Stability Selection

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

- Meinshausen, Buhlmann (2010). Stability selection. JRSS-B, 72:417-473
- Shah, Samworth (2013). Variable selection with error control: another look at stability selection. JRSS-B, 75:55–80.

Stability path

- The *regularisation path* of the lasso is

$$\{\hat{\beta}_j(\lambda), j=1,\ldots,p,\lambda\in\Lambda\}$$

- The *stability path* is

$$\{\hat{\pi}_j(\lambda), j=1,\ldots,p,\lambda\in\Lambda\}$$

where $\hat{\pi}_j(\lambda)$ is the estimated probability for the *j*th predictor to be selected by the lasso(λ) when randomly resampling from the data

Algorithm 1 Stability Path Algorithm with the Lasso

Require: $B \in \mathbb{N}$, Λ grid, $\tau \in (0.5, 1)$

1: **for** b = 1, ..., B **do**

2: Randomly select n/2 indices from $\{1, \ldots, n\}$;

3: Perform the lasso on the n/2 observations to obtain

$$\hat{S}_{n/2}(\lambda) = \{j : \hat{\beta}_j(\lambda) \neq 0\} \qquad \forall \ \lambda \in \Lambda$$

4: end for

5: Compute the relative selection frequencies:

$$\hat{\pi}_{j}(\lambda) = \frac{1}{B} \sum_{k=1}^{B} \mathbb{1}\{j \in \hat{S}_{n/2}(\lambda)\} \qquad \forall \ \lambda \in \Lambda$$

6: The set of *stable predictors* is given by

$$\hat{S}_{\text{stab}} = \{ j : \max_{\lambda \in \Lambda} \hat{\pi}_j(\lambda) \ge \tau \}$$

Algorithm 2 (Complementary Pairs) Stability Selection

Require: A variable selection procedure \hat{S}_n , $B \in \mathbb{N}$, $\tau \in (0.5, 1)$

- 1: **for** b = 1, ..., B **do**
- 2: Split $\{1,\ldots,n\}$ into (I^{2b-1},I^{2b}) of size n/2, and for each get

$$\hat{S}_{n/2}^{2b-1} \subseteq \{1, \dots, p\}, \qquad \hat{S}_{n/2}^{2b} \subseteq \{1, \dots, p\}$$

- 3: end for
- 4: Compute the relative selection frequencies:

$$\hat{\pi}_j = \frac{1}{2B} \sum_{h=1}^{B} \left(\mathbb{1} \{ j \in \hat{S}_{n/2}^{2b-1} \} + \mathbb{1} \{ j \in \hat{S}_{n/2}^{2b} \} \right)$$

5: The set of stable predictors is given by

$$\hat{S}_{\text{stab}} = \{j : \hat{\pi}_j \ge \tau\}$$

– The relative selection frequency $\hat{\pi}_i$ is an unbiased estimator of

$$\pi_j^{n/2} = P(j \in \hat{S}_{n/2})$$

but, in general, a biased estimator of

$$\pi_i^n = P(j \in \hat{S}_n) = \mathbb{E}(\mathbb{1}\{j \in \hat{S}_n\})$$

- The key idea of stability selection is to improve on the simple estimator $\mathbb{1}\{j \in \hat{S}_n\}$ of π_i^n through subsampling.
- By means of averaging involved in \hat{S}_{stab} , we hope that $\hat{\pi}_j$ will have reduced variance compared to $\mathbb{1}\{j \in \hat{S}_n\}$ and this increased stability will more than compensate for the bias incurred.

Theorem

Assume that

- 1. $\{\mathbb{1}\{j\in \hat{S}_{n/2}\}, j\in N\}$ is exchangeable;
- 2. The variable selection procedure is not worse than random guessing, i.e.

guessing, i.e.
$$\frac{\mathbb{E}(|\hat{S}_{n/2} \cap S|)}{\mathbb{E}(|\hat{S}_{n/2} \cap N|)} \geq \frac{|S|}{|N|}.$$

