

MC 34 - MANDOS NEUMÁTICOS E HIDRÁULICOS

Mag. Ing. José Luis Becerra Felipe pcmcjbec@upc.edu.pe

TEMA 6: MOTORES NEUMÁTICOS

Objetivo de la sesión

"Que el estudiante sea capaz de identificar los tipos de motores neumáticos existentes en el mercado y pueda seleccionarlos para aplicaciones neumáticas"

Contenido de la sesión

- Cilindros Neumáticos especiales.
- Motores neumáticos

Logro de la sesión:

Al finalizar la clase el estudiante será capaz de identificar los diferentes tipos de motor neumático y seleccionarlo de acuerdo a la necesidad del proceso.

CILINDROS NEUMÁTICOS ESPECIALES

CILINDRO NEUMÁTICO DE IMPACTO

- Velocidades de 7,5 a 10 m/s
- Apropiado para carreras cortas.

CILINDRO NEUMÁTICO GUIADO

- Solucionan el problema de rotación.
- Las guías pueden ser: pistones ovalados, cojinetes de bronce y varillas de guiado, doble o triple pistón.
- La fuerza se multiplica cuando se usa más de un vástago.
- Movimientos precisos
- Sujeción de objetos

MOTORES NEUMÁTICOS

Son equipos que transforman la energía del aire comprimido en movimientos giratorios continuos.

MOTORES NEUMÁTICO DE PISTONES

MOTORES NEUMÁTICO DE PISTONES

- Pueden ser radiales y axiales.
- Capacidad de hasta 5000 rpm.
- Potencias de 1,5 a 19 kW.
- Aplicaciones de bajas revoluciones con par de arranque elevado.

MOTORES DE ALETAS

- Poco peso
- Diseño sencillo
- 3000 a 8500 rpm
- Potencia regulable entre 0,1 a 17 kW.
- Usos:
 - o Elemento motriz
 - Taladradoras
 - Atornilladores
 - Esmeriladoras

MOTORES DE ENGRANAJES

- Potencia hasta 44kW.
- Bajo rendimiento.
- Bajas velocidades.

TURBINAS NEUMÁTICAS

- Bajas potencias
- 500 000 rpm

VENTAJAS

- Pueden trabajar con velocidad y Mantenimiento simple. un control complejo.
- Gran variedad de régimen de El arranque y paro es rápido. revoluciones.
- Son ligeros y compactos.
- No se daña con sobrecargas.
- Resistentes al polvo, agua, calor, frío.
 - No hay peligro de explosión.

- par variables sin necesidad de Facilidad de cambiar el sentido de giro.

 - Baja inercia.
 - Proporcionan una marcha suave, continúa y exenta de vibraciones.
 - Resisten explosiones y golpes.

Conclusiones

- Existen cilindros neumáticos de propósito especial que exceden las velocidades de operación recomendadas.
- Los motores neumáticos tienen un amplio campo de aplicación en la industria.
- La operación de los motores neumáticos es sencilla, y no hay riesgo de explosiones.
- Los tipos de motores neumáticos tienen el mismo principio de operación que los compresores.
- Para decidir utilizar un motor neumático o eléctrico debemos evaluar: ventajas de operación, costo del motor más costos de instalación, costo de operación.
- La velocidad de giro depende de las dimensiones del motor, por lo que, al tener un motor de turbina, este tendrá mayores velocidades por la menor área transversal de diseño.

LOGRO CONSEGUIDO

"Ahora eres capaz de identificar los distintos tipos de motor neumático existentes en el mercado y seleccionarlo de acuerdo a la necesidad del proceso"

GRACIAS

