Conservez seulement de quoi écrire et une calculatrice : pas de téléphone en particulier! Si vous ne comprenez pas une notation, une question, ou si vous pensez avoir découvert une erreur d'énoncé, signalez-le immédiatement.

Problème 1 : Balançoire

On étudie le mouvement d'un enfant sur une balançoire et différentes techniques pour en augmenter l'amplitude.

Le champ de pesanteur, d'accélération \overrightarrow{g} est considéré uniforme dans le référentiel terrestre, supposé galiléen. On note θ l'angle orienté formé par la direction du dispositif de suspension avec la verticale.

L'enfant est grossièrement modélisé par un ensemble de 3 tiges massives homogènes articulées :

- le haut du corps, de longueur ℓ_h , de masse totale m_h ;
- les cuisses, de longueur ℓ_c , de masse totale m_c ;
- les jambes, de longueur ℓ_i , de masse totale m_i .

Fig. 1 : Modèle de l'enfant immobile sur la balançoire.

Le siège de la balançoire, dont on négligera la masse, est fixé au bout de deux cordes de longueur ℓ_0 constante et de masse négligeable dont on supposera qu'elles restent toujours tendues. **Données :**

- accélération de la pesanteur $g = 9.8 \,\mathrm{m \cdot s^{-2}}$:
- masses: $m_h = 15 \text{kg}$; $m_c = 7.0 \text{kg}$; $m_j = 4.0 \text{kg}$;
- longueurs : $\ell_0 = 2.0 \,\mathrm{m}$; $\ell_h = 50 \,\mathrm{cm}$; $\ell_i = \ell_c = 30 \,\mathrm{cm}$.

I Enfant immobile sur la balançoire

Dans cette partie, l'enfant demeure accroupi immobile sur la balançoire, les tiges restant alignées et superposées dans la direction de la corde comme sur la figure1. On néglige tout frottement avec l'air ou au niveau de la fixation de la corde au point O.

L'enfant est initialement lâché sans vitesse initiale.

l.1. Proposer une condition, qu'on justifiera très brièvement, pour que le mouvement ultérieur soit plan. On admet qu'elle est réalisée par la suite et on note $-\theta_0 < 0$ l'angle initial. On désigne par Δ l'axe orthogonal au plan du mouvement et passant par le point O.

1.2. On admet que le moment d'inertie d'une tige homogène de longueur ℓ et de masse m, en rotation par rapport à un axe Δ qui lui est orthogonal situé à la distance x de son centre géométrique a pour expression, quand la droite portée par la tige passe par l'axe, $J_x = m\ell^2/12 + mx^2$. Calculer son moment d'inertie pour une rotation autour de l'une de ses extrémités (point A sur la figure ci-contre).

- **l.3.** (a) Établir l'expression du moment d'inertie, noté J_0 , de l'enfant en fonction des longueurs et des masses introduites précédemment dans la configuration de la figure 1. Préciser l'expression de son moment cinétique en fonction de la vitesse angulaire $\dot{\theta}$.
 - (**b**) Déterminer la position de son centre de masse. On calculera sa distance à l'axe, noté ℓ_e .
 - (c) Établir l'expression de l'équation différentielle d'évolution de l'angle θ et en déduire l'expression de la pulsation des oscillations de petite amplitude, notée ω_0 . Calculer la valeur de la période, notée T_0 , des oscillations de petite amplitude.
 - (d) Établir de même l'expression de la vitesse maximale notée v_{max} (en m·s⁻¹) atteinte par le siège situé à l'extrémité de la corde au cours du mouvement en fonction entre autres de l'angle θ_0 . Calculer sa valeur pour $\theta_0 = 30^\circ$.
- **1.4**. On ne se limite plus dans cette question aux oscillations de petite amplitude.
 - (a) Établir l'expression de la vitesse angulaire $\dot{\theta}$ pour toute valeur de l'angle θ , en fonction entre autres de l'angle θ_0 .
 - (**b**) En déduire l'expression de la période, notée $T(\theta_0)$ des oscillations sous forme d'une intégrale sur l'angle θ dont on précisera soigneusement les bornes. Préciser, sans chercher à la calculer, ses limites pour $\theta_0 \ll 1$ et pour $\theta_0 \to \pi$ (dans le cas où on utiliserait des barres rigides à la place des cordes).
 - (c) Calculs plus délicats. Effectuer le changement de variable $\sin(u) = \sin(\theta/2)/\sin(\theta_0/2)$ dans cette intégrale.

