CS1011: 數位電子導論

Basic Electric Circuits and Components

Outline

- Introduction
- SI Units and Common Prefixes
- Electrical Circuits
- Direct Currents and Alternating Currents
- Resistors, Capacitors and Inductors
- Ohm's and Kirchhoff's Laws
- Power Dissipation in Resistors
- Resistors in Series and Parallel
- Resistive Potential Dividers
- Sinusoidal Quantities
- Circuit Symbols

Introduction

- **■** This lecture outlines the basics of **Electrical Circuits**
 - For most students, much of this will be familiar...?!
 - If there is any topic that you are unsure of (or that are new to you), you should get to grips with this material as soon as possible
- We will return to look at several of these topics in more detail in later lectures

SI Units

Quantity	Quantity symbol	Unit	Unit symbol
Capacitance	C	Farad	F
Charge	Q	Coulomb	С
Current	I	Ampere	Α
Electromotive force	E	Volt	V
Frequency	f	Hertz	Hz
Inductance (self)	L	Henry	Н
Period	T	Second	S
Potential difference	V	Volt	V
Power	P	Watt	W
Resistance	R	Ohm	Ω
Temperature	T	Kelvin	K
Time	t	Second	S

Common Prefixes

- 2¹⁰ (1,024) / 10³ is kilo, denoted "K"
- 2²⁰ (1,048,576) / 10⁶ is mega, denoted "M"
- 2³⁰ (1,073,741,824) / 10⁹ is giga, denoted "G"
- 2⁴⁰ (1,099,511,627,776) / 10¹² is tera, denoted "T"
- 2⁵⁰ (1,125,899,906,842,624) / 10¹⁵ is peta, denoted "P"
- 2⁶⁰ (1,152,921,504,606,846,976) / 10¹⁸ is exa, denoted "E"
- 2⁷⁰ (1,180,591,620,717,411,303,424) / 10²¹ is zetta, denoted "Z"
- 280 (1,208,925,819,614,629,174,706,176) / 10²⁴ is yotta, denoted "Y"
- ◆ 10⁻³ is milli, denoted "m"
- 10⁻⁶ is micro, denoted "μ"
- ♦ 10⁻⁹ is nano, denoted "n"
- ◆ 10⁻¹² is pico, denoted "p"
- ◆ 10⁻¹⁵ is femto, denoted "f"
- STUDENT

◆ 10⁻¹⁸ is atto, denoted "a"

Electrical Circuits

Electric charge

- An amount of electrical particles with electrical energy
- Can be positive or negative

Electric current

- A flow of electrical charge, often a flow of electrons
- Conventional current is in the opposite direction to a flow of electrons

Current flow in a circuit

- A sustained current needs a complete circuit
- Also requires a stimulus to cause the charges to flow

Electromotive Force

■ Electromotive force and potential difference

- The stimulus that causes a current to flow is an e.m.f.
- This represents the energy introduced into the circuit by a battery or generator
- This results in an electric potential at each point in the circuit
- Between any two points in the circuit there may exist a potential difference
- Both e.m.f. and potential difference are measured in volts

A Simple Circuit Example

A simple circuit

A water-based analogy

Voltage Reference Points

- All potentials within a circuit must be measured with respect to some other point (reference point)
- We often measure voltages with respect to a zero volt reference called the ground or earth

Representing Voltages

- Conventions vary around the world
- We normally use an arrow, which is taken to represent the voltage on the head with respect to the tail
- **■** Labels represent voltages with respect to earth (0V)

Direct Current and Alternating Current

- Currents in electrical circuits may be constant or may vary with time
- When currents vary with time they may be unidirectional or alternating
- When the current flowing in a conductor always flows in the same direction, this is direct current (DC)
- When the direction of the current periodically changes, this is alternating current (AC)

Resistors, Capacitors, and Inductors

- Resistors provide resistance
 - They oppose the flow of electricity
 - \bullet Measured in Ohms (Ω)
- Capacitors provide capacitance
 - They store energy in an electric field
 - Measured in Farads (F)
- Inductors provide inductance
 - They store energy in a magnetic field
 - Measured in Henry (H)
- We will look at each component in later lectures

Ohm's Law

■ The current flowing in a conductor is directly proportional to the applied voltage V and inversely proportional to its resistance R

$$V = IR$$

$$I = V/R$$

$$R = V/I$$

Kirchhoff's Current Law (KCL)

- At any instant the algebraic sum of the currents flowing into any junction in a circuit is zero
- \blacksquare KCL example, derive I_2

Kirchhoff's Voltage Law (KVL)

- At any instant the algebraic sum of the voltages around any loop in a circuit is zero
- \blacksquare KVL example, derive V_1

Power Dissipation in Resistors

■ The instantaneous power dissipation P of a resistor is given by the product of the voltage across it and the current passing through it. Combining this result with Ohm's law gives:

$$P = VI$$

$$P = I^2R$$

$$P = V^2/R$$

Resistors in Series and Parallel

Series

$$R = R_1 + R_2 + R_3$$

Parallel

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Resistive Potential Dividers

General case

$$V = V_2 + (V_1 - V_2) \frac{R_2}{R_1 + R_2}$$

Potential Divider Example 1

Derive V

Potential Divider Example 2

Derive V

Sinusoidal Quantities

- Length of time between corresponding points in successive cycles is the period T
- Number of cycles per second is the frequency f

$$\blacksquare f = 1/T$$

Circuit Symbols - 1

IEC standard

Circuit Symbols - 2

e.m.f. (e.g. battery)

voltage source

ground (zero volts)

voltmeter

ammeter

Key Points

- Understanding the next few lectures of this course relies on understanding the various topics covered in this session
- A clear understanding of the concepts of voltage and current is essential
- Ohm's Law and Kirchhoff's Laws are used extensively in later lectures
- Experience shows that students have most problems with potential dividers – a topic that is used widely in the next few lectures