The geometric Satake correspondence

Thomas Haines

Lecture 1. Satake ison. for p-adic groups.

F na. local field.
U
Ding of integers

unif.

 $R = If_q$ as field. Fix prime l, (l, q) = 1

GOBOT all split /F.

10

Wo = NaT(F)/T(F)

finite Weyl gp

K= 6(0) c 6(F)

Hk(a) := Cc(K)a(F)/K; Te)

asioc. The - aly.

Vol dg (K) = 1.

 $f_1 * f_2 (9) = \int_{a(F)} f_1 (gx^{-1}) f_2(x) dx$

Thun (Satake for split gp)

Hk (a) = Que [Xx(r)] Wo

RHS = $\mathcal{H}_{T(0)}(T(F))$

du on U(F)

wd du U(0)=1

comm. f.d. (Te-alg. S(f)(t)= 5= (t) f(tu) du

SB: T(F) - CTe > 92

General groups:

Some Bruhat - Tits theory

$$k_{\alpha}: \alpha(F) \longrightarrow \pi_1(\alpha)_{\Gamma}$$

If
$$G(F)$$
, set $K_{\Omega}: G(F) \longrightarrow T_{1}(G)^{\sigma}$, $\sigma=uny$ F_{Wb} . $\in \Gamma$ $G(F)_{1}:=G(F) \cap G(F)_{1}$.

Let A = apt. in BT bld com to A. Let OFA be a special vertex.

...
$$\Lambda_M = M(F) / M(F)_1$$
 f.g. abel. gp.

Wo
$$M(F)_1 = K \cap M(F) = !$$
 parahonic subgp in $M(F)$

$$\mathcal{H}_{K}(a) = \overline{\mathbb{Q}}_{e}[\widetilde{\Lambda}_{m}]^{w_{o}}, \widetilde{K} > K$$
 special maril compact

$$\widetilde{\Lambda}_{M} = M(F) / M(F)^{4}$$
, $M(F)^{4} \subset M(F)$!-max'l cpt in $M(F)$.

$$VW = V^{\perp} = X^{*}(L)^{2} = X^{*}(L^{2})^{2}$$

het
$$H_{k}(a) \cong \overline{Q}_{e}[x^{*}(7^{I})^{\sigma}]^{W_{o}}$$

(ortin =)
$$K_{\overline{k}}(A) \cong \overline{\mathbb{Q}}_{e}[X^{*}(\widehat{T}_{,o})^{\sigma}]^{Wo}$$

$$(X_{*}(T)_{\underline{I}}/tosion)^{\sigma}$$

$$\text{Poots}: \left(\chi^*(\hat{\tau}) > \underline{\Phi}^{\text{V}}, \chi_*(\hat{\tau}) > \underline{\Phi}, \zeta^{\text{V}} \right) \supseteq I$$

Then The $G_R - gp \hat{G}^{I}$ is reductive, $\hat{G}^{I,o} \supset \hat{T}^{I,o}$ must be true, of wort system $\left[\left(\overline{\Phi}^{V} \right) \hat{\nabla} \right]_{RPO} = i + (a, 2a) \in \mathbb{R}^{\frac{1}{V}}, \text{ discard } 2a$

R any root system of I-action,
$$R = \text{Set of } I-\text{averages}$$

$$V^{I}$$

Change notation:
$$k=\overline{k}$$
 any field alg. closed. $l \neq chan k$, $F = k((t)) > 0 = k[t]$, G/F conn. red. (Steinberg =) $q.s.$) $G/F = Ca(A)$, $G/F = Ca(A)$, $G/F = Ca(A)$

Construct ind-sch./k arg affine grassmannian.

The major steps:

1 construct (PL+g(arg, Qe), +) + show it is Tannakian

@ Identify Tannakian grp as &I.

Xinnen Zhu: Main Thm G/F to mely ramified.

Timo Richarz: removed fameness assumption

Earlier, Timo proced split case in a nocel way, using Larson-kazhdan-Vanshausky. Chan of H in terms of Consthendieck semining of rep'ns.

Idea: know set of irred. objects {V_n} in Rep H and V_n & V_1 = \(\psi \) V_{n, \text{N}} & V_\nu \)
allows one to second H.

```
Comp Theoretic preliminaries
[HRO8]
                      Det. Inahoni - Weyl gp is
  (G,A)
                            W= NaT(F)/T(F) 1. Wo= NaT(F)/T(F)
                   T(F)/T(F)_1 \xrightarrow{\kappa_T} \chi_{\kappa}(T)_I
                         W_0 = \left(N_0 T(F) \wedge K\right) / T(F)_1
                W ≈ X*(T) × W° |
                 V= X*(T) & R ZI
                V^{I} = V_{\tau}
     V^{\perp} = V_{I}

E_{aff} = \{d + r : d \text{ rel. root }, r \text{ certain } \in \mathbb{R} \}

BT theory provides set of affine roots for (a, A)
            affine linear functionals on VI
          ~ affine hypaplanes Hd+r = { VEI : d(v)+r=0}
   V^{\rm I} is undulying apt for (a,A) in \mathcal{B}(4,F)
```

€at, {Hatr} -> Corete complex alcores, tacets.

