Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Soil Conservation Service

March 1983

Reserve aGB991 .M3F5

Flood Plain Management Study Mattawoman Creek and Tributaries

Charles and Prince Georges Counties Maryland

AD-33 Bookplate

NATIONAL

LIBRARY

O FLOOD PLAIN MANAGEMENT STUDY

V.S. DEPT. OF ACMICULTURAL EMBRARY
AUG 1 1 1983

FOR

MATTAWOMAN CREEK AND TRIBUTARIES

CHARLES AND PRINCE GEORGES COUNTIES, MARYLAND

March 1983

Soil Conservation Service.

Room 522, 4321 Hartwick Road

College Park, Maryland 20740

This study provides water surface elevations and peak streamflows for present condition and future condition floods of the 0.2, 1, 2, 10, and 50 percent chance of occurence in the Mattawoman Creek Watershed in Prince Georges and Charles Counties, Maryland, for the main stem of the Mattawoman Creek and its three major tributaries. The present condition 100-year flood plain is mapped and stream profiles are plotted for the present condition floods.

The narrative describes the watershed briefly with emphasis on the flood plain which is largely woodland and swamp, especially the lower reaches of the watershed. Some suburban development has taken place upstream. About twenty buildings are affected by flooding and most of these are located in two subdivisions which encroach on the flood plain.

Both counties expect future development to threaten the flood plain. This report presents a number of management measures that might be implemented to minimize future flooding.

Information on the models used to develop the water surface elevations may be obtained from the Maryland State Department of Natural Resources, Water Resources Administration, Flood Management Division, Tawes State Office Building, Annapolis, Maryland 21401 (phone 301-269-3825). Copies of this report and general information on the watershed may be obtained from the Soil Conservation Service, 4321 Hartwick Road, College Park, Maryland 20740 (phone 301-344-4180).

TABLE OF CONTENTS

Pag	ζe
troduction	L
udy Area Description	
Introduction	
Natural Values	
Flood Problems	
Existing Flood Plain Management	
ternatives for Flood Plain Management	
A. Present Condition (No Action)	
B. Land Treatment	
C. Preservation of Natural Values	
D. Non-Structural Measures	
E. Structural Measures	
ood Boundary Maps	
ossary of Terms	
bliography	
Dilography	
gure l - Location Map	5
gure 2 - Mattawoman Natural Environmental Area and Myrtle Grove	
Wildlife Management Area)
pendix A: Flood Plain Maps and Profiles pendix B: Flood Elevations at Selected Frequencies pendix C: Typical Cross-Sections pendix D: Photographs	
pendix E: Investigations and Analysis	

FLOOD PLAIN MANAGEMENT STUDY

FOR MATTAWOMAN CREEK AND TRIBUTARIES, CHARLES AND PRINCE GEORGE'S COUNTIES, MARYLAND

INTRODUCTION

This study was prepared by the United States Department of Agriculture, Soil Conservation Service (SCS) and the Maryland Department of Natural Resources, Water Resources Administration (WRA). The Maryland National Capital Park and Planning Commission, the Maryland Geological Survey, and both the Charles and Prince George's Soil Conservation Districts all provided data for the study.

In March 1969, The Maryland National Capital Park and Planning Commission requested assistance from DNR in delineating the flood plains of several streams in Prince George's County, one of which was the Mattawoman Creek.

The following local sponsors applied to the Secretary of Agriculture in January 1971 for Public Law 566 assistance:

Prince George's Soil Conservation District

Maryland National Capital Park and Planning Commission

Board of County Commissioners, Prince George's County

Charles Soil Conservation District

County Commissioners of Charles County

Maryland Department of Parks and Forests

The Soil Conservation Service conducted a field examination of the Mattawoman Creek Watershed in 1978. The field examination report, published in December 1978, stated that a structural flood prevention project could not be economically justified. The report recommended that a study be made to delineate the flood plain to facilitate flood plain management.

One of the sponsor's objectives was to delineate the 100-year flood plain of the Mattawoman Creek on topographic maps as an aid to local flood plain management. There is no delineation of the flood plain limits of Mattawoman Creek at present as detailed topographic mapping on a large scale is not available for Charles County.

An immediate need exists in the watershed to delineate those areas with a potential flooding hazard, where development pressures are strong, to enable the local units of government to formulate appropriate land use and development regulations to reduce flood damages and develop an effective flood plain management program. Mattawoman Creek flood plain is under increasing urbanization pressure due to its proximity to Washington, D.C., especially that portion of the watershed in Charles County. This study will help define the limits of allowable development, particularly in Charles County where there are no Federal Insurance Administration (FIA) maps available.

In August 1976, the Federal Insurance Administration (FIA), Department of Housing and Urban Development, published Flood Insurance Rate Maps for the unincorporated areas of Prince George's County, which included a delineation of the 100-year flood line on the Prince George's side of Mattawoman Creek done by approximate methods. A restudy of the county, which will have detailed mapping of the Mattawoman Creek flooding using the data published in this study, now has been initiated and will be published in 1984.

As part of the detailed studies underway amd administered by the Federal Emergency Management Agency (FEMA), detailed maps for the Charles County side of Mattawoman Creek are being prepared at a scale of 1 inch to 500 feet with a contour interval of 5 feet. The final maps, using the hydraulic and hydrologic data from this study to delineate the 100 and 500 year flood plains are expected to be published in 1983. The FEMA Flood Insurance Study was initiated after the SCS-DNR study was underway.

The Soil Conservation Service (U.S. Department of Agriculture) carries out flood plain management studies under the authority of Section 6 of Public Law 83-566, in response to Recommendation 9(C), "Regulations of Land Use," of House Document No. 465, 89th Congress, 2nd session, and in compliance with Executive Order 11988 (February 10, 1978). The study was conducted in accordance with the 1971 Joint Coordination Agreement, between the Soil Conservation Service and the Maryland Department of Natural Resources.

The Water Resources Administration (WRA) of the Maryland Department of Natural Resources is charged with the State's responsibility to implement a sound flood plain management program under the Natural Resources Articles 8-9A-01 et. seq. The Flood Management Division of the WRA coordinates flood plain studies among the Counties, Regional Agencies, and State and Federal Agencies.

Hydraulic and cross-section data were obtained by field surveys with elevations based on National Geodetic Vertical Datum of 1929 (NGVD).

Hydrologic and hydraulic models were developed for the main stem of Mattawoman Creek, Timothy Branch, Piney Run, and Old Woman's Run for present and future conditions. The headwaters tributaries initially included in the study were found to be too small to develop flood plain areas truly independent of the

Mattawoman main stream during the 24-hour 100-yr storm. During intense localized storms they are prone to flash flooding. The lower reaches of these tributaries were included within the main stream flood plain.

Water surface profiles were computed with the Corps of Engineers Water Surface Profile Program HEC2. All bridges and culverts were considered in developing the water surface profiles. SCS Hydrologic Model TR-20 was used in establishing flood peaks for various recurrence intervals for present and future conditions. Hydrologic parameters for the present and future were estimated using land use, zoning maps, and soil survey maps as well as information from the counties' planning and zoning departments, and the counties' master plans of expected future land use patterns for the period 1990-2000. Since the stream gage on Mattawoman Creek is now discontinued, it is presently an ungaged stream. A special study by SCS and the National Weather Service (NWS) determined rainfall depths to use in the SCS Hydrologic Model TR-20 to estimate the discharges associated with various recurrence intervals.

Since the Flood Insurance Study, with detailed mapping at a larger scale will be available in a reasonable time, it would be redundant to produce independent mapping of similar quality for this study. The 100-year flood line was mapped on U.S.G.S. 7½ minute topographic quad sheets, at a scale 1 inch equals 2,000 feet with contour intervals of 10 and 20 feet (Appendix A). Cross-section locations are noted on the maps. The principal products of this report are the profiles that accompany the maps and the tabular listing of discharges and elevations for the 500, 100, 50, 10, and 2-year floods (Appendix B). Detailed maps will be available from FEMA (Curtis Building, 6th and Walnut Streets, Philadelphia, PA. 19106 (phone 215-597-9581)) after 1983.

STUDY AREA DESCRIPTION

Introduction

The Mattawoman Creek watershed is located in south central Maryland and covers about 50,500 acres in Prince George's and Charles Counties, Maryland (see Figure 1, Location Map). The study covers the freshwater part of the watershed above the legal tide limit. The watershed shape is elongated, and about 10 percent of the drainage area is marsh and flood plain. It lies within commuting distance of Washington, D.C. and satellite metropolitan, commercial and business centers; therefore it is subject to intensive pressure for suburban development.

