

Subject Code: 102000104

Exercise-1: Evaluate $\frac{dw}{dt}$ at the given value of t by using chain Rule

(a)
$$w = x^2y - y^2$$
, $x = sint$, $y = e^t$, $t = 0$. Ans: -2

(b)
$$w = z - \sin xy$$
, $x = t$, $y = \ln t$, $z = e^{t-1}$, $t = 1$. Ans:0

(c)
$$w = \ln(x^2 + y^2 + z^2)$$
, $x = cost$, $y = sint$, $z = 4\sqrt{t}$, $t = 3$. Ans: $= \frac{16}{49}$

Exercise-2: Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ if

(a)
$$w = xy + yz + zx$$
, $x = u + v$, $y = u - v$, $z = uv$; at $(u, v) = (1/2, 1)$, Ans: $\frac{\partial w}{\partial u} = 3$, $\frac{\partial w}{\partial v} = -\frac{3}{2}$.

(b)
$$w = e^{xyz}$$
, $x = 3u + v$, $y = 3u - v$, $z = u^2v$; Ans: $\frac{\partial w}{\partial u} = e^{xyz}(3yz + 3xz + 2xyuv)$, $\frac{\partial w}{\partial v} = e^{xyz}(yz - xz + xyu^2)$,

Exercise-3: If
$$u = u(y - z, z - x, x - y)$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

Exercise-4: If
$$u = u\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.

Exercise- 5: If
$$u = f(x^2 + 2yz, y^2 + 2zx)$$
 then prove that

$$(y^2 - zx) \frac{\partial u}{\partial x} + (x^2 - yz) \frac{\partial u}{\partial y} + (z^2 - xy) \frac{\partial u}{\partial z} = 0.$$

Exercise-6: Find the value of $\frac{dy}{dx}$ at the given point.

(a)
$$xe^y + \sin xy + y - \log 2 = 0$$
 at $(0,\log 2)$. Ans: - $(2+\ln 2)$.

(b)
$$y^3 + y^2 - 5y - x^2 + 4 = 0$$
, Ans: $= \frac{-2x}{3y^2 + 2y - 5}$

(c)
$$\sqrt{xy} = 1 + x^2y$$
, Ans: $\frac{4(xy)^{3/2} - y}{x - 2x^2\sqrt{xy}}$

(d)
$$x^y = y^x$$
, Ans: $=\frac{y(y-x\log y)}{x(x-y\log x)}$

Exercise- 7: Find the value of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the given point.

(a)
$$xe^y + ye^z + 2lnx - 2 - 3ln2 = 0$$
, (1, ln2, ln3), Ans: $\frac{\partial z}{\partial x} = -\frac{4}{3 \ln 2}$, $\frac{\partial z}{\partial y} = -\frac{5}{3 \ln 2}$.

(b)
$$x^2 - 3yz^2 + xyz - 2 = 0$$
, Ans: $\frac{\partial z}{\partial x} = \frac{2x + yz}{6yz - xy}$, $\frac{\partial z}{\partial y} = -\frac{xz - 3z^2}{6yz - xy}$.

(c)
$$ye^x - 5sin3z = 3z$$
, Ans: $\frac{\partial z}{\partial x} = \frac{ye^x}{15cos3z + 3}$, $\frac{\partial z}{\partial y} = \frac{e^x}{15cos3z + 3}$

G H Patel College of Engineering & Technology
(A Constituent College of CVM University)
Academic Year 2022-23, Semester – I
Subject Code: 102000104
Subject Name: CALCULUS
Tutorial-4 Partial Differentiation

CVM UNIVERSITY

Subject Code: 102000104 Subject Name: CALCULUS Tutorial-5 Partial Differentiation

Exercise-1: Check whether the following functions are homogeneous or not. If yes, find its degree 'n'.

(a)
$$f(x, y) = \frac{x^3 + y^3}{x + y}$$
,

(b)
$$f(x,y) = \frac{x^{1/4} + y^{1/4}}{x^{1/6} + y^{1/6}}$$

(c)
$$u(x,y) = log\left(\frac{x^7 + y^7}{x + y + z}\right)$$

(d)
$$u(x, y) = \operatorname{cosec}^{-1}\left(\frac{\sqrt{x} - \sqrt{y}}{x - y}\right)$$

(e)
$$u(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$$

Exercise-2: Verify Euler's theorem for the function = $sin^{-1}\left(\frac{x}{y}\right) + tan^{-1}\left(\frac{y}{x}\right)$.

Exercise-3: Use Euler's theorem to solve the following problems:

1. If
$$u = \frac{y^3 - x^3}{y^2 + x^2}$$
 find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$. Ans:0.

2. If
$$f(x,y) = x^4y^2 \sin^{-1}\left(\frac{y}{x}\right)$$
 then find the value of $\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$. Book [4], Ans: $6f(x,y)$.

3. If
$$u = \log\left(\frac{x^4 + y^4}{x + y}\right)$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$.

4. If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
; show that (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2sinucos3u.$$
;

5. If
$$u = \sec^{-1}\left(\frac{x^3 - y^3}{x + y}\right)$$
, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\cot u$.

6. If
$$u = \sin^{-1}\left(\frac{x^{1/4} + y^{1/4}}{x^{1/6} + y^{1/6}}\right)$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{144} \tan u [\tan^2 u - 11]$,

Subject Code: 102000104
Subject Name: CALCULUS
Tutorial-6 Partial Differentiation

EXAMPLE -1:

1. If $x = rsin\theta cos\phi$, $y = rsin\theta sin\phi$, $z = rcos\theta$, find $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$. Ans: $r^2sin\theta$.