En déduire, au moyen d'un développement limité, une approximation du T/T_0 pour les petites amplitudes de la forme :

$$\frac{T}{T_0} = 1 + \alpha \theta_0^2,\tag{1}$$

avec α une constante positive dont on donnera la valeur.

On donne ci-contre la courbe représentative de l'expression établie à la question **1.4c** dont l'expression 1 est une approximation. Vérifier que cette approximation est encore raisonnable pour $\theta = 60^{\circ}$.

- **1.5.** On considère, pour cette question seulement, que le mouvement des cordes autour de l'axe Δ est affectée par des frottements dont le moment par rapport à l'axe, a une norme constante, notée Γ . L'enfant commence toujours son mouvement immobile à la position $\theta = -\theta_0$.
 - (a) On note $\theta_1 > 0$ l'angle qu'il atteint à l'issue de la première demi-oscillation. Exprimer le travail des frottements entre $-\theta_0$ et θ_1 . En déduire une équation, qu'on ne cherchera pas à résoudre, faisant intervenir entre autres $\cos(\theta_1)$ et θ_1 .
 - (**b**) On suppose que $\theta_0 \theta_1 \ll \theta_0$. Établir une approximation de $\theta_0 \theta_1$. On observe que l'amplitude a diminué de moitié au bout de $N_f = 20$ oscillations. En déduire la valeur de Γ , toujours pour $\theta_0 = 30^\circ$.
 - (c) Un parent entretient les oscillations en exerçant une force orthoradiale de norme constante F_0 au niveau du siège de la balançoire quand l'enfant passe, avec $\dot{\theta} > 0$, entre $\theta = -\theta_p$ et $\theta = \theta_p$. Quelle doit être sont intensité pour entretenir des oscillations d'amplitude 80° si $\theta_p = 5^\circ$.

II Mouvements verticaux

On néglige désormais tout frottement pour simplifier l'analyse.

Le parent n'étant plus disponible, l'enfant s'efforce d'augmenter l'amplitude des oscillations par luimême. À cet effet il s'accroupit et se relève périodiquement pour être :

accroupi quand la balançoire descend : il est dans la même configuration que précédemment

debout quand la balançoire remonte : les cuisses et jambes sont maintenant dépliées au-dessus du siège.

Il passe successivement par les positions A, B, C, D et E de la figure ci-contre.

II.1. On note respectivement J_d et J_a les moments d'inertie de l'enfant quand il est dans les positions debout et accroupi. On note de même ℓ_d et ℓ_a les distances à l'axe Δ de son centre de masse dans ces deux positions. On donne les valeurs :

moments d'inertie : $51 \,\mathrm{kg \cdot m^2}$ et $84 \,\mathrm{kg \cdot m^2}$,

distances à l'axe du centre d'inertie : 1,8 m et 1,4 m.

Préciser, en les justifiant brièvement, les valeurs de J_a , J_0 , ℓ_a et ℓ_d

- **II.2.** On considère une demi-oscillation entre un angle $-\theta_n < 0$ et un angle $\theta_{n+1} > 0$. On note formellement $J(\theta)$ et $\ell(\theta)$ le moment d'inertie et la distance à l'axe du centre de masse, variables en fonction de l'angle θ , au cours de ce mouvement.
 - (a) Déduire de la loi du moment cinétique l'expression de $\frac{\mathrm{d} \left(J(\theta)\dot{\theta}\right)^2}{\mathrm{d}t}$ et en déduire qu'on a :

$$\int_{-\theta_n}^{\theta_{n+1}} J(\theta)\ell(\theta)\sin(\theta) d\theta = 0.$$
 (2)

(b) En déduire la relation de récurrence vérifiée par les différents angles extrêmaux atteints au cours du mouvement et montrer qu'on a, pour tout $n \in \mathbb{N}^*$:

$$\sin\left(\frac{\theta_n}{2}\right) = \sin\left(\frac{\theta_0}{2}\right)\beta^p,\tag{3}$$

avec β une constante des paramètres géométriques et p une expression de n.

