Bases de Datos Unidad 1

Instructor: M.C. Luis Basto Díaz Email: luisbasto@gmail.com

Unidad 1 Panorama del Área de BD

Instructor: M.C. Luis Basto Díaz luisbasto@gmail.com

Panorama del Área de BD

- Definición de un DBMS
- Usuarios de un DBMS: DBA, desarrolladores, usuarios finales.
- Componentes de un DBMS.
- Modelos de datos
 - Modelo entidad-relación
 - Modelo jerárquico
 - Modelo de red
 - Modelo relacional
 - Modelo relacional extendido
 - Modelo orientado a objetos

M.C. Luis R. Basto Díaz, CEL

-

Modelo de datos

- ¿Qué es un modelo?
- Es una representación de la realidad que contiene características generales de algo que queremos realizar.
- Cuando hablamos de BD, esta representación se realiza a través de ciertos diagramas.

M.C. Luis R. Basto Díaz, CEL

Modelo de datos

- Es una colección de herramientas conceptuales para describir datos, las relaciones que guardan entre sí, el significado de los datos y las reglas aplicadas a ellos.
- Se dividen en dos grandes grupos:
 - Modelo basados en objetos
 - Modelo basados en registros

M.C. Luis R. Basto Díaz, CEL

Ę

Modelo de bases de datos jerárquico

- Se forma a través de una estructura de árbol.
- Poca flexibilidad,
 - lo que da origen a una falta de adaptación a muchas organizaciones.
- No se ha adoptado una formalización matemática del modelo y de sus lenguajes.
- · No existe una estandarización.
- Usado en la representación de situaciones de la vida real en las que predominan las relaciones de tipo 1:N.

M.C. Luis R. Basto Díaz, CEL

Modelo de bases de datos jerárquico

- Se organiza en niveles múltiples de acuerdo a una relación PADRE/HIJO.
- Un padre puede tener más de un hijo, todos ellos localizados en el mismo nivel,
- Un hijo únicamente puede tener un padre que se encuentra en el nivel inmediatamente superior.
- No pueden establecerse relaciones entre segmentos dentro de un mismo nivel.

M.C. Luis R. Basto Díaz, CEL

7

Modelo de bases de datos jerárquico

- Ejemplo: Proceso de producción de un archivero.
 - Un archivero tiene muchos componentes. Ejemplo, los rodillos se componen de ruedas un eje y un anclaje.
 - Un componente se integra de muchos ensambles pequeños. Ejemplo, cada cajón tiene una manija con una cerradura, un conjunto de rodillos, etc.
 - Un ensamble puede contener muchas piezas. Ejemplo, cada rodillo se compone de una pequeña rueda, un eje y un anclaje.
 - El proceso de producción se basa en relaciones de datos que no cambian con el tiempo.

M.C. Luis R. Basto Díaz, CEL

Modelo de bases de datos jerárquico

Ventajas

- Simplicidad conceptual.
- Seguridad de la base de datos: la seguridad se ejecuta por todo el sistema sin tener que depender de la implementación de la seguridad de los programadores.
- Eficiencia: es muy eficiente cuando una base de datos contiene un gran volumen de datos con relaciones 1:N.

M.C. Luis R. Basto Díaz, CEL

Modelo de bases de datos jerárquico

Desventajas

- Ejecución compleja: El programador debe tener ur conocimiento detallado de las características de almacenamiento de datos.
- Difícil de administrar: Cualquier cambio en la estructura de la base de datos, requiere un cambio en todos los programas de aplicación.
- Complejidad de la programación: se debe conocer como están distribuidos físicamente los datos en la base de datos para poder acceder a ellos.
- Falta de estándares: No hay un concepto estricto de estándares y tampoco la ejecución del modelo se ajusta a un estándar específico.

M.C. Luis R. Basto Díaz, CEL

11

Modelo de red

- Representa a las entidades en forma de nodos de un grafo, y las interrelaciones entre estas mediante arcos que unen dichos nodos.
- Esta representación no impone restricción sobre el tipo y el número de arcos que puede haber, con lo que se pueden modelar estructuras de datos tan complejas como sea necesario.

