Battle of the Neighborhoods

Where should the Data Scientist go?

Rodrigo Link

The problem

- After the completion of a certain Data Science course, an young and brave Brazilian data scientist is flooded with job offers from all over the world. After thoughtful consideration, he realizes he really likes where he currently lives and would like to have the same kind of venues around him wherever the job is.
- From the job offers, he selects a few cities that seem interesting and sets out to compare his current city's attractions to the neighborhoods of each new possible location, trying to identify similarities.

Data available

• Input 1 – current location [Copacabana, Rio de Janeiro, BR]

Input 2 – list of cities where there are interesting job offers

List of neighborhoods – webscraped from various sources

List of venues – obtained from Foursquare API

What we want

- First Approach
 - Top 3 most similar neighborhoods from each city
 - New attractions unavailable at current location

- Second Approach
 - Clustering technique
 - What neighborhoods are in the same cluster as the current city

List of neighborhoods

- Rio de Janeiro, Brazil 1 current location
- Porto Alegre, Brazil 48 neighborhoods
 - https://pt.wikipedia.org/wiki/Lista_de_bairros_de_Porto_Alegre
- Wellington, New Zealand 12 neighborhoods
 - https://wellington.govt.nz/your-council/elections/wellington-city-wards/maps-by-ward-community-boardand-suburb
- Stockholm, Sweden 107 neighborhoods
 - https://en.wikipedia.org/wiki/Category:Districts_of_Stockholm
- Vancouver, Canada 22 neighborhoods
 - https://en.wikipedia.org/wiki/List_of_neighbourhoods_in_Vancouver

Webscraping results

	Country	City	Neighborhood	Latitude	Longitude
0	Brazil	Rio de Janeiro	Copacabana	-22.971964	-43.184343
1	Brazil	Porto Alegre	Aberta dos Morros	-30.160022	-51.197486
2	Brazil	Porto Alegre	Agronomia	-30.069267	-51.149217
3	Brazil	Porto Alegre	Anchieta	-29.975652	-51.174903
4	Brazil	Porto Alegre	Arquipélago	-29.992760	-51.226618
234	Canada	Vancouver	Strathcona	49.277693	-123.088539
235	Canada	Vancouver	Sunset	49.219093	-123.091665
236	Canada	Vancouver	Victoria-Fraserview	49.218979	-123.063816
237	Canada	Vancouver	West End	49.284131	-123.131795
238	Canada	Vancouver	West Point Grey	49.268102	-123.202643

239 rows x 5 columns

Foursquare API

 Using the Foursquare API, we are able to get the top 100 attractions within a 1km radius from the center of each neighborhood.

	City	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Rio de Janeiro	Copacabana	-22.971964	-43.184343	Praia de Copacabana	-22.972441	-43.183436	Beach
1	Rio de Janeiro	Copacabana	-22.971964	-43.184343	Windsor California Hotel	-22.972704	-43.185707	Hotel
2	Rio de Janeiro	Copacabana	-22.971964	-43.184343	Hotel Sesc Copacabana	-22.973265	-43.187299	Hotel
3	Rio de Janeiro	Copacabana	-22.971964	-43.184343	Bibi Sucos	-22.972092	-43.186564	Juice Bar
4	Rio de Janeiro	Copacabana	-22.971964	-43.184343	Bar & Champanheria Copacabana	-22.974220	-43.186296	Beach Bar

Proportion of venues

 By counting the number of venues of each kind and divinding by the number of venues at each neighborhood, we can get the proportion of each type. This is going to used to compare the different neighborhoods.

	City	Neighborhood	Acai House	Accessories Store	Airport	Airport Lounge	Airport Service	Airport Terminal	Airport Tram	American Restaurant	 Water Park	Waterfront	Wine Bar	Wine Shop	Wings Join
0	Porto Alegre	Aberta dos Morros	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.00	0.0
1	Porto Alegre	Agronomia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.00	0.0
2	Porto Alegre	Anchieta	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.00	0.0
3	Porto Alegre	Arquipélago	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.00	0.0
4	Porto Alegre	Auxiliadora	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.01	0.0

First Approach - Correlation

 We calculated the correlation between the data from each neighborhood with that from the current location. It is a measure of how similar they are.

- Top 3 most similar neighborhoods from each city
- New attractions unavailable at current location

First Approach – Porto Alegre

- 1. The first neighborhood from Porto Alegre, Cidade Baixa, has a correlation of 0.47.
- The 3 new types of venues are 'Arts & Crafts store', 'Beer store' and 'Bookstore'.
- 2. The second neighborhood, Praia de Belas, has a correlation of 0.41. The 3 new types of venues are 'Bar', 'Buffet' and 'Salad Place'.
- 3. The third neighborhood, Floresta, has a correlation of 0.40. The 3 new types of venues are 'Bar', 'Beer bar' and 'Buffet'.

First Approach – Wellington

1. The first neighborhood from Wellington, Horokiwi, has a correlation of 0.63.

The 3 new types of venues are 'Bar', 'Hotel' and 'River'.

- 2. The second neighborhood, Oriental Bay, has a correlation of 0.46. The 3 new types of venues are 'Café', 'Chinese restaurant' and 'Bar'.
- 3. The third neighborhood, Pipitea, has a correlation of 0.43. The 3 new types of venues are 'Café', 'Bar' and 'Vietnamese Restaurant'.

