Investigating the willingness-to-wait with real-time crowding information in urban public transport

Arkadiusz **Drabicki** – *Cracow University of Technology*dr Rafał **Kucharski** – *Cracow University of Technology*prof. Achille **Fonzone** – *Edinburgh Napier University*Dawid **Dudek** – *Cracow University of Technology*prof. Andrzej **Szarata** – *Cracow University of Technology*

9th International Symposium on Travel Demand Management

Edinburgh, 19th – 21th June 2019

Introduction

- Overcrowding (passenger congestion) notorious and recurrent issue in public transport networks
- Despite 'hard' investment programmes capacity expansion becomes eventually outstripped by the ever increasing demand pressure...
- ... instead growing emphasis on 'soft' travel demand management strategies
- "I predict that when Crossrail opens in 2018 it will be immediately full. The people who predicted that it will take all the traffic out of Oxford Street or that we'll be able to sit down on the Central Line in the rush hour will be wrong. It will just be full up with people."
- Sir Peter Hendy (2013) Former Commissioner of Transport for London

- ITS-fed data could be provided to passengers:
 - → to help them make more informed choices
 - → and thus improve journey experience

Real-time crowding information - RTCI

public transport crowding

ITS

RTCI

- real-time crowding information

- ITS data, gathered in real-time, could be simultaneously handled to provide information (or even prediction) on passenger flows
 - increasingly feasible APC, AFC, smart-card data, CFD...
- **RTCI** a fairly novel research topic:
 - **→** impact on travel behaviour...?
 - → proper system architecture / design...?
 - → consequences for PT network effectiveness...?

RTCI and travel behaviour

How could crowding information affect passengers' travel choices?

spatial shifts

AND/OR

willingness to reroute towards a less-crowded PT line

→ trade-off vs. in-vehicle time

temporal shifts

willingness to wait for a less-crowded departure of this PT line

→ trade-off vs. waiting time

Methodology

- Focus-group discussions
- Passenger surveys at **bus/tram stops** in the city of Krakow (Poland)
 - ~ 380 respondents, ca. 2,280 SP observations

Objectives:

- attitudes/preferences towards the (future) crowding information systems
 - sample RTCI interpretation
- SP choice survey
 - propensity to wait for a less-crowded vehicle
 - vs. trip- and population-related characteristics
- → discrete choice model estimation

Q9. Which of these departures would you be willing to choose?

attributes:

- crowding level (1st vs. 2nd trip)
- waiting time for 2nd trip (5 10 minutes)
- choice context
 - journey time / service frequency
 - time criticality / trip purpose
- prior experience of PT crowding
- sociodemographic data
 - age, gender

Case study – Krakow

Urban public transport (PT) system in Krakow (Poland):

- population: 750k (metro area: ~ 1.4m)
- core PT network: 155 [bus] and 23 [tram] lines, ca. 500k daily trips
- PT vehicles: typically, increased standing space vs. reduced seating area

Focus groups: how to represent RTCI?

• descriptive, rating scale

- the most positive solution clear and understandable message
- simple yet sufficient enough to make a decision
- gives a general idea how 'bad / good' the on-board comfort is
- adequate for short, urban PT trips

numerical scale (seats available)

- also popular, especially for long-distance trips and rail commuters
- certain credibility concerns (e.g. sudden *fluctuations* in no. of seats)

percentage scale

- in contrast rather unfavourable reception so far
- ambiguous in interpretation what does it exactly mean?
- [%] values might be perceived in terms of "gambling" risk
- increased complexity for decision-making process

Focus groups: what kind of information from RTCI?

expectations	decision attitudes
 over 50% of seats available expect a double seat just for myself	would choose this trip 'at ease'
last few seats (< 10%) availablemight not get a seat	would board and wouldn't 'mind' seeking a comfortable standing place
 no seats available, but can stand comfortably overcrowding threshold 	would take this trip, but expect some discomfort
 severely overcrowded, no grip, hard to stand need to be lucky to 'squeeze' inside might not board 	unless in a hurry – should consider different travel options

travel advice expected from the RTCI:

- principally related to higher (over)crowding conditions:
 - for **time-critical** trips: denial-of-boarding risk
 - non-time-critical trips: 'comfortable standing' conditions and/or seats available
- accuracy key concern among respondents
 - would this information still be valid downstream?

