(1)a)
$$X = \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 \leq x_2 \}$$

non è un sottosparso de IRZ percle (°) E X ma (-1)(°) = (°) & X

Y= ((x1) e (R2) x, x2=0) non è un sotto sporie et (2) perche (b) ey, (c) ey ma (c) + (b) = (1) & y

2= } (1) = R (X, = 3 +2)

è un sotto spuzio de 1R2 padie:

1) (°) E Z. prd 0:3.0.

2) se (ai), (bi) EZ allow a = 302 e b = 362 quit a + b = 342+362 = 3 (a + b2) $cioi \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix} \in \mathbb{Z}$ Perció $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \in \mathbb{Z}$

ha = h 3 cez = 3 (k cy) 3) Se $\binom{a_1}{a_2} \in \mathbb{Z}$ e he R allow $a_1 = 3 \cdot a_2 \quad q \text{ with}$ ción (har) e Z. Percia h(an) e Z

b) $P = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 = 0 , x_2 - x_3 = 0 \right\}$ è un so the spario cli \mathbb{R}^3 parche

1) (°) e ? parela 0=0 e 0-0=0

2) se $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \mathbb{P}$ e $\begin{pmatrix} b_1 \\ b_3 \\ b_3 \end{pmatrix} \in \mathbb{P}$, allow $a_1 = 0$ $a_2 - a_3 = 0$, $b_1 = 0$, $b_2 - b_2 = 0$

 $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} \alpha_1 + b_1 \\ \alpha_2 + b_2 \end{pmatrix} = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_5$ out $\begin{pmatrix} a_1 \\ a_2 \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_n \end{pmatrix} \in \mathbb{P}$.

s) se $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \in P$ e he IR allow $\alpha_1 = 0$ $\alpha_2 - \alpha_3 = 0$. h (ar) = (har) , allora ha, = ho=0 har-haz=h(ar-az) = h.o=0

quit h ("in) & P.

Q: { (x1 x2) e IR3 | x1 = x2 } è un sotto spario et IR3 percle.

1) (°) ∈ Q pada 0=0

2) Se ($\frac{\alpha_1}{\alpha_3}$) e ($\frac{h_1}{2}$) e Q allow $\alpha_1 = \alpha_2$ e $h_1 = h_2$ $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \in \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} = \begin{pmatrix} a_1 + b_2 \\ a_2 + b_3 \\ a_3 + b_3 \end{pmatrix} =$

3) se $\binom{\alpha_1}{\alpha_2} \in \Omega$ e $\ker \mathbb{R}$ allow $\alpha_1 = \alpha_2$

 $k\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} k_1 a_1 \\ k_2 a_3 \end{pmatrix} e k_2 = k_2 quit k\begin{pmatrix} a_1 \\ a_2 \\ k_3 \end{pmatrix} \in \mathbb{Q}$

R: { (xx) e 123 | x, +x2 + x = 3} non è un sottospario et 123 pachi (8) & R.

S= ? (xi) e173 | xi=xi non è a sotto sporio et 173 pecle (i) eR ma 2(1) = (2) \$\frac{2}{5}\$ \$\partial \text{R}\$ pade 4\$\pm2\$.

```
(2) X, y so Hospari de IR3
```

xny è un sottospario di 123 parche

- 1) JEX e JEY quid JEXNY
- z) se a je x ny allom a je Ex quit at BEX, e a jey quit at bey.
- 3) Se a Exnye her allon dex quin hatex, dey quit hatey recio harexny.

X UY Prima si ossavuci:

-) Jex e Jey quit Jexuy
- 3) se a Exuy e ke 18

se a e y allon ka e y air ha e x vy. Percia ka e x vy. se a e y allon ka e y air ha e x vy. Percia ka e x vy.

