

S(n): Step response (6/p of the system due to unit step input).

-> if given s(n), we can get h(n)

ex: Find Step response of a system

$$h(n) = \left(\frac{1}{2}\right)^n u(n)$$

1)
$$n < 0$$

S(n) = 0

2) $n > 0$

S(n) = $2 (1 - (1/2)^{n+1})$

Proper tus of LTI system

9 iven: h(n)

Memory Loss 1-

LTI system is memory Loss if $(h(n) = c \le n)$

memory $n > 1 \le 1$

ex. p(v) = (3), n(v) - woward h(n) = 2 % (n) - monery 685 h(n) = > S(n-1) - momor() h(n) = 2 [u(n) -u(n-1)] = 2 S(n) -memorylas 2- (Carsally) LTI system Gusul iF h(n) = 0 , n <0 other wise non Gallal h(n) = (t) n(n) - Gusal h(n) = (\frac{1}{2})^n u(n+n) - non Coword 3- (Stabilly) LTI system is Stuble if 3 / him) < 00 N= - 80 exs: h(n) = (Li) u(n) Stable

$$ex: h(n) = (2)^n u(n)$$
 $\leq h(n) - \sum_{n=0}^{\infty} (2)^n = w$
 $(unstable)$ $int 2^{2} int - 1$

$$\leq |h(n)| = 1 + 2 + 3 = 6 < \infty$$
 $\frac{p^{1}}{6} = \frac{p^{3}}{6} = 0$

A Sovertibility:

$$\frac{\chi(n)}{\chi(n)}$$
 $\frac{\chi(n)}{\chi(n)}$

N'(n) 1 & mpulse response of inverse system.

Condition of inverse system.

example:

LTI System: has Step response

S(n) = 2 S(n) - S(n-1)

1- Find Impulse res ponse

2- IS SYStem Cousal?

3- 15 System Stable?

4- Is system memory?

given:

Step response S(n) = 2 S(n) - S(n-1)

h(n) = S(n) - S(n-1)

$$h(n) = \left[28(n) - 8(n-1)\right] - \left[28(n-1) - 8(n-2)\right]$$

$$h(n) = [2 S(n) - 3 S(n-1) - S(n-2)]$$

1 Kmpulse vegponse

-> Could, Memory.

- To check Stability 1-

$$\frac{2}{n=-\infty} \left| h(n) \right| = |2|+|-3|+|1| = 6$$

Stable

@ Parallel - Garacted system:

where :-

here:

$$h_1(n) = U(n), h_2(n) = U(n+2) - U(n)$$

 $h_3(n) = S(n-2), h_4(n) = \alpha U(n), Find h(n)?$

$$h_3(n) = \begin{cases} 801 \\ h_2(n) \end{cases} + h_3(n) - h_4(n) \end{cases}$$

$$h_3(n) = \begin{cases} (h_1(n) + h_2(n)) * h_3(n) - h_4(n) \end{cases}$$

$$h_{eq}(n) = \left[[u_{1}(1) + u_{1}(n+2) - u_{1}(n)] + S(n-2) - q^{2} u_{1}(n) \right]$$

$$= \left[u_{1}(n+2) + S(n-2) - q^{2} u_{1}(n) \right]$$

$$= \left[u_{1}(n) + u_{1}(n) - q^{2} u_{1}(n) - q^{2} u_{1}(n) \right]$$

$$h_{eq}(n) = \left[u_{1}(n) - q^{2} u_{1}(n) - q^{2} u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) \right]$$

$$= \left[u_{1}(n) - u_{1}(n) - u_{1}(n) - u_{1}(n) -$$

$$h_{eq}(n) = h_{1}(n) * h_{2}(n)$$

$$= \frac{1}{2} \left[S(n) + S(n-1) \right] * \frac{1}{2} \left[S(n) - S(n-1) \right]$$

$$= \frac{1}{4} \left[S(n) * S(n) + S(n-1) * S(n) \right]$$

$$= \frac{1}{4} \left[S(n) * S(n-1) - S(n-1) * S(n-1) \right]$$

$$= \frac{1}{4} \left[S(n) + S(n-1) - S(n-1) - S(n-1-1) \right]$$

$$h_{eq}(n) = \frac{1}{4} \left[S(n) - S(n-2) \right]$$

LTI System x XIN) = 3 S(n), the o/p is $y(n) = \begin{cases} 3, n=0 \\ -3, n=1 \\ 6, n=2 \\ 0, 0.0 \end{cases}$

- a) Find Energy of output signal?
 - b) Is the system Gusal 7 stable?
 - c) Find the Impulse reponse hin)?
 - d) Find the output produced by the input X(n) = 2S(n) - S(n-1) + S(n-2)

$$(501)$$
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 (501)
 $(501$

$$\chi(n) = S(n) \longrightarrow y(n) = h(n) = \begin{cases} 1, n = 0 \\ -1, n = 1 \\ 2, n = 2 \end{cases}$$

$$\frac{1}{2}$$
, $h(n) = \begin{cases} 1, & n = 0 \\ -1, & n = 1 \\ 2, & n = 2. \end{cases}$

$$\triangle E_{t} = \sum_{n=-\infty}^{\infty} |y_{(n)}|^{2} = (3)^{2} + (-3)^{2} + (6)^{2} = -$$

