

Amendments to the Specification

Please insert the following after paragraph [0016] :

[0016a] An example of silicone polyethers suitable for use in the present invention are compositions having the formula:

where R^{a} is an alkyl group of one to six carbon atoms; R^{b} is the radical $-\text{C}_m\text{H}_{2m}-$; R^{c} is a terminating radical such as hydrogen, an alkyl group of one to six carbon atoms, or an aryl group such as phenyl; m has a value of two to eight; p and s have values such that the oxyalkylene segment $-(\text{C}_2\text{H}_4\text{O})_{\text{p}}-(\text{C}_3\text{H}_6\text{O})_{\text{s}}-$ has a molecular weight in the range of 400 to 5,000; the segment preferably having 50-99 mole percent of oxyethylene units $-(\text{C}_2\text{H}_4\text{O})_{\text{p}}-$ and 1-50 mole percent of oxypropylene units $-(\text{C}_3\text{H}_6\text{O})_{\text{s}}-$; x has a value of 80 to 400; and y has a value of 2 to 10.

[0016b] Preferably, R^{a} and the terminating radical R^{c} are methyl groups; m is preferably three or four whereby the group R^{b} is most preferably $-(\text{CH}_2)_3-$; and the values of p and s provide a molecular weight of oxyalkylene segment $-(\text{C}_2\text{H}_4\text{O})_{\text{p}}-(\text{C}_3\text{H}_6\text{O})_{\text{s}}-$ of between 1,000 to 3,000. Most preferably, p and s each have a value of about 18 to 28.

[0016c] Another example of a similar and useful silicone polyether is a composition having the formula:

where R^{a} is an alkyl group of one to six carbon atoms; R^{b} is the radical $-\text{C}_m\text{H}_{2m-1}$; R^{c} is a terminating radical such as hydrogen, an alkyl group of one to six carbon atoms, or an aryl group such as phenyl; m has a value of two to eight; q has a value of 8 to 16; u has a value of 6 to 12; and x has a value of 1 to 8.

[0016d] In Formula (I) or Formula (II), the silicone polyethers, i.e., siloxane-oxyalkylene copolymers, may take the form of endblocked polyethers in which the linking group R^{b} the oxyalkylene segments, and the terminating radical R^{c} , occupy positions bonded to the ends of the siloxane chain, rather than being bonded to a silicon atom in the siloxane chain.

[0016e] Thus, one or more of the R^{a} substituents attached to the two terminal silicon atoms at the end of the siloxane chain, can be substituted with the segment $-\text{R}^{\text{b}}-\text{O}-(\text{C}_2\text{H}_4\text{O})_p-(\text{CH}_6\text{O})_s-\text{R}^{\text{c}}$ or with the segment $-\text{R}^{\text{b}}-\text{O}-(\text{C}_2\text{H}_4\text{O})_p-\text{R}^{\text{c}}$.

[0016f] In some instances, it may be desirable to provide these segments in the siloxane chain itself, as well as at one or both of the ends of the chain.

[0016g] Methods for making such silicone polyethers are known in the art, and are described in

detail in standard texts such as Chemistry & Technology of Silicones, Walter Noll, Academic Press Inc., 1968, Pages 373-376.