Efficiency loss in PbPb due to EMD

Vendulka Fílová

Ultra-Peripheral Collisions meeting

3. 11. 2020

Photoproduction of J/ψ

- Photon flux $\propto Z^2$
- \Rightarrow Photon-induced Pb Pb interactions
- Due to Vector Meson Dominance vector meson is produced very likely
- \Rightarrow Photoproduction of ${\rm J}/\psi$ vector meson

• Measuring cross section of ${\rm J}/\psi$ photoproduction in UPC

Why is this process interesting to study?

$$\boxed{ \frac{d\sigma_{\gamma Pb \rightarrow \mathrm{J}/\psi Pb}}{dt} \mid_{t=0} = \frac{\mathit{M}_{\mathrm{J}/\psi}^{3} \Gamma_{\mathrm{ee}} \pi^{3} \alpha_{s}^{2}(\mathit{Q}^{2})}{48\alpha_{em} \mathit{Q}^{8}} [\mathit{xg}_{Pb}(x, \mathit{Q}^{2})]^{2} }$$

→ Tool to study gluon densities at small—x values

Shreyasi Acharya et al. arXiv:190406272, can be found here.

Additional process: EMD

Independent additional photon-induced interaction of the same pair of nuclei can occur. One or more neutrons (not only!) are produced.

- We separate data sample into four neutron classes -(0n0n),(0nXn),(Xn0n) and (XnXn)
- Measuring cross section in different neutron classes

Why separation into neutron classes?

$$\frac{d\sigma_{PbPb\to J/\psi PbPb}(y)}{dy} = N_{\gamma Pb}(y)\sigma_{\gamma Pb\to J/\psi Pb}(y) + N_{\gamma Pb}(-y)\sigma_{\gamma Pb\to J/\psi Pb}(-y)$$

We believe it helps us to disentangle these

•
$$x = \frac{M_{\mathrm{J}/\psi}}{\sqrt{s_{\mathrm{NN}}}} exp(\pm y)$$

- \Rightarrow And reach even lower values of $x \sim 10^{-5}!$
 - All good. Where is the problem then?

Electromagnetic dissociation

- In an EMD event at least one neutron is emitted (\sim 97%).
- Less frequent production of charged particles has not been taken into account.

Taken from I. Pshenichnov talk, can be found here.

We are losing these events!

ALICE subdetectors

Problem

- Main trigger used in the published analysis:
- ★ CMUP11-B-NOPF-MUFAST = !0VBA & !0UBA & !0UBC & 0MUL
- Veto on V0A, ADA and ADC detection of charged particles produced
- Additional offline veto applied
- No control trigger allowing the correction!

Solution

- Another trigger active in 2018 data taking:
- ⋆ CMUP6-B-NOPF-MUFAST = !0VBA & 0MUL
- Separation of the sample into neutron classes (0n0n), (0nXn), (Xn0n) and (XnXn)
 - Defined via activity in ZDC detectors

- No need of correction for classes (0n0n) and (0nXn)
- Classes (Xn0n) and (XnXn) need to be corrected:
 - Correction for events caused by pile-up in V0A
 - Correction for events lost due to online VOA veto
 - ★ CTRUE, C1ZED samples to compute correction factors

⇒ Data sample including EMD processes.

Selection of J/ψ candidates

- Pb-Pb UPCs at $\sqrt{s_{NN}} = 5.02$ TeV during LHC Run 2
- Event selection
 - Two unlike-sign muons in muon spectrometer
- Muon selection
 - The opposite electric charge
 - The dimuon rapidity: $-4 < y_{\mu\mu} < -2.5$
 - ullet The transverse momentum: $p_{
 m T} < 250~{
 m Mev}/c$
 - The invariant mass: $2.85 < M_{\mu\mu} < 3.35 \; \mathrm{GeV}/c^2$
- Separation into neutron classes using information from ZDC detector

Invariant mass distributions

• Invariant masses are fitted for all neutron classes and the number of ${\rm J}/\psi$ candidates is extracted.

Neutron class (0n0n)

Neutron class (Xn0n)

Transverse momentum distributions

Very different background in different neutron classes!

