Известно, что всегда O(f)+o(f)=O(f), и o(f)+o(f)=o(f), и 2o(f)=o(f) при фиксированной базе. Следует ли отсюда, что $o(f)\equiv 0$?

- 6. Известно, что произведение двух или любого конечного числа бесконечно малых является функцией бесконечно малой. Приведите пример, показывающий, что для бесконечных произведений это уже не всегда так.
- 7. Зная степенное разложение функции e^x , найдите методом неопределенных коэффициентов (или иначе) несколько первых членов (или все) степенного разложения функции $\ln(1+x)$.
 - 8. Вычислите $\exp A$, когда A одна из матриц

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

- 9. Сколько членов ряда для e^x надо взять, чтобы получить многочлен, позволяющий вычислять e^x на отрезке [-1,2] с точностью до 10^{-3} ?
- 10. Зная степенные разложения функций $\sin x$ и $\cos x$, найдите методом неопределенных коэффициентов (или иначе) несколько первых членов (или все) степенного разложения функции $\operatorname{tg} x$ в окрестности точки x=0.
- 11. Длину стягивающего земной шар по экватору пояска увеличили на 1 метр, после чего поясок натянули, подперев вертикальным столбиком. Какова примерно высота столбика, если радиус Земли ≈ 6400 км.?
 - Вычислите

$$\lim_{x \to \infty} \left(e \cdot \left(1 + \frac{1}{x} \right)^{-x} \right)^x.$$

13. Нарисуйте эскизы графиков следующих функций:

a)
$$\log_{\cos x} \sin x$$
; b) $\arctan \frac{x^3}{(1-x)(1+x)^2}$.

Дифференциальное исчисление функций одной переменной

- 1. Покажите, что если вектор ускорения a(t) в любой момент t ортогонален вектору v(t) скорости движения, то величина |v(t)| остается постоянной.
 - **2.** Пусть (x,t) и (\tilde{x},\tilde{t}) соответственно координата и время движущейся

дифференцируема на \mathbb{R} , то f' непрерывна в любой точке $a \in \mathbb{R}$. По теореме Лагранжа

$$\frac{f(x)-f(a)}{x-a}=f'(\xi),$$

где ξ — точка между a и x. Тогда если $x \to a$, то $\xi \to a$. По определению,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a),$$

и поскольку этот предел существует, то существует и равен ему предел правой части формулы Лагранжа, т.е. $f'(\xi) \to f'(a)$ при $\xi \to a$. Непрерывность f' в точке a «доказана». Где ошибка?

- 4. Пусть функция f имеет n+1 производную в точке x_0 , и пусть $\xi=x_0+\theta_x(x-x_0)$ средняя точка в формуле Лагранжа остаточного члена $\frac{1}{n!}f^{(n)}(\xi)(x-x_0)^n$, так что $0<\theta_x<1$. Покажите, что $\theta_x\to\frac{1}{n+1}$ при $x\to x_0$, если $f^{(n+1)}(x_0)\neq 0$.
- 5. а) Если функция $f \in C^{(n)}([a,b],\mathbb{R})$ в n+1 точке отрезка [a,b] имеет нули, то на этом отрезке имеется по крайней мере один нуль функции $f^{(n)}$ производной f порядка n.
- b) Покажите, что полином $P_n(x)=\frac{d^n(x^2-1)^n}{dx^n}$ на отрезке [-1,1] имеет n корней. (Указание: $x^2-1=(x-1)(x+1)$ и $P_n^{(k)}(-1)=P_n^{(k)}(1)=0$ при $k=0,\ldots,n-1$.)
- 6. Вспомните геометрический смысл производной и покажите, что если функция f определена и дифференцируема на интервале I и $[a,b] \subset I$, то функция f' (даже не будучи непрерывной!) принимает на отрезке [a,b] все значения между f'(a) и f'(b).
 - 7. Докажите неравенство

$$a_1^{\alpha_1} \dots a_n^{\alpha_n} \leqslant \alpha_1 a_1 + \dots + \alpha_n a_n$$

где числа $a_1, \ldots, a_n, \alpha_1, \ldots, \alpha_n$ неотрицательны и $\alpha_1 + \ldots + \alpha_n = 1$.

