WHAT IS CLAIMED IS:

- An oligomeric compound comprising a plurality of covalently-bound nucleosides said oligomeric compound having
 an internal region of Rp chiral phosphorothicate linked 2'-deoxynucleosides and two external regions flanking said internal region wherein said external regions impart nuclease resistance to said oligomeric compound.
- 2. The oligomeric compound of claim 1 wherein at least 10 one nucleoside in the external regions comprises a substituent group.
 - 3. The oligomeric compound of claim 2 wherein at least one nucleoside in each of the external regions comprises a substituent group.
- 15 3. The oligomeric compound of claim 2 wherein each nucleoside in the external regions comprises a substituent group.
- The oligomeric compound of claim 2 wherein each of said substituent groups is covalently bound to the 5', 3' or
 2'-position of the sugar moiety of said nucleoside.
 - 5. The oligomeric compound of claim 4 wherein each of said substituent groups is covalently attached to said nucleoside at the 2'-position.
- 6. The oligomeric compound of claim 4 wherein each of 25 said substituent groups is covalently attached to said nucleoside at the 5'-position.

- 7. The oligomeric compound of claim 1 wherein the ribosyl sugar moiety of at least one of said covalently-bound nucleosides in each of said external regions has the L-ribose configuration.
- 8. The oligomeric compound of claim 7 wherein the 5' and 3'-terminal ribosyl sugar moieties of said covalently-bound nucleosides each have the L-ribose configuration.
- 9. The oligomeric compound of claim 2 wherein each of said substituent groups is, independently, C₁-C₂₀ alkyl, C₂-C₂₀
 10 alkenyl, C₂-C₂₀ alkynyl, C₅-C₂₀ aryl, O-alkyl, O-alkenyl, O-alkynyl, O-alkylamino, O-alkylalkoxy, O-alkylaminoalkyl, O-alkyl imidazole, thiol, S-alkyl, S-alkenyl, S-alkynyl, NH-alkyl, NH-alkenyl, NH-alkynyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, N-phthalimido, halogen keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, heterocycle, carbocycle, polyamine, polyamide, polyalkylene glycol, and polyether;

or each substituent group has one of formula I or II:

$$-Z_{0} = \left\{ (CH_{2})_{q1} - O \left(\begin{matrix} R_{1} \\ N \end{matrix} \right)_{q2} \right\}_{q3} (CH_{2})_{q4} - J - E$$

$$I \qquad II$$

wherein:

 Z_0 is O, S or NH;

J is a single bond, O or C(=0);

E is C_1-C_{10} alkyl, $N(R_1)(R_2)$, $N(R_1)(R_5)$, $N=C(R_1)(R_2)$, $N=C(R_1)(R_5)$ or has one of formula III or IV;

each R_6 , R_7 , R_8 , R_9 and R_{10} is, independently, hydrogen, $C\left(0\right)R_{11}$, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, alkylsulfonyl, arylsulfonyl, a chemical functional group or a conjugate group, wherein the substituent groups are selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl;

or optionally, R_7 and R_8 , together form a phthalimido moiety with the nitrogen atom to which they are attached;

or optionally, R_9 and R_{10} , together form a phthalimido moiety with the nitrogen atom to which they are attached;

each R_{11} is, independently, substituted or unsubstituted 15 C_1 - C_{10} alkyl, trifluoromethyl, cyanoethyloxy, methoxy, ethoxy, t-butoxy, allyloxy, 9-fluorenylmethoxy, 2-(trimethylsilyl)-ethoxy, 2,2,2-trichloroethoxy, benzyloxy, butyryl, isobutyryl, phenyl or aryl;

 R_5 is T-L,

T is a bond or a linking moiety;

