1. Objetivo

Um dos interesses deste estudo reside na investigação, dentro do contexto computacional, de cenários onde os agentes cometem erros durante a execução de algum atividade. Tendo em vista esses erros, eles podem prejudicar a si mesmos como seus colegas. Assim sendo, esse estudo investiga esse cenário por meio de um modelo que incorpora normas (instruções claras que devem ser fornecidas a um agente), violação (ocorre quando um agente descumpri uma norma) e sanção (consequências decorrentes de uma violação desta norma). Não apenas isso, mas nesse cenário há a consideração de que essas questões estão atreladas aos artefatos que são usados pelos agentes. Esses artefatos são objetos passivos que estão sujeitos a influencia da ação dos agentes. Os artefatos são usados para representar objetos como ferramentas e máquinas, por exemplo.

Os pesquisadores consideram, neste estudo, que as violações não estão relacionadas apenas aos artefatos, mas também nas relações entre todas as entidades existentes ao longo do cenário. As entidades compõem todos os elementos ativos (agentes) bem como os elementos passivos (artefatos) vinculados ao meio. Assim sendo, entidade é todo o ente que existe por si mesmo. As condições ambientais onde os agentes e os artefatos estão inseridos também são considerados neste estudo. O entendimento que se tem por condição ambiental consiste em um dado processo que existe no ambiente e que, de certa forma, pode influenciar a execução das atividades dos agentes. Como condições ambientais têm-se por exemplo os seguintes eventos; chuva, sol, vento e neve.

Não é do interesse deste estudo investigar condições normativas cuja caráter punitivo advém de sanções administrativas e jurídicas que ocorre no que tange a decisão de uma certa autoridade. Assim sendo, o modelo resultante deve ser capaz de representar situações onde os agentes sofrem consequências físicas negativas resultantes de uma cadeia de causalidade que foi ocasionada pelo erro de alguém (usando, para isso, o conceito de norma, violação e sanção). Dada essa circunstância, a representação tratada neste estudo deve trabalhar, em sua estrutura interna, o conceito de risco. É digno de nota que o termo risco apresenta um espectro semântico bastante amplo podendo ser usado nos mais diferentes contextos possíveis (ex. risco financeiro de um dado ativo). Por conta disto, é necessário frisar que neste texto o vocábulo risco é usado no mesmo significado atribuído pela comunidade de Engenharia de Segurança.

As relações causais, em muitos casos, são complexas demais para serem mapeadas em seu mínimos detalhes. Por conta disso, muitos estudos realizam uma tratativa probabilística dessas relações. O modelo a que se propõem esse estudo não pretende tratar nenhuma das duas linhas. Para isso, os pesquisadores decidiram por fazer uso do conceito de possibilidade. Essa situação é usada para compreender casos onde um agente sofre consequências negativas por meio de eventos que possuem uma certa natureza aleatória. O cenário neste estudo se restringe apenas aos mundos onde esses eventos ruins (apresentam consequências ruins aos profissionais envolvidos) se tornam possíveis dado ao vacilo de algum profissional em uma atividade anterior.

Muitas atividades praticas são definidas em termos de objetivos. Não apenas isso, mas essa linha é muito bem verificada pela acadêmica científica e está presente em modelos de SMA dos mais diversos, tal como o MOISE. Assim sendo, a representação a que se propõem neste estudo orienta os agentes em termos de objetivos que devem ser atingidos. Um objetivo define um estado de mundo S_g . Assim sendo, se o mundo está um estado S_a

onde $S_a \neq S_g$, os agentes devem fazer o possível para que o estado do mundo seja S_g . Neste estudo, um estado mundo é dado por todos os estados de todas as entidades.

Não é possível definir um agente dentro de uma sociedade sem ao menos definir o seu papel (ou função). Por exemplo, se há o interesse em construir um modelo de *SMA* que seja apropriado para descrever o cenário de um hospital, essa representação pode ser entendida como demasiadamente pobre se não levar em consideração a função do médico. Assim sendo, o modelo presente neste texto deve considerar o papel do agente.

Agentes são máquinas de estado que possuem autonomia para tomar decisões. Em termos genéricos, é possível classificar dois tipos de agentes; reativos e cognitivos. Os agentes reativos apenas reagem a estímulos do meio. A outra classe de agentes são os cognitivos, possuem estados internos e tem a capacidade de realizar raciocínios. O tipo de agente (bem como sua estrutura interna no que diz respeito a tomada de decisões) não faz parte do objeto de estudo desta pesquisa. Assim sendo, o modelo em interesse não delimita o vocabulário para estruturar a concepção do agente propriamente dito.

Neste estudo, os pesquisadores têm interesse em apresentar um vocabulário específico no que tange aos conceitos presentes nesta seção. Esse modelo, portanto, deve ser capaz de representar organizações tais como trabalhadores em uma obra, industrias, profissionais no âmbito hospitalar e estruturas deste gênero entendendo como se dá as violações em âmbitos específicos (falta de ferramentas, não conseguir executar procedimentos apropriados, executar uma atividade cujo momento não era adequado para isso).

A fim de se obter uma estrutura representacional formal com aspecto de especificidade altamente notório, este estudo faz uso da teoria dos modelos (onde os conceitos são escritos em termos de conjuntos) e lógica de predicados (usado para definir as relações entre os conceitos). Não apenas isso, há o interesse em definir regras que tem como por finalidade exprimir a transição de estados possessível de mundo. Assim sendo, essas regras, neste modelo, são definidas em termos de relações de implicabilidade que são delineadas pelas *Cláusulas de Horn*.

Para o propósito aqui posto, se não há infinitas maneiras, há ao menos um numero muito variado de formas para construir um modelo com os objetivos aqui definidos. Contudo, esse texto desbrava ao menos uma das formas de se realizar isso, analisa a abordagem sobre um estudo e define uma comparação com os modelos já existentes dada pela comunidade acadêmica. A análise comparativa é estruturada em termos de; conceitos (verificar quais são similares e quais são diferentes), relações entre os conceitos, capacidade de generalização (quanto mais mundos possíveis o modelo é capaz de descrever, mais genérico o é), capacidade de especificação tendo como referência circunstâncias que correspondem ao presente neste texto introdutório e uma verificação sobre como esses critérios se dão dos modelos em relação a um dado estudo de caso aqui presente.

2. Exemplo - Estudo de Caso

Sete profissionais de linha viva (profissionais que realizam manutenção em equipamentos elétricos energizados) são designados com o propósito de realizar a substituição de um isolador de pedestal. Os papeis desses desses profissionais são; 1 supervisor, 5 executores. A manutenção deve ser executada apenas sobre as seguintes condições: céu ensolarado e umidade relativa do ar menor que 70 porcento. Todos os profissionais devem possuir os EPI's necessários: capacete, óculos de sol, roupa isolante e antichamas,

luvas isolantes e botas isolantes. Os profissionais que entram no potencial devem estar vestidos de roupa condutiva e cabo guarda. As ferramentas necessárias para resolver esse problema são: bastão garra de diâmetro 64 x 3600 mm, sela de diâmetro 65, colar, corda de fibra sintética, carretilha, chave com catraca, bastão universal, soquete adequado, locador de pino e bastão com soquete multiangular. O método selecionado para esse tipo de manutenção é a distância onde o eletricista não acessa diretamente o potencial, mas faz isso por intermédio de um bastão isolante. A substituição do isolador de pedestal pode ser escrita nos seguintes objetivos:

- 1. Limpar, secar e testar corda.
- 2. Instalar Bastão Garra na estrutura com o pedestal a ser substituído.
- 3. Instalar sela com colar na estrutura
- 4. Amarrar o bastão na parte superior da estrutura com a corda.
- 5. Amarrar o olhal do bastão ao cavalo da sela atrás de uma corda.
- 6. Instalar um segundo conjunto bastão e sela no lado oposto da estrutura.
- 7. Enforcar um estropo de Náilon no corpo do isolador.
- 8. Colocar a extremidade do estropo no gancho da corda de serviço.
- 9. Afrouxar os parafusos do conector que prendem a barra ao isolador.
- 10. Terminar de retirar os parafusos com o bastão com o soquete multiangular.
- 11. Elevar a barra através da corda que une a sela ao bastão.
- 12. Apertar o colar através da porca borboleta.
- 13. Segurar firmemente a corda de serviço.
- 14. Sacar parafusos da base da coluna.
- 15. Baixar o isolador ao solo
- 16. Içar o Isolador
- 17. Colocar Parafusos na base da coluna.
- 18. Baixar a barra para que a mesma apoie no novo isolador.
- 19. Colocar os parafusos do conector que prende a barra ao novo isolador.
- 20. Retirar Equipamentos

3. Modelo

O modelo deste estudo é uma linguagem definida em Ω_{model} , onde;

$$\Omega_{model} = \{\Omega_{class}, \Omega_{relation}, \Omega_{rule}\}$$
(1)

O conjunto Ω_{class} é o conjunto que representa os conceitos usados para descrever o domínio de interesse deste modelo. O conjunto $\Omega_{relation}$ contem conjuntos cartesianos de relacionamento $R \subset \{(a,b)|a \in A \land b \in B\}$. Esses conjuntos representam as relações entre os conceitos Ω_{class} . Neste texto faz-se o uso da notação r(a,b) em vez de usar da notação r=(a,b). O conjunto Ω_{rule} contem relações de implicabilidade $x \to y$ que representam as regras do modelo.

3.1. Definição - Ω_{class}

Cada item da lista a seguir corresponde a um subconjunto de Ω_{class} .

- 1. $Entity = \{e_1, ..., e_n\}$ conjunto de todas as Entidades.
- 2. $Agent = \{ag_1, ..., ag_n\}$ conjunto dos Agentes.

- 3. $Artefact = \{at_1, ..., at_n\}$ conjunto dos Artefatos.
- 4. $EntityGoal = eg = \{e_n, ..., e_m\}$ conjunto das Entidades que devem estar presentes para concluir um determinado objetivo g_i .
- 5. $Relation = \{r_1, ..., r_n\}$ conjunto dos Relacionamentos entre as entidades.
- 6. $RelationGoal = rg = \{r_n, ..., r_m\}$ conjunto dos Relacionamentos que devem estar presentes para concluir um determinado objetivo g_i .
- 7. $Role = \{\rho_1, ..., \rho_n\}$ conjunto dos Papeis que um determinado agente pode exercer no grupo onde é um participante.
- 8. $Goal = \{g_1, ..., g_n\}$ conjunto dos Objetivos que devem ser alcançados pelos demais agentes.
- 9. $Condition = \{c_1, ..., c_n\}$ conjunto das Condições que devem ser mantidas ao longo da execução dos objetivos (ex. o dia deve está ensolarado para que a manutenção ocorra).
- 10. $ConditionGoal = cg = \{c_n, ..., c_m\}$ conjunto de condições que devem ser mantidas para concluir um determinado objetivo g_i .
- 11. $Risk = \{risk_1, ..., risk_n\}$ conjunto dos Riscos na ocorrência de Eventos Ruins.
- 12. $Possibility = \{false, true\}$ conjunto das possibilidades de Eventos Ruins.
- 13. $Fatality = \{f_1, ..., f_n\}$ conjunto das fatalidades que acontecem na existência de um evento ruim.
- 14. $agg = \{ag_n, ..., ag_m\}$ agentes que atingiram um determinado objetivo.
- 15. $ago = \{ag_n, ..., ag_m\}$ agentes que atingiram um determinado objetivo e eram obrigados a isso.

A lista a seguir apresenta as relações clássicas definidas pela teoria dos conjuntos, cujas quais são; \cap , \equiv , \subset , \cup

- 1. $Entity \equiv Agent \cup Artefact$
- 2. $Agent \cap Artefact = \emptyset$.
- 3. $agg \subset Agent$
- 4. $ago \subset Agent$
- 5. $\{agg_1, ..., agg_n\} \subset Agent$
- 6. $GoalPrerequisite \subset Goal$
- 7. $ConditionGoal \subset Condition$
- 8. $EntityGoal \subset Entity$
- 9. $RelationGoal \subset Relation$

3.2. Definição dos Predicados - $\Omega_{relation}$

Os subconjuntos de $\Omega_{relation}$ são dados pelos itens da lista a seguir;

- 1. $relationHas(r_l, e_i, e_k)$ onde $i \neq j$ Um relacionamento r_l é composto por uma entidade e_i e e_k onde e_i não pode ser igual a e_j .
- 2. $hasRole(ag_n, \rho_m)$ Um agente ag_n tem um papel ρ_m .
- 3. $hasObligation(\rho_m, g_j)$ Quem assume o papel ρ_m é obrigado a concluir o objetivo g_j .
- 4. $hasPermission(\rho_m, g_j)$ Quem assume o papel ρ_m tem a permissão de concluir o objetivo g_j .
- 5. $isReached(g_k)$ O objetivo g_k foi alcançado.

