Redes de Datos

Direccionamiento y Enrutamiento

Objectives

Network Layer Protocols

- Describe the purpose of the network layer in data communication.
- Explain why the IPv4 protocol requires other layers to provide reliability.
- Explain the role of the major header fields in the IPv4 and IPv6 packet.

Routing

- Explain how a host device uses routing tables to direct packets to itself, a local destination, or a default gateway.
- Compare a host routing table to a routing table in a router.

Addressing
Subnetting & VLSM
Supernetting

Network Layer in Communications

- The Network Layer
 - End to End Transport processes operations
 - Addressing end devices
 - Encapsulation
 - Routing
 - Fragmentation
 - QoS
 - Network Layer Protocols
 - **IPV**
 - IP/v6

Network layer protocols forward transport layer PDUs between hosts.

Characteristics of the IP Protocol

- IP Connectionless
 - Sender doesn't know if the receiver is listening, or the message arrived on time.
 - Receiver doesn't know data is coming.
 - IP Best Effort Delivery
 - No guarantees of delivery are made.
 - IP Media Independent
 - IP can travel over different types of media.
 - Encapsulating IP
 - Segments are encapsulated into IP packets for transmission.
 - The network layer adds a header so packets can be routed to the destination.

IPv4 Packet

■ IPv4 Packet Header

- Version = 0100
- DS = Packet Priority
- TTL = Limits life of Packet
- Protocol = Upper layer protocol such as TCP
- Source IP Address = source of packet
- Destination IP Address = destination of packet

IPv6 Packet

- Limitations of IPv4
 - IP address depletion
 - Internet routing table expansion
 - Lack of end-to-end connectivity
- Introducing IPv6
 - Increased address space
 - Improved packet handling
 - Eliminates the need for NAT
- EncapsulatingIPv6
 - Simplified header format
 - No checksum process requirement
 - More efficient Options Header mechanism
 - Flow Label field makes it more efficient.

IPv6 Packet (Cont.)

► IPv6 Packet Header

- Version = 0110
- Traffic Class = Priority
- Flow Label = same flow will receive same handling
- Payload Length= same as totallength
- Next Header = Layer 4 Protocol
- Hop Limit = Replaces TTL field

Routing

How a Host Routes

- Host Forwarding Decision
 - Three types of destination: itself, local host, remote host.
- Default Gateway
 - Routes traffic to other networks
 - Has a local IP address in the same address range as other hosts on the network
 - Can take data in and forward data out
- Using the Default Gateway
 - Hosts will use the default gateway when sending packets to remote networks.
- Host Routing Tables
 - yse the **netstat** -r command to display the

host routing table on a Windows machine.

A: 192.168.10 10

B: 192.168.10 20

misma red --> entrega directa A: 192.168.10.10 G: 200.20.100.45

> redes diferentes ---> entrega indirecta

R1 Rn extaer la ip destino consulta a su tabla enruta forwarding

Routing

How a Host Routes (Cont.)

IPv4 Routing Table for PC1

output omitted>				
IPv4 Route Table				
Active Routes:				
Network Destinatio	n Netmask	Gateway	Interface	Metri
0.0.0.0	0.0.0.0	192.168.10.1	192.168.10.10	2
127.0.0.0	255.0.0.0	On-link	127.0.0.1	30
127.0.0.1	255.255.255.255	On-link	127.0.0.1	30
127.255.255.255	255.255.255.255	On-link	127.0.0.1	30
192,168,10.0	255.255.255.0	On-link	192.168.10.10	28
192.168.10.10	255.255.255.255	On-link	192.168.10.10	28
192.168.10.255	255.255.255.255	On-link	192,168,10,10	28
224.0.0.0	240.0.0.0	On-link	127.0.0.1	30
224.0.0.0	240.0.0.0	On-link	192,168,10,10	28
255.255.255.255	255.255.255.255	On-link	127.0.0.1	30
255.255.255.255	255.255.255.255	On-link	192.168.10.10	28