(b) To check Gusality

$$\frac{1}{2}$$

(d)
$$\chi(n) = 2 S(n) - S(n-1) + S(n-2)$$

$$\lambda(n) = 2 S(n) - 3$$
 $\lambda(n) = 2 S(n) - 3$
 $\lambda(n) = 3 S(n) - 3$

$$y(n) = x(n) + h(n) = 2 \times (k) + h(n-k)$$

$$x = 0$$

$$y(n) = 2 \times (k) + h(n-k)$$

$$y(n) = \begin{cases} 2, & n = 0 \\ -3, & n = 1 \\ 6, & n = 2 \\ -3, & n = +3 \\ 2, & n = 4 \end{cases}$$

(ex)

the impulse response of 2 Cascaded LTI

$$h_1(n) = (n+1) \int_{-1}^{\infty} u(n+1) - u(n-1)$$

 $h_2(n) = 2 \sin(2\pi) \int_{-1}^{\infty} u(n+1) - u(n-1)$

1 Find and Skedch

$$\frac{\chi(n)}{h_2(n)}$$

$$h_{eq}(n) = h_{l}(n) * h_{l}(n)$$

where $h_{l}(n) = (n+1) \cdot \begin{cases} 1, n=0 \\ 1, n=1 \\ 1, n=2 \end{cases}$

where $h_{l}(n) = (n+1) \cdot \begin{cases} 1, n=0 \\ 1, n=2 \\ 0, 0. \text{ w} \end{cases}$

$$h_{1}(n) = \begin{cases} 1 - 1 = \boxed{1} & 1 = 0 \\ 2 \cdot 1 = \boxed{2} & 1 = 1 \\ 3 \cdot 1 = \boxed{3} & 1 = 1 \\ 0 & 1 & 0 \end{cases}$$

$$h_{2}(n) = \begin{cases} 2\sin(-\frac{\pi}{2}), n = -1 \\ 2\sin(0), n = 0 \end{cases} = \begin{cases} -2, n = -1 \\ 0, n = 0 \end{cases}$$

$$\begin{cases} 2\sin(\frac{\pi}{2}), n = 1 \\ 0, 0, 0 \end{cases}$$

^	10 1	1	2	3	h ₁ (n)	' <mark>. 5</mark>
hzen	-2 0	ત્ર			7	1
	-2	D	2		2	
		-2	0	2	3	
	(-9) (-A)	(A)	0	(6)	heg (n)	
g (n) = }		- 1 \(= 1 \(= 3 \(\)		-1	_A \ - 4	3 0
heg(n) = -9	1 8 (U+1)	- A ^{<}	- 2) - 2)	+	6 2(u -3)	
2 (V) = 3	S (n-2)	⇒ [-	y (n) 2 S () = n+1 A {	X(n) X h (n)) - 4 S(n) s(n-1) + 4 S(n) + 6 S(n-	3)]

(;;

$$y(n) = -68(n-1) - 128(n-2) - 128(n-3)$$

+ 148(n-4) + 188(n-5)

For the discrete system shown

$$\frac{1}{\chi(n)} \frac{1}{h_1(n)} \frac{1}{h_2(n)} \frac{1}{h_3(n)} \frac{1}{$$

- 1) Sketch each Impulse response
- 2) Find total Impulse response
- 3) Is System Stable, memory lass, Causal h(n) = (3)n [u(n) - u(n-2)] where

$$\mu^{S}(u) = \Lambda(u+s) - \Lambda(u-1)$$

$$h_{3}(n) = -S(n+1) + 2S(n-1)$$

$$h_{4}(n) = 2S(n-3) \cdot h_{4}(n) = 9[u(n-2) - u(n-4)].$$

$$Solution = h_{2}(n) + h_{1}(n) \times [h_{2}(n) + h_{1}(n)] \times [h_{2}(n) - h_{1}(n)]$$

$$h_{1}(n) = \frac{1}{2} \int_{-2}^{2} \frac{1}{3} \int_{-2}^{2} \frac{1}{$$

LTI System with hin)=25(n-1)

Find the Impulse response of the inverse system if exists

Condition of Invertibility:

h(n) * h'(n) = S(n)

2 S(n-1) * [?] = S(n)

Recall (
$$S(n) * X(n) = X(n)$$
 $\Rightarrow S(n) * S(n) = S(n)$
 $S(n-no) * X(n) = X(n-no)$ $\Rightarrow S(n-1) * S(n+1) = S(n)$

1. K'(N) = { S(N+1)

be carse 2 S(N-1) x { S(N+1) = S(N)