Then, for $\tau \in (1/2, 1]$

$$\mathbb{E}(|\hat{S}_{\mathsf{stab}} \cap N|) \leq rac{1}{(2 au - 1)} rac{q^2}{p}$$

where
$$q = \mathbb{E}(|\hat{S}_{n/2}|)$$

- The choice of the number of subsamples *B* is of minor importance
- importance

 It is possible to fix $q = \mathbb{E}(|\hat{S}_{n/2}|)$ and run the variable selection procedure until it selects q variables. However, if q is too small, one would select only a subset of the signal variables as

$$|\hat{S}_{\mathrm{stab}}| \leq |\hat{S}_{n/2}| = q$$

– For example, with p=1000, q=50 and $\tau=0.6$ then

$$\mathbb{E}(|\hat{S}_{\mathsf{stab}} \cap N|) \leq 12.5$$

The knockoff filter

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

- Barber, Candès (2015) Controlling the False Discovery Rate via Knockoffs. Ann. Statist. 43:2504–2537
- Candès, Fan, Janson, Lv (2018). Panning for gold: model-X knockoffs for high dimensional controlled variable selection. JRSS-B 80:551-577.

There are two main approaches:

- Fixed-X knockoffs Requires that X is full rank with $n \ge 2p$
- Model-X knockoffsRequires assumptions on X but works with p > n

Lasso selects 67 features: FDP($\hat{\textit{S}}) = ?/67$

Main idea

- For each feature X_j , construct a knockoff copy \tilde{X}_j
- Knockoffs $\tilde{X}_1, \dots, \tilde{X}_p$ are independent of y and mimic the original variables X_1, \dots, X_p if they were null

Lasso selects 70 original and 43 knockoff: $\widehat{\text{FDP}}(\hat{S}) = 43/70 \approx 61\%$

True FDP(\hat{S}) = 34/70 $\approx 54\%$

Knockoff construction

- Suppose without loss of generality that the features are centered and scaled such that $||X_j||_2^2 = 1$ for all j
- Let $\Sigma = X^t X$ be the correlation matrix of the features
- The method begins by augmenting the design matrix X with a second matrix $\tilde{X} \in \mathbb{R}^{n \times p}$ of knockoff variables, constructed to satisfy

$$G = [X \tilde{X}]^{t} [X \tilde{X}] = \begin{bmatrix} X^{t}X & X^{t}X \\ \tilde{X}^{t}X & \tilde{X}^{t}\tilde{X} \end{bmatrix}$$
$$= \begin{bmatrix} \Sigma & \Sigma - D \\ \Sigma - D & \Sigma \end{bmatrix}$$

for some diagonal matrix $D = \operatorname{diag}(d_1, \dots, d_p)$ such that G is positive definite

The knockoffs have the same correlation structure as the original features

$$\tilde{X}^t \tilde{X} = X^t X = \Sigma$$

- The correlation between \tilde{X}_k and X_i is

$$ilde{X}_{j}^{t}X_{k}=X_{j}^{t}X_{k}\quadorall\,k
eq j$$

– The correlation between \tilde{X}_j and X_j is

$$ilde{X}_i^t X_i = 1 - d_i$$

with d_j as close to 1 as possible

Equi-correlated knockoffs

Suppose we require $d_j = d$ for all j. Define

$$\tilde{X} = X(I_p - d\Sigma^{-1}) + UC$$

where

- $U \in \mathbb{R}^{n \times p}$ is an orthonormal matrix such that $U^t X = 0$
- $C \in \mathbb{R}^{p \times p}$ from the Cholesky decomposition of

$$C^{t}C = 4((d/2)I_{p} - (d/2)^{2}\Sigma^{-1})$$

This approach corresponds to method="equi" in the knockoff package. A semidefinite programming approach is used to determine the values that minimize $\sum_{j=1}^{p} (1-d_j)$ subject to the constraints (method="sdp")

The knockoff statistics

- Fit the lasso to the augmented design matrix $[X \tilde{X}]$ for $\lambda \in \Lambda$
- Let $[\hat{\beta}(\lambda) \ \tilde{\beta}(\lambda)], \lambda \in \Lambda$ denote the coefficient estimates
- Compute

$$Z_j = \sup\{\lambda \in \Lambda : \hat{\beta}_j(\lambda) \neq 0\} = \text{ first time } X_j \text{ enters the lasso path } \tilde{Z}_j = \sup\{\lambda \in \Lambda : \tilde{\beta}_j(\lambda) \neq 0\} = \text{ first time } \tilde{X}_j \text{ enters the lasso path }$$

