Министерство образования и науки РФ Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

КУРСОВАЯ РАБОТА

по дисциплине "Архитектура программных систем"

Моделирование системы массового обслуживания

Выполнил студент гр. 3530904/00104

Смирнов Е. А.

Руководитель

Н. Г. Смирнов

Оглавление

Введение	3
Исходные данные	4
Описание СМО	4
Формализованная схема	5
Временная диаграмма	6
Вывод законов распределения	7
1. Генерация случайной величины	7
2. Обслуживание заявки на приборе	7
Пример системы, удовлетворяющей формализованному описанию	8
Документация ПО	10
Модульная структура и описание модулей	12
Результаты работы имитационной модели	15
Определение количества реализаций	15
Рекомендации по выбору конфигурации системы	16
Вывод	18
Приложение	19

Введение

Целью практической курсовой является создание модели BC или ее компонентов на некотором уровне детализации, описывающей и имитирующей ее структуру и функциональность.

Каждый реальный объект ВС обладает огромной сложностью, определяемой множеством состояний, множеством внутренних и внешних связей, множеством анализируемых характеристик. Модель дает приближенное описание объекта с целью получения требуемых результатов с определенной точностью и достоверностью. Степень приближения модели к описываемому объекту может быть различной и зависит от требований задачи.

Существуют различные типы моделей ВС: аналитические, аналоговые, физические и имитационные. В данной работе будет использоваться имитационная модель ВС. Одним из подходов к построению имитационной модели является построение ее в виде системы массового обслуживания (СМО).

Исходные данные

Задание:

ИБ ИЗ2 ПЗ1 Д1О32 Д1ОО4 Д2П2 Д2Б1 ОР1 ОД2

Описание СМО

Источник

ИР	И32
бесконечный	равномерный
источник	закон
	распределения
	источника

Приборы и буфер:

П31	Д1О32
экспоненциальный	заполнение
закон	буферной
распределения	памяти: в
времени	порядке
обслуживания	поступления

Дисциплины выбора прибора/ выбора места в буфере/ отказа:

Д1004	Д2П2	Д2Б1
дисциплина	дисциплин	дисциплина
отказа:	а выбора	выбора заявок на
последняя	прибора:	обслуживание:
добавленная	по кольцу	LIFO
заявка в буфер		

Виды отображения результатов:

OP1	ОД2
сводная таблица	формализованная
результатов	схема модели,
	текущее состояние

Формализованная схема

Временная диаграмма

Вывод законов распределения

Генерация заявки и обслуживание заявки определяются математическими функциями равномерной случайной величины.

1. Генерация случайной величины

Равномерный закон распределения:

$$F(x) = \begin{cases} 0, x < a \\ \frac{x - a}{b - a}, a \le x \le b \\ 1, x \ge b \end{cases}$$

Выразим х:

$$x = F(x)(b - a) + a$$

Параметры а и b – ограничивают случайную величину, чтобы она достоверно приняла одно из значений отрезка.

2. Обслуживание заявки на приборе

Экспоненциальный закон распределения:

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, x \ge 0\\ 0, x < 0 \end{cases}$$

Выразим х:

$$1 - F(x) = e^{-\lambda x}$$
$$\ln(1 - F(x)) = -\lambda x$$
$$x = -\frac{1}{\lambda} \ln(1 - F(x))$$

Параметр $\lambda > 0$ говорит об интенсивности величины во времени.

Пример системы, удовлетворяющей формализованному описанию

Техническая	Винодельная компания: производство, хранение и						
система	реализация вина.						
Источники	Источниками являются винодельные бочки , где созревает вино. Скорость производства партии вина <i>составляет</i> от 3 <i>месяца</i> до 6 <i>месяцев</i> , смотря какое вино будет производиться. Затем партия изготовленного вина отправляется на склад, откуда они попадают в магазины. На данный момент компания обладает 10 <i>бочками</i> , но						
Приборы	на данный момент компания обладает 10 <i>бочками</i> , но она способна купить еще 20 бочек. Прибором является магазин . Началом работы является доставка одной партии вина в магазин. Результатом работы является реализация всех бутылок вина из партии. Минимальный срок, за которой магазин продать партию вина - 1 месяц (перед новым годом), максимальный срок реализации - 9 месяцев.						
Буфер	Буфером является склад . Склад вмещает 100 партий вина на полки. Компания может купить еще место для 100 партий.						
Дисциплина постановки в буфер	В порядке поступления, ни одна из полок складе не является приоритетной.						
Дисциплина выбора из буфера	LIFO , так как новые вина дешевле стоят и их легче продать, то их первыми нужно реализовать, а старые вина будут только дорожать. Чем дольше вино пролежит на складе(в буфере), тем большую цену за него можно получить.						
Дисциплина отказа	Последняя пришедшая партия в буфере идёт в отка- так как ее стоимость и ценность меньше тех, чем тех которые хранятся на складе уже некоторое время.						
Дисциплина постановки на обслуживание	Магазин получает новую партию, как только распродает всю партию вина; поставка в магазин по кольцу						

