МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ

по временным моделям обнаружения ошибок»

Студент гр. 6304 Зыль С.Е. Преподаватель Кирьянчиков В.А.

Санкт-Петербург 2020

Задание.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{Xi\}$, где Xi случайное значение интервала между соседними (i-1)—ой и i—ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет mpaвн = 10, CKO spaвн = 20/(2*sqrt(3)) = 5.8.
 - Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 $y>=0,$ с параметром $b=0.1$

и соответственно mэксп=sэксп= 1/b=10.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) \, / \, b$

В) релеевским законом распределения

 $W(y) = (y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$ параметром c=8.0 и соответственно mpeл = c*sqrt($\square/2$), speл= c*sqrt($2-\square/2$).

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{Xi\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{Xi\}$ использовать n = 30, 24 и 18 элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

4. Если В>n, оценить значения средних времен Xj, j=n+1,n+2...,n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.

- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Генерация массива равномерным законом.

1.1. n = 30

Таблица 1 – сгенерированный массив при n = 30(100%)

i	N	i	N
1	0,203	16	10,808
2	0,354	17	11,390
3	1,324	18	11,588
4	1,416	19	11,928
5	2,835	20	12,359
6	3,308	21	12,536
7	3,677	22	12,723
8	5,873	23	14,097
9	5,882	24	14,936
10	6,034	25	15,176
11	6,296	26	16,472
12	7,475	27	17,080
13	8,188	28	18,067
14	8,685	29	18,734
15	9,959	30	19,435

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
20.57 > 15.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 2 – Вычисления m, f, g

m	31	32	33	34	35
f	3,995	3,027	2,558	2,255	2,035
g	2,878	2,626	2,414	2,235	2,080
f-g	1,117	0,401	0,144	0,021	0,045

m = 34

B = m - 1 = 33

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.007856

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	Xi
31	42.43
32	63.645
33	127,291

Время до полного завершения тестирования: 233,366

Полное время: 520,321

1.2. n = 24

Таблица 3 — сгенерированный массив при n = 24(80%)

i	N	i	N
1	1.225	13	9.856
2	1.771	14	10.459
3	3.738	15	11.031
4	3.976	16	11.481
5	4.197	17	12.657
6	5.862	18	13.017
7	5.904	19	13.137
8	6.685	20	14.214
9	7.634	21	14.343
10	7.861	22	15.735
11	9.627	23	16.417
12	9.704	24	19.387

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
15.875 > 12.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 4 – Вычисления m, f, g

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.630	2.370	2.157	1.979	1.829	1.699
f-g	1.146	0.446	0.197	0.079	0.015	0.021

$$m = 29$$

$$B=m-1=28$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.007953

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	Xi
25	31.435
26	41.914
27	62.871
28	125.741

Время до полного завершения тестирования: 261.961

Полное время: 491.879

1.3. n = 18

Таблица 5 — сгенерированный массив при n = 18(60%)

i	N	i	N
1	0.120	10	10.967
2	3.092	11	11.893
3	4.330	12	13.738
4	7.420	13	15.099
5	8.130	14	16.696
6	8.853	15	17.223
7	8.934	16	17.939
8	9.454	17	18.313
9	9.556	18	18.373

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
11.94 > 9.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 6 – Вычисления m, f, g

m	19	20	21	22	23	24
f	3.495	2.548	2.098	1.812	1.607	1.451
g	2.550	2.233	1.987	1.789	1.628	1.493
f-g	0.945	0.314	0.111	0.023	0.020	0.042

m = 23

$$B = m - 1 = 22$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.008133

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	Xi
19	30.740
20	40.987
21	61.480
22	122.961

Время до полного завершения тестирования: 256.168

Полное время: 456.298

2. Генерация массива экспоненциальным законом распределения.

2.1. n = 30

Таблица 7 – сгенерированный массив при n = 30(100%)

i	N	i	N	i	N
1	0.006	2	0.520	3	0.523
4	0.529	5	0.600	6	0.671
7	1.402	8	1.441	9	2.167
10	2.486	11	2.832	12	2.896
13	3.711	14	4.673	15	5.625
16	5.969	17	7.312	18	8.051
19	10.291	20	10.456	21	12.099
22	12.507	23	13.182	24	16.167
25	17.311	26	18.389	27	20.189
28	21.595	29	26.901	30	45.702

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
23.69 > 15.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 8 – Вычисления m, f, g

m	31	32
f	3.995	3.027
g	4.104	3.610
f-g	0.109	0.583

$$B = m - 1 = 30$$

 $T.\kappa. B = n:$

Время до полного завершения тестирования: 0

Полное время: 276.203

2.2.
$$n = 24$$

Таблица 9 – сгенерированный массив при n = 24(80%)

i	N	i	N	i	N
1	0.560	2	1.395	3	1.636
4	2.146	5	2.930	6	3.570
7	5.275	8	5.812	9	5.830
10	7.403	11	7.450	12	8.784
13	10.946	14	11.470	15	11.538
16	12.238	17	13.681	18	13.813
19	14.008	20	17.845	21	19.889
22	20.339	23	21.270	24	34.280

