Non-classical modal logics

Leonardo Pacheco TU Wien

22 March 2024

Available at: leonardopacheco.xyz/slides/tokyotech2024.pdf

NON-CLASSICAL MODAL LOGICS

- ▶ modal logic = propositional logic + \Box + \Diamond .
- ► Two main non-classical varieties:
 - ► constructive modal logic, and
 - ► intuitionistic modal logic.

A BIT OF HISTORY

- ► Fitch (1948): intuitionistic first-order modal logic (with *T* and Barcan's formula)
- ▶ Prior (1957): MIPQ, an intuitionistic analogue of S5
- ► Ono (1977), Fischer Servi (1978): completeness of MIPQ
- ► Many people work on ◊-free intuitionistic modal logics
- ► Wijesekera (1990): constructive modal logic

For a better survey see Simpson (1994).

CK — AXIOMATIZATION

Axioms:

INTRODUCTION

000000000

- all intuitionistic tautologies;
- $ightharpoonup K_{\square} := \square(\varphi \to \psi) \to (\square\varphi \to \square\psi);$
- $ightharpoonup K_{\Diamond} := \Box(\varphi \to \psi) \to (\Diamond \varphi \to \Diamond \psi).$

Rules:

(Nec)
$$\frac{\varphi}{\Box \varphi}$$
 and (MP) $\frac{\varphi \quad \varphi \to \psi}{\psi}$.

IK — AXIOMATIZATION

Axioms:

INTRODUCTION

0000000000

- all intuitionistic tautologies;
- $\blacktriangleright K_{\square} := \square(\varphi \to \psi) \to (\square\varphi \to \square\psi);$
- $\blacktriangleright K_{\Diamond} := \Box(\varphi \to \psi) \to (\Diamond \varphi \to \Diamond \psi);$
- $ightharpoonup FS := (\Diamond \varphi \to \Box \psi) \to \Box (\varphi \to \psi);$
- \triangleright $DP := \Diamond(\varphi \lor \psi) \to \Diamond\varphi \lor \Diamond\psi$; and
- $\triangleright N := \neg \Diamond \mid$.

Rules:

(Nec)
$$\frac{\varphi}{\square \varphi}$$
 and (MP) $\frac{\varphi \quad \varphi \to \psi}{\psi}$.

KRIPKE MODELS FOR MODAL LOGIC

Tuples $M = \langle W, R, V \rangle$ where:

- ► *W* is the set of *possible worlds*;
- ightharpoonup R is a relation over W; and
- ▶ $V : \text{Prop} \to \mathcal{P}(W)$ is a valuation function.

We define:

INTRODUCTION

- $ightharpoonup M, w \models \Box \varphi \text{ iff, for all } v, \text{ if } wRv \text{ then } M, v \models \varphi;$
- ▶ $M, w \models \Diamond \varphi$ iff there is v such that wRv and $M, v \models \varphi$.

KRIPKE MODELS FOR INTUITIONISTIC LOGIC

Relational Kripke models $M = \langle W, \preceq, V \rangle$ where:

- ► *W* is the set of *possible worlds*;
- $ightharpoonup \prec$ is a reflexive and transitive relation over W;
- ▶ $V : \text{Prop} \to \mathcal{P}(W)$ is a valuation function.

We require that:

 $\blacktriangleright w \leq v$ and $w \in V(P)$, then $v \in V(P)$.

We define:

INTRODUCTION

- ► $M, w \models \varphi \rightarrow \psi$ iff, for all v, if $w \leq v$ and $M, v \models \varphi$, then $M, v \models \psi$;
- $ightharpoonup M, w \models \neg \varphi \text{ iff, for all } v, \text{ if } w \leq v, \text{ then } M, v \not\models \varphi.$

CK — SEMANTICS

INTRODUCTION

Bi-relational Kripke models $M = \langle W, W^{\perp}, \preceq, R, V \rangle$ where:

- ► *W* is the set of *possible worlds*;
- ▶ $W^{\perp} \subseteq W$ is the set of *fallible worlds*;
- $ightharpoonup \leq$ is a reflexive and transitive relation over *W*;
- ► *R* is a relation over *W*; and
- ▶ $V : \text{Prop} \to \mathcal{P}(W)$ is a valuation function.

