RK3588 EVB 用户使用指南

发布版本:V1.0

日期:2022-1-11

免责声明

您购买的产品、服务或特性等应受瑞芯微电子股份有限公司商业合同和条款的约束,本文档中描述的 全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,瑞芯微电子股份有 限公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标声明

Rockchip、Rockchip TM 图标、瑞芯微和其他瑞芯微商标均为瑞芯微电子股份有限公司的商标,并归瑞芯微电子股份有限公司所有。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

版权所有 © 瑞芯微电子股份有限公司 2022

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址:福建省福州市铜盘路软件园 A 区 18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590 客户服务传真: +86-591-83951833 客户服务邮箱: fae@rock-chips.com

前言

概述

本文档主要介绍 RK3588 EVB 基本功能和硬件特性、多功能硬件配置、软件调试操作使用方法,旨在帮助调试人员更快、更准确地使用 RK3588 EVB,熟悉 RK3588 芯片开发应用方案。

产品版本

本文档对应的产品版本如下:

产品名称	产品版本
RK3588 EVB	RK_EVB1_RK3588_LP4XD200P232SD10H1_V10_20210818

适用对象

本文档主要适用于以下工程师:

- 技术支持工程师
- 单板硬件开发工程师
- 嵌入式软件开发工程师
- 测试工程师

修订记录

修订记录累积了每次文档更新的说明。

版本	修改人	修改日期	修改说明	备注
V1.0	廖智雄	2022-1-11	初始版本	

缩略语

缩略语包括文档中常用词组的简称。

缩略词	英文描述	中文描述
CPU	Central Processing Unit	中央处理器
NPU	Neural Network Processing Unit	神经网络处理器
VPU	Video Processing Unit	视频处理器
DDR	Double Data Rate	双倍速率同步动态随机存储器
eMMC	Embedded Multi Media Card	内嵌式多媒体存储卡
eDP	Embedded DisplayPort	嵌入式数码音视讯传输接口
HDMI	High Definition Multimedia Interface	高清晰度多媒体接口
I2C	Inter-Integrated Circuit	内部整合电路(两线式串行通讯总线)
I2S	Inter-IC Sound	集成电路内置音频总线
PMIC	Power Management IC	电源管理芯片
LDO	Low Drop Out Linear Regulator	低压差线性稳压器
DCDC	Direct Current to Direct Current	直流电转直流电
CAN	Controller Area Network	控制器局域网络
SARADC	Successive Approximation Register Analog to	逐次逼近寄存器型模数转换器
	Digital Converter	
UART	Universal Asynchronous Receiver/ Transmitter	通用异步收发传输器
JTAG	Joint Test Action Group	联合测试行为组织
PWM	Pulse Width Modulation	脉冲宽度调制
MIPI	Mobile Industry Processor Interface	移动产业处理器接口
LVDS	Low-Voltage Differential Signaling	低电压差分信号
PMIC	Power Management IC	电源管理芯片
PMU	Power Management Unit	电源管理单元
RK/Rockchip	Rockchip Electronics Co.,Ltd.	瑞芯微电子股份有限公司
USB	Universal Serial Bus	通用串行总线
SATA	Serial Advanced Technology Attachment	串行高级技术附件
PCIe	Peripheral Component Interconnect Express	外围组件快速互连
RGB	Red,Green,Blue; RGB color mode is a color	红绿蓝, RGB 色彩模式, 是工业界的一
	standard in industry	种颜色标准
VGA	Video Graphics Array	电脑显示视频图像标准接口
ADB	Android Debug Bridge	安卓调试桥
IR	Infrared Radiation	红外线
SPDIF	Sony/Philips Digital Interface	索尼/飞利浦数字音频接口
RTC	Real-time clock	实时时钟
RGMII	Reduced Gigabit Media Independent Interface	精简吉比特介质独立接口
WIFI	Wireless Fidelity	无线保真
CIF	Camera Interface	摄像头接口

目录

Ħ	U 音	111
E	目录	Vl
拵	盾图目录	VIII
表	支格目录	X
1	系统概述	1
	1.1 RK3588 芯片概述	1
	1.2 RK3588 芯片框图	
	1.3 系统框图	2
	1.3.1 系统框图	2
	1.3.2 功能概括	3
	1.3.3 功能接口	4
	1.3.4 功能模块布局	5
	1.4 组件	6
	1.5 开关机和待机	6
	1.6 固件升级	6
	1.6.1 USB 驱动安装	6
	1.6.2 固件升级方式	7
	1.7 串口调试	9
	1.7.1 串口工具	9
	1.7.2 ADB 调试	11
2	硬件介绍	12
	2.1 实物图	12
	2.2 电源框图	13
	2.3 I2C地址	13
	2.4 扩展连接座信息	14
	2.5 参考图	15
3	模块简述	16
	3.1 电源输入	16
	3.2 存储器	17
	3.3 RTC 电路	18
	3.4 按键输入	19
	3.5 SATA 电源座子	19
	3.6 PCIe 座子	20
	3.7 以太网口	20
	3.8 SATA 接口	
	3.9 VGA 输出	
	3.10 BT/WIFI 接口	
	3.11 Debug 接口	
	3.12 JTAG 接口	24

