Machine Learning-Based Tools for Ion Constituent Simulation in the Delta

Machine Learning in Water and Environmental Modeling Workshop May 2, 2025

Module #4

Peyman Namadi DWR, Modeling Support Office

Outline

- 1. Problem Definition
- 2. Study Phases
 - Phase 1: Pilot study (South Delta)
 - > Phase 2: Interior Delta
 - Phase 3: Water intake locations
 - Phase 4: Hybrid model
- 3. Dashboard Tools
- 4. Key Messages

Why ion levels matter in the Delta?

- Water quality management
- > Regulatory compliance
- Decision-making and forecasting

Why use a conversion method (Electrical Conductivity (EC) → Ion constituents)?

Sampling limitations:

- time-consuming: collection, laboratory analysis
- > costly
- limited spatial and temporal coverage

ource of Photos: https://pixel-ca-dwr.photoshelter.com)

Contribution from each source (demonstration purposes only)

- > Even with similar EC levels, the ion constituent levels can vary as the sources of salinity are different.
 - Ocean sources → higher levels of Chloride/Bromide.
 - Agricultural drainage → more Sulfate.
- ➤ Understanding the **source of salinity** is crucial for accurately assessing ion constituents.

Traditional method:

Similarity
$$\begin{cases} Ion = A \times EC + B \\ Ion = A \times EC^2 + B \times EC + C \end{cases}$$

:		// : //
If Region = R3 & X2> 81 km & Month = April & WYT = Critical	\longrightarrow	A_3, B_3, C_3
If Region = R2 & X2< 81 km & Month = June & WYT = Dry	\longrightarrow	A_2, B_2, C_2
If Region = R1 & X2* < 81 km & Month = June & WYT* = Wet	\longrightarrow	A_1, B_1, C_1

		Wate	er Ye	ear 1	Гуре	and	Seas	son	Matr	ix #2		
	J	F	M	Α	M	J	J	Α	S	0	N	D
	Jan Old-Middle River Export Corridor Subregion											
W	SEA	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SEA	SEA	SEA	SEA
AN	SEA	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SEA	SEA	SEA	SEA
BN	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA
D	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA
С	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA	SEA
San Joaquin River Corridor Subregion												
W	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR
AN	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR
BN	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR
D	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR
С	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR
South Delta Subregion												
W	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR
AN	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR	SJR
BN	IND	IND	SJR	SJR	SJR	SJR	SJR	IND	IND	IND	IND	IND
D	IND	IND	SJR	SJR	SJR	SJR	SJR	IND	IND	IND	IND	IND
С	IND	IND	SJR	SJR	SJR	IND	IND	IND	IND	IND	IND	IND

Wet (W), Above-Normal (AN), Below-Normal (BN), Dry (D), Critical (C), SEA (Sea boundary is dominant), SJR (San Joaquin boundary is dominant), IND (indeterminate or Mix)

Data Preparation: Phase 1

South Delta:

- > 11 ion constituents
- > ~180 samples (2018 to 2020)

Data Preparation: Phase 2

Interior Delta

9 ion constituents; 1000 ~ 2000 samples (1959-2022)

- Old-Middle River Export Corridor (OMR)
- > San Joaquin River Corridor
- > South Delta

Data Preparation: Phase 3

Key Intake Locations

- 3 ion constituents (Bromide, Chloride, Sulfate)
- > ~5000 samples
- > HRO and TRP (2019-2023), ONG (2012-2023)

Model Development: Phrases 1-3

Model Development **Model Selection**

Model Training

Model Evaluation

Details to be covered in the hands-on portion

K-fold cross validation; Sensitivity analysis

% improvement over traditional method (Phase 2): R² & Mean Absolute Error (MAE)

Model Deployment: Dashboards

Model Deployment: Dashboards

https://dwrdashion.azurewebsites.net/Dashboard (Interior Delta)

https://dwrdashionintake.azurewebsites.net/Intake_dashboard (Intake Locations)

https://dwrdashionsensitivity.azurewebsites.net/Sensitivity_IonStudy (Intake Locations: Sensitivity)

Limitations: Phrases 1-3

- > Limited temporal and spatial coverage
 - > No source contribution analysis
 - > Inability to simulate potential planning scenarios

Phrase 4: Hybrid Model

Phrase 4: Dashboard

Documentation: Peer-Reviewed Articles

- Phase 1: Pilot study (South Delta)
- Phase 2: Interior Delta
- Phase 3: Water intake locations
- Phase 4: Hybrid model

Phase 2 lournal of Hydroinformatics

© 2023 The Authors

Journal of Hydroinformatics Vol 25 No 6, 2541 doi: 10.2166/hydro.2023.158

Modeling ion constituents in the Sacramento-San Joaquin Delta using multiple machine learning approaches

Peyman Namadi (0*, Minxue He and Prabhjot Sandhu California Department of Water Resources, 1516 9th Street, Sacramento, CA, USA *Corresponding author. E-mail: peyman.hosseinzadehnamadi@water.ca.gov

(i) PN, 0000-0002-5729-2951

Phase 1

Earth Science Informatics https://doi.org/10.1007/s12145-022-00828-1

RESEARCH ARTICLE

Salinity-constituent conversion in South Sacramento-San Joaquin Delta of California via machine learning

Peyman Namadi¹ · Minxue He¹ · Prabhjot Sandhu¹

Received: 15 February 2022 / Accepted: 25 May 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Phases 3 and 4 Under review MDPI

Advancing Ion Constituent Simulations in California's Sacramento-San Joaquin Delta Using Machine Learning Tools

Peyman Namadi 17, Minxue He2, and Prabhjot Sandhu3.

- Modeling Support Office, California Department of Water Resources, Sacramento, CA, USA; peyman.hosse. inzadehnamadi@water.ca.gov
- Modeling Support Office, California Department of Water Resources, Sacramento, CA, USA; Kevin. He@wa-
- Modeling Support Office, California Department of Water Resources, Sacramento, CA, USA; Prab-
- Correspondence: peyman.hosseinzadehnamadi@water.ca.gov;

Key Messages

- Machine learning (ML) models:
 - > run fast
 - > perform better
- User-friendly dashboards:
 - > Interior Delta Ion Simulation Dashboard
 - o 9 ion constituents
 - > Water Intake Locations Ion Dashboard
 - 3 ion concentrations
 - > Sensitivity Analysis Dashboard
 - Sensitivity of ML models
 - Hybrid Hydrodynamic & Machine Learning Dashboard
 - Higher spatial and temporal distribution
 - > Suitable for users with or without coding or ML expertise

Questions?