Fix dominant Weyl chamber e CA l={VEV}: (d,v>>0, y d f Lie B}

Choose origin in A to com. to choice of Go = G.

require base alone ZCE, e has apex o.

0 ~ G.

2 - Ga BT Inahoni grip sch.

(Watt, Satt) = Coxetar system given by simple affine reflections in VI through halls of a.

Wacts on VI

 $X_{A}(T)_{I} \times W_{o}$, $W_{o} = g_{P}p$ generated by reflections through nalls of 2 containing 0. $A \in X_{A}(T)_{I}$ acts by translation by -A.

W permutes I att, {Hdfr}, {aliones}

Way acts simply transitively on set of alcores

in having fixed a, get canonical decomp. W= Watt x Rz,

Na CW is Stab. of 2.

Way. has length func. l: Way \rightarrow $\mathbb{Z}_{>0}$, Bruhat order \leq Extend these to W: require N= length o elts in W $W_1 \omega_1 \leq W_2 \omega_2 \iff W_1 \leq W_2 \otimes W_2 \otimes W_3 \otimes W_4 \otimes W_4 \otimes W_5 \otimes W_6 \otimes W_$

. W has structure of a quesi- Corretor group.

Purp $\exists !$ reduced 20.4 system $Z \subset V^{I}$ s.t. Φ aff consists of d+n, $d \in Z$, $n \in Z$.

Thus $W = W = W = (Z \times Z)$

Prop The following statements on I hold

(1) \sum described in terms of I-action on abs. roots ($\overline{\Phi} \supset \Delta$) as follows: $\forall d \in \Delta$, set $N_{\underline{I}} d = \begin{cases} \sum_{\beta \in \underline{I} : d} \beta, & \text{if } \{\beta \in \underline{I} : d\} \text{ pairwise } \underline{I} \end{cases}$ $\begin{cases} 2 \sum_{\beta \in \underline{I} : d} \beta, & \text{otherwise} \end{cases}$

NI W = simple roots in a root system in V = which is = set of simple roots in I

(2) \exists identification of (based) proof systems $\sum V = (\bar{\Phi}VV)_{qed}$. i.e. $\sum is$ of type dual to $\bar{\Phi}(\hat{G}^{I}, 0, \hat{T}^{I}, 0)$.

Three decompositions of G(F) G(F)

Rmk. G=GLn, can prove by hand using you & column operations.

@ Cantan: \ A \ Xx (T)I,

Choose any Kottuits lift $t^1 \in T(F)$, $k_T(t^1) = \lambda \in \chi_x(T)_{I}$.

Then $G(F) = \frac{\prod_{k \in X_{\mathbf{X}}(T)} f}{k \in X_{\mathbf{X}}(T) \frac{f}{I}}$ dominant
(for I roses)

Rock. (as be deduced formatily from O, using BN-pair relations, + 5.

E Inasana decomposition. $G(F) = \coprod U(F) t^{1}K$ $d(K) = \coprod U(F) (F) t^{1}K$

 $(\forall \lambda \in X_{*}(T)_{I}, \mu \in X_{*}(T)_{I}^{+}, \mu \in X_{*}(T)_{I}^{+},$

Prop (see notes)

 $X_{*}(T)^{+} \longrightarrow X_{*}(T)^{+}_{I}$ dom. for

abs. simple $\Delta(I) = N_{I}^{+}\Delta$

Lecture 2

2 Corner tions

- ① Paff ≠ ∑×Z, they just define the same hyperplanes in A.

(an only prove surjective when Z(G) is conn'd.

Amouncement: Focus on split case

- final version of noty will cover split case
- remarks at end of lecture about general case.

I- action on $(X^*(T) \supset \overline{\Phi}, X_*(T) \supset \overline{\Phi}^{\nu}, \Delta)$

 $\wedge m = \chi_{\chi}(T)_{I}, \quad \chi_{\chi}(T)_{I}, \quad \chi_{\chi}(T)_{red} \quad (split)_{i} = \tilde{\chi}$

In split case, I act thirdly, $\Sigma = \overline{\Phi}$

Examples of K, Ka in split case.

· 9 = 4/0, K= 9(0),

 $K_a = g_a(0) = \{g \in G(0) : g \text{ mod } \varpi \in B(k)\}$

Ind-scheme k-field.

Det. An ind-scheme is a colin Fi, Fi : Alk → Sets

I directed set, and each Fizzk-sch Xi where colin is taken in Preshout (Affn)

Fact: filtered colin commute w finite limits, such as equilizers,

so it Fi are e-sheares for some Conotherolieck topology e on Affk,

then so is colin Fi, and is also colin in She(Affk).

Recall. presheat $F: Aff h \longrightarrow Sets$ is a ℓ -sheaf if $f \in \ell$ -core Groups

Spec $R' \longrightarrow Spec R$, $F(R) \longrightarrow F(R') \longrightarrow F(R') \Longrightarrow F(R' \otimes R')$ is equalize in target (at.

