DETECCIÓN DE SOMNOLENCIA EN CONDUCTORES DE TRANSPORTE

Presentación Técnica

- Problema -

Problema

El **54**% de conductores conducen mientras están fatigados o somnolientos, de ellos un **28**% se quedó dormido mientras conducía [1].

El **30**% de accidentes son producto de somnolencia [3].

Factores de somnolencia

PARPADEO

MOVIMIENTO DE CABEZA

Factores de somnolencia

CONCENTRACIÓN DE GASES EN CABINA (CO, CO2)

TEMPERATURA Y HUMEDAD

ALTITUD Y PRESIÓN ATMOSFÉRICA

Percent CO in Blood	Typical Symptoms		
<10	None		
10-20	Slight headache		
21-30	Headache, slight increase in respirations, drowsiness		
31-40	Headache, impaired judgment, shortness of breath, increasing drowsiness, blurring of vision		
41-50	Pounding headache, confusion, marked shortness of breath, marked drowsiness, increasing blurred vision		
>51	Unconsciousness, eventual death if victim is not removed from source of CO		

Factores de somnolencia

MICRO CORRECCIONES
EN EL TIMÓN

Presentación Técnica

- Solución Planteada -

Sistema Integrado de Somnolencia (SISO)

Sistema Integrado de Somnolencia (SISO)

SISO PRE

Electroencefalograma

SISO VID

Procesamiento de video

SISO SEN

Monitor ambiental

Sensor de timón

SISO PRE SISO VID

SISO SEN

INSTALADO EN CENTRO DE OPERACIONES

INSTALADO EN EL VEHÍCULO

SISO PRE

ELECTROENCEFALOGRAMA

SISO SEN

Sensores

Concentración de gases (CO, CO2)

Temperatura y humedad

Altitud y presión atmosférica

Ángulo de giro del timón

SISO VID

- Blink analysis
- Reconocimiento de acciones en video
- Detección de anomalías

SISO VID

- Blink analysis
- Reconocimiento de acciones en video
- Detección de anomalías

Blink detection [1]

[1] Soukupova, Tereza, and Jan Cech. "Eye blink detection using facial landmarks." *21st Computer Vision Winter1 Workshop, Rimske Toplice, Slovenia*. 2016.

Blink detection [1]

$$EAR[k] = \frac{||\vec{p_2} - \vec{p_6}|| + ||\vec{p_3} - \vec{p_5}||}{||\vec{p_1} - \vec{p_4}||}$$

(b)

[1] Soukupova, Tereza, and Jan Cech. "Eye blink detection using facial landmarks." *21st Computer Vision Winter1 Workshop, Rimske Toplice, Slovenia*. 2016.

Drowsiness detection based in Blink analysis [2]

$$Duration_i = end_i - start_i + 1 \tag{2}$$

$$\mathrm{Amplitude}_i = \frac{EAR[start_i] - 2EAR[bottom_i] + EAR[end_i]}{2}$$

Eye Opening Velocity_i =
$$\frac{EAR[end_i] - EAR[bottom_i]}{end_i - bottom_i}$$
 (4)

$$Frequency_i = 100 \times \frac{\text{Number of blinks up to blink}_i}{\text{Number of frames up to } end_i}$$
 (5)

Drowsiness detection based in Blink analysis [2]

	0	1	2	3
0	24.125	-1.585	-0.491	-1.463
1	24.278	-0.996	0.614	-1.595
2	24.446	-1.435	-0.491	-2.947
3	24.233	0.242	0.982	-1.034
4	24.446	-0.446	-0.123	-0.639
5	24.676	-0.785	0.982	-1.034

•••

30

Drowsiness detection based in Blink analysis [2]

Bases de datos

DROZY [3]

En un laboratorio Solo imágenes

[3] The ULg Multimodality Drowsiness Database (called DROZY) and Examples of Use", by Quentin Massoz, Thomas Langohr, Clémentine François, Jacques G. Verly, Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV 2016), Lake Placid, NY, March 7-10, 2016. [IEEE Xplore] [ORBi] [pdf]

NTHU [4]

Actuadas En ambientes controlados (oficinas)

[4] Ching-Hua Weng, Ying-Hsiu Lai, Shang-Hong Lai, "Driver Drowsiness Detection via a Hierarchical Temporal Deep Belief Network", In Asian Conference on Computer Vision Workshop on Driver Drowsiness Detection from Video, Taipei, Taiwan, Nov. 2016

RLDD [2]

En ambientes controlados
Son situaciones verdaderas de somnolencia

SISO-DATASET

Video grabado de los buses No es actuado

- Concentración de gases (CO, CO2)
- Temperatura y humedad
- Altitud y presión atmosférica

Conclusiones

- Existen muchos métodos en detección de somnolencia (en video)
 aislados, actualmente en la literatura se desconoce el método de mejor
 desempeño.
- Las bases de datos de la literatura no representas las condiciones verdaderas.
- SISO es un proyecto aplicado de la mano del sector empresa.