NFA to regular expression

Lemma

Given any NFA A, we can obtain a regular expression, say R_A , such that $L(A) = L(R_A)$.

Examples in class

Limitations of NFA

Lemma

The number of regular languages is countable.

Proof.

By counting.

Every regular language is recognized by a DFA.

Every DFA has a finite description.

All DFAs can therefore be enumerated, i.e. there is a one-to-one mapping (bijection) from all DFAs to \mathbb{N} .

This implies that there exist languages which are not accepted by any DFA.

Limitations of NFA

What are examples of languages not accepted by NFAs?

$$PAL = \{ w \cdot w^R \mid w \in \Sigma^* \}.$$

$$EQ = \{ w \cdot w \mid w \in \Sigma^* \}.$$

$$L_{a,b}=\left\{a^n\cdot b^n\mid n\geq 0\right\}.$$

Proving that PAL is not a regular language

Lemma

 $\forall n \in \mathbb{N} \text{ let } PAL_n = \{w \cdot w^R \mid w \in \Sigma^*, |w| = n\}. \text{ Any automaton accepting } PAL_n \text{ must have } |\Sigma|^n \text{ states.}$

Proof.

By Pigeon Hole Principle.

Suppose $\exists x, y \in \Sigma^n$ such that $x \neq y$, automaton reaches the same state after reading both x, y.

Then $x \cdot x^R$ and $y \cdot x^R$ are both accepted or both rejected, which is a contradiction.

1) Removing q,

2) Removing 92

