#### Class 5 Outline

- 1. Time to event (survival) data, censoring survival times and the survivor function
- 2. The survivor function and the hazard rate
  - Uncensored data, Censored data
- 3. Kaplan-Meier estimates of the survivor function, S(t), for ungrouped survival data
- 4. Example using AML Data
- 5. Summary

.

### 0. Learning Objectives

- Describe ungrouped survival data in which the exact time to event or censoring is known
- Describe the survival function and hazard function
- Describe how to estimate the survivor function using the Kaplan-Meier survival curve and confidence intervals for ungrouped survival data

Key words - censoring, survival function, hazard function, Kaplan-Meier estimates

#### 1. Time to Event Data

- The outcome (event) of interest is dichotomous
- The study design may not be able to assure that the outcome is know for all individuals at the endpoint of the study.
- Uncensored data: The event has occurred
- Censored data: The event has yet to occur
  - Event-free at the current follow-up time
  - A competing event that is not an endpoint stops follow-up
  - Death (if not part of the endpoint)
  - Clinical event that requires treatment, etc.

3

#### 1.1 Survival Times

- Distribution of times to event often called "survival times," even when the "event" is not "death"
- Survival times follow a continuous distribution with times ranging from zero to infinity
- The probability distribution of the survival times can be described by:
  - cumulative distribution function
  - density function
  - survivor function = 1 cumulative distribution function
  - hazard function

## 2. Survivor Function, S(t)

- The survival function, denoted S(t), is a useful way to represent the probability distribution of the survival time T, when some of the observed times are censored – only know that T>t, rather than T=t
- S(t) = Pr(T > t)  $0 < t < \infty$
- *S*(*t*) is the probability of surviving beyond *t*

5





ь

### 2.2a Handling Uncensored Survival Data

- · Use the "usual" methods
  - t-tests
  - regression
  - ANOVA
  - transforms
- The survival curve as an important and complete summary of a population

$$S(t) = \frac{\text{("alive"}^* \text{ at followup time t)}}{\text{(alive at time 0)}}$$

$$0 = \begin{cases} \text{Date of randomization} \\ \text{Birth} \end{cases}$$

\* Not had the event

7

### 2.2b Handling Uncensored Survival Data

- The survival curve starts at 1.0 and decreases over time
- Estimating these curves and comparing them among groups constitutes a "survival analysis"
- Need to decide on what summary measure is important
  - Mean survival time
  - Median survival time
  - Value at a specific time: S(12)
  - Difference of curves: S1(12) S2(12)
  - Maximal difference

### 2.3 Example with Uncensored Data

• Data: 2, 3, 3, 5, 6, 9, 9, 10, 13, 16

|      | 6    |
|------|------|
| Time | S(t) |
| 0    | 1.00 |
| 1    | 1.00 |
| 2    | 0.90 |
| 3    | 0.70 |
| 4    | 0.70 |
| 5    | 0.60 |
| 6    | 0.50 |
| 7    | 0.50 |
| 8    | 0.50 |
| 9    | 0.30 |
| 10   | 0.20 |
| 11   | 0.20 |
| 12   | 0.20 |
| 13   | 0.10 |
| 14   | 0.10 |
| 15   | 0.10 |
| 16   | 0.00 |

9

### 2.4 Ways of Handling Censoring

- 1. Ignore the incomplete cases; drop them (never!)
  - Produces bias in the estimated curve
  - Unbalanced censoring produces biased comparisons
- 2. Impute a missing event time
  - Depends on a detailed probability model
- 3. Calculate the overall event rate
- 4. Use the available information on each participant
  - Important issue: If no events are reported in the interval from last follow-up to "now", we need to choose between:
    - No news is good news?
    - · No news is no news?

