Introducing the Greenhouse Effect

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #4: Monday, January 13 2020

Basic Principles from Friday

- Steady temperature means:
 - Heat_{out} = Heat_{in}
- Heat in:
 - Sunlight (shortwave)
 - Does not depend on temperature
- Heat out:
 - Emitted radiation (longwave)
 - Depends on temperature
- If $Heat_{out} \neq Heat_{in}$,
 - Temperature rises or falls until

$$Heat_{out} = Heat_{in}$$

Temperature of the Earth

Bare-Rock Model: No Atmosphere

A subtle point...

- ullet Emissivity arepsilon is fraction absorbed
- Albedo α is fraction reflected
- ullet For an opaque surface, lpha+arepsilon=1
- ullet So how is lpha=0.30 and arepsilon=1.00?
- α & ε are different for shortwave & longwave.
- Shortwave: $\alpha = 0.30$, $\varepsilon = 0.70$
- Longwave: lpha= 0.00, arepsilon= 1.00

Temperature of Earth (Bare Rock Model)

- 1. $F_{\text{out}} = F_{\text{in}}$ (Heat flux balances)
- 2. On average,

$$F_{\rm in} = \frac{(1-\alpha)}{4} I_{\rm solar}$$

- 3. $F_{\text{out}} = \varepsilon \sigma T^4$.
- 4. Solve for T:

$$T=\sqrt[4]{rac{(1-lpha)I_{
m solar}}{4arepsilon\sigma}} egin{array}{c} I_{
m solar}=1350\ {
m W/m}^2 \ lpha=0.30 \ arepsilon=1 \ lpha=5.67 imes10^{-8}\ {
m W\ m}^{-2}\ {
m K}^{-4} \ T=254\ {
m K}=-19^{\circ}{
m C}=-2^{\circ}{
m F} \end{array}$$

If the sun got 5% brighter, how much warmer would the earth become?

$$T=\sqrt[4]{rac{(1-lpha)I_{
m in}}{4arepsilon\sigma}}$$

• Normal:

- $I_{in} = 1350 \text{ W/m}^2$
- T = 254 K
- 5% Brighter:
 - $I_{in} = 1.05 \times 1350 \text{ W/m}^2 = 1418 \text{ W/m}^2$
 - T = 257 K
- $\Delta T = 3 \text{ K} = 6^{\circ} \text{F} = 1.2\%$ warmer
 - $-\sqrt[4]{1.05} = 1.012$

Terrestrial Planets

	Earth	Mars	Venus
Distance from sun	1 AU	1.5 AU	0.72 AU
1/Distance ²	1.00	0.44	1.9
Solar constant	1350 W/m^2	$600 \mathrm{W/m^2}$	2604 W/m ²
Albedo	0.30	0.17	0.71
T _{bare rock}	254 K (-2°F)	216 K (-70°F)	240 K (-27°F)
T _{surface}	295 K (71°F)	240 K (-28°F)	700 K (800°F)
$\Delta_{\mathcal{T}}$	41 K (74°F)	24 K (42°F)	460 K (828°F)

Oops! We forgot the atmosphere!

Does Earth look like a blackbody?

One-Layer Model of the Greenhouse Effect

Layer Model

Atmosphere Make simplifying assumptions:

- Perfectly transparent to shortwave light
 - Like a pane of glass: $\varepsilon = 0$
- Perfectly opaque to longwave light
 - lacktriangle Like a blackbody: arepsilon=1

Anything that transmits most shortwave and absorbs most longwave is a greenhouse gas

Balance of energy for earth system

• At top of atmosphere: $F_{
m out} = F_{
m in}$

$$I_{
m up, \, atmos} = I_{
m in} \quad ext{(intensity of absorbed sunlight)}$$
 $arepsilon \sigma T_{
m atmos}^4 = rac{(1-lpha)I_{
m solar}}{4}$

• Aha! We can find T_{atmos} !

$$T_{\mathrm{atmos}} = \sqrt[4]{\frac{(1-\alpha)I_{\mathrm{solar}}}{4\varepsilon\sigma}}$$

Balance of energy for earth system

$$T_{\rm atmos} = \sqrt[4]{\frac{(1-\alpha)I_{\rm solar}}{4\varepsilon\sigma}}$$

- Just like bare rock model!
- We call this the skin temperature

Atmosphere: $Heat_{in} = Heat_{out}$

$$I_{\text{up,ground}} = I_{\text{up,atm}} + I_{\text{down,atm}}$$

Atmosphere: heat in = heat out.

```
I_{
m up,ground} = I_{
m up,atm} + I_{
m down,atm}
I_{
m up,atm} = I_{
m down,atm} = \varepsilon \sigma T_{
m atm}^4
```


