A cohomological perspective for high order problems (II)

Kaibo Hu

University of Minnesota

Chinese Academy of Sciences

December 02, 2020

Motivation

2 Generating new complexes from existing complexes

Motivation

Q Generating new complexes from existing complexes

From Part I: Hu-Q.Zhang-Z.Zhang 2020 arXiv

construct finite element subcomplexes for

- relate FEs for high order problems (H(grad curl)) to Stokes ($[H^1]^3$ - L^2),
- new elements inspired by the complex property,
- why H(grad curl) FEs important?

2D gradcurl-conforming elements: Hu-Q.Zhang-Z.Zhang, 2020 SISC

primal variational formulation

Find $(\lambda, \boldsymbol{u}) \in \mathbb{R} \times H(\operatorname{grad}\operatorname{rot};\Omega) \cap H_0(\operatorname{div};\Omega)$, s.t., $(\operatorname{grad}\operatorname{rot}\boldsymbol{u},\operatorname{grad}\operatorname{rot}\boldsymbol{v}) + (\operatorname{div}\boldsymbol{u},\operatorname{div}\boldsymbol{v}) = \lambda(\boldsymbol{u},\boldsymbol{v}), \forall \boldsymbol{v} \in H(\operatorname{grad}\operatorname{rot};\Omega) \cap H_0(\operatorname{div};\Omega)$ mixed variational formulation $(\sigma = -\operatorname{div}\boldsymbol{u})$

Find
$$(\lambda, \boldsymbol{u}, \sigma) \in \mathbb{R} \times H(\operatorname{grad}\operatorname{rot};\Omega) \times H^1(\Omega)$$
, s.t.,
$$(\operatorname{grad}\operatorname{rot}\boldsymbol{u},\operatorname{grad}\operatorname{rot}\boldsymbol{v}) + (\nabla\sigma,\boldsymbol{v}) = \lambda(\boldsymbol{u},\boldsymbol{v}), \ \forall \boldsymbol{v} \in H(\operatorname{grad}\operatorname{rot};\Omega),$$
$$(\boldsymbol{u},\nabla\tau) - (\sigma,\tau) = 0, \ \forall \tau \in H^1(\Omega).$$

PDE problem

$$-\operatorname{curl} \Delta \operatorname{rot} \boldsymbol{u} - \nabla \operatorname{div} \boldsymbol{u} = \lambda \boldsymbol{u}, \quad \operatorname{in} \ \Omega,$$

$$\boldsymbol{u} \cdot \boldsymbol{n} = 0, \quad \operatorname{and} \ \operatorname{natural} \ \operatorname{b.c.}, \quad \operatorname{on} \ \partial \Omega.$$

Table: Argyris FEs, primal formulation

n	λ_1	λ_2	λ_3	λ_4	λ_5
0	1.0000000001	1.0000000001	2.000000015	4.00000016958	4.0000002587
1	1.0000000000	1.0000000000	2.0000000000	3.73248049670	4.0000000005
2	1.0000000001	1.0000000001	2.0000000001	3.26637184925	4.0000000003
3	0.9999999981	1.0000000001	2.0000000005	2.90370225476	3.9999999996
4	1.0000000000	1.0000000000	1.9999999960	2.61348572818	3.9999999430

Table: grad rot-conforming FEs, mixed formulation

n	λ_1	λ_2	λ_3	λ_{4}	λ_{5}	λ_6
0	0	1.0290	1.0290	2.0871	4.3970	4.3970
1	0	1.0072	1.0072	2.0220	4.1016	4.1038
2	0	1.0018	1.0018	2.0055	4.0255	4.0263
3	0	1.0005	1.0005	2.0014	4.0064	4.0066
4	0	1.0001	1.0001	2.0003	4.0016	4.0016

K.Hu, Q.Zhang, J. Han, L. Wang, and Z. Zhang, *Spurious solutions for high order curl problems*, in preparation.

Question: how to understand zero eigenvalues? Why Argyris element failed?

- nontrivial topology?
- higher dimensions?
- ..

