Kolmogorov's Theorem

Travis Westura

May 12, 2015

Abstract

This paper discusses a proof of Kolmogorov's Theorem on the conservation of invariant tori. We follow the approach given by Hubbard and Ilyashenko in [9]. Their proof is influenced by the one given by Bennettin, Galgani, Giorgilli, and Strelcyn in [4], which itself resembles Kolmogorov's original argument.

1 Introduction

Andrey Kolmogorov announced an important theorem about the conservation of invariant tori in the International Congress of Mathematicians in 1954 [10]. However, he never wrote down a proof of this theorem. Vladimir Arnold give a proof in 1963, and Jürgen Moser proved a related result in 1962. The resulting theory is therefore called KAM Theory, named after the three of them.

Arnold recalls in [3] how Kolmogorov had been considering the problem since he was a child. He was influenced by reading *The Flammarion Book of Astronomy*, where [5] is a more recent edition than the one Kolmogorov would have read. After Stalin died Kolmogorov entered a period of great mathematical productivity. This theorem was born out of this period.

While Kolmogorov never wrote down a proof, many others did, or at least attempted to. As already noted, Arnold wrote a proof [1] in 1963 and Moser proved a related result [12] in 1962. But the proof is quite difficult, as Arnold's original argument was over 60 pages and quite difficult to understand. The argument with which we concern ourselves is given by Hubbard and Ilyshenko in [9]. This proof, while still containing many messy, technical details, is much shorter. We will discuss the motivation behind the main ideas and key concepts of this proof.

Before moving on, let's take a look at our main goal:

Theorem 1.1 (Kolmogorov's Theorem). Let $\rho, \gamma > 0$ be given, and let $h(q, p) = h_0(p) + h_1(q, p)$ be a Hamiltonian, with $h_0, h_1 \in \mathcal{A}_{\rho}$ and $||h||_{\rho} \leq 1$. Suppose the Taylor polynomial of h_0 is

$$h_0(\mathbf{p}) = a + \omega \mathbf{p} + \frac{1}{2} \mathbf{p} \cdot C \mathbf{p} + o(|\mathbf{p}|^2),$$

with $\omega \in \Omega_{\gamma}$ and C is symmetric and invertible. Then for any $\rho_* \leq \rho$, there exists $\epsilon > 0$, which depends on C and γ , but not on the remainder term in $o(|\mathbf{p}|^2)$, such that if $||h_1||_{\rho} \leq \epsilon$, there exists a symplectic mapping $\Phi : A_{\rho_*} \to A_{\rho}$ such that if we set $(\mathbf{q}, \mathbf{p}) = \Phi(\mathbf{Q}, \mathbf{P})$ and $H = h \circ \Phi$, we have

$$H(\mathbf{Q}, \mathbf{P}) = A + \omega \mathbf{P} + R(\mathbf{Q}, \mathbf{P}), \tag{1.1}$$

with $R(\mathbf{Q}, \mathbf{P}) \in O(|\mathbf{P}|^2)$. In particular the torus $\mathbf{P} = 0$ is invariant under the flow $\nabla_{\sigma} H$, and on this torus the flow ϕ_H is linear with direction ω .

We will return to this statement after building up some intuition for it. For now, let's just note that the proof involves solving equation (1.1) for the symplectic diffeomorphism Φ .

We will begin by examining a toy example of the solar system, to which we will apply the theorem. This example will help us in understanding the statement of the theorem and the tools that we will need in the proof. We will discuss the basics of Hamiltonian mechanics and the notion of irrational vectors while examining this example. Then we will begin examining the technique of the proof and examine the role played by analytic functions. Finally we will put all of this together and explain the main ideas of the proof, while leaving out some of the more messy, technical details.

2 A Motivating Example

To start understanding the theorem, let's consider an example to which we would like to apply it. While staring up at the night sky, one might be driven to wonder, "Why do the planets orbit around the sun and not just crash into it or fly off by themselves in their own directions?" Kolmogorov's Theorem gives us a method to attempt to answer this question.

Let's start by discussing a simplified model of our solar system. In this model we will assume that planets have zero mass. This assumption is reasonable, as the masses of the planets are extremely small compared to that of the sun. Indeed, the sun is so massive compared to the planets that Jupiter and the sun orbit around a point that is located inside of the surface of the sun. Thus we may, at least for the moment, consider these masses to be negligible.

A system with n bodies, each with a mass m_i and a position x_i , satisfies Netwon's second law: $\mathbf{F} = m\mathbf{a}$. For each i, we have

$$m_i \ddot{\boldsymbol{x}} = \sum_{j \neq i} G m_i m_j \frac{\boldsymbol{x}_j - \boldsymbol{x}_i}{|\boldsymbol{x}_j - \boldsymbol{x}_i|^3}.$$

Here, $G \approx 6.62 \cdot 10^{-11} m^3/(kg \, s^2)$ is the universal gravitational constant. On the left hand side we have each planet's mass and its acceleration. On the right hand side we have the force that acts on this mass. Note that the force is inversely proportional to the square of the distances between the forces. The top of the fraction contains the vector $\mathbf{x}_j - \mathbf{x}_i$ that has length $|\mathbf{x}_j - \mathbf{x}_i|$. To cancel out this length, we divide by $|\mathbf{x}_j - \mathbf{x}_i|^3$. This gives us the desired inverse proportionality to the square of the distance.

In our model of the solar system we take the sun to be given by the index 0 and the planets given by indices from 1 to 8 or 9, depending on the reader's opinions of Pluto. Now we will examine what happens as the masses of the planets, the m_j for j = 1, ..., n, tend to zero.

Rewriting the previous equations, we have

$$\ddot{\boldsymbol{x}}_0 = G \sum_{j=1}^n m_j rac{\boldsymbol{x}_j - \boldsymbol{x}_0}{|\boldsymbol{x}_j = \boldsymbol{x}_i|^3},$$
 $\ddot{\boldsymbol{x}}_i = G m_0 rac{\boldsymbol{x}_0 - \boldsymbol{x}_i}{|\boldsymbol{x}_0 - \boldsymbol{x}_i|^3} + G \sum_{\substack{j=1,\dots,n \ i \neq i}} m_j rac{\boldsymbol{x}_j - \boldsymbol{x}_i}{|\boldsymbol{x}_j - \boldsymbol{x}_i|^3}.$

Now we keep the mass of the sun m_0 constant but let the masses of the planets go to zero. These equations then become

$$\ddot{\boldsymbol{x}}_0 = 0,$$
 $\ddot{\boldsymbol{x}}_j = G \frac{\boldsymbol{x}_0 - \boldsymbol{x}_i}{|\boldsymbol{x}_0 - \boldsymbol{x}_i|^3}.$

We can even simplify these equations a bit further. Since $\ddot{x}_0 = 0$, the body with mass m_0 travels in a straight line with constant speed. Thus we can work in a heliocentric system of coordinates with the sun at the center of our solar system with position $x_0 = 0$. We then have

$$\ddot{\boldsymbol{x}}_0 = 0,$$

$$\ddot{\boldsymbol{x}}_j = -G m_0 \frac{\boldsymbol{x}_i}{|\boldsymbol{x}_i|^3}.$$

In particular we can note that this system is stable. Over time, it will never diverge far from its present state.

This model will serve as an example to which we apply the properties of Hamiltonian Mechanics that are discussed in section 3. Kolmogorov's theorem will then be applied in the context of this example in section 5.

