RESEARCH PAPER RP1124

Part of Journal of Research of the National Bureau of Standards, Volume 21, August 1938

EXTENSION AND REVISION OF THE ARC SPECTRUM OF SILICON

By Carl C. Kiess

ABSTRACT

A new survey has been made of the spectrum emitted by neutral silicon atoms. Revised wave lengths and intensities are given for 400 lines between 1565 A in the ultraviolet and 12270 A in the infrared. The fine structure of some red and infraultraviolet and 12270 A in the infrared. The fine structure of some red and infrared lines that appear diffuse when emitted by the arcs in air has been resolved by enclosing the light source in an atmosphere of nitrogen at reduced pressure. Nearly all the lines have been classified as combinations between known and new singlet and triplet terms required by atomic theory. These terms belong to various series of three or more members each and yield accordant results for the value of the ground state 3p $^3P_{\circ}$ of Si 1. This value, 65743 cm⁻¹, corresponds to an ionization potential of 8.11 volts. Most of the observed silicon lines longer than 3000 A and many that are not emitted in the arc but are predictable from the terms, correspond to faint Fraunhofer lines have force unidentified the terms, correspond to faint Fraunhofer lines heretofore unidentified.

CONTENTS

I.	Introduction
	Experimental procedure
	Results
111.	1. Wave lengths and intensities
	2. Term structure of Si I
	3. Series and ionization potential of Si I
	4. Silicon in the sun
	5. Lines of Si 11

I. INTRODUCTION

The published descriptions of the arc spectrum of silicon show that its principal features appear in the ultraviolet and in the infrared. Only a few lines lie in the visible region. Fowler's ' work, nearly 10 years ago, brought to light an extensive spectrum, in the Schumann region, that results from combinations between the ground states of the atom and various higher energy states. Several years later this work was supplemented, at the National Bureau of Standards,2 by an extension of the spectrum into the infrared as far as the photographic methods would allow. Since that time new types of photographic plates, brought out by the Eastman Kodak Research Laboratories,³ have made it possible to record the spectrum out to 12270 A, nearly 1000 A beyond the limit reached in the earlier investigation. The new data have led to new classifications of the arc lines of silicon and have suggested corrections of older classifications. As a consequence of the new findings, a resurvey of the entire spectrum has been made, the results of which are presented below.

A. Fowler, Proc. Roy. Soc. (London) [A] 123, 422 (1929).
 C. C. Kiess, BS J. Research 11, 775 (1933) R P624.
 L. S. G. Brooker and G. H. Keyes, J. Franklin Inst. 219, 255 (1935).

II. EXPERIMENTAL PROCEDURE

The prism and grating spectrographs of the National Bureau of Standards were employed to photograph the arc spectrum of silicon from wave length 1976 A, in the ultraviolet, to 12270 A in the infrared. The region from 2124 to 1976 A was recorded with the Hilger E1 spectrograph, which gives a dispersion ranging from 1.5 A/mm to 1A/mm in this region. The more powerful prism spectrograph, also by Hilger, and carrying a large 60° Cornu prism in combination with a 30° reflecting prism, in the E 185 mounting, was used in the range from 3000 to 2120 A, the dispersion varying from 2 A/mm to 0.4 A/mm. The gratings used for the photography of the longer waves were the ones ruled by Anderson with 7,500 lines per inch and the one by Rowland with 20,000 lines per inch. Adequate descriptions of them have been given elsewhere. When the observational work described in this paper was nearing completion, a third grating, by R. W. Wood,⁵ ruled with 30,000 lines per inch on an aluminized Pyrex mirror, became available, and was used to photograph the spectrum from 2200 to 8600 A.

The light source with which most of the observations were made was the arc in air between lumps of commercial silicon about 95 percent pure. The currents in the arc ranged from 6 to 15 amperes supplied from a 220-volt d-c circuit. Many of the silicon arc lines in the red and infrared are diffuse and hazy when emitted by the arc in air and are always superimposed upon a background made up of a mixture of impurity lines and band lines due to SiO. These conditions make it impossible to detect the close and faint satellites that accompany some of the stronger lines. Accordingly, a series of observations was made with the silicon arc enclosed in atmospheres of nitrogen at various low pressures ranging from 25 to 350 mm of Hg. are chamber was a reproduction of that described and illustrated by Curtis.⁶ In order to keep the low-pressure observations free from blends with lines of impurities a search for highly purified silicon was instigated, and when the problem was brought to the attention of R. L. Templin, he very generously donated for the work a piece of the cast silicon rod described by him.⁷ Later, when more electrode material was needed some highly purified silicon granules were made available by J. H. Critchett, of the Union Carbide Research Labora-This material was alloyed with a small amount of pure silver and cast into rods through the courtesy of W. H. Swanger and A. J. Dornblatt of the Metallurgical Division of this Bureau.

In addition to the observations described above, there were available for measurement several spectrograms covering the Schumann region. These observations were made especially for this investigation by A. G. Shenstone of Princeton University, with the normal-incidence vacuum spectrograph of the Palmer Physical Laboratory. This instrument carries a 2-m glass grating ruled with 30,000 lines to the inch by Wood, and gives a dispersion of 4.2 A/mm. The source was an arc of approximately 3 amperes between electrodes of metallic silicon cut from the piece supplied by Templin and operated in pure nitrogen at atmospheric pressure. No trace of the confusing silicon

W. F. Meggers and K. Burns, BS Sci. Pap. 18, 191 (1922) S441.
 R. W. Wood, Nature 149, 723 (1937).
 H. D. Curtis, J. Opt. Soc. Am. 8, 697 (1924).
 R. L. Templin, Metals and Alloys 3, 136 (1932).

oxide bands appears on any of the exposures, which ranged from 2 to 75 minutes' duration.

Measurement of all the plates described above was done with the comparators at the National Bureau of Standards. All the spectrograms made at the Bureau bore also the iron or copper spectra to furnish the reference standards for the reduction of the wave lengths; but, in general, there were sufficient numbers of iron lines present as impurities in the silicon exposures to serve as internal standards of reference. The wave lengths of the reference lines were those that have been adopted as international secondary standards 8 or were selected from the lists of Burns and Walters. 9

For the Princeton plates no comparison spectrum was available. The preliminary wave lengths, derived from the nitrogen and carbon lines that were present as impurities among the silicon lines, were subsequently corrected by amounts derived from term values based on the measurements of National Bureau of Standards spectrograms of silicon.

III. RESULTS

1. WAVE LENGTHS AND INTENSITIES

Only those wave lengths of silicon that have actually been measured at the National Bureau of Standards are given in the first column of tables 1 and 2. For most of the lines these values represent the means of 2 to 10 determinations. For the diffuse and hazy lines no great precision is claimed and errors as great as 0.10 A may be present. For the sharper lines, however, that were measured on the highdispersion spectrograms, it is believed that the errors are not greater than 0.01 A. This is indicated by a comparison of the strong ultraviolet lines with the interferometer observations made at the Allegheny Observatory, which shows a mean difference of ± 0.003 A between the two sets of determinations.

Table 1.—Wave lengths in the arc spectrum of silicon emitted by the arc-in-air

$\lambda_{air}A$	Intensity	λ_{sun}	$\nu_{ m vac} { m cm}^{-1}$	Term combination
12270. 50 12103. 46	2 5	3. 47	8147. 40 8259. 84	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12031. 49	25	0. 47	8309. 25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
11991. 57	10		8336. 91	$4s {}^{3}P_{0}^{2} - 4p {}^{3}D_{1}$
11984. 20	20		8342. 04	$4s {}^{3}\text{P}_{1}^{\circ} - 4p {}^{3}\text{D}_{2}$
11821. 80	06		8456. 64	B S S SINCE
11640. 58	2b		8588. 31	$3d {}^{3}\mathrm{P}_{0}^{\circ} - 4f {}^{3}\mathrm{D}_{1}$
11611. 49	56	1. 65	8609. 80	$3d {}^{3}\mathrm{P}_{2}^{\circ} - 4f {}^{3}\mathrm{D}_{3}$
11607. 42	0b		8612. 82	$4p {}^{1}D_{2} - 4d {}^{1}P_{1}$
11591. 98	4b	2. 27	8624. 30	$ \begin{cases} 3d {}^{3}\mathrm{P}_{1}^{\circ} - 4f {}^{3}\mathrm{D}_{2} \\ 3d {}^{3}\mathrm{P}_{1}^{\circ} - 4f {}^{3}\mathrm{D}_{1} \end{cases} $
11502. 94	36		8691. 05	$3d ^{3}\text{P}_{2}^{\circ} - 4f ^{3}\text{D}_{2}$
11485. 68	2b		8704. 11	$4p {}^{1}\mathrm{D}_{2} - 4d {}^{1}\mathrm{F}_{3}^{2}$
11468. 54	1b		8717. 12	$3d {}^{3}\text{F}_{4}^{\circ} - 4f {}^{3}\text{F}_{4}$
11308. 45	2b		8840. 52	$3d {}^{3}F_{3} - 4f {}^{3}F_{2}$
11290. 01	10b		8854. 96	$3d {}^{3}F_{3} - 4f {}^{3}F_{4}$

Trans. Int. Astron. Union 3, 77 (1928).
 K. Burns and F. M. Walters, Pub. Allegheny Obs. 8, 27 (1930); 8, 39 (1931).
 N. E. Wagman, Univ. Pittsburgh Bul. 34, 333 (1937). F. J. Sullivan, Univ. Pittsburgh Bul. (in press). 79859-38-

 ${\tt Table 1.} {\it -Wave lengths in the arc spectrum of silicon emitted by the arc-in-air-Con.}$

$\lambda_{air}A$	Intensity	λ_{sun}	$\nu_{ m vac}{ m cm}^{-1}$	Term combinatio
11254. 97	3b		8882. 53	
11253. 22	$\begin{vmatrix} 3b \\ 2b \end{vmatrix}$		8883. 91	
11202. 02	16		8924. 52	$3d{}^3{ m F}_2^{\circ}{-}4f{}^3{ m F}_2$
11187. 74	20b		8935. 91	$3d {}^{3}F_{2}^{2} - 4f {}^{3}F_{3}$
11130. 37	76		8981. 97	$3d {}^{3}F_{4}^{2} - 4f {}^{3}G_{5}^{2}$
11018. 00	70	8. 23	9073. 58	
11013. 31	16	0. 20	9073. 38	A STATE OF THE PARTY OF THE PAR
10984. 24	36	4. 42	9101. 47	3d 3F3-4f 3G3
10982. 28	76	2. 39	9103. 09	3d 3F3-4f 3G4
10979. 27	35	9. 34	9105. 59	$4s^{3}P_{2}^{3}-4p^{3}P_{1}$
10889. 15	0b		9180. 94	
10885. 16	10b	5. 37	9184. 30	3d 3F2-4f3G3
10882. 66	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2. 84	9186. 41	$4p {}^{3}\mathrm{D}_{3} - 4d {}^{3}\mathrm{F}_{3}^{3}$
10869. 54	125	9. 57	9197. 50	$4s {}^{1}P_{1} - 4p {}^{1}D_{2}$
10844. 02	25b	3. 89	9219. 15	$4p {}^{1}P_{1} - 4d {}^{1}D_{2}^{2}$
10827. 09	100	7. 14	9233. 57	4s ³ P ₂ - 4p ³ P ₂
10807. 75	1 <i>h</i>		9250. 09	
10796. 52	0h	0.67	9259. 70	$3d {}^{3}\text{F}_{2}^{\circ} - 4f {}^{1}\text{D}_{2}$
10786. 86	50,	6. 85	9268. 00	$4s {}^{3}P_{1}^{\circ} - 4p {}^{3}P_{0}$
10784. 33	5b	4. 58	9270. 18	$4p ^3\mathrm{D_2} - 4d ^3\mathrm{F_2}$
10768. 35	0h	0.0=	9283. 93	4 20 4 25
10749. 40	60	9. 37	9300. 30	$4s {}^{3}P_{1} - 4p {}^{3}P_{1}$
10727. 21	75b	7. 41	9319. 53	$4p ^3D_3 - 4d ^3F_4^2$
10694. 14 10689. 52	$\begin{vmatrix} 50b \\ 20b \end{vmatrix}$	4. 23 9. 73	9348. 35 9352. 39	$4p ^3\mathrm{D}_2 - 4d ^3\mathrm{F}_3 \ 4p ^3\mathrm{D}_1 - 4d ^3\mathrm{F}_2 \$
10660. 98 10627. 81	$\begin{vmatrix} 50 \\ 20b \end{vmatrix}$	0. 98 7. 63	9377. 43 9406. 70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10603. 38	60	3. 44	9406. 70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10585. 12	100	5. 165	9444. 64	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10582. 66	1 1	0. 100	9446. 83	$4p {}^{1}D_{2} - 6s {}^{1}P_{1}^{\circ}$
10498. 86	2		9522. 24	Name of the Control o
10371. 23	50	1. 285	9639. 42	4s ³ P ₁ - 4p ³ S ₁
10288. 83	25	8. 950	9716.62	$48 {}^{3}\text{P}_{0}^{\circ} - 4p {}^{3}\text{S}_{1}$
10155. 88	1	6. 16	9843. 81	$4p {}^{3}\mathrm{P}_{2} - 5d {}^{3}\mathrm{D}_{2}^{\circ}$
10100. 84	1		9897. 45	
10067. 84	46		9929. 90	$4p\ ^{3}\mathrm{P}_{2}-5d\ ^{3}\mathrm{D}_{3}^{3}$
10020. 16	1		9977. 15	$3d {}^{1}D_{2}^{\circ} - 5p {}^{3}P_{1}$
10015. 33	1		9981. 96	$4p {}^{1}S_{0} - 5d {}^{1}P_{1}^{2}$
10009. 82 9967. 46	1 1		9987. 45 10029. 90	$4p ^{3}P_{0} - 5d ^{3}D_{1}^{2}$
9913. 16	16	1 61	10084. 84	$4p ^{3}P_{2} - 6s ^{3}P_{1}^{\circ}$
9891. 90	56	1. 61	10106. 51	$4p {}^{3}S_{1} - 6s {}^{3}P_{2}^{\circ}$
9886. 92	$\frac{2b}{2b}$	7. 06	10111. 60	$4p ^{1}D_{2} - 5d ^{1}D_{2}^{\circ}$
9839. 58 9789. 24	$\begin{vmatrix} 2b \\ 2h \end{vmatrix}$	9. 36	10160. 25 10212. 50	$\begin{array}{c c} 4p \ ^{3}P_{1} - 6s \ ^{3}P_{0} \\ 4p \ ^{3}P_{1} - 6s \ ^{3}P_{1} \end{array}$
9770. 10	46	0. 30	10232, 51	
9768. 27	56	0. 00	10234. 42	48 ³ P ₂ - 4p ¹ D ₂
9758. 08	$\frac{30}{2h}$		10234. 42	$4p {}^{3}P_{0} - 6s {}^{3}P_{1}^{2}$
9738. 60	66		10265. 61	IP 10 00 11
9689. 41	86	9. 37	10317. 72	4p 3P2-6s 3P2
		J. J.		

