חלק א': שאלת חובה (19 נקודות)

שאלה 1

בחרו את התשובה הנכונה בכל סעיף. כתבו את התשובות במחברת הבחינה. בשאלה זו בלבד אין צורך בהוכחה או בנימוק. הניקוד ינתן אך ורק על-סמך התשובה שבחרתם.

- נתבונן (לאו דוקא משתנים פסוקיים:). נתבונן lpha,eta הם פסוקיים:). נתבונן lpha,etaבפסוקים:
 - $\alpha \rightarrow (\alpha \lor \beta)$ (*)
 - $(\alpha \vee \beta) \rightarrow \alpha \quad (**)$

אזי:

- [1] מהנתון נובע ש-(*) ו-(**) שניהם טאוטולוגיות.
- מהנתון לא נובע ש-(*) הוא טאוטולוגיה, ולא נובע ש-(**) הוא טאוטולוגיה.
 - (בז) מהנתון נובע ש-(*) הוא טאוטולוגיה וש-(**) אינו טאוטולוגיה.
 - אף אחת מהטענות [1]–[3] אינה נכונה.
 - $|A\Delta B| \leq \aleph_0$ הן כמעט שוות אם A,B הן כי קבוצות אם הגדרה: נאמר כי קבוצות 7)

נתון: $S\subseteq P(\mathbb{R})$, כל $A,B\in S$ הן כמעט שוות. כמו כן, ידוע (נתון), שעוצמת הקבוצה $X \subseteq \mathbb{R}$ היא $\{X \subseteq \mathbb{R} \mid X \subseteq X\}$

X15:

- $|S| \le \aleph_0$ מהנתון נובע ש-
- $|S| \leq \aleph$ טענה (1) אינה נכונה, אבל מהנתון נובע ש-

 $|S| \leq |C(\mathbb{R})|$ טענה [2] אינה נכונה, אבל מהנתון נובע ש- ' $|S| \leq |S|$ (תזכורת: [3] אינה נכונה, אבל מהנתון נובע ש-

.אף אחת מהטענות [1]–[3] אינה נכונה הערה: חוק הצמצום של פעולת ההפרש הסימטרי עשוי לעזור כאן.

- T נקי) ג. נתבונן בתנאי הבא על עץ: T
- $\deg_T(1) \ge 7$ עץ על $\{1, 2, ..., 10\}$, ומתקיים T (*)

מהו מספר העצים המקיימים את (*), בהנחה שעצים איזומורפיים נחשבים זהים!

- 36 [1]
- 64 [2]
- 2800 [3]
- 2341 ([4]
- אף אחת מהתשובות [1]–[4] אינה נכונה.

חלק ב':

- תלמידי שנת הלימודים 2024 בלבד ענו על שלוש מבין השאלות 2, 3, 4, 6.
- יתר הסטודנטים (מי שלמדו בסמסטר 2025א, בסמסטר 2025, או בכל סמסטר אחר שאינו שייך לשנת הלימודים 2024) ענו על שלוש מבין השאלות 2, 3, 4, 5.

נמקו את תשובותיכם.

משקל כל שאלה 27 נקודות. משקל חלק בי כולו: 81 נקודות.

שאלה 2 (27 נקי)

(0,0). מעגל הגדרות: נקודה (במישור) היא איבר של $\mathbb{R} \times \mathbb{R}$ ראשית הצירים היא הנקודה ((a,b)). מעגל (במישור) הוא קבוצה מהצורה $(x,y) \in \mathbb{R} \times \mathbb{R} | (x-a)^2 + (y-b)^2 = r^2$ נקודה (במישור) הוא קבוצה מספר ממשי חיובי, שנקרא רדיוס המעגל. נקודה (x,y) מספר משי חיובי, שנקרא $(x,y) \in \mathbb{R}$ נקודה (x,y) היא רציונלית אם (x,y)

תהי O קבוצת כל המעגלים שמרכזם הוא ראשית הצירים.

(7 נקי) א. מהי |O| יהוכיחו את תשובתכם.

. תהי A קבוצת כל האיברים של O שלא נמצאת עליהם אף נקודה רציונלית. מהי A יהוכיחו את תשובתכם.

שאלה 3 (27 נקי)

(12 נקי) א. כתבו פונקציה יוצרת לחישוב מספר הפתרונות למשוואה

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = k$$
 (*)

: המקיימים את התנאים הבאים

$$x_1, x_2, x_3 \in \{0, 4\}$$
 (i)

(ii) אי-שליליים אוגיים ואי-שליליים.

