โปรแกรมเพื่อช่วยในการแก้ปัญหาการจัดการโลจิสติกส์

นายธนกร ง่วนเซี่ยว

นางสาวปณิฎฐา เชฏฐวาณิชย์

ปริญญานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
ปริญญาวิศวกรรมศาสตรบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ
ปีการศึกษา 2558

Application for Helping in Logistic Management

Mr. Thanakorn Nguansiew

Ms. Panittha Chedthavanich

A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF BACHELOR OF COMPUTER ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FACULTY OF ENGINEERING

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH BANGKOK

ACADEMIC YEAR 2015

ปริญญานิพนธ์เรื่อง	: โปรแกรมเพื่อช่วยในการแก้ปัญหาการจัดการโถจิสติกส์					
ชื่อ	: นายชนกร ง่วนเชี่ยว					
	นางสาวปณิฎฐา เชฏฐวาณิชย์					
สาขา	: วิศวกรรมคอมพิวเตอร์					
ภาควิชา	: วิศวกรรมไฟฟ้าและคอมพิวเตอร์					
คณะ	: วิศวกรรมศาสตร์					
อาจารย์ที่ปรึกษา	: ผู้ช่วยศาสตราจารย์ คร.ศิริชัย รุจิพัฒนพงศ์					
	ผู้ช่วยศาสตราจารย์ คร.ชยธัช เผือกสามัญ					
ปีการศึกษา	: 2558					
สาขาวิชาวิศวกรรมคอ	มพิวเตอร์ หัวหน้าภาควิชาวิชาวิศวกรรมไฟฟ้า					
	การย์ คร.นภคล วิวัชร โกเศศ) และคอมพิวเตอร์					
(พื้อ รถมาถมา เ	กรองกร.พรกพถ รรษร เกเพท) แถะคอมพรเพอร					
OF ~	ประธานกรรมการ					
(ผู้ช่วยศาสตราจ	การย์ คร.ศิริชัย รุจิพัฒนพงศ์)					
9:	กรรมการ					
(ผู้ช่วยศาสตรา	จารย์ คร.ชยชัช เผือกสามัญ)					
	// กรรมการ					
(รองศาสตราช	ารย์ใชยันต์ สุวรรณชีวะศิริ)					

ลิชสิทชิ้ของภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

Project Report Title	: Application for Help	ing in Logistic Management				
Name	: Mr. Thanakorn Nguansiew					
	Ms. Panittha Chedth	avanich				
Major Field	: Computer Engineering	ng				
Department	: Electrical and Comp	uter Engineering				
Faculty	: Engineering					
Project Advisor(s)	: Asst. Prof. Dr. Sirich	ai Rujipattanapong				
	Asst. Prof. Dr. Chaya	thuch Phuaksaman				
Academic Year	: 2015					
Accepted by the	e Faculty of Engineering,	King Mongkut's University of Technology North	h			
Bangkok in Partial F	ulfillment of the Require	ments for the Degree of Bachelor of Compute	Г			
Engineering						
\sim	<u></u>	Chairperson of Department of Electrical				
(Asst. Prof. Dr. Nopha	don Wiwatcharagoses)	and Computer Engineering				
OFE	L	Chairperson				
(Asst. Prof. Dr. Sirie	hai Rujipattanapong)					
Ca	(D)					

(Asst. Prof. Dr. Chayathuch Phuaksaman)

Claryon 5-race > Member

(Assoc. Prof. Dr. Chaiyan Suwancheewasiri)

Copyright of the Department of Electrical and Computer Engineering, Faculty of Engineering
King Mongkut's University of Technology North Bangkok

Member

บทคัดย่อ

ปริญญานิพนธ์นี้เป็นการปรับปรุงวิธีการแก้ปัญหาการจัดการโลจิสติกส์ให้มีความสะดวก และรวดเร็วมากขึ้นโดยใช้ Google Map และ CPLEX มาช่วยในการเก็บข้อมูลและคำนวณผลลัพธ์ โดยใช้หน้าเว็บไซต์เชื่อมโยงทุกระบบเข้าด้วยกัน โดยปัญหาทางโลจิสติกส์ที่เว็บไซต์ของเรารองรับ นั้นมีด้วยกันทั้งหมด 4 ปัญหา ดังนี้

- 1. Location Problem (LP).
- 2. Multi Vehicle Routing Problem (MVRP).

โดยจากการทดลองใช้งานพบว่าระบบสามารถลดระยะเวลาในการเก็บและบันทึกข้อมูลลง ได้มากรวมถึงการแสดงผลลัพธ์ที่ง่ายทำให้นำไปใช้งานจริงได้ โดย LP นั้นจะสามารถคำนวณและ แสดงผลที่ตั้งของโรงงานใหม่ที่เหมาะสมได้ ส่วน SPR นั้นจะแสดงเส้นทางจากจุดเริ่มต้นที่กำหนด ไปยังปลายทางที่เหมาะสมที่สุด โดยมีค่าความเสี่ยงเข้ามาเกี่ยวข้องได้ ส่วน MVRP นั้นจะแสดงการ จัดเส้นทางการส่งของที่เหมาะสมกับปริมาณของที่ต้องการส่งและปริมาณที่รถบรรทุกได้อย่าง เหมาะสม และส่วนสุดท้าย RCP นั้นจะสามารถแสดงการรวมเส้นทางการขนส่งเพื่อให้มีการใช้รถ ขนส่งและค่าขนส่งที่ลดลงได้อย่างเหมาะสม

Abstract

This thesis is about improved the solution to manage logistics for more convenient and faster by using Google Map and CPLEX to help collect data and calculate results using the website link Google Map and CPLEX together. Our website is compatible with all four issues on logistics management as follows.

- 1. Location Problem (LP).
- 2. Multi Vehicle Routing Problem (MVRP).

In the trial found that the system can shorten the time to collect and record the data as much as the end result makes it to actual use by the LP the system can calculated and displayed where is the best place to build new plant, In SPR the system can show the best route from the start to the destination, with the risk, In MVRP the system can show the transmission path with appropriated demand that match with truck volume, And a final issue is RCP the system can show combination of transport path that reduce number of vehicle and cost in transportation.

กิตติกรรมประกาศ

ขอกราบขอบพระคุณอาจารย์ที่ปรึกษาโครงการ ผู้ช่วยศาสตราจารย์ คร.ศิริชัย รุจิพัฒนพงศ์ และ ผู้ช่วยศาสตราจารย์ คร.ชยธัช เผือกสามัญ ที่ได้ให้คำปรึกษาและคำแนะนำเกี่ยวกับการ ดำเนินงานของโครงงาน จนโครงการนี้ได้ประสบความสำเร็จ เสร็จสมบูรณ์ได้

รวมถึงคณาจารย์ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ ที่ได้ให้ความรู้ในวิชาต่าง ๆ จน สามารถนำมาใช้จนโครงงานนี้เสร็จสมบูรณ์ รวมทั้งสถานบันการศึกษามหาวิทยาลัยเทคโนโลยี พระจอมเกล้าพระนครเหนือ ที่ได้เอื้ออุปกรณ์ สถานที่ ให้ได้ทำการเรียนรู้ ตลอดจนปฏิบัติงานจน สำเร็จละล่วงไปด้วยดี

สุดท้ายนี้ผู้จัดทำกราบขอบพระกุณบิคามารคาและครอบครัว ตลอดจนเพื่อน ๆ ผู้เป็น แรงผลักคันและกำลังใจแก่ผู้จัดทำ

> ธนกร ง่วนเซี่ยว ปณิฎฐา เชฎฐวาณิชย์

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	์ใ
บทคัดย่อภาษาอังกฤษ	ก
กิตติกรรมประกาศ	P
สารบัญตาราง	ຄ
สารบัญภาพ	ល្ង
คำอธิบายสัญลักษณ์และคำย่อ	ົ ຖ
บทที่ 1. บทนำ	1
1.1 ที่มาและความสำคัญ	1
1.2 วัตถุประสงค์ของโครงงาน	1
1.3 ขอบเขตของการศึกษาโครงงาน	2
1.4 ประโยชน์ที่คาคว่าจะได้รับ	3
1.5 แผนภาพรวมของระบบ	4
บทที่ 2. ทฤษฎีและหลักการที่เกี่ยวข้อง	5
2.1 Location Problem (LP)	5
2.2 Multi Vehicle Problem (MVRP)	16
บทที่ 3. วิธีดำเนินการโครงงาน	28
3.1 อุปกรณ์ที่ใช้งาน	28
3.2 รายละเอียดการออกแบบและทดสอบระบบ	31
3.3 Diagram ของระบบ	44
บทที่ 4. ผลการทคลอง	45
4.1 การทดสอบระบบ	45
บทที่ 5. สรุป วิจารณ์ผล และข้อเสนอแนะ	47
เอกสารอ้างอิง	49
ประวัติผู้แต่ง	51

สารบัญตาราง

ฅารางที่		หน้า
2-1	ข้อมูลระยะทางสำหรับปัญการจัดการการขนส่ง (MVRP)	25
2-2	ข้อมูลระยะทางสำหรับปัญการจัดการการขนส่ง (MVRP) โดยเลือกเส้นทางที่	
	สั้นที่สุดตามเงื่อนใข	25
2-3	ค่าเช่ารถ	26
2-4	ความต้องการของลูกค้าแต่ละแห่ง	26
2-5	เส้นทางการขนส่งที่ได้โดยสีเหลืองคือการขนส่งโดยใช้รถคันที่ 2 และสีฟ้าเป็น	
	การขนส่งโดยใช้รถกันที่ 1	26
3-1	ตัวอย่างข้อมูลที่แสดงบนหน้าเว็บไซต์	42
3-2	ตัวอย่างข้อมูลส่งออก	43
4-1	ผลลัพธ์จากการแก้ปัญหา LP	45
4-2	ระยะทางที่ใช้ในการคำนวณ	46

สารบัญภาพ

ภาพที่		หน้า
1-1	ภาพรวมของระบบ	4
2-1	ภาพโรงงาน หรือสถานที่ให้บริการ ในการกระจายสินค้าให้ผู้รับบริการ	6
2-2	ภาพโรงงานเดิมที่มีอยู่ในปัจจุบัน และกลุ่มลูกค้า	7
2-3	ภาพโรงงานเดิมที่มีอยู่ในปัจจุบันและโรงงานใหม่ที่ผ่านการสำรวจแล้ว	7
2-4	ภาพจุดที่ตั้งใหม่ที่เหมาะสมที่สุด	7
2-5	ข้อมูลรายละเอียคสำหรับปัญหาการเลือกสถานที่ตั้ง (LP)	8
2-6	ข้อมูลสำหรับตัวแบบกำหนดการเชิงเส้นตรงสำหรับปัญหา LP	8
2-7	ข้อมูลสำหรับปัญหาการเลือกสถานที่ตั้ง (LP)	12
2-8	ค่าใช้จ่ายของลูกค้ารายที่ 1	12
2-9	คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 1	13
2-10) ค่าใช้จ่ายของลูกค้ารายที่ 2	13
2-1	เ คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 2	13
2-12	2 ค่าใช้จ่ายของลูกค้ารายที่ 3	14
2-13	3 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 3	14
2-14	4 ค่าใช้จ่ายของลูกค้ารายที่ 4	14
2-13	ร คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 4	14
	ร ค่าใช้จ่ายของลูกค้ารายที่ 5	15
2-17	7 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 5	15
2-18	3 ค่าใช้จ่ายของลูกค้ารายที่ 6	15
2-19	9 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 6	16
2-20) คำตอบที่ได้ประมวลผลข้อมูลชุดเดียวกัน โดยใช้ Cplex	16
2-2	เ ตัวอย่างเส้นทางที่ใด้จากการใช้ทฤษฎีการเดินทางของพนักงานขาย	17
2-22	2 ตัวอย่างเส้นทางการเดินทางที่ทำการแก้ปัญหาระยะทางแล้ว	17
2-23	งข้อมูลรายละเอียดสำหรับปัญหาการจัดการการกระจายสินค้า(MVRP)	18
2-24	4 ข้อมลสำหรับตัวแบบกำหนดการเชิงเส้นตรงสำหรับปัณหา MVRP	18

สารบัญภาพ (ต่อ)

ภาพที่		หน้า
2-25 ผลลัพธ์จากการคำนวณโดย Cplex		27
3-1 ตัวอย่างการเรียกใช้คำสั่งต่าง ๆ ของ CPLEX ผ่าน	เภาษา JAVA	28
3-2 ตัวอย่าง Google Maps เมื่อเรียกใช้งานผ่านเว็บไซ	เต้	29
3-3 ตัวอย่าง Google Maps เมื่อเรียกใช้งานผ่านเว็บไซ	เต้	29
3-4 ตัวอย่างการค้นหาเส้นทาง		30
3-5 โปรแกรม Komodo edit (โปรแกรมที่ใช้ในการ C	Coding)	31
3-6 การป้อนข้อมูลรับเข้าโดยการปักจุด		31
3-7 รับค่า Latitude, Longitude จากจุดที่ปัก		32
3-8 แสดงการร้องขอ และการตอบกลับของ Google a	pi ผ่านคอนโซล	32
3-9 แสดงการเปลี่ยน icon ของจุคที่ปัก และ แสดงผล	ลัพธ์ของการคำเนินการที่เกิดขึ้น	33
3-10 ปุ่มกดเรียกไฟล์จากไดเรกทอรี		33
3-11 แสดงรายการไฟล์ที่อยู่ในไดเรกทอรี		33
3-12 แสคงข้อมูลที่อยู่ภายในไฟล์		34
3-13 นำข้อมูลที่อยู่ในไฟล์มาจัดเรียงแล้วแสดงบนหน้า	ແວ່ົນ	34
3-14 นำข้อมูลที่จัดเรียงแล้วไปเก็บในไฟล์ Excel		34
3-15 แสคงข้อมูลในไฟล์ Excel ที่รับมาจากหน้าเว็บ		34
3-16 รูปแบบหน้าเว็บรุ่นทคลอง		35
3-17 แสดงการปักจุดบนแผนที่ผ่านหน้าเว็บ และกรอก	ค่าน้ำมันลงใน Textbox	35
3-18 แสดงการร้องขอระยะทางระหว่างจุดต่าง		35
3-19 แสดงการแจ้งเตือนหลังจากร้องขอระยะทางจาก	Google map เสร็จสิ้น	36
3.20 แสดงค่าเดินทาง ((ระยะทาง*2)*ค่าน้ำมัน), Latiti	ıde, Longitudeและทำการ	
กรอกค่าสถานที่ตั้งของสถานที่ให้บริการ		36
3-21 แสดงแจ้งเตือนเพื่อให้ผู้ใช้สามารถดาวน์โหลดไท	ไล้เอกสาร Excel	36
3-22 แสดงข้อมูลที่ถูกคำเนินการผ่านหน้าเว็บ		37
3-23 แสดงสมการเป้าหมายและสมการข้อจำกัด		37