 ${\tt Table \ 1.} \\ -Wave \ lengths \ in \ the \ arc \ spectrum \ of \ silicon \ emitted \ by \ the \ arc-in-air}\\ -{\tt Con.}$

$\lambda_{\mathtt{air}} A$	Intensity	λ_{sun}	$\nu_{ m vac} { m cm}^{-1}$	Term combination
9585. 72	4	5. 70	10429. 33	48 ³ P ₁ °-4p ¹ D ₂
9570. 08	4	9. 93	10446. 37	$ \begin{cases} 4s {}^{3}\text{P}_{1}^{\circ} - 4p {}^{1}\text{D}_{2} \\ 3d {}^{1}\text{D}_{2}^{\circ} - 5p {}^{1}\text{D}_{2} \end{cases} $
9505. 28	5		10517. 60	$ \left\{ \begin{array}{l} 3d ^3\mathrm{P}_2 - 3p ^3\mathrm{P}_2 \\ 4p ^3\mathrm{P}_1 - 6s ^3\mathrm{P}_2^2 \\ 4p ^3\mathrm{S}_1 - 5d ^3\mathrm{P}_2 \\ 4p ^3\mathrm{S}_1 - 5d ^3\mathrm{P}_1 \\ 4s ^1\mathrm{P}_1^2 - 4p ^1\mathrm{S}_0 \end{array} \right. $
9421. 82	4		10610. 75	$4p {}^{3}S_{1} - 5d {}^{3}P_{1}^{2}$
9413. 59	200	3. 51	10620. 03	48 ¹ P ₁ ° -4p ¹ S ₀
9393. 40	2b		10642. 86	$4p {}^{3}S_{1} - 5d {}^{3}P_{0}^{\circ}$
9318. 24	4	8. 18	10728. 70	$4p\ ^3\mathrm{S}_1\!-\!5d\ ^3\mathrm{P}_0^{\circ}\ 4p\ ^3\mathrm{P}_2\!-\!5d\ ^3\mathrm{P}_2^{\circ}$
9254. 59 9238. 60	$egin{array}{c} 4h \ 2h \end{array}$		10802. 49 10821. 18	$4p^{3}P_{2}-5d^{3}P_{1}^{\circ}$
9209. 66	$\frac{2n}{1b}$		10821. 18	4p · F ₂ — 5a · F ₁
9208. 55	56	8. 60	10856, 50	$4p ^{3}P_{1} - 5d ^{3}P_{2}^{\circ}$
9147. 39	0h		10929. 08	
9103. 37	3b		10981. 93	$ \begin{cases} 4p {}^{3}P_{1} - 5d {}^{3}P_{0} \\ 4p {}^{3}P_{0} - 5d {}^{3}P_{1}^{3} \end{cases} $
9064. 06	061		11029. 56	$ \begin{cases} 4p ^{3}P_{0} - 5d ^{3}P_{1}^{2} \\ 3d ^{3}P_{1}^{2} - 5f ^{3}D_{2} \end{cases} $
9052. 57	0bl		11043. 56	
9022. 40	2h		11080. 49	(0.12D: 7407
9009. 04	5hl		11096. 92	$ \begin{cases} 3d {}^{3}\mathrm{P}_{2}^{\circ} - 5f {}^{3}\mathrm{D}_{3} \\ 3d {}^{3}\mathrm{P}_{2}^{\circ} - 5f {}^{3}\mathrm{D}_{2} \end{cases} $
8949. 33	15b	9.06	11170. 96	$\begin{array}{c} 3d^{3}\mathrm{D}_{2}-6s^{3}\mathrm{P}_{1}^{2} \\ 4p^{3}\mathrm{D}_{1}-6s^{3}\mathrm{P}_{0}^{3} \\ 4p^{3}\mathrm{F}_{4}^{4}-5f^{3}\mathrm{F}_{3}^{3} \end{array}$
8925. 55	86		11200. 72	$4p ^3D_1 - 6s ^3P_0^{\circ}$
8899. 50	3b		11233. 51	3d °F4-5f °F3
8898. 97	36	8. 99	11234. 18	3d 3F4-5f 3F4
8892. 97 8883. 84	$25b \\ 4b$	2. 73 3. 68	11241. 75 11253. 30	$4p ^{3}D_{3} - 68 ^{3}P_{2}^{2}$
8791. 28	5b	5. 00	11371. 79	$\begin{cases} 4p ^3\mathrm{D}_3 - 6s ^3\mathrm{P}_2^2 \\ 4p ^3\mathrm{D}_1 - 6s ^3\mathrm{P}_1^2 \\ \int 3d ^3\mathrm{F}_3^3 - 5f ^3\mathrm{F}_2 \end{cases}$
				$ \left\{ \begin{array}{c} 3d\ ^{1}\mathrm{D}_{2}^{2} - 5d\ ^{1}\mathrm{F}_{3}^{3} \\ 3d\ ^{3}\mathrm{F}_{3}^{3} - 5f\ ^{3}\mathrm{F}_{4} \\ 3d\ ^{3}\mathrm{F}_{3}^{3} - 5f\ ^{3}\mathrm{F}_{3} \end{array} \right. $
8790. 88	46		11372. 31	$\begin{cases} 3d {}^{3}F_{3}^{3} - 5f {}^{3}F_{3} \end{cases}$
8766. 68	36	6. 42	11403. 70	$4p ^3\mathrm{D}_2 - 6s ^3\mathrm{P}_2^\circ$
8752. 17	200	2. 02	11422. 60	$\begin{array}{c c} 4p \ ^3D_2 - 6s \ ^3P_2^\circ \\ 3d \ ^1D_2^\circ - 4f \ ^1F_3 \end{array}$
8742. 60 8729. 02	$\begin{vmatrix} 100 \\ 5b \end{vmatrix}$	2. 47 9. 17	11435. 11 11452. 90	$3d {}^{1}\mathrm{D}_{2}^{\circ} - 4f {}^{3}\mathrm{F}_{3}$
8728. 38	10b	8. 02	11453. 74	$3d\ ^3{ m F}_2^{\circ}-5f\ ^3{ m F}_2^{\circ}\ 3d\ ^3{ m F}_2^{\circ}-5f\ ^3{ m F}_3$
8648. 89	100hl	8. 47	11559. 00	I DESCRIPTION
8606. 43	10011	6. 38	11616. 03	$4p^{3}D_{1}-6s^{1}P_{1}^{\circ}$
8597. 00	2hl	7.059	11628. 77	$4p\ ^3{ m D}_1{ m -}\ 6s\ ^1{ m P}_1^{ m o}\ 3d\ ^3{ m F}_3^{ m o}{ m -}\ 5f\ ^3{ m G}_3$
8579. 15 8556. 64	$\begin{vmatrix} 2b \\ 100b \end{vmatrix}$	9. 08 6. 795	11652. 97 11683. 63	$3d {}^{1}{ m D}_{2}^{\circ} - 4f {}^{3}{ m G}_{3}$
				Ju 22 1 U3
8536. 80 8536. 38	$\begin{vmatrix} 2b \\ 3b \end{vmatrix}$	6. 68 6. 16	11710. 78 11711. 36	$3d {}^{3}\mathrm{F}_{2}^{\circ} - 5f {}^{3}\mathrm{G}_{3}$
8503. 17	5	3. 145	11757. 09	00 1 2 0j Ci3
8502. 38	30b	2. 228	11758. 32	$3d ^{1}\mathrm{D}_{2}^{\circ} - 4f ^{3}\mathrm{D}_{3}$
8501. 50	20b	1. 553	11759. 40	$3d {}^{1}{\rm D}_{2}^{\circ} - 4f {}^{1}{\rm D}_{2}$
8444. 48	3b	4. 377	11838. 81	$3d {}^{1}\mathrm{D}_{2}^{\circ} - 4f {}^{3}\mathrm{D}_{1}$
8444. 00 8338. 43	$\begin{vmatrix} 15b \\ 5b \end{vmatrix}$	3. 975 8. 343	11839. 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8317. 45	$\begin{vmatrix} 50 \\ 2b \end{vmatrix}$	8. 343 7. 394	11989. 37 12019. 62	$3d ^{3}\mathrm{D}_{1}^{2} - 5n ^{3}\mathrm{P}_{0}$
8306. 80	4b	6. 699	12035. 02	$3d\ ^3{ m D}_1^2-5p\ ^3{ m P}_0\ 3d\ ^3{ m D}_2^2-5p\ ^3{ m P}_1$

 ${\bf Table \ 1.} - Wave \ lengths \ in \ the \ arc \ spectrum \ of \ silicon \ emitted \ \ by \ the \ arc-in-air-Con.$

