Lecture 5:

Hypothesis Testing

- Suppose we want to know is exposure to asbestos is associated with lung disease. We take some rats, randomly divide them into two groups, expose one group to asbestos and leave the second unexposed. Then we compare the disease rate in the two groups. Consider these two hypotheses:
- The Null Hypothesis: The disease rate is the same in the two groups. The Alternative Hypothesis: The disease rate is not the same in the two groups.
- If the exposed group has much higher rate of disease than the unexposed, we will reject the null hypothesis and conclude that evidence favors the alternative hypothesis.
- Sometimes, confidence intervals do the job, with no hyp. test.

• More formally, we divide the parameter space Θ into two **disjoint** sets Θ_0 and Θ_1 and we wish to test:

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$

the null hypothesis vs the alternative hypothesis

- Let X be a r.v. with range \mathcal{X} . We test the hypothesis by finding a subset $R \in \mathcal{X}$ called the **rejection region**. If $X \in R$, we reject the null hyp., otherwise we **retain** (do not reject) the null hyp.
- Usually, the rejection region has form $R = \{x : T(x) > c\}$, where T is a **test statistic** and c is a **critical value**. The problem is to find such a statistic and such a critical value.

- There are two types of errors we can make. Type I error (false positive) rejecting H_0 when it is true. Type II error (false negative) retaining H_0 when H_1 is true.
- **Definition:** The **power function** of a test with rejection region R is defined by

$$\beta(\theta) = \mathbb{P}_{\theta}(X \in R)$$

The **size** of the test is defined by $\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$.

A test is said to have **level** α if its size is $\leq \alpha$.

- A hypothesis of the form $\theta = \theta_0$ is called a **simple hypothesis**. A hypothesis of the form $\theta > \theta_0$ (or $\theta < \theta_0$) is called a **composite** hypothesis.
- A test of the form

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

is called a two-sided test. A test of the form

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$ (or vice versa)

is called a one-sided test. Two-sided tests are most common.

• **Example**: $X_1,\ldots,X_n\sim \mathcal{N}(\mu,\sigma)$ where σ is known. We want to test $H_0:\ \mu\leq 0$ versus $H_1:\ \mu>0$. Hence, $\Theta_0=(-\infty,0]$ and $\Theta_1=(0,\infty)$. Consider the test:

reject H_0 if T > c, where $T = \overline{X}$.

The rejection region is $R = \{(x_1, ..., x_n) : T(x_1, ..., x_n) > c\}.$

The power function is

$$\beta(\mu) = \mathbb{P}_{\mu}(\overline{X} > c) = \mathbb{P}\left(Z > \frac{\sqrt{n(c - \mu)}}{\sigma}\right) = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$

The power function is increasing in μ , hence

size =
$$\sup_{\mu \le 0} \beta(\mu) = \beta(0) = 1 - \Phi\left(\frac{\sqrt{nc}}{\sigma}\right)$$

For a size- α test we fix this equal to α and solve for c to get $c = \sigma \Phi^{-1}(1-\alpha)/\sqrt{n}$. So we reject when $\overline{X} > c$.

- It would be desirable to find the test with highest power under H_1 , among all size- α tests. Such a test, if exists, is called **most powerful**. Finding such one is hard, and in many cases most powerful tests don't even exist.
- Instead of going into detail about when such most powerful tests exist, we will consider several widely used tests: 1) the Wald test 2) the χ^2 test, 3) the permutation test, 4) the likelihood ratio test, 5) the t-test

- Let θ be a scalar parameter, let $\hat{\theta}$ be an estimate of θ , and let see be the estimated standard error of $\hat{\theta}$.
- **Definition**: Consider testing H_0 : $\theta = \theta_0$ vs H_1 : $\theta \neq \theta_0$. Assume that $\hat{\theta}$ is asymptotically normal:

$$\frac{\widehat{\theta} - \theta_0}{\widehat{\text{se}}} \stackrel{d}{\to} \mathcal{N}(0,1)$$

