Elaborazione di Segnali e Immagini (ESI) LABORATORIO

Lezione 8

Manuele Bicego

Corso di Laurea in Informatica

Dipartimento di Informatica - Università di Verona

Trasformata di Fourier 2D Trasformata di Hough per rette

Trasformata di Fourier 2D

... quello che abbiamo visto nella lezione sulla trasformata di Fourier 1D

Trasformata di Fourier: descrizione di un segnale nel dominio del tempo e nel dominio delle frequenze

Dominio del tempo

Dominio delle frequenze

Cosa succede in un calcolatore? Campionamento e trasformata di Fourier discreta (DFT)

Campionamento del segnale $f(t)s_{\Delta T}(t)$ originale: prendo un punto ogni DeltaT (frequenza di campionamento fs: 1/DeltaT)

Trasformata di Fourier discreta: repliche dello spettro di frequenza, una ogni fs

fft di matlab mi ritorna questo pezzo: se il segnale originale ha N punti ho N bin in frequenza : da 0 a fs (con step fs/N) Campionamento del segnale $f(t)s_{\Delta T}(t)$ originale: prendo un punto ogni DeltaT (frequenza di campionamento fs: 1/DeltaT)

Trasformata di Fourier discreta: repliche dello spettro di frequenza, una ogni fs

Con fftshift posso ottenere questo: N bins da -fs/2 a fs/2 (sempre con step fs/N)

Da 1D a 2D

Nella trasformata 2D l'analisi si sviluppa sia in orizzontale che in verticale

In Matlab

• F = fft2(image) calcola la DFT 2D

Come si interpreta?

In Matlab

 Per una migliore visualizzazione si effettua uno shift dello spettro

Fsh = fftshift(F)

In Matlab

- Analisi di Fourier per un'immagine:
 - Calcolare la trasformata 2D
 - Visualizzare spettro delle ampiezze e spettro di fase
 - Ricostruire l'immagine a partire dalle frequenze

Esempio nel file
 Lezione8_EserciziPrincipali.m

- Serve per identificare le rette in un'immagine
- Idea generale
 - Equazione di una retta

$$y = mx + q$$

 Se si considera lo spazio dei parametri [m q], una retta è rappresentata da un punto

 Per un punto [xi,yi] passano infinite rette, tutte quelle per cui vale

$$y_i = mx_i + q$$

 Nello spazio dei parametri queste rette sono punti disposti lungo una retta

$$q = -x_i m + y_i$$

 Se ho tre punti allineati (che si trovano lungo una retta), ho tre rette nello spazio dei parametri

 La retta che contiene tutti e tre i punti si può determinare trovando l'intersezione tra le rette nello spazio [mq]

- Nella trasformata di Hough:
 - Lo spazio dei parametri viene quantizzato, cioè diviso in celle
 - Ogni punto di edge "vota" per un insieme di rette, cioè vota per un insieme di celle
 - Dopo che tutti i punti hanno votato si possono estrarre i massimi: le rette che prendono più voti vincono (sono le rette che "spiegano" più punti)

Dettagli

- In pratica si usa la forma polare per la parametrizzazione, perché è più comoda:
 - $-\theta$ è naturalmente delimitato
 - p si può delimitare specificando una regione circolare attorno all'origine (sensato)

$$x \cos \theta + y \sin \theta - \rho = 0$$

$$(x,y) \rightarrow (\rho,\theta)$$

Algoritmo

- Input: I img binaria MXN (1 edge, 0 no edge)
- Spazio dei parametri

$$\rho \in \left[-\sqrt{M^2 + N^2}, \sqrt{M^2 + N^2} \right]$$

$$\theta \in \left[-90^{\circ}, 90^{\circ} \right]$$

- Si discretizza (ρ , θ) in (ρ_d , θ_d) usando un passo accettabile per il problema da risolvere (precisione vs. computazione).
- Sia A la matrice R×T risultante, inizializzata a zero.
- Per ogni pixel I(x,y)= 1 e per h = 1,...,T:
 - sia $\rho = x \cos \theta_d(h) + y \sin \theta_d(h)$
 - trovare l'indice k t.c. pd(k) è l'elemento più vicino a p
 - incrementare A(k,h) di una unità
- Trovare tutti i max locali (k_p, h_p) t.c. $A(k_p, h_p) > \tau$ soglia

