

SEQUENCE LISTING

<110> Hanrahan, John W.
Luo, Yishan

<120> METHOD FOR LABELING A MEMBRANE-LOCALIZED PROTEIN

<130> MGU-0027

<160> 10

<170> PatentIn version 3.1

<210> 1
<211> 4572
<212> DNA
<213> Homo sapiens

<400> 1
aatttggaaagc aaatgacatc acagcaggctc agagaaaaag ggttgagcgg caggcaccca
60

gagtagtagg tctttggcat taggagcttg agcccagacg gccctagcag ggaccccagc
120

gccccgagaga ccatgcagag gtcgcctctg gaaaaggcca gcgttgtctc caaacttttt
180

ttcagctgga ccagaccaat ttgaggaaa ggatacagac agcgcctgga attgtcagac
240

atataccaaa tcccttctgt tgattctgct gacaatctat ctgaaaaatt ggaaagagaa
300

tgggatagag agctggcttc aaagaaaaat cctaaactca ttaatgccct tcggcgatgt
360

ttttctgga gatttatgtt ctatggaatc ttttatatt tagggaaatg caccaaagca
420

gtacagcctc tcttactggg aagaatcata gtttcctatg acccgataa caaggaggaa
480

cgctctatcg cgatttatct aggcataaggc ttatgccttc tctttattgt gaggacactg
540

ctcctacacc cagccatttt tggccttcat cacattggaa tgcagatgag aatagctatg
600

tttagtttga ttataagaa gactttaaag ctgtcaagcc gtgttctaga taaaataagt
660

attggacaac ttgttagtct ctttccaac aacctgaaca aatttcatgaa aggacttgc
720

ttggcacatt tcgtgtggat cgctcctttg caagtggcac tcctcatggg gctaattctgg
780

gagttgttac aggcgtctgc cttctgtgga cttggttcc tgatagtcct tgccctttt
840

caggctggc tagggagaat gatgatgaag tacagagatc agagagctgg gaagatcagt
900

gaaagacttg tgattacctc agaaatgatt gaaaatatcc aatctgttaa ggcatactgc
960

tggagaagaag caatggaaaa aatgattgaa aacttaagac aaacagaact gaaactgact
1020

cggaaggcag cctatgtgag atacttcaat agtcagcct tcttcttctc agggttctt
1080

gtggtgttt tatctgtgct tccctatgca ctaatcaaag gaatcatcct ccggaaaata
1140

ttcaccacca tctcattctg cattgttctg cgcatggcgg tcactcggca atttccctgg
1200

gctgtacaaa catggatga ctctcttggg gcaataaaca aaatacagga tttcttacaa
1260

aagcaagaat ataagacatt ggaatataac ttaacgacta cagaagtagt gatggagaat
1320

gtaacagcct tctgggagga gggatttggg gaattatttg agaaagcaaa acaaaacaat
1380

aacaatagaa aaacttctaa tggtgatgac agcctttct tcagtaattt ctcacttctt
1440

ggtaactcctg tcctgaaaga tattaatttc aagatagaaa gaggacagtt gttggcggtt
1500

gctggatcca ctggagcagg caagacttca cttctaattgg tgattatggg agaactggag
1560

ccttcagagg gtaaaattaa gcacagtggg agaatttcat tctgttctca gttttcctgg
1620

attatgcctg gcaccattaa agaaaatatac atcttggtg tttcctatga tgaatataga
1680

tacagaagcg tcatcaaagc atgccaacta gaagaggaca tctccaagtt tgcagagaaa
1740

gacaatatag ttcttggaga aggtggaatc acactgagtg gaggtcaacg agcaagaatt
1800

tcttagcaa gagcagtata caaagatgct gatttgtatt tattagactc tcctttggg
1860

taccttagatg ttttaacaga aaaagaaata tttgaaagct gtgtctgtaa actgatggct
1920

aacaaaacta ggattttggc cacttctaaa atggaacatt taaagaaagc tgacaaaata
1980

ttaattttgc atgaaggtag cagctatTTT tatgggacat tttcagaact caaaaatcta
2040

cagccagact ttagctcaaa actcatggga tgtgattctt tcgaccaatt tagtgcagaa
2100

agaagaaatt caatcctaac tgagacctta caccgttct cattagaagg agatgctcct
2160

gtctcctgga cagaaacaaa aaaacaatct tttaaacaga ctggagagtt tggggaaaaaa
2220

aggaagaatt ctattctcaa tccaatcaac tctatacgaa aattttccat tgtgcaaaag
2280

actcccttac aaatgaatgg catcgaagag gattctgatg agcctttaga gagaaggctg
2340

tccttagtac cagattctga gcagggagag gcgatactgc ctcgcacatcag cgtgatcagc
2400

actggccccca cgcttcaggc acgaaggagg cagtctgtcc tgaacctgat gacacactca
2460

gttaaccaag gtcagaacat tcaccgaaag acaacagcat ccacacgaaa agtgtcaactg
2520

gccctcagg caaacttgac tgaactggat atatattcaa gaaggttatc tcaagaaact
2580

ggcttgaaa taagtgaaga aattaacgaa gaagacttaa aggagtgcTTT ttttgcgtat
2640

atggagagca taccagcagt gactacatgg aacacatacc ttcgatatat tactgtccac
2700