3 Hamiltonian Mechanics

We will need to consider Hamiltonian mechanics in our study of the KAM Theorem. Hamiltonian mechanics is a reformulation of Newtonian mechanics, named for William Rowan Hamilton. The theories produce the same results, but often one of them is a more convenient formulation for some problems than is the other.

A Hamiltonian mechanical system is given by an even-dimensional manifold, the phase space, a symplectic structure on this manifold, and a function H. This function is called a Hamiltonian function.

Let (X, σ) be a symplectic manifold. That is, let X be a differentiable manifold and σ be a nowhere vanishing 2-form such that $d\sigma = 0$. A function H on X has a *symplectic gradient*, denoted $\nabla_{\sigma}H$. This gradient is defined as the unique vector field $\nabla_{\sigma}H$ such that for any vector field ξ , we have

$$\sigma(\xi, \nabla_{\sigma} H) = dH(\xi). \tag{3.1}$$

We will be considering a *Hamiltonian differential equation* that makes use of this symplectic gradient:

$$\dot{\boldsymbol{x}} = (\nabla_{\sigma} H)(\boldsymbol{x}). \tag{3.2}$$

Before moving on, let's compare the symplectic gradient and the gradient ∇f of a function $f: \mathbb{R}^n \to \mathbb{R}$. This gradient is not an element of \mathbb{R} , but rather is the vector

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

4 Section 3. Hamiltonian Mechanics

In the symplectic gradient, we used the symplectic form σ to give a geometric structure to our underlying space. Similarly, we can define the gradient by using the scalar product $\langle \cdot, \cdot \rangle$ to provide a geometric structure. In comparison to equation (3.1), the gradient ∇f is the unique vector field such that

$$df(\xi) = \langle \xi, \nabla f \rangle.$$

Further, just as we considered a Hamiltonian differential equation in equation (3.2), we can consider a gradient differential equation:

$$\dot{\boldsymbol{x}} = \nabla f(\boldsymbol{x}).$$

The gradient and Hamiltonian differential equations are fundamentally different. In the gradient equation, our function f increases along solutions. Thus these solutions may never return to their starting points. The gradient differential equation prohibits any type of recurrence from occurring. In contrast, the Hamiltonian differential equation not just allows but practically imposes recurrent behavior. This difference means we can observe much more interesting recurrent behavior when using Hamilton's equation than we could with the gradient equation.

As an example of a Hamiltonian system, let's consider our toy model of the solar system from section 2. We take our manifold X to be \mathbb{R}^{2n} with coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n)$. Our symplectic form will be given by

$$\sigma = \sum_{i} dp_i \wedge dq_i.$$

The Hamiltonian differential equation then becomes the Hamiltonian equations of motion:

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}},$$

$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}}.$$
(3.3)

Now we consider the case of a single body of zero mass. It is sufficient to consider the single body system, since the planets' having zero mass means that they do not affect each other in our toy system. For $x \in \mathbb{R}^2$, the equation

$$\ddot{\boldsymbol{x}} = -\frac{\boldsymbol{x}}{|\boldsymbol{x}|^3}$$

is Hamilton's equation for the manifold $X = \mathbb{R}^2 \times \mathbb{R}^2$ with points (q, p), standard symplectic form

$$\sigma = dp_1 \wedge dq_1 + dp_2 \wedge dq_2,$$

and Hamiltonian

$$H(\boldsymbol{q}, \boldsymbol{p}) = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{\sqrt{q_1^2 + q_2^2}}.$$

We write
$$\boldsymbol{p} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$
 and $\boldsymbol{q} = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}$. Now we have

$$(dp_{1} \wedge dq_{1} + dp_{2} \wedge dq_{2}) \left(\left(\begin{pmatrix} \xi_{1} \\ \xi_{2} \end{pmatrix}, \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} \right), \left(\begin{pmatrix} p1 \\ p2 \end{pmatrix}, -\frac{1}{(q_{1}^{2} + q_{2}^{2})^{\frac{3}{2}}} \begin{pmatrix} q1 \\ q2 \end{pmatrix} \right) \right)$$

$$= \eta_{1}p_{1} + \frac{\xi_{1}q_{1}}{(q_{1}^{2} + q_{2}^{2})^{\frac{3}{2}}} + \eta_{2}p_{2} + \frac{\xi_{2}q_{2}}{(q_{1}^{2} + q_{2}^{2})^{\frac{3}{2}}}$$

$$= \left[DH \left(\begin{pmatrix} q1 \\ q1 \end{pmatrix}, \begin{pmatrix} p1 \\ p2 \end{pmatrix} \right) \right] \left(\begin{pmatrix} \xi_{1} \\ \xi_{2} \end{pmatrix}, \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} \right).$$

Following from this computation, we see that

$$abla_{\sigma}H = \left(m{p}, -rac{1}{(q_1^2 + q_2^2)^{rac{3}{2}}} m{q}
ight).$$

The Hamiltonian differential equation $x = \nabla_{\sigma} H(x)$ is then given by

$$q'_1 = p_1$$

$$p'_1 = -\frac{q_1}{(q_1^2 + q_2^2)^{\frac{3}{2}}},$$

$$q'_2 = p_2$$

$$p'_2 = -\frac{q_2}{(q_1^2 + q_2^2)^{\frac{3}{2}}}.$$

From here, we can recover the desired $\ddot{x} = -\frac{x}{|x|^3}$.

Now let's again consider the Hamiltonian differential equation given by equation (3.2). The vector field $\nabla_{\sigma} f$ has a flow that we denote by ϕ_f^t . This flow has two properties:

- ϕ_f^t preserves f: $f \circ \phi_f^t = f$,
- ϕ_f^t preserves σ : $(\phi_f^t)^* \sigma = \sigma$.

Flows will be central to our proof of Kolmogorov's Theorem. We will be constructing a symplectic diffeomorphism and will need the flows of Hamiltonian functions to do so.

Further, in our proof we will be constructing Taylor polynomials of functions of the form

$$t\mapsto g\circ\phi_f^t.$$

To perform this construction, we will use the Poisson bracket.

Definition 3.1 (Poisson Bracket). Let f and g be two functions on X. The Poisson bracket, denoted $\{f,g\}$, is defined by

$$\{f,g\} = \sigma(\nabla_{\sigma}f, \nabla_{\sigma}g) = df(\nabla_{\sigma}g) = -dg(\nabla_{\sigma}f).$$

We say that two functions f and g commute if their Poisson bracket is zero:

$$\{f,g\} = 0.$$

The functions' commuting implies that their flows also commute:

$$\phi_f(s) \circ \phi_g(t) = \phi_g(t) \circ \phi_f(s).$$

The Poisson bracket allows to write Taylor polynomials in the form

$$f \circ \phi_g^t = f + t\{f, g\} + \frac{t^2}{2}\{\{f, g\}, g\} + \frac{t^3}{3!}\{\{\{f, g\}, g\}, g\} + \cdots$$

The Poisson bracket is related to the Lie bracket: the Lie bracket is the symplectic gradient of the Poisson bracket.

Proposition 3.2 (Relation of Poisson and Lie Brackets). For any two functions f and g on a symplectic manifold (X, σ) , we have

$$\nabla_{\sigma}\{f,g\} = [\nabla_{\sigma}f, \nabla_{\sigma}g].$$

Proof. This proof will use the Jacobi identity for the Poisson bracket:

$$\{\{f,g\},h\}+\{\{g,h\},f\}+\{\{h,f\},g\}=0.$$

This identity can itself be proved by a messy computation.

