GATE: ST - 32.2023

EE22BTECH11039 - Pandrangi Aditya Sriram*

Question: Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables each having a mean 4 and variance 9. If $Y_n =$ $\frac{1}{n} \sum_{i=1}^{n} X_i \text{ for } n \ge 1, \text{ then } \lim_{n \to \infty} E\left[\left(\frac{Y_n - 4}{\sqrt{n}}\right)^2\right] \text{ (in integer)}$ (GATE ST 2023)

Solution:

1) **Theory:** For all X_i which as i.i.d's, mean $\mu = 4$ and variance $\sigma^2 = 9$,

$$Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (1)

The mean of a sum of i.i.d random variables is calculated as

$$E[Y_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right]$$
 (2)

$$=\frac{1}{n}\sum_{i=1}^{n}\mathrm{E}\left[X_{i}\right]\tag{3}$$

$$=\frac{1}{n}(n\mu)\tag{4}$$

$$=\mu\tag{5}$$

The variance of a sum of i.i.d random variables is calculated as

$$\operatorname{var}(Y_n) = \operatorname{E}\left[\left(\frac{1}{n}\sum_{i=1}^n X_i\right)^2\right] - \left(\operatorname{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right]\right)^2$$

$$= \frac{1}{n^2} \left\{\operatorname{E}\left[\left(\sum_{i=1}^n X_i\right)^2\right] - \left(\operatorname{E}\left[\sum_{i=1}^n X_i\right]\right)^2\right\}$$
(6)

But

$$E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right] = E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[X_{i} X_{j}\right]$$
(9)

and

$$\left(\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]\right)^{2} = \left(\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]\right)^{2}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]$$
(10)

Putting (9) and (11) in (7), and using the definition of covariance,

$$var(Y_n) = \frac{1}{n^2} \left\{ \sum_{i=1}^n \sum_{j=1}^n \left(E[X_i X_j] - E[X_i] E[X_j] \right) \right\}$$
(12)

$$= \frac{1}{n^2} \left\{ \sum_{i=1}^n \sum_{j=1}^n \text{cov}(X_i, X_j) \right\}$$
 (13)

As all the variables are i.i.d's and are thus uncorrelated,

$$\operatorname{cov}(X_{i}, X_{j}) = \begin{cases} 0 & \text{if } i \neq j \\ \operatorname{var}(X_{i}) & \text{if } i = j \end{cases}$$
 (14)

Putting (14) in (13),

$$\operatorname{var}(Y_n) = \frac{1}{n^2} \left(\sum_{i=1}^n \operatorname{cov}(X_i, X_i) \right)$$
 (15)

$$= \frac{1}{n^2} \left(\sum_{i=1}^n \operatorname{var}(X_i) \right) \tag{16}$$

$$=\frac{1}{n^2}\left(\sum_{i=1}^n \sigma^2\right) \tag{17}$$

$$=\frac{\sigma^2}{n}\tag{18}$$

Consider the term $\left(\frac{Y_n-\mu}{\sqrt{n}}\right)^2$. Calculating its expectation,

$$E\left[\left(\frac{Y_n - \mu}{\sqrt{n}}\right)^2\right] = \frac{1}{n}E\left[(Y_n - \mu)^2\right]$$
 (19)

$$= \frac{1}{n} \operatorname{var}(Y_n)$$
 (20)
$$= \frac{\sigma^2}{n^2}$$
 (21)

$$=\frac{\sigma^2}{n^2}\tag{21}$$

Substituting $\sigma^2 = 9$ and $\mu = 4$, we get

$$\lim_{n \to \infty} E\left[\left(\frac{Y_n - 4}{\sqrt{n}} \right)^2 \right] = \lim_{n \to \infty} \frac{9}{n^2} = 0$$
 (22)

2) **Simulation:** Any distribution with mean $\mu = 4$ and variance $\sigma^2 = 9$ can be used for the variable X_{ij} for all $i, j \in \mathbb{N}$; as shown in the Theory part, the limit is always zero regardless of the distribution. The most straightforward distribution that can be used for X_{ij} is:

$$p_{X_{ij}}(x) = \begin{cases} 0.5 & \text{if } x \in \{1, 7\} \\ 0 & \text{otherwise} \end{cases}$$
 (23)

This distribution has the following characteristics:

$$\mu = E[X_{ij}] = 0.5 \times 1 + 0.5 \times 7 = 4$$
 (24)

$$\sigma^2 = \mathbf{E} \left[X_{ij}^2 \right] - \left(\mathbf{E} \left[X_{ij} \right] \right)^2 \tag{25}$$

$$= (0.5 \times 1^2 + 0.5 \times 7^2) - 4^2 \tag{26}$$

$$=9\tag{27}$$

Alternatively, distributions such as $X_{ij} \sim \mathcal{N}(4,9)$ could also be used. A matrix $X_{n\times m}$ is generated for all $i \leq n$ and $j \leq m$. Using this matrix, a set of m values for Y_i is generated as

$$Y_j = \frac{1}{n} \sum_{i=1}^{n} X_{ij}$$
 (28)

Now, the expression $\frac{(Y_j-4)^2}{n}$ is calculated for all $j \le m$ and their expectancy is calculated as follows:

$$E\left[\left(\frac{Y_n - 4}{\sqrt{n}}\right)^2\right] = \frac{1}{m} \sum_{j=1}^m \frac{(Y_j - 4)^2}{n}$$
 (29)

To calculate the limit $n \to \infty$, different values of n are taken, and the expected value is calculated (taking a fixed small value of m to reduce computational time) for each case. This output is plotted and is seen to be close to the curve $\frac{9}{n^2}$, as derived in (22). In both cases, we can observe the limit tends towards zero.

Fig. 2. Expectation vs n