aagagcttaa ttttgcgtat aatttgggcTTT ttagtaattt ttctggcaga ggtggctgct
2760

tcttggttg tgctgtggct cttggaaac actcctcttc aagacaaagg gaatagtact
2820

catagtagaa ataacagcta tgcaGTGATT atcaccagca ccagttcgta ttatgtgttt
2880

tacatttacg tgggagtagc cgacactttg cttgcatacg gattcttcag aggtctacca
2940

ctggcata ctctaattcac agtgcgaaa atttacacc aaaaaatgtt acattctgtt
3000

cttcaagcac ctatgtcaac cctcaacacg ttgaaacgcag gtggattct taatagattc
3060

tccaaagata tagcaatttt ggatgacctt ctgcctctta ccatattga cttcatccag
3120

ttgttattaa ttgtgattgg agctatagca gttgtcgacg ttttacaacc ctacatctt
3180

gttgcaacag tgccagtgtat agtggctttt attatgttga gagcatattt cctccaaacc
3240

tcacagcaac tcaaacaact ggaatctgaa ggcaggagtc caatttcac tcacatcttgc
3300

acaagcttaa aaggactatg gacacttcgt gccttcggac ggcagccta ctttgaaact
3360

ctgttccaca aagctctgaa ttacataact gccaaactggt tcttgtaccc gtcaacactg
3420

cgctggttcc aaatgagaat agaaatgatt tttgtcatct tcttcattgc tgttaccc
3480

atttccattt taacaacagg agaaggagaa ggaagagttg gtattatcct gacttttagcc
3540

atgaatatca tgagtacatt gcagtggct gtaaactcca gcatacatgt ggatagctt
3600

atgcgatctg tgagccgagt cttaagttc attgacatgc caacagaagg taaacctacc
3660

aagtcaacca aaccatacaa gaatggccaa ctctgaaag ttatgattat tgagaattca
3720

cacgtgaaga aagatgacat ctggccctca gggggccaaa tgactgtcaa agatctcaca
3780

gcaaaataca cagaaggtgg aaatgccata ttagagaaca tttccttctc aataagtcct
3840

ggccagaggg tgggcctctt gggagaact ggatcaggaa agagtacttt gttatcagct
3900

ttttgagac tactgaacac tgaaggagaa atccagatcg atggtgtgtc ttgggattca
3960

ataactttgc aacagtggag gaaagccttt ggagtgatac cacagaaagt atttatttt
4020

tctggAACAT ttagaaaaaa ctggatccc tatgaacagt ggagtgatca agaaatatgg
4080

aaagttgcag atgaggttgg gctcagatct gtgatagaac agtttcctgg gaagcttgac
4140

tttgccttg tggatggggg ctgtgtccta agccatggcc acaagcagtt gatgtgcctt
4200

gctagatctg ttctcagtaa ggcaagatc ttgctgcttg atgaacccag tgctcattt
4260

gatccagtaa cataccaaat aattagaaga actctaaaac aagcatttgc tgattgcaca
4320

gtaattctct gtgaacacag gatagaagca atgctggaat gccaaacaatt tttggtcata
4380

gaagagaaca aagtgcggca gtacgattcc atccagaaac tgctgaacga gaggagcctc
4440

ttccggcaag ccatcagccc ctccgacagg gtgaagctct ttccccaccg gaactcaagc
4500

aagtgcagg ctaagcccc gattgctgct ctgaaagagg agacagaaga agaggtgcaa
4560

gatacaaggc tt
4572

<210> 2
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic biotin target sequence tag

<400> 2

Cys Gly Ser Gly Leu Asn Asp Ile Phe Glu Ala Gln Lys Ile Glu Trp
1 5 10 15

His Glu Gly Ala Pro Cys
20

<210> 3
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic FLAG epitope

<400> 3

Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 4
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic hemagglutinin tag

<400> 4

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
1 5

<210> 5

```
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 5
acacactcag ttaaccaagg tcagaacatt cac
33

<210> 6
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 6
gattttctga gcctcgaaga tgcgttcag gccggagccg cagttatttc tactatg
57

<210> 7
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 7
gaggctcaga aaatcgaatg gcacgaaggc ggcgcgtgca gctatgcagt gattatcacc
60

<210> 8
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 8
ccagatgtca tcttttttca cgtggtaatt ctcaataata atcataac
48

<210> 9
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 9
```

ggagacaatg gatccaagga taacaccgtg ccactgaaat tg
42

<210> 10
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide primer

<400> 10
gatcccccaa gcttggatcc tcattttct gcactacgca gggatatttc accgcc
56