# Introduction to Reinforcement Learning

### **About me**

- → Higher National School of Computer Science (ESI) Alumni.
- → Masters student at Sorbonne University.
- → Intern at MLIA-Sorbonne working on Unsupervised Reinforcement Learning.



# Introduction

# What is Reinforcement Learning?

Reinforcement Learning (RL) is a machine learning approach where an **agent** learns by interacting with its **environment** through **actions**, receiving **rewards** for its actions, and aims to maximize **cumulative rewards** over time.



# What is Reinforcement Learning?



# What is Reinforcement Learning?







**Good !!! Reward = 10** 





#### State Action (0, 0)Down Right (0, 2)(0, 3)Right (0, 4)Down (1, 0)Down (1, 2)Up (3, 4)Down (4, 0)Up (4, 2)Up (4, 4)Down

#### State / Action

- **State:** A state represents the current situation or configuration of the environment that the agent is in at a given time.
- Action: An action is a decision made by the agent that affects the state of the environment, leading to transitions between states.



#### Reward

**Reward:** A feedback signal indicating how good or bad an action is, guiding the agent to maximize long-term gains.



### Reward



### **Policy**

**Policy:** it represents the strategy that the agent follow. It maps states to actions:

$$\pi: S \to A$$
$$\pi(s_i) = a$$

| State  | Action |
|--------|--------|
| (0, 0) | Down   |
| (0, 2) | Right  |
| (0, 3) | Right  |
| (0, 4) | Down   |
| (1, 0) | Down   |
| (1, 2) | Up     |
|        |        |
| (3, 4) | Down   |
| (4, 0) | Up     |
| (4, 2) | Up     |
| (4, 4) | Down   |



# How to learn a policy

$$oxed{V(s) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t R_{t+1} \mid S_0 = s 
ight]}$$

$$igg| G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$oxed{Q(s,a) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} \mid S_0 = s, A_0 = a
ight]}$$

$$oxed{V_\pi(s) = \sum_a \pi(a|s) \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V_\pi(s')
ight]}$$

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) \left[ R(s,a,s') + \gamma V_{\pi}(s') 
ight]$$

$$\pi'(s) = rg \max_{a} \sum_{s'} P(s'|s,a) \left[ R(s,a,s') + \gamma V(s') 
ight]$$





#### **Cumulative Reward**

The goal in RL is not simply maximizing the reward, but rather maximizing the cumulative reward denoted  $G_{r}$ :

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

#### **State Value**

Represents the expected cumulative reward starting from a given state s and following a policy  $\pi$ . The formula for the state value function is:

$$V(s) = \mathbb{E}_{\pi} \left[ \sum_{t=0}^{\infty} \gamma^t R_{t+1} \mid S_0 = s 
ight].$$



# **Dynamic Programing**

### **Dynamic Programing**

Collection of algorithms that can be used to compute optimal policies given a perfect model of the environment as a MDP.

#### **Transition probablity:**

P(s' | s, a)



### **Policy Iteration**

- 1. **Initialize:** Start with an arbitrary policy  $\pi$  and value function V(s).
- Policy Evaluation: Update V(s) for all states until convergence based on π.
- Policy Improvement: Update the policy to π' by choosing actions that maximize expected returns based on V(s).
- 4. **Repeat:** Continue until  $\pi$ ' =  $\pi$ .



### **Policy Evaluation**

The policy evaluation formula calculates the value of a state under **a given policy**  $\pi$ . It is based on the Bellman expectation equation:

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) \left[ R(s,a,s') + \gamma V_{\pi}(s') 
ight]$$



### **Policy Improvement**

The process of updating a current policy  $\pi$  to a new policy  $\pi$ ' that maximizes expected rewards based on the value of states V under the current policy.

$$\pi'(s) = rg \max_{a} \sum_{s'} P(s'|s,a) \left[ R(s,a,s') + \gamma V(s') 
ight]$$



# **Temporal Differences**

### **Temporal Difference error**

> Ideally, we have:

$$V(s_t) = r_{t+1} + \gamma V(s_{t+1})$$

> The approximation error is:

$$\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

> should decrease the error:

$$V(s_t) \leftarrow V(s_t) + \alpha \delta_t$$

$$V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$



#### **TD Prediction**

```
V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))
  Inputs: \pi - the policy to be evaluated
  Params: step size \alpha \in ]0,1]
 Initialize: V(s) \in \mathbb{R} for all s \in \mathcal{S}^+ except for
                                                                        V(s_{\cdot})
   V(terminal)=0
 foreach episode do
       Initialize S
       foreach step of episode - until S is terminal do
            A \leftarrow action given by \pi for S
           Take action A, observe R, S'
           V(S) \leftarrow V(S) + \alpha(R + \gamma V(S') - V(S))
       end
 end
```

#### **State Action Value**

Rrepresents the expected cumulative reward an agent can obtain by taking action **a** in state **s** and subsequently following a specified policy.



### **SARSA:**

end

```
Params: step size \alpha \in ]0,1], small \epsilon > 0
Initialize Q(s, a) for all s \in \mathcal{S}^+ and a \in \mathcal{A}(s),
  arbitrarily except that Q(terminal - state, \cdot) = 0
foreach episode do
     Initialize S
     Choose A from S using policy derived from Q (e.g.
       \epsilon-greedy)
     foreach step of episode - until S is terminal do
           Take action A, observe R, S'
           Choose A' from S' using policy derived from Q
            (e.g. \epsilon-greedy)
          Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right] \qquad \overline{V(S_t)} \leftarrow \overline{V(S_t)} + \alpha \overline{(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))} \\ S \leftarrow S'
      end
```

# Q learning

## Q learning:

SARSA:

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[ R + \gamma Q(s',a') - Q(s,a) 
ight]$$

Q learning:

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[ R + \gamma \max_{a'} Q(s',a') - Q(s,a) 
ight]$$

# Q learning:

```
Params: step size \alpha \in ]0,1], small \epsilon > 0
Initialize Q(s, a) for all s \in \mathcal{S}^+ and a \in \mathcal{A}(s),
  arbitrarily except that Q(terminal - state, \cdot) = 0
foreach episode do
     Initialize S
     foreach step of episode - until S is terminal do
          Choose A from S using policy derived from Q
           (e.g. \epsilon-greedy)
         Take action A, observe R, S'
     Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A)\right]
S \leftarrow S'
end
```

### Conclusion

- → What is Reinforcement Learning?
- → What are the components of Reinforcement Learning?
- → State Value and State-Action Value.
- → Policy Evaluation
- → Policy Improvement.
- → Policy Iteration.
- → Temporal Differences.
- → SARSA.
- → Q-learning.

# Thank you!

jn\_bendib@esi.dz