Introduction to Machine Learning

Lecture 2

Instructor:

Dr. Tom Arodz

Machine Learning

- Machine learning:
 - Study of algorithms that
 - improve their performance P
 - at some task T
 - with experience E
 - We have a well-defined learning task: <P,T,E>

Machine Learning

- Machine learning: study of algorithms that
 - improve their performance P
 - HOW TO MEASURE THE PERFORMANCE?
 - at some task T
 - WHAT IS THE TASK?
 - with experience E
 - HOW IS EXPERIENCE GAINED?

Supervised Machine Learning

- Algorithms for solving the learning problem:
 <Performance, Task, Experience>
- Supervised Machine Learning/Classification:
 - Task:
 - Learn the ability to categorize objects:
 to predict the class of object
 based on some attributes/features of the object
 - Performance:
 - Measured as the accuracy (correctness) of predictions for previously unseen objects
 - Experience:
 - A collection of objects, each described by its attributes, and labeled with its classes

- Input Feature: object wavelength
- If wavelength>600nm then apple otherwise orange

- Probability distribution of wavelength for Apples
- Probability distribution of wavelength for Oranges

- Apple vs Orange
 - Probability distribution of wavelength for Apples
 - Probability distribution of wavelength for Oranges or:
 - Joint distribution over 2D space (x,y) = (wavelength, fruit class)

Apple vs Orange

- Probability distribution of wavelength for Apples
- Probability distribution of wavelength for Oranges or:
- Joint distribution over 2D space (x,y) = (wavelength, fruit class)

We often think in terms of either joint probability distribution p(x,y), or probability distribution within each individual class, i.e., conditional probability of x given class, $p(x|y_i)$

But what we really want for classification is $p(y_i|x)$: what is the probability of class y_i (of apples, or of oranges) for given value of x?

Apple vs Orange

- Probability distribution of wavelength for Apples
- Probability distribution of wavelength for Oranges or:
- Joint distribution over 2D space
 (x,y) = (wavelength, fruit class)

For today, let just focus on predicting whether p(apple|x) > 50% (i.e., should we predict apple, or orange)

 That is, we will try to predict class y given wavelength x,

not the specific value of probability of that class

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - **b** is unknown, need to be learned from examples

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - **b** is unknown, need to be learned from examples

Apple vs Orange

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - b is unknown, need to be learned from examples

An apple: y=1 predicted as apple: f(x)=1

Apple vs Orange

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - **b** is unknown, need to be learned from examples

An orange: y=1 predicted as apple: f(x)=1

Apple vs Orange

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - b is unknown, need to be learned from examples

An orange: y=-1 predicted as orange: f(x)=-1

Apple vs Orange

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - b is unknown, need to be learned from examples

An apple: y=1 predicted as orange: f(x)=-1

Apple vs Orange

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)

b is unknown, need to be learned from **examples**

different **b** => different **f(x)** => different predictions for the same **x**

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - The function has one input (x) and one trainable parameter (b)
- Algorithm:
 - Set initial value of trainable parameter b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update trainable parameter b
 - How?

- x denote object's color (wavelength in nm)
- y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is wrong, update b
 - Assume y_i = 1 (apple),
 but prediction is f(x_i) = -1 (orange)
 - Which of the four situations on the plot is it?

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is wrong, update b
 - if y_i = 1 (apple), but prediction is f(x_i) = -1 (orange), how should we tweak "b"?

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is wrong, update b
 - if y_i = 1 (apple), but prediction is f(x_i) = -1 (orange), how should we tweak "b"?
 - We need to move the threshold to the left. That is, decrease b.
 This may increase f() for that sample.

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is wrong, update b
 - Assume y_i = -1 (orange),
 but prediction is f(x_i) = +1 (apple)
 - Which of the four situations on the plot is it?

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is wrong, update b
 - Assume y_i = -1 (orange), but prediction is f(x_i) = +1 (apple) how should we tweak "b"?

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x-b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is wrong, update b
 - Assume y_i = -1 (orange), but prediction is f(x_i) = +1 (apple) how should we tweak "b"?
 - We need to move the threshold to the right. That is, increase b.
 This may decrease f() for that sample. -1-

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10

y=-1, x=580, f(x)=+1, increase b to b=570

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=sign(x_i b)
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10

- y=-1, x=580, f(x)=+1, increase b to b=570
- y=+1, x=640, f(x)=+1, do nothing (b=570)

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10

y=-1, x=580, f(x)=+1, increase b to b=570

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=sign(x_i b)
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10

