

EUROPEAN PATENT OFFICE

PUBLICATION NUMBER : 2000345288
PUBLICATION DATE : 12-12-00

APPLICATION DATE : 10-06-99
APPLICATION NUMBER : 11164449

APPLICANT : NIPPON STEEL CORP;

INVENTOR : SUEHIRO MASAYOSHI;

INT.CL. : C22C 38/00 C21D 9/46 C21D 9/48 C22C 38/06 C22C 38/46

TITLE : HIGH STRENGTH STEEL SHEET EXCELLENT IN FORMABILITY AND WELDABILITY
AND ITS PRODUCTION

ABSTRACT : PROBLEM TO BE SOLVED: To provide steel components and annealing conditions as to
a high strength steel sheet and a hot dip galvanized steel sheet excellent in formability and
weldability and used for automotive parts or the like.

SOLUTION: This high strength steel sheet and hot dip galvanized steel sheet excellent in
formability and weldability contain, by weight, 0.02 to 0.15% C, 0.01 to 0.1% Si, 1.0 to
2.8% Mn, ≤0.02% P, ≤0.02% S and 0.07 to 0.7% Al, contain, at need, 0.0005 to 0.01%
Ca and 0.005 to 0.005% rare earth metals, contain, at need, one or ≥ two kinds among
≤0.5% Cr, ≤0.5% Ni, ≤0.5% Cu, ≤0.5% Mo and ≤0.1% V, and the balance Fe with
inevitable impurities and have metallic structures of ferrite and martensite including
retained austenite.

COPYRIGHT: (C)2000,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2000-345288

(P2000-345288A)

(43) 公開日 平成12年12月12日 (2000. 12. 12)

(51) Int.Cl. ⁷	識別記号	F I	テ-マコト*(参考)
C 22 C 38/00	3 0 1	C 22 C 38/00	3 0 1 B 4 K 0 3 7
C 21 D 9/46		C 21 D 9/46	J
	9/48		J
C 22 C 38/06		C 22 C 38/06	
	38/46		38/46

審査請求 未請求 請求項の数 8 O L (全 8 頁)

(21) 出願番号	特願平11-164449	(71) 出願人	000006655 新日本製鐵株式会社 東京都千代田区大手町2丁目6番3号
(22) 出願日	平成11年6月10日 (1999. 6. 10)	(72) 発明者	楠見 和久 福岡県北九州市戸畠区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内
		(72) 発明者	末廣 正芳 福岡県北九州市戸畠区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内
		(74) 代理人	100062421 弁理士 田村 弘明 (外1名)

最終頁に続く

(54) 【発明の名称】 成形性、溶接性の優れた高強度鋼板及びその製造方法

(57) 【要約】

【課題】 本発明は、自動車部品などに使用される、成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板について、鋼成分と焼純条件を提示するものである。

【解決手段】 重量%で、C: 0.02~0.15%、Si: 0.01~0.1%、Mn: 1.0~2.8%、P≤0.02%、S≤0.02%、Al: 0.07~0.7%、必要に応じて、Ca: 0.0005~0.01%、REM: 0.005~0.005%を含み、また必要に応じて、Cr≤0.5%、Ni≤0.5%、Cu≤0.5%、Mo≤0.5%、V≤0.1%のうち1種または2種以上を含有し、残部Feと不可避不純物からなり、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板。

【特許請求の範囲】

【請求項1】 重量割合で、

C : 0. 01~0. 15%、
 Si : 0. 01~0. 1%、
 Mn : 1. 0~2. 8%、
 P : 0. 02%以下、
 S : 0. 02%以下、
 A1 : 0. 07~0. 7%

を含有し、残部Feと不可避不純物からなり、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板。

【請求項2】 重量割合で、

C : 0. 01~0. 15%、
 Si : 0. 01~0. 1%、
 Mn : 1. 0~2. 8%、
 P : 0. 02%以下、
 S : 0. 02%以下、
 A1 : 0. 07~0. 7%

さらに、

Cr : 0. 5%以下、
 Ni : 0. 5%以下、
 Cu : 0. 5%以下、
 Mo : 0. 5%以下、
 V : 0. 1%以下のうち1種または2種以上を含有し、残部Feと不可避不純物からなり、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板。

