Optikai alapmérések

Mig András 2019 Március 22.

A méréseket végezte: Karsai Alexandra és Mig András

A mérések dátuma: 2019.03.22.

A mérések

Geometriai optika I.

0.1. A mérés célja

A mérés több részből áll. Elöször egy adott műanyagra és a levegőre szeretnénk megállapítani a relatív törésmutatót. Ezek után megkeressük a kilépési határszöget, majd prizmán is keressük, hogy hány fokkal kell elforgatni, hogy már ne tudjon a hány kijönni a közegből.

0.2. Eszközök és összeállítás

A méréshez szükségünk van egy átlátszó műanyag félkör és háromszög alakú testre, egy optikai korongra egy soksugaras fényforrásra és egy lézerre. Az optikai koronghoz erősítjük a lézert egy mágnes segítségével, úgy hogy a lézersugár áthaladjon a korong középpontján. Ezután felhelyezzük a félkör alakú testet, úgy hogy a sugár az egyenes oldalának közepén menjen ba a testbe. Az első méréssorozat után megfordítjuk, hogy a kör oldalán essen be a fény. Végül a lézert lecserélem a soksugaras fényforrásra és felhelyezem a prizmát úgy, hogy az egyik oldalával párhuzamosak legyenek a belépő sugarak.

0.3. A mérés leírása

A beesésiszöget 0°-ról 80°-ra növeljük 10-es lépésekben és megmérjük a belépési törési szöget. A mért adatokat a következő táblázat mutatja:

Beesési szög [°]	Törési szög [°]
0	0
10	6
20	12,5
30	19
40	25
50	30,5
60	35
70	39
80	41

Ezután megfordítjuk a testet és így a kilépési tőrési szögeket mérhetjük a beesési szög függvényében. A beesési szöget 5°-ként növeljük Megkeressük

Beesési szög [°]	Törési szög [°]
0	0
10	15
15	23
20	31
25	40
30	49
35	60
40	76

a határszöget, ami $\alpha=42^\circ$ a műanyagnág a kilépés esetén, a prizmát pedig $\beta=62^\circ$ -kal kell elforgatni, hogy a sugarak ne jöjjenek ki belőle.

Geometriai optika II.

0.4. A mérés célja

A mérés célja, hogy megállapítsuk a gyűjtőlencse fókusz távolságát, illetve hogy a szóró lencse képalkotását is vizsgáljuk.

0.5. Eszközök és összeállítás

A méréshez szükséges egy oprikai padra, egy fényforrásra, egy ernyőre, egy mérőszallagra, két gyűjtő illetve egy szóró lencsére. A fényforrást és az ernyőt ráhelyezzük az optikai padra, rezdetben egy méterre egymástól.

0.6. A mérés leírása

Meg keressük azt a távolságot, amelyen a gyűjtő lencse képett alkot az ernyőre. Ebből minden tárgy-kép távolságnál kettő lesz. Ezt követően 10cm-rel csökkentjük a távolságot és megismételjük az egészet egészen 50cm-ig. A következő táblázat mutatja a mért adatokat.

Távolságok [cm]					
Tárgy-kép [cm]	1. tárgy	1. kép	2. tárgy	2. kép	
100	12,2	87,8	88,5	11,5	
90	12,3	77,7	78,3	11,7	
80	12,6	67,4	68,0	12	
70	13	57	57,3	12,7	
60	13,4	46,6	46,8	13,2	
50	14,6	35,4	35,2	14,8	

Ez után elvesszük a gyűjtő lencsét, és 30 cm-hez -15 cm-es szóró lencsét rakjuk, a tárgyat 10 cm-hez. Felhelyezünk az optikai padra egy +20 cm-es gyűjtő lencsét 50-80 cm közé. Majd felhelyezzük az ernyőt úgy, hogy éles kép jelenjen meg rajta. Ezután vegyük el a szórólencsét és helyezzük úgy el a tárgyat, hogy megint éles képet kapjunk. Ez az új hej lesz a virtuális tárgy pozíciója.

	[cm]
Szórólencse helye:	30
Fényforrás/test helye:	10
Gyűjtőlencse helye:	65
Ernyő helye:	99,3
Fényforrás új helye	21,4

Fizikai optika

0.7. A mérés célja

A mérés célja, hogy a diffrakciós jelenség mért adataik segítségével kiszámoljuk a lézert átengedő rés szélességét

0.8. Eszközök és összeállítás

A méréshez szükségünk van egy optikai padra, egy dióda lézerre egy ernyőre és egy résre.

0.9. A mérés leírása

A dióda lézert lehelyezem az optikai pad egyik végére. Tőle körülbelül 3 cmre helyezzük el a résesek tartalmazó lemezt és forgasuk úgy, hogy a 0,04 mm-s résen haladjon át a fény. Pontosan lemérjük a a rés és az ernyő távolságát. Ezután megmérjü a két első minimum távolságát, majd a két második minimum távolságát is. Megismételjük ezt 0,08 mm-es és 0,16 mm-es résekkel is. A következő táblázat magába foglalja az így mért adatokat.

r [mm]	m1 [cm]	m2 [cm]	Δ L [cm]
0,04	4	8	0,05
0,08	2,1	3,9	0,05
0,16	0,8	1,9	0,05

Ernyő távolság		
L [cm]	107	
Δ L [cm]	0,05	

Kiértékelés

Geometriai optika I.

