prereq:

def: Случайная величина (CB) $X = X(\omega), \omega \in \Omega$:

the value of the random variable. Mathematically, a random variable is a real-valued function of the experimental outcome.

Figure 2.1: (a) Visualization of a random variable. It is a function that assigns a numerical value to each possible outcome of the experiment. (b) An example of a random variable. The experiment consists of two rolls of a 4-sided die, and the random variable is the maximum of the two rolls. If the outcome of the experiment is (4.2), the value of this random variable is 4.

def: A stochastic process is a mathematical model of a probabilistic experiment that evolves in time and generates a sequence of numerical values. For example, a stochastic process can be used to model:

- 1. the sequence of daily prices of a stock;
- 2. the sequence of scores in a football game:
- 3. the sequence of failure times of a machine:

Each numerical value in the sequence is modeled by a random variable, so a stochastic process is simply a (finite or infinite) sequence of random variables and does not represent a major conceptual departure from our basic framework.

def: Случайная функция == случайное поле, неслучайная функция == $\xi(t, w_0)$.

Примем ещё одно соглашение об обозначениях. Мы будем часто обозначать как $\xi(t)$ и сечение, и сам случайный процесс, просто оговаривая (если есть риск непонимания природы $\xi(t)$ в каждом конкретном случае), о чём идёт речь; для случайных процессов мы также часто будем указывать, что t не фиксировано, а пробегает некое множество, т. е. писать $\xi(t), t \in T$.

1 Случайные процессы и их основные характеристики.

def: Случайный процесс (случайная функция, вероятностный процесс, стохастический процесс) $\xi(t) = \xi(t,\omega), \omega \in \Omega, t \in T$ - семейство случайных величин $\{\xi(t,\omega), t \in T\}$, определенных на одном и том же вероятностном пространстве $\{\Omega, F, P\}$, где T - некоторое параметрическое множество.

def: СП называется **действительным (вещественным)**, если СВы $\xi(t,\omega)$ являются действительными для любого $t \in T$.

def: СП называется **комплексным**, если его можно представить в виде: $\xi(t) = \xi_1(t) + i\xi_2(t)$, где $\xi_1(t) = \xi_1(t,w), \xi_2(t) = \xi_2(t,w)$ - действительные СПы, $i^2 = -1$.

def: Если $T=\mathbb{Z}=\{0,\pm 1,\pm 2,\dots\}$ или T - некоторое подмножество из \mathbb{Z} , например, $T=\{0,1,2,\dots\}$ или $T=\{3,4,5,\dots\}$, то в этом случае говорят, что $\xi(t)$ - СП с дискретным временем (временной ряд, случайность последовательность).

def: Если $T = \mathbb{R} = (-\infty, +\infty)$ или T - некоторое подмножество из \mathbb{R} , например, вида T = [0, 1] или $T = [0, +\infty)$, то в этом случае говорят, что $\xi(t)$ - **СП с непрерывным временем**.

def: СП называется r-мерным, если он $\xi^r(t) = \{\xi_a(t), a = \overline{1,r}\}, t \in T, r \in \mathbb{N}.$

Если в определение СПа вместо параметра t подставить $\underline{t}=(t_1,t_2,\ldots,t_n),$ то $\xi(\underline{t})=\xi(\underline{t},\omega)$ называется **n-мерным случайным полем (случайной функцией)**.

Если $T=\mathbb{Z}^n$ или некоторое подпространство из \mathbb{Z}^n , то $\xi(\underline{t})$ - **n-мерное случайное поле с дискретным** временем.

Если $T=\mathbb{R}^n$ или некоторое подпространство из \mathbb{R}^n , то $\xi(\underline{t})$ - **n-мерное случайное поле с непрерывным** временем.

Пусть $t_0 \in T$ - фиксированный момент времени.

def: CB $\xi(t_0, \omega), \omega \in \Omega$, называется **сечением (отсчетом)** процесса в точке t_0 .

def: При фиксированном $\omega_0 \in \Omega$ неслучайная функция $\xi(t,\omega_0), t \in T$, называется **траекторией**, соответствующей элементарному исходу $\omega_0 \in \Omega$. Траектории называются **реализациями или выборочными функциями** случайного процесса.

Представить СП на практике можно с помощью совокупности реализаций (графически).

Чем больше сечений (траекторий) будет рассматриваться, тем более подробнее представление о СП мы можем получить.

2 Конечномерные распределения случайных процессов. Теорема Колмогорова.

Способы задания СП:

- 1. аналитический: $\xi(t,\omega) = g(t,\eta_1(\omega),\ldots,\eta_k(\omega));$
- 2. рекуррентный: зависит от предшествующих значений процесса;
- 3. с помощью конечномерных распределений;
- 4. моментами первого и второго порядков.

Для любого $n \in \mathbb{N}$, произвольных $t_1, \ldots, t_n \in T$ функцию

$$F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) = P\{\xi(t_1) < x_1, \dots, \xi(t_n) < x_n\},\tag{1}$$

где $x_i \in \mathbb{R}, i = \overline{1, n}$, будем называть n-мерной функцией распределения СП $\xi(t)$.

Consider a set of sampling times $t_1, t_2, ..., t_k \in I$, and let $X_i = X(t_i)$ denote the random variable obtained by fixing the value of the process at each time $t_i, i = 1, ..., k$. For any finite value k, we have a vector of random variables $\underline{X} = [X_1 \cdots X_k]^T$, and we can completely specify this vector through specification of its joint probability distribution function:

$$P_{\underline{X}}(x_{1},...,x_{k}) = P(\{\omega : X_{1}(\omega) \leq x_{1},...,X_{k}(\omega) \leq x_{k}\})$$

$$= P(\{\omega : X(t_{1},\omega) \leq x_{1},...,X(t_{k},\omega) \leq x_{k}\})$$

$$= P_{X(t^{k})}(x_{1},x_{2},...,x_{k}), \qquad (3.1)$$

def: Совокупность функций (1) для различных $n=1,2,\ldots$ и всевозможных моментов времени $t_i\in T$ называется **семейством конечномерных распределений** СПа $\xi(t)$.

Свойства n-мерной функции распределения:

- 1. $0 \leq F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) \leq 1$.
- 2. $F_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n)$ непрерывна слева по совокупности переменных x_i .
- 3. $F_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n)$ является неубывающей, т.е. $\Delta_1\ldots\Delta_nF_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n)\geqslant 0$, где Δ_i оператор конечной разности по переменной x_i ,

$$\Delta_{i}F_{\xi}(x_{1},\ldots,x_{n};t_{1},\ldots,t_{n}) = F_{\xi}(x_{1},\ldots,x_{i-1},x_{i}+h_{i},x_{i+1},\ldots,x_{n};t_{1},\ldots,t_{n}) - F_{\xi}(x_{1},\ldots,x_{i-1},x_{i},x_{i+1},\ldots,x_{n};t_{1},\ldots,t_{n}),$$

- 4. Если хотя бы одна из переменных $x_i \to -\infty$, то $F_\xi(x_1,\dots,x_n;t_1,\dots,t_n) \to 0$.
- 5. Если все переменные $x_i \to +\infty$, то $F_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n) \to 1$.
- 6. Для любой перестановки $\{k_1, \ldots, k_n\}$ индексов $\{1, \ldots, n\}$

$$F_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n) = F_{\xi}(x_{k_1},\ldots,x_{k_n};t_{k_1},\ldots,t_{k_n}).$$

7. Для любых $1 \le k < n$:

$$F_{\varepsilon}(x_1,\ldots,x_k;t_1,\ldots,t_n) = F_{\varepsilon}(x_1,\ldots,x_k,+\infty,\ldots,+\infty;t_1,\ldots,t_n)$$

Теорема Колмогорова. Если задано некоторое семейство конечномерных функций распределения

$$F = \{ F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n), x_i \in \mathbb{R}, t_i \in T, i = \overline{1, n}, n \geqslant 1 \},$$

удовлетворяющих условиям 1-7, то существует ВП $\{\Omega, F, P\}$ и СП $\xi(t), t \in T$, определенный на этом ВП такой, что семейство конечномерных распределений процесса $\xi(t)$ совпадет с F.

def: Пусть существует неотрицательная функция $p_{\xi}(u_1,\ldots,u_n;t_1,\ldots,t_n),t_i\in T$, такая, что справедливо представление:

$$F_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_n} p_{\xi}(u_1,\ldots,u_n;t_1,\ldots,t_n) du_1 \ldots du_n,$$

 $x_i \in \mathbb{R}$, тогда $p_{\xi}(u_1,\dots,u_n;t_1,\dots,t_n)$ называют плотностью n-мерной функции распределения или n-мерной плотностью распределения вероятностей процесса $\xi(t), t \in T$.

Свойства n-мерной плотности распределения вероятностей

- 1. $p_{\xi}(u_1, \dots, u_n; t_1, \dots, t_n)$ неотрицательная функция.
- $2. \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} p_{\xi}(u_1, \dots, u_n; t_1, \dots, t_n) du_1 \dots du_n = 1.$

3 Стохастически эквивалентные случайные процессы; утверждение Колмогорова. Тождественные случайные процессы.

def: Процессы $\xi(t)$ и $\eta(t)$ называются **стохастически эквивалентными в широком смысле**, если семейства конечномерных распределений процессов $\xi(t)$ и $\eta(t)$ совпадают, т.е. $\forall n \geqslant 1$ и $\forall t_k \in T, k = 1, \ldots, n$ выполняется равенство:

$$F_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n) = F_{\eta}(x_1,\ldots,x_n;t_1,\ldots,t_n),$$

где $x_i \in \mathbb{R}, i = \overline{1, n}$.

def: Процессы $\xi(t)$ и $\eta(t)$ называются **стохастически эквивалентными (эквивалентными)**, если:

при
$$\forall t : P\{\xi(t) = \eta(t)\} = 1.$$

def: Любой СП $\eta(t)$, стохастически эквивалентный $\xi(t)$, называют **модификацией или версией** СП $\xi(t)$. Если $\xi(t)$ и $\eta(t)$ стохастически эквивалентные, то они являются и стохастически эквивалентными в широком смысле (но не наоборот).

