STARflex

Model: STR-400-F

FCC PART 15, SUBPART B and C TEST REPORT

for

STARflex

MODEL: STR-400-F

Prepared for

MOJIX, INC. 11075 SANTA MONICA BOUELVARD, SUITE 350 LOS ANGELES, CALIFORNIA 90025

Prepared by: Kale Jajimoto

KYLE FUJIMOTO

Approved by: James Ross

JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: JUNE 5, 2016

	REPORT	APPENDICES			TOTAL		
	BODY	\boldsymbol{A}	В	C	D	E	
PAGES	23	2	2	2	19	83	131

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing2.2 Traceability Statement	7 7
2.3 Cognizant Personnel	7
2.4 Date Test Sample was Received	7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration – (Emissions)	9
4.1.1 Cable Construction and Termination	10
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	14
5.1 EUT and Accessory List	14
6. TEST SITE DESCRIPTION	16
6.1 Test Facility Description	16
6.2 EUT Mounting, Bonding and Grounding	16
7. CHARACTERISTICS OF THE TRANSMITTER	17
7.1 Channel Number and Frequencies	17
7.2 Antenna	17
8. TEST PROCEDURES	18
8.1 RF Emissions	18
8.1.1 Conducted Emissions Test	18
8.1.2 Radiated Emissions Test 8.1.3 RF Emissions Test Results	19 20
8.1.3 RF Emissions Test Results 8.2 20 dB Bandwidth	20 21
8.3 Peak Output Power	21
8.4 RF Antenna Conducted Test	21
8.5 RF Band Edges	22
8.6 Carrier Frequency Separation	22
8.7 Number of Hopping Frequencies	22
8.8 Average Time of Occupancy Test	22
9. CONCLUSIONS	23

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Accreditations and Recognitions
В	Modifications to the EUT
С	Additional Models Covered Under This Report
D	Diagrams and Charts
	Test Setup Diagrams
	Antenna and Effective Gain Factors
Е	Data Sheets

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Layout of the Semi-Anechoic Test Chamber

Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report STARflex

Model: STR-400-F

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government.

Device Tested: STARflex

Model: STR-400-F

S/N: N/A

Product Description: The EUT is a system that is used to read passive UHF RFID tags.

Modifications: The EUT was not modified in order to meet the specifications.

Customer: Mojix, Inc.

11075 Santa Monica Boulevard, Suite 350

Los Angeles, California 90025

Test Dates: April 13, 14, 15, 18, 19, and 20, 2016

Test Specifications: Emissions requirements

CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and

15.247

Test Procedure: ANSI C63.4, ANSI C63.10

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, section 15.207. Highest reading in relation to spec limit: 35.91 dBuV @ 0.154 MHz (*U = 2.86 dB)
2	Radiated RF Emissions, 10 kHz – 9300 MHz	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15 Subpart C, 15.205, 15.209 and 15.247 (d) Highest reading in relation to spec limit: 43.27 dBuV @ 144.00 MHz (*U = 4.54 dB)
3	20 dB Bandwidth	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(i)
4	Peak Power Output	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(2)
5	RF Conducted Antenna Test	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d)
6	Carrier Frequency Separation	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)
7	Average Time of Occupancy	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1)(i)
8	Number of Hopping Frequencies	Complies with the relevant requirements of CFR Title 47, Part 15, Subpart C, section 15.247 (a)(1) and 15.247 (a)(1)(i)

Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report STARflex

Model: STR-400-F

1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the STARflex, Model: STR-400-F. The emissions measurements were performed according to the measurement procedure described in ANSI C63.4 and ANSI C63.10. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the <u>Class B</u> specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

This test report covers the first two configurations where the eNode is only being used to terminate the STARflex.

The third configuration where the eNode is being actively used is covered under the test report B40420D2.

COMPATIBLE

2. **ADMINISTRATIVE DATA**

2.1 **Location of Testing**

The emissions tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 **Traceability Statement**

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 **Cognizant Personnel**

Mojix, Inc.

Jalal Alisobhani SR V.P. Engineering Hassan Syed Manager RF Design Group

Gus Mendoza Engineer

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer James Ross **Test Engineer**

2.4 **Date Test Sample was Received**

The test sample was received on April 13, 2016.

2.5 **Disposition of the Test Sample**

The test sample was returned to Mojix, Inc. on April 20, 2016.

2.6 **Abbreviations and Acronyms**

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

Electromagnetic Interference **EMI EUT Equipment Under Test**

P/N Part Number Serial Number S/N HP Hewlett Packard

ITE Information Technology Equipment Line Impedance Stabilization Network LISN

N/A Not Applicable Transmit Tx Receive Rx

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this emissions Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules – Radio frequency devices (including digital devices) – Intentional Radiators
FCC Title 47, Part 15 Subpart B	FCC Rules – Radio frequency devices (including digital devices) – Unintentional Radiators
EN 50147-2: 1997	Anechoic chambers. Alternative test site suitability with respect to site attenuation
ANSI C63.4 2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10 2013	American National Standard for Testing Unlicensed Wireless Devices

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration – (Emissions)

The EUT consists of a STARflex, eNode, GPIO, Power Supply, and RF Expander. The Configurations are as follows:

Configuration #1: Antenna connected to ANT-4 port of STARflex.

The STARflex was connected to an RF Expander, antenna, eNode, GPIO, Power Supply, and laptop via its ANT-1, ANT-4, eNode, GPIO, Power, and Ethernet ports, respectively. The ANT-2 and ANT-3 ports of the STARflex were terminated via 50 ohm terminators. The laptop and its respective power supply were placed 17-meters away from the test site, in an accessory room.

The eNode also had the output, ANT-1, ANT-2, ANT-3, and ANT-4 ports terminated via 50-ohm terminators.

The RF Expander also had the ANT-1, ANT-2, ANT-3, and ANT-4 ports terminated via 50-ohm terminators.

A program on the laptop allowed the EUT to transmit and/or receive at the low, middle, or high channel. The EUT was continuously transmitting and receiving from the ANT-4 port during the test.

Configuration #2: Input of RF Expander connected to ANT-4 port of STARflex. The antenna is connected to ANT-1 port of RF Expander.

The STARflex was connected to an RF Expander, eNode, GPIO, Power Supply, and laptop via its ANT-4, eNode, GPIO, Power, and Ethernet ports, respectively. The ANT-1, ANT-2, and ANT-3 ports of the STARflex were terminated via 50 ohm terminators. The laptop and its respective power supply were placed 17-meters away from the test site, in an accessory room.

The eNode also had the output, ANT-1, ANT-2, ANT-3, and ANT-4 ports terminated via 50-ohm terminators.

The RF Expander also had the ANT-1 port connected to an antenna. The ANT-2, ANT-3, and ANT-4 ports of the RF Expander were terminated via 50-ohm terminators.

A program on the laptop allowed the EUT to transmit and/or receive at the low, middle, or high channel. The EUT was continuously transmitting and receiving from the ANT-1 port during the test.

The input voltage was varied ±15%; the transmitting signal amplitude and frequency did not vary.

All four ANT ports were investigated and the worst case port was tested in each configuration. Also, the worst case modulation was tested for each configuration.

The final radiated as well as the conducted data for the EUT were taken in the configurations described above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

Configuration #1:

- <u>Cable 1</u>
 This is a 1.4-meter unshielded cable connecting the power port of the STARflex with an AC Adapter. The cable has a barrel connector at the STARflex end and is hard wired into the AC Adapter. The cable has a molded ferrite on the EUT end.
- <u>Cable 2</u> This is a 15.24-meter braid and foil shielded cable connecting the Ethernet port of the STARflex to the laptop. The cable has a metallic RJ-45 connector at each end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 3</u>
 This is a 1.5-meter braid shielded cable connecting the GPIO port of the STARflex to the GPIO. The cable has a 5-pin connector at the STARflex and hard wired into a terminal block on the GPIO end. The shield of the cable was terminated at each end via a drain wire.
- <u>Cable 4</u>
 This is a 12-meter braid shielded cable connecting the eNode port of the STARflex to the input port of the eNode. The cable has a reverse polarity TNC connector at each end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 5</u>
 This is a 6-meter braid shielded cable connecting the ANT-1 port of the STARflex to the input port of the RF Expander. The cable has a reverse polarity TNC connector at each end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 6</u>
 This is a 6-meter braid shielded cable connecting the ANT-4 port of the STARflex to the antenna. The cable has a reverse polarity TNC connector at each end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 7</u>
 This is a 5-meter braid shielded cable connecting the ANT-2 port of the STARflex to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the STARflex end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 8</u>

 This is a 5-meter braid shielded cable connecting the ANT-3 port of the STARflex to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the STARflex end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 9</u>
 This is a 5-meter braid shielded cable connecting the ANT-1 port of the RF Expander to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the RF Expander end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 10</u>
 This is a 5-meter braid shielded cable connecting the ANT-2 port of the RF Expander to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the RF Expander end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

Report Number: **B60420D1**

Cable Construction and Termination (continued)

Configuration #1 (continued)

- <u>Cable 11</u> This is a 5-meter braid shielded cable connecting the ANT-3 port of the RF Expander to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the RF Expander end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 12</u>
 This is a 5-meter braid shielded cable connecting the ANT-4 port of the RF Expander to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the RF Expander end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 13</u>
 This is a 7-meter braid shielded cable connecting the output port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- This is a 5-meter braid shielded cable connecting the ANT-1 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 15</u>
 This is a 5-meter braid shielded cable connecting the ANT-2 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 16</u>
 This is a 5-meter braid shielded cable connecting the ANT-3 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 17</u>
 This is a 5-meter braid shielded cable connecting the ANT-4 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 18</u> This is a 2-meter unshielded cable connecting the laptop to the AC Adapter. The cable has a 1/8 inch power connector at the laptop end and is hard wired into the AC Adapter.