 \mathcal{E} Zar, \mathcal{E} tale, \mathcal{E} to \mathcal{E} the sheat \mathcal{E} and \mathcal{E} and \mathcal{E} and \mathcal{E} and \mathcal{E} the sheat \mathcal{E} and \mathcal{E}

Strict ind-scheme: Xi -> X5 closed immensions.

Sheafification F & Presheat (Aff k, Sets), & Constherdieck top.

I sheafification Ftt and canonical F -> Ftt, of trainers al property bleaf F',

Hompresh $(F, F') = Homsh (F^{\dagger\dagger}, F')$ $F \longrightarrow F'$ $F \longrightarrow F'$

Loop groups + positive loop groups.

G / k(t+1), - affine

G / k(t+1) = G.

Speck(t+1) = G.

Define presheases

La: R - a (R((+)))

L+g: RI-> g(RT+D).

Exercise Proce

(1) Lh is rep'd by ind-affine group ind-scheme.

(2) L+G is a group k-scheme (of infinite type /k).

Det. arg is the presheat RID La(R)/L+g(R).

Rink NOT always the case that long (R) = La (R) /L+g (R)

However, it is true when a split, R local.

hoal. When he reductive /k((t)) G = ho

Ciry is represented by an ind-projective ind-scheme /k.

Start W G= GLn, g= GLn, o

Stanting point: La(R) = Lh(R((t))) acts on set

Latter (R) = { R(It] Lattices $L \subset R(It)$) ?

Det. Rany ming, $\Lambda = R[[t]]^n$, An R[[t]]-lattice is an R[[t]]-submod

LCR((t))" sit. 3N W

· t N A c L c t - N A

· L is RCtI-projective

Will turn out that (lng(R) = Lattn(R) = colin Lattn, N(R) proj. k-sch.

Main prop. Let R be any air, $\Lambda = RITEI^n$, TFAE as conditions on RITED-module L W $t^N\Lambda$ CLC Λ t^n $N \in \mathbb{N}$:

(1) Li R (t) -pmj.

(2) Λ/L (hence $L/t^{\mu}\Lambda$) are R-pnss.

Lemma Rany ring, Mf.p. R-mod, then Mis R-flat (=) R-proj.

In partialar, it Ris Noetherian, then for M finite /R, flat G) proj.

(1)=)(2): tNACLCA.

Claim. L f.g. /Rt=RTtD

This is a local prop; ETS for Lp f.g. / Rt,p, & prime P.

th Apc Lp cAp

 $R_t \longrightarrow R(t+1) + lat \Longrightarrow Lp \otimes R(t+1)p = R(t+1)p \otimes$

OTOH, Lp is proj. / Rt, p , so Lp is Rt, p-tree (Kaplansky's Thm)

(8 =) finite type.

L RT+D- proj. $t^{-1}L/L$ R= RT+D/+ RT+D- proj. $t^{-m}L/L$ R- proj. $\forall m \ge 1$ => R-flat

 $R((t))^{n}/L = \bigcup_{m} t^{-m} L / L \qquad R - flat$ $(t^{n} \Lambda)$

 $0 \longrightarrow L/t^{N} \wedge \longrightarrow R((t))^{n}/t^{n} \wedge \longrightarrow R((t))^{n}/L \longrightarrow 0$ $R+lat \qquad R-flat$

Tor-canishing => L/th/ R-flat. Similarly 1/L R-flat

Want: L Rt-pmj.

First, claim ETS for R-Noetherian

R= colin Ri, Ri noeth

Curn (R)= 1/L R-pms.

Curp (R): L Rt-proj.

Corn Conf

lur (Ri) - Curt (Ri)

Curn (colin Ri) = colin Curn (Ri)

So assume R Noeth, Rt = RTt I Noeth. L finite Rt-module

Advance,

\(\lambda_o = R[t]^n, \quad \tau \)

\(\tau \rangle \tau \ N= RatD"

L= LO & REED REED (Me RCt) -> RTTD is flat)

ETS: Lo is R[t] - pm

Sink R[t] Noeth, Lo fin. / R[t],

ETS Lo R(t) - flat.

ETS & max'l q c RCt), Lo, q R(t) q - tlat.

9 lies our pCR.

Lemma (see notes) $\exists \alpha \in R - P$ sit. $R\alpha/P\alpha$ is a field, and $Ratt P\alpha = R[t]q$.

Further, since $Ra/Pa \hookrightarrow Ra(t)/qa$, see qa lies on a pa max'e replace R M Rq , assume p max'l in R, k=R/m.

Want: Lo, q is a free R[t] q-mod.

Apply tollowing to Rm -> R(t)q, M= Lo,q

Lenna $R \rightarrow S$ map of Noeth. local rings

M finite S-module, s.t.

- (a) M/mM free S/mS-mod
- (b) M flat /R.

Thon M free 15. (and S flat /R)

Lo is R- +lat (recul No/Lo, No R-proj.)

Want Logg to be Rm-flat.

NC) P Rm-mod

Loin & N C, Loin & D als. Ett)m-linen

R(t) q & Lo, m & N (t) q & Lo, m & P => (b) holds.

(a) This is statement Lo, q /m Lo, q = (Lo./mLo) q is tree

R[t] q /m R[t] q = (R[t]/m R[t]) q - mod

ETS Lo/mLo is free R[t]-m.d PID

D → Lo ⊗ R/m → Λo ⊗ R/m → (No/Lo) & R/m → 0

has no k (+) - tosion.

