

矩阵是研究图的一种有力工具,特别是利用计算机来处理有关图的算法时,首先遇到的难题是如何识别图?在前面我们也用有向图来表示集合A中元素的关系R,这种图被称为关系图,表示了集合A中元素的邻接关系,只要将集合A中的元素进行编号,这样的邻接关系同样可以用矩阵表示。识别一个图等价于识别一个矩阵。我们要讨论前面的有关图的概念,如何在矩阵中表达出来。

我们讨论的是简单图,并令图的结点已经编号。

[定义7-3.1] 邻接矩阵

设 $G=\langle V, E \rangle$ 为简单图,它有n个结点 $V=\{v_1,v_2,\cdots v_n\}$,

则n阶方阵 $A(G)=(a_{ij})$ 称为G的邻接矩阵。

其中

$$a_{ij} = \begin{cases} 1, v_i & adj & v_j; \\ 0, v_i & nadj & v_j, \vec{x} = j. \end{cases}$$

adj 表示邻接, nadj 表示不邻接。

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 $A(G)$

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad A(G_1) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, A(G_2) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

当给定的简单图是无向图时,邻接矩阵为对称的,当给定的图是有向图时,邻接矩阵不一定对称。图G的邻接矩阵显然与结点标定的次序有关,例如在上页的两个图(b)与图(c)中的结点v₁和v₂的次序对调,那么新的邻接矩阵由原来的邻接矩阵的第一行和第二行对调,第一列和第二列对调而得到。

一般地说,我们把一个n阶方阵A的某些列作一置换,再把相应的行作同样的置换,得到一个新的n阶方阵 A',我们称A和A'为置换等价。有向图的结点,按不同次序所写出来的邻接矩阵是彼此置换等价的,今后我们略去这种元素次序的任意性,可取任何一个邻接矩阵作为该图的矩阵表示。

雨课堂 Rain Classroom

邻接矩阵A中表示了图的基本概念和许多图的性质。第i行的元素是由结点 v_i 出发的边所决定的,第i行第j列为1的的元素,表示了在 v_i 和 v_j 之间有边相连,即存在(v_i , v_j);第i行中值为1的元素的数目等于 v_i 的出度;第j列中值为1的元素的数目等于 v_i 的入度。

如果给定的图是零图,则其对应的矩阵中所有的元素都为零,它是一个零矩阵,反之亦然,即邻接矩阵为零矩阵的图必是零图。

设有向图G的结点集 $V=\{v_{i},v_{2},\cdots v_{n}\}$,它的邻接矩阵为: $A(G)=(a_{ij})_{n\times n}$,现在我们来计算从结点 v_{i} 到结点 v_{j} 的长度 为2的路的数目。注意到每条从结点 v_{i} 到结点 v_{j} 的长度为2 的路的中间必经过一个结点 v_{k} ,即 $v_{i} \rightarrow v_{k} \rightarrow v_{j}$ (1 $\leq k \leq n$),如果图中有路 $v_{i}v_{k}v_{j}$ 存在,那么 $a_{ik}=a_{kj}=1$,即 $a_{ik}\cdot a_{kj}=1$,反之如果图G中不存在路 $v_{i}v_{k}v_{j}$,那么 $a_{ik}=0$ 或 $a_{kj}=0$,即 $a_{ik}\cdot a_{kj}=0$,于是从结点 v_{i} 到结点 v_{i} 的长度为2的路的数目等于:

$$a_{i1} \cdot a_{1j} + a_{i2} \cdot a_{2j} + \dots + a_{in} \cdot a_{nj} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}$$

按照矩阵的乘法规则,这恰好是矩阵 中的第 $(A(G))^2$ 行,第j列的元素。

 $(a_{ij}^{(2)}$ 表示从结点 v_i 到结点 v_j 的长度为2的路的数目。 $(a_{ii}^{(2)}$ 表示从结点 v_i 到结点 v_i 的长度为2的回路的数目。 从结点 v_i 到结点 v_j 的一条长度为3的路,可以看作从结点 v_i 到结点 v_k 的长度为1的路,在联结从结点 v_k 到结点 v_j 的长度为2的路,故从结点 v_i 到结点 v_j 的一条长度为3的路的数目:

$$a_{ij}^{(3)} = \sum_{k=1}^{n} a_{ik} \bullet a_{kj}^{(2)}$$

即
$$(a_{ij}^{(3)})_{n \times n} = (A(G))^3 = (A(G)) \cdot (A(G))^2$$
 一般地有

$$(a_{ij}^{(l)})_{n \times n} = (A(G))^{l} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}^{l-2} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

