Harten's Multiresolution Scheme on Adaptive Mesh Refinement Blocks for More Efficient Simulation of Reactive Flows

Brandon Gusto

Dept. of Scientific Computing Florida State University

March 25, 2019

Introduction

Many engineering applications depend on numerically solving systems of conservation laws of the form

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_{\times} = \mathbf{S}(\mathbf{U})$$

where $\mathbf{U} = (\rho, \rho u, E)$ is a vector of conserved quantities, $\mathbf{F}(\mathbf{U})$ is a flux vector, and $\mathbf{S}(\mathbf{U})$ is a vector of source terms. The discretized solution is represented as averages over each cell

$$\mathbf{U}_i = \frac{1}{|V_i|} \int_{V_i} \mathbf{U} dV.$$

where the i denotes spatial index.

Discretization

The semi-discretized form of the system of PDEs is

$$\frac{\partial \mathbf{U}_i}{\partial t} = -\frac{1}{|V_i|} \left(\mathbf{F}_{i+\frac{1}{2}} - \mathbf{F}_{i-\frac{1}{2}} \right) + \mathbf{S}_i$$

where the source terms are also averaged over each cell

$$\mathbf{S}_i = \frac{1}{|V_i|} \int_{V_i} \mathbf{S} dV.$$

These equations are typically solved on a Cartesian grid with non-uniform mesh spacing:

▶ the refinement is generally associated with localized features

- the refinement is generally associated with localized features
- some type of estimator of the local error is needed

- ▶ the refinement is generally associated with localized features
- some type of estimator of the local error is needed
- typically a collection of cells (a block) is refined for efficiency

- ▶ the refinement is generally associated with localized features
- some type of estimator of the local error is needed
- typically a collection of cells (a block) is refined for efficiency
- blocks introduce inherent "overresolution" in some regions of the mesh

Filling Factor

The filling factor is the number of cells in a block which were flagged, divided by the total.

Filling Factor

The filling factor is the number of cells in a block which were flagged, divided by the total.

blocks with multiple parents becomes complicated

Filling Factor

The filling factor is the number of cells in a block which were flagged, divided by the total.

- blocks with multiple parents becomes complicated
- communication between neighboring blocks becomes costly

"The goal of a multi-scale decomposition of a discrete set of data is a rearrangement of its information content in such a way that the new discrete representation, exactly equivalent to the old one, is more manageable in some respects." -Arandiga, Donat

- "The goal of a multi-scale decomposition of a discrete set of data is a rearrangement of its information content in such a way that the new discrete representation, exactly equivalent to the old one, is more manageable in some respects." -Arandiga, Donat
- ▶ The multiresolution scheme introduced by Harten does *not* adapt grid. Instead, a wavelet decomposition is performed on the uniform grid.

Define multiple levels of representation of the discrete data

$$\mathcal{G}^{I} = \left\{ x_{i+\frac{1}{2}}^{I} \right\}_{i=1}^{N_{I}} = \left\{ x_{i+\frac{1}{2}}^{I+1} \right\}_{i=1, \text{i even}}^{N_{I+1}}$$

$$I = I_{max}$$

$$I = I_{max} - 1$$

$$I = I_{max} - 2$$

$$\vdots$$

Decomposition

Coarsening of avarage data in cell done via

$$\mathbf{U}_{i}^{l} = \frac{1}{2} \left(\mathbf{U}_{2i}^{l+1} + \mathbf{U}_{2i+1}^{l+1} \right),$$

and prediction from coarse to fine is done by

$$\hat{\mathbf{U}}_{2i+1}^{l+1} = \sum_{j=1-s}^{s-1} \gamma_j \mathbf{U}_{i+j}^l,$$

where γ_i are average-interpolation coefficients.

Detail Coefficients

The regularity information is assessed by computing detail coefficients (residuals) as

$$\mathbf{d}_{i}^{I} = \mathbf{U}_{2i+1}^{I+1} - \hat{\mathbf{U}}_{2i+1}^{I+1}.$$

Harten's Approach

$$\frac{\partial \mathbf{U}_i}{\partial t} = -\frac{1}{|V_i|} \left(\mathbf{F}_{i+\frac{1}{2}} - \mathbf{F}_{i-\frac{1}{2}} \right) + \mathbf{S}_i$$

Harten's Approach

$$\frac{\partial \mathbf{U}_i}{\partial t} = -\frac{1}{|V_i|} \left(\mathbf{F}_{i+\frac{1}{2}} - \mathbf{F}_{i-\frac{1}{2}} \right) + \mathbf{S}_i$$

- compute multiresolution decomposition on solution data
- utilize this regularity information to identify smooth regions

Harten's Approach

$$\frac{\partial \mathbf{U}_i}{\partial t} = -\frac{1}{|V_i|} \left(\mathbf{F}_{i+\frac{1}{2}} - \mathbf{F}_{i-\frac{1}{2}} \right) + \mathbf{S}_i$$

- compute multiresolution decomposition on solution data
- utilize this regularity information to identify smooth regions
- \blacktriangleright move from coarse to fine, either compute or interpolate each $F^I_{i\pm\frac{1}{2}}$

Convergence

Sine wave advection after one period:

Two Interacting Blast Waves

Two Interacting Blast Waves

Two Interacting Blast Waves

Future

analyze efficiency of the approach

Future

- analyze efficiency of the approach
- move to multi-dimensional problems