Patent Claims

- 1. Slip ring seal, especially running gear seals (1), consisting of an angle-shaped slip and/or opposing ring (2) with a circumferential surface designed to accept a ring-shaped, approximately cross-sectional plate spring shaped sealing body (4), where the sealing body (4), as needed, includes a secondary seal (7) directed toward the area of the sealing shaft (3) of the slip and/or opposing ring (2), and supports itself with segment areas of its outer circumferential surface on corresponding surface areas of an installation bore (8), characterized in that a ring-shaped securing element is provided radially between the outer circumferential surface of the slip and/or opposing ring (2) and the installation bore (8), contacting the sealing body (4) in the installed condition.
- 2. Slip ring seal as in Claim 1, characterized in that the securing element (10) is made of plastic, especially fiber-reinforced plastic such as polyamide.
- 3. Slip ring seal as in Claim 1 or 2, characterized in that the securing element (1) is provided with at least one feature on its outer circumference.
- 4. Slip ring seal as in one of the Claims 1 through 3, characterized in that a sawtooth profile (14) is formed on the outer circumference of the securing element (10).
- 5. Slip ring seal as in one of the Claims 1 through 4, characterized in that the feature (11) or the profile (14), following installation of the securing element (10), engages in mating undercuts (12, 15) on the installation bore.
- 6. Slip ring seal as in one of the Claims 1 through 5, characterized in that a wedge-like area (13) is formed on the securing element (10) on the sealing body side, which presses a secondary seal (7) radially outward, if one is present.
- 7. Slip ring seal as in one of the Claims 1 through 6, characterized in that the securing element (10) is made with radial slits from the inside or from the outside.

Summary

8. Slip ring seal, especially running gear seal, consisting of an angle-shaped slip and/or opposing ring with a circumferential surface designed to accept a ring-shaped, approximately cross-sectional plate-spring shaped sealing body, where the sealing body, as needed, includes a secondary seal directed toward the area of the sealing shaft of the slip and/or opposing ring, and supports itself with segment areas of its outer circumferential surface on corresponding surface areas of an installation bore, where a ring-shaped securing element is provided radially between the outer circumferential surface of the slip and/or opposing ring and the installation bore, contacting the sealing body in the installed condition.