Esercizi principali

- Caricare l'immagine 'imageA1.png'
- Visualizzare (con il logaritmo) lo spettro delle ampiezze centrato
- Estrarre una sola porzione delle frequenze e ricostruire l'immagine a partire da queste frequenze selezionate.
- Osservare cosa succede se cambiamo il contenuto in frequenza scelto. In particolare: cosa succede se escludo le basse frequenze? E se escludo le alte?

- Suggerimento per selezionare le frequenze:
 - creare una matrice, della stessa dimensione della fft2, contenente tutti zeri;
 - copiare nella posizione della porzione considerata le frequenze corrispondenti dalla matrice della fft2

- Porzioni da considerare (sulla trasformata shiftata):
 - 1) righe: 260-360, colonne: 410-520
 - 2) righe: 150-460, colonne: 270-670
 - 3) righe: 105-310, colonne: 175-46
 - **4) ...**

 Nota: provare anche ad usare getrect per selezionare la porzione: la funzione getrect serve per estrarre un rettangolo da un'immagine, si veda l'help della funzione

- Utilizzare la trasformata di Hough per estrarre le rette dalle seguenti 3 immagini (una sintetica, due reali):
 - "line.jpg"
 - "building.jpg"
 - "Crane.png"
- Utilizzare le funzioni Matlab già implementate per la trasformata (hough, houghpeaks, houghlines) – più info nel file Lezione8_EserciziPrincipali.m

- Nota importante: l'input è un'immagine binaria che contiene gli edge, da calcolare sull'immagine originale (per estrarre gli edge utilizzare il Canny edge detector BW = edge(I, 'canny'))
- Visualizzare le rette estratte sovrapposte all'immagine di partenza
- Valutare come cambiano i risultati al variare dei parametri della trasformata (numero di picchi, soglia, livello di quantizzazione di rho e di theta, etc etc -- si veda l'help delle funzioni).

Esercizi extra

- Implementare manualmente la trasformata di Hough, e applicarla all'immagine simulata "line.png"
- Suggerimento: utilizzare la seguente pipeline:
- PASSO 1. Definisco due vettori per rho e theta con lo spazio dei parametri discretizzato
 - theta varia tra −90° ≤ θ < 90°
 - rho varia tra -diagonal ≤ rho ≤ diagonal
 (diagonal è la lunghezza della diagonale --sqrt(M^2+N^2))

NOTA: Occorre decidere il passo di discretizzazione (quanto approssimato è lo spazio di accumulazione). Inizialmente metterlo a 1, poi provare a vedere cosa succede variandolo

- **PASSO 2.** Creo una matrice 2D che rappresenta lo spazio di accumulazione.
 - La matrice avrà dimensione RxT, dove R e T sono il numero di diversi valori di rho e di theta

- PASSO 3. Calcolo lo spazio di accumulazione dei parametri:
 - per tutti i punti dell'immagine che sono a 1
 - per ogni valore di theta
 - calcolo rho
 - trovo il rhod più vicino
 - incremento la cella corrispondente

 PASSO 4. Trovo il max nella trasformata di Hough

- **PASSO 5**. Visualizzo le linee sovrapposte all'immagine di partenza:
 - scelgo due punti x, calcolo le corrispondenti y e uso il comando plot
 - le y si trovano ricavando la y dalla formula

```
rho = x*cos(theta) + y*sin(theta)
```

y = (rho-x*cos(theta))/sin(theta)

Altri esempi da guardare

- Nel file Lezione8_EserciziExtra.m sono presenti ulteriori esercizi (già svolti) per approfondire l'argomento:
 - Esempio 1 Filtraggio Immagini in Frequenza