Math 69: Logic Winter '23

Reading assigned January 9, 2023

Prof. Marcia Groszek

Student: Amittai Siavava

Comments

I also read through the part on recursions and I thought the recursive definitions of well-formed formulas as n-ary functions taking in n arguments (each of which may be a function applied to its arguments) made a lot of sense. On the other hand, polish notation without parenthesizing the arguments felt more complicated than the infix notation we have been using thus far. I understand how it reduces ambiguity, but I found it more tasking to process and mentally parse the wffs written in polish notation.

Questions

In the section about 0-ary connectives, we say that \top and \bot can be thought of as the constants T and F having $\overline{v}(\bot) = F$ and $\overline{v}(\top) = T$ for every v. Wouldn't we get a contradiction if we have a function that negates v? For instance, if $w = \neg v$ for some function v, doesn't $\overline{w}(\bot) = \neg \overline{v}(\bot)$ imply that $\overline{w}(\bot) = T$?

Exercises

1. Let G be the following three-place Boolean function.

G(F, F, F) = T,	G(T, F, F) = T,
G(F, F, T) = T,	G(T, F, T) = F,
G(F, T, F) = T,	G(T, T, F) = F,
G(F, T, T) = F,	G(T,T,T) = F.

(a) Find a wff using at most the connectives \land , \lor , and \neg , that realizes G.

Truth table for *G*:

α	β	γ	$G(\alpha, \beta, \gamma)$
T	T	T	F
T	T	F	F
T	F	T	F
T	F	F	T
\overline{F}	T	T	F
\overline{F}	T	F	T
\overline{F}	F	T	T
\overline{F}	F	F	T

 $G(\alpha, \beta, \gamma)$ always disagrees with the majority of α, β , and γ .

That is,

$$G(\alpha,\beta,\gamma) = \neg((\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \vee (\beta \wedge \gamma))$$

(b) Then find such a wff in which connective symbols occur at not more than $5\ \mathrm{places}.$

$$G(\alpha, \beta, \gamma) = \neg(\#\alpha\beta\gamma)$$

Using only \land, \lor, \lnot :

$$G(\alpha,\beta,\gamma) = \neg (\ (\alpha \wedge (\beta \vee \gamma)) \ \vee \ (\beta \wedge \gamma))$$