$\lambda_{air}A$	Intensity	λ_{sun}	$\nu_{ m vac} { m cm}^{-1}$	Term combinatio
8230. 67 8211. 48 8093. 32 8035. 39 7970. 91	15 2 25b 7b 3b	0. 63 1. 57 3. 232	12146. 34 12174. 73 12352. 48 12441. 53 12542. 17	$3d\ ^3\mathrm{D}_3^3 - 5p\ ^3\mathrm{P}_2 \ 3d\ ^3\mathrm{D}_2^2 - 5p\ ^3\mathrm{P}_2 \ 4p\ ^1\mathrm{P}_1 - 6s\ ^1\mathrm{P}_1^2 \ 4p\ ^3\mathrm{D}_3 - 5d\ ^3\mathrm{F}_3^3$
7970. 26 7943. 94 7932. 20 7918. 38 7913. 47	$10b \\ 500b \\ 300b \\ 200b \\ 10b$	0. 300 4. 001 2. 351 8. 383 3. 438	12543. 20 12584. 75 12603. 38 12625. 38 12633. 21	$\begin{array}{c} 4p\ ^3\mathrm{D}_2 - 5d\ ^3\mathrm{F}_2 \\ 4p\ ^3\mathrm{D}_3 - 5d\ ^3\mathrm{F}_4 \\ 4p\ ^3\mathrm{D}_2 - 5d\ ^3\mathrm{F}_3 \\ 4p\ ^3\mathrm{D}_1 - 5d\ ^3\mathrm{F}_2 \\ 4p\ ^1\mathrm{P}_1 - 5d\ ^3\mathrm{P}_2 \end{array}$
7912. 55 7850. 5 7800. 0 7743. 2 7742. 7	$\begin{array}{c} 3b \\ 2H \\ 4H \\ 4h \\ 5h \end{array}$	2. 384 0. 88 0. 009 2. 722	12634. 68 12734. 54 12816. 99 12911. 01 12911. 84	$4p\ ^3\mathrm{P}_2 - 7s\ ^3\mathrm{P}_2^2 \ 3d\ ^3\mathrm{F}_3^3 - 6f\ ^3\mathrm{F}_2 \ 3d\ ^3\mathrm{F}_2^2 - 6f\ ^3\mathrm{F}_2$
7680. 35 7424. 63 7423. 54 7416. 00 7415. 37	$ \begin{array}{c} 100b \\ 20 \\ 500 \\ 250 \\ 15 \end{array} $	0. 267 4. 647 3. 509 5. 958 5. 363	13016. 66 13464. 98 13466. 96 13480. 65 13481. 80	$\begin{array}{c} 4p\ ^1\mathrm{P}_1 - 5d\ ^1\mathrm{D}_2^\circ \\ 3d\ ^3\mathrm{D}_3^\circ - 4f\ ^3\mathrm{F}_3^\circ \\ 3d\ ^3\mathrm{D}_3^\circ - 4f\ ^3\mathrm{F}_4^\circ \\ 3d\ ^3\mathrm{D}_2^\circ - 4f\ ^1\mathrm{F}_3^\circ \\ 3d\ ^3\mathrm{D}_2^\circ - 4f\ ^3\mathrm{F}_2^\circ \end{array}$
7409. 11 7405. 85 7373. 02 7290. 21 7289. 25	$100 \\ 300 \\ 10b \\ 10 \\ 250$	9. 100 5. 700 3. 011 9. 199	13493. 19 13499. 13 13559. 23 13713. 25 13715. 06	$\begin{array}{c} 3d\ ^3\mathrm{D}_2^2 - 4f\ ^3\mathrm{F}_3 \\ 3d\ ^3\mathrm{D}_1^2 - 4f\ ^3\mathrm{F}_2 \\ 4p\ ^3\mathrm{D}_3 - 7s\ ^3\mathrm{P}_2^2 \\ 3d\ ^3\mathrm{D}_3^3 - 4f\ ^3\mathrm{G}_3 \\ 3d\ ^3\mathrm{D}_3^3 - 4f\ ^3\mathrm{G}_4 \end{array}$
7275. 28 7250. 69 7235. 86 7235. 32 7226. 20	50 40 10 15 20	0. 661 5. 852 5. 368 6. 231	13741. 40 13788. 00 13816. 26 13817. 29 13834. 73	$\begin{array}{c} 3d\ ^3\mathrm{D}_2^5-4f\ ^3\mathrm{G}_3\\ 3d\ ^3\mathrm{D}_3^3-4f\ ^3\mathrm{D}_3\\ 3d\ ^3\mathrm{D}_2^5-4f\ ^3\mathrm{D}_3\\ 3d\ ^3\mathrm{D}_2^5-4f\ ^1\mathrm{D}_2\\ 3d\ ^3\mathrm{D}_1^5-4f\ ^1\mathrm{D}_2\\ \end{array}$
7208. 20 7193. 89 7193. 56 7184. 89 7184. 54	1 5 8 10 1	8. 221 4. 930	13869. 28 13896. 86 13897. 50 13914. 27 13914. 92	$\begin{array}{c} 3d\ ^3\mathrm{D}_3^3 - 4f\ ^3\mathrm{D}_2\\ 3d\ ^3\mathrm{D}_2^3 - 4f\ ^3\mathrm{D}_1\\ 3d\ ^3\mathrm{D}_2^2 - 4f\ ^3\mathrm{D}_2\\ 3d\ ^3\mathrm{D}_1^3 - 4f\ ^3\mathrm{D}_1\\ 3d\ ^3\mathrm{D}_1^3 - 4f\ ^3\mathrm{D}_2\\ \end{array}$
7165. 62 7164. 75 7084. 33 7034. 96 7026. 61	$100b \\ 2b \\ 2b \\ 50b \\ 2b$	5. 568 4. 736 4. 268 4. 920 6. 635	13951. 69 13953. 40 14111. 78 14210. 81 14227. 69	$\begin{array}{c} 3d\ ^{1}\mathrm{D}_{2}^{2}-5f\ ^{1}\mathrm{D}_{2}\\ 3d\ ^{1}\mathrm{D}_{2}^{2}-5f\ ^{3}\mathrm{F}_{3},\\ 4p\ ^{3}\mathrm{D}_{3}^{2}-6d\ ^{3}\mathrm{F}_{3}^{3}\\ 3d\ ^{1}\mathrm{D}_{2}^{2}-5f\ ^{3}\mathrm{G}_{3} \end{array}$
7017. 98 7017. 68 7005. 84 7003. 58 6976. 53	$4b \\ 10b \\ 50b \\ 50b \\ 25b$	7. 999 7. 684 5. 909 3. 590 6. 533	14245. 19 14245. 80 14269. 87 14274. 48 14329. 83	$\begin{array}{c} 3d\ ^{1}\mathrm{D}_{2}^{2}-5f\ ^{3}\mathrm{D}_{3}\\ 3d\ ^{1}\mathrm{D}_{2}^{2}-5f\ ^{3}\mathrm{D}_{2}\\ 4p\ ^{3}\mathrm{D}_{3}-6d\ ^{3}\mathrm{F}_{4}^{3}\\ 4p\ ^{3}\mathrm{D}_{2}-6d\ ^{3}\mathrm{F}_{3}^{3}\\ 4p\ ^{3}\mathrm{D}_{1}-6d\ ^{3}\mathrm{F}_{2}^{2} \end{array}$
6848. 65 6741. 74 6722. 67 6721. 97 6560. 68	$egin{array}{c} 4b \\ 2b \\ 2b \\ 4b \\ 2h \end{array}$	8. 578 1. 638 2. 718 1. 853	14597. 40 14828. 88 14870. 94 14872. 49 15238. 12	$4p {}^{1}P_{1} - 7s {}^{1}P_{1}^{\circ}$ $4p {}^{1}P_{1} - 6d {}^{1}D_{2}^{\circ}$ $4p {}^{3}D_{1} - 7d {}^{3}F_{2}^{\circ}$

Table 1.—Wave lengths in the arc spectrum of silicon emitted by the arc-in-air—Con.

$\lambda_{air}A$	Intensity	$\lambda_{ ext{sun}}$	$\nu_{ m vac}{ m cm}^{-1}$	Term combination
6555. 20 6527. 49 6415. 24 6331. 92 6254. 96	2h $3h$ $4b$ $2b$ $2h$	1. 971	15250. 86 15315. 60 15583. 58 15788. 64 15982. 90	$4p\ ^3\mathrm{D}_2 - 7d\ ^3\mathrm{F}_3^3 \ 4p\ ^3\mathrm{D}_3 - 7d\ ^3\mathrm{F}_4^3$
6254. 25 6244. 56 6243. 86 6238. 38 6237. 62	$25h \\ 10h \\ 10h \\ 2h \\ 5h$	4. 179 4. 483 3. 829 8. 396	15984. 71 16009. 52 16011. 31 16025. 38 16027. 33	$\begin{array}{c} 3d\ ^3\mathrm{D}_3^3 - 5f\ ^3\mathrm{F}_4 \\ 3d\ ^3\mathrm{D}_2^2 - 5f\ ^1\mathrm{D}_2 \\ 3d\ ^3\mathrm{D}_2^2 - 5f\ ^3\mathrm{F}_3 \\ \\ 3d\ ^3\mathrm{D}_1^2 - 5f\ ^1\mathrm{D}_2 \end{array}$
6237. 34 6155. 73 6155. 22 6145. 08 6142. 53	$5h \\ 2h \\ 20h \\ 10h \\ 5h$	7. 334 5. 715 5. 148 5. 030 2. 499	16028. 05 16240. 54 16241. 89 16268. 69 16275. 44	$\begin{array}{c} 3d\ ^3\mathrm{D}_1^{\circ}-5f\ ^3\mathrm{F}_2\\ 3d\ ^3\mathrm{D}_3^{\circ}-5f\ ^3\mathrm{G}_3\\ 3d\ ^3\mathrm{D}_3^{\circ}-5f\ ^3\mathrm{G}_4\\ 3d\ ^3\mathrm{D}_2^{\circ}-5f\ ^3\mathrm{G}_3\\ 3d\ ^3\mathrm{D}_3^{\circ}-5f\ ^3\mathrm{D}_3\\ \end{array}$
6131. 86 6131. 54 6125. 03 6124. 85 6113. 12	$5h \\ 4h \\ 4h \\ 2h \\ 1h$	1. 868 1. 583 5. 032 4. 83 3. 136	16303. 76 16304. 61 16321. 94 16322. 42 16353. 74	$\begin{array}{c} 3d\ ^3\mathrm{D}_2^*\!-\!5f\ ^3\mathrm{D}_3\\ 3d\ ^3\mathrm{D}_2^*\!-\!5f\ ^3\mathrm{D}_2\\ 3d\ ^3\mathrm{D}_1^*\!-\!5f\ ^3\mathrm{D}_2\\ 3d\ ^3\mathrm{D}_1^*\!-\!5f\ ^3\mathrm{D}_1 \end{array}$
6106. 70 5948. 584 5797. 912 5793. 128 5780. 452	1h 100 40 30 25	6. 635 8. 552 7. 869 3. 083 0. 390	16370. 94 16806. 08 17242. 82 17257. 06 17294. 90	$\begin{array}{c} 4s\ ^{1}\mathrm{P}_{1}^{2}-5p\ ^{1}\mathrm{D}_{2} \\ 4s\ ^{3}\mathrm{P}_{2}^{2}-5p\ ^{3}\mathrm{D}_{3} \\ 4s\ ^{3}\mathrm{P}_{1}^{2}-5p\ ^{3}\mathrm{D}_{2} \\ 4s\ ^{3}\mathrm{P}_{0}^{2}-5p\ ^{3}\mathrm{D}_{1} \end{array}$
5772. 258 5754. 258 5708. 437 5701. 138 5690. 470	$50 \\ 8b \\ 75 \\ 25 \\ 40$	2. 152 8. 408 1. 111 0. 435	17319. 45 17373. 63 17513. 08 17535. 50 17568. 38	$\begin{array}{c} 4s{}^{1}\mathrm{P}_{1}^{\circ}\!-\!5p{}^{1}\mathrm{S}_{0} \\ 4s{}^{3}\mathrm{P}_{2}^{\circ}\!-\!5p{}^{3}\mathrm{P}_{1} \\ 4s{}^{3}\mathrm{P}_{2}^{\circ}\!-\!5p{}^{3}\mathrm{P}_{2} \\ 4s{}^{3}\mathrm{P}_{1}^{\circ}\!-\!5p{}^{3}\mathrm{P}_{0} \\ 4s{}^{3}\mathrm{P}_{1}^{\circ}\!-\!5p{}^{3}\mathrm{P}_{1} \end{array}$
5684. 523 5665. 601 5645. 665 5622. 23 4102. 926	50 25 25 3 25	4. 496 5. 566 5. 621 2. 237 2. 945	17586. 76 17645. 49 17707. 80 17781. 61 24366. 00	$\begin{array}{c} 4s\ ^3P_2^* - 5p\ ^3S_1 \\ 4s\ ^3P_0^* - 5p\ ^3P_1 \\ 4s\ ^3P_1^* - 5p\ ^3P_2 \\ 4s\ ^3P_1^* - 5p\ ^3S_1 \\ 3p\ ^1S_0 - 4s\ ^3P_1^* \end{array}$
3905. 527 2987. 65 2970. 35 2881. 595 2842. 35	$ \begin{array}{c} 100 \\ 25 \\ 15 \\ 200r \\ 3 \end{array} $	5. 534	25597. 52 33461. 39 33656. 27 34692. 86 35171. 84	$\begin{array}{c} 3p {}^{1}\mathrm{S}_{0} - 4s {}^{1}\mathrm{P}_{1}^{\circ} \\ 3p {}^{1}\mathrm{D}_{2} - 4s {}^{3}\mathrm{P}_{1}^{\circ} \\ 3p {}^{1}\mathrm{D}_{2} - 4s {}^{3}\mathrm{P}_{2}^{\circ} \\ 3p {}^{1}\mathrm{D}_{2} - 4s {}^{1}\mathrm{P}_{1}^{\circ} \\ 3p {}^{1}\mathrm{S}_{0} - 3d {}^{3}\mathrm{P}_{1}^{\circ} \end{array}$
2631. 28 2577. 13 2568. 63 2564. 82 2563. 67	50r 10 15 3 4		37993. 00 38791. 25 38919. 60 38977. 41 38994. 90	$3p$ $^{1}\mathrm{S}_{0}-3d$ $^{1}\mathrm{P}_{1}^{\circ}$ $3p$ $^{1}\mathrm{S}_{0}-4d$ $^{3}\mathrm{D}_{1}^{\circ}$ $3p$ $^{1}\mathrm{S}_{0}-5s$ $^{3}\mathrm{P}_{1}^{\circ}$ $3p$ $^{1}\mathrm{D}_{2}-3d$ $^{3}\mathrm{D}_{1}^{\circ}$ $3p$ $^{1}\mathrm{D}_{2}-3d$ $^{3}\mathrm{D}_{2}^{\circ}$
2532. 38 2528. 513 2524. 112 2519. 206 2516. 111	$20 \\ 175r \\ 125r \\ 100r \\ 250r$		39476. 68 39537. 05 39605. 98 39683. 11 39731. 92	$\begin{array}{c} 3p\ ^{1}\mathrm{S}_{0}-5s\ ^{1}\mathrm{P}_{1}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{2}-4s\ ^{3}\mathrm{P}_{1}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{1}-4s\ ^{3}\mathrm{P}_{0}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{1}-4s\ ^{3}\mathrm{P}_{1}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{2}-4s\ ^{3}\mathrm{P}_{2}^{\circ} \end{array}$

Table 1.—Wavellengths in the arc spectrum of silicon emitted by the arc-in-air—Con.