(c) En déduire la valeur de θ_4 pour $\theta_0 = 2^\circ$. Pourra-t-on ainsi effectuer un tour complet? On pourra consulter i la vidéo θ_4 pour $\theta_0 = 2^\circ$.

iaprès l'épreuve bien sûr....

III Mouvement de bascule

L'enfant essaie également une autre technique en s'inclinant d'avant en arrière au cours du mouvement. Plus précisément :

- les cuisses et les jambes restent tout au long du mouvement dans leurs positions de la section I;
- le haut du corps est «couché à l'arrière» (voir la figure cicontre) quand l'angle θ est croissant, le moment d'inertie est alors noté J';
- il revient dans la position de la section I quand l'angle θ est décroissant, le moment d'inertie redevient alors I_0 .

- **III.1.** Préciser qualitativement, sans calculer leurs valeurs, lequel des deux moments d'inertie J_0 et J' est le plus grand.
- **III.2**. (a) Établir l'équation différentielle d'évolution de l'angle θ quand le haut du corps est «couché à l'arrière». On pourra la mettre sous la forme :

$$\ddot{\theta} = -\omega_1^2 \sin(\theta) - \omega_2^2 \sin(\theta - \varphi);$$

avec φ un angle positif qu'on exprimera en fonction de ℓ_0 et ℓ_h , ω_1 et ω_2 des constantes qu'on exprimera en fonction des paramètres du problème.

- (**b**) L'enfant est initialement immobile dans la position de la section I à l'angle $\theta=0$ et prend instantanémentⁱⁱ la position «couché en arrière» à l'instant t=0. Montrer que le siège se met ensuite en mouvement et déterminer, sans chercher à résoudre pour tout t l'équation différentielle, l'expression de l'angle, noté $\Delta\theta$, qu'il atteint au cours du premier quart d'oscillation en fonction de ω_1 , ω_2 et de l'angle φ . On fera l'approximation que tous les angles sont petits.
- (c) Décrire le mouvement ultérieur au cours des basculements successifs et en déduire l'allure de la courbe d'évolution de θ . Montrer en particulier que les angles extrêmaux atteints croissent arithmétiquement à chaque oscillation, d'une valeur qu'on exprimera en fonction de $\Delta\theta$. En déduire le nombre d'oscillations nécessaire pour atteindre un angle de 30° .

Problème 2 : Optique électronique

Il est possible de réaliser des microscopes électroniques dans lesquels le faisceau utilisé pour observer l'objet étudié n'est pas formé de photons mais d'électrons : on parle alors d'«optique électronique». On s'intéresse aux éléments de base permettant de manipuler un faisceau d'électrons.

On néglige le poids des électrons et leur interaction mutuelle ; leur mouvement s'effectue dans le vide. **Données :**

Caractéristiques du dispositif : distance interarmatures d = 1,0 cm;

Constantes : vitesse de la lumière $c = 3.0 \cdot 10^8 \,\mathrm{m \cdot s^{-1}}$;

Électron : charge $q = -e = -1.6 \cdot 10^{-19}$ C; masse $m_e = 9.1 \cdot 10^{-31}$ kg.

I Préparation du faisceau

Les électrons sont accélérés dans un canon à électrons constitué de deux armatures planes et parallèles distantes d'une distance d.

Les électrons sont émis avec une vitesse négligeable au voisinage de l'armature A. On considère dans un premier temps que leur vitesse reste non relativiste.

