Trabajo Práctico 6 - Números Enteros.

- 1. Sea z un número real. Determine el valor de verdad de las siguientes afirmaciones. Justifique formalmente sus respuestas.
 - (a) $z \in \mathbb{Z} \Leftrightarrow n \cdot z \in \mathbb{Z}$, siendo $n \in \mathbb{N}$.
 - (b) $z \in \mathbb{Z} \Leftrightarrow -z^{-1} \in \mathbb{Z}$.
 - (c) $z \in \mathbb{Z} \Leftrightarrow z^2 \in \mathbb{Z}$.
 - (d) $z \in \mathbb{Z} \Rightarrow \frac{z}{z} = 1$.
- 2. Analice las siguientes afirmaciones y determine si son verdaderas o falsas. Justifique sus respuestas.
 - (a) $a \mid b + c \Rightarrow a \mid b \lor a \mid c$.
 - (b) $a \mid b \land c \mid b \Rightarrow a \cdot c \mid b$.
 - (c) $a \mid c \land b \mid c \Rightarrow (a+b) \mid c$.
 - (d) $a \cdot b \mid c \Rightarrow a \mid c \wedge b \mid c$.
 - (e) $7 \mid a \cdot b \Rightarrow 7 \mid a \vee 7 \mid b$.
 - (f) $4 \mid a \cdot b \Rightarrow 4 \mid a \vee 4 \mid b$.
 - (g) $25 \mid a^2 \Leftrightarrow 5 \mid a$.
- 3. Demuestre los siguientes enunciados:
 - (a) Si $a \neq 0$, $a \mid b \neq a \mid c$, entonces $a \mid (b \cdot x + c \cdot y)$ para $x, y \in \mathbb{Z}$ arbitrarios.
 - (b) La suma de cuatro números consecutivos es par.
 - (c) El producto de tres enteros consecutivos es divisible por 6.
- 4. Pruebe que cualquiera sea $n \in \mathbb{N}$:
 - (a) $3^{2 \cdot n + 2} + 2^{6 \cdot n + 1}$ es divisible por 11.
 - (b) $3 \cdot 5^{2 \cdot n + 1} + 2^{3 \cdot n + 1}$ es divisible por 17.
 - (c) $3^{2 \cdot n+1} + 2^{n+2}$ es divisible por 7.
- 5. Sean $a, b \in \mathbb{Z}$ y $n \in \mathbb{N}$. Probar las siguientes afirmaciones:
 - (a) $a b \mid a^n b^n$.
 - (b) Si n es impar, entonces $a + b \mid a^n + b^n$.
 - (c) Si n es par, entonces $a + b \mid a^n b^n$.
- 6. Sea $p \in \mathbb{Z}$ tal que $p \neq 0$, $p \neq 1$ y $p \neq -1$. Pruebe que p es primo si y sólo si $\forall m \in \mathbb{Z}$ ocurre que $p \mid m$ o (p, m) = 1.
- 7. Si p es primo, demostrar que (p, (p-1)!) = 1.
- 8. Sean a y b enteros con $b \neq 0$. Si a b = 175 y la división de a por b tiene cociente 15 y resto 7, halle a y b.
- 9. Sean b y q enteros tales que el resto y cociente de dividir b por 7 son 5 y q respectivamente. Halle los posibles restos de la división por 7 de:
 - (a) $2 \cdot b$.
 - (b) -b.
 - (c) $10 \cdot b + 1$.
 - (d) $b \cdot (b+1)$.
- 10. Halle el máximo común divisor de los siguientes números y la combinación entera correspondiente.
 - (a) -84 y 45.
 - (b) 234 y 129.

