Conclusion

Triplet-Quadruplet Fermionic Dark Matter

Zhao-Huan Yu (余钊焕)

ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, the University of Melbourne

Based on Tim Tait, ZHY, arXiv:1601.01354, JHEP

Introduction

Sun Yat-Sen University Guangzhou, August 20, 2016

Dark Matter in the Universe

Dark matter (DM) makes up most of the matter component in the Universe, as suggested by astrophysical and cosmological observations

DM Relic Abundance

If DM particles (χ) were thermally produced in the early Universe, their **relic abundance** would be determined by the annihilation cross section $\langle \sigma_{\rm ann} \nu \rangle$:

$$\Omega_{\chi} h^2 \simeq \frac{3 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle}$$

Observation value $\Omega_{\gamma} h^2 \simeq 0.1$

$$\Rightarrow \langle \sigma_{\rm app} v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$$

DM Relic Abundance

If DM particles (χ) were thermally produced in the early Universe, their **relic abundance** would be determined by the annihilation cross section $\langle \sigma_{\rm ann} \nu \rangle$:

$$\Omega_\chi h^2 \simeq \frac{3\times 10^{-27}~{\rm cm}^3~{\rm s}^{-1}}{\langle \sigma_{\rm ann} \nu \rangle}$$

Observation value $\Omega_{\chi} h^2 \simeq 0.1$

$$\Rightarrow$$
 $\langle \sigma_{\rm ann} v \rangle \simeq 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

Assuming the annihilation process consists of two weak interaction vertices with the $SU(2)_L$ gauge coupling $g \simeq 0.64$, for $m_\chi \sim \mathcal{O}(\text{TeV})$ we have

$$\langle \sigma_{\rm ann} \nu \rangle \sim \frac{g^4}{16\pi^2 m_\chi^2} \sim \mathcal{O}(10^{-26}) \text{ cm}^3 \text{ s}^{-1}$$

⇒ A very attractive class of DM candidates:

Weakly interacting massive particles (WIMPs)

 Introduction
 Model Details
 Mass corrections
 Constraints
 Conclusion

 ○○●○
 ○○○○
 ○○○○
 ○○○○
 ○○○○

WIMP Models

WIMPs are typically introduced in the extensions of the Standard Model (SM) aiming at solving the $gauge\ hierarchy\ problem$

- Supersymmetry (SUSY): the lightest neutralino $(\tilde{\chi}_1^0)$
- Universal extra dimensions: the lightest KK particle $(B^{(1)}, W^{3(1)}, \text{ or } v^{(1)})$

 Model Details
 Mass corrections
 Constraints
 Conclusion

 00000
 00000000
 00

WIMP Models

Introduction

0000

WIMPs are typically introduced in the extensions of the Standard Model (SM) aiming at solving the **gauge hierarchy problem**

- Supersymmetry (SUSY): the lightest neutralino $(\tilde{\chi}_1^0)$
- Universal extra dimensions: the lightest KK particle $(B^{(1)}, W^{3(1)}, \text{ or } v^{(1)})$

For DM phenomenology, it is quite natural to construct WIMP models by extending the SM with a dark sector consisting of $SU(2)_L$ multiplets, whose neutral components could provide a viable DM candidate

- 1 multiplet in a high-dimensional representation:
 minimal DM model [Cirelli et al., hep-ph/0512090]
 (DM stability is explained by an accidental symmetry)
- ullet 2 types of multiplets: an artificial Z_2 symmetry is usually needed
 - Singlet-doublet DM model [Mahbubani & Senatore, hep-ph/0510064; D'Eramo, 0705.4493; Cohen et al., 1109.2604]
 - Doublet-triplet DM model [Dedes & Karamitros, 1403.7744]
 -

Conclusion

Connection to SUSY models

The above models with $SU(2)_L$ multiplets can be understood as simplifications of more complete models, but the model parameters are much more free

Singlet-doublet fermionic DM model:

• Bino-higgsino sector in the MSSM

$$\mathcal{L}_{\text{mass}} \supset -\frac{1}{2} M_1 \tilde{B} \tilde{B} - \mu (\tilde{H}_u^+ \tilde{H}_d^- - \tilde{H}_u^0 \tilde{H}_d^0) + \frac{g' \nu_d}{\sqrt{2}} \tilde{B} \tilde{H}_d^0 - \frac{g' \nu_u}{\sqrt{2}} \tilde{B} \tilde{H}_u^0 + \text{h.c.}$$

