Foundations of Machine Learning

LINEAR REGRESSION (CONTD)

August 25, 2020

Recap: Least Squares Linear Regression

Given: Training data containing n samples where each $\mathbf{x}_i \in \mathbb{R}^d$, $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^n$

Least squares solution to linear regression is as follows:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg \, min}} E(\mathbf{w}, \mathcal{D}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \left\{ \sum_{i=1}^n \left(\sum_{j=0}^m w_j \phi_j(\mathbf{x}_i) - y_i \right)^2 \right\}$$
$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg \, min}} \underbrace{\left(||\Phi \mathbf{w} - \mathbf{y}||^2 \right)} = \underbrace{\left(\Phi^T \Phi\right)^{-1} \Phi^T \mathbf{y}}$$

where

$$\mathbf{\Phi} = \begin{bmatrix} 1 & \phi_1(\mathbf{x}_1) & \dots & \phi_m(\mathbf{x}_1) \\ \dots & \dots & \dots \\ 1 & \phi_1(\mathbf{x}_n) & \dots & \phi_m(\mathbf{x}_n) \end{bmatrix}, \mathbf{w} = \begin{bmatrix} w_0 \\ \dots \\ w_m \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$$

$$\mathbf{n} \times (\mathbf{m} + \mathbf{l}) \times \mathbf{j} \qquad \mathbf{n} \times \mathbf{j}$$

• From the training set $\mathcal{D} = \{\mathbf{x}_j, y_j\}_{j=1}^n$, assume each target y_j is drawn from a probabilistic model.

- From the training set $\mathcal{D} = \{\mathbf{x}_j, y_j\}_{j=1}^n$, assume each target y_j is drawn from a probabilistic model.
- ullet Let us assume a noisy linear model parameterized by $oldsymbol{w} \in \mathbb{R}^d$

$$y_j = \mathbf{w}^T \mathbf{x}_j + \epsilon_j$$

Each target is associated with an additive stochastic noise modeled as a random variable (ϵ_j)

- From the training set $\mathcal{D} = \{\mathbf{x}_j, y_j\}_{j=1}^n$, assume each target y_j is drawn from a probabilistic model.
- ullet Let us assume a noisy linear model parameterized by $oldsymbol{w} \in \mathbb{R}^d$

$$y_j = \mathbf{w}^T \mathbf{x}_j + \epsilon_j$$

Each target is associated with an additive stochastic noise modeled as a random variable ϵ_i .

• Let us model the noise to come from a Gaussian distribution: $\epsilon_j \sim \mathcal{N}(\underline{0}, \underline{\sigma^2})$.

mean

- From the training set $\mathcal{D} = \{\mathbf{x}_j, y_j\}_{j=1}^n$, assume each target y_j is drawn from a probabilistic model.
- ullet Let us assume a noisy linear model parameterized by $\mathbf{w} \in \mathbb{R}^d$

$$y_j = \mathbf{w}^T \mathbf{x}_j + \epsilon_j$$

Each target is associated with an additive stochastic noise modeled as a random variable ϵ_i .

- Let us model the noise to come from a Gaussian distribution: $\epsilon_j \sim \mathcal{N}(0, \sigma^2)$.
- Noise variables ϵ_j all have the same mean (0), same variance (σ^2) and $Cov(\epsilon_i, \epsilon_j) = 0$ for $i \neq j$.

• If $\underline{y_j} = \mathbf{w}^T \mathbf{x}_j + \underline{\epsilon_j}$ and $\underline{\epsilon_j} \sim \mathcal{N}(0, \sigma^2)$, then each y_j is drawn from the following Gaussian:

$$y_j \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_j, \sigma^2)$$

• If $y_j = \mathbf{w}^T \mathbf{x}_j + \epsilon_j$ and $\epsilon_j \sim \mathcal{N}(0, \sigma^2)$, then each y_j is drawn from the following Gaussian:

$$y_j \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_j, \sigma^2)$$

 Objective: Estimate w from this probabilistic model. We will look at Maximum Likelihood Estimation (MLE) in this lecture.