Then define the statistics

$$W_j = \max(Z_j, \tilde{Z}_j) \cdot \operatorname{sign}(Z_j - \tilde{Z}_j) = \begin{cases} Z_j & \text{if } X_j \text{ enters first } (Z_j > \tilde{Z}_j) \\ 0 & \text{if } Z_j = \tilde{Z}_j \\ -\tilde{Z}_j & \text{if } \tilde{X}_j \text{ enters first } (Z_j < \tilde{Z}_j) \end{cases}$$

FDP estimate

– For some threshold $\tau \geq 0$, select

$$\hat{S}_{\tau} = \{j \in \{1,\ldots,p\} : W_j \geq \tau\}$$

- The knockoff estimate of the FDP is

$$\begin{split} \text{FDP}(\hat{S}_{\tau}) &= \frac{\#\{j \in N \colon W_{j} \geq t\}}{\#\{j \colon W_{j} \geq t\}} \\ &\approx \frac{\#\{j \in N \colon W_{j} \leq -t\}}{\#\{j \colon W_{j} \geq t\}} \\ &\leq \frac{1 + \#\{j \colon W_{j} \leq -t\}}{\#\{j \colon W_{j} \geq t\}} = \widehat{\text{FDP}}(\hat{S}_{\tau}) \end{split}$$

For $\tau = 2$, $|\hat{S}_{\tau}| = 29$ with $\widehat{\text{FDP}}(\hat{S}_{\tau}) = 4/29$ and $\widehat{\text{FDP}}(\hat{S}_{\tau}) = 5/29$

The knockoff procedure chooses a data-dependent threshold

$$\hat{\tau} = \min\left\{\tau > 0 : \widehat{\text{FDP}}(\hat{S}_{\tau}) \le \alpha\right\}$$

with $\hat{\tau} = +\infty$ if no such τ exists.

Theorem

For any $\alpha \in (0,1)$, the knockoff procedure selects

$$\hat{S}_{\hat{\tau}} = \{ j \in \{1, \dots, p\} : W_j \ge \hat{\tau} \}$$

with the guarantee that

$$FDR(\hat{S}_{\hat{\tau}}) = \mathbb{E}\left(\frac{|N \cap \hat{S}_{\hat{\tau}}|}{|\hat{S}_{\hat{\tau}}|}\right) \le \alpha$$

where the expectation is taken over ε in the Gaussian linear model $y = X\beta + \varepsilon$ while treating X and \tilde{X} as fixed.

Variable importance statistics

- Fit the Random Forest to the augmented design matrix $[X \tilde{X}]$
- Compute

$$Z_j = \text{VariableImportance}(X_j)$$

 $\tilde{Z}_j = \text{VariableImportance}(\tilde{X}_j)$

The importance of a variable is measured as the total decrease in node impurities from splitting on that variable, averaged over all trees

- Then define the statistics

$$W_j = \operatorname{abs}(Z_j) - \operatorname{abs}(\tilde{Z}_j)$$

For au=0.001, $|\hat{S}_{ au}|=23$ with $\widehat{\text{FDP}}(\hat{S}_{ au})=4/23$ and $\widehat{\text{FDP}}(\hat{S}_{ au})=7/23$

Modeling X

- X is treated as a random matrix with i.i.d. rows x_i
- (x_i, y_i) , i = 1, ..., n are i.i.d. from some unknown distribution
- Assume we know the marginal distribution of x_i , e.g.

$$x_i = (x_{i1}, \ldots, x_{ip}) \sim N_p(\mu, \Sigma)$$

- Null features given by conditional independence

$$N = \{j \in \{1, \ldots, p\} : y \perp \!\!\!\perp x_j | x_{-j}\}$$

where
$$x_{-j} = \{x_1, ..., x_p\} \setminus \{x_j\}$$

Knockoffs in the Gaussian case

 The joint distribution of original features and knockoff copies satisfies

$$[x \ \tilde{x}] \sim N(M, V) \quad \text{with } M = \begin{bmatrix} \mu \\ \mu \end{bmatrix}, \quad V = \begin{bmatrix} \Sigma & \Sigma - D \\ \Sigma - D & \Sigma \end{bmatrix}$$

where $D = diag(d_1, \dots, d_p)$ such that V is positive definite

– Draw a random \tilde{x}_i from the conditional distribution $\tilde{x}_i|x_i$, which is normal with

$$\mathbb{E}(\tilde{x}_i|x_i) = \mu + (\Sigma - D)\Sigma^{-1}(x_i - \mu)$$

$$\mathbb{V}\operatorname{ar}(\tilde{x}_i|x_i) = \Sigma - (\Sigma - D)\Sigma^{-1}(\Sigma - D)$$

