Niepubliczne Liceum Ogólnokształcące nr 81 SGH **TEST EGZAMINACYJNY - 2024**

Zadania egzaminacyjne – MATEMATYKA – grupa A

kod ucznia

Punkty:...../20

Zadanie 1 (1 pkt)

Liczba $2^{22} - 9 \cdot 2^{19}$ jest równa

B)
$$-2^{19}$$

C)
$$2^{3}$$

D)
$$-8 \cdot 2^{19}$$

Zadanie 2 (1 pkt)

Przekątna AC prostokąta ABCD ma długość 70. Na boku AB obrano punkt E, na przekątnej AC obrano punkt F, a na boku AD obrano punkt G – tak, że czworokąt AEFG jest prostokatem (zobacz rysunek). Ponadto |EF| = 30 i |GF| = 40.

Obwód prostokata ABCD jest równy

- A) 158
- B) 196
- C) 336
- D) 490

Zadanie 3 (1 pkt)

Suma liczby odwrotnej do $\frac{3}{x+1}$ i przeciwnej do $\frac{1-2x}{15}$ jest równa

A)
$$\frac{7x+4}{15}$$

B)
$$\frac{7+x}{15}$$

A)
$$\frac{7x+4}{15}$$
 B) $\frac{7+x}{15}$ C) $\frac{7+4x}{15}$ D) $\frac{7x-4}{15}$

D)
$$\frac{7x-4}{15}$$

BRUDNOPIS

Zadanie 4 (1 pkt)

Wartość wyrażenia algebraicznego

$$\frac{3(3+2y)-2y(3+2y)}{7}$$

obliczono dla pięciu różnych wartości y:

$$I: \nu = -4.$$

$$II: y = -3$$

$$I: y = -4$$
, $II: y = -3$, $III: y = -1$, $IV: y = 2$, $V: y = 5$.

$$IV: y=2$$

$$V: y = 5$$

Największą wartość wyrażenia otrzymano w przypadku A/B.

Najmniejszą wartość wyrażenia otrzymano w przypadku C/D.

Zadanie 5 (1 pkt)

Liczba 43256232a2 jest podzielna przez 4 jeżeli

A)
$$a = 0$$

B)
$$a = 2$$

C)
$$a = 3$$
 D) $a = 4$

$$D) a = 4$$

Zadanie 6 (1 pkt)

Jeśli
$$a = \frac{b}{c-h}$$
, to

A)
$$b = \frac{a+1}{a \cdot c}$$
 B) $b = \frac{a \cdot c}{a+1}$ C) $b = \frac{a \cdot c}{a-1}$ D) $b = \frac{a-1}{a \cdot c}$

B)
$$b = \frac{a \cdot c}{a+1}$$

C)
$$b = \frac{a \cdot c}{a - 1}$$

D)
$$b = \frac{a-1}{a \cdot c}$$

Zadanie 7 (1 pkt)

Podczas suszenia grzyby tracą 80% swojej masy. Ile ważą po wysuszeniu 2 kilogramy grzybów?

Zadanie 8 (1 pkt)

Cenę x pewnego towaru dwukrotnie obniżono o 50% i otrzymano cenę y. Aby przywrócić cene x, nowa cene y należy podnieść o

BRUDNOPIS____

Zadanie 9 (1 pkt)

Liczba $\sqrt{6}$ nie jest równa

- A) wysokości trójkąta równobocznego o boku długości $2\sqrt{2}$
- B) długości przekątnej kwadratu o boku długości $\sqrt{3}$
- C) polu trójkata równobocznego o boku długości $2\sqrt{2}$
- D) polu kwadratu o boku długości $\sqrt{\sqrt{6}}$

Zadanie 10 (1 pkt)

Z punktu A poprowadzono dwie styczne do okręgu, przecinające się pod kątem 70°. Proste te są styczne do okręgu odpowiednio w punktach B i C. Punkt O jest środkiem okręgu. Miara kąta środkowego BOC, który jest zarazem kątem czworokąta ABOC, jest równa