上述结论对无向图也成立。

[定理7-3.1] 设A(G)为图G的邻接矩阵,则 $(A(G))^l$ 中的i行j列元素等于G中联结 v_i 与 v_j 的长度为l的路的数目。

证明对广施归纳法

当1=2时,由上得知是显然成立。

设命题对
$$I$$
成立. 由
$$(A(G))^{l+1} = A(G) \bullet (A(G))^{l}$$
 故

$$a_{ij}^{(l+1)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(l)}$$

根据邻接矩阵的定义 a_{ik} 表示联结 v_i 与 v_k 长度为1的路的数目,而是联结 v_k 与 v_j 长度为l的路的数目,上式的每一项表示由 v_i 经过一条边到 v_k ,再由 v_k 经过长度为l的路到 v_j 的,总长度为l+1的路的数目。对所有的k求和,即是所有从 v_i 到v的长度为l+1的路的数目,故命题对l+1成立。

例1 给定一图 $G=\langle V, E \rangle$ 如图所示。

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, A^{2} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bigcup_{v_4}^{v_5}$$
 $\bigcup_{v_3}^{v_2}$

$$A^{3} = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, A^{4} = \begin{bmatrix} 2 & 0 & 2 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

从上面的矩阵中我们可以看到一些结论,如 v_1 与 v_2 之间有两条长度为3的路,结点 v_1 与 v_3 之间有一条长度为2的路,在结点 v_2 有四条长度为4的回路。

在许多问题中需要判断有向图的一个结点 \mathbf{v}_i 到另一个结点 \mathbf{v}_j 是否存在路的问题。如果利用图G的邻接矩阵 \mathbf{A} ,则可计算 \mathbf{A} , \mathbf{A}^2 , \mathbf{A}^3 ,…, \mathbf{A}^n ,…,当发现其中的某个 \mathbf{A}' 的 $\geqslant 1$,就表明 $a_{ij}^{(l)}$ 结点 \mathbf{v}_i 到 \mathbf{v}_j 可达。但这种计算比较繁琐,且 \mathbf{A}' 不知计算到何时为止。从前面我们得知,如果有向图G有 \mathbf{n} 个结点 $\mathbf{V}=\{\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_n\}$, \mathbf{v}_i 到 \mathbf{v}_j 有一条路,则必有一条长度不超过 \mathbf{n} -1 的初级通路,因此只要考察 就可以了 \mathbf{v}_{ij} 4 中($\mathbf{1}\leqslant \mathbf{l}\leqslant \mathbf{n}$ -1)。对于有向图G中任意两个结点之间的可达性,亦可用可达矩阵表达。

《7-3 图的矩阵表示》

[定义7-3.2] 可达性矩阵

令 $G=\langle V, E \rangle$ 是一个简单有向图, |V|=n, 假定G的

结点已编序,即 $V=\{v_1,v_2,\cdots v_n\}$,定义一个 $n\times n$ 矩

阵
$$P = (p_{ij})^{\dagger}$$
中

$$P_{ij} = \begin{cases} 1, M v_i \ni v_j \not \subseteq 0 \\ 0, M v_i \ni v_j \not \subseteq 0 \end{cases}$$

称矩阵P是图G的可达性矩阵。

注意:对角线元素均为1,这是因为结点到自己有一条长度为0的路.

一般地讲可由图G的邻接矩阵A得到可达性矩阵P。 即令 $B_n = I + A + A^2 + \dots + A^{n-1}$,再从 B_n 中将不为0的元素 改为1,而为零的元素不变,这样改换的矩阵即为可达性矩阵P。

上述计算可达性矩阵的方法还是比较复杂,因为可达性矩阵是一个元素为0或1的布尔矩阵,由于在每个 A^{l} 中,对于两个结点间的路的数目不感兴趣,它所关心的是该两个结点间是否有路存在,因此我们可将矩阵A, A^{2} , …, A^{n-1} 分别改为布尔矩阵A, $A^{(2)}$, …, $A^{(n-1)}$, 故 $P = I \lor A \lor A^{(2)} \lor \dots \lor A^{(n-1)}$, 其中 $A^{(i)}$ 表示在布尔运算下A的i次方。

可以看出,如果把邻接矩阵看作是结点集V上关系R的关系矩阵,则可达性矩阵P即为 $I \lor M_R^+$,即关系R的自反传递闭包,因此可达矩阵亦可通过Warshall 算法计算。

- 17/30页 -

上述可达性矩阵的概念可以推广到无向图中,只要将无向图的每一条边看成是具有相反方向的两条边,这样,一个无向图就可以看成是有向图。无向图的邻接矩阵是一个对称矩阵,其可达矩阵称为连通矩阵,也是一个对称矩阵。

