Univariate Kennwerte

Definition

"Die in einem Datensatz für ein Merkmal enthaltene Information lässt sich zu Kenngrößen verdichten.

Diese charakterisieren das **Zentrum** oder die Variabilität des Datensatzes. Man hat also Kenngrößen zur Beschreibung der "mittleren" Lage der Elemente des Datensatzes und solche zur Charakterisierung der Streuung."

Mittag, Hans-Joachim (2015): Statistik: Eine Einführung mit interaktiven Elementen. Berlin, Heidelberg: Springer. S. 103.

- Datenverdichtung, Reduktion von Komplexität
- Interpretationshilfen, Vergleichsgrößen
- Kommunikation der Dateneigenschaften
- Maße der zentralen Tendenz, Lagemaße: Typische Werte
- Streumaße: Heterogenität, Unterschiedlichkeit der Werte

Skalenniveau und univariate Kennwerte

75

	Messniveau	Eigenschaften	mögliche Aussage	Beispiele
non- metrisch	Nominalskala	klassifizierend	gleich, ungleich	Farben, Geschlecht
	Ordinalskala	Rangordnung, keine gleichen Abstände	größer, kleiner	Bewertung von Kinofilmen
metrisch	Intervaliskala	gleiche Abstände	Gleichheit von Differenzen	Temperatur in Grad C
	Ratioskala	absoluter Nullpunkt	Gleichheit von Verhältnissen	TV-Nutzung in Min/Tag

Skalenniveau	Lagemaß
nominal	Modalwert
ordinal	Median, Modalwert
metrisch	Arithmetisches Mittel, Modalwert, Median

Lagemaße

Modalwert (Modus)

mindestens Nominalskalenniveau

der Wert (Merkmalsausprägung), der innerhalb einer Datenmenge am häufigsten vorkommt

Median (Md, \tilde{x})

mindestens Ordinalskalenniveau

der Wert (Merkmalsausprägung), der in der Mitte steht, wenn alle Beobachtungswerte x_i der Größe nach geordnet sind.

nicht von Extremwerten beeinflusst

Ungrade Fallzahl

$$\tilde{\mathbf{x}} = \mathbf{x}_{\left(\frac{n+1}{2}\right)}$$

Gerade Fallzahl

$$\tilde{\mathbf{x}} = \mathbf{x}_{\left[\frac{\mathbf{n}}{2}\right]} + \mathbf{x}_{\left[\frac{\mathbf{n}+1}{2}\right]}$$

Arithmetisches Mittel (AM, \bar{x})

metrisches Skalenniveau

die Summe aller Werte, geteilt durch Anzahl der Fälle "Gleichgewichtspunkt der Verteilung"

von Extremwerten beeinflusst

ohne Klassenbildung

$$\overline{\mathbf{x}} = \frac{1}{n} * \sum_{i=1}^{n} \mathbf{x}_{i}$$

mit Klassenbildung

$$\overline{X} = \frac{1}{n} * \sum_{i=1}^{n} x_i * f_i$$

Lagemaße und Verteilung

Kurs: Consultant Data Sciene 6.11. -22.11.19

Streumaße

Varianz (s²)

Summe der quadrierten Abweichungen der Einzelfälle vom Arithmetischen Mittel

$$s^2 = \frac{1}{n} * \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Standardabweichung (s)

Wurzel aus der Varianz Aussagekraft nur im Vergleich

$$s = \sqrt{s^2}$$

Standardabweichung und Verteilung

Kleine Standardabweichung = homogene Verteilung

Große Standardabweichung = heterogene Verteilung

Diese Interpretation nur im Vergleich sinnvoll!

BIVARIATE STATISTIK

Zusammenhang zweier Messwerte / Variablen im Datensatz

DIFFERENZEN / UNTERSCHIEDE

ZUSAMMENHÄNGE

HYPOTHESEN-TESTS

Bivariate Häufigkeitsverteilung

Definition

"Hat man zwei diskrete Merkmale X und Y mit k bzw. m Ausprägungen, kann man die **absoluten oder relativen Häufigkeiten** für die k m Ausprägungskombinationen tabellarisch darstellen.

Diese auch als **Kontingenztafel** bezeichnete Tabelle definiert eine bivariate Häufigkeitsverteilung.

Ein Spezialfall der Kontingenztafel ist die Vierfeldertafel, bei der X und Y jeweils nur zwei Ausprägungen aufweisen."