Утверждение Колмогорова. Пусть $\eta(t), t \in T = [a,b]$, и существуют постоянные $r, \alpha, c > 0$, такие, что при $\forall s, t \in T$:

$$M\{|\xi(t) - \xi(s)|^r\} \le c|t - s|^{1+\alpha}.$$

Тогда существует стохастически эквивалентный данному СП $\xi(t)$, обладающий непрерывными траекториями.

Зам. Если $\xi(t)$ – СП, определенный на неограниченном промежутке времени, то для существования непрерывной модификации достаточно, чтобы утверждение выше было выполнено для $|t-s| \leqslant h$, где h – положительная постоянная.

def: Процессы $\xi(t)$ и $\eta(t), t \in T$, называют **тождественными (неразличимыми)**, если

$$P\{\omega : \xi(t,\omega) = \eta(t,\omega), \forall t \in T\} = 1,$$

т.е. вероятность совпадений траекторий равна 1.

4 Моментные характеристики действительных случайных процессов: математическое ожидание, дисперсия, стандартное отклонение, корреляционная функция, ковариационная функция, нормированная ковариационная функция. Простейшие свойства моментных характеристик.

Пусть $\xi(t), t \in T$, - действительный СП.

def: Неслучайная функция $m_{\xi}(t), t \in T$, определяемая соотношением

$$m_{\xi}(t) = M\xi(t) = \int_{-\infty}^{+\infty} x dF_{\xi}(x;t),$$

называется математическим ожиданием (MO) процесса $\xi(t)$.

def: Неслучайная функция $D_{\xi}(t), t \in T$ вида

$$D_{\xi}(t) = M\{\xi(t) - m_{\xi}(t)\}^{2} = \int_{-\infty}^{+\infty} \{x - m_{\xi}(t)\}^{2} dF_{\xi}(x;t) = \int_{-\infty}^{+\infty} x^{2} dF_{\xi}(x;t) - m_{\xi}^{2}(t) = M\{\xi^{2}(t)\} - \{m_{\xi}(t)\}^{2}.$$

называется **дисперсией** процесса $\xi(t)$.

def: Среднеквадратическим отклонением (стандартным отклонением) СП $\xi(t)$ называется функция

$$\sigma_{\xi}(t) = \sqrt{D_{\xi}(t)}$$

def: Неслучайная функция

$$R_{\xi}^{0}(t,\tau) = M\{\xi(t)\xi(\tau)\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_{1}x_{2}dF_{\xi}(x_{1}, x_{2}; t, \tau),$$

 $t, \tau \in T$, называется корреляционной функцией СП $\xi(t)$.

def: Неслучайная функция

$$R_{\xi}(t,\tau) = \operatorname{cov}\{\xi(t),\xi(\tau)\} = M\{(\xi(t) - m_{\xi}(t))(\xi(\tau) - m_{\xi}(\tau))\} =$$

$$= M\{\xi(t)\xi(\tau)\} - M\{\xi(t)\} \cdot M\{\xi(\tau)\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 dF_{\xi}(x_1, x_2; t, \tau) - m_{\xi}(t) m_{\xi}(\tau),$$

 $t, \tau \in T$, называется ковариционной функцией (КФ) СП $\xi(t)$.

def: Нормированной ковариационной функцией СП $\xi(t), t \in T$, называется функция вида:

$$\rho_{\xi}(t,\tau) = \frac{R_{\xi}(t,\tau)}{\sqrt{D_{\xi}(t)D_{\xi}(\tau)}},$$

 $t, \tau \in T$.

5 Моментные характеристики действительных случайных процессов: взаимная ковариационная функция, совместная ковариационная функция, смешанный момент k-го порядка, смешанный семиинвариант k-го порядка. Простейшие свойства моментных характеристик.

def: Взаимной ковариационной функцией СП $\xi(t)$ и $\eta(t), t \in T$, называется неслучайная функция вида:

$$R_{\xi\eta}(t,\tau) = \cos\{\xi(t), \eta(\tau)\} = M\{(\xi(t) - m_{\xi}(t))(\eta(\tau) - m_{\eta}(\tau))\} = M\{\xi(t)\eta(t)\} - m_{\xi}(t)m_{\eta}(\tau),$$

 $t, \tau \in T$.

def: Совместная К Φ процессов $\xi(t)$ и $\eta(t), t \in T$, определяется как

$$\begin{pmatrix} R_{\xi\xi}(t,s) & R_{\xi\eta}(t,s) \\ R_{\eta\xi}(t,s) & R_{\eta\eta}(t,s) \end{pmatrix}$$

def: СП $\xi(t), t \in T$, удовлетворяющей условию

$$M\{|\xi(t)|^2\} < \infty, \forall t \in T,$$

называется процессом с конечным моментом второго порядка.

def: Детерминированная функция

$$m_{\xi}(t_1,\ldots,t_k) = M\{\xi(t_1)\cdot\ldots\cdot\xi(t_k)\} = \int_{-\infty}^{+\infty}\ldots\int_{-\infty}^{+\infty}x_1\ldots x_k dF_{\xi}(x_1,\ldots,x_k;t_1,\ldots,t_k)$$

называется **смешанным моментом порядка** k СП $\xi(t), t \in T$.

def: Детерминированная комплексная функция

$$\Psi_{\xi}(z_1, \dots, z_k; t_1, \dots, t_k) = M\{\exp(i\sum_{j=1}^k z_j \xi(t_j))\} = \int_{\mathbb{R}^k} \exp(i\sum_{j=1}^k z_j x_j) dF_{\xi}(x_1, \dots, x_k; t_1, \dots, t_k),$$

 $z_j \in \mathbb{R}, t_j \in T, j = \overline{1,k}$, называется **характеристической фунцкией (ХФ)** k-мерного распредления СП $\mathcal{E}(t), t \in T$.

def: Смешанным семиинвариантом (кумулянтом) k-го порядка СП $\xi(t), t \in T$, называется функция

$$\operatorname{cum}\{\xi(t_1),\ldots,\xi(t_k)\} = c_{\xi}(t_1,\ldots,t_k) = i^{-k} \frac{\partial^k \ln \Psi_{\xi}(z_1,\ldots,z_k;t_1,\ldots,t_k)}{\partial z_1 \ldots \partial z_k} \bigg|_{z_1 = \ldots = z_k = 0}$$

где $\Psi_{\xi}(z_1,\ldots,z_k;t_1,\ldots,t_k)$ – ХФ k-мерного распределения СП $\xi(t),\ (z_1,\ldots,z_k)^T$ – действительный ненулевой вектор.

6 Ковариационная функция действительного случайного процесса. Ee свойства. Критерий.

def: Неслучайная функция

$$R_{\xi}(t,\tau) = \operatorname{cov}\{\xi(t),\xi(\tau)\} = M\{(\xi(t) - m_{\xi}(t))(\xi(\tau) - m_{\xi}(\tau))\} =$$

$$= M\{\xi(t)\xi(\tau)\} - M\{\xi(t)\} \cdot M\{\xi(\tau)\} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 dF_{\xi}(x_1, x_2; t, \tau) - m_{\xi}(t) m_{\xi}(\tau),$$

 $t, \tau \in T$, называется ковариционной функцией (КФ) СП $\xi(t)$.

def: Нормированной ковариационной функцией $C\Pi \ \xi(t), t \in T$, называется функция вида:

$$\rho_{\xi}(t,\tau) = \frac{R_{\xi}(t,\tau)}{\sqrt{D_{\xi}(t)D_{\xi}(\tau)}},$$

 $t, \tau \in T$.

КФ $R_{\xi}(t,s)$ действительного СП $\xi(t),t\in T,$ обладает следующими свойствами:

- 1. $R_{\xi}(t,t) = D_{\xi}(t) \geqslant 0$,
- 2. $R_{\xi}(t_1, t_2) = R_{\xi}(t_2, t_1),$
- 3. $|R_{\varepsilon}(t_1, t_2)|^2 \leqslant R_{\varepsilon}(t_1, t_1) \cdot R_{\varepsilon}(t_2, t_2), \forall t, t_1, t_2 \in T$.

Критерий. Для того чтобы функция $R_{\xi}(t,s), t, s \in T$, была КФ действительного СП $\xi(t), t \in T$, необходимо и достаточно, чтобы она являлась **симметричной и неотрицательно определенной**, т.е. для $\forall n \geqslant 1$, любых $t_1, \ldots, t_n \in T$ и произвольного ненулевого набора действительных чисел $\{z_1, \ldots, z_n\}$, имело место неравенство

$$\sum_{i,j=1}^{n} z_i z_j R_{\xi}(t_i, t_j) \geqslant 0.$$

7 Моментные характеристики комплексных случайных процессов. Свойства ковариационной функции комплексного случайного процесса. Критерий.

Рассмотрим комплексный СП $\xi(t) = \xi_1(t) + i\xi_2(t)$.

$$\begin{split} M\xi(t) &= M\xi_1(t) + iM\xi_2(t) \\ D_\xi(t) &= M\{(\xi(t) - m_\xi(t))\overline{(\xi(t) - m_\xi(t))}\} \\ R_\xi(t,\tau) &= M\{(\xi(t) - m_\xi(t))\overline{(\xi(\tau) - m_\xi(\tau))}\} \\ R_{\xi\eta}(t,\tau) &= M\{(\xi(t) - m_\xi(t))\overline{(\eta(\tau) - m_\eta(\tau))}\} \end{split}$$

Свойства КФ $R_{\xi}(t,s)$ комплексного СП $\xi(t),t\in T$:

- 1. $R_{\xi}(t,t) = D_{\xi}(t) \ge 0$;
- 2. КФ является эрмитовой, т.е. $R_{\xi}(t_1, t_2) = \overline{R_{\xi}(t_2, t_1)};$
- 3. $|R_{\mathcal{E}}(t_1, t_2)|^2 \leqslant R_{\mathcal{E}}(t_1, t_1) R_{\mathcal{E}}(t_2, t_2)$ для $\forall t, t_1, t_2 \in T$.