How a Host Routes

Router Routing Tables

- Router Packet Forwarding Decision
 - Routers and hosts forward packets in a similar fashion.
 - The main difference is that routers have more interfaces while hosts often have only one.
 - Devices on directly connected networks can be reached directly.
 - Devices on remote networks are reached through gateway.
- IPv4 Router Routing Table
 - The router routing table stores network routes the router knows about.
 - Use the show ip route command to display the routing table on a Cisco router.
 - The router routing table also has information on: how the route was learned, its trustworthiness and rating.
 - It also contains which interface to use to reach that specific destination.
- pirectly Connected Routing Table Entries
 - C Identifies a directly-connected network, automatically created when an interface is configured with an IP address and activated.
 - L Identifies that this is a local interface. This is the IPv4 address of the interface on the router.
 - Remote Network Routing Table Entries
 - Connected to other routers
 - Next-Hop Address
 - Next router in path

How a Host Routes

Router Routing Tables (Cont.)

- Remote Network
 Routing Table Entries
 - Remote destinations can't be reached directly.
 - Remote routes contain the address of the intermediate network device to be used to reach the destination.

Next-Hop Address

Next-Hop address is the address of the intermediate device used to reach a specific remote destination.

Router Routing Tables (Cont.)

Binary and Decimal Conversion

IPv4 Addresses

- consists of a string of 32 bits, divided into four sections called octets.
- Each octet contains 8 bits (or 1 byte) separated with a dot.
- Conversion between Binary to Decimal
 - Use the chart to help with conversion

192	168	٠	10	·	10
11000000	10101000		00001010		00001010

192.168.10.10 is an IP address that is assigned to a computer.

Positional Value	128	64	32	16	8	4	2	1
Binary number								
Calculate	x 128	x 64	x 32	x 16	1X 8	x 4	x 2	1 X 1
Add them up								
Result								

decimal --> hexadecimal

7 8

E5 --> decimal

1110 0101 = 229

IPv4 Address Structure

- Network and Host Portions
- The Subnet Mask
- Logical AND
 - What is the network address for graphics?
- Prefix Length
 - What is the prefix length for the graphics?
 - Network, Host, and Broadcast Adgresses
 - Network Address?
 - Range of Valid Hosts?
 - Broadcast Address?

IPv4 Unicast, Broadcast, and Multicast

172.16.4.2

224.10.10.5

- IPv4 Addressing Assignment to a Host
 - Static Type in manually
 - Dynamic Dynamic Host Configuration Protocol (DHCP)
- IPv4 Communication
 - Unicast send packets from one host to an individual host
 - Broadcast send packets from one host to all the hosts in the network
 - Multicast send a packet from one host to a selected group of hosts in the same or different network
 - Which types of communication are the graphics on the right?

Types of IPv4 Addresses

- Public and Private IPv4 Addresses
 - Private addresses are not routed over the Internet
 - Private Addresses:
 - **►** /10.0.0.0/8 or 10.0.0.0 to 10.255.255.255
 - ► 172.16.0.0 /12 or 172.16.0.0 to 172.31.255.255
 - 192.168.0.0 /16 or 192.168.0.0 to 192.168.255.255
 - Special User IPv4 Addresses
 - Loopbøck addresses
 - ▶ 1/27.0.0.0 /8 or 127.0.0.1 to 127.255.255.254
 - Link-Local addresses or Automatic Private IP Addressing (APIPA) addresses
 - ► 169.254.0.0 /16 or 169.254.0.1 to 169.254.255.254
 - → TEST-NET addresses
 - 192.0.2.0/24 or 192.0.2.0 to 192.0.2.255
- Classless Addressing
 - ₩ CIDR
 - Allocated IPv4 addresses based on prefix length
- Assignment of IP Addresses

IPv4 Issues

- The Need for IPv6
 - Depletion of IPv4 address space
 - Internet of Everything
- Pv4 and IPv6 Coexistence
 - Dual Stack IPv4 and IPv6 on the same network/
 - Tunneling IPv6 packets inside IPv4 packets
 - Translation IPv6 packet is translated to an IPv4 packet, and vice versa.

