1 Probability Theory **Thm 1.3 (LTP)**: $A_1,...,A_2$ partition of S and $\lim_{\epsilon \downarrow 0} P(Y \leq y | X \in [x - \epsilon, x + \epsilon]) = \dots =$ $B \subset S$, then $P(B) = \sum_{i=1}^{\infty} P(B|A_i)P(A_i)$. $\int_{-\infty}^{y} \left(\frac{f_{X,Y}(x,v)}{f_{X}(x)} \right) dv$, which also implies cond Thm 1.4(Bayes' rule): $A_1, A_2,...$ partition of S, B any set. Then for each i = 1, 2, ... $P(B|A_i)P(A_i)$

Conditional Expectation: E(g(Y)|X = x) = $P(A_i|B) = \frac{\sum_{i=1}^{\infty} P(B|A_i)P(A_i)}{\sum_{i=1}^{\infty} P(B|A_i)P(A_i)}$ $\sum_{y \in (Y)} g(y) f_{Y|X}(y|x) \text{ or } = \int_{-\infty}^{\infty} g(y) f_{Y|X}(y|x) dy.$ Def. 1.5 (Sigma Algebra): Collection of sub-Thm 3.1 (LIE): Y, X rvs, then E(Y) =sets of S is a sigma algebra \mathcal{B} if it satisfies: (1) $E_X(E_{Y|X}(Y|X)).$ $\emptyset \in \mathcal{B}$, (2) If $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$, and (3) if Law of iterated variance: Var(Y) = $A_1, A_2, \ldots \in \mathcal{B}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$. E(Var(Y|X)) + Var(E(Y|X)).**Def 1.8 (Independence)**: A, B independent \Leftrightarrow 3.3 Independence $P(A \cap B) = P(A)P(B)$. **Def 3.4**: (X,Y) rvec, X,Y independent if **Thm 1.5**: A, B independent \Rightarrow pairs A, B and

 $P(Y \le y | X = x) = \frac{P(Y \le Y, X = X)}{P(X = x)}$

E(g(X)g(Y)) = E(g(X))E(h(Y)).

5 Asymptotic Theory

5.1 Inequalities

independent.

For continuous rvs more difficult because

ble subcollections independent. Mutual independence ⇒ pairwise independence, 2 Random Variables Thm 2.5 (Jensen's inequalities): Suppose g(x)

Def 1.9 (Mutual independence): For any sub-

collection A_{i_1}, \dots, A_{i_k} we have $P(\cap_{i=1}^k A_{i_i}) =$

 $\prod_{i=1}^k P(A_{i_i})$. Independence requires all possi-

 A^c , B and A^c , B are each independent.

Econometrics Year 1 Cheat-sheet Julian Budde, Page 1 of 2

convex, then $E(g(X)) \ge g(E(X))$ if existent. Strict unless X degenerate or g linear. **Def 2.10 (MGF)**: $X \sim F_X$, $t \in \mathbb{R}$. Then $M_X(t) =$ $E(e^{tX})$ given it exists in some neighborhood of **Thm 2.7**: If $M_X(t)$ exists, then $E(X^n) =$

 $\frac{\partial^n}{\partial t^n} M_X(0)$. Derive by writing out (conti-

3 Multivariate Distributions **Def 3.1**: *n*-dimensional rvec is $f: S \to \mathbb{R}^n$. 3.1 Bivariate Random Vectors Define probability functions on Borel sigma

Joint CDF: $F_{X,Y}(x,y) = P(X \le x, Y \le y)$. Joint PMF (discrete (X,Y)): $f_{X,Y} = P(X =$

Joint PDF (cont + diff): $f_{X,Y} =$ $\frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$. Joint PDF (cont + not diff everywhere):

implicitly via $F_{X,Y} = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(u,v) du dv$. Expectations (discrete): E(g(X,Y)) = $\sum_{(x,y)\in\mathbb{R}^2: f_{X,Y}(x,y)>0} g(x,y) f_{X,Y}(x,y).$ Expectations (continuous): E(g(X,Y)) =