8. Покажите, что

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^x (\cos y + i \sin y) \qquad (z = x + iy),$$

поэтому естественно считать, что $e^{iy} = \cos y + i \sin y$ (формула Эйлера) и

$$e^z = e^x e^{iy} = e^x (\cos y + i \sin y).$$

 Найдите форму поверхности жидкости, равномерно вращающейся в стакане.

- 10. Покажите, что касательная к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ в точке (x_0, y_0) имеет уравнение $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ и что световые лучи от источника, помещенного в одном из фокусов $F_1 = (-\sqrt{a^2 b^2}, 0)$, $F_2 = (\sqrt{a^2 b^2}, 0)$ эллипса с полуосями a > b > 0, собираются эллиптическим зеркалом в другом фокусе.
- 11. Частица без предварительного разгона под действием силы тяжести начинает скатываться с вершины ледяной горки эллиптического профиля. Уравнение профиля: $x^2 + 5y^2 = 1$, $y \geqslant 0$. Рассчитайте траекторию движения частицы до ее приземления.
 - **12.** Средним порядка α чисел x_1, x_2, \ldots, x_n называют величину

$$s_{\alpha}(x_1, x_2, \dots, x_n) = \left(\frac{x_1^{\alpha} + x_2^{\alpha} + \dots + x_n^{\alpha}}{n}\right)^{1/\alpha}$$

В частности, при $\alpha=1,2,-1$ получаем соответственно среднее арифметическое, среднее квадратичное и среднее гармоническое этих чисел.

Будем считать, что все числа x_1, x_2, \ldots, x_n неотрицательны, а если степень $\alpha < 0$, то будем предполагать, что они даже положительны.

а) Используя неравенство Гёльдера, покажите, что если $\alpha < \beta$, то

$$s_{\alpha}(x_1,x_2,\ldots,x_n) \leqslant s_{\beta}(x_1,x_2,\ldots,x_n),$$

причем равенство имеет место, лишь когда $x_1 = x_2 = \ldots = x_n$.

b) Покажите, что при стремлении α к нулю величина $s_{\alpha}(x_1, x_2, ..., x_n)$ стремится к $\sqrt[p]{x_1 x_2 ... x_n}$, т.е. к среднему геометрическому этих чисел.

С учетом результата задачи а) отсюда, например, следует классическое неравенство между средним геометрическим и средним арифметическим неотрицательных чисел (напишите его).

- с) Если $\alpha \to +\infty$, то $s_{\alpha}(x_1, x_2, \dots, x_n) \to \max\{x_1, x_2, \dots, x_n\}$, а при $\alpha \to -\infty$ величина $s_{\alpha}(x_1, x_2, \dots, x_n)$ стремится к меньшему из рассматриваемых чисел, т.е. к $\min\{x_1, x_2, \dots, x_n\}$. Докажите это.
- 13. Пусть r = r(t) закон движения точки (т. е. ее радиус-вектор как функция времени). Считаем, что это непрерывно дифференцируемая функция на промежутке $a \le t \le b$.
- а) Можно ли, ссылаясь на теорему Лагранжа о среднем, утверждать, что на [a,b] найдется момент ξ , такой что $r(b) r(a) = r'(\xi) \cdot (b-a)$? Поясните ответ примерами.
- b) Пусть Convex $\{r'\}$ выпуклая оболочка множества (концов) векторов $r'(t), t \in [a, b]$. Покажите, что найдется вектор $v \in \text{Convex}\{r'\}$, такой что $r(b) r(a) = v \cdot (b a)$.
- с) Соотношение $|r(b) r(a)| \le \sup |r'(t)| \cdot |b a|$, где верхняя грань берется по $t \in [a, b]$, имеет очевидный физический смысл. Какой? Докажите это неравенство как общий математический факт, развивающий классическую теорему Лагранжа о конечном приращении.