【請求項3】 重量割合で、

C : 0. 01~0. 15%、
 Si : 0. 01~0. 1%、
 Mn : 1. 0~2. 8%、
 P : 0. 02%以下、
 S : 0. 02%以下、
 A1 : 0. 07~0. 7%、
 Ca : 0. 0005~0. 01%、
 REM : 0. 005~0. 05%

を含有し、残部Feと不可避不純物からなり、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板。

【請求項4】 重量割合で、

C : 0. 01~0. 15%、
 Si : 0. 01~0. 1%、
 Mn : 1. 0~2. 8%、
 P : 0. 02%以下、
 S : 0. 02%以下、
 A1 : 0. 07~0. 7%、
 Ca : 0. 0005~0. 01%、

REM : 0. 005~0. 05%、

さらに、

Cr : 0. 5%以下、
 Ni : 0. 5%以下、
 Cu : 0. 5%以下、
 Mo : 0. 5%以下、
 V : 0. 1%以下のうち1種または2種以上を含有し、残部Feと不可避不純物からなり、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板。

【請求項5】 重量割合で、

C : 0. 01~0. 15%、
 Si : 0. 01~0. 1%、
 Mn : 1. 0~2. 8%、
 P : 0. 02%以下、
 S : 0. 02%以下、
 A1 : 0. 07~0. 7%

を含有し、残部Feと不可避不純物からなる鋼塊を熱間圧延し、酸洗後、30%以上の冷間圧延した後、連続焼鈍ラインまたは連続溶融亜鉛めっきラインにて(Ac1変態点+10°C)以上、(Ar3変態点-5°C)以下の温度で20秒以上再結晶焼鈍を行い、3°C/s以上の冷却速度にて300°Cから600°Cの温度まで冷却し、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板の製造方法。

【請求項6】 重量割合で、

C : 0. 01~0. 15%、
 Si : 0. 01~0. 1%、
 Mn : 1. 0~2. 8%、
 P : 0. 02%以下、
 S : 0. 02%以下、
 A1 : 0. 07~0. 7%

さらに、

Cr : 0. 5%以下、
 Ni : 0. 5%以下、
 Cu : 0. 5%以下、
 Mo : 0. 5%以下、
 V : 0. 1%以下のうち1種または2種以上を含有し、残部Feと不可避不純物からなる鋼塊を熱間圧延し、酸洗後、30%以上の冷間圧延した後、連続焼鈍ラインまたは連続溶融亜鉛めっきラインにて(Ac1変態点+10°C)以上、(Ar3変態点-5°C)以下の温度で20秒以上再結晶焼鈍を行い、3°C/s以上の冷却速度にて300°Cから600°Cの温度まで冷却する、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板の製造方法。

【請求項7】 重量割合で、

C : 0.01~0.15%、

Si : 0.01~0.1%、

Mn : 1.0~2.8%、

P : 0.02%以下、

S : 0.02%以下、

A1 : 0.07~0.7%、

Ca : 0.0005~0.01%、

REM : 0.005~0.05%

を含有し、残部Feと不可避不純物からなる鋼塊を熱間圧延し、酸洗後、30%以上の冷間圧延した後、連続焼鈍ラインまたは連続溶融亜鉛めっきラインにて(Ac1変態点+10°C)以上、(Ar3変態点-5°C)以下の温度で20秒以上再結晶焼鈍を行い、3°C/s以上の冷却速度にて300°Cから600°Cの温度まで冷却する、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板の製造方法。

【請求項8】重量割合で、

C : 0.01~0.15%、

Si : 0.01~0.1%、

Mn : 1.0~2.8%、

P : 0.02%以下、

S : 0.02%以下、

A1 : 0.07~0.7%、

Ca : 0.0005~0.01%、

REM : 0.005~0.05%、

さらに、

Cr : 0.5%以下、

Ni : 0.5%以下、

Cu : 0.5%以下、

Mo : 0.5%以下、

V : 0.1%以下のうち1種または2種以上

を含有し、残部Feと不可避不純物からなる鋼塊を熱間圧延し、酸洗後、30%以上の冷間圧延した後、連続焼鈍ラインまたは連続溶融亜鉛めっきラインにて(Ac1変態点+10°C)以上、(Ar3変態点-5°C)以下の温度で20秒以上再結晶焼鈍を行い、3°C/s以上の冷却速度にて300°Cから600°Cの温度まで冷却する、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板およびその製造方法に関するものである。