 $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dx dy.$ Need to assume $E(|g(X,Y)|) < \infty$. Discrete-Continuous Case: Define wrt Borel sigma algebra. Joint \Rightarrow Marginal: $F_X(x) = \lim_{v \to \infty} F_{X,Y}(x,y)$

and $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,v) dv$. 3.2 Continuous Distributions

Conditional PMF: $f_{Y|X}(y|x) = P(Y = y|X =$

Thm 5.5 (WLLN): $X_{i,i=1}^{\infty}$ seq. of uncorrelated rvs. Suppose $\mu_i = E(X_i)$ and $\sigma_i^2 = Var(X_i)$ Conditional CDF (continuous): $F_{Y|X}(y|x) =$ exist and finite. If $\lim_{n\to\infty} \frac{1}{n^2} \sum_{i=1}^n \sigma_i^2 = 0$ then $\overline{X}_n - \frac{1}{n} \sum_{i=1}^n \mu_i \xrightarrow{p} 0$. Thm 5.6 (LLN i.i.d): $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs from F_X with $\mu = E(X)$ exist and finite. Then Convergence Criteria: Need a combination of three assumptions: (1) finite mean and/or variance (no LLN for Cauchy), (2) bounds on asymptotic variance (e.g. not growing too fast with i), (3) restricted dependence.

5.4 Central Limit Theorem $\forall x \in \mathbb{R}, y \in \mathbb{R}$ we have $f_{X,Y}(x,y) = f_X(x)f_Y(y)$. **Thm 3.2**: X, Y independent \Leftrightarrow for any Thm 5.7 (Lindeberg-Levy CLT): $\{X_i\}_{i=1}^{\infty}$ seq. two bounded $g,h:\mathbb{R}\to\mathbb{R}$ we have of iid rvs from F_X , μ and σ^2 finite. Then $\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2).$ **Thm 3.3:** X, Y independent, g(X) and g(Y)3.4 Measure of linear relationships $E(|X - E(X)|^3)$ exist and finite. Let $Z \sim N(0, 1)$. Covariance: Cov(X, Y) = E[(X - E(X))(Y - E(X))]Then $|P\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \le x\right) - P(Z \le x)| \le \frac{C\lambda}{\sigma^3 \sqrt{n}}$.

Independence and Cov: Independence $\Rightarrow Cov(X,Y) = 0$, but not the other way around (e.g. $X \sim Unif(-1,1), Y = X^2$). **Correlation**: $Corr(X, Y) = \frac{Cov(X, Y)}{SD(X)SD(Y)}$ [-1,1].4 Sampling

Thm 5.1 (Markov's Inequality): X r.v., g:

 $\mathbb{R} \to [0,\infty)$, then $\forall \epsilon > 0$, $P(g(X) > \epsilon) \leq \frac{E(g(X))}{\epsilon}$ Cor 5.1 (Chebyshev's Inequality): X r.v., then $\forall \epsilon > 0$, $P(|X - E(X)| \ge \epsilon) \le \frac{Var(X)}{\epsilon^2}$. 5.2 Modes of Convergence **Def 5.2:** $plim_{n\to\infty}X_n = X \leftrightarrow \lim_{n\to\infty} P(|X_n - X_n|)$ $|X| < \epsilon$) = 1. **Def 5.3**: $\hat{\theta}_n$ consistent for $\theta \leftrightarrow$

Def 5.4: $\{X_n\}_{n=1}^{\infty}$ converges in distribution to X $\leftrightarrow \lim_{n\to\infty} F_{X_n}(x) = F_X(x)$ for every continuity point of x of $F_X(\cdot)$. **Def 5.5**: $\{X_n\}_{n=1}^{\infty}$ converges in mean square to $X \leftrightarrow \lim_{n \to \infty} E[(X_n - X)^2] = 0.$ **Thm 5.2**: $X_n \xrightarrow{m.s.} X_n \xrightarrow{p} X$. Proof by Cheby-

shev's inequality. The reverse is not true, con-

sider $X_n \in 0$, \sqrt{n} with probabilities 1 - 1/n, 1/n.

