A short linear algebra review

MATH 5329
Department of mathematics, UTA

Optional reading: Ch2 of Rencher and Schaalje (2008). Linear Models in Statistics, 2nd Edition. Wiley

Vector norm

Vector norm: a norm of a vector is a informal measure of the length of the vector.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

- **L1 norm:** $||x||_1 = \sum_{i=1}^n |x_i|$ **L2 norm:** $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$.
- \star L-infinity norm: $||x||_{\infty} = \max_{i} |x_{i}|$.

Quadratic form

- A is a square matrix and y is a vector
 - quadratic form: $\mathbf{y}'\mathbf{A}\mathbf{y} = \sum_{i} a_{ii}y_i^2 + \sum_{i \neq j} a_{ij}y_iy_j$
 - bilinear form: $\mathbf{x}'\mathbf{A}\mathbf{y} = \sum_{ij} a_{ij}x_iy_j$
- Example

$$\begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 2 \cdot 2^2 + 5 \cdot 3^2 + 2 \cdot 2 \cdot 3 + 4 \cdot 3 \cdot 2$$

The matrix of a quadratic form can be chosen to be symmetric. $y'Ay = (y'Ay)' = y'A'y = y'(\frac{1}{2}A + \frac{1}{2}A')y$

Rank of matrix

❖ A set of vectors a₁,a₂,....,a_n is linearly dependent if scalars c₁,c₂,....,c_n (not all zero) can be found such that

$$c_1\mathbf{a}_1+c_2\mathbf{a}_2+\cdots+c_n\mathbf{a}_n=\mathbf{0}.$$

- If no such coefficients exist, then the set of vectors is linearly independent.
- ❖ Columns of A are linearly independent if Ac=0 implies c=0.
- rank(A) = # of linearly independent columns (rows) of A
- ❖ A is full-rank if and only if rank(A) = min(# columns, # rows)

Positive (semi)definite

- Positive definite matrix: the symmetric matrix A has the property y'Ay > 0 for any y≠0.
- Positive semidefinite matrix: the symmetric matrix \mathbf{A} has the property $\mathbf{y}'\mathbf{A}\mathbf{y} \geq 0$ for any $\mathbf{y}\neq 0$.
- **Theorem 2.6d.** Let **B** be an $n \times p$ matrix.
 - (i) If $rank(\mathbf{B}) = p$, then $\mathbf{B}'\mathbf{B}$ is positive definite.
 - (ii) If $rank(\mathbf{B}) < p$, then $\mathbf{B}'\mathbf{B}$ is positive semidefinite.

Orthogonal vectors

Two vectors a and b are said to be orthogonal if a dot product of a and b is 0.

- (-1,2)x(4,2)' = -4 + 4 = 0.
- Orthogonal vectors are linearly independent.

Orthonormal vectors

If a vector's L₂ norm (Euclidian norm) is 1, then we say the vector is normalized.

$$||b||_2 = \sqrt{b'b} = 1$$

A set of vectors c₁,c₂,...,c_p that are normalized and mutually orthogonal is said to be an orthonormal set of vectors.

e.g. {(0 0 1)', (0 1 0)', (1 0 0)'}

Orthogonal matrix

- A square matrix C whose column vectors are orthonormal is said to be an orthogonal matrix.
- Row vectors in C are orthonormal too.
- ❖ An orthogonal matrix C is nonsingular and C⁻¹=C'.
- Multiplication of a vector by an orthogonal matrix has the effect of rotating axes. i.e., an orthogonal is a linear transformation that does not changes the length of vectors.

Eigenvector and eigenvalue

- For a square matrix A, a scalar λ is an eigenvalue of **A** and a nonzero vector x is an eigenvector of **A** if $Ax = \lambda x$ $<=> (A \lambda I)x = 0$
- * Eigenvalues can be found by solving $|\mathbf{A} \lambda \mathbf{I}| = 0$ (characteristic equation).
 - A-λI is singular.
- Eigenvectors are not unique. So, an eigenvector x is typically scaled to normalized.

Spectral decomposition (eigen-decomposition)

Theorem 2.12d. If **A** is an $n \times n$ symmetric matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ and normalized eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$, then **A** can be expressed as

$$A = CDC' <=> D=C'AC$$
 (2.103)

$$=\sum_{i=1}^{n}\lambda_{i}\mathbf{x}_{i}\mathbf{x}_{i}', \qquad (2.104)$$

where $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and \mathbf{C} is the orthogonal matrix $\mathbf{C} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$. The result in either (2.103) or (2.104) is often called the *spectral decomposition* of \mathbf{A} .

- Matrix power using spectral decomposition
 - **❖** A²=CDC′CDC′=CD²C′
 - **❖** A^k=CDC′=CD^kC′

Theorem 2.12e. If **A** is any $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then

$$|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i. \tag{2.107}$$

(ii)
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i}. \tag{2.108}$$

We can prove these using the spectral decomposition.