(a) holds.

We used: If X = Curn, then colim Ri = R -> X (colim Ri) = colim x (Ri)

thrach ct-NA thras 2 R 20 N white the control

being t-stable is a closed condition.

i. Curp is a proj. k-scheme.

Lemma A morphism of schemes $X \rightarrow S$ is locally of finite presentation, iff V directed set I and inverse system of affine schemes $\{T_i\}$ over S, Homs $(\lim_i T_i, X) = \lim_i Homs (T_i, X)$.

Laman LE Curp (R), then I Eanislei cover Spec R' -> Spec R sit

L\times R'[[t]] is R'[[t]] - free.

Pf. Rt = RCtJ. We know L finite / Rt.

 $\exists \ g_1, ..., g_r \in Rt, \quad (g_1, ..., g_r)_{Rt} = (1), \text{ s.t. } Lg_r \text{ are } (Rt)g_r - tree, \forall i.$ Set $f_i = g_i(o) \in R$, $(f_1, ..., f_r)_R = (1), \quad f_i \in Rt, g_i \text{ if } f_i \neq o.$ $L \otimes Rf_i \text{ [It]} = \left(L \otimes Rt, g_i\right) \otimes Rf_i \text{ [It]}, \quad Rf_i \text{ [It]} - f_ree.$

Define Latter = colin lury is an ind-proje ind-scheme /k, hence tpace sheat on Affk.

Noto LG(R)/L+G(R) identifies w Pt-free Lin R(1+))".

Used:

Lemma The following hold:

- (1) F -> F++ presents tinite limits
- (2) In any category, $t \rightarrow F'$ is mono (=) $F \times F \rightarrow F$ is an equalizer.
- Thus, F -> Ft+ presents monos.
- Morphism of sheares is isom (=) mono + locally epi

Torson description of larg

Lecture 3. Summary of last time.

araln, o = Laln / L+ aln, o is isomorphic as étale sheaf to

Latter = colin Latter, N : Circhen, o is repla by an ind-proj. ind-sch. /k.

Pagelg

Good: Prove ary ind-proj. ind-scheme /k & (special max'l) parahonic g/o. Assuming 9/0 split, for simplicity.

Torson description of lung

Let $G \longrightarrow X$ any affine group scheme / scheme X.

brotherdieck topology on Affx

Det. A (right) e-torson & on X is a e-shoot on Aff x w right $\{x \ G \rightarrow \xi \ \text{s.t.} \ \forall \ R, \ \xi(R) \in G(R) \ \text{is simply transitive if its not}$ empty, and sit. & R, Flerour Speck - Speck w & (R) # of

k any field, DR = Spec R [t] REATIR ID* = Spa R(C+))

Assume G - Dk affine gp sch. of f.t.

Det arg: All & -> (Sets) R 1 {(2, 4)}/=

· E - DR right G x DR - toson (" g - torsn")

• $d \in \xi(D_R^x)$, i.e. isom. ex

 $(\xi, d) \simeq (\xi', d')$ is a map g-twn ElDx = Eolox E= 2 of g-towns (==)

Here Eo = trivial G - torsor -

St d = don

Lemma Proporties

- (o) Σ is rep'd by an affine sch + Σ \rightarrow 1Pk (effectivity of étale descent et affine schemes)
- (1) ling has base pt (Eo, id)
- (2) LG acts on the left on $(rg^{tor}: (g, (\xi, d)) \mapsto (\xi, g_{od})$
- (3) g wrg is functorial in g (can "pushout").
- (4) artor = Latter

 RH[vertor bundles on DR]

Circen GLn-town & on IDR, get &x on a certar bolle

liven verto bolle V, &= Isom (on, V)

·· Curalin, o is étale sheat

ar hlo, o -> aralo, o

gelalo, o -> (Eo, g)

Thin g smooth affine grip sch. / Dk

(I) City - Speck is rep'd by a separated ind-scheme of ind-finite type/k
(I) If g reductive, then City is ind-proj./k.

Prop (key, Xinven Zhu) Let $G \hookrightarrow H$ be a closed immersion of f.t. aft

gp schemes/ D_k s.t. the fppf quotient H/G is repld by quasi-affine (affin)

scheme ID_k , then $Urg \to Urh$ is repld by a qc immersion (closed immersion)

Pf:
$$F \longrightarrow SpecR$$
 need this is a locally closed qc immersion $(closed\ immersion)$ $(closed\ immersion)$

By effectivity of descent for quasi-affine schemes, $\exists W \text{ aff of f.p.}/DR$ and qc open embedding $\Xi/G \hookrightarrow W$ $\Xi/F /DR$ (X)

Det of tiber DR of 9+ [E/g] yields identification $F\left([R \rightarrow R^{!}]\right) = \left\{\text{Sections B of Fine Del: } \beta \middle| D_{R^{!}}^{*} = \mathcal{Z} \middle| D_{R^{!}}^{*} \right\}$

