Package 'terra'

February 17, 2022

Type Package

```
Title Spatial Data Analysis
Version 1.5-21
Date 2022-02-15
Depends R (>= 3.5.0)
Suggests parallel, tinytest, ncdf4, sf (>= 0.9-8), deldir, XML, igraph
LinkingTo Rcpp
Imports methods, Rcpp
SystemRequirements C++11, GDAL (>= 2.2.3), GEOS (>= 3.4.0), PROJ (>=
      4.9.3), sqlite3
Encoding UTF-8
Maintainer Robert J. Hijmans < r. hijmans@gmail.com>
Description Methods for spatial data analysis with raster and vector data. Raster methods al-
      low for low-level data manipulation as well as high-level global, local, zonal, and focal computa-
      tion. The predict and interpolate methods facilitate the use of regression type (interpolation, ma-
      chine learning) models for spatial prediction, including with satellite remote sensing data. Pro-
      cessing of very large files is supported. See the manual and tutori-
      als on <a href="https://rspatial.org/terra/">https://rspatial.org/terra/</a> to get started. 'terra' is very simi-
      lar to the 'raster' package; but 'terra' can do more, is easier to use, and it is faster.
License GPL (>= 3)
URL https://rspatial.org/terra/
BugReports https://github.com/rspatial/terra/issues/
LazyLoad yes
NeedsCompilation yes
Author Robert J. Hijmans [cre, aut] (<a href="https://orcid.org/0000-0001-5872-2872">https://orcid.org/0000-0001-5872-2872</a>),
      Roger Bivand [ctb] (<a href="https://orcid.org/0000-0003-2392-6140">https://orcid.org/0000-0003-2392-6140</a>),
      Jacob van Etten [ctb] (<a href="https://orcid.org/0000-0001-7554-2558">https://orcid.org/0000-0001-7554-2558</a>),
      Karl Forner [ctb],
      Jeroen Ooms [ctb] (<a href="https://orcid.org/0000-0002-4035-0289">https://orcid.org/0000-0002-4035-0289</a>),
      Edzer Pebesma [ctb] (<a href="https://orcid.org/0000-0001-8049-7069">https://orcid.org/0000-0001-8049-7069</a>)
```

Repository CRAN

Date/Publication 2022-02-17 00:40:02 UTC

R topics documented:

erra-package		. 6
activeCat		. 18
dd		. 19
djacent		. 19
ggregate		. 21
lign		. 22
ıll.equal		. 24
nimate		. 25
.pp		. 26
pproximate		. 28
Arith-methods		. 29
s.character		. 30
s.data.frame		. 31
ıs.list		. 32
ıs.raster		. 33
s.spatvector		. 33
tan2		. 35
autocorrelation		. 36
parplot		. 37
oundaries		. 38
oxplot		. 39
puffer		. 40
,		. 42
artogram		. 43
atalyze		. 43
rells		. 44
ellSize		. 46
entroids		. 47
lamp		. 48
elassify		. 49
lick		. 51
coerce		. 52
colors		. 53
Compare-methods		. 54
compareGeom		. 55
contour		. 56
onvHull		. 57
over		. 58
rds		. 59
rop		. 60
rosstab		. 61
pre		62

deepcopy	
densify	
density	
depth	
describe	
diff	
dimensions	. 69
direction	. 71
disagg	. 72
distance	. 73
dots	. 75
draw	. 76
erase	. 77
expanse	. 78
ext	. 79
extend	. 80
extract	
extremes	
factors	
fillHoles	. 87
fillTime	. 88
flip	. 89
focal	. 90
focal3D	. 92
focalCor	. 92
	. 93
focalCpp	
focalMat	. 96
focalReg	. 97
focalValues	. 98
freq	. 99
gaps	. 100
gdal	. 101
8	
geomtype	
global	
gridDistance	
head and tail	. 106
hist	. 107
ifel	. 108
image	. 109
impose	. 110
initialize	. 110
inplace	. 111
inset	. 113
intersect	. 114
is.bool	. 116
is.lonlat	. 117
lapp	. 118

ayerCor	
inearUnits	121
ines	122
nakeTiles	123
nakeVRT	124
nask	125
natch	126
Math-methods	
nem	
nerge	
nergeTime	
nodal	
nosaic	
na.omit	
NAflag	
names	
nearest	
north	
pptions	
origin	
pairs	
patches	
perim	
persp	
olot	
olotRGB	
predict	
project	
puantile	
juery	
app	
ast	
asterize	
ead and write	
ectify	
·	
elate	
ep	
eplace	
esample	
escale	
RGB	
otate	
app	
bar	
cale	
catterplot	
ds	
egregate	179

sel	. 180
selectHighest	
selectRange	. 182
setValues	. 183
shade	
sharedPaths	. 185
shift	. 186
simplifyGeom	. 187
sources	. 187
SpatExtent-class	. 188
Spatial interpolation	. 189
SpatRaster-class	. 192
spatSample	. 193
SpatVector-class	. 195
spin	. 195
split	. 196
sprc	. 197
stretch	. 198
subset	. 199
subset-vector	
subst	
summarize	
summary	
SVC	
symdif	
tapp	
terrain	
text	
tighten	
time	
tmpFiles	
topology	
transpose	
trim	
union	
unique	
1	
units	
values	
vect	
vector-attributes	
vector_layers	
voronoi	
vrt	
weighted.mean	
which.lyr	
width	
window	220

terra	a-package	The	e te	err	a j	ра	ck	ag	зe													
Index																						242
	zoom	 																 				24
	zonal	 											 					 				239
	xyRowColCell .	 											 					 				237
	xmin	 											 					 				236
	writeVector	 											 					 				235
	writeRaster																					
	writeCDF																					
	wrap	 											 					 				231

Description

terra provides methods to manipulate geographic (spatial) data in "raster" and "vector" form. Raster data divide space into rectangular cells (pixels) and they are commonly used to represent spatially continuous phenomena, such as elevation or the weather. Satellite images also have this data structure. In contrast, "vector" spatial data (points, lines, polygons) are typically used to represent discrete spatial entities, such as a road, country, or bus stop.

The package implements two main classes (R data types): SpatRaster and SpatVector. SpatRaster supports handling large raster files that cannot be loaded into memory; local, focal, zonal, and global raster operations; polygon, line and point to raster conversion; integration with modeling methods to make spatial predictions; and more. SpatVector supports all types of geometric operations such as intersections.

Additional classes include SpatExtent, which is used to define a spatial extent (bounding box); SpatRasterDataset, which represents a collection of sub-datasets for the same area. Each sub-dataset is a SpatRaster with possibly many layers, and may, for example, represent different weather variables; and SpatRasterCollection and SpatVectorCollection that are equivalent to lists of SpatRaster or SpatVector objects.

These classes hold a C++ pointer to the data and they cannot be directly saved to a ".Rds" file or used in cluster computing. They cannot be recovered from a saved R session either. See wrap or writeRaster to work around that limitation.

The terra package is conceived as a replacement of the raster package. terra has a very similar, but simpler, interface, and it is faster than raster. At the bottom of this page there is a table that shows differences in the methods between the two packages.

Below is a list of some of the most important methods grouped by theme.

SpatRaster		

I. Creating, combining and sub-setting

rast	Create a SpatRaster from scratch, file, or another object
С	Combine SpatRasters (multiple layers)
add<-	Add a SpatRaster to another one
subset or [[, or \$	Select layers of a SpatRaster
selectRange	Select cell values from different layers using an index layer

II. Changing the spatial extent or resolution

Also see the methods in section VIII

merge	Combine SpatRasters with different extents (but same origin and resolution)
mosaic	Combine SpatRasters with different extents using a function for overlapping cells
crop	Select a geographic subset of a SpatRaster
extend	Add rows and/or columns to a SpatRaster
trim	Trim a SpatRaster by removing exterior rows and/or columns that only have NAs
aggregate	Combine cells of a SpatRaster to create larger cells
disagg	Subdivide cells
resample	Resample (warp) values to a SpatRaster with a different origin and/or resolution
project	Project (warp) values to a SpatRaster with a different coordinate reference system
shift	Adjust the location of SpatRaster
flip	Flip values horizontally or vertically
rotate	Rotate values around the date-line (for lon/lat data)
t	Transpose a SpatRaster

III. Local (cell based) methods

Apply-like methods:

```
    app Apply a function to all cells, across layers, typically to summarize (as in base::apply)
    tapp Apply a function to groups of layers (as in base::tapply and stats::aggregate)
    lapp Apply a function to using the layers of a SpatRaster as variables
    sapp Apply a function to each layer
    rapp Apply a function to a spatially variable range of layers
```

Arithmetic, logical, and standard math methods:

```
Arith-methods

Compare-methods

Logic-methods

Math-methods

Standard arithmetic methods (+, -, *, ^, %%, %/%, /)

Comparison methods for SpatRaster (==, !=, >, <, <=, >=)

Boolean methods (!, &, |)

abs, sign, sqrt, ceiling, floor, trunc, cummax, cummin, cumprod,
```

cumsum, log, log10, log2, log1p, acos, acosh, asin, asinh, atan, atanh,

exp, expm1, cos, cosh, sin, sinh, tan, tanh, round, signif

Summary-methods mean, max, min, median, sum, range, prod,

any, all, stdev, which.min, which.max

as.bool create a Boolean (logical) SpatRaster

as.int create an integer (whole numbers) SpatRaster

Other methods:

approximate Compute missing values for cells by interpolation across layers

cellSize Compute the area of cells classify (Re-)classify values

cover First layer covers second layer except where the first layer is NA

init Initialize cells with new values

mask Replace values in a SpatRaster based on values in another SpatRaster

subst Substitute (replace) cell values which.lyr which is the first layer that is TRUE?

IV. Zonal and global methods

expanse Compute the summed area of cells crosstab Cross-tabulate two SpatRasters

freq Frequency table of SpatRaster cell values

global Summarize SpatRaster cell values with a function

quantile Quantiles

layerCor Correlation between layers

stretch Stretch values scale Scale values

summary Summary of the values of a SpatRaster (quartiles and mean)

unique Get the unique values in a SpatRaster

zonal Summarize a SpatRaster by zones in another SpatRaster

V. Situation (spatial context) based methods

adjacent Identify cells that are adjacent to a set of cells of a SpatRaster

boundaries Detection of boundaries (edges)

distance Shortest distance to a cell that is not NA or to or from a vector object

direction Direction (azimuth) to or from cells that are not NA focal Focal (neighborhood; moving window) functions focalCpp Faster focal by using custom C++ functions focalReg Regression beween layers for focal areas

focalCor	Correlation between layers for focal areas
patches	Find patches (clumps)
terrain	Compute slope, aspect and other terrain characteristics from elevation data
shade	Compute hill shade from slope and aspect layers
autocor	Compute global or local spatial autocorrelation

VI. Model predictions

predict	Predict a non-spatial model to a SpatRaster
interpolate	Predict a spatial model to a SpatRaster

VII. Accessing cell values

Apart from the function listed below, you can also use indexing with [with cell numbers, and row and/or column numbers

values	cell values (fails with very large rasters)
values<-	Set new values to the cells of a SpatRaster
setValues	Set new values to the cells of a SpatRaster
as.matrix	Get cell values as a matrix
as.array	Get cell values as an array
extract	Extract cell values from a SpatRaster (e.g., by cell, coordinates, polygon)
spatSample	Regular or random sample
minmax	Get the minimum and maximum value of the cells of a SpatRaster (if known)
setMinMax	Compute the minimum and maximum value of a SpatRaster if these are not known
extract	spatial queries of a SpatRaster with a SpatVector

VIII. Getting and setting dimensions

Get or set basic parameters of SpatRasters. If there are values associated with a SpatRaster object (either in memory or via a link to a file) these are lost when you change the number of columns or rows or the resolution. This is not the case when the extent is changed (as the number of columns and rows will not be affected). Similarly, with **crs** you can set the coordinate reference system, but this does not transform the data (see project for that).

ncol	The number of columns
nrow	The number of rows

ncell The number of cells (can not be set directly, only via ncol or nrow)

res The resolution (x and y)
nlyr Get or set the number of layers
names Get or set the layer names

xres
yres
The x resolution (can be set with res)
yres
The y resolution (can be set with res)
xmin
The minimum x coordinate (or longitude)
xmax
The maximum x coordinate (or longitude)
ymin
The minimum y coordinate (or latitude)
ymax
The maximum y coordinate (or latitude)

ext Get or set the extent (minimum and maximum x and y coordinates ("bounding box")

origin The origin of a SpatRaster

The coordinate reference system (map projection)

is.lonlat Test if an object has (or may have) a longitude/latitude coordinate reference system

sources Get the filename(s) to which a SpatRaster is linked inMemory Are the data sources in memory (or on disk)?

compareGeom Compare the geometry of SpatRasters

NAflag Set the NA value (for reading from a file with insufficient metadata)

See the William (101 100 to 110 William Incompany)

IX. Computing row, column, cell numbers and coordinates

Cell numbers start at 1 in the upper-left corner. They increase within rows, from left to right, and then row by row from top to bottom. Likewise, row numbers start at 1 at the top of the raster, and column numbers start at 1 at the left side of the raster.

xFromCol x-coordinates from column numbers
yFromRow y-coordinates from row numbers
xFromCell x-coordinates from row numbers
yFromCell y-coordinates from cell numbers
xyFromCell x and y coordinates from cell numbers

colFromX Column numbers from x-coordinates (or longitude)
rowFromY Row numbers from y-coordinates (or latitude)
rowColFromCell Row and column numbers from cell numbers
cellFromXY Cell numbers from x and y coordinates
cellFromRowCol Cell numbers from row and column numbers

cellFromRowColCombine Cell numbers from all combinations of row and column numbers

cells Cell numbers from an SpatVector or SpatExtent

X. Writing SpatRaster files

Basic:

writeRaster Write all values of SpatRaster to disk. You can set the filetype, datatype, compression.
writeCDF Write SpatRaster data to a netCDF file

Advanced:

writeStart	Open a file for writing
writeValues	Write some values
writeStop	Close the file after writing
	_

XI. Time related methods

time	Get or set time
fillTime	can add empty layers in between existing layers to assure that the time step between layers is constant
mergeTime	combine multiple rasters, perhaps partly overlapping in time, into a single time series

XII. Miscellaneous SpatRaster methods

terraOptions sources	Show, set, or get session options, mostly to control memory use and to set write options Show the data sources of a SpatRaster
<pre>tmpFiles mem_info</pre>	Show or remove temporary files memory needs and availability
readStart	Open file connections for efficient multi-chunk reading
readStop	Close file connections
inMemory	Are the cell values in memory?

XIII. SpatRasterDataset

SpatRasterDataSet

A SpatRasterDataset contains SpatRaster objects that are sub-datasets for the same area. They all have the same extent and resolution.

sds	Create a SpatRasterDataset from a file with subdatasets (ncdf or hdf) or from SpatRaster objects
[or \$	Extract a SpatRaster
names	Get the names of the sub-datasets

SpatVector

XIV. Create SpatVector objects

vect Create a SpatVector from a file (for example a "shapefile") or from another object

rbind append Spat Vectors of the same geometry type

unique remove duplicates

na.omit remove empty geometries and/or fields that are NA

project Project a SpatVector to a different coordinate reference system

writeVector Write SpatVector data to disk centroids Get the centroids of a SpatVector

voronoi Voronoi diagram delauny Delauny triangles

convHull Compute the convex hull of a SpatVector fillHoles Remove or extract holes from polygons

XV. Properties of SpatVector objects

geom returns the geometries as matrix or WKT crds returns the coordinates as a matrix

linearUnits returns the linear units of the crs (in meter)
ncol The number of columns (of the attributes)

nrow The number of rows (of the geometries and attributes)

names Get or set the layer names

ext Get the extent (minimum and maximum x and y coordinates ("bounding box")

The coordinate reference system (map projection)

is.lonlat Test if an object has (or may have) a longitude/latitude coordinate reference system

XVI. Geometric queries

adjacent find adjacent polygons

expanse computes the area covered by polygons

nearby find nearby geometries nearest find the nearest geometries

relate geometric relationships such as "intersects", "overlaps", and "touches" computes the length of the perimeter of polygons, and the length of lines

per IIII computes the length of the perimeter of polygons, and the length of files

XVII. Geometric operations

erase or "-" erase (parts of) geometries intersect or "*" intersect geometries union or "+" Merge geometries cover update polygons symmetrical difference of two polygons symdif aggregate dissolve smaller polygons into larger ones buffer buffer geometries disagg split multi-geometries into separate geometries clip geometries using a rectangle (SpatExtent) or SpatVector crop

XVIII. SpatVector attributes

We use the term "attributes" for the tabular data (data.frame) associated with vector geometries.

spatial queries between SpatVector and SpatVector (e.g. point in polygons) extract sel select - interactively select geometries click identify attributes by clicking on a map merge Join a table with a SpatVector get attributes as a data.frame as.data.frame get attributes as a list as.list values Get the attributes of a SpatVector values<-Set new attributes to the geometries of a SpatRaster

XIX. Change geometries (for display, experimentation)

shift	change the position geometries by shifting their coordinates in horizontal and/or vertical direction
spin	rotate geometries around an origin
rescale	shrink (or expand) geometries, for example to make an inset map
flip	flip geometries vertically or horizontally
t	transpose geometries (switch x and y)

XX. Geometry properties and topology

the minimum diameter of the geometries

clearance the minimum clearance of the geometries

sharedPaths shared paths (arcs) between line or polygon geometries

simplifyGeom simplify geometries

gaps find gaps between polygon geometries fillHoles get or remove the polygon holes

makeNodes create nodes on lines

mergeLines connect lines to form polygons

removeDupNodes remove duplicate nodes in geometries and optionally rounds the coordinates

is.valid check if geometries are valid makeValid attempt to repair invalid geometries

snap make boundaries of geometries identical if they are very close to each other

erase (single argument) remove parts of geometries that overlap

union (single argument) create new polygons such that there are no overlapping polygons

Spat* Collections

XXI. Collections

A SpatRasterCollection is a vector of SpatRaster objects. Unlike for a SpatRasterDataset, there the extent and resolution of the SpatRasters do not need to match each other. A SpatVectorCollection is a vector of SpatVector objects.

create a SpatRasterCollection from a set of SpatRaster objects
how many SpatRasters does the SpatRasterCollection have?
extract a SpatRastert

SpatExtent

XXII. SpatExtent

ext Create a SpatExtent object. For example to crop a Spatial dataset

intersect Intersect two SpatExtent objects, same as union Combine two SpatExtent objects, same as +

Math-methods round/floor/ceiling of a SpatExtent align Align a SpatExtent with a SpatRaster

draw Create a SpatExtent by drawing it on top of a map (plot)

General methods

XXIII. Conversion between spatial data objects from different packages

You can coerce SpatRasters to Raster* objects after loading the raster package with as(object, "Raster"), or raster(object) or brick(object) or stack(object)

rast	SpatRaster from matrix and other objects
vect	SpatVector from sf or Spatial* vector data
sf::st_as_sf	sf object from SpatVector
rasterize	Rasterizing points, lines or polygons
as.points	Create points from a SpatRaster or SpatVector
as.lines	Create points from a SpatRaster or SpatVector
as.polygons	Create polygons from a SpatRaster
as.contour	Contour lines from a SpatRaster
	-

XXIV. Plotting

Maps:

plot	Plot a SpatRaster or SpatVector. The main method to create a map
points	Add points to a map
lines	Add lines to a map
polys	Add polygons to a map
text	Add text (such as the values of a SpatRaster or SpatVector) to a map
image	Alternative to plot to make a map with a SpatRaster
plotRGB	Combine three layers (red, green, blue channels) into a single "real color" plot
sbar	Add a scalebar to a map
north	Add a north arrow to a map
inset	Add a small inset (overview) map
dots	Make a dot-density map
cartogram	Make a cartogram
persp	Perspective plot of a SpatRaster
contour	Contour plot or filled-contour plot of a SpatRaster
RGB2col	Combine three layers (red, green, blue channels) into a single layer with a color-table

Interacting with a map:

zoom	Zoom in to a part of a map by drawing a bounding box on it
click	Query values of SpatRaster or SpatVector by clicking on a map
sel	Select a spatial subset of a SpatRaster or SpatVector by drawing on a map
draw	Create a SpatExtent or SpatVector by drawing on a map

Other plots:

plot x-y scatter plot of the values of (a sample of) the layers of two SpatRaster objects
hist Histogram of SpatRaster values
barplot Bar plot of a SpatRaster
density Density plot of SpatRaster values
pairs Pairs plot for layers in a SpatRaster
boxplot Box plot of the values of a SpatRaster

Comparison with the raster package

XXV. New method names

terra has a single class SpatRaster for which raster has three (RasterLayer, RasterStack, RasterBrick). Likewise there is a single class for vector data SpatVector that replaces six Spatial* classes. Most method names are the same, but note the following important differences in methods names with the raster package

terra package
rast
<pre>rast(, type="xyz")</pre>
С
add<-
cellSize
approximate
арр
cells
global
focalCor
crds
patches
compareGeom
disagg
draw
subset
ext
distance
is.lonlat
segregate
layerCor
NAflag
nlyr
lapp

projectRaster project rasterToPoints as.points rasterToPolygons as.polygons reclassify, subs, cut classify sampleRandom, sampleRegular spatSample shapefile vect stackApply tapp stackSelect selectRange

(you can use min and max instead)

XXVI. Changed behavior

Also note that even if function names are the same in terra and raster, their output can be different. In most cases this was done to get more consistency in the returned values (and thus fewer errors in the downstream code that uses them). It other cases it simply seemed better. Here are some examples:

as.polygons By default, terra returns dissolved polygons quantile computes by cell, across layers instead of the other way around By default, terra returns a matrix, with the first column the sequential ID of the vectors. extract raster returns a list (for lines or polygons) or a matrix (for points, but without the ID column. You can use list=TRUE to get the results as a list values terra always returns a matrix. raster returns a vector for a RasterLayer Summary-methods With raster, mean(x, y) and mean(stack(x, y) return the same result, a single layer with the mean of all cell values. This is also what terra returns with mean(c(x, y)), but with mean(x, y) the parallel mean is returned – that is, the computation is done layer-wise, and the number of layers in the output is the same as that of x and y (or the larger of the two if they are not the same). This affects all summary functions (sum, mean, median, which.min, which.max, min, max, prod, any, all, stdev), except range, which is not implemented for this case

Author

Except where indicated otherwise, the methods and functions in this package were written by Robert Hijmans. The configuration scripts were written by Roger Bivand for rgdal and sf. Some of the C++ code for GDAL/GEOS was adapted from code by Edzer Pebesma for sf. The gridDistance method was based on code by Jacob van Etten. The progress bar code is by Karl Forner (RcppProgress). Jeroen Ooms provided the compiled GDAL and GEOS libraries for installation on windows

Acknowledgments

This package is an attempt to climb on the shoulders of giants (GDAL, PROJ, GEOS, NCDF, GeographicLib, Rcpp, R). Many people have contributed by asking questions or raising issues.

18 activeCat

Feedback and suggestions by Márcia Barbosa, Kendon Bell, Jean-Luc Dupouey, Krzysztof Dyba, Alex Ilich, Jakub Nowosad, Gerald Nelson, and Michael Sumner have been especially helpful.

activeCat

Active category

Description

Get or set the active category of a multi-categorical SpatRaster layer

Usage

```
## S4 method for signature 'SpatRaster'
activeCat(x, layer=1)
## S4 replacement method for signature 'SpatRaster'
activeCat(x, layer=1)<-value</pre>
```

Arguments

x SpatRaster

layer positive integer, the layer number or name

value a data.frame (ID, category) or vector with category names

Value

integer

See Also

```
catalyze, cats
```

```
set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE) + 10
d <- data.frame(id=11:13, cover=c("forest", "water", "urban"), letters=letters[1:3], value=10:12)
levels(r) <- d
activeCat(r)
activeCat(r) <- 3
activeCat(r)</pre>
```

add 19

add

Add (in place) a SpatRaster to another SpatRaster object

Description

Add (in place) a SpatRaster to another SpatRaster object. Comparable with c, but withouth copying the object.

Usage

```
\#\# S4 replacement method for signature 'SpatRaster, SpatRaster' add(x)<-value
```

Arguments

```
x SpatRastervalue SpatRaster
```

Value

SpatRaster

See Also

С

Examples

```
r <- rast(nrows=5, ncols=9, vals=1:45)
x <- c(r, r*2)
add(x) <- r*3
x</pre>
```

adjacent

Adjacent cells

Description

Identify cells that are adjacent to a set of raster cells. Or identify adjacent polygons

Usage

```
## S4 method for signature 'SpatRaster'
adjacent(x, cells, directions="rook", pairs=FALSE, include=FALSE)
## S4 method for signature 'SpatVector'
adjacent(x, type="rook", pairs=TRUE, symmetrical=FALSE)
```

20 adjacent

Arguments

^	Spatikasici
cells	vector of cell numbers for which adjacent cells should be for

vector of cell numbers for which adjacent cells should be found. Cell numbers start with 1 in the upper-left corner and increase from left to right and from top

to bottom

SnatRactor

directions character or matrix to indicated the directions in which cells are considered con-

nected. The following character values are allowed: "rook" or "4" for the horizontal and vertical neighbors; "bishop" to get the diagonal neighbors; "queen" or "8" to get the vertical, horizontal and diagonal neighbors; or "16" for knight and one-cell queen move neighbors. If directions is a matrix it should have

odd dimensions and have logical (or 0, 1) values

pairs logical. If TRUE, a two-column matrix of pairs of adjacent cells is returned. If x is

a SpatRaster and pairs is FALSE, an n*m matrix is returned where the number of rows n is length(cells) and the number of columns m is the number of

neighbors requested with directions

include logical. Should the focal cells be included in the result? They are always in-

cluded if pairs=TRUE

type character. One of "rook", "queen", "touches", or "intersects". "queen" and

"touches" are synonyms. "rook" exclude polygons that touch at a single node

only. "intersects" includes polygons that touch or overlap

symmetrical logical. If TRUE, an adjacent pair is only included once. For example, if polygon

1 is adjacent to polygon 3, the implied adjacency between 3 and 1 is not reported

Value

matrix

See Also

```
relate, nearby
```

```
r <- rast(nrows=10, ncols=10)
adjacent(r, cells=c(1, 5, 55), directions="queen")
r <- rast(nrows=10, ncols=10, crs="+proj=utm +zone=1 +datum=WGS84")
adjacent(r, cells=11, directions="rook")

#same as
rk <- matrix(c(0,1,0,1,0,1,0,1,0), 3, 3)
adjacent(r, cells=11, directions=rk)

## note that with global lat/lon data the E and W connect
r <- rast(nrows=10, ncols=10, crs="+proj=longlat +datum=WGS84")
adjacent(r, cells=11, directions="rook")

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)</pre>
```

aggregate 21

```
a <- adjacent(v, symmetrical=TRUE)
head(a)</pre>
```

aggregate Aggregate raster or vector data	
---	--

Description

Aggregate a SpatRaster to create a new SpatRaster with a lower resolution (larger cells). Aggregation groups rectangular areas to create larger cells. The value for the resulting cells is computed with a user-specified function.

Or aggregate ("dissolve") a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
aggregate(x, fact=2, fun="mean", ..., cores=1, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatVector'
aggregate(x, by=NULL, dissolve=TRUE, fun="mean", ...)
```

Arguments

x	SpatRaster
fact	positive integer. Aggregation factor expressed as number of cells in each direction (horizontally and vertically). Or two integers (horizontal and vertical aggregation factor) or three integers (when also aggregating over layers)
fun	function used to aggregate values. Either an actual function, or for the following, their name: "mean", "max", "min", "median", "sum" and "modal"
	additional arguments passed to fun, such as na.rm=TRUE
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created. Ignored for C++ level implemented functions "mean", "max", "min", "median", "sum" and "modal"
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster
by	character. The variable used to aggregate the geometries
dissolve	logical. Should borders between aggregated geometries be dissolved?

22 align

Details

Aggregation starts at the upper-left end of a SpatRaster. If a division of the number of columns or rows with factor does not return an integer, the extent of the resulting SpatRaster will be somewhat larger then that of the original SpatRaster. For example, if an input SpatRaster has 100 columns, and fact=12, the output SpatRaster will have 9 columns and the maximum x coordinate of the output SpatRaster is also adjusted.

The function fun should take multiple numbers, and return a single number. For example mean, modal, min or max.

It should also accept a na.rm argument (or ignore it as one of the 'dots' arguments).

Value

SpatRaster

See Also

disagg to disaggregate

```
r <- rast()
# aggregated SpatRaster, no values
ra <- aggregate(r, fact=10)</pre>
values(r) <- runif(ncell(r))</pre>
# aggregated raster, max of the values
ra <- aggregate(r, fact=10, fun=max)</pre>
# multiple layers
s <- c(r, r*2)
x <- aggregate(s, 20)
## SpatVector
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
va <- aggregate(v, "ID_1")</pre>
plot(va, "NAME_1", lwd=5, plg=list(x="topright"), mar=rep(2,4))
lines(v, lwd=3, col="light gray")
lines(va)
text(v, "ID_1", halo=TRUE)
```

align 23

Description

Align an SpatExtent with a SpatRaster This can be useful to create a new SpatRaster with the same origin and resolution as an existing SpatRaster. Do not use this to force data to match that really does not match (use e.g. resample or (dis)aggregate for this).

It is also possible to align a SpatExtent to a clean divisor.

Usage

```
## S4 method for signature 'SpatExtent,SpatRaster'
align(x, y, snap="near")
## S4 method for signature 'SpatExtent,numeric'
align(x, y)
```

Arguments

X	SpatExtent
у	SpatRaster or numeric
snap	Character. One of "near", "in", or "out", to determine in which direction the extent should be aligned. To the nearest border, inwards or outwards

Value

SpatExtent

See Also

```
ext, draw
```

```
r <- rast()
e <- ext(-10.1, 9.9, -20.1, 19.9)
ea <- align(e, r)
e
ext(r)
ea
align(e, 0.5)</pre>
```

24 all.equal

all.equal

Compare two SpatRasters for equality

Description

Compare two SpatRasters for (near) equality.

First the attributes of the objects are compared. If these are the same, a (perhaps small) sample of the raster cells is compared as well.

The sample size used can be increased with the maxcell argument. You can set it to Inf, but for large rasters your computer may not have sufficient memory. See the examples for a safe way to compare all values.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
all.equal(target, current, maxcell=10000, ...)
```

Arguments

target	SpatRaster
current	SpatRaster
maxcell	postive integer. The size of the regular sample used to compare cell values
	additional arguments passed to all.equal.numeric to compare cell values

Value

Either TRUE or a chracter vector describing the differences between target and current.

See Also

compareGeom

```
x <- sqrt(1:100)
mat <- matrix(x, 10, 10)
r1 <- rast(nrows=10, ncols=10, xmin=0, vals = x)
r2 <- rast(nrows=10, ncols=10, xmin=0, vals = mat)
all.equal(r1, r2)
all.equal(r1, r1*1)
all.equal(rast(r1), rast(r2))
# compare geometries
compareGeom(r1, r2)
# Compare all cell values for near equality</pre>
```

animate 25

```
# as floating point number imprecision can be a problem
m <- minmax(r1 - r2)
all(abs(m) < 1e-7)

# comparison of cell values to create new SpatRaster
e <- r1 == r2</pre>
```

animate

Animate a SpatRaster

Description

Animate (sequentially plot) the layers of a SpatRaster to create a movie

Usage

```
## S4 method for signature 'SpatRaster'
animate(x, pause=0.25, main, range, maxcell=50000, n=1, ...)
```

Arguments

Χ	SpatRaster
pause	numeric. How long should be the pause be between layers?
main	title for each layer. If not supplied the z-value is used if available. Otherwise the names are used.
range	numeric vector of length 2. Range of values to plot
maxcell	integer > 0 . Maximum number of cells to use for the plot. If maxcell $<$ ncell(x), spatSample(type="regular") is used before plotting
n	integer > 0. Number of loops
	Additional arguments passed to plot

Value

None

See Also

plot

```
s <- rast(system.file("ex/logo.tif", package="terra"))
animate(s, n=1)</pre>
```

26 app

app Apply a function to the cells of a SpatRaster

Description

Apply a function to the values of each cell of a SpatRaster. Similar to apply – think of each layer in a SpatRaster as a column (or row) in a matrix.

This is generally used to summarize the values of multiple layers into one layer; but this is not required.

app calls function fun with the raster data as first argument. Depending on the function supplied, the raster data is represented as either a matrix in which each layer is a column, or a vector representing a cell. The function should return a vector or matrix that is divisible by ncell(x). Thus, both "sum" and "rowSums" can be used, but "colSums" cannot be used.

You can also apply a function fun across datasets by layer of a SpatRasterDataset. In that case, summarization is across SpatRasters, not across layers.

Usage

```
## S4 method for signature 'SpatRaster'
app(x, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterDataset'
app(x, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())
```

Arguments

wopt

x	SpatRaster or SpatRasterDataset
fun	a function that operates on a vector or matrix. This can be a function that is defined in base-R or in a package, or a function you write yourself (see examples). Functions that return complex output (e.g. a list) may need to be wrapped in your own function to simplify the output to a vector or matrix. The following functions have been re-implemented in C++ for speed: "sum", "mean", "median", "modal", "which", "which.min", "which.max", "min", "max", "prod", "any", "all", "sd", "std", "first". To use the base-R function for say, "min", you could use something like fun=function(i) min(i) or the equivalent fun = \(i) min(i)
	additional arguments for fun. These are typically numerical constants. They should *never* be another SpatRaster
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object. Ignored for functions that are implemented by terra in C++ (see under fun)
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten

list with named options for writing files as in writeRaster

app 27

Details

To speed things up, parallelization is supported, but this is often not helpful, and it may actually be slower. There is only a speed gain if you have many cores (> 8) and/or a very complex (slow) function fun. If you write fun yourself, consider supplying a cppFunction made with the Rcpp package instead (or go have a cup of tea while the computer works for you).

Value

SpatRaster

See Also

lapp, tapp, Math-methods

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)</pre>
x \leftarrow c(r, sqrt(r), r+50)
s \leftarrow app(x, fun=sum)
# for a few generic functions like
# "sum", "mean", and "max" you can also do
sum(x)
## SpatRasterDataset
sd <- sds(x, x*2, x/3)
a <- app(sd, max)
# same as
max(x, x*2, x/3)
## also works for a single layer
f \leftarrow function(i) (i+1) * 2 * i + sqrt(i)
s \leftarrow app(r, f)
# same as above, but that is not memory-safe
# and has no filename argument
s \leftarrow f(r)
## Not run:
#### multiple cores
test0 <- app(x, sqrt)
test1 <- app(x, sqrt, cores=2)</pre>
testfun <- function(i) { 2 * sqrt(i) }</pre>
test2 <- app(x, fun=testfun, cores =2)
## this fails because testfun is not exported to the nodes
# test3 <- app(x, fun=function(i) testfun(i), cores=2)</pre>
## to export it, add it as argument to fun
test3 <- app(x, fun=function(i, ff) ff(i), cores =3, ff=testfun)
```

28 approximate

## End(Not run)	
approximate	Estimate values for cell values that are NA by interpolating between layers

Description

approximate uses the stats function approx to estimate values for cells that are NA by interpolation across layers. Layers are considered equidistant, unless argument z is used, or time(x) returns values that are not NA, in which case these values are used to determine distance between layers.

For estimation based on neighboring cells see focal

Usage

Arguments

X	SpatRaster
method	specifies the interpolation method to be used. Choices are "linear" or "constant" (step function; see the example in approx
yleft	the value to be returned before a non-NA value is encountered. The default is defined by the value of rule given below
yright	the value to be returned after the last non-NA value is encountered. The default is defined by the value of rule given below
rule	an integer (of length 1 or 2) describing how interpolation is to take place at for the first and last cells (before or after any non-NA values are encountered). If rule is 1 then NAs are returned for such points and if it is 2, the value at the closest data extreme is used. Use, e.g., rule = 2:1, if the left and right side extrapolation should differ
f	for method = "constant" a number between 0 and 1 inclusive, indicating a compromise between left- and right-continuous step functions. If y0 and y1 are the values to the left and right of the point then the value is $y0*(1-f)+y1*f$ so that $f = 0$ is right-continuous and $f = 1$ is left-continuous
ties	Handling of tied 'z' values. Either a function with a single vector argument returning a single number result or the string "ordered"
Z	numeric vector to indicate the distance between layers (e.g., depth). The default is $time(x)$ if these are not NA or else 1:nlys(x)
NArule	single integer used to determine what to do when only a single layer with a non-NA value is encountered (and linear interpolation is not possible). The default value of 1 indicates that all layers will get this value for that cell; all other values do not change the cell values
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Arith-methods 29

Value

SpatRaster

See Also

```
focal, fillTime
```

Examples

```
r <- rast(ncols=5, nrows=5)
r1 <- setValues(r, runif(ncell(r)))
r2 <- setValues(r, runif(ncell(r)))
r3 <- setValues(r, runif(ncell(r)))
r4 <- setValues(r, runif(ncell(r)))
r5 <- setValues(r, NA)
r6 <- setValues(r, runif(ncell(r)))
r1[6:10] <- NA
r2[5:15] <- NA
r3[8:25] <- NA
s <- c(r1,r2,r3,r4,r5,r6)
s[1:5] <- NA
x1 <- approximate(s)
x2 <- approximate(s, rule=2)
x3 <- approximate(s, rule=2, z=c(1,2,3,5,14,15))</pre>
```

Arith-methods

Arithmetic

Description

Standard arithmetic operators for computations with SpatRasters. Computations are local (applied on a cell by cell basis). If multiple SpatRaster objects are used, these must have the same geometry (extent and resolution). These operators have been implemented:

```
+,-,*,/,^,%%,%/%
```

The following methods have been implemented for SpatExtent:

```
for (SpatExtent, SpatExtent): +, -, and for (SpatExtent, numeric): +, -, *, /, %%
```

Value

SpatRaster or SpatExtent

seealso

ifel to conveniently combine operations and Math-methods or app to use mathematical functions not implemented by the package.

30 as.character

Examples

```
r1 <- rast(ncols=10, nrows=10)</pre>
v <- runif(ncell(r1))</pre>
v[10:20] <- NA
values(r1) <- v</pre>
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)</pre>
r3 < -r1 + r2
r2 <- r1 / 10
r3 <- r1 * (r2 - 1 / r2)
b <- c(r1, r2, r3)
b2 <- b * 10
### SpatExtent methods
x \leftarrow ext(0.1, 2.2, 0, 3)
y <- ext(-2, 1, -2,2)
# union
x + y
# intersection
x * y
e <- x
e * 2
e / 2
e + 1
e - 1
```

as.character

Create a text representation of (the skeleton of) an object

Description

Create a text representation of (the skeleton of) an object

Usage

```
## S4 method for signature 'SpatExtent'
as.character(x)
## S4 method for signature 'SpatRaster'
as.character(x)
```

Arguments

x SpatRaster

as.data.frame 31

Value

character

Examples

```
r <- rast()
ext(r)
ext(c(0, 20, 0, 20))</pre>
```

as.data.frame

SpatRaster or SpatVector to data.frame

Description

Coerce a SpatRaster or SpatVector to a data.frame

Usage

```
## S4 method for signature 'SpatVector'
as.data.frame(x, row.names=NULL, optional=FALSE, geom=NULL, ...)
## S4 method for signature 'SpatRaster'
as.data.frame(x, row.names=NULL, optional=FALSE, xy=FALSE, cells=FALSE, na.rm=TRUE, ...)
```

Arguments

Χ	SpatRaster or SpatVector
geom	character or NULL. If not NULL, either "WKT" or "HEX", to get the geometry included in Well-Known-Text or hexadecimal notation. If x has point geometry, it can also bey "XY" to add the coordinates of each point
xy	logical. If TRUE, the coordinates of each raster cell are included
cells	logical. If TRUE, the cell numbers of each raster cell are included
na.rm	logical. If TRUE, cells that have a NA value in at least one layer are removed
	Additional arguments passed to the data.frame
row.names	This argument is ignored
optional	This argument is ignored

Value

data.frame

See Also

as.list, as.matrix. See geom to only extract the geometry of a SpatVector

32 as.list

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
as.data.frame(v)</pre>
```

as.list

SpatRaster or SpatVector to list

Description

Coerce a SpatRaster or SpatVector to a list. With a SpatRaster, each layer becomes a list element. With a SpatVector, each variable becomes a list element.

Usage

```
## S4 method for signature 'SpatRaster'
as.list(x, ...)
## S4 method for signature 'SpatVector'
as.list(x, geom=NULL, ...)
```

Arguments

X	SpatRaster or SpatVector
geom	character or NULL. If not NULL, either "WKT" or "HEX", to get the geometry included in Well-Known-Text or hexadecimal notation. If x has point geometry, it can also bey "XY" to add the coordinates of each point
	Additional arguments. These are ignored

Value

list

See Also

see coerce for as.data.frame with a SpatRaster; and geom to only extract the geometry of a SpatVector

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
as.list(v)</pre>
```

as.raster 33

as.raster

Coerce to a "raster" object

Description

Implementation of the generic as.raster function to create a "raster" (small r) object. Such objects can be used for plotting with the rasterImage function. NOT TO BE CONFUSED with the Raster* (big R) objects defined by the 'raster' package!

Usage

```
## S4 method for signature 'SpatRaster'
as.raster(x, maxcell=500000, col)
```

Arguments

x SpatRaster
maxcell positive integer. Maximum number of cells to use for the plot
col vector of colors. Default is col=rev(terrain.colors(255)))

Value

'raster' object

Examples

```
r <- rast(ncols=3, nrows=3)
values(r) <- 1:ncell(r)
as.raster(r)</pre>
```

as.spatvector

Conversion to a SpatVector, or to another SpatVector type

Description

Conversion of a SpatRaster or SpatExtent to a SpatVector of points, lines, or polygons;

And conversion of a SpatVector to a another SpatVector type.

34 as.spatvector

Usage

```
## S4 method for signature 'SpatRaster'
as.polygons(x, trunc=TRUE, dissolve=TRUE, values=TRUE, na.rm=TRUE, extent=FALSE)
## S4 method for signature 'SpatRaster'
as.lines(x)
## S4 method for signature 'SpatRaster'
as.points(x, values=TRUE, na.rm=TRUE)
## S4 method for signature 'SpatVector'
as.polygons(x)
## S4 method for signature 'SpatVector'
as.lines(x)
## S4 method for signature 'SpatVector'
as.points(x, multi=FALSE, skiplast=TRUE)
## S4 method for signature 'SpatExtent'
as.polygons(x, crs="")
## S4 method for signature 'SpatExtent'
as.lines(x, crs="")
## S4 method for signature 'SpatExtent'
as.points(x, crs="")
```

Arguments

Х		SpatRaster or SpatVector
trund		logical; truncate values to integers. Cels with the same value are merged. Therefore, if trunc=FALSE the object returned can be very large
disso	olve	logical; combine cells with the same values? If TRUE only the first layer in \boldsymbol{x} is processed
value	es	logical; include cell values as attributes? If FALSE the cells are not dissolved and the object returned can be very large
multi	i	logical. If TRUE a multipoint geometry is returned
skip]	last	logical. If TRUE the last point of a polygon (which is the same as the first point) is not included
exter	nt	logical. if TRUE, a polygon for the extent of the SpatRaster is returned. It has vertices for each grid cell, not just the four corners of the raster. This can be useful for more precise projection. In other cases it is better to do as.polygons(ext(x)) to get a much smaller object returned that covers the same extent $\frac{1}{2}$
na.r	n	logical. If TRUE cells that are NA are ignored
crs		character. The coordinate reference system (see crs

atan2 35

Value

SpatVector

Examples

```
r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)
as.points(r)
as.lines(ext(r), crs=crs(r))
if (gdal() >= "3.0.0") {
p <- as.polygons(r)
p
as.lines(p)
as.points(p)
}</pre>
```

atan2

Two argument arc-tangent

Description

For SpatRasters x and y, atan2(y, x) returns the angle in radians for the tangent y/x, handling the case when x is zero. See Trig

See Math-methods for other trigonometric and mathematical functions that can be used with SpatRasters.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
atan2(y, x)
## S4 method for signature 'SpatRaster, SpatRaster'
atan_2(y, x, filename, ...)
```

Arguments

```
y SpatRaster
x SpatRaster
filename character. Output filename
... additional arguments for writing files as in writeRaster
```

See Also

Math-methods

36 autocorrelation

Examples

```
r1 <- rast(nrows=10, ncols=10)
r2 <- rast(nrows=10, ncols=10)
values(r1) <- (runif(ncell(r1))-0.5) * 10
values(r2) <- (runif(ncell(r1))-0.5) * 10
atan2(r1, r2)</pre>
```

autocorrelation

Spatial autocorrelation

Description

Compute spatial autocorrelation for a numeric vector or a SpatRaster. You can compute standard (global) Moran's I or Geary's C, or local indicators of spatial autocorrelation (Anselin, 1995).

