Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi zhou, Wei Li, Peter J. Liu

JMLR 2020

목차

- Summary
- Setup
- Experiments
- Reflection

Summary

• T5: Text-to-Text Transfer Transformer

- Text-to-Text: 단일 모델로 여러가지 task를 수행하게끔 함, input output format이 모두 text
- Transfer learning: 특정 task를 학습한 모델을 다른 task 수행에 재사용
- Transformer: Transformer 의 구조를 사용

Setup - Dataset

- Pre-training : C4 dataset
 - The Colossal Clean Crawled Corpus
 - 영어로 된 Data
 - Common Crawl data 수집 및 전처리
 - 맨 마지막 줄이 .!?."로 끝나는 line만
 - 5문장 이하인 페이지 삭제, line에 3단어 이상인 것만 놔둠
 - 안 좋은 단어가 포함된 페이지 삭제 (List of Dirty, Naughty, Obscene or Otherwise Bad Words)
 - Javascript, placeholder로 시작되는 문장, 페이지 삭제
 - {} 들어간 페이지 삭제 (코드로 간주)
 - 중복 문장 삭제
 - langdetect 활용하여 페이지가 영어일 확률 99% 미만인 페이지 삭제
 - 750GB 정도 수집

Setup - Dataset

- Fine-Tuning
 - GLUE / SuperGLUE text classification
 - CNN / Daily Mail abstract summarization
 - SQuAD question answering
 - WMT English to German, French and Romanian translation

Setup – Input & Output format

- 모든 문제를 Text-to-Text로 바꾸어서 처리
- 몇가지 Input / Output format은 Text-to-Text 형식에 적용하기 위해 수정해야함
 - <u>MNLI</u> (Classification entailment, neutral, contradiction 3가지 중 하나로 분류)
 - 하지만 위 3가지 라벨 이외의 라벨이 생성될 수 있음 → 틀린 것으로 처리

- STS-B (유사도를 1~5사이의 값으로 나타냄, Regression)
 - Annotation이 보통 0.2 단위로 되어있는 것을 확인
 - 모든 Data 반올림, 21개의 classification 문제로 변경 ("1.0", "1.2", "1.4" ··· "4.8", "5.0")

Experiments – Training

- Pre-training
 - C4 dataset으로 Pre-training수행
 - $2^{19} = 524288$ step
 - Maximum sequence length: 512
 - Batch size: 128
 - Fine-tuning시 English to German/French/Romanian으로 Translation 하는 Task 존재
 - → 본 언어도 학습하기 위하여 langdetect에서 German/French/Romanian으로 나온 페이지를 추가
 - C4 dataset 언어 비율
 - English: German: French: Romanian = 10:1:1:1로 구성

Experiments – Training

Pre-training

- Input의 15%의 토큰에 Masking
- 연속되어 Masking 될 경우, 하나의 sentinel token으로 처리

Experiments – Training

- Fine-Tuning
 - 모든 작업에 대하여 2¹⁸ = 262144 step
 - Maximum sequence length: 512
 - Batch size: 128

Experiments – Architecture

Attention mask patterns

Transformer architecture variants

Experiments – Architecture

Example

- X: translate English to German: That is good. target:
- Y: Das ist gut
- X: mnli premise: I hate pigeons. hypothesis: My feelings towards pigeons are filled with animosity. target:
- Y: entailment
- → Model은 전체 input에 대해 계속 볼 수 있으며, 접두사를 학습
- → "target: "가 BERT에서 classification token과 비슷한 역할을 함

Experiments – Architecture

Performance of the different architectural variants

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39

- Encoder-Decoder + Denoising이 성능이 가장 좋음
- Encoder-Decoder shared는 Parameter가 반으로 줄었지만 성능 하락이 적음
- Layer 수를 반으로 줄이는 것은 성능 하락 많이 발생함

- 실험해봐야 할 Objective의 종류가 매우 많음
 - 우선순위를 정하여 실험하되, 성능이 좋게 나오는 것에 대해서만 하위 실험 진행

- Pretraining data format
 - 이하 실험에서 언급하는 data format은 다음과 같은 형식을 가짐

Objective	Inputs	Targets
Prefix language modeling BERT-style Devlin et al. (2018) Deshuffling	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank</m></m>	me to your party last week . (original text) (original text)
MASS-style Song et al. (2019) I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week . Thank you <x> to <y> week .</y></x></y></x></m></m></m>	(original text) <x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y></x>