Lemme V = DR aft. sch. of fin. pre, and S sections over DR,

then $[R \to R^{\dagger}] \leftrightarrow \{\text{ sections } s' \text{ of } p \text{ over } |D_{R'} : s' | |D_{R'}^* = s | |D_{R}^* \}$ is rep'd by a closed subscheme of Spec R

Ef. V C) ANDR, N>0

 $S = (S_1(t), --, S_N(t))$, $S_i = \sum S_{ij} + \sum C(t)$

Presheat is rep'd by Spec A, A = R/(Sij:5co)

Apply Lemme to (*), $\{\beta \text{ sections of } \widetilde{\pi} \mid \beta \mid \widetilde{p}_{R'}^* = \widetilde{\alpha} \mid D_{R'}^* \}$ = $\{\text{Sections of } p \mid \text{landing in open } \Sigma/g \subset W \}$. So we get open in Spec A

Lemma. G flat affine gpscheme / Dk, then

Pappos- Rapoport

(a) \exists closed immersion $g \hookrightarrow GL_{n,0} \times GL_{1,0} \times GL_{1,0} \times GL_{1,0} \times GL_{1,0} / G$ is quasi-affine

(b) If G reductive (e.g. $G = G_0 \times G_0 \times G_0 \times GL_{1,0} / G$ is affine.

J. Alpel.

Con. I that affine g/D_k , Graphing is representable by ...

If G is reductive, --- ind-proper hence ind-proj.

Cor. If $G oup ID_k$ smooth and affine, then hig oup light is an isom. Pt (X. Zhu) Lg(R)/Ltg(R) - Gregor (R) 9 (2,9) Sheafities to long -> long which is a mono. So ETS etale-locally an epi. hicen (E, d) & arg (R), need to know I étale R-1 sit. EIPRI = Eo, PR. RUtD --- R DR - Sper R GR smooth / Sper R Gx Sper R - torr Ex Spec R Then int. lifting, this section lifts to $\mathsf{Spt} \ (\mathsf{R}'\mathsf{Tt}\mathsf{J}) \ \longrightarrow \ \mathsf{E}^{\times}_{\mathsf{ID}_{\mathsf{R}}} \; \mathsf{D}_{\mathsf{R}'}$ ire. to Spu R' [t] -> Ex DRI These ingredients proce Thm. (G reductio) arg = arg closed to Elaxac, = Lattax Latta

Page24

ind-proj. ind-scheme /k. 1

 $(P_{L+g}(\omega_{rg}, \overline{\omega}_{e}), *)$

k field $(k=h, n k= \mathbb{F}_q)$, l prime, l+chark. X/k f.t. separated k-scheme.

 $\mathcal{D}_{e}^{b}(X,\Lambda)$, Λ l-torsion abelian go BBD eg. $\mathbb{Z}/\ell^{n}\mathbb{Z}$

 $D_{c}^{b}(X, \mathbb{Z}_{\ell}) \otimes \mathbb{Q} = \lim_{n} D_{c}^{b}(X, \mathbb{Z}/\ell^{n}\mathbb{Z}) \otimes \mathbb{Q}$ $D_{c}^{b}(X, \mathbb{Q}_{\ell})$

 \sim $D_{c}^{b}(X, \overline{\Omega}_{e})$ + 6 - functors R_{f}^{a} , R_{f}^{a}

 $PD^{\leq o}(x, \overline{\alpha_e}) = \{f \in D_c^b : din supp \text{ Heir } f \leq -i, \forall i \in \mathbb{Z}\}$ $PD^{\leq o}(x, \overline{\alpha_e}) = \{D_x f : f \in PD^{\leq o}\}$

Det/Thm

 $PD^{5\circ}(X, \overline{\alpha_e}) \cap PD^{7\circ}(X, \overline{\alpha_e}) = P(X, \overline{\alpha_e})$ is abelian cut, all of whose objects have finite length.

· j: W-x open, jix: p(u) -> p(x)

- description of simple objects in P(x).

I hise Gie-sheat on $U \stackrel{open}{\subset} X$, $U \stackrel{\int}{\longrightarrow} \overline{u} \stackrel{i}{\longrightarrow} X$ $IC(\overline{u}, Z) = i \times 5! \times Z[din U]$, simple if Z is fined

Lecture 4

(X)
$$F(R \rightarrow R') = \{\text{sections } \beta \text{ of } \overline{n} \text{ over } |P_{R'}: \beta|_{D_{R'}} = \overline{\lambda}|_{D_{R'}} \}$$

Key point: recall why [E/G] is defined the way it is.

$$\Sigma \longrightarrow X$$
 given H -torson

$$\xi/g \rightarrow x$$

(a) sections $X \to \mathcal{E}/G$ correspond bijecticely to isom. classes of G - forsors $\mathcal{E}_G \to X + G - \text{equi.}$ morphism $\mathcal{E}_G \to \mathcal{E}$ over X

(b) Suppose
$$d: X \longrightarrow E$$
 is a section lifting the section $X \longrightarrow E/g$ then it induces a! section $X \longrightarrow Eg$ comp. $W X \longrightarrow E$.

