Probability Modelling with Applications

Mid Semester Practice Examination

This exam contains 4 problems, each worth 25 points. Answer all questions.

Problem 1. An urn contains 4 red balls and 3 white balls, and we draw three balls from the urn without replacement.

- (a) (6 points) What is the probability that all 3 balls are red?
- (b) (9 points) What is the conditional probability that all 3 balls are red, given that at least 2 are red?
- (c) (10 points) What is the conditional probability that all 3 balls are red given that the third ball drawn is red?

Solution. (a): Let X be the total number of balls drawn of each color, so that X is a \mathbb{Z}_+^2 -valued random variable. Since we draw the balls without replacement, X has the hypergeometric distribution $\mathcal{H}_{3,(4,3)}$. The relevant probability is equal

$$\mathbb{P}(X = (3,0)) = \mathcal{H}_{3,(4,3)}(\{(3,0)\}) = \frac{\binom{4}{3}\binom{3}{0}}{\binom{7}{3}} = \frac{4 \cdot 1}{\frac{7 \cdot 6 \times 5}{6}} = \frac{4}{35}$$

what is the r.v.

$$\mathbb{P}(X = (3,0)) = \frac{\mathcal{H}_{3,(4,3)}(\{(3,0)\})}{\binom{7}{3}} = \frac{\frac{4 \cdot 1}{7 \cdot 6 \times 5}}{\frac{7}{6}} = \frac{4}{35}.$$

P(A|B) = $\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(X = (2,1))} = \frac{\binom{4}{2}\binom{3}{1}}{\binom{7}{3}} = \frac{6 \cdot 3}{35} = \frac{18}{35},$

the relevant probability is

the relevant probability is

$$\mathbb{P}(X = (3,0) \mid X \in \{\underbrace{(2,1),(3,0)}\}) = \frac{\mathbb{P}(X = (3,0))}{\mathbb{P}(X = (3,0)) + \mathbb{P}(X = (2,1))} = \frac{4/35}{4/35 + 18/35} = \frac{4}{22} = \frac{2}{11}.$$

(c): Let Y be the ordered tuple of colors drawn, so that Y is an $\{R,W\}^3$ -valued random variable. The relevant probability is 2 = (R, W3)

$$\mathbb{P}(Y = (R, R, R) \mid Y \in \{(R, R, R), (R, W, R), (W, R, R), (W, W, R)\})$$

$$=\frac{\mathbb{P}(Y=(R,R,R))}{\mathbb{P}(Y=(R,R,R))+\mathbb{P}(Y=(R,W,R))+\mathbb{P}(Y=(W,R,R))+\mathbb{P}(Y=(W,W,R))}.$$

$$\mathbb{P}(Y = (R, R, R)) + \mathbb{P}(Y = (R, W, R)) + \mathbb{P}(Y = (W, R, R)) + \mathbb{P}(Y = (W, W, R))$$
Write $Y = (Y_1, Y_2, Y_3)$. Then Lecture $\mathbb{P}(Y_1, Y_2, Y_3)$. Then Lecture $\mathbb{P}(Y_1, Y_2, Y_3)$. Then Lecture $\mathbb{P}(Y_1, Y_2, Y_3)$. Thus $\mathbb{P}(Y_1, Y_2, Y_3)$. $\mathbb{P}(Y_1, Y_2, Y_3)$. $\mathbb{P}(Y_1, Y_2, Y_3)$. $\mathbb{P}(Y_1, Y_2, Y_3)$. Similarly, one has

$$\mathbb{P}(Y = (R, W, R)) = \mathbb{P}(Y_1 = R)\mathbb{P}(Y_2 = W \mid Y_1 = R)\mathbb{P}(Y_3 = R \mid Y_1 = R, Y_2 = W) = \frac{4}{7} \cdot \frac{3}{6} \cdot \frac{3}{5} = \frac{36}{7 \cdot 6 \cdot 5}$$

$$\mathbb{P}(Y = (W, R, R)) = \mathbb{P}(Y_1 = W)\mathbb{P}(Y_2 = R \mid Y_1 = W)\mathbb{P}(Y_3 = R \mid Y_1 = W, Y_2 = R) = \frac{3}{7} \cdot \frac{4}{6} \cdot \frac{3}{5} = \frac{36}{7 \cdot 6 \cdot 5},$$

$$\mathbb{P}(Y = (W, W, R)) = \mathbb{P}(Y_1 = W)\mathbb{P}(Y_2 = W \mid Y_1 = W)\mathbb{P}(Y_3 = R \mid Y_1 = Y_2 = W) = \frac{3}{7} \cdot \frac{2}{6} \cdot \frac{4}{5} = \frac{24}{7 \cdot 6 \cdot 5}.$$

