L'intégration continue

Faire de l'intégration un non-événement

Jean-Baptiste Defard

Intégration continue : principe fondamental

Tout changement du code d'un logiciel est immédiatement pris en compte par une construction automatique d'intégration

- Pratique du développement logiciel
 - ► Les membres d'une équipe de développement intègrent leur travail quotidiennement
- Détection précoce des erreurs
 - ► Chaque intégration est vérifiée lors d'une construction automatique, incluant les tests (fonctionnels et techniques)

Infrastructure

Serveurs de déploiement, base de données de tests.

Machine de développement

- ☐ Les projets sont constructibles avec des scripts automatisables (Ant, Maven, Make...)
- ☐ La construction d'un projet est indépendante de l'environnement de développement (IDE)
- ☐ Le développeur exécute une construction privée avant de publier ses changements dans le référentiel de sources

Référentiel de sources

■ Définit l'état précis des artefacts du logiciel

Référentiel de sources (CVS, Subversion)

- ☐ Interlocuteur unique du robot d'intégration
- ☐ Il contient l'ensemble des artefacts nécessaires à la construction du projet :
 - Codes sources
 - ► Fichiers de configuration
 - Données particulières (base de données)

5

Machine d'intégration

- Intégration
- ☐ L'automate, exécute la construction d'intégration plusieurs fois par jour, au plus à chaque mise à jour du référentiel de sources
- □ 100% des tests existants sont exécutés à chaque construction
- ☐ L'objectif de la construction d'intégration est de produire un logiciel exécutable qui peut être déployé et testé fonctionnellement

Infrastructure de support à l'intégration

Serveurs de déploiement, base de données de tests.

- □ La construction d'intégration est configurée pour utiliser des bases de données de test conformes à l'environnement cible de production
- ☐ Au besoin, la construction déploie automatiquement le logiciel intégré sur un serveur d'application :
 - ► Tests fonctionnels
 - Prototypes exécutables par les parties prenantes

Rétroactions

- □ Les résultats de l'intégration sont notifiés à l'équipe de développement et publiés sur un site Web accessible aux parties prenantes du projet
- □ La correction des constructions en erreur est une priorité des membres de l'équipe de développement :
 - ► Gain de temps
 - Diminution des coûts

Corriger les défauts détectés avant qu'ils ne se manifestent

Inspection

Intégration continue.

- ☐ L'intégration continue permet d'obtenir automatiquement des indicateurs d'avancement et d'état qualitatif d'un projet en cours de développement
- ☐ Les outils d'assurance qualité participent au contrôle des risques :
 - ▶ Risque de faible qualité logiciel
 - ► Risque de découverte tardive des défauts

Logiciels d'intégration continue.

- ☐ L'offre logicielle est importante.
 - CruiseControl, AntHill, Continuum, Hudson ...

http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix

- ☐ Le choix d'Hudson https://hudson.dev.java.net/ :
 - Open source sous licence MIT
 - Projet mature avec une communauté active (java.net)
 - ► Facile à installer et à utiliser
 - ► Large choix de plugins
 - Constructions distribuées et suivi des versions (multimodule)
- ☐ Un tutoriel en français http://linsolas.developpez.com/articles/hudson/

DEMONSTRATION

Outils d'assurance qualité

L'exécution régulière des tests et des outils d'inspection permettent de recueillir les informations pour l'évaluation de la complexité, la détection des codes potentiellement « malicieux »,...

Checkstyle PMD	Respect des règles de codage et des bonnes pratiques
CPD Simian	Contrôle l'absence de copier/coller
JDepend.	Analyse de dépendance et respect des règles d'architecture
JNCSS.	Contrôle de la complexité cyclomatique et de la documentation technique

Sonar : la qualité sous contrôle

□ Sonar http://sonar.codehaus.org est un projet open source, disponible depuis le début de cette année. Il s'intègre naturellement dans une construction Maven et dans un environnement d'intégration continue. Il participe à la rétroaction.

http://nemo.sonar.codehaus.org/

sonar						Projects Coding Rules Login
Project	Rules Compliance	Code Coverage	Duplicated lines	Links	Build time	Jackrabbit Parent JAIVIES
Apache Velocity	35.3%	0.2%	7.3%	☆ 🏶 🗎	03:05	Server
Wicket Parent	88.9%	42.9%	1.7%	(i) 🟠 🕸 🖺	06.09.2008	PMD Tapes Strut Micro Web
Commons Chain	93.9%	67.5%	34.1%	(i) 🟠 🏶 📄	06.09.2008	Apache Yoko Com Apa Spri Cor XW
Unnamed - org.maven:maven-dependency- browser:pom:1.0-beta-8	95.6%	4.3%	0.0%		06.09.2008	CORBA magnoli Colle May Wet Lan Apaq Stru Sp XS Cd xS
Apache Yoko CORBA Server	18.2%	9.6%	44.7%	(i) 🟠 📄	06.09.2008	Castor XPontus Shall 2 Hai Part in XML Sprin WA Un Cd Ja op
XWork	85.3%	63.4%	4.1%	☆ 🕸 📄	31.08.2008	Jajuk Secu Log Ais Ur J ja C
turtlemock	90.2%	98.7%	0.0%	☆ 🕸 🗋	31.08.2008	XWiki Top Apacho Velor Mod JF, re C. 3
SQL Query Builders	74.3%	88.1%	0.0%	☆ 🕸 🗋	31.08.2008	Level POM Apache Abdera Axio Apa Po S
openutils	92.0%	7.6%	2.4%	☆ 🕸 🗋	31.08.2008	Color
MicroEmulator	67.8%	9.2%	2.9%	(i) 🕰 🕸 📋	31.08.2008	© Coding Rules Compliance
Mattress	77.7%	74.4%	0.0%	☆ 🕸 🗋	31.08.2008	C Code Coverage
magnolia-project	87.8%	18.7%	0.8%	☆ 🕸 🗎	31.08.2008	0% 100%

Indicateurs d'assurance qualité.

□ Sonar synthétise les indicateurs d'assurance qualité produits par la construction Maven.

Vision chronologique

□ Sonar fournit une vision chronologique de l'évolution du logiciel.

Principes de fonctionnement et architecture.

□ Par conception Sonar s'intègre naturellement dans une infrastructure d'intégration continue.

Sonar : le suivi automatisé

- □ La collecte des données Sonar est réalisée par un plugin Maven lors d'une construction d'intégration d'un projet.
- ☐ Les données sont accessibles au travers d'une application Web, qui permet la consultation et la comparaison des indicateurs.

Sonar est un véritable portail d'accès aux données d'intégration.

DEMONSTRATION

Conclusion

- L'intégration continue est une pratique agile proposée pour améliorer la qualité et la productivité des développements.
- ☐ Après plus d'un an d'utilisation, Hudson est une « bonne » solution, simple à mettre en œuvre, facile à faire évoluer et qui répond à un large éventail de besoins.
- ☐ Associé à Sonar, cette plateforme fournit une solution intéressante pour le pilotage et le suivi des développements

QUESTIONS?

Je vous remercie de votre attention.

BUFFET

