Expressão Regular

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

04 de dezembro de 2017

Plano de Aula

- Revisão
 - Equivalência de AFNs e AFDs
 - Fecho sob as operações regulares

2 Expressão Regular

Sumário

- Revisão
 - Equivalência de AFNs e AFDs
 - Fecho sob as operações regulares

2 Expressão Regular

Definição

Seja $N=(Q,\Sigma,\delta,q_0,F)$ um AFN e suponha que $\omega=\omega_1\omega_2\ldots,\omega_n$ seja uma cadeia em que cada ω_i é um membro do alfabeto Σ_ϵ $(1\leq i\leq n)$. Então N aceita ω se uma seguência de estados r_0,r_1,\ldots

Então N aceita ω se uma sequência de estados r_0, r_1, \ldots, r_n em Q existe satisfazendo três condições:

- ② $r_{i+1} \in \delta(r_i, \omega_{i+1})$ (para i = 0, ..., n-1); e
- \circ $r_n \in F$.

Corolário

N reconhece a linguagem A, se $A = \{\omega \mid N \text{ aceita } \omega\}$.

Equivalência de AFNs e AFDs

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Ideia da prova

- Se uma linguagem é reconhecida por um AFN, então temos de mostrar a existência de um AFD que também a reconhece;
- Converter um AFN num AFD equivalente que o simule;
- Se k é o número de estados do AFN, então ele tem 2^k subconjuntos de estados;
- Portanto o AFD equivalente terá 2^k estados.

Descrição Formal

Descrição Formal

Equivalência de AFNs e AFDs

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Corolário 1.40

Uma linguagem é regular se e somente se algum autômato finito não-determinístico a reconhece.

Fecho sob união

Teorema 1.45

A classe de linguagens regulares é fechada sob a operação de união.

Fecho sob união

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ reconheça A_2 . Construa $N=(Q,\Sigma,\delta,q_0,F)$ para reconhecer $A_1\cup A_2$.

- $Q = Q_1 \cup Q_2 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

- q₀ é o estado inicial;
- $F = F_1 \cup F_2$.

Fecho sob concatenação

Teorema 1.47

A classe de linguagens regulares é fechada sob operação de concatenação.

Fecho sob concatenação

Estrutura básica da prova

Suponha que $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ reconheça A_1 e que $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ reconheça A_2 .

Revisão

Construa $N = (Q, \Sigma, \delta, q_1, F_2)$ para reconhecer $A_1 \circ A_2$.

- $Q = Q_1 \cup Q_2$:
- Σ é o alfabeto da linguagem;

- q₁ é o estado inicial;
- F₂ é o conjunto de estados finais.

Fecho sob estrela

Teorema 1.49

A classe de linguagens regulares é fechada sob operação de estrela.

Fecho sob estrela

Estrutura básica da prova

Suponha que $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ reconheça A_1 . Construa $N = (Q, \Sigma, \delta, q_0, F)$ para reconhecer A_1^* .

- $Q = Q_1 \cup \{q_0\};$
- Σ é o alfabeto da linguagem;

$$\delta(q,a) = \left\{ \begin{array}{ll} \delta_1(q,a), & \text{se } q \in Q_1 \text{ e } q \not\in F_1 \\ \delta_1(q,a), & \text{se } q \in F_1 \text{ e } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\}, & \text{se } q \in F_1 \text{ e } a = \epsilon \\ \{q_1\}, & \text{se } q = q_0 \text{ e } a = \epsilon \\ \emptyset, & \text{se } q = q_0 \text{ e } a \neq \epsilon. \\ \text{em que } q \in Q \text{ e } a \in \Sigma_\epsilon; \end{array} \right.$$

- q₀ é o estado inicial;
- $F = F_1 \cup \{q_0\}.$

Sumário

- Revisão
 - Equivalência de AFNs e AFDs
 - Fecho sob as operações regulares

2 Expressão Regular

Exemplo 1.51

 $(0 \cup 1)^*$

Exemplo 1.51

 $(0 \cup 1)^*$

Outro exemplo...

 Σ^*

Exemplo 1.51

 $(0 \cup 1)^*$

Outro exemplo...

 Σ^*

Outro exemplo...

 Σ^*1

Exemplo 1.51

 $(0 \cup 1)^*$

Outro exemplo...

 Σ^*

Outro exemplo...

 Σ^*1

Outro exemplo...

 $(0\Sigma^*) \cup (\Sigma^*1)$

Definição

Dizemos que R é uma expressão regular se R for

 $oldsymbol{0}$ a para algum $a \in \Sigma$;

Definição

- \bullet a para algum $a \in \Sigma$;
- $\mathbf{2} \epsilon$;

Definição

- \bullet a para algum $a \in \Sigma$;
- $\mathbf{2} \epsilon$;
- **③** ∅;

Definição

- \bullet a para algum $a \in \Sigma$;
- $\mathbf{2} \epsilon$;
- **③** Ø;
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares;

Definição

- \bullet a para algum $a \in \Sigma$;
- $\mathbf{2} \epsilon$;
- **③** ∅;
- $lackbox{0}$ $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares;

Definição

- \bullet a para algum $a \in \Sigma$;
- $\mathbf{2} \epsilon$;
- **◎** Ø;
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares;
- $(R_1)^*$, em que R_1 é expressão regular.

