Integration and Integration

K

March 28, 2021

Contents

In	Introduction		
Ι	σ -algebra and measures	7	
1	Family of Sets	9	
2	Measure	11	

4 CONTENTS

Introduction

6 CONTENTS

Part I $\sigma\text{-algebra and measures}$

Chapter 1

Family of Sets

Chapter 2

Measure

Definition 2.1. Let $\mathcal{R} \subset \mathcal{P}(X)$ be a ring of sets. A set function $\mu \to [0, \infty]$ is called

- finitely additive if for all disjoint $A, B \in \mathcal{R}$ it is $\mu(A \sqcup B) = \mu(A) + \mu(B)$.
- σ -additive if for all disjoint $A_k \in \mathcal{R}$ with $k \in \mathbb{N}$ and $\bigsqcup_{k=1}^{\infty} A_k \in \mathcal{R}$ it is

$$\mu\left(\bigsqcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k). \tag{2.1}$$

- subadditive if for all $A, B \in \mathcal{R}$ it is $\mu(A \cup B) \leq \mu(A) + \mu(B)$
- σ -subadditive if for all $A_k \in \mathcal{R}$ with $k \in \mathbb{N}$ and $\bigcup_{k=1}^{\infty} A_k \in \mathcal{R}$ it is

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) \le \sum_{k=1}^{\infty} \mu(A_k). \tag{2.2}$$

- finite if for all $A \in \mathcal{R}$ it is $\mu(A) < \infty$.
- σ -finite if there exists a collection of subsets $\{A_k\}_{k\in\mathbb{N}}$ in \mathcal{R} with $\mu(A_k)<\infty$ for all $k\in\mathbb{N}$ such that

$$\bigcup_{k \in \mathbb{N}} A_k = X. \tag{2.3}$$

• monotonous if for all $A, B \in \mathcal{R}$ with $A \subset B$ it is $\mu(A) \leq \mu(B)$.

Remark. In the definition of σ -additivity, checking whether $\bigsqcup_{k=1}^{\infty} A_k$ is included in \mathcal{R} is required. For σ -rings and therefore σ -algebras, it is guranteed that a countable union of disjoint sets are included.

In general, not all finite set functions $\mu \to [0, \infty]$ are σ -finite as X need not be included in a ring of sets.

Definition 2.2 (Content). Let $\mathcal{R} \subset \mathcal{P}(X)$ be a ring of sets. A set function $\mu \to [0, \infty]$ is called a content if

- 1. $\mu(\emptyset) = 0$.
- 2. μ is finitely additive.

Definition 2.3 (Premeasure). Let $\mathcal{R} \subset \mathcal{P}(X)$ be a ring of sets. A σ -additive content $\mu \to [0, \infty]$ is called a premeasure.

Definition 2.4 (Measure). Let $\mathcal{A} \subset \mathcal{P}(X)$ a σ -algebra. A σ -additive content $\mu : \mathcal{A} \to [0, \infty]$ is called a measure.

Definition 2.5 (Lebesgue Content). Let $\mathcal{Q}(\mathbb{R}^n)$ be the ring of sets over \mathbb{R}^n .

$$Q(\mathbb{R}^n) = \left\{ \bigsqcup_{k=1}^m \left[a_{1,k}, b_{1,k} \right) \times \dots \times \left[a_{n,k}, b_{n,k} \right) \middle| m \in \mathbb{N}; a_{i,k}, b_{i,k} \in \mathbb{R}; 1 \le k \le n \right\}$$
 (2.4)

Set $\lambda^n: \mathcal{Q}(\mathbb{R}^n) \to \mathbb{R}_0^+$ as

$$\lambda^{n}(A) := \sum_{k=1}^{m} \prod_{i=1}^{n} (b_{i,k} - a_{i,k})$$
(2.5)

 λ^n is the Lebesgue content.

Theorem 2.5.1. λ^n is a well-defined finite content.

Theorem 2.5.2. λ^n is a premeasure.