- 6. $stopIn(g_n, agg_m)$ Para pelo menos um dos agentes que constituem o conjunto agg_m o objetivo g_n foi encerrado.
- 7. $stopIn(g_n)$ A atividade como um todo teve de ser finalizada em g_n .
- 8. $nextGoal(g_i, g_j)$ Quando o objetivo g_i é alcançado, o agente deve ir para o próximo objetivo g_j .
- 9. $hasCondition(g_i, cg_n)$ Um objetivo do tipo g_i possui certas condições c que deve estar presentes e devem se manter durante toda execução deste objetivo. Essas condições c devem estar contidas em cg_n .
- 10. $hasEntity(g_i, eg_m)$ Um objetivo g_i tem um conjunto de entidades eg_m onde todas as entidades presentes neste conjunto devem estar presentes no momento da execução desse objetivo.
- 11. $hasRelation(g_i, rg_n)$ Um objetivo g_i tem um conjunto de relacionamentos rg_n onde todos esses relacionamentos devem ser feito para que este objetivo seja concluído.
- 12. $isPresent(X), X = cg_n, c_k, rg_k, r_k, eg_k, e_k$ Define se X está presente no instante em análise, sendo que X pode ser $cg_n, c_k, rg_k, r_k, eg_k, e_k$.
- 13. $tryReach(ag_i, g_j)$ Um determinado agente ag_i tenta alcançar o objetivo g_j . Para o agente tentar alcançar um dado objetivo, o papel dele ao menos deve ter permissão para isso.
- 14. $violationCondition(ag_i, g_j, c_k)$ Um determinado agente ag_i comete uma violação de condição no objetivo g_i sobre a condição c_k .
- 15. $violationRelation(ag_i, g_j, r_k)$ O agente ag_i comete uma violação de Relacionamento no objetivo g_j por não realizar o relacionamento r_k .
- 16. $violationEntity(ag_i, g_j, e_k)$ O agente ag_i comete uma violação de Entidade no objetivo g_i por tentar alcançar esse objetivo sem ter a entidade e_k presente.
- 17. $hasRisk(X, risk_j, f_m), X = c_k, r_k X$ está associada a um risco $risk_k$ com uma certa fatalidade f_m . Esse X pode ser uma condição c_k ou um relacionamento r_k .
- 18. $consequenceOfBadEvent(g_k, ag_i, risk_j, f_m)$ Agente ag sofre as consequências do risco $risk_j$ com a fatalidade f_m
- 19. $hasPossibility(r_l, p_m)$ Possibilidade p_m do evento r_l gerar alguma consequência ruim, mesmo que os profissionais desenvolvam a atividade com perfeição sobre o ponto de vista técnico e de segurança. A possibilidade p_m pode assumir apenas dois valores; true, false, ou seja ou essa possibilidade existe ou não existe.
- 20. $affects(r_k, r_n)$ Se uma relação r_k não for feita, ou se essa relação for mal feita, então ela afeta negativamente alguma outra relação r_n com a possibilidade de algo errado inicialmente dado por false ser mudado para true.
- 21. $happensBadEvent(r_m)$ Acontece o evento ruim em uma dada relação r_m .
- 22. $lastGoal(g_i, \rho_m)$ é o ultimo objetivo g_i associado a um certo papel ρ_m .

3.3. Definição das Regras - Ω_{rule}

Cada relação de implicabilidade a seguir é uma regra do modelo que faz parte do conjunto Ω_{rule} .

$$hasObligation(\rho_m, g_i) \rightarrow hasPermission(\rho_m, g_i)$$
 (2)

$$hasCondition(g_i, cg_n) \land \neg isPresent(c_k) \land (c_k \in cg_n) \land tryReach(ag_m, g_i) \rightarrow violationCondition(ag_m, g_i, c_k)$$
 (3)

$$hasRelation(g_i, rg_n) \land \neg isPresent(r_k) \land (r_k \in rg_n) \land tryReach(ag_m, g_i) \rightarrow violationRelation(ag_m, g_i, r_k)$$
 (4)

$$hasEntity(g_i, eg_n) \land \neg isPresent(e_k) \land (e_k \in eg_n) \land tryReach(ag_m, g_i) \rightarrow violationEntity(ag_m, g_i, e_k)$$
 (5)

$$violationCondition(ag_m, g_i, c_k) \wedge hasRisk(c_k, risk_j, f_m) \rightarrow consequenceOfBadEvent(g_i, ag_m, risk_j, f_m)$$

$$(6)$$

$$violationRelation(ag_m, g_i, r_k) \land hasRisk(r_k, risk_j, f_m) \rightarrow consequenceOfBadEvent(g_i, ag_m, risk_j, f_m)$$
 (7)

$$violationRelation(ag_m, g_i, r_k) \land affects(r_k, r_n) \land hasPossibility(r_n, false) \rightarrow hasPossibility(r_n, true)$$
 (8)

$$violationEntity(ag_m, g_i, e_k) \to stopIn(g_i)$$
 (9)

$$hasPossibility(r_k, true) \land happensBadEvent(r_k) \land hasRelation(g_i, rg_n) \land (r_k \subset rg_n)$$
$$\land hasRisk(r_k, risk_j, f_m) \land tryReach(ag_m, g_i)$$
$$\rightarrow consequenceOfBadEvent(g_i, ag_m, risk_j, f_m)$$

$$(10)$$

$$consequenceOfBadEvent(g_k, ag_m, risk_j, f_m) \rightarrow stopIn(g_k)$$
 (11)

$$\neg stopIn(g_k, agg_n) \land (ago_n \subset agg_n) \rightarrow isReached(g_k)$$
 (12)

$$hasRole(ag_n, \rho_m) \wedge hasPermission(\rho_m, g_j) \wedge nextGoal(g_i, g_j) \wedge isReached(g_i)$$

$$\rightarrow tryReach(ag_n, g_j)$$
(13)

$$hasRole(ag_n, \rho_m) \wedge hasPermission(\rho_m, g_i) \wedge lastGoal(g_i, \rho_m) \wedge isReached(g_i)$$

$$\rightarrow stopIn(g_i)$$
(14)

3.4. Definindo Conceitos de Norma, Violação e de Sanção

Sistemas multiagentes normativas não podem ser descritos sem considerar três conceitos importantes; norma, violação e sanção.

- 1. **Norma**: Usado para determinar o comportamento dos agentes.
- 2. Violação: Ocorre quando o agente não cumpre com uma norma.
- 3. **Sanção**: Consequências punitivas que acontecem ao agente dada a ocorrência de uma violação.

Essas definições são usadas em diversos estudos na área de sistemas mul-[López y López and Luck 2004] [Dastani et al. 2009], [Boissier 2011], e [von Wright 1969]. Nesse estudo, a violação é tratada nos predi $violationRelation(ag_i, g_j, r_k)$ cados $violationCondition(ag_i, g_i, c_k),$ $violationEntity(ag_i, g_i, e_k)$. Usando a mesma sistemática de regras adotada em [Dastani et al. 2009], as relações 3, 4,5 define as condições necessárias para que uma violação venha a acontecer. Ainda dentro da abordagem apresentada em [Dastani et al. 2009], as relações 6, 7 são sanções. Isso, pois definem consequências negativas aos agentes tendo em vista a ocorrência da violação.

3.5. Justificando a Existência das Regras

3.5.1. Regra 2

Se uma gente é obrigado a fazer algo, então esse agente deve ter a permissão para isso. Caso contrário, por um impedimento sistemico, um agente nunca conseguirá cumprir com aquilo a que ele é obrigado a fazer. Essa é a finalidade da regra 2, onde uma obrigação implica necessariamente em uma permissão. Outros modelos adotam uma abordagem similar a essa [Hübner et al. 2002].

3.5.2. Regra 3

Representar condições que devem ser mantidas ao longo de toda a execução da atividade bem como as consequências de praticar uma determinada atividade dado a ausência de pelo menos uma das condições é um aspecto sobre o qual este modelo se propõem a representar. Para definir a ocorrência da violação se faz necessário saber quais são as condições vinculadas ao objetivo. Caso contrário não é possível identificar quais condições devem ser mantidas ao longo da tentativa de se alcançar um objetivo. Por consequência, não é possível realizar qualquer afirmação feita sobre essas condições. A consideração dessas relações acontece por meio predicado $hasCondition(g_i, cg_n)$.

Outro aspecto relevante consiste saber se a condição necessária está presente na tentativa do agente alcançar um dado objetivo. Assim sendo, é necessário a presença do predicado $isPresent(c_k)$. O negado de $isPresent(c_k)$ define que uma dada condição c_k não está presente. Ainda sim, $hasCondition(g_i, cg_n)$, $isPresent(c_k)$ não são suficientes, pois cg_n é um conjunto e c_k é um elemento que pode ou não pertencer ao conjunto cg_n . Portanto, é necessário considerar se c_k pertence a cg_n e isso é feito através de $c_k \in cg_n$.

Os predicados considerados até o momento são necessários, porém não são suficientes. Isso, pois apenas com eles não é possível definir qual é a situação do agente em relação ao objetivo. Por exemplo, é possível considerar um cenário onde pelo menos uma das condições necessárias para atingir o objetivo não está presente. Contudo, não é razoável, considerando o conceito de violação de condição empregado neste estudo, afirmar que o agente cometeu uma violação de condição sobre esse cenário sendo que não há informação sobre a situação da tentativa do agente alcançar o objetivo. Assim sendo, se o agente tentar alcançar o objetivo mesmo com pelo menos uma condição inexistente, então esse agente cometeu uma violação de condição, contudo se o agente não tentou alcançar o objetivo em análise então ele não cometeu violação alguma. Então, a informação no que diz respeito ao gente deve ser considerada nessa relação de implicabilidade e isso acontece por meio do predicado $tryReach(ag_m,g_i)$.

3.5.3. Regra 4

Para levar em consideração violações sobre se o agente sabe ou não manipular algum tipo de relação, se faz necessário buscar por relações de implicabilidade que verificam as seguintes circunstâncias: relações que devem ser feitas para que um determinado objetivo possa ser atingido $hasRelation(g_i, rg)$, se a relação em análise é uma relação que pertence a todas as relações necessárias para findar esse objetivo $r_k \in rg_g$, verificar se a relação em análise está presente quando o agente realiza a atividade $isPresent(r_k)$ e levar em consideração o ato do agente tentar executar a atividade $tryReach(ag_m, g_i)$. A violação acontece quando, na reunião de todas essas circunstâncias, uma das relações não se faz presente $\neg isPresent(r_k)$. Para essa situação, $violagionRelation(ag_m, g_i, r_k)$ tem que ser verdadeiro.

Considerando que uma violação de relacionamento acontece quando um agente tenta alcançar um objetivo sem realizar um ou mais dos relacionamentos necessários para que esse objetivo seja satisfeito com sucesso, é possível avaliar a necessidade das circunstâncias presentes na relação de implicabilidade deste modelo por analisar o que

acontece na ausência de cada uma delas. Seguindo por essa linha, supondo uma situação onde não se verifica as relações relevantes para um objetivo, logo não é possível dizer se a ausência de uma violação em específico é relevante para o objetivo em análise. Assim sendo, não é possível afirmar quando acontece uma determinada violação.

Supondo uma situação onde não se verifica as relações que foram concluídas durante o ato da manutenção. Neste cenário é possível saber quais relações são necessárias para alcançar um determinado objetivo, mas deste conjunto não é possível definir qual dessas relações foram alcançadas. Se não se sabe afirmar qual das relações um agente conseguiu realizar, não se sabe qual dessas relações um agente deixou de fazer. Não sabendo esta ultima, não se sabe se ocorreu uma violação dessa relação. Assim sendo, só é possível afirmar algo sobre a ocorrência de uma violação de relação se for possível analisar se as relações necessárias para um dado objetivo foram ou não cumpridas.

