MODELAÇÃO E SIMULAÇÃO DE SISTEMAS NATURAIS

ANDRÉ FONSECA 39758

NOVEMBRO 2016 / MSSN 31N

ACTIVIDADES

Queda livre sem atrito	1
Evolução das variáveis de estado	1
Tempo e velocidade do objecto ao chegar ao solo	1
Diagrama de níveis e fluxos	2
Simulação visual do problema	2
Queda livre com atrito	2
Diagrama de níveis e fluxos de equacoes nao lineares	2
Simulação visual do problema	2
Queda livre com atrito e paraquedas	2
Simulação visual do problema	2
Mergulho na água	3
Simulação visual do problema em que o paraquedista mergulha embate na água co paraquedas	om 3
Simulação visual do problema em que o paraquedista mergulha embate na água s paraquedas	em 3
Extras	3
Funcionalidade do mouse wheel	3
Detalhes sobre o movimento do corpo	3

1. Queda livre sem atrito

a. Evolução das variáveis de estado

De acordo com o enunciado sabemos que as variáveis de estado são a posição \mathcal{X} , e velocidade do corpo, \mathcal{V} , definidas pelas seguintes equações diferenciais:

$$\frac{d\overline{x}}{dt} = \overline{v} \qquad \quad \frac{d\overline{v}}{dt} = \overline{a}$$

Assim é possível verificar que:

$$\frac{d\overline{x}}{dt} = \frac{d(\overline{x_0} + \overline{v_0}t + 0.5\overline{a}t^2)}{dt} = \frac{d(1000 + 0.t + 0.5 \cdot (-9.8) \cdot t^2)}{dt} = 0 + (-9.8) \cdot t = \overline{v_0} + \overline{a} \cdot t$$

$$\frac{d\overline{v}}{dt} = \frac{d(\overline{v_0} + \overline{a}t)}{dt} = \frac{d(0 + (-9.8) \cdot t)}{dt} = -9.8 = \overline{a}$$

b. Tempo e velocidade do objecto ao chegar ao solo

Pelas equações de posição e velocidade do corpo basta determinar $\overline{x}(t)=0$:

$$\overline{x}(t) = 0 \Leftrightarrow \overline{x_0} + \overline{v_0}t + 0.5\overline{a}t^2 = 0 \Leftrightarrow 1000 + 0 \cdot t + 0.5 \cdot (-9.8) \cdot t^2 = 0 \Leftrightarrow t = 14.28$$

Para determinar a respectiva velocidade basta usar este instante de tempo na equação de velocidade:

$$\overline{v}(14.28) = 0 + (-9.8) \cdot 14.28 = 139.944$$

• O corpo demora 14.28 segundos a atingir o solo a uma velocidade final de 139.944 m/s.

Pode-se verificar a aproximação do resultado pelas iterações da seguinte tabela:

t (s)	x (m)	v (m/s)
0.00	1000.00	0
1.00	995.10	-10
2.00	980.40	-20
3.00	955.90	-29
4.00	921.60	-39
5.00	877.50	-49
6.00	823.60	-59
7.00	759.90	-69
8.00	686.40	-78

t (s)	x (m)	v (m/s)
9.00	603.10	-88
10.00	510.00	-98
11.00	407.10	-108
12.00	294.40	-118
13.00	171.90	-127
14.00	39.60	-137
14.25	4.99	-140
14.50	-30.23	-142
14.75	-66.06	-145
15.00	-102.50	-147

c. Diagrama de níveis e fluxos

A posição de um corpo é pode ser alterada pela sua velocidade e aceleração. O mesmo pode acontecer inversamente, a posição de um objecto pode causar que este ganha aceleração e posteriormente aumente a sua velocidade e alterando a sua posição, como em alguns casos em que um corpo é exposta a uma força externa.

d. Simulação visual do problema

Tanto a simulação como a aproximação de Euler apresentam resultados idênticos na queda do objecto.

A simulação visual do problema em Processing pode ser visualizada na pasta ./TPC03/.

2. Oueda livre com atrito

a. Diagrama de níveis e fluxos de equacoes nao lineares

Este caso é semelhante ao anterior, em que a aceleração continua a ser influenciada pela gravidade a que o corpo está exposto mas, agora, também, ao atrito provocado pela resistência do ar.

b. Simulação visual do problema

Nesta simulação verifica-se que o objecto demora 16.62 segundos a chegar ao solo a uma velocidade de cerca de 92 m/s. O tempo de voo e velocidade diminuem em relação ao exercício anterior devido à força de atrito aplicada ao corpo.

3. Queda livre com atrito e paraquedas

a. Simulação visual do problema

Para realizar esta simulação foram usados 100 kg como massa total do corpo, tendo em conta a soma da massa do corpo com a do paraquedas. Estas características foram consideradas na simulação do paraquedista que inicia o salto a 1000 metros de altitude e sob a influência da força gravítica de 9.81 m/s/s. Quando o altímetro indica que este se encontra a 300 metros de altitude é aberto o paraquedas, sendo o corpo submetido a uma força contrária ao seu movimento de 149907 N. Isto acontece devido ao aumento da resistência ao ar que progressivamente é atenuada para cerca de 981 N. O impacto na velocidade é registado a cerca de 91 m/s no momento de abertura do paraquedas, sendo reduzida para uma velocidade constante de 7 m/s. O corpo demora cerca de 13 segundos a atingir o 300 metros de altitude e 50.72 segundos de tempo total de queda.

4. Mergulho na água

a. Simulação visual do problema em que o paraquedista mergulha embate na água com paraquedas

Nesta situação o paraquedista embate na superfície da água com uma força de 516781 N, sendo, 1 segundo depois, essa força atenuada para 2182 N. A sua velocidade de submersão é de 4 m/s.

b. Simulação visual do problema em que o paraquedista mergulha embate na água sem paraquedas

Em ambas as situações o cenário teria um resultado drástico para o paraquedista, assim, nenhuma das hipóteses será considerada vantajosa, no entanto se larga-se o paraquedas antes do embate com a água a força exercida seria de 516448 N e a sua velocidade de submersão de 4 m/s.

Extras

1. Funcionalidade do mouse wheel

Como funcionalidade extra foi adicionada a opção de movimentar os corpos através do mouse wheel, com excepção do objecto do exercício 2 em que a sua posição depende do tempo total decorrido.

2. Detalhes sobre o movimento do corpo

Foi adicionado no topo do canvas todas as características de cada objecto, a sua posição, velocidade, direcção de movimento, tempo de voo e massa do corpo.