

Class 7: Dictionaries and Topic Modelling

Topic 2: Text

Computational Analysis of Text, Audio, and Images, Fall 2023 Aarhus University

Mathias Rask (mathiasrask@ps.au.dk)

Aarhus University

Today's Menu

Dictionaries

Today's Menu

Dictionaries

Topic Models

Today's Menu

Dictionaries

Topic Models

Lab

1

1. Prediction

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation
- 3. Language use

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation
- 3. Language use
 - Similarity
 - Complexity

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation
- 3. Language use
 - Similarity
 - Complexity
- 4. Content

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation
- 3. Language use
 - Similarity
 - Complexity
- 4. Content
 - Topics
 - · Word counts

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation
- 3. Language use
 - Similarity
 - Complexity
- 4. Content
 - Topics
 - · Word counts
- 5. Measurement

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation
- 3. Language use
 - Similarity
 - Complexity
- 4. Content
 - Topics
 - · Word counts
- 5. Measurement
 - Positions (i.e. scaling)
 - Sentiment
 - Emotions

- 1. Prediction
 - Hate-speech in tweets
 - Partisanship
- 2. Meaning
 - Actor-variation
 - Time-variation
- 3. Language use
 - Similarity
 - Complexity
- 4. Content
 - Topics
 - · Word counts
- 5. Measurement
 - Positions (i.e. scaling)
 - Sentiment
 - Emotions

1. All models for text are wrong, but some are useful

- 1. All models for text are wrong, but some are useful
- 2. Models augment humans but do not replace humans

- 1. All models for text are wrong, but some are useful
- 2. Models augment humans but do not replace humans
- 3. Validation is key

- 1. All models for text are wrong, but some are useful
- 2. Models augment humans but do not replace humans
- 3. Validation is key
- 4. Quantitative text analysis is dimensionality reduction

Methods

Methods

4

Table of Contents

Dictionaries

Topic Models

Lal

Dictionaries are widely used in political science and are basically about counting words in a set {}

Dictionaries are widely used in political science and are basically about counting words in a set {}

 \rightsquigarrow A generalization of counting individual words

Dictionaries are widely used in political science and are basically about counting words in a set {}

→ A generalization of counting individual words

Dictionaries are widely used in political science and are basically about counting words in a set {}

→ A generalization of counting individual words

We can use dictionaries for two purposes:

• Content: If certain words $\{w_1, w_2, \dots, w_J\}$ are present in $\mathcal{D}_i \leadsto$ contains \mathcal{C}

6

Dictionaries are widely used in political science and are basically about counting words in a set {}

→ A generalization of counting individual words

- Content: If certain words $\{w_1, w_2, \dots, w_J\}$ are present in $\mathcal{D}_i \leadsto$ contains \mathcal{C}
 - · Example: Talking about immigration
 - Words: [udlænding, asylansøger, familiesammenføring]

Dictionaries are widely used in political science and are basically about counting words in a set {}

→ A generalization of counting individual words

- Content: If certain words $\{w_1, w_2, \dots, w_J\}$ are present in $\mathcal{D}_i \leadsto$ contains C
 - · Example: Talking about immigration
 - Words: [udlænding, asylansøger, familiesammenføring]
- Measurement: If certain words $\{w_1,w_2,\ldots,w_N\}$ are present in $\mathcal{D}_i\leadsto$ signalling of L

Dictionaries are widely used in political science and are basically about counting words in a set {}

→ A generalization of counting individual words

- Content: If certain words $\{w_1, w_2, \dots, w_J\}$ are present in $\mathcal{D}_i \leadsto$ contains C
 - · Example: Talking about immigration
 - Words: [udlænding, asylansøger, familiesammenføring]
- Measurement: If certain words $\{w_1, w_2, \dots, w_N\}$ are present in $\mathcal{D}_i \leadsto$ signalling of L
 - Example: Use aggressive language
 - Words: [had, idiot, dum, fatsvag, dompap]

Applying a dictionary is straightforward.

