EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Recap

•	We can handle evidence in approximate inference in several ways. The simplest is
	to do sampling, but samples which with the evidence. This is called
•	
	a, which is the of the given This is called
•	If we have evidence in the topological sort, or evidence that is, both
	the above have problems. These problems are (i) (ii)
•	To alleviate these issues we can stop samples. This creates
	To alleviate these issues we can stop samples. This creates a over samples. The resulting algorithm is called
•	What is burn in time? Why do we need it?
•	A specific approach in the case of Bayes nets is called This generates the next sample by choosing a variable V. Then it samples from Pr(V).
•	If a Markov chain is and satisfies, then it will eventually converge to a
•	Using this, we can show that Gibbs sampling produces the right result for a Bayes net, because .

Today

Sequential Probabilistic Models (Ch 15)

Sequential Models

So far, no explicit representation of time

 What happens when we have a random process evolving over time?

Sequential Models

- We see a sequence of observations $o_1,...,o_n$
- Each element is drawn from some background alphabet or vocabulary
 - Text classification---each observation is a word
 - PFM---each observation is an amino acid
 - Parsing---each observation is a word or phrase
 - Activity recognition from video---each observation is a frame
 - Radar/Lidar/Sensing---each observation is a sensor measurement
- Observation sequences have varying lengths

Generative Process Model

- Assume sequential data is generated by an underlying generating process
- This process has a state that could be discrete or continuous
- The state evolves over time
- At discrete time points, we observe something about the state
 - These are our sequences of observations

Discrete Time, Discrete State Sequential Probabilistic Models

Minus 1th approach

- Let's ignore everything about process state and dependence; pretend the data isn't sequential at all
 - Sometimes a reasonable first approximation

Naïve Bayes for text classification

Zeroth approach

- Let's ignore dependence, but not process state
- We'll record a probability distribution over observations at each state of interest
 - "Position Specific Scoring Matrix"
- Only useful for fixed length sequences
 - Can also be used to find the subsequence of length k with highest probability

Example

 Suppose members of some family of proteins have a motif: a sequence of 10 amino acids somewhere that is specific to this family

k^{th} order approach

- We'll model dependence of "order k"
 - Assume each state is dependent on the previous k states

- We'll study the case for k=1
 - -k>1 are straightforward extensions (just messy algebraically)
 - "First order Hidden Markov Models"

Hidden Markov Models

Set of states={BEFORE, Position1,....,Position10, AFTER} **Set of emissions**={AA1, AA2,..., AA20}

Hidden Markov Models

• HMMs are generative process models for the joint distribution Pr(s, o)

$$\Pr(\{s_1, s_2, ..., s_n\}, \{o_1, o_2, ..., o_n\}) =$$

$$\Pr(s_1) \Pr(o_1 \mid s_1) \prod_{r=2}^{n} \Pr(o_r \mid s_r) \Pr(s_r \mid s_{r-1})$$

"Emission Probability": How likely is process state s_r to emit observation o_r "Transition Probability": How likely is process state s_{r-1} to transition to state s_r

Questions

What's "Markov" about this model?

• What changes for k>1?

• What's "hidden"?

Key Issues

Inference

- What is the probability of an observed sequence o?
- What is the most likely sequence of process states s that could have emitted an observed sequence o?

Learning

— Given a training set of observation sequences and a model structure, how do we estimate parameters for the model?

Issue #1: Pr(**o**)

• Clearly,
$$Pr(\mathbf{o}) = \sum_{s} Pr(s, \mathbf{o})$$

- Sum over all possible state sequences that could generate $oldsymbol{\mathrm{o}}$
- But the number of state sequences that could generate \mathbf{o} could be exponential in the length of \mathbf{o}

Key observation:

- Many state sequences share prefixes
- We only need to compute probabilities for a shared prefix once
 - In fact, because of the Markov property, we can do better
- We can use dynamic programming to store and reuse these computations

Forward Algorithm

- Let $\alpha_k(i) = \Pr(o_1, ..., o_i, s_i = k)$
 - Denotes the probability that the model has emitted the first i observations and is now in state k
- We want to compute $\alpha_{END}(n)$ (recall the observation sequence is extended with dummy START and END symbols)
- Construct a table of size n-by-m, n=length of observed sequence, m=number of states
- The forward algorithm is a dynamic programming procedure that will fill in this table with α values

Forward Algorithm

• Initialize: $\alpha_{START}(0) = 1, \alpha_k(0) = 0, k \neq START$

 $\begin{array}{ll} \bullet & \text{Recursion:} & \text{Emitting observation } i & \text{Transition to state } k \\ & \alpha_k(i) = \Pr(o_i \mid s_i = k) \sum_p \alpha_p(i-1) \Pr(s_i = k \mid s_{i-1} = p) \\ & \alpha_k(i) = \Pr(o_1,...,o_i,s_i = k) \\ & \alpha_p(i-1) = \Pr(o_1,...,o_{i-1},s_{i-1} = p) \end{array}$

Issue #2: Most Likely Path

• Given an observation sequence, what is the most likely sequence of states that could emit it? $\mathbf{s}^* = \arg\max \Pr(\mathbf{s} \mid \mathbf{o})$

• Dumb way: enumerate all possible s

- Smart way: dynamic programming, as before, taking advantage of Markov property
 - Viterbi algorithm

Viterbi Algorithm

- Let $\gamma_k(i) = \Pr(o_1, ..., o_i, s_i^* = k)$
 - Denotes the probability that the most likely path is at state k after emitting the first i observations

- We want $\gamma_{END}(n)$
- Notice that this just gives us the probabilities
 - To get the path, we will also need to maintain pointers to certain table elements

Viterbi Algorithm

• Initialize: $\gamma_{START}(0) = 1, \gamma_k(0) = 0, k \neq START$

• Recursion: Emitting observation
$$i$$
 Transition to state k
$$\gamma_k(i) = \Pr(o_i \mid s_i^* = k) \max_p \gamma_p(i-1) \Pr(s_i^* = k \mid s_{i-1}^* = p)$$

$$\gamma_k(i) = \Pr(o_1, ..., o_i, s_i^* = k)$$

$$\gamma_p(i-1) = \Pr(o_1, ..., o_{i-1}, s_{i-1}^* = p)$$

To get the path, store the arg max's of the recursive computation.