Given a function h, we can compute

$$dh([\nabla_{\sigma}f, \nabla_{\sigma}g]) = d(dh(\nabla_{\sigma}h))(\nabla_{\sigma}f) - d(dh(\nabla_{\sigma}f))(\nabla_{\sigma}g)$$

$$= d\{h, g\}(\nabla_{\sigma}f) - d\{h, f\}(\nabla_{\sigma}g)$$

$$= \{\{h, g\}, f\} - \{\{h, f\}, g\}$$

$$= \{\{h, g\}, f\} + \{\{f, h\}, g\}$$

$$= \{\{f, g\}, h\}$$

$$= dh(\nabla_{\sigma}\{f, g\}).$$

QED

As an example of a Poisson bracket, let's consider again the Hamiltonian equations of motion (equation (3.3)). The Poisson bracket is calculated by

$$\{f,g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right).$$

Next we discuss what it means for a system to be totally integrable. We will be denoting the torus by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.

Definition 3.3 (Totally Integrable System). A totally integrable system is a symplectic manifold $X = \mathbb{T}^n \times \mathbb{R}^n$ with variables $(\boldsymbol{q} \in \mathbb{T}^n, \boldsymbol{p} \in \mathbb{R}^n)$, symplectic form $\sum_i dp_i \wedge dq_i$, and Hamiltonian function $H(\boldsymbol{p})$ depending only on \boldsymbol{p} .

The first example is to integrate the Hamiltonian equations of motion (equation (3.3)). If we take (q_0, p_0) to be the initial value and let $\omega = \frac{\partial H}{\partial p}$, then the solution is

$$egin{aligned} oldsymbol{q}(t) &= oldsymbol{q}_0 + t rac{\partial H}{\partial oldsymbol{p}}(oldsymbol{p}_0) = t \omega(oldsymbol{p}_0), \ oldsymbol{p}(t) &= oldsymbol{p}_0. \end{aligned}$$

Note that in particular, each coordinate $p_1, \dots p_n$ is conserved, and the trajectory is a linear motion on the torus $\mathbb{T}^n \times \{p_0\}$.

Let's take a moment to consider the importance of this example. Indeed, this is the example that comes up whenever you are dealing with a mechanical system that has n degrees of freedom and n commuting conservation laws. To make this notion more precise, we discuss a theorem of Liouville.

Theorem 3.4 (Liouville's Theorem). Let (X, σ) be a symplectic manifold of dimension 2n. Let

$$f_1,\ldots,f_n:X\to\mathbb{R}$$

be C^{∞} functions such that pairwise, the Poisson brackets vanish, that is, $\{f_i, f_j\} = 0$. Suppose further that the set X_0 of equation

$$f_1 = \dots = f_n = 0$$

is compact, and that the 1-forms df_i for i = 1, ..., n are linearly independent at all points of X_0 . Then one can choose coordinates \mathbf{q}, \mathbf{p} on a neighborhood X' of X_0 that make the Hamiltonian system (X', σ, f_1) isomorphic to a neighborhood of the 0 section in a standard completely integrable system.

In the statement of this theorem, (X, σ, H) is a standard completely integrable system if $X = T^*(\mathbb{T}^n)$ is the cotangent bundle of the torus with its canonical symplectic structure, and the Hamiltonian depends only on the variables p_1, \ldots, p_n .

Liouville's Theorem can be applied to our toy solar system example. We consider the case of a single planet. The system has two degrees of freedom, so we need two conservation laws. The first one is the function

$$H\left(\begin{pmatrix} q_1 \\ q_2 \end{pmatrix}, \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}\right) = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{(q_1^2 + q_2^2)^{\frac{1}{2}}}.$$

For the second conservation law we take the function

$$M = q_1 p_2 - q_2 p_1$$
.

Then we check that we have a conservation law by computing

$$M' = q'_1 p_2 + q_1 p'_2 - (q'_2 p_1 + q_2 p'_1)$$

$$= q'_1 p_2 + q_1 p'_2 - q'_2 p_1 - q_2 p'_1$$

$$= p_1 p_2 + q_1 \frac{q_2}{(q_1^2 + q_2^2)^{\frac{3}{2}}} - p_2 p_1 - q_2 \frac{q_1}{(q_1^2 + q_2^2)^{\frac{3}{2}}} = 0.$$

Finally we check that the conservation functions H and M commute, that is, that their Poisson bracket is zero.

$$\begin{split} \{H,M\} &= \frac{\partial H}{\partial q_1} \frac{\partial M}{\partial p_1} - \frac{\partial H}{\partial p_1} \frac{\partial M}{\partial q_1} + \frac{\partial H}{\partial q_2} \frac{\partial M}{\partial p_2} - \frac{\partial H}{\partial p_2} \frac{\partial M}{\partial q_2} \\ &= q_1 \frac{q_2}{(q_2^2 + q_2^2)^{\frac{3}{2}}} - p_1 p_2 + q_2 \frac{p_1}{(q_1^2 + q_2^2)^{\frac{3}{2}}} + p_1 p_2 \\ &= 0. \end{split}$$

One last result to note is that of Darboux. Riemannian manifolds have local geometry, and various curvatures are local invariants of this geometry. Symplectic forms have no local invariants.

Theorem 3.5 (Darboux's Theorem). Let (X, σ) be a symplectic manifold of dimension 2n. Suppose that $\mathbf{x} \in X$. Then there exists an open neighborhood $U \subseteq X$ containing \mathbf{x} and a diffeomorphism $\Psi: U \to \mathbb{R}^{2n}$ with $\Psi(\mathbf{x}) = 0$ such that

$$\Psi^* \left(\sum_i dq_i \wedge dp_i \right) = \sigma.$$

4 Irrationality

In our statement of Kolmogorov's Theorem, we included the hypothesis that $\omega \in \Omega_{\gamma}$. We now define this notation and begin to explain its importance. The set Ω_{γ} consists of vectors that are "sufficiently irrational," a notion that we need to make more precise.

Let's first consider the definition of an irrational number. If a real number θ is irrational, then for all pairs if integers p and q, with q positive, we have the following

$$\left|\theta - \frac{p}{q}\right| \neq 0.$$

This equation tells us simply that there does not exist and rational number $\frac{p}{q}$ that equals our irrational number θ . Here, the "not equal to zero" part of the equation will be stressed, as an expression similar to the one on the left hand side will later appear as the denominator of a fraction (see section 8). As dividing by zero can be rather troublesome, we wish to avoid it. This condition of irrationality is the tool we use to do so: if θ is irrational, then the left side will not be zero, so we can divide by it without any problems.

Our condition of "sufficiently irrational" will mean that $\left|\theta - \frac{p}{q}\right|$ is "sufficiently nonzero," or since we are using an absolute value, "sufficiently big." However, as we learn in our introductory

courses in real analysis, the rationals are dense in the reals, and every real number, specifically every irrational number θ , may be approximated arbitrarily closely by the rationals. More precisely, given any real $\epsilon > 0$, there exists a rational number $\frac{p}{a}$ such that

$$\left|\theta - \frac{p}{q}\right| < \epsilon.$$

Thus trying to coerce $\left|\theta - \frac{p}{q}\right|$ to be big is quite impossible.

