

Price Level and Inflation

Lecture Outline

- Measuring inflation
- Adjusting for inflation
- Does CPI measure "true" inflation?
- Costs of inflation
- Inflation and interest rates

Measuring Inflation

The New York Times

Business

Takeaways from the July inflation report.

By Jeanna Smialek 10 August 2022 Copyright 2022. The New York Times Company. All Rights Reserved.

<u>Inflation slowed to 8.5 percent</u> as fuel costs cooled, but price increases on many other goods and services remain rapid.

Inflation cooled in July as gas prices and airfares fell, a welcome reprieve for consumers and economic policymakers but not yet a conclusive sign that price increases are turning a corner.

The <u>Consumer Price Index</u> climbed 8.5 percent in the year through July, compared with 9.1 percent the prior month, a bigger slowdown than economists had projected. After stripping out food and fuel costs to get a sense of underlying price pressures, prices climbed by 5.9 percent through July, matching the previous reading.

Measuring Inflation

- Rate of inflation is the annual percentage rate of change of general price level
 - Rate of inflation between 2020 and 2021 is given by: $\frac{P_{2021} P_{2020}}{P_{2020}}$
- How do we measure general price level?
 - Thousands of goods and services in the economy
 - How do we aggregate all the different prices?
 - How do we assign weightages?

Measuring Price Level

- Consumer price index (CPI)
 - Most common measure of price level
 - Other measurements of price level include
 - core inflation
 - producer price index
 - import & export price index

Measuring Price Level

The CPI measures

The cost of a standard basket of goods and services in current year relative to the cost of the same basket of goods and services in the base year

$$CPI = \frac{Cost \ of \ base-year \ basket \ of \ g\&s \ in \ current \ year}{Cost \ of \ base-year \ basket \ of \ g\&s \ in \ base \ year}$$

- The basket of goods and services is based on the average consumption patterns of households in the base-year
 - Collected via detailed expenditure survey
- Base year changes periodically
- Conventionally, CPI is multiplied by 100 to get rid of decimal point. However, we will keep our CPI in decimal form as calculation is simpler

Calculating CPI

- An example
 - Base year is 2015, current year is 2020
 - A typical basket of goods and services consumed by a household consists of:
 - 1. 1 rental of a two-bedroom apartment
 - 2. 60 hamburgers
 - 3. 10 movie tickets
 - To compute CPI, we need to compute the cost of the basket of goods and services in the current year and in the base year

Calculating CPI

Item	Monthly Cost in 2015
Rent (2-bedroom apartment)	\$750
Hamburgers (60 at \$2 each)	120
Movie tickets (10 at \$7 each)	70
Monthly expenditures	\$940

Item	Monthly Cost in 2020
Rent (2-bedroom apartment)	\$945
Hamburgers (60 at \$2.50 each)	150
Movie tickets (10 at \$8 each)	80
Monthly expenditures	\$1,175

Calculating CPI

$$CPI = \frac{Cost \ of \ base-year \ basket \ of \ g\&s \ in \ current \ year}{Cost \ of \ base-year \ basket \ of \ g\&s \ in \ base \ year}$$

$$=(1,175/940)=1.25$$

- Cost of living in 2020 is 25% higher than in 2015
 - CPI for the base year is always 1.00
 - CPI for a given period is the cost of living in that period relative to what it was in the base year

Calculating Inflation

- The rate of inflation is the annual percentage rate of change in the price level
- Inflation in 2016 = (2.40 - 2.37)/2.37 = 0.0126 = 1.3%
- The Great Depression
 - Period of falling output and prices
 - When inflation rates are negative there is deflation

Year	CPI	Inflation
2015	2.37	
2016	2.40	1.3%
2017	2.45	2.1%
2018	2.51	2.4%
2019	2.56	2.0%

Year	CPI	Inflation
1929	0.171	
1930	0.167	-2.3%
1931	0.152	-9.0%
1932	0.137	-9.9%
1933	0.130	-5.1%

Adjusting for Inflation

Adjusting for Inflation

- Nominal quantity: measured in terms of current dollar value; include effects of inflation
- Real quantity: measured in physical terms; exclude effects of inflation
- 2 types of adjustment for inflation:
 - Deflating: convert nominal quantities measured into real terms
 - 2. **Indexing**: convert real quantities into current-dollar terms

Deflating

- Deflating: divide a nominal quantity by its price index to express the quantity in real terms
- When comparing values over time, use real quantities instead of nominal quantities to eliminate effects of inflation from comparison

E.g. Comparing Family Income in 2015 and 2020

A family earned \$40,000 in 2015, and \$44,000 in 2020. Is the family better off?

