~ Seminar 5 ~

EX_1: Aplicați algoritmul de reducere (pasul 1) pe gramatica:

 $S \rightarrow A \mid B$

 $A \to aB \mid bS \mid b$

 $B \rightarrow AB \mid Ba$

 $C \rightarrow AS \mid b$

Rezolvare:

a) Calculăm N₁ mulțimea neterminalelor *utilizabile*.

 $A \in N_1$ (pentru că $A \to b$ și $b \in T^*$)

 $C \in N_1$ (pentru că $C \to b$ și $b \in T^*$)

 $S \in N_1$ (pentru că $S \to A$ și $A \in (T \cup N_1)^*$)

 $B \notin N_1$ (pentru că B nu are nicio producție cu membrul drept în $(T \cup N_1)^*$) => eliminăm din gramatică neterminalul B și toate producțiile în care apare acesta și obținem:

 $S \rightarrow A$

 $A \rightarrow bS \mid b$

 $C \rightarrow AS \mid b$

b) Calculăm N₂ mulțimea neterminalelor *accesibile*.

 $\overline{S} \in N_2$ (pentru că S este simbolul de start al gramaticii)

 $A \in N_2$ (pentru că $S \in N_2$ și $S \to A$)

 $C \notin N_2$ (pentru că nu există niciun neterminal în N_2 care să aibă o producție în care să apară C în membrul drept) => eliminăm din gramatică neterminalul C și toate producțiile în care apare acesta și obținem:

 $S \rightarrow A$

 $A \rightarrow bS \mid b$

EX_2: Aplicați tot algoritmul de transformare în F.N.Chomsky pe gramatica:

 $S \rightarrow aABa \mid CD \mid bbAC$

 $A \rightarrow bc \mid d \mid \lambda$

 $B \rightarrow \lambda \mid E$

 $C \rightarrow A \mid dcabb \mid S$

 $D \rightarrow BAd \mid B$

 $E \rightarrow Ea \mid bbE$

 $F \rightarrow abc$

Rezolvare:

Pas 1: Aplicăm algoritmul de reducere.

a) Calculăm N₁ mulțimea neterminalelor *utilizabile*.

 $A \in N_1$ (pentru că A are cel puțin o producție cu membrul drept în T^* , de fapt are 3)

 $B \in N_1$ (pentru că $B \to \lambda$ și $\lambda \in T^*$)

 $C \in N_1$ (pentru că $B \to dcabb \, si \, dcabb \in T^*$)

 $F \in N_1$ (pentru că $F \to abc$ și $abc \in T^*$)

 $S \in N_1$ (pentru că $S \to aABa$ și $aABa \in (T \cup N_1)^*$, la fel si pentru $S \to bbAC$)

 $D \in N_1$ (pentru că $D \to B$ și $B \in T^*$, la fel și pentru $D \to BAd$)

 $E \notin N_1$ (pentru că E nu are nicio producție cu membrul drept în $(T \cup N_1)^*$) => eliminăm din gramatică neterminalul E și toate producțiile în care apare acesta și obținem:

```
S \rightarrow aABa \mid CD \mid bbAC
```

 $A \rightarrow bc \mid d \mid \lambda$

 $B \rightarrow \lambda$

 $C \rightarrow A \mid dcabb \mid S$

 $D \rightarrow BAd \mid B$

 $F \rightarrow abc$

b) Calculăm N₂ mulțimea neterminalelor *accesibile*.

 $S \in N_2$ (pentru că S este simbolul de start al gramaticii)

 $A \in N_2$ și $B \in N_2$ (pentru că $S \in N_2$ și $S \to aABa$)

 $C \in N_2$ și $D \in N_2$ (pentru că $S \in N_2$ și $S \to CD$)

 $F \notin N_2$ (pentru că nu există niciun neterminal în N_2 care să aibă o producție în care să apară F în membrul drept) => eliminăm din gramatică neterminalul F și toate producțiile în care apare acesta și obținem:

 $S \rightarrow aABa \mid CD \mid bbAC$

 $A \rightarrow bc \mid d \mid \lambda$

 $B \rightarrow \lambda$

 $C \rightarrow A \mid dcabb \mid S$

 $D \rightarrow BAd \mid B$

Pas 2: Se elimină λ-producțiile.

Caz (i) \rightarrow Eliminăm $B \rightarrow \lambda$ și neterminalul $B => \hat{n}$ toate producțiile în care apare B în membrul drept, *înlocuim* B cu λ (în cuvintele de lungime 1) sau îl *eliminăm* de tot pe B (în cuvintele de lungime ≥ 2).

 $S \rightarrow aAa \mid CD \mid bbAC$

 $A \rightarrow bc \mid d \mid \lambda$

 $C \rightarrow A \mid dcabb \mid S$

 $D \rightarrow Ad \mid \lambda$

Caz (ii)

 \rightarrow Eliminăm $A \rightarrow \lambda =>$ pentru toate producțiile în care apare A în membrul drept, **păstrăm** și variantele cu A (pentru că A are și alte producții non-lambda), dar **adăugăm** și producțiile în care înlocuim A cu λ (în cuvintele de lungime 1) sau îl eliminăm de tot pe A (în cuvintele de lungime \geq 2).