Apply Lemme to (*)
$$Y = D_{R^1}$$
, $X^* = D_{R^1}$, $X^* = E | D_{R^1}$,

$$F_{S}^{*} \longrightarrow \xi^{*}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\chi^{*} \longrightarrow \xi^{*}/g$$

$$\chi \longrightarrow \xi/g$$

Lemme
$$\Rightarrow \xi_g|_{X^*} \cong F_g^*$$
 Then given d exists, get from (6), get section of $\xi_g \to X$ over $|D_{R}|^*$.

PLtg (arg)

Ltg
$$\wedge$$
 arg = {(\(\xi\), \(\alpha\)}

Lg \wedge (\(\xi\)) \(\frac{11}{2}\) \(\xi\) \

Equivariant penerse sheaves

X t.t. separated k-scheme. (k as above)

a f.t. Smooth connected k-gyp schene, acting on X on the left

m: Gx G - G

 $a: G \times X \longrightarrow X$

 $D(x) := D_c^b(x, \bar{\alpha}_e)$

e: X -> Gxx

P(x):= P(x, Qu)

prz: GXX -> X

Det. $K \in P(X)$ is a equiarient if \exists isom. $\varphi: \alpha^*K \Longrightarrow Pr_k^*K$ in $D(\alpha \times X)$.

Run ("Naire Lesson") (andefine Gegwir object K & D(X), but require

Wegidity e*4: K id K + couyele condition: (mxidx)* 4 = |2723 4 o (idgxa)* 4.

Point: for perverse K G-equiv. for smooth + conn gp G, these 2 proparties

are automatic. Apply following to P3: GxGxX->X

BBD 4.2.5: $f: X \longrightarrow Y$ smooth of rel. din d w geometrically conn. tibers. then $f^* [d]: P(Y) \longrightarrow P(X)$. fully faithful

Exercise $G \cap X$ as above, $K \in P_G(X)$, Q is a subget of K in P(X), then $Q \in P_G(X)$.

Perverse sheares on orbit spaces

G as above, $H \subseteq G$ connected closed subgp.

X = G/H (assume exists as scheme)

anx

Prop. Any K+Pa(x) is at the form K= Qer [dim x], some r > 0.

pt. h o h/H smooth of geom. conn. fibers

So BBD 4.2.5, can assume $H=\cdot$, G=X

KE Pa(a), i: a => axe => axa

S: a - Speck, e: Speck - a

Use equivariance and przoi = eos

k = ida K = i*a* = i* pri* K = s* ko, ko = e* K = stalk of Kate

=> K = constant complex of t.d. Qe - v.s.

OTOH, I open smooth UCG and lise Qe - sheat I on U.

J* K = [[d], d = din U = din X. = K = Qe [din X]. []

Rmk H not connected, H°CH, assume H/H° étale, TT: G/HO -> G/H étale.

Cantan decomposition (in split case) $A(F) = \coprod_{M \in X_{+}(T)^{+}} G(0) + M G(0).$

Consequence: as (in the split case)

$$G_{rg}(k) = LG(k)/L^{+}g(k) = G(F)/G(0)$$

get
$$(r \cdot k) = \frac{11}{r} L^{\dagger} g t^{n} e_{o} \cdot (k)$$
, $e_{o} = b \omega e_{o} p t$.
$$= \frac{11}{r} C r_{p} \cdot (k)$$

Lenna p, x ∈ Xx (T)+,

(a) are
$$\mu = \frac{11}{\lambda \leq \mu}$$
 ary, $\lambda \leq \mu : \mu - \lambda = Sam \circ f$ pos. convolu

Need to understand PLta (Circu). of the prop. Fix $\mu \in X_{+}(T)^{+}$, then stabilizer of Lta acting on Ciru is a smooth countd gp scheme, isom, to P μ x (Ltg o th Ltg t-n).

Dage 30

$$P_{\mu} = parabolic subgp \longrightarrow \mu$$

$$L^{++} G = [cer[L^{+} G \rightarrow G, + \mapsto o]$$

Pf In notes. Recently proved that Stabilizer is smooth + connid.

[Richard - Schobach, Motivic geom. Satake]

I med. Objects in PLtg (Uren) = Pfinite type (Uren)

Ruch Action of Ltg factors through a finite type quotient of Ltg: book at

is irred. equil. lisse the -sh. on Curp are the [dp], hence

la I med objects in PL+y (ling) one the

 $I^{C}\mu = i^{\mu}j^{\mu}!x \quad Ge \quad [d\mu], \quad i^{\mu}: Gr_{\leq}\mu \hookrightarrow Gr_{g}, \quad j^{\mu}: Gr_{\mu} \hookrightarrow Gr_{\leq}\mu.$ $\mu \in X_{\times}(T)^{\frac{1}{2}}$

Want:
$$(Rep(\hat{a}), \omega) \cong (P_{Lty}(arg), *)$$

$$V_{p}$$

$$V_{p} \in X^{*}(\hat{\tau})^{+} = X_{*}(T)_{+}$$

$$IC_{p}$$

hoat. PLtg (ling) is semisimple, ut simple objects ICp.

ETS: given dominant λ, μ , Ext² P(arg) (IC₁, IC_{μ}) = 0.

Hom P(arg) (IC₁, IC_{μ}(I)

(ave (i) = p. Op is on is onlon.