בסעיף זה לא נדרש פישוט או טיפול אלגברי כלשהו בפונקציה היוצרת שכתבתם.

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 18$ נקי) ב. מצאו את מספר הפתרונות למשוואה (ii) ו-(ii). תנו תשובה מספרית. נמקו

שאלה 4 (27 נקי)

 $\{A,B,C,D,E\}$ שאלה זו עוסקת במחרוזות סופיות של אותיות מהקבוצה

הגדרה: מחרוזת חוקית היא מחרוזת סופית של אותיות מהקבוצה שלעיל, שבה כל רצף A ים כלומר: כל רצף מהצורה AAA...A באורך אי-זוגי הוא חלק מרצף A ים באורך זוגי.

. AABCAAAA , AAAAB , AA , BCBBD , B : דוגמאות למחרוזות חוקיות

. AABCAAA BACAAAA , A : דוגמאות למחרוזות לא חוקיות

n מספר המחרוזות החוקייות באורך a_n מספר המחרוזות שלם וחיובי, יהי

 $a_0 = 1$ כמו כן, נגדיר

 a_1, a_2 א. מצאו על-ידי חישוב ישיר את (7 נקי)

מתאימים ליחס הנסיגה $a_{\scriptscriptstyle 0}, a_{\scriptscriptstyle 1}, a_{\scriptscriptstyle 2}$ של הערכים של בדקו האם הערכים עבור . $a_{\scriptscriptstyle \pi}$ בדקו האם הערכים של 10) שמצאתם

 a_n עבור את יחס הנסיגה שמצאתם, וקבלו נוסחה מפורשת עבור (נקי) ג. פתרו את יחס הנסיגה שמצאתם

לפניכם שתי שאלות. אין לענות על יותר מאחת מהן.

- אם למדתם את הקורס בשנת הלימודים 2024 תוכלו לענות על שאלה 6.
- אם למדתם את הקורס בסמסטר 2025א, בסמסטר 2025, או בכל סמסטר אחר שאינו
 שייך לשנת הלימודים 2024 תוכלו לענות על שאלה 5.

לתשומת לבכם: באחריותכם להקפיד על בחירת השאלה המתאימה!

שאלה 5 (27 נקי) **השאלה מיועדת רק למי שלמדו את הקורס בסמסטר 2025א, בסמסטר 2025ב, או לפני שנת הלימודים 2024**

:H א. נתבונן בתנאי הבא על גרף א. (9 נקי)

$$|E(H)| \ge |V(H)| + 3$$
 (*)

.(*) או מקיים את K_{5} או של $K_{3,3}$ או הוא העדנה H הוא מקיים את הוכיחו, כי אם גרף

- (9 נקי) ב. יהי G גרף לא מישורי, המתקבל מעץ T על-ידי הוספת k קשתות בדיוק. $k \geq 4 \cdot n$ הוכיחו כי $k \geq 4$. תוכלו להסתמך על הטענה הבאה מבלי להוכיח אותה : לכל יער $|E(H)| \leq |V(H)| 1$ מתקיים
- , $|E(G)| \le n+2$ אמתים, המקיים n על n על n על n אורי. הוכיחו כי כל גרף אורי $n \in \mathbb{N}$ אורי. מישורי.

המשך השאלון – בעמוד הבא.

2025 – 20476 – מועד א

- השאלה שלהלן מיועדת לתלמידי שנת הלימודים 2024 בלבד.
 - בכל מקרה, אין לענות על יותר מאחת מבין השאלות 5, 6.

לתשומת לבכם: באחריותכם להקפיד על בחירת השאלה המתאימה!

שאלה 6 (27 נקי) *יהשאלה מיועדת רק למי שלמדו את הקורס בשנת הלימודים 2024!**

על n צמתים, המקיים . $n\in\mathbb{N}$ א. יהי $n\in\mathbb{N}$ א. יהי א. יהי 14)

. הוא קשיר. הקפידו על ניסוח מדוייק של כל טיעוניכם, $\left|E(G)\right| \geq \binom{n}{2} - n + 2$

nעל G על גרף פשוט $m < \binom{n}{2} - n + 2$ על מספר פשוט $n \geq 3$ על הייטב. ב. יהי $n \geq 3$ על הייטב. צמתים, המקיים $|E(G)| \geq m$, הוא קשיר! נמקו היטב.

בהצלחה!