- **l.1**. (a) Quel doit être le signe de la tension U pour qu'ils se dirigent vers l'armature B?
 - (**b**) Déterminer l'expression de leur vitesse quand ils atteignent l'armature B. Quelle doit être la valeur de U pour que leur énergie cinétique soit $\mathscr{E}_{\mathbb{C}} = 200 \, \text{keV}$ en ce point? On la note U_0 .
- **1.2**. On fixe $U = U_0$.
 - (a) Quelle est la durée Δt_{AB} mise par les électrons pour traverser les armatures? Quelle distance ont-ils parcourue en $\Delta t_{AB}/2$?
 - (**b**) Que devient la durée Δt_{AB} si la distance d entre les armatures est divisée par 2?
- 1.3. On prend désormais en compte le caractère éventuellement relativiste du mouvement des électrons. Les lois de la quantité de mouvement et des énergies (cinétique et mécanique) s'expriment de la même manière en adoptant les expressions suivantes :

Quantité de mouvement : $\vec{p} = \gamma m_e \vec{v}$,

Énergie cinétique : $\mathscr{E}_c = (\gamma - 1) m_e c^2$,

avec \vec{v} le vecteur vitesse, c la vitesse de la lumière et $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$

Établir l'expression et calculer la nouvelle valeur de la vitesse après traversée des armatures quand la tension est U_0 . L'effet relativiste est-il favorable à la précision de la microscopie?

ⁱⁱon considère pour simplifier que c'est réalisable sans que le siège ne se déplace à ce moment, par exemple en contrebalançant par un mouvement des jambes qu'on négligera cependant ici.

Il Utilisation d'un champ magnétique : déflexion et réflexion

On considère un électron pénétrant dans une zone d'épaisseur ℓ dans laquelle règne un champ magnétique $\overrightarrow{B_0}$ uniforme parallèle aux plans délimitant la zone. Le champ magnétique est nul à l'extérieur de cette zone.

- **II.1**. (a) Un électron pénètre dans cette zone avec un vecteur vitesse initiale perpendiculaire au champ \vec{B}_0 et aux plans délimitant la zone. Montrer que son mouvement est uniforme. On admet de plus qu'il est circulaire ; en déduire son rayon.
 - (**b**) Que deviennent ces résultats quand on prend en compte les effets relativistes ? On ne les prend pas en compte dans les questions suivantes.
- II.2. (a) Établir à quelle condition l'électron peut traverser la zone de champ magnétique non nul.
 - (**b**) Dans le cas où cette condition n'est pas réalisée, déterminer le vecteur vitesse et la position de l'électron quand il sort de la zone de champ magnétique. On considère des électrons d'énergie cinétique $\mathcal{E}_{c} = 200 \,\text{keV}$. Calculer la distance entre les points d'émergence du faisceau pour un champ magnétique d'intensité $B_0 = 0.1 \,\text{T}$.
 - (c) Reprendre cette question quand il peut traverser la zone, pour $\ell=1,0\,\mathrm{cm}$. On donnera dans cette question la distance entre les points d'émergence :
 - en l'absence de champ magnétique,
 - en présence du champ magnétique.
- II.3. On envisage d'utiliser cette configuration comme miroir, ie pour réfléchir un faisceau d'électrons. On se place dans les conditions de la question II.2b.
 - (a) On considère deux faisceaux électroniques émis d'un même point M_0 situé à une distance x_0 en amont et formant un angle géométrique noté α avec la normale aux plans définissant la zone. Montrer qu'ils émergent de la zone en provenant d'un point M_α' dont on déterminera la position.

(**b**) Le dispositif considéré réalise-t-il, éventuellement de manière approchée, le stigmatisme d'un miroir plan? On considérera différentes valeurs de l'angle α pour justifier la réponse.

III Miroir électrostatique

On cherche désormais à réaliser un miroir à faisceaux électroniques en utilisant un système analogue à celui de la Section I sur lequel on envoie des électrons animés d'une vitesse v_0 inclinée d'un angle α par rapport à la normale au plan des armatures.