Assume we have our corpus C with documents D_i with $i \in \{1, \dots, N\}$.

Applying a dictionary is straightforward.

Assume we have our corpus C with documents D_i with $i \in \{1, ..., N\}$.

For each document \mathcal{D}_i , the dictionary score is:

$$score_{\mathcal{D}_i} = \frac{\sum_{j=1}^J W_{ij}}{n_i}$$

7

Applying a dictionary is straightforward.

Assume we have our corpus C with documents D_i with $i \in \{1, ..., N\}$.

For each document \mathcal{D}_i , the dictionary score is:

$$score_{\mathcal{D}_i} = \frac{\sum_{j=1}^{J} W_{ij}}{n_i}$$

where:

- W_{ij} is a vector of **0** and **1** indicating whether a dictionary word j appears in \mathcal{D}_i
 - $\sum_{i=1}^{J} W_{ij} = |A \cap B|$
- n_i is the total number of words in \mathcal{D}_i

7

Counting Words

Applying a dictionary is straightforward.

Assume we have our corpus C with documents D_i with $i \in \{1, ..., N\}$.

For each document \mathcal{D}_i , the dictionary score is:

$$score_{\mathcal{D}_i} = \frac{\sum_{j=1}^{J} W_{ij}}{n_i}$$

where:

- W_{ij} is a vector of **0** and **1** indicating whether a dictionary word j appears in \mathcal{D}_i
 - $\sum_{i=1}^J W_{ij} = |A \cap B|$
- n_i is the total number of words in \mathcal{D}_i
- \rightsquigarrow Why do we normalize by n_i ?

7

Counting Words

Applying a dictionary is straightforward.

Assume we have our corpus C with documents D_i with $i \in \{1, ..., N\}$.

For each document \mathcal{D}_i , the dictionary score is:

$$score_{\mathcal{D}_i} = \frac{\sum_{j=1}^J W_{ij}}{n_i}$$

where:

- W_{ij} is a vector of **0** and **1** indicating whether a dictionary word j appears in \mathcal{D}_i
 - $\sum_{i=1}^J W_{ij} = |A \cap B|$
- n_i is the total number of words in \mathcal{D}_i
- \rightsquigarrow Why do we normalize by n_i ?
- Note that we can also add a time-dimension. What does our score then look like?

7

Exercise

Assume the dictionary:

Aggression
stupid
dishonest
lier
idiot
ignorant
hate
fight
battle

and the document \mathcal{D} : "That statement is as barbaric as it is downright stupid; it is nothing more than an ignorant, cruel, and deliberate misconception to hide behind."

- 1. Compute the dictionary score $\frac{\sum_{j=1}^J w_{ij}}{n_i}$ with n_i being the number of unique words (14)
- 2. What's the upper and lower bound of the aggressiveness scores?

c

A dictionary-based analysis is often equivalent to a sentiment analysis of text: Positive or negative use of language.

A dictionary-based analysis is often equivalent to a sentiment analysis of text: Positive or negative use of language.

• Different from policy positions, but often highly correlated

A dictionary-based analysis is often equivalent to a sentiment analysis of text: Positive or negative use of language.

• Different from policy positions, but often highly correlated

Example: Silva and Proksch (2022)

A dictionary-based analysis is often equivalent to a sentiment analysis of text: Positive or negative use of language.

• Different from policy positions, but often highly correlated

Example: Silva and Proksch (2022)

 Using a sentiment dictionary to compute a measure of positions of MPs expressed in tweets (X's?) about EU

A dictionary-based analysis is often equivalent to a sentiment analysis of text: Positive or negative use of language.

• Different from policy positions, but often highly correlated

Example: Silva and Proksch (2022)

- Using a sentiment dictionary to compute a measure of positions of MPs expressed in tweets (X's?) about EU
- How do they measure sentiment about the EU in parliamentary speeches?

