Recommendation System

김재훈 김은하 김정현 박기태 안수빈 이혜연

Table of Contents

- 1. Content based filtering
- 2. Collaborative filtering methods
 - 2.1 Memory based collaborative filtering methods
 - 2.2 Model based collaborative filtering methods
- 3. Deep Learning based

In [2]: key = pd.read_csv('place_data.csv')
In [3]: key.head()

ot[3]:

	코드	이름	Unnamed: 0	
#먹어야산다#분식#정대후문#포장#혼밥#가	Num=a_nam_0002	고른햇살	0	0
#먹어야산다#이공계#경양식#버거#맥주#치킨#가성비#저렴#	Num=a_nam_0041	영철버거	1	1
#먹어야산다#양식#스테이크#정대후문#혼밥#고기#함박#가	Num=a_nam_829	어흥식당	2	2
#먹어야산다#중식#정대후문#사천식#혼밥#가성비#저렴#포장#	Num=a_nam_0146	언니네반점	3	3
#먹어야산다#일식#돈부리#카레#맥주#고로케#제기동#고대사거리#혼밥#	Num=a_nam_0319	특별식당	4	4

In [6]: key.head()

Out[6]:

'tag' 열에 대한 자연어 처리 필요

1) Rake() 활용

2) Tf-ldf 활용

	name	code	tag
0	고른햇살	Num=a_nam_0002	#먹어야산다#분식#정대후문#포장#혼밥#가성비
1	영철버거	Num=a_nam_0041	#먹어야산다#이공계#경양식#버거#맥주#치킨#가성비#저렴#포장
2	어흥식당	Num=a_nam_829	#먹어야산다#양식#스테이크#정대후문#혼밥#고기#함박#가성비
3	언니네반점	Num=a_nam_0146	#먹어야산다#중식#정대후문#사천식#혼밥#가성비#저렴#포장#회식
4	특별식당	Num=a_nam_0319	#먹어야산다#일식#돈부리#카레#맥주#고로케#제기동#고대사거리#혼밥#감성

- 1) Rake()
- 동시 출현(Co-occurrences) 개념
- 각 단어의 빈도 table을 작성한 후, 단어 t가 다른 단어와 동시에 등장했던 빈도 수 합(degree)를 단어 t의 고유 빈도로 나눈다.

$$ratio(t) = \frac{deg(t)}{freq(t)}$$

Ex. Orange의 빈도수

- = ratio(Orange)
- = deg(Orange)/freq(Orange)
- = (5+5+1+1) / 5 = 12/5 = 2.4

	Apple	Chicken	Pants	Orange	Car	Hat	Pizza	Bike	Train
Apple	7		2	5				1	
Chicken		5			2		4	2	
Pants	2		6			5			
Orange	5		(5			1		1
Car		2			6			3	2
Hat			5			5			
Pizza		4		1			4		
Bike	1	2			3			5	2
Train				1	2			2	3

<처리 결과>

In [10]: key.head()

Out [10]:

	name	code	tag	key_words
0	고른햇살	Num=a_nam_0002	#먹어야산다#분식#정대후문#포장#혼밥#가성비	[혼밥, 포장, 정대후문, 분식, 먹어야산다, 가성비]
1	영철버거	Num=a_nam_0041	#먹어야산다#이공계#경양식#버거#맥주#치킨#가성비#저렴#포장	[포장, 치킨, 저렴, 이공계, 버거, 먹어야산다, 맥주, 경양식, 가성비]
2	어흥식당	Num=a_nam_829	#먹어야산다#양식#스테이크#정대후문#혼밥#고기#함박#가성비	[혼밥, 함박, 정대후문, 양식, 스테이크, 먹어야산다, 고기, 가성비]
3	언니네반 점	Num=a_nam_0146	#먹어야산다#중식#정대후문#사천식#혼밥#가성비#저렴#포장#회식	[회식, 혼밥, 포장, 중식, 정대후문, 저렴, 사천식, 먹어야산다, 가성비]
4	특별식당	Num=a_nam_0319	#먹어야산다#일식#돈부리#카레#맥주#고로케#제기동#고대사거리# 혼밥#감성	[혼밥, 카레, 제기동, 일식, 먹어야산다, 맥주, 돈부리, 고로케, 고대사거 리, 감성]