Unsatisfied with our answer, let's instead consider a different question. Instead of wanting $\left| \theta - \frac{p}{q} \right|$ to be "big,", we ask that it is small only if the denominator is big. This is the beginning of the theory of Diophantine approximation.

The numbers that we seek will satisfy the following definition.

Definition 4.1 (Diophantine Number of Exponent d). A number θ is Diophantine of exponent d if there exists a constant $\gamma > 0$ such that for all coprime integers p and q we have

$$\left|\theta - \frac{p}{q}\right| > \frac{\gamma}{|q|^d}.$$

From this definition we see that it is a stronger requirement for a number to be Diophantine of a smaller exponent. For all irrational numbers θ there exist arbitrarily large q and p prime to q such that

$$\left|\theta - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}.$$

We see that no number is Diophantine of any exponent smaller than 2. And the number that are Diophantine of exponent exactly 2 are precisely the numbers whose continued fractions have bounded entries. These numbers form a set of measure zero.

But what about exponents greater than 2, that is, of the form $2 + \epsilon$ for $\epsilon > 0$? In the sense of Lebesgue measure, these numbers are quite abundant, as for any $\epsilon > 0$ they form a set of full measure.

Proposition 4.2 (Diophantine Numbers with Full Measure). For all $\epsilon > 0$, the set of Diophantine numbers of exponent $2 + \epsilon$ is of full measure.

Proof. We consider numbers in \mathbb{R}/\mathbb{Z} . Given any positive integer q, there are at most q elements of \mathbb{Q}/\mathbb{Z} that, in reduced form, have denominator q. Hence for any constant γ , we consider the set

$$\left\{\theta \in \mathbb{R}/\mathbb{Z} : \left|\theta - \frac{p}{q}\right| < \frac{\gamma}{|q|^{2+\epsilon}}\right\}.$$

The length of this set is at most $\frac{2\gamma}{q^{1+\epsilon}}$. Summing over all q, we see that the set of numbers θ for with there exists q such that

$$\left|\theta - \frac{p}{q}\right| < \frac{\gamma}{2^{2+\epsilon}}$$

has length strictly less than

$$2\gamma \sum_{q=1}^{\infty} \frac{1}{q^{1+\epsilon}}.$$

Take the intersection over all these sets as $\gamma \to 0$ and note that this intersection has measure 0. But this set is the complement of the set of Diophantine numbers of exponent $2 + \epsilon$. Hence the claim holds.

Before moving on, let's note that for an example of a Diophantine number, one can consider the golden mean $\phi = \frac{1+\sqrt{5}}{2}$. Also, there is a result from Liouville that stats that an irrational is transcendental if it is too well approximated by rationals. A number θ is algebraic of degree d if it satisfies an equation

$$a_d \theta^d + \dots + a_0 = 0,$$

where $a_d \neq 0$ and the coefficients are integers. If a number θ is algebraic, then there exists a constant $\gamma > 0$ such that for every pair of coprime integers, we have

$$\left|\theta - \frac{p}{q}\right| > \frac{\gamma}{q^d}.$$

This further leads to the deduction that the number

is transcendental.

Having this definition for numbers, we want to extend "irrationality" to vectors. As an example, we can consider the solar system with the vector $\omega = (\omega_1, \dots, \omega_n)$, where each ω_i represents the frequency of the *i*th planet's orbit. Our statement of Kolmogorov's theorem will require that such a vector be irrational according to the following definition.

Definition 4.3 (Diophantine Vector). Let $\omega = (\omega_1, \dots, \omega_n)$. We say ω is Diophantine if there exists $\gamma > 0$ such that for all vectors with integer coefficients $\mathbf{k} = (k_1, \dots, k_n)$, we have

$$|k_1\omega_1 + \dots + k_n\omega_n| \ge \frac{\gamma}{(k_1^2 + \dots + k_n^2)^{\frac{n}{2}}}.$$

Let Ω_{γ}^n be the subset of such $\omega \in \mathbb{R}^n$.

We could rewrite the condition in the definition as

$$\mathbf{k} \cdot \omega \ge \frac{\gamma}{|\mathbf{k}|^n}.\tag{4.1}$$

Also, we will often drop then n from our notation and write simply Ω_{γ} instead of Ω_{γ}^{n} when it is clear that we are working in \mathbb{R}^{n} .

Again, we want to examine how common it is for such vectors to occur. We do not want just exceptional motions to be preserved, but rather we wish that most motions are preserved, and that we should not need to look hard to find such vectors. In the case of numbers, we have that satisfying answer that Diophantine numbers have full measure. We establish an analogous result for vectors, following a similar proof to the one we have just seen.

Proposition 4.4 (Diophantine Vectors are of Full Measure). The union over $\gamma > 0$ of sets of Diophantine vectors with constant γ ,

$$\Omega = \bigcup_{\gamma > 0} \Omega_{\gamma},$$

is of full measure.

Proof. Consider the region $S_{k,\gamma}$, in which

$$|\boldsymbol{k} \cdot \omega| \le \frac{\gamma}{|\boldsymbol{k}|^n}$$

is a region around the hyperplane orthogonal to \mathbf{k} and with thickness $\frac{2\gamma}{|\mathbf{k}|^{n+1}}$. Denote the unit cube by Q. The part of $S_{\mathbf{k},\gamma}$ within Q has measure at most $\frac{M\gamma}{|\mathbf{k}|^{n+1}}$, where M denotes the constant giving the maximal (n-1)-dimensional measure of the intersection of Q with a hyperplane. Now consider the sum

$$\sum_{k\in\mathbb{Z}^n\setminus\{0\}}\frac{1}{|\boldsymbol{k}|^{n+1}}.$$

This sum is finite, so the volume of

$$\bigcup_{\mathbf{k}\in\mathbb{Z}^n\setminus\{0\}} S_{\mathbf{k},\gamma}\cap Q$$

is bounded by some constant times γ . As before, we now consider the intersection of these sets as $\gamma \to 0$:

$$\bigcap_{\gamma>0}\bigcup_{\mathbf{k}\in\mathbb{Z}^n\setminus\{0\}}S_{\mathbf{k},\gamma}\cap Q.$$

This intersection has measure 0, and this set is the complement of our desired set Ω . Thus Ω has full measure.

Note that this proof is very similar to that of proposition 4.2, and reduces to the case $\epsilon = 1$ if we take n = 2.

We can now understand the condition $\omega \in \Omega_{\gamma}$ from our statement of Kolmogorov's Theorem. This requirement means that the vector ω must be "suitably irrational," and such vectors are rather "common" in the sense of Lebesgue.

5 KAM and the Solar System

With these preliminaries out of the way, we are going to discuss Kolmogorov's Theorem in the context of our solar system example.

We view the solar as system as an n dimensional torus, where n is the number of planets. This gives us a geometric way to describe the motions of the planets. Suppose that the planets have initial positions given by $\mathbf{a} = (a_1, \dots, a_n)$. Then a trajectory with frequency vector $\omega = (\omega_1, \dots, \omega_n)$ is at the point $\mathbf{a} + t\omega$ at time t.

Define a linear flow on $(\mathbb{R}/\mathbb{Z})^n$ in the direction ω to be the motion given by

$$t \mapsto \mathbf{a} + t\omega = (a_1 + t\omega_1, \dots, a_n + t\omega_n).$$

Such a trajectory is dense on the torus if and only if ω is irrational according to the Diophantine condition from definition 4.3.