Cable Construction and Termination (continued)

Configuration #2

- <u>Cable 1</u> This is a 1.4-meter unshielded cable connecting the power port of the STARflex with an AC Adapter. The cable has a barrel connector at the STARflex end and is hard wired into the AC Adapter. The cable has a molded ferrite on the EUT end.
- <u>Cable 2</u> This is a 15.24-meter braid and foil shielded cable connecting the Ethernet port of the STARflex to the laptop. The cable has a metallic RJ-45 connector at each end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 3</u>
 This is a 1.5-meter braid shielded cable connecting the GPIO port of the STARflex to the GPIO. The cable has a 5-pin connector at the STARflex and hard wired into a terminal block on the GPIO end. The shield of the cable was terminated at each end via a drain wire.
- <u>Cable 4</u>
 This is a 12-meter braid shielded cable connecting the eNode port of the STARflex to the input port of the eNode. The cable has a reverse polarity TNC connector at each end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 5</u>
 This is a 6-meter braid shielded cable connecting the ANT-4 port of the STARflex to the input port of the RF Expander. The cable has a reverse polarity TNC connector at each end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 6</u>
 This is a 5-meter braid shielded cable connecting the ANT-1 port of the STARflex to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the STARflex end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 7</u>
 This is a 5-meter braid shielded cable connecting the ANT-2 port of the STARflex to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the STARflex end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 8</u>
 This is a 5-meter braid shielded cable connecting the ANT-3 port of the STARflex to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the STARflex end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 9</u>
 This is a 6-meter braid shielded cable connecting the ANT-1 port of the RF Expander to an antenna. The cable has a reverse polarity TNC connector at each end. The cable was bundled to a length of 1-meter. The shield of the cable was grounded to the chassis via the connectors.
- This is a 5-meter braid shielded cable connecting the ANT-2 port of the RF Expander to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the RF Expander end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.

Cable Construction and Termination (continued)

Configuration #2 (continued)

- <u>Cable 11</u> This is a 5-meter braid shielded cable connecting the ANT-3 port of the RF Expander to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the RF Expander end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- This is a 5-meter braid shielded cable connecting the ANT-4 port of the RF Expander to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the RF Expander end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- This is a 7-meter braid shielded cable connecting the output port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- This is a 5-meter braid shielded cable connecting the ANT-1 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 15</u>
 This is a 5-meter braid shielded cable connecting the ANT-2 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 16</u>
 This is a 5-meter braid shielded cable connecting the ANT-3 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- This is a 5-meter braid shielded cable connecting the ANT-4 port of the eNode to a 50 ohm terminator. The cable has a reverse polarity TNC connector at the eNode end and a reverse polarity SMA connector at the 50 ohm terminator end. The cable was coiled so that it was 40-centimeters above the ground plane. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 18</u> This is a 2-meter unshielded cable connecting the laptop to the AC Adapter. The cable has a 1/8 inch power connector at the laptop end and is hard wired into the AC Adapter.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT TYPE	MANU- FACTURER	MODEL	SERIAL NUMBER	FCC ID
STARflex (PART OF EUT)	MOJIX, INC.	STR-400-F (P/N: 850-4500-001)	001F48A22688-A	VEDSTARFLEX
AC ADAPTER FOR STARFLEX (PART OF EUT)	ADAPTER TECH.	ATS090-P240	N/A	N/A
GPIO	MOJIX, INC.	GPIO GPO-3008-W (P/N: 860-3200-001)	D5CE62	N/A
ENODE 3000 (PART OF EUT)	MOJIX, INC.	ENM-3004-F	56E6A4	VEDENDOE3000
RF EXPANDER (PART OF EUT)	MOJIX, INC.	EXP-3004-W (P/N: 860-1600-004)	1607151240038	N/A
PATCH ANTNNA	MOJIX, INC.	D915W09	20150125AR7	N/A
AC ADATPER FOR LAPTOP	HEWLETT PACKARD	709985-003	WDHQ0AAR5LEBQ	N/A
LAPTOP	DELL	14-k112nr	CND4031BLR	DoC
(11) 50 OHM TERMINATORS	MINI-CIRCUITS	VAT-2W	N/A	N/A

5.2 Emissions Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CAL. CYCLE
	GENERA	L TEST EQUIP	MENT USED IN	LAB D	
TDK TestLab	TDK RF Solutions, Inc.	9.22	700145	N/A	N/A
Computer	Hewlett Packard	p6716f	MXX1030PX0	N/A	N/A
LCD Monitor	Hewlett Packard	52031a	3CQ046N3MG	N/A	N/A
EMI Receiver	Rohde & Schwarz	ESIB 40	100194	December 4, 2014	2 Year
	RF RADI	ATED EMISSIO	NS TEST EQUIP	MENT	
CombiLog Antenna	Com-Power	AC-220	61060	September 3, 2015	1 Year
Preamplifier	Com-Power	PAM-118A	551024	May 12, 2016	1 Year
Loop Antenna	Com-Power	AL-130	17089	February 6, 2015	2 Year
Horn Antenna	Com-Power	AH-118	071175	February 26, 2016	2 Year
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
System Controller	Sunol Sciences Corporation	SC110V	112213-1	N/A	N/A
Turntable	Sunol Sciences Corporation	2011VS	N/A	N/A	N/A
Antenna-Mast	Sunol Sciences Corporation	TWR95-4	112213-3	N/A	N/A
	RF COND	UCTED EMISSI	ONS TEST EQUI	PMENT	
LISN	Com-Power	LI-215A	191951	June 9, 2015	1 Year
Transient Limiter	Com-Power	252A910	N/A	October 14, 2015	1 Year

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for emissions test location.

6.2 EUT Mounting, Bonding and Grounding

For frequencies 1 GHz and below: The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

For frequencies above 1 GHz: The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 1.5 meters above the ground plane.

The STARflex was grounded to earth ground via the DC power supply. The eNode was grounded to the chassis of the STARflex via its interconnect cable.

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

7. CHARACTERISTICS OF THE TRANSMITTER

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Channel Number and Frequencies

The FHSS uses 50 channels and uses DSB-ASK, PR-ASK, and SSB-ASK modulations. The channel separation is 500 kHz.

Channel 1 = 902.75 MHz Channel 2 = 903.25 MHz Channel 3 = 903.75 MHz... Channel 50 = 927.25 MHz

7.2 Antenna

The antenna has a gain of 6 dBi.

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 RF Emissions

8.1.1 Conducted Emissions Test

The EMI Receiver was used as a measuring meter. A quasi-peak and/or average reading was taken only where indicated in the data sheets. A transient limiter was used for the protection of the EMI Receiver input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the EMI Receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI 63:4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by computer software. The final qualification data is located in Appendix E.

The EUT was tested at 120 VAC. The six highest emissions are listed in Table 1.0.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and the limits of CFR Title 47, Part 15, Subpart C, Section 15.207 for conducted emissions. Please see Appendix E for the data sheets.

8.1.2 Radiated Emissions Test

The EMI Receiver was used as the measuring meter. A built-in, internal preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was initially used with the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (200 Hz for 10 kHz to 150 kHz, 9 kHz for 150 kHz to 30 MHz, 120 kHz for 30 MHz to 1 GHz and 1 MHz for 1 GHz to 9.3 GHz).

The frequencies above 1 GHz were averaged by using duty cycle correction factor.

The EMI test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4, EN 50147-2 and CISPR 22. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

The EUT was tested at a 3-meter test distance. The six highest emissions are listed in Table 2.0.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Loop Antenna
150 kHz to 30 MHz	9 kHz	Loop Antenna
30 MHz to 1 GHz	120 kHz	CombiLog Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

Test Results:

The EUT complies with the **Class B** limits of **CFR** Title 47, Part 15, Subpart B; and Subpart C sections 15.205, 15.209, and 15.247 (d) for radiated emissions.