RK3588 EVB 用户使用指南	目录
KK3388 EVB 用戸使用貨幣 3.13 MIPI D/CPHY 输入接口	25
3.14 MIPI DPHY 输入接口	26
3.15 TYPEC 接口	29
3.16 USB3.0 接口	29
3.17 USB2.0 Host 接口	30
3.18 HDMI 输出接口	30
3.19 HDMI 输入接口	31
3.20 风扇电源接口	31
3.21 Sensor 模组扩展	
3.22 Speaker 接口	33
4 注意事项	34
4.1 注意事项	34

插图目录

图 1-1 RK3588 芯片框图	2
图 1-2 RK3588 EVB 系统框图	3
图 1-3 RK3588 EVB 功能接口分布图(正面)	5
图 1-4 RK3588 EVB 功能接口分布图(背面)	5
图 1-5 驱动安装成功示意图	7
图 1-6 进入 Loader 烧写模式示意图	8
图 1-7 进入 MASKROM 烧写模式示意图	9
图 1-8 获取当前端口 COM 号	9
图 1-9 串口工具配置界面	10
图 1-10 串口工具调试界面	11
图 1-11 ADB 连接正常	11
图 2-1 RK3588 EVB 实物图	12
图 2-2 RK3588 EVB 电源框图	13
图 2-3 间距 0.8mm 立式双排 80 PIN PCB 封装	15
图 3-1 DC12V 输入、前端 buck 变换器以及 PMIC 芯片	16
图 3-2 LPDDR4x、eMMC 位置	17
图 3-3 预留 SPI Flash 位置	17
图 3-4 进 MASKROM 烧写的按键位置	18
图 3-5 RTC 电路	18
图 3-6 按键位置	19
图 3-7 SATA 电源 12V/5V 输出	19
图 3-8 PCIex4 座子	20
图 3-9 千兆网络接口	21
图 3-10 SATA 接口	21
图 3-11 VGA 视频输出接口	22
图 3-12 BT/WIFI 天线接口	
图 3-13 Debug 接口	23
图 3-14 JTAG 座子	24
图 3-15 拔码开关	24
图 3-16 MIPID/CPHY RX 输入接口	25
图 3-17 MIPI DPHY 视频输入接口	27
图 3-18 TYPEC 接口	
图 3-19 USB3.0 OTG 接口	29
图 3-20 USB2.0 Host 接口	30
图 3-21 HDMI TX 接口	30
图 3-22 HDMI RX 接口	31

RK3588 EVB	用户使用指南
MMJJOO LYD	mi ix:miai ni

桶	IΘI		
aaa	m	$\boldsymbol{\vdash}$	ж

图 3-23 风扇电源接口	31
图 3-24 IMX415 模组小板	32
图 3-25 SPK 座子	32

表格目录

表 1-1 PCB 功能接口介绍表	4
表 2-1 I2C 通道挂载的外设地址和 IO 电平值对应表	13
表 3-1 MIPI D/CPHY_RX 信号定义表	25
表 3-2 MIPI DPHY_RX 信号定义表	27
表 3-3 IMX415 模组扩展接口信号定义表	32

1 系统概述

1.1 RK3588 芯片概述

RK3588 是一颗高性能、低功耗的应用处理器芯片, 专为 ARM PC、边缘计算、个人移动互联网设备和其它多媒体应用而设计, 是由 4 个 A76 和 4 个 A55 与独立的 NEON 协处理器集成的。

RK3588 内置了多种功能强大的嵌入式硬件引擎,为高端应用提供了优异的性能,支持 8K@60fps 的 H. 265 和 VP9 解码器、8k@30fps 的 H. 264 解码器和 4K@60fps 的 AV1 解码器;还支持 8K30fps 的 H. 264 和 H. 265 编码器,高质量的 JPEG 编码器/解码器,专门的图像预处理器和后处理器。

内置 3D GPU,能够完全兼容 0penGL ES1. 1/2. 0/3. 2、0penCL 2. 2 和 Vulkan 1. 2。带有 MMU 的特殊 2D 硬件引擎将最大限度地提高显示性能,并提供流畅的操作体验。

