ELECTRONIC SYSTEMS

Labo-opdracht 1

IR communicatie – oefeningen op basic opampschakelingen

Ing Patrick Van Houtven
[E-mailadres]

Opgave 02: IR-analoge overdracht

2Ea Klasgroep: 2ITIOT

Labogroep: 6

Dit labo is gemaakt door:

Naam student 1: Tibo Van Der Sanden

Naam student 2: Yorgi De Schrijver

Opmerking: Deze opgave lever je in pdf-vorm in

1 IR-communicatie met analoge audiosignalen

1.1 Doe

Deze laboproef heeft als doel je inzicht te geven in de mogelijkheid om een infrarood communicatiesysteem op te bouwen via basisschakelingen van een opamp. Het labo bestaat uit een zend- en ontvangersysteem. Hiermee is het mogelijk om analoge signalen van een punt A naar een punt B over te brengen. Hierbij komt ook een tiptoets regelaar aan bod. Deze regelaar is gebaseerd op een integratorschakeling en maakt het mogelijk om via twee drukknoppen het niveau van de uitgangsspanning te regelen. Alzo wordt een schakeling gecreëerd die je het werkingsprincipe van een draadloze hoofdtelefoon met volumeregeling duidelijk maakt.

Onderstaande figuur geeft je een indruk van welke meetresultaten je kan bekomen door de zender en de ontvanger op te bouwen:

Hierbij is:

- Pk-pk[1]: de ingangsspanning van de zender (gemeten over R1)
- Pk-pk[2]: de uitgangsspanning va de zenderopamp
- Pk-pk[3]: de spanning op de emitter van Q1 (zender)

• Pk-pk[4]: De uitgangsspanning van de opamp van de ontvanger

Alvorens je start beantwoord volgende vragen:

⁷ raag 1a	Zoek op: '		E°C				
ntwoord	Electrical	/ Optical Characteristics at TA=2	Min.	Тур.	Max.	Units	Test Conditions
	VBR CEO	Collector-to-Emitter Breakdown Voltage	30	.,,,,		V	Ic=100uA Ee=0mW/c m²
	VBR ECO	Emitter-to-Collector Breakdown Voltage	5			V	IE=100uA Ee=0mW/c m²
	VCE (SAT)	Collector-to-Emitter Saturation Voltage			0.8	V	Ic=2mA Ee=20mW/c m²
	I CEO	Collector Dark Current			100	nA	Vce=10V Ee=0mW/c m²
	TR	Rise Time (10% to 90%)		15		us	VCE = 5V
	TF	Fall Time (90% to 10%)		15		us	Ic=1mA RL=1000Ω
	(ON)	On State Collector Current	0.7	3		mA	VcE = 5V Ee=1mW/c m² λ=940nm
		ightharpoonup	,				
							= collector
raag 1c	Wat is de het gevoel	golflengte van de fototransistoriigst?)					
	het gevoel						
antwoord Traag 1d	het gevoel 940 nm Wat is het	igst?) t ontvangstbereik van de fototra	· L53P30	C? (voor	welke go	olflengte	is deze transiste
ntwoord raag 1d ntwoord	940 nm Wat is het 420 tot 11	igst?) t ontvangstbereik van de fototra 00 nm	· L53P30	C? (voor	welke go	olflengte de karak	is deze transiste
Antwoord Traag 1d Antwoord Traag 1e	het gevoel 940 nm Wat is het 420 tot 11 Geef de m	igst?) t ontvangstbereik van de fototra 00 nm nin-, max spanning en maximal	· L53P30	C? (voor	welke go	olflengte de karak	is deze transiste
antwoord Traag 1d antwoord Traag 1e	het gevoel 940 nm Wat is het 420 tot 11 Geef de m Min V = 5	igst?) t ontvangstbereik van de fototra 00 nm in-, max spanning en maximal	· L53P30	C? (voor	welke go	olflengte de karak	is deze transiste
Antwoord Traag 1d Antwoord Traag 1e	het gevoel 940 nm Wat is het 420 tot 11 Geef de m	igst?) t ontvangstbereik van de fototra 00 nm nin-, max spanning en maximalo V 30V	· L53P30	C? (voor	welke go	olflengte de karak	is deze transiste
Antwoord Traag 1d Antwoord Traag 1e	het gevoel 940 nm Wat is het 420 tot 11 Geef de m Min V = 5 Max V = 3	igst?) t ontvangstbereik van de fototra 00 nm nin-, max spanning en maximalo V 30V	· L53P30	C? (voor	welke go	olflengte de karak	is deze transiste
ntwoord raag 1d ntwoord raag 1e	het gevoel 940 nm Wat is het 420 tot 11 Geef de m Min V = 5 Max V = 3	igst?) t ontvangstbereik van de fototra 00 nm nin-, max spanning en maximalo V 30V	· L53P30	C? (voor	welke go	olflengte de karak	is deze transiste
ntwoord raag 1d ntwoord raag 1e	het gevoel 940 nm Wat is het 420 tot 11 Geef de m Min V = 5 Max V = 3	igst?) t ontvangstbereik van de fototra 00 nm nin-, max spanning en maximalo V 30V	· L53P30	C? (voor	welke go	olflengte de karak	is deze transiste

Antwoord	BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
	PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
	Forward voltage	I _F = 100 mA, t _p = 20 ms	V _F		1.35	1.6	V	
	Forward voltage	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	V _F		2.2	3	V	
	Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		-1.8		mV/K	
	Reverse current	V _R = 5 V	I _R			10	μА	
	Junction capacitance	$V_R = 0 V, f = 1 MHz, E = 0$	Cj		40		pF	
	Radiant intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	40	72	200	mW/sr	
	national intensity	$I_F = 1 \text{ A}, t_p = 100 \ \mu \text{s}$	l _e	340	600		mW/sr	
	Radiant power	I _F = 100 mA, t _p = 20 ms	фе		40		mW	
	Temperature coefficient of ϕ_e	I _F = 20 mA	TKφ _e		-0.6		%/K	
	Angle of half intensity		φ		± 17		deg	
	Peak wavelength	I _F = 100 mA	λ _p		940		nm	
	Spectral bandwidth	I _F = 100 mA	Δλ		30		nm	
	Temperature coefficient of λ _p	I _F = 100 mA	TKλ _p		0.2		nm/K	
	Rise time	$I_{\rm F} = 100 {\rm mA}$	t _r		15		ns	
		4 - 100 1101	4		10		115	
Vraag 1b	Fall time Hoe sluit ie de IR-LED	I _F = 100 mA	t _f	vmbool (15	aan waa	ns	
	Fall time Hoe sluit je de IR-LED anode kathode zich bevi	I _F = 100 mA (type TSAL6200)? aan?	t _f	ymbool (15	aan waa	ns	
Antwoord	Hoe sluit je de IR-LED	$I_F = 100 \text{ mA}$ (type TSAL6200)? aan? nden.	Geef het sy		15 en duidt		ns r de	
Vraag 1b Antwoord Vraag 1c Antwoord	Hoe sluit je de IR-LED anode kathode zich bevi	$I_F = 100 \text{ mA}$ (type TSAL6200)? aan? nden.	Geef het sy		15 en duidt		ns r de	
Antwoord Vraag 1c	Hoe sluit je de IR-LED anode kathode zich bevi Wat is de golflengte van	I _F = 100 mA (type TSAL6200)? aan? nden. de IR-LED? (voor welk	Geef het sy	e is deze	15 en duidt		ns r de	
Antwoord Vraag 1c Antwoord Vraag 1d	Hoe sluit je de IR-LED anode kathode zich bevi Wat is de golflengte van 940nm	I _F = 100 mA (type TSAL6200)? aan? nden. de IR-LED? (voor welk	Geef het sy	e is deze	15 en duidt		ns r de	
Antwoord Vraag 1c Antwoord Vraag 1d Antwoord	Hoe sluit je de IR-LED anode kathode zich bevi Wat is de golflengte van 940nm Wat is het zendbereik va	I _F = 100 mA (type TSAL6200)? aan? nden. de IR-LED? (voor welk an de IR-LED? (Geef ev	Geef het sy e golflengt eneens de l	e is deze karaktei	15 en duidt		ns r de	
Antwoord Vraag 1c Antwoord Vraag 1d Antwoord Vraag 1e	Hoe sluit je de IR-LED anode kathode zich bevi Wat is de golflengte van 940nm	I _F = 100 mA (type TSAL6200)? aan? nden. de IR-LED? (voor welk an de IR-LED? (Geef ev	Geef het sy e golflengt eneens de l	e is deze karaktei	15 en duidt		ns r de	
Antwoord Vraag 1c Antwoord Vraag 1d Antwoord Vraag 1e	Hoe sluit je de IR-LED anode kathode zich bevi Wat is de golflengte van 940nm Wat is het zendbereik va Geef de min-, max span	I _F = 100 mA (type TSAL6200)? aan? nden. de IR-LED? (voor welk an de IR-LED? (Geef ev	Geef het sy e golflengt eneens de l	e is deze karaktei	15 en duidt		ns r de	

