Detecting Hate Speech with BERT model

Abigail Yohannes 5/2/24

Hate Speech and Online Extremism

- With the continued rise of online interaction, the risk of hate speech and extremism poses safety risks for users and causes concern for companies and government agencies
- New techniques for masking hate speech by users can make detection difficult
- Lack of understanding for community linguistics can lead to unfair detection

Project Research Problem

**!!@!!@*

 Detecting hate speech from social media platforms using pre-trained Bert model for sequence classification with fine-tuning for text classification of tweets.

index	count	hate_speech	offensive_language	neither	class	tweet
0	3	0	0	3	2	!!! RT @mayasolovely: As a woman you shouldn't
1	3	0	3	0	1	!!!!! RT @mleew17: boy dats coldtyga dwn ba
2	3	0	3	0	1	!!!!!!!! RT @UrKindOfBrand Dawg!!!! RT @80sbaby
3	3	0	2	1	1	!!!!!!!!! RT @C_G_Anderson: @viva_based she lo
4	6	0	6	0	1	!!!!!!!!!!!! RT @ShenikaRoberts: The shit you

- Dataset: "Hate Speech and Offensive Language Dataset" (Sourced from Kaggle)
- Text classification: Hate-speech = 0, Offensive language =1, and Neither 2
- Data includes 24,783 labeled tweets
- Dataset also includes columns for hate speech/offensive language/neither ratings (classified best ²/₃ by various teams)

Dataset outlook

Fig. 1 Dataset

Fig. 2 Text Classification Distribution by Percentage (%)

Research Article

Detection of Hate Speech using BERT and Hate Speech Word Embedding with Deep Model

Relater

Detection of Hate Speech using BERT and Hate Speech Word Embedding with Deep Model

- Objective: With increased demand for detecting hate speech on social media platforms, this study encourages the use of NLP to reduce the impact hate speech and hate content has on social media users
- The study proposes the use of two models to detect hate speech

Figure 1. Block diagram of the experiments. Input Sentence Preprocessing Approach2 Approach1 Feature Extraction methods Domain Specific Google Golve Language Word2vec Embedding Model BiLSTM classifier Result (Hate, Not hate)

- Approach 1: Domain-Specific
 Embedding Features with
 BiLstm Based Deep Model
 Classifier
- Approach 2: Pre-Trained BertModel

Table 1. Datasets description.

Dataset	Original labels	Number of hate	Number of non-hate	Total
Davidson-ICWSM (Davidson et al. 2017)	Hate speech, offensive, and neither	20620	4163	24783
Waseem-EMNLP (Waseem 2016)	Racism, sexism, both, and neither	1059	5850	6909
Waseem-NAACL (Waseem and Hovy 2016)	Sexist, racist, and neither	5406	11501	16910
Balanced Combined	Racism, sexism, and neither, both	16260	16260	32520

- Combined hate and offensive languages classes in their dataset to be hate class (Waseem & Davidson)
- Racism and sexism as a hate class, Neither as a non-hate class. (Waseem and Davidson)
- Offensive language and hate as a hate class and neither as a non-hate class (Davidson)
- Created a large combine dataset randomly selecting a similar number of examples for each class and the number of classes specified according to the lowest class

Wordcloud Representations


```
Word Cloud for Common Words in Offensive Labeled Tweets

I old babby ya right well real know had been today today try love dude Say never make as bitch bruh shit yo bitch friend y'all back callyeah aint gurfunnysaid ima getting hit fucked niggan dumb smh paguy dick going called amp people way now furcking going really nittle tweet on the put fucking going really nittle tweet for the put fucking going fucking going good to go give really nittle tweet for the put fucking going good to go give really nittle tweet for the put fucking going good to go good day for going good the going good to go good the going good to go good the going good t
```


Text Pre-processing

Removing noise from the model (unnecessary text & characters)

Text Pre-processing

Tokenization using BertTokenizer.from_pretrained('bert-base-uncased')

```
If Richnow doesn't show up with hella tinder hoes Im not his friend anymore chill I brought like like prople
Token identification: [ 101 2065 4138 19779 2987 2102 2265
                              2010
                                         4902 10720
                                   2767
                                                    1045
 2066 17678
            2571
                                                                                     [CLS] = 101
                                                                                     [SEP] = 102
```

MAX I FNGTH TWFFT (TEXT) = 150

Model Overview

Figure 1. Block diagram of the experiments.

