INTRODUCTION OF NATURAL LANGUAGE PROCESSING

SHIJU SS

HUMAN LANGUAGE

- The most difficult problem
 - Why?
- Still not completely solved
- Is data available?

AMBIGUITY OF LANGUAGE

Classic Example:

Boy saw a man on a hill with a telescope

Look at the dog with one eye

A program

make

HISTORY

- 1950s
 - Early MT: word translation + re-ordering
 - Chomsky's Generative grammar
 - Bar-Hill's argument
- 1960-80s
 - Applications
 - BASEBALL: use NL interface to search in a database on baseball games
 - LUNAR: NL interface to search in Lunar
 - ELIZA: simulation of conversation with a psychoanalyst
 - SHREDLU: use NL to manipulate block world
 - Message understanding: understand a newspaper article on terrorism
 - Machine translation
 - Methods
 - ATN (augmented transition networks): extended context-free grammar
 - Case grammar (agent, object, etc.)
 - DCG Definite Clause Grammar
 - Dependency grammar: an element depends on another

- 1990s-2010s
 - Statistical methods
 - Speech recognition
 - Question-answering
- 2010s now
 - Translation
 - Chabot
 - Conversational Bots
 - Question-answering

CLASSICAL STAGES OF NLP

- Morphological Analysis
 - Individual words are analyzed into their components
- Syntactic Analysis
 - Linear sequence of words are transformed into structures that show how the words relate to each other.
- Semantic Analysis
 - Transformation is made from the input text to an internal representation that reflects the meaning ANALYSE CONTEXT and MEANING
- Pragmatic Analysis
 - To reinterpret what was said to what was actually meant
- Discourse Analysis
 - Resolving references between sentences. (It. He, they etc.)

TOKENIZATION AND SENTENCE SEGMENTATION

- Cells of a language.
- Same words occur many times in a sentence
- Is word count a relevant feature?
- How many tokens in "India is my country"
- Words may represent the object which we are looking for.
 - "Total budget for this year is approximately 25000 USD.
- After tokenization need stemming in some analysis.
 - What is stemming?
 - Life -> life
 - life -> life
 - Lives -> life

PART OF SPEECH

- Grammatical tagging
- Word category disambiguation.
- Based on definition and context
 - Make cake
 - Make of a car
- Approach :
 - mid:1980s HMM
 - Dynamic Programming similar to Viterbi
 - Mostly variations of HMM.

CHUNKING

- Identifies phrase level constituents in sentences.
 - Noun phrases "Prime minister Modi"
 - Verb Phrases "playing cricket"
- Phrase extraction
- Detecting the mentions of key entities or other relevant information.
- Uses POS tag information along with words
- Most relevant in Named Entity Recognition

RULES VS. STATISTICS

- Rules and categories do not fit a sentence equally
 - Some are more likely in a language than others
 - E.g.
 - hardcopy: noun or verb?
 - P(N | hardcopy) >> P(V | hardcopy)
 - the training ...
 - P(N | training, Det) > P(V | training, Det)
- Idea: use statistics to help

STATISTICAL ANALYSIS TO HELP SOLVE AMBIGUITY

Choose the most likely solution

```
solution* = argmax solution P(solution | word, context)
e.g. argmax cat P(cat | word, context)
argmax sem P(sem | word, context)
```

Context varies largely (precedent work, following word, category of the precedent word, ...)

- How to obtain P(solution | word, context)?
 - Training corpus

STATISTICAL LANGUAGE MODELING

Goal: create a statistical model so that one can calculate the probability of a sequence of tokens $s = w_1, w_2, ..., w_n$ in a language.

General approach:

PROB. OF A SEQUENCE OF WORDS

$$P(s) = P(w_1, w_2,...w_n)$$

$$= P(w_1)P(w_2 \mid w_1)...P(w_n \mid w_{1,n-1})$$

$$= \prod_{i=1}^{n} P(w_i \mid h_i)$$

Elements to be estimated:

$$P(w_i \mid h_i) = \frac{P(h_i w_i)}{P(h_i)}$$

- If h_i is too long, one cannot observe (h_i, w_i) in the training corpus, and (h_i, w_i) is hard generalize
- Solution: limit the length of h_i

N-GRAMS

$$P(s) = \prod_{i=1}^{n} P(w_i)$$

$$P(s) = \prod_{i=1}^{n} P(w_i \mid w_{i-1})$$

$$P(s) = \prod_{i=1}^{n} P(w_i \mid w_{i-2} w_{i-1})$$

Ch. 6

JACCARD COEFFICIENT

- A commonly used measure of overlap of two sets A and B
- = jaccard(A,A) = I
- jaccard(A,B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

JACCARD COEFFICIENT: SCORING EXAMPLE

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- Document I: caesar died in march
- Document 2: the long march

ISSUES WITH JACCARD FOR SCORING

- It doesn't consider term frequency (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length

$$|A \cap B|/\sqrt{|A \cup B|}$$

Sec. 6.2

BINARY TERM-DOCUMENT INCIDENCE MATRIX

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

TERM-DOCUMENT COUNT MATRICES

- Consider the number of occurrences of a term in a document:
 - **Each** document is a count vector in \mathbb{N}^{v} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

BAG OF WORDS MODEL

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- For now: bag of words model

TERM FREQUENCY TF

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

LOG-FREQUENCY WEIGHTING

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- $0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.$
- Score for a document-query pair: sum over terms t in both q and d:
- score

$$= \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

The score is 0 if none of the query terms is present in the document.

