

Departamento de Cadeiras Gerais

FICHA TEORICA 1. CÁLCULO VECTORIAL.

1. Conceito de vector

Os **vectores** representam grandezas físicas que para além do módulo (valor) possuem uma direcção e um sentido. **Exemplos**: deslocamento, velocidade, força, aceleração, campo eléctrico e campo magnético.

Grandezas que podem ser especificadas completamente apenas por um número e uma unidade, são chamadas **grandezas escalares**. **Exemplo:** A massa de 5kg, a temperatura de 100°C, a energia de 180J, etc.

Um vector é um segmento orientado caracterizado por 4 elementos, nomeadamente:

- um **ponto de aplicação** (A) que é a origem do vector;
- uma direcção que neste exemplo é a direcção da recta (podendo ser por exemplo horizontal, vertical ou obliqua);
- um **sentido** dado pela seta localizada na outra extremidade (B) do segmento(que pode ser da esquerda para a direita ou de cima para baixo) e

Figura 1. Representação de um vector

• um **módulo** que corresponde ao comprimento do vector segundo uma certa escala.

Assim: $\vec{a} = \overrightarrow{AB}$

2. Operações com vectores

2.1. Adição de vectores

Sejam dados dois vectores \vec{a} e \vec{b} , por exemplo:

A **soma** dos dois vectores $\vec{a} + \vec{b}$ será igual à um outro vector \vec{c} (vector soma).

Figura 2. Representação de dois vectores

Física 1. Cálculo Vectorial

Este vector soma $\vec{a} + \vec{b} = \vec{c}$ pode ser obtido de duas maneiras:

- 1) Método do paralelogramo
- 2) Método do polígono

 $\frac{\vec{a}}{\vec{b}}$

Figura 3A. Representação do vector soma de dois vectores.

Figura 3B.

Se tivermos um terceiro vector **c** o vector soma **s** será a adição dos 3 vectores.

Figura 4. Representação do vector soma de três ou mais vectores.

2.2. Subtracção de vectores

A subtracção de vectores será a operação inversa a adição dos mesmos. Também se pode obter de duas maneiras: $\vec{S} = \vec{b} - \vec{b}$

- a) unir os dois pontos de aplicação dos dois vectores e traçar o vector subtracção da extremidade do vector subtractivo para a extremidade do vector subtraendo.
- b) considerando que $\vec{a} \vec{b} = \vec{a} + (-\vec{b})$ então, pelo método do polígono significará ligar na extremidade do primeiro vector \vec{a} o segundo vector \vec{b} com sentido oposto, ou seja $(-\vec{b})$

As duas operações obedecem as propriedades **comutativa** e **associativa**:

Comutativa:
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$

Associativa: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

2.3. Representação analítica de vectores/ componentes de um vector

Consideremos um vector \vec{a} localizado numa superfície.

Se traçarmos um sistema de coordenadas cuja origem coincide com a origem do vector podemos decompor este nas suas componentes ao longo das dimensões x e y.

 $\frac{a_x}{a_y}$ e $\frac{a_y}{a_y}$ são componentes cartesianas do vector \overline{a} .

$$\vec{a} = a_x \vec{\imath} + a_y \vec{\jmath}$$

onde a_x e a_y são as coordenadas do vector \vec{a} .

Os **módulos** das componentes a_x e a_y ou **coordenadas** do vector \vec{a} podem ser encontradas a partir das seguintes equações: $a_x = a \cos t$ e $a_y = a \sin t$ e onde b6 o ângulo que o vector \vec{a} faz com o eixo ox.

Conhecidos os módulos das componentes pode-se determinar o módulo do vector $\overline{\mathbf{a}}$ aplicando o teorema

de Pitágoras. $a = \sqrt{a_x^2 + a_y^2}$ e o ângulo **6** obtém-se

pela razão
$$tg \theta = \frac{\dot{a}_y}{a_x}$$

No espaço tridimensional teremos 3 componentes do vector \vec{a} . $\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$ onde a_x , a_y e a_z são componentes do vector \vec{a} sobre os eixos x, y e z.As respectivas coordenadas são a_x , a_y e a_z .