Usage

```
## S4 method for signature 'numeric'
autocor(x, w, method="moran")

## S4 method for signature 'SpatRaster'
autocor(x, w=matrix(c(1,1,1,1,0,1,1,1,1),3), method="moran", global=TRUE)
```

Arguments

x	numeric or SpatRaster
W	Spatial weights defined by or a rectangular matrix. For a SpatRaster this matrix must the sides must have an odd length $(3, 5,)$
global	logical. If TRUE global autocorrelation is computed instead of local autocorrelation $$
method	character. If x is numeric or SpatRaster: "moran" for Moran's I and "geary" for Geary's C. If x is numeric also: "Gi", "Gi*" (the Getis-Ord statistics), locmor (local Moran's I) and "mean" (local mean)

Details

The default setting uses a 3x3 neighborhood to compute "Queen's case" indices. You can use a filter (weights matrix) to do other things, such as "Rook's case", or different lags.

Value

numeric or SpatRaster

barplot 37

References

Moran, P.A.P., 1950. Notes on continuous stochastic phenomena. Biometrika 37:17-23

Geary, R.C., 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5: 115-145

Anselin, L., 1995. Local indicators of spatial association-LISA. Geographical Analysis 27:93-115

https://en.wikipedia.org/wiki/Indicators_of_spatial_association

See Also

The spdep package for additional and more general approaches for computing spatial autocorrelation

Examples

```
### raster
r <- rast(nrows=10, ncols=10, xmin=0)
values(r) <- 1:ncell(r)</pre>
autocor(r)
# rook's case neighbors
f \leftarrow matrix(c(0,1,0,1,0,1,0,1,0), nrow=3)
autocor(r, f)
# local
rc <- autocor(r, w=f, global=FALSE)</pre>
### numeric (for vector data)
f <- system.file("ex/lux.shp", package="terra")</pre>
v \leftarrow vect(f)
w <- relate(v, relation="touches")</pre>
# global
autocor(v$AREA, w)
# local
v$Gi <- autocor(v$AREA, w, "Gi")
plot(v, "Gi")
```

barplot

Bar plot of a SpatRaster

Description

Create a barplot of the values of a the first layer of a SpatRaster. For large datasets a regular sample with a size of approximately maxcells is used.

38 boundaries

Usage

```
## S4 method for signature 'SpatRaster'
barplot(height, maxcell=1000000, digits=0, breaks=NULL, col, ...)
```

Arguments

height	SpatRaster
maxcell	integer. To regularly subsample very large datasets
digits	integer used to determine how to round the values before tabulating. Set to NULL or to a large number if you do not want any rounding
breaks	breaks used to group the data as in cut
col	a color generating function such as rainbow (the default), or a vector of colors
	additional arguments for plotting as in barplot

Value

A numeric vector (or matrix, when beside = TRUE) of the coordinates of the bar midpoints, useful for adding to the graph. See barplot

See Also

```
hist,boxplot
```

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
barplot(r, digits=-1, las=2, ylab="Frequency")

op <- par(no.readonly = TRUE)
par(mai = c(1, 2, .5, .5))
barplot(r, breaks=10, col=c("red", "blue"), horiz=TRUE, digits=NULL, las=1)
par(op)</pre>
```

boundaries

Detect boundaries (edges)

Description

Detect boundaries (edges). Boundaries are cells that have more than one class in the 4 or 8 cells surrounding it, or, if classes=FALSE, cells with values and cells with NA.

Usage

boxplot 39

Arguments

X	SpatRaster
inner	logical. If TRUE, "inner" boundaries are returned, else "outer" boundaries are returned $$
classes	character. Logical. If TRUE all different values are (after rounding) distinguished, as well as NA. If FALSE (the default) only edges between NA and non-NA cells are considered
directions	integer. Which cells are considered adjacent? Should be 8 (Queen's case) or 4 (Rook's case)
falseval	numeric. The value to use for cells that are not a boundary and not NA
filename	character. Output filename
	options for writing files as in writeRaster

Value

SpatRaster. Cell values are either 1 (a border) or 0 (not a border), or NA

See Also

```
focal, patches
```

Examples

```
r <- rast(nrows=18, ncols=36, xmin=0)
r[150:250] <- 1
r[251:450] <- 2
bi <- boundaries(r)
bo <- boundaries(r, inner=FALSE)
bc <- boundaries(r, classes=TRUE)
#plot(bc)</pre>
```

boxplot

Box plot of SpatRaster data

Description

Box plot of layers in a SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
boxplot(x, y=NULL, maxcell=100000, ...)
```

40 buffer

Arguments

X	SpatRaster
у	NULL or a SpatRaster. If x is a SpatRaster it used to group the values of x by "zone"
maxcell	Integer. Number of cells to sample from datasets
	additional arguments passed to graphics::boxplot

Value

boxplot returns a list (invisibly) that can be used with bxp

See Also

```
pairs, hist
```

Examples

```
r1 <- r2 <- r3 <- rast(ncols=10, nrows=10)
set.seed(409)
values(r1) <- rnorm(ncell(r1), 100, 40)
values(r2) <- rnorm(ncell(r1), 80, 10)
values(r3) \leftarrow rnorm(ncell(r1), 120, 30)
s <- c(r1, r2, r3)
names(s) <- c("Apple", "Pear", "Cherry")</pre>
boxplot(s, notch=TRUE, col=c("red", "blue", "orange"), main="Box plot", ylab="random", las=1)
op <- par(no.readonly = TRUE)</pre>
par(mar=c(4,6,2,2))
boxplot(s, horizontal=TRUE, col="lightskyblue", axes=FALSE)
axis(2, at=0:3, labels=c("", names(s)), las=1, cex.axis=.9, lty=0)
par(op)
## boxplot with 2 layers
v <- vect(system.file("ex/lux.shp", package="terra"))</pre>
r <- rast(system.file("ex/elev.tif", package="terra"))</pre>
y <- rasterize(v, r, "NAME_2")</pre>
b <- boxplot(r, y)</pre>
bxp(b)
```

buffer

Create a buffer around vector geometries or raster patches

buffer 41

Description

Calculate a buffer around all cells that are not NA in a SpatRaster, or around the geometries of a SpatVector)

Note that the distance unit of the buffer width parameter is meters if the CRS is (+proj=longlat), and in map units (typically also meters) if not.

Usage

```
## S4 method for signature 'SpatRaster'
buffer(x, width, filename="", ...)
## S4 method for signature 'SpatVector'
buffer(x, width, quadsegs=10)
```

Arguments

x	SpatRaster or SpatVector
width	numeric. Unit is meter if x has a longitude/latitude CRS, or mapunits in other cases. Should be > 0 for SpatRaster
filename	character. Output filename
	additional arguments for writing files as in writeRaster
quadsegs	positive integer. Number of line segments to use to draw a quart circle

Value

SpatRaster

See Also

distance

```
r <- rast(ncols=36, nrows=18)
v <- rep(NA, ncell(r))
v[500] <- 1
values(r) <- v
b <- buffer(r, width=5000000)
plot(b)

v <- vect(rbind(c(10,10), c(0,60)), crs="+proj=merc")
b <- buffer(v, 20)
plot(b)
points(v)

crs(v) <- "+proj=longlat"
b <- buffer(v, 1500000)
plot(b)
points(v)</pre>
```

42 c

Combine SpatRaster or SpatVector objects

С

Description

With c you can:

- Combine SpatRaster objects. They must have the same extent and resolution. However, if x is empty (has no cell values), its geometry is ignored with a warning. Two empty SpatRasters with the same geometry can also be combined (to get a summed number of layers). Also see add<-
- Add a SpatRaster to a SpatRasterDataset
- Add SpatVector objects to a new or existing SpatVectorCollection
 To append SpatVectors, use rbind.

Usage

```
## S4 method for signature 'SpatRaster'
c(x, ..., warn=TRUE)

## S4 method for signature 'SpatRasterDataset'
c(x, ...)

## S4 method for signature 'SpatVector'
c(x, ...)

## S4 method for signature 'SpatVectorCollection'
c(x, ...)
```

Arguments

X	SpatRaster, SpatVector, SpatRasterDataset or SpatVectorCollection
warn	logical. If TRUE, a warning is emitted if x is an empty SpatRaster
	as for x (you can only combine raster with raster data and vector with vector
	data)

Value

Same class as x

See Also

add<-

```
r <- rast(nrows=5, ncols=9)
values(r) <- 1:ncell(r)
x <- c(r, r*2, r*3)</pre>
```

cartogram 43

cartogram Cartogram

Description

Make a cartogram, that is, a map where the area of polygons is made proportional to another variable. This can be a good way to map raw count data (e.g. votes).

Usage

```
## S4 method for signature 'SpatVector'
cartogram(x, var, type)
```

Arguments

x SpatVector

var character. A variable name in x

type character. Cartogram type, only "nc" (non-contiguous) is currently supported

Value

SpatVector

See Also

```
plot, rescale
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$value <- 1:12
p <- cartogram(v, "value", "nc")
plot(v, col="light gray", border="gray")
lines(p, col="red", lwd=2)</pre>
```

catalyze

Factors to numeric

Description

Change a categorical layer into one or more numerical layers. With as.numeric you can transfer the active category values to cell values in a non categorical SpatRaster. catalyze transfers all categories to new layers.

44 cells

Usage

```
## S4 method for signature 'SpatRaster'
as.numeric(x, index=NULL, filename="", ...)
## S4 method for signature 'SpatRaster'
catalyze(x, filename="", ...)
```

Arguments

x SpatRaster

index positive integer, indicating the column in data.frame value to be used as the category, skipping the first column with the ID. If NULL the active category is used

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
activeCat, cats
```

Examples

```
set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE) + 10
d <- data.frame(id=11:13, cover=c("forest", "water", "urban"), letters=letters[1:3], value=10:12)
levels(r) <- d
catalyze(r)
activeCat(r) <- 3
as.numeric(r)</pre>
```

cells

Get cell numbers

Description

Get the cell numbers covered by a SpatVector or SpatExtent. Or that match values in a vector; or all non NA values.

cells 45

Usage

```
## S4 method for signature 'SpatRaster,missing'
cells(x, y)

## S4 method for signature 'SpatRaster,numeric'
cells(x, y)

## S4 method for signature 'SpatRaster,SpatVector'
cells(x, y, method="simple", weights=FALSE, exact=FALSE, touches=is.lines(y))

## S4 method for signature 'SpatRaster,SpatExtent'
cells(x, y)
```

Arguments

X	SpatRaster
У	SpatVector, SpatExtent, 2-column matrix representing points, numeric representing values to match, or missing
method	character. Method for getting cell numbers for points. The default is "simple", the alternative is "bilinear". If it is "bilinear", the four nearest cells and their weights are returned
weights	logical. If TRUE and y has polygons, the approximate fraction of each cell that is covered is returned as well
exact	logical. If TRUE and y has polygons, the exact fraction of each cell that is covered is returned as well
touches	logical. If TRUE, values for all cells touched by lines or polygons are extracted, not just those on the line render path, or whose center point is within the polygon. Not relevant for points

Value

numeric vector or matrix

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
r[c(1:25, 31:100)] <- NA
r <- ifel(r > 28, r + 10, r)

# all cell numbers of cells that are not NA
cells(r)

# cell numbers that match values
x <- cells(r, c(28,38))
x$lyr.1

# cells for points</pre>
```

46 cellSize

```
m <- cbind(x=c(0,10,-30), y=c(40,-10,20))
cellFromXY(r, m)

v <- vect(m)
cells(r, v)
cells(r, v, method="bilinear")

# cells for polygons
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
r <- rast(v)
cv <- cells(r, v)</pre>
```

cellSize

Area covered by each raster cell

Description

Compute the area covered by individual raster cells. Computing the surface area of raster cells is particularly relevant for longitude/latitude rasters.

Note that for both angular (longitude/latitude) and for planar (projected) coordinate reference systems raster cells sizes are generally not constant, unless you are using an equal-area coordinate reference system.

For planar CRSs, the area is therefore not computed based on the linear units of the coordinate reference system, but on the *actual* area, correcting for distortion. If you do not want that, you can instead use init(x,prod(res(x)))

Usage

```
## S4 method for signature 'SpatRaster'
cellSize(x, mask=TRUE, unit="m", transform=TRUE, filename="", ...)
```

Arguments

Χ	SpatRaster
mask	logical. If TRUE, cells that are NA in x are also NA in the output
unit	character. One of "m", "km", or "ha"
transform	logical. If TRUE, planar CRS data are transformed to lon/lat for accuracy
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

numeric. The area of each cell, expressed in square meters, square kilometers, or hectares.

centroids 47

See Also

expanse

Examples

```
# SpatRaster
r <- rast(nrows=18, ncols=36)
v <- 1:ncell(r)
v[200:400] <- NA
values(r) <- v

# size of each raster cell
a <- cellSize(r)

# illustration of distortion
r <- rast(ncols=90, nrows=45, ymin=-80, ymax=80)
m <- project(r, "+proj=merc")

bad <- init(m, prod(res(m)) / 1000000, names="naive")
good <- cellSize(m, unit="km", names="corrected")
plot(c(good, bad), nc=1, mar=c(2,2,1,6))</pre>
```

centroids

Get centroids

Description

Get the centroids for the polygons of a SpatVector

Usage

```
## S4 method for signature 'SpatVector'
centroids(x)
```

Arguments

Χ

SpatVector

Value

SpatVector of points

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
x <- centroids(v)</pre>
```

48 clamp

clamp	Clamp values
cramp	Citimp varies

Description

Clamp values to a minimum and maximum value. That is, all values below a lower threshold value and above the upper threshold value become either NA, or, if values=TRUE, become the threshold value

Usage

```
## S4 method for signature 'SpatRaster'
clamp(x, lower=-Inf, upper=Inf, values=TRUE, filename="", ...)
## S4 method for signature 'numeric'
clamp(x, lower=-Inf, upper=Inf, values=TRUE, ...)
```

Arguments

X	SpatRaster
lower	numeric. lowest value
upper	numeric. highest value
values	logical. If FALSE values outside the clamping range become NA, if TRUE, they get the extreme values $$
filename	character. Output filename
	additional argumments for writing files as in writeRaster

Value

SpatRaster

See Also

```
classify
```

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
rc <- clamp(r, 25, 75)
rc</pre>
```

49 classify

classify

Classify (or reclassify) cell values

Description

Classify values of a SpatRaster. The function (re-)classifies groups of values to other values.

The classification is done based on the argument rcl. You can classify ranges by specifying a three-column matrix "from-to-becomes" or change specific values by using a two-column matrix "is-becomes". You can also supply a vector with "cuts" or the "number of cuts".

With "from-to-becomes" or "is-becomes" classification is done in the row order of the matrix. Thus, if there are overlapping ranges or values, the first time a number is within a range determines the reclassification value.

With "cuts" the values are sorted, so that the order in which they are provided does not matter.

Usage

```
## S4 method for signature 'SpatRaster'
classify(x, rcl, include.lowest=FALSE, right=TRUE,
    othersNA=FALSE, brackets=TRUE, filename="", ...)
```

Arguments

Х rcl SpatRaster

matrix for classification. This matrix must have 1, 2 or 3 columns. If there are three columns, the first two columns are "from" "to" of the input values, and the third column "becomes" has the new value for that range.

The two column matrix ("is", "becomes") can be useful for classifying integer values. In that case, the arguments right and include.lowest are ignored.

A single column matrix (or a vector) is interpreted as a set of cuts if there is more than one value. In that case the values are classified based on their location inbetween the cut-values.

If a single number is provided, that is used to make that number of cuts, at equal intervals between the lowest and highest values of the SpatRaster.

include.lowest logical, indicating if a value equal to the lowest value in rcl (or highest value in the second column, for right=FALSE) should be included.

right

logical. If TRUE, the intervals are closed on the right (and open on the left). If FALSE they are open at the right and closed at the left. "open" means that the extreme value is *not* included in the interval. Thus, right-closed and left open is $(0,1] = \{x \mid 0 < x \le 1\}$. You can also close both sides with right=NA, that is only meaningful if you "from-to-becomes" classification with integers. For example to classify $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$. That may be easier to read and write than the equivalent 1-5 -> 1, 5-10 -> 2, 10-15 -> 3 with right=TRUE and include.lowest=TRUE

logical. If TRUE, values that are not matched become NA. If FALSE, they retain their original value.

othersNA

50 classify

brackets logical. If TRUE, intervals are have parenthesis or brackets around them to indicate whether they are open or closed. Only applies if rcl is a vector (or single column matrix)

filename character. Output filename

Additional arguments for writing files as in writeRaster

Value

. . .

SpatRaster

Note

For model-based classification see predict

See Also

subst for simpler from-to replacement

```
r <- rast(ncols=10, nrows=10)
values(r) <- (0:99)/99
## from-to-becomes
# classify the values into three groups
\# all values >= 0 and <= 0.25 become 1, etc.
m < -c(0, 0.25, 1,
       0.25, 0.5, 2,
       0.5, 1, 3)
rclmat <- matrix(m, ncol=3, byrow=TRUE)</pre>
rc1 <- classify(r, rclmat, include.lowest=TRUE)</pre>
# equivalent to the, but now a categorical SpatRaster is returned
rc2 <- classify(r, c(0, 0.25, 0.5, 1), include.lowest=TRUE, brackets=TRUE)
freq(rc2)
## is-becomes
x \leftarrow round(r*3)
unique(x)
# replace 0 with NA
y \leftarrow classify(x, cbind(0, NA))
unique(y)
# multiple replacements
m \leftarrow rbind(c(2, 200), c(3, 300))
rcx1 <- classify(x, m)</pre>
unique(rcx1)
```

click 51

```
rcx2 <- classify(x, m, othersNA=TRUE)
unique(rcx2)</pre>
```

click

Query by clicking on a map

Description

Click on a map (plot) to get the coordinates or the values of a SpatRaster or SpatVector at that location. For a SpatRaster you can also get the coordinates and cell number of the location.

Usage

```
## S4 method for signature 'SpatRaster'
click(x, n=10, id=FALSE, xy=FALSE, cell=FALSE, type="p", show=TRUE, ...)
## S4 method for signature 'SpatVector'
click(x, n=10, id=FALSE, xy=FALSE, type="p", show=TRUE, ...)
## S4 method for signature 'missing'
click(x, n=10, id=FALSE, type="p", show=TRUE, ...)
```

Arguments

X	SpatRaster or SpatVector, or missing
n	number of clicks on the plot (map)
id	logical. If TRUE, a numeric ID is shown on the map that corresponds to the row number of the output
xy	logical. If TRUE, xy coordinates are included in the output
cell	logical. If TRUE, cell numbers are included in the output
type	one of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l" or "o" they are joined by lines. See ?locator
show	logical. Print the values after each click?
	additional graphics parameters used if type != "n" for plotting the locations. See ?locator

Value

The value(s) of x at the point(s) clicked on (or touched by the box drawn).

Note

The plot only provides the coordinates for a spatial query, the values are read from the SpatRaster that is passed as an argument. Thus you can extract values from an object that has not been plotted, as long as it spatially overlaps with with the extent of the plot.

Unless the process is terminated prematurely values at at most n positions are determined. The identification process can be terminated by hitting Esc, or by clicking the right mouse button and selecting "Stop" from the menu, or from the "Stop" menu on the graphics window.

52 coerce

See Also

draw

Examples

```
## Not run:
r <-rast(system.file("ex/elev.tif", package="terra"))
plot(r)
click(r, n=1)
## now click on the plot (map)
## End(Not run)</pre>
```

coerce

Coercion of a SpatRaster to a vector, matrix or array

Description

Coercion to other object types

Usage

```
## S4 method for signature 'SpatRaster'
as.vector(x, mode='any')

## S4 method for signature 'SpatRaster'
as.matrix(x, ...)

## S4 method for signature 'SpatRaster'
as.array(x)
```

Arguments

x SpatRaster or SpatVector

additional argument as.matrix: wide (logical). If FALSE each layer in the SpatRaster becomes a column in the matrix and each cell in the SpatRaster becomes a row. If TRUE each row in the SpatRaster becomes a row in the matrix

and each column in the SpatRaster becomes a column in the matrix

mode this argument is ignored

Value

```
vector, matrix, or array
```

See Also

```
as.data.frame and as.polygons
```

colors 53

Examples

```
r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)

as.vector(r)
as.matrix(r)
as.matrix(r, wide=TRUE)
as.data.frame(r, xy=TRUE)
as.array(r)</pre>
```

colors

Color table

Description

Get or set color table(s) associated with a SpatRaster. Color tables are used for associating colors with values, for use in mapping (plot).

Usage

```
## S4 method for signature 'SpatRaster'
coltab(x)
## S4 replacement method for signature 'SpatRaster'
coltab(x, layer=1)<-value</pre>
```

Arguments

x SpatRaster
 layer positive integer, the layer number or name
 value a vector of colors; or a three (red,green,blue) or four (alpha) column data.frame

with no more than 256 rows; or NULL to remove the color table

Value

data.frame

```
r <- rast(ncols=3, nrows=2, vals=0:5)
coltb <- data.frame(t(col2rgb(rainbow(6, end=.9), alpha=TRUE)))
coltb

plot(r)
coltab(r) <- coltb
plot(r)</pre>
```

54 Compare-methods

```
tb <- coltab(r)
class(tb)
dim(tb[[1]])</pre>
```

Compare-methods

Compare and logical methods

Description

Standard comparison and logical operators for computations with SpatRasters. Computations are local (applied on a cell by cell basis). If multiple SpatRaster objects are used, these must have the same geometry (extent and resolution). These operators have been implemented:

```
Logical: !,&,|,isTRUE,isFALSE
Compare: ==,!=,>,<,<=,>=,is.na,is.nan,is.finite,is.infinite
```

The terra package does not distinguish between NA (not available) and NaN (not a number). In most cases this state is represented by NaN.

The following method has been implemented for

```
(SpatExtent, SpatExtent): ==
```

Value

SpatRaster or SpatExtent

seealso

all.equal, Arith-methods. See ifel to conveniently combine operations and Math-methods or app to use mathematical functions not implemented by the package.

```
r1 <- rast(ncols=10, nrows=10)
v <- runif(ncell(r1))
v[10:20] <- NA
values(r1) <- v
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)
x <- is.na(r1)
!x
r1 == r2</pre>
```

compareGeom 55

compareGeom	Compare geometries of SpatRasters

Description

Evaluate whether two SpatRaster objects have the same extent, number of rows and columns, projection, resolution, and origin (or a subset of these comparisons).

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
compareGeom(x, y, ..., lyrs=FALSE, crs=TRUE, warncrs=FALSE, ext=TRUE,
rowcol=TRUE, res=FALSE, stopOnError=TRUE)
```

Arguments

X	SpatRaster
У	SpatRaster
	Additional SpatRasters
lyrs	logical. If TRUE, the number of layers is compared
crs	logical. If TRUE, coordinate reference systems are compared
warncrs	logical. If TRUE, a warning is given if the crs is different (instead of an error)
ext	logical. If TRUE, bounding boxes are compared
rowcol	logical. If TRUE, number of rows and columns of the objects are compared
res	logical. If TRUE, resolutions are compared (redundant when checking extent and rowcol) $$
stopOnError	logical. If TRUE, code execution stops if raster do not match

```
r1 <- rast()
r2 <- rast()
r3 <- rast()
compareGeom(r1, r2, r3)
nrow(r3) <- 10

## Not run:
compareGeom(r1, r3)
## End(Not run)</pre>
```

56 contour

contour

Contour plot

Description

Contour lines of a SpatRaster. Use add=TRUE to add the lines to the current plot. See contour for details.

if filled=TRUE, a new filled contour plot is made. See filled.contour for details. as.contour returns the contour lines as a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
contour(x, maxcells=100000, filled=FALSE, ...)
## S4 method for signature 'SpatRaster'
as.contour(x, maxcells=100000, ...)
```

Arguments

X	SpatRaster. Only the first layer is used
maxcells	maximum number of pixels used to create the contours
filled	logical. If TRUE, a filled.contour plot is made
•••	any argument that can be passed to contour or filled.contour (graphics package)

See Also

plot

```
r <- rast(system.file("ex/elev.tif", package="terra"))
plot(r)
contour(r, add=TRUE)

v <- as.contour(r)
plot(r)
lines(v)

contour(r, filled=TRUE, nlevels=5)

## if you want a SpatVector with contour lines
template <- disagg(rast(r), 10)
rr <- resample(r, template)
rr <- floor(rr/100) * 100
v <- as.polygons(rr)</pre>
```

convHull 57

```
plot(v, 1, col=terrain.colors(7))
```

convHul1

Convex hull and minimal rotated rectangle

Description

Get the convex hull or the minimal rotated rectangle of a SpatVector

Usage

```
## S4 method for signature 'SpatVector'
convHull(x, by="")
## S4 method for signature 'SpatVector'
minRect(x, by="")
```

Arguments

```
x SpatVector

by character (variable name), to make convex hulls by group
```

Value

SpatVector

```
p <- vect(system.file("ex/lux.shp", package="terra"))
h <- convHull(p)

hh <- convHull(p, "NAME_1")

rr <- minRect(p, "NAME_1")

plot(rr, lwd=5, border="gray")
plot(hh, "NAME_1", col=rainbow(10, alpha=.5), lwd=3, add=TRUE, plg=list(x="topright"))
lines(aggregate(p, "NAME_1"), col="blue", lty=2, lwd=2)</pre>
```

58 cover

cover

Replace values with values from another object

Description

Replace NA or other values in SpatRaster x with the values of SpatRaster y

For polygons: areas of x that overlap with y are replaced by y or, if identity=TRUE intersected with y.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
cover(x, y, values=NA, filename="", ...)
## S4 method for signature 'SpatVector, SpatVector'
cover(x, y, identity=FALSE)
```

Arguments

X	SpatRaster or SpatVector
у	Same as x
values	numeric. The cell values in x to be replaced by the values in y
filename	character. Output filename
	additional arguments for writing files as in writeRaster
identity	logical. If TRUE overlapping areas are intersected rather than replaced

Value

SpatRaster

```
r1 <- r2 <- rast(ncols=36, nrows=18)
values(r1) <- 1:ncell(r1)
values(r2) <- runif(ncell(r2))
r2 <- classify(r2, cbind(-Inf, 0.5, NA))
r3 <- cover(r2, r1)

p <- vect(system.file("ex/lux.shp", package="terra"))
e <- as.polygons(ext(6, 6.4, 49.75, 50))
values(e) <- data.frame(y=10)

cv <- cover(p, e)
plot(cv, col=rainbow(12))
ci <- cover(p, e, identity=TRUE)</pre>
```

crds 59

```
lines(e, lwd=3)
plot(ci, col=rainbow(12))
lines(e, lwd=3)
```

crds

Get the coordinates of SpatVector geometries or SpatRaster cells

Description

Get the coordinates of a SpatVector or SpatRaster cells. A matrix or data.frame of the x (longitude) and y (latitude) coordinates is returned.

Usage

```
## S4 method for signature 'SpatVector'
crds(x, df=FALSE)

## S4 method for signature 'SpatRaster'
crds(x, df=FALSE, na.rm=TRUE)
```

Arguments

X	SpatRaster or SpatVector
df	logical. If TRUE a data. frame is returned in stead of a matrix
na.rm	logical. If TRUE cells that are NA are excluded

Value

matrix or data.frame

See Also

geom returns the complete structure of SpatVector geometries. For SpatRaster see codexyFromCell

60 crop

```
p <- vect(z, "polygons")
crds(p)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
g <- crds(v)
head(g)</pre>
```

crop

Cut out a geographic subset

Description

Cut out a part of a SpatRaster with a SpatExtent, or another object from which an extent can be obtained. With a SpatRaster you can only extract rectangular areas, but see mask for setting cell values within SpatRaster to NA.

You can crop a SpatVector with a rectangle, or with another vector (if these are not polygons, the minimum convex hull is used). Unlike with intersect the geometries and attributes of y are not transferred to the output.

Usage

```
## S4 method for signature 'SpatRaster'
crop(x, y, snap="near", mask=FALSE, filename="", ...)
## S4 method for signature 'SpatRasterDataset'
crop(x, y, snap="near", filename="", ...)
## S4 method for signature 'SpatVector'
crop(x, y)
```

Arguments

X	SpatRaster or SpatVector
у	$SpatRaster,\ SpatVector,\ SpatExtent\ or\ other\ object\ that\ has\ a\ SpatExtent\ (\texttt{ext}\ returns\ a\ SpatExtent)$
snap	character. One of "near", "in", or "out". Used to align y to the geometry of x
mask	logical. Should y be used to mask? Only used if y is a SpatVector
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

crosstab 61

See Also

intersect

Examples

```
r <- rast(xmin=0, xmax=10, ymin=0, ymax=10, nrows=25, ncols=25)
values(r) <- 1:ncell(r)</pre>
e \leftarrow ext(-5, 5, -5, 5)
rc <- crop(r, e)</pre>
# crop and mask
f <- system.file("ex/elev.tif", package="terra")</pre>
r <- rast(f)
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)</pre>
cm <- crop(r, v[9:12,], mask=TRUE)</pre>
plot(cm)
lines(v)
# crop vector
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)</pre>
e <- ext(6.15, 6.3, 49.7, 49.8)
x \leftarrow crop(v, e)
plot(x, "NAME_1")
```

crosstab

Cross-tabulate

Description

Cross-tabulate the layers of a SpatRaster to create a contingency table.

Usage

```
## S4 method for signature 'SpatRaster,missing'
crosstab(x, digits=0, long=FALSE, useNA=FALSE)
```

Arguments

X	SpatRaster
digits	integer. The number of digits for rounding the values before cross-tabulation
long	logical. If TRUE the results are returned in 'long' format data.frame instead of a table
useNA	logical, indicting if the table should includes counts of NA values

Value

A table or data.frame

62 crs

See Also

```
freq, zonal
```

Examples

```
r <- s <- rast(nc=5, nr=5)
set.seed(1)
values(r) <- runif(ncell(r)) * 2
values(s) <- runif(ncell(r)) * 3
x <- c(r, s)

crosstab(x)

rs <- r/s
r[1:5] <- NA
s[20:25] <- NA
x <- c(r, s, rs)
crosstab(x, useNA=TRUE, long=TRUE)</pre>
```

crs

Get or set a coordinate reference system

Description

Get or set the coordinate reference system (CRS), also referred to as a "projection", of a SpatRaster or SpatVector object.

Setting a new CRS does not change the data itself, it just changes the label. So you should only set the CRS of a dataset (if it does not come with one) to what it *is*, not to what you would *like it to be*. See project to *transform* an object from one CRS to another.

Usage

```
## S4 method for signature 'SpatRaster'
crs(x, proj=FALSE, describe=FALSE, parse=FALSE)
## S4 method for signature 'SpatVector'
crs(x, proj=FALSE, describe=FALSE, parse=FALSE)
## S4 replacement method for signature 'SpatRaster'
crs(x)<-value
## S4 replacement method for signature 'SpatVector'
crs(x)<-value</pre>
```

crs 63

Arguments

X	SpatRaster or SpatVector
proj	logical. If TRUE the crs is returned in PROJ-string notation
describe	logical. If TRUE the name, EPSG code, and the name and extent of the area of use are returned if known $$
value	character string describing a coordinate reference system. This can be in a WKT format, as a <authority:number> code such as "EPSG:4326", or a PROJ-string format such as "+proj=utm +zone=12" (see Note)</authority:number>
parse	logical. If TRUE, wkt parts are parsed into a vector (each line becomes an element)

Value

character or modified SpatRaster/Vector

Note

Projections are handled by the PROJ/GDAL libaries. Recent changes in the PROJ library to improve transformations between datums have degraded the library's usability. The PROJ developers suggest to no longer use the proj-string notation to define a CRS, but use the WKT2 or <authority>:<code> notation instead. These alternative systems work for formally described CRSs that are in databases, but they do not cover the infinite number of CRSs that exist. It is not practical to define one's own custom CRS with WKT2. Moreover, unlike the proj-notation, these newer systems are hard to read and that leads to code that cannot be easily understood and, therefore, is more error-prone.

It is still possible to use the PROJ-string notation with one major caveat: the datum should be WGS84 (or the equivalent NAD83) – if you want to transform your data to a coordinate reference system with a different datum. Thus as long as you use WGS84, or an ellipsoid instead of a datum, you can safely use PROJ-strings to represent your CRS; including to define your own custom CRS.

```
r <- rast()
crs(r)
crs(r, describe=TRUE, proj=TRUE)

crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
crs(r)

# You can also use epsg codes
crs(r) <- "epsg:25831"
crs(r, describe=TRUE)$area</pre>
```

64 deepcopy

deepcopy

Deep copy

Description

Make a deep copy of a SpatRaster or SpatVector. This is occasionally useful when wanting to use a replacement function in a shallow copy. That is a copy that was created like this: x < -y. If you use a replacement function to change an object, its shallow copies also change.

Usage

```
## S4 method for signature 'SpatRaster'
deepcopy(x)
## S4 method for signature 'SpatVector'
deepcopy(x)
```

Arguments

Х

SpatRaster or SpatVector

Value

Same as x

```
r <- rast(ncols=10, nrows=10, nl=3)
tm <- as.Date("2001-05-03") + 1:3
time(r) \leftarrow tm
time(r)
x <- r
time(x) \leftarrow tm + 365
time(x)
time(r)
y <- deepcopy(r)</pre>
time(y) \leftarrow tm - 365
time(y)
time(r)
# or make a new object like this
z <- rast(r)
time(z) <- tm
time(z)
time(r)
```

densify 65

densify

Add additional nodes to lines or polygons

Description

Add additional nodes to lines or polygons. This can be useful to do prior to using project such that the path does not change too much.

Usage

```
## S4 method for signature 'SpatVector'
densify(x, interval, equalize=TRUE)
```

Arguments

x SpatVector
interval numeric larger than 1, specifying the desired minimum interval between nodes
equalize logical. If TRUE, new nodes are spread at equal intervals between old nodes

Value

SpatVector

```
v \leftarrow vect(rbind(c(-120, -20), c(-80, 5), c(-40, -60), c(-120, -20)),
  type="polygons", crs="+proj=longlat")
vd <- densify(v, 200000)</pre>
p <- project(v, "+proj=robin")</pre>
pd <- project(vd, "+proj=robin")</pre>
# good
plot(pd, col="gray", border="red", lwd=10)
points(pd, col="gray")
# bad
lines(p, col="blue", lwd=3)
points(p, col="blue", cex=2)
plot(p, col="blue", alpha=.1, add=TRUE)
legend("topright", c("good", "bad"), col=c("red", "blue"), lty=1, lwd=3)
## the other way around does not work
## unless the original data was truly planar (e.g. derived from a map)
x \leftarrow densify(p, 250000)
y <- project(x, "+proj=longlat")</pre>
# bad
plot(y)
# good
lines(vd, col="red")
```

depth depth

density	Density plot
acriorcy	Density pro

Description

Create density plots of the cell values of a SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
density(x, maxcells=100000, plot=TRUE, main, ...)
```

Arguments

```
x SpatRaster

maxcells the maximum number of (randomly sampled) cells to be used for creating the plot

plot if TRUE produce a plot, else return a density object

main character. Caption of plot(s)

... additional arguments passed to plot
```

Value

density plot (and a density object, returned invisibly if plot=TRUE)

Examples

```
logo <- rast(system.file("ex/logo.tif", package="terra"))
density(logo)</pre>
```

depth

depth of SpatRaster layers

Description

Get or set the depth of the layers of a SpatRaster. Experimental.

Usage

```
## S4 method for signature 'SpatRaster'
depth(x)
## S4 replacement method for signature 'SpatRaster'
depth(x)<-value</pre>
```

describe 67

Arguments

x SpatRaster value numeric vector

Value

numeric

See Also

time

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
depth(s) <- 1:3
depth(s)</pre>
```

describe

describe

Description

Describe the properties of spatial data in a file as generated with the "GDALinfo" tool.

Usage

```
## S4 method for signature 'character'
describe(x, sds=FALSE, meta=FALSE, parse=FALSE, options="", print=FALSE, open_opt="")
```

Arguments

open_opt

X	character. The name of a file with spatial data. Or a fully specified subdataset within a file such as "NETCDF:\"AVHRR.nc\":NDVI"
sds	logical. If TRUE the description or metadata of the subdatasets is returned (if available)
meta	logical. Get the file level metadata instead
parse	logical. If TRUE, metadata for subdatasets is parsed into components (if meta=TRUE)
options	character. A vector of valid options (if meta=FALSE) including "json", "mm", "stats", "hist", "nogcp", "nomd", "norat", "noct", "nofl", "checksum", "proj4", "listmdd", "mdd <value>" where <value> specifies a domain or 'all', "wkt_format <value>" where value is one of 'WKT1', 'WKT2', 'WKT2_2015', or 'WKT2_2018', "sd <subdataset>" where <subdataset> is the name or identifier of a sub-dataset. See https://gdal.org/programs/gdalinfo.html. Ignored if sds=TRUE</subdataset></subdataset></value></value></value>
print	logical. If TRUE, print the results

character. Driver specific open options

68 diff

Value

```
character (invisibly, if print=FALSE)
```

Examples

```
f <- system.file("ex/elev.tif", package="terra")
describe(f)
describe(f, meta=TRUE)
#g <- describe(f, options=c("json", "nomd", "proj4"))
#head(g)</pre>
```

diff

Lagged differences

Description

Compute the difference between consecutive layers in a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
diff(x, lag=1, filename="", ...)
```

Arguments

X	SpatRaster
lag	postive integer indicating which lag to use
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

```
s <- rast(system.file("ex/logo.tif", package="terra"))
d <- diff(s)</pre>
```

dimensions 69

dimensions

Dimensions of a SpatRaster or SpatVector and related objects

Description

Get the number of rows (nrow), columns (ncol), cells (ncell), layers (nlyr), sources (nsrc), the size size(nlyr(x)*ncell(x)), or spatial resolution of a SpatRaster.

length returns the number of sub-datasets in a SpatRasterDataset or SpatVectorCollection.

For a SpatVector length(x) is the same as nrow(x).

You can also set the number of rows or columns or layers. When setting dimensions, all cell values are dropped.

Usage

```
## S4 method for signature 'SpatRaster'
ncol(x)
## S4 method for signature 'SpatRaster'
nrow(x)
## S4 method for signature 'SpatRaster'
## S4 method for signature 'SpatRaster'
ncell(x)
## S4 method for signature 'SpatRaster'
nsrc(x)
## S4 replacement method for signature 'SpatRaster, numeric'
ncol(x) < -value
## S4 replacement method for signature 'SpatRaster, numeric'
nrow(x)<-value</pre>
## S4 replacement method for signature 'SpatRaster, numeric'
nlyr(x) < -value
## S4 method for signature 'SpatRaster'
res(x)
## S4 replacement method for signature 'SpatRaster,numeric'
res(x)<-value
## S4 method for signature 'SpatRaster'
xres(x)
```

70 dimensions

```
## S4 method for signature 'SpatRaster'
yres(x)

## S4 method for signature 'SpatVector'
ncol(x)

## S4 method for signature 'SpatVector'
nrow(x)

## S4 method for signature 'SpatVector'
length(x)
```

Arguments

x SpatRaster or SpatVector or related objecs

value For ncol and nrow: positive integer. For res: one or two positive numbers

Value

integer

See Also

ext

```
r <- rast()
ncol(r)
nrow(r)
nlyr(r)
dim(r)
nsrc(r)
ncell(r)
rr <- c(r,r)
nlyr(rr)
nsrc(rr)
ncell(rr)
nrow(r) <- 18</pre>
ncol(r) <- 36
# equivalent to
dim(r) <- c(18, 36)
dim(r)
dim(r) \leftarrow c(10, 10, 5)
dim(r)
```

direction 71

```
xres(r)
yres(r)
res(r)

res(r) <- 1/120
# different xres and yres
res(r) <- c(1/120, 1/60)</pre>
```

direction

Direction

Description

The direction (azimuth) to or from the nearest cell that is not NA. The direction is expressed in radians, unless you use argument degrees=TRUE.

Usage

```
## S4 method for signature 'SpatRaster'
direction(x, from=FALSE, degrees=FALSE, filename="", ...)
```

Arguments

X	SpatRaster
filename	Character. Output filename (optional)
degrees	Logical. If FALSE (the default) the unit of direction is radians.
from	$Logical.\ Default\ is\ {\tt FALSE}.\ If\ {\tt TRUE},\ the\ direction\ from\ (instead\ of\ to)\ the\ nearest\ cell\ that\ is\ not\ {\tt NA}\ is\ returned$
	Additional arguments as for writeRaster

Value

SpatRaster

See Also

distance

```
r <- rast(ncol=36,nrow=18, crs="+proj=merc")
values(r) <- NA
r[306] <- 1
b <- direction(r, degrees=TRUE)
plot(b)

crs(r) <- "+proj=longlat"
b <- direction(r)
plot(b)</pre>
```

72 disagg

disagg

Disaggregate raster cells or vector geometries

Description

SpatRaster: Create a SpatRaster with a higher resolution (smaller cells). The values in the new SpatRaster are the same as in the larger original cells.

SpatVector: Separate multi-objects (points, lines, polygons) into single objects.