1.2 Opbouw van een IR-zender

Het is de bedoeling van de zender om een analoog audiosignaal via infrarood lichtvariaties over te brengen naar een IR-ontvanger. Via de laptop kan je muziek overbrengen naar een opampversterkerschakeling die dit signaal versterkt en aanlegt aan een IR-LED. De amplitude van het audiosignaal zorgt voor evenredige intensiteitsveranderingen in het uitgestraalde IR-licht van de IR-LED. De figuur 1 geeft het schema weer van de IR-zender.

Figuur 1: IR-zender

De opamp zorgt voor de versterking van het signaal. Om de zender uit te testen gebruiken we een signaal van 1 kHz 500 mV. Meet aan de emitter van Q1 het signaal met de oscilloscoop. De koppelcondensator is een niet elektrolytische condensator en bij voorkeur 1 μF (of hoger). Via de potentiometer R5 kan je de ruststroom door de IR LED instellen. Deze ruststroom bepaalt de lichtsterkte dat de IR LED uitzendt indien er geen signaal aanwezig is. Het door de opamp versterkt signaal wordt aangelegd aan de basis van Q1. Op deze wijze varieert de door de IR LED uitgezonden lichtsterkte in functie van het aangelegde signaal.

1.3 Opbouw van een IR ontvanger

De ontvangstzijde kan opgebouwd worden aan de hand van figuur 2,

Figuur 2: IR-ontvanger

De DC-instelling rond Q1 bij de zender zorgt ervoor dat de IR LED een constante hoeveelheid licht uitzendt als er geen signaal aan de zender wordt aangelegd. Deze constante hoeveelheid

uitgestraald licht wordt door de fototransistor Q2 ontvangen. De geleidbaarheid van deze fototransistor is dan ook constant, waardoor een DC-instelling van deze transistor nodig is. Met $R8=220~\mathrm{k}\Omega$ kan je dit verwezenlijken. Indien de zender wel een signaal uitzendt, resulteert dit in een variërende lichtsterkte van de IR-LED die door de fototransistor wordt opgevangen. Naarmate er meer IR-licht invalt op Q2 zal deze beter geleiden waardoor U_{CE2} daalt. Als er minder licht wordt uitgestraald, geleidt Q2 minder en U_{CE2} za dan stijgen. Deze spanningsvariaties komen overeen met de signaalvorm dat aan de IR-zender is aangelegd. De variërende U_{CE2} spanning wordt via C3 aangelegd aan de opamp U2A die dit signaal verder versterkt.

