

VORLESUNG **NETZWERKSICHERHEIT**

SOMMERSEMESTER 2023 MO. 14-16 UHR

INTERNET ROUTING - INHALTE

Geschichte des Internets

- ARPANet
- NSFNet
- "Das Internet"
- Internet Protocol
- Wie Alice und Bob über das Internet kommunizieren
- Netzwerk von Netzwerken (Autonome Systeme)
- Netzwerk-Routing Protokolle
- Border Gateway Protocol

DIE ENTSTEHUNG DES INTERNETS

"The ARPANet was the first transcontinental, high-speed computer network."
 -- (Eric S. Raymond, author and software developer)

ARPANet (Advanced Research Projects Agency Network)

Erste Forschung begann bereits im Jahre 1963.

Schon 1969 führte das ARPANet TCP/IP Netzwerk-Protokolle ein.

ARPANet (Advanced Research Projects Agency Network)

Erste Forschung
 Schon 1969 führte d

ARPANET LOGICAL MAP, MARCH 1977 DATA -POP-11 DEC-2050 PLURIBUS PDP-11 PDP-11 CDC 7600 PDP-10 PDP-10 LITAN ILL INOIS POP-10 PDP-II 360/67 PDP-11 H6180 PDP-II H68/80 SPS-41 PDP-II PDP-11 PDP-11 PDP-10 PDP-11 V PDP-10 PDP-10 PDP-II PDP-10 KEROX MAXC DCU-50 & CDC6600 PDP-II PDP-11 NOVA BOO PARC MAXCE CDC7600 CDC6600 PDP-11 STANFOR VARIAN 73 [DEC-1090] SPS-41 PDP-II SCOTT 370/195 PDP-10 PDP-II PDP-IO PDP-10 PDP-11 PDP-11 POP-11 SPS=41 PDP= 10 CDC 3200 PDP-11 POP-11 BELVOIR PDP - II 360/44 PDP - II PLI 360/40 360/40 PDP-IN PDP-10 360/40 360/40 PLURIBUS LONDON PDP-11 PDP-10 Y-POP-9 370-158 PDP-II PDP-15 POP-II 8-4700 DEC-2040 PDP-11 POP-II PDP-9 POP-II EGLIN 360/195 GEC 4080 GUNTER EGLIN ICL 470 PDP-II Y POP-II CDC6400 CDC6600 B55C0 CDC 6600 CDC 7600 THIS MAP SHOWS THE HOST POPULATION OF THE NETWORK ACCORDING TO

Image © The Computer History Museum

NSFNet (National Science Foundation Network)

Folgte dem ARPANet 1985 und wurde 1995 vom Internet abgelöst

Übertragungsgeschwindigkeiten wuchsen von 56 Kbit/s bis auf 45 Mbit/s

- Das Internet verbindet heute Millionen von Endgeräten miteinander.
- Endnutzer und Unternehmen bezahlen Internet Service Provider (ISPs), um Zugang zum Internet zu erhalten.
- Service Provider und große Unternehmen (z.B. Google, Microsoft, etc.) betreiben eigene Wide Area Networks ("Autonome Systeme").
- AS sind paarweise miteinander verbunden und bilden mit all diesen Verbindungen den Internet-Backbone.

EINE LANDKARTE DES INTERNETS?

Teil einer Karte des Internets am 15. Januar 2005, gefunden auf opte.org

INTERNET ROUTING - INHALTE

- Geschichte des Internets
 - ARPANet
 - NSFNet
 - "Das Internet"
- Internet Protocol
- Wie Alice und Bob über das Internet kommunizieren
- Netzwerk von Netzwerken (Autonome Systeme)
- Netzwerk-Routing Protokolle
- Border Gateway Protocol

INTERNET-PROTOKOLLE - DEFINITION

Ein Protokoll definiert das Format und die Reihenfolge von Nachrichten, die zwischen zwei oder mehr kommunizierenden Einheiten ausgetauscht werden, sowie die Handlungen, die bei der Übertragung und/oder beim Empfang einer Nachricht oder eines anderen Ereignisses unternommen werden.