Критерий. Для того чтобы функция $R_{\xi}(t,s), t,s \in T$, была КФ комплексного СП $\xi(t),t \in T$, необходимо и достаточно, чтобы она являлась **эрмитовой и неотрицательно определенной**, т.е. для $\forall n \geqslant 1$, любых $t_1,\ldots,t_n \in T$ и произвольного ненулевого набора действительных чисел $\{z_1,\ldots,z_n\}$, имело место неравенство

$$\sum_{i,j=1}^{n} z_i \overline{z_j} R_{\xi}(t_i, t_j) \geqslant 0.$$

8 Примеры случайных процессов. Гауссовский случайный процесс (ГСП). Свойства ГСП. Свойства приращений ГСП. Применение линейных операторов к ГСП.

def: СП $\xi(t), t \in T$ называется **гауссовским**, если его любые конечномерные законы распределения являются нормальными.

def: СП $\xi(t), t \in T$ называется **гауссовским**, если его ХФ имеет вид:

$$\Psi_{\xi}(z_1, \dots, z_k; t_1, \dots, t_k) = \exp\{i \sum_{j=1}^k z_j m_{\xi}(t_j) - \frac{1}{2} \sum_{m=1}^k \sum_{j=1}^k z_m z_j R_{\xi}(t_m, t_j)\},\,$$

где $z_j \in \mathbb{R}, t_j \in T, j = \overline{1, k}$.

Утверждение. Для произвольной функции m(t) и любой функции R(t,s), удовлетворяющей условию симметричности и неотрицательной определенности, существует **действительный** гауссовский СП с МО m(t) и КФ R(t,s).

9 Процессы броуновского движения. Простейшие свойства. Вид плотности распределения. Ковариационная функция процесса броуновского движения.

Процесс броуновского движения = винеровский СП.

def: Винеровским процессом (ВП), выходящим из нуля, называется $\omega(t), t \in T = [0, \infty)$, обладающий свойствами:

- 1. $\omega(0) = 0$ п.н.;
- 2. Для любых $0 \leqslant t_0 < t_1 < \ldots < t_n$ CB

$$\omega(t_1) - \omega(t_0), \omega(t_2) - \omega(t_1), \ldots, \omega(t_n) - \omega(t_{n-1})$$

независимы в совокупности.

3. CB $\omega(t) - \omega(s), 0 \leqslant s \leqslant t$, имеет нормальное распределение $N(0, \sigma^2(t-s))$.

Постоянную σ^2 называют **коэффициентом** диффузии.

Свойства стандартного винеровского СП:

- 1. $\omega(t) \sim N(0, t)$.
- 2. к-мерная плотность распределения имеет вид:

$$p_{\omega}(x_1,\ldots,x_k;t_1,\ldots,t_k) = \prod_{j=1}^k \frac{1}{\sqrt{2\pi(t_j-t_{j-1})}} e^{-\frac{(x_j-x_{j-1})^2}{2(t_j-t_{j-1})}},$$

$$0 = t_0 < t_1 < \ldots < t_k$$
.

3. КФ процесса броуновского движения

$$R_{\omega}(t,s) = \sigma^2 \min\{t,s\},\,$$

где σ^2 - коэффициент диффузии.

10 Свойства процесса броуновского движения: переход к непрерывной модификации, сходимость в СК-смысле суммы квадратов приращений. Броуновский мост.

def: Гауссовский СП $\omega(t), t \in [0, \infty)$, выходящий из нуля, т.е. $\omega(0) = 0$, с моментными характеристиками:

$$M\{\omega(t)\} = 0,$$

$$R_{\omega}(t,s) = \sigma^2 \min\{t,s\},\,$$

 $t,s\geqslant 0$, называется процессом броуновского движения.

Свойства (тоже будут свойствами стандартного винеровского СП):

- 1. От ВП можно перейти к стохастически эквивалентному процессу, обладающему непрерывной траекторией.
- 2. Пусть осуществлено разбиение отрезка $[a,b] \subseteq T, a = t_0 < t_1 < \ldots < t_n = b.$ Тогда

$$\sum_{i=0}^{n-1} (\omega(t_{i+1}) - \omega(t_i))^2 \xrightarrow{\text{cp. KB.}} b - a,$$

при $\max(t_{i+1}-t_i)\to 0, n\to\infty.$

3. ВП описывает симметричное блуждание частицы:

$$P\{\omega(t) > 0\} = P\{\omega(t) < 0\} = 0.5,$$

при t > 0.

Если τ_x - случайный момент первого пересечения траекторией $\omega(t)$ уровня x, то

$$P\{\omega(t) > x | \tau_x < t\} = P\{\omega(t) < x | \tau_x < t\} = 0.5.$$

def: Броуновский мост - процесс, задаваемый равенством

$$\omega^0(t) = \omega(t) - t\omega(1), t \in [0, 1].$$

Очевидно, что:

- 1. $\omega^0(0) = \omega^0(1) = 0$;
- 2. $M\{\omega^0(t)\}=0$;
- 3. $R(t,s) = \sigma^2(\min\{t,s\} ts);$
- 4. $D\omega^{0}(t) = \sigma^{2}t(1-t)$.

11 Процессы Пуассона, процессы Коши. Свойства. Ковариационная функция процесса Пуассона.

def: СП $\xi(t), t \in T = [0, \infty)$, называется **процессом Пуассона**, выходящим из нуля, с параметром $\lambda(\lambda > 0)$, если он обладает свойствами:

- 1. $\xi(0) = 0$ п.н.;
- 2. Для любых $0 \le t_0 < t_1 < \ldots < t_n$ CB

$$\xi(t_1) - \xi(t_0), \xi(t_2) - \xi(t_1), \dots, \xi(t_n) - \xi(t_{n-1}),$$

независимы в совокупности;

3. СВ $\xi(t)-\xi(s), 0\leqslant s\leqslant t,$ имеет распределение Пуассона с параметром $\lambda(t-s),$ т.е.

$$P\{\xi(t) - \xi(s) = k\} = \frac{(\lambda(t-s))^k}{k!} e^{-\lambda(t-s)},$$

 λ - интенсивность, k = 0, 1, 2, ...

Рис. 3. Типичная траектория пуассоновского процесса.

Свойства пуассоновского процесса.

- 1. СП $\xi(t)$ имеет распределение Пуассона с параметром λt .
- 2. $M\{\xi(t)\} = D\{\xi(t)\} = \lambda t$.
- 3. $\xi(t)$ принимает целые неотрицательные значения.

def: СП $\xi(t), t \in T = [0, \infty)$, называется **процессом Коши**, выходящим из нуля, с параметром $\lambda(\lambda > 0)$, если он обладает свойствами:

- 1. $\xi(0) = 0$ п.н.;
- 2. Для любых $0 \leqslant t_0 < t_1 < \ldots < t_n$ CB

$$\xi(t_1) - \xi(t_0), \xi(t_2) - \xi(t_1), \dots, \xi(t_n) - \xi(t_{n-1}),$$

независимы в совокупности;

3. СВ $\xi(t+h) - \xi(t)$, имеет распределение с плотностью.

$$p(x) = \frac{h}{\pi(h^2 + x^2)}.$$

T	Дискретное множество состояний X	Непрерывное множество состояний X
Дискретное время	ЦМ с ДВ	Марковская последовательность
Непрерывное время	ЦМ с НВ	Марковский СП

12 Процессы Маркова. Уравнение Колмогорова-Чепмена.

def: СП $\xi(t), t \in T$, называется **процессом Маркова**, если для $\forall k \in \mathbb{N}$, для $\forall t_j \in T : t_0 < t_1 < \ldots < t_k$, $j = 0, \ldots, k$, и любого борелевского множества $B \in B(\mathbb{R})$ имеет место:

$$P\{\xi(t_k) \in B | \xi(t_0), \dots, \xi(t_{k-1})\} = P\{\xi(t_k) \in B | \xi(t_{k-1})\}.$$

$$P\{\xi(t_k) = x_k | \xi(t_0) = x_0, \dots, \xi(t_{k-1} = x_{k-1})\} = P\{\xi(t_k) = x_k | \xi(t_{k-1}) = x_{k-1}\},\$$

где $x_m \in \mathbb{R}$ - состояние процесса в момент времени $t_m.$

Для $\forall \ B_1, B_2 \in B(\mathbb{R})$ и s < u < t:

$$P\{\xi(s) \in B_1, \xi(t) \in B_2 | \xi(u)\} = P\{\xi(s) \in B_1 | \xi(u)\} \cdot P\{\xi(t) \in B_2 | \xi(u)\}.$$

def: Переходная функция (переходная вероятность) марковского процесса определяется как

$$P(s, x, t, B) = P\{\xi(t) \in B | \xi(s) = x\}, t \geqslant s, x \in \mathbb{R}, B \in \mathbb{R}$$

и удовлетворяет соотношению

$$P(s,x,t,B) = \int_{\mathbb{D}} P(s,x,u,dy) P(u,y,t,B),$$

которое выполняется для всех $s,u,t\in T: s\leqslant u\leqslant t,$ и называется **уравнением Колмогорова-Чепмена**.

Критерий. Центрированный гауссовский СП $\xi(t), t \in T$, является марковским \Leftrightarrow его КФ $R_{\xi}(t,s), s, t \in T$, удовлетворяет при $t_1 \leqslant t_2 \leqslant t_3$ равенству:

$$R_{\xi}(t_1, t_3) = \frac{R_{\xi}(t_1, t_2)R_{\xi}(t_2, t_3)}{R_{\xi}(t_2, t_2)}.$$

def: Марковский процесс называется однородным, если

$$P\{\xi(t) \in B | \xi(s) = x\} = P(0, x, t - s, B) = P(x, t - s, B).$$

13 Диффузионные процессы.

def: Случайный n-мерный однородный марковский процесс $\xi(t), t \in \mathbb{R}$, называется **диффузионным процессом**, если его переходная вероятность P(x, t, B) удовлетворяет условиям:

$$\lim_{t \to 0} \frac{1}{t} \int_{|y-x| > \delta} P(x,t,dy) = 0,$$

$$\lim_{t \to 0} \frac{1}{t} \int_{|y-x| \le \delta} (y-x)P(x,t,dy) = a(x),$$

$$\lim_{t \to 0} \frac{1}{t} \int_{|y-x| \le \delta} (y-x)(y-x)^T P(x,t,dy) = \sum_{x \in S} (x),$$

для любых $\delta > 0, x \in \mathbb{R}^n$.