8.1.3 RF Emissions Test Results

Table 1.0 CONDUCTED EMISSION RESULTS

STARflex

Models: STR-400-F

Frequency MHz	Average Corrected Reading* dBuV	Average Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
0.154 (BL) (C1)	35.91	55.95	-20.04
0.158 (WL) (C2)	31.49	55.50	-24.02
0.162 (WL) (C2)	31.23	55.51	-24.27
0.170 (BL) (C1)	29.85	55.17	-25.32
0.158 (WL) (C1)	30.29	55.69	-25.40
0.162 (BL) (C1)	29.91	55.39	-25.48

Table 2.0 RADIATED EMISSION RESULTS

STARflex

Models: STR-400-F

Frequency MHz	EMI Reading (dBuV)	Specification Limit (dBuV)	Delta (Cor. Reading – Spec. Limit) dB)
144.00 (V) (C1)	43.27 (Quasi-Peak)	43.50	-0.23
139.40 (V) (C1)	41.11 (Quasi-Peak)	43.50	-2.39
141.40 (V) (C1)	40.84 (Quasi-Peak)	43.50	-2.66
135.40 (H) (C2)	39.39 (Quasi-Peak)	43.50	-4.11
133.80 (H) (C2)	39.17 (Quasi-Peak)	43.50	-4.33
288.00 (V) (C1)	41.33 (Quasi-Peak)	46.00	-4.67

Notes:

- * The complete emissions data is given in Appendix E of this report.
- (BL) Black Lead
- (WL) White Lead
- (V) Vertical
- (H) Horizontal
- (C1) Configuration #1
- (C2) Configuration #2

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

8.2 20 dB Bandwidth

The 20 dB Bandwidth was measured using the EMI Receiver. The bandwidth was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was ≥ 1 % of the bandwidth and the video bandwidth was \geq RBW.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(i). The 20 dB bandwidth is less than the separation between channels. Please see the data sheets located in Appendix E.

8.3 Peak Output Power

The Peak Output Power was measured using the EMI Receiver. The peak output power was measured using a direct connection from the RF output of the EUT. The resolution bandwidth was greater than the 20 dB bandwidth and the video bandwidth was \geq RBW. The cable loss was also added back into the reading using the reference level offset.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (b)(2). The maximum peak output power is less than 1 watt. Please see the data sheets located in Appendix E.

8.4 RF Antenna Conducted Test

The RF antenna conducted test was performed using the EMI Receiver. The RF antenna conducted test measured using a direct connection from the RF out on the EUT into the input of the EMI Receiver. The resolution bandwidth was 100 kHz, and the video bandwidth was 300 kHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power. Please see the radiated emission data sheets located in Appendix E.

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

8.5 RF Band Edges

The RF band edges were taken at the edges of the ISM spectrum (902 MHz when the EUT was on the low channel and 928 MHz when the EUT was on the high channel) using the EMI Receiver. The RBW was set to 100 kHz and the VBW was set to 300 kHz. Plots of the fundamental were taken to ensure the amplitude at the band edges were at least 20 dB down from the peak of the fundamental emission. The plots were taken in both frequency hopping mode and single channel mode.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). The RF power at the band edges at 902 MHz and 928 MHz meet the requirements of FCC Title 47, Part 15, Subpart C section 15.247 (d). Please see the data sheets located in Appendix E.

8.6 Carrier Frequency Separation

The Channel Hopping Separation Test was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was approximately 30% of the channel spacing, and the video bandwidth \geq RBW. The frequency span was wide enough to include the peaks of two adjacent channels.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1). The Channel Hopping Separation is greater than the 20 dB bandwidth. Please see the data sheets located in Appendix E.

8.7 Number of Hopping Frequencies

The Number of Hopping Frequencies was measured using the EMI Receiver. The EUT was operating in its normal operating mode. The resolution bandwidth was set to approximately 30% of the channel spacing, and the video bandwidth was \geq RBW. The frequency span was wide enough to include all of the peaks in the frequency band of operation.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1) and 15.247 (a)(1)(i). Please see the data sheets located in Appendix E.

8.8 Average Time of Occupancy Test

The Average Time of Occupancy Test was measured using the EMI Receiver. The EUT was operating in normal operating mode. The frequency span was taken to 0 Hz to determine the time for each transmission and the number of transmissions over a 20 second period. The RBW was set to be less than the channel spacing.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.247 (a)(1)(i). Please see the data sheets located in Appendix E.

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex Model: STR-400-F

9. CONCLUSIONS

The STARflex, Models: STR-400-F, as tested, meets all of the specification limits defined in FCC Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report

STARflex

Model: STR-400-F

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report

STARflex Model: STR-400-F

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025. Please follow the link to the NIST/NVLAP site for each of our facilities' NVLAP certificate and scope of accreditation NVLAP listing links

Agoura Division / Brea Division / Silverado/Lake Forest Division .Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

ANSI listing CETCB

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

US/EU MRA list NIST MRA site

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). **APEC MRA list** NIST MRA site

We are also listed for IT products by the following country/agency:

VCCI Support member: Please visit http://www.vcci.jp/vcci_e/

FCC Listing, from FCC OET site
FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report

STARflex

Model: STR-400-F

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.247 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

STARflex

Model: STR-400-F

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST STA

STARflex

Models: STR-400-F

S/N: N/A

There are no additional models covered under this report.

APPENDIX D

DIAGRAMS AND CHARTS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

FIGURE 2: LAYOUT OF THE SEMI MI-ANECHOIC TEST CHAMBER

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: FEBRUARY 6, 2015

FREQUENCY	MAGNETIC	ELECTRIC
(MHz)	(dB/m)	(dB/m)
0.009	-33.18	18.32
0.01	-34.10	17.40
0.02	-38.65	12.85
0.03	-39.28	12.22
0.04	-40.09	11.41
0.05	-40.85	10.65
0.06	-40.88	10.62
0.07	-41.07	10.43
0.08	-41.04	10.46
0.09	-41.19	10.31
0.1	-41.20	10.30
0.2	-41.52	9.98
0.3	-41.53	9.97
0.4	-41.42	10.08
0.5	-41.53	9.97
0.6	-41.53	9.97
0.7	-41.43	10.07
0.8	-41.23	10.27
0.9	-41.13	10.27 10.37
1	-41.14	10.36
2	-40.80	10.70
3	-40.66	10.84
4	-40.61	10.89
5	-40.33	11.17
6	-40.53	10.97
7	-40.47	11.03
8	-40.48	11.02
9	-39.93	11.57
10	-39.81	11.69
15	-43.35	8.15
20	-39.16	12.34
25	-40.24	11.26
30	-43.18	8.32

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61060

CALIBRATION DATE: SEPTEMBER 3, 2015

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	24.00	200	13.00
35	24.30	250	15.30
40	25.40	300	18.20
45	21.50	350	17.90
50	22.50	400	18.60
60	15.40	450	19.80
70	12.70	500	21.60
80	11.10	550	22.40
90	13.40	600	23.70
100	13.80	650	24.30
120	15.40	700	24.00
125	15.40	750	24.50
140	13.10	800	24.30
150	17.20	850	26.30
160	13.20	900	26.90
175	14.20	950	26.00
180	14.30	1000	25.60

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: FEBRUARY 26, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	23.93	10.0	39.33
1.5	25.54	10.5	39.64
2.0	28.09	11.0	41.04
2.5	30.21	11.5	44.29
3.0	30.15	12.0	41.22
3.5	30.17	12.5	41.50
4.0	31.90	13.0	41.62
4.5	33.51	13.5	40.63
5.0	33.87	14.0	39.94
5.5	35.08	14.5	41.84
6.0	34.81	15.0	42.69
6.5	34.26	15.5	39.03
7.0	36.33	16.0	39.07
7.5	37.03	16.5	41.40
8.0	37.56	17.0	43.18
8.5	40.07	17.5	47.01
9.0	38.92	18.0	46.48
9.5	38.21		

COM-POWER PA-118

PREAMPLIFIER

S/N: 551024

CALIBRATION DATE: MAY 12, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	39.84	6.0	39.05
1.1	39.40	6.5	38.94
1.2	39.58	7.0	39.25
1.3	39.68	7.5	39.09
1.4	39.91	8.0	39.01
1.5	39.78	8.5	38.60
1.6	39.50	9.0	38.64
1.7	39.81	9.5	39.67
1.8	39.89	10.0	39.30
1.9	39.94	11.0	39.15
2.0	39.57	12.0	39.24
2.5	40.39	13.0	39.49
3.0	40.63	14.0	39.44
3.5	40.80	15.0	39.94
4.0	40.86	16.0	40.09
4.5	39.94	17.0	40.06
5.0	34.47	18.0	39.76
5.5	39.32		

