Lecture 4 Probability Axioms

BIO210 Biostatistics

Xi Chen

Spring, 2022

School of Life Sciences
Southern University of Science and Technology

Probability

Probability theory is nothing but common sense reduced to calculation.

Laplace

Notations

Set

A set is a well-defined collection of distinct objects.

 $S = \{$ list or description of the objects in the set $\}$

Definitions

Sample space (Ω)

Set of all possible outcomes

Outcomes: mutually exclusive and collectively exhaustive

Sample space example 1

Example 1: flipping a coin four times

```
Sample space \Omega = \{ HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, THHT, THTH, TTHH, TTHH, TTHT, TTTT \}
```

Sample space example 2

Example 2: an exam contained ten questions; each has 10 points; what is the total points you may get ?

Sample space $\Omega = \{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}$

Alternative sample space $\Omega=\{$ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and you are using your lucky pen, 100 and you are not using your lucky pen $\}$

Sample space example 3

Example 3: archery (positions on a target)

Sample space
$$\Omega = \{ (x, y) \mid x^2 + y^2 \leqslant 1 \}$$

Assign probability to outcomes ... ?

Now, we can assign probability to individual outcomes ...

Not exactly!

What is the probability of hitting (0, 0)?

Event

Event

An event (A, B, C, D, etc.): a subset of the sample space Ω

- Probabilities are assigned to events. The probability represents our belief on how likely we think an event will occur.
- Event A has occurred. \leftarrow what does this mean?

Probability axioms

FOUNDATIONS

OF THE

THEORY OF PROBABILITY

BY

A. N. KOLMOGOROV

NATHAN MORRISON

CHELSEA PUBLISHING COMPANY
NEW YORK
1950

§ 1. Axioms²

Let E be a collection of elements ξ, η, ζ, \ldots , which we shall call elementary events, and \mathfrak{F} a set of subsets of E; the elements of the set \mathfrak{F} will be called $random\ events$.

I. F is a field of sets.

II. \mathfrak{F} contains the set E.

III. To each set A in $\mathfrak F$ is assigned a non-negative real number $\mathsf P(A)$. This number $\mathsf P(A)$ is called the probability of the event A.

IV. P(E) equals 1.

V. If A and B have no element in common, then

$$P(A+B) = P(A) + P(B)$$

A system of sets, \mathfrak{F} , together with a definite assignment of numbers P(A), satisfying Axioms I-V, is called a *field of probability*.

Probability axioms

The Kolmogorov Axioms

1. Nonnegativity: $P(A) \ge 0$

2. Normalisation: $P(\mathbf{\Omega}) = 1$

3. Additivity: if A and B are distjoint $(A \cap B = \emptyset)$, then $P(A \cup B) = P(A) + P(B)$

Nice properties

- The probability of any event is always between 0 and 1.
- If A_1 , A_2 , A_3 , \cdots , A_n are disjoint, then

$$P(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) = P(A_1) + P(A_2) + P(A_3) + \dots + P(A_n)$$

ullet s_1 , s_2 , s_3 , \cdots , s_k are individual outcomes from the sample space, then

$$\begin{split} P(\{s_1,\ s_2,\ s_3,\ \cdots,\ s_k\}) &= P(\{s_1\}) + P(\{s_2\}) + \cdots + P(\{s_k\}) \\ &= P(s_1) + P(s_2) + \cdots + P(s_k) \leftarrow \text{abuse notation} \end{split}$$

Assigning probability

Experiment 1: flipping a fair coin four times

```
Sample space \Omega = \{ HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, THHT, THTH, TTHH, TTTH, TTTT \}
```

All possible outcomes are **equally likely**, so we can let every possible outcome have a probability of 1/16.

Calculate the probabilities of the following events:

```
\begin{split} A &= \{ \text{all heads or tails} \} \\ B &= \{ \text{exactly two head} \} \\ C &= \{ \text{at least two tails} \} \end{split}
```

Discrete uniform law

Discrete Uniform Law

Let all outcomes be equally likely, then

$$P(A) = \frac{\text{number of elements of } A}{\text{total number of sample points}} = \frac{|A|}{|\Omega|}$$

Computing probability is essentially just counting!

Continuous uniform law

Experiment 2: archery

Sample space
$$\Omega = \{ (x, y) \mid x^2 + y^2 \leq 1 \}$$

All possible outcomes are equally likely, Then probability = the ratio of areas.

$$A = \{ \text{hitting the red area} \}, \ P(A) = ?$$

 $B = \{ (x, y) \mid x + y \leq 1 \}, \ P(B) = ?$
 $C = \{ (0, 0) \}, \ P(C) = ?$

Countable additive axiom

Experiment 3: keep flipping a fair coin until you obtain a head for the first time and stop.

Sample space $\Omega = \{$ H, TH, TTH, TTTH, TTTTH, $\cdots \}$

Let n be the number of flips, $P(n) = \frac{1}{2^n}, n = 1, 2, 3, 4, \cdots$

 $A = \{ n \text{ is an even number } \}, P(A) = ?$

Countable additivity axiom

Countable Additivity Axiom

If a sequence of events A_1 , A_2 , A_3 , \cdots are disjoint, then

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$

Countable additivivty axiom

Sample space
$$\Omega = \{ (x, y) \mid x^2 + y^2 \leq 1 \}$$

Paradox 1??

$$1 = P(\mathbf{\Omega}) = P\left(\bigcup\{(x,y)\}\right) = \sum_{x,y} P(\{(x,y)\}) = \sum_{x,y} 0 = 0$$

Take-home message: $\{(x, y)\}$ is uncountable: it is not possible to list every single one of (x, y).

Paradox 2??

An experiment is performed, and the outcome is $\left(\frac{1}{2}, \frac{1}{2}\right)$

Take-home message: probability of 0 does NOT mean impossible.

Frequentist interpretation

The frequentist definition of probability

If an experiment is repeated n times under essentially the identical conditions, and if the event A occurs m times, then as n grows large, the ratio $\frac{m}{n}$ approaches a fixed limit that is the probability of A:

$$P(A) = \frac{m}{n}$$