KOSHA GUIDE D - 64 - 2018

원심펌프의 최소유량 선정 및 펌프 설치 등에 관한 기술지침

2018. 11.

한 국 산 업 안 전 공 단

안전보건기술지침의 개요

- O 작성자: 조필래, 이향직
- O 제·개정 경과
 - 2018년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - API Std 610, "Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries", 2010
 - KS B 6889, "석유, 중화학 및 가스 산업용 원심 펌프-기본 설계", 2001
 - O.W. Woodside, "Protect Centrifugal Pumps From Low Flows", 1995
 - KOSHA GUIDE D-52, "배관계통의 공정설계에 관한 기술지침"
 - KOSHA GUIDE D-37, "화학설비 등의 공정설계에 관한 기술지침"
 - KOSHA GUIDE D-5, "화학공정의 시스템 디자인 크라이테리어(System design criteria)에 관한 기술지침"
 - M270, PDH Online, "Selecting the Optimum Pipe Size", Randall W. Whitesides, 2012
 - 효성굿스프링스, "펌프의 유지관리"
 - SchuF Fetterolf, "Automatic Recirculation Valves"
 - Igor J. Karassik 외, "Pump handbook" 4판, 2008
 - Jacques Chaurette, "Guidelines for pump system designers", 2011
 - ANSI/HI 9.6.1, "Rotodynamic Pumps Guideline for NPSH Margin", 2017
 - PIP REEP006, "Pump selection guidelines", 2013
 - 국·내외 엔지니어링사 적용기준

O 기술지침의 적용 및 문의

- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 교정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2018년 11월 05일

제 정 자 : 한국산업안전보건공단 이사장

원심펌프의 최소유량 선정 및 펌프 설치 등에 관한 기술지침

1. 목 적

이 지침은 원심펌프의 최소유량 선정 및 조절방법, 펌프 설치 등에 관한 필요한 사항을 정하는데 그 목적이 있다.

2. 적용범위

이 지침은 정유 및 석유화학공정 등의 유체를 이송하는 원심펌프에 적용될 수 있다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "공동현상 (Cavitation)"이라 함은 유동하는 액체의 압력이 해당온도에서 액체의 증기압보다 내려가면 액체 속에 기포가 발생되어 공동(Cavity)을 만드는 현상을 말한다.
 - (나) "최대운전온도 (Maximum operating temperature)"라 함은 정상운전 중에 최대로 올라갈 수 있는 온도를 말한다.
 - (다) "유효흡입양정 (NPSHa, Net positive suction head available)"이라 함은 펌프 흡입측의 전체 양정과 펌프의 흡입구에서 액체의 온도에 상응하는 증기압에 의한 양정과의 차이를 말하며, 흡입양정이 얼마나 더 내려가면 액체가 증기로 변하는지의 여유를 나타내며, 필요흡입양정(NPSHr)보다 큰 값을 갖는다.
 - (라) "필요흡입양정 (NPSHr, Net positive suction head required)"이라 함은 펌프 제작업체에서 펌프 종류에 따라 해당 펌프를 안전하게 운전하기 위해 요구되는 값으로 펌프 흡입구에서의 유체의 흡입양정이 얼마 이상

- 이 되어야 하는지를 나타내는 값이며, 펌프 자체에서 발생하는 손실수두의 개념이다.
- (마) "체절압력 (Shutoff pressure)"이란 원심펌프에서 펌프 토출측의 밸브를 닫은 상태(유량이 흐르지 않은 상태)에서 펌프를 운전할 때의 압력을 말하며, 이는 원심펌프에서 최대의 압력값이다.
- (바) "최고효율점 (BEP, Best efficiency point)"이라 함은 원심펌프의 펌프 성능곡선에서 운전효율이 가장 높은 지점을 말하며, 정상유량과 정격유 량의 중간지점 부근이 된다. (그림 4-7 참조)
- (사) "최소유량 (Minimum flow)"이라 함은 펌프를 안정적으로 운전하기 위한 최소한의 유량을 말하며, 펌프 종류별 및 운전조건별로 다르며, 일반적으로 펌프제작업체에서 제시되며, 최소연속유량 (Minimum continuous flow)라고도 불린다.
- (아) "자흡식 펌프 (Self-priming type pump)"라 함은 펌프 내부의 유체가 펌프에서 쉽게 빠져나가지 않도록 설계되어 있고, 별도의 마중물 (Priming)을 공급하지 않고 펌프 구동 시에 펌프 흡입측에 잔존해 있는 기체를 흡입시켜 유체를 펌핑할 수 있도록 만든 펌프를 말하며, 일반 원심펌프에는 펌프 흡입측에 별도의 자흡탱크를 설치하여 이와 유사한 기능을 할 수 있다.
- (자) "유동점 (Pour point)"이라 함은 유체를 냉각시키면 점도가 증가되어 유 동성을 잃게 되고 굳어지기 시작하는데 이때의 온도를 응고점이라 하며, 응고점에 도달하기 직전의 유체가 흐를 수 있는 가장 낮은 온도를 말한 다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 동법시행령, 동법시행규칙, 산업안전보건 기준에 관한 규칙에서 정하는 바에 따른다.