Ограничения и требуемые характеристики:

Вероятность отказа должна составлять не более 5% Загрузка магазинов(приборов) более 90%

Кол-во источников	10-20 бочек		
Размер заявки	1 партия вина		
Размер буфера	100 мест - 200 мест		
Количество магазинов	1-5 магазина		
Реализация вина	$\lambda = 0.9$		
Скорость производства на	а = 3 и b = 6		
заводе			

Документация ПО

Блок-схема СМО

ОСОБЫЕ СОБЫТИЯ

- 1. Начало моделирования
- 2. Генерация заявки
- 3. Поступление заявки на прибор
- 4. Освобождение заявки после прибора
- 5. Поступление заявки в буфер
- 6. Заявка ушла в отказ
- 7. Конец моделирования

Блок поиска свободного прибора происходит по указателю. Указатель устанавливается на тот прибор, который стоит следующим по порядку после последнего занятого. Если система проходит все приборы, тогда заявка отправляется в буфер.

Блок поступления в буфер и блок выбора заявки являются алгоритмом LIFO. Если в буфере заканчивается место, то последняя заявка уходит в отказ, а поступившая занимает ее место.

Блоки поиска свободного прибора, поступления в буферную память, выбора заявки на обслуживания — содержат в себе свой **алгоритм**, описанный в блок схемах — ниже.

Рис 1. Блок схема поиска свободного прибора

Рис 2. Блок схема выбора заявки

Рис 3. Блок схема поступления в буфер

Модульная структура и описание модулей

Разработка производилась в среде IntelliJ IDEA на языке Kotlin с использованием графической библиотеки JavaFX. Приложением использует объектно-ориентированную парадигму программирования и содержит набор классов:

class Bid - класс заявки

class Worker - класс обслуживания заявки

class Generator - класс генератора заявки

class **Buffer** - класс хранения заявки в буфере

class SpecialEvent - класс наступившего события

class DispatcherWorker - класс координирования и выбора устройства обслуживания

class DispatcherBuffer- класс координирования мест в буфере class MainDispatcher - класс "обертка" для всех остальных объектов:

- функция buildModel() моделирует систему массового обслуживания
- функция getResults() получение списка событий

Работа приложения начинается с функции main, она запускает десктопное приложение, после чего приложение ожидает ввода данных и нажатия кнопок пользователя.

Первое окно

Создание конфигурации СМО. Пользователь вводит кол-во заявок, кол-во обслуживающих устройств, размер буфер и коэффициенты: альфа, бета, лямбда.

Нажимая на кнопку "Start Modelling", систему моделирует систему и открывает новое окно. Для изменения конфигурации СМО, нужно открыть приложение заново.

Рисунок 1. Создание конфигурации

Второе окно

Выбор режима просмотра состояния СМО. Из одного режима в другой можно возвращаться с помощью кнопки "Close".

- 1. Кнопка "Step by Step" открывает окно пошагового режима.
- 2. Кнопка "Table Details " открывает окно автоматического режима; отображение двух таблиц.

Рисунок 2. Выбор режима

Третье окно

Пошаговый режим. Нажимая кнопки "Next Step" и "Prev Step" графический интерфейс будет менять свое состояние согласно списку событий СМО.

Рисунок 3. Пример пошагового режима

Четвертое окно

1. Таблица Характеристика источников

Для каждого источника выводится его информация о нем:

- номер источника
- кол-во сгенерированных заявок
- процент отказа заявок
- среднее время прибывания сгенерированных заявок на приборах + дисперсия
- среднее время прибывания сгенерированных заявок в буфере + дисперсия
- среднее время прибывания сгенерированных заявок в СМО
- 2. Таблица Характеристика приборов.