【0002】

【従来の技術】便利で快適な移動手段として、自動車の国民生活に占める地位は年々に高まっており、環境破壊と地球温暖化を防止するために、燃費を低減し、化石燃

料の消費を抑制することが従来にも増して重要となってきた。

【0003】このため、エンジン性能の向上と共に車体の軽量化が要求され、主要な車体構成材料である鋼板に対しても、成形性を損なわずに一層の強度増加を図ることが求められている。また、直近では自動車事故を想定した耐衝突安全性に関する法規制が急速に拡大・強化されつつあり、高強度鋼板への期待がますます高まっている。

【0004】しかし、鋼板を高強度化した場合には、延性が低下して、プレス成形が困難となる。そこで、注目されている鋼板としては、フェライトを主体としてマルテンサイト、ペイナイト、残留オーステナイトのような低温生成相からなる複合組織鋼板がある。この複合組織による強化は、他の析出強化などの他の強化方法よりも、高強度化の際に延性の低下が少なく、強度-延性バランスに優れるという特徴がある。

【0005】特に残留オーステナイト鋼は、特開平1-230715号公報に開示されているように、強度延性バランスに優れるが、基本的に高いSiを含有する成分系であるために、溶融亜鉛めっき性が悪い。そのため、溶融亜鉛めっきが必要な部位には、特開昭57-155329号公報に開示されているような、フェライトを主体として、低温生成相としてマルテンサイトを主に含むDual phase鋼（以後DP鋼という）が用いられている。溶融亜鉛めっき性に悪影響を及ぼさないSi含有量の上限は、NOF-RF方式で1.0%、オールラジアントチューブ方式では0.1%程度と考えられている。

【0006】しかし、「金属学会報」第19巻 第7号541頁で示されるように、Siを低減した場合に延性が劣化することが考えられる。DP鋼の延性は、そのフェライト中のC濃度に依存しており、C濃度が低いほど延性が良好であると考えられている。Siはフェライト中のCの活量を上昇させるために、Cをフェライト中から吐き出させる効果があると考えられている。これよりSiをむやみに低下させることは延性の低下をもたらし、鋼板の成形性を劣化させることになる。

【0007】また、高強度鋼板に求められる特性として重要なものの一つにスポット溶接性がある。スポット溶接性は、基本的には溶接性を劣化させる元素として挙げられるC, Mn, Si, P, Sが低いほど良好であると言われている。しかし、高強度鋼板は高合金の成分設計となりがちであるため、溶接性が低下することが考えられる。

【0008】そのため、溶接性を確保するために、溶接性を劣化する元素を規制する技術が、特開昭56-77330号公報や特開平3-27743号公報に開示されている。しかし、これらの技術は、溶融亜鉛めっき性を考慮しておらず、Siの含有量が大きいものも含まれている。すなわち、高強度鋼板の問題点としては、溶融亜

鉛めっき性、スポット溶接性はSiを低減した方が良好となり、延性はSiを多く添加した方が良好となり、これらを両立した成分設計が困難であることがある。

【0009】

【発明が解決しようとする課題】本発明は、かかる従来技術の問題点を克服しうる成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板とその製造方法を提供することを目的とする。

【0010】

【課題を解決するための手段】本発明者は、成形性、溶接性に優れた高強度鋼板とその溶融亜鉛めっき鋼板を検討した結果、鋼成分の最適化、すなわち、Siを低減して溶融亜鉛めっき性とスポット溶接性を確保でき、A1を添加することにより延性が向上することを見いだした。また、適当な熱処理条件をとることにより、本鋼板を工業的に安定製造できることを見いだした。