Kolmogorov's Theorem tells us about when motions of a system are preserved, so let's examine what it means for two motions to be the same as each other. Consider a motion x(t) to be a motion of the perturbed system and a motion $x_1(t)$ to be a motion of the unperturbed system that is dense on a torus T_1 . For the motions to be the same, we mean that x(t) is dense on the corresponding torus T and that it fills in T in the same way that x_1 fills in T_1 . That is, there exists a homeomorphism $\Phi: T \to T_1$ such that

$$\Phi(\boldsymbol{x}(t)) = \boldsymbol{x}_1(t).$$

Using this notation, let's see what Kolmogorov's theorem says for our solar system.

Theorem 5.1 (Kolmogorov's Theorem Applied to the Solar System). Let $\mathbf{x}_1(t)$ be a motion of the zero-masses system with Diophantine frequency vector. Then there exists $\epsilon > 0$ such that, if the planets are given masses $m_i < \epsilon$, there exists a trajectory $\mathbf{x}(t)$ of the perturbed system dense on a torus T and a homeomorphism $\Phi : T \to T_1$ such that

$$\Phi(\boldsymbol{x}(t)) = \boldsymbol{x}_1(t).$$

The set of such trajectories is of positive measure in the set of all trajectories. The probability of being on such a trajectory tends to 1 as ϵ tends to zero.

We would like that our solar system should fit the hypotheses of this theorem. But alas, the periods of the orbits of Jupiter and Saturn at in a 5 : 2 ratio. Thus we have trouble with the important hypothesis of the irrationality of the planets' frequency vector. However, there are refinements of the theorem that state that there may still exist stable motions where the ratios are rational. We will not pursue these refinements here.

6 Analytic Functions

As this is a paper for a complex analysis class, we begin this section by noting that the complex analysis is located here.

Take another look at the statement of the theorem. We will concern ourselves with equation (1.1). Here we have $H = h \circ \Phi$, where Φ is a symplectic diffeomorphism. Our proof will involve solving for this diffeomorphism Φ .

We need a tool for solving equations, and the tool that we use is similar to Newton's Method. We will construct Φ as a limit of Φ_i , where the Φ_i are constructed using an iterative process. So let's take a moment first to consider what goes in to using Newton's Method.

Newton's Method can be used to solve an equation f(x) = 0. The process involves choosing an initial guess x_0 . Then successive points x_i are defined by

$$\boldsymbol{x}_{i+1} = \boldsymbol{x}_i - [Df(\boldsymbol{x}_i)]^{-1} f(\boldsymbol{x}_i).$$

These points x_{i+1} will, under "good" conditions, converge to a solution to the equation.

To see why some additional conditions are necessary, consider the function $f(x) = x^3 - x + \frac{\sqrt{2}}{2}$.

We will select a "bad" initial guess such that if we start Newton's Method from this guess, we will never converge to a solution. Let our initial guess be $x_0 = 0$. Note that this function has derivative $f'(x) = 3x^2 - 1$. Thus plugging in our initial guess gives us

$$x_1 = x_0 - \frac{1}{f'(x_0)}f(x_0) = \frac{\sqrt{2}}{2}.$$

But then we encounter a problem once we use x_1 to determine x_2 .

$$x_2 = x_1 - \frac{1}{f'(x_1)}f(x_1) = 0.$$

This brings us back to our initial guess! So now Netwon's method will oscillate between 0 and $\frac{\sqrt{2}}{2}$, and it will not converge to a solution.

Figure 1:
$$f(x) = x^3 - x + \frac{\sqrt{2}}{2}$$

The additional conditions that we need for the convergence of Newton's Method are given in a theorem by Kantorovitch. In order to guarantee convergence, we need a bound on the second derivative of the function f. For completeness, let's state this theorem.

Theorem 6.1 (Kantorovitch). Let E and F be Banach spaces, U be an open subset of E, and $f: U \to F$ be C^1 . Suppose that $\mathbf{x}_0 \in U$ is a point where $[Df(\mathbf{x}_0)]: E \to F$ is an isomorphism. Set

$$h_0 = -[Df(\mathbf{x}_0)]^{-1}(f(\mathbf{x}_0)),$$

 $\mathbf{x}_1 = \mathbf{x}_0 + h_0,$
 $U_0 = B_{\|h_0\|}(\mathbf{x}_1).$

Then if the following hold:

- 1. $U_0 \subset U$
- 2. $||[Df(y_1)] [Df(y_2)]|| \le M$ for all $y_1, y_2 \in U_0$
- 3. $||f(\boldsymbol{x})|| ||[Df(\boldsymbol{x}_0)]^{-1}||^2 M \le \frac{1}{2}$

then the equation $f(\mathbf{x}) = 0$ has a unique solution in U_0 , and Newton's method starting from \mathbf{x}_0 is defined for all i and converges to this solution. If moreover we have

$$||f(\boldsymbol{x})|| ||[Df(\boldsymbol{x}_0)]^{-1}||^2 M = k < \frac{1}{2},$$

Then the method is superconvergent. That is, if we put

$$C = \frac{1 - k}{2(1 - 2k)} \| [Df(\mathbf{x}_0)]^{-1} \| M,$$

$$\mathbf{x}_{i+1} = \mathbf{x}_i + h_i m$$

$$h_{i+1} = -[Df(\mathbf{x}_i)]^{-1} f(\mathbf{x}_i),$$

then
$$||h_{i+1}|| \le C ||h_i||^2$$
.

Note that superconvergence corresponds to doubling the number of correct digits at each iteration. Geometric convergence differs from superconvergence, as it adds only a fixed number of significant figures at each iteration. The interested reader can follow a proof given in [7] and fill in some minor details to apply it to this more general case.

In solving for the diffeomorphism Φ in the proof of Kolmogorov's theorem, we will be using a similar technique to Newton's method. Where with Newton's method we needed a bound on the second derivative, we will need some type of analogous condition for our iterative process. We need some way to measure "size," that is, we need to choose a norm for our functions.

First let's recall the definition of a Banach algebra.

Definition 6.2 (Banach Algebra). Let k be \mathbb{R} or \mathbb{C} . A normed algebra over k is an algebra \mathcal{A} over k with a sub-multiplicative norm $\|\cdot\|$. That is, for all $x, y \in \mathcal{A}$, we have

$$||xy|| \le ||x|| \, ||y|| \, .$$

If \mathcal{A} is a Banach space, then it is called a Banach algebra.

Let $X \subseteq \mathbb{C}^k$ be compact, and let the caligraphic letter \mathcal{X} be the Banach algebra of continuous functions on X that are analytic in the interior and have the sup norm

$$||f||_X = \sum_{\boldsymbol{x} \in X} |f(\boldsymbol{x})|.$$

Here we use the normal absolute value as the standard Euclidean norm on \mathbb{C}^n .

