Problem 1 (4.2).

1. Let G be a finite group and H a subgroup of index n. Define $N := \bigcap_{x \in G} xHx^{-1}$ which we know is a normal subgroup of G contained in H by a prior problem. Now let G/N act on G/H by $gN \cdot g'H \mapsto gg'H$. To see this is well defined let $g'H \in G/H$. Then

$$gN \cdot g'H = gg'NH = gg'H$$

However this action is equivalent to a homomorphism $\varphi: G/N \to S_{|G/H|=n}$ which by the first isomorphism theorem implies that G/N is isomorphic to some subgroup of S_n and as such |G/N| = |G:N| |n! completing the proof.

2. Let G be a finite group where p is the smallest prime factor of |G| = n. Let H be a subgroup of G with index p. Then by problem 4.2.1 there exists a subgroup $N \leq G$ such that $N \leq H$ and |G:N||p!. However |G:N| cannot be less than p because if it were then with |G| = |N||G:N| we would have |G| divisible by a smaller prime. On the other hand |G:N| cannot be larger than p. If it were then pm||G| where m is a product of numbers smaller than p again contradicting that p is the smallest prime that divides |G|.

Thus |G:N|=p which via Lagrange's Theorem gives us that |H|=|N|. However since $N \leq H$ it must be the case that N=H.

Therefore H is a normal subgroup.

3. Let G be a group and H a subgroup of index 2. Then there are only two cosets for H which are H, gH for some $g \in G \setminus H$. However since there are only two this implies that gH = Hg. Since this holds for all cosets of H we have that H is normal.

Therefore any subgroup of index 2 is normal.

4. Let N be a normal subgroup and K a conjugacy class K with some representative $k \in K$. If $K \cap N = \phi$ then we're done. Otherwise suppose that $K \cap N \neq \phi$. Then there is some $\alpha \in K \cap N$. Then $\alpha = gkg^{-1}$ for some $g \in G$. This implies that $g^{-1}\alpha g = k$ however since $\alpha \in N$ so is $g^{-1}\alpha g = k$. Therefore $k \in N$ and as such $K \subset N$.

Problem 2 (4.3).

1.

2. a)

b)

c)

Problem 3 (4.4.1).

Proof. Let G be a group of order 11^213^2 . Then let P be a Sylow 11-subgroup and Q a Sylow 13-subgroup. Then $n_{11}(G) \equiv 1 \mod 11$ and $n_{13}(G) \equiv 1 \mod 13$. However the only number that work for $n_{11}(G)$ and $n_{13}(G)$ is 1 since $n_p||G:P|$. As such the groups P,Q are the only subgroups of their size. However Sylow p-subgroups are closed under conjugation and as such this implies that P and Q are normal. This means that the product PQ is well defined. The order of PQ is $|PQ| = \frac{|P||Q|}{|P\cap Q|}$. However the intersection $P \cap Q = \{e\}$ as the order of any element of P or Q divides the order of the subgroup and the orders of P and Q are relatively prime. As such

$ PQ = P Q =11^213^2= G $ and so $PQ=G$. However since P,Q are order of a prime square they are Abelian and the normality implies $PQ=QP$ which shows that G is Abelian. Therefore any group of order 11^213^2 is Abelian.	d
Problem 4 (4.4.2).	
<i>Proof.</i> Let $ G = 77 = 7 \cdot 11$. Then there are subgroups with $ H = 7$ and $ K = 11$. Since they are of prime order they are cyclic with generators h and k respectively. However since 7 and 11 are relatively prime hk has order $7 \cdot 11 = 77$ which implies that G is cyclic.	
Problem 5 (4.4.3).	
<i>Proof.</i> Since $30 = 2 \cdot 3 \cdot 5$ there are subgroups of size 3 and 5 which we'll call H and K respectively. However since H and K are of prime order they are cyclic and as such $\langle h \rangle = H$ and $\langle k \rangle = K$. Since the orders of h, k are relatively prime the order of hk is fifteen.	