

High-Energy Gamma-Ray Astronomy with Water Cherenkov Detectors

High-Energy Gamma-Ray Astronomy

- 100MeV ≤ E ≤ 1PeV
- leptonic production processes: synchrotron radiation, Bremsstrahlung, inverse Compton effect + hadronic production processes
- galactic (pulsars, pulsar wind nebulae, galactic center) and extra-galactic (gamma-ray bursts, galactic nuclei) sources
- linked to cosmic rays: high-energy charged particles, get deflected in magnetic fields, gamma-rays can be direct messengers
- physics beyond the SM: test of dark matter theories
- fundamental physics: test of Lorentz invariance

Detection Methods

Experimental Challenges:

- large energy range (MeV PeV)
- small flux (10⁻¹¹ photons/cm²s), decreases with energy
- large background from cosmic rays (10³)
- atmosphere is opaque

Detection Methods

Experimental Challenges:

- large energy range (MeV PeV)
- small flux (10⁻¹¹ photons/cm²s), decreases with energy
- large background from cosmic rays (10³)
- atmosphere is opaque

Satellites

+ direct detection

– energy limit of 10GeV

Detection Methods

Experimental Challenges:

- large energy range (MeV PeV)
- small flux (10⁻¹¹ photons/cm²s), decreases with energy
- large background from cosmic rays (10³)
- atmosphere is opaque

Satellites

+ direct detection

– energy limit of 10GeV

Ground-based detectors: showers

Extensive Air Shower (EAS) Array

+ large field of view

+ high duty factor

– small detection area (<1%)</p>

<u>Wikipedia</u>

Atmospheric Cherenkov Telescope (ACT)

+ low energy threshold

- small field of view
- needs good weather

Wikipedia

→ Water Cherenkov Detectors

Wikipedia

Milagro

- New Mexico, 2650m above sea level
- build into existing pond, 60m x 80m x 8m,
 24 million I water
- 723 20cm PMTs in two layers
- build in 2000, data-taking until 2008

https://physics.nyu.edu/experimentalparticle/milagro.html

Milagro – Background Rejection

hadronic shower with muons/hadrons: high intensity, localised

electromagnetic shower: low intensity, uniform

$$C = \frac{N_{PMT \ge 2PE}}{PE_{max}}$$

Milagro – Data Processing

- tigger condition: ≥60 PMTs in a window of 200ns
- event rate: 1700Hz, reconstructed in real-time

- arrival time distribution → shower front
 → primary particle direction
- resolution is depended on the number of PMTs hit
- average resolution: 0.75°

- intensity and distribution of PMT signals
 primary particle energy through correlation with C-value
- depends on ability to locate the shower core
- resolution: >>30%

Milagro – Outrigger Array

- precise determination of the shower core → improved angular and energy resolution
- 175 individual WCD around the pond
- covered area: 40.000m²
- 2000l tanks, single PMT

Milagro – Scientific Results

new gamma-ray sources

extended sources

diffuse 10TeV emission

cosmic ray anisotropy

HAWC

- High Altitude Water Cherenkov experiment –
 4100m above sea level
- total area: 20.000m²
- 300 tanks with 200.000l water and 4 PMTs
- outrigger array of 345 small WCD
- data taking since 2016

https://doi.org/10.48550/arXiv.1908.07634

<u>Wikipedia</u>

Wikipedia

HAWC – Data Processing

- trigger condition: ≥28 PMTs in a window of 150ns
- time-over-threshold measurement
- trigger rate: 25kHz, reconstruction in real time, 20MB/s permanently saved
- background rejection method:
 C-value and fit of the lateral
 shower distribution
- energy resolution is limited by fluctuations in the shower development in the atmosphere

HAWC and Milagro

HAWC – Scientific Results

- observation of sources up to higher energies, new sources
- TeV gamma-rays from halos around pulsars
- search for PeVatrons
- test of Lorentz invariance
- cosmic ray observations and multi-messenger astronomy

LHAASO

- Large High Altitude Air Shower
 Observatory
- 4410m above sea level, Tibet
- combination of air shower arrays, water Cherenkov detectors and atmospheric Cherenkov telescopes
- partially build, observations started in 2019

ED + MD – scintillation detectors
WFCTA – atmospheric Cherenkov telescopes
WCDA – water Cherenkov detectors

https://doi.org/10.1007/s41605-018-0037-3

SWGO

- Southern Wide-field Gamma-ray Observatory
- Water Cherenkov detector in the southern hemisphere
- site evaluation: location, altitude, topology and environment, access, availability of water, power and network connectivity
- detector design: area, choice of PMTs, separation of PMTs, costs, impact on the natural environment, ability to reuse, repurpose or deconstruct the experiment