- 1. Pre-package (i.e. pretrained)
 - e.g. AFINN, LIWC, ANEW, LSD, https://github.com/cjhutto/vaderSentiment

- 1. Pre-package (i.e. pretrained)
 - e.g. AFINN, LIWC, ANEW, LSD, https://github.com/cjhutto/vaderSentiment
- 2. Domain-specific
 - e.g. EU-related words (Silva and Proksch, 2022) such as "Brussels", "Europ", etc.

- 1. Pre-package (i.e. pretrained)
 - e.g. AFINN, LIWC, ANEW, LSD, https://github.com/cjhutto/vaderSentiment
- 2. Domain-specific
 - e.g. EU-related words (Silva and Proksch, 2022) such as "Brussels", "Europ", etc.
- → How does this relates to questions about recall and precision?

Dictionaries are important tools due to their easy implementation: we can get far with low resources.

 Word reduction is an important preprocessing step to relax word dependency

- Word reduction is an important preprocessing step to relax word dependency
- Word ambiguity can be an issue

- Word reduction is an important preprocessing step to relax word dependency
- Word ambiguity can be an issue
- Denominating by totals is crucial

- Word reduction is an important preprocessing step to relax word dependency
- Word ambiguity can be an issue
- Denominating by totals is crucial
- Do dictionaries travel across contexts/domains? (i.e. generalizability)

- Word reduction is an important preprocessing step to relax word dependency
- Word ambiguity can be an issue
- Denominating by totals is crucial
- Do dictionaries travel across contexts/domains? (i.e. generalizability)
- How can we validate our dictionaries? Dictionaries require front-end work

- Word reduction is an important preprocessing step to relax word dependency
- Word ambiguity can be an issue
- Denominating by totals is crucial
- Do dictionaries travel across contexts/domains? (i.e. generalizability)
- How can we validate our dictionaries? Dictionaries require front-end work

Table of Contents

Dictionaries

Topic Models

Lak

Topic models allow us to cluster similar documents \mathcal{D}_i in a corpus \mathcal{C} together \leadsto clustering!

• We already have learned the necessary tools...

- We already have learned the necessary tools...
 - Dictionary-based content identification

- We already have learned the necessary tools...
 - Dictionary-based content identification
 - Supervised learning

- We already have learned the necessary tools...
 - Dictionary-based content identification
 - Supervised learning
 - → Why do we need yet another method?

- We already have learned the necessary tools...
 - Dictionary-based content identification
 - · Supervised learning
 - → Why do we need yet another method?
- Topic models permit unsupervised learning automatic discovery of latent "topics" $k \in \{1, \dots, K\}$

- We already have learned the necessary tools...
 - Dictionary-based content identification
 - · Supervised learning
 - → Why do we need yet another method?
- Topic models permit unsupervised learning automatic discovery of latent "topics" $k \in \{1, ..., K\}$
 - Most popular approach is Latent Dirichlet Allocation (LDA), which assumes a mixture model:

- We already have learned the necessary tools...
 - Dictionary-based content identification
 - · Supervised learning
 - → Why do we need yet another method?
- Topic models permit unsupervised learning automatic discovery of latent "topics" $k \in \{1, ..., K\}$
 - Most popular approach is Latent Dirichlet Allocation (LDA), which assumes a mixture model:
 - · Documents can contain multiple topics

- We already have learned the necessary tools...
 - Dictionary-based content identification
 - Supervised learning
 - → Why do we need yet another method?
- Topic models permit unsupervised learning automatic discovery of latent "topics" $k \in \{1, ..., K\}$
 - Most popular approach is Latent Dirichlet Allocation (LDA), which assumes a mixture model:
 - · Documents can contain multiple topics
 - Words can belong to multiple topics

Wratil et al. (2022): Policy-Specific Topics in Council Deliberations

Wratil et al. (2022): Policy-Specific Topics in Council Deliberations

What is a language model?