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^n A_i \times B_i}{\sqrt{\sum\limits_{i=1}^n (A_i)^2} \times \sqrt{\sum\limits_{i=1}^n (B_i)^2}}$$

'key_words' 문자열 데이터의 벡터 변환

→ CountVectorizer() 이용

코사인 유사도 행렬 생성

- → cosine_similarity() 이용
- → 연관성이 높을 수록 1에 가깝다


```
In [19]: def recommendation(name, top):
             indices = c_sim[c_sim.index == name].values[0]
             indices = np.sort(indices)[::-1][:top*2]
            temp = []
             for k in range(len(indices)):
                 idx name = c sim.index[indices[k] = c sim[c sim.index = name].values[0]]
                temp.append(idx name[0])
             # 중복된 값 제거
             recommend = []
             for t in temp:
                 if t in recommend:
                    pass
                else:
                    recommend.append(t)
             # 입력값과 동일한 항목은 제거
             recommend = recommend[1:top+1]
             return recommend
```

추천 함수 생성

→ 식당 이름을 입력하면 코사인 유사도가 높은 상위 n개의 유사한 식당 추천

<추천 결과>

```
In [20]: recommendation('고른햇살', 8)
Out[20]: ['김밥천국 정대후문점', '절대분식', '엄마네', '돈까스하우스', '안암동김밥', '언니네반점', '이세돈까스', '이공김밥']
In [21]: recommendation('매스플레이트', 4)
Out[21]: ['정상호프', '어흥식당', '무르무르드구스토', '모이리타']
In [22]: recommendation('베나레스', 5)
Out[22]: ['오샬', '비나 레스토랑 정문', '고고인디안쿠진 1호점', '돼야지 고대본점', '고고인디안쿠진 2호점']
```


2) TF-IDF(Term Frequency – Inverse Document Frequency)

→ #(해시태그) 기호로 구분되어 있는 Keywords를 split

- Tf-ldf (Term Frequency Inverse Document Frequency)
- 한 문서 내에서 특정 단어의 상대적 중요도
- 한 문서 내에서 자주 등장하면 가중치를 높게, 그러나 다른 문서에서 자주 등장한다면 가중치를 낮게!

$$tf(d,t) \times \log\left(\frac{n}{1+df(t)}\right)$$

```
In [10]: from sklearn.feature extraction.text import TfidfVectorizer
In [11]: # tag에 대해서 tf-idf 수행
         tfidf = TfidfYectorizer()
         tfidf matrix = tfidf.fit transform(place.tag)
         print(tfidf matrix.shape)
         (465 374)
In [12]:
        #코사인유사도
         from sklearn.metrics.pairwise import linear kernel
         cosine sim = linear kernel(tfidf matrix, tfidf matrix)
In [13]: cosine_sim.shape
Out [13]: (465, 465)
In [14]: cosine sim
Out[14]: array([[1.
                           . 0.1829687 . 0.32195165. .... 0.17059754. 0.02249117.
                0.019329931.
                [0.1829687 , 1.
                                      . 0.07223991, ..., 0.09000334, 0.01186583,
                 0.01019803],
                                                . .... 0.09322109. 0.01229005.
                [0.32195165.0.07223991.1.
                0.010562621.
                [0.17059754, 0.09000334, 0.09322109, ..., 1. . 0.13183762.
                 0.11330718],
                [0.02249117, 0.01186583, 0.01229005, ..., 0.13183762, 1.
                [0.01932993. 0.01019803. 0.01056262. .... 0.11330718. 0.01493815.
```



```
In [16]: #추천 항수
       def place REC(코드, cosine sim=cosine sim):
          #입력한 코드로 부터 인텍스 가져오기
          idx = indices[코드]
          # 모든 장소에 대해서 해당 장소와의 유사도를 구하기
          sim scores = list(enumerate(cosine sim[idx]))
          # 유사도에 따라 장소들을 정렬
          sim scores = sorted(sim scores, key=lambda x:x[1], reverse = True)
          # 가장 유사한 10개의 장소를 받아옴
          sim scores = sim scores[1:11]
          # 가장 유사한 10개 장소의 인덱스 받아옴
          place indices = [i[0] for i in sim scores]
          #기존 데이터에서 해당 인덱스의 값들을 가져온다. 그리고 스코어 열을 추가하여 코사인 유사도도 확인할 수 있게 한다.
          result place = place.iloc[place indices].copv()
          result_place['score'] = [i[1] for i in sim_scores]
          # 읽어들인 데이터에서 tag부분만 제거. 코드와 스코어만 보이게 함
          del result_place['tag']
          # 가장 유사한 10개의 장소를 반환
          return result place
```