> Mittag, Hans-Joachim (2015): Statistik: Eine Einführung mit interaktiven Elementen. Berlin, Heidelberg: Springer. S. 103.

Beispiel 1

Gesamt	100 %	100 %	100 %
Anna Karenina	32 %	1 %	16 %
Star Wars Episode IV	7 %	44 %	26 %
Stirb langsam	10 %	40 %	25 %
Der Sturm	3 %	7 %	5 %
Some like it Hot	48 %	8%	28 %
Frage zur Präferenz von Filmen	Frauen (n=1.080)	Männer (n=1.090)	Gesamt (n=2.170)

Konvention: Spalte = *unabhängige* (Einfluss-) Größe

Zeile = *abhängige* Größe

Beispiel 2

Frage zur Präferenz von Filmen	Frauen (n=1.080)	Männer (n=1.090)	Gesamt (n=2.170)
Some like it Hot	86 %	14%	100 %
Der Sturm	30 %	70 %	100 %
Stirb langsam	20 %	80 %	100 %
Star Wars Episode IV	14 %	88 %	100 %
Anna Karenina	97 %	3 %	100 %

Weniger Informationen als bei Spaltenprozentuierung

Bivariate Zusammenhangsmaße

Definition

Bivariate Zusammenhangsmaße beschreiben die **gemeinsame Verteilung** zweier Variablen. Sie lassen Aussagen über Zusammenhänge und Unterschiede zu.

Mit anderen Worten: sie sind Maße für die Koinzidenzzweier Merkmale.

Bivariate Zusammenhangsmaße gibt es für jedes Skalenniveau.

Skalenniveau	Beispiele	Zusammenhangsmaß	Aussage
nominal	Geschlecht, Parteipräferenz	Chi ² Cramer's V	Zusammenhang Stärke
ordinal	Lieblingsfilme Person A und B	Rangkorrelationskoeffizient Spearman's τ (rho)	Übereinstimmung / Stärke
metrisch	Größe, Gewicht	Kovarianz Korrelationskoeffizient	Zusammenhang je- desto / Stärke

Zusammenhänge...

85

EINSCHLAGENDER ERFOLG

Was hat die Punktzahl des Siegers beim Eurovision Song Contest mit Toten durch Blitzschlag zu tun? Korrelationskoeffizient: 0,571

Kurs: Consultant Data Sciene 6.11. -22.11.19

Zusammenhänge...

SCHWEINISCHE FILME

Können Dokumentarfilme schuld sein am Tod von Schweinen?

Korrelationskoeffizient: 0,974

Zusammenhänge...

87

Zusammenhangsmaß CHI² 1

Definition

Maßzahl für den Zusammenhang zweier nominalskalierter Variabeln.

Basis: Kreuz- bzw. Kontingenztabelle

Logik

Berechnung einer zweiten sog. Indifferenztabelle unter der Annahme, dass kein Zusammenhang zwischen den Werten der beiden Variablen besteht.

Das Zusammenhangsmaß Chi2 (x^2) ist die Summe der Werteabweichungen zwischen empirischer Kontingenzund berechneter Indifferenztabelle.

Chi2 (x^2) hat einen Wertebereich von 0 (= kein Zusammenhang bis ∞ (= maximaler Zusammenhang).

Der Maximalwert ist abhängig von der Skalierung der Variablen, Tabellen unterschiedlicher Variablen lassen sich deshalb nicht ohne Weiteres vergleichen.

Zusammenhangsmaß CHI² 2

89

Vorgehensweise

Voraussetzungen

Kreuztabelle mit absoluten Zellen- und Randhäufigkeiten nominalskalierte Variablen (u.U. auch ordinalskalierte) Gesamtfallzahl mind. n = 60 alle Zellenwerte mind. n = 1 weniger als 20% aller Zellen mit einer Häufigkeit < n = 5

Schritte

- (1) Kontingenztabelle erstellen beobachtete Häufigkeiten (f_b) in absoluten Zahlen
- (2) Indifferenztabelle berechnen Erwartete Häufigkeiten (f_e) für alle Zellen berechnen

$$f_e = \frac{\text{Zeilen (n) * Spalten (n)}}{\text{Gesamt (n)}}$$

(3) Für jede Zelle die Abweichung zwischen Kontingenz- und Indifferenztabelle berechnen

$$\frac{(f_b - f_{e)}^2}{f_e}$$

(4) Aufsummieren zu **Chi2** (x^2)

Standardisierungsmaße von CHI²

Warum?

