Name:

If G is a group, H is a subgroup of G, and K is a subgroup of H, then K is a subgroup of G.

If G is a group, and H and K are subgroups of G, then their intersection $H \cap K$ is a subgroup of G.

A permutation $\alpha \in S_n$ is called *even* if it can be written as a product of an even number of transpositions; otherwise it is called *odd*. Exactly half of the permutations in S_n are even.

Set

$$A_n = \{ \alpha \in S_n \mid \alpha \text{ is even} \}.$$

Then A_n is a subgroup of S_n , called the alternating subgroup.

Let H be a subgroup of S_n . Then either H consists of even permutations or exactly half of the permutations in H are even. We prove this now.

Problem 1. Let $H \leq S_n$. Show that either $H \leq A_n$ or $|H| = 2|H \cap A_n|$.

Solution. If G is a group, $x \in G$, and $Y \subset G$, define

$$xY = \{xy \mid y \in Y\}.$$

Suppose that H is not contained in A_n , and let $\alpha \in H \setminus A_n$. Let K denote the set of even permutation in H, and let L denote the set of odd permutations in H. Then $K \cup L = H$, and $K \cap L = \emptyset$. Thus |H| = |K| + |L|.

Since H is closed under composition, $\alpha K \subset H$ and $\alpha L \subset H$. Since the product of an odd and and even permutation is odd, and the product of two odd permutations is even, we see that actually $\alpha K \subset L$ and $\alpha L \subset K$. Consider the map

$$f_1: K \to L$$
 given by $f_1(\kappa) = \alpha \kappa$,

and the map

$$f_2: L \to K$$
 given by $f_2(\lambda) = \alpha \lambda$.

Since left multiplication by α^{-1} produces an inverse for these maps, it is clear that both are injective. Therefore there exists a bijective functions $K \to L$, showing that these two sets have the same cardinality. This shows that |H| = 2|K|.

Let $\rho, \tau \in S_n$ be given by

$$\rho = (1 \ 2 \dots n) \quad \text{and} \quad \tau = \begin{cases} (2 \ n)(3 \ n-1)\dots(\frac{n+1}{2} \frac{n+3}{2}) & \text{if } n \text{ is odd;} \\ (2 \ n)(3 \ n-1)\dots(\frac{n}{2} \frac{n}{2} + 2) & \text{if } n \text{ is even.} \end{cases}$$

Set

$$D_n = \{\epsilon, \rho, \rho^2, \dots, \rho^{n-1}, \tau, \tau\rho, \tau\rho^2, \dots, \tau\rho^{n-1}\} \subset S_n.$$

Then D_n is a subgroup of S_n , called the *dihedral subgroup*. The proof that this is a subgroup follows from the identity $\tau \rho = \rho^{n-1} \tau$. Clearly, $|D_n| = 2n$.

Set $K_n = D_n \cap A_n$. Then K_n is a subgroup of S_n , and either $K_n = D_n$ or K_n is exactly half of D_n . Thus $|K_n| = 2n$, or $|K_n| = n$.

Problem 2. Let n=4.

- (a) Compute ρ and τ in this case.
- (b) Show that K_4 is a noncyclic abelian subgroup of S_4 .

Solution. We have

$$\rho = (1 \ 2 \ 3 \ 4)$$
 and $\tau = (2 \ 4)$.

Also,

$$K_4 = \{ \epsilon, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3) \}.$$

Every element of K_4 has order two, so K_4 is not cyclic (of order four). Computation shows that the group is abelian.

Problem 3. Let n = 5.

- (a) Compute ρ and τ in this case.
- (b) Show that $K_5 = D_5$.

Solution. We have

$$\rho = (1 \ 2 \ 3 \ 4 \ 5)$$
 and $\tau = (2 \ 5)(3 \ 4)$.

Since ρ is an even permutation, so are all of its powers. Moreover, all of the reflections fix exactly one point and transpose two pairs of points; thus they are even. Since each member of K_5 is even, we have $K_5 = D_5$.

Problem 4. Let n = 7.

- (a) Compute ρ and τ in this case.
- (b) Show that K_7 is a cyclic subgroup of S_7 .

Solution. We have

$$\rho = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$$
 and $\tau = (2 \ 7)(3 \ 6)(4 \ 5)$.

Since ρ is even, all of its powers are in K_7 . Moreover, since n is odd, each of the reflections fixes exactly one point, and so is the product of three transpositions, and is therefore odd. So, $K_7 = \langle \rho \rangle$ is cyclic.

Problem 5. Try to generalize the previous problems: what can you say about K_n in the following cases?

- (a) $n \equiv 0 \pmod{4}$
- **(b)** $n \equiv 1 \pmod{4}$
- (c) $n \equiv 2 \pmod{4}$
- (d) $n \equiv 3 \pmod{4}$

Solution. We will discuss (a) and (c) together.

(a) and (c) Suppose n is even. Then ρ is an odd permutation, but ρ^2 is even, and exactly half of $\langle \rho \rangle$ is contained in A_n .

Also, τ fixes two points, so τ moves (n/2) - 2 pairs of points; and $\tau \rho$ does not fix any points (it is reflection through the midpoints of opposite edges), so $\tau \rho$ moves n/2 pairs of points.

If $n \equiv 0 \pmod{4}$, then n/2, so $\tau \rho$ is even, and τ is odd, in which case $K_n = \langle \rho^2, \tau \rho \rangle$.

If $n \equiv 2 \pmod{4}$, then n/2 - 2 is even, so τ is even, and $\tau \rho$ is odd, in which case $K_n = \langle \rho^2, \tau \rangle$.

In either case, exactly half of the reflections are in K_n .

It turns that in either case, K_n is isomorphic to $D_{(n/2)}$. We will be able to show this more accurately when we have more tools.

- (b) Suppose that $n \equiv 1 \pmod 4$. Since n is odd, ρ is an even permutation. All reflections fix exactly one point, so they move $\frac{n-1}{2}$ pairs of points. Since $n \equiv 1 \pmod 4$, $\frac{n-1}{2}$ is even, so all of these reflections are in A_n . Thus, $D_n \subset A_n$, and $K_n = D_n$.
- (c) Suppose that $n \equiv 3 \pmod 4$. Since n is odd, ρ is an even permutation. All reflections fix exactly one point, so they move $\frac{n-1}{2}$ pairs of points. Since $n \equiv 3 \pmod 4$, $\frac{n-1}{2}$ is odd, so none of these reflections are in A_n . Thus, $K_n = \langle \rho \rangle$ is cyclic.