Usage

```
## S4 method for signature 'SpatRaster'
disagg(x, fact, method="near", filename="", ...)
## S4 method for signature 'SpatVector'
disagg(x)
```

Arguments

x	SpatRaster or SpatVector
fact	positive integer. Aggregation factor expressed as number of cells in each direction (horizontally and vertically). Or two integers (horizontal and vertical aggregation factor) or three integers (when also aggregating over layers)
method	character. Either "near" for nearest or "bilinear" for bilinear interpolation
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
aggregate, resample
```

```
r <- rast(ncols=10, nrows=10)
rd <- disagg(r, fact=c(10, 2))
ncol(rd)
nrow(rd)
values(r) <- 1:ncell(r)
rd <- disagg(r, fact=c(4, 2))</pre>
```

distance 73

distance

Geographic distance

Description

If x is a SpatRaster:

If y is missing this method computes the distance, for all cells that are NA in SpatRaster x to the nearest cell that is not NA. If argument grid=TRUE, the distance is computed using a path that goes through the centers of the 8 neighboring cells.

If y is a SpatVector, the distance to that SpatVector is computed for all cells. For lines and polygons this is done after rasterization; and only the overlapping areas of the vector and raster are considered (for now).

The distance is always expressed in meter if the coordinate reference system is longitude/latitude, and in map units otherwise. Map units are typically meter, but inspect crs(x) if in doubt.

Results are more precise, sometimes much more precise, when using longitude/latitude rather than a planar coordinate reference system, as these distort distance.

If x is a SpatVector:

If y is missing, a distance matrix between all object in x is computed. An distance matrix object of class "dist" is returned.

If y is a SpatVector the geographic distance between all objects is computed (and a matrix is returned). If both sets have the same number of points, and pairwise=TRUE, the distance between each pair of objects is computed, and a vector is returned.

The distance is always expressed in meter, except when the coordinate reference system is longitude/latitude AND one of the SpatVector(s) consists of lines or polygons. In that case the distance is in degrees, and thus not very useful (this will be fixed soon). Otherwise, results are more precise, sometimes much more precise, when using longitude/latitude rather than a planar coordinate reference system, as these distort distance.

Usage

```
## S4 method for signature 'SpatRaster,missing'
distance(x, y, grid=FALSE, filename="", ...)

## S4 method for signature 'SpatRaster,SpatVector'
distance(x, y, filename="", ...)

## S4 method for signature 'SpatVector,ANY'
distance(x, y, sequential=FALSE, pairs=FALSE, symmetrical=TRUE)

## S4 method for signature 'SpatVector,SpatVector'
distance(x, y, pairwise=FALSE)

## S4 method for signature 'matrix,matrix'
distance(x, y, lonlat, pairwise=FALSE)
```

74 distance

```
## S4 method for signature 'matrix,missing'
distance(x, y, lonlat, sequential=FALSE)
```

Arguments

X	SpatRaster, SpatVector, or two-column matrix with coordinates (x,y) or (lon,lat)
У	missing or SpatVector, or two-column matrix
grid	logical. If TRUE, distance is computed using a path that goes through the centers of the 8 neighboring cells
filename	character. Output filename
	additional arguments for writing files as in writeRaster
sequential	logical. If TRUE, the distance between sequential geometries is returned
pairwise	logical. If TRUE and if x and y have the same size (number of rows), the pairwise distances are returned instead of the distances between all elements
lonlat	logical. If TRUE the coordinates are interpreted as angular (longitude/latitude). If FALSE they are interpreted as planar
pairs	logical. If TRUE a "from", "to", "distance" matrix is returned
symmetrical	logical. If TRUE and pairs=TRUE, the distance between a pair is only included once. The distance between geometry 1 and 3 is included, but the (same) distance between 3 and 1 is not

Value

SpatRaster or numeric or matrix or distance matrix (object of class "dist")

Note

The distance unit is in meters.

A distance matrix can be coerced into a matrix with as.matrix

```
#lonlat r \leftarrow rast(ncols=36, nrows=18, crs="+proj=longlat +datum=WGS84") r[500] \leftarrow 1 d \leftarrow distance(r) plot(d / 100000) #planar r \leftarrow rast(ncols=36, nrows=18, crs="+proj=utm +zone=1 +datum=WGS84") r[500] \leftarrow 1 d \leftarrow distance(r) p1 \leftarrow vect(rbind(c(0,0), c(90,30), c(-90,-30)), crs="+proj=longlat +datum=WGS84") dp \leftarrow distance(r, p1)
```

dots 75

```
d <- distance(p1)</pre>
as.matrix(d)
p2 \leftarrow vect(rbind(c(30,-30), c(25,40), c(-9,-3)), crs="+proj=longlat +datum=WGS84")
dd <- distance(p1, p2)</pre>
pd <- distance(p1, p2, pairwise=TRUE)</pre>
pd
pd == diag(dd)
# polygons, lines
crs <- "+proj=utm +zone=1"</pre>
p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))", crs=crs)
p2 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))", crs=crs)
p3 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))", crs=crs)
p <- rbind(p1, p2, p3)</pre>
L1 <- vect("LINESTRING(1 11, 4 6, 10 6)", crs=crs)
L2 <- vect("LINESTRING(8 14, 12 10)", crs=crs)
L3 <- vect("LINESTRING(1 8, 12 14)", crs=crs)
lns <- rbind(L1, L2, L3)</pre>
pts <- vect(cbind(c(7,10,10), c(3,5,6)), crs=crs)
distance(p1,p3)
distance(p)
distance(p,pts)
distance(p,lns)
distance(pts,lns)
```

dots

Make a dot-density map

Description

Create the dots for a dot-density map and add these to the current map. Dot-density maps are made to display count data. For example of population counts, where each dot represents n persons. The dots are returned as a SpatVector. It there is an active graphics device, the dots are added to it with points.

Usage

```
## S4 method for signature 'SpatVector'
dots(x, field, size, ...)
```

Arguments

x SpatVector

field character of numeric indicating field name. Or numeric vector of the same length as x

76 draw

```
positive number indicating the number of cases associated with each dot
graphical arguments passed to points
```

Value

```
SpatVector (invisibly)
```

See Also

```
plot, cartogram, points
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$population <- 1000*(1:12)^2
plot(v, lwd=3, col="light gray", border="white")
d <- dots(v, "population", 1000, col="red", cex=.75)
lines(v)
d</pre>
```

draw

Draw a polygon, line, extent, or points

Description

Draw on a plot (map) to get a SpatVector or SpatExtent object for later use. After calling the function, start clicking on the map. When you are done, press ESC. You can also preset the maximum number of clicks.

Usage

```
## S4 method for signature 'character'
draw(x="extent", col="red", lwd=2, id=FALSE, n=1000, ...)
```

Arguments

X	character. The type of object to draw. One of "extent", "polygon", "line", or "points"
col	the color to be used
lwd	the width of the lines to be drawn
id	logical. If TRUE, a numeric ID is shown on the map
n	the maximum number of clicks (does not apply when $x=="extent"$ in which case n is always 2
	additional graphics arguments for drawing

erase 77

Value

SpatVector or SpatExtent

See Also

click

erase

Erase parts of a SpatVector object

Description

Erase parts of a SpatVector with another SpatVector or with a SpatExtent. You can also erase (parts of) polygons with the other polygons of the same SpatVector.

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
erase(x, y)
## S4 method for signature 'SpatVector, missing'
erase(x)
## S4 method for signature 'SpatVector, SpatExtent'
erase(x, y)
```

Arguments

```
x SpatVector
```

y SpatVector or SpatExtent

Value

SpatVector or SpatExtent

See Also

intersect, crop. The equivalent for SpatRaster is mask

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
e <- ext(5.6, 6, 49.55, 49.7)
x <- erase(v, e)

p <- vect("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.6, 5.8 49.8))")
y <- erase(v, p)</pre>
```

78 expanse

```
# self-erase
h <- convHull(v[-12], "NAME_1")
he <- erase(h)
plot(h, lwd=2, border="red", lty=2)
lines(he, col="gray", lwd=3)</pre>
```

expanse

Get the expanse (area) of individual polygons or for all (summed) raster cells

Description

Compute the area covered by polygons or for all raster cells that are not NA.

This method computes areas for longitude/latitude rasters, as the size of the cells is constant in degrees, but not in square meters. But it can also be important if the coordinate reference system is planar, but not equal-area.

For vector data, the best way to compute area is to use the longitude/latitude CRS. This is contrary to (erroneous) popular belief that suggest that you should use a planar coordinate reference system. This is done automatically, if transform=TRUE.

Usage

```
## $4 method for signature 'SpatRaster'
expanse(x, unit="m", transform=TRUE)

## $4 method for signature 'SpatVector'
expanse(x, unit="m", transform=TRUE)
```

Arguments

x SpatRaster or SpatVector

unit character. One of "m", "km", or "ha"

transform logical. If TRUE, planar CRS are transformed to lon/lat for accuracy

Value

numeric. The total area size of all cells that are not NA, expressed in square meters, square kilometers, or hectares.

See Also

cellSize for a the size of individual cells of a raster, that can be summed with global or with zonal to get the area for different categories.

ext 79

Examples

```
### SpatRaster
r <- rast(nrows=18, ncols=36)
v <- 1:ncell(r)
v[200:400] <- NA
values(r) <- v

# summed area in km2
expanse(r, unit="km")

r <- rast(ncols=90, nrows=45, ymin=-80, ymax=80)
m <- project(r, "+proj=merc")

expanse(m, unit="km")
expanse(m, unit="km", transform=FALSE)

### SpatVector
v <- vect(system.file("ex/lux.shp", package="terra"))
a <- expanse(v)
a
sum(a)</pre>
```

ext

Create, get or set a SpatExtent

Description

Get a SpatExtent of a SpatRaster, or coordinates from such an object. Or create a SpatExtent from a vector (length=4; order= xmin, xmax, ymin, ymax)

See set.ext to set the extent in place.

Usage

```
## S4 method for signature 'SpatRaster'
ext(x)

## S4 method for signature 'SpatVector'
ext(x)

## S4 method for signature 'numeric'
ext(x, ...)

## S4 replacement method for signature 'SpatRaster,SpatExtent'
ext(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'</pre>
```

80 extend

```
ext(x)<-value
## S4 method for signature 'SpatExtent'
x$name
## S4 replacement method for signature 'SpatExtent'
x$name<-value</pre>
```

Arguments

x SpatRaster
 value SpatExtent, or numeric vector of lenght four (xmin, xmax, ymin, ymax), or a single number with the \$ method
 name charcter, one of xmin, xmax, ymin, or ymax
 if x is a single numeric value, additional numeric values for xmax, ymin, and ymax

Value

SpatExtent

Examples

```
r <- rast()
e <- ext(r)
as.vector(e)
as.character(e)

ext(r) <- c(0, 2.5, 0, 1.5)
r
er <- ext(r)

round(er)
# go "in"
floor(er)
# go "out"
ceiling(er)

ext(r) <- e</pre>
```

extend

Extend

Description

Enlarge the spatial extent of a SpatRaster. See crop if you (also) want to remove rows or columns. You can also enlarge a SpatExtent with this method, or with algebraic notation (see examples)

extend 81

Usage

```
## S4 method for signature 'SpatRaster'
extend(x, y, snap="near", filename="", overwrite=FALSE, ...)
## S4 method for signature 'SpatExtent'
extend(x, y)
```

Arguments

X	SpatRaster or SpatExtent
У	If x is a SpatRaster, y should be a SpatExtent, or an object from which it can be extracted (such as SpatRaster and SpatVector objects). Alternatively, you can provide two positive integers indicating the number of rows and columns that need to be added at each side (or a single positive integer when the number of rows and columns is equal)
	If x is a SpatExtent, y should be a numeric vector of 1, 2, or 4 elements
snap	character. One of "near", "in", or "out". Used to align y to the geometry of x
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
	additional arguments for writing files as in writeRaster

Value

SpatRaster or SpatExtent

See Also

```
crop, merge, ext
```

```
r <- rast(xmin=-150, xmax=-120, ymin=30, ymax=60, ncols=36, nrows=18)
values(r) <- 1:ncell(r)
e <- ext(-180, -100, 40, 70)
re <- extend(r, e)

# extend with a number of rows and columns (at each side)
re2 <- extend(r, c(2,10))

# SpatExtent
e <- ext(r)
e
extend(e, 10)
extend(e, c(10, -10, 0, 20))</pre>
```

82 extract

extract

Extract values from a SpatRaster

Description

Extract values from a SpatRaster for a set of locations. The locations can be a SpatVector (points, lines, polygons), a matrix with (x, y) or (longitude, latitude – in that order!) coordinates, or a vector with cell numbers.

When argument y is a SpatVector, and list=FALSE, the first column has the ID (record number) of the SpatVector used.

Usage

Arguments

X	SpatRaster
у	SpatVector (for points, lines, polygons), or for points, 2-column matrix or data.frame (x, y) or (lon, lat) , or a vector with cell numbers
fun	function to summarize the data by geometry. If weights=TRUE or exact=TRUE only mean, sum, min and max are accepted)
	additional arguments to fun if y is a SpatVector. For example na.rm=TRUE. Or arguments passed to the SpatRaster, SpatVector method if y is a matrix (such as the method and cells arguments)
method	character. method for extracting values with points ("simple" or "bilinear"). With "simple" values for the cell a point falls in are returned. With "bilinear" the returned values are interpolated from the values of the four nearest raster cells
list	logical. If FALSE the output is simplified to a matrix (if fun=NULL)
factors	logical. If TRUE the categories are returned as factors instead of their numerical representation. The value returned becomes a data.frame if it otherwise would have been a matrix, even if there are no factors

extract 83

cells	logical. If TRUE the cell numbers are also returned, unless fun is not NULL. Also see cells
ху	logical. If TRUE the coordinates of the cells are also returned, unless fun is not NULL. Also see $xyFromCell$
weights	logical. If TRUE and y has polygons, the approximate fraction of each cell that is covered is returned as well, for example to compute a weighted mean
exact	logical. If TRUE and y has polygons, the exact fraction of each cell that is covered is returned as well, for example to compute a weighted mean
touches	logical. If TRUE, values for all cells touched by lines or polygons are extracted, not just those on the line render path, or whose center point is within the polygon. Not relevant for points; and always considered TRUE when weights=TRUE or exact=TRUE
layer	character or numeric to select the layer to extract from for each geometry. If layer is a character it can be a name in y or a vector of layer names. If it is numeric, it must be integer values between 1 and nlyr(x)

Value

matrix, list, or data.frame

See Also

values

```
r <- rast(ncols=5, nrows=5, xmin=0, xmax=5, ymin=0, ymax=5)</pre>
values(r) <- 1:25</pre>
xy \leftarrow rbind(c(0.5,0.5), c(2.5,2.5))
p <- vect(xy, crs="+proj=longlat +datum=WGS84")</pre>
extract(r, xy)
extract(r, p)
r[1,]
r[5]
r[,5]
r[c(0:2, 99:101)]
f <- system.file("ex/meuse.tif", package="terra")</pre>
r \leftarrow rast(f)
xy <- cbind(179000, 330000)
xy < - rbind(xy-100, xy, xy+1000)
extract(r, xy)
p <- vect(xy)</pre>
g \leftarrow geom(p)
```

84 extremes

```
extract(r, p)
x < -r + 10
extract(x, p)
i <- cellFromXY(r, xy)</pre>
x[i]
r[i]
y < -c(x,x*2,x*3)
y[i]
## extract with a polygon
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
v <- v[1:2,]
z <- rast(v, resolution=.1, names="test")</pre>
values(z) <- 1:ncell(z)</pre>
rf <- system.file("ex/elev.tif", package="terra")</pre>
x <- rast(rf)
extract(x, v, mean, na.rm=TRUE)
e <- extract(z, v)
tapply(e[,2], e[,1], mean, na.rm=TRUE)
ee <- extract(z, v, list=TRUE)
rapply(ee, mean)
x < -c(z, z*2, z/3)
names(x) <- letters[1:3]</pre>
e <- extract(x, v)
de <- data.frame(e)</pre>
aggregate(de[,2:4], de[,1,drop=FALSE], mean)
ee <- extract(x, v, list=TRUE)</pre>
matrix(rapply(ee, mean), ncol=nlyr(x), byrow=TRUE)
```

extremes

Get or compute the minimum and maximum cell values

Description

The minimum and maximum value of a SpatRaster are returned or computed (from a file on disk if necessary) and stored in the object.

factors 85

Usage

```
## S4 method for signature 'SpatRaster'
minmax(x)
## S4 method for signature 'SpatRaster'
hasMinMax(x)
## S4 method for signature 'SpatRaster'
setMinMax(x, force=FALSE)
```

Arguments

x SpatRaster

force logical. If TRUE min and max values are recomputed even if already available

Value

minmax: numeric matrix of minimum and maximum cell values by layer

hasMinMax: logical indicating whether the min and max values are available.

setMinMax: nothing. Used for the side-effect of computing the minimum and maximum values of a SpatRaster

Examples

```
r <- rast(system.file("ex/elev.tif", package="terra"))
minmax(r)</pre>
```

factors

Categorical rasters

Description

A SpatRaster layer can be a categorical variable (factor). Like factors, categories are stored as indices (integers) that have an associated label. For a SpatRaster, the index starts at 0, and cannot exceed 255.

The categories can be inspected with levels and cats. With levels<- you can set the categories of the first layer by providing a vector of labels (the first value will be for cells with value 0, the second for 1, etc). You can also provide a data.frame that must have two or more columns, the first one identifying the cell values and the other column(s) providing the category labels. To set categories for multiple layers you can provide levels<- with a list with one element for each layer.

With categories you can set it for any layer and you can also set the "active" category if there are multiple categories.

86 factors

Usage

```
## $4 method for signature 'SpatRaster'
is.factor(x)

## $4 method for signature 'SpatRaster'
levels(x)

## $4 replacement method for signature 'SpatRaster'
levels(x)<-value

## $4 method for signature 'SpatRaster'
cats(x, layer)

## $4 method for signature 'SpatRaster'
categories(x, layer=1, value, index)</pre>
```

Arguments

x	SpatRaster
layer	positive integer, the layer number or name
value	a data.frame (ID, category) or vector with category names

index positive integer, indicating the column in data. frame value to be used as the

(active) category, (not counting the first column with the cell values)

Value

list (levels, cats) or data.frame (cats for a single layer); logical (is.factor, setCats)

See Also

```
activeCat, catalyze
```

```
set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE)
is.factor(r)

cls <- c("forest", "water", "urban")
# make the raster start at zero
x <- r - 1
levels(x) <- cls
names(x) <- "land cover"
is.factor(x)
x

plot(x, col=c("green", "blue", "light gray"))
text(x, digits=3, cex=.75, halo=TRUE)</pre>
```

fillHoles 87

```
# raster starts at 3
x < -r + 2
is.factor(x)
# approach 1
levels(x) <- c("", "", "", "forest", "water", "urban")</pre>
# approach 2, also showing the use of two categories
d <- data.frame(id=3:5, cover=cls, letters=letters[1:3], value=10:12)</pre>
levels(x) \leftarrow d
## switch categories
cats(x, 1)
# get current index
activeCat(x)
# set index
activeCat(x) <- 3
plot(x, col=c("green", "blue", "light gray"))
text(x, digits=3, cex=.75, halo=TRUE)
r <- as.numeric(x)</pre>
activeCat(x) <- 2
p <- as.polygons(x)</pre>
plot(p, "letters", col=c("green", "blue", "light gray"))
```

fillHoles

Remove holes from polygons

Description

Remove the holes in SpatVector polygons. If inverse=TRUE the holes are returned (as polygons).

Usage

```
## S4 method for signature 'SpatVector'
fillHoles(x, inverse=FALSE)
```

Arguments

x SpatVector

inverse logical. If TRUE the holes are returned as polygons

Value

SpatVector

88 fillTime

Examples

fillTime

Fill time gaps in a SpatRaster

Description

Add empty layers in between existing layers such that the time step between each layer is the same. See approximate to estimate values for these layer (and other missing values)

Usage

```
## S4 method for signature 'SpatRaster'
fillTime(x, filename="", ...)
```

Arguments

```
x SpatRaster

filename character. Output filename
... list with named options for writing files as in writeRaster
```

Value

SpatRaster

See Also

approximate

flip 89

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
s <- c(r, r)
time(s) <- as.Date("2001-01-01") + c(0:2, 5:7)
time(s)
ss <- fillTime(s)
time(ss)
a <- approximate(ss)</pre>
```

flip

Flip or reverse a raster

Description

Flip the values of a SpatRaster by inverting the order of the rows (vertical=TRUE) or the columns (vertical=FALSE).

rev is the same as a horizontal *and* a vertical flip.

Usage

```
## S4 method for signature 'SpatRaster'
flip(x, direction="vertical", filename="", ...)
## S4 method for signature 'SpatVector'
flip(x, direction="vertical")
## S4 method for signature 'SpatRaster'
rev(x)
```

Arguments

X	SpatRaster or SpatVector
direction	character. Should (partially) match "vertical" to flip by rows, or "horizontal" to flip by columns
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
trans, rotate
```

90 focal

Examples

```
r <- rast(nrow=18, ncol=36)
m <- matrix(1:ncell(r), nrow=18)
values(r) <- as.vector(t(m))
rx <- flip(r, direction="h")

values(r) <- as.vector(m)
ry <- flip(r, direction="v")

v <- rev(r)</pre>
```

focal

Focal values

Description

Calculate focal ("moving window") values for each cell.

Usage

```
## S4 method for signature 'SpatRaster'
focal(x, w=3, fun="sum", ..., na.policy="all", fillvalue=NA,
expand=FALSE, silent=TRUE, filename="", overwrite=FALSE, wopt=list())
```

Arguments

X	SpatRaster
W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See Details.
fun	function that takes multiple numbers, and returns a numeric vector (one or multiple numbers). For example mean, modal, \min or \max
	additional arguments passed to fun such as na.rm
na.policy	character. Can be used to determine the cells of x for which focal values should be computed. Must be one of "all" (compute for all cells), "only" (only for cells that are NA) or "omit" (skip cells that are NA). Note that the value of this argument does not affect which cells around each focal cell are included in the computations (use na.rm=TRUE to ignore cells that are NA for that)
fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
expand	logical. If TRUE The value of the cells in the virtual rows and columns outside of the raster are set to be the same as the value on the border. Only available for "build-in" funs such as mean, sum, min and max
silent	logical. If TRUE error messages are printed that may occur when trying fun to determine the length of the returned value. This can be useful in debugging a fun that does not work

focal 91

```
filename character. Output filename
overwrite logical. If TRUE, filename is overwritten
wopt additional arguments for writing files as in writeRaster
```

Details

focal The window used must have odd dimensions. If you need even sides, you can use a matrix and add a column or row with weights of zero.

Window values are typically 0 or 1, or a value between 0 and 1 if you are using a rectangular area and/or the "sum" function. They can also be NA; these are ignored in the computation. That can be useful to compute, for example, the minimum or maximum value for a non-rectangular area.

The "mean" function is a special case, as zero weights are ignored automatically.

The "sum" function returns NA if all focal cells are NA and na.rm=TRUE. R would normally return a zero in thise cases. See the difference between focal(x,fun=sum,na.rm=TRUE and focal(x,fun=\(i\)) sum(i,na.rm=TRUE))

Example weight matrices

```
Laplacian filter: filter=matrix(c(0,1,0,1,-4,1,0,1,0),nrow=3)
```

```
Sobel filters (for edge detection): fx=matrix(c(-1,-2,-1,0,0,0,1,2,1),nrow=3) fy=matrix(c(1,0,-1,2,0,-2,1,0,-
```

Value

SpatRaster

See Also

```
focalMat, focalValues, focal3D, focalCor, focalReg, focalCpp
```

```
r <- rast(ncols=10, nrows=10, ext(0, 10, 0, 10))
values(r) <- 1:ncell(r)

f <- focal(r, w=3, fun=function(x, ...) quantile(x, c(.25, .5, .75), ...), na.rm=TRUE)

f <- focal(r, w=3, fun="mean")

# the following two statements are equivalent:
a <- focal(r, w=matrix(1/9, nc=3, nr=3))
b <- focal(r, w=3, fun=mean, na.rm=FALSE)

# but this is different
d <- focal(r, w=3, fun=mean, na.rm=TRUE)

## illustrating the effect of different
## combinations of na.rm and na.policy
v <- vect(system.file("ex/lux.shp", package="terra"))
r <- rast(system.file("ex/elev.tif", package="terra"))
r[45:50, 45:50] <- NA</pre>
```

92 focal3D

```
# also try "mean" or "min"
f <- "sum"
# na.rm=FALSE
plot(focal(r, 5, f) , fun=lines(v))
# na.rm=TRUE
plot(focal(r, 5, f, na.rm=TRUE), fun=lines(v))
# only change cells that are NA
plot(focal(r, 5, f, na.policy="only", na.rm=TRUE), fun=lines(v))
# do not change cells that are NA
plot(focal(r, 5, f, na.policy="omit", na.rm=TRUE), fun=lines(v))
# does not do anything
# focal(r, 5, f, na.policy="only", na.rm=FALSE)</pre>
```

focal3D

Three-dimensional focal values

Description

Calculate focal ("moving window") values for the three-dimensional neighborhood (window) of focal cells. See focal for two-dimensional focal computation.

Usage

```
## S4 method for signature 'SpatRaster'
focal3D(x, w=3, fun=mean, ..., na.policy="all", fillvalue=NA, pad=FALSE,
padvalue=fillvalue, expand=FALSE, silent=TRUE,
filename="", overwrite=FALSE, wopt=list())
```

Arguments

X	SpatRaster
W	window. A rectangular prism (cuboid) defined by three numbers or by a three-dimensional array. The values are used as weights, and are usually zero, one, NA, or fractions. The window used must have odd dimensions. If you desire to use even sides, you can use an array, and pad the values with rows and/or columns that contain only NAs.
fun	function that takes multiple numbers, and returns one or multiple numbers for each focal area. For example mean, modal, min or max
• • •	additional arguments passed to fun such as na.rm
na.policy	character. Can be used to determine the cells of x for which focal values should be computed. Must be one of "all" (compute for all cells), "only" (only for cells that are NA) or "omit" (skip cells that are NA). Note that the value of this argument does not affect which cells around each focal cell are included in the computations (use na.rm=TRUE to ignore cells that are for that)

focalCor 93

fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
pad	logical. Add virtual layers before the first and after the last layer
padvalue	numeric. The value of the cells in the virtual layers
expand	logical. Add virtual layers before the first or after the last layer that are the same as the first or last layers. If TRUE, arguments pad and padvalue are ignored
silent	logical. If TRUE error messages are printed that may occur when trying fun to determine the length of the returned value. This can be useful in debugging a function passed to fun that does not work
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

focal

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
x <- focal3D(r, c(5,5,3), na.rm=TRUE)

a <- array(c(0,1,0,1,1,1,0,1,0, rep(1,9), 0,1,0,1,1,1,0,1,0), c(3,3,3))
a[a==0] <- NA
z <- focal3D(r, a, na.rm=TRUE)</pre>
```

focalCor

Focal function across two layers

Description

Calculate values such as a correlation coefficient for focal regions in two neighboring layers. A function is applied to the first and second layer, then to the second and third layer, etc.

Usage

```
## S4 method for signature 'SpatRaster'
focalCor(x, w=3, fun, ..., fillvalue=NA,
filename="", overwrite=FALSE, wopt=list())
```

94 focalCpp

Arguments

X	SpatRaster with at least two layers
W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See the Details section in focal
fun	A function with at least two arguments (one for each layer)
	additional arguments for fun
fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
layerCor, focalReg, focal
```

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
set.seed(0)
r[[1]] <- flip(r[[1]], "horizontal")
r[[2]] <- flip(r[[2]], "vertical") + init(rast(r,1), runif)
r[[3]] <- init(rast(r,1), runif)

# suppress warning "the standard deviation is zero"
suppressWarnings(x <- focalCor(r, w=5, cor))

# this warning does not occur when using a larger window
x <- focalCor(r, w=9, function(x, y) cor(x, y))
plot(x)</pre>
```

focalCpp

Compute focal values with an iterating C++ function

Description

Calculate focal values with a C++ function that iterates over cells to speed up computations by avoiding an R loop (with apply).

See focal for an easier to use method.

focalCpp 95

Usage

```
## S4 method for signature 'SpatRaster'
focalCpp(x, w=3, fun, ..., fillvalue=NA,
silent=TRUE, filename="", overwrite=FALSE, wopt=list())
```

Arguments

X	SpatRaster
W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See the Details section in focal
fun	cppFunction that iterates over cells. For C++ functions that operate on a single focal window, or for R functions use focal instead. The function must have at least three arguments. The first argument can have any name, but it must be a Rcpp::NumericVector, Rcpp::IntegerVector or a std::vector <double>. This is the container that receives the focal values. The other two arguments ni and wi must be of type size_t. ni represents the number of cells and nw represents the size of (number of elements in) the window</double>
	additional arguments to fun
fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
silent	logical. If TRUE error messages are printed that may occur when trying fun to determine the length of the returned value. This can be useful in debugging a fun that does not work
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten

additional arguments for writing files as in writeRaster

Value

SpatRaster

wopt

See Also

```
focal, focalValues
```

```
## Not run:
library(Rcpp)
cppFunction(
'NumericVector sum_and_multiply(NumericVector x, double m, size_t ni, size_t nw) {
NumericVector out(ni);
// loop over cells
size_t start = 0;
for (size_t i=0; i<ni; i++) {
size_t end = start + nw;
// compute something for a window</pre>
```

96 focalMat

```
double v = 0;
// loop over the values of a window
for (size_t j=start; j<end; j++) {</pre>
v += x[j];
}
out[i] = v * m;
start = end;
return out;
}'
)
nr <- nc <- 10
r \leftarrow rast(ncols=nc, nrows=nr, ext=c(0, nc, 0, nr))
values(r) <- 1:ncell(r)</pre>
raw <- focalCpp(r, w=3, fun=sum_and_multiply, fillvalue=0, m=10)</pre>
# same as
f1 <- focal(r, w=3, fun=sum, fillvalue=0) *10
all(values(f1) == values(raw))
# and as
ffun <- function(x, m) { sum(x) * m }
f2 <- focal(r, w=3, fun=ffun, fillvalue=0, m=10)</pre>
# You can also use an R function with focalCpp but this
# is not recommended
R_sm_iter <- function(x, m, ni, nw) {</pre>
out <- NULL
for (i in 1:ni) {
start <- (i-1) * nw + 1
out[i] <- sum(x[start:(start+nw-1)]) * m</pre>
}
out
}
fr <- focalCpp(r, w=3, fun=R_sm_iter, fillvalue=0, m=10)</pre>
## End(Not run)
```

focalMat

Focal weights matrix

Description

Make a focal ("moving window") weight matrix for use in the focal function. The sum of the values adds up to one.

focalReg 97

Usage

```
focal \texttt{Mat(x, d, type=c('circle', 'Gauss', 'rectangle'), fill \texttt{NA=FALSE})}
```

Arguments

х	SpatRaster
d	numeric. If type=circle, the radius of the circle (in units of the crs). If type=rectangle the dimension of the rectangle (one or two numbers). If type=Gauss the size of sigma, and optionally another number to determine the size of the matrix returned (default is 3*sigma)
type	character indicating the type of filter to be returned
fillNA	logical. If TRUE, zeros are set to NA such that they are ignored in the computations. Only applies to type="circle"

Value

matrix that can be used with focal

Examples

```
r <- rast(ncols=180, nrows=180, xmin=0)
focalMat(r, 2, "circle")

focalMat(r, c(2,3), "rect")

# Gaussian filter for square cells
gf <- focalMat(r, 1, "Gauss")</pre>
```

focalReg Focal regression

Description

Calculate the coefficients for a focal ("moving window") OLS regression model.

Usage

```
## S4 method for signature 'SpatRaster'
focalReg(x, w=3, na.rm=TRUE,
fillvalue=NA, filename="", ...)
```

98 focalValues

Arguments

X	SpatRaster with at least two layers. The first is the "Y" (dependent) variable and the remainder are the "X" (independent) variables
W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See the Details section in focal
na.rm	logical. Should missing values be removed?
fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
focal, focalValues
```

Examples

```
r <- rast(ncols=10, nrows=10, ext(0, 10, 0, 10))
values(r) <- 1:ncell(r)
x <- c(r, init(r, runif) * r)
f <- focalReg(x, 3)</pre>
```

focalValues

Get focal values

Description

Get a matrix in which each row had the focal values of a cell. These are the values of a cell and a rectangular window around it.

Usage

```
## S4 method for signature 'SpatRaster'
focalValues(x, w=3, row=1, nrows=nrow(x), fill=NA)
```

Arguments

X	SpatRaster or SpatVector
W	window. The window can be defined as one (for a square) or two odd numbers (row, col); or with an odd sized matrix
row	positive integer. Row number to start from, should be between 1 and $nrow(x)$
nrows	positive integer. How many rows?
fill	numeric used as values for imaginary cells outside the raster

freq 99

Value

matrix

Examples

```
r <- rast(ncol=4, nrow=4, crs="+proj=utm +zone=1 +datum=WGS84") values(r) <- 1:ncell(r) focalValues(r)
```

freq

Frequency table

Description

Frequency table of the values of a SpatRaster. NAs are not counted unless value=NA.

Usage

```
## S4 method for signature 'SpatRaster'
freq(x, digits=0, value=NULL, bylayer=TRUE, usenames=FALSE)
```

Arguments

Х	SpatRaster
digits	integer. Used for rounding the values before tabulation. Ignored if NA
value	numeric. An optional single value to only count the number of cells with that value. This value can be ${\sf NA}$
bylayer	logical. If TRUE tabulation is done by layer
usenames	logical. If TRUE layers are identified by their names instead of their numbers. Only relevant if bylayer is TRUE

Value

matrix or data.frame with 3 columns (layer, value, count) or, if bylayer=FALSE two columns (value, count). If any of the layers of x is categorical, there is an additional column (label). A data.frame is returned if usenames=TRUE or if any of the layers of x is categorical.

```
r <- rast(nrows=10, ncols=10)
set.seed(2)
values(r) <- sample(5, ncell(r), replace=TRUE)
freq(r)
x <- c(r, r/3)
freq(x, bylayer=FALSE)</pre>
```

100 gaps

```
freq(x)
freq(x, digits=1)
freq(x, digits=-1)
freq(x, value=5)
```

gaps

Find gaps between polygons

Description

Get the gaps between polygons of a SpatVector

Usage

```
## S4 method for signature 'SpatVector'
gaps(x)
```

Arguments

Χ

SpatVector

Value

SpatVector

See Also

sharedPaths, topology, and fillHoles to get or remove polygon holes

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
h <- convHull(v[-12], "NAME_1")
g <- gaps(h)</pre>
```

gdal 101

gdal

GDAL version, supported file formats, and cache size

Description

Set the GDAL warning level or get a data. frame with the available GDAL drivers (file formats), or, if warn=NA and drivers=FALSE, you get the version numbers of one or all of the GDAL, PROJ and GEOS libraries.

GDAL is the software library that terra builds on to read and write spatial data and for some raster data processing. PROJ is used for transformation of coordinates ("projection") and GEOS is used for geometric operations with vector data.

Usage

```
gdal(warn=NA, drivers=FALSE, lib="gdal")
gdalCache(size=NA)
```

Arguments

warn	If NA and drivers=FALSE, the version of the library specified by 1 ib is returned. Otherwise, the value should be an integer between 1 and 4 representing the level of GDAL warnings and errors that are passed to R. 1 = warnings and errors; 2 = errors only (recoverable errors as a warning); 3 = irrecoverable errors only; 4 = ignore all errors and warnings. The default setting is 3
drivers	logical. If TRUE a data.frame with the raster and vector data formats that are available.
lib	character. "gdal", "proj", or "geos", or any other value to get the versions numbers of all three
size	numeric. The new cache size in MB

Value

character

See Also

```
describe for file-level metadata "GDALinfo"
```

```
gdal()
gdal(2)
head(gdal(drivers=TRUE))
```

102 geom

geom

Get the geometry (coordinates) of a SpatVector

Description

Get the geometry of a SpatVector. If wkt=FALSE, this is a five-column matrix or data.frame: the vector object ID, the IDs for the parts of each object (e.g. five polygons that together are one spatial object), the x (longitude) and y (latitude) coordinates, and a flag indicating whether the part is a "hole" (only relevant for polygons).

If wkt=TRUE, the "well-known text" representation is returned as a character vector.

Usage

```
## S4 method for signature 'SpatVector'
geom(x, wkt=FALSE, hex=FALSE, df=FALSE)
```

Arguments

X	SpatVector
wkt	logical. If TRUE the WKT geometry is returned (unless hex is also TRUE)
hex	logical. If TRUE the hexadecimal geometry is returned
df	logical. If TRUE a data. frame is returned instead of a matrix (only for wkt=FALSE and hex=FALSE)

Value

matrix

See Also

See xyFromCell to get the coordinates of the cells of a SpatRaster

geomtype 103

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
g <- geom(v)
head(g)

w <- geom(v, wkt=TRUE)
substr(w, 1, 60)</pre>
```

geomtype

Geometry type of a SpatVector

Description

Get the geometry type (points, lines, or polygons) of a SpatVector or the data types of the fields (attributes, variables) of a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
geomtype(x)

## S4 method for signature 'SpatVector'
datatype(x)

## S4 method for signature 'SpatVector'
is.points(x)

## S4 method for signature 'SpatVector'
is.lines(x)

## S4 method for signature 'SpatVector'
is.polygons(x)
```

Arguments

x SpatVector

Value

character

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

geomtype(v)
is.polygons(v)
is.lines(v)</pre>
```

104 global

```
is.points(v)
names(v)
datatype(v)
```

global

global statistics

Description

Compute global statistics, that is summarized values of an entire SpatRaster.

If x is very large global will fail, except when fun is one of "mean", "min", "max", "sum", "range" (min and max), "rms" (root mean square), "sd" (sample standard deviation), "sdpop" (population standard deviation), "isNA" (number of cells that are NA), "notNA" (number of cells that are not NA).

You can compute a weighted mean or sum by providing a SpatRaster with weights.

Usage

```
## S4 method for signature 'SpatRaster'
global(x, fun="mean", weights=NULL, ...)
```

Arguments

X	SpatRaster
fun	function to be applied to summarize the values by zone. Either as one of these character values: "max", "min", "mean", "sum", "range", "rms" (root mean square), "sd", "std" (population sd, using n rather than n-1); or, for relatively small SpatRasters, a proper function
	additional arguments passed on to fun
weights	NULL or SpatRaster

Value

A data.frame with a row for each layer

See Also

zonal for "zonal" statistics, and app or Summary-methods for "local" statistics, and extract for summarizing values for polygons. Also see focal for "focal" or "moving window" operations.

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
global(r, "sum")
global(r, "mean", na.rm=TRUE)</pre>
```

gridDistance 105

Description

The function calculates the distance to cells of a SpatRaster when the path has to go through the centers of the eight neighboring raster cells.

The distance is in meters if the coordinate reference system (CRS) of the SpatRaster is longitude/latitude (+proj=longlat) and in the units of the CRS (typically meters) in other cases.

Distances are computed by summing local distances between cells, which are connected with their neighbors in 8 directions.

Usage

```
## S4 method for signature 'SpatRaster'
gridDistance(x, origin, omit=NULL, chunk=FALSE, filename="", overwrite=FALSE, ...)
```

Arguments

X	SpatRaster
origin	$value(s) \ of \ the \ cells \ from \ which \ the \ distance \ is \ calculated. \ If \ origin=NULL \ all \ cells \ that \ are \ not \ NA \ are \ origins$
omit	value(s) of the cells that cannot be traversed (optional)
chunk	logical. If TRUE the data are processed in chunks. This may be necessary for large datasets, but could lead to errors in the case of complex areas that need to be omitted if they are spread over different chunks (meandering rivers, for instance).
filename	character. output filename (optional)
overwrite	logical. If TRUE, filename is overwritten
	additional arguments as for writeRaster

Value

SpatRaster

Note

If the SpatRaster to be processed is big, it will be processed in chunks. This may lead to errors in the case of complex objects that cannot be traversed are spread over different chunks (meandering rivers, for instance).

Author(s)

Jacob van Etten and Robert J. Hijmans

106 head and tail

See Also

See distance for "as the crow flies" distance

Examples

```
#world lon/lat raster
r <- rast(ncol=10,nrow=10, vals=1)
r[48] <- 2
r[66:68] <- 3
d <- gridDistance(r,origin=2,omit=3)
plot(d)

#UTM small area
crs(r) <- "+proj=utm +zone=15 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"
d <- gridDistance(r,origin=2,omit=3)
plot(d)</pre>
```

head and tail

Show the head or tail of a Spat* object

Description

Show the head (first values) or tail (last values) of a SpatRaster or of the attributes of a SpatVector.

Usage

```
head(x, ...)
tail(x, ...)
```

Arguments

```
x SpatRaster or SpatVector... additional arguments passed on to other methods
```

Value

```
matrix (SpatRaster) or data.frame (SpatVector)
```

See Also

```
show, geom
```

```
r <- rast(nrows=25, ncols=25)
values(r) <- 1:ncell(r)
head(r)
tail(r)</pre>
```

hist 107

Description

Create a histogram of the values of a SpatRaster. For large datasets a sample of maxcell is used.

Usage

```
## S4 method for signature 'SpatRaster'
hist(x, layer, maxcell=1000000, plot=TRUE, main, ...)
```

Arguments

X	SpatRaster
layer	integer (or character) to indicate layer number (or name). Can be used to subset the layers to plot in a multilayer SpatRaster
maxcell	integer. To regularly sample very large objects
plot	logical. Plot the histogram or only return the histogram values
main	character. Main title(s) for the plot. Default is the value of names
	additional arguments. See hist

Value

This function is principally used for plotting a histogram, but it also returns an object of class "histogram" (invisibly if plot=TRUE).

See Also

```
pairs, boxplot
```

```
r1 <- r2 <- rast(nrows=50, ncols=50)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r1))
rs <- r1 + r2
rp <- r1 * r2

opar <- par(no.readonly =TRUE)
par(mfrow=c(2,2))
plot(rs, main='sum')
plot(rp, main='product')
hist(rs)
a <- hist(rp)
a</pre>
```

108 ifel

```
x <- c(rs, rp, sqrt(rs))
hist(x)
par(opar)</pre>
```

ifel

ifelse for SpatRasters

Description

Implementation of ifelse for SpatRasters. This method allows for a concise expression of what can otherwise be achieved with a combination of classify, mask, and cover.

ifel is an R equivalent to the Con method in ArcGIS (arcpy).

Usage

```
## S4 method for signature 'SpatRaster'
ifel(test, yes, no, filename="", ...)
```

Arguments

```
test SpatRaster

yes SpatRaster or numeric

no SpatRaster or numeric

filename character. Output filename

... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

```
r <- rast(nrows=5, ncols=5, xmin=0, xmax=1, ymin=0, ymax=1)
values(r) <- c(-10:0, NA, NA, NA, 0:10)

x <- ifel(r > 1, 1, r)
# same as
a <- classify(r, cbind(1, Inf, 1))
# or
b <- app(r, fun=function(i) {i[i > 1] <- 1; i})
# or
d <- clamp(r, -Inf, 1)
# or (not recommended for large datasets)
e <- r
e[e>1] <- 1

## other examples
f <- ifel(is.na(r), 100, r)</pre>
```

image 109

```
z <- ifel(r > -2 & r < 2, 100, 0)

# nested expressions
y <- ifel(r > 1, 1, ifel(r < -1, -1, r))
k <- ifel(r > 0, r+10, ifel(r < 0, r-10, 3))</pre>
```

image

SpatRaster image method

Description

Plot (make a map of) the values of a SpatRaster via image. See plot if you need more fancy options such as a legend.

Usage

```
## S4 method for signature 'SpatRaster'
image(x, y=1, maxcell=50000, ...)
```

Arguments

X	SpatRaster
У	positive integer indicating the layer to be plotted, or a character indicating the name of the layer
maxcell	positive integer. Maximum number of cells to use for the plot
	additional arguments as for graphics::image

See Also

plot

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
image(r)
image(r, col=rainbow(24))</pre>
```

110 initialize

impose	Impose the geometry of a SpatRaster to those in a SpatRasterCollection.