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

FRONT VIEW

MOJIX, INC. STARflex MODEL: STR-400-F

FCC SUBPART B AND C - RADIATED EMISSIONS - CONFIGURATION #1 - BELOW 1 GHz

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

REAR VIEW

MOJIX, INC. STARflex MODEL: STR-400-F

FCC SUBPART B AND C - RADIATED EMISSIONS - CONFIGURATION #1 - BELOW 1 GHz

STARflex Model: STR-400-F

FRONT VIEW

MOJIX, INC. STARflex MODEL: STR-400-F

FCC SUBPART B AND C - RADIATED EMISSIONS - CONFIGURATION #2 - BELOW 1 GHz

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

REAR VIEW

MOJIX, INC. STARflex MODEL: STR-400-F

FCC SUBPART B AND C - RADIATED EMISSIONS - CONFIGURATION #2 - BELOW 1 GHz

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex Model: STR-400-F

FRONT VIEW

MOJIX, INC. STARflex MODEL: STR-400-F

FCC SUBPART B AND C - RADIATED EMISSIONS - CONFIGURATION #1 - ABOVE 1 GHz

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

REAR VIEW

MOJIX, INC. STARflex MODEL: STR-400-F

FCC SUBPART B AND C - RADIATED EMISSIONS - CONFIGURATION #1 - ABOVE 1 GHz

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

FRONT VIEW

MOJIX, INC.
STARflex
MODEL: STR-400-F
FCC SUBPART B AND C – RADIATED EMISSIONS – CONFIGURATION #2 – ABOVE 1 GHz

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex Model: STR-400-F

REAR VIEW

MOJIX, INC.
STARflex
MODEL: STR-400-F
FCC SUBPART B AND C – RADIATED EMISSIONS – CONFIGURATION #2 – ABOVE 1 GHz

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

FRONT VIEW

MOJIX, INC. STARflex MODEL: STR-400-F

FCC SUBPART B AND C - CONDUCTED EMISSIONS - CONFIGURATION #1

STARflex Model: STR-400-F

REAR VIEW

MOJIX, INC.
STARflex
MODEL: STR-400-F
FCC SUBPART B AND C – CONDUCTED EMISSIONS – CONFIGURATION #1

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex Model: STR-400-F

FRONT VIEW

MOJIX, INC.
STARflex
MODEL: STR-400-F
FCC SUBPART B AND C – CONDUCTED EMISSIONS – CONFIGURATION #2

FCC Part 15 Subpart B and FCC Section 15.247 Test Report STARflex

Model: STR-400-F

REAR VIEW

MOJIX, INC.
STARflex
MODEL: STR-400-F
FCC SUBPART B AND C – CONDUCTED EMISSIONS – CONFIGURATION #2

Report Number: **B60420D1**

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex

Model: STR-400-F

APPENDIX E

DATA SHEETS

STARflex

Model: STR-400-F

RADIATED EMISSIONS DATA SHEETS

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #1

Low Channel Transmit Mode

Date: 04/19/2016

Lab: D

Tested By: Kyle Fujimoto

Comments	Ant. Height (cm)	Table Angle (deg)	Peak / QP / Avg	Margin	Limit	Pol (v/h)	Level (dBuV/m)	Freq. (MHz)
Not in Restricted Bar		-					•	1805.5
Done via Conducted								1805.5
	110.31	335.75	Peak	-20.91	73.97	V	53.06	2708.25
	110.31	335.75	Avg	-17.84	53.97	V	36.13	2708.25
	191.62	21.00	Peak	-15.00	73.97	V	58.97	3611
	191.62	21.00	Avg	-11.93	53.97	V	42.04	3611
	176.52	209.25	Peak	-20.87	73.97	V	53.10	4513.75
	176.52	209.25	Avg	-17.80	53.97	V	36.17	4513.75
	152.22	355.00	Peak	-16.20	73.97	V	57.77	5416.5
	152.22	355.00	Avg	-13.13	53.97	V	40.84	5416.5
								2212.25
Not in Restricted Bar								6319.25
Done via Conducted								6319.25
	160.46	45.50	Peak	-18.61	73.97	V	55.36	7222
	160.46	45.50	Avg	-15.54	53.97	V	38.43	7222
	100110	10.00	7.1.9	10.01	00.01	•	00.10	
No Emission								8124.75
Detected								8124.75
No Emission								9027.5
Detected								9027.5

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #1 Date: 04/18/2016

Lab: D

Tested By: Kyle Fujimoto

Low Channel Transmit Mode

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1805.5								Not in Restricted Band
1805.5								Done via Conducted
2708.25	51.60	Н	73.97	-22.37	Peak	170.75	114.55	
2708.25	34.67	Н	53.97	-19.30	Avg	170.75	114.55	
3611	55.86	Н	73.97	-18.11	Peak	125.50	108.70	
3611	38.93	Н	53.97	-15.04	Avg	125.50	108.70	
4513.75	50.85	Н	73.97	-23.12	Peak	278.25	145.95	
4513.75	33.92	Н	53.97	-20.05	Avg	278.25	145.95	
						A SERVICE STATE		
5416.5	56.69	Н	73.97	-17.28	Peak	68.50	154.43	
5416.5	39.76	Н	53.97	-14.21	Avg	68.50	154.43	
6319.25								Not in Restricted Band
6319.25								Done via Conducted
7222	57.47	Н	73.97	-16.50	Peak	272.50	161.47	
7222	40.54	Н	53.97	-13.43	Avg	272.50	161.47	
8124.75								No Emission
8124.75								Detected
0124.13								Detected
9027.5								No Emission
9027.5								Detected

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #1 Date: 04/19/2016

Lab: D

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1830.5								Not in Restricted Band
1830.5								Done via Conducted
2745.75	54.09	V	73.97	-19.88	Peak	280.00	159.08	
2745.75	37.16	V	53.97	-16.81	Avg	280.00	159.08	
3661	58.27	V	73.97	-15.70	Peak	28.00	158.49	
3661	41.34	V	53.97	-12.63	Avg	28.00	158.49	
4576.25	54.19	V	73.97	-19.78	Peak	210.25	181.29	
4576.25	37.26	V	53.97	-16.71	Avg	210.25	181.29	
5491.5								Not in Restricted Band
5491.5								Done via Conducted
6406.75								Not in Restricted Band
6406.75								Done via Conducted
7000	55.40		70.07	40.40		475.05	470.55	
7322	55.48	V	73.97	-18.49	Peak	175.25	178.55	
7322	38.55	V	53.97	-15.42	Avg	175.25	178.55	
8237.25								No Emission
8237.25								Detected
9152.5								No Emission
9152.5								Detected

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #1 Date: 04/19/2016 Lab: D

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1830.5	,					(· · · J /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Not in Restricted Band
1830.5								Done via Conducted
2745.75	54.43	Н	73.97	-19.54	Peak	358.00	182.31	
2745.75	37.50	Н	53.97	-16.47	Avg	358.00	182.31	
3661	57.46	Н	73.97	-16.51	Peak	289.50	186.61	
3661	40.53	Н	53.97	-13.44	Avg	289.50	186.61	
4576.25	52.63	Н	73.97	-21.34	Peak	177.25	125.29	
4576.25	35.70	Н	53.97	-18.27	Avg	177.25	125.29	
						The second second		
5491.5			73.97					Not in Restricted Band
5491.5			53.97					Done via Conducted
6406.75								Not in Restricted Band
6406.75								Done via Conducted
7322	52.54	Н	73.97	-21.43	Peak	330.00	125.29	
7322	35.61	Н	53.97	-18.36	Avg	330.00	125.29	
8237.25								No Emission
								No Emission
8237.25								Detected
9152.5								No Emission
9152.5								Detected

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #1 Date: 04/19/2016

Lab: D

Tested By: Kyle Fujimoto

High Channel Transmit Mode

Freq.	Level	Pol			Peak / QP /	Table Angle	Ant. Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
1854.5								Not in Restricted Band
1854.5								Done via Conducted
2781.75	53.11	V	73.97	-20.86	Peak	186.25	108.22	
2781.75	36.18	V	53.97	-17.79	Avg	186.25	108.22	
3709	56.53	V	73.97	-17.44	Peak	301.75	139.98	
3709	39.60	V	53.97	-14.37	Avg	301.75	139.98	
4636.25	52.64	V	73.97	-21.33	Peak	5.00	145.25	
4636.25	35.71	V	53.97	-18.26	Avg	5.00	145.25	
5563.5								Not in Restricted Band
5563.5								Done via Conducted
6490.75								Not in Restricted Band
6490.75								Done via Conducted
7418	55.31	V	73.97	-18.66	Peak	114.00	145.25	
7418	38.38	V	53.97	-15.59	Avg	114.00	145.25	
8345.25								No Emission
8345.25								Detected
9272.5								No Emission
9272.5								Detected