สารบัญภาพ (ต่อ)

ภาพที่	หน้า
3-24 การ Coding ผ่านโปรแกรม eclipse	38
3-25 ผลลัพธ์ที่เป็นไปตามสมการเป้าหมายและสมการข้อจำกัดของปัญหา	
Location Problem	39
3-26 แสดงข้อมูลที่ถูกอ่านจากไฟล์ Excel	40
3-27 แสดงผลลัพธ์ค่าที่เหมาะสมที่สุดตามสมการเป้าหมายและสมการข้อจำกัด	40
3-28 แสดงรูปแผนที่ ที่ถูกแสดงบนเว็บไซต์	41
3-29 ตัวอย่างของการเลือกประเภทสถานที่ตั้ง	41
3-30 แสดงรูปแผนที่หลังจากมีการกำหนดตำแหน่งที่ตั้งต่าง ๆ	42
3-31 ปุ่มเลือกไฟล์ก่อนและหลังการเลือก	42
3-32 ตัวอย่างของส่วนกรอกข้อมูล	43
3-33 การทำงานของระบบ	44
4-1 ผลลัพธ์แสดงทิศทางการเดินรถ	46

คำอธิบายสัญลักษณ์และคำย่อ

สัญลักษณ์และคำย่อ คำอธิบาย

LP Location Problem

MVRP Multi Vehicle Routing Problem

บทที่ 1

บทน้ำ

1.1 ที่มาและความสำคัญ

โลจิสติกส์ คือระบบการจัดการการขนส่งไม่ว่าจะเป็นการขนส่งสินค้า ข้อมูล หรือทรัพยากร โดยโลจิสติกส์นั้นจะเกี่ยวข้องกับการผสมผสานระหว่างข้อมูล การขนส่ง การบริหารวัสดุคงคลัง การจัดการวัตถุดิบ การบรรจุหีบห่อนับ โดยเป้าหมายของโลจิสติกส์คือการลดค่าใช้จ่าย ระยะเวลา และปัญหาต่าง ๆ ที่อาจเกิดขึ้นในการขนส่งโดยใช้ทุนน้อยที่สุด โดยปัจจุบันการจัดการ โลจิสติกส์ นั้น ใช้แรงคนในการจัดการ โดยใช้การคำนวณที่ไม่อาศัยเครื่องมือต่างๆที่ทันสมัยเข้ามาช่วยเหลือ ในการจัดการและแก้ปัญหา โดยในการแก้ปัญหานั้นผู้แก้ปัญหาต้องทำการสำรวจและรวบรวม ข้อมูลต่างๆทั้งหมดแล้วจึงทำการคิดแก้ปัญหาจากข้อมูลที่รวบรวมมา นั้นมีจำนวนมากจะทำให้การแก้ปัญหาอาจต้องใช้เวลานาน และขั้นตอนที่ยุ่งยากซับซ้อน ซึ่งเวลาที่ใช้ในการแก้ปัญหานั้น ก็ย่อมแตกต่างไปตามประสบการณ์ของผู้แก้ปัญหา

1.2 วัตถุประสงค์ของโครงงาน

ปัจจุบันการจัดการแก้ปัญหาทางโลจิสติกส์นั้นมีเครื่องมือที่เข้ามาช่วยแก้ไขคือ โปรแกรม CPLEX หรือ โปรแกรม IBM ILOG CPLEX ซึ่งช่วยในส่วนของการคำนวนให้มีความรวดเร็วมาก ขึ้น โดยการใช้โปรแกรมนี้เข้ามาช่วยเหลือนั้นจะทำให้ขั้นตอนในการแก้ปัญหาที่ต้องใช้การคำนวน นั้นลดลงระยะเวลาที่ใช้ลง และผู้แก้ปัญหาทำงานเพียงในส่วนของการเก็บข้อมูลเท่านั้น โดยหลัง จากที่เก็บข้อมูลแล้วผู้แก้ปัญหามีหน้าที่เพียงนำข้อมูลที่รวมรวบได้นั้นมาป้อนให้กับโปรแกรม CPLEX เพื่อคำนวนคำตอบที่เหมาะสมที่สุดกับปัญหานั้น ๆ โดยวิธีที่ใช้คำนวนนั้นผู้คำนวนต้องใช้ การเขียนโค๊ดในโปรแกรม CPLEX เพื่อให้ตัวโปรแกรมทำการคำนวนคำตอบที่เหมาะสมกับปัญหานั้น ๆ ออกมา แต่ในส่วนของการแสดงผลคำตอบนั้นก็ยังเป็นข้อมูลที่ออกมาในรูปแบบของเอกสาร ไม่สามารถเห็นได้เป็นรูปร่างที่ชัดเจนรวมถึงการเก็บข้อมูลที่แม้จะมี Google Maps ช่วยในการบอก

ตำแหน่งของสถานที่ต่าง ๆ ก็ตามแต่ผู้แก้ปัญหาก็ยังคงต้องจดจำตำแหน่งเพื่อนำไปใช้ในการ แก้ปัญหาร่วมกับโปรแกรม CPLEX

ปัญหาหลักในการจัดการโลจิสติกส์ในปัจจุบันหลังจากมีการใช้โปรแกรม CPLEX เข้ามาแก้ไข
ปัญหาแล้วนั้นคือ การแสดงผลกำตอบที่ไม่มี Interface สำหรับใช้ในการแสดงผลกำตอบ รวมถึง
ข้อมูลที่ใช้ในการกำนวนนั้นต้องทำการเก็บรวบรวมในรูปแบบของเอกสารและนำมากำนวณผ่าน
โปรแกรม ซึ่งในปริญญานิพนธ์นี้ จะเป็นการแก้ปัญหาในจุดนี้โดยการจัดทำส่วนเสริมโดยใช้ภาษา
HTML, PHP, JAVA, JAVASCRIPT และ Google Maps API เข้ามาแก้ปัญหาในการแสดงผลกำตอบ
และช่วยในการรวบรวมข้อมูลเพื่อทำให้การใช้งาน CPLEX ง่ายขึ้นและมีการทำงานที่ต่อเนื่องกัน
ในทุก ๆ ส่วน เริ่มจากการใช้ภาษา HTML, PHP, JAVASCRIPT และ Google Maps API ในการ
พัฒนาส่วนของหน้าเว็บไซต์เพื่อให้ผู้ใช้นั้นสามารถรวบรวมข้อมูลต่าง ๆ ในการแก้ปัญหาได้ง่ายขึ้น
และสามารถนำข้อมูลเหล่านั้นมาแสดงในรูปของเอกสารได้พร้อมทั้งมีส่วนที่เรียกโปรแกรมในการ
กำนวณซึ่งจะใช้ ภาษา JAVA ที่ทำงานร่วมกับ CPLEX โดยโก๊ดภาษา JAVA นั้นจะเป็นส่วนที่
เรียกใช้ฟังก์ชันต่าง ๆ ของ CPLEX มาทำการรับค่าไปคำนวณ และหลังจากที่ทำการคำนวณเสร็จ
แล้วผลลัพธ์ที่ได้จากการกำนวณจะถูกส่งมาแสดงผลบนหน้าเว็บไซต์โดยที่ผู้ใช้สามารถทำการ
ดาวน์โหลดผลลัพธ์ และข้อมูลที่ป้อนให้กับโปรแกรมเพื่อการนำไปใช้งานในการกำนวณกรั้งต่อไป
ใต้ โดยปริญญานิพนธ์นี้จะแก้ปัญหาทั้งหมด 4 ปัญหาประกอบไปด้วย

- 1.2.1 ปัญหา Location Problem (LP) คือการแก้ปัญหาเกี่ยวกับการเลือกสถานที่ตั้งจากสถาน ที่ตั้งปัจจุบัน และสถานที่ตั้งใหม่ สำหรับโรงงาน และ โกดังเก็บของว่าควรเลือกตำแหน่งใดในการ ตั้งสถานที่นั้น ๆ โดยเลือกจากสถานที่ตั้งที่มีค่าใช้จ่ายในการก่อสร้างสถานที่ตั้ง และค่าขนส่งจาก สถานที่ตั้งนั้น ๆ ไปยังลูกค้าน้อยที่สุด
- 1.2.2 ปัญหา Multi Vehicle Problem (MVRP) คือการแก้ปัญหาในการจัดส่งสิ่งของจากแหล่ง หนึ่งไปยังอีกหลายแหล่ง โดยสิ่งที่นำมาคำนวณคือจำนวนรถที่ใช้ส่งของจำนวนตำแหน่งที่ต้องทำ การจัดส่ง ตัวอย่างเช่น การจัดส่งขนมปังของบริษัทฟาร์มเฮ้าส์ ว่าควรจัดส่งไปยังตำแหน่งใด ตามลำดับตามความเหมาะสม และควรใช้รถในการขนส่งกี่คันจึงจะประหยัดและคุ้มค่าที่สุด

1.3 ขอบเขตของการศึกษาโครงงาน

- 1.3.1 ปัญหา Location Problem (LP)
 - 1.3.1.1 สามารถปักจุด Latitude, Longitude ใน google map บนหน้าเว็บได้

- 1.3.1.2 หลังจากได้พิกัค Latitude, Longitude แล้วนำไปหาระยะทางเพื่อนำมาคำนวนหาค่าขนส่ง
 - 1.3.1.3 ผู้ใช้สามารถกรอกค่าสถานที่ตั้งบนหน้าเว็บได้
- 1.3.1.4 นำข้อมูล Latitude, Longitude, ค่าขนส่ง, ค่าสถานที่ตั้งไปเก็บในไฟล์ Excel เพื่อ นำไปคำนวนต่อไป
- 1.3.1.5 นำข้อมูลจากไฟล์ Excel มาคำนวนกับสมการเป้าหมาย และสมการข้อจำกัด โดย ใช้ภาษา JAVA ที่ทำงานร่วมกับ CPLEX
- 1.3.1.6 นำผลลัพธ์ที่ได้จากการคำนวนมาแสดงบน Google maps และหน้าเว็บได้ โดย แสดงสถานที่ตั้งที่เหมาะสมที่มีค่าใช้จ่ายน้อยที่สุดในการส่งของไปยังจุดหมายปลายทาง
 - 1.3.2 ปัญหา Multi Vehicle Problem (MVRP)
 - 1.3.2.1 สามารถปักจุด Latitude, Longitude ใน google map บนหน้าเว็บได้
- 1.3.2.2 หลังจากได้พิกัด Latitude, Longitude แล้วนำไปใช้ในการหาระยะทางโดยจะ แบ่งเป็นจุดของศูนย์กระจายสินค้าและลูกค้า
 - 1.3.2.3 สามารถใส่ความต้องการของลูกก้าแต่ละที่ผ่านหน้าเว็บไซต์ได้เพื่อเป็น Input
 - 1.3.2.4 นำ Input ไปคำนวณเพื่อหาเส้นทางที่เหมาะสมที่สุด
 - 1.3.2.5 Output ที่ได้มาแสดงเส้นทางที่เหมาะสมที่สุดบน Google maps และหน้าเว็บได้

1.4 ประโยชน์ที่คาดว่าจะได้รับ

- 1.4.1 ได้เรียนรู้และฝึกทักษะในการเขียนโปรแกรมโดยใช้ภาษา HTML, PHP, JAVASCRIPT เพื่อใช้ในการทำงานร่วมกับ Google Maps API บนหน้าเว็บ
- 1.4.2 ได้เรียนรู้และฝึกทักษะในการเขียนโปรแกรมโดยใช้ภาษา JAVA เพื่อใช้ในการเรียก ฟังก์ชันการทำงานของ CPLEX มาคำนวนการดำเนินการทางคณิตศาสตร์
 - 1.4.3 ได้เรียนรู้และฝึกฝนทักษะการเขียนโปรแกรมเพื่อให้แต่ละส่วนทำงานได้ร่วมกัน
 - 1.4.4 ได้เรียนรู้และเข้าใจถึงปัญหาและวิธีการแก้ไขปัญหาทางค้านโลจิสติกส์

1.5 แผนภาพรวมของระบบ

ภาพที่ 1-1 ภาพรวมของระบบ

บทที่ 2

ทฤษฎีและหลักการที่เกี่ยวข้อง

2.1 Location Problem (LP)

2.1.1 LP คืออะไร

Location Problem คือ การเลือกตำแหน่งที่ตั้งที่เหมาะสมเพื่อใช้ในการปลูกสร้างอาคาร โรงงาน คลังสินค้า ไว้ในสถานที่ที่ได้กำหนดไว้ โดยปัจจัยที่ใช้สำหรับการวางแผน อาจแบ่งได้เป็น 2 กลุ่ม ดังนี้

- 2.1.1.1 ปัจจัยที่เกี่ยวกับทรัพยากรการผลิตและปัจจัยที่เกี่ยวข้องกับสภาพแวคล้อมปัจจัย ทางค้านการผลิต ได้แก่
 - 2.1.1.1.1 ประเภทของวัตถุดิบ ปริมาณ และราคาของวัตถุดิบ
 - 2.1.1.1.2 ตลาดสินค้า จำนวนลูกค้า จำนวนคู่แข่ง
 - 2.1.1.1.3 แรงงาน ปริมาณค่าแรงของแรงงาน ช่างฝีมือ แรงงาน กรรมกร
 - 2.1.1.1.4 ที่ดิน ปริมาณและราคา
- 2.1.1.1.5 การขนส่ง จำนวนและความสะดวกของเส้นทางการขนส่งทางบก น้ำ และอากาศ
 - 2.1.1.1.6 พลังงาน ปริมาณและราคาของไฟฟ้า ก๊าซ น้ำมันเชื้อเพลิงและอื่น ๆ
- 2.1.1.1.7 สาธารณูปโภค ปริมาณและราคาของน้พประปาโทรศัพท์ ใปรษณีย์ และอื่น ๆ
 - 2.1.1.2 ปัจจัยทางค้านสภาพแวคล้อม ได้แก่
 - 2.1.1.2.1 การยอมรับของชุมชน ความเชื่อและหลักศาสนาของคนในชุมชน
 - 2.1.1.2.2 คุณภาพชีวิตในชุมชน สถานที่พักผ่อนหย่อนใจ
 - 2.1.1.2.3 มาตรฐานค่าครองชีพ
 - 2.1.1.2.4 ความปลอดภัยในการใช้ชีวิต และครอบครัว
- 2.1.1.2.5 สภาพการรวมหัวทางธุรกิจและอุตสาหกรรม สภาพการร่วมมือ ช่วยเหลือซึ่งกันและกัน