Hence the relevant probability is

$$\frac{24}{24+36+36+24} = \frac{2}{2+3+3+2} = \frac{1}{5}.$$

Problem 2. Let X, Y and Z be independent real-valued random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

(a) (10 points) Suppose that the distribution of X has a Lebesgue density function $\rho: \mathbb{R} \to [0, \infty)$ given by

 $\frac{\rho(x)}{\beta(a,b)} \begin{cases}
\rho(x) = \begin{cases}
0 & x \in (-\infty, \mu - s], \\
\frac{1}{2s}(1 + \cos(\frac{x - \mu}{s}\pi)) & x \in (\mu - s, \mu + s), \\
0 & x \in [\mu + s, \infty),
\end{cases}$ $\frac{1}{2s}(1 + \cos(\frac{x - \mu}{s}\pi)) \quad x \in [\mu + s, \infty),$ $\frac{1}{2s}(1 + \cos(\frac{x - \mu}{s}\pi)) \quad x \in [\mu + s, \infty),$

for certain parameters $\mu \in \mathbb{R}$ and s > 0. Determine the cumulative distribution function F_X of X.

(b) (15 points) Suppose that X has the beta distribution $\beta_{5,1}$, Y the exponential distribution \mathcal{E}_{α} for some $\alpha > 0$, and

$$t_{\alpha,r}(x) = e^{-\alpha x} \frac{\alpha^r \alpha^{r-1}}{(r-0)!}$$

$$\frac{\mathbb{P}(Y \le 1 \text{ and } X \le Y)}{\mathbb{P}(Z \le 1)}.$$

$$F_X(c) = \int_{-\infty}^{c} \rho(x) dx \qquad (c \in \mathbb{R}).$$

 $\frac{\sum_{x \in \mathbb{R}} \operatorname{gamma distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{Constant}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}}{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{\alpha,6}} = \frac{\sum_{x \in \mathbb{R}} \operatorname{distribution } \Gamma_{$

Hence we obtain F(c) = 0 for $c \in (-\infty, \mu - s]$, and

or
$$c \in (-\infty, \mu - s]$$
, and
$$F_X(c) = \int_{-\infty}^c \rho(x) dx = \frac{1}{2s} \int_{\mu - s}^c (1 + \cos(\frac{x - \mu}{s}\pi)) dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi(c - \mu)/s} (1 + \cos(x)) dx = (x + \sin(x)) \Big|_{-\pi}^{\pi(c - \mu)/s} = 1$$

$$= \frac{1}{2} \left(\frac{c - \mu}{s} + \frac{1}{\pi} \sin(\pi \frac{c - \mu}{s}) + 1\right) = \mu + 3$$

for $c \in (\mu - s, \mu + s]$. In particular, $F_X(\mu + s) = 1$, and then $F_X(c) = 1$ for all $c > \mu + s$.

(b): The density ρ of the random variable (X,Y) is the product of the densities ρ_X of X and ρ_Y of Y, since X and

Y are independent. One has

$$\rho_X(x) = 5x^4 \qquad (1-x)^4 = (0,1)$$

 $\rho_{X}(x) = 5x^{4} \quad \frac{(1-x)^{1-1}}{(x \in (0,1))} \quad \mathcal{F}(r, n-r+1) = \frac{(r-y)!(n-r)!}{n!}$ $\rho_{Y}(y) = \alpha e^{-\alpha y} \quad (y > 0). \quad \mathcal{F}(x, y) = \frac{0!(5-1)!}{5!} = \frac{1}{5!}$ $\rho(x,y) = 5\alpha x^{4}e^{-\alpha y} \quad (x \in (0,1), y > 0). \quad n = 5$

Also, the density of Z is given by

$$\rho_{Z}(z) = \frac{\alpha^{6}}{\Gamma(6)} z^{5} e^{-\alpha z} = \underbrace{\frac{\alpha^{6}}{5!} z^{5} e^{-\alpha z}}_{} (z > 0).$$

The probability of $\{Y \leq 1 \text{ and } X \leq Y\}$ is equal to the integral of ρ over the region

which is equal to $D:=\{(x,y)\in\mathbb{R}^2\mid 0\leq x\leq y\leq 1\},$

 $\iint_{\Omega} \rho(x,y) dx dy = 5\alpha \int_{0}^{1} e^{-\alpha y} \int_{0}^{y} x^{4} dy dy = \alpha \int_{0}^{1} y e^{-\alpha y} dy$

 $=\frac{5!}{\alpha^5}\int_0^1 \frac{\alpha^6}{5!} y^5 e^{-\alpha y} dy = \frac{5!}{\alpha^5} \mathbb{P}(Z \le 1).$ $\mathbb{P}(Z \le 1) = \int_0^1 \frac{\partial}{\partial z} Z^5 e^{-\partial z} dz$

So

and

So

 $\frac{\mathbb{P}(Y \le 1 \text{ and } X \le Y)}{\mathbb{P}(Y \le 1)} = \frac{120}{0.5}$

Problem 3. Let X and Y be independent standard normal random variables.

