×

Logistic Regression with L2 regularization

9 questions

1.

Are you using GraphLab Create? Please make sure that

1. You are using version 1.8.3 of GraphLab Create. Verify the version of GraphLab Create by running

graphlab.version

inside the notebook. If your GraphLab version is incorrect, see this post (https://www.coursera.org/learn/ml-classification/supplement/LgZ3I/installing-correct-version-of-graphlab-create) to install version 1.8.3. This assignment is not guaranteed to work with other versions of GraphLab Create.

2. You are using the IPython notebook named module-4-linear-classifier-regularization-assignment-blank.ipynb obtained from the associated reading.

This question is ungraded. Check one of the three options to confirm.

- O I confirm that I am using the right version of GraphLab Create and the right IPython notebook.
- O I am using SFrame and NumPy only.
- I am using other tools, and I understand that I may not be able to complete some of the quiz questions.
- 2. In the function **feature_derivative_with_L2**, was the intercept term regularized?

0	Yes
0	No
	he term with L2 regularization increase or decrease the log ood <code>{ll(w)?}</code>
0	Increases
0	Decreases
	of the following words is not listed in either positive_words or /e_words ?
0	love
0	disappointed
0	great
0	money
0	quality
	ons 5 and 6 use the coefficient plot of the words in e_words and negative_words.
	False) All coefficients consistently get smaller in size as the L2 y is increased.
0	True
0	False

6.

Questions 5 and 6 use the coefficient plot of the words in **positive_words** and **negative_words**.

(True/False) The relative order of coefficients is preserved as the L2
penalty is increased. (For example, if the coefficient for 'cat' was more
positive than that for 'dog', this remains true as the L2 penalty
increases.)

0	True			
0	False			

7. Questions 7, 8, and 9 ask you about the 6 models trained with different L2 penalties.

Which of the following models has the **highest** accuracy on the **training** data?

0	Model trained with L2 penalty = 0
0	Model trained with L2 penalty = 4
0	Model trained with L2 penalty = 10
0	Model trained with L2 penalty = 100
0	Model trained with L2 penalty = 1e3

Model trained with L2 penalty = 1e5

8. Questions 7, 8, and 9 ask you about the 6 models trained with different L2 penalties.

Which of the following models has the **highest** accuracy on the **validation** data?

0	Model trained with L2 penalty = 0
0	Model trained with L2 penalty = 4
0	Model trained with L2 penalty = 10

0	Model trained with L2 penalty = 100					
0	Model trained with L2 penalty = 1e3					
0	Model trained with L2 penalty = 1e5					
9. Questi L2 pen	ons 7, 8, and 9 ask you about the 6 models trained with different alties.					
	he highest accuracy on the training data imply that the model is st one?					
0	Yes					
0	No					
	Submit Quiz					

