

Universitatea Tehnică din Cluj-Napoca Departamentul de Calculatoare

Tehnici hibride inspirate din biologie pentru generarea de recomandări de meniuri alimentare personalizate

Tehnică hibridă inspirată din procesul de colonizare al buruienilor

Absolvent **Dan Alexandru VALEA**

Coordonatori: **Prof. dr. ing. loan SALOMIE**

Ş.I. dr. ing. Viorica CHIFU Prep. dr. ing. Cristina POP

Agendă

- Introducere
- Stadiul actual al cercetării
- Modelul Hibrid Inspirat din Procesul de Colonizare al Buruienilor
- Algoritmul Hibrid Inspirat din Procesul de Colonizare al Buruienilor
- Prototip Experimental
- Rezultate Experimentale
- Concluzii

Introducere – context & motivație

- La ora actuala 26.5% din rata mortalității din Romania se datoreaza bolilor cardio-vasculare [WHO 2013]
- Prin adoptarea unui stil de viață sănătos pot fi evitate anual peste 200,000 de decese premature [MHHE 2014]
- Beneficiile adoptării unui stil de viață sănătos:
 - Reducerea riscului apariţiei afecţiunilor cardio-vasculare, diabetul, etc.
 - Evitarea agravări afecțiunilor existente (hipertensiune)
 - Asigurarea energiei corespunzătoare nivelului organismului

Introducere - objective

- Dezvoltarea unei tehnici hibride inspirate din procesul de colonizare al buruienilor pentru generarea de recomandări de meniuri alimentare, respectând o serie de criterii:
 - Preferințele utilizatorului pentru un anumit tip de mâncare
 - Istoricul lui medical
 - Dieta recomandată
 - Prețul și timpul de livrare

Stadiul actual al cercetării

Sistem	Caracteristici
Metodă bazată pe algoritmi genetici [Gaal 2005]	 generează automat meniuri pentru persoane ce suferă de boli cardio-vasculare evaluarea soluției pe baza unei funcții de fitness cu penalitați
Food-Oriented Ontology- Driven System [Snae 2008]	- se bazează pe un sistem expert care oferă sugestii alimentare pe baza unui motor de inferență.
Metodă bazată pe un sistem multi agent [Bing 2010]	 generează recomandări alimentare presonalizate utilizează două tipuri de agenți: de învățare și de recomandare
Sistem bazat pe rough sets theory [Kashina 2011]	- generează recomandări pe baza informațiilor obținute de la utilizator în urma completării unor chestionare
Ontology - Driven Personalized Food Planning [Snae 2012]	- sistemul de planificare oferă sugestii alimentare pe baza unui motor de inferență și a unei baze de cunoștințe ce include produse alimentare

Constă din:

- Componenta de bază inspirată din procesul de colonizare al buruienilor (Invasive Weed Optimization – IWO)
- Componente hibride:
 - Componenta hibridă bazată pe Path Relinking
 - Componenta hibridă bazată pe Tabu Search & Reinforcement Learning

Componenta inspirată din Procesul de Colonizare al Buruienilor (I)

- Inspiraţia biologică
 - Procesul de dezvoltare al coloniilor de buruieni

- Motivaţie
 - Implementarea unei strategii de selecție care să accelereze determinarea soluției optime și care să reducă spațiul de căutare explorat.

Componenta inspirată din Procesul de Colonizare al Buruienilor (II)

Concepte din colonizarea buruienilor	Concepte din domeniul generării de meniuri alimentare					
Buruiană	Soluție (meniu) compusă din oferte alimentare					
Sămânță	Soluție obținută prin aplicarea unei mutații pe soluția parinte					
Colonie de buruieni	Set de soluții					
Reproducere	Clonarea unei soluții					
Caracteristicile unei buruieni (resurse utilizate, adaptabilitate)	Caracteristicile soluției (preț, timp, valori nutriționale)					
Evaluarea caracteristicilor unei buruieni	Funcție de fitness multi-criterială					

Componenta inspirată din Procesul de Colonizare al Buruienilor (III)

Funcția de fitness

$$\begin{aligned} \text{Fitness(sol)} &= \alpha_1 * \mathsf{F}_p(\text{sol}) + \alpha_2 * \mathsf{F}_t(\text{sol}) + \alpha_3 * \mathsf{F}_n(\text{sol}), \\ &\quad \text{unde sol} = \{\mathsf{Fl}_b, \mathsf{Fl}_{s1}, \mathsf{Fl}_l, \mathsf{Fl}_{s2}, \mathsf{Fl}_d\} \text{ si } \sum_{i=1}^3 \alpha_i = 1, \alpha_i \in [0,1] \\ &\mathsf{F}_p(\text{sol}) = \sum_{fooditem_i \in sol} \mathsf{Price}(fooditem_i) \\ &\mathsf{F}_t(\text{sol}) = \max_{fooditem_i \in sol} \mathsf{Time}(fooditem_i) \\ &\mathsf{F}_n(\text{sol}) = \sum_{i=1}^4 \omega_i * f_i(\text{sol}), \text{unde } \sum_{i=1}^4 \omega_i = 1, \omega_i \in [0,1], i \in \{\text{calorii, proteine, lipide, glucide}\} \\ &f_i(\text{sol}) = 1 - \frac{optVal_i - \sum_{fooditem_i \in sol} NF_i(fooditem_i)}{\tau_i} \end{aligned}$$

Constrângeri

$$C_{j}(sol) = \sum_{y_{i} \in sol} \sum_{k=1}^{n(y_{i})} q_{ik} * p_{kj}, j \in \{fier, sodiu, vitA, vitB_{1}, vitC\}$$

Componenta Hibridă bazată pe Path Relinking (I)

- Componentă bazată pe Path Relinking
 - Tehnică de căutare care explorează spațiul de căutare prin stabilirea de căi între două soluții

Componenta Hibridă bazată pe Path Relinking (II)

PSO based Path Relinking

 Soluția inițială este actualizată până când o nouă soluție având funcția de fitness mai mare decât optimul global curent este obținută prin aplicarea repetată a formulei:

$$sol_{int} = (1 - \beta)^* sol_{initial} + \beta^* sol_{guiding} + Random$$

unde:

- **β** ∈ [0,1];
- Random vector de 0 și 1 generat aleator de lungime egală cu numărul de componente ale unei soluții.
- Exemplu:
 - $sol_{initial} = (Fl_1, Fl_2, Fl_3, Fl_4)$, $sol_{quiding} = (Fl_5, Fl_6, Fl_7, Fl_8)$, $\beta = 0.7$
 - 0.3 * (FI_1 , FI_2 , FI_3 , FI_4) + 0.7 * (FI_5 , FI_6 , FI_7 , FI_8) = (FI_1 , FI_6 , FI_7 , FI_8)
 - $(FI_1, FI_6, FI_7, FI_8) + (1, 0, 1, 1) = (FI_1, *, FI_7, FI_8)$

Componenta Hibridă bazată pe Tabu Search & Reinforcement Learning

- Motivaţie
 - Stocarea unui istoric al înlocuirilor efectuate în componentele soluțiilor
- Memorie de scurtă durată (Tabu Search)
 - M_s = { m_s | m_s = (foodItem_i, foodItem_i, noIt_{tab}) }
- Memorie de lungă durată (Reinforcement Learning)
 - $M_1 = \{ m_1 \mid m_1 = (foodItem_i, foodItem_i, rIScore) \}$

Algoritmul Hibrid Inspirat din Procesul de Colonizare al Buruienilor - Prezentare Generală

Intrări

- Ofertele alimentare, Preferințele utilizatorului, Dieta recomandată
- P_{init} dimensiunea inițială a coloniei de buruieni;
- P_{max} dimensiunea maximă a coloniei de buruieni;
- S_{max} numărul maxim de semințe (copii) pe care o plantă le are;
- S_{min} numărul minim de semințe (copii) pe care o plantă le are;
- NoM numărul de mutații care vor fi efectuate asupra unei semințe;
- rep procentul de plante care vor fi înlocuite la finalul iterației;
- nolt numărul maxim de iterații ale algoritmului;
- It_{tab} numărul de iterații pentru care o interschimbare este tabu.

leşiri

Meniu – set optim de oferte alimentare.