추천 함수 생성
→ 식당 코드를 입력하면 코사인 유사도에 의한 상위 10개의 유사한 식당 목록 제공

<추천 결과>

place_REC("Num=a_nam_0002") 고른햇살 식당 코드 Out[17]: Unnamed: 0 이름 코드 태그 score 364 364 김밥천국 정대후문점 Num=a_nam_0166 #먹어야산다#분식#정대후문#포장#혼밥 0.882339 438 안암동김밥 0.763456 438 Num=a nam 0139 #먹어야산다#분식#정대후문 94 94 절대분식 Num=a nam 0162 #먹어야산다#분식#한식#백반#정대후문#포장#호밥 0.731105 445 445 안암동김밥 Num=a nam 0354 #먹어야산다#분식#정대후문#포장#1인분 0.611106 426 426 엄마네 Num=a nam 0310 #먹어야산다#분식#법대후문#포장#혼밥 0.580730 두끼떡볶이 고대점 170 170 Num=a nam 0093 #먹어야산다#분식#참살이길#포장 0.551018 봉구스밥버거 고려대점 410 Num=a nam 0127 #먹어야산다#분식#밥버거#정대후문#포장#혼밥#저렴 0.544376 40 40 Num=a nam 860 #먹어야산다#한식#정대후문#백반#혼밥#저렴#가성비 0.542599 16 16 동우설렁탕 Num=a nam 0116 0.522106 55 55 서울쌈냉면 고대점 Num=a_nam_0120 #먹어야산다#한식#냉면#정대후문#포장#혼밥#저렴#가성비 0.496470

2. Collaborative filtering methods

User-item interaction matrix

M1	M2	M3	M4	M5
3	1	1	3	1
1	2	4	1	3
3	1	1	3	1
4	3	5	4	4

- 1. Memory based (Nearest neighbor based)
 - ① User-based
 - ② Item-based

2. Model based (Latent factor based)

2. Collaborative filtering methods

User-item interaction matrix

place_i	id	1	2	3	4	5	6	7	8	9	10	 401	402	403	404	405	406	407	408	409	410
user_i	id																				
	1	5.0	2.0	4.0	4.0	4.0	5.0	NaN	NaN	NaN	NaN	 NaN	NaN								
	2	5.0	NaN	NaN	NaN	NaN	NaN	3.0	5.0	5.0	5.0	 NaN	NaN								
	3	3.0	4.0	NaN	NaN	NaN	NaN	NaN	NaN	3.0	NaN	 NaN	NaN								
	4	4.0	NaN	4.0	NaN	 NaN	NaN														
	5	4.0	5.0	NaN	4.0	NaN	NaN	NaN	5.0	4.0	5.0	 NaN	NaN								
251	4	NaN	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	 NaN	NaN								
251	5 1	NaN	NaN	NaN	NaN	NaN	3.0	NaN	NaN	NaN	NaN	 NaN	NaN								
251	6	NaN	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	 NaN	NaN								
251	7	NaN	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	 NaN	NaN								
251	8	NaN	NaN	NaN	NaN	NaN	4.0	NaN	NaN	NaN	NaN	 NaN	NaN								

2518 rows × 410 columns

User-based (사용자 기반)

	Item A	Item B	Item C	Item D
User 1	3	4	4	
User2	4	4	4	5

- ➤ User 1, 2의 Item A~C에 대한 평가가 비슷하므로 유사한 사용자라고 판단
- > User 1에게 Item D를 추천

User-based 시 문제점

	Item A	Item B	Item C	Item D
User 3	3	1	2	4
User 4	5	5	5	4

- ▶ User 3은 평가가 짠 편▶ User 4는 평가가 후한 편

평준화가 필요!!

