Primeira Lista de Exercícios de Linguagens Formais e Autômatos (Continuação) - 2019/1

- 1- Elimine ε-transições do AFN- ε para a expressão regular (0+1)*1(0+1), visto em sala de aula. A eliminação consiste em transformá-lo em um AFD.
- 2- Repita o exercício para as expressões regulares
 - (a) 01*
 - (b) 00(0+1)*
- 3- Converta o AFD abaixo em expressão regular, utilizando a eliminação de estados

	0	1
⇒ *p	S	р
q	р	s
r	r	q
S	q	r

4- Dado o AFD abaixo, apresente as expressões regulares $R_{ij}^{(0)}$ a $R_{ij}^{(n)}$. Em seguida, diga qual é a expressão regular para a linguagem deste AFD.

	0	1
$\rightarrow q_1$	q_2	q_3
q_2	q_1	q_3
*q ₃	q_2	q_1

- 5- Seja AFD $A=(Q,\Sigma,\delta,q_0,\{q_f\})$ e suponha que, para todo $a\in\Sigma$, $\delta(q_0,a)=\delta(q_f,a)$.
 - (a) Mostrar que, para todo $w \neq \varepsilon$, temos $\hat{\delta}(q_0, w) = \hat{\delta}(q_f, w)$
 - (b) Mostre que, se x é uma cadeia não vazia em L(A) então, para todo k > 0, x^k (x escrito k vezes) também está em L(A).

OBS: Ambas as provas devem ser feitas por indução no comprimento de w.