Nội dung Chương 3

1. Định nghĩa, cách tính tích phân kép

2. Tọa độ cực

3. Ứng dụng hình học

4. Úng dụng cơ học

Nhắc lại

Định nghĩa

Cho hình trụ được giới hạn trên bởi mặt bậc hai f = f(x, y) > 0,

giới hạn xung quanh bởi những đường thẳng song Song Oz, tựa trên biên D,

giới hạn dưới bởi miền D = [a,b]x[c,d] (đóng, bị chặn).

Bài toán: Tìm thể tích hình trụ.

Định nghĩa

Cho hình trụ được giới hạn trên bởi mặt bậc hai f(x,y) > 0, giới hạn dưới bởi miền D = [a,b]x[c,d] (đóng, bị chặn). giới hạn xung quanh bởi những đường thẳng song song Oz, tựa trên biên D. Bài toán: Tìm thể tích hình trụ.

- 1) Chia D một cách tùy ý ra thành n hình chữ nhật rời nhau: D_1 , D_2 , ..., D_n . Có diện tích tương ứng là S_{D_1} , S_{D_2} ,..., S_{D_n} .
- 2) Trên mỗi miền lấy tùy ý một điểm $M_i(x_i, y_i) \in D_i$
- 3) Thể tích của vật thể: $V \approx \sum_{i=1}^{n} f(M_i) \cdot S_{D_i} = V_n$ (tổng Riemann)
- $4) \quad V = \lim_{n \to +\infty} V_n$

Định nghĩa

Cho f = f(x,y) xác định trên miền đóng và bị chặn D (tổng quát).

Do đó, D có thể được bao kín trong một miền chữ nhật C.

Xác định hàm F(x,y) như sau:

$$F(x,y) = \begin{cases} f(x,y) & (x,y) \in D \\ 0 & (x,y) \notin D \end{cases}$$

Nếu giới hạn:
$$I = \lim_{n \to +\infty} \left(\sum_{i=1}^n F(M_i) \cdot S_{C_i} \right)$$
 tồn tại hữu hạn, thì ta nói hàm f(x,y)

khả tích trên miền D. Ký hiệu:

$$I = \iint\limits_{D} f(x, y) dx dy$$

Tính chất

1) Hàm liên tục trên miền đóng, bị chặn thì khả tích trên miền này.

$$S_D = \iint_D dx dy$$

- 3) $\iint_{D} \alpha f(x, y) dx dy = \alpha \iint_{D} f(x, y) dx dy$
- 4) $\iint_{D} [f(x,y) + g(x,y)] dxdy = \iint_{D} f(x,y) dxdy + \iint_{D} g(x,y) dxdy$
- 5) Nếu D được chia làm hai miền D_1 và D_2 rời nhau:

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D_{1}} f(x,y)dxdy + \iint\limits_{D_{2}} f(x,y)dxdy$$

6)
$$\forall (x, y) \in D, f(x, y) \le g(x, y) \Rightarrow \iint_{D} f dx dy \le \iint_{D} g dx dy$$

Ví dụ

Cho vật thể được giới hạn trên bởi mặt bậc hai $f(x,y) = 16 - x^2 - 2y^2$ giới hạn dưới bởi hình vuông: $R = [0,2] \times [0,2]$ giới hạn xung quanh bởi những đường thẳng song Song Oz, tựa trên biên R. Ước lượng thể tích của vật thể trong các trường hợp sau:

- a) Chia R thành 4 phần bằng nhau;
- b) Chia R thành 16 phần bằng nhau;
- c) Chia R thành 64 phần bằng nhau;
- d) Chia R thành 256 phần bằng nhau;
- e) Tính thể tích của vật thể.

$$V \approx V_n = \sum_{i=1}^{4} f(M_i) \cdot S_{D_i}$$
$$S_{D_i=1, \forall i=1,\dots,4.}$$

(c)
$$m = n = 16, V \approx 46.46875$$

Cách tính (Định lý Fubini): Cho f liên tục trên miền đóng và bị chặn D.

