ROBUST EXTENSIONS OF THE FAY HERRIOT MODEL IN SMALL AREA ESTIMATION

SEBASTIAN WARNHOLZ

Theory, Implementation and Simulation Studies

January 13, 2016 – version 0.1

Sebastian Warnholz: *Robust Extensions of the Fay Herriot Model in Small Area Estimation,* Theory, Implementation and Simulation Studies, © January 13, 2016

SUPERVISORS: Prof. Dr. Timo Schmid Nikos Tzavidis

LOCATION:
Berlin

TIME FRAME: January 13, 2016

CONTENTS

1	INT	RODUC	CTION	1		
i	THE	ORY		3		
2	SMALL AREA ESTIMATION					
	2.1	Overv	view	5 5		
	2.2		Area Prediction using Linear Mixed Models	8		
		2.2.1	Linear Mixed Models	8		
		2.2.2	Date Till ID II.	9		
		2.2.3	Mean Squared Prediction Error	9		
	2.3	Direct	t Estimators	11		
	2.4		Level Models	12		
	•	2.4.1	The Fay-Herriot Model	12		
		2.4.2		15		
		2.4.3	From Unit to Area Level Models	17		
	2.5	1 2	Level Models	18		
	2.6	Robus	st Methods in Small Area Estimation	19		
		2.6.1	Robust ML Score Functions	20		
		2.6.2		21		
		2.6.3	Mean Squared Error Estimation	21		
3	ROBUST AREA LEVEL MODELS					
_	3.1					
	9		els	25		
		3.1.1	Unit-Level Outliers	26		
		3.1.2		26		
		3.1.3	The Creation of Overly Influencial Observations	27		
	3.2					
	3.3	Bias correction				
	3.4		Squared Error Estimation	29		
	<i>J</i> ,	3.4.1		29		
		3.4.2	Pseudo Linearization	29		
	3.5		rithm	31		
	55	3.5.1	Newton Raphson Algorithms	31		
		3.5.2	Fixed Point Algorithms	34		
ii	IMI	LEME	NTATION	39		
4	IMPLEMENTATION					
	4.1	Softw	rare	41 42		
	4.2	Verification of Results				
	4.3	Accuracy of Results				
	4.4	ation of Results	42			
		4.4.1	Four Steps	42		

iii	i results					
5	NUMERICAL PROPERTIES					
	5.1	Accuracy	45			
	5.2	Stability	45			
	5.3	Speed of Convergence	45			
6	SIMULATION STUDIES					
	6.1	Model Based Simulation Studies	47			
		6.1.1 The Area-Level Perspective	47			
		6.1.2 From Unit to Area Level Data	49			
	6.2	Design Based Simulation Studies	50			
iv	PENDIX	53				
RI.	BIBLIOGRAPHY					

INTRODUCTION

This thesis introduces extensions to the Fay-Herriot Model, a frequentist approach to Empirical Bayes estimators (i.e. James-Stein estimators) frequently used in Small Area Estimation which is a sub-field within the field of Statistics. In the three parts of this thesis I provide methodological extensions to existing statistical models (i *Theory*), considerations for implementing the findings as software (4 *Implementation*) and results on numerical stability as well as statistical properties of the introduced estimators as well as a short case study (iii *Results*).

Small Area Estimation ...

Robust Methods in Small Area Estimation ...

Software in stats ...

The thesis is seperated into three main parts. i *Theory* introduces the underlying esimation methodology, i.e. linear mixed models, a review of model based methods in Small Area Estimation as well as outlier robust extensions within the field. Given these results extensions to existing methodology is introduced in the form of a robustified Fay-Herriot estimator with optional spatial and temporal correlated random effects. A special interest lies in the concrete implementation of such (robust) estimators, and to meet this focus several algorithms are proposed. (MSE, bias-correction)

4 *Implementation* introduces three main aspects: The verification that the implementation (in terms of software) is correct; How to evaluate the numerical accuracy and stability of the introduced algorithms; And which results to report to judge the quality of the numerical solution.

In iii *Results* the properties of the estimators are investigated in simulations and in the context of part 4. The numerical properties are devided into accuracy and stability. Statistical properties are shown for the most reliable implementations using model and design based simulation studies.

Part I

THEORY

This is the chapter where I want to present the theoretical concepts underpinning the development of software and application.

2.1 OVERVIEW

In the following I want to give a general overview of the field of small area estimation to the extent that it is possible to frame this thesis within the field. Rao (2003) as well as Rao and Molina (2015) give a comprehensive overview of established methods and research fields. Ghosh and Rao (1994), Rao (1999), Pfeffermann (2002) and Pfeffermann (2013) focus on the status quo and main lines of discussion within the field at their given point in time.

The problem small area estimation tries to solve, is to produce *reliable predictions* of a *target statistic* for *small domains*. A *target statistic* can be simple statistics such as means, counts or quantiles but can take any form, e.g. an inequality measure like the Gini coefficient for poverty mapping. Such statistics are produced for *small domains*, where domain refers to specific groups, e.g. sector of industry or groups defined by socio-economic characteristics. Because of the frequent application to administrative data domains are often defined by areas as a geographical unit. They are small in the sense of few or no sampled units within these domains. This means that a direct estimation, i.e. an estimation which only relies on the information available within domains, is not reliable. *Reliability* is here measured by the variance or mean squared error of the predictions.

Small area estimation tries to improve, often in terms of mean squared error, such domain predictions by borrowing strength from other domains. This can happen by taking additional information from other data sources, like census and register information, into account. Also structures in the data like spatial or temporal correlation can be exploited to improve a prediction.

The importance of the field can be explained by the increasing demand for reliable estimates by policy makers and official statistics. Results are used for fund allocation, health programs, agriculture or poverty mapping to name only a few fields of application. Traditionally such estimates rely on survey data but as the target domains become more diverse, reliable estimates are connected to an increasing demand of sampled units within domains. The conflict between the demand of predictions for more diverse domains and the costs and feasibility for larger samples stimulates the progress within the field; as it is the promise to optimize the ratio between sampled units and the reliability of estimates.

Commonly small area methods are divided into two streams, design- and model-based methods. Design-based methods can be considered the traditional methodology for analysing survey data and a comprehensive overview of these methods for SAE can be found in Lehtonen and Veijanen (2009). Design-based methods summarise different direct and indirect techniques. The Horvitz-Thompson (HT) estimator (Horvitz and Thompson (1952)) which only uses sampled units within domains, and synthetic regression estimates as well as model-assisted methods like generalized regression (GREG) estimators (Särndal et al. (1992)) are examples for such estimators. What these methods have in common is that they incorporate information of the sampling design into the estimation.

Conceptually design- and model-based methods differ in that design-based methods are used to optimally estimate a target parameter of a fixed and finite population. Model-based methods instead rely on the idea that an observed sample is drawn from a population which is but one possible realization of a *superpopulation* model, and it is the parameters of that superpopulation which are targeted. This difference leads to a trade-off when choosing between methods: Model-based methods can improve domain estimation in terms of variance even with small samples, however, they can not be considered design-unbiased. Design-based methods on the other hand are design-unbiased but have larger and possibly unacceptable high variances for small samples (see Lehtonen and Veijanen (2009)).

Model-based methods can be seperated into area- and unit-level models. Observations which can be associated to a specific domain are referred to as units. This can be companies within an industry sector or individuals within a municipality. The Area-level describes models which use information such as direct estimates for domains and rely on area-level information. A situation in which these models are considered is when data can only be provided as aggregates due to confidentiality.

One class of models in particular is favoured in different variations: Mixed Models. The Fay-Herriot (FH) model introduced by Fay and Herriot (1979) and the Battese-Harter-Fuller (BHF) model which was introduced by Battese et al. (1988) are the two basic models which are used for area- and unit-level models respectively. Underlying is the idea to use auxiliary information in a regression to estimate a global conditional mean and add an extra component to capture the domain specific difference from that global mean. This general idea can be found in combination with different estimation methodologies, i.e. General Linear Mixed Models which are typically associated with best linear unbiased predictors (BLUPs), Empirical Bayes and Hierarchical Bayes. Although these different frameworks for estimation differ with respect to optimality criteria, equivalence of the different derived estimators can be shown for special cases. A more general

discussion of misxed models in SAE can be found in Jiang and Lahiri (2006); Rao (2003) and Rao and Molina (2015) provide a comprohensive overview and comparisson of the different frameworks.

A general property of model-based methods is that a lot of their benefits in terms of efficiency rely on strong distributional assumptions. Hence, not only in the field of SAE have robust methods been exploited to reduce the negative effect of a potential violation of these assumptions. The general problem here is that single observations can have unwanted and overly large impact on results and such observations are typically called outliers. Chambers (1986) uses the term *representative* outliers to describe observations which are correctly recorded and can not be ussumed to be unique. Nonrepresentative outliers, on the other hand, may be best described as *not correctly recorded* and should be imputed or generally delt with during the editing process of survey data.

To summarize robust methods in SAE I want distinguish between three different lines of discussion. First, if the distributional assumption - often a gaussian distribution - appears to be implausible then it is only intuitive to replace it. This often leads to the use of nonsymmetric or heavy-tailed distributions for the model error or random effect. Due to their flexibility often Baysian modelling strategies are used in this context; see for example Datta and Lahiri (1995) and Bell and Huang (2006). Secondly, methods are applied which are *naturally* more robust against outlying observations. Tzavidis et al. (2010) model instead of a conditional global mean a median - or more generally a quantile. The third approach is to remain with the original model or method and robustify the estimation equations. In this context Sinha and Rao (2009) develop a robustified EBLUP and Beaumont and L- P. Rivest (2009) refer to a winzorization of the Horvitz-Thompson estimator.

Given this background; in this thesis I introduce extensions to the Fay-Herriot area-level model using a model-based perspective. More precisely an EBLUP based approach is taken to derive predictions with the possibility to model spatial and temporal covariance structures in the random effects. These models are closely related to the results presented by Marhuenda et al. (2013), who introduce spatial and temporal extensions to the Fay-Herriot model. However, the methods in this thesis are based on an estimation procedure which is robust against outliers following the methodology introduced by Sinha and Rao (2009). Introduced extensions in the literature around robust EBLUPs (REBLUPs) have been focused on unit-level models, thus especially results to MSE estimation and Bias Correction are extended for area-level models.

Besides contributing to the robust methodology of the field, several contributions in terms of software are published alongside this dissertation. Warnholz and Schmid (2015) introduces tools for sim-

ulation studies for the special case of small area estimation and (?) implements the methods introduced in this thesis. All results in this thesis rely on these two packages and a more detailed discussion can be found in chapter (?).

Extensions take into account different distributional assumptions about the response variable Rao (2003) as well as Rao and Molina (2015) give a comprehensive overview on model-based methods in SAE. Clement (2014) and Guadarrama et al. (2015) are examples for reviews appearing for

2.2 SMALL AREA PREDICTION USING LINEAR MIXED MODELS

This section gives a general overview of mixed linear models and the best linear unbiased prediction (BLUP) and empirical BLUP (EBLUP). The introduced unit- and area-level models are based on this class of models and the robust methodology is based on a robustified EBLUP. The original model dates back to Henderson (1950) and an early comprehensive overview can be found in Searle (1971). Jiang and Lahiri (2006) review liner mixed models in the context of SAE and main results can also be found in Rao (2003) and Rao and Molina (2015).

2.2.1 Linear Mixed Models

A linear mixed model can be expressed by:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e} \tag{2.1}$$

where \mathbf{y} is the $(n \times 1)$ vector of response values; \mathbf{X} is a $(n \times P)$ matrix containing auxiliary and deterministic information; $\boldsymbol{\beta}$ is the $(P \times 1)$ vector of regression coefficients; \mathbf{Z} is a known matrix and \mathbf{u} is a vector of random effects, such that $\mathbf{Z}\mathbf{u}$ is of dimension $(n \times 1)$; \mathbf{e} is the $(n \times 1)$ vector of model errors. Note that \mathbf{u} and \mathbf{e} are both random variables where a basic assumption is, that both have mean zero and finite variances. Furthermore they are assumed to be independent.

If, in addition, \mathbf{u} and \mathbf{e} are assumed to follow a normal distribution, the model is called a Gaussian Linear Mixed Model. Furthermore the distribution of \mathbf{v} can be derived as a multivariate normal of the form:

$$\begin{aligned} y &\sim \mathcal{N}\left(X\beta, V\right) \\ y|u &\sim \mathcal{N}\left(X\beta + Zu, V_{e}\right) \end{aligned}$$

where $\mathbf{V} = \mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^{\top} + \mathbf{V}_{e}$ with $\mathbf{V}_{\mathbf{u}}$ and \mathbf{V}_{e} being the variance covariance matrices of \mathbf{u} and \mathbf{e} respectively. Such variance structure typically depend on some unknown dispersion parameters; so to be more precise: $\mathbf{V}_{\mathbf{u}} = \mathbf{V}_{\mathbf{u}}(\delta_{\mathbf{u}})$ and $\mathbf{V}_{e} = \mathbf{V}_{e}(\delta_{e})$ such that $\mathbf{V} = \mathbf{V}(\delta)$ with $\delta = (\delta_{\mathbf{u}}, \delta_{e})$.

