Data Stream Processing

Sophie Normand Alexandra Amani Eva Clergue

M2 Data Science January 2023 Implementation of xStream algorithm for anomaly detection in River

Outline

- PySAD Streaming anomaly detection framework in Python
- xStream algorithm
- Implementation of xStream in River
- Model performance
- Conclusion Next steps

Our strategy:

- 1. Familiarize with the library and models → Testing with PySAD
- 2. Transfer in "River mode": re-write the model as new .py file that could be integrated to River → Testing with a "local" River
- 3. Adapt the code so that it fits the River guidelines (dictionaries, descriptions,...)
- 4. Testing on different datasets

Pysad – Streaming anomaly detection framework in Python

- Stream simulators, evaluators, preprocessors, statistic trackers, postprocessors, probability calibrators...
- Integrations for batch anomaly detectors of PyOD (Python Library for outlier detection)

<u>Models</u>: xStream, LODA (Lightweight on-line detector of anomalies), RS-Hash (Randomized Subspace Hashing algorithm)

Performances obtained with PySAD: ROC-AUC metric, area under the Receiver Operating Characteristic Curve

DATA		xStream		LOI	DA	RS-Hash		
Name	N, % anomaly	ROC-AUC (%)	Time (s)	ROC-AUC (%)	Time (s)	ROC-AUC (%)	Time (s)	
Arrhythmia	452, 14.6%	71,3	146	49,9	12	73,6	5	
Wine	129, 7.8%	50,3	26	70	5	82,9	2	
Breast	683, 34,9%	94,3	135	49,4	19	97,1	9	
Optdigits	5216, 2,8%	66,3	1296	49,9	137	51,3	61	

Mini-batch learning? LODA and RS-Hash remarks

LODA

Collection of k histograms, approximating the probability density of input data projected onto a single projection vector

Score: return probabilities from histograms (average)

```
Algorithm 1: Loda's training (update) routine.

input: data samples \{x_i \in \mathbb{R}^d\}_{i=1}^n;
output: histograms \{h_1, \dots, h_n\}, projection vectors \{w_i\}_{i=1}^k;
initialize projection vectors with \begin{bmatrix} d^{-\frac{1}{2}} \end{bmatrix} non zero elements \{w_i\}_{i=1}^k;
initialize histograms \{h_i\}_{i=1}^k;
\begin{bmatrix} \mathbf{for} & j \leftarrow 1 & \mathbf{to} & \mathbf{n} & \mathbf{do} \\ & for & i \leftarrow 1 & \mathbf{to} & k & \mathbf{do} \\ & & z_i = x_j^T w_i ; \\ & & update & histogram & h_i & by & z_i; \\ & & \mathbf{end} \\ & \mathbf{end} \\ & \mathbf{return} & \{h_i\}_{i=1}^k & \mathbf{and} & \{w_i\}_{i=1}^k. \end{bmatrix}
```

Score one sample
Training on one sample
?

Pevný, T. (2016)

RS-Hash

Method based on Sub-Hashing of the space: select some dimensions, and apply hash functions on transformed samples label

Outlier score: based on search the minimum of hash functions values

Remarks:

<u>Learning</u>: « Randomly sample the dataset D for a training sample S of s points. » and "s = min(1000, n)"

Normalization min-max for the training sample

→ Online learning with one sample?

<u>Scoring</u>: use min-max values for normalization (NB: small score = anomaly, how to reverse?)

Score one sample Training on one sample

Sathe, S. and Aggarwal, C.C. (2016)

xStream model

- Outlier detection problem for feature-evolving streams:
 - Data points may evolve, with feature values changing
 - Feature space may evolve with newly-emerging features over time
- As competitive as state-of-the-art detectors and particularly effective in high-dimensions with noise

Properties:

- Constant memory: processing each stream element in constant time
- Tackles high-dimensionality
- Measures outlierness at multiple scales
- Handles non-stationarity

xStream algorithm

xStream is an ensemble of Half-Space Chains that approximates density efficiently, without needing to know the underlying feature space a-priori.

Each chain approximates the density of a point by counting its nearby neighbors at multiple scales.

3 key steps:

- **StreamHash:** subspace-selection and dimensionality reduction via sparse random projections for evolving feature spaces
- Half-Space Chains: an efficient ensemble to estimate density at multiple scales
- extensions to handle non-stationarity and evolving data points in the stream

Table 1: Comparing xSTREAM with state-of-the-art outlier detection techniques in terms of various properties.

Methods/ Properties	LOF [10]	Feat.Bag. [22]	LOCI [25]	HiCS [21]	iForest [23]	HS-Stream [31]	STORM [6]	LODA [26]	RS-Hash [29]	RS-Forest [32]	XSTREAM
Static	~	~	~	~	~	~		~	~	~	~
Streaming						~	~	~	~	~	~
Multi-scale			~								~
Subspaces		~		~	~	~		~	~	~	~
Projections								~			~
Evolving											.,
feature space											
Evolving points/ feature values											~

Manzoor et al. (2018)

xStream in River

- Objective: create a class implementing the xStream model compatible with River API
 - > Anomaly detection module : adaptation to the « base » class for this type of model
 - > learn_one and predict_one methods : adapt the fit_partial and score_partial from PySAD (and all particularities of this algorithm...)
 - > Local tests modifying steps by steps: the algorithm needs to work with our type of iteration on data, with numpy arrays
 - > Once it is running, re-writing of the code using only dictionaries, code not yet optimized and clean
 - > Adaptation to River: keep dictionaries, create functions, "clean" code
 - > Follow the final guidelines River : comments, code style, indentations
- Pull request ? → no conflicts with the base branch + 4 successful checks

DEMO:

Run xStream adapted for River

Model performance – xStream in River

DATA		xStream				
Name	N, % anomaly	ROC-AUC (%)	Time (s)			
Arrhythmia	452, 14.6%	70,9	530			
Wine	129, 7.8%	73,6	13			
Breast	683, 34,9%	77,9	65			
Optdigits	5216, 2,8%	73,8	877			

- Still nice results
- o ROC-AUC metric different from PySAD : fact/way that we controlled randomness ?, shuffling for iterations on samples ?, order score_one/learn_one ?
- Time of execution : clearly slower than PySAD : use of dictionaries

Conclusion – Next steps

- Approach for anomaly detection: xStream is adaptable to River, but how « batchy » is it?
 - Real adaptation in the construction of the algorithm for learning on ONE sample ?
- Benchmarking: xStream seems to give good results on the datasets we used
 - Real applications? Medicine, cybersecurity, predictive maintenance, supply chain management...
 - Challenge the model in real situations
- LODA and RS-Hash? Could we re-adapt this models, modifying the construction / type of implementation?
- Comments in our pull request, benchmark and challenge the method

References

Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. "XStream: Outlier Detection in Feature-Evolving Data Streams". *In* Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '18). Association for Computing Machinery, New York, NY, USA, 1963–1972.

Pevný, T. 2016. "Loda: Lightweight on-line detector of anomalies." *Mach Learn 102*, 275–304

Sathe, S. and Aggarwal, C.C. (2016). "Subspace Outlier Detection in Linear Time with Randomized Hashing," 2016 IEEE 16th International Conference on Data Mining (ICDM), 459-468

Yilmaz, Selim F & Kozat, Suleyman, S. 2020. "PySAD: A Streaming Anomaly Detection Framework in Python", arXiv preprint arXiv:2009.02572