Faster Construction Algorithms for Distance Sensitivity Oracles

Yong Gu & Hanlin Ren, IIIS, Tsinghua University

Distance Sensitivity Oracles (DSOs):

- Input: a directed graph G = (V, E)
- On each query (u, v, x), find the length of the shortest path from u to v that avoids x
- Notation: $||uv \circ x||$ is the length of the sought path

Assumption: edges are unweighted.

• \Rightarrow All-pairs shortest paths can be computed in $O(n^{2.5286})$ time [Zwick], using fast matrix multiplication

Idea 1: Bootstrapping DSOs

DSO with preproc. time P and query time $Q \Rightarrow$ DSO with preproc. time $P + \tilde{O}(n^2) \cdot Q$, query time O(1)

Proof sketch:

Preprocess a DSO using [Bernstein-Karger].

The preprocessing algorithm of [Bernstein-Karger] can be summarized as three steps:

- 1. Compute $\tilde{O}(n^2)$ DSO queries $\{(u_i, v_i, x_i)\}_{i \leq \tilde{O}(n^2)}$
- 2. Answer the queries (somehow) in $\tilde{O}(mn)$ time
- 3. Construct the DSO (somehow) from these answers.

To prove our bootstrapping theorem, we can simply replace step 2 by "answering the queries using the slower DSO", which takes $P + \tilde{O}(n^2) \cdot Q$ time.

Idea 2: Hitting Sets

An r-truncated **DSO** is a DSO that on a query (u, v, x), only needs to return $\min\{||uv \circ x||, r\}$ instead of $||uv \circ x||$.

 $(+\infty)$ -truncated DSO = (normal) DSO

We can use hitting sets to transform an r-truncated DSO with query time O(1) into a (3/2)r-truncated DSO with query time $\tilde{O}(n/r)$.

Let $H \leftarrow$ a random sample of $\tilde{O}(n/r)$ vertices

Query algorithm for the (3/2)r-truncated DSO:

- On input (u, v, x), if $||uv \circ x|| \le r$, return $||uv \circ x||$
- Otherwise, return $\min_{h \in \mathcal{U}} \{ ||uh \circ x||_r + ||hv \circ x||_r \}$ using the old r-truncated DSO
- Here $||uv \circ x||_r := \min\{||uv \circ x||, r\}$

Correctness: assuming $r \le ||uv \circ x|| \le (3/2)r$, there is at least one vertex in H that hits the middle 1/3 part of the

sought path

Paper	Preproc. time	Query Time
[Demetrescu et al. 02]	$\tilde{O}(mn^2)$	0(1)
[Bernstein & Karger 09]	$ ilde{O}(mn)$	0(1)
[Weimann & Yuster 10]	$\tilde{O}(n^{1-\alpha+\omega})$	$\tilde{O}(n^{1+lpha})$
[Grandoni & Williams 12]	$ \begin{array}{c} \tilde{O}\big(n^{\omega+1/2} \\ + n^{\omega+\alpha(4-\omega)}\big) \end{array} $	$\tilde{O}(n^{1-lpha})$
[Chechik & Cohen 20]	$O(n^{2.873})$	polylog(n)
[Ren 20]	$O(n^{2.7233})$	0(1)
[Gu & Ren 21]	$O(n^{2.5794})$	0(1)

 ω < 2.373 is matrix multiplication exponent, $\alpha \in (0,1)$ is an arbitrary parameter

Idea 3: An r-Truncated DSO for Small r

Theorem: an r-truncated DSO can be constructed in time $r^2 \cdot MM(n, n/r, n/r) \cdot n^{o(1)}$.

Here, MM(a, b, c) denotes the time complexity of multiplying an $a \times b$ matrix and a $b \times c$ matrix.

Adjoint of Symbolic Adjacency Matrix:

Symbolic adjacency matrix $(z_{i,j} \text{ are random numbers*})$ * Actually, $z_{i,j}$ are analyzed as symbols that are in the end substituted by random numbers, hence the name "symbolic adjacency matrix".

$$SA(G)_{i,j} = \begin{cases} 1 & i = j \\ z_{i,j}x & (i \to j) \in G \\ 0 & \text{otherwise} \end{cases}$$

Adjoint matrix: $adj(A) = det(A) \cdot A^{-1}$

Theorem: w.h.p. over the randomness of $\{z_{i,j}\}$, the lowest degree of x in $\mathrm{adj}\big(\mathrm{SA}(G)\big)_{u,v}$ equals the $u\to v$ distance.

Ex: $adj(SA(G))_{3,6} = 2074800x^4 - 79800x^3 + 2405x^2$, hence the distance from 3 to 6 is 2.

Handling A Vertex Failure:

Trick: we can modulo every polynomial by $x^r !!$ Preprocessing: simply compute $adj(SA(G)) \mod x^r$

• Time complexity: $r^2 \cdot \text{MM}(n, n/r, n/r) \cdot n^{o(1)}$

Handling failure of vertex x: $SA(G - x) = SA(G) + F_x$, where F_x is a certain rank-1 matrix uv^T corresponding to x

Sherman-Morrison-Woodbury formula (maintain $SA(G)^{-1}$): $(A + uv^{\mathrm{T}})^{-1} = A^{-1} - (1 + v^{\mathrm{T}}A^{-1}u)(A^{-1}uv^{\mathrm{T}}A^{-1}).$

Query time: (turns out to be) $\tilde{O}(r)$

Idea 4: Unique Shortest Paths in $\tilde{o}(n^{2.5286})$ Time (omitted)

Putting It Together

r-truncated DSO with $\tilde{O}(r)$ query time

r-truncated DSO with O(1) query time

(3/2)r-truncated DSO with $\tilde{O}(n/r)$ query time

(3/2)r-truncated DSO with O(1) query time

(9/4)r-truncated DSO with $\tilde{O}(n/r)$ query time

n-truncated DSO with O(1) query time

• Preprocessing time: $r^2 \cdot \text{MM}(n, n/r, n/r) + n^3/r \stackrel{r := n^{0.4206}}{=\!=\!=\!=}$

Query time: O(1)

Note: bootstrapping also works for r-truncated DSOs

Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in $O(n^{2.5794}M)$ Time. Submitted.

Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. ESA'20.