2.5 POTENZIEREN

Definition

$$a^n = a \cdot a \cdot a \cdot \dots \cdot a$$

n Faktoren

aⁿ : Potenz

a : Basis n : Exponent

Besteht ein Produkt aus lauter gleichen Faktoren, so drückt man es verkürzt als Potenz aus. Der Exponent gibt an, wie oft die Basis als Faktor gesetzt werden muss.

Beispiele

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^{5}$$

$$(-3) \cdot (-3) \cdot (-3) \cdot (-3) = (-3)^{4}$$

$$(a - b) \cdot (a - b) \cdot (a - b) = (a - b)^{3}$$

Merke

Es gilt:
$$a^1 = a$$

Der Exponent 1 wird nicht geschrieben.

Potenzgesetze

Gesetz 1

Potenzen mit gleichen Basen werden multipliziert, indem man die Exponenten addiert und die Basis mit der Summe der Exponenten potenziert.

$$a^m \cdot a^n = a^{m+n}$$

Beispiele:

$$7^{3}7^{4} = 7^{3+4} = 7^{7}$$
 denn,
 $7^{3}7^{4} = (7 \cdot 7 \cdot 7) \cdot (7 \cdot 7 \cdot 7 \cdot 7) = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 = 7^{7}$

Gesetz 2

Potenzen mit gleichen Basen werden dividiert, indem man die Basis mit der Differenz der Exponenten potenziert.

$$\frac{a^n}{a^m} = a^{n-m} \qquad (a \neq 0)$$

Beispiele:

$$\frac{x^5}{x^3} = x^{5-3} = x^2 \qquad \text{denn}, \qquad \frac{x^5}{x^3} = \frac{\dot{x} \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x} = x \cdot x = x^2$$

$$\frac{a^3}{a^5} = \frac{a \cdot a \cdot a}{a \cdot a \cdot a \cdot a \cdot a \cdot a} = \frac{1}{a^2} \quad \text{oder:} \qquad \frac{a^3}{a^5} = a^{3-5} = a^{-2}$$
Deshalb gilt
$$\frac{1}{a^2} = a^{-2}$$
.

Gesetz 3

Eine Potenz mit negativem Exponenten ist gleich dem reziproken Wert der Potenz mit positivem Exponenten.

$$a^{-n} = \frac{1}{a^n} \qquad (a \neq 0)$$

Begründung:

$$\frac{1}{a^n} = \frac{a^0}{a^n} = a^{0-n} = a^{-n}$$

Beispiele:

$$x^{-2} = \frac{1}{x^2}$$

$$(a+b)^{-2} + c^{-2} = \frac{1}{(a+b)^2} + \frac{1}{c^2} = \frac{c^2 + (a+b)^2}{(a+b)^2 c^2}$$

$$\frac{c^{-2} + a}{a+b} = \frac{\frac{1}{c^2} + a}{a+b} = \frac{1+ac^2}{c^2(a+b)}$$

Gesetz 4

Eine beliebige Basis (ungleich null) potenziert mit dem Exponenten Null ergibt eins. $\mathbf{a^0} = \mathbf{1} \qquad (\mathbf{a} \neq \mathbf{0})$

Begründung mittels eines Beispieles:

$$\frac{a^7}{a^7} = \frac{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}{a \cdot a \cdot a} = 1$$

oder:
$$\frac{a^7}{a^7} = a^{7-7} = a^0$$

$$=> a^0 = 1$$

$$0^a = 0$$
 für $a \neq 0$

Begründung mittels eines Beispieles: $0^4 = 0 \cdot 0 \cdot 0 \cdot 0 = 0$

$$0^4 = 0 \cdot 0 \cdot 0 \cdot 0 = 0$$

0⁰ ist nicht definiert

Konflikt zwischen den beiden Regeln $a^0 = 1$ und $0^a = 0$.

Es gibt Taschenrechner, die für 0⁰ den Wert 1 liefern.

Gesetz 5

Ein Produkt wird potenziert, indem jeder Faktor potenziert wird.

Oder umgekehrt:

Potenzen mit gleichen Exponenten werden multipliziert, indem das Produkt der Basen mit dem gemeinsamen Exponenten potenziert wird.

$$(ab)^{m} = a^{m}b^{m}$$

Beispiele:

$$(-3cy)^4 = (-3)^4 \cdot c^4 \cdot y^4 = 81c^4y^4$$

$$(a + b)^2 \neq a^2 + b^2$$
 sondern:

$$(a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2$$

Gesetz 6

Ein Bruch wird potenziert, indem der Zähler und der Nenner potenziert werden. Oder umgekehrt:

Potenzen mit gleichen Exponenten werden dividiert, indem der Quotient der Basen mit dem gemeinsamen Exponenten potenziert wird.