Description

Warp the members of a SpatRasterCollection to match the geometry of a SpatRaster.

Usage

```
## S4 method for signature 'SpatRasterCollection'
impose(x, y, filename="", ...)
```

Arguments

x SpatRasterCollection

y SpatRaster

filename character. Output filename

... list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

resample

initialize

Initialize a SpatRaster with values

Description

Create a SpatRaster with values reflecting a cell property: 'x', 'y', 'col', 'row', 'cell' or 'chess'. Alternatively, a function can be used. In that case, cell values are initialized without reference to pre-existing values. E.g., initialize with a random number (fun=runif). While there are more direct ways of achieving this for small objects (see examples) for which a vector with all values can be created in memory, the init function will also work for SpatRaster objects with many cells.

```
## S4 method for signature 'SpatRaster'
init(x, fun, filename="", ...)
```

inplace 111

Arguments

X	SpatRaster
fun	function to be applied. This must be a either single number, multiple numbers, a function, or one of a set of known character values. A function must take the number of cells as a single argument to return a vector of values with a length equal to the number of cells, such as fun=runif. Allowed character values are 'x', 'y', 'row', 'col', 'cell', and 'chess' to get the x or y coordinate, row, col or cell number or a chessboard pattern (alternating 0 and 1 values)
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

```
r <- rast(ncols=10, nrows=5, xmin=0, xmax=10, ymin=0, ymax=5)
x <- init(r, fun="cell")
y <- init(r, fun=runif)

# initialize with a single value
z <- init(r, fun=8)</pre>
```

inplace

Change values in-place

Description

These "in-place" replacement methods assign new value to an object without making a copy. That is efficient, but if there is a copy of the object that you made by standard assignment (e.g. with y <-x), that copy is also changed.

set.names is the in-place replacement version of names<-. set.ext is the in-place replacement version of ext<- set.values is the in-place replacement version of [<- set.cats is the in-place replacement version of categories set.crs is the in-place replacement version of crs<-

```
## S4 method for signature 'SpatRaster'
set.names(x, value, index=1:nlyr(x), validate=FALSE)
## S4 method for signature 'SpatRasterDataset'
set.names(x, value, index=1:length(x), validate=FALSE)
## S4 method for signature 'SpatVector'
set.names(x, value, index=1:ncol(x), validate=FALSE)
## S4 method for signature 'SpatRaster'
```

inplace inplace

```
set.ext(x, value)
## S4 method for signature 'SpatVector'
set.ext(x, value)

## S4 method for signature 'SpatRaster'
set.crs(x, value)
## S4 method for signature 'SpatVector'
set.crs(x, value)

## S4 method for signature 'SpatRaster'
set.values(x, cells, values)

## S4 method for signature 'SpatRaster'
set.cats(x, layer=1, value, index)
```

Arguments

x	SpatRaster
value	character (${\tt set.names}$). For ${\tt set.cats}$: a data.frame with columns (value, category) or vector with category names
index	positive integer indicating layer(s) to assign a name to, or the index to select the active category
validate	logical. Make names valid and/or unique?
cells	cell numbers
values	replacement values
layer	positive integer indicating to which layer to you want to assign these categories

```
s <- rast(ncols=5, nrows=5, nlyrs=3)
x <- s
names(s)
names(s) <- c("a", "b", "c")
names(s)
names(x)

x <- s
set.names(s, c("e", "f", "g"))
names(s)
names(x)

set.ext(x, c(0,180,0,90))

set.values(x, 1:10, 5)</pre>
```

inset 113

inset	Make an inset map	

Description

Make an inset map or scale the extent of a SpatVector

Usage

```
## S4 method for signature 'SpatVector'
inset(x, e, loc="", scale=0.2, background="white",
perimeter=TRUE, box=NULL, pper, pbox, ...)

## S4 method for signature 'SpatRaster'
inset(x, e, loc="", scale=0.2, background="white",
perimeter=TRUE, box=NULL, pper, pbox, ...)

## S4 method for signature 'SpatVector'
inext(x, e, y=NULL, gap=0)
```

Arguments

X	SpatVector, SpatRaster
е	SpatExtent to set the size and location of the inset. Or missing
loc	character. One of "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center"
scale	numeric. The relative size of the inset, used when x is missing
background	color for the background of the inset. Use NA for no background color
perimeter	logical. If TRUE a perimeter (border) is drawn around the inset
box	SpatExtent or missing, to draw a box on the inset, e.g. to show where the map is located in a larger area
pper	list with graphical parameters (arguments) such as col and lwd for the perimeter line
pbox	list with graphical parameters (arguments) such as col and lwd for the box (line)
	additional arguments passed to plot for the drawing of x
у	SpatVector. If not NULL, y is scaled based with the parameters for x. This is useful, for example, when x represent boundaries, and y points within these boundaries
gap	numeric to add space between the SpatVector and the SpatExtent

Value

scaled and shifted SpatVector or SpatRaster (returned invisibly)

114 intersect

See Also

```
sbar, rescale, shift
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
x \leftarrow v[v$NAME_2 == "Diekirch", ]
plot(x, density=10, col="blue")
inset(v)
# more elaborate
plot(x, density=10, col="blue")
inset(v, col = "brown", border="lightgrey", perimeter=TRUE,
pper=list(col="orange", lwd=3, lty=2),
box=ext(x), pbox=list(col="blue", lwd=2))
cols <- rep("light grey", 12)</pre>
cols[2] <- "red"
e \leftarrow ext(c(6.2, 6.3, 49.9, 50))
b <- ext(x) + 0.02
inset(v, e=e, col=cols, box=b)
# with a SpatRaster
ff <- system.file("ex/elev.tif", package="terra")</pre>
r <- rast(ff)
r \leftarrow crop(r, ext(x) + .01)
plot(r, type="int", mar=c(2,2,2,2), plg=list(x="topright"))
lines(v, lwd=1.5)
lines(x, lwd=2.5)
inset(v, col=cols, loc="topleft", scale=0.15)
# a more complex one
plot(r, plg=list(title="meter\n", shrink=.2, cex=.8))
lines(v, lwd=4, col="white")
lines(v, lwd=1.5)
lines(x, lwd=2.5)
text(x, "NAME_2", cex=1.5, halo=TRUE)
sbar(6, c(6.04, 49.785), type="bar", below="km", label=c(0,3,6), cex=.8)
s <- inset(v, col=cols, box=b, scale=.2, loc="topright", background="light yellow",</pre>
pbox=list(lwd=2, lty=5, col="blue"))
# note the returned inset SpatVector
lines(s, col="orange")
```

intersect

Intersection

intersect 115

Description

Intersect the geometries of two SpatVectors.

Intersecting points with points uses the extent of y to get the intersection. Intersecting of points and lines is not supported because of numerical inaccuracies with that. You can use buffer, to create polygons from lines and use these with intersect.

See crop for intersection of a SpatRaster.

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
intersect(x, y)

## S4 method for signature 'SpatVector, SpatExtent'
intersect(x, y)

## S4 method for signature 'SpatExtent, SpatVector'
intersect(x, y)

## S4 method for signature 'SpatExtent, SpatExtent'
intersect(x, y)
```

Arguments

```
x SpatVector or SpatExtent
y SpatVector or SpatExtent
```

Value

Same as x

See Also

```
union, crop, relate
```

```
e1 <- ext(-10, 10, -20, 20)
e2 <- ext(0, 20, -40, 5)
intersect(e1, e2)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
e <- ext(5.6, 6, 49.55, 49.7)
x <- intersect(v, e)

p <- vect(c("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.6, 5.8 49.8))",
"POLYGON ((6.3 49.9, 6.2 49.7, 6.3 49.6, 6.5 49.8, 6.3 49.9))"), crs=crs(v))
values(p) <- data.frame(pid=1:2, area=expanse(p))

y <- intersect(v, p)
```

116 is.bool

is.bool

Raster value types

Description

The values in a SpatRaster layer are by default numeric, but they can also be logical (Boolean), integer, or categorical

Note that as.bool and as.int return a new SpatRaster, whereas is.bool and is.int return a logical value for each layer. For a SpatRaster, isTRUE is equivalent to as.bool, isFALSE is equivalent to !as.bool, as.integer is the same as as.int and as.logical is the same as as.bool

Usage

```
## S4 method for signature 'SpatRaster'
is.bool(x)
## S4 method for signature 'SpatRaster'
as.bool(x, filename, ...)
## S4 method for signature 'SpatRaster'
is.int(x)
## S4 method for signature 'SpatRaster'
as.int(x, filename, ...)
```

Arguments

```
x SpatRasterfilename character. Output filename... list with named options for writing files as in writeRaster
```

Value

logical or SpatRaster

```
r <- rast(nrows=10, ncols=10, vals=1:100)
is.bool(r)
z <- as.bool(r)
is.bool(z)

x <- r > 25
is.bool(x)

rr <- r/2
is.int(rr)
is.int(round(rr))</pre>
```

is.lonlat 117

	-		-	
7.0		^r	١.	\sim \pm
is		LUI	ıт	aι

Check for longitude/latitude crs

Description

Test whether a SpatRaster or SpatVector has a longitude/latitude coordinate reference system (CRS), or perhaps has one. That is wen the CRS is unknown ("") but the x coordinates are within -181 and 181 and the y coordinates are within -90.1 and 90.1. For a SpatRaster you can also test if it is longitude/latitude and "global" (covers all longitudes).

Usage

```
## $4 method for signature 'SpatRaster'
is.lonlat(x, perhaps=FALSE, warn=TRUE, global=FALSE)
## $4 method for signature 'SpatVector'
is.lonlat(x, perhaps=FALSE, warn=TRUE)
```

Arguments

X	SpatRaster or SpatVector
perhaps	logical. If TRUE and the crs is unknown, the method returns TRUE if the coordinates are plausible for longitude/latitude
warn	logical. If TRUE, a warning is given if the CRS is unknown or when the CRS is longitude/latitude but the coordinates do not match that
global	logical. If TRUE, the method tests if the raster covers all longitudes (from -180 to 180 degrees) such that the extreme columns are in fact adjacent

Value

logical or NA

```
r <- rast()
is.lonlat(r)
is.lonlat(r, global=TRUE)

crs(r) <- ""
is.lonlat(r)
is.lonlat(r)
is.lonlat(r, perhaps=TRUE, warn=FALSE)

crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
is.lonlat(r)</pre>
```

118 lapp

lapp	Apply a function to layers of a SpatRaster, or sub-datasets of a SpatRasterDataset

Description

Apply a function to a SpatRaster, using layers as arguments.

The number of arguments in function fun must match the number of layers in the SpatRaster (or the number of sub-datasets in the SpatRasterDataset). For example, if you want to multiply two layers, you could use this function: fun=function(x,y){return(x*y)} percentage: fun=function(x,y){return(100 * x / y)}. If you combine three layers you could use fun=function(x,y,z){return((x + y) * z)}

Before you use the function, test it to make sure that it is vectorized. That is, it should work for vectors longer than one, not only for single numbers. The function must return the same number of elements as its input vectors, or multiples of that. Also make sure that the function is NA-proof: it should returns the same number of values when some or all input values are NA. And the function must return a vector or a matrix, not a data. frame.

Use app for summarize functions such as sum, that take any number of arguments; and tapp to do so for groups of layers.

Usage

```
## S4 method for signature 'SpatRaster'
lapp(x, fun, ..., usenames=FALSE, cores=1, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterDataset'
lapp(x, fun, ..., recycle=FALSE, filename="", overwrite=FALSE, wopt=list())
```

Arguments

^	Spatikaster of Spatikaster Dataset
fun	a function that takes a vector and can be applied to each cell of x
	additional arguments to be passed to fun
usenames	logical. Use the layer names to match the function arguments? If FALSE matching is by position
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object
recycle	logical. Recycle layers to match the subdataset with the largest number of layers
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

SnatRaster or SnatRasterDataset

Value

SpatRaster

layerCor 119

Note

Use sapp or lapply to apply a function that takes a SpatRaster as argument to each layer of a SpatRaster (that is rarely necessary).

See Also

```
app, tapp, math
```

```
s <- rast(system.file("ex/logo.tif", package="terra")) + 1</pre>
ss <- s[[2:1]]
fvi <- function(x, y){ (x - y) / (x + y) }
x \leftarrow lapp(ss, fun=fvi)
# which is the same as supplying the layers to "fun"
# in some cases this will be much faster
y <- fvi(s[[2]], s[[1]])
f2 \leftarrow function(x, y, z) \{ (z - y + 1) / (x + y + 1) \}
p1 \leftarrow lapp(s, fun=f2)
p2 \leftarrow lapp(s[[1:2]], f2, z=200)
# the usenames argument
fvi2 <- function(red, green){ (red - green ) / (red + green) }</pre>
names(s)
x1 \leftarrow lapp(s[[1:2]], fvi2, usenames=TRUE)
x2 \leftarrow lapp(s[[2:1]], fvi2, usenames=TRUE)
# x1 and x2 are the same, despite the change in the order of the layers
# x4 is also the same, but x3 is not
x3 <- lapp(s[[2:1]], fvi2, usenames=FALSE)
x4 <- lapp(s, fvi2, usenames=TRUE)
# while this would fail because
# there are too many layers in s
# x5 <- lapp(s, fvi2, usenames=FALSE)</pre>
pairs(c(x1, x2, x3, x4))
## SpatRasterDataset
x < - sds(s, s[[1]] + 50)
lapp(x, function(x, y) x/y, recycle=TRUE)
```

120 layerCor

Description

Compute correlation, (weighted) covariance, or similar summary statistics that compare the values of all pairs of the layers of a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
layerCor(x, fun, w, asSample=TRUE, na.rm=FALSE, maxcell=Inf, ...)
```

Arguments

X	SpatRaster
fun	character. The statistic to compute: either "cov" (covariance), "weighted.cov" (weighted covariance), or "pearson" (correlation coefficient) or your own function that takes two vectors as argument to compute a single number
W	SpatRaster with the weights to compute the weighted covariance. It should have a single layer and the same geometry as x
asSample	logical. If TRUE, the statistic for a sample (denominator is $n-1$) is computed, rather than for the population (denominator is n). Only for the standard functions
na.rm	logical. Should missing values be removed?
maxcell	postive integer. The number of cells to be regularly sampled. Only used when fun is a function
	additional arguments for fun (if it is a proper function)

Value

If fun is one of the three standard statistics, you get a list with two items: the correlation or (weighted) covariance matrix, and the (weighted) means.

If fun is a function, you get a matrix.

References

For the weighted covariance:

- Canty, M.J. and A.A. Nielsen, 2008. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment 112:1025-1036.
- Nielsen, A.A., 2007. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing 16(2):463-478.

See Also

```
global, cov.wt, weighted.mean
```

linearUnits 121

Examples

```
b <- rast(system.file("ex/logo.tif", package="terra"))
layerCor(b, "pearson")

layerCor(b, "cov")

# weigh by column number
w <- init(b, fun="col")
layerCor(b, "weighted.cov", w=w)</pre>
```

linearUnits

Linear units of the coordinate reference system

Description

Get the linear units of the coordinate reference system (crs) of a SpatRaster or SpatVector expressed in m. The value returned is used internally to transform area and perimenter measures to meters. The value returned for longitude/latitude crs is zero.

Usage

```
## S4 method for signature 'SpatRaster'
linearUnits(x)
## S4 method for signature 'SpatVector'
linearUnits(x)
```

Arguments

Χ

SpatRaster or SpatVector

Value

```
numeric (meter)
```

See Also

crs

```
x <- rast()
crs(x) <- ""
linearUnits(x)

crs(x) <- "+proj=longlat +datum=WGS84"
linearUnits(x)</pre>
```

lines

```
crs(x) <- "+proj=utm +zone=1 +units=cm"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=km"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=us-ft"
linearUnits(x)</pre>
```

lines

Add SpatVector data to a map

Description

Add SpatVector data to a plot (map) with points, lines, or polys.

These are simpler alternatives for plot(x,add=TRUE)

0 117 1

Usage

```
## S4 method for signature 'SpatVector'
points(x, col, cex=1, pch=20, alpha=1, ...)

## S4 method for signature 'SpatVector'
lines(x, y=NULL, col, lwd=1, lty=1, arrows=FALSE, alpha=1, ...)

## S4 method for signature 'SpatVector'
polys(x, col, border="black", lwd=1, lty=1, alpha=1, ...)

## S4 method for signature 'SpatExtent'
points(x, col="black", alpha=1, ...)

## S4 method for signature 'SpatExtent'
lines(x, col="black", alpha=1, ...)

## S4 method for signature 'SpatExtent'
polys(x, col, alpha=1, ...)
```

0 (F (

Arguments

X	Spat Vector or SpatExtent
У	missing or SpatVector. If both x and y have point geometry and the same number of rows, lines are drawn between pairs of points
col	character. Colors
border	character. $\operatorname{color}(s)$ of the polygon borders. Use NULL or NA to not draw a border
cex	numeric. point size magnifier. See par

makeTiles 123

pch	positive integer, line type. See points
alpha	number between 0 and 1 to set transparency
lwd	numeric, line-width. See par
lty	positive integer, line type. See par
arrows	logical. If TRUE and y is a SpatVector, arrows are drawn intead of lines. See ?arrows for additional arguments
	additional graphical arguments such as 1wd, cex and pch

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

r <- rast(v)
values(r) <- 1:ncell(r)
plot(r)
lines(v)
points(v)</pre>
```

makeTiles

Make tiles

Description

Divide a SpatRaster into "tiles". The cell of another SpatRaster (normally with a much lower resolution) are used to define the tiles.

Usage

```
## S4 method for signature 'SpatRaster'
makeTiles(x, y, filename="tile_.tif", extend=FALSE, na.rm=FALSE, ...)
```

Arguments

X	SpatRaster
у	SpatRaster or SpatVector
filename	character. Output filename template. Filenames will be altered by adding the tile number for each tile
extend	logical. If TRUE, the extent of y is expanded to assure that it covers all of x
na.rm	logical. If TRUE, tiles with only missing values are ignored
	additional arguments for writing files as in writeRaster

Value

```
character (filenames)
```

124 makeVRT

See Also

vrt to create a virtual raster from tiles

Examples

```
r <- rast(ncols=100, nrows=100)
values(r) <- 1:ncell(r)
x <- rast(ncols=2, nrows=2)
filename <- paste0(tempfile(), "_.tif")
ff <- makeTiles(r, x, filename)
ff
vrt(ff)</pre>
```

makeVRT

Make a VRT header file

Description

Create a VRT header file for a "flat binary" raster file that needs a header file to be able to read it, but does not have it.

Usage

```
makeVRT(filename, nrow, ncol, nlyr=1, extent, xmin, ymin, xres, yres=xres, xycenter=TRUE,
    crs="+proj=longlat", lyrnms="", datatype, NAflag=NA, bandorder="BIL", byteorder="LSB",
    toptobottom=TRUE, offset=0, scale=1)
```

Arguments

filename	character. raster filename (without ".vrt" exension)
nrow	positive integer, the number of rows
ncol	positive integer, the number of columns
nlyr	positive integer, the number of layers
extent	SpatExtent or missing
xmin	numeric. minimum x coordinate (only used if extent is missing)
ymin	numeric. minimum y coordinate (only used if extent is missing)
xres	postive number. x resolution
yres	postive number. y resolution)
xycenter	logical. If TRUE, xmin and xmax represent the coordinates of the center of the ext reme cell, in stead of the coordinates of the outside corner. Only used of extent is missing
crs	character. Coordinate reference system description
lyrnms	character. Layer names

mask 125

datatype character. One of "INT2S", "INT4S", "INT1U", "INT2U", "INT4U", "FLT4S",

"FLT8S". If missing, this is guessed from the file size (INT1U for 1 byte per value, INT2S for 2 bytes and FLT4S for 4 bytes per value). This may be wrong because, for example, 2 bytes per value may in fact be INT2U (with the U for

unsigned) values

NAflag numeric. The value used as the "NA flag"

bandorder character. One of "BIL", "BIP", or "BSQ". That is Band Interleaved by Line, or

by Pixel, or Band SeQuential

byteorder character. One of "LSB", "MSB". "MSB" is common for files generated on

Linux systems, whereas "LSB" is common for files generated on windows

toptobottom logical. If FALSE, the values are read bottom to top

offset numeric. offset to be applied scale numeric. scale to be applied

Value

```
character (.VRT filename)
```

See Also

vrt to create a vrt for a collection of raster tiles

mask

Mask values in a SpatRaster or SpatVector

Description

If x is a SpatRaster: Create a new SpatRaster that has the same values as SpatRaster x, except for the cells that are NA (or another maskvalue) in another SpatRaster (the 'mask'), or not covered by a SpatVector. These cells become NA (or another updatevalue).

If x is a SpatVector: Select geometries of x that intersect, or not intersect, with the geometries of y.

```
## S4 method for signature 'SpatRaster, SpatRaster'
mask(x, mask, inverse=FALSE, maskvalues=NA,
    updatevalue=NA, filename="", ...)

## S4 method for signature 'SpatRaster, SpatVector'
mask(x, mask, inverse=FALSE, updatevalue=NA,
touches=TRUE, filename="", ...)

## S4 method for signature 'SpatVector, SpatVector'
mask(x, mask, inverse=FALSE)
```

126 match

Arguments

X	SpatRaster or SpatVector
mask	SpatRaster or SpatVector
inverse	logical. If TRUE, areas on mask that are _not_ the maskvalue are masked
maskvalues	numeric. The value(s) in mask that indicates the cells of x that should become updatevalue (default = NA) $ \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} $
updatevalue	numeric. The value that cells of \boldsymbol{x} should become if they are not covered by $mask$ (and not NA)
touches	logical. If TRUE, all cells touched by lines or polygons will be masked, not just those on the line render path, or whose center point is within the polygon
filename	character. Output filename

additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

crop

Examples

```
r <- rast(ncols=10, nrows=10)
m <- rast(ncols=10, nrows=10)
values(r) <- 1:100
set.seed(1965)
x <- round(3 * runif(ncell(r)))
x[x==0] <- NA
values(m) <- x
mr <- mask(r, m)</pre>
```

match

Value matching for SpatRasters

Description

match returns a SpatRaster with the position of the matched values. The cell values are the index of the table argument.

%in% returns a 0/1 (FALSE/TRUE) SpatRaster indicating if the cells values were matched or not.

```
match(x, table, nomatch = NA_integer_, incomparables = NULL)
x %in% table
```

Math-methods 127

Arguments

Χ	SpatRaster
Χ	SpatRaste

table vector of the values to be matched against

nomatch the value to be returned in the case when no match is found. Note that it is

coerced to integer

incomparables a vector of values that cannot be matched. Any value in x matching a value

in this vector is assigned the nomatch value. For historical reasons, FALSE is

equivalent to NULL

Value

SpatRaster

See Also

```
app, match
```

Examples

```
r <- rast(nrows=10, ncols=10)
values(r) <- 1:100
m <- match(r, c(5:10, 50:55))
n <- r %in% c(5:10, 50:55)
```

Math-methods

General mathematical methods

Description

Standard mathematical methods for computations with SpatRaster objects. Computations are local (applied on a cell by cell basis). If multiple SpatRaster objects are used, these must have the same extent and resolution. These have been implemented:

abs,sign,sqrt,ceiling,floor,trunc,cummax,cummin,cumprod,cumsum,log,log10,log2,log1p,acos,acosh,asin

Instead of directly calling these methods, you can also provide their name to the math method. This is useful if you want to provide an output filename.

The following methods have been implemented for SpatExtent: round, floor, ceiling

round has also been implemented for SpatVector, to round the coordinates of the geometries.

```
## $4 method for signature 'SpatRaster'
sqrt(x)

## $4 method for signature 'SpatRaster'
log(x, base=exp(1))
```

128 Math-methods

```
## S4 method for signature 'SpatRaster'
round(x, digits=0)

## S4 method for signature 'SpatRaster'
math(x, fun, digits=0, filename="", overwrite=FALSE, ...)

## S4 method for signature 'SpatVector'
round(x, digits=4)
```

Arguments

X	SpatRaster
base	a positive or complex number: the base with respect to which logarithms are computed
digits	Number of digits for rounding
fun	character. Math function name
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
	additional arguments for writing files as in writeRaster

Value

SpatRaster or SpatExtent

See Also

See app to use mathematical functions not implemented by the package, and Arith-methods for arithmetical operations

```
r1 <- rast(ncols=10, nrows=10)
v <- runif(ncell(r1))
v[10:20] <- NA
values(r1) <- v
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)
r <- c(r1, r2)

s <- sqrt(r)
# same as
math(r, "sqrt")
round(s, 1)</pre>
```

mem 129

mem

Memory available and needed

Description

mem_info prints the amount of RAM that is required and available to process a SpatRaster. free_RAM returns the amount of RAM that is available

Usage

```
mem_info(x, n=1)
free_RAM()
```

Arguments

x SpatRastaer

n positive integer. The number of copies of x that are needed

Value

free_RAM returns the amount of available RAM in kilobytes

Examples

```
mem_info(rast())
free_RAM()
```

merge

Merge SpatRaster or SpatExtent objects, or a SpatVector with a data.frame

Description

Merge SpatRasters to form a new SpatRaster object with a larger spatial extent. If objects overlap, the values get priority in the same order as the arguments. See classify to merge a SpatRaster and a data.frame. You can also merge SpatExtent objects.

There is a also a method for merging SpatVector with a data.frame; that is, to join the data.frame to the attribute table of the SpatVector..

merge merge

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
merge(x, y, ..., filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterCollection, missing'
merge(x, filename="", ...)
## S4 method for signature 'SpatExtent, SpatExtent'
merge(x, y, ...)
## S4 method for signature 'SpatVector, data.frame'
merge(x, y, ...)
```

Arguments

X	SpatRaster or SpatExtent
У	object of same class as x
	if x is a SpatRaster: additional objects of the same class as x. If x is a SpatRaster-Collection: options for writing files as in $writeRaster$. If x is a SpatVector, the same arguments as in $merge$
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Details

The SpatRaster objects must have the same origin and spatial resolution. In areas where the SpatRaster objects overlap, the values of the SpatRaster that is last in the sequence of arguments will be retained.

Value

SpatRaster or SpatExtent

Note

You can use merge with do.call to merge a list of SpatRasters (see example). But note that if the list is named, these names are used by merge. So if all elements are named, there should be one element with a SpatRaster called x and another one called y. For example with names(x)[1:2] <-c("x"m"y"). You can also removed the names of the the first two elements (assuming these are SpatRasters) with names(x)[1:2] <-"".

See Also

Combining tiles with vrt may be more efficient. See mosaic for averaging overlapping regions.

mergeTime 131

Examples

```
x <- rast(xmin=-110, xmax=-80, ymin=40, ymax=70, ncols=30, nrows=30)</pre>
y <- rast(xmin=-85, xmax=-55, ymax=60, ymin=30, ncols=30, nrows=30)</pre>
z <- rast(xmin=-60, xmax=-30, ymax=50, ymin=20, ncols=30, nrows=30)
values(x) <- 1:ncell(x)</pre>
values(y) <- 1:ncell(y)</pre>
values(z) <- 1:ncell(z)</pre>
m1 \leftarrow merge(x, y, z)
m2 \leftarrow merge(z, y, x)
m3 \leftarrow merge(y, x, z)
# if you have many SpatRasters make a SpatRasterCollection from a list
rlist <- list(x, y, z)
rsrc <- sprc(rlist)</pre>
m <- merge(rsrc)</pre>
## SpatVector with data.frame
f <- system.file("ex/lux.shp", package="terra")</pre>
p <- vect(f)
dfr <- data.frame(District=p$NAME_1, Canton=p$NAME_2, Value=round(runif(length(p), 100, 1000)))</pre>
dfr <- dfr[1:5, ]
pm <- merge(p, dfr, all.x=TRUE, by.x=c('NAME_1', 'NAME_2'), by.y=c('District', 'Canton'))
pm
values(pm)
```

mergeTime

merge SpatRasters by timelines to create a single timeseries

Description

Combine SpatRasters with partly overlapping time-stamps to create a single time series. If there is no overlap between the SpatRasters there is no point in using this function (use c instead).

Also note that time gaps are not filled. You can use fillTime to do that.

Usage

```
## S4 method for signature 'SpatRasterDataset'
mergeTime(x, fun=mean, filename="", ...)
```

Arguments

X	SpatRasterDataset
fun	A function that reduces a vector to a single number, such as mean or min
filename	character. Output filename
	list with named options for writing files as in writeRaster

132 modal

Value

SpatRaster

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
s1 <- c(r, r)
time(s1) <- as.Date("2001-01-01") + 0:5
s1 <- s1/10
time(s1) <- as.Date("2001-01-07") + 0:5
s2 <- s1*10
time(s2) <- as.Date("2001-01-05") + 0:5
x <- sds(s1, s1, s2)
m <- mergeTime(x, mean)</pre>
```

modal

modal value

Description

Compute the mode for each cell across the layers of a SpatRaster. The mode, or modal value, is the most frequent value in a set of values.

Usage

```
## S4 method for signature 'SpatRaster'
modal(x, ..., ties="first", na.rm=FALSE, filename="", overwrite=FALSE, wopt=list())
```

Arguments

X	SpatRaster
	additional argument of the same type as x or numeric
ties	character. Indicates how to treat ties. Either "random", "lowest", "highest", "first", or "NA"
na.rm	logical. If TRUE, NA values are ignored. If FALSE, NA is returned if \boldsymbol{x} has any NA values
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster

mosaic 133

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
r <- c(r/2, r, r*2)
m <- modal(r)</pre>
```

mosaic

mosaic SpatRasters

Description

Combine adjacent and (partly) overlapping SpatRasters to form a single new SpatRaster. Values in overlapping cells are averaged.

This method is similar to the simpler, but faster merge method.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
mosaic(x, y, ..., fun="mean", filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterCollection, missing'
mosaic(x, fun="mean", filename="", ...)
```

Arguments

X	SpatRaster
У	object of same class as x
	additional SpatRasters
fun	character. One of "sum", "mean", "median", "min", "max"
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Details

The SpatRaster objects must have the same origin and spatial resolution. In areas where the SpatRaster objects overlap, the values of the SpatRaster that is last in the sequence of arguments will be retained.

Value

SpatRaster

See Also

merge

na.omit

Examples

```
x <- rast(xmin=-110, xmax=-80, ymin=40, ymax=70, ncols=30, nrows=30)
y <- rast(xmin=-85, xmax=-55, ymax=60, ymin=30, ncols=30, nrows=30)
z <- rast(xmin=-60, xmax=-30, ymax=50, ymin=20, ncols=30, nrows=30)
values(x) <- 1:ncell(x)
values(y) <- 1:ncell(y)
values(z) <- 1:ncell(z)

m1 <- mosaic(x, y, z)
m2 <- mosaic(z, y, x)

# if you have many SpatRasters make a SpatRasterCollection from a list
rlist <- list(x, y, z)
rsrc <- sprc(rlist)

m <- mosaic(rsrc)</pre>
```

na.omit

na.omit for SpatVector

Description

Remove empty geometries and/or records that are NA from a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
na.omit(object, field=NA, geom=FALSE)
```

Arguments

object SpatVector

field character or NA. If NA, missing values in the attributes are ignored. Other values

are either one or more field (variable) names, or "" to consider all fields

geom logical. If TRUE empty geometries are removed

Value

SpatVector

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$test <- c(1,2,NA)
nrow(v)
x <- na.omit(v, "test")
nrow(x)</pre>
```

NAflag 135

NAflag

Set the NA flag

Description

The main purpose of this method is to allow correct reading of a SpatRaster that is based on a file that has an incorrect NA flag. The file is not changed, but flagged value is set to NA when values are read from the file ("lazy evaluation"). In contrast, if the values are in memory the change is made immediately.

To change values, it is generally better to use classify

Usage

```
## S4 method for signature 'SpatRaster'
NAflag(x)
## S4 replacement method for signature 'SpatRaster'
NAflag(x)<-value</pre>
```

Arguments

x SpatRaster

value

numeric. The value to be interpreted as NA; set this before reading the values from the file. This can be a single value, or multiple values, one for each data

source (file / subdataset)

Value

none or numeric

See Also

```
classify
```

```
s <- rast(system.file("ex/logo.tif", package="terra"))[[1]]
NAflag(s) <- 255
plot(s)
NAflag(s)</pre>
```

names

names

Names of Spat* objects

Description

Get or set the names of the layers of a SpatRaster or the attributes of a SpatVector. With longnames you can get or set the "long names" of a SpatRaster or SpatRasterDataset.

For a SpatRaster, you can also get/set a variable name or long name (one per data source).

See set.names for in-place setting of names.

```
## S4 method for signature 'SpatRaster'
names(x)
## S4 replacement method for signature 'SpatRaster'
names(x) < -value
## S4 method for signature 'SpatRaster'
varnames(x)
## S4 replacement method for signature 'SpatRaster'
varnames(x)<-value</pre>
## S4 method for signature 'SpatRaster'
longnames(x)
## S4 replacement method for signature 'SpatRaster'
longnames(x) < -value
## S4 method for signature 'SpatRasterDataset'
names(x)
## S4 replacement method for signature 'SpatRasterDataset'
names(x) < -value
## S4 method for signature 'SpatRasterDataset'
varnames(x)
## S4 replacement method for signature 'SpatRasterDataset'
varnames(x)<-value</pre>
## S4 method for signature 'SpatRasterDataset'
longnames(x)
```

names 137

```
## S4 replacement method for signature 'SpatRasterDataset'
longnames(x)<-value

## S4 method for signature 'SpatVector'
names(x)

## S4 replacement method for signature 'SpatVector'
names(x)<-value</pre>
```

Arguments

```
x SpatRaster, SpatRasterDataset, or SpatVector
value character (vector)
```

Value

character

Note

terra enforces neither unique nor valid names. See make.unique to create unique names and {make.names} to make syntactically valid names.

```
s <- rast(ncols=5, nrows=5, nlyrs=3)</pre>
nlyr(s)
names(s)
names(s) <- c("a", "b", "c")
names(s)
# space is not valid
names(s)[2] \leftarrow "hello world"
names(s)
# two invalid names
names(s) <- c("a", " a ", "3")
names(s)
# SpatVector names
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
names(v)
names(v) \leftarrow paste0(substr(names(v), 1, 2), "_", 1:ncol(v))
names(v)
```

138 nearest

nearest nearby geometries

Description

Identify geometries that are near to each other. Either get the index of all geometries within a certain distance, or the k nearest neighbors, or (with nearest) get the nearest points between two geometries.

Usage

```
## S4 method for signature 'SpatVector'
nearby(x, y=NULL, distance=0, k=1, centroids=TRUE, symmetrical=TRUE)
## S4 method for signature 'SpatVector'
nearest(x, y, pairs=FALSE, centroids=TRUE, lines=FALSE)
```

Arguments x

*	Spar (Coto)
У	SpatVector or NULL
distance	numeric. maximum distance
k	positive integer. number of neighbors. Ignored if distance > 0
centroids	logical. Should the centroids of polygons be used?

symmetrical logical. If TRUE, a near pair is only included once. That is, if geometry 1 is near

to geometry 3, the implied nearness between 3 and 1 is not reported. Ignored if

k neighbors are returned

SpatVector

pairs logical. If TRUE pairwise nearest points are returned (only relevant when using

at least one SpatVector of lines or polygons

lines logical. If TRUE lines between the nearest points instead of (the nearest) points

Value

matrix

See Also

```
relate, adjacent
```

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
nearby(v, distance=12000)</pre>
```

north 139

north North arrow

Description

Add a (North) arrow to a map

Usage

```
north(xy=NULL, type=1, label="N", angle=0, d, head=0.1, xpd=TRUE, ...)
arrow(...)
```

Arguments

xy	numeric. x and y coordinate to place the arrow. It can also be one of following character values: "bottomleft", "bottom", "bottomright", topleft", "top", "topright", "left", "right", or NULL
type	integer between 1 and 12, or a character (unicode) representation of a right pointing arrow such as " $\u27A9$ "
label	character, to be printed near the arrow
angle	numeric. The angle of the arrow in degrees
d	numeric. Distance covered by the arrow in plot coordinates. Only applies to $type=1$
head	numeric. The size of the arrow "head", for type=1
xpd	logical. If TRUE, the scale bar or arrow can be outside the plot area
	graphical arguments to be passed to other methods

Value

none

See Also

```
sbar, plot, inset
```

```
f <- system.file("ex/meuse.tif", package="terra")
r <- rast(f)
plot(r)
north()
north(c(178550, 332500), d=250)
## Not run:
f <- system.file("ex/elev.tif", package="terra")</pre>
```

140 options

```
r <- rast(f)
plot(r, type="interval")
sbar(15, c(6.3, 50), type="bar", below="km", label=c(0,7.5,15), cex=.8)
north(type=3, cex=.8)
north(xy=c(6.7, 49.9), type=2, angle=45, label="NE")
north(xy=c(6.6, 49.7), type=5, cex=1.25)
north(xy=c(5.5, 49.6), type=9)
north(d=.05, xy=c(5.5, 50), angle=180, label="S", lwd=2, col="blue")
## all arrows
r <- rast(res=10)
values(r) <- 1
plot(r, col="white", axes=FALSE, legend=FALSE, mar=c(0,0,0,0), reset=TRUE)
for (i in 1:12) {
x = -200+i*30
north(xy=cbind(x,30), type=i)
text(x, -20, i, xpd=TRUE)
## End(Not run)
```

options

Options

Description

Class and methods for showing and setting general options for terra.

Usage

```
terraOptions(...)
```

Arguments

... option names and values (see Details). Or missing, to show the current options

Details

The following options are available.

memfrac - value between 0 and 0.9 (larger values give a warning). The fraction of RAM that may be used by the program.

memmax - the maximum amount of RAM (in GB) that terra can use when processing a raster dataset. Should be less than what is detected (see mem_info, and higher values are ignored. Set it to a negative number or NA to not set this option). terraOptions only shows the value of memmax it it set.

origin 141

tempdir - directory where temporary files are written. The default what is returned by tempdir(). **datatype** - default data type. See writeRaster

todisk - logical. If TRUE write all raster data to disk (temp file if no file name is specified). For debugging.

progress - non-negative integer. A progress bar is shown if the number of chunks in which the data is processed is larger than this number. No progress bar is shown if the value is zero

verbose - logical. If TRUE debugging info is printed for some functions

Examples

```
terraOptions()
terraOptions(memfrac=0.5, tempdir = "c:/temp")
terraOptions(progress=10)
terraOptions()
```

origin

Origin

Description

Get or set the coordinates of the point of origin of a SpatRaster. This is the point closest to (0, 0) that you could get if you moved towards that point in steps of the x and y resolution.

Usage

```
## S4 method for signature 'SpatRaster'
origin(x)
## S4 replacement method for signature 'SpatRaster'
origin(x)<-value</pre>
```

Arguments

```
x SpatRaster
value numeric vector of length 1 or 2
```

Value

A vector of two numbers (x and y coordinates)

```
r <- rast(xmin=-0.5, xmax = 9.5, ncols=10)
origin(r)
origin(r) <- c(0,0)
r</pre>
```

pairs pairs

pairs

Pairs plot (matrix of scatterplots)

Description

Pair plots of layers in a SpatRaster. This is a wrapper around graphics function pairs.

Usage

```
## S4 method for signature 'SpatRaster'
pairs(x, hist=TRUE, cor=TRUE, use="pairwise.complete.obs", maxcells=100000, ...)
```

Arguments

X	SpatRaster
hist	logical. If TRUE a histogram of the values is shown on the diagonal
cor	logical. If TRUE the correlation coefficient is shown in the upper panels
use	argument passed to the cor function
maxcells	integer. Number of pixels to sample from each layer of a large SpatRaster
	additional arguments (graphical parameters)

See Also

```
boxplot,hist
```

```
r <-rast(system.file("ex/elev.tif", package="terra"))
s <- c(r, 1/r, sqrt(r))
names(s) <- c("elevation", "inverse", "sqrt")
pairs(s)

# to make indvidual histograms:
hist(r)
# or scatter plots:
plot(s[[1]], s[[2]])</pre>
```

patches 143

patches Detect patches (clumps) of cells
--

Description

Detect patches (clumps). Patches are groups of cells that are surrounded by cells that are NA. Set zeroAsNA to TRUE to also identify patches separated by cells with values of zero.

Usage

```
## S4 method for signature 'SpatRaster'
patches(x, directions=4, zeroAsNA=FALSE, allowGaps=TRUE, filename="", ...)
```

Arguments

X	SpatRaster
directions	integer indicating which cells are considered adjacent. Should be 8 (Queen's case) or 4 (Rook's case)
zeroAsNA	logical. If TRUE treat cells that are zero as if they were NA
allowGaps	logical. If TRUE there may be gaps in the patch IDs (e.g. you may have patch IDs 1, 2, 3 and 5, but not 4). If it is FALSE, these numbers will be recoded from 1 to the number of patches (4 in this example)
filename	character. Output filename
	options for writing files as in writeRaster

Value

SpatRaster. Cell values are patch numbers

See Also

focal, boundaries

```
r <- rast(nrows=18, ncols=36, xmin=0)
r[1:2, 5:8] <- 1
r[5:8, 2:6] <- 1
r[7:12, 22:36] <- 1
r[15:16, 18:29] <- 1
p <- patches(r)

# zero as background instead of NA
r <- rast(nrows=10, ncols=10, xmin=0, vals=0)
r[3, 3] <- 10
r[4, 4] <- 10
r[5, 5:8] <- 12</pre>
```

144 perim

```
r[6, 6:9] <- 12
# treat zeros as NA
p4 <- patches(r, zeroAsNA=TRUE)</pre>
p8 <- patches(r, 8, zeroAsNA=TRUE)</pre>
### patches for different values
# remove zeros manually
rr <- classify(r, cbind(0, NA))</pre>
# make layers for each value
s <- segregate(rr, keep=TRUE, other=NA)
p <- patches(s)</pre>
### patch ID values are not guaranteed to be consecutive
r <- rast(nrows=5, ncols=10, xmin=0)</pre>
set.seed(0)
values(r)<- round(runif(ncell(r))*0.7)</pre>
rp <- patches(r, directions=8, zeroAsNA=TRUE)</pre>
plot(rp, type="classes"); text(rp)
## unless you set allowGaps=FALSE
rp <- patches(r, directions=8, zeroAsNA=TRUE, allowGaps=FALSE)</pre>
plot(rp, type="classes"); text(rp)
### use zonal to remove small patches
f <- system.file("ex/elev.tif", package="terra")</pre>
r <- rast(f)
x <- classify(r, cbind(-Inf, 400, NA))</pre>
y <- patches(x)
# remove patches smaller than 100 ha
rz <- zonal(cellSize(y, unit="ha"), y, sum, as.raster=TRUE)</pre>
s \leftarrow ifel(rz < 100, NA, y)
```

perim

Perimeter or length

Description

This method returns the length of lines or the perimeter of polygons.

