Real Analysis Homework Chapter 3. Construction of Measures Due Date: 12/16

Due Date: 12/16

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

December 16, 2019

Exercise 1(a)

 $\Omega = \mathbb{R}^2$, $\mathcal{G}_1 = \{[0, 1] \times [0, 1], \emptyset\}$ and $\mu_0([0, 1] \times [0, 1]) = 2$, $\mu_0(\emptyset) = 0$. Find μ_* and Σ_C .

Recall:

If Ω is a set, $\mathcal{G} \subset 2^{\Omega}$ and $\mu_0 : \mathcal{G} \to [0, \infty]$, then

$$\mu_*(E) = \inf_{\substack{A_k \subset \mathcal{G} \\ E \subset \cup A_k}} \sum \mu_0(A_k)$$

Recall:

E is called Caratheodory measurable if

$$\mu_*(A) = \mu_*(A \cap E) + \mu_*(A \cap E^c)$$
 for any $A \subset \Omega$,

then

$$\Sigma_C = \{ E \subset \Omega \mid E \text{ is Caratheodory measurable} \}$$

Proof.

- 1. Find μ_* .
 - (a) $\mu_*(\emptyset) = \mu_0(\emptyset) = 0$.
 - (b) For any set $E\subseteq [0,\,1]\times [0,\,1]\subset \Omega,$ then

$$\mu_*(E) = \inf_{\substack{A_k \subset \mathcal{G}_1 \\ E \subset \cup A_k}} \sum \mu_0(A_k) = \mu_0([0, 1] \times [0, 1]) = 2.$$

- (c) Let $E \cap [0, 1] \times [0, 1] = \emptyset$, then $\mu_*(E) = \infty$.
- 2. Find Σ_C .
 - (a) Let $E \cap [0, 1] \times [0, 1] = \emptyset$, then $\mu_*(A \cap E) + \mu_*(A \cap E^c) = \mu_*(\emptyset) + \mu_*(A) = \mu_*(A) \quad \text{for any } A \subset \Omega$

So
$$E \in \Sigma_C$$
 for all $E \cap [0, 1] \times [0, 1] = \emptyset$.

(b) Let $E \supseteq [0, 1] \times [0, 1]$. If $A \cap E = \emptyset$, then

$$\mu_*(A) \le \mu_*(A \cap E) + \mu_*(A \cap E^c) = \mu_*(\emptyset) + \mu_*(A \cap E^c) \le \mu_*(A)$$

If $A \cap E \neq \emptyset$, then $A \cap E^c \cap \mathcal{G}_1 \subset \emptyset$, thus

$$\mu_*(A) \le \mu_*(A \cap E) + \mu_*(A \cap E^c) = \mu_*(A \cap E) + \mu_*(\emptyset) = \mu_*(A \cap E) \le \mu_*(A)$$

$$E \in \Sigma \quad \text{for all } E \supseteq [0, 1] \times [0, 1]$$

So $E \in \Sigma_C$ for all $E \supseteq [0, 1] \times [0, 1]$.

(c) Let $E \subset [0, 1] \times [0, 1]$.

Suppose to the contrary that $E \in \Sigma_C$. Take $A = [0, 1] \times [0, 1]$, then

$$2 = \mu_*(A) = \mu_*(A \cap E) + \mu_*(A \cap E^c) = \mu_*(E) + \mu_*(A \setminus E) = \mu_0(A) + \mu_0(A) = 2 + 2 = 4$$

Therefore we get a contradiction. So $E \notin \Sigma_C$ for all $E \subset [0, 1] \times [0, 1]$.

Exercise 1(b)

Let
$$\Omega = \mathbb{R}^2$$
, $\mathcal{G}_2 = \{Q_1 = [0, 1] \times [0, 1], Q_2 = \left[\frac{1}{2}, 2\right] \times \left[\frac{1}{2}, 2\right], \emptyset\}$ and $\mu_0(Q_1) = 2$, $\mu_0(Q_2) = \frac{9}{4}$, $\mu_0(\emptyset) = 0$. Find μ_* and Σ_C .

Proof.

- 1. Find μ_* .
 - (a) $\mu_*(\emptyset) = \mu_0(\emptyset) = 0$.
 - (b) For any set $E \subseteq Q_1 \subset \Omega$, then

$$\mu_*(E) = \inf_{\substack{A_k \subset \mathcal{G}_2 \\ E \subset \cup A_k}} \sum \mu_0(A_k) = \mu_0(Q_1) = 2.$$

(c) For any set $E \subseteq Q_2 \setminus Q_1 \subset \Omega$, then

$$\mu_*(E) = \inf_{\substack{A_k \subset \mathcal{G}_2 \\ E \subset \cup A_k}} \sum \mu_0(A_k) = \mu_0(Q_2) = \frac{9}{4}.$$

(d) For any set $E \subseteq Q_1 \cup Q_2$ and $E \cap Q_1 \neq \emptyset$, $E \cap Q_2 \setminus Q_1 \neq \emptyset$, then

$$\mu_*(E) = \inf_{\substack{A_k \subset \mathcal{G}_2 \\ E \subset \cup A_k}} \sum \mu_0(A_k) = \mu_0(Q_1) + \mu_0(Q_2) = 2 + \frac{9}{4} = 4\frac{1}{4}.$$

(e) Let $E \cap (Q_1 \cup Q_2) = \emptyset$, then $\mu_*(E) = \infty$.

