Index Seite 4

Population equation 251ff, 371ff, 381ff, 391ff

Positive part

Positive minimum prin-

ciple

Predual

Projection

Positive subeigenvector 287

Positivity

157ff, 265, 269, 270, 404

147ff, 152ff, 289ff, 293

n-

404, 439 strict 265, 269, 335, 340

353

83, 232ff, 370ff, 444ff,

423

444ff, 424 ergodic recurrent 443ff

232ff, 335, 370ff, 445 semigroup

spectral 96ff

Pseudo-resolvent 312ff, 339ff, 406ff, 380ff,

429ff, 419ff

326ff positive

236ff, 370ff Quasi-compact **Quasi-interior point** 265, 332

Range condition 62ff, 165ff, 277, 295 Regular mapping 269, 297, 303ff Regularity 269, 297, 303ff Residue 78ff, 83ff, 335ff, 422ff

Resolvent 75ff, 404

compact 48, 84, 150, 187, 196,

331, 339, 363

145ff positive

pseudo 325ff, 339ff, 406ff, 380ff,

429ff, 419ff

slowly growing 327ff

Resolvent 75ff, 404

equation

148, 325 integral representation 8, 320ff positive 148

75ff, 86 set

Retarded

differential equation 241ff

Riesz Decomposition theorem	equation 264	383ff
Riesz Schauder theory	83ff	
Schrödinger operator Schwarz map	298ff, 302ff, 363 404ff, 417ff, 419ff, 443ff	
Schwarz map	identity preserving	404ff, 417ff, 419ff, 443ff
Schwarz inequality	404	40411, 41711, 41911, 44311
Schwartz space	24, 286	
Self-adjoint part	403	
Semiflow	162ff, 356ff	
Semmow	continuous	163ff, 210
	injective	211
	surjective	211
Semigroup	3ff	211
Schigtoup	adjoint	25ff, 88, 437
	analytic	94ff
	bounded holomorphic (of	94ff, 130
	angle α)	3111, 130
	compact	48ff
	commuting	105
	contraction	55ff, 276ff, 324ff, 333
	differentiable	45ff, 49
	diffusion	19ff
	disjointness preserving	305ff
	eventually compact	48ff, 232, 234, 236
	eventually differentiable	45, 49
	eventually norm conti-	46ff, 49, 97ff, 120, 196,
	nuous	330ff, 342, 364, 372
	\mathcal{F} -product	34ff, 85ff, 210
	holomorphic (of angle α)	42ff, 49, 113, 185, 331ff, 336ff
	identity preserving	404ff, 417ff, 419ff, 443ff, 424ff
	implemented	439
	induced	85ff, 325, 408
	irreducible	178ff, 233, 339ff, 365ff,
		444ff
	lattice homomorphism	155ff, 162ff, 212ff, 262, 344ff
	Markovian	163ff, 209
	maan argadia	272

mean-ergodic

373

modulus 302ff, 319ff

multiplication 9ff, 50ff, 76ff, 310ff nilpotent 19, 49ff, 85ff

norm continuous 46ff, 49

of Schwarz type 404ff, 417ff, 444ff, 424ff

one-parameter 3

partially periodic 386ff, 444ff periodic 90ff, 95, 338, 416

positive 145ff preadjoint 447

quasi-compact236ff, 370ffquotient24, 85reduced408, 443ff

rescaled 23

rotation 18, 80, 207, 338, 379ff

similar 23ff Sobolev 28ff strongly continuous 4ff

strongly ergodic 442ff, 443ff, 424ff

subspace 23ff, 85