1) Giả sử D xác định bởi:

$$\begin{cases} a \le x \le b \\ y_1(x) \le y \le y_2(x) \end{cases}$$

$$I = \iint_D f(x, y) dx dy = \int_a^b dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy$$

2) Giả sử D xác định bởi:

$$\begin{cases} c \le y \le d \\ x_1(y) \le x \le x_2(y) \end{cases}$$

$$\begin{cases} c \le y \le d \\ x_1(y) \le x \le x_2(y) \end{cases} \qquad I = \iint_D f(x, y) dx dy = \int_c^d dy \int_{x_1(y)}^{x_2(y)} f(x, y) dx$$

Tính thể tích của vật thể:
$$V = \iint_R (16 - x^2 - 2y^2) dx dy = \int_0^2 dx \int_0^2 (16 - x^2 - 2y^2) dy$$

$$= \int_{0}^{2} \left[(16 - x^{2}) y - 2 \frac{y^{3}}{3} \right]_{0}^{2} dx = \int_{0}^{2} \left(32 - 2x^{2} - \frac{16}{3} \right) dx = 48$$

Giải câu e)

Tính tích phân kép $I = \iint_D xy dx dy$, trong đó D là miền phẳng giới hạn bởi: $y = 2 - x^2$, y = x.

$$\begin{cases} -2 \le x \le 1 \\ x \le y \le 2 - x^2 \end{cases}$$

$$I = \iint_{D} (xy) dxdy = \int_{-2}^{1} dx \int_{x}^{2-x^{2}} (xy) dy$$

$$= \int_{-2}^{1} \left[x \frac{y^2}{2} \right]_{x}^{2-x^2} dx$$

$$= \int_{-2}^{1} \left(x \frac{(2-x^2)^2}{2} - x \frac{x^2}{2} \right) dx = \frac{9}{8}.$$

Tính tích phân kép $I = \iint_D (x+y) dx dy$, trong đó D là tam giác OAB, với: O(0,0), A(1,1), B(2,0).

$$\begin{cases} 0 \le x \le 2 \\ 0 \le y \le ? \end{cases}$$

Cần chia D ra thành hai miền: D₁ và D₂

$$I = \iint_D = \iint_1 + \iint_{D_2}$$

$$I = \int_{0}^{1} dx \int_{0}^{x} (x+y)dy + \int_{0}^{2} dx \int_{0}^{2-x} (x+y)dy =$$

$$= \frac{1}{2} + \frac{5}{6} = \frac{4}{3}.$$

Nếu lấy cận x trước, y sau thì không cần chia D.

Tính tích phân kép
$$I = \iint_D |y - x^2| dxdy$$

D là miền phẳng giới hạn bởi: $-1 \le x \le 1, 0 \le y \le 1$.

Ví dụ

Tính tích phân kép
$$I = \int_{0}^{1} dy \int_{y}^{1} e^{x^{2}} dx$$

Tích phân $\int_{y}^{1} e^{x^2} dx$ không tính được.

Thay đổi thứ tự lấy tích phân:

- 1) Xác định miền D.
- 2) Vẽ miền D.
- 3) Thay đổi thứ tự.

Ví dụ

$$D: \begin{cases} 0 \le y \le 1 \\ y \le x \le 1 \end{cases}$$

Thay đổi cận: $D: \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x \end{cases}$

$$I = \int_{0}^{1} dx \int_{0}^{x} e^{x^{2}} dy = \int_{0}^{1} e^{x^{2}} y \Big|_{0}^{x} dx = \int_{0}^{1} x e^{x^{2}} dx = \frac{1}{2} e^{x^{2}} \Big|_{0}^{1} = \frac{e - 1}{2}$$

Tính tích phân kép
$$I = \int_{0}^{1} dy \int_{\sqrt{y}}^{1} \sin(x^3 - 1) dx$$

Tích phân $\int_{\sqrt{y}}^{1} \sin(x^3 - 1) dx$ không tính được (qua các hàm sơ cấp).

$$D: \begin{cases} 0 \le y \le 1 \\ \sqrt{y} \le x \le 1 \end{cases}$$

Thay đổi cận:

$$D: \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$$

$$I = \int_{0}^{1} dx \int_{0}^{x^{2}} \sin(x^{3} - 1) dy = \int_{0}^{1} \sin(x^{3} - 1) \cdot y \Big|_{0}^{x^{2}} dx$$

$$= \int_{0}^{1} x^{2} \sin(x^{3} - 1) dx = \frac{\cos(1) - 1}{3}$$

Ví dụ

Thay đổi thứ tự lấy tích phân
$$I = \int_{0}^{1} dy \int_{0}^{y^2+y} f(x, y) dx$$

$$D: \begin{cases} 0 \le y \le 1 \\ 0 \le x \le y^2 + y \end{cases}$$

Vẽ miền D:

Thay đổi cận:

$$D: \begin{cases} 0 \le x \le 2\\ \frac{-1 + \sqrt{1 + 4x}}{2} \le y \le 1 \end{cases}$$

$$D: \begin{cases} 0 \le x \le 2 \\ \frac{-1 + \sqrt{1 + 4x}}{2} \le y \le 1 \\ 0 & \frac{-1 + \sqrt{1 + 4x}}{2} \end{cases} f(x, y) dy$$

21-Mar-20 Department of Mathematics HaNoi National University

Thay đổi thứ tự lấy tích phân
$$I = \int_{-\sqrt{3}}^{\sqrt{3}} dy \int_{\sqrt{12-y^2}}^{2+\sqrt{4-y^2}} f(x,y)dx$$

$$D: \begin{cases} -\sqrt{3} \le y \le \sqrt{3} \\ \sqrt{12 - y^2} \le x \le 2 + \sqrt{4 - y^2} \end{cases}$$

Vẽ miền D:

Thay đổi cận:

Phải chia D làm 3 miền:

$$D_1: \begin{cases} 3 \le x \le 2\sqrt{3} \\ \sqrt{12 - x^2} \le y \le \sqrt{4x - x^2} \end{cases}$$

$$D_2: \begin{cases} 3 \le x \le 2\sqrt{3} \\ -\sqrt{4x - x^2} \le y \le -\sqrt{12 - x^2} \end{cases}$$

$$\rightarrow I = \iint_{D_1} f dx dy + \iint_{D_2} f dx dy + \iint_{D_3} f dx dy$$

$$D_3: \begin{cases} 2\sqrt{3} \le x \le 4 \\ -\sqrt{4x - x^2} \le y \le \sqrt{4x - x^2} \end{cases}$$

Đổi biến tổng quát

Định lý:

Giả sử có phép đổi biến: x = x(u, v), y = y(u, v); sao cho phép đổi biến này là 1-1 (có thể trừ trên biên), và $J \neq 0$ (có thể J = 0 tại một số điểm hữu hạn), khi đó:

$$\iint\limits_{D_{xy}} f(x,y) dx dy = \iint\limits_{D_{uv}} f(x(u,v),y(u,v)). |J|. du dv$$

Trong đó:

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix}$$

Định nghĩa

Mối liên hệ giữa tọa độ cực và tọa độ Descartes:

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}, 0 \le \varphi \le 2\pi$$

Chú ý:
$$x^2 + y^2 = r^2$$

Ví dụ. Phương trình đường tròn tâm O, bán kính bằng 2: $x^2 + y^2 = 4$

Phương trình đường tròn này trong tọa độ cực là: r = 2.

Ví dụ

• Phương trình đường tròn tâm (1,0), bán kính bằng 1: $x^2 + y^2 = 2x$

Phương trình đường tròn này trong tọa độ cực là: $r^2 = 2r\cos\varphi \Leftrightarrow r = 2\cos\varphi$

• Phương trình đường tròn tâm (0,1), bán kính bằng 1: $x^2 + y^2 = 2y$

Phương trình đường tròn này trong tọa độ cực là: $r^2 = 2r \sin \varphi \Leftrightarrow r = 2 \sin \varphi$

• Phương trình đường thẳng x = 2

Phương trình đường thẳng này trong tọa độ cực là: $r\cos\varphi = 2 \Leftrightarrow r = \frac{2}{\cos\varphi}$

Ví dụ

© Thomson Higher Education

(b)
$$R = \{(r, \theta) \mid 1 \le r \le 2, 0 \le \theta \le \pi\}$$

Định lý

Đổi biến qua hệ tọa độ cực:

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}, 0 \le \varphi \le 2\pi$$

$$J = \begin{vmatrix} x'_r & x'_{\varphi} \\ y'_r & y'_{\varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{vmatrix} = r \rightarrow |J| = r$$

$$\iint\limits_{D_{xy}} f(x,y)dxdy = \iint\limits_{D_{r\varphi}} f(r\cos\theta, r\sin\theta) \cdot r \cdot drd\varphi$$