Theorem 2.12f. Let **A** be $n \times n$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

- (i) If **A** is positive definite, then $\lambda_i > 0$ for i = 1, 2, ..., n.
- (ii) If **A** is positive semidefinite, then $\lambda_i \geq 0$ for i = 1, 2, ..., n. The number of eigenvalues λ_i for which $\lambda_i > 0$ is the rank of **A**.
- * sketch of pf) \mathbf{x}_i is an eigenvector corresponding to λ_i . Hence, $\mathbf{x}_i'\mathbf{A}\mathbf{x}_i = \lambda_i\mathbf{x}_i'\mathbf{x}_i > (\text{or } \geq) 0$ where $\mathbf{x}_i'\mathbf{x}_i \geq 0$. Thus, $\lambda_i > (\text{or } \geq) 0$. The proof for 2nd part of (ii) is lengthy.

Square root of matrix

For a symmetric matrix A is positive (semi)definite,

$$A^{1/2} = CD^{1/2}C'$$

$$D^{1/2} = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_p})$$

- * Idempotent: a square matrix \mathbf{A} is said to be idempotent if $\mathbf{A}^2 = \mathbf{A}$.
- Idempotent matrix is a projection matrix (not necessarily orthogonal projection).

(orthogonal) Projection

 Projection is special linear transformation which is extremely useful in linear models

 \mathbf{a}_2

 \mathbf{a}_1

- Projection of a onto b
 - $a_1 = b(b'b)^{-1}b'a$, $a_2 = a a_1$
 - a₂ and a₁ are orthogonal.
 - $P_b = b(b'b)^{-1}b'$ is a projection matrix. (projection onto a subspace spanned by b). Then, $P_ba_1 = a_1$, $P_ba_2 = 0$.

(orthogonal) Projection matrix

- Projection matrix P is symmetric and idempotent.
 - $P^2 = P$ and P = P'.
- A projection matrix **P** that projects a vector onto subspace V is denoted by **P**_V.
- ❖ Orthogonal complement of V is denoted by V⊥.
 - All vectors in V[⊥] are orthogonal to all vectors in V.
 - ❖ If V is in \mathbb{R}^n , V+V \perp = \mathbb{R}^n , where "+" denotes the disjoint union.

Subspace and orthogonal complement

- Example
 - ❖ $V = \{(x_1, x_2, 0)' \text{ for any } x_1, x_2 \in \mathbb{R}\}.$ Then, $V^{\perp} = \{(0, 0, x_3)' \text{ for any } x_3 \in \mathbb{R}\}.$ Also, $V + V^{\perp} = \mathbb{R}^3.$
- ❖ Proposition 1. For a full rank matrix $X \in \mathbb{R}^{n \times p}$ (p≤n), $P_V = X(X'X)^{-1}X'$ is a projection matrix, and V is the column space of X.
 - pf) $P_V^2 = X(X'X)^{-1}X'X(X'X)^{-1}X' = P_V$, and $P_V' = X(X'X)^{-1}X' = P_V$. We skip the proof of 2nd part.

Geometric interpretation

• Proposition 2. $\mathbf{a}_1 = \mathbf{P}_V \mathbf{a}$ is the closest vector in V to \mathbf{a} . In other words, $\min_{\mathbf{c}} ||\mathbf{a} - \mathbf{c}||_2 = ||\mathbf{a}_2||_2$ for all \mathbf{c} in V.

Relation to linear regression

- ❖ Let y∈ \mathbf{R}^n be a vector of outputs, \mathbf{X} ∈ $\mathbf{R}^{n\times p}$ be a matrix of inputs, and β∈ \mathbf{R}^p be a vector of regression coefficients.
- Model: $y=X\beta+\epsilon$. Typically, there is no β that satisfy this equation. So, we want to approximate β so as to $||y-X\beta||_2$ is minimized.
- * $\mathbf{X}\beta$ is in the column space (V) of \mathbf{X} . So, $\mathbf{X}\beta$ that minimizes $||\mathbf{y}-\mathbf{X}\beta||_2$ is $\mathbf{X}\beta=\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}\in V$.
- ❖ y- $\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ y ∈ V[⊥] is residual.

Covariance matrix

- * $x = (x_1, x_2, ..., x_p)'$ is a p-dimensional random vector.
- Let $\sigma_{ij} = \text{cov}(x_i, x_j)$. The covariance matrix of x is

$$\Sigma = \text{cov}(\mathbf{x}) = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{21} \\ \vdots & \vdots & & \vdots \\ \sigma_{p1} & \cdots & \cdots & \sigma_{pp} \end{pmatrix}$$

- For $a \in \mathbb{R}^p$, $a'x = (a_1x_1 + ... + a_px_p)'$ is an affine transformation.
- * $var(a'x) = a'\Sigma a \ge 0$. i.e., Covariance matrix is symmetric positive semidefinite.

