ĐẠI SỐ TUYẾN TÍNH

Chương 5

CHÉO HÓA MA TRẬN

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh

Nội dung

Chương 5. CHÉO HÓA MA TRẬN

- Trị riêng và vectơ riêng
- Không gian con riêng
- Chéo hóa ma trận
- Úng dụng của chéo hóa ma trận

Giới thiệu

Bài toán Cho A là một ma trận vuông. Tồn tại hay không một ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận đường chéo?

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$$
 và $P = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$.

Tìm P^{-1} và tính $P^{-1}AP$.

Đáp án.
$$P^{-1} = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

$$P^{-1}AP = (P^{-1}A)P = \begin{pmatrix} 2 & 2 & 0 \\ -2 & -4 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Lưu ý. Trong chương này các vecto được viết theo dạng cột.

5.1. Trị riêng và vectơ riêng

Định nghĩa. Cho $A \in M_n(\mathbb{R})$. Vecto $v \in \mathbb{R}^n$ được gọi là một **vecto riêng** của A nếu:

- $\mathbf{0} \quad v \neq \mathbf{0}.$
- \bullet tồn tại $\lambda \in \mathbb{R}$ sao cho $Av = \lambda v$.

Khi đó ta nói λ là một tri $ri\hat{e}ng$ của A, và v là vecto $ri\hat{e}ng$ ung un

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$$
 và hai vect
ơ $u = \begin{pmatrix} 6 \\ -5 \end{pmatrix}, v = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Hỏi u và v có phải là vect
ơ riêng của A không?

Giải. Ta có

$$Au = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ -5 \end{pmatrix} = \begin{pmatrix} -24 \\ 20 \end{pmatrix} = -4 \begin{pmatrix} 6 \\ -5 \end{pmatrix} = -4u$$

Vậy Au = -4u. Suy ra u là vecto riêng của A ứng với trị riêng -4.

Ta có

$$Av = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -9 \\ 11 \end{pmatrix} \neq \lambda \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \lambda v, \forall \, \lambda \in \mathbb{R}.$$

Vậy $Av \neq \lambda v$. Suy ra v không là vectơ riêng của A.

Nhận xét. Nếu v là vectơ riêng ứng với trị riêng λ thì μv ($\mu \neq 0$) cũng là vectơ riêng ứng với trị riêng λ .

Định nghĩa. Cho A là ma trận vuông cấp n. Khi đó da thức dặc trưng của A được định nghĩa là

$$P_A(\lambda) := \det(A - \lambda I_n).$$

Ví dụ. Cho ma trận
$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$
. Tìm đa thức đặc trưng của A .

Giải. Ta có
$$P_A(\lambda) = |A - \lambda I_3|$$

$$= \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 2 & 4 - \lambda & 2 \\ 1 & 1 & 3 - \lambda \end{vmatrix}$$

$$= -\lambda^3 + 10\lambda^2 - 28\lambda + 24.$$

 $\mathbf{M\hat{e}nh}$ $\mathbf{d\hat{e}}$. $Tri\ ri\hat{e}ng\ của\ ma\ trận\ A\ là\ nghiệm\ của\ phương\ trình\ đặc\ trưng$

$$P_A(\lambda) = 0.$$

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
. Tìm trị riêng của A .

Giải. Đa thức đặc trưng của A là

$$P_A(\lambda) = \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3).$$

Như vậy A có hai trị riêng là $\lambda_1 = 2$ và $\lambda_2 = 3$.

5.2. Không gian riêng

Định nghĩa. Cho $A \in M_n(\mathbb{R})$. Nếu λ là một trị riêng của A thì

$$E(\lambda) := \{ v \in \mathbb{R}^n | Av = \lambda v \}$$

là một không gian con của \mathbb{R}^n và ta gọi nó là **không gian riêng** của A ứng với trị riêng λ .

Nhận xét. $E(\lambda)$ chính là không gian nghiệm của hệ phương trình

$$(A - \lambda I_n)X = 0.$$

Ví dụ. Cho ma trận $\begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$. Tìm các trị riêng của A và không gian riêng ứng với các trị riêng này.

Giải. - Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3|$$

= $-\lambda^3 + 11\lambda^2 - 35\lambda + 25$
= $-(\lambda - 1)(\lambda - 5)^2$.