First Approach – Stockholm

- 1. The first neighborhood from Stockholm, Riddarholmen, has a correlation of 0.52.
- The 3 new types of venues are 'Scandinavian Restaurant', 'Café' and 'Bar'.
- 2. The second neighborhood, Gamla stan , has a correlation of 0.51. The 3 new types of venues are 'Theater', 'Bookstore' and 'Wine bar'.
- 3. The third neighborhood, Älvsjö, has a correlation of 0.48. The 3 new types of venues are 'Hotel', 'Supermarket' and 'Café'.

First Approach – Vancouver

- 1. The first neighborhood from Vancouver, Downtown, has a correlation of 0.50.
- The 3 new types of venues are 'Seafood restaurant' and a tie for several others.
- 2. The second neighborhood, West End, has a correlation of 0.44. The 3 new types of venues are 'Dessert shop', 'Bookstore' and a tie for several others.
- 3. The third neighborhood, Fairview, has a correlation of 0.23. The 3 new types of venues are 'Breafast spot', 'Theater' and 'Bookstore'.

Second Approach - Clustering

- From the data for each neighborhood, we create *k* groups to try to capture some common features.
- The first thing to do is try to figure out the best number of groups by trying a range of possibilities and measuring the sum of the distance of each point from the closest cluster center.

Ideal number of clusters

No elbow in sight! Let's look closer.

Ideal number of clusters

For lack of better options, **k=20**

Where is the current location?

 To find the neighborhoods more alike to the current location, let's find out in what cluster it is in.

```
print('The current location is in cluster: ',all_grouped.iloc[85,-1])
The current location is in cluster: 4
```

Cluster 4

Thorndon

Cascata

Te Aro

Liljeholmen

Östermalm

Mount Cook

Wellington Central

Wellington

Porto Alegre

Wellington

Stockholm

Stockholm

Wellington

Wellington

227

15

226

122

153

230

207

132	Stockholm	Riddarholmen	0.524632	120	Stockholm	Kungsholmen	0.304544			
132	Stockholli	niddamoinien	0.524052	120	Otockilolili	Rungsholmen	0.004044	147	Stockholm	Vasastan
106	Stockholm	Gamla stan	0.513101	117	Stockholm	Johanneshov	0.289366	118	Stockholm	Kristineberg
155	Vancouver	Downtown	0.501553	107	Stockholm	Gröndal	0.287672	154	Vancouver	Arbutus Ridge
215	Wellington	Oriental Bay	0.455498	92	Stockholm	Birkastad	0.263217	170	Vancouver	South Cambie
174	Vancouver	West End	0.437037	140	Stockholm	Stadshagen	0.261198	164	Vancouver	Marpole
218	Wellington	Pipitea	0.427678	176	Wellington	Aro Valley	0.254607	156	Vancouver	Dunbar-Southlands
129	Stockholm	Norrmalm	0.426942	136	Stockholm	Skeppsholmen	0.232921	204	Wellington	Miramar
208	Wellington	Mount Victoria	0.420843	157	Vancouver	Fairview	0.232422	204	Wellington	Williama
200	vveilington	WOUTH VICTORIA	0.420043	137	varicouver	I dil view	0.202422	175	Vancouver	West Point Grey
145	Stockholm	Södermalm	0.402839	228	Wellington	Vogeltown	0.226819	166	Vancouver	Oakridge
131	Stockholm	Reimersholme	0.402465	223	Wellington	Strathmore Park	0.218640	159	Vancouver	Hastings-Sunrise
124	Stockholm	Långholmen	0.401361	165	Vancouver	Mount Pleasant	0.199320			
		Za. ig. ioii iioii			-			149	Stockholm	Vårberg

Stockholm

Vancouver

Stockholm

Vancouver

Vancouver

Wellington

Vancouver

0.198011

0.195735

0.194435

0.188046

0.186867

0.164207

0.152995

97

172

169

197

160

231

Stockholm

Vancouver

Vancouver

Wellington

Wellington

0.151268

0.136491

0.121455

0.105678

0.094507

0.092564

0.080751

0.062817

0.048274

0.045237

0.042092

0.034932

0.033749

0.031581

0.022443

-0.003920

-0.034435

Djurgården

Shaughnessy

Vancouver Kensington-Cedar Cottage

Sunset

Kilbirnie

Wilton

Marieberg

Kitsilano

Gärdet

Riley Park

Northland

Strathcona

Grandview-Woodland

0.380576

0.374438

0.344184

0.341546

0.334611

0.332335

0.314744

125

163

109

158

168

213

171

Summary of the two approaches

- Riddarholmen, in Stockholm, Sweden, had the highest correlation in the its city and has the highest correlation inside cluster 4.
- Gamla Stan, in Stockholm, Sweden, had the second highest correlation in the its city and has the second highest correlation inside cluster 4.
- Downtown, in Vancouver, Canada, had the highest correlation in the its city and the third highest correlation inside cluster 4.
- Oriental Bay, in Wellington, New Zealand, had the second highest correlation in its city and the fourth highest correlation inside cluster 4.
- Cascata, in Porto Alegre, Brazil, is not in the top 3 for its city and is 13th highest correlation inside cluster 4.

Conclusion

- All things equal, the order of choice for the Data Scientist should be:
 - 1. Stockholm (either Riddarholmen or Gamla Stan);
 - 2. Vancouver (Downtown)
 - 3. Wellington (Oriental Bay)