

Introduction to perturbation modelling for single-cell technologies

George Gavriilidis ggeorav@certh.gr

Perturbation modelling in single-cell biology

 Single-cell technologies = unprecedented resolution into cell physiology / cell-cell communication / gene regulation

- Perturbations: Growth factors/drugs/CRISPR Knock-outs in single-cell experiments
 - Changing pathways/transcription factors?
 - Which cells are mostly affected?
 - Predict perturbed cell states in other datasets?

From "chip" to "lab-bench" to "clinical bedside"

Vision: Accelerate therapeutic discoveries from *in silico* to *in vitro* to *in vivo/clinical*

Applications: Multiomics, Drug Repurposing/Repositioning, Drug Discovery, Biomarker Research, Immunophenotyping...

Active Learning/Lab-on-a-loop

Perturbation modelling tools

Currently approximately 70 to 80 tools and growing..

Our recent review captures ~40 of them..

MINI-REVIEW · Volume 23, P1886-1896, December 2024 · Open Access

A mini-review on perturbation modelling across single-cell omic modalities

George I. Gavriilidis 🌣 a 🖾 · Vasileios Vasileiou a,b · Aspasia Orfanou a · Naveed Ishaque c · Fotis Psomopoulos 🖧 a 🖾

Affiliations & Notes ✓ Article Info ✓

Focus of the current training event

Why this training event?

Apart from the **pertpy package**, there is a profound scarcity of training material for these very intricate tools (it only has ~7 tools though...)

<u>Lack of</u> best practices, established benchmarks and standards impede the broader usage of these tools!

ISMB/ECCB 2025 Tutorial VT-8 Generative AI for Single-Cell Perturbation Modeling: Theoretical and practical considerations

scGen: a landmark generative model for unseen perturbations

Konstantinos I. Giatras, giatras@fleming.gr

Why model perturbations in silico?

- 20 k genes × 400 cell types → wet lab screen impossible.
- Patient samples scarce & noisy.
- In-silico models rank experiments, suggest drug repurposing, personalise predictions.
- 2019: **scGen** shows DL can forecast unseen perturbations.

Decoding scGen-relevant jargon

Term	What it really means		
Auto-encoder	Compresses a full gene profile, then rebuilds it.		
β-VAE	Auto-encoder with a β weight that keeps features tidy and interpretable.		
Latent space	Low-dimensional map where nearby points are transcriptionally similar cells.		
ZINB decoder	Output layer tailored to zero-heavy single-cell RNA counts.		

How scGen makes a prediction

- β-variational auto-encoder (β-VAE).
- Reconstructs full gene expression profile no pre-selected markers.
- Applicable to drugs, CRISPR KOs, cytokines, even dose series.

scGen output - PCA & mean-correlation snapshot

CD4 T controls vs IFN-β-stimulated example

Where scGen still shines ...and why we call it a 'legacy baseline'

✓ GPU-friendly & even runs on CPU	No attention / pathway priors – ignores known gene–gene links	
 δ vector is human-readable – easy to visualise transfer 	X One-size-fits-all δ – same shift for every cell hides heterogeneity	
✓ Cross-species / cross-study transfer – δ often reusable across datasets	✗ Needs labelled cell types − can't predict along unlabeled trajectories	
✓ Fits neatly into the scvi-tools / Scanpy ecosystem	✗ Linear latent shift struggles with combos & dose series	
✓ Stable VAE training with sensible defaults	✗ Outperformed by newer transformer / GNN models on some benchmarks	

Key take-home messages

- Simple idea, big payoff: β -VAE + one δ vector shift.
- Hardware-light baseline: ~10 epochs on a laptop reach $R^2 \approx 0.9$ on the IFN- β test.
- Interpretable & transferable: the same δ explains biology, removes batch effects, even ports across species.
- Mind the limits: linear shift and labelled cell types miss pathway context, combos, low-expressed genes; transformers now cut the error.
- Sets the stage: everything you need for today's live notebook demo.