Thm 5.3: $X_n \xrightarrow{p} X_n \xrightarrow{d} X$. Proof uses definition of \xrightarrow{p} and continuity. The reverse is generally not true, consider $X_n = Z \sim N(0,1)$ and $X, Z \sim N(0,1)$, have $F_{X_n}(x) = F_X(x)$ but $P(|Z-X| \ge \epsilon) > 0$. Exception: $X_n \xrightarrow{d} c \in \mathbb{R} \Rightarrow$

Thm 5.4 (LLN): $X_{i=1}^{\infty}$ seq. of uncorrelated rvs Conditional CDF (discrete): $F_{Y|X}(y|x) = \text{from } F_X \text{ with } \mu = E(X), Var(X) \text{ existing and}$

LL-CLT applying. $g : \mathbb{R} \to \mathbb{R}$ continuously diff. at μ with $g'(\mu) \neq 0$. Then $\sqrt{n}(g(X_n) - g(\mu)) \xrightarrow{\mu}$ $N(0,g'(\mu)^2\sigma^2)$. Proof: CMT and Slutzky's applied to Taylor's/intermediate value theorem.

Suppose $\{X_i\}_{i=1}^n$ is a seq of iid random variables with μ , σ^2 finite. Then an asymptotically valid CI for μ is given by $CI = \left| \overline{X}_n \pm \frac{z_{1-\alpha/2}}{\sqrt{n}} S_n \right|$

where S_n is a consistent estimator of σ and $P(\mu \in CI) \rightarrow 1 - \alpha$. Proof: CLT, CMT, Slutzky. 5.8 Moment-Based Estimation **Parameter of interest**: $\theta = h(E(g(X)))$ (simple case: X, θ scalars and $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$

Moment-based estimator: $\hat{\theta}_n$ $h\left(\frac{1}{n}\sum_{i=1}^{n}g(X_i)\right)$. Consistency follows from LLN and CMT. **Large-sample distribution**: If $Var(g(X)) < \infty$ CLT applies so $\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} g(X_i) - E(g(X)) \right) \xrightarrow{d}$ N(0, Var(g(X))). By the delta-method if $h'(g(E(X))) \neq 0$ we have $\sqrt{n}(\hat{\theta}_n - \theta) = \sqrt{n} \left(h \left(\frac{1}{n} \sum_{i=1}^n g(X_i) \right) - h(E(g(X))) \right)$

6 Maximum Likelihood Estimation Def 6.1 (likelihood function): $L_n(\theta) =$ Equivalently, we define the log-likelihood func-

MLE Limit Distribution:

 $\stackrel{u}{\longrightarrow} N(0, A^{-1}BA^{-1})$

Thm 6.1: Suppose X is a random vector with

tion as $\log(L_n(\theta))$.

6.2 CRLB

pdf or pmf $f(\mathbf{x};\theta_0)$. Then $E(\log(f(\mathbf{x};\theta))) \geq$ Thm 5.10 (Cramér-Wold): $\{X_n\}_{n=1}^{\infty}$ seq. of K- $E(ln(f(\mathbf{X};\theta))), \forall \theta in\Theta.$ dimensional random vectors. Then, $\forall \lambda \in \mathbb{R}^{\mathbb{K}}$ **Thm 6.2**: For $\tau(\theta)$ and $\hat{\theta}_n$ MLE of θ , we have we have $\lambda' \mathbf{X}_n \xrightarrow{d} \lambda' \mathbf{X} \leftrightarrow \mathbf{X}_n \xrightarrow{d} \mathbf{X}$. $\tau(\hat{\theta}_n)$ is MLE of $\tau(\theta)$. 6.1 Distribution of the MLE

Thm 5.11 (CMT): Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of K-dim. rvecs **X** K-dim rvec, and $g: \mathbb{R}^{\mathbb{K}} \to \mathbb{R}$ $E_{\theta}\left[-\frac{\partial^2}{\partial\theta\partial'\theta}ln(f(\mathbf{X}_i);\theta)\right]$ with discontinuity points D such that $P(X \in$ $E_{\theta}\left[\frac{\partial}{\partial \theta}ln(f(\mathbf{X}_{i};\theta))\frac{\partial}{\partial \theta'}ln(f(\mathbf{X}_{i};\theta))\right]$. B varcov matrix of the score (since score mean zero by FOC). A is Fisher information. Thm 6.3: Under weak reg. cond. (diff; interch. Implication: Sums and products of convergent integr./diff.) we have A = B.