引入了新一代完全基于硬件的 48M 像素 ISP (图像信号处理器),它实现了众多算法加速器,如 HDR、3A、LSC、3DNR、2DNR、锐化、去雾、鱼眼校正、伽马校正等。

内嵌的 NPU 支持 INT4/INT8/INT16/FP16 混合运算,算力高达 6TOP。此外,凭借其强大的兼容性,可以轻松转换基于 TensorFlow / MXNet/PyTorch/Caffe 等一系列框架的网络模型。

RK3588 具有高性能的 4 通道外部存储器接口(LPDDR4/LPDDR4X/LPDDR5),能够支持苛刻的存储器带宽,还提供了一套完整的外设接口,以支持非常灵活的应用。

1.2 RK3588 芯片框图

图 1-1 RK3588 芯片框图

1.3 系统框图

1.3.1 系统框图

RK3588 EVB 系统采用 RK3588 的芯片, RK806-2 双 PMIC 的供电方案; 存储采用 LPDDR4X、eMMC; 有 2xHDMI TX 、1xHDMI RX、MIPI TX、VGA、SATA、PCIe30x4、TYPEC、2xRJ45 等外设接口,集成了一个稳定的可量产化的方案。详细的系统框图如下:

图 1-2 RK3588 EVB 系统框图

1.3.2 功能概括

RK3588 EVB 包含的功能如下:

- DC Power: DC 12V 适配器供电接口
- TYPEC: 一路完整 TYPEC 接口,兼容系统固件升级通道以及 DP1.4 输出接口
- USB2.0 HOST0/1: 两路 USB2.0standard-A 接口,可以接鼠标、U 盘、USB HUB 等设备
- MIPI DCPHY: 支持两路 4lane MIPI DPHY 或者两路 3lane MIPICPHY 信号输入,通过 80pin 座子接入,可通过配套 EVB 的 IMX415 单目小板实现拍照摄像功能
- MIPI DPHY: 支持两路 4lane 或者四路 2lane MIPI 信号输入,通过 80pin 座子接入。可通过配套 EVB 附件 IMX415 单目小板实现拍照摄像功能
- HDMI2.1 OUT: 两路 HDMI2.1 OUT standard-A 接口,单路最大可支持 8K@60Hz 输出
- MIPI DPHY0/1 TX: 支持两路 4lane MIPI 信号输出,通过 FPC 线连接
- VGA OUT: DP 信号转 VGA 输出
- PCIeWIFI(2T2RWIFI6&BT5.0): WIFI 型号为 AP6275P/AP6275PR3, 外置 SMA 天线, 支持无线上网功能
- Ethernet: 支持 2 路 RJ45 接口 10/100/1000M 以太网
- Audio Interface:支持喇叭、耳机输出声音、单 MIC 录音
- SATA3.0Interface: 两路 7pin SATA 接口
- PCIe3.0 Interface: 一路标准的 PCIex4 接口,用于扩展 PCIe 设备

- UART Debug: 用户调试查看 LOG 信息使用;支持 TYPEC 以及 MINI USB 接口
- JTAG:系统 JTAG 调试接口
- System Key: 包含 Reset、MASKROM、PWRON、V+/Recover、V-、MENU、ESC 按键
- SPDIF: 支持数字音频接口
- RTC: 采用 HYM8563TS 芯片,可由开发板或者纽扣电池(CR1220-3V)供电

1.3.3 功能接口

表 1-1 PCB 功能接口介绍表

功能	是否可用
LPDDR4x(总容量 8GB)	YES
eMMC(总容量 32GB)	YES
SPI Flash	默认未贴
DC 12V Input	YES
USB3.0 OTG(x1 Port)	YES
USB2.0 Host(x2 Port)	YES
MIPI D/CPHY RX	YES
MIPI DPHY RX	YES
HDMI2.0 RX	YES
HDMI2.1 OUT(2 Port)	YES
MIPI DPHY DSI TX1(2x4lane)	YES
VGA OUT	YES
BT&PCIeWIFI(2x2 WIFI&BT5.0)	YES
千兆网口 10M/100M/1000M (2 Port)	YES
Audio(SPK、MIC、Earphone)	YES
SATA3.0 Interface(2 Port)	YES
PCIe3.0 Interface(4Lane)	YES
UART Debug(TPYEC/MINI USB)	YES
JTAG Interface	YES
System Key	YES
Maskrom Key	YES

1.3.4 功能模块布局

RK3588 EVB 功能接口分布图:

图 1-3 RK3588 EVB 功能接口分布图(正面)

图 1-4 RK3588 EVB 功能接口分布图(背面)

