Deep Learning - Foundations and Concepts Chapter 14. Sampling

nonlineark@github

March 25, 2025

Outline

Basic Sampling Algorithms

Expectations

For some applications the goal is to evaluate expectations with respect to the distribution. Suppose we wish to find the expectation of a function f(z) with respect to a probability distribution p(z):

$$E(f) = \int f(z)p(z)dz$$

The general idea behind sampling methods is to obtain a set of samples $z^{(l)}$ drawn independently from the distribution p(z). This allows the expectation to be approximated by a finite sum:

$$\bar{f} = \frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})$$

Expectations

Let's calculate the expectation and variance of \bar{f} :

$$E(\bar{f}) = E(\frac{1}{L} \sum_{l=1}^{L} f(z^{(l)})) = E(f)$$

$$E(\bar{f}^2) = E(\frac{1}{L^2} \sum_{l,l'} f(z^{(l)}) f(z^{(l')})) = (E(f))^2 + \frac{1}{L} \text{var}(f)$$

$$\text{var}(\bar{f}) = E(\bar{f}^2) - (E(\bar{f}))^2 = \frac{1}{L} \text{var}(f)$$

Which shows that:

- \bullet \bar{f} is an unbiased estimator of E(f).
- ullet Due to the linear decrease of the variance with increasing L, in principle, high accuracy may be achievable with a relatively small number of samples $z^{(l)}$.

Problem

Suppose that z is uniformly distributed over the interval (0,1). Given a probability density function p, find a function g such that the random variable y=g(z) has p as its probability density function.

Let U be the probability density function of the uniform distribution over the interval (0,1), we have:

$$p(y)dy = U(z)dz$$

$$f(y_0) = \int_{-\infty}^{y_0} p(y)dy = \int_{-\infty}^{z_0} U(z)dz = z_0$$

$$y_0 = f^{-1}(z_0)$$

So we have to transform the uniformly distributed random numbers using a function that is the inverse of the cumulative distribution function of the desired probability density function.

Some examples:

- Exponential distribution $p(y) = \lambda \exp(-\lambda y)$:
 - $z = f(y) = \int_0^y p(t) dt = 1 \exp(-\lambda y).$
 - $y = -\frac{1}{\lambda} \log(1-z)$.
- Cauchy distribution $p(y) = \frac{1}{\pi} \frac{1}{1+y^2}$:
 - $z = f(y) = \int_{-\infty}^{y} p(t) dt = \frac{1}{\pi} \arctan y + \frac{1}{2}$.
 - $y = \tan(\pi(z \frac{1}{2})).$

The generalization to multiple variables involves the Jacobian of the change of variables, so that:

$$p_Y(y_1,\ldots,y_M) = p_Z(z_1,\ldots,z_M) \left| \frac{\partial(z_1,\ldots,z_M)}{\partial(y_1,\ldots,y_M)} \right|$$

The Box-Muller method for generating samples from a Gaussian distribution. First, suppose we generate pairs of uniformly distributed random numbers $z_1,z_2\in (-1,1)$. Next, we discard each pair unless it satisfies $z_1^2+z_2^2\leq 1$. This leads to a uniform distribution of points inside the unit circle with $p_Z(z_1,z_2)=\frac{1}{\pi}$. Then, for each pair z_1,z_2 we evaluate the quantities:

$$y = z \frac{\sqrt{-4\log||z||}}{||z||}$$

The joint distribution of y_1 and y_2 is given by:

$$p_Y(y_1, y_2) = p_Z(z_1, z_2) \left| \frac{\partial(z_1, z_2)}{\partial(y_1, y_2)} \right| = \left(\frac{1}{\sqrt{2\pi}} \exp(-\frac{y_1^2}{2}) \right) \left(\frac{1}{\sqrt{2\pi}} \exp(-\frac{y_2^2}{2}) \right)$$

So y_1 and y_2 are independent and each has a Gaussian distribution with zero mean and unit variance.