Ví dụ

Tính tích phân kép $I = \iint_D (x+y) dx dy$, trong đó D là miền phẳng giới hạn bởi: $x^2 + y^2 = 1, x^2 + y^2 = 4, y \ge 0, y \le x$

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

$$D_{r\varphi}: \begin{cases} 0 \le \varphi \le \frac{\pi}{4} \\ 1 \le r \le 2 \end{cases}$$

Ví dụ

$$I = \iint_{D} (x+y)dxdy$$

$$I = \int_{0}^{\pi/4} d\varphi \int_{1}^{2} (r\cos\varphi + r\sin\varphi) \cdot \mathbf{r} \cdot d\mathbf{r} = \int_{0}^{\pi/4} d\varphi \int_{1}^{2} (\cos\varphi + \sin\varphi) \cdot \mathbf{r}^{2} \cdot d\mathbf{r}$$

$$I = \int_{0}^{\pi/4} (\cos\varphi + \sin\varphi) \cdot \frac{\mathbf{r}^{3}}{3} \Big|_{1}^{2} d\varphi$$

$$I = \int_{0}^{\pi/4} (\cos\varphi + \sin\varphi) \cdot \left(\frac{8}{3} - \frac{1}{3}\right) d\varphi$$

$$I = \frac{7}{3}$$

Tính
$$I = \iint_D \sqrt{4 - x^2 - y^2} dx dy$$
, trong đó D là miền phẳng giới hạn bởi $x^2 + y^2 = 4$, $y = x$, $y = x\sqrt{3}$ $(y \ge x)$

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

$$D_{r\varphi}: \begin{cases} \frac{\pi}{4} \le \varphi \le \frac{\pi}{3} \\ 0 \le r \le 2 \end{cases}$$

$$I = \int_{\pi/4}^{\pi/3} d\varphi \int_{0}^{2} \sqrt{4 - r^{2}} \cdot \mathbf{r} \cdot d\mathbf{r}$$

$$I = \frac{2\pi}{9}$$

Tính
$$I = \iint_D \sqrt{x^2 + y^2} dx dy$$
, trong đó D là miền phẳng giới hạn bởi: $x^2 + y^2 \le 2x, y \le -x$.

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

$$D_{r\varphi}: \begin{cases} \frac{-\pi}{2} \le \varphi \le \frac{-\pi}{4} \\ 0 \le r \le 2\cos\varphi \end{cases}$$

$$I = \int_{-\pi/2}^{-\pi/4} d\varphi \int_{0}^{2\cos\varphi} r \cdot \mathbf{r} \cdot dr$$

$$I = \int_{-\pi/2}^{-\pi/4} \frac{8}{3} \cos^3 \varphi d\varphi = \frac{16 - 10\sqrt{2}}{9}$$

Tính
$$I = \iint_D (x+1) dx dy$$
, trong đó D là miền phẳng giới hạn bởi: $x^2 + y^2 \ge 2x; x^2 + y^2 \le 4x; y \ge -x; y \le x\sqrt{3}$

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases}$$

$$D_{r\varphi}: \begin{cases} \frac{-\pi}{4} \le \varphi \le \frac{\pi}{3} \\ 2\cos\varphi \le r \le 4\cos\varphi \end{cases}$$

$$I = \int_{-\pi/4}^{\pi/3} d\varphi \int_{2\cos\varphi}^{4\cos\varphi} (r\cos\varphi + 1) \cdot r \cdot dr$$

$$=\frac{37+35\pi}{6}+\frac{67\sqrt{3}}{24}$$

Tính
$$I = \iint_D (x+y) dx dy$$
, trong đó D là miền phẳng giới hạn bởi $x^2 + y^2 \le 2x$; $x^2 + y^2 \le 2y$.