• Singlino-higgsino sector in the NMSSM

$$\mathcal{L}_{\text{mass}} \supset -\kappa \nu_s \tilde{S} \tilde{S} - \lambda \nu_s (\tilde{H}_u^+ \tilde{H}_d^- - \tilde{H}_u^0 \tilde{H}_d^0) + \lambda \nu_u \tilde{S} \tilde{H}_d^0 + \lambda \nu_d \tilde{S} \tilde{H}_u^0 + \text{h.c.}$$

Doublet-triplet fermionic DM model: higgsino-wino sector in the MSSM

$$\mathcal{L}_{\text{mass}} \supset -\frac{1}{2} M_2 \tilde{W}^0 \tilde{W}^0 - M_2 \tilde{W}^+ \tilde{W}^- - \mu (\tilde{H}_u^+ \tilde{H}_d^- - \tilde{H}_u^0 \tilde{H}_d^0) - \frac{g v_d}{\sqrt{2}} \tilde{W}^0 \tilde{H}_d^0 + \frac{g v_u}{\sqrt{2}} \tilde{W}^0 \tilde{H}_u^0 - g v_u \tilde{H}_u^+ \tilde{W}^- - g v_d \tilde{W}^+ \tilde{H}_d^- + \text{h.c.}$$

Triplet-quadruplet fermionic DM model: no analogue in usual SUSY models

Triplet-Quadruplet DM Model

Introduce left-handed Weyl fermions in the dark sector:

$$T = \begin{pmatrix} T^+ \\ T^0 \\ T^- \end{pmatrix} : (\mathbf{3}, 0), \quad Q_1 = \begin{pmatrix} Q_1^+ \\ Q_1^0 \\ Q_1^- \\ Q_1^- \end{pmatrix} : \left(\mathbf{4}, -\frac{1}{2}\right), \quad Q_2 = \begin{pmatrix} Q_2^{++} \\ Q_2^+ \\ Q_2^0 \\ Q_2^- \end{pmatrix} : \left(\mathbf{4}, +\frac{1}{2}\right)$$

Covariant kinetic and mass terms:

$$\mathcal{L}_{\mathrm{T}} = i T^{\dagger} \bar{\sigma}^{\mu} D_{\mu} T - \frac{1}{2} (m_{T} T T + \text{h.c.})$$

$$\mathcal{L}_{Q} = iQ_{1}^{\dagger}\bar{\sigma}^{\mu}D_{\mu}Q_{1} + iQ_{2}^{\dagger}\bar{\sigma}^{\mu}D_{\mu}Q_{2} - (m_{Q}Q_{1}Q_{2} + \text{h.c.})$$

 $\mathcal{L}_{\text{HTO}} = \mathbf{y}_{1} \varepsilon_{il} (Q_{1})_{i}^{jk} T_{\nu}^{i} H^{l} - \mathbf{y}_{2} (Q_{2})_{i}^{jk} T_{\nu}^{i} H_{\nu}^{\dagger} + \text{h.c.}$ Yukawa couplings:

 Z_2 symmetry: odd for dark sector fermions, even for SM particles

forbids operators like TLH, $Te^cH^{\dagger}H^{\dagger}$, $Q_1L^{\dagger}HH^{\dagger}$, Q_2LHH^{\dagger} , ...

Conclusion

State Mixing

$$\begin{split} \mathcal{L}_{\text{mass}} &= -m_Q Q_1^{--} Q_2^{++} - \frac{1}{2} (T^0, Q_1^0, Q_2^0) \mathcal{M}_N \begin{pmatrix} T^0 \\ Q_1^0 \\ Q_2^0 \end{pmatrix} - (T^-, Q_1^-, Q_2^-) \mathcal{M}_C \begin{pmatrix} T^+ \\ Q_1^+ \\ Q_2^+ \end{pmatrix} + \text{h.c.} \\ &= -m_Q \chi^{--} \chi^{++} - \frac{1}{2} \sum_{i=1}^3 m_{\chi_i^0} \chi_i^0 \chi_i^0 - \sum_{i=1}^3 m_{\chi_i^\pm} \chi_i^- \chi_i^+ + \text{h.c.} \end{split}$$