Elméleti háttér

A Snellius-Descartes törvény kimondja, hogy $sin(\alpha)n_1 = sin(\beta)n_2$, amiből következik, hogy $\frac{sin(\alpha)}{sin(\beta)} = \frac{n_2}{n_1} = n_{2,1} =$ állandó.

Első mérés

A mért szögek és szinuszaik

α	$sin(\alpha)$	β	$sin(\beta)$
0	0	0	0
10	0,1736	6	0,1045
20	0,3420	12,5	0,2164
30	0,5	19	0,3256
40	0,6428	25	0,4226
50	0,766	30,5	0,5075
60	0,866	35	0,5736
70	0,9397	39	0,6293
80	0,9848	41	0,6560

1. ábra. Egyenes illesztése a mért adatokra

Az illesztett egyenes meredeksége, azaz az $n_{2,1},\,1,\!4842$ A mért szögek és szinuszaik

α	$sin(\alpha)$	β	$sin(\beta)$
0	0	0	0
10	0,1736	15	0,2588
15	0,2588	23	0,3907
20	0,3420	31	0,5150
25	0,4226	40	0,6428
30	0,5	49	0,7547
35	0,5736	60	0,8660
40	0,6428	76	0,9703

2. ábra. Egyenes illesztése a mért adatokra

Az illesztett egyenes meredeksége, azaz az $n_{1,2}$, 0.6611

Ellenőrzés

Az így megkapot állandó segítségével kiszámolhatjuk a határszöget. azaz az a γ szöget, amire $sin(\gamma) = n_{1,2} sin(90^\circ) \ \gamma = 41,3838^\circ$. A mért adat 42° , azaz

γ mért	42
γ számolt	41,3838
$hiba_{absz}$	0,6162
hiba _{rel}	1,49%

Ez a hiba a mérési pontatlanságokból és a kerkítésekből származik.

Geometriai optika II.

*Gyűjtőlencse A második mérésnél megvizsgáltuk a tárgy illetve kép távolságát, és azok reciprokát ábrázoljuk.

k+t [cm]	t_1 [cm]	$\frac{1}{t_1}$	$k_1 [cm]$	$\frac{1}{k_1}$
100	12,2	0,08197	87,8	0,01139
90	12,3	0,0813	77,7	0,01287
80	12,6	0,07937	67,4	0,01483
70	13	0,07692	57	0,01754
60	13,4	0,07463	46,6	0,02146
50	14,6	0,06849	35,4	0,02825

3. ábra. Tárgy és kép távolságok reciprokai

A következőkben kiszámítjuk egyes esetekben a nagyításat a következő képlettel:

$$N = \frac{k}{t}$$

k+t [cm]	t_1 [cm]	k_1 [cm]	N
100	12,2	87,8	7,1967
90	12,3	77,7	6,3171
80	12,6	67,4	5,3492
70	13	57	4,3846
60	13,4	46,6	3,4776
50	14,6	35,4	2,4247

Szórólencse

Megállapítjuk a virtuális képtávolságot

	[cm]
Szórólencse helye:	30
Tárgy új helye:	21,4
Virtuális képtávolság:	8,6

Fizikai optika

Ha a fény keskeny résen halad keresztül, elhajlik, más szóval diffrakció jön létre. Az ernyőn sötét és világos foltok láthatók. Ezt a következő összefüggéssel írhatjuk le:

$$a \cdot \sin(\Theta) = n \cdot \lambda \tag{1}$$

aholaa rés szélessége, Θ a az elhajlási szög λ pedig a hullám hossza. Mivel Θ kicsi, ezért $sin(\Theta)\approx tg(\Theta)$ és ebből $tg(\Theta)=\frac{y}{D},$ ahol y az elhajlási kép középpontja és a minimum közötti távolság, D pedig a rés és az ernyő közötti távolság.

$$a = \frac{nD \cdot \lambda}{y} \tag{2}$$

r [mm]	m1 [cm]	m2 [cm]	Rés szélessége [nm]
0,04	4	8	17922,5
0,08	2,1	3,9	35451,1
0,16	0,8	1,9	82537,8

Terjedéses hibaszámítás

Feltételezve, hogy a bizonytalanságok kicsik relatíve kicsik a szorzathoz képest, a hibák a következőképpen adódnak össze:

$$\Delta a = \left| \frac{\delta a}{\delta D} \right| \Delta D + \left| \frac{\delta a}{\delta y} \right| \Delta y,$$

azaz

$$\Delta a = \frac{n \cdot \lambda}{y} \Delta D + \frac{nD \cdot \lambda}{y^2} \Delta y,$$

A rések szélességének növelésével csökkentek a minimumok távolságai.

A rések alakjával változnak a minimumok elhelyezkedései. Körnél nincsenek, négyszögnél egy keresztet, hatszögnél pedig hat különböző irányba történik az elhajlás.

Diszkusszió

A mérés sorozat elvégzése alatt megvizsgáltunk alapvető optikai jelenségeket, például a diffrakciót vagy a fénytörés jelenségét. Ezekre a mérésekre felhasználva a háttér tudást, további következtetéseket vonhattunk le a vizsgált lencsékről, közegekről, résekről.