Författtare: Lasse Karagiannis

Kontakt: lasse.l.karagiannis@gmail.com

Uppgift: task9vhdl Datum: 2016-11-13 Projektnamn: TEIS_ECS

Innehållsförteckning

1 Validering	1
1.1 Test Cases Tabellen test cases med loggade data	2
1.2 Konfigurering av ISSPE	
1.3 Kommentar kring resultatet från JTAG skanningen	
1.4 Projektkostnad	

1 Validering

Validering har gjorts i två delar såsom kravspecifikationen föreskrivit. Enligt kravspecifikationen skall man

"Verifiera konstruktionen med out LED och ett varv i programmet. Endast ett testfall och det visar antal klocktryckningar och out_led. Detta är kundens acceptans på att konstruktionen fungerar."

Denna första del utökades med att anteckna sjusegmentsdisplayernas värden, som fördes upp i en tabell tillsammans med ledsignalernas värden, som funktion av tangenttryckningar för att åstadkomma manuell klockning av CPU:n.

1.1 Test Cases Tabellen test cases med loggade data

I tabellen nedan finns kortets förevisade värden avseende de fyra sjusegmentsdisplayerna samt de 4 röda lysdioderna rad för rad såsom för respektive tangentnedtryckning, där totalt 38 tangentnedtryckningar görs. I tabellen finns också uppfört JTAG-modulens förevisade värde.

Tabell 1 Verifieringsutfall som funktion av antalet tangentnedtryckningar

Knapptry ckning, efter reset		LED	JTAG CPU_stat e	JTAG IR	JTAG PC	JTAG Addr_bus	JTAG LED
	ATE,IR,P C,Addr						
Ingen tryckning	F000	1111	00b	0	0	0	15
1,2,3,4	F000	1111	00b	0	0	0	15
5	D010	1111	01b	0	1	0	15
6	E010	1111	10b	0	1	0	15
7,8	F011	1111	00b	0	1	1	15
9	F111	1111	00b	1	1	1	15
10	D121	1111	01b	1	2	1	15
11	E121	1111	10b	1	2	1	15
12,13	F122	1111	00b	1	2	2	15
14	F222	1111	00b	2	2	2	15
15	D232	1111	01b	2	3	2	15
16	E230	1111	10b	2	3	16	15
17	S230	1111	11b	2	3	16*	15
18	S230	1010	11b	2	3	16*	10
19,20	F233	1010	00b	2	3	3	10
21	F133	1010	00b	1	3	3	10
22	D143	1010	01b	1	4	3	10
23	E143	1010	10b	1	4	3	10
24,25	F144	1010	00b	1	4	4	10
26	F244	1010	00b	2	4	4	10
27	D254	1010	01b	2	5	4	10
28	E250	1010	10b	2	5	16*	10
29	S250	1010	11b	2	5	16*	10
30	S250	0001	11b	2	5	16*	1

31,32	F255	0001	00b	2	5	5	1
33	F355	0001	00b	3	5	5	1
34	D365	0001	01b	3	6	5	1
35	E315	0001	10b	3	1	5	1
36,37	F311	0001	00b	3	1	1	1
38	F111	0001	00b	1	1	1	1

1.2 Konfigurering av ISSPE

Efter lysdiodsvalideringen skapades ett testprojekt där komponenten CPU_VHDL_project, samt en IP-komponent av

typen "In Systems Sources and Probe". Referarar till denna senare komponent såsom JTAG-komponeneten.

JTAG-komponenten source-utgång är reset_n-signalen och dess probe-ingångar är 31 bitar som är fördelade på signalerna key, CPU state, IR, PC, Adress-buss och Ledr, enligt följande:

```
probe_signal(30 downto 30) <= manual_clock_signal;
probe_signal(29 downto 28) <= CPU_STATE_signal;
probe_signal(27 downto 20) <= Addr_bus_signal;
probe_signal(19 downto 12) <= PC_signal;
probe_signal(11 downto 4) <= IR_signal;
probe_signal(3 downto 0) <= LEDR signal;</pre>
```

Testprojektets entitet tar som insignal den manuella klockan som transmitterades vidare till CPU VHDL project samt JTAG-komponeneten.

Utsignaler från testprojektets entitet är de 4 sjusegmentssignalerns som går till sjusegmenten HEX3 till HEX0 på kortet, samt ledsignalerna som går till Ledr3 till Ledr0 på kortet.

För att komma åt CPU:ns interna signaler i binär form och inte kodade med 7-segmentkodning, lades följande extra utsignaler till port-beskriviningen av CPU_VHDL_project

```
cpu_state_2_JTAG : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
IR_reg_2_JTAG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
PC_reg_2_JTAG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
Addr_bus_2_JTAG : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
```

1.3 Kommentar kring resultatet från JTAG skanningen

Vi kan se en överenstämmelse mellan kortets resultat och den intern JTAG-probningen. Enda skillanden är under cpu-tillståndet STORE, då CPU:n skriver tilll adress 16. Eftersom endast de fyra minst signifikanta bitarna är avkodade som sju-segment visar sjusegmentet för adress-avkodningen värdet noll, då det egentligen är värdet 16, dvs, hexadecimalt 0x10 som ligger på adressbussen.

1.4 Projektkostnad

Projektets tid uppskattas till 12 timmar, vilket medför en kostnad på 4200kr.