- Trị riêng

$$P_A(\lambda) = 0 \Leftrightarrow \lambda = 1 \text{ (bội 1)}, \ \lambda = 5 \text{ (bội 2)}.$$

Vậy A có 2 trị riêng là $\lambda_1 = 1$ (bội 1), $\lambda_2 = 5$ (bội 2).

- Không gian riêng

• Với $\lambda_1 = 1$, không gian E(1) là không gian nghiệm của hệ

$$(A - I_3)X = 0 \Leftrightarrow \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} 2x_1 - 2x_2 = 0; \\ -2x_1 + 2x_2 = 0; \\ 4x_3 = 0. \end{cases}$$
(1)

Giải hệ (1) ta tìm được nghiệm tổng quát

$$(x_1, x_2, x_3) = (t, t, 0), \quad t \in \mathbb{R}.$$

Suy ra E(1) có dimE(1) = 1 với cơ sở

$$\mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

• Với $\lambda_2 = 5$, không gian riêng E(5) là không gian nghiệm của hệ

$$(A - 5I_3)X = \mathbf{0} \Leftrightarrow \begin{pmatrix} -2 & -2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} -2x_1 - 2x_2 = 0; \\ -2x_1 - 2x_2 = 0. \end{cases} \tag{2}$$

Giải hệ (2) ta tìm được nghiệm tổng quát

$$(x_1, x_2, x_3) = (-t, t, s), \quad t, s \in \mathbb{R}.$$

Suy ra E(5) có $\dim E(5) = 2$ với cơ sở

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}.$$

Mệnh đề. Cho $A \in M_n(\mathbb{R})$. Nếu λ là một trị riêng bội m của A thì $\dim E(\lambda) \leq m$.

5.3. Ma trận chéo hóa được

Định nghĩa. Ma trận $A \in M_n(\mathbb{R})$ được gọi là chéo hóa được nếu tồn tại một ma trận khả nghịch P sao cho $P^{-1}AP$ là ma trận đường chéo.

Định lý. Ma trận $A \in M_n(\mathbb{R})$ chéo hóa được khi và chỉ khi thỏa hai điều kiện sau:

 $lacktriangleq P_A(\lambda)$ phân rã trên \mathbb{R} , nghĩa là $P_A(\lambda)$ có thể phân tích thành dạng

$$P_A(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} \dots (\lambda - \lambda_p)^{m_p}$$

 $v\acute{o}i \ \lambda_1,\ldots,\lambda_p \in \mathbb{R} \ v\grave{a} \ m_1+\cdots+m_p=n.$

 $\forall i \in \overline{1,p}, \ \dim E(\lambda_i) = m_i.$

Hệ quả. Nếu ma trận A có n trị riêng khác nhau thì A chéo hóa được.

Ví dụ. Cho ma trận
$$A=\begin{pmatrix}1&2&-2\\3&2&-4\\2&-1&0\end{pmatrix}$$
. Hỏi A có chéo hóa được

Giải. Đa thức đặc trưng của A là

không?

$$P_A(\lambda) = |A - \lambda I_3|$$

$$= \begin{vmatrix} 1 - \lambda & 2 & -2 \\ 3 & 2 - \lambda & -4 \\ 2 & -1 & -\lambda \end{vmatrix}$$

$$= -\lambda^3 + 3\lambda^2 + 4\lambda - 6$$

$$= -1(\lambda - 1)(\lambda^2 - 2\lambda - 6).$$

Suy ra A có 3 giá trị riêng khác nhau là

$$\lambda_1 = 1, \lambda_2 = \frac{1 + \sqrt{7}}{2}, \lambda_3 = \frac{1 - \sqrt{7}}{2}.$$

Như vây A chéo hóa được.

Thuật toán chéo hóa ma trận

Bước 1. Tìm đa thức đặc trưng $P_A(\lambda) = |A - \lambda I|$.

- Nếu $P_A(\lambda)$ không phân rã thì A không chéo hóa được và thuật toán kết thúc.
- Ngược lại, chuyển sang bước tiếp theo.

