

Seamlessly Scaling Applications with DAPHNE

COMPAS 2024, Nantes, France

Quentin GUILLOTEAU, Jonas H. Müller KORNDÖRFER, Florina M. CIORBA 2024-07-04

University of Basel, Switzerland {Quentin.Guilloteau, Jonas.Korndorfer, Florina.Ciorba}@unibas.ch

The "Two-Language Problem"

- Fast development (e.g. Python) ...
- But reimplementation for **performance** (e.g. C++)
- → Julia as a "solution"
- Trade-off: Performance vs. Ease of Development

The "Two-Language Problem"

The "Two-Language Problem" – Beyond a single machine

Rewrite the application to:

- Distribute the computations
- Integrate communication library (e.g. MPI)

Requires:

- More substantial effort
- Error handling
- Additional expertise

The "Two-Language Problem" – Beyond a single machine

DAPHNE

An Open and Extensible System Infrastructure for IDA Pipelines

DAPHNE – Motivation

- Integrated Data Analysis pipelines: HPC → DM → ML
- Different libraries, programming models, etc. at every stage!

DAPHNE – Overview

- EU H2020 Project (2021-2024)
- Open-source: https://github.com/daphne-eu/daphne

P. Damme et al., DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines [CIDR 2022]

DAPHNE – Overview

- EU H2020 Project (2021-2024)
- Open-source: https://github.com/daphne-eu/daphne

P. Damme et al., DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines [CIDR 2022]

DaphneSched

Local and Distributed Versions

Work Partitioner

Work Partitioner

Work Partitioner

Work Partitioner

Work Partitioner

DaphneSched – Local Scheduler (A. Eleliemy, F. M. Ciorba, ISPDC 2023)

12 Work Partitioners

STATIC (OpenMP static), SS (OpenMP dynamic), GSS (OpenMP guided), TSS (in LLVM), FAC2, TFSS, FISS, VISS, PLS, MSTATIC, MFSC, PSS (in LB4OMP), and AUTO

3 Queue Layouts
CENTRALIZED, PERGROUP*, PERCPU*

4 Work Stealing* Strategies SEQ, SEQPRI, RND, RNDPRI

Local DaphneSched

DaphneSched – Local Scheduler (A. Eleliemy, F. M. Ciorba, ISPDC 2023)

12 Work Partitioners

STATIC (OpenMP static), SS (OpenMP dynamic), GSS (OpenMP guided), TSS (in LLVM), FAC2, TFSS, FISS, VISS, PLS, MSTATIC, MFSC, PSS (in LB4OMP), and AUTO

3 Queue Layouts

CENTRALIZED, PERGROUP*, PERCPU*

4 Work Stealing* Strategies SEQ, SEQPRI, RND, RNDPRI

Connected Components in DaphneDSL, executed with DaphneSched and **sparse** input matrix (wikipedia-20070206) on a single node

$\textbf{DaphneSched} - \textbf{Distributed Scheduler} \Rightarrow \textbf{Hierarchical Scheduling} - \text{N}_{\text{EW}}!$

Coordinator (MPI Rank 0)

- Partitions work (data, ops) to the local DaphneSched instances
- Communicator Manager coordinates with local DaphneSched instances
- Different message types:
 - BM: Broadcast Message (Data)
 - CM: Compute Message (MLIR)
 - DM: Distribute Message (Data)
 - RM: Ready Message (Sync)

Workers (MPI Ranks 1 .. P-1)

- Listen incoming messages from coordinator
- Execute a local DaphneSched instance

Distributed DaphneSched

Experimental Evaluation

Design of Experiments

- Study the effort and performance of scaling applications
- Compare C++, Python, Julia, DaphneDSL
- Connected Components graph algorithm: broadcast, max, max
 (S. Beamer et al., GAP Benchmark suite)
- 2 Intel Broadwell E5-2640v4 CPUs, 10 cores each, 64GB of RAM
- 3 input matrices:

Matrix	Size	Density (%)
amazon0601	403'394 × 403'394	2.08×10^{-3}
wikipedia-20070206	3'566'907 × 3'566'907	0.354×10^{-3}
ljournal-2008	5'363'260 × 5'363'260	0.275×10^{-3}

Implementations – Connected Components (CC) Algorithm

Language (abbreviation)	External dependencies	Lines of code per implementation		
		Sequential	Local Parallel	Distributed Parallel
C++ (cpp)	Eigen	≃ 25	≃ 25	≃ 120
Python (py)	Numpy, Scipy	$\simeq 10$	$\simeq 10$	$\simeq 100$
Julia (jl)	MatrixMarket.jl	≃ 25	≃ 25	
$\textbf{DaphneDSL} \; (\texttt{daph})$	Ø	\simeq 10	\simeq 10	\simeq 10

- CC: broadcast (dense vector to CSR matrix), row-wise max, vector-wise max
- cpp, j1: Broadcast implemented by hand
- MPI: encapsulates the local parallel version, between a scatter of CSR matrix and MPI_Allreduce with user-defined function

Implementations – CC in DaphneDSL

```
1 G = readMatrix($f); // read sparse matrix from CLI argument
2 maxi = 100; // maximum number of iterations
3 start = now();
4
5 c = seg(1.0, as.f64(nrow(G)), 1.0); // initialization
7 for(iter in 1:maxi) {
  c = \max(\operatorname{aggMax}(G * t(c), 0), c);
9 }
10
11 end=now():
12 print((end-start) / 1000000000.0);
```

Results – Local Strong Scaling with Threads or Processes?