การแก้ปัญหาการเลือกสถานที่ตั้งอาจแบ่งได้เป็น 2 แนวทางใหญ่ ๆ คือ การวิเคราะห์เชิง คุณภาพ และการวิเคราะห์เชิงปริมาณ สำหรับการวิเคราะห์เชิงคุณภาพ จะพิจารณาถึงปัจจัยที่มี ผลกระทบต่อธุรกิจนั้น ๆ เช่น ต้นทุนค่าที่ดิน ความหนาแน่นของแรงงานที่มีฝีมือ ค่าใช้จ่ายเกี่ยวกับ สารฐปโภคและภาษีบำรุงท้องที่ ทัศนคติของชุมชน เป็นต้น

การแก้ปัญหาการเลือกสถานที่ตั้ง เป็นการกำหนดจำนวน ขนาด และตำแหน่งที่ตั้ง พร้อม ทั้งจัดสรรการให้บริการจากสถานที่ให้บริการเหล่านี้ ไปยังลูกค้าทั้งที่อยู่ภายในองค์กรเคียวกันและ ภายนอกองค์กร เพื่อให้ต้นทุนการขนส่ง ระยะทางหรือระยะเวลาในการส่งมอบสินค้าหรือบริการ น้อยที่สุดแนวทางในการแก้ปัญหาที่เป็นที่นิยม ก็คือ การแก้ปัญหาด้วยเทคนิคการวิจัยคำเนินงาน โดยวิธีนี้จะจำลองปัญหาและเงื่อนไขในการตัดสินใจในสถานการณ์จริงให้อยู่ในรูปสมการทาง คณิตสาสตร์ จากนั้นใช้วิธีการทางคณิตสาสตร์แก้สมการเพื่อหาคำตอบให้กับปัญหาจริงต่อไป

เนื่องจากมีปัจจัยหลายอย่างในการคำนวนหาการเลือกทำเลที่ตั้งที่เหมาะสม เมื่อมีการ เปลี่ยนทำเลที่ตั้งทำให้ปัจจัยต่าง ๆ เปลี่ยนไปด้วย ดังนั้นจึงใช้เทคโนโลยีทางคอมพิวเตอร์เพื่อนำมา ช่วยในการคำนวนทางคณิตศาสตร์ทำให้ระยะเวลาในการคำนวนลดลง

ภาพที่ 2-1 ภาพโรงงาน หรือสถานที่ให้บริการ ในการกระจายสินค้าให้ผู้รับบริการ

2.1.2 ตัวอย่างของปัญหา

ภาพที่ 2-2 ภาพโรงงานเดิมที่มีอยู่ในปัจจุบัน และกลุ่มลูกค้า

ภาพที่ 2-3 ภาพโรงงานเดิมที่มีอยู่ในปัจจุบันและโรงงานใหม่ที่ผ่านการสำรวจแล้ว

ภาพที่ 2-4 ภาพจุดที่ตั้งใหม่ที่เหมาะสมที่สุด

2.1.3 สมการที่ใช้ในการแก้ปัญหา

การแก้ปัญหาการเลือกตำแหน่งที่ตั้งของสถานที่ให้บริการ โดยมีวัตถุประสงค์คือเพื่อให้ ค่าใช้จ่ายส่วนรวม (ซึ่งหมายรวมถึง ต้นทุนในการซื้อที่ดิน/ที่ก่อสร้าง สถานที่ให้บริการ และค่า ขนส่งระหว่างลูกค้ากับสถานที่ให้บริการ) ระหว่างสถานที่ให้บริการกับลูกค้าให้มีค่าน้อยที่สุด

		Status	old	old	new	new
		Cost Locati	1000	1000	15000	15000
		Latitude	14.34547	14.0579	13.96197	14.80268
		Longtitude	100.1622	100.459	99.97559	100.9644
Latitude	Longtitude		1	2	3	4
15.28012	101.5137	5	15390.66	14551.62	18553.73	7314.56
15.41785	100.1294	6	9433.472	11656.13	13125.95	9301.12
14.07922	99.53613	7	7140.352	7778.752	4462.528	13656.77
13.72729	100.9534	8	9260.096	6247.296	8932.48	8962.816
15.08927	101.8542	9	18234.82	15195.65	19197.76	8660.224
15.57665	99.81079	10	11775.42	14824.45	15007.87	12469.44

ภาพที่ 2-5 ข้อมูลรายละเอียดสำหรับปัญหาการเลือกสถานที่ตั้ง (LP)

			สถานที่ให้บริการ				
			Status	Status old old		new	new
			Cost Location	C_1	C ₂		C _N
			Latitude				
			Longtitude				
	Latitude	Longtitude		1	2		N
			1	F ₁₁	F ₂₁		F _{N1}
			2	F ₁₂	F ₂₂		F _{N2}
ลูกค้า			•				
			•				
			M	F _{1M}	F _{2M}		F _{NM}

ภาพที่ 2-6 ข้อมูลสำหรับตัวแบบกำหนดการเชิงเส้นตรงสำหรับปัญหา LP

2.1.3.1 การจำลองปัญหาทางกายภาพด้วยตัวแบบทางคณิตศาสตร์สำหรับปัญหา LP

การจำลองตัวแบบทางคณิตศาสตร์ คือการคัดเลือกค่าของ X และ ค่าของ Y ที่ ก่อให้เกิดค่า Z ที่เหมาะสมที่สุด โดยอยู่ภายใต้สมการข้อจำกัดต่าง ๆ ที่จำเป็นต่อการคำเนินการ ซึ่ง สามารถเขียนเป็นตัวแบบทางคณิตศาสตร์ได้ดังต่อไปนี้

$$\begin{split} \text{Min Z} &= C_1 X_1 \ + \ F_{11} Y_{11} \ + \ F_{12} Y_{12} \ + \ \dots \ + \ F_{1M} Y_{1M} \\ &+ C_2 X_2 \ + \ F_{21} Y_{21} \ + \ F_{22} Y_{22} \ + \ \dots \ + \ F_{2M} Y_{2M} \\ &+ \dots \\ &+ C_N X_N \ + \ F_{N1} Y_{N1} \ + \ F_{N2} Y_{N2} \ + \ \dots \ + \ F_{NM} Y_{NM} \end{split}$$

Subject to

$$Y_{11} + Y_{21} + \dots + Y_{N1} = 1$$

$$Y_{12} + Y_{22} + \dots + Y_{N2} = 1$$

$$\vdots$$

$$Y_{1M} + Y_{2M} + \dots + Y_{NM} = 1$$

หรือ

$$Y_{11} \le X_1, Y_{12} \le X_1, \dots, Y_{1M} \le X_1$$
 $Y_{21} \le X_2, Y_{22} \le X_2, \dots, Y_{2M} \le X_2$
 \vdots
 $Y_{M} \le X_M, Y_{M2} \le X_M, \dots, Y_{MM} \le X_M$

หรือ

$$X_1 \ge 0, X_2 \ge 0, \dots, X_N \ge 0$$

ແລະ

$$Y_{11} \ge 0, Y_{12} \ge 0, ..., Y_{1M} \ge 0,$$

 $Y_{21} \ge 0, Y_{22} \ge 0, ..., Y_{2M} \ge 0,$
 \vdots
 $Y_{N1} \ge 0, Y_{N2} \ge 0, ..., Y_{NM} \ge 0$

หรืออาจเขียนในรูปแบบทั่วไปได้คือ

$$\min Z \qquad \qquad \sum_{i=1}^{N} \operatorname{CiXi} + \sum_{i=1}^{N} \sum_{j=1}^{M} \operatorname{FijYij} \qquad \qquad (2\text{-}1)$$

Subject to
$$\sum_{i=1}^{M} Y_{ij} = 1 \qquad (i \subseteq N)$$
 (2-2)

$$Yij \leq Xi \qquad (i \in N, j \in M) \tag{2-3}$$

$$X_i \ge 0$$
 $(i \in N)$ (2-4)

$$Yij \ge 0 \qquad (i \in N, j \in M) \tag{2-5}$$

โดยมีข้อมูลนำเข้า คือ

- Ci เป็นต้นทุนในการซื้อที่ดิน/ก่อสร้าง สถานที่ให้บริการ i
- Fij ค่าขนส่งระหว่างลูกค้าที่อยู่ตำแหน่งที่ j กับสถานที่ให้บริการที่อยู่ ตำแหน่งที่ i

สมการเป้าหมาย 2-1 เป็นการหาค่าระยะทางรวมระหว่างลูกค้าและสถานที่ ให้บริการ

สมการข้อจำกัด 2-2 รับประกันว่าลูกค้าทุกคนจะ ได้รับการให้บริการจากแหล่ง ให้บริการ

สมการข้อจำกัด 2-3 แสดงถึงว่าลูกค้าที่ตำแหน่ง i จะรับบริการจากสถานที่ ให้บริการที่ตำแหน่ง j ได้ก็ต่อเมื่อตำแหน่งที่ j มีสถานที่ให้บริการตั้งอยู่

สมการที่ 2-4 , 2-5 แสคงข้อจำกัดเชิงตัวเลขของตัวแปรในการเลือกตำแหน่งที่ตั้ง และการจัดสรรบริการ

ตัวแบบคณิตศาสตร์ใด ๆ หากพบว่ามีความสอดคล้องกับเงื่อน ใบและข้อสมมติ ของกำหนดการเชิงเส้นตรง จะถูกเรียกอีกอย่างหนึ่งว่า ตัวแบบกำหนดการเชิงเส้นตรง (Linear Programming Model) คังนั้นหากทำการพิจารณาตัวอย่างกรณีศึกษาของปัญหาการเลือกสถานที่ตั้ง (LP) พบว่าตัวแบบทางคณิตศาสตร์สำหรับปัญหาคังกล่าวมีความสอดคล้องกับเงื่อน ใขคังกล่าวมา ข้างต้น จึงอาจเรียกตัวแบบที่ ได้กล่าวมาว่าตัวแบบกำหนดการเชิงเส้นค้วยขนาด M=6 และ N=4

คำตอบ (Solution) ของตัวแปรระบบ (X,Y) สำหรับปัญหากำหนดการเชิงเส้นตรง สามารถแบ่งออกได้หลายประเภทดังต่อไปนี้

1. คำตอบที่เป็นไปได้ (Feasible Solution) คือคำตอบที่สอดคล้องกับเงื่อนไขทั้งหมด

2. คำตอบที่เป็นไปไม่ได้ (Infeasible Solution) คือคำตอบที่ไม่สอดคล้องกับเงื่อนไข อย่างน้อยหนึ่งตัว

มีความเป็นไปได้ว่าในบางปัญหาอาจจะไม่มีคำตอบที่เป็นไปได้ จากข้อมูลรายละเอียคสำหรับปัญหาการเลือกสถานที่ตั้ง (LP) เมื่อแทนค่าในตัว แบบทางคณิตศาสตร์ได้ดังต่อไปนี้

+ 8660.224 Y_{45} + 12469.44 Y_{46} การเลือกค่า Z ที่น้อยที่สดมีสมการข้อจำกัดดังต่อไปนี้

สมการข้อจำกัดแรก มีหน้าที่รับประกันว่าลูกค้าจะ ได้รับบริการจากคลังสินค้า ซึ่ง หมายความว่าสมการจะมี Y ูหนึ่งตัวเท่านั้นที่สามารถเป็น 1 ได้ 3 ตัวที่เหลือจะเป็น 0

$$Y_{11} + Y_{21} + Y_{31} + Y_{41} = 1$$

$$Y_{12} + Y_{22} + Y_{32} + Y_{42} = 1$$

$$Y_{13} + Y_{23} + Y_{33} + Y_{43} = 1$$

$$Y_{14} + Y_{24} + Y_{34} + Y_{44} = 1$$

$$Y_{15} + Y_{25} + Y_{35} + Y_{45} = 1$$

$$Y_{16} + Y_{26} + Y_{36} + Y_{46} = 1$$

สมการข้อจำกัดที่ 2 มีหน้าที่รับประกันว่าลูกค้าจะ ได้รับบริการจากคลังสินค้าก็ ต่อเมื่อ คลังสินค้านั้น เปิดให้บริการ ซึ่งหมายความว่าค่า \mathbf{Y}_{ij} จะเป็น 1 ได้ ก็ต่อเมื่อ \mathbf{X}_{ij} เป็น 1

$$\begin{split} Y_{11} &\leq X_1, \, Y_{12} \leq X_1, \, Y_{13} \leq X_1, \, Y_{14} \leq X_1, \, Y_{15} \leq X_1, \, Y_{16} \leq X_1 \\ Y_{21} &\leq X_2, \, Y_{22} \leq X_2, \, Y_{23} \leq X_2, \, Y_{24} \leq X_2, \, Y_{25} \leq X_2, \, Y_{26} \leq X_2 \\ Y_{31} &\leq X_3, \, Y_{32} \leq X_3, \, Y_{33} \leq X_3, \, Y_{34} \leq X_3, \, Y_{35} \leq X_3, \, Y_{36} \leq X_3 \\ Y_{41} &\leq X_4, \, Y_{42} \leq X_4, \, Y_{43} \leq X_4, \, Y_{44} \leq X_4, \, Y_{45} \leq X_4, \, Y_{46} \leq X_4 \end{split}$$

