Linear Discrepancy is Π_2 -Hard

Lily Li

October 24, 2017

Abstract

Maybe the following shows that Linear Discrepancy is Hard?

1 Introduction

Král and Nejedlý showed that Group Coloring is Π_2^P -Complete [2]. We will show that linear discrepancy is Π_2 -Hard by reducing $\mathsf{GroupColor}_{\mathbb{Z}_3}$ to linear discrepancy (hence forth denoted LD). First we define $\mathsf{GroupColor}_{\mathbb{Z}_3}$ and LD and their associated decision problems.

Definition 1 The input to $\mathsf{GroupColor}_{\mathbb{Z}_3}$ is a directed graph G = (V, E). An edge labeling of G is a function $\phi : E \to \mathbb{Z}_3$. Let $\chi : V \to \mathbb{Z}_3$ be a coloring of the vertices using elements of \mathbb{Z}_3 . χ satisfies edge label ϕ if for every directed edge e = uv, $\chi(u) - \chi(v) \neq \phi(e)$. G is \mathbb{Z}_3 -colorable if every edge label is satisfied by some coloring of the vertex set.

The associated decision problem asks if G is \mathbb{Z}_3 -colorable.

Definition 2 Given an $m \times n$ matrix A with entries in \mathbb{R} , the linear discrepancy of A is defined as:

$$\mathsf{lindisc}(A) = \max_{w \in [0,1]^n} \min_{x \in \{0,1\}^n} \|A(x-w)\|_{\infty}.$$

The decision problem associated with linear discrepancy asks if $\operatorname{lindisc}(A) \leq d$ for some constant $d \geq 0$.

The structure of the proof will be similar to Haviv and Regev's hardness result for the Covering Radius Problem [1]. In particular we will use the basis of their lattice \mathcal{L}_G — with some slight modifications — as our matrix A.

2 Completeness

Consider a Yes-instance of $\mathsf{GroupColor}_{\mathbb{Z}_3}$. That is, consider some digraph G = (V, E), where |V| = n and |E| = m, which is \mathbb{Z}_3 -colorable. Consider the $m \times n$ matrix C where

$$C_{i,j} = \begin{cases} 1, & \text{if } e_i = v_j u \text{ for some vertex } u \\ -1, & \text{if } e_i = u v_j \text{ for some vertex } u \\ 0 & \text{otherwise.} \end{cases}$$

The lattice $\mathcal{L}_G = \{y \in \mathbb{Z}^m : \exists x \in \mathbb{Z}^n \text{ such that } y = Cx \mod 3\}$ is the set of all edge labels induced by colorings of V. Let \mathcal{B}_G be the basis of \mathcal{L}_G consisting of vectors $y \in \{0,1,2\}^m$. Observe that each column of \mathcal{B}_G corresponds to some edge labeling modulo 3, thus all the entries of \mathcal{B}_G are positive. Let $A = \mathcal{B}_G$ be an $m \times m$ matrix — since \mathcal{B}_G spans \mathbb{R}^m — and let d = 1. We will show that $\mathsf{lindisc}(A) \leq d$.

Consider any vector $w \in [0, 1]^m$. Define $\mathcal{U}_G \subset \mathcal{L}_G$ to be the unit polytope of \mathcal{L}_G such that $y^* \in \mathcal{U}_G$ if and only if $y^* = \mathcal{B}_G x$ for some $x \in \{0, 1\}^m$. The Hardness of the Covering Radius Problem on Lattices [1] showed that for every $z \in \mathbb{R}^m$ there exists a lattice point y such that $||y - z||_{\infty} \leq \frac{3-1}{2} = 1$ (we can reproduce the proof here if necessary). Thus for $y \in \mathcal{L}_G$ such that

$$y = \arg\min_{y \in \mathcal{L}_G} \|y - Aw\|_{\infty},$$

y satisfies $||y - Aw||_{\infty} \le 1$. By Lemma 3, we know that y must be some point in \mathcal{U}_G . Thus there exists a vector $x \in \{0,1\}^m$ such that y = Ax. Then $\mathsf{lindisc}(A) = \max_{w \in [0,1]^m} \min_{x \in \{0,1\}^m} ||A(x-w)||_{\infty} \le 1$ as required.

Lemma 3 Let \mathcal{B}_G be the basis of lattice \mathcal{L}_G with entries in $\{0,1,2\}$. For each $w \in [0,1]^w$ there exists a point y in the unit polytope (i.e. $y = \mathcal{B}_G x$ for $x \in \{0,1\}^w$) such that

$$y = \arg\min_{y \in \mathcal{L}_G} \|y - \mathcal{B}_G w\|_{\infty}.$$

Proof. Consider any $z \in \mathcal{L}_G$ such that

$$z = \arg\min_{z \in \mathcal{L}_G} \|z - \mathcal{B}_G w\|_{\infty}$$

(that is: z is the closest lattice point to $\mathcal{B}_G w$ using the infinity norms as the metric). We will find a point y in the unity polytope such that

$$\|y - \mathcal{B}_G w\|_{\infty} \leq \|z - \mathcal{B}_G w\|_{\infty}$$

Since $z \in \mathcal{L}_G$, $z = \mathcal{B}_G c$ for some $c \in \mathbb{Z}^m$. Let $d \in \{0,1\}^m$ be defined as follows:

$$d_i = \begin{cases} c_i & \text{if } c_i \in \{0, 1\} \\ 1 & \text{if } c_i > 1 \\ 0 & \text{if } c_i < 0 \end{cases}$$

Compare each element of c-w with the associated element of d-w and observe that $|d_i - w_i| \le |c_i - w_i|$ (recall: $w_i \in [0,1]$). Since \mathcal{B}_G is a matrix with positive entries, it follow that $\|\mathcal{B}_G(d-w)\|_{\infty} \le \|\mathcal{B}_G(c-w)\|_{\infty}$ as required.

3 Soundness

Consider a No-instance of $\mathsf{GroupColor}_{\mathbb{Z}_3}$. That is, consider a graph G = (V, E) which is not \mathbb{Z}_3 -colorable. Again, construct the lattice \mathcal{L}_G from the induced edge-labels and a basis \mathcal{B}_G for \mathcal{L}_G with entries in $\{0, 1, 2\}$.

The Hardness of the Covering Radius Problem on Lattices [1] showed that there exists a $z \in \mathbb{Z}^m$ such that $||y-z||_{\infty} \geq \frac{3}{2}$ for every $y \in \mathcal{L}_G$. We can write $z = \mathcal{B}_G w$ for some $w \in \mathbb{R}^m$ since \mathcal{B}_G is a spanning set of \mathbb{R}^m . Let $w' \in [0,1]^m$ be the vector such that $0 \leq w'_i \leq 1$ and $w_i = w'_i + c_i$ for some integer c_i . Thus

$$\mathsf{lindisc}(A) \geq \min_{x \in \{0,1\}^m} \lVert \mathcal{B}_G(x - w') \rVert_{\infty} \geq \frac{3}{2} > 1.$$

References

- [1] HAVIV, I., AND REGEV, O. Hardness of the covering radius problem on lattices. In *Computational Complexity*, 2006. CCC 2006. Twenty-First Annual IEEE Conference on (2006), IEEE, pp. 14–pp.
- [2] NEJEDLY, P., ET AL. Group coloring and list group coloring are π2pcomplete. In *International Symposium on Mathematical Foundations of Computer Science* (2004), Springer, pp. 274–286.