Bước 2. Tìm tất cả các nghiệm $\lambda_1, \ldots, \lambda_p$ của $P_A(\lambda) = 0$ và các số bội m_1, \ldots, m_p tương ứng. Đối với mỗi $i \in \overline{1,p}$, tìm số chiều của của không gian riêng $E(\lambda_i)$, là không gian nghiệm của hệ phương trình $(A - \lambda_i I)X = 0$.

- Nếu tồn tại một $i \in \overline{1,p}$ sao cho dim $E(\lambda_i) < m_i$ thì A không chéo hóa được và thuật toán kết thúc.
- \bullet Ngược lại, A chéo hóa được và chuyển sang bước tiếp theo.

Bước 3. Với mỗi $i \in \overline{1,p}$, tìm một cơ sở \mathcal{B}_i cho $E(\lambda_i)$, ta đặt P là ma trận có được bằng cách xếp các vectơ của các \mathcal{B}_i , $i \in \overline{1,p}$. Khi đó ma trận P làm chéo A và $P^{-1}AP$ là ma trận đường chéo

$$\operatorname{diag}(\underbrace{\lambda_1,\ldots,\lambda_1}_{m_1 \stackrel{\cdot}{\ln}},\ldots,\underbrace{\lambda_r,\ldots,\lambda_r}_{m_r \stackrel{\cdot}{\ln}}).$$

Ví dụ. Cho ma trận
$$A = \begin{pmatrix} 3 & 3 & 2 \\ 1 & 1 & -2 \\ -3 & -1 & 0 \end{pmatrix}$$
. Hỏi A có chéo hóa được

không?

Giải. - Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 3 - \lambda & 3 & 2 \\ 1 & 1 - \lambda & -2 \\ -3 & -1 & -\lambda \end{vmatrix} = -(\lambda - 4)(\lambda^2 + 4).$$

Vì $P_A(\lambda)$ không phân rã trên \mathbb{R} nên ma trận A không chéo hóa được.

Ví dụ. Cho ma trận
$$A=\begin{pmatrix}4&1&-1\\-6&-1&2\\2&1&1\end{pmatrix}$$
. Hỏi A có chéo hóa được

Giải. - Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3|$$

$$= \begin{vmatrix} 4 - \lambda & 1 & -1 \\ -6 & -1 - \lambda & 2 \\ 2 & 1 & 1 - \lambda \end{vmatrix}$$

$$= -\lambda^3 + 4\lambda^2 - 5\lambda + 2$$

$$= -(\lambda - 1)^2(\lambda - 2).$$

- Trị riêng

không?

$$P_A(\lambda) = 0 \Leftrightarrow \lambda = 1 \text{ (bôi 2)}, \quad \lambda = 2 \text{ (bôi 1)}.$$

Vây A có 2 tri riêng là $\lambda_1 = 1$ (bôi 2), $\lambda_2 = 2$ (bôi 1).

- Không gian riêng

• Với $\lambda_1=1$, không gian riêng E(1) chính là không gian nghiệm của hệ phương trình $(A-I_3)X=0$. Ta có

$$(A - I_3) = \begin{pmatrix} 3 & 1 & -1 \\ -6 & -2 & 2 \\ 2 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Vậy, hạng của $A-I_3$ bằng 2, suy ra $\dim E(1)=3-2=1$ nhỏ hơn số bội của trị riêng $\lambda_1=1$. Do đó A không chéo hóa được.

Ví dụ. Chéo hóa ma trận
$$A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}$$
.

Giải. - Đa thức đặc trưng

$$P_A(\lambda) = |A - \lambda I_3| = \begin{vmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda + 2)^2.$$

- Trị riêng

$$P_A(\lambda) = 0 \Leftrightarrow \lambda = 1 \text{ (boi } 1), \lambda = -2 \text{ (boi } 2).$$

Vậy A có 2 trị riêng là $\lambda_1 = 1$ (bội 1), $\lambda_2 = -2$ (bội 2).

