- 1 Preface
- 1.1 Standardimporte

2 Supervised Learning

2.1 Lineare/Polynominelle Regression

Optimale Anpassung einer Geraden an eine gegebene Menge an Punkten, d.h. für eine Funktion

$$h_{\Theta}(x) = \Theta_0 + \Theta_1 x_1 + \dots + \Theta_n x_n$$

soll der Parametervektor Θ gefunden werden (mit Θ_0 als Konstante), der die Summe der quadrierten Abweichungen der Funktionswerte $h_{\Theta}(x)$ von den tatsächlichen Werten y minimiert (Methode der kleinsten Quadrate):

$$\min_{\Theta} L(D, f) = \min_{\Theta} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$
$$\min_{\Theta} L(D, \Theta) = \min_{\Theta} ||X_D \Theta - y_D||^2$$

wobei X_D eine Matrix mit den Eingabedaten (zzgl. führende 1-Spalte) und y_D der Vektor der tatsächlichen Werte ist:

$$X_{D} = \begin{pmatrix} 1 & x_{1}^{(1)} & \dots & x_{n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(m)} & \dots & x_{n}^{(m)} \end{pmatrix}, \qquad y_{D} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{pmatrix}$$

Lokales Minimum = Globales Minimum, da die Kostenfunktion konvex ist. Lösung numerisch oder per Gradient Descent \to ist bei großen Trainingsdatensätzen und/oder vielen Attributen die praktikabelste Methode (s. Skript S. 13: $\nabla_{\Theta}L(D,\Theta) = 0 \Leftrightarrow (X_D^TX_D)^{-1}X_D^Ty_D = \Theta$, wobei inverse von $X_D^TX_D$ sehr rechenaufwändig ist).

Erweiterung auf Polynome höheren Grades durch (Kreuz-) Multiplikation bestehender Merkmal
e \rightarrow Modell ist linear bzgl. des erweiterten Merkmalsraums und erscheint polynominell bei Projektion auf den ursprünglichen Merkmalsraum.

Evaluation mittels **Bestimmtheitsmaß** (=normalisierte Variante des quadratischen Fehlers):

$$R^{2}(D, f) = 1 - \frac{\sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}}{\sum_{i=1}^{m} (y^{(i)} - \bar{y})^{2}}$$

mit $\bar{y} = \frac{1}{m} \sum_{i=1}^{m} y^{(i)}$, wobei in der Praxis der Durchschnitt mehrerer R^2 berechnet wird (Kreuzvalidierung).

- $R^2(D, f)$ ist maximal $1 \to f$ modelliert D perfekt
- $R^2(D, f) = 0 \rightarrow$ naives Modell, f sagt stets den Mittelwert \bar{y} voraus
- $R^2(D, f) < 0 \rightarrow \text{Modell schlechter als naives Modell}$
- $R^2(D^{\text{train}}, f)$ sollte relativ nahe an 1 liegen
- $R^2(D^{\text{test}}, f)$ ist üblicherweise kleiner als $R^2(D^{\text{train}}, f)$
- \bullet Je näher $R^2(D^{\mathrm{test}},f)$ an $R^2(D^{\mathrm{train}},f)$, desto besser ist das Modell generalisiert

<u>Überanpassung</u>: Modell passt sich zu stark an Trainingsdaten an, d.h. es wird zu komplex modelliert. Dies führt zu schlechterer Generalisierung auf Testdaten $\rightarrow Varianzfehler$

 $\underline{\textbf{Unteranpassung}} : \textbf{Modell ist nicht ausdrucksstark genug; Trainings- und Testdaten werden unzureichend modelliert} \rightarrow \underline{\textit{Verzerrungsfehler}}$

Ermittlung der **optimalen Modellkomplexität** durch Betrachtung der Kostenfunktionswerte oder Bestimmtheitsmaße bei steigender Komplexität:

- Trainingsdten: Je komplexer das Modell, desto höher die Bestimmtheit
- Testdaten
 - Bestimmtheit nimmt zunächst ebenfalls zu (das Modell ist noch unterangepasst)

- Ab einem gewissen Punkt nimmt die Bestimmtheit ab: Das Modell ist überangepasst
- Optimaler Punkt: Modellkomplexität, bei der die Bestimmtheit bzgl. der Testdaten maximal ist

