Лабораторная работа 4 Изучение затухающих колебаний в колебательном контуре

Цель работы — изучение колебаний в колебательном контуре в зависимости от активного сопротивления контура и расчет параметров колебательном контура.

Приборы и принадлежности:

генератор сигналов ГЗ-112, осциллограф С1-96, измерительный модуль.

Колебательный контур состоит из последовательно соединенных конденсатора \mathbf{C} , катушки индуктивности \mathbf{L} и активного сопротивления \mathbf{R} (рис. 1).

Рис.1

Предполагается, что рассматриваемая электрическая цепь представляет собой линейную систему с постоянными параметрами \mathbf{L} , \mathbf{C} , \mathbf{R} , удовлетворяющую условию квазистационарности, т.е. когда значение тока \mathbf{I} в данный момент времени одинаково во всех элементах цепи.

Если конденсатору C сообщить заряд q_0 , а затем замкнуть ключ K, то в цепи появится ток. Для данного момента времени t заряд конденсатора q, напряжение на его пластинах U и ток в цепи I связаны между собой соотношениями:

$$q = CU, I = \frac{dq}{dt} = C\frac{dU}{dt}. (1)$$

Согласно второму правилу Кирхгофа

$$IR+U=E_C, (2)$$

где $\varepsilon_C = -L \frac{dI}{dt}$ - ЭДС самоиндукции в катушке **L**. Подставляя выражения **I** и ε_C в (2), получим:

$$LC\frac{d^2U}{dt^2} + RC\frac{dU}{dt} + U = 0.$$
(3)

Это уравнение можно представить в виде:

$$\frac{d^2U}{dt^2} + 2\beta \frac{dU}{dt} + \omega_0^2 U = \mathbf{0},\tag{4}$$

где введены обозначения $2\boldsymbol{\beta} = \frac{R}{L}, \ \boldsymbol{\omega}_0^2 = \frac{1}{LC}$

Уравнение (4) представляет собой дифференциальное уравнение затухающих колебаний в контуре. Можно сказать, что при не слишком большом сопротивлении ${\bf R}$, когда ${\bf \beta}<\omega_{\bf 0}$ или ${\bf R}<2\sqrt{\frac{L}{c}}$, решением уравнения (4) является функция

 $U(t) = U_0 e^{-\beta t} cos(\omega t + \varphi) = U_m(t) cos(\omega t + \varphi),$ (5) которая описывает затухающие колебания напряжения на конденсаторе контура. В уравнении (5) $\omega = \sqrt{\omega_0^2 - \beta^2} = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$ - частота затухающих колебаний; $\omega_0 = \sqrt{\frac{1}{LC}}$ - частота собственных колебаний идеального контура при \mathbf{R} =0; $\boldsymbol{\beta} = \frac{R}{2L}$ - коэффициент затухания; $U_m(t) = U_0 e^{-\beta t}$ – амплитуда колебаний в момент времени t. Постоянные величины U_0 и φ определяются из начальных условий. Период затухающих колебаний

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}.$$
 (6)

На рис.2 показана зависимость заряда q(t) и напряжения U(t) на конденсаторе колебательного контура от времени.

Характеристикой затухания колебаний в контуре является логарифмический декремент затухания λ , который определяется как логарифм отношения двух любых последовательных амплитуд, отстоящих друг от друга по времени на период T:

$$\lambda = \ln \frac{U_0 e^{-\beta t}}{U_0 e^{-\beta (t+T)}} = \ln e^{\beta T} = \beta T. \tag{7}$$

Рис. 2

Если амплитуда колебаний $U_m(t)=U_0e^{-\beta t}=U_0e^{-\frac{\lambda}{T}t}$ за время туменьшается в e раз, то

$$\frac{U_m(t)}{U_m(t+\tau)} = e^{\frac{\lambda}{T}\tau} = e, \qquad \lambda \frac{\tau}{T} = \lambda n = 1, \qquad \lambda = \frac{1}{n}, \qquad (8)$$

где $\mathbf{n} = \frac{\tau}{T}$ - число колебаний за время τ . Следовательно, логарифмический декремент обратен по величине числу колебаний ${\bf n}$, совершаемых за время,

когда амплитуда уменьшается в е раз. Подставляя в (7), для случая слабого затухания ($\beta << \omega_0$), значения

$$oldsymbol{eta} = rac{R}{2L}$$
 и $T pprox T_0 = 2\pi\sqrt{LC}$, найдем для λ выражение:
$$\lambda = \pi R \sqrt{rac{L}{c}} = \pi rac{R}{
ho}, \tag{9}$$

где величина $\rho = \sqrt{\frac{L}{c}}$ имеет размерность "сопротивления" – и называется "характеристическим сопротивлением" контура.