The area studied includes the flood plain of Mattawoman Creek and its tributaries: Timothy Branch, Piney Run, and Old Woman's Run for a total of 32.6 miles. (See Figure 1).

LOCATION MAP

Location Map of the Mattavowan Greek Watershed as taken from U.S.G.S. Maps of the area.

This vatershed lies totally within Prince Georges and Charles Counties, Maryland, and is within the jurisdiction of Prince Georges and Charles Soil Conservation Districts; the Commissioners of Prince Georges County and the Commissioners of Charles

LEGEND

Watershed Boundary City and County Lines Roads

Straums

Rairoads Study Reaches

LOCATION MAP

MATTAWOMAN CREEK WATERSHED Prince Georges and Charles Counties,

Maryland

1/2 O 1 2 Shires

STUDY REACHES: MATTAWOMAN CREEK & TRIBUTARIES FLOODPLAIN MANAGEMENT

	Length of	Beginning	End of	
<u>Stream</u>	Reach	of Reach	Reach	
Mattawoman Creek	19.9 miles	Cedarville St. Forest	Mason Springs Tidal Limit	
Timothy Branch	3.2 miles	Brandywine Road	Confluence	
Piney Run	5.0 miles	Route 301	Confluence	
Old Woman's Run	4.5 miles	Billingsley Road	Confluence	

The width of the study area is approximately 2,000 feet on each side of the streams. The United States Geologic Survey hydrologic unit number for the study area is 02070011.

The study area has a humid continental climate with an average 47 inches of precipitation and a mean 56° F temperature annually. Maximum rainfalls occur in the summer (due to thunderstorms and hurricanes), although rain is fairly evenly distributed through the year. The growing season averages about 190 days between mid-April and mid-October. Mattawoman Creek lies in the partly dissected uplands of the Atlantic Coastal Plain physiographic province. Unconsolidated sands, gravels, silts and clays underlie the area, and are the parent materials for its soils. The major soils series are the Beltsville, Sassafras, and Bibb Series. The substrata are quite erodible when exposed.

In 1970, approximately 60 percent of the watershed was wooded and about 30 percent was in agricultural use with the remainder in surburban or urban land uses. There are about 275 farms in the watershed, averaging 125 acres in size, producing corn, tobacco, soybeans, and speciality crops.

The flood plain area is about 5,000 acres. Fifty percent of the flood plain is seasonally flooded, 45 percent is occasionally flooded bottomland hardwood and wooded swamp, 4 percent is in open space and 1 percent in other uses.

There are few areas of prime farmland in the flood plain, and those present occur as isolated patches (See Appendix A). Some 1500 acres of prime farmland occur throughout the watershed.

The streams support moderately high populations of bluegill, largemouth bass, pickerel, catfish, white perch and suckers. The lower reaches of the main stem also support moderate to high populations of striped bass and herring during the spawning runs and provide an important nursery area for striped bass.

Wildlife species and habitat are of excellent to moderate numbers and quality. The area is used as resting and feeding grounds for diving and dabbling ducks, geese, whistling swans, and other migratory game such as mourning dove and woodcock. Wood ducks and herons have established breeding grounds. The relatively wide bottomland contains extensive wetlands, approximately 5,000 acres of Type 1 seasonally flooded basins or flats which are dominated by hardwoods and Type 7 wooded swamps. Deer, gray squirrel, cottontail rabbit, and bobwhite quail use the area year round. Furbearers such as the red and gray fox, raccoon, opposum, striped skunk, muskrat, otter, mink, and beaver; as well as shorebirds, waders, songbirds, and birds of prey (including the osprey) are present.

The Myrtle Grove Wildlife Management Area covers 834 acres in the southwestern part of the watershed near Route 225 (see Figure 2). The Department of Natural Resources manages the area for the benefit and production of fish and game as well as for non-game species. Hunting and fishing are both allowed in the area and there are facilities or opportunity for hunting, fishing, hiking, horseback riding, photography, birdwatching, and natural food collecting.

The Maryland Department of Natural Resources has acquired 2,154 acres partly within the watershed as part of the Mattawoman Natural Environment Area, a parkland project to preserve the natural features of the area and provide an undisturbed outdoor experience for Maryland's citizens. Hiking, biking, and bridle trails are proposed (see Figure 2).

Part of the Cedarville State Forest is in the eastern uplands of the watershed.

Flood Problems

In the past flood losses have been relatively minor due to limited development in the flood plain. At present most of the 5,000 acres inundated by the 100 year flood are woodland or wetland, approximately 4 percent or 200 acres is cropland or open space, and 5 percent or about 250 acres are developed or zoned for development. The major streams are not prone to flash flooding but rise slowly enough to give adequate warning of danger.

Flood damages occur to buildings, bottomland fields, low-lying roads, and bridges and amount to \$5,000 to \$10,000 in average annual damages. Low-lying parts of the Pinefield and Country Club South developments (located in Charles County east of Route 301 and south of the Mattawoman main stem) have experienced flooding, but major towns or communities as a whole have not been affected.

Flooding of residences and outbuildings occurred at Buteaux Crossing, a horse farm north of Berry Road, and near Bealle Hill Road during tropical storm

Agnes (June 1972) and Hurricane Eloise (September 1979).

Severe thundershowers occurred on May 30, 1982, with rains locally exceeding the 100-year storm. Flooding in Pinefield and Country Club South affected 17 houses and 30 vehicles, with widespread yard and street flooding. Although most residents had alternative routes for access, several cul-de-sacs were isolated by the waters.

The watershed is in a rapid growth area near Washington, D.C. The major community is Waldorf which is located partly within the watershed near the eastern boundary. Waldorf's 1970 population of 13,607 increased to 24,460 in 1980. Most residents work outside the watershed, and a half-dozen single family house type subdivisions have grown up amongst existing rural centers and crossroad communities. The new interceptor sewer line along the creek will encourage further development.

The counties' planning and zoning maps indicate a future increase in three acre to 1/3 acre lot zones (especially in Charles County) where presently a mix of open land, cropland, woods and pasture covers about sixty percent of the watershed. Future condition flood stages and peak flows were calculated assuming these zones to reflect actual land use changes.

Transition from rural to urban land uses will increase the frequency of flooding in the study area. Runoff from a given rainfall will have increased volume due to larger percentages of impervious area (roofs, roads, parking lots) and the time of the concentration will decrease due to changed hydrologic characteristics of the drainage area. This larger runoff will result in increased erosion, sedimentation, and flood damages.

On the state level, within the Water Resources Administration the Flood
Management Division provides technical assistance to local governments for
watershed planning in the implementation of the Flood Hazard Act of 1976
(Natural Resources Article 8-9A01 (et seq.) This is the regulatory authority
in the State for watershed planning. The Flood Management Division also
coordinates at local and Federal level with the National Flood Insurance
Program and provides information and education to public and private groups
and individuals.

The State of Maryland code requires a permit whenever private activity changes in any manner, "the course, current, and cross section of any stream or body of water," within state waters (Code of Maryland, Natural Resources Article, Section 8-803). State waters are defined to include the flood plain of free flowing waters determined by the Department of Natural Resources on the basis of the 100-year flood.

Activities of the State of Maryland, Department of Planning relate primarily to overseeing land use activities statewide and offering advice and assistance so that land use changes which create a potentially serious flooding situation are avoided (Article 88C, Annotated Code of Maryland).

The Subdivision Regulations of the Charles County Code require that buildings constructed in the Regulatory (100-year) Flood Plain must be elevated to or above the level of the Regulatory Flood, or be adequately floodproofed. If the proposed development will lie in the Regulatory Floodway, or increase the Regulatory Flood height, it is not to be approved by the Planning Commission. (Subdivision Regulations Charles County Code, June 1976, P. 36).