- 2. Find Σ_C .
 - (a) Let $E \cap (Q_1 \cup Q_2) = \emptyset$, then

$$\mu_*(A \cap E) + \mu_*(A \cap E^c) = \mu_*(\emptyset) + \mu_*(A) = \mu_*(A)$$
 for any $A \subset \Omega$

So $E \in \Sigma_C$ for all $E \cap (Q_1 \cup Q_2) = \emptyset$.

(b) Let $E \supseteq Q_1 \cup Q_2$. If $A \cap E = \emptyset$, then

$$\mu_*(A) < \mu_*(A \cap E) + \mu_*(A \cap E^c) = \mu_*(\emptyset) + \mu_*(A \cap E^c) < \mu_*(A)$$

If $A \cap E \neq \emptyset$, then $A \cap E^c \cap \mathcal{G}_2 \subset \emptyset$, thus

$$\mu_*(A) \le \mu_*(A \cap E) + \mu_*(A \cap E^c) = \mu_*(A \cap E) + \mu_*(\emptyset) = \mu_*(A \cap E) \le \mu_*(A)$$

So $E \in \Sigma_C$ for all $E \supseteq Q_1 \cup Q_2$.

(c) Let $E \subset Q_1 \cup Q_2$ where $E \cap Q_1 \neq \emptyset$ or $E \cap Q_2 \setminus Q_1 \neq \emptyset$. Suppose to the contrary that $E \in \Sigma_C$. Take $A = Q_1 \cup Q_2$, then

$$4\frac{1}{4} = \mu_*(A) = \mu_*(A \cap E) + \mu_*(A \cap E^c)$$

$$= \mu_*(E) + \mu_*(A \setminus E)$$

$$= \mu_0(A) + \mu_*((A \setminus E) \cap Q_1) + \mu_*((A \setminus E) \cap (Q_2 \setminus Q_1))$$

$$> \mu_0(A) = 4\frac{1}{4}$$

Therefore we get a contradiction. So $E \notin \Sigma_C$ for all $E \subset Q_1 \subset Q_2$.

Exercise 2

Let $\Omega = \mathbb{R}^2$. Assume E is Lebesgue measurable with finite measure, $E_1 \cup E_2 = E$, $E_1 \cap E_2 = \emptyset$, and $\mu_*(E) = \mu_*(E_1) + \mu_*(E_2)$. Prove that E_1 and E_2 are Lebesgue measurable.

Proof.

Choose a G_{δ} set G such that $E_1 \subseteq G$ and $\mu_*(E_1) = \mu(G)$. In particular, G is measurable.

Now let $H = (E_1 \cup E_2) \cap G$ so H is measurable.

Since $E_1 \subseteq H \subseteq G$, then $\mu_*(E_1) \leq \mu(H) \leq \mu(G) = \mu_*(E_1)$, so $\mu_*(E_1) = \mu(H)$.

Thus

$$\mu_*(E_1) + \mu_*(E_2) = \mu_*(E_1 \cup E_2)$$

$$= \mu_*((E_1 \cup E_2) \cap H) + \mu_*((E_1 \cup E_2) \setminus H)$$

$$= \mu_*(H) + \mu_*((E_1 \cup E_2) \setminus H)$$

$$= \mu_*(E_1) + \mu_*((E_1 \cup E_2) \setminus H).$$

So

$$\mu_*(E_2) = \mu((E_1 \cup E_2) \setminus H).$$

On the other hand, we have $(E_1 \cup E_2) \setminus H \subseteq E_2$. Thus

$$\mu_*(E_2) = \mu_*(E_2 \cap ((E_1 \cup E_2) \setminus H)) + \mu_*(E_2 \setminus ((E_1 \cup E_2) \setminus H))$$

= $\mu_*((E_1 \cup E_2) \setminus H) + \mu_*(E_2 \setminus ((E_1 \cup E_2) \setminus H))$
= $\mu_*(E_2) + \mu_*(E_2 \setminus ((E_1 \cup E_2) \setminus H)),$

so $\mu_*(E_2 \setminus ((E_1 \cup E_2) \setminus H)) = 0$, then $E_2 \setminus ((E_1 \cup E_2) \setminus H)$ is measurable. Hence $E_2 = ((E_1 \cup E_2) \setminus H) \cup (E_2 \setminus ((E_1 \cup E_2) \setminus H))$ is also measurable.