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #1 Date: 04/19/2016

Lab: D

Tested By: Kyle Fujimoto

High Channel Transmit Mode

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1854.5								Not in Restricted Band
1854.5								Done via Conducted
2781.75	53.48	Н	73.97	-20.49	Peak	357.50	184.25	
2781.75	36.55	Н	53.97	-17.42	Avg	357.50	184.25	
3709	58.32	Н	73.97	-15.65	Peak	291.50	187.52	
3709	41.39	Н	53.97	-12.58	Avg	291.50	187.52	
4636.25	52.14	Н	73.97	-21.83	Peak	162.25	126.58	
4636.25	35.21	Н	53.97	-18.76	Avg	162.25	126.58	
5563.5								Not in Restricted Band
5563.5								Done via Conducted
6490.75								Not in Restricted Band
6490.75								Done via Conducted
7418	53.02	Н	73.97	-20.95	Peak	331.25	126.24	
7418	36.09	Н	53.97	-17.88	Avg	331.25	126.24	
8345.25								No Emission
8345.25								Detected
9272.5								No Emission
9272.5								Detected

Lab: D

Date: 04/18/2016

STARflex Model: STR-400-F

FCC Class B and RSS-210

Mojix, Inc. STARflex

Model: STR-400-F Tested By: Kyle Fujimoto Configuration #1

Non Harmonic Emissions from the Tx - 10 kHz to 30 MHz and 1 GHz to 9.3 GHz Digital Portion from the EUT - 10 kHz to 30 MHz and 1 GHz to 9.3 GHz

Freq.	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions Detected
								No Emissions Detected
								from the Non Harmonic Emissions from the Tx
								10 kHz to 30 MHz
								10 KHZ to 30 MHZ
								No Emissions Detected
								from the Non Harmonic Emissions
								from the Tx
								1 GHz to 9.3 GHz
					100	- Allegan ver		No Emissions Detected
								from the Digital Portion
								of the EUT
								10 kHz to 30 MHz
								No Emissions Detected
								from the Digital Portion
								of the EUT
								1 GHz to 9.3 GHz
								Tested in both Horizontal and
								Vertical Polarizations

FCC 15.247

Mojix, Inc.

Date: 04/18/2016
STARflex

Lab: D

Model: STR-400-F Tested By: Kyle Fujimoto

Configuration #1

Receiver Mode - 30 MHz to 1 GHz and 1 GHz to 9.3 GHz

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions Detected
								from the Receiver Mode
								for the EUT
								30 MHz to 1 GHz
								No Emissions Detected
								from the Receiver Mode
								for the EUT
								1 GHz to 9.3 GHz
								Tested in both Horizontal and
								Vertical Polarizations
								Tornous Forum Education
	<u> </u>							
	 							
	1							
	1							

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #2 Date: 04/18/2016

Lab: D

Tested By: Kyle Fujimoto

Low Channel Transmit Mode

dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
,							Not in Restricted Band
							Done via Conducted
54.37	V	73.97	-19.60	Peak	113.75	106.13	
37.44	V	53.97	-16.53	Avg	113.75	106.13	
54.63	V	73.97	-19.34	Peak	145.75	172.82	
37.70	V	53.97	-16.27	Avg	145.75	172.82	
52.46	V	73.97	-21.51	Peak	216.00	164.46	
35.53	V	53.97	-18.44	Avg	216.00	164.46	
55.43	V	73.97	-18.54	Peak	221.00	188.04	
38.50	V	53.97	-15.47	Avg	221.00	188.04	
							Not in Restricted Band
							Done via Conducted
52.35	V	73.97	-21.62	Peak			
35.42	V	53.97	-18.55	Avg	14.00	173.83	
							No Emission
							No Emission Detected
							Detected
							No Emission
							Detected
	37.44 54.63 37.70 52.46 35.53 55.43 38.50	37.44 V 54.63 V 37.70 V 52.46 V 35.53 V 55.43 V 38.50 V	37.44 V 53.97 54.63 V 73.97 37.70 V 53.97 52.46 V 73.97 35.53 V 53.97 55.43 V 73.97 38.50 V 53.97	37.44 V 53.97 -16.53 54.63 V 73.97 -19.34 37.70 V 53.97 -16.27 52.46 V 73.97 -21.51 35.53 V 53.97 -18.44 55.43 V 73.97 -18.54 38.50 V 53.97 -15.47 52.35 V 73.97 -21.62	37.44 V 53.97 -16.53 Avg 54.63 V 73.97 -19.34 Peak 37.70 V 53.97 -16.27 Avg 52.46 V 73.97 -21.51 Peak 35.53 V 53.97 -18.44 Avg 55.43 V 73.97 -18.54 Peak 38.50 V 53.97 -15.47 Avg 52.35 V 73.97 -21.62 Peak	37.44 V 53.97 -16.53 Avg 113.75 54.63 V 73.97 -19.34 Peak 145.75 37.70 V 53.97 -16.27 Avg 145.75 52.46 V 73.97 -21.51 Peak 216.00 35.53 V 53.97 -18.44 Avg 216.00 55.43 V 73.97 -18.54 Peak 221.00 38.50 V 53.97 -15.47 Avg 221.00 52.35 V 73.97 -21.62 Peak 14.00	37.44 V 53.97 -16.53 Avg 113.75 106.13 54.63 V 73.97 -19.34 Peak 145.75 172.82 37.70 V 53.97 -16.27 Avg 145.75 172.82 52.46 V 73.97 -21.51 Peak 216.00 164.46 35.53 V 53.97 -18.44 Avg 216.00 164.46 55.43 V 73.97 -18.54 Peak 221.00 188.04 38.50 V 53.97 -15.47 Avg 221.00 188.04 52.35 V 73.97 -21.62 Peak 14.00 173.83

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #2

Low Channel Transmit Mode Date: 04/18/2016

Lab: D

Tested By: Kyle Fujimoto

Freq.	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1805.5							, ,	Not in Restricted Band
1805.5								Done via Conducted
2708.25	54.37	Н	73.97	-19.60	Peak	113.75	106.13	
2708.25	37.44	Н	53.97	-16.53	Avg	113.75	106.13	
3611	57.01	Н	73.97	-16.96	Peak	246.75	122.37	
3611	40.08	Н	53.97	-13.89	Avg	246.75	122.37	
4513.75	50.61	Н	73.97	-23.36	Peak	25.25	132.40	
4513.75	33.68	Н	53.97	-20.29	Avg	25.25	132.04	
				40.70		4== 0=	444.00	
5416.5	57.21	H .:	73.97	-16.76	Peak	155.25	111.80	
5416.5	40.28	Н	53.97	-13.69	Avg	155.25	111.80	
6319.25								Not in Doctricted Bond
6319.25								Not in Restricted Band
0319.23								Done via Conducted
7222	53.33	Н	73.97	-20.64	Peak	202.25	123.44	
7222	36.40	Н	53.97	-17.57	Avg	202.25	123.44	
8124.75								No Emission
8124.75								Detected
				-				
9027.5								No Emission
9027.5								Detected

Lab: D

Date: 04/18/2016

Tested By: Kyle Fujimoto

Model: STR-400-F

FCC 15.247

Mojix, Inc. **STARflex**

Model: STR-400-F

Configuration #2

Middle Channel Transmit Mode

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1830.5								Not in Restricted Band
1830.5								Done via Conducted
2745.75	56.38	V	73.97	-17.59	Peak	221.00	192.40	
2745.75	39.45	V	53.97	-14.52	Avg	221.00	192.40	
		.,						
3661	57.83	V	73.97	-16.14	Peak	221.25	175.02	
3661	40.90	V	53.97	-13.07	Avg	221.25	175.02	
4570.05	50.00		70.07	00.00		407.05	400.07	
4576.25	50.98	V	73.97	-22.99	Peak	197.25	186.67	
4576.25	34.05	V	53.97	-19.92	Avg	197.25	186.67	
5491.5								Not in Restricted Band
5491.5								Done via Conducted
6406.75								Not in Restricted Band
6406.75								Done via Conducted
7322	60.56	V	73.97	-13.41	Peak	356.00	198.58	
7322	43.63	V	53.97	-10.34	Avg	356.00	198.58	
8237.25								No Emission
8237.25								Detected
9152.5								No Emission
9152.5								Detected

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #2 Date: 04/18/2016

Lab: D

Tested By: Kyle Fujimoto

Middle Channel Transmit Mode

Freq.	Level	Pol	Limit	Marain	Peak / QP /	Table Angle	Ant. Height	Comments
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments Not in Restricted Rest
1830.5								Not in Restricted Band
1830.5								Done via Conducted
2745.75	53.49	Н	73.97	-20.48	Peak	13.75	140.46	
2745.75	36.56	H	53.97	-17.41	Avg	13.75	140.46	
27 1017 0	30.00		00.07		7.19	10.10	1 101 10	
3661	58.13	Н	73.97	-15.84	Peak	353.00	129.47	
3661	41.20	Н	53.97	-12.77	Avg	353.00	129.47	
4576.25	53.69	Н	73.97	-20.28	Peak	22.50	140.46	
4576.25	36.76	Н	53.97	-17.21	Avg	22.50	140.46	
					- 725	and the second		
5491.5								Not in Restricted Band
5491.5								Done via Conducted
6406.75								Not in Restricted Band
6406.75								Done via Conducted
7322	59.68	Н	73.97	-14.29	Peak	324.00	148.10	
7322	42.75	H	53.97	-11.22	Avg	324.00	148.16	
1022	72.13	''	33.31	11.22		324.00	140.10	
8237.25								No Emission
8237.25								Detected
9152.5								No Emission
9152.5								Detected
3.02.0								200000

