



# Gradient Echoes and Steady States

Jochen Leupold, Universitätsklinik Freiburg

ISMRM German Chapter Ph.D. student Training, Freiburg 9 Feb 2024

## Content

- 1) The need for an echo
- 2) Basic GRE imaging
- 3) SSFP, the SSFP profile, balanced and unbalanced SSFP
- 4) More echoes of the SSFP family: PSIF and DESS
- 5) T1-weighted GRE imaging with RF-spoiling
- 6) The mechanism of RF-spoiling transverse magentization = 0 (?)

# Why Gradient "echo"? – Fourier transform properties!



<u>Two</u> reasons for creating echos in MRI:

- a) Spinecho: refocusing of static offresonances -> T2 weighting
- b) Gradientecho (i.e. applying prephasing gradient): exploiting Fourier transform properties
  - distortion free magnitude image (no need for cumbersome correction)
  - Signal gain of factor 2

# Simple gradient echo sequence



# Going faster: SSFP

SSFP: Steady State Free Precession

Steady State: Magnetisation not returning to equilibrium (M<sub>0</sub>) during TR (~TR<3T1)



<u>Free Precession</u>: Magnetisation precesses around (local!) B<sub>0</sub> with B<sub>1</sub> switched off (Forced Precession: B<sub>1</sub> switched on)



From now on: Transversal magnetization at the end of interval is **not** zero, TR<T2!

Ernst equation is no longer valid

# SSFP: RF pulses and dephasing



## Transverse plane:



## Steady state for

$$M_{\mathrm{T}}^{+}(\theta) = M_{x}^{+} + iM_{y}^{+}$$



$$\begin{split} M_x^{+} &= M_0 (1 - E_1) E_2 \sin \alpha \sin \theta / D \\ M_y^{+} &= M_0 (1 - E_1) (1 - E_2 \cos \theta) \sin \alpha / D \\ D &= (1 - E_1 \cos \alpha) (1 - E_2 \cos \theta) - (E_1 - \cos \alpha) (E_2 - \cos \theta) E_2 \\ E_1 &= \exp(-TR/T_1), \quad E_2 &= \exp(-TR/T_2) \end{split}$$

# Two principle strategies to make a sequence based on SSFP

1. Selecting a single frequency on the profile: balanced SSFP

2. Integration over the profile: unbalanced SSFP



# Balanced SSFP sequence diagram

For multidimensional k-space acquisition, gradients in all directions are needed:



"balanced" gradients!



180

360

-180

# The stripe artefact in bSSFP images



If  $\theta$  is located in the "stopband", a dark stripe appears in the image





Distance of the stopband from on-resonance (center of passband) in Hz:

$$\Delta f = \frac{1}{2 \cdot TR}$$

Example:  $TR = 4 \text{ ms} \rightarrow \Delta f = 125 \text{ Hz}$ 

Good shim is required to avoid dark stripes! Short TR needed!

# Unbalanced SSFP: FISP sequence



The unbalanced area of all gradients must distribute the isochromats such that the voxel signal is the integration over the profile!



-> Need for spoiler gradient(s)!

$$S_{\text{FISP}} = \int_{-\pi}^{\pi} M_{\text{T}}^{+}(\theta) d\theta = \frac{M_{0} \sin \alpha e^{-TE_{\text{FISP}}/T2}}{1 + \cos \alpha} [1 - D'(E_{1} - \cos \alpha)]$$

with 
$$D' = \frac{\sqrt{1 - E_2^2}}{\sqrt{1 - E_1^2 E_2^2 - 2E_1(1 - E_2^2)\cos\alpha + (E_1^2 - E_2^2)\cos^2\alpha}}$$

# FISP Signal = "profile squeezed into one voxel"



The FISP Signal is the integration of the after-pulse SSFP signal and shows a mixed  $T_1/T_2$ -contrast!

# More Echos: Stopped pulse experiment 1

 $\alpha$ =40°, T<sub>1</sub>=0.5s,T<sub>2</sub>=0.1s,TR=0.01s,31vox



# Even more echos: Stopped pulse experiment 2

 $\alpha$ =40°, T<sub>1</sub>=0.5s,T<sub>2</sub>=0.1s,TR=0.01s,31vox



# Caculation of all echo amplitudes

$$\Rightarrow F_k^+ = \text{Signal}(-k)^+ = \int_{-\infty}^{\pi} M_T^+(\theta) e^{-ik\theta} d\theta \qquad \text{Fourier transform of } M_T^+(\theta)!$$

Butz T. Fourier Transformation for Pedestrians. Berlin Heidelberg: Springer; 2006.

