Guida su Teoria e Esercizi

🖺 Elementi di Analisi Matematica 1

Prerequisiti

Funzioni goniometriche

Angolo	sin	cos
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$

Numeri complessi

- i
 ightarrow unità immaginaria
- Rappresentazione:
 - Cartesiana: z = a + ib
 - Parte reale: $a = \rho \cos \theta$
 - Parte immaginaria: $b = \rho \sin \theta$
 - Polare o Trigonometrica: $z = \left[
 ho \cos \theta + i
 ho \sin \theta =
 ight]
 ho (\cos \theta + i \sin \theta)$
 - Modulo: $|z| = \rho = \sqrt{a^2 + b^2}$
 - Argomento:

$$heta = egin{cases} rctan(rac{b}{a}), & ext{se } a > 0, \ rctan(rac{b}{a}) + \pi, & ext{se } a < 0, \ rac{\pi}{2}, & ext{se } a = 0 ext{ e } b > 0, \ -rac{\pi}{2}, & ext{se } a = 0 ext{ e } b < 0. \end{cases}$$

- Esponenziale: $z = \rho e^{i\theta}$
- Somma:

•
$$(a,b) + (c,d) = (a+c,b+d)$$

- Prodotto:
 - $(a,b) \times (c,d) = (ac bd, bc + ad)$
 - $\bullet \ \ \rho_1(\cos\theta_1+i\sin\theta_1)\times\rho_2(\cos\theta_2+i\sin\theta_2)=\rho_1\rho_2(\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2))$
- Potenza: $z = \rho e^{i\theta}$ $z^n = \rho^n e^{in\theta} = \rho^n (\cos(n\theta) + \sin(n\theta))$
- Radice di w: $z^n=w o z=\sqrt[n]{w}$ $z=
 ho e^{i\theta}$ $w=re^{i\phi}$
 - $|z|=
 ho=\sqrt[n]{w}$
 - $rg z_k = heta_k = rac{\phi}{n} + rac{2k\pi}{n} ext{ con } k = 0, 1, \ldots, n-1$
- Coniugato di z:
 - z = a + ib $\overline{z} = a ib$
 - $ullet z =
 ho e^{i heta} \qquad \overline{z} =
 ho e^{-i heta}$
- Potenza unità immaginaria i:
 - $i^{4n}=1$
 - $i^{4n+1} = i$

- $i^{4n+2} = -1$
- $i^{4n+3} = -i$
 - $\forall n \in \mathbb{N}$
- Risoluzione Equazioni:
 - Si può usare la formula risolutiva delle equazioni di secondo grado, intendendo la radice quadrata come radice complessa.
 - Usando la definizione di potenza o radice (nel caso di $z^{\alpha}=q$ con $z,q\in\mathbb{C}$ e $\alpha\in\mathbb{N}$)
 - Scomponendo z in a+ib e ponendo un sistema del tipo:
 - (la *i* scompare, sono calcoli algebrici nel campo reale)

\begin{cases} parte reale del primo membro = parte reale del secondo membro \\ parte immaginaria del primo membro = parte immaginaria del secondo membro