Замечание. Первое условие - достаточное условие для существования марковского семейства с данными переходными вероятностями, с непрерывными траекториями.

Функция a(x) характеризует среднюю скорость смещения за малое время из состояния $\xi(0)=x$ и называется вектором сноса (дрейфа).

 Φ ункция $\sum(x)$ характеризует отклонение процесса от его усредненного движения, определяемого вектором сноса, и называется **матрицей диффузии**.

Замечание. В случае a(x) = 0, $\sum (x) = 1$ процесс $\xi(t)$ совпадает со стандартным винеровским процессом.

14 Случайные процессы с некоррелированными, ортогональными и независимыми приращениями. Однородные случайные процессы. Случайные процессы со стационарными приращениями.

Действительный СП $\xi(t), t \in T \subset \mathbb{R}, M |\xi(t)|^2 < \infty.$

На $\{\Omega, F, P\}$ определим скалярное произведение: $\langle \xi, \eta \rangle = M \xi \overline{\eta}$.

def: Приращением СП $\xi(t)$ на промежутке [s,t) называется СВ $\Delta \xi(s,t) = \xi(t) - \xi(s)$.

def: $\xi(t), t \in T$, называется процессом **с некоррелированными приращениями**, если для произвольных $t_0 < t_1 \leqslant t_2 < t_3$ выполняется соотношение:

$$cov{\Delta\xi(t_0, t_1), \Delta\xi(t_2, t_3)} = 0.$$

Замечание. Из некоррелированности приращений не следует независимость соответствующих приращений. def: $\xi(t), t \in T$, называется процессом с ортогональными приращениями, если для произвольных $t_0 < t_1 \le t_2 < t_3$ выполняется соотношение:

$$M\{\Delta \xi(t_0, t_1) \cdot \Delta \xi(t_2, t_3)\} = 0.$$

Замечание. Если $\xi(t)$ имеет некоррелированные приращения, то процесс $\xi_1(t) = \xi(t) - M\{\xi(t)\}$ является процессом как с некоррелированными, так и с ортогональными приращениями.

 $\mathbf{def:}\ \xi(t), t \in T$, называется процессом \mathbf{c} независимыми приращениями, если для $\forall\ n \in \mathbb{N}$ и произвольных $t_0 < t_1 < \ldots < t_{n-1} < t_n$ CB

$$\xi(t_1) - \xi(t_0), \xi(t_2) - \xi(t_1), \dots, \xi(t_n) - \xi(t_{n-1}),$$

независимы в совокупности.

$$\xi(t_n) - \xi(t_0) = \sum_{i=1}^{n} (\xi(t_i) - \xi(t_{i-1})),$$

Замечания.

- 1. СП с независимыми приращениями является процессом с некоррелированными приращениями;
- 2. Гауссовский СП с некоррелированными приращениями является процессом с независимыми приращениями:
- 3. Всякий процесс с независимыми приращениями является марковским процессом.

def: $\xi(t), t \geqslant 0$ называется **однородным**, если для $\forall \ s > 0$ распределение приращения $\xi(t+s) - \xi(t)$ зависит только от s.

Например, процессы Пуассона, ВП.

 $\mathbf{def:}\ \xi(t), t \in T$, называется называется процессом со стационарными приращениями в узком смысле, если у него не меняются при сдвиге на h совместное распределение приращений

$$\xi(t_1) - \xi(t_0), \xi(t_2) - \xi(t_1), \dots, \xi(t_n) - \xi(t_{n-1}),$$

где $t_0 < t_1 < \ldots < t_{n-1} < t_n$.

Другими словами, для $\forall h$:

$$\text{Law}\{\xi(t_1) - \xi(t_0), \dots, \xi(t_n) - \xi(t_{n-1})\} = \text{Law}\{\xi(t_1 + h) - \xi(t_0 + h), \dots, \xi(t_n + h) - \xi(t_{n-1} + h)\}.$$

Например, процессы Пуассона, ВП.

 $\mathbf{def:}\ \xi(t), t \in T$ называется процессом со стационарными приращениями в широком смысле, если для $\forall\ h$:

- 1. $M\{\xi(t_1)-\xi(t_2)\}=f(t_1-t_2)$, где f некоторая детерминированная функция;
- 2. $M |\xi(t_1) \xi(t_2)|^2 < \infty$;
- 3. $M\{(\xi(t_1) \xi(t_2))\overline{(\xi(t_3) \xi(t_4))}\} = M\{(\xi(t_1 + h) \xi(t_2 + h))\overline{(\xi(t_3 + h) \xi(t_4 + h))}\}.$

15 Стационарные в узком смысле случайные процессы.

def: СП $\xi(t), t \in T$ называется **стационарным в узком смысле**, если для $\forall n \in \mathbb{N}$, произвольного набора $t_1, \ldots, t_n \in T$, и \forall τ такого, что $t_1 + \tau, \ldots, t_n + \tau \in T$, имеет место соотношение:

$$F_{\xi}(x_1,\ldots,x_n;t_1,\ldots,t_n) = F_{\xi}(x_1,\ldots,x_n;t_1+\tau,\ldots,t_n+\tau),$$

или

$$p_{\varepsilon}(u_1,\ldots,u_n;t_1,\ldots,t_n) = p_{\varepsilon}(x_1,\ldots,x_n;t_1+\tau,\ldots,t_n+\tau),$$

где $x_i \in \mathbb{R}, i = \overline{1, n}$.

Часто полагают $\tau = -t_n$, тогда:

$$F_{\xi}(x_1, \dots, x_n; t_1, \dots, t_n) = F_{\xi}(x_1, \dots, x_n; t_1 + \tau, \dots, t_n + \tau) =$$

$$= F_{\xi}(x_1, \dots, x_n; t_1 - t_n, \dots, t_{n-1} - t_n, 0) = F_{\xi}(x_1, \dots, x_n; t_1 - t_n, \dots, t_{n-1} - t_n).$$

В частности, $F_{\xi}(x_1,x_2;t_1,t_2)=F_{\xi}(x_1,x_2;t_1-t_2), F_{\xi}(x;t)=F_{\xi}(t).$ Если существует МО стационарного в узком смысле СП, то оно постоянно и равно $M\{\xi(t)\}=M\{\xi(0)\}$, а $K\Phi$ (при условии $M\{|\xi(t)|^2\} < \infty$) зависит лишь от разности (t-s), т.е. $R_{\xi}(t,s) = R_{\xi}(t-s)$.

16 Стационарные в широком смысле случайные процессы. Свойства ковариационной функции стационарного случайного процесса. Стационарно связанные процессы. Эффективный интервал корреляции.

def: СП $\xi(t), t \in T$ называется **стационарным в широком смысле**, если для $M\{|\xi(t)|^2\} < \infty$ и выполняются соотношения :

- 1. $m_{\xi}(t) = M\{\xi(t)\} = const,$
- 2. $R_{\varepsilon}(t,s) = R_{\varepsilon}(t-s), \forall t, s \in T$.

Замечания.

1. Если $C\Pi$ стационарный в узком смысле и для него существует конечный второй момент, то $C\Pi$ является и стационарным в широком смысле, но не наоборот.

2. Для действительного гауссовского СП понятия стационарности в широком и узком смыслах эквивалентны.

Свойства КФ $R_{\xi}(t,s), t \in T$ стационарного в широком смысле СП $\xi(t), t \in T$:

- 1. $R_{\xi}(0) = D_{\xi} \geqslant 0$,
- 2. $R_{\xi}(t) = R_{\xi}(-t)$ или $R_{\xi}(t) = \overline{R_{\xi}(-t)}$,
- 3. $|R_{\xi}(t)| \leq R_{\xi}(0)$,
- 4. $R_{\xi}(t)$ является неотрицательно определенной функцией, т.е. для $\forall n \geqslant 1$, любых $t_1, \ldots, t_n \in T$ и произвольного ненулевого набора действительных чисел $\{z_1, z_2, \ldots, z_n\}$, имеет место:

$$\sum_{i,j=1}^{n} z_i z_j R_{\xi}(t_i - t_j) \geqslant 0.$$

def: Пусть $\xi(t), t \in \mathbb{R}$, стационарный в широком смысле СП с абсолютно интегрируемой К Φ , тогда **временем** корреляции СП $\xi(t)$ называется величина

$$t_0 = \frac{1}{R_{\xi}(0)} \int_{0}^{+\infty} |R_{\xi}(t)| dt.$$

Сечения $\xi(s+t)$ и $\xi(s)$, отстоящие друг от друга на расстоянии $t>t_0$, считают некоррелированными. **def:** Случайные процессы $\xi(t)$ и $\eta(t), t\in T$, называются **стационарно связанными**, если

$$R_{\xi\eta}(t,s) = R_{\xi\eta}(t-s).$$

 ${
m He}$ всякие два стационарные СП стационарно связаны. Два нестационарных процесса могут быть стационарно связанными.