Next steps

- Activate the tutorial environment using conda: conda activate scgen_tutorial
- Start Jupyter Lab and open scGen_Tutorial_ECCB2025.ipynb
- **Hands-on demo**: train scGen on the local PBMC dataset for 10 quick epochs, predict the IFN-β response of held-out CD4 T cells, and explore the results live with PCA/UMAP plots, gene-wise R², and various insightful metrics.
- We will go through the entire notebook together (message us if you encounter any technical difficulties)
- All material CC-BY (open license)

ISMB/ECCB 2025 Tutorial VT-8 Generative AI for Single-Cell Perturbation Modeling: Theoretical and practical considerations

scPRAM: an attention-based take on perturbation modelling

Sabrina Jagot, sabrina.jagot@univ-lyon1.fr

State of the art when scPRAM arrives

- Existing predictors mostly average over cells or over cell types, losing cell-specific heterogeneity.
- Existing predictors efficiency was subject a lot with noise (sparcity) levels in datasets.
- 2024: scPRAM change the game with their goal ⇒infer each cell's full gene-expression response—even for unseen cell-types, species or patients.

Perturbation response based on attention mechanism

1. Variational Auto-Encoder (VAE)

$$X \rightarrow Z$$

2. Sinkhorn Optimal Transport

$$M = Sinkhorn(Z^{ctrl}, Z^{ptb})$$

3. Cell-specific perturbation vectors

$$\delta_i = Z_i^{\text{ptb}} - Z_i^{\text{ctrl}}$$

4. Attention mechanism

$$\hat{\delta}_t = \sum w_i \delta_i$$

5. Decoder

$$\hat{X}^{\text{ptb}} = \text{Dec}(z_t + \hat{\delta}_t)$$

A cell-type prediction visualization example

CD4 T controls vs IFN-β-stimulated example

A cell-type prediction visualization exemple

CD4 T controls vs IFN-β-stimulated: attention score, a big deal?

scPRAM's strengths and weaknesses

✔ GPU-friendly & even runs on CPU	Cross-species / cross-study transfer – no documentation on how to use scPRAM for that	
✓ Attention mechanism – specific to each cell, where the weights reflect its actual proximity in latent space	X Transparent latent algebra – less easier to interpret δ vectors	
✓ Heterogeneity over averages – adds the specific δ to every cell	✗ Addition of parameters to adjust modelling - can be long time efforts for making a good prediction	
✓ No needs labelled cell types	✗ Linear latent shift struggles with combos & dose series	

Key take-home messages

- Attention-driven perturbation: scPRAM's key innovation = per-cell attention mechanism.
- Robust within-dataset performance: high R² and low energy-distance metrics.
- Transparent cross-study transfer: Our workflow demonstrates that scPRAM can predict perturbations in a new cohort—providing a reproducible protocol missing from the literature.
- Integration & evaluation pipeline: Successful extrapolation depends on robust batch-correction, followed by rigorous benchmarking (R², MSE, energy/KDE distances, DEG overlap, attention heatmaps) to validate transfer fidelity.
- Sets the stage: everything you need for today's live notebook demo.

Next steps

- Activate the tutorial environment using conda: conda activate scpram_tutorial
- Start Jupyter Lab and open scPRAM_Tutorial_ECCB2025.ipynb
- **Hands-on demo**: train scPRAM on the local PBMC dataset for 10 quick epochs, predict the IFN-β response of held-out CD4 T cells, and explore the results live with PCA/UMAP plots, gene-wise R², and various insightful metrics.
- Explore the attention mechanism and different models provide by scPRAM
- We will go through the entire notebook together (message us if you encounter any technical difficulties)
- All material CC-BY (open license)

ISMB/ECCB 2025 Tutorial VT-8
Generative AI for Single-Cell Perturbation Modeling:
Theoretical and practical considerations

Benchmarking perturbation modelling tools

Alejandro Madrid Valiente, alejandro.madrid@bsc.es

Why benchmark single-cell perturbation tools?

