Университет ИТМО Кафедра вычислительной техники

Домашняя работа N 1 по дисциплине: «Конструкторско-технологическое обеспечение производства Θ Вариант: 2, Схема 3.

Студент: Куклина М.Д., Р3401 Преподаватель: Поляков В.И.

1. Постановка задачи

 $R_1, R_5 = 20$ кОм $\pm 10\%, 0.01$ Вт $R_2, R_6 = 4.5$ кОм $\pm 10\%, 0.05$ Вт $R_3, R_4 = 2.1$ кОм $\pm 10\%, 0.03$ Вт $C_1, C_2 = 800$ пФ

2. Расчёт тонкоплёночных резисторов

2.1. Расчёт оптимального удельного поверхностного сопротивления

$$\rho_{\square \text{OHT}} = \sqrt{\frac{\sum\limits_{i=1}^{n} R_i}{\sum\limits_{i=1}^{n} R_i^{-1}}}$$

$$\rho_{\square \text{OHT}} \approx 5961.7 \approx 6000(\frac{\text{OM}}{\square})$$

2.2. Выбор материала резистивной плёнки

Материал: Кермет К-50С.

 $\rho_{\square \mathbf{ont}}$, \mathbf{Om}/\square : 1000 - 10000.

Диапазн значения сопротивления, Ом: 100-100000.

Удельная мощность рассеяия W_0 , B_T/cm^2 : 2.

Тип контактной площадки.

Материал слоя: Алюминий А-99.

Толщина слоя: 0.3 - 0.6.

 ρ_{\square} : 0.03 - 0.06.

Рекомендуемый способ контактирования: Сварка.

2.3. Коэффициент формы каждой резистора

Расчётная формула:

$$k_{\phi i} = \frac{R_i}{
ho_{\square}}, R_i$$
 — номинал і-ого резистора

i	$k_{\phi i}$
1	3.35
2	0.75
3	0.35
4	0.35
5	3.35
6	0.75

2.4. Ширина резисторов

Расчётное значение ширины каждого регистра:

$$b \leq max\{b_{\text{точн}}, b_W\}$$

Где $b_{\text{точн}}$ определяется заданной точностью изготовления

$$b_{\text{ont}} = \begin{cases} 0.2, \Delta R = \pm 20\% \\ 0.3, \Delta R = \pm 10\% \end{cases}$$

В данном случае $b_{\text{точн}} = 0.3$.

 b_W – значение ширины, обеспечеивающее необходимую мощность рассения

$$b_W = \sqrt{\frac{\rho_{\square} W}{RW_0}},$$

 W_0 — удельная мощность рассения плёнки, W — мощность, рассеиваемая на резисторе.

R	$b_{ m touh}$ mm	b_W мм	b mm
R_1	0.3	0.4	0.4
R_2	0.3	1.8	1.8
R_3	0.3	2.0	2.0
R_4	0.3	2.0	2.0
R_5	0.3	0.4	0.4
R_6	0.3	1.8	1.8

2.5. Определение длины резисторов

Величина перекрытия плёночных слоёв $\delta=0.2$ см. Расчётное значение $l_{\rm pacq}$ для каждого резистора

$$l_{\text{расч}} = \frac{R}{\rho_{\square}} b = k_{\phi} b.$$

Погрешность, вызванная округлением.

$$\Delta R' = \frac{|R - R'|}{R} 100\%$$

$$R' = \frac{l'\rho_{\square}}{h}, l' \approx l$$

R	$l_{\mathrm{pac}_{\mathrm{Ч}}}$	$\Delta R', \%$
R_1	1.34	2.5
R_2	1.35	3.7
R_3	0.7	0
R_4	0.7	0
R_5	1.34	2.5
R_6	1.35	3.7

Значение погрешности удовлетворительное.

2.6. Определение формы резисторов

i	$k_{\phi i}$	$l_{\mathrm{pac}_{\mathrm{\Psi}}}$	b mm	Сравнения
1	3.35	1.34	0.4	$1 < k_{\phi} < 10, l > b$
2	0.75	1.35	1.8	$0.1 < k_{\phi} < l, l < b$
3	0.35	0.7	2.0	0.1 < k < l, l < b
4	0.35	0.7	2.0	0.1 < k < l, l < b
5	3.35	1.34	0.4	$1 < k_{\phi} < 10, l > b$
6	0.75	1.35	1.8	$0.1 < k_{\phi} < l, l < b$

Из таблицы видно, что для всех резисторов выполняются условия, при которых их рекомендуется выполнять прямоугольной формы.

3. Расчёт тонкоплёночных конденсаторов

В качестве материала для тонкоплёночных конденсаторов был выбран следующий материал.

Материал: Моноокись кремния.

Материал обкладок: Алюминий 99.

Удельная ёмкость $C_0, \frac{\mathbf{n}\Phi}{\mathbf{c}\mathbf{m}^2}$: $(5-10)\dot{1}0^3$.

Рабочее напряжение, **B**: 60 - 30.

Диэлектрическая проницаемость ϵ : 5 – 6.

Таким образом, при $C_0 = 1000$ площадь конденсаторов равняется:

$$S = \frac{C}{C_0} = \frac{510}{5000} = 0.102 (\text{cm}^2).$$

$$a = 5.1(MM), b = 2(MM).$$

4. Слои

Номер слоя	Тип слоя	Материал
1	Резистивный	Кермет К-50С
2	Проводящий	Алюминий А99
3	Диэлектрический	Моноокись кремния
4	Проводящий	Алюминий А99
5	Защитный	Моноокись германия

5. Определение требуемой площади

Площадь под плёночные конденсаторы: $S_C = 0.202 (\text{cm}^2)$. Что не превышает максимальной площади в 2 см².

Площадь резисторов.

R	l_{pacy} , MM	b, mm	S, MM^2
R_1	1.34	0.4	0.536
R_2	1.35	1.8	2.43
R_3	0.7	2.0	1.4
R_4	0.7	2.0	1.4
R_5	1.34	0.4	0.536
R_6	1.35	1.8	2.43

Суммарная площадь $S_R = 8.732 (\text{мм}^2)$.

Площадь навесных элементов (всегда 2 элемента VT1 и VT2): $S_{\rm H\Im}=1*2=2({\rm cm}^2)$ Обозначеня на схеме.

1. Резистивный слой.

2. Проводящий.

3. Диэлектрический.

5. Защитный.

6. Схема