We consider three regions:

$$B_{\rho} = \{ \boldsymbol{p} \in \mathbb{C} : |\boldsymbol{p}| \le \rho \},$$

$$C_{\rho} = \{ \boldsymbol{q} \in \mathbb{C}^{n} / \mathbb{Z}^{n} : |\operatorname{Im}(\boldsymbol{q})| \le \rho \},$$

$$A_{\rho} = C_{\rho} \times B_{\rho} = \{ (\boldsymbol{q}, \boldsymbol{p}) \in \mathbb{C}^{n} / \mathbb{Z}^{n} \times \mathbb{C}^{n} : |\boldsymbol{p}| \le \rho, |\operatorname{Im}(\boldsymbol{q})| \le \rho \}.$$

Denote by \mathcal{B}_{ρ} , \mathcal{C}_{ρ} , and \mathcal{A}_{ρ} the corresponding Banach algebras. We can expand elements of \mathcal{B}_{ρ} as power series, and elements of \mathcal{C}_{ρ} as Fourier series:

$$f(\boldsymbol{z}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^n} f_{\boldsymbol{k}} e^{2\pi i \boldsymbol{k} \cdot \boldsymbol{z}}.$$

This Fourier series expansion will be important in section 8.

Let's take a look at how we can bound derivatives of analytic functions, analogous to how we use the second derivative to bound the derivative of functions in Kantorovitch's Theorem. We will use Cauchy's Inequalities on Balls.

Theorem 6.3 (Cauchy's Inequalities on Balls). If $f \in \mathcal{B}_{\rho}$, then

$$\begin{split} \|Df\|_{\rho-\delta} &\leq \frac{1}{\delta} \|f\|_{\rho} \,, \\ \|D^2f\|_{\rho-\delta} &\leq \frac{4}{\delta^2} \|f\|_{\rho} \,. \end{split}$$

As a corollary, the case $\delta = \rho$ bounds the derivatives at the center of balls:

$$|Df(0)| \le \frac{1}{\rho} ||f||_{\rho},$$

 $|D^2f(0)| \le \frac{4}{\rho^4} ||f||_{\rho}.$

Proof. Take $z \in B_{\rho-\delta}$ and $u \in \mathbb{C}^n$. Since $B_{\delta}(z) \subseteq B_{\rho}$, the function

$$g: t \mapsto f(\boldsymbol{z} + t\delta \boldsymbol{u})$$

is defined on the unit disc. The normal Cauchy inequality implies that

$$\delta |(Df(z))u| = |g'(0)| \le ||g||_1 \le ||f||_{\rho}.$$

Applying the argument twice gives the result for the second derivative:

$$|D^2 f(\boldsymbol{z})(\boldsymbol{u}, \boldsymbol{v})| \leq \frac{2}{\delta} \|D f(\boldsymbol{z})(\boldsymbol{u})\|_{\rho - \frac{\delta}{2}} |\boldsymbol{v}| \leq \frac{4}{\delta^2} \|f\|_{\rho} |\boldsymbol{u}| |\boldsymbol{v}|.$$

QED

7 Main Idea of the Proof

Let's take another look at the statement of Kolmogorov's theorem and recall equation (1.1), where we have $H = h \circ \Phi$:

$$H(\mathbf{Q}, \mathbf{P}) = A + \omega \mathbf{P} + R(\mathbf{Q}, \mathbf{P}).$$

This equation is an equation for a diffeomorphism Φ , and the proof involves solving for this diffeomorphism. We would like to use Newton's method to do this solving, but that in itself is not quite sufficient for out purposes. However, we can still do something with a similar flavor.

The proof uses an iterative process in which we obtain the diffeomorphism Φ as a limit of Φ_i , where

$$\Phi_i = \phi_i \circ \phi_{i-1} \circ \cdots \circ \phi_1.$$

Here, ϕ_i denotes the Hamiltonian flow ϕ_{g_i} for a Hamiltonian function g_i . This g_i is the unknown for which we solve.

Let's take a moment to pause and reflect on what was just done. Instead of solving for a diffeomorphism Φ , at each iteration we are solving for a Hamiltonian function g_i . This simplification is rather important, as a diffeomorphism can be a rather complicated object. The g_i are much easier to reason about. Furthermore, the map ϕ_{g_i} is itself a symplectic diffeomorphism.

At the *i*th iteration we have a Hamiltonian $\tilde{h} = \Phi_i^* h$. We expand \tilde{h} up to order 2 in \boldsymbol{p} , and the coefficients are Fourier series in \boldsymbol{q} . We write $\tilde{h} = \tilde{h}_0 + \tilde{h}_1$, where

- \tilde{h}_1 has the terms constant or linear in \boldsymbol{p} , except the constant in \boldsymbol{q} ,
- \tilde{h}_0 is everything else.

We would very much like to eliminate \tilde{h}_1 , but we won't be able to do so by solving a linear equation. Instead we will solve a linear equation for a function g such that $\phi_g^*\tilde{h}$ is "better" than \tilde{h} , in some reasonable sense of "better."

We expand $\phi_g^* \tilde{h}$ to first order in g. This gives us

$$\phi_g^* \tilde{h} = \tilde{h} + \{g, \tilde{h}\} + o(|g|)$$

= $\tilde{h}_0 + \tilde{h}_1 + \{g, \tilde{h}_0\} + \{g, \tilde{h}_1\} + o(|g|).$

We want to eliminate the terms, other than the term constant in q, that are not $O(|p|)^2$. Applying the standard Newton's method would necessitate solving the equation

$$\tilde{h}_1 + \{g, \tilde{h}_0\} + \{g, \tilde{h}_1\} \in o(|\boldsymbol{p}|).$$

But we will do something a bit different.

We can assume that anything we want is small as long as the choice is justified by the resulting inequalities. So suppose that $\{g, \tilde{h}_1\}$ is of order 2 since g and \tilde{h}_1 are both small. Then the linear equation that we need to solve is

$$\tilde{h}_1 + \{g, \tilde{h}_0\} \in o(|\mathbf{p}|).$$
 (7.1)

Thus we need to solve this *Diophantine partial differential equation*. Our ability to solve it relies on the Diophantine vectors that we saw previously in section 4. Recall that we have the hypothesis $\omega \in \Omega_{\gamma}$ in the statement of the theorem. This hypothesis gives us the irrationality that is required for equation (7.1) to have a solution.

8 Diophantine Differential Equations

Let $g \in \mathcal{C}_{\rho}$. We are going to be solving linear equations of the form

$$Df(\omega) = \sum_{i=1}^{n} \omega_i \frac{\partial f}{\partial q_i} = g,$$
(8.1)

with $f \in \mathcal{C}_{\rho'}$ for some $\rho' < \rho$. Recall, as was mentioned in section 6, that since $f \in \mathcal{C}_{\rho'}$ and $g \in \mathcal{C}_{\rho}$, we can write f and g as Fourier Series.

$$f(\mathbf{q}) = \sum_{\mathbf{k} \in \mathbb{Z}^n} f_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{q}},$$
$$g(\mathbf{q}) = \sum_{\mathbf{k} \in \mathbb{Z}^n} g_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{q}}.$$

The solution is given by

$$f_{\mathbf{k}} = \frac{1}{2\pi \mathrm{i}(\mathbf{k} \cdot \omega)} g_{\mathbf{k}}.$$
 (8.2)

We need g_0 to be zero. Then f_0 is arbitrary, and otherwise the series for f is unique.

Take note of the $(\mathbf{k} \cdot \omega)$ in the denominator of equation (8.2) and compare this expression to our definition of a Diophantine vector in to equation (4.1). Dividing by zero in equation (8.2) would mean that there is no solution. So we need the Diophantine condition for the vector ω to ensure that we do not divide by zero in equation (8.2). Hence the convergence properties of f depend on the Diophantine properties of ω . Without this condition, we would be unable to find solutions to these equations.