- Diverse tools, divergent assumptions
- **Ensure reproducibility and robustness.** Helps to identify tools that perform consistently across datasets, platforms and perturbation types
- **Evaluate under realistic conditions.** A meaningful benchmark should simulate "data realism".
- **Guide method selection and development.** Helps revealing which tools perform better in specific tasks.
- Trustworthy biological interpretation

The curious case of CellOT

Is CellOT better than scGEN or not??

Different datasets-metrics-standards; Lack of best practices!

Benchmark Design.

Part 1. Dataset proportion

Which tool scGEN or scPRAM will perform better in an **unbalanced** dataset compared with the original one?

Part 2. Hyperparameter tuning

Each tool has several hyperparameters. Which is the **best combination**? Which one gives more **variability** to the results?

Part 1. Dataset proportion

We generated an **unbalanced** dataset which is closer to the reality.

We should check differences between the **DEGs** apart from the normal metrics.

Data realism matters as much as **model complexity**.

Part 2. Hyperparameter tuning

Hyperparameters are the knobs that control model architecture and training, they are *not learned* during training but set beforehand.

The choice of hyperparameters can significantly affect model performance, especially in high-dimensional and sparse single-cell data.

We will use **Optuna** which uses **Bayesian optimization** and pruning to find the best hyperparameters faster than grid or random search.

HYPERPARAMETER	WHAT CONTROLS?	TOO HIGH VALUES	TOO LOW VALUES
N_LAYERS	Depth of neural network	longer training, risk of overfitting	limited model capacity
N_LATENT	Dimensionality of the compressed representation	overfitting, noisy clustering	important biological variation might be lost
N_HIDDEN	Width of hidden layers	overfitting or slow training	poor latent space structure
DROPOUT_RATE	Fraction of neurons randomly "dropped" during training	underfitting	overfitting
NOISE_RATE	Injects random noise into input data	blurs real data	less robustness, overfitting risk
RATIO	how many neighbours feed the attention mechanism	over-smooth the delta	unstable

Part 2. Hyperparameter tuning

Effective tuning of hyperparameters is essential to achieve **optimal model performance**, ensuring accurate **generalization** and **stable behavior** across perturbation settings

In **scGEN** *n_layers* and *dropout rate* seem to be the most sensitive to values changes

In **scPRAM** *n_latent* and *n_hidden* seem to be the most sensitive to values changes

Other benchmarking analysis

Cross-study extrapolation. Which tool performs better on different batches, technologies or donors

Cell type specificity. Do methods generalize across diverse cell types, or are they biased toward abundant or well-annotated populations?

Key take-home messages

- Handling unbalanced datasets is crucial: Data realism matters as much as model complexity
- Hyperparameter optimization significantly impacts results: systematic tuning is essential to avoid overfitting or underfitting
- Balanced evaluation metrics provide a fuller picture: Metrics sensitive to imbalance (E-distance) complement global fit metrics (R², MSE)

Next steps

- Start Jupyter Lab and open Benchmarking_Tutorial_ECCB2025_Part1.ipynb
- Hands-on demo: you will compare results depending on the balanced/unbalanced dataset. You will also compare the results depending on the hyperparameter combination
- We will go through the entire notebook together (message us if you encounter any technical difficulties)
- All material CC-BY (open license)

Take away messages

EU BH 2024 Perturb-Bench event is ongoing https://github.com/BiodataAnalysisGroup/BioHackathon

Our vision is to make a FAIR decentralized platform for benchmarking, through NextFlow, leveraging the ELIXIR infrastructure like WorkflowHub and **RO-Crates**

Join us in November in the EU BH 2025 in Berlin for our new endeavor on foundational/LLM-like models on single-cell omics

Acknowledgements

Marina Esteban Medina

Fotis Psomopoulos

Naveed Ishaque

Ali Kerim Secener

Liya Zaygerman

Rosario Astaburuaga-García

Sven Klumpe

Aspa Orfanou

Vasileios Vasileiou