When the crs is not longitude/latitude, you may get more accurate results by first un-projecting the SpatVector (you can use project to transform the crs to longitude/latitude)

```
## S4 method for signature 'SpatVector'
perim(x)
```

persp 145

Arguments

x SpatVector

Value

```
numeric (m)
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
perim(v)</pre>
```

persp

Perspective plot

Description

Perspective plot of a SpatRaster. This is an implementation of a generic function in the graphics package.

Usage

```
## S4 method for signature 'SpatRaster'
persp(x, maxcells=100000, ...)
```

Arguments

See Also

```
persp, contour, plot
```

```
r <- rast(system.file("ex/elev.tif", package="terra"))
persp(r)</pre>
```

146 plot

plot Make a map

Description

Plot the values of a SpatRaster or SpatVector to make a map. See lines to add a SpatVector to an existing map.

Usage

```
## S4 method for signature 'SpatRaster,numeric'
plot(x, y=1, col, type, mar=NULL, legend=TRUE, axes=TRUE, plg=list(),
    pax=list(), maxcell=500000, smooth=FALSE, range=NULL, levels=NULL,
  fun=NULL, colNA=NULL, alpha=NULL, sort=FALSE, grid=FALSE, ext=NULL, reset=FALSE, ...)
## S4 method for signature 'SpatRaster, missing'
plot(x, y, maxcell=500000, main, mar=NULL, nc, nr, maxnl=16, ...)
## S4 method for signature 'SpatRaster, character'
plot(x, y, ...)
## S4 method for signature 'SpatVector, character'
plot(x, y, col, type, mar=NULL, legend=TRUE, add=FALSE, axes=!add,
    main=y, buffer=TRUE, background=NULL, grid=FALSE, ext=NULL,
    plg=list(), pax=list(), nr, nc, ...)
## S4 method for signature 'SpatVector, numeric'
plot(x, y, ...)
## S4 method for signature 'SpatVector, missing'
plot(x, y, ...)
## S4 method for signature 'SpatExtent, missing'
plot(x, y, ...)
```

x	SpatRaster or SpatVector
у	missing or positive integer or name indicating the layer(s) to be plotted
col	character. Colors. The default is rev(grDevices::terrain.colors(50))
type	character. Type of map/legend. One of "continuous", "classes", or "interval"
mar	numeric vector of length 4 to set the margins of the plot (to make space for the legend). The default is (3.1, 3.1, 2.1, 7.1) for a single plot with a legend and (3.1, 3.1, 2.1, 2.1) otherwise. Use mar=NA to not set the margins

plot 147

legend logical or character. If not FALSE a legend is drawn. The character value can be used to indicate where the legend is to be draw. For example "topright" or

"bottomleft". Use plg for more refined placement (SpatVector data only)

axes logical. Draw axes?

buffer logical. If TRUE the plotting area is slightly larger than the extent of x

background color. Default is no color (white)

plg list with parameters for drawing the legend. See the arguments for legend

pax list with parameters for drawing axes. See the arguments for axis maxcell positive integer. Maximum number of cells to use for the plot

smooth logical. If TRUE the cell values are smoothed (for continuous legend)

range numeric. minimum and maximum values to be used for the continuous legend

levels character. labels to be used for the classes legend

fun function to be called after plotting each SpatRaster layer to add something to

each map (such as text, legend, lines). For example, with SpatVector v, you could do fun=function() lines(v). The function may have one argument,

representing the the layer that is plotted (1 to the number of layers)

colNA character. color for the NA values

alpha Either a single numeric between 0 and 1 to set the transparency for all colors (0

is transparent, 1 is opaque) or a SpatRaster with values between 0 and 1 to set the transparency by cell. To set the transparency for a given color, set it to the

colors directly

sort logical. If TRUE legends with categorical values are sorted

grid logical. If TRUE grid lines are drawn. Their properties such as type and color can

be set with the pax argument

nc positive integer. Optional. The number of columns to divide the plotting device

in (when plotting multiple layers)

nr positive integer. Optional. The number of rows to divide the plotting device in

(when plotting multiple layers)

main character. Main plot titles (one for each layer to be plotted)

maxnl positive integer. Maximum number of layers to plot (for a multi-layer object)

add logical. If TRUE add the object to the current plot

ext SpatExtent. Can be use instead of xlim and ylim to set the extent of the plot

reset logical. If TRUE add the margins (see argument mar) are reset to what they were

before calling plot; doing so may affect the display of additional objects that are

added to the map (e.g. with lines

... arguments passed to plot("SpatRaster", "numeric") and additional graphi-

cal arguments

See Also

148 plot

```
## raster
f <- system.file("ex/elev.tif", package="terra")</pre>
r \leftarrow rast(f)
plot(r)
plot(r, type="interval")
e <- c(6.3, 6.35, 49.9, 50.1)
plot(r, plg=list(ext=e, title="Title\n", title.cex=1.25), pax=list(sides=1:2))
d <- classify(r, c(100,200,300,400,500,600))</pre>
plot(d, type="classes")
plot(d, type="interval", breaks=1:5)
plot(d, type="interval", breaks=c(1,4,5), plg=list(legend=c("1-4", "4-5")))
plot(d, type="classes", plg=list(legend=c("Mr", "Xx", "As", "Zx", "Bb"), x="bottomright"))
x \leftarrow trunc(r/200)
levels(x) <- c("earth", "wind", "fire")</pre>
plot(x, plg=list(x="topright"),mar=c(2,2,2,2))
# two plots with the same legend
dev.new(width=6, height=4, noRStudioGD = TRUE)
par(mfrow=c(1,2))
plot(r, range=c(50,600))
plot(r/2, range=c(50,600))
# as you only need one legend:
par(mfrow=c(1,2))
plot(r, range=c(50,600), mar=c(4, 3, 4, 3), plg=list(shrink=0.9, cex=.8),
pax=list(sides=1:2, cex.axis=.6))
#text(182500, 335000, "Two maps, one plot", xpd=NA)
plot(r/2, range=c(50,600), mar=c(4, 2, 4, 4), legend=FALSE,
pax=list(sides=c(1,4), cex.axis=.6))
## multi-layer with RGB
s <- rast(system.file("ex/logo.tif", package="terra"))</pre>
plot(s)
# remove RGB
plot(s*1)
# or use layers
plot(s, 1)
plot(s, 1:3)
## vector
f <- system.file("ex/lux.shp", package="terra")</pre>
```

plotRGB 149

plotRGB

Red-Green-Blue plot of a multi-layered SpatRaster

Description

Make a Red-Green-Blue plot based on three layers in a SpatRaster. The layers (sometimes referred to as "bands" because they may represent different bandwidths in the electromagnetic spectrum) are combined such that they represent the red, green and blue channel. This function can be used to make "true" (or "false") color images from Landsat and other multi-spectral satellite images.

Note that the margins of the plot are set to zero (no axes or titles are visible) but can be set with the mar argument.

An alternative way to plot RGB images is to first use colorize to create a single layer SpatRaster with a color-table and then use plot.

Usage

```
## S4 method for signature 'SpatRaster'
plotRGB(x, r=1, g=2, b=3, a=NULL, scale, maxcell=500000, mar=0,
stretch=NULL, ext=NULL, smooth=FALSE, colNA="white", alpha, bgalpha,
addfun=NULL, zlim=NULL, zlimcol=NULL, axes=FALSE, xlab="", ylab="",
asp=NULL, add=FALSE, interpolate, ...)
```

- x SpatRaster
- r integer. Index of the Red channel, between 1 and nlyr(x)
- g integer. Index of the Green channel, between 1 and nlyr(x)

plotRGB

b	integer. Index of the Blue channel, between 1 and nlyr(x)
a	integer. Index of the alpha (transparancy) channel, between 1 and $nlyr(x)$. If not NULL, argument alpha is ignored
scale	integer. Maximum (possible) value in the three channels. Defaults to 255 or to the maximum value of x if that is known and larger than 255
maxcell	integer > 0. Maximum number of pixels to use
mar	numeric vector recycled to length 4 to set the margins of the plot. Use mar=NULL or mar=NA to not set the margins
stretch	character. Option to stretch the values to increase contrast: "lin" (linear) or "hist" (histogram)
ext	An SpatExtent object to zoom in to a region of interest (see draw)
smooth	logical. If TRUE, smooth the image when drawing to get the appearance of a higher spatial resolution
colNA	color for the background (NA values)
alpha	transparency. Integer between 0 (transparent) and 255 (opaque)
bgalpha	Background transparency. Integer between 0 (transparent) and 255 (opaque)
addfun	Function to add additional items such as points or polygons to the plot (map). See plot
zlim	numeric vector of length 2. Range of values to plot (optional)
zlimcol	If NULL the values outside the range of zlim get the color of the extremes of the range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA)
axes	logical. If TRUE axes are drawn (and arguments such as main="title" will be honored)
xlab	character. Label of x-axis
ylab	character. Label of y-axis
asp	numeric. Aspect (ratio of x and y. If NULL, and appropriate value is computed to match data for the longitude/latitude coordinate reference system, and 1 for planar coordinate reference systems
add	logical. If TRUE add values to current plot
interpolate	logical. Do not use, to be removed
	graphical parameters as in plot or rasterImage

See Also

```
plot, colorize, RGB
```

```
b <- rast(system.file("ex/logo.tif", package="terra"))
plotRGB(b)
plotRGB(b, mar=c(2,2,2,2))
plotRGB(b, 3, 2, 1)

b[1000:2000] <- NA
plotRGB(b, 3, 2, 1, stretch='hist')</pre>
```

predict 151

predict	Spatial model predictions	

Description

Make a SpatRaster object with predictions from a fitted model object (for example, obtained with glm or randomForest). The first argument is a SpatRaster object with the predictor variables. The names in the Raster object should exactly match those expected by the model. Any regression like model for which a predict method has been implemented (or can be implemented) can be used.

This approach of using model predictions is commonly used in remote sensing (for the classification of satellite images) and in ecology, for species distribution modeling.

Usage

object	SpatRaster
mode1	fitted model of any class that has a "predict" method (or for which you can supply a similar method as fun argument. E.g. glm, gam, or randomForest
fun	function. The predict function that takes model as first argument. The default value is predict, but can be replaced with e.g. predict.se (depending on the type of model), or your own custom function
	additional arguments for fun
const	data.frame. Can be used to add a constant value as a predictor variable so that you do not need to make a SpatRaster layer for it
factors	list with levels for factor variables. The list elements should be named with names that correspond to names in object such that they can be matched. This argument may be omitted for standard models such as "glm" as the predict function will extract the levels from the model object, but it is necessary in some other cases (e.g. cforest models from the party package)
na.rm	logical. If TRUE, cells with NA values in the predictors are removed from the computation. This option prevents errors with models that cannot handle NA values. In most other cases this will not affect the output. An exception is when predicting with a model that returns predicted values even if some (or all!) variables are NA
index	integer. To select subset of output variables
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used
cpkgs	character. The package(s) that need to be loaded on the nodes to be able to run the model.predict function (see examples)

152 predict

```
filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster
```

Value

SpatRaster

```
logo <- rast(system.file("ex/logo.tif", package="terra"))</pre>
names(logo) <- c("red", "green", "blue")</pre>
p <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85,
   66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31,
   22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)
a <- matrix(c(22, 33, 64, 85, 92, 94, 59, 27, 30, 64, 60, 33, 31, 9,
   99, 67, 15, 5, 4, 30, 8, 37, 42, 27, 19, 69, 60, 73, 3, 5, 21,
   37, 52, 70, 74, 9, 13, 4, 17, 47), ncol=2)
xy <- rbind(cbind(1, p), cbind(0, a))
# extract predictor values for points
e <- extract(logo, xy[,2:3])</pre>
# combine with response (excluding the ID column)
v <- data.frame(cbind(pa=xy[,1], e))</pre>
#build a model, here with glm
model <- glm(formula=pa~., data=v)</pre>
#predict to a raster
r1 <- predict(logo, model)</pre>
plot(r1)
points(p, bg='blue', pch=21)
points(a, bg='red', pch=21)
# logistic regression
model <- glm(formula=pa~., data=v, family="binomial")</pre>
r1log <- predict(logo, model, type="response")</pre>
# use a modified function to get the probability and standard error
# from the glm model. The values returned by "predict" are in a list,
# and this list needs to be transformed to a matrix
predfun <- function(model, data) {</pre>
  v <- predict(model, data, se.fit=TRUE)</pre>
  cbind(p=as.vector(v$fit), se=as.vector(v$se.fit))
}
r2 <- predict(logo, model, fun=predfun)</pre>
```

predict 153

```
# principal components of a SpatRaster
# here using sampling to simulate an object too large
# to feed all its values to prcomp
sr <- values(spatSample(logo, 100, as.raster=TRUE))</pre>
pca <- prcomp(sr)</pre>
x <- predict(logo, pca)
plot(x)
## parallelization
## Not run:
## simple case with GLM
model <- glm(formula=pa~., data=v)</pre>
p <- predict(logo, model, cores=2)</pre>
## The above does not work with a model from a contributed
## package, as the package needs to be loaded in each core.
## Below are three approaches to deal with that
library(randomForest)
rfm <- randomForest(formula=pa~., data=v)</pre>
## approach 0 (not parallel)
rp0 <- predict(logo, rfm)</pre>
## approach 1, use the "cpkgs" argument
rp1 <- predict(logo, rfm, cores=2, cpkgs="randomForest")</pre>
## approach 2, write a custom predict function that loads the package
rfun <- function(mod, dat, ...) {</pre>
library(randomForest)
predict(mod, dat, ...)
rp2 <- predict(logo, rfm, fun=rfun, cores=2)</pre>
## approach 3, write a parallelized custom predict function
rfun <- function(mod, dat, ...) {</pre>
ncls <- length(cls)</pre>
nr <- nrow(dat)</pre>
s <- split(dat, rep(1:ncls, each=ceiling(nr/ncls), length.out=nr))</pre>
unlist( parallel::clusterApply(cls, s, function(x, ...) predict(mod, x, ...)) )
}
library(parallel)
cls <- parallel::makeCluster(2)</pre>
parallel::clusterExport(cls, c("rfm", "rfun", "randomForest"))
rp3 <- predict(logo, rfm, fun=rfun)</pre>
parallel::stopCluster(cls)
plot(c(rp0, rp1, rp2, rp3))
```

154 project

```
### with two output variables (probabilities for each class)
v$pa <- as.factor(v$pa)
rfm2 <- randomForest(formula=pa~., data=v)
rfp <- predict(logo, rfm2, cores=2, type="prob", cpkgs="randomForest")
## End(Not run)</pre>
```

project

Change the coordinate reference system

Description

Change the coordinate reference system ("project") of a SpatVector or SpatRaster.

Usage

```
## S4 method for signature 'SpatVector'
project(x, y)

## S4 method for signature 'SpatRaster'
project(x, y, method, mask=FALSE, align=FALSE, gdal=TRUE, filename="", ...)
```

Arguments

x SpatRaster or SpatVector

У

if (x is a SpatRaster, the prefered approach is for y to be a SpatRaster as well, serving as a template for the geometry (extent and resolution) of the output SpatRaster. Alternatively, you can provide a coordinate reference system (crs) description.

You can use the following formats to define coordinate reference systems: WKT, PROJ.4 (e.g., +proj=longlat +datum=WGS84), or an EPSG code (e.g., "epsg: 4326"). But note that the PROJ.4 notation has been deprecated, and you can only use if with the WGS84/NAD83 and NAD27 datums. Other datums are silently ignored.

If x is a SpatVector, you can provide a crs definition as discussed above, or any other object from which such a crs can be extracted with crs

method

character. Method used for estimating the new cell values of a SpatRaster. One of:

near: nearest neighbor. This method is fast, and it can be the preferred method if the cell values represent classes. It is not a good choice for continuous values. This is used by default if the first layer of x is categorical.

bilinear: bilinear interpolation. This is the default if the first layer of x is numeric (not categorical).

cubic: cubic interpolation.

cubicspline: cubic spline interpolation.

project 155

mask	logical. If TRUE, mask out areas outside the input extent (see example with Robinson projection)
align	logical. If TRUE, and y is a SpatRaster, the template is used for the spatial resolution and origin, but the extent is set such that all of the extent of x is included
gdal	logical. If TRUE the GDAL-warp algorithm is used. Otherwise a slower internal algorithm is used that may be more accurate if there is much variation in the cell sizes of the output raster. Only the near and bilinear algorithms are available for the internal algorithm
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatVector or SpatRaster

Note

User beware. Sadly, the PROJ.4 notation has been partly deprecated in the GDAL/PROJ library that is used by this function. You can still use this notation, but *only* with the the WGS84 datum. Other datums are silently ignored.

When printing a Spat* object the PROJ.4 notation is shown because it is the most concise and clear format available. However, internally a WKT representation is used (see crs).

Transforming (projecting) raster data is fundamentally different from transforming vector data. Vector data can be transformed and back-transformed without loss in precision and without changes in the values. This is not the case with raster data. In each transformation the values for the new cells are estimated in some fashion. Therefore, if you need to match raster and vector data for analysis, you should generally transform the vector data.

When using this method with a SpatRaster, the preferable approach is to provide a template SpatRaster as argument y. The template is then another raster dataset that you want your data to align with. If you do not have a template to begin with, you can do project(x,crs) and then manipulate the output to get the template you want. For example, where possible use whole numbers for the extent and resolution so that you do not have to worry about small differences in the future. You can use commands like dim(z) = c(180,360) or res(z) < 100000.

The output resolution should be similar to the input resolution, but there is not "correct" resolution in raster transformation; but it is not obvious what this resolution is if you are using lon/lat data that spans a large North-South extent.

See Also

```
crs, resample
```

156 quantile

```
newcrs="+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +datum=WGS84"
b <- rast(ncols=94, nrows=124, xmin=-944881, xmax=935118, ymin=4664377, ymax=7144377, crs=newcrs)
w <- project(a, b)

## SpatVector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
crs <- "+proj=moll +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84"
p <- project(v, crs)
p</pre>
```

quantile

Quantiles of spatial data

Description

Compute quantiles for each cell across the layers of a SpatRaster.

You can use use global(x, fun=quantile) to instead compute quantiles across cells for each layer.

You can also use this method to compute quantiles of the numeric variables of a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
quantile(x, probs=seq(0, 1, 0.25), na.rm=FALSE, filename="", ...)
## S4 method for signature 'SpatVector'
quantile(x, probs=seq(0, 1, 0.25), ...)
```

Arguments

X	SpatRaster or SpatVector
probs	numeric vector of probabilities with values in [0,1]
na.rm	logical. If TRUE, NA's are removed from x before the quantiles are computed
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster with layers representing quantiles

See Also

app

query 157

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
rr <- c(r/2, r, r*2)
qr <- quantile(rr)
qr

## Not run:
# same but slower
qa <- app(rr, quantile)

## End(Not run)

#quantile by layer instead of by cell
qg <- global(r, quantile)</pre>
```

query

Query a SpatVectorProxy object

Description

Query a SpatVectorProxy to extract a subset

Usage

Arguments

X	SpatVectorProxy
start	positive integer. The record to start reading at
n	positive integer. The number of records requested
vars	character. Variable names. Must be a subset of names(x)
where	character. expression like "NAME_1='California' AND ID > 3 ", to subset records. Note that start and n are applied after executing the where statement
extent	Spat* object. The extent of the object is used as a spatial filter to select the geometries to read. Ignored if filter is not NULL
filter	SpatVector. Used as a spatial filter to select geometries to read (the convex hull is used for lines or points)

Value

SpatVector

158 rapp

See Also

vect

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f, proxy=TRUE)
v

x <- query(v, vars=c("ID_2", "NAME_2"), start=5, n=2)
x

query(v, vars=c("ID_2", "NAME_1", "NAME_2"), where="NAME_1='Grevenmacher' AND ID_2 > 6")
## with an extent
e <- ext(5.9, 6.3, 49.9, 50)
x <- query(v, extent=e)

## with polygons
p <- as.polygons(e)
x <- query(v, filter=p)
x</pre>
```

rapp

Range-Apply

Description

Apply a function to a range of the layers of a SpatRaster that varies by cell. The range is specified for each cell one or two SpatRasters (arguments first and last). For either first or last you can use a numeric constant instead.

See selectRange to create a new SpatRaster by extracting one or more values starting at a cell-varying layer.

See app or Summary-methods if you want to apply a function to all cells (not a range), perhaps after making a subset of a SpatRaster.

Usage

Arguments

x SpatRaster

first SpatRaster or positive integer between 1 and nlyr(x), indicating the first layer in the range of layers to be considered

rast 159

last	SpatRaster or positive integer between 1 and nlyr(x), indicating the last layer in the range to be considered
fun	function to be applied
	additional arguments passed to fun
allyrs	logical. Should the values of all layers be passed to fun. The values outside of the range are set to fill
fill	$numeric. \ The fill \ value \ for \ the \ the \ values \ outside \ of \ the \ range, for \ when \ {\tt allyrs=TRUE}$
clamp	logical. If FALSE and the specified range is outside 1:nlyr(x) all cells are considered NA. Otherwise, the invalid part of the range is ignored
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

```
selectRange, app, Summary-methods, lapp, tapp
```

```
r <- rast(ncols=9, nrows=9)
values(r) <- 1:ncell(r)
s <- c(r, r, r, r, r, r)
s <- s * 1:6
s[1:2] <- NA
start <- end <- rast(r)
start[] <- 1:3
end[] <- 4:6
a <- rapp(s, start, end, fun="mean")
b <- rapp(s, start, 2, fun="mean")

# cumsum from start to nlyr(x). return all layers
r <- rapp(s, start, nlyr(s), cumsum, allyrs=TRUE, fill=0)
# return only the final value
rr <- rapp(s, start, nlyr(s), function(i) max(cumsum(i)))</pre>
```

160 rast

Description

Methods to create a SpatRaster. These objects can be created from scratch, from a filename, or from another object.

A SpatRaster represents a spatially referenced surface divided into three dimensional cells (rows, columns, and layers).

When a SpatRaster is created from a file, it does not load the cell (pixel) values into memory (RAM). It only reads the parameters that describe the geometry of the SpatRaster, such as the number of rows and columns and the coordinate reference system. The actual values will be read when needed.

Usage

```
## S4 method for signature 'character'
rast(x, subds=0, lyrs=NULL, opts=NULL)
## S4 method for signature 'missing'
rast(x, nrows=180, ncols=360, nlyrs=1, xmin=-180, xmax=180,
          ymin=-90, ymax=90, crs, extent, resolution, vals, names, time, units)
## S4 method for signature 'SpatRaster'
rast(x, nlyrs=nlyr(x), names, vals, keeptime=TRUE, keepunits=FALSE, props=FALSE)
## S4 method for signature 'matrix'
rast(x, type="", crs="", digits=6, extent=NULL)
## S4 method for signature 'data.frame'
rast(x, type="xyz", crs="", digits=6, extent=NULL)
## S4 method for signature 'array'
rast(x, crs="", extent=NULL)
## S4 method for signature 'list'
rast(x)
## S4 method for signature 'SpatRasterDataset'
rast(x)
## S4 method for signature 'SpatVector'
rast(x, ...)
## S4 method for signature 'SpatExtent'
rast(x, ...)
```

Arguments

x filename (character), missing, SpatRaster, SpatRasterDataset, SpatExtent, SpatVector, matrix, array, list of SpatRaster objects. For other types it will be attempted to create a SpatRaster via ('as(x, "SpatRaster")'

rast 161

subds	positive integer or character to select a sub-dataset. If zero or "", all sub-datasets are returned (if possible)
lyrs	positive integer or character to select a subset of layers (a.k.a. "bands")
opts	character. GDAL dataset open options
nrows	positive integer. Number of rows
ncols	positive integer. Number of columns
nlyrs	positive integer. Number of layers
xmin	minimum x coordinate (left border)
xmax	maximum x coordinate (right border)
ymin	minimum y coordinate (bottom border)
ymax	maximum y coordinate (top border)
crs	character. Description of the Coordinate Reference System (map projection) in PROJ.4, WKT or authority: code notation. If this argument is missing, and the x coordinates are within -360 360 and the y coordinates are within -90 90, longitude/latitude is assigned
keeptime	logical. If FALSE the time stamps are discarded
keepunits	logical. If FALSE the layer units are discarded
props	logical. If TRUE the properties (categories and color-table) are kept
extent	object of class SpatExtent. If present, the arguments xmin, xmax, ymin and ymax are ignored
resolution	numeric vector of length 1 or 2 to set the resolution (see res). If this argument is used, arguments nco1 and nrow are ignored
vals	numeric. An optional vector with cell values (if fewer values are provided, these are recycled to reach the number of cells)
names	character. An optional vector with layer names (must match the number of layers)
time	time or date stamps for each layer
units	character. units for each layer
type	character. If the value is not "xyz", the raster has the same number of rows and colums as the matrix. If the value is "xyz", the matrix must have at least two columns, the first with x (or longitude) and the second with y (or latitude) coordinates that represent the centers of raster cells. The additional columns are the values associated with the raster cells.
digits	integer to set the precision for detecting whether points are on a regular grid (a low number of digits is a low precision). Only used when type="xyz"
	additional arguments passed on to the rast, missing-method

Details

Files are read with the GDAL library. GDAL guesses the file format from the name, and/or tries reading it with different "drivers" (see gdal) until it succeeds. In very few cases this may cause a file to be opened with the wrong driver, and some information may be lost. For example, when a netCDF file is opened with the HDF5 driver. You can avoid that by prepending the driver name to the filename like this: rast('NETCDF:"filename.ncdf"')

162 rasterize

Value

SpatRaster

See Also

sds to create a SpatRasterDataset (4 dimensions) and vect for vector (points, lines, polygons) data

Examples

```
# Create a SpatRaster from scratch
x <- rast(nrows=108, ncols=21, xmin=0, xmax=10)

# Create a SpatRaster from a file
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

s <- rast(system.file("ex/logo.tif", package="terra"))

# Create a skeleton with no associated cell values
rast(s)

# from a matrix
m <- matrix(1:25, nrow=5, ncol=5)
rm <- rast(m)

# from a "xyz" data.frame
d <- as.data.frame(rm, xy=TRUE)
head(d)
rast(d, type="xyz")</pre>
```

rasterize

Rasterize vector data

Description

Transfer vector data to a raster

Usage

```
## S4 method for signature 'SpatVector,SpatRaster'
rasterize(x, y, field="", fun, ..., background=NA, touches=FALSE,
update=FALSE, sum=FALSE, cover=FALSE, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'matrix,SpatRaster'
rasterize(x, y, values=1, fun, ..., background=NA,
update=FALSE, filename="", overwrite=FALSE, wopt=list())
```

rasterize 163

Arguments

x	SpatVector or a two-column matrix (point coordinates)
у	SpatRaster
field	character or numeric. If field is a character, it should a variable name in x . If field is numeric it typically is a single number or a vector of length $nrow(x)$. The values are recycled to $nrow(x)$
values	numeric. For when x is a matrix. Normally of length 1 or $\text{nrow}(x)$. The values will be recycled to $\text{nrow}(x)$
fun	function, summarizing function that returns a single number; for when there are multiple points in one cell. For example mean, length (to get a count), min or max. Only used if x consists of points
	additional arguments passed to fun if x has point geometries
background	numeric. Value to put in the cells that are not covered by any of the features of \boldsymbol{x} . Default is NA
touches	logical. If TRUE, all cells touched by lines or polygons are affected, not just those on the line render path, or whose center point is within the polygon. If touches=TRUE, add cannot be TRUE
update	logical. If TRUE, the values of the input SpatRaster are updated
sum	logical. If TRUE, the values of overlapping geometries are summed instead of replaced; and background is set to zero. Only used if x does not consists of points
cover	logical. If TRUE and the geometry of x is polygons, the fraction of a cell that is covered by the polygons is returned. This is estimated by determining presence/absence of the polygon in at least 100 sub-cells (more of there are very few cells)

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with additional arguments for writing files as in writeRaster

Value

SpatRaster

Note

To update existing raster data use the output of rasterize as second argument in cover

See Also

mask

164 read and write

Examples

```
r <- rast(xmin=0, ncols=18, nrows=18)</pre>
# generate points
set.seed(1)
p <- spatSample(r, 1000, xy=TRUE, replace=TRUE)</pre>
# rasterize points as a matrix
x <- rasterize(p, r, fun=sum)</pre>
y <- rasterize(p, r, value=1:nrow(p), fun=max)</pre>
# rasterize points as a SpatVector
pv <- vect(p)</pre>
xv <- rasterize(pv, r, fun=sum)</pre>
# Polygons
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)</pre>
r <- rast(v, ncols=75, nrows=100)
z <- rasterize(v, r, "NAME_2")</pre>
plot(z)
lines(v)
```

read and write

Read from, or write to, file

Description

Methods to read from or write chunks of values to or from a file. These are low level methods for programmers. Use writeRaster if you want to save an entire SpatRaster to file in one step. It is much easier to use.

To write chunks, begin by opening a file with writeStart, then write values to it in chunks. When writing is done close the file with writeStop.

Usage

```
## S4 method for signature 'SpatRaster'
readStart(x)

## S4 method for signature 'SpatRaster'
readStop(x)

## S4 method for signature 'SpatRaster'
readValues(x, row=1, nrows=nrow(x), col=1, ncols=ncol(x), mat=FALSE, dataframe=FALSE, ...)

## S4 method for signature 'SpatRaster, character'
writeStart(x, filename="", overwrite=FALSE, n=4, ...)
```

read and write 165

```
## S4 method for signature 'SpatRaster'
writeStop(x)

## S4 method for signature 'SpatRaster, vector'
writeValues(x, v, start, nrows)

fileBlocksize(x)
```

Arguments

x	SpatRaster
filename	character. Output filename
v	vector with cell values to be written
start	integer. Row number (counting starts at 1) from where to start writing v
row	positive integer. Row number to start from, should be between 1 and $nrow(x)$
nrows	positive integer. How many rows?
col	positive integer. Column number to start from, should be between 1 and $ncol(x)$
ncols	positive integer. How many columns? Default is the number of columns left after the start column
mat	logical. If TRUE, values are returned as a numeric matrix instead of as a vector, except when dataframe is TRUE. If any of the layers of x is a factor, the level index is returned, not the label. Use dataframe=TRUE to get the labels
dataframe	logical. If TRUE, values are returned as a data. frame instead of as a vector (also if matrix is $TRUE$)
overwrite	logical. If TRUE, filename is overwritten
n	poistive integer indicating how many copies the data may be in memory at any point in time. This is used to determine how many blocks (large) datasets need to be read
	For writeStart: additional arguments for writing files as in writeRaster
	For readValues: additional arguments for $\mbox{\tt data.frame}$ (and thus only relevant when $\mbox{\tt dataframe=TRUE})$

Value

readValues returns a vector, matrix, or data.frame

writeStart returns a list that can be used for processing the file in chunks.

The other methods invisibly return a logical value indicating whether they were successful or not. Their purpose is the side-effect of opening or closing files.

166 relate

rectify	rectify a SpatRaster	

Description

Rectify a rotated SpatRaster into a non-rotated object

Usage

Arguments

Spa-
vould

Value

SpatRaster

relate relate

Description

Get a matrix indicating the presence or absence of spatial relationships between geometries.

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
relate(x, y, relation)

## S4 method for signature 'SpatVector, SpatVector'
is.related(x, y, relation)

## S4 method for signature 'SpatVector, missing'
relate(x, y, relation, pairs=FALSE, symmetrical=FALSE)
```

relate 167

Arguments

x SpatVector or SpatExtent
y missing or as for x
relation character. One of "intersects", "touches", "crosses", "overlaps", "within", "contains", "covers", "coveredby", "disjoint". Or a "DE-9IM" string such as "FF*FF****".

See wikipedia or geotools doc
pairs logical. If TRUE a "from", "to" matrix is returned for the cases where the requested relation is TRUE
symmetrical logical. If TRUE and pairs=TRUE, the relation between a pair is only included once. For example, the relation between geometry 1 and 3 is included, but the relation between 3 and 1 is not. Note that whole some relationships are

symmetrical (e.g. "touches"), but that others are not (e.g. "within")

Value

```
matrix (relate) or vector (is.related)
```

See Also

```
adjacent, nearby, intersect, crop
```

```
p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))")
p2 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))")
p3 <- vect("POLYGON ((8 2, 9 2, 9 3, 8 3, 8 2))")
p4 <- vect("POLYGON ((2 6, 3 6, 3 8, 2 8, 2 6))")
p5 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))")
p6 <- vect("POLYGON ((10 4, 12 4, 12 7, 11 7, 11 6, 10 6, 10 4))")
p <- rbind(p1, p2, p3, p4, p5, p6)
plot(p, col=rainbow(6, alpha=.5))
lines(p, lwd=2)
text(p)
## relate SpatVectors
relate(p1, p2, "intersects")
relate(p1, p3, "touches")
relate(p1, p5, "disjoint")
relate(rbind(p1, p2), p4, "disjoint")
## relate geometries within SpatVectors
# which are completely separated?
relate(p, relation="disjoint")
# which touch (not overlap or within)?
relate(p, relation="touches")
# which overlap (not merely touch, and not within)?
```

168 rep

```
relate(p, relation="overlaps")
# which are within (not merely overlap)?
relate(p, relation="within")
# do they touch or overlap or are within?
relate(p, relation="intersects")
all(relate(p, relation="intersects") ==
  (relate(p, relation="overlaps") |
   relate(p, relation="touches") |
   relate(p, relation="within")))
#for polygons, "coveredby" is "within"
relate(p, relation="coveredby")
# polygons, lines, and points
pp <- rbind(p1, p2)</pre>
L1 <- vect("LINESTRING(1 11, 4 6, 10 6)")
L2 <- vect("LINESTRING(8 14, 12 10)")
L3 <- vect("LINESTRING(1 8, 12 14)")
lns <- rbind(L1, L2, L3)</pre>
pts <- vect(cbind(c(7,10,10), c(3,5,6)))
plot(pp, col=rainbow(2, alpha=.5))
text(pp, paste0("POL", 1:2), halo=TRUE)
lines(pp, lwd=2)
lines(lns, col=rainbow(3), lwd=4)
text(lns, paste0("L", 1:3), halo=TRUE)
points(pts, cex=1.5)
text(pts, paste0("PT", 1:3), halo=TRUE, pos=4)
relate(lns, relation="crosses")
relate(lns, pp, relation="crosses")
relate(lns, pp, relation="touches")
relate(lns, pp, relation="intersects")
relate(lns, pp, relation="within")
# polygons can contain lines or points, not the other way around
relate(lns, pp, relation="contains")
relate(pp, lns, relation="contains")
# points and lines can be covered by polygons
relate(lns, pp, relation="coveredby")
relate(pts, pp, "within")
relate(pts, pp, "touches")
relate(pts, lns, "touches")
```

replace 169

Description

Replicate layers in a SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
rep(x, ...)
```

Arguments

```
x SpatRaster
... arguments as in rep
```

Value

SpatRaster

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
x <- rep(s, 2)
nlyr(x)
names(x)
x</pre>
```

replace

Replace values of a SpatRaster

Description

Replace values of a SpatRaster. These are convenience functions for smaller objects only. For larger rasters see link{classify}

Value

SpatRaster

See Also

```
link{classify}, values, replace
```

```
r <- rast(ncols=5, nrows=5, xmin=0, xmax=5, ymin=0, ymax=5)
r[] <- 1:25
r[1,] <- 5
r[,2] <- 10
r[r>10] <- NA</pre>
```

170 resample

resample	Transfer values of a SpatRaster to another one with a different geometry

Description

resample transfers values between SpatRaster objects that do not align (have a different origin and/or resolution). See project to change the coordinate reference system (crs).

If the origin and crs are the same, you should consider using these other functions instead: aggregate, disagg, extend or crop.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
resample(x, y, method, filename="", ...)
```

Arguments

x SpatRaster to be resampled

y SpatRaster with the geometry that x should be resampled to

method character. Method used for estimating the new cell values. One of:

near: nearest neighbor. This method is fast, and it can be the preferred method if the cell values represent classes. It is not a good choice for continuous values.

This is used by default if the first layer of x is categorical.

bilinear: bilinear interpolation. This is the default if the first layer of x is

numeric (not categorical). cubic: cubic interpolation.

cubicspline: cubic spline interpolation.

lanczos: Lanczos windowed sinc resampling.

sum: the weighted sum of all non-NA contributing grid cells.

min, q1, med, q3, max, average, mode, rms: the minimum, first quartile, median, third quartile, maximum, mean, mode, or root-mean-square value of all non-NA

contributing grid cells.

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
aggregate, disagg, crop, project,
```

rescale 171

Examples

```
r <- rast(nrows=3, ncols=3, xmin=0, xmax=10, ymin=0, ymax=10)
values(r) <- 1:ncell(r)
s <- rast(nrows=25, ncols=30, xmin=1, xmax=11, ymin=-1, ymax=11)
x <- resample(r, s, method="bilinear")

opar <- par(no.readonly =TRUE)
par(mfrow=c(1,2))
plot(r)
plot(x)
par(opar)</pre>
```

rescale

rescale

Description

Rescale a SpatVector or SpatRaster. This may be useful to make small inset maps or for georeferencing.

Usage

```
## $4 method for signature 'SpatRaster'
rescale(x, fx=0.5, fy=fx, x0, y0)
## $4 method for signature 'SpatVector'
rescale(x, fx=0.5, fy=fx, x0, y0)
```

Arguments

X	SpatVector or SpatRaster
fx	numeric > 0. The horizontal scaling factor
fy	numeric > 0 . The vertical scaling factor
x0	numeric. x-coordinate of the center of rescaling. If missing, the center of the extent of x is used
y0	numeric. y-coordinate of the center of rescaling. If missing, the center of the extent of x is used

Value

Same as x

See Also

```
t, shift, flip, rotate, inset
```

172 *RGB*

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- rescale(v, 0.2)
plot(v)
lines(w, col="red")</pre>
```

RGB

Layers representing colors

Description

With RGB you can get or set the layers to be used as Red, Green and Blue when plotting a SpatRaster. Currently, a benefit of this is that plot will send the object to plotRGB

With colorize you can convert a three-layer RGB SpatRaster into other color spaces. You can also convert it into a single-layer SpatRaster with a color-table.

Usage

```
## S4 method for signature 'SpatRaster'
RGB(x)

## S4 replacement method for signature 'SpatRaster'
RGB(x)<-value

## S4 method for signature 'SpatRaster'
colorize(x, to="hsv", alpha=FALSE, stretch=NULL,
grays=FALSE, NAzero=FALSE, filename="", overwrite=FALSE, ...)</pre>
```

X	SpatRaster
value	vector of three (or four) positive integers indicating the layers that are red, green and blue (and optionally a fourth transparancy layer). Or NULL to remove the RGB settings
to	character. The color space to transform the values to. If x has RGB set, you can transform these to "hsv", "hsi" and "hsl", or use "col" to create a single layer with a color table. You can also use "rgb" to backtransform to RGB
alpha	logical. Should an alpha (transparancy) channel be included? Only used if x has a color-table and to="rgb" $$
stretch	character. Option to stretch the values to increase contrast: "lin" (linear) or "hist" (histogram). Only used for transforming RGB to col
grays	logical. If TRUE, a gray-scale color-table is created. Only used for transforming RGB to col

rotate 173

NAzero logical. If TRUE, NAs are treated as zeros such that a color can be returned if at

least one of the three channels has a value. Only used for transforming RGB to

("col")

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
plot(r)
RGB(r) <- NULL
plot(r)
RGB(r) <- c(3,1,2)
plot(r)

RGB(r) <- 1:3
x <- colorize(r, "col")
y <- colorize(r, "hsv")
z <- colorize(y, "rgb")</pre>
```

rotate

Rotate a SpatRaster along longitude

Description

Rotate a SpatRaster that has longitude coordinates from 0 to 360, to standard coordinates between -180 and 180 degrees (or vice-versa). Longitude between 0 and 360 is frequently used in global climate models.

Usage

```
## S4 method for signature 'SpatRaster'
rotate(x, left=TRUE, filename="", ...)
```

Arguments

X	SpatRaster or SpatVector
left	logical. If TRUE, rotate to the left, else to the right
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

174 sapp

See Also

```
shift and spin
```

Examples

```
x \leftarrow rast(nrows=9, ncols=18, nl=3, xmin=0, xmax=360)
v \leftarrow rep(as.vector(t(matrix(1:ncell(x), nrow=9, ncol=18))), 3)
values(x) \leftarrow v
z \leftarrow rotate(x)
```

sapp

Apply a terra function that takes only a single layer and returns a SpatRaster to all layers of a SpatRaster

Description

Apply to all layers of a SpatRaster a function that only takes a single layer SpatRaster and returns a SpatRaster (these are rare).

In most cases you can also use lapply or sapply for this.

Usage

```
## S4 method for signature 'SpatRaster'
sapp(x, fun, ..., filename="", overwrite=FALSE, wopt=list())
```

Arguments

Х	SpatRaster
fun	a function that takes a SpatRaster argument and can be applied to each layer of
	X
	additional arguments to be passed to fun
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

```
lapp,app,tapp,lapply
```

```
s <- rast(system.file("ex/logo.tif", package="terra")) + 1
x <- sapp(s, terrain)</pre>
```

sbar 175

sbar scale bar

Description

Add a scale bar to a map

Usage

```
sbar(d, xy=NULL, type="line", divs=2, below="",
    lonlat=NULL, label, adj=c(0.5, -1), lwd=2, xpd=TRUE, ...)
```

Arguments

d	numeric. Distance covered by the scale bar. For the scale bar, it should be in the units of the coordinates of the plot (map), and in km for angular (longitude/latitude) data; see argument lonlat. It can also be missing
ху	numeric. x and y coordinate to place the scale bar. It can also be one of following character values: "bottomleft", "bottom", "bottomright", topleft", "top", "topright", "left", "right", or NULL
type	for sbar: "line" or "bar"
divs	number of divisions for a bar: 2 or 4
below	character. Text to go below the scale bar (e.g., "kilometers")
lonlat	logical or NULL. If logical, TRUE indicates if the plot is using longitude/latitude coordinates. If NULL this is guessed from the plot's coordinates
label	vector of three numbers to label the scale bar (beginning, midpoint, end)
adj	adjustment for text placement
lwd	line width for the "line" type of the scale bar
xpd	logical. If TRUE, the scale bar can be outside the plotting area
	graphical arguments to be passed to other methods

Value

none

See Also

```
north, plot, inset
```

176 scale

Examples

```
f <- system.file("ex/meuse.tif", package="terra")</pre>
r <- rast(f)
plot(r)
sbar()
sbar(1000, xy=c(178500, 333500), type="bar", divs=4, cex=.8)
sbar(1000, xy="bottomright", divs=4, cex=.8)
north(d=250, c(178550, 332500))
f <- system.file("ex/elev.tif", package="terra")</pre>
r <- rast(f)
plot(r, type="interval")
sbar(20, c(6.2, 50.1), type="bar", cex=.8, divs=4)
sbar(15, c(6.3, 50), type="bar", below="km", label=c(0,7.5,15), cex=.8)
sbar(15, c(6.65, 49.8), cex=.8, label=c(0, "km", 15))
north(type=2)
sbar(15, c(6.65, 49.7), cex=.8, label="15 kilometer", lwd=5)
sbar(15, c(6.65, 49.6), divs=4, cex=.8, below="km")
```

scale

Scale values

Description

Center and/or scale raster data. For details see scale

Usage

```
## S4 method for signature 'SpatRaster'
scale(x, center=TRUE, scale=TRUE)
```

Arguments

x SpatRaster

center logical or numeric. If TRUE, centering is done by subtracting the layer means

(omitting NAs), and if FALSE, no centering is done. If center is a numeric vector (recycled to nlyr(x)), then each layer of x has the corresponding value from

center subtracted from it.

scale logical or numeric. If TRUE, scaling is done by dividing the (centered) layers

of x by their standard deviations if center is TRUE, and the root mean square otherwise. If scale is FALSE, no scaling is done. If scale is a numeric vector (recycled to nlyr(x)), each layer of x is divided by the corresponding value.