4. 일반사항

4.1 원심펌프의 일반적인 특성

- (1) 원심펌프는 회전차(Impeller)가 밀폐된 케이싱(Casing) 내에서 회전함으로써 발생하는 원심력을 이용하는 펌프이며, 유체는 회전차의 중심에서 유입되어 반지름방향으로 흐르는 사이에 압력 및 속도에너지를 얻고, 이 가운데 과잉의 속도에너지는 안내깃(Guide vane, diffuser vane)을 지나 와류실(Volute casing)을 통과하는 사이에 압력에너지로 전환되어 토출되는 방식의 펌프이다.
- (2) 원심펌프의 장점은 아래와 같다.
 - (가) 구조가 간단하고, 가격이 저렴하다.
 - (나) 다양한 재질로 만들 수 있다.
 - (다) 고장이 적고 유지보수 비용이 적게 든다.
 - (라) 모터에 직결하여 고속으로 운전할 수 있고, 밸브 또는 기어 등을 연결하여 감속 또는 증속하여 속도를 조절할 수 있다.
 - (마) 다양한 토출압력과 유량에 적용할 수 있으며, 일반적으로 적용 가능한 범위는 아래와 같다.
 - ① 적용 가능한 유량: 0.001 m³/min ~ 2.000 m³/min
 - ② 적용 가능한 압력(Head): 1 m 미만 ~ 수천 미터
 - (바) 유량조절이 쉽고 유량 변화에도 토출압력이 상대적으로 안정적으로 유지되어 일정한 압력관리가 가능하다.
 - (사) 설치면적이 적다.
 - (아) 슬러리 등의 물질도 이송할 수 있을 정도로 폭 넓게 적용할 수 있다.
- (3) 원심펌프의 단점 또는 고려사항은 아래와 같다.
 - (가) 단단(Single stage) 펌프로는 고양정(높은 압력)을 얻기 어렵다.
 - (나) 다단(Multi stage) 펌프는 고양정을 얻을 수 있으나 가격이 비싸다.
 - (다) 최고효율점(Best efficiency point)을 벗어나서 운전하면 효율이 급격히 저하된다.
 - (라) 특별히 설계된 자흡식(Self-priming type) 펌프 외에는 일반적으로 자흡 (Self-priming)이 되지 않는다.
 - (마) 점성이 증가하면 펌프 성능이 급격히 저하되며, 점도가 65

cSt(Centistoke) 이상일 경우에는 적당하지 않다.

(바) 가스 또는 증기가 함유된 유체를 이송할 때는 이송능력에 제한을 받는다.

4.2 원심펌프의 구조

(1) 정유 및 석유화학공정에서 널리 사용되는 API Std 610의 적용을 받는 원심 펌프의 일반적인 구조는 [그림 1]과 같다.

[그림 1] API Std 610의 적용을 받는 원심펌프의 일반적인 구조

(2) 원심펌프의 구성요소는 아래와 같다.

(가) 케이싱(Casing)

① 임펠러에 의해 액체에 가해진 속도에너지를 압력에너지로 전환하는 역할을 하며, 액체의 통로를 형성하는 역할을 한다.

② 대부분 주물로 제작되며, 유체의 온도, 압력 및 부식성에 따라 재질, 형태 및 두께 등이 결정된다.

(나) 임펠라(Impeller)

- ① 흡입된 액체를 빠른 속도로 회전시켜 속도에너지를 가해주는 역할을 하는 펌프의 가장 중요한 부품이다.
- ② 펌프의 성능. 효율 등은 임펠러에 의해 결정된다.

(다) 노즐(Nozzle)

- ① 케이싱에 붙어서 펌프 흡입 및 토출배관과 연결되는 부분이다.
- ② 펌프의 최대운전유량에 따라 구경이 결정되고, 노즐에 붙은 플랜지의 등급(Rating)은 유체의 온도 및 압력에 따라 결정되며, 펌프 전후단의 배관과 동일한 등급으로 선정된다. 일반적으로 토출측 배관의 등급으로 선정된다.

(라) 베이스플레이트(Baseplate)

- ① 펌프 본체, 모터, 각종 부속품 및 배관 등이 설치되는 기초 구조물이 며, 콘크리트 기초 위에 설치된다.
- ② 베이스플레이트가 충분한 강도를 갖지 않으면 배관에서 미치는 힘에 의해 펌프가 뒤틀려 진동의 원인이 될 수 있다.

(마) 페데스탈(Pedestal)

- ① API Std 610 기준에 따른 중심선 설치(Centerline mounting) 방식의 펌프인 경우, 케이싱의 체결점이 케이싱 하부가 아닌 케이싱 중심부이므로 케이싱을 베이스플레이트에 설치하기 위한 받침대의 역할을 하는 구성품이다.
- ② 운전온도가 300 ℃를 초과하는 펌프의 페데스탈에는 페데스탈의 열팽 창을 줄이기 위해 냉각수를 공급할 필요가 있다.

(바) 축(Shaft)

- ① 임펠라 등의 회전되는 부품을 지지하고, 모터의 동력을 전달하는 역할을 한다.
- ② 유체에 접촉되는 경우에는 유체의 특성에 따라 재질을 선정하여야 한

다.

(사) 마모 링(Wear ring)

- ① 임펠러와 케이싱의 직접 접촉 방지 및 틈새 기밀 유지를 위해 임펠러와 케이싱에 각각 부착된 마모 링을 말한다.
- ② 마모 링이 어느 정도 마모되면 마모 링만 교체하면 된다.

(아) 실 챔버(Seal chamber)

메카니컬 실이 설치되는 공간이며, 스터핑 박스(Stuffing box)로도 불린다.

(자) 메카니컬 실(Mechanical seal)

축(Shaft)이 케이싱 외부로 노출되는 부분의 틈새를 통해 내부 유체가 새어 나오는 것을 방지하는 기계적인 밀봉장치이다.

(차) 베어링 하우징(Bearing housing)

축을 지지하는 베어링이 설치되는 부분이며, 베어링을 윤활시키기 위한 윤활유를 저장하는 공간이기도 하다.