Year	Nominal Income	СРІ	Real Income
2015	\$40,000	1.00	\$40,000/1.00 = \$40,000
2020	\$44,000	1.25	\$44,000/1.25 = \$35,200

- To get real income: divide nominal income by the CPI
- Compare real income
 - \$40,000 in 2015 has the greater purchasing power

E.g. Real
Wages of
U.S.
production
workers

- The real wage is the wage paid to the worker measured in terms of purchasing power
 - The real wage for any given period is calculated by dividing the nominal wage by the CPI for that period

Year	Average Wage	СРІ	Real Average Wage
1970	\$3.40	0.388	\$3.40 / 0.388 = \$8.76
2019	\$23.51	2.56	\$23.51 / 2.56 = \$9.18

- U.S. production worker wages
 - Real wages stayed roughly the same between 1970 and 2019 despite the fact that the nominal wage in 2019 was almost 7 times the nominal wage in 1970

Production Workers' Wages, 1970 - 2019

Indexing

- Indexing increases a nominal quantity each period by an amount equal to the percentage increase in a specified price index
 - Indexing prevents the purchasing power of the nominal quantity from being eroded by inflation
- Indexing automatically adjusts certain values, such as Social Security payments, by the amount of inflation
 - If prices increase 3% in a given year, the Social Security recipients receive 3% more
 - Indexing is sometimes included in labor contracts

E.g. Adjusting a Labour Contract for Inflation

- An indexed labour contract
 - First year wage is \$12 per hour
 - Real wages rise by 2% per year for next2 years
 - Price index is 1.00 in first year, 1.05 in the second, and 1.10 in the third
 - Nominal wage is real wage times the price index

Year	Real Wage	Price Index	Nominal Wage
1	\$12.00	1.00	\$12.00
2	\$12.24	1.05	\$12.85
3	\$12.48	1.10	\$13.73

Does CPI Measure "True" Inflation?

CPI and Inflation

- CPI may not properly measure inflation due to:
 - 1. Quality adjustment bias
 - 2. Substitution bias
- Overestimation of inflation would lead to
 - 1. Unnecessarily increases government spending
 - 2. Underestimation of increase in the standard of living

Quality Adjustment Bias

- Quality adjustment bias: failure to adjust adequately for improvements in the quality of goods and services
 - PC with 20% more memory has 20% higher price
 - Not the same PC as the one with less memory
 - If no adjustment is made for quality, inflation will be overstated
 - Adjusting for quality is difficult
 - Large numbers of goods
 - Subjective differences
 - Incorporating new goods is difficult
 - No base year price for this year's new goods

Substitution Bias

- CPI is calculated using a fixed basket of goods and services
 - When the price of a good increases, consumers buy less and substitute other goods
 - Failing to account for substitution overstates inflation
- Example: base year cost of market basket

Item	2015 price	2015 Spending
Coffee (50 cups)	\$1.00	\$50.00
Tea (50 cups)	\$1.00	\$50.00
Scones (100)	\$1.00	\$100.00
Total		\$200.00

Substitution Bias

- In 2020, coffee and scones are more expensive
 - Buying exactly the same basket of goods costs \$300, compared to \$200 in 2015
 - ► CPI = 300/200 = 1.50

Item	2020 price	2020 Spending
Coffee (50 cups)	\$2.00	\$100.00
Tea (50 cups)	\$1.00	\$50.00
Scones (100)	\$1.50	\$150.00
Total		\$300.00

Substitution Bias

- Actually, consumer substitutes tea for coffee
 - Purchase of scones remains constant

Item	2020 price	2020 Spending
Coffee (0 cups)	\$2.00	\$0.00
Tea (100 cups)	\$1.00	\$100.00
Scones (100)	\$1.50	\$150.00
Total		\$250.00

- ► True CPI for consumer is 250/200 = 1.25
- CPI estimate of 1.50 is 25% higher than the consumer's experience

Costs of Inflation

Price Level vs Relative Price

- The price level is a measure of the overall level of prices at a particular point in time
 - Measured by a price index such as the CPI
- The **relative price** of a specific good is a comparison of its price to the prices of other goods and services
- E.g. there is a huge increase in the price of new car, but prices of other goods and services remain stable
 - Increase in the relative price of new car is large
 - Overall price level and inflation increase by a small amount