Overview of our answer: look at complexes!

e.g., 3D grad curl complex ($\mathbb{V}:=\mathbb{R}^3$ vectors; \mathbb{T} trace-free matrices, \mathbb{M} : full matrices):

$$0 \longrightarrow H^q \stackrel{\mathsf{grad}}{\longrightarrow} H^{q-1} \otimes \mathbb{V} \stackrel{\mathsf{grad}\;\mathsf{curl}}{\longrightarrow} H^{q-3} \otimes \mathbb{T} \stackrel{\mathsf{curl}}{\longrightarrow} H^{q-4} \otimes \mathbb{M} \stackrel{\mathsf{div}}{\longrightarrow} H^{q-5} \otimes \mathbb{V} \longrightarrow 0.$$

$$\mathbb{R}\times 0 \qquad \boxed{0\times \mathbb{R}^3}$$

- complex: $d \circ d = 0$,
- Hodge-Laplacian at index 1: (grad curl)*(grad curl) + grad(grad*) = - curl Δ curl - grad div,
- Hodge decomposition:

$$\begin{split} [\mathit{L}^2]^3 := \mathsf{grad}\, \mathit{H}^1 \oplus_\perp \big(\mathsf{grad}\, \mathsf{curl}\big)^* \mathit{H}_0\big(\big(\mathsf{grad}\, \mathsf{curl}\big)^*\big) \oplus_\perp \mathscr{H}, \\ \mathscr{H} := \mathcal{N}(\mathsf{div}) \cap \mathcal{N}(\mathsf{grad}\, \mathsf{curl}), \quad \#_{\lambda=0} = \mathsf{dim}\, \mathscr{H} \\ \mathsf{dim}\, \mathscr{H} = \mathsf{Betti}_1 + 3! \end{split}$$

 $\mathsf{deRham}\colon [L^2]^3 := \mathsf{grad}\, H^1 \oplus_\perp \mathsf{curl}\, H_0(\mathsf{curl}) \oplus_\perp \mathscr{G},\, \mathsf{dim}\, \mathscr{G} = \mathrm{Betti}_1.$

• On squares: 3 (1 for 2D) dimensional "rigid body motion". (grad curl-free, not something grad). Argyris element fails to incorporate the complex structure.

Motivation: generating new complexes and properties.

Motivation

2 Generating new complexes from existing complexes

Elasticity: deformation and mechanics of solids

elasticity equation: $-\operatorname{div}(A\operatorname{def} u) = f.$ $u \qquad \qquad \operatorname{displacement} \text{ (vector)},$ $e := \operatorname{def} u := 1/2(\nabla u + \nabla u^T) \qquad \operatorname{strain} \text{ (linearized deformation)},$ $\sigma := A\operatorname{def} u \qquad \operatorname{stress}.$

analogy to Poisson equation:

$$-\operatorname{div}(A\operatorname{grad} v)=g.$$

Elasticity-electromagnetism analogue

KRÖNER [13] has developed a most useful analogy between the theory of internal stresses and strains as described in sections 2 to 6 and the theory of the magnetic field of distributions of stationary electric currents. Table 1 contains a list of the corresponding physical quantities, differential operators, and equations. We hope that this table is understandable without any further comments (see also the review article by DE Wtr [10]).

Table 1
Correspondences in elasticity and magnetism

Elasticity	Magnetism		
vector quantity	scalar quantity		
tensor rank two	vector		
tensor rank four	tensor rank two		
Div	div		
Ink	curl		
Div Ink $\equiv 0$	div curl ≡ 0		
Def	grad		
$Ink Def \equiv 0$	$\operatorname{curl}\operatorname{grad}\equiv 0$		
Burgers vector b	current I		
incompatibility tensor n	current density J		
strain tensor e	magnetic intensity H		
stress tensor σ	magnetic induction B		
stress function tensor y, y'	vector potential A		
elastic constants C (or G , K)	permeability µ		
displacement s	scalar potential y		
equation (3)	$H = \operatorname{grad} \psi$		
equation (5)	$\operatorname{curl} \boldsymbol{H} = \boldsymbol{J}$		
equation (17)	$\operatorname{div} \boldsymbol{B} = 0$		
equation (18)	B = curl A		
equations (19), (19a)	$\nabla^2 A = -\mu J$		
equation (20)	$\operatorname{div} A = 0$		
equation (22)	$A = \frac{\mu}{4\pi} \iiint \int \int \frac{J(\mathbf{r}')}{ \mathbf{r} - \mathbf{r}' } d\tau$		

Seeger, 1961, Recent Advances in the Theory of Defects in Crystals.

