L3_1 ISAs — Instructions and Assignment Project Exam Help Memory https://powcoder.com

EECS 370 – Introduction to Computer Organization – Fall 2020 Add We Chat powcoder

Learning Objectives

- Identify the addressing modes of memory operations used in assembly-language instructions and programs
- Understand encoding in the single for Fassem by language instructions for load, store, and branching instructions
- Usage and encoding of labels for assembly-language programs Add WeChat powcoder

Resources

- Many resources on 370 website
 - https://www.eecs.umich.edu/courses/eecs370/eecs370.f20/resources/
 - ARMv8 referencesignment Project Exam Help
 - Binary, Hex, and 2's compliment https://powcoder.com
- Discussion recordings
- Piazza
 Add WeChat powcoder
- Office hours

What is a Bit?

- Bit: Smallest unit of data storage
 - Values [0, 1]
 - Many things will be measured (for size) in bits
 32-bit register a register with 32 binary digits of storage capacity

 - 32-bit instruction machine code instruction that has 32 binary digits, i.e., an unsigned integer in the range 0 to 214280 to 0,2940
 - 32-bit address memory addresses with 32 binary digits
 - 32-bit operating system Acdrop Wee With 22-bio who dest
- Byte: A collection of 8 bits (contiguous)
 - On many computers, the granularity for addresses
- Word: natural group of access in a computer
 - Usually 32 bits
 - Useful because most data exceeds 1 byte of storage need

Assembly and Machine Code

- von Neumann architecture: computers store data and instructions in the same memory
- Instructions are data, signed as given Help

	https://powdopcode	coder.com dest	src1	src2		
Assembly code	ADD	X2	Х3	X1		
Machine code	011011	010	011	001		

Registers

Registers

 Small array of storage locations in the processor – general purpose

Assignment Project Exam Helpers

• Part of the processor – fast to access https://powcoder.com

Direct addressing only

• That means they can Act de WeChat powcoder... accessed by an offset from another address

- Special purpose registers
 - Examples: program counter (PC), instruction register (IR)

Registers

ARMv8

- We will use LEGv8 from Patterson & Hennessy textbook
- 32 registers, Xo Ansignent Project Exam Help
- 64-bit wide (64 bits of storage for each register)
- Some have special uses, e.g., X31 always contains the value 0 Add WeChat powcoder
- LC-2K
 - Architecture used in course projects
 - 8 registers, 32 bits wide each

LC2K is same as LC-2K Appears both ways in documents in 370

Special Purpose Registers

- Return address
 - Example: ARM register X30, also known as Link Register (LR)
 - Holds the return address on link address of a subjustine
- Stack pointer
 - Examples: ARM registe https://pp.wcgdetscom
 - Holds the memory address of the stack Add WeChat powcoder
- Frame pointer
 - Example: ARM register X29 FP
 - Holds the memory address of the start of the stack frame
- Program counter (usually referred to as PC)
 - Cannot be accessed directly in most architectures
 - This would be a security problem!

These registers store memory addresses

Special Purpose Registers

- 0 value register (ARM register X31 XZR)
 - no storage, reading always returns 0
 - lots of uses ex: Assygnadeht Project Exam Help
- Status register
 - Examples: ARM SPSR, or x86 EFLAGS
 - Status bits set by various instruction sowcoder
 - Compare, add (overflow and carry) etc.
 - Used by other instructions like conditional branches

Memory Storage

- Large array of storage accessed using memory addresses
- A machine with a 32-bitigodonest darojeter Excen Helpt memory locations 0 to 2³²-1 (or 4,294,967,295). https://powcoder.com
- A machine with a 64-bit address can reference der memory locations 0 to 2⁶⁴-1 (or 18,446,744,073,709,551,615—18 exa-locations)
 - In practice 64-bit machines do not have 64-bit physical addresses

Assembly instructions have multiple ways to access memory (i.e., addressing)

Activation records: local variables, parameters, etc.