We require that:

- $ightharpoonup W^{\perp} \subseteq V(P);$
- ▶ $w \leq v$ and $w \in V(P)$, then $v \in V(P)$.

IK — SEMANTICS

Bi-relational Kripke models $M = \langle W, \preceq, R, V \rangle$ where:

- ► *W* is the set of *possible worlds*;
- $ightharpoonup \leq$ is a reflexive and transitive relation over *W*;
- ightharpoonup R is a relation over W; and
- ▶ $V : \text{Prop} \to \mathcal{P}(W)$ is a valuation function.

We require that:

- ▶ $w \leq v$ and $w \in V(P)$, then $v \in V(P)$;
- ▶ *M* is *forward confluent*: $w \leq w'$ and $w \sqsubset v$ imply there is v' such that $v \leq v'$ and $w' \sqsubset v'$;
- ▶ *M* is *backward confluent*: $w \sqsubset v \preceq v'$ implies then there is w' such that $w \preceq w' \sqsubset v'$.

CONFLUENCE

Forward confluence

Backward confluence

VALUATIONS

The valuation of \square s are the same over CK and IK models:

 \blacktriangleright $M, w \models \Box \varphi$ iff, for all v, u, if $w \preceq vRu$ then $M, u \models \varphi$.

Over CK models, define:

► $M, w \models \Diamond \varphi$ iff, for all v such that $w \leq v$, there is u such that if vRu and $M, u \models \varphi$.

Over IK models, define:

► $M, w \models \Diamond \varphi$ iff there is v such that if wRv and $M, v \models \varphi$.

CK AND IK

The following formulas are provable in IK but not in CK:

- $ightharpoonup FS := (\Diamond \varphi \to \Box \psi) \to \Box (\varphi \to \psi);$
- ► $DP := \Diamond(\varphi \lor \psi) \to \Diamond\varphi \lor \Diamond\psi$; and
- $ightharpoonup N := \neg \Diamond \bot$.

All of these involve \lozenge s.

Question

Do **CK** *and* **IK** *prove the same ◊-free formulas?*

The answer is no!¹

¹Das, Marin

SEPARATION

ightharpoonup CK $ightharpoonup \neg \Box \bot \to \Box \bot$:

$$w \leq v \models \bot$$

- $\blacktriangleright w \models \neg \neg \Box \bot \text{ iff, for all } w' \succeq w \text{, there is } w'' \succeq w' \text{ such that}$ $w'' \models \Box \bot$.
- ▶ But $\mathsf{IK} \vdash \neg \neg \Box \bot \to \Box \bot$.

CS4 AND IS4

CS4 and IS4 are obtained by adding to CK and IK the axioms:

- $\blacktriangleright \ 4_{\square} := \square P \to \square \square P;$
- $\bullet 4_{\Diamond} := \Diamond \Diamond P \to \Diamond P;$
- $\blacktriangleright \ T_{\square} := \square P \to P;$
- $\blacktriangleright \ T_{\Diamond} := P \to \Diamond P.$

AN EXAMPLE

► Consider the following model *M*:

$$x \leq y \sqsubseteq z \leq t \sqsubseteq w$$
.

where *P* holds at $\{x, y, z, t\}$.

▶ The relation *R* is transitive, but the formula $\Box P \rightarrow \Box \Box P$ fails at *x*.

CS4 AND IS4 MODELS

A CS4 model is a CK model $M = \langle W, W^{\perp}, \preceq, R, V \rangle$ where

- R is transitive and reflexive:
- ▶ *M* is backward confluent: $w \sqsubseteq v \prec v'$ implies then there is w'such that $w \prec w' \vdash v'$.

