Практикум 2.3. Числовые ряды

Цель работы — усвоить базовые понятия теории числовых рядов, научиться исследовать ряды на сходимость, используя признаки сходимости, научиться использовать средства программныесредства для исследования рядов на сходимость и для приближенного вычисления суммы ряда.

Продолжительность работы - 4 часа.

Оборудование, приборы, инструментарий – работа выполняется в компьютерном классе с использованием Python.

Требования к отчету

В отчет включаются решения упражнений из раздела «Краткие теоретические сведения и практические упражнения» и упражнений для самостоятельной работы. Отчет должен содержать по каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения, включая построенные графики, выводы; аналитические решения (если нужно по заданию).

Краткие теоретические сведения и практические упражнения

1. Числовой ряд. Сходящиеся и расходящиеся ряды. Сумма ряда.

Упражнение 1. Создайте функцию, которая строит график последовательности частичных сумм ряда. В качестве входных параметров функции использовать формулу a_n общего члена последовательности и число n_0 рассматриваемых членов.

Упражнение 2.

а) Используя определение, установить сходимость иди расходимость рядов $\sum_{n=1}^{\infty}q^{\alpha}$ для нескольких значений $0< q<1,\ q=1,\ q>1.$ В случае сходимости ряда найти его сумму.

б) Используя созданную в Упр. 1 функцию, геометрически проиллюстрировать факт сходимости или расходимости рядов вида $\sum_{n=1}^{\infty} q^{\alpha}$ при выбранных в п. а) значениях q.

Упражнение 3. а) Используя определение, установить сходимость иди расходимость рядов $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ для значений $\alpha=0.5$, $\alpha=1$, $\alpha=2$.

б) Используя созданную в Упр. 1 функцию, геометрически проиллюстрировать факт сходимости или расходимости рядов вида $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ для значений $\alpha = 0,5$, $\alpha = 1, \ \alpha = 2$.

2. Необходимый признак сходимости

Напомним формулировку необходимого признака сходимости числовых рядов: *если ряд сходится*, то *его общий член стремится* к нулю при $n \to \infty$.

Из этого утверждения заключаем: если n-й член ряда <u>не</u> стремится κ нулю $n \to \infty$, то ряд расходится.

Однако, из того факта, что n-й член ряда стремится к нулю при $n \to \infty$, вывода относительно сходимости или расходимости ряда сделать нельзя (выполнение условия «n-й член стремится к нулю при $n \to \infty$ » не является достаточным для сходимости ряда).

Упражнение 4. Подкрепите примерами утверждение: «Стремление n-го члена к нулю при $n \to \infty$ является необходимым, но не является достаточным условием сходимости числового ряда». В качестве примеров, используйте ряды из Упр. 2 и 3, а также еще каких-нибудь два расходящихся числовых ряда, общий член которых стремится к нулю. Заполните Табл. 1, дополнив ее геометрическими иллюстрациями - для каждого ряда постройте в одной системе координат график последовательности $\{a_n\}_{n=1}^{\infty}$ и $\{S_n\}_{n=1}^{\infty}$.

Таблица 1

Ряд	Чему равен $\lim_{n\to\infty} a_n$?	Ряд сходится?
•••	•••	•••

3. Общие свойства рядов

Известно следующее свойство числовых рядов:

Если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся, а их суммы соответственно равны A и B, то сходится и ряд $\sum_{n=1}^{\infty} (a_n + b_n)$, причем его сумма равна A + B.

А каким будет ряд
$$\sum_{n=1}^{\infty} (a_n + b_n)$$
, если ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ расходятся?

Упражнение 5. а) Пусть ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ расходятся. Что можно сказать о сходимости ряда $\sum_{n=1}^{\infty} (a_n + b_n)$? Подкрепите ваше предположение примерами, проиллюстрировав факт сходимости/расходимости соответствующих рядов графиками последовательности их частичных сумм.

б) Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится, $\sum_{n=1}^{\infty} b_n$ расходится. Что можно сказать о сходимости ряда $\sum_{n=1}^{\infty} (a_n + b_n)$? Подкрепите ваше предположение примерами, проиллюстрировав факт сходимости/расходимости соответствующих рядов графиками последовательности их частичных сумм.

