- A sequência de eventos é interpretada de acordo com um **relógio** (tempo de simulação) que define os instantes da ocorrência dos eventos.
- A aleatoriedade para imitar a vida real é implementada através do uso de números aleatórios
- Assume-se que o primeiro elemento (cliente) chega no instante 0 (do relógio). Isto dispara o relógio.
- O segundo tempo de interesse é o tempo de serviço.

Tempos entre chegadas	Probabilidade
(minutos)	
1	0,125
2	0,125
3	0,125
4	0,125
5	0,125
6	0,125
7	0,125
8	0,125

Tempo de Serviço (minutos)	Probabilidade
1	0,10
2	0,20
3	0,30
4	0,25
5	0,10
6	0,05

Clientes	Aleatorio 1	TEC	Aleatorio2	TS
		(minutos)		(minu tos)
1	_	-	84	4
2	913	8	10	1
ŝ	<i>727</i>	6	74	4
4	1 15	1	53	3
5	948	8	17	2
ϵ	309	3	79	4
7	922	8	91	5
8	<i>752</i>	7	67	4
9	353	2	89	5
10	302	3	38	3
11	109	1	32	3
12	93	1	94	5
13	607	5	79	4
14	738	6	5	1
15	359	3	79	5
16	888	8	84	4
17	7 106	1	52	3
18	3 212	2	55	3
19	493	4	30	2
20	535	5	50	3

- Da simulação podemos encontrar:
 - O tempo médio de espera para os clientes:
 Tempo médio de espera = <u>Tempo total que os clientes esperam na</u> fila (minutos) = 56 = 2,8 minutos (minutos/cliente)
 - A probabilidade que o cliente tem de esperar na fila:
 Probabilidade (espera) = Número de clientes que ficam na fila de espera = 13 = 0,65 do número total de clientes
 - A proporção de tempo disponível do servidor:
 Ociosidade = <u>Tempo tolal em serviço serviço</u> = <u>18 min</u>
 = 0,21 disponível Tempo total de simulação (86 min)

Experimento:

	Numero	Tempo entre	Numero	Tempo de	Hora	Hora	Hora	Tempo	Tempo no
Cliente	aleat. 1	chegadas	aleat. 2	atendim.	chegada	atedim.	saida	na Fila	Sistema
1									
2									
3									
4									
5									

Comparação com a solução analítica

– Prob. sistema ocupado
$$\rho = \frac{\lambda}{\mu}$$

– Prob. Sistema ocioso
$$P_0 = 1 - \frac{\lambda}{\mu}$$

– Tempo médio de espera na fila $W_q = \frac{\lambda}{\mu(\mu - \lambda)}$

Das tabelas de tempos Tempo médio entre chegadas

$$= \sum t.p_t$$

$$=1x0,125 + 2x0,125 + 3x0,125$$

$$+4x0,125 + 5x0,125 + 6x0,125$$

$$+7x0,125 + 8x0,125$$

$$= 4,5 \min$$

Tempos entre	
chegadas	Probabilidade
(minutos)	
1	0,125
2	0,125
3	0,125
4	0,125
5	0,125
6	0,125
7	0,125
8	0,125

Tempo médio de
atendimento

$$= \sum t.p_t$$

$$=1x0,10 + 2x0,20 + 3x0,30$$

$$+4x0,25 + 5x0,10 + 6x0,05$$

$$= 3,2 \min$$

Probabilidade
0,10
0,20
0,30
0,25
0,10
0,05
•

- As tabelas nos fornecem os tempos (minutos por cliente)
- Mas
 - $-\lambda = Taxa$ de chegada (clientes por minuto)
 - $-\mu = Taxa$ de atendimento (clientes por minuto)
- Assim
 - $-\lambda = 1/4,5 = 0.22$ clientes/min = 13,3 clientes/h
 - $-\mu = 1/3,2 = 0,31$ clientes/nim = 18,7 clientes/h

• E

$$\rho = 13,3/18,7 = 0,71$$

$$Wq = \underline{13,3} = 0,13$$

$$18,7.(18,7-13,3)$$

Exemplo 4 – Fila com dois atendentes

Tempo entre chegadas	Probabilidade	Probabilidade acum.	Etiquetas
1	0,25	0,25	01-25
2	0,40	0,65	26-65
3	0,20	0,85	66-85
4	0,15	1,00	86-100

João

Tempo de serviço	Probabilidade	Probabilidade acum.	Etiquetas
2	0,30	0,30	01-30
3	0,28	0,58	31-58
4	0,25	0,83	59-83
5	0,17	1,00	84-100

Jo<u>sé</u>

Tempo de serviço	Probabilidade	Probabilidade acum.	Etiquetas
3	0,35	0,35	01-35
4	0,25	0,60	36-60
5	0,20	0,80	61-80
6	0,20	1,00	81-100