$$\mathcal{M}_{N} = \left(\begin{array}{ccc} m_{T} & \frac{1}{\sqrt{3}}y_{1}\nu & -\frac{1}{\sqrt{3}}y_{2}\nu \\ \frac{1}{\sqrt{3}}y_{1}\nu & 0 & m_{Q} \\ -\frac{1}{\sqrt{3}}y_{2}\nu & m_{Q} & 0 \end{array} \right), \quad \mathcal{M}_{C} = \left(\begin{array}{ccc} m_{T} & \frac{1}{\sqrt{2}}y_{1}\nu & -\frac{1}{\sqrt{6}}y_{2}\nu \\ -\frac{1}{\sqrt{6}}y_{1}\nu & 0 & -m_{Q} \\ \frac{1}{\sqrt{2}}y_{2}\nu & -m_{Q} & 0 \end{array} \right)$$

$$\begin{pmatrix} T^{0} \\ Q_{1}^{0} \\ Q_{2}^{0} \end{pmatrix} = \mathcal{N} \begin{pmatrix} \chi_{1}^{0} \\ \chi_{2}^{0} \\ \chi_{3}^{0} \end{pmatrix}, \quad \begin{pmatrix} T^{+} \\ Q_{1}^{+} \\ Q_{2}^{+} \end{pmatrix} = \mathcal{C}_{L} \begin{pmatrix} \chi_{1}^{+} \\ \chi_{2}^{+} \\ \chi_{3}^{+} \end{pmatrix}, \quad \begin{pmatrix} T^{-} \\ Q_{1}^{-} \\ Q_{2}^{-} \end{pmatrix} = \mathcal{C}_{R} \begin{pmatrix} \chi_{1}^{-} \\ \chi_{2}^{-} \\ \chi_{3}^{-} \end{pmatrix}$$

$$\chi^{--} \equiv Q_{1}^{--}, \quad \chi^{++} \equiv Q_{2}^{++}$$

3 Majorana fermions, 3 singly charged fermions, 1 doubly charged fermion χ^0_1 can be an excellent DM candidate if it is the lightest dark sector fermion

$y_1 = y_2$: a Custodial Global Symmetry

When the two Yukawa couplings are equal $(y = y_1 = y_2)$, the Lagrangians have an $SU(2)_L \times SU(2)_R$ invariant form:

$$\begin{split} \mathcal{L}_{\mathbf{Q}} + \mathcal{L}_{\mathbf{H}\mathbf{T}\mathbf{Q}} &= i(\mathbf{Q}^{\dagger A})_{ij}^{k} \bar{\sigma}^{\mu} D_{\mu}(\mathbf{Q}_{A})_{k}^{ij} - \frac{1}{2} [m_{\mathbf{Q}} \varepsilon^{AB} \varepsilon_{il} (\mathbf{Q}_{A})_{k}^{ij} (\mathbf{Q}_{B})_{j}^{lk} + \text{h.c.}] \\ &+ [y \varepsilon^{AB} (\mathbf{Q}_{A})_{i}^{jk} T_{k}^{i} (\mathbf{H}_{B})_{j} + \text{h.c.}] \\ SU(2)_{R} \text{ doublets: } (\mathbf{Q}_{A})_{k}^{ij} &= \begin{pmatrix} (Q_{1})_{k}^{ij} \\ (Q_{2})_{k}^{ij} \end{pmatrix}, \ (\mathbf{H}_{A})_{i} = \begin{pmatrix} H_{i}^{\dagger} \\ H_{i} \end{pmatrix} \end{split}$$

This symmetry is explicitly broken by the $U(1)_Y$ gauge symmetry

There are still some important properties under this approximate symmetry

$y_1 = y_2$: a Custodial Global Symmetry

In the custodial symmetry limit, each of the dark sector neutral fermions is **exactly degenerate in mass** with a singly charged fermion at the LO. Mass corrections at the NLO are required to check if $m_{\gamma_i^0} < m_{\gamma^\pm}, m_{\gamma^{\pm\pm}}$.

Conclusion

$y_1 = y_2$: a Custodial Global Symmetry

In the custodial symmetry limit, when $m_O < m_T$, we have $\chi_1^0 = (Q_1^0 + Q_2^0)/\sqrt{2}$, which leads to vanishing χ_1^0 couplings to h and Z at the tree level. As a result, χ_1^0 cannot interacts with nuclei at the LO and could easily escape from current DM direct detection bounds.

