

planetmath.org

Math for the people, by the people.

proof of existence and uniqueness of best approximations

Canonical name ProofOfExistenceAndUniquenessOfBestApproximations

Date of creation 2013-03-22 17:32:22 Last modified on 2013-03-22 17:32:22 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Proof
Classification msc 49J27
Classification msc 46N10
Classification msc 46C05
Classification msc 41A65
Classification msc 41A52
Classification msc 41A50

- Proof of the theorem on existence and uniqueness of - (http://planetmath.org/BestApproximationInInnerProductSpacesentry)

Existence: Without loss of generality we can suppose x = 0 (we could simply translate by -x the set A).

Let $d = d(0, A) = \inf\{||a|| : a \in A\}$ be the distance of A to the origin. By defintion of infimum there exists a sequence (a_n) in A such that

$$||a_n|| \longrightarrow d$$

Let us see that (a_n) is a Cauchy sequence. By the parallelogram law we have

$$\left\| \frac{a_n - a_m}{2} \right\|^2 + \left\| \frac{a_n + a_m}{2} \right\|^2 = \frac{1}{2} \|a_n\|^2 + \frac{1}{2} \|a_m\|^2$$

i.e.

$$\left\| \frac{a_n - a_m}{2} \right\|^2 = \frac{1}{2} \|a_n\|^2 + \frac{1}{2} \|a_m\|^2 - \left\| \frac{a_n + a_m}{2} \right\|^2$$

As A is convex, $\frac{a_n + a_m}{2} \in A$, and therefore

$$\left\| \frac{a_n + a_m}{2} \right\| \ge d$$

So we see that

$$\left\| \frac{a_n - a_m}{2} \right\|^2 \le \frac{1}{2} \|a_n\|^2 + \frac{1}{2} \|a_m\|^2 - d^2 \longrightarrow 0 \quad \text{when } m, n \to \infty$$

which means that $||a_n - a_m|| \longrightarrow 0$ when $m, n \to \infty$, i.e. (a_n) is a Cauchy sequence.

Since A is http://planetmath.org/Completecomplete, $a_n \longrightarrow a_0$ for some $a_0 \in A$.

As $a_0 \in A$ its norm must be $||a_0|| \ge d$. But also

$$||a_0|| \le ||a_0 - a_n|| + ||a_n|| \longrightarrow d$$

which shows that $||a_0|| = d$. We have thus proven the existence of http://planetmath.org/BestApproximationInInnerProductSpacesbest approximations.

Uniqueness: Suppose there were $a_0, b_0 \in A$ such that $||a_0|| = ||b_0|| = d$. Then, by the parallelogram law

$$\left\| \frac{a_0 - b_0}{2} \right\|^2 + \left\| \frac{a_n + b_0}{2} \right\|^2 = \frac{1}{2} \|a_0\|^2 + \frac{1}{2} \|b_0\|^2 = d^2$$

If $a_0 - b_0 \neq 0$ then we would have $\left\| \frac{a_0 + b_0}{2} \right\|^2 < d^2$, which is contradiction since $\frac{a_0 + b_0}{2} \in A$ (A is convex). Therefore $a_0 = b_0$, which proves the uniqueness of the . \square