- Let $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_p \ge 0$ be eigenvalues of Σ , and $c_1, c_2, ..., c_p$ be their associated (normalized) eigenvectors.
 - * $\lambda_1 = \max a' \Sigma a \text{ subject to } ||a|| = 1.$
 - * c_1 is a direction that maximizes the variance of the affine transformation: $var(c_1'x) = c_1'\Sigma c_1 = \lambda_1 c_1'c_1 = \lambda_1$
 - * $\lambda_2 = \max a' \Sigma a$ subject to ||a|| = 1 and $a \perp c_1$.
 - c₂ is a direction orthogonal to c₁, and var(c₂'x) is the 2nd largest.
 - ❖ In general, c_i is a direction orthogonal to $(c_1,...,c_{i-1})$ while $var(c_i'x)$ is the i-th largest.

Singular value decomposition (SVD)

- Let $X \in \mathbf{R}^{n \times p}$ ($n \ge p$) be a matrix. Then, there exists an orthogonal matrix $\mathbf{V} \in \mathbf{R}^{p \times p}$, a matrix $\mathbf{U} \in \mathbf{R}^{n \times p}$ whose columns are orthonormal, and a diagonal matrix $D = \text{diag}(\sigma_1, \sigma_2, ..., \sigma_p) \in \mathbf{R}^{p \times p}$ such that $\mathbf{X} = \mathbf{UDV}'$ (If \mathbf{X} is symmetric ($\in \mathbf{R}^{p \times p}$), $\mathbf{U} = \mathbf{V}$).
 - * XX'=UDV'VDU=UD2U' and X'X=VDU'UDV'=VD2V'.
- $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_p \ge 0$ are called singular values, and $\sigma_i^2 = \lambda_i$ where λ_i is a eigenvalue of $\mathbf{X}'\mathbf{X}$.

Low rank approximation

Recall X is n by p matrix. By SVD,

$$X = \sum_{i=1}^{\rho} \sigma_i \mathbf{u}_i v_i$$
 where \mathbf{u}_i and v_i are ith column of \mathbf{U} and \mathbf{V} , respectively.

* Reconstruct X using first r singular values:

$$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i (r \ll p) \Rightarrow A = \underset{rank(A)=r}{\operatorname{argmin}} \|X - A\|_F^2$$

This is the best rank r approximation of matrix X, and can be used to compress X.

SVD on feature matrix X

- SVD on X=UDV' leads to principal component analysis (PCA).
- Assuming a feature matrix X is centered, X'X / (n-1) is a sample covariance matrix.
- Singular values are squared root of eigenvalues of the sample covariance matrix. i.e., v₁ is a direction with the largest variance of an affine transformation.
- v₁ is first column of **V** (principal component direction), u₁ is first column of **U** (normalized principal component), and z₁=**X**v₁ is first principal component.

Remarks on PCA

- Principal component ($z_i = \mathbf{X}v_i$) is the linear combination of the variables in \mathbf{X} , and the 1st principal component has largest variance.
- The second principal component has 2nd largest variance, and it is uncorrelated with the 1st, and so on... -> principal components are uncorrelated.
- The principal components (or SVD) provides the best rank r approximation of a matrix.

$$A = \sum_{i=1}^{p} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}' \approx \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}' \quad (r << p).$$

SVD for image processing

- Suppose A is an image matrix. Each entry of A represents pixels in the image.
- Based on the SVD on A, one can select first few terms of the basis representation to compress the image without losing the quality much.

Orignal

first 10 terms

first 5 terms

first 50 terms

Take home messages

- The PCA extracts the important information from the data and to express this information as a set of new uncorrelated (orthogonal) variables.
- The PCA gives the best low rank approximation of a matrix. i.e., it compresses the data size keeping only important information.

Vector and matrix calculus

 \star Let $u=f(\mathbf{x}):\mathbf{R}^p\to\mathbf{R}$. We define the partial derivative as

$$\frac{\partial u}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial u}{\partial x_1} \\ \frac{\partial u}{\partial x_2} \\ \vdots \\ \frac{\partial u}{\partial x_p} \end{pmatrix}.$$

Theorem 2.14a. Let $u = \mathbf{a}'\mathbf{x} = \mathbf{x}'\mathbf{a}$, where $\mathbf{a}' = (a_1, a_2, \dots, a_p)$ is a vector of constants. Then

$$\frac{\partial u}{\partial \mathbf{x}} = \frac{\partial (\mathbf{a}'\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}'\mathbf{a})}{\partial \mathbf{x}} = \mathbf{a}.$$
 (2.112)

Theorem 2.14b. Let $u = \mathbf{x}' \mathbf{A} \mathbf{x}$, where **A** is a symmetric matrix of constants. Then

$$\frac{\partial u}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x}' \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = 2\mathbf{A} \mathbf{x}.$$
 (2.113)