Supondo uma situação onde não se verificar se um agente tentou realizar o objetivo. Nesta situação não é possível analisar quem cometeu a violação. Além disso não é possível considerar se a presença ou a ausência das relações são relevantes ou não para alcançar o objetivo, pois não se pode localizar a ocorrência dessas relações nos momentos onde elas devem acontecer (que é quando o agente tenta alcançar o objetivo dessas relações).

3.5.4. Regra 5

Para verificar violações onde um agente tenta executar um determinado procedimento sem ter todas entidades (ex. ferramentas, colegas) requisitadas, é necessário construir uma expressão de implicabilidade que considera quais são as entidades importantes para a execução do objetivo $hasEntity(g_i, eg_n)$, considere quais as entidades que estão presentes no ambiente durante o ato da execução $isPresent(e_k), e \in eg_n$ e que considere se um agente tentou alcançar o objetivo $tryReach(ag_m, g_i, e_k)$.

Se uma violação de entidade é definida como sendo a tentativa de um agente alcançar um determinado objetivo sem ter todas as entidades para isso, então é possível verificar a necessidade de todas as circunstâncias por analisar o que acontece na ausência delas. Supondo não ser possível verificar quais entidades são necessárias para alcançar um determinado objetivo. Então não é possível afirmar quais entidades devem estar presentes durante a tentativa do agente em alcançar um determinado objetivo. Por consequência, também não é possível identificar quais entidades estão ausentes logo, neste caso não é possível fazer qualquer afirmação sobre presença ou ausência sobre violação por ausência de uma entidade.

Supondo não ser possível afirmar sobre a presença de uma entidade necessária para conclusão de um determinado objetivo. Assim sendo, também não é possível realizar qualquer afirmação sobre uma violação deste gênero.

Suponto não ser possível definir se um agente tentou ou não alcançar um dado objetivo. Então também não é possível saber se a entidade estava presente no momento em que deve estar presente. Como consequência disto, não é possível fazer nenhuma afirmação sobre essa violação.

3.5.5. Regras 6 e 7

O propósito da relação 6 consiste representar uma sanção sobre ocorrência de uma violação de condição. Uma violação dessa natureza pode gerar consequências decorrentes do risco pelo qual o profissional estava sendo submetido. Isso envolve situações como; queimaduras,lesões,fraturas e morte. Esse modelo considera essas consequências como sanção por violar uma determinada norma. Assim sendo, uma relação de implicabilidade que tem como por comprometimento representar uma sanção desta natureza deve considerar os riscos, fatalidade e o elemento causador desta situação. Decorrente disso, o predicado $hasRisk(c_k, risk_j, f_m)$ representa as relações entre a condição faltante, a natureza do risco e o grau de fatalidade associado. O predicado $consequenceOfBadEvent(g_i, ag_m, risk_j, f_m)$ define que o evento ruim realmente aconteceu sobre esse agente.

A relação 7 se enquadra na mesma natureza. Contudo, em vez de considerar uma violação de condição, a relação 7 considera violações do tipo de relacionamento. Essa relação é necessária pois visa representar as consequências negativas de não se fazer um relacionamento necessário para a manutenção.

3.5.6. Regra 8

Uma das finalidades deste modelo consiste representar o seguinte cenário: agente A comete um erro, contudo as consequências ocorrem apenas um tempo depois sobre o agente B. Esse modelo considerou a violação de relacionamento como causa deste tipo de situação pois no caso em estudo foi possível identificar certas relações que se não forem feitas não geram consequenciais de imediato para os profissionais envolvidos no meio, contudo alguém pode sair prejudicado em etapas futuras da atividade.

Por exemplo, um ambiente hipotético onde um eletricista deve medir a condutividade de um bastão universal é uma situação que pode exemplificar a aplicação desta relação. Se o eletricista não realizar a relação entre a entidade condutímetro com a entidade bastão universal, nenhum profissional sai prejudicado de imediato. Contudo, se o bastão estiver com isolamento comprometido, o agente que for manipular a ferramenta poderá ser submetido a uma corrente elétrica elevadíssima gerando morte do indivíduo.

Essa situação pode ser tratada por considerar uma possibilidade p sobre uma dada relação r_n . Se p é false, então a ocorrência de um evento ruim só se torna realidade se o agente cometer alguma ação que resulte nisso. Contudo, se p é true, então existe a possibilidade de ocorrer um evento ruim vinculado a r_n mesmo que o agente execute o relacionamento com a mais alta maestria.

Para representar esse tipo de situação que se faz necessário a existência da regra 8. Neste caso, como a situação é decorrente de uma violação de relacionamento, se faz necessário usar o predicado $violationRelation(ag_m, g_i, r_k)$. Além disso, é necessário considerar quais relacionamentos são afetados por r_k por isso a necessidade do predicado $affects(r_k, r_n, p)$. Por último, se faz necessário avaliar um predicado que vincula o relacionamento afetado r_n com a possibilidade p, sendo isso feito por $hasPossibility(r_n, p)$.

3.5.7. Regra 9

Como a conclusão de um determinado objetivo acontece em função de certas entidades, a ocorrência da uma violação de entidade resulta, necessariamente, em uma impossibilidade de alcançar o objetivo em análise. Logo, a manutenção como um todo fica inviabilizada de ser concluída. É possível considerar um cenário onde os agentes adaptam outras entidades para sanar a entidade faltante. Contudo, o modelo proposto neste texto não trata esse tipo de situação com a finalidade de evitar maiores complexidades. Para uma relação de implicabilidade que tem como por finalidade representar esse tipo de situação, deve necessariamente considerar a ocorrência da violação $violationEntity(ag_m, g_i, e_k)$ e representar o encerramento da atividade, representado pelo predicado $stopIn(g_i)$.

3.5.8. Regra 10

Dada a ocorrência de uma violação de relacionamento que resulte na regra 8, um dado relacionamento r_n passa a ter uma possibilidade da ocorrência de um evento ruim mesmo que o agente execute r_n com a mais alta maestria tanto sobre a perspectiva técnica como sobre a perspectiva de segurança. Assim sendo, a regra 10 tem a finalidade de representar as situações onde, sobre essa possibilidade, um evento ruim $happensBadEvent(g_n, r_n, ag_k)$ se torna verdade.

Como o evento ruim consiste nos riscos vinculados ao relacionamento r_n , deve estar contido na regra necessariamente o predicado $hasRisk(r_n, risk_j, f_m)$, caso contrário não tem como saber qual risco, qual fatalidade afeta o agente ag_k . Dentro desta perspectiva, também é necessário saber se o agente estava tentando executar o objetivo onde o relacionamento deve ser levado em consideração ao executar o procedimento de manutenção. Além disso, é necessário saber se o agente estava tentando alcançar o objetivo no instante que o evento ruim acontece, isso é feito por meio do predicado $tryReach(ag_m,g_i)$. O predicado $consequenceOfBadEvent(g_i,ag_m,risk_j,f_m)$ demonstra que o evento realmente aconteceu e afetou o agente de certa forma com certa intensidade.

3.5.9. Regra 11

Na ocorrência de um acidente sério os agentes não continuam a trabalhar. Assim sendo, é necessário considerar uma relação de implicabilidade onde a ocorrência de um evento ruim gera interrupção das atividades profissionais.

3.5.10. Regra 42

O modelo deve considerar a condição de quando objetivo é definitivamente alcançado, caso contrário os agentes não serão capaz de cumprir com os próximos objetivos para os quais foram designados. Para construir esse critério é necessário considerar se não houve interrupção para todos os agentes que tentaram alcançar o objetivo. Isso é feito por meio do predicado $\neg stopIn(g_k, agg_n)$. Não só isso como é necessário considerar se todos os

agentes que são obrigados a alcançar o objetivo realmente tentaram fazer isso. Assim sendo, é necessário considerar se ago_n está contido em agg_n .

3.6. Diagramas que Representam o Modelo

A figura dada por 1 apresenta a estrutura do modelo em formato de diagrama de classes.

Figura 1.

A figura 2 apresenta um diagrama de estados do modelo.

Figura 2.

3.7. Modelando

Essa subseção tem como por finalidade especificar o estudo de caso em interesse dentro da estrutura deste modelo.

A tabela 1 apresenta todos os agentes que fazem parte da manutenção. A tabela 2 apresenta todas as funções que deverão ser exercidas pelos agentes. A tabela 3 define a relação $hasRole(ag_n,\rho_m)$ onde ag_n é representado pela coluna agente e ρ_m é representado pela coluna papel.

símbolo	significado
agente1	Um dos agentes participantes da manutenção
agente2	Um dos agentes participantes da manutenção
agente3	Um dos agentes participantes da manutenção
agente4	Um dos agentes participantes da manutenção
agente5	Um dos agentes participantes da manutenção
agente6	Um dos agentes participantes da manutenção
agente7	Um dos agentes participantes da manutenção

Tabela 1. Os agentes que constituem uma manutenção

papel	descrição
supervisor	Atribui papel a outros profissionais
executor1	Tem como por finalidade executar certas atividades manuais vinculadas a manutenção
executor2	Tem como por finalidade executar certas atividades manuais vinculadas a manutenção
executor3	Tem como por finalidade executar certas atividades manuais vinculadas a manutenção
executor4	Tem como por finalidade executar certas atividades manuais vinculadas a manutenção
executor5	Tem como por finalidade executar certas atividades manuais vinculadas a manutenção

Tabela 2. Os papeis relevantes para a ocorrência da manutenção

agente	papel
agente1	supervisor
agente2	executor1
agente3	executor1
agente4	executor2
agente5	executor3
agente6	executor4
agente7	executor5

Tabela 3. Relação $hasRole(ag_n, \rho_m)$

A tabela 4 apresenta todos artefatos que fazem parte da descrição deste estudo de caso. Todos esses artefatos, em conjunto com os agentes, constituem todas as entidades definidas pelo modelo para este estudo de caso.

artefato	descrição
capacete	EPI usado pelo profissional para proteger a cabeça
óculos	Óculos usado para evitar dificuldades de enxergar presentes em dias claros
roupagem	Consiste em roupas isolantes e anti-chamas
luva	Luvas Isolantes
bota	Botas Isolantes para evitar que o profissional seja eletrocutado
bastaoGarra	bastão isolante que possui uma ferramenta em estrutura de garra. 64 X 3600 mm
sela	Possui diâmetro 65 mm, é fixada na torre para sustentar o bastão.
colar	Estrutura que fica fixa na sela, bastão isolante é travado no colar.
corda	Corda Isolante.
carretilha	Carretilha que, em conjunto com a corda, é usada para mover material na vertical.
bastaoUniversal	Bastão isolante que permite o acoplamento de múltiplas ferramentas.
soquete	Usado na manipulação de parafusos.
locador	Usado como pino direcional em alinhamento de furo de parafusos, auxiliado na inserção
	de pinos e parafusos.
bastaoGarra	Bastão Universal que possui uma garra.
isoladorVelho	Isolador de pedestal danificado a ser substituído
isoladorNovo	Isolador de pedestal novo que será posicionado no local do isolador velho.
torre	Estrutura metálica onde fica fixo o isolador
condutor	Em formato de cabo, fica fixo sobre o topo do isolador.e é por onde passa grandes quan-
	tidades de energia elétrica.
estropo	pano firme usado para segurar Isolador quando estiver suspenso
pano	pano usado para limpar ferramentas
glicerina	substância usada para limpar as ferramentas adequadamente
condutímetro	Medidor de corrente de fuga sobre o bastão universal.
parafuso	Parafusos prendem o conector condutor-Isolador e também prendem o Isolador a base
conector	Estrutura que tem como por finalidade manter condutor, cabeçote do isolador em conjunto.

