IR Receiver Modules for Remote Control Systems

Description

The TSOP312.. - series are miniaturized receivers for infrared remote control systems. PIN diode and preamplifier are assembled on lead frame, the epoxy package is designed as IR filter.

The demodulated output signal can directly be decoded by a microprocessor. TSOP312.. is the standard IR remote control receiver series for 3 V supply voltage, supporting all major transmission codes.

Features

- · Photo detector and preamplifier in one package
- Internal filter for PCM frequency
- Improved shielding against electrical field disturbance
- TTL and CMOS compatibility
- · Output active low
- Supply voltage: 2.7 V to 5.5 V
- Improved immunity against ambient light

Mechanical Data

Pinning:

1 = GND

 $2 = V_S$

3 = OUT

Block Diagram

Parts Table

Part	Carrier Frequency		
TSOP31230	30 kHz		
TSOP31233	33 kHz		
TSOP31236	36 kHz		
TSOP31237	36.7 kHz		
TSOP31238	38 kHz		
TSOP31240	40 kHz		
TSOP31256	56 kHz		

Application Circuit

 $\mathsf{R}_1 + \mathsf{C}_1$ recommended to suppress power supply disturbances.

The output voltage should not be hold continuously at a voltage below $V_O = 2.0 \text{ V}$ by the external circuit.

Absolute Maximum Ratings

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Supply Voltage	(Pin 2)	V _S	- 0.3 to + 6.0	V
Supply Current	(Pin 2)	I _S	3	mA
Output Voltage	(Pin 3)	Vo	- 0.3 to (V _S + 0.3)	V
Output Current	(Pin 3)	I _O	10	mA
Junction Temperature		T _j	100	°C
Storage Temperature Range		T _{stg}	- 25 to + 85	°C
Operating Temperature Range		T _{amb}	- 25 to + 85	°C
Power Consumption	(T _{amb} ≤ 85 °C)	P _{tot}	30	mW
Soldering Temperature	$t \le 10 \text{ s}, 1 \text{ mm from case}$	T _{sd}	260	°C

Electrical and Optical Characteristics

 T_{amb} = 25 °C, unless otherwise specified V_S = 3 V

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Supply Current (Pin 3)	E _v = 0	I _{SD}	0.7	1.2	1.5	mA
	E _v = 40 klx, sunlight	I _{SH}		1.3		mA
Supply Voltage		V_S	2.7		5.5	V
Transmission Distance	$E_v = 0$, test signal see fig.1, IR diode TSAL6200, $I_F = 250 \text{ mA}$	d		35		m
Output Voltage Low (Pin 1)	$I_{OSL} = 0.5 \text{ mA}, E_e = 0.7 \text{ mW/m}^2,$ test signal see fig. 1	V _{OSL}			250	mV
Irradiance (30-40 kHz)	$V_S = 3 V$ Pulse width tolerance: $t_{pi} - 5/f_o < t_{po} < t_{pi} + 6/f_o$, test signal see fig.1	E _{e min}		0.35	0.5	mW/m ²
Irradiance (56 kHz)	$V_S = 3 V$ Pulse width tolerance: $t_{pi} - 5/f_o < t_{po} < t_{pi} + 6/f_o$, test signal see fig.1	E _{e min}		0.4	0.6	mW/m ²
Irradiance (30-40 kHz)	$V_S = 5 \text{ V}$ Pulse width tolerance: $t_{pi} - 5/f_0 < t_{po} < t_{pi} + 6/f_0$, test signal see fig.1	E _{e min}		0.45	0.6	mW/m ²
Irradiance (56 kHz)	$V_S = 5 \text{ V}$ Pulse width tolerance: $t_{pi} - 5/f_0 < t_{po} < t_{pi} + 6/f_0$, test signal see fig.1	E _{e min}		0.5	0.7	mW/m ²
Irradiance	t_{pi} - 5/ f_o < t_{po} < t_{pi} + 6/ f_o , test signal see fig. 1	E _{e max}	30			W/m ²
Directivity	Angle of half transmission distance	Ψ _{1/2}		± 45		deg

Typical Characteristics ($T_{amb} = 25$ °C unless otherwise specified)

Figure 1. Output Function

Figure 4. Output Pulse Diagram

Figure 2. Pulse Length and Sensitivity in Dark Ambient

Figure 5. Frequency Dependence of Responsivity

Figure 3. Output Function

Figure 6. Sensitivity in Bright Ambient

Figure 7. Sensitivity vs. Supply Voltage Disturbances

Figure 8. Sensitivity vs. Electric Field Disturbances

Figure 9. Max. Envelope Duty Cycle vs. Burstlength

Figure 10. Sensitivity vs. Ambient Temperature

Figure 11. Relative Spectral Sensitivity vs. Wavelength

Figure 12. Horizontal Directivity ϕ_{X}

Figure 13. Vertical Directivity ϕ_{V}

Figure 14. Sensitivity vs. Supply Voltage

Suitable Data Format

The circuit of the TSOP312.. is designed in that way that unexpected output pulses due to noise or disturbance signals are avoided. A bandpass filter, an integrator stage and an automatic gain control are used to suppress such disturbances.

The distinguishing mark between data signal and disturbance signal are carrier frequency, burst length and duty cycle.

The data signal should fulfill the following conditions:

- Carrier frequency should be close to center frequency of the bandpass (e.g. 38 kHz).
- Burst length should be 10 cycles/burst or longer.
- After each burst which is between 10 cycles and 70 cycles a gap time of at least 14 cycles is necessary.
- For each burst which is longer than 1.8 ms a corresponding gap time is necessary at some time in the data stream. This gap time should be at least 4 times longer than the burst.
- Up to 800 short bursts per second can be received continuously.

Some examples for suitable data format are: NEC Code (repetitive pulse), NEC Code (repetitive data), Toshiba Micom Format, Sharp Code, RC5 Code, RC6 Code, R-2000 Code, Sony Code.

When a disturbance signal is applied to the TSOP312.. it can still receive the data signal. However the sensitivity is reduced to that level that no unexpected pulses will occur.

Some examples for such disturbance signals which are suppressed by the TSOP312.. are:

- DC light (e.g. from tungsten bulb or sunlight)
- Continuous signal at 38 kHz or at any other frequency
- Signals from fluorescent lamps with electronic ballast with high or low modulation (see Figure 15 or Figure 16).

Figure 15. IR Signal from Fluorescent Lamp with low Modulation

Figure 16. IR Signal from Fluorescent Lamp with high Modulation

Package Dimensions in mm

