AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Original) A bicontinuous one-phase microemulsion at least consisting of an aqueous component (A), a hydrophobic component (B) and an amphiphilic component (C/D), wherein said microemulsion simultaneously comprises a continuous aqueous phase and a continuous hydrophobic phase, and the hydrophobic component (B) contains one or more substances which can be employed as a fuel.
- 2. (Currently Amended) The microemulsion according to claim 1, wherein said aqueous component (A)
 - (i) is selected from water and alcohol-water mixtures; and/or
 - (ii) contains from 10 to 100% by weight, preferably from 70 to 100% by weight, more preferably from 80 to 100% by weight, of water; and/or
 - (iii) contains additional salts and additives (E) selected from the group consisting of alkali halides, ammonium halides, ammonium salts or organic acids and urea derivatives, preferably ammonium salts or organic acids, more preferably ammonium carbonate and ammonium acetate, the additives (E) being present in concentrations of from 0 to 4% by weight, based on the total microemulsion, preferably from 0.01 to 2.5% by weight, more preferably from 0.05 to 1.5% by weight.
- 3. (Currently Amended) The microemulsion according to claim 1-or-2, wherein said hydrophobic component (B) contains:
 - (i) at least one mineral oil-based fuel, preferably selected from the group consisting of gasoline and premium gasoline, diesel fuel, heavy oil, kerosine, petroleum and fuel oil; and/or
 - (ii) at least one fuel based on vegetable oils or their derivatives, especially selected from biodiesel fuel, rapeseed methyl ester (RME) and bio oil.

(Currently Amended) The microemulsion according to claim 3, wherein aid 4. hydrophobic component (B) contains diesel fuel as a component, preferably (i) pure diesel fuel; or (ii) a mixture of diesel fuel, gasoline or premium gasoline on the one hand with bio-oil and/or biodiesel fuel on the other hand in any mixing ratios, more preferably pure diesel fuel or a mixture of diesel fuel and biodiesel fuel and/or bio oil. 5. (Currently Amended) The microemulsion according to one or more of claims claim 1 to-4: (i) which is electrically conductive and/or thermodynamically stable and/or temperature-stable; and/or (ii) in which the proportion of amphiphilic component (C/D) is from 0.5 to 20% by weight, preferably from 0.5 to 15% by weight, more preferably from 1 to 8% by weight, even more preferably from 1 to 5% by weight; and/or (iii) in which the proportion of aqueous component (A) is from 0.5 to 65% by weight, preferably from 5 to 55% by weight, more preferably from 15 to 45% by weight; and/or in which the proportion of hydrophobic component (B) is from 4 to 99% by (iv) weight, preferably from 45 to 99% by weight, more preferably from 45 to 90% by weight, even more preferably from 60 to 90% by weight. 6. (Currently Amended) The microemulsion according to one or more of claims claim 1 to 5, wherein said amphiphilic component (C/D) contains at least one non-ionic surfactant (C), wherein said non-ionic surfactant is preferably selected from linear or branched surfactants (C-1), especially polyethylene oxide and (i) polypropylene oxide derivatives of organic alcohols, organic phosphate esters,

alkylphenol-ethoxylates, mono-or-polyalkylated polyethylene glycerides

(PEG) and polypropylene glycols (PPG), preferably polyethylene oxide

derivatives of organic alcohols, more preferably with carbon chain lengths of

- (ii) surfactants with a core structure (C-2), especially sugar surfactants, preferably selected from the group consisting of alkylglucosides (C_iG_j), (poly)alkylsorbitans (C_iS_j), alkylmaltosides (C_iM_j), alkyllactosides and their ethoxylated and propoxylated derivatives, more preferably alkylsorbitans.
- 7. (Currently Amended) The microemulsion according to claim 7 6, wherein said amphiphilic component (C/D) additionally contains at least
 - (i) an ionic surfactant (D), especially a sulfur-free ionic surfactant (D), preferably selected from the group consisting of alkylethanolamines, a
 - (ii) a cosurfactant (C-3), especially selected from aliphatic alcohols, preferably fatty alcohols; and/or
 - (iii) an efficiency booster (C-4) selected from amphiphilic block copolymers.
- 8. (Currently Amended) The microemulsion according to claim 6-or 7, wherein said amphiphilic component (C/D) contains at least, in addition to a linear or branched surfactant (C-1):
 - (i) an ionic surfactant (D); and/or
 - (ii) a sugar surfactant (C-2); and/or
 - (iii) an alcohol, preferably a medium-chain or long-chain alcohol; and
 - (iv) the proportion of component (C) comprising components from the groups

 linear or branched surfactants (C-1), surfactants with a core structure (C-2), cosurfactants (C-3) and efficiency boosters (C-4) selected from

 amphiphilic block copolymers, based on the amphiphilic component (C/D),
 is from 50 to 100% by, weight, preferably from 60 to 80% by weight, more

