Numerical Python

modeling, numerics

CS101 Lecture #17

Administrivia

Administrivia 1/3

Administrivia

- ▶ Homework #8 is due Friday, Dec. 2.
- ▶ Homework #9 is due Friday, Dec. 9.
- ▶ Midterm #2 is Monday, Dec. 19 from 7–10 p.m.

Administrivia 2/3

Modeling

Modeling 3/3

all models are wrong (but some are useful)

—George Box, statistician

elements of modeling the same story

problem

elements of modeling problem statement

elements of modeling model definition

elements of modeling model definition

elements of modeling model definition

elements of modeling calibration

calibration

verification

validation

elements of modeling application

solution

analysis & error

elements of modeling extension

shortcomings

surprises

scientific programming model failure: ohm's law

$$V = IR$$

$$y = mx + b$$

$\boxed{\mathbf{1}} \boxed{\mathbf{0}} \boxed{\mathbf{0}} \boxed{\mathbf{0}} \boxed{\mathbf{0}} \boxed{\mathbf{0}} \boxed{\mathbf{0}} \boxed{\mathbf{0}} \boxed{\mathbf{0}} \boxed{\mathbf{1}} \boxed{\mathbf{0}} \boxed{\mathbf{1}} \boxed{\mathbf{1}} \boxed{\mathbf{0}} \boxed{\mathbf{1}}$

27 26 25 24 23 22 21 20 2-12-22-3 2-42-52-6 2-72-8

27 26 25 24 23 22 21 20 2-12-22-3 2-42-52-6 2-72-8

$$2^{7} + 2^{2} + 2^{-2} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-8}$$

= $128 + 4 + \frac{1}{2} + \frac{1}{32} + \frac{1}{64} + \frac{1}{256}$

= 132.55078125

- 1.1-0.8

- 1.1-0.8

Don't compare directly:

• a == b # never do this for floats!

- np.isclose(a, b, rtol=1e-05, atol=1e-08)
- np.allclose(a, b, rtol=1e-05, atol=1e-08)

Parameters:

- rtol # relative tolerance (w/i percent)
- atol # absolute tolerance

0.00011001100110011001100110011₂,

0.0001100110011001100110011001...,

which the machine represents as

 $0.00011001100110011001100_{2}$.

 $0.0001100110011001100110011001100..._{2}$

which the machine represents as

 $0.00011001100110011001100_{2}$.

The difference of these numbers is

0.00000000000000000000011001100...,

 $0.0001100110011001100110011001100..._{2}$

which the machine represents as

 $0.00011001100110011001100_{2}$.

The difference of these numbers is

0.0000000000000000000000011001100...

rendered in decimal as about 0.000 000 095₁₀.

which the machine represents as

0.0001100110011001100₂.

The difference of these numbers is

0.000000000000000000000011001100...,

rendered in decimal as about 0.000 000 095₁₀.

100 hr ×
$$60 \frac{\text{min}}{\text{hr}}$$
 × $60 \frac{\text{s}}{\text{min}}$ × $(10 \times 0.000 \ 000 \ 095_{10}) = 0.34 \text{ s}$

0.0001100110011001100110011001...,

which the machine represents as

0.0001100110011001100₂.

The difference of these numbers is

rendered in decimal as about 0.000 000 095₁₀.

$$100 \text{ hr} \times 60 \frac{\text{min}}{\text{hr}} \times 60 \frac{\text{s}}{\text{min}} \times (10 \times 0.000 \ 000 \ 095_{10}) = 0.34 \text{ s}$$

Which of the following expressions is liable to experience problems with numerical error? Assume all variables are defined and have appropriate type.

```
A. ( a / 1e5 < 0 )
B. ( b <= 1.0 )
C. ( c ** 0.5 ) / 2
D. ( d == 0.4 )
```

What does this mean? seatingAvail = guests < 150

What does this mean? seatingAvail = guests < 150 seatingAvail = \ guests < MaximumOccupancy</pre>

don't use magic numbers!

