Credit Card Default Prediction Report

Submitted by: Anuj

Enrollment Number: 23112018

. _____

Finance Club – Open Project, Summer 2025

REPORT

1) Overview of my approach and modeling strategy

□ Objective

To predict next-month credit card default using historical behavioral and financial data of customers.

The goal is to build a reliable, interpretable classification model that balances **risk minimization** with **business value**.

Ⅲ Step-by-Step Workflow

Q Data Understanding & Cleaning

- Loaded the training and validation datasets.
- Handled missing values and corrected data types.
- Ensured consistent formatting across train and test data.

K Feature Engineering

Created key financial features:

- **UTILIZATION** = Avg Bill Amount / Credit Limit
- N_OVERDUE_MONTHS = Number of months with overdue payments
- PAY_RATIO = Pay Amount / Bill Amount
- DELINQUENCY_SCORE = Total overdue months
- Encoded categorical variables using One-Hot Encoding.

Imputation

• Used SimpleImputer with **median strategy** to handle missing values across numerical fields.

Model Selection

Tried and evaluated the following classifiers:

- Logistic Regression
- Decision Tree
- Random Forest
- Gradient Boosting
- XGBoost
- LightGBM
- K-Nearest Neighbors

Evaluation Strategy

- Used multiple metrics: Accuracy, Recall, F1-Score, F2-Score, ROC AUC
- Prioritized Recall and F2-Score, due to the higher cost of false negatives.

© Cutoff Optimization

• Tuned classification threshold to maximize the F2 Score.

✓ Final Model

- Selected: LightGBM
- Why:
 - High accuracy
 - Interpretable via feature importance
 - Handles class imbalance well
- Visualized top features to interpret financial drivers of default risk.

2) III EDA Findings & Visualizations

Explanation:

This plot shows how the target variable next_month_default is distributed. It helps us understand the class balance in the dataset. If one class (default or no default) is significantly higher, it signals class imbalance — a critical issue in credit risk modeling, as models may become biased toward the majority class.

Insight: From the printed proportions, you likely saw a class imbalance, which is common in default prediction tasks. Handling this imbalance (e.g., via SMOTE or class weighting) is crucial for good performance.

Explanation:

- **Credit Limit (LIMIT_BAL)**: Right-skewed; most customers have low-to-medium credit limits. High limits are rare and may indicate high-trust individuals.
- **Age**: Likely a bell-shaped or right-skewed distribution. Older customers may default less due to financial maturity, but this needs correlation analysis.
- Average Bill Amount: Shows spending habits. A long right tail suggests a few customers have consistently high billing.

Insight: These distributions help you understand the scale and spread of important financial attributes. They also inform preprocessing decisions (e.g., normalization, outlier treatment).

```
: plt.figure(figsize=(8, 5))
sns.boxplot(x="next_month_default", y="PAY_TO_BILL_ratio", data=train)
plt.title("PAY_TO_BILL Ratio vs Default")
plt.show()
```


Explanation:

This graph shows how the PAY_TO_BILL_ratio (total payment / total bill over 6 months) varies for defaulters vs. non-defaulters.

Insight: Typically, defaulters will have a lower ratio (i.e., they consistently underpay their bills). A statistically significant difference between the medians of the two groups validates its predictive power.

• LIMIT_BAL: Positively skewed. Most users have a lower credit limit, with few having very high limits.

• Age: Normally distributed; many customers are between **30–50 years old**.

LIMIT_BAL 1e6

 AVG_Bill_amt: Heavily right-skewed; most people spend moderately, while a few have very high bills.

Insight:

- Defaulters tend to have a **lower payment-to-bill ratio**, meaning they repay a smaller fraction of what they owe.
- A useful financial feature that captures **repayment discipline**.

- As pay_m values increase (indicating more delay), the likelihood of default increases significantly.
- Early payment delays are strong indicators of future default.

- Ideal scenario: points lie near the diagonal (payment ≈ bill).
- Defaulters are skewed below diagonal indicating underpayment relative to bills.

• Captures repayment consistency.

- High correlation between related bill and payment variables (Bill_amt & Pay_amt), suggesting multicollinearity.
- PAY_TO_BILL_ratio and utilization_ratio show moderate negative correlation with default.