Thm 5.12 (Slutzky's): X_n , Y_n seq of rvs with of MSE. However, MSE might depend on θ $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c \in \mathbb{R}$, then $X_n + Y_n \xrightarrow{d} X + c$ and $X_n Y_n \xrightarrow{d} cX$, and if $c \neq 0$, $X_n/Y_n \xrightarrow{d} X/c$. Extension to rvecs: $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} C \in$

 $\overline{nE_{\theta}[(\frac{\partial}{\partial \theta}\log(f(\mathbf{X};\theta)))^2]}$. With unbiased estimators (numerator equals one) estimators attaining the lower bound are called efficient. Caveats: (1) Finite-sample efficient estimators

We could try to define "bestëstimator in terms

(e.g. \overline{X}_n vs. 1, the latter dominates for $\theta = 1$). Progress: Focus on unbiased estimators and

Thm 6.4: $\{X_i\}$ rs from $f(\mathbf{x};\theta)$, $\hat{\theta}_n$ estimator of θ . Then under some reg conds

 $t_{n-1,1-\alpha}$ or Z=-T and c_{α} unchanged (symme-

(2) look at behavior as μ changes.

try). Intuition: want to reject for large $\mu > \mu_0$ **Deriving** $\beta(\theta)$: (1) add and subtract (true) μ ,

 c_{α}) = α . Note this holds for all $\sigma^2 \in \Gamma$ thus a test of level and size α . Ex (One-sided T): $T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{S_n}$ with $c_\alpha =$

 $t_{n-1,1-\alpha/2}$. By construction $sup_{\theta\in\Theta_0}P_{\theta}(T>$

5.3 Law of Large Numbers

 $\mathbb{R}^{K \times K}$, C invertible, then $\mathbf{Y}_n^{-1} \mathbf{X}_n \xrightarrow{d} \mathbf{C}^{-1} \mathbf{X}$.

Example CMT: $\left(\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}\right)^2 \xrightarrow{d} N(0, 1)^2 = \chi_1^2$. Thm 5.13 (Delta-Method): X_n seq of rvs with

sequences converge. Does not hold for mean

rare; even MLE often biased, (2) allowing some bias can reduce variance and thus MSE,

The one-sided test is also a test for H_0 :

controlling $\sup_{\theta \in \Theta_0} P_{\theta}(T > c_{\alpha}) \Rightarrow \text{need } F_T(t)$.

 (μ, σ^2) . Test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ use $T = \frac{\sqrt{n}|\overline{X}_n - \mu_0|}{S_n} |t_{n-1}|$ and reject for $T > c_\alpha =$

Ex 7.2 (Two-sided T): $X \sim N(\mu, \sigma^2)$ so $\theta =$

Goal: Derive statistic T and reject iff $T > c_{\alpha}$

8.1 Test statistics and critical values

(3) MSE might not be criterion of interest.

Relative efficiency: $E_{\theta}[(\hat{\theta}_{1,n} - \theta)^2] \leq$

 $E_{\theta}[(\hat{\theta}_{2,n}-\theta)^2]$ for all $\theta\in\Theta$ and strict

Asymptotic efficiency: Asymptotic distribu-

tion often implies asymptotically unbiased,

efficiency than means attaining CRLB asym-

ptotically. Thus, the MLE is asymptotically

efficient. Similar, for two estimators (possibly

not attaining the CRLB) we can say one is

asymptotically relatively more efficient (i.e. has

Def 7.1: A *hypothesis* is a statement about the

Def 7.2: H_0 (null hypothesis) and H_1 (alter-

native hypothesis) are the complementary

hypothesis. We write $H_0: \theta \in \Theta_0$ and

 $H_1: \theta \in \Theta_1$ with Θ_k mutually exclusive and

Simple hypothesis: Θ_0 is singleton. *Composite*

Def 7.3: A hypothesis test is a rule when

to reject H_0 (in favor of H_1) given the data.

(Accepting H_0 is weird, e.g. what about $\theta_0 + \epsilon$?.)