Die Werte des Zusammenhangsmaßes Chi² hängen von der Anzahl n der Messwerte und der Grüße der Tabelle ab.

Chi2-Werte unterschiedlicher Tabellen können deshalb auch nicht miteinander verglichen werden.

Zur besseren Interpretation und Vergleichbarkeit stehen **standardisierte** Maße zur Verfügung:

Cramer's V (für beliebige Kreuztabellen)

Kontingenzkoeffizient C (für beliebige Kreuztabellen)

Phi (für Vierfeldertabellen)

Wertebereiche:

0 (kein Zusammenhang) \leq V/C/Phi \leq 1 (perfekter Zusammenhang)

Stärke des Zusammenhangs, nicht Richtung!

Beispiel Cramer's V

Definition

Cramer's V ist ein **standardisiertes** Maß, das die **Stärke** des Zusammenhangs zweier **nominalskalierter** Variablen angibt.

$$V = \sqrt{\frac{x^2}{n * (R-1)}} \qquad 0 \le V \le 1$$

 $x^2 = Chi^2$ -Wert

i = Anzahl der Kategorien der Zeilenvariable

j = Anzahl der Spaltenvariable

 $R = min(i,j) \rightarrow ist die kleinere Zahl von beiden (bei einer 3x4-Tabelle z.B. ist <math>R = 3$)

Rangkorrelationskoeffizient Spearman

Definition

Spearman's τ_s ist ein **standardisiertes** skalenunabhängiges Maß, das **Stärke** und **Richtung** des Zusammenhangs zweier mindestens **ordinalskalierter** Variablen angibt.

τ_s berücksichtigt die **Rangreihenfolge**, nicht deren Höhe, und ist dadurch robust gegenüber Ausreißern. es kann ab n > 5 berechnet werden.

Wertebereich

-1 (perfekter negativer Zusammenhang) $\leq \tau_s \leq 1$ (perfekter positiver Zusammenhang)

Bei τ_s = 0 sind die Variablen unabhängig voneinander.

Kovarianz 1

Definition

Die Kovarianz (cov_{xy}) ist ein **nicht-standardisiertes** Zusammenhangsmaß zur Beschreibung **linearer Zusammenhänge** zwischen zwei mindestens **metrisch** skalierten Variablen X und Y.

Die Kovarianz ist das durchschnittliche Abweichungsprodukt aller Messwertepaare von ihrem jeweiligen Mittelwert.

$$cov_{xy} = \frac{1}{n} * \sum_{i=1}^{n} (x_i - \overline{x}) * (y_i - \overline{y})$$

94

Korrelationskoeffizient Pearson's r

Definition

Pearson's r ist ein **standardisiertes** skalenunabhängiges Maß, das die **Stärke** und **Richtung** des **linearen** Zusammenhangs zweier **metrisch** skalierter Variablen angibt.

Wertebereich

-1 (perfekt negativer linearer Zusammenhang) $\leq r_{x,y} \leq 1$ (perfekt positiver linearer Zusammenhang)

Bei $r_{x,y}$ = besteht kein **linearer** Zusammenhang.

Pearson's r: ein bisschen Geformel

$$r_{xy} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(x_i - \overline{x})}{s_x} \right) \left(\frac{(y_i - \overline{y})}{s_y} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(x_i - \overline{x})}{\sqrt{\sum_{i} \frac{(x_i - \overline{x})^2}{n}}} \right) \left(\frac{(y_i - \overline{y})}{\sqrt{\sum_{i} \frac{(y_i - \overline{y})^2}{n}}} \right)$$

$$= \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \overline{x})^2)(\sum_{i=1}^{n} (y_i - \overline{y})^2)}}$$

Überblick standardisierte bivariate Zusammenhangsmaße

Y- Variable →	Nominal	Ordinal	Metrisch
X-Variable ↓	9		
nominal	Cramer's V		
Lucione Control		0	
ordinal		Spearman's Rho	
metrisch			Pearson's r
menisch			realsoll's I

Wertebereich: $0 \le V \le 1$

 $-1 \le r_s \le 1$

 $-1 \le r_p \le 1$