Exercício -1

Considere o circuito magnético a seguir:

Considere a seguinte característica BxH:

H[A/m]	B[T]	H [A/m]	B[T]
0	0	1100	1,689
68	0,733	1500	1,703
135	1,205	2500	1,724
203	1,424	4000	1,731
271	1,517	5000	1,738
338	1,560	9000	1,761
406	1,588	12000	1,770
474	1,617	20000	1,80
542	1,631	25000	1,816
609	1,646		

Em todos os exercícios a seguir considere que o sistema é alimentado por uma fonte ideal de corrente constante.

- Considerando uma corrente aplicada na bobina de 1 A, apresente um gráfico para a força magnética que surge no sistema em função do comprimento do entreferro nas condições a seguir:
 - O núcleo como sendo ideal;
 - Uma aproximação linear da característica do núcleo;
 - A característica real do núcleo.
- Repita o exercício anterior para uma corrente de 5 A e para uma corrente de 15 A.
- Considerando os dados disponíveis, qual seria a maior corrente que poderia ser levar em consideração de modo que se tenha confiabilidade no cálculo da força magnética em função da posição do elemento móvel.
- Apresente um gráfico do tempo necessário para o elemento móvel sair da posição x=d/2 até a posição x=0 em função da corrente aplicada na bobina. Seu gráfico deve compreender correntes de zero até o valor limite calculado no item anterior.