High-level approaches

High-level approaches Language modeling BERT-style Deshuffling Corruption strategies Mask Replace spans Drop	Corruption rate 10% 15% 25% 50%	Corrupted span length 2 3 5
---	---------------------------------	--------------------------------

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Prefix language modeling	80.69	18.94	77.99	65.27		39.73	27.49
BERT-style (Devlin et al., 2018)	82.96	19.17	80.65	69.85		40.03	27.41
Deshuffling	73.17	18.59	67.61	58.47		39.30	25.62

- BERT-style이 가장 좋은 성능을 보임
- Objective 설명 (예시 이전페이지(p.14)에 있음)
 - Prefix language modeling: 문장 앞부분을 제공, 뒷부분 맞춤
 - BERT-style: MLM
 - Deshuffling: token을 섞고 원문장을 맞추는 방식

High-level approaches

Language modeling

BERT-style

Deshuffling

Corruption corrupted span length sp

Corruption strategies

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
BERT-style (Devlin et al., 2018)	82.96	19.17	80.65	69.85	26.78	40.03	27.41
MASS-style (Song et al., 2019)	82.32	19.16	80.10	69.28	26.79	39.89	27.55
★ Replace corrupted spans	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Drop corrupted tokens	84.44	19.31	$\bf 80.52$	68.67	27.07	39.76	27.82

- 이전 단계에서 BERT-style approach가 가장 좋은 성능을 냈기 때문에 이 방법이 가장 좋다고 가정하고 하위 실험 진행
- BERT-style의 Objective를 사용한 대표 방법들을 실험 진행

Objective	Inputs	Targets
BERT-style Devlin et al. (2018) MASS-style Song et al. (2019) I.i.d. noise, replace spans I.i.d. noise, drop tokens	Thank you <m> <m> me to your party apple week . Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week .</y></x></m></m></m></m></m>	(original text) (original text) <x> for inviting <y> last <z> for inviting last</z></y></x>

Corruption rate

	Corruption rate	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
	10%	82.82	19.00	80.38	69.55	26.87	39.28	27.44
*	15%	83.28	19.24	80.88	71.36	26.98	39.82	27.65
	25%	83.00	19.54	80.96	70.48	27.04	39.83	27.47
	50%	81.27	19.32	79.80	70.33	27.01	39.90	27.49

- Masking rate를 얼마로 했는지에 따른 성능 비교
- 이전 실험과 동일하게 15%로 했을 때가 성능 가장 좋았음

Corrupted span length

Span length G	LUE (CNNDM S	SQuAD	SGLUE	EnDe	EnFr	EnRo
	3.28	19.24	80.88				27.65
	$3.54 \\ 3.49$	19.39 19.62	82.09 81.84				27.63 27.62
	3.40 2.85	19.24 19.33	82.05 81.84				27.53 27.69

- Corrupt 할 때 적당한 span 길이를 찾음
- Translation task를 제외하고 Span length = 3일 때가 성능이 Baseline보다 좋다.
- 하지만 속도를 고려했을 때 Baseline을 사용하는 것이 나음
 - 예측해야 할 것이 적기 때문

Experiments – Pretraining Dataset

Unlabeled dataset

Data set	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	6.1TB	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	35GB	83.83	19.23	80.39	72.38	26.75	39.90	27.48
WebText-like	17GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia	16GB	81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	20GB	83.65	19.28	82.08	73.24	26.77	39.63	27.57

- C4의 성능이 가장 좋음
- 다른 Data가 더 성능이 높기도 했지만, 데이터셋이 적음 (문제점 뒷장(p.20) 참조)
 - C4, unfiltered: langdetect로 영어만 추린 것
 - RealNews-like: 뉴스데이터
 - WebText-like: Reddit과 같은 인터넷 데이터
 - Wikipedia: 위키피디아
 - Wikipedia + TBC: 위키피디아 + Toronto book corpus

Experiments – Pretraining Dataset

Pretraining Dataset size

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Full data set	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2 ²⁹	64	82.87	19.19	80.97	72.03	26.83	39.74	27.63
2^{27} 2^{25}	256	82.62	19.20	79.78	69.97	27.02	39.71	27.33
	1.024	79.55	18.57	76.27	64.76	26.38	39.56	26.80
2 ²³	4,096	76.34	18.33	70.92	59.29	26.37	38.84	25.81

- Full dataset : 2³⁵개, 점차 줄여가며 실험 진행
- 토큰의 수가 줄어든 만큼 반복
- 데이터의 크기가 작은 경우 Overfitting이 발생함