- **III.1**. À quelle condition sur la tension U (signe et intensité) les électrons seront-ils réfléchis quel que soit l'angle α ?
- **III.2**. On considère deux faisceaux électroniques de même énergie cinétique émis d'un même point M_0 situé à une distance x_0 en amont et formant un angle géométrique noté α avec la normale aux plans définissant la zone. Montrer qu'ils émergent de la zone en provenant d'un point M'_{α} dont on déterminera la position.
- **III.3**. Le dispositif considéré réalise-t-il, éventuellement de manière approchée, le stigmatisme d'un miroir plan? On considérera différentes valeurs de l'angle α pour justifier la réponse.

Problème 3 : Lixiviation de la chalcopyrite

On se propose d'étudier les réactions d'oxydoréduction mises en jeu lors du procédé de lixiviation de la chalcopyrite, de formule CuFeS₂. Il s'agit d'un solide traditionnellement considéré comme un mélange de CuS et FeS.

La lixiviation est un procédé de traitement chimique qui conduit à la solubilisation des éléments métalliques. Dans le cas de la chalcopyrite, on obtient le fer et le cuivre sous les formes Cu^{2+} et Fe^{2+} . Le réactif d'attaque utilisé est une solution de Fe^{3+} .

Toutes les réactions sont réalisées à la température de 25 °C. Les activités des solutions seront assimilées aux concentrations.

Données :

Potentiels standard :
$$E_1^{\circ}\left(\mathrm{H^+/H_{2(g)}}\right) = 0\,\mathrm{V}; \ E_2^{\circ}\left(\mathrm{Fe^{3+/Fe^{2+}}}\right) = 0,771\,\mathrm{V}; \ E_3^{\circ}\left(\mathrm{O_{2(g)}/H_2O}\right) = 1,23\,\mathrm{V}; \ E_4^{\circ}\left(\mathrm{HSO_4^-/S^{2-}}\right) = 0,133\,\mathrm{V}$$

Constantes d'équilibre :

$$CuS_{(s)} \rightleftharpoons Cu^{2+} + S^{2-}$$
 $K_{s1} = 6.3 \cdot 10^{-36}$
 $FeS_{(s)} \rightleftharpoons Fe^{2+} + S^{2-}$ $K_{s2} = 4.0 \cdot 10^{-17}$
 $HSO_4^- + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+$ $K_a = 1.2 \cdot 10^{-2}$

Masses molaires : $M(Cu) = 63.5 \,\mathrm{g \cdot mol^{-1}}$; $M(Fe) = 55.9 \,\mathrm{g \cdot mol^{-1}}$; $M(S) = 32.1 \,\mathrm{g \cdot mol^{-1}}$.

On utilisera l'approximation:

$$\frac{RT\ln(10)}{\mathscr{F}} = 6.0 \cdot 10^{-2} \text{ V}.$$

I Mise en solution du sulfure de cuivre (II) CuS

- **l.1.** (a) Établir la structure de Lewis de l'ion HSO₄. L'atome de S y est entouré de 4 atomes de O. Quel est le nombre d'oxydation de l'élément S dans cet ion?
 - (b) Écrire l'équation de demi-réaction électronique associée au couple HSO₄/CuS_(s). En déduire la valeur de son potentiel standard.
- **1.2.** Donner les valeurs des potentiels d'électrode du couple $HSO_4^-/CuS_{(s)}$ et du couple Fe^{3+}/Fe^{2+} dans les conditions suivantes :

$$\begin{split} pH = 0 & \left[HSO_4^- \right] = 1 \cdot 10^{-2} \, mol \cdot L^{-1} & \left[Fe^{3+} \right] = 1 \cdot 10^{-2} \, mol \cdot L^{-1} \\ & \left[Fe^{2+} \right] = 1 \cdot 10^{-2} \, mol \cdot L^{-1} & \left[Cu^{2+} \right] = 1 \cdot 10^{-4} \, mol \cdot L^{-1}. \end{split}$$

1.3. Écrire le bilan de la réaction entre CuS et Fe³⁺ et calculer sa constante. Peut-on l'observer dans les conditions de la question **1.2**?