$\lambda_{air}A$	Intensity	λ_{sun}	$\nu_{ m vac} { m cm}^{-1}$	Term combination
2514. 320 2506. 896 2452. 12 2443. 37 2438. 77	100r 150r 20 20 25		39760. 22 39878. 02 40768. 69 40914. 68 40991. 84	$3p\ ^3P_0-4s\ ^3P_1^\circ \ 3p\ ^3P_1-4s\ ^3P_2^\circ \ 3p\ ^3P_2-4s\ ^1P_1^\circ \ 3p\ ^3P_1-4s\ ^1P_1^\circ \ 3p\ ^3P_0-4s\ ^1P_1^\circ \ $
2435. 160 2303. 03 2295. 40 2291. 03 2289. 61	100r 20 1 7 10		41052. 60 43407. 67 43551. 94 43635. 01 43662. 07	$3p\ ^1\mathrm{D}_2 - 3d\ ^1\mathrm{D}_2^\circ \ 3p\ ^1\mathrm{S}_0 - 4d\ ^1\mathrm{P}_1^\circ \ 3p\ ^1\mathrm{D}_2 - 3d\ ^3\mathrm{F}_2^\circ \ 3p\ ^1\mathrm{D}_2 - 3d\ ^3\mathrm{F}_3^\circ \ 3p\ ^1\mathrm{S}_0 - 5d\ ^3\mathrm{D}_1^\circ \ $
2278. 30 2261. 70 2259. 58 2218. 914 2218. 052	$egin{array}{c} 7 \\ 1 \\ 7 \\ 25r \\ 50r \\ \end{array}$		43878. 79 44200. 82 44242. 28 45053. 02 45070. 53	$egin{array}{cccccccccccccccccccccccccccccccccccc$
2216. 670 2211. 737 2210. 880 2207. 972 2177. 30	$150r \\ 75r \\ 100r \\ 75r \\ 8b$		45098. 63 45199. 20 45216. 72 45276. 26 45914. 01	$\begin{array}{c} 3p\ ^3\mathrm{P}_2 - 3d\ ^3\mathrm{D}_3^3 \\ 3p\ ^3\mathrm{P}_1 - 3d\ ^3\mathrm{D}_1^3 \\ 3p\ ^3\mathrm{P}_1 - 3d\ ^3\mathrm{D}_2^3 \\ 3p\ ^3\mathrm{P}_0 - 3d\ ^3\mathrm{D}_1^3 \\ 3p\ ^1\mathrm{S}_0 - 5d\ ^1\mathrm{P}_1^3 \end{array}$
2167. 74 2163. 78 2150. 43 2147. 91 2124. 111	$\begin{array}{c} 7 \\ 10b \\ 5 \\ 3 \\ 100r \end{array}$		46116. 47 46200. 86 46487. 64 46542. 18 47063. 58	$3p\ ^1\mathrm{S}_0 - 6d\ ^3\mathrm{D}_1^\circ \ 3p\ ^1\mathrm{S}_0 - 7s\ ^3\mathrm{P}_1^\circ \ 3p\ ^1\mathrm{S}_0 - 7s\ ^1\mathrm{P}_1^\circ \ 3p\ ^1\mathrm{S}_0 - 6d\ ^3\mathrm{P}_1^\circ \ 3p\ ^1\mathrm{D}_2 - 3d\ ^1\mathrm{F}_3^\circ$
2122. 99 2121. 22 2114. 59 2103. 28 2094. 20	$egin{array}{c} 10 \\ 7 \\ 4b \\ 5b \\ 2 \\ \end{array}$		47088. 43 47127. 72 47275. 46 47529. 64 47735. 70	$\begin{array}{c} 3p\ ^{1}\mathrm{D}_{2}-3d\ ^{1}\mathrm{P}_{1}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{2}-3d\ ^{1}\mathrm{D}_{2}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{1}-3d\ ^{1}\mathrm{D}_{2}^{\circ}\\ 3p\ ^{1}\mathrm{S}_{0}-8s\ ^{3}\mathrm{P}_{2}^{\circ}\\ 3p\ ^{1}\mathrm{S}_{0}-8s\ ^{1}\mathrm{P}_{1}^{\circ}\\ \end{array}$
2084. 47 2082. 01 2067. 40 2065. 49 2061. 18	20 15 1 5 8		47958. 49 48015. 15 48354. 42 48399. 15 48500. 32	$\begin{array}{c} 3p\ ^{1}\mathrm{D}_{2}-4d\ ^{3}\mathrm{D}_{3}^{3} \\ 3p\ ^{1}\mathrm{D}_{2}-5s\ ^{3}\mathrm{P}_{1}^{3} \\ 3p\ ^{3}\mathrm{P}_{2}-3p'\ ^{3}\mathrm{D} \\ 3p\ ^{3}\mathrm{P}_{0}-3p'\ ^{3}\mathrm{D} \\ 3p\ ^{3}\mathrm{P}_{1}-3p'\ ^{3}\mathrm{D} \end{array}$
2058. 13 2054. 81 2010. 97 2008. 43 1991. 23	50 8 8 8 3 5		48572. 18 48650. 65 49711. 10 49773. 96 50203. 82	$3p\ ^1\mathrm{D}_2 - 5s\ ^1\mathrm{P}_1^\circ \ 3p\ ^3\mathrm{P}_2 - 3p'\ ^3\mathrm{D}_1 \ 3p\ ^3\mathrm{P}_2 - 3d\ ^3\mathrm{F}_3^\circ \ 3p\ ^3\mathrm{P}_1 - 3d\ ^3\mathrm{F}_2^\circ \ 3p\ ^1\mathrm{D}_2 - 4d\ ^1\mathrm{D}_2^\circ$
1988. 36 1985. 73 1983. 82 1982. 60 1980. 00	30 20 3 20 10		50276. 27 50342. 84 50391. 30 50422. 28 50488. 47	$\begin{array}{c} 3p\ ^3\mathrm{P}_2 - 3d\ ^3\mathrm{P}_2^{\circ} \\ 3p\ ^3\mathrm{P}_2 - 3d\ ^3\mathrm{P}_1^{\circ} \\ 3p\ ^1\mathrm{D}_2 - 4d\ ^3\mathrm{P}_2^{\circ} \\ 3p\ ^3\mathrm{P}_1 - 3d\ ^3\mathrm{P}_2^{\circ} \\ 3p\ ^3\mathrm{P}_1 - 3d\ ^3\mathrm{P}_1^{\circ} \end{array}$
1978. 57 1976. 96	12 15		50524. 95 50566. 08	$\begin{array}{c c} 3p ^3\mathrm{P}_1 - 3d ^3\mathrm{P}_0^{\circ} \\ 3p ^3\mathrm{P}_0 - 3d ^3\mathrm{P}_1^{\circ} \end{array}$

 $\begin{tabular}{ll} \textbf{Table 2.--Wave lengths in the arc spectrum of silicon emitted by the arc-in-nitrogen} \end{tabular}$

$\lambda_{ extbf{vac}} A$	957. 96 0 510 954. 96 6 511 904. 66 12 525 901. 34 50 525		Term combination
1957. 96 1954. 96 1904. 66 1901. 34 1895. 41			$egin{array}{cccccccccccccccccccccccccccccccccccc$
1893. 54 1893. 22 1892. 70 1887. 71 1881. 86	$egin{array}{c} 4 \\ 25 \\ 3 \\ 12 \\ 12 \\ \end{array}$	52811. 13 52820. 06 52834. 57 52974. 24 53138. 92	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1880. 96 1875. 82 1874. 86 1873. 11 1865. 04	5 10 25 8 2	53164. 34 53310. 02 53337. 32 53387. 15 53618. 15	$\begin{array}{c} 3p\ ^3P_2 - 3d\ ^1P_1^* \\ 3p\ ^3P_1 - 3d\ ^1P_1^* \\ 3p\ ^1D_2 - 6s\ ^1P_1^* \\ 3p\ ^3P_0 - 3d\ ^1P_1^* \\ 3p\ ^1D_2 - 5d\ ^3P_2^* \end{array}$
1861. 80 1853. 17 1852. 48 1851. 80 1850. 68	$egin{array}{c} 1 \\ 10 \\ 25r \\ 10 \\ 50r \end{array}$	53711. 46 53961. 60 53981. 69 54001. 51 54034. 19	$\begin{array}{c} 3p\ ^{1}\mathrm{D}_{2}-5d\ ^{3}\mathrm{P}_{1}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{2}-4d\ ^{3}\mathrm{D}_{1}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{2}-4d\ ^{3}\mathrm{D}_{2}^{\circ}\\ 3p\ ^{1}\mathrm{D}_{2}-5d\ ^{1}\mathrm{D}_{2}^{\circ}\\ 3p\ ^{3}\mathrm{P}_{2}-4d\ ^{3}\mathrm{D}_{3}^{\circ}\\ \end{array}$
1848. 75 1848. 16 1847. 47 1846. 13 1845. 53	$ \begin{array}{r} 18 \\ 20r \\ 35r \\ 12 \\ 25r \end{array} $	54090. 60 54107. 88 54128. 08 54167. 37 54184. 98	$\begin{array}{c} 3p\ ^3P_2 - 5s\ ^3P_1^{\circ} \\ 3p\ ^3P_1 - 4d\ ^3D_1^{\circ} \\ 3p\ ^3P_1 - 4d\ ^3D_2^{\circ} \\ 3p\ ^3P_1 - 5s\ ^3P_0^{\circ} \\ 3p\ ^3P_0 - 4d\ ^3D_1^{\circ} \end{array}$
1843. 77 1841. 47 1841. 16 1840. 00 1838. 00	$ \begin{array}{c c} 15 \\ 20r \\ 10 \\ 2 \\ 10 \end{array} $	54236. 70 54304. 45 54313. 58 54347. 83 54406. 96	$3p\ ^3P_1 - 5s\ ^3P_1^\circ \ 3p\ ^3P_2 - 5s\ ^3P_2^\circ \ 3p\ ^3P_0 - 5s\ ^3P_1^\circ \ 3p\ ^1D_2 - 5d\ ^3P_2^\circ \ 3p\ ^1D_2 - 5d\ ^3F_3^\circ$
1836. 52 1829. 89 1825. 04 1822. 46 1817. 87	$\begin{bmatrix} 20 \\ 7 \\ 1 \\ 10 \\ 2b \end{bmatrix}$	54450. 81 54648. 09 54793. 32 54870. 90 55009. 44	$\begin{array}{c} 3p\ ^3P_1 - 5s\ ^3P_2^2 \\ 3p\ ^3P_2 - 5s\ ^1P_1^2 \\ 3p\ ^3P_1 - 5s\ ^1P_1^2 \\ 3p\ ^3P_0 - 5s\ ^1P_1^2 \\ 3p\ ^1D_2 - 5d\ ^1P_1^2 \end{array}$
1814. 09 1814. 02 1809. 56 1809. 05 1808. 48	$\begin{array}{c} 30 \\ 50 \\ 3b \\ 30 \\ 4b \end{array}$	55124. 05 55126. 18 55262. 06 55277. 64 55295. 05	$egin{array}{c} 3p\ ^1\mathrm{D}_2 - 6d\ ^3\mathrm{D}_2^2 \ 3p\ ^1\mathrm{D}_2 - 5d\ ^1\mathrm{F}_3^3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
1799. 14 1797. 33 1790. 28 1784. 11 1783. 23	10 3 4 1 8	55582, 11 55638, 18 55857, 19 56050, 36 56078, 02	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1776. 85 1774. 96 1772. 24 1770. 94 1770. 63	10 0e 1 10 8	56279. 36 56339. 29 56425. 76 56467. 18 56477. 07	$3p\ ^3\mathrm{P}_2-4d\ ^1\mathrm{D}_2^2 \ 3p\ ^3\mathrm{P}_1-4d\ ^1\mathrm{D}_2^5 \ 3p\ ^3\mathrm{P}_2-4d\ ^3\mathrm{P}_2^5 \ 3p\ ^3\mathrm{P}_2-4d\ ^3\mathrm{P}_1^6 \ $