An IS4 model is a IK model $M = \langle W, \prec, R, V \rangle$ where

- \triangleright R is transitive and reflexive.
- CS4 and IS4 are complete w.r.t. CS4 and IS4 models.

DECIDABILITY

The following was an open problem for \sim 10 years:

Theorem (Balbiani, Dieguez, Fernández-Duque)

CS4 is decidable.

This was solved using canonical models and bisimilations. The following was an open problem for \sim 30 years:

Theorem (Girlando et al.)

IS4 is decidable.

This was solved using labeled proof systems.

•000

GL

► GL is the logic obtaining by adding

$$L := \Box(\Box P \to P) \to \Box P$$

to K.

- ▶ GL is complete with respect to models $M = \langle W, R, V \rangle$ where R is transitive and reverse well-founded.
- ► *R* is reverse well-founded iff there in no infinite sequence $w_0Rw_1Rw_2R\cdots$

REV. WF IS NOT (INTUITIONISTICALLY) ENOUGH

In IK model below, no world satisfies $\Box(\Box P \to P) \to \Box P$.

(*P* holds nowhere)

IGL MODELS

An IGL model is an IK model $M = \langle W, \preceq, R, V \rangle$ where

- \triangleright *R* is transitive;
- ▶ the composition \leq ; *R* is reverse well-founded.

A PROOF SYSTEM FOR IGL

Das, van der Giessen and Marin proved that an infinitary proof system based on the following is complete over IGL frames:

$$\Box_{\mathbf{I}} \frac{R, xRy, \Gamma, y : A \Rightarrow \Delta}{R, xRy, \Gamma, x : \Box A \Rightarrow \Delta}$$

$$\Box_{\mathbf{r}} \frac{R, xRy, \Gamma \Rightarrow \Delta, y : A}{R, \Gamma \Rightarrow \Delta, x : \Box A} (y \text{ fresh})$$

$$\mathbf{tr} \frac{R, xRy, yRz, xRz, \Gamma \Rightarrow \Delta}{R, xRy, yRz, \Gamma \Rightarrow \Delta}$$

CGL AND IGL MODELS

A CGL model is a CK model $M = \langle W, W^{\perp}, \preceq, R, V \rangle$ where

- \triangleright *R* is transitive;
- ► *R* is forward confluent:
- ▶ the composition \leq ; *R* is reverse well-founded.

An IGL model is an IK model $M = \langle W, \preceq, R, V \rangle$ where

- \triangleright R is transitive:
- \blacktriangleright the composition \prec ; *R* is reverse well-founded.

AN AXIOMATIZATION FOR CGL AND IGL?

To obtain CGL and IGL, add to CK and IK the axioms:

- $\blacktriangleright \ 4_{\square} := \square \varphi \to \square \square \varphi;$
- ► $4_{\Diamond} := \Diamond \Diamond \varphi \rightarrow \Diamond \varphi$; and
- $\blacktriangleright \ L_{\square} := \square(\square\varphi \to \varphi) \to \square\varphi.$

Question

Are CGL and IGL complete over CGL and IGL models?

GL AGAIN

THE DUAL OF LÖB'S THEOREM

$$L_{\Diamond} := \Diamond P \to \Diamond (P \wedge \Box \neg P)$$
 of fails at w_1 :

(*P* holds everywhere.)

FAILURE TO PROVE THE COMPLETENESS

Proofs of completeness using finitary canonical models seem to need some diamond version of

$$L_{\square} := \square(\square\varphi \to \varphi) \to \square\varphi.$$

Reiterating:

Question

Are CGL and IGL complete over CGL and IGL models?

Question

If the answer to the above is negative:

- ► Are there a complete axiomatization for CGL and IGL models?
- ► What class of models are characterized by the systems CGL and IGL?