- Không gian riêng
- Với $\lambda_1 = 1$, không gian riêng E(1) là không gian nghiệm của hệ phương trình $(A I_3)X = 0$. Ta có

$$(A - I_3) = \begin{pmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{pmatrix} \xrightarrow{\begin{array}{c} -\frac{1}{3}d_2 \\ d_1 \leftrightarrow d_2 \\ \hline d_3 - 3d_1 \end{array}} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix}$$
$$\xrightarrow{\begin{array}{c} -\frac{1}{3}d_2 \\ d_1 - 2d_2 \\ \hline d_3 - 3d_2 \end{array}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta có nghiệm tổng quát

$$(x_1, x_2, x_3) = (t, -t, t), \quad t \in \mathbb{R}.$$
 chọn $t = 1$

Suy ra
$$E(1)$$
 có dim $E(1) = 1$ với cơ sở $\mathcal{B}_1 = \left\{ u_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$.

• Với $\lambda_2=-2$, không gian riêng E(-2) là không gian nghiệm của hệ phương trình $(A+2I_3)X=0$. Ta có

$$(A+2I_3) = \begin{pmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{pmatrix} \xrightarrow{\begin{array}{c} -\frac{1}{3}d_1 \\ d_2+3d_1 \\ d_3-3d_1 \end{array}} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ta có nghiệm tổng quát

$$(x_1, x_2, x_3) = (-t - s, t, s), \quad t, s \in \mathbb{R}.$$

Suy ra E(1) có $\dim E(1) = 2$ với cơ sở

$$\mathcal{B}_2 = \left\{ u_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, u_3 = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}.$$

Vì các không gian $E(\lambda_i)$ của A có số chiều bằng số bội của các trị riêng tương ứng nên A chéo hóa được.

Lập ma trận P bằng cách xếp các vectơ của \mathcal{B}_1 và \mathcal{B}_2 ta được

$$P = (u_1 \ u_2 \ u_3) = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Khi đó

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Ví dụ. (tự làm) Chéo hóa ma trận
$$\begin{pmatrix} 1 & -4 & -4 \\ 8 & -11 & -8 \\ -8 & 8 & 5 \end{pmatrix}$$
.

5.4. Một vài ứng dụng sự chéo hóa Tính lũy thừa của ma trận

Bài toán. Cho $A \in M_n(\mathbb{R})$ và A chéo hóa được. Tìm A^k .

 ${\bf Giải.}$ Vì A chéo hóa được nên tồn tại một ma trận khả nghịch P sao cho

$$P^{-1}AP = D (1)$$

là một ma trận đường chéo. Giả sử

$$D = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

Từ (1) ta có $A=PDP^{-1}$ nên

$$A^k = (PDP^{-1})^k = PD^kP^{-1} = P\operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k)P^{-1}.$$

Ví dụ. Cho
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
. Tính A^n .

Giải.

- Đa thức đặc trưng

$$P_A(\lambda) = (\lambda - 2)(\lambda - 3).$$

- Trị riêng

$$A$$
 có 2 trị riêng là $\lambda_1 = 2$, $\lambda_2 = 3$.

- Không gian riêng

$$E(2) \text{ có cơ sở } \Big\{ u = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \Big\} \text{ và } E(3) \text{ có cơ sở } \Big\{ v = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \Big\}.$$

Vậy $P = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$ là ma trận làm ché
oA và

$$D = P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}.$$

Ta có

$$A = PDP^{-1}.$$

Do đó

$$A^n = PD^nP^{-1}.$$

Do D là ma trận đường chéo nên dễ dàng tính được

$$D^n = \begin{pmatrix} 2^n & 0 \\ 0 & 3^n \end{pmatrix}.$$

Tiếp theo, tính được

$$P^{-1} = \begin{pmatrix} -2 & -1 \\ 1 & 1 \end{pmatrix}.$$

Ta có

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 2^{n+1} - 3^{n} & 2^{n} - 3^{n} \\ -2^{n+1} + 2 \cdot 3^{n} & -2^{n} + 2 \cdot 3^{n} \end{pmatrix}.$$

Ví dụ. (tự làm) Cho $A = \begin{pmatrix} 2 & -1 & -2 \\ 0 & 5 & 6 \\ 0 & -1 & 0 \end{pmatrix}$. Tìm công thức của A^n .

Tìm một dãy số thỏa công thức truy hồi

Minh họa cho trường hợp hai dãy số.

