Algorithme génétique

GROUPE 3
PERZO
LIOU
GRANDCHAMP
COLLEVILLE

Vous avez dit Algorithme Génétique?

- Biomimétisme
- Survie d'un individu : Optimisation de la fonction de survie
- Population ={individus}, un individu est une solution potentielle à notre problème
- Notre problème ? Brin d'ADN et une table de correspondance dinucléotide<=> angles . Un angle a un domaine définition.


```
"AC": ?,
                                                                                           "AG": ?,
ORIGINAL_ROT_TABLE = {
                                                                                           "AT": ?,
  "AA": [35.62, 7.2, -154, 0.06, 0.6, 0],
  "AC": [34.4, 1.1, 143, 1.3, 5, 0],
                                                                                           "CC": ?,
  "AG": [27.7, 8.4, 2, 1.5, 3, 0],
                                            Pour que
                                                                                           "CG": ?,
  "AT": [31.5, 2.6, 0, 1.1, 2, 0],
  "CC": [33.67, 2.1, -57, 0.07, 2.1, 0],
                                                                                           "GC": ?,
  "CG": [29.8, 6.7, 0, 1.1, 1.5, 0],
                                                                                           "TA": ?,
  "GC": [40, 5, 180, 1.2, 1.275, 0],
                                                                                           "TC": ?,
  "TA": [36, 0.9, 0, 1.1, 2, 0],
  "TC": [36.9, 5.3, -120, 0.9, 6, 0],
                                                                                           "TG": ?,
  "TG": [34.5, 3.5, 64, 0.9, 34, 0],
```

"AA": 🚶

Description globale du produit

• Quoi ? Algorithme d'**optimisation** d'une table de correspondance de chaine dinucléotide-angle à des fins de cyclisation de représentation 3D d'ADN.

• Pourquoi? Représenter un brin d'ADN en 3D avec une fermeture de

chaine

 Comment? Mise en œuvre d'un algorithme génétique pour pallier le temps de recherche de solution exponentiel.

Algorithme Génétique

CentraleSupélec

Qualité du code : Structuration

• Arbre de travail et structure + POO

Qualité du code : Structuration

• Arbre de travail et structure + POO

CentraleSupélec

Qualité du code : Couverture & tests

Coverage report: 85%

Module ↑	statements	missing	excluded	coverage
Population.py	206	42	0	80%
RotTable.py	122	26	0	79%
Traj3D.py	35	10	0	71%
test_Population.py	108	0	0	100%
test_RotTable.py	44	0	0	100%
Total	515	78	0	85%

Qualité du code : Documentation

- ReadMe.md
- Manuel utilisation
- En tête et format fixés des méthodes et fonctions
- Appui sur la norme pep8 afin de formater le code correctement


```
def best_score(nbindiv, nbgen, methode="Tournoi", alpha=0.59):
    """ Permet de calculer le score du meilleur individu de la population pour une méthode donnée
    à partir d'un nombre d'individu et d'un nombre de génération """
```


Organisation

Benchmark

Elitisme VS Tournoi

CentraleSupélec

Probabilité de mutation

Probabilité de chance

Avec et sans scaling mettre la relation d'ordre

Résultats

• Meilleure distance obtenue : 1,56

Démonstration

&

Conclusion