• A model that describes the generation of language as probabilities

- A model that describes the generation of language as probabilities
 - Given words Q, what is the probability that word q belongs to the same topic k?

- A model that describes the generation of language as probabilities
 - Given words Q, what is the probability that word q belongs to the same topic k?
- A language model is represented by a probability distribution over words in $\ensuremath{\mathcal{V}}$

- A model that describes the generation of language as probabilities
 - Given words Q, what is the probability that word q belongs to the same topic k?
- A language model is represented by a probability distribution over words in $\ensuremath{\mathcal{V}}$
- Chat-GPT is a large language model (LLM), but topic models are also language models

- A model that describes the generation of language as probabilities
 - Given words Q, what is the probability that word q belongs to the same topic k?
- A language model is represented by a probability distribution over words in $\ensuremath{\mathcal{V}}$
- Chat-GPT is a large language model (LLM), but topic models are also language models
 - For each topic *k*, we estimate a probability distribution over the words (i.e. *k* distributions)

- A model that describes the generation of language as probabilities
 - Given words Q, what is the probability that word q belongs to the same topic k?
- A language model is represented by a probability distribution over words in $\ensuremath{\mathcal{V}}$
- Chat-GPT is a large language model (LLM), but topic models are also language models
 - For each topic k, we estimate a probability distribution over the words (i.e. k distributions)
 - For each document \mathcal{D} , we estimate a probability distribution over the topics (i.e. $|\mathcal{D}|$ distributions)

- A model that describes the generation of language as probabilities
 - Given words Q, what is the probability that word q belongs to the same topic k?
- A language model is represented by a probability distribution over words in $\ensuremath{\mathcal{V}}$
- Chat-GPT is a large language model (LLM), but topic models are also language models
 - For each topic *k*, we estimate a probability distribution over the words (i.e. *k* distributions)
 - For each document D, we estimate a probability distribution over the topics (i.e. |D| distributions)
 - → These probabilities are computed simultaneously

• More than 43,000 citations on Google Scholar!!! (Blei, 2012)

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing ${\it K}$ the number of topics in ${\it C}$

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic k is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic k is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics
- Outputs:

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic **k** is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics
- Outputs:
 - Document-topic distribution: $|C| \times K$ matrix

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic k is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics
- Outputs:
 - Document-topic distribution: $|\mathcal{C}| \times K$ matrix
 - $ho \ |\mathcal{C}| =$ 10,000 and K = 40: 10,000 imes 40 matrix

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic k is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics
- Outputs:
 - Document-topic distribution: $|C| \times K$ matrix
 - ho $|\mathcal{C}|=10,000$ and K=40: 10,000 imes40 matrix
 - ightharpoonup A document D_i is a probability distribution over K topics:

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic k is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics
- Outputs:
 - Document-topic distribution: $|C| \times K$ matrix
 - ho $|\mathcal{C}|=10,000$ and K=40: 10,000 imes40 matrix
 - \triangleright A document D_i is a probability distribution over K topics:
 - $\triangleright \sum_{k=1}^{K} \theta_{\mathcal{D}_{i}k} = 1$

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic *k* is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics
- Outputs:
 - Document-topic distribution: $|C| \times K$ matrix
 - ho $|\mathcal{C}|=10,000$ and K=40: 10,000 imes40 matrix
 - \triangleright A document D_i is a probability distribution over K topics:
 - $\triangleright \sum_{k=1}^{K} \theta_{\mathcal{D}_{i}k} = 1$
 - riangleright $heta_{\mathcal{D}_i k}$ denotes the probability of a topic k occurring in document \mathcal{D}_i

