UGANDA MARTYRS UNIVERSITY

UNIVERSITY EXAMINATIONS

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

END OF SEMESTER FINAL ASSESSMENT

SEMESTER I 2023/24

FIRST YEAR EXAMINATIONS FOR BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY (BSc IT YEAR I MASAKA CAMPUS)

COMPUTATIONAL MATHEMATICS

MTH 3206

DATE: THURSDAY 14th Dec. 2023

TIME: 9:30 AM - 12:30 PM

TIME: 3 Hours

Instructions

- 1. Carefully read through ALL the questions before attempting.
- 2. ANSWER FOUR (4) Questions (All questions carry equal marks).
- 3. No names should be written anywhere on the examination booklet.
- 4. Ensure that your Reg. number and Course are indicated on all pages of your work.
- 5. Ensure that your work is clear and readable. Untidy work will be penalized.
- 6. Any type of examination Malpractice will lead to automatic disqualification.

QUESTION ONE

- (a) Given the complex numbers Z = 4 + 8i and W = -6 5i find

[2 Marks]

[5 Marks]

- (b) If f(x) = 5 + x and $h(x) = x^2 3$ determine
 - (i) f(3)

[2 Marks]

(ii) fh(x)

[3 Marks]

(i) Sketch the graph of $f(x) = x^2 + 2$.

[3 Marks]

(ii) Given that $f(x) = 2x^2 + bx + 1$ and f(2) = 17, determine the value of b hence [3 Marks] find f(2)

(iii) Given that $h(x) = 5 \log x + 2e^x$ determine the value of h(1).

[4 Marks]

- (d) Given that h(x) = 4x + 8 find
 - (i) $h^{-1}(x)$

[3 Marks]

(ii) $h^{-1}(12)$.

[3 Marks]

QUESTION TWO

(a) Given that $M=\{1,2,3,4....\}$ and $N=\{1,2,3,4\}$

[2 Marks]

(i) Give a rule that describes M.

19

(ii) Find M-N and $N'\cap M$. Comment on both answers.

[4 Marks]

- (b) Let $A=\{p,q,r\}$ and $B=\{s,t\}$
 - (i) List the power set of A.

[3 Marks]

(ii) State the cardinality of B.

[1 Mark]

(c) Given that there are 54 students in IT class. 28 of these do A	Architecture , 30 do
C++ and 4 do neither of the programming courses.	
(i) How many of the students do both courses?	3 Marks
(ii) How many of the students do C++ only?	[3 Marks]
(iii) How many of the students do either?	[2 Marks]
(iv) What is the probability that a student selected at random	does at least one of
the courses?	[2 Marks]
QUESTION THREE	
(a) Give the difference between simple and compound propositions	. [1 Mark]
(b) Let r: x is a prime number.	
t:y is a factor of w .	
Write down the English translations for	
(i) $\sim r$	[2 Marks]
(ii) $r \wedge t$	[2 Marks]
(iii) $r \lor t$	[2 Marks]
(iv) $r \longrightarrow t$.	[2 Marks]
(c) Symbolically write the following propositions	
(i) I hate politics and I enjoy football.	[2 Marks]
(ii) If God is love then He is blind.	[2 Marks]
(d) Construct truth tables for	
(i) Conjunction	[1 Mark]
(ii) Disjunction.	[1 Mark]
(e) (i) Define a tautology.	[1 Mark]
(ii) Check whether the compound statement $(p \land q) \longrightarrow (p \lor q)$	is
a tautology.	[3 Marks]

- (f) Construct the truth table for the compound proposition
 - (i) $[q \land (p \rightarrow q)] \leftrightarrow p$

[3 Marks]

(ii) $[p \land (p \rightarrow \sim q)] \rightarrow \sim q$.

[3 Marks]

QUESTION FOUR

- (a) Solve
 - (i) 5(t+3) = 5 8t

[2 Marks]

(ii) $2x^2 + 5x + 3 = 0$

[3 Marks]

(iii) the simultaneous equations

$$y + 2x = 9$$

$$3x - 2y = 10$$

[3 Marks]

(b) (i) Define a triangular matrix.

[2 Marks]

(ii) Find the transpose of the matrix

$$A = \left(\begin{array}{rrrr} 1 & 3 & 0 & 0 \\ 2 & 4 & 6 & 0 \\ 0 & -4 & 5 & 10 \end{array}\right).$$

[2 Marks]

- (c) Given $B = \begin{pmatrix} -1 & 5 \\ 2 & 3 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}$ determine
 - (i) D+B

[2 Marks]

(ii) B^2

[3 Marks]

(iii) D^{-1} the inverse of D.

[3 Marks]

(d) Find the determinant of

(i)
$$\begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$$

[2 Marks]

(ii)
$$\begin{pmatrix} 3 & 2 & 1 \\ 2 & 0 & 2 \\ 4 & 1 & 0 \end{pmatrix}$$

[3 Marks]

QUESTION FIVE

(a) Convert

(i) 11100011 from Binary to decimal.

[2 Marks]

(ii) 231 from decimal to Binary.

[2 Marks]

(ii) 1AC from Hexadecimal to decimal.

[3 Marks]

(b) Differentiate with respect to the independent variable x

(i) $y = x^4 + 5x$

[2 Marks]

(ii) $y = 3x(x^2 + 12)$

[3 Marks]

(c) Find

(i) $\int 4x^3 - 3x^2 - 2x + 12 \ dx$

[3 Marks]

(ii) $\int_{1}^{2} 3x^{2} + 4 \ dx$

[4 Marks]

(d) If $f(x) = x^2(3 - 2x)$ find the

(i) value of f(x) when x = 2,

[2 Marks]

(ii) gradient function f'(x)

[2 Marks]

(iii) slope for the graph of f(x) at the point where the x coordinate is 2.[2 Marks]

End