对于一个无向图G,除了可用邻接矩阵以外,还对应着一个称为图G的关联矩阵,假定图G无自回路,如因某种运算得到自回路,则将它删去。

给定无向图G,令 v_1,v_2,\cdots,v_p 和 e_1,e_2,\cdots,e_q 分别记为G的结点和边,则矩阵 $M(G)=(m_{ij})$,其中

$$m_{ij} = \begin{cases} 1, 若v_i 关联e_j \\ 0, 若v_i 不关联e_j \end{cases}$$

称M(G)为(完全)关联矩阵。

	e_1	e_2	e_3	e_4	e_5	e_6
v_1	1	1	0	0	1	1
v_2	1	1	1	0	0	0
v_3	0	0	1	1	0	1
v_4	0	0	0	1	1	0
v_5	0	0	0	0	0	0

- (1)图中每一边关联两个结点,故M(G)的每一列只有两个1。
- (2)每一行元素的和数对应于结点的度数。
- (3)一行中的元素全为0, 其对应的结点为孤立点。
- (4)两个平行边其对应的两列相同。
- (5)同一图当结点或边的编序不同,其对应M(G)仅有行序、列序的差别。

当一个图是有向图时,亦可用结点和边的关联矩阵来 表示。

定义7-3.4 给定简单有向图

$$G=\langle V, E \rangle$$
 , $V=\{v_1,v_2,\cdots v_p\}$, $E=\{e_1,e_2,\cdots e_q\}$, $p\times q$ 阶矩阵 $M(G)=(m_{ij})$,其中

$$m_{ij} = \begin{cases} 1, 在 G 中 v_i 是 e_j 的 起 点 \\ -1, 在 G 中 v_i 是 e_j 的 终 点 \\ 0, 在 G 中 v_i 不 关 联 e_j \end{cases}$$

称M(G)为G的关联矩阵。

	e_1	e_2	e_3	e_4	e 5	e_6	e_7
v_1	$\begin{vmatrix} 1 \\ -1 \end{vmatrix}$	0	0	0	1	1	1
v_2	-1	1	0	0	0	0	0
v_3	0	-1	1	0	0	-1	0
v_4	0	0	-1	1	0	0	-1
v_5	0	0	0	-1	-1	0	0

对图 G 的完全关联矩阵中两个行相加定义如下:若记 v_i 对应的行为 \vec{v}_i ,将第 i 行与第 j 行相加,规定为:对有向图是指对应分量的普通加法运算,对无向图是指对应分量的模 2 加法运算,把这种运算记作 $\vec{v}_i \oplus \vec{v}_j = \vec{v}_{ij}$ 。施行这种运算,实际上就是相应于把 G 的结点 v_i 与 v_j 合并。

设图 G 的结点 v_i 与 v_j 合并得到图 G',那么 M(G') 是将 M(G)中 v_i 与 v_j 相加而得到。因为若有关项中第 r 个对应分量有 a_{ir} $\bigoplus a_{jr} = \pm 1$,则说明 v_i 和 v_j 两者之中只有一个结点是边 e_r 的端点,且将两个结点合并后的结点 $v_{i,j}$ 仍是 e_r 的端点。

若 $a_{ir} \bigoplus a_{jr} = 0$,则有两种情况:

- (1) v_i , v_j 都不是 e_r 的端点,那么 $v_{i,j}$ 也不是 e_r 的端点。
- (2) v_i , v_j 都是 e_r 的端点,那么合并后在 G' 中 e_r 成为 $v_{i,j}$ 的自回路,按规定应删去。

此外,在M(G')中若有某些列,其元素全为零,说明由G中的一些结点合并后,消失了一些对应边。

图 7-3.7

例 1 图 7-3.7(a) 中使 v_4 与 v_5 合并得到图 7-3.7(b)。 其关联矩阵 M(G') 是由 M(G) 中将第 4 行加到第 5 行而得到。

		e_1	e_2	e_3	e_4	e_5	e_6	e_7
M(G):	v_1	0	0	0	0	0	1	1
M(G):	v_2	0	0	0	1	1	1	0
	v_3	0	1	1	1	0	0	0
	v_4	1	1	0	0	0	0	0
	v_5	1	0	1	, 0	1	0	1
		e_1	e_2	e_3	e_4	e_5	e_6	e_7
14.015	v_1	0	0	0	0	0	1	1
M(G'):	v_2	0	0	0	1	1	1	0
	v_3	0	1	1	1	0	0	0
	$v_{4,5}$	0	1	1	0	1	0	1