(카) 오일 링(Oil ring)

축의 회전 시 같이 회전하면서 베어링 하우징 내에 고여 있는 윤활유를 튀겨 베어링에 윤활유를 공급해주는 장치이며, 축의 손상을 방지하기 위 해 연질 금속이 사용된다.

(타) 오일 실(Oil seal)

베어링 하우징 내부의 오일이 축을 타고 바깥으로 새지 않도록 설치하는 부품이며, 연질의 금속 또는 고무계통의 재질이 사용되기도 한다.

4.3 원심펌프의 성능곡선과 흡입양정

4.3.1 성능곡선

원심펌프의 성능곡선은 [그림 2]와 같고, 주요 용어는 아래와 같다.

(1) 체절 양정(Head)

용어의 정의와 같이 유량이 0일 때의 양정을 말한다.

(2) 최고효율점(BEP, Best efficiency point)은 펌프의 효율이 가장 높은 상태일 때를 말하며, 대략 정상유량과 정격유량의 중간값이 된다.

[그림 2] 원심펌프의 성능곡선

4.3.2 흡입양정(NPSH, Net positive suction head)

- (1) 펌프의 공정정보에는 시스템에서의 유효흡입양정(NPSHa, Net positive suction head available)이 포함되어야 한다.
- (2) 펌프의 유효흡입양정은 펌프 제작업체가 요구하는 필요흡입양정(NPSHr, Net positive suction head required)보다 커야 한다.
- (3) 유효흡입양정은 다음과 같이 산출된다.

$$NPSHa = H_P \pm H_Z - H_{VP} - H_f \tag{4-1}$$

여기서.

NPSHa: 유효흡입양정(m)

H_P : 펌프흡입측 용기에서 유체의 압력에 상응하는 양정(m)

Hz : 펌프흡입측으로부터 유체의 최소높이에 상응하는 양정(m), 흡입측이

펌프보다 높은 곳에 있으면 + 값을, 낮은 곳에 있으면 - 값을 적용

H_{VP} : 흡입측 온도에서의 유체의 증기압에 상응하는 양정(m)

H_f : 펌프 흡입 배관에서의 압력손실에 상응하는 양정(m)

(4) NPSHa와 NPSHr 사이의 허용 여유(Margin)는 <표 1>를 참고하여 선정하되, <표 1>의 NPSHa/NPSHr 비율과 양정(m) 중 큰 값을 적용하며, 그 밖의 다른 기준을 적용할 수 있다.

<표 1> 유효흡입양정과 필요흡입양정 사이의 허용 여유

구분	적용분야	NPSHa/NPSHr 비율 또는 양정(m)	
석유화학, 탄화수소공정	수직형 캔드(Canned) 펌프 제외	비율 1.1 또는 1.0 m	
화학공정	일반적인 적용	비율 1.1~1.2 또는 0.6~1.0 m	
H- 건 소	냉각수, 순환수	1.0 m	
발전소	보일러급수 (250 kW/stage 미만)	비율 1.3	
물	일반적인 적용, 스테인리스강 또 는 알루미늄-브론즈 임펠러, 75 kW/stage 미만	비율 1.1 또는 1.5 m	
건물용 유체	개방형(상압) 펌프	비율 1.1 또는 0.6 m	
일반적 적용	카탈로그상의 표준펌프	비율 1.1 또는 1.0 m	

4.4 펌프 선정 시 고려사항

4.4.1 펌프 타입

(1) 일반적으로 [그림 3]과 같은 그래프나 제작업체의 자료 등을 참조하여 원심 펌프 또는 용적식 펌프(왕복동펌프, 로타리펌프) 중에서 운전 가능한 유량 과 압력범위에 따라 선정할 수 있다.

- (가) 원심펌프는 아주 큰 유량까지 선정할 수 있지만, 높은 압력에는 한계가 있다.
- (나) 용적식 펌프(왕복동펌프, 로타리펌프)는 아주 높은 압력까지 사용할 수 있으나, 유량측면에서는 제약이 있다.
- (다) 아주 높은 압력이 필요한 경우에는 왕복동퍾프를 적용한다.

[그림 3] 펌프 타입별 대략적인 압력 및 유량 적용한계

- (2) 원심펌프와 용적식 펌프 모두를 사용할 수 있는 경우에는 상대적으로 설비의 신뢰성이 높은 원심펌프를 선정하는 것이 좋다.
- (3) 다음과 같은 경우에는 용적식 펌프를 선정하는 것이 좋다.
 - (가) 유량이 적고 압력이 높은 경우
 - (나) 고점성 유체
 - (다) 자흡(Self-priming)이 필요한 경우(용적식 펌프가 원심펌프보다 펌프 아 래에 있는 유체를 흡입시키는 능력이 좋다)

- (라) 정확한 유량조절이 필요한 경우
- (마) 액체와 기체가 혼합된 유체를 이송하는 경우(원심펌프는 케비테이션이 발생되거나 토출압력이 현저히 저하될 수 있다)
- (바) 고상 성분분이 포함된 경우(용적식 펌프가 상대적으로 원심펌프보다 고 형분의 영향을 덜 받는다)
- (사) 고효율이 요구될 때(일반적으로 단동식 피스톤 펌프의 효율은 90% 정도이나, 원심펌프는 최고효율점(Best efficiency point)에서 85% 정도이고, 최소유량조건에서는 40% 이하인 경우도 많다)