Distinguished D:

~ except sequence

Hom (ICh, i) c! ICh(I) -, Hom (ICh, Ich [I]) → Hom (ICh, j*j* ICh [I])

B

A

(t): both are derived fots of Shet (Op, are) - Ab

SO ETS HER (Op. Cie) =0.

Ltg/Ltg/Lzmg Oh = Ltg/(Lttg/Lzmg) & Pmpro-unip Ltg/Lttg/Lttg/Lzmg Oh = Ltg/(Lttg/Lzmg) & Pm Ltg/Lttg/Lttg/Pm = G/Pm

SO ETS H1 (a/pm, Qe)=0.

This is classical, ne'll show later that Hodd (Sch. cm. Qe) = 0.

(B) = 0: we'll use $i \neq IC_p$ lies in $p \leq -1$ (Standard fact: kw, $\pi \leq 1$)

in it I Cy lies in P=1

Hom (I(µ, {!i! I(µC1)) = Hom (i*Icp, i! I(µC1))
ps-1 p>0

(ase (iii) I f m, and I s m or ms 1.

If Acm. i: On wor

Hom (ix ICA, IC n CD) = Hom (ICA, i! I (n ED) = 0

PEO Claim: P?1

Equiv: i* I(4 on P <- 2.

If mca, i: Or cook

Hom (IC), ix I(pc17)

= Hom (;* ICx, I(MC1)) = 0

(ase (iii) } \$ \$ \mu, \mu \mu \lambda, Still need claim.

Lecture & Assume for notation simplicity, a split, g = a/o. PL+a (ara) Simple objects: ICp, p+ X*(T)+. Semisimplicity tollows from $\forall \lambda, \mu \in \chi_{*}(T)^{\dagger}, \text{ Hom}_{\mathcal{O}(Gr_{G})} (IC_{\lambda}, IC_{\mu}[1]) = 0$ given ext'n in P(ara) $0 \rightarrow IC_{\mu} \rightarrow F \rightarrow IC_{\chi} \rightarrow 0$ gues dit. \triangle in $D(ar_a)$, hence exact seq. Homp(hra) (IC), ICh) -> Homp(hra) (IC), F) -> Homp(hra) (IC), IC) -> Hom D (hra) (I(), I() [) -> -

then similar argument shows any F & PLta (ara) is SS by induction on length. Technical Lemma. If i: Of a) Op => i*ICp in ps-2.

(use 1)= M V larez A # M, ACM or MCA ACM, V MCA, 1:0, 4) 0,

Hom (ICA, if ICm CO) = Hom (if ICA, I(m CO) = 0 P ≤ -2

1 < p

$$\exists v \in X_*(\tau)_+, \quad \lambda < \nu, \quad \mu < \nu.$$

$$H_{om} \left(\begin{array}{cccc} i_{1} & I_{C_{A}}, & i_{2} & I_{C_{\mu}} & I_{C_{1}} \end{array} \right) = H_{om} \left(\begin{array}{cccc} i_{2} & i_{1} & I_{C_{A}}, & I_{C_{\mu}} & I_{C_{1}} \end{array} \right)$$

$$= H_{om} \left(\begin{array}{cccc} i_{1} & i_{2} & I_{C_{A}}, & I_{C_{\mu}} & I_{C_{1}} \end{array} \right)$$

$$= H_{om} \left(\begin{array}{cccc} i_{2} & I_{C_{A}}, & i_{1} & I_{C_{\mu}} & I_{C_{1}} \end{array} \right)$$

$$= H_{om} \left(\begin{array}{cccc} i_{2} & I_{C_{A}}, & i_{1} & I_{C_{\mu}} & I_{C_{1}} \end{array} \right) = 0$$

$$\downarrow \leq -1 \qquad \qquad \downarrow \geq 0$$

Pt of Technical Lemma

(We tact about Schubert can.)

Know i* ICH & PD &-1

Need to show i*ICM & PDS-2

Will show: 4 odd j, i* IChebos => CyICh tho si-1 @

(parity vanishing)

(II): dear
$$\mu-\lambda=\sum_{\text{soney}} d^{\vee}$$
, $(2p, \chi)=\text{even}$.

(I) Use Fla =
$$LG/L^+g_a \xrightarrow{P} LG/L^+G = Gr_G$$

Inahon [

Smooth relation d

Demazure resolution

Flwn Flwn, files are pased by affine spaces. Smooth

=> flig ICwp = o unless i-d - (d+dp) even, i.e. unless i-dp even. => (I)

Clain: (I), (II) = (F). Apply following to k = i*Ic, Lemma. K+D(Cure, u) sit.

- (1) $\mathcal{H}^i K = 0$ unless $i \equiv d_{\mathcal{H}} \pmod{2}$
- (2) \(\rightarrow\) i, dim supp HiK = d\(\mu\) (m,d2)

 equivariant.

Then KEPDSJ => KEPDSJ-1 it Jodd

Pf. K∈PD ≤ j () din supp fe j k [j] ≤ -i, Vi

€) dim supp Hiks - i+j, Vi

WLOG, == 2m+dr

←) dim supp Hi K ≤ -2m-dy+5

LHS = dµ(2), RHS ≠ dµ(2) (; odd)

(=) din supp Hik & -2m - du + j - 1.