Strong scaling on a *single node* (20 total cores) with threads (left) and MPI processes (right) for CC with wikipedia-20070206 as input.

Error bars: 95% confidence intervals.

DaphneSched: CENTRALIZED queue w/ STATIC.

DaphneDSL scales with threads

• The others scale with processes

Results – Distributed Scheduling Schemes and Queue Layout | DaphneDSL

Average execution time with 95% confidence intervals for CC with DaphneDSL and DaphneSched, for 12 scheduling schemes and 3 queue layouts, with 1 victim selection – SEQPRI, executed on 4 nodes and 1 MPI process / node.

Total degree of parallelism: $(4 - 1) \times 20 = 60$ DAPHNE workers.

Results – Distributed Scheduling Schemes and Queue Layout | DaphneDSL

Average execution time with 95% confidence intervals for CC with DaphneDSL and DaphneSched, for 12 scheduling schemes and 3 queue layouts, with 1 victim selection – SEQPRI, executed on 4 nodes and 1 MPI process / node.

Total degree of parallelism: $(4 - 1) \times 20 = 60$ DAPHNE workers.

Results – Distributed Strong Scaling For Different Inputs and Implementations

Strong scaling: 1-9 compute nodes. Inside each node, work is parallelized using MPI for C++, Julia, and Python, and threads for DaphneDSL.

DaphneSched: used CENTRALIZED + STATIC (default) and CENTRALIZED + AUTO ⇒ highlight the impact of scheduling on performance.

DAPHNE is outperformed by others on small inputs ©

⇒ Impact of scheduling

DAPHNE outperforms others on larger inputs ©

No additional effort!

Results – Distributed Strong Scaling For Different Inputs and Implementations

Strong scaling: 1-9 compute nodes. Inside each node, work is parallelized using MPI for C++, Julia, and Python, and threads for DaphneDSL.

DaphneSched: used CENTRALIZED + STATIC (default) and CENTRALIZED + AUTO \Rightarrow highlight the impact of scheduling on performance.

- DAPHNE is outperformed by others on small inputs ②
- DAPHNE outperforms others on larger inputs ©

- ⇒ Impact of scheduling
- ✓ No additional effort!

Conclusion and Future Steps

Conclusion and Future Steps

Conclusion

- Distributing applications → Difficult, substantial effort, expertise
- DAPHNE scales seamlessly (without additional effort) ©
- Best performance is not always guaranteed ②
- Interesting trade-off: Performance vs. Ease of Development

Future Steps

- Dynamic partitioning by the coordinator in Distributed DaphneSched
- Communication/Stealing between the distributed workers
- Trade-off between colocating the coordinator with workers?
- Evaluation with full IDA pipelines

Seamlessly Scaling Applications with DAPHNE

COMPAS 2024, Nantes, France

Quentin GUILLOTEAU, Jonas H. Müller KORNDÖRFER, Florina M. CIORBA 2024-07-04

University of Basel, Switzerland {Quentin.Guilloteau, Jonas.Korndorfer, Florina.Ciorba}@unibas.ch

Additional Slides

Implementations – CC in DaphneDSL

```
1 G = readMatrix($f); // read sparse matrix from CLI argument
2 maxi = 100; // maximum number of iterations
3 start = now();
4
5 c = seg(1.0, as.f64(nrow(G)), 1.0); // initialization
7 for(iter in 1:maxi) {
  c = \max(\operatorname{aggMax}(G * t(c), 0), c);
9 }
10
11 end=now():
12 print((end-start) / 1000000000.0);
```

Implementations – CC in Python

```
1 import sys
2 import time
3 from scipy.io import mmread
4 from scipy.sparse import csr matrix, csr array
5 import numpy as np
6
7 def cc(filename. maxi=100):
      G = csr_matrix(mmread(filename))
      n = G.shape[1]
      start = time.time()
10
      c = np.array([list(map(lambda i: float(i), range(1, n + 1, 1)))])
11
      for iter in range(maxi):
12
          x = G.multiply(c.transpose()).max(axis=0)
13
          c = np.maximum(c, x.todense())
14
      end = time.time()
15
      print(end - start)
16
```

Implementations – CC in Julia

```
1 using MatrixMarket
2 using SparseArrays
3 using SparseMatricesCSR
5 function G_broadcast_mult_c(G, c)
   cols = colvals(G)
   vals = nonzeros(G)
    m, n = size(G)
    maxs = zeros(n)
10
    for j = 1:m
       for i in nzrange(G, j)
11
          col = cols[i]
12
          val = vals[i]
13
          if val * c[j] > maxs[col]
14
            maxs[col] = val*c[i]
15
          end
16
       end
17
```

Implementations – CC in C++

1 #include <iostream>

```
2 #include <Eigen/SparseCore>
3 #include <Eigen/Dense>
4 #include <Eigen/Sparse>
5 #include <Eigen/Core>
6 #include <unsupported/Eigen/SparseExtra>
7 #include <chrono>
8
9 typedef Eigen::SparseMatrix<double, Eigen::RowMajor> SpMatR;
10 typedef SpMatR::InnerIterator InIterMatR;
11
12 int main(int argc, char** argv) {
    if (argc != 3) {
13
      std::cout << "Usage: bin mat.mtx size" << std::endl;</pre>
14
15
      return 1;
16
    std::string filename = argv[1];
17
```