The μ -calculus

 μ -calculus = modal logic + fixed-point operators If X is positive, then:

- \blacktriangleright $\|\mu X.\varphi\|^M := \text{least fixed-point of } A \mapsto \|\varphi(A)\|^M$
- \blacktriangleright $\|\nu X.\varphi\|^M :=$ greatest fixed-point of $A \mapsto \|\varphi(A)\|^M$

ALTERNATION DEPTH

The valuation of νX and μY depend on each other:

$$\nu X. \underbrace{\mu Y. \underbrace{(P \land \Diamond X) \lor (\neg P \land \Diamond Y)}_{\text{scope of } \nu X}}$$

Alternation depth of φ

Maximum number of codependent alternating μ and ν operators in φ .

Alternation hierarchy

Classifies μ -formulas with respect to their alternation depth.

Some results on the unimodal μ -calculus

Theorem (Bradfield)

The μ -calculus alternation hierarchy is strict over all frames.

Theorem (Alberucci-Facchini)

The μ -calculus alternation hierarchy collapses to the alternation-free fragment over transitive frames.

Theorem (Alberucci-Facchini)

The μ -calculus alternation hierarchy collapses to modal logic over equivalence relations.

For a survey, see my PhD thesis.

VARIATIONS OF S5

CS5 and IS5 are obtained by adding to CK and IK the axioms:

- $ightharpoonup 4_{\square} := \square P \to \square \square P;$
- \blacktriangleright $4_{\Diamond} := \Diamond \Diamond P \rightarrow \Diamond P;$
- $ightharpoonup 5_{\square} := \Diamond P \to \square \Diamond P;$
- \blacktriangleright 5 \Diamond := $\Diamond \Box P \rightarrow \Box P$;
- $ightharpoonup T_{\square} := \square P \to P;$
- $ightharpoonup T_{\wedge} := P \rightarrow {\wedge} P.$

CS5 and IS5 models are CS4 and IS4 models where the the modal relation is an equivalence relation.

COLLAPSE OVER CS5/IS5 MODELS

Lemma

Let
$$M = \langle W, W^{\perp}, \preceq, \equiv, V \rangle$$
 be a CS5 model and $w \preceq; \equiv w'$. Then

$$M, w \models \triangle \varphi \text{ implies } M, w' \models \triangle \varphi,$$

where $\triangle \in \{\Box, \Diamond\}$.

At any long enough evaluation game, we will have positions:

$$\langle \nu X.\varphi, w \rangle \to \cdots \to \langle \Box \psi, v \rangle \to \cdots \to \langle \Box \psi, v' \rangle \to \cdots$$

We can use this fact to show that $\varphi(\varphi(\top)) \equiv \varphi(\varphi(\varphi(\top)))$.

COLLAPSE OVER CS4/IS4 MODELS

Question

Does the μ -calculus collapse to its alternation free-fragment over CS4 and IS4 models?

All the proofs I know of the collapse over \$4 fail on non-classical settings.

REFERENCES

- [1] Das, van der Giessen, Marin, "Intuitionistic Gödel–Löb Logic, à La Simpson: Labelled Systems and Birelational Semantics", 2024.
- [2] Balbiani, Dieguez, Fernández-Duque, "Some Constructive Variants of S4 with the Finite Model Property", 2021.
- [3] Alberucci, Facchini, "The modal μ -calculus hierarchy over restricted classes of transition systems", 2009.
- [4] Bradfield, "Simplifying the modal mu-calculus alternation hierarchy", 1998.
- [5] Pacheco, "Exploring the difference hierarchies on μ -calculus and arithmetic—from the point of view of Gale–Stewart games", PhD Thesis, 2023.
- [6] Pacheco, "Game Semantics for the Constructive μ-Calculus", arXiv:2308.16697, 2023.
- [7] Simpson, "The proof theory and semantics of intuitionistic modal logic", 1994.
- [8] Girlando, Kuznets, Marin, Morales, Straßburger, "Intuitionistic S4 is decidable", 2023.