Оглавление

1	Одновременное оценивание движения ВС и систематических ошибок.			
	Алі	горитмы параллельной фильтрации процессов, связанных через		
	измерения			
	1.1 Уравнения оптимальной фильтрации		нения оптимальной фильтрации	3
		1.1.1	Полная система	4
	1.2	2 Упрощеные алгоритмы оценивания по Henk Blom		5
		1.2.1	Фильтр Калмана для фазового вектора, Макро фильтр для систематической ошибки	5
		1.2.2	Разделённые фильтры для фазового вектора и для систематической ошибки	7

1 Одновременное оценивание движения ВС и систематических ошибок. Алгоритмы параллельной фильтрации процессов, связанных через измерения

В настоящее время в системах УВД для определения параметров движения воздушных судов (координаты, скорости, ускорения и т.д.) используются алгоритмы линейного рекуррентного оценивания, близкие по используемой математической технике к фильтру Калмана. В качестве основного метода применяется алгоритм ІММ. Как основную особенность можно отметить, что задача оценки параметров движения для всех ВС, нахоящихся в зоне наблюдения, решается независимо для каждого ВС. Это полностью соответствует представлению о том, что движение каждого ВС никак не зависит от движения других ВС. Также это удобно с точки зрения архитектуры программы, реализующей систему мультитраекторной обработки — данные, описывающие каждое ВС, можно легко выделить в отдельный объект, который можно создавать, удалять и использовать, например, для сравнения со вновь поступающими не привязанными к конкретному ВС измернеиями. С точки зрения математических алгоритмов, такое разделение также удобно, поскольку позволяет оставаться в рамках расчётов в пространстве достаточно низкой размерности (4–6 для фильтра Калмана, 15–30 для ІММ).

Наблюдение за движением ВС производится с помощью радиотехнических средств: как правило это система из нескольких радиолокаторов и система АЗН-В. Реальные измерительные средства, помимо случайных ошибок измерений, имеют систематические ошибки. Случайные ошибки измерения изначально предусмотрены архитектурой алгоритмов рекуррентного оценивания, как фильтра Калмана, так и ІММ. Систематические ошибки в случае не сложных вариантов их пространственной зависимости также легко могут быть включены в алгоритмы оценивания, но при их включении обнаруживается одно весьма существенное обстоятельство: систематические ошибки одного и того же измерительного средства присутствуют в уравнении наблюдения для разных воздушных судов. Так, в простом случае линейной модели наблюдения РЛС возникает следующее уравнение наблюдения (связи между неизвестными оцениваемыми состояниями и измерением):

$$z_{al}(t) = C_x(t)x_a(t) + C_s(t)s_l(t) + D(t)w_l(t).$$
(1.1)

Здесь t — момент времени; a — индекс, обозначающий номер воздушного судна (aircraft); l — индекс радиолокатора (locator); $z_{a\,l}$ — вектор измерения; x_a — вектор параметров движения BC; s_l — вектор параметров, характеризущий состояние РЛС; $w_l(t)$ — текущая реализация случайной ошибки РЛС; $C_x(t)$, $C_s(t)$, D(t) — матрицы, характеризующие вклад каждого параметра на измерение.

Из вида этого уравнения ясно, что систематическая ошибка локатора l может быть оценена только совместно с параметрами движения BC a. Но этот радиолокатор наблюдает не только это движение, также верно и обратное — BC a наблюдается не только радиолокатором l. Фазовые переменные для разных движений оказываются «сцепленными» между собой через параметры систематических ошибок. Таким образом, система всех движений и всех систематических ошибок нуждается в совместном

оценивании.

Как будет показано далее, даже в простом случае неуправляемых движений, стандартные процедуры оптимального совместного оценивания — фильтр Калмана, оценка Гаусса—Маркова — приводят к соотношениям, в которых переменые, относящиеся к разным движениям и систематическим ошибкам, существенно связаны друг с другом. Это приводит к следующим неприятным последствиям:

- нет возможности задать в программе отдельные объекты для движений разных BC;
- затруднено создание и удаление движений;
- в вычислениях необходимо поддерживать большую матрицу ковариации ошибок оценивания, (в которую входят все кросс-ковариации для ошибок оценивания между различными ВС, между каждым ВС и каждым РЛС и т.д.) это выливается в большие вычислительные затраты.

От требования, чтобы параметры оценивались оптимально, можно отказаться. При этом появляется возможность устранить нежелательные эффекты, указанные выше. Но в таком случае необходимо тщательно проектировать алгоритм оценивания, для того чтобы получаемые оценки были близки к неизвестным истинным параметрам.

Целью исследования, излагаемого ниже, является создание алгоритма лёгкого для параллельной реализации по отдельным воздушным судам, при этом обладающим низким уровнем погрешности оценивання. Исследование логически продолжает исследование, изложенное в отчёте [1].