Prince Georges County Bill 48-1981 CB-48-1981, (enacted October 6, 1981 and effective January 1, 1982) requires that in proposed subdivisions, lots. contain the minimum lot area prescribed by the Zoning Ordinances exclusive of the 100 year flood plain as delineated by the Federal Insurance Administration or another appropriate public agency. Residences must be set back 25 feet from the flood plain boundary. If a lot contains the flood plain of a stream that is to be left substantially in its natural state and this flood plain is not to become a public park or recreation area, this flood plain becomes an easement area. It may be used if necessary for utility lines, storm drain facilities, open-type fencing, or passive recreation as long as there are no structures that would interfere with the flood conveyance capacity of the easement. Storm water management and sediment control plans are also required for proposed subdivisions. These plans must demonstrate adequate control by structural or non-structural means of increased runoff for the 10- and some times the 100-year storm and submit a storm drainage concept study prior to final plat approval. Land found unsafe due to flooding, erosive stream action, high water tables, unstable soils or severe slopes may not be subdivided. The Maryland National Capital Park and Planning Commission reviews all subdivision applications and rezoning requests for compatibility with the county and planning area comprehensive plans and flood plain conservation is a part of the master plans.

The county building code prohibits the construction or placing any structures or obstructions in the 100-year flood plain, and also filling or changing the cross section or flow characteristics within this flood plain.

Residents of a subdivision located in the flood plain at one community were relocated and the land has been converted to open space.

A. Present Condition (No Action)

This alternative would preserve the present state of affairs. Both Prince Georges and Charles Counties have non-structural flood plain management policies for the watershed at present. This study and the forthcoming FIA study will provide a delineation of the 100-year flood plain.

B. Land Treatment

Land treatment measures would reduce runoff somewhat, but they would not significantly reduce flood peaks, especially in the eastern half of the watershed where most of the development is occurring. Flood plain scour and some small scale gullying presently occurs on the sewer right-of-way in the Mattawoman flood plain (see Figure 5, Appendix D). Erosion of idle and poorly managed farm land and streambank erosion during floods also occur but the major erosion sources in the watershed are from the continuing urbanization taking place. The eroded soil silts valley lands, and obstructs storm sewers, road ditches, and the natural channels.

Conservation land treatment measures, the use of effective erosion and sediment control practices on disturbed soils and development sites, and critical area treatment for trouble spots can reduce erosion and sedimentation.

C. Preservation of Natural Values

In 1969 the Maryland General Assembly authorized the creation of the Mattawoman Natural Environmental Area and in September 1974, Secretary Coulter of the Maryland Department of Natural Resources approved project boundaries encompassing 4730 acres which included Mattawoman Creek, flood plain and upland acres from Marbury (downstream of this study's limits) to Billingsley Road. The open space program has been authorized to purchase 3,061 acres for the Natural Area. They have acquired 2,154 acres by purchase or easement to date. The land is adjacent to the Myrtle Grove Wildlife Area (see Figure 2).

There is some concern among watershed residents that the proposed natural area may be usurped by development or damaged by excessive siltation from eroding construction sites. With appropriate zoning and enforcement of the present sediment control program operating on adjacent acres, it would be possible to maintain the Natural Environmental Area in a relatively wild and undeveloped state.

D. Non-Structural Measures

Flood plain delineation can provide the sponsors with an effective tool for flood plain management along with the application of some non-structural measures.

Floodproofing with low walls, flood doors and windows, could protect individual properties such as those at Buteaux Crossing, at the Harris-Middleton Road Crossing, and the farm north of Rt. 228 from flooding below specified elevations.

Another option would be to raise affected structures, such as the barn on the horse farm mentioned previously or main family residences which have the necessary structural integrity. Physical relocation of presently flooded structures, especially outbuildings, to higher ground is another alternative.

Relocation in which the landowner actually moves to another location is another management alternative, which could be combined with a program of flood plain purchase by the state or county. Flood plain management can also be done through local and county zoning ordinances, building codes, community planning, and the permits systems. Legal restrictions on construction and land use in the flood plain can be a powerful tool for controlling future flood plain uses if they are strongly enforced.

Flood insurance will also be available to interested property owners if Charles County decides to join the regular program. The flood elevations given here and the detailed mapping to be available through the flood insurance study are tailored for this program.

Since damages in the watershed are somewhat scattered, it may well be that a combination of non-structural measures would provide the best protection to those now receiving damages. A strong zoning code and its enforcement could keep inappropriate land uses out of the flood zone in the future.

The Prince Georges County regulations and codes governing flood plain land use are quite detailed and the county's management program is innovative and active. The Charles County Commissioners may not wish to adopt similar management measures for the whole county, but establishing similar management measures and a comparable enforcement program for the Mattawoman would provide a consistent land use policy in the watershed.

E. Structural Measures

Sandbars choke the streams, and create particular hazards at road crossings and culverts where fallen trees and debris may jam and trap even more sediment (see Figure 7, Appendix D). These conglomerations increase the flooding problem by backing up water during high flows.

The channel can be cleared of fallen trees and debris dams to improve channel capacity and reduce some flooding.

Stormwater management ordinances usually require developers to install stormwater controls that maintain present runoff levels or increase future runoff by no more than a specified amount. Such controls could be structural (detention ponds, levees, roof-top detention facilities), non-structural (porous pavements, minimum use of natural drainages, infiltration pits, increased open space) or some appropriate combination of these. An effective program could reduce the expected levels of flooding in the future.

A system of dikes could provide flood protection for some damageable properties. They would probably need to be 5 to 10 feet high and 1,000 to 3,500 feet long and either surround the property or form a barrier to the river depending on the individual case. The economic feasibility of dikes was not evaluated, but it is very likely that one dike would have to provide protection to several properties before it became economically justifiable.

Ten potential structure sites were identified in the Mattawoman Creek Watershed by the Water Resources Inventory (SCS, 1968). These are located on tributaries or headwater streams. Several of the larger site areas have since been usurped by development nearby. The remaining potential sites are small and would do little towards actual flood reduction. Because of these minimal benefits and the high cost of such structures, there is very little likelihood of their economic justification.

FLOOD BOUNDARY MAPS

Three map sheets showing the 100-year floodplain of Mattawoman Creek are published as Appendix A of this report. The base map is a mosaic of U.S.G.S. 7½ minute topographic quadrangles at 1 inch to 2,000 feet, with contour intervals at 10 and 20 feet. Cross-section locations are marked and the maps can be used with the profiles that accompany them to determine the elevations of various frequency floods at points within the watershed. The location of prime farmland soils within the floodplain is also shown.

These floodplain maps will be superseded by those in the Flood Insurance Study. As the future maps will be more detailed, it is not expected that the floodplain delineations will exactly agree, but that does not affect the elevations published in this report upon which the FIS maps will be based.

To utilize the information in Appendix A (Maps and Profiles) and Appendix B (elevations tables), one should locate a point of interest on the map, and then find the nearest cross-section. Reference to the tables at that cross-section will give the elevations of the various floods. Measuring up or down stream on the profiles from the cross-section an appropriate distance will give an estimate of flood levels at points between the sections.

Several cross-sections and bridges are plotted in Appendix D, showing the general channel shape, and some of the smaller side channels characteristic of the floodplain. Flood elevations are also shown on the plots indicating the water level during various flood flows. Photographs are included in Appendix D, with the flood levels also shown.

GLOSSARY OF TERMS

cfs - Cubic feet per second (unit of discharge).

cross-section - Shape and dimensions of a channel and valley perpendicular to the line of flow.

discharge - Rate of water flow, expressed in cubic feet per second (cfs).

elev. - bridge deck - Elevation of a roadway across a bridge or culvert.

elev. - low beam - Elevation of lowest structural "beam" that limits the height of the bridge opening; or may indicate the top of a culvert opening.

elev. low road - Elevation of low point on a roadway approaching or crossing a bridge or culvert.

flood - A overflow of lands not normally covered by water; a temporary increase in streamflow or stage; or the discharge causing the overflow or temporary increase.

flood frequency - An expression of how often a flood of given magnitude can be expected. (Note: The word "frequency" often is omitted to avoid monotonous repetition.)

Examples

10-year flood or 10-year frequency flood - The flood which can be expected to be equalled or exceeded on an average once in 10 years; and which would have a 10 percent chance of being equalled or exceeded in any given year.

50-year flood - . . . two percent chance . . . in any given year.

100-year flood - . . . one percent chance . . . in any given year.