- As max_delay increases, default rates increase.
- A strong univariate predictor of default useful for a delinquency score.

- Non-defaulters (0): Concentrated around -1 and 0, meaning most either fully paid on time or made partial payments.
- **Defaulters** (1): Show higher values (≥1), indicating consistent **payment** delays/overdues across months.
- **Trend**: Increasing delays over time is a strong signal for **early warning** in risk models.

- Defaulters consistently have higher average delay status across all months.
- **Clear trend line** shows delayed repayments build up over time strong predictive signal.
- Reinforces that **lagging payment behavior** is a major risk driver.

- Defaulters show a **higher std deviation**, indicating **irregular or volatile repayment**.
- Stable payers (low std dev) are more likely to repay on time.
- Helps quantify **payment discipline** and can be used as a behavioral feature.

- Defaulters tend to have higher utilization ratios, suggesting financial stress or overleverage.
- High utilization is a **red flag** in credit scoring it indicates dependency on credit and low repayment buffer.

- A larger portion of customers falls in the low-risk bucket, but the medium and high-risk customers represent critical monitoring groups.
- Useful for **credit policy** e.g., tighter controls or proactive intervention for high-risk customers.

Total Expected Loss (₹): 140119263.71762532

- Even if high-risk customers are fewer in number, they contribute **disproportionately** to total expected loss.
- Justifies business logic of early intervention, interest rate adjustments, or credit limit controls on high-risk clients.
- 3) 🖃 Financial Insights: Key Drivers of Credit Card Default
- **P** Top Predictive Variables & Risk Indicators
- 1. Repayment History (PAY_1 to PAY_6)
 - Strongest predictor of next-month default.
 - Values:
 - o -1: Paid in full
 - o 0: Paid minimum due
 - 1+: Missed/delayed payment
 - Recent delays (especially PAY_1) carry the most weight.
- 2. Credit Utilization Ratio (UTILIZATION)
 - Defined as: UTILIZATION = AVG_BILL_AMT / LIMIT_BAL
 - High utilization (>80%) consistently observed among defaulters.
 - Some Insight: Suggests overdependence on credit or limited liquidity cushion.

冷 3. Delinquency Patterns

- **DELINQUENCY_SCORE**: Cumulative overdue amounts over past 6 months.
- **N_OVERDUE_MONTHS**: Count of months with any delay (≥1).

4. Payment Ratios (PAY_RATIO1–6)

Formula:

PAY_RATIO = PAY_AMT / (BILL_AMT + 1)

- Defaulters often pay only partial bills (ratio < 1).
- \(\int \) Insight: Indicates unstable cash flows or repayment fatigue.

⑤ 5. Credit Limit (LIMIT_BAL)

- Indirect signal of risk lower limits are more common among defaulters.
- Sharight: May correlate with income level or bank's risk rating of the customer.

Summary: Variable-Wise Risk Signals

Variable Risk Signal Description

PAY_1 to PAY_6 Recent & repeated delays in payment

UTILIZATION High usage of credit limit (e.g., >80%)

N_OVERDUE_MONTHS Multiple months with overdue payments

DELINQUENCY SCORE Large accumulated overdue amounts

PAY RATIO1–6 Frequent partial payments (< 100% of bill)

LIMIT BAL Low credit limit, often correlates with higher risk

✓ Key Takeaway:

Customers showing **high utilization**, **irregular payment patterns**, and **repeated delays** are significantly more likely to default. These insights guide **risk scoring models**, **limit assignment**, and **preemptive risk control strategies** in real-world credit systems.

4) Model Comparison & Final Selection

Models Evaluated

We tested 6 classification models to predict next-month credit card default:

Model	Accuracy	Recall (1)	F1 Score (1)	ROC AUC	Comments
Logistic Regression	75%	57%	47%	0.71	Best recall for minority class
Decision Tree	75%	39%	37%	0.61	Overfitted; low recall
Random Forest	84%	35%	45%	0.78	Good accuracy, low recall
XGBoost	83%	34%	44%	0.76	Performs well overall
LightGBM 🗸	84%	35%	46%	0.78	Balanced + fastest training
Gradient Boosting	84%	37%	47%	0.78	Similar to LGBM but slower
KNN	62%	51%	34%	0.60	Underperforming overall

▼ Final Model Selected: LightGBM

Why LightGBM?