Exercise 3

Prove the following lemma.

Lemma:

Assume f, g are measurable on Ω . Then

- (1) fg is measurable.
- (2) f/g is measurable if $g(x) \neq 0$ for each $x \in \Omega$.
- (3) If $\{f(x), g(x)\} \neq \{\infty, -\infty\}$ for each $x \in \Omega$, then f + g is measurable.

Proof.

(1) Since f is measurable and $\{f^2 > a\} = \{f > \sqrt{a}\} \cup \{f < -\sqrt{a}\}\$ for all $a \ge 0$, then f^2 is measurable.

By (3), since f and g are measurable, so are f + g and f - g. Also, since f + g and f - g are measurable, so are $(f + g)^2$ and $(f - g)^2$.

Hence, $fg = \frac{(f+g)^2 - (f-g)^2}{4}$ is measurable.

- (2) First, we need to prove that if $g \neq 0$ and is measurable, then 1/g is measurable.
 - (a) If a > 0, then $\{1/g > a\} = \{0 < g < 1/a\}$.
 - (b) If a = 0, then $\{1/q > a\} = \{q > 0\}$.
 - (c) If a < 0, then $\{1/g > a\} = \{g > 0\} \cup \{g < 1/a\}$.

So if $g \neq 0$ and is measurable, then 1/g is measurable.

By (1), if $g(x) \neq 0$ for each $x \in \Omega$, since f and 1/g are measurable, then f/g is measurable.

(3) If g is measurable and a is finite, then $\{f > \lambda - a\}$ is measurable for each finite λ . So $\{f + a > \lambda\}$ is measurable for each finite λ .

And since g is measurable, so is a - g for any finite a.

If f and a-g are measurable for each finte a. Let $\{r_k\}$ be the rational numbers, then

$$\{f > a - g\} = \bigcup_{k} \{f > r_k > a - g\} = \bigcup_{k} (\{f > r_k\} \cap \{r_k > a - g\})$$

4

So $\{f > a - g\}$ is measurable.

Also, since $\{f+g>a\}=\{f>a-g\}$ and $\{f(x),g(x)\}\neq\{\infty,-\infty\}$, then f+g is measurable.

Exercise 4

Assume (Ω, Σ, μ) is a metric space. Let $\widetilde{\Sigma} = \{E \cup Z \mid E \in \Sigma, Z \text{ is a null set}\}$ and $\widetilde{\mu}(E \cup Z) = \mu(E)$ if $E \in \Sigma$ and Z is null. Prove $(\Omega, \widetilde{\Sigma}, \widetilde{\mu})$ is a complete measure space.

Proof.

First, we need to check $\widetilde{\mu}$ is a measure of Σ .

Notice that $\widetilde{\mu}(\emptyset) = \mu(\emptyset) = 0$.

If $A_1 \subset A_2$, $A_1 = E_1 \cup Z_1$ and $A_2 = E_2 \cup Z_2$, where E_1 , $E_2 \in \Sigma$ and Z_1 , $Z_2 \in \text{Null}(\Sigma)$, then

$$\widetilde{\mu}(A_1) = \mu(E_1) \le \mu(E_2) = \widetilde{\mu}(A_2).$$

Lastly, if $A_i = E_i \cup Z_i$ where $E_i \in \Sigma$ and $Z_i \in \text{Null}(\Sigma)$ for all $i \in \mathbb{N}$, then

$$\widetilde{\mu}(\bigcup_{i=1}^{n} A_i) = \mu(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} \mu(E_i) = \sum_{i=1}^{n} \widetilde{\mu}(A_i).$$

So $\widetilde{\mu}$ is a measure of $\widetilde{\Sigma}$.

Next for completion, we need to show if $Z \in \widetilde{\Sigma}$ and $\widetilde{\mu}(Z) = 0$, if $E \subset Z$ then $E \subset \widetilde{\Sigma}$. Let $F \subset Z \in \text{Null}(\Sigma)$.

Without loss of generality, if $E \cup F \in \widetilde{\Sigma}$, while $F \subset Z \in \text{Null}(\Sigma)$, one can assume that $E \cap Z = \emptyset$. Indeed, otherwise one could write

$$E \cup F = (E \setminus Z) \cup [(Z \cap E) \cup F].$$

Also, we have

$$E \setminus Z \in \Sigma$$
 and $(Z \cap E) \cup F \subset Z \in \text{Null}(\Sigma)$

So $E^c = E^c \setminus Z \cup Z \in \widetilde{\Sigma}$, since $E^c \setminus Z \in \Sigma$, $Z \in \text{Null}(\Sigma)$. Hence $(\Omega, \widetilde{\Sigma}, \widetilde{\mu})$ is a complete.