17 Спектральные характеристики случайных процессов с непрерывным и дискретным временем.

def: Спектральной плотностью СП $\xi(n), n \in \mathbb{Z}$, называется функция вида

$$f_{\xi}(\lambda_1, \lambda_2) = \frac{1}{(2\pi)^2} \sum_{n_1, n_2 = -\infty}^{\infty} R_{\xi}(n_1, n_2) e^{-i(\lambda_1 n_1 + \lambda_2 n_2)},$$

где $\lambda_1,\lambda_2\in\Pi=[-\pi;\pi]$, при условии, что $\sum\limits_{n_1,n_2=-\infty}^{\infty}|R_{\xi}(n_1,n_2)|<\infty.$ **def: Спектральной плотностью** СП $\xi(t),t\in\mathbb{R}$, называется функция вида

$$f_{\xi}(\lambda_1, \lambda_2) = \frac{1}{(2\pi)^2} \iint_{\mathbb{R}^2} R_{\xi}(t, s) e^{-i(\lambda_1 t + \lambda_2 s)} dt ds,$$

где $\lambda_1,\lambda_2\in\mathbb{R},$ при условии, что $\iint\limits_{\mathbb{R}^2}|R_\xi(t,s)|dtds<\infty.$

def: Взаимной спектральной плотностью СП $\xi(n), \eta(n), n \in \mathbb{Z}$, называется функция вида

$$f_{\xi\eta}(\lambda_1, \lambda_2) = \frac{1}{(2\pi)^2} \sum_{n_1, n_2 = -\infty}^{\infty} R_{\xi\eta}(n_1, n_2) e^{-i(\lambda_1 n_1 + \lambda_2 n_2)},$$

где $\lambda_1, \lambda_2 \in \Pi$, при условии, что $\sum_{n_1, n_2 = -\infty}^{\infty} |R_{\xi\eta}(n_1, n_2)| < \infty$.

def: Взаимной спектральной плотностью СП $\xi(t), \eta(t), t \in \mathbb{R}$, называется функция вида

$$f_{\xi\eta}(\lambda_1,\lambda_2) = \frac{1}{(2\pi)^2} \iint_{\mathbb{D}^2} R_{\xi\eta}(t,s) e^{-i(\lambda_1 t + \lambda_2 s)} dt ds,$$

где $\lambda_1,\lambda_2\in\mathbb{R},$ при условии, что $\iint\limits_{\mathbb{R}^2}|R_{\xi\eta}(t,s)|dtds<\infty.$

def: Спектральной функцией СП $\xi(t), t \in Z(R)$, называется функция вида

$$F_{\xi}(\lambda_1, \lambda_2) = \int_{-\pi(-\infty) - \pi(-\infty)}^{\lambda_1} \int_{-\pi(-\infty)}^{\lambda_2} f_{\xi}(v_1, v_2) dv_1 dv_2,$$

где $\lambda_1, \lambda_2 \in \Pi(\mathbb{R}),$

18 Спектральные характеристики стационарных случайных последовательностей. Свойства спектральной плотности. Спектральное представление ковариационной функции.

 \mathbf{def} : Функция

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} R_{\xi}(n) e^{-i\lambda n},$$

 $\lambda \in \Pi$, называется спектральной плотностью стационарного СП $\xi(n), n \in \mathbb{Z}$, при условии, что:

$$\sum_{n=-\infty}^{\infty} |R_{\xi}(n)| < \infty.$$

def: Взаимной спектральной плотностью двух стационарных и стационарно связанных СП $\xi(n)$, $\eta(n)$, $n \in \mathbb{Z}$, называется функция вида

$$f_{\xi\eta}(\lambda) = \frac{1}{(2\pi)^2} \sum_{n=-\infty}^{\infty} R_{\xi\eta}(n) e^{-i\lambda n},$$

где $\lambda \in \Pi$, при условии, что $\sum\limits_{n=-\infty}^{\infty}|R_{\xi\eta}(n)|<\infty.$

Теорема. Для того чтобы последовательность $R_{\xi}(n), n \in \mathbb{Z}$, являлась четной и неотрицательно определенной \Leftrightarrow чтобы для $\forall \ n \in \mathbb{Z}$ она представлялась в виде

$$R_{\xi}(n) = \int_{\Pi} e^{i\lambda n} dF_{\xi}(\lambda),$$

где $F_{\xi}(\lambda), \lambda \in \Pi$ - однозначно определенная неубывающая вещественная функция, $F_{\xi}(-\pi) = 0$.

Следствия из теоремы Бохнера-Хинчина.

1. КФ стационарного СП $\xi(n), n \in \mathbb{Z}$, имеет вид

$$R_{\xi}(n) = \int_{\Pi} e^{i\lambda n} f_{\xi}(\lambda) d\lambda,$$

где $n \in \mathbb{Z}$, $f_{\xi}(n), \lambda \in \Pi$ - спектральная плотность $\xi(n)$.

Свойства спектральной плотности $f_{\xi}(\lambda), \lambda \in \Pi(\mathbb{R}).$

- 1. $f_{\xi}(\lambda) \geqslant 0, \lambda \in \Pi(\mathbb{R}).$
- 2. $f_{\varepsilon}(\lambda) = f_{\varepsilon}(-\lambda), \lambda \in \Pi(\mathbb{R}).$
- 3. $f_{\xi}(\lambda) = \frac{1}{\pi} \int_{0}^{\infty} R_{\xi}(t) \cos \lambda t dt, f_{\xi}(\lambda) = \frac{R_{\xi}(0)}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} R_{\xi}(n) \cos \lambda n.$

4.
$$R_{\xi}(t) = 2 \int_{0}^{\pi(\infty)} f_{\xi}(\lambda) \cos \lambda t d\lambda, D_{\xi} = R_{\xi}(0) = 2 \int_{0}^{\pi(\infty)} f_{\xi}(\lambda) d\lambda, t \in Z(R).$$

Замечание. На практике спектральная плотность используется в основном для определения периода:

$$T^* = \frac{2\pi}{\lambda^*}$$

$$\lambda^* = \arg\max_{\lambda \in [0,\pi]} f_{\xi}(\lambda)$$

Величина * называется **главным периодом** и в некоторых случаях достаточно адекватно характеризует промежуток времени, через который свойства СП «статистически повторяются».

19 Спектральные характеристики стационарных случайных процессов с непрерывным временем. Свойства спектральной плотности. Спектральное представление ковариационной функции. Ширина спектра.

def: Спектральной плотностью стационарного СП $\xi(t), t \in \mathbb{R}$, называется функция вида

$$f_{\xi}(\lambda) = \frac{1}{2\pi} \int_{\mathbb{R}} R_{\xi}(t) e^{-i\lambda t} dt,$$

где $\lambda \in \mathbb{R}$, при условии, что $\int\limits_{\mathbb{D}} |R_{\xi}(t)| dt < \infty.$

def: Спектральной функцией стационарного СП $\xi(t), t \in Z(R)$, называется функция вида

$$F_{\xi}(\lambda) = \int_{-\pi(-\infty)}^{\lambda} f_{\xi}(v)dv,$$

где $\lambda \in \Pi(\mathbb{R})$.

def: Нормированной спектральной плотностью стационарного СП $\xi(t), t \in Z(R)$, называется

$$f_{\xi}^{\text{\tiny HOPM}}(\lambda) = \frac{f_{\xi}(\lambda)}{D_{\xi}}.$$

def: Взаимной спектральной плотностью двух стационарных и стационарно связанных СП $\xi(t), \eta(t), t \in \mathbb{R}$, называется функция вида

$$f_{\xi\eta}(\lambda) = \frac{1}{2\pi} \int\limits_{\mathbb{R}} R_{\xi\eta}(t) e^{-i\lambda t} dt,$$

где $\lambda \in \mathbb{R}$, при условии, что $\int\limits_{\mathbb{R}} |R_{\xi\eta}(t)| dt < \infty$.

Теорема Бохнера-Хинчина. Для того чтобы непрерывная функция $R_{\xi}(t), t \in \mathbb{R}$, была четной и неотрицательно определенной \Leftrightarrow чтобы она представлялась в виде

$$R_{\xi}(t) = \int_{\Pi} e^{i\lambda t} dF_{\xi}(\lambda),$$

где $F_{\xi}(\lambda), \lambda \in \mathbb{R}$ - однозначно определенная вещественная монотонно неубывающая ограниченная функция, $F_{\xi}(-\infty) = 0, t \in \mathbb{R}$.

Следствия из теоремы Бохнера-Хинчина.

1. КФ стационарного СП $\xi(t), t \in \mathbb{R}$, имеет вид

$$R_{\xi}(t) = \int_{\mathbb{R}} e^{i\lambda t} f_{\xi}(\lambda) d\lambda,$$

где $t \in \mathbb{R}$, $f_{\xi}(\lambda)$, $\lambda \in \mathbb{R}$ - спектральная плотность $\xi(t)$.

Свойства спектральной плотности $f_{\xi}(\lambda), \lambda \in \Pi(\mathbb{R}).$

- 1. $f_{\xi}(\lambda) \geqslant 0, \lambda \in \Pi(\mathbb{R}).$
- 2. $f_{\varepsilon}(\lambda) = f_{\varepsilon}(-\lambda), \lambda \in \Pi(\mathbb{R}).$

3.
$$f_{\xi}(\lambda) = \frac{1}{\pi} \int_{0}^{\infty} R_{\xi}(t) \cos \lambda t dt, f_{\xi}(\lambda) = \frac{R_{\xi}(0)}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} R_{\xi}(n) \cos \lambda n.$$

4.
$$R_{\xi}(t) = 2 \int_{0}^{\pi(\infty)} f_{\xi}(\lambda) \cos \lambda t d\lambda, D_{\xi} = R_{\xi}(0) = 2 \int_{0}^{\pi(\infty)} f_{\xi}(\lambda) d\lambda, t \in Z(R).$$

Замечание. На практике спектральная плотность используется в основном для определения периода:

$$T^* = \frac{2\pi}{\lambda^*}$$

$$\lambda^* = \arg\max_{\lambda \in [0,\pi]} f_{\xi}(\lambda)$$

Величина * называется **главным периодом** и в некоторых случаях достаточно адекватно характеризует промежуток времени, через который свойства СП «статистически повторяются».

