Data Science for Actuaries (ACT6100)

Arthur Charpentier

Rappels # 4.1 (Convex Optimization)

automne 2020

Convex Sets

$C \subset \mathbb{R}^n$ is convex if

$$x, y \in C \Longrightarrow tx + (1-t)y \in C$$

for all $t \in [0,1]$

- ▶ unit ball $\{x : ||x|| \le 1\}$ is convex,
- ▶ hyperplane $\{x : x^{\top}\beta = y_0\}$ is convex,
- ▶ half-space $\{x : x^{\top}\beta \le y_0\}$ is convex,
- ▶ polyhedron $\{x : Ax \le a\}$ is convex,
- ▶ simplex $\{ \boldsymbol{x} \in \mathbb{R}_+ : \boldsymbol{1}^\top \boldsymbol{x} = 1 \}$ is convex,
- ▶ if C_1 and C_2 are convex, so is $C_1 \cap C_2$

Convex Hull

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom(f) is convex and

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \le tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

Let $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$, then a convex combination is any linear combination $\omega_1 \mathbf{x}_1 + \cdots + \omega_k \mathbf{x}_k$ with $(\omega_1, \cdots, \omega_k) \in \mathcal{S}_k$, i.e.

$$\omega_1,\cdots,\omega_k\in\mathbb{R}_+$$
 such that $\sum_{j=1}^k\omega_j=1$

The convex hull of a set C is the set of all convex combinations of elements of C

Separating Theorem

Theorem Consider two disjoint convex sets have a separating hyperplane between them

i.e. if C and D are convex, disjoint, then there are a and b such that

$$C \subset \{ \boldsymbol{x} : \boldsymbol{x}^{\top} \boldsymbol{a} \leq b \}$$

and

$$D \subset \{ \boldsymbol{x} : \boldsymbol{x}^{\top} \boldsymbol{a} \geq b \}$$

Separating Theorem

Application: section 4.3.1 in Financial Asset Pricing Theory

See also Farkas lemma:

if **A** is a $m \times n$ real matrix, and $\mathbf{b} \in$ \mathbb{R}^m , then exactly one of the two is true

- ▶ $\mathbf{A}\mathbf{x} = \mathbf{b}$ for some $\mathbf{x} \in \mathbb{R}^n_+$
- $ightharpoonup \mathbf{y}^{\top} \mathbf{A} \in \mathbb{R}^{n}_{+}$ and $\mathbf{y}^{\top} \mathbf{b} \in \mathbb{R}_{-}$ for some $\mathbf{y} \in \mathbb{R}^m$

Theorem 4.5 A state-price deflator exists if and only if prices admit no arbitrage.

Now assume that prices do not admit arbitrage. For simplicity, take a oneperiod framework with a finite state space $\Omega = \{1, 2, ..., S\}$ and assume that none of the I basic assets are redundant (the proof can easily be extended to the case with redundant assets). Define the sets A and B as

$$A = \{ \kappa P \mid \kappa > 0 \}, \quad B = \{ \underline{D} \psi \mid \psi \in \mathbb{R}_{++}^S \},$$

where $R_{\perp\perp}^S$ is the set of S-dimensional real vectors with strictly positive components. As before, P is the I-dimensional vector of prices of the basic assets. and D is the $I \times S$ matrix of dividends. Both A and B are convex subsets of \mathbb{R}^I . A is convex since $\alpha \kappa_1 P + (1 - \alpha) \kappa_2 P = (\alpha \kappa_1 + (1 - \alpha) \kappa_2) P \in A$ for any $\alpha \in$ [0, 1] and any $\kappa_1, \kappa_2 > 0$. Likewise, B is convex because, given $\psi_1, \psi_2 \in \mathbb{R}_{++}^S$ and $\alpha \in [0, 1]$, then $\alpha \underline{D} \psi_1 + (1 - \alpha) \underline{D} \psi_2 = \underline{D} (\alpha \psi_1 + (1 - \alpha) \psi_2)$ which belongs to B.

Suppose now that no state-price vector exists. Then we would have $A \cap B =$ \emptyset . By the Separating Hyperplane Theorem, a non-zero vector $\theta \in \mathbb{R}^I$ exists so that

$$\kappa \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{P} \leq \boldsymbol{\theta}^{\mathsf{T}} \underline{\underline{D}} \boldsymbol{\psi} = (\underline{\underline{D}}^{\mathsf{T}} \boldsymbol{\theta})^{\mathsf{T}} \boldsymbol{\psi}, \quad \text{ for all } \kappa > 0, \, \boldsymbol{\psi} \in \mathbb{R}^{S}_{++}.$$

This implies that $\theta^T P < 0$ and $D^T \theta > 0$. Since we have assumed that none of the basic assets are redundant, the dividend matrix D has full rank so there is no θ for which $D^T\theta = 0$. Hence, θ must satisfy $\theta^T \overline{P} < 0$ and $D^T\theta > 0$, and therefore θ is an arbitrage. This contradicts our assumption. Hence, a stateprice vector must exist.