– If μ and Σ are unknown, replace by estimates $\hat{\mu}$ and Σ

Conformal prediction

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

References

Lei, G'Sell, Rinaldo, Tibshirani, Wasserman (2018)
 Distribution-free predictive inference for regression.
 JASA,113:1094-1111

Suppose we have fitted a Gaussian linear model based on the training data (\mathbf{y}, \mathbf{X}) , obtaining the estimates

$$\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}, \quad \hat{\sigma}^2 = \|\mathbf{y} - \mathbf{X} \hat{\beta}\|^2 / (n - p)$$

There are (at least) two levels at which we can make predictions

- 1. A *point prediction* is a single best guess about what a new Y will be when X = x
- 2. A prediction interval

$$C_{\alpha}(x) = x^t \hat{\beta} \pm t_{n-p}^{1-\alpha/2} \hat{\sigma} \sqrt{x^t (\mathbf{X}^t \mathbf{X})^{-1} x + 1}$$

for Y|X = x with $(1 - \alpha)$ conditional coverage guarantee, i.e.

$$P(Y \in C_{\alpha}(x)|X=x) = 1 - \alpha$$

where the probability is with respect to the training data $(X_1, Y_1), \ldots, (X_n, Y_n)$, and the new response Y at a fixed test point X = x

 $f(x) = \frac{1}{4}(x+4)(x+1)(x-2)$

Model miss-specification

 $1-\alpha=90\%$, marginal coverage $\approx 93\%$

Marginal and conditional coverage

- -(X, Y) ∈ $\mathbb{R}^p \times \mathbb{R}$ follows some *unknown* joint distribution P_{XY}
- Training $(X_1, Y_1), \ldots, (X_n, Y_n)$ and test (X_{n+1}, Y_{n+1}) i.i.d. (X, Y)
- C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) \ge 1 - \alpha \quad \forall P_{XY}$$

where the probability is w.r.t. $(X_1, Y_1), \dots, (X_n, Y_n)$ and (X_{n+1}, Y_{n+1})

- C_{α} satisfies distribution-free conditional coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})|X_{n+1} = x) \ge 1 - \alpha \quad \forall P_{XY}, \ \forall x$$

where the probability is w.r.t. $(X_1, Y_1), \ldots, (X_n, Y_n)$, and Y_{n+1} at a fixed test point $X_{n+1} = x$

Conformal prediction

Conformal prediction (Vovk, Gammerman, Saunders, Vapnik, 1996-1999) is a general framework for constructing prediction intervals by using *any* algorithm with finite sample and distribution-free *exact* marginal coverage, i.e.

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha \qquad \forall P_{XY}$$

Two main versions:

- Full conformal prediction
- Split conformal prediction

Algorithm 1 Full conformal prediction

Require: Training
$$(x_1, y_1), \ldots, (x_n, y_n)$$
, test x_{n+1} , algorithm $\hat{\mu}$, level

1: for $y \in \mathcal{Y}$ do

2:

3:

4:

5:

6:

7: end for

$$\alpha$$
, grid of values $\mathcal{V} = \{v, \sqrt{v}, \sqrt{v}, \dots \}$

$$\alpha$$
, grid of values $\mathcal{Y} = \{y, y', y'', \ldots\}$

Require: Training
$$(x_1, y_1), \dots, (x_n, y_n)$$

 α , grid of values $\mathcal{V} = \{v, v', v'', \dots\}$

Require: Training
$$(x_1, y_1), \dots, (x_n, y_n)$$

Require: Training
$$(x_1, y_1), \dots, (x_n, y_n)$$

Require: Training
$$(x_1, y_1), \dots, (x_n, y_n)$$

equire: Training
$$(x_1, y_1), \ldots, (x_n, y_n)$$

Compute $R^y = |y - \hat{\mu}^y(x_{n+1})|$

8: $C_{\alpha}(x_{n+1}) = \{ y \in \mathcal{Y} : R^{y} < R_{\alpha}^{y} \}$

equire: Training
$$(x_1, y_1), \ldots, (x_n, y_n)$$

$$\frac{1}{1, y_1), \ldots, (x_n, y_n),}$$

Train $\hat{\mu}^{y}(x) = \hat{\mu}(x; (x_1, y_1), \dots, (x_n, y_n), (x_{n+1}, y))$