- 2) Se a l'hexuy allora a'exo a'ey e bex obey
 - se a, bex allow at Bex quit at Bexuy.
 - se diffey allone dit de ait de to e xuij.
- se dexy e Gey/x allora à + b & x v y Percle: àti ≠x poulé se àti ∈ x allore (àti)- à ∈ x cive b ∈ x conhections. Quit xoy è un sotto spurio et 173 se esolo se XCY o YCX.

X/Y non à un sotto spario di 183 parle 34XY.

(3) a) $H = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ $S_m = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, si osserva cle H = 1 invertible $S_m = \frac{1}{3} \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. Sugation $\begin{pmatrix} 1 & 2 \\ 3 & n \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 3/2 & -4n \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ 3/2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = -2\begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

seque de \vec{e}_{i} , \vec{e}_{i} $\in \langle (\frac{1}{3}), (\frac{2}{3}) \rangle$ où $\langle \vec{e}_{i}^{2}, \vec{e}_{i}^{2} \rangle \in \langle (\frac{1}{3}), (\frac{2}{3}) \rangle$ ma $\angle e_i, e_i > = \mathbb{R}^2$ e $\angle \binom{1}{3}, \binom{2}{4} > \subseteq \mathbb{R}^2$ with $\angle \binom{1}{3}, \binom{2}{4} > = \mathbb{R}^2$.

- b) $A = \begin{pmatrix} 1 & 4 \\ 3 & 12 \end{pmatrix}$ $Sm(7) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 12 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ Qix $\begin{pmatrix} 1 \\ 12 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ Sm(T) = 2 t(8) | te R) è la vetter 2 x = 3 + t e R.
- c) $\mathcal{H} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -2 & -4 & -6 & -8 \end{pmatrix}$ $\mathcal{S}_m(T) = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -4 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ -6 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ -8 & 1 \end{pmatrix}$ Sm(T) = { (-2 - 4 - 6 - 8) (x) | (x) | (x è la vetta { y = - 2t te IR.
- a) $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ Sm (7) = $\lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ $\lambda = \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 &$
- e) $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $Sm(T) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix} = IR^3$

 $\begin{cases} 2 & 1 & 3 \\ 3 & 4 & 2 \end{cases} \qquad Sm(T) = 2 \begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} > \qquad \begin{pmatrix} 1 & 1 \\ 4 & 5 \end{pmatrix} \text{ non } = 1 \text{ mon } =$ quit $\left(\frac{7}{3}\right), \left(\frac{1}{5}\right)$, è un piùro. $\left(\frac{3}{4}\right) \in \left(\frac{7}{3}\right), \left(\frac{1}{5}\right)$? wow $\left(\frac{3}{4}\right) = \left(\frac{7}{3}\right), \left(\frac{1}{5}\right)$ per who quit $\left(\frac{7}{4}\right) = \left(\frac{7}{3}\right), \left(\frac{1}{5}\right)$ per who Que (3) = 2(3)-(1) = que (3) + <(3),(1)> per ich 3mT = 2 (3) (4) > $\begin{bmatrix} \vec{z} & \vec{\gamma} & \vec{k} \\ z & s & 6 \end{bmatrix} = -q\vec{z} - n\vec{j} + s\vec{k} = \begin{pmatrix} -q \\ -4 \\ s \end{pmatrix}$ -sm(1) è il pivo $-qx - 4y + s \neq = 0$.

sono (mor make di pandhi et. -3(1)+(3)=(0).

6) c((1)+c(1)+c(1)=(0) (1,10) -> (1,110) -> son o unevente indipendeti

c) sono (movimbe di pareti pertet. o. (71) + 3(0)=(0).

