

CIRCUITOS PASIVOS

SINTESIS:

CIRCUITOS ACTIVOS

SALLEN KEY

MFB

RED ESCALERA **PASIVOS** CON ELEMENTOS

Emplearemos un circuito basado en reactancias.

con Rour = 1 [Ω] y ωc = 1 [rad/seg].Partiremos de un circuito <u>NORMALIZADO</u>

Supondremos en primer lugar que la impedancia del Generador es RGEN = 1 es $R_{GEN} = 0 [\Omega]$.

valor de Amax = 3 [dB]. circuito propuesto se genera para un

de Amax , de Ro y de pulsación de corte ω_c ó ω_p usaremos : Para desnormalizar a cualquier valor

$$\varepsilon = \sqrt{10^{(0,1*Amax_{dB})} - 1}$$

$$L_X = R_{OUT} * \varepsilon^{1/n} * \frac{1}{\omega_B} * L_N$$

 $R_X = R_{OUT}$

$$C_X = \frac{1}{R_{OUT}} * \varepsilon^{1/n} * \frac{1}{\omega_P} * C_N$$

RED **PASIVOS ESCAL** LERA CON ELEMENTOS Amax d B

<u>CIRCUITO PARA n IMPAR</u>

RED GENERAL **ESCALERA** IZADA PASA-BAJOS PASIVA DE 5 ELEMENTOS

RED GENERA ESCA LERA IZADA PASA-BAJOS PASIVA DE 5 ELEMENTOS

<u>Amax</u> PAS d B SOL

5th Order Low Pass Butterworth

S⁵ + 3.236*S⁴ + 5.236*S³ + 5.236*S² + 3.236*S + 1

BUTTERWORTH CON Amax = 3 [dB] Y n = 4RED ESCALERA PASIVA PASA-BAJOS DE

4th Order Low Pass Butterworth

 $S^4 + 2.613^*S^3 + 3.414^*S^2 + 2.613^*S + 1$

ERWORTH **ESCALERA** PASIVA PASA-BAJOS Amax = dB B DE 3

3rd Order Low Pass Butterworth

BUTTERWORTH CON Amax = 3 [dB] Y n =2 **RED ESCALERA PASIVA PASA-BAJOS DE**

2nd Order Low Pass Butterworth

$$S^2 + 1.414^*S + 1$$

_

ERWORTH **ESCALERA PASIVA PASA-BAJOS** Amax =

1st Order Low Pass Butterworth

RED ESCAL **DE BUTTERWORTH** CON 5 ELEMENTOS GENERAL PASA-BAJOS IZADA

VALORES DE COMPONENTES PARA Amax = 3 dB

Çī	4	s	2	1	ם
1	1	1	1	1	Epsilon^(1/n)
0,309017 0,894427					ш
0,894427	0,382683				C1
1,38197	1,08239	0,5			L2
1,69443	1,57716	1,33333333	0,70710678 1,41421356		C2
1,54508	1,53073	1,5	1,41421356	1	L3

VALORES DE COMPONENTES PARA Amax = 2 dB

12

VALORES DE COMPONENTES PARA Amax = 1 dB

	_		_		
5	4	ω	2	1	5
0,87360974 0,26996026 0,78138014 1,20730245 1,48027055 1,34979694	0,844591749	0,798354503	0,713335223	0,50884714	Epsilon^(1/n)
0,26996026					11
0,78138014	0,3232109				Ω
1,20730245	0,91417766	0,39917725			L2
1,48027055	0,3232109 0,91417766 1,33205632 1,29284193	0,39917725 1,06447267 1,19753175	0,50440417 1,00880835		C2
1,34979694	1,29284193	1,19753175	1,00880835	0,50884714	LS

VALORES DE COMPONENTES PARA Amax = 0,5 dB

5	4	ω	2	1	5
0,810293867 0,25039458 0,72474871 1,11980182 1,37298624 1,25196885	0,768781971	0,704267401	0,591025719	0,3493114	Epsilon^(1/n)
0,25039458					П
0,72474871	0,29419979				Ω
1,11980182	0,83212192	0,3521337			12
1,37298624	1,21249217	0,3521337 0,9390232 1,0564011	0,41791829		22
1,25196885	0,29419979 0,83212192 1,21249217 1,17679763	1,0564011	0,41791829 0,83583659	0,3493114	L3