Содержательный смысл спектральной плотности.

$$x_T(t) = \begin{cases} x(t), 0 \leqslant |t| \leqslant T, \\ 0, |t| > T. \end{cases}$$

Обозначим

$$X_T(\lambda) = \frac{1}{2\pi} \int_{\mathbb{R}} x_T(t) e^{-i\lambda t} dt, \lambda \in \mathbb{R}.$$

Справедливо соотношение

$$f_{\xi}(\lambda) \stackrel{\text{\tiny II.H.}}{=} \lim_{T \to \infty} \frac{|X_T(\lambda)|^2}{2T}.$$

Ширина спектра

$$L = \frac{1}{f_{\xi}(0)} \int_{0}^{+\infty} f_{\xi}(\lambda) d\lambda,$$

Т.к.
$$\int\limits_0^{+\infty} f_\xi(\lambda) d\lambda = \frac{1}{2} R_\xi(0),$$
 то $L = \frac{R_\xi(0)}{2 f_\xi(0)}.$

$$t_0 = \frac{1}{R_{\xi}(0)} \int_{0}^{+\infty} |R_{\xi}(t)| dt \geqslant \frac{\pi f_{\xi}(0)}{R_{\xi}(0)}.$$

Поэтому справедливо неравенство: $t_0 \geqslant \frac{\pi}{2L}$ или $t_0 L \geqslant \frac{\pi}{2}$.

20 Каноническое разложение случайных функций. Спектральное разложение стационарных случайных функций.

Простейший СП определяется: $X(t) = X \cdot \phi(t)$, где X - CB с MO m_X и дисперсией D_X , $\phi(t)$ - произвольная неслучайная функция.

$$m_X(t) = M\{X \cdot \phi(t)\} = \phi(t) \cdot M\{X\} = \phi(t) \cdot m_X.$$

Если $m_X = 0$, то СП X(t) называется элементарным.

$$R_X(t_1, t_2) = M\{X(t_1)X(t_2)\} = \phi(t_1)\phi(t_2) \cdot M\{X^2\} = \phi(t_1)\phi(t_2) \cdot D_X.$$

Центрированный СП $\xi^0(t)$ можно представить суммой взаимно некоррелированных элементарных случайных процессов:

$$\xi^{0}(t) = \sum_{n=1}^{N} X_{n} \phi_{n}(t), N \leqslant \infty.$$

$$M\{\xi^{0}(t)\} = \sum_{n=1}^{N} \phi_{n}(t)M\{X_{n}\} = 0.$$

$$R_{\xi^0}(t_1, t_2) = \sum_{n=1}^{N} \phi_n(t_1)\phi_n(t_2)D\{X_n\}.$$
(2)

Произвольный нецентрированный СП $\xi(t)$ может быть представлен в виде

$$\xi(t) = m_{\xi}(t) + \xi^{0}(t) = m_{\xi}(t) + \sum_{n=1}^{N} X_{n} \phi_{n}(t)$$
(3)

с МО $m_{\xi}(t)$ и КФ вида (2).

Выражение (3) является **каноническим разложением** функции $\xi(t)$.

СВ X_n называются коэффициентами разложения, функции $\phi_n(t)$ - координатными функциями (базисом) разложения.

Из (2) получаем
$$D_{\xi}(t) = \sum_{n=1}^{N} \phi_n^2(t) D\{X_n\}.$$

Замечание. Каноническое разложение стационарного СП имеет вид

$$\xi(t) = m_{\xi}(t) + \sum_{n=0}^{\infty} \left(U_n \cos \lambda_n t + V_n \sin \lambda_n t \right), \tag{4}$$

где U_n, V_n - центрированные некоррелированные СВ с попарно равными дисперсиями $D\{U_n\} = D\{V_n\} = D_n, \lambda_n$ - константы.

Разложение (4) называется спектральным.

Спектральное разложение в ряд его КФ и дисперсии:

1.
$$R_{\xi}(t) = \sum_{n=0}^{\infty} D_n \cos \lambda_n t$$
,

2.
$$D_{\xi}(t) = \sum_{n=0}^{\infty} D_n$$
.

21 Элементы стохастического анализа. Сходимости случайных функций (по вероятности, в среднеквадратическом смысле). Критерии.

 $\xi(t), t \in T \subset \mathbb{R}$ - действительный СП.

Пусть $M\{|\xi(t)|^2\}<\infty$ для $\forall\ t\in T.$

def: СП $\xi(t)$ сходится в **среднеквадратическом смысле (СК-смысле)** к СВ η при $t \to t_0, t_0 \in T$, если $\lim_{t \to t_0} M\{|\xi(t) - \eta|^2\} = 0$.

Далее будем обозначать

$$\eta = \lim_{t \to t_0} \xi(t) \tag{5}$$

Критерий Коши. Предел (5) существует \Leftrightarrow когда существует $\lim_{t,s \to t_0} M\{|\xi(t) - \xi(s)|^2\} = 0.$

Теорема. Для того чтобы существовал предел (5) \Leftrightarrow чтобы существовал конечный предел функции $M\{\xi(t)\xi(s)\}$ при $t,s\to t_0$.

Замечание. В случае комплексного СП \Leftrightarrow существование конечного предела функции $M\xi(t)\overline{\xi(s)}$ при $t,s \to t_0$.

Следствие. Предел (5) существует ⇔ существуют и конечны пределы

$$\lim_{t \to t_0} M\{\xi(t)\} = m_0, \lim_{t \to t_0} R_{\xi}(t, s) = R_0.$$

Теорема. Для того чтобы существовал предел $\xi(t)$ в смысле сходимости по вероятности при $t \to t_0 \Leftrightarrow$ чтобы существовал конечный предел при $t,s \to t_0$ двумерных распределений $F_{\xi}(x_1,x_2;t,s)$ в смысле слабой сходимости.

Замечание. Из сходимости в СК-смысле $\xi(t)$ к η вытекает сходимость по вероятности и по распределению.

22 Непрерывность случайных функций (стохастическая, СК-непрерывность, потраекторная). Критерии.

def: СП $\xi(t)$ называется **стохастически непрерывным** в точке t_0 , если $\xi(t) \xrightarrow[t \to t_0]{P} \xi(t_0)$.

Теорема. Для того чтобы СП $\xi(t), t \in T$ был стохастически непрерывным на множестве $T \Leftrightarrow$ чтобы двумерное распределение $F_{\xi}(x_1, x_2; t, s)$ было слабо непрерывно по паре (t, s) на множестве $T \times T$.

Например, процессы Пуассона, Коши.

def: СП $\xi(t)$ называют **непрерывным в среднеквадратическом смысле (СК** – **непрерывным)** в точке t_0 , если существует предел $\lim_{t \to t_0} \xi(t) = \xi(t_0)$.

В противном случае процесс называется **разрывным в СК-смысле** в точке t_0 .

Если $\xi(t)$ является непрерывным в СК-смысле в каждой точке $t \in T$, то его называют непрерывным на всем множестве T.

Процесс Пуассона непрерывен в СК-смысле. Процесс Коши не является СК-непрерывным.

Теорема. Для СК-непрерывности СП $\xi(t)$ в точке $t_0 \Leftrightarrow$ чтобы $M\xi(t)$ было непрерывно в точке t_0 , а $R_{\xi}(t,s)$ непрерывна в точке (t_0,t_0) .

Следствие. Для того чтобы стационарный СП $\xi(t)$ был непрерывен в СК-смысле в точке $t \Leftrightarrow$ чтобы его КФ $R_{\xi}(t)$ была непрерывна в точке t=0.

Следствие. Если функция $R\xi(t,s)$ непрерывна в точках t=s, то она непрерывна во всех точках.

Теорема. Для того чтобы $\xi(t)$ был непрерывен в СК-смысле на множестве $T\Leftrightarrow$ чтобы была непрерывна по (t,s) на $T\times T$ функция $M\{\xi(t)\xi(s)\}$. В случае комплексного СП \Leftrightarrow непрерывность по (t,s) на $T\times T$ функции $M\{\xi(t)\overline{\xi(s)}\}$.

Теорема. $\xi(t), t \in T$, непрерывен в СК-смысле на множестве $T \Leftrightarrow$ когда на T непрерывно его $M\xi(t)$, а на $T \times T$ непрерывна его КФ $R_{\xi}(t,s)$.

Пусть $\xi(t,\omega), t \in T$, — некоторая траектория СП $\xi(t)$.

def: СП называется **непрерывным** на T, если $P\{\omega : \xi(t,\omega)$ – непрерывная на T функция $\}=1$.

Для $\forall \ t_0 \in T \ P\{\omega: \xi(t,\omega) \to \xi(t_0,\omega), t \to t_0\} = 1.$

Далее будем обозначать $\xi(t) \xrightarrow{\Pi.H.} \xi(t_0), t \to t_0.$

Т.о., непрерывный СП $\xi(t)$ является также **почти наверное** непрерывным в каждой точке t_0 .

Однако из **п.н.-непрерывности** $\xi(t)$ на T в общем случае не следует его непрерывность, т.е. непрерывность почти всех его траекторий.

23 Дифференцирование случайных функций. Критерии. (СК-дифференцируемость, потраекторная).

 \mathbf{def} : $\mathrm{CH}\,\xi(t)$ называется дифференцируемым в среднеквадратическом смысле (СК-дифференцируемым)

в точке t_0 , если существует СВ $\xi^{'}(t_0)$, для которой $\lim_{t \to t_0} M \left\{ \left| \frac{\xi(t) - \xi(t_0)}{t - t_0} - \xi^{'}(t_0) \right|^2 \right\} = 0$

Иногда удобнее запись $\lim_{\tau \to 0} M \left\{ \left| \frac{\xi(t_0 + \tau) - \xi(t_0)}{\tau} - \xi'(t_0) \right|^2 \right\} = 0$

Если $\xi(t)$ является дифференцируемым в СК-смысле в точке t_0 , то СВ $\xi'(t_0)$ называют его **СК-производной** в этой точке. В противном случае СП не является СК-дифференцируемым в точке t_0 .

Если $\xi(t)$ СК-дифференцируем в каждой точке t множества T, то $\xi(t)$ СК-дифференцируем на множестве T, а семейство СВ $\{\xi'(t), t \in T\}$ называют СК-производной СП $\xi(t)$ на T. Из дифференцируемости в СК-смысле вытекает соответствующая непрерывность.