L is a chemical functional group, a conjugate group or a solid support material;

each R_1 and R_2 is, independently, H, a nitrogen protecting group, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, wherein said substitution is OR_3 , SR_3 , NH_3 ⁺, $N(R_3)$ (R_4), guanidino or acyl where said acyl is an acid amide or an ester;

or R_1 and R_2 , together, are a nitrogen protecting group or are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

or R_1 , T and L, together, are a chemical functional 5 group;

each R_3 and R_4 is, independently, H, $C_1\text{-}C_{10}$ alkyl, a nitrogen protecting group, or R_3 and R_4 , together, are a nitrogen protecting group;

or R_3 and R_4 are joined in a ring structure that 10 optionally includes an additional heteroatom selected from N and O;

 Z_4 is OX, SX, or $N(X)_2$;

each X is, independently, H, C_1-C_8 alkyl, C_1-C_8 haloalkyl, $C(=NH)N(H)R_5$, $C(=O)N(H)R_5$ or $OC(=O)N(H)R_5$;

15 R_5 is H or C_1-C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur and wherein said 20 ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(R_1)$ (R_2) OR_1 , halo, SR_1 or CN;

each q_1 is, independently, an integer from 1 to 10; each q_2 is, independently, 0 or 1;

 q_3 is 0 or an integer from 1 to 10;

 q_4 is an integer from 1 to 10;

 q_5 is from 0, 1 or 2; and provided that when q_3 is 0, q_4 is greater than 1.

10. The oligomeric compound of claim 9 wherein said substituent group has formula I, II, III or IV.

ū

- 11. The oligomeric compound of claim 1 wherein at least one internucleoside linkage in one of said external regions is modified.
- 12. The oligomeric compound of claim 11 wherein at least 5 one internucleoside linkage in each of said external regions is modified.
 - 13. The oligomeric compound of claim 11 wherein each of the internucleoside linkages in said external regions are modified.
- 10 14. The oligomeric compound of claim 11 wherein each modified internucleoside linkage is, independently, methyl phosphonate, boranophosphonate, phosphoramidate, 3'-methylenephosphonate or methylene(methylimino).
- 15. The oligomeric compound of claim 1 wherein at least one internucleoside linkage in one of said external regions is a 2', 5'-internucleoside linkage.
- 16. The oligomeric compound of claim 15 wherein at least one internucleoside linkage in each of said external regions 20 is a 2', 5'-internucleoside linkage.
 - 17. The oligomeric compound of claim 1 comprising from 5 to about 50 nucleosides.
 - 18. The oligomeric compound of claim 1 comprising from 8 to about 30 nucleosides.
- 19. The oligomeric compound of claim 1 comprising from 15 to about 25 nucleosides.

- 20. The oligomeric compound of claim 1 wherein each of the external regions comprises from 1 to 6 nucleosides.
- 21. The oligomeric compound of claim 1 wherein each of the external regions comprise from 1 to 3 nucleosides.
- 5 22. A pharmaceutical composition comprising a compound of claim 1 and an acceptable pharmaceutical carrier.
 - 23. An oligomeric compound of the formula:

$$5'-(Nu_1-L_1)_n-Y-(L_2-Nu_2)_p-3'$$

10 wherein:

each Nu₁ and Nu₂, independently, has the formula:

wherein

Bx is a heterocyclic base moiety;

Lx is hydrogen, a protecting group or a substituent
group;

one of R_{12} , R_{13} and R_{14} is hydroxyl, a protected hydroxyl, a covalent attachment to a solid support, a nucleoside, an oligonucleoside, a nucleotide, an oligonucleotide, a conjugate group or an optionally protected substituent group;

another of R_{12} , R_{13} and R_{14} is hydrogen, hydroxyl, a protected hydroxyl or an optionally protected substituent group;

the remaining of R_{12} , R_{13} and R_{14} , of Nu_1 , is L_1 ; the remaining of R_{12} , R_{13} and R_{14} , of Nu_2 , is L_2 ; each L_1 and each L_2 is, independently, a phosphodiester internucleoside linkage or a modified internucleoside linkage;

Y has the formula:

wherein:

5

each Rp is a chiral Rp phosphorothioate internucleotide linkage; and

each n, m and p is, independently, from 1 to 100; where the sum of n, m and p is from 3 to about 200;

with the proviso that at least one of R_{12} , R_{13} , R_{14} and L_X is a substituent group or at least one of L_1 and L_2 is a modified internucleoside linkage.