 $\begin{tabular}{ll} \textbf{Table 2.--} Wave \ lengths \ in \ the \ arc \ spectrum \ of \ silicon \ emitted \ by \ the \ arc-in-nitrogen---Continued \end{tabular}$

$\lambda_{vac}A$	Intensity	$\nu_{ m vac} { m cm}^{-1}$	Term combination
1769. 78 1769. 60	15 1	56504. 20 56509. 95	$3p\ ^{1}\mathrm{D}_{2}-6d\ ^{1}\mathrm{F}_{3}^{3} \ 3p\ ^{1}\mathrm{D}_{2}-8s\ ^{3}\mathrm{P}_{1}^{2}$
1766. 34	5	56614. 24	$3p ^3P_1 - 4d ^3P_2^{\circ}$
1766. 03	6	56624. 18	$\left\{\begin{array}{c} 3p {}^{1}\mathrm{D}_{2} - 8s {}^{3}\mathrm{P}_{2}^{2} \\ 3p {}^{3}\mathrm{P}_{1} - 4d {}^{3}\mathrm{P}_{1}^{2} \end{array}\right.$
1765. 82	2	56630. 92	$ \begin{vmatrix} 3p & ^{3}P_{1} - 4d & ^{3}P_{1} \\ 3p & ^{1}D_{2} - 6d & ^{1}P_{1} \end{vmatrix} $
1765. 61	56	56637. 65	$3p {}^{1}\mathrm{D}_{2} - 7d {}^{3}\mathrm{D}_{3} \ 3p {}^{3}\mathrm{P}_{1} - 4d {}^{3}\mathrm{P}_{0}^{3}$
1765. 02 1763. 67	5 4	56656. 58 56699. 96	$3p ^{\circ}P_{1} - 4d ^{\circ}P_{0}$
1759. 56	3	56832. 39	$\begin{array}{c c} 3p \ ^3P_0 - 4d \ ^3P_1^1 \\ 3p \ ^1D_2 - 8s \ ^1P_1^1 \\ 3p \ ^1D_2 - 7d \ ^1D_2^2 \end{array}$
1753. 13	4b	57040. 83	$3p {}^{1}\mathrm{D}_{2} - 7d {}^{1}\mathrm{D}_{2}^{\circ}$
1752. 68	0	57055. 48	3p 1D2-7d 3F3
1749. 74 1747. 36	0 4	57151. 34 57229. 20	$3p ^{\circ}P_{2} - 4d ^{\circ}P_{2}$ $3p ^{\circ}P_{2} - 4d ^{\circ}P_{2}$
1745. 35	2	57295. 10	$3p ^3P_1 - 4d ^3F_2$
1743. 88	5 <i>b</i>	57343. 40	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1740. 34	3h	57460. 04	$rac{3p\ ^1 ext{D}_2-8d\ ^3 ext{D}_3^3}{3p\ ^1 ext{D}_2-9s\ ^1 ext{P}_1^2}$
1736. 50 1734. 70	$\frac{1}{3}$	57587. 10 57646. 86	$3p \cdot D_2 - 98 \cdot P_1$
1707. 09	0	58579. 22	$3p ^3P_2 - 4d ^1P_1^\circ$
1704. 44	7r	58670. 29	$3p^{3}P_{2}-4d^{1}F_{3}$
1702. 81	5	58726. 46	$3p^{3}P_{1}-4d^{1}P_{1}$
1700. 60 1700. 43	$\frac{4}{15r}$	58802. 78 58808. 65	$3p ^3P_0 - 4d ^1P_1^2$ $3p ^3P_0 - 5d ^3D_3^3$
1699. 70	1	58833. 91	$3p ^3\mathrm{P}_2 - 5d ^3\mathrm{D}_2^3 \ 3p ^3\mathrm{P}_2 - 5d ^3\mathrm{D}_1^3$
1698. 18	4 <i>b</i>	58886. 58	$3p^3P_2-x'$
1697. 96	20r	58894. 19	$3p ^{3}P_{2} - 5d ^{3}D_{3}$
1697. 55 1696. 20	$\frac{3b}{20r}$	58908. 43 58955. 31	$3p {}^{9}P_{2} - x''$ $3n {}^{3}P_{1} - 5d {}^{3}D_{3}$
1695. 50	5r	58979. 65	$3p ^3P_1 - 5d ^3D_1^2$
1693. 47	5	59050. 35	$\begin{array}{c c} 3p & ^3P_2 - x'' \\ 3p & ^3P_1 - 5d & ^3D_2^2 \\ 3p & ^3P_1 - 5d & ^3D_1^2 \\ 3p & ^3P_2 - 6s & ^3P_1^2 \end{array}$
1693. 30	7r	59056. 28	$3p^3\mathrm{P}_0-5d^3\mathrm{P}_1^\circ \ 3p^3\mathrm{P}_1-6s^3\mathrm{P}_0^\circ \ 3p^3\mathrm{P}_1-6s^3\mathrm{P}_1^\circ \ 2p^3\mathrm{P}_1-6s^3\mathrm{P}_1^\circ$
1690. 77 1689. 28	3 3	59144. 65 59196. 82	$3p ^{\circ}P_{1} - 6s ^{\circ}P_{0}^{\circ}$
1687. 06	1	59274. 71	$3p^{3}P_{0}-6s^{3}P_{1}$
1686. 83	4	59282. 80	$3p ^3P_0 - 6s ^3P_1 \ 3p ^3P_2 - 6s ^3P_2 \$
1682. 67	3	59429. 36	$3p ^3P_1 - 6s ^3P_2^\circ$
1676. 80 1675. 23	$\frac{1}{4r}$	59637. 40 59693. 30	$3p^{3}P_{0}-6s^{1}P_{1}^{2}$ $3n^{3}P_{0}-5d^{3}P_{3}^{3}$
1672. 60	3	59787. 16	$\begin{array}{c} 3p\ ^3\mathrm{P}_2 - 5d\ ^3\mathrm{P}_2^3 \\ 3p\ ^3\mathrm{P}_2 - 5d\ ^3\mathrm{P}_1^3 \\ 3p\ ^3\mathrm{P}_1 - 5d\ ^3\mathrm{P}_2^3 \end{array}$
1671. 11	2	59840. 46	$3p ^3P_1 - 5d ^3P_2^2$
1668. 52	3 3	59933. 35	$3p ^3P_1 - 5d ^3P_1$
1667. 63 1666. 36	3 2	59965. 34 60011. 04	$3p ^3 P_1 - 5d ^3 P_0^3 \ 3p ^3 P_0 - 5d ^3 P_1^3$
1664. 54	2	60076. 66	$3p ^{3}P_{2} - 5d ^{1}D_{2}^{3}$
1660. 47	Ō	60223. 91	$3p ^3\mathrm{P}_2 - 5d ^1\mathrm{D}_2^\circ \ 3p ^3\mathrm{P}_1 - 5d ^1\mathrm{D}_2^\circ$

Table 2.—Wave lengths in the arc spectrum of silicon emitted by the arc-innitrogen—Continued

$\lambda_{vac}A$	Intensity	$ \nu_{ m vac} { m cm}^{-1}$	Term combination
1653. 36	1	60482. 89	$3p\ ^3 ext{P}_2-5d\ ^3 ext{F}_3^\circ$
1651. 05	0	60567. 52	$3p ^3P_1 - 5d ^3F_2^2$
1633. 99	3	61199. 88	$3p ^3 ext{P}_1 - 5d ^3 ext{F}_2^3 \ 3p ^3 ext{P}_2 - 6d ^3 ext{D}_2^3$
1633. 90	4	61203.26	$3p ^3\mathrm{P}_2 - 5d ^1\mathrm{F}_3^3 \ 3p ^3\mathrm{P}_1 - 5d ^1\mathrm{P}_1^3$
1633. 15	2r	61231. 36	$3p ^3P_1 - 5d ^1P_1^{\circ}$
1631. 11	4r	61307. 94	$3p\ ^3 ext{P}_0-5d\ ^1 ext{P}_1^{\circ} \ 3p\ ^3 ext{P}_1-6d\ ^3 ext{D}_2^{\circ}$
1630. 15	7r	61344. 05	$3p ^3P_1 - 6d ^3D_2^{\circ}$
1629. 96	8r	61351. 19	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1629. 47	71	61369. 65	$3p^3P_2-7s^3P_1^2$
1627. 70	2	61436. 38	$3p ^{3}P_{1} - 6d ^{3}D_{1}^{3}$
1627. 03	1	61461. 68	$3p ^3P_1 - 7s ^3P_0$
1625. 71	5r	61511. 58	$3p^{3}P_{0}-6d^{3}D_{1}^{3}$
1625. 58 1623. 34	$\frac{1}{0}$	61516. 51 61601. 40	$3p^{\circ}P_1 - 7s^{\circ}P_1$
1622. 87	4r	61619. 23	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1620. 39	3	61713. 54	$3p\ ^3 ext{P}_2-6d\ ^3 ext{P}_1^{\circ} \ 3p\ ^3 ext{P}_1-7s\ ^3 ext{P}_2^{\circ}$
1619. 53	1	61746. 32	$3p ^{3}P_{1} - 7s ^{3}P_{2}^{\circ}$
1619. 00	0	61766. 52	$3p^{3}P_{1}-6d^{3}P_{2}^{2}$
1616. 55 1615. 89	3 3	61860. 14 61885. 40	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1010. 09	0	01000. 40	5p 1 - 18 1 1
1614. 60	1	61934. 84	$3p\ ^3P_2 - 6d\ ^1D_2^\circ$
1614. 55	3	61936. 76	$3p ^3 ext{P}_0^2 - 6d ^3 ext{P}_1^2 \ 3p ^3 ext{P}_2 - 6d ^3 ext{F}_3^3$
1608. 92	2	62153. 50	$3p^{3}P_{2}-6d^{3}F_{3}$
1605. 87 1597. 99	1 3	62271. 55 62578. 60	$3p\ ^3 ext{P}_1 - 6d\ ^3 ext{F}_2^2 \ 3p\ ^3 ext{P}_2 - 6d\ ^1 ext{F}_3^3$
1597. 99		02378.00	
1597. 83	2	62584. 88	$3p ^3P_2 - 8s ^3P_1^{\circ}$
1595. 82	1	62663. 70	$3p ^3P_2 - 7d ^3D_2^2$
1595. 50	1	62676. 28	$3p ^{3}P_{1} - 8s ^{3}P_{0}$
1594. 92	4r	62699. 07	$egin{array}{cccccccccccccccccccccccccccccccccccc$
1594. 53	5r	62714. 40	
1592. 45	1	62796. 32	$3p\ ^3\mathrm{P_1}-7d\ ^3\mathrm{P_1^\circ} \ 3p\ ^3\mathrm{P_1}-7d\ ^3\mathrm{P_2^\circ} \ 3p\ ^3\mathrm{P_0}-8s\ ^3\mathrm{P_1^\circ} \ 3p\ ^3\mathrm{P_1}-8s\ ^3\mathrm{P_2^\circ} \ 3p\ ^3\mathrm{P_0}-7d\ ^3\mathrm{P_1^\circ}$
1592. 35	3r	62800. 24	$3p ^3P_1 - 7d ^3D_2^2$
1592. 15	3r	62808. 12	$3p^3P_0-8s^3P_1$
1591. 17	0	62846. 82	$3p^{3}P_{1}-8s^{3}P_{2}^{2}$
1590. 49	2r	62873. 70	$\int_{\mathbb{R}^{n}} d^{n} \mathbf{P}_{0} - i \mathbf{a} \cdot \mathbf{D}_{1}^{n}$
1589. 60	1	62908. 90	$3p\ ^3 ext{P}_2-8s\ ^1 ext{P}_1^\circ$
1586. 76	1	63021. 51	2 3D 0 1Da
1586. 00	1	63051. 70 63120. 55	$3p ^{3}P_{1} - 8s ^{1}P_{1}^{\circ}$
1584. 27	0		$3p ^3P_2 - 7d ^1D_2^\circ$
1583. 97	0	63132. 50	$\left\{\begin{array}{cc} 3p\ ^{3}\mathrm{P}_{0}-8s\ ^{1}\mathrm{P}_{1}^{\circ} \\ 3p\ ^{3}\mathrm{P}_{2}-7d\ ^{3}\mathrm{F}_{3}^{\circ} \end{array}\right.$
1580, 28	0	63279, 92	
1576. 76	i	63421. 20	$3p\ ^3\mathrm{P}_2{-7d}\ ^1\mathrm{F}_3^\circ$
1574. 69	2	63504. 56	OP 12 14 13
1573. 85	$\tilde{1}r$	63538. 47	$rac{3p\ ^3 ext{P}_2-8d\ ^3 ext{D}_3^3}{3p\ ^3 ext{P}_0-9s\ ^1 ext{P}_1^\circ}$
1565, 30	1	63885. 52	3n 3P - 9e 1Pe