Tabela 4. Definindo todos os artefatos presentes na manutenção

A tabela 5 apresenta os objetivos dados pela coluna objetivo bem com sua descrição. Essa tabela também apresenta os conjuntos gp_i dado pela coluna pré-requisitos. Assim sendo, essa tabela também apresenta a relação entre os objetivos e seus respectivos pré-requisitos, ou seja, a relação $isPresentRequisite(gp_i,g_j)$.

objetivo	pré-requisito	Descrição
gSupervisor	g0	Atribui objetivos aos demais agentes.
g0	Ø	Vestir os AP'Is
g1	gSupervisor	Limpar, secar e testar ferramentas com material isolante.
g2	g1	Medir a corrente de fuga de ferramentas isolantes
g3	g2	Instalar sela com colar na estrutura
g4	g3	Passar o bastão garra por dentro do olhal do colar.
g5	g4	Amarrar o bastão garra na parte superior da estrutura com a corda,
		fixar no condutor
g6	gSupervisor	Amarrar o olhal do bastão garra ao cavalo da sela atrás de uma
		corda.
g7	g6	Instalar sela com colar no outro lado da estrutura estrutura
g8	g7	Passar o bastão universal por dentro do olhal do colar
g9	g8	Pender carretilha no bastão Universal.
g10	g9	Amarrar o bastão universal na parte superior da estrutura com a
		corda;
g11	g10	Amarrar o olhal do bastão universal ao cavalo da sela atrás de uma
		corda.
g12	g11,g5	Rotacionar estrutura olhal garra em 45 graus.
g13	g12	Enforcar um estropo de Náilon no corpo do isolador velho.
g14	g13	Colocar a extremidade do estropo no gancho da corda de serviço.
g15	g14	Afrouxar os parafusos do conector que prendem a barra ao isolador.
g16	g15	Terminar de retirar os parafusos com o bastão com o soquete mul-
		tiangular.
g17	g16	Elevar o condutor através da corda que une a sela ao bastão.
g18	g17	Apertar o colar através da porca borboleta.
g19	g18	Sacar parafusos da base da coluna.
g20	g19	Segurar firmemente a corda de serviço,baixar o isolador ao solo
g21	g20	Passar Estropo no Isolador Novo
g22	g21	Colocar a extremidade do estropo no gancho da corda de serviço.
g23	g22	Içar o Isolador
g24	g23	Colocar Parafusos na base da coluna.
g25	g24	Baixar o condutor para que a mesma se sustente no novo isolador.
g26	g25	Colocar os parafusos do conector que prende a barra ao novo isola-
		dor.
g27	g26	Retirar Equipamentos

Tabela 5. Define e descreve os objetivos bem como os respectivos pré-requisitos

A tabela 6 apresenta c_k dado pela coluna condição e pela coluna descrição. Essa tabela define a relação $hasRisk(c_k, risk_j, f_m)$ onde $risk_j$ é descrito pela coluna risco e f_m é descrito pela coluna fatalidade.

condição	descrição	risco	fatalidade
umidade70	Umidade Relativa do Ar deve ser inferior a setenta porcento.	eletrocutado	morte
noVento	Não deve haver vento durante os procedimentos de manutenção.	eletrocutado	morte
noChuva	Não deve haver chuva durante o ato da manutenção	eletrocutado	morte
sol	O dia deve estar ensolarado	eletrocutado	morte

Tabela 6. Define as condições necessárias para que a manutenção tenha possibilidade de acontecer

A tabela 8 apresenta três relações onde uma delas é $relationHas(r_l,e_i,e_k)$ onde r_l é definido pela coluna relacionamento, e_i e e_k pelas entidades envolvidas. A outra relação é dada por $hasRisk(r_k,risk_j,f_m)$ onde $risk_j$ é dado pela

coluna risco e f_m é dado pela coluna fatalidade. A terceira relação é dada por $hasPossibility(gr_n,p_m)$. X é uma variável que pode assumir os seguintes valores agente1, agente2, agente3, agente4, agente5, agente6 e agente7. Por exemplo, a primeira linha da tabela 8 é;

$$relXCapacete | X, capacete | nenhum | nenhum | false$$
 (15)

Substituindo o X pelos valores, é possível obter todas essas relações;

 $rel Agente 1 Capacete | Agente 1, capacete | nenhum | nenhum | false \\ rel Agente 2 Capacete | Agente 2, capacete | nenhum | nenhum | false \\ rel Agente 3 Capacete | Agente 3, capacete | nenhum | nenhum | false \\ rel Agente 4 Capacete | Agente 4, capacete | nenhum | nenhum | false \\ rel Agente 5 Capacete | Agente 5, capacete | nenhum | nenhum | false \\ rel Agente 6 Capacete | Agente 6, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7, capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | Agente 7 Capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | nenhum | nenhum | nenhum | false \\ rel Agente 7 Capacete | nenhum | nenhum | false \\ rel Agente 7 Capacete | nenhum | nenhu$

(16)

relacionamento	entidades envolvidas	risco	fatalidade	possibilidade
relXCapacete	X,capacete	nenhum	nenhum	false
relXOculos	X,oculos	nenhum	nenhum	false
relXRoupagem	X,roupagem	nenhum	nenhum	false
relXLuva	X,luva	nenhum	nenhum	false
relXBotas	X,bota	nenhum	nenhum	false
relXPano	X,pano	nenhum	nenhum	false
relPanoGlicerina	pano,glicerina	nenhum	nenhum	false
relPanoCorda	pano,corda	nenhum	nenhum	false
relPanoBastoaUniversal	pano,bastaoUniversal	nenhum	nenhum	false
relPanoSoquete	pano,soquete	nenhum	nenhum	false
relPanoBastaoUniversal	pano,bastaoGarra	nenhum	nenhum	false
relXSela	X,sela	nenhum	nenhum	false
relXColar	X,colar	nenhum	nenhum	false
relXBastaoGarra	X,bastaoGarra	nenhum	nenhum	false
relTorreSela	torre,sela	nenhum	nenhum	false
relSelaColar	sela,colar	nenhum	nenhum	false
relColarBastaoGarra	colar,bastaoGarra	nenhum	nenhum	false
relBastaoGarraCondutor	bastaoGarra,condutor	eletrocutado	morte	false
relXBastaoUniversal	X,bastaoUniversal	nenhum	nenhum	false
relCordaBastaoUniversal	corda,bastaoUniversal	nenhum	nenhum	false
relCordaCarretilha	corda,carretilha	nenhum	nenhum	false
relBastaoUniversalCarretilha	bastaoUniversal,carretilha	nenhum	nenhum	false
relBastaoUniversalColar	bastaoUniversal,colar	nenhum	nenhum	false
relBastaoUniversalEstopo	bastaoUniversal,estopo	nenhum	nenhum	false

Tabela 7. Define os relacionamentos necessários que a manutenção aconteça

relacionamento	entidades envolvidas	risco	fatalidade	possibilidade
relCordaEstropo	corda,estropo	eletrocutado	morte	false
relEstropoIsoladorVelho	estropo,isoladorVelho	nenhum	nenhum	false
relXChaveCatraca	X,chaveCatraca	nenhum	nenhum	false
relChaveCatracaBastaoUniversal	chaveCatraca,bastaoUniversal	nenhum	nenhum	false
relChaveCatracaParafuso	chaveCatraca,parafuso	eletrocutado	morte	false
relParafusoConector	parafuso,conector	eletrocutado	morte	false
relXBastaoSoquete	X,bastaoSoquete	nenhum	nenhum	false
relSoqueteParafuso	soquete,parafuso	eletrocutado	morte	false
relXCorda	X,corda	eletrocutado	morte	false
relXIsoladorVelho	X,isoladorVelho	nenhum	nenhum	false
relXIsoladorNovo	X,isoladorNovo	nenhum	nenhum	false
relCordaBastaoGarra	corda,bastaoGarra	nenhum	nenhum	false
relBastaoGarraSela	bastaoGarra, sela	nenhum	nenhum	false
relXCarretilha	X,carretilha	nenhum	nenhum	false
relBastaoUniversalCorda	bastaoUniversal,corda	nenhum	nenhum	false
relBastaoUniversalTorre	bastaoUniversal,torre	nenhum	nenhum	false
relEstropoCorda	estropo,corda	eletrocutado	morte	false
relEstropoIsoladorNovo	estropo,isoladorNovo	nenhum	nenhum	false
relBastaoUniversalSela	universal,sela	nenhum	nenhum	false
relBastaoGarraTorre	bastaoGarra,torre	nenhum	nenhum	false
relBastaoUniversalEstropo	bastaoUniversal,estropo	nenhum	nenhum	false
relXColar	X,colar	nenhum	nenhum	false
relParafusoTorre	parafuso,torre	eletrocutado	morte	false
relCondutivimetroCorda	condutímetro,corda	nenhum	nenhum	false
relCondutivimetroBastaoUniversal	condutímetro,bastaoUniversal	nenhum	nenhum	false
relCondutivimetroBastaoGarra	condutímetro,bastaoGarra	nenhum	nenhum	false
relCondutivimetroSoquete	condutímetro, soquete	nenhum	nenhum	false

Tabela 8. Define os relacionamentos necessários que a manutenção aconteça

As tabelas 9 e 10 apresentam a relação $affects(r_k,r_n)$ onde r_k é representado pela coluna relacionamento-errado e r_n é representado pela coluna relacionamento-afetado. A coluna nova possibilidade de algo errado tem como por finalidade representar que a possibilidade de ocorrer algum evento ruim atrelado ao relacionamento-afetado mudou de false para true.

relacionamento-errado	relacionamento-afetado	nova possibilidade de algo errado
relXCapacete	relBastaoGarraCondutor	true
relXCapacete	relCordaEstropo	true
relXCapacete	relChaveCatracaParafuso	true
relXCapacete	relParafusoConector	true
relXCapacete	relSoqueteParafuso	true
relXCapacete	relXCorda	true
relXCapacete	relEstropoCorda	true
relXCapacete	relParafusoTorre	true
relXOculos	relBastaoGarraCondutor	true
relXOculos	relCordaEstropo	true
relXOculos	relChaveCatracaParafuso	true
relXOculos	relParafusoConector	true
relXOculos	relSoqueteParafuso	true
relXOculos	relXCorda	true
relXOculos	relEstropoCorda	true
relXOculos	relParafusoTorre	true
relXLuva	relBastaoGarraCondutor	true
relXLuva	relCordaEstropo	true
relXLuva	relChaveCatracaParafuso	true
relXLuva	relParafusoConector	true
relXLuva	relSoqueteParafuso	true
relXLuva	relXCorda	true
relXLuva	relEstropoCorda	true
relXLuva	relParafusoTorre	true
relXBotas	relBastaoGarraCondutor	true
relXBotas	relCordaEstropo	true
relXBotas	relChaveCatracaParafuso	true
relXBotas	relParafusoConector	true
relXBotas	relSoqueteParafuso	true
relXBotas	relXCorda	true
relXBotas	relEstropoCorda	true
relXBotas	relParafusoTorre	true
relXPano	relBastaoGarraCondutor	true
relXPano	relCordaEstropo	true
relXPano	relChaveCatracaParafuso	true
relXPano	relParafusoConector	true
relXPano	relSoqueteParafuso	true
relXPano	relXCorda	true
relXPano	relEstropoCorda	true
relXPano	relParafusoTorre	true
relPanoGlicerina	relBastaoGarraCondutor	true
relPanoGlicerina	relCordaEstropo	true
relPanoGlicerina	relChaveCatracaParafuso	true
relPanoGlicerina	relParafusoConector	true
relPanoGlicerina	relSoqueteParafuso	true
relPanoGlicerina	relXCorda	true
relPanoGlicerina	relEstropoCorda	true
relPanoGlicerina	relParafusoTorre	true
relPanoCorda	relCordaEstropo	true
relPanoCorda	relXCorda	true
relPanoCorda	relEstropoCorda	true
	*	1