- 15 24. The oligomeric compound of claim 23 wherein at least one Nu_1 or at least one Nu_2 comprises a substituent group.
 - 25. The oligomeric compound of claim 24 wherein at least one $\mathrm{Nu_1}$ and at least one $\mathrm{Nu_2}$ independently comprise a substituent group.
- 20 26. The oligomeric compound of claim 23 wherein each Nu_1 and each Nu_2 independently comprises a substituent group.
 - 27. The oligomeric compound of claim 24 wherein said substituent group is covalently attached to the 2', 3' or 5'-position of said Nu_1 or Nu_2 .
- 28. The oligomeric compound of claim 27 wherein said substituent group is covalently attached to the 2'-position of said Nu_1 or Nu_2 .

29. The oligomeric compound of claim 23 wherein each of said substituent groups is, independently, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_5 - C_{20} aryl, O-alkyl, O-alkenyl, O-alkynyl, O-alkylamino, O-alkylalkoxy, O-alkylaminoalkyl, O-alkyl imidazole, thiol, S-alkyl, S-alkenyl, S-alkynyl, NH-alkyl, NH-alkenyl, NH-alkynyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, N-phthalimido, halogen keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, heterocycle, carbocycle, polyamine, polyamide, polyalkylene glycol, and polvether;

or each substituent group has one of formula I or II:

$$-Z_{0} = \left\{ (CH_{2})_{q1} - O \left(\begin{matrix} R_{1} \\ N \end{matrix} \right)_{q2} \right\}_{q3} (CH_{2})_{q4} - J - E$$

$$I \qquad II$$

wherein:

 Z_0 is O, S or NH;

J is a single bond, C or C(=0);

E is C_1-C_{10} alkyl, $N(R_1)(R_2)$, $N(R_1)(R_5)$, $N=C(R_1)(R_2)$, $N=C(R_1)(R_5)$ or has one of formula III or IV;

each R_6 , R_7 , R_8 , R_9 and R_{10} is, independently, hydrogen, $C(O)R_{11}$, substituted or unsubstituted C_1 - C_{10} alkyl, substituted 25 or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted

C₂-C₁₀ alkynyl, alkylsulfonyl, arylsulfonyl, a chemical
functional group or a conjugate group, wherein the substituent
groups are selected from hydroxyl, amino, alkoxy, carboxy,
benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl,
aryl, alkenyl and alkynyl;

or optionally, R_7 and R_8 , together form a phthalimido moiety with the nitrogen atom to which they are attached;

or optionally, R_9 and R_{10} , together form a phthalimido moiety with the nitrogen atom to which they are attached;

each R_{11} is, independently, substituted or unsubstituted C_1 - C_{10} alkyl, trifluoromethyl, cyanoethyloxy, methoxy, ethoxy, t-butoxy, allyloxy, 9-fluorenylmethoxy, 2-(trimethylsilyl)-ethoxy, 2,2,2-trichloroethoxy, benzyloxy, butyryl, isobutyryl, phenyl or aryl;

15 R_5 is T-L,

nitrogen protecting group;

T is a bond or a linking moiety;

L is a chemical functional group, a conjugate group or a solid support material;

each R_1 and R_2 is, independently, H, a nitrogen protecting group, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, wherein said substitution is OR_3 , SR_3 , NH_3^+ , $N(R_3)$ (R_4) , guanidino or acyl where said acyl is an acid amide or an ester;

or R_1 and R_2 , together, are a nitrogen protecting group or are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

or R_1 , T and L, together, are a chemical functional group; each R_3 and R_4 is, independently, H, C_1-C_{10} alkyl, a 30 nitrogen protecting group, or R_3 and R_4 , together, are a

or R_3 and R_4 are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

 Z_4 is OX, SX, or $N(X)_2$;

each X is, independently, H, C_1-C_8 alkyl, C_1-C_8 haloalkyl, $C(=NH)N(H)R_5$, $C(=O)N(H)R_5$ or $OC(=O)N(H)R_5$;

