code_along_correlation

2025-09-24

The main point of this is to introduce you to correlation matrices and heatmaps in R

```
#load libraries
library(ggplot2)
library(reshape2) #install.packages('reshape2)

#read in the data
colleges <- read.csv("https://remiller1450.github.io/data/Colleges2019_Complete.csv")

#and look at the first few rows
head(colleges)</pre>
```

##		X	Nam	ne Citv	State Enrol	lment Private
	1	1 Abilene Chris				3524 Private
	2		elphi Universit	•		5307 Private
##			Adrian Colleg			1781 Private
##	4	5 AdventHe	ealth Universit			1166 Private
##	5		A & M Universit	•		4990 Public
##	6		State Universit	•	AL	3903 Public
##		Region Adr	m_Rate ACT_medi	ian ACT_Q1 ACT	_Q3 Cost Ne	t_Tuition
##	1	South West	0.5696	24 21	21 48046	16177
##	2	Mid East (0.7418	25 22	22 49008	24971
##	3	Great Lakes	0.6481	23 19	19 51626	14136
##	4	South East (0.8689	20 18	18 24338	15360
##	5	South East (0.8986	18 16	16 22489	7413
##	6	South East (0.9774	18 16	16 21476	10160
##		<pre>Avg_Fac_Salary</pre>	PercentFemale	PercentWhite	PercentBlack	PercentHispanic
##	1	69804	0.6118200	0.7946	0.0814	0.1635
##		111339		0.6669	0.1785	
##	3	72873		0.8861	0.0692	
##	_	69759		0.7622	0.1395	
##		63909		0.4684	0.4798	
##	6	69786		0.4269	0.5232	
##		PercentAsian Fo				_
##	_	0.0287	0.41157		0.5283019	16000
##	_	0.0673	0.61146		0.6998855	19500
##		0.0121	0.23209		0.3319838	18468
##	_	0.0259	0.47619		0.4132231	16646
##	-	0.0148	0.14715		0.2313665	15000
##	6	0.0141	0.12820)51	0.2679211	18950
##		Salary10yr_med:				
##	_		000			
##	_	58500				
##	3	386	600			

```
## 4
                 56000
## 5
                 31000
## 6
                 27700
cor(colleges$Debt_median,
                            #this is pearson's correaltion (the default)
    colleges$Salary10yr_median)
## [1] 0.3062557
cor(colleges$Debt_median,
    colleges$Salary10yr_median,
    method = "spearman") #this is spearman's correlation
## [1] 0.3644316
ggplot(data = colleges, #standard scatter plot from previous labs
       aes(x = Debt_median,
           y = Salary10yr_median)) +
  geom_point()
```


more advanced coding

We can find a matrix of correlations for multiple variables at once. Note that a variable will be perfectly correlated with itself (correlation = 1)

```
univ <- colleges[, c(19:23)] #grab a subset of the data made up of numeric vars.
head(univ) #and look at the first few rows
```

```
PercentAsian FourYearComp_Males FourYearComp_Females Debt_median
## 1
          0.0287
                          0.4115756
                                               0.5283019
                                                               16000
## 2
          0.0673
                          0.6114650
                                              0.6998855
                                                               19500
                                              0.3319838
## 3
          0.0121
                          0.2320917
                                                               18468
## 4
          0.0259
                          0.4761905
                                              0.4132231
                                                               16646
## 5
          0.0148
                          0.1471572
                                              0.2313665
                                                               15000
## 6
          0.0141
                          0.1282051
                                              0.2679211
                                                               18950
##
   Salary10yr_median
## 1
                43000
## 2
                58500
## 3
                38600
## 4
                56000
## 5
                31000
## 6
                27700
```

##		PercentAsian	FourYearComp_Males	FourYearComp_Females
##	PercentAsian	1.00	0.29	0.24
##	FourYearComp_Males	0.29	1.00	0.93
##	${\tt FourYearComp_Females}$	0.24	0.93	1.00
##	Debt_median	0.01	0.40	0.39
##	Salary10yr_median	0.35	0.69	0.64
##		Debt_median S	Salary10yr_median	
##	PercentAsian	0.01	0.35	
##	FourYearComp_Males	0.40	0.69	
##	${\tt FourYearComp_Females}$	0.39	0.64	
##	Debt_median	1.00	0.31	
##	Salary10yr_median	0.31	1.00	

