Class 19: Reviewing Infinities

Schedule

Problem Set 8 is now due on Friday, Nov 3.

See PDF Version for Notes.

Comparing sets Recap:

Definition. Sets A and B have the same cardinality, denoted by |A| = |B| if there is a bijection between A and B.

Definition. Cardinality of A is at least as big as cardinality of B, denoted by $|A| \ge |B|$ if and only if *either* of the following is true (they are equivalent).

- 1. There is a surjective function from *A* to *B*.
- 2. There is a total injective function from *B* to *A*.

Infinite Sets Recap

Definition. A set C is *infinite* if and only if *either* of the following happens (they are all equivalnet).

- 1. Dedekind-infinite: There is a bijection between *C* and a strict subset *B* of *C*.
- 2. There is *no* bijection between C and any \mathbb{N}_k for any natural number $k \in \mathbb{N}$.
- 3. There exists a surjective function from C to \mathbb{N} .
- 4. There exists a total injective function from \mathbb{N} to C.

Definition. A set C is *countable* if and only if there exists a surjective function from \mathbb{N} to C. (That is, ≤ 1 arrow out from \mathbb{N} , ≥ 1 arrow in to C.)

Definition. A set C is *countably infinite* if and only if there exists a bijection between C and \mathbb{N} .

Cantor's Theorem

For all sets, S, |pow(S)| > |S|.

What does this mean for $|\mathbb{N}|$?

cs2102:	Class	19:	Revie	wing	Infinities
---------	-------	-----	-------	------	------------

What is the cardinality of all the real numbers?

Show there is a bijection between (0,1) and $pow(\mathbb{N})$.

Show there is a bijection between [0,1] and the cube $[0,1] \times [0,1] \times [0,1]$.