Analiza temperatury powietrza w Bielsko-Białej oraz jej zmienności na przestrzeni lat i dekad.

1. Wstęp

Projekt ma na celu uzyskanie podstawowych informacji dotyczących temperatury powietrza w Bielsko-Białej oraz zbadanie jej zmienności na przestrzeni lat i dekad.

2. Materialy

Dla zrealizowania tematu posłużono się danymi wartości średnich miesięcznych temperatur powietrza ze stacji meteorologicznej w Bielsko-Białej. Obejmują one okres 70 lat, 1951 – 2021.

3. Metody

- 3.1 Metodą analizy wykorzystaną w tym projekcie jest analiza rozkładu zmiennej wraz ze statystykami opisowymi.
- 3.2 Wczytano dane z stacji meteorologicznej w Bielsko-Białej:

```
Bielsko <- read.delim("dane.txt", sep = "\t", header = FALSE)
View(Bielsko)</pre>
```

Dodano nazwy kolumn:

```
Colnames(Bielsko) <- c("Rok", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX", "X", "XI", "XII")
```

Stworzono histogramy rozkładu średniej temperatur dla poszczególnych miesięcy np.:

```
ggplot(Bielsko, aes(I))+
geom_histogram(breaks = seq(-15, 25, by = 2), fill = "cadetblue1", col = "black") +
```

```
labs(title = "Styczeń", x = "Temperatura", y = "Częstość wystąpień") + theme(text = element text(size = 30))
```

ggplot(Bielsko, aes(x = Rok, y = I)) +

Stworzono wykresy liniowe z dodanymi modelami liniowymi badające zmienność średniej temperatury dla poszczególnych miesięcy na przestrzeni lat np.:

```
geom_line(size = 2) +
geom_smooth(method = "Im", color = "red", size = 2) +
labs(title = "Styczen", x = "Rok", y = "Średnia temperatura") +
theme(text = element_text(size = 30))

Dla każdego miesiąca znaleziono:
zakres wartości np.: range(Bielsko$I)
średnią np.: mean(Bielsko$I)
medianę np.: median(Bielsko$I)
odchylenie standardowe np.: sd(Bielsko$I)
wartości minimalne i maksymalne np.: max(Bielsko$I) i min(Bielsko$I)
rozstęp międzykwartylowy temperatury np.: IQR(dane$I)
i stworzono tabelę zawierającą te statystyki opisowe zebrane razem dla
```

Stworzono wykres zbiorczy ramka-wąsy prezentujący rozkłady temperatur dla wszystkich miesięcy:

```
boxplot(Bielsko[,2:13], border="black",
col="indianred1", main="Rozkład temperatur",
xlab="miesiące", ylab="temperatura [°C]")
```

wszystkich miesięcy.

Stworzono nowe ramki danych dla poszczególnych pór roku i okresu wegetacyjnego np.:

```
dane_wiosna <- round(select(mutate(dane, wiosna = (III + IV + V)/3), Rok, III, IV, V, wiosna), digits = 1)
```

a następnie stworzono wykres rozkładu temperatur dla poszczególnych pór roku i okresu wegetacyjnego oraz znaleziono dla nich: zakres wartości, średnią, medianę, odchylenie standardowe, wartości minimalne i maksymalne i rozstęp międzykwartylowy temperatury.

