Bài 13. CHUÕI TAYLOR – MACLAURIN

Giảng viên: Nguyễn Lê Thi Bộ Môn Toán – Khoa Khoa học ứng dụng

MỤC TIÊU BÀI HỌC

- Áp dụng được đạo hàm để khai triển hàm số thành đa thức Taylor – Maclaurin, chuỗi Taylor – chuỗi Maclaurin.
- Áp dụng được các khai triển Maclaurin cơ bản.

NỘI DUNG CHÍNH

13.1 Da thức Taylor - Maclaurin

13.2 Chuỗi Taylor - Maclaurin

13.3 Các khai triển Maclaurin cơ bản

1. ĐA THỨC TAYLOR – MACLAURIN

❖ Mở đầu

❖ Mở đầu

❖ Định lý Taylor

Nếu f(x) và các đạo hàm của nó xác định trong khoảng mở U chứa x_0 thì với mọi x thuộc U ta có

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n(x)$$

Da thức Taylor

Trong đó

$$R_n(x) = \frac{f^{(n+1)}(z_n)}{(n+1)!} (x - x_0)^{n+1}$$
 là phần dư với z_n nằm giữa x_0 và x .

Nếu $x_0 = 0$ thì đa thức Taylor gọi là đa thức Maclaurin.

Ví dụ 13.1.

Viết đa thức

Taylor bậc 1 và

bậc 2 của hàm

$$f(x) = \sqrt{x}$$

trong lân cận của

điểm $x_0 = 1$.

Ví dụ 13.1 (tiếp theo)

2. CHUÕI TAYLOR – MACLAURIN

Định nghĩa

• Giả sử có một khoảng mở U chứa điểm x_0 trong đó f(x) và các đạo hàm của nó tồn tại. Khi đó chuỗi lũy thừa

$$f(x_0) + \frac{f'(x_0)}{1!} x - x_0 + \frac{f''(x_0)}{2!} x - x_0^2 \dots + \frac{f^{(n)}(x_0)}{n!} x - x_0^n + \dots$$

được gọi là chuỗi Taylor của f tại $x = x_0$.

Trường hợp đặc biệt khi $x_0 = 0$ thì được gọi là chuỗi Maclaurin của f.

$$f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

* Tính chất của chuỗi Taylor - Maclaurin

- Chuỗi Taylor của f có thể hội tụ về f trong khoảng hội tụ của nó $-R < x x_0 < R$ (nghĩa là $\left| x x_0 \right| < R$).
- Chuỗi Taylor có thể chỉ hội tụ duy nhất tại $x = x_0$ và trong trường hợp này nó không thể biểu diễn hàm f trên bất cứ một khoảng nào chứa x_0 .
- Chuỗi Taylor có thể tồn tại bán kính hội tụ R>0 (thậm chí $R=\infty$). Tuy nhiên nó có thể hội tụ về hàm g không bằng hàm f trên khoảng $\left|x-x_0\right|< R$

Ví dụ 13.2.

Khai triển hàm

$$f(x) = \cos x$$

thành chuỗi

Maclaurin và

tìm miền hội tụ

của chuỗi.

Ví dụ 13.2 (tiếp theo)

3. CÁC KHAI TRIỂN MACLAURIN CƠ BẢN

1.
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \dots + \frac{u^{n}}{n!} + \dots, \forall u \in \mathbb{R}$$

2.
$$\cos u = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \dots + (-1)^n \frac{u^{2n}}{(2n)!} + \dots, \forall u \in \mathbb{R}$$

3.
$$\sin u = u - \frac{u^3}{3!} + \frac{u^5}{5!} - \dots + (-1)^n \frac{u^{2n+1}}{(2n+1)!} + \dots, \forall u \in \mathbb{R}$$

4.
$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + \dots + u^n + \dots, \forall u \in -1, 1$$

5.
$$(1+u)^p = 1 + pu + \frac{p(p-1)}{2!}u^2 + \frac{p(p-1)(p-2)}{3!}u^3 \dots, \forall u \in [-1,1]$$

6.
$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \dots + (-1)^{n-1} \frac{u^n}{n} + \dots, \forall u \in [-1,1]$$

7.
$$\tan^{-1} u = u - \frac{u^3}{3} + \frac{u^5}{5} - \dots + (-1)^n \frac{u^{2n+1}}{(2n+1)} + \dots, \forall u \in [-1,1]$$

Ví dụ 13.4.

Tìm chuỗi

Maclaurin của

hàm

$$f(x) = \sin^2 x$$

KÉT BÀI

Sinh viên cần lưu ý:

- Áp dụng được công thức khai triển hàm thành đa thức Taylor – Maclaurin.
- Áp dụng được các khai triển Maclaurin cơ bản.

THANKS FOR WATCHING!