#### 2.5 Overall Event Rate

Overall event rate:

Event rate =  $\frac{\text{# events}}{\text{total observation time}}$ 

Example: 5 events in 600 person months

= 1 event per 120 months

= 1 event per 10 years

= 0.1 events per year

= 10 events per 100 person-years

- Gives an <u>average event rate</u> over the follow-up period; actual event rate may vary over time
- For a finer time resolution, use small intervals,

# 3.0 Kaplan-Meier Estimates of the Survivor Function, S(t)

Biostatistics Trivia: Professor Paul Meier was an assistant professor in the JHU Department of Biostatistics from 1952 to 1957. He teamed with E.L. Kaplan to write their seminal paper "Non-parametric Estimation from Incomplete Observations," which appeared in the *Journal of the American Statistical Association* in 1958. This paper was to lay the groundwork for modern survival analysis.

#### 3.1a The Hazard Function

- Basic idea: Estimate the hazard of death at each event time t using available data and then use them to produce the survival curve by multiplying (1 - hazard) terms
- The hazard =
   Pr(event "now" | no event yet) )/unit time
   where "now" means in the current unit interval
- Thus, (1-hazard) = Pr(no event "now" | no event yet)

13

#### 3.1b The Hazard Function

- The hazards for time intervals i=1, 2, 3, ... are h<sub>1</sub>, h<sub>2</sub>, h<sub>3</sub>,...
- Example:  $S(3) = (1 h_1) \times (1 h_2) \times (1 h_3)$
- If the hazard is large, the survival curve decreases rapidly
- Estimate  $\mathbf{h}_i = \frac{\text{\# events at t=i}}{\text{\# at risk at t=i}} = \frac{\mathbf{Y}_i}{\mathbf{n}_i}$
- Kaplan-Meier estimate:  $\hat{S}(t) = \prod_{i \text{ for } t_i < t} (1-h_i)$

# 3.2 Relationship between the Survivor and Hazard Functions

#### Example:

S(3) = Pr(survive for 3 months)
= Pr(survive 1st month) ×
Pr(survive 2nd month | survive 1st month) ×
Pr(survive 3rd month | survive 2nd month)

• Thus,  $S(3) = S(1) \cdot \frac{S(2)}{S(1)} \cdot \frac{S(3)}{S(2)}$   $S(3) = S(1) \cdot \frac{S(2)}{S(1)} \cdot \frac{S(3)}{S(2)}$   $S(3) = (1-h_1) \cdot (1-h_2) \cdot (1-h_3)$ <sup>15</sup>

# 3.3a Calculating the Hazard – Uncensored Data

• Data: 2, 3, 3, 5, 6, 9, 9, 10, 13, 16 (uncensored data)

$$\begin{array}{lll} h_1 = 0 & (0/10) \\ h_2 = 0.10 & (1/10) \\ h_3 = 0.22 & (2/9) \\ h_4 = 0 & (0/7) \\ h_5 = 0.14 & (1/7) \\ h_6 = 0.17 & (1/6) \\ h_7 = h_8 = 0 & (0/5) \\ h_9 = 0.40 & (2/5) \\ h_{10} = 0.33 & (1/3) \\ h_{11} = h_{12} = 0 & (0/2) \\ h_{13} = 0.50 & (1/2) \\ h_{14} = h_{15} = 0 & (0/1) \\ h_{16} = 1.00 & (1/1) \end{array}$$

### 3.3b Calculating the Survivor Function -**Uncensored Data**

Uncensored (complete) data example

$$S(3) = (1 - h_1)(1 - h_2)(1 - h_3)$$

· Estimate by

$$= (1 - y_1/n_1)(1 - y_2/n_2)(1 - y_3/n_3)$$

$$= (1 - 0/10)(1 - 1/10)(1 - 2/9)$$

$$= 1 \times 9/10 \times 7/9 = 0.70$$

where y<sub>i</sub> is the number of events at time i and n<sub>i</sub> is the number at risk at time i

