Задача 03.

Да се докаже, че $\forall A,B$ е изпълнено $A \backslash B = A \backslash (A \cap B)$.

Док-во:

Нека A и B с произволни множества.

- (\subseteq) Нека елементът $x \in A \setminus B$ е произволен $\Rightarrow x \in A$ и $x \notin B$. Тогава $x \in A \cap B$ и $x \in A$, следователно $x \in A \setminus (A \cap B)$. Тъй като x беше произволен, то $A \setminus B \subseteq A \setminus (A \cap B)$.
- (\supseteq) Нека елементът $y \in A \setminus (A \cap B) \Rightarrow y \in A$ и $y \notin A \cap B \Rightarrow y \notin B$, защото $y \in A \Rightarrow y \in A \setminus B$.

Тъй като y беше избран птоизволен $\Rightarrow A \setminus (A \cap B) \subseteq A \setminus B$.

От (\subseteq) и (\supseteq) следва, че $A \backslash B = A \backslash (A \cap B)$.

github.com/andy489