2.2.2 Best Linear Unbiased Prediction

Given model (2.1) in SAE problems we are generally interested in estimating the expected value of y given u:

$$\mu = \mathbf{1}^{\top} \boldsymbol{\beta} + \mathbf{m}^{\top} \mathbf{u}$$

for specified values of l and m. An estimator for μ can be optained by replacing β and u with suitable estimators. For known variance components, δ , the best linear unbiased estimator (BLUE) is given by:

$$\tilde{\boldsymbol{\beta}} = \tilde{\boldsymbol{\beta}}(\boldsymbol{\delta}) = \left(\mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{y}$$
 (2.2)

and the BLUP for **u** by:

$$\tilde{\boldsymbol{u}} = \tilde{\boldsymbol{u}}(\boldsymbol{\delta}) = \boldsymbol{V}_{\boldsymbol{u}} \boldsymbol{Z}^{\top} \boldsymbol{V}^{-1} \left(\boldsymbol{y} - \boldsymbol{X} \tilde{\boldsymbol{\beta}} \right)$$

such that the BLUP estimator for μ can be stated as:

$$\tilde{\mu} = \tilde{\mu}(\delta) = \mathbf{1}^{\top} \tilde{\beta} + \mathbf{m}^{\top} \tilde{\mathbf{u}}$$
 (2.3)

The BLUP estimator (2.3) of μ depends on known variance components δ . These values are typically unknown in applications and itself subject to estimation. If we replace δ with a suitable estimator, $\hat{\delta}$, the empirical BLUP (EBLUP) is obtained:

$$\hat{\boldsymbol{\mu}} = \hat{\boldsymbol{\mu}}(\hat{\boldsymbol{\delta}}) = \boldsymbol{l}^{\top} \hat{\boldsymbol{\beta}} + \boldsymbol{m}^{\top} \hat{\boldsymbol{u}}$$
 (2.4)

where $\hat{\beta} = \tilde{\beta}(\hat{\delta})$ and $\hat{u} = \tilde{u}(\hat{\delta})$. To estimate δ different estimators have been proposed. Most commonly used estimators are based on maximum likelihood (ML) and restricted maximum likelihood (REML). The standard procedures in the literature are not directly feasible for the robust estimators introduced in chapter (?), instead different algorithms are proposed. For a detailed discussion of the estimation of the variance parameters see Jiang and Lahiri (2006, pp. 9-11) and the literature therein.

2.2.3 Mean Squared Prediction Error

One of the main reasons to rely on small area methods is to reduce the mean squared error of domain predictions. Since domain predictions under a linear mixed model are derived as the EBLUP, we are generally interested in the mean squared prediction error (MSPE) of the EBLUP. Note that I directly present results for the EBLUP instead of the BLUP, since the latter has little practical relevance and the results are mainly needed to give a comprehensive context in which the existing literature can be extended. In general the estimation of the MSPE can be identified as one of the challenging problems in model-based SAE (cf. Pfeffermann (2013)). Two approaches are taken in the literature: The analytical identification of the MSPE and different resampling strategies. A more detailed review of these strategies can be found in Rao (2003, p. 95 ff), Jiang and Lahiri (2006, p. 13 ff) and Datta (2009).

Early results can be found in Kacker and Harville (1984) who proposed an approximation to the MSPE of the EBLUP of a gaussian linear mixed model. In particular they showed that:

$$MSPE(\hat{\mu}) = MSPE(\mu) + \mathbb{E}(\hat{\mu} - \mu)^{2}. \tag{2.5}$$

The MSPE of μ can be decomposed such that (cf. Rao (2003, p. 98 ff))

$$MSPE(\mu) = g_1(\delta) + g_2(\delta)$$

where

$$\begin{split} &g_1(\delta) = \boldsymbol{m}^\top \left(\boldsymbol{V}_{\mathrm{u}} - \boldsymbol{V}_{\mathrm{u}} \boldsymbol{Z}^\top \boldsymbol{V}^{-1} \boldsymbol{Z} \boldsymbol{V}_{\mathrm{u}} \right) \boldsymbol{m} \\ &g_2(\delta) = \boldsymbol{d}^\top \left(\boldsymbol{X}^\top \boldsymbol{V}^{-1} \boldsymbol{X} \right) \boldsymbol{d} \end{split}$$

with $\mathbf{d}^{\top} = \mathbf{l}^{\top} - \mathbf{b}^{\top} \mathbf{X}$ and $\mathbf{b}^{\top} = \mathbf{m}^{\top} \mathbf{V}_{\mathrm{u}} \mathbf{Z}^{\top} \mathbf{V}^{-1}$. The second term in equation (2.5) was approximated by Kacker and Harville (1984) using a Taylor series approximation. Prasad and Rao (1990) used an approximation by

$$\mathbb{E}\left(\hat{\mu}-\mu\right)^2\approx g_3(\delta)$$

where

$$g_3(\delta) = \operatorname{tr}\left(\frac{\partial \mathbf{b}^{\top}}{\partial \delta} \mathbf{V}\left(\frac{\partial \mathbf{b}^{\top}}{\partial \delta}\right) \mathbf{V}_{\delta}\right)$$

with $V_{\hat{\delta}}$ being the asymptotic covariance matrix of $\hat{\delta}$. The derived MSPE depends on the unknown parameter vector δ . Prasad and Rao (1990) used a moment estimator for δ and replaced above formulae such that an estimator of the MSPE can be defined as $\widehat{\text{MSPE}}(\hat{\mu}) = g_1(\hat{\delta}) + g_2(\hat{\delta}) + g_3(\hat{\delta})$. Datta and Lahiri (2000) extended this approach for a wider range of models in SAE including ML and REML estimators. A good overview and comparison of the slightly different approaches can be found in Datta, Rao, et al. (2005) which is more specific in the sense that it focuses on area-level models.

A different approach has been taken by Chambers, J. Chandra, et al. (2011), which is to define the EBLUP as a weighted sum of the sampled values and derive an MSPE estimator under the assumption of independence between weights and sampled values. An advantage of this method is the wide applicability as the approach is not restricted to predictions under mixed linear models but to any predictor which

can be represented as weighted sum of sampled values. The approach has been extended in Chambers, H. Chandra, et al. (2014) to robust methods in SAE and is of special interest to derive an MSPE estimator for the proposed methods of this thesis. Hence these results are reviewed in more detail in section (?).

As an alternative a wide range of different resampling strategies have been proposed. Jiang, Lahiri, and Wan (2002) introduced a jack-knife method to estimate the MSPE in the context of longitudinal mixed linear models and was modified by Lohr and Rao (2009) into a simpler form. Also important is the proposed double-bootstrap method by Hall and Maiti (2006). However, of special interest are methods in the context of robust predictions under linear mixed models which is why the bootstrap methods by Sinha and Rao (2009) and Jiongo and Nguimkeu (2014) are reviewed in more detail in section (?).

2.3 DIRECT ESTIMATORS

In this section I introduce a simple direct estimator and some notation which will be used throughout the thesis. The estimator is of interest as it will be used in the simulation studies in chapter (?). Lehtonen and Veijanen (2009) give a more comprehesive overview of direct estimators and design-based methods.

Let a population be denoted by U, consisting of N units, which can be devided into D distinct domains or areas $U_1 \cup \cdots \cup U_D$. Each area is of size N_i , with $i=1,\ldots,D$ denoting area i, such that $N=\sum_{i=1}^D N_i$. S denotes a sample from U which in turn can be devided into $S_1 \cup \cdots \cup S_D$, where n is the sample size of S and n_i of S_i such that $n=\sum_{i=1}^D n_i$.

Let y define the characteristic of interest and y_{ij} the response value for unit j with $j=1,\ldots,N_i$ in area i. Furthermore let the target quantity be the population mean in area i defined by $\theta_i=\bar{Y}_i=\sum_{j=1}^{N_i}y_{ij}$. Note that the target quantity is not necessarily a mean but can be any statistic in the population.

Given that the sample is drawn with simple random sampling without replacement (SRSWOR) a design unbiased estimator is given by

$$\bar{y}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{ij} \tag{2.6}$$

with its design variance $V(\bar{y}_i|n_i)=(S_i^2/n_i)\,(1-n_i/N_i)$ where $S_i^2=1/(N_i-1)\sum_{j=1}^{N_i}\left(y_{ij}-\bar{Y}_i\right)^2$. To estimate the sampling variance, S_i^2 can be replaced by s_i^2 being an estimator using the sampled data, i.e. $s_i^2=1/(n_i-1)\sum_{j=1}^{n_i}\left(y_{ij}-\bar{y}_i\right)^2$. Note that n_i is random under SRSWOR such that specific areas can have very few or even no sampled units.

2.4 AREA LEVEL MODELS

In SAE mixed models are generally devided into area- und unit-level models. In this section a review of some of the most important results is given with respect to area-level models. Section (?) then presents the basic unit-level model.

2.4.1 The Fay-Herriot Model

The basic area-level model was introduced by Fay and Herriot (1979) and has been used in applications and is also subject to various extensions. Some of which are discussed in more detail later. The general setting is that only information on the area-level is available, i.e. direct estimates for the domains. The model is then built around two stages. The first stage is the sampling model:

$$\tilde{y}_i = \theta_i + e_i$$

where \tilde{y}_i is a direct estimator for a statistic of interest, θ_i , for an area i with $i=1,\ldots,D$ and D being the number of areas. The sampling error e_i is assumed to be independent and normally distributed with known variances $\sigma_{e,i}^2$, i.e. $e_i \sim \mathcal{N}(0, \sigma_{e,i}^2)$. The model is modified with a second stage, the linking model, by assuming a linear relationship between the true area statistic, θ_i , and some diterministic auxiliary variables \mathbf{x}_i :

$$\theta_i = \mathbf{x}_i^{\top} \boldsymbol{\beta} + \boldsymbol{u}_i$$

where \mathbf{x}_i is a $(P \times 1)$ vector containing area-level information for P variables and $\boldsymbol{\beta}$ is a $(P \times 1)$ vector of regression coefficients. The model errors \mathbf{u}_i are assumed to be independent and identically distributed following a normal distribution: $\mathbf{u}_i \sim \mathcal{N}(0, \sigma_u^2)$. Furthermore e_i and \mathbf{u}_i are assumed to be independent. Combining the sampling and linking model leads to:

$$\tilde{\mathbf{y}}_{i} = \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{u}_{i} + e_{i} \tag{2.7}$$

2.4.1.1 Best Linear Unbiased Prediction

To obtain small area predictions under model (2.7) it can be defined as a linear mixed model and a BLUP and EBLUP can be derived. Basically model (2.7) can be directly viewed as a mixed model as it was introduced in equation (2.1) where $\mathbf{Z} = \mathbf{I}_D$, $\mathbf{V}_u = \sigma_u^2 \mathbf{I}_D$ and $\mathbf{V}_e = \text{diag}(\sigma_{e,1}^2, \ldots, \sigma_{e,D}^2)$ with \mathbf{I}_D being a $(D \times D)$ identity matrix. The vector of unknown variance parameter in this case is a scalar, such that $\delta = \sigma_u^2$ since $\sigma_{e,i}^2$ is assumed to be known. The BLUP, de-

fined in equation (2.3), for the Fay-Herriot model can then be obtained by setting $\tilde{\mu}_i = \tilde{\theta}_i^{\text{FH}}$, $\mathbf{l}_i^{\top} = \mathbf{x}_i^{\top}$, $\mathbf{m}_i^{\top} = 1$ and $y_i = \tilde{y}_i$:

$$\begin{split} \tilde{\theta}_{i}^{\text{FH}} &= \tilde{\theta}_{i}^{\text{FH}}(\sigma_{u}^{2}) = \mathbf{x}_{i}^{\top} \tilde{\beta} + \tilde{\mathbf{u}}_{i} \\ &= \mathbf{x}_{i}^{\top} \tilde{\beta} + \frac{\sigma_{u}^{2}}{\sigma_{u}^{2} + \sigma_{e,i}^{2}} \left(\tilde{\mathbf{y}}_{i} - \mathbf{x}_{i}^{\top} \tilde{\beta} \right) \\ &= \gamma_{i} \tilde{\mathbf{y}}_{i} + (1 - \gamma_{i}) \mathbf{x}_{i}^{\top} \tilde{\beta} \end{split} \tag{2.8}$$

with $\gamma_i = \sigma_u^2/(\sigma_u^2 + \sigma_{e,i}^2)$. The BLUP depends on the variance parameter of the random effects, σ_u^2 , which is unknown. To obtain the EBLUP under the Fay-Herriot model we can replace the unknown parameter with an estimate leading to:

$$\hat{\theta}_{i}^{FH} = \hat{\gamma}_{i} \tilde{y}_{i} + (1 - \hat{\gamma}_{i}) \mathbf{x}_{i}^{\top} \hat{\beta}$$

where $\hat{\gamma}_i = \hat{\sigma}_u^2/(\hat{\sigma}_u^2 + \sigma_{e,i}^2)$. Note that the regression parameters are still estimated using the weighted least squares estimator of equation (2.2) with $\delta = \hat{\sigma}_u^2$. For the estimation of σ_u^2 different approaches exist. Fay and Herriot (1979) proposed a moment estimator from which they derived an algorithm to estimate σ_u^2 . Rao (2003, pp. 118-119) reviews several other ideas. Also based on a moment estimator he derives the estimator also used in Prasad and Rao (1990). Both moment estimators have the property that they do not rely on a normal distribution, which is also true for the estimation of the regression coefficients. Alternatively σ_u^2 can be estimated using maximum likelihood or restricted maximum likelihood, which, in contrast, relies on the distributional assumptions. For details see also Datta and Lahiri (2000).

