R Squared Intuition

Simple Linear Regression:

SUM $(y_i - y_i^2)^2$

$$SS_{res} = SUM (y_i - y_i^2)^2$$

$$SS_{res} = SUM (y_i - y_i^2)^2$$

 $SUM (y_i - y_{avg}^2)^2$

$$SS_{res} = SUM (y_i - y_i^2)^2$$

 $SS_{tot} = SUM (y_i - y_{avg}^2)^2$

$$SS_{res} = SUM (y_i - y_i^2)^2$$

 $SS_{tot} = SUM (y_i - y_{avg}^2)^2$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Adjusted R Squared Intuition

$$SS_{res} = SUM (y_i - y_i^2)^2$$

 $SS_{tot} = SUM (y_i - y_{avg}^2)^2$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$y = b_0 + b_1 x_1$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$y = b_0 + b_1^* x_1$$

 $y = b_0 + b_1^* x_1 + b_2^* x_2$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$y = b_0 + b_1^* x_1$$

 $y = b_0 + b_1^* x_1 + b_2^* x_2$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$y = b_0 + b_1^* x_1$$

 $y = b_0 + b_1^* x_1 + b_2^* x_2$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$y = b_0 + b_1 x_1$$

$$y = b_0 + b_1 x_1 + b_2 x_2$$

R² - Goodness of fit (greater is better)

Problem:

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

y =
$$b_0 + b_1^* x_1$$
 Problem:
y = $b_0 + b_1^* x_1 + b_2^* x_2$ + $b_3^* x_3$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

R² - Goodness of fit (greater is better)

$$y = b_0 + b_1^* x_1$$

$$y = b_0 + b_1^* x_1 + b_2^* x_2$$

$$+ b_3*x_3$$

SS_{res}-> Min

R² will never decrease

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Adj R² = 1 - (1 - R²)
$$\frac{n-1}{n-p-1}$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Adj R² = 1 - (1 - R²)
$$\frac{n-1}{n-p-1}$$

- p number of regressors
- n sample size