WSTEP DO METOD NUMERYCZNYCH, EGZAMIN, 14.06.2010

UJ, FAIS, rok 2009/2010, semestr letni

- 1. Wiedząc, że wektory $q_1=(2,1,1)^T$, $q_2=(1,-3,1)^T$ oraz $a_3=(1,0,0)^T$ są liniowo niezależne wyznaczyć za pomocą metody Grama-Schmidta wektor q_3 prostopadły do wektorów q_1 i q_2 .
- 2. Podać postać Newtona wielomianu P stopnia 3 spełniającego warunki: $P(1)=2,\ P'(1)=4,\ P''(1)=0,\ P(2)=5.$ Obliczyć P(3).
- 3. Wyznaczyć przybliżone położenie minimum funkcji f wykonując jeden krok metody interpolacji parabolicznej Brenta dla danych f(-1) = 1, f(0) = 0, f(1) = 3.
- 4. Korzystając z twierdzenia mówiącego, że jeśli metoda Φ spełnia warunki $\Phi(\xi) = \xi$ oraz $\Phi'(\xi) = 0$ to jest to metoda co najmniej rzędu drugiego, wykazać, że metoda Newtona szukania zer funkcji $f: \mathbb{R} \mapsto \mathbb{R}$ jest metodą rzędu drugiego. Należy dodać odpowiednie założenia na temat funkcji f oraz jej zer.
- 5. Wykazać, że jeśli λ jest wartością własną macierzy A^TA to $\|A\|_2 \geqslant \sqrt{\lambda}$, gdzie $\|\cdot\|_2$ jest normą macierzową indukowaną przez normę euklidesową $\|x\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.
- 6. Obliczyć przybliżoną wartość całki $\int_0^1 x e^{-x^2} dx$ za pomocą metody Simpsona z krokiem h = 0.25. Obliczyć wartość dokładną całki oraz błąd względny wartości przybliżonej.
- 7. Rozważamy odwzorowanie $f\colon [0,1]\mapsto [0,1]$ określone wzorem f(x)=1-|1-2x|. Odwzorowanie g jest n-krotnym złożeniem f, gdzie $n\geqslant 1$. Zakładając, że $g(x)\in (0,1)$ obliczyć |g'(x)| przy ustalonym n. Na tej podstawie oszacować od dołu wartość bezwzględną wskaźnika uwarunkowania zadania wyznaczenia g(x) dla $n=50,\ x>0.25,\ g(x)\in (0,1)$ oraz stwierdzić, czy to zadanie jest dobrze uwarunkowane.
- 8. Wyznaczyć $x = (x_1, x_2)^T$ tak, aby wyrażenie $(Ax b)^T (Ax b)$ przyjmowało wartość minimalną

$$A = \begin{pmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 0 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}.$$