【0011】また、延性を向上させる方法としては、前述のようにフェライト中のC元素を低下させる方法が考えられるが、他の方法としては、残留オーステナイトの量を増加させる方法がある。DP鋼の低温生成相の主成分はマルテンサイトであるが、微量に残留オーステナ

C : 0.01~0.15%、

Mn : 1.0~2.8%、

S : 0.02%以下、

必要に応じて、Ca : 0.0005~0.01%、RE
M : 0.005~0.05%を含み、またさらに必要に

Cr : 0.5%以下、

Cu : 0.5%以下、

V : 0.1%以下のうち1種または2種以上

を含有し、残部Feと不可避不純物からなり、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板であり、上記の成分の鋼塊を熱間圧延し、酸洗後、30%以上の冷間圧延してから、連続焼鈍線または連続溶融亜鉛めっきラインにて(Ac1変態点+10°C)以上、(Ar3変態点-5°C)以下の温度で20秒以上再結晶焼鈍を行い、3°C/s以上の冷却速度にて300°Cから600°Cの温度まで冷却し、金属組織がフェライトと、残留オーステナイトを含むマルテンサイトであることを特徴とする成形性、溶接性の優れた高強度鋼板の製造方法にある。

【0015】

【発明の実施の形態】以下に本発明を詳細に説明する。まず、本発明の成分および金属組織の限定理由を説明する。C、Mnは、フェライト-マルテンサイト複合組織を形成するために必要な元素であり、また強度を確保するために必要な元素である。そのため、C : 0.01%未満、またMn : 1.0%未満の含有量では、組織がフェライト-マルテンサイト複合組織にならずに、強度-延性バランスが劣化する。Cの好ましい含有量は0.0

トが存在しており、延性に寄与していると考えられる。

【0012】そこで、本発明者らはこの残留オーステナイトを活用することを考えた。残留オーステナイト鋼においてSiは、セメンタイトの析出を抑制して残留オーステナイトを残存させる効果がある。同様の効果を持つ元素としてはA1が考えられるので、Siの代替としてA1を添加することにより、残留オーステナイトの残存を図り、延性を向上させることとした。このように延性的劣化無しにSi添加量の減少が可能となり、スポット溶接性、溶融亜鉛めっき性を確保することが可能となる。

【0013】また、上記の思想により設計された成分系の鋼板を、連続焼鈍または連続溶融亜鉛めっきラインにて、フェライト-オーステナイト2相域にて再結晶焼鈍を行った後に、適当な冷却速度にて冷却することにより、フェライトを主相とし、低温生成相として残留オーステナイトを含むマルテンサイトが主体である金属組織を得ることができる。

【0014】本発明はこのような知見に基づくものであり、以下の構成を要旨とする。すなわち、本発明は、重量割合で、

Si : 0.01~0.1%、

P : 0.02%以下、

A1 : 0.07~0.7%、

応じて、

Ni : 0.5%以下、

Mo : 0.5%以下、

2%以上とする。また、C、Mnはスポット溶接性に影響を及ぼす元素であり、C : 0.15%超、またMn : 2.8%超の添加により、スポット溶接性が劣化してしまう。

【0016】Siは、鋼板の強化に使われ、また前述のように延性の確保のために添加される。0.01%未満の含有量である場合、強度が低く、高強度鋼板としての使用に耐えない。また、0.1%を超える添加により、溶融亜鉛めっき性、スポット溶接性が劣化してしまう。

【0017】P、Sは、溶接性を劣化させる元素であり、その上限は0.02%である。A1は、前述のごとくオーステナイトを残留させるため必要な元素であり、フェライトの生成を促進し、炭化物の生成を抑制することにより、残留オーステナイトを確保する作用があると同時に、脱酸元素、強化元素としても作用する。これよりA1の添加の下限量は、0.07%以上とする必要がある。ただし、A1を過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、また多量の添加は溶融亜鉛めっき性を劣化させるため、その上限を0.7%とした。

【0018】また、Ca、REMは、硫化物系介在物が

球状化して穴抜げ性を向上させるので、それぞれC a : 0. 0005~0. 01%、R E M : 0. 005~0. 05%添加しても良い。

【0019】また、Cr, Ni, Cu, Mo, Vは、いずれも強化元素として有効であるが、過多の添加は延性的劣化や化成処理性を劣化させることがあるので、Cr : 0. 5%以下、Ni : 0. 5%以下、Cu : 0. 5%以下、Mo : 0. 5%以下、V : 0. 1%以下とした。