Scaling is done after centering.

Value

SpatRaster

scatterplot 177

See Also

scale

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
s <- scale(r)

## the equivalent, computed in steps
m <- global(r, "mean")
rr <- r - m[,1]
rms <- global(rr, "rms")
ss <- rr / rms[,1]</pre>
```

scatterplot

Scatterplot of two SpatRaster layers

Description

Scatterplot of the values of two SpatRaster layers

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
plot(x, y, maxcell=100000, warn=TRUE, nc, nr,
    maxnl=16, gridded=FALSE, ncol=25, nrow=25, ...)
```

x	SpatRaster
у	SpatRaster
maxcell	positive integer. Maximum number of cells to use for the plot
nc	positive integer. Optional. The number of columns to divide the plotting device in (when plotting multiple layers)
nr	positive integer. Optional. The number of rows to divide the plotting device in (when plotting multiple layers)
maxnl	positive integer. Maximum number of layers to plot (for multi-layer objects)
gridded	logical. If TRUE the scatterplot is gridded (counts by cells)
warn	boolean. Show a warning if a sample of the pixels is used (for scatterplot only)
ncol	positive integer. Number of columns for gridding
nrow	positive integer. Number of rows for gridding
	additional graphical arguments

178 sds

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
plot(s[[1]], s[[2]])
plot(s, sqrt(s[[3:1]]))</pre>
```

sds

Create a SpatRasterDataset

Description

Methods to create a SpatRasterDataset. This is an object to hold "sub-datasets", each a SpatRaster that in most cases will have multiple layers.

See describe for getting information about the sub-datasets present in a file.

Usage

```
## $4 method for signature 'missing'
sds(x)

## $4 method for signature 'character'
sds(x, ids=0)

## $4 method for signature 'SpatRaster'
sds(x, ...)

## $4 method for signature 'list'
sds(x)

## $4 method for signature 'array'
sds(x, crs="", extent=NULL)
```

Х	character (filename), or SpatRaster, or list of SpatRaster objects, or missing. If multiple filenames are provided, it is attempted to make SpatRasters from these, and combine them into a SpatRasterDataset
ids	optional. vector of integer subdataset ids. Ignored if the first value is not a positive integer
crs	character. Description of the Coordinate Reference System (map projection) in PROJ.4, WKT or authority: code notation. If this argument is missing, and the x coordinates are within -360 360 and the y coordinates are within -90 90, longitude/latitude is assigned
extent	SpatExtent
	additional SpatRaster objects

segregate 179

Value

SpatRasterDataset

See Also

describe

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
x <- sds(s, s/2)
names(x) <- c("first", "second")
x
length(x)

# extract the second SpatRaster
x[2]
a <- array(1:9, c(3,3,3,3))
sds(a)</pre>
```

segregate

segregate

Description

Create a SpatRaster with a layer for each class (value, or subset of the values) in the input SpatRaster. For example, if the input has vegetation types, this function will create a layer (presence/absence; dummy variable) for each of these classes. Classes and cell values are always truncated to integers.

This is called "one-hot encoding" or "dummy encoding" (for a dummy encoding scheme you can remove (any) one of the output layers as it is redundant).

Usage

```
## S4 method for signature 'SpatRaster'
segregate(x, classes=NULL, keep=FALSE, other=0, filename="", ...)
```

X	SpatRaster
classes	numeric. The values (classes) for which layers should be made. If $NULL$ all classes are used
keep	logical. If TRUE, cells that are of the class represented by a layer get that value, rather than a value of $\boldsymbol{1}$
other	numeric. Value to assign to cells that are not of the class represented by a layer
filename	character. Output filename
	additional arguments for writing files as in writeRaster

180 sel

Value

SpatRaster

Examples

```
r <- rast(nrows=5, ncols=5)
values(r) <- rep(c(1:4, NA), each=5)
b <- segregate(r)
bb <- segregate(r, keep=TRUE, other=NA)</pre>
```

sel

Spatial selection

Description

Geometrically subset SpatRaster or SpatVector (to be done) by drawing on a plot (map).

Usage

```
## S4 method for signature 'SpatRaster'
sel(x, ...)
## S4 method for signature 'SpatVector'
sel(x, use="rec", draw=TRUE, col="cyan", ...)
```

Arguments

X	Spatkaster or Spat vector
use	character indicating what to draw. One of "rec" (rectangle) or "pol" (polygon)
draw	logial. If TRUE the selection is drawn on the map
col	color to be used for drawing if draw=TRUE
	additional graphics arguments for drawing

Value

SpatRaster or SpatVector

See Also

crop and intersect to make an intersection and click and text to see cell values or geometry
attributes

selectHighest 181

Examples

```
## Not run:
# select a subset of a SpatRaster
r <- rast(nrows=10, ncols=10)
values(r) <- 1:ncell(r)
plot(r)
s <- sel(r) # now click on the map twice

# plot the selection on a new canvas:
x11()
plot(s)

# vector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
plot(v)
x <- sel(v) # now click on the map twice
x

## End(Not run)</pre>
```

selectHighest

select cells with high or low values

Description

Identify n cells that have the highest of lowest values in the first layer of a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
selectHighest(x, n, low=FALSE)
```

Arguments

x SpatRaster. Only the first layer is processed

n The number of cells to select

logical. If TRUE, the lowest values are selected instead of the highest values

Value

SpatRaster

182 selectRange

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- selectHighest(r, 1000)
y <- selectHighest(r, 1000, TRUE)

m <- merge(y-1, x)
levels(m) <- c("low", "high")
plot(m)</pre>
```

selectRange

Select the values of a range of layers, as specified by cell values in another SpatRaster

Description

Use a single layer SpatRaster to select cell values from different layers in a multi-layer SpatRaster. The values of the SpatRaster to select layers (y) should be whole numbers between 1 and nlyr(x) (values outside this range are ignored).

See rapp for applying af function to a range of variable size.

See extract for extraction of values by cell, point, or otherwise.

Usage

```
## S4 method for signature 'SpatRaster'
selectRange(x, y, z=1, repint=0, filename="", ...)
```

Arguments

х	SpatRaster
У	SpatRaster. Cell values must be positive integers. They indicate the first layer to select for each cell
z	positive integer. The number of layers to select
repint	integer > 1 and $<$ nlyr(x) allowing for repeated selection at a fixed interval. For example, if x has 36 layers, and the value of a cell in y=2 and repint = 12, the values for layers 2, 14 and 26 are returned
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
rapp, tapp, extract
```

setValues 183

Examples

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1
s <- c(r, r+2, r+5)
s <- c(s, s)
set.seed(1)
values(r) <- sample(3, ncell(r), replace=TRUE)
x <- selectRange(s, r)
x <- selectRange(s, r, 3)</pre>
```

setValues

Set the values of raster cells or of geometry attributes

Description

Set cell values of a SpatRaster or the attributes of a SpatVector. For large SpatRaster objects use init instead to set values.

Usage

```
## S4 replacement method for signature 'SpatRaster,ANY'
values(x)<-value

## S4 method for signature 'SpatRaster,ANY'
setValues(x, values, keeptime=TRUE, keepunits=TRUE, props=FALSE)

## S4 replacement method for signature 'SpatVector,ANY'
values(x)<-value</pre>
```

Arguments

x	SpatRaster or SpatVector
value	For SpatRaster: matrix or numeric, the length must match the total number of cells $(ncell(x) * nlyr(x))$, or be a single value. For SpatVector: data.frame, matrix, vector, or NULL
values	Same as for value
keeptime	logical. If TRUE the time stamps are kept
keepunits	logical. If FALSE the units are discarded
props	logical. If TRUE the properties (categories and color-table) are kept

Value

The same object type as x

184 shade

See Also

```
values, init
```

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- setValues(r, 1:ncell(r))
x
values(x) <- runif(ncell(x))
x
head(x)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
values(v) <- data.frame(ID=1:12, name=letters[1:12])
head(v)</pre>
```

shade

Hill shading

Description

Compute hill shade from slope and aspect layers (both in radians). Slope and aspect can be computed with function terrain.

A hill shade layer is often used as a backdrop on top of which another, semi-transparent, layer is drawn.

Usage

```
shade(slope, aspect, angle=45, direction=0, normalize=FALSE, filename="", ...)
```

Arguments

slope	SpatRasterwith slope values (in radians)
aspect	SpatRaster with aspect values (in radians)
angle	The the elevation angle of the light source (sun), in degrees
direction	The direction (azimuth) angle of the light source (sun), in degrees
normalize	Logical. If TRUE, values below zero are set to zero and the results are multiplied with 255
filename	character. Output filename
• • •	additional arguments for writing files as in writeRaster

References

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69(1):14-47

sharedPaths 185

See Also

```
terrain
```

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
alt <- disagg(r, 10, method="bilinear")
slope <- terrain(alt, "slope", unit="radians")
aspect <- terrain(alt, "aspect", unit="radians")
hill <- shade(slope, aspect, 40, 270)
plot(hill, col=grey(0:100/100), legend=FALSE, mar=c(2,2,1,4))
plot(alt, col=rainbow(25, alpha=0.35), add=TRUE)</pre>
```

sharedPaths

Shared paths

Description

Get shared paths of line or polygon geometries

Usage

```
## S4 method for signature 'SpatVector'
sharedPaths(x)
```

Arguments

Х

SpatVector of lines or polygons

Value

SpatVector

See Also

```
gaps, topology
```

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
plot(v, col="light gray")
text(v, halo=TRUE)

x <- sharedPaths(v)
lines(x, col="red", lwd=2)
text(x, col="blue", halo=TRUE, cex=0.8)
head(x)</pre>
```

186 shift

shift Shift

Description

Shift a SpatRaster, SpatVector or SpatExtent to another location.

Usage

```
## S4 method for signature 'SpatRaster'
shift(x, dx=0, dy=0, filename="", ...)
## S4 method for signature 'SpatVector'
shift(x, dx=0, dy=0)
## S4 method for signature 'SpatExtent'
shift(x, dx=0, dy=0)
```

Arguments

X	SpatRaster, SpatVector or SpatExtent
dx	numeric. The shift in horizontal direction
dy	numeric. The shift in vertical direction
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

Same as x

See Also

```
flip, rotate
```

```
r <- rast(xmin=0, xmax=1, ymin=0, ymax=1)
r <- shift(r, dx=1, dy=-1)
e <- ext(r)
shift(e, 5, 5)</pre>
```

simplifyGeom 187

simplifyGeom

simplifyGeom geometries

Description

Reduce the number of nodes used to represent geometries.

Usage

```
## S4 method for signature 'SpatVector'
simplifyGeom(x, tolerance=0.1)
```

Arguments

x SpatVector of lines or polygons

tolerance numeric. The minimum distance between nodes in units of the crs (i.e. degrees

for long/lat

Value

SpatVector

See Also

```
sharedPaths, gaps
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- simplifyGeom(v, .02)
e <- erase(w)
g <- gaps(e)
plot(e, lwd=5, border="light gray")
polys(g, col="red", border="red")</pre>
```

sources

Data sources of a SpatRaster

Description

Get the data sources of a SpatRaster and the number of layers by source. Sources are either files (or similar resources) or "", meaning that they are in memory. You can use hasValues to check if in-memory layers actually have cell values.

188 SpatExtent-class

Usage

```
## $4 method for signature 'SpatRaster'
sources(x, nlyr=FALSE, bands=FALSE)
## $4 method for signature 'SpatRaster'
hasValues(x)
## $4 method for signature 'SpatRaster'
inMemory(x, bylayer=FALSE)
```

Arguments

ster
ster

nlyr logical. If TRUE for each source, the number of layers is returned

bands logical. If TRUE for each source, the "bands" used, that is, the layer number in

the source file, are returned

bylayer logical. If TRUE a value is retured for each layer instead of for each source

Value

A vector of filenames, or "" when there is no filename, if nlyr and bands are both FALSE. Otherwise a data. frame

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
s <- rast(r)
values(s) <- 1:ncell(s)
rs <- c(r,r,s,r)
sources(rs)
hasValues(r)
x <- rast()
hasValues(x)</pre>
```

SpatExtent-class

Class "SpatExtent"

Description

Objects of class SpatExtent are used to define the spatial extent (extremes) of objects of the SpatRaster class.

Objects from the Class

You can use the ext function to create SpatExtent objects, or to extract them from SpatRaster objects.

Spatial interpolation 189

Slots

```
ptr: pointer to the C++ class
```

Methods

show display values of a SpatExtent object

Examples

```
e <- ext(-180, 180, -90, 90)
e
```

Spatial interpolation *Interpolate*

Description

Make a SpatRaster with interpolated values using a fitted model object of classes such as "gstat" (gstat package) or "Krige" (fields package), or any other model that has location (e.g., "x" and "y", or "longitude" and "latitude") as predictors (independent variables). If x and y are the only predictors, it is most efficient if you provide an empty (no associated data in memory or on file) SpatRaster for which you want predictions. If there are more spatial predictor variables provide these as a SpatRaster in the first argument of the function. If you do not have x and y locations as implicit predictors in your model you should use predict instead.

Usage

Arguments

object	SpatRaster
model	model object
fun	function. Default value is "predict", but can be replaced with e.g. "predict.se" (depending on the class of model), or a custom function (see examples)
	additional arguments passed to fun
xyNames	character. variable names that the model uses for the spatial coordinates. E.g., $c("longitude","latitude")$
factors	list with levels for factor variables. The list elements should be named with names that correspond to names in object such that they can be matched. This argument may be omitted for some models from which the levels can be extracted from the model object

Spatial interpolation

const data.frame. Can be used to add a constant for which there is no SpatRaster for

model predictions. This is particularly useful if the constant is a character-like

factor value

index positive integer or NULL. Allows for selecting of the variable returned if the

model returns multiple variables

na.rm logical. If TRUE, cells with NA values in the predictors are removed from the

computation. This option prevents errors with models that cannot handle NA values. In most other cases this will not affect the output. An exception is when predicting with a model that returns predicted values even if some (or all!)

variables are NA

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

predict

```
r <- rast(system.file("ex/elev.tif", package="terra"))</pre>
ra <- aggregate(r, 10)
xy <- data.frame(xyFromCell(ra, 1:ncell(ra)))</pre>
v <- values(ra)</pre>
i <- !is.na(v)
xy <- xy[i,]
v <- v[i]
## Not run:
library(fields)
tps <- Tps(xy, v)
p \leftarrow rast(r)
# use model to predict values at all locations
p <- interpolate(p, tps)</pre>
p \leftarrow mask(p, r)
plot(p)
### change "fun" from predict to fields::predictSE to get the TPS standard error
## need to use "rast(p)" to remove the values
se <- interpolate(rast(p), tps, fun=predictSE)</pre>
se <- mask(se, r)
plot(se)
### another predictor variable, "e"
```

Spatial interpolation 191

```
e <- (init(r, "x") * init(r, "y")) / 100000000
names(e) <- "e"</pre>
z <- as.matrix(extract(e, xy)[,-1])</pre>
## add as another independent variable
xyz <- cbind(xy, z)</pre>
tps2 <- Tps(xyz, v)
p2 <- interpolate(e, tps2, xyOnly=FALSE)</pre>
## as a linear coveriate
tps3 <- Tps(xy, v, Z=z)
## Z is a separate argument in Krig.predict, so we need a new function
## Internally (in interpolate) a matrix is formed of x, y, and elev (Z)
pfun <- function(model, x, ...) {</pre>
   predict(model, x[,1:2], Z=x[,3], ...)
p3 <- interpolate(e, tps3, fun=pfun)
#### gstat examples
library(gstat)
library(sp)
data(meuse)
### inverse distance weighted (IDW)
r <- rast(system.file("ex/meuse.tif", package="terra"))</pre>
mg <- gstat(id = "zinc", formula = zinc~1, locations = ~x+y, data=meuse,</pre>
            nmax=7, set=list(idp = .5))
z <- interpolate(r, mg, debug.level=0, index=1)</pre>
z \leftarrow mask(z, r)
## with a model built with an `sf` object you need to provide custom function
library(sf)
sfmeuse <- st_as_sf(meuse, coords = c("x", "y"), crs=crs(r))</pre>
mgsf <- gstat(id = "zinc", formula = zinc~1, data=sfmeuse, nmax=7, set=list(idp = .5))</pre>
interpolate_gstat <- function(model, x, crs, ...) {</pre>
v <- st_as_sf(x, coords=c("x", "y"), crs=crs)</pre>
p <- predict(model, v, ...)</pre>
as.data.frame(p)[,1:2]
}
zsf <- interpolate(r, mgsf, debug.level=0, fun=interpolate_gstat, crs=crs(r), index=1)</pre>
zsf <- mask(zsf, r)</pre>
### kriging
### ordinary kriging
v <- variogram(log(zinc)~1, ~x+y, data=meuse)</pre>
```

192 SpatRaster-class

```
mv <- fit.variogram(v, vgm(1, "Sph", 300, 1))</pre>
gOK <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv)</pre>
OK <- interpolate(r, gOK, debug.level=0)</pre>
## universal kriging
vu <- variogram(log(zinc)~elev, ~x+y, data=meuse)</pre>
mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))</pre>
gUK <- gstat(NULL, "log.zinc", log(zinc)~elev, meuse, locations=~x+y, model=mu)</pre>
names(r) <- "elev"</pre>
UK <- interpolate(r, gUK, debug.level=0)</pre>
## co-kriging
gCoK <- gstat(NULL, 'log.zinc', log(zinc)~1, meuse, locations=~x+y)</pre>
gCoK <- gstat(gCoK, 'elev', elev~1, meuse, locations=~x+y)</pre>
\verb|gCoK <- gstat(gCoK, 'cadmium', cadmium^1, meuse, locations=^x+y)|\\
gCoK <- gstat(gCoK, 'copper', copper~1, meuse, locations=~x+y)</pre>
coV <- variogram(gCoK)</pre>
plot(coV, type='b', main='Co-variogram')
coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))</pre>
plot(coV, coV.fit, main='Fitted Co-variogram')
coK <- interpolate(r, coV.fit, debug.level=0)</pre>
plot(coK)
## End(Not run)
```

SpatRaster-class

SpatRaster class

Description

A SpatRaster represents a rectangular part of the world that is sub-divided into rectangular cells of equal area (in terms of the units of the coordinate reference system). For each cell can have multiple values ("layers").

An object of the SpatRaster class can point to one or more files on disk that hold the cell values, and/or it can hold these values in memory. These objects can be created with the rast method.

The underlying C++ class "Rcpp_SpatRaster" is not intended for end-users. It is for internal use within this package only.

Examples

rast()

spatSample 193

spatSample	Take a regular sample

Description

Take a spatial sample from a SpatRaster, SpatVector or SpatExtent. Sampling a SpatVector or SpatExtent always returns a SpatVector of points.

With a SpatRaster, you can get cell values, cell numbers (cells=TRUE), coordinates (xy=TRUE) or (when type="regular" and as.raster=TRUE) get a new SpatRaster with the same extent, but fewer cells.

In order to assure regularity when requesting a regular sample, the number of cells or points returned may not be exactly the same as the size requested.

Usage

```
## S4 method for signature 'SpatRaster'
spatSample(x, size, method="random", replace=FALSE, na.rm=FALSE,
as.raster=FALSE, as.df=TRUE, as.points=FALSE, values=TRUE,
cells=FALSE, xy=FALSE, ext=NULL, warn=TRUE, weights=NULL)

## S4 method for signature 'SpatVector'
spatSample(x, size, method="random", strata=NULL, chess="")

## S4 method for signature 'SpatExtent'
spatSample(x, size, method="random", lonlat, as.points=FALSE)
```

Arguments

x	SpatRaster, SpatVector or SpatExtent
size	numeric. The sample size. If x is a SpatVector, you can also provide a vector of the same length as x in wich case sampling is done seperately for each geometry. If x is a SpatRaster, and you are using method="regular" you can specify the size as two numbers (number of rows and columns)
method	character. Should be "regular" or "random", If x is a SpatRaster, it can also be "stratified" (each value in x is a stratum) or "weights" (each value in x is a probability weight)
replace	logical. If TRUE, sampling is with replacement (if method="random"
na.rm	logical. If TRUE, codeNAs are removed. Only used with random sampling of cell values. That is with method="random",as.raster=FALSE,cells=FALSE
as.raster	logical. If TRUE, a SpatRaster is returned
as.df	logical. If TRUE, a data.frame is returned instead of a matrix
as.points	logical. If TRUE, a SpatVector of points is returned
values	logical. If TRUE cell values are returned

194 spatSample

cells	logical. If TRUE, cell numbers are returned. If method="stratified" this is always set to TRUE if $xy=FALSE$
xy	logical. If TRUE, cell coordinates are returned
ext	SpatExtent or NULL to restrict sampling to a a subset of the area of x
warn	logical. Give a warning if the sample size returned is smaller than requested
weights	SpatRaster. Used to provide weights when method="stratified"
strata	if not NULL, stratified random sampling is done, taking size samples from each stratum. If x has polygon geometry, strata must be a field name (or index) in x. If x has point geometry, strata can be a SpatVector of polygons or a SpatRaster
chess	character. One of "", "white", or "black". For stratified sampling if strata is a SpatRaster. If not "", samples are only taken from alternate cells, organized like the "white" or "black" fields on a chessboard
lonlat	logical. If TRUE, sampling of a SpatExtent is weighted by cos(latitude). For SpatRaster and SpatVector this done based on the crs, but it is ignored if as.raster=TRUE

Value

numeric matrix, data.frame, SpatRaster or SpatVector

```
f <- system.file("ex/elev.tif", package="terra")</pre>
r \leftarrow rast(f)
s <- spatSample(r, 10, as.raster=TRUE)</pre>
spatSample(r, 10)
spatSample(r, 10, "random")
## if you require cell numbers and/or coordinates
size <- 6
# random cells
cells <- spatSample(r, 6, "random", cells=TRUE, values=FALSE)</pre>
cells <- as.vector(cells)</pre>
v <- r[cells]</pre>
xy <- xyFromCell(r, cells)</pre>
cbind(xy, v)
cells <- spatSample(r, 6, "regular", cells=TRUE, values=FALSE)</pre>
cells <- as.vector(cells)</pre>
v <- r[cells]</pre>
xy <- xyFromCell(r, cells)</pre>
cbind(xy, v)
# stratified
rr <- rast(ncol=10, nrow=10, names="stratum")</pre>
set.seed(1)
values(rr) <- round(runif(ncell(rr), 1, 3))</pre>
```

Spat Vector-class 195

```
spatSample(rr, 2, "stratified", xy=TRUE)

s <- spatSample(rr, 5, "stratified", as.points=TRUE)
plot(rr, plg=list(title="raster"))
plot(s, 1, add=TRUE, plg=list(x=185, y=1, title="points"))

## SpatExtent
e <- ext(r)
spatSample(e, 10, "random", lonlat=TRUE)

## SpatVector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
#sample geometries
i <- sample(nrow(v), 5)
vv <- v[i,]</pre>
```

SpatVector-class

Class "SpatVector"

Description

Objects of class SpatVector.

Objects from the Class

You can use the vect method to create SpatVector objects.

Slots

```
ptr: pointer to the C++ class
```

Methods

show display values of a SpatVector

spin

spin a SpatVector

Description

Spin (rotate) the geometry of a SpatVector.

196 split

Usage

```
## S4 method for signature 'SpatVector'
spin(x, angle, x0, y0)
```

Arguments

X	SpatVector
angle	numeric. Angle of rotation in degrees
x0	numeric. x -coordinate of the center of rotation. If missing, the center of the extent of x is used
y0	numeric. y-coordinate of the center of rotation. If missing, the center of the extent of x is used

Value

SpatVector

See Also

```
rescale, t, shift
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- spin(v, 180)
plot(v)
lines(w, col="red")

# lower-right corner as center
e <- as.vector(ext(v))
x <- spin(v, 45, e[1], e[3])</pre>
```

split

Split

Description

Split a SpatVector or SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
split(x, f)
## S4 method for signature 'SpatVector'
split(x, f)
```

sprc 197

Arguments

SpatRaster or	SpatVector
	SpatRaster or

If x is a SpatVector: a field (variable) name or a vector of the same length as x.

If x is a SpatRaster: a vector of the length nlyr(x)

Value

Same as x

Examples

```
v <- vect(system.file("ex/lux.shp", package="terra"))
x <- split(v, "NAME_1")

s <- rast(system.file("ex/logo.tif", package="terra"))
y <- split(s, c(1,2,1))
sds(y)</pre>
```

sprc

Create a SpatRasterCollection

Description

Methods to create a SpatRasterCollection. This is an object to hold a collection (list) of SpatRaster objects. There are no restrictions on the similarity of the SpatRaster geometry.

They can be used to combine several SpatRasters to be used with merge or mosaic

Usage

```
## $4 method for signature 'SpatRaster'
sprc(x, ...)
## $4 method for signature 'list'
sprc(x)
## $4 method for signature 'missing'
sprc(x)
```

Arguments

x SpatRaster, list with SpatRaster objects, or missing... additional SpatRaster objects

Value

SpatRasterCollection

198 stretch

See Also

sds

Examples

```
x <- rast(xmin=-110, xmax=-50, ymin=40, ymax=70, ncols=60, nrows=30)
y <- rast(xmin=-80, xmax=-20, ymax=60, ymin=30)
res(y) <- res(x)
values(x) <- 1:ncell(x)
values(y) <- 1:ncell(y)
z <- sprc(x, y)
z</pre>
```

stretch

Stretch

Description

Linear or histogram equalization stretch of values in a SpatRaster.

For linear stretch, provide the desired output range (minv and maxv) and the lower and upper bounds in the original data, either as quantiles (minq and maxq, or as cell values (smin and smax). If smin and smax are both not NA, minq and maxq are ignored.

For histogram equalization, these arguments are ignored, but you can provide the desired scale of the output.

Usage

```
## S4 method for signature 'SpatRaster'
stretch(x, minv=0, maxv=255, minq=0, maxq=1, smin=NA, smax=NA,
histeq=FALSE, scale=1, filename="", ...)
```

Arguments

X	SpatRaster
minv	numeric >= 0 and smaller than maxv. lower bound of stretched value
maxv	numeric <= 255 and larger than maxv. upper bound of stretched value
minq	$\label{eq:numeric} \mbox{ $>=$ 0$ and smaller than maxq. lower quantile bound of original value.} \\ \mbox{ Ignored if smin is supplied}$
maxq	$\begin{array}{l} \text{numeric} <= 1 \text{ and larger than minq. upper quantile bound of original value.} \\ \text{Ignored if smax is supplied} \end{array}$
smin	$numeric < smax. \ user \ supplied \ lower \ value \ for \ the \ layers, \ to \ be \ used \ instead \ of \ a \ quantile \ computed \ by \ the \ function \ itself$
smax	numeric > smin. user supplied upper value for the layers, to be used instead of a quantile computed by the function itself

subset 199

histeq	logical. If TRUE histogram equalization is used instead of linear stretch
scale	numeric. The scale (maximum value) of the output if $histeq=TRUE$
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

```
r <- rast(nc=10, nr=10)
values(r) <- rep(1:25, 4)
rs <- stretch(r)
s <- c(r, r*2)
sr <- stretch(s)</pre>
```

subset

Subset of a SpatRaster

Description

Select a subset of layers from a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
subset(x, subset, filename="", overwrite=FALSE, ...)
```

Arguments

Χ		SpatRaster
subse	t	integer or character. Should indicate the layers (represented as integer or by their names)
filen	ame	character. Output filename
overw	rite	logical. If TRUE, filename is overwritten
		additional arguments for writing files as in writeRaster

Value

SpatRaster

200 subset-vector

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
subset(s, 2:3)
subset(s, c(3,2,3,1))
#equivalent to
s[[ c(3,2,3,1) ]]
s[[c("red", "green")]]
s$red

# expression based (partial) matching of names with single brackets
s["re"]
s["^re"]
# not with double brackets
# s[["re"]]</pre>
```

subset-vector

Subset of a SpatVector

Description

Select a subset of variables or records from a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
subset(x, subset, drop=FALSE)
```

Arguments

x SpatVector

subset logical expression indicating elements or rows to keep: missing values are taken

as false

drop logical. If TRUE, the geometries will be dropped, and a data.frame is returned

Value

SpatVector or, if drop=TRUE, a data.frame.

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v[2:3,]
v[,2:3]
subset(v, v$NAME_1 == "Diekirch")</pre>
```

subst 201

subst

replace cell values

Description

Substitute(replace) cell values of a SpatRaster with a new value. See classify for more complex/flexible replacement.

Usage

```
## S4 method for signature 'SpatRaster'
subst(x, from, to, filename="", ...)
```

Arguments

X	SpatRaster
from	numeric value(s)
to	numeric value(s). Normally a vector of the same length as 'from'. If x has a single layer, it can also be a matrix of numeric value(s) where $nrow(x) = length(from)$. In that case the output has multiple layers, one for each column in to
filename	character. Output filename
	Additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
classify
```

```
r <- rast(ncols=5, nrows=5, xmin=0, xmax=1, ymin=0, ymax=1, crs="")
r <- init(r, 1:6)
x <- subst(r, 3, 7)
x <- subst(r, 2:3, NA)
x <- subst(x, NA, 10)</pre>
```

202 summarize

summarize

Summarize

Description

Compute summary statistics for cells, either across layers or between layers (parallel summary).

The following summary methods are available for SpatRaster: any, all, max, min, mean, median, prod, range, stdev, sum, v See modal to compute the mode and app to compute summary statistics that are not included here.

Because generic functions are used, the method applied is chosen based on the first argument: "x".

This means that if r is a SpatRaster, mean(r,5) will work, but mean(5,r) will not work.

The mean method has an argument "trim" that is ignored.

If pop=TRUE stdev computes the population standard deviation, computed as:

```
f <-function(x) sqrt(sum((x-mean(x))^2) / length(x))</pre>
```

This is different than the sample standard deviation returned by sd (which uses n-1 as denominator).

Usage

```
## S4 method for signature 'SpatRaster'
min(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
max(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
range(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
prod(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
sum(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
any(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
all(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
range(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
which.min(x)
## S4 method for signature 'SpatRaster'
```

summarize 203

```
which.max(x)
## S4 method for signature 'SpatRaster'
stdev(x, ..., pop=TRUE, na.rm=FALSE)
## S4 method for signature 'SpatRaster'
mean(x, ..., trim=NA, na.rm=FALSE)
## S4 method for signature 'SpatRaster'
median(x, na.rm=FALSE, ...)
```

Arguments

Х	SpatRaster
•••	$additional\ Spat Raster\ objects\ or\ numeric\ values;\ and\ arguments\ filename,\ overwrite\ and\ wopt\ as\ for\ write Raster$
na.rm	logical. If TRUE, NA values are ignored. If FALSE, NA is returned if \boldsymbol{x} has any NA values
trim	ignored
pop	logical. If TRUE, the population standard deviation is computed. Otherwise the sample standard deviation is computed

Value

SpatRaster

See Also

```
app, Math-methods, modal, which.lyr
```

```
set.seed(0)
r <- rast(nrows=10, ncols=10, nlyrs=3)
values(r) <- runif(ncell(r) * nlyr(r))

x <- mean(r)
# note how this returns one layer
x <- sum(c(r, r[[2]]), 5)

# and this returns three layers
y <- sum(r, r[[2]], 5)

max(r)
max(r, 0.5)

y <- stdev(r)
# not the same as
yy <- app(r, sd)</pre>
```

204 summary

```
z <- stdev(r, r*2)
x <- mean(r, filename=paste0(tempfile(), ".tif"))</pre>
```

summary

summary

Description

Compute summary statistics (min, max, mean, and quartiles) for SpatRaster using base summary method. A sample is used for very large files.

For single or other statistics see Summary-methods, global, and quantile

Usage

```
## $4 method for signature 'SpatRaster'
summary(object, size=100000, warn=TRUE, ...)
## $4 method for signature 'SpatVector'
summary(object, ...)
```

Arguments

object	SpatRaster or SpatVector
size	positive integer. Size of a regular sample used for large datasets (see spatSample)
warn	logical. If TRUE a warning is given if a sample is used
	additional arguments passed on to the base summary method

Value

matrix with (an estimate of) the median, minimum and maximum values, the first and third quartiles, and the number of cells with NA values

See Also

```
Summary-methods, global, quantile
```

```
set.seed(0)
r <- rast(nrows=10, ncols=10, nlyrs=3)
values(r) <- runif(nlyr(r)*ncell(r))
summary(r)</pre>
```

svc 205

SVC

Create a SpatVectorCollection

Description

Methods to create a SpatVectorCollection. This is an object to hold "sub-datasets", each a SpatVector, perhaps of different geometry type.

Usage

```
## S4 method for signature 'missing'
svc(x)

## S4 method for signature 'SpatVector'
svc(x, ...)

## S4 method for signature 'list'
svc(x)
```

Arguments

- x SpatVector, or list of a SpatVector, or missing
- ... Additional SpatVectors

Value

SpatVectorCollection

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
x <- svc()
x <- svc(v, v[1:3,], as.lines(v[3:5,]), as.points(v))
length(x)
x

# extract
x[3]
# replace
x[2] <- as.lines(v[1,])</pre>
```

206 tapp

symdif

Symetrical difference

Description

Symetrical difference of polygons

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
symdif(x, y)
```

Arguments

x SpatVectory SpatVector

Value

SpatVector

See Also

erase

Examples

```
p <- vect(system.file("ex/lux.shp", package="terra"))
b <- as.polygons(ext(6, 6.4, 49.75, 50))
#sd <- symdif(p, b)
#plot(sd, col=rainbow(12))</pre>
```

tapp

Apply a function to subsets of layers of a SpatRaster

Description

Apply a function to subsets of layers of a SpatRaster (similar to tapply and aggregate). The layers are combined based on the index.

The function used should return a single value, and the number of layers in the output SpatRaster equals the number of unique values in index.

For example, if you have a SpatRaster with 6 layers, you can use index=c(1,1,1,2,2,2) and fun=sum. This will return a SpatRaster with two layers. The first layer is the sum of the first three layers in the input SpatRaster, and the second layer is the sum of the last three layers in the input

207

SpatRaster. Indices are recycled such that index=c(1,2) would also return a SpatRaster with two layers (one based on the odd layers (1,3,5), the other based on the even layers (2,4,6)).

See app or Summary-methods if you want to use a more efficient function that returns multiple layers based on **all** layers in the SpatRaster object.

Usage

```
## S4 method for signature 'SpatRaster'
tapp(x, index, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())
```

Arguments

x	SpatRaster
index	factor or numeric (integer). Vector of length $nlyr(x)$ (shorter vectors are recycled) grouping the input layers
fun	function to be applied. The following functions have been re-implemented in C++ for speed: "sum", "mean", "median", "modal", "which", "which.min", "which.max", "min", "max", "prod", "any", "all", "sd", "std", "first". To use the base-R function for say, "min", you could use something like fun = \(i) min(i)
	additional arguments passed to fun
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object. Ignored for functions that are implemented by terra in C++ (see under fun)
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

```
app, Summary-methods
```

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
s <- c(r, r, r, r, r, r)
s <- s * 1:6
b1 <- tapp(s, index=c(1,1,1,2,2,2), fun=sum)
b1
b2 <- tapp(s, c(1,2,3,1,2,3), fun=sum)
b2</pre>
```

208 terrain

|--|

Description

Compute terrain characteristic from elevation data. The elevation values should be in the same units as the map units (typically meter) for projected (planar) raster data. They should be in meter when the coordinate reference system is longitude/latitude.

Usage

```
## S4 method for signature 'SpatRaster'
terrain(x, v="slope", neighbors=8, unit="degrees", filename="", ...)
```

Arguments

х	SpatRaster, single layer with elevation values. Values should have the same unit as the map units, or in meters when the crs is longitude/latitude
V	character. One or more of these options: slope, aspect, TPI, TRI, roughness, flowdir (see Details)
unit	character. "degrees" or "radians" for the output of "slope" and "aspect"
neighbors	integer. Indicating how many neighboring cells to use to compute slope or aspect with. Either 8 (queen case) or 4 (rook case)
filename	character. Output filename
	list. Options for writing files as in writeRaster

Details

When neighbors=4, slope and aspect are computed according to Fleming and Hoffer (1979) and Ritter (1987). When neighbors=8, slope and aspect are computed according to Horn (1981). The Horn algorithm may be best for rough surfaces, and the Fleming and Hoffer algorithm may be better for smoother surfaces (Jones, 1997; Burrough and McDonnell, 1998).

If slope = 0, aspect is set to 0.5*pi radians (or 90 degrees if unit="degrees"). When computing slope or aspect, the coordinate reference system of x must be known for the algorithm to differentiate between planar and longitude/latitude data.

terrain is not vectorized over "neighbors" or "unit" - only the first value is used.

flowdir returns the "flow direction" (of water), that is the direction of the greatest drop in elevation (or the smallest rise if all neighbors are higher). They are encoded as powers of 2 (0 to 7). The cell to the right of the focal cell is 1, the one below that is 2, and so on:

text 209

If two cells have the same drop in elevation, a random cell is picked. That is not ideal as it may prevent the creation of connected flow networks. ArcGIS implements the approach of Greenlee (1987) and I might adopt that in the future.

The terrain indices are according to Wilson et al. (2007), as in gdaldem. TRI (Terrain Ruggedness Index) is the mean of the absolute differences between the value of a cell and the value of its 8 surrounding cells. TPI (Topographic Position Index) is the difference between the value of a cell and the mean value of its 8 surrounding cells. Roughness is the difference between the maximum and the minimum value of a cell and its 8 surrounding cells.

Such measures can also be computed with the focal function:

```
f <- matrix(1, nrow=3, ncol=3)

TRI <- focal(x, w=f, fun=function(x, ...) sum(abs(x[-5]-x[5]))/8)

TPI <- focal(x, w=f, fun=function(x, ...) x[5] - mean(x[-5]))

rough <- focal(x, w=f, fun=function(x, ...) max(x) - min(x), na.rm=TRUE)
```

References

Burrough, P., and R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford University Press.

Fleming, M.D. and Hoffer, R.M., 1979. Machine processing of Landsat MSS data and DMA topographic data for forest cover type mapping. LARS Technical Report 062879. Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana.

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69:14-47

Jones, K.H., 1998. A comparison of algorithms used to compute hill terrain as a property of the DEM. Computers & Geosciences 24: 315-323

Ritter, P., 1987. A vector-based terrain and aspect generation algorithm. Photogrammetric Engineering and Remote Sensing 53: 1109-1111

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- terrain(r, "slope")</pre>
```

text

Add labels to a map

Description

Plots labels, that is a textual (rather than color) representation of values, on top an existing plot (map).

210 tighten

Usage

```
## S4 method for signature 'SpatRaster'
text(x, labels, digits=0, halo=FALSE, ...)
## S4 method for signature 'SpatVector'
text(x, labels, halo=FALSE, ...)
```

Arguments

Х	SpatRaster or SpatVector
labels	character. Optional. Vector of labels with length(x) or a variable name from $names(x)$
digits	integer. how many digits should be used?
halo	logical. If TRUE a "halo" is printed around the text. If TRUE, additional arguments hc="white" and hw=0.1 can be modified to set the colour and width of the halo
	additional arguments to pass to graphics function text

See Also

```
text,plot
```

Examples

```
r <- rast(nrows=4, ncols=4)
values(r) <- 1:ncell(r)
plot(r)
text(r)

plot(r)
text(r, halo=TRUE, hc="blue", col="white", hw=0.2)

plot(r, col=rainbow(16))
text(r, col=c("black", "white"), vfont=c("sans serif", "bold"), cex=2)</pre>
```

tighten

tighten SpatRaster or SpatRasterDataset objects

Description

Combines data sources within a SpatRaster object (that are in memory, or from the same file) to allow for faster processing.

Or combine sub-datsets into a SpatRaster.

time 211

Usage

```
## S4 method for signature 'SpatRaster'
tighten(x)
## S4 method for signature 'SpatRasterDataset'
tighten(x)
```

Arguments

Χ

SpatRaster or SpatRasterDataset

Value

SpatRaster

Examples

```
r <- rast(nrow=5, ncol=9, vals=1:45)
x <- c(r, r*2, r*3)
x
tighten(x)</pre>
```

time

time of SpatRaster layers

Description

Get or set the time of the layers of a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
time(x)
## S4 replacement method for signature 'SpatRaster'
time(x)<-value</pre>
```

Arguments

```
x SpatRaster
value "Date", "POSIXt", or numeric
```

Value

Date

212 tmpFiles

See Also

depth

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
# Date"
d <- as.Date("2001-05-04") + 0:2
time(s) <- d
time(s)

# POSIX (time stored as seconds)
time(s) <- as.POSIXlt(d)
time(s)

# "raw" time
time(s) <- as.numeric(d)
time(s)</pre>
```

tmpFiles

Temporary files

Description

List and optionally remove temporary files created by the terra package. These files are created when an output SpatRaster may be too large to store in memory (RAM). This can happen when no filename is provided to a function and when using functions where you cannot provide a filename.

Temporary files are automatically removed at the end of each R session that ends normally. You can use tmpFiles to see the files in the current sessions, including those that are orphaned (not connect to a SpatRaster object any more) and from other (perhaps old) sessions, and remove all the temporary files.

Usage

```
tmpFiles(current=TRUE, orphan=FALSE, old=FALSE, remove=FALSE)
```

Arguments

cur	rent	logical. If TRUE, temporary files from the current R session are included
orp	ohan	logical. If TRUE, temporary files from the current R session that are no longer associated with a SpatRaster object (if current is TRUE these are also included)
olo	d	logical. If TRUE, temporary files from other "R" sessions. Unless you are running multiple instances of R at the same time, these are from old (possibly crashed) R sessions and should be removed
ren	nove	logical. If TRUE, temporary files are removed

topology 213

Value

character

See Also

terraOptions

Examples

```
tmpFiles()
```

topology

Vector topology methods

Description

makeNodes create nodes on lines

mergeLines connect lines to form polygons

removeDupNodes removes duplicate nodes in geometries and optionally rounds the coordinates snap makes boundaries of geometries identical if they are very close to each other.

