma bateria tem uma carga de 0,012 C qual a quantidade de eletrões transferidos para a bateria?

Corrente elétrica e Diferença de Potencial

- 1. Através da secção de um certo fio condutor passam 30 C de carga elétrica em 2 minutos. Qual o valor da intensidade de corrente elétrica?
- Qual o intervalo de tempo necessário para que passem 2 C de carga pela secção de um fio se a corrente elétrica é de 20 μA.
- 3. Pela secção transversal de um fio condutor passa uma corrente de 2 mA durante 45 s. Quantos eletrões atravessaram essa secção nesse intervalo de tempo?
- 4. A carga de uma bateria faz-se a uma intensidade de corrente constante igual a 10 A e consome uma quantidade de carga igual a 360 kC. Quanto tempo demorou a bateria a carregar?
- 5. Um ampère-hora (Ah) é igual à quantidade de carga que corresponde à corrente de 1 ampère durante 1 hora (1Ah). A carga total que uma bateria pode fornecer é geralmente especificada em ampère-hora Calcule em coulomb (C) a carga de 1Ah.
- 6. As cargas e os tempos de duração das baterias de 6,0 V para um certo tipo de telefones móveis são dados na tabela abaixo.
 - a) Qual a quantidade de carga (em coulomb) fornecida pela bateria de 0,55 Ah?
 - b) Calcule a intensidade da corrente elétrica fornecida pela bateria de 0,80 Ah?

Carga (Ah)	Tempo (min)
0,30	40
0,38	50
0,55	70
0,80	110
1,10	150

Resistividade e Temperatura

1. Um condutor de alumínio com 80 metros de comprimento tem uma secção de 35 mm². Calcule a resistência do condutor a 20°C (observe a tabela).

Material	Resistividade ρ
	$(20^{\circ}\text{C em }\Omega \text{ mm}^2/\text{m})$
Cobre	0,017
Alumínio	0,028
Tungsténio	0,055
Ferro	0,10
Manganina	0,43
Constatan	0,49
Cromo-níquel	1,0

2. Um fio de determinado material tem uma resistência de $10~\Omega$ à temperatura de 20° C. Calcule a resistência do fio a 40° C se o material for de: cobre, alumínio, manganina e constantan. Considere os valores da tabela anterior.

ISEP-NGE-MOD005V01 Página 2/4

1º SEMANA - Teórico-Práticas

- 3. O enrolamento de um motor é feito em cobre e tem uma resistência de 1,5 Ω a 20° C. Em regime nominal a sua temperatura atinge os 80° C. Considerando a tabela seguinte calcule:
 - a) A resistividade elétrica do enrolamento a 80° C
 - b) A resistência elétrica a 80 ° C.
 - c) A variação percentual da resistência?

Matarial	Resistividade ρ	Coeficiente de Temp.α
Materiai	Material $20^{\circ}\text{C em }\Omega \text{ mm}^2\text{/m}$	° C ·1
Aço macio	0.1 - 0.2	
Alumínio	0.028	0.004
Bronze	0.028	0.004
Chumbo	0.21	0.0039
Cobre	0.017	0.004
Duralmínio	0.058	0.002
Estanho	0.12	0.004
Ferro macio	0.1 - 0.15	0.005
Ferro fundido	0.8	
Latão	0.085	0.001
Ouro	0.024	0.0038
Platina	0.11	0.003
Prata	0.016	0.0036

- 4. Uma termoresistência PT-100 é usada para medir a temperatura de um processo fabril. A resistência medida através de um multímetro é de 199,5Ω.
 - O valor da resistência à temperatura ambiente é de $109,0~\Omega$. Qual a temperatura de funcionamento do processo fabril?
- 5. O gráfico abaixo mostra a resistividade eléctrica de um fio de nióbio (Nb) em função da temperatura. A resistividade apresenta uma variação brusca em T = 9,0 K tornando-se nula abaixo dessa temperatura. Este comportamento é característico dos supercondutores.

Um fio de Nb de comprimento total L = 1,5 m e secção transversal de área A = 0,050 mm² está esticado verticalmente do topo até ao fundo de um tanque de hélio líquido. Assim pode ser usado como sensor de nível (figura seguinte).

- O hélio líquido está a 4,2 K e a temperatura da parte não imersa do fio está a 10 K. a) Calcule a resistência do fio quando toda a sua extensão está a 10 K, ou seja, quando o tanque está vazio.
- b) Qual é a altura h do nível de hélio líquido no interior do tanque numa situação que a resistência do fio de Nb vale 36 Ω ?

Prática

ISEP-NGE-MOD005V01 Página 3/4

Associação de Resistências

1. Duas resistências R_1 = 1Ω e R_2 = 2Ω estão ligadas em série a uma bateria de 12 V. Calcule a resistência equivalente e a corrente total do circuito.

IT = Ut / Req = 12/3 = 4A

Req = R1 + R2 = 1+ 2 = 3ohm

2. Considere a associação de resistências da figura., sendo R_1 =10 Ω e R_2 =15 Ω . A ddp entre os extremos da associação é de 100V. Determine a resistência equivalente da associação, a corrente e a ddp em cada multímetro (voltímetro).

Req = 10+15 = 25ohm

3. Calcule a resistência equivalente dos circuitos das figuras seguintes, vistas dos terminais A e B.

4. Calcule a resistência equivalente vista dos pontos ${\bf b}$ e ${\bf g}$ (R_{bg}) e dos pontos ${\bf b}$ e ${\bf f}$ (R_{bf}). Atribua valores a todas as resistências.

$$Req(bf) = (R1+R2) //R3 //R5 //R6$$

$$Req(bg) = R1 + R2 + R3$$

Prática