VSEPR Diagrams

Valence Shell Electron Pair Repulsion Theory helps us to understand the shapes of molecules based upon the number of lone pairs and shared pairs on a central atom. The following shapes should be memorized by making a flash card and placing the molecule type $(AB_4$ for example) on one side and the name of the shape (tetrahedral for example) on the other side.

 $\circ = A$ $\bullet = B$ $\Longrightarrow = Lone electron Pair (E)$

Type	Picture	Shape	Example	Type	Picture	Shape	Example
AB_2	•—•	Linear	H ₂ /CO ₂	AB ₄ E		Irregular tetrahedral	SF ₄
AB_3		Triangular	BCl ₃	AB_3E_2	4	T-shaped	ClF ₃
AB ₂ E		Angular or Bent	PbI ₂	AB_2E_3	-	Linear	XeF ₂
AB_4		Tetrahedral	CH ₄	AB_6		Octahedral	SF ₆
AB ₃ E		Triangular pyramidal	NH ₃	AB_5E		Square pyramidal	ClF ₅
AB_2E_2	, l	Anguler or Bent	H ₂ O	AB_4E_2		Square planar	XeF ₄
AB ₅		Triangular bipyramidal	PCl ₅	AB ₇		Pentagonal bipyramidal	IF ₇