But even though this condition gives us convergence for ρ , we might not have boundedness. So we need some $\rho' < \rho$ where we have boundedess. But we must choose ρ' large enough so that the limit is nonempty. Thus we have a trade off. We must be able to pick ρ' correctly in order for our iterative method of solving the equation converges to a solution. Thus the choice of ρ' must be done rather "carefully." We will avoid writing out all of the details and instead direct the reader to [9]. But we will develop the proposition that we need for choosing this ρ' , and in section 9 we will see how to use it.

The following tool, which we then prove, is what we use for making our careful choice of ρ' .

Proposition 8.1. If $g \in C_{\rho}$ and $\epsilon \in \Omega_{\gamma}$, then for all δ such that $0 < \delta < \rho$, we have the following two inequalities:

$$||f||_{\rho-\delta} \le \frac{\kappa_n}{\gamma \delta^{2n}} ||g||_{\rho},$$
$$||Df||_{\rho-\delta} \le \frac{\kappa_n}{\gamma \delta^{2n+1}} ||g||_{\rho}.$$

Here, κ_n is a constant that depends only on n.

Proof. For $\boldsymbol{y} \in \mathbb{R}^n$ with $|\boldsymbol{y} \leq \rho$ (in particular $\boldsymbol{y} = \rho \frac{\boldsymbol{k}}{|\boldsymbol{k}|}$), the function

$$\boldsymbol{q} \mapsto q(\boldsymbol{q} - \mathrm{i}\boldsymbol{y})$$

is continuous and periodic in q of period 1. This function can be written

$$g(\boldsymbol{q} - \mathrm{i}\boldsymbol{y}) = \sum_{\boldsymbol{k} \in \mathbb{Z}^n} g_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i}\boldsymbol{k} \cdot (\boldsymbol{q} - \mathrm{i}\boldsymbol{y})} = \sum_{\boldsymbol{k} \in \mathbb{Z}^n} \left(g_{\boldsymbol{k}} \mathrm{e}^{2\pi \boldsymbol{k} \cdot \boldsymbol{y}} \right) \mathrm{e}^{2\pi \mathrm{i}\boldsymbol{k} \cdot \boldsymbol{q}}.$$

By Parseval's theorem, we have

$$\|g\|_{\rho}^2 \ge \int_{\mathbb{T}^n} |g(\boldsymbol{q} - \mathrm{i}\boldsymbol{y})|^2 |d^n \boldsymbol{q}| = \sum_{\boldsymbol{k} \in \mathbb{Z}^n} |g_{\boldsymbol{k}}|^2 \mathrm{e}^{4\pi \boldsymbol{k} \cdot \boldsymbol{y}}.$$

Since the series has positive numbers, we have

$$||g||_{\rho}^2 \ge |g_{\mathbf{k}}|^2 e^{4\pi\rho|\mathbf{k}|}.$$

Using the Diophantine-ness of ω and the Fourier coefficients f_k , we have

$$|f_{\mathbf{k}}| \le \frac{1}{2\pi\gamma} \|g\|_{\rho} |\mathbf{k}|^n e^{-2\pi |\mathbf{k}|\rho}.$$

Next we split the proposition into two parts: the first part dealing with the f case and the second part dealing with the Df case.

First we handle the case for f. For $|q| \leq \rho - \delta$, we can write

$$\left| f_{\mathbf{k}} e^{2\pi i (\mathbf{k} \cdot \mathbf{q})} \right| \leq \sum_{\mathbf{k} \in \mathbb{Z}^n} \frac{|\mathbf{k}|^n}{2\pi \gamma} \|g\|_{\rho} e^{-2\pi \rho |\mathbf{k}|(\rho - \delta)}$$
$$= \frac{\|g\|_{\rho}}{2\pi \gamma} \sum_{\mathbf{k} \in \mathbb{Z}^n} |\mathbf{k}|^n e^{-2\pi |\mathbf{k}|\delta}.$$

We then rewrite the sum on the right:

$$\sum_{\mathbf{k}\in\mathbb{Z}^n} |\mathbf{k}|^n e^{-2\pi |\mathbf{k}|\delta} = \frac{1}{(2\pi\delta)^{2n}} \left((2\pi\delta)^n \sum_{\mathbf{k}'\in 2\pi\delta\mathbb{Z}^n} |\mathbf{k}'|^n e^{-|\mathbf{k}'|} \right).$$

As $\delta \to 0$, the expression inside the parentheses approaches

$$\int_{\mathbb{R}^n} |\boldsymbol{x}|^n \mathrm{e}^{-|\boldsymbol{x}|} |d^n \boldsymbol{x}|.$$

Since the integral is convergent there exist κ'_n such that for $\delta \leq 1$, it holds that

$$\sum_{\boldsymbol{k}\in\mathbb{Z}^n} |\boldsymbol{k}|^n \mathrm{e}^{-2\mathrm{i}|\boldsymbol{k}|\delta} \le \frac{\kappa'_n}{(2\pi\delta)^{2n}}.$$

We now have

$$||f||_{\rho-\delta} \le \frac{\kappa_n}{(2\pi\delta)^{2n}} \frac{||g||_{\rho}}{2\pi\gamma}.$$

Thus we are finished with the f part of the proof.

The Df part of the proof is similar. We use

$$Df(\boldsymbol{q})(\boldsymbol{u}) = 2\pi \mathrm{i} \sum (\boldsymbol{k} \cdot \boldsymbol{u}) f_{\boldsymbol{k}} \mathrm{e}^{2\pi \mathrm{i} (\boldsymbol{k} \cdot \boldsymbol{q})}.$$

Then we obtain the inequality

$$|D(\boldsymbol{q})(\boldsymbol{u})| \leq \frac{|\boldsymbol{u}| \|g\|_{\rho} \kappa_n''}{\gamma (2\pi\gamma)^{n+1}}.$$

Analogous to the first part of the proof, the integral

$$\int_{\mathbb{D}^n} |\boldsymbol{x}|^{n+1} \mathrm{e}^{-|\boldsymbol{x}||d^n \boldsymbol{x}|}$$

is convergent. Thus κ''_n exists.

To complete the proof of the proposition, take

$$\kappa_n := \max \left\{ \frac{\kappa'_n}{(2n)^{2n}}, \frac{\kappa''_n}{(2n)^{2n+1}} \right\}.$$

9 Solving Equations

Let's return to our previous equation

$$h_1 + \{q, h_0\} \in O(|\mathbf{p}|^2).$$

This equation is the Diophantine differential equation that we had before in equation (7.1), but without tildes and with $o(|\mathbf{p}|)$ replaced by $O(|\mathbf{p}|^2)$, which is equivalent since our functions are analytic. The unknown is g, which we take to be degree 1 in \mathbf{p} :

$$g = \lambda \boldsymbol{q} + X(\boldsymbol{q}) + \sum_{i=1}^{n} Y_i(\boldsymbol{q}) p_i.$$

Note that only the linear terms of g contribute to the linear terms of $\{g, h_0\}$. The unknowns are λ , X, and Y_i . We can expand X and Y_i as Fourier series, since they are functions of q only.