Указание. Если Вы затрудняетесь с выполнением п. а), рассмотрите ряды $\sum_{n=1}^{\infty} \frac{1}{n} \text{ и } \sum_{n=1}^{\infty} \frac{1}{n+1}, \sum_{n=1}^{\infty} \left(-\frac{1}{n+2}\right).$

4. Признак сравнения сходимости рядов с положительными членами

Напомним формулировку **признака сравнения**. Пусть даны ряды $a_1+a_2+...+a_n+...$ (1) и $b_1+b_2+...+b_n+...$ (2) с положительными членами, причем $a_n \le b_n$. Тогда

- 1) если ряд (2) («больший») сходится, то и ряд (1) («меньший») сходится;
- 2) если ряд (1) («меньший») расходится, то и ряд (2) («больший») расходится.

Упражнение 6. Даны ряды (1)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}\sqrt{n+2}}$$
 и (2) $\sum_{n=1}^{\infty} \frac{2+\sin n}{\sqrt{n}}$.

- а) Используя признак сравнения, установить сходимость или расходимость рядов, сравнив их общие члены с общими членами ряда $\sum_{n=1}^{\infty} \frac{A}{n^{\alpha}}$ при подходящих значениях α и A:
- б) Геометрически проиллюстрируйте использование признака сравнения: для каждой пары сравниваемых рядов постройте в одной системе координат графики последовательностей общих членов, а в другой графики последовательностей их частичных сумм.

5. Нахождение с заданной точностью суммы ряда с положительными членами

Пусть дан ряд $a_1+a_2+...+a_n+...$ Назовем ряд $a_{k+1}+a_{k+2}+...+a_{k+n}+...$, полученный из исходного отбрасыванием первых k членов ряда, k-m остатком ряда. Если сходится ряд $a_1+a_2+...+a_n+...$, то сходится и его остаток, причем их суммы связаны соотношением $S=a_1+a_2+...+a_k+R_k$ (здесь S - сумма ряда, R_k - сумма остатка).

При нахождении суммы числового ряда с заданной точностью ε вычисляют его частичную сумму, для которой величина остатка не превосходит по абсолютной величине ε , т.е. выполняется неравенство $|R_k| < \varepsilon$.

Как определить, сколько членов данного ряда нужно взять для достижения требуемой точности? В некоторых случаях в решении этого вопроса может помочь следующее утверждение.

Утверждение об оценке остатка ряда. Если для ряда с положительными членами существует такое число q < 1, что при всех n, начиная с некоторого n_0 , выполняется неравенство $\frac{a_{n+1}}{a_n} \le q$, то сумма R_k k-го остатка при $k \ge n_0$ удовлетворяет неравенству $R_k \le \frac{a_{k+1}}{1-q}$.

Действительно, если условие $\frac{a_{n+1}}{a_n} \le q$ выполняется для всех номеров n больших некоторого n_0 , то при $k \ge n_0$ справедлива цепочка неравенств $a_{k+1} \le q \cdot a_k$, $a_{k+2} \le a_{k+1} \cdot q$, ..., $a_{k+m} \le a_{k+(m-1)} \cdot q$, ..., и, значит, для любого натурального m верно

 $a_{k+m} \leq a_{k+(m-1)} \cdot q \leq a_{k+(m-2)} \cdot q^2 \leq ... \leq a_k \cdot q^m$. Тогда для рядов $\sum_{m=1}^\infty a_{k+m}$ и $\sum_{k=m}^\infty \left(a_k \cdot q^m\right)$ имеем: для $\forall m$ $a_{k+m} \leq a_k \cdot q^m$ и при $\forall p$ частичные суммы $S_p = a_{k+1} + ... + a_{k+p}$, $T_p = a_k \cdot q^1 + ... + a_k \cdot q^p$ связаны неравенством $S_p \leq T_p$, из которого вытекает $\lim_{p \to \infty} S_p \leq \lim_{p \to \infty} T_p$. Но предел в левой части неравенства — это сумма R_k остатка ряда, предел в правой части неравенства — сумма бесконечно убывающей геометрической прогрессии, т.е. последнее неравенство можно записать в виде $R_k \leq \frac{a_{k+1}}{1-a}$.

Проверка выполнения условия сформулированного выше утверждения об оценке остатка ряда значительно упрощается в случае, когда последовательность $\left\{\frac{a_{n+1}}{a_n}\right\}_{n=1}^{\infty}$ - монотонно убывающая. Действительно, при монотонном убывании этой последовательности из выполнения неравенства $\frac{a_{n_0+1}}{a_{n_o}} \leq q$ при некотором n_0 следует выполнение неравенства $\frac{a_{n+1}}{a_n} \leq q$ при всех n, больших этого n_0 .

