Voice Assistants

Inhalt

- Was ist ein Voice Assistant
- Generelle Funktionsweise eines Voice Assistants
- Fallbeispiel Alexa
- Fallbeispiel Google Home
- Gegenüberstellung Alexa und Google Home

Was ist ein Voice Assistant?

Was ist ein Voice Assistent

Digitaler Assistent

- Auch Intelligente Persönliche Assistenten (IPA) genannt
- Softwarelösungen mit Spracherkennung/analyse
- Helfen bei Suche nach Informationen
- Übernehmen einfache Aufgaben
- Führen Dialog mit Anwender
 - Dialog orientiert sich immer mehr an normalem Gesprächsfluss

Spracherkennung (SE)

- Teilgebiet der Angewandten Informatik und Computerlingustik
- Macht Automaten gesprochene Sprache zugänglich
- Hilft besonders Computern bei automatischer Datenerfassung
- Zwei Arten:
 - Sprecherunabhängig
 - Jeder Nutzer wird direkt erkannt
 - Wortschatz von einigen tausend Wörtern
 - Sprecherabhängig
 - Erfordert kurzes Training des Systems
 - Wortschatz von über 300.000 Wörtern

Computerlinguistik (CL)

Computerlinguistik erforscht die maschinelle Verarbeitung natürlicher Sprachen. Sie erarbeitet die theoretischen Grundlagen der Darstellung, Erkennung und Erzeugung gesprochener und geschriebener Sprache durch Maschinen.

- Universität München

Erfassung von Sprache ist auf zwei Arten möglich:

- Schallinfomationen (akustisch)
- Buchstabenketten (textuell)

Computerlinguistik (Saarbrücker Pipelinemodell)

- 1. Spracherkennung: Umwandlung der Schallinformation in Text, falls nötig.
- 2. Tokenisierung: Segmentierung der Buchstabenkette in Wörter und Sätze.
- 3. Morphologische Analyse: Extraktion grammatischer Informationen und Rückführung der Wörter auf Grundform.
- 4. Syntaktische Analyse: Analyse der einzelnen Wörter eines Satzes auf ihre strukturelle Funktion.
- 5. Semantische Analyse: Zuordnung der Bedeutung einzelner Sätze. Kann viele Einzelschritte enthalten.
- 6. Dialog- und Diskursanalyse: In Beziehung setzen aufeinander folgender Sätze.

Sprachsynthese

- Künstliche Erzeugung der menschlichen Sprechstimme
- Ermöglicht durch Text-to-Speech (TTS) System
- Zwei Methoden:
 - Signalmodellierung
 - Erzeugung durch Zugriff auf Sprachaufnahmen einer Stimme
 - Formatsynthese
 - Vollständig digitales Erzeugen der Stimme
- Größtes Hindernis: Natürliche Sprachmelodie

Wozu werden Voice Assistants genutzt

- Audiobooks hören
- Informationen anfragen
- Reservierungen durchführen
- Gegenstände auf eine Einkaufsliste hinzufügen
- Mathematische Berechnungen durchführen
- Musik abspielen

Momentan sind die bekanntesten VAs: Siri (Apple), Alexa (Amazon), Google Now, Google Assistant, Cortana (Microsoft)

Entwicklungsgeschichte Voice Assistants

AUDREY

- Erstes SE-Gerät
- 1952 entwickelt
- Erkannte einzelne Ziffern
- Lange Abstände zwischen einzelnen Ziffern

Entwicklungsgeschichte Voice Assistants

IBM-Shoebox

- Erstes kommerzielles SE-Gerät
- 1961 released
- Erkannte 16 Wörter:
 - die Ziffern 0-9
 - o minus, plus, subtotal, total, false und of
- Führte mathematische Operationen durch

Entwicklungsgeschichte Voice Assistants

Harpy

- 1970 released
- Erkannte bis zu 1000 Wörter
- STT Diktiergerät
- 10 Jahre später wurden ganze Sätze erkannt
 - Genutzt wurde das Hidden Markov Model
 - Hidden Markov Model berechnet die Wahrscheinlichkeit dass ein bestimmtes Wort auf ein anderes folgt

Entwicklungsgeschichte Voice Assistants

Siri

- 4. Oktober 2011 released
- Feature des iPhone 4S
- Erster Voice Assistant
- Nutzte erstmalig Datenübertragung an einen Server um Eingaben zu verarbeiten

Entwicklungsgeschichte Voice Assistants

Alexa / Google Home

- 6. November, 2014 / 4. November 2016 released
- Erste eigenständige Voice Assistants
- Erweiterbarer Funktionsumfang

Wie funktioniert ein Voice Assistant?