 R_5 is H or C_1-C_8 alkyl;

- Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;
 - Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(R_1)$ (R_2) OR_1 , halo, SR_1 or CN;
- each q_1 is, independently, an integer from 1 to 10; each q_2 is, independently, 0 or 1;

 q_3 is 0 or an integer from 1 to 10;

 q_4 is an integer from 1 to 10;

 q_5 is from 0, 1 or 2; and

- 20 provided that when q_3 is 0, q_4 is greater than 1.
 - 30. The oligomeric compound of claim 23 wherein at least one of L_1 and L_2 is a modified internucleoside linkage.
- 31. The oligomeric compound of claim 30 wherein at least one of L_1 and at least one of L_2 is a modified internucleoside 25 linkage.
 - 32. The oligomeric compound of claim 30 wherein each $L_{\rm 1}$ and $L_{\rm 2}$ is a phosphodiester internucleoside linkage.
- 33. The oligomeric compound of claim 30 wherein each modified internucleoside linkage is, phosphorodithioate;30 chiral Sp phosphorothioate; phosphoramidate; thiophosphor-

amidate; phosphonate; methylene phosphonate; phosphotriesters; thionoalkylphosphonate; thionoalkylphosphotriester; boranophosphate; boranothiophosphate; thiodiester; thionocarbamate; siloxane; carbamate; sulfamate; morpholino sulfamide;

- 5 sulfonamide; sulfide; sulfonate; N,N'-dimethylhydrazine; thioformacetal; formacetal; thioketal; ketal; amine (-NH-CH₂-CH₂-); hydroxylamine; hydroxylimine; hydrazinyl; amide (-CH₂-N(JJ)-C(O)-) and (-CH₂-C(O)-N(JJ)-); oxime (-CH₂-O-N=CH-); and alkylphosphorus (-C(JJ)₂-P(=O)(OJJ)-C(JJ)₂-C(JJ)₂-), wherein J is hydrogen or C₁ to C₁₀ alkyl.
 - 34. The oligomeric compound of claim 30 wherein each modified internucleoside linkage is, independently, methyl phosphonate, boranophosphonate, phosphoramidate, 3'-methylenephosphonate or methylene(methylimino).
- 15 35. The oligomeric compound of claim 23 wherein at least one R_{14} is L_1 or L_2 .
 - 36. The oligomeric compound of claim 23 wherein at least one R_{14} is L_1 and at least one R_{14} is L_2 .
- 37. The oligomeric compound of claim 23 comprising from 20 5 to about 50 nucleosides.
 - 38. The oligomeric compound of claim 23 comprising from 8 to about 30 nucleosides.
 - 39. The oligomeric compound of claim 23 comprising from 15 to about 25 nucleosides.
- 25 40. The oligomeric compound of claim 23 wherein the sum of n and p is from 2 to about 12.

- 41. The oligomeric compound of claim 23 wherein the sum of n and p is from 2 to about 6.
- 42. The oligomeric compound of claim 23 wherein the sum of n and p is from 2 to 4.
- 5 43. A pharmaceutical composition comprising a compound of claim 1 and an acceptable pharmaceutical carrier.

WHAT IS CLAIMED IS:

- An oligomeric compound comprising a plurality of covalently-bound nucleosides said oligomeric compound having
 an internal region of Rp chiral phosphorothicate linked 2'-deoxynucleosides and two external regions flanking said internal region wherein said external regions impart nuclease resistance to said oligomeric compound.
- 2. The oligomeric compound of claim 1 wherein at least 10 one nucleoside in the external regions comprises a substituent group.
 - 3. The oligomeric compound of claim 2 wherein at least one nucleoside in each of the external regions comprises a substituent group.
- 15 3. The oligomeric compound of claim 2 wherein each nucleoside in the external regions comprises a substituent group.
- The oligomeric compound of claim 2 wherein each of said substituent groups is covalently bound to the 5', 3' or
 2'-position of the sugar moiety of said nucleoside.
 - 5. The oligomeric compound of claim 4 wherein each of said substituent groups is covalently attached to said nucleoside at the 2'-position.
- 6. The oligomeric compound of claim 4 wherein each of 25 said substituent groups is covalently attached to said nucleoside at the 5'-position.

