



# Amazon vs. Google



#### Remember the workflow?



1 - Problem definition & specific goals

2 - Identify text to be collected

- 3 Text organization
- 4 Feature extraction
- 5 Analysis
- 6 Reach an insight, recommendation or output



# A case study in HR analytics

1. Problem definition

Which company has better work life balance? Which has better perceived pay according to online reviews?

2. Unorganized state

Organized state



**4.** Feature Extraction

Organization

5. Analysis

Insight, recommendation, analytical output











# Text organization



## Text organization with qdap

```
# qdap cleaning function
qdap_clean <- function(x) {
   x <- replace_abbreviation(x)
   x <- replace_contraction(x)
   x <- replace_number(x)
   x <- replace_ordinal(x)
   x <- replace_symbol(x)
   x <- tolower(x)
   return(x)
}</pre>
```



### Text organization with tm





# Cleaning your corpora

















# Feature extraction and analysis



#### Feature extraction

```
> # Create bigram TDM
> amzn_p_tdm <- TermDocumentMatrix(
    amzn_pros_corp,
    control = list(tokenize = tokenizer)
)</pre>
```



DataCamp

|          | Review 1 | Review 2 | ••• | Review N |
|----------|----------|----------|-----|----------|
| Bigram 1 | 0        | O        | 0   | 0        |
| Bigram 2 | 1        | 1        | 0   | 0        |
| Bigram 3 | 1        | O        | 0   | 0        |
| •••      | Ο        | Ο        | 1   | 1        |
| Bigram M | 0        | 0        | 1   | O        |

Term Document Matrix (TDM)





### Get term frequencies

```
> # Convert TDM to matrix
> amzn_p_m <- as.matrix(amzn_p_tdm)</pre>
> # Compute term frequencies
> amzn_p_freq <- rowSums(amzn_p_m)</pre>
> # Sort in decreasing order of frequency
> term_frequency <- sort(amzn_p_freq, decreasing = TRUE)</pre>
> View the top 5 most frequent bigrams
> term_frequency[1:5]
      good pay great benefits smart people
    place work fast paced
```



#### Create visuals with plotrix

```
> # Find common words
> common_words <- subset(all_tdm_m,</pre>
                          all_tdm_m[, 1] > 0 & all_tdm_m[, 2] > 0)
> difference <- abs(common_words[, 1] - common_words[, 2])</pre>
> common_words <- cbind(common_words, difference)</pre>
> common_words <- common_words[order(common_words[, 3],</pre>
                                       decreasing = TRUE), ]
> # Create data frame: top 15 words
> top15_df <- data.frame(x = common_words[1:15, 1],</pre>
                          y = common_words[1:15, 2],
                          labels = rownames(common_words[1:15, ]))
> # Make pyramid plot
> pyramid.plot(top15_df$x, top15_df$y, labels = top15_df$labels,
                gap = 12, main = "Words in Common", unit = NULL,
                top.labels = c("Amzn", "Cons Words", "Google"))
```









#### Reach a conclusion



#### Intro to Text Mining: Bag of Words

#### Time to reach a conclusion!

**Problem definition** 

Which company has better work life balance? Which has better perceived pay according to online reviews?

**Unorganized state** 

Organization **Feature Extraction** 

Organized state

Insight, recommendation, analytical output









# Congratulations!



#### In this course, you learned how to...

- Organize and clean text data
- Tokenize into unigrams & bigrams
- Build TDMs & DTMs
- Extract features
  - Top terms
  - Word associations
- Visualize text data







#### Get to work!