NO1)

- (a) (10 points) Determine the probability density of X+2Y. (b) (15 points) Determine the probability that $|X| \ge \sqrt{3}|Y|$.

Solution. (a): Let ρ_Y be the probability density of Y. Then 2Y has density $\rho_{2Y}: \mathbb{R} \to [0, \infty)$ given by

$$\rho_{2Y}(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x/2)^2}{2}} = \frac{1}{\sqrt{2\pi 4}} e^{-x^2/8} \qquad (x \in \mathbb{R}),$$

which is the density of the normal distribution $\mathcal{N}_{0,4}$. So Y has the $\mathcal{N}_{0,4}$ distribution, and basic results about sums of independent normally distributed random variables from the lectures show that X + 2Y has the $\mathcal{N}_{0.5}$ distribution. The latter has density $\rho_{X+2Y}: \mathbb{R} \to [0, \infty)$ given by

given by
$$\rho_{X+2Y}(x) = \frac{1}{\sqrt{10\pi}} e^{-x^2/10} \qquad (x \in \mathbb{R}).$$
 $\mathcal{N}_{o,a} + \mathcal{N}_{o,b} = \mathcal{N}_{o,a+b}$

(b): Since X and Y are independent, the density function $\rho_{(X,Y)}: \mathbb{R}^2 \to [0,\infty)$ of (X,Y) is given by

The probability of the event $\{|X| \ge \sqrt{3|Y|}\}$ is given by the integral of $\rho_{(X,Y)}$ over $D := \{(x,y) \in \mathbb{R}^2 \mid |x| \ge \sqrt{3}|y|\}$:

$$\mathbb{P}(|X| \ge \sqrt{3}Y) = \frac{1}{2\pi} \iint_D e^{-(x^2 + y^2)/2} dx dy.$$

To compute this integral we switch to polar coordinates $(r,\theta) \in (0,\infty) \times (-\pi,\pi]$ such that $x = r\cos(\theta)$ and $y = r\sin(\theta)$ for $(x,y) \neq (0,0)$. Then $x^2 + y^2 = r^2$, $dxdy = rdrd\theta$, and $D \setminus \{0\}$ is given in the (r,θ) -plane by

$$\{(r,\theta) \in (0,\infty) \times (-\pi,\pi] \mid |\cos(\theta)| \ge \sqrt{3}|\sin(\theta)|\} = \{(r,\theta) \in (0,\infty) \times (-\pi,\pi] \mid \theta \in (-\pi,-\frac{5}{6}\pi] \cup [-\frac{1}{6}\pi,\frac{1}{6}\pi] \cup [\frac{5}{6}\pi,\pi]\}.$$

It follows that the probability of $\{|X| \ge \sqrt{3}Y\}$ is

$$\iint_{D} \rho_{(X,Y)}(x,y) \mathrm{d}x \mathrm{d}y = \frac{1}{2\pi} \Big(\int_{-\pi}^{-5\pi/6} \mathrm{d}\theta + \int_{-\pi/6}^{\pi/6} \mathrm{d}\theta + \int_{\pi-\pi/6}^{\pi} \mathrm{d}\theta \Big) \int_{0}^{\infty} r e^{-r^{2}/2} \mathrm{d}r = -\frac{1}{3} e^{-r^{2}/2} \Big|_{r=0}^{\infty} = \frac{1}{3}.$$

Problem 4 (25 points). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Call a subset N of Ω a null set if there exists an $\overline{N} \in \mathcal{F}$ with $N \subseteq \overline{N}$ and $\mathbb{P}(\overline{N}) = 0$. Let \mathcal{N} be the collection of all null sets, and let $\overline{\mathcal{F}}$ be the collection of subsets A of Ω for which there exist $\overline{B,C} \in \mathcal{F}$ with $B \subseteq A \subseteq C$ and $\mathbb{P}(C \setminus B) = 0$. $\overline{\mathcal{F}} := \{A \subseteq \Omega \mid \exists B,C \in \mathcal{F} \text{ s.t. } B \subseteq A \subseteq C \text{ Show that } \overline{\mathcal{F}} \text{ is a } \sigma\text{-algebra} \text{ and that } \overline{\mathcal{F}} = \sigma(\mathcal{F} \cup \mathcal{N}).$

Solution. First note that any $A \in \mathcal{F}$ is contained in $\overline{\mathcal{F}}$ Indeed, we trivially have $A \subseteq A \subseteq A$ and $\mathbb{P}(A \setminus A) = \mathbb{P}(\emptyset) = 0$.