【0020】その他、Nは、不可避的に含まれる元素であるが、あまり多量に含有する場合は、時効性を劣化させるのみならず、A I N析出量が多くなってA I添加の効果を減少させるので、0. 01%以下の含有が望ましい。

【0021】金属組織をフェライトと、残留オーステナイトを含むマルテンサイトとしたのは、このような組織をとる場合は、強度延性バランスに優れ、降伏点伸びが発生せずにプレス時にストレッチャーストレインが発生しない鋼板となるためである。

【0022】本発明の製造工程の限定理由は次の通りである。冷延鋼板はまず、オーステナイトとフェライトの2相共存温度域で再結晶焼鈍される。この際に、CやMn等の焼き入れ性を向上させる元素や、A IやS iなどの残留オーステナイトを残存させる元素がオーステナイト中に濃化し、その後の熱処理による残留オーステナイトを含むマルテンサイト生成を容易にする。

【0023】再結晶焼鈍温度を、(A c1変態点+10°C)以上、(A r3変態点-5°C)以下としたのは、制限未満であると充分な量のオーステナイトが形成せず、また炭化物の溶解が充分でなくてオーステナイトへのCの濃化が十分でなくなるからであり、制限以上であると、フェライトが極わずかしか存在せず、またさらに全く存在せずにオーステナイト単相となるため、合金元素の分布が全体として希薄となり、残留オーステナイトを含むマルテンサイトを生成させるだけの量が濃化しないためである。

【0024】また、焼鈍後の冷却速度を300°Cから600°Cにおいて3°C/s以上としたのは、これ以下の冷却速度にて冷却した場合は、マルテンサイトが生成せずに強度が上昇しないばかりか強度-延性のバランスも劣化してしまうためである。また上記高強度鋼板は、亜鉛溶融めっき施されて使用される。

【0025】上記の条件を満たすことで、成形性、溶接性の優れた高強度鋼板と溶融亜鉛めっき鋼板を実現できる。

【0026】

【実施例】表1に示した成分組成を有する連続鋳造スラブを1200°C程度で加熱し、880°Cで仕上圧延して冷却の後に約600°Cで捲き取った4mm厚の熱延板を圧下率70%で冷延した。その後、表2に示す条件で処理

した。

【0027】実験番号1~35については、連続焼鈍ラインと連続溶融亜鉛めっきラインにて焼鈍と溶融亜鉛めっきを行った。連続焼鈍ラインでは775°C×90秒の焼鈍を行い、その後600°Cから300°Cの温度範囲を冷却速度15°C/sで冷却したのち、0.5%のスキンパス圧延を行った。また、連続溶融亜鉛めっきラインでは、750°C×90秒の焼鈍を行い、その後600°Cから300°Cの温度範囲を冷却速度15°C/sで冷却したのち、亜鉛浴を通過させて溶融亜鉛めっきを行い、圧下率0.5%のスキンパス圧延を行った。ここで、実験番号9, 10, 11, 16, 17, 18は、亜鉛浴通過後に合金化処理を行い、合金化溶融亜鉛めっき鋼板とした。また、実験番号36~62は、表3に示す焼鈍条件の影響を連続焼鈍にて検討した。

【0028】引張特性は、JIS 5号引張試験片のC方向引張にて評価し、T S (MPa) × E 1 (%)が16500以上を良好とした。めっき密着性は、JIS B 7729に示されたエリクセン試験機を用い、JIS Z 2247に示されたエリクセン試験方法による試験を行い、めっきの剥離状態を調査した。スポット溶接性は、JIS Z 3136ら示された方法による引張剪断試験と、JIS Z 3137に示された方法による十字型引張試験を行い検討した。評価は、強度がJIS A級を満足し、かつ延性比が0.25以上である場合を良好とした。試験結果を、実験番号1~35は表2に、実験番号36~62は表3に示す。

