

Please do not unplug any cables, the desktop computers are alarmed!

HANDS-ON WORKSHOP: PROCESSING EARTH OBSERVATION TIME SERIES WITH SCIDB AND R

Marius Appel marius.appel@uni-muenster.de

OBJECTIVES

- provide an overview of SciDB in practical applications and
 - how it can be used to analyze Earth observation data
 - where it has advantages / limitations
- see how accessible it is without previous experiences with the technology
- We will look at SciDB mostly from the perspektive of a "data scientist"

WHO ARE YOU?

OUTLINE (MORNING)

1. Sample dataset

- 2. Introduction and demonstration of basic concepts in SciDB
 - Architecture
 - Arrays in Detail
 - AFL query language
- 3. Introduction to the SciDB R client
 - The R package scidb
 - The R package scidbst

OUTLINE (MORNING)

- 4. Example time series analyses
 - Time series extraction
 - Image averaging
 - Greenest image
 - Water classification
 - Seasonality assessment
- 5. Ingestion of EO data
- 6. Hands-on

ORGANIZATION

 Material online at https://github.com/appelmar/edcforum2017

Please

- do not remove any data in SciDB except for arrays that you have created during the workshop
- work with very small subsets if you try out things, all participants share the same SciDB installation!
- ask questions, contribute ideas!

OUTLINE (AFTERNOON)

Hackthon with open topics:

- More time to experiment with SciDB and the provided Sentinel dataset
- Installation of SciDB and its extensions using Docker
- Implementation of further methods, e.g.: compute difference images from two given dates
- Ingest and analyze other data and implement (e.g., MODIS, SRTM)
- Try out SciDB-Py, e.g. by re-implementing the R examples
- your own ideas!

SENTINEL 2

- Two satellites:
 - Sentinel-2A (launched 23 June 2015)
 - Sentinel-2B (launched 07 March 2017)
- complements Landsat and SPOT missions
- part of EU Copernicus program
- 13 Spectral Bands at (10m, 20m, or 60m) spatial resolution
- covers latitudes from 56° south to 83° north
- revisit time: 5 days (with two satellites)

SENTINEL 2

- Applications:
 - Water monitoring
 - Forest / vegetation monitoring and change detection
 - Spatial planning
 - Crop monitoring
 - Emergency Management

free and open access!

SENTINEL 2

Tiling of orthorectified products (Level 1C / 2A)

https://sentinel.esa.int/documents/2479 04/1955685/S2A_OPER_GIP_TILPAR_M PC__20151209T095117_V20150622T0 00000_21000101T000000_B00.kml

SENTINEL 2 – DATA ORGANIZATION

_	
S2A	_OPER_PRD_MSIL1C_PDMC_20160514T213146_R121_V20150810T084516_201508
S2.	A_OPER_PRD_MSIL1C_PDMC_20160514T213146_R121_V20150810T084516_20150
	AUX_DATA
	DATASTRIP
	S2A_OPER_MSI_L1C_DS_EPA20160514T170317_S20150810T084516_N02.02
	, QI_DATA
- 6	GRANULE
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KEB_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KEC_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KED_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFB_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_N02.02
	AUX_DATA
	IMG_DATA
	QI_DATA
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFD_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KGB_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KGC_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KGD_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KHB_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KHC_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KHD_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T35KKS_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T35KKT_N02.02
	S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T35KKU_N02.02
	AUX_DATA
	IMG_DATA
	QI_DATA
- F	HTML

Name	Änderungs	Тур	Größe	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B01.jp2	14.05.2016	JP2-Datei	3.663 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B02.jp2	14.05.2016	JP2-Datei	119.141 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B03.jp2	14.05.2016	JP2-Datei	123.402 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B04.jp2	14.05.2016	JP2-Datei	129.554 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B05.jp2	14.05.2016	JP2-Datei	32.858 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B06.jp2	14.05.2016	JP2-Datei	32.773 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B07.jp2	14.05.2016	JP2-Datei	32.792 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B08.jp2	14.05.2016	JP2-Datei	129.694 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B8A.jp2	14.05.2016	JP2-Datei	32.999 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B09.jp2	14.05.2016	JP2-Datei	3.662 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B10.jp2	14.05.2016	JP2-Datei	2.281 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B11.jp2	14.05.2016	JP2-Datei	32.995 KB	
S2A_OPER_MSI_L1C_TL_EPA20160514T170317_A000690_T34KFC_B12.jp2	14.05.2016	JP2-Datei	32.927 KB	

rep_info

Copernicus Open Access Hub

Copernicus Data and Exploitation Platform – Deutschland (CODE-DE)

Amazon Web Services

Google Earth Engine

(FUTURE) ACCESS TO EO DATA?

Alternatives to downloading scenes from space agencies?

- dedicated EO data centers / cloud services that provide access at a
 - low-level (file-based): AWS, EODC,
 - high-level: Google Earth Engine, SciDB,
- · Processing where the data is stored

SAMPLE DATASET

26 scenes from Sentinel 2A Level 1C

Tile 34KGD (Okavango Delta region)

Captured between 2016-12-12 and 2017-08-29

approx. 12e09 measurements, approx 22 GB

SAMPLE DATASET

SAMPLE DATASET

- SciDB representation has three dimensions (10980 x 10980 x 27 cells)
- Each cell has 4 attributes (bands)
- Cells cover 10m x 10m x 10d
- Two arrays with the same data but different chunk organization:
 - S2_OKAVANGO_S
 - S2_OKAVANGO_T

Multidimensional Arrays (n dimensions, m attributes)

$$A: D \to V$$

$$D \subset D_1 \times D_2 \times \cdots \times D_n$$

$$V \subset V_1 \times V_2 \times \cdots \times V_m$$

- Dimensions are ordered and finite
- SciDB dimensions are always 64bit integers → space or time must be transformed
- SciDB attributes can be of any type, and nullable if desired

Examples:

- RGB image: two dimensions, three attributes
- multivariate time series: one dimension, multiple attributes
- hyperspectral EO image time series: four dimensions, one attribute
- DEM: two-dimensions, one attribute

Chunking

- equally sized rectangular subsets of the data within an array
- specified by number of cells per dimension
- defined during array creation
- optional chunk overlap
- strongly affects scalability and performance

Nearly Sparse Chunk Storage

- Empty cells: no value or any of the attributes
- Empty vs Null: cell value of a single attribute can be null but still have data for other attributes, null also adds a missing reason code and is stored

Nearly Sparse Chunk Storage

- run-length encoded dense bitmaps and
- actual values of attributes for nonempty cells

SCIDB QUERY LANGUAGE AFL

→ see scripts/1_AFL_basics.md

SCIDB R CLIENT

→ see scripts/2_SciDB_R.R

SCIDBST R PACKAGE

→ see scripts/3_scidbst.R

EXAMPLE TASKS

1. Time series extraction

- 2. Image averaging
- 3. Greenest image
- 4. Water classification

5. Seasonality assessment