MLE, more generally

A set of independent and identically distributed (i.i.d.) observations $\mathbf{y} = \{y_1, \dots, y_n\}$ are generated according to a probability model parameterized by $\underline{\theta}$, i.e. $y_j \sim \underline{\Pr(\mathbf{y}|\theta)}$

MLE, more generally

A set of independent and identically distributed (i.i.d.) observations $\mathbf{y} = \{y_1, \dots, y_n\}$ are generated according to a probability model parameterized by θ , i.e. $y_j \sim \Pr(\mathbf{y}|\theta)$

What is $Pr(y|\theta)$ (also referred to as the *likelihood*)?

MLE, more generally

A set of independent and identically distributed (i.i.d.) observations $\mathbf{y} = \{y_1, \dots, y_n\}$ are generated according to a probability model parameterized by θ , i.e. $y_j \sim \Pr(\mathbf{y}|\theta)$

What is $Pr(y|\theta)$ (also referred to as the *likelihood*)?

Find the parameters θ . What's one good way? Find θ s.t. it maximizes the likelihood of the observed data. Hence, **MLE**.

MLE contd

• Typically maximize log-likelihood i.e. $log(\underline{Pr(y|\theta)})$ instead of the likelihood. Would this affect the estimated parameters?

MLE contd

• Typically maximize log-likelihood i.e. $log(Pr(\mathbf{y}|\theta))$ instead of the likelihood. Would this affect the estimated parameters?

• Why apply this log transformation? Mathematical convenience

Numerical convenience

MLE contd

• Typically maximize log-likelihood i.e. $log(Pr(y|\theta))$ instead of the likelihood. Would this affect the estimated parameters?

• Why apply this log transformation?

 $P_{r}(y_{j}; \theta)$ or $P_{\theta}(y_{j})$

• What is the log-likelihood?

the log-likelihood?
$$\mathcal{L}(\theta) = \log(\Pr(\mathbf{y}|\theta)) = \log(\prod_{j=1}^n \Pr(y_j|\theta)) = \sum_{j=1}^n \log(\Pr(y_j|\theta))$$

The MLE estimate is given by:

$$\theta_{\mathsf{MLE}} = \operatorname*{argmax}_{\theta} \underbrace{\mathcal{L}(\theta)}_{\theta} = \operatorname*{argmax}_{\theta} \sum_{j=1}^{n} \log(\mathsf{Pr}(y_{j}|\theta))$$

Illustrating MLE using a simple coin toss example

Say we toss a coin N times. Each coin toss y_j is a binary random variable with a Bernoulli distribution $\Pr(y_j|\theta) = \underline{\theta}^{y_j}(1-\theta)^{1-y_j}$. Estimate θ using MLE.

$$L(\theta) = \log \frac{1}{|I|} P(y_j | \theta) = \sum_{j} \log_j P(y_j | \theta)$$

$$= \sum_{j} y_j \log_j \theta + (1 - y_j) \log_j (1 - \theta)$$

$$= \sum_{j} y_j \log_j \theta + (1 - y_j) \log_j (1 - \theta)$$

$$\frac{\partial P}{\partial \Gamma(\theta)} = 0 \implies \sum_{j} \frac{\lambda_{j}^{2}}{\partial r} - \frac{(1 - \lambda_{j}^{2})}{1 - \theta} = 0 \implies 0 = \sum_{j} \lambda_{j}^{2}$$

Coming back to MLE for linear regression

Assuming that each target y_j is Gaussian-distributed, i.e.

$$\Pr(y_j|x_j,\mathbf{w}) = \mathcal{N}(\mathbf{w}^T x_j, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{-(y_j - \mathbf{w}^T x_j)^2}{2\sigma^2}\right\}$$

Likelihood of the data $\mathcal{L}(\mathbf{w}) = \mathsf{Pr}(\mathbf{y}|\mathbf{X},\mathbf{w})$

Coming back to MLE for linear regression

Assuming that each target y_i is Gaussian-distributed, i.e.

$$\Pr(y_j|x_j,\mathbf{w}) = \mathcal{N}(\mathbf{w}^T x_j, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{-(y_j - \mathbf{w}^T x_j)^2}{2\sigma^2}\right\}$$

Likelihood of the data $\mathcal{L}(\mathbf{w}) = \mathsf{Pr}(\mathbf{y}|\mathbf{X},\mathbf{w})$

$$L(w) = \log \prod_{j=1}^{n} P(y_{j}|x_{j}, w) = \sum_{j} \log P(y_{j}|x_{j}, w)$$

MLE estimate: $\mathbf{w}_{\mathsf{MLE}} = \operatorname*{argmax}_{\mathbf{w}} \mathcal{L}(\mathbf{w})$