Type-II error: Not reject H_0 although in fact

Error rates: Probabilities of making these er-

rors (errors are random because they depend

I-II-trade-off: We want to minimize

 $P_{\theta}(rejectH_0) \quad \forall \theta \in \Theta_0 \quad \text{and} \quad \text{maximize}$

 $P_{\theta}(rejectH_0) \ \forall \theta \in \Theta_1 \ (P_{\theta} \ denotes \ proba-$

Def 7.4 (Power function): $\beta(\theta) =$

bilities assuming θ is the true parameter).

Type-I error: $\beta(\theta)$ for any $\theta \in \Theta_0$.

hypothesis: Θ_1 more than one value.

lower asymptotic variance).

7 Hypothesis Testing

population distribution.

7.1 Basics

exhaustive.

on the sample).

 $P_{\theta}(rejectH_0)$.

 $\sum_{\theta \in \Theta_0} \beta(\theta) \leq \alpha$ (size: equality). **Test choice**: One approach: fix α , take the one with the best power over all $\theta \in \Theta_1$ (might not

Def 7.5/7.6: For $\alpha \in [0,1]$, a test is *level* α if

Type-II error: $\beta(\theta)$ for any $\theta \in \Theta_1$.

5.5 Convergence of Random Vectors

every continuity point x of $F_{\mathbf{X}}(\cdot)$.

5.6 CMT and Slutzky's

(a) $X_n \xrightarrow{P} X \Rightarrow g(X_n) \xrightarrow{P} g(X)$.

(b) $X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$.

square convergence.

Def 5.7: $\mathbf{X}_n \xrightarrow{p} \mathbf{X} \leftrightarrow \lim_{n \to \infty} P(||\mathbf{X}_n - \mathbf{X}|| < \epsilon) = 1.$

Def 5.8: $\mathbf{X}_n \xrightarrow{ms} \mathbf{X} \leftrightarrow \lim_{n \to \infty} E(||\mathbf{X}_n - \mathbf{X}||^2) = 0.$

Def 5.9: $X_n \xrightarrow{d} X \leftrightarrow \lim_{n \infty} F_{X_n}(x) = F_X(x)$ for

Thm 5.9 (Berry-Esseen): $\{X_i\}_{i=1}^{\infty}$ seq. of iid rvs from F_X , μ and σ^2 finite and $\lambda =$

finite. Then $\overline{X}_n \xrightarrow{P} \mu$. Proof: Chebyshev's ine-

 $\xrightarrow{d} N(0, h'(E(g(X))^2 Var(g(X))))$

8 Size and Power **Type-I error**: Reject H_0 although in fact true. Econometrics Year 1 Cheat-sheet Julian Budde, Page 2 of 2

 $\mu \leq \mu_0$ against $H_1: \mu > \mu_0$ with size α , because $\sup_{\theta \in \Theta_0, \sigma \in \Gamma} \beta^{1sided}(\theta) \leq \alpha$.

Def (p-value): For any realization T^* , $p^* = \inf\{p \in [0,1]: T^* > c_p\}$. Intuition: smallest α for which we would still reject.

Under H_0 , $p \sim Unif[0,1]$ (require $P(p^* < \alpha) = \alpha$, i.e. want $Pr_\theta(rejectH_0) < \alpha$), but holds $\forall \alpha$. **p-value with simple** H_0 : If F_0 is strictly increasing, $p^* = 1 - F_0(T^*)$ (again: $p_{H_0}Unif[0,1]$). With parametric distributions with multiple parameters (e.g. $N(\mu, \sigma^2)$) usually fix one parameter (e.g. σ^2) resulting in simple test but technically *composite* H_0 .

8.2 Hypothesis Testing and CIs

Test-inversion: Assume test $H_0: \theta = \theta_0$ (note: this is some H_0) and have test s.t. $P_{\theta_0}(rejectH_0) = \alpha$ (size α). Assume can perform for any $\theta_0 \in \Theta$. Then we have $CS = \{\theta_0 \in \Theta : notrejectH_0 : \theta = \theta_0\}$ with $P_{\theta}(\theta \in CS) = 1 - \alpha$ (true θ).

We can also do the reverse: From any CS with coverage rate $1 - \alpha$ can construct size α test as $reject \Leftrightarrow \theta_0 \notin CS$.