2.4.1.2 Mean Squared Prediction Error

The MSPE of the EBLUP under the Fay-Herriot model, $\hat{\theta}_i^{FH}$, is subject of several studies. However, it needs to be noted that, interestingly, Fay and Herriot (1979) did not asses the qunatification of uncertainty associated with their predictions. In principle the MSPE can be defined for an EBLUP as it was discussed in section 2.2.3. Datta, Rao, et al. (2005) study the MSPE estimation using the results of Prasad and Rao (1990) for different estimations of the variance component σ_u^2 . They compare the method of moment method by Prasad and Rao (1990) with the original estimator by Fay and Herriot (1979) and the maximum likelihood estimator by Datta and Lahiri (2000). The main finding is that regarding the properties of the MSPE estimation the estimator by Fay and Herriot (1979) performs best overall.

A jackknife MSPE estimator for linear mixed models was introduced by Jiang, Lahiri, and Wan (2002) and later subject to several refinements; see for example Chen and Lahiri (2003). Chen and Lahiri (2008) then introduced a jackknife estimator based on the results of

Jiang, Lahiri, and Wan (2002) and explicitly targeted the MSPE estimation of the prediction under a Fay-Herriot model. They find satisfying results for the MSPE estimation using their method, however, the conclusion with respect to the estimation of σ_u^2 is not as clear as by Datta, Rao, et al. (2005), when they compare a method of moment estimator to the method proposed by Fay and Herriot (1979).

A different line of discussion is stimulated by the fact that it is assumed that the sampling variances, $\sigma_{e,i}^2$, are known parameters. In practice this is not the case and these parameters are estimated using the sample data. This can mean that they are themselfes direct estimators; but if a direct mean is considered unreliable then its variance estimation cannot be considered reliable. Fay and Herriot (1979) used generalized variance functions - see Wolter (2007, pp. 272 ff) for a discussion of these methods - instead of direct estimators. Maiti et al. (2014) suggest instead to shrink both means and variances to account for the possibly of unstable direct variance estimates and also provide an estimator of the MSPE of the predictions. This approach is based on a Baysian modelling strategy. You and Chapman (2006) provide results for the case that direct variance estimates are used in a hirarchical Bayes approach and can account for that extra variability in the MSPE estimation. Results for an EBLUP based on estimated sampling variances can be found in Wang and Fuller (2003) and L.-P. Rivest and Vandal (2003). Wang and Fuller (2003) derive an MSPE using asymptotic properties of the EBLUP. L.-P. Rivest and Vandal (2003) instead extend the results of Prasad and Rao (1990) and add an extra term to account for the additional variability assciciated to the estimation of direct sampling variances.

2.4.1.3 *Remarks*

With respect to the Fay-Herriot model (2.7) some remarks need to made. A closely related form is that closely realated to the James-Stein and emperical Bayes estimator in that:

in Small Area Estimation play an important role in the production of reliable domain estimates.

- They can be used even if unit level observations are not accessible.
- In a model based estimation it is largely unsolved to incorporate design weights. Area level models can be used to start from a direct design based estimator.
- Unit level models often have problems with heterogeneity. An
 assumption, for example, for unit level data is that the error
 terms of a model are homescedastic given the random effects.
 This assumption is often not plausible and may call for more
 complex assumptions on the variance structure of the data. However such structures may or may not be known and cannot be

modelled easily. This can also lead to computationally demanding procedures.

Given these considerations the most important factor to choose cadidate models is the availability of data. Very often there is not much of a choice but rather a decission given the available information. And given the availability of unit level data, the obvious choice is to consider a model which can use such information. Only if that fails for one of the above reasons can an area level model be of interest.

2.4.2 Spatio-Temporal Fay Harriot model

The model stated in equation 2.7 has been modified for including historical information by modelling autocorrelated model errors and also by allowing for spatial correlation (in the model error). See the discussion in Marhuenda et al. (2013) for more details. Marhuenda et al. (2013) allow for both spatial and temporal correlation in the model errors. Hence the sampling model is (simply) extended to include historical information:

$$y_{dt} = \mu_{dt} + e_{dt}$$

with d = 1, ..., D and t = 1, ..., T where D and T are the total number of areas and time periods respectively. Here $e_{dt} \sim N(0, \sigma_{dt}^2)$ are independent with known variances σ_{dt}^2 . The model error is composed of a spatial autoregressive process of order 1 (SAR(1)) and an autoregressive process of order 1 (AR(1)):

$$\mu_{dt} = x_{dt}^{\top} \beta + u_{1d} + u_{2dt},$$

where u_{1d} and u_{2dt} follow a SAR(1) and AR(1) respectively:

$$u_{1d} = \rho_1 \sum_{l \neq d} w_{d,l} u_{1l} + \varepsilon_{1d},$$

where $|\rho_1| < 1$ and $\epsilon_{1d} \sim N(0, \sigma_1^2)$ are i.i.d. with d = 1, ..., D. $w_{d,1}$ are the elements of W which is the row standardized proximity matrix W^0 . The elements in W^0 are equal to 1 if areas are neighboured and 0 otherwise (an area is not neighboured with itself) - thus the dimension of W^0 is $D \times D$. As stated above \mathfrak{u}_{2dt} follows an AR(1):

$$u_{2dt} = \rho_2 u_{2d,t-1} + \epsilon_{2dt},$$

where $|\rho_2| < 1$ and $\varepsilon_{2dt} \sim N(0, \sigma_2^2)$ are i.i.d. with d = 1, ..., D and t = 1, ..., T. Note that u_{1d} and u_{2dt} and e_{dt} are independent and the sampling error variance parameters are assumed to be known. The model can then be stated as:

$$y = X\beta + Zu + e$$

where \mathbf{y} is the DT \times 1 vector containing y_{dt} as elements, \mathbf{X} is the DT \times p design matrix containing the vectors \mathbf{x}_{dt}^{\top} as rows, \mathbf{u} is the $(D+DT)\times 1$ vector of model errors and \mathbf{e} the DT \times 1 vector of sampling errors e_{dt} . Note that $\mathbf{u}=(\mathbf{u}_1^{\top},\mathbf{u}_2^{\top})$ where the D \times 1 vector \mathbf{u}_1 and DT \times 1 vector \mathbf{u}_2 have \mathbf{u}_{1d} and \mathbf{u}_{2dt} as elements respectively. Furthermore $\mathbf{Z}=(\mathbf{Z}_1,\mathbf{Z}_2)$ has dimension DT \times (D + DT), where $\mathbf{Z}_1=\mathbf{I}_D\otimes\mathbf{1}_T$ (\mathbf{I}_D denotes a D \times D identity matrix and $\mathbf{1}_T$ a 1 \times T vector of ones) has dimension DT \times D and \mathbf{Z}_2 is a DT \times DT identity matrix.

Concerning the variance of \mathbf{y} first consider the distributions of all error components. $\mathbf{e} \sim N(\mathbf{o}, \mathbf{V}_e)$ where \mathbf{V}_e is a diagonal matrix with the known σ_{dt}^2 on the main diagonal. $\mathbf{u} \sim N(\mathbf{o}, \mathbf{V}_{\mathbf{u}}(\theta))$ with the block diagonal covariance matrix $\mathbf{V}_{\mathbf{u}}(\theta) = \text{diag}(\sigma_1^2\Omega_1(\rho_1), \sigma_2^2\Omega_2(\rho_2))$ where $\theta = (\sigma_1^2, \rho_1, \sigma_2^2, \rho_2)$.

$$\Omega_1(\rho_1) = \left((\mathbf{I}_D - \rho_1 \mathbf{W})^\top (\mathbf{I}_D - \rho_1 \mathbf{W}) \right)^{-1}$$

and follows from the SAR(1) process in the model errors. $\Omega_2(\rho_2)$ has a block diagonal structure with $\Omega_{2d}(\rho_2)$ denoting the blocks where the definition of $\Omega_{2d}(\rho_2)$ follows from the AR(1) process:

$$\Omega_{2d}(\rho_2) = \frac{1}{1-\rho_2^2} \begin{pmatrix} 1 & \rho_2 & \cdots & \rho_2^{T-2} & \rho_2^{T-1} \\ \rho_2 & 1 & & & \rho_2^{T-2} \\ \vdots & & \ddots & & \vdots \\ \rho_2^{T-2} & & 1 & \rho_2 \\ \rho_2^{T-1} & \rho_2^{T-2} & \cdots & \rho_2 & 1 \end{pmatrix}_{T\times T}$$

The variance of **y** can thus be stated as:

$$\mathbb{V}(y) = V(\theta) = ZV_{u}(\theta)Z^{\top} + V_{e}$$

The BLUE of β and BLUP of θ can be stated as (see Henderson, 1975):

$$\tilde{\boldsymbol{\beta}}(\boldsymbol{\theta}) = \left(\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}(\boldsymbol{\theta})\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}(\boldsymbol{\theta})\boldsymbol{y}$$

$$\tilde{\boldsymbol{u}}(\boldsymbol{\theta}) = \boldsymbol{V}_{\boldsymbol{u}}(\boldsymbol{\theta}) \boldsymbol{Z}^{\top} \boldsymbol{V}^{-1}(\boldsymbol{\theta}) \left(\boldsymbol{y} - \boldsymbol{X} \tilde{\boldsymbol{\beta}}(\boldsymbol{\theta})\right)$$

Hence the BLUP of u_1 and u_2 can be stated as:

$$\tilde{\boldsymbol{u}}_1(\boldsymbol{\theta}) = \sigma_1^2 \boldsymbol{\Omega}_1(\boldsymbol{\rho}_1) \boldsymbol{Z}^\top \boldsymbol{V}^{-1}(\boldsymbol{\theta}) \left(\boldsymbol{y} - \boldsymbol{X} \tilde{\boldsymbol{\beta}}(\boldsymbol{\theta})\right)$$

$$\tilde{\boldsymbol{u}}_2(\boldsymbol{\theta}) = \sigma_2^2 \boldsymbol{\Omega}_2(\boldsymbol{\rho}_2) \boldsymbol{Z}^\top \boldsymbol{V}^{-1}(\boldsymbol{\theta}) \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\tilde{\boldsymbol{\beta}}}(\boldsymbol{\theta})\right)$$

Estimating θ leads to the EBLUE for β and EBLUPs for u_1 and u_2 , hence an predictor for the area characteristic μ_{dt} is given by:

$$\hat{\mu}_{dt} = \boldsymbol{x}_{dt}^{\top} \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{u}}_{1d} + \hat{\boldsymbol{u}}_{2dt}$$

Marhuenda et al. (2013) use a restricted maximum likelihood method to estimate θ independently of β . An open question is if this approach can be applied for the robust spatio-temporal model. Thus we will continue with the discussion of robust small area methods.

2.4.3 From Unit to Area Level Models

In later simulation studies we will consider data in which area level statistics are computed from individual information. From a contextual point of view, starting from individual information is advantageous in the sense that outlying areas can be motivated more easily. Also the question for a good estimator for the sampling variances can be motivated when knowing the underlying individual model. Hence, I will derive the Fay-Herriot model starting from unit-level. Consider the following model:

$$y_{ij} = x_i^\top \beta + u + e_i$$
,

where y_{ij} is the response in domain i of unit j with $i=1,\ldots,n_i$, where n_i is the number of units in domain i. u is an area specific random effect following (i.i.d.) a normal distribution with zero mean and σ_u^2 as variance parameter. e_{ij} is the remaining deviation from the model, following (i.i.d.) a normal distribution with zero mean and $\sigma_{e,i}^2$ as variance parameter. This unit level model is defined under strong assumptions, still, assumptions most practitioner are willing to make which could simplify the identification of the sampling variances under the area level model.

From this model consider the area statistics $\tilde{y}_i = \frac{1}{n_j} \sum_{j=1}^{n_i} y_{ij}$, for which an area level model can be derived as:

$$\tilde{\mathbf{y}}_{i} = \mathbf{x}_{i}^{\top} \mathbf{\beta} + \mathbf{u}_{i} + \mathbf{e}_{i}$$

Considering the mean in a linear model, it can be expressed as $\bar{y} = \bar{x}\beta$; the random effect was defined for each area, hence it remains unaltered for the area level model. The error term in this model can be expressed as the sampling error and its standard deviation as the (conditional) standard deviation of the aggregated area statistic, which in this case is a mean. Hence, $e_i \sim \mathcal{N}(0, \sigma_{e,i}^2 = \sigma_e^2/n_i)$. Under this unit level model a sufficient estimator for $\sigma_{e,i}^2$ can be derived from estimating $\sigma_{e,i}^2$, which can be done robust and non-robust in many ways.