สมการข้อจำกัดที่ 3 เป็นตัวกำหนดว่าค่า X_i จะเป็นได้แค่ 0 หรือ 1 เท่านั้น $X_1 \geq 0, X_2 \geq 0, X_3 \geq 0$, $X_4 \geq 0$

สมการข้อจำกัดที่ 4 เป็นตัวกำหนดว่าค่า $\mathbf{Y}_{\scriptscriptstyle{ij}}$ จะเป็นได้แค่ 0 หรือ 1 เท่านั้น

$$Y_{11} \ge 0, Y_{12} \ge 0, Y_{13} \ge 0, Y_{14} \ge 0, Y_{15} \ge 0, Y_{16} \ge 0,$$

$$Y_{21} \ge 0, Y_{22} \ge 0, Y_{23} \ge 0, Y_{24} \ge 0, Y_{25} \ge 0, Y_{26} \ge 0,$$

$$Y_{31} \ge 0, Y_{32} \ge 0, Y_{33} \ge 0, Y_{34} \ge 0, Y_{35} \ge 0, Y_{36} \ge 0,$$

$$Y_{41} \ge 0, Y_{42} \ge 0, Y_{43} \ge 0, Y_{44} \ge 0, Y_{45} \ge 0, Y_{46} \ge 0$$

ขั้นตอนการเลือกคลังสินค้าเพื่อส่งสินค้าให้กับลูกค้า มีขั้นตอนคังต่อไปนี้ กำหนดให้ คลังสินค้ามีชื่อว่า A, B, C, D และ ลูกค้ามีชื่อว่า 1, 2, 3, 4, 5, 6 จะได้ ตารางข้อมูลดังต่อไปนี้

Cost Location	1000	1000	15000	15000
	Α	В	С	D
1	15390.66	14551.62	18553.73	7314.56
2	9433.472	11656.13	13125.95	9301.12
3	7140.352	7778.752	4462.528	13656.77
4	9260.096	6247.296	8932.48	8962.816
5	18234.82	15195.65	19197.76	8660.224
6	11775.42	14824.45	15007.87	12469.44

ภาพที่ 2-7 ข้อมูลสำหรับปัญหาการเลือกสถานที่ตั้ง (LP)

ตรวจสอบลูกค้าที่ละราย คำนวนจากค่าเดินทางจากคลังสินค้าไปยังสถานที่ตั้ง นั้น ๆ โดยที่ ถ้าคลังสินค้านั้นยังไม่ถูกตั้งให้นำไปรวมกับค่าเดินทางด้วย ดังนั้นลูกค้า 1 จะมี ค่าใช้จ่ายดังต่อไปนี้

	Α	В	С	D
1	16390.66	15551.62	33553.73	22314.56

ภาพที่ 2-8 ค่าใช้จ่ายของลูกค้ารายที่ 1

ดังนั้นคลังสินค้าที่เราจะเลือกเพื่อส่งสินค้าให้กับลูกค้า 1 คือคลังสินค้า B

	Α	В	С	D
1		15551.62		

ภาพที่ 2-9 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 1

เนื่องจากคลังสินค้า B ถูกตั้งไปแล้วเพื่อส่งสินค้าไปยังลูกค้า 1 คังนั้นเมื่อคำนวน ค่าใช้จ่ายของลูกค้า 2 จึงไม่ต้องคำนวนค่าสถานที่ตั้งคลังสินค้า B คังนั้นลูกค้า 2 จะมีค่าใช้จ่าย คังต่อไปนี้

	Α	В	С	D
1		15551.62		
2	10433.47	11656.13	28125.95	24301.12

ภาพที่ 2-10 ค่าใช้จ่ายของลูกค้ารายที่ 2

ดังนั้นคลังสินค้าที่เราจะเลือกเพื่อส่งสินค้าใหกับลูกค้า 2 คือคลังสินค้า A

	Α	В	С	D
1		15551.62		
2	10433.47			

ภาพที่ 2-11 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 2

เนื่องจากคลังสินค้า A ถูกตั้งไปแล้วเพื่อส่งสินค้าไปยังลูกค้า 2 ดังนั้นเมื่อคำนวน ค่าใช้จ่ายของลูกค้า 3 จึงไม่ต้องคำนวนค่าสถานที่ตั้งคลังสินค้า A ดังนั้นลูกค้า 3 จะมีค่าใช้จ่าย ดังต่อไปนี้

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352	7778.752	19462.53	28656.77

ภาพที่ 2-12 ค่าใช้จ่ายของลูกค้ารายที่ 3

ดังนั้นคลังสินค้าที่เราจะเลือกเพื่อส่งสินค้าใหกับลูกค้า 3 คือคลังสินค้า A

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352			

ภาพที่ 2-13 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 3

ลูกค้า 4 จะมีค่าใช้จ่ายคังต่อไปนี้

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352			
4	9260.096	6247.296	23932.48	23962.82

ภาพที่ 2-14 ค่าใช้จ่ายของลูกค้ารายที่ 4

ดังนั้นคลังสินค้าที่เราจะเลือกเพื่อส่งสินค้าใหกับลูกค้า 4 คือคลังสินค้า B

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352			
4		6247.296		

ภาพที่ 2-15 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 4

ลูกค้า 5 จะมีค่าใช้จ่ายคังต่อไปนี้

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352			
4		6247.296		
5	18234.82	15195.65	34197.76	23660.22

ภาพที่ **2-16** ค่าใช้จ่ายของลูกค้ารายที่ 5

ดังนั้นคลังสินค้าที่เราจะเลือกเพื่อส่งสินค้าให้กับลูกค้า 5 คือคลังสินค้า B

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352			
4		6247.296		
5		15195.65		

ภาพที่ 2-17 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 5

ลูกค้า 6 จะมีค่าใช้จ่ายคั้งต่อไปนี้

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352			
4		6247.296		
5		15195.65		
6	11775.42	14824.45	30007.87	27469.44

ภาพที่ 2-18 ค่าใช้จ่ายของลูกค้ารายที่ 6

ดังนั้นคลังสินค้าที่เราจะเลือกเพื่อส่งสินค้าให้กับลูกค้า 6 คือคลังสินค้า A

	Α	В	С	D
1		15551.62		
2	10433.47			
3	7140.352			
4		6247.296		
5		15195.65		
6	11775.42			

ภาพที่ 2-19 คลังสินค้าที่เลือกเพื่อส่งสินค้าให้กับลูกค้ารายที่ 6

คำตอบที่ได้เป็นคำตอบที่เป็นไปได้ เนื่องจากคำตอบที่ได้นั้น ตรงตามเงื่อนไขทุก ประการ

ภาพที่ 2-20 คำตอบที่ได้ ประมวลผลข้อมูลชุดเดียวกัน โดยใช้ Cplex

2.2 Multi Vehicle routing problem (MVRP)

2.2.1 MVRP คืออะไร

Multi Vehicle Routing Problem เป็นปัญหาการจัดการการขนส่งและกระจายสินค้าจาก แหล่งกระจายสินค้าออกไปยังลูกค้าในสถานที่ต่าง ๆ โดยใช้การขนส่งทางรถยนต์ โดยในการ กระจายสินค้าจะมีค่าใช้จ่ายแยกเป็นสองส่วนคือ ค่าใช้จ่ายในการขนส่งสินค้า และค่าใช้จ่ายในการจัดหายานพาหนะโดยเราต้องจัดการให้ค่าใช้จ่ายนั้นต่ำที่สุดรวมถึงต้องจัดรถให้เหมาะสมกับ ปริมาณที่ต้องการขนส่ง ซึ่งทางหนึ่งที่ใช้ในการจัดการนั้นคือการจัดหาเส้นทางที่สั้นและสะควก ที่สุดในการขนส่งเพื่อให้ค่าใช้จ่ายต่าง ๆ นั้นลดลง

ในการจัดการปัญหาระดับพื้นฐานนั้นเราสามารถใช้ทฤษฎีการแก้ปัญหาการเดินทางของ พนักงานขาย (Travelling Salesman problem) ในการจัดการแก้ปัญหาได้ โดยเป็นการแก้ปัญหาการ เดินทางของพนักงานขายไปยังสถานที่ต่าง ๆ และกลับมายังจุดเริ่มต้นโดยใช้ระยะทางที่สั้นที่สุด ซึ่ง จะได้ออกมาเป็นเส้นทางเพียงเส้นทางเดียวโดยเดินทางเริ่มจากจุดเริ่มต้นไปยังจุดถัดไปที่ระยะทาง สั้นที่สุด โดยเมื่อเดินทางครบทุกจุดแล้วต้องมีระยะทางที่น้อยที่สุด

2.2.2 ตัวอย่างของปัญหา

ภาพที่ 2-21 ตัวอย่างเส้นทางที่ได้จากการใช้ทฤษฎีการเดินทางของพนักงานขาย

จากทฤษฎีการเดินทางของพนักงานขายจะเห็นได้ว่ามีรูปแบบปัญหาที่คล้ายคลึงกับ ปัญหาในการจัดการการขนส่งของเราเช่นกัน โดยในการแก้ปัญหา MVRP นั้นจะทำทฤษฎีข้างต้น มาประยุกต์โดยการเพิ่มส่วนของ ค่าเช่ารถ น้ำหนักบรรทุก ความต้องการของลูกค้า และค่าน้ำมัน มาร่วมคำนวณเพื่อให้ได้เส้นทางที่รถหนึ่งจะสามารถบรรทุกของไปส่งลูกค้าตามจุดต่างได้อย่าง พอเพียง และต้องบรรทุกไม่เกินน้ำหนักบรรทุกของรถ โดยเส้นทางที่ได้นั้นจะแบ่งออกเป็นหลาย เส้นทางโดยในแต่ละเส้นทางจะมีลูกค้าที่ไม่ซ้ำกันกับเส้นทางอื่น ๆ เพื่อให้การขนส่งเป็นไปได้ รวดเร็วและเหมาะสม

ภาพที่ 2-22 ตัวอย่างเส้นทางการเดินทางที่ทำการแก้ปัญหาระยะทางแล้ว

2.2.3 สมการที่ใช้ในการแก้ปัญหา

Name	Latitude	Longitude	Demand	
DC	13.90208	100.5579	0	
CP	13.71004	100.7886	100	
HTC	13.67801	100.2173	200	
OOP	13.58192	100.7776	200	
KTW	13.48579	101.0522	200	
Car				
No	Cost	Capacity		
0	10000	500		
1	9000	500		
2	25000	1000		
Gas Cost	12			
0	50.568	61.295	62.703	89.739
49.812	0	82.96	24.337	43.604
70.157	85.668	0	78.087	214.767
61.145	24.535	76.773	0	50.016
43.127	90.354	123.502	43.557	0

ภาพที่ 2-23 ข้อมูลรายละเอียคสำหรับปัญหาการจัดการการกระจายสินค้ำ (MVRP)

	1 1			
Name	Latitude	Longitude		
DC			$Demand_0$	
CP			$Demand_1$	
HTC			$Demand_2$	
OOP			Demand ₃	
KTW			$Demand_4$	
Car				
No	Cost	Capacity		
	F_0	Capacity ₀		
	F_1	$Capacity_1$		
	F_2	Capacity ₂		
Gas Cost				
C ₀₀	C ₀₁	C ₀₂	C ₀₃	C_{04}
C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄
C ₂₀	C_{21}	C22	C ₂₃	C24
C ₃₀	C ₃₁	C ₃₂	C ₃₃	C ₃₄
C ₄₀	C_{41}	C_{42}	C ₄₃	C_{44}

ภาพที่ 2-24 ข้อมูลสำหรับตัวแบบกำหนดการเชิงเส้นตรงสำหรับปัญหา MVRP

2.2.3.1 การจำลองปัญหาทางกายภาพด้วยตัวแบบทางคณิตศาสตร์สำหรับปัญหา MVRP

$$\begin{split} & \text{Min Z} = (\ (C_{00}X_{00}^{\ 0} + F_0Y_0 + C_{00}X_{00}^{\ 1} + F_1Y_1 + \ldots + C_{00}X_{00}^{\ P} + F_pK_p) \\ & + (\ C_{01}X_{01}^{\ 0} + F_0Y_0 + C_{01}X_{01}^{\ 1} + F_1Y_1 + \ldots + C_{01}X_{01}^{\ P} + F_pY_p) + \ldots + (\ C_{0N}X_{0N}^{\ 0} + F_0Y_0 + C_{0N}X_{0N}^{\ 0} + F_0Y_0 + C_{0N}X_{0N}^{\ 0} + F_0Y_0 + C_{10}X_{10}^{\ 1} + F_1Y_1 + \ldots + C_{10}X_{10}^{\ 0} + F_0Y_0 + C_{10}X_{10}^{\ 1} + F_1Y_1 + \ldots + C_{10}X_{10}^{\ 1} + F_1Y_1 + \ldots + C_{11}X_{11}^{\ 1} + F_1Y_1 + \ldots + C_{11}X_{11}^{\ P} + F_pY_p + \ldots + C_{1N}X_{1N}^{\ 0} + F_0Y_0 + C_{1N}X_{1N}^{\ 1} + F_1K_1 + \ldots + C_{1N}X_{1N}^{\ P} + F_pK_p) \\ & + \ldots \\ & + (C_{M0}X_{M0}^{\ 0} + F_0Y_0 + C_{M0}X_{M0}^{\ 1} + F_1Y_1 + \ldots + C_{M0}X_{M0}^{\ P} + F_pK_p + C_{M1}X_{M1}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 0} + F_0Y_0 + C_{MN}X_{MN}^{\ 1} + F_1K_1 + \ldots + C_{MN}X_{MN}^{\ 1} + F_0Y_0 + C_{M$$

Subject to

$$(X_{00}^{0} + X_{00}^{1} + X_{00}^{2} + ... + X_{00}^{P}) + (X_{01}^{0} + X_{01}^{1} + X_{01}^{2} + ... + X_{01}^{P}) + ... + (X_{0N}^{0} + X_{0N}^{0} + X_{0N}^{0} + X_{0N}^{0} + ... + X_{1N}^{P}) = 1$$

$$(X_{10}^{0} + X_{10}^{1} + X_{10}^{2} + \dots + X_{10}^{P}) + (X_{11}^{0} + X_{11}^{1} + X_{11}^{2} + \dots + X_{11}^{P}) + \dots + (X_{1N}^{0} + X_{1N}^{1} + X_{1N}^{2} + \dots + X_{1N}^{P}) = 1$$