Experiments – Training Strategy (Fine-tuning)

Fine-tuning methods

Fine-tuning method	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ All parameters	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Adapter layers, $d = 32$	80.52	15.08	79.32	60.40	13.84	17.88	15.54
Adapter layers, $d = 128$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Adapter layers, $d = 512$	81.54	17.78	79.18	64.30	23.45	33.98	25.81
Adapter layers, $d = 2048$	81.51	16.62	79.47	63.03	19.83	27.50	22.63
Gradual unfreezing	82.50	18.95	79.17	70.79	26.71	39.02	26.93

- 전체를 사용했을 때가 가장 성능이 좋음
- Adapter layers: Transformer에서 Feed-forward layer 뒤에 Adapter layer를 추가하여 그 부분만 학습
- Gradual unfreezing: 모든 layer를 한번에 finetuning 하지 않고, iteration마다 top layer부터 unfreeze하며 top → bottom순으로 학습시키는 방법

Experiments – Training Strategy (Fine-tuning)

Multi-task training

Mixing strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline (pre-train/fine-tune)	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Equal	76.13	19.02	76.51	63.37	23.89	34.31	26.78
Examples-proportional, $K = 2^{16}$	80.45	19.04	77.25	69.95	24.35	34.99	27.10
Examples-proportional, $K = 2^{17}$	81.56	19.12	77.00	67.91	24.36	35.00	27.25
Examples-proportional, $K = 2^{18}$	81.67	19.07	78.17	67.94	24.57	35.19	27.39
Examples-proportional, $K = 2^{19}$	81.42	19.24	79.78	67.30	25.21	36.30	27.76
Examples-proportional, $K = 2^{20}$	80.80	19.24	80.36	67.38	25.66	36.93	27.68
Examples-proportional, $K = 2^{21}$	79.83	18.79	79.50	65.10	25.82	37.22	27.13
Temperature-scaled, $T = 2$	81.90	19.28	79.42	69.92	25.42	36.72	27.20
Temperature-scaled, $T = 4$	80.56	19.22	77.99	69.54	25.04	35.82	27.45
Temperature-scaled, $T=8$	77.21	19.10	77.14	66.07	24.55	35.35	27.17

- 어떤 Task의 Data를 얼마만큼의 비율로 학습할 것인지? Sampling 안 하는게 가장 성능이 좋았음
- Equal: Data의 size에 상관 없이 같은 수의 문장을 sampling
- K threshold 사용: data가 K개보다 클 때는 K개만 사용
- Temperature-scaled: 각 data를 T로 나누고 하나씩 합쳐서 사용 (K=2²¹)
 - T가 무한히 커지면 Equal과 같고 T=1이면 Examples-proportional과 같음

Experiments – Scaling

- NLP에서 모델의 크기가 클 수록 더 좋은 모델이 나오는 추세
- 4배의 computing power를 가진다면, 모델의 크기를 어떻게 늘리는 것이 효과적인가?

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
$1 \times$ size, $4 \times$ training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
2× size, 2× training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
4× size, 1× training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10
4× ensembled	84.77	20.10	83.09	71.74	28.05	40.53	28.57
$4\times$ ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

- Model size, training step을 늘린 것이 가장 효과 있음
- 4x ensembled: pre-training, fine-tuning 4번 따로 진행 후 앙상블
- 4x ensembled, fine-tune only: fine-tune만 따로 진행 후 앙상블

Experiments – Putting It All together

• 실험 정리

Objective	 i.i.e Denoising objective Span length 3 Corrupt 15%
Longer Training	 Data를 반복해서 학습 할 필요 없이 C4 dataset는 충분히 큼 Pre-training은 효과적임 Batch size, training step 늘리는 것 효과적 C4 말고 다른 Dataset으로 Pretraining하는 것이 좋은 성능을 보였으나, Data 양이 적어서 Overfitting이 될 우려 존재
Model Size	 Base: 220 million parameters Small: d_{model} = 512, d_{ff} = 2048, 8-headed attention, 6 layers, 60 million parameters Large: d_{model} = 1024, d_{ff} = 4096, 16-headed attention, 12 layers, 770 million parameters 3B: d_{model} = 1024, d_{ff} = 16384, 32-headed attention, 24 layers, 2.8 billion parameters 11B: d_{model} = 1024, d_{ff} = 65536, 128-headed attention, 24 layers, 11 billion parameters
Multi-task pretraining	• Mixture of Unsupervised and supervised task → Unsupervised만으로 pretraining 하는 것보다 성능이 좋음
Fine-tuning on individual GLUE and SuperGLUE	 GLUE/SuperGLUE 벤치마크 안에 있는 것을 한번에 fine-tuning 성능의 저하 약간 발생
Beam Search	• WMT translation과 CNN/DM summarization의 성능 향상을 위하여 beam-search 사용 (beam width = 4)