- 7. The oligomeric compound of claim 1 wherein the ribosyl sugar moiety of at least one of said covalently-bound nucleosides in each of said external regions has the L-ribose configuration.
- 5 8. The oligomeric compound of claim 7 wherein the 5' and 3'-terminal ribosyl sugar moieties of said covalently-bound nucleosides each have the L-ribose configuration.
- 9. The oligomeric compound of claim 2 wherein each of said substituent groups is, independently, C₁-C₂₀ alkyl, C₂-C₂₀
 10 alkenyl, C₂-C₂₀ alkynyl, C₅-C₂₀ aryl, O-alkyl, O-alkenyl, O-alkynyl, O-alkylamino, O-alkylalkoxy, O-alkylaminoalkyl, O-alkyl imidazole, thiol, S-alkyl, S-alkenyl, S-alkynyl, NH-alkyl, NH-alkenyl, NH-alkynyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, N-phthalimido, halogen keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, heterocycle, carbocycle, polyamine, polyamide, polyalkylene glycol, and polyether;
- or each substituent group has one of formula I or II:

$$-Z_{0} = \left\{ (CH_{2})_{q1} - O \left(\begin{array}{c} R_{1} \\ N \\ -Q_{2} \end{array} \right)_{q3} + (CH_{2})_{q4} - J - E \right\} - Z_{0} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{3} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{2} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{5} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{5} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{5} \end{array} \right] Z_{5} = \left[\begin{array}{c} Z_{1} \\ Z_{5} \end{array} \right] Z_{5} = \left[\begin{array}{c}$$

wherein:

 Z_0 is O, S or NH;

J is a single bond, O or C(=O);

E is C_1-C_{10} alkyl, $N\left(R_1\right)\left(R_2\right)$, $N\left(R_1\right)\left(R_5\right)$, $N=C\left(R_1\right)\left(R_2\right)$, $N=C\left(R_1\right)\left(R_5\right)$ or has one of formula III or IV;

each R_6 , R_7 , R_8 , R_9 and R_{10} is, independently, hydrogen, $C(0)R_{11}$, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, alkylsulfonyl, arylsulfonyl, a chemical functional group or a conjugate group, wherein the substituent groups are selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl;

or optionally, R_7 and R_8 , together form a phthalimido moiety with the nitrogen atom to which they are attached;

or optionally, R_9 and R_{10} , together form a phthalimido moiety with the nitrogen atom to which they are attached;

each R_{11} is, independently, substituted or unsubstituted 15 C_1 - C_{10} alkyl, trifluoromethyl, cyanoethyloxy, methoxy, ethoxy, t-butoxy, allyloxy, 9-fluorenylmethoxy, 2-(trimethylsilyl)-ethoxy, 2,2,2-trichloroethoxy, benzyloxy, butyryl, isobutyryl, phenyl or aryl;

 R_5 is T-L,

T is a bond or a linking moiety;

L is a chemical functional group, a conjugate group or a solid support material;

each R_1 and R_2 is, independently, H, a nitrogen protecting group, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted or unsubstituted or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, wherein said substitution is OR_3 , SR_3 , NH_3 ⁺, $N(R_3)$ (R_4), guanidino or acyl where said acyl is an acid amide or an ester;

or R_1 and R_2 , together, are a nitrogen protecting group or are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

or R_1 , T and L, together, are a chemical functional 5 group;

each R_3 and R_4 is, independently, H, $C_1\text{-}C_{10}$ alkyl, a nitrogen protecting group, or R_3 and R_4 , together, are a nitrogen protecting group;

or R_3 and R_4 are joined in a ring structure that 10 optionally includes an additional heteroatom selected from N and O;

