

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 125 895
A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84303178.2

(51) Int. Cl.³: B 25 J 19/00

(22) Date of filing: 10.05.84

(30) Priority: 10.05.83 US 493419

(43) Date of publication of application:
21.11.84 Bulletin 84/47

(84) Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(71) Applicant: DEEP OCEAN ENGINEERING,
INCORPORATED
12812 Skyline Boulevard
Oakland California 94610(US)

(72) Inventor: Hawkes, Graham S.
12812 Skyline Boulevard
Oakland California 94610(US)

(74) Representative: Matthews, Howard Nicholas et al,
MATTHEWS HADDAN & CO Haddan House 33 Elmfield
Road
Bromley Kent BR1 1SU(GB)

(54) Method and apparatus providing tactile feedback to operators of remotely controlled manipulators.

(57) An apparatus and method is disclosed for providing tactile feedback information to the operator of a remotely operated manipulator assembly (1), such as a robot arm (2), by mechanically coupling a vibration sensitive transducer (5, 19) to said assembly (1) and audibly reproducing (7, 8, 20) the transducer output for operator listening. The use of an accelerometer (19) as a vibration sensitive transducer (5, 19) is disclosed as well as techniques for cancelling environmental noise.

EP 0 125 895 A1

BEST AVAILABLE COPY

1 Other prior art systems utilize various transducers to
sense displacement, speed, and force and use the
information derived therefrom to operate a duplicate
manipulator which is placed proximately to the operator
5 for direct viewing. An additional system for providing
user feedback information on force and speed is
disclosed in applicant's co-pending application Serial
No. 466,433, filed February 15, 1983.

The prior art discloses a number of systems
10 for providing the user with information related to the
force, speed, and displacement of the remotely
controlled manipulator device. While these systems are
highly useful, they do not provide the user with a
sense of "touch". The great dexterity of the human
15 hand is heavily dependent upon tactile sensitivity more
commonly referred to as the sense of touch. The great
importance of the sense of touch in performing delicate
tasks can be clearly appreciated by observing the great
reduction in dexterity which occurs when the sense of
20 touch is dulled by cold weather or a local anesthetic.
A person with very cold hands has unimpaired visual
feedback, and can, through the sensing of muscle
contraction and tendon displacement, obtain some
information relating to manual force exerted in the
25 hand. As is well known, however, a normally dexterous
person with very cold hands will find his or her manual
dexterity severely impaired due to the lack of tactile
feedback from the fingertips and the other surfaces of
the hand.

30 The prior art is noticeably lacking in
devices which give the user of remotely operated
manipulator devices some semblance of a sense of touch.
Force, displacement, and speed feedback information is
highly useful but it is not equivalent to a sense of
35 touch. Users of such prior art systems receive little
or no information relating to the texture of the
objects which are being manipulated. By providing the

1 systems of the prior art, the present invention
provides tactile feedback in the form of audible sound.
The instant invention supplements the visual feedback
systems of the prior art and other systems which
5 provide force, speed, and displacement information.
The essential principles of the invention can be used
with all types of remotely operated manipulator systems
including hydraulic, pneumatic, and electric types.

In its simplest form, the instant invention
10 employs a microphone, accelerometer, or other vibration
sensitive transducer which is mechanically coupled to
the manipulator arm assembly. The electrical signal
output from the transducer is amplified and, if
necessary, processed and then supplied to the user
15 through a speaker or headphone in the form of an
acoustic signal. When employed in connection with
manipulator arm assemblies of the type disclosed in
applicant's co-pending application Serial No. 466,606,
filed February 15, 1983 the usefulness and dexterity of
20 the overall manipulator system was found to be greatly
increased. The apparatus and method of the instant
invention are extremely simple to implement and provide
easily interpretable information which can, even to a
relatively new operator, provide easily interpretable
25 information relating to the texture, hardness, and
overall "feel" of the object being touched by the
manipulator.

FIGURE 1 is a block functional diagram of an
apparatus employing the present invention.

30 FIGURE 2 is a simplified electrical schematic
diagram of an embodiment of the present invention.

FIGURE 3 is a schematic block diagram of an
alternative embodiment of the present employing
additional transducers for noise canceling.

35 Figure 1 illustrates a remotely operated
manipulator arm 2 of a type typically employed in
undersea applications. The gripping portion of

1 the user additional information on actuator speeds,
forces, and other related parameters of performance.
It has been found, in actual use, that the focus motor
of an attached video camera can be heard clearly as can
5 the various manipulator motor drives thus giving the
operator an additional means for monitoring and trouble
shooting various manipulator and related or attached
equipment operations.