The intensities assigned to the lines are the usual visual estimates, and are not comparable between widely separated regions of the spectrum. The letters following the estimated intensities give a description of the line as emitted by the arc in air, even though for all the lines between 7970 and 6124 A, except a few fainter ones, the recorded wave lengths are for the enclosed arc at reduced pressure.

Figure 1.—Terms of the arc spectrum of silicon; • even terms; \(\) odd terms.

These letters have the following significance: b, widened, not sharp; e, enhanced at electrode; h, hazy, H, very hazy; l, unsymmetrically shaded toward red; r, reversed.

2. TERM STRUCTURE OF SI I

The terms upon which the arc spectrum of silicon is built result from the interactions of a migrating valence electron with the configurations $3s^2 3p$ and $3s 3p^2$. The terms to be expected theoretically from this procedure are set forth in table 3. Those that have actually been established in the analysis of the spectrum, both through Fowler's work and the work at the National Bureau of Standards, are listed in table 4, of which figure 1 is a graphic representation.

Table 3.—Theoretical terms of Si i

Electron configuration	${ m Terms}$
$3s^{2} 3p^{2}$	³ P, ¹ D, ¹ S
$3s^{2} 3p \ ns$	³ P°, ¹ P°
$3s^{2} 3p \ np$	³ D, ³ P, ³ S, ¹ D, ¹ P, ¹ S
$3s^{2} 3p \ nd$	³ F°, ³ D°, ³ P°, ¹ F°, ¹ D°, ¹ P°
$3s^{2} 3p \ nf$	³ G, ³ F, ³ D, ¹ G, ¹ F, ¹ D
$3s 3p^{3} = 3p'$	⁵ S°, ³ D°, ³ P°, ³ S°, ¹ D°, ¹ P°

Table 4.—Observed terms of Si I.

Term symbol	Term value cm ⁻¹	$\triangle \nu$	Term symbol	Term value cm ⁻¹	$\triangle \nu$
$3p\ ^3\mathrm{P}_0$	65743. 00	77. 15	$\frac{3d\ ^{1}\mathrm{D}_{2}^{\circ}}{3d\ ^{1}\mathrm{F}_{3}^{\circ}}$	18391. 50 12380. 59	
$3p$ 3P_1	65665. 85	146, 16	$3d$ $^{1}P_{1}^{3}$	12355. 83	
$3p$ 3P_2	65519. 69	6075. 50	3p′ ³D ₁ °	17343. 85	178. 45
$3p$ $^1\mathrm{D}_2$	59444. 19	9095. 43	3p′ 3D ₂ °	17165. 40	296. 36
$3p$ $^1\mathrm{S}_0$	50348. 76	0000.10	3p′ ³D₃	16869. 04	77.400
$4s\ ^3\mathrm{P}_0^\circ$	26059. 90	77. 10	$4p$ $^3\mathrm{D}_1$	17723. 00	82, 38
$4s$ $^3\mathrm{P}_1^\circ$	25982. 80	194. 92	$4p~^3\mathrm{D}_2$	17640. 62	161. 97
$4s$ $^3P_2^{\circ}$	25787. 88	1036. 62	$4p~^3\mathrm{D}_3$	17478. 65	13168
4s ¹P ₁ °	24751. 26	2000.02	$4p\ ^3\mathrm{P}_0$	16714. 83	32. 38
$3d$ $^3\mathrm{D}^\circ_1$	20466. 80	17. 40	$4p$ $^3\mathrm{P}_1$	16682. 45	128. 06
$3d\ ^3\mathrm{D}_2^\circ$	20449. 40	28. 26	$4p$ $^3\mathrm{P}_2$	16554. 39	
$3d\ ^3\mathrm{D}_3^\circ$	20421. 14	20. 20	$4p~^3\mathrm{S}_1$	16343. 34	
$3d~^3\mathrm{F}_2^\circ$	15892. 07	83. 19	$4p {}^{1}P_{1} \ 4p {}^{1}D_{2}$	18458. 80 15553. 57	
$3d\ ^3\mathrm{F}_3^\circ$	15808. 88	137. 76	$4p$ ${}^{1}S_{0}$	14131. 23	
$3d~^3\mathrm{F}_4^\circ$	15671. 12	2011.10	5s ³ P ₀	11498. 42	69. 32
$3d$ $^3P_2^{\circ}$	15243. 56	-66.51	5s ³ P ₁	11429. 10	213. 98
$3d$ $^3\mathrm{P}_1^{\circ}$	15177. 05	-36.20	5s ³ P ₂	11215. 12	343. 11
$3d\ ^3\mathrm{P}_0^\circ$	15140. 85	00. 20	5s ¹Pi	10872. 01	070. 11

TABLE 4.—Observed terms of Si 1.—Continued

Term symbol	$egin{array}{c} { m Term} \\ { m value} \\ { m cm^{-1}} \end{array}$	$\triangle v$	Term symbol	$\begin{array}{c} \mathrm{Term} \\ \mathrm{value} \\ \mathrm{cm}^{-1} \end{array}$	$\triangle v$
		10 1040E9 140 15	4f ¹F₃	6968. 82	
$4d$ $^3\mathrm{D}^\circ_1$	11558. 03		4f 1G4		
4d 3D2	11537. 88	20. 15	$4f$ $^{1}\mathrm{D}_{2}$	6632. 09	
4d 3D3	11485. 60	52. 28	x'	6633. 1	22, 6
			x''	6610. 5	22.0
$4d$ $^3\mathrm{P}_2^\circ$	9052. 06	-9.90	6s ³Pő	6522. 24	
4d ³Pî	9042. 16	-32.40	68 ³Pî	6469. 72	52. 52
$4d$ $^3\mathrm{P}_0^\circ$	9009. 76	02. 10			232. 89
$4d$ $^3\mathrm{F}_2^\circ$	8370. 56		6s ³ P ₂	6236. 83	130. 17
4d ³ F ₃	8292. 30	7 8. 26	6s ¹Pi	6106. 66	
4d 3F3		133. 15	$5d$ $^3\mathrm{D}^\circ_1$	6686. 30	04.00
	8159. 15		$5d$ $^3\mathrm{D}_2^\circ$	6710. 58	-24.28
$\frac{4d}{4d} ^{1}\mathrm{D_{1}^{2}}$	9240. 00 6941. 00		5d 3D3	6624. 49	86. 09
4d ¹ F ₃	6849. 72		5d ³ P ₂	5825. 65	
$5p$ $^3\mathrm{D_1}$	8765. 00	20.00			-92.75
$5p$ $^3\mathrm{D}_2$	8725. 74	39. 26	5d 3Pi	5732. 90	-32.38
$5p$ $^3\mathrm{D}_3$	8545. 06	180. 68	5d ³P ₀	5700. 52	
			5d 3F2	5097. 51	00.44
$5p$ $^3\mathrm{P}_0$	8447. 24	32. 88	$5d~^3\mathrm{F}_3^{\circ}$	5037. 10	60. 41
$5p$ 3P_1	8414. 36	139. 54	5d 3F2	4893. 87	143. 23
$5p$ 3P_2	8274. 82	100.01			
5p 3S1	8201. 14		$\begin{array}{c} 5d\ ^{1}\mathrm{D}\S \\ 5d\ ^{1}\mathrm{P}\S \end{array}$	5443. 08 4434. 68	
$5p$ $^{1}\mathrm{D}_{2}$	7945. 18		$5d$ $^1\mathrm{F}_3^\circ$	4319. 00	
$5p {}^{1}P_{1} \\ 5p {}^{1}S_{0}$	9317. 9? 7431. 81		5f 3F ₂	4438. 50	0.00
			5f 3F ₃	4438. 14	0. 36
$4f$ $^3\mathrm{F}_2$	6967. 56	11. 36	5f 3F4	4436. 43	1. 71
$4f$ $^3\mathrm{F}_3$	6956. 20	2. 20	5f 3G ₃	4180. 63	
$4f$ $^3\mathrm{F}_4$	6954. 00	2. 20			1. 38
4f 3G3	6707. 85		5f ³ G ₄ 5f ³ G ₅	4179. 25	
4f 3G4	6706. 00	1. 85	$5f$ $^3\mathrm{D}_3$	4145. 88	
		16. 84			-0.78
4f 3G5	6689. 16		5f ³ D ₂	4145. 10	-0.70
$4f$ $^3\mathrm{D}_3$	6633. 25	-81. 09	$5f$ $^3\mathrm{D}_1$	4144. 40	
$4f$ $^3\mathrm{D}_2$	6552. 16		5f 1F3		
4f 3D1	6552. 60	0. 44	$5f {}^{1}G_{4} \ 5f {}^{1}D_{2}$	4439. 72	

Table 4.—Observed terms of Si 1.—Continued

Term symbol	$\begin{array}{c} \mathrm{Term} \\ \mathrm{value} \\ \mathrm{cm}^{-1} \end{array}$	$\triangle \nu$	Term symbol	$egin{array}{c} { m Term} \\ { m value} \\ { m cm}^{-1} \end{array}$	$\triangle \nu$
78 3P ₀	4203. 00		Janes Jaros	os uij tetu	gil ada r
	4440.00	54. 80	$6f$ $^3\mathrm{F}_2$	3074. 50	
7s ³ P ₁	4148. 20	228. 64	8s 3P ₀	2989. 95	
7s 3P2	3919. 56	58. 06	8s ³Pî	2934. 05	55. 90
7s ¹Pi	3861. 50	56.00		S encrettain	114. 80
6d 3Di	4232. 29		8s ³ P ₂	2819. 25	206. 85
6d 3D2	4319. 07	-86.78	8s ¹Pi	2612. 40	
and the second	and the stand	151. 87	7d ³D ₁ °	2869. 10	9 15112
6d 3D3	4167. 20	aw usi To a	$7d$ $^3\mathrm{D}_2^\circ$	2867. 82	1. 28
6d 3P2	3897. 04	-90.90	7d 3D3	2806. 70	61. 12
6d 3Pi	3806. 14				
6d 3På	3772. 72	-33.42	$7d~^3\mathrm{F}_2^\circ$	2485. 39	96. 09
6d 3F2	3393. 73		7d 3F3	2389. 30	226. 93
		27. 41	7d 3F4	2162. 37	220. 90
6d 3F3	3366. 32	157. 78	7d 1D3	holes of his	
6d 3F ₄	3208. 54		$7d\ ^{1}\mathrm{F}_{3}^{3} \ 7d\ ^{1}\mathrm{P}_{1}^{2}$	2100. 45	
6d ¹ D ₂	3587. 80			Choi to sept.	
6d ¹ P ₁ 6d ¹ F ₃	2941. 00		8d ³ D ₃ 9s ¹ P ₁	1984. 65 1858. 05	

Comparison of the present list of terms with those reported in the earlier papers will reveal that several corrections and additions have been made. In the 4p group, which are responsible for the intense infrared lines, new values have been assigned to the 3D terms and also to ³P₀ and ¹P₁. The uncertainties that have attended the identification of some of the 4f and 5f terms, owing to the diffuseness of the lines and the presence of unresolved satellites, have now been removed with the aid of the enclosed arc observations. The numeration of Fowler's odd ³D terms proposed in my earlier paper is here retained despite Robinson's 11 criticism based on his application of the irregular doublet law to the sequence of isoelectronic spectra beginning with Si I. The reassignment of Fowler's 3p' ³D° and ³P° terms to the 3dconfiguration is supported by the discovery of the companion term, 3d 3F °, and also of the 3D ° term at 17200, which satisfies the combination requirements of a 3p' term, but not those of a 3d term. It is to be noted that the odd ${}^3F^{\circ}$ terms are all new and make it possible to fill out the complement of terms required for the nd configurations. The extension of the nd terms to higher values of n is due largely to the excellent spectrograms that Shenstone has made of the Schumann region. In particular, these observations have brought to light

¹¹ H. A. Robinson, Phys. Rev. 49, 304 (1936).

several new combinations with the 3p $^1\mathrm{S}_{\circ}$ term that are masked by a band structure extending below 2000 A in observations made with the arc in air.