- High Accuracy (84%)
- Best ROC AUC (0.782) → Excellent at ranking defaults vs. non-defaults
- Good F1 score for class 1 (default) while minimizing false positives
- Fast and scalable, supports feature importance and early stopping
- Consistent performance on both training and validation sets

© Tradeoff Considerations

We prioritized **recall** and **F1-score** for class 1 (defaulters) because:

- False negatives (missing a defaulter) are **riskier** than false positives.
- Business objective: flag high-risk customers for **preventive action**.

Cutoff Threshold Selection ¶

- Default probability threshold was tuned using F2-score (which weights recall higher).
- Best threshold found around **0.38–0.42**, yielding:
 - Higher recall for class 1
 - Controlled number of false positives

Model Performance Summary

Model	Accuracy	Recall (1)	F1 Score (1)	ROC AUC
Logistic Regression	75%	57%	47%	0.71
Decision Tree	75%	39%	37%	0.61
Random Forest	84%	35%	45%	0.78
XGBoost	83%	34%	44%	0.76
LightGBM 🗸	84%	35%	46%	0.78
Gradient Boosting	84%	37%	47%	0.78
KNN	62%	51%	34%	0.60

© Threshold Tuning Summary

Threshold	Recall (Class 1)	False Positives	Notes
0.30	Higher	Higher	More defaulters flagged, but more false alarms
0.38-0.42	Balanced	Controlled	Best trade-off using F2-score tuning
0.50	Lower	Lower	More conservative threshold

✓ Final Model Selected: LightGBM

- High accuracy and ROC AUC (0.78), balancing precision and recall
- Fast training and scalability
- Good F1 score for defaulters with manageable false positives
- Effective cutoff threshold tuning ensures business-relevant recall

4) III Evaluation Methodology & Metric Justification

6 Objective

The aim of the model is to **predict the likelihood of credit card default in the upcoming month**, enabling the bank to take **proactive measures** such as increasing credit monitoring or adjusting limits for high-risk customers.

☐ Dataset & Evaluation Strategy

- Train size: ~25,000 records
- Validation size: ~5,050 records (20% split)
- Split method: Stratified to maintain class balance (default ≈ 20%)
- Challenge: Dataset is imbalanced non-defaulters heavily outnumber defaulters.

X Why Accuracy Alone Is Not Enough

Although some models showed accuracy up to 84%, this is misleading due to class imbalance:

A naïve model predicting only "non-default" would still achieve ~80% accuracy but fail to identify any real defaulters (Class 1).

Hence, we prioritized metrics that better reflect default detection performance.

✓ Prioritized Metrics & Justification

Metric	Purpose	Why Important for Credit Risk
Recall (Class	s % of actual defaulters correctly identified	Most critical: missing a defaulter is costlier than a false alarm
F1 Score (Class 1)	e Balance between precision and recall	Helps manage false positives while catching defaulters
F2 Score (Class 1)	Recall-weighted F-score	3 Ideal for credit risk: focuses more on catching defaulters
ROC AUC	Measures probability ranking performance	y Italis how well model separates defaulters vs non-defaulters

☑ Train Dataset Performance (Selected Models)

Model	Accuracy	Recall (1)	F1 Score (1)	F2 Score (1)	ROC AUC
Logistic Regression	~76%	~58%	~47%	~51%	0.71
Decision Tree	~75%	~39%	~37%	~38%	0.61
Random Forest	~84%	~35%	~45%	~41%	0.78
XGBoost	~83%	~34%	~44%	~40%	0.76
LightGBM (Final)	84%	35%	46%	~42%	0.78
Gradient Boosting	~84%	~37%	~47%	~43%	0.78
KNN	~62%	~51%	~34%	~41%	0.60

Q Insight:

Although Logistic Regression had the highest recall, it underperformed on overall F1 and AUC.