500-year flood - . . . two-tenths percent chance . . . in any given year.

flood peak or peak discharge - The highest stage or discharge attained during a flood.

flood plain or flood-prone area - Lands adjoining a stream (or other body of water) which he been or may be covered with water.

flood profile or profile - A plotted line showing the highest water surface elevations along a stream during a particular flood.

flood-prone area - See flood plain.

flood routing - Computation of the changes in the rise and fall in stream flow as a flood moves downstream. The results provide <u>hydrographs</u> of discharge versus time at given points on the stream.

frequency-discharge curve - A plotted line showing the frequency of various flood discharges at a surveyed cross-section or other point along a stream. (Used with a stage-discharge curve to determine the high water elevations resulting from selected flood discharge at the point on the stream.)

hydrograph - A plotted curve showing the rise and fall of flood discharge with respect to time at a specific point on a stream.

land use - Classification of type of vegetation, or other surface cover conditions on a watershed used (with a similar classification of soils) to indicate the rate and volume of flood runoff.

peak discharge or flood peak - The highest rate of runoff (discharge) attained during a flood.

profile - See flood profile.

runoff - That portion of the total storm rainfall flowing across the ground or other suface and contributing to the flood discharge.

stage-discharge curve - A plotted curve showing elevations resulting from a range of discharges at a surveyed cross-section, stream gage, or other point on a stream.

watershed - A drainage area which collects and transmits runoff to the outlet of the drainage basin.

water surface profile - See flood profile.

BIBLIOGRAPHY

- Inter-Office Memo (unofficial), Charles County Department of Public Works and Charles County Commissioners on Storm of May 30, 1982, dated June 22, 1982.
- Kusler, J. A. Innovation in Local Floodplain Management: A Summary of Community Experience, Naturaal Hazards Research and Applications Information Center, Special Publication 4, Boulder, Colorado, 1982.
- U.S. Department of Agriculture, Soil Conservation Service, Cartographic Unit: Mosaic prepared from USGS topo quads, 1979.
- U.S. Department of Agriculture, Soil Conservation Service, National Engineerine Handbook, Volumes 4: Hydrology (1972) and Volume 5: Hydraulics (1951).
- U.S. Department of Agriculture, Soil Conservation Service, Technical Release 20, Computer Program for Project Formulation, Hydrology, Washington, D. C.; (1965).
- U.S. Department of Agriculture, Soil Conservation Service, Technical Release 61, WSP Computer Program, Washington, D. C., 1976.
- U.S. Army Corps of Engineers, Hydrologic Engineering Center, Computer Program 723-X6-L202A (1976, updated April 1980) and HEC-2 Water Surface Profiles Users Manual, Davis, California, August, 1979.
- U.S. Department of Commerce, NOAA, Climatological Summary: LaPlata, Maryland, 1970.
- NWS, Five to 60-Minute Precipitation Frequency for Eastern and Central United States, 1977.
- U.S. Department of Interior, Geological Survey, Brandywine, Maryland (N8375 W7645/7.5; 7.5 Minute Topographic Quadrangle series): Washington, D. C., 1956 (revised 1971).
- U.S. Department of Interior, Geological Survey, Hughesville, Maryland. (N 3830 W7645/7.5; 7.5 Minute Topographic Quadrangle series): Washington, D. C., 1956 (revised 1974).
- U.S. Department of Interior, Geological Survey, Piscataway, Maryland. (N3837.5 W76525; 7.5 Minute Topographic Quadrangle series): Washington, D. C., 1957 (revised 1978).
- U.S. Department of Interior, Geological Survey, Mounty Vernon, Md-Va. (N3839-5 W7700/7.5; 7.5 Minute Topographic Quadrangle series): Washington, D. C., 1966 (revised 1978).
- U.S. Department of Interior, Geological Survey, Water Resources Data for Maryland and Delaware, 1955, 1972, 1975, 1979.
- U.S. Water Resources Council, Bulletin 17A: Guidelines for Determining Flood Flow Frequency, U.S. Government Printing Office, June 1977.

		-6-
	•	
•		
·		
		1
		,

APPENDIX A:

FLOOD PLAIN MAPS AND PROFILES

	-	

NOTE TO APPENDIX A

The tabulated present and future condition profiles in Appendix B are the source of the profiles in this Appendix and come directly out of the HEC2 Computer Models. Since the distances between some cross-sections are quite short, especially those located near bridges, not all of the cross-sections used in the model are shown on the maps and profiles. They are listed in Apendix B. The computer model, input and complete output are stored at the Flood Plain Management Division of the Water Resources Administration in Annapolis (telephone 301-269-3825). The Soil Conservation Service in College Park (telephone 301-344-4180) has copies of the model input and summarized output for reference, and copies of this document for distribution.

Information from the models is available to the public upon request and should be referred to if the data are to be used to determine a flood height at a specific location.

the Ministration of the Ministration

The one of all manyor all additions and appears would not access on the country of the country o

APPENDIX B:

FLOOD ELEVATIONS AT SELECTED FREQUENCIES

Section Q (cfs MATTAWOMAN CREEK, 51 20274 50 19841 49.2 19841 49.2 19841 49 19841 47 19809 46 19809 46 19809		E1. (ft) Q (c PRESENT CONDITIONS 8.2 127 8.7 125 11.0 125 13.9 125 13.9 125 14.1 125 14.1 125 14.5 123 16.0 123	Q (cfs) E1 ITIONS 12744	1. (cfs)	Q (cfs) E	E1. (ft)	Q (cfs)	El. (ft)	0 (cfs) El	1. (ft)
		8.2 8.7 11.0 13.9 14.1 14.5 16.0 18.1	<u>rrions</u> 12744			1			1017	
51 50 49.3 49.2 48 47 46 44	20274 19841 19841 19841 19841 19809 19809 19809 17094 17094	8 8 11 13 14 14 14 14 18 18 18 18 18 18 18 18 18 18 18 18 18	12744					•		
50 49.3 49.2 47 47 44	19841 19841 19841 19841 19809 19809 17094 17094	11 13 13 14 14 16 18		7.3	10002	7.0	5008	4.0	1299	0.2
49.3 49.2 48 47 46 45	19841 19841 19841 19841 19809 19809 17094 17094	11 13 13 14 14 16 16 18	12500	7.5	8086	7.2	4870	5.5	1163	2.6
49.2 49 47 46 45	19841 19841 19841 19809 19809 19809 17094	13	12500	7.8	8086	7.3	4870	5.5	1163	2.6
49 47 45 45	19841 19841 19809 19809 19809 17094 17094	13	12500	8.2	8086	7.5	4870	5.6	1163	2.6
48 47 45 45	19841 19809 19809 19809 17094 17094	14	12500	7.6	8086	8.6	4870	5.9	1163	2.6
44 45 45	19809 19809 19809 17094 17094	16 18 18	12500	11.8	8086	10.8	4870		1163	6.1
46 45 44	19809 19809 19809 17094 17094	16	12334	12.5	9620	11.8	9/97	10.6	1062	9.5
44	19809 19809 17094 17094	18.1	12334	14.9	9620	14.5	. 9297	13.7	1062	11.8
77	19809 17094 17094		12334	17.1	9620	16.7	9/97	15.7	1062	14.4
	17094 17094 17094	21.1	12334	19.9	9620	19.4	9/97	18.2	1062	16.7
43	17094	26.6	11106	25.5	8916	25.0	4682	23.9	1132	21.8
42	17094	31.0	11106	30.1	8916	29.7	4682	28.7	1132	27.0
41	11011	35.0	11106	33.9	8916	33.4	4682	32.1	1132	30.0
40.3	16729	35.3	11070	34.2	8952	33.7	4672	32.4	1090	30.5
40.2	16729	35.3	11070	34.2	8952	33.7	4672	32.4	1090	30.5
40	16729	35.8	11070	34.7	8952	34.2	4672	32.8	1090	30.8
39.75	16729	39.2	11070	38.2	8952	37.7	4672	36.5	1090	34.8
.39.5	16729	43.0	11070	42.2	8952	41.9	4672	41.1	1090	40.0
39	16729	44.5	11070	43.5	8952	43.1	.4672	41.9	1090	40.1
38	16729	48.5	11070	9.74	8952	47.2	4672	7.97	1090	45.6
37.5	16729	6.84	11070	48.1	8952	47.8	4672	47.0	1090	45.8
37.4	16729	9.64	11070	49.2	8952	0.64	4672	47.0	1090	45.8
37.3	16729	50.9	11070	50.4	8952	50.1	4672	48.6	1090	
37.2	16729	50.9	11070	50.4	8952	50.2	4672	49.0	1090	45.9
37	12431	51.1	8007	9.09	6528	50.3	3834	0.64	1102	46.3
35	12431	53.8	8007	53,4	6528	53.2	3834	52.8	1102	51.7
34	12431	62.1	8007	61.1	6528	60.7	3834	59.9	1102	58.3
33	12431	63.3	8007	62.3	6528	61.9	3834	61.0	1102	59.2
32.3	12431	63.4	8007	62.4	6528	62.0	3834	61.1	1102	•
32.2	12431	63.4	8007	62.4	6528.	62.0	3834	61.1	1102	59.2
32.1	12431	63.8	8007	62.8	6528	62.4	3834	61.5	1102	59.6
31	12431	66.1	8007	6.49	6528	64.4	3834	63.4	1102	61.5
30.5	12431	4.69	8007	68.5	6528	68.1	3834	4.79	1002	66.3
30	12431	75.3	8007	74.5	6528	74.1	3834	73.4	1102	72.1
29.5	12431	81.8	8007	80.8	6528	80.4	3834	9.62	1102	78.3
29	12169	86.8	8140	85.9	8699	85.6	3761	84.7	1517	83.6