- y=-1, x=580, f(x)=+1, increase b to b=570
- y=+1, x=640, f(x)=+1, do nothing (b=570)
- y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=sign(x_i b)
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=sign(x_i b)
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=sign(x_i b)
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - - y=-1, x=580, f(x)=+1, increase b to b=570
- y=+1, x=640, f(x)=+1, do nothing (b=570)
- y=-1, x=580, f(x)=+1, increase b to b=580
- •
- y=-1, x=615, f(x)=+1, increase b to b=590
- - y=-1, x=615, f(x)=+1, increase b to b=600
- y=+1, x=620, f(x)=+1, do nothing (b=600)
- <u>_____</u>-
- y=-1, x=580, f(x)=-1, do nothing (b=600)

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=sign(x_i b)
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)

 - y=-1, x=615, f(x)=+1, increase b to b=610

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)
 - y=-1, x=580, f(x)=-1, do nothing (b=600)
 - y=-1, x=615, f(x)=+1, increase b to b=610
 - y=+1, x=640, f(x)=+1, do nothing (b=610)

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
 - Prediction will be made by evaluating a function:

Wavelength (nm)

- f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=Sign(x_i b)
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)
 - y=-1, x=580, f(x)=-1, do nothing (b=600)
 - y=-1, x=615, f(x)=+1, increase b to b=610
 - y=+1, x=640, f(x)=+1, do nothing (b=610)
 - y=+1, x=618, f(x)=+1, do nothing (b=610)

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:

Wavelength (nm)

- f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=Sign(x_i b)
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)
 - 9 = 1, x=580, f(x)=-1, do nothing (b=600)
 - y=-1, x=615, f(x)=+1, increase b to b=610
 - y=+1, x=640, f(x)=+1, do nothing (b=610)
 - y=+1, x=618, f(x)=+1, do nothing (b=610)
 - y=-1, x=615, f(x)=+1, increase b to b=620

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and
 predict f(x_i)=Sign(x_i b)
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)
 - y=-1, x=580, f(x)=-1, do nothing (b=600)
 - y=-1, x=615, f(x)=+1, increase b to b=610
 - y=+1, x=640, f(x)=+1, do nothing (b=610)
 - y=+1, x=618, f(x)=+1, do nothing (b=610)
 - y=-1, x=615, f(x)=+1, increase b to b=620
 - y=+1, x=618, f(x)=-1, decrease b to b=610

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)
 - y=-1, x=580, f(x)=-1, do nothing (b=600)
 - y=-1, x=615, f(x)=+1, increase b to b=610
 - y=+1, x=640, f(x)=+1, do nothing (b=610)
 - y=+1, x=618, f(x)=+1, do nothing (b=610)
 - y=-1, x=615, f(x)=+1, increase b to b=620
 - y=+1, x=618, f(x)=-1, decrease b to b=610
 - y=-1, x=615, f(x)=+1, increase b to b=620

- 80 430 480 530 580 680 730 Wavelength (nm)
 - Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
 - Prediction will be made by evaluating a function:
 - f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
 - Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

- Example run
- Start by setting b=560
- Each increase/decrease is by 10
 - y=-1, x=580, f(x)=+1, increase b to b=570
 - y=+1, x=640, f(x)=+1, do nothing (b=570)
 - y=-1, x=580, f(x)=+1, increase b to b=580
 - y=-1, x=615, f(x)=+1, increase b to b=590
 - y=-1, x=615, f(x)=+1, increase b to b=600
 - y=+1, x=620, f(x)=+1, do nothing (b=600)
 - y=-1, x=580, f(x)=-1, do nothing (b=600)
 - y=-1, x=615, f(x)=+1, increase b to b=610
 - y=+1, x=640, f(x)=+1, do nothing (b=610)
 - y=+1, x=618, f(x)=+1, do nothing (b=610)
 - y=-1, x=615, f(x)=+1, increase b to b=620
 - y=+1, x=618, f(x)=-1, decrease b to b=610
 - y=-1, x=615, f(x)=+1, increase b to b=620
 - y=+1, x=618, f(x)=-1, decrease b to b=610

- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:

Wavelength (nm)

- f(x)=sign(x b) it returns either -1 or 1 (or 0: tough to predict)
- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class $f(x_i)$
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - In a way that would make it more likely to get correct prediction for the current sample
 - if y_i = 1, f(x_i)=-1, decrease b to increase f
 - if y_i = -1, f(x_i)=1, increase b to decrease f

...