...

$$({X_{M0}}^0 + {X_{M0}}^1 + {X_{M0}}^2 + \ldots + {X_{M0}}^P) + ({X_{M1}}^0 + {X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{MN}}^0 + {X_{MN}}^1 + {X_{MN}}^2 + \ldots + {X_{MN}}^P) = 1$$

ແຄະ

$$({X_{00}}^0 + \, {X_{00}}^1 + \, {X_{00}}^2 + \, \ldots + \, {X_{00}}^P) + \, ({X_{10}}^0 + \, {X_{10}}^1 + \, {X_{10}}^2 + \ldots + \, {X_{10}}^P) + \ldots + (\, {X_{M0}}^0 + \, {X_{M0}}^2 + \, \ldots + \,$$

$$X_{M0}^{1} + X_{M0}^{2} + ... + X_{M0}^{P} = 1$$

$$({X_{01}}^0 + {X_{01}}^1 + {X_{01}}^2 + \ldots + {X_{01}}^P) + ({X_{11}}^0 + {X_{11}}^1 + {X_{11}}^2 + \ldots + {X_{11}}^P) + \ldots + ({X_{M1}}^0 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^0 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^0 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^0 + {X_{M1}}^0 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^0 + \ldots + {X_{M1}}^P) + \ldots +$$

$$X_{M1}^{1} + X_{M1}^{2} + ... + X_{M1}^{P} = 1$$

• • •

$$(X_{0N}^{0} + X_{0N}^{1} + X_{0N}^{2} + \ldots + X_{0N}^{P}) + (X_{1N}^{0} + X_{1N}^{1} + X_{1N}^{2} + \ldots + X_{1N}^{P}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + X_{1N}^{0} + \ldots + X_{1N}^{0}) + \ldots + (X_{1N}^{0} + \ldots + X_{1N}^{0$$

ແຄະ

$$Y_0 + Y_1 + \dots + Y_P \leq P$$

ແຄະ

$$(X_{00}^0 + X_{00}^1 + X_{00}^2 + ... + X_{00}^P) + (X_{01}^0 + X_{01}^1 + X_{01}^2 + ... + X_{01}^P) + ... + (X_{0N}^0 + X_{0N}^1 + X_{0N}^2 + ... + X_{0N}^P)$$

$$X_{0N}^{1} + X_{0N}^{2} + ... + X_{1N}^{P} \le Y_{P}$$

$$(X_{10}^{} + X_{10}^{} + X_{10}^{} + X_{10}^{} + \dots + X_{10}^{}) + (X_{11}^{} + X_{11}^{} + X_{11}^{} + X_{11}^{} + \dots + X_{11}^{}) + \dots + (X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + \dots + (X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + \dots + (X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + \dots + (X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + \dots + (X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + X_{1N}^{} + \dots + (X_{1N}^{} + X_{1N}^{} + X_{1N}^{$$

$$X_{1N}^{1} + X_{1N}^{2} + ... + X_{1N}^{P}) \le Y_{P}$$

...

$$(X_{M0}^{0} + X_{M0}^{1} + X_{M0}^{2} + ... + X_{M0}^{P}) + (X_{M1}^{0} + X_{M1}^{1} + X_{M1}^{2} + ... + X_{M1}^{P}) + ... + ($$

$$X_{MN}^{0} + X_{MN}^{1} + X_{MN}^{2} + ... + X_{MN}^{P}) \le Y_{P}$$

ແຄະ

$$(X_{00}^{0} + X_{00}^{1} + X_{00}^{2} + \dots + X_{00}^{P}) + (X_{10}^{0} + X_{10}^{1} + X_{10}^{2} + \dots + X_{10}^{P}) + \dots + (X_{M0}^{0} + X_{M0}^{0} + X_{M0}^{0} + \dots + X_{M0}^{0}) + \dots + (X_{M0}^{0} + X_{M0}^{0} + X_{M0}^{0} + \dots + X_{M0}^{0} + \dots + (X_{M0}^{0} + \dots + (X_{M0}^{0$$

$$X_{M0}^{1} + X_{M0}^{2} + ... + X_{M0}^{P} \le Y_{P}$$

$$(X_{01}^{0} + X_{01}^{1} + X_{01}^{2} + \dots + X_{01}^{P}) + (X_{11}^{0} + X_{11}^{1} + X_{11}^{2} + \dots + X_{11}^{P}) + \dots + (X_{M1}^{0} + X_{M1}^{0} + X_{M1}^{0} + \dots + (X_{M1}^{0} +$$

$$X_{M1}^{1} + X_{M1}^{2} + ... + X_{M1}^{P} \le Y_{P}$$

...

$$(X_{0N}^{0} + X_{0N}^{1} + X_{0N}^{2} + ... + X_{0N}^{P}) + (X_{1N}^{0} + X_{1N}^{1} + X_{1N}^{2} + ... + X_{1N}^{P}) + ... + ($$

$$X_{MN}^{0} + X_{MN}^{1} + X_{MN}^{2} + ... + X_{MN}^{P} \le Y_{P}$$

ແຄະ

$$({X_{00}}^0 + \, {X_{00}}^1 + \, {X_{00}}^2 + \ldots + \, {X_{00}}^P) + \, ({X_{01}}^0 + \, {X_{01}}^1 + \, {X_{01}}^2 + \ldots + \, {X_{01}}^P) + \ldots + (\, {X_{0N}}^0 + \, {X_{0N}}^2 + \ldots + \, {X_{0N}}^2$$

$$X_{0N}^{-1} \!\!+ X_{0N}^{-2} \!\!+ \! \ldots \!\!+ X_{0N}^{-P}) + \!\!\!$$

$$(X_{10}^0 + X_{10}^1 + X_{10}^2 + ... + X_{10}^P) + (X_{11}^0 + X_{11}^1 + X_{11}^2 + ... + X_{11}^P) + ... + (X_{1N}^0 + X_{11}^2 + ... + X_{11}^P) + ... + (X_{1N}^0 + X_{11}^2 + ... + X_$$

$$X_{1N}^{1} + X_{1N}^{2} + ... + X_{1N}^{P} + ...$$

...

$$({X_{M0}}^0 + {X_{M0}}^1 + {X_{M0}}^2 + \ldots + {X_{M0}}^P) + ({X_{M1}}^0 + {X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + {X_{M1}}^2 + \ldots + {X_{M1}}^P) + \ldots + ({X_{M1}}^1 + \ldots + {X_{M1}}^P) + \ldots$$

$$X_{MN}^{0} + X_{MN}^{1} + X_{MN}^{2} + ... + X_{MN}^{P}$$

=

$$(X_{00}^0 + X_{00}^1 + X_{00}^2 + ... + X_{00}^P) + (X_{10}^0 + X_{10}^1 + X_{10}^2 + ... + X_{10}^P) + ... + (X_{N0}^0 + X_{N0}^1 + X_{N0}^2 + ... + X_{N0}^P)$$

$$X_{N0}^{1} + X_{N0}^{2} + ... + X_{N0}^{P} + ...$$

$$(X_{01}^{-1} + X_{01}^{-1} + X_{02}^{-1} + ... + X_{01}^{-1}) + (X_{11}^{-0} + X_{11}^{-1} + X_{12}^{-1} + ... + X_{11}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1}) + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + ... + (X_{N1}^{-0} + X_{N1}^{-1} + ... + (X_{N1}^{-0} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + X_{N1}^{-1} + ... + (X_{N1}^{-0} + X_{N1}^{-1} +$$

 $(U_{1P}-U_{0P}+Capacity_PX_{10}^P \leq Capacity_P-Demand_0$

$$\dots U_{NP} {\le} \operatorname{Capacity}_P \{ (X_{N0}^{-P} {+} \ X_{N1}^{-P} {+} \ X_{N2}^{-P} {+} \dots {+} \ X_{NM}^{-P}) \}$$
 หรืออาจเขียนในรูปแบบทั่วไปได้คือ

$$\mathsf{Min} \, Z = \ \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} (\mathsf{C}_{ij} x_{ij}^{k} + \mathsf{F}_{k} y_{k})$$

โดยมีข้อมูลนำเข้า คือ

$$C_{ij}$$
 เป็นค่าใช้จ่ายในการเดินทางจากจุด i ไปยังจุด j F_k เป็นค่าเช่ารถคันที่ k X_{ij}^k 1 ถ้าเลือกใช้เส้นทางนั้น ๆ 0 ถ้าไม่เลือกเส้นทางนั้น ๆ

จากข้อมูลสำหรับปัญหาการจัดการการขนส่ง(MVRP) เมื่อแทนค่าในตัวแบบทาง คณิตศาสตร์จะได้สมการดังต่อไปนี้

 $\begin{aligned} & \text{Min Z} = 0X_{00}^{0} + 10000Y_{0} + 0X_{00}^{1} + 9000Y_{1} + 0X_{00}^{2} + 25000Y_{2} + 50.568X_{01}^{0} + \\ & 10000Y_{0} + 50.568X_{01}^{1} + 9000Y_{1} + 50.568X_{01}^{2} + 25000Y_{2} + 61.295X_{02}^{0} + 10000Y_{0} + 61.295X_{02}^{1} + \\ & 9000Y_{1} + 61.295X_{02}^{2} + 25000Y_{2} + 62.703X_{03}^{0} + 10000Y_{0} + 62.703X_{03}^{1} + 9000Y_{1} + 62.703X_{03}^{2} + \\ & 25000Y_{2} + 89.739X_{04}^{0} + 10000Y_{0} + 89.739X_{04}^{1} + 9000Y_{1} + 89.739X_{04}^{2} + 25000Y_{2} + 49.812X_{10}^{0} + \\ & 10000Y_{0} + 49.812X_{10}^{1} + 9000Y_{1} + 49.812X_{10}^{2} + 25000Y_{2} + 0X_{11}^{0} + 10000Y_{0} + 0X_{11}^{1} + 9000Y_{1} + 0X_{11}^{2} + \\ & 25000Y_{2} + 82.86X_{12}^{0} + 10000Y_{0} + 82.96X_{12}^{1} + 9000Y_{1} + 82.96X_{12}^{2} + 25000Y_{2} + 24.337X_{13}^{0} + \\ & 10000Y_{0} + 24.337X_{13}^{1} + 9000Y_{1} + 24.337X_{13}^{2} + 25000Y_{2} + 43.604X_{14}^{0} + 10000Y_{0} + 43.604X_{14}^{1} + \\ & 9000Y_{1} + 43.604X_{14}^{2} + 25000Y_{2} + 70.157X_{20}^{0} + 10000Y_{0} + 70.157X_{20}^{1} + 9000Y_{1} + 70.157X_{20}^{2} + \\ & 25000Y_{2} + 85.668X_{21}^{0} + 10000Y_{0} + 85.668X_{21}^{1} + 9000Y_{1} + 85.668X_{21}^{2} + 25000Y_{2} + 0X_{22}^{0} + 10000Y_{0} + \\ & 0X_{22}^{1} + 9000Y_{1} + 0X_{22}^{2} + 25000Y_{2} + 78.087X_{23}^{0} + 10000Y_{0} + 78.087X_{23}^{2} + \\ & 25000Y_{2} + 214.767X_{24}^{0} + 10000Y_{0} + 214.767X_{24}^{1} + 9000Y_{1} + 214.767X_{24}^{2} + 25000Y_{2} + 61.145X_{30}^{0} + \\ & 10000Y_{0} + 61.145X_{30}^{1} + 9000Y_{1} + 61.145X_{30}^{2} + 25000Y_{2} + 76.773X_{32}^{0} + 10000Y_{0} + 76.773X_{32}^{1} + 9000Y_{1} + 76.773X_{32}^{2} + \\ & 25000Y_{2} + 0X_{33}^{0} + 10000Y_{0} + 0X_{33}^{1} + 9000Y_{1} + 0X_{33}^{2} + 25000Y_{2} + 50.016X_{34}^{0} + 10000Y_{0} + \\ & 50.016X_{34}^{1} + 9000Y_{1} + 50.016X_{34}^{2} + 25000Y_{2} + 43.127X_{40}^{0} + 10000Y_{0} + 43.127X_{40}^{1} + \\ & 50.016X_{34}^{1} + 9000Y_{1} + 50.016X_{34}^{0} + 25000Y_{2} + 43.127X_{40}^{0} + 10000Y_{0} + 43.127X_{40}^{1} + \\ & 50.016X_{34}^{1} + 9000Y_{1} + 50.016X_{34}^{1} + 25000Y_{2} + 43.127X_{40}^{0} + 10000Y_{$

 $9000Y_{1} + 43.127X_{40}^{2} + 25000Y_{2} + 90.354X_{41}^{0} + 10000Y_{0} + 90.354X_{41}^{1} + 9000Y_{1} + 90.354X_{41}^{2} + 9000Y_{1} + 90.354X_{41}^{2} + 25000Y_{2} + 123.502X_{42}^{0} + 10000Y_{0} + 123.502X_{42}^{1} + 9000Y_{1} + 123.502X_{42}^{2} + 25000Y_{2} + 43.557X_{43}^{0} + 10000Y_{0} + 43.557X_{43}^{1} + 9000Y_{1} + 43.557X_{43}^{2} + 25000Y_{2} + 0X_{44}^{0} + 10000Y_{0} + 0X_{44}^{1} + 9000Y_{1} + 0X_{44}^{2} + 25000Y_{2}$