Sort $R_1^{\gamma}, \ldots, R_n^{\gamma}$ in increasing order: $R_{(1)}^{\gamma} \leq \ldots \leq R_{(n)}^{\gamma}$

Compute $R_i^y = |y_i - \hat{\mu}^y(x_i)|$ for i = 1, ..., n

Compute $R_{\alpha}^{y} = R_{(k)}^{y}$ with $k = \lceil (1 - \alpha)(n+1) \rceil$

$$(x_n, y_n)$$
, test (x_n, y_n)

$$(x_n, y_n)$$
 test

- Assume that (X_i, Y_i) , i = 1, ..., n + 1 are i.i.d. from a probability distribution P_{XY} on the sample space $\mathbb{R}^p \times \mathbb{R}$. This is the only assumption of the method
- The prediction interval

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : R^{y} \le R_{\alpha}^{y} \},$$

satisfies

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha$$

if and only if $\alpha \in \{1/(n+1), 2/(n+1), \dots, n/(n+1)\}$

- Informally, the null hypothesis that the random variable Y_{n+1} will have the outcome y, i.e.

$$H_{y}:Y_{n+1}=y$$

is rejected when $R^y > R^y_\alpha$

Algorithm 2 Split conformal prediction

Require: Training $(x_1, y_1), \ldots, (x_n, y_n), x_{n+1}$, algorithm $\hat{\mu}$, validation sample size m, level α

- 1: Split $\{1, \ldots, n\}$ into L of size w and I of size m = n w
- 2: Train $\hat{\mu}_{L}(x) = \hat{\mu}(x; (x_{l}, y_{l}), l \in L)$
- 3: Compute $R_i = |y_i \hat{\mu}_L(x_i)|$ for $i \in I$
- 4: Sort $\{R_i, i \in I\}$ in increasing order: $R_{(1)} \leq \ldots \leq R_{(m)}$
- 5: Compute $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 \alpha)(m+1) \rceil$

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : |y - \hat{\mu}_{L}(x_{n+1})| \le R_{\alpha} \}$$

= $[\hat{\mu}_{L}(x_{n+1}) - R_{\alpha}, \hat{\mu}_{L}(x_{n+1}) + R_{\alpha}]$

$$= [\hat{\mu}_L(x_{n+1}) - R_{\alpha}, \hat{\mu}_L(x_{n+1}) + R_{\alpha}]$$

- Assume that (X_i, Y_i) , i = 1, ..., n + 1 are i.i.d. from a probability distribution P_{XY} on the sample space $\mathbb{R}^p \times \mathbb{R}$
- The prediction interval

$$C_{\alpha}(x_{n+1}) = [\hat{\mu}_L(x_{n+1}) - R_{\alpha}, \hat{\mu}_L(x_{n+1}) + R_{\alpha}]$$

satisfies

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) = 1 - \alpha$$

- if and only if $\alpha \in \{1/(m+1), 2/(m+1), \dots, m/(m+1)\}$
- Note that in computing the critical value $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 \alpha)(m + 1) \rceil$, we need to have $k \le m$, which happens if $\alpha \ge 1/(m+1)$ (otherwise if k > m we need to set $R_{\alpha} = +\infty$)

Random Forest

Smoothing splines

Conformity scores

In the previous algorithm we used a statistic, called *conformity* score, which is the absolute value of the residual

$$R_i = |y_i - \hat{\mu}_L(x_i)|, \quad i \in I$$

where $\hat{\mu}_L$ is an estimator of $\mathbb{E}(Y \mid X)$ based on $\{(X_i, Y_i), i \in L\}$