- (c) 534 y 128.
- (d) 396 y 436.
- 11. Sea $a \in \mathbb{Z}$. Determinar los posibles valores de:
 - (a) (a, a + 1).
 - (b) (a-1, a+1).
 - (c) $(4 \cdot a, 2 \cdot a + 3)$.
- 12. Mostrar que si a y b son enteros coprimos, entonces (a b, a + b) es igual a 1 o a 2.
- 13. Probar que
 - (a) $(7^n + 2^n, 7^n 2^n) = 1$ para todo $n \in \mathbb{N}$.
 - (b) $(2^n + 5^{n+1}, 2^{n+1} + 5^n)$ es igual a 3 o a 9 para todo $n \in \mathbb{N}_0$.
- 14. Completar de modo tal que las proposiciones resulten verdaderas y demostrar formalmente su validez:
 - (a) Si $a \in \mathbb{Z}$ no nulo, entonces $[a, a] = \dots$
 - (b) Si $a, b \in \mathbb{Z}$ no nulos, entonces [a, b] = b si y sólo si ...
 - (c) Si $a, b \in \mathbb{Z}$ no nulos, entonces (a, b) = [a, b] si y sólo si . . .
- 15. Probar que si (a, 4) = 2 y (b, 4) = 2 entonces (a + b, 4) = 4.
- 16. Probar que si $n \in \mathbb{Z}$ entonces los números $2 \cdot n + 1$ y $\frac{n \cdot (n+1)}{2}$ son coprimos.
- 17. Represente los enteros siguientes como producto de primos:
 - (a) 210^4 .
 - (b) 1972^2 .
- 18. Demostrar que si p es primo, entonces \sqrt{p} es irracional.
- 19. Sean $a, b \in \mathbb{Z}$ y p un primo positivo. Asumiendo que (a, b) = p, hallar los posibles valores para:
 - (a) (a^2, b) .
 - (b) (a^3, b) .
 - (c) (a^2, b^3) .
- 20. Halle todos los valores del número natural m que hacen verdaderas las congruencias siguientes:
 - (a) $5 \equiv 4 \, (m)$.
 - (b) $5 \equiv -4 (m)$.
 - (c) $1197 \equiv 286 \, (m)$.
- 21. (a) Obtenga el resto de la división de 1599 por 39.
 - (b) Obtenga el resto de la división de 914 por 31.
 - (c) Obtenga los restos de la división de 3⁸, 2²⁵ y 8²⁵ por 5, 13 y 127 respectivamente.
 - (d) Obtenga los restos de la división de 2^{46} , 3^{21} , 7^{126} y 99^{99} por 47, 17, 123 y 13 respectivamente.
- 22. Sean $a, b, c \in \mathbb{Z}$, ninguno divisible por 3. Probar que $a^2 + b^2 + c^2$ es divisible por 3.
- 23. Probar que para todo $n \in \mathbb{Z}$ el número $n^2 + 4 \cdot n + 6$ no es múltiplo de 5.
- 24. Hallar la cifra de las unidades y de las decenas del número 7¹⁵.
- 25. Hallar el resto en la división de x por 5 y por 7 para:
 - (a) $x = 1^8 + 2^8 + 3^8 + 4^8 + 5^8 + 6^8 + 7^8 + 8^8$.
 - (b) $x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101$.
- 26. Determine todos los enteros t, con $0 \le t \le 16$, tales que $t^2 \equiv t$ (16).

27. Halle todas las soluciones de las ecuaciones lineales de congruencias siguientes:
(a) $330 \cdot x \equiv 42 (273)$.
(b) $18 \cdot x \equiv 0 (15)$.

(c)
$$8 \cdot x \equiv 0 \, (13)$$
.

(d)
$$180 \cdot x \equiv -18 \cdot x (30)$$
.

28. Hallar todos los x que satisfacen:

(a)
$$x^2 \equiv 1 (4)$$
.

(b)
$$x^2 \equiv 0 (12)$$
.

(c)
$$x^4 \equiv 1 (5)$$
.

29. Dado $t \in \mathbb{Z}$, decimos que t es inversible módulo m si existe $h \in \mathbb{Z}$ tal que $t \cdot h \equiv 1 (m)$.

- (a) ¿Es 5 inversible módulo 17?
- (b) Probar que t es inversible módulo m si y sólo si (t, m) = 1.
- (c) Determinar los inversibles módulo m, para m = 11, 12, 16.

30. Resuelva las siguientes ecuaciones lineales de congruencia.

(a)
$$\begin{cases} x \equiv 3 (6) \\ x \equiv 9 (14) \end{cases}$$
 (b)
$$\begin{cases} x \equiv 1 (7) \\ x \equiv 8 (21) \end{cases}$$

31. Demostrar las siguientes congruencias, aclarando las propiedades que usa en cada caso:

(a)
$$4! \equiv 4(5)$$
.

(b)
$$36^5 \equiv -1(37)$$
.

(c)
$$6^n + 8 \equiv 4(5)$$
, con $n \in \mathbb{N}$.

32. Reemplazando $x \in y$ por dígitos, hallar todos los números naturales de cinco cifras 65x1y que sean múltiplos de 12.

33. Sea N = x40y15 un número entero de seis dígitos (x e y son dígitos, x distinto de 0). Hallar todos los x, y de modo que N sea múltiplo de 33 pero no sea múltiplo de 99.

$\star\star\star\star\star\star\star\star\star\star\star$ Ejercicios Complementarios $\star\star\star\star\star\star\star\star\star\star\star\star$

1. Analice las siguientes afirmaciones y determine si son verdaderas o falsas. Justifique sus respuestas.

(a)
$$a \mid b \cdot c \Rightarrow a \mid b \vee a \mid c$$
.