โดยการเลือกค่า Z ที่น้อยที่สุดต้องเป็นไปตามสมการข้อจำกัดต่าง ๆ ดังนี้

$$\sum_{k=1}^{K} \sum_{j=1(i \neq j)}^{N} X_{ij}^{k} = 1$$

สมการข้อจำกัดแรกเป็นสมการที่ระบุว่าจะมีเพียงเส้นทางเคียวจาก i ใด ๆ ไปยัง j ใด ๆ โดยใช้รถกันที่ k เพียงกันเคียวในการเดินทาง

$$\sum_{k=1}^{K} \sum_{i=1(i \neq j)}^{N} X_{ij}^{k} = 1$$

สมการข้อจำกัดที่สองเป็นสมการที่ระบุว่าจะมีเพียงเส้นทางเคียวจาก j ใด ๆ ไปยัง i ใด ๆ โดยใช้รถคันที่ k เพียงคันเดียวในการเดินทาง

$$\sum_{k=1}^{K} Y_k \leq$$
จำนวนรถที่มี

สมการข้อจำกัดที่สามเป็นสมการที่ระบุว่ารถที่ใช้ในการเดินทางจะถูกเลือกได้ไม่ เกินจำนวนรถที่มีทั้งหมด

$$\sum_{k=1}^{K} \sum_{i=1(i \neq j)}^{N} X_{ij}^{k} \leq Y_{k}$$

สมการข้อจำกัดที่สี่เป็นสมการที่ระบุว่าเส้นทางจาก i ใด ๆ ไปยัง j ใด ๆ จะสามารถใช้รถกันที่ k ได้ก็ต่อเมื่อรถกันที่ k นั้นถูกเลือกเท่านั้น

$$\sum_{k=1}^{K} \sum_{j=1(i \neq j)}^{N} X_{ij}^{k} \leq Y_{k}$$

สมการข้อจำกัดที่ห้าเป็นสมการที่ระบุว่าเส้นทางจาก j ใด ๆ ไปยัง i ใด ๆ จะ สามารถใช้รถคันที่ k ได้ก็ต่อเมื่อรถคันที่ k นั้นถูกเลือกเท่านั้น

 U_{ik} - U_{jk} + Capacity $_k X_{ij}^k \leq$ Capacity $_k$ - Demand $_j$ สมการข้อจำกัดที่หกเป็นสมการที่ใช้ในการป้องกันการเกิด subtour

$$U_{ik} \leq_{Capacity_k} \sum_{i=1}^{N} X_{ii}^k$$

สมการข้อจำกัดที่เจ็ดเป็นสมการที่ระบุว่ารถคันที่ k ใด ๆ จะบรรทุกได้ไม่เกินนำ หนักที่สามารถบรรทกของได้เท่านั้น

$$\textstyle \sum_{i=1}^N x_{ij}^k = \sum_{h=1}^n x_{jh}^k$$

สมการข้อจำกัดที่แปดเป็นสมการที่ระบุว่าหากมีเลือกเส้นทางจาก i ใด ๆ ไปยัง j ใด ๆ ต้องมีเส้นทางออกจากโหนด j นั้น ๆ ด้วยเช่นกัน

> ขั้นตอนการจัดการเส้นทางการขนส่งมีดังต่อ ไปนี้ กำหนดให้ศูนย์กระจายสินค้ามีชื่อว่า DC และลูกค้ามีชื่อ 1, 2, 3, 4 ดังตาราง

ตารางที่ 2-1 ข้อมูลระยะทางสำหรับปัญการจัดการการขนส่ง (MVRP)

	DC	1	2	3	4
DC	0	50.568	61.295	62.703	89.739
1	49.812	0	82.96	24.337	43.604
2	70.157	85.668	0	78.087	214.767
3	61.145	24.535	76.773	0	50.016
4	43.127	90.354	123.502	43.557	0

ตรวจสอบเส้นทางที่สั้นที่สุดในการเดินทางจากศูนย์กระจายสินค้าไปยังทุกจุด โดยต้องมีการเข้าถึงลูกค้าใด ๆ จากเพียงหนึ่งเส้นทางและต้องมีเพียงหนึ่งเส้นทางออกไปจากลูกค้า นั้น ๆ โดยเส้นทางที่ถูกเลือกจะกำหนดให้แทนที่ด้วยเลขหนึ่ง

ตารางที่ 2-2 ข้อมูลระยะทางสำหรับปัญการจัดการการขนส่ง (MVRP) โดยเลือกเส้นทางที่สั้นที่สุด ตามเงื่อนใข

	DC	1	2	3	4
DC	0	50.568	61.295	62.703	89.739
1	49.812	0	82.96	24.337	43.604
2	70.157	85.668	0	78.087	214.767
3	61.145	24.535	76.773	0	50.016
4	43.127	90.354	123.502	43.557	0

นำค่าเช่าและปริมาณบรรทุกของรถรวมถึงความต้องการของลูกค้าแต่ละที่มาใช้ ในการแก้ปัญหาโดยมีรายละเอียดดังตาราง

ตารางที่ 2-3 ค่าเช่ารถ

Car No.	Cost	Capacity
1	10000	500
2	9000	500
3	25000	1000

ตารางที่ 2-4 ความต้องการของลูกค้าแต่ละแห่ง

Customer No.	Demand
1	100
2	200
3	200
4	200

ตรวจสอบเส้นทางที่เหมาะสมในการขนส่งโดนรถหนึ่งคันสามารถวิ่งได้หนึ่ง รอบและไม่สามารถบรรทุกเกินน้ำหนักได้จะได้เส้นทางการขนส่งที่เหมาะสมเป็นดังตาราง

ตารางที่ 2-5 เส้นทางการขนส่งที่ได้โดยสีเหลืองคือการขนส่งโดยใช้รถคันที่ 2 และสีฟ้าเป็นการ ขนส่งโดยใช้รถคันที่ 1

	DC	1	2	3	4
DC	0	50.568	61.295	62.703	89.739
1	49.812	0	82.96	24.337	43.604
2	70.157	85.668	0	78.087	214.767
3	61.145	24.535	76.773	0	50.016
4	43.127	90.354	123.502	43.557	0

โดยคำตอบที่ได้นั้นเมื่อนำมาเปรียบเทียบกับการประมวลผลโดยใช้ Cplex นั้น พบว่าเป็นคำตอบชุดเดียวกันโดยผลลัพธ์

```
i,j

0,1 select car no. 1

0,2 select car no. 0

1,3 select car no. 1

2,0 select car no. 0

3,4 select car no. 1

4,0 select car no. 1
```

ภาพที่ 2-25 ผลลัพธ์จากการคำนวณ โดย Cplex

บทที่ 3

วิธีดำเนินการโครงงาน

3.1 อุปกรณ์ที่ใช้งาน

3.2.1 IBM ILOG CPLEX

IBM ILOG CPLEX คือ โปรแกรมแก้ไขสมการเพื่อหาค่าที่เหมาะสมและน้อยที่สุด ซึ่งเป็น โปรแกรมลิขสิทธิ์ของบริษัท IBM ตัวโปรแกรมทำหน้าที่หาค่าที่เหมาะสมจากตัวแปรต่าง ๆ เพื่อ เพิ่มประสิทธิภาพ ลดต้นทุนการผลิตหรือลดค่าใช้จ่ายในการทำธุรกิจโดยใช้ Algorithm และการ คำนวณทางคณิตศาสตร์ โดยปริญญานิพนธ์นี้จะนำส่วนของไลบรารี่สำหรับภาษา JAVA ซึ่ง CPLEX มีไว้ให้ใช้งานในชื่อ ilog.concert ซึ่งเราจะสามารถเรียกใช้งานฟังก์ชันต่าง ๆ ของ CPLEX ได้ผ่าน ภาษาJAVA

```
try {
    IloCplex cplex = new IloCplex();
    IloNumVar[][][] x = new IloNumVar[Xpos.size()][Xpos.size()][];
    IloNumVar[] y = new IloNumVar[car.length];
    IloNumVar[][] u=new IloNumVar[Xpos.size()][capa.length];
    for(int i=0;i<Xpos.size();i++) {
        u[i]=cplex.numVarArray(capa.length,0,Double.MAX_VALUE);
        for(int j=0;j<Xpos.size();j++) {
            x[i][j]=cplex.boolVarArray(car.length);
        }
    }
    for(int k=0;k<car.length;k++) {
        y[k]=cplex.boolVar();
    }
}</pre>
```

ภาพที่ 3-1 ตัวอย่างการเรียกใช้กำสั่งต่าง ๆ ของ CPLEX ผ่านภาษา JAVA

3.2.2 Google Maps

Google Maps คือบริการของ Google ที่ให้บริการเทคโนโลยีด้านแผนที่ประสิทธิภาพสูง ใช้งานง่าย และให้ข้อมูลของธุรกิจในท้องถิ่น ได้แก่ ที่ตั้งของธุรกิจ รายละเอียดการติดต่อ และ เส้นทางการขับขี่ โดยบริการแผนที่นี้เริ่มต้นให้บริการตั้งแต่กลางปี ค.ศ. 2005 เป็นบริการฟรี จัด ให้แก่ผู้ใช้ทั่วโลกส่วนประกอบที่สำคัญที่ดึงคูดผู้ใช้งานเป็นอย่างมาก คือแผนที่และภาพถ่าย ดาวเทียมคุณภาพดี ซึ่งครองคลุมพื้นผิวโลกในมาตราส่วนต่าง ๆ ตามความเหมาะสม

ภาพที่ 3-2 ตัวอย่าง Google Maps เมื่อเรียกใช้งานผ่านเว็บไซต์

ภาพที่ 3-3 ตัวอย่าง Google Maps เมื่อเรียกใช้งานผ่านเว็บไซต์

Google Maps API เป็นชุด API ของ Google สำหรับพัฒนา web application และ mobile application (Android, iOS) ไว้สำหรับเรียกใช้แผนที่และชุด service ต่าง ๆ ของ Google เพื่อพัฒนา Application ได้เหมือนกับที่ Google โดยแผนที่ยัง features ต่าง ๆ มากมายให้เรียกใช้

- 3.2.2.1 การปรับแต่งแผนที่ (Styled Map)
- 3.2.2.2 ชุคควบคุมแผนที่ (Map Control)
- 3.2.2.3 ชุดเครื่องมือวาคภาพบนแผนที่ (Drawing)
- 3.2.2.4 การนำทางจากจุดหนึ่งไปยังอีกจุดหนึ่ง (Directions Service)
- 3.2.2.5 การคำนวณความสูงของจุดพิกัด (Elevation Service)
- 3.2.2.6 การแปลงที่อยู่เป็นพิกัด Latitude และ Longitude (Geocoding Service)
- 3.2.2.7 การดึงข้อมูล POI (Point of Interest) คือข้อมูลสถานที่ต่าง ๆ ที่ Google รวบรวม ไว้ให้ เช่น โรงแรม ห้างสรรพสินค้า โรงเรียน –สถานที่ราชการต่าง ๆ และอื่น ๆ อีกมากมาย (Places API) มาใช้งาน

ภาพที่ 3-4 ตัวอย่างการค้นหาเส้นทาง

3.2 รายละเอียดการออกแบบและทดสอบระบบ

- 3.2.1 Location Problem (LP)
- 3.2.1.1 ขั้นตอนแรกคือการศึกษาการทำงานของ Google api และการคำเนินการผ่าน หน้าเว็บ โดยมีขั้นตอนการศึกษาดังต่อไปนี้
- 3.2.1.1.1 ทำการเขียนโปรแกรมโดยให้สามารถแสดงแผนที่บนหน้าเว็บและ สามารถปักจุดบนแผนที่ได้โดยใช้ภาษา javascript, html ในการป้อนกำสั่งเพื่อเรียกใช้ Google map

ภาพที่ 3-5 โปรแกรม Komodo edit (โปรแกรมที่ใช้ในการ Coding)

ภาพที่ 3-6 การป้อนข้อมูลรับเข้าโดยการปักจุด

3.2.1.1.2 เขียนโปรแกรมเพื่อให้สามารถรับค่า Latitude, Longitude จากจุดที่ปัก ได้โดยแสดงค่า Latitude, Longitude ผ่านคอนโซล โดยใช้คำสั่ง console.log()

```
Maps API warning: SensorNotRequired https://developers.go.
Object { lat: _.H/this.lat(), lng: _.H/this.lng() }
Add Latitude: 14.217173735536525<br>br>Longitude: 100.48095703125
undefined
```

ภาพที่ 3-7 รับค่า Latitude, Longitude จากจุดที่ปัก

3.2.1.1.3 หลังจากได้ค่า Latitude, Longitude แล้วนำค่านั้นร้องขอไปยัง Google api เพื่อรับค่าระยะทางระหว่างจุดเพื่อนำข้อมูลไปประมวลผลต่อไป

ภาพที่ 3-8 แสดงการร้องขอ และการตอบกลับของ Google api ผ่านคอนโซล

3.2.1.1.4 ศึกษาการเปลี่ยน icon ของจุดที่ปักเพื่อทำการแบ่งประเภทของแต่ละ จุด และนำความรู้พื้นฐานในการเขียนเว็บมาใช้ เพื่อแสดงผลลัพธ์ของการดำเนินการที่เกิดขึ้นบน หน้าเว็บ

ID	Status	Latitude	Longitude
1	old	14.679253895204711	100.074462890625
2	new	15.00846369500487	101.326904296875
3	cus	14.43468021529728	101.22802734375

ภาพที่ 3-9 แสดงการเปลี่ยน icon ของจุดที่ปัก และแสดงผลลัพธ์ของการดำเนินการที่เกิดขึ้น

3.2.1.1.5 ศึกษาการอ่าน/เขียนข้อมูลไฟล์ Excel

ภาพที่ 3-10 ปุ่มกดเรียกไฟล์จากไดเรกทอรี

ภาพที่ 3-11 แสดงรายการไฟล์ที่อยู่ในไดเรกทอรี

ID	Status	Latitude	Longitude
1	old	14.3555791	100.46997069999998
2	old	14.3981482	100.76660160000006
3	old	14.18522197	100.67871089999994
4	new	14.58960837	100.03051759999994
5	cus	14.16391829	100.26123050000001
6	cus	14.22782332	99.83276367000008
7	cus	14.00407716	100.46997069999998
8	cus	14.04671239	100.8654785

ภาพที่ 3-12 แสดงข้อมูลที่อยู่ภายในไฟล์

		Status	old	old	old	new
		Cost Location	1	1	1	1
		Latitude	14.3555791	14.3981482	14.18522197	14.58960837
		Longtitude	100.4699706999	9998 100.7666016000000	6 100.67871089999994	100.0305175999999
Latitude	Longtitude		1	2	3	4
14.16391829	100.26123050000001	5	84.728	181.156	127.364	142.732
14.22782332	99.83276367000008	6	203.932	273.32	241.888	119.196
14.00407716	100.46997069999998	7	97.998	138.622	84.832	204.362
14.04671239	100.8654785	8	169.068	100.234	84.278	304.9
Export to Excell				•	,	