4.4.2 운전온도

- (1) 일반적인 정유 및 석유화학공정의 운전온도 범위는 -105 °C ~ 350 °C 범위이므로 이 범위에서는 대부분의 펌프 타입이 선정될 수 있다.
- (2) 상세 설계 시에는 운전온도에 따라 재질, 냉각방식 및 실(Seal) 구조 등을 고려하여야 한다.
- (3) 펌프는 설제 사용온도를 고려하여 최고허용온도(Maximum allowable working temperature)로 설계하고, 이 온도에 따라 케이싱의 재질이나 두 께를 선정한다.
- (4) 운전온도가 높은 경우에는 베어링 및 메카니컬 실 부위에는 아래와 같이 냉각수를 공급할 필요가 있다.
 - (가) 실 플랜(Seal plan)에 따라 다를 수 있지만, 일반적으로 유체의 온도가 149 ℃ 이상일 경우에는 스터핑 박스(Stuffing box)에 냉각수를 공급하는 것이 좋다.
 - (나) 정격온도(Rated temperature)가 80 ℃를 초과하고 120 ℃ 미만이면, 베이링 부분에만 냉각수를 공급할 수 있고, 공랭식(Air cooled) 베어링 시스템을 적용할 수 있다.
 - (다) 정격온도가 180 ℃를 초과하고 300 ℃ 미만이면, 스터핑 박스 및 베어링 부분에 모두 냉각수를 공급하는 것이 좋다.
 - (라) 정격온도가 300 ℃ 이상이면, 스터핑 박스, 베어링 부분 및 페데스탈 (Pedestal) 부분까지 냉각수를 공급하는 것이 좋다.

- (마) 강제 급유시스템을 적용하는 대형 펌프에는 윤활유를 통해 냉각이 이루 어지므로 베어링 부분에 냉각수를 공급할 필요는 없다.
- (5) 운전온도가 아주 낮은 펌프는 금속 재질의 저온취성파괴 또는 오-링 (O-ring)류의 경화가능성을 고려하여 재질을 선정하여야 한다.
- (6) 저온유체를 운전할 때 펌프 외부에 대기 중 수분이 응결할 가능성이 있는 경우에는 실(Seal) 부분에 스팀을 공급하여 녹일 수 있다.
- (7) 아스팔트 등의 점도가 높은 유체를 이송할 경우에는 펌프 케이싱에 스팀 자킷을 설치하여 적절한 온도를 유지한 상태로 이송할 수 있다.

5. 최소유량(Minimum flow) 선정

5.1 최소유량배관(Minimum flow line)의 목적

최소유량배관은 아래와 같이 펌프보호를 위해 설치된다.

- (1) 과열(Overheating)에 의한 손상 방지
- (2) 과도한 내부순환에 따른 공동현상(Cavitation) 및 진동방지
- (3) 과도한 반경방향 작용력(Radial reaction)에 의한 손상방지
- (4) 펌프 성능곡선이 산고곡선(Humped) 형태를 갖는 경우, 두 지점 사이의 사이클링 운전에 의한 손상방지
- (5) 펌프 유량이 적을수록 동력이 증가하는 형태의 펌프(축류형, 혼합형 등)의 경우 과부하방지

5.2 최소유량배관 설치대상

- (1) 아래와 같이 공정운전에 필요한 유량이 펌프의 안정적인 운전을 위해 필요 한 최소유량보다 적을 경우 펌프 보호를 위해 저유량 보호조치인 최소유량 배관을 설치할 필요가 있다.
 - (가) 감소운전(예, 정상유량의 50% 운전) 동안 공정이 안정적으로 운전되도 록 설계된 경우

- (나) 공정이 감소된 유량으로 천천히 가동(Start-up)되어야 하는 경우
- (다) 공정의 유량(감소운전 포함)이 최소유량보다 적은 경우
- (라) 액위, 온도 및 분석기 등의 조절을 위해 전체 펌프배출량이 자동조절되는 경우
- (마) 사용측(Downstream)의 필요에 의해 유량이 감소 또는 정지될 수 있는 경우
- (바) 동일 시스템에 병렬로 운전되는 다른 성능곡선 또는 압력을 갖는 두 대 이상 펌프의 공통배관을 조절하는 경우
- (사) 유체가 기포점(Bubble point)에 있거나 또는 유체에 용해된 가스를 포함 하는 경우
- (아) 펌프의 정격유량이 2.5 m³/hr보다 적은 경우
- (2) 일반적으로 아래와 같은 펌프에는 최소유량배관을 설치할 필요가 있다.
 - (가) 워료공급펌프
 - (나) 제품이송펌프
 - (다) 액위조절운전의 중간제품 이송펌프
 - (라) 액위조절운전의 보일러 급수펌프
 - (마) 소방펌프
 - (바) 유틸리티용 급수펌프
 - (사) 식용수펌프
 - (아) 다른 운전특성(압력, 유량)의 펌프와 병렬로 운전되는 펌프
- (3) 일반적으로 최소유량배관이 필요하지 않는 펌프는 아래와 같다.
 - (가) 냉각수 순환펌프
 - (나) 열매 및 냉매 순환펌프
 - (다) 고정 유량으로 운전되는 펌프

