Graph Pooling Algorithm for Graph Classification Task

1. Introduction

This report details the implementation and evaluation of a graph pooling algorithm for graph classification tasks. The model architecture consists of multiple Graph Neural Networks (GNNs) followed by Down-Sampling & Pooling layers, and experiments are conducted on ENZYMES and D&D datasets.

2. Model Architecture and Parameters

- Graph Neural Network (GNN) Layers:
 - o Number of GNN layers: 4
 - GNN1 → GNN2 → Down-Sample & Pool1 → GNN3 → GNN4 → Down-Sample & Pool2 → Classification Head
 - Size of Hidden Layers:
 - GNN1 & GNN2: The input dimension is determined by the node feature size of the dataset, and the hidden dimension is set to 64.
 - GNN3 & GNN4: The output from the first down-sampling layer is 64, and the hidden dimension for these GNN layers is increased to 128.
- Down-Sampling and Pooling Layers:
 - k-values: These define the percentage of nodes retained in each down-sampling phase.
 - k-values tested: 90%, 80%, 60%
- **Hierarchical Pooling:** This defines the number of clusters in the pooling layers.
 - o **m-values**: **6** for the first pooling layer and **3** for the second pooling layer.
- Classifier Layer:
 - Fully Connected (FC) Layers:
 - The classifier consists of a series of fully connected layers:
 - First FC layer: 128 hidden units
 - **Second FC layer**: **100** hidden units
 - **Final output layer**: **50** hidden units connected to the number of classes(**6** for ENZYMES dataset, **2** for D&D).
- Activation Function:
 - ReLU (Rectified Linear Unit) activation is used after each GNN and fully connected layer to introduce non-linearity.
- Dropout:
 - **Dropout rate**: **0.4** for Enzymes and **0.3** for DD is applied after each GNN layer and pooling layer to prevent overfitting.

• Batch Normalization:

o Batch normalization is applied after each GNN and fully connected layer to normalize activations.

• Optimizer:

• Adam optimizer with a learning rate of **0.001**.

Epochs:

ENZYMES dataset: 1000 epochsD&D dataset: 250 epochs

Batch Size:

o Batch size: 20 for both datasets.

• Learning Rate:

o Set to **0.001**.

• Weight Initialization:

• Xavier initialization for the GNN layers with a gain factor adjusted for ReLU activation.

3. Results and Comparison

ENZYMES Dataset

k%	Validation Accuracy	Test Accuracy	
90%	0.65	0.53	
80%	0.58	0.58	
60%	0.35	0.35	

Table 1. Accuracy for enzymes dataset

	precision	recall	f1-score	support
0	0.43	0.67	0.52	9
1	0.62	0.67	0.64	12
2	0.38	0.38	0.38	8
3	0.43	0.33	0.38	9
4	0.60	0.50	0.55	12
5	0.75	0.60	0.67	10
accuracy			0.53	60
macro avg	0.53	0.52	0.52	60
weighted avg	0.55	0.53	0.53	60

Fig 1. Classification Report (ENZYMES - k=90%):

Fig 2. Confusion Matrix (ENZYMES - k=90%):

Fig 3. Training vs Validation Loss (ENZYMES - k=90%):

k%	Validation Accuracy	Test Accuracy
90%	0.84	0.78
80%	0.84	0.74
60%	0.85	0.78

Table 2. Accuracy for D&D Dataset

Fig 4. Confusion Matrix (D&D - k=90%):

	precision	recall	f1-score	support
Ø	0.80	0.80	0.80	65
1	0.76	0.76	0.76	54
accuracy		0.70	0.78	119
macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78	119 119

Fig 5. Classification Report (D&D - k=90%):

Fig 6. Training vs Validation Loss (D&D - k=90%):

4. Conclusion

This report presents the results of different experiments using various down-sampling percentages (k-values) and hierarchical pooling. The ENZYMES dataset achieved the highest test accuracy with k=80%, while the D&D dataset performed best with k=90%.