Tabela 9. Define o impacto que o erro em um relacionamento gera em outro relacionamento

relacionamento-errado	relacionamento-afetado	nova possibilidade de algo errado
relPanoBastaoUniversal	relBastaoGarraCondutor	true
relPanoBastaoUniversal	relChaveCatracaParafuso	true
relPanoBastaoUniversal	relParafusoConector	true
relPanoBastaoUniversal	relParafusoTorre	true
relPanoBastaoUniversal	relBastaoGarraCondutor	true
relPanoSoquete	relBastaoGarraCondutor	true
relPanoSoquete	relCordaEstropo	true
relPanoSoquete	relChaveCatracaParafuso	true
relPanoSoquete	relParafusoConector	true
relPanoSoquete	relSoqueteParafuso	true
relPanoSoquete	relXCorda	true
relPanoSoquete	relEstropoCorda	true
relPanoSoquete	relParafusoTorre	true
relCondutivimetroCorda	relBastaoGarraCondutor	true
relCondutivimetroCorda	relCordaEstropo	true
relCondutivimetroCorda	relChaveCatracaParafuso	true
relCondutivimetroCorda	relParafusoConector	true
relCondutivimetroCorda	relSoqueteParafuso	true
relCondutivimetroCorda	relXCorda	true
relCondutivimetroCorda	relEstropoCorda	true
relCondutivimetroCorda	relParafusoTorre	true
relCondutivimetroBastaoUniversal	relBastaoGarraCondutor	true
relCondutivimetroBastaoUniversal	relCordaEstropo	true
relCondutivimetroBastaoUniversal	relChaveCatracaParafuso	true
relCondutivimetroBastaoUniversal	relParafusoConector	true
relCondutivimetroBastaoUniversal	relSoqueteParafuso	true
relCondutivimetroBastaoUniversal	relXCorda	true
relCondutivimetroBastaoUniversal	relEstropoCorda	true
relCondutivimetroBastaoUniversal	relParafusoTorre	true
relCondutivimetroBastaoGarra	relBastaoGarraCondutor	true
relCondutivimetroBastaoGarra	relCordaEstropo	true
relCondutivimetroBastaoGarra	relChaveCatracaParafuso	true
relCondutivimetroBastaoGarra	relParafusoConector	true
relCondutivimetroBastaoGarra	relSoqueteParafuso	true
relCondutivimetroBastaoGarra	relXCorda	true
relCondutivimetroBastaoGarra	relEstropoCorda	true
relCondutivimetroBastaoGarra	relParafusoTorre	true
relCondutivimetroSoquete	relBastaoGarraCondutor	true
relCondutivimetroSoquete	relCordaEstropo	true
relCondutivimetroSoquete	relChaveCatracaParafuso	true
relCondutivimetroSoquete	relParafusoConector	true
relCondutivimetroSoquete	relSoqueteParafuso	true
relCondutivimetroSoquete	relXCorda	true
relCondutivimetroSoquete	relEstropoCorda	true
relCondutivimetroSoquete	relParafusoTorre	true

Tabela 10. Define o impacto que o erro em um relacionamento gera em outro relacionamento por modar a possibilidade de algo errado acontecer.

As tabelas 11, 12 apresentam a relação $hasObligation(\rho_m,g_i)$ onde ρ_m é representado pela coluna papel e g_i é representado pela coluna objetivo.

executor1 executor2	~^
ovecutor?	g0
	g0
executor3	g0
executor4	g0
executor5	g0
supervisor	g0
supervisor	gSupervisor
executor1	g1
executor2	g1
executor1	g2
executor2	g2
executor1	g3
executor2	g2
executor1	g4
executor2	g4
executor1	g5
executor2	g5
executor3	g6
executor4	g6
executor5	g6
executor3	g7
executor4	g7
executor5	g7
executor3	g8
executor4	g8
executor5	g8
executor3	g9
executor4	g9
executor5	g9
executor3	g10
executor4	g10
executor5	g10
executor3	g11
executor4	g11
executor5	g11
executor1	g12
executor2	g12
executor3	g12
executor4	g12
executor1	g13
executor2	g13
executor3	g13
executor4	g13
executor1	g14

Tabela 11. Objetivos que devem ser atingidos pelo agente que assumir um dada função

role	g
executor2	g14
executor3	g14
executor4	g14
executor2	g15
executor3	g15
executor4	g15
executor5	g15
executor2	g16
executor3	g16
executor4	g16
executor5	g16
executor1	g17
executor3	g17
executor4	g17
executor5	g17
executor1	g18
executor3	g18
executor4	g18
executor5	g18
executor1	g19
executor3	g19
executor4	g19
executor5	g19
executor1	g20
executor3	g20
executor4	g20
executor5	g20
executor1	g21
executor3	g21
executor4	g21
executor5	g21
executor1	g22
executor2	g22
executor3	g22
executor5	g22
executor1	g23
executor2	g23
executor3	g23
executor5	g23
executor1	g24
executor2	g24
executor3	g24
executor5	g24
executor1	g25
executor2	g25
executor3	g25
executor4	g25
executor1	g26
executor2	g26
executor3	g26
executor4	g26
executor1	g27
executor2	g27
executor3	g27
executor4	g27
executor5	g27
2.1.200012	5-1

Tabela 12. Objetivos que devem ser atingidos pelo agente que assumir um dada função

A tabela 13 apresenta as entidades que constituem os conjuntos eg.

entidades	eg
capacete,óculos,roupagem,luvas,botas X = {agente que tenta alcançar o objetivo}	eg0
pano,glicerina,carretilha,bastaoUniversal,corda,bastaoGarra,X = {agente que tenta alcançar o objetivo}	eg1
pano,glicerina,carretilha,bastaoUniversal,corda,bastaoGarra,condutímetro,X = {agente que tenta alcançar o objetivo}	eg2
sela,colarX = {agente que tenta alcançar o objetivo}	eg3
colar,bastaoGarraX = {agente que tenta alcançar o objetivo}	eg4
corda,bastaoGarra,bastaoGarraTorre,condutorX = {agente que tenta alcançar o objetivo}	eg5
bastaoGarra,selaX = {agente que tenta alcançar o objetivo}	eg6
sela,colarX = {agente que tenta alcançar o objetivo}	eg7
sela,bastaoUniversal,Colar,X = {agente que tenta alcançar o objetivo}	eg8
bastaoUniversal,carretilha,X = {agente que tenta alcançar o objetivo}	eg9
$corda$, bastao Universal, $corda$, torre, $X = \{agente que tenta alcançar o objetivo\}$	eg10
bastaoUniversal,corda,colar,selaX = {agente que tenta alcançar o objetivo}	eg11
colar,X = {agente que tenta alcançar o objetivo}	eg12
bastaoUniversal,estropo,isoladorVelhoX = {agente que tenta alcançar o objetivo}	eg13
bastaoUniversal,corda,estropoX = {agente que tenta alcançar o objetivo}	eg14
$chave Catraca, bastao Universal, prafuso X = \{agente que tenta alcançar o objetivo\}$	eg15
$bastaoSoquete, parafuso, X = \{agente que tenta alcançar o objetivo\}$	eg16
$bastao Garra, condutor corda X = \{agente que tenta alcançar o objetivo\},$	eg17
$colar, X = \{agente que tenta alcançar o objetivo\},$	eg18
chaveCatraca,bastaoUniversal,prafusobastaoSoquete,parafuso,torreX = {agente que tenta alcançar o objetivo}	eg19
$cordaX = \{agente que tenta alcançar o objetivo\}$	eg20
estropo, isolador $Novo, X = \{agente que tenta alcançar o objetivo\}$	eg21
$bastaoUniversal, corda, estropoX = \{agente que tenta alcançar o objetivo\}$	eg22
cordaX = {agente que tenta alcançar o objetivo}	eg23
chaveCatraca,bastaoUniversal,prafusobastaoSoquete,parafuso,torreX = {agente que tenta alcançar o objetivo}	eg24
$bastao Garra, condutor corda X = \{agente que tenta alcançar o objetivo\},$	eg25
$chave Catraca, bastao Universal, prafuso X = \{agente que tenta alcançar o objetivo\}$	eg26
sela,colar,bastaoGarra,bastaoUniversal,bastaoSoquete,corda,carretilha,chaveCatraca,torre,condutor	eg27

Tabela 13. Entidades que formam os conjuntos eg_n . Cada conjunto destes estão relacionados com um objetivo e determinam as entidades necessárias para que o mesmo tenha codição de ser alcançado.

relacionamentos	rg	
relXcapacete relXoculos relXroupagem relXluva relXbotas	rg0	
relXPano relPanoGlicerina relPanoCorda relPanoBastaoUniversal relPanoBastaoGarra relPanoSo-		
quete		
relCondutivimetroCorda relCondutivimetroBastaoUniversal relCondutivimetroBastaoGarra relCon-	rg2	
dutivimetroSoquete		
relCondutivimetro	rg3	
relXBastaoGarra relColarBastaoGarra	rg4	
relXBastaoGarra relXCordarelCordaBastaoGarra relBastaoGarraTorre relBastaoGarraCondutor	rg5	
relBastaoGarraSela relXBastaoGarra relXSela	rg6	
relXSela relXColar relTorreSela	rg7	
relBastaoUniversalColar relXBastaoUniversal	rg8	
relXBastaoUniversal relXCarretilha relBastaoUniversalCarretilha	rg9	
relXCorda relXBastaoUniversal relBastaoUniversalCorda relBastaoUniversalTorre	rg10	
relXCorda relXBastaoUniversal relXColar relBastaoUniversalColar relBastaoUniversalSela	rg11	
relXColar	rg12	
relXBastaoUniversal relBastaoUniversalEstropo relEstropoIsoladorVelho	rg13	
relXBastaoUniversal relBastaoUniversalCordarelCordaEstropo relEstropoCorda	rg14	
relChaveCatracaBastaoUniversal relXChaveCatraca relXBastaoUniversal relChaveCatracaParafuso	rg15	
relXBastaoSoquete relSoqueteParafuso	rg16	
relXCorda relCordaBastaoGarra relBastaoGarraCondutor	rg17	
relXColar	rg18	
relChaveCatracaBastaoUniversal relXChaveCatraca relXBastaoUniversal relChaveCatracaParafuso	rg19	
relParafusoTorre relXBastaoSoquete relSoqueteParafuso		
relXCorda	rg20	
relXEstropo relEstropoIsoladorNovo	rg21	
relXBastaoUniversal relBastaoUniversalCorda relCordaEstropo relEstropoCorda	rg22	
relXCorda	rg23	
relChaveCatracaBastaoUniversal relXChaveCatraca relXBastaoUniversal relChaveCatracaParafuso	rg24	
relParafusoTorrerelXBastaoSoquete relSoqueteParafuso	_	
relXCorda relCordaBastaoGarra relBastaoGarraCondutor	rg25	
relChaveCatracaBastaoUniversal relXChaveCatraca relXBastaoUniversal relChaveCatracaParafuso	rg26	
relXSela relXColarrelXBastaoGarrarelXBastaoUniversal relXBastaoSoquete relXCorda relXCarreti-	rg27	
lha relXChaveCatraca relColarBastaoGarra relCordaBastaoGarra relBastaoGarraTorre relBastaoGar-	_	
$ra Condutor\ rel Basta o Universal Carretilha\ rel Basta o Garra Sela\ rel Basta o Universal Sela\ rel Sela Colar\ rel-part o Garra Sela\ rel Basta o Universal Sela\ rel Sela\ Colar\ rel-part o Garra Sela\ rel Basta o Universal Sela\ rel Sela\ Colar\ rel-part o Garra Sela\ rel Basta o Universal\ Sela\ rel Sela\ Colar\ rel-part o Garra Sela\ rel\ Sela\ rel\ Sela\ Rel\ Rel\ Rel\ Rel\ Rel\ Rel\ Rel\ Rel$		
TorreSela relBastaoUniversalCorda relBastaoGarraCorda		

Tabela 14. Relacionamentos que formam os conjuntos rg_n . Cada conjunto rg_n está relacionado com um objetivo A relação entre rg_n e $goal_m$ determina os relacionaentos necessários para que um dado objetivo tenha condição de ser atingido.

A tabela 15 apresenta as condições que constituem os conjuntos cg.

condições	cg
umidade70,noVento,noChuva,sol	cg1

Tabela 15. Todas as condições que constituem o conjunto cg_n . Este conjunto está relacionando com um ou mais objetivos e determina quais são as condições que devem ser mantidas para que o agente tenha uma situação razoável para tentar alcançar um certo objetivo

A tabela 16 define as relações $hasRelation(g_i, rg_n)$ onde a coluna objetivo é representada por g_i , $hasEntity(g_i, eg_m)$, $hasCondition(g_i, cg_n)$.

objetivo	rg	eg	cg
goal0	rg0	eg0	cg1
goal0	rg0	eg0	cg1
goal1	rg1	eg1	cg1
goal2	rg2	eg2	cg1
goal3	rg3	eg3	cg1
goal4	rg4	eg4	cg1
goal5	rg5	eg5	cg1
goal6	rg6	eg6	cg1
goal7	rg7	eg7	cg1
goal8	rg8	eg8	cg1
goal9	rg9	eg9	cg1
goal10	rg10	eg10	cg1
goal11	rg11	eg11	cg1
goal12	rg12	eg12	cg1
goal13	rg13	eg13	cg1
goal14	rg14	eg14	cg1
goal15	rg15	eg15	cg1
goal16	rg16	eg16	cg1
goal17	rg17	eg17	cg1
goal18	rg18	eg18	cg1
goal19	rg19	eg19	cg1
goal20	rg20	eg20	cg1
goal21	rg21	eg21	cg1
goal22	rg22	eg22	cg1
goal23	rg23	eg23	cg1
goal24	rg24	eg24	cg1
goal25	rg25	eg25	cg1
goal26	rg26	eg26	cg1
goal27	rg27	eg27	cg1

Tabela 16. Define a relação entre os objetivos, conjuntos rg_n , eg_n e cg_n

A figura 3 o sequenciamento de objetivos, relacionamentos de obrigação entre objetivos e papeis que fazem parte da natureza do atividade dentro da perspectiva deste modelo.

