CHAPTER 4 - Memory

Questions 1

Consider the following page reference string: e, c, b, e, a, g, d, c, e, g, d, a

With 4 frames, how many page faults would occur with the following page replacement algorithms? Fill in the tables accordingly.

RS: reference strings; F0: frame 0, F1: frame 1, etc.

Hint: all frames are initially empty, so your first unique pages will all cost one fault each.

1. Optimal

- r opania												
Time	1	2	3	4	5	6	7	8	9	10	11	12
RS	е	С	b	е	а	g	d	С	е	g	d	а
F0												
F1												
F2												
F3												
Page fault?												

Total page fault:

2 I RU

Z. LIVO												
Time	1	2	3	4	5	6	7	8	9	10	11	12
RS	е	С	b	е	а	g	d	С	е	g	d	а
F0												
F1												
F2												
F3												
Page fault?												

Total page fault:

3.Second chance

0.0000110												
Time	1	2	3	4	5	6	7	8	9	10	11	12
RS	е	С	b	е	а	g	d	С	е	g	d	а
F0												
F1												
F2												
F3												
Page fault?												

Total page fault:

Questions 2

- 1. True or False? A program does not need to be stored in memory in its entirety.
- 2. True or False? A physical address space is at least as large as a virtual address space.
- 3. When does a page fault occur?
- **4.** True or False? In a pure demand paged system a page is never brought into memory until it is needed.

1. A machine has 48 bit virtual addresses and 32 bit physical addresses. Pages are 8 KB. How many entries are needed for the page table?

2³⁵ pages

2. For each of the following decimal virtual addresses, compute the virtual page number and offset for a 4-KB page and for an 8 KB page: 20000, 32768, 60000.

20000 = page number * 4 * 1024 + offset

Virtual address	Page number	Offset
20000	4	3616
32768		
60000		

2.2 Page size = 8KB

20000 = page number * 8 * 1024 + offset

Virtual address	Page number	Offset
20000	2	3616
32768		
60000		

3. The figure below shows a virtual address space from 0 to 64K and 32K of physical memory. There are 16 pages and 8 frames and transfers between memory and disk are in pages. Give the physical address corresponding to the following virtual addresses, explain how did you get the answer?:

a) 20 b) 4100 c) 8300

04.02e-BM/DH/HDCV/FU 1/2 2/

4. A memory free in 3 frames. How many page fault occur after running as the following page 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 0, 7 using FIFO

	7	0	1	2	0	3	0	4	2	3	0	3	2	1	2	0	1	0	7
F1																			
F2																			
F3																			
PF																			

2. With given page table and 16 bit virtual address, that is split 4 bit page numbers and 12 bit offset. If user references the address 15016, which physical address is in memory?

04.02e-BM/DH/HDCV/FU 1/2 3/

Answer: ? 2728

3. A memory free in 4 frames. How many page faults do occur after running as the following page 2 3 2 0 1 5 2 4 5 3 2 5 2 using LRU

Answer:

	2	3	2	0	1	5	2	4	5	3	2	5	2
F1													
F2													
F3													
F4													
PF													

4. A memory free in 4 frames. Which state of the memory after the page 4 is accessed when the requested page as 2 3 2 0 1 5 2 4 5 3 2 5 2 using LRU

6. Assume that the Page Table below is in effect. The number of lines per page is 400. The actual memory location for line 1634 is $_{----}34_{--}$.

Page Number	Page Frame Number
0	8
1	10
2	5
3	11
4	0

04.02e-BM/DH/HDCV/FU 1/2 4/

7. A computer has four page frames. The time of loading, time of last access, and the R and M bits for each page are as shown below (the times are in clock ticks):

Page	Loaded	Last ref	R	М
0	226	280	0	0
1	160	265	0	1
2	110	270	1	0
3	120	285	1	1

Which page will LRU replace?

1

8. A computer has four page frames. The time of loading, time of last access, and the R and M bits for each page are as shown below (the times are in clock ticks):

Page	Loaded	Last ref.	R		М	
0	226		200			
0	226		280	0	Ü	
1	160		265	0	1	
2	110		270	0	0	
3	120		285	1	1	

Which page will Second Chance replace? (NRU)

9. A memory free in 3 frames. How many page hits do? Assume that the running as the following page 7, 0 , 1, 2 , 0, 3, 0 , 4, 2 , 3 , 0 , 3 , 2 , 1, 2, 0, 1, 0, 7 using LRU

	7	0	1	2	0	3	0	4	2	3	0	3	2	1	2	0	1	0	7
F1																			
F2																			
F3																			
PF																			

9. A computer provides the user with virtual address space of 2^32 (2 to the power 32) bytes. Pages of size 4096 (4K or 2^12) bytes are used for implementing virtual memory where the total physical memory is equal to 2^18 bytes. If the hexadecimal virtual

04.02e-BM/DH/HDCV/FU 1/2 5/

10. A computer has four page frames. The time of loading, time of last access, and the R and M bits for each page are as shown below (the times are in clock ticks):

Page	Loaded	Last Ref.	R M
0	230	285	1 0
1	120	265	0 0
2	140	270	0 1
3	110	280	1 1

- (a) Which page will NRU replace? (1)
- (b) Which page will FIFO replace? (3)
- (c) Which page will LRU replace? (1)
- (d) Which page will second chance replace? (1)
- 11. Consider a logical address space of 64 pages of 2048 words each, mapped unto a physical memory of 32 frames.
 - a) How many bits are there in logical address?

17

b) How many bits are there in physical address?

16

12. A system with 32 bit virtual address. If the page size is 4 KB and each table entry occupies 4 bytes, what is the size of the page table?

Consider a swapping system in which the memory consists of the following hole sizes: 10K, 4K, 20K, 15K, 9K. Assume worst fit algorithm is used. Which holes are taken for successive segment requests of 8K,

- 13. If there are 64 pages and the page size is 2048 words, what is the length of logical address?
- 14. A system with 32 bit virtual address. If the page size is 4 KB and each table entry occupies 4 bytes, what is the size of the page table?

```
total pages = 2^2
```

size of page table =
$$4B * 2 ^ 20 = 4MB$$

size of virtual memory = 2[^] 20 * 4KB = 4GB

04.02e-BM/DH/HDCV/FU 1/2