As coordenadas do vector **a** ou os módulos das componentes do vector **a** são dadas geometricamente pelas seguintes equações:

$$a_x = a sen \theta \cdot cos \phi$$
;
 $a_y = a sen \theta \cdot sen \phi$ e
 $a_y = a cos \theta$

Figura 5. Representação dos Componentes de um vector .

Figura 6. Representação do vector com três componentes.

Física 1. Cálculo Vectorial

O módulo do vector **a** quando conhecidos os módulos das suas componentes será dado pela

expressão:
$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Na expressão analítica dos vectores é frequente a representação das componentes do vector com ajuda de vectores unitários \vec{l} ; \vec{j} e \vec{k} orientados nas direcções x, y e z respectivamente. Assim

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$$

Figura 7. Representação dos vectores Unitários.

2.4. Adição e subtracção de vectores na forma analítica

A **adição** e **subtracção** analítica de dois ou mais vectores faz-se pela adição das componentes de cada vector na mesma direcção. Sejam dados dois vectores \overline{a} e \overline{b} .

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k} e \vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$$
 então:

$$\vec{c} = (\vec{a} + \vec{b}) = (a_x + b_x)\vec{i} + (a_y + b_y)\vec{j} + (a_z + b_z)\vec{k}$$
 (1)

Ou
$$\vec{d} = (\vec{a} - \vec{b}) = (a_x - b_x)\vec{i} + (a_y - b_y)\vec{j} + (a_z - b_z)\vec{k}$$
 (2)

2.5. Multiplicação de vectores

Vamos considerar 3 operações diferentes na multiplicação de vectores:

2.5.1. Multiplicação de um vector por um escalar ou seja por um número.

Quando se multiplica um vector \vec{a} com um escalar n o resultado é um novo vector cujo módulo é n vezes o módulo de \vec{a} .

Física 1. Cálculo Vectorial 4 de 7

O novo vector $n\overline{a}$ tem a direcção e sentido de \overline{a} se n for positivo, e sentido oposto se n for negativo.

2.5.2. Multiplicação de dois vectores de forma que resulte um escalar

O produto de dois vectores \vec{a} e \vec{b} deste carácter é escrito assim $\vec{a} \cdot \vec{b}$ é denominado produto escalar.

O produto escalar de 2 vectores é dado pela expressão $\vec{a} \cdot \vec{b} = ab \cos t$ onde \vec{a} e \vec{b} e \vec{b} e \vec{b} o ângulo entre os dois vectores.

Analiticamente, isto é, com ajuda das componentes dos vectores escrevemos:

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$$
 (3)

Figura 8. Produto Escalar.

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{ab} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}}$$
(4)

2.5.3. Multiplicação de dois vectores de forma que o resultado seja um vector

A este produto dá-se o nome de **produto vectorial** e representa-se assim $\vec{a} \times \vec{b} = \vec{c}$

O **módulo** de \vec{c} é dado por $|\vec{c}| = |\vec{a}| |\vec{b}| sen \theta$ onde $\vec{\theta}$ é o ângulo entre os vectores \vec{a} e \vec{b} Lê-se \vec{a} vectorial \vec{b} ou \vec{a} cruzamento \vec{b} .

A **direcção** do vector \vec{c} , produto de $\vec{a} \times \vec{b}$ é definido como perpendicular ao plano formado pelos vectores \vec{a} e \vec{b} .

O sentido do vector **c** é dado pela regra da mão direita, ou regra do saca-rolhas ou ainda regra do parafuso.

 $\vec{c} = \vec{a} \times \vec{b}$ \vec{b}

Trocando a ordem dos vectores teremos e
$$\vec{b} \times \vec{a} = -(\vec{b} \times \vec{a}) = -\vec{c}$$

Figura 8. Produto Vectorial

O produto vectorial $\vec{a} \times \vec{b}$ pode também ser expresso através de determinantes/matrizes do tipo 3×3 .