User, place, 평점으로만 df를 만들고

Mean = Ratings.groupby(by="user_id",as_index=False)['용점'].mean()
Mean.head()

 user_id
 평점

 0
 1
 4.000000

 1
 2
 4.565217

 2
 3
 3.600000

 3
 4
 4.000000

 4
 5
 3.930556

User별 평균 평점을 구함


```
final = pd.pivot table(Rating avg, values='adg 평점',
                        index='user id',columns='place id').fillna(0)
final.head()
place id
user id
         1.000000
                  -2.000000 0.0 0.000000 0.0 1.0
                                                   0.000000
                                                           0.000000
                                                                      0.000000
                                                                               0.000000
                                0.000000
                                         0.0 0.0
                                                  -1.565217 0.434783
                                                                      0.434783
                                                                               0.434783 ...
     3 -0.600000
                                         0.0 0.0
                                                            0.000000
                                                                      0.000000
                                                                               0.000000
                                         0.0 0.0
                   1.069444 0.0 0.069444 0.0 0.0
                                                                      0.069444
                                                                               1.069444
```

User 간 코사인 유사도

평준화된 평점 테이블 생성 (NaN 은 0으로 채움)

b = cosine similarity(final)

```
np.fill diagonal(b, 0)
similarity with user = pd.DataFrame(b,index=final.index)
similarity with user.columns=final.index
similarity_with_user.head()
userld
                                                          6
                                                                        8
                                                                                     10
userld
        0.000000
                                         -0.099118
                                                   0.026868
                                                                 -0.020516
                                                                            0.023338 0.0
                  0.000000
                           -0.020280
                                         -0.013249 0.012174 0.0
                                                                 -0.095733
                                                                            -0.007200 0.0
    3 -0.197203
                  -0.020280
                            0.000000
                                                                  0.027743
                                                                            -0.035504 0.0
                  0.000000
                            0.0000000 0.0
                                                   0.000000
                                                                  0.000000
                                                                            0.0000000 0.0
                 -0.013249
                           -0.018441 0.0
                                          0.000000 0.034037 0.0
                                                                  0.021939
                                                                            0.031485 0.0 ...
```



```
# top 30 neighbours for each user
sim_user_30_u = find_n_neighbours(similarity_with_user,30)
sim_user_30_u.head()

top1 top2 top3 top4 top5 top6 top7 top8 top9 top10 ... top21 top22 top23 top24 top25 top26 top27 top28 top29 top30
userId
```

useria																				
1	357	1048	136	1595	306	1193	22	19	88	355	 139	11	53	230	220	330	997	1210	158	114
2	87	143	1159	1016	2039	1333	394	175	851	885	 281	113	36	1075	1003	116	981	410	228	2046
3	1099	1195	1287	245	227	360	81	382	142	1075	 199	466	176	831	527	241	821	543	948	963
4	2518	836	843	842	841	840	839	838	837	835	 865	856	863	862	861	860	859	858	857	855
5	1012	380	1014	172	145	171	258	135	22	1121	 404	255	158	1061	1201	20	76	210	129	211

각 User와 유사한 상위 30명 user를 구함

<추천 결과>

```
user = int(input("Enter the user id to whom you want to recommend : "))
predicted movies = User item score1(user)
print(" ")
print("The Recommendations for User Id : 5")
print(" ")
for i in predicted movies:
   print(i)
Enter the user id to whom you want to recommend: 5
The Recommendations for User Id : 5
                                           # 특정 유저를 넣었을 때 similar user group에서
동우설렁탕
히포크라테스 스프
                                              평점이 높은 식당들을 추천
투고샐러드 고려대점
칠기마라탕
```


야순네 식당

Item-based (아이템 기반)