1.1 Уравнения оптимальной фильтрации

Каждое воздушное судно подчиняется своему уравнению движения

$$\frac{d}{dt}x_i(t) = f(t, x_i(t), u_i(t)) + v_{i \text{ cont}}(t),$$

где x_i — вектор параметров движения BC; f — некоторая функция, задающая скорости движения; u(t) — функция управления; $v_{i\,\mathrm{cont}}$ — случайное возмущение для непрерывного варианта динамики. В силу того, что наблюдение за BC ведётся «в большом масштабе», вектор x_i может содержать не очень большое число параметров, а функция f может быть выбрана достаточно простой. Измерения при помощи РЛС производятся в дискретные моменты времени, поэтому дальше удобно иметь дело с дискретизированным вариантом системы. При этом разумно ограничиться динамикой, близкой к линейной

$$x_i(t_k) = A_i(t_k, x_i(t_{k-1}), u_i(t_k)) x_i(t_{k-1}) + B_i(t_k) v_i(t_k).$$
(1.2)

Здесь v_i — случайное возмущение; B_i — матричная функция, формирующая влияние случайного возмущения на движение; A_i — матрица, формирующая вид движения системы, зависящая от текущего значения управления $u(t_k)$. Моменты времени t_k принадлежат некоторому дискретному множеству \mathcal{T} и, на самом деле, определяются по ходу развития движения, т.е. заранее не являются заданными.

В программе мультирадарной обработки для метода IMM уравнения движения использываются именно в виде (1.2). Далее, будем рассматривать более простую линейную динамику без управления

$$x_i(t_k) = A_i(t_k)x_i(t_{k-1}) + B_i(t_k)v_i(t_k).$$
(1.3)

Формирование наблюдений z_{ij} будем описывать следующим уравнением, несколько более сложным, чем уравнение (1.4):

$$z_{ij}(t) = C^{x}(t_k)x_i(t_k) + C_j^{s}(t_k, x_i(t_k))s_j(t_k) + D_j(t_k, x_i(t_k))w_j(t_k).$$
(1.4)

Матрицы C_j^s , D_j для всех имеющих смысл случаев зависят от положения BC, поэтому явно указывается зависимость от x_i . В качестве параметров s_j могут выступать постоянная систематическая ошибка по дальности и азимуту, коэффициент линейной зависимости для систематической ошибки по дальности и т.д. Матрица C_j^s описывает влияние этих неизвестных параметров на измерения.

Для параметров s_j , характеризующих систематические ошибки РЛС, также введём динамику

$$s_j(t_k) = A_j^s(t_k)s_j(t_{k-1}) + B_i^s(t_k)v_j^s(t_k).$$
(1.5)

Обычно будем принимать $A_j^s(t_k) \equiv I, B_i^s(t_k) = 0$. Матрица B_i^s характеризует дрейф систематических ошибок со временем.

Рассмотрим общий фазовый вектор

$$\chi(t) = \begin{bmatrix}
x_1(t) \\
x_2(t) \\
\vdots \\
x_n(t) \\
s_1(t) \\
s_2(t) \\
\vdots \\
s_m(t)
\end{bmatrix} .$$
(1.6)

3десь n и m — количества наблюдаемых BC и наблюдающих радиолокаторов.

1.1.1 Полная система

Фильтр для фазового вектора.

Этап предсказания:

$$\bar{x}_t = A_x \hat{x}_{t-1}$$
$$\bar{P}_{x,t} = A_x \hat{P}_{x,t-1} A_x^T + B_x B_x^T$$

Этап коррекции:

$$\hat{x}_t = \bar{x}_t + K_x \Lambda (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$

$$\hat{P}_{x,t} = \bar{P}_{x,t} - K_x \Lambda K_x^T$$

$$K_x = \bar{P}_{x,t} C_x^T + \bar{P}_{xs,t} C_s^T$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\bar{s}_t = A_s \hat{s}_{t-1}$$
$$\bar{P}_{s,t} = A_s \hat{P}_{s,t-1} A_s^T + B_s B_s^T$$

Этап коррекции:

$$\hat{s}_t = \bar{s}_t + K_s \Lambda (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$

$$\hat{P}_{s,t} = \bar{P}_{s,t} - K_s \Lambda K_s^T$$

$$K_s = \bar{P}_{s,t} C_s^T + \bar{P}_{xs,t}^T C_x^T$$

Обновление блока кросс-ковариации:

$$\bar{P}_{xs,t} = A_x \hat{P}_{xs,t-1} A_s^T$$

$$\hat{P}_{xs,t} = \bar{P}_{xs,t} - K_x \Lambda K_s^T$$

В данном случае для обоих фильтров используется одна матрица Л:

$$\Lambda = C_{x}\bar{P}_{x,t}C_{x}^{T} + C_{s}\bar{P}_{s,t}C_{s}^{T} + C_{x}\bar{P}_{xs,t}C_{s}^{T} + C_{s}\bar{P}_{xs,t}^{T}C_{x}^{T} + DD^{T}$$

Уравнение наблюдения:

$$z_t = C_x x_t + C_s s_t + Dw$$

1.2 Упрощеные алгоритмы оценивания по Henk Blom

В статье [2] рассматривается точно такая же задача одновременного оценивания движения многих ВС и определения систематических ошибок. Приводятся варианты упрощения алгоритма фильтрации Калмана, показавшие хорошую работу на практике.