MLE estimate for probabilistic linear regression

```
To estimate \mathbf{w}_{\text{MLE}}, consider log-likelihood (\log(\mathcal{L}(\mathbf{w}))) instead of likelihood (\mathcal{L}(\mathbf{w})): \log(\mathcal{L}(\mathbf{w})) = LL(\mathbf{w})
```

MLE estimate for probabilistic linear regression

To estimate \mathbf{w}_{MLE} , consider log-likelihood $(\log(\mathcal{L}(\mathbf{w})))$ instead of likelihood $(\mathcal{L}(\mathbf{w}))$:

$$\log(\mathcal{L}(\mathbf{w})) = \mathit{LL}(\mathbf{w})$$

$$LL(W) = \sum_{j} \log P(Y_{j} | X_{j}, W)$$

$$= \text{constant} - \sum_{j} (Y_{j} - W^{T} X_{j})^{2}$$

$$\mathbf{w}_{\mathsf{MLE}} = \operatorname*{argmax}_{\mathbf{w}} LL(\mathbf{w}) = \operatorname*{arg\,min}_{\mathbf{w}} \sum_{j=1}^{n} (y_j - \mathbf{w}^T x_j)^2 \ (\mathbf{Same \ as \ least \ squares!})$$

Estimating w

Instead of finding the least squares/MLE solution analytically, use a search algorithm that progressively decreases the error function $E(\mathbf{w}, \mathcal{D})$.

- Initialize w
- Until we converge:

Find a new value of **w** that reduces $E(\mathbf{w}, \mathcal{D})$

$$W_{t+1} \leftarrow W_t + \boxed{ }$$

Estimating w

Instead of finding the least squares/MLE solution analytically, use a search algorithm that progressively decreases the error function $E(\mathbf{w}, \mathcal{D})$.

- Initialize w
- Until we converge:

Find a new value of **w** that reduces $E(\mathbf{w}, \mathcal{D})$

Gradient descent is an iterative algorithm used to find the minimum of a function.

Gradient Descent

Initialize
$$\underline{\mathbf{w}} \leftarrow \overrightarrow{o}$$
 vector $\|\nabla_{\mathbf{w}} \mathbf{E}(\mathbf{w})\| \leq \mathbf{E}$

Repeat until convergence: $\|\mathbf{E}(\mathbf{w}_{t+1}) - \mathbf{E}(\mathbf{w}_{t})\|_{2} \leq \mathbf{E}$
 $\mathbf{w}_{i} \leftarrow \mathbf{w}_{i} - \mathbf{v}_{i} \frac{\partial \mathbf{E}(\mathbf{w})}{\partial \mathbf{w}_{i}}$ (Simultaneously update each \mathbf{w}_{i})

Compute $\frac{\partial \mathbf{E}(\mathbf{w})}{\partial \mathbf{w}_{i}}$ $\mathbf{w} \leftarrow \mathbf{w} - \mathbf{v}_{i} \nabla_{\mathbf{w}} \mathbf{E}(\mathbf{w})$
 $\mathbf{E} \in \mathbf{w}$
 $\mathbf{v} \in \mathbf{w} - \mathbf{v}_{i} \nabla_{\mathbf{w}} \mathbf{E}(\mathbf{w})$
 $\mathbf{v} \in \mathbf{w} - \mathbf{v}_{i} \nabla_{\mathbf{w}} \mathbf{E}(\mathbf{w})$
 $\mathbf{v} \in \mathbf{w} - \mathbf{v}_{i} \nabla_{\mathbf{w}} \mathbf{E}(\mathbf{w})$
 $\mathbf{v} \in \mathbf{w} - \mathbf{v}_{i} \nabla_{\mathbf{w}} \mathbf{E}(\mathbf{w})$

Using Gradient Descent (GD)

Weight update rule in GD:
$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w})$$

Faster version: Stochastic Gradient Descent (SGD)

The weight update rule for SGD: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w}; \mathbf{x}_i, y_i)$ where the loss is computed for a single example randomly sampled from the training set.

Middle ground: Mini-batch Gradient Descent

The weight update rule becomes: $\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla_{\mathbf{w}} E_B(\mathbf{w}; \{\mathbf{x}_i, y_i\}_{i=1}^{|B|})$ where the loss is computed for a batch of |B| examples sampled from the training set.