AI-POWERED NUTRITION ANALYZER FOR FITNESS ENTHUSIASTS

Date	19 september 22
Team Id	PNT2022TMID48156
Project name	AI-POWERED
	NUTRITION
	ANALYZER FOR
	FITNESS
	ENTHUSIASTS
Marks	2 Marks

INTRODUCTION

The main aim of the project is to building a model which is used for classifying the fruitdepends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like(Sugar, Fibre, Protein, Calories, etc.)

LITERATURE SURVEY

S.NO	AUTHOR	TITLE	OBJECTIVE
1.	Praveen Chopra	ProgressiveSpinal Net	In this paper the Progressive
	etal. (2022)	architecture for FC	SpinalNet progressive computational
		layers	network for FClayers of deep-
			networks is introduced
			as an upgraded version of the DNN
			concept.
2.	H M Dipu Kabir	SpinalNet: Deep Neural	In this research, the SpinalNet DNN
	etal. (2022)	Network with Gradual	modelwas introduced. The
		Input[2]	chordate nervous system, which has
			a special way of connecting a lot of

			sensingdata and making
			local decisions, is mimicked in the
			construction of Spinal Net.
	T		
3.	Mirra K B	Classification of	In this study a deep learning-based

3.	Mirra K B	Classification of	In this study a deep learning-based
		Fruits Using	system for classifying fruits is
		DeepLearning	suggested. A DCNNmodel, an
		Algorithms [3]	AlexNet model, and a MobileNetV2
			model were investigated in the
			proposed framework. Three datasets
			with different sizes and levels
			of complexity were used to test the
			recommended framework.
4.	Feras Albardi et	A Comprehensive Study on	This study attempts to investigate
	al(2021)	Torchvision Pre- trained	various pre-trained models provided in
		Models for Fine-grained	the PyTorchlibrary's Torchvision
		Inter-species	package.
		Classification	And look into how well they can
			classifyfine- grained photos.
5.	Nguyen Vuong	Fruits	In this paper, we examine the
	Thinh et al	classification by	methods forclassifying images that
	(2021)	using machine	can be used to categorise fruits. The
		learning - An	study's findings can be used to place
		experiment	fruit on the correct shop shelves,
		usingpopular	spot fruit mismatches there, or check
		approaches on	fruit prices without using a barcode
		local data	scanner. Three well-known
			classification models—Random
			Forest, K-Nearest Neighbors (KNN),
			and Support
			Vector Machine—are employed in this
			study (SVM).

6.	Haci Bayram	Fruit Recognition	This suggested study employs image
	Ünalet al.	and Classification	processing techniques for fruit
	(2021)	with Deep	recognition.Convolutional Neural
		LearningSupport	Networks (ConNN)*deep learning
		on Embedded	model for classification is created in
		System (fruitnet)	the study. The Keras platform was
			used to construct the suggested
			model.
7.	Marieke van	Using Natural	According to this paper's point of
	Erpet al.	Language	view, Interdisciplinary approaches
	(2021)	Processing and	should be used to address food and
	(2021)	Artificial	recipe research inorder to address
		Intelligence to	health and sustainability issues.
		Explore the	These approaches should combine
		Nutrition and	NLP and other AI techniques with
		Sustainability of	historical food research, food
		Recipes and Food	science, nutrition, and sustainability
			expertise.
8.	Mehenag	Fruits	This study investigates a CNN-
	Khatunet	Classification	basedclassification of fruits.
	al. (2020)	using	For five
		Convolutional	scenarios utilising the fruits-360
		NeuralNetwork	dataset, the accuracy and loss
			curves were createdusing various
			combinations of
			hidden layers. This paper discusses
			severalcomputer vision-based
			approaches and algorithms for fruit
			recognition and
			classification.

9.	Siyuan Lu et	Fruit classification	In this study, we introduced a
	al.(2016)	by HPA-SLFN	brand-newfruit classification
			method called HPA- SLFN. The
			findings indicated that HPA-
			classification SLFN's accuracy of
			89.5%
			was superior to those of other classification
			techniques.
10.	Ghulam	Date fruits	In this study a suggested technique
	Muhammad et	classification using	breaks down a visual image of a date
	al.(2015)	texture descriptors	into its component colours. The local
		and shape-size	texture descriptor, such as a Weber
		features [10]	local descriptor(WLD) histogram or
			a local binary pattern (LBP), is then
			applied to each component in order
			to encode the texture pattern of the
			date. To characterise the image, the
			texture patterns fromeach component
			are
			combined.

REFERENCES:

- Muhammad, Ghulam. "Date fruits classification using texture descriptors and shape-sizefeatures." Engineering Applications of Artificial Intelligence 37 (2015): 361-367.
- Lu, Siyuan, et al. "Fruit classification by HPA-SLFN." 2016 8th International Conferenceon Wireless Communications & Signal Processing (WCSP). IEEE, 2016.

- Khatun, Mehenag, et al. "Fruits Classification using Convolutional Neural Network." GRDJournals-Global Research and Development Journal for Engineering 5.8 (2020).
- Ünal, Haci Bayram, et al. "Fruit recognition and classification with deep learning support on embedded system (fruitnet)." 2020 Innovations in Intelligent Systems and ApplicationsConference (ASYU). IEEE, 2020.
- Thinh, Nguyen Vuong, et al. "Fruits classification by using machine learning-An experiment using popular approaches on local data." 2021 IEEE International Conferenceon Machine Learning and Applied Network Technologies (ICMLANT). IEEE, 2021.
- Albardi, Feras, et al. "A comprehensive study on torchvision pre-trained models for fine- grained inter-species classification." 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2021.
- KB, Mirra, and R. Rajakumari. "Classification of Fruits Using Deep Learning Algorithms." Available at SSRN 4068366.
- Chopra, Praveen. "Progressivespinalnet architecture for fc layers."
 arXiv preprintarXiv:2103.11373 (2021).
- Kabir, HM Dipu, et al. "Spinalnet: Deep neural network with gradual input." IEEETransactions on Artificial Intelligence (2022).
- Van Erp, Marieke, et al. "Using natural language processing and artificial intelligence to explore the nutrition and sustainability of recipes and food."
 Frontiers in artificial intelligence 3 (2021): 621577.