Задача коммивояжера Метод полного перебора и алгоритм имитации отжига

А.И. Колесников В.Г. Пиневич

МГТУ им. Н.Э. Баумана

29 июля 2022 г.

Формулировка задачи

- Каждое ребро является характеризуется весом положительным числом стоимостью движения по нему.
- Найдем такой обход графа, который будет включать ровно один раз каждую его вершину. Такой обход называется гамильтоновым циклом.
- Задача коммивояжера заключается в том, чтобы найти гамильтоновый цикл минимальной стоимости.

Метод полного перебора

Перестановки:				
1	2	3		
1	3	2		
2	1	3		
2	3	1		
3	1	2		
.3	2	1		

Пс	тен	нциа	льн	ые	пути:
	0	1	2	3	0
	0	1	3	2	0
	0	2	1	3	0
	0	2	3	1	0
	•	_	•	_	•
	0	3	1	2	0
	U	3	2	1	U

Из всех полученных путей выбираем путь с минимальной длиной.

Ответ: 0 1 3 2 0

Алгоритм имитации отжига

Пример 1

Исходные данные

4

0 1 4 6

1 0 5 2

4 5 0 3

6 2 3 0

	Маршрут	Длина	Относительная	Затраченное
		пути	погрешность,	время, с
			%	
Метод перебора	1 3 4 2 1	10	0,0	0,004
Метод имита-	1 3 4 2 1	10	0,0	0,003
ции отжига при				
coolingRate = 0.1,				
${\tt repeatRate} = 1$				

Пример 2

	Средняя длина	Относительная	Затраченное
	полученного	погрешность,	время, с
	пути	%	
Полный перебор	0,015	0	0,034
Алгоритм имита-	0,034	132,1	0,004
ции отжига при			
coolingRate = 0.1,			
${ t repeatRate} = 1$			
coolingRate = 0.1,	0,01508	0,5	0,012
${ t repeatRate} = 10$			
coolingRate = 0.9	0,033	124,7	0,004
${ t repeatRate} = 1$			
coolingRate = 0.9,	0,020	35	0,006
$\mathtt{repeatRate} = 3$			
coolingRate = 0.9,	0,0151	1.06	0,012
${ t repeatRate} = 10$			

Пример 3

cooling	repeat	Средняя длина	Относительная	Затраченное
Rate	Rate	полученного пути	погрешность, %	время, с
0,1	10	0,04	135,3	0,018
0,1	20	0,026	52,9	0,045
0,1	50	0,019	8,9	0,076
0,1	100	0,01706	0,3	0,137
0,9	10	0,038	124,3	0,35
0,9	20	0,026	51,9	0,046
0,9	50	0,0181	6,4	0,074
0,9	100	0,01713	0,7	0,137
0,99	10	0,035	139,4	0,035
0,99	20	0,027	55,5	0,045
0,99	50	0,0184	8,3	0,075
0,99999	20	0,0255	50,4	0,044

Выводы

- Метод перебора не может быть использован для вычислений маршрута коммивояжера для достаточно больших графов. Применение этого метода на практике практически не возможно, поскольку его алгоритмическая сложность o(n!).
- Метод иметации отжига является методом приближенного вычисления и требует подбора параметров в зависимости от входных данных, однако позволяет находить решения для более сложных задач, чем метод перебора.