#### 3.4 Hazard Function and the Survival Curve

· If we know the hazard function, we know the survival curve:

$$S(t_i) = \prod_{i \le t} (1 - h_i) = (1 - h_i)S(t_{i-1})$$

· If we know the survival curve, we know the hazard function:

cumulative hazard = -log[S(t)]

hazard = increments of cumulative hazard

# 3.5a Calculating the Hazard – Censored Data

Data: 2, 3, 3\*, 5, 6\*, 9, 9\*, 10, 13, 16 (\* = censored at end of the interval)

```
h1 = 0
                     (0/10)
h2 = 0.10
                     (1/10)
h3 = 0.11
                     (1/9)
h4 = 0
                     (0/7)
h5 = 0.14
                     (1/7)
h6 = 0
                     (0/6)
h7 = h8 = 0
                     (0/5)
h9 = 0.20
                     (1/5)
h10 = 0.33
                     (1/3)
h11 = h12 = 0
                     (0/2)
h13 = 0.50
                     (1/2)
h14 = h15 = 0
                     (0/1)
h16 = 1.00
                     (1/1)
```

# 3.5b Calculating the Survivor Function Censored Data

· Censored data example

$$S(3) = (1 - h_1)(1 - h_2)(1 - h_3)$$

Estimate by

$$= (1-0)(1-0.10)(1-0.11)$$

$$= 1 \times .90 \times 8/9$$

$$= .80$$

20

### 4. Example- AML Data

- Example: Acute Myelogenous Leukemia (AML)
  - Y time from start of treatment to cancer relapse
  - X Indicates chemotherapy group (=0 for not maintained on chemotherapy group and

=1 for maintained on chemotherapy)

21

### 4.1 Survival Data - AML Example

 Consider a clinical trial in patients with acute myelogenous leukemia (AML) comparing two groups of patients: no maintenance treatment with chemotherapy (X=0) -vs- maintenance chemotherapy treatment (X=1)

| Group                      | Weeks in remission ie, time<br>to relapse         |
|----------------------------|---------------------------------------------------|
| Maintenance chemo (X=1)    | 9, 13, 13+, 18, 23, 28+, 31,<br>34, 45+, 48, 161+ |
| No maintenance chemo (X=0) | 5, 5, 8, 8, 12, 16+, 23, 27,<br>30+, 33, 43, 45   |

 + indicates a censored time to relapse; e.g., 13+ = more than 13 weeks to relapse



#### 4.3a Stata Commands for Survival Data

- There are many Stata commands for input, management, and analysis of survival data, most of which are found in the manual in the st section – all survival data commands start with st
- st can be used to analyze individual level data (Kaplan-Meier, Cox regression, etc) or to group the individual level data for grouped analysis (SMRs, output for Poisson regression, etc.)
- Stata 15 Reference manual

#### 4.3b Stata Commands for Survival Data

- With ungrouped survival data on individuals:
  - 1. Use the ordinary **Stata** input commands to input and/or generate the following variables:
  - X variables
  - Person-time (denominator) variable (if applicable)
  - Time variable containing follow-up time
  - Censoring variable indicating status at the end of follow-up either "failed" or "censored"
  - 2. Then, use the *st* commands, as illustrated, to process and analyze the data

25

#### 4.3c Stata Commands for Survival Data

 Define survival data: stset command

Used to define the time variable, the status variable with the codes for "failures," and an "id" variable the uniquely identifies each individual observation

stset t , failure(failed==1) id(id)

Descriptive statistics for survival data:

stdes, stsum command

# 4.4 Listing of AML Data

. list id Chemo time failed

| •   | id       | Chemo | time | failed |
|-----|----------|-------|------|--------|
|     |          |       |      |        |
| 1.  | j 1      | 1     | 9    | 1      |
| 2.  | 2        | 1     | 13   | 1      |
| 3.  | 3        | 1     | 13   | 0      |
| 4.  | 4        | 1     | 18   | 1      |
| •   |          |       |      |        |
| •   |          |       |      |        |
| •   |          |       |      |        |
| •   |          |       |      |        |
| •   |          |       |      |        |
| 19. | 19       | 0     | 27   | 1      |
| 20. | 20       | 0     | 30   | 0      |
|     |          |       |      |        |
| 21. | 21       | 0     | 33   | 1 j    |
| 22. | 22       | 0     | 43   | 1      |
| 23. | 23       | 0     | 45   | 1      |
|     | <b>.</b> |       |      | +      |

27

## 4.5 Defining Survival Data

.stset time, failure(failed==1) id(id)

id: id
failure event: failed == 1
obs. time interval: (time[\_n-1], time]
exit on or before: failure

23 total obs.

