Chess Openings

Solving a nuanced classification problem through PCA and Neural Networks

Problem Statement

Given the first ten moves in a Chess game, how can we properly classify them into ten different Chess openings?

Sicilian Defense, French Defense, Ruy Lopez, Italian Game, English Opening, Queen's Gambit Declined, Caro-Kann Defense, King's Indian Defense, Queen's Pawn Game, Nimzo-Indian Defense

Design & Implementation

Process

Convert Chess moves into a numeric matrix, vectorize into 64 x 1 vector for classification purposes.

а	b	C	d	е	f	g	h
5000	2000	3000	9000	12000	3000	2000	5000
1000	1000	1000	1000	1000	1000	1000	1000
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000
-5000	-2000	-3000	-9000	-12000	-3000	-2000	-5000

а	b	С	d	е	f	g	h
5000.0	2000.0	2400.0	9000.0	12000.0	3000.0	800.0	5000.0
1000.0	1200.0	1000.0	1000.0	200.0	0.0	1000.0	1000.0
0.0	400.0	0.0	0.0	800.0	1200.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	1000.0	0.0	0.0
0.0	0.0	0.0	1000.0	0.0	0.0	0.0	0.0
0.0	0.0	800.0	0.0	800.0	1200.0	0.0	0.0
1000.0	1000.0	1000.0	0.0	800.0	1000.0	1000.0	1000.0
5000.0	1200.0	3000.0	9000.0	12000.0	2400.0	800.0	5000.0

PCA

Calculate Mean Boards and Eigen-Openings to allow rapid classification of input openings.

```
def PCA(BOARDS):
    N = 8
   M = len(BOARDS)
   mew = [0 \text{ for in } range(N**2)]
   GAMMA = []
   for board in BOARDS:
        boardvec = np.concatenate(np.array(board))
       GAMMA.append(boardvec)
       mew = np.array([boardvec[i] + mew[i] for i in range(N**2)])
    mean board = mew/M
    mean boardB = mean board.reshape((N,N))
   A = np.array([gamma - mean board for gamma in GAMMA]).T #array of PHIs
   C = (A.T @ A)
   w1,v1 = np.linalg.eig(C)
   U = np.array([np.array(sum(v1[1][k]*A.T[k] for k in range(1,M))) for l in range(M)])
    ref = [bd.reshape((N, N)) for bd in U]
   OMEGA = np.array([U @ A.T[i] for i in range(len(A.T))])
    return mean board, U, OMEGA
```

Neural Networks

Algorithmically simulate neuron activity similar to that of the human brain.

Use a 3-layer network to train a model that classifies vectorized openings into ten output classes.

Uses **sigmoid** and **softmax** activation functions.

```
def back prop(self,x,y):
def init (self, neurons, f=sigmoid):
                                                                                                             gradB = [np.zeros(b.shape) for b in self.biases]
                                                                                                             gradW = [np.zeros(w.shape) for w in self.weights]
    self.biases = [np.random.randn(d, 1) for d in neurons[1:]]
                                                                                                             # FF
    self.weights = [np.random.randn(d1, d2) for d2,d1 in zip(neurons[:-1], neurons[1:])]
                                                                                                             a, A, F = X, [X], []
                                                                                                             for b, w in zip(self.biases, self.weights):
    self.layers = len(neurons)
                                                                                                                 r = (w @ a) + b
                                                                                                                F.append(r)
    self.neurons = neurons
                                                                                                                 a = self.f(r)
                                                                                                                 A.append(a)
    # random initialization
                                                                                                             # RP
    self.f = f
                                                                                                             D = (A[-1] - y) * self.f(F[-1], p=1)
                                                                                                             gradB[-1] = D
                                                                                                             gradW[-1] = (D @ A[-2].T)
def SGD(self, training, epochs, batchSize, eta, testing=None):
    if testing:
                                                                                                             # derivative activation func.
        M = len(testing)
                                                                                                             sp = self.f(F[-2], p=1)
    EPS = []
    n = len(training)
                                                                                                             D = (self.weights[-1].T@D) * sp
                                                                                                             gradB[-2] = D
    for i in range(epochs):
        random.shuffle(training)
                                                                                                             gradW[-2] = (D @ A[-3].T)
        mini batches = [training[j:j+batchSize] for j in range(0,n, batchSize)]
                                                                                                             return gradB, gradW
        for batch; in mini batches:
                                                                                                         def feed forward(self, x):
                                                                                                             for b, w in zip(self.biases, self.weights):
             gradB = [np.zeros(b.shape) for b in self.biases]
                                                                                                                 x = self.f((w@x)+b)
             gradW = [np.zeros(w.shape) for w in self.weights]
                                                                                                             return x
                                                                                                         def test(self, testing):
             for x,y in batchj:
                                                                                                               for(x,y) in testing:
                 dgradB, dgradW = self.back prop(x,y)
                                                                                                                  print(x)
                                                                                                                  print("-"*30)
                 gradB = [gB + dgB for gB, dgB in zip(gradB, dgradB)]
                                                                                                                  print(y)
                 gradW = [gW + dgW for gW, dgW in zip(gradW, dgradW)]
                                                                                                                  print("*"*30)
                                                                                                             res = [(softmax(self.feed forward(x)), y) for (x, y) in testing]
             self.biases = [B - (eta/len(batchi))*gB for B, gB in zip(self.biases, gradB)]
                                                                                                             return sum(int(x == y) for (x, y) in res)
             self.weights = [w - (eta/len(batchj))*gw for w, gw in zip(self.weights, gradW)]
                                                                                                         def classify(self, game: str):
        EPS.append(self.test(testing)/M)
                                                                                                             B=np.concatenate(np.array(run(game, boardLetter.copy()))/10000).reshape(64, 1)
                                                                                                             res = softmax(self.feed forward(B))
    return np.array(EPS)
                                                                                                             return sorted(ops)[res]
```