46. Explored light and the land of the l

46. Explaining in the land of the land o

Wie funktionieren Voice Assistenten

- 1. Endgerät wird durch Codewort aktiviert (SE)
- 2. Sprache wird auf dem Endgerät erkannt (SE)
- 3. Sprache wird an einen Anwendungsserver gesendet
- 4. Anwendungsserver erkennt den Anwendungsfall und ggf. nötige Parameter (CL)
- 5. Anwendungsserver verarbeitet Anfrage
- 6. Anwendungsserver sendet Antwort an Endgerät
- 7. Endgerät gibt Antwort wieder (TTS)

Webservice

Allgemein

Webservice

Amazon Alexa

- Sendet Anfragen an AWS (Amazon Web Service)
- Dieser nutzt Dienste zur Verarbeitung
- AWS Dienst Lambda führt Programmcode aus.
- AVS (Alexa Voice Service) lernt mittels Machine Learning über AWS.

Google Home

- Webservice kann auf eigenem
 Server oder z.B. auf einem Server
 des Google Cloud Projects
 laufen.
- Node.js Backend führt Dialogflow aus.
- Ein Agent (Anwendung) reagiert auf die Anfrage.

Logic Code

Amazon Alexa

- Benutzt Utterances (Aussagen)
- Utterances verbinden die erkannte
 Spracheingabe mit den Intents
- Intents
 - Definiert mittels JSON
 - Programmiert in versch. Sprachen
- Intents bilden die entsprechenden
 Funktionen ab (mit/ohne Parameter)

Google Home

- Actions on Google verwaltet Apps für den Google Assistant
- Durch Utterances werden Intents erkannt (unterstützt durch Machine Learning)
- Aus Utterances können
 Parameter/Entities herausgelesen
 werden
- Text Response oder Webhook

Amazon Alexa

Amazon Alexa

- Allgemein
- Funktionsweise
- Hardware
- Skills(Erweiterbarkeit)
- Datenschutz/Sicherheit

Allgemein

- Voice Assistant von Amazon
- Veröffentlichung 6. November, 2014 (USA)
- Veröffentlichung 26. Oktober, 2016 (Deutschland)
- Momentan veröffentlichte Geräte:
 - Echo Spot (Alexa Lautsprecher mit kleinem Display)
 - Echo Buttons ("Smart Home" Buttons)
 - Echo Connects (Verbindet Alexa mit dem Telefon für Anrufe)
 - Echo Show (7" Display Anzeige von Videos und anderen Infos)
 - Echo . Echo Dot und Echo Plus
 - Alexa Sprachfernbedienung (FireTV)

Funktionen/Funktionsweise

- Jede Funktion ist ein "Skill"
- Bietet vorinstallierte Skills und einen Skill Store für Drittanbieter
- Kann Musik abspielen
- Spracherkennung und TTS(Text-to-Speech)
- Reagiert auf Schlagwörter(Alexa, Echo, Amazon oder Computer)
- Stimmen werden *noch* nicht unterschieden
- Von Beginn an kann es: Musik abspielen, Wetter mitteilen, Alarm setzen uvm.