Let $a \in \mathbb{R}$, $\omega \in \Omega_{\gamma}$, $R(q, p) \in O(|p|^3)$, and $\overline{A} = 0$, where \overline{A} is the average of A on the torus p = 0. We can then write

$$h_0(\boldsymbol{q}, \boldsymbol{p}) = a + \omega \boldsymbol{p} + \frac{1}{2} \boldsymbol{p} \cdot C(\boldsymbol{q}) \boldsymbol{p} + R(\boldsymbol{q}, \boldsymbol{p}),$$

$$h_1(\boldsymbol{q}, \boldsymbol{p}) = A(\boldsymbol{q}) + B(\boldsymbol{q}) \boldsymbol{p}.$$

We then have

$$(h_1 + \{g, h_0\})(\boldsymbol{q}, \boldsymbol{p}) = \omega \cdot \lambda + A(\boldsymbol{q}) + DX(\boldsymbol{q})(\omega) + (B(\boldsymbol{q}) + (\lambda + DX(\boldsymbol{q}))C(\boldsymbol{q}) + \omega DY(\boldsymbol{q})) \cdot \boldsymbol{p} + O(|\boldsymbol{p}|^2).$$

We need to solve the equations

$$DX(q)(\omega) = -A(q) \tag{9.1}$$

$$DY(\mathbf{q})(\omega) = -B(\mathbf{q}) - (\lambda + DX(\mathbf{q}))C(\mathbf{q})$$
(9.2)

for X and Y_i , i = 1, ..., n. These are Diophantine differential equations. To see this, let's write these in the form of equation (8.1), which we have already discussed how to solve.

For equation (9.1), we can write

$$\sum_{i} \omega_{i} \frac{\partial X}{\partial q_{i}} = -A(\boldsymbol{q}).$$

Second, we note that equation (9.2), consists of n differential equations. These equations can be written in the form

$$\sum_{i} \omega_{i} \frac{\partial Y_{i}}{\partial q_{i}} = -B_{j}(\boldsymbol{q}) - \sum_{i} C_{i,j}(\boldsymbol{q}) \left(\lambda_{i} + \frac{\partial X}{\partial q_{i}} \right).$$

We will solve the first equation, equation (9.1), and then plug in this solution to help solve equation (9.2).

Since we have the hypothesis $\overline{A} = 0$, we can solve the first equation. We can find a unique X such that $\overline{X} = 0$ and that for all δ with $0 < \delta < \rho$, the bounds

$$||X||_{\rho-\delta} \le \frac{\kappa_n \epsilon}{\gamma \delta^{2n}},$$
$$||DX||_{\rho-\delta} \le \frac{\kappa_n \epsilon}{\gamma \delta^{2n+1}},$$

are satisfied.

Now we want to solve equation (9.2). In order to solve it, we need its right hand side to be zero. For this we need to choose λ . Set

$$\lambda = -\overline{C}^{-1} \overline{(B + (DX)C)}.$$

Then we have

$$||B - (DX)C||_{\rho - \delta} \le \epsilon + \frac{\kappa_n \epsilon}{m \gamma \delta^{2n+1}} \le \frac{2\kappa_n \epsilon}{m \gamma \delta^{2n+1}}.$$

This inequality gives us

$$|\lambda| \le \frac{2\kappa_n \epsilon}{m^2 \gamma \rho^{2n+1}} \le \frac{2\kappa_n \epsilon}{m \gamma \delta^{2n+2}}.$$

From here we get

$$\begin{split} \|B - (\lambda + DX)C\|_{\rho - \delta} &\leq \|B - (DX)C\|_{\rho - \delta} + \|\lambda C\|_{\rho - \delta} \\ &\leq \frac{2\kappa_n \epsilon}{m\gamma \delta^{2n+1}} + \frac{2\kappa_n \epsilon}{m^3 \gamma \delta^{2n+1}} \\ &\leq \frac{4\kappa_n \epsilon}{m^3 \gamma \delta^{2n+1}}. \end{split}$$

Now we use the tool that we developed in the form of proposition 8.1. This proposition allows us to fund $Y \in \mathcal{C}^n_{\rho-2\delta}$ such that $\overline{Y} = 0$ and that the following estimates are satisfied:

$$\begin{split} \|Y\|_{\rho-2\delta} & \leq \frac{4\kappa_n^2\epsilon}{m^3\gamma^2\delta^{4n+1}} \\ \|DY\|_{\rho-2\delta} & \leq \frac{4\kappa_n^2\epsilon}{m^3\gamma^2\delta^{4n+2}}. \end{split}$$

Let's summarize what we have done to solve these equations. These equations are Diophantine differential equations. The hypothesis $\overline{A}=0$ allows us to solve equation (9.1) and to find $X \in \mathcal{C}_{\rho'}$ for all $\rho' < \rho$. We then substitute into the second equation. We can then determine λ so that the averages of the right-hand sides in the n are all zero. Then we can solve the second equation and find $Y_i \in \mathcal{C}_{\rho''}$ for all $\rho'' < \rho'$. Iterating the process requires choosing ρ' and ρ'' "carefully." The remaining details are left to [9].

10 Conclusion

The proof by Hubbard and Ilyshenko in [9] is considerably shorter than many previous proofs, and solely by following it without considering the work before it we may miss out on what make it so useful, and why the ideas it contains are so powerful. We can tell that the proof is difficult merely by the fact that Moser's proof, given in involves functions that are 333 times differentiable.

With everything that we have discussed, the statement of Kolmogorov's Theorem should now be very much readable, and the main ideas of the proof should be understandable. We have an equation that we solve for a diffeomorphism. This equation is solved iteratively using an analogue of Newton's Method. We used analytic functions in order for this technique to converge properly, analogous to how we would need to bound the second derivative if we were to apply Kantorovitch's Theorem when using Newton's Method. And we need the Diophantine vectors in order to avoid dividing by zero when solving for our Fourier coefficients.

References

- [1] V.I. Arnold. Proof of a theorem of A.N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the hamiltonian. *Uspekhi Mat. Nauk*, 18:13–40, 1963.
- [2] V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, 1978.
- [3] V.I. Arnold. From superpositions to KAM theory. Vladimir Igorevich Arnold. Selected-60, Moscow: PHASIS, pages 727–740, 1997.
- [4] G. Benettin, L. Galgani, A Giorgilli, and J.-M. Strelcyn. A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the lie method. Il Nuovo Cimento, 79B, 1984.
- [5] C. Flammarion. The Flammarion Book of Astronomy. Simon and Schuster, New York, 1964.
- [6] É. Ghys. Resonances and small divisors. In E. Charpentier, A. Lesne, and N. Nikolski, editors, Kolmogorov's Heritage in Mathematics. Springer, 2007.
- [7] B. Hubbard and J. Hubbard. Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach. Matrix Editions, Ithaca, NY, 2009.
- [8] J. Hubbard. The KAM theorem. In E. Charpentier, A. Lesne, and N. Nikolski, editors, Kolmogorov's Heritage in Mathematics. Springer, 2007.
- [9] J Hubbard and Y. Ilyashenko. A proof of Kolmogorov's theorem. Discrete and Continuous Dynamical systems, 4:1–20, 2003.
- [10] A.N. Kolmogorov. General theory of dynamical systems and classical mechanics. In: Proceedings of the International Congress of Mathematicians, Amsterdam, 1954. Erven P. Noordhoff N.V., Groningen, 1957.
- [11] J. Lee. Introduction to Smooth Manifolds. Springer, 2013.
- [12] J. Moser. On the invariant curves of area-preserving mappings of an annulus. *Nachr. Akad. Wiss. Gttingen Math-Phys.*, Kl. II:1–20, 1962.
- [13] E Stein and R. Shakarchi. Complex Analysis. Princeton University Press, Princeton, 2013.