PARA OBTENER LOS VALORES DE LOS COMPONENTES PARA

CUALQUIER VALOR DE Amax, SE CALCULA & MEDIANTE LA

SIGUIENTE EXPRESIÓN:

 $\varepsilon = \sqrt{10^{(0,1*Amax_{dB})} - 1}$

Y SE MULTIPLICA EL VALOR DE CADA UNO DE LOS COMPONENTES DE LA TABLA PARA Amax = 3[dB] POR **E**(1/n)

VALORES DE COMPONENTES PARA Amax = 3 dB

_					
ъ	4	ω	2	1	n
1	1	1	1	1	Epsilon^(1/n)
0,309017					П
0,894427	0,382683				IJ
1,38197	1,08239	0,5			L2
1,69443	1,57716	1,33333333	0,70710678 1,41421356		C2
1,54508	1,53073	1,5	1,41421356	1	L3

EJEMPLO PARA Amax = 0,25 [dB] Y & = 0,243420881

VALORES DE COMPONENTES PARA Amax = 0,25 dB

5	4	3	2	1	n
0.753826787 0.23294529 0.67424303	0,702408013	0,624385214	0,493377017	0,243420881	Epsilon^(1/n)
0.23294529					L1
0.67424303	0,26879961				CI
	0,26879961 0,76027941 1,10780982 1,07519702	0,31219261			L2
1.27730672	1,10780982	0,31219261 0,83251362 0,93657782	0,34887023 0,69774047		C2
1.041766 1.27730672 1.16472269	1,07519702	0,93657782	0,69774047	0,24342088	L3

CÁLCULO DE EPSILON A PARTIR DEL VALOR DE Amax [dB

$\varepsilon = \sqrt{10^{(0,1*Amax_{dB})} - 1}$

Epsilon^(1/5)	Epsilon^(1/4)	Epsilon^(1/3)	Epsilon^(1/2)	Epsilon	Amax [dB]
0,686630	0,625033	0,534405	0,390667	0,152620	0,1
0,736764	0,682591	0,601009	0,465930	0,217091	0,2
0,736764 0,768143 0,791485	0,719123	0,644274	0,517137	0,267431	0,3
0,791485	0,746541	0,677233	0,557323	0,310609	0,4
0,810294	0,768782	0,704267	0,591026	0,349311	0,5
0,826173	0,787660	0,727420	0,620409	0,384907	0,6
0,839998	0,804170	0,747820	0,646690	0,418208	0,7
0,852299	0,818917	0,766161	0,670625	0,449738	8,0
0,863423	0,832299	0,782899	0,692722	0,479863	0,9
0,873610	0,844592	0,798355	0,713335	0,508847	1

0,947780	0,935533 0,941765 0,947780	0,935533	0,929059	0,915264 0,922314 0,929059	0,915264	0,907867	0,900073	0,891821	0,883033	Epsilon^(1/5) 0,883033 0,891821 0,900073 0,907867
0,935157	0,927745	0,920077	0,912125	0,903855	0,895227	0,886192	0,876693	0,866657	0,855995	Epsilon^(1/4)
0,914491	0,904839	0,894881	0,884584	0,873906	0,862801	0,851211	0,839067	0,826284	0,812758	Epsilon^(1/3) 0,812758
0,874519	0,860710	0,846541	0,831971	0,816953	0,801431	0,785336	0,768590	0,751094	0,732727	Epsilon^(1/2) 0,732727
0,764783	0,740822	0,716632	0,692177	0,667413	0,642291	0,616753	0,590731	0,564142	0,536889	Epsilon
2	1,9	1,8	1,7	1,6	1,5	1,4	1,3	1,2	1,1	Amax [dB]

