

Email Spam Classification

Fundamentals of Data Science

A.Y. 2022/2023

Prof. Galasso

Group Members:

- Marina Iuliana Aur, 1809715
- Sophia Balestrucci, 1713638
- Viktoriia Vlasenko, 2088928
- Michele Musacchio, 2070948
- Ilaria Gagliardi, 1796812

Analyze our dataset

```
4]: emails.info()
```

RangeIndex: 5172 entries, 0 to 5171

Columns: 3001 entries, the to Prediction

dtypes: int64(3001) memory usage: 118.4 MB


```
# Check data completeness
print(emails.isna().sum())
 print(f'total NULL sum: {sum(emails.isna().sum())}')
the
to
ect
and
for
military
allowing
ff
dry
Prediction
Length: 3001, dtype: int64
total NULL sum: 0
```

Prepocessing the fields

- 1 Harmonise letter case parse words into lowercase format
- Remove numbers, symbols and non alphabetic characters
- 3 Are words unique?
- 4 Remove the stopwords (NLTK and spiCy libraries)
- 5 Remove all words of lenght 1
- 6 Lemmatization (spiCy library)
- 7 Standardization (scikit learn library)

Final dataset: from 3000 to 2261

```
In [32]: n_features_before_lemmatization = len(nlp(" ".join(emails_raw.columns[:-1])))
    print(f"Number of features before lemmatization = {n_features_before_lemmatization}")
```

Number of features before lemmatization = 2774

emails_raw

	abdv	ability	able	accept	acceptance	access	accord	account	accountant	accounting	 yesterday	yet	york	young	yvette	zajac	zero	zivley	Z
0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	1	0	1	 1	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
5167	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
5168	0	1	4	0	0	0	0	0	0	0	 0	1	0	0	0	0	0	0	
5169	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
5170	0	0	1	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	
5171	0	1	3	0	0	0	0	0	0	0	 0	1	0	0	0	0	0	0	

emails_raw.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5172 entries, 0 to 5171

Columns: 2261 entries, abdv to zonedubai

dtypes: int64(2261) memory usage: 89.2 MB

5172 rows × 2261 columns

Dataset Splitting

• Train: 72%

• Validation: 12%

• Test: 15%

Model Building: Implemented Classifiers

- Logistic Regression
 - First order boarders
- Naive Bayes
 - Laplace smoothing
 - Logarithm for numerical stability
- Predict and predict probability functions

Model Building: Existing Classifiers

- Classifiers provied by Scikit-learn: AdaBoost, ExtraTrees, KNeighbors
- Improvement of the performance (accuracy) of each classifier through

GridSearchCV

```
Best accuracy score for AdaBoostClassifier: 0.955835 using {'n_estimators': 75}
Best accuracy score for ExtraTreesClassifier: 0.973236 using {'n_estimators': 175}
Best accuracy score for KNeighborsClassifier: 0.884891 using {'n_neighbors': 1}
```

• Training/Test

Performance Evaluation

• Accuracy, Precision, Recall

	Accuracy	Precision	Recall
Logistic Regression	0.960052	0.888000	0.986667
Naive Bayes	0.948454	0.882231	0.948889
Ada Boost Classifier	0.962629	0.915254	0.960000
Extra Trees Classifier	0.978093	0.944444	0.982222
K Nearest Neighbors Classifier	0.788660	0.591045	0.880000

• Computation Time

	time (seconds)
Logistic Regression	189.275045
Naive Bayes	79.577362
Ada Boost Classifier	17.836216
Extra Trees Classifier	14.323022
K Nearest Neighbors Classifier	0.441461

• FAR ("Type II Error")

$$FAR = \frac{FP}{FP + TN}$$

• FRR ("Type I Error")

$$FRR = \frac{FN}{FN + TP}$$

• EER (Crossover Error Rate):

where the FAR and FRR are equal.

• ROC curve

- True Positive Rate vs. False Positive
 Rate on different thresholds
- Cross Validation
 - Choose the best model on validation dataset
 - Score evaluate as accuracy

	accuracy
Logistic Regression	0.528788
Naive Bayes	0.578788
Ada Boost Classifier	0.962121
Extra Trees Classifier	0.983333
K Nearest Neighbors Classifier	0.837879

ExtraTrees is the winner

Thank You