Classification

Javier M. Antelis

mauricio.antelis@tec.mx

Goal

To study and apply the special type of machine learning models devoted to identify the "category/class/group" to which an "observation" belongs to.

What is "classification"?

Classifier

• A classifier is a decision function that assigns an observation to one o several classes, $\hat{c} = f(x, w)$, that is:

- Where:
 - x → input data (numeric or categoric)
 - $f(\cdot) \rightarrow$ decision function
 - w → model parameters
 - $\hat{c} \rightarrow \text{predicted class}$
 - $c \rightarrow true class$

"The function must be defined/chosen"

"The parameters w are learned from data: training"

Classifier: example

- The iris dataset
 - Ronald Fisher, 1936
 - https://archive.ics.uci.edu/ml/datasets/iris
 - Commonly found in the ML literature
- General description:
 - 4 features: sepal and petal length and width
 - 3 classes: type of iris plant
 - 150 observations (50 for each class)

Iris Versicolor

Iris Setosa

Iris Virginica

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width	Flower
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Classifier: example

- The iris dataset
 - Ronald Fisher, 1936
 - https://archive.ics.uci.edu/ml/datasets/iris
 - Commonly found in the ML literature
- General description:
 - 4 features: sepal and petal length and width
 - 3 classes: type of iris plant
 - 150 observations (50 for each class)
- Technical description:
 - One class is linearly separable from the other two
 - The latter are NOT linearly separable from each other

Classifier: example

Description of the classification problem

$$x = [x_1, x_2, x_3, x_4] \longrightarrow f(x, w)$$

$$\hat{c}$$

- $x = [x_1, x_2, x_3, x_4]$ is a 4-dimensional feature vector
- $c \in \{Setosa, Versicolor, Virginica\}$ are the three categories

Given the information from a new flower (four features) we want to decide which type of flower it is (three classes)

Classifier

Regardless of the classification model, we require a training data set to calculate the model parameters

The process of calculating the model parameters using a training data set is known as supervised learning

Challenges in supervised learning

• Model selection: we need to choose the decision function $f(\cdot)$

• Training of the model: use $\{x_i, c_i\}_{i=1}^N$ to calculate the model parameters \mathbf{W}

Evaluation: to assess prediction of unknown data
 Performance metrics, evaluation of classifiers

Workflow 1

Workflow 2