【0029】実験番号1, 2は、それぞれCが低いため、Mnが低いために強度も低く、強度-延性バランスも悪かった。実験番号3, 9, 16, 28は、A I量が低いためにE 1が低く、強度-延性バランスが悪かった。実験番号5, 11, 18, 30は、A I量が多いために、めっき密着性が劣化した。実験番号6, 12, 19, 31は、S i量が低いために、強度-延性バランスが悪かった。実験番号8, 14, 21, 33は、S i量が多いために、めっき密着性とスポット溶接性が劣化した。実験番号34, 35は、それぞれCが高いため、Mnが高いためスポット溶接性が悪かった。実験番号4, 7, 10, 13, 15, 17, 20, 22, 23, 24, 25, 26, 27, 29, 32は、本発明の範囲を満たしているため、強度延性バランス、めっき密着性、スポット溶接性も良好であった。

【0030】実験番号36, 44, 45, 53, 54, 62は、焼鈍温度が本発明の範囲外であったため、強度-延性バランスが悪かった。実験番号37, 46, 55は焼鈍時間が短く、本発明範囲外であったため強度-延性バランスが悪かった。実験番号39, 48, 57は、焼鈍後の冷却速度が小さく、本発明の範囲外であったため、強度-延性バランスが悪かった。実験番号38, 40, 41, 42, 43, 47, 49, 50, 51, 5