 $S \rightarrow aAa \mid aa \mid CD \mid bbAC \mid bbC$

 $A \rightarrow bc \mid d$

 $C \rightarrow A \mid \lambda \mid dcabb \mid S$

 $D \rightarrow Ad \mid d \mid \lambda$

 \rightarrow Eliminăm $C \rightarrow \lambda =>$ pentru toate producțiile în care apare C în membrul drept, *păstrăm* și variantele cu C (pentru că C are și alte producții non-lambda), dar *adăugăm* și producțiile în care înlocuim C cu λ (în cuvintele de lungime 1) sau îl eliminăm de tot pe C (în cuvintele de lungime \geq 2).

 $S \rightarrow aAa \mid aa \mid CD \mid D \mid bbAC \mid bbA \mid bbC \mid bb$

 $A \rightarrow bc \mid d$

 $C \rightarrow A \mid dcabb \mid S$

 $D \rightarrow Ad \mid d \mid \lambda$

 \rightarrow Eliminăm $D \rightarrow \lambda =>$ pentru toate producțiile în care apare D în membrul drept, *păstrăm* și variantele cu D (pentru că D are și alte producții non-lambda), dar *adăugăm* și producțiile în care înlocuim D cu λ (în cuvintele de lungime 1) sau îl eliminăm de tot pe D (în cuvintele de lungime \geq 2).

```
S \rightarrow aAa \mid aa \mid CD \mid C \mid D \mid \lambda \mid bbAC \mid bbA \mid bbC \mid bb
```

 $A \rightarrow bc \mid d$

 $C \rightarrow A \mid dcabb \mid S$

 $D \rightarrow Ad \mid d$

- !! Gramatica trebuie să genereze λ (pentru că avem $S \to \lambda$), dar simbolul de start NU are voie să apară în membrul drept al nici unei producții (avem $C \to S$). => *Adăugăm un nou simbol de start* S' cu producțiile (S' \to S | λ).
- \rightarrow Eliminăm $S \rightarrow \lambda =>$ pentru toate producțiile în care apare S în membrul drept, *păstrăm* și variantele cu S (pentru că S are și alte producții non-lambda), dar *adăugăm* și producțiile în care înlocuim S cu λ (în cuvintele de lungime 1) sau îl eliminăm de tot pe S (în cuvintele de lungime \geq 2).
- *Observăm* că ar fi reapărut λ -producția $C \to \lambda$, dar nu o mai introducem pentru că am avut-o deja și am eliminat-o, deci am obținut deja toate producțiile care rezultau din eliminarea ei.

 $S' \rightarrow S \mid \lambda$

 $S \rightarrow aAa \mid aa \mid CD \mid C \mid D \mid bbAC \mid bbA \mid bbC \mid bb$

 $A \rightarrow bc \mid d$

 $C \rightarrow A \mid dcabb \mid S$

 $D \rightarrow Ad \mid d$

Pas 3: Se elimină redenumirile.

 \rightarrow Eliminăm $C \rightarrow A = >$ Pentru toate producțiile $A \rightarrow \alpha$, adăugăm producțiile $C \rightarrow \alpha$.

 $S' \rightarrow S \mid \lambda$

 $S \rightarrow aAa \mid aa \mid CD \mid C \mid D \mid bbAC \mid bbA \mid bbC \mid bb$

 $A \rightarrow bc \mid d$

 $C \rightarrow bc \mid d \mid dcabb \mid S$

 $D \rightarrow Ad \mid d$

 \rightarrow Eliminăm $S \rightarrow D =$ Pentru toate producțiile $D \rightarrow \alpha$, adăugăm producțiile $S \rightarrow \alpha$.

 $S' \rightarrow S \mid \lambda$

 $S \rightarrow aAa \mid aa \mid CD \mid C \mid Ad \mid d \mid bbAC \mid bbA \mid bbC \mid bb$

 $A \rightarrow bc \mid d$

 $C \rightarrow bc \mid d \mid dcabb \mid S$

 $D \to Ad \mid d$

 \rightarrow Eliminăm $S \rightarrow C =>$ Pentru toate producțiile $C \rightarrow \alpha$, adăugăm producțiile $S \rightarrow \alpha$ (atenție, adăugăm doar producțiile care nu există deja).

Observăm că ar apărea și producția $S \rightarrow S$, dar nu o adăugăm pentru că e inutilă.

 $S' \rightarrow S \mid \lambda$

 $S \rightarrow aAa \mid aa \mid CD \mid bc \mid dcabb \mid Ad \mid d \mid bbAC \mid bbA \mid bbC \mid bb$

 $A \rightarrow bc \mid d$

 $C \rightarrow bc \mid d \mid dcabb \mid S$

 $D \rightarrow Ad \mid d$

 \rightarrow Eliminăm $C \rightarrow S = >$ Pentru toate producțiile $S \rightarrow \alpha$, adăugăm producțiile $C \rightarrow \alpha$ (care nu există deja).