 Z_4 is OX, SX, or $N(X)_2$;

each X is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)R_5$, $C(=O)N(H)R_5$ or $OC(=O)N(H)R_5$;

15 R_5 is H or C_1-C_8 alkyl;

 Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur and wherein said 20 ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;

 Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(R_1)$ (R_2) OR_1 , halo, SR_1 or CN;

each q_1 is, independently, an integer from 1 to 10; each q_2 is, independently, 0 or 1;

 q_3 is 0 or an integer from 1 to 10;

 q_4 is an integer from 1 to 10;

q₅ is from 0, 1 or 2; and provided that when q_3 is 0, q_4 is greater than 1.

10. The oligomeric compound of claim 9 wherein said substituent group has formula I, II, III or IV.

DOLLEODO HILLOD

- 11. The oligomeric compound of claim 1 wherein at least one internucleoside linkage in one of said external regions is modified.
- 12. The oligomeric compound of claim 11 wherein at least 5 one internucleoside linkage in each of said external regions is modified.
 - 13. The oligomeric compound of claim 11 wherein each of the internucleoside linkages in said external regions are modified.
- 10 14. The oligomeric compound of claim 11 wherein each modified internucleoside linkage is, independently, methyl phosphonate, boranophosphonate, phosphoramidate, 3'-methylenephosphonate or methylene(methylimino).
- 15. The oligomeric compound of claim 1 wherein at least one internucleoside linkage in one of said external regions is a 2', 5'-internucleoside linkage.
- 16. The oligomeric compound of claim 15 wherein at least one internucleoside linkage in each of said external regions20 is a 2', 5'-internucleoside linkage.
 - 17. The oligomeric compound of claim 1 comprising from 5 to about 50 nucleosides.
 - 18. The oligomeric compound of claim 1 comprising from 8 to about 30 nucleosides.
- 19. The oligomeric compound of claim 1 comprising from 15 to about 25 nucleosides.

- 20. The oligomeric compound of claim 1 wherein each of the external regions comprises from 1 to 6 nucleosides.
- 21. The oligomeric compound of claim 1 wherein each of the external regions comprise from 1 to 3 nucleosides.
- 5 22. A pharmaceutical composition comprising a compound of claim 1 and an acceptable pharmaceutical carrier.

2). An oligomeric compound of the formula:

$$5'-(Nu_1-L_1)_n-Y-(L_2-Nu_2)_p-3'$$

wherein:

each Nu₁\and Nu₂, independently, has the formula:

$$R_{13}$$
 R_{14} R_{14}

wherein

Bx is a heterocyclic base moiety;

Lx is hydrogen, a protecting group or a substituent
group;

one of R₁₂, R₁₃ and R₁₄ is hydroxyl, a protected hydroxyl, a covalent attachment to a solid support, a nucleoside, an oligonucleoside, a nucleotide, an oligonucleotide, a conjugate group or an optionally protected substituent group;

another of R_{12} , R_{13} and R_{14} is hydrogen, hydroxyl, a protected hydroxyl or an optionally protected substituent group;

the remaining of R_{12} , R_{13} and R_{14} of Nu_1 , is L_1 ; the remaining of R_{12} , R_{13} and R_{14} , of Nu_2 , is L_2 ;

each L_1 and each L_2 is, independently, a phosphodiester internucleoside linkage or a modified internucleoside linkage;

Y has the formula:

$$Rp$$
 O
 Bx
 O
 Bx
 O
 Bx

wherein:

. 5

each Rp is a chiral Rp phosphorothioate internucleotide linkage; and

each n, m and p is, independently, from 1 to 100; where the sum of n, m and p is from 3 to about 200;

with the proviso that at least one of R_{12} , R_{13} , R_{14} and $L_{\rm x}$ is a substituent group or at least one of $L_{\rm 1}$ and $L_{\rm 2}$ is a modified internucleoside linkage.