J.F. Kurose & K. W. Ross (Book: Computer Networking)

DAS INTERNET-PROTOKOLL

Internet Protocol (Layer 3, Network/Internet) Version 4

DAS INTERNET-PROTOKOLL

INTERNET ROUTING - INHALTE

- Geschichte des Internets
 - ARPANet
 - NSFNet
 - "Das Internet"
- Internet Protocol
- Wie Alice und Bob über das Internet kommunizieren
- Netzwerk von Netzwerken (Autonome Systeme)
- Netzwerk-Routing Protokolle
- Border Gateway Protocol

INTERNET-KOMMUNIKATION

Wie Alice und Bob über das Internet kommunizieren.

Angenommen, es gibt eine direkte Verbindung zwischen dem ISP von Alice und dem von Bob

Alice and Bob images from http://wikis.zum.de/rmg/Benutzer:Deininger_Matthias/Facharbeit/Alice_Bob_und_Mallory

15. Mai 2023

INTERNET-KOMMUNIKATION

Wie Alice und Bob über das Internet kommunizieren

Angenommen, es gibt keine direkte Verbindung zwischen dem ISP von Alice und dem von Bob

INTERNET ROUTING - INHALTE

- Geschichte des Internets
 - ARPANet
 - NSFNet
 - "Das Internet"
- Internet Protocol
- Wie Alice und Bob über das Internet kommunizieren
- Netzwerk von Netzwerken (Autonome Systeme)
- Netzwerk-Routing Protokolle
- Border Gateway Protocol

NETZWERK VON NETZWERKEN

NETZWERK VON NETZWERKEN – DER NAIVE ANSATZ

NETZWERK VON NETZWERKEN – SCHRITT 1

NETZWERK VON NETZWERKEN – SCHRITT 2

NETZWERK VON NETZWERKEN – SCHRITT 3

NETZWERK VON NETZWERKEN – DER LETZTE SCHRITT

INTERNET ROUTING

Also wie kommt jetzt die Nachricht von Bob zu Alice?

INTERNET ROUTING

Also wie kommt jetzt die Nachricht von Bob zu Alice?

INTERNET ROUTING

Also wie kommt jetzt die Nachricht von Bob zu Alice?

INTERNET ROUTING - INHALTE

- Geschichte des Internets
 - ARPANet
 - NSFNet
 - "Das Internet"
- Internet Protocol
- Wie Alice und Bob über das Internet kommunizieren
- Netzwerk von Netzwerken (Autonome Systeme)
- Netzwerk-Routing Protokolle
- Border Gateway Protocol

NETZWERK-ROUTING PROTOKOLLE - ÜBERSICHT

- Routing-Protokolle definieren den Austausch von Netzwerk-Erreichbarkeitsinformationen (Network Layer Reachability Information; NLRI)
- Link-State und Distanz-/Pfad-Vektor-Protokolle basieren auf einer graphbasierten Repräsentation des Netzwerks

Link-State

- Router verwalten die vollständige Topologie und Link-Kosten des gesamten Netzwerks.
- Jeder Router berechnet die Pfade mit geringsten Kosten zu allen anderen Knoten.
- Dijkstra's algorithms

Pfad-Vektor

- Jeder Knoten kommuniziert regelmäßig den eigenen Pfad-Vektor an direkt verbundene AS.
- Der Empfänger aktualisiert die eigenen Pfad-Vektor-Einträge entsprechend.
- Bellman-Ford-Gleichung

LINK-STATE ROUTING PROTOCOL – DIJKSTRA'S ALGORITHM

 Der Algorithmus nach Dijkstra rechnet auf einem Graphen und erstellt eine Weiterleitungstabelle für jeden Knoten

Notation:

• c(x,y): Kosten von Knoten x zu $y = \infty$, wenn nicht direkt verbunden.

D(v): Aktuelle Kosten des Gesamtpfads zu v.

■ p(v): Vorgängerknoten auf dem Pfad zu v.

N': Menge der Knoten, zu denen der günstigte Pfad bekannt ist.