	User 1	User 2	User 3	User 4
Item A	5	4	4	
Item B	4	3	4	5

- ▶ Item A, B가 비슷한 평점 분포를 보이므로 유사한 아이템으로 판단
- ➤ User4에게 Item A를 추천

맛집에 대한 코사인 유사도 계산

<추천 결과>

	맛집	place_id
2316	부부 바지락 손칼국수	32
5733	학생회관 2층카페 Orgo	206
6283	돌냄비열우동	261
6480	신원오리	283
6798	선일해장국	348

SVD (특이값 분해)

Truncated SVD

→ 데이터 정보를 상당히 압축했는데도 불구하고 행렬 A에 근사하는 행렬 A'를 만들 수 있다.

User-item interaction matrix

5 rows × 410 columns

(410, 2518)

```
item_user_rating = user_item_rating.values.T
print(item_user_rating)
item_user_rating.shape

[[5. 5. 3. ... 0. 0. 0.]
  [2. 0. 4. ... 0. 0. 0.]
  [4. 0. 0. ... 0. 0. 0.]
  [...
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
  [0. 0. 0. ... 0. 0. 0.]
```

Item에 대한 latent factor를 보기 위해, 행렬 분해 SVD를 위한 준비


```
# 사이킷런에서 제공하는 TruncatedSVD 이용
SVD = TruncatedSVD(n components=8)
matrix = SVD.fit transform(item user rating)
matrix.shape
(410, 8)
matrix[0:3]
array([[ 5.01637613, -4.94627798, -0.51166944, -1.9349214 , -0.89581175,
       -0.57087617, 0.70362022, 0.17755513],
      [ 1.89332587, -2.0849931 , -0.75253403, -0.30311568, -0.22752439,
       -1.34854757, -0.2458224, 1.11617476],
      [11.03102141, -9.64892943, -3.50323486, 13.66102959, -2.73255907,
       -6.66211511, -2.21219085, 12.53853448]])
# 피어스 상관계수를 구함
corr = np.corrcoef(matrix)
corr.shape
(410, 410)
```

Truncated SVD 패키지를 이용해 Item에 대해 8개의 latent factor를 갖는 Matrix를 만듦

<추천 결과>

```
item title = user item rating.columns
item title list = list(item title)
useung sigdang = item title list.index(4)
corr useung sigdang = corr[useung sigdang]
result = list(item title[(corr useung sigdang >= 0.90)])[:5]
result
[4, 13, 26, 29, 54]
df[df['place_id'].isin(result)]
              맛집
                  place_id
           우승식당
 149
                                        # place id = 4 인 우승식당과
          미스터국밥
1261
                      13
                                          유사한 latent factor를 가진 식당
           평범식당
2116
                      26
          고래돈까스
2179
3009
                       54
```



```
# scipy에서 제공해주는 svd.
# U 행렬, sigma 행렬, V^t을 반환.
U, sigma, Vt = svds(user item rating, k = 8)
# U. Sigma, Vt의 내적을 수행하면, 다시 원본 행렬로 복원이 된다.
# 거기에 + 사용자 평균 rating을 적용한다.
svd user predicted ratings = np.dot(np.dot(U, sigma), Vt) + mean.reshape(-1, 1)
df svd preds = pd.DataFrame(svd user predicted ratings, columns = user item rating.columns)
df svd preds.head()
place id
                                                                                       10 ...
     0 4.009325 3.974968 3.965199 4.007389 3.990576 4.099053 3.958572 4.048763 4.046488 4.009766
     1 4.525400 4.504556 4.815070 4.550356 4.564260 4.662643 4.526465 4.456822 4.929368 4.549477
     2 3.611219 3.580241 3.647690 3.611115 3.595172 3.648213 3.606360 3.630152 3.133526
     3 4.000000 4.000000 4.000000 4.000000
                                                                                  4.000000
     4 4.037926 4.476212 4.324791 4.114203 3.904292 4.236176 4.042873 4.957032 3.592105 4.676570 ...
```