Lab: D

Date: 04/18/2016

Tested By: Kyle Fujimoto

Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #2

High Channel Transmit Mode

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1854.5								Not in Restricted Band
1854.5								Done via Conducted
2781.75	51.65	V	73.97	-22.32	Peak	238.25	132.10	
2781.75	34.72	V	53.97	-19.25	Avg	238.25	132.10	
3709	56.18	V	73.97	-17.79	Peak	207.50	135.86	
3709	39.25	V	53.97	-14.72	Avg	207.50	135.86	
4636.25	52.08	V	73.97	-21.89	Peak	15.75	172.04	
4636.25	35.15	V	53.97	-18.82	Avg	15.75	172.04	
						The special section of		
5563.5								Not in Restricted Band
5563.5								Done via Conducted
6490.75								Not in Restricted Band
6490.75								Done via Conducted
7418	53.58	V	73.97	-20.39	Peak	16.75	174.25	
7418	36.65	V	53.97	-17.32	Avg	16.75	174.25	
8345.25								No Emission
8345.25								Detected
9272.5								No Emission
9272.5								Detected

Model: STR-400-F

FCC 15.247

Mojix, Inc. STARflex

Model: STR-400-F Configuration #2 Date: 04/18/2016

Lab: D

Tested By: Kyle Fujimoto

High Channel Transmit Mode

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Table Angle (deg)	Ant. Height (cm)	Comments
1854.5								Not in Restricted Band
1854.5								Done via Conducted
2781.75	50.84	Н	73.97	-23.13	Peak	198.50	220.40	
2781.75	33.91	Н	53.97	-20.06	Avg	198.50	220.40	
3709	55.11	Н	73.97	-18.86	Peak	212.00	153.35	
3709	38.18	Н	53.97	-15.79	Avg	212.00	153.35	
4636.25	50.72	Н	73.97	-23.25	Peak	90.25	145.55	
4636.25	33.79	Н	53.97	-20.18	Avg	90.25	145.55	
					100	and the second		
5563.5								Not in Restricted Band
5563.5								Done via Conducted
6490.75								Not in Restricted Band
6490.75								Done via Conducted
7418	56.88	H	73.97	-17.09	Peak	61.00	154.55	
7418	39.95	Н	53.97	-14.02	Avg	61.00	154.55	
8345.25								No Emission
8345.25								Detected
9272.5								No Emission
9272.5								Detected

FCC Class B and RSS-210

Mojix, Inc.

Date: 04/18/2016

STARflex

Lab: D

Model: STR-400-F Tested By: Kyle Fujimoto Configuration #2

Non Harmonic Emissions from the Tx - 10 kHz to 30 MHz and 1 GHz to 9.3 GHz Digital Portion from the EUT - 10 kHz to 30 MHz and 1 GHz to 9.3 GHz

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions Detected
								from the Non Harmonic Emissions
								from the Tx
								10 kHz to 30 MHz
								No Emissions Detected
								from the Non Harmonic Emissions
								from the Tx
								1 GHz to 9.3 GHz
						The second second		No Emissions Detected
								from the Digital Portion
					14.			of the EUT
								10 kHz to 30 MHz
								No Emissions Detected
								from the Digital Portion
								of the EUT
								1 GHz to 9.3 GHz
								Tested in both Horizontal and
								Vertical Polarizations

STARflex Model: STR-400-F

FCC 15.247

Mojix, Inc. Date: 04/18/2016 **STARflex** Lab: D

Model: STR-400-F Tested By: Kyle Fujimoto

Configuration #2

Receiver Mode - 30 MHz to 9.3 GHz

Freq. (MHz)	Level (dBuV/m)	Pol (v/h)	Limit	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
								No Emissions Detected from the Receiver Mode
								for the EUT 30 MHz to 1 GHz
						7		No Emissions Detected from the Receiver Mode
								for the EUT 1 GHz to 9.3 GHz
								Tested in both Horizontal and Vertical Polarizations
								vertical Folanzations

4/14/2016 11:35:42 AM

Sequence: Preliminary Scan

Report Number: B60420D1 FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex

Model: STR-400-F

Title: Pre-Scan - FCC Class B

File: Rohde & Schwarz - Pre-Scan - Configuration 1 - FCC Class B - 30 MHz to 1000 MHz - 04-14-2016.set

Operator: Kyle Fujimoto

EUT Type: STARflex

EUT Condition: The EUT is continuously transmitting directly on Port 4

Comments: Company: Mojix, Inc. Model: STR-400-F

Note #1: The frequencies at 144 MHz and 288 MHz are digital signals and do not go lower when the Tx is turned off, so subject to FCC Class A Limits

Note #2: The Frequency at 902.75 MHz is subject to FCC 15.247 rules.

FCC Class B

(PEAK) EMI (V)

STARflex Model: STR-400-F

Title: Radiated Final - FCC Class B

File: Rohde & Schwarz - Final Scan - Configuration 1 - FCC Class B - 30 MHz to 1000 MHz - 04-14-2016.set

4/14/2016 12:07:45 PM Sequence: Final Measurements

Operator: Kyle Fujimoto

EUT Type: STARflex EUT Condition: The EUT is continuously transmitting directly on Port 4

Comments: Company: Mojix, Inc. Model: STR-400-F

Configuration #1: The STARflex is transmitting directly to an antenna on port 1.

Note #1: The frequencies at 144 MHz and 288 MHz are digital signals and do not go lower when the Tx is turned off.

FCC Class B

Freq (MHz) 131.40 133.40 135.40 139.40 141.40 144.00 144.00 204.00 206.00	Pol H V V V V V V V V V V V V V V V V V V	33.93 37.33 43.73 39.09 42.76 39.15 44.48 36.78 36.45	(QP) EMI (dBµV/m) 34.20 31.30 34.69 41.11 37.07 40.84 37.81 43.27 35.28 34.84	(PEAK) Margin (dB) -6.85 -9.57 -6.17 0.23 -4.41 -0.74 -4.35 0.98 -6.72 -7.05	(QP) Margin (dB) -9.30 -12.20 -8.81 -2.39 -6.43 -2.66 -5.69 -0.23 -8.22 -8.66	Limit (dBµV/m) 43.50 43.50 43.50 43.50 43.50 43.50 43.50 43.50 43.50	Transducer (dB) 14.38 14.08 13.78 13.18 13.68 14.77 14.77 13.20 13.30	Cable (dB) 0.83 0.84 0.85 0.86 0.87 0.87 0.88 1.11 1.12	Ttbl Agl (deg) 176.00 48.00 180.25 96.50 12.75 156.75 166.25 119.00 360.00 19.75	Twr Ht (cm) 289.64 111.25 110.47 291.37 111.37 208.74 111.07 111.49
288.00 288.00	V		48.02 41.33	3.58 -3.00	2.02 -4.67	46.00 46.00	17.55 17.55	1.33 1.33	151.00 328.00	111.07 111.37
					FCC Class	A				
Freq (MHz) 144.00 144.00 288.00 288.00	Pol V H V	44.48 49.58	(QP) EMI (dBµV/m) 37.81 43.27 48.02 41.33	(PEAK) Margin (dB) -14.82 -9.49 -7.31 -13.89	(QP) Margin (dB) -16.16 -10.70 -8.87 -15.56	Limit (dBµV/m) 53.97 53.97 56.89 56.89	Transducer (dB) 14.77 13.30 13.20 13.30	Cable (dB) 0.88 1.12 1.11 1.12	Ttbl Agl (deg) 166.25 19.75 360.00 19.75	Twr Ht (cm) 208.74 111.49 111.31 111.49

STARflex

Model: STR-400-F

Title: Pre-Scan - FCC Class B

File: Rohde & Schwarz - Pre-Scan - Configuration 2 - FCC Class B - 30 MHz to 1000 MHz - 04-15-2016.set

4/15/2016 10:10:18 AM Sequence: Preliminary Scan

Operator: Kyle Fujimoto EUT Type: STARflex

EUT Condition: The EUT is continuously transmitting through the RF Expander on Port 1

Comments: Company: Mojix, Inc.

Configuration #2

Model: STR-400-F

Note #1: The frequencies at 144 MHz and 288 MHz are digital signals and do not go lower when the Tx is turned off, so subject to FCC Class A Limits Note #2: The Frequency at 902.75 MHz is subject to FCC 15.247 rules.