Figura 3.

4. Raciocínios

Uma vez que o modelo foi definido e que foi implementado em um estudo de caso, é possível avaliar as conclusões possíveis dado certa condição de mundo. Essa seção demonstra como esse modelo cumpre o proposto por demonstrar certos raciocínios tendo em vista o caso de estudo em análise.

4.0.1. Raciocínio - 1

O raciocínio a seguir mostra o que acontece se o *agente*4 esquecer de passar o pano no bastão universal relPanoGlicerina designados a ele no objetivo goal1. Todos os possíveis predicados vinculados a essa situação são;

- 1. hasRole(agente4, executor2)
- 2. hasObligation(executor2, g1)
- 3. hasRelation(q1, rq1)
- 4. $relPanoCorda \in rg1$
- 5. x = aqente4
- 6. tryReach(agente4, goal1)
- $7. \ affects(relPanoGlicerina, relBastaoGarraCondutor)$
- 8. affects(relPanoGlicerina, relCordaEstropo)
- 9. affects(relPanoGlicerina, relChaveCatracaParafuso)
- $10. \ affects(relPanoGlicerina, relParafusoConector)$
- $11.\ affects (relPanoGlicerina, relSoqueteParafuso)$
- $12. \ affects(relPanoGlicerina, relParafusoTorre)$
- $13. \ affects(relPanoGlicerina, relAgente4Corda)$
- $14. \ affects(relPanoGlicerina, relEstropoCorda)$

Com base nisso, as relações de implicabilidade resultantes são;

```
hasRelation(goal1, rg1) \land \neg isPresent(relPanoGlicerina)
\land (relPanoGlicerina \in rg_1) \land tryReach(agente4, goal1)
\rightarrow
violationRelation(agente4, g1, relPanoGlicerina)
(17)
```

```
violationRelation(agente4, g1, relPanoGlicerina)
\land affects(relPanoGlicerina, relBastaoGarraCondutor)
\land hasPossibility(relBastaoGarraCondutor, false)
\rightarrow
hasPossibility(relBastaoGarraCondutor, true) 
(18)
```

```
violationRelation(agente 4, g1, relPanoGlicerina)
   \land affects(relPanoGlicerina, relCordaEstropo)
         \land hasPossibility(relCordaEstropo, false)
            hasPossibility(relCordaEstropo, true)
                                                                 (19)
  violationRelation(agente4, g1, relPanoGlicerina)
\land affects(relPanoGlicerina, relParafusoConector)
     \land hasPossibility(relParafusoConector, false)
        hasPossibility(relParafusoConector, true)
                                                                 (20)
  violationRelation(agente4, g1, relPanoGlicerina)
\land affects(relPanoGlicerina, relSoqueteParafuso)
      \land hasPossibility(relSoqueteParafuso, false)
         hasPossibility(relSoqueteParafuso, true)
                                                                 (21)
 violationRelation(agente4, g1, relPanoGlicerina)
 \land affects(relPanoGlicerina, relParafusoTorre)
       \land hasPossibility(relParafusoTorre, false)
          hasPossibility(relParafusoTorre, true)
                                                                 (22)
 violationRelation(agente 4, g1, relPanoGlicerina)
   \land affects(relPanoGlicerina, relAgente4Corda)
         \land hasPossibility(relAgente4Corda, false)
           hasPossibility(relAgente4Corda, true)
                                                                 (23)
```

violation Relation (agente 4, g1, rel Pano Glicerina)

$$\land affects(relPanoGlicerina, relEstropoCorda) \\ \land hasPossibility(rrelPanoGlicerinaelEstropoCorda, false) \\ \rightarrow \\ hasPossibility(relEstropoCorda, true)$$
 (24)

violationRelation(agente 4, g1, relPanoGlicerina)

$$\land affects(relPanoGlicerina, relEstropoCorda) \\ \land hasPossibility(relEstropoCorda, false) \\ \rightarrow \\ hasPossibility(relEstropoCorda, true)$$
 (25)

4.0.2. Raciocínio - 2

O raciocínio a seguir mostra o que acontece se o pano não estiver presente no local da manutenção quando os eletricistas forem alcançar o goal1. A lista a seguir exibe todos os predicados necessários para averiguar essa condição de mundo.

- 1. hasRole(agente2, executor1)
- 2. hasRole(agente3, executor1)
- 3. hasRole(agente4, executor2)
- 4. hasObligation(executor1, g1)
- 5. hasObligation(executor2, g1)
- 6. tryReach(agente2, goal1)
- 7. tryReach(agente3, goal1)
- 8. tryReach(agente4, goal1)
- 9. hasEntity(g1, eg1)
- 10. $pano \in eg1$
- 11. $\neg isPresent(pano)$

```
hasEntity(g1, eg1) \\ \wedge \neg isPresent(pano) \\ \wedge (pano \in eg1) \wedge tryReach(agente2, g1) \rightarrow \\ violationEntity(agent2, g1, pano)
```

$$hasEntity(g1, eg1)$$

$$\land \neg isPresent(pano)$$

$$\land (pano \in eg1) \land tryReach(agente3, g1) \rightarrow$$

$$violationEntity(agente3, g1, pano)$$
(27)

$$hasEntity(goal1, eg1)$$

$$\land \neg isPresent(pano)$$

$$\land (pano \in eg1) \land tryReach(agente4, g1) \rightarrow$$

$$violationEntity(agente4, g1, pano)$$

$$(28)$$

$$violationEntity(agente4, goal1, pano) \rightarrow stopIn(goal1)$$
 (29)

4.0.3. Raciocínio - 3

O raciocínio a seguir mostra o que acontece se o *agente*5 tentar alcançar o objetivo *goal*11 com a umidade relativa do ar superior a setenta porcento. A lista a seguir exibe todos os predicados necessários para averiguar essa condição de mundo.

- 1. hasRole(agente5, executor3)
- 2. hasObligation(executor3, goal11)
- 3. tryReach(agente5, goal11)
- 4. hasCondition(g11, cg1)
- 5. $umidade70 \in cg1$
- 6. $\neg isPresent(umidade70)$
- 7. hasRisk(umidade70, eletrocutado, morte)

```
hasCondition(goal11, cg1)
\land \neg isPresent(umidade70)
\land umidade70 \in cg1
\land tryReach(agente5, g11) \rightarrow
violationCondition(agente5, g11, umidade70)
(30)
```

```
violationCondition(agente5, goal11, umidade70)

\land hasRisk(umidade70, eletrocutado, morte) \rightarrow

consequenceOfBadEvent(g11, agente5, eletrocutado, morte) (31)
```

4.0.4. Raciocínio - 4

O raciocínio a seguir mostra o que acontece se o agente3 errar a forma adequada de realizar o relacionamento relChaveCatracaParafuso no objetivo goal15. Os predicados envolvidos são:

- 1. hasRole(agente4, executor2)
- $2.\ has Obligation (executor 4, goal 15)$
- 3. tryReach(agente4, g15)
- 4. hasRelation(g15, rg15)
- 5. $relChaveCatracaParafuso \in rg15$
- 6. $\neg isPresent(relChaveCatracaParafuso)$
- $7. \ hasRisk(relChaveCatracaParafuso, eletrocutado, morte)$

```
has Relation(goal 15, rg 15)
\land \neg is Present(relChave Catraca Parafuso)
\land (relChave Catraca Parafuso \in rg 15)
\land try Reach(agente 4, g 15)
\rightarrow
violation Relation(agente 4, g 15, relChave Catraca Parafuso)
```

(33)

 $violation (agente 4, g15, relChave Catraca Parafuso) \\ \land has Risk (relChave Catraca Parafuso, eletrocutado, morte)$

consequenceOfBadEvent(g15, agente4, eletrocutado, morte) (34)

 $consequenceOfBadEvent(g15, agente4, eletrocutado, morte) \rightarrow stopIn(g15)$ (35)

4.0.5. Raciocínio - 5

A finalidade dessa demonstração consiste em mostrar como um agente pode ser submetido a consequências ruins tendo em vista erros cometidos por outros profissionais. O raciocínio 1 mostra que o fato do agente4 não conseguir realizar o relacionamento relPanoGlicerina resulta na violação

violationRelation(agente4, goal1, relPanoGlicerina). Essa violação, por sua vez, impacta diversas outras relações, em que hasPossibility(relParafusoTorre, true) é uma delas. Assim sendo, antes do agente4 cometer o erro, a possibilidade da ocorrência de um evento ruim acontecer era 0, se o agente realizar a relação relParafusoTorre sem cometer violação alguma. Contudo, após a ocorrência do erro cometido pelo agent4, existe uma possibilidade de um evento ruim acontecer na relação relParafusoTorre mesmo que tudo seja feito de acordo com os conformes. Assim sendo, a lista de predicados e o raciocínio mostra o que acontece dado a seguinte situação; o possível evento ruim presente em relParafusoTorre se torna uma realidade;

```
1. relParafusoTorre \in rg19
```

- 2. hasRelation(g19, rg19)
- 3. hasObligation(executor3, g19)
- 4. hasObligation(executor 4, g19)
- 5. hasObligation(executor 5, g19)
- 6. tryReach(agente5, g19)
- 7. tryReach(agente6, g19)
- 8. tryReach(agente7, g19)
- 9. hasRole(agente5, executor3)
- 10. hasRole(agente6, executor4)
- 11. hasRole(agente7, executor5)
- 12. hasRisk(relParafusoTorre, eletrocutado, morte)
- 13. hasPossibility(relParafusoTorre, true)
- 14. happensBadEvent(g19, relParafusoTorre)

```
hasRelation(g19, rg19) \land (relParafusoTorre \in rg19)
happensBadEvent(g19, relParafusoTorre)
\land hasRisk(relParafusoTorre, eletrocutado, morte)
\land tryReach(agente5, g19)
\rightarrow
consequenceOfBadEvent(goal19, agente5, eletrocutado, morte) (36)
```

 $consequenceOfBadEvent(g19, agente5, eletrocutado, morte) \rightarrow stopIn(g19)$ (37)

```
hasRelation(g19, rg19) \land (relParafusoTorre \in rg19)
\land happensBadEvent(g19, relParafusoTorre)
\land hasRisk(relParafusoTorre, eletrocutado, morte)
\land tryReach(agente6, g19)
\rightarrow
consequenceOfBadEvent(goal19, agente6, eletrocutado, morte) (38)
```

 $consequenceOfBadEvent(g19, agente6, eletrocutado, morte) \rightarrow stopIn(g19)$ (39)

$$hasRelation(g19, rg19) \land (relParafusoTorre \in rg19)$$
 $\land happensBadEvent(g19, relParafusoTorre)$
 $\land hasRisk(relParafusoTorre, eletrocutado, morte)$
 $\land tryReach(agente7, g19)$
 \rightarrow
 $consequenceOfBadEvent(goal19, agente7, eletrocutado, morte)$

(40)

 $consequenceOfBadEvent(g19, agente7, eletrocutado, morte) \rightarrow stopIn(g19)$ (41)

4.0.6. Raciocínio - 6

O objetivo g23 deve ser atingido pelos agentes com as funções de executor1,executor2,executor3 e executor5. Isso implica dizer que os agentes; agente2,agente3,agente4,agente5 e agente7 devem tentar alcançar esses resultados. Considerando que agg23 são todos os agentes que tentaram alcançar o objetivo e ago23 os agentes que são obrigados a fazer isso, segue o raciocínio;

- 1. $agente2 \in agg23$
- 2. $agente3 \in agg23$
- 3. $agente4 \in agg23$
- 4. $agente5 \in agg23$
- 5. $agente7 \in agg23$
- 6. $agente2 \in ago23$
- 7. $agente3 \in ago23$
- 8. $agente4 \in ago23$
- 9. $agente5 \in ago23$
- 10. $agente7 \in ago23$
- 11. $aqo23 \subset aqq23$
- 12. $\neg stopIn(g23, agg23)$

$$\neg stopIn(g23, agg23) \land (agg23 \subset ago23) \rightarrow isReached(g23)$$
 (42)

4.0.7. Raciocínio - 7

O raciocínio para o caso onde agente1 tente alcançar o objetivo g23.