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} D: \begin{cases} 0 \le \varphi \le \frac{\pi}{2} \\ 0 \le r \le \end{cases}$$

$$D_1: \begin{cases} 0 \le \varphi \le \frac{\pi}{4} \\ 0 \le r \le 2\sin\varphi \end{cases}$$

$$D_1: \begin{cases} 0 \le \varphi \le \frac{\pi}{4} \\ 0 \le r \le 2\sin \varphi \end{cases}$$

$$D_2: \begin{cases} \frac{\pi}{4} \le \varphi \le \frac{\pi}{2} \\ 0 \le r \le 2\cos\varphi \end{cases}$$

$$I = \iint\limits_{D_1} + \iint\limits_{D_2} = \left(\frac{\pi}{4} - \frac{1}{2}\right) + \left(\frac{\pi}{4} - \frac{1}{2}\right)$$

2. Tọa độ cực

Tọa độ cực suy rộng

Trường hợp 1. Miền phẳng D là hình tròn: $(x-x_0)^2 + (y-y_0)^2 \le a^2$

Dùng phép đổi biến:

$$\begin{cases} x - x_0 = r \cos \varphi \\ y - y_0 = r \sin \varphi \end{cases}$$

Khi đó định thức Jacobi:

$$J = \begin{vmatrix} x'_r & x'_{\varphi} \\ y'_r & y'_{\varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -r \cdot \sin \varphi \\ \sin \varphi & r \cdot \cos \varphi \end{vmatrix} = r$$

Khi lấy cận của r, φ ta coi như gốc tọa độ dời về tâm hình tròn.

2. Tọa độ cực

Tọa độ cực suy rộng

Trường họp 2. Miền phẳng D là Ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$; a > 0, b > 0

Dùng phép đổi biến:
$$\begin{cases} \frac{x}{a} = r \cos \varphi \\ \frac{y}{b} = r \sin \varphi \end{cases}$$

Khi đó định thức Jacobi:

$$J = \begin{vmatrix} x'_r & x'_{\varphi} \\ y'_r & y'_{\varphi} \end{vmatrix} = \begin{vmatrix} a \cdot \cos \varphi & -ar \cdot \sin \varphi \\ b \cdot \sin \varphi & br \cdot \cos \varphi \end{vmatrix} = abr$$

Khi đó cận của r, φ : $\begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 1 \end{cases}$

Tính
$$I = \iint_D (2x + y) dx dy$$
, trong đó D là miền phẳng giới hạn bởi

$$(x-1)^2 + (y-2)^2 \le 4; x \ge 1.$$

$$\begin{cases} x - 1 = r \cos \varphi \\ y - 2 = r \sin \varphi \end{cases}$$

$$D_{r\varphi}: \begin{cases} \frac{-\pi}{2} \le \varphi \le \frac{\pi}{2} \\ 0 \le r \le 2 \end{cases}$$

$$I = \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{2} \left[2(1 + r\cos\varphi) + (2 + r\sin\varphi) \right] \cdot r \cdot dr$$
$$= \frac{32}{3} + 8\pi$$

Tính
$$I = \iint_D (x+1) dx dy$$
, trong đó D là miền phẳng giới hạn bởi
$$\frac{x^2}{9} + \frac{y^2}{4} \le 1; y \ge 0; x \ge 0$$

$$\begin{cases} \frac{x}{3} = r\cos\varphi \\ \frac{y}{2} = r\sin\varphi \end{cases}$$

$$D_{r\varphi}: \begin{cases} 0 \le \varphi \le \frac{\pi}{2} \\ 0 \le r \le 1 \end{cases}$$

$$I = \int_{0}^{\pi/2} d\varphi \int_{0}^{1} (3 \cdot r \cos \varphi + 1) \cdot 3 \cdot 2 \cdot r \cdot dr = 6 + \frac{3\pi}{2}$$

Tính
$$I = \iint_D x dx dy$$
, trong đó D là miền phẳng giới hạn bởi
$$\frac{x^2}{3} + y^2 \le 1; y \ge 0; y \le x$$

$$\begin{cases} \frac{x}{\sqrt{3}} = r\cos\varphi & D_{r\varphi} : \begin{cases} 0 \le \varphi \le \frac{\pi}{3} \\ 0 \le r \le 1 \end{cases} \\ y = r\sin\varphi & \end{cases}$$

$$tg\varphi = \frac{\sin\varphi}{\cos\varphi} = \frac{y/r}{x/(r\sqrt{3})}$$

Vì đường y = x nên $tg \varphi = \sqrt{3}$

$$\Rightarrow \varphi = \frac{\pi}{3}$$

$$I = \int_{0}^{\pi/3} d\varphi \int_{0}^{1} \sqrt{3} \cdot r \cos \varphi \cdot \sqrt{3} \cdot 1 \cdot r \cdot dr = \frac{\sqrt{3}}{2}$$