1.2.1 Фильтр Калмана для фазового вектора, Макро фильтр для систематической ошибки

Фильтр для фазового вектора.

Этап предсказания:

$$\bar{x}_t = A_x \hat{x}_{t-1}$$
$$\bar{P}_{x,t} = A_x \hat{P}_{x,t-1} A_x^T + B_x B_x^T$$

Этап коррекции:

$$\hat{x}_t = \bar{x}_t + K_x \Lambda_x (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$
$$\hat{P}_{x,t} = \bar{P}_{x,t} - K_x \Lambda_x K_x^T$$

Аппроксимация:

$$K_x = \bar{P}_{x,t} C_x^T$$
$$\Lambda_x = C_x \bar{P}_{x,t} C_x^T + DD^T$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\bar{s}_t = A_s \hat{s}_{t-1}$$
$$\bar{P}_{s,t} = A_s \hat{P}_{s,t-1} A_s^T + B_s B_s^T$$

Этап коррекции:

$$\hat{s}_t = \bar{s}_t + K_s \Lambda_s (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$
$$\hat{P}_{s,t} = \bar{P}_{s,t} - K_s \Lambda_s K_s^T$$

В вычислении матриц K_s и Λ_s используются аппроксимация члена $C_x \bar{P}_{xs,t}$:

$$K_s = \bar{P}_{s,t} C_s^T + H^T$$

$$\Lambda = C_{x}\bar{P}_{x,t}C_{x}^{T} + C_{s}\bar{P}_{s,t}C_{s}^{T} + HC_{s}^{T} + C_{s}H^{T} + DD^{T}$$

Где H:

$$F_{x} = \sum_{i=1}^{M} (D_{i}D_{i}^{T})^{-1}$$

$$F_{s} = \sum_{i=1}^{M} (D_{i}D_{i}^{T})^{-1}C_{s,i}$$

$$H = -(F_{x}^{T}F_{x})^{-1}F_{x}^{T}F_{s}\bar{P}_{s,t}$$

Где M - количество радиолокаторов.

Уравнение наблюдения:

$$z_t = C_x x_t + C_s s_t + Dw$$

1.2.2 Разделённые фильтры для фазового вектора и для систематической ошибки

Фильтр для фазового вектора.

Этап предсказания:

$$\bar{x}_t = A_x \hat{x}_{t-1}$$
$$\bar{P}_{x,t} = A_x \hat{P}_{x,t-1} A_x^T + B_x B_x^T$$

Этап коррекции:

$$\hat{x}_t = \bar{x}_t + K_x \Lambda_x (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$
$$\hat{P}_{x,t} = \bar{P}_{x,t} - K_x \Lambda_x K_x^T$$

Аппроксимация:

$$K_x = \bar{P}_{x,t} C_x^T$$

$$\Lambda_x = C_x \bar{P}_{x,t} C_x^T + DD^T$$

Фильтр для систематической ошибки.

Этап предсказания:

$$\bar{s}_t = A_s \hat{s}_{t-1}$$
$$\bar{P}_{s,t} = A_s \hat{P}_{s,t-1} A_s^T + B_s B_s^T$$

Этап коррекции:

$$\hat{s}_t = \bar{s}_t + K_s \Lambda_s (z_t - C_x \bar{x}_t - C_s \bar{s}_t)$$

$$\hat{P}_{s,t} = \bar{P}_{s,t} - K_s \Lambda_s K_s^T$$

Аппроксимация:

$$K_s = \bar{P}_{s,t} C_s^T$$
$$\Lambda_s = C_s \bar{P}_{s,t} C_s^T + DD^T$$

Уравнение наблюдения:

$$z_t = C_x x_t + C_s s_t + Dw$$

Литература

- [1] Бедин, . ., Денисов, . ., Иванов, . ., Федотов, . ., В., . ., А., . ., and В., . ., "Одновременное определение координат движущегося ВС и коррекция систематических ошибок РЛС при помощи фильтра Калмана," Tech. rep., ИММ УрО РАН, 2015.
- [2] Blom, H. A. P. and Van Doorn, B. A., "Systematic Error Estimation in Multisensor Fusion Systems," *Proceedings of SPIE The International Society for Optical Engineering*, Vol. 1954, Oct. 1993, pp. 450–461.