Таким образом, для этого частного случая Утверждение об оценке ряда можно переформулировать следующим образом: *Если для ряда с положительными* членами $a_1 \ge a_2 \ge ... \ge a_n \ge ...$ и существует такое число q < 1, что при некотором n_0 выполняется неравенство $\frac{a_{n_0+1}}{a_{n_0}} \le q$, то сумма R_k k-го остатка при $k \ge n_0$ удовлетворяет неравенству $R_k \le \frac{a_{k+1}}{1-q}$.

Упражнение 7. Пусть к ряду $\sum_{n=1}^{\infty} a_n$ применимо Утверждение об оценке ряда. Создайте функцию, которая оценивает число членов, достаточное для вычисления суммы ряда с заданной точностью ε , и вычисляет сумму ряда с заданной точностью. В качестве входных параметров функции используйте формулу общего члена последовательности и точность ε .

Упражнение 8. Дан ряд (*i*) (см. ниже).

а) Показать аналитически, что для ряда выполняется условие утверждения об оценке ряда.

- б) Применить созданную при выполнении Упр. 7 функцию для вычисления с точностью до $0{,}001$ суммы ряда.
- в) Сравнить результат с точным решением, приведённым в последнем столбце таблицы.

Варианты заданий к упражнению 8:

№ PC	Ряд	Сумма ряда
1	$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} + \dots$	= 2.0
2	$1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$	$= e \approx 2.71828182845904$
3	$\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n} + \dots$	= 3.0
4	$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!} + \dots$	$= 2e \approx 5.43656365691809$
5	$1 + \frac{1}{3!} + \frac{1}{5!} + \dots + \frac{1}{(2n-1)!} + \dots$	$= \sinh(1) \approx 1.17520119364380$
6	$1 + \frac{1}{2!} + \frac{1}{4!} + \dots + \frac{1}{(2n)!} + \dots$	$= \cosh(1)-1 \approx 0.543080634815243$
7	$1 + \frac{1}{4^1} + \frac{1}{6^2} + \dots + \frac{1}{(2(n+1))^n} + \dots$	≈ 1.27983505818183
8	$\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2^2} + \frac{\sqrt{4}}{2^3} + \dots + \frac{\sqrt{n+1}}{2^n} + \dots$	≈ 0.69450750547150
9	$\frac{1}{2} + \frac{1}{3^2} + \frac{1}{4^3} + \dots + \frac{1}{(n+1)^n} + \dots$	≈ 0.62847371290158
10	$2 + \frac{3}{2!} + \frac{4}{3!} + \dots + \frac{(n+1)}{n!} + \dots$	$= 2e - 1 \approx 4.43656365691809$
11	$3 + \frac{3^2}{2!} + \frac{3^3}{3!} + \dots + \frac{3^n}{n!} + \dots$	$= e^3 - 1 \approx 19.0855369231876$
12	$\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n}{3^n} + \dots$	= 0.75
13	$1 + \frac{2}{3!} + \frac{3}{5!} + \dots + \frac{n}{(2n-1)!} + \dots$	$= 0.5e \approx 1.35914091422952$
14	$1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \dots + \frac{n}{2^{n-1}} + \dots$	= 4.0

15	$\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2^2} + \frac{\sqrt{4}}{2^3} + \dots + \frac{\sqrt{n+1}}{2^n} + \dots$	≈ 0.69450750547150
16	$\frac{1}{2} + \frac{1}{3^2} + \frac{1}{4^3} + \dots + \frac{1}{(n+1)^n} + \dots$	≈ 0.62847371290158
17	$2 + \frac{3}{2!} + \frac{4}{3!} + \dots + \frac{(n+1)}{n!} + \dots$	$= 2e - 1 \approx 4.43656365691809$
18	$3 + \frac{3^2}{2!} + \frac{3^3}{3!} + \dots + \frac{3^n}{n!} + \dots$	$= e^3 - 1 \approx 19.0855369231876$
19	$\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n}{3^n} + \dots$	= 0.75
20	$1 + \frac{2}{3!} + \frac{3}{5!} + \dots + \frac{n}{(2n-1)!} + \dots$	$= 0.5e \approx 1.35914091422952$
21	$1 + \frac{2}{2} + \frac{3}{2^2} + \frac{4}{2^3} + \dots + \frac{n}{2^{n-1}} + \dots$	= 4.0
22	$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} + \dots$	= 2.0
23	$1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$	$= e \approx 2.71828182845904$
24	$\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n} + \dots$	= 3.0
25	$2 + \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \frac{2^n}{n!} + \dots$	$= 2e \approx 5.43656365691809$
26	$1 + \frac{1}{3!} + \frac{1}{5!} + \dots + \frac{1}{(2n-1)!} + \dots$	$= \sinh(1) \approx 1.17520119364380$
27	$1 + \frac{1}{2!} + \frac{1}{4!} + \dots + \frac{1}{(2n)!} + \dots$	$= \cosh(1) - 1 \approx 0.543080634815243$
28	$1 + \frac{1}{4^1} + \frac{1}{6^2} + \dots + \frac{1}{(2(n+1))^n} + \dots$	≈ 1.27983505818183