Assignment Project Exam Help

https://powcoder.com

Dynamically allocated data—new or malloc()

Global data and static local data

Machine code instructions (and some constants)

Reserved for operating system

Addressing Modes

- Addressing (accessing memory using addresses) modes for assembly instructions
 - Direct addressing Assignonyeadd Pessies in Ebeains Irlection
 - Register indirect memory address is stored in a register
 - Base + displacement https://powcoder.com • Base + displacement – register indirect plus an immediate value
 - PC-relative base + displacement using the PC special-purpose register

Specify the address as immediate (constant) in the instruction

```
load r1, M[ 1500Assignment Procenters of the pocation 1500 jump #6000 ; jump to address 6000 https://powcoder.com
```

Add WeChat powcoder

Direct Addressing

Specify the address as immediate (constant) in the instruction

```
load r1, M[ 1500Assignment Procenters of fellocation 1500 jump #6000 ; jump to address 6000 https://powcoder.com
```

Not practical for something Wecker

```
load r1, M[1073741823] // 1073741823 is the address in memory With 32-bit instruction encodings, a 32-bit address would fill the instruction!
```

Register Indirect

• Store reference address in a register

Assignment Project Exam Help memory register file address val

load r1, M[r2] add r2, r2, #4 load r1, M[r2]

register file

https://powcoder.com
R1 6666

Add WeChatRp 03840 der

Useful for pointers and arrays load r1, M[r2] is a pointer dereference in assembly

Base + Displacement

- Most common addressing mode
- Address is computed as register value + immediate

What are the contents of registers and memory after executing the assembly instructions?

load r2, M[r3]
load r3, M[r2 + 4]
store r3, M[r2 + 8]

Starting values

What are the contents of registers and memory after executing the assembly instructions?

load r2, M[r3] /54 / 2 load r3, M[r2 + 4] 2 store r3, M[r2 + 8] /08

Starting values Assignment Project Exam Help memory memory register file address value https://powcoder.com register file address **R1** Add WeChat powcoder **R1** 108 100 10 104 -1 108 100 108 R2 104 108 R3 100 R3

What are the contents of registers and memory after executing the assembly instructions?

load r2, M[r3]
load r3, M[r2 + 4]
store r3, M[r2 + 8]

	load	r2,M[r3]Assignment Project Exam Help									
[memory :				L EXA	.			memory		
re	gister file	address	https://po	wcod	er.co	re m	egister file	e ad	dress	value	-
R1	0		Add WeC	1 1		:	0		86	100	
R2	100	108 104	100 -1	1		R2	10		94 90	-1 108	4
	100	100	108			R3	108				
R3	108					 					
İ									_		

What are the contents of registers and memory after executing the assembly instructions?

load r2, M[r3]
load r3, M[r2 + 4]
store r3, M[r2 + 8]

What are the contents of registers and memory after executing the assembly instructions?

load r2, M[r3]
load r3, M[r2 + 4]
store r3, M[r2 + 8]

store r3, M[r2 + 8]						Starting values						
Assignment Project memory					Exa	xam Heip			memory			
re	gister file		address	https://po	wcod	er.co	n M	egister file	· 	address	value	7
				1 1 1 1 1 1		i ! !	R1	0	ŀ	100	100	4
R1	0		108	Add WeC	lhat p	OWCC	der	10	H	108 104	<u>100</u> -1	
R2	100		104	-1 -1		 			ŀ	100	108	
			100	108		! ! !	R3	108				
R3	-1					! ! !	i I I					
L						! !	L					

Program Counter (PC) Relative

Useful for project - P1a

Variation of base + displacement
 Assignment Project Exame Main Proje

https://powcoder.cojump

Relative distance from PC can

Useful for branch instructions!

Add WeChat powcoder

- Machine language instructions (encoded from an assembler) use numbers for pc-relative addressing'
- Assembly language instructions (wintle happy before) use labels

https://powcoder.com

Add WeChat powcoder

PC-Relative Addressing

- Machine language instructions (encoded from an assembler) use numbers for pc-relative addressing'
- Assembly language instructions (wintle happy before) use labels

```
Address
                              https://powcoder.comolic address)
                lw 0 1 five
                              load reg2 with -1 (numeric address)
                lw 1 2 3
                              ActdeWeChet1powcoder
     2
                add 1 2 1
         start
                              goto end of program when reg1==0
                beq 0 1 2
                beq 0 0 start
                              go back to the beginning of the loop
                noop
                halt
         done
                              end of program
         five .fill 5
         neg1 .fill -1
         stAddr .fill start
      9
                              will contain the address of start (2)
```


PC-Relative Addressing

Project P1a

• After reading specification, downloading starter files, creating project...

• Write test cases to verify your C code

Assignment Project Exam Help

- Test cases written in LChitkpasseproblycoder.com
- Recommended for a start: WeChat powcoder

halt

Logistics

- This is the first of 3 videos for lecture 3
 - L3 1 ISAs Instructions and Memory
 - L2_2 Two's Complexignment Project Exam Help
 - L2 3 LC-2K ISA

- https://powcoder.com
 There are two worksheets for lecture 3
 - 1. Addressing and 2's compter Men Chat powcoder
 - 2. LC-2K program encoding
- Move on to L3 2 when ready