Ví dụ. Giả sử các dãy số thực $(u_n)_{n\geq 0}$ và $(v_n)_{n\geq 0}$ thỏa các công thức truy hồi

$$\begin{cases} u_{n+1} = u_n - v_n; \\ v_{n+1} = 2u_n + 4v_n, \end{cases} \quad \text{v\'oi} \quad \begin{cases} u_0 = 2; \\ v_0 = 1. \end{cases}$$
 (1)

Tìm công thức tính các số hạng tổng quát của u_n và v_n .

Đặt

$$X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix} \text{ và } A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}. \tag{2}$$

Công thức (1) được viết lại như sau:

$$X_{n+1} = AX_n \text{ v\'oi } X_0 = \begin{pmatrix} 2\\1 \end{pmatrix}. \tag{5}$$

Từ đó tính được $X_n = A^n X_0$.

Sử dụng phương pháp chéo hóa ta tính được

$$A^{n} = \begin{pmatrix} 2^{n+1} - 3^{n} & 2^{n} - 3^{n} \\ -2^{n+1} + 2 \cdot 3^{n} & -2^{n} + 2 \cdot 3^{n} \end{pmatrix}.$$

Suy ra

$$\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} 2^{n+1} - 3^n & 2^n - 3^n \\ -2^{n+1} + 2 \cdot 3^n & -2^n + 2 \cdot 3^n \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2^{n+2} - 2 \cdot 3^n + 2^n - 3^n \\ -2^{n+2} + 4 \cdot 3^n - 2^n + 2 \cdot 3^n \end{pmatrix}.$$

Vậy

$$\begin{cases} u_n = 5 \cdot 2^n - 3^{n+1}; \\ v_n = -5 \cdot 2^n + 6 \cdot 3^n. \end{cases}$$

Dãy Fibonacii

Dãy Fibonacii là dãy vô hạn các số

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Mỗi số hạng trong dãy Fibonacii (kể từ số hạng thứ ba) bằng tổng của hai số hạng đứng ngay trước nó

$$F_{k+2} = F_{k+1} + F_k, k \ge 0, F_0 = 0, F_1 = 1.$$

Câu hỏi. Làm thế nào để tính số hạng F_n mà không cần tính lần lượt từ các số $F_0 = 0, F_1 = 1$?

Đặt
$$u_k:=\begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix}$$
 và $A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Khi đó

$$u_{k+1} = Au_k$$
.

Từ đó suy ra

$$u_k = A^k u_0, \text{ v\'oi } u_0 = \begin{pmatrix} 1\\0 \end{pmatrix}. \tag{1}$$

Vấn đề dẫn đến việc tính A^k . Ta sẽ dùng phương pháp chéo hóa ma trân.

Đa thức đặc trưng $f_A(\lambda) = \lambda^2 - \lambda - 1$ có các nghiệm khác nhau là

$$\lambda_1 = \frac{1 + \sqrt{5}}{2}, \lambda_2 = \frac{1 - \sqrt{5}}{2}.$$
 (2)

Do đó A chéo hóa được và một dạng chéo của A là

$$D = P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \text{ v\'oi } P = \begin{pmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{pmatrix}.$$
 (3)

Ta có

$$P^{-1} = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix} 1 & -\lambda_2 \\ -1 & \lambda_1 \end{pmatrix}. \tag{4}$$

Từ các công thức (1), (3) và (4) ta tính được

$$\begin{pmatrix} F_{k+1} \\ F_k \end{pmatrix} = u_k = A^k u_0 = \frac{1}{\lambda_1 - \lambda_2} \begin{pmatrix} \lambda_1^{k+1} - \lambda_2^{k+2} \\ \lambda_1^k - \lambda_2^k \end{pmatrix}.$$

Từ đó kết hợp với công thức (2) suy ra

$$F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right].$$
 (5)

Lưu ý $\left|\frac{1-\sqrt{5}}{2}\right|<1$. Suy ra $\left(\frac{1-\sqrt{5}}{2}\right)^k\to 0$ khi $k\to\infty$. Do đó, với k

càng lớn thì

$$\frac{F_{k+1}}{F_k} \approx \frac{1+\sqrt{5}}{2} \approx 1,618.$$

Con số 1,618 được những người Hy Lạp cổ đại gọi là *tỉ lệ vàng*.