FCC Class B

(PEAK) EMI (H) (PEAK) EMI (V)

4/15/2016 10:39:52 AM

Sequence: Final Measurements

Report Number: B60420D1 FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex

Model: STR-400-F

Title: Radiated Final - FCC Class B

File: Rohde & Schwarz - Final Scan - Configuration 2 - FCC Class B - 30 MHz to 1000 MHz - 04-15-2016.set

EUT Type: STARflex

EUT Condition: The EUT is continuously transmitting through the RF Expander on Port 1 $\,$

Comments: Company: Mojix, Inc. Model: STR-400-F

Configuration #2

Note: The frequency at 288 MHz is a digital signal and does not go lower when the Tx is turned off, so subject to FCC Class A Limits.

FCC Class B

Freq (MHz) 121.60 122.90 123.50 129.50 133.40 135.00 135.40 144.00 144.00 149.40 288.00 288.00	Pol H H H H H H V V V V V	(PEAK) EMI (dBµV/m) 39.55 39.09 39.22 39.16 41.97 43.10 33.86 43.49 32.46 41.14 33.29 39.51 34.21 48.84 42.52	(QP) EMI (dBμV/m) 35.22 34.33 34.99 34.56 38.13 39.17 28.39 39.39 26.46 37.46 29.41 38.75 30.37 47.29 40.71	(PEAK) Margin (dB) -3.95 -4.41 -4.28 -4.34 -1.53 -0.40 -9.64 -0.01 -11.04 -2.36 -10.21 -3.99 -9.29 2.84	(QP) Margin (dB) -8.28 -9.17 -8.51 -8.94 -5.37 -4.33 -15.11 -4.11 -17.04 -6.04 -14.09 -4.75 -13.13 1.29 -5.29	Limit (dBμV/m) 43.50	Transducer (dB) 15.40 15.40 15.40 14.69 14.08 13.82 13.78 13.59 13.68 14.76 16.92 17.55 17.55	Cable (dB) 0.81 0.81 0.81 0.83 0.84 0.85 0.85 0.87 0.88 0.89 0.90 1.33 1.33	Ttbl Agl (deg) 193.00 204.50 346.25 181.25 209.25 189.25 196.75 201.50 206.00 107.25 205.50 48.25 103.50 153.00 326.75	Twr Ht (cm) 325.94 260.08 274.53 275.07 273.70 307.43 192.26 396.38 361.22 244.62 361.28 127.61 398.47 398.71 129.10
288.00 300.00	V	42.52 41.92	40.71 40.47	-3.48 -4.08	-5.29 -5.53	46.00 46.00	17.55 18.20	1.33 1.37	326.75 5.25	129.10 195.85
					FCC Class	А				
Freq (MHz)	Pol	(PEAK) EMI (dBµV/m)	(QP) EMI (dBµV/m)	(PEAK) Margin (dB)	(QP) Margin (dB)	Limit (dBµV/m)	Transducer (dB)	Cable (dB)	Ttbl Agl (deg)	Twr Ht (cm)
288.00	Н	48.84	47.29	-8.05	-9.60	56.89	17.55	1.33	326.75	129.10
288.00	V	42.52	40.71	-14.37	-16.18	56.89	17.55	1.33	326.75	129.10

STARflex

Model: STR-400-F

CONDUCTED EMISSIONS DATA SHEETS

Configuration #1

STARflex

Model: STR-400-F

Title: FCC Class B - Conducted Emissions - Black Lead
File: Rohde & Schwarz - Pre-Scan - Black Lead - Configuration 1 - StarFlex Direct - FCC Class B - 150 kHz to 30 MHz.set
Operator: Kyle Fujimoto
EUT Type: STARflex
EUT Type: STARflex
Comments: Company: Mojix, Inc.
Model: STR-400-F

4/13/2016 3:01:46 PM Sequence: Preliminary Scan

FCC Class B - Conducted Emissions - Black Lead

STARflex

Model: STR-400-F

Title: FCC Class B - Conducted Emissions - Black Lead

 $File: Rohde \ \& \ Schwarz - Final \ Scan - Black \ Lead - Configuration \ 1 - StarFlex \ Direct - FCC \ Class \ B - 150 \ kHz \ to \ 30 \ MHz.set$

Operator: Kyle Fujimoto EUT Type: STARflex

EUT Condition: The EUT is continuously transceiving directly on Port 4

Comments: Company: Mojix, Inc.

Model: STR-400-F Configuration #1

4/13/2016 3:16:19 PM Sequence: Final Measurements

Table 13

Freq (MHz)	(PEAK) EMI (dBµV)	(AVG) EMI (dBµV)	(PEAK) Margin AVL (dB)	(AVG) Margin AVL (dB)	(AVG) Limit (dBµV)	Filter (dB)	Transducer (dB)	Cable (dB)
0.1540	52.62	35.91	-3.33	-20.04	55.95	9.83	0.51	0.06
0.1620	50.62	29.91	-4.76	-25.48	55.39	9.83	0.47	0.06
0.1700	50.16	29.85	-5.01	-25.32	55.17	9.83	0.46	0.07
0.1780	48.27	28.80	-6.49	-25.96	54.76	9.83	0.43	0.07
0.2050	44.05	23.71	-9.37	-29.71	53.42	9.83	0.43	0.07
0.2060	44.01	23.66	-9.41	-29.76	53.42	9.83	0.34	0.08

Configuration #1

Report Number: B60420D1

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex Model: STR-400-F

Title: FCC Class B - Conducted Emissions - White Lead File: Rohde & Schwarz - Pre Scan - White Lead - Configuration 1 - StarFlex Direct - FCC Class B - 150 kHz to 30 MHz.set Operator: Kyle Fujimoto EUT Type: STARflex EUT Condition: The EUT is continuously transceiving directly on Port 4 Comments: Company: Mojix, Inc. Model: STR-400-F

4/13/2016 3:39:50 PM Sequence: Preliminary Scan

FCC Class B - Conducted Emissions - White Lead

STARflex

Model: STR-400-F

Title: FCC Class B - Conducted Emissions - White Lead

File: Rohde & Schwarz - Final Scan - White Lead - Configuration 1 - Starflex Direct - FCC Class B - 150 kHz to 30 MHz.set

Operator: Kyle Fujimoto

EUT Type: STARflex

EUT Condition: The EUT is continuously transceiving directly on Port 4

Comments: Company: Mojix, Inc.

Model: STR-400-F Configuration #1 4/13/2016 3:43:25 PM Sequence: Final Measurements

FCC Class B - Conducted Emissions - White Lead

Freq	(PEAK) EMI	(AVG) EMI	(PEAK) Margin AVL	(AVG) Margin AVL	(AVG) Limit	Filter	Transducer	Cable
(MHz)	(dBµV)	(dBµV)	(dB)	(dB)	(dBµV)	(dB)	(dB)	(dB)
0.1580	50.49	30.29	-5.20	-25.40	55.69	9.83	0.48	0.06
0.1620	50.29	29.48	-5.30	-26.11	55.59	9.83	0.47	0.06
0.1740	48.34	29.47	-6.61	-25.48	54.95	9.83	0.43	0.07
0.1780	47.46	26.92	-7.18	-27.72	54.65	9.83	0.41	0.07
0.1860	46.73	25.61	-7.64	-28.76	54.37	9.83	0.39	0.07
0.1900	46.05	25.08	-8.17	-29.13	54.21	9.83	0.38	0.07
0.2020	43.84	23.33	-9.64	-30.16	53.49	9.83	0.33	0.08
0.2060	44.06	23.63	-9.47	-29.90	53.53	9.83	0.33	0.08
0.2180	42.94	22.25	-10.14	-30.83	53.08	9.83	0.30	0.08
0.2220	42.48	21.77	-10.31	-31.02	52.79	9.83	0.29	0.08
0.2300	42.16	21.35	-10.44	-31.25	52.60	9.83	0.27	0.08
0.2340	40.67	20.28	-11.52	-31.91	52.20	9.83	0.25	0.08

Configuration #2

Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report

STARflex 100 F

Model: STR-400-F

Title: FCC Class B - Conducted Emissions - Black Lead
File: Rohde & Schwarz - Pre-Scan - Black Lead - Configuration 2 - StarFlex Direct - FCC Class B - 150 kHz to 30 MHz.set
Operator: Kyle Fujimoto
EUT Type: STARflex
EUT Condition: The EUT is continuously transceiving from Port 1 of the RF Expander
Comments: Company: Mojix, Inc.
Model: STR-400-F

4/13/2016 4:16:24 PM Sequence: Preliminary Scan

FCC Class B - Conducted Emissions - Black Lead

Report Number: B60420D1 FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex

Model: STR-400-F

Title: F

EUT T

Comments: Company: Mojix, Inc.