Insiemi

- Definizioni Teoriche
 - Maggiorante: dato $X \subseteq \mathbb{R}$, $m \in \mathbb{R}$ è un maggiorante dell'insieme X se $m \geq x \, \forall \, x \in X$
 - Estremo Superiore: dato $X \subseteq \mathbb{R}$ un insieme limitato superiormente, $y \in \mathbb{R}$ è un estremo superiore di X se y è un maggiorante di X e y è il più piccolo maggiorante di X. Di un insieme non limitato superiormente, l'estremo superiore è $+\infty$. Di un insieme vuoto è $-\infty$.
 - Massimo (di un insieme): dato $X\subseteq\mathbb{R},\ y\in\mathbb{R}$ è il massimo di X se y è l'estremo superiore di X e $y\in X$
 - Massimo Assoluto (di una funzione): data una funzione f. x_0 è un punto di massimo assoluto di f (e $f(x_0)$ è il massimo assoluto) se per ogni $x \in Dom(f)$ risulta che $f(x) \leq f(x_0)$.
 - Massimo Relativo (di una funzione): data una funzione f, x_0 è un punto di massimo relativo di f (e $f(x_0)$ è il massimo relativo) se esiste almeno un intorno $B(x_0, \delta) \subset Dom(f)$ (di raggio δ e centro in x_0) tale che per ogni $x \in B(x_0, \delta)$ risulta che $f(x) \leq f(x_0)$.
 - Intervallo chiuso a destra: se l'estremo destro è incluso nell'intervallo
 - Intervallo aperto a destra: se l'estremo destro è escluso dall'intervallo
 - Intervallo illimitato superiormente: se l'estremo superiore è $+\infty$
 - Intervallo limitato superiormente: se l'estremo superiore è $c \in \mathbb{R}$

Funzioni

• Logaritmo con base > 1 (blu) e base < 1 (rosso)

• Seno (blu), coseno (rosso) e tangente (verde)

• Potenza con base > 1 (blu) e base < 1 (rosso)

Radice quadrata

• Arcocoseno (blu), Arcoseno (rosso), Arcotangente (verde)

Limiti

- Definizione
- · Teorema di unicità del limite
- Teorema del confronto (sono tre, il terzo è detto "Teorema dei Carabinieri")
 - se $f(x) \leq g(x)$ allora:
 - 1. se f(x) o l e g(x) o m allora $l \le m$
 - 2. se $f(x) \to +\infty$ allora $g(x) \to +\infty$
 - se $f(x) \le g(x) \le h(x)$ allora:
 - 3. se $f(x) \to l$ e $h(x) \to l$ allora $g(x) \to l$
- · Teorema di Weierstrass
 - Sia f una funzione continua con domino $K \subseteq \mathbb{R}$ chiuso e limitato, allora f ha massimo e minimo.
- Teoria degli Infinitesimi (o "o piccolo", O "o grande")
- Limiti Notevoli
 - $\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$
 - $ullet \lim_{x o 0}rac{a^x-1}{x}=\ln(a)$
 - $\lim_{x\to\pm\infty}(1+\frac{1}{x})^x=e$
 - $\lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{\tan x}{x} = 1$
 - $\lim_{x \to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$
- Calcolo Limiti
 - Algebra dei limiti (regole):
 - Il limite della somma è uguale alla somma dei limite
 - Il limite del prodotto di una funzione per una costante è uguale alla costante per il limite della funzione
 - Il limite del prodotto è uguale al prodotto dei limiti
 - Il limite del rapporto è uguale al rapporto dei limiti
 - Si può passare il limite alla funzione composta
 - Risoluzione per sostituzione
 - Può avvenire se la funzione in questione è continua (e x tende a un valore finito). Si utilizzano le regole dell'algebra dei limiti.
 - Se la funzione non è continua in un punto si calcolano limite destro e sinistro. Se non coincidono il limite non esiste.

Sviluppi di Taylor

Derivate

Definizione (limite del rapporto incrementale)

