Homework # 8

Reading

- \bullet Section 13.2 introduces hidden Markov models. The previous section, 13.1, discuss Markov chains and similar models of sequential random variables. In problem 1 below, we use X(t) as the hidden state. Bishop instead uses Z for the hidden state, following the notation for EM, which we will also pick up next week.
- I've attached the original diffusion maps paper by Coifman and Lafon. The wikipedia article on diffusion maps follows the Coifman and Lafon paper closely and is worth reading,

https://en.wikipedia.org/wiki/Diffusion_map

- 1. (This problem is based on the cheating-casino hidden Markov model we discussed in class.) Let X(t) be a Markov chain on the state space $\{F,C\}$ (F fair, C cheating). Suppose that X(t) changes state with probability $\alpha=.05$ regardless of its current state. Let Y(t) be a r.v. with values from $\{1,2,3,4,5,6\}$. (Y(t) corresponds to the t-th role of a die). If X(t) = F then Y(t) is uniformly distributed on $\{1,2,3,4,5,6\}$ (a fair die). If X(t) = C then Y(t) = 0 then Y(t) = 0 and all values for Y(t) are equally likely. Assume X(t) = T where T(t) = T is the stationary distribution of X(t).
 - (a) Write a function, **SampleCasino(T)** that samples X(t), Y(t) for $t \leq T$.
 - (b) Use your simulation from part (a) to produce a single realization of X(t) and Y(t) up to time step T=200. Pretend that you don't know the X(t) values, but that you know the Y(t) values generated. Let (j_0, j_1, \ldots, j_T) be the sequence of Y(t) values you generated. Given a sequence (i_0, i_1, \ldots, i_T) of states $i \in \{F, C\}$, write an expression for the probability,

$$P(X(0) = i_0, X(1) = i_1, \dots, X(T) = i_T \mid Y(0) = j_0, (1)$$

 $Y(1) = j_1, \dots, Y(T) = j_T)$

- Set $\alpha = P(Y(0) = j_0, Y(1) = j_1, \dots, Y(T) = j_T)$. Your expression for (1) should be a function of α and the i_s , j_s for $s = 0, 1, 2, \dots, T$. Provide an expression for α (you can express α through T + 1 sums).
- (c) Let $\nu(i_0, i_1, \ldots, i_T)$ be the conditional probability given in (1). Let Z be the r.v. with distribution ν . What is the state space of Z? (We discussed this in class.)
- (d) Using a Metropolis-Hastings approach, construct a Markov chain W(s) that has Z as its stationary distribution. (Here I'll use s as the time variable so as not to confuse it with the t variable of X(t)). Use your sampler to estimate $P(X(t) = C \mid Y(0) = j_0, Y(1) = j_1, \ldots, Y(T) = j_T)$ where t is a given value. Using a single long run of W(s), estimate $P(X(t) = C \mid Y(0) = j_0, Y(1) = j_1, \ldots, Y(T) = j_T)$, don't forget to include a burn-in time. Do this for all $t \leq 200$. You can use a single long run of W(s) for each value of t. Plot $P(X(t) = C \mid Y(0) = j_0, Y(1) = j_1, \ldots, Y(T) = j_T)$ as a function of t and compare the probabilities you computed to the actual state of the casino.
- 2. Attached you will find a R script make_1d_manifold.R that constructs data points $x^{(i)} \in \mathbb{R}^{10}$ for i = 1, 2, ..., 500 that are localized around a 1-d manifold. The data points produced by the script are in diffusion_maps_data.csv.
 - (a) Look at the file diffusion_maps_data.csv. The data points are given in the first 10 columns. The 11th column gives a parameter β discussed in the next subproblem. Can you find a pattern in the data? (The answer will be no, I think.)
 - (b) Read the script and describe what the 1-d manifold looks like. Associated with each data point is a scalar $\beta \in [0, 1]$. Explain how β paramatrizes the manifold.
 - (c) Reduce the data to \mathbb{R}^2 and \mathbb{R} using PCA. Plot the data points in the reduced dimension and use color to represent the value of β .
 - (d) i. The authors of the diffusion maps paper (see Reading above) introduce the diffusion distance between the

data points $x^{(i)}, x^{(j)},$

$$D_t^2(x^{(i)}, x^{(j)}) = \sum_{k=1}^N \left[\left(P(Z(t) = x^{(k)} \mid Z(0) = x^{(i)}) \right) \right] - P(Z(t) = x^{(k)} \mid Z(0) = x^{(j)} \right]^2 \frac{1}{\pi(x^{(k)})}$$

Explain the intuition behind this distance. How is Z(t) constructed? What is π ? Here I'm not looking for any proofs or derivations. Just explain your understanding of the construction.

ii. The authors describe a mapping from $x^{(i)} \in \mathbb{R}^n$ to $y^{(i)} \in \mathbb{R}^N$, where $y^{(i)}$ is given by

$$y^{(i)} = \begin{pmatrix} \lambda_1^t r_i^{(1)} \\ \lambda_2^t r_i^{(2)} \\ \vdots \\ \lambda_N^t r_i^{(N)} \end{pmatrix}$$
 (3)

Explain how to compute the λ and r. What is the formula for $D_t^2(x^{(i)},x^{(j)})$ in terms of $y^{(i)},y^{(j)}$? Again, I'm not looking for proofs or step-by-step derivations. Just show my how you would do the computations and state the formula. (The lecture video and paper provide step by step derivations.)

- iii. Describe how we would use diffusion maps to dimensionally reduce the data.
- iv. Now repeat (c), but use diffusion maps to dimensionally reduce the data. Experiment with different kernels and different time parameters t in the diffusion maps.