- More than 43,000 citations on Google Scholar!!! (Blei, 2012)
- We start by choosing K the number of topics in $\mathcal C$
- Assumptions:
 - Each topic **k** is a mixture of words
 - Each document \mathcal{D}_i is a mixture of topics
- Outputs:
 - Document-topic distribution: $|C| \times K$ matrix
 - ho $|\mathcal{C}|=10,000$ and K=40: 10,000 imes 40 matrix
 - \triangleright A document D_i is a probability distribution over K topics:
 - $\triangleright \sum_{k=1}^{K} \theta_{\mathcal{D}_{i}k} = 1$
 - ho $heta_{\mathcal{D}_i k}$ denotes the probability of a topic k occurring in document \mathcal{D}_i
 - Word-topic distribution $|\mathcal{V}| \times K$ matrix

Advantages:

Advantages:

• Automatically finds substantively "clusters" of words

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form *somewhat* coherent topics

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form *somewhat* coherent topics
- Scalable without the need for manual labeling

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form *somewhat* coherent topics
- Scalable without the need for manual labeling

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form *somewhat* coherent topics
- Scalable without the need for manual labeling

Disadvantages:

• Sensitive to K

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form *somewhat* coherent topics
- Scalable without the need for manual labeling

- Sensitive to K
- Post-hoc interpretation and mapping

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form *somewhat* coherent topics
- Scalable without the need for manual labeling

- Sensitive to K
- Post-hoc interpretation and mapping
 - A common approach is to manually map topics to the target concepts after fitting a model

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form somewhat coherent topics
- Scalable without the need for manual labeling

- Sensitive to K
- Post-hoc interpretation and mapping
 - A common approach is to manually map topics to the target concepts after fitting a model
- One topic might itself be a mixture of topics

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form somewhat coherent topics
- Scalable without the need for manual labeling

- Sensitive to K
- Post-hoc interpretation and mapping
 - A common approach is to manually map topics to the target concepts after fitting a model
- One topic might itself be a mixture of topics
- Many topics are often incoherent and redundant

Advantages:

- Automatically finds substantively "clusters" of words
- These clusters often form somewhat coherent topics
- Scalable without the need for manual labeling

- Sensitive to K
- Post-hoc interpretation and mapping
 - A common approach is to manually map topics to the target concepts after fitting a model
- One topic might itself be a mixture of topics
- Many topics are often incoherent and redundant
- → Preprocessing is an important step!

LDA is the foundation of (better?) more advanced approaches:

LDA is the foundation of (better?) more advanced approaches:

• Structural Topic Model (Roberts et al., 2014)

LDA is the foundation of (better?) more advanced approaches:

- Structural Topic Model (Roberts et al., 2014)
- Seeded LDA (Watanabe and Baturo, 2023)

LDA is the foundation of (better?) more advanced approaches:

- Structural Topic Model (Roberts et al., 2014)
- Seeded LDA (Watanabe and Baturo, 2023)
- BERTopic

Table of Contents

Dictionaries

Topic Models

Lab

See you next week!

Topic 2: Text

Computational Analysis of Text, Audio, and Images, Fall 2023 Aarhus University

References i

- [1] J. Grimmer and B. M. Stewart, "Text as data: The promise and pitfalls of automatic content analysis methods for political texts," *Political analysis*, vol. 21, no. 3, pp. 267–297, 2013.
- [2] B. C. Silva and S.-O. Proksch, "Politicians unleashed? political communication on twitter and in parliament in western europe," *Political science research and methods*, vol. 10, no. 4, pp. 776–792, 2022.
- [3] D. M. Blei, "Probabilistic topic models," Communications of the ACM, vol. 55, no. 4, pp. 77–84, 2012. DOI: http://doi.acm.org/10.1145/2133806.2133826.
- [4] M. E. Roberts *et al.*, "Structural topic models for open-ended survey responses," *American journal of political science*, vol. 58, no. 4, pp. 1064–1082, 2014.

References ii

[5] K. Watanabe and A. Baturo, "Seeded sequential Ida: A semi-supervised algorithm for topic-specific analysis of sentences," Social Science Computer Review, p. 08 944 393 231 178 605, 2023.