$$ullet f'(x_0) = \lim_{h o 0} rac{f(x_0+h)-f(x_0)}{h}$$

- Derivate Fondamentali
 - Costante: $f(x) = k \in \mathbb{R} \to f'(x) = 0$
 - Variabile: $f(x) = x \rightarrow f'(x) = 1$
 - Potenza: $f(x) = x^s, s \in \mathbb{R} \to f'(x) = sx^{s-1}$
 - Esponenziale: $f(x) = a^x, a \in \mathbb{R} o f'(x) = a^x \ln a$
 - Logaritmo: $f(x) = \log_a(x) o f'(x) = rac{1}{x \ln a}$
 - Valore Assoluto: $f(x) = |x| \to f'(x) = \frac{|x|}{x}$
 - Seno: $f(x) = \sin(x) \rightarrow f'(x) = \cos(x)$
 - Coseno: $f(x) = \cos(x) \rightarrow f'(x) = -\sin(x)$
 - Tangente: $f(x) = \tan(x) o f'(x) = \frac{1}{\cos^2(x)}$
- Condizione di derivabilità
 - Una funzione è derivabile quando il limite del rapporto incrementale esiste ed è finito.
 - Se non è derivabile ci si ritrova (nella maggior parte dei casi) in:
 - un punto angoloso (ad esempio |x|)
 - una cuspide (ad esempio $\sqrt{|x|}$)
 - un punto di flesso a tangente verticale (ad esempio $\sqrt[3]{x}$)
 - Individuare i punti di non derivabilità:
 - 1. Se un punto non appartiene al dominio della derivata prima allora non è derivabile.
 - 2. Vanno verificati i "punti sospetti". I punti sospetti sono quei punti in cui la funzione potrebbe non essere derivabile. Ad esempio, se una funzione f contiene |x|, potrebbe non essere derivabile in x=0 (anche se appartiene al dominio!). Si calcola il limite della derivata prima nel punto. Se quest'ultimo esiste ed è finito, allora la funzione è derivabile in quel punto. Non vale il contrario. Devono valore le ipotesi del teorema di Darboux (in EAM1 dovrebbero essere sempre verificate, quindi non viene enunciato)
 - I punti sospetti sono (in x=0) nelle funzioni: $|x|, \sqrt{x}$
 - 3. Se non sono verificate le ipotesi del teorema di Darboux, si è obbligati a calcolare il limite del rapporto incrementale. La funzione è derivabile in quel punto se e solo se esiste il limite ed è finito.
 - La somma/differenza di due funzioni derivabili è derivabile.
 - Il prodotto/quoziente di due funzioni derivabile è derivabile.
 - La composizione di due funzioni derivabili è derivabile.
- Calcolo Derivate
 - La derivata del prodotto di una costante per una funzione è uguale al prodotto della costante per la derivata della funzione
 - La derivata della somma/differenza di funzioni è uguale alla somma/differenza delle singole derivate.
 - La derivata del prodotto di due funzioni è uguale alla somma del prodotto tra la prima funzione derivata per la seconda non derivata, e la prima funzione non derivata per la seconda derivata

$$\bullet \ (f(x)\cdot g(x))'=f'(x)g(x)+f(x)g'(x)$$

La derivata del quoziente di due funzioni

•
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

La derivata della funzione composta

- $(g(f(x)))' = g'(f(x)) \cdot f'(x)$
- · Teorema di Fermat
 - Se un punto x_0 è estremo relativo allora $f'(x_0) = 0$
- Teorema di Rolle
 - Se in un intervallo [a,b] la funzione f è continua in [a,b], derivabile in]a,b[e f(a)=f(b) allora $\exists c$ tale che f'(c)=0
- Teorema di Lagrange
 - Se in un intervallo [a,b] la funzione f è continua in [a,b] e derivabile in]a,b[allora $\exists c$ tale che f(b)-f(a)=(b-a)f'(c)
- · Teorema di Weierstrass
 - Se in un intervallo [a,b] chiuso e limitato la funzione f è continua allora f ammette un massimo e un minimo (assoluti)
- Teorema di De L'Hôpital
 - Se $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ porta a una forma indeterminata del tipo $\frac{0}{0}$ o $\frac{\infty}{\infty}$ allora $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$

