Amendments to the Claims

- 1. (CURRENTLY AMENDED) An electronic device (70) comprising a TFT (9,59), the TFT including a channel (16) defined in a layer of polycrystalline semiconductor material (10,48) produced by crystallising amorphous semiconductor material (2,44) using metal atoms (6) to promote the crystallisation process, wherein the semiconductor material includes an average concentration of the metal atoms in the range 1.3×10^{18} to 7.5×10^{18} atoms/cm³.
- 2. (ORIGINAL) An electronic device of Claim 1 wherein the average concentration of the metal atoms in the semiconductor material is around 2.5x10¹⁸ atoms/cm³.
- 3. (CURRENTLY AMENDED) An electronic device of Claim 1 or Claim 2Claim 1 wherein the TFT (59) has a bottom gate configuration.
- 4. (CURRENTLY AMENDED) An electronic device of Claim 3 wherein the gate electrode (40) of the TFT (59) comprises a metallic material.
- 5. (CURRENTLY AMENDED) An electronic device of any preceding Claim Claim 1 wherein the gate electrode (40) of the TFT (59) comprises a metal silicide.
- 6. (CURRENTLY AMENDED) An electronic device of any preceding ClaimClaim 1 wherein the gate electrode (40)-comprises semiconductor material and metal atoms suitable for promoting the crystallisation thereof.
- 7. (CURRENTLY AMENDED) A method of manufacturing an electronic device including the steps of:
 - (a) depositing amorphous semiconductor material (2,44) on a substrate (4);
- (b) adding metal atoms (6)—to the semiconductor material at an average concentration therein in the range 1.3×10^{18} to 4×10^{18} atoms/cm³, the metal atoms

Appl. No. Unassigned; Docket No. GB03 0056 US Amdt. dated 30-DEC-2004 Preliminary Amendment

being suitable for accelerating the crystallisation of amorphous semiconductor material; and

- (c) annealing the amorphous semiconductor material to form polycrystalline semiconductor material.
- 8. (CURRENTLY AMENDED) A method of Claim 7 wherein the metal atoms (6)—are added to the amorphous semiconductor material at an average concentration therein of around 2.5x10¹⁸ atoms/cm³.
- 9. (CURRENTLY AMENDED) A method of Claim 7 or Claim 8 wherein the metal atoms (6) are added by implantation.
- 10. (CURRENTLY AMENDED) A method of any-of Claims 7 to 9Claim 7 wherein the annealing process is carried out for 10 hours or less at a temperature of 600°C or less, and a TFT (9,59)—is formed with its channel defined in the polycrystalline semiconductor material which exhibits a minimum leakage current of around 2.5×10^{-12} A/µm or less at a source-drain voltage of 5V.
- 11. (CURRENTLY AMENDED) A method of Claim 10 wherein the annealing process is carried out for 8 hours or less at a temperature of 550°C or less, and a TFT (9,59)—is formed with its channel defined in the polycrystalline semiconductor material which exhibits a minimum leakage current of around 2.5x10⁻¹² A/µm or less at a source-drain voltage of 5V.
- 12. (CURRENTLY AMENDED) A method of any of Claims 7 to 11 Claim 7 wherein a TFT (59)—is formed with its channel defined in the polycrystalline semiconductor material which has a bottom gate configuration, the method comprising a back channel etch step.
- 13. (CURRENTLY AMENDED) An electronic device of any of Claims 1 to 6Claim 1 or a method of any of Claims 7 to 12Claim 7 wherein the metal atoms (6) comprise nickel atoms.

Appl. No. Unassigned; Docket No. GB03 0056 US Amdt. dated 30-DEC-2004 Preliminary Amendment

14. (CURRENTLY AMENDED) An active matrix display device (68) wherein an electronic device (70) of any of Claims 1 to 6 or Claim 13 Claim 1 forms the active plate of the active matrix device.