A function f: X-> Y is called onto if for every JEY, there exists nex such that f(x) = y(In other words, for every image JEY there exists preimage se $\in X$ S.t. f(x) = y.

Result: T: V -> W be a L.T. Then T is onto of Im(T) = W. Proof: (A >B): Assume T les onto. To prove: In (T) = W. In (T): $\{T(x) \mid g \in Y\}$ (Im (T) es a Konbspace of W.) Prof. Kedukodi Babushri Srinivas, Department of Mathematics, MIT Manipal

We need to prove W = Im (T).

Take UEW.

As I es ento, there expers x e V s.E.

T(90) = U.

→ L= T(x) & Im (T)

→ W⊆ Im(T) — (2)

By (1) and (2). W = Im (T).

$$(B \Rightarrow A)$$
: Assume $W = In(T)$.
 $\Rightarrow W = \{T(\alpha) \mid g \in V\}$
Take $y \in W$.
 $\Rightarrow y = T(\alpha)$ for some $\alpha \in V$. (Given)
 $\Rightarrow T$ is onto.
 T is one -one \Leftrightarrow Ker $T = \{0\}$

7 % onto (=) Im (T) = W.

Kesult: T: V -> W be a L.T. and T T is onto. Then dim W = dim V. Prof: dim Ker T + dim Im(T) = dim V. (Kulity theorem) dim (fof) + dim W = dim V.

(as Tes
one-one) onto)

3 0 + dim W = dim V. 3 dim W = dim V

Def $N: T: V \to W$ be a L.T. If T is one-one and toto, then the vector space V is isomorphic to the vector space W; denoted by $V \cong W$.

Fiof. Kadulor Dahushi Prinivas Departmentor Mathematics, MIT Manipal

Soln: Take T: Rr -> P. giver by

T(a0, a1) = a0 + a12.

Lit (ao, ai), (bo, bi) & R2.

(1). $T((a_0,a_1)+(b_0,b_1))=T((a_0+b_0,a_1+b_1))$ $= (a_1 + b_0) + (a_1 + b_1) \mathcal{X}$ partment of Mathematics, MIT Manipal

Prof. Kedukodi Babushri Srinivas, Department of

=
$$(a_0 + a_1 x_1) + (b_0 + b_1 x_1)$$

= $T(a_0, a_1) + T(b_0, b_1)$
= $T(x_1) + T(x_1)$
= $T(x_1(a_0, a_1))$
= $T(a_0, a_0)$
= $T(a_0, a_0)$
= $a_0 + (a_0) x_1$
= $a_0 + (a_0) x_1$

Prof. Kedukodi Babushri Srinivas, Department of Mane natics, MIT Manipal

(1) Let de R. T(dui)

$$\Rightarrow T(\alpha_0, \alpha_1) = T(6_0, b_1)$$

$$\Rightarrow$$
 as $+a_1x = b_0 + b_1x$

$$\Rightarrow$$
 $a_0 = b_0$; $a_1 = b_1$.

$$\Rightarrow$$
 $(a_0, a_1) = (b_0, b_1)$

To show T be onto, take
$$V \in P_i$$
 $\Rightarrow V = a_0 + a_1 x \quad ; \quad a_i \in \mathbb{R}$.

 $\Rightarrow V = a_0 + a_1 x = T(a_0, a_1)$
 invye
 polynomial
 $\text{point in } xy - plane$
 $\text{point in } xy - plane$
 $\text{point in } xy - plane$

Dot product:
$$A = (a_1, a_2, \ldots, a_n)$$

$$B = (b_1, b_2, \ldots, b_n)$$

$$A \cdot B = \langle A, B \rangle = a_1b_1 + a_2b_2 + \dots + a_nb_n$$

$$A \cdot A = a_1^2 + a_2^2 + \dots + a_n^2$$

Prof. Kennodi Babushri Srinivas, Department of Mathematics, MIT Manipal

$$C = \sqrt{\left(b \cos \theta - a\right)^2 + \left(b \sin \theta - 0\right)^2}$$

$$C' = b^2 cos^2 o + a^2 - 2ab cos o + b^2 sin'o$$

$$= a^2 + b^2 - 2ab coso \cdot (Law of cosinus)$$

$$||A|| = a$$
; $||B|| = b$

$$||A - B||^2 = ||A||^2 + ||B||^2 - 2||A|| ||B|| \cos \theta$$
(Low of cosines)

$$\|A-B\|^2 = (A-B)\cdot(A-B)$$

Prof. Keduka Babushit aprives, Department & Mathematics, MIT Manipal

(1) & (2),

A-B = 11 A11 | 11 B11 680

= Sim (A,B)

$$Sim(A, B) = \frac{A \cdot B}{11A111B11}$$

$$= 2(-7) + 0.0$$

$$= -14$$

$$\sqrt{2^2 + 0^2 \cdot \sqrt{(-7)^2 + 0^2}}$$

$$= -14$$

$$= -1$$

$$\sqrt{2^2 + 0^2 \cdot \sqrt{(-7)^2 + 0^2}}$$

$$= -14$$

$$= -1$$

$$= -14$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= -1$$

$$= \frac{2(-3) + 0.1}{\sqrt{2^{2} + 0^{2} \cdot \sqrt{(-3)^{2} + 1^{2}}}} = \frac{-3}{\sqrt{10}}$$