Problem A. Arrays

Input: standard input Output: standard output

Time limit: 6 seconds
Memory limit: 256 megabytes

You are given a sequence of $3 \times N$ integers $(X_1, X_2, ..., X_{3 \times N})$. Create three sequences $(A_1, A_2, ..., A_N)$, $(B_1, B_2, ..., B_N)$ and $(C_1, C_2, ..., C_N)$ such that:

- Each of the integers from 1 to $3 \times N$ belongs to exactly one of the sequences A, B or C;
- The value of $S = \sum_{i=1}^{N} (X_{A_i} X_{B_i}) \times X_{C_i}$ is the largest possible.

Input

The input file contains T test cases, all having the same value of N. The first line of the input file contains the integers T and N, constrained as shown in the adjacent table. Each of the following T lines describes one test case and contains $3 \times N$ integers, the members of the sequence X. All these values are in range from 0 to 1000.

Constraints on N	Constraints on T
$1 \le N \le 10$	$1 \le T \le 1000$
$11 \le N \le 15$	$1 \le T \le 100$
$16 \le N \le 20$	$1 \le T \le 10$
$21 \le N \le 25$	T = 1

Output

The output file should consist of *T* lines. Each line should contain the largest possible value of *S* for the corresponding test case from the input file.

Example

standard input	standard output
12	46
418205	

Note: The maximal value is attained by taking A = (1,3), B = (2,5), C = (4,6).