	Epsilor	Epsilor	Epsilor	Epsilor	Epsilon	Amax [dB]
	1^(1/5)	1^(1/4)	1^(1/3)	1^(1/2)		B
	0,953599	0,942339	0,923867	0,888003	0,788549	2,1
	0,959240	0,949312	0,932994	0,901193	0,812150	2,2
	0,964719	0,956095	0,941892	0,914117	0,835610	2,3
	0,970050	0,962703	0,950583	0,926797	0,858953	2,4
	0,975245	0,969152	0,959082	0,939256	0,882201	2,5
	0,980315	0,975454	0,967407	0,951511	0,905373	2,6
	0,985270	0,981621	0,975570	0,963580	0,928486	2,7
	0,990118	0,987663	0,983584	0,975478	0,951557	2,8
	Epsilon^(1/5) 0,953599 0,959240 0,964719 0,970050 0,975245 0,980315 0,985270 0,990118 0,994868 0,999525	Epsilon^(1/4) 0,942339 0,949312 0,956095 0,962703 0,969152 0,975454 0,981621 0,987663 0,993589	Epsilon^(1/3) 0,923867 0,932994 0,941892 0,950583 0,959082 0,967407 0,975570 0,983584 0,991461 0,999209	Epsilon^(1/2) 0,888003 0,901193 0,914117 0,926797 0,939256 0,951511 0,963580 0,975478 0,987218 0,998813	0,788549 0,812150 0,835610 0,858953 0,882201 0,905373 0,928486 0,951557 0,974600 0,997628	2,9
10	0,999525	0,999407	0,999209	0,998813	0,997628	သ

TRANSFORMACIÓN DE FRECUENCIAS:

TRANSFORMACIÓN PASA-BAJOS A PASA-ALTOS

TRANSFORMACIÓN PASA-BAJOS A PASA-BANDA

TRANSFORMACIÓN PASA-BAJOS A PASA-BANDA

REQUERIDOS ORIGINALES TRANSFORMA **DESNORMALIZAR A** DEL CIONES **APLICA** FILTRO PASA MOS LOS **AS SIGUIENTES .0**S **VALORES BAJOS:** COMPONENTES

$$R_X = R_O$$
 $L_X = L_N \frac{Ro * \varepsilon^{1/n}}{\omega_P}$ $C_X = C_N \frac{\varepsilon^{1/n}}{\omega_P * Ro}$

MIENTRAS MARCADOS RON QUE PARA CON IRCUITOS LOS ELEMENTOS QUE

$$L_X = L_N \frac{Ro}{\omega_{on}^2 *BW} \qquad C_X = C_N \frac{1}{\omega_{on}^2 *BW *Ro}$$

RECORDANDO QUE:

$$\omega_{ON}^{2} = \frac{\omega_{O}^{2}}{BW^{2}} = \frac{(\omega_{C2} \times \omega_{C1})}{(\omega_{C2} - \omega_{C1})^{2}}$$

TRANSFORMACION PASA-ALTOS A **ELIMINA-BANDA**

REQUERIDOS APLICAMOS ORIGINA NSFORMACIONES **DESNORMALIZAR A FILTRO** , PARA PAS LOS LAS SIGUIENTES OS COMPONENTES **ALORES** JOS:

$$R_X = R_O$$
 $L_X = L_N \frac{Ro * \varepsilon^{1/n}}{\omega_P}$ $C_X = C_N \frac{\varepsilon^{1/n}}{\omega_P * Ro}$

MIENTRAS QUE COMPLETARON ESTAN MARCADOS CON # UTILIZAMOS LOS CIRCUITOS RESON PARA LOS ELEMENTOS QUE

$$X^{\#}=L_{N}\frac{Ro}{\omega_{on}^{2}*BW} \qquad C_{X}^{\#}=C_{N}\frac{1}{\omega_{on}^{2}*BW*Ro}$$

RECORDANDO QUE:

$$\left| \omega_{ON}^{2} = \frac{\omega_{O}^{2}}{BW^{2}} = \frac{\left(\omega_{C2} \times \omega_{C1}\right)}{\left(\omega_{C2} - \omega_{C1}\right)^{2}} \right|_{24}$$

<u>APLICACIÓN A OTROS TIPOS DE APROXIMACIONES:</u>

CINCO REACTANCIAS PASA BA **CARACTERÍSTICA** DEL FILTRO DESEADO, COMPONENTES A DEL TIPO DE PARTIR D Y LUEGO LOS VALORES **SE OBTIENE APROXIMACIÓN Y** Ě JOS: CIRCUITO ECU, U LOS ICO ÏÓN GRADO DE

