	金沢大学大学院自然科学研究	科 博士前期課程入学試験 問題用網	Æ
対 象	機械科学専攻, 電子	子情報科学専攻,環境デザイン学専攻	
試験科目名	数 学	P. 1 / 1	

2013年8月27日(火)10:00-11:00

1. 問題 1, 2, 3, 4 のうち, 2題を選択して解答すること.

- 2. 解答は各題ごとに分けて、1題を1枚の答案用紙の表に書くこと.
- 1 次の微分方程式を解け.

(1)
$$\frac{dy}{dx} + (\cos x)y = \sin 2x$$
 (2) $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 11y = 0$

(2)
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 11y = 0$$

(3)
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 11y = 11x$$
 (4) $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 11y = \sin x$

(4)
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 11y = \sin x$$

- [2] 関数 $f(x,y,z) = x^2 + y^2 (1-z)^2$ に対し、円錐 $V = \{(x,y,z) \mid 0 \le z \le 1, f(x,y,z) \le 0\}$ とベクトル 場 $u=\left(zf(x,y,z),zf(x,y,z),f(x,y,z)+1\right)$ を考える. また,V の底面 $S_1=\left\{(x,y,0)\,|\,x^2+y^2\le 1\right\}$ と 側面 $S_2=\left\{(x,y,z)\,|\,0\le z\le 1,\; f(x,y,z)=0\right\}$ を考え、 $S=S_1\cup S_2$ とし、n を S の外向き単位法線ベク トルとする.次の問いに答えよ.
 - (1) S_1 の面積と V の体積を求めよ.また,積分 $\iint_{\mathcal{C}} (x,y,z) \cdot n \; dS$ の値を求めよ.
 - (2) S_1 における n を求めよ. S_2 における n の z 成分は定数であることを示せ.
 - (3) S_2 における u および S_2 の面積を求めよ、さらに、積分 $\iiint_V \operatorname{div} u \ dV$ の値を求めよ.
- [3] 複素関数 $f(z) = \frac{(z^2-1)^2}{z^2(z^2-6z+1)}$ について、次の問いに答えよ.
 - (1) 複素平面上の f(z) の各孤立特異点における留数を求めよ.
 - (2) 実積分 $I_1 = \int_0^{2\pi} \frac{\sin^2 \theta}{3 \cos \theta} d\theta$ を、単位円 $\{|z| = 1\}$ に沿う f(z) の積分 $I_2 = \int_{|z|=1} f(z) dz$ で表せ.
 - (3) 上の積分 I1 の値を求めよ.
- 4 $0 < \lambda < \pi$ とする. $f_{\lambda}(x)$ は周期 2π の周期関数で

$$f_{\lambda}(x) = \begin{cases} 0 & (-\pi \le x < -\lambda) \\ \frac{1}{\lambda^2} x + \frac{1}{\lambda} & (-\lambda \le x < 0) \\ -\frac{1}{\lambda^2} x + \frac{1}{\lambda} & (0 \le x < \lambda) \\ 0 & (\lambda \le x < \pi) \end{cases}$$

で定められている。 次の問いに答えよ.

- (1) $y = f_{\lambda}(x)$ のグラフを $-\pi \le x \le \pi$ の範囲で描け.
- (2) $f_{\lambda}(x)$ のフーリエ級数 $f_{\lambda}(x) \sim \frac{a_0(\lambda)}{2} + \sum_{n=1}^{\infty} \left(a_n(\lambda)\cos nx + b_n(\lambda)\sin nx\right)$ を求めよ.
- (3) 各 $n=1,2,\cdots$ に対して $\lim_{\lambda\to 0} a_n(\lambda)$ を求めよ.