Usage

```
## $4 method for signature 'SpatVector'
mergeLines(x)
## $4 method for signature 'SpatVector'
snap(x, y=NULL, tolerance)
## $4 method for signature 'SpatVector'
removeDupNodes(x, digits = -1)
## $4 method for signature 'SpatVector'
makeNodes(x)
```

Arguments

x SpatVector of lines or polygons

y SpatVector of lines or polygons to snap to. If NULL snapping is to the other

geometries in x

tolerance numeric. Snapping tolerance (distance between geometries) digits numeric. Number of digits used in rounding. Ignored if < 0

Value

SpatVector

See Also

```
\verb|sharedPaths|, \verb|gaps|, \verb|simplifyGeom||
```

214 transpose

transpose

Transpose

Description

Transpose a SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
t(x)
## S4 method for signature 'SpatVector'
t(x)
## S4 method for signature 'SpatRaster'
trans(x, filename="", ...)
```

Arguments

```
x SpatRasterfilename character. Output filename... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

See Also

```
flip,rotate
```

```
r <- rast(nrows=18, ncols=36)
values(r) <- 1:ncell(r)
tr1 <- t(r)
tr2 <- trans(r)
ttr <- trans(tr2)</pre>
```

215

trim

Trim a SpatRaster

Description

Trim (shrink) a SpatRaster by removing outer rows and columns that are NA or another value.

Usage

```
## S4 method for signature 'SpatRaster'
trim(x, padding=0, value=NA, filename="", ...)
```

Arguments

```
x SpatRaster
padding integer. Number of outer rows/columns to keep
value numeric. The value of outer rows or columns that are to be removed
filename character. Output filename
... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

Examples

```
r <- rast(ncols=10, nrows=10, xmin=0,xmax=10,ymin=0,ymax=10) v <- rep(NA, ncell(r)) v[c(12,34,69)] <- 1:3 values(r) <- v s <- trim(r)
```

union

Union SpatVector or SpatExtent objects

Description

Overlapping polygons (between, not within, objects) are intersected. Union for lines and points simply combines the two data sets; without any geometric intersections. This is equivalent to c. Attributes are joined. See c if you want to combine polygons without intersection.

If codex and y have a different geometry type, a SpatVectorCollection is returned.

If a single SpatVector is supplied, overlapping polygons are intersected. Original attributes are lost. New attributes allow for determining how many, and which, polygons overlapped.

SpatExtent: Objects are combined into their union; this is equivalent to +.

216 union

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
union(x, y)
## S4 method for signature 'SpatVector, missing'
union(x, y)
## S4 method for signature 'SpatExtent, SpatExtent'
union(x, y)
```

Arguments

x SpatVector or SpatExtent

y Same as x or missing

Value

SpatVector or SpatExtent

See Also

```
intersect)
merge and mosaic to union SpatRaster objects.
crop and extend for the union of SpatRaster and SpatExtent.
merge for merging a data.frame with attributes of a SpatVector.
```

```
e1 <- ext(-10, 10, -20, 20)
e2 <- ext(0, 20, -40, 5)
union(e1, e2)

#SpatVector
v <- vect(system.file("ex/lux.shp", package="terra"))
v <- v[,3:4]
p <- vect(c("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.65, 5.8 49.8))",
"POLYGON ((6.3 49.9, 6.2 49.7, 6.3 49.6, 6.5 49.8, 6.3 49.9))"), crs=crs(v))
values(p) <- data.frame(pid=1:2, value=expanse(p))
u <- union(v, p)
plot(u, "pid")
b <- buffer(v, 1000)

u <- union(b)
u$sum <- rowSums(as.data.frame(u))
plot(u, "sum")
```

unique 217

unique

Unique values

Description

This function returns the unique values in a SpatRaster or removes duplicates in a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
unique(x, incomparables=FALSE)
## S4 method for signature 'SpatVector'
unique(x, incomparables=FALSE, ...)
```

Arguments

x SpatRaster or SpatVector

incomparables

logical. If FALSE and x is a SpatRaster: the unique values are determined for all layers together, and the result is a matrix. If TRUE, each layer is evaluated separately, and a list is returned. If x is a SpatVector this argument is as for a

data.frame.

... additional arguments passed on to unique

Value

```
If x is a SpatRaster: data.frame or list (if incomparables=FALSE)

If x is a SpatVector: SpatVector
```

```
r <- rast(ncols=5, nrows=5)
values(r) <- rep(1:5, each=5)
unique(r)
s <- c(r, round(r/3))
unique(s)
unique(s,TRUE)

v <- vect(cbind(x=c(1:5,1:5), y=c(5:1,5:1)),
crs="+proj=utm +zone=1 +datum=WGS84")
nrow(v)
u <- unique(v)
nrow(u)

values(v) <- c(1:5, 1:3, 5:4)
unique(v)</pre>
```

218 units

units

units of SpatRaster or SpatRasterDataSet

Description

Get or set the units of the layers of a SpatRaster or the datasets in a SpatRasterDataSet.

Usage

```
## S4 method for signature 'SpatRaster'
units(x)

## S4 replacement method for signature 'SpatRaster'
units(x)<-value

## S4 method for signature 'SpatRasterDataset'
units(x)

## S4 replacement method for signature 'SpatRasterDataset'
units(x)<-value</pre>
```

Arguments

```
x SpatRaster value character
```

Value

character

See Also

```
time, names
```

```
s <- rast(system.file("ex/logo.tif", package="terra"))
units(s) <- c("m/s", "kg", "ha")
units(s) s
units(s) <- "kg"
units(s)</pre>
```

valid 219

valid

Check or fix polygon validity

Description

Check the validity of polygons or attempt to fix it

Usage

```
## S4 method for signature 'SpatVector'
is.valid(x, messages=FALSE, as.points=FALSE)
## S4 method for signature 'SpatVector'
makeValid(x)
```

Arguments

x SpatVector

messages logical. If TRUE the error messages are returned

as.points logical. If TRUE, it is attempted to return locations where polygons are invalid as a SpatVector or points

Value

logical

```
w <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
is.valid(w)

w <- vect("POLYGON ((0 -5, 10 0, 10 -10, 4 -2, 0 -5))")
is.valid(w)
is.valid(w, TRUE)

plot(w)
points(cbind(4.54, -2.72), cex=2, col="red")</pre>
```

220 values

values	Cell values and geometry attributes	
--------	-------------------------------------	--

Description

Get the cell values of a SpatRaster or the attributes of a SpatVector.

By default all values returned are numeric. This is because a vector or matrix can only store one data type, and a SpatRaster may consist of multiple data types. However, with values(x,dataframe=TRUE) and as.data.frame(x) the values returned match the type of each layer, and can be numeric, logical, integer, or factor.

Usage

Arguments

X	SpatRaster or SpatVector
mat	logical. If TRUE, values are returned as a matrix instead of as a vector, except when dataframe is \ensuremath{TRUE}
dataframe	logical. If TRUE, values are returned as a data. frame instead of as a vector (also if matrix is TRUE) $$
row	positive integer. Row number to start from, should be between 1 and $nrow(x)$
nrows	positive integer. How many rows?
col	positive integer. Column number to start from, should be between 1 and $ncol(x)$
ncols	positive integer. How many columns? Default is the number of columns left after the start column
na.rm	logical. Remove NAs?
	additional arguments passed to data.frame

Details

If x is a SpatRaster, and mat=FALSE, the values are returned as a vector. In cell-order by layer. If mat=TRUE, a matrix is returned in which the values of each layer are represented by a column (with ncell(x) rows). The values per layer are in cell-order, that is, from top-left, to top-right and then down by row. Use as.matrix(x,wide=TRUE) for an alternative matrix representation where the number of rows and columns matches that of x.

vect 221

Value

matrix or data.frame

See Also

```
values<-, focalValues
```

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
r
x <- values(r)
x[3650:3655, ]
r[3650:3655]

ff <- system.file("ex/lux.shp", package="terra")
v <- vect(ff)
y <- values(v)
head(y)</pre>
```

vect

Create SpatVector objects

Description

Methods to create a SpatVector from a filename or other R object.

A filename can be for a shapefile or any spatial file format.

You can use a data.frame to make a SpatVector of points; or a "geom" matrix to make a SpatVector of any supported geometry (see examples and geom).

You can supply a list of SpatVectors to append them into a single SpatVector.

SpatVectors can also be created from "Well Known Text", and from spatial vector data objects defined in the sf or sp packages.

Usage

```
## S4 method for signature 'character'
vect(x, layer="", query="", extent=NULL, filter=NULL, crs="", proxy=FALSE)
## S4 method for signature 'matrix'
vect(x, type="points", atts=NULL, crs="")
## S4 method for signature 'data.frame'
vect(x, geom=c("lon", "lat"), crs="")
```

222 vect

```
## $4 method for signature 'list'
vect(x)
## $4 method for signature 'sf'
vect(x)
```

Arguments

x	character. A filename; or a "Well Known Text" string; or a data.frame (only to make a SpatVector of points); or a "geom" matrix to make a SpatVector of any supported geometry (see examples and geom); or a spatial vector data object defined in the sf or sp packages
layer	character. layer name to select a layer from a file (database) with multiple layers
query	character. An query to subset the dataset in the OGR-SQL dialect
extent	Spat* object. The extent of the object is used as a spatial filter to select the geometries to read. Ignored if filter is not NULL
filter	SpatVector. Used as a spatial filter to select geometries to read (the convex hull is used for lines or points)
type	character. Geometry type. Must be "points", "lines", or "polygons"
atts	data.frame with the attributes. The number of rows must match the number of geometrical elements
crs	character. The coordinate reference system in one of the following formats: WKT/WKT2, <authority>:<code>, or PROJ-string notation (see crs)</code></authority>
proxy	logical. If TRUE a SpatVectorProxy is returned
geom	the field name(s) with the geometry data. Either two names for x and y coordinates of points, or a single name for a single column with WKT geometries)

Value

SpatVector

See Also

geom

```
### SpatVector from file
f <- system.file("ex/lux.shp", package="terra")
f
v <- vect(f)
v

## subsetting (large) files
## with attribute query
v <- vect(f, query="SELECT NAME_1, NAME_2, ID_2 FROM lux WHERE ID_2 < 4")
v</pre>
```

vect 223

```
## with an extent
e <- ext(5.9, 6.3, 49.9, 50)
v <- vect(f, extent=e)</pre>
## with polygons
p <- as.polygons(e)</pre>
v <- vect(f, filter=p)</pre>
### SpatVector from a geom matrix
x1 \leftarrow rbind(c(-180, -20), c(-140, 55), c(10, 0), c(-140, -60))
x2 \leftarrow rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
x3 \leftarrow rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))
hole <- rbind(c(80,0), c(105,13), c(120,2), c(105,-13))
z <- rbind(cbind(object=1, part=1, x1, hole=0), cbind(object=2, part=1, x3, hole=0),
cbind(object=3, part=1, x2, hole=0), cbind(object=3, part=1, hole, hole=1))
colnames(z)[3:4] \leftarrow c('x', 'y')
p <- vect(z, "polygons")</pre>
z[z[, "hole"]==1, "object"] <- 4</pre>
lns <- vect(z[,1:4], "lines")</pre>
plot(p)
lines(lns, col="red", lwd=2)
### from wkt
v <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
wkt <- c("MULTIPOLYGON ( ((40 40, 20 45, 45 30, 40 40)),
((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),(30 20, 20 15, 20 25, 30 20)))",
"POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
w <- vect(wkt)</pre>
# combine two SpatVectors
vw <- rbind(w, v)</pre>
# add a data.frame
d <- data.frame(id=1:2, name=c("a", "b"))</pre>
values(w) <- d</pre>
# add data.frame on creation, here from a geom matrix
g <- geom(w)
d <- data.frame(id=1:2, name=c("a", "b"))</pre>
m <- vect(g, "polygons", atts=d, crs="+proj=longlat +datum=WGS84")</pre>
### SpatVector from a data.frame
d$wkt <- wkt
x <- vect(d, geom="wkt")</pre>
d$wkt <- NULL
d$lon <- c(0,10)
```

224 vector-attributes

```
d$lat <- c(0,10)
x <- vect(d, geom=c("lon", "lat"))
# SpatVector to sf
#sf::st_as_sf(x)</pre>
```

vector-attributes

Get or replace attribute values of a SpatVector

Description

Replace values of a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
x$name
## S4 replacement method for signature 'SpatVector'
x$name<-value</pre>
```

Arguments

x SpatVector

name character (field name) or numeric (column number

value vector of new values

Value

vector

See Also

values

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$NAME_1
v$NAME_1[3] <- "my name"
v$ID_1 <- LETTERS[1:12]
v$new <- sample(12)
values(v)

v[2,2] <- "hello"
v[1,] <- v[10,]
v[,3] <- v[,1]
v[2, "NAME_2"] <- "terra"
head(v, 3)</pre>
```

vector_layers 225

|--|

Description

List or remove layers from a vector file that supports layers such as GPGK

Usage

```
vector_layers(filename, delete="", return_error=FALSE)
```

Arguments

filename character. filename

delete character. layers to be deleted (ignored if the value is ""

return_error logical. If TRUE, an error occurs if some layers cannot be deleted. Otherwise a

waring is given

voronoi	Voronoi diagram and Delauny triangles	
---------	---------------------------------------	--

Description

Get a voronoi diagram or delauny triangles for points, or the nodes of lines or polygons

Usage

```
## S4 method for signature 'SpatVector'
voronoi(x, bnd=NULL, tolerance=0, as.lines=FALSE, deldir=FALSE)
## S4 method for signature 'SpatVector'
delauny(x, tolerance=0, as.lines=FALSE)
```

Arguments

Χ	SpatVector
bnd	SpatVector to set the outer boundary of the voronoi diagram
tolerance	numeric >= 0, snapping tolerance (0 is no snapping)
as.lines	logical. If TRUE, lines are returned without the outer boundary
deldir	logical. If TRUE, the deldir is used instead of the GEOS C++ library method.
	It has been reported that deldir does not choke on very large data sets

Value

SpatVector

226 vrt

Examples

vrt

Virtual Raster Tiles

Description

Create a Virtual Raster Tiles (VRT) dataset from a collection of file-based raster datasets.

Usage

```
## S4 method for signature 'character'
vrt(x, filename="", overwrite=FALSE)
```

Arguments

```
x character. Filenames of raster "tiles". See tiles

filename character. Output VRT filename

overwrite logical. Should filename be overwritten if it exists?
```

Value

SpatRaster

See Also

makeTiles to create tiles; makeVRT to create a .vrt file for a file without a header

```
r <- rast(ncols=100, nrows=100)
values(r) <- 1:ncell(r)
x <- rast(ncols=2, nrows=2)
filename <- paste0(tempfile(), "_.tif")
ff <- makeTiles(r, x, filename)
ff
vrtfile <- paste0(tempfile(), ".vrt")</pre>
```

weighted.mean 227

```
v <- vrt(ff, vrtfile)
head(readLines(vrtfile))
v</pre>
```

weighted.mean

Weighted mean of layers

Description

Compute the weighted mean for each cell of the layers of a SpatRaster. The weights can be spatially variable or not.

Usage

```
## S4 method for signature 'SpatRaster,numeric'
weighted.mean(x, w, na.rm=FALSE, filename="", ...)
## S4 method for signature 'SpatRaster,SpatRaster'
weighted.mean(x, w, na.rm=FALSE, filename="", ...)
```

Arguments

Χ	SpatRaster
W	A vector of weights (one number for each layer), or for spatially variable weights, a SpatRaster with weights (should have the same extent, resolution and number of layers as \mathbf{x})
na.rm	Logical. Should missing values be removed?
filename	character. Output filename
	options for writing files as in writeRaster

Value

SpatRaster

See Also

```
Summary-methods, weighted.mean
```

```
b <- rast(system.file("ex/logo.tif", package="terra"))
# give least weight to first layer, most to last layer
wm1 <- weighted.mean(b, w=1:3)
# spatially varying weights
# weigh by column number</pre>
```

228 which.lyr

```
w1 <- init(b, "col")
# weigh by row number
w2 <- init(b, "row")
w <- c(w1, w2, w2)
wm2 <- weighted.mean(b, w=w)</pre>
```

which.lyr

Which cells are TRUE?

Description

This method returns a single layer SpatRaster with cell values that are the first layer in the input that has the value is not zero (FALSE), and, hence, is TRUE.

Usage

```
## S4 method for signature 'SpatRaster'
which.lyr(x)
```

Arguments

Х

SpatRaster

Value

SpatRaster

See Also

isTRUE, which, See Summary-methods for which.min and which.max

```
s <- rast(system.file("ex/logo.tif", package="terra"))
x <- which.lyr(s > 100)
```

width 229

width

SpatVector geometric properties

Description

width returns the minimum diameter of the geometry, defined as the smallest band that contains the geometry, where a band is a strip of the plane defined by two parallel lines. This can be thought of as the smallest hole that the geometry can be moved through, with a single rotation.

clearance returns the minimum clearance of a geometry. The minimum clearance is the smallest amount by which a vertex could be moved to produce an invalid polygon, a non-simple linestring, or a multipoint with repeated points. If a geometry has a minimum clearance of 'mc', it can be said that:

No two distinct vertices in the geometry are separated by less than 'mc' No vertex is closer than 'mc' to a line segment of which it is not an endpoint. If the minimum clearance cannot be defined for a geometry (such as with a single point, or a multipoint whose points are identical, NA is returned.

Usage

```
## $4 method for signature 'SpatVector'
width(x, as.lines=FALSE)
## $4 method for signature 'SpatVector'
clearance(x, as.lines=FALSE)
```

Arguments

x SpatVector of lines or polygonsas.lines logical. If TRUE lines are returned that define the width or clearance

Value

numeric or SpatVector

See Also

minRect

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
width(v)
clearance(v)</pre>
```

230 window

window

Set a window

Description

Experimental: Assign a window (area of interest) to a SpatRaster with a SpatExtent, or set it to NULL to remove the window. This is similar to crop without actually creating a new dataset.

Currently, the window will be forced to intersect with the extent of the SpatRaster. It is envisioned that in future versions, the window may also go outside these boundaries.

Usage

```
## S4 replacement method for signature 'SpatRaster'
window(x)<-value
## S4 method for signature 'SpatRaster'
window(x)</pre>
```

Arguments

```
x SpatRastervalue SpatExtent
```

Value

none for window<- and logical for window

See Also

```
crop, extend
```

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
global(r, "mean", na.rm=TRUE)
e <- ext(c(5.9, 6,49.95, 50))
window(r) <- e
global(r, "mean", na.rm=TRUE)
r

x <- rast(f)
xe <- crop(x, e)
global(xe, "mean", na.rm=TRUE)
b <- c(xe, r)</pre>
```

wrap 231

```
window(b)
b
window(r) <- NULL
r</pre>
```

wrap

wrap (pack) a SpatRaster or SpatVector object

Description

Wrap a SpatRaster or SpatVector object to create a Packed* object. Packed objects can be saved as an R object to disk (.rds or .RData), or passed over a connection that serializes (e.g. to nodes on a computer cluster); but with large datasets passing a filename could be more sensible in that context.

Usage

```
## S4 method for signature 'SpatRaster'
wrap(x)

## S4 method for signature 'SpatVector'
wrap(x)
```

Arguments

Х

SpatVector or SpatRaster

Value

Packed* object

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
p <- wrap(v)
p
vv <- vect(p)
vv</pre>
```

232 writeCDF

Description

Write a SpatRaster or SpatRasterDataset to a NetCDF file.

When using a SpatRasterDataset, the varname, longname, and unit should be set in the object (see examples).

Always use the ".nc" or ".cdf" file extension to assure that the file can be properly read again by GDAL

Usage

Arguments

X	SpatRaster or SpatRasterDataset
filename	character. Output filename
varname	character. Name of the dataset
longname	character. Long name of the dataset
unit	character. Unit of the data
overwrite	logical. If TRUE, filename is overwritten
zname	character. The name of the "time" dimension
prec	character. One of "double", "float", "integer", "short", "byte" or "char"
compression	Can be set to an integer between 1 (least compression) and 9 (most compression)
missval	numeric, the number used to indicate missing values
	additional arguments passed on to ncvar_def

Value

SpatRaster or SpatDataSet

See Also

```
see writeRaster for writing other file formats
```

writeRaster 233

Examples

```
f <- system.file("ex/elev.tif", package="terra")</pre>
r \leftarrow rast(f)
fname <- paste0(tempfile(), ".nc")</pre>
rr <- writeCDF(r, fname, overwrite=TRUE, varname="alt",</pre>
      longname="elevation in m above sea level", unit="m")
a <- rast(ncols=5, nrows=5, nl=50)
values(a) <- 1:prod(dim(a))</pre>
time(a) \leftarrow as.Date("2020-12-31") + 1:nlyr(a)
aa <- writeCDF(a, fname, overwrite=TRUE, varname="power",</pre>
      longname="my nice data", unit="U/Pa")
b <- sqrt(a)
s <- sds(a, b)
names(s) <- c("temp", "prec")</pre>
longnames(s) <- c("temperature (C)", "precipiation (mm)")</pre>
units(s) <- c("C", "mm")
ss <- writeCDF(s, fname, overwrite=TRUE)</pre>
# for CRAN
file.remove(fname)
```

writeRaster

Write raster data to a file

Description

Write a SpatRaster object to a file.

Usage

```
## S4 method for signature 'SpatRaster,character'
writeRaster(x, filename, overwrite=FALSE, ...)
```

Arguments

X	SpatRaster
filename	character. Output filename. Can be a single filename, or as many filenames as $nlyr(x)$ to write a file for each layer
overwrite	logical. If TRUE, filename is overwritten
	additional arguments for for writing files. See Details

Details

In writeRaster, and in other methods that generate SpatRaster objects, options for writing raster files to disk can be provided as additional arguments or, in a few cases, as the wopt argument (a named list) if the additional arguments are already used for a different purpose. The following options are available:

234 writeRaster

description
values for datatype are "INT1U", "INT2U", "INT2S", "INT4U", "INT4S", "FLT4S", "FLT8S". The first three le
file format expresses as GDAL driver names. If this argument is not supplied, the driver is derived from the filena
GDAL driver specific datasource creation options. See the GDAL documentation. For example, with the GeoTiff
the path where temporary files are to be written to.
positive integer. If the number of chunks is larger, a progress bar is shown.
numeric between 0 and 0.9 (higher values give a warning). The fraction of available RAM that terra is allowed to
memmax - the maximum amount of RAM (in GB) that terra can use when processing a raster dataset. Should be
output layer names.
numeric. value to represent missing (NA or NaN) values. See note
logical. If TRUE debugging information is printed.
postive integers. In how many steps (chunks) do you want to process the data (for debugging)
logical. If TRUE processing operates as if the dataset is very large and needs to be written to a temporary file (for

Value

SpatRaster. This function is used for the side-effect of writing values to a file.

Note

GeoTiff files are, by default, written with LZW compression. If you do not want compression, use gdal="COMPRESS=NONE".

When writing integer values the lowest available value (given the datatype) is used to represent NA for signed types, and the highest value is used for unsigned values. This can be a problem with byte data (between 0 and 255) as the value 255 is reserved for NA. To keep the value 255, you need to set another value as NAflag, or do not set a NAflag (with NAflag=NA)

See Also

see writeCDF for writing NetCDF files.

```
library(terra)
r <- rast(nrows=5, ncols=5, vals=1:25)

# create a temporary filename for the example
f <- file.path(tempdir(), "test.tif")

writeRaster(r, f, overwrite=TRUE)

writeRaster(r, f, overwrite=TRUE, gdal=c("COMPRESS=NONE", "TFW=YES", "of=COG"), datatype='INT1U')

## Or with a wopt argument:

writeRaster(r, f, overwrite=TRUE, wopt= list(gdal=c("COMPRESS=NONE", "of=COG"), datatype='INT1U'))

## remove the file</pre>
```

writeVector 235

unlink(f)

writeVector

Write SpatVector data to a file

Description

Write a SpatVector to a file. You can choose one of many file formats.

Usage

```
## S4 method for signature 'SpatVector, character'
writeVector(x, filename, filetype=NULL, layer=NULL, insert=FALSE,
    overwrite=FALSE, options="ENCODING=UTF-8")
```

Arguments

Х	SpatVector
filename	character. Output filename
filetype	character. A file format associated with a GDAL "driver" such as "ESRI Shape-file". See gdal(drivers=TRUE) or the GDAL docs. If NULL it is attempted to guess the filetype from the filename extension
layer	character. Output layer name. If NULL the filename is used
insert	logical. If TRUE, a new layer is inserted into the file, if the format allows it (e.g. GPKG allows that). See vector_layers to remove a layer
overwrite	logical. If TRUE, filename is overwritten
options	character. Format specific GDAL options such as "ENCODING=UTF-8". Use NULL or "" to not use any options

```
v <- vect(cbind(1:5,1:5))
crs(v) <- "+proj=longlat +datum=WGS84"
v$id <- 1:length(v)
v$name <- letters[1:length(v)]
tmpf1 <- tempfile()
writeVector(v, tmpf1)
x <- vect(tmpf1)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
tmpf2 <- tempfile()
writeVector(v, tmpf2)
y <- vect(tmpf2)</pre>
```

236 xmin

xmin

Get or set single values of an extent

Description

Get or set single values of an extent. Values can be set for a SpatExtent or SpatRaster, but not for a SpatVector)

Usage

```
## S4 method for signature 'SpatExtent'
xmin(x)
## S4 method for signature 'SpatExtent'
xmax(x)
## S4 method for signature 'SpatExtent'
ymin(x)
## S4 method for signature 'SpatExtent'
ymax(x)
## S4 method for signature 'SpatRaster'
xmin(x)
## S4 method for signature 'SpatRaster'
xmax(x)
## S4 method for signature 'SpatRaster'
ymin(x)
## S4 method for signature 'SpatRaster'
ymax(x)
## S4 method for signature 'SpatVector'
xmin(x)
## S4 method for signature 'SpatVector'
xmax(x)
## S4 method for signature 'SpatVector'
ymin(x)
## S4 method for signature 'SpatVector'
ymax(x)
## S4 replacement method for signature 'SpatRaster,numeric'
```

xyRowColCell 237

```
xmin(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'
xmax(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'
ymin(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'
ymax(x)<-value</pre>
```

Arguments

```
x SpatRaster, SpatExtent, or SpatVector value numeric
```

Value

SpatExtent or numeric coordinate

Examples

```
r <- rast()
ext(r)
ext(c(0, 20, 0, 20))

xmin(r)
xmin(r) <- 0
xmin(r)</pre>
```

xyRowColCell

Coordinates from a row, column or cell number and vice versa

Description

Get coordinates of the center of raster cells for a row, column, or cell number of a SpatRaster object. Or get row, column, or cell numbers from coordinates or from each other.

Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the SpatRaster object. row numbers start at 1 at the top, column numbers start at 1 at the left.

Usage

```
## S4 method for signature 'SpatRaster,numeric'
xFromCol(object, col)
## S4 method for signature 'SpatRaster,numeric'
yFromRow(object, row)
```

238 xyRowColCell

```
## S4 method for signature 'SpatRaster, numeric'
xyFromCell(object, cell)
## S4 method for signature 'SpatRaster, numeric'
xFromCell(object, cell)
## S4 method for signature 'SpatRaster,numeric'
yFromCell(object, cell)
## S4 method for signature 'SpatRaster,numeric'
colFromX(object, x)
## S4 method for signature 'SpatRaster, numeric'
rowFromY(object, y)
## S4 method for signature 'SpatRaster,numeric,numeric'
cellFromRowCol(object, row, col)
## S4 method for signature 'SpatRaster, numeric, numeric'
cellFromRowColCombine(object, row, col)
## S4 method for signature 'SpatRaster,numeric'
rowFromCell(object, cell)
## S4 method for signature 'SpatRaster, numeric'
colFromCell(object, cell)
## S4 method for signature 'SpatRaster, numeric'
rowColFromCell(object, cell)
## S4 method for signature 'SpatRaster,matrix'
cellFromXY(object, xy)
```

Arguments

object	SpatRaster
cell	integer. cell number(s)
col	integer. column number(s)
row	integer row number(s)
X	x coordinate(s)
у	y coordinate(s)
ху	matrix of x and y coordinates

Details

Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the SpatRaster (see ncell).

zonal 239

Value

```
xFromCol, yFromCol, yFromCell: vector of x or y coordinates xyFromCell: matrix(x,y) with coordinate pairs colFromX, rowFromY, cellFromXY, cellFromRowCol, rowFromCell, colFromCell: vector of row, column, or cell numbers rowColFromCell: matrix of row and column numbers
```

See Also

crds

Examples

```
r <- rast()
xFromCol(r, c(1, 120, 180))
yFromRow(r, 90)
xyFromCell(r, 10000)
xyFromCell(r, c(0, 1, 32581, ncell(r), ncell(r)+1))
cellFromRowCol(r, 5, 5)
cellFromRowCol(r, 1:2, 1:2)
cellFromRowCol(r, 1, 1:3)
# all combinations
cellFromRowColCombine(r, 1:2, 1:2)
colFromX(r, 10)
rowFromY(r, 10)
xy <- cbind(lon=c(10,5), lat=c(15, 88))
cellFromXY(r, xy)</pre>
```

zonal

Zonal statistics

Description

Compute zonal statistics, that is summarized values of a SpatRaster for each "zone" defined by another SpatRaster.

If fun is a true function, zonal may fail for very large SpatRaster objects, except for the functions ("mean", "min", "max", or "sum").

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
zonal(x, z, fun=mean, ..., as.raster=FALSE, filename="", wopt=list())
```

240 zonal

Arguments

X	SpatRaster
z	SpatRaster with values representing zones
fun	function to be applied to summarize the values by zone. Either as character: "mean", "min", "max", "sum", or, for relatively small SpatRasters, a proper function
•••	additional arguments passed to fun
as.raster	logical. If TRUE, a SpatRaster is returned with the zonal statistic for each zone
filename	character. Output filename (ignored if as.raster=FALSE
wopt	list with additional arguments for writing files as in writeRaster

Value

A data.frame with a value for each zone (unique value in zones)

See Also

See global for "global" statistics (i.e., all of x is considered a single zone), app for local statistics, and extract for summarizing values for polygons

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
z <- rast(r)
values(z) <- rep(c(1:2, NA, 3:4), each=20)
names(z) <- "zone"
zonal(r, z, "sum", na.rm=TRUE)

# multiple layers
r <- rast(system.file("ex/logo.tif", package = "terra"))
# zonal layer
z <- rast(r, 1)
names(z) <- "zone"
values(z) <- rep(c(1:2, NA, c(3:4)), each=ncell(r)/5, length.out=ncell(r))

zonal(r, z, "mean", na.rm = TRUE)

# raster of zonal values
zr <- zonal(r, z, "mean", na.rm = TRUE, as.raster=TRUE)</pre>
```

zoom 241

zoom

Zoom in on a map

Description

Zoom in on a map (plot) by providing a new extent, by default this is done by clicking twice on the map.

Usage

```
## S4 method for signature 'SpatRaster'
zoom(x, e=draw(), maxcell=100000, layer=1, new=FALSE, ...)
## S4 method for signature 'SpatVector'
zoom(x, e=draw(), new=FALSE, ...)
```

Arguments

Χ	SpatRaster
е	SpatExtent
maxcell	positive integer. Maximum number of cells used for the map
layer	positive integer to select the layer to be used
new	logical. If TRUE, the zoomed in map will appear on a new device (window)
	additional arguments passed to plot

Value

