Definición 1. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R}^n y $\alpha \colon \mathbb{N} \to \mathbb{N}$ una función creciente. Entonces, $(x^{\alpha(k)})_{k\in\mathbb{N}}$ es una subsucesión de $(x^k)_{k\in\mathbb{N}}$.

Teorema 2 (Bolzano-Weierstrass). Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión acotada en \mathbb{R}^n . Entonces, $(x^k)_{k\in\mathbb{N}}$ tiene una subsucesión convergente.

Demostración. Realizaremos la demostración por inducctión sobre n.

- n=1 Sea $(x^k)_{k\in\mathbb{N}}$ es una sucesión acotada en \mathbb{R} . Sabemos que toda sucesión tiene una subsuseción creciente, digamos $(x^{\alpha(k)})_{k\in\mathbb{N}}$. Como $(x^k)_{k\in\mathbb{N}}$ es acotada, $(x^{\alpha(k)})_{k\in\mathbb{N}}$ es convergente.
- n+1 Suponemos que si $(x^k)_{k\in\mathbb{N}}$ es una sucesión acotada en \mathbb{R}^n , entonces tiene una subsucesión convergente. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión acotada en \mathbb{R}^{n+1} . Consideramos la sucesión $(y^k)_{k\in\mathbb{N}}$ en \mathbb{R}^n , donde para cada $k\in\mathbb{N}$ y cada $j\in\{1,\ldots,n\}$,

$$y_j^k \coloneqq x_j^k$$
.

Es decir, para cada $k \in \mathbb{N}$, $y^k \coloneqq (x_1^k, \dots, x_n^k)$. Notamos que $(y^k)_{k \in \mathbb{N}}$ es una sucesión acotada en \mathbb{R}^n , pues $||y|| \le ||x||$. Por lo tanto, existe una función creciente $\alpha \colon \mathbb{N} \to \mathbb{N}$ tal que $(y^{\alpha(k)})_{k \in \mathbb{N}}$ es convergente. Ahora, consideramos la sucesión $(z^k)_{k \in \mathbb{N}}$, donde para cada $k \in \mathbb{N}$, $z^k \coloneqq x_{n+1}^{\alpha(k)}$. Entonces, $(z^k)_{k \in \mathbb{N}}$ es acotada en \mathbb{R} , pues $|z^k| \le ||x||$. Por el caso n = 1, existe una función creciente $\beta \colon \mathbb{N} \to \mathbb{N}$ tal que $(z^{\beta(k)})_{k \in \mathbb{N}}$ es convergente. Tomando $\beta \circ \alpha \colon \mathbb{N} \to \mathbb{N}$, la sucesión $(x^{\beta \circ \alpha(k)})_{k \in \mathbb{N}}$ es convergente en \mathbb{R}^n .

Definición 3 (Sucesiones de Cauchy). Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R}^n . Decimos que la sucesión $(x^k)_{k\in\mathbb{N}}$ es de Cauchy, si para cada $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que si n, m > N, entonces

$$||x^n - x^m|| < \varepsilon.$$

Proposición 4. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión de Cauchy en \mathbb{R}^n . Entonces, $(x^k)_{k\in\mathbb{N}}$ es acotada en \mathbb{R}^n .

Demostración. Como la sucesión es de Cauchy, existe $N\in\mathbb{N}$ tal que si n,m>N, entonces

$$||x^n - x^m|| < \frac{1}{2}.$$

Luego, para cada p>N, utilizando la desigualdad del triángulo, $\|x^p\|<\frac{1}{2}+\|x^{N+1}\|$. Haciendo $M\coloneqq \max\{\|x^1\|,\dots,\|x^N\|,\frac{1}{2}+\|x^{N+1}\|\}$, tenemos el resultado. \square

Proposición 5. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R}^n . Entonces, $(x^k)_{k\in\mathbb{N}}$ es de Cauchy, si y solo si, $(x^k)_{k\in\mathbb{N}}$ es convergente.

 $Demostración. \Longrightarrow)$ Supongamos que $(x^k)_{k\in\mathbb{N}}$ es de Cauchy. Por la proposición 4 y por el teorema 2, $(x^k)_{k\in\mathbb{N}}$ tiene una subsuseción convergente. Es decir, existen $\alpha \colon \mathbb{N} \to \mathbb{N}$ creciente y $a \in \mathbb{R}^n$ tales que $\lim_{k\to\infty} x^{\alpha(k)} = a$.

Veamos que la sucesión original $(x^k)_{k\in\mathbb{N}}$ converge a a. Sea $\varepsilon > 0$. Como $(x^k)_{k\in\mathbb{N}}$ es de Cauchy, existe $N_1 \in \mathbb{N}$ tal que si $n, m > N_1$, entonces

$$||x^n - x^m|| < \frac{\varepsilon}{2}.$$

Por otro lado, $\lim_{k\to\mathbb{N}} x^{\alpha(k)} = a$. Entonces, existe $N_2 \in \mathbb{N}$ tal que si p > N, entonces

$$||x^{\alpha(p)} - a|| < \frac{\varepsilon}{2}.$$

Haciendo $N := \max\{N_1, N_2\}$, si n, p > N, tenemos

$$||x^n - a|| \le ||x^n - x^{\alpha(p)}|| + ||x^{\alpha(p)} - a|| < \varepsilon.$$

 \iff Supongamos que $(x^k)_{k\in\mathbb{N}}$ es convergente, es decir, existe $a\in\mathbb{R}^n$ tal que $\lim_{k\to\infty}x^k=a$. Sea $\varepsilon>0$. Entonces, existe $N\in\mathbb{N}$ tal que si n>N,

$$||x^n - a|| < \frac{\varepsilon}{2}.$$

Por lo tanto, si n, m > N, se satisface

$$||x^n - x^m|| < ||x^n - a|| + ||x^m - a|| < \varepsilon.$$

Ejercicios

- 1. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión de Cauchy en \mathbb{R}^n y sea $(x^{\alpha(k)})_{k\in\mathbb{N}}$ una subsucesión. Demuestre que $(x^{\alpha(k)})_{k\in\mathbb{N}}$ es de Cauchy.
- 2. Demuestre que la sucesión $\left(\frac{1}{k^2}\right)_{k\in\mathbb{N}}$ es de Cauchy.
- 3. Sea $(x^k)_{k\in\mathbb{N}}$ dada por $x^k := \sqrt{k}$, para cada $k \in \mathbb{N}$. Demuestre que
 - a) $\lim_{k\to\infty} |x^{k+1} x^k| = 0$.
 - b) $(x^k)_{k\in\mathbb{N}}$ no es de Cauchy.
- 4. Sea $(x^k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} tal que para toda $k\in\mathbb{N}, |x^k-x^{k+1}|\leq \frac{1}{(k+1)!}$. Demuestre que $(x^k)_{k\in\mathbb{N}}$ es de Cauchy.
- 5. Sean $(x^k)_{k\in\mathbb{N}}$ y $(y^k)_{k\in\mathbb{N}}$ sucesiones de Cauchy. Utilizando la definición 3, demuestre que $(x^k+y^k)_{k\in\mathbb{N}}$ es de Cauchy.