Колебательный контур часто характеризуется добротностью $Q = \frac{\pi}{\lambda} = \frac{\rho}{R} = \pi n$.

$$Q = \frac{\pi}{\lambda} = \frac{\rho}{R} = \pi n$$

Добротность контура определяет относительную убыль энергии в процессе колебаний:

$$Q = 2\pi \frac{w}{\Delta W},\tag{10}$$

где W – полный запас энергии в контуре; ΔW – уменьшение энергии за один период колебаний.

Если активное сопротивление ${\bf R}$ контура велико, ${m eta} \ge {m \omega_0}$ или

 $\frac{R^2}{4L} \ge \frac{1}{LC}$, то процесс разрядки конденсатора имеет апериодический характер (колебания отсутствуют). Сопротивление ${f R}$, при котором колебательный процесс переходит в апериодический, называется критическим. Критическое сопротивление $\mathbf{R}_{\kappa p}$ определяется из условия

$$\frac{R_{\mathrm{Kp}}^2}{4L} = \frac{1}{LC}, \quad R_{\mathrm{Kp}} = 2\sqrt{\frac{L}{C}} = 2\rho. \tag{11}$$

Описание лабораторной установки

Принципиальная схема лабораторной установки приведена на рис. 3.

Рис.3

Источником импульсов для периодического возбуждения колебаний в контуре служит генератор ГЗ-112. Элементы исследуемого колебательного контура собраны в кассете М. Напряжение с конденсатора С контура подается на вход канала \mathbf{Y}_1 электронного осциллографа С1-96. Сопротивление в цепи колебательного контура $\mathbf{R} = \mathbf{R}_0 + \mathbf{R}_L + \mathbf{R}_{\Pi} + \mathbf{R}_{\text{ген}}$,

где $\mathbf{R_L}$ — сопротивление катушки; $\mathbf{R_n}$ — сопротивление, которое можно изменять с помощью перемычки $\mathbf{\Pi}$, $\mathbf{R_{reh}}$ = 50 Ом - сопротивление генератора.

Рабочая часть экрана электронно-лучевой трубки осциллографа: по горизонтали 10 делений, по вертикали 8 делений. Основная приведенная погрешность измерения напряжения ± 4 %. Основная приведенная погрешность измерения временных интервалов ± 5 %.

Сопротивления R_0 , R_L , а также значения переменного сопротивления R_n указаны на установке.

Порядок измерений

- 1. Соберите электрическую цепь измерительной установки согласно рис.3; включите генератор и осциллограф в сеть, соблюдая меры техники безопасности, и дайте им прогреться в течение 5-7 минут.
- 2. Изменяя частоту следования возбуждающих импульсов генератора, установив коэффициент отклонения канала Y_1 (переключателем "В/дел") и коэффициент развертки осциллографа, добейтесь устойчивого изображения затухающих колебаний (5-7 периодов) на экране осциллографа с максимальной амплитудой 7-8 делений.
- 3. Измерьте по осциллограмме длительность периода колебаний Т.
- 4. Замкните сопротивления $\mathbf{R_1}$ и $\mathbf{R_2}$ перемычкой П ($\mathbf{R_n}$ =0) и проведите измерение размахов напряжения, т.е. удвоенных амплитуд ($\mathbf{2U_m}$)(рис.2) в делениях шкалы экрана осциллографа для моментов времени \mathbf{t} и (\mathbf{t} + \mathbf{T}), где \mathbf{T} период колебаний.
- 5. Вычислите логарифмический декремент затухания по формуле:

$$\lambda = \ln \frac{2U_m(t)}{2U_m(t+T)}.$$

6. Повторите пп. 4-5 с каждым сопротивлением ${\bf R_1}$ и ${\bf R_2}$ и их последовательным соединением $({\bf R_1}+{\bf R_2})$.

Результаты занесите в табл.1

Таблица 1

R_{π} , кОм	2U _m (t), дел	2U _m (t+T), дел	λ	$Q = \frac{\pi}{\lambda}$
0				
1				
2				
3				

7. Постройте график зависимости логарифмического декремента λ от сопротивления \mathbf{R} и, экстраполируя прямую $\lambda = \lambda(\mathbf{R})$ до пересечения с осью \mathbf{R} , определите полное сопротивление контура ($\mathbf{R}_{L} + \mathbf{R}_{0} + \mathbf{R}_{\text{reh}}$) рис.4.