Incoherent contribution

- Sample is contaminated by incoherent events.
- Tomáš Herman has produced fractions of incoherent events:

$$\begin{array}{l} \star \ \, f_{\rm I} = \frac{{\rm J/\psi incoh+feed \ downJ/\psi incoh+dissociativeJ/\psi incoh}}{{\rm J/\psi coh+feed \ downJ/\psi coh}} \\ \Rightarrow \ \, N_{\rm J/\psi coherent} = N_{\rm J/\psi} \cdot \frac{1}{(1+f_{\rm I})} \\ \end{array}$$

 The samples of four neutron classes have been cleaned up from incoherent contribution.

Coherent ${\mathrm J}/\psi$ sample

- Another collision in the same bunch crossing: pile-up
- Lost events due to the online V0A veto

1. Pile-up in V0A

- Interaction of another nucleus pair caused a signal in VOA - a pile-up event
- Determination of pile-up with CTRUE event sample
- ★ CTRUE = unbiased trigger fired in bunch crossing time window
- Finding the probability of having signal in V0A in otherwise empty detector

Figure: V0A pile-up in (Xn0n) class.

 $\sim 2.4 \%$ of events are caused by pile-up.

2. V0A veto correction

- Data sample triggered by 1ZED is used.
- ⋆ C1ZED = activity in at least one side of ZN in bunch crossing
- To get the correction factor we seek for events that are selected by the offline decision of V0A and not by online trigger:
- Veto correction factor ϵ is obtained: Correction itself: $\frac{1}{\epsilon}$
- Veto correction is needed for (Xn0n) and (XnXn) classes

Figure: V0A veto correction factor in (Xn0n) class.

• Inefficiency of the V0A online trigger is about $\sim 44\%$

Results

 Correction factor for each neutron class and for all events is calculated:

$$\star$$
 $F_{class} = \frac{N_{\mathrm{J/\psi coherent~corrected}}}{N_{\mathrm{J/\psi coherent}}}$

- $N_{\rm J/\psi coherent}$ number of coherent ${\rm J}/\psi$ candidates in each neutron class.
- $N_{\mathrm{J/\psi coherent~corrected}}=$ number of $\mathrm{J/\psi}$ candidates after pile-up correction and V0A veto inefficiency correction.

$$F_{(\mathbf{Xn0n})} = \frac{1250.77}{1172.301} = 1.067$$

$$F_{(\mathbf{XnXn})} = \frac{1031.85}{889.299} = 1.160$$

$$F_{\text{all}} = \frac{(12808.8 + 920.905 + 1250.77 + 1031.85)}{(12808.8 + 920.905 + 1172.301 + 889.299)} = \textbf{1.014}$$

Summary and outlook

- New problem was identified.
- No tools available to solve it, we got creative to find a solution.
- Corrections are very large for two of the four neutron classes.
- Selection and background subtraction has to be fine-tuned to agree with one to be used in the paper.

Thank you for your attention!

Backup

$$\star F_{(Xn0n)} = \frac{N_{\mathrm{J/\psi coherent \ corrected}}}{N_{\mathrm{J/\psi coherent}}}$$

(Xn0n) neutron class

- \star ϵ_{PU} Pile-up correction factor for each neutron class.
- * $\frac{1}{\epsilon_{\rm veto}}$ V0A inefficiency correction factor for each neutron class.
- $N_{\mathrm{J/\psi PU~corrected}} = N_{\mathrm{J/\psi PU~corrected~ZNA}} + N_{\mathrm{J/\psi PU~corrected~V0AOff}} = N_{\mathrm{J/\psi ZNA}} \cdot \epsilon_{\mathrm{PU}} + N_{\mathrm{J/\psi V0AOff}} \cdot \epsilon_{\mathrm{PU}}$
- $N_{\mathrm{J/\psi V0A}}$ veto corrected = $(N_{\mathrm{J/\psi PU}}$ corrected V0AOff) $\cdot \frac{1}{\epsilon_{\mathrm{veto}}}$
- $N_{\mathrm{J/\psi coherent~corrected}} = N_{\mathrm{J/\psi PU~corrected~ZNA}} + N_{\mathrm{J/\psi V0A~veto~corrected}}$