A cohomological approach: elasticity complex

$$\begin{array}{c} \text{displacement formulation} & \text{Kröner's continuum description of dislocations/defects,} \\ 0 & \longrightarrow C^{\infty} \otimes \mathbb{V} & \xrightarrow{\text{def}} & C^{\infty} \otimes \mathbb{S} & \xrightarrow{\text{inc}} & C^{\infty} \otimes \mathbb{S} & \xrightarrow{\text{div}} & C^{\infty} \otimes \mathbb{V} & \longrightarrow 0 \\ \\ \text{displacement} & strain \, (metric) & stress \, (curvature) & force \\ \\ & \text{intrinsic elasticity} \, (\text{Ciarlet et al.}) & \text{Hellinger-Reissner principle of elasticity} \\ \end{array}$$

$$\mathbb{V} := \mathbb{R}^3 \text{ vectors, } \mathbb{S} := \mathbb{R}^{3\times3}_{\text{sym}} \text{ symmetric matrices}$$

$$\operatorname{def} u := 1/2(\nabla u + \nabla u^T), \quad (\operatorname{def} u)_{ij} = 1/2(\partial_i u_j + \partial_j u_i).$$

$$\operatorname{inc} g := \nabla \times g \times \nabla, \quad (\operatorname{inc} g)^{ij} = \epsilon^{ikl} \epsilon^{jst} \partial_k \partial_s g_{lt}.$$

$$\operatorname{div} v := \nabla \times v, \quad (\operatorname{div} v)_i = \partial^j u_{ij}.$$

$$g \text{ metric} \Rightarrow \operatorname{inc} g \text{ linearized Einstein tensor } (\cong \operatorname{Riem} \cong \operatorname{Ric} \text{ in 3D})$$

$$\operatorname{inc} \circ \operatorname{def} = 0 \colon \text{Saint-Venant compatibility}$$

$$\operatorname{div} \circ \operatorname{inc} = 0 \colon \text{Bianchi identity}$$

$$\operatorname{systematic study still missing, until}$$

$$\operatorname{Complexes from complexes, Arnold, Hu 2020}.$$

Algebraic and analytic construction (Arnold, Hu 2020): derive elasticity from deRham

 $S^1u:=u^T-1/2\operatorname{tr}(u)I.$

key: Sobolev complexes ($\forall s \in \mathbb{R}$), match indices, commuting diagrams, injectivity & surjective.

output: elasticity complex

$$0 \longrightarrow H^s \otimes \mathbb{V} \xrightarrow{\text{def}} H^{s-1} \otimes \mathbb{S} \xrightarrow{\text{curl}} H^{s-3} \otimes \mathbb{S} \xrightarrow{\text{div}} H^{s-4} \otimes \mathbb{V} \longrightarrow 0.$$

Theorem

Cohomology of the derived complex is isomorphic to the smooth de Rham cohomology:

$$\mathbb{N}(\mathscr{D}^i) = \mathbb{R}(\mathscr{D}^{i-1}) \oplus \mathscr{H}^i_{\infty}, \quad \mathscr{H}^i_{\infty} \hookrightarrow \mathbb{H}^i_{\operatorname{deRham}} \otimes (\mathbb{V} \times \mathbb{V})$$

Proof: Homological algebra + results for de Rham by Costabel & McIntosh.

Corollary: finite dimensional cohomology \Longrightarrow operators have closed range.

inspired by Bernstein-Gelfand-Gelfand (BGG) resolution (c.f., Eastwood 2000, Čap, Slovák, Souček 2001, Arnold, Falk, Winther 2006).

Consequences:

- analytic results (Poincaré inequality, Hodge decomposition, etc.)
 e.g., Korn inequality ||u||₁ ≤ C|| def u||, u ⊥ N(def).
- explicit representatives of elasticity cohomology.

Systematic construction: generating new complexes from existing ones

- input: $(Z^{\bullet}, D^{\bullet})$, $(\tilde{Z}^{\bullet}, \tilde{D}^{\bullet})$, connecting maps $S^i : \tilde{Z}^i \to Z^{i+1}$, satisfying
 - (anti-)commutativity: $S^{i+1} \tilde{D}^i = -D^{i+1} S^i$,
 - injectivity/surjectivity condition: S^i injective for $i \leq J$, surjective for $i \geq J$.