year El.		œ	5	6	9		_	_	_	_	_		-			_		_		_	_	_	_	-	_	_		_		_	_		_	_	_	_	_	-	_	
(CON'T) 2 0 (cfs)		1517	1517	1517	1517	1517	968	968	968	968	968	968	968	968	968	161	791	791	161	791	791	791	654	654	654	654	459	459	459	459	459	459	459	.459	459	459	459	459	459	459
FLOW FREQUENCIES 10 year (fs) El. (ft)		8.06	95.0	99.2	99.2	103.8	109.0	119.4	119.5	119.5		119.5	119.6	125.1	135.0	141.2	147.1	150.3	150.6	150.6	150.9	150.9	•	160.9	•	167.8	169.2	174.8	S	175.0		175.1	2	175.3	175.4	175.4	175.4	œ	179.6	181.8
SELECTED FLOW 10 y O (cfs)		3761	3761	3761	3761	3761	3152	3152	3152	3152	3152	3152	3152	3152	3152	2846	2846	2846	2846	2846	2846	2846	2407	2407	2407	2407	1615	1615	1615	1615	1615	1615	1615	1615	1615	1615	1615	1615	1615	1615
ELEVATIONS FOR S 50 year (s) E1. (ft)		91.7	95.9	101.5	101.6	105.3	109.0	120.5	120.6	120.6	120.6	120.6	120.7	125.6	136.0	142.0	148.1	151.3	151.5	151.5	151.8	$\overline{}$	•	167.9	167.9	169.2	170.5	9	176.4	176.4	176.6	176.6	176.9	176.9	177.1	177.1	177.2	181.1	182.0	184.8
SURFACE ELEV 50 y 0 (cfs) E		8699	8699	8699	8699	8699	5843	5843	5843	5843	5843	5843	5843	5843	5843	5269	5269	5269	5269	5269	5269	5269	4512	4512	4512	4512	2880	2880	2880	2880	2880	2880	2880	2880	2880	2880	2880	2880	2880	2880
AND WATER rear	(CONT'D)	92.1	96.3	102.4	102.5	106.0	109.1	120.9	121.0	121.0	121.0	121.0	121.0	125.9	136.4	142.5	148.5	151.7	151.9	151.9	152.1	152.2	152.3	162.2	168.4	169.8	171.0	176.4	176.9	176.9	177.1	177.1	177.6	177.6	17.7	177.8	177.9	182.1	182.9	186.0
DISCHARGES 100 y	SNC	8140	8140	8140	8140	8140	7236	7236	7236	7236	7236	7236	7236	7236	7236	6508	6508	6508	6508	6508	6508	6508	2995	2567	2567	2995	3491	3491	3491	3491	3491	3491	3491	3491	3491	3491	3491	3491	3491	3491
year El. (fr)	1	93.0	97.2	104.1	104.1	107.6	109.5	121.7	121.8	121.8	121.8	121.8	121.9	127.1	137.2	143.4	149.3	152.6	152.9	152.9	153.0	•	153.2	163.0		•	172.2	177.0	177.8	177.8	•	•	179.0	•	•	179.3	179.5	184.4	184.9	188.5
500 0 (cfs)	CREEK,	12169	12169	12169	12169	12169	11096	11096	11096	11096	11096	11096	11096	11096	11096	9832	9832	9832	9832	9832	9832	9832	8389	8389	8389	8389	5080	5080	5080	2080	5080	5080	5080	5080	5080	5080	5080	5080	5080	2080
Cross-	MATTAWOMAN	28	27	25.3	•	24	23^{1}	22	21.5	•	21.3	21.2	21	20	19	18	17	16	15.5	15.4	15.3	15.2	15	14	13	12	11	10	•	•	9.3	9.2	9.51	9.41	9.31	9.21	6	7.3	7.2	7

118.3 118.3 118.3

118.4 124.4 133.6

Critical flow occurs at some discharges

(CON'T)	
DISCHARGES AND WATER SURFACE ELEVATIONS FOR SELECTED FLOW FREQUENCIES (CON'T).	
FLOW	
SELECTED	
FOR	
ELEVATIONS	
SURFACE	i
WATER	
AND	
DISCHARGES AND WATER SURFACE ELEVATIONS FOR SELECTED FLOW FREQUENCIES	

Cross-	200	DISCHARGES O vear	GES AND WATER	SURFACE	ELEVATIONS 50		FOR SELECTED FLOW FREQUENCIES	Vear (CON'T)		Vear
Section	0 (cfs)		0 (cfs)	El. (cfs)	Q (cfs)	J. (ft)	(efs) ()	(cfs) E1. (ft)		E1. (ft)
MATTAWOMAN	CREEK,	틸) SNC	<u>a</u> l				1		
9	5080	189.6	3491	187.0	2880	185.8	1615	182.9	459	179.5
5	5080	189.8	3491	187.2	2880	186.1	1615	183.3	459	
4	5080	190.2	3491	187.8	1080	186.9	1615	185.4	459	184.4
3.3	5080	190.2	3491	187.9	2880	187.1	1615	185.4	459	184.6
3.2	5080	190.5	3491	189.5	2880	189.2	1615	186.4	459	184.6
3	5080	190.6	3491	189.6	2080	189.3	1615	188.1	459	185.0
2	5080	202.2	3491	201.7	2880	201.5	1615	200.6	459	199.5
1.5	5080	203.6	3491	203.0	2880	202.7	1615	201.8	459	200.3
1.4	5080	203.6	3491	203.0	2880	202.7	1615	202.4	459	
1.3	5080	204.5	3491	204.1	2880	203.9	1615	203.4	459	202.7
1.2	5080	204.5	3491	204.1	2880	203.9	1615	203.4	459	202.7
1	5080	204.8	3491	204.4	2880	204.1	1615	203.6	459	202.8
OLD WOMAN'S	RUN,	PRESENT CONDI	CONDITIONS							
80	7140	54.5	4800	54.1	3910	. 54.0	2070	53.6	760	53.1
79	7100	9.89	4730	9.19	3840	67.3	2050	66.2	450	4.49
78	0069	86.5	4600	85.5	3750	85.1	1975	84.1	. 435	81.9
77	2400	1111.7	3600	110.6	2900	110.0	1530	108.7	335	107.0
76.3	2400	112.0	3600	110.8	2900	110.2	1530	108.8	335	107.2
76.2	2400	112.4	3600	111.3	2900	110.9	1530	109.8	335	107.3
9/	5350	112.5	3550	111.4	2875	110.0	1520	109.8	330	107.4
75	4950	121.7	3300	120.8	2675	120.4	1400	119.2	310	117.6
14	3850	131.5	2550	130.5	2050	130.0	1080	128.9	240	127.2
73	2320	131.8	1530	130.7	1070	130.3	630	129.2	145	127.4
71	1350	163.0	880	163.0	720	163.0	390	162.3	90	160.4
70.3^{1}	1350	165.1	880	165.1	720	165.0	390	165.0	90	162.0
70.2	1350	182.4	880	181.8	720	181.6	390	174.1	90	162.3
70	1150	182.4	770	181.8	630	181.6	340	174.5	. 08	
PINEY RUN,	, PRESENT	CONDITIONS				,				
69	8000	121.0	5500	120.4	4540	120.1	2530	118.7	680	120.0
68.3	8000	123.1	5500	122.3	4540	122.2	2530	122.0	680	120.1
68.2	8000	125.8	5500	125.5	4540	125.3	2530	122.1	089	120.1
	8000	125.9	5500	125.5	4540	125.3	2530	122.8	680	120.3
671	7200	130.3	2000	128.8	4050	127.8	2290	128.8	630	126.2
•										

l Gritical flow occurs at some discharges.