Leupold J. Steady-state free precession signals of arbitrary dephasing order and their sensitivity to T2\* Concepts Magn Reson Part A. 2018;e21435



# How to make imaging SSFP sequences from echoes



# DESS: Two Signals per interval



$$F_0^+ = \int_{-\pi}^{\pi} M_{\mathrm{T}}^+(\theta) d\theta$$
$$F_{-1}^+ = \int_{-\pi}^{\pi} M_{\mathrm{T}}^+(\theta) e^{i\theta} d\theta$$

$$S_{\text{FISP}} = F_0^+ e^{-TE1/T_2^*}$$

$$S_{\text{PSIF}} = F_{-1}^{+} e^{-TE2/T_2} e^{-T^{-}/T_2}$$

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \frac{1}{T_2'}$$



DESS= |FISP|+|PSIF|

# Unbalanced SSFP sequences - summary

- 1) All unbalanced SSFP sequences show some  $T_2$  weighting (if not  $TR >> T_2$ )
- 2) Most common members of the unbalanced (non-RF-spoiled) SSFP family: FISP and DESS
- 3) Amplitudes of all echoes (= all sequences) can be calculated from the M<sub>0</sub><sup>+</sup> profile



Now: How to achieve T<sub>1</sub>-weighting! -> RF-spoiling!

# T1-weighting by means of RF-spoiling

#### Contrasts:

FISP (unbalanced SSFP): mix of T2 and T1

bSSFP: T2/T1 –contrast at on-resonance and optimal  $\alpha$ 

Often desired: T1-contrast (e.g. CE MRA)

Obtained by RF-spoiling!



# Making T<sub>1</sub> weighted GRE faster: RF - spoiling





RF pulse phase for RF – spoiling:  $\varphi(n) = n(n-1)\psi/2$   $n \dots$  RF-pulse No.  $\psi$  ... phase difference increment (50°,117°...)

# RF – spoiling with phase difference increment $\psi$



Transverse magnetization before and after RF-pulse





$$S^{+} = \int_{-\pi}^{\pi} M_{T}^{+}(\theta) d\theta$$

$$S^{-} = \int_{-\pi}^{\pi} M_{T}^{+}(\theta) e^{i\theta} d\theta$$

Vendors' choices:

Siemens:  $\psi = 50^{\circ}$ 

GE:  $\Psi = 115.4^{\circ}$ 

Bruker:  $\Psi = 117^{\circ}$ 

Philips:  $\Psi = 150^{\circ}$ 

# Paraphrasing RF-spoiling: Is the signal zero at the end of the interval?



Better: [RF-Spoiling is] an attempt to restore the contrast properties of long-*TR* gradient echo techniques.

Denolin et al., MRM 54:937–954 (2005)

Also Better: "RF-spoiling manipulates the 3D magentization vector (per voxel) such that the measured signal obeys approximately the Ernst equation"

# Reality of RF-spoiling: Influence of diffusion!



## T1=540ms;T2=340ms;D=0.002mm<sup>2</sup>/s



## Exercises 1 - SSFP

exercise\_1\_SSFP.ipynb

# **Gradient echoes and SSFP exercises: Balanced SSFP, FISP/PSIF, RF-Spoiling**

Starting point is the unbalanced gradient echo sequence (FISP).

#### 1.1 Balanced SSFP

- Modify FISP to obtain bSSFP (Hint: you need only to modify the readout gradient pulses). If you do it right, you should see T2/T1 contrast and no banding artefacts.
- Make the banding artefacts visible (i.e. these dark stripes should appear in the image).
- change the location of the dark stripes (stopbands), i.e. in left-right direction



## Exercises 1 - SSFP

exercise\_1\_SSFP.ipynb

# **Gradient echoes and SSFP exercises: Balanced SSFP, FISP/PSIF, RF-Spoiling**

Starting point is the unbalanced gradient echo sequence (FISP).