5.3 최소유량배관 설치기준

- (1) 최소유량은 펌프 제조업체에서 제시하는 자료가 없는 경우에는 펌프의 설계유량의 30 % 정도로 선정한다. 만약 펌프의 운전을 설계유량의 30 % 이하로 운전할 경우에는 진동이 발생될 수 있다.
- (2) 2대 이상의 펌프를 설치하는 경우에는 해당 펌프의 토출배관이 만나는 공 통배관(Common line) 지점에 최소유량배관을 설치한다.
- (3) 최소유량배관은 펌프 제조업체의 요구사항이 없는 경우 다음과 같은 방법을 적용하여 설치할 수 있다.
 - (가) 차압이 저압인 펌프는 고정식 오리피스를 우선 적용하고, 설치순서는 차 단밸브, 오리피스, 차단밸브 순으로 설치한다.
 - (나) 차압이 고압인 펌프(다단 펌프 또는 고속운전 펌프)는 유량조절밸브 (Fail open 구조)를 설치하여 최소유량을 관리한다.
- (4) 아래와 같은 펌프에는 펌프의 최소유량에 해당되는 양에 저유량경보(FAL, Flow alarm low)를 설정하여 관리할 경우에는 최소유량배관을 생략할 수 있다.
 - (가) 설계유량이 2.5 m³/hr 이상이고 단일 사용처에 유량을 자동공급하는 펌 프(Straight flow control pump)
 - (나) 감소운전 (Turndown) 용량이 최소유량 이상인 펌프
- (5) 한 대의 펌프로 여러 곳에 이송할 경우, 한 곳이 레벨, 온도 또는 분석기 등의 조절을 위해 전체 토출량을 자동조절하는 경우라도 다른 사용처가 최소유량 이상으로 운전된다면. 최소유량배관은 필요하지 않다.

5.4 최소유량 선정기준

- (1) 일반적으로 펌프의 최소유량을 선정하는 기준은 <표 2>와 같다.
- (2) 설계유량은 정상운전유량(Normal flow)을 말하며, 성능곡선에서 최고효율점 (BEP)에서 약 5 % 이하인 지점의 유량이며, 일반적으로 설계유량과 정격 유량(Rated flow)의 중간값이 된다.
- (3) 정격유량을 설계유량의 110 %로 선정하는 것이 일반적이고, 어떤 경우에는 설계유량의 125 %로 선정할 수 있다. 만약 이런 경우에는 최소유량을 <표

2>에서 지정한 유량에 비례해서 증가시킬 필요가 있다.

- (4) 일반적으로 펌프 공급업체에서는 최고효율점 기준으로 최소유량을 선정한다.
- (5) 펌프가 정격유량보다 높은 조건(예, 설계유량의 110 % 초과 상태)에서 운전되면, 불안정한 운전상태가 발생될 수 있다.
- (6) NPSHa/NPSHr 권장비율은 <표 2>와 같다.

<표 2> 권장 최소유량 및 권장 흡입양정 비율

서비스 형태	설계유량 대비 권장 최소유량 (%)	권장 비율 (NPSHa/NPSHr)
탄화수소, 편흡입 및 양흡입	25~50	1.1
물 및 수용액, 편흡입	40~70	2.0
물 및 수용액, 양흡입 (3.78 m³/min 이상)	70~85	2.0
성능곡선이 산고곡선 형태의 펌프	체절압력 (Shutoff head) 아래	1.1 ~ 2.0

5.5 최소유량 조절

5.5.1 소요동력 기준

펌프구동모터의 소요동력에 따른 적절한 최소유량의 조절방법은 아래와 같다.

- (1) 펌프구동모터의 동력이 18.5 kW 이상인 경우 최소유량 조절은 콘트롤밸브로 조절하는 것이 좋다.
- (2) 펌프구동모터의 동력이 18.5 kW 미만인 경우 최소유량 조절은 오리피스로 조절하는 것이 좋다.

5.5.2 최소유량 조절방법

5.5.2.1 연속 바이패스방법

(1) [그림 4]와 같이 최소유량배관에 오리피스를 설치하여 연속적으로 바이패스

하는 방법이며, 오리피스 보수 등을 위해 오리피스 전·후단에 차단밸브를 설치하는 것이 좋다.

(2) 설치비용이 저렴하지만, 연속적으로 유량이 바이패스되므로, 에너지 손실이 크다.

[그림 4] 오리피스를 사용하는 연속 바이패스방법

5.5.5.2 On/off 밸브로 바이패스방법

- (1) 최소유량배관에 오리피스와 On/off 밸브를 설치하고, 펌프 토출측의 유량이 최소유량으로 떨어지면, On/off 밸브를 완전개방하여 바이패스하는 방법이다.
- (2) 오리피스 보수 등을 위해 오리피스 전·후단에 차단밸브를 설치하는 것이 좋다.
- (3) On/off 밸브의 완전개방 및 완전차단 시에 발생되는 수충격(Hydraulic shock)에 의해 민감한 시스템은 영향을 받을 수 있다.
- (5) 이 방법은 최소권장유량이 설계유량의 30% 이하일 경우에만 사용되고, 일 반적으로 권장되지 않는 방법이다.

KOSHA GUIDE D - 64-2018

(5) 펌프 토출측 유량기반의 On/off 바이패스방법([그림 5] 참조), 펌프 인입측 유량기반의 On/off 바이패스방법([그림 6] 참조) 및 펌프 차압기반의 On/off 바이패스방법([그림 7] 참조) 등이 있다.

[그림 5] 펌프 토출측 유량기반의 On/off 바이패스방법

[그림 6] 펌프 인입측 유량기반의 On/off 바이패스방법

[그림 7] 펌프 차압기반의 On/off 바이패스방법

5.5.5.3 자동 재순환밸브를 사용하는 방법

- (1) [그림 8]과 같이 스프링으로 작동되는 체크밸브와 변동하는 콘트롤밸브를 조합한 밸브인 자동 재순환(ARC, Automatic recirculation)밸브를 사용하여 바이패스시키는 방법이다.
- (2) [그림 9]와 같이 펌프 토출측 유량이 최소유량으로 떨어지면 ARC 밸브의 바이패스 포트가 개방되어 유량이 바이패스된다.
- (3) 보일러급수 및 응축수 계통, 많은 화학물질 서비스 및 탄화수소 계통에 사용된다.
- (4) ARC 밸브는 펌프의 전체 운전범위에서 안정적으로 작동되며, 저유량의 2 대 이상의 펌프가 병렬로 운전될 때 유용하게 사용된다.