Diện tích miền D:
$$S_D = \iint_{D_{xy}} dxdy$$

Tính diện tích miền D giới hạn bởi: $x^2 + y^2 = 2y$; $x^2 + y^2 = 6y$; $y \ge x\sqrt{3}$; $x \ge 0$

Diện tích miền D là:

$$S_{D} = \iint_{D} dx dy = \int_{\pi/3}^{\pi/2} d\varphi \int_{2\sin\varphi}^{6\sin\varphi} r dr$$

$$S_D = \int_{\pi/3}^{\pi/2} \frac{r^2}{2} \Big|_{2\sin\varphi}^{6\sin\varphi} d\varphi = \int_{\pi/3}^{\pi/2} 16\sin^2\varphi d\varphi$$

$$S_D = \frac{4}{3}\pi + 2\sqrt{3}$$

Tính thể tích

Để tính thể tích khối Ω :

- 1) Xác định mặt giới hạn bên trên: $z = z_2(x, y)$
- 2) Xác định mặt giới hạn bên dưới: $z = z_1(x, y)$
- 3) Xác định hình chiếu của Ω xuống Oxy: $D_{xy} = Pr_{oxy}\Omega$

$$V_{\Omega} = \iint\limits_{D_{xy}} \left[z_2(x, y) - z_1(x, y) \right] dxdy$$

Chú ý: 1) Có thể chiếu Ω xuống Oxz, hoặc Oyz. Khi đó mặt phía trên, mặt phía dưới phải theo hướng chiếu xuống.

2) Để tìm hình chiếu của Ω xuống Oxy, ta khử z trong các phương trình của Ω .

Tính thể tích vật thể giới hạn bởi: $z = (x-1)^2 + y^2$; 2x + z = 2

Mặt phía dưới:
$$z = z_1(x, y) = (x-1)^2 + y^2$$

Hình chiếu: khử z trong 2 phương trình:

$$(x-1)^2 + y^2 = 2 - 2x \Leftrightarrow x^2 + y^2 = 1$$

$$\Rightarrow D: x^2 + y^2 \le 1$$

$$V = \iint\limits_{x^2 + y^2 \le 1} \left(z_2 - z_1 \right) dx dy$$

Ví dụ

$$V = \iint_{x^2 + y^2 \le 1} \left[(2 - 2x) - (x^2 - 2x + 1 + y^2) \right] dxdy$$

$$V = \iint_{x^2 + y^2 \le 1} \left(1 - x^2 - y^2 \right) dx dy$$

Đổi sang tọa độ cực: $\begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases}$

$$V = \int_{0}^{2\pi} d\varphi \int_{0}^{1} (1 - r^{2}) \cdot r \cdot dr = \int_{0}^{2\pi} \left(\frac{r^{2}}{2} - \frac{r^{4}}{4} \right) \Big|_{0}^{1} d\varphi$$

$$V = \frac{\pi}{2}$$

Tính thể tích vật thể giới hạn bởi: $z = x^2 + y^2$; $y = x^2$; y = 1; z = 0

Mặt trên: $z = x^2 + y^2$

Mặt phía dưới: z = 0

Hình chiếu: D

$$V = \iint\limits_{D} \left(x^2 + y^2 - 0 \right) dx dy$$

$$D: \begin{cases} -1 \le x \le 1 \\ x^2 \le y \le 1 \end{cases}$$

$$V = \int_{-1}^{1} dx \int_{x^{2}}^{1} \left(x^{2} + y^{2}\right) dy$$

$$V = \int_{-1}^{1} \left(x^2 y + \frac{y^3}{3} \right) \Big|_{x^2}^{1} dx$$

$$V = \int_{-1}^{1} \left[\left(x^2 + \frac{1}{3} \right) - \left(x^4 + \frac{x^6}{3} \right) \right] dx = \frac{88}{105}$$

Tính thể tích vật thể giới hạn bởi: $z = 2x^2 + y_1^2 + 1, x + y = 1$ và các mặt tọa độ.