Appendix B

Tailwater elevation from previous section at 500, 100 and 50 year discharge. Tailwater elevation from previous section at 100 and 50 year discharge

Ţ	Ì
N	
ಶ	I
Ś	I
) IE	I
ENC	I
ΠO	1
RE	
14 ->	1
Ć	l
匤	I
ED	I
SG	I
ELI	l
S	l
3GR	l
S	١
NO	
ΙI	١
EV!	l
EL	Ì
田	I
FA	l
UR	I
2	١
TE	l
WA	
Q	-
A	۱
CHARGES AND WATER SURFACE ELEVATIONS FOR SELECTED FLOW FREQUENCIES (CON'T)	
ARC	
CH	
318	
	1

			DOUBLINGED AND IN	MIEN SOM HOE	CLEVALLON	LOW SELECTE	TENT FIRE	7 1	- 1	
Cross-	200	year	100	year		_		year	5	, H
Section	Q (cfs)	- 1	(cfs)	El. (cfs)	Q (cfs)	El. (ft)	(cfs)) El. (ft)	(cfs)	E1. (ft)
PINEY RUN,	PRESENT	CONDITONS ((CONT'D)							
66.5	7200	131.0	2000	130.0	4050	129.8	2290	129.1	630	127.5
7.99	7200	131.6	2000	130.8	4050	0	2290	129.6	630	128.3
99	7200	131.9	2000	131.1	4050		2290	129.9	630	128.4
65.5	6750	142.5	4800	141.5	3850	140.9	2170 .	9	590	138.0
65	5870	152.4	4220	151.6	3320	151.1	1920	0	535	
64.5	5870	153.2	4220	152.3	3320	•	1920	151.0	535	149.2
64.4	5870	153.4	4220	152.5	3320	151.9	1920	151.3	535	149.3
99	5830	153.9	4200	153.2	3300	152.7	1910	. 152.0	535	150.4
63	4200	161.3	3100	160.4	2375	159.8	1425	158.1	415	•
62.5	4200	164.8	3100	164.1	2375	163.5	1425	162.7	415	159.0
62.4	4200	164.9	3100	164.2	2375	163.6	1425	163.0	415	160.8
62	4200	165.4	3100	164.7	2375	164.1	1425	163.4	415	161.9
61.5^{1}	3650	172.3	2700	171.1	2075	170.0	1270		375	169.6
61	3350	187.5	2475	186.9	1800	186.5	1170	•	345	182.1
TIMOTHY BRANCH		PRESENT CONDITIONS	SNOT							
60	1_	10	0776	175 7	2300	175 5	1300	175 1	360	171 8
20 3	4010	177.7	0777	0 221	2300	, «	1300	175.1	360	; ,
59.7	4010	178.1	2770	177.5	2300	177.2	1300	176.2	360	•
50.5	7010	178 5	0777	177.8	2300	177.5	1300	176.5	360	175 3
57.0	3210	182.2	2772	181	1825	•	1050	0.071	285	•
57.81,2	3210	182.2	2230	181	1825	181	1050	179.0	285	•
7	3210	183.4	2230	182.2	1825	181.5	1050	179.6	285	
57.6	3210	188.7	2230	184.2	1825	182.4	1050	179.7	285	179.6
•	3210	188.7	2230	184.4	1825	182.8	1050	180.2	285	
57.4	3210	188.7	2230	184.6	1825	183.1	1050	180.5	285	179.6
57.3 ³	3210	188.7	2230	184.6	1825	183.1	1050	180.5	285	
57.2	3210	188.7	2230	186.5	1825	183.7	1050	180.8	285	179.7
57.1	3210	188.8	2230	186.6	1825	184.9	1050	181.1	285	179.7
57	3200	188.8	2220	186.6	1820	184.9	1050	181.1	285	179.7
56.5	3130	189.2	2170	187.1	1770	186.5	1000	183.5	275	_
99	2875	190.8	2040	189.2	1620	188.8	920	187.7	250	186.2
55	2675	201.4	1850	00	1500	199.9	850	198.4	230	•
54.5	2075	211.5	1440	•	1160		630	209,4	180	208.0
54	1950	214.9	1350	213.9	1090	213.3	610	211.8	165	•
1	£ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		100000000000000000000000000000000000000	e c						
	ter elemetion		ne discharg		100					
3 Tailwater			from previous sec	section at 100,	100 allu md 50 w	year discharge discharge	• 28 1			
TATTMA		1110111	וער דחחים מכר	ar 100	allu Jo year					

⁻⁴⁻

				AND WATER SURFACE ELEVATIONS FOR	ELEVATIONS	- 1	SELECTED FLOW FREQUENCIES	JENCIES (CON'T)		
Cross-	200	year	100	aı) 20 7	<u>.</u> ۲		year	7	, H
Section	(cfs)	E1. (ft)	(cfs)	E1. (cfs)	(cfs)	E1. (ft)	(cfs)	E1. (ft)	(cfs)	El. (ft)
	BRANCH, PRESENT CONDITIONS	SENT CONDIT	TIONS (CONT'D)	D)						
- 53.5	1500	217.8	1035	216.6	820	215.9	470	214.2	125	212.1
53.4	1500	218.0	1035	216.8	820	216.2	470	215.1	125	213.5
53.3	1500	218.3	1035	217.9	820	217.6	470	215.7	125	
53	1500	218.3	1035	217.9	820	217.6	470	216.4	125	214.3
52	1270	218.7	880	218.1	069	217.8	390	216.7	105	•
MATTAWOMAN	CREEK,	FUTURE CONDI	CONDITIONS							
51	22110	8.4	14262	7.5	11382	7.2	5925	5.4	1936	1.5
50	21585	8.9	13962	7.7	. 11140	7.4	5763	5.9	1680	3.6
49.3	21585	11.0	13962	8.2	11140	7.6	5763	5.9	1680	3.6
49.2	21585	14.4	13962	9.8	11140	7.8	5763	0.9	1680	3.6
67	21585	14.4	13962	10.3	11140	9.2	5763	6.2	1680	3.6
48	21585	14.6	13962	12.3	11140	11.3	5763	9.3	1680	8.9
47	21691	•	13804	12.9	10951	12.1	5565	10.8	1400	9.7
94	21691	16.3	13804	15.0	10951	14.7	5565	13.9	1400	12.2
45	21691	•	13804	17.3	10951	15.9	5565	15.9	1400	14.6
77	21691	21.3	13804	20.2	10951	19.7	5955	18.5	1400	16.9
43	18499	26.8	12345	25.7	10030	25.2	5514	24.1	1586	22.5
42	18499	31.2	12345	30.3	10030	29.9	5514	28.9	1586	27.4
41	18499	35.2	12345	34.1	10030	33.6	5514	32.4	1586	30.4
40.3	18041	35.5	12246	34.4	10044	33.9	5537	32.7	1481	30.8
40.2	18041	35.6	12246	34.5	10044	34.0	5537	32.7	1481	30.8
07	18041	36.0	12246	34.9	10044	34.4	5537	33.1	1481	31.1
•	18041	39.4	12246	38.4	10044	37.9	5537	36.8	1481	35.1
39.5	18041	43.2	12246	42.4	10044	42.0	5537	41.2	1481	40.2
39	18041	44.7	12246	43.7	10044	43.2	5537	45.0	1481	40.3
38	18041	48.7	12246	47.8	10044	47.4	5537	46.7	1481	45.8
37.5	18041	49.1	12246	48.3	10044	48.0	5537	47.2	1481	46.1
37.4	18041	49.7	12246	49.3	10044	49.1	5537	47.2	1481	46.1
37.3	18041	51.0	12246	50.5	10044	50.3	5537	49.2	1481	46.2
37.2	18041	51.1	12246	50.6	10044	50.3	5537	49.3	1481	46.3
37	13473	51.3	8849	50.7	7220	50.4	4251	7.67	1493	46.7
35	13473	•	8849	53.5	7220	53.3	4251	52.9	1493	52.0
34	13473	62.3	8849	61.3	7220	6.09	4251	0.09	1493	58.6
33	13473	63.5	8849	62.5	7220	62.1	4251	61.1	1493	59.6