II Attaque de Fe³⁺ sur FeS

- **II.1**. (a) Écrire le bilan de la réaction entre FeS et Fe^{3+} et calculer sa constante.
 - (**b**) Est-il plus facile de mettre en solution FeS ou CuS par une solution d'ions Fe³⁺ dans les conditions de la question **1.2**? On justifiera la réponse en calculant la constante de la réaction de formation de CuS_(s) par réaction de Fe³⁺ avec FeS_(s).
- **II.2.** On met en contact une masse $m_0 = 1.0 \,\mathrm{g}$ de $\mathrm{CuS}_{(\mathrm{s})}$ et une même masse de $\mathrm{FeS}_{(\mathrm{s})}$ avec un volume $V_0 = 1.0 \cdot 10^2 \,\mathrm{mL}$ d'une solution de $\mathrm{Fe^{3+}}$ de concentration $c_{\mathrm{Fe}} = 5.0 \cdot 10^{-1} \,\mathrm{mol \cdot L^{-1}}$ maintenue à pH = 0. Calculer, à l'issue de la réaction, les masses restantes de ces solides ainsi que les concentrations des ions $\mathrm{Cu^{2+}}$ et $\mathrm{Fe^{2+}}$.

- **II.3.** L'acide sulfurique H_2SO_4 est un diacide dont la première acidité est forte, et dont la deuxième est caractérisée par la constante K_a .
 - (a) Déterminer la valeur de la concentration c_a d'une solution de H_2SO_4 dont le pH à l'équilibre vaut 0. Quelle est alors sa concentration en SO_4^{2-} ?
 - (b) L'acidité de la solution de la question 1.2 a-t-elle pu être réalisée en utilisant la dissolution de H₂SO₄?

III Lixiviation de la chalcopyrite CuFeS₂

- III.1. Écrire le bilan de la réaction de lixiviation de CuFeS₂ par une solution d'ions Fe³⁺ dans l'hypothèse où tous les éléments métalliques Cu et Fe au degré d'oxydation II sont dissous.
- III.2. Quel volume V_{\min} de la solution de Fe³⁺ à la concentration c_{Fe} précédente faudrait-il utiliser pour dissoudre totalement une masse $2m_0$ de CuFeS_{2(s)}?
- **III.3.** Qu'obtiendrait-on pour un volume $V < V_{\min}$ si on peut considérer la chalcopyrite comme un mélange équimolaire de CuS et FeS?

IV Régénération des solutions d'ions Fe²⁺

- **IV.1**. Déterminer la valeur du potentiel d'électrode du couple $O_{2(g)}/H_2O$ dans les conditions pH = 0, $P_{O_2} = 2,1 \cdot 10^{-1}$ bar.
- **IV.2.** (a) Calculer la constante de la réaction entre Fe²⁺ et $O_{2(g)}$.
 - (**b**) Observe-t-on cette réaction si les conditions initiales sont celles de la question précédente, avec $[Fe^{2+}] = [Fe^{3+}] = 1,0 \cdot 10^{-2} \, \text{mol} \cdot \text{L}^{-1}$.
- IV.3. (a) La vitesse de cette réaction peut être accrue en introduisant dans la solution la bactérie *Thiobacillus ferroxydans* qui existe sous une forme oxydée notée *T_{ox}* et une forme réduite *T_{red}* formant un couple oxydant-réducteur. Déterminer, en les justifiant, les positions relatives des potentiels standard d'oxydoréduction des couples O_{2(g)}/H₂O; Fe³⁺/Fe²⁺ et T_{ox}/T_{red} sur un axe de potentiels pour que ce processus soit envisageable.
 - (**b**) Proposer une séquence de réactions pour la lixiviation de la chalcopyrite montrant que la bactérie est régénérée sous forme oxydée à l'issue du processus.