Funktionen/Funktionsweise

Amazon Alexa VA Architektur

- creates TTS-Response dependant on Logic-Output

Funktionen/Funktionsweise

Typischer Ablauf eines "Gesprächs":

- 1. Nutzer sagt einen Satz mit dem Keyword z.B. Alexa
- 2. "Alexa" wird lokal erkannt, der Rest der Anfrage wird an den Alexa Voice Service übertragen
- 3. Alexa Voice Service verarbeitet die Anfrage und sendet alles verarbeitet durch die Utterances weiter an die Intents des passenden Skills
- 4. Skill erstellt eine Antwort als Text, AVS betreibt TTS und teilt dem Nutzer die Antwort mit

Hardware

Echo Dot

- Volle Alex Voice Service Funktionalität
- 7 Mikrofone/1 Lautsprecher
- Arbeitet als Smart Home Hub
- Hardwaretasten für die Lautstärke
- Und Mikrofon

Preis: 59,99 €

Hardware

Echo

- Ähnlich wie Echo Dot
- Größere und bessere Lautsprecher
- 63 mm-Woofer
- 16 mm-Hochtonlautsprecher

Preis: 99,99 €

Hardware

Echo Plus

- Funktionalitäten wie Echo Dot und Echo
- integrierten ZigBee-Smart Home-Hub
- 63 mm-Woofer
- 20 mm-Hochtonlautsprecher

Preis: 149,99 €

Skills(Erweiterbarkeit)

- Alexa lässt sich durch Skills erweitern
- Es gibt einen Skill-Store mit aktuell über 10 Tausend Skills
- Ein Skill besteht aus:
 - Utterances
 - Intents
 - Funktion(z.B. AWS Lambda)
- Utterances und Intents werden bei Amazon erstellt und auch bereitgestellt
- Funktion kann von einem eigenen Server oder über AWS Lambda bereitgestellt werden
- Server muss öffentlich erreichbar sein

Gegenüberstellung


```
1 + {
      "languageModel": {
        "intents": [
4 +
             "name": "AMAZON.CancelIntent",
6
             "samples": []
          },
8 +
9
             "name": "AMAZON.HelpIntent",
             "samples": []
10
11
          },
12 -
             "name": "AMAZON.StopIntent",
13
             "samples": []
14
15
          },
16 -
17
             "name": "StartIntent",
             "samples": [
18 -
               "präsentiere dich",
19
               "hallo",
20
              "guten tag",
21
               "stell dich vor"
22
23
24
             "slots": []
25
26
        "invocationName": "komponenten"
27
28
29
```

HelloWorldAlexa

Qualifiers **V**

Actions \

Select a test event..

-

Test

Save

Google Home

Google Home

- Allgemein
- Funktionen/Funktionsweise
- Hardware
- Erweiterbarkeit
- Actions

Allgemein

- Von Google entwickelter Smart Home Lautsprecher
- Persönlicher Voice Assistant
- Veröffentlichung USA: 4. November 2016
- Markteinführung Deutschland: 8. August 2017 mit deutscher Stimme
- Momentan 3 verschiedene Google Home Geräte (Home, Home Mini, Home Max)

Funktionen/Funktionsweise

- Beinhaltet eine Reihe von Funktionen von Google und Drittanbietern
- Mehrere Google Home Geräte können zum synchronen Abspielen von Musik verwendet werden
- Bis zu 6 Benutzer können an der Stimme erkannt und unterschieden werden
- Weckworte: "Hey Google" oder "OK Google"
- Integrierten Google Assistant gibt es auch auf anderen Geräten (z.B. Smartphones)
- Allgemeine Funktionen werden erweitert durch Actions on Google
- Interaktion mit dem Assistenten über Konversationen (möglichst natürlicher Austausch)

Funktionen/Funktionsweise

Google Voice Assistant Architektur

- recognises Voice Audio/Keywords
- runs Actions with Voice-Input
- creates TTS-Response dependant on Action-Output

Funktionen/Funktionsweise

Typischer Ablauf:

- 1. Nutzer fordert Assistenten auf eine gewisse Aktion auszuführen
- 2. Assistent sendet Anfrage an Actions on Google
- 3. Actions on Google gibt passende App zurück
- 4. Assistent fragt den Nutzer ob er die App ausführen will
- 5. Nutzer bestätigt mit "Ja"
- 6. Assistent stellt die App vor
- 7. Assistent übergibt die Konversation an die App