Automatische Lösung des Verzerrungs-Varianz-Dilemmas durch Regularisierung: Hinzufügen eines mit λ (Regularisierungsparamter) gewichteten Strafterms (Tikhonov-Regularisierer R_T) zur Kostenfunktion, der die Größe der Parametervektoren begrenzt. Sog. Ridge-Regression:

$$L_T(D,\Theta) = \|X_D\Theta - y_D\|^2 + \lambda \sum_{i=1}^n \Theta_i^2$$

- Regularisierer wird ohne Θ_0 berechnet
- Je mehr $\Theta_i \neq 0$, desto größer wird der Tikhonov-Regularisierer \rightarrow Kosten steigend
- Einbeziehung von $\lambda \sum_{i=1}^n \Theta_i^2$ erzwingt Fokussierung auf möglichst einfache Funktionen
- Kleines $\lambda \to \ddot{\mathrm{U}}\mathrm{beranpassung},$ großes $\lambda \to \mathrm{U}\mathrm{nteranpassung}$

2.2 Logistische Regression

Diskreter Wertebereich der Zielvariablen $y^{(i)}$, idR. endlich und oft auch nur binär $(y^{(i)} \in \{0,1\})$. Klassen haben idR. keine (eindeutige) Ordnung.

Einsetzen eines linearen Modells h_{Θ} in eine Funktion $g(z) = \frac{1}{1+e^{-z}}$ mit dem Zielbereich (0,1) ergibt sog. Sigmoid-Funktion:

$$h_{\Theta}^{\text{logit}}(x) = \frac{1}{1 + e^{-(\Theta_0 + \Theta_1 x_1 + \dots + \Theta_n x_n)}}$$

Klassifikation durch Schwellwert 0.5:

$$\operatorname{clf}_f(x) = \begin{cases} 1 & \text{falls } h_{\Theta}^{\operatorname{logit}}(x) \ge 0.5 \\ 0 & \text{falls } h_{\Theta}^{\operatorname{logit}}(x) < 0.5 \end{cases}$$

bzw. bei n Klassen diejenige Klasse k, für die $h_{\Theta}^{\text{logit}}(x)_k$ maximal ist. Bewertung mittels der logistischen Kostenfunktion L^{logit} :

$$L^{\text{logit}}(D, f) = -\sum_{i=1}^{m} \left[\underbrace{y^{(i)} \ln(f(x^{(i)}))}_{a} + \underbrace{(1 - y^{(i)}) \ln(1 - f(x^{(i)}))}_{b} \right]$$

Bei y = 1 wird b = 0, bei y = 0 wird a = 0 und es ergibt sich:

f(x)	y	$L^{\text{logit}}(D, f)$
1	1	0
1	0	∞
0	0	0
0	1	∞

Ziel: Minimierung der Kostenfunktion, wobei es sich um ein konvexes Optimieungsproblem handelt (d.h. es existiert nur ein globales Minimum). Effiziente Lösung mithilfe numerischer Methoden wie *Gradient Descent* möglich.

Polynominelle Erweiterung sowie Regularisierung analog zur linearen Regression.

Evaluation: Berechnung der Konfustionsmatrix und Einsetzen in die Klassifikationsmetriken:

	y=1	y = 0
clf = 1	TP	FP
clf = 0	FN	TN

- Accuracy/Genauigkeit: $acc(D, clf) = \frac{TP + TN}{TP + TN + FP + FN} \rightarrow Verhältnis der korrekt klassifizierten Instanzen zu allen Instanzen; bei ungleicher Klassenrepräsentation nicht geeignet$
- Precision: $prec(D, clf) = \frac{TP}{TP + FP} \rightarrow$ wie viele der positiv klassifizierten Instanzen sind tatsächlich positiv?
- $Recall/Sensitivit\ddot{a}t$: $rec(D, clf) = \frac{TP}{TP + FN} \rightarrow$ wie viele Ist-positive Instanzen wurden korrekt klassifiziert?
- $\bullet \ \ \textit{F1-Score} : \text{F1}(D, \text{clf}) = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \rightarrow \text{harmonisches Mittel von Precision und Recall (Gesamtqualität)}$

2.3 Support Vector Machines

Test

2.4 K-Nearest Neighbours

 Test

2.5 Bayes-Klassifikator

Test

2.6 Entscheidungsbäume

Test

3	Unsupervised Learning
3.1	K-Means Clustering
Test	
3.2	Hierarchisches Clustering
Test	
3.3	Assoziationsregeln
Test	
3.4	Anomalieerkennung
Test	
3.5	Hauptkomponentenanalyse/Principal Component Analysis (PCA)
Test	

4 Reinforcement Learning

 ${\bf 4.1}\quad {\bf Markov\text{-}Entscheidungsprozesse}$

Test

4.2 Passives Reinforcement-Learning

Test

4.3 Aktives Reinforcement-Learning

Test

5 Deep Learning

5.1 Künstliche Neuronale Netze

Test

5.2 Convolutional Neutral Networks

Test

5.3 Recurrent Neutral Networks

Test

5.4 Recurrent Neutral Networks

Test