- 1. hasRole(agente1, supervisor)
- 2. $hasObligation(agente1, g23) \rightarrow F$

Isso implica em uma afirmação falsa, então esse mundo não é possível segundo o modelo implementado para este estudo de caso.

4.1. Trabalhos Correlatos

Essa seção tem como finalidade realizar uma análise comparativa do modelo proposto neste estudo com os modelos atuais sobre sistemas multiagentes normativos. Cada uma das próximas seções aborda um modelo diferente.

4.1.1. MOISE+

O Moise+ é usado para realizar a especificação de sistemas multiagentes. Para cumprir com essa finalidade, existe três tipos de especificação que são; Estrutural, Funcional, e Deôntica.

A especificação estrutural acontece em três níveis, individual, social e coletivo. O nível individual trata de definir os papeis ρ dos agentes. Uma possível entre os papeis acontece por intermédio da hereditariedade em que se ρ' é filho de ρ . Isso implica afirmar que ρ' é uma especialização de ρ . Um exemplo apropriado para isso é o jogo de futebol onde existe o papel jogador dado por ρ e existe o papel atacante dado por ρ' [Hübner et al. 2002]. Em termos formais, essa relação é dada pro;

$$\rho_a \sqsubset \rho_b$$

O nível social estabelece relações de ligação dado pelo predicado $link(\rho_s, \rho_d, t)$. Existe três possíveis valores para t, os quais são $t = \{aut, com, acq\}$. O valor auth significa autoridade (neste caso ρ_s exerce autoridade sobre ρ_d), o valor com significa comunicação (neste caso ρ_s pode se comunicar com ρ_d) e o valor acq significa conhecimento (ρ_s tem conhecimento da existência de ρ_d) [Hübner et al. 2002]. O MOISE+ define as seguintes relações de implicabilidade

$$link(\rho_s, \rho_d, auth) \to link(\rho_s, \rho_d, com)$$

$$link(\rho_s, \rho_d, com) \to link(\rho_s, \rho_d, acq)$$
 (43)

O modelo também determina como se dá as relações de hereditariedade para o predicado de link, é dado por [Hübner et al. 2002];

$$link(\rho_s, \rho_d, t) \wedge \rho'_s \sqsubseteq \rho'_s \to link(\rho'_s, \rho_d, t)$$

$$link(\rho_s, \rho_d, t) \wedge \rho'_d \sqsubseteq \rho'_d \to link(\rho_s, \rho'_d, t)$$
(44)

O nível coletivo determina a existência de compatibilidade entre os papeis [Hübner et al. 2002]. Essa é uma relação reflexiva e transitiva de determina que se um papel ρ_a possui a capacidade de realizar um determinado objetivo, então o papel ρ_b também tem essa capacidade. Em termos formais, essa relação se dá da seguinte forma [Hübner et al. 2002].;

$$\rho_a \bowtie \rho_b \land \rho_a \neq \rho_b \land \rho_a \sqsubseteq \rho' \rightarrow \rho' \bowtie \rho_b$$

O nível coletivo também apresenta o conceito de grupo dado por gt e constituído por;

$$gt = \langle R, SG, L^{intra}, L^{inter}, C^{intra}, C^{inter}, np, ng \rangle$$

Em que R é o conjunto dos papeis não abstratos, SG são subgrupos que estão contidos neste grupo, L^{intra} consiste dos links intra-grupos, L^{inter} dos links inter-grupos, C^{intra} das relações de compatibilidade intra-grupos e C^{inter} das relações de compatibilidade inter-grupos. O símbolo np denota a cardinalidade mínima e máxima para uma dada função e o símbolo ng realiza o mesmo para os subgrupos [Hübner et al. 2002].

A Especificação Funcional tem como por finalidade descrever os objetivos a serem atingidos dentro de uma estrutura de árvore. A figura a seguir define como se dá esse tipo de especificação;

Figura 4. Arvore de objetivos definido pelo modelo Moise [Hübner et al. 2002]

A figura 4 define três tipos de relação de subobjetivos; sequence onde todos os subobjetivos devem necessariamente ser concluídos em sequência, choice onde o agente tem a possibilidade de escolher qual objetivo ele deseja seguir e parallelism onde todos os objetivos devem ser concluídos, contudo sem uma sequência definida. Como é possível observar na figura, os objetivos são agrupados em conjuntos de missões m. A relação a seguir define isso melhor;

$$m_k = \{g_n, ..., g_m\}$$

A Especificação Deôntica define predicados para estabelecer permissões e obrigações entre os papeis e as missões. Toda obrigação implica necessariamente em uma permissão. A relação a seguir estabelece isso;

$$obl(\rho, m, tc) \to per(\rho, m, tc)$$

$$obl(\rho, m, tc) \land \rho \sqsubset \rho' \to obl(\rho', m, tc)$$
(45)

$$per(\rho, m, tc) \land \rho \sqsubset \rho' \rightarrow per(\rho', m, tc)$$
 (46)

(47)

Onde o predicado obl define uma obrigação e o predicado per define permissão. O argumento tc define uma periodicidade de tempo para o qual a relação deôntica é valida.

Existe muitos ponto similares entre o modelo proposto neste estudo e o Moise. Ambos os modelos apresentam papeis ρ , apresentam objetivos g e apresentam relações deônticas de obrigação e permissão. Isso se deve ao fato, em partes, que o modelo proposto neste estudo importou muitos dos conceitos presentes no Moise tendo em vista a aplicabilidade para o domínio em interesse. Esses conceitos são importantes para o modelo deste estudo pois são grande relevância para descrever situações onde uma equipe de pessoas devem atingir certos objetivos trabalhando em cooperação.

Contudo, ambos modelos apresentam diferenças significativas. Uma dessas diferenças reside em como as relações deônticas são atribuídas, pois no Moise a relação é feita entre o papel e a missão e no modelo proposto neste estudo a relação é feita entre o papel e o objetivo. Isso se deve ao fato de que uma das finalidades deste estudo consiste na realização de uma análise de sanções e violações. Como essas analises trabalham no nível de atividades, objetos e condições (dentro do contexto deste estudo), trabalhar na ordem de objetivos trás uma análise mais aprimorada no estudo das violações e sanções.

O Moise não apresenta suporte a tratativa de sanções e violações. Assim sendo, para conseguir atingir um modelo onde fosse possível analisar certos tipos de sanções e violações de interesse, foi necessário introduzir predicados que não fazem parte do vocabulário e da sintaxe do Moise.

O Moise trabalha uma estrutura lógica de interesse a descrição de grupos, *links* e compatibilidades. Esses conceitos não são trabalhados no modelo em interesse por não serem necessários ao domínio de interesse deste estudo. Assim sendo, esses conceitos trariam complexidades adicionais sem justificativa válida para isso.

4.2. Normative Multi-Agent Programs and Their Logics

O texto [Dastani et al. 2009] apresenta um modelo com a finalidade de descrever agentes normativos com a capacidade de cometer uma certa violação. O modelo define sanções para as violações. O estudo estrutura o modelo como uma linguagem de programação (usando a notação EBNF) onde os problemas de sistemas multiagentes são tratados como programas escritos neste linguagem [Dastani et al. 2009]. Assim sendo, um programa de sistemas multi-agentes é descrito como sendo;

```
N-MAS_Prog := "Agents: " (<agentName> <agentProg> [<nr>])+;
                    "Facts: " <bruteFacts>
                    "Effects: " <effects>
                    "Counts-as rules: " <counts-as>
                    "Sanction rules: " <sanctions>;
<agentName> := <ident>;
<agentProg> := <ident>;
<nr> := <int>;
<bruteFacts> := <b-literals>;
\langle fects \rangle := (\{\langle b-literals \rangle\} \langle actionName \rangle \{\langle b-literals \rangle\})+;
\langle counts-as \rangle := (\langle literals \rangle \Rightarrow \langle i-literals \rangle)+;
\langle \text{sanctions} \rangle := (\langle \text{i-literals} \rangle \Rightarrow \langle \text{b-literals} \rangle) +;
<actionName> := <ident>;
<b-literal>> := <b-literal> {"," <b-literal>};
\langle i-literals \rangle := \langle i-literal \rangle \{"," \langle i-literal \rangle \};
{\rm literals} := {\rm literal} {\rm "," < literal};
\verb|<|iteral>| < i-literal>| < i-literal>;
<b-literal> := <b-prop> | "not" <b-prop>;
<i-literal> := <i-prop> | "not" <i-prop>;
```

Figura 5. Linguagem para descrever um programa de multiagentes normativos com a possibilidade de violações e sanções na notação EBNF segundo o texto [Dastani et al. 2009]. Nesta notação, < ident > é usado para denotar uma string e < int > inteiros. Os termos < b - prop > e < i - prop > são usados para designar dois tipos de conjuntos de proposições que são disjuntos entre sí

Com base no proposto por esse modelo, um programa de sistemas multiagentes é descrito por *Agents* (agentes), *Facts* (fatos), *Effects* (efeitos), (Count-as rules) (regras que determinam o adequado comportamento do agente), *Sanction rules* (regras de sanção) [Dastani et al. 2009].

Os *Agents* são definidos em termos de duas *strings* e um inteiro. A primeira *string* é *agentName* e é usado para definir o nome do agente e a segunda *string* é *agentProg* e define o nome do arquivo onde se encontra especificações do respectivo agente. O inteiro *nr* é usado para definir a quantia do agente [Dastani et al. 2009].

Os *Facts* são compostos por conjuntos de literais denominados de *bruteFacts*. Esses são fatos onde ocorre uma violação que desencadeia em uma dada sanção [Dastani et al. 2009].

Os *Effects* são compostos por *effects*. Estes, por sua vez, são estruturados em termos de *b-literals* (conjuntos que contem literais onde estes, por sua vez, representam um dado estado de mundo), e *actionName* onde este, por sua vez, descreve ações que geram trasições de um estado de mundo para outro estado [Dastani et al. 2009].

Os *Count-as rules* são compostos por *counts-as*. Esses, por sua vez, definem regras normativas. Isso implica em relações de implicabilidade que resultam em uma dada violação [Dastani et al. 2009].

Os *Sanction rules* são estruturados por *sanctions*. Esses, por sua vez, definem regras de implicabilidade que competem a uma tratativa da violação [Dastani et al. 2009].

A figura a seguir ilustra um exemplo de um programa de sistema multiagente

escrito nesta linguagem;

```
Agents: passenger PassProg 1  
Facts: \{-\text{at\_platform}, -\text{in\_train}, -\text{ticket}\}  
Effects: \{-\text{at\_platform}\} \ enter \ \{\text{at\_platform}\},  
\{-\text{ticket}\} \ buy\_ticket \ \{\text{ticket}\},  
\{\text{at\_platform}, -\text{in\_train}\} \ embark \ \{-\text{at\_platform}, \ in\_train}\}  
Counts_as rules: \{\text{at\_platform}, -\text{ticket}\} \Rightarrow \{\text{viol}_1\},  
\{\text{in\_train}, -\text{ticket}\} \Rightarrow \{\text{viol}_1\}  
Sanction rules: \{\text{viol}_1\} \Rightarrow \{\text{fined}_{10}\}
```

Figura 6. Um programa descrito na linguagem proposta neste estudo onde um agente representa um passageiro em uma estação de trem que pode entrar com ou sem um *ticket* na plataforma e no trem [Dastani et al. 2009].

A figura 6 apresenta um programa que contem um agente com nome *passenger*. O agente pode estar ou não na plataforma e no trem, sem ou com *ticket*. Se o agente entrar na plataforma ou no trem sem o *ticket*, então esse agente cometeu uma violação. Para este programa, a sanção da violação que ocorre por entrar na plataforma sem o *ticket* resulta em uma punição onde o agente deve pagar 10 Euros pelo ocorrido [Dastani et al. 2009].