Hardware

Google Home

- 149€
- Farbige Status-LEDs an der Oberfläche
- Kapazitiver Berührungssensor zum Starten und Stoppen von Musik oder anpassen der Lautstärke
- Mute-Button für Mikrofon an der Rückseite

Hardware

Google Home Mini

- 59€
- Gleiche Fuktionalität
- Berührungssensor zum Anpassen der Lautstärke
- Weiße Statuslichter scheinen durch den Stoff an der Oberseite
- Mute-Schalter für Mikrofon an der Rückseite

Hardware

Google Home Max

- 400\$
- Stereo Lautsprecher (einschließlich zweier Hochtöner und Subwoofer)
- Magnetisch befestigbarer
 Ständer für vertikale Ausrichtung
- Beinhaltet Smart Sound (nutzt machine learning um sich an die Umgebung anzupassen)

Erweiterbarkeit

- Google bietet verschiedene Optionen zum Entwickeln von Apps
- Templates
 - Beinhalteten vorgefertigte Konversationen
- Actions SDK
 - Bietet keine NLU (natural language understanding)
 - Für simple Aktionen mit geringer Input Varianz
- Dialogflow
 - Funktionalität der Actions SDK in einfach zu nutzender Web IDE
 - Beinhaltet NLU engine

Im folgenden wird der Aufbau der Actions in Dialogflow beleuchtet

Actions

- Intents

- Sind Hauptbestandteil der Actions
- Werden aus Utterances (Äußerungen des Nutzers) bestimmt
- Können mehrere verschiedene Parameter enthalten, die als Entities von der NLU erkannt werden

- Entities

- Kategorien in denen Objekte eines Typs vordefiniert werden können
- Erleichtern die Erkennung von relevanten Daten
- Einzelne Objekte können mit Synonymen angegeben werden

Fulfillment

 Neben einfacher Text Response kann das erkannte Intent an einen Web service gesendet werden um eine Response zu erhalten

Gegenüberstellung

JSON

```
1 + {
      "id": "3fe48c5d-b29d-4f29-b87d-dedae8fc7532",
      "timestamp": "2017-12-15T21:44:57.781Z",
      "lang": "de",
      "result": {
        "source": "agent",
        "resolvedQuery": "Starte Steam und öffne Skyrim",
 8
        "action": "",
 9
        "actionIncomplete": false,
        "parameters": {
10 +
11
          "Programm": "Steam",
          "zusaetzliche Parameter": "öffne Skyrim"
12
13
        "contexts": [],
14
15 +
        "metadata": {
16
          "intentId": "b1575a12-89b9-4e5f-a3e0-18f1e5aa6390",
          "webhookUsed": "false",
17
          "webhookForSlotFillingUsed": "false",
18
          "intentName": "Starte Programm mit Parametern"
19
20
21 +
        "fulfillment": {
          "speech": "Du möchtest das Programm Steam starten und hast als zusätzliche Parameter öffne
22
            Skyrim angegeben.",
          "messages": [
23 +
24 +
25
26
              "speech": "Du möchtest das Programm Steam starten und hast als zusätzliche Parameter
                öffne Skyrim angegeben."
27
28
29
30
        "score": 1
31
32 +
      "status": {
        "code": 200,
33
        "errorType": "success",
34
35
        "webhookTimedOut": false
36
37
      "sessionId": "dfa19fe3-5f7b-4705-8dc6-4c4c2847754e"
38
```

Gegenüberstellung A. Alexa / G. Home

Alexa	Google Home
Wahrscheinlichkeitsbasiertes Matching	KI hilft bei Ergänzung der Utterances
"Alexa","Echo","Computer","Amazon"	"Hey Google", "OK Google"
Einkaufen direkt per Sprachbefehl	Google Suche, andere Google Dienste
Über 10.000 Skills(Erweiterungen)	Bislang wenige Actions
Musik in Planung, Sprache mittels ESP-System (Echo Spatial Perception)	synchronisiertes Abspielen von Musik

- Google Home und Alexa haben viele gleiche Features
- Kein direkter und aussagekräftiger Vergleich möglich/nötig