1

LEE

COMPLETE LIST OF ALL OF THE CLAIMS

2	1-2.	(canceled)
3	3.	(withdrawn):
4	4-5.	(canceled)
5 6	6.	(Previously presented) A method for objective measurement of video quality using a wavelet transform, comprising the steps of:
7 8		(a) producing source video wavelet coefficients for each frame of a source video by applying a 2-dimensional wavelet transform to each frame of said source video,;
9 10		(b) producing processed video wavelet coefficients for each frame of a processed video by applying a 2-dimensional wavelet transform to each frame of said processed video,;
11 12 13		(c) computing a difference vector for each frame, whose element represents a subband difference between a frame of said source video and the corresponding frame of said processed video, thereby producing a sequence of difference vectors;
14 15		(d) producing a final difference vector by averaging said sequence of difference vectors;
16 17		(e) producing an objective video score by taking the inner product of said final difference vector and a weight vector;
18 19	7.	(Previously presented) A method for objective measurement of video quality using a modified 3-dimensional wavelet transform, comprising the steps of:
20 21		(a) producing source video wavelet coefficients for each frame of a source video by applying a 2-dimensional wavelet transform to each frame of said source video;

1		(b) producing processed video wavelet coefficients for each frame of a processed video
2		by applying a 2-dimensional wavelet transform to each frame of said processed video;
3		(c) computing a difference vector for each frame, whose element represents a subband
4		difference between a frame of said source video and the corresponding frame of said
5		processed video, thereby producing a sequence of difference vectors;
6		(d) producing a second sequence of difference vectors by applying a 1-dimensional
7		wavelet transform to said sequence of difference vectors in the temporal direction;
8		(d) producing a final difference vector by averaging said second sequence of difference
9		vectors;
10		(e) producing an objective video score by taking the inner product of said final
11		difference vector and a weight vector;
12	8.	(Previously presented) A method for objective measurement of video quality using
13		spatial and temporal frequency differences, comprising the steps of:
14		(a) computing spatial and temporal frequency differences between a source video and a
15		processed video, thereby producing a spatial and temporal frequency difference vector
16		for said source video and said processed video;
17		(b) producing an objective video score by taking the inner product of said spatial and
18		temporal frequency difference vector and a weight vector.
19	9.	(cancelled)
20	10.	(new) The method in accordance with claim 8 wherein the step (a) is performed by
21		applying a transform to said source video and said processed video in the spatial and
22		temporal directions.