Sistemas térmicos

Conducción Térmica (Ley de Fourier):

$$Q_{hk} = \frac{Ak}{L}(T_1 - T_2) = \frac{T_1 - T_2}{R_T}$$

Donde:

$$R_T = \frac{L}{kA} (Resistencia térmica)$$

 Q_{hk} : calor transmitido por unidad de tiempo $\left[\frac{J}{s}\right]$

A: área de la superficie de contacto $[m^2]$

$$k$$
: conductividad térmica $\left[\frac{J}{msK}\right]$

L: espesor del material [m]

 $T_1.T_2$ temperaturas en los puntos 1 y 2 respectivamente [K]

Convección Térmica (Ley de Enfriamiento de Newton):

$$Q_{hc} = h_c A \left(T_w - T_f \right) = \frac{T_w - T_f}{R_T}$$

Donde:

$$R_{T} = \frac{1}{h_{c}A} (Resistencia térmica)$$

 Q_{hc} : calor transmitido por unidad de tiempo $\left[\frac{J}{s}\right]$

A: área de la superficie en contacto con el fluido $[m^2]$

$$h_c$$
: coeficiente de convección $\left[\frac{J}{m^2sK}\right]$

 $T_w.T_f$ temperaturas en la superficie del cuerpo y del fluido respectivamente [K]

Radiación Térmica (Ley de Stefan-Boltzmann):

$$Q_{hr} = \sigma F_E F_A A (T_1^4 - T_2^4)$$

Donde:

$$Q_{hr}:$$
 calor transmitido por unidad de tiempo $\left[\frac{J}{s}\right]$

$$\sigma$$
: constante de Stefan — Boltzmann,: 5.667x10⁻⁸ $\left[\frac{J}{sm^2K^4}\right]$

A: área de emisión $[m^2]$

 F_E : emisividad efectiva o coeficiente de emisividad

 $T_1.T_2$ temperaturas en los puntos 1 y 2 respectivamente [K]

Capacitancia Térmica:

$$Q = mCp \frac{dT}{dt} = C_T \frac{dT}{dt}, C_T = mC_p$$

Donde:

Q: calor transmitido por unidad de tiempo $\left[\frac{J}{s}\right]$

m: masa de la sustancia [Kg]

 C_p : calor específico de la sustancia $\left[rac{J}{KgK}
ight]$

T: temperatura almacenada [K]

Balance de energía:

$$Q_{in} = Q_a + Q_{out}$$

Donde:

 $Q_{in}, Q_a \ y \ Q_{out} \ son \ el \ flujo \ de \ calor \ de \ entrada, acumulado \ y \ de \ salida, respectivamente$

Ejemplo

Ejercicio 6 del taller de Sistemas térmicos:

$$\frac{\theta_a - \theta_1}{R_1} + q_i + \frac{\theta_2 - \theta_1}{R_2} = C \frac{d\theta_1}{dt}$$

$$(\theta_a - \theta_1 + \sigma_1 + \theta_2 - \theta_1)$$

$$\frac{d\theta_1}{dt} = \frac{\left(\frac{\theta_a - \theta_1}{R_1} + q_i + \frac{\theta_2 - \theta_1}{R_2}\right)}{C}$$

$$\frac{d\theta_1}{dt} = \frac{\left(\frac{\theta_a}{R_1} + q_i + \frac{\theta_2}{R_2} - \theta_1 \left(\frac{1}{R_1} + \frac{1}{R_2}\right)\right)}{C}$$

Ejercicio 7 del taller de Sistemas térmicos:

$$q_1 + \frac{\theta_a - \theta_1}{R_1} + \frac{\theta_2 - \theta_1}{R_2} = C_1 \frac{d\theta_1}{dt}$$

$$q_2 + \frac{\theta_a - \theta_2}{R_3} = C_2 \frac{d\theta_2}{dt} + \frac{\theta_2 - \theta_1}{R_2}$$