Prime No: Any positive no. that has exactly 2 factors.

Q Given a prime no.
$$P > 3$$
 (in a string)
flind $(p^2-1)\%$ 24 $1 \le P$. length $\le 10^5$

(13x14) 7, 2 = 0 Product of 2 conseculine $m_0. \rightarrow always$ chivisables by 2

Product of any 2 consecution Even no. -> always chrisible

Product of any three consecutive no. $(n \times (n+1) \times (n+2))\% = 0$

1 2 3 4 5 6 7 8 9 10 11

 $(\rho^2 - 1)$ %, 24 =

P is Prime no >3

a) P is odd

=> (P-1) 4 (P+1) are even

 $((P-1) \times (P+1)) \% = 0$

(P-1), (P +1)

" P1,3 !=0 (P→ prime no.)

$$((P-1) \times (P+1)) \times 3 = 0$$

Majority element Q Given an array. Retu, if there exists, a no. with frequency > 1/2 1 6, 1, 1, 2, 1 N= 6 MB: 1 (4) Without using any entra space. Brute force: . 2 loops · cont freq of all elements · (N2)

Sorting: O(n May n)

(3), 4, (3) 6, 1, (3) 2, 5, (3) (3, (3) N = 11 11/2 = 11/2 +1 [ME > 6

4 6 5 3 4 5 6 4 4 4 N = 10 [ME| 7,6

Obs 1 Court of MB > Count of all the other elements combined.

If we remove 2 distinct elements from the array => ME will remain the same

More's Voting Algo

Wenin: & &

3, 4, 3, 6, 1, 3, 2, 5, 3, 3, 3

3 4 3 6 1

Cut XDXD(1)

Google

[ME] > N

[ME] > N/K

2 3 (3) (3) (3) (3)

[ME] 7,4

Size (ME

If we remove a distinct elements then the MB remains the same.

Break till 11.00p

- -> has odd no.
- orly even
- hast prime no.

$$N = 1000$$
; $N = 10$
 $1000 = 2^{K}$ $\log_{2} 2 = 3.14 = 2^{3} \Rightarrow 8$
 $\log_{2} 1000 = K$ $\log_{2} 100 = 6.6 = 2^{6} \Rightarrow 57$
 $\log_{2} 200 = 5.46 = 2^{6} = 32$
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000

$$\frac{(m+1)}{S_{N}-S_{N}} = \frac{S_{qsN}-S_{qsNn}}{S_{N}-S_{Nn}}$$

All problems -> Dookmark