1.3.1 Opdracht op breadboard:

Vraag 4	Meet de spanningen op met de oscilloscoop aan de ingang (geel kanaal oscilloscoop) van opamp U1A (geel kanaal oscilloscoop) en de uitgang (blauw kanaal oscilloscoop van opamp U1A. Meet ook het signaal op aan de emitter van T1. Geef hieronder de oscillogrammen (met de studentenkaarten zichtbaar))
% Oscillogram	RIGOL DS1074 2 Fill DOCUMENT OF THE PROPERTY O
	Geef hieronder de meetresultaten (spanning – frequentie van de signalen)
Antwoord	Umax 1= 225mV f1= 1kHz
	Umax 2 = 2V f2 = 1kHz
	Umax $3 = 400 \text{mV} \text{ f} 3 = 1 \text{kHz}$

Vraag 5	Meet de spanningen op met de oscilloscoop aan de uitgang van de opamp (zender U1A) (geel kanaal) en aan de basis van de transistor Q1 (BC548) (blauw kanaal oscilloscoop) Geef hieronder de oscillogrammen (met de studentenkaarten zichtbaar))
%	
Oscillogram	
	Geef hieronder de meetresultaten (spanning – frequentie van de signalen)
Antwoord	Uout = 140mV
	F1 = 1kHz
	Ubase = 17.8V
	F2 = 1kHz

Vraag 6	Behoud de laatste meetpunten en draai aan de potentiometer. Verklaar wat je ziet en geef aan wat de bedoeling hiervan is.
Antwoord	De curve gaat omhoog of omlaag dit verandert de spanning.

Vraag 7	Zoek op waarvoor C1 in de schakeling staat. Verklaar het werkingsprincipe is. (Tip:
	bekijk eventueel opamps als versterker in de cursus electronics))

Antwoord	

Plaats een luidspreker aan de uitgang van de ontvanger (indien je niets hoort, plaats dan een spanningsvolger tussen de luidspreker en de uitgang van de opamp U2A. Van zodra je de 1 kHz-toon hoort, vervang de generator met audio via je laptop en speel een muziek af. Ga na of je dit kan ontvangen met je ontvanger en hoorbaar maken.

Vraag 8

Hoe groot is de maximale afstand tussen zender en ontvanger tot je audio nog net kan horen. Tijdens deze test mag je het volume van het ingangssingaal regelen om een zo groot mogelijk bereik te bekomen. Als je het ingangssignaal vergroot in amplitude moet je wel rekening houden dat het signaal aan de uitgang niet (noemenswaardig) vervormd. Maak een foto van deze afstand tussen zender en ontvanger

Antwoord

Vraag 9	Zoek op wat een optocoupler is en geef aan wat je hiermee kan doen.
Antwoord	Met dit componentje kan je 2 elektrische schakelingen elektrisch verbinden dit wordt gedaan
	door de inwendige schakeling van een led en een lichtgevoelige transistor. Je kan op deze
	manier een signaal van de ene schakeling naar de andere schakeling overdragen. Het
	functioneert als een soort relais.

1.3.2 Opdracht via multisim

Teken beide schakelingen in multisim. Vervang de IR-LED en fototransistor door een optocoupler. Leg aan de ingang van de schakeling een signaal aan met volgende kenmerken: 1 kHz / 200 mVp.

Vraag 10	Teken zender en ontvanger in multisim en vervang de IR-LED en fototransistor door de optocoupler. Je bekomt nu 1 schakeling. Plaats hieronder je schema:
Antwoord	

Vraag 11	 Maak een AC-analyse en laat volgende signalen zien in deze analyse: Pk-pk[1]: de ingangsspanning van de zender (gemeten over R1) Pk-pk[2]: de uitgangsspanning va de zenderopamp Pk-pk[3]: de spanning op de emitter van Q1 (zender) Pk-pk[4]: De uitgangsspanning van de opamp van de ontvanger
% AC-analyse	