So $\mathcal{F} \subseteq \overline{\mathcal{F}}$.

In particular, one has $\Omega \in \mathcal{F} \subseteq \overline{\mathcal{F}}$.

Now let $A \in \overline{\mathcal{F}}$ be given, and let $B, C \in \mathcal{F}$ be such that $B \subseteq A \subseteq C$ and $\mathbb{P}(C \cap B^c) = 0$. Then $B^c, C^c \in \mathcal{F}$, $C^c \subseteq A^c \subseteq B^c$ and $\mathbb{P}(B^c \setminus C^c) = \mathbb{P}(B^c \cap C) = 0$. So $A^c \in \overline{\mathcal{F}}$.

Finally, let $(A_n)_{n \in \mathbb{N}}$ be a sequence of elements in $\overline{\mathcal{F}}$ and $(B_n)_{n \in \mathbb{N}}$, $(C_n)_{n \in \mathbb{N}} \subseteq \mathcal{F}$ be such that $B_n \subseteq A_n \subseteq C_n$ and $\mathbb{P}(C_n \setminus B_n) = 0$ for all $n \in \mathbb{N}$. Then $x \in C_m \setminus B_m$ for any $m \in \mathbb{N}$ and $x \in C_m \setminus (\cup_{n \in \mathbb{N}} B_n)$. So

$$(\cup_{n\in\mathbb{N}}C_n)\setminus(\cup_{n\in\mathbb{N}}B_n)\subseteq(\cup_{n\in\mathbb{N}}C_n\setminus B_n).$$

Also, $\bigcup_{n\in\mathbb{N}}B_n, \bigcup_{n\in\mathbb{N}}C_n\in\mathcal{F}$ and $\bigcup_{n\in\mathbb{N}}B_n\subseteq\bigcup_{n\in\mathbb{N}}A_n\subseteq\bigcup_{n\in\mathbb{N}}C_n$. Because each $C_n\setminus B_n$ is measurable, so is their union, and we find

$$0 \leq \mathbb{P}((\cup_{n \in \mathbb{N}} C_n) \setminus (\cup_{n \in \mathbb{N}} B_n)) \leq \mathbb{P}((\cup_{n \in \mathbb{N}} C_n \setminus B_n) \leq \sum_{n=1}^{\infty} \mathbb{P}(C_n \setminus B_n) = 0.$$

Combining all this, we see that $\bigcup_{n\in\mathbb{N}} A_n \in \overline{\mathcal{F}}$ and therefore $\overline{\mathcal{F}}$ is a σ -algebra.

 $P(A \cap \phi^{c}) = P(A \cap \Omega)$ $(A \setminus \phi) = P(A)$

\$EASS

Now, if $N \in \mathcal{N}$ is given, then there exists an $N' \in \mathcal{F}$ containing N and satisfying $\mathbb{P}(N') = 0$. We then find $\emptyset \subseteq N \subseteq N'$ and $\mathbb{P}(N'\setminus\emptyset)=\mathbb{P}(N')=0$. Since the empty set is contained in \mathbb{Z} , we find $N\in\overline{\mathcal{F}}$ and thus $\mathcal{N}\subseteq\overline{\mathcal{F}}$. Since we have already shown that $\overline{\mathcal{F}}$ is a σ -algebra and that $\mathcal{F} \subseteq \overline{\mathcal{F}}$, it follows that $\sigma(\mathcal{F} \cup \mathcal{N}) \subseteq \overline{\mathcal{F}}$.

Conversely, if $A \in \overline{\mathcal{F}}$ is given, then there exist sets $B, C \in \mathcal{F}$ such that $B \subseteq A \subseteq C$ and $\mathbb{P}(C \setminus B) = 0$. Since $A \setminus B$ is contained in $C \setminus B$, we have $A \setminus B \in \mathcal{N}$ and thus $A = B \cup (A \setminus B)$ is the union of an element in \mathcal{F} and an element in

E OF EVAMINATION

FUN

TO OF EVAMINATION \mathcal{N} . By the arbitrariness of $A(\overline{\mathcal{F}} \subseteq \sigma(\mathcal{F} \cup \mathcal{N})$. BEAEC (A-B) E(C-B) END OF EXAMINATION

BC

BC = AC = CE