Understanding and Mitigating Packet Corruption in Data Center Networks

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan

Klaus-Tycho Förster, Arvind Krishnamurthy, Thomas Anderson

Packet loss Hurt application Revenue loss

In this talk...

- Packet corruption is a significant source of packet loss
- Packet corruption has distinctive symptoms and root causes
- CorrOpt reduces corruption by 3 orders of magnitude
 - Parts of the system are deployed in Microsoft DCs

Packet Corruption

dirty optical connector

damaged fiber

Packet Corruption

Packet Corruption

Packet Corruption is Significant

350K switch-to-switch links, 15 data centers

In this talk...

- Packet corruption is a significant source of packet loss
- Packet corruption has distinctive symptoms and root causes
- CorrOpt reduces corruption by 3 orders of magnitude
 - Parts of the system are deployed in Microsoft DCs

Questions

- How widespread is corruption?
- Is corruption loss rate stable over time?
- Where are corrupting links located?
- What causes packet corruption?

Number of Corrupting Links is Small

 Number of links with corruption is 2-4% of links with congestion

Why is the number of corruption losses still comparable to congestion?

Many Links have High Corruption Rate

Loss Rate Bucket	Links with Congestion	Links with Corruption		
[10 ⁻⁸ , 10 ⁻⁵)	92.44%	47.23%		
Need a system to mitigate corruption				
Greater than 10 ⁻³	0.22%	12.67%		
Total	100%	100%		

Corruption Rate is Stable

Why is Corruption Rate Stable?

Other Characteristics of Corruption

- Corruption tends to be scattered across all stages of data center network
- Corruption tends to affect only a single direction of transmission

Root Causes of Packet Corruption

Root Cause	Symptoms	Contribution
Dirty connector	High transmit and low receive optical power	17-57%
Damaged fiber/cable	High transmit and low receive optical power (bi-directional)	14-48%
Bad or loose transceiver	Good optical power, affect a single link	6-45%
Shared component failure	Co-located failures	10-26%
Decaying transmitter laser	Low transmit optical power	< 1%

In this talk...

- Packet corruption is a significant source of packet loss
- Packet corruption has distinctive symptoms and root causes
- CorrOpt reduces corruption by 3 orders of magnitude
 - Parts of the system are deployed in Microsoft DCs

System Framework

- Pinpoint corrupting links ——— Corruption rate is stable.
- Disable corrupting links while meeting capacity constraint
 - Every rack has a minimum fraction of paths to reach core
- Diagnose root cause and repair Corrupting.
 - Clean optical connector, replace fiber, replace transceiver, etc.
 - Multiple root causes. Repair depends on the root cause.

Challenge #2: Find Root Cause

- Different repair is needed for different root cause
 - Dirty connector → Clean connector
 - Damaged fiber → Replace fiber
 - Dying transceiver laser → Replace transceiver
- Corruption persists if repair attempt is incorrect
 - Each attempt takes 2 days

Switch-local Approach

- Capacity constraint: Every rack has x% of available paths to the core
 - For 3-level Clos network, each switch sets local uplink threshold to be sqrt(x%)
- Switches react to corrupting link independently

Switch-local is Conservative

Switch-local is Conservative

Switch-local is Conservative

Agg ToR

Can be turned off considering the global picture.

11 paths to core

Lossy

No loss

Framework	State-of-art	CorrOpt
Disable corrupting links and maintain capacity constraint	Switch-local approach	Global approach
Diagnose & repair	Symptom-agnostic	

CorrOpt: Global Approach

- Given the set of links with corrupting rates
- Find a subset of corrupting links to disable such that
 - Meet capacity constraint
 - Minimize ∑ link loss rate

CorrOpt: Global Approach

CorrOpt: Global Approach

CorrOpt: Online Optimization

- On detecting a new corrupting link
 - Check whether turning off the corrupting link violates capacity constraint
 - O(number of links)
- On link repair
 - Optimize for the best subset of links that minimize corruption
 - NP-complete with a small problem size

Evaluation Methodology

- Replay corruption events from Oct 2016 Dec 2016
- Assume corrupting link takes 2 or 4 days to repair after taken down
- Count total packet loss over the entire time duration

Evaluations of Disabling Corrupting Link

- Reduce corruption
- Fast
 - On detecting new corrupting link: 100-300ms
 - On link repair: <1 minute

Framework	State-of-art	CorrOpt
Disable corrupting links and maintain capacity constraint	Switch-local approach	Global approach
Diagnose & repair	Symptom-agnostic	Symptom-aware

Evaluations of Symptom-aware Diagnosis

- Deployed in Microsoft data centers
- Analyzing 300 repair tickets
 - Accuracy: 50% → 80%
 - Link becomes active sooner
 - Allow other corrupting links to be turned off

Combined Impact

Summary

- Packet corruption is a significant source of packet loss
- Packet corruption has distinctive symptoms and root causes
- CorrOpt reduces corruption by 3 orders of magnitude