[그림 8] ARC 밸브의 구조

[그림 9] 자동 재순환밸브(ARC Valve)를 사용하는 방법

5.5.5.4 자동조절밸브를 사용하는 방법

- (1) 화학공정에서 가장 널리 사용되는 방식이다.
- (2) [그림 5-10]과 같이 최소유량배관에 자동조절밸브를 설치하여 펌프 토출측 배관의 유량이 최소유량에 도달하면 자동조절밸브가 개방되어 바이패스시키는 방법이다.
- (3) 만약 2대의 펌프가 동시에 운전되는 경우에는 최소유량은 2배로 설정되어 야 한다.
- (4) 유체에 고체 성분이 포함되어 ARC 밸브를 사용할 수 없을 때 사용된다.

[그림 10] 자동조절밸브를 사용하여 바이패스시키는 방법

6. 펌프 설치 및 시운전

6.1 펌프 배관 설치 시 고려사항

- (1) 취급물질의 종류에 따라 관련 법규에서 요구하는 배관에 대한 규칙을 준수 하여야 한다.
- (2) 배관지름은 여유가 있는 구경을 선정하고, 굽힘, 확대 및 분기 등은 가능한 한 적게 하여 압력손실을 줄인다.
- (3) 배관에서 공기가 유입되거나 또는 공기가 고이지 않도록 하고, 배관의 상부지점에는 벤트밸브를 설치한다.

- (4) 120 ℃를 넘는 유체를 취급하는 펌프에는 승온(Warming up) 배관을 설치할 필요가 있다.
- (5) 곡관부 등 하중이 많이 걸리는 부위는 콘크리트 기초 위에 충분한 배관 지지가 필요하다.
- (6) 펌프의 흡입 및 토출 배관에는 진동을 흡수하기 위한 적절한 신축이음을 설치할 수 있다.
- (7) 수충격(Hydraulic shock)이 발생할 위험성이 있는 경우에는 적절한 방지설비를 설치한다.
- (8) 공사 후에는 반드시 배관 내부를 청소하여야 한다.
- (9) 흡입배관에는 최소 배관지름의 4배 이상의 직관부를 설치하는 것이 바람직하다.
- (10) 흡입배관은 펌프측이 높도록 1/100 정도의 구배의 상향배관으로 설치하여 흡입배관에 기체가 고일 수 없는 구조로 설치하여야 한다.
- (11) 흡입배관의 유속은 1.5 m/s 이하로 하는 것이 바람직하며, 배관지름 및 물질종류별 흡입 권장유속은 <표 3>과 같다.

<표 3> 배관지름 및 물질종류별 흡입 권장유속

배관	:지름	흡입바		권장유속 (m/s)	
인치	mm	물	Light oil	Boiling liquid	Viscous liquid
1	25	0.50	0.50	0.30	0.30
2	50	0.50	0.50	0.30	0.33
3	75	0.50	0.50	0.30	0.38
4	100	0.55	0.55	0.30	0.40
6	150	0.60	0.60	0.35	0.43
8	200	0.75	0.70	0.38	0.45
10	250	0.90	0.90	0.45	0.50
12	300	1.40	0.90	0.45	0.50
12 초과	300 초과	1.50	_	_	_

(12) 토출배관의 유속은 3 m/s 이하로 하는 것이 바람직하며, 배관지름 및 물

질종류별 흡입 권장유속은 <표 4>와 같다.

<표 4> 배관지름 및 물질종류별 흡입 권장유속

배관	배관지름		흡입배관 권장 유속 (m/s)		
인치	mm	물	Light oil	Boiling liquid	Viscous liquid
1	25	1.00	1.00	1.00	1.00
2	50	1.10	1.10	1.10	1.10
3	75	1.15	1.15	1.15	1.10
4	100	1.25	1.25	1.25	1.15
6	150	1.50	1.50	1.50	1.20
8	200	1.75	1.75	1.75	1.20
10	250	2.00	2.00	2.00	1.30
12	300	2.65	2.00	2.00	1.40
12 초과	300 초과	3.00	_	_	_

- (13) 펌프 흡입배관의 수축관(Reducer) 설치방법은 아래와 같다.
 - (가) 펌프 흡입측이 흡상인 경우에는 [그림 11]의 (a)와 같이 수축관의 상부 가 평평한 상태가 되도록 설치하여 기포가 상부에 고이지 않도록 설치한다.
 - (나) 펌프 흡입측이 가압인 경우에는 [그림 11]의 (b)와 같이 수축관의 하부 가 평평한 상태가 되도록 설치하여 액체가 하부에 고이지 않도록 설치하다.

[그림 11] 펌프 흡입배관의 수축관(Reducer) 설치방법

6.2 펌프 기초 설치 시 고려사항

- (1) 펌프의 기초는 펌프, 모터, 부속품 및 유체중량을 지지함과 동시에 운전에 의해 생기는 각종 진동을 흡수할 수 있을 정도의 강도를 가져야 한다.
- (2) 기초 자체가 견딜 수 있는 중량은 전동기 직결형의 경우 기계중량의 3배이상, 엔진 직결형의 경우는 기계 중량의 5배 이상으로 하는 것이 바람직하다.
- (3) 펌프와 모터가 직결 구동일 경우에는 반드시 일체형의 기초 위에 설치할 필요가 있다.
- (4) 겨울철 결빙기에는 지반의 표면이 얼어 지내력이 저하하므로 기초의 깊이 를 동결 깊이보다 깊게 설치하여야 하며, 일반적으로 500 mm 이상으로 설치하고, 한랭지에서는 700~1000 mm 이상으로 설치할 필요가 있다.
- (5) 건물의 2층 바닥 등에 펌프의 기초를 설치할 때는 들보의 중심과 기초의 중심을 일치시키거나 또는 2개의 들보에 걸치도록 설치하고, 가능한 한 건 물의 벽에 가깝게 기초를 설치하는 것이 좋다.