 preferably from 65 to 75% by weight; and/or

- (iv) the proportion of component (C-2), based on the total amount of component
 (C), is from 0 to 85% by weight, preferably from 10 to 60% by weight, more preferably from 20 to 55% by weight, even more preferably from 35 to 55% by weight.
- 9. (Currently Amended) The microemulsion according to one or more of claims claim 1 to 8, wherein component (A) is water or a water-ethanol mixture, component (B) is diesel fuel, component (C) comprises at least one polyethoxylated long-chain alcohol, and wherein the proportion of (C) in the microemulsion is from 1 to 10% by weight.
- 10. (Currently Amended) The microemulsion according to claim 9, wherein (A) is water, (C) is a polyethoxylated C₁₃ oxo alcohol (C_{12/14}E₅), and (E) is ammonium carbonate, and preferably optionally:
 - (i) (D) is AOT, and more preferably the following proportions of the components are present: (A) from 1 to 50% by weight; (B) from 30 to 93% by weight; (C) from 3 to 18% by weight; (D) from 1 to 8% by weight; and (E) from 0.06 to 1.3% by weight; and/or
 - (ii) (D) is a mixture of oleic acid and dodecylamine, and more preferably the following proportions of the components are present: (A) from 5 to 25% by weight; (B) from 79 to 91% by weight; (C) from 2.2 to 7.2% by weight; (D) from 0.45 to 1.2% by weight of oleic acid, from 0.3 to 1% by weight of dodecylamine; (E) from 0.15 to 1.2% by weight.
- 11. (Currently Amended) The microemulsion according to claim 9, wherein (C) is a polyethoxylated decanol ($C_{10}E_8$) in combination with sorbitan monooleate, and preferably optionally:
 - the following proportions of the components are present: (A) from 39 to 55% by weight; (B) from 34 to 47% by weight; (C) C₁₀E₈ from 4.2 to 10.5% by weight and sorbitan monooleate from 2.8 to 9% by weight; and/or
 - (ii) (A) contains ethanol, and the ethanol content in the microemulsion is more preferably from 2.0 to 7.4% by weight.

- (Currently Amended) The microemulsion according to claim 9, wherein (A) is water,
 (C) is a polyethoxylated C₁₃ oxo alcohol (C_{12/14}E₅), (D) is AOT, and preferably optionally:
 - (i) (E) is sodium chloride, and more preferably the following proportions of the components are present: (A) from 4 to 55% by weight; (B) from 37 to 86% by weight; (C) from 3.5 to 12% by weight; (D) from 3.3 to 8.2% by weight; and (E) from 0.08 to 0.3% by weight; and/or
 - (ii) (E) is sodium chloride and urea, and more preferably the following proportions of the components are present: (A) from 6 to 10% by weight; (B) from 75 to 85% by weight; (C) from 8 to 12% by weight; (D) from 4 to 6% by weight; (E) from 0.15 to 0.25% by weight of NaCl, from 0.12 to 0.20% by weight of urea; and/or
 - (iii) (E) is ammonium acetate, and more preferably the following proportions of the components are present: (A) from 4 to 12.5% by weight; (B) from 68 to 86% by weight; (C) from 6.7 to 12.0% by weight; (D) from 3.3 to 6.0% by weight; (E) from 0.09 to 0.4% by weight.
- 13. (Currently Amended) The microemulsion according to claim 9, wherein (A) is water, (C) is a polyethoxylated C₁₃ oxo alcohol (C_{12/14}E₆), (D) is ammonium oleate, and (E) is ammonium acetate, and preferably optionally the following proportions of the components are present: (A) from 40 to 60% by weight; (B) from 40 to 60% by weight; (C) from 1.5 to 2.5% by weight; (D) from 1.5 to 2.5% by weight; and (E) from 0.6 to 1.6% by weight.
- 14. (Currently Amended) The microemulsion according to claim 9, wherein (A) is water, (C) is a polyethoxylated C_{13} oxo alcohol ($C_{12/14}E_5$) and a further polyethoxylated alcohol, preferably a polyethoxylated C_{13} oxo alcohol ($C_{12/14}E_3$), and preferably optionally the following proportions of the components are present: (A) from 40 to 52% by weight; (B) from 40 to 52% by weight; (C) from 3.0 to 8.0% for each individual component.
- 15. (Currently Amended) The microemulsion according to one or more of claims claim 1 to 14, which is a fuel.
- 16. (Canceled)

- 17. (Currently Amended) A method for the determination and optimization of microemulsions according to one or more of claims claim 1-to 14, comprising the steps of:
 - (i) determining the temperature variance and adjusting the temperature invariance of the one-phase microemulsion by adjusting the content of amphiphilic component (C/D); and
 - (ii) adjusting the water-to-oil ratio within a range of the volume ratio of oil to water plus oil of from 4 to 99% by volume, preferably from 4 to 96% by volume, of the hydrophobic component (B).
- 18. (New) A fuel comprising a microemulsion according to claim 1.
- 19. (New) An explosive comprising a microemulsion according to claim 1.