



# Integrating Bioregenerative Foods into the Spaceflight Food system

Grace Douglas, Ph.D.

Advanced Food Technology Discipline Scientist

Human Research Program

NASA Johnson Space Center





# Bioregenerative Foods



- Why do we want to introduce bioregenerative foods?
- What are the limitations to introducing them?
- How do we introduce them?





# Space Food System Challenges



- Multi-year shelf stability
- No cold storage
- No cooking
- Limit crumbs and free liquid
- Minimal food transfer
- No washing or reuse of containers
- Minimal crew time for food preparation
- Resource Restricted – e.g. 2.5 L water per person per day



# Food Systems: Mercury to Apollo





# Food Systems: Skylab to early International Space Station



SKYLAB



SHUTTLE



INTERNATIONAL SPACE  
STATION



# International Space Station 2008-Current



**200 options in 8 Standard Menu Categories**

1. Breakfast
2. Rehydratable Meats
3. Meat and Fish
4. Side Dishes
5. Vegetables and Soups
6. Fruits and Nuts
7. Desserts and Snacks
8. Beverages



## Bulk Overwrap Bag (BOB)

A set of 8 BOBS (one per menu category) will feed a crew of 3 for 7-9 days

Limited crew specific food, fresh food, condiments

No food refrigeration available on ISS

Shelf life of 1-3 years under room temperature storage



# The case for prepackaged food

Goal: Exploration Food System that Promotes Crew Health And Performance

**Food Safety Confirmed Prior to Launch**



**Less Infrastructure**



**Less Crew Time**



**No Risk of Food Scarcity**



**Demonstrated ability to support  
human health and performance for 6-  
12 months**



# ISS Compared to Mars



## International Space Station:

- 6 month microgravity missions
- Radiation impact understood
- Regularly scheduled resupply
- No refrigerators or freezers for food storage, all food processed and prepackaged
- 7-9 day standard menu cycle augmented by crew preference foods



## Mars Expedition Scenario:

- 2.5 year mission; micro- and reduced gravity
- Radiation impact is unknown
- No resupply; food may be prepositioned
- Availability of refrigerators or freezers for food storage is undecided
- Current food system is mass constraining and will not maintain nutrition/acceptability



# The Constraints of Prepackaged Foods

---



**Nutrient Degradation**



**Quality Limitations and  
Degradation**



**High Mass and Volume**



**No customization**



# Exploration Food System Challenge: Micronutrient Degradation





# Functional Foods and Bioactive Compounds

Functional Foods provide  
health benefits beyond basic nutrition  
when consumed at effective levels as part of a  
varied diet

(Hasler 2002)

Include compounds such as:

- Flavonoids
- Lycopene
- Lutein
- Sterols
- Omega-3 fatty acids

Potential health benefits:

- Improved nutritional status/bone health
- Reduced inflammation and oxidative damage
- Improved immunity
- Improved microbiota diversity
- Microbial production of beneficial metabolites





# Exploration Food System Challenge: Acceptability and Variety



- Food quality relates to health and performance
- Food variety is limited in a closed system
- Food becomes more psychologically important with increasing mission duration



(Catauro. Journal of Food Science. 2011)



# Prepackaged Food Strategies: 5 Year Shelf Life



Focus on nutritional stability, acceptability, health promotion

## Formulation



Fortification  
Ingredients and Matrix  
Functional Foods  
Variety

## Processing



Microwave Assisted Thermal Sterilization (MATS)  
Lyophilization Improvement  
Reduced Moisture

## Packaging



Improve barrier  
Reduce Mass  
Improve Method  
Improve Processing Compatibility

## Environment



21°C      -80°C  
Temperature  
Atmosphere  
Radiation  
Microgravity  
Partial Gravity



# The Case for Bioregenerative Foods



**Agri-Therapy**

**Psychological Appeal**

**Higher Nutrient Density**

**Fresher Food / Quality**

**Variety / Customization**

**Goal: Earth Independence**









# The constraints of Bioregenerative Foods

Risk of Food Scarcity

Microbiological Risk

High Crew Time Requirement

Infrastructure

Low Technology Readiness Level





# Bioregenerative Food Strategies: Integrate Salad Crops



- First missions only pick and eat; supplement prepackaged food
- Validate technology and reliability of crop growth procedures
- Increase dependence on crops with technology maturation





# Bioregenerative Key Food Points

- Establish Safety
- Establish Nutrition and Acceptability
  - Ensure Variety
- Mature all related technologies
- Promote Human Health and Performance