Algoritmul Hibrid Inspirat din Procesul de Colonizare al Buruienilor - Etapele Algoritmului

Algoritmul Hibrid Inspirat din Procesul de Colonizare al Buruienilor - Etapa Iterativă

Numărul de semințe pentru o plantă se calculează astfel:

$$nrSeeds = S_{max} - \frac{S_{max} - S_{min}}{P_{max}} * index$$

- Unde:
 - index reprezintă poziția individului in populație;
 - P_{max} dimensiunea maximă a coloniei de buruieni;
 - S_{max} numărul maxim de semințe (copii) pe care o plantă ii are;
 - S_{min} numărul minim de semințe (copii) pe care o plantă ii are;

Prototip experimental (I)

Arhitectura conceptuală a sistemului

Prototip experimental (II)

Ontologie de domeniu care conține informații despre feluri de mâncare, ingrediente, valori nutriționale și restricții medicale specifice diferitelor boli.

Prototip experimental (III)

Exemplu de ofertă alimentară

Exemplu de profil utilizator

</food>

</ingredient>

</ingredients>

<food>

Rezultate experimentale (I)

- Experimentele au fost efectuate pe diverse tipologii de utilizatori
 - Pentru fiecare versiune a algoritmului s-au considerat 32 de configurații ale parametrilor ajustabili
 - Pentru fiecare configurație s-au executat 20 de rulări
- Dimensiunea spaţiului de căutare este de 68.400.000.000.000.000.000 de meniuri alimentare.

Rezultate experimentale (II)

Scenariu de test

Profil Personal							
Vârsta	64 ani						
Greutate	66 kg						
Înălțime	160 cm						
Sex	Masculin						
Nivel de activitate	Moderat activ						
Ingredient preferat	Fructe de pădure						
Ingredient nedorit	Brânză						
Afecțiuni	Hipertensiune						

Valorile Optime	ale Nutrienților
Calorii	1800 kcal
Proteine	123 g
Lipide(grasimi)	50 g
Carbohidrați	202,4 g
Fier	8-45 mg
Sodiu	500-1500 mg
Vitamin A	1,2-7,5 mg
Vitamin B1	1,6-5 mg
Vitamin C	75-1000 mg

Rezultate experimentale (III)

Cele mai bune configurații din punct de vedere al fitness-ului

Algoritm	No	P _{init}	noIt	P _{max}	S_{max}	S_{\min}	NoM	It _{tab}	rep	$T_{avg}(s)$	fit _{avg}
IWO	30	10	30	30	4	1	2	-	0	18,89	0,698
PRIWO	31	5	30	25	4	1	2	-	0	19,13	0,824
PRTSIWO	32	5	30	30	4	1	2	5	0	16,55	0,792
PSOPRIWO	30	10	30	30	4	1	2	-	0	22,50	0,817
PSOPRTSIWO	30	10	30	30	4	1	2	5	0	21,46	0,805

 Cele mai bune configurații din punct de vedere al fitness-ului în raport cu timpul

Algoritm	No	P _{init}	noIt	P _{max}	S_{max}	S_{min}	NoM	It _{tab}	rep	$T_{avg}(s)$	fit _{avg}
IWO	31	5	30	25	4	1	2	-	0	14,95	0,692
PRIWO	2	10	30	15	3	1	2	-	20	15,78	0,806
PRTSIWO	20	5	30	15	3	1	3	4	20	10,35	0,764
PSOPRIWO	4	5	30	15	3	1	2	-	20	15,64	0,786
PSOPRTSIWO	4	5	30	15	3	1	2	2	20	13,55	0,767

Rezultate experimentale (IV)

 Evoluţia populaţiei pentru cea mai bună configuraţie a parametrilor ajustabili în cazul versiunii PRTSIWO

Concluzii

- S-a dezvoltat o tehnică hibridă inspirată din dezvoltarea coloniilor de buruieni pentru generarea de recomandări de meniuri alimentare personalizate
- S-a dezvolat un prototip experimental care integrează tehnica propusă
- S-au realizat o serie de experimente pe diferite tipologii de utilizatori
- Contribuţii:
 - Am elaborat în colaborare cu colectivul Laboratorului de Cercetare pentru Sisteme Distribuite articolul "Hybrid Invasive Weed Optimization Method for Generating Healthy Meals" care a fost acceptat la The 6th IEEE International Workshop on Soft Computing Applications, Timișoara, Romania, și va fi publicat de către Springer, ISI proceedings.

