Appl. No. 10/603,546

Examiner: RIELLEY, ELIZABETH A, Art Unit 2879 In response to the Office Action dated June 15, 2006

Date: September 14, 2006 Attorney Docket No. 10112271

REGEIVED CENTRAL FAX GENTER

SEP 14 2006

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

Claim 1 (Currently amended): A method of repositioning display spacers using inductive attraction, comprising:

providing magnetic spacers;

providing an inductive chuck to attract the spacers by magnetic force, wherein a voltage

is applied to the inductive chuck and the spacers are lifted by the inductive chuck;

providing a substrate; and

using the inductive chuck to position the spacers in desired positions on the substrate aligning the spacers with desired positions on the substrate; and interrupting the voltage applied to the inductive chuck.

Claim 2 (Original): The method as claimed in claim 1, wherein the spacers are spacers of a field emission display.

Claims 3-5 (Canceled).

Claim 6 (Previously presented): The method as claimed in claim 1, wherein the spacers are made of magnetic materials.

Claim 7 (Previously presented): The method as claimed in claim 1, wherein the spacers are completely comprised of magnetic materials.

Claim 8 (Previously presented): The method as claimed in claim 1, wherein the spacers are partially comprised magnetic materials.

Claim 9 (Previously presented): The method as claimed in claim 5, wherein the spacers have two or more layers, at least one of which is made of magnetic materials.

Appl. No. 10/603,546

Examiner: RIELLEY, ELIZABETH A, Art Unit 2879 In response to the Office Action dated June 15, 2006

Date: September 14, 2006 Attorney Docket No. 10112271

Claims 10-13 (Canceled)

Claim 14 (Previously presented): The method as claimed in claim 1, wherein the spacers comprise metal, alloy, or a combination thereof.

Claim 15 (Original): The method as claimed in claim 1, wherein the spacers are cylindrical, X-, I-, or bar-shaped or a combination thereof.

Claim 16 (Original): The method as claimed in claim 1, wherein the shapes of spacers have two or more cross points, comprising comb, lattice, grid, or zig-zag shapes or a combination thereof.

Claim 17 (Original): The method as claimed in claim 1, wherein the substrate is the anode plate of a flat panel display.

Claim 18 (Original): The method as claimed in claim 1, wherein the substrate is the anode plate of a field emission display.

Claim 19 (Original): The method as claimed in claim 1, wherein the substrate is the cathode plate of a flat panel display.

Claim 20 (Original): The method as claimed in claim 1, wherein the substrate is the cathode plate of a field emission display.

Claim 21 (Original): The method as claimed in claim 1, further comprising using an alignment step when locating the spacer onto a desired position on the substrate.

Claim 22 (Original): The method as claimed in claim 21, wherein the alignment step comprises use of Charge-Coupled Device (CCD) and alignment marks.

Appl. No. 10/603,546

Examiner: RIELLEY, ELIZABETH A, Art Unit 2879
In response to the Office Action dated June 15, 2006

Date: September 14, 2006 Attorney Docket No. 10112271

Claim 23 (Previously presented): The method as claimed in claim 1, wherein the magnetic force lifts the magnetic spacers and brings them into contact with the inductive chuck.

Claim 24 (Previously presented): The method as claimed in claim 1, wherein the magnetic spacers are released from the inductive chuck by interrupting the magnetic force.

Claim 25 (Currently amended): A method of repositioning display spacers using inductive attraction, comprising:

providing spacers made of electrostatic materials;

providing an inductive chuck to attract the spacers by electrostatic force, wherein a voltage is applied to the inductive chuck and the spacers are lifted by the inductive chuck;

providing a substrate; and

using the inductive chuck to position the spacers in desired positions on the substrate:

aligning the spacers with desired positions on the substrate; and

interrupting the voltage applied to the inductive chuck.

Claim 26 (Previously presented): The method as claimed in claim 25, wherein the electrostatic force lifts the spacers and brings them into contact with the inductive chuck.

Claim 27 (Previously presented): The method as claimed in claim 26, wherein the spacers are released from the inductive chuck by interrupting the electrostatic force.

Claim 28 (Previously presented): The method as claimed in claim 25, wherein the spacers have two or more layers, at least one of which is made of electrostatic materials.

Claim 29 (Previously presented): The method as claimed in claim 25, wherein the spacers are made of dielectric, ceramic, or glass materials, or a combination thereof.