General results – stated willingness-to-wait with crowding information on 1st and 2nd departure...:

1st dep: no seats, but can stand comfortably

2nd dep: seats available

case no. 1

 1st dep.
 • • • • • >>> DUE

 2nd dep.
 • • • • • • • mins

General results – stated willingness-to-wait with crowding information on 1st and 2nd departure...:

1st dep: overcrowded, could barely board

2nd dep: can stand comfortably

case no. 2

General results – stated willingness-to-wait with crowding information on 1st and 2nd departure...:

1st dep: overcrowded, could barely board

2nd dep: seats available

case no. 3

Relevance of trip purpose and time-criticality – higher (stated) willingness-to-wait for:

- non-time-critical trips ('I don't need to arrive on-time')
- non-obligatory trips
- home-return trips

Trip duration – relatively minor impact:

* majority of sampled trips no longer than 30 minutes

The more frequent the experience of PT overcrowding, the lower the passengers' propensity to avoid it:

Sociodemographic characteristics:

• limited propensity to wait to reduce crowding among PT commuters and those under the age of 50

Choice modelling

Discrete choice model estimation based on SP results:

- BIOGEME package (Bierlaire, 2009)
- MNL (multinomial logit) model
- objective choice probability between 2 alternatives:

$$P_i = \frac{e^{U_i}}{e^{U_i} + e^{U_j}}$$

depart [NOW] $utility U_0$

[WAIT] and depart later $utility U_I$

Waiting utility U_1 calculated as a function of:

- temporal utilities
 - in-vehicle time
 - waiting time

- Boolean attributes
 - RTCI of 1st vs. 2nd departure
 - other trip- and population-related characteristics

Choice modelling (a) – general model

depart [NOW]: $U_0 = 0$

$$U_{0} = 0$$

[WAIT]:

$$U_1 = \sum \beta_k \cdot \delta_k + \beta^{IVT} \cdot t^{IVT} + \beta_1^{WT} \cdot t_1^{WT}$$

boolean	crowding level (RTCI) of 1st vs. 2nd departure (case-specific)
time	in-vehicle time
tir	wait time
	time-criticality
soolean	commuter (2+ trips / week)
000	age 65+
7	age 50 -65

all trips	value	std err	t-test	p-value
β_a^{CR} case 1.	0.439	0.234	1.87	0.0613
β_b^{CR} case 2.	2.62	0.245	10.7	0
β_c^{CR} case 3.	2.69	0.246	10.9	0
β^{IVT}	0.0237	0.00441	5.37	8.00E-08
$oldsymbol{eta}_I^{WT}$	-0.29	0.0215	-13.5	0
$oldsymbol{eta}^{TCRIT}$	-1.41	0.109	-13	0
$oldsymbol{eta}^{PTC}$	-0.144	0.141	-1.02	0.306
β ⁶⁵	1.92	0.23	8.35	0
β 50-65	0.72	0.242	2.97	0.00295
n - 2 280		Rho-se	0.277	

Rho-square: 0.277n = 2,280

Choice modelling (b) – time-criticality distinguished

depart [NOW]: $U_0 = 0$

$$U_0 = 0$$

[WAIT]:

$$U_1 = \beta_a^{CR} \cdot \delta_a + \beta_b^{CR} \cdot \delta_b + \beta_c^{CR} \cdot \delta_c + \beta_1^{WT} \cdot t_1^{WT}$$

RTCI of 1st vs. 2nd departure + waiting time

time-crit	ical trips	value	std err	t-test	p-value
$oldsymbol{eta}_a^{CR}$ case 1.		-0.218	0.267	-0.819	0.413
$oldsymbol{eta_b}^{CR}$ case 2.	••••	1.7	0.252	6.78	1.23E-11
β_c^{CR} case 3.		1.76	0.253	6.97	3.24E-12
β	WT	-0.292	0.0314	-9.31	0
	n = 1,026		Rho-so	quare:	0.264

non-time-c	ritical trips	value	std err	t-test	p-value
β_a^{CR} case 1.		0.926	0.217	4.26	2.07E-05
eta_b^{CR} case 2.	••••	2.93	0.251	11.7	0
β_c^{CR} case 3.	••••	3.02	0.253	11.9	0
β WT		-0.253	0.0273	-9.25	0
n = 1,254			Rho-square:		0.201

Estimation results - willingness-to-wait

MNL estimation results:

value of time multipliers journey time = 20 [mins]	time -critical	non-time- critical
case 1.	0.96	1.18
case 2.	1.29	1.58
case 3.	1.30	1.60

SP findings among UK rail passengers

- (*Preston et al., 2017*):
- acceptable wait ca. 15 22 [mins]
- VoT multipliers $\sim 1.25 1.75$ (JRT = 30 [mins])

Conclusions

- preference towards crowding information (RTCI) in urban PT:
 - simplified, descriptive representation
- SP results RTCI could induce willingness-to-wait:
 - principal choice 'trigger' avoid excessive (over)crowding in the 1st vehicle
 - relevance of: trip purpose, propensity to arrive on-time, user characteristics...
 - on average, acceptable wait of 6 12 [mins] for a less-crowded vehicle
- applicability and future considerations:
 - RTCI implementation as demand management tool (e.g. mitigating the *bunching* effects)
 - simulation models passengers' choices and network performance
 - *stated* vs. *revealed* choices with RTCI?
 - RTCI credibility key to its effectiveness

Thank you very much for your attention!

adrabicki@pk.edu.pl

A.Fonzone@napier.ac.uk
rkucharski@pk.edu.pl
dawid.doodek@gmail.com

aszarata@pk.edu.pl

This work was supported by the STSM Grant from COST Action TU1305: Social Networks and Travel Behaviour.