The size- α Wald test is: reject H_0 when $|W|>z_{\alpha/2}$ where

$$W = \frac{\hat{\theta} - \theta_0}{\hat{\text{se}}}$$

- **Theorem**: Asymptotically, the Wald test has size α , that is, $\mathbb{P}_{\theta_0}\left(|W|>z_{\alpha/2}\right)\to \alpha$, as $n\to\infty$.
- **Remark**: An alternative version of the Wald test statistic is $W = (\widehat{\theta} \theta_0)/\text{se}_0$, where se_0 is the s.e. computed at $\theta = \theta_0$. Both versions of the test are valid.
- **Theorem**: Suppose the true value of θ is $\theta_{\star} \neq \theta_{0}$. The power $\beta(\theta_{\star})$ the proba. of correctly rejecting the null hyp. is (approx.) $1 \Phi\left((\theta_{0} \theta_{\star})/\hat{\text{se}} + z_{\alpha/2}\right) + \Phi\left((\theta_{0} \theta_{\star})/\hat{\text{se}} z_{\alpha/2}\right)$.

Recall that se tends to 0 as sample size increases. So 1) power is large if θ_{\star} is far from θ_0 , 2) power increases with sample size.

• **Example 1**: (Comparing two predictors). We test two prediction algorithms, $X \sim \text{Binomial}(m, p_1)$ and $Y \sim \text{Binomial}(n, p_2)$ – being the # of their incorrect predictions on test sets of sizes m and n. The null hyp. is H_0 : $\delta = p_1 - p_2 = 0$ versus H_1 : $\delta \neq 0$. The MLE is $\widehat{\delta} = \widehat{p}_1 - \widehat{p}_2$, with estimated s.e.

$$\hat{\text{se}} = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{m} + \frac{\hat{p}_2(1-\hat{p}_2)}{n}}. \text{ So size-}\alpha \text{ Wald test is to}$$

reject H_0 when $\mid W \mid > z_{\alpha/2}$ where $W = \frac{\widehat{\delta} - 0}{\widehat{\text{se}}}$. The power of this

test is largest when p_1 is far from p_2 and when the sample size is large.

• Example 1: (Comparing two predictors). What if we tested both algorithms on the same test set? Then two samples are not independent! Denote $X_i = \text{Ind}(\text{alg1} \text{ is correct on i-th test case}),$ and Y_i accordingly, and define $D_i = X_i - Y_i$.

Now $\delta = \mathbb{E}(D_i) = \mathbb{E}(X_i) - \mathbb{E}(Y_i) = \mathbb{P}(X_i = 1) - \mathbb{P}(Y_i = 1)$, and the its plug-in estimate is $\hat{\delta} = \overline{D}$, and $\hat{\operatorname{se}}(\hat{\delta}) = S/\sqrt{n}$.

To test H_0 : $\delta=0$ versus H_1 : $\delta\neq 0$ we use $W=\widehat{\delta}/\hat{\rm se}$ and reject H_0 if $|W|>z_{\alpha/2}$.

This is called **paired comparison**.

• **Example 2**: (Comparing two means). Let X_1, \ldots, X_m and Y_1, \ldots, Y_n be two ind. samples from populations with means μ_1 and μ_2 . Null hyp. is $H_0: \ \delta = \mu_1 - \mu_2 = 0$, versus $H_1: \ \delta \neq 0$. Plug-in estimate is $\widehat{\delta} = \overline{X} - \overline{Y}$ with estimated s.e:

$$\hat{se} = \sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}$$
 (s₁, s₂ – sample variances).

Size- α Wald test rejects H_0 when $|W|>z_{\alpha/2}$ where

$$W = \frac{\widehat{\delta} - 0}{\widehat{\mathsf{se}}}.$$

- Example 3: (Comparing two medians). Same as previous example, but now plug-in estimates are sample medians, and standard error estimate can be obtained with bootstrap.
- Theorem: Size- α Wald test rejects $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ if and only if $\theta_0 \notin C$ where $C = (\widehat{\theta} \widehat{\text{se}} z_{\alpha/2}, \ \widehat{\theta} + \widehat{\text{se}} z_{\alpha/2})$ the **confidence interval.**
- If we reject H_0 we say the result is **statistically significant**. A result might be statistically significant, but **effect size** (also called scientific significance), $|\theta \theta_0|$, might be small!

• Just reporting "reject H_0 " or "retain H_0 " is not very informative. Instead, we ask, for every α , whether we reject at that level. The smallest α at which the test rejects is called the **p-value**.