Saleh, H., Alhothali, A., & Moria, K. (2023).

Model Architecture and Parameters

BertForSequenceClassification

Embedding Layer	
bert.embeddings.word_embeddings.weight	(30522, 768)
bert.embeddings.position_embeddings.weight	(512, 768)
bert.embeddings.token_type_embeddings.weight	(2, 768)
bert.embeddings.LayerNorm.weight	(768,)
bert.embeddings.LayerNorm.bias	(768,)
First Transformer	
bert.encoder.layer.0.attention.self.query.weight	(768, 768)
bert.encoder.layer.0.attention.self.query.bias	(768,)
bert.encoder.layer.0.attention.self.key.weight	(768, 768)
bert.encoder.layer.0.attention.self.key.bias	(768,)
bert.encoder.layer.0.attention.self.value.weight	(768, 768)
bert.encoder.layer.0.attention.self.value.bias	(768,) —
bert.encoder.layer.0.attention.output.dense.weight	(768, 768)
bert.encoder.layer.0.attention.output.dense.bias	(768,)
bert.encoder.layer.0.attention.output.LayerNorm.weight	(768,)
bert.encoder.layer.0.attention.output.LayerNorm.bias	(768,)
bert.encoder.layer.0.intermediate.dense.weight	(3072, 768)
bert.encoder.layer.0.intermediate.dense.bias	(3072,)
bert.encoder.layer.0.output.dense.weight	(768, 3072)
bert.encoder.layer.0.output.dense.bias	(768,)
bert.encoder.layer.0.output.LayerNorm.weight	(768,)
bert.encoder.layer.0.output.LayerNorm.bias	(768,)
Output Layer	
classifier.weight	(3, 768)
classifier.bias	(3,)

Train: 80% Test:10% Val:10%

AdamW

Learning Rate = 3e-5

Eps = 1e-8

Epochs = 4

Batch Size = 32

LR Scheduler = 3e-5

Paper parameters:

LEARNING RATE = 2e-5 NUM TRAIN EPOCHS = 3.0 BATCH SIZE = 16,8

Approach 1 Results: BiLSTM with various word embedding features

Source	Machine Learning Approach	Methods	Dataset	Р	R	f1-score (hate)	f1-score (non- hate)	f1- score	AUC
Gupta and Waseem (2017)	LR	Hate W2V(300)	Davidson ICWSM	0.91	0.91	0 2 0	1-0	0.9120	0.8400
			Waseem EMNLP	0.84	0.86	9.50	(=)	0.8440	0.6380
			Waseem NAACL	0.76	0.77	(<u>-</u>	121	0.7500	0.6790
Our proposed deep model	BiLSTM Deep model	GoogleNews- vectors- negative300	Davidson ICWSM	0.94	0.94	0.9679	0.8457	0.9473	0.9132
			Waseem EMNLP	0.91	0.91	0.6737	0.9484	0.9033	0.7697
			Waseem NAACL	0.80	0.80	0.6805	0.8542	0.7990	0.7654
			Combined balanced	0.94	0.94	0.9365	0.9376	0.9371	0.9370
		GloVe.6B.300d	Davidson ICWSM	0.94	0.94	0.9646	0.8310	0.9421	0.9073
			Waseem EMNLP	0.90	0.91	0.6631	0.9463	0.9028	0.7792
			Waseem NAACL	0.80	0.80	0.6794	0.8569	0.8002	0.7634
			Combined balanced	0.94	0.94	0.9414	0.9413	0.9414	0.9414
		GloVe.Twitter. 27B.200d	Davidson ICWSM	0.95	0.95	0.9676	0.8347	0.9453	0.8927
			Waseem EMNLP	0.91	0.90	0.6917	0.9399	0.9018	0.8324
			Waseem NAACL	0.80	0.80	0.6911	0.8503	0.7994	0.7738
			Combined balanced	0.94	0.94	0.9381	0.9394	0.9388	0.9388
		HSW2V(300)	Davidson ICWSM	0.95	0.95	0.9703	0.8551	0.9509	0.9162
			Waseem EMNLP	0.91	0.91	0.6928	0.9469	0.9079	0.8094
			Waseem NAACL	0.81	0.81	0.7055	0.8634	0.8129	0.7831
			Combined balanced	0.94	0.94	0.9428	0.9439	0.9434	0.9434

Approach 2 Paper Results: BERT (Base vs Large)

Table 4 of 6

Table 4. BERT for sequence classification hate speech experiment results (base-large).

