1

EE5609 Assignment 17

SHANTANU YADAV, EE20MTECH12001

1 Problem

Let **A** be a $n \times n$ real matrix with $\mathbf{A}^2 = \mathbf{A}$. Then

- 1) the eigenvalues of **A** are either 0 or 1
- 2) A is a diagonal matrix with diagonal entries 0 or 1
- 3) $rank(\mathbf{A}) = trace(\mathbf{A})$
- 4) if $rank(\mathbf{I} \mathbf{A}) = trace(\mathbf{I} \mathbf{A})$

2 Explanation

See next page.

Objective	Explanation	
	Since	
Eigenvalues of A	$\mathbf{A}^2 = \mathbf{A}$	(2.0.1)
	$\implies \mathbf{A}^2 - \mathbf{A} = \mathbf{O}$	(2.0.2)
	From Cayley-Hamilton Theorem we have,	
	$\lambda^2 - \lambda = 0$	(2.0.3)
	$\implies \lambda(\lambda - 1) = 0$	(2.0.4)
	$\implies \lambda = 0, 1$	(2.0.5)
	A matrix A satisfying $A^2 = A$ is an idempotent matrix with eigen values equal to 0 or 1.	
Check if A is necessary diagonal	Consider	
	$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$	(2.0.6)
	,	(2.0.7)
	Then,	
	$\mathbf{A}^2 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$	(2.0.8)
	$=\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$	(2.0.9)
	$=\mathbf{A}$	(2.0.10)
	Hence A is idempotent but not diagonal.	
Relation between rank and trace of A	Rank of matrix is defined as the number of non-zero eigenvalu	es. Since
	number of non-zero eigenvalues is 1,	
	$rank(\mathbf{A}) = 1$	(2.0.11)
	$trace(\mathbf{A}) = \sum_{i} \lambda_i = 0 + 1 = 1$	(2.0.12)
	$\implies rank(\mathbf{A}) = trace(\mathbf{A})$	(2.0.13)
Relation between rank and trace of I – A	Now for the matrix $\mathbf{I} - \mathbf{A}$ we have,	
	$(\mathbf{I} - \mathbf{A})^2 = (\mathbf{I} - \mathbf{A})(\mathbf{I} - \mathbf{A})$	(2.0.14)
	$= \mathbf{I}^2 - \mathbf{I}\mathbf{A} - \mathbf{A}\mathbf{I} + \mathbf{A}^2$	(2.0.15)
	$= \mathbf{I} - \mathbf{A} - \mathbf{A} + \mathbf{A}$	(2.0.16)
	= I - A	(2.0.17)
	Hence $\mathbf{I} - \mathbf{A}$ is an idempotent matrix. Therefore we conclude,	
	$rank(\mathbf{I} - \mathbf{A}) = trace(\mathbf{I} - \mathbf{A})$	(2.0.18)
Answer	(1),(3) and (4)	

TABLE I