Procesamiento de Imágenes

1er cuatrimestre de 2021

Práctica Sistemas Lineales

1. Hallar la convolución discreta x*h

2. a) Determinar la convolución de x(m,n) que viene dada por

con las señales:

- b) Muestre que en general la convolución de dos arrays de dimensión $(M_1 \times N_1)$ y $(M_2 \times N_2)$ es otro array de dimensión $(M_1 + M_2 1) \times (N_1 + N_2 1)$.
- 3. Sea T un sistema LSI y $x(n) = e^{iwn}$, con $w \in \mathbb{R}$ y $n \in \mathbb{Z}$. Probar que x(n) es una función propia de T. Definición: x(n) es función propia del sistema T si T[x(n)] = k x(n), con k un escalar.

1

- 4. Verificar que el algoritmo de convolución implementado satisface las propiedades de la convolución discreta: conmutativa, distributiva, asociativa.
- 5. Realizar un algoritmo que implemente la operación de convolución de una imagen arbitraria para máscaras: media,box filter, gaussiana, mediana, máximo, mínimo, de tamaño 3x3 y 5x5(para filtros cuadrados).

Box filter: utilice las siguientes máscaras:

- a) [111], $[111]^t$
- b) $[1...,1], [1...,1]^t$, cantidad de unos = 17,19,21
 - 1
- c) 1 1
- 6. Verificar que el algoritmo de convolución implementado satisface las propiedades de la convolución discreta: conmutativa, distributiva, asociativa.