- Namazi-Rad / Steel (2015): What Level of Statistical Model Should We Use in Small Area Estimation?, Australian Journal of Statistics
 - Area Level vs. Unit Level Models. Main finding: When a model with contextual variables is the population model, using a area level model better than a unit level without contextual variables.
- Chandra, Sud and Gharde (2014): Small Area Estimation Using Estimated Population Level Auxiliary Data
- You and Chapman (2006): Small Area Estimation Using Area Level Models and Estimated Sampling Variances

- Rivest, Vandal (): Mean Squared Error Estimation for Small Areas when the Small Area Variances Are Estimated
- Chen and Lahiri (2008): On Mean Squared Prediction Error Estimation in Small Area Estimation Problems
- Wang and Fuller (2003): The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances
- Datta, Rao Smith: On measuring the variability of small area estimators under a basic area level model
- Porter, Holan, Wikle, Cressie (2014): Spatial Fay-Herriot models for small area estimation with functional covariates
- López-Vizcaíno, Lombardía and Morales (2015): Small area estimation of labour force indicators under multinomial models with correlated time and area effects
- Rao and Yu (1994): Small-Area Estimation by Combining Time-Series and Cross-Sectional Data
- Benedetti, Pratesi and Salvati (2013): Local stationarity in small area estimation models
- Sugasawa et.al. (2015): Bayesian Estimators for Small Area Models Shrinking Both Means and Variances
- Sugasawa and Kubokawa (2015): Parametric transformed Fay-Herriot model for small area estimation
- Sugasawa and Kubokawa (2015): Transforming Response Values in Small Area Prediction
- Benavent and Morales (2015): Multivariate Fay-Herriot models for small area estimation

2.5 UNIT LEVEL MODELS

Although the model which will be extended is an area-level model, crucial developments, especially for robust small area estimation, have been made with a focus on unit-level models. This section introduces the basic and non-robust unit-level model such that methodology reviewed in later sections can be discussed consistently.

The unit level model (Battese et al., 1988) can be expressed as:

$$\mathbf{y}_{i,i} = \mathbf{x}_i^{\mathsf{T}} \mathbf{\beta} + \mathbf{u}_i + \mathbf{e}_i \tag{2.9}$$

 $u_i \overset{iid}{\sim} N(0, \sigma_u^2), \ e_{ij} \overset{iid}{\sim} N(0, \sigma_{e,i}^2) \ \text{with} \ u \perp e. \ i = 1, \ldots, D \ \text{and} \ j = 1, \ldots, n_i \ \text{and} \ y_{ij} \ \text{is the dependent variable for unit } j \ \text{in domain } i.$

 x_i are the corresponding auxiliary variables for that unit. Let the set of n sampled and N-n non-sampled units be denoted by s and r respectivey.

Let $\hat{\beta}$ denote the best linear unbiased estimator (BLUE) of β and \hat{u}_i the best linear unbiased predictor (BLUP) (cf. Henderson, 1950 or Searle, 1971). The empirical best linear unbiased predictor (EBLUP) for the mean in small area i under the Battese-Harter-Fuller model is then given by

$$\hat{\theta}_{i}^{BHF} = N_{i}^{-1} \left(\sum_{j \in s_{i}} y_{ij} + \sum_{j \in r_{i}} (x_{i}^{\top} \hat{\beta} + \hat{u_{i}}) \right). \tag{2.10}$$

2.6 ROBUST METHODS IN SMALL AREA ESTIMATION

"[Outliers:] observations obtained under seemingly normal circumstances, but that turn out to be extremely deviant from the main body of observations." – Abelson (1995, p. 69)

- Sinha and Rao (2008): Robust Small Area Estimation Under Unit Level Models
- Richardson and Welsh (1995): Robust Restricted Maximum Likelihood in Mixed Linear Models
- Yau and Kuk (2002): Robust Estimation in Generalized Linear Mixed Models
- Hulliger (2010): Simple and Robust Estimators for Sampling
- Lange, Little and Taylor (1989): Robust Statistical Modeling Using the t Distribution
- Peel and McLachlan (2000): Robust mixture modelling using the t distribution
- Bell and Huang (2006): Using the t-distribution to Deal with Outliers in Small Area Estimation
- Huang and Bell (): Using the t-distribution in Small Area Estimation: An Application to SAIPE State Poverty Models
- Schoch (2012): Robust Unit-Level Small Area Estimation: A Fast Algorithm for Large Datasets
- Xie, Raghunathan and Lepkowski (2007): Estimation of the proportion of overweight individuals in small areas a robust extension of the Fay-Herriot model
- Gershunskaya (2010): Robust Small Area Estimation Using a Mixture Model
- Datta and Lahiri (1995): Robust Hierarchical Bayes Estimation of Small Area Characteristics in the Presence of Covariates and Outliers
- Rao, Sinha and Dumitrescu (2014): Robust Small area estimation under semi-parametric mixed models

- Salvati et.al. (2012): Small area estimation via M-quantile geographically weighted regression
- Salvati et.al. (2009): Spatial M-Quantile Modles for Small Area Estimation
- Shmid and Münnich (2012): Spatial robust small area estimation
- Tzavidis et.al. (2010): Robust Prediction of Small Area Means and Distributions
- Gervini / Yohai (2002): A Class of Robust and Fully Efficient Regression Estimators
- Pragg

2.6.1 Robust ML Score Functions

Fellner (1986) studied the robust estimation of linear mixed model parameters. However, the proposed approach is based on given variance parameters θ which is why Sinha and Rao (2009) propose an estimation procedure in which robust estimators for β and θ are solved iteratively. With given robust estimates for β and θ the estimation of the random effects is straight forward, the main concern, however, lies with the estimation of robust variance parameters. Starting from a mixed model:

$$y = X\beta + Zu + e$$

where \mathbf{y} is the response vector with elements $\mathbf{y_i}$, \mathbf{X} the design matrix, \mathbf{u} the vector of random effects and \mathbf{e} the vector of sampling errors. Both error components are assumed to be normally distributed with $\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \mathbf{G})$ and $\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$ where \mathbf{G} and \mathbf{R} typically depend on some variance parameters θ . Thus the variance of \mathbf{y} is given by $\mathbf{V}(\mathbf{y}) = \mathbf{V}(\theta) = \mathbf{Z}\mathbf{G}\mathbf{Z}^{\top} + \mathbf{R}$. Maximizing the likelihood of \mathbf{y} with respect to β and θ leads to the following equations:

$$\begin{aligned} \mathbf{X}^{\top}\mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right) = & 0\\ \left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right)^{\top}\mathbf{V}^{-1}\frac{\partial\mathbf{V}}{\partial\boldsymbol{\theta}_{1}}\mathbf{V}^{-1}\left(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}\right) - & \mathrm{tr}\left(\mathbf{V}^{-1}\frac{\partial\mathbf{V}}{\partial\boldsymbol{\theta}_{1}}\right) = & 0 \end{aligned}$$

where q denotes the number of unknown variance parameters with $l=1,\ldots,q$. Solving the above equations leads to the ML-estimates for β and θ . To robustify against outliers in the response variable, the residuals $(y-X\beta)$ are standardized and restricted by some influence function $\psi(\cdot)$. The standardized residuals are given by

$$r = U^{-\frac{1}{2}}\left(y - X\beta\right)$$

where **U** is the matrix of diagonal elements of **V** and thus also depends on the variance parameters θ . A typical choice for $\psi(\cdot)$ is Hubers influence function:

$$\psi(\mathfrak{u})=\mathfrak{u}\,\mathrm{min}\left(1,\frac{\mathfrak{b}}{|\mathfrak{u}|}\right).$$

A typical choice for b is 1.345. The vector of robustified residuals is denoted by $\underline{\ }(\mathbf{r})=(\psi(r_1),\ldots,\psi(r_n)).$ Solving the following robust ML-equations leads to robustified estimators for β and θ :

$$\begin{split} \boldsymbol{X}^{\top} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{\psi}(\boldsymbol{r}) = & 0 \\ \boldsymbol{\Phi}_{1}(\boldsymbol{\theta}) = & \boldsymbol{\psi}(\boldsymbol{r})^{\top} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \boldsymbol{\theta}_{1}} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{\psi}(\boldsymbol{r}) - tr \left(\boldsymbol{K} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \boldsymbol{\theta}_{1}} \right) = & 0 \\ & (2.12) \end{split}$$

where K is a diagonal matrix of the same order as **V** with diagonal elements $c = \mathbb{E}[\psi^2(r)|b]$ where r follows a standard normal distribution.

2.6.2 Bias Correction

- Tzavidis and Chambers (2005): BIAS ADJUSTED SMALL AREA ESTIMATION WITH M-QUANTILE MODELS
- Jiongo, Haziza and Duchesne (2013): Controlling the bias of robust small-area estimators

2.6.3 Mean Squared Error Estimation

2.6.3.1 Bootstrap

 Jiiongo, Nguimekeu (2014): Bootstrapping Mean Squared Errors of Robust Small Area Estimators

2.6.3.2 Pseudo Linearization

Chambers, J. Chandra, et al. (2011) and Chambers, H. Chandra, et al. (2014) deal with the estimation of the MSE of robust area predictors in the context of Small Area Estimation. In this section I review their results. Later in section? I will, firt, adapt their findings to estimate the MSE of the robustified Fay Herriot model, and second use the linearization of robust mixed models to derive a fixed point algorithm to find solutions for the model parameters.

The central idea is to formulate the RBLUP as wigthed sum of the response vector:

$$\theta_{i}^{RBLUP} = \sum_{j \in s} w_{ij}^{RBLUP} y_{ij} = (\mathbf{w}_{is}^{RBLUP})^{\top} \mathbf{y}_{s}$$

where

$$\left(\boldsymbol{w}_{is}^{RBLUP}\right)^{\top} = N_{i}^{-1} \left(\boldsymbol{1}_{s}^{\top} + (N_{i} - n_{i}) \left(\bar{\boldsymbol{x}}_{ir}^{\top} \boldsymbol{A}_{s} + \bar{\boldsymbol{z}}_{ir}^{\top} \boldsymbol{B}_{s} \left(\boldsymbol{I}_{s} - \boldsymbol{X}_{s} \boldsymbol{A}_{s}\right)\right)\right)$$

and

$$\mathbf{A}_{s} = \left(\mathbf{X}_{s}^{\top} \mathbf{V}_{s}^{-1} \mathbf{U}_{s}^{\frac{1}{2}} \mathbf{W}_{1s} \mathbf{U}_{s}^{-\frac{1}{2}} \mathbf{X}_{s}\right)^{-1} \mathbf{X}_{s}^{\top} \mathbf{V}_{s}^{-1} \mathbf{U}_{s}^{\frac{1}{2}} \mathbf{W}_{1s} \mathbf{U}_{s}^{-\frac{1}{2}}$$

with

$$\mathbf{W}_{1s} = \operatorname{diag}(w_i)_{n \times n}$$

and

$$w_{1j} = \frac{\psi\left(U_{j}^{-\frac{1}{2}}\left(y_{j} - x_{j}^{\top}\hat{\beta}^{\psi}\right)\right)}{U_{j}^{-\frac{1}{2}}\left(y_{j} - x_{j}^{\top}\hat{\beta}^{\psi}\right)}$$

$$\mathbf{B}_{s} = \left(\mathbf{Z}_{s}^{\top} \mathbf{V}_{es}^{-\frac{1}{2}} \mathbf{W}_{2s} \mathbf{V}_{es}^{-\frac{1}{2}} \mathbf{Z}_{s} + \mathbf{V}_{u}^{-\frac{1}{2}} \mathbf{W}_{3s} \mathbf{V}_{u}^{-\frac{1}{2}}\right)^{-1} \mathbf{Z}_{s}^{\top} \mathbf{V}_{e}^{-\frac{1}{2}} \mathbf{W}_{2s} \mathbf{V}_{e}^{-\frac{1}{2}}$$

with W_{2s} as diagonal matrix with ith component:

$$w_{2i} = \frac{\psi\left(\left(\sigma_{e,i}^{\psi}\right)^{-1}\left(y_{i} - x_{i}^{\top}\hat{\beta}^{\psi} - \hat{u}_{i}^{\psi}\right)\right)}{\left(\sigma_{e,i}^{\psi}\right)^{-1}\left(y_{i} - x_{i}^{\top}\hat{\beta}^{\psi} - \hat{u}_{i}^{\psi}\right)}$$

and with W_{3s} as $(m \times m)$ diagonal matrix with ith component:

$$w_{3i} = \frac{\psi\left(\left(\sigma_{u}^{\psi}\right)^{-1} \hat{\mathbf{u}}_{i}^{\psi}\right)}{\left(\sigma_{u}^{\psi}\right)^{-1} \hat{\mathbf{u}}_{i}^{\psi}}$$

This all assumes known variance parameters. When the variance parameters are unknown, they are estimated and instead of \mathbf{w}_{is}^{RBLUP} we have to use \mathbf{w}_{is}^{REBLUP} . Then the estimator of the conditional MSE is given by:

$$\widehat{\mathsf{MSE}}\left(\widehat{\boldsymbol{\theta}}_{i}^{\mathsf{REBLUP}}\right) = \widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\theta}}_{i}^{\mathsf{REBLUP}}\right) + \widehat{\mathbb{B}}\left(\widehat{\boldsymbol{\theta}}_{i}^{\mathsf{REBLUP}}\right)^{2}$$

$$\widehat{\mathbb{V}}\left(\widehat{\boldsymbol{\theta}}_{i}^{REBLUP}\right) = N_{i}^{-2} \sum_{j \in s} \left(\boldsymbol{\alpha}_{ij}^{2} + \left(N_{i} - \boldsymbol{n}_{i}\right) \boldsymbol{n}^{-1}\right) \lambda_{j}^{-1} \left(y_{j} - \hat{\boldsymbol{\mu}}_{j}\right)^{2}$$

with

$$\alpha_{ij} = N_i w_{ij}^{REBLUP} - I \, (j \in i)$$

and

$$\widehat{\mathbb{B}}\left(\widehat{\boldsymbol{\theta}}_{i}^{REBLUP}\right) = \sum_{j \in s} w_{ij}^{REBLUP} \hat{\boldsymbol{\mu}}_{j} - N_{i}^{-1} \sum_{j \in (r_{i} \cup s_{i})} \hat{\boldsymbol{\mu}}_{j}$$

Note that $\hat{\mu}_j$ is an unbiased estimator of the the conditional expectation $\mu_j = \mathbb{E}\left(y_j|x_j, u^\psi\right)$. $\lambda_j = 1 - 2\varphi_{jj} + \sum_{k \in s} \varphi_{kj}^2$.