Experiments – Putting It All together

• 실험 결과

Model	GLUE Average	CoLA Matthew	SST-2		MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	89.4ª	69.2 ^b	97.1°	93.6 ^b	91.5^{b}	92.7^{b}	92.3 ^b
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8
	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model		Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8°	90.7 ^b	91.3°	91.0°	99.2ª	89.2ª	91.8°
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	92.2	91.9	96.9	92.8	94.5
	SQuAD	SQuAD	SuperGLU	UE BoolQ) CB	CB	COPA
Model	$_{\rm EM}$	F1	Average	e Accurac	cy F1	Accuracy	Accuracy
Previous best	90.1°	95.5^{a}	84.6 ^d	87.1°	90.5^{d}	95.2^{d}	90.6^{d}
T5-Small	79.10	87.24	63.3	76.4	56.9	81.6	46.0
T5-Base	85.44	92.08	76.2	81.4	86.2	94.0	71.2
T5-Large	86.66	93.79	82.3	85.4	91.6	94.8	83.4
T5-3B	88.53	94.95	86.4	89.9	90.3	94.4	92.0
T5-11B	91.26	96.22	88.9	91.2	93.9	96.8	94.8

Model	MultiRC F1a	MultiRC EM	ReCoRD F1	ReCoRD Accuracy	RTE Accuracy	WiC Accuracy	WSC Accuracy
Previous best	84.4 ^d	52.5^{d}	90.6^{d}	90.0^{d}	88.2^{d}	69.9^{d}	89.0^{d}
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large	83.3	50.7	86.8	85.9	87.8	69.3	86.3
T5-3B	86.8	58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.1	63.3	94.1	93.4	92.5	76.9	93.8
	WMT EnDe	WMTI	EnFe WM	T EnRo ('NN/DM	CNN/DM	CNN/DM

Model	WMT EnDe BLEU	WMT EnFr BLEU	WMT EnRo BLEU	CNN/DM ROUGE-1	CNN/DM ROUGE-2	CNN/DM ROUGE-L
Previous best	33.8"	43.8°	38.5^{f}	43.47^{g}	20.30^{g}	40.63^{g}
T5-Small	26.7	36.0	26.8	41.12	19.56	38.35
T5-Base	30.9	41.2	28.0	42.05	20.34	39.40
T5-Large	32.0	41.5	28.1	42.50	20.68	39.75
T5-3B	31.8	42.6	28.2	42.72	21.02	39.94
T5-11B	32.1	43.4	28.1	43.52	21.55	40.69

Reflection - Takeaways

Text-to-Text	•	같은 loss function과 decoding 과정으로 사용할 수 있는 single model
Architectures	•	Encoder + Decoder, sharing 구조도 성능 저하가 많지 않음을 보임
Unsupervised objectives	•	짧은 target sequence를 생성하는 objective 제안. 이는 Text-to-text에서도 성능이 비슷하게 나옴.
Data sets	•	C4 dataset 제작
Training strategies	•	기존 방법들을 mixing하여 pre-training & fine-tuning 진행
Scaling	•	다양한 방법 실험
Pushing the limits	•	위의 모든 방법 적용, 가장 큰 11B모델(11 billion parameter)은 sota 달성

Reflection - Outlook

The inconvenience of large models	 큰 모델이 성능이 잘 나오는 경향이 있지만, transfer learning을 사용하는 것의 장점 중 하나는 low-resource task에서 좋은 성능을 얻어내는 것임 저렴한 모델로 stronger performance 낼 수 있는 연구 필요
More efficient knowledge extraction	 Pre-training은 downstream model에 성능 향상을 위한 지식을 제공하는 것 하지만 현재 denoising을 하도록 훈련시킴 이 기법이 general-purpose knowledge를 학습시기에 효율적이지 않을 수 있음
Formalizing the similarity between tasks	• Pre-training을 Wikipedia dataset으로 시켰을 경우, 출처가 같은 Data의 성능이 더 높음
Language-agnostic models	• 영어로 학습한 모델 – 언어 의존적

QnA

Appendix

Adapter layers

