- 3-2: If we consider only two horizontal lines. Then we wont get a monochromatic rectangle.

Hint: Consider three horizontal lines, and 9 vertical lines.

3.3: Hint: Consider four sub-squares inside the unit square. By PHP, two of the points are inside one sub-square.

3.4 Hint: the same conclusion would hold if we replace 9 with 10,8,6 or 4.

f(x) = 11 for 4 distinct integers.

 $f'(x) = f(x) - 11 = (x - \theta_1)(x - \theta_2) ... (x - \theta_4) g(x)$ for $\theta_1, ..., \theta_4 \in \mathbb{Z}$, $g(x) \in \mathbb{Z}[x]$.

Suppose $\exists \theta \in \mathbb{Z} \text{ s.t. } f(\theta) = 9$ $\Rightarrow f'(\theta) = -2$

 $(\theta - \theta_1)(\theta - \theta_2) \dots (\theta - \theta_4)g(\theta) = -2$ for $\theta_1, \dots, \theta_4 \in \mathbb{Z}$, $g(\alpha) \in \mathbb{Z}[\alpha]$.

-2 has 4 possible factors: 1, 2, -1, -2. => $(0-0,), (0-0z), ..., (0-04), g(0) \in \{1, 2, -1, -2\}$

Moreover, exactly one of $\{(0-0,1), ..., (0-0_4), g(0)\}$ can be ± 2 . The rest must be ± 1 .

 \Rightarrow At least three out of $\{(0-0,1),...,(0-0u)\}$ must be either 1 or -1.

As a result, $\exists i \neq j$ s.t. $\theta - \theta_i = \theta - \theta_j$.

Contradiction since we assumed all Di are distinct.

3.5: Hint: Consider a related problem.

For any n, there exists a multiple of n of the form 111... 1100...0.

Here 2 or 5 can divide n.

Proof of Easy Version:

Consider the set of numbers

S = {1, 11, 111, ..., 111...11}

1SI = n+1. By PHP, \exists two numbers $a,b \in S$, a < b, s.t. $a \mod n = b \mod n$.

Observation: b-a is of the form 11-100.0.

n divides (b-a).

Proof of 3.4: By the same argument as the easier version, $\exists k \in \mathbb{N}$ s.t. $n \cdot k = 11 - 100 - 0 = (11 - 1) \times 10^{\circ}$ for some $c \ge 0$.

Since 2 and 5 don't divide n, $gcd(n, 10^c) = 1$.

.º n divides 11.1.

3.6: Hint: Take any two points, there exists a great circle that passes through the two points.

| quest circle divides the sphere into two hemispheres.

Proof: Take 2 out of the 5 points, there exists a great circle through the two points.

> Out of the remaining 3 points, two of them are in the same hemisphere.

> Therefore, four of five points are in the same closed hemisphere.

This exercise is an illustration of how PHP can be used for geometric problems. This problem uses a non-trivial fact about spheres (great circle through any two points on a sphere). I will not expect you to know such facts for the quizzes / exams.

 $\frac{3\cdot7}{}$: Let $N=10^n$. We need to show that $\frac{3\cdot7}{}$ is $\frac{3\cdot7}{}$ is $\frac{3\cdot7}{}$ is $\frac{3\cdot7}{}$ in $\frac{3\cdot7}{}$

Failed Attempt: We need to show that $F_k = 0$.

A natural first attempt is to consider (F. mod N, Fz mod N, FN, mod N)

There are $N \in \mathbb{N}$ numbers, hence two of them must be equal. But it is not clear how to argue that $O \in \{F_i \mod N, ..., F_{N+1} \mod N\}$.

Consider $(F_i \mod N, F_{i+1} \mod N)$. There are only N^2 possible values.

Therefore $J_1 < J_2 \leq N^2 + 1$ s.t.

 $(F_{j_1}, \text{ mod } N) = (F_{j_2}, \text{ mod } N) = (F_{j_2}, \text{ mod } N)$

Let j_i^* be the smallest index ≥ 1 s.t. $\exists j_2 \geq j_i^*$ s.t. $(F_j, \text{mod } N, F_{j_i^*}, \text{mod } N) = (F_{j_2}, \text{mod } N, F_{j_i^*}, \text{mod } N)$

<u>Claim</u>: j' = 1.

Proof: Suppose j. > 1.

Concider (F_{ji-1} mod N, F_{ji} mod N).

Find N = (Fital - Fit) mod N

= (Fj., mod N - Fj. mod N)
mod N

= F, mod N

Hence j_1^* is not the smallest index ≥ 1 s.t. $\exists j_2 > j_1^*$ s.t. $(F_j, \text{mod } N, F_{j_2+1} \text{mod } N) = (F_{j_2} \text{mod } N, F_{j_2+1} \text{mod } N)$

As a result, $\exists j_2 \text{ s.t. } F_{j_2} \text{ mod } N = F_{j_{2+1}} \text{ mod } N = 1$. $\Rightarrow F_{j_2-1} \text{ mod } N = 0.$