(1)

邻接矩阵							
	ГО	0	0	0	0	οŢ	
	1	0	0	1	0	0	
	0	1	0	0	0	1	
	0	0	1	0	1	1	
ı	1	0	0	0	0	0	
	1	1	0	0	1	0]	

(2)

(3)

(4)

7.2

深度优先序列: 1, 7, 3, 4, 5, 6, 2, 10, 9, 8 广度优先序列: 1, 7, 9, 3, 10, 5, 4, 8, 6, 2

7.3

(1)从 A 出发依次引入 CBHDGFE

	a	b	c	d	e	f	g	h
a	∞	4	3	∞	∞	∞	∞	∞
b	4	∞	5	5	9	00	∞	∞
c	3	5	∞	5	∞	∞	∞	5
d	∞	5	5	∞	7	6	5	4
e	∞	9	∞	7	3	∞	∞	∞
f	∞	∞	∞	6	3	00	2	∞
g	∞	∞	∞	5	∞	2	∞	6
h	∞	∞	5	4	∞	00	6	∞
4 B F 2 A S G								

(2)从最短边 FG 出发,FE, AC, AB, DH, CD, DG

7.4

156234; 561234; 516234

7.5

		1	2	3	4	5	6
В	D	15					
	Р	AB					
С	D	2					
	Р	AC					
D	D	12		11			
	Р	AD		ACFD			
Е	D	ω	10				
	Р	-	ACE				
F	D	ω	6				
	Р	-	ACF				
G	D	ω		16		14	
	Р	-		ACFG		ACFDG	
S		A,C	A,C,F	A,C,F,E	A,C,F,E,D	A,C,F,E,D,G	A,C,F,E,D,G,B

7.8

```
#include <bits/stdc++.h>
#define MAX_VERTEX_NUM 20
#define InfoType int
#define VertexType int
#define N 20
typedef struct ArcNode
{
    int adjvex;
    struct ArcNode *nextarc;
} ArcNode;
typedef struct VNode
{
    ArcNode *firstarc;
```

```
} VNode, AdjList[MAX_VERTEX_NUM];
typedef struct
{
    AdjList vertices;
    int vexnum, arcnum;
} ALGraph;
int degree[MAX_VERTEX_NUM];
void cal_degree(ALGraph &G)
{
    int n = G.vexnum;
    for (int i = 1; i <= n; i++)
        struct ArcNode *temp = G.vertices[i].firstarc;
        while (temp != nullptr)
        {
            degree[temp->adjvex]++;
            temp = temp->nextarc;
        }
    }
}
```

7.9

```
int visited[MAX_VERTEX_NUM];
bool findroad_dfs(ALGraph &G, int rs, int ds)
{
   if (rs == ds)
        return true;
   struct ArcNode *temp = G.vertices[rs].firstarc;
   while (temp != nullptr)
   {
      if (!visited[temp->adjvex] && findroad(G, temp->adjvex, ds))
        return true;
   }
   return false;
}
```

7.10

```
int visited[MAX_VERTEX_NUM];
bool findroad_bfs(ALGraph &G, int rs, int ds)
{
    std::queue<int> q;
    q.push(rs);
    while (!q.empty())
    {
```