- 15 24. The oligomeric compound of claim 23 wherein at least one Nu_1 or at least one Nu_2 comprises a substituent group.
 - 25. The oligomeric compound of claim 24 wherein at least one $\mathrm{Nu_1}$ and at least one $\mathrm{Nu_2}$ independently comprise a substituent group.
- 20 26. The oligomeric compound of claim 23 wherein each Nu_1 and each Nu_2 independently comprises a substituent group.
 - 27. The oligomeric compound of claim 24 wherein said substituent group is covalently attached to the 2', 3' or 5'-position of said Nu_1 or Nu_2 .
- 25 28. The oligomeric compound of claim 27 wherein said substituent group is covalently attached to the 2'-position of said $\mathrm{Nu_1}$ or $\mathrm{Nu_2}$.

29. The oligomeric compound of claim 23 wherein each of said substituent groups is, independently, C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, C_5 - C_{20} aryl, O-alkyl, O-alkenyl, O-alkynyl, O-alkylamino, O-alkylalkoxy, O-alkylaminoalkyl, O-alkyl imidazole, thiol, S-alkyl, S-alkenyl, S-alkynyl, NH-alkyl, NH-alkenyl, NH-alkynyl, N-dialkyl, O-aryl, S-aryl, NH-aryl, O-aralkyl, S-aralkyl, NH-aralkyl, N-phthalimido, halogen keto, carboxyl, nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy, imidazole, azido, hydrazino, hydroxylamino, isocyanato, sulfoxide, sulfone, sulfide, disulfide, silyl, heterocycle, carbocycle, polyamine, polyamide, polyalkylene glycol, and polyether;

or each substituent group has one of formula I or II:

$$-Z_{0} = \left\{ (CH_{2})_{q1} - O + N - \frac{R_{1}}{N} \right\}_{q2} + J - E = -Z_{0}$$

$$Z_{1} = \left\{ (CH_{2})_{q1} - O + N - \frac{R_{1}}{N} \right\}_{q3} + J - E = -Z_{0}$$

$$Z_{1} = \left\{ (CH_{2})_{q4} - J - E - Z_{0} - Z_{1} - Z_{2} - Z_{2$$

wherein:

 Z_0 is O, S or NH;

J is a single bond, C or C(=O);

E is C_1-C_{10} alkyl, $N(R_1)(R_2)$, $N(R_1)(R_5)$, $N=C(R_1)(R_2)$, $N=C(R_1)(R_5)$ or has one of formula III or IV;

each R_6 , R_7 , R_8 , R_9 and R_{10} is, independently, hydrogen, $C(O)R_{11}$, substituted or unsubstituted C_1-C_{10} alkyl, substituted 25 or unsubstituted C_2-C_{10} alkenyl, substituted or unsubstituted

COLUBORO LILLED

C₂-C₁₀ alkynyl, alkylsulfonyl, arylsulfonyl, a chemical
functional group or a conjugate group, wherein the substituent
groups are selected from hydroxyl, amino, alkoxy, carboxy,
benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl,
saryl, alkenyl and alkynyl;

or optionally, R_7 and R_8 , together form a phthalimido moiety with the nitrogen atom to which they are attached;

or optionally, R_9 and R_{10} , together form a phthalimido moiety with the nitrogen atom to which they are attached;

each R_{11} is, independently, substituted or unsubstituted C_1 - C_{10} alkyl, trifluoromethyl, cyanoethyloxy, methoxy, ethoxy, t-butoxy, allyloxy, 9-fluorenylmethoxy, 2-(trimethylsilyl)-ethoxy, 2,2,2-trichloroethoxy, benzyloxy, butyryl, isobutyryl, phenyl or aryl;

15 R_5 is T-L,

T is a bond or a linking moiety;