6.3 펌프 스테이션(Pump station) 구성

- (1) 모든 펌프의 인입측에는 펌프 보수를 위해 차단밸브를 설치한다.
- (2) 모든 펌프의 토출측에는 펌프 보수를 위해 차단밸브를 설치한다. 다만, 펌프 토출측이 낮은 지점, 대기 개방 등과 같이 역류의 가능성이 없는 경우에는 그러하지 아니 하다.
- (3) 펌프의 토출측에 압력계기, 체크밸브 및 차단밸브가 필요한 경우에는 펌프에서 압력계기, 체크밸브 및 차단밸브의 순서로 설치한다.
- (4) 펌프의 토출측에는 역류방지를 위해 아래와 같이 체크밸브를 설치한다. 다만, 펌프 토출측이 위치적으로 낮은 곳이거나 또는 압력이 낮은 곳으로 연결되어 역류의 가능성이 없는 경우는 제외한다.

- (가) 예비펌프가 있는 경우에는 운전 중의 압력이 예비펌프에 영향을 미치는 것을 방지하기 위해 체크밸브를 설치한다.
- (나) 최저 주위온도보다 높은 유동점을 갖는 유체인 경우에는 동절기의 펌프 보수 시 체크밸브와 차단밸브 사이의 유체가 굳는 현상을 예방하기 위 해 체크밸브와 차단밸브를 가깝게 설치한다.
- (5) 예비펌프의 예열(Warming-up) 필요시 미소개방(Throttle open)의 목적으로 체크밸브에 바이패스밸브를 설치할 경우 밸브 타입은 글로브밸브로 설치한다. 다만, 예열이 필요하지 않은 경우에는 체크밸브와 차단밸브 사이에 드레인밸브만 설치할 수 있다.
- (6) 펌프 케이싱에 벤트가 없는 경우에는 펌프 가동정지 시의 펌프 케이싱 및 토출배관 내의 유체 배출 및 공기, 질소 등의 배출을 위해 체크밸브 전단에 벤트라인을 설치한다.
- (7) 펌프 토출측 압력계기는 체크밸브 전단에 설치하며, 정확한 압력을 알기 위해서는 가능한 한 펌프 가까이에 설치한다. 만약, 압력계기를 체크밸브 후단에 설치할 경우 체크밸브 후단의 다른 펌프 또는 배관의 압력에 영향을받는다.
- (8) 펌프의 인입측에는 이물질의 유입으로 인한 펌프손상을 방지하기 위해 스트레이너를 설치할 필요가 있으며, 스트레이너 타입은 아래와 같이 권장된다.
 - (가) 인입측 배관 사이즈가 3인치 이상인 경우 : T타입(공정지역), 바스켓 타입(공정 외의 지역)
 - (나) 인입측 배관 사이즈가 2인치 이하인 경우: Y타입
- (9) 펌프의 드레인라인은 펌프 보수 시 내부물질의 배출을 위해 공정유체의 종 류에 따라 아래와 같이 연결하는 것이 좋다.
 - (가) 탄화수소를 포함한 유체는 공정유체 드레인 처리시설(Process sewer facility) 및 폐수 드레인시설(Oily water sewer facility)에 같이 연결한다.
 - (나) 탄화수소를 포함하지 않은 유체는 폐수 드레인시설에만 연결한다.
- (10) 펌프 인입측 및 토출측 밸브의 사이즈는 배관의 압력손실을 최소화하기

- 위해 인입측 및 토출측의 배관 사이즈와 같은 것을 사용하는 것이 좋다.
- (11) 펌프의 토출배관이 인인배관보다 압력등급(Pressure rating class)이 높은 경우, 압력등급의 변경지점은 인입측 차단밸브의 인입 플랜지가 된다. 즉, 인입측 차단밸브는 높은 압력등급(펌프 토출측 등급)에 따라 설계할 필요가 있다.
- (12) 고유동점 유체를 이송하는 경우에는 아래와 같이 구성된다.
 - (가) 펌프 인입측 및 토츨측 차단밸브는 펌프 내부의 고착 및 드레인 곤란을 방지하기 위해 예비펌프의 분리지점(Tee)에서 최대한 펌프에 가깝게 설 치한다.
 - (나) 펌프 루프(펌프 및 관련배관)에 대해 스팀 또는 전열 등의 트레이싱 (Tracing)을 한다.
- (13) 펌프 케이싱의 벤트라인은 아래와 같이 연결한다.
 - (가) 가벼운 탄화수소(C4 이하)는 플레어스택과 같은 배기처리시설로 연결한다.
 - (나) 다른 유체는 (9)항과 같이 연결한다.
- (14) 펌프의 베이스 플레이트(Base plate)는 개방구조의 폐수처리시설(Open sewer system)로 연결한다.
- (15) 세척용 오일(Flush oil) 공급 및 회수라인은 고유동점 유체와 같은 경우에 필요하며, 다른 공급유체에는 필요 시 설치할 수 있다.
- (16) 펌프 토출측 배관의 압력-온도 등급(Pressure-temperature rating)이 높은 경우에는 기밀유지를 위해 아래와 같이 차단밸브를 설치하는 것이 좋다.
 - (가) ANSI 900 lb 이상인 경우에는 차단밸브를 이중으로 설치한다.
 - (나) ANSI 1500 lb 이상인 경우에는 차단밸브를 이중으로 설치하되, Y타입-글로브밸브로 선정한다.
- (17) 증기압이 높은 탄화수소를 이송하는 펌프의 케이싱 벤트라인 및 플레어스 택 연결라인의 차단밸브는 (16)항과 같이 이중밸브를 설치하는 것이 좋다.
- (18) 펌프 인입측에 연결되는 용기에는 인입측 압력손실을 방지하기 위해 와류 차단기(Vortex breaker)를 설치한다.