$$\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathbf{m}} = \frac{\mathbf{a}^{\mathbf{m}}}{\mathbf{b}^{\mathbf{m}}} \qquad (\mathbf{b} \neq \mathbf{0})$$

Beispiel:

$$\left(\frac{2c}{a}\right)^3 = \frac{(2c)^3}{a^3} = \frac{2^3c^3}{a^3} = \frac{8c^3}{a^3}$$

Gesetz 7

Eine Potenz wird potenziert, indem die Basis mit dem Produkt der Exponenten potenziert wird. Die Exponenten dürfen vertauscht werden.

$$(a^{m})^{n} = (a^{n})^{m} = a^{mn}$$

Beispiele:

$$(u^2)^3 = (u^3)^2 = u^{2 \cdot 3} = u^6$$
 denn: $(u^2)^3 = u^2 \cdot u^2 \cdot u^2 = u^6$
 $(2^3)^3 = 2^{3 \cdot 3} = 2^9$ aber: $2^{(3^3)} = 2^{27}$
 $2^{3^3} = ?$ (ist 2^{3^3} gleich 2^9 oder 2^{27} ?)

wichtig:

Beim Potenzieren setzt man vorsichtigerweise immer Klammern.

Zusammenfassung der Potenzgesetze

Potenzgesetze

Wenn n und m ganze Zahlen sind, dann gelten folgende Gesetze:

1)
$$a^m \cdot a^n = a^{m+n}$$

2)
$$\frac{a^n}{a^m} = a^{n-m} = \frac{1}{a^{m-n}}$$
 $(a \neq 0)$

$$3) \quad \frac{1}{a^n} = a^{-n} \qquad (a \neq 0)$$

$$\mathbf{a}^{\mathbf{0}} = \mathbf{1} \qquad (\mathbf{a} \neq \mathbf{0})$$

$$(ab)^{m} = a^{m}b^{m}$$

6)
$$\left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{\mathbf{m}} = \frac{\mathbf{a}^{\mathbf{m}}}{\mathbf{b}^{\mathbf{m}}}$$
 $(\mathbf{b} \neq \mathbf{0})$

7)
$$(a^{m})^{n} = (a^{n})^{m} = a^{mn}$$

Übung

Vereinfachen Sie folgende Terme so weit als möglich und schreiben Sie bei jedem einzelnen Schritt, welches Gesetz Sie dabei angewendet haben.

- a) $[(-2)^4]^3$
- b) $(-2^4)^3$
- c) $\frac{ab^2}{(ab)^2}$
- d) $\frac{a^{-2}x^4y^{-6}}{b^3c^{-4}d^{-5}}: \frac{a^{-3}b^{-3}x^3}{c^{-5}y^6d^{-6}}$

e) $\frac{(a+b)^{m+1}}{(a+b)^{m-1}} \cdot \frac{(x+y)^{-n}}{(x+y)^{4-n}}$

Zehnerpotenzen

Zehnerpotenzen werden verwendet, um grosse und kleine Zahlen übersichtlich darzustellen. In den beiden nachfolgenden Tabellen sind die wichtigsten Zehnerpotenzen mit ihrem Namen und dem Symbol aufgeführt.

Zahl	Name		Symbol
10 ¹⁸ = 1'000'000'000'000'000'000	Trillion	Exa	E
$10^{15} = 1'000'000'000'000'000$	Billiarde	Peta	Р
10 ¹² = 1′000′000′000′000	Billion	Tera	Т
10 ⁹ = 1′000′000′000	Milliarde	Giga	G
$10^6 = 1'000'000$	Million	Mega	М
10 ³ = 1′000	Tausend	Kilo	k
$10^2 = 100$	Hundert	Hekto	h
10 ¹ = 10	Zehn	Deka	da

Zahl		Symbol
$10^{-1} = 0.1$	Dezi	d
$10^{-2} = 0.01$	Zenti	С
$10^{-3} = 0.001$	Milli	m
$10^{-6} = 0.000'001$	Mikro	μ
$10^{-9} = 0.000'000'001$	Nano	n
$10^{-12} = 0.000'000'000'001$	Piko	р
$10^{-15} = 0.000'000'000'000'001$	Femto	f
$10^{-18} = 0.000'000'000'000'000'001$	Atto	a

Beispiele

Lichtgeschwindigkeit c:

$$c = 300'000'000 \text{m/s} = 300 \cdot 10^6 \text{m/s} = 0.3 \cdot 10^9 \text{m/s}$$

= 300Mm/s = 0.3Gm/s

Distanz Erde - Sonne d:

$$d = 149'600'000 \text{km} = 149.6 \cdot 10^6 \text{km} = 0.1496 \cdot 10^9 \text{km}$$

= 149.6 Gm = 0.1496 Tm