ภาพที่ 3-13 นำข้อมูลที่อยู่ในไฟล์มาจัดเรียงแล้วแสดงบนหน้าเว็บ

ภาพที่ 3-14 นำข้อมูลที่จัดเรียงแล้วไปเก็บในไฟล์ Excel

ภาพที่ 3-15 แสดงข้อมูลในไฟล์ Excel ที่รับมาจากหน้าเว็บ

3.2.1.2 การนำข้อมูลที่ศึกษามาประยุกต์ใช้กับผลงาน

ภาพที่ 3-16 รูปแบบหน้าเว็บรุ่นทคลอง

ภาพที่ 3-17 แสดงการปักจุดบนแผนที่ผ่านหน้าเว็บ และกรอกค่าน้ำมันลงใน Textbox

ภาพที่ 3-18 แสดงการร้องขอระยะทางระหว่างจุดต่าง

ภาพที่ 3-19 แสดงการแจ้งเตือนหลังจากร้องขอระยะทางจาก Google map เสร็จสิ้น

		Status	old	old	old	new
		Cost Location	0	0	0	2000
		Latitude	14.355579103820286	14.398148202030741	14.185221970901585	14.589608367902034
		Longtitude	100.469970703125	100.7666015625	100.6787109375	100.030517578125
Latitude	Longtitude		1	2	3	4
14.16391829141702	100.26123046875	5	2711.296	5796.992	4075.648	4567.424
14.227823321145756	99.832763671875	6	6525.824	8746.24	7740.416	3814.272
14.004077160405942	100.469970703125	7	3135.936	4435.904	2714.624	6539.584
14.046712391974378	100.865478515625	8	5410.176	3207.488	2696.896	9756.8
Export to Excell						

ภาพที่ 3-20 แสดงค่าเดินทาง ((ระยะทาง*2)*ค่าน้ำมัน), Latitude, Longitude และทำการกรอกค่าสถานที่ตั้งของสถานที่ให้บริการ

ภาพที่ 3-21 แสดงแจ้งเตือนเพื่อให้ผู้ใช้สามารถดาวน์โหลดไฟล์เอกสาร Excel

Χ	H 5.	<> - ±					t	est(9) [Pro
FI	LE HON	INSER	T PAGE L	AYOUT I	FORMULAS	DATA	REVIEW	VIEW
Û	PROTECTE	O VIEW Be ca	reful—files fr	om the Intern	et can contair	viruses. Unle	ss you need to	edit, it's
111	. •	: ×	√ f _x					
	Α	В	С	D	E	F	G	Н
1			Status	old	old	old	new	
2			Cost Locat	0	0	0	2000	
3			Latitude	14.35558	14.39815	14.18522	14.58961	
4			Longtitude	100.47	100.7666	100.6787	100.0305	
5	Latitude	Longtitude		1	2	3	4	
6	14.16392	100.2612	5	2711.296	5796.992	4075.648	4567.424	
7	14.22782	99.83276	6	6525.824	8746.24	7740.416	3814.272	
8	14.00408	100.47	7	3135.936	4435.904	2714.624	6539.584	
9	14.04671	100.8655	8	5410.176	3207.488	2696.896	9756.8	
10								

ภาพที่ 3-22 แสดงข้อมูลที่ถูกดำเนินการผ่านหน้าเว็บ

3.2.1.3 ศึกษาการทำงานของ Cplex ผ่านเว็บไซด์

(https://www.youtube.com/playlist?list=PL9xwgp-nwd-wwPhYaN3vUyduglg2m-xHO โดย Library ของ Cplex จะทำการหาค่าที่เหมาะสมที่สุดจากสมการเป้าหมายและสมการข้อจำกัด การที่ นำ Cplex มาใช้เนื่องจากลดข้อผิดพลาดการจากเขียนโปรแกรมผิด ทำให้ค่าผลลัพธ์ออกมาไม่ตรง ตามความต้องการ และเนื่องจาก Cplex เป็น Solver ที่แก้ปัญหา optimization ได้รวดเร็ว จึงเหมาะที่ จะนำมาใช้กับข้อมูลมาก ๆ ได้

Minimize	$\sum_{i=1}^{N} CiXi + \sum_{i=1}^{N} CiXi + \sum_{i=1}^{N}$	$\sum_{j=1}^{N} \sum_{j=1}^{M} FijYij$
Subject to	$Yij \leq Xi$	$(i \in N, j \in M)$
	$\textstyle\sum_{j=1}^M Yij=1$	$(j \in M)$
	$Yij \ge 0$	$(i \in N, j \in M)$
	$Xi \geq 0$	$(i \in N)$

ภาพที่ 3-23 แสดงสมการเป้าหมายและสมการข้อจำกัด

3.2.1.3.1 จากการศึกษาสมการเป้าหมายและสมการข้อจำกัด สมมติให้ $\mathbf{M}=\mathbf{6},$

N = 4

3.2.1.3.2 ในการเขียนโปรแกรมให้ได้ตามสมการสามารถวน loop เพื่อคำนวน ค่าได้ดังต่อไปนี้

- $i = 1, j \in M \rightarrow C[1]*X[1] + F[1][1]*Y[1][1] + F[1][2]*Y[1][2] + F[1][3]*Y[1][3] + F[1][4]*Y[1][4] + F[1][5]*Y[1][5] + F[1][6]*Y[1][6]$ $i = 2, j \in M \rightarrow C[2]*X[2] + F[2][1]*Y[2][1] + F[2][2]*Y[2][2] + F[2][3]*Y[2][3] + F[2][4]*Y[2][4] + F[2][5]*Y[2][5] + F[2][6]*Y[2][6]$ $i = 3, j \in M \rightarrow C[3]*X[3] + F[3][1]*Y[3][1] + F[3][2]*Y[3][2] + F[3][3]*Y[3][3] + F[3][4]*Y[3][4] + F[3][5]*Y[3][5] + F[3][6]*Y[3][6]$ $i = 4, j \in M \rightarrow C[4]*X[4] + F[4][1]*Y[4][1] + F[4][2]*Y[4][2] + F[4][3]*Y[4][3] + F[4][4]*Y[4][4] + F[4][5]*Y[4][5] + F[4][6]*Y[4][6]$
- 3.2.1.3.3 สมมติค่า Ci และ Fij ดังตารางต่อ ไปนี้ ผลลัพธ์ที่ได้จะแสดงดังตาราง
 () โดยเป็นไปตามสมการเป้าหมายและสมการข้อจำกัด
- 3.2.1.3.4 หลังจากเข้าใจสมการเป้าหมายและสมการข้อจำกัดแล้ว ทำการ Coding บนโปรแกรม eclipse โดยใช้ภาษา java ในการพัฒนา โดยการ Coding

ภาพที่ 3-24 การ Coding ผ่านโปรแกรม eclipse

					y'N y'M Envi	[E#V#			สมการ
		$\sum_{i=1}^{N} \operatorname{cix}_i$			1 = 1 1 = 1	=1+9+9			ข้อจำกัด
		Ī	กาญจนบุรี	32893	ประจวบคีรีจันธ์	เชียงใหม่	นครพนม	เชียงราย	
			j=1	j=2	£=f	}={	ζ= <u>i</u>	9=f	
กรุงเทพ	$j=1,$ $j \in M$	[1]X*0	10,000*Y[1][1]	10,000*Y[1][1] 40,000*Y[1][2]	25,000*Y[1][3]	,	-	-	
นครสวรรค์	$j=2$, $j \subseteq M$	0*X[2]	-	-	-	6,000*Y[2][4]	6,000*Y[2][4] 20,000*Y[2][5]	30,000*Y[2][6]	
ปทุพธานี	$j=3$, $j \subseteq M$	4,000,000*X[3]	5,000*Y[3][1]	-	-	5,000*Y[3][4]	-		Yıj ≤ Xı
ยะลา	$j=4$, $j\subseteq M$	10*X[4]	4,000*Y[4][1]	-	-	-	-	-	
สมการ ข้อจำกัด					$\sum_{j=1}^M \mathrm{Y} ij = 1$	(ij = 1			

ภาพที่ 3-25 ผลลัพธ์ที่เป็นไปตามสมการเป้าหมายและสมการข้อจำกัดของปัญหา Location Problem

3.2.1.4 ศึกษาการอ่านไฟล์ excel ด้วยภาษา java

```
[, , Status, old, old, new]
[, , Cost Location, 0, 0, 0, 2000]
[, , Latitude, 14.3555791, 14.3881482, 14.18522197, 14.58960837]
[, , Longtitude, 100.46997069999998, 100.76660160000006, 100.67871089999994, 100.03051759999994]
[Latitude, Longtitude, , 1.0, 2.0, 3.0, 4.0]
[14.16391829, 100.26123050000001, 5.0, 2711.296, 5796.992, 4075.648, 4567.424]
[14.22782332, 99.832763670000008, 6.0, 6525.824, 8746.24, 7740.416, 3814.272]
[14.00407716, 100.46997069999998, 7.0, 3135.936, 4435.904, 2714.624, 6539.584]
[14.04671239, 100.8654785, 8.0, 5410.176, 3207.488, 2696.896, 9756.8]
ROW = 9
```

ภาพที่ 3-26 แสดงข้อมูลที่ถูกอ่านจากไฟล์ Excel

3.2.1.5 นำข้อมูลที่ได้มาประยุกต์ใช้งานกับ Library ของ Cplex เพื่อนำมาคำนวนหาค่าที่ เหมาะสมที่สุดตามสมการเป้าหมายและสมการข้อจำกัดได้ผลลัพธ์ดังต่อไปนี้

ภาพที่ 3-27 แสดงผลลัพธ์ค่าที่เหมาะสมที่สุดตามสมการเป้าหมายและสมการข้อจำกัด

3.2.1.6 หลังจากได้ผลลัพธ์นำมา save ใส่ไฟล์ excel เพื่อนนำไปแสดงผลลัพธ์บนหน้า เว็บต่อไป

3.2.2 Multi Vehicle Problem (MVRP)

สำหรับการแก้ปัญหา MVRP นั้นมี Input ที่ต้องรับจากผู้ใช้งานผ่านหน้าเว็บไซต์คือ ที่อยู่
ของศูนย์กระจายสินค้า ที่อยู่ของถูกค้า ความต้องการของถูกค้า ราคาน้ำมันปัจจุบัน ราคารถที่จะใช้
ขนส่ง และปริมาณที่รถแต่ละคันบรรทุกได้ โดย Input ในส่วนของที่ตั้งนั้นจะนำไปเป็นตำแหน่ง
สำหรับร้องขอระยะทางที่สั้นที่สุดระหว่างแต่ละที่เพื่อนำมาเป็น Input เพิ่มเติม และ Input ทั้งหมดนี้
จะถูกส่งต่อไปคำนวณผ่านโค๊ดภาษา JAVA ซึ่งใช้ไลบรารี่ของ CPLEX ในการคำนวณตามขั้นตอน
แก้ปัญหาของ MVRP และนำคำตอบที่ได้นั้นกลับมาแสดงบนหน้าเว็บไซต์ ซึ่งค่าผลลัพธ์นั้น

ประกอบด้วย ลำดับในการขนส่ง เส้นทางในการขนส่ง และรถที่ถูกเลือกในการวิ่งแต่ละเส้นทาง โดยมีขั้นตอนโดยละเอียดดังนี้

3.2.2.1 การออกแบบเว็บไซต์สำหรับแก้ปัญหา MVRP

การออกแบบนั้นมีการออกแบบเพื่อรองรับการป้อน Input สองรูปแบบคือ ป้อน โดยผู้ใช้กำหนด ณ เวลาปัจจุบัน และป้อน โดยผู้ใช้อัพโหลดไฟล์ประเภท .xlsx ซึ่งมีข้อมูลต่างใน รูปแบบที่กำหนดไว้ สำหรับการป้อนโดยผู้ใช้นั้นจะแบ่งเป็นส่วนต่าง ๆ ดังนี้

3.2.2.1.1 ส่วนของการแสดงและรับค่าตำแหน่งผ่านแผนที่โดยจะแสดงแผนที่ จาก Google โดยมีประเทศไทยเป็นจุดศูนย์กลาง

ภาพที่ 3-28 แสดงรูปแผนที่ ที่ถูกแสดงบนเว็บไซต์

3.2.2.1.2 ส่วนของตัวเลือกประเภทสถานที่ตั้งว่าเป็นลูกค้าหรือศูนย์กระจาย สินค้าโดยจะแสดงสถานที่ตั้งด้วยสัญญลักษณ์ที่ต่างกัน

ภาพที่ 3-29 ตัวอย่างของการเลือกประเภทสถานที่ตั้ง

ภาพที่ 3-30 แสดงรูปแผนที่หลังจากมีการกำหนดตำแหน่งที่ตั้งต่าง ๆ

3.2.2.1.3 ส่วนของการอัพโหลดไฟล์โดยมีการแสดงผลเป็นปุ่มกด โดยเมื่อกดที่ ปุ่มแล้วจะมีหน้าจอสำหรับเลือกไฟล์ขึ้นมา หลังจากเลือกไฟล์แล้วตรงปุ่มกดจะแสดงชื่อไฟล์พร้อม ทั้งแสดงข้อมูลที่ได้รับบนแผนที่

เลือกไฟล์ ไม่ได้เลือกไฟล์ใด เลือกไฟล์ test (8).xlsx

ภาพที่ 3-31 ปุ่มเลือกไฟล์ก่อนและหลังการเลือก

3.2.2.1.4 ส่วนของการแสดงผลข้อมูลที่ถูกป้อนโดยจะแสดงในรูปแบบของ ตารางและมีรายละเอียดดังนี้

ตารางที่ 3-1 ตัวอย่างข้อมูลที่แสดงบนหน้าเว็บไซต์

ID	Name	Latitude	Longitude	Demand
1	Depot center	13.944729974920167	100.39306640625	0
2	Customer 1	13.688687769784968	100.1513671875	100
3	Customer 2	13.710035342476681	100.810546875	100
4	Customer 3	13.43236657581376	101.0302734375	100

3.2.2.1.5 ส่วนของการกรอกค่าน้ำมัน ค่าเช่ารถ และปริมาณบรรทุกของรถโดย จะแสดงในรูปของช่องกรอกข้อความโดยที่สามารถเพิ่มจำนวนรถได้ตามต้องการ

