Homework 17

231275040 林方恒

2024年5月13日

1 Problem 1

令 $\langle D_{12}, | \rangle$ 表示 12 的所有正因子组成的偏序集。

(1) 证明 $\langle D_{12}, | \rangle$ 是一个偏序格, 并由此定义运算 * 和 。, 证明 $\langle D_{12}, | \rangle$ 是对应的代数格

a. 由于 $x \vee y = lcm(x,y)$, $x \wedge y = gcd(x,y)$, 由于 gcd(x,y), lcm(x,y) 始终存在, 令 $x \in D_{12}$, $y \in D_{12}$, $z \in D_{12}$, 有 $z \mid x$, $z \mid y$, 故 $z \mid gcd(x,y)$, 即 gcd(x,y) 为最大下界. 同理, lcm(x,y) 为最小上界, 所以 $< D_{12}$, |> 是一个偏序格.

b. 定义运算 * = lcm 和 \circ = gcd, 显然满足交换律和结合律, $x*(x\circ y) = lcm(x, gcd(x, y)) = x$, $x\circ(x*y) = gcd(x, lcm(x, y)) = y$ 满足吸收律, 故其为代数格.

(2) 按照 (1) 的定义, 说明 $\langle D_{12}, *, \circ \rangle$ 是否是一个有补格 如图, 显然 2, 6 没有补元

(3) 按照 (1) 的定义, 说明 $\langle D_{12}, *, \circ \rangle$ 是否是一个分配格 如图, 此格的任意子格均不同构于 M_3 或 M_5 , 故其为分配格.

2 Problem 2

下列各集合对于整除关系都构成偏序集, 判断哪些偏序集是格.

- (1) $L = \{1, 2, 3, 4, 5\};$
- $(2)\ L=\{1,\ 2,\ 3,\ 6,\ 12\};$
- $(3)\ L=\{1,\ 2,\ 3,\ 4,\ 6,\ 9,\ 12,\ 18,\ 36\};$
- $(4) L = \{1, 2, 22, \cdots, 2n, \cdots \};$