O modelo presente em [Dastani et al. 2009] apresenta muitas similaridades ao modelo definido neste estudo sobre o ponto de vista de sanção e violação, uma vez que a raiz para os conceitos de ambos os estudos advêm das mesmas origens. Contudo, o modelo [Dastani et al. 2009] apresenta um aspecto muito mais abrangente podendo considerar uma vastidão de mundos possíveis. Isso pois esse modelo não define conceitos como (objetivos, artefatos, riscos, possibilidades). Já no modelo deste estudo, esses conceitos e predicados são definidos.

Portanto ambos os modelos podem ser usados para delimitar o estudo de caso presente neste texto, com a diferença que o modelo deste estudo apresenta uma linguagem que delimita com maior rigor o problema em análise do que o modelo [Dastani et al. 2009].

4.3. V3S: A Virtual Environment for Risk-Management Training Based on Human-Activity Models

V3S é um modelo com a finalidade de gerar ambientes para desenvolver treinamentos complexos em ambiente de realidade virtual visando atividades de risco e de emergência. O modelo é composto por três submodelos; *Domain Model*, *Activity Model* e *Risk Model* [Barot et al. 2013]. O *Domain Model* é o núcleo do sistema. Todos os objetos, ações e relações são descritos por uma ontologia. A figura 7 exibe a estrutura de classe desta ontologia.

Figura 7. Ontologia que descreve Domain Model no model V3S [Barot et al. 2013]

Activity Model é estruturado sobre uma linguagem de descrição conhecido por ACTIVITY-DL. Essa linguagem usa álgebra de Allen's que tem como por finalidade definir raciocínios temporais [Allen 1983]. As relações definidas por essa álgebra é dada por;

- 1. X < Y onde X: ocorre antes de Y
- 2. XmY,YmiX: X encontra Y
- 3. XoY, XoiY: X sobrepõem a Y
- 4. XsY, YsiX: X começa Y
- 5. XdY, YdiX: X ocorre durante Y
- 6. X f Y, Y f i X: X termina junto com Y
- 7. X = Y X é igual a Y

A linguagem define construtores que são semanticamente equivalente a certos operadores da álgebra de Allen's. Esses construtores (atuantes sobre atividades) são definidos pela tabela 17

Construtor	Nome	Relações de Allen
IND	Independent	$A\{<,>,m,mi,o,oi,s,si,d,di,f,fi,=\}B$
SEQ	Sequential	$A\{<,>,m,mi\}B$
SEQ-ORD	Ordered	$A\{<,>,m\}B$
PAR	Parallel	$A\{o, oi, s, si, d, di, f, fi, =\}B$
PAR-SIM	Simultaneous	$A \{=\} B$
PAR-START	Start	$A\{s, si, =\}B$
PAR-END	End	$A\{f, fi, =\}B$

Tabela 17. Construtores da linguagem ACTIVITY-DL [Barot et al. 2013]

No que tange a questões referentes a segurança e violação, a linguagem *ACTIVITY-DL* define *tags* no estudo [Fadier et al. 2003]. Essas *tags* são BCTUs,BATUs. BCTUs representam situações informais entre os atores de um determinado campo, por exemplo; trabalhar com produtos químicos sem usar equipamentos de proteção individual. BATUs corresponde a práticas de risco tolerado. Existe dois tipos de BATUs, primeiro - quando realizado por obrigação ou interesse de conforto (quando os operadores acham impossível realizar a operação respeitando as instruções), segundo - ocorre durante a operação do sistema com o propósito de evitar que o sistema deixe de funcionar.

Activity Model apresenta uma categorização de pré-condições. A tabela 18 detalhe essa categorização.

Categoria	Pré-condição	Descrição
Condições para perceber	Nomológico	Descreve o estado do mundo necessário para que a ta-
		refa seja fisicamente realizável. Condições dependem
		diretamente das regras de ação definidas no modelo de
		domínio. Exemplo: Abre a porta se estiver fechada.
Condições para perceber	Regulamentar	Descreve o estudo do mundo necessário para uma boa
		realização da atividade de acordo com prescrito em
		procedimento. Exemplo: Para desconectar o tubo, a
		proteções devem ser desgastado.
Condições para Examinar	Contextual	Descreve o estado de mundo em que a atividade é re-
		levante. Quando essa condição é falsa, então a ativi-
		dade deve ser ignorada. Exemplo: Limpar o tubo é
		relevante apenas se o tubo estiver sujo.
Condições para Examinar	Favorável	Descreve o estado de mundo onde a tarefa é preferen-
		cial sobre as demais. Essas condições ajudam a esco-
		lher entre várias tarefas quando existe uma alternativa
		para a realização de uma tarefa decomposta. Exem-
		plo: se o parafuso estiver enferrujado, desarmar.

Tabela 18. As pré-condições possíveis para as atividades [Barot et al. 2013]

Risk Models é a parte do modelo que define a análise de risco. Existe duas categorias; risco de análise clássico e método de análise de confiabilidade humana. A primeira categoria permite definir uma análise quantitativa de risco, contudo falha ao definir a complexidade dos resultados frente a fatores humanos. Em contrapartida, a segunda categoria considera fatores humanos, contudo falha em definir medidas o objetivas sobre questões de segurança [Barot et al. 2013].

O *V3S* combina ambas situações usando a abordagem MELISSA [Camus et al. 2012][Barot et al. 2013]. Essa abordagem é baseada em três pontos (1) atividades relacionadas em cenários de acidentes, (2) descrição das tarefas de representação e (3) fatores influentes em potencial nas atividades.

O V3S possue representações para defini as entidades, objetos e ações assim como o modelo proposto neste estudo. Contudo, existe diferenças na estrutura ontológica de ambo os modelos, pois o V3S define tanto objetos e ações como entidades, enquanto que o modelo proposto neste estudo apenas objetos são entidades. O V3S não caracteriza os agentes dentro de sua estrutura ontológica, enquanto que o modelo deste estudo faz isso definindo os agentes como entidades que se relacionam com outras entidades.

No que tange a questões referentes as atividades, o *V3S* realiza a descrição sequencial das mesmas por intermédio da álgebra de *Allen's*, enquanto que este estudo usa uma abordagem mais simples para representar as relações entre objetivos usando apenas alguns predicados para tratar essa dinâmica. O mesmo ocorre para as pré-condições, onde o *V3S* detalha os tipos de pré-condições existentes enquanto que o modelo presente neste estudo não faz isso.

O V3S realiza a tratativa de violações usando o estudo [Fadier et al. 2003]. Em contraste com isso, neste modelo os pesquisadores optaram por definir as violações por

intermédio de regras (definidas por meio de relações de implicabilidade) onde define claramente quais condições resultam numa determinada violação. Com base nisso, a proposta do modelo deste texto está muito mais próximo do texto [Dastani et al. 2009] do que do *V3S*.

O *V3S* não exerce uma definição objetiva e formal das sanções. O modelo proposto neste texto também não apresenta classes ou predicados que tornam explícito as relações de sanção. Contudo, esse estudo usa a abordagem acadêmica clássica (usada também no estudo [Dastani et al. 2009]) tratando as sanções como consequências de uma violação. O *V3S* aprenta esse tipo de situação, contudo sem o formalismo de sanção.

O modelo proposto neste estudo define as violações em três categorias (condição, relações e entidades), algo que o *V3S* não aborda. Isso não significa afirmar que o *V3S* não pode ser usado para modelar essas violações, contudo, este modelo possui um vocabulário para resolver os problemas deste tipo de violação de forma muito mais específica quando comparado ao *V3S*.

Os riscos também são tratados diferentemente em ambos os estudos. O *V3S* usa uma abordagem robusta baseada em estudos acadêmicos envolvendo segurança. O modelo deste estudo trata essa questão de forma mais simples, específica e objetiva. Isso, pois, risco é tratado com base na *NR.1.7* sobre a perspectiva de mapa de riscos.

4.3.1. NormMAS

NormMAS é um modelo usado para definir comportamento normativo de sistemas multiagentes [Chang and Meneguzzi 2016]. No que tange questões referentes ao comportamento normativo, o modelo trabalha com duas definições [Chang and Meneguzzi 2016]. A primeira definição é;

Definição 1. Um norma é definida por meio de uma tupla $N = \langle \mu, \kappa, \chi, \tau, \rho \rangle$

- $\mu \in \{obligation, prohibition\}$ representa as modalidades de norma.
- $\kappa \in \{action, state\}$ representa o tipo de *trigger* da condição.
- χ representa o conjunto de estados em que uma norma se aplica.
- τ representa a norma da condição de trigger
- ρ representa a sanção aplicava pela violação do agente.

A defição 1 pode ser compreendida sobre o seguinte exemplo;

Todos os imigrantes que possuem passaporte válido, devem ser aceitos. A falha resulta na perda de 5 créditos.

Dentro da definição 1, o exemplo fica;

$$\langle obligation, action, valid(Passport), accept(Passport), loss(5) \rangle$$
 (48)

NormMAS define um *Registro de ação* que é dado pela definição 2.

Definição 2. Um Registro de Ação é definido por meio de uma tupla $R = \langle \gamma, \alpha, \beta \rangle$

• γ representa o agente executando uma ação;

- α representa a ação sendo executada pelo agente γ
- β representa os estados internos do agente γ no momento da execução.

Assim como o modelo definido neste estudo, *NorMAS* formaliza o conceito de norma em conjunto com o conceito de violação e de sanção. Contudo, assim como o estudo [Dastani et al. 2009], *NormMAS* pode ser usado para representar o caso em estudo, contudo o engenheiro de modelagem teria de elaborar diversos conceitos - como riscos, fatalidades, condições a serem mantidas durante a execução da atividade, definir como um objetivo afeta outro e relacionamentos. Em contraste com isso, o modelo presente neste estudo não apresenta a abrangência que o *NormMAS* apresenta, contudo delimita com maior rigor o vocabulário a ser usado pelo engenheiro de modelagem.

Referências

- Allen, J. F. (1983). Maintaining knowledge about temporal intervals. *Commun. ACM*, 26(11):832–843.
- Barot, C., Lourdeaux, D., Burkhardt, J., Amokrane, K., and Lenne, D. (2013). V3S: A virtual environment for risk-management training based on human-activity models. *Presence*, 22(1):1–19.
- Boissier, O. (2011). From organisation oriented programming to multi-agent oriented programming. In Klügl, F. and Ossowski, S., editors, *Multiagent System Technologies*, pages 1–1, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Camus, F., Lenne, D., and Plot, E. (2012). Designing virtual environments for risk prevention: the melissa approach. *International Journal on Interactive Design and Manufacturing (IJIDeM)*, 6(1):55–63.
- Chang, S. and Meneguzzi, F. (2016). Simulating normative behaviour in multi-agent environments using monitoring artefacts. In Dignum, V., Noriega, P., Sensoy, M., and Sichman, J. S., editors, *Coordination, Organizations, Institutions, and Norms in Agent Systems XI*, pages 59–77, Cham. Springer International Publishing.
- Dastani, M., Grossi, D., Meyer, J.-J. C., and Tinnemeier, N. (2009). Normative multiagent programs and their logics. In Meyer, J.-J. C. and Broersen, J., editors, *Knowledge Representation for Agents and Multi-Agent Systems*, pages 16–31, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Fadier, E., Garza, C. D. L., and Didelot, A. (2003). Safe design and human activity: construction of a theoretical framework from an analysis of a printing sector. *Safety Science*, 41(9):759 789.
- Hübner, J. F., Sichman, J. S., and Boissier, O. (2002). A model for the structural, functional, and deontic specification of organizations in multiagent systems. In Bittencourt, G. and Ramalho, G. L., editors, *Advances in Artificial Intelligence*, pages 118–128, Berlin, Heidelberg. Springer Berlin Heidelberg.
- López y López, F. and Luck, M. (2004). A model of normative multi-agent systems and dynamic relationships. In Lindemann, G., Moldt, D., and Paolucci, M., editors, *Regulated Agent-Based Social Systems*, pages 259–280, Berlin, Heidelberg. Springer Berlin Heidelberg.

von Wright, G. H. (1969). *On The Logic and Ontology of Norms*, pages 89–107. Springer Netherlands, Dordrecht.