Isomorfismo / Subgrafo

Zenilton Patrocínio

Isomorfismo

Dois grafos G e H são ditos **isomorfos** se existir uma <u>correspondência um-para-um</u> entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas.

Correspondências

$$1 \leftrightarrow d$$

$$2 \leftrightarrow c$$

$$3 \leftrightarrow a$$

$$4 \leftrightarrow b$$

$$\{1, 2\} \leftrightarrow \{d, c\}$$

$$\{2, 3\} \leftrightarrow \{c, a\}$$

$$\{2, 4\} \leftrightarrow \{c, b\}$$

$$\{3, 4\} \leftrightarrow \{a, b\}$$

Notação: G ≃ H

Verificação de Isomorfismo

Condições necessárias (mas não suficientes) para dois grafos serem isomorfos:

- Ter o mesmo número de vértices;
- Ter o mesmo número de arestas;
- Ter o mesmo número de componentes; e
- Ter o mesmo número de vértices com o mesmo grau.

Verificação de Isomorfismo

Número de vértices: 6

Número de arestas: 5

Número de componentes: 1

Sequência de graus: 1 1 1 2 2 3

Número de vértices: 6

Número de arestas: 5

Número de componentes: 1

Sequência de graus: 1 1 1 2 2 3

 $1 \leftrightarrow u$

 $5 \leftrightarrow p$

 $6 \leftrightarrow r$

 $4 \leftrightarrow q$

 $2 \leftrightarrow t$

 $3 \leftrightarrow s$

Verificação de Isomorfismo

Subgrafo

Um grafo $H = (V_1, E_1)$ é dito subgrafo de G = (V, E) e representado como $H \subseteq G$, quando $V_1 \subseteq V$ e $E_1 \subseteq E$.

Subgrafo de G (ou $H \subseteq G$)

Subgrafo

Um grafo $H = (V_1, E_1)$ é dito subgrafo de G = (V, E) e representado como $H \subseteq G$, quando $V_1 \subseteq V$ e $E_1 \subseteq E$.

Não é subgrafo de G (ou H ⊄ G)

Remoção de Aresta

Dado um grafo G = (V, E) e uma aresta $\{v, w\} \in E(G)$, então $G - \{v, w\}$ representa grafo obtido pela **remoção da aresta** $\{v, w\}$.

Remoção da aresta {4, 5}

Remoção de Aresta

Dado um grafo G = (V, E) e uma aresta $\{v, w\} \in E(G)$, então $G - \{v, w\}$ representa grafo obtido pela **remoção da aresta** $\{v, w\}$.

Remoção da aresta {4, 5}

Remoção de Vértice

Dado um grafo G = (V, E) e um vértice $v \in V(G)$, então G - v representa grafo obtido pela **remoção do vértice** v juntamente com <u>todas as arestas</u> incidente em v.

Remoção do vértice 2

Remoção de Vértice

Dado um grafo G = (V, E) e um vértice $v \in V(G)$, então G - v representa grafo obtido pela **remoção do vértice** v juntamente com <u>todas as arestas</u> incidente em v.

Remoção do vértice 2

Obtenção de Subgrafo

Um subgrafo H de um grafo G = (V, E) pode ser obtido pela <u>remoção</u> de um ou mais <u>vértices</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de um ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de um ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de um ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de um ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas arestas are</u>

Subgrafo obtido pela remoção dos vértices 2 e 3

Subgrafo obtido pela remoção das arestas {1, 2}, {1, 3} e {2, 4}

Subgrafo Induzido

Um grafo $H = (V_1, E_1)$ é dito subgrafo induzido de G = (V, E) quando atender a seguinte condição: para $v, w \in V_1$, se $\{v, w\} \in E$, então $\{v, w\} \in E_1$.

É comum dizer que H é subgrafo induzido pelo (sub)conjunto de vértices V₁.

Subgrafo de G induzido por {2, 3, 4, 5}

Obtenção de Subgrafo Induzido

Dado um grafo G = (V, E), um subgrafo H induzido pelo subconjunto de vértices $V_1 \subseteq V$ pode ser obtido pela <u>remoção dos vértices</u> de G que <u>não estão</u> em V_1 .

Subgrafo de G induzido por {2, 3, 5}

Obtenção de Subgrafo Induzido

Dado um grafo G = (V, E), um subgrafo H induzido pelo subconjunto de vértices $V_1 \subseteq V$ pode ser obtido pela <u>remoção dos vértices</u> de G que <u>não estão</u> em V_1 .

Subgrafo Gerador

Um grafo $H = (V_1, E_1)$ é dito subgrafo gerador de G = (V, E) quando ele contém todos os vértices de G, isto é, $V_1 = V$.

Obtenção de Subgrafo Gerador

Um subgrafo gerador H de um grafo G = (V, E) pode ser obtido pela <u>remoção</u> de uma ou mais <u>arestas</u> de G (mantendo-se todos os vértices de G).

Subgrafo gerador de G obtido pela remoção das arestas {1, 2}, {2, 4} e {4, 5}

H.

2

Subgrafo gerador de G obtido pela remoção de

todas as arestas

