MA 571: Homework # 12 due Monday November 23.

Please do:

- p. 366 # 7(c), 9(abc)
- p. 375 # 2 The definition of P^2 is on page 372; you may use the fact that P^2 is Hausdorff (proved at the bottom of page 372)

For the next two problems we will allow paths to be defined on [a, b]; the concept of path homotopy generalizes to this context in the obvious way.

Definition. Let M be an m-manifold.

- i) A linear path in \mathbb{R}^m is a path $f:[a,b]\to\mathbb{R}$ with $f(s)=\frac{1}{b-a}[(b-s)z_1+(s-a)z_2]$ for two points z_1 and z_2 .
- ii) A quasi-linear path in M is a path $g:[a,b]\to M$ for which there is an open set U containing g([a,b]) and a homeomorphism h from U to an open set in \mathbb{R}^m such that $h\circ g$ is linear.
- iii) A piecewise quasi-linear path in M is a path $g:[a,b] \to M$ for which there is a finite partition of [a,b] into subintervals such that the restriction of g to each subinterval of the partition is quasi-linear.
- A) (i) Let M be an m-manifold, let U be an open set in M which is homeomorphic to an open ball in \mathbb{R}^m , and let g be a path in U. Prove that g is path-homotopic to a quasi-linear path. (Hint: straight-line homotopy).
- (ii) Prove: every path in an m-manifold is path-homotopic to a piecewise quasi-linear path. (Hint: Theorem 51.3, Lebesgue Lemma and part (i))
- B) Prove: a piecewise quasi-linear path in an m-manifold with m > 1 cannot be onto. (Hint: use Problem A from HW 2; you may assume, without proving it, that the image of a linear path does not contain an open set of \mathbb{R}^m if m > 1.)
- C) i) S^m is an m-manifold for all m (you don't have to prove this, it follows easily from the solution of HW8 # 3). Prove that S^m is simply connected for $m \geq 2$. Do not use Section 59. (Hint: use Problems A and B from this assignment and Problem C from HW 11.)
- ii) Prove that \mathbb{R}^n is not homeomorphic to \mathbb{R}^2 for $n \neq 2$. (Hint: you may use Theorem A from the note on the Fundamental Group of the Circle).