3. SERIES AND IONIZATION POTENTIAL OF Six

In the light of the present analysis it is now possible to extend to higher members several of Fowler's Si I series. Others must be amended, and still others that are new may be described. Fowler's most reliable series for determination of absolute term values are those from the ns electron. Reference to table 4 will show that the series 3p ^3P-ns $^3P^\circ$ are now represented by five members. A Ritz formula of the type

 $v = L - R / \left(m + \alpha + \frac{\beta}{m^2} \right)^2$

in which $R_{\rm Si}=109735.3$, has been found sufficient to reproduce most of the series of Si I, especially those of the ns and nf configurations, with great fidelity. Applied to the series $3p^3P_0-ns^3P_1^s$ the formula

$$\nu = 65722 - R/(m-1.8182 - \frac{2.0142}{m^2})^2$$
, $m=4, 5, 6 \dots$

fits the first three members of the series exactly and reproduces the fifth and sixth members with residuals of +25 and -13 cm⁻¹, respectively. It will be noted that the term value 3p $^3P_0=65722$ is in close agreement with Fowler's value, 65765.

The Ritz type of formula also appears to give a more satisfactory representation of the ns $^{1}P_{1}^{\circ}$ terms than does the Hicks formula employed by Fowler. For the series 3p $^{3}P_{0}-ns$ $^{1}P_{1}^{\circ}$ the formula

$$\nu = 65995 - R/(m-1.7992 - \frac{1.6618}{m^2})^2$$
, $m = 4, 5, 6 \dots$

reproduces the observed lines with the residuals -46, +45, 0, 0, +15, respectively. In this case the value of the limit, L=65995, represents the distance of 3p 3P_0 from the Si II parent term, $^2P_{3/2}$, of the ns $^1P_1^*$ terms. According to Fowler's analysis of Si II¹² the components of the ground state 2P are separated by 287 cm^{-1} . Deduction of this amount from 65995 gives a value of 65708 for the distance separating 3p 3P_0 from the lowest term of Si II, in excellent agreement with the result from the ns $^3P_1^*$ terms which converge toward $^2P_{1/2}^*$. Fowler adds also the term 9s $^1P_1^*$ to this series, which is reproduced by the above formula with a residual of $+18 \text{ cm}^{-1}$.

We may expect equally satisfactory results from the nf terms, since they are nearly hydrogenic. Only two members have been found for most of these sequences, but for the nf 3F_2 terms there are three members observed. A satisfactory Ritz formula for the series 3d $^3F_2^{\circ}-nf$ 3F_2 is

$$\nu = 15915 - R/(m - 0.0569 + \frac{0.3256}{m^2})^2$$
, $m = 4, 5, 6 \dots$

¹² A. Fowler, Phil. Trans. Roy. Soc. (London) [A] 225, 24 (1925).

The term $3d^{3}F_{2}^{2}$ lies 49,851 units above $3p^{3}P_{0}$, whence we derive a

value 65766 for the ground term of Si 1.

Owing to the revisions and additions to the *nd* terms that have been described above, the sequences in this group are new except for the ¹P° and ¹F° series. They may all be represented with varying degrees of accuracy by properly evaluated Ritz formulas. These are as follows:

Series
$$3p$$
 $^1D_2 - nd$ 1F_3 ; limit $^2P_{3/2}$ in Si II. $v = 59583 - R/(m - 0.0326 - \frac{0.0511}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 59583 - 287 + 6299 = 65595$. Series $3p$ $^1D_2 - nd$ 1D_3 , limit $^2P_{3/2}$ in Si II $v = 59710 - R/(m - 0.6384 + \frac{0.5728}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 65722$. Series $3p$ $^1S_0 - nd$ 1P_1 , limit $^2P_{1/2}$ in Si II $v = 50328 - R/(m - 0.0142 - \frac{0.0314}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 50328 + 15394 = 65722$. Series $4p$ $^3D_3 - nd$ 3F_4 , limit $^2P_{3/2}$ in Si II $v = 17775 - R/(m - 0.4105 + \frac{0.2094}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 17775 - 287 + 48264 = 65752$. Series $3p$ $^3P_1 - nd$ 3F_2 , limit $^2P_{1/2}$ in Si II $v = 65791 - R/(m - 0.4394 + \frac{0.5116}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 65791 + 77 = 65868$. Series $3p$ $^3P_2 - nd$ 3D_3 , limit $^2P_{3/2}$ in Si II $v = 65943 - R/(m - 1.2478 + \frac{4.8083}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 65943 - 287 + 223 = 65879$. Series $3p$ $^3P_1 - nd$ 3D_2 , limit $^2P_{3/2}$ in Si II $v = 65932 - R/(m - 1.2434 + \frac{4.8952}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 65932 - 287 + 77 = 65722$. Series $3p$ $^3P_0 - nd$ 3D_1 , limit $^2P_{3/2}$ in Si II $v = 66107 - R/(m - 1.2480 + \frac{4.8158}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 66107 - 287 = 65820$. Series $3p$ $^3P_0 - nd$ 3P_2 , Limit $^2P_{1/2}$ in Si II $v = 65500 - R/(m - 0.8165 + \frac{4.5540}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 66501 - 287 = 65723$. Series $3p$ $^3P_0 - nd$ 3P_1 , limit $^2P_{1/2}$ in Si II $v = 66001 - R/(m - 0.8165 + \frac{4.5540}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 66500 + 223 = 65723$. Series $3p$ $^3P_0 - nd$ 3P_1 , limit $^2P_{1/2}$ in Si II $v = 66001 - R/(m - 0.8165 + \frac{4.5540}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 66500 + 223 = 65723$. Series $3p$ $^3P_0 - nd$ 3P_1 , limit $^2P_{1/2}$ in Si II $v = 66001 - R/(m - 0.8165 + \frac{4.5540}{m^2})^2$, $m = 3, 4, 5 \dots 3p$ $^3P_0 = 66001 - 287 = 65714$.

An inspection of the results presented in the foregoing paragraphs will show that the component series of the ns terms approach their limits according to the theory of Hund. 13 With the nd series, however, another procedure is followed. This was already forecast by Fowler, who noted that the nd $^{1}P_{1}^{\circ}$ terms of Si I converge toward $^{2}P_{1/2}^{\circ}$ instead of $^{2}P_{3/2}^{\circ}$ of Si II. This behavior is confirmed by the present analysis and, in addition, it is seen that the nd $^{3}P_{2}^{\circ}$ terms also converge toward ²P_{1/2} of Si II, while the three components of the nd 3 D° group converge toward 2 P $^3_{3/2}$. This is shown graphically in figure 2. Although the coordination of individual series with their proper limits presented herein differs with Hund's theoretical scheme, nevertheless. the quantum requirements are fulfilled that series terms with inner quantum numbers, 4, 3, 3, 2, 2, 1, 1, 0 converge toward ${}^2P^{\circ}_{3/2}$ and those with inner quantum numbers 3, 2, 2, 1, converge toward ${}^2P^{\circ}_{1/2}$. The sequences of np and nf terms have for the most part only two mem-

Figure 2.—Coordination of component series of the d-electron with limits in Si II.

bers and are therefore not adequate for the coordination of their components with limits in Si 11.

From the various series described above a mean value of 65743 cm⁻¹ is found for the separation of 3p 3P° of Si I and 3p 2Po 1/2 of Si II, corresponding, therefore, to an ionization potential of 8.11

This value differs only by 22 cm⁻¹ from Fowler's value of 65765. volts.

4. SILICON IN THE SUN

The presence of silicon in the sun has long been established through the 4s-5p lines in the yellow and the 3p-4s lines in the violet. Subsequently, identification of red and infrared solar lines with silicon was made by Meggers 14 with the aid of unpublished National Bureau of Standards observations. As more extensions of both solar and silicon spectra became available for comparison, it was found that nearly all the stronger lines emitted by the Si arc have their counterparts in the sun. Such a comparison is set forth in table 1, in the third column of which are given the values of the solar wave lengths taken either from the Revision of Rowland's Preliminary Table 15 or from Babcock's published 16 and unpublished lists of infrared solar lines.

However, the silicon atom is capable of emitting more lines than those listed in tables 1 and 2. Very few of the multiplets that have been described in this paper are emitted with their full complement of lines by the arc sources described above. In table 5 are listed unobserved lines calculated from term combinations and with them the nearest solar lines. A group of lines in the blue-green may be expected from the 4s-6p transition. The 6p terms have not yet been detected in the laboratory but the lines resulting from their combination with the 4s terms are in all probability present in the sun.

F. Hund, Linienspektren, p. 184 (Julius Springer, Berlin, 1927).
 W. F. Meggers, Pub. Allegheny Obs., 6, 13 (1919).
 Carnegie Institution of Washington Publication 396, (1928).
 H. D. Babeock, Trans. Int. Astron. Union 5, 90 (1935) Astrophys. J. 83, 103 (1936).

Table 5.—Comparison of computed Si I lines with solar lines

Computed wave length of Si 1	Wave length in sun	Solar intensity	Wave number ν	Term combination
11890. 29 10976. 25 10616. 59 10580. 20 10179. 38	0. 51 6. 30 6. 71 0. 61 9. 36	-1 -1 1 -3 -1	8407. 92 9108. 09 9416. 64 9449. 04 9821. 10	$egin{array}{l} 4s\ ^1\mathrm{P}_1^\circ-4p\ ^3\mathrm{S}_1\ 4p\ ^3\mathrm{D}_3-4d\ ^3\mathrm{F}_2^\circ\ 4p\ ^1\mathrm{P}_1-4d\ ^3\mathrm{P}_1^\circ\ 4p\ ^3\mathrm{S}_1-6s\ ^3\mathrm{P}_0^\circ \end{array}$
10125. 22 10025. 45 10001. 15 9453. 00 9405. 71	4. 92 5. 86 1. 31 3. 12 5. 80	$egin{array}{c} -2 \\ 2n \\ -1 \\ -2 \\ 0N \end{array}$	9873. 62 9971. 87 9996. 15 10575. 79 10628. 93	$rac{4p\ ^3 ext{S}_1-6s\ ^3 ext{P}_1^\circ}{4p\ ^3 ext{P}_1-5d\ ^3 ext{D}_2^\circ} \ rac{4p\ ^3 ext{P}_1-5d\ ^3 ext{D}_1^\circ}{4p\ ^3 ext{P}_1-6s\ ^1 ext{P}_1^\circ} \ rac{4p\ ^3 ext{D}_3-4d\ ^1 ext{F}_3^\circ}$
9393. 43 9078. 16 8928. 37 8780. 00 8766. 24	3. 44 8. 28 8. 17 0. 17 6. 42	-3 1d? C -3 -3 -1	10642. 82 11012. 42 11197. 18 11386. 40 11404. 27	$\begin{array}{c} 4p\ ^3\mathrm{S}_1 - 5d\ ^3\mathrm{P}_0^\circ \\ 4p\ ^3\mathrm{D}_1 - 5d\ ^3\mathrm{D}_2^\circ \\ 4p\ ^1\mathrm{S}_0 - 8s\ ^3\mathrm{P}_1^\circ \\ 4p\ ^1\mathrm{D}_2 - 6d\ ^3\mathrm{D}_3^\circ \\ 4p\ ^1\mathrm{D}_2 - 5d\ ^1\mathrm{P}_1^\circ \end{array}$
8703. 73 8680. 22 8679. 05 8667. 07 8579. 13	3. 73 0. 10 8. 95 7. 37 9. 08	-2N, Mn -1 -2 S -1 -2	11486. 17 11517. 29 11518. 83 11533. 96 11653. 00	$\begin{array}{c} 4p\ ^3\mathrm{D}_1 - 6s\ ^3\mathrm{P}_2^2 \\ 4p\ ^3\mathrm{P}_2 - 5d\ ^3\mathrm{F}_3^3 \\ 4p\ ^1\mathrm{S}_0 - 8s\ ^1\mathrm{P}_1^2 \\ 4p\ ^3\mathrm{D}_2 - 6s\ ^1\mathrm{P}_1^2 \\ 4p\ ^3\mathrm{D}_3 - 5d\ ^3\mathrm{P}_2^2 \end{array}$
8576. 53 8550. 46 8511. 40 8510. 16 8492. 00	6. 48 0. 37 1. 45 0. 25 2. 08	$ \begin{array}{c c} -3 \\ 1 \\ -3 \\ -1 \\ -2 \end{array} $	11656. 53 11692. 07 11745. 75 11747. 43 11772. 50	$\begin{array}{c} 4p\ ^{1}\mathrm{D}_{2}-6d\ ^{3}\mathrm{P}_{2}^{2} \\ 4p\ ^{1}\mathrm{D}_{2}-7s\ ^{1}\mathrm{P}_{1}^{2} \\ 4p\ ^{3}\mathrm{D}_{2}-5d\ ^{3}\mathrm{P}_{1}^{2} \\ 4p\ ^{1}\mathrm{D}_{2}-6d\ ^{3}\mathrm{P}_{1}^{2} \\ 4p\ ^{1}\mathrm{P}_{1}-5d\ ^{3}\mathrm{D}_{1}^{2} \end{array}$
8461. 51 8337. 93 8305. 75 8198. 48 8195. 46	1. 47 7. 92 5. 62 8. 28 5. 45	$ \begin{array}{r} -3 \\ -3 \\ -1 \\ -3 \\ -2 \end{array} $	11814. 97 11990. 10 12036. 55 12194. 04 12198. 52	$egin{array}{l} 4p\ ^3{ m D}_2{-}5d\ ^3{ m P}_2^2\ 4p\ ^3{ m D}_1{-}5d\ ^3{ m P}_1^2\ 4p\ ^3{ m D}_3{-}5d\ ^1{ m P}_1^2\ 4p\ ^3{ m D}_1{-}5d\ ^1{ m P}_1^2\ 4p\ ^3{ m D}_2{-}5d\ ^1{ m D}_2^2 \end{array}$
8145. 61 8086. 12 8074. 58 8070. 64 7976. 65	5. 48 6. 18 4. 43 0. 62 6. 59	-1 Fe -3 -2 Atm? -1 -1 Atm?	12273. 18 12363. 38 12381. 14 12387. 19 12533. 15	$egin{array}{l} 4p\ ^1\mathrm{S}_0 - 7d\ ^1\mathrm{P}_1^\circ \ 4p\ ^3\mathrm{P}_1 - 6d\ ^3\mathrm{D}_2^\circ \ 4p\ ^3\mathrm{D}_3 - 5d\ ^3\mathrm{F}_2^\circ \ 4p\ ^3\mathrm{P}_2 - 6d\ ^3\mathrm{D}_3^\circ \ 4p\ ^3\mathrm{P}_1 - 5d\ ^1\mathrm{P}_1^\circ \end{array}$
7898. 37 7855. 83 7725. 16 7523. 11 7518. 50	8. 38 5. 82 5. 17 3. 22 8. 66	-3 -3 Co -1 -3 -3N	12657. 35 12725. 90 12941. 17 13288. 72 13296. 87	$egin{array}{l} 4p\ ^3\mathrm{P}_2-6d\ ^3\mathrm{P}_2^2\ 4p\ ^1\mathrm{P}_1-5d\ ^3\mathrm{P}_1^2\ 4p\ ^1\mathrm{D}_2-8s\ ^1\mathrm{P}_1^2\ 4p\ ^3\mathrm{P}_1-6d\ ^3\mathrm{F}_2^2\ 4p\ ^3\mathrm{D}_3-5d\ ^1\mathrm{F}_3^3 \end{array}$
7504. 60 7486. 67 7482. 25 7458. 44 7456. 00	4. 61 6. 67 2. 21 8. 38 6. 35	$ \begin{array}{r} -3 \\ -2 \\ -1 \\ -2 \\ -3 \end{array} $	13321. 55 13353. 39 13361. 29 13403. 93 13408. 33	$egin{array}{l} 4p\ ^3\mathrm{D}_2 - 6d\ ^3\mathrm{D}_2 \ 4p\ ^3\mathrm{S}_1 - 8s\ ^3\mathrm{P}_0^4 \ 4p\ ^1\mathrm{P}_1 - 5d\ ^3\mathrm{F}_2^3 \ 4p\ ^3\mathrm{D}_1 - 6d\ ^3\mathrm{D}_2^2 \ 4p\ ^3\mathrm{D}_2 - 6d\ ^3\mathrm{D}_1^2 \end{array}$

Table 5.—Comparison of computed Si I lines with solar lines—Continued

Computed wave length of Si I	Wave length in sun	Solar intensity	Wave number ν	Term combination
7455. 44 7431. 17 7410. 14 7409. 53 7392. 18	5. 39 1. 14 9. 99 9. 69 2. 13	$ \begin{array}{c c} -3 \\ -3 \\ -3 \\ -3 \\ -3N \end{array} $	13409. 29 13453. 12 13491. 32 13492. 42 13524. 09	$4p\ ^3\mathrm{S}_1 - 8s\ ^3\mathrm{P}_1^\circ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
7367. 75 7365. 16 7364. 56 7360. 87 7278. 60	7. 76 5. 30 4. 65 0. 81 8. 52	$ \begin{array}{c c} -3 \\ 0 \text{ Atm} \\ -3N \\ -3 \\ -2 \end{array} $	13568. 92 13573. 70 13574. 80 13581. 61 13735. 14	$egin{array}{l} 4p\ ^1\mathrm{D}_2\!-\!7d\ ^1\mathrm{F}_3^3\ 4p\ ^3\mathrm{D}_1\!-\!5d\ ^1\mathrm{P}_1^6\ 4p\ ^3\mathrm{D}_1\!-\!7s\ ^3\mathrm{P}_1^6\ 4p\ ^3\mathrm{D}_3\!-\!6d\ ^3\mathrm{P}_2^2\ 4p\ ^3\mathrm{P}_2\!-\!8s\ ^3\mathrm{P}_2^2 \end{array}$
7114. 05 7097. 80 7072. 59 7017. 19 6865. 41	4. 19 7. 68 2. 81 7. 33 5. 46	-3 Atm? -3 -3 -1Nd -3	14052. 82 14084. 92 14135. 20 14246. 89 14561. 76	$egin{array}{l} 4p\ ^3\mathrm{D}_2\!-\!6d\ ^1\mathrm{D}_2^2\ 4p\ ^3\mathrm{D}_3\!-\!6d\ ^3\mathrm{F}_2^2\ 4p\ ^3\mathrm{D}_1\!-\!6d\ ^1\mathrm{D}_2^2\ 4p\ ^3\mathrm{D}_2\!-\!6d\ ^3\mathrm{F}_2^2\ 4p\ ^1\mathrm{P}_1\!-\!6d\ ^3\mathrm{P}_2^2 \end{array}$
6842. 35 6819. 68 6813. 85 6807. 29 6767. 92	2. 38 9. 86 3. 92 7. 39 8. 01	-3d? $-2d?$ $-3N$ $-3d?$ -3	14610. 83 14659. 40 14671. 95 14686. 08 14771. 52	$rac{4p\ ^3\mathrm{D}_3\!-\!7d\ ^3\mathrm{D}_2^2}{4p\ ^3\mathrm{D}_3\!-\!8s\ ^3\mathrm{P}_2^2} \ rac{4p\ ^3\mathrm{D}_3\!-\!7d\ ^3\mathrm{D}_3^3}{4p\ ^1\mathrm{P}_1\!-\!6d\ ^3\mathrm{P}_0^3} \ rac{4p\ ^3\mathrm{D}_2\!-\!7d\ ^3\mathrm{D}_1^\alpha}$
6767. 33 6739. 45 6730. 39 6729. 80 6722. 65	7. 36 9. 53 0. 32 9. 75 2. 72	-3d? 0 Fe -2N -2N, Cr? -3N	14772. 80 14833. 92 14853. 90 14855. 18 14871. 00	$rac{4p\ ^3\mathrm{D}_2 - 7d\ ^3\mathrm{D}_2}{4p\ ^3\mathrm{D}_2 - 7d\ ^3\mathrm{D}_3} \ rac{4p\ ^3\mathrm{D}_1 - 7d\ ^3\mathrm{D}_1^2}{4p\ ^3\mathrm{D}_1 - 7d\ ^3\mathrm{D}_2^2} \ rac{4p\ ^1\mathrm{P}_1 - 6d\ ^1\mathrm{D}_2^2}$
6500. 92 6462. 82 6439. 55 6308. 84 6022. 16	0. 85 2. 98 9. 58 8. 84 2. 23	$ \begin{array}{r} -3 \\ -3 \\ -3 \\ -2N \\ -3 \end{array} $	15378. 20 15468. 85 15524. 75 15846. 40 16600. 75	$rac{4p\ ^3\mathrm{D}_3\!-\!7d\ ^1\mathrm{F}_3^3}{4p\ ^1\mathrm{P}_1\!-\!8s\ ^3\mathrm{P}_0^6} \ rac{4p\ ^1\mathrm{P}_1\!-\!8s\ ^3\mathrm{P}_1^2}{4p\ ^1\mathrm{P}_1\!-\!8s\ ^1\mathrm{P}_1^2} \ rac{4p\ ^1\mathrm{P}_1\!-\!8s\ ^1\mathrm{P}_1^2}{4p\ ^1\mathrm{P}_1\!-\!9s\ ^1\mathrm{P}_1^2}$
3345. 54	5. 49	-2	29881. 96	$3p\ ^1{ m S}_0\!-\!3d\ ^3{ m D}_1^{\circ}$

5. LINES OF Si II

Several lines of Si II were measured repeatedly while the work described in this paper was in progress. The mean values of these determinations are given at this time in table 6 to complete the observational record.

Table 6.—Wave lengths of some Si II lines

Wave length	Intensity	Wave number	$\Delta \nu$	Term combination
6371. 33 6347. 07	15 30	15690. 98 15750. 96	59. 98	$rac{4s\ ^2 ext{S}_{01/2}-4p\ ^2 ext{P}_{01/2}^2}{4s\ ^2 ext{S}_{01/2}-4p\ ^2 ext{P}_{11/2}^2}$
1817. 42 1816. 94 1808. 01	2 8 7	55023. 05 55037. 58 55309. 43	286. 38	$3p\ ^2\mathrm{P}_{1dots}^{\circ}-3p'\ ^2\mathrm{D}_{1dots}^{\circ}\ 3p\ ^2\mathrm{P}_{1dots}^{\circ}-3p'\ ^2\mathrm{D}_{2dots}\ 3p\ ^2\mathrm{P}_{0dots}^{\circ}-3p'\ ^2\mathrm{D}_{1dots}$
1533. 44 1526. 70	5 4	65212. 85 65500. 75	287. 90	$3p\ ^2\mathrm{P}_{1\frac{1}{2}}^{\circ}-4s\ ^2\mathrm{S}_{0\frac{1}{2}}\ 3p\ ^2\mathrm{P}_{0\frac{1}{2}}^{\circ}-4s\ ^2\mathrm{S}_{0\frac{1}{2}}$

The work described in the foregoing pages would not have been possible without the friendly cooperation of various individuals. As stated above, R. L. Templin, of the Aluminum Research Laboratories, and J. H. Critchett, of the Union Carbide Research Laboratories, have both contributed generous samples of highly purified silicon for use as electrode material. A. G. Shenstone, Palmer Physical Laboratory, Princeton University, has made the necessary observations for a study of the ultraviolet spectrum. Charlotte Moore-Sitterly, Princeton University, and H. D. Babcock, Mount Wilson Observatory, have made available to me their unpublished lists of infrared solar wave lengths; and finally, W. H. Swanger, A. J. Dornblatt, and E. F. Webb, of this Bureau, have been instrumental in casting and shaping the electrodes used in the arc lamps. It is a pleasure for me to express to each of them my appreciation for his contribution to this work.

Washington, May 10, 1938.