- A) 105°
- B) 70°
- C) 140°
- D) 110°

Zadanie 11 *(1 pkt)*

Dane jest wyrażenie $(2a^2 - 2ab)(3ab - 3b^2)$. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Dane wyrażenie jest równe wyrażeniu $6ab(a-b)^2$	P	F
Dane wyrażenie jest równe wyrażeniu $6a^3b - 6ab^3$	P	F

Zadanie 12 (1 pkt)

Pole kwadratu k_2 jest o 21% większe od pola kwadratu k_1 . Wówczas długość boku kwadratu k_2 jest większa od długości boku kwadratu k_1 o

- A) 10%
- B) 110%
- C) 21%
- D) 121%

Zadanie 13 (1 pkt)

Dwa boki pewnego trójkąta mają długości 12 cm i 15 cm. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Obwód tego trójkąta może być równy 28 cm	P	F
Trzeci bok tego trójkąta może mieć długość 3 cm.	P	F

BRUDNOPIS

Zadanie 14 (1 pkt)

Na rysunku przedstawiono trapez ABCD zbudowany z dwóch równoramiennych trójkątów prostokatnych. Krótsza przekatna tego trapezu ma długość 10 cm.

Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Obwód trapezu <i>ABCD</i> jest równy $(10 + 15\sqrt{2})$ <i>cm</i> .	P	F
Pole trapezu $ABCD$ jest równe 75 cm^2 .	P	F

Zadanie 15 (1 pkt)

Do pudełka włożono 48 kul w różnych kolorach. Prawdopodobieństwo wylosowania kuli czerwonej jest równe $\frac{1}{6}$, a prawdopodobieństwo wylosowania kuli żółtej jest równe $\frac{1}{2}$. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

W pudełku jest trzy więcej kul czerwonych niż żółtych.	P	F
W pudełku może być 16 kul zielonych	P	F

Zadanie 16 *(1 pkt)*

Ze zbioru kolejnych liczb naturalnych {1, 2, 3, 4, ..., 30} losujemy jedną liczbę. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowana liczba jest kwadratem liczby całkowitej, jest równe

- A) $\frac{4}{30}$ B) $\frac{5}{30}$ C) $\frac{6}{30}$ D) $\frac{10}{30}$

Zadanie 17 (1 pkt)

W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę z tej grupy. Prawdopodobieństwo tego, że będzie to kobieta, jest równe

- A) $\frac{1}{15}$ B) $\frac{1}{33}$ C) $\frac{15}{33}$ D) $\frac{15}{18}$

BRUDNOPIS

Zadanie 18 (1 pkt)

Rozważmy treść następującego zadania:

Obwód prostokata o bokach długości a i b jest równy 60. Jeden z boków tego prostokata jest o 10 dłuższy od drugiego. Oblicz długości boków tego prostokąta.

Który układ równań opisuje zależności między długościami boków tego prostokąta?

A)
$$\begin{cases} 2(a+b) = 6 \\ a+10 = b \end{cases}$$

B)
$$\begin{cases} 2a + b = 60 \\ 10b = a \end{cases}$$

C)
$$\begin{cases} 2ab = 60 \\ a - b = 10 \end{cases}$$

A)
$${2(a+b) = 60 \atop a+10 = b}$$
 B) ${2a+b = 60 \atop 10b = a}$ C) ${2ab = 60 \atop a-b = 10}$ D) ${2(a+b) = 60 \atop 10a = b}$

Zadanie 19 (1 pkt)

Suma długości wszystkich krawędzi ostrosłupa prawidłowego sześciokatnego jest równa 450. Krawędź boczna jest w tym ostrosłupie czterokrotnie dłuższa od krawędzi podstawy.

Długość krawędzi podstawy tego ostrosłupa jest równa

A) 15 B) 25 C) 50 D) 60

- A) 15
- B) 25
- C) 50
- D) 60

Zadanie 20 (1 pkt)

Dwa sześciany – jeden o krawędzi 2 i drugi o krawędzi 3 – pocięto na sześciany o krawędzi 1. otrzymanych sześcianów zbudowano prostopadłościan. Żadna prostopadłościanu nie jest kwadratem. Pole powierzchni zbudowanego prostopadłościanu jest równe:

- A) 35
- B) 47
- C) 94
- D) 142

BRUDNOPIS
