Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks

Gaël Letarte¹, Pascal Germain², Benjamin Guedj^{2,3}, François Laviolette¹

- Département d'informatique et de génie logiciel, Université Laval, Québec, Canada ² Équipe-projet Modal, Inria Lille Nord Europe, Villeneuve d'Ascq, France
- ³ UCL Centre for Artificial Intelligence, University College London, London, England

The Alan Turing Institute

Introduction

We present a comprehensive study of multilayer neural networks with binary activation, relying on the PAC-Bayesian theory.

Contributions

- ► An end-to-end framework to train a binary activated deep neural network.
- ► Nonvacuous PAC-Bayesian generalization bounds for binary activated deep neural networks.

PAC-Bayesian Theory

Given a data distribution \mathcal{D} , a training set $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \sim \mathcal{D}^n$, with $\mathbf{x}_i \in \mathbb{R}^{d_0}$ and $y_i \in \{-1, 1\}$, a loss $\ell : \{-1, 1\}^2 \to [0, 1]$, a predictor $f \in \mathcal{F}$:

$$\mathcal{L}_{\mathcal{D}}(f) = \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim\mathcal{D}} \ell\Big(f(\mathbf{x}),y\Big)$$
 generalization loss $\widehat{\mathcal{L}}_{S}(f) = rac{1}{n} \sum_{i=1}^{n} \ell\Big(f(\mathbf{x}_{i}),y_{i}\Big)$ empirical loss

— PAC-Bayesian Theorem

For t > 0, for any prior P on \mathcal{F} , with probability $1 - \delta$ on the choice of $S \sim \mathcal{D}^n$, we have for all posterior distribution P on \mathcal{F} :

$$\underset{f \sim \rho}{\mathbf{E}} \mathcal{L}_{\mathcal{D}}(f) \leq \underset{f \sim \rho}{\mathbf{E}} \widehat{\mathcal{L}}_{S}(f) + \sqrt{\frac{1}{2n} \left[\text{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right]}$$

Binary Activated Neural Networks

- ightharpoonup L fully connected layers
- $ightharpoonup d_k$ denotes the number of neurons of the $k^{ ext{th}}$ layer
- $ightharpoonup \operatorname{sgn}(a) = 1 \text{ if } a > 0 \text{ and } sgn(a) 1 \text{ otherwise.}$
- ▶ Weights matrices : $\mathbf{W}_k \in \mathbb{R}^{d_k \times d_{k-1}}$, $\theta = \text{vec}(\{\mathbf{W}_k\}_{k=1}^L) \in \mathbb{R}^D$.

 $f_{\theta}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}_{L}\operatorname{sgn}(\mathbf{W}_{L-1}\operatorname{sgn}(\ldots\operatorname{sgn}(\mathbf{W}_{1}\mathbf{x}))))$

sgn sgn sgn sgn sgn sgn sgn

Linear Classifier

"PAC-Bayesian Learning of Linear Classifiers (Germain 2009)" $f_{\mathbf{w}}(\mathbf{x}) \coloneqq \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x})$, with $\mathbf{w} \in \mathbb{R}^d$

PAC-Bayes analysis

- Space of all linear classifiers $\mathcal{F}_d\coloneqq\{f_{\mathbf{v}}|\mathbf{v}\in\mathbb{R}^d\}$
- ► Gaussian posterior $Q_{\mathbf{w}} \coloneqq \mathcal{N}(\mathbf{w}, I_d)$ over \mathcal{F}_d
- ► Gaussian prior $P_{\mathbf{w}_0} \coloneqq \mathcal{N}(\mathbf{w}_0, I_d)$ over \mathcal{F}_d
- ► Predictor $F_{\mathbf{w}}(\mathbf{x}) \coloneqq \mathbf{E}_{\mathbf{v} \sim Q_{\mathbf{w}}} f_{\mathbf{v}}(\mathbf{x}) = \operatorname{erf}\left(\frac{\mathbf{w} \cdot \mathbf{x}}{\sqrt{d}\|\mathbf{x}\|}\right)$

Bound minimization

$$C n \widehat{\mathcal{L}}_S(F_{\mathbf{w}}) + \text{KL}(Q_{\mathbf{w}} || P_{\mathbf{w}_0}) = C \frac{1}{2} \sum_{i=1}^n \text{erf}\left(-y_i \frac{\mathbf{w} \cdot \mathbf{x}_i}{\sqrt{d} || \mathbf{x}_i ||}\right) + \frac{1}{2} || \mathbf{w} - \mathbf{w}_0 ||^2$$