- Algorithm:
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i-b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - if $y_i = 1$, $f(x_i)=-1$, what should we do? Decrease b to increase f
 - $y_i f(x_i) = 2$
 - $\mathbf{b}_{\text{new}} = \mathbf{b}_{\text{old}} 2\mathbf{c}$
 - if $y_i = -1$, $f(x_i)=1$, what should we do? Increase b to decrease f
 - $y_i f(x_i) = -2$
 - $\mathbf{b}_{\text{new}} = \mathbf{b}_{\text{old}} + 2\mathbf{c}$
 - What is "c"? The "learning rate", a small number chosen by the user
 - Single formula: $b_{new} = b_{old} c[y_i f(x_i)]$

- Algorithm (with small tweak, sign in front of b):
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i + b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - if $y_i = 1$, $f(x_i)=-1$, what should we do? **Increase** b to increase f
 - $y_i f(x_i) = 2$
 - $b_{new} = b_{old} + 2c$
 - if $y_i = -1$, $f(x_i)=1$, what should we do? **Decrease** b to decrease f
 - $y_i f(x_i) = -2$
 - $\mathbf{b}_{\text{new}} = \mathbf{b}_{\text{old}} 2\mathbf{c}$
 - Single formula: b_{new}=b_{old}+c[y_i f(x_i)]

- Algorithm unified, w₀ can be set to -1 (original version) or +1 (tweaked version):
 - Set initial value of b (0, or random, or a guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(x_i + w_0 b)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update b
 - $b_{\text{new}} = b_{\text{old}} + c[y_i f(x_i)]W_0$

Apple vs Orange

- We have a simple predictive model that involves one trainable parameter,
 the threshold value separating apples from oranges
- We have a training algorithm for that model

What other ways are there to specify trainable parameters?

- We have a simple predictive model that involves one trainable parameter, the threshold value separating apples from oranges
- We have a training algorithm for that model

- What other ways are there to specify trainable parameters?
 - We can add a parameter that scales the input x

- Using a parameter to scale an input attribute
- Let:
 - x denote object's color (wavelength in nm)
 - y denote object's class (-1 = orange, 1 = apple)
- Prediction will be made by evaluating a function:
 - f(x)=sign(wx 1) it returns either -1 or 1 (or 0: tough to predict)
 - w is unknown, needs to be learned from examples

b=1

- E.g. if wavelength 590 separates applies/oranges, then w=1/590 is a good choice
 - x=600 will lead to wx-1 = 600/590 1 = 1.0169 1 f>0(apple)
 - \mathbf{x} = 580 will lead to wx-1 = 580/590 1 = 0.9831 1 f<0(orange)

- Using a parameter to scale an input attribute
- Algorithm
 - Set initial values of w (random guess)
 - Loop:
 - Present a sample x; and predict f(x;)=Sign(wx; -1)
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)
 - If prediction is wrong, update w
 - $\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} + \mathbf{c}[\mathbf{y}_{i} \mathbf{f}(\mathbf{x}_{i})]\mathbf{x}_{i}$
 - Why times x_i?
 - y=+1, f(x)<0, [y-f(x)]>0, we need to increase f(x)
 - x>0: to increase f(x), increase w
 - x<0: to increase f(x), decrease w</p>
 - y=-1, f(x)>0, [y-f(x)]<0, we need to decrease f(x)
 - x>0: to decrease f(x), decrease w
 - x<0: to decrease f(x), increase w</p>

We could just use: $w_{new} = w_{old} + c[y_i - f(x_i)]sign(x_i)$ but using x_i also helps us tweak magnitude of the change

- Using a parameter to scale an input attribute
- Prediction will be made by evaluating a function:
 - f(x)=sign(wx 1) it returns either -1 or 1 (or 0: tough to predict)
 - should return the same prediction as
 - f(x)=sign(x 1/w)

With one attribute (here, wavelength), training the scale w, or training the threshold b is essentially the same*

- Using a parameter to scale an input attribute
- Prediction will be made by evaluating a function:
 - f(x)=sign(wx 1) it returns either -1 or 1 (or 0: tough to predict)
 - should return the same prediction as
 - f(x)=sign(x-1/w)

With one attribute (here, wavelength), training the scale w, or training the threshold b is essentially the same*

* one small difference: with threshold b, there's no way to achieve inverted predictions, i.e., if we set apples -1, oranges +1, no threshold will work

Apple vs Orange beyond single threshold

- Feature A: object wavelength
- If A>600 apple

otherwise: if A<560 apple

otherwise orange

Apple vs Orange beyond single threshold

Feature A: object wavelength

If A>600 apple

otherwise: if A<560 apple

otherwise ???

WHAT SHOULD WE DO?

Wavelength alone is not enough

Any other attributes/features?