1.4 组件

RK3588 EVB 套件包括以下物品:

- RK3588EVB
- 电源适配器,默认规格:输入 100V AC~240V AC, 50Hz; 输出 12V DC, 3A
- 显示屏,规格: MIPI;尺寸: 5.5寸/竖屏;分辨率: 1920*1080
- 一根 2.4G/5G 双频 SMA 公头接口天线
- IMX415 单目镜头模组

1.5 开关机和待机

RK3588 EVB 开机、关机以及待机方法介绍如下:

● 开机方法:

使用 DC 12V 供电, 打开电源总开关; 等待进入安卓界面, 表示默认固件启动成功。

● 关机方法:

长按开机键 6s, 系统关机。

● 待机方法:

按下开机键,系统会进入一级待机状态。在没有接 USB OTG 情况下,没有其他的任何操作(比如按键操作),软件也没有 Wake_Lock 源,大约 3s 后会从一级待机转入二级待机状态。可通过 Power 按键推出待机模式

1.6 固件升级

1.6.1 USB 驱动安装

EVB 驱动升级前需要先安装驱动,以下介绍 Windows 系统驱动安装流程

在提供的工具文件夹里面找到 DriverAssitant_v5.1.1,点击 DriverInstall.exe 文件跳出如下界面。点击"驱动安装",等待提示安装驱动成功即可。如果已安装旧驱动,请点击"驱动卸载",并重新安装驱动。

图 1-5 驱动安装成功示意图

1.6.2 固件升级方式

RK3588 EVB 固件升级方式有两种:

- 进入 Loader 升级方式:
 - 系统上电前需要保持 SARADC_IN1 为低,系统将进入 Loader 状态。

具体步骤如下:

- 1) 连接 TYPEC 口到电脑 PC 端,按住主板的 V+/REC 按键不放。
- 2) EVB 供电 12V, 若已经上电, 按下复位按键。
- 3) 烧写工具显示发现一个 Loader 设备后,释放 V+/REC 按键。在工具下图矩形区域,鼠标右击 "导入配置",然后找到固件路径,选择 config 文件
- 4) 烧写工具对应选择 Loader、Parameter、Uboot 等文件。
- 5) 点击执行,即进入升级状态,工具的右侧为进度显示栏,显示下载进度与校验情况。

图 1-6 进入 Loader 烧写模式示意图

● 进入 MASKROM 升级方式:

系统上电前 SARADC INO 为低,进入 MASKROM 状态。

具体步骤如下:

- 1) 连接 TYPEC 口到电脑 PC 端, 按住板子的 MASKROM 按键不放。
- 2) EVB 供电 12V, 若已经上电, 按下复位按键。
- 3) 烧写工具显示发现一个 MASKROM 设备后,释放 MASKROM 按键。在工具下图矩形区域,鼠标右击"导入配置",然后找到固件路径,选择 config.cfg 文件
- 4) 烧写工具对应选择 Loader、Parameter、Uboot 等文件。
- 5) 点击执行,即进入升级状态,工具的右侧为进度显示栏,显示下载进度与校验情况。

图 1-7 进入 MASKROM 烧写模式示意图

1.7 串口调试

1.7.1 串口工具

连接开发板的 MINI USB Debug 调试接口到电脑 PC端,在 PC端设备管理器中得到当前端口 COM号。

图 1-8 获取当前端口 COM 号

打开串口工具,在"快速连接"界面下,先选择串口,再选择对应的串口号,将波特率改为 1.5M(RK3588 默认支持 1.5M 波特率),并且在 Serial 处关闭流控,最后点击"打开"按钮,即可进入串口调试界面。

图 1-9 串口工具配置界面

图 1-10 串口工具调试界面

1.7.2 ADB 调试

- 1) 确保驱动安装成功,PC 连接与开发板电源同侧的 TYPEC 口;
- 2) 开发板上电,开机进入系统;
- 3) 电脑 PC 端, 打开 adb 工具;
- 4) 输入"adb shell", 进入 adb 调试。

图 1-11 ADB 连接正常

2 硬件介绍

2.1 实物图

图 2-1 RK3588 EVB 实物图

2.2 电源框图

图 2-2 RK3588 EVB 电源框图

2.3 I2C 地址

开发板预留丰富的外围接口,用户调试 I2C 外设会涉及到 I2C 通道复用情况,表 2-1 为现有的开发板器件对应的 I2C 地址和电平值,避免地址冲突和电平不匹配。