L is a chemical functional group, a conjugate group or a solid support material;

each R_1 and R_2 is, independently, H, a nitrogen protecting group, substituted or unsubstituted C_1-C_{10} alkyl, substituted or unsubstituted C_2-C_{10} alkenyl, substituted or unsubstituted C_2-C_{10} alkynyl, wherein said substitution is OR_3 , SR_3 , NH_3^+ , $N(R_3)$ (R_4) , guanidino or acyl where said acyl is an acid amide or an ester;

or R_1 and R_2 , together, are a nitrogen protecting group or are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

or R_1 , T and L, together, are a chemical functional group; each R_3 and R_4 is, independently, H, $C_1\text{-}C_{10}$ alkyl, a nitrogen protecting group, or R_3 and R_4 , together, are a nitrogen protecting group;

or R_3 and R_4 are joined in a ring structure that optionally includes an additional heteroatom selected from N and $O_{\hat{r}}$

 Z_4 is OX, SX, or $N(X)_2$;

each X is, independently, H, C_1-C_8 alkyl, C_1-C_8 haloalkyl, $C(=NH)N(H)R_5$, $C(=O)N(H)R_5$ or $OC(=O)N(H)R_5$;

 R_5 is H or C_1-C_8 alkyl;

- Z_1 , Z_2 and Z_3 comprise a ring system having from about 4 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;
 - Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(R_1)$ (R_2) OR_1 , halo, SR_1 or CN;
- each q_1 is, independently, an integer from 1 to 10; each q_2 is, independently, 0 or 1; q_3 is 0 or an integer from 1 to 10; q_4 is an integer from 1 to 10; q_5 is from 0, 1 or 2; and
- 20 provided that when q_3 is 0, q_4 is greater than 1.
 - 30. The oligomeric compound of claim 23 wherein at least one of L_1 and L_2 is a modified internucleoside linkage.
- 31. The oligomeric compound of claim 30 wherein at least one of L_1 and at least one of L_2 is a modified internucleoside 25 linkage.
 - 32. The oligomeric compound of claim 30 wherein each L_1 and L_2 is a phosphodiester internucleoside linkage.
- 33. The oligomeric compound of claim 30 wherein each modified internucleoside linkage is, phosphorodithioate;30 chiral Sp phosphorothioate; phosphoramidate; thiophosphor-

amidate; phosphonate; methylene phosphonate; phosphotriesters; thionoalkylphosphonate; thionoalkylphosphotriester; boranophosphate; boranothiophosphate; thiodiester; thionocarbamate; siloxane; carbamate; sulfamate; morpholino sulfamide;

- 5 sulfonamide; sulfide; sulfonate; N,N'-dimethylhydrazine; thioformacetal; formacetal; thioketal; ketal; amine (-NH-CH₂-CH₂-); hydroxylamine; hydroxylimine; hydrazinyl; amide (-CH₂-N(JJ)-C(O)-) and (-CH₂-C(O)-N(JJ)-); oxime (-CH₂-O-N=CH-); and alkylphosphorus (-C(JJ)₂-P(=O)(OJJ)-C(JJ)₂-C(JJ)₂-), wherein J is hydrogen or C₁ to C₁₀ alkyl.
 - 34. The oligomeric compound of claim 30 wherein each modified internucleoside linkage is, independently, methyl phosphonate, boranophosphonate, phosphoramidate, 3'-methylenephosphonate or methylene(methylimino).
- 15 35. The oligomeric compound of claim 23 wherein at least one R_{14} is L_1 or L_2 .
 - 36. The oligomeric compound of claim 23 wherein at least one R_{14} is L_1 and at least one R_{14} is L_2 .
- 37. The oligomeric compound of claim 23 comprising from 20 5 to about 50 nucleosides.
 - 38. The oligomeric compound of claim 23 comprising from 8 to about 30 nucleosides.
 - 39. The oligomeric compound of claim 23 comprising from 15 to about 25 nucleosides.
- 25 40. The oligomeric compound of claim 23 wherein the sum of n and p is from 2 to about 12.

41. The oligomeric compound of claim 23 wherein the sum of n and p is from 2 to about 6.

42. The oligomeric compound of claim 23 wherein the sum of n and p is from 2 to 4.

43. A pharmaceutical composition comprising a compound of claim 1 and an acceptable pharmaceutical carrier.

 add I