2. If
$$u = \frac{(2x-y)}{2}$$
, $v = \frac{y}{2}$, $w = \frac{z}{3}$, find $J(u, v, w)$. Ans:6

EXAMPLE -2:

Find gradient of a function at the given point.

(a)
$$g(x,y) = \frac{x^2}{2} - \frac{y^2}{2}$$
, $(\sqrt{2}, 1)$, Ans: $\sqrt{2} \hat{\imath} - \hat{\jmath}$.

(b)
$$f(x,y) = (x^2 + xy)^3$$
, $(-1,-1)$, Ans: $-36\hat{\imath}-12\hat{\jmath}$.

(c)
$$\varphi(x, y, z) = \ln(x^2 + y^2 + z^2)$$
, Ans: $\frac{2(x\hat{i} + y\hat{j} + z\hat{k})}{x^2 + y^2 + z^2}$

(d)
$$\varphi(x, y, z) = 3x^2y - y^3z^2$$
, $(1, -2, -1)$, Ans: $-12\hat{\imath} - 9\hat{\jmath} + 16\hat{k}$.

EXAMPLE -3:

Find the derivative of the function at P_0 in the direction of given vector.

(a)
$$f(x,y) = x^2 \sin 2y$$
, $P_0(1,\pi/2)$, $\bar{A} = 3\hat{\imath} - 4\hat{\jmath}$, Ans: 8/5.

(b)
$$f(x,y) = tan^{-1}(y/x)$$
, $P_0(-2,2)$, $\bar{v} = -\hat{i} - \hat{j}$, Ans: $72/\sqrt{14}$.

(c)
$$g(x, y, z) = 3e^x \cos(yz)$$
, $P_0(0, 0, 0)$, $\bar{A} = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$, Ans: 2.

(d)
$$h(x, y, z) = \cos(xy) + e^{yz} + \ln(zx)$$
, $P_0\left(1, 0, \frac{1}{2}\right)$, $\bar{A} = \hat{i} + 2\hat{j} + 2\hat{k}$, Ans: 2

(e)
$$f(x, y, z) = (x^2 + y^2 + z^2)^{3/2}$$
, $P_0(1, 1, 2)$, $\bar{A} = 2\hat{j} - \hat{k}$, Ans: $9/2\sqrt{5}$.

(f)
$$f(x, y, z) = x^2y - yz^3 + z$$
, $P_0(1, -2, 0)$, $\bar{v} = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$, Ans: - 3.

EXAMPLE -4:

Find equations for the (i) tangent plane and (ii) normal line at the point P_0 on the surface:

(a)
$$\cos \pi x - x^2 y + e^{xz} + yz = 4$$
, $P_0(0,1,2)$, Ans: $2x+2y+z-4=0$, $x=2t$, $y=1+2t$, $z=2+t$.

(b)
$$x^2 + y^2 - 2xy - x + 3y - z = -4$$
, $P_0(2, -3, 18)$, Ans: (i) $9x-7y - z = 21$, (ii) $x = 2 + 9t$, $y = -3 - 7t$, $z = 18 - t$.

(c)
$$z^2 = 4(1 + x^2 + y^2)$$
, $P_0(2, 2, 6)$, Ans: (i) $4x + 4y - 3z = -2$, (ii) $x = 2 + 4t$, $y = 2 + 4t$, $z = 6 - 3t$.

(d)
$$z + 1 = xe^y \cos z$$
, P_0 (1,0,0), Ans: (i) $x + y - z = 1$, (ii) $x = 1 + t$, $y = t$, $z = -t$.

Subject Code: 102000104
Subject Name: CALCULUS
Tutorial-6 Partial Differentiation

EXAMPLE -5:

Find an equation for the plane that is tangent to the given surface at the given point.

(a)
$$z = \ln(x^2 + y^2)$$
, (1,0,0), Ans: $2x - z = 2$.

(b)
$$z = \sqrt{y - x}$$
, (1,2,1), Ans: $x - y + 2z = 1$.

(c)
$$z = e^{-(x^2+y^2)}$$
, (0,0,1), Ans: $z = 1$.

(d)
$$z = 4x^3y^2 + 2y$$
, (1, -2, 12), Ans: $48x - 14y - z = 64$.

(e)
$$z = e^{3y} \sin 3x$$
, $(\pi/6, 0, 1)$, Ans: $3y - z = -1$.

EXAMPLE -6:

Find all the local maxima, local minima and saddle points (if exist) of the below functions.

(a)
$$f(x,y) = x^2 + xy + y^2 + 3x - 3y + 4$$
; Ans: local min at (-3,3). $f(-3,3) = -5$

(b)
$$f(x,y) = 2xy - x^2 - 2y^2 + 3x + 4$$
; Ans: local max at $\left(3, \frac{3}{2}\right)$. $f\left(3, \frac{3}{2}\right) = \frac{17}{2}$

(c)
$$f(x,y) = x^3 - 2xy - y^3 + 6$$
; Ans: critical points: $(0,0)$, $\left(-\frac{2}{3}, \frac{2}{3}\right)$; saddle point is $(0,0)$, local maximum is $f\left(-\frac{2}{3}, \frac{2}{3}\right) = \frac{170}{27}$

- (d) $f(x,y) = 6x^2 2x^3 + 3y^2 + 6xy$; Ans: critical points: (0,0), (1,-1); saddle point is (1,-1), local minimum is f(0,0) = 0
- (e) $f(x,y) = 4xy x^4 y^4$; Ans: critical points: (0,0), (1,1), (-1,-1); saddle point is (0,0); local min is f(0,2) = -12, local max is f(1,1) = f(-1,-1) = 2