3.1 THE PROBLEM OF OUTLYING OBSERVATIONS FOR AREA-LEVEL MODELS

- Hulliger (2010): Simple and Robust Estimators for Sampling, SFSO
 - Robuste direkte Schätzer mit Survey Gewichten (robuster HT)
- 2015-03-17: Bell, W. t-Distr. US-Census
 - Paper: Using the t-distribution in Small Area Estimation: An Application to SAIPE State Poverty Models
 - Paper: Using the t-distribution to Deal with Outliers in Small Area Estimation
- 2015-02-17: Literatur Handbook of Statistics 29a Dealing with Outliers in Survey Data, 247 ff.
 - Winzorization des HT-Schätzers
 - Buaumont
- Chakraborty, Datta and Mandal (2015): A two-component normal mixture alternative to the Fay-Herriot model
- Fabrizi, Trivisano (2010): Robust linear mixed modles for Small Area Estimation

This section provides some motivation for the study of robust arealevel models. It mainly lays out under which scenarios a robust estimation may proove to be beneficial and how these points are addressed in later chapters. Most importantly you can find insights on what outlying observations are from an area-level perspective. And if such data points exist, what is the source of this abnormal behaviour?

In the following I want to distinguish between three types of outlying observations. Unit-level outliers and how they may effect the area-level analysis are discussed in 3.1.1. Area-level outliers can be described as outlying domains, which means that an entire domain or all units in that domain - behaves differently than all others and are further discussed in section 3.1.2. A third kind can be best described as overly influential observations. The effect of such observations on the area-level is more subtle. A first intuition and possible sources of this type is given in section 3.1.3.

3.1.1 Unit-Level Outliers

Unit-level outliers can be representative or non-representative values but in most cases it is beyond our reach to judge which kind they are because we only see aggregates. They will influence the direct estimator in that this quntity may have unexpected high or low values. But they also influence the estimation of the standard error of the direct estimator which in turn can be used as the true or rather given variance parameters in a Fay-Herriot type model.

In the situation where the direct variance estimators are used, two conflicting effects need to be considered. First, we use an obviously unreliable estimator for the sampling error and assume that such values can be used as the *true* variance parameters in the Fay-Herriot model. Such estimators will have poor properties when the target is the *true* sampling error especially in the context of outliers. This problem stimulates the recent discussion around smoothing the variance estimates prior to using them in a Fay-Herriot model (see ? for reference of this discussion and section 3.1.3 for how the robust estimator relates to this discussion).

Second, we may consider the direct variance estimators not as an informative quantity for the *true* sampling error, but as informative about the unit-level sample. This is an important aspect because the variance becomes a reliablility index. The estimated sampling variance is large if outliers are present or in general the sample is heterogenous; and it is low for areas in which we have a reliable direct estimator. In this case the direct variance estimation will weight down unreliable direct estimators, which is why the Fay-Herriot model can be considered to be robust against unit-level outliers.

When we consider unit-level outliers it is relevant to ask why we would not use a robust direct estimator. From a practical point of view we may only have access to non-robust estimators. On the other hand it may be crucial feedback to a data provider to instead report robust estimates, e.g. a robust mean or median. Also it is unclear how this relates to the *self-adjusting* effect of the Fay-Herriot model. This aspect is addressed by model-based simulations in section (?).

3.1.2 Area-Level Outliers

Area-level outliers are domains or areas which are far away from the bulk of the observations. The source of such observations are not single units influencing the direct estimator, but the fact that there exist domains which are substantially different from the majority.

If we take the standpoint of a mixed-model perspective this means that there are outliers in the random effect. From a model perspective where we treat the random effect as i.i.d. random variable following a normal distribution such values may arise by chance alone. This would mean that in truth the distribution is indeed normal but we are in one of those rare cases in which we observe abnormal behaviour of single domains.

This argumentation seems to be unrealistic because under repeated sampling we would expect the same domains to be abnormal which stimulates a more fundamental discussion of mixed-models in Small Area Estimation (see ?); and it gives reason to frame a random effect as fixed but unknown quntity which is approximated by a normal distribution. In this setting the existance of outliers means that the normal distribution may well be a good approximation for the majority of areas but not for all them. This will raise the question if a different distribution should be used to approximate the random effect, e.g. a mixture distribution of normals or a scewed distribution.

Regardless of the perspective, in the application in which such values are observed a robust estimation technique can be beneficial. The main effect of a misspecified distributional assumption is that the variance parameter of the random effect will be overestimated - at least this is what we should expect in the presence of outliers. Also the parameter estimates of the fixed effects part can be influenced by such observations, allthough it is unclear how they are unfluenced specifically (under- or over-estimated).

Looking at the shrinkage estimator it can be derived how an overestimation of the estimated variance parameter of the random effect influences area-level predictions. The larger the estimated variance compared to the area-specific sampling variance the stronger the prediction relies on the direct estimator. However, the robust prediction will turn out not to be the shrinkage estimator but instead a robustified best linear unbiased predictor for which the influence is more subtle. The intuition of the effect, however, remains the same.

3.1.3 The Creation of Overly Influencial Observations

In this section I want to introduce a third kind of outlying observation. Such values are better understood as overly influencial observations as they do not necessarily are far away from the center of the data. Furthermore they can not be understood by looking at the direct estimator alone but must be seen as pairs of direct estimator and sampling variance. Together they determine the impact of a single observation on the overall predictions.

To distinguish them from area- and unit-level outliers consider two hypothetical scenarios from which these values can arise:

• There are no outliers present and the unit-level population model is that of (?). However, the sample sizes for most areas are very small - say between 5 and 50 - and only for very few domains we have sufficient sample size of say 500. This will inevitably result in a very heterogenous picture on the area-level where

domains with sample size 500 will appear to be extremely reliable. The effect can be that such observations will dominate the global mean and thus effectively become the value we are shrinking against.

• We have unit-level outliers influencing domain specific direct estimators. However, instead of using the estimated sampling variance we smooth the variances against a global parameter essentially shrinking both means and variances as suggested in (?). This results in outlying domains for which, after smoothing, the direct estimators appear to be more reliable than they truly are. Effectively this reduces the self adjusting effect described in section 3.1.1.

Especially the second scenario should not be misunderstood as an argument against smoothing, or that we should not care about unstable variance estimation. Allthogh the variances are not directly smoothed the influence of observations is bounded in a robust estimation procedure. In fact the introduced robust area-level model can be considered to have a positive effect with respect to both scenarios because single observations are restricted in their influence. Furthermore the robust model may present an alternative to smoothing strategies, although that has not been the initial intention, without the danger of creating overly influencial observations.

3.2 THE ROBUST FAY-HERRIOT MODEL AND EXTENSIONS

 Chakraborty, Datta and Mandal (2015): A two-component normal mixture alternative to the Fay-Herriot model

3.3 BIAS CORRECTION

The two existing methodologies which are available to do bias correction for robust models in SAE are not easily adapted to the general context of the discussed area level models. Both approaches are based on a robust scale estimate of the residuals within in a domain. In the standard RFH and SRFH there is only one observation per domain, such that these estimates can not be directly transfered.

However, the general problem remains. In the setting of the robustified score functions and a misspecified distribution in the sense that outlying observations have a different mean, the model can introduce a severe bias to those outlying estimations.

Independet of this question Fay and Herriot (1979) refer to Efron and Morris (1971) and Efron and Morris (1972) who argue that the Bayes Estimator and and the Emperical Bayes Estimator may improve the overall prediction performance but can be ill suited for specific

domains. In essence this describes also the situation with the RFH models which introduce a bias to the prediction of outlying domains.

Efron and Morris also suggest a simple correction to the prediction which can be directly applied to the robust models under study. They suggest to restrict the prediction by an interval around the direct estimator. The width of this intervall can be constructed as a multiple of the known standard errors under the model:

$$\theta_{i}^{BC} = \begin{cases} \tilde{y}_{i} - c & \text{if } \theta_{i}^{RFH} < \tilde{y}_{i} - c \\ \theta_{i}^{RFH} & \text{if } \tilde{y}_{i} - c \leqslant \theta_{i}^{RFH} \leqslant \tilde{y}_{i} + c \\ \tilde{y}_{i} + c & \text{if } \theta_{i}^{RFH} > \tilde{y}_{i} + c \end{cases}$$

3.4 MEAN SQUARED ERROR ESTIMATION

3.4.1 Bootstrap

3.4.2 Pseudo Linearization

This is the representation of the pseudo linear representation of the FH model. As it is introduced in Chambers, J. Chandra, et al. (2011) and Chambers, H. Chandra, et al. (2014).

Presenting the FH in pseudo linear form means to present the area means as a weighted sum of the response vector y. The FH model is given by

$$\theta_{i} = \gamma_{i} y_{i} + (1 - \gamma_{i}) x_{i}^{\top} \beta \tag{3.1}$$

where $\gamma_i = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$, so it can be represented as

$$\theta_i = w_i^\top y$$

where

$$\boldsymbol{w}_{i}^{\top} = \boldsymbol{\gamma}_{i} \mathbf{I}_{i}^{\top} + (1 - \boldsymbol{\gamma}_{i}) \boldsymbol{x}_{i}^{\top} \mathbf{A}$$

and

$$\mathbf{A} = \left(\mathbf{X} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \mathbf{W} \mathbf{U}^{-\frac{1}{2}} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \mathbf{W} \mathbf{U}^{-\frac{1}{2}}$$

with

$$\mathbf{W} = \text{Diag}(w_i)$$
, with $i = 1, ..., n$

and

$$w_j = \frac{\psi\left(u_j^{-\frac{1}{2}}(y_j - x_j^{\top}\beta)\right)}{u_j^{-\frac{1}{2}}(y_j - x_j^{\top}\beta)}$$

Note that if ψ is the identity or equally a huber influence function with a large smoothing constant, i.e.inf:

$$\mathbf{A} = \left(\mathbf{X}\mathbf{V}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{V}^{-1}$$

The fixed point function derived from these formulas are the following:

$$\beta = \mathbf{A}(\beta)\mathbf{y}$$

This whole thing can also be addapted to define the random effects. If we define the model in an alternative way:

$$\theta_{i} = x_{i}^{\top} \beta + u_{i} \tag{3.2}$$

we can restate it similarly to the above as:

$$\theta_{\mathfrak{i}} = w_{s,\mathfrak{i}}^{\top} \mathbf{y}$$

$$\theta = \mathbf{W}\mathbf{y}$$

where **W** is the matrix containing the weights, i.e.

$$\mathbf{W} = \begin{pmatrix} w_{s,1}^{\top} \\ \vdots \\ w_{s,D}^{\top} \end{pmatrix} = \mathbf{X}\mathbf{A} + \mathbf{B}\left(\mathbf{I} - \mathbf{X}\mathbf{A}\right)$$

with

$$w_{s,i}^{\top} = \mathbf{x}_{i}^{\top} \mathbf{A} + z_{i}^{\top} \mathbf{B} \left(\mathbf{I} - \mathbf{x}_{i}^{\top} \mathbf{A} \right)$$

where A is defined as above and

$$\mathbf{B} = \left(\mathbf{V}_{e}^{-\frac{1}{2}} \mathbf{W}_{2} \mathbf{V}_{e}^{-\frac{1}{2}} + \mathbf{V}_{u}^{-\frac{1}{2}} \mathbf{W}_{3} \mathbf{V}_{u}^{-\frac{1}{2}}\right)^{-1} \mathbf{V}_{e}^{-\frac{1}{2}} \mathbf{W}_{2} \mathbf{V}_{e}^{-\frac{1}{2}}$$

with W_2 as diagonal matrix with ith component:

$$w_{2i} = \frac{\psi\{\sigma_{e,i}^{-1}(y_i - x_i^{\top}\beta - u_i)\}}{\sigma_{e,i}^{-1}(y_i - x_i^{\top}\beta - u_i)}$$

and with W₃ as diagonal matrix with ith component:

$$w_{3i} = \frac{\psi \{ \sigma_u^{-1} u_i \}}{\sigma_u^{-1} u_i}$$

The fixed point function derived from these formulas are the following:

$$\mathbf{u} = \mathbf{B}(\mathbf{u}) (\mathbf{I} - \mathbf{X}\mathbf{A}) \mathbf{y}$$
$$= \mathbf{B}(\mathbf{u}) (\mathbf{y} - \mathbf{X}\mathbf{\beta})$$