Multiple attributes / features

- Feature A: color
 - Apple: green, red, orange
 - Orange: orange
- Feature B: color variability
 - Apple: uniform or not
 - Orange: uniform
- Feature C: texture
 - Apple: smooth
 - Orange: rough
- Feature D: reflectance
 - Apple: reflects more light
 - Orange: reflects less light
- Feature E: shape
 - Apple: non-convex
 - Orange: convex (almost)

Multiple attributes / features

- Feature A: color
 - Apple: green, red, orange
 - Orange: orange
- Feature B: color variability
 - Apple: uniform or not
 - Orange: uniform
- Feature C: texture
 - Apple: smooth
 - Orange: rough
- Feature D: reflectance
 - Apple: reflects more light
 - Orange: reflects less light
- Feature E: shape
 - Apple: non-convex
 - Orange: convex (almost)
- Using trainable parameters ("w's") to scale individual features becomes very useful when we have >1 feature:
 - we can adjust their importance
 - we can adjust their sign (i.e., high means apple or high means orange)

Supervised ML: Perceptron

- One way of making predictions with samples that have 2 features, $x=(x^1, x^2)$
 - Define 2 trainable parameters: weights w₁ and w₂
 - Prediction is: $f(x_i) = sign(w_1x_i^1 + w_2x_i^2)$
- Perceptron Algorithm
 - Set initial values of w_1 and w_2 (random guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i) = sign(w_1x_i^1 + w_2x_i^2)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)

 $x_i^2 = x[i][2]$

- If prediction is wrong, update w:

 - $w_{1,\text{new}} = w_{1,\text{old}} + c[y_i f(x_i)]x_i^1$ $w_{2,\text{new}} = w_{2,\text{old}} + c[y_i f(x_i)]x_i^2$

Same as we did before with one "w", but now it's done separately to each "wi" using corresponding feature x^j

Note: here, ² is not 2nd power, just another index:

Same, using vectors

- One way of making predictions with samples that have 2 features, each sample i is a 2D vector: $xi=(x_i^1, x_i^2)$
 - Define a 2D vector $w=(w_1, w_2)$ of 2 trainable parameters

```
Vector (2x1)
                                                                                                    T is transpose op.,
                                                                                                   makes it (1x2)
           Prediction is: f(x_i) = sign(w_1x_i^1 + w_2x_i^2) = sign(w_1^Tx_i)
                                           Matrix multiplication:
                                                                                         Vector (2x1)
                                            (1x2) times (2x1)
                                                  \mathbf{W} = \begin{bmatrix} W_1 \\ W_2 \end{bmatrix} \leftarrow 2D \text{ Vector (2x1, a column vector)}
                                                  \mathbf{X} = \begin{bmatrix} \mathbf{X}^1 \\ \mathbf{X}^2 \end{bmatrix} 2D Vector (2x1, a column vector)
                                                   \mathbf{W}^{\mathsf{T}} = [W_1, W_2] \leftarrow \mathsf{Transposed} \; \mathsf{vector} \; (1x2)
Matrix multiplication:
(1x2) times (2x1)
                                                \mathbf{W}^{\mathsf{T}} \mathbf{X} = [W_1, W_2] \begin{bmatrix} X^1 \\ X^2 \end{bmatrix} = \mathbf{W}_1 \mathbf{X}^1 + \mathbf{W}_2 \mathbf{X}^2
gives a
single number (1x1)
```

Perceptron using vectors

- One way of making predictions with samples that have 2 features, $x=(x^1, x^2)$
 - Define a 2D vector $w=(w_1, w_2)$ of 2 trainable parameters

```
Vector (2x1)

• Prediction is: f(x_i) = sign(w_1x_i^1 + w_2x_i^2) = sign(w_1^T x)

Matrix multiplication:

(1x2) times (2x1)

Vector (2x1)

Vector (2x1)
```

- Perceptron Algorithm
 - Set initial values of vector w(random guess)
 - Loop:
 - Present a sample x_i and predict $f(x_i)=sign(w^Tx)$
 - Compare true class y_i with predicted class f(x_i)
 - If prediction is right, go to next sample (i=i+1)

HW1

- If prediction is wrong (incl. f(x_i) == 0, no prediction), update w:
 - $\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} + \mathbf{c}[\mathbf{y}_{i} \mathbf{f}(\mathbf{x}_{i})]\mathbf{x}_{i}$ vector vector vector

HW1 preview

- HW1 will be announced after add/drop, on Wednesday (8/28)
- You will have until 9/10, 5pm to complete it

 Your task will be to explore the process of training a perceptron (the vector version) from previous lecture slide

HW₁

- Python libraries to be used:
 - Pandas (reading in a csv file)
 - Matplotlib (plotting diagrams of training progress)
 - Numpy (storing vectors, doing the math with them)
 - ML libraries (e.g. sklearn, pytorch, tensforflow, others) not allowed
- The underlying goal of this simple HW is to bring everyone up to speed with python and its basic libraries for routine ML tasks like reading input, plotting, etc.
- If you are not confident with python, practice it before next Wednesday

Summary

- What we have seen is supervised learning:
 - There is a true class (e.g. type of fruit) that is unknown and should be predicted
- Supervised learning is a major type of machine learning
 - Includes self-supervised learning where the true class comes from the input features
- Other important types of ML are:
 - Unsupervised learning (e.g. cluster objects together)
 - Reinforcement learning (learn to choose good action, with distant reward, e.g. chess)