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
17.33> 12.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 10 – Вычисления m, f, g

m	25	26	27
f	3.776	2.816	2.354
g	3.128	2.768	2.481
f-g	0.648	0.048	0.127

$$m = 26$$

$$B = m - 1 = 25$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.010892

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}.$$

i	Xi
25	91.814

Время до полного завершения тестирования: 91.814

Полное время: 345.922

2.3.
$$n = 18$$

Таблица 11 – сгенерированный массив при n=18(60%)

i	N	i	N	i	N
1	0.101	2	0.338	3	1.474
4	2.407	5	2.471	6	2.880
7	3.152	8	4.329	9	4.396
10	4.677	11	5.563	12	6.482
13	6.581	14	7.506	15	10.342
16	13.987	17	24.419	18	26.127

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 12 – Вычисления m, f, g

m	19	20
f	3.495	2.548
g	3.601	3.001
f-g	0.106	0.453

$$m = 19$$

$$B = m - 1 = 18$$

$$T.к. B = n:$$

Время до полного завершения тестирования: 0

Полное время: 127.232

3. Генерация массива релеевским законом распределения.

3.1.
$$n = 30$$

Таблица 13 – сгенерированный массив при n = 30(100%)

i	N	i	N	i	N
1	3.266	2	3.576	3	3.733
4	3.831	5	5.192	6	6.015
7	6.259	8	6.529	9	6.858
10	7.170	11	7.863	12	8.303
13	8.612	14	8.647	15	8.767
16	8.974	17	9.177	18	9.565
19	10.002	20	10.287	21	11.088
22	11.843	23	12.700	24	12.831
25	14.069	26	14.479	27	15.460
28	16.483	29	22.374	30	27.559

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$

19.644 > 15.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 14 – Вычисления m, f, g

m	31	32	33	34	35	36	37	38
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609
g	2.642	2.428	2.246	2.090	1.954	1.834	1.728	1.634
f-g	1.353	0.599	0.312	0.166	0.081	0.029	0.004	0.026

m = 37

B = m - 1 = 36

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}.$$

K = 0.005733

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\hat{B} - n)}.$$

i	Xi
31	29.073
32	34.887
33	43.609
34	58.146
35	87.219
36	174.437

Время до полного завершения тестирования: 427.371

Полное время: 728.883

3.2. n = 24

Таблица 15 – сгенерированный массив при n = 24(80%)

i	N	i	N	i	N
1	1.724	2	2.190	3	3.828
4	3.908	5	5.493	6	5.623
7	5.667	8	6.064	9	6.564
10	7.050	11	7.276	12	7.734
13	8.295	14	8.585	15	8.868
16	9.021	17	9.475	18	10.438
19	11.159	20	12.024	21	14.643
22	15.894	23	16.412	24	18.504

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
15.84> 12.5

m ≥ n+1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 16 – Вычисления m, f, g

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.621	2.363	2.151	1.974	1.824	1.695
f-g	1.155	0.453	0.203	0.084	0.020	0.017

$$m = 30$$

$$B = m - 1 = 29$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.008212

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	Xi
25	24.355
26	30.443
27	40.591
28	60.887
29	121.773

Время до полного завершения тестирования: 278.049

Полное время: 484.488

3.3. n = 18

Таблица 17 – сгенерированный массив при п = 18(60%)

i	N	i	N	i	N
1	1.816	2	2.120	3	2.592
4	3.239	5	4.135	6	4.544
7	4.723	8	4.732	9	6.722
10	7.352	11	7.434	12	7.946
13	10.961	14	11.553	15	13.609
16	14.371	17	14.818	18	15.330

Проверка существования максимума \hat{B} :

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{X_i}$$
12.485 > 9.5

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

Таблица 18 – Вычисления m, f, g

m	19	20	21	22
f	3.495	2.548	2.098	1.812
g	2.763	2.395	2.114	1.892
f-g	0.732	0.152	0.016	0.080

m = 21

B = m - 1 = 20

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}.$$

K = 0.015319

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}.$$

i	Xi
19	32.639
20	65.278

Время до полного завершения тестирования: 97.916

Полное время: 235.913

4. Полученные результаты.

Таблица 19 – Оценка первоначального количества ошибок

Закон распределения	n = 30	n = 24	n = 18
Равномерный	33	28	22
Экспоненциальный	30	25	18

Релеевский	36	29	20

Таблица 20 – Оценка полного времени проведения тестирования

Закон распределения	n = 30	n = 24	n = 18
Равномерный	520,321	491.879	456.298
Экспоненциальный	276.203	345.922	127.232
Релеевский	728.883	484.488	235.913

Выводы.

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, ДЛЯ различных законов распределения времен обнаружения отказов различного числа используемых для анализа данных. При n = 30 худшие показатели по двум измерениям имеет рееевское распределение. Также при n = 24 равномерный и релеевский законы имеют схожие показатели. Однако, по всем показателям экспоненциальный лидирует закон распределения, подтверждая предрположение, что «время до следующего отказа программы распределено экспоненциально».