M.C. Luis R. Basto Díaz, CEL

Modelo de red

- Para definir formalmente el conjunto de entidades:
 - {E1, E2, ..., En},
- · Para definir sus atributos
 - {A11, A12, ...A1k, ..., An1, An2, ..., Anm},
- · Para definir sus interrelaciones
 - $\ \{I^h_{j,k,\; \ldots,\; n'}\},$

M.C. Luis R. Basto Díaz, CEL

13

Modelo de red

- Esquemas: Representa la estructura de los datos. Comprenden los tipos de datos y las relaciones entre ellos.
- Ocurrencia: Son los valores que toman los elementos del esquema en un momento determinado (instancias). Estos valores cambian durante el tiempo.

M.C. Luis R. Basto Díaz, CEL

Modelo de bases de datos de red

- Ejemplo: Una organización de ventas.
 - Cliente, Ventas Producto, Inventario, Factura y Pagos representan tipos de registro.
 - Factura es propiedad de Ventas y de Cliente,
 - Inventario tiene dos propietarios, Producto y Factura,
 - Este modelo puede seguir teniendo relaciones 1:N como el caso de Cliente con Factura y Pagos.

M.C. Luis R. Basto Díaz, CEL

19

Modelo de bases de datos de red Ventas Cliente Producto Factura Pagos M.C. Luis R. Basto Díaz, CEL 20

Modelo de bases de datos de red

Ventajas:

- Simplicidad conceptual.
- Maneja más tipos de relaciones
- Flexibilidad de acceso a los datos
- Cumplimiento de estándares: Los estándares incluyen un DDL y un DML

M.C. Luis R. Basto Díaz, CEL

21

Modelo de bases de datos de red

• Desventajas:

- Complejidad del sistema: Los programadores y administradores deben conocer la estructura antes de acceder un registro.
- Falta de independencia de estructura: Es difícil cambiar de estructura y algunos cambios estructurales son imposibles de hacer.

M.C. Luis R. Basto Díaz, CEL

- Los modelos de bases de datos tradicionales (relacional, red y jerárquico) han sido capaces de satisfacer con éxito las necesidades, en cuanto a bases de datos, de las aplicaciones de gestión tradicionales.
- Sin embargo, presentan algunas deficiencias cuando se trata de aplicaciones más complejas o sofisticadas como, por ejemplo, el diseño y fabricación en ingeniería, experimentos científicos, sistemas multimedia, etc.

M.C. Luis R. Basto Díaz, CEL

23

Modelo orientado a objetos

- Las bases de datos orientadas a objetos se crearon para tratar de satisfacer las necesidades de estas nuevas aplicaciones.
- Otro motivo, se debe al creciente uso de los lenguajes orientados a objetos para el desarrollo de aplicaciones (Java, C++, C#).

M.C. Luis R. Basto Díaz, CEL

- Los fabricantes de los SGBD relacionales han incorporado en las nuevas versiones de sus sistemas muchos de los rasgos propuestos para las bases de datos orientadas a objetos, tal es el caso de Informix y Oracle (SQL 91 incluye algunas características de la orientación a objetos).
- Esto ha dado lugar al modelo relacional extendido y a los sistemas que lo implementan se les denomina sistemas objeto-relacionales.

M.C. Luis R. Basto Díaz, CEL

25

Modelo orientado a objetos

- ODMG (*Object Database Management Group*), es un grupo que ha formado estándars para el manejo de datos orientado a objetos.
- El modelo orientado a objetos encapsula código y datos en una única unidad, llamada objeto.
- La comunicación entre un objeto y el resto del sistema se define mediante un conjunto de mensajes.
- Un objeto tiene asociado:
 - Un conjunto de variables que contienen los datos del objeto. El valor de cada variable es un objeto.
 - Un conjunto de mensajes a los que el objeto responde.
 - Un método, que es un trozo de código para implementar cada mensaje. Un método devuelve un valor como respuesta al mensaje.

M.C. Luis R. Basto Díaz, CEL

- El modelo orientado a objetos soporta relaciones de muchos a muchos, es el primer modelo que lo permite.
- Tipos de SGBD conforme al modelo orientado a objetos:
 - SGBD orientados a objetos puros: SGBD basados completamente en el modelo orientado a objetos.
 - SGBD híbridos u objeto-relacionales: SGBD relacionales que permiten almacenar objetos en sus relaciones (tablas).

