Kernel Machines

By Joseph Oluwasanya, DS4 1st November 2022

Introduction

Kernel methods, or kernel machines refer to a class of learning algorithms which use kernel functions for pattern analysis.

Popularized with the development of the Support Vector Machine at AT&T Bell Labs by Vapnik et al. in the 90's.

Concepts

For many algorithms for solving predictive modelling tasks, the data have to be transformed to a feature vector representation via feature maps defined by the user.

With Kernel machines, rather than a feature map, we must provide a kernel function instead. But what is a kernel function?

What is a kernel function?

Let x and y denote input data vectors of n dimensions input space, $\varphi(x)$ is a function mapping x and y from n-dimensional input space \mathbb{R}^n to an m-dimensional inner product space \mathcal{V} .

$$\varphi: \mathbb{R}^{n} \to \mathcal{V}$$

What is a kernel function? (Cont'd)

Kernel function, $K(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{V}}$ computes the inner product of $\varphi(x)$ and $\varphi(y)$.

$$K: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

This gives us a similarity measure between the pair of inputs $x, y \in \mathcal{X}$

Example

Let x = (1, 2, 3), y = (4, 5, 6), and the function $\varphi(\mathbf{a}) = (a1a1, a1a2, a1a3, a2a1, a2a2, a2a3, a3a1, a3a2, a3a3).$

So in this case,

$$\varphi(\mathbf{x}) = (1, 2, 3, 2, 4, 6, 3, 6, 9)$$
 and $\varphi(\mathbf{y}) = (16, 20, 2, 4, 20, 25, 30, 24, 30, 36)$

Example (Cont'd)

$$\langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle = 1(16) + 2(20) + ... + 36(9) = 1024$$

We then define the polynomial kernel $K(x,y)=(\langle x,y\rangle)^2$, and sub in \boldsymbol{x} , and \boldsymbol{y} to get $K(x,y)=(4+10+18)^2=32^2=1024$

This is the same result, but is computationally cheaper than applying φ computing the dot product.

More on polynomial kernel <u>here</u>.

Why do we even use φ ?

As we saw earlier, $\varphi(x)$ is a function mapping data vectors x and y from input space \mathbb{R}^n to an m-dimensional inner product space \mathcal{V} .

But why do we want to do this?

In the context of classification, kernel machines map data to higher dimensions in **attempt to make the target classes linearly separable**, and define a non-linear decision boundary in \mathbb{R}^n .

Why do we even use φ ? (Cont'd)

There is plenty of data in our world which can be modelled most effectively using non-linear functions, so a good choice of φ will allow us to find a good non-linear fit/decision boundary, hence improving the performance of our model.

Why do we even use φ ? (Cont'd)

In the 90's, the support vector machine, a popular kernel machine algorithm, was found to be competitive with neural networks on tasks such as handwritten recognition.

Today, it is still commonly used for classification and regression tasks.

```
0123456789
0123456789
0123456789
0123456789
0123456789
```

Instance-based learners

Kernel methods are **Instance- based learners**.

Rather than learning some fixed set of parameters corresponding to the input features (like a linear model), they compare new observations with those seen in training, which are stored in memory.

Instance-based learners (Cont'd)

Kernel methods "remember" the *i*-th training example (x_i, y_i) and learn a corresponding weight w_i .

Prediction of unlabelled inputs is treated by the application of a **similarity** function K which is the kernel, between the unlabelled instance x' and each training input x_i .

Instance-based learners (Cont'd)

For example, a kernelized binary classifier typically computes a weighted sum of similarities.

$$\hat{y} = sgn \sum_{i=1}^{n} w_i y_i k(\mathbf{x}_i, \mathbf{x}')$$

Where $\hat{y} \in \{-1, +1\}$ is the predicted label for unlabelled input x' whose hidden true label y is of interest.

 $k: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is the kernel function that measures similarity between any pair of inputs $x, x' \in \mathbb{R}^n$

Instance-based learners (Cont'd)

The kernelized binary classifier we just covered is called the "kernel perceptron".

more information can be found here

The Kernel Trick (Motivation)

We've seen In order to compute non-linear functions or decision boundaries, linear learning algorithms require us to transform input data to higher dimensions.

E.g., linear regression model

$$\beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon = \hat{y}$$

Requires input vector (x) to be mapped to (x, x^2) for the 2nd order fit.

The Kernel Trick (Motivation)

In the context of kernel machines, function φ maps the feature vector to a higher dimensional inner product space.

This can be very demanding to compute, and in the end we compute the inner product to return 1-dimension.

The Kernel Trick

The kernel trick avoids computing the explicit mapping of the input data to the inner product space \mathcal{V} , instead skipping this step and returning a scalar which is equivalent to computing the inner product in \mathcal{V} .

If $k: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is a kernel function, and $x, y \in \mathbb{R}^n$, and k can be written as

$$k(\mathbf{x}, \mathbf{y}) = \langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle_{\mathcal{V}}$$

Then we can just compute k, which is cheaper than computing the RHS

The Kernel Trick (Cont'd)

I used the word "if" in the last slide when explaining the kernel trick, but it was been proven mathematically, by James Mercer, that any positive-definite kernel can be expressed as a dot product in a high-dimensional space. This is **Mercer's Theorem.**

The Kernel Trick (Cont'd)

If you have a function φ such that $\langle \varphi(x), \varphi(y) \rangle_{\mathcal{V}}$ is a valid inner product in \mathcal{V} , then there is a kernel function that exists that achieve the result of the inner product for cheaper. Alternatively, if you have a positive definite kernel, you can deconstruct its implicit basis function φ .

Proof of Mercer's theorem can be found here

Questions?

Practical

The practical grouped with these slides will take you through how to implement support vector machines (SVM), a popular kernel machine algorithm. We use SVM to identify patients with malignant tumors.

See "practical.ipynb"

The original notebook was created Kaggle user *Fares Sayah, and can be found* <u>here</u>

Additional reading

Helpful material for further learning about kernel machines. A lot of information in the slides originated from here: https://en.wikipedia.org/wiki/Kernel_method

Lili Jiang, example of kernel function (slide 5): https://www.quora.com/What-are-kernels-in-machine-learning-and-SVM-and-why-do-we-need-them/answer/Lili-Jiang?srid=oOgT

Comprehensive explanation of the kernel trick, and Mercer's theorem. https://gregorygundersen.com/blog/2019/12/10/kernel-trick/