Given the weights we have a weighted mean, for which we need the MSE:

$$\mathbb{MSE}\left(\hat{\boldsymbol{\theta}}|\boldsymbol{X},\boldsymbol{\beta},\boldsymbol{u}\right) = \mathbb{E}\left(\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\right)^2\right) = \mathbb{V}\left(\hat{\boldsymbol{\theta}}\right) + \mathbb{E}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}\right)^2$$

$$\mathbb{V}\left(\hat{\boldsymbol{\theta}}\right) = \mathbb{V}\left(\boldsymbol{W}\boldsymbol{y}\right) = \boldsymbol{W}^{2}\mathbb{V}\left(\boldsymbol{y}\right) = \boldsymbol{W}^{2}\left(\sigma_{e,1}^{2}, \ldots, \sigma_{e,D}^{2}\right)^{\top}$$

$$\mathbb{E}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right) = \mathbb{E}\left(\mathbf{W}\mathbf{y}\right) - \mathbb{E}\left(\boldsymbol{\theta}\right) = \mathbf{W}\mathbb{E}\left(\mathbf{y}\right) - \mathbb{E}\left(\boldsymbol{\theta}\right) = \mathbf{W}\boldsymbol{\theta} - \boldsymbol{\theta}$$

3.5 ALGORITHM

3.5.1 Newton Raphson Algorithms

Sinha and Rao (2009) propose a Newton-Raphson algorithm to solve equations 2.11 and 2.12 iteratively. The iterative equation for β is given by:

$$\boldsymbol{\beta}^{(\mathfrak{m}+1)} = \boldsymbol{\beta}^{(\mathfrak{m})} + \left(\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}\boldsymbol{D}(\boldsymbol{\beta}^{(\mathfrak{m})})\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{V}^{-1}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{\psi}(\boldsymbol{r}(\boldsymbol{\beta}^{(\mathfrak{m})}))$$

where $D(\beta)=\frac{\partial \psi(r)}{\partial r}$ is a diagonal matrix of the same order as V with elements

$$D_{jj} = \begin{cases} 1 \text{ for } |r_j| \leqslant b \\ 0 \text{ else} \end{cases}, j = 1, \dots, n$$

The iterative equation for θ can be stated as:

$$\boldsymbol{\theta}^{(m+1)} = \boldsymbol{\theta}^{(m)} - \left(\boldsymbol{\Phi}'(\boldsymbol{\theta}^{(m)})\right)^{-1} \boldsymbol{\Phi}(\boldsymbol{\theta}^{(m)})$$

where $\Phi'(\theta^m)$ is the derivative of $\Phi(\theta)$ evaluated at $\theta^{(m)}$. The derivative of Φ is given by Schmid, 2012, p.53:

$$\frac{\partial \Phi}{\partial \theta_{l}} = 2 \frac{\partial}{\partial \theta_{l}} \left(\psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \right) \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) + \operatorname{tr} \left(\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{K} \right)$$
(3.3)

where

$$\frac{\partial}{\partial \theta_1} \left(\psi(\boldsymbol{r})^\top \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \right) = \frac{\partial}{\partial \theta_1} (\psi(\boldsymbol{r})^\top) \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} + \psi(\boldsymbol{r})^\top \frac{\partial}{\partial \theta_1} (\boldsymbol{U}^{\frac{1}{2}}) \boldsymbol{V}^{-1} - \psi(\boldsymbol{r})^\top \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \theta_1} \boldsymbol{V}^{-1}.$$

In Schmid (2012) adopted this procedure for the Spatial Robust EBLUP and essentially we will follow the same procedure Schmid (2012, p.74ff.). Thus we will directly consider the algorithm for the Spatio Temporal model introduced earlier. Since the model considered by Sinha and Rao (2009) contained a block diagonal variance structure where all off-diagonals are zero, equation 3.3 is valid with respect to the earlier specified variance parameters σ_1^2 and σ_2^2 from the spatio temporal Fay Herriot model. The derivative of Φ with respect to ρ_1 and ρ_2 , however, is different. To adapt the notation, let $\theta = (\sigma_1^2, \sigma_2^2)$ for which equation 3.3 holds. Let $\rho = (\rho_1, \rho_2)$ denote the vector of correlation parameters as they already have been defined above. Then the iterative equation for ρ is can be stated as:

$$\boldsymbol{\rho}^{(\mathfrak{m}+1)} = \boldsymbol{\rho}^{(\mathfrak{m})} + \left(\boldsymbol{\Phi}'(\boldsymbol{\rho}^{(\mathfrak{m})}\right)^{-1} \boldsymbol{\Phi}(\boldsymbol{\rho}^{(\mathfrak{m})})$$

where the derivative of Φ with respect to ρ is given by Schmid (2012, p.76):

$$\begin{split} \frac{\partial \Phi}{\partial \rho_{l}} = & 2 \frac{\partial}{\partial \rho_{l}} \left(\psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \right) \frac{\partial \mathbf{V}}{\partial \rho_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \\ & + \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \rho_{l} \partial \rho_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) \\ & + \mathrm{tr} \left(\mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \rho_{l} \partial \rho_{l}} \mathbf{K} - \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{K} \right) \end{split}$$

The partial derivatives of **V** with respect to θ and ρ are given by:

$$\begin{split} \frac{\partial \mathbf{V}}{\partial \sigma_{1}^{2}} = & \mathbf{Z}_{1} \Omega_{1}(\rho_{1}) \mathbf{Z}_{1}^{\top} \\ \frac{\partial \mathbf{V}}{\partial \sigma_{2}^{2}} = & \Omega_{2}(\rho_{2}) \\ \frac{\partial \mathbf{V}}{\partial \rho_{1}} = & -\sigma_{1}^{2} \mathbf{Z}_{1} \Omega_{1}(\rho_{1}) \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}} \Omega_{1}(\rho_{1}) \mathbf{Z}_{1}^{\top} \\ \frac{\partial \mathbf{V}}{\partial \rho_{2}} = & \sigma_{2}^{2} \operatorname{diag} \left(\frac{\partial \Omega_{2d}(\rho_{2})}{\partial \rho_{2}} \right) \\ \frac{\partial \mathbf{V}}{\partial \rho_{1} \partial \rho_{1}} = & -\sigma_{1}^{2} \mathbf{Z}_{1} \frac{\partial \Omega_{1}(\rho_{1})}{\partial \rho_{1}} \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}} \Omega_{1}(\rho_{1}) \mathbf{Z}_{1}^{\top} \\ & -\sigma_{1}^{2} \mathbf{Z}_{1} \Omega_{1}(\rho_{1}) \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1} \partial \rho_{1}} \Omega_{1}(\rho_{1}) \mathbf{Z}_{1}^{\top} \\ & -\sigma_{1}^{2} \mathbf{Z}_{1} \Omega_{1}(\rho_{1}) \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}} \frac{\partial \Omega_{1}(\rho_{1})}{\partial \rho_{1}} \mathbf{Z}_{1}^{\top} \\ \frac{\partial \mathbf{V}}{\partial \rho_{2} \partial \rho_{2}} = & \text{Needs to be TEXed} \end{split}$$

where

$$\begin{split} \frac{\Omega_{1}(\rho_{1})}{\partial \rho_{1}} &= -\Omega_{1}(\rho_{1}) \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}} \Omega_{1}(\rho_{1}) \,, \\ \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}} &= -\mathbf{W} - \mathbf{W}^{\top} + 2\rho_{1}\mathbf{W}^{\top}\mathbf{W} \,, \\ \frac{\partial \Omega_{1}^{-1}(\rho_{1})}{\partial \rho_{1}\partial \rho_{1}} &= 2\mathbf{W}^{\top}\mathbf{W} \\ \frac{\partial \Omega_{2d}(\rho_{2})}{\partial \rho_{2}} &= \frac{1}{1 - \rho_{2}^{2}} \begin{pmatrix} 0 & 1 & \cdots & \cdots & (T - 1)\rho_{2}^{T - 2} \\ 1 & 0 & & (T - 2)\rho_{2}^{T - 3} \\ \vdots & & \ddots & & \vdots \\ (T - 2)\rho_{2}^{T - 3} & & 0 & 1 \\ (T - 1)\rho_{2}^{T - 2} & \cdots & \cdots & 1 & 0 \end{pmatrix} + \frac{2\rho_{2}\Omega_{2d}(\rho_{2})}{1 - \rho_{2}^{2}} \end{split}$$

Having identified all iterative equations the adapted algorithm from Schmid (2012) is as follows:

- Choose initial values for β^0 , θ^0 and ρ^0 .
- Compute $\beta^{(m+1)}$, with given variance parameters and correlation parameters
 - Compute $\theta^{(m+1)}$, with given regression and correlation parameters
 - Compute $\rho^{(m+1)}$, with given variance and regression parameters
- Continue step 2 until the following stopping rule holds:

3.5.2 Fixed Point Algorithms

Inspired by: Chatrchi Golshid (2012): Robust Estimation of Variance Components in Small Area Estimation, Master-Thesis, Ottawa, Ontario, Canada: p. 16ff.:

The fixed-point iterative method relies on the fixed-point theorem: "If g(x) is a continuous function for all $x \in [a;b]$, then g has a fixed point in [a;b]." This can be proven by assuming that $g(a) \geqslant a$ and $g(b) \leqslant b$. Since g is continuous the intermediate value theorem guarantees that there exists a c such that g(c) = c.

Starting from equation 2.12 where $\theta = (\sigma_1^2, \sigma_2^2)$ and (ρ_1, ρ_2) are assumed to be known, we can rewrite the equation such that:

$$\begin{split} \Phi_{l}(\theta) &= \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) - \\ & \text{tr} \left(K \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta_{l}} (\mathbf{Z} \mathbf{V}_{u} \mathbf{Z}^{\top})^{-1} (\mathbf{Z} \mathbf{V}_{u} \mathbf{Z}^{\top}) \right) = \mathbf{0} \quad (3.4) \end{split}$$

Note that because the matrix V_e is assumed to be known for the FH model, it can be omitted. Let $o_{r \times c}$ define a matrix filled with 0 of dimension $(r \times c)$ then:

$$\begin{split} \boldsymbol{Z} \boldsymbol{V}_{u} \boldsymbol{Z}^{\top} = & \boldsymbol{Z} \begin{pmatrix} \sigma_{1}^{2} \Omega_{1} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \sigma_{2}^{2} \Omega_{2} \end{pmatrix} \boldsymbol{Z}^{\top} \\ = & \boldsymbol{Z} \begin{bmatrix} \sigma_{1}^{2} \begin{pmatrix} \Omega_{1} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \boldsymbol{o}_{DT \times DT} \end{pmatrix} + \sigma_{2}^{2} \begin{pmatrix} \boldsymbol{o}_{D \times D} & \boldsymbol{o}_{D \times DT} \\ \boldsymbol{o}_{DT \times D} & \Omega_{2} \end{pmatrix} \end{bmatrix} \boldsymbol{Z}^{\top} \\ = & \begin{pmatrix} \boldsymbol{Z} \bar{\Omega}_{1} \boldsymbol{Z}^{\top} & \boldsymbol{Z} \bar{\Omega}_{2} \boldsymbol{Z}^{\top} \end{pmatrix} \begin{pmatrix} \sigma_{1}^{2} \\ \sigma_{2}^{2} \end{pmatrix} \end{split}$$

Thus equation 3.7 can be rewritten to:

$$\begin{split} \psi(\textbf{r})^\top \textbf{U}^{\frac{1}{2}} \textbf{V}^{-1} \frac{\partial \textbf{V}}{\partial \theta_1} \textbf{V}^{-1} \textbf{U}^{\frac{1}{2}} \psi(\textbf{r}) = \\ tr \left(\textbf{K} \textbf{V}^{-1} \frac{\partial \textbf{V}}{\partial \theta_1} (\textbf{Z} \textbf{V}_u \textbf{Z}^\top)^{-1} \begin{pmatrix} \textbf{Z} \bar{\Omega}_1 \textbf{Z}^\top & \textbf{Z} \bar{\Omega}_2 \textbf{Z}^\top \end{pmatrix} \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \end{pmatrix} \right) \end{split}$$

Let

$$\begin{pmatrix} \psi(\boldsymbol{r})^\top \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \sigma_1^2} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \psi(\boldsymbol{r}) \\ \psi(\boldsymbol{r})^\top \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \frac{\partial \boldsymbol{V}}{\partial \sigma_2^2} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \psi(\boldsymbol{r}) \end{pmatrix} = \alpha(\boldsymbol{\theta}) \; \text{,}$$

then

$$\theta = \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \end{pmatrix} = A(\theta)^{-1} a(\theta) ,$$

where

$$A(\theta) = \begin{pmatrix} \text{tr} \left(K \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_1^2} (\mathbf{Z} \mathbf{V}_{\mathbf{u}} \mathbf{Z}^\top)^{-1} \mathbf{Z} \bar{\Omega}_1 \mathbf{Z}^\top \right) & \text{tr} \left(K \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_1^2} (\mathbf{Z} \mathbf{V}_{\mathbf{u}} \mathbf{Z}^\top)^{-1} \mathbf{Z} \bar{\Omega}_2 \mathbf{Z}^\top \right) \\ \text{tr} \left(K \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_2^2} (\mathbf{Z} \mathbf{V}_{\mathbf{u}} \mathbf{Z}^\top)^{-1} \mathbf{Z} \bar{\Omega}_1 \mathbf{Z}^\top \right) & \text{tr} \left(K \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \sigma_2^2} (\mathbf{Z} \mathbf{V}_{\mathbf{u}} \mathbf{Z}^\top)^{-1} \mathbf{Z} \bar{\Omega}_2 \mathbf{Z}^\top \right) \end{pmatrix}.$$

So, the fixed point algorithm can be presented as follows:

$$\theta^{m+1} = A(\theta^{(m)})^{-1}\alpha(\theta^{(m)})$$

At this time the fixed-point algorithm for $\theta = (\sigma_1^2, \sigma_2^2)$ will replace the corresponding step in Issue 1.