### 1.2 Introducing T1-weighting

- Modify the template sequence to obtain T1-contrast (while keeping the short TR!)

#### **1.3 PSIF**

- Modify the template sequence to see the PSIF signal
- What happens if you impose RF-spoiling to the PSIF-signal?

#### 1.4 k=-2 sequence

- Modify the template sequence to use the k=-2 signal for imaging.



## Exercises 2 - DESS

exercise\_2\_DESS.ipynb

#### **Gradient echoes and SSFP exercises: DESS**

In this exercise, you will change a standard 3D gradient echo scan (FISP) into a DESS sequence.

Optionally, go also for the TESS sequence (triple echo steady state, see *Sobol and Gauntt,JMRI 6:384-398(1996),Fig.11*, see below, also *Heule et al. MRM 71:230–237 (2014)*)

Starting point is the unbalanced gradient echo sequence (FISP).

#### **2.1 DESS**

further.

Modify FISP to obtain a DESS sequence. Introduce a second ADC (with echo (ECO) labeling) and modify the readout gradient

accordingly. To see different contrast for the two echoes, you might use a lower flip angle.

# 2.2 TESS (optional) Modify DESS to obtain a TESS sequence. Introduce a third ADC (with echo (ECO) labeling) and modify the readout gradient



**Figure 11.** A triple substate [F(+1,0), F(0,0), and F(-1,0)] acquisition protocol: (a) sequence design, (b) phase diagram.

## Exercises 1 - SSFP

exercise\_1\_SSFP\_solution.ipynb

# **Gradient echoes and SSFP exercises: Balanced SSFP, FISP/PSIF, RF-Spoiling**

Starting point is the unbalanced gradient echo sequence (FISP).

#### 1.1 Balanced SSFP

- Modify FISP to obtain bSSFP (Hint: you need only to modify the readout gradient pulses). If you do it right, you should see T2/T1 contrast and no banding artefacts.
- Make the banding artefacts visible (i.e. these dark stripes should appear in the image).
- change the location of the dark stripes (stopbands), i.e. in left-right direction



shows banding artefacts. These are shifted with diffferent RF phase cycle.

(e.g. 0 0 0 0... instead of 0 180 0 180...)

## Exercises 1 - SSFP

exercise\_1\_SSFP\_solution.ipynb

# Gradient echoes and SSFP exercises: Balanced SSFP, FISP/PSIF, RF-Spoiling

Starting point is the unbalanced gradient echo sequence (FISP).

### 1.2 Introducing T1-weighting

- Modify the template sequence to obtain T1-contrast (while keeping the short TR!)

#### **1.3 PSIF**

- Modify the template sequence to see the PSIF signal
- What happens if you impose RF-spoiling to the PSIF-signal?

### 1.4 k=-2 sequence

- Modify the template sequence to use the k=-2 signal for imaging.



## Solution

1.2: Introduce RF-Spoliing by adjusting RF-pulses phases according to

$$\varphi(n) = n(n-1)\psi/2$$

n... RF-pulse No.

ψ ... phase difference increment (50°,117°...)





## Exercises 2 - DESS

exercise\_2\_DESS\_solution.ipynb

#### **Gradient echoes and SSFP exercises: DESS**

In this exercise, you will change a standard 3D gradient echo scan (FISP) into a DESS sequence.

Optionally, go also for the TESS sequence (triple echo steady state, see *Sobol and Gauntt,JMRI 6:384-398(1996),Fig.11*, see below, also *Heule et al. MRM 71:230–237 (2014)*)

Starting point is the unbalanced gradient echo sequence (FISP).

#### **2.1 DESS**

Modify FISP to obtain a DESS sequence. Introduce a second ADC (with echo (ECO) labeling) and modify the readout gradient

accordingly. To see different contrast for the two echoes, you might use a lower flip angle.

#### 2.2 TESS (optional)

Modify DESS to obtain a TESS sequence. Introduce a third ADC (with echo (ECO) labeling) and modify the readout gradient further.



**Figure 11.** A triple substate [F(+1,0), F(0,0), and F(-1,0)] acquisition protocol: **(a)** sequence design, **(b)** phase diagram.

## Solution





## On Exersise 1: a glance on the extended phase graph (EPG)