$$0 \longrightarrow Z^{0} \xrightarrow{D^{0}} Z^{1} \xrightarrow{D^{1}} \cdots \xrightarrow{D^{n-1}} Z^{n} \longrightarrow 0$$

$$0 \longrightarrow \tilde{Z}^{0} \xrightarrow{\tilde{D}^{0}} \tilde{Z}^{1} \xrightarrow{\tilde{D}^{1}} \cdots \xrightarrow{\tilde{D}^{n}} \tilde{Z}^{n} \longrightarrow 0$$

output:

$$\cdots \longrightarrow \operatorname{coker}(S^{J-2}) \xrightarrow{D^{J-1}} \operatorname{coker}(S^{J-1}) \xrightarrow{D^J} \\ (S^J)^{-1} \longrightarrow \mathcal{N}(S^{J+1}) \xrightarrow{\tilde{D}^{J+1}} \mathcal{N}(S^{J+2}) \xrightarrow{\tilde{D}^{J+2}} \cdots$$

conclusion:

$$\dim \mathcal{H}^i\left(\Upsilon^{\bullet},\mathscr{D}^{\bullet}\right) \leq \dim \mathcal{H}^i\left(Z^{\bullet},D^{\bullet}\right) + \dim \mathcal{H}^i\left(\tilde{Z}^{\bullet},\tilde{D}^{\bullet}\right), \quad \forall i = 0,1,\cdots,n$$

Equality holds if and only if S^i induces the zero maps on cohomology, i.e., $S^i \mathbb{N}(\tilde{D}^i) \subset \mathcal{R}(D^i)$.

(diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

Hessian complex:

$$0 \longrightarrow H^q \otimes \mathbb{R} \xrightarrow{\ \ \text{hess} \ \ } H^{q-2} \otimes \mathbb{S} \xrightarrow{\ \ \text{curl} \ \ } H^{q-3} \otimes \mathbb{T} \xrightarrow{\ \ \text{div} \ \ } H^{q-4} \otimes \mathbb{V} \longrightarrow 0.$$

biharmonic equations, plate theory, Einstein-Bianchi system of general relativity

(diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

$$0 \longrightarrow H^{q} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-3} \otimes \mathbb{R} \longrightarrow 0$$

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-2} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-4} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-3} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-4} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-5} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$

elasticity complex:

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \stackrel{\mathsf{def}}{\longrightarrow} H^{q-2} \otimes \mathbb{S} \stackrel{\mathsf{inc}}{\longrightarrow} H^{q-4} \otimes \mathbb{S} \stackrel{\mathsf{div}}{\longrightarrow} H^{q-5} \otimes \mathbb{V} \longrightarrow 0.$$

elasticity, defects, metric, curvature

(diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

$$0 \longrightarrow H^{q} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-3} \otimes \mathbb{R} \longrightarrow 0$$

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-2} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-4} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V}, \xrightarrow{\operatorname{grad}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-3} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-4} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-5} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$

divdiv complex:

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\mathsf{dev}\,\mathsf{grad}} H^{q-3} \otimes \mathbb{T} \xrightarrow{\mathsf{sym}\,\mathsf{curl}} H^{q-4} \otimes \mathbb{S} \xrightarrow{\mathsf{div}\,\mathsf{div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$

plate theory, elasticity

(diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

grad curl complex:

$$0 \longrightarrow H^q \stackrel{\mathsf{grad}}{\longrightarrow} H^{q-1} \otimes \mathbb{V} \stackrel{\mathsf{grad}\,\mathsf{curl}}{\longrightarrow} H^{q-3} \otimes \mathbb{T} \stackrel{\mathsf{curl}}{\longrightarrow} H^{q-4} \otimes \mathbb{M} \stackrel{\mathsf{div}}{\longrightarrow} H^{q-5} \otimes \mathbb{V} \longrightarrow 0.$$

couple stress, size effects

(diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

$$0 \longrightarrow H^{q} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-3} \otimes \mathbb{R} \longrightarrow 0$$

$$0 \longrightarrow H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-2} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-4} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0$$

$$0 \longrightarrow H^{q-3} \otimes \mathbb{R} \xrightarrow{\operatorname{grad}} H^{q-4} \otimes \mathbb{V} \xrightarrow{\operatorname{turl}} H^{q-5} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-6} \otimes \mathbb{R} \longrightarrow 0.$$

curl div complex:

$$0 \to H^q \otimes \mathbb{V} \xrightarrow{\mathsf{grad}} H^{q-1} \otimes \mathbb{M} \xrightarrow{\mathsf{dev}\,\mathsf{curl}} H^{q-2} \otimes \mathbb{T} \xrightarrow{\mathsf{curl}\,\mathsf{div}} H^{q-4} \otimes \mathbb{V} \xrightarrow{\mathsf{div}} H^{q-5} \to 0.$$

couple stress, size effects

(diagonal maps: bijective; superdiagonal: surjective; subdiagonal: injective.)

grad div complex:

Iterating the construction

Example from iterative constructions

"conformal complex"

ker of dev def: conformal Killing v.f. Cotton-York: flatness in conformal geometry
$$0 \longrightarrow H^q(\Omega) \otimes \mathbb{V} \xrightarrow{\operatorname{dev def}} H^{q-1}(\Omega) \otimes (\mathbb{S} \cap \mathbb{T}) \xrightarrow{\operatorname{cott}} H^{q-4}(\Omega) \otimes (\mathbb{S} \cap \mathbb{T}) \xrightarrow{\operatorname{div}} H^{q-5}(\Omega) \otimes \mathbb{V} \longrightarrow 0$$
 gravitational wave variable: transverse-traceless (TT) gauge stress like variable def u in NS (= symmetric, trace-free, div-free) (Gopalakrishnan, Lederer, Schöberl, 2019)

trace-free Korn inequality:

$$||u||_1 \le C|| \text{ dev def } u||, \quad \forall u \in \mathcal{N}(\text{dev def}).$$

 $\mathcal{N}(\text{dev def})$: conformal Killing fields

open problem (Chipot 2020): minimal number of linear functionals l_i , s.t. generalized Korn inequality holds

$$||u||_1 \leq C(\sum_{i=1}^N ||I_i(\nabla u)||_{L^2} + ||u||_{L^2}).$$

e.g., 3D Poincaré: N=9; Korn: N=6; trace-free Korn: N=5.

Hodge decomp.: York split, Einstein constraint eqns.

Back to the eigenvalue problem: a closer look at the grad curl complex

$$0 \longrightarrow H^{q} \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{curl}} H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{div}} H^{q-3} \xrightarrow{0} 0 \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow H^{q-2} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}} H^{q-3} \otimes \mathbb{M} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0.$$

grad curl complex:

$$0 \longrightarrow H^q \xrightarrow{\operatorname{grad}} H^{q-1} \otimes \mathbb{V} \xrightarrow{\operatorname{grad}\operatorname{curl}} H^{q-3} \otimes \mathbb{T} \xrightarrow{\operatorname{curl}} H^{q-4} \otimes \mathbb{M} \xrightarrow{\operatorname{div}} H^{q-5} \otimes \mathbb{V} \longrightarrow 0.$$

explicit representation of cohomology (tracking the algebraic construction): $a \wedge x$. (2D: cx^{\perp}), "rigid body motion"

Hodge decomposition, regularity decomposition, compact imbedding, ..., follow.

$$[L^2]^3 := \operatorname{\mathsf{grad}} H^1 \oplus_\perp (\operatorname{\mathsf{grad}}\operatorname{\mathsf{curl}})^* H_0((\operatorname{\mathsf{grad}}\operatorname{\mathsf{curl}})^*) \oplus_\perp \mathscr{H},$$

$$\mathscr{H} := \mathcal{N}(\mathsf{div}) \cap \mathcal{N}(\mathsf{grad}\,\mathsf{curl}), \quad \#_{\lambda=0} = \dim \mathscr{H} = \mathrm{Betti}_1 + 3!$$

Take home messages:

- reasons for spurious solutions:
 - 1 regularity (domains with corners),
 - 2 nontrivial topology,
- intrinsic algebraic structures of differential operators.
- potential of "complexes from complexes": a strong tie between analysis, topology, algebra, computation, (even) modeling.

References

- Spurious solutions for high order curl problems, K. Hu, Q. Zhang, J. Han, L. Wang, and Z. Zhang, in preparation.
- Complexes from complexes, D. N. Arnold and K. Hu; 2020, arXiv:2005.12437.
- A family of finite element Stokes complexes in three dimensions; K. Hu, Q. Zhang,
 Z. Zhang; arXiv, (2020).
 3D FEs
- Simple curl-curl-conforming finite elements in two dimensions; K. Hu, Q. Zhang,
 Z, Zhang; accepted, SIAM Scientific Computing, (2020).
- Poincaré path integrals for elasticity; S. H. Christiansen, K. Hu and E. Sande;
 Journal de Mathématiques Pures et Appliquées, (2019).
- Finite element systems for vector bundles: elasticity and curvature,
 S. H. Christiansen and K. Hu; arXiv (2019) discrete BGG for 2D FEs
- A discrete elasticity complex on three-dimensional Alfeld splits; S. Christiansen,
 J. Gopalakrishnan, J. Guzmán, K. Hu; arXiv, (2020). 3D FE elasticity complex, 1/21