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} =$$

$$= (a_{\nu}b_{z} - a_{z}b_{\nu})\vec{\boldsymbol{i}} + (a_{z}b_{x} - a_{x}b_{z})\vec{\boldsymbol{j}} + (a_{\nu}b_{z} - a_{z}b_{\nu})\vec{\boldsymbol{k}}$$

Exercícios.

- 1. Para os vectores \vec{a} e \vec{b} , definido como \vec{a} = $\vec{i} 2\vec{j} + 2\vec{k}$ e \vec{b} como $\vec{b} = -2\vec{i} + 2\vec{j} \vec{k}$, demostrar que: $|\vec{a} + \vec{b}| \neq |\vec{a}| + |\vec{b}|$.
- 2. Dois vectores são dados por $\mathbf{a} = \mathbf{i} 2\mathbf{j} + \mathbf{k}$ e $\mathbf{b} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$. Determine $\mathbf{a} + \mathbf{b}$, $\mathbf{a} \mathbf{b}$, $3\mathbf{a} 2\mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$ e o ângulo entre \mathbf{a} e \mathbf{b} .
- 3. Considerando o problema anterior, desenhe num sistema dextrógiro (direito) de coordenadas cartesianas ortogonais XYZ todos os vectores obtidos.
- 4. No sistema dextrógiro (direito) de coordenadas cartesianas ortogonais determine os seguintes produtos vectoriais: i x i, i x j, i x k, j x j, k x i, k x k, j x k, k x j.
- 5. As coordenadas de três pontos são dadas por A (-2, 2, 3), B (1, 0, -3) e C (1, 3, -1). Considere um vector $\overrightarrow{CA} = \mathbf{a}$ e um outro vector $\overrightarrow{BA} = \mathbf{b}$, determine:
 - a) os módulos de a e b,
 - b) a.b,
 - c) o ângulo entre **a** e **b**,
 - d) o vector $\mathbf{c} = \mathbf{a} \times \mathbf{b}$,
 - e) o módulo de **c**.
- 6. Dado o vector $\mathbf{a} = 4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ e sabendo que o módulo do vector \mathbf{b} é 3, com componentes $b_x < 0$, $b_z = 0$, e $\mathbf{b} \perp \mathbf{a}$, calcule o vector \mathbf{b} .
- 7. Achar o volume do paralelepípedo cujas arestas são representadas por

$$a = 2i - 3j + 4k$$
, $b = i + 2j - k e c = 3i - j + 2k$.

- 8. Determinar o valor de d tal que os vectores $\mathbf{a} = 2\mathbf{i} d\mathbf{j} + \mathbf{k}$ e $\mathbf{b} = 4\mathbf{i} 2\mathbf{j} 2\mathbf{k}$ sejam perpendiculares.
- 9. Se $\mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$, $\mathbf{b} = b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k}$, $\mathbf{c} = c_x \mathbf{i} + c_y \mathbf{j} + c_z \mathbf{k}$, mostrar que

$$\vec{\boldsymbol{c}} \cdot (\vec{\boldsymbol{a}} \times \vec{\boldsymbol{b}}) = \begin{vmatrix} c_{x1} & c_{y1} + c_{z2} & c_{z1} \\ c_{x} & c_{y} & c_{z} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix}$$

- 10. Três vectores são dados por $\mathbf{a} = 2\mathbf{i} 3\mathbf{j} \mathbf{k}$, $\mathbf{b} = \mathbf{i} \mathbf{j} \mathbf{k}$ e $\mathbf{c} = \mathbf{i} + \mathbf{j} 2\mathbf{k}$. Determine:
 - a) **a**. (**b** x **c**)
 - b) a. (b c)
 - c) $\mathbf{a} \times (\mathbf{b} \mathbf{c})$
- 11. Mostre que quando dois vectores são iguais em módulo (módulo igual a V), e formam entre sí um ângulo θ , o módulo da soma é dado por $S = 2V\cos(\theta/2)$ e o da diferença por $D = 2V\sin(\theta/2)$.
- 12. Mostre que quando o módulo da soma de dois vectores a e b é igual ao módulo da diferença desses mesmos vectores, então os dois vectores são perpendiculares entre si.