Naive Bayes

Introduction

- Naive Bayes is a Conditional Probability Based Algorithm
- The features provided to us are independent and do not affect each other
- Naive Bayes is a classification algorithm suitable for binary & multiclass classification.
- The calculation of the likelihood of different class values involves multiplying a lot of numbers together.
- When new data comes, the algorithm updates the probabilities of the model. This can be helpful if the data changes frequently
- The assumption taken for numerical variables is Normal Distribution

Features of Naive Bayes

- It's a classification algorithm
- Purely based on Conditional Probability
- Quick calculation time
- Gives Probabilistic Outputs
- It requires lesser data compared to other algorithms

How Naive Bayes Works

Bayes' theorem is stated mathematically as the following equation:

Conditional Probability: Bayes' Theorem
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

- Basically, we are trying to find probability of event A, given the event B is true. Event B is also termed as evidence.
- P(A) is the **priori** of A (the prior probability, i.e. Probability of event before evidence is seen). The evidence is an attribute value of an unknown instance(here, it is event B).
- P(A|B) is a posteriori probability , i.e. probability of event after evidence is seen.

Bayes Equation Derivation

$$1 \rightarrow P(A/B) = P(AnB) / P(B)$$

$$2 \rightarrow P(B/A) = P(BnA) / P(A)$$

1 can be written as \rightarrow P(AnB) = P(A/B) * P(B) \rightarrow 3

2 can be written as \rightarrow P(BnA) = P(B/A) * P(A) \rightarrow 4

Equating 3 and 4

$$P(A/B) * P(B) = P(B/A) * P(A)$$

Hence,

$$P(A/B) = (P(B/A) * P(A)) / P(B)$$

 $P(A/B) \rightarrow Posterior Probability$

 $P(B/A) \rightarrow Likelihood Probability$

 $P(A) \rightarrow Class Prior Probability$

 $P(B) \rightarrow Predictor's Prior Probability$

How Naive Bayes Works

Play	Counts	Probability		
Yes	9	2/3	0.642857	
No	5	1/3	0.357143	
Total	14	100%	100%	

Outlook	YES	NO	P(YES)	P(NO)
Sunny	2	3	2/9	3/5
Overcast	4	0	4/9	0
Rainy	3	2	1/3	2/5
Total	9	5	100%	100%

Temperature	YES	NO	P(YES)	P(NO)
Hot	2	2	2/9	2/5
Mild	4	2	4/9	2/5
Cool	3	1	1/3	1/5
Total	9	5	100%	100%

Humidity	YES	NO	P(YES)	P(NO)
High	3	4	1/3	4/5
Normal	6	1	2/3	1/5
Total	9	5	100%	100%

Wind	YES	NO	P(YES)	P(NO)
FALSE	6	2	2/3	2/5
TRUE	3	3	1/3	3/5
Total	9	5	100%	100%

Model Evaluation Metrics

The various metrics used to evaluate the results of the prediction are :

- 1.Accuracy
- 2.Precision
- 3.Recall
- 4.Area Under ROC Curve

Precision=
$$\frac{\text{True Positive}}{\text{Actual Results}}$$
or $\frac{\text{True Positive}}{\text{True Positive}}$ Recall= $\frac{\text{True Positive}}{\text{Predicted Results}}$ or $\frac{\text{True Positive}}{\text{True Positive}}$ Accuracy= $\frac{\text{True Positive} + \text{True Negative}}{\text{Total}}$

Naive Bayes-Cons

- The main limitation of Naive Bayes is the assumption of independent predictor features.
- If there is a new category in test dataset compared to Training, it assigns a probability of ZERO
- Data Scarcity leads to an issue
- Since continuous features are involved, the algorithm does binning on top of it so loss of information exists
- The assumption of Independent Variables does not practically exists