Model: STR-400-F Configuration #2

Table13

: FCC Class B - Conducted Emissions - Black Lead	4/13/2016 4:22:13 PM
Rohde & Schwarz - Final Scan - Black Lead - Configuration 2 - StarFlex Diect - FCC Class B - 150 kHz to 30 MHz.set	Sequence: Final Measurements
rator: Kyle Fujimoto	
Type: STARflex	
Condition: The EUT is continuously transceving from Port 1 of the RF Expander	

Freq (MHz)	(PEAK) EMI (dBµV)	(AVG) EMI (dBµV)	(PEAK) Margin AVL (dB)	(AVG) Margin AVL (dB)	(AVG) Limit (dBuV)	Filter (dB)	Transducer (dB)	Cable (dB)
			()		()			
0.1580	49.78	31.49	-5.72	-24.02	55.50	9.83	0.48	0.06
0.1700	48.85	29.60	-6.35	-25.61	55.20	9.83	0.46	0.07
0.1820	47.29	25.92	-7.22	-28.59	54.51	9.83	0.41	0.07
0.1860	46.71	25.77	-7.73	-28.67	54.45	9.83	0.41	0.07
0.1980	44.84	24.62	-8.98	-29.21	53.82	9.83	0.37	0.08
0.2140	43.92	22.87	-9.26	-30.31	53.18	9.83	0.32	0.08

Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report

STARflex

Model: STR-400-F

Title: FCC Class B - Conducted Emissions - White Lead File: Rohde & Schwarz - Pre Scan - White Lead - Configuration 2 - StarFlex Direct - FCC Class B - 150 kHz to 30 MHz.set Operator: Kyle Fujimoto EUT Type: STARflex EUT Condition: The EUT is continuously transceiving from Port 1 of the RF Expander Comments: Company: Mojix, Inc.

4/13/2016 4:29:25 PM Sequence: Preliminary Scan

Model: STR-400-F Configuration #2

FCC Class B - Conducted Emissions - White Lead

4/13/2016 4:33:51 PM

Sequence: Final Measurements

STARflex

Model: STR-400-F

Title: FCC Class B - Conducted Emissions - White Lead

File: Rohde & Schwarz - Final Scan - White Lead - Configuration 2 - Starflex Direct - FCC Class B - 150 kHz to 30 MHz.set Operator: Kyle Fujimoto

EUT Type: STARflex

EUT Condition: The EUT is continuously transceiving directly on Port 1 of the RF Expander

Comments: Company: Mojix, Inc.

Model: STR-400-F Configuration #2

FCC Class B - Conducted Emissions - White Lead

Freq (MHz)	(PEAK) EMI (dBuV)	(AVG) EMI (dBuV)	(PEAK) Margin AVL (dB)	(AVG) Margin AVL (dB)	(AVG) Limit (dBµV)	Filter (dB)	Transducer (dB)	Cable (dB)
0.1620	49.44	31.23	-6.07	-24.27	55.51	9.83	0.47	0.06
0.1700	48.00	28.83	-7.03	-26.20	55.04	9.83	0.43	0.07
0.1740	48.03	28.54	-6.96	-26.46	55.00	9.83	0.43	0.07
0.1860	46.34	25.21	-8.03	-29.16	54.36	9.83	0.39	0.07
0.1900	45.72	24.91	-8.44	-29.26	54.17	9.83	0.38	0.08
0.2020	44.27	24.08	-9.29	-29.48	53.56	9.83	0.34	0.08
0.2060	44.07	22.90	-9.23	-30.40	53.30	9.83	0.32	0.08
0.2140	43.49	22.62	-9.69	-30.56	53.18	9.83	0.31	0.08
0.2180	42.98	22.49	-10.10	-30.59	53.08	9.83	0.30	0.08
0.2300	42.14	21.81	-10.52	-30.86	52.66	9.83	0.28	0.08
0.2340	42.17	21.48	-10.31	-31.00	52.49	9.83	0.26	0.08
0.2460	41.50	20.81	-10.57	-31.27	52.08	9.83	0.24	0.08

Report Number: **B60420D1**

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex Model: STR-400-F

BAND EDGES DATA SHEETS

Band Edge - Low Channel - Fixed Frequency Mode - Configuration #1 - Port #4 Worst Case

Band Edge - Low Channel - Frequency Hopping Mode - Configuration #1 - Port #4 Worst Case

Band Edge - High Channel - Fixed Frequency Mode - Configuration #1 - Port #4 Worst Case

STARflex

Model: STR-400-F

Band Edge - High Channel - Frequency Hopping Mode - Configuration #1 - Port #4 Worst Case

Band Edge - Low Channel - Fixed Frequency Mode - Configuration #2 - Port #1 Worst Case

Band Edge - Low Channel - Frequency Hopping Mode - Configuration #2 - Port #1 Worst Case

Band Edge - High Channel - Fixed Frequency Mode - Configuration #2 - Port #1 Worst Case

Band Edge - High Channel - Frequency Hopping Mode - Configuration #2 - Port #1 Worst Case

STARflex

Model: STR-400-F

-20 DB BANDWIDTH DATA SHEETS

-20 dB Bandwidth - Low Channel

-20 dB Bandwidth - Middle Channel

-20 dB Bandwidth - High Channel

FCC Part 15 Subpart B and FCC Section 15.247 Test Report

STARflex

Model: STR-400-F

RF ANTENNA CONDUCTED DATA SHEETS

RF Antenna Conducted - Low Channel - 30 MHz to 900 MHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted - Low Channel - 900 MHz to 1 GHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted - Low Channel - 1 GHz to 5 GHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted - Low Channel - 5 GHz to 9.3 GHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted – Middle Channel – 30 MHz to 900 MHz – Configuration #1 – Port #4 Worst Case

RF Antenna Conducted - Middle Channel - 900 MHz to 1 GHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted - Middle Channel - 1 GHz to 5 GHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted - Middle Channel - 5 GHz to 9.3 GHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted – High Channel – 30 MHz to 900 MHz – Configuration #1 – Port #4 Worst Case

RF Antenna Conducted – High Channel – 900 MHz to 1 GHz – Configuration #1 – Port #4 Worst Case

Date: 20.APR.2016 09:39:22

RF Antenna Conducted - High Channel - 1 GHz to 5 GHz - Configuration #1 - Port #4 Worst Case

RF Antenna Conducted – High Channel – 5 GHz to 9.3 GHz – Configuration #1 – Port #4 Worst Case

RF Antenna Conducted – Low Channel – 30 MHz to 900 MHz – Configuration #2 – Port #1 Worst Case

RF Antenna Conducted - Low Channel - 900 MHz to 1 GHz - Configuration #2 - Port #1 Worst Case

Date: 20.APR.2016 09:48:40

RF Antenna Conducted - Low Channel - 1 GHz to 5 GHz - Configuration #2 - Port #1 Worst Case

RF Antenna Conducted - Low Channel - 5 GHz to 9.3 GHz - Configuration #2 - Port #1 Worst Case

RF Antenna Conducted - Middle Channel - 30 MHz to 900 MHz - Configuration #2 - Port #1 Worst Case

20.APR.2010 10.07.03

RF Antenna Conducted - Middle Channel - 900 MHz to 1 GHz - Configuration #2 - Port #1 Worst Case

RF Antenna Conducted – Middle Channel – 1 GHz to 5 GHz – Configuration #2 – Port #1 Worst Case

RF Antenna Conducted - Middle Channel - 5 GHz to 9.3 GHz - Configuration #2 - Port #1 Worst Case

RF Antenna Conducted – High Channel – 30 MHz to 900 MHz – Configuration #2 – Port #1 Worst Case

RF Antenna Conducted – High Channel – 900 MHz to 1 GHz – Configuration #2 – Port #1 Worst Case

RF Antenna Conducted - High Channel - 1 GHz to 5 GHz - Configuration #2 - Port #1 Worst Case

RF Antenna Conducted - High Channel - 5 GHz to 9.3 GHz - Configuration #2 - Port #1 Worst Case

Model: STR-400-F

PEAK POWER OUTPUT DATA SHEETS

Peak Power Output - Low Channel - Configuration #1 - Port #4 Worst Case

Peak Power Output - Middle Channel - Configuration #1 - Port #4 Worst Case

Peak Power Output – High Channel – Configuration #1 – Port #4 Worst Case

Peak Power Output - Low Channel - Configuration #2 - Port #1 Worst Case

Peak Power Output – Middle Channel – Configuration #2 – Port #1 Worst Case

Peak Power Output - High Channel - Configuration #2 - Port #1 Worst Case

CHANNEL FREQUENCY SEPARATION DATA SHEET

Channel Frequency Separation

NUMBER OF FREQUENCIES DATA SHEET

Number of Channels is 50

Report Number: **B60420D1 FCC Part 15 Subpart B** and **FCC Section 15.247** Test Report

STARflex

Model: STR-400-F

TIME OF OCCUPANCY DATA SHEET

Time of One Pulse

Worst Case of 28 pulses in 20 seconds Total Dwell Time = 14.228457 * 28 = 398.397 ms Limit = 400 ms in a 20 second period