Obliczono średnie dekadowe dla poszczególnych miesięcy:

```
lata_50 <- (filter(Bielsko, 1951 <= Rok, Rok <= 1960))
dekady_bielsko <- data.frame(
  dekada = c("196", "197", "198", "199", "200", "201", "202"),
  I = round(c(mean(lata_50\$I), mean(lata_60\$I), mean(lata_70\$I), mean(lata_80\$I),
mean(lata_90$I), mean(lata_00$I), mean(lata_10$I)), digits=1),
  II = round(c(mean(lata_50$II), mean(lata_60$II), mean(lata_70$II), mean(lata_80$II),
mean(lata_90$II), mean(lata_00$II), mean(lata_10$II)), digits=1),
  III = round(c(mean(lata_50$III), mean(lata_60$III), mean(lata_70$III), mean(lata_80$III),
mean(lata_90$III), mean(lata_00$III), mean(lata_10$III)), digits=1),
  IV = round(c(mean(lata_50\$IV), mean(lata_60\$IV), mean(lata_70\$IV), mean(lata_80\$IV),
mean(lata_90$IV), mean(lata_00$IV), mean(lata_10$IV)), digits=1),
  V = round(c(mean(lata 50$V), mean(lata 60$V), mean(lata 70$V), mean(lata 80$V),
mean(lata_90$V), mean(lata_00$V), mean(lata_10$V)), digits=1),
  VI = round(c(mean(lata_50$VI), mean(lata_60$VI), mean(lata_70$VI), mean(lata_80$VI),
mean(lata_90$VI), mean(lata_00$VI), mean(lata_10$VI)), digits=1),
  VII = round(c(mean(lata 50$VII), mean(lata 60$VII), mean(lata 70$VII), mean(lata 80$VII),
mean(lata_90$VII), mean(lata_00$VII), mean(lata_10$VII)), digits=1),
  VIII = round(c(mean(lata_50$VIII), mean(lata_60$VIII), mean(lata_70$VIII), mean(lata_80$VIII),
mean(lata_90$VIII), mean(lata_00$VIII), mean(lata_10$VIII)), digits=1),
  IX = round(c(mean(lata_50$IX), mean(lata_60$IX), mean(lata_70$IX), mean(lata_80$IX),
mean(lata_90$IX), mean(lata_00$IX), mean(lata_10$IX)), digits=1),
  X = round(c(mean(lata_50$X), mean(lata_60$X), mean(lata_70$X), mean(lata_80$X),
mean(lata_90$X), mean(lata_00$X), mean(lata_10$X)), digits=1),
```

```
XI = round(c(mean(lata_50$XI), mean(lata_60$XI), mean(lata_70$XI), mean(lata_80$XI), mean(lata_90$XI), mean(lata_00$XI), mean(lata_10$XI)), digits=1),

XII = round(c(mean(lata_50$XII), mean(lata_60$XII), mean(lata_70$XII), mean(lata_80$XII), mean(lata_90$XII), mean(lata_10$XII)), digits=1)
)

oraz pór roku i sezonu wegetacyjnego.

Stworzono dla tych danych wykresy rozrzutu:

ggplot(dekady_bielsko, aes(x = dekada, y=(I))) +

geom_point(size = 10, colour = "salmon3") +

labs(title = "Styczeń", x="Dekada", y="Temperatura")
```

4. Wyniki

Bazując na rozkładzie średnich temperatur dla poszczególnych miesięcy (rys. 1) można zauważyć, że miesiące: styczeń, luty, marzec i grudzień mają średnie temperatury poniżej zera.

Najwyższe temperatury można zaobserwować w lipcu, a najniższe w lutym.

Średnie temperatury w poszczególnych miesiącach wzrastają od stycznia do sierpnia i maleją od sierpnia do grudnia.

Rysunek 1 Rozkład średnich temperatur dla poszczególnych miesięcy.

Bazując na wykresach liniowych z dodanymi modelami liniowymi badających zmienność średniej temperatury dla poszczególnych miesięcy (rys. 2) można zaobserwować trend wzrostowy temperatury na przestrzeni kolejnych lat.

Największy wzrost temperatury można zauważyć w lipcu.

Rysunek 2 Zmienność średniej temperatury dla poszczególnych miesięcy na przestrzeni lat.

Statystyki opisowe poszczególnych miesięcy (tab. 1) pokazują, że najmniejszą średnią temperaturę na przestrzeni ostatnich 70 lat zanotowano w lutym, a najwyższą w sierpniu.

Najwyższa średnia i mediana temperatur była w lipcu, co oznacza że ten miesiąc był średnio najcieplejszy.

Najmniejsza średnia i mediana temperatur była w styczniu, co oznacza że ten miesiąc był zwykle najzimniejszy.

Największe odchylenie standardowe zanotowano w lutym więc wartości w tym miesiącu są najbardziej rozrzucone wokół jej średniej, a najmniejsze w czerwcu gdzie wartości są najmniej rozrzucone wokół jej średniej.

Największy rozstęp międzykwartylowy temperatury był w lutym, a najmniejszy w maju.

Tabela 1 Tabela zawierająca statystyki opisowe dla poszczególnych miesięcy.

Miesiąc	Zakres wartości		Średnia	Mediana	Odchylenie standardowe	Min	Max	Rozstęp międzykwartylowy temperatury
Styczeń	-10,7	3,9	-1.62	-1.4	3.020563	-10,7	3,9	3.55
Luty	-12.6	5.7	-0.66	-0.9	3.584306	-12.6	5.7	4.4
Marzec	-3.2	6.8	2.92	3.3	2.545563	-3.2	6.8	3.8
Kwiecień	4.1	14.3	8.07	8.1	1.966126	4.1	14.3	2.3
Maj	9.2	16.5	12.7	12.6	1.62296	9.2	16.5	1.8
Czerwiec	13.1	21.4	16.04	15.9	1.511503	13.1	21.4	2.25
Lipiec	14.9	21.5	17.71	17.7	1.527924	14.9	21.5	2.3
Sierpień	14.2	22.1	17.39	17.1	1.518123	14.2	22.1	2.05
Wrzesień	9.5	16.6	13.54	13.5	1.536477	9.5	16.6	2.4
Październik	5.5	13.5	9.19	9.1	1.749494	5.5	13.5	2.35
Listopad	-0.9	8.9	4.25	4.4	2.227351	-0.9	8.9	2.85
Grudzień	-7.2	5.5	0.18	0.4	2.504831	-7.2	5.5	3.15

Wykres prezentujący rozkłady temperatury wszystkich miesięcy (rys. 3) potwierdza wnioski wyciągnięte z obserwacji rozkładu średnich temperatur dla poszczególnych miesięcy (rys. 1) oraz obserwacje rozstępu międzykwartylowego temperatury (tab. 1).