例 2 图 7-3.8(a)合并结点 v_2 和 v_3 , 删去自回路得图 7-3.8(b)。其关联矩阵 M(G')是由 M(G)中将第 2 行加到第 3 行

而得到。

		e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
	v_1	1	1	0	0	0	0	0	0	0
	v_2	-1	0	1	0	0	- 0	1	0	0
M(G):	v_3	0	0	-1	1	0	0	0	-1	1
	v_4	0	-1	0	0	0	1	-1	. 1	0
	v_5	0	0	0	0	1	-1	0	0	-1
	v_6	0	0			-1	0	0	0	0

		e_1	e_2	e_3	e_4	e_5	$e_{\scriptscriptstyle 6}$	e_7	e_8	e_9
	v_1	1	1	0	0	0	0	0	0	0
M(G'):	$v_{2,3}$	-1	0	0	1	0	0	1	-1	1
	v_4	0	-1	0	0	0	1	-1	1	0
	v_5	0	0	0	0	1	-1	0	0	-1
		0								

下面应用这种运算,可求关联矩阵的秩。

定理 7-3.2 如果一个连通图 G 有 r 个结点,则其完全关联矩阵 M(G)的秩为 r-1,即 rank M(G)=r-1。

证明 这里对无向图进行证明。

- (1) 由于矩阵 M(G)的每一列恰有两个 1,若把 M(G)的其余所有行加到最后一行上(模 2 加法),得到矩阵 $\overline{M}(G)$,它的最后一行全为零,因为 $\overline{M}(G)$ 的秩与 M(G)相同,故 M(G)的秩应小于行数,即 rank M(G) \leqslant r-1。
- (2) 设 M(G)的第一列对应边 e,且 e 的端点为 v_i 和 v_j ,调整 行序使第 i 行成为第一行,这时 M(G)的首列仅在第一行和第 j 行为 1,其余各元素均为 0,再把第一行加到第 j 行上去,则得矩阵 M'(G)。

$$M'(G) = \begin{bmatrix} 1 & \cdots & \cdots & \cdots \\ 0 & & & \\ \vdots & M'(G_1) & \\ 0 & & \end{bmatrix}$$

其中 $M'(G_1)$ 是 M'(G) 删去第一行和第一列所得的矩阵。

雨课堂 Rain Classroom

由于 $M'(G_1)$ 是 G_1 的完全关联矩阵,而 G_1 系将 G 的两个结点 v_i 和 v_j 合并而得。由于 G 是连通的,故 G_1 也必为连通, $M'(G_1)$ 也 具有连通图的完全关联矩阵的所有性质,故 $M'(G_1)$ 没有全零的行。如果 $M'(G_1)$ 的第一列全为零,则可将 $M'(G_1)$ 中的非零列与第一列对换,而不影响完全关联矩阵的秩数。因此,我们必可通过调整行的次序以及把一行加到另一行上这两种运算,使 $M'(G_1)$ 的第一列的首项元素为 1,得到:

$$M''(G) = \begin{bmatrix} 1 & \cdots & \cdots & \cdots \\ \hline 0 & 1 & \cdots & \cdots \\ \hline \vdots & 0 & \\ \vdots & \vdots & M'(G_2) \\ 0 & 0 & \end{bmatrix}$$

继续进行上述两种运算,并不改变矩阵的秩,经过r-1次,最后将M(G)变换成

$$M^{(r-1)}(G) := \begin{bmatrix} 1 & & & & & \\ 0 & 1 & & & & \\ 0 & 0 & 1 & & & \\ \vdots & \vdots & \ddots & & & \\ 0 & 0 & \cdots & \cdots & 1 & & \\ 0 & 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}$$

显然 $M^{(r-1)}(G)$ 有一个(r-1)阶子阵,其行列式的值不为零,故 $M^{(r-1)}(G)$ 的秩至少为r-1。

由(1)和(2)可知

$$\operatorname{rank} M(G) = r - 1$$

对于有向图的关联矩阵可以仿此证明。

推论 设图 G 有 r 个结点,w 个最大连通子图,则图 G 完全 关联矩阵的秩为 r-w。

例 3 计算图 7-3.7(a)中其对应的完全关联矩阵的秩数,以验证定理 7-3.2。

		$ e_1 $	e_2	e_3	e_4	e_5	e_6	e_7
	$egin{array}{c} v_1 \ v_2 \ v_3 \ v_4 \end{array}$	0	0	0	0	0	1	1
M(G):	v_2	0	0	0	1	1	1	0
	v_3	0	1	1	1	0	0	0
	v_4	1	1	0	0	0	0	0
	v_5	1	0	1	0	1	0	1

最后一个矩阵其秩为 4,即 rank M(G)=5-1=4。