<u>APLICACIÓN A OTROS TIPOS DE APROXIMACIONES:</u>

DE ACUERDO AL GRADO DEL FILTRO REQUERIDO : ORIGINAL **ELIMINAR DE LA** SOT **COMPONENTES QUE CORRESPONDAN** FUNCIÓN DE TRANSFERENCIA

$$G_{5}(S) = \frac{V_{out}}{V_{IN}} = \frac{1}{S^{5} L_{11} L_{2} L_{3} . C_{1} . C_{2} + S^{4} L_{2} . L_{3} . C_{1} . C_{2} + S^{3} [L_{1} . (L_{2} . C_{1} + L_{3} . C_{1} + L_{3} . C_{1}) + L_{2} . L_{3} . C_{2}] + \frac{1}{S^{2} . [C_{1} . (L_{2} + L_{3}) + L_{3} . C_{2}] + S . (L_{11} + L_{2} + L_{3}) + 1}$$

POLINOMIOS DE CHEBYSHEV CON Amax = 0,5 y 1 [dB]

Coefficientes de los polinomios de Chebychev ($\alpha_p = 0.5dB$). $(\varepsilon = 0.3493 \text{ y } a_n)$

5	4	3	2	1	n
0.1789234	0.3790506	0.7156938	1.5162026	2.8627752	a ₀
0.7525181	1.0254553	1.5348954	1.4256245		a ₁
1.3095747	1.7168662	1.2529130			a ₂
1.9373675	1.1973856				a ₃
1.1724909					84

Coeficientes de los polinomios de Chebychev ($\alpha_p = 1dB$) $(\varepsilon = 0.5089)$

	_				
5	4	3	2	1	n
0.1228267	0.2756276	0.4913067	1.1025103	1.9652267	a ₀
0.5805342	0.7426194	1.2384092	1.0977343		a ₁
0.9743961	1.4539248	0.9883412			a ₂
1.6888160	0.9527114				a3
0.9368201					84

Polinomios de Bessel y ecuación de recurrencia

$$\mathbf{B}_{0}(\mathbf{p}) = 1$$

$$B_1(p) = p+1 \longrightarrow Amax = 3 [dB]$$

$$B_2(p) = p^2 + 3p + 3$$
 \longrightarrow Amax = 1,597 [dB]

$$B_3(p) = p^3 + 6p^2 + 15p + 15$$
 \longrightarrow Amax = 0,903 [dB]

$$B_4(p) = p^4 + 10p^3 + 45p^2 + 105p + 105 \implies Amax = 0.63 [dB]$$

$$B_5(p) = p^5 + 15p^4 + 105p^3 + 420p^2 + 945p + 945 \longrightarrow Amax = 0,4865 [dB]$$

$$\mathbf{B}_{6}(\mathbf{p}) = \mathbf{p}^{6} + 210\mathbf{p}^{4} + 1260\mathbf{p}^{3} + 4725\mathbf{p}^{2} + 10395\mathbf{p} + 10395$$

• •

$$B_{N+1}(p) = (2N+1)B_N(p) + p^2B_{N-1}(p)$$

<u> Ejemplo</u> pasa Amax = bajos a W Pasa dB Banda

REQUERIDOS APLICAMOS PARA ORIGINA TRANSFORMACIONES **DESNORMALIZAR A** ES DEL **FILTRO** , PA PAS LOS **AS SIGUIENTES** 20 **ALORES** COMPONENTES JOS:

$$R_X = R_O$$

$$L_X = L_N \frac{Ro * \varepsilon^{1/n}}{\omega_p}$$

$$C_X = C_N \frac{\varepsilon^{1/n}}{\omega_P * Ro}$$

MIENTRAS QUE COMPLETARON LOS CIRCUITOS RESON **ESTAN MARCADOS CON # UTILIZAMOS** PARA LOS ELEMENTOS QUE

$$L_X = L_N \frac{Ro}{\omega_{on}^2 *BW}$$

$$C_X #=C_N \frac{1}{\omega_{on}^2 *BW *Ro}$$

RECORDANDO QUE:

$$\left(\omega_{ON}^{2}\right) = \frac{\omega_{O}^{2}}{BW^{2}} = \frac{\left(\omega_{C2} \times \omega_{C1}\right)}{\left(\omega_{C2} - \omega_{C1}\right)^{2}}$$

