Exam	No:		
Exam	No:		

TOTAL MARKS: 60

GANPAT UNIVERSITY B. TECH (CE/IT/CE-AI) SEM-VII REGULAR EXAMINATION NOV-DEC 2022 2CEIT702: Big Data Analytics

8

Instructions: (1) This Question paper has two sections. Attempt each section in a separate book.

(2) Figures on right indicate marks.

TIME: 3 HRS

(3) Be precise and to the point in answering the descriptive questions.

SECTION: I

Q.1	[A]	Compare the 'Small data', 'Large data', and 'Big data' based on the following: 1. Characteristics 2. Typical Tools 3. Analytical Method 4. Examples	(6)
	[B]	Explain the concept of Distributed File System.	(4)
		OR	
Q. 1	[A] [B]	List out the key drivers of big data. Explain the design principle of the Google file system with a suitable diagram.	(6) (4)
Q.2	[A] [B]	Explain the Job-Tracker and Task-Tracker of Map-Reduce with a suitable diagram. Explain the working steps of YARN with a suitable diagram.	(5) (5)
		OR	
Q.2	[A] [B]	Discuss the Zookeeper data model with a suitable diagram. Explain the features of Apache spark.	(5) (5)
Q.3	[A] [B]	Explain the Map-Reduce of Hadoop with a suitable diagram. Discuss the advantages of Apache spark.	(5) (5)

SECTION: II

Q.4	[A]	Define Spark's basic building block from a programming perspective and write why spark is known as Lazy Evaluator.	(5)
	[B]	Describe any five big data challenges.	(5)
		OR	
Q.4	[A]	Illustrate gossip protocol in Apache Cassandra with examples.	(5)
	[B]	Define Kafka's message Anatomy and explain its main components.	(5)
0.5	F A 1	Dlen the ten deven biqueshy of the data model in Consendue and Evenlain	(E)
Q.5	[A] [B]	Plan the top-down hierarchy of the data model in Cassandra and Explain. Discuss the BASE approach in association with NoSQL Concept.	(5) (5)
		OR	
Q.5	[A]	Differentiate the SQL and NoSQL.	(5)
	[B]	Create your own use case and explain it in relation to Apache Kafka Data Model.	(5)
Q.6	[A]	How do clients connect to a Kafka Cluster (bootstrap server)?	(6)
	[B]	Name two techniques to aid the scalability of distributed systems. Provide an example for each.	(4)
		END OF PAPER	