I2C 通道	设备	I2C 地址	电源域
I2C0	N/A	N/A	N/A
I2C1	N/A	N/A	N/A
I2C2	HYM8563TS (RTC)	0xA3	1.8V
I2C2	FUSB302B(TYPEC)	0xD6	1.8V
I2C2	RTD2166(VGA)	TBD	1.8V
I2C3	MIPI CSI0	TBD	1.8V
I2C4	MIPI CSI1	TBD	1.8V
I2C5	MIPI DCPHY0/1	TBD	1.8V
I2C6	Touch Panel	TBD	3.3V
I2C7	ES8388 (CODEC)	TBD	1.8V
HDMITX0_I2C	HDMI TX0	TBD	3.3V
HDMITX1_I2C	HDMI TX1	TBD	1.8V
HDMIRX_I2C	HDMIRX	TBD	1.8V

表 2-1 I2C 通道挂载的外设地址和 IO 电平值对应表

注意:使用扩展板时,要保证板上 I2C 地址与开发板上 I2C 地址不冲突。

2.4 扩展连接座信息

在实际使用过程中,用户可能会制作扩展板,开发板连接座型号如下: U4600、U4700 为引脚 0.3mm, 间距 0.8mm 的立式双排 80PIN 卡座,尺寸如下:

图 2-3 间距 0.8mm 立式双排 80 PIN PCB 封装

2.5 参考图

EVB 对应的参考图、PCB 版本信息如下:

- 参考图: RK_EVB1_RK3588_LP4XD200P232SD10H1_V10_20210818RZF.DSN
- PCB 设计: RK_EVB1_RK3588_LP4XD200P232SD10H1_V10_20210817_final_lint.brd

3 模块简述

3.1 电源输入

电源适配器输入 12V/3A 电源,通过前端降压变换器(buck)电源后,得到系统电源 VCC5V0_SYS,然后系统电压提供给 PMIC 电源管理芯片,输出不同电压供系统使用。

电源适配器输入口、前端 Buck 变换器以及 PMIC 芯片:

图 3-1 DC12V 输入、前端 buck 变换器以及 PMIC 芯片

3.2 存储器

- eMMC: 开发板上存储类型为 eMMC FLASH, 默认使用的容量 32GB
- SPI Flash: 开发板预留 SPI 器件位置
- DDR: 开发板 DDR 采用两片 4GB LPDDR4x, 总容量 8GB

图 3-2 LPDDR4x、eMMC 位置

图 3-3 预留 SPI Flash 位置

EVB 进 MASKROM 烧写的按键位置:

图 3-4 进 MASKROM 烧写的按键位置

3.3 RTC 电路

RTC 电路采用 HYM8563TS 芯片,可由开发板或者自带纽扣电池(默认不带,需要自行购买 CR1220-3V 纽扣电池)供电,保证在板子断电情况下也能继续提供准确的时间,通过 I2C 信号与主控通信。

图 3-5 RTC 电路

3.4 按键输入

开发板使用 SARADC_IN1 作为进 RECOVER 检测口,支持 12 位分辨率,可以通过 V+/REC 按键,进入 LOADER 烧写模式;另外板子还留了 RESET 按键,方便通过硬件复位,重启机器;以及其它常用的几个按键: V+、V-、ESC、MENU、PWRON。

按键位置如下:

图 3-6 按键位置

3.5 SATA 电源座子

开发板所用的 SATA 设备供电口,分别输出 12V/5V。

图 3-7 SATA 电源 12V/5V 输出

3.6 PCIe 座子

开发板上使用标准 PCIe3.0 连接座,可外接 PCIe 板卡进行通信。

- 工作模式: End Point(EP) & Root Complex(RC)。
- 链路支持 4 lane 数据接口。
- 100MHz 时钟是由外挂时钟芯片 PI6C557-05BLE 提供。

图 3-8 PCIex4 座子

3.7 以太网口

开发板支持两个 RJ45 接口,可提供双千兆以太网连接功能。分别采用 RK3588 内部集成的千兆以太网 MAC 以及 PCIe2.0,与外部 PHY 芯片相连接, PHY 型号为 RTL8211F-CG/RTL8111HS,特性如下:

- 兼容 IEEE802.3 标准,支持全双工和半双工操作,支持交叉检测和自适应。
- 支持 10/100/1000M 数据速率。
- 接口采用带隔离变压器和指示灯的 RJ45 接口组合。

图 3-9 千兆网络接口

3.8 SATA 接口

● 开发板提供 2 个 7P SATA 接口,其中 J8302 默认为预留;用到时,需要焊上 C8310-C8313 电容, C1820/C1821/C6800/C6801 电容断开不焊。

