TFA per cambiamenti di coordinate

Filippo \mathcal{L} . Troncana

A.A. 2023/2024

1 Misure e σ -algebre indotte

Definizione 1.1: σ -algebra finale

Sia (X, A) uno spazio misurabile, sia Y un insieme e sia $f: X \to Y$ una funzione biettiva. La σ -algebra finale indotta da f rispetto a A è la famiglia

$$f\mathcal{A} := \{ E \in 2^Y : f^{-1}(E) \in \mathcal{A} \}$$

Osservazione 1.1

La σ -algebra finale di f rispetto a \mathcal{A} è la più grande σ -algebra Σ tale che $f:(X,\mathcal{A})\to (Y,\Sigma)$ sia misurabile.

Dimostrazione

Sia $\Sigma \subset 2^Y$ tale che $f:(X,\mathcal{A}) \to (Y,\Sigma)$ sia misurabile. Per definizione di funzione misurabile, abbiamo che per ogni $E \in \Sigma$, abbiamo che $f^{-1}(E) \in \mathcal{A}$, dunque $\Sigma \subset f\mathcal{A}$.

Definizione 1.2: Misura esterna indotta

Siano X e Y due insiemi, sia μ una misura esterna su X e sia $f: X \to Y$ una funzione biettiva. La *misura indotta* da f rispetto a μ è la funzione

$$f\mu: 2^Y \to [0, +\infty] \quad \text{con} \quad f\mu(E) := \mu(f^{-1}(E))$$

Proposizione 1.1

 $f\mu$ è una misura esterna su Y.

${f Dimostrazione}$

Dimostriamo i tre assiomi di misura esterna.

- 1. $f^{-1}(\varnothing) = \varnothing \Rightarrow f\mu(\varnothing) = 0$.
- 2. Siano $E\subset F\subset Y$, allora $f^{-1}(E)\subset f^{-1}(F)$, dunque la monotonia di $f\mu$ segue dalla monotonia di μ .
- 3. Siano $A,B\subset Y,$ allora $f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)$ e la subaddittività segue da quella di μ

Proposizione 1.2

Se $f\mu$ è la misura indotta da f rispetto a μ , allora $\mathcal{M}_{f\mu} = f\mathcal{M}_{\mu}$.

TODO

TODO: è possibile definire una duale σ -algebra iniziale e una misura iniziale, ma per la nostra trattazione è sufficiente la versione finale.

2 Integrazione indotta

La situazione che studiamo in questa sezione è la seguente

Teorema 2.1: Integrazione indotta

Sia (X, \mathcal{A}, μ) uno spazio con misura, sia Y un insieme, sia $f: X \to Y$ una funzione biettiva e sia $g:(Y,f\mathcal{A},f\mu)\to(\mathbb{R},\mathcal{B}(\mathbb{R}),\mathcal{L}^1)$ una funzione $f\mathcal{A}$ -misurabile.

Allora $g \in f\mu$ -integrabile se e solo se $g \circ f \in \mu$ -integrabile, e vale l'identità

$$\int g \, \mathrm{d}f\mu = \int g \circ f \, \mathrm{d}\mu$$

Assumiamo che g sia $f\mu$ -integrabile. Allora vale

$$\int g \, \mathrm{d}f\mu = \int_* g \, \mathrm{d}f\mu = \sup \left\{ I_{f\mu}(\varphi) : \varphi \in \Sigma_-(g) \right\} = \sup \left\{ \sum_i a_i f\mu(\varphi^{-1}(\{a_i\})) : \varphi \in \Sigma_-(g) \right\} =$$

$$= \sup \left\{ \sum_i a_i \mu(f^{-1}(\varphi^{-1}(\{a_i\}))) : \varphi \in \Sigma_-(g) \right\} = \sup \left\{ \sum_i a_i \mu((\varphi \circ f)^{-1}(\{a_i\})) : \varphi \circ f \in \Sigma_-(g \circ f) \right\}$$

$$\operatorname{con} \psi := \varphi \circ f, \quad \int_* g \, \mathrm{d}f\mu = \sup \left\{ I_\mu(\psi) : \psi \in \Sigma_-(g \circ f) \right\} = \int_* g \circ f \, \mathrm{d}\mu$$

La dimostrazione è assolutamente analoga per l'integrale superiore e nella direzione opposta assumendo l'integrabilità di $g \circ f$. Le varie uguaglianze seguono dalla biettività di f.

Osservazione 2.1: Girotondone per il TFA

L'obiettivo di questo scherzetto è dimostrare il TFA per cambiamenti di coordinate, ovvero

$$\int g \, \mathrm{d}\mathcal{L}^n = \int (g \circ f) \cdot J_f \, \mathrm{d}\mathcal{L}^n$$

Ma c'è un problema: noi abbiamo dimostrato un risultato dalla forma leggermente diversa, ovvero

$$\int g \, \mathrm{d}f \mu = \int g \circ f \, \mathrm{d}\mu$$

Osservando il TFA ci aspettiamo che la nostra d $f\mu$ corrisponda a J_f d \mathcal{L}^n , dunque dobbiamo fare un piccolo giretto usando la biettività di f:

$$\int g \, d\lambda = \int g \circ f \circ f^{-1} \, d\lambda = \int g \circ f \, df^{-1} \lambda$$

In questo modo ci basta riuscire a far corrispondere $J_f d\mathcal{L}^n$ a $df^{-1}\mathcal{L}^n$

3 Il viaggio verso il TFA

Cercheremo di dimostrare il TFA per cambiamenti di coordinate *lineari* con la speranza di estendere questo ragionamento a cambiamenti di coordinate *differenziabili*, ovvero localmente lineari.

Lemma 3.1: Cambiamenti di coordinate lineari e misura elementare dei plurirettangoli

Sia $\mathcal{I} \subset 2^{\mathbb{R}^n}$ la famiglia degli *n*-plurirettangoli aperti, sia $e: \mathcal{I} \to \mathbb{R}_+$ la misura elementare e sia $f: \mathbb{R}^n \to \mathbb{R}^n$ una mappa lineare invertibile.

Allora $e(f(I)) = |\det f| \cdot e(I)$ per ogni $I \in \mathcal{I}$.

Dimostrazione

Qualsiasi plurirettangolo I è biunivocamente corrispondente a un segmento di \mathbb{R}^n visto come spazio affine con la mappa

 $]a_{[}$