2, 56, 58, 59, 60, 61は、本発明の範囲を満たしているため、強度-延性バランスが良好であった。

【0031】
【表1】

鋼種	C	Si	Mn	P	S	Al	N	Ca	REM	Cr	Ni	Cu	V	Mo	(mass%)	区分
A	0.008	0.04	2.2	0.004	0.002	0.51	0.0032	0.0001	0.0003	0.033	0.023	0.015	0.0002	0.0002	比較例	
B	0.015	0.07	0.8	0.011	0.003	0.31	0.0034	0.0000	0.0003	0.032	0.018	0.014	0.0001	0.0001	比較例	
C	0.011	0.04	2.0	0.007	0.008	0.04	0.0031	0.0000	0.0002	0.023	0.015	0.023	0.0002	0.0001	比較例	
D	0.011	0.04	2.0	0.007	0.008	0.31	0.0031	0.0000	0.0002	0.023	0.015	0.023	0.0002	0.0001	本発明	
E	0.011	0.04	2.0	0.007	0.008	0.92	0.0031	0.0000	0.0002	0.023	0.015	0.023	0.0002	0.0001	比較例	
F	0.013	0.008	1.9	0.01	0.004	0.15	0.0031	0.0001	0.0002	0.018	0.022	0.018	0.0001	0.0000	比較例	
G	0.013	0.07	1.9	0.01	0.004	0.15	0.0031	0.0001	0.0002	0.018	0.022	0.018	0.0001	0.0002	本発明	
H	0.013	0.13	1.9	0.01	0.004	0.15	0.0031	0.0001	0.0002	0.018	0.022	0.018	0.0001	0.0002	比較例	
I	0.031	0.07	2.1	0.011	0.007	0.02	0.0027	0.0032	0.0022	0.016	0.022	0.014	0.0002	0.0001	比較例	
J	0.031	0.07	2.1	0.011	0.007	0.09	0.0027	0.0032	0.0022	0.016	0.022	0.014	0.0002	0.0001	本発明	
K	0.031	0.07	2.1	0.011	0.007	0.92	0.0027	0.0032	0.0022	0.016	0.022	0.014	0.0002	0.0001	比較例	
L	0.035	0.009	2.0	0.014	0.004	0.23	0.0037	0.0001	0.0002	0.012	0.013	0.011	0.0001	0.0001	比較例	
M	0.035	0.04	2.0	0.014	0.004	0.23	0.0037	0.0001	0.0002	0.012	0.013	0.011	0.0001	0.0001	本発明	
N	0.035	0.22	2.0	0.014	0.004	0.23	0.0037	0.0001	0.0002	0.012	0.013	0.011	0.0001	0.0001	比較例	
O	0.121	0.09	1.4	0.005	0.003	0.51	0.0041	0.0001	0.0001	0.033	0.021	0.022	0.0001	0.0001	本発明	
P	0.061	0.05	2.4	0.01	0.001	0.033	0.0035	0.0001	0.0001	0.022	0.021	0.014	0.0001	0.0000	比較例	
Q	0.061	0.05	2.4	0.01	0.001	0.21	0.0035	0.0001	0.0001	0.022	0.021	0.014	0.0001	0.0000	本発明	
R	0.061	0.05	2.4	0.01	0.001	1.23	0.0035	0.0001	0.0001	0.022	0.021	0.014	0.0001	0.0000	比較例	
S	0.062	0.008	2.3	0.008	0.002	0.51	0.0034	0.0001	0.0001	0.032	0.013	0.011	0.0001	0.0000	比較例	
T	0.062	0.06	2.3	0.008	0.002	0.51	0.0034	0.0001	0.0001	0.032	0.013	0.011	0.0001	0.0000	本発明	
U	0.062	0.19	2.3	0.008	0.002	0.51	0.0034	0.0001	0.0001	0.032	0.013	0.011	0.0001	0.0000	比較例	
V	0.062	0.06	2.3	0.008	0.002	0.51	0.0034	0.0001	0.0001	0.22	0.13	0.31	0.0001	0.0000	本発明	
W	0.062	0.06	2.3	0.008	0.002	0.51	0.0034	0.0001	0.0001	0.032	0.013	0.011	0.07	0.0000	本発明	
X	0.062	0.06	2.3	0.008	0.002	0.51	0.0034	0.0001	0.0001	0.032	0.013	0.011	0.0001	0.4300	本発明	
Y	0.122	0.05	1.8	0.007	0.003	0.33	0.0033	0.0021	0.0024	0.028	0.023	0.019	0.0001	0.0003	本発明	
Z	0.063	0.07	2.5	0.008	0.004	0.41	0.0039	0.0001	0.0002	0.022	0.019	0.014	0.0001	0.0000	本発明	
AA	0.093	0.08	2.4	0.008	0.001	0.64	0.0035	0.0002	0.0001	0.018	0.012	0.008	0.0001	0.0001	本発明	
AB	0.112	0.05	2.7	0.011	0.002	0.05	0.0031	0.0001	0.0001	0.033	0.028	0.022	0.0002	0.0001	比較例	
AC	0.112	0.05	2.7	0.011	0.002	0.65	0.0031	0.0001	0.0001	0.033	0.028	0.022	0.0002	0.0001	本発明	
AD	0.112	0.05	2.7	0.011	0.002	1.22	0.0031	0.0001	0.0001	0.033	0.028	0.022	0.0002	0.0001	比較例	
AE	0.142	0.004	2.6	0.011	0.002	0.41	0.0033	0.0002	0.0000	0.024	0.032	0.021	0.0000	0.0001	比較例	
AF	0.142	0.03	2.6	0.011	0.002	0.41	0.0033	0.0002	0.0000	0.024	0.032	0.021	0.0000	0.0001	本発明	
AG	0.142	0.32	2.6	0.011	0.002	0.41	0.0033	0.0002	0.0000	0.024	0.032	0.021	0.0000	0.0001	比較例	
AH	0.213	0.03	2.5	0.008	0.005	0.32	0.0034	0.0001	0.0002	0.033	0.023	0.0032	0.0001	0.0000	比較例	
AI	0.133	0.05	3.0	0.004	0.012	0.41	0.0038	0.0001	0.0001	0.013	0.012	0.008	0.0001	0.0001	比較例	

