1. Considere el modelo de regresión:

$$Y_i = \alpha + \theta z_i + \epsilon_i, \qquad i = 1, \dots, n,$$

Nombre: _

donde $\epsilon_i \sim \mathsf{N}(0,\sigma^2)$ son disturbios aleatorios independientes para $i=1,\ldots,n,$ mientras que $\sum_{i=1}^n z_i = 0.$

- a. (10 pts) Obtenga el estimador máximo verosímil de $\boldsymbol{\beta} = (\alpha, \theta)^{\top}$. ¿Son $\widehat{\alpha}$ y $\widehat{\theta}$ independientes?
- **b.** (20 pts) Considere el siguiente estimador para θ :

$$b^* = \frac{1}{n-1} \sum_{i=2}^{n} \left(\frac{Y_i - Y_{i-1}}{\triangle z_i} \right),$$

con $\triangle z_i = z_i - z_{i-1}$. ¿Es b^* BLUE? Justifique.

2. Considere el modelo lineal dado por $\mu = X\beta$, donde $X \in \mathbb{R}^{n \times 3}$ tiene la forma:

$$\boldsymbol{X} = \begin{pmatrix} 0 & 0 & x_{13} \\ x_{21} & x_{22} & 0 \\ \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & 0 \end{pmatrix}.$$

- **a.** (20 pts) Muestre que $(\widehat{\beta}_1, \widehat{\beta}_2)^{\top}$ es independiente de $\widehat{\beta}_3$, y que $\widehat{\beta}_3 = Y_1/x_{13}$, donde $\boldsymbol{Y} = (Y_1, \dots, Y_n)^{\top}$ es el vector de observaciones.
- $\mathbf{b.}\;(20~\mathrm{pts})\;$ Muestre que el estimador insesgado para σ^2 es

$$s^2 = \frac{1}{n-3} \Big(\|\mathbf{Y}\|^2 - \|\widehat{\beta}_1 \mathbf{x}_1 + \widehat{\beta}_2 \mathbf{x}_2\|^2 - Y_1^2 \Big),$$

donde x_1 y x_2 denota las primeras dos columnas de X.

c. (20 pts) Muestre que el estadístico F para probar la hipótesis $\beta_1 = \beta_2 = 0$ es dado por:

$$F = \frac{\|\widehat{\beta}_1 \boldsymbol{x}_1 + \widehat{\beta}_2 \boldsymbol{x}_2\|^2 / 2}{s^2}.$$

d. (10 pts) Determine el test-t para probar la hipótesis $H_0: \beta_3 = 0$.