Критерий. Для того чтобы действительный СП $\xi(t)$ был непрерывно дифференцируем в СК-смысле на \Leftrightarrow чтобы функция $M\{\xi(t)\xi(s)\}$ (для комплексного СП функция $M\{\xi(t)\overline{\xi(s)}\}$ обладала на множестве $T\times T$ непрерывной смешанной производной второго порядка по t и s.

Критерий. Для того чтобы СП $\xi(t)$ был СК-дифференцируем в точке t_0 , а для СВ $\xi'(t_0)$ существовали МО и КФ \Leftrightarrow чтобы существовали производная $\frac{dM\xi(t)}{dt}$ в точке t_0 и смешанная производная второго порядка $\frac{\partial^2 R_{\xi}(t,s)}{\partial t\partial s}$ в точке (t_0,t_0) .

Следствие. Если $\xi(t)$ СК-дифференцируем на T, то его производная в СК-смысле $\xi'(t)$ имеет МО $M\xi'(t)$ и КФ $R_{\xi'}(t,s)$, определенные формулами:

$$M\xi'(t) = \frac{dM\xi(t)}{dt}, R_{\xi'}(t,s) = \frac{\partial^2 R_{\xi}(t,s)}{\partial t \partial s} = \frac{\partial^2 R_{\xi}(t,s)}{\partial s \partial t}$$
(6)

Следствие. Пусть $\xi(t)$ – СК-дифференцируемый на множестве Т стационарный СП с постоянным МО и КФ $R_{\xi}(t)$. Тогда его производная в СК-смысле $\xi'(t)$ имеет математическое ожидание $M\xi'(t)=0$ и ковариационную функцию $R_{\xi'}(t)=-R_{\xi}^{''}(t)$.

Совместная КФ процесса и его производной:

$$\begin{pmatrix} R_{\xi\xi}(t,s) & R_{\xi\xi'}(t,s) \\ R_{\xi'\xi}(t,s) & R_{\xi'\xi'}(t,s) \end{pmatrix} = \begin{pmatrix} R_{\xi}(t,s) & \frac{\partial R_{\xi}(t,s)}{\partial s} \\ \frac{\partial R_{\xi}(t,s)}{\partial t} & \frac{\partial^2 R_{\xi}(t,s)}{\partial s \partial t} \end{pmatrix}$$

Для стационарного СП:

$$\begin{pmatrix} R_{\xi\xi}(t) & R_{\xi\xi'}(t) \\ R_{\xi'\xi}(t) & R_{\xi'\xi'}(t) \end{pmatrix} = \begin{pmatrix} R_{\xi}(t) & -R'_{\xi}(t) \\ R'_{\xi}(t) & -R'_{\xi}(t) \end{pmatrix}$$

def: $\xi(t)$ называется дифференцируемым потраекторно на T, если почти все его траектории $\xi(t,\omega)$ – дифференцируемые функции, т.е. $\{\omega: \xi(t,\omega)$ дифференцируема на $T\}=1$.

Если $\xi'(t), t \in T$, — СК-производная СП $\xi(t)$, а $\dot{\xi}(t), t \in T$ - потраекторная производная, то $P\{\xi'(t) = \dot{\xi}(t)\} = 1$, т.е. СП $\xi'(t)$ и $\dot{\xi}(t)$ стохастически эквивалентны.

24 Интегрирование случайных функций. Критерий. (СК-интегрируемость, потраекторная).

Пусть СП $\xi(t)$ определен на отрезке $[a,b]=T\subseteq\mathbb{R}.$ Построим некоторое разбиение

$$a = t_0 < t_1 \leqslant \ldots \leqslant t_{n-1} \leqslant t_n = b,$$

и на каждом из промежутков этого разбиения выберем произвольную точку $au_i = [t_{i-1}, t_i), i = \overline{1, n}.$

def: Если при $n \to \infty$, $\max_{i=1,\dots,n}(t_i-t_{i-1}) \to 0$ существует $\sum_{i=1}^n \xi(\tau_i)(t_i-t_{i-1}) \xrightarrow{\text{с.к.}} \eta$, не зависящий от способа разбиения $\{t_i\}$ и выбора точек $\{\tau_i\}$, то СП $\xi(t)$ называется **СК-интегрируемым** на [a,b], а СВ η называется его СК-интегралом и обозначается $\eta = \int\limits_{-\infty}^{b} \xi(t) dt$.

Критерий. Для существования СК-интеграла $\int\limits_a^b \xi(t)dt \Leftrightarrow$ чтобы существовали следующие интегралы Римана:

$$I_1 = \int_a^b m_{\xi}(t)dt,\tag{7}$$

$$I_2 = \int_a^b \int_a^b R_{\xi}(t, s) dt ds, \tag{8}$$

Теорема. Пусть $\xi(t)$ - СК-непрерывный СП, тогда:

1.
$$M \int_{a}^{b} \xi(t)dt = \int_{a}^{b} m_{\xi}(t)dt = I_{1},$$

2.
$$\operatorname{cov}\{\int_{a}^{b} \xi(t)dt, \xi(s)\} = \int_{a}^{b} R_{\xi}(t,s)dt, s \in T,$$

3.
$$\operatorname{cov}\{\int_{a}^{b} \xi(t)dt, \int_{a}^{b} \xi(s)ds\} = \int_{a}^{b} \int_{a}^{d} R_{\xi}(t,s)dtds, [c,d] \subseteq T,$$

4.
$$D \int_{a}^{b} \xi(t)dt = \int_{a}^{b} \int_{a}^{b} R_{\xi}(t,s)dtds = I_{2}.$$

Утверждение. Если $\xi(t)$ – гауссовский СП, то СК-интеграл $\int_a^b \xi(t)dt$ есть гауссовская СВ со средним I_1 и дисперсией I_2 , определенными в (7), (8).

Утверждение. Всякий СП $\xi(t)$ СК-непрерывный на конечном промежутке [a,b], является СК-интегрируемым на [a,b].

Утверждение. Кусочно-непрерывная на отрезке функция СК-интегрируема на нем.

Интегрирование случайных функций с весом. Критерий. 25

def: $\xi(t), t \in T = [a, b]$, называется **интегрируемым в СК-смысле на множестве Т с весом** $\phi(t, s), t, s \in T$, где $\phi(t,s)$ - неслучайная функция, если существует СП $\eta(t),t\in T$ такой, что независимо от способа разбиения $\{s_i\}$ и выбора точек $\{\tau_i\}$, существует

$$\sum_{i=1}^{n} \phi(t, \tau_i) \xi(\tau_i) (s_i - s_{i-1}) \xrightarrow{\text{c.k.}} \eta(t),$$

при
$$n \to \infty$$
, $\max_{i=1,...,n} (s_i - s_{i-1}) \to 0$.

Обозначают
$$\eta(t) = \int\limits_{-b}^{b} \phi(t,s) \xi(s) ds, t \in T$$

Обозначают $\eta(t) = \int_a^b \phi(t,s)\xi(s)ds, t \in T.$ Теорема. СП $\xi(t), t \in T = [a,b]$, является СК-интегрируемым на множестве с весом $\phi(t,s) \Leftrightarrow$ когда на T с весом $\phi(t,s)$ интегрируемо его МО и на $T \times T$ с весом $\phi(t,s_1) \cdot \phi(t,s_2)$ интегрируема его КФ.

1.
$$M\eta(t) = \int_{a}^{b} \phi(t,s) m_{\xi}(s) ds$$
,

2.
$$R_{\eta}(t_1, t_2) = \int_{T} \int_{T} \phi(t_1, s_1) \phi(t_2, s_2) R_{\xi}(s_1, s_2) ds_1 ds_2$$
,

3.
$$D\eta(t) = \int_T \int_T \phi(t, s_1) \phi(t, s_2) R_{\xi}(s_1, s_2) ds_1 ds_2 \ge 0$$
,

4.
$$R_{\xi\eta}(t_1, t_2) = \int_T \phi(t_2, s) R_{\xi}(t_1, s) ds$$
.

def: Пусть почти все реализации $\xi(t,\omega)$ СП $\xi(t)$ интегрируемы по Риману на множестве T, т.е.

$$P\{\omega: \exists$$
 интеграл Римана $\eta(\omega) = \int_T \xi(t,\omega)dt\} = 1.$ (9)

Тогда η — потраекторный интеграл

26 Операторы. Действие линейного оператора на случайный процесс. Примеры операторов.

def: Линейным однородным оператором L_O (ЛОО) называтся оператор, удовлетворяющий следующим свойствам:

- 1. $L_O[C\xi(t)] = CL_O[\xi(t)], C = const.$
- 2. $L_O[\xi_1(t) + \xi_2(t)] = L_O[\xi_1(t)] + L_O[xi_2(t)].$

def: Линейным неоднородным оператором L_H (ЛНО) называется сумма линейного однородного оператора L_O и некоторой заданной неслучайной функции $\phi(t)$, т.е.

$$L_H[\xi(t)] = L_O[\xi(t)] + \phi(t).$$

def: Операторы N, которые не удовлетворяют указанным выше условиям, называются **нелинейными**. Если $\xi(t)$ – СП с МО $m_{\xi}(t)$ и КФ $R_{\xi}(t,s)$ преобразуется ЛОО L_O в СП $\eta(t)$, т.е. $\eta(t)=L_O[\eta(t)]$, то его МО $m_{\eta}(t)$ получается из $m_{\xi}(t)$ при помощи того же оператора L_O : $m_{\eta}(t)=L_O[m_{\eta}(t)]$, а для нахождения КФ $R_{\eta}(t,s)$ нужно применить к $R_{\eta}(t,s)$ ЛОО L_O один раз по t, другой раз, к вновь полученному выражению, по s:

$$R_{\eta}(t,s) = L_{O}^{S}[L_{O}^{T}[R_{\xi}(t,s)]] = L_{O}^{T}[L_{O}^{S}[R_{\xi}(t,s)]]$$
(10)