Rozkład temperatur

Rysunek 3 Wykres zbiorczy ramka-wąsy prezentujący rozkłady temperatur dla wszystkich miesięcy.

Bazując na rozkładzie średnich temperatur dla poszczególnych pór roku (rys. 4) można zaobserwować, że najzimniejszą porą roku jest zima, a najcieplejszą lato.

Rysunek 4 Rozkład średnich temperatur dla poszczególnych pór roku.

Średnie temperatury w okresie wegetacyjnym (rys. 5) są zawsze dodatnie. Osiągają one wartości w zakresie od 4°C do 22°C. Najczęstszą temperaturą w tym okresie jest 17°C.

Rysunek 5 Rozkład średnich temperatur w okresie wegetacyjnym.

Bazując na tabeli z statystykami opisowymi (tab. 2) najniższą temperaturę, średnią temperatur i ich medianę zanotowano w zimie, a najwyższą w lecie.

Najmniejsza wartość zaobserwowano w lecie, co oznacza, że temperatury w tym okresie były do siebie najbardziej podobne. Tą obserwacje potwierdza też rozkład średnich temperatur dla lata (rys. 4).

Największy rozstęp między kwartylowy temperatury był na wiosnę, a najmniejszy w lecie.

W okresie wegetacyjnym średnia temperatur i ich mediana jest ok. 14°C.

Okres	Zakres wartości		Średnia	Mediana	Odchylenie standardowe	Min	Max	Rozstęp międzykwartylowy temperatury
Wiosna	-3.2	16.5	7.9	8.1	4.507555	-3.2	16.5	7.2
Lato	13.1	22.1	17.05	16.9	1.678459	13.1	22.1	2.3
Jesień	-0.9	16.6	8.99	9.1	4.232895	-0.9	16.6	6.8
Zima	-12.6	5.7	-0.7	-0.4	3.141445	-12.6	5.7	3.9
Wegetacja	4.1	22.1	13.52	14.1	3.907677	4.1	22.1	6.3

Tabela 2 Tabela zawierająca statystyki opisowe dla poszczególnych pór roku i okresu wegetacyjnego.

Dzięki pogrupowaniu danych na dekady i obliczeniu ich średnich dekadowych (rys. 6) możemy ponownie zauważyć tendencję do wzrostu temperatur, która zaczyna się od lat 80. Gwałtowny wzrost temperatur notujemy szczególnie w miesiącach letnich.

Średnie dekadowe obliczone dla poszczególnych pór roku (rys. 7) ponownie pokazują, że trendy temperatury powietrza w kolejnych 10-leciach okresu 1951–2021 wskazują na stopniowy jej wzrost od lat 80.

Najbardziej widoczny wzrost jest na wiosnę i w lecie.

Rysunek 7 Średnie dekadowe dla poszczególnych pór roku.

Taką sama zależność można zauważyć dla okresu wegetacyjnego (rys. 8).

Rysunek 8 Średnie dekadowe dla okresu wegetacyjnego.

5. Podsumowanie

Temperatura powietrza w Bielsko-Białej charakteryzuje się zmiennością w skali roku. W ciągu ostatnich 70 lat najczęściej najcieplejszym miesiącem był lipiec, a najzimniejszym styczeń.

W lecie można zaobserwować najmniejsze odchylenie standardowe, czyli temperatury w tym miesiącu są z małego przedziału liczbowego.

Wartość średniej temperatury powietrza zarówno w skali roku jak i w poszczególnych miesiącach charakteryzuje się trendem rosnącym występującym od lat 80.

Wzrost temperatury powietrza na przedwiośniu i wiosną może skutkować stopniowym wydłużaniem się okresu wegetacyjnego w kraju.

Okres wegetacyjny charakteryzuje się dodatnimi wartościami temperatur, a ich wartości również wzrastają w kolejnych latach.

6. Literatura

https://meteomodel.pl/dane/sredniemiesieczne/?imgwid=349190600&par=tm&max_empty=2

https://wgsr.uw.edu.pl/wgsr/wp-content/uploads/2018/11/Michalska.pdf