6.4 펌프의 시운전 시 확인사항

- (1) 펌프와 모터의 축정렬(Alignment), 체결 및 고정이 제대로 되었는지 점검표 등을 확인한다.
- (2) 베어링의 유활유를 아래와 같이 점검한다.
 - (가) 베어링 하우징의 윤활유가 액면계의 규정위치까지 들어 있는가를 확인 하여, 규정 위치보다도 아래인 경우는 윤활유를 보충한다.
 - (나) 그리스 타입인 경우에는 제품 출고 시에 그리스가 채워진 상태로 출고 되므로 별도의 보급은 필요하지 않다. 다만, 장기 보관한 펌프의 경우에 는 그리스의 노화가 우려되므로, 그리스를 완전히 세척하고, 그리스를 교환하여야 한다.
- (3) 초기 운전 시 이물질이 들어갈 가능성이 있는 경우에는 펌프 흡입측에 임 시 스트레이너를 설치하고, 스트레이너의 막힘에 의한 압력강하를 확인하 기 위해 스트레이너의 전후에 차압계를 설치할 수 있다.
- (4) 오일링 타입(Oil ring type)인 경우에는 운송 또는 설치 시에 오일링이 리테이너에서 벗어나는 수가 있으므로 확인할 필요가 있다.
- (5) 펌프 토출측 밸브의 개폐상태를 아래와 같이 확인한다.
 - (가) 원심펌프는 토출밸브를 닫고 기동한다.
 - (나) 사류펌프는 토출밸브를 닫고 운전하는 것이 원칙이나, 병렬운전을 하는 펌프는 1/3 정도 열고 기동한다.
 - (다) 축류펌프는 토출밸브를 열고 기동한다.
- (6) 펌프와 관련된 냉각수 배관 및 실링오일 배관 등이 있는 경우는 연결상태가 적절한지를 점검한다.
- (7) 펌프와 모터를 연결하기 전에 모터를 단독으로 약 3초 정도 운전하여 모터 의 회전방향을 확인하며, 회전방향은 모터에서 펌프를 바라볼 때 시계방향이면 대부분 정상적으로 회전하는 상태이다.
- (8) 냉각유체(Cooling or quenching) 및 청소유체(Flushing) 등의 각 배관이 설치되어 있을 때에는 각 밸브를 열어 압력 및 유량이 적절한가를 관련 배관 도면 및 데이터 시트를 보고 확인한다.
- (9) 라인 베어링이 설치되어 있는 경우에는 냉각수 배관의 밸브를 열어 주수한

다.

- (10) 동절기 및 한냉지에서 운전할 때는 냉각수 배관 등에 부동액을 사용하는 등의 동결방지조치가 되어 있는가를 확인한다.
- (11) 펌프의 마중물(Priming) 존재여부를 아래와 같이 확인한다.
 - (가) 흡입측이 가압인 경우에는 흡입밸브를 열어 펌프 속에 유체를 채운다.
 - (나) 흡입측이 흡상인 경우는 진공펌프 등의 Priming 장치를 가동하여 Priming을 실시한다.
 - (다) 본체 또는 배관에 설치된 벤트밸브를 열어 액체가 가득 차게 되면 회전 체를 손으로 돌려 회전차 내의 기체를 완전히 빼내고 펌프 내부가 액체 로 채워져 있는가를 확인한다.
- (12) 회전체를 손으로 돌려 원활한 회전여부를 확인한다. 만약 회전체의 움직임이 무디거나 부드럽지 않을 때는 내부에 녹이나 간극부의 마찰, 이물질의 흡입, 그랜드 패킹의 지나친 조임이 원인이므로 펌프를 분해하여 케이싱웨어링 및 회전차 등의 회전부품을 점검한다.
- (13) 벤트밸브를 전부 닫는다.
- (14) 최소유량배관이 설치되어 있지 않을 때에는 펌프 데이터 시트에 기재되어 있는 최소운전유량보다 적은 유량으로 운전되지 않도록 토출밸브를 조금 열어둔다.
- (15) 펌프의 승온(Warming up)은 아래와 같이 실시한다.
 - (가) 운전온도가 120 ℃를 넘는 유체를 취급할 때는 운전 전에 펌프를 충분 한 승온(Warming up)을 실시한다.
 - (나) 승온 기준은 <표 5>와 같다.

<표 5> 펌프의 승온(Warming up) 기준

D	_	64-	-201	8

구분	승온 기준
온도상승 정도	2 ℃ / min. 이내
돌변온도	50 ℃ 이내
케이싱 표면의 상하 온도차	20 ~ 30 ℃ 이내
액체온도와 케이싱 표면 온도차	30 ℃ 이내

- (다) 승온 시 고려사항은 아래와 같다.
 - ① 승온 도중에는 회전체를 손으로 돌리지 않아야 한다.
 - ② 토출측에서 승온 유체를 주입할 때 케이싱 상하 온도차가 규정치에 달하지 않을 경우에는 드레인 밸브를 열어 온도가 균일하도록 조치한다.
- (라) 펌프의 크기별 승온 유체의 주입량 기준은 <표 6>과 같다.

<표 6> 펌프의 크기별 승온 유체의 주입량 기준

펌프 흡입측 구경	승온 유량 기준(m³/hr)
40 ~ 100 mm	0.6
150 mm	1.0
200 mm	1.3
250 ~ 300 mm	2.0