 $y_1 = 1$ 0.05 0.00 $9z_{\chi_1^0\chi_1^0}$ -0.05 $m_{\Omega} = 400 \text{ GeV}$ -0.10 $m_{T} = 200 \text{ GeV}$ $n_0 = 200 \text{ GeV}$ $m_{T} = 400 \text{ GeV}$ -0.15-1.0 -0.5 0.5 y_2 / y_1

 $Z\chi_1^0\chi_1^0$ coupling

600

500

300 Mass

200

100

(GeV) 400 m,0

-1.5 -1.0 -0.50.0 0.5 1.0 1.5

m_x

LO, $m_O = 400 \text{ GeV}$, $m_T = 200 \text{ GeV}$, $y_4 = 1$

LO Mass Spectrum: $m_{\chi_i^0} \simeq m_{\chi_i^{\pm}}$ in Any Cases

LO, $m_O = 200 \text{ GeV}$, $m_T = 400 \text{ GeV}$, $y_1 = 1$

 $m_{\chi_{1}^{\pm}} - m_{\chi_{1}^{0}}$

m₂₂ – m₂₀

 y_2

-1.5 -1.0 -0.5 0.0 0.5 1.0

 $(m_O < m_T \text{ case})$

-10

1.5 2.0

Constraints

Introduction

One-loop corrections to an $SU(2)_L$ multiplet from **electroweak gauge boson loops** drive a charged component **heavier** than the neutral component (bv $\sim O^2 \cdot 170$ MeV for a multiplet much heavier than Z with Y = 0).

[Feng et al., hep-ph/9904250; Cirelli et al., hep-ph/0512090; Hill & Solon, 1111.0016]

Introduction

One-loop corrections to an $SU(2)_L$ multiplet from electroweak gauge boson loops drive a charged component heavier than the neutral component (by $\sim Q^2 \cdot 170$ MeV for a multiplet much heavier than Z with Y = 0).

[Feng et al., hep-ph/9904250; Cirelli et al., hep-ph/0512090; Hill & Solon, 1111.0016]

There are mixings among T, Q_1 , and Q_2 , and corrections from the Higgs sector due to the HTQ Yukawa couplings. The situation is more complicated.

12 / 24

Mass Corrections at the NLO

In the custodial symmetry limit, we always have $m_{\chi_1^0} < m_{\chi_1^{\pm}}$ at the NLO and hence χ_1^0 is stable as required for a DM candidate.

Mass Corrections at the NLO

Beyond the custodial symmetry limit:

$$m_O < m_T$$
 case

$$m_T < m_O$$
 case

14 / 24

Mass Corrections at the NLO

Beyond the custodial symmetry limit:

When y_1 and y_2 have opposite signs, we may have $m_{\chi_1^\pm} < m_{\chi_1^0}$ at the NLO and χ_1^0 is no longer a viable DM candidate because it can decay.

Relic Abundance

In this model, we always have the mass degeneracy $m_{\chi_1^\pm} \simeq m_{\chi_1^0}$. Besides,

$$\begin{array}{ll} m_Q < m_T & \Rightarrow & \text{maybe } m_{\chi^{\pm\pm}} \simeq m_{\chi^0_1} \\ \\ |y_{1,2} \nu| \ll m_Q < m_T & \Rightarrow & m_{\chi^0_2} \simeq m_{\chi^{\pm}_2} \simeq m_{\chi^0_1} \end{array}$$

These dark sector fermions, with close masses and comparable interaction strengths, basically decoupled at the same time in the early Universe.

Coannihilation processes among them significantly affected their abundances.

After freeze-out, χ_1^{\pm} , $\chi^{\pm\pm}$, χ_2^{0} , and χ_2^{\pm} decayed into χ_1^{0} and contributed to the DM relic abundance.

 $\texttt{FeynRules} \to \texttt{MadGraph} \to \texttt{MadDM}\text{:}$

includes all annihilation and coannihilation channels

Observed DM abundance $\Omega h^2 = 0.1186 \iff m_{r_1^0} \sim 2.4 \text{ TeV}$

Electroweak Oblique Parameters

Gauge interactions of the triplet and quadruplets would affect the electroweak oblique parameters [Peskin & Takeuchi, '90, '92]

$$S = \frac{16\pi c_W^2 s_W^2}{e^2} \left[\Pi'_{ZZ}(0) - \frac{c_W^2 - s_W^2}{c_W s_W} \Pi'_{ZA}(0) - \Pi'_{AA}(0) \right]$$

$$T = \frac{4\pi}{e^2} \left[\frac{\Pi_{WW}(0)}{m_W^2} - \frac{\Pi_{ZZ}(0)}{m_Z^2} \right]$$

$$U = \frac{16\pi s_W^2}{e^2} \left[\Pi'_{WW}(0) - c_W^2 \Pi'_{ZZ}(0) - 2c_W s_W \Pi'_{ZA}(0) - s_W^2 \Pi'_{AA}(0) \right]$$

The Standard Model predicts S = T = U = 0.

