Nicholas Thompson Franklin

nthompsonfranklin@gmail.com nicktfranklin.github.io

Researcher in machine learning and AI for scientific discovery

Education

Ph.D. in Cognitive Science, Brown University,

B.S. Biology, B.A. Spanish, The University of Texas at Austin,

May 2009

Professional Experience

Flagship Pioneering

Cambridge, MA

Senior Scientist, Machine Learning

Nov 2023-Present

- Research in state-of-the-art machine learning in biology and chemistry to support Flagship Pioneering's early-stage venture portfolio
- Areas of interest and focus include generative models, reinforcement learning and NLP. Modalities of interest include protein design, small molecules and agentics systems.
- Technical leadership and internal impact include planning reasearch efforts, recruitment and training of junior scientists, collaborating with technical and non-technical partners across the ecosystem, and the development of technical best practices

Hyperscience New York, NY

Applied Scientist

 $Feb\ 2021{-}Jul\ 2022$

- Member of ML research and engineering team in a growth stage start-up focused on document understanding and business automation.
- Led research initiatives to enhance machine learning models for document understanding, spanning computer vision and natural language processing.
- Designed ML solutions from prototype to production in Python and PyTorch.

Harvard University

Cambridge, MA

Postdoctoral Fellow, Lab of Samuel J Gershman

Sep 2017–Jan 2021

- Research in human learning and cognition with deep generative models and probabilistic Bayesian methods.
- Designed neuro-symbolic machine learning using autoregressive models, variational autoencoders and probabilistic inference (non-parametric Bayes). Used these methods as a theoretical account of human learning and for video segmentation.
- Created research software used by external collaborators; supervised student projects in computational neuroscience and deep learning.

Brown University

Providence, RI

Graduate Researcher, Lab of Michael J Frank

Sept 2011-Aug 2017

- Conducted theoretical research on human learning and brain function, focusing on reinforcement learning, Bayesian methods, and neural network modeling.
- Developed models for biological neural networks and Bayesian nonparametric reinforcement learning.
- Published theoretical and empirical findings in leading computational neuroscience journals.
- Taught and mentored students in neural network and cognitive modeling courses.

Skills

Programming: Python, PyTorch, NumPy, Git, AWS, Lightning

Machine learning & AI: Deep generative models (VAEs, autoregressive methods, transformers, flow-matching), reinforcement learning (GFlowNets, tabular methods, PPO), Bayesian nonparametrics, probabilistic modeling, NLP (LLMs, agentic systems)

Domains of Application: Biomolecular design, protein and small molecule modeling, computational neuroscience

Spoken Languages: English (native), Spanish (professionally proficient), French (intermediate)

Selected Publications

- [1] Liu A, Elaldi A, **Franklin NT**, Russell N, Atwal GS, Ban YEA, Viessmann O (2025): Flash Invariant Point Attention. arXiv
- [2] Buekers AO, Collin Silvy HP, Kempner RP, **Franklin NT**, Gershman SJ, Norman KA (2024) Blocked training facilitates learning of multiple schemas. *Communications Psychology*
- [3] Franklin NT & Frank MJ (2020). Generalizing to generalize: humans flexibly switch between compositional and conjunctive structures during reinforcement learning. *PLOS Computational Biology*
- [4] **Franklin NT**, Norman K.A., Ranganath C., Zacks J.M., Gershman S.J., (2020) Structured event memory: a neuro-symbolic model of event cognition. *Psychological Review*
- [5] Schulz E, **Franklin NT**, Gershman S.J., (2020). Finding structure in multi-armed bandits. *Cognitive Psychology*
- [6] **Franklin NT** Frank MJ (2018). Compositional clustering in task structure learning. *PLOS Computational Biology*
- [7] **Franklin NT** & Frank MJ (2015). A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. *eLife*