 $S' \rightarrow S \mid \lambda$

 $S \rightarrow aAa \mid aa \mid CD \mid bc \mid dcabb \mid Ad \mid d \mid bbAC \mid bbA \mid bbC \mid bb$

 $A \rightarrow bc \mid d$

 $C \rightarrow bc \mid d \mid dcabb \mid aAa \mid aa \mid CD \mid Ad \mid bbAC \mid bbA \mid bbC \mid bb$

 $D \rightarrow Ad \mid d$

Observație: sortăm alfabetic cuvintele de pe fiecare rând, pentru a fi mai ușor de urmărit în continuare.

$$S' \rightarrow S \mid \lambda$$

$$S \rightarrow aa \mid aAa \mid Ad \mid bb \mid bbA \mid bbAC \mid bbC \mid bc \mid CD \mid d \mid dcabb$$

$$A \rightarrow bc \mid d$$

$$C \rightarrow aa \mid aAa \mid Ad \mid bb \mid bbA \mid bbAC \mid bbC \mid bc \mid CD \mid d \mid dcabb$$

$$D \rightarrow Ad \mid d$$

Acum se vede clar că neterminalele S și C au exact aceleași producții, deci putem simplifica gramatica prin eliminarea neterminalului C și a producțiilor lui, și prin înlocuirea lui C cu S în toate celelalte apariții.

$$S' \rightarrow S \mid \lambda$$

$$S \rightarrow aa \mid aAa \mid Ad \mid bb \mid bbA \mid bbAS \mid bbS \mid bc \mid d \mid dcabb \mid SD$$

$$A \rightarrow bc \mid d$$

$$D \rightarrow Ad \mid d$$

$$\rightarrow$$
 Eliminăm $S' \rightarrow S =$ Pentru toate producțiile $S \rightarrow \alpha$, adăugăm producțiile $S' \rightarrow \alpha$.

$$S' \rightarrow aa \mid aAa \mid Ad \mid bb \mid bbA \mid bbAS \mid bbS \mid bc \mid d \mid dcabb \mid SD \mid \lambda$$

$$S \rightarrow aa \mid aAa \mid Ad \mid bb \mid bbA \mid bbAS \mid bbS \mid bc \mid d \mid dcabb \mid SD$$

$$A \rightarrow bc \mid d$$

$$D \rightarrow Ad \mid d$$

Pas 4: Se aplică din nou algoritmul de reducere (vezi Pas 1).

Observăm că nu avem ce modifica, nu există neterminale neutilizabile sau inaccesibile.

Pas 5: Se adaugă neterminale noi pentru terminalele din cuvinte de lungime >1.

$$S' \to X_1 X_1 \mid X_1 A X_1 \mid A X_4 \mid X_2 X_2 \mid X_2 X_2 A \mid X_2 X_2 A S \mid X_2 X_2 S \mid X_2 X_3 \mid d \mid X_4 X_3 X_1 X_2 X_2 \mid SD \mid \lambda$$

$$S \rightarrow X_1X_1 \mid X_1AX_1 \mid AX_4 \mid X_2X_2 \mid X_2X_2A \mid X_2X_2AS \mid X_2X_2S \mid X_2X_3 \mid d \mid X_4X_3X_1X_2X_2 \mid SD$$

$$A \rightarrow X_2 X_3 \mid d$$

$$D \rightarrow AX_4 \mid d$$

$$X_1 \rightarrow a$$
 ; $X_2 \rightarrow b$; $X_3 \rightarrow c$; $X_4 \rightarrow d$

Pas 6: Se adaugă neterminale noi pentru "spargerea" cuvintelor de lungime >2.

$$S' \to X_1 X_1 \mid X_1 Y_1 \mid AX_4 \mid X_2 X_2 \mid X_2 Y_2 \mid X_2 Y_3 \mid X_2 Y_5 \mid X_2 X_3 \mid d \mid X_4 Y_6 \mid SD \mid \lambda$$

$$S \rightarrow X_1X_1 \mid X_1Y_1 \mid AX_4 \mid X_2X_2 \mid X_2Y_2 \mid X_2Y_3 \mid X_2Y_5 \mid X_2X_3 \mid d \mid X_4Y_6 \mid SD$$

$$A \rightarrow X_2 X_3 \mid d$$

$$D \rightarrow AX_4 \mid d$$

$$X_1 \rightarrow a$$
 ; $X_2 \rightarrow b$; $X_3 \rightarrow c$; $X_4 \rightarrow d$

$$Y_1 \to AX_1$$
; $Y_2 \to X_2A$; $Y_3 \to X_2Y_4$; $Y_4 \to AS$; $Y_5 \to X_2S$

$$Y_6 \to X_3 Y_7$$
; $Y_7 \to X_1 Y_8$; $Y_8 \to X_2 X_2$