ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ

NTONTOΡΟΣ ΗΛΙΑΣ el19206

ΑΣΚΗΣΗ 1η

Ερώτημα 1°

Για να μπορέσουμε να μοντελοποιήσουμε τους συνδέσμους σαν ουρές M/M/1 θα πρέπει :

- 1) Η ροή εισερχόμενων πελατών να είναι διαδικασία Poisson με παράμετρο λ και η ροή αυτή να διασπάται τυχαία και να παράγονται διαδικασίες Poisson με παραμέτρους $\alpha*\lambda$ και $(1-\alpha)*\lambda$.
- 2) Οι δύο γραμμές 1 και 2 να μοντελοποιούνται σαν ουρές M/M/1 με μέσους ρυθμούς άφιξης $λ_1$ και $λ_2$ και μέσους ρυθμούς εξυπηρέτησης $μ_1$ και $μ_2$ αντίστοιχα.

Για την γραμμή 1 έχουμε :

$$\mu 1 = \frac{15 * 10^6 bps}{128 * 8 bits} = 14.65 * 10^3 \frac{packets}{sec}$$

Και:

$$\lambda 1 = \alpha * 10 Kpps$$

Για την γραμμή 2 έχουμε :

$$\mu 2 = \frac{12 * 10^6 bps}{128 * 8 bits} = 11.72 * 10^3 \frac{packets}{sec}$$

Και:

$$\lambda 1 = (1 - \alpha) * 10Kpps$$

Για να είναι εργοδικές οι ουρές πρέπει:

$$\frac{\lambda_1}{\mu_1} < \frac{\lambda}{\mu_1} < 1$$
 και $\frac{\lambda_2}{\mu_2} < \frac{\lambda}{\mu_2} < 1$

Ερώτημα 2°

Από το νόμο του Little ο μέσος χρόνος καθυστέρησης E[T] υπολογίζεται από τον τύπο $E[T]=\frac{E[n]}{\gamma}$ οπου E[n]=E[n1]+E[n2] είναι ο μέσος αριθμός πελατών και γ είναι οι εξωτερικές ροές δηλαδή λ. το διάγραμμα που προκύπτει από το Octave είναι :

Και ο ελάχιστος χρόνος καθυστέρησης είναι :

```
1. Minimun value of E(T)
2. 1.2118e-04
3. for a=
4. 0.6020
```

Ο κώδικας για την άσκηση 1 :

```
1. clc;
clear all;
close all;
4. pkg load queueing
5.
6. # Exercise 1
7.
8. # Task 2
9.
10. a = 0.001:0.001:0.999;
11. 1 = 10000;
12. l1 = 10000*a;
13. m1 = 14650;
14. 12 = 10000*(1-a);
15. m2 = 11720;
16.
17. [U1, R1, Q1, X1, P1] = qsmm1(l1, m1);
18. [U2, R2, Q2, X2, P2] = qsmm1(l2, m2);
20. totClients = Q1 + Q2;
21. totTime = totClients/l;
22. figure(1);
23. plot(a, totTime,"g","linewidth",2);
24. xlabel("a");
25. ylabel("Average response time");
27. [minval, mina] = min(min(totTime,[],1));
28. display("Minimun value of E(T)")
29. disp(minval)
30. display("for a=")
31. disp(0.001*(mina+1))
```

ΑΣΚΗΣΗ 2η

Ερώτημα 1°

Σύμφωνα με το θεώρημα Jackson για να μελετήσουμε το δίκτυο ως ανοιχτό δίκτυο πρέπει να ισχύουν οι παρακάτω προϋποθέσεις:

- 1. Η κάθε ουρά αναμονής Q_i για i=1, 2, 3, 4, 5 να είναι δικτυακός κόμβος εξυπηρέτησης κορμού με εκθετικούς ρυθμούς εξυπηρέτησης μ_i για i=1, 2, 3, 4, 5.
- 2. Για τις αφίξεις πελατών που προέρχονται από εξωτερικές πηγές που είναι άμεσα συνδεδεμένες στους δικτυακούς κόμβους κορμού Q1, Q2, ενώ προσανατολίζονται προς τους εξωτερικούς προορισμούς που είναι άμεσα συνδεδεμένοι στους δικτυακούς κόμβους κορμού Q4, Q5. Οι ροές μεταξύ των δικτυακών κόμβων να είναι ανεξάρτητες ροές Poisson με μέσο ρυθμό γ_{ij} για i,j=1, 2, 3, 4, 5 και η συνολική εξωγενής ροή Poisson στην ουρά Q_i είναι ίση με $\gamma_i = \sum_{j=1, j \neq i}^5 \gamma_i j$.
- 3. Για την δρομολόγηση των πελατών μεταξύ δύο ουρών Q_i , Q_j πρέπει να γίνονται με τυχαίο τρόπο και με πιθανότητα που ισούται με r_{ij} . Έχουμε : r_{12} =2/7, r_{13} =4/7, r_{14} =1/7, r_{35} =1/2 και r_{34} =1/2.
- 4. Οι ροές που διαπερνούν τον δικτυακό κόμβο Q_i να έχουν συνολικό μέσο ρυθμό ίσο με $\lambda i = \gamma_i + \sum_{j=1, j \neq i}^5 r_{ij} * \lambda_i$
- 5. Οι χρόνοι εξυπηρέτησης των πελατών στις ουρές να έχουν την ιδιότητα της έλλειψης μνήμης και η τιμή τους να είναι εξαρτημένη από την κατανομή του κάθε εξυπηρετητή.

Ερώτημα 2°

Για την ένταση του φορτιού ισχύει $\rho=\frac{\lambda}{\mu}$. Χρησιμοποιώντας το θεώρημα Bruke, δηλαδή ότι η έξοδος πελατών από μια ουρά M/M/1 ακολουθεί κατανομή Poisson με ρυθμό ίσο με τον ρυθμό εισόδου λ, έχουμε :

$$\rho_{1} = \frac{\lambda_{1}}{\mu_{1}}$$

$$\rho_{2} = \frac{\lambda_{2} + r_{12} \cdot \lambda_{1}}{\mu_{2}} = \frac{\lambda_{2} + \frac{2}{7} \cdot \lambda_{1}}{\mu_{2}}$$

$$\rho_{3} = \frac{r_{13} \cdot \lambda_{1}}{\mu_{3}} = \frac{\frac{4}{7} \cdot \lambda_{1}}{\mu_{3}}$$

$$\rho_{4} = \frac{r_{34} \cdot r_{13} \cdot \lambda_{1} + r_{14} \cdot \lambda_{1}}{\mu_{4}} = \frac{\frac{1}{2} \cdot \frac{4}{7} \cdot \lambda_{1} + \frac{1}{7} \lambda_{1}}{\mu_{4}} = \frac{\frac{3}{7} \cdot \lambda_{1}}{\mu_{4}}$$

$$\rho_{5} = \frac{r_{35} \cdot r_{13} \cdot \lambda_{1} + \lambda_{2} + r_{12} \cdot \lambda_{1}}{\mu_{5}} = \frac{\frac{1}{2} \cdot \frac{4}{7} \cdot \lambda_{1} + \lambda_{2} + \frac{2}{7} \cdot \lambda_{1}}{\mu_{5}} = \frac{\frac{4}{7} \cdot \lambda_{1} + \lambda_{2}}{\mu_{5}}$$

Ερώτημα 3°

Η συνάρτηση mean_clients θα επιστρέφει τις τιμές μέσου αριθμού πελατών Q_i για i=1,2,3,4,5 σε κάθε ουρά

Ερώτημα 4°

Για τιμές : λ1 = 4, λ2 = 1, μ1 = 6, μ2 = 5, μ3 = 8, μ4 = 7, μ5 = 6 οι εντασεις των φορτίων που δέχεται η κάθε ουρά είναι από το Octave :

```
1. r1=
2. 0.6667
3. r2=
4. 0.4286
5. r3=
6. 0.2857
7. r4=
8. 0.2449
9. r5=
10. 0.5476
```

Ο μέσος χρόνος καθυστέρησης είναι :

```
1. E(T)=
2. 0.9370
```

Ερώτημα 5°

Στενωπός του δικτύου είναι η ουρά 1 αφού σε αυτή εμφανίζεται η μεγαλύτερη ροή φορτιού. Η μέγιστη τιμή λ_1 που μπορούμε να έχουμε με το σύστημα να παραμείνει εργοδικό είναι $\rho_1=\frac{\lambda_1}{\mu_1}$ ά $\rho\alpha$ $\lambda_1=6$.

