CPSC313: Computer Hardware and Operating Systems

Unit 5: Virtual Memory

VM Wrap Up, 2-Handed Clock, and Q&A

Administrivia

- Last day of the term!
 - Don't miss your Quiz 5 time!
 - Don't miss your final exam time!
 - Exam period office hours are pinned on Piazza; take advantage to ask your questions!

Today

Roadmap:

- Virtual Memory Review/Summary
- Extend the clock algorithm (from pre-class) to the 2-handed version
- Learning Objectives
 - Extend the clock algorithm to avoid having to write dirty pages during replacement.
 - Think about connections across the course!

The Big Picture

What is the purpose of virtual memory?

The Big Picture

What is the purpose of virtual memory?

Process isolation: One process's address space has no effect on another's, unless those two processes explicitly set up communication.

How does VM work?

The Big Picture

What is the purpose of virtual memory?

Process isolation: One process's address space has no effect on another's, unless those two processes explicitly set up communication.

- How does VM work?
 - Hardware/software partnership.
 - Hardware translates whatever addresses it can (TLB + for x86-64, page table). (Some processors have only a TLB.)
 - Software takes over where the hardware leaves off: page faults!

Other Benefits of Virtual Memory

- Processes' address spaces can be larger than physical memory.
 - Corollary: we can run a process even if some of its pages are not in memory.
- We can run a collection of processes even if the sum of the sizes of their (in-use) address spaces do not fit in memory.
- We call the loading of VM pages as they are needed demand paging.
- Main memory (DRAM or RAM) acts like a cache for the sum total of all processes' address spaces.
 - But if memory is a cache, we need replacement policies...

Why Clock and Not LRU?

Why Clock and Not LRU?

- The OS (which handles page replacement) does not have complete visibility into the access stream, so it cannot identify the LRU page.
 - Virtual memory pages can be accessed without OS intervention.
 - The OS must track which pages are cached and which can/should be evicted.
- Tracking LRU in hardware is expensive/impractical (we saw this with caching; it's even worse here with millions of pages).

Recall the Clock Algorithm

- 1 Imagine that all your physical pages are arranged around a clock.
- 2 Each time a page is accessed, the HW sets its use bit to 1.
- 3 Right now, we have virtual pages 1-11 in memory and their use bits are all 0.

Use bit = 0

Use bit = 1

Page reference stream 1 3 1 1 6 55 4 5 77

How do we handle modified pages?

- We can easily keep track of pages that are modified
 - Add a Dirty bit to each PTE that is set on Write operations.

How do we handle modified pages?

- We can easily keep track of pages that are modified
 - Add a Dirty bit to each PTE that is set on Write operations.
- What if page 7 in the last example had been dirty?

How do we handle modified pages?

- We can easily keep track of pages that are modified
 - Add a Dirty bit to each PTE that is set on Write operations.
- What if page 7 in the last example had been dirty?
 - We need to write it back to disk before loading page 77.
 - So the replacement takes twice as long.
 - How can we make it faster?

Two-handed clock

- 1. Hand for replacement
- 2. Hand for writeback:
- We keep the writeback hand a specific distance ahead of the replacement hand.
- As it moves forward, it sends dirty pages to the disk controller so they can be written back to disk.

- Use bit = 0
- Use bit = 1
 - \square Dirty bit = 0
 - Dirty bit = 1

Critical point:

We can do this writing while the disk controller is not otherwise occupied, in parallel with work happening in the core(s).

Two-handed clock

Hand for replacement

Hand for writeback

Write Page 3

Read Page 1

Use bit = 0

Use bit = 1

Dirty bit = 1

Two-handed clock

Hand for replacement

Hand for writeback

Write Page 3

Read Page 1

Read Page 15

Use bit = 0

Use bit = 1

Dirty bit = 0

Dirty bit = 1

Lots of policy decisions (that we won't discuss!)

- How far ahead of the replacement hand should the write hand be?
- How many pages should we write at a time?
- When should we move the write hand?

Wrapping Up

Virtual memory wraps us up nicely, because it encompasses many topics we've discussed:

- What hardware does
- Hardware/software interaction
- Managing memory (everything is a cache!)
- Similarities between files and virtual memory
- Management and exploitation of parallelism
- How tradeoffs at multiple levels impact user programs' performance

You can learn about and take advantage of all these elements of your system!

Preparing for the Final

- Get a good night's sleep before your exam session!
- Remind yourself that you can do this. You're an awesome, capable person, and you've worked hard at this!
- And also:
 - Review: in-/pre-class exercises, quizzes, practice quizzes
 - Review tutorials, slides, textbook, labs
 - Form a study group and challenge each other! Adapt existing questions and invent new ones!

Now you know what's inside the magic briefcase...

Have a great break!

(If "huh?": Check Canvas and then watch Pulp Fiction. Warning: lots of violence, vulgarity. In Pulp Fiction, not Canvas)