Electroweak Oblique Parameters

A global fit based on the measurements of electroweak precision observables:

[Gfitter Group, 1407,3792]

Fixed
$$U = 0 \rightarrow S = 0.06 \pm 0.09$$
, $T = 0.10 \pm 0.07$, $\rho_{ST} = +0.91$

Free
$$U \rightarrow S=0.05\pm0.11,\ T=0.09\pm0.13,\ U=0.01\pm0.11$$

$$\rho_{ST}=+0.90,\ \rho_{SU}=-0.59,\ \rho_{TU}=-0.83$$

Electroweak Oblique Parameters

Direct Detection

$$\begin{split} \mathcal{L} \supset & \frac{1}{2} g_{h\chi_1^0\chi_1^0} h \bar{\chi}_1^0 \chi_1^0 + \frac{1}{2} g_{Z\chi_1^0\chi_1^0} Z_\mu \bar{\chi}_1^0 \gamma^\mu \gamma_5 \chi_1^0 \\ g_{h\chi_1^0\chi_1^0} = & -\frac{2}{\sqrt{3}} (y_1 \mathcal{N}_{21} - y_2 \mathcal{N}_{31}) \mathcal{N}_{11} \\ g_{Z\chi_1^0\chi_1^0} = & \frac{g}{2c_W} (|\mathcal{N}_{31}|^2 - |\mathcal{N}_{21}|^2) \end{split}$$

For $m_O < m_T$ in the custodial symmetry limit, we have $\mathcal{N}_{11} = 0$ and $|\mathcal{N}_{31}| = |\mathcal{N}_{21}|$, and both $g_{h\chi_1^0\chi_1^0}$ and $g_{Z\chi_1^0\chi_1^0}$ vanish

Current direct detection experiments are much more sensitive to the SI DM-nucleus scatterings than the SD scatterings

The exclusion limit on the SI cross section from the LUX experiment [1310.8214] is used to constrain the model

Indirect Detection

Indirect detection searches for products from nonrelativistic DM annihilations

Suppressions on $\chi_1^0 \chi_1^0$ annihilations into SM particles

- $\chi_1^0 \chi_1^0 \to Z^* \to f \bar{f}$: helicity suppression in s wave $(\langle \sigma v \rangle \propto m_f^2/m_{\nu^0}^2)$
- $\chi_1^0 \chi_1^0 \to h^* \to f\bar{f}$: p-wave suppression $(\langle \sigma v \rangle \propto v^2)$
- $\chi_1^0 \chi_1^0 \to hh$: p-wave suppression $(\langle \sigma v \rangle \propto v^2)$

The cross section of $\chi_1^0 \chi_1^0 \to W^+ W^-$ is typically larger than those of $\chi_1^0 \chi_1^0 \rightarrow ZZ$, Zh, $t\bar{t}$ by at least 1 to 2 orders of magnitude

The upper limit on the annihilation cross section into W^+W^- given by **Fermi-LAT** 6-year γ -ray observations of dwarf galaxies [1503.02641] is used to constrain the model

У1

У1

Conclusion

- We investigate a triplet-quadruplet WIMP model, whose dark sector involves 3 Majorana fermions, 3 singly charged fermions, and 1 doubly charged fermion.
- ② The triplet and quadruplets can interact with the SM Higgs doublet through two Yukawa couplings, whose equality leads to an approximate custodial symmetry that would make the DM candidate χ_1^0 easily escaping from direct searches.
- **1** There are mass degeneracies among dark sector fermions. **One-loop mass** corrections are calculated to check if χ_1^0 can be stable.
- The observed relic abundance suggests $m_{\chi_1^0} \sim 2.4$ TeV. Phenomenological constraints from EW oblique parameters and direct and indirect detection experiments are also considered.

 Model Details
 Mass corrections
 Constraints
 Conclusion

 ○○○○
 ○○○○
 ○○○○
 ○●

Conclusion

Introduction

There may be extra constraints from 8 TeV LHC results, such as h → γγ measurements, monojet searches, and direct searches for exotic charged particles. But it is unlikely that they could give more stringent constraints than the Fermi-I AT bound.

 Model Details
 Mass corrections
 Constraints
 Conclusion

 ○○○○
 ○○○○
 ○○○○
 ○●

Conclusion

Introduction

There may be extra constraints from 8 TeV LHC results, such as h → γγ measurements, monojet searches, and direct searches for exotic charged particles. But it is unlikely that they could give more stringent constraints than the Fermi-LAT bound.

Thanks for your attention!