ESTADÍSTICA

Mitjana	$M_e = L_i + rac{rac{N}{2} - F_{i-1}}{f_i} \cdot a_i$	- Valor que ocupa el lloc central de totes les dades ordenades de menor a major - Si el total de dades és par = mitja dels dos valors centrals	
Mitja / Valors agr.	$ar{X} = rac{\sum_{i=1}^N x_i}{N} \qquad ar{X} = rac{\sum_{i=1}^K x_i \cdot f_i}{N}$	- sumar totes les dades i dividir entre el n total - k=classes - taula freq. → límits xi fi xi·fi	
Moda Valors agr.	$M_o = L_i + rac{(f_i - f_{i-1})}{(f_i - f_{i-1}) + (f_i - f_{i+1})} \cdot a_i$ Taula freq. $ ightarrow$ límits fi	- 2 modes: bimodal // +2 modes: multimodal - Si tots els valors tenen la mateixa freq.: no hi ha moda - Si la freq. màxima són valors adjacents es fa la mitja	
Moda Valors agr. Dif. amplituds	$egin{aligned} h_{i} \ = \ rac{f_{i}}{a_{i}} M_{o} \ = L_{i} \ + \ rac{(h_{i} \ - h_{i-1})}{(h_{i} \ - h_{i-1}) + (h_{i} \ - h_{i+1})} \cdot a_{i} \end{aligned}$	calculem les diferents altures taula freq. → amplituds fi hi C. La classe modal és la que té major altura	
Quartils	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3 n per dividir grup de dades ordenades(4 parts) - Q1,Q2,Q3 = 25%,50%,75% // Q2 = mitjana - Dades ordenades de menor a major	
Quartils Valors agr.	$Q_{k}=L_{i}+rac{rac{k\cdot N}{4}-F_{i-1}}{fi}\cdot a_{i}$	- taula freq. → límits fi Fi	
Decils	$Q_k = L_i + rac{rac{k\cdot N}{4} - F_{i-1}}{fi} \cdot a_i \ D_k = L_i + rac{rac{k\cdot N}{4} - F_{i-1}}{fi} \cdot a_i \ N = ext{sum} f_i \ F_{i-1} = ext{Fr.Ac. Ant.}$	- 9n per dividir grup de dades ordenades(10 parts) - 10%,20%90% // D5=mitjana, Q2	
Percentils	$oxed{P_k = L_i + rac{rac{k \cdot N}{100} - F_{i-1}}{fi} \cdot a_i} \cdot a_i} = {a_i = ext{amplitud}}$	- 99n per dividir grup de dades ordenades(100 parts) - 1%,2%99% // P50=mitjana, Q2, D5	
Variància	$\sigma^2 = rac{\sum_{i=1}^n (x_i - ar{x})^2}{N}$	- mesura de dispersió de dades respecte la mitja - és igual que la desviació típica però al quadrat - calculem primer la mitja	
Variància Valors agr.	$\sigma^2 = \sum_{i=1}^n \; rac{x_i^2 \cdot f_i}{N} \; - ar{x}^{ 2}$	- taula freq. → límits xi fi xi-fi xi^2-fi	
Desviació típica	$\sigma = \sqrt{rac{\sum_{i=1}^{n} (x_i - ar{x})^2}{N}}$	- dispersió de dades respecte la mitja - arrel quadrada de la variància	
Desv. Típica Valors agr.	$\sigma = \sqrt{rac{\sum_{i=1}^n (x_i - ar{x})^2 \cdot f_i}{N}}$	- taula freq. → límits xi fi xi·fi xi^2·fi	
Coeficient de variació	$C.V. = \frac{\sigma}{\bar{X}} \cdot 100$	 relació entre desv. típica d'una mostra i la mitja s'expressa en percentatge compara les dispersions de 2 distribucions (si les mitges son +) 	
Puntuacions diferencials	$x_i = X_i - ar{X}$	- es resta a les puntuacions la mitja	
Puntuacions típiques	$z = rac{{{X}_{i}} - ar{X}}{\sigma}$	 tipificació: comparar puntuacions de diferent distribucions es divideix les puntuacions entre la desviació típica són independents de les unitats utilitzades 	
Distribucions bidimensionals	- Relació funcional → coneixent X sabem el valor de Y - Relació estadística → coneixent X estimem el valor de Y - Var. Est. Bidimensionals → cada un està definit per (X, Y), tenen rel. estadística, una es independent i l'altre dependent - Distr. Bidimensionals → cada un està definit per (Xi, Yi), si els representem amb coords.= núvol de punts/diagrama dispersió → recta regr.		
Rectes de regressió	$y-ar{y} = rac{s_{xy}}{\sigma_{x}^{2}} \left(x-ar{x} ight)$	- recta que s'ajusta el millor possible al núvol de punts - passa per el punt $(\bar x,\bar y)$ = punt de gravetat	
Covariància	$y-ar{y}=rac{s_{xy}}{\sigma_x^2}\left(x-ar{x} ight)$ $s_{xy}=rac{1}{n}\sum_{i=1}^n x_iy_i-(ar{x}\cdotar{y})$	- mitja aritmètica dels productes respecte les seves mitges $\begin{array}{l} \alpha_{xy} > 0 \\ \rightarrow \text{Correlació directa} \\ \alpha_{xy} < 0 \\ \rightarrow \text{Correlació inversa} \end{array}$	
Coeficient de Correlació	$r=rac{S_{xy}}{\sigma_x\cdot\sigma_x}$ -r proper a $0 o$ correlació dèbil	- Quocient entre la covariància i el producte de les derivacions típiques - És un nombre real entre -1 i 1	
Taula de fregüèncie	dependencia funcional		

Taula de freqüències

$oldsymbol{x}_i$ valors	fi Freq. Abs.	${\boldsymbol F}_i$ Freq. Abs. Ac.	$\overline{n_i}$ Freq. Rel.	${N}_i$ Freq. Rel. Ac.
Valors ordenats <	Vegades que apareix un valor, total = N	Valor final = N	Freq. Abs. / N	Valor final = 1

Taula de freqüències agrupades

límits classe	c_{i} marca classe
[l.inferior , l.superior)	punt mig de l'interval
amplitud = l.sup - l.inf	(l.sup – l.inf)/2

Amplitud →

restem el menor i el major i elegim un nombre més gran que la dif. i divisible el nombre ha de ser entre 6 i 15 (l.inf pertany a L'interval, el l.sup no)