3.5.2.1 N-S: Fixed-Point-Algorithm - Spatial Correlation

To extend the above algorithm to not only being used for the estimation of $\theta=(\sigma_1^2,\sigma_2^2)$ but also for the spatial correlation parameter ρ_1 reconsider:

$$\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^{\top} = \mathbf{Z}\begin{pmatrix} \sigma_{1}^{2}\Omega_{1} & \mathbf{o}_{\mathbf{D}\times\mathbf{D}\mathsf{T}} \\ \mathbf{o}_{\mathbf{D}\mathsf{T}\times\mathbf{D}} & \sigma_{2}^{2}\Omega_{2} \end{pmatrix} \mathbf{Z}^{\top}$$
(3.5)

and the specification of $\Omega_1(\rho_1) = ((I - \rho_1 \mathbf{W})^\top (I - \rho_1 \mathbf{W}))^{-1}$:

$$\begin{split} \sigma_1^2 \Omega_1(\rho_1) &= \sigma_1^2 \Omega_1 \Omega_1 (I - \rho_1 \mathbf{W})^\top (I - \rho_1 \mathbf{W}) \\ &= \sigma_1^2 \left(\Omega_1 \Omega_1 - \rho_1 \Omega_1 \Omega_1 \mathbf{W}^\top - \rho_1 \Omega_1 \Omega_1 \mathbf{W} + \rho_1^2 \Omega_1 \Omega_1 \mathbf{W}^\top \mathbf{W} \right) \\ &= \sigma_1^2 \left(\Omega_1 \Omega_1 - \rho_1 \Omega_1 \Omega_1 \mathbf{W}^\top \right) + \rho_1 \left(-\sigma_1^2 \Omega_1 \Omega_1 \mathbf{W} + \sigma_1^2 \rho_1 \Omega_1 \Omega_1 \mathbf{W}^\top \mathbf{W} \right) \end{split}$$

$$(3.6)$$

Thus equation 3.5 can be rewritten as:

$$\begin{split} \boldsymbol{Z}\boldsymbol{V}_{u}\boldsymbol{Z}^{\top} &= \boldsymbol{Z} \Bigg[\sigma_{1}^{2} \begin{pmatrix} \Omega_{1}\Omega_{1} - \rho_{1}\Omega_{1}\Omega_{1}\boldsymbol{W}^{\top} & \boldsymbol{o}_{D\times DT} \\ \boldsymbol{o}_{DT\times D} & \boldsymbol{o}_{DT\times DT} \end{pmatrix} \\ &+ \rho_{1} \begin{pmatrix} -\sigma_{1}^{2}\Omega_{1}\Omega_{1}\boldsymbol{W} + \sigma_{1}^{2}\rho_{1}\Omega_{1}\Omega_{1}\boldsymbol{W}^{\top}\boldsymbol{W} & \boldsymbol{o}_{D\times DT} \\ \boldsymbol{o}_{DT\times D} & \boldsymbol{o}_{DT\times DT} \end{pmatrix} \\ &+ \sigma_{2}^{2} \begin{pmatrix} \boldsymbol{o}_{D\times D} & \boldsymbol{o}_{D\times DT} \\ \boldsymbol{o}_{DT\times D} & \Omega_{2} \end{pmatrix} \Bigg] \boldsymbol{Z}^{\top} \\ &= \Big(\boldsymbol{Z}\bar{\Omega}_{1,\sigma_{1}^{2}}\boldsymbol{Z}^{\top} & \boldsymbol{Z}\bar{\Omega}_{1,\rho_{1}}\boldsymbol{Z}^{\top} & \boldsymbol{Z}\bar{\Omega}_{2}\boldsymbol{Z}^{\top} \Big) \begin{pmatrix} \sigma_{1}^{2} \\ \rho_{1} \\ \sigma_{2}^{2} \end{pmatrix} \end{split}$$

Thus equation 3.7 can be rewritten (analogously as above) to:

$$\psi(\mathbf{r})^{\top}\mathbf{U}^{\frac{1}{2}}\mathbf{V}^{-1}\frac{\partial\mathbf{V}}{\partial\theta_{1}}\mathbf{V}^{-1}\mathbf{U}^{\frac{1}{2}}\psi(\mathbf{r}) = \mathrm{tr}\left(\mathbf{K}\mathbf{V}^{-1}\frac{\partial\mathbf{V}}{\partial\theta_{1}}(\mathbf{Z}\mathbf{V}_{u}\mathbf{Z}^{\top})^{-1}\left(\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\sigma_{1}^{2}}\mathbf{Z}^{\top}\quad\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\rho_{1}}\mathbf{Z}^{\top}\quad\mathbf{Z}\bar{\boldsymbol{\Omega}}_{2,\rho_{1}}\mathbf{Z}^{\top}\right)\right)$$

Let

$$\begin{pmatrix} \psi(\boldsymbol{r})^{\top}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{V}^{-1}\frac{\partial\boldsymbol{V}}{\partial\sigma_{1}^{2}}\boldsymbol{V}^{-1}\boldsymbol{U}^{\frac{1}{2}}\psi(\boldsymbol{r}) \\ \psi(\boldsymbol{r})^{\top}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{V}^{-1}\frac{\partial\boldsymbol{V}}{\partial\rho_{1}}\boldsymbol{V}^{-1}\boldsymbol{U}^{\frac{1}{2}}\psi(\boldsymbol{r}) \\ \psi(\boldsymbol{r})^{\top}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{V}^{-1}\frac{\partial\boldsymbol{V}}{\partial\sigma_{2}^{2}}\boldsymbol{V}^{-1}\boldsymbol{U}^{\frac{1}{2}}\psi(\boldsymbol{r}) \end{pmatrix} = \boldsymbol{\alpha}(\boldsymbol{\theta}) ,$$

then

$$\theta = \begin{pmatrix} \sigma_1^2 \\ \rho_1 \\ \sigma_2^2 \end{pmatrix} = A(\theta)^{-1} \alpha(\theta) ,$$

where

$$\begin{split} A(\theta) &= \begin{pmatrix} \text{tr}\left(\gamma(\sigma_1^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\sigma_1^2}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_1^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\rho_1}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_1^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{2}\mathbf{Z}^\top\right) \\ \text{tr}\left(\gamma(\rho_1)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\sigma_1^2}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\rho_1)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\rho_1}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\rho_1)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{2}\mathbf{Z}^\top\right) \\ \text{tr}\left(\gamma(\sigma_2^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\sigma_1^2}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_2^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{1,\rho_1}\mathbf{Z}^\top\right) & \text{tr}\left(\gamma(\sigma_2^2)\mathbf{Z}\bar{\boldsymbol{\Omega}}_{2}\mathbf{Z}^\top\right) \end{pmatrix} \end{split}$$
 and
$$\gamma(\theta_1) = K\mathbf{V}^{-1}\tfrac{\partial \mathbf{V}}{\partial \theta_1}(\mathbf{Z}\mathbf{V}_{\mathbf{u}}\mathbf{Z}^\top)^{-1}$$

3.5.2.2 More on the Fixed Point

Inspired by: Chatrchi Golshid (2012): Robust Estimation of Variance Components in Small Area Estimation, Master-Thesis, Ottawa, Ontario, Canada: p. 16ff.:

The fixed-point iterative method relies on the fixed-point theorem: "If g(x) is a continuous function for all $x \in [a;b]$, then g has a fixed point in [a;b]." This can be proven by assuming that $g(a) \ge a$ and $g(b) \le b$. Since g is continuous the intermediate value theorem guarantees that there exists a c such that g(c) = c.

Starting from equation 2.12 where $\theta = \sigma_u^2$ we can rewrite the equation such that:

$$\Phi(\theta) = \psi(\mathbf{r})^{\top} \mathbf{U}^{\frac{1}{2}} \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta} \mathbf{V}^{-1} \mathbf{U}^{\frac{1}{2}} \psi(\mathbf{r}) - \operatorname{tr} \left(K \mathbf{V}^{-1} \frac{\partial \mathbf{V}}{\partial \theta} (\mathbf{Z} \mathbf{G} \mathbf{Z}^{\top})^{-1} (\mathbf{Z} \mathbf{G} \mathbf{Z}^{\top}) \right) = 0$$
(3.7)

Note that because the matrix **R** is assumed to be known for the FH model, it can be omitted. Note that under the simple Fay-Herriot Model $\mathbf{Z}\mathbf{G}\mathbf{Z}^{\top} = \sigma_{\mathbf{u}}^{2}\mathbf{I}$, where **I** is a $(D \times D)$ identity matrix. Furthermore $\frac{\partial \mathbf{V}}{\partial \theta} = \mathbf{I}$. Thus equation 3.7 can be rewritten to:

$$\boldsymbol{\psi}(\boldsymbol{r})^{\top}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{V}^{-1}\boldsymbol{V}^{-1}\boldsymbol{U}^{\frac{1}{2}}\boldsymbol{\psi}(\boldsymbol{r}) = \operatorname{tr}\left(\boldsymbol{K}\boldsymbol{V}^{-1}\boldsymbol{G}^{-1}\boldsymbol{\sigma}_{\boldsymbol{u}}^{2}\right)$$

This can be solved for the fixed Point and is directly presented in algorithmic notation, such that:

$$\theta^{m+1} = A(\theta^{(m)})^{-1} a(\theta^{(m)})$$
,

where

$$A(\theta) = \operatorname{tr}\left(K\mathbf{V}^{-1}\mathbf{G}^{-1}\right)$$

and

$$\boldsymbol{\alpha}(\boldsymbol{\theta}) = \boldsymbol{\psi}(\boldsymbol{r})^{\top} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{V}^{-1} \boldsymbol{V}^{-1} \boldsymbol{U}^{\frac{1}{2}} \boldsymbol{\psi}(\boldsymbol{r})$$

Part II IMPLEMENTATION

IMPLEMENTATION

- Zielke (1973): *Testmatrizen mit maximaler Konditionszahl*, Computing
 - Testmatrizen für LLS Probleme.
- Weihs / Mersmann / Ligges (2014): Foundations of Statistical Algorithms, CRC
 - Chapter 3 (Varification): How to test the results of a LLS solver. Generation of Test Data
- Kennedy / Gentle (1980): Statistical Computing
 - Chapter 10 (Unconstrained Optimization and Nonlinear Regression): Basic algorithms for solving nonlinear regression problem (e.g. Newton-Raphson)
 - Chapter 11.3 (Robust Estimators): Algorithms to solve robust estimators. Only a brief description of the status quo.
- Thisted (1988): Elements of Statistical Computing
 - Chapter 4 (Nonlinear Statistical Methods): All about solving ML problems
- Altman / Gill / McDonald (2004): Numerical Issues in Statistical Computing for the Social Scientist
 - Chapter 8 (Some Details of Nonlinear Estimation): How to evaluate the numerical results of a solution (Very important!)
 - Chapter 3 (Evaluating Statistical Software): How to verify the correctness of a statistical algorithm. Not as promising as it sounds.
- Sugasawa / Kubokawa (2015): *Parametric transformed Fay–Herriot model for small area estimation*, Journal of Multivariate Analysis
 - Box-Cox und vergleichbare Transformationen für Fay-Herriot Modelle
- Alfons, Templ and Filzmoser (2010): An Object-Oriented Framework for Statistical Simulation: The R Package simFrame
- Alfons et.al. (2010): Simulation of synthetic population data for houshold surveyes with application to EU-SILC

- 4.1 SOFTWARE
- 4.2 VERIFICATION OF RESULTS
- 4.3 ACCURACY OF RESULTS
- 4.4 VALIDATION OF RESULTS
- 4.4.1 Four Steps

Section based on McCullough (2004)

Part III

RESULTS

This is the part where I will present all results.

NUMERICAL PROPERTIES

- 5.1 ACCURACY
- 5.2 STABILITY
- 5.3 SPEED OF CONVERGENCE

6.1 MODEL BASED SIMULATION STUDIES

6.1.1 The Area-Level Perspective

In this section we present some results of a simulation study. To make the results comparable to other model based simulations on area level models we begin in this section with a simulation study on area level. Thus we can discuss area level outliers which is what all the others do. Section? will then introduce then a simulation study in which we start with a unit-level population and can thus introduce both, outlying observations and areas.

To begin with we define the area level model from which we draw the data:

$$\bar{\mathbf{y}}_{i} = 100 + 1 \cdot \mathbf{x}_{i} + \mathbf{v}_{i} + \bar{\mathbf{e}}_{i}$$

- The single regressor, x, is a deterministic sequence defined as $x_i = \frac{i}{2D} + 1$ where D is the number of domains (taken from spatio temporal FH).
- The random effect, ν , is drawn from a normal distribution, i.e. $\nu_i \sim \mathcal{N}(0, \sigma_u^2)$ where σ_u^2 is defined with respect to the scenario.
- The sampling error, e, is drawn from $e_i \sim \mathcal{N}(0, \sigma_{e,i}^2)$ where $\sigma_{e,i}^2$ is an equidistant sequence from 0.8 to 1.2 with D elements.
- General characteristics: D = 100 and R = 500 being the sumber of Monte Carlo repetitions.