– The oracle knows the conditional distribution of $Y \mid X$. The oracle prediction interval

$$C_{\alpha}^{*}(x) = [q^{\alpha/2}(x), q^{1-\alpha/2}(x)]$$

where $q^{\gamma}(x)$ is the γ -quantile of $Y \mid X = x$, guarantees exact conditional coverage

$$P(Y \in C_{\alpha}^{*}(X)|X = x) = 1 - \alpha \quad \forall x$$

Suppose that

$$\left(\begin{array}{c} Y \\ X \end{array}\right) \sim N\left(\left(\begin{array}{cc} \mu_y \\ \mu_x \end{array}\right), \left(\begin{array}{cc} \sigma_y^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_x^2 \end{array}\right)\right)$$

then the conditional distribution of $Y \mid X = x$ is

$$(Y|X=x) \sim N\left(\mu_y + \rho \frac{\sigma_y}{\sigma_x}(x-\mu_x), \sigma_y^2(1-\rho^2)\right)$$

from which we can compute the quantile $q^{\gamma}(x)$

 $C_{\alpha}^{*}(x) = [q^{\alpha/2}(x), q^{1-\alpha/2}(x)]$ as a function of x

Conformal quantile regression

- Compute conformity scores

$$R_i = \max \left\{ \hat{q}_L^{\gamma}(X_i) - Y_i, Y_i - \hat{q}_L^{1-\gamma}(X_i) \right\}, \quad i \in I$$

where \hat{q}_L^γ is an estimator of the γ -quantile of $Y\mid X$ based on $\{(X_i,Y_i),i\in L\}$

- Sort $\{R_i, i \in I\}$ in increasing order, obtaining $R_{(1)} \leq \ldots \leq R_{(m)}$, and compute $R_{\alpha} = R_{(k)}$ with $k = \lceil (1 \alpha)(m+1) \rceil$
- Compute the prediction interval

$$C_{\alpha}(x_{n+1}) = \{ y \in \mathbb{R} : \max \left\{ \hat{q}_{L}^{\gamma}(x_{n+1}) - y, y - \hat{q}_{L}^{1-\gamma}(x_{n+i}) \right\} \le R_{\alpha} \}$$

$$= [\hat{q}_{L}^{\gamma}(x_{n+1}) - R_{\alpha}, \hat{q}_{L}^{1-\gamma}(x_{n+1}) + R_{\alpha}]$$
or $C_{\alpha}(x_{n+1}) = \emptyset$ if $R_{\alpha} < (1/2)(\hat{q}_{L}^{\gamma}(x_{n+1}) - \hat{q}_{L}^{1-\gamma}(x_{n+1}))$

$$X_i \sim \textit{U}(0, 2\pi), \epsilon_i \sim \textit{N}(0, 1), Y_i = \sin(X_i) + \frac{\pi |X_i|}{20} \epsilon_i$$

Algorithm

- 1. Choose a number *B* of splits
- 2. Choose a threshold $\tau \in \{0, 1/B, 2/B, \dots, (B-1)/B\}$
- 3. Compute *B* split conformal prediction intervals with coverage level $1-\beta$

$$C_{\beta}^{[1]}(x_{n+1}),\ldots,C_{\beta}^{[B]}(x_{n+1})$$

where

$$\beta = \alpha(1 - \tau)$$

4. Compute the aggregated prediction interval

$$C_{\alpha}^{\tau}(x_{n+1}) = \{ y \in \mathbb{R} : \Pi_{\beta}^{y} > \tau \}$$

with

$$\Pi_{\beta}^{y} = \frac{1}{B} \sum_{b=1}^{B} \mathbb{1} \{ y \in C_{\beta}^{[b]}(x_{n+1}) \}$$

- The multi-split prediction interval guarantees

$$P(Y_{n+1} \in C_{\alpha}^{\tau}(X_{n+1})) \ge 1 - \alpha \quad \forall P_{XY}$$

- The parameter τ can be regarded as a tuning parameter, and proper choice of τ is essential for good performance
- On the one hand, setting $\tau = 1 1/B$ gives the Bonferroni-intersection method with $C_{\alpha}^{(B-1)/B} = \bigcap_{b} C_{\alpha/B}^{[b]}$.
- On the other hand, setting $\tau=0$ gives an unadjusted-union $C^0_\alpha=\bigcup_b C^{[b]}_\alpha.$
- For B even, an intermediate choice $\tau=1/2$ amounts to constructing B single split confidence intervals at level $\alpha/2$, that is $C_{\alpha/2}^{[b]}$, which is a small but not negligible price to pay for using multiple splits rather than just one split. In practice, however, $\tau=1/2$ and $C_{\alpha}^{[b]}$ may give marginal coverage $\approx 1-\alpha$