6. Знакочередующиеся ряды

Напомним, что ряд $a_1-a_2+...+(-1)^{n-1}a_n+...$, где все a_n положительны, называется знакочередующимся. Для знакочередующихся рядов справедлив признак сходимости Лейбница.

Если
$$a_1 > a_2 > ... > a_n > ...$$
 и $\lim_{n \to \infty} a_n = 0$, то:

- 1) ряд сходится;
- 2) для любого остатка R_k выполняется неравенство $\left|R_k\right| \le a_{k+1}$, причем знак R_k совпадает со знаком $(-1)^k$.

Упражнение 9. Пусть к ряду $\sum_{n=1}^{\infty} a_n$ применимо утверждение об оценке ряда.

Создайте функцию, которая оценивает число членов знакочередующихся рядов, достаточное для вычисления суммы ряда с заданной точностью ε , и вычисляет сумму ряда с заданной точностью. В качестве входных параметров функции используйте формулу общего члена последовательности и точность ε .

Упражнение 10. Дан ряд (*i*) (см. ниже).

- а) Показать аналитически, что для ряда выполняется условие утверждения об оценке ряда.
- б) Применить созданную при выполнении Упр. 9 функцию для вычисления с точностью до 0,001 суммы ряда.
- в) Сравнить результат с точным решением, приведённым в последнем столбце таблицы.

Варианты заданий к упражнению 10:

№	Ряд	Сумма ряда
PC		
1	$\frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2^2} + \frac{\sqrt{4}}{2^3} + \dots + (-1)^{n-1} \frac{\sqrt{n+1}}{2^n} + \dots$	≈ 0.433974378506987
2	$\frac{1}{2} - \frac{1}{3^2} + \frac{1}{4^3} + \dots + \frac{\left(-1\right)^{n-1}}{\left(n+1\right)^n} + \dots$	≈ 0.403034444421517
3	$2 - \frac{3}{2!} + \frac{4}{3!} + \dots + (-1)^{n-1} \frac{(n+1)}{n!} + \dots$	= 1.0
4	$-3 + \frac{3^2}{2!} - \frac{3^3}{3!} + \dots + \frac{\left(-3\right)^n}{n!} + \dots$	$= (1 - e^3) / e^3 \approx -0.950212931632136$
5	$-\frac{1}{3} + \frac{2}{3^2} - \frac{3}{3^3} + \dots + \frac{n}{(-3)^n} + \dots$	= -0.1875
6	$1 - \frac{2}{3!} + \frac{3}{5!} + \dots + (-1)^{n-1} \frac{n}{(2n-1)!} + \dots$	$= 0.5(\sin(1) + \cos(1)) \approx 0.690886645338018$

