Calcolo Combinatorio

Pietro Poluzzi

Febbraio 2020

Indice

1	Inti	roduzione al calcolo combinatorio
	1.1	Funzione fattoriale
	1.2	Coefficienti binomiali
		1.2.1 Legge della classi complementari
		1.2.2 Formula di ricorrenza
2	Dis	posizioni
	2.1	Disposizioni semplici
	2.2	Disposizioni con ripetizione
3	Permutazioni	
	3.1	Permutazioni semplici
	3.2	Permutazioni con ripetizione
4	Cor	nbinazioni
	4.1	Combinazioni semplici
		Combinazioni con ripetizione
5	Bin	omio di Newton
	5.1	Formula di Stifel

1 Introduzione al calcolo combinatorio

Il calcolo combinatorio studia il numero di modi in cui è possibile raggruppare, disporre od ordinare gli elementi di un insieme finito.

1.1 Funzione fattoriale

Definizione

n fattoriale si esprime con $\mathbf{n}!$ ed indica il prodotto dei primi n numeri naturali, escluso lo zero. Siano 0!=1 e 1!=1, allora:

$$n! = n(n-1)(n-2)(n-3)... \cdot 2 \cdot 1 \text{ con } n \ge 2$$

La definizione può essere espressa con una sorta di funzione ricorsiva: $n! = n \cdot (n-1)!$

1.2 Coefficienti binomiali

Definizione

Siano $n, k \in \mathbb{N}$ e $0 < k \le n$, il coefficiente binomiale di n e k è:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

1.2.1 Legge della classi complementari

$$\binom{n}{k} = \binom{n}{n-k}$$

Dimostrazione:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)! \cdot k!} = \frac{n!}{(n-k)![n-(n-k)]!} = \binom{n}{n-k}$$

1.2.2 Formula di ricorrenza

$$\binom{n}{k+1} = \binom{n}{k} \cdot \frac{n-k}{k+1}$$

La formula di ricorrenza è utile quando si conosce il valore del coefficiente binomiale per un dato valore di k e si devono trovare i valori delle classi successive o precedenti.

2 Disposizioni

2.1 Disposizioni semplici

Definizione

Siano $n, k \in \mathbb{N}$ e $0 < k \le n$, le disposizioni semplici di n elementi di classe k sono tutti i gruppi di k elementi che differiscono per almeno un elemento o per l'ordine con cui gli elementi sono collocati.

$$D_{n,k} = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot (n-k+1)$$

Questa espressione può essere semplificata utilizzando i numeri fattoriali:

$$D_{n,k} = \frac{n!}{(n-k)!}$$

Esempio

$$D_{7,3} = 7 \cdot (7 - 1) \cdot (7 - 3 + 1) = 7 \cdot 6 \cdot 5 = 210$$

$$D_{7,3} = \frac{7!}{4!} = \frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!} = 7 \cdot 6 \cdot 5 = 210$$

2.2 Disposizioni con ripetizione

Definizione

Siano $n, k \in \mathbb{N}$ e $0 < k \le n$, le disposizioni con ripetizione di n elementi di classe k sono tutti i gruppi di k elementi che differiscono per almeno un elemento o per l'ordine con cui gli elementi sono collocati.

$$D'_{n,k} = n^k$$

Esempio

$$D_{22.3}' = 22^3 = 10648$$

3 Permutazioni

3.1 Permutazioni semplici

Definizione

Sia $n \in \mathbb{N}, n \geq 2$, le permutazioni semplici di n elementi sono tutti i gruppi formati dagli n elementi che differiscono per il loro ordine.

$$P_n = n!$$

Esempio

Si intende trovare tutti i numeri di 6 cifre distinte si possono scrivere utilizzando gli elementi dell'insieme $A = \{2, 3, 4, 7, 8, 9\}$.

$$P_6 = 6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

3.2 Permutazioni con ripetizione

Definizione

Siano $n, k \in \mathbb{N}, n \geq 2$ e $0 < k \leq n$, le permutazioni con ripetizione di n elementi, di cui k ripetuti, sono tutti i gruppi formati dagli n elementi che differiscono per il loro ordine.

$$P_n^{(k)} = \frac{n!}{k!}$$

Esempio

Si vuole calcolare i modi in cui 5 sedie possono essere occupate da 3 persone. Si deve quindi calcolare il numero di permutazioni di 5 elementi, 2 dei quali (le sedie vuote) sono ripetuti.

$$P_k^{(2)} = \frac{5!}{2!} = \frac{5!}{2!} = \frac{5 \cdot 4 \cdot 3 \cdot 2!}{2!} = 5 \cdot 4 \cdot 3 = 60$$

4 Combinazioni

4.1 Combinazioni semplici

Definizione

Siano $n, k \in \mathbb{N} - \{0\}, 0 < k \le n$, le combinazioni semplici di n elementi distinti di classe k sono tutti i gruppi di k elementi che differiscono per almeno un elemento ma non per l'ordine.