Price Level vs Relative Price

- Inflation can be high without affecting relative price
- E.g. all prices in the economy, including wages (price of labour), go up by 10 percent each year
 - Inflation rate is 10 percent
 - Relative prices remain unchanged
 - People's ability to buy goods and services is unaffected by inflation

True Costs of Inflation

- 1. "Noise" in the price system
- 2. Distortions of the tax system
- 3. "Shoe-leather" costs
- 4. Unexpected redistribution of wealth
- 5. Interference with long-term planning

"Noise" in the Price System

- Prices transmit information about
 - The cost of production and
 - The value buyers place on buying an additional unit
- When inflation is high
 - Buyers and sellers can't easily tell whether
 - The relative price of this good is increasing OR
 - Inflation is increasing the price of this good and all others
 - Response to changing prices is tentative and slow
 - Reduction in efficiency

Distortions of Tax System

- Bracket creep: inflation raises people's nominal incomes would force them into higher tax bracket even when their real incomes may not have increased
 - Higher tax brackets have a higher tax rate
- Solution: index income tax brackets to avoid bracket creep

Distortions of Tax System

- Not all taxes are indexed
- Capital depreciation allowance encourages purchase of capital goods
 - Allows firms to deduct a share of the purchase price from taxable profits
 - E.g. Machine cost is \$1,000 and its useful life is 10 years
 - Capital depreciation allowance of \$100 per year
 - \$100 in year 1 is worth more than \$100 in year 10 because of inflation
- In times of high inflation, investment in plant and equipment decreases

"Shoeleather" Costs

- If there is no inflation, cash holds its value over time
- When inflation is high, cash loses value over time
- Manage cash balances to limit losses
 - More frequent, smaller withdrawals cost consumers and businesses time, travel – a real cost of inflation
 - Banks process more transactions, increasing costs – another real cost of inflation
 - Costs of managing cash holding are called "shoe- leather" costs, referring to the cost of frequent trips to the bank

Unexpected Redistribution of Wealth

- Unexpected inflation redistributes wealth
- Suppose workers' salaries are not indexed and inflation is higher than anticipated
 - Salaries lose purchasing power
 - Employers gain at the expense of workers
- 2. Unexpectedly high inflation benefits borrowers at the expense of lenders
 - Borrowers repay with dollars worth less than anticipated

Interference with Long-Term Planning

- Some decisions have a long time horizon, e.g. investment strategies, retirement planning
 - High and erratic inflation makes planning difficult
- Given the costs of inflation, most economists agree that low and stable inflation promotes a healthy economy

Hyperinflation

- Hyperinflation is an extremely high rate of inflation
 - ► E.g. Germany in 1923, inflation rate of 102,000,000 percent. Employers paid workers twice a day; many people's life savings became worthless
 - Hyperinflation greatly magnifies the costs of inflation

- The real interest rate is the annual percentage increase in the purchasing power of financial assets
- The nominal interest rate (market interest rate) is the annual percentage increase in the nominal value of an asset
- Real interest rate= nominal interest rate inflation rate
- $r = i \pi$

- Your friend, Jane, is borrowing \$1000 from you for one year. She will pay you interest for the loan
- How much should the interest rate be?
- You would like to be sompensated for deferring your consumption
 - Real interest rate
- You know that with inflation, a dollar in a year time worth less than a dollar today, and you would to be compensated for inflation
- Nominal interest rate = real interest rate + inflation rate
- Say, r = 2%, $\pi = 3\%$, i would be 5%, and Jane will pay you an interest of \$50 at the end of one year

- Note that at the time when you lend Jane \$1000, actual inflation rate is not yet known
 - You have to anticipate the inflation rate, i.e. expected inflation rate
- High unexpected inflation hurt lenders, benefit borrowers
 - Say inflation rate turns out to be 10%, your real interest rate is -5%
- High inflation rate, if expected, does not hurt lenders, as lenders will demand a higher nominal interest rate
 - What nominal interest rate would you demand from Jane if you expected inflation rate to be 20%
- The **Fisher effect** is the tendency for nominal interest rates to be high when inflation is high and low when inflation is low

U.S. Inflation and Interest Rates, 1970 -2019

THANKS!

Any questions?

You can find me at

ahysng@ntu.edu.sg