Rectifier Circuits

Half-wave rectifier (HWR)

Input & output waveforms, assuming $r_D << R$

Considering the diode to be ideal

V_{DC}

$$V_{DC} = \frac{1}{T} \int_{0}^{T/2} V_{m} \sin \varpi t dt \qquad \frac{2\pi}{\varpi} = T$$

$$= \frac{-V_{m}}{\varpi T} \left[\cos \varpi t\right]_{0}^{T/2}$$

$$= \frac{V_{m}}{\pi}$$

 $V_{DC} = 0.318 V_{m}$

If Si diode is used,
$$V_K = 0.7V$$

& $V_o = V_i - V_K$

The effect is reduction of area above the axis, which reduces the resulting DC voltage level.

For
$$V_m >> V_K$$
, we can write

$$V_{DC} = 0.318 (V_m - V_K) (approx.)$$

Full Wave Rectifier (FWR)

1. Bridge Network

Assuming ideal diode,

$$V_{DC} = \frac{2}{T} \int_{0}^{T/2} V_{m} \sin \omega t dt$$

$$= \frac{-2V_{m}}{\varpi T} \left[\cos \omega t\right]_{0}^{T/2}$$

$$= \frac{2V_{m}}{\pi}$$

Assuming ideal diode

$$V_{dc} = 0.636 V_m$$

Peak value of the output voltage

$$V_{0max} = V_m - 2V_k$$

For
$$V_m >> 2V_k$$
, $V_{dc} \approx 0.636(V_m - 2V_k)$

$$PIV \ge V_m - V_k$$

Using Centre-Tapped Transformer

PIV across each diode is $2V_m - V_k$

HWR with Capacitor Filter

 V_{m}

 T_m D on D off

 $R_{\rm L} = \infty$

 $T = R_TC$

Assuming ideal diode for simplicity,

$$V_{D} = 0, R_{f} = 0$$

FWR with Capacitor Filter

Assuming triangular ripple waveform, V_o (dc) = $V_m - V_{r(p-p)}/2$

Ripple factor r = $V_{r(rms)}/V_{dc}$

Wave Shaping Circuits

Diodes can be used in waveshaping circuits that either limit or "clip" portions of a signal, or shift the dc voltage level. These circuits are called clippers and clampers respectively.

Clippers are networks that employ diodes to clip away a portion of the input signal without distorting the remaining part of the applied waveform

Example 1: Clipper Circuit

$$V_{DO} = 0.7V$$

 $V_{o} = (4 - 0.7)V$
 $= 3.3V$

Clampers

A clamper is a network constructed of a diode, a resistor and a capacitor that shifts a periodic waveform to a different DC level without changing the appearance of the applied signal.

Example

Clampers

Try the following on your own –

- Reverse the direction of the diode
 Signal is now clamped to positive levels
- Add a battery in series with the diode try both polarities
 of the battery
 Clamping level is now decided by the battery voltage
- See what happens when the input is a sine wave (or any arbitrary waveform)
 We still get clamping action

Find Vo

Assume ideal diodes, i.e. $V_{DO}=0$, $R_f=0$ for both diodes.

Solution:

For $0 < V_i < 2V$, $D_1 \& D_2$ are OFF as these are reverse biased.

Therefore, $V_o = V_i$

For $V_i > 2V$, D_1 turns ON and $i_1 = (V_i - 2)/(10+10)$

Also, $V_0 = i_1 R_2 + 2 = (V_i - 2)/20 \times 10 + 2$ = $V_i/2 - 1 + 2 = V_i/2 + 1$

(e.g. If $V_i = 6V$, $V_o = 6/2 + 1 = 4V$)

For $-4 < V_i < 0$, both $D_1 & D_2$ are OFF $A_0 = V_i$

For $V_i < -4V$, D_2 turns ON and $V_o = -4V$

For the circuit shown, find the voltages V1 and V2 and the currents I1, I2 and I3. Assume the diodes to be ideal with a forward voltage drop of 0.7 V.

Answer: (D1 and D2 ON)

V1=9.3 V V2=7.53 V I1=1.51 mA I2 =1.07 mA I3=0.44 mA Check to see what happens if you assume D1 is ON but D2 is OFF

Will get V1=9.3V & V2=5.17 which is clearly impossible as then D2 will be ON

What will be the states (ON/OFF) of the two diodes, D1 and D2?

Find the currents I_{D1} and I_{D2}

Try all combinations of D1 and D2 ON/OFF. Only one combination will give logically consistent results. That one is the one which will be the correct choice

ANSWER: D1 ON & D2 OFF ID1=0.953 mA ID2=0