Have proved PL+6 (hra) is semisimple, w/ simple objects Icp.

Construct & consolution product on PLTA (Cara).

 $\{H_{k}(u), *\}$ $f_{1} f_{2} = \int_{u}^{u} f_{1}(x) f_{2}(x^{-1}g) dx$ $f_{1} = 1 \text{ kt}^{M_{1}} \text{ k} \quad f_{2} = 1 \text{ kt}^{M_{2}} \text{ k}$

{xk; xk \ kthk, x gk \ (g1x \ kthzk)

D

$$\operatorname{Gra} \times \operatorname{Gra} = \operatorname{La} \times \operatorname{La} / \operatorname{Lta}$$

$$= \operatorname{La} \times \operatorname{La} / \operatorname{Lta} \times \operatorname{Lta}$$

$$= \operatorname{La} \times \operatorname{La} / \operatorname{Lta} \times \operatorname{Lta}$$

Consolution Diagram:

The following hold

- (a) Pig are & smooth of same reliding.
- (b) m becally trivial (in stratified sense) and sensismall.

Det of complution

Descent Lemma => p* (F1 18 F2) descends, i.e. 3! perverse sheat F1 18 Fz

on $Gr_{\alpha} \widetilde{\times} Gr_{\alpha}$ s.t. $p^*(F_1 \boxtimes F_2) \cong q^*(F_1 \widetilde{\boxtimes}^* F_2)$

Def. F1 & F2 = Rm* (F1 18 F2)

This is penesse since m is Jennismall, and L+G-equic.

factors through $G_n = LG/L^{3n}G$.

Land = lea (G(RTED) -> G(REE)/tm)

Outp

Outp

Lth

Why p, q (resp. pn, 4n) smooth of same rel. dim. ?

Pn Smooth

2 is Zaniski-locally isom to p.

lira x Cara

[prz Zaw. localy trivial on base

Cara (big cell)

m boully trivial: Op & Ox = II On x Ox Dx+n=II Ov

Property: given $y \in O_V \subset \operatorname{im}(m(c_{-1}))$, $\exists \operatorname{open} V$, $y \in V \subset O_V$ and $m(c_{-1})(V) \cong V \times m(c_{-1})(y)$.

Det: et semismallness here is: r-fold concolution morphism $(\mu_1, \dots, \mu_r) = \mu_i$, $|\mu_i| = \sum \mu_i$ $f \in [\mu_i]$, $g = t^{\lambda} e_0 \in 0_{\lambda}$ $f = 0_{\mu_i}$ $f = 0_{\mu_i}$ $f = 0_{\mu_i}$ $f = 0_{\mu_i}$ $f = 0_{\mu_i}$

din m / (y) & (p, | / -1>

By locally triviality, equire to

dim mp (Ox) & < P, | p, | +1)

Strategy: dim $(S_{\lambda} \cap O_{\mu}) \leq (P_{\lambda} + \lambda)$, $\mu \in X_{*}(T)^{+}$ $\lambda \in \mathcal{N}(\mu)$.

R(p) = wt space of $V_p \in Rep(\widehat{a})$ $= \{ A \in X_*(T) : w\lambda \leq p, \forall w \in W \}.$

Sx == LUt' eo c ara (locally closed sub-ind sch.)

Sketch of reduction $M = [N_1]$ $(S_{\lambda} \cap \overline{O_{\mu}}) = \bigcup_{v = (v_1, \dots, v_{\mu})} (S_{v_1} \cap \overline{O_{\mu_1}}) \times \cdots \times (S_{v_r} \cap \overline{O_{\mu_r}})$

din LHS & max I < p, vithi > = (p, xtm)

Need to show dim (SMN Op) < < p, A+M>

[MV07], [NP01] generic flatness cars qETS for $k = \mathbb{F}_q$, Fix \mathbb{F}_q , $K = G\left(\mathbb{F}_q \mathbb{T} t \mathbb{J}\right)$, $U = G\left(\mathbb{F}_q(t t)\right)$.

By Weil conj, ETS

 $\lim_{q\to\infty} \frac{\#(\mathrm{ut}^{\lambda} k/kn \, kt^{M} k/k)}{q \langle P, \mu t \lambda \rangle} = m_{\mu}(\lambda)$ $LHJ = \left(1 \, kt^{\mu} k\right)^{\nu} \left(t^{\lambda} \right) q^{\nu} \left(t^{\lambda} \right)$

By Mardonald's famula, this is the coeff. of townshin

Devide this by q < P, P + A and take the limit as $q \to \infty$. The Weyl character formula implies neget $M_{ph}(A)$. This completes the proof.

Lecture b. Cool: $(P_{L^{\dagger}G}(Gr_{G}), \phi)$ is a neutral Tannalcian cut. $(y_{m.\ monoridal\ (at)}(e, \emptyset, I), \otimes: e \times e \rightarrow e$, identity object I night unit: $r_{A}: A \otimes I \supset A$, left unit: $l_{A}: I \otimes A \supset A$.