0 exclusions

22 obs. maniping managementing

23 obs. remaining, representing

23 subjects

17 failures in single failure-per-subject data

678 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 161

# 4.6 Description of Survival Data

. stdes if Chemo==0

failure \_d: failed == 1
analysis time \_t: time
 id: id

|                    |       |          | per sub | er subject |        |
|--------------------|-------|----------|---------|------------|--------|
| Category           | total | mean     | min     | median     | max    |
| no. of subjects    | 12    |          |         |            |        |
| no. of records     | 12    | 1        | 1       | 1          | 1      |
| (first) entry time |       | 0        | 0       | 0          | O      |
| (final) exit time  |       | 21.25    | 5       | 19.5       | 45     |
| subjects with gap  | 0     |          |         |            |        |
| time on gap if gap | 0     | •        | •       | •          |        |
| time at risk       | 255   | 21.25    | 5       | 19.5       | 45     |
| failures           | 10    | .8333333 | 0       | 1          | 1      |
|                    |       |          |         |            | <br>29 |

# 4.7b Summary of Survival Data

.stsum

failure \_d: failed == 1 analysis time \_t: time id: id

|       |              | incidence | no. of   | :   | Survival ti | me  |
|-------|--------------|-----------|----------|-----|-------------|-----|
|       | time at risk | rate      | subjects | 25% | 50%         | 75% |
| total | 678          | .0250737  | 23       | 12  | 27          | 43  |

# 4.7b Description of Survival Data

. stdes if Chemo==1

failure \_d: failed == 1
analysis time \_t: time
 id: id

| Category           | total | mean     | per subj<br>min | ect<br>median | max |
|--------------------|-------|----------|-----------------|---------------|-----|
| no. of subjects    | 11    |          |                 |               |     |
| no. of records     | 11    | 1        | 1               | 1             | 1   |
| (first) entry time |       | 0        | 0               | 0             | 0   |
| (final) exit time  |       | 38.45455 | 9               | 28            | 161 |
| subjects with gap  | 0     |          |                 |               |     |
| time on gap if gap | 0     | •        |                 | •             |     |
| time at risk       | 423   | 38.45455 | 9               | 28            | 161 |
| failures           | 7     | .6363636 | 0               | 1             | 1   |

31

# 4.8 Overall Incidence Rates by Group

note: Exposed <-> Chemo==1 and Unexposed <-> Chemo==0

|                 | Chemo<br>  Exposed Unexposed | <br>  Total     |                      |
|-----------------|------------------------------|-----------------|----------------------|
| Failure<br>Time | 7 10<br>423 255              | 17<br>  678     |                      |
| Incidence Rate  | <br>  .0165485 .0392157      | .0250737        |                      |
|                 | Point estimate               | 95% Conf. Int   | erval]               |
| Inc. rate diff. | <br> 0226672                 | +<br> 0498895 . | 004555               |
| Inc. rate ratio | .4219858                     | .1363296 1.     | 228119 (exact)       |
| Prev. frac. ex. | .5780142                     | 2281186 .8      | 636704 (exact)       |
| Prev. frac. pop | .3606195                     | İ               |                      |
| -               | +                            |                 |                      |
|                 | (midp) Pr(k <= 7) =          |                 | 0.0418 (exact)       |
|                 | (midp) 2*Pr(k<=7) =          |                 | 0.0836 (exact)<br>32 |