Для каждого обсуживающего прибора выводится информация о нем:

- номер устройства
- процент коэффициент использования прибор

Рисунок 4. Пример автоматического режима

Результаты работы имитационной модели

Определение количества реализаций

Требования:

- 1. Доверительная вероятность = 0.9 (90%)
- 2. Количество заявок, необходимое для получения нужной точности при заданной доверительной вероятности, можно оценивать по формуле:

$$N = \frac{t_{\alpha}^2(1-p)}{p\delta^2}$$
, где

- р вероятность отказа заявки
- $t_{\alpha} = 1.643$
- $\alpha = 0.9$
- $\delta = 0.1$

Найдем N итерационным методом начиная с $N_0=100$ - найдем p_0 и по нему найдем N_1 по формуле. Через него находим p_1 : если $|p_0-p_1|<10\%$ (0.1) от p_0 , то N_0 удовлетворяет заданной точности. По результатам работы программы получено, что для достижения заданной точности достаточно рассмотреть **400-500** заявок(интерпретировав на задачу - X поставок партий вина).

Рекомендации по выбору конфигурации системы

Изначальная конфигурация для системы

- 1. 10 источников
- 2. 100 мест в буфере
- 3. 1 прибор
- 4. $\lambda = 0.9$
- 5. a = 3, b = 6

Получим следующие результаты:

Источники	Приборы	Буфер	Р отк	Т преб	Р загруж
10	1	100	0,55	66,2	0,996

Загруженность приборов - хорошая, однако вероятность отказа - 36-45 %, что неприемлемо для заданной системы. Попробуем увеличить, кол-во приборов.

Получаем следующие данные:

Источники	Приборы	Буфер	Р отк	Т преб	Р загруж
10	5	100	0,05	0,94	0,44
10	5	200	0,01	1,05	0,45

Вероятность отказа уменьшиться, но загруженность тоже упала, что не подходит для модели, так как получается простой на приборах.

Попробуем подобрать такую систему, чтобы вероятность отказа падала, а загруженность была высокой. Увеличим кол-во источников до 5 и будем варьировать кол-во приборов от 3-5.

Источники	Приборы	Буфер	Р отк	Т преб	Р загруж
15	3	100	0,18	10,65	0,96
15	3	200	0,1	7,20	0,96
15	4	100	0,09	1,50	0,74
15	4	200	0,01	1,16	0,87
15	5	100	0,000	1,34	0,64
15	5	200	0,000	1,21	0,65

Результаты моделирования стали лучше: вероятность отказа, для 4-5 приборов удовлетворяют требованиям системы. Однако, система все еще не до конца нагружена на 90%. Вероятность отказа в этом эксперимента стремится к нулю, однако загруженность приборов находится от 87% до 64%.

Следовательно, надо еще увеличить кол-во источников, так как у нас есть "запас" в вероятности отказа (должно быть <5%). Возьмем 20 источников в системе.

Источники	Приборы	Буфер	Р отк	Т преб	Р загруж
20	3	100	0,48	32,1	0,998
20	3	200	0,36	25,7	0,998
20	4	100	0,23	9,9	0,991
20	4	200	0,11	9,9	0,991
20	5	100	0,01	2,3	0,988
20	5	200	0,00	1,8	0,988

Можно увидеть, что мы добились оптимальной конфигурации по проценту загруженности: >98,8%. Вероятность отказа для 3 приборов существенна: >36% - не подходит. При 4 приборах: >11% - не подходит. А вот уже для 5 приборах: <5% - получаем систему, подходящую под начальные требования.

Для 25 источников имеем следующие результаты моделирования:

Источники	Приборы	Буфер	Ротк	Т преб	Р загруж
25	5	100	0,18	30,8	0,992
25	5	200	0,07	28,7	0,981

Система уже не удовлетворяет требованиям. Если мы и дальше будем наращивать число источников в пределах 5 приборов, тогда вероятность отказа будет еще расти. Следовательно предыдущую конфигурацию (с 20 источниками) - можно считать оптимальной.

В итоге, изначальная система может быть заменена более оптимальной конфигурацией:

- 1. 20 источников
- 2. 200 мест в буфере
- 3. 5 приборов
- 4. $\lambda = 0.9$
- 5. a = 3, b = 6

Вывод

В ходе курсовой работы было создано приложения для моделирования системы массового обслуживания на языке Kotlin с использованием графической библиотеки JavaFx. Реализованы два вида режима моделирования - пошаговый и автоматический.

С помощью данной программы была проанализирована реальная система и подобрана максимально выгодная комплектация данной системы.

Приложение

Код реализованной программы находится по ссылке:

https://github.com/jekasrs/queuing-system