Ex. one-sided CI: Testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$ (or $H_0: \mu \leq \mu_0$) for normal case we have $CS = \{\mu_0 \in [\overline{X}_n - \frac{t_1 - a, n - 1}{2} S_n, \infty)\}.$

8.3 Asymptotic Approximations

Asymptotic argument: No parametric model $f_X(x;\theta)$, but, e.g., moments: $H_0: E(X) = \mu$.

 $T \xrightarrow{d} |N(0,1)|$ and we can use $\Phi^{-1}(x)$ to control α asymptotically. In particular, $P(T > z_{1-\alpha/2}) \rightarrow \alpha$ under H_0 .

Hypotheses: Set of distributions \mathcal{P} with $\mathcal{P}_0 \subset \mathcal{P}$ set of distributions consistent with H_0 . **Def 7.7 (Asymptotic power function)**: $\beta^{\alpha}(P) = \lim_{n \to \infty} \beta_n(P)$.

Def 7.8/7.9: test with $\beta^a(P)$ is asymptotic level α if $\sup_{P \in P_0} \beta^a(P) \le \alpha$ (size: equality).

Def 7.10: Test *consistent* against alternative $P \in P_1$ if $\beta^a(P) = 1$.

Example: $\mathcal{P} = \{P : E(X), E(X^2) < \infty\}$ and $\mathcal{P}_0 = \{P : E(X) = 1\} \subset \mathcal{P}$ and $\mathcal{P}_1 : \{P : E(X) \neq 1\} \subset \mathcal{P}$.

Problem: $\beta^a(P)$ might not be informative about finite sample (e.g. $H_0: \mu = \mu_0 + \epsilon$).

Distributions

Normal: $E(X) = \mu$, $Var(X) = \sigma^2$. Sum of two independent Normals is Normal.

MVN: $\sim N(\mu, \Sigma)$. Any linear combinations are Normal.

Normal. **Bernoulli**: $X \sim Bern(p)$, $E(X) = E(X^k) = p$ and

 $\begin{array}{l} Var(X)=p(1-p).\ \hat{p}_{MLE}=\overline{X}_{n}.\\ \textbf{Uniform:}\ X\sim Unif(a,b), F_{X}(x)=\frac{x-a}{b-a}, f_{X}(x)=\\ \frac{1}{b-a},\ E(X)=\frac{1}{2(b-a)},\ Var(X)=\frac{1}{12}(b-a)^{2}.\\ \hat{b}_{MLE}=max\{X_{1},\ldots,X_{n}\}\ (\text{min for a});\ \hat{b}_{MM}=\\ 2\overline{X}_{n}.\\ Uniform\ Order\ Statistics:\ U_{(k)}\sim Beta(k,n+1-k)\\ \text{with}\ E(U_{(k)})=\frac{k}{n+1}.\ \textbf{Exponential:}\ X\sim Expo(\theta) \end{array}$

 θ^2 . $\hat{\theta}_{MLE} = \overline{X}_n$. **Pareto**: $X \sim Pareto(\alpha)$ then $E(X^k)$ only exists if $\alpha > k$. Given that, $E(X) = \frac{\alpha}{\alpha - 1}$ and $Var(X) = \frac{\alpha}{(1-\alpha)^2(\alpha-2)}$. Y = log(X) Expo(α). 20-80 rule: $\alpha = \frac{\ln 5}{\ln 4} \approx 1.16$.

then $E(X^k) = k!\theta^k$, so $E(X) = \theta$ and $Var(X) = \theta$

Poisson: $K \sim Poisson(\lambda)$, $f_K(k) = \frac{\lambda^k \exp^{-\lambda}}{k!}$, $\lambda \in (0, \infty)$, $k \in \mathbb{N}_0$. $\hat{\lambda}_{MLE} = \overline{X}_n$. **t**: If $Y \sim N(0, 1)$ and $Z \sim \chi^2_{n-1}$ and $X \perp \!\!\! \perp Z$ then $\frac{N}{Z} t_{n-1}$.

Cauchy: $X, Y \sim N(0,1)$ with $X \perp Y$, then $\frac{X}{Y}$ *Cauchy*(0,1). Expectation and variance undefined. $X \sim Cauchy(0,1)$ then $X \sim t_1$.