Studio di funzione

- Dominio
 - Frazioni: denominatore $\neq 0$
 - Radici a indice pari: argomento ≥ 0
 - Logaritmi: base e argomento > 0, base $\neq 1$
 - arccos, arcsin: argomento in [-1, +1]
- Simmetria (facoltativo):
 - La funzione è "dispari" (simmetria rispetto all'origine) se f(-x) = -f(x)
 - La funzione è "pari" (simmetrica rispetto all'asse delle ordinate) se f(-x) = f(x)
 - Individuare una simmetria porta un grosso vantaggio: consente di studiare la funzione per x > 0 e di considerarla senza valori assoluti, se presenti.
- Limiti nei punti di frontiera del dominio per il calcolo degli asintoti:
 - Verticale:
 - ullet si verifica quando $\lim_{x o x_0}f(x)=\pm\infty$
 - Equazione: $x = x_0$
 - · Possono essere 0, qualsiasi numero o infiniti
 - Orizzontale:
 - si verifica quando $\lim_{x \to +\infty} f(x) = k \in \mathbb{R}$
 - Equazione: y = k
 - Possono essere 0, 1 o 2.
 - Obliquo:
 - esiste soltanto se non esiste un asintoto orizzontale (se lo cerco a $+\infty$ non deve esistere l'asintoto orizzontale a $+\infty$)
 - si verifica quando:
 - $ullet \lim_{x o\pm\infty}rac{f(x)}{x}=m\in\mathbb{R}$
 - $ullet \ lim_{x
 ightarrow\pm\infty}f(x)-mx=q\in\mathbb{R}$
 - Equazione: y = mx + q
 - Possono essere 0, 1 o 2
- Monotonia
 - si calcola f'(x) e si studia il segno.
 - Dove f'(x) > 0 la funzione è crescente (viceversa è decrescente).

- Convessità
 - si calcola f''(x) e si studia il segno
 - Dove f''(x) > 0 la funzione è convessa (viceversa è concava).
 - (convessa ha il grafico simile a una **U**)
- Calcolo esplicito di qualche valore:
 - serve ad esempio per sapere il segno della funzione in un punto.

Successioni Ricorsive

$$\left\{egin{aligned} a_n &= \lambda \ & \ a_{n+1} &= f(a_n) \end{aligned}
ight.$$

- Cosa sono le funzioni f e ϕ
 - La funzione f rappresenta la legge della successione ($a_{n+1} = f(a_n)$)
 - La funzione $\phi(t) = f(t) t$. Non è altro che $a_{n+1} a_n$.
- Studio di ϕ
 - La funzione ϕ serve per calcolare i punti fissi e la monotonia della successione.
 - Teorema: Se la successione non è divergente, converge a un punto fisso della successione.
 - I punti fissi si calcolano ponendo $\phi(t)=0$ (sono gli zeri di ϕ).
 - Si studia il segno di ϕ per poterne studiare la monotonia.
 - La monotonia suggerisce il possibile limite della successione
- Studio degli intervalli della successione
 - Si studia f' (si calcolano massimi e minimi).
 - Si studia l'intervallo del codominio rispetto a quello del dominio dove si trova λ .
 - Si calcolano massimo e minimo del codominio nell'intervallo di ϕ in cui si trova λ .
 - Se ad esempio otteniamo: $f(]0,1[)=]1,+\infty[$ con $\lambda\in]0,1[$, siamo costretti a calcolare anche massimi e minimi in $]1,+\infty[$. Se $f(]1,+\infty[)=]1,+\infty[$, allora per ricorsività tutta la successione è contenuta in $]1,+\infty[$.
 - Si guarda quindi a cosa tende la successione nell'intervallo $]1,+\infty[$ (quindi si guarda a cosa tende ϕ)
 - Se è richiesto lo studio della successione al variare di λ , si pone $\lambda \in a$ ogni intervallo di ϕ .

Come capire se c'è un errore

Poniamo caso che $a_0 = 1$.

In seguito allo studio di f si scopre che f([0,2]) =]0,3[

C'è un errore di calcolo. Quando accade che il codominio di un intervallo non è un sott'insieme di nessun intervallo, allora il metodo sopra citato non funziona. Tutti le successioni di EAM1 sono però risolvibili con questo metodo, quindi dev'esserci un errore di calcolo.

\triangle Non mettere λ in esercizi che non lo prevedono

Anche per esercitazione, non ha senso mettere λ in esercizi che hanno un numero finito come a_1 . Alcuni esercizi sono risolvibili con il metodo sopra citato soltanto per alcuni valori di a_1 .