Multiple sclerosis

Demyelination patterns

Matheus Avila Moreira de Paula UFJF

Summary

- 1 Model
- 2 Numerical solution
- 3 Parameters
- 4 Results

(1)

(2)

(3)

$$\frac{\partial m}{\partial t} = \Delta m + m(1 - m) - \nabla \cdot (\chi(m)\nabla c)$$

$$\frac{\partial c}{\partial t} = \frac{1}{\tau} \left[\epsilon \Delta c + \delta d - c + \beta m \right]$$

$$\frac{\partial d}{\partial t} = rF(m)m(1 - d)$$

$$\chi(m) = \chi \frac{m}{1 + m}$$

$$F(m) = \frac{m}{1 + m}$$

$$\frac{\partial m}{\partial \mathbf{x}} = \frac{\partial c}{\partial \mathbf{x}} = 0, \ \mathbf{x} \in \partial \Omega$$

$$m(\mathbf{x},0) = 1$$
, if $\mathbf{x} \in C$
 $m(\mathbf{x},0) = 0$, else

 $c(\mathbf{x},0)=d(\mathbf{x},0)=0$

C: circle with radius $\sqrt{20}$ centered in the middle of mesh

Model

- m: Comparative density of magrophages
- c: Comparative density of cytokines
- · d: Comparative density of destroyed oligodendrocytes
- χ: Chemoattraction
- τ : Time scale
- ϵ : Diffusion of cytokines
- β : production rate per magrophages
- δ : production rate per destroyed oligodendrocytes
- r: destructive strength

Numerical solution

- $h_t = 0.001 \, day$
- $T_f = 7 \text{ days}$
- Mesh 100 x 100
- hx = hy = h = 1
- · Explicit method.
- Centered difference for Δm e Δc
- ullet Up wind e down wind for Chemotaxis. $abla\chi$
- Centered difference for ∇c
- •
- $\nabla \cdot (\chi(m)\nabla c) \implies \nabla c \cdot \nabla \chi(m)$

Numerical solution

$$\begin{split} m_{i,j}^{n+1} &= m_{i,j}^n + h_t [\Delta m + m(1-m) - \nabla c \cdot \nabla \chi(m)] \\ \Delta m &= \frac{\partial^2 m}{\partial x^2} + \frac{\partial^2 m}{\partial y^2} = \frac{1}{h^2} (m_{i+1,j}^n + m_{i-1,j}^n - 4m_{i,j}^n + m_{i,j+1}^n + m_{i,j-1}^n) \\ \nabla c &= \left[\frac{\partial c}{\partial x}, \frac{\partial c}{\partial y} \right] &= \left[\frac{c_{i+1,j} - c_{i-1,j}}{2h}, \frac{c_{i,j+1} - c_{i,j-1}}{2h} \right] \\ \nabla \chi(m) &= \left[\frac{\partial \chi(m)}{\partial x}, \frac{\partial \chi(m)}{\partial y} \right] \\ If \frac{\partial c}{\partial x} &> 0 : \frac{\partial \chi(m)}{\partial x} &= \frac{\chi(m)_{i,j} - \chi(m)_{i-1,j}}{h} \\ If \frac{\partial c}{\partial y} &> 0 : \frac{\partial \chi(m)}{\partial y} &= \frac{\chi(m)_{i,j-1} - \chi(m)_{i,j}}{h} \\ If \frac{\partial c}{\partial y} &\leq 0 : \frac{\partial \chi(m)}{\partial y} &= \frac{\chi(m)_{i,j-1} - \chi(m)_{i,j-1}}{h} \\ If \frac{\partial c}{\partial y} &\leq 0 : \frac{\partial \chi(m)}{\partial y} &= \frac{\chi(m)_{i,j+1} - \chi(m)_{i,j}}{h} \end{split}$$

Numerical Solution

$$c_{i,j}^{n+1} = c_{i,j}^{n} + \frac{h_{t}}{\tau} \left[\epsilon \Delta c + \delta d - c + \beta m \right]$$

$$\Delta c = \frac{\partial^{2} c}{\partial x^{2}} + \frac{\partial^{2} c}{\partial y^{2}} = \frac{1}{h^{2}} (c_{i+1,j}^{n} + c_{i-1,j}^{n} - 4c_{i,j}^{n} + c_{i,j+1}^{n} + c_{i,j-1}^{n})$$

$$d_{i,j}^{n+1} = d_{i,j}^{n} + h_{t} (rF(m)(1-d))$$

Parameters

Table: values of parameters.

Name	1° set	2° set	phisical interpretation
au	1	1	Time scale of citokines
ϵ	0.5	0.5	Diffusion of citokines
β	1	1	production rate per magrophages
δ	1	1	Release of citokines per OL
χ	4	15	Chemoattraction
r	6	6	Destructive strength

Figure: Comparative density of destroyed oligodendrocytes t = 0 day

Figure: Comparative density of destroyed oligodendrocytes t = 1.26 day

Figure: Comparative density of destroyed oligodendrocytes t= 2.45 days

Figure: Comparative density of destroyed oligodendrocytes t= 4.2 days

Figure: Comparative density of destroyed oligodendrocytes t= 7 days