Mặt phía trên: $z = 2x^2 + y^2 + 1$

Mặt phía dưới: z = 0

Hình chiếu: là tam giác màu đỏ.

$$V = \iint_{OAB} (2x^2 + y^2 + 1 - 0) dxdy = \frac{3}{4}$$

Tính thể tích vật thể giới hạn bởi: $z = 4 - y^2$; $z = y^2 + 2$; x = -1; x = 2.

Có thể chiếu xuống Oxy tương tự các ví dụ trước.

Chiếu vật thể xuống Oyz:

Mặt phía trên: x = 2

Mặt phía dưới: x = -1

Thể tích vật thể cần tính:

$$V = \iint\limits_{D_{yz}} \left[x_2(y,z) - x_1(y,z) \right] dydz$$

$$V = \int_{-1}^{1} dy \int_{2+y^2}^{4-y^2} \left[2 - (-1)\right] dz$$

$$V = \int_{-1}^{1} 3z \Big|_{2+y^2}^{4-y^2} dy$$

$$V = 3 \int_{-1}^{1} \left(4 - y^2 - 2 - y^2 \right) dy$$

$$V = 8$$
.

Diện tích mặt cong

Mặt S cho bởi phương trình z = z(x, y), D là hình chiếu của S xuống Oxy.

Chia miền D thành n miền con D₁, D₂, ..., D_n. Khi đó tương ứng, S được

chia thành các mặt con $S_1, S_2, ..., S_n$.

Diện tích tương ứng: ΔS_1 , ΔS_2 , ..., ΔS_n .

Lấy điểm tùy \hat{y} $P_i(x_i, y_i, 0) \in D_i$.

Tương ứng với điểm $M_i(x_i, y_i, z_i) \in S_i$.

Gọi T_i là mặt tiếp diện với S_i tại M_i.

Và T_i là mảnh có hình chiếu xuống Oxy là D_i

Diện tích mặt cong

Với D_i nhỏ, ta coi diện tích của T_i là diện tích gần đúng của mảnh S_i:

$$S = \sum_{i=1}^{n} \Delta S_i \approx \sum_{i=1}^{n} S(T_i)$$

Gọi γ_i là góc giữa hai mảnh D_i và T_i : $S(D_i) = S(T_i) \cdot \cos \gamma_i$

Ta có γ_i là góc giữa pháp tuyến tại M_i với mặt S và trục Oz.

Véctor pháp của S tại M_i : $\vec{n}(M_i) = (-z'_x(x_i, y_i), -z'_y(x_i, y_i), 1)$

$$\cos \gamma_{i} = \frac{1}{\sqrt{[z'_{x}(x_{i}, y_{i})]^{2} + [z'_{y}(x_{i}, y_{i})]^{2} + 1}}$$

$$\Rightarrow S \approx \sum_{i=1}^{n} S(T_i) = \sum_{i=1}^{n} \sqrt{\left[z_x'(x_i, y_i)\right]^2 + \left[z_y'(x_i, y_i)\right]^2 + 1} \cdot S(D_i)$$

$$S = \lim_{n \to +\infty} \left[\sum_{i=1}^{n} \sqrt{\left(z_x'\right)^2 + \left(z_y'\right)^2 + 1} \cdot S(D_i) \right]$$

Diện tích mặt cong có phương trình z = z(x, y), có hình chiếu xuống mặt phẳng Oxy là D_{xy} được tính bởi công thức:

$$S = \iint\limits_{D_{xy}} \sqrt{1 + \left(z_x'\right)^2 + \left(z_y'\right)^2} dxdy$$

Tính diện tích phần mặt paraboloid $z=1-x^2-y^2$ nằm trong hình trụ: $x^2+y^2=1$

Hình chiếu của S xuống Oxy:

$$D: x^2 + y^2 \le 1$$

Phương trình mặt S: $z = 1 - x^2 - y^2$

$$z_x' = -2x; z_y' = -2y$$

Diện tích phần mặt paraboloid:

$$S = \iint_{D} \sqrt{1 + \left(z_{x}^{\prime}\right)^{2} + \left(z_{y}^{\prime}\right)^{2}} dxdy$$

$$S = \iint\limits_{x^2 + y^2 \le 1} \sqrt{1 + 4x^2 + 4y^2} dxdy = \int\limits_{0}^{2\pi} d\phi \int\limits_{0}^{1} \sqrt{1 + 4r^2} \cdot r \cdot dr = \frac{(5\sqrt{5} - 1)\pi}{6}$$