图 3-10 SATA 接口

3.9 VGA 输出

开发板支持标准 VGA 接口视频输出,开发板默认贴 RTD2166 芯片。

图 3-11 VGA 视频输出接口

3.10 BT/WIFI 接口

开发板上 WIFI+BT 模组采用台湾正基 AP6275P,特性如下:

- 支持 2x2WIFI(2.4G and 5G, 802.11 a/b/g/n/ac)、BT5.0 功能,外置 2 个 SMA 接口天线。
- BT 数据采用 UART 通信方式。
- BT 语音连接主控 I2S 接口。
- WIFI 数据采用 PCIe 数据总线。

RK3588 EVB 默认配备一根 2.4GHz/5GHz 双模天线。

图 3-12 BT/WIFI 天线接口

3.11 Debug 接口

开发板支持 TYPEC 以及 MINI USB 调试接口。

图 3-13 Debug 接口

3.12 JTAG 接口

开发板预留了2个JTAG接口,下图排针预留接口为ARM JTAG。标准JTAG插座支持ARM/MCU JTAG,可通过拨码开关切换; 当开关 1/2 打开、3/4 关闭支持ARM JTAG,当开关 1/2 关闭,3/4 打开支持MCU JTAG。

图 3-14 JTAG 座子

图 3-15 拨码开关

3.13 MIPI D/CPHY 输入接口

MIPI D/CPHY 输入接口采用间距 0.8mm 的立式 80pin 插座 (型号为 61082-081402LF, 规格见章节 2.4),支持双路 MIPI D/CPHY 接口输入。可以支持两路 4Lane DPHY 模组输入或者两路 3Lane CPHY 模组输入。MIPI DPHY/CPHY 最大分别支持 4.5Gbps/Lane 和 5.7Gbps/Trio。与该 80pin 插座配套座子型号为 61083-081402LF, 封装尺寸规格可参考章节 2.4;客户可根据需求制作扩展板卡。

图 3-16 MIPI D/CPHY RX 输入接口

MIPI D/CPHY_RX 接口信号顺序如下:

表 3-1 MIPI D/CPHY_RX 信号定义表

	次 5-1 Mil I D/CI II I L XX 旧 J 足入収					
Pin	DPHY(单)	DPHY (双)	CPHY(单)	СРНҮ (双)	Pin	
1	GND	GND	GND	GND	2	
3	MIPI_DPHY0_RX_D0N	MIPI_DPHY1_RX_D0N	MIPI_CPHY0_RX_TRIO0_A	MIPI_CPHY1_RX_TRIO0_A	4	
5	MIPI_DPHY0_RX_D0P	MIPI_DPHY1_RX_D0P	MIPI_CPHY0_RX_TRIO0_B	MIPI_CPHY1_RX_TRIO0_B	6	
7	GND	GND	GND	GND	8	
9	MIPI_DPHY0_RX_D1N	MIPI_DPHY1_RX_D1N	MIPI_CPHY0_RX_TRIO0_C	MIPI_CPHY1_RX_TRIO0_C	10	
11	MIPI_DPHY0_RX_D1P	MIPI_DPHY1_RX_D1P	MIPI_CPHY0_RX_TRIO1_A	MIPI_CPHY1_RX_TRIO1_A	12	
13	GND	GND	GND	GND	14	
15	MIPI_DPHY0_RX_CLKN	MIPI_DPHY1_RX_CLKN	MIPI_CPHY0_RX_TRIO1_B	MIPI_CPHY1_RX_TRIO1_B	16	
17	MIPI_DPHY0_RX_CLKP	MIPI_DPHY1_RX_CLKP	MIPI_CPHY0_RX_TRIO1_C	MIPI_CPHY1_RX_TRIO1_C	18	
19	GND	GND	GND	GND	20	
21	MIPI_DPHY0_RX_D2N	MIPI_DPHY1_RX_D2N	MIPI_CPHY0_RX_TRIO2_A	MIPI_CPHY1_RX_TRIO2_A	22	
23	MIPI_DPHY0_RX_D2P	MIPI_DPHY1_RX_D2P	MIPI_CPHY0_RX_TRIO2_B	MIPI_CPHY1_RX_TRIO2_B	24	
25	GND	GND	GND	GND	26	
27	MIPI_DPHY0_RX_D3N	MIPI_DPHY1_RX_D3N	MIPI_CPHY0_RX_TRIO2_C	MIPI_CPHY1_RX_TRIO2_C	28	