To illustrate the greatness of the model we investigate two different scenarios:

- 1. (o, o) This is the scenario where the Fay Herriot model holds. In this scenario $\sigma_u^2 = 1$.
- 2. (v, o) This is the scenario with area level outliers. $\sigma_u^2 = 1$ for 95 % of the areas, i.e. for $i \in \{1, \ldots, 95\}$, and $\sigma_u^2 = 20^2$ for $i \in \{96, \ldots, 100\}$.

6.1.1.1 *Estimation of the MSE*

To begin with we define the area level model from which we draw the data:

$$\tilde{y}_i = 100 + 2 \cdot x_i + u_i + e_i$$

Figure 6.1: Boxplot with Relative Root Mean Squared Error (RRMSE)

Figure 6.2: Boxplot with Relative Bias (RBIAS)

Figure 6.3: Absolute values of the estimated Mean Squared Error using the pseudo linearizatin compared to the Monte Carlo MSE

6.1.2 From Unit to Area Level Data

In this section we want to present a different perspective for simulation studies on area level models. Namely by starting from the unit level population data. This allows for a number of interesting aspects which can be investigated and explained:

- Under the Fay Herriot model we specify an area level model with heteroscedastic sampling distribution. The model does not explain what the source of heteroscedasticity is. We induce two different sources, one is the sampling size varying accross domains, and the other one are unit level outliers.
- When we begin from the unit level we may ask what the true sampling variance is; which is assumed to be known under the model. In practice it is an estimated quantity which itself, like a direct estimator of the mean, is unreliable. So it will be relevant to discuss how the Fay Herriot estimator is performing when the direct variance estimator is an additional source of uncertainty. Recent research suggests that smoothed variances should be plugged into the FH estimator. In contrast to this discussion we will argue that direct variance estimators are a viable source of information when unit level outliers are an issue.
- In the context of unit level outliers it can be intuitive to suggest
 a robust direct estimator instead of the sample mean. Hence we
 compare how the use of a median and a huber type estimator
 of the mean compete against the sampling mean.

In general our simulation setup borrows from unit level scenarios from the literature to make this exercise as convenient as possible. The basis is again a linear mixed model, this time defined on the unit population level:

$$y_{ij} = 100 + 1 \cdot x_i + v_i + e_{ij}$$

- The regressor, x_i , and random effect, v_i , are defined in the same way as for the area level scenario.
- The error term, e_{ij} , is defined as $e_{ij} \sim \mathcal{N}(0, \sigma_e^2)$ where σ_e^2 is varies across simulation scenarios.
- From this populatin model we draw samples with simple random sampling without replacement. The sample sizes are $n_i \in \{5, ..., 15\}$ and $N_i = 1000$; D is again 100.
- The sample is then aggregated using different direct estimators.
 The sample mean, the sample median and a robust direct estimator (huber m-type). Note that x_i is constant within domains.

 For the variance estimation we use the sample variance, a generalized variance function which can be considered optimal under the population model and the median absolute deviance from the median within domains.
- On area level the standard Fay Herriot model is used with different variance estimators and corresponding direct estimators and compared with the RFH.

With these settings we are interested in several different choices varying across simulation scenarios. We want to emphasise how unit and area level outliers can influence area level predictions.

- 1. (o, o) This is the scenario in which the area level model as described in section? holds, i.e. there are no outliers. Here $\sigma_e^2 = 4^2$ and $\sigma_u^2 = 1$ for all domains. However, the sampling variances $(\sigma_{e,i}^2 = \frac{\sigma_e^2}{n_i})$ derived under the unit level population model range from 1 to 3.2 for their respective sample size. $\sigma_u^2 = 1$.
- 2. (*v*, *o*) This scenario is close to the area level data generation in the previous section where we induced area level outliers. For that purpose we choose $\sigma_u^2 = 1$ for the areas where $i \in \{1, \ldots, 95\}$ and $\sigma_u^2 = 20^2$ for $i \in \{96, \ldots, 100\}$
- 3. (o, e) In this scenario unit level outliers do exist. To make the magnitude comparable to simulation studies in the literature we choose $\sigma_e^2 = 150^2$ for $i \in \{90, \dots, 95\}$.
- 4. (*v*, *e*) This scenario is the combination of 2 and 3 where we have area level and unit level outliers, however not in the same domains.

6.2 DESIGN BASED SIMULATION STUDIES

Figure 6.4: Boxplot with Relative Root Mean Squared Error (RRMSE)

Figure 6.5: Boxplot with Relative Bias (RBIAS)

Part IV

APPENDIX

- Abelson, R. P. (1995). *Statistics as Principled Argument*. New York: Taylor & Francis Group.
- Battese, G. E., R. M. Harter, and W. A. Fuller (1988). "An error component model for prediction of county crop areas using survey and satellite data." In: *Journal of the American Statistical Association* 83 (401), pp. 28–36.
- Beaumont, J. F. and L- P. Rivest (2009). "Sample Surveys: Design, Methods and Applications." In: ed. by D. Pfeffermann and C. R. Rao. Vol. 29 A. Handbook of Statistics. Elsevier. Chap. Dealing with Outliers in Survey Data, pp. 247–280.
- Bell, W. R. and E. T. Huang (2006). "Using the t-distribution to Deal with Outliers in Small Area Estimation." In: *Proceedings of Statistics Canada Symposium 2006: Methodological Issues in Measuring Population Health.*
- Chambers, R. (1986). "Outlier robust finite population estimation." In: *Journal of the American Statistical Association* 81, pp. 1063–1069.
- Chambers, R., H. Chandra, et al. (2014). "Outlier Robust Small Area Estimation." In: *Journal of the Royal Statistical Society: Series B* 76 (1), pp. 47–69.
- Chambers, R., J. Chandra, and N. Tzavidis (2011). "On bias-robust mean squared error estimation for pseudo-linear small area estimators." In: *Survey Methodology* 37 (2), pp. 153–170.
- Chen, S. and P. Lahiri (2003). "A comparison of different MSPE estimators of EBLUP for the Fay-Herriot model." In: *Proceedings of the Section on Survey Research Methods, American Statistical Association*, pp. 905–911.
- (2008). "On Mean Squared Prediction Error Estimation in Small Area Estimation Problems." In: Communications in Statistics-Theory and Methods 37.11, pp. 1792–1798.
- Clement, E. P. (2014). "Small Area Estimation with Application to Disease Mapping." In: *International Journal of Probability and Statistics* 3.1, pp. 15–22.
- Datta, G. S. (2009). "Handbook of Statistics: Inference and Analysis." In: ed. by D. Pfeffermann and C.R. Rao. Vol. 29 B. Elsevier. Chap. Model-Based Approach to Small Area Estimation, pp. 251–288.
- Datta, G. S. and P. Lahiri (1995). "Robust Hierarchical Bayes Estimation of Small Area Characteristics in the Presence of Covariates and Outliers." In: *Journal of Multivariate Analysis* 54, pp. 310–328.

- Datta, G. S. and P. Lahiri (2000). "A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems." In: *Statistica Sinica* 10, pp. 613–627.
- Datta, G. S., J. N. K. Rao, and D. D. Smith (2005). "On measuring the variability of small area estimators under a basic area level model." In: *Biometrika* 92 (1), pp. 183–196.
- Efron, B. and C. Morris (1971). "Limiting the Risk of Bayes and Empirical Bayes Estimators Part I: The Bayes Case." In: *Journal of the American Statistical Association* 66.336, pp. 807–815.
- (1972). "Limiting the Risk of Bayes and Empirical Bayes Estimators Part II: The Empirical Bayes Case." In: *Journal of the American Statistical Association* 67.337, pp. 130–139.
- Fay, R. E. and R. A. Herriot (1979). "Estimation of Income for Small Places: An Application of James-Stein Procedures to Census Data." In: *Journal of the American Statistical Association* 74 (366), pp. 269–277.
- Fellner, W. H. (1986). "Robust Estimation of Variance Components." In: *Technometrics* 28 (1), pp. 51–60.
- Ghosh, M. and J. N. K. Rao (1994). "Small Area Estimation: An Appraisal." In: *Statistical Science* 9 (1), pp. 55–93.
- Guadarrama, M., I. Molina, and J. N. K. Rao (2015). *A Comparison of Small Area Estimation Methods for Poverty Mapping*. UC3M Working Papers: Statistics and Econometrics 15-05. Universidad Carlos III de Madrid, Departamento de Estadistica.
- Hall, P. and T. Maiti (2006). "On Parametric Bootstrap Methods for Small Area Prediction." In: *Journal of the Royal Statistical Society: Series B* 68 (2), pp. 221–238.
- Henderson, C. R. (1950). "Estimation of genetic parameters." In: *Annals of Mathematical Statistics* 21 (2), pp. 309–310.
- (1975). "Best Linear Unbiased Estimation and Prediction under a Selection Model." In: *Biometrics* 31 (2), pp. 423–447.
- Horvitz, D.G. and D.J. Thompson (1952). "A generalization of sampling without replacement from a finite universe." In: *Journal of the American Statistical Association* 47, pp. 663–685.
- Jiang, J. and P. Lahiri (2006). "Mixed Model Prediction and Small Area Estimation." In: *Test* 15 (1), pp. 1–96.
- Jiang, J., P. Lahiri, and S.-M. Wan (2002). "A Unified Jackknife Theory for Empirical Best Prediction with M-Estimation." In: *The Annals of Statistics* 30 (6), pp. 1782–1810.
- Jiongo, V. D. and P. Nguimkeu (2014). Bootstrapping Mean Squared Errors of Robust Small Area Estimators. Tech. rep. URL: http:// www2.gsu.edu/~econpn/Pierre_Nguimkeu/RESEARCH_files/ bootstrap_mse_24122014u.pdf.
- Kacker, R. N. and D. A. Harville (1984). "Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed

- Linear Models." In: *Journal of the American Statistical Association* 79, pp. 853–862.
- Lehtonen, R. and A. Veijanen (2009). "Sample Surveys: Inference and Analysis." In: ed. by D. Pfeffermann and C.R. Rao. Vol. 29 B. Handbook of Statistics. Elsevier. Chap. Design-based Methods of Estimation for Domains and Small Areas, pp. 219–249.
- Lohr, S. L. and J. N. K. Rao (2009). "Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models." In: *Biometrika*, pp. 1–12.
- Maiti, T., H. Ren, and S. Sinha (2014). "Prediction Error of Small Area Predictors Shrinking Both Means and Variances." In: *Scandinavian Journal of Statistics* 41.3, pp. 775–790.
- Marhuenda, Y., I. Molina, and D. Morales (2013). "Small area estimation with spatio-temporal Fay-Herriot models." In: *Computational Statistics and Data Analysis* 58, pp. 308–325.
- McCullough, B. D. (2004). "Numerical Issues in Statistical Computing for the Social Scientist." In: ed. by D. J. Balding, N. A. C. Cressie, and N. I. Fisher. John Wiley & Sons, Inc. Chap. Some Details of Nonlinear Estimation, pp. 199–218.
- Pfeffermann, D. (2002). "Small Area Estimation New Developments and Directions." In: *International Statistical Review* 70 (1), pp. 125–143.
- (2013). "New Important Developments in Small Area Estimation."
 In: Statistical Science 28 (1), pp. 40–68.
- Prasad, N. G. N. and J. N. K. Rao (1990). "The Estimation of the Mean Squared Error of Small Area Estimators." In: *Journal of the American Statistical Association* 85 (409), pp. 163–171.
- Rao, J. N. K. (1999). "Some recent advances in model-based small area estimation." In: *Survey Methodology* 25, pp. 175–186.
- (2003). *Small Area Estimation*. New York: Wiley.
- Rao, J. N. K. and I. Molina (2015). *Small Area Estimation*. New York: Wiley.
- Rivest, L.-P. and N. Vandal (2003). "Mean Squared Error Estimation for Small Areas when the Small Area Variances are Estimated." In: *Proceedings of the International Conference on Recent Advances in Survey Sampling*. Laboratory for Research in Statistics and Probability, Carleton University Ottawa, ON, Canada.
- Särndal, C.-E., B. Swensson, and J.H. Wretman (1992). *Model Assisted Survey Sampling*. New York: Springer.
- Schmid, T. (2012). "Spatial Robust Small Area Estimation applied on Business Data." PhD thesis. University of Trier.
- Searle, S. R. (1971). *Linear Models*. New York: Wiley.
- Sinha, S. K. and J. N. K. Rao (2009). "Robust Small Area Estimation." In: *The Canadian Journal of Statistics* 37 (3), pp. 381–399.

- Tzavidis, N., S. Marchetti, and R. Chambers (2010). "Robust estimation of small area means and quantiles." In: *Australian and New Zealand Journal of Statistics* 52 (2), pp. 167–186.
- Wang, J. and W. A. Fuller (2003). "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances." In: *Journal of the American Statistical Association* 98 (463), pp. 716–723.
- Warnholz, S. and T. Schmid (2015). saeSim: Simulation Tools for Small Area Estimation. R package version 0.7.0. URL: http://CRAN.R-project.org/package=saeSim.
- Wolter, K. (2007). *Introduction to Variance Estimation*. Springer Science & Business Media.
- You, Y. and B. Chapman (2006). "Small Area Estimation Using Area Level Models and Estimated Sampling Variances." In: *Survey Methodology* 32.1, pp. 97–103.