Folha 2

Cursos: LCC & LMAT 2025/2026

Probabilidades e Aplicações

1. Sejam (Ω, \mathcal{F}, P) um espaço de probabilidade e $B \in \mathcal{F}$ tal que P(B) > 0. Prove que a função P_B definida por

 $P_B(A) = \frac{P(A \cap B)}{P(B)}, \ A \in \mathcal{F},$

é uma medida de probabilidade sobre (Ω, \mathcal{F}) . [Observação: P_B é designada de probabilidade condicionada por B.

2. Sejam Ω um conjunto finito e $P: \mathcal{P}(\Omega) \to [0, +\infty]$ a função definida por

$$P(A) = \frac{\#A}{\#\Omega}.$$

Mostre que P é uma medida de probabilidade sobre $(\Omega, \mathcal{P}(\Omega))$. [Observação: Esta medida P é conhecida por medida de probabilidade de Laplace.

3. Verifique se a função $Q: \mathcal{P}(\mathbb{Z}) \to [0, +\infty]$ definida por

$$Q(A) = \begin{cases} 1, & \text{se } A \text{ tem um número infinito de elementos} \\ 0, & \text{se } A \text{ tem um número finito de elementos} \end{cases}$$

é uma medida de probabilidade sobre $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$.

4. Seja $Q: \mathcal{B}(\mathbb{R}) \to [0, +\infty]$ uma função σ -aditiva que satisfaz as seguintes propriedades:

(a) Q(I) > 0, para todo o intervalo real I de amplitude não nula,

(b)
$$Q(]k, k+1[) = \frac{1}{k(k+1)}, k \in \mathbb{N}.$$

Mostre que Q não é uma medida de probabilidade sobre $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

5. Identifique os espaços de probabilidade das seguintes experiências aleatórias e dê exemplos de dois acontecimentos incompatíveis (mas não impossíveis) para cada uma delas. Calcule ainda a probabilidade de cada um dos acontecimentos indicados.

- (a) Lançamento de uma moeda seguido do lançamento de um dado, ambos equilibrados.
- (b) Lançamento de uma moeda equilibrada três vezes consecutivas.
- (c) Lançamento de um dado equilibrado três vezes consecutivas.
- (d) Lançamento de um dado com faces numeradas de 1 a 6, em que sair a face i é duas vezes mais provável do que sair a face $i-1, i \in \{2, ..., 6\}$.

Ainda relativamente à experiência indicada na alínea (c), mostre que De Méré tinha razão ao afirmar que sai mais vezes a soma 10 do que a soma 9.

- 6. Calcule a probabilidade de ocorrer pelo menos uma coincidência nos dias de aniversário de $n \geq 2$ pessoas escolhidas ao acaso (considere o ano com 365 dias). Para que valores de n essa probabilidade é superior a $\frac{1}{2}$?
- 7. Sejam (Ω, \mathcal{F}, P) um espaço de probabilidade e $(A_n)_{n\in\mathbb{N}}$ uma sucessão de elementos de \mathcal{F} .

(a) Mostre que, se
$$P(A_n)=0$$
 para todo o $n\in\mathbb{N}$, então $P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=0$.

(b) Mostre que, se
$$P(A_n) = 1$$
 para todo o $n \in \mathbb{N}$, então $P\left(\bigcap_{n \in \mathbb{N}} A_n\right) = 1$.