Pin	DPHY(单)	DPHY (双)	СРНҮ(単)	СРНҮ (双)	Pin
29	MIPI_DPHY0_RX_D3P	MIPI_DPHY1_RX_D3P	NO_USE	NO_USE	30
31	GND	GND	GND	GND	32
33	NC	NC	NC	NC	34
35	NC	NC	NC	NC	36
37	GND	GND	GND	GND	38
39	MIPI_CAM1_CLKOUT	MIPI_CAM2_CLKOUT	MIPI_CAM1_CLKOUT	MIPI_CAM2_CLKOUT	40
41	NC	NC	NC	NC	42
43	GND	GND	GND	GND	44
45	I2C5_SDA_M0_MIPI	I2C5_SDA_M0_MIPI	I2C5_SDA_M0_MIPI	I2C5_SDA_M0_MIPI	46
47	I2C5_SCL_M0_MIPI	I2C5_SCL_M0_MIPI	I2C5_SCL_M0_MIPI	I2C5_SCL_M0_MIPI	48
49	NC	NC	NC	NC	50
51	MIPI_DCPHY0_RX_PDN_H	MIPI_DCPHY1_RX_PDN_H	MIPI_DCPHY0_RX_PDN_H	MIPI_DCPHY1_RX_PDN_H	52
53	NC	NC	NC	NC	54
55	NC	NC	NC	NC	56
57	MIPI_DPHY_FSYNC	MIPI_DPHY_FSYNC	MIPI_DPHY_FSYNC	MIPI_DPHY_FSYNC	58
59	MIPI_DPHY_HSYNC	MIPI_DPHY_HSYNC	MIPI_DPHY_HSYNC	MIPI_DPHY_HSYNC	60
61	VCC_1V8_S3	VCC_3V3_S3	VCC_1V8_S3	VCC_3V3_S3	62
63	NC	NC	NC	NC	64
65	MIPI_DCPHY0_PWREN0_H	MIPI_DCPHY0_PWREN1_H	MIPI_DCPHY0_PWREN0_H	MIPI_DCPHY0_PWREN1_H	66
67	IRC_AIN	NC	IRC_AIN	NC	68
69	IRC_BIN	NC	IRC_BIN	NC	70
71	NC	NC	NC	NC	72
73	NC	NC	NC	NC	74
75	GND	GND	GND	GND	76
77	VCC5V0_SYS	GND	VCC5V0_SYS	GND	78
79	VCC5V0_SYS	VCC12V_DCIN	VCC5V0_SYS	VCC12V_DCIN	80

3.14 MIPI DPHY 输入接口

MIPI DPHY 输入接口采用间距 0.8mm 的立式 80pin 插座(型号为 61082-081402LF,规格见章节 2.4)。可以支持两路 4Lane MIPI DPHY 模组输入或者四路 2Lane MIPI DPHY 信号输入。MIPI DPHY 最大分别支持 2.5Gbps/Lane。与 MIPI D/CPHY 一起可以组成最大 6 路模组输入。与该 80pin 插座配套座子型号为 61083-081402LF,封装尺寸规格可参考章节 2.4;客户可根据需求制作扩展板卡。

图 3-17 MIPI DPHY 视频输入接口

表 3-2 MIPI DPHY_RX 信号定义表

衣 3-2 MII I DI II I _KX 同 5 足文衣				
Pin	DPHY(单)	DPHY (双)	Pin	
1	GND	GND	2	
3	MIPI_CSI0_RX_D0N	MIPI_CSI1_RX_D0N	4	
5	MIPI_CSI0_RX_D0P	MIPI_CSI1_RX_D0P	6	
7	GND	GND	8	
9	MIPI_CSI0_RX_D1N	MIPI_CSI1_RX_D1N	10	
11	MIPI_CSI0_RX_D1P	MIPI_CSI1_RX_D1P	12	
13	GND	GND	14	
15	MIPI_CSI0_RX_CLK0N	MIPI_CSI1_RX_CLK0N	16	
17	MIPI_CSI0_RX_CLK0P	MIPI_CSI1_RX_CLK0P	18	
19	GND	GND	20	
21	MIPI_CSI0_RX_D2N	MIPI_CSI1_RX_D2N	22	
23	MIPI_CSI0_RX_D2P	MIPI_CSI1_RX_D2P	24	
25	GND	GND	26	
27	MIPI_CSI0_RX_D3N	MIPI_CSI1_RX_D3N	28	
29	MIPI_CSI0_RX_D3P	MIPI_CSI1_RX_D3P	30	
31	GND	GND	32	
33	MIPI_CSI0_RX_CLK1N	MIPI_CSI1_RX_CLK1N	34	