Rigidly mounting an accelerometer to the
10 gripping portion 2 of manipulator arm 1, greatly
reduces the influence of noise in the surrounding
environment. In undersea applications, environmental
noise which would be deafening if sensed by a
hydrophone located proximate to (but not mechanically
15 coupled to) the manipulator assembly 1, would not have
such a pronounced effect on the output of an
accelerometer rigidly affixed to the arm as shown in
Figure 1. The reason for this is that acoustic noise
in the surrounding environment would have to be strong
20 enough to accelerate the manipulator assembly 1 in
order to produce an output from accelerometer
transducer 5. Accordingly, the instant invention can
provide useful information relating to the texture and
other tactile features of the object which is being
25 manipulated even in a very noisy surrounding
environment. This application shows some inherent
advantages of employing an accelerometer in place of an
ordinary microphone which would be more sensitive to
vibrations in the surrounding water unless somehow
30 acoustically shielded.

Referring now to Figure 2, in the preferred
embodiment an instrumentation accelerometer 19 is
rigidly mounted on a portion of the manipulator
assembly proximate to the gripping mechanism 2 similar
35 to the mounting of transducer 5 illustrated in Figure
1. Instrumentation accelerometers typically employ a

1 amplifier 21 is a differential amplifier having one
input 22 connected to a second vibration sensitive
transducer 23 which is mounted proximate to the portion
of the manipulator assembly which is producing the
objectionable noise. The output from transducer 19 is
5 connected to input 24 of differential amp 21.
Transducer 19 is mounted, as previously explained,
proximate to the gripping portion of the manipulator
assembly so as to obtain tactile information closest to
10 the gripping surface. The output from differential
amplifier 21 is used to drive loudspeaker 8 which
should, if the system is properly installed, reproduce
a signal which represents the difference between the
noise and the desired vibration signal sensed at the
15 gripping surface which is a combination of noise and
desirable signal. The resultant sum should be a
relatively noise-free signal. Means 25, schematically
illustrated as a potentiometer, can be used to vary the
relative level of the transducer output signals for
20 optimizing the noise canceling effects of the
differential amplification performed by amplifier 21.

Other well-known noise canceling techniques
can be used such as those employed in the commonly
available noise canceling microphones used in radio
25 communications.

1 second transducer (23) output, and
means (8) connected to the output of said
differential amplifier (21) for audibly reproducing a
signal which represents the difference between the
outputs of said transducers (19, 23).
5

6. The apparatus of claim 5 further
comprising:

means (25) for varying the relative levels of
said transducer output signals for optimizing the noise
10 canceling effects of the differential amplification
performed by said differential amplifier (21).

7. The device of claim 1 wherein said
transducer (19) has a substantially linear response to
vibration signals over a bandwidth corresponding to the
15 normal range of human hearing.

8. A method of providing tactile feedback
information to the user of a remotely operated
manipulator assembly (1) comprising:

20 generating an electrical signal corresponding
to vibration occurring in said manipulator assembly (1),
and

audibly reproducing said signal for operator
listening.

25 9. The method of claim 8 wherein said
electrical signal is produced by an accelerometer (19)
mechanically affixed to said manipulator assembly (1).

European Patent
Office

EUROPEAN SEARCH REPORT

0125895

Application number

EP 84303178.2

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl. ?)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	<u>DD - A - 156 784</u> (ROBOTRON) * Totality *	1,2	B 25 J 19/02
Y	* Totality *	8,9	
A	* Page 4, lines 22, 23 *	3,5	

	<u>EP - A1 - 0 066 629</u> (FANUC)		
Y	* Fig. 1-3; pages 4-6; claims *	1,2,8,9	
A	* Fig. 3-5 *	5	

	<u>DE - A1 - 2 636 473</u> (M.A.N.)		
Y	* Fig. 1,3-5; claims *	1,8,9	
A	* Claim 10; fig. 1; page 8, lines 20-24 *	2,3,5,6	

	<u>DE - A1 - 3 006 153</u> (KAUFELDT)		TECHNICAL FIELDS SEARCHED (Int. Cl. ?)
Y	* Fig. 1-3; claims; page 11, lines 13-18 *	1,8,9	B 25 J 3/00
A	* Fig. 1-3; page 11, lines 5-12 *	3,5-7	B 25 J 9/00
	---		B 25 J 13/00
	<u>DE - A1 - 2 934 394</u> (NIPPON KOGAKU K.K.)		B 25 J 15/00
A	* Fig. 1,2; claims 1,2 *	1,5,8,9	B 25 J 19/00
	-----		G 03 B 17/00
			G 08 C 25/00
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
VIENNA	17-08-1984	KRAL	

CATEGORY OF CITED DOCUMENTS

- X : particularly relevant if taken alone
- Y : particularly relevant if combined with another document of the same category
- A : technological background
- O : non-written disclosure

- T : theory or principle underlying the invention
- E : earlier patent document, but published on, or after the filing date
- D : document cited in the application
- L : document cited for other reasons
- & : member of the same patent family, corresponding

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.