DOCUMENT FREQUENCY

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- We want a high weight for rare terms like arachnocentric.

DOCUMENT FREQUENCY, CONTINUED

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But it's not a sure indicator of relevance.
- \blacksquare \rightarrow For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

IDFWEIGHT

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$
- We define the idf (inverse document frequency) of t by

$$idf_t = log_{10} (N/df_t)$$

• We use $\log (N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

TF-IDF WEIGHTING

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = \log(1 + \mathbf{tf}_{t,d}) \times \log_{10}(N / \mathbf{df}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

SCORE FOR A DOCUMENT GIVEN A QUERY

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d}$$

- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - ...

BINARY → COUNT → WEIGHT MATRIX

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

FEATURE ENGINEERING

- Conventional hand crafted features → Representation Learning
- Representation Learning
 - We deals with wide variety of data
 - Signals, Images, Text etc.
 - Which is the best way of representing the data
 - How to represent the data, so that machine can learn from it
 - Def: A bunch of techniques which automatically detect / learn the representation for feature selection from natural / raw data.

REPRESENTATIONS IN NLP

- Word Representation
- Sentence Representation
- Document Representation

WORD REPRESENTATIONS

Traditional Method - Bag of Words Model	Word Embeddings
 Uses one hot encoding Each word in the vocabulary is represented by one bit 	 Stores each word in as a point in space, where it is represented by a vector of fixed number of dimensions (generally 300)
position in a HUGE vector.	 Unsupervised, built just by reading huge corpus
• For example, if we have a vocabulary of 10000 words, and "Hello" is the 4 th word in the dictionary, it would be	 For example, "Hello" might be represented as:
represented by: 0 0 0 1 0 0 0 0 0 0	[0.4, -0.11, 0.55, 0.3 0.1, 0.02]
Context information is not utilized	• Dimensions are basically projections along different axes, more of a mathematical concept.

THE POWER OF WORD VECTORS

- They provide a fresh perspective to almost ALL problems in NLP.
- Technological Improvement
 - Rise of deep learning since 2006 (Big Data + GPUs + Work done by Andrew Ng, Yoshua Bengio, Yann Lecun and Geoff Hinton)
 - Application of Deep Learning to NLP led by Yoshua Bengio, Christopher Manning, Richard Socher, Tomas Mikalov
- The need for unsupervised learning. (Supervised learning tends to be excessively dependant on hand-labelled data and often does not scale)

EXAMPLES

Male-Female

Verb tense

Country-Capital

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

ARCHITECTURE

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}^{\prime}^{\top}v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_w^{\prime}^{\top}v_{w_I}\right)}$$

TRAINING – SKIP GRAM

APPLICATIONS

Word Similarity

Classic Methods: Edit Distance, WordNet, Porter's Stemmer, Lemmatization using dictionaries

- Easily identifies similar words and synonyms since they occur in similar contexts
- Stemming (thought -> think)
- Inflections, Tense forms
- eg. Think, thought, ponder, pondering,
- eg. Plane, Aircraft, Flight

NAMED ENTITY RECOGNITION

- Identifies and classifies strings of characters representing proper nouns.
- Useful for filtering documents
- Linguistic grammar based models
 - Months of work by linguistic expert
 - High precision
- Machine learning
 - Supervised as well semi-supervised
 - Require large amount of annotated data
 - Conditional Random Fields

MACHINE TRANSLATION

Classic Methods: Rule-based machine translation, morphological transformation

LANGUAGE TRANSLATION

- Languages differs in
 - Script
 - Vocabulary
 - Grammar

These difference can be considered as a measure of language distance

Machine Translation Problem

Language Encoding -> representation and analysis

Language Decoding -> synthesis

NEURAL MACHINE TRANSLATION (NMT)

 Encoder/Decoder framework maps sentence in source language to a "deep vector" then another LSTM maps this vector to a sentence in the target language

$$F_1, F_2,...,F_n$$
Encoder LSTM
Decoder LSTM
 $E_1, E_2,...,E_m$

Train model "end to end" on sentence-aligned parallel corpus.

NMT

Without Attention

With Attention

CHATBOT

- Chat Bot: A computer program that can talk to humans in natural language!
- Uses Artificial Intelligence Markup Language (AIML) to represent knowledge.
- Can replace a human for monotonous jobs of answering queries, e.g. E-help desk.

ELIZA

- Eliza the first chat bot made by Joseph Weizenbaum.
- Eliza Effect
 - tendency of humans to attach associations to terms from prior experience.
- Working of Eliza is based on
 - Knowledge Representation
 - Pattern Recognition
 - Substitution of key words into known phrases.

ELIZA

- Looks for certain patterns of words in the user's input.
- Replies with pre-determined output, if the pattern is matched.
- Needs to have an idea of what the user will chat
- Has suitable responses defined in the AIML file

AIML WORKING

Contains patterns that does not have wildcards

```
"*" or "_".
```

• Example:

```
<category>
  <pattern>10 DOLLARS</pattern>
  <template> wow, what a cheap </template>
</category>
```

Conversation:

User: This watch is for 10 dollars

Chat Bot: Wow, what a cheap watch!

MEMORY NETWORKS FOR QA

CONCLUSION

- Started with one hot encoding,
- RF-IDF
- Word2Vec
- Encoder-Decoder
- Memory Networks & Neural Turing Machine
- And goes on.

Questions?