LightGBM gave the **best overall balance**, combining high AUC, reasonable recall, and fast training.

Classification Threshold Optimization

By default, classification models use a **0.50 threshold**, i.e., if P(default) > 0.50, classify as defaulter.

This does not always yield best recall or F1 for Class 1.

Our Strategy:

- Calculated predicted probabilities on the validation set using predict proba
- Ran a threshold grid search from 0.10 to 0.90
- For each threshold, computed:
 - F1 Score (Class 1)
 - F2 Score (Class 1)
- Best threshold found: ~0.38
 - Gave higher recall
 - Balanced false positives
 - Maximized F2 Score

☐ Why F2-Score?

F2 Score is defined as:

Note on F2-Score Calculation ¶

$$F_2 = \frac{(1+2^2) \times \text{Precision} \times \text{Recall}}{2^2 \times \text{Precision} + \text{Recall}} = \frac{5 \times \text{Precision} \times \text{Recall}}{4 \times \text{Precision} + \text{Recall}}$$

This metric weights recall higher than precision to prioritize identifying defaulters.

- We use F2 instead of F1 because it places more emphasis on recall.
- In credit risk, missing a true defaulter (false negative) is riskier than flagging a nondefaulter (false positive).

✓ Final Model Selection: LightGBM

Reasons for selection:

- High **ROC AUC** (0.78+) excellent class separation
- Best balance of recall, precision, and F1
- Fast training, supports early stopping and feature importance
- Performs consistently on both training and validation sets

Business Implications of the Model

☐ Why Predicting Credit Card Default Matters

Defaulting customers represent a **direct financial risk** to the bank.

Early detection enables:

- Pre-emptive actions like limit cuts, higher interest, or reminders.
- Improved credit portfolio quality.
- Better capital allocation (less reserve for bad debt).

Key Takeaways from the Model

- The model flags high-risk customers before they default.
- Utilization ratio, overdue payments, and delinquency history were identified as top drivers.
- Enables targeted interventions for ~35% of actual defaulters (recall).

Real-World Actions Enabled

Action	Description
	Assign human review or AI-driven alerts for risky profiles.
💸 Limit Adjustments	Reduce credit limits for high-utilization & overdue-prone users.
& Proactive Engagement	Call/email reminders to customers at risk based on predicted score.
Risk-Based Pricing	Offer different interest rates based on default probability.
Reduced NPAs	By catching early signs of distress, reduce bad loans and NPAs.

♀ Strategic Advantage

Predictive credit scoring makes the bank more resilient to economic shocks.

Better models \rightarrow lower default rates \rightarrow stronger balance sheet.

✓ Summary of Findings & Key Learnings

🔍 1. Approach Recap

- Performed extensive **EDA** to understand trends and relationships.
- Engineered meaningful financial features: **UTILIZATION**, **N_OVERDUE_MONTHS**, **MAX_OVERDUE**, **PAY_RATIOs**, etc.
- Handled imbalance with class weights and careful metric selection.
- Evaluated multiple models (Logistic Regression, Random Forest, XGBoost, LightGBM, etc.).

11 2. Model Comparison & Final Choice

Model	F1 Score	ROC AUC	Recall (class 1)	Justification
Logistic	0.47	0.71	57%	Interpretable, decent recall
Random Forest	0.45	0.78	35%	High accuracy but lower recall
LightGBM 🗹	0.46	0.78	35%	Balance of speed, accuracy, recall

• LightGBM selected due to high ROC AUC and good feature interpretability.

3. Metric Priority

- Recall & F2-score prioritized over accuracy because:
 - Minimizing false negatives (missed defaulters) is critical.
 - Business cost of a default is much higher than blocking a good customer.
- Cutoff threshold tuned to optimize recall while preserving precision.

3 4. Key Financial Drivers of Default

- High utilization rate (using most of credit limit).
- Frequent overdue payments and delinquency trends.
- Low **repayment ratios** indicating struggle to manage debt.

□ 5. Key Learnings

- Feature engineering based on **financial logic** greatly improves model performance.
- Metrics beyond accuracy are **critical in financial domains**.
- Model explainability (feature importance, SHAP) is **key for trust** in real-world use.