6.034: Introduction to Artificial Intelligence

Adversarial search & games

Lecture 5 Handout

Robert C. Berwick September 14, 2020

A deeper game tree illustrates how much pruning alpha-beta can do (b = ?, d = ?)

A deeper game tree illustrates how much pruning alpha-beta can do first half of tree

Second half of tree

Second half of tree

Ordering of static values can greatly affect alpha-beta pruning

- If the most favorable successor nodes for <u>both</u>
 MAX and MIN are on the _____ so we explore them ____, then this leads to maximal pruning
- If the most favorable successor nodes for <u>both</u>
 MAX and MIN are on the _____ so they are
 explored_____, then there is less pruning,
 possibly none at all
- Maximal pruning (in terms of branching factor b and tree depth d is approximately:

Gold star ideas from today

Dead horse principle, aka "AWP": α-β search

Martial arts principle – use adversary's
strength against them: progressive deepening

Anytime algorithms: progressive deepening

Simple ≠ Trivial: sometimes, bulldozer
computing works