(b)
$$a \mid b \Rightarrow a \leq b$$
.

(c)
$$a \mid b \Rightarrow |a| \leqslant |b|$$
.

(d)
$$a \mid b + a^2 \Rightarrow a \mid b$$
.

(e)
$$a \mid b \Rightarrow a^n \mid b^n$$
, $\forall n \in \mathbb{N}$.

2. Demuestre los siguientes enunciados:

- (a) b+c es par si y sólo si b y c son ambos pares o ambos impares.
- (b) El producto de n enteros consecutivos es divisible por n!.

(c)
$$(a,b) = 1$$
, $a \mid c \mid b \mid c$, entonces $a \cdot b \mid c$.

(d)
$$(a,b) = 1$$
 y $a \mid b \cdot c$ entonces $a \mid c$.

3. ¿Cuáles de los siguientes números enteros son pares si $n \in \mathbb{N}$? Justifique sus respuestas.

	(a)	$3 \cdot n^2 + 1.$
	(b)	$n \cdot (n+1)$.
	(c)	$(n-1)\cdot(n+1).$
	(d)	$n^3 - n$.
4.	¿Си	áles de las siguientes afirmaciones son verdaderas? Justifique sus respuestas.
	(a)	$3^n + 1$ es divisible por n cualquiera sea $n \in \mathbb{N}$.
	(b)	$2 \cdot 5^n + 1$ es divisible por 4 cualquiera sea $n \in \mathbb{N}$.
	(c)	$10^{2 \cdot n} - 1$ es divisible por 11 cualquiera sea $n \in \mathbb{N}$.

- 5. (a) Hallar todos los $m, n \in \mathbb{N}_0$ tal que m + n = 13 y el resto de dividir cada uno de ellos por 3 es 2.
 - (b) Hallar todos los $a, b \in \mathbb{Z}$ tal que a b = 2 y el cociente de dividir cada uno de ellos por 5 es 42.
- 6. Calcule [a, b] en las siguientes situaciones.
 - (a) a = 1, b = 12.
 - (b) a = 1, b = -1.
 - (c) a = 12, b = 15.
 - (d) a = 140, b = 150.
- 7. Pruebe la no existencia de naturales m y n tales que:
 - (a) $m^2 = 2 \cdot n^2$.
 - (b) $m^3 = 4 \cdot n^3$.
 - (c) $m^2 = 12 \cdot n^2$.
- 8. Determinar los enteros positivos tales que
 - (a) n+7 es divisible por $3 \cdot n 1$.
 - (b) $n^2 + 5$ es divisible por $2 \cdot n + 1$.
 - (c) $(n-2) \cdot (n^2 n 2)$ es divisible por $2 \cdot n 1$.
 - (d) $n^2 7 \cdot n + 10$ es divisible por n 3.
- 9. Teniendo en cuenta que *abcd* es un número de cuatro cifras, demostrar que:
 - (a) $9 \mid abcd \Leftrightarrow 9 \mid a+b+c+d$.
 - (b) $4 \mid abcd$ si y sólo si la mitad de cd es par.
 - (c) $11 \mid aabb$.
- 10. Halle todos los valores del número natural m que hacen verdaderas las congruencias siguientes:
 - (a) $1 \equiv 0 \, (m)$.
 - (b) $3 \equiv -3 (m)$.
 - (c) $1197 \equiv -286 \, (m)$.
- 11. Halle todas las soluciones de las ecuaciones lineales de congruencias siguientes:
 - (a) $35 \cdot x \equiv 14 (182)$.
 - (b) $7 \cdot x \equiv 1 \, (11)$.
 - (c) $10 \cdot x \equiv 2 (22)$.
- 12. Hallar todos los x que satisfacen:
 - (a) $x^2 \equiv x (12)$.
 - (b) $x^2 \equiv 2(5)$.
 - (c) $x^3 \equiv 1 (7)$.
- 13. Analizar el valor de verdad de las siguientes proposiciones, justificando las respuestas:

- (a) $\forall n \in \mathbb{N}, 2 \mid n^2 + n$.
- (b) $\forall n \in \mathbb{N}, n \mid 5^n$.
- (c) $\forall n \in \mathbb{N}, 4 \mid 2 \cdot 5^n 1.$
- 14. Hallar todos los números de cuatro cifras 1a7b que son múltiplos de 15 (a y b son dígitos no necesariamente distintos).
- 15. Sea A el conjunto de todos los números enteros desde el 1 al 300 inclusive. Consideremos los tríos que se pueden formar utilizando tres números distintos de A, y para cada trío, calculamos su suma. Determinar para cuántos de estos tríos la suma es múltiplo de 3.