다른 라이브러리를 활용해
SVD한 행렬 각각을 직접 구해
A'를 구함

<추천 결과>

A' 에서 5번 User가 가본 곳을 제외하고 평점이 높을 것으로 예상되는 맛집 추천

3. Deep Learning based methods

딥러닝 활용

원래 interaction matrix가
 2개의 latent factor matrix의 곱으로
 표현할 수 있다는 것이 핵심 아이디어

3. Deep Learning based methods

<학습 결과>

```
random_user['예상평점'] = random_user.apply(lambda x: predict_rating(5, x['place_id']), axis=1) random_user.sort_values(by='평점', ascending=False).head(60)
```

	맛집	코드	place_id	닉네임	user_id	평점	예상평점
2317	부부 바지락 손칼국수	Num=a_nam_0314	32	검은여울	5	5.0	5.028696
3352	이공김밥	Num=a_nam_605	71	검은여울	5	5.0	4.957998
3023	밀플랜비 (Meal Plan B)	Num=a_nam_948	55	검은여울	5	5.0	5.008432
3151	서브웨이 고려대점	Num=a_nam_0045	60	검은여울	5	5.0	4.764935
2784	더멜팅	Num=a_nam_801	46	검은여울	5	5.0	5.004982
2762	나정순할매쭈꾸미	Num=a_nam_845	44	검은여울	5	5.0	5.004800
3202	안동반점	Num=a_nam_0370	64	검은여울	5	5.0	5.015846
3223	야마토텐동	Num=a_nam_817	67	검은여울	5	5.0	<u>5.119627</u>
2564	고고인디안쿠진 1호점	Num=a_nam_711	38	검은여울	5	5.0	5.031090
3328	오월키친	Num=a nam 996	69	검은여울	5	5.0	5.088535

5번 user가 이미 가본 맛집에 대해 매긴 평점과 모델이 학습한 예상 평점이 상당히 유사함

3. Deep Learning based methods

User-based (사용자 기반)

The Recommendations for User Id: 5

동우설령탕 히포크라테스 스프 투고샐러드 고려대점 칠기마라탕 야순네 식당 자스민 절대분식 차이니웍 하노이별 등촌샤브칼국수 안암점

SVD (특이값 분해)

맛집	Predictions
동우설렁탕	4.880217
투고샐러드 고려대점	4.543993
하노이별	4.325065
언니네반점	4.324791
베나레스	4.240528
히포크라테스 스프	4.236176
제주고깃집	4.219225
소울키친 몸순두부 & 콩시콩뼈	4.171791
야순네 식당	4.129789
유자유	4.129411

딥러닝 활용

예상평점	맛집
5.787228	동네
5.025410	가츠시돈까스
4.903670	토담
4.895035	준호네부대찌개 고대형제점
4.887592	제기돈
4.886300	골목국수
4.877253	서대문 꼼장어
4.815744	박가네 뼈다귀 해장국
4.745144	시그니처 키친 (뚝닭)
4.726214	특별식당
4.700752	등촌샤브칼국수 안암점

Next week

- 단순한 딥러닝 모델에 layer들 더 추가해서 깊게 모델 설계
- 발전시킨 딥러닝 모델 포함 각 방법의 장점을 종합한 Hybrid methods 개발
- 만든 모델의 **평가 방법**에 대한 고민
- (가능하다면) 웹 개발까지

Reference

https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada

https://lsjsj92.tistory.com/563?category=853217

https://ratsgo.github.io/from%20frequency%20to%20semantics/2017/04/06/pcasvdlsa/

https://yamalab.tistory.com/92?category=747907

https://datascienceschool.net/view-notebook/3e7aadbf88ed4f0d87a76f9ddc925d69/

https://nesoy.github.io/articles/2017-11/tf-idf

https://medium.com/@Aaron_Kim/%EB%8B%A8%EC%96%B4-word-%EC%9D%98-%EC%A4%91%EC%9A%94%EB%8F%84%EB%A5%BC-%EC%B8%A1%EC%A0%95%ED%95%98%EB%8A%94-%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98-text-mining-tf-idf-rake-n-gram-86d9ef10873e

Thank you