IPv6 Addressing

- IPv6 Address Representation
 - x:x:x:x:x:x:x:x, where x represents 4 hexadecima values
 - Apply the rules to simply these IPv6 Addresses
 - Rule 1: Omit Leading 0s
 - Rule 2: Ømit All 0 Segments
 - 2001; ODB8:0000:1133:0000:0000:0000:020u
 - 200/1:0DB8:CAFE:0000:1111:0000:0000:0200
 - ► 2001:0DB8:000A:0000:0000:0000:1000
 - **►** 2001:0DB8:ACAD:1234:0000:0000:0000:0000
 - **■** 2001:0DB8:0000:1111:0020:0000:ACAD:0000
 - FF02:0000:0000:0000:0000:0000:0001
 - FE80:0000:0000:0000:0000:0000:0000:0003
 - 0000:0000:0000:0000:0000:0000:0000:0000

2800:BEBE:CA5A:002B:0001:0002:0000:000A

仚

2800:BEBE:CA5A:2B:1:2.0:A

FE80:0000:0000:0000:0000:0000:000A

Types of IPv6 Addresses

IPv6 Unicast Addresses

- Structure of an IPv6 Global Unicast Address
 - Global Routing Prefix
 - Subnet ID
 - Interface ID
- Static Configuration of a Global Unicast Address
 - ipv6/address ipv6-address/prefix-length
 - Dynamic Configuration
 - \$LAAC
 - ■/DHCPv6
- Link-Local Addresses
 - Dynamic or Static
- Verifying IPv6 Address Configuration show ipv6 interface brief


```
R1 (config) #interface gigabitethernet 0/0
R1 (config-if) #ipv6 address 2001:db8:acad:1::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config) #interface gigabitethernet 0/1
R1 (config-if) #ipv6 address 2001:db8:acad:2::1/64
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1 (config-if) #exit
R1 (config-if) #ipv6 address 2001:db8:acad:3::1/64
R1 (config-if) #ipv6 address 2001:db8:acad:3::1/64
R1 (config-if) #clock rate 56000
R1 (config-if) #no shutdown
```



```
Global-->
2000::/3 --> IETF
0010 0000 0000 0000
0010 = 2
0011 = 3

Prefijo + Interface
/64
Prefijo + Subred + Interface
48 16 64
Prefijo = /3 /12 /32 /48
```

```
IANA --> RIRs (ARIN, LACNIC, etc)
2000::/12 = 512 partes
2800::/12 --> LACNIC
2800::/12
LACNIC --> ISPs, End users, etc
2800:0000::/32
1'048.576 bloques /32 --> ISP
ISP --> End users, empresas, etc
2800:0000:0000::/48
65.536 bloques /48
End User --> redes, subredes, vlans
2800:0000:0000:0000::/64
65.536 subredes
cada subred tiene 18 trillones de
direcciones para los hosts !!!!
```

IPv6 Multicast Addresses

- Assigned IPv6 Multicast Addresses
 - IPv6 multicast addresses have the prefix FF00::/8
 - ► FF02::1 All-nodes multicast group
 - ► FF02::2 All-routers multicast group
- Solicited-Node IPv6 Multicast Addresses

Connectivity Verification

ICMP

- ICMPv4 and ICMPv6
 - Host Confirmation
 - Destination or Service Unreachable
 - Time Exceeded
 - Router Redirection
 - ICMPv6 Router Solicitation and Router Advertisement Messages
 - Messaging between an IPv6 router and an IPv6 device:
 - Router Solicitation (RS) message
 - Router Advertisement (RA) message
 - Messaging between IPv6 devices:
 - Neighbor Solicitation (NS) message
 - Neighbor Advertisement (NA) message
 - Duplicate Address Detection (DAD)

