Agent Based Models (ABM) are a class of computational models that simulates the behavior of autonomous agents and studies their effect on each other and the environment around them.

- Agent Based Models (ABM) are a class of computational models that simulates the behavior of autonomous agents and studies their effect on each other and the environment around them.
- Models usually consist of a "world-state" variable that records attributes of the environment, and a list of agents each with their own individual attributes.

- Agent Based Models (ABM) are a class of computational models that simulates the behavior of autonomous agents and studies their effect on each other and the environment around them.
- Models usually consist of a "world-state" variable that records attributes of the environment, and a list of agents each with their own individual attributes.
- Each agent usually has a "step" function that allows the agent to interact with the environment, and we model time discretely by repeatedly invoking the step function for each of our agents

Simple Agent Based Model

Please refer to SimpleMoneyModel.ipynb file!

Uses of ABM - Emergent Behavior

 The money model gives us an example of emergent behavior, where interesting non-trivial group-level action emerges from very simple individual logic

Uses of ABM - Emergent Behavior

- The money model gives us an example of emergent behavior, where interesting non-trivial group-level action emerges from very simple individual logic
- Often referred to as "the whole is greater than the sum of its parts," this is one of the key strengths of ABM

Uses of ABM - Emergent Behavior

- The money model gives us an example of emergent behavior, where interesting non-trivial group-level action emerges from very simple individual logic
- Often referred to as "the whole is greater than the sum of its parts," this is one of the key strengths of ABM
- Other examples of this include modelling bird-flocking, rebellions, etc.

Complex Examples

http://netlogoweb.org/launch#http://netlogoweb.org/assets/modelslib/Sample %20Models/Social%20Science/Economics/Wealth%20Distribution.nlogo

http://netlogoweb.org/launch#http://netlogoweb.org/assets/modelslib/Sample %20Models/Biology/Flocking.nlogo

http://netlogoweb.org/launch#http://netlogoweb.org/assets/modelslib/Sample %20Models/Social%20Science/Rebellion.nlogo

Uses of ABM - Parameter Testing

- ABMs can also be used to test for asymptotic behaviors of a complex system based on different parameters
- In the wealth model, we could've tested giving more than 1 wealth, giving wealth to more than 1 other agent, etc.
- Very useful in modelling population dynamics between different species
- Example of Wolf-Sheep-Grass dynamic:
 http://netlogoweb.org/launch#http://netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Wolf%20Sheep%20Predation.nlogo

- The problem asks for the effect of releasing dragons into Earth's ecology
- How do we model the Agents (dragons)?
- What attributes do they have?
- What do they do in each timestep?

Dragon's attributes:

- Dragon's attributes:
 - Weight destructive capabilities
 - Energy will it survive

• Dragon's timestep:

- Dragon's timestep:
 - Decrement energy by fixed amount
 - o If hungry (fullness < hunger_threshold):</p>
 - If enough food in current square:
 - Increase fullness, decrement resources
 - Else:
 - Migrate to new square
 - o If energy > growth_threshold:
 - Trade energy for weight
 - If energy < shrink_threshold:
 - Trade weight for energy
 - o If weight <= 0:</p>
 - die

- The world is composed of 20 x 20 squares, each have the following
 - Deers what the dragons eat, incremented each turn, but dragons can kill them faster
 - o Trees decremented by fixed amount for each step there's a dragon on it, grows back o/w

Refer to Dragons.ipynb