M.C. Luis R. Basto Díaz, CEL

27

Modelo orientado a objetos

- Herencia de atributos:
 - Una clase puede tener varias subclases que representan ocurrencias más específicas de la superclase.

M.C. Luis R. Basto Díaz, CEL

- Superclase Animal con atributos (nombre común, nombre científico, fecha de nacimiento y género) y las subclases Mamífero, Reptil y Pez, cada una con unos atributos específicos (Mamífero: peso, altura del hombro, raza y color; Reptil: longitud actual y longitud máxima; Pez: color).
- Por el hecho de ser subclases de Animal, heredan sus atributos.
- Puede haber herencia múltiple y se presenta cuando una clase hereda de más de una superclase.

M.C. Luis R. Basto Díaz, CEL

29

Modelo orientado a objetos

- Las bases de datos orientadas a objetos implementan sus relaciones incluyendo en cada objeto los identificadores de los objetos con los que se relaciona.
- Un identificador de objeto es un atributo interno que posee cada objeto (no se pueden manipular estos identificadores).
- El identificador puede ser un valor arbitrario o puede incluir la información necesaria para localizar el objeto en el fichero donde se almacena la base de datos.

M.C. Luis R. Basto Díaz, CEL

Ejemplo

- En una BD para un departamento de recursos humanos: hay una clase genérica Empleado y su atributos: nombre, dirección, número de la seguridad social, fecha de contrato y departamento en el que trabaja.
- Para registrar el modo de pago de cada empleado hay dos maneras: a algunos se les paga por horas, mientras que otros tienen un salario mensual.
- La clase de los empleados que trabajan por horas necesita unos atributos distintos que la clase de los otros empleados.
- En una base de datos orientada a objetos se deben crear las dos subclases de empleados.

M.C. Luis R. Basto Díaz, CEL

31

Modelos de BD orientada a objetos

- Ventajas
 - Agrega contenido semántico: mayor significado al contenido de los datos .
 - Integridad de la base de datos: Se utiliza el concepto de herencia.
 - Independencia estructural de los datos: Autonomía de los objetos.

M.C. Luis R. Basto Díaz, CEL

Modelos de BD orientada a objetos

Desventajas

- Carencia de estándares: No existe un método de acceso a datos estándar. Crea problemas cuando se accede los datos desde diversas fuentes.
- Curva de aprendizaje pronunciada: Es más difícil de aprender este modelo.
- Transacciones lentas: Debido a la complejidad del ambiente y los elevados requerimientos del sistema.

M.C. Luis R. Basto Díaz, CEL

33

Modelo relacional

- Se basa en el concepto de relaciones matemáticas.
- Los datos y las relaciones se presentan mediante tablas, cada una de las cuales tiene una serie de columnas con nombres distintos.
- La base de datos es percibida por el usuario como una serie de tablas,
 - Esta percepción únicamente se aplica a la estructura lógica de la base de datos, es decir, a los niveles externo y conceptual de la arquitectura ANSI-SPARC.

M.C. Luis R. Basto Díaz, CEL

Modelo relacional

Tabla: Alumno

Matrícula	Nombre_Alumno	Dirección	Teléfono	Clave_Materia
00001	Luis	Calle 78	9999999	01
00002	Kiko	Calle 11	8888888	02
00003	Alejandra	Calle 8	7777777	01

Tabla: Materia

Clave_Materia	Nombre_Materia
01	Bases de Datos
02	Programación
03	Estructuras de Datos

M.C. Luis R. Basto Díaz, CEL

35

Modelos objeto relacional

- En este tipo de base de datos, los datos se almacenan como objetos.
- Contienen los datos y las instrucciones de procesamiento necesarias para completar la transacción de la BD.
- Se proyectan como una extensión de los RDBMS hacia el paradigma OO.
- Los ORDBMS proporcionan un grupo API's que permiten a los usuarios añadir definiciones y métodos de datos externos relacionados con las definiciones en el sistema de base de datos.

M.C. Luis R. Basto Díaz, CEL

Modelos objeto relacional

- Almacena gran cantidad de información.
 - Imágenes, sonido, etc.

M.C. Luis R. Basto Díaz, CEL