Pin	DPHY(単)	DPHY (双)	Pin
35	MIPI_CSI0_RX_CLK1P	MIPI_CSI1_RX_CLK1P	36
37	GND	GND	38
39	MIPI_CAM3_CLKOUT	MIPI_CAM4_CLKOUT	40
41	NC	NC	42
43	GND	GND	44
45	I2C3_SDA_M0_MIPI	I2C4_SDA_M3_MIPI	46
47	I2C3_SCL_M0_MIPI	I2C4_SCL_M3_MIPI	48
49	NC	NC	50
51	MIPI_CSI0_PDN0_H	MIPI_CSI1_PDN0_H	52
53	NC	NC	54
55	MIPI_CSI0_PDN1_H	MIPI_CSI1_PDN1_H	56
57	MIPI_DPHY_FSYNC	MIPI_DPHY_FSYNC	58
59	MIPI_DPHY_HSYNC	MIPI_DPHY_HSYNC	60
61	VCC_1V8_S3	VCC_3V3_S3	62
63	NC	NC	64
65	MIPICSI0_PWREN_H	MIPICSI1_PWREN_H	66
67	IRC_AIN	NC	68
69	IRC_BIN	NC	70
71	NC	NC	72
73	NC	NC	74
75	GND	GND	76
77	VCC5V0_SYS	GND	78
79	VCC5V0_SYS	VCC12V_DCIN	80

3.15 TYPEC 接口

开发板支持一个完整的 TYPEC 接口,支持以下功能:

- 该接口中的 TYPEC0_USB20_OTG 可用来下载固件
- 支持 TYPEC 功能
- 支持 DP1.4 输出

图 3-18 TYPEC 接口

3.16 USB3.0 接口

开发板支持一路 USB3.0 OTG 接口;接口为标准的 A 口,方便开发者接入 USB3.0 U 盘以及其他 USB3.0 设备

图 3-19 USB3.0 OTG 接口

3.17 USB2.0 Host 接口

开发板支持两路 USB2.0;集成在双层 USB 器件上,可支持连接如鼠标、U盘、蓝牙等 USB 设备。

图 3-20 USB2.0 Host 接口

3.18 HDMI 输出接口

开发板支持两路 HDMI 标准 A 输出接口,最大支持 HDMI2.1,最大可支持 8K60 视频输出。

图 3-21 HDMI TX 接口

3.19 HDMI 输入接口

开发板支持一路 HDMI 输入接口,最大可支持 HDMI2.0 视频输入。

图 3-22 HDMI RX 接口

3.20 风扇电源接口

开发板预留一个风扇接口,支持 12V/5V 风扇、支持转速可调;开发板默认标配 12V 风扇。接口线序从左往右依次是 GND、12V、SENSOR、CONTROL

图 3-23 风扇电源接口

3.21 Sensor 模组扩展

开发板配套一个 IMX415 模组,最大可支持到 800W 像素。

- 支持自动白平衡、3D 降噪、HDR
- 支持 RAW10/RAW12 数据输出
- 集成 IRCUT 切换电路,可控制 Sensor 模组日夜模式
- 模组上预留了1组24pin MIPI接口,可根据需要扩展为双目应用

图 3-24 IMX415 模组小板

IMX415 模组扩展接口信号顺序如下:

表 3-3 IMX415 模组扩展接口信号定义表

Pin	DPHY
1	GND
2	GND
3	NC
4	MIPI_DCPHY1_RX_RST_L
5	I2C5_SDA_M0_MIPI
6	I2C5_SCL_M0_MIPI
7	GND
8	GND
9	MIPI_DPHY1_RX_D0N
10	MIPI_DPHY1_RX_D0P
11	MIPI_DPHY1_RX_D1N
12	MIPI_DPHY1_RX_D1P
13	MIPI_DPHY1_RX_D2N
14	MIPI_DPHY1_RX_D2P
15	MIPI_DPHY1_RX_D3N

Pin	DPHY
16	MIPI_DPHY1_RX_D3P
17	GND
18	MIPI_DPHY1_RX_CLKN
19	MIPI_DPHY1_RX_CLKP
20	GND
21	MIPI_CAM2_CLKOUT
22	VCC_3V3_O
23	VCC_3V3_D
24	VCC_3V3_A

3.22 Speaker 接口

开发预留 2 个 Speaker 接口

图 3-25 SPK 座子

4 注意事项

4.1 注意事项

RK3588 EVB 适用于实验室或者工程环境,开始操作前,请先阅读以下注意事项:

- 任何情况下不可对屏幕接口及扩展板进行热插拔操作。
- 拆封开发板包装和安装前,为避免静电释放(ESD)对开发板硬件造成损伤,请采取必要防静电措施。
- 手持开发板时请拿开发板边沿,不要触碰到开发板上的外露金属部分,以免静电对开发板元器件造成损坏。
- 请将开发板放置于干燥的平面上,以保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备 (如: 医疗设备)等。