• **Definition**: p-value = $\inf \{ \alpha : T(X^n) \in R_{\alpha} \}$

- Informally, p-value is a measure of evidence against H_0 : the smaller the p-value, the stronger the evidence against H_0 .
- Typically, researchers use the following "evidence scale":

p-value	evidence
< 0.01	very strong evidence against H_0
0.01-0.05	strong evidence against H_0
0.05-0.10	weak evidence against H_0
> 0.10	little or no evidence against H_0

- Warning: Large p-value is not strong evidence in favor of H_0 . It can occur for two reasons: 1) H_0 is true, 2) H_0 is false, but the test has low power
- Warning: Do not confuse the p-value with $\mathbb{P}(H_0 \mid \text{data})!$
- Rather than that, the p-value is _the probability (under H_0) of observing a value of the test statistic the same as or more extreme that was actually observed_!

• **Theorem**: For observed statistic, $w=(\widehat{\theta}-\theta_0)/\widehat{se}$ in Wald test, the p-value is given by

$$\mathbb{P}_{\theta_0}(|W| > |w|) \approx \mathbb{P}(|Z| > |w|) = 2\Phi(-|w|)$$

- **Theorem**: If the test statistic has a continuous distribution, then under H_0 : $\theta = \theta_0$, the p-value has a Uniform(0,1) distribution. Therefore, if we reject H_0 when the p-value is less than α , the probability of type I error (false positive) is α .
- In other words, if H_0 is true, the p-value is a random draw from Uniform(0,1). If H_1 is true, the distribution of the p-value will tend to concentrate closer to 0.

The χ^2 Distribution

The χ^2 distribution

Let $Z_1, \ldots, Z_k \sim \mathcal{N}(0,1)$. Let $V = \sum_{i=1}^k Z_i^2$. Then we say that V

has a χ^2 -distribution with k degrees of freedom, written $V \sim \chi_k^2$

. The pdf is
$$f(v) = \frac{v^{(k/2)-1} \exp(-v/2)}{2^{k/2} \Gamma(k/2)}$$
 for $v > 0$.

• The moments are $\mathbb{E}(V) = k$ and $\mathbb{V}(V) = 2k$.

The χ^2 distribution

• The upper α -quantile is $\chi^2_{k,\alpha} = F^{-1}(1-\alpha)$ where F is the CDF.

- Pearson's χ^2 test is used for multinomial data. If $X=(X_1,\ldots,X_k)$ has a multinomial (n,p) distribution, then the MLE of p is $\widehat{p}=(\widehat{p}_1,\ldots,\widehat{p}_k)=(X_1/n,\ldots,X_k/n).$
- Let $p_0=(p_{01},\ldots,p_{0k})$ be some fixed vector and suppose we want to test $H_0:\ p=p_0$ versus $H_1:\ p\neq p_0$
- **Definition**: Pearson's χ^2 statistic is

$$T = \sum_{j=1}^{k} \frac{(X_j - np_{0j})^2}{np_{0j}} = \sum_{j=1}^{k} \frac{(X_j - E_j)^2}{E_j} \text{ where } E_j = \mathbb{E}(X_j) = np_{0j}$$

is the expectation of X_j under H_0

• **Theorem**: Under H_0 , we have $T \stackrel{d}{\to} \chi^2_{k-1}$. Hence the test: reject $T > \chi^2_{k-1,\alpha}$ has asymptotic level α . The p-value is $\mathbb{P}(\chi^2_{k-1} > t)$ where t is the observed value of the test statistic

• **Example**: (Mendel's peas). Mendel bred peas with *round yellow* seeds and *wrinkled green* seeds. So there are 4 types of progeny: round/wrinkled, yellow/green. The number of each type is multinomial with $p=(p_1,p_2,p_3,p_4)$. His theory of inheritance predicts that $p=(p_1,p_2,p_3,p_4)$.

In n=556 trials he observed X=(315,101,108,32). Since $np_{01}=312.75$, we have $\chi^2=\frac{(315-312.75)^2}{312.75}+\ldots=0.47$

The $\alpha=0.05$ value for χ_3^2 is 7.815. Since 0.47 < 7.815, we retain the null hyp. The p-value is $\mathbb{P}(\chi_3^2>0.47)=0.93$. So there is not enough evidence to contradict Mendel's theory.

• Remember: Hypothesis testing is useful to see if there is evidence to reject H_0 . It does not prove that H_0 is true! Failure to reject H_0 might occur because 1) H_0 is true, 2) because the test has low power!