sono lumar mote inclipenduti

sono (reo mate indipendati

 $= \begin{cases} c_1 - c_3 = 0 \\ c_1 + c_3 = 0 \end{cases} \begin{cases} c_1 = c_3 \\ c_2 - 2c_3 \end{cases}$ Sono linear mode di penderi eq. $1 \cdot \left(\frac{1}{2}\right) - 2\left(\frac{4}{6}\right) + \left(\frac{7}{6}\right) = \left(\frac{7}{6}\right) \end{cases}$

i ve Hari sono Insomte inclipendati Sign $\overrightarrow{x} \in (\mathbb{R}^2)$ $\overrightarrow{x} = \begin{pmatrix} x_1 \\ x_1 \end{pmatrix}$ $c_1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + c_2 \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$ il sistema has sampre colorini $\left(\begin{array}{c|c} 3-i\left(\begin{array}{c} x_1\\ \end{array}\right) \rightarrow \left(\begin{array}{c} 0-n\left(\begin{array}{c} x_2-3x_1 \end{array}\right) \rightarrow \left(\begin{array}{c} 0&i\left(\begin{array}{c} -il_{H}\left(\begin{array}{c} x_2-3x_1 \right) \end{array}\right) \end{array}\right)$ quit x è ma combinative (meore d' (5) e (1). Quit i ve Hori genera 122 seque de ((3),(-1), è una base di 1722

6) $c_1(\frac{1}{2}) + c_2(\frac{2}{3}) + c_3(\frac{3}{2}) = (0)$ $(\frac{1}{2}, \frac{3}{3}, \frac{0}{0}) - (\frac{1}{2}, \frac{3}{3}, \frac{0}{0}) - (\frac{1}{2}, \frac{3}{3}, \frac{0}{0})$ el sistema ha infite soluzioni quidi i vetteri sono linearmente dipendeti Quit non formas ma suse di 122.

c) $c_1(\frac{1}{3}) + c_2(\frac{1}{6}) = (\frac{1}{6}) = (\frac{1}{3}) = (\frac{1}{6})$ quit i vettori sono l'accormete dipendeti Quidi non formono una base di R2

(1-1 0 0) (6) la matice che representa T è

a)
$$\ker(T) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{1}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) = \frac{\pi}{2} \Re \left(\frac{\pi}{2} \right) + \frac{\pi}{2$$

5)
$$Jm(T) = \langle (1), (-1), (0), (0) \rangle - \langle (0), (0) \rangle (1) = (0) + 2(0)$$

quite (1) $\in Jm(T)$.

non ha ma base.

b)
$$\begin{pmatrix} 2 & 3 & | & 0 \\ 6 & q & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 6 & q & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3/2 &$$

c)
$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \end{pmatrix}$$
 $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2$

d)
$$(12310) \rightarrow \{x_1+2x_2+7x_3=0 \rightarrow \{x_1=-2x_2-3x_3\} = \{x_1=-2x_2-3x_3\}$$

$$= \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\rangle$$

$$= \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix}$$

b)
$$f_m(T) = \left\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix} \right\rangle$$
 $\left(\begin{pmatrix} 1 \\ 123 \end{pmatrix}, \begin{pmatrix} 5 \\ 012 \end{pmatrix}, \begin{pmatrix} 012 \\ 012 \end{pmatrix}, \begin{pmatrix} 012 \\ 012 \end{pmatrix} \right)$ $\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0$

c)
$$\operatorname{Sm}(T) = \lambda \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle$$
una hore of $\operatorname{Im}(T) = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1$

d)
$$\operatorname{Im}(\overline{1}) = \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} > \begin{pmatrix} 1234 \\ 56+8 \\ 3210 \end{pmatrix} \Rightarrow \begin{pmatrix} 1234 \\ 6-4-9-12 \\ 0-4-9-12 \end{pmatrix} \Rightarrow \begin{pmatrix} 1234 \\ 0123 \\ 04-8-12 \end{pmatrix} \Rightarrow \begin{pmatrix} 1234 \\ 04-8-12 \\ 04-8-12 \end{pmatrix} \Rightarrow \begin{pmatrix} 1234 \\ 04-8-12 \\ 04-8-12 \end{pmatrix} \Rightarrow \begin{pmatrix} 1234 \\ 04$$

$$\begin{cases} f & \text{for } (T) = \lambda & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ 0 \\ 1 \\ 0 \end{pmatrix} \end{cases} \end{cases}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 &$$