																				•													11	55	en	41.	х в
year	E1. (ft)		59.6	59.6	60.1	61.9	66.5	72.3	78.5	83.9	90.1	94.3	97.2	97.2	102.5	109.0	117.9	118.4	118.4	118.4	118.4	118.5	124.6	133.8	140.3	145.9	149.2	149.5	149.6	150.2	150.2	150.2	160.4	165.1	•	168.0	172.6
2 y	Q (cfs)		1493	1493	1493	1493	1493	1493	1493	1992	1992	1992	1992	1992	1992	1148	1148	1148	1148	1148	1148	1148	1148	1148	1040	1040	1040	1040	1040	1040	1040	874	874	874	874	632	632
year) E1. (ft)	-	61.2	61.2	61.6	63.6	67.5	73.5	7.67	84.9	91.0	95.3	6.66	6.66	104.2	109.0	119.7	119.8	119.8	119.8	9.	119.9	125.2	135.3	141.4	. 147.3	150.5	150.8	150.8	151.1	151.1	151,3	161.0	167.0	168.2	169:5	175.2
10	Q (cfs)		4251	4251	4251	4251	4251	4251	4251	4452	4452	4452	4452	4452	4452	3680	3680	3680	3680	3680	3680	3680	3680	3680	3357	3357	3357	3357	3357	3357	3357	2882	2882	2882	2882	1919	1919
year	E1. (ft)		62.2	62.2	•	•	•	74.3	90.08	85.8	92.0	. 96.2	102.1	102.2	105.8	109.0	120.7	120.8	120.8	120.8	120.8	120.9	125.7	136.2	142.3	148.3	151.5	151.7	151.7	152.0	2.	152.2	2.	168.2	9.	0	176.3
20	Q (cfs)		7220	7220	7220	7220	7220	7220	7220	7616	7616	7616	7616	7616	7616	9259	9259	9259	6576	9259	6576	9259	9259	6576	5956	5956	5956	5956	5956	5956	5956	5118	5118	1	11	3257	3257
ы	E1. (cfs)	(Q,	62.6	62.6	63.0	S	∞	9.47	81.1	86.1	92.4	96.5	102.9	102.9	106.4	109.1	121.1	121.2	121.2	121.2	121.2	121.2	126.2	136.6	4	148.7	151.9	152.2	2	152.4		152.6	162.4	168.7	170.1	171.3	176.7
100	q (cfs)	TIONS (CONT	8849	8849	8849	8849	8849	8849	8849	9115	9115	9115	9115	9115	9115	8042	8042	8042	8042	8042	8042	8042	8042	8042	7254	7254	7254	7254	7254	7254	7254	6219	6219	6219	6219	3885	3885
500 year	E1. (ft) Q (cfs) E1.	FUTURE CONDI	63.6	63.7	0.49	66.3	9.69	75.5	82.1	87.0	93.2	97.4	104.3	104.3	107.9	109.8	121.8	121.9	121.9	121.9	121.9	122.0	127.4	137.3	143.6	149.5	152.9	153.1	153.1	153.2	153.2	153.4	163.1	. 169.8	171.3	172.5	177.1
20(Section Q (cfs)		13473	13473	13473	13473	13473	13473	13473	13168	13168	13168	13168	13168	13168	12068	12068	12068	12068	12068	12068	12068	12068	12068	10694	10694	10694	10694	10694	10694	10694	8606	8606	8606	8606	5502	5502
Cross-	Section	MATTAWOR	32.3	32.2	32.1	31	30.5	30	29.5	29	28	27	25.3	. 25.2	24	231	22	21.5	21.4	21.3	21.2	21	20	19	18	17	16	15.5	15.4	15.3	15.2	15	14	13	12	11	10

DISCHARGES AND WATER SURFACE ELEVATIONS FOR SELECTED FLOW FREQUENCIES (CON'T)

Q (cfs) El. (ft) 50 year

100 year Q (cfs) El. (cfs)

Q (cfs) E1. (ft)

Section Cross-

Q (cfs) E1. (ft) 2 year

Q (cfs) E1. (ft) 10 year

T)

										/33
MATTAWOMAN	CREEK,	FUTURE CONDITIONS (CONT'D)	TIONS (CON	T'D)						
9.5	5502	178.0	3885	177.2	3257	176.7	1919		632	172.7
7.6	5502	178.0	3885	177.2	3257	176.7	1919		632	172.7
9.3	5502	178.5	3885	177.4	3257	176.9	1919		632	172.8
9.2	5502	178.5	3885	1	3257	176.9	1919	•	632	172.8
9.51	5205	179.4	3885	178.0	3257	177.4	1919		632	172.9
9.41	5502	179.4	3885	178.0	3257	177.4	. 1919	175.8	632	172.9
9.31	5502	179.7	3885	178.2	3257	177.5	1919		632	172.9
9.21	5502	179.7	3885	178.2	3257	177.5	1919		632	172.9
6	5502	179.9	3885	178.3	3257	177.6	91		632	172.9
7.3	5502	185.0	3885	182.7	3257	181.7	1919		632	176.0
7.2	5502	185.6	3885	183.4	3257	182.5	1919		632	176.7
7	5502	189.1	3885	186.7	3257	185.6	1919		632	178.1
9	5502	190.3	3885	187.7	3257	186.6	1919		632	180.1
2	5502	190.4	3885	187.9	3257	186.8	1919		632	181.3
4	5502	190.7	3885	188.4	3257	187.4	1919	-	632	
3.3	5502	190.8	3885	188.5	3257	187.6	1919		632	184.9
3.2	5502	190.9	3885	189.7	3257	189.4	1919		632	184.9
3	5502	191.0	3885	189.8	3257	189.4	1919		632	185.5
2	5502	202.4	3885	201.9	3257	201.8	1919		632	199.8
1.5	5502	203.8	3885	203.1	.3257	202.8	1919		632	•
1.4	5502	203.8	3885	203.1	3257	202.8	1919		632	202.0
1.3	5502	204.6	3885	204.2	3257	204.0	1919		632	202.8
1.2	5502	204.6	3885	204.2	3257		1919		632	202.8
1	5502	204.9	3885	204.5	3257	204.3	1919		632	202.9
TIMOTHY BRANCH, 1		FUTURE CONDITIONS	TONS							
09	4331	175.6	3047	175.8	2576	175.6	1534		200	172.3
59.3	4331	177.9	3047	Τ.	2576	176.9	1534		500	ď
59.2	4331	178.3	3047	177.65	2576	177.4	1534		200	, †
59	4331	178.7	3047	.9	2576	177.65	1534		500	3.5
57.92	3467	•	2453	181.3	2044		1239	179.5	396	179.6
57.82	3467	182.5	2453	181.3	2044	180.2	1239		396	ď
1 500 year 2 Critical	ar elevations	ions extrapolated		from present condition rating	dition rati	ing curve.				
0+1+1O		נ נ		•						

Cross-		500 year	100	year	50		-	ear	2	year
Section	(cfs)	s) El. (ft)	(cfs)	E1. (cfs)	Q (cfs)	E1. (ft)	Q (cfs) El. (ft)	(cfs)	E1. (ft)
TIMOTHY	BRANCH, I	FUTURE CONDITIONS	SNOI							
57.7	3467	183.75	2453	182.5	2044	181.9	1239	179.95	396	179.6
57.6	3467	189.7	2453	182.5	2044	183.5	1239	180.4	396	179.6
57.5	3467	189.8	2453	185.45	2044	183.6	1239	180.8	396	179.8
57.4	3467	189.9	2453	185.5	2044	183.8	1239	181.2	396	179.8
57.3	3467	189.9	2453	185.5	2044	183.8	1239	181.2	396	179.8
57.2	3467	189.9	2453	187.0	2044	185.2	1239	181.5	396	179.9
57.1	3467	189.9	2453	187.1	2044	185.9	1239	182.0	396	180.0
57	3456	189.9	2442	187.2	2038	186.0	1239	182.0	396	180.0
56.5	3380	189.9	2387	187.5	1982	186.8	1180	184.3	382	181,4
56	3105	191.2	2244	189.6	1814	189,0	1086	187,95	348	186.5
. 25	2889	201.6	2035	200.7	1680	200.3	1003	198.8	320	196.3
54.5	2241	211.77	1584	210.6	1299	210.2	743	209.55	250	208.23
54	2106	215.4	1485	214.1	1221	213.6	720.	212.1	229	209.95
53.5	1620	218.15	1139	216.9	918	216.25	555	214.6	174	2
53.4	1620	218.3	1139	217.1	918	216.3	555	215.4	174	213.7
53.3	1620	218.4	1139	218.0	918	217.7	555	216.2	174	213.9
53	1620	218.4	1139	18	918	217.7	555	216.7	174	214.6
52	1372	218.8	896	218.25	773	217.95	7460	216.9	146	216.0
OLD WOMAN'S	RIIN	FITTIRE CONDITTONS	SNO							
80	7426		5040	54.15	4145	54.03	2256	53.65	547	53.13
79	7384	68.7	4967	67.7	4070	67.4	2235	66.3	536	64.5
78	7176	86.7	4830	85.6	3975	85.2	2153	84.2	518	82.1
77	5616	111.85	3780	110.7	3074	110.15	1668	108.8	399	107.0
76.3	5616	112.2	3780	110.9	3074	110.35	1668		399	
76.2	5616	112.5	3780	111.4	3074	110.0	1668		399	
9/	5564	112.7	3728	111.5	3048	111.1	1657		. 393	107.5
75	5148	121.9	3465	120.9	2836	120.3	1526	119.3	369	118.2
74	7007	131.65	2678	130.6	2173	130.2	1177		286	
73	2413	131.9	1607	130.9	1134	130.2	687	129.3	173	127.6
71^2	1404	163.0	924	163.0	763	163.0	425	162.5	107	160.7
70.32	1404	165.2	924	165.2	763	165.1	425	165.0	107	162.2
70.2	1404	. 182.5	924	181.9	763	181.6	425	174.7	107	163.0
70	1196	182.7	809	182.0	899	181.6	371	175.3	95	163.3