【0032】

【表2】

実験番号	鋼種	連続焼鈍			連続溶融亜鉛めっき			めっき密着性	溶接性	区分
		TS (MPa)	E1 (%)	TS×E1 (MPa %)	TS (MPa)	E1 (%)	TS×E1 (MPa %)			
1	A	312	42	13104	318	41	13038	○	○	比較例
2	B	322	43	13846	328	42	13776	○	○	比較例
3	C	409	37	15133	417	36	15012	○	○	比較例
4	D	412	41	16892	420	40	16800	○	○	本発明
5	E	422	43	18146	430	42	18060	×	○	比較例
6	F	392	38	14896	400	37	14800	○	○	比較例
7	G	413	41	16933	421	40	16840	○	○	本発明
8	H	423	41	17343	431	40	17240	×	×	比較例
9	I	519	31	16089	529	30	15870	○	○	比較例
10	J	522	35	18270	532	34	18088	○	○	本発明
11	K	524	37	19388	534	36	19224	×	○	比較例
12	L	503	31	15593	513	30	15390	○	○	比較例
13	M	511	36	18396	521	35	18235	○	○	本発明
14	N	518	38	19684	528	37	19536	×	×	比較例
15	O	523	34	17782	533	33	17589	○	○	本発明
16	P	602	27	16254	614	26	15964	○	○	比較例
17	Q	612	31	18972	624	30	18720	○	○	本発明
18	R	620	32	19840	632	31	19592	×		比較例
19	S	618	26	16068	630	25	15750	○	○	比較例
20	T	622	31	19282	634	30	19020	○	○	本発明
21	U	627	32	20064	640	31	19840	×	×	比較例
22	V	642	29	18618	655	28	18340	○	○	本発明
23	W	633	30	18990	646	29	18734	○	○	本発明
24	X	652	27	17604	665	26	17290	○	○	本発明
25	Y	622	29	18038	634	28	17752	○	○	本発明
26	Z	712	26	18512	726	25	18150	○	○	本発明
27	AA	709	25	17725	723	25	18075	○	○	本発明
28	AB	793	20	15860	809	20	16180	○	○	比較例
29	AC	809	23	18607	825	23	18975	○	○	本発明
30	AD	813	24	19512	829	24	19896	○	×	比較例
31	AE	809	19	15371	825	19	15675	○	○	比較例
32	AF	816	22	17952	832	22	18304	○	○	本発明
33	AG	822	22	18084	838	22	18436	×	×	比較例
34	AH	861	20	17220	878	20	17560	○	×	比較例
35	AI	871	21	18291	888	21	18648	○	×	比較例

【0033】

【表3】

実験番号	鋼種	焼純温度(°C)	時間(s)	冷却速度(°C/s)	TS(MPa)	E1(%)	TS×E1(MPa %)	区分
36	J	620	90	15	650	21	13650	比較例
37	J	775	10	15	461	35	16135	比較例
38	J	775	30	15	482	35	16870	本発明
39	J	775	90	1	410	37	15170	比較例
40	J	775	90	5	475	36	17100	本発明
41	J	775	90	15	522	35	18270	本発明
42	J	775	90	60	538	34	18292	本発明
43	J	775	90	120	541	34	18394	本発明
44	J	912	90	15	480	31	14880	比較例
45	T	620	90	15	720	14	10080	比較例
46	T	775	10	15	489	32	15648	比較例
47	T	775	30	15	583	31	18073	本発明
48	T	775	90	1	502	32	16064	比較例
49	T	775	90	5	552	31	17112	本発明
50	T	775	90	15	622	31	19282	本発明
51	T	775	90	60	631	31	19561	本発明
52	T	775	90	120	652	30	19560	本発明
53	T	912	90	15	482	31	14942	比較例
54	AC	620	90	15	843	13	10959	比較例
55	AC	775	10	15	662	24	15888	比較例
56	AC	775	30	15	732	24	17568	本発明
57	AC	775	90	1	673	24	16152	比較例
58	AC	775	90	5	773	23	17779	本発明
59	AC	775	90	15	809	23	18607	本発明
60	AC	775	90	60	813	23	18699	本発明
61	AC	775	90	120	852	22	18744	本発明
62	AC	912	90	15	719	23	16537	比較例

【0034】

【発明の効果】本発明によれば、自動車部品などに使用される、成形性、溶接性の優れた高強度鋼板と溶融亜鉛

めっき孔板を提供できるため、工業的に価値の高い発明である。

フロントページの続き

F ターム(参考) 4K037 EA01 EA05 EA06 EA11 EA13
EA15 EA16 EA17 EA20 EA23
EA25 EA27 EA32 FG01 FG03
FJ05 FK02 FK03