Definição

Dizemos que R é uma expressão regular se R for

- \bullet a para algum $a \in \Sigma$;
- $\mathbf{2} \epsilon$;
- **◎** Ø;
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares;
- $(R_1)^*$, em que R_1 é expressão regular.

Cuidado!!!

Não confunda ϵ com \emptyset !!!

- 0*10*

- 0*10*
- $\bullet \ \Sigma^*001\Sigma^*$

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*

- 0*10*
- Σ*1Σ*
- $\Sigma^*001\Sigma^*$
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*
- 01 ∪ 10

- 0*10*
- Σ*1Σ*
- $\Sigma^*001\Sigma^*$
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*
- 01 ∪ 10
- $0\Sigma^* \cup 1\Sigma^*1 \cup 0 \cup 1$

- 0*10*
- Σ*1Σ*
- $\Sigma^*001\Sigma^*$
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*
- 01 ∪ 10
- $0\Sigma^* \cup 1\Sigma^*1 \cup 0 \cup 1$
- $(0 \cup \epsilon)1^*$

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*
- 01 ∪ 10
- $0\Sigma^* \cup 1\Sigma^*1 \cup 0 \cup 1$
- $(0 \cup \epsilon)1^*$
- $(0 \cup \epsilon)(1 \cup \epsilon)$

Exemplos

Exemplo 1.53

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*
- 01 ∪ 10
- $0\Sigma^* \cup 1\Sigma^*1 \cup 0 \cup 1$
- $(0 \cup \epsilon)1^*$
- $(0 \cup \epsilon)(1 \cup \epsilon)$
- 1*∅

Exemplos

Exemplo 1.53

- 0*10*
- Σ*1Σ*
- $\Sigma^*001\Sigma^*$
- 1*(01⁺)*
- (ΣΣ)*
- (ΣΣΣ)*
- 01 ∪ 10
- $0\Sigma^* \cup 1\Sigma^*1 \cup 0 \cup 1$
- $(0 \cup \epsilon)1^*$
- $(0 \cup \epsilon)(1 \cup \epsilon)$
- 1*∅
- Ø*

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

• Lema 1.55: Uma linguagem é descrita por uma expressão regular, então ela é regular.

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

- Lema 1.55: Uma linguagem é descrita por uma expressão regular, então ela é regular.
- Lema 1.60: Se uma linguagem é regular, então ela é descrita por uma expressão regular.

Lema 1.55

Uma linguagem é descrita por uma expressão regular, então ela é regular.

Lema 1.55

Uma linguagem é descrita por uma expressão regular, então ela é regular.

Prova

Vamos converter R num AFN N. Consideramos os seis casos na descrição formal de expressões regulares:

Lema 1.55

Uma linguagem é descrita por uma expressão regular, então ela é regular.

Prova

Vamos converter R num AFN N. Consideramos os seis casos na descrição formal de expressões regulares:

- Três casos básicos;
- Três casos gerais.

Prova do Lema 1.55

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$, em que δ se divide em dois casos:

Prova do Lema 1.55

• R = a para algum a em Σ . Então $L(R) = \{a\}$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$, em que δ se divide em dois casos:

- $\delta(q_1, a) = \{q_2\}$

Prova do Lema 1.55

Prova do Lema 1.55

 $R = \epsilon.$

Então $L(R)=\{\epsilon\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

 $\mathbf{Q} R = \epsilon$.

Então $L(R) = \{\epsilon\}$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

 $\mathbf{Q} R = \epsilon$

Então $L(R) = \{\epsilon\}$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$, em que $\delta(r, b) = \emptyset$ para quaisquer r e b.

Prova do Lema 1.55

Prova do Lema 1.55

 \circ $R = \emptyset$.

Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

 \mathbf{O} $R = \emptyset$

Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Prova do Lema 1.55

- \bullet $R = \emptyset$
 - Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$, em que $\delta(r, b) = \emptyset$ para quaisquer $r \in b$.

Prova do Lema 1.55

Então $L(R) = \emptyset$, e o seguinte AFN reconhece L(R).

Formalmente, $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$, em que $\delta(r, b) = \emptyset$ para quaisquer $r \in b$.

Casos gerais

- $R = R_1^*$

Para os três casos gerais, utilizamos as provas de que as linguagens regulares são fechadas sob as operações de regulares ■

Prova do Lema 1.55

Casos gerais

$$R = R_1^*$$

Prova do Lema 1.55

Casos gerais

- $Q R = R_1 \cup R_2$
- $R = R_1 \circ R_2$
- $R = R_1^*$

Para os três casos gerais, utilizamos as provas de que as linguagens regulares são fechadas sob as operações de regulares ■

Teorema 1.54

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

- Lema 1.55: Uma linguagem é descrita por uma expressão regular, então ela é regular. √
- Lema 1.60: Se uma linguagem é regular, então ela é descrita por uma expressão regular. ???

Expressão Regular

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

04 de dezembro de 2017

