Ćwiczenie 6: Obsługa przetwornika analogowo-cyfrowego (ADC)

Instrukcja laboratorium

Mariusz Chilmon <mariusz.chilmon@ctm.gdynia.pl>

2024-01-20

People think that computer science is the art of geniuses but the actual reality is the opposite, just many people doing things that build on eachother, like a wall of mini stones.

- Donald Knuth

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z:

- · podstawową konfiguracją ADC,
- · odczytem pomiaru z ADC,
- · zmianą częstotliwości pomiarów,
- przeliczeniem rejestru pomiaru ADC na napięcie,
- przeliczeniem zmierzonego napięcia na temperaturę.

Uruchomienie programu wyjściowego

- 1. Podłącz płytkę WPSH209 do Arduino Uno.
- 2. Podłącz termometr LM35DZ do linii A5.
- 3. Wynik pomiaru na wyświetlaczu ma wartość 00.00.

Zadanie podstawowe

Celem zadania podstawowego jest uruchomienie pomiaru temperatury z wykorzystaniem ADC mikrokontrolera i scalonego termometru analogowego LM35DZ.

Przetwornik analogowo-cyfrowy (ADC, ang. *Analog-to-Digital Converter*) zamienia sygnał analogowy, na ogół napięcie, na wartość cyfrową. Może być zewnętrznym układem scalonym lub, jak w tym przypadku, być wbudowany w mikrokontroler.

Wymagania funkcjonalne

1. Na wyświetlaczu prezentowana jest temperatura mierzona przez LM35DZ w °C z rozdzielczością do części setnych.

Pomiar, szczególnie na pozycjach mniej znaczących, może zmieniać się bardzo szybko przez co nie zawsze będzie czytelny.

Modyfikacja programu

Konfiguracja multiplekserów i preskalera

Zastosowany w mikrokontrolerze przetwornik analogowo-cyfrowy sukcesywnej aproksymacji wymaga doprowadzenia do przetwornika cyfrowo-analogowego (DAC) napięcia referencyjnego, względem którego będzie wykonywany pomiar (obwód zielony). W tym przypadku wykorzystujemy wbudowane w mikrokontroler napięcie odniesienia 1,1 V. Wybór źródła napięcia referencyjnego odbywa się za pomocą bitów REFS0...REFS1.

Mierzone napięcie jest z kolei doprowadzane do komparatora próbkującego (obwód czerwony). Wykorzystujemy wejście ADC5, do którego podłączony jest termometr LM35DZ. Wybór mierzonego sygnału odbywa się za pomocą bitów MUX0...MUX3.

By działanie ADC było w ogóle możliwe, musi on być taktowany odpowiednim sygnałem zegarowym. Z dokumentacji mikrokontrolera można odczytać przedział częstotliwości, w których producent gwarantuje zachowanie optymalnych parametrów pomiaru, w szczególności zachowanie 10-bitowej rozdzielczości. Uzyskanie odpowiedniej częstotliwości jest możliwe przy dowolnej częstotliwości pracy mikrokontrolera dzięki preskalerowi o odpowiednim zakresie (obwód niebieski). Wybór stopnia podziału odbywa się za pomocą bitów ADPS0...ADPS2.

Uruchomienie pomiaru

Po skonfigurowaniu multiplekserów i preskalera należy:

- 1. Włączyć tryb autowyzwalania przez ustawienie bitu ADATE (ADC Auto Trigger Enable), dzięki czemu pomiar nie będzie wykonany jednorazowo, ale po zakończeniu jednego pomiaru automatycznie będzie uruchamiany następny.
- 2. Włączyć ADC przez ustawienie bitu ADEN (ADC Enable).
- 3. Uruchomić pierwszą konwersję (pomiar) przez ustawienie bitu ADSC (ADC Start Conversion).

Wszystkie trzy powyższe bity można ustawić jednocześnie, także wraz z bitami ADPS0 ...ADPS2.

Konfigurację i uruchomienie przetwornika analogowo-cyfrowego umieść w funkcji adcInitialize() w pliku main.cpp.

Rysunek 1: Schemat blokowy ADC

Odczyt pomiaru

Wynik pomiaru należy odczytać z rejestrów ADCL i ADCH (pomiar jest 10-bitowy, więc jego wynik mieści się w dwóch rejestrach). Ponieważ mamy do czynienia z mikroprocesorem 8-bitowym, nie jest możliwy odczyt obu rejestrów w czasie jednej instrukcji. Może więc dojść do sytuacji, gdy między odczytem jednej i drugiej części pomiaru, pomiar ulegnie zmianie, w wyniku czego odczytamy część starszego i część nowszego pomiaru. Aby uniknąć takiej sytuacji, producent gwarantuje, że po odczytaniu rejestru ADCL zawartość ADCH nie ulegnie zmianie, dopóki nie zostanie odczytana. Należy więc zawsze w pierwszej kolejności odczytywać rejestr ADCL¹.

Odczytaną wartość należy przeliczyć na napięcie, a następnie na temperaturę.

Odczyt i przeliczenie pomiaru umieść w funkcji measure() (plik main.cpp), która jest wywoływana przy każdym odświeżeniu wyświetlacza, a zwracana przez nią wartość jest na nim umieszczana.

Zadanie rozszerzone

Celem zadania rozszerzonego jest ułatwienie odczytu przez ograniczenie szybkości pomiaru.

Wymagania funkcjonalne

1. Pomiar następuje nie częściej niż kilka razy na sekundę.

Modyfikacja programu

Ustal odpowiedni dzielnik taktujący Timer/Counter1 (bity CS10...CS12). Flagą TOIE1 włącz przerwanie od przepełnienia tego timera. Użyj bitów ADTS0...ADTS2, aby wybrać taktowanie pomiaru tym przerwaniem (Timer/Counter1 Overflow).

Częstotliwość przerwania w zależności od wybranego dzielnika N dana jest wzorem:

$$f = \frac{f_{clkI/O}}{2^{16}N} \tag{1}$$

¹Kompilator AVR-GCC ma zdefiniowaną zmienną ADC, która umożliwia dostęp do obu rejestrów jako 16-bitowej całości, jednak jego dokumentacja nigdzie nie gwarantuje poprawnej kolejności odczytu.