Quantum Computation

October 9, 2018

C	ONTENTS	2
C	Contents	
0	Introduction	3
1	1	4

3

0 Introduction

 ${\it asdasd}$

—Lecture 2—

1 1

Recall that we have an oracle U_f for $f: \mathbb{Z}_M \to \mathbb{Z}_N$ periodic, with period r, A = M/r. We want to find r in O(poly(m)) time where $m = \log M$.

The quantum algorithm 1.1

Work on state space $\mathcal{H}_M \otimes \mathcal{N}$ with basis $\{|i\rangle|k\rangle\}_{i\in\mathbb{Z}_M, k\in\mathbb{Z}_N}$.

• Step 1. Make state $\frac{1}{\sqrt{M}}\sum_{i=0}^{M-1}|i\rangle|0\rangle$.

- Step 2. Apply U_f to get $\frac{1}{\sqrt{M}} \sum_{i=0}^{M-1} |i\rangle |f(i)\rangle$.
- Step 3. Measure the 2nd register to get a result y. By Born rule, the first register collapses to all those i's (and only those) with f(i) equal to the seen y, i.e. $i = x_0, x_0 + r, ..., x_0 + (A-1)r$, where $0 \le x_0 < r$ in 1st period has f(m) = y. Discard 2nd register to get $|per\rangle = \frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} |x_0 + jr\rangle$.

Note: each of the r possible function values y occurs with same probability 1/r, so $0 \le x_0 < r$ has been chosen uniformly at random.

If we now measure $|per\rangle$, we'd get a value $x_0 + jr$ for uniformly random j, i.e. random element (x_0^{th}) of a random period (j^{th}) , i.e. random element of \mathbb{Z}_m , so we could get no information about r.

• Step 4. Apply quantum Fourier transform mod M (QFT) to $|per\rangle$. Recall the definition of QFT: $QFT: |x\rangle \to \sum_{y=0}^{M-1} \omega^{xy} |y\rangle$ for all $x \in \mathbb{Z}_M$ where $\omega = e^{2\pi i/M}$ is the Mth root of unity. The existing result is that QFT mod M can be implemented in $O(M^2)$ time.

Then we get

$$QFT|per\rangle = \frac{1}{\sqrt{MA}} \sum_{j=0}^{A-1} \left(\sum_{y=0}^{M-1} \omega^{(x_0+jr)y} |y\rangle \right)$$
$$= \frac{1}{\sqrt{MA}} \sum_{y=0}^{M-1} \omega^{x_0y} \left[\sum_{j=0}^{A-1} \omega^{jry} \right] |y\rangle \ (*)$$

where we group all the terms with the same $|y\rangle$ together. One good thing is that the sum inside the square bracket is a geometric series, with ratio $\alpha = \omega^{ry} = e^{2\pi i r y/M} = (e^{2\pi i/A})^{y}.$

Hence term inside bracket = A if $\alpha = 1$, i.e. $y = kA = k\frac{M}{r}$, k = 0, 1, ..., (r - 1), and equals 0 otherwise when $\alpha \neq 1$. Now

$$QFT|per\rangle = \sqrt{\frac{A}{M}} \sum_{k=0}^{r-1} \omega^{x_0 k \frac{M}{r}} |k \frac{M}{r}\rangle$$

The random shift x_0 now appears only in phase, so measurement probabilities are now independent of $x_0!$

1 1 5

Measuring $QFT|per\rangle$ gives a value c, where $c=k_0\frac{M}{r}$ with $0 \le k_0 \le r-1$ chosen uniformly at random. Thus $\frac{k_0}{r} = \frac{c}{M}$, note that c, M are known, r is unknown (what we want), and k_0 is unknown but uniformly random.

So note that if we are lucky and get a k_0 that is coprime to r then we could just simplify $\frac{c}{M}$ to get r. Obviously we cannot be always lucky every time, but by theorem in number theory, the number of integers < r coprime to r grows as $O(r/\log\log r)$ for large r, so we know probability of k_0 coprime to r is $O(\frac{1}{\log\log r}).$

Then by some probability calculation we know that O(1/p) trials are enough to achieve $1 - \varepsilon$ probability of success.

So afer Step 4, cancel c/M to the lowest terms a/b, giving r as denominator b (if k_0 is coprime to r). Check b value by computing f(0) and f(b), since b=r iff f(0) = f(b).

Repeating $K = O(\log \log r)$ times gives r with any desired probability.

Further insights into utility of QFT here:

Write $R = \{0, r, 2r, ..., (A-1)r\} \subseteq \mathbb{Z}_M$. $|R\rangle = \frac{1}{\sqrt{A}} \sum_{k=0}^{A-1} |kr\rangle$, and $|per\rangle =$ $|x_0+R\rangle = \frac{1}{\sqrt{A}} \sum_{k=0}^{A-1} |x_0+br\rangle$ where x_0 is the random shift that caused problem

For each $x_0 \in \mathbb{Z}_M$, consider mapping $k \to k + x_0$ (shift by x_0) on \mathbb{Z}_M , which is a 1-1 invertible map.

So linear map $U(x_0)$ on \mathcal{H}_M defined by $U(x_0):|k\rangle \to |k+x_0\rangle$ is unitary, and $|x_0 + R\rangle = U(x_0)|R\rangle.$

Since $(\mathbb{Z}_M, +)$ is abelian, $U(x_0)U(x_1) = U(x_0 + x_1) = U(x_1)U(x_0)$ i.e. all $U(x_0)$'s commute as operators on \mathcal{H}_M .

So we have orthonormal basis of common eigenvectors $|\chi_k\rangle_{k\in\mathbb{Z}_M}$, called *shift* invariant states.

 $U(x_0)|\chi_k\rangle = \omega(x_0,k)|\chi_k\rangle$ for all $x_0,k\in\mathbb{Z}_M$ with $|\omega(x_0,k)|=1$. Now consider $|R\rangle$ written in $|\chi\rangle$ basis,

Then $|per\rangle = U(x_0)|R\rangle = \sum_{k=0}^{M-1} a_k |\chi_k\rangle$ where a_k 's depending on r (not x_0). Then $|per\rangle = U(x_0)|R\rangle = \sum_{k=0}^{M-1} a_k \omega(x_0, k) |\chi_k\rangle$, and measurement in the χ -basis has $prob(k) = |a_k \omega(x_0, k)|^2 = |a_k|^2$ which is independent of x_0 , i.e. giving information about r!