Ερώτημα 6°

Για $0.6 < \lambda_1 < 5.94$ το διάγραμμα μέσου χρόνου καθυστέρησης ενός πελάτη από άκρο σε άκρο είναι :

Ο κώδικας για την άσκηση 2 :

```
1. # Exercise 2
2.
3. # Task 2
4.
5. clc;
6. clear all;7. close all;8. pkg load queueing
9.
10.
11. function [r1, r2, r3, r4, r5, e] = intesities(lamda1, lamda2, mu1, mu2, mu3, mu4, mu5)
12.
     r1 = (lamda1/mu1);
     r2 = ((lamda2+(2/7)*lamda1)/mu2);
13.
14.
      r3 = ((4/7)*lamda1/mu3);
15.
      r4 = ((3/7)*lamda1/mu4);
      r5 = (((4/7)*lamda1+lamda2)/mu5);
      if((r1<1) && (r2<1) && (r3<1) && (r4<1) && (r5<1))
17.
18.
       e = 1;
19.
      else
20.
      e = 0;
21.
      endif
22.
      display("r1=")
23.
      disp(r1)
24.
      display("r2=")
25.
      disp(r2)
      display("r3=")
26.
27.
     disp(r3)
28.
      display("r4=")
29.
      disp(r4)
      display("r5=")
30.
31.
     disp(r5)
32. endfunction
33.
34. # Task 3
35.
36. function [r1, r2, r3, r4, r5, e] = intesities no display(lamda1, lamda2, mu1, mu2, mu3,
   mu4, mu5)
37. r1 = (lamda1/mu1);
     r2 = ((lamda2+(2/7)*lamda1)/mu2);
39. r3 = ((4/7)*lamda1/mu3);
40. r4 = ((3/7)*lamda1/mu4);
      r5 = (((4/7)*lamda1+lamda2)/mu5);
41.
42.
      if((r1<1) && (r2<1) && (r3<1) && (r4<1) && (r5<1))
      e = 1;
43.
44.
      else
45.
       e = 0;
46.
      endif
47. endfunction
48.
49.
50. function [Q1, Q2, Q3, Q4, Q5] = mean_clients(lamda1, lamda2, mu1, mu2, mu3, mu4, mu5)
51. [r1, r2, r3, r4, r5, e] = intesities_no_display(lamda1, lamda2, mu1, mu2, mu3, mu4,
   mu5);
52.
      Q1 = r1/(1-r1);
      Q2 = r2/(1-r2);
53.
      Q3 = r3/(1-r3);
55.
      Q4 = r4/(1-r4);
     Q5 = r5/(1-r5);
57. endfunction
58.
59. # Task 4
60.
61. lamda1 = 4;
62. lamda2 = 1;
63. \text{ mu1} = 6;
64. \text{ mu2} = 5;
```

```
65. \text{ mu3} = 8;
66. mu4 = 7;
67. \text{ mu5} = 6;
68. [r1,r2,r3,r4,r5,e]=intesities(lamda1, lamda2, mu1, mu2, mu3, mu4, mu5);
69.
71. [Q1, Q2, Q3, Q4, Q5] = mean_clients(lamda1, lamda2, mu1, mu2, mu3, mu4, mu5);
72. display("E(T)=")
73. disp((Q1+Q2+Q3+Q4+Q5)/(lamda1+lamda2))
75. # Task 6
76.
77. maxlamda1 = 6;
78. for i = 1:1:90;
79. lamda1 = (0.1*maxlamda1)+(i-1)*0.01*maxlamda1;
      [Q1, Q2, Q3, Q4, Q5] = mean_clients(lamda1, lamda2, mu1, mu2, mu3, mu4, mu5);
80.
81. E(i)=
82. endfor
     E(i) = (Q1+Q2+Q3+Q4+Q5)/(lamda1+lamda2);
83.
84. lamda1 = (0.1*maxlamda1):(0.01*maxlamda1):(0.99*maxlamda1);
85. figure(2);
86. plot(lamda1, E,"r","linewidth",2);
87. xlabel("lamda1");
88. ylabel("E(T)");
```