LINK-STATE ROUTING PROTOCOL – DIJKSTRA'S ALGORITHM

Algorithmus:

1:
$$N' = \{u\}$$

2: for all nodes v

3: if v adjacent to u

4: then D(v) = c(u,v)

5: else $D(v) = \infty$

6: Loop

7: find w not in N' such that D(w) is minimum

8: add w to N'

9: update D(v) for all v adjacent to w and not in N':

10: D(v) = min(D(v), D(w) + c(w,v))

11: if (D(w) + c(w,v)) < D(v): p(v) = w

12: until all nodes in N'

DIJKSTRA ALGORITHMUS - BEISPIEL

O 4	N 11	$D(\mathbf{v})$	D(w)	D(x)	D(y)	D(z)
Ste	o N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	3,u	5 ,u	∞	∞
1	uw	6,w		5,u) 11,W	∞
2	uwx	6,W			11,W	14,x
3	uwxv				(10,V)	14,x
4	uwxvy					(12,y
5	uwxvyz					
no	tes:					

110163.

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Example from

J. F. Kurose & K. W. Ross (Book: Computer Networking)

DIJKSTRA ALGORITHM -KOMPLEXITÄT UND PROBLEME

- Komplexität bei n Knoten:
 - Jeder Durchlauf: Prüfe alle w, die noch nicht in N' sind
 - n(n+1)/2 Vergleiche: O(n²)
 - Es gibt effizientere Methoden mit kürzerer Laufzeit: O(n log n)
- Oszillation möglich:

given these costs, find new routing.... resulting in new costs resulting in new costs

given these costs, find new routing.... find new routing....

Example from

J. F. Kurose & K. W. Ross (Book: Computer Networking)

given these costs,

DISTANZ-VEKTOR ROUTING PROTOCOL – BELLMAN FORD GLEICHUNG

- Bereits im ARPANet als "RIP" genutzt
- Idee: Dynamische Programmierung
- Ansatz:
 - let
 - dx(y) := cost of least-cost path from x to y
 - then
 - $dx(y) := minv \{ c(x,v) + dv(y) \}$

- Notation:
 - minv: taken over all neighbors v of x.
 - c(x,v): cost to neighbor v.
 - dv(y): cost from neighbor v to node y.

BELLMAN-FORD-GLEICHUNG - BEISPIEL

Offensichtlich: dv(z) = 5, dx(z) = 3, dw(z) = 3

B-F-Gleichung:

$$du(z) = min \{ c(u,v) + dv(z), \\ c(u,x) + dx(z), \\ c(u,w) + dw(z) \}$$

$$= min \{2 + 5, \\ 1 + 3,$$

5 + 3 = 4

Der Nachbarknoten mit dem kleinsten Kostenwert wird der Next-Hop des kürzesten Pfads in der "Forwarding"-Tabelle

DISTANZ-VEKTOR ROUTING PROTOCOL – BELLMAN-FORD-GLEICHUNG

Dx(y) = geschätzte Kosten von x nach y

• x verwaltet Distanz-Vektor $Dx = [Dx(y): y \in N]$

Knoten x

- kennt die Kosten zu jedem Nachbarn v: c(x, v)
- verwaltet für jeden Nachbarn v einen Distanz-Vektor $Dv = [Dv(y): y \in N]$

Idee:

- Jeder Knoten sendet seinen Dx regelmäßig an seine Nachbarn.
- Wenn x von seinem Nachbarn einen neuen Distanz-Vektor erhält, aktualisiert er seinen: $Dx(y) \leftarrow minv\{c(x,v) + Dv(y)\}$ for each node $y \in N$.
- Normalerweise konvergiert Dx(y) zu den tatsächlich niedrigsten Kosten dx(y).

DISTANZ-VEKTOR - BEISPIEL

$$D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$$

= min{2+1, 7+0} = 3

DISTANZ-VEKTOR - BEISPIEL

DISTANZ-VEKTOR ROUTING PROTOCOL

Änderungen der Kosten

- Knoten erkennt lokales Update der Kosten...
- ... aktualisiert Erreichbarkeitsinformationen und berechnet neuen Distanz-Vektor für betroffene Ziele...
- ... und informiert die Nachbarn bei Bedarf.

"Good news travel fast":

- t0 : y erkennt Kostenupdate, aktualisiert eigene DV und informiert Nachbarn.
- t1: z erhält Update von y, aktualisiert seine Tabelle, berechnet neue Kosten zu x und sendet eigenen DV an alle Nachbarn.
- t2: y erhält Update von z, aktualisiert seine Tabelle. Die Kosten für y ändern sich nicht, also sendet y auch keine Nachricht an z.