¹ A set $X \subseteq \mathbb{R}^n$ is convex if, for all $x_1, x_2 \in X$ and all $\alpha \in [0, 1]$, we have $\alpha x_1 + (1 - \alpha)x_2 \in X$. 2 The version of the Separating Hyperplane Theorem applied here is the following: suppose that A and B are non-empty, disjoint, convex subsets of \mathbb{R}^n for some integer $n \geq 1$. Then there is a non-zero vector $\theta \in \mathbb{R}^n$ and a scalar ξ so that $\theta^T a \le \xi \le \theta^T b$ for all $a \in A$ and all $b \in B$. Hence, A and B are separated by the hyperplane $H = \{x \in \mathbb{R}^n | a^T x = \xi\}$. See, for example, Sydsaeter et al. (2005, Them. 13.6.3).

Supporting Theorem

Theorem Any boundary point of a convex set has a supporting hyperplane passing through it

i.e. C is convex, disjoint, $\mathbf{x}_0 \in \partial C$ then there is **a** such that

$$C \subset \{ \boldsymbol{x} : \boldsymbol{x}^{\top} \boldsymbol{a} \leq \boldsymbol{x}_0^{\top} \boldsymbol{a} \}$$

Cones

 $C \subset \mathbb{R}^n$ is a cone if

$$x \in C \Longrightarrow tx \in C$$

for all t > 0

Exemple: quadrant $(\mathbb{R}_+)^n$ is a cone

Example: $\{x \in \mathbb{R}^n : x_1 \leqslant \cdots \leqslant x_n\}$

Convex Functions

 $f:\mathbb{R}^n o \mathbb{R}$ is convex if $\mathsf{dom}(f)$ is convex and

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \le tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

for all $x, y \in dom(f)$.

 $f:\mathbb{R}^n \to \mathbb{R}$ is concave if $\mathsf{dom}(f)$ is convex and

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \ge tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

for all $x, y \in dom(f)$.

- $ightharpoonup x\mapsto e^{ax}$ is convex on $\mathbb R$ (for any a)
- $ightharpoonup x\mapsto x^a$ is convex on \mathbb{R} , for $a\geq 1$
- $x \mapsto x^\top Q x$ is convex if Q is positive semidefinite

Convex Functions

- $\triangleright x \mapsto ||x||$ is convex for any norm
- ▶ $x \mapsto \min_{y \in S} ||x y||$ (minimum distance to some set S) is convex for any norm (and so is the maximum)

 $f: \mathbb{R}^n \to \mathbb{R}$ is strictly-convex if dom(f) is convex and for all $x, y \in dom(f)$ and $t \in (0, 1)$,

$$f(t\mathbf{x} + (1-t)\mathbf{y}) < tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

First & Second Order Characterization

Proposition If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable, then f is convex if dom(f) is convex and

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in \text{dom}(f)$.

Proposition If $f: \mathbb{R}^n \to \mathbb{R}$ is twice-differentiable, them f is convex if dom(f) is convex and

$$\nabla^2 f(\mathbf{x})$$
 is positive semi-definite

for all $x \in dom(f)$.

Taylor's Expansion

The so called fundamental theorem of calculus states that

$$f(x+h) = f(x) + \int_0^h f'(x+a)da$$

by substituting

$$f(x+h) = f(x) + \int_0^h \left(f'(x) + \int_0^a f''(x+b) db \right) da$$

$$f(x+h) = f(x) + f'(x)h + \int_0^h \int_0^a f''(x+b)dbda$$

by substituting

$$f(x+h) = f(x)+f'(x)h+\int_0^h \int_0^a \left(f''(x)+\int_0^b f''(x+c)dc\right)dbda$$

$$f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2} + \int_0^h \int_0^a \int_0^b f'''(x+c)dcdbda$$

Taylor's Expansion

For $f: \mathbb{R} \to \mathbb{R}$ functions.

$$f(x+h) \sim f(x) + f'(x)h + f''(x)\frac{h^2}{2}$$

and for $f: \mathbb{R}^n \to \mathbb{R}$ functions.

$$f(\mathbf{x} + \mathbf{h}) \sim f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{h}$$

where $\nabla^2 f(\mathbf{x})$ is the Hessian matrix H. If f is convex, H is positive and

$$f(\mathbf{x} + \mathbf{h}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} \mathbf{h}$$