class NeuralNetwork():

Results

PCA Results

Confusion Matrix for PCA Model

	Caro-Kann Defense	English Opening	French Defense	Italian Game	King's Indian Defense	Nimzo-Indian Defense	Queen's Gambit Declined	Queen's Pawn Game	Ruy	Sicilian Defense
Caro-Kann Defense	22.0	2.0	1.0	0.0	0.0	0.0	0.0	4.0	0.0	7.0
English Opening	0.0	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0
French Defense	0.0	2.0	39.0	0.0	0.0	0.0	1.0	1.0	0.0	7.0
Italian Game	0.0	0.0	0.0	30.0	0.0	0.0	0.0	0.0	2.0	7.0
King's Indian Defense	0.0	2.0	0.0	0.0	5.0	1.0	0.0	1.0	0.0	0.0
Nimzo-Indian Defense	0.0	0.0	0.0	0.0	0.0	5.0	1.0	1.0	0.0	0.0
Queen's Gambit Declined	0.0	3.0	1.0	0.0	1.0	2.0	8.0	3.0	0.0	0.0
Queen's Pawn Game	1.0	0.0	0.0	0.0	0.0	0.0	1.0	21.0	0.0	0.0
Ruy Lopez	0.0	0.0	1.0	8.0	0.0	0.0	0.0	0.0	33.0	3.0
Sicilian Defense	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	49.0

PCA Results (cont.)

Metrics for PCA Model

	precision	recall	f1	accuracy
Caro-Kann Defense	0.920	0.610	0.730	0.77
English Opening	0.580	0.880	0.700	0.77
French Defense	0.910	0.780	0.840	0.77
Italian Game	0.790	0.770	0.780	0.77
King's Indian Defense	0.830	0.560	0.670	0.77
Nimzo-Indian Defense	0.620	0.710	0.670	0.77
Queen's Gambit Declined	0.730	0.440	0.550	0.77
Queen's Pawn Game	0.680	0.910	0.780	0.77
Ruy Lopez	0.940	0.730	0.820	0.77
Sicilian Defense	0.650	0.940	0.770	0.77
Avg.	0.765	0.733	0.731	0.77

Optimize learning rate and neurons in hidden layer to achieve maximum accuracy.

Best combination: **44 neurons** and **2.0** learning rate.

Neural Network Hyperparameter Optimization (cont.)

Neural Network Results (cont.)

Multiple Simulations of the Same Network

Neural Network Results (cont.)

Training size: 2000 openings

Parameters used: **2.0** learning rate, **44** neurons in hidden layer, **300** epochs.

Final accuracy achieved: 0.95

PCA vs. Neural Networks Conclusion

Time vs Performance Tradeoff

PCA - faster, less accurate

NN - longer to train, very accurate