```
SpatExtent (invisibly)
```

See Also

```
draw, plot
```

Index

!,SpatRaster-method(Compare-methods),	erase, 77 expanse, 78
* classes	extract, 82
options, 140	extract, 82 extremes, 84
SpatExtent-class, 188	factors, 85
SpatRaster-class, 192	fillHoles, 87
Spatkaster class, 192 SpatVector-class, 195	fillTime, 88
* math	focalValues, 98
Arith-methods, 29	gaps, 100
atan2, 35	geomtype, 103
Compare-methods, 54	head and tail, 106
Math-methods, 127	hist, 107
modal, 132	image, 109
* methods	- ·
	impose, 110
activeCat, 18	inset, 113
aggregate, 21	intersect, 114
animate, 25	is.bool, 116
app, 26	lapp, 118
Arith-methods, 29	lines, 122
as.data.frame, 31	makeTiles, 123
as.list,32	makeVRT, 124
as.raster, 33	mask, 125
barplot, 37	match, 126
boundaries, 38	Math-methods, 127
cartogram, 43	merge, 129
catalyze, 43	mergeTime, 131
cells, 44	mosaic, 133
cellSize, 46	patches, 143
colors, 53	perim, 144
Compare-methods, 54	persp, 145
contour, 56	plot, 146
convHull, 57	plotRGB, 149
cover, 58	predict, 151
crosstab, 61	quantile, 156
deepcopy, 64	query, 157
densify, 65	rapp, 158
diff, 68	rast, 159
disagg, 72	read and write, 164
dots, 75	relate, 166

replace, 169	as.spatvector, 33
RGB, 172	atan2, 35
sapp, 174	autocorrelation, 36
scatterplot, 177	barplot, 37
sds, 178	boundaries, 38
selectRange, 182	boxplot, 39
setValues, 183	buffer, 40
sharedPaths, 185	c, 42
simplifyGeom, 187	cartogram, 43
sources, 187	catalyze, 43
Spatial interpolation, 189	cells, 44
split, 196	cellSize, 46
sprc, 197	centroids, 47
summarize, 202	clamp, 48
summary, 204	classify, 49
svc, 205	click, 51
symdif, 206	coerce, 52
tapp, 206	colors, 53
text, 209	Compare-methods, 54
topology, 213	compareGeom, 55
union, 215	contour, 56
values, 220	convHull, 57
vect, 221	cover, 58
vector_layers, 225	crds, 59
•	
vrt, 226	crop, 60
width, 229	crosstab, 61
window, 230	crs, 62
wrap, 231	deepcopy, 64
writeCDF, 232	densify, 65
writeRaster, 233	density, 66
writeVector, 235	depth, 66
* package	describe, 67
terra-package, 6	diff, 68
* spatial	dimensions, 69
activeCat, 18	direction, 71
add, 19	disagg, 72
adjacent, 19	distance, 73
aggregate, 21	dots, 75
align, 22	draw, 7 6
all.equal, 24	erase, 77
animate, 25	expanse, 78
app, 26	ext, 79
approximate, 28	extend, 80
Arith-methods, 29	extract, 82
as.character, 30	extremes, 84
as.data.frame, 31	factors, 85
as.list,32	fillHoles,87
as.raster, 33	fillTime, 88

61: 00	1.15
flip, 89	persp, 145
focal, 90	plot, 146
focal3D, 92	plotRGB, 149
focalCor, 93	predict, 151
focalCpp, 94	project, 154
focalMat, 96	quantile, 156
focalReg, 97	query, 157
focalValues, 98	rapp, 158
freq, 99	rast, 159
gaps, 100	rasterize, 162
gdal, 101	read and write, 164
geom, 102	rectify, 166
geomtype, 103	relate, 166
global, 104	rep, 169
gridDistance, 105	replace, 169
head and tail, 106	resample, 170
hist, 107	rescale, 171
ifel, 108	RGB, 172
image, 109	rotate, 173
impose, 110	sapp, 174
initialize, 110	sbar, 175
inplace, 111	scale, 176
inset, 113	scatterplot, 177
intersect, 114	sds, 178
is.bool, 116	segregate, 179
is.lonlat, 117	sel, 180
lapp, 118	selectHighest, 181
linearUnits, 121	selectRange, 182
lines, 122	setValues, 183
makeTiles, 123	shade, 184
makeVRT, 124	sharedPaths, 185
mask, 125	shift, 186
match, 126	simplifyGeom, 187
Math-methods, 127	sources, 187
mem, 129	SpatExtent-class, 188
merge, 129	Spatial interpolation, 189
mergeTime, 131	SpatRaster-class, 192
mosaic, 133	spatSample, 193
na.omit, 134	SpatVector-class, 195
NAflag, 135	spin, 195
names, 136	split, 196
nearest, 138	sprc, 197
north, 139	stretch, 198
options, 140	subset, 199
origin, 141	subset-vector, 200
pairs, 142	subst, 201
patches, 143	summarize, 202
perim, 144	summary, 204

	svc, 205	(subset), 199
	symdif, 206	[,SpatRaster,data.frame,missing-method
	tapp, 206	(extract), 82
	terra-package, 6	[,SpatRaster,logical,missing-method
	terrain, 208	(replace), 169
	text, 209	[,SpatRaster,matrix,missing-method
	tighten, 210	(extract), 82
	time, 211	[,SpatRaster,missing,missing-method
	tmpFiles, 212	(extract), 82
	topology, 213	[,SpatRaster,missing,numeric-method
	transpose, 214	(extract), 82
	trim, 215	[,SpatRaster,numeric,missing-method
	union, 215	(extract), 82
	unique, 217	[,SpatRaster,numeric,numeric-method
	units, 218	(extract), 82
	valid, 219	[,SpatRasterCollection,numeric,missing-method
	values, 220	(subset), 199
	vect, 221 vector-attributes, 224	[,SpatRasterDataset,character,missing-method (subset), 199
	vector_layers, 225	[,SpatRasterDataset,logical,missing-method
	voronoi, 225	(subset), 199
	vrt, 226	[,SpatRasterDataset,numeric,missing-method
	which.lyr, 228	(subset), 199
	width, 229	[,SpatRasterDataset,numeric,numeric-method
	window, 230	(subset), 199
	wrap, 231	[,SpatVector,SpatExtent,missing-method
	writeCDF, 232	(extract), 82
	writeRaster, 233	[,SpatVector,SpatVector,missing-method
	writeVector, 235	(extract), 82
	xmin, 236	[,SpatVector,data.frame,missing-method
	xyRowColCell, 237	(subset-vector), 200
	zonal, 239 zoom, 241	[,SpatVector,logical,character-method (subset-vector), 200
↓ III	ivar	[,SpatVector,logical,missing-method
^ uII	freq, 99	(subset-vector), 200
	modal, 132	[,SpatVector,logical,numeric-method
[, <i>1</i> 4		(subset-vector), 200
	patExtent,missing,missing-method	[,SpatVector,matrix,missing-method
_, _,	(ext), 79	(subset-vector), 200
[,Sp	patExtent,numeric,missing-method	[,SpatVector,missing,character-method
Г С.	(ext), 79	(subset-vector), 200
L,5p	patRaster,SpatExtent,missing-method (extract),82	[,SpatVector,missing,missing-method (subset-vector), 200
[,Sp	patRaster,SpatRaster,missing-method (extract),82	[,SpatVector,missing,numeric-method (subset-vector), 200
[,Sp	patRaster, SpatVector, missing-method (extract), 82	[,SpatVector,numeric,character-method (subset-vector), 200
ΓSr	patRaster,character,missing-method	[,SpatVector,numeric,missing-method
L , J	dendater, endrateer, missing method	Lipativeetoi indinei 16, m1331118 meetiod

(subset-vector), 200	(replace), 169
[,SpatVector,numeric,numeric-method	<pre>[[<-,SpatRaster,numeric,missing-method</pre>
(subset-vector), 200	(replace), 169
[,SpatVectorCollection,numeric,missing-method	d[[<-,SpatVector,character,missing-method
(svc), 205	(vector-attributes), 224
<pre>[<-,SpatExtent,numeric,missing-method</pre>	[[<-,SpatVector,numeric,missing-method
(ext), 79	(vector-attributes), 224
<pre>[<-,SpatRaster,SpatRaster,ANY-method</pre>	\$ (vector-attributes), 224
(replace), 169	\$,SpatExtent-method(ext),79
[<-,SpatRaster,SpatVector,missing-method	\$,SpatRaster-method(subset), 199
(replace), 169	\$,SpatRasterDataset-method(subset), 199
[<-,SpatRaster,logical,missing-method	<pre>\$,SpatVector-method</pre>
(replace), 169	(vector-attributes), 224
[<-,SpatRaster,missing,missing-method	<pre>\$<- (vector-attributes), 224</pre>
(replace), 169	<pre>\$<-,SpatExtent-method(ext), 79</pre>
[<-,SpatRaster,missing,numeric-method	<pre>\$<-,SpatRaster-method(replace), 169</pre>
(replace), 169	<pre>\$<-,SpatVector-method</pre>
[<-,SpatRaster,numeric,missing-method	(vector-attributes), 224
(replace), 169	%in% (match), 126
[<-,SpatRaster,numeric,numeric-method	%in%, SpatRaster-method (match), 126
(replace), 169	
[<-,SpatRasterDataset,numeric,missing-method	activeCat, 18, 44, 86
(sds), 178	activeCat,SpatRaster-method
[<-,SpatVector,ANY,ANY-method	(activeCat), 18
(vector-attributes), 224	<pre>activeCat<- (activeCat), 18</pre>
[<-,SpatVector,ANY,missing-method	activeCat<-,SpatRaster-method
(vector-attributes), 224	(activeCat), 18
[<-,SpatVector,missing,ANY-method	add, 19
(vector-attributes), 224	add<-, 7, 16
[/- SpatVectorCollection numeric missing-met	add<- (add), 19
[<-,SpatVectorCollection,numeric,missing-methods), 205	"add<-,SpatRaster,SpatRaster-method
	(add), 19
[[,SpatRaster,character,missing-method	adjacent, 8, 12, 19, 138, 167
(subset), 199	adjacent, SpatRaster-method (adjacent),
[[,SpatRaster,logical,missing-method	19
(subset), 199	adjacent, SpatVector-method (adjacent),
[[,SpatRaster,numeric,missing-method	19
(subset), 199	aggregate, 7, 13, 21, 72, 170, 206
[[,SpatRasterDataset,ANY,ANY-method	aggregate, SpatRaster-method
(subset), 199	(aggregate), 21
[[,SpatVector,character,missing-method	aggregate, SpatVector-method
(vector-attributes), 224	(aggregate), 21
[[,SpatVector,logical,missing-method	align, <i>14</i> , 22
(vector-attributes), 224	align,SpatExtent,numeric-method
[[,SpatVector,numeric,missing-method	(align), 22
(vector-attributes), 224	align,SpatExtent,SpatRaster-method
[[,SpatVectorCollection,numeric,missing-method	, <u> </u>
(svc), 205	all (summarize), 202
<pre>[[<-,SpatRaster,character,missing-method</pre>	all, SpatRaster-method (summarize), 202

all.equal, 24, 54	as.character,SpatExtent-method
all.equal,SpatRaster,SpatRaster-method	(as.character), 30
(all.equal), 24	as.character,SpatRaster-method
animate, 25	(as.character), 30
animate, SpatRaster-method (animate), 25	as.contour, 15
any (summarize), 202	as.contour (contour), 56
any, SpatRaster-method(summarize), 202	as.contour,SpatRaster-method(contour),
app, 7, 16, 26, 29, 54, 104, 118, 119, 127, 128,	56
156, 158, 159, 174, 202, 203, 207,	as.data.frame, 13, 31, 52, 220
240	as.data.frame,SpatRaster-method
app, SpatRaster-method (app), 26	(as.data.frame), 31
app, SpatRasterDataset-method(app), 26	as.data.frame,SpatVector-method
apply, 26	(as.data.frame), 31
approx, 28	as.factor(factors), 85
approximate, 8, 16, 28, 88	as.factor,SpatRaster-method(factors),
approximate, SpatRaster-method	85
(approximate), 28	as.int, 8
area (expanse), 78	as.int(is.bool), 116
area, SpatRaster-method (expanse), 78	as.int,SpatRaster-method(is.bool),116
area, SpatVector-method (expanse), 78	as.integer,SpatRaster-method(is.bool),
Arith,missing,SpatRaster-method	116
(Arith-methods), 29	as.lines, <i>15</i>
Arith, numeric, SpatExtent-method	as.lines(as.spatvector),33
(Arith-methods), 29	as.lines,SpatExtent-method
Arith, numeric, SpatRaster-method	(as.spatvector), 33
(Arith-methods), 29	as.lines,SpatRaster-method
Arith, SpatExtent, numeric-method	(as.spatvector), 33
(Arith-methods), 29	as.lines,SpatVector-method
Arith,SpatExtent,SpatExtent-method	(as.spatvector), 33
(Arith-methods), 29	as.list, <i>13</i> , <i>31</i> , 32
Arith, SpatRaster, missing-method	as.list,SpatRaster-method(as.list),32
(Arith-methods), 29	as.list,SpatVector-method(as.list),32
Arith, SpatRaster, numeric-method	as.logical,SpatRaster-method(is.bool),
(Arith-methods), 29	116
Arith, SpatRaster, SpatRaster-method	as.matrix, 9, 31, 220
(Arith-methods), 29	as.matrix(coerce), 52
Arith, SpatVector, SpatVector-method	as.matrix,SpatRaster-method(coerce), 52
(Arith-methods), 29	as.numeric(catalyze), 43
Arith-methods, 7, 29, 54	as.numeric,SpatRaster-method
arrow (north), 139	(catalyze), 43
arrows, 123	as.points, <i>15</i> , <i>17</i>
as.array, 9	as.points(as.spatvector), 33
as.array (coerce), 52	as.points,SpatExtent-method
as.array, SpatRaster-method (coerce), 52	(as.spatvector), 33
as.bool, 8	as.points,SpatRaster-method
as.bool(is.bool), 116	(as.spatvector), 33
as.bool, SpatRaster-method (is.bool), 116	as.points,SpatVector-method
as.character, 30	(as.spatvector), 33

as.polygons, <i>15</i> , <i>17</i> , <i>52</i>	catalyze, 18, 43, 86
as.polygons(as.spatvector),33	<pre>catalyze,SpatRaster-method(catalyze),</pre>
as.polygons,SpatExtent-method	43
(as.spatvector), 33	categories, 111
as.polygons,SpatRaster-method	categories (factors), 85
(as.spatvector), 33	<pre>categories,SpatRaster-method(factors),</pre>
as.polygons,SpatVector-method	85
(as.spatvector), 33	cats, <i>18</i> , <i>44</i>
as.raster, <i>33</i> , 33	cats (factors), 85
as.raster,SpatRaster-method	cats, SpatRaster-method (factors), 85
(as.raster), 33	cellFromRowCol, <i>10</i>
as.spatvector, 33	<pre>cellFromRowCol (xyRowColCell), 237</pre>
as.vector(coerce), 52	<pre>cellFromRowCol,SpatRaster,numeric,numeric-method</pre>
as.vector,SpatRaster-method(coerce),52	(xyRowColCell), 237
atan2, 35	<pre>cellFromRowColCombine, 10</pre>
atan2,SpatRaster,SpatRaster-method	<pre>cellFromRowColCombine (xyRowColCell),</pre>
(atan2), 35	237
atan_2 (atan2), 35	cellFromRowColCombine,SpatRaster,numeric,numeric-method
atan_2,SpatRaster,SpatRaster-method	(xyRowColCell), 237
(atan2), 35	cellFromXY, 10
autocor, 9	cellFromXY (xyRowColCell), 237
autocor(autocorrelation), 36	cellFromXY,SpatRaster,data.frame-method
autocor,numeric-method	(xyRowColCell), 237
(autocorrelation), 36	cellFromXY,SpatRaster,matrix-method
autocor, SpatRaster-method	(xyRowColCell), 237
(autocorrelation), 36	cells, 10, 16, 44, 83
autocorrelation, 36	cells,SpatRaster,missing-method
axis, <i>147</i>	(cells), 44
harplet 16 27 20	cells,SpatRaster,numeric-method
barplet, SpatPaster_method (barplet) 37	(cells), 44
barplot, SpatRaster-method (barplot), 37	cells,SpatRaster,SpatExtent-method
boundaries, 8, 38, 143	(cells), 44
boundaries,SpatRaster-method (boundaries),38	cells, SpatRaster, SpatVector-method
boxplot, 16, 38, 39, 40, 107, 142	(cells), 44
boxplot, 70, 38, 39, 40, 107, 142 boxplot, SpatRaster-method (boxplot), 39	cellSize, 8, 16, 46, 78
buffer, 13, 40, 115	cellSize, SpatRaster-method (cellSize),
buffer, 73, 40, 773 buffer, SpatRaster-method (buffer), 40	46
buffer, Spatkaster - method (buffer), 40	centroids, <i>12</i> , 47
but fer, spacked to fine thou (but fer), 40	centroids, SpatVector-method
DXP, 40	(centroids), 47
c, 7, 16, 19, 42, 131, 215	clamp, 48
c, SpatRaster-method (c), 42	<pre>clamp, numeric-method (clamp), 48</pre>
c, SpatRasterDataset-method(c), 42	<pre>clamp, SpatRaster-method (clamp), 48</pre>
c, SpatVector-method (c), 42	classify, 8, 17, 48, 49, 108, 129, 135, 201
c,SpatVectorCollection-method(c),42	<pre>classify,SpatRaster-method(classify),</pre>
cartogram, 15, 43, 76	49
cartogram, SpatVector-method	clearance, 14
(cartogram), 43	clearance (width), 229

clearance, SpatVector-method (width), 229	crds, 12, 16, 59, 239
click, 13, 15, 51, 77, 180	crds, SpatRaster-method (crds), 59
click, missing-method (click), 51	crds, SpatVector-method (crds), 59
click, SpatRaster-method (click), 51	crop, 7, 13, 14, 60, 77, 80, 81, 115, 126, 167,
click, SpatVector-method (click), 51	170, 180, 216, 230
coerce, 32, 52	crop, SpatRaster-method (crop), 60
colFromCell (xyRowColCell), 237	crop, SpatRasterDataset-method (crop), 60
colFromCell, SpatRaster, numeric-method	crop, SpatVector-method (crop), 60
(xyRowColCell), 237	crosstab, <i>8</i> , 61
colFromX, 10	crosstab, SpatRaster, missing-method
colFromX (xyRowColCell), 237	(crosstab), 61
colFromX, SpatRaster, numeric-method	crs, 10, 12, 34, 62, 121, 154, 155, 194, 222
(xyRowColCell), 237	crs, SpatRaster-method (crs), 62
	crs, SpatRasterDataset-method (crs), 62
colorize, 149, 150	crs, SpatVector-method (crs), 62
colorize (RGB), 172	crs, SpatVectorProxy-method (crs), 62
colorize, SpatRaster-method (RGB), 172	crs<- (crs), 62
colors, 53	crs<-, SpatRaster, ANY-method (crs), 62
coltab (colors), 53	crs<-, SpatRaster-method (crs), 62
coltab, SpatRaster-method (colors), 53	crs<-, SpatVector, ANY-method (crs), 62
coltab<- (colors), 53	crs<-, SpatVector-method (crs), 62
coltab<-, SpatRaster-method (colors), 53	cut, 38
Compare, numeric, SpatRaster-method	Cut, 50
(Compare-methods), 54	data.frame, <i>31</i> , <i>165</i> , <i>220</i>
Compare, SpatExtent, SpatExtent-method	datatype (geomtype), 103
(Compare-methods), 54	datatype, SpatVector-method (geomtype),
Compare, SpatRaster, character-method	103
(Compare-methods), 54	deepcopy, 64
Compare, SpatRaster, numeric-method	deepcopy, SpatRaster-method (deepcopy),
(Compare-methods), 54	64
Compare, SpatRaster, SpatRaster-method	<pre>deepcopy, SpatVector-method (deepcopy),</pre>
(Compare-methods), 54	64
Compare-methods, 7, 54	delauny, 12
compareGeom, 10, 16, 24, 55	delauny (voronoi), 225
compareGeom, SpatRaster, SpatRaster-method	delauny, SpatVector-method (voronoi), 225
(compareGeom), 55	deldir, 225
contour, 15, 56, 56	densify, 65
contour, SpatRaster-method (contour), 56	densify, 65 densify, SpatVector-method (densify), 65
convHull, <i>12</i> , 57	density, 16, 66
convHull, SpatVector-method (convHull),	density, 70,00 density, SpatRaster-method (density), 66
57	depth, 66, 212
cor, <i>142</i>	depth, 50, 272 depth, SpatRaster-method (depth), 66
cov.wt, 120	
cover, 8, 13, 58, 108, 163	<pre>depth<- (depth), 66 depth<-, SpatRaster-method (depth), 66</pre>
cover, SpatRaster, SpatRaster-method	describe, 67, 101, 178, 179
(cover), 58	describe, character-method (describe), 67
cover, SpatVector, SpatVector-method	diff, 68
(cover), 58	diff, SpatRaster-method (diff), 68
cppFunction, 95	dim (dimensions), 69

dim, SpatRaster-method (dimensions), 69	<pre>ext,SpatExtent-method(ext),79</pre>
dim,SpatRasterDataset-method	ext, Spatial-method (ext), 79
(dimensions), 69	ext, SpatRaster-method (ext), 79
dim, SpatVector-method (dimensions), 69	ext, SpatRasterDataset-method (ext), 79
dim,SpatVectorProxy-method	ext, SpatVector-method (ext), 79
(dimensions), 69	ext, SpatVectorProxy-method (ext), 79
<pre>dim<-,SpatRaster-method(dimensions), 69</pre>	ext<- (ext), 79
dimensions, 69	<pre>ext<-,SpatRaster,numeric-method(ext),</pre>
direction, 8,71	79
direction, SpatRaster-method	ext<-,SpatRaster,SpatExtent-method
(direction), 71	(ext), 79
disagg, 7, 13, 16, 22, 72, 170	extend, 7, 80, 170, 216, 230
disagg, SpatRaster-method (disagg), 72	extend, SpatExtent-method (extend), 80
disagg, SpatVector-method (disagg), 72	extend, SpatRaster-method (extend), 80
distance, 8, 16, 41, 71, 73, 106	extract, 9, 13, 17, 82, 104, 182, 240
distance, matrix, matrix-method	extract, SpatRaster, data.frame-method
(distance), 73	(extract), 82
distance, matrix, missing-method	extract,SpatRaster,matrix-method
(distance), 73	(extract), 82
distance, SpatRaster, missing-method	extract, SpatRaster, numeric-method
(distance), 73	(extract), 82
distance, SpatRaster, SpatVector-method	<pre>extract,SpatRaster,SpatExtent-method</pre>
(distance), 73	(extract), 82
distance, SpatVector, ANY-method	extract, SpatRaster, SpatVector-method
(distance), 73	(extract), 82
distance, SpatVector, SpatVector-method	extract, SpatVector, SpatVector-method
(distance), 73	(extract), 82
dots, 15, 75	extremes, 84
dots, SpatVector-method (dots), 75	
draw, 14–16, 23, 52, 76, 150, 241	factor, 85
draw, character-method (draw), 76	factors, 85
draw, missing-method (draw), 76	fileBlocksize(read and write), 164
	filled.contour, 56
erase, 13, 14, 77, 206	fillHoles, <i>12</i> , <i>14</i> , 87, <i>100</i>
erase,SpatVector,missing-method	fillHoles,SpatVector-method
(erase), 77	(fillHoles), 87
erase,SpatVector,SpatExtent-method	fillTime, 11, 29, 88, 131
(erase), 77	<pre>fillTime,SpatRaster-method(fillTime),</pre>
erase,SpatVector,SpatVector-method	88
(erase), 77	flip, 7, 13, 89, 171, 186, 214
expanse, 8, 12, 47, 78	flip, SpatRaster-method (flip), 89
expanse, SpatRaster-method (expanse), 78	flip, SpatVector-method (flip), 89
expanse, SpatVector-method (expanse), 78	focal, 8, 28, 29, 39, 90, 92–98, 104, 143, 209
ext, 10, 12, 14, 16, 23, 60, 70, 79, 81, 188	<pre>focal,SpatRaster-method(focal),90</pre>
ext, Extent-method (ext), 79	focal3D, <i>91</i> , 92
ext, missing-method (ext), 79	focal3D, SpatRaster-method (focal3D), 92
ext, numeric-method (ext), 79	focalCor, 9, 16, 91, 93
ext, Raster-method (ext), 79	${\tt focalCor,SpatRaster-method(focalCor)},$
ext,sf-method(ext),79	93

focalCpp, 8, 91, 94	ifel, 29, 54, 108
<pre>focalCpp, SpatRaster-method (focalCpp),</pre>	ifel, SpatRaster-method (ifel), 108
94	ifelse, <i>108</i>
focalMat, 91, 96	image, 15, 109, 109, 147
focalReg, 8, 91, 94, 97	image, SpatRaster-method (image), 109
<pre>focalReg,SpatRaster-method(focalReg),</pre>	impose, 110
97	<pre>impose,SpatRasterCollection-method</pre>
focalValues, 91, 95, 98, 98, 221	(impose), 110
focalValues, SpatRaster-method	inext (inset), 113
(focalValues), 98	<pre>inext,SpatVector-method(inset), 113</pre>
free_RAM (mem), 129	init, 8, 183, 184
freq, 8, 62, 99	init (initialize), 110
freq, SpatRaster-method (freq), 99	init, SpatRaster-method (initialize), 110
	initialize, 110
gaps, 14, 100, 185, 187, 213	inMemory, <i>10</i> , <i>11</i>
<pre>gaps,SpatVector,SpatExtent-method</pre>	inMemory (sources), 187
(gaps), 100	<pre>inMemory,SpatRaster-method(sources),</pre>
gaps, SpatVector-method (gaps), 100	187
gdal, 101, <i>161</i>	inplace, 111
gdalCache (gdal), 101	inset, 15, 113, 139, 171, 175
geom, 12, 31, 32, 59, 102, 106, 221, 222	<pre>inset,SpatRaster-method(inset), 113</pre>
<pre>geom, SpatVector-method (geom), 102</pre>	<pre>inset,SpatVector-method(inset), 113</pre>
geomtype, 103	interpolate, 9
<pre>geomtype,Spatial-method(geomtype), 103</pre>	interpolate (Spatial interpolation), 189
<pre>geomtype,SpatVector-method(geomtype),</pre>	<pre>interpolate,SpatRaster-method(Spatial</pre>
103	interpolation), 189
<pre>geomtype,SpatVectorProxy-method</pre>	intersect, 13, 14, 60, 77, 114, 167, 180, 216
(geomtype), 103	<pre>intersect,SpatExtent,SpatExtent-method</pre>
global, 8, 16, 78, 104, 120, 156, 204, 240	(intersect), 114
global, SpatRaster-method (global), 104	<pre>intersect,SpatExtent,SpatVector-method</pre>
gridDistance, 105	(intersect), 114
gridDistance,SpatRaster-method	<pre>intersect,SpatVector,SpatExtent-method</pre>
(gridDistance), 105	(intersect), 114
	<pre>intersect,SpatVector,SpatVector-method</pre>
hasMinMax (extremes), 84	(intersect), 114
hasMinMax, SpatRaster-method (extremes),	is.bool, 116
84	is.bool,SpatRaster-method(is.bool), 116
hasValues (sources), 187	is.factor(factors), 85
hasValues, SpatRaster-method (sources), 187	is.factor,SpatRaster-method(factors), 85
head (head and tail), 106	is.finite,SpatRaster-method
head and tail, 106	(Compare-methods), 54
head, SpatRaster-method (head and tail),	is.infinite,SpatRaster-method
106	(Compare-methods), 54
head, SpatVector-method (head and tail),	is.int(is.bool), 116
106	is.int,SpatRaster-method(is.bool),116
hist, 16, 38, 40, 107, 107, 142	is.lines(geomtype), 103
hist, SpatRaster-method (hist), 107	<pre>is.lines,SpatVector-method(geomtype),</pre>

103	levels (factors), 85
is.lonlat, <i>10</i> , <i>12</i> , <i>16</i> , 117	levels, SpatRaster-method (factors), 85
is.lonlat,SpatRaster-method	levels<-(factors), 85
(is.lonlat), 117	levels<-,SpatRaster-method(factors),85
is.lonlat,SpatVector-method	linearUnits, <i>12</i> , 121
(is.lonlat), 117	linearUnits,SpatRaster-method
is.na,SpatRaster-method	(linearUnits), 121
(Compare-methods), 54	linearUnits,SpatVector-method
is.nan,SpatRaster-method	(linearUnits), 121
(Compare-methods), 54	lines, 15, 122, 146, 147
is.points(geomtype), 103	lines, SpatExtent-method (lines), 122
<pre>is.points,SpatVector-method(geomtype),</pre>	lines, SpatRaster-method (lines), 122
103	lines, SpatVector-method (lines), 122
is.polygons (geomtype), 103	log (Math-methods), 127
is.polygons,SpatVector-method	log, SpatRaster-method (Math-methods),
(geomtype), 103	127
is.related (relate), 166	Logic, logical, SpatRaster-method
<pre>is.related,SpatExtent,SpatVector-method</pre>	(Compare-methods), 54
(relate), 166	Logic, numeric, SpatRaster-method
<pre>is.related,SpatVector,SpatExtent-method</pre>	(Compare-methods), 54
(relate), 166	Logic, SpatRaster, logical-method
<pre>is.related,SpatVector,SpatVector-method</pre>	(Compare-methods), 54
(relate), 166	Logic, SpatRaster, numeric-method
is.valid, <i>14</i>	(Compare-methods), 54
is.valid(valid), 219	Logic, SpatRaster, SpatRaster-method
is.valid, SpatVector-method (valid), 219	(Compare-methods), 54
isFALSE, SpatRaster-method (is.bool), 116	Logic-methods, 7
isTRUE, 228	Logic-methods (Compare-methods), 54
isTRUE, SpatRaster-method (is.bool), 116	longnames (names), 136
	longnames, SpatRaster-method (names), 136
lapp, 7, 16, 27, 118, 159, 174	longnames, SpatRasterDataset-method
<pre>lapp,SpatRaster-method(lapp), 118</pre>	(names), 136
<pre>lapp,SpatRasterDataset-method(lapp),</pre>	longnames<- (names), 136
118	<pre>longnames<-,SpatRaster-method(names),</pre>
lapply, <i>174</i>	136
layerCor, 8, 16, 94, 119	<pre>longnames<-,SpatRasterDataset-method</pre>
layerCor, SpatRaster-method (layerCor), 119	(names), 136
legend, <i>147</i>	make.unique, <i>137</i>
length, <i>14</i>	makeNodes, 14
length (dimensions), 69	makeNodes (topology), 213
length,SpatRasterCollection-method	<pre>makeNodes,SpatVector-method(topology),</pre>
(dimensions), 69	213
length,SpatRasterDataset-method	makeTiles, 123, 226
(dimensions), 69	makeTiles,SpatRaster-method
<pre>length, SpatVector-method (dimensions),</pre>	(makeTiles), 123
69	makeValid, <i>14</i>
length, SpatVectorCollection-method	makeValid(valid), 219
(dimensions), 69	makeValid, SpatVector-method (valid), 219

makeVRT, 124, 226	(merge), 129
mask, 8, 60, 77, 108, 125, 163	mergeLines, 14
mask,SpatRaster,SpatRaster-method	mergeLines (topology), 213
(mask), 125	mergeLines,SpatVector-method
mask,SpatRaster,SpatVector-method	(topology), 213
(mask), 125	mergeTime, <i>11</i> , 131
mask,SpatVector,SpatVector-method	mergeTime,SpatRasterDataset-method
(mask), 125	(mergeTime), 131
match, 126, <i>127</i>	min (summarize), 202
match, SpatRaster-method (match), 126	min, SpatRaster-method (summarize), 202
math, 119	minmax, 9
math (Math-methods), 127	minmax (extremes), 84
Math, SpatExtent-method (Math-methods),	minmax, SpatRaster-method (extremes), 84
127	minRect, 229
Math, SpatRaster-method (Math-methods), 127	minRect (convHull), 57
	minRect, SpatVector-method (convHull), 57 modal, 132, 202, 203
math, SpatRaster-method (Math-methods), 127	modal, 132, 202, 203 modal, SpatRaster-method (modal), 132
Math-methods, 7, 14, 127	mosaic, 7, 130, 133, 197, 216
Math2, SpatExtent-method (Math-methods),	mosaic, SpatRaster, SpatRaster-method
127	(mosaic), 133
Math2, SpatRaster-method (Math-methods),	mosaic,SpatRasterCollection,missing-method
127	(mosaic), 133
Math2, SpatVector-method (Math-methods),	
127	na.omit, <i>12</i> , 134
Math2-methods (Math-methods), 127	na.omit, SpatVector-method (na.omit), 134
max (summarize), 202	NAflag, 10, 16, 135
max, SpatRaster-method (summarize), 202	NAflag, SpatRaster-method (NAflag), 135
mean (summarize), 202	NAflag<- (NAflag), 135
mean, SpatExtent-method (summarize), 202	NAflag<-, SpatRaster-method (NAflag), 135
mean, SpatRaster-method (summarize), 202	name (names), 136
mean, SpatVector-method (summarize), 202	name<- (names), 136
median (summarize), 202	names, 10–12, 107, 136, 151, 218
median, SpatRaster-method (summarize),	names, SpatRaster-method (names), 136
202	names, SpatRasterDataset-method (names),
median, SpatVector-method (summarize),	136
202	names, SpatVector-method (names), 136
mem, 129	names, SpatVectorProxy-method (names),
mem_info, 11, 140	136
mem_info (mem), 129	names<- (names), 136
merge, 7, 13, 81, 129, 130, 133, 197, 216 merge, SpatExtent, SpatExtent-method	names<-,SpatRaster-method (names), 136 names<-,SpatRasterDataset-method
(merge), 129	(names), 136
merge, SpatRaster, SpatRaster-method	names<-, SpatVector-method (names), 136
(merge), 129	ncell, 10, 238
merge,SpatRasterCollection,missing-method	ncell (dimensions), 69
(merge), 129	ncell, ANY-method (dimensions), 69
merge, SpatVector, data.frame-method	ncell, SpatRaster-method (dimensions), 69

ncell,SpatRasterDataset-method	pairs, SpatRaster-method (pairs), 142
(dimensions), 69	par, <i>122</i> , <i>123</i>
ncol, 9, 12	patches, 9, 16, 39, 143
ncol (dimensions), 69	patches, SpatRaster-method (patches), 143
ncol, SpatRaster-method (dimensions), 69	perim, <i>12</i> , 144
ncol,SpatRasterDataset-method	perim, SpatVector-method (perim), 144
(dimensions), 69	perimeter (perim), 144
ncol, SpatVector-method (dimensions), 69	perimeter, SpatVector-method (perim), 144
ncol<- (dimensions), 69	persp, 15, 145, 145
ncol<-,SpatRaster,numeric-method	persp, SpatRaster-method (persp), 145
(dimensions), 69	plot, 15, 16, 25, 43, 56, 66, 76, 109, 139, 146,
ncvar_def, 232	147, 149, 150, 172, 175, 210, 241
nearby, <i>12</i> , <i>20</i> , <i>167</i>	<pre>plot,SpatExtent,missing-method(plot),</pre>
nearby (nearest), 138	146
nearby, SpatVector-method (nearest), 138	plot,SpatRaster,character-method
nearest, <i>12</i> , 138	(plot), 146
nearest, SpatVector-method (nearest), 138	<pre>plot,SpatRaster,missing-method(plot),</pre>
nlyr, 10, 16	146
nlyr (dimensions), 69	<pre>plot,SpatRaster,numeric-method(plot),</pre>
nlyr, SpatRaster-method (dimensions), 69	146
nlyr,SpatRasterDataset-method	plot,SpatRaster,SpatRaster-method
(dimensions), 69	(scatterplot), 177
nlyr<- (dimensions), 69	plot,SpatVector,character-method
nlyr<-,SpatRaster,numeric-method	(plot), 146
(dimensions), 69	<pre>plot,SpatVector,missing-method(plot),</pre>
north, 15, 139, 175	146
nrow, 9, 12	<pre>plot,SpatVector,numeric-method(plot),</pre>
nrow (dimensions), 69	146
nrow, SpatRaster-method (dimensions), 69	<pre>plot,SpatVectorProxy,missing-method</pre>
nrow,SpatRasterDataset-method	(plot), 146
(dimensions), 69	plotRGB, 15, 149, 172
nrow, SpatVector-method (dimensions), 69	plotRGB, SpatRaster-method (plotRGB), 149
nrow<- (dimensions), 69	points, 15, 75, 76, 123, 147
nrow<-,SpatRaster,numeric-method	points (lines), 122
(dimensions), 69	points, SpatExtent-method (lines), 122
nsrc (dimensions), 69	points, SpatVector-method (lines), 122
nsrc, SpatRaster-method (dimensions), 69	polys, <i>15</i> , <i>147</i>
, ,	polys (lines), 122
options, 140	polys, SpatExtent-method (lines), 122
origin, <i>10</i> , 141	polys, SpatVector-method (lines), 122
origin, SpatRaster-method (origin), 141	predict, 9, 50, 151, 189, 190
origin<- (origin), 141	<pre>predict, SpatRaster-method (predict), 151</pre>
origin<-,SpatRaster-method(origin),141	prod (summarize), 202
	prod, SpatRaster-method (summarize), 202
PackedSpatRaster-class	project, 7, 9, 12, 17, 62, 144, 154, 170
(SpatRaster-class), 192	project, SpatRaster-method (project), 154
PackedSpatVector-class	project, SpatVector-method (project), 154
(SpatVector-class), 195	. 3
pairs, 16, 40, 107, 142, 142	quantile, 8, 17, 156, 204

<pre>quantile, SpatRaster-method (quantile),</pre>	readStart, 11
156	readStart (read and write), 164
<pre>quantile,SpatVector-method(quantile),</pre>	readStart, SpatRaster-method (read and
156	write), 164
query, 157	readStart,SpatRasterDataset-method
<pre>query,SpatVectorProxy-method(query),</pre>	(read and write), 164
157	readStop, 11
	readStop(read and write), 164
rainbow, 38	<pre>readStop,SpatRaster-method(read and</pre>
range (summarize), 202	write), 164
range, SpatRaster-method (summarize), 202	readStop,SpatRasterDataset-method
rapp, 7, 158, 182	(read and write), 164
rapp, SpatRaster-method (rapp), 158	readValues (read and write), 164
rast, 7, 15, 16, 159, 192	<pre>readValues,SpatRaster-method(read and</pre>
rast, ANY-method (rast), 159	write), 164
rast, array-method (rast), 159	rectify, 166
rast, character-method (rast), 159	rectify, SpatRaster-method (rectify), 166
rast, data. frame-method (rast), 159	relate, 12, 20, 115, 138, 166
rast, list-method (rast), 159	relate, SpatExtent, SpatExtent-method
rast, matrix-method (rast), 159	(relate), 166
rast, missing-method (rast), 159	relate, SpatExtent, SpatVector-method
rast, PackedSpatRaster-method (rast), 159	(relate), 166
rast, SpatExtent-method (rast), 159	relate, SpatVector, missing-method
rast, SpatRaster-method (rast), 159	(relate), 166
rast, SpatRasterDataset-method (rast), 159	relate, SpatVector, SpatExtent-method
	(relate), 166
rast, SpatVector-method (rast), 159 rast, stars-method (rast), 159	relate, SpatVector, SpatVector-method
rast, stars_proxy-method (rast), 159	(relate), 166
rasterImage, 33, 150	removeDupNodes, 14
rasterize, 15, 162	removeDupNodes (topology), 213
rasterize, matrix, SpatRaster-method	removeDupNodes,SpatVector-method
(rasterize), 162	(topology), 213
rasterize, SpatVector, SpatRaster-method	rep, 168, 169
(rasterize), 162	rep, SpatRaster-method (rep), 169
RasterSource (SpatRaster-class), 192	replace, 169, 169
RasterSource-class (SpatRaster-class),	res, 10, 161
192	res (dimensions), 69
Rcpp_RasterSource-class	res, SpatRaster-method (dimensions), 69
(SpatRaster-class), 192	res, SpatRasterDataset-method
Rcpp_SpatCategories-class	(dimensions), 69
(SpatRaster-class), 192	res<- (dimensions), 69
Rcpp_SpatExtent-class	res<-,SpatRaster,numeric-method
(SpatExtent-class), 188	(dimensions), 69
Rcpp_SpatRaster-class	res<-, SpatRaster-method (dimensions), 69
(SpatRaster-class), 192	resample, 7, 23, 72, 110, 155, 166, 170
Rcpp_SpatVector-class	resample, SpatRaster, SpatRaster-method
(SpatVector-class), 195	(resample), 170
read and write, 164	rescale, 13, 43, 114, 171, 196

massala ChatDastan mathed (massala) 171	accurate ChatDooton mathed
rescale, SpatRaster-method (rescale), 171	segregate, SpatRaster-method
rescale, SpatVector-method (rescale), 171	(segregate), 179
rev (flip), 89	sel, 13, 15, 180
rev, SpatRaster-method (flip), 89	sel, SpatRaster-method (sel), 180
RGB, 150, 172	sel, SpatVector-method (sel), 180
RGB, SpatRaster-method (RGB), 172	selectHighest, 181
RGB2col, <i>15</i>	selectHighest,SpatRaster-method
RGB2col (RGB), 172	(selectHighest), 181
RGB2col, SpatRaster-method (RGB), 172	selectRange, 7, 17, 158, 159, 182
RGB<- (RGB), 172	selectRange,SpatRaster-method
RGB<-,SpatRaster-method (RGB), 172	(selectRange), 182
rotate, 7, 89, 171, 173, 186, 214	set.cats(inplace), 111
rotate, SpatRaster-method (rotate), 173	set.cats,SpatRaster-method(inplace),
round, 38	111
round (Math-methods), 127	set.crs(inplace), 111
round, SpatRaster-method (Math-methods),	set.crs, SpatRaster-method (inplace), 111
127	set.crs, SpatVector-method (inplace), 111
round, SpatVector-method (Math-methods),	set.ext, 79
127	
rowColFromCell, 10	set.ext(inplace), 111
rowColFromCell (xyRowColCell), 237	set.ext, SpatRaster-method (inplace), 111
rowColFromCell,SpatRaster,numeric-method	set.ext, SpatVector-method (inplace), 111
(xyRowColCell), 237	set.names, <i>136</i>
rowFromCell (xyRowColCell), 237	set.names(inplace), 111
rowFromCell,SpatRaster,numeric-method	<pre>set.names,SpatRaster-method(inplace),</pre>
(xyRowColCell), 237	111
rowFromY, 10	set.names,SpatRasterDataset-method
rowFromY (xyRowColCell), 237	(inplace), 111
rowFromY, SpatRaster, numeric-method	<pre>set.names,SpatVector-method(inplace),</pre>
(xyRowColCell), 237	111
runif, <i>110</i>	<pre>set.names,SpatVectorCollection-method</pre>
Tuil1, 110	(inplace), 111
sapp, 7, 119, 174	set.values(inplace), 111
sapp, SpatRaster-method (sapp), 174	set.values, SpatRaster-method (inplace),
sapp, SpatRasterDataset-method (sapp), 174	111
174	setCats (factors), 85
sbar, <i>15</i> , <i>114</i> , <i>139</i> , <i>147</i> , 175	setCats, SpatRaster-method (factors), 85
scale, 8, 176, 176, 177	setMinMax, 9
	setMinMax (extremes), 84
scale, SpatRaster-method (scale), 176 scatterplot, 177	setMinMax, SpatRaster-method (extremes),
·	84
sds, 11, 162, 178, 198	
sds, array-method (sds), 178	setValues, 9, 183
sds, character-method (sds), 178	setValues, SpatRaster, ANY-method
sds, list-method (sds), 178	(setValues), 183
sds, missing-method (sds), 178	setValues, SpatRaster-method
sds, SpatRaster-method (sds), 178	(setValues), 183
sds, stars-method (sds), 178	setValues, SpatVector, ANY-method
sds, stars_proxy-method (sds), 178	(setValues), 183
segregate, <i>16</i> , 179	setValues,SpatVector-method

(setValues), 183	split, SpatVector-method (split), 196
shade, 9, 184	sprc, 197
sharedPaths, 14, 100, 185, 187, 213	sprc, list-method (sprc), 197
sharedPaths, SpatVector-method	sprc, missing-method (sprc), 197
(sharedPaths), 185	sprc, SpatRaster-method (sprc), 197
shift, 7, 13, 114, 171, 174, 186, 196	sqrt (Math-methods), 127
shift, SpatExtent-method (shift), 186	sqrt, SpatRaster-method (Math-methods),
shift,SpatRaster-method(shift),186	127
shift, SpatVector-method (shift), 186	src (sprc), 197
show, <i>106</i>	src, ANY-method (sprc), 197
show,SpatExtent-method	stdev(summarize), 202
(SpatExtent-class), 188	stdev, SpatRaster-method (summarize), 202
show,SpatRaster-method	stretch, 8, 198
(SpatRaster-class), 192	stretch, SpatRaster-method (stretch), 198
show,SpatVector-method	subset, 7, 16, 158, 199
(SpatVector-class), 195	subset, SpatRaster-method (subset), 199
simplifyGeom, <i>14</i> , 187, <i>213</i>	subset, SpatVector-method
simplifyGeom,SpatVector-method	(subset-vector), 200
(simplifyGeom), 187	subset-vector, 200
size (dimensions), 69	subst, 8, 50, 201
size, SpatRaster-method (dimensions), 69	subst, SpatRaster-method (subst), 201
snap, <i>14</i>	sum (summarize), 202
snap (topology), 213	<pre>sum, SpatRaster-method (summarize), 202 summarize, 202</pre>
<pre>snap,SpatVector-method(topology), 213</pre>	summary, 8, 204, 204
sources, 10, 11, 187	Summary, SpatExtent-method (summary), 204
sources, SpatRaster-method (sources), 187	Summary, Spattaster-method (summary), 204
SpatCategories (SpatRaster-class), 192	summary, SpatRaster-method (summary), 204
SpatCategories-class	Summary, Spatkaster method (summary), 204
(SpatRaster-class), 192	summary, SpatVector-method (summary), 204
SpatExtent, <i>150</i> , <i>178</i>	Summary-methods, 8 , 17
SpatExtent (SpatExtent-class), 188	Summary-methods (summarize), 202
SpatExtent-class, 188	svc, 14, 205
Spatial interpolation, 189	svc, 14, 203 svc, list-method (svc), 205
SpatRaster (SpatRaster-class), 192	svc, missing-method (svc), 205
SpatRaster-class, 192	svc, SpatVector-method (svc), 205
spatSample, <i>9</i> , <i>17</i> , 193, <i>204</i>	symdif, 13, 206
spatSample,SpatExtent-method	symdif, 75, 200 symdif, SpatVector, SpatVector-method
(spatSample), 193	(symdif), 206
spatSample,SpatRaster-method	(3yma11), 200
(spatSample), 193	t, 7, 13, 171, 196
spatSample,SpatVector-method	t (transpose), 214
(spatSample), 193	t, SpatRaster-method (transpose), 214
SpatVector (SpatVector-class), 195	t, SpatVector-method (transpose), 214
SpatVector-class, 195	tail (head and tail), 106
spin, <i>13</i> , <i>174</i> , 195	tail, SpatRaster-method (head and tail),
spin, SpatVector-method (spin), 195	106
split, 196	tail, SpatVector-method (head and tail),
split, SpatRaster-method (split), 196	106

tapp, 7, 17, 27, 118, 119, 159, 174, 182, 206	units, 218
tapp, SpatRaster-method (tapp), 206	units, SpatRaster-method (units), 218
tapply, 206	units, SpatRasterDataset-method (units),
terra (terra-package), 6	218
terra-package, 6	units<- (units), 218
terrain, 9, 184, 185, 208	units<-, SpatRaster-method (units), 218
terrain, SpatRaster-method (terrain), 208	units<-,SpatRasterDataset-method
terraOptions, <i>11</i> , <i>213</i>	(units), 218
terraOptions (options), 140	
text, 15, 180, 209, 210	valid, 219
text, SpatRaster-method (text), 209	values, 9, 13, 17, 83, 169, 184, 220, 224
text, SpatVector-method (text), 209	values, SpatRaster-method (values), 220
tighten, 210	values, SpatVector-method (values), 220
tighten, SpatRaster-method (tighten), 210	values<-, <i>9</i> , <i>13</i>
tighten, SpatRasterDataset-method	values<- (setValues), 183
(tighten), 210	values<-,SpatRaster,ANY-method
tiles, 226	(setValues), 183
tiles (makeTiles), 123	values<-,SpatVector,ANY-method
tiles, SpatRaster-method (makeTiles), 123	(setValues), 183
time, 11, 67, 211, 218	values<-,SpatVector,data.frame-method
time, SpatRaster-method (time), 211	(setValues), 183
time<- (time), 211	values<-,SpatVector,matrix-method
time<-,SpatRaster-method(time), 211	(setValues), 183
tmpFiles, 11, 212	values<-,SpatVector,NULL-method
topology, 100, 185, 213	(setValues), 183
trans, 89	varnames (names), 136
trans (transpose), 214	varnames, SpatRaster-method (names), 136
trans, SpatRaster-method (transpose), 214	varnames,SpatRasterDataset-method
transpose, 214	(names), 136
Trig, 35	varnames<- (names), 136
trim, 7, 215	varnames<-, SpatRaster-method (names),
trim, SpatRaster-method (trim), 215	136
trim, spatriaster metrica (trim), 215	varnames<-,SpatRasterDataset-method
union, 13, 14, 115, 215	(names), 136
union, SpatExtent, SpatExtent-method	vect, 12, 15, 17, 158, 162, 195, 221
(union), 215	vect, character-method (vect), 221
union, SpatVector, missing-method	vect, data. frame-method (vect), 221
(union), 215	vect, list-method (vect), 221
union, SpatVector, SpatExtent-method	vect, matrix-method (vect), 221
(union), 215	vect, missing-method (vect), 221
union, SpatVector, SpatVector-method	vect, PackedSpatVector-method (vect), 221
(union), 215	vect, sf-method (vect), 221
unique, <i>8</i> , <i>12</i> , <i>217</i> , 217	vect, sfc-method (vect), 221
unique, SpatRaster, ANY-method (unique),	vect, Spatial-method (vect), 221
217	vect, XY-method (vect), 221
unique, SpatRaster-method (unique), 217	vector-attributes, 224
unique, SpatVector, ANY-method (unique),	vector_layers, 225, 235
217	voronoi, <i>12</i> , 225
unique SpatVector-method (unique) 217	voronoi SnatVector-method (voronoi) 225

vrt, <i>124</i> , <i>125</i> , <i>130</i> , 226	writeStop(read and write), 164
vrt, character-method (vrt), 226	<pre>writeStop,SpatRaster-method(read and write), 164</pre>
weighted.mean, 120, 227, 227	writeValues, 11
weighted.mean,SpatRaster,numeric-method	writeValues (read and write), 164
(weighted.mean), 227	writeValues, SpatRaster, vector-method
weighted.mean,SpatRaster,SpatRaster-method	(read and write), 164
(weighted.mean), 227	
which, 228	writeVector, 12, 235
which.lyr, 8, 203, 228	writeVector, SpatVector, character-method
which.lyr,SpatRaster-method	(writeVector), 235
(which.lyr), 228	xFromCell, 10
which.max(summarize), 202	
	xFromCell (xyRowColCell), 237
which.max,SpatRaster-method	xFromCell, SpatRaster, numeric-method
(summarize), 202	(xyRowColCell), 237
which min (summarize), 202	xFromCol, 10
which.min, SpatRaster-method	xFromCol (xyRowColCell), 237
(summarize), 202 width, <i>13</i> , 229	xFromCol,SpatRaster,numeric-method (xyRowColCell), 237
width, SpatVector-method (width), 229	xmax, <i>10</i>
window, 230	xmax (xmin), 236
window, SpatRaster-method (window), 230	xmax, SpatExtent-method (xmin), 236
window<- (window), 230	xmax, SpatRaster-method (xmin), 236
window<-, SpatRaster-method (window), 230	xmax, SpatVector-method (xmin), 236
wrap, $6,231$	xmax<- (xmin), 236
wrap, Spatial-method(wrap), 231	<pre>xmax<-,SpatExtent,numeric-method</pre>
wrap, SpatRaster-method (wrap), 231	(xmin), 236
wrap, SpatVector-method (wrap), 231	<pre>xmax<-,SpatRaster,numeric-method</pre>
writeCDF, 10, 232, 234	(xmin), 236
writeCDF,SpatRaster-method(writeCDF),	xmin, 10, 236
232	xmin, SpatExtent-method (xmin), 236
writeCDF,SpatRasterDataset-method	xmin, SpatRaster-method (xmin), 236
(writeCDF), 232	xmin, SpatVector-method (xmin), 236
writeRaster, 6, 10, 21, 26, 28, 35, 39, 41, 44,	xmin<- (xmin), 236
46, 48, 50, 58, 60, 68, 71, 72, 74, 81,	<pre>xmin<-,SpatExtent,numeric-method</pre>
88, 89, 91, 93–95, 98, 105, 108, 110,	(xmin), 236
111, 116, 118, 123, 126, 128,	xmin<-,SpatRaster,numeric-method
130–133, 141, 143, 152, 155, 156,	(xmin), 236
159, 163, 165, 166, 170, 173, 174,	xres, 10
179, 182, 184, 186, 190, 199, 201,	xres (dimensions), 69
203, 207, 208, 214, 215, 227, 232,	xres, SpatRaster-method (dimensions), 69
233, 240	xyFromCell, 10, 59, 83, 102
writeRaster,SpatRaster,character-method	xyFromCell (xyRowColCell), 237
(writeRaster), 233	xyFromCell,SpatRaster,numeric-method
writeStart, 11	(xyRowColCell), 237
writeStart (read and write), 164	xyRowColCell, 237
writeStart,SpatRaster,character-method	•
(read and write), 164	yFromCell, 10
writeStop, 11	yFromCell(xyRowColCell), 237

```
yFromCell,SpatRaster,numeric-method
        (xyRowColCell), 237
yFromRow, 10
yFromRow (xyRowColCell), 237
yFromRow, SpatRaster, numeric-method
         (xyRowColCell), 237
ymax, 10
ymax (xmin), 236
ymax, SpatExtent-method (xmin), 236
ymax, SpatRaster-method (xmin), 236
ymax,SpatVector-method(xmin), 236
ymax<- (xmin), 236
ymax<-,SpatExtent,numeric-method</pre>
         (xmin), 236
ymax<-,SpatRaster,numeric-method</pre>
        (xmin), 236
ymin, 10
ymin (xmin), 236
ymin, SpatExtent-method (xmin), 236
ymin, SpatRaster-method (xmin), 236
ymin, SpatVector-method (xmin), 236
ymin<- (xmin), 236</pre>
ymin<-,SpatExtent,numeric-method</pre>
         (xmin), 236
ymin<-,SpatRaster,numeric-method</pre>
         (xmin), 236
yres, 10
yres (dimensions), 69
yres, SpatRaster-method (dimensions), 69
zonal, 8, 62, 78, 104, 239
zonal, SpatRaster, SpatRaster-method
         (zonal), 239
zoom, 15, 241
zoom, SpatRaster-method (zoom), 241
zoom, SpatVector-method (zoom), 241
```