Gas Cost	Bath/liter
Car Cost	Bath
Car Capacity	Unit
Add Car	

ภาพที่ 3-32 ตัวอย่างของส่วนกรอกข้อมูล

3.2.2.1.6 ข้อมูลในรูปแบบของไฟล์ .xlsx ที่สามารถคาวน์โหลคได้นั้นจะมีการ จัครูปแบบและรายละเอียดข้อมูลต่าง ๆ คังนี้

ตารางที่ 3-2 ตัวอย่างข้อมูลส่งออก

Name	Latitude	Longitude	Demand		
DC	13.95539	100.8325	0		
Cust1	13.69936	100.7336	100		
Cust2	13.91274	100.5029	100		
Cust3	13.57124	100.9314	100		
Cust4	14.0833	101.3599	100		
Gas Cost	44				
Car No.	Cost	Capacity			
1	10000	2000			
2	20000	2000			
I/j	1	2	3	4	5
1	0	42.028	53.588	83.309	75.847
2	47.353	0	49.507	33.361	102.594
3	47.511	52.69	0	78.216	118.85
4	78.198	39.171	80.352	0	107.39
5	89.655	103.696	124.113	106.143	0

3.3 Diagram ของระบบ

ภาพที่ 3-33 การทำงานของระบบ

บทที่ 4

ผลการทดลอง

4.1 การทดสอบระบบ

4.1.1 ปัญหา LP

ผลลัพธ์ที่ได้จากการแก้ปัญหาด้วย CPLEX ของปัญหา LP นั้นได้ผลลัพธ์ดังตารางนี้

ตารางที่ 4-1 ผลลัพธ์จากการแก้ปัญหา LP

		กาญจนบุรี	วะถอง	ประจวบคีรีขันธ์	เชียงใหม่	นครพนม	เชียงราย
ศูนย์บริการ	ค่าสถานที่	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6
กรุงเทพ	0	10,000	40,000	25,000	-	-	-
นครสวรรค์	0	-	-	-	6,000	20,000	30,000
ปทุมธานี	4,000,000	5,000	-	-	5,000	-	-
ยะลา	10	4,000	-	-	-	-	-

จากผลลัพธ์นั้นจะพบว่ามีความถูกต้องและเหมาะสมตามสมการเงื่อนไขโดยสถานที่ตั้ง ใหม่ที่ถูกเลือกนั้นต้องมีค่าสถานที่น้อยและมีค่าเดินทางไปยังลูกค้าน้อยด้วยเช่นกัน ดังตารางจะ พบว่าสูนย์บริการถูกเลือก 3 ที่ก็เพียงพอต่อการให้บริการลูกค้าทั้งหมดแล้ว

4.1.2 ปัญหา MVRP

ผลลัพธ์ที่ได้จาก CPLEX สำหรับปัญหา MVRP โดยโหนดที่ 0 คือศูนย์กระจายสินค้า โหนดที่ 1, 2, 3, 4 มีความต้องการสินค้าตามลำดับดังนี้ 100, 100, 300, 500 ยูนิต และรถคันที่ 1 บรรทุกได้ 500 ยูนิต รถคันที่ 2 บรรทุกได้ 700 ยูนิต และระยะทางระหว่างแต่ละโหนดมีค่าดังตาราง นี้

ตารางที่ 4-2 ระยะทางที่ใช้ในการคำนวณ

i/j	0	1	2	3	4
0	0	1	75.82216	60.41523	66.0303
1	1	0	75.0733	59.43904	65.03076
2	75.82216	75.0733	0	37.05401	48.83646
3	60.41523	59.43904	37.05401	0	13.0384
4	66.0303	65.03076	48.83646	13.0384	0

จากการคำนวณของโปรแกรมได้ผลลัพธ์มาดังภาพ

Node i, j	car no
0 -> 1	1
1 -> 3	1
3 -> 2	1
2 -> 0	1
0 -> 4	2
4 -> 0	2

ภาพที่ 4-1 ผลลัพธ์แสดงทิศทางการเดินรถ

ผลลัพธ์ที่ได้นั้นเป็นไปตามข้อเงื่อนไขต่าง ๆ ของปัญหา MVRP และคำตอบที่ได้นั้น เหมาะสมกับน้ำหนักบรรทุกของรถ

บทที่ 5

สรุป วิจารณ์ผล และข้อเสนอแนะ

ผลที่ได้จากการทำปริญญานิพนธ์นี้พบว่าการใช้ Google Map API ร่วมกับ Javascript และ PHP นั้นทำให้เราสามารถจัดการกับข้อมูลสถานที่ตั้งและข้อมูลตำแหน่งต่าง ๆ ได้ง่ายและรวดเร็ว มากขึ้นโดยการระบุตำแหน่งที่ตั้งต่าง ๆ จะถูกจัดการโดย Google Map และส่งก่ากลับมาโดยที่ก่า สถานที่ตั้งนั้นจะถูกจัดการเก็บรวมรวบเพื่อนำไปใช้ในขั้นตอนการคำนวณต่าง ๆ ตามแต่ละปัญหา ทางโลจิสติกส์ และนำค่านั้นไปใช้จัดเอกสารข้อมูลส่งออกในรูปแบบของไฟล์ .xlsx ได้อย่าง อัตโนมัติและง่ายคายมากขึ้น ซึ่งส่วนนี้ดีกว่าการบันทึกข้อมูล โคยบุคคลคือ ลดระยะเวลาในการจด บันทึกข้อมูลจากเดิมที่ต้องค้นหาแล้วจึงทำการบันทึกลงในไฟล์ .xlsx ระบบนี้จะเข้ามาช่วยให้การ บันทึกง่ายขึ้น โคยเมื่อมีการค้นหาระบบจะบันทึกค่าเอาไว้ และเมื่อค้นหาเสร็จสิ้นจะสามารถส่งออก ้ไฟล์ .xlsx เป็นผลลัพธ์ได้ทันที สำหรับส่วนของการคำนวณเพื่อแก้ไขปัญหาทางโลจิสติกส์นั้นจาก ้เดิมการที่จะแก้ปัญหานั้นผู้ใช้ต้องทำการนำค่าต่าง ๆ ที่ใช้ในการแก้ปัญหามาคำนวณตามสมการ ต่าง ๆ ด้วยการคิดด้วยเครื่องมือเพียงกระดาษและเครื่องคิดเลขเท่านั้น ซึ่งหากข้อมูลมีจำนวนที่เยอะ ้จะทำให้เวลาที่ต้องใช้ในการคำนวณนั้นอาจนานเป็นสัปดาห์หรือเป็นเคือนได้ ระบบของเราจะเข้า มาช่วยในส่วนนี้ โดยการนำ CPLEX เข้ามาใช้โดยตัว CPLEX นั้นเราเพียงนำสมการที่ใช้ในการ แก้ปัญหาพร้อมข้อจำกัดต่าง ๆ ของสมการแก้ปัญหามาระบุใน CPLEX และทำการป้อนข้อมูล ต่าง ๆ ที่ใช้ในการคำนวณเข้าสู่ระบบ โดยระบบจะทำการคำนวณให้โดยอัตโนมัติตามสมการหลัก และเงื่อนไขต่าง ๆ ที่ระบุ จึงทำให้ระยะเวลาที่ใช้ในการคำนวณนั้นสั้นลงและลดภาระของผู้ใช้ใน การคำนวณลงได้อย่างมาก และสำหรับส่วนสุดท้ายการแสดงผลลัพธ์ที่ได้จากการแก้ปัญหา จาก เดิมที่ผลลัพธ์ที่ได้นั้นออกมาในรูปแบบของค่าตัวเลขที่ได้จากการคำนวณเท่านั้น การที่จะมองเห็น ผลลัพธ์ได้ดียิ่งขึ้นจึงต้องนำค่าผลลัพธ์นั้นไปค้นหาจาก Google Map ด้วยตนเองอีกครั้งหนึ่ง จึงทำ ให้ใช้เวลามากขึ้น การนำเอา Google Map, Javascript และ CPLEX มาใช้นั้นเข้ามาช่วยในส่วนของ การแสดงผลให้ออกมาในรูปแบบที่สามารถมองเห็นได้โดยการนำผลลัพธ์ที่ได้จากการคำนวณ ส่งผ่านไปยังเว็บไซต์เพื่อนำมาระบุตำแหน่งหรือเส้นทางบน Google Map โดยการทำงานนั้นจะ

เป็นไปอย่างอัตโนมัติ จึงทำให้ประหยัดเวลาในการทำงานมากยิ่งขึ้น การทำปริญญานิพนธ์นี้เป็น การนำเทคโนโลยีใหม่ ๆ มาใช้ในการแก้ปัญหาทางโลจิสติกส์ให้ง่ายมากยิ่งขึ้น แต่ระบบนี้ยังมี ข้อจำกัดอยู่มากในเรื่องของระยะเวลาในการได้รับระยะทางจาก Google Map เนื่องจาก Google Map นั้นมีการอนุญาติในการขอเส้นทางเพียงแค่ 10 เส้นทางต่อ 1 วินาที และ 2500 เส้นทางใน 1 วัน เท่านั้นจึงทำระยะเวลาในการขอรับเส้นทางนั้นใช้ระยะเวลาที่มากขึ้น รวมถึงจำนวนครั้งที่จำกัดจึง ทำให้ระบบทำงานไม่เกินขอบเขตนี้

เอกสารอ้างอิง

- 1. จันทร์ศิริ สิงห์เถื่อน. 2554. การเลือกตำแหน่งที่ตั้งของสถานที่ให้บริการด้วยวิธีการหาคำตอบที่ ดีที่สุด. กรุงเทพฯ: ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตบางเขน. หน้า 109-113.
- 2. บันทิตวิทยาลัย, สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ. คู่มือการทำวิทยานิพนธ์. กรุงเทพฯ : 21 เซ็นจูรี่, 2554.
- 3. ปรุฬห์ มะยะเฉี่ยว. 2554. การแก้ปัญหาการเลือกสถานที่ตั้ง นราธิวาส: คณะวิศวกรรมศาสตร์ มหาวิทยาลัยนราธิวาสราชนครินทร์. หน้า 134-139.
- 4. Ninenik Narkdee. แสดง icons กำหนดรูปเอง ให้จุดเริ่มเต้น และสิ้นสุดของเส้นทาง ใน google map อย่างง่าย (ออนไลน์). สืบค้นจาก : แสดง icons กำหนดรูปเอง ให้จุดเริ่มเต้น และสิ้นสุด ของเส้นทางใน google map อย่างง่าย http://www.ninenik.com/content.php?arti_id=430 via @ninenik, 2558.
- Ninenik Narkdee. Google map API v.3 กับ jQuery ลากจุดหาพิกัดค่า latitude และ longitude (ออนไลน์). สืบค้นจาก: Google map API v.3 กับ jQuery ลากจุดหาพิกัดค่า latitude และ longitude http://www.ninenik.com/content.php?arti_id=326 via @ninenik, 2558.
- Cáceres, Hernán. CPLEX & JAVA 1. Setting up Eclipse with CPLEX [Video file].
 สืบค้นจาก https://www.youtube.com/watch?v=sf59_7r8QSY (25 มิถุนายน 2556).
- Cáceres, Hernán. CPLEX & JAVA 4. Travelling salesman problem [Video file].
 สืบคันจาก https://www.youtube.com/watch?v=sf59 7r8QSY (18 สิงหาคม 2556).
- 8. Gendreau, Michel., Laporte, Gilbert., Tas, Duygu., Jabali, Ola. (29 กรกฎาคม 2558). The travelling salesman problem with time-dependence service time. International Federation of Operational Research Societies (IFORS). 10-11
- Google. Google Maps APIs (ออนไลน์). สืบค้นจาก:
 https://developers.google.com/maps/documentation/javascript/, 2558.
- 10. IBM. ILOG CPLEX Optimization Studio (ออนไลน์). สีบค้นจาก : http://www.ibm.com/support/knowledgecenter/SSSA5P_12.2.0/ilog.odms.cplex.help/html/ref javacplex/html/overview-summary.html, 2558.

เอกสารอ้างอิง (ต่อ)

11. Surekha, P., S, Sumathi. 2011 Solution To Multi-Depot Vehicle Routing Problem Using Genetic Algorithms, India :Department of EEE PSG College of Technology, 119-121

ประวัติผู้แต่ง

ปริญญานิพนธ์เรื่อง : โปรแกรมเพื่อช่วยในการแก้ปัญหาการจัดการโลจิสติกส์

สาขา : วิศวกรรมคอมพิวเตอร์

ภาควิชา : วิศวกรรมไฟฟ้าและคอมพิวเตอร์

คณะ : วิศวกรรมศาสตร์

ชื่อ : นายธนกร ง่วนเซี่ยว

ประวัติ

เกิดวันที่ 26 กรกฎาคม พ.ศ. 2536 อยู่บ้านเลขที่ 4 หมู่ที่ 1 ตำบลท่าคา อัมเภออัมพวา จังหวัด สมุทรสงคราม 75110 สำเร็จการศึกษาระดับมัธยมศึกษาตอนปลาย จากโรงเรียนถาวรานุกูล จังหวัด สมุทรสงคราม สาขาวิทยาศาสตร์-คณิตศาสตร์ ปีการศึกษา 2554 และสำเร็จการศึกษาในระดับ ปริญญาตรี สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปีการศึกษา 2558

ชื่อ : นางสาวปณิฎฐา เชฏฐวาณิชย์

ประวัติ

เกิดวันที่ 19 สิงหาคม พ.ศ. 2536 อยู่บ้านเลขที่ 99/25 หมู่ 3 หมู่บ้านอธิเชษธานี ซอย 1 ถนน ปทุมธานี-บางปะหัน ตำบลเชียงรากใหญ่ อำเภอสามโคก จังหวัดปทุมธานี 12160 สำเร็จการศึกษา ระดับมัธยมศึกษาตอนปลาย จากโรงเรียนคณะราษฎร์บำรุงปทุมธานี จังหวัดปทุมธานี สาขา วิทยาศาสตร์-คณิตศาสตร์ ปีการศึกษา 2554 และสำเร็จการศึกษาในระดับปริญญาตรี สาขาวิชา วิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปีการศึกษา 2558