Análise de componentes principais

Marília Melo Favalesso

Thais Maylin Sobjak

Mestrandas do Programa de Conservação e Manejo de Ambientes Naturais

Ordenação

- Simplificação de dados multivariados/redução de dados multivariados
- Começa com n variáveis gerando um número menor de variáveis
- Também pode ser usada para separar/discriminar amostras

Os ecológos e cientistas de maneira geral costumam utilizar cinco tipos de ferramentas:

Análise de componentes principais (PCA)*

Análise fatorial

Análise de correspondência

Análise de coordenadas principais

Escalonamento multidimensional não métrico

Análise de componentes principais (PCA)

Objetivos:

- Redução das variáveis originais em um número menor de variáveis com o intuito de facilitar a visualização dos dados e assim evidenciar a relação entre as observações realizadas e as variáveis amostradas
- As novas variáveis não são correlacionadas
- Facilitar a interpretação pela descoberta de relacionamentos não suspeitos previamente
- As novas variáveis podem ser usada na ANOVA e em regressões logisticas
- Criar índices ecológicos

3 Locais amostrados
12 parcelas/local
Abundância de 3 espécies

Locais	Parcelas	Espécie 1	Espécie 2	Espécie 3
1	1	2	1	3
1	2	3	2	4
1	3	4	3	3
1	4	3	2	2
1	5	2	1	1
1	6	1	2	2
1	7	2	3	2
1	8	3	4	1
1	9	2	3	2
1	10	1	2	1
1	11	4	3	1
1	12	5	5	2
2	1	6	2	3
2	2	3	3	4
2	3	4	4	2
2	4	5	5	1
•••	•••	•••	•••	•••

Gráfico tridimensional das variáveis amostradas

Matriz de correlação de Pearson para as variáveis amostradas

	Espécie 1	Espécie 2	Espécie 3
Espécie 1	1	0,81	0,95
Espécie 2	0,81	1	0,79
Espécie 3	0,95	0,79	1

Essa é a ideia da PCA:

Encontrar um número menor de dimensões que explique uma quantidade suficiente de informações das variáveis originais (contendo grande parte da variação original dos dados).

Componente principal 1 (abundância de espécies)

Retem a maior parte da variação dos dados (autovalores)

Escores dos componentes principais

Os dados multivariados originais apresentavam 3 dimensões, agora eles estão resumidos como uma só (um único valor ao invez de três)

E se também fossem coletados dados ábioticos locais?

	1	Г	T 1
Locais	Parcela	Temperatura	рН
1	а	6.37	6.37
1	b	7.11	7.11
1	С	5.75	5.75
1	d	5.09	5.09
1	е	4.63	4.63
1	f	4.2	4.2
1	g	5	5
1	h	7.41	7.41
1	i	7	7
1	j	5.55	5.55
2	а	7.07	7.07
2	b	7.32	7.32
2	С	6.39	6.39
2	d	5.79	5.79
2	е	5.94	5.94
2	f	5.25	6.37
•••	•••	•••	•••

Correlação = 0,90

Resultado visual da PCA

Pressupostos

- Apenas variáveis quantitativas não se deve incluir qualitativa (análise de correspondência)
- Idealmente o número de observações (n) > 50 ou 5 vezes mais observações do que número de variáveis (existem outros autores que discordam)
- Correlação multivariada entre as variáveis (teste de esfericidade de Bartllet)
- Indice KMO > 0,70
- Normalidade multivariada
- Padronização das variáveis em mesma escala evitar que os eixos da PCA não sejam dominado por variáveis com grandes unidades de medida
- Autovalor > 1

Alguns exemplos

No R

Interpretação final