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdot \dots \cdot (n-k+1)}{k!} = \binom{n}{k}$$

Esempio

Dato un insieme $A = \{1, 15, 23, 44, 56\}$ che rappresenti i numeri di 5 bici, si vuole calcolare come queste possono essere assegnate a 2 piloti.

$$C_{5,2} = \frac{D_{5,2}}{P_2} = \frac{5!}{3!} \cdot \frac{1}{2!} = \frac{5 \cdot 4 \cdot 3!}{3!} \cdot \frac{1}{2!} = \frac{5 \cdot 4}{2!} = \frac{20}{2} = 10$$

Si ottiene lo stesso risultato applicando alle combinazioni semplici la definizione di coefficiente binomiale:

$$\binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2!} = \frac{20}{2} = 10$$

4.2 Combinazioni con ripetizione

Definizione

Siano $n, k \in \mathbb{N} - \{0\}, 0 < k \leq n$, le combinazioni con ripetizione di n elementi distinti di classe k sono tutti i gruppi di k elementi che soddisfino i seguenti requisiti:

- $\bullet\,$ ogni elemento può essere ripetuto fino a k volte
- l'ordine con cui si presentano gli elementi non ha importanza
- il numero di volte che il quale un elemento compare è diverso

$$C'_{n, k} = C_{n+k-1, k} = \frac{n \cdot (n+k-1) \cdot (n+k-2) \dots \cdot (n+1)}{k!} = \binom{n+k-1}{k}$$

Esempio

Si vuole calcolare in quanti modi diversi si possono distribuire 6 libri in 4 scaffali diversi. **N.B.** Alcuni scaffali possono rimanere vuoti.

$$C'_{4,6} = {4+6-1 \choose 6} = {9! \choose 6} = {9! \over 6! \cdot (9-6)!} = {9! \over 6! \cdot 3!} = {9 \cdot 8 \cdot 7 \cdot 6! \over 6! \cdot 3!} = {9 \cdot 8 \cdot 7 \cdot 6! \over 6! \cdot 3!} = {9 \cdot 8 \cdot 7 \over 3!} = {504 \over 6} = 84$$

5 Binomio di Newton

Per calcolare le potenze di un binomio con esponente maggiore di 3, si ricorre al triangolo di Tartaglia. I lati obliqui del triangolo sono formati da diversi 1, mentre ogni coefficiente interno è la somma dei due coefficienti della riga precedente che sono alla sua destra e alla sua sinistra. La potenza con esponente n ha il seguente sviluppo: $(A+B)^n = (...)A^nB^0 + (...)A^{n-1}B^1 + ... + A^0B^n$

Siano (...) i coefficienti dell'n-esima riga. Si prenda come esempio n=4: $(A+B)^4=1A^4B^0+4A^3B^1+6A^2B^2+4AB^3+B^4$

Si indichi con k la posizione di un numero della riga e sia k = 0 il primo numero a sinistra. La k-esima posizione dell'n-esima riga è occupata dal numero che corrisponde al coefficiente binomiale $\binom{n}{k}$

I coefficienti binomiali si possono usare per lo sviluppo di $(A + B)^n$ ottenendo la formula del binomio di Newton:

$$(A+B)^n = \binom{n}{0}A^nB^0 + \binom{n}{1}A^{n-1}B^1 + \dots + \binom{n}{n-1}A^1B^{n-1} + \binom{n}{n}A^0B^n$$

La formula può essere scritta più sinteticamente utilizzando il simbolo della **sommatoria**: si ricordi infatti che $\sum_{k=0}^{n}$ significa somma dei termini che si ottengono quando k varia da 0 a n, allora la formula del binomio di Newton è riscritta come segue:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^{n-k} B^k$$

Esempio

$$(a+b)^{6} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} a^{6} + \begin{pmatrix} 6 \\ 1 \end{pmatrix} a^{5}b + \begin{pmatrix} 6 \\ 2 \end{pmatrix} a^{4}b^{2} + \begin{pmatrix} 6 \\ 3 \end{pmatrix} a^{3}b^{3} + \begin{pmatrix} 6 \\ 4 \end{pmatrix} a^{2}b^{4} + \begin{pmatrix} 6 \\ 5 \end{pmatrix} ab^{5} + \begin{pmatrix} 6 \\ 6 \end{pmatrix} b^{6} = a^{6} + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{2}b^{4} + 6ab^{5} + b^{6}$$

5.1 Formula di Stifel

Definizione

Nel triangolo di Tartaglia, ogni coefficiente è la somma dei due coefficienti della riga precedente a destra e sinistra.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$