# 4.9a Kaplan-Meier Estimates of the Survivor Function – Not Maintained Group

4.9b Kaplan-Meier Estimates of the Survivor Function – Not Maintained Group

| Time | Number at<br>Risk | Events | $S(t_i) = (1 - h_i)S(t_{i-1})$ |
|------|-------------------|--------|--------------------------------|
| 0    | 12                | 0      | 1.0                            |
| 5    | 12                | 2      | 1.0(1- 2/12) = 0.833           |
| 8    | 10                | 2      | 0.833(1- 2/10)=0.666           |
| 12   | 8                 | 1      | 0.666(1-1/8) = 0.583           |
| 23   | 6                 | 1      | 0.583(1- 1/6) =0.486           |
| 27   | 5                 | 1      | 0.486(1- 1/5) =0.389           |
| 33   | 3                 | 1      | 0.389(1- 1/3) = 0.259          |
| 43   | 2                 | 1      | 0.259(1 -1/2) = 0.130          |
| 45   | 1                 | 1      | 0.130(1-1/1)=0                 |

# 4.10a Kaplan-Meier Estimates of the Survivor Function – Maintained Group

| analy | failure<br>sis time | _    | ailed == :<br>d | 1        |        |          |         |
|-------|---------------------|------|-----------------|----------|--------|----------|---------|
|       | Beg.                |      | Net             | Survivor | Std.   |          |         |
| Time  | Total               | Fail | Lost            | Function | Error  | [95% Con | f. Int. |
| <br>9 | 11                  | 1    | <br>0           | 0.9091   | 0.0867 | 0.5081   | 0.986   |
| 13    | 10                  | 1    | 1               |          | 0.1163 |          |         |
| 18    | 8                   | 1    | 0               | 0.7159   | 0.1397 | 0.3502   | 0.899   |
| 23    | 7                   | 1    | 0               | 0.6136   | 0.1526 | 0.2658   | 0.835   |
| 28    | 6                   | 0    | 1               | 0.6136   | 0.1526 | 0.2658   | 0.835   |
| 31    | 5                   | 1    | 0               | 0.4909   | 0.1642 | 0.1673   | 0.753   |
| 34    | 4                   | 1    | 0               | 0.3682   | 0.1627 | 0.0928   | 0.657   |
| 45    | 3                   | 0    | 1               | 0.3682   | 0.1627 | 0.0928   | 0.657   |
| 48    | 2                   | 1    | 0               | 0.1841   | 0.1535 | 0.0117   | 0.525   |
| 161   | 1                   | 0    | 1               | 0.1841   | 0.1535 | 0.0117   | 0.525   |

# 4.10b Kaplan-Meier Estimates of the Survivor Function – Maintained Group

| Time | Number at<br>Risk | Events | $S(t_i) = (1-h_i)S(t_{i-1})$ |
|------|-------------------|--------|------------------------------|
| 0    | 11                | 0      | 1.0                          |
| 9    | 11                | 1      | 1.0(1- 1/11) = 0.909         |
| 13   | 10                | 1      | 0.909(1- 1/10) = 0.818       |
| 18   | 8                 | 1      | 0.818(1- 1/8) = 0.716        |
| 23   | 7                 | 1      | 0.716(1- 1/7) = 0.614        |
| 31   | 5                 | 1      | 0.614(1- 1/5) = 0.491        |
| 34   | 4                 | 1      | 0.491(1- 1/4) = 0.368        |
| 48   | 2                 | 1      | 0.368(1- 1/2) = 0.184        |

## 4.11 Graph of Kaplan Meier Survival Curves

- Estimates of the survival function S(t) versus time -separate curves for each group
- .sts graph, by(Chemo)lost or .sts graph, by(Chemo)risktable



37

### 5.a Summary

- There are statistical techniques for describing and making inferences for time to event data (survival times) in the presence of censoring:
  - Overall incidence rate, survivor function
- The survivor function S(t) represents the probability distribution of the survival times; S(t) is the probability of surviving beyond t
- The hazard function, h<sub>i</sub> =
   Pr(event "now" | no event yet)/unit time
   where "now" means in the current unit interval i

## 5.b Summary

• There is a relationship between the survivor function and hazard function in discrete time

$$S(t_i) = \prod_{i < t} (1 - h_i) = (1 - h_i)S(t_{i-1})$$

- The survivor function is a product of (1-hazard) terms
- Kaplan-Meier estimates of the survival curve for ungrouped data are calculated only at times that events occur