Optuna-based Hyperparameter Optimization and Analytical Insights for Smart Building Metadata Classification

Yuetong Wu

August 27, 2025

Abstract

This mini-report documents my personal contribution to the UNSW Capstone Thesis project on smart building metadata classification. Building upon the Brick-MIR baseline framework, I implemented an automated hyperparameter optimization strategy using the Optuna framework. The proposed approach improves robustness, recall, and generalization in multi-label classification of building sensor data. I further conducted class-wise performance analysis and distribution shift evaluation, providing insights into systematic limitations of the baseline.

1 Introduction

Smart building metadata classification is a challenging task due to label imbalance, heterogeneous distributions, and distributional shifts across buildings. Previous work has introduced various feature-engineering and boosting-based approaches to address these issues.

Our work builds upon BrickMIR [?], a minimal imbalance-tuned and ratio-based framework for Brick metadata classification, by integrating Optuna-based automated hyperparameter optimization.

2 Methods

I optimized CatBoost classifiers on a per-label basis across 94 labels. The search space included:

• max_depth: 6-12

• learning_rate: 0.05-0.3 (log-scaled)

• n_estimators: 50-150

• 12_leaf_reg: 1.0-10.0

Each label was tuned using five-fold StratifiedKFold cross-validation with Macro-F1 as the objective function. To ensure efficiency, each label was restricted to 20 trials with parallel execution enabled.

3 Results

Table 1 compares the original BrickMIR baseline against my Optuna-enhanced version.

Table 1: Performance of BrickMIR before and after Optuna optimization

Model	Accuracy	Macro-F1	Precision	Recall
Original BrickMIR BrickMIR + Optuna (Mine)	0.98540 0.98588		0.61988 0.61474	

The Optuna-enhanced pipeline achieved modest but consistent gains, particularly improving recall, which reflects increased sensitivity to minority labels.

4 Analysis

4.1 Hyperparameter Sensitivity

- max_depth: strongest effect, Δ F1 up to ± 0.1 ; best at 7–9.
- learning_rate: stability improved at 0.06–0.1; higher values degraded performance.
- n_estimators: limited effect, gains diminished beyond 200 trees.
- 12_leaf_reg: stabilized results, consistent at values 3-7.

4.2 Class-wise Analysis

Per-label F1 analysis across 94 classes revealed that several labels (e.g., Cooling_Demand_Sensor, Heating_Demand_Sensor, Outside_Air_CO2_Sensor) scored near zero, indicating inability to learn due to scarce positives.

The confusion matrix revealed systematic misclassifications, e.g., Status \rightarrow Command (24,326 times), Status \rightarrow Alarm (23,262 times). These suggest semantic overlap and insufficient discriminative features for certain categories.

4.3 Distribution Shift Insights

Chi-square tests showed 58/94 labels had significant distribution shifts (p < 0.05) between training and test sets.

- Labels with significant shifts averaged lower F1 (0.5010) vs. stable labels (0.5192).
- Worst drops: Cooling_Demand_Setpoint, Discharge_Air_Dewpoint_Sensor.
- Causes: scarcity of positives, contextual drift, feature-label misalignment, input feature distribution shifts, and lower prediction confidence.

These insights highlight structural limitations: Optuna improved recall, but imbalance and dataset drift remain unresolved.

5 Conclusion

This mini-report presents my independent contribution: integrating Optuna into Brick-MIR, performing class-wise error analysis, and investigating distributional shifts. Automated hyperparameter tuning yields measurable improvements, while deeper analyses expose unresolved challenges in label scarcity and dataset drift. These findings provide a reproducible, individual extension to the group thesis and form the basis for potential future research directions.