Boolos and Jeffrey - $\ensuremath{\mathsf{HW2}}$

David Maldonado, david.m.maldonado@gmail.comSeptember 8, 2014

1 All nodes lead to Rome.

Theorem 1.1. The set of nodes of an infinite binary tree is enumerable.

Proof. Starting from the single origin node at the first level d=1 the amount of nodes on each level is 2^d . The nodes can simply be counted by starting at the origin and moving left to right at each level:

2 What a long, strange trip it's been.

Theorem 2.1. The set of infinite paths beginning at the origin down an infinite binary tree is not enumerable.

Proof. Let each pair of paths from a particular node be represented by 0 and 1. With this encoding each path p_n , beginning from the origin, can be represented as a binary string of 0's and 1's. We can arrange the paths in a two dimensional grid:

We can create a new path not contained in our representation by constructing the anti-diagonal $(1,1,1,0,\ldots)$. Therefore by diagonalization we have shown the paths are *not* enumerable.

3 \mathbb{N} into \mathbb{N}

Theorem 3.1. Where \mathbb{N} is the set of positive integers, the set of all one-to-one, total functions from \mathbb{N} into \mathbb{N} is not enumerable.

Proof. We can represent the set of all total, injective, non-surjective functions on \mathbb{N} as a two dimensional grid of sequences s_n of ordered pairs:

We can create a sequence s not contained in our representation by constructing the anti-diagonal $<(1,1),(2,3),(3,6),(5,11),\cdots>$. Each item d_n of the anti-diagonal can be generated by the function:

$$d(n) = (n, \begin{cases} n+1 & \text{if } n \text{ is odd} \\ n-1 & \text{if } n \text{ is even.} \end{cases}$$

Therefore by diagonalization we have shown the set of all total, injective, non-surjective functions on \mathbb{N} is not enumerable.

4 \mathbb{N} onto \mathbb{N}

Theorem 4.1. Where \mathbb{N} is the set of positive integers, the set of all one-to-one, total functions from \mathbb{N} onto \mathbb{N} is not enumerable.

Proof. We can represent the set of all total, bijective functions on \mathbb{N} as a two dimensional grid of permutations p_n :

We can create a permutation p not contained in our representation by constructing the anti-diagonal d_n by the formula:

$$d(n) = \begin{cases} n+1 & \text{if } n \text{ is odd} \\ n-1 & \text{if } n \text{ is even.} \end{cases}$$

Therefore by diagonalization we have shown the set of all total, bijective functions on \mathbb{N} is not enumerable.