1.4 Spanningsniveauregeling met drukknoppen

Figuur 3: spanningsniveauregeling met drukknoppen

De spanningsniveauregelaar bestaat uit een integrator en kan opgebouwd worden zoals weergegeven in figuur 3. Het regelaar gedeelte bestaat uit het linkse gedeelte van de figuur tot voor de weerstand R5. Vanaf de weerstand R5 met de JFET Q1 en de weerstand R2 bestaat de schakeling uit een JFET-schakeling die ingesteld staat in zijn gebied als regelbare weerstand. De grootte van de uitgangsspanning van de opamp bepaald hoe groot de weerstandswaarde tussen drain en source is van Q1. Q1 vormt met R2 een spanningsdeler voor het signaal dat afkomstig is van de generator.

Helemaal links zijn twee drukknoppen. Indien geen van beide ingedrukt (gesloten) wordt, vormen ze een open keten. Er vloeit dan ook geen stroom door R1. Als de opamp ideaal verondersteld mag worden vloeit er ook geen stroom doorC1 zodat de uitgangsspanning van de opamp constant blijft.

R3 en R4 vormen een spanningsdeler zodat over elk van hun 4,5 V staat. Als de S1 gesloten wordt staat aan de ingang van de integratorschakeling +4,5 V. Wordt S2 gesloten dan is de ingangsspanning gelijk aan -4,5 V. Dit betekent dat als S1 gesloten wordt de integrator +4,5 V zal gaan integreren waardoor aan de uitgang van de opamp de spanning zal gaan dalen. Dit wordt op de scoop zichtbaar gemaakt door een dalende lijn. Druk je op S2 dan zal de integrator spanning integreren met een negatieve stap waardoor de spanning aan de uitgang van de opamp zal stijgen. Wanneer beide knoppen worden losgelaten zal de spanning aan de uitgang constant blijven. Door deze spanning nu aan te leggen aan een JFET wordt de drain-source weerstand hiervan beïnvloed. Deze weerstand vormt een spanningsdeler met R2 waardoor het "volume" van het signaal dat via de generator wordt aangelegd regelbaar wordt. Aldus is deze schakeling onder andere bruikbaar als regelbare volumeschakeling.

1.4.1 Opbouw schakeling op breadboard

Opdracht: bouw de schakeling en ga de werking na. Bouw in eerste instantie de integratorschakeling alleen op zonder de JFET-schakeling zowel op breadboard als in multisim.

Vraag 12	Plaats hier een foto van de schakeling.
*	
Vraag 13	Welk is de maximale en minimale uitgangsspanning van de integratorschakeling? Geef hierbij ook de scoopbeelden
% Scoopbeelden	
	Maximale uitgangsspanning:
antwoord	
	Minimale uitgangsspanning:
Vraag 14	Hoe groot is de tijdsconstante van de integratorschakeling? Deze reactietijd is speciaal op deze waarde gekozen opdat het stijgen en dalen van de integratorspanning aangepast is aan de menselijke reactiesnelheid)
antwoord	

1.4.2 Opbouw schakeling met multisim

Opdracht: Teken de schakeling in multisim en ga de werking na. Bouw in eerste instantie de integratorschakeling alleen op zonder de JFET-schakeling zowel op breadboard als in multisim.

Vraag 14	Geef hier een foto van je schakeling
%	
multisim	

Vraag 15	Welk is de maximale en minimale uitgangsspanning van de integratorschakeling? Geef
	hierbij ook de scoopbeelden
%	
Scoopbeelden	
	Maximale uitgangsspanning:

Minimale uitgangsspanning:

Vraag 16	Ontwerp met een FET als regelbare weerstand en de integratorschakeling een
	volumeregeling om de draadloze overdracht van de audio in volume te regelen
	(volumen van luidspreker of hoofdtelefoon regelen)
	Plaats hier een screenschot van je multisimschema (of werkelijk schema)
%	
multisim	
	Verklaar hier de werking van je ontwerp
Antwoord	
	Toon aan met scoopbeelden of analyse in multisim dat je ontwerp werkt. :
Antwoord	

Antwoord

Antwoord