Atmosphere: heat in = heat out.

```
I_{
m up,ground} = I_{
m up,atm} + I_{
m down,atm}
I_{
m up,atm} = I_{
m down,atm} = \varepsilon \sigma T_{
m atm}^4
I_{
m up,ground} = \varepsilon \sigma T_{
m ground}^4
```


Atmosphere: heat in = heat out.

$$I_{
m up,ground} = I_{
m up,atm} + I_{
m down,atm}$$
 $I_{
m up,atm} = I_{
m down,atm} = arepsilon \sigma T_{
m atm}^4$
 $I_{
m up,ground} = arepsilon \sigma T_{
m ground}^4$
 $arepsilon \sigma T_{
m ground}^4 = 2arepsilon \sigma T_{
m atm}^4$

Principles:

- Start at the top.
- For each layer, $Heat_{out, up} = Heat_{out, down}$
- Each layer balances $Heat_{in, total} = Heat_{out, total}$
 - Each layer has uniform temperature:
 - The top and bottom of the layer have the same temperature.
 - So the intensity emitted from the top and bottom is the same.
- The bottom layer of the atmosphere tells us Heat_{up, ground}
- Get ground temperature from Heat_{up, ground}

Finish the problem

$$arepsilon \mathcal{T}_{ ext{ground}}^4 = 2 arepsilon \mathcal{T}_{ ext{atm}}^4$$
 $\mathcal{T}_{ ext{ground}}^4 = 2 \mathcal{T}_{ ext{atm}}^4$
 $\mathcal{T}_{ ext{ground}} = \sqrt[4]{2} \mathcal{T}_{ ext{atm}}$
 $= 1.19 \mathcal{T}_{ ext{atm}}$

- Skin temp: $T_{\text{atm}} = T_{\text{skin}} = T_{\text{bare rock}} = 254 \ K$
- Ground temp (1-layer): $T_{\text{ground}} = \sqrt[4]{2} T_{\text{atm}} = 302 K$
- Difference: Greenhouse effect = 48 K

Note: These numbers are slightly different from what's in the book. Don't worry about that.

Greenhouse Gases

Greenhouse Gases

Greenhouse Gases

- Brightness: Stefan-Boltzmann law:
 - \blacksquare $I = \varepsilon \sigma T^4$
 - ullet $\varepsilon=1$

- Brighter = Hotter
- Hotter = closer to ground
 - Satellite can see through atmosphere to low altitude (hot, bright) in "window" region.
 - Satellite can see to middle-troposphere (cold, dimmer) in "water vapor" region
 - Satellite can't see past top of troposphere (very cold, very dim) in CO₂ region.

Earth Seen by Satellites

Visible

$6.8~\mu m$ (Water Vapor)

$12.0~\mu m$ (Window)

Water, Window, Visible

CO₂ peak vs. Window

Terrestrial Planets

Earth, Mars, Venus

	Earth	Mars	Venus
Solar constant	1350 W/m^2	$600 \mathrm{W/m^2}$	2604 W/m ²
Albedo	0.30	0.17	0.71
$T_{\rm radiative}$	254 K	216 K	240 K
Actual T _{surface}	295 K	240 K	700 K
One-Layer T _{surface}	302 K	257 K	286 K

Vocabulary note:

- "radiative temperature"
- "skin temperature"
- "bare rock temperature" all mean the same thing.

Earth, Mars, Venus

	Earth	Mars	Venus
Solar constant	1350 W/m^2	$600 \mathrm{W/m^2}$	2604 W/m ²
Albedo	0.30	0.17	0.71
T _{radiative}	254 K	216 K	240 K
Actual T _{surface}	295 K	240 K	700 K
One-Layer T _{surface}	302 K	257 K	286 K
Difference	7 K	17 K	-414 K

One-layer model works pretty well for Earth.

Not so well for Mars

Terribly for Venus.

Earth, Mars, Venus

	Earth	Mars	Venus
Solar constant	1350 W/m^2	$600 \mathrm{W/m^2}$	2604 W/m^2
Albedo	0.30	0.17	0.71
Tradiative	254 K	216 K	240 K
Actual T _{surface}	295 K	240 K	700 K
One-Layer T _{surface}	302 K	257 K	286 K
Difference	7 K	17 K	-414 K
Atmospheric pressure at surface	1013 mb	6 mb	92,000 mb