#to make it a bit more manageble. I like either 2 or 3 #decimal places myself, purely personal taste thing

```
#same as above but for spearman's correaltion
cor(univ, method = 'spearman')
```

##		PercentAsian	FourYearComp_Males	FourYearComp_Females
##	PercentAsian	1.0000000	0.4771757	0.4238205
##	FourYearComp_Males	0.4771757	1.0000000	0.9239659
##	FourYearComp_Females	0.4238205	0.9239659	1.0000000
##	Debt_median	0.2058505	0.4465556	0.4311662
##	Salary10yr_median	0.5836339	0.7146055	0.6718770

```
##
                        Debt_median Salary10yr_median
## PercentAsian
                          0.2058505
                                             0.5836339
## FourYearComp Males
                          0.4465556
                                             0.7146055
## FourYearComp_Females
                          0.4311662
                                             0.6718770
## Debt_median
                          1.0000000
                                             0.3644316
## Salary10yr_median
                          0.3644316
                                             1.0000000
round(cor(univ, method = 'spearman'),
      digits = 2)
                        PercentAsian FourYearComp_Males FourYearComp_Females
##
## PercentAsian
                                1.00
                                                    0.48
                                0.48
## FourYearComp_Males
                                                    1.00
                                                                         0.92
## FourYearComp_Females
                                0.42
                                                    0.92
                                                                         1.00
## Debt_median
                                0.21
                                                    0.45
                                                                         0.43
## Salary10yr_median
                                0.58
                                                    0.71
                                                                         0.67
##
                        Debt_median Salary10yr_median
## PercentAsian
                               0.21
                                                  0.58
## FourYearComp_Males
                               0.45
                                                  0.71
## FourYearComp_Females
                               0.43
                                                  0.67
## Debt_median
                               1.00
                                                  0.36
## Salary10yr_median
                               0.36
                                                  1.00
#and a scatter plot to figure out which of
#the two correlations is better to use
ggplot(data = univ,
       aes(x = PercentAsian,
           y = Salary10yr_median)) +
  geom_point() +
```

theme_bw()

Graphing correlation matrices

```
#You may need to install the reshape2 package
#install.packages('reshape2')
library(reshape2)

#the melt() functon makes a table into long format
#and then we look at the first few rows of the data
tidy_cor <- melt(my_cor)
head(tidy_cor)</pre>
```

```
Var1
##
                                        Var2
                                                  value
                                PercentAsian 1.00000000
## 1
            PercentAsian
       FourYearComp_Males
                                PercentAsian 0.28972112
## 3 FourYearComp_Females
                                PercentAsian 0.24279413
              Debt_median
                                PercentAsian 0.01434663
## 5
        Salary10yr_median
                                PercentAsian 0.34673178
## 6
             PercentAsian FourYearComp_Males 0.28972112
```

```
#column names....melt does weird things
colnames(tidy_cor) #look at the names
```

```
## [1] "Var1" "Var2" "value"
```

```
colnames(tidy_cor) <- c('demographics_1', 'demographics_2', 'correlations')
#the above line let's us overwrite the names
head(tidy_cor)</pre>
```

```
##
           demographics_1
                              demographics_2 correlations
## 1
             PercentAsian
                                PercentAsian
                                               1.00000000
## 2
       FourYearComp_Males
                                PercentAsian
                                               0.28972112
## 3 FourYearComp_Females
                                               0.24279413
                                PercentAsian
## 4
              Debt_median
                                PercentAsian
                                               0.01434663
## 5
        Salary10yr_median
                                PercentAsian
                                               0.34673178
                                               0.28972112
## 6
             PercentAsian FourYearComp_Males
```

```
#beginning of the ggplot is pretty standard
ggplot(data = tidy_cor,
    aes(x = demographics_1,
        y = demographics_2)) +

#this geom_ is new to you guys. It makes a
#series of tiles that then can be filled in
#by the value of correlations
geom_tile(aes(fill = correlations))
```


#NOTE: we cannot use color as it'll do something else #Go ahead and run the coee to see what happens!