1. Audyre: Supposous fix) = [aux estrolution sur]-RIK[aux Rto.

Europortant dour (E) il vient:

Y26]-RIKE \$ [(h+1) an+1 = [(x+1) an 2"]
15. 15. 15. 15.

Par théorème d'enicité on detient:

Equitière: Comme 14/51 ave lant 2101 (1417) Done per compaison

La révie I anz a un reyon infini, donc non une, ce pui valide les ralub

Ains La dévie fini = 27 ansi est bien solutir sur IR de l'équatir projonée.

for et un polyuouse si Ito, ak= o (con alors Ynzko an=0)

Donc fles et un polyurère en <u>Ino</u> d=-100

2: (i)
$$|\sigma(x)| = |\sum_{n \ge 0} \sigma_k x^k + \sum_{n \ge 1} \sigma_k x^k|$$

 $\leq |\sum_{n \ne 0}^{N} \sigma_k x^k| + \sum_{n \ge 1}^{N} |\sigma_k| x^k \quad ((\alpha_1 x) \circ) \cdot \text{Outpoke } \hat{T}_{\varepsilon}(x) = \sum_{k \ge 0} \sigma_k x^k$
 $\leq |P_{\varepsilon}(x)| + \sum_{n \ge 1}^{N} \sum_{k \ge 1} |P_{\varepsilon}(x)| + \sum_{k \ge 1}^{N} \sum_{k \ge 1}^{N} |P_{\varepsilon}(x)| + \sum_{k \ge 1}^{N} |P_{\varepsilon}$

(ii) (ourse les uk sont positife on a
$$u(x) \ge u_{N1} \times u_{N1}$$

(ourse $u(x) \le u \times u_{N1} \times u_{N1} \times u_{N1}$

(ourse $u(x) \le u \times u_{N1} \times$

(iii) $\exists A_{\epsilon}$, $\forall x_{i}, A_{\epsilon}$ $|P_{\epsilon}|_{i}|_{i} \in U_{\epsilon}$ Alous $\forall x_{i}, A_{\epsilon}$ $|U(x)| \neq l \in U(x)$.

Course rette constructé est jouille $\forall \epsilon_{i}, \epsilon_{i}, \epsilon_{i}$ a bien prouvé $|U_{\epsilon}(x)| \geq 0$ (u.61)

(b) m! d'an = C. TT (1+ 1/2) Courue C est constant, il instit de montrer la coureque de la milé bn = TT (1+ 1/2) votour que | 1/2 | pour k > V. car 1/2 | cour peut écnie;

Pour k > to 1+ 1/2 > o donc ou peut écnie;

(c) an v kå ou kestla livite vou wille prédente

· an-kd" = 0(d") et un=d" ro. De plus les regons des reies sond infinis Par mité (queté (2)) fin - ked 20 (edu) fin) v ke de

Déjà pou une révinere faile get de clure e^{∞} [$g \in k = g = g \in k$].

De plus en dévivour p fois on a l'égalilé $g^{(p)}(x) = \lambda g^{(p-1)}(x) + \lambda^{p-1}g^{(p-1)}(x)$

(b) Notous II llos La vouve reinforme de l'intervalle [-a,a]

La just précédente donne |19(P) |100 & (d+1)1P") |19(P-1) |100

Donc par reviseure invuédiate $\|g^{(p)}\|_{\infty} \le d^{p} \|f(1+\frac{|A|^{k-1}}{\alpha})\|g\|_{\infty}$

Mais course ou 2(b) La suite IT (1+14) est convergente donc porvée

par une constante Cox: Il vient alors.

(c) D'opés l'impalité de Toy los Loprage:

La duité (en m), con une s'implement veux o neur IR. (Croinances reparées)

Four tuite $\forall x \in |R| g(n) = \sum_{k=0}^{\infty} \frac{g(k)}{k!} (a) x^k$

4. La just 3 prouve que l'ou a france au 1. toutes les solution de (E).