Утверждение. Если $\xi(t)$ – СП с МО $m_{\xi}(t)$ и КФ $R_{\xi}(t,s)$ преобразуется ЛНО L_H , соответствующим однородному оператору L_O , в СП $\eta(t)$, т.е. $\eta(t) = L_H[\xi(t)]$, то

$$m_{\eta}(t) = L_H[m_{\eta}(t)] = L_O[m_{\xi}(t)] + \phi(t),$$

$$R_{\eta}(t,s) = L_O^S[L_O^T[R_{\xi}(t,s)]].$$

27 Линейный однородный дифференциальный оператор с постоянными коэффициентами. Примеры.

$$P\left(\frac{d}{dt}\right) = \sum_{k=0}^{n} a_k \frac{d^k}{dt^k}.$$

Пусть $\xi(t)$ - стационарный СП с $M\xi(t)=m_\xi$ и $R_\xi(t)$. Оператор переводит его также в стационарный СП

$$\eta(t) = P\left(\frac{d}{dt}\right)\xi(t).$$

$$M\eta(t) = P\left(\frac{d}{dt}\right)M\xi(t) = a_0 m_{\xi},$$

$$R_{\eta\eta}(t-s) = P\left(\frac{\partial}{\partial t}\right)\overline{P}\left(\frac{\partial}{\partial s}\right)R_{\xi\xi}(t-s),$$

$$R_{\xi\eta}(t-s) = P\left(\frac{\partial}{\partial t}\right)R_{\xi\xi}(t-s),$$

где
$$\overline{P}\left(\frac{d}{dt}\right) = \sum_{k=0}^{n} \overline{a_k} \frac{d^k}{dt^k}.$$

$$\begin{split} R_{\eta\eta}(t) &= P\left(\frac{d}{dt}\right) \overline{P}\left(-\frac{d}{dt}\right) R_{\xi\xi}(t), \\ R_{\eta\xi}(t) &= P\left(\frac{d}{dt}\right) R_{\xi\xi}(t), \\ R_{\xi\eta}(t) &= \overline{P}\left(-\frac{d}{dt}\right) R_{\xi\xi}(t). \end{split}$$

28 Линейный однородный оператор интегрирования. Примеры.

ЛОО интегрирования применим к действительному СП $\xi(t), t \in T = [a, b]$.

$$\eta(t) = A\left[\xi(t)\right] = \int_{a}^{b} A(t,s)\xi(s)ds,$$

где A(t,s) - весовая функция.

$$m_{\eta}(t) = M \int_{a}^{b} A(t,s)\xi(s)ds = \int_{a}^{b} A(t,s)m_{\xi}(s)ds = A\left[m_{\xi}(t)\right],$$

$$R_{\eta}(t,s) = \int_{a}^{b} \int_{a}^{b} A(t,t_{1})\overline{A(s,s_{1})}R_{\xi}(t_{1},s_{1})dt_{1}ds_{1} = \overline{A^{S}}\left[A^{t}\left[R_{\xi}(t,s)\right]\right],$$

$$R_{\eta\xi}(t,s) = \operatorname{cov}\left\{\int_{a}^{b} A(t,t_{1})\xi(t_{1})dt_{1},\xi(s)\right\} = \int_{a}^{b} A(t,t_{1})R_{\xi}(t_{1},s)dt_{1} = A^{t}\left[R_{\xi}(t,s)\right],$$
 где $\overline{A}\left[R_{\xi}(t)\right] = \int_{a}^{b} \overline{A(t,s)}\xi(s)ds.$

29 Дифференциальные уравнения со случайной правой частью.

$$\eta'(t) = a(t) \cdot \eta(t) + b(t) \cdot \eta(t), t \geqslant 0, \tag{11}$$

$$\eta(0) = v,\tag{12}$$

где $\eta^{'}(t)$ – СК-производная $\eta(t)$, $\xi(t)$ – СК-непрерывная СФ, a(t), b(t) – непрерывные неслучайные функции, v - некоторая СВ.

СП $\eta(t), t \geqslant 0$ является решением уравнения (11) с начальным условием (12), если при $\forall \ t \geqslant 0$ выполнено

$$\eta(t) = v + \int\limits_0^t a(au) \eta(au) d au + \int\limits_0^t b(au) \xi(au) d au.$$

$$\Theta'(t) = a(t) \cdot \Theta(t), t \geqslant 0; \Theta(0) = 1. \tag{13}$$

 $\Theta(t) \neq 0$ при $\forall t \geqslant 0$, если a(t) кусочно-непрерывна.

Общее решение уравнения (11) имеет вид:

$$\eta(t) = \Theta(t)v + \Theta(t) \int_{0}^{t} \Theta^{-1}(\tau)b(\tau)\xi(\tau)d\tau, \tag{14}$$

где $\Theta(t)$ – решение уравнения (13).

30 Эргодические по отношению к математическому ожиданию случайные процессы.

 $\xi(t), t \in T = [0, m]$, - действительный СП с $M\{\xi^2(t)\} < \infty$.

$$m_{\xi}(t_{1}) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \xi_{k}(t_{1}),$$

$$R_{\xi}^{0}(t_{1}, t_{1} + \tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \xi_{k}(t_{1}) \xi_{k}(t_{1} + \tau),$$

$$m_{\xi_{k}} = \lim_{m \to \infty} \frac{1}{m} \int_{0}^{m} \xi_{k}(t) dt,$$

$$R_{\xi_{k}}^{0}(\tau) = \lim_{m \to \infty} \frac{1}{m} \int_{0}^{m} \xi_{k}(t) \xi_{k}(t + \tau) dt,$$

def: СП $\xi(t)$, СК-интегрируемый на множестве T с весом $\frac{1}{m}$ и обладающий постоянным МО m_{ξ} , называется **эргодическим** по отношению к МО m_{ξ} , если существует

$$\lim_{m \to \infty} \frac{1}{m} \int_{0}^{m} \xi(t) dt = m_{\xi},$$

или

$$\lim_{m \to \infty} M \left[\left| \frac{1}{m} \int_{0}^{m} \xi(t) dt - m_{\xi} \right|^{2} \right] = 0.$$

Теорема. Пусть $\xi(t)$ – СК-интегрируемый СП на множестве T с весом $\rho(t)$, где $\rho(t)$ – некоторая произвольная неслучайная интегрируемая на T функция. Необходимым и достаточным условием для эргодичности $\xi(t)$ относительно МО m_{ξ} является

$$\lim_{m \to \infty} \int_{0}^{m} \int_{0}^{m} \rho(t_1)\rho(t_2)R_{\xi}(t_1, t_2)dt_1dt_2 = 0.$$

Следствие. Если в условиях теоремы (предыдущей) $\rho(t) = \frac{1}{m}, t \in T = [0, m],$ то необходимое и достаточное условие эргодичности $\xi(t)$ относительно МО принимает вид

$$\lim_{m \to \infty} \frac{1}{m^2} \int_{0}^{m} \int_{0}^{m} R_{\xi}(t_1, t_2) dt_1 dt_2 = 0.$$
 (15)

Теорема. Пусть СП $\xi(t)$, СК-интегрируемый на множестве T с весом $\frac{1}{m}$, имеет постоянное МО m_{ξ} . Тогда для его эргодичности относительно МО достаточно существование предела

$$\lim_{|t_1 - t_2| \to \infty} R_{\xi}(t_1, t_2) = 0. \tag{16}$$

Замечания.

- 1. Необходимым и достаточным условием для эргодичности относительно МО стационарного СП является $\lim_{m\to\infty}\frac{1}{m}\int\limits_0^m \left[1-\frac{t}{m}\right]R_\xi(t)dt=0,$
- 2. Достаточным условием для эргодичности относительно МО стационарного СП является $\lim_{t \to \infty} R_{\xi}(t) = 0$.

Замечание. Пусть $\xi(t,w)$ известная реализация эргодического по отношению к МО процесса $\xi(t)$. Тогда в качестве оценки МО можно использовать: $m_{\xi} = \frac{1}{m} \int\limits_{0}^{m} \xi(t,\omega) dt$.

Замечание. $\xi(t)$, СК-интегрируемый на множестве T с весом $\frac{1}{m}$, называется эргодическим по отношению к некоторой функции f(x), если существует

$$\lim_{m \to \infty} \frac{1}{m} \int_{0}^{m} f(\xi(t))dt = M\{f(\xi(t))\}.$$

31 Эргодические по отношению к дисперсии случайные процессы.

Если $\xi(t)$ – действительный стационарный СП с $m_{\xi} = const, D_{\xi} = D\xi(t) = const,$ то СП $(\xi(t) - m_{\xi})^2$ имеет постоянное МО D_{ξ} и при выполнении соответствующих условий является эргодическим по отношению к МО.

Т.о., исходный СП $\xi(t)$ является **эргодическим по отношению к дисперсии**, и имеется возможность построения качественной оценки для его дисперсии по одной реализации.

def: Стационарный СП $\xi(t), t \in T = [0, m]$, СК-интегрируемый на множестве T с весом $\frac{1}{m}$ и обладающий постоянными МО m_{ξ} и дисперсией D_{ξ} , называют **эргодическим по отношению к дисперсии** D_{ξ} , если существует предел

$$\lim_{m \to \infty} \frac{1}{m} \int_{0}^{m} [\xi(t) - m_{\xi}]^{2} dt = D_{\xi}.$$

Если $\xi(t)$ эргодический по отношению к дисперсии D_{ξ} , то СП $\eta(t) = [\xi(t) - m_{\xi}]^2$ эргодический относительно МО $\{\eta(t)\} = D_{\xi}$.

Т.о., условие

$$\lim_{m \to \infty} \frac{1}{m^2} \int_{0}^{m} \int_{0}^{m} R_{\eta}(t_1, t_2) dt_1 dt_2 = 0$$

необходимо и достаточно, а условие

$$\lim_{|t_1 - t_2| \to \infty} R_{\eta}(t_1, t_2) = 0$$

достаточно для эргодичности исходного СП $\xi(t)$ относительно дисперсии.

Для надежного определения искомых характеристик по одной единственной реализации необходимо брать интервал осреднения m во много раз больше, чем время корреляции

$$t_0 = \frac{1}{R_{\xi}(0)} \int_{0}^{+\infty} |R_{\xi}(t)| dt.$$