Пример сравнения центров распределения.

Использовалась лабораторная работа Андреевой

Версия 2 от 05.04.08

Описание задачи

Ежегодно журнал "Fortune"публикует список миллиардеров. Перечень за 1992-й год включает 233 индивида или семьи и содержит данные об их состоянии, возрасте и месте жительства.

Описание переменных

wealth – богатство семьи или индивида в миллиардах долларов, age – возраст в годах (для семей – максимальный возраст среди членов семьи), region – регион мира (А – Азия, Е – Европа, М – Ближний Восток, U – США и О – другие).

Количество наблюдений: 233

Данные находятся в файле Billionaires_1992_data.

Задача

Необходимо сравнить богатство миллиардеров в США и остальном мире.

Решение

Прежде чем непосредственно приступить к решению задачи, приведем данные файла в удобный для расчетов вид.

Создадим новую переменную region_new: она равна 1, когда region = U (т.е. для CUIA), и равна 0, когда region = O (т.е. для всех остальных регионов).

Теперь можно приступить к первому этапу решения.

Проверка нормальности распределения

Поскольку данные о богатстве в США и других регионах содержатся в одном столбце wealth, разделим данные на 2 части с помощью команды Split File.

У нас имеется 233 наблюдения, поэтому нельзя однозначно сказать, какой из критериев для определения нормальности распределения богатства в США и других регионах нам использовать (критерий Колмогорова-Смирнова или Шапиро-Уилка). Оба этих критерия проверяют гипотезу о нормальности распределения данных:

Н: ряд имеет нормальное распределение

К: ряд не нормально распределен

Посмотрим на результаты проверки для регионов, отличных от США:

Tests of Normality(b)

	Kolmogorov-Smirnov(a)			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
wealth	.312	169	.000	.385	169	.000

region_new = 0

Видим, что оба критерия показывают, что распределение богатства для этой подгруппы регионов не является нормальным:

р-значение = Sig. = $0 < \alpha = 0.05 <=>$ гипотеза нормальности распределения отвергается.

Теперь посмотрим на результаты проверки для США:

Tests of Normality(b)

	Kolmogorov-Smirnov(a)			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
wealth	.293	64	.000	.516	64	.000

region_new = 1

Видим аналогичный результат:

$$p_{\mbox{\tiny USA}} = Sig. = 0 < \alpha = 0,05 <=>$$
 гипотеза нормальности отвергается.

Итак, распределение богатства для обеих подгрупп регионов не является нормальным. Однако, возможно, что распределение несущественно отличается от нормального.

Продолжим анализ: рассмотрим гистограммы и выясним, существенны ли отличия распределений сравниваемых совокупностей от нормального.

Построим гистограммы.

Для регионов, отличных от США, гистограмма выглядит так:

На представленной гистограмме имеются выбросы (отдельно стоящие наблюдения), ярко выраженная асимметрия. Все это позволяет сделать вывод о том, что распределение богатства в регионах, отличных от США, существенно отличается от нормального. Распределение в одной группе, существенно отличается от нормального, можно сделать вывод, что нельзя сравнивать средние (нельзя применять критерий Стьюдента), а надо сравнивать медианы, применяя критерий Манна-Уитни.

Тем не менее, скорее из любопытства, проведем аналогичную проверку для США. Гистограмма имеет следующий вид:

Для этой подгруппы данных видим аналогичный результат: имеются выбросы, явная асимметричность, следовательно, распределение богатства в регионе США не является нормальным.

Итак, распределение богатства для обеих подгрупп регионов даже является существенно отличным от нормального, следовательно, для сравнения богатства семей и индивидов в этих регионах мы не можем пользоваться сравнением средних этих двух совокупностей.

Итак, для сравнения совокупностей будем использовать сравнение их медиан.

Проверка равенства медиан

Для проверки гипотезы о равенстве медиан используем критерий Манна-Уитни для независимых выборок. Он проверяет следующую гипотезу:

H: медианы равны **К:** медианы не равны

Для вычисления Критерия Манна-Уитни используем точный способ вычисления рзначений (опция Exact). Получаем следующие результаты:

Test Statistics(a)

	wealth
Mann-Whitney U	5217.500
Wilcoxon W	19582.500
Z	415
Asymp. Sig. (2-tailed)	.678
Exact Sig. (2-tailed)	.679

Exact Sig. (1-tailed)	.339
Point Probability	.000

Exact Sig. (2-tailed) = $0.679 > \alpha = 0.05 <=>$ гипотеза о равенстве медиан не отвергнута. Интерпретируем результат: богатство миллиардеров в США и богатство миллиардеров из других регионов мира можно считать примерно равным.

Для более наглядного представления результатов анализа приведем ящиковую диаграмму, построенную по сравниваемым выборкам:

