Modern Lighting Design Principles

Why lighting project?

- Degree: Batchelor of Electrical and Electronic Engineering
- Buildings are complex structures
 - Lighting
 - Power
 - Control
 - Data
 - Monitoring

Project planner

9	6/05/2024	PROJECT 2 BEGINS	TEST 1	Judging	LIGHTING SCIENCE
		ENGINEERING			EMERGENCY
10	13/05/2024	EVALUATION			LIGHTING
		PAYBACK, CO2			ENGINEERING
11	20/05/2024	EMISSION			EVALUATION
12	27/05/2024				TEST 2, PA 2, REPORT

Photometric terms

- Luminous intensity of light source [cd]
- Luminous emittance [cd/klm] directional
- Luminance [cd/m²]
- Luminous flux [lm]
- Illuminance [lx]
- Uniformity of illuminance u0
- Light loss factor (maintenance factor)
- Unified glare rating UGR

Luminaire LED type (manufacturer ETAP)

Luminaire LED type (manufacturer Iguzzini)

What is LED?

- LED stands for Light Emitting Diode.
- An LED is a semiconductor (diode) emitting light when current flows through it.

Structure of LED

LED chips

Cree XP-G LED component

Bridgelux LED component

LED modules and lamps

ETAP UM2 PCB

Osram PrevaLED

TG tube light

TG spot light

Efficacy of light sources (measured in lm/W)

Luminous Emittance

Luminous Emittance – examples

Luminous Emittance – examples

Luminous Emittance – recessed luminaires

Luminous Emittance – suspended luminaire with uplight

Luminous Emittance – Emergency Luminaire (corridor optics)

Selection of suitable luminaires

 Selection of proper mounting type – recessed mounting

Ceiling modulation 1200mm x 600mm

Ingress Protection (important for labs, outdoor spaces)

First Digit (protection from solid objects) - range from 0 to 6 Second Digit (moisture protection) - range from 0 to 8

Light loss factor (due to aging)

Light Loss Factor = LLMF x LMF x LSF x RSMF

Understanding Light Loss Factor

- Lamp Lumen Maintenance Factor (LLMF)
- Luminaire Maintenance Factor (LMF)
- Room Surface Maintenance Factor (LMF)
- Lamp Survival (LSF)

Lamp Lumen Maintenance Factor (LLMF)

LLMF = 0.98

Luminaire Maintenance Factor (LMF) – Confirmation from manufacturer

EXCELLENT LIGHTING, SAVING ENERG

DECLARATION

TO WHOM IT MAY CONCERN

Malle, 22nd September 2014

Dear sir/madam.

Based on the report issued by TNO (https://www.tno.nl/) under the authority of ETAP LIGHTING – ZUMTOBEL STAFF – PHILIPS LIGHTING and OSRAM for the sake of having a reliable determination of the maintenance factors with respect to the EN12464 (The European Norm for lighting working spaces), the reported values authorize ETAP LIGHTING to adopt a luminaire maintenance factor of 0,95 for direct lighting luminaires in a low to medium polluted environment.

Attached TNO-report 2004-GGI-R027.

Yours sincerely,

Wim Sliepenbeek International Sales Director ETAP Lighting

Room Index

$$RI = \frac{L \times W}{L + W} \div (H - h)$$

$$RI = \frac{7.8 \times 4.45}{7.8 + 4.45} \div (2.7 - 0.7) = \frac{34.71}{12.25} \div 2 = 1.42$$

Room Surface Maintenance Factor (RSMF) – AS/NZS 1680.4 Table B3

	Cleaning surfaces Every year			Cleaning surfaces two years			Cleaning surfaces three years		
Room Index	Clean	Normal	Dirty	Clean	Normal	Dirty	Clean	Normal	Dirty
Small Room RI = 0.7	0.97	0.94	0.93	0.95	0.93	0.9	0.94	0.92	0.88
Medium <i>RI</i> =2.5	0.98	0.96	0.95	0.96	0.95	0.94	0.96	0.95	0.94
Large Room RI=5	0.98	0.96	0.95	0.96	0.95	0.94	0.96	0.95	0.94

LLMF = 0.94

Examples of room index values

Room Length L (m)	Room Width W (m)	Luminaire Installation Height H (m)	Calculation Surface Height h (m)	Room index (m)
3	3	2.7	0.7	0.75
5	5	2.7	0.7	1.25
10	10	2.7	0.7	2.50
20	20	3	0.7	4.35
25	25	3	0.7	5.43

Understanding dimensions

Calculating Light Loss Factor at 50khs

LLF = LLMF × LMF × LSF × RSMF

LLF = $0.98 \times 0.95 \times 1 \times 0.94 = 0.875 \approx 0.88$

LLMF

- Lamp lumen maintenance factor

LMF

Luminaire maintenance factor

LSF

Lamp survival factor

RSMF

Room surface maintenance factor

Emergency Lighting

Emergency Lighting

Standard and Regulations

• Lighting: compliant for each internal usage area with AS/NZS 1680.

• Emergency lighting: New Zealand building code clause F6 and F8, and AS/NZS 2293.

