

Chapter 1

MATLAB Recapitulation

- Exercises -

Exercise 1 - Manipulating Data

- 1.1 Create a 4x3 matrix of random numbers
 - Extract the elements at locations (1,2) and (2,3).
 - Extract the element in the lower right.
 - Set every value between 0 and 0.5.
- 1.2 Create a diagonal matrix of size 4x4 with 3 on the diagonal.
- 1.3 Solve Ax = b for A = magic(3) and $b = [1 \ 2 \ 3]^T$
 - · Compute eigenvalues of A.

Exercise 2 - For and While loops

2.1 Use *for-loop* and *while-loop* to find approximation of the differential equation below, with a step size of $\Delta t = 0.01$ second (use Euler's method for approximation):

(i)
$$\frac{dy}{dt} = t^2 - y^2$$
, $y(0) = 1$, $t_{final} = 2$ seconds
(ii) $\frac{dy}{dt} = t - |y|$, $y(0) = 1$, $t_{final} = 2$ seconds

(ii)
$$\frac{dy}{dt} = t - |y|$$
, $y(0) = 1$, $t_{final} = 2$ seconds

Steps to do:

- a) Define step size Δt .
- b) Use *for-loop* or *while-loop* to approximate y.
- c) Plot the results.

Hints: Fuler's method

http://tutorial.math.lamar.edu/Classes/DE/EulersMethod.aspx

Exercise 3 - Scripts and Functions

3.1 Use both **script m-files** and **function m-files** to generate a graph for the following equations:

(i)
$$y(x) = x^2$$
, for $-1 \le x \le 1$

(ii)
$$y(x) = \left[\frac{e^{-x}}{x^2 + 1} + \sin^2(x)\right]^2 + 0.2$$
, for $-1 \le x \le 1$

Steps to do:

- a) Create **script** m-files for both equations.
- b) Create *function* m-files for both equations.
- c) Plot the results.

Exercise 4 – Algorithm development

4.1 Write codes to count the prime numbers between lower and upper bounds and show elapsed times to run these programs.

Steps to do:

- a) Create **script** m-files (save it as "primzahl.m") to calculate the prime numbers at given input range [lower, upper] using conventional MATLAB syntax (for, if, etc.).
- b) Fill your code with a stopwatch timer function (*tic* and *toc*) to measure elapsed time.