7	$1 - \frac{2}{2} + \frac{3}{2^2} - \frac{4}{2^3} + \dots + \left(-1\right)^{n-1} \frac{n}{2^{n-1}} + \dots$	= 4 / 9 = 0.4444(4)
8	$\frac{1}{2} - \frac{2}{2^2} + \frac{3}{2^3} + \dots + \left(-1\right)^{n-1} \frac{n}{2^n} + \dots$	= 2/9 = 0.2222(2)
9	$1 - \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{\left(-1\right)^{n-1}}{n!} + \dots$	$= (e-1) / e \approx 0.632120558828557$
10	$\frac{1}{2} - \frac{3}{2^2} + \frac{5}{2^3} + \dots + \left(-1\right)^{n-1} \frac{2n-1}{2^n} + \dots$	= 1/9 = 0.1111(1)
11	$2 - \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \left(-1\right)^{n-1} \frac{2^n}{n!} + \dots$	$= 1 - e^{-2} \approx 0.864664716763387$
12	$1 - \frac{1}{3!} + \frac{1}{5!} + \dots + \frac{\left(-1\right)^{n-1}}{(2n-1)!} + \dots$	$= \sin(1) \approx 0.841470984807896$
13	$1 - \frac{1}{2!} + \frac{1}{4!} + \dots + \frac{\left(-1\right)^{n-1}}{(2n)!} + \dots$	$= 1 - \cos(1) \approx 0.459697694131860$
14	$1 - \frac{1}{4^{1}} + \frac{1}{6^{2}} + \dots + \frac{\left(-1\right)^{n-1}}{\left(2(n+1)\right)^{n}} + \dots$	≈ 0.224079236824095
15	$\frac{1}{2} - \frac{2}{2^2} + \frac{3}{2^3} + \dots + \left(-1\right)^{n-1} \frac{n}{2^n} + \dots$	= 2 / 9 = 0.2222(2)
16	$1 - \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{\left(-1\right)^{n-1}}{n!} + \dots$	$= (e-1) / e \approx 0.632120558828557$
17	$\frac{1}{2} - \frac{3}{2^2} + \frac{5}{2^3} + \dots + \left(-1\right)^{n-1} \frac{2n-1}{2^n} + \dots$	= 1/9 = 0.1111(1)
18	$2 - \frac{2^2}{2!} + \frac{2^3}{3!} + \dots + \left(-1\right)^{n-1} \frac{2^n}{n!} + \dots$	$= 1 - e^{-2} \approx 0.864664716763387$
19	$1 - \frac{1}{3!} + \frac{1}{5!} + \dots + \frac{\left(-1\right)^{n-1}}{(2n-1)!} + \dots$	$= \sin(1) \approx 0.841470984807896$
20	$1 - \frac{1}{2!} + \frac{1}{4!} + \dots + \frac{\left(-1\right)^{n-1}}{(2n)!} + \dots$	$= 1 - \cos(1) \approx 0.459697694131860$
21	$1 - \frac{1}{4^{1}} + \frac{1}{6^{2}} + \dots + \frac{\left(-1\right)^{n-1}}{\left(2(n+1)\right)^{n}} + \dots$	≈ 0.224079236824095
22	$\frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2^2} + \frac{\sqrt{4}}{2^3} + \dots + (-1)^{n-1} \frac{\sqrt{n+1}}{2^n} + \dots$	≈ 0.433974378506987

23	$\frac{1}{2} - \frac{1}{3^2} + \frac{1}{4^3} + \dots + \frac{\left(-1\right)^{n-1}}{\left(n+1\right)^n} + \dots$	≈ 0.403034444421517
24	$2 - \frac{3}{2!} + \frac{4}{3!} + \dots + \left(-1\right)^{n-1} \frac{(n+1)}{n!} + \dots$	= 1.0
25	$-3 + \frac{3^2}{2!} - \frac{3^3}{3!} + \dots + \frac{\left(-3\right)^n}{n!} + \dots$	$= (1 - e^3) / e^3 \approx -0.950212931632136$
26	$-\frac{1}{3} + \frac{2}{3^2} - \frac{3}{3^3} + \dots + \frac{n}{\left(-3\right)^n} + \dots$	= -0.1875
27	$1 - \frac{2}{3!} + \frac{3}{5!} + \dots + \left(-1\right)^{n-1} \frac{n}{(2n-1)!} + \dots$	$= 0.5(\sin(1) + \cos(1)) \approx 0.690886645338018$
28	$1 - \frac{2}{2} + \frac{3}{2^2} - \frac{4}{2^3} + \dots + \left(-1\right)^{n-1} \frac{n}{2^{n-1}} + \dots$	= 4 / 9 = 0.4444(4)

Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
- 2. Ответить на контрольные вопросы:
- 1) Что Вы можете сказать относительно сходимости ряда:

- 2) Известно, что сумма ряда Лейбница $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ равна $\frac{\pi}{4}$. Чему равна сумма ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n+3}$?
- 3) От каждого члена сходящегося ряд отняли 1. Что можно сказать относительно сходимости нового ряда?
- 4) Даны два ряда с положительными членами: $\sum_{n=1}^{\infty} a_n$ (A) и $\sum_{n=1}^{\infty} b_n$ (B), причем для любого n выполняется неравенство $a_n \leq b_n$.
 - а) Что можно сказать о сходимости ряда (В), если ряд (А) сходится?
 - б) Что можно сказать о сходимости ряда (А), если ряд (В) расходится?

- 5) Можно для вычисления суммы ряда $\sum_{n=1}^{\infty} \frac{1}{n^2}$ с заданной точностью непосредственно использовать оценку остатка ряда из Утверждения об оценке остатка ряда (см. п.5).
- 6) Можно ли для вычисления суммы знакопеременного ряда $\sum_{n=1}^{\infty} (-1)^n \frac{2 + \cos \pi n}{n}$ с заданной точностью воспользоваться оценкой остатка ряда из Признака Лейбница (см. п.6)?