- 8. Используя график зависимости $\lambda = \lambda(\mathbf{R})$, найдите угловой коэффициент \mathbf{K} наклона прямой.
- 9. Оцените индуктивность катушки контура по формуле $L = \frac{T}{2K}$, где Т-период колебаний, измеренный в п.3.
- 10. Вычислите погрешность измерений логарифмического декремента затухания $\Delta \lambda$ по формуле: $\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta U_{m1}}{U_{m1}}\right)^2 + \left(\frac{\Delta U_{m2}}{U_{m2}}\right)^2}$, а также погрешность измерения периода колебаний ΔT .

Контрольные вопросы

- **1.** Сформулируйте правила Кирхгофа. Объясните, как получено дифференциальное уравнение (4).
- **2.** Дайте определения коэффициента затухания, логарифмического декремента и добротности колебательного контура.
- **3.** Что представляет собой критическое сопротивление колебательного контура?
- **4.** Что называется характеристическим сопротивлением колебательного контура?

Инструкция по подготовке установки для лабораторной работы 4 Изучение затухающих колебаний в колебательном контуре

1.Состав установки

- 1.1 Панель монтажная с элементами RLC и гнездами для подключения кабелей и установки перемычек.
- 1.2. Осциллограф универсальный двулучевой (ОСУ-20).
- 1.3. Генератор низкочастотный ГЗ-112/1.

2. Подготовка приборов для работы

- 2.1. Подготовка осциллографа (рис.1).
- 2.1.1. Осциллограф должен быть отключен от сети, кнопка **POWER(1) отжата.**
- 2.1.2. Переключатели входов **CH1(2)** и **CH2(3)** поставить в положение GND.
- 2.1.3. Ручки **POSITION** \updownarrow (4,5) **POSITION** \leftrightarrow (6) установить в среднее положение.
 - 2.1.4. Ручку яркости **INTEN(7)** в правое **крайнее положение.**
 - 2.1.5. Ручку **FOCUS(8)** в правое крайнее положение.
 - 2.1.6. Ручку усиления **Volt/div(9)** первого канала в положение «1».
- 2.1.7. Центральные маленькие ручки (10,12) в правое крайнее положение.
 - 2.1.8. Ручку усиление **Volt/div** (11) второго канала в положение «5».
 - 2.1.9. Переключатель рода развертки МОДЕ(13) в положение АUTO.
- 2.1.10. Переключатель источника синхронизации **TRIGGER SOURCE(14)** в положение **CH1.**
- 2.1.1.1. Переключатель времени развертки **Time/div** (**15**) установить в положение **0,5 ms 0,1 ms.**
 - 2.1.1.2. Переключатель лучей **MODE**(**16**) в положение **CH1**.
 - 2.2. Подготовка генератора (рис.2)
- 2.2.1. Генератор должен быть отключен от сети. Тумблер СЕТЬ(1) в положение ВЫКЛЮЧЕНО.
 - 2.2.2. Ручка **МНОЖИТЕЛЬ(2)** в положение **«1»** или **«10».**
 - 2.2.3. Переключатель формы входного сигнала(3) в положение
 - 2.2.4. Переключатель **ОСЛАБЛЕНИЕ(4)** в положение «**0**» или «**10**».
- 2.2.5. Ручка регулировки входного сигнала(5) в среднем положении.
- 3. Соединение панели монтажной (рис.3) с приборами
- 3.1. Соединить кабелем гнездо осциллографа **CH1(17)** с гнездами панели \bot (5) и **У2-1(9)**.
 - 3.2. Замкнуть перемычкой(8) гнезда \perp (1) и (3).
- 3.3. Соединить кабелем гнездо выхода **генератора(6)** с гнездами панели (1) и (2)
 - 3.4. Замкнуть резисторы(6) перемычкой(7).

4. Включение установки

- 4.1. Вставить вилки приборов в сетевые розетки и включить соответствующие сетевые выключатели осциллографа и генератора и прогреть их в течении 2-3 минут.
- 4.2. Положение появившейся на экране осциллографа линии развертки откорректировать ручками **POSITION(4,6).**
 - 4.3. Перевести переключатель СН1(2) в положение АС.
- 4.4. Плавно вращая ручки изменения **частоты** (7), добиться изображения затухающих колебаний (пример на рис.5).
- 4.5. Устойчивости и качества изображения добиваться ручками (15 и 18) осциллографа и ручками (4,5,7) генератора.
- 4.6. Изменять коэффициент затухания перестановкой перемычки (7) на панели.
 - 4.7. Перейти к измерениям.

Рис. 1. Панель управления осциллографа ОСУ-20

Рис. 2. Генератор ГЗ-112/1

Рис. 3. Панель монтажная

Рис. 4. Пример осциллограммы затухающих колебаний