DISTANZ-VEKTOR ROUTING PROTOCOL

- "Bad news travel slow":
 - "Count to infinity"-Problem:

View of X (about neighbor y and z's routing tables)

INTERNET ROUTING PROTOCOL

- Das Internet als Netzwerk von Netzwerken wird von unterschiedlichen Organisationen betrieben (Netzwerke werden Autonomes System genannt).
- Daher sind Richtlinien beim Routing relevant!
- Jedes Netzwerk nutzt unabhängig von den anderen ein internes Routing-Protokoll ("Intradomain" oder "Interior Gateway Protocol").
- Alle Netzwerke müssen ein gemeinsames ("Exterior-") Interdomain-Protokoll unterstützen.
- Ist dabei ein Link-State- oder ein Distanz-Vektor-Protokoll besser?

INTERNET ROUTING PROTOCOL

- Das Internet als Netzwerk von Netzwerken wird von unterschiedlichen Organisationen betrieben (Netzwerke werden Autonomes System genannt).
- Daher sind Richtlinien beim Routing relevant!
- Jedes Netzwerk nutzt unabhängig von den anderen ein internes Routing-Protokoll ("Intradomain" oder "Interior Gateway Protocol").
- Alle Netzwerke müssen ein gemeinsames ("Exterior-") Interdomain-Protokoll unterstützen.
- Ist dabei ein Link-State- oder ein Distanz-Vektor-Protokoll besser?
- Link-State?
 - Jeder Router muss die gesamte Internet-Topologie kennen.
 - Keine Möglichkeit für Richtlinien!

INTERNET ROUTING PROTOCOL

- Das Internet als Netzwerk von Netzwerken wird von unterschiedlichen Organisationen betrieben (Netzwerke werden Autonomes System genannt).
- Daher sind Richtlinien beim Routing relevant!
- Jedes Netzwerk nutzt unabhängig von den anderen ein internes Routing-Protokoll ("Intradomain" oder "Interior Gateway Protocol").
- Alle Netzwerke müssen ein gemeinsames ("Exterior-") Interdomain-Protokoll unterstützen.
- Ist dabei ein Link-State- oder ein Distanz-Vektor-Protokoll besser?
- Distanz-Vektor?
 - Dynamische Verteilung des kürzesten/günstigsten Pfades.
 - Auch keine Möglichkeit für Richtlinien!

INTERNET ROUTING - INHALTE

- Geschichte des Internets
 - ARPANet
 - NSFNet
 - "Das Internet"
- Internet Protocol
- Wie Alice und Bob über das Internet kommunizieren
- Netzwerk von Netzwerken (Autonome Systeme)
- Netzwerk-Routing Protokolle
- Border Gateway Protocol

BORDER GATEWAY PROTOCOL (BGP)

BGP is the Internet's de-facto standard interdomain routing protocol.

Allows policy base routing decisions such as:

- Do not carry commercial traffic on educational networks.
- Use the cheaper upstream provider even if the performance is bad.
- For VoIP and Video stream use the expensive provider instead.
- Do not route over the US to reach a partner also located in Germany! (US have Not Specified Adversaries, thank you Edward Snowden)

Policies allow a hierarchical routing system having providers, customers and peers.

BORDER GATEWAY PROTOCOL (BGP)

Autonome Systeme annoncieren Erreichbarkeitsinformationen.

Autonome Systeme annoncieren Erreichbarkeitsinformationen.

Autonome Systeme annoncieren Erreichbarkeitsinformationen.

Also wie kommt jetzt die Nachricht von Bob zu Alice?

• Es kann dieser Pfad sein,

• ... oder dieser Pfad, ... oder irgendein anderer (kreisfreier) Pfad.

ENDE

Vielen Dank für die Aufmerksamkeit!

Fragen?

Nächste Vorlesung:

Montag, 22. Mai 2023

Nächste Übung:

- Dienstag, 16. Mai 2023 16 Uhr
- Abgabe des Übungszettels bis morgen 16 Uhr