

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ CURSO DE GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO

SIN110 - ALGORITMOS E GRAFOS RESOLUÇÃO DOS EXERCÍCIOS E03 DO DIA 04/09/2015

Exercícios E03 – 04/09/15

Aluna: Karen Dantas <u>Número de matrícula:</u> 31243

1) Solução:

Os grafos 'a' e 'b' são isomorfos, pois todas as ligações contidas em 'a' estão em 'b'. Para provar, montei a seguinte tabela na qual peguei os vértices e arestas de 'a' (primeira coluna) e relacionei com as de 'b' (segunda coluna).

1	a
2	b
3	С
4	d
a1	e2
a2	e7
a3	e6
a4	e1
a5	e5
a6	e4
a7	e3

Com isso, é possível montar a seguinte função: {(1->a), (2->b), (3->c), (4->d), (a1->e2), (a2->e7), (a3->e6), (a4->e1), (a5->e5), (a6->e4), (a7->e3)}; a qual prova que os grafos 'a' e 'b' são isomorfos.

2) Solução:

Grafo K₄:

Lista de Adjacência:

1->2->3->4

2->1->3->4

3->1->2->4

4->1->2->3

Matriz de Adjacência:

	1	2	3	4
1	0	1	1	1
2	1	0	1	1
3	1	1	0	1
4	1	1	1	0

Grafo K_{3,5}:

Lista de Adjacência:

1->4->5->6->7->8

2->4->5->6->7->8

3->4->5->6->7->8

4->1->2->3

5->1->2->3

6->1->2->3

7->1->2->3

8->1->2->3

Matriz de Adjacência:

	1	2	3	4	5	6	7	8
1	0	0	0	1	1	1	1	1
2	0	0	0	1	1	1	1	1
3	0	0	0	1	1	1	1	1
4	1	1	1	0	0	0	0	0
5	1	1	1	0	0	0	0	0
6	1	1	1	0	0	0	0	0
7	1	1	1	0	0	0	0	0
8	1	1	1	0	0	0	0	0

3) Solução:

Lista de Adjacência:

1 ->7->2->6

2->3

3->7

4

5->12->10->4

6->4->5

7->8

8->9->11

9

10->12

11->9

12->13

13

Matriz de Adjacência:

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	1	0	0	0	1	1	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	1	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	1	0	0	0	0	0	1	0	1	0
6	0	0	0	1	1	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	1	0	0	0	0	0
8	0	0	0	0	0	0	0	0	1	0	1	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	1	0
11	0	0	0	0	0	0	0	0	1	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0

4) Solução:

Sim, é possível uma pessoa sair do cômodo A e terminar no cômodo B passando por todas as portas da casa uma única vez.

O trajeto é representado pelo grafo abaixo:

O trajeto representado é Euleriano, pois, durante o trajeto, todas as arestas são percorridas apenas uma única vez. E não pode ser Hamiltoniano porque os vértices são percorridos uma ou mais vezes.

5) Solução:

Grafos montados com a sequência de palavras:

Sim, é possível sair de "girafa" e chegar em "cavalo". O caminho encontrado é representado abaixo:

6) Solução:

Sabe-se que a fatoração do número 60 se dá por:

- 60 | 2
- 30 | 2
- 15 | 3
- 5 | 5
- 1 |

Assim, na figura abaixo está representado o grafo das possíveis fatorações do número 60 que resultam na expressão esperada.

Lista de Adjacência:

60-> 2*30-> 3*20-> 4*15-> 5*12-> 6*10

2*30-> 60-> 2*2*15-> 2*3*10

3*20-> 60-> 2*3*10-> 3*4*5

4*15-> 60-> 2*2*15-> 3*4*5

5*12-> 60-> 3*4*5-> 5*2*6

6*10-> 60-> 5*2*6 -> 2*3*10

2*2*15-> 2*30-> 4*15-> 2*2*3*5

2*3*10-> 2*30-> 3*20-> 6*10-> 2*2*3*5

3*4*5-> 3*20-> 4*15-> 5*12-> 2*2*3*5

5*2*6-> 5*12->6*10-> 2*2*3*5

2*2*3*5-> 2*2*15-> 2*3*10-> 3*4*5-> 5*2*6

7) Solução:

a) V = {João, Pedro, Antônio, Marcelo, Francisco, Dama, Xadrez, Dominó}

E = {(João, Xadrez), (Pedro, Xadrez), (Pedro, Dama), (Antônio, Xadrez), (Antônio, Dama), (Antônio, Dominó), (Marcelo, Dama)}

Grafo = (V, E):

b)