Shallow Learning

Posterior $Q_{\theta} = \mathcal{N}(\theta, I_D)$, over the family of all networks $\mathcal{F}_D = \{f_{\tilde{\theta}} \mid \tilde{\theta} \in \mathbb{R}^D\}$, where

$$f_{\theta}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}_2 \cdot \operatorname{sgn}(\mathbf{W}_1 \mathbf{x}))$$

$$F_{\theta}(\mathbf{x}) = \sum_{\tilde{\theta} \sim Q_{\theta}} f_{\tilde{\theta}(\mathbf{x})}$$

$$= \int_{\mathbb{R}^{d_1 \times d_0}} Q_1(\mathbf{V}_1) \int_{\mathbb{R}^{d_1}} Q_2(\mathbf{v}_2) \operatorname{sgn}(\mathbf{v}_2 \cdot \operatorname{sgn}(\mathbf{V}_1 \mathbf{x})) d\mathbf{v}_2 d\mathbf{V}_1$$

$$= \sum_{\mathbf{s} \in \{-1,1\}^{d_1}} \operatorname{erf}\left(\frac{\mathbf{w}_2 \cdot \mathbf{s}}{\sqrt{2d_1}}\right) \int_{\mathbb{R}^{d_1 \times d_0}} \mathbf{1} [\mathbf{s} = \operatorname{sgn}(\mathbf{V}_1 \mathbf{x})] Q_1(\mathbf{V}_1) d\mathbf{V}_1$$

$$= \sum_{\mathbf{s} \in \{-1,1\}^{d_1}} \operatorname{erf}\left(\frac{\mathbf{w}_2 \cdot \mathbf{s}}{\sqrt{2d_1}}\right) \prod_{i=1}^{d_1} \left[\frac{1}{2} + \frac{s_i}{2} \operatorname{erf}\left(\frac{\mathbf{w}_i^i \cdot \mathbf{x}}{\sqrt{2} \|\mathbf{x}\|}\right)\right]$$

— PAC-Bayesian bound ingredients

- ► Empirical loss : $\widehat{\mathcal{L}}_S(F_\theta) = \mathbf{E}_{\theta' \sim Q_\theta} \widehat{\mathcal{L}}_S(f_{\theta'}) = \frac{1}{n} \sum_{i=1}^n \left[\frac{1}{2} \frac{1}{2} y_i F_\theta(\mathbf{x}_i) \right]$.
- ► Complexity term : $KL(Q_{\theta}||P_{\theta_0}) = \frac{1}{2}||\theta \theta_0||^2$
- ► Generalization bound : $\frac{1}{1-e^{-C}} \left(1 \exp\left(-C \widehat{\mathcal{L}}_S(F_{\theta}) \frac{1}{n} [\text{KL}(Q_{\theta} || P_{\theta_0}) + \ln \frac{2\sqrt{n}}{\delta}] \right) \right)$

Visualization

FIGURE 1: Illustration of the proposed method for a one hidden layer network of size d_1 =3, interpreted as a majority vote over 8 binary representations $\mathbf{s} \in \{-1, 1\}^3$. For each \mathbf{s} , a plot shows the values of $F_{\mathbf{w}_2}(\mathbf{s}) \Pr(\mathbf{s} | \mathbf{x}, \mathbf{W}_1)$.

Stochastic Approximation

Prediction.

$$F_{\theta}(\mathbf{x}) = \sum_{\mathbf{s} \in \{-1,1\}^{d_1}} F_{\mathbf{w}_2}(\mathbf{s}) \Pr(\mathbf{s} | \mathbf{x}, \mathbf{W}_1)$$

Hidden layer partial derivatives, with $\operatorname{erf}'(x) \coloneqq \frac{2}{\sqrt{\pi}}e^{-x^2}$.

$$\frac{\partial}{\partial \mathbf{w}_{1}^{k}} F_{\theta}(\mathbf{x}) = \frac{\mathbf{x}}{2^{\frac{3}{2}} \|\mathbf{x}\|} \operatorname{erf}' \left(\frac{\mathbf{w}_{1}^{k} \cdot \mathbf{x}}{\sqrt{2} \|\mathbf{x}\|} \right) \sum_{\mathbf{s} \in \{-1,1\}^{d_{1}}} s_{k} F_{\mathbf{w}_{2}}(\mathbf{s}) \left[\frac{\Pr(\mathbf{s} | \mathbf{x}, \mathbf{W}_{1})}{\Pr(s_{k} | \mathbf{x}, \mathbf{w}_{1}^{k})} \right]$$

Monte Carlo sampling: We generate T random binary vectors $\{\mathbf{s}^t\}_{t=1}^T$ according to $\Pr(\mathbf{s}|\mathbf{x},\mathbf{W}_1)$.

$$F_{ heta}(\mathbf{x}) pprox rac{1}{T} \sum_{t=1}^{T} F_{\mathbf{w}_2}(\mathbf{s}^t)$$

$$\frac{\partial}{\partial \mathbf{w}_{1}^{k}} F_{\theta}(\mathbf{x}) \approx \frac{\mathbf{x}}{2^{\frac{3}{2}} \|\mathbf{x}\|} \operatorname{erf}' \left(\frac{\mathbf{w}_{1}^{k} \cdot \mathbf{x}}{\sqrt{2} \|\mathbf{x}\|} \right) \frac{1}{T} \sum_{t=1}^{T} \frac{s_{k}^{t}}{\operatorname{Pr}(s_{k}^{t} | \mathbf{x}, \mathbf{w}_{1}^{k})} F_{\mathbf{w}_{2}}(\mathbf{s}^{t})$$

Deep Learning

Experiment