1 500 year elevations extrapolated from present condition rating curve. 2 Critical flow occurs at some discharges. Critical flow occurs at some discharges.

			DISCHA	RGES AND V	DISCHARGES AND WATER SURFACE ELEVATIONS FOR SELECTED FLOW FREQUENCIES (CON'T)	ELEVATIONS	FOR SELECTE	3D FLOW FREQU	TENCIES (CON'	T)	
	Cross-	200	500 year	100) year	20	year	10) year	2 year	r
	Section	(cfs)	E1. (ft)	(cfs)	(s) E1. (cfs)	(cfs)	E1. (ft)	(cfs)	_	Q (cfs) El	1. (ft)
	PINEY RUN	-	FUTURE CONDITIONS								
	, ,	9						•	,		
	769	8720	121.2	6215	120.6	5221	120.4	3011	119.1	1020	119.8
	68.3	8720	123.4	6215	122.5	5221	122.3	3011	122.0	1020	120.5
	68.2	8720	125.9	6215	125.6	5221	125.5	3011	122.9	1020	120.5
	89	8720	126.0	6215	125.6	5221	125.5	3011	123.4	1020	120.7
	672	7848	130.7	5650	129.2	4658	128.5	2725	128.5	945	126.7
	66.5	7848	131.25	2650	130.3	4658	129.9	2725	129.3	945	127.8
	7. 99	7848	131.85	2680		4658	130.6	2725	129.85	945	128.5
	99	7848	132.1	2650	131.35	4658	131.0	2725	130.1	945	128.7
	65.5	7358	142.8	5424	141.85	4428	141.3	2582	139.9	885	138.3
	65	6398	152.7	6915	151.6	3818	151.2	2285	150.5	803	149.25
	64.5	6398	153.5	6927	152.6	3818	152.1	2285	151.2	803	149.5
	7. 79	6398	153.7	6925	152.7	3818	152.2	2285	151.45	803	149.6
	64	6355	154.1	95/5	153.4	3795	153.0	2273	152.2	803	150.7
	63	4578	161.7	3503	160.7	2731	160.1	1696	158.65	.623	158.0
	62.5	4578	165.0	3503	164.4	2731	163.8	1696	162.9	623	159.8
	62.4	4578	165.2	3503	164.5	2731	163.9	1696	163.15	623	161.2
_	62	4578	165.6	3503	165.0	2731	164.4	1696	163.6	623	161.45
9-	61.5^{2}	3979	172.75	3051	171.55	2386	170.55	1511	169.5	563	169.5
	61	3652	187.7	2797	187.2	2070	186.7	1392	185.85	518	182.8

500 year elevations extrapolated from present condition rating curve. Critical flow occurs at some discharges.

APPENDIX C:

TYPICAL CROSS-SECTIONS

	+
	5
	-
	3
	ļ
13	5
	-
The state of the s	
)	
}	
Ÿ	
}	
}	

	1
	Ą
	1
	1
	Participant of the Participant o

2
0
•
-
_
-
_
4
_

APPENDIX D:

PHOTOGRAPHS

		-
		-
		100
		-
		9
		1
		_
		1.

Figure 1. View looking upstream towards the Route 225 bridge over Mattawoman Creek near the downstream limit of the study area. The 500-year flood reaches the bridge but does not overtop it.

Figure 2. Mattawoman Creek upstream of Route 225. The flood plain is wooded and swampy with dense vegetation. This location is within the Mattawoman Natural Environment Area. The creek has a main channel with numerous smaller side channels winding through the flood plain.

Figure 3. Billingsley Road and Mattawoman Creek. This wooden plank bridge is frequently flooded.

Figure 4. Wooded swamp at Bealle Hill Road. Outbuildings in this area were flooded during Agnes and Eloise. One resident has built a series of platforms that allow his livestock to climb to higher levels during future floods.

	i
	1
	8
	{}
	{

Figure 5. Debris and the Mattawoman Interceptor Sewer Right-of-Way. The sewer line right-of-way is poorly vegetated and eroding in some places. Unauthorized dumping is common in many floodplains, especially where access is relatively easy. This scene is just downstream of Sharpersville Road.

Figure 6. Acton Road Bridge over Mattawoman Creek. The undersized concrete bridge here is frequently flooded. The debris reduces channel capacity and further aggravates the problem.

Figure 7. Channel downstream of Acton Road. This collection of manmade and natural debris has formed a log jam, which very effectively blocks flow during floods. Such jams will build up with each high flow as more material catches in them, and they generally require a stream clean-up program for their removal.

Figure 8. Route 301 Road Bridge. The box culvert is wide and high compared to the channel, and carries flood flows with a comfortable clearance.

APPENDIX E:

INVESTIGATIONS AND ANALYSIS

Appendix E

INVESTIGATIONS AND ANALYSES

Hydraulic: Channel and floodplain sections, bridge data, and n-values were surveyed and collected in the field. The base maps was mosaiced from USGS quads. The Corps of Engineers water surface profile computer program HEC2 was used to compute the flood heights at the cross-section locations for specific discharges corresponding to flows of various frequencies. The flood elevations between cross-sections were interpolated.

HYDROLOGIC: Land use data compiled from county plans and investigation by field office personnel were overlaid with soils data to generate Runoff Curve numbers. Weighted Curve Numbers were calculated for each subwatershed. Times of concentration were calculated using overland flow length and in-channel flow velocities developed from observations of small swales and headwater channels in the watershed, plus the cross-sections used in the water surface profile.

Flow frequency was determined using the SCS TR-20 hydrologic model with rainfall input determined by special study of the existing streamgage records and rainfall frequency.

NATURAL VALUES

The staff biologist and field office personnel provided information on the floodplain's more unique features and habitats. The State Archeologist office, the National Capitol Park and Planning Commission, and the field offices provided information on historical and archeological sites. Prime farmlands were identified on the watershed map and measured.

ECONOMICS: Values given for damage estimates were developed by the staff economist after examination of the available data and a tour of the damage areas.

LOCAL MANAGEMENT ALTERNATIVES: These were developed by the planning staff after reviewing the watershed application and touring the watershed as being appropriate alternatives. The Steering Committee, Technical Committee, and the field offices reviewed and contributed to them.

PUBLIC PARTICIPATION: After a field review of the watershed on August 22, 1978, it was evident a flood plain delineation would be necessary before further decisions towards a watershed work plan could be made. The Technical Advisory Committee, members of the Steering Committee, concerned citizens and the watershed planning staff participated in this field review. On November 16, 1978, the Mattawoman Steering Committee met with SCS and the need for a flood hazard study discussed. The plan of Study was prepared in January 1979 and approved in March of that year. SCS and DNR will present this report jointly to the sponsors after its completion in 1983. Both agencies can provide interpretation of technical data to assist the sponsors in the development, modification, or implementation of their local floodplain management programs. Under their watershed planning programs, the agencies can also provide technical assistance and cost sharing for watershed planning and project implementation to qualifying projects.

	К
	1
	,
	1
	•
	1
	9
	0
	1
	6
	G

R0000 401353

