高级算法 Advanced Topics in Algorithms

陈旭

数据科学与计算机学院

Policy Iteration for Optimal Policies

Policy evaluation on MDP

- **①** Objective: Evaluate a given policy π for a MDP
- **2** Output: the value function under policy v^{π}
- Solution: iteration on Bellman expectation backup
- Algorithm: Synchronous backup
 - ① At each iteration t+1 update $v_{t+1}(s)$ from $v_t(s')$ for all states $s \in \mathcal{S}$ where s' is a successor state of s

$$v_{t+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a)v_t(s'))$$

6 Convergence: $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v^{\pi}$

Policy evaluation: Iteration on Bellman expectation backup

Bellman expectation backup for a particular policy

$$v_{t+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)(R(s,a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a)v_t(s'))$$

Or if in the form of MRP $< S, P^{\pi}, R, \gamma >$

$$v_{t+1}(s) = R^{\pi}(s) + \gamma P^{\pi}(s'|s)v_t(s')$$

Evaluating a Random Policy in the Small Gridworld

r = -1 on all transitions

- Undiscounted episodic MDP $(\gamma = 1)$
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in Small Gridworld

 v_k for the Random Policy

$$k = 0$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 10$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

How to Improve a Policy

- lacksquare Given a policy π
 - **Evaluate** the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

Improve the policy by acting greedily with respect to v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

Policy Improvement

① Compute the state-action value of a policy π :

$$q^{\pi_i}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) v^{\pi_i}(s')$$

2 Compute new policy π_{i+1} for all $s \in \mathcal{S}$ following

$$\pi_{i+1}(s) = \arg\max_{a} q^{\pi_i}(s, a)$$

Actions States Q-table

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Small Gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

r = -1 on all transitions

Policy Evaluation of Random Policy

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Policy Update

Optimal Policy!

	↓	↓	←
†	7	Ţ	→
†	ጏ	Ļ	+
₽	→	\rightarrow	

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - \blacksquare e.g. ϵ -convergence of value function
- \blacksquare Or simply stop after k iterations of iterative policy evaluation?

Generalised Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm

Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Small Gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

r = -1 on all transitions

optimal policy

7		0
K		1
1	_	-

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

	↓		\
Ť	_	\	ţ
Ť	₽	₽	ţ
₽	\rightarrow	\rightarrow	

k = 10

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

 $k = \infty$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Value Iteration for Optimal Policies

Bellman Optimality Equation

The optimal value functions are reached by the Bellman optimality equations:

$$v^*(s) = \max_{a} q^*(s, a)$$

 $q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) v^*(s')$

thus

$$v^{*}(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) v^{*}(s')$$
$$q^{*}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) \max_{a'} q^{*}(s', a')$$

Value Iteration by turning the Bellman Optimality Equation as update rule

- ① If we know the solution to subproblem $v^*(s')$, which is optimal.
- 2 Then the solution for the optimal $v^*(s)$ can be found by iteration over the following Bellman Optimality backup rule,

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(R(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) v(s') \right)$$

The idea of value iteration is to apply these updates iteratively

Algorithm of Value Iteration

- **①** Objective: find the optimal policy π
- Solution: iteration on the Bellman optimality backup
- Value Iteration algorithm:
 - **1** initialize k = 1 and $v_0(s) = 0$ for all states s
 - **2** For k = 1 : H
 - for each state s

$$q_{k+1}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) v_k(s')$$

 $v_{k+1}(s) = \max_{s} q_{k+1}(s, a)$

- \mathbf{Q} $k \leftarrow k+1$
- 3 To retrieve the optimal policy after the value iteration:

$$\pi(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) v_{k+1}(s')$$

Or equivalently,
$$\pi(s) = \underset{a}{\operatorname{argmax}} q_{k+1}(s, a)$$

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$

Example: Shortest Path

After the optimal values are reached, we run policy extraction to retrieve the optimal policy.

Difference between Policy Iteration and Value Iteration

- Oplicy iteration includes: policy evaluation + policy improvement, and the two are repeated iteratively until policy converges.
- Value iteration includes: finding optimal value function + one policy extraction. There is no repeat of the two because once the value function is optimal, then the policy out of it should also be optimal (i.e. converged).

Decision Making in Markov Decision Process (MDP)

- Prediction (evaluate a given policy):
 - **1** Input: MDP $<\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma >$ and policy π or MRP $<\mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma >$
 - **2** Output: value function v^{π}
- Ontrol (search the optimal policy):
 - Input: MDP $< S, A, P, R, \gamma >$
 - 2 Output: optimal value function v^* and optimal policy π^*

Summary for Prediction and Control in MDP

Problem	Bellman Equation	Algorithm		
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation		
Control	Bellman Expectation Equation	Policy Iteration		
Control	Bellman Optimality Equation	Value Iteration		

Demo of policy iteration and value iteration

- Policy iteration: Iteration of policy evaluation and policy improvement(update)
- Value iteration

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Demo

GridWorld: Dynamic Programming Demo

Evaluation (one sweep)		ep)	Policy Update			Toggle Value Iteration			Rese	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00					0.00				0.00	
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00 •		0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00		0.00 •	R -1.0 0.00 ◆	0.00	0.00	0.00	
0.00	0.00	0.00	0.00		0.00 •	0.00 •	0.00	0.00 •	0.00	
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Assignments

- **●***P61, Exercise 3.6*
- *P64, Exercise 3.7*

- 提交邮箱: gjsf_2020@126.com
- 邮件+文件命名: 学号+姓名
- 提交期限: 下周四23:59