Methods	Datasets	Р	R	f1-score (Hate)	f1-score (non- Hate)	f1-score	AUC
BERT Base	Davidson- ICWSM	0.96	0.96	0.98	0.89	0.962	0.9309
	Waseem- EMNLP	0.92	0.92	0.7654	0.9541	0.9216	0.8455
	Waseem- NAACL	0.85	0.85	0.7612	0.8881	0.8472	0.8227
	Combined Balanced	0.95	0.95	0.9543	0.9552	0.9547	0.9547
BERT Large	Davidson- ICWSM	0.96	0.96	0.9788	0.8924	0.9646	0.9345
	Waseem- EMNLP	0.91	0.91	0.6939	0.9458	0.9103	0.8371
	Waseem -NAACL	0.85	0.85	0.7643	0.8937	0.8521	0.823
	Combined Balanced	0.96	0.96	0.962	0.9625	0.9623	0.9623

		precision	recall	f1-score	support	
Confusion Ma	atrix ₀	0.50	0.37	0.43	134	
	1	0.93	0.96	0.95	1904	
Test set	2	0.90	0.87	0.89	440	
prediction	accuracy			0.91	2478	
prediction	macro avg	0.78	0.73	0.75	2478	
	weighted avg	0.91	0.91	0.91	2478	

====== Epoch 1 / 4 ======= Training
Average training loss: 0.30
Running Validation Accuracy: 0.91
====== Epoch 2 / 4 ====== Training
Average training loss: 0.21
Running Validation Accuracy: 0.91
====== Epoch 3 / 4 ====== Training
Average training loss: 0.16
Running Validation Accuracy: 0.91
====== Epoch 4 / 4 ====== Training
Average training loss: 0.11
Running Validation Accuracy: 0.91
Training finished!

Results

Paper Results: Hate vs Non Hate

Methods	Datasets	tasets P		f1-score (Hate)	f1-score (non- Hate)	f1-score
BERT Base	Davidson- ICWSM	0.96	0.96	0.98	0.89	0.962

Results: Hate vs Offensive vs Non Hate

Methods	Datasets (Test Data)	Class	Р	R	f-1 Score
Bert Base	Hate Speech & Offensive Language Dataset	Hate (0)	0.50	0.37	0.43
Bert Base	Hate Speech & Offensive Language Dataset	Offensive (1)	0.93	0.96	0.95
Bert Base	Hate Speech & Offensive Language Dataset	Neither (2)	0.90	0.87	0.89

Confusion Matrix: Predicted vs Actual Values

Conclusion

- Helpful to build large pre-trained models from rich domains specific content in current social media platforms.
 BERT combines the benefits of domain-agnostic, domain-specific word embedding and domain-specific data (fine-tuning) due to the large amount of data it was trained (Hind Saleh, Areej Alhothali & Kawthar Moria (2023)
- · Signifies the importance of differentiating hate speech vs offensive data
- Requires further investigation on how text in the dataset is classified
- Overfitting due to small size of test data for hate speech classification
- Future exploration: Racial Bias in existing Hate Speech Detection Models. Building LLM's specifically with hate speech signifiers/ classified words.
 - > Issues: context, sarcasm, bias against cultural and linguistic speech patterns
 - > Trust and Safety policies and regulations

Thank You!

References

- Hind Saleh, Areej Alhothali & Kawthar Moria (2023) Detection of Hate Speech using BERT and Hate Speech Word Embedding with Deep Model, Applied Artificial Intelligence, 37:1, DOI: 10.1080/08839514.2023.2166719
- Coldewey, D. (2019, August 15). *Racial bias observed in hate speech detection algorithm from google*. TechCrunch. https://techcrunch.com/2019/08/14/racial-bias-observed-in-hate-speech-detection-algorithm-from-google/
- Waseem, Z., and Hovy, D. 2016. Hateful symbols or hateful people? predictive features for hate speech detection on twitter. In SRW@HLT-NAACL, 88–93.
- Waseem, Z. 2016. Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter. In Proceedings of the First Workshop on NLP and CSS, 138–142.
- Davidson, T., D. Warmsley, M. Macy, and I. Weber. 2017. "Automated hate speech detection and the problem of offensive language." In Eleventh international agai conference on web and social media, Canada.

