1. (17') Divide and Conquer

Suppose you are given an array A[1..n] of sorted integers that has been circularly shifted k positions to the right. For example, [31,43,3,17,26,28,29] is a sorted array that has been circularly shifted k = 2 positions, while [26,28,31,43,3,17] has been shifted k = 4 positions. We can obviously find the largest element in A in O(n) time. Describe an O(logn) algorithm by using a divide and conquer solution.

Solution:

- 1. Divide the array A into two part A_L and A_R .
- 2. Compare the first element of A_L and A_R , if $A_L[0] > A_R[0]$, then the largest element is in A_L ; if $A_L[0] < A_R[0]$, then the largest element is in A_R .
- 3. Then recursively search for the largest element in A_L or A_R until meet the base case: the array has only one element.

```
\begin{split} & \text{findMax}(\text{Array A, left, right}) \{ \quad // \text{left and right are index of left and right element in A} \\ & \text{IF left} == \text{right:} \quad // \text{base case} \\ & \text{return A[left]} \\ & \text{ELSE:} \\ & \text{IF A[left]} > \text{A[[(left + \text{right})/2]]:} \quad // A_L[0] > A_R[0] \\ & \text{return findMax}(\text{A, left, [(left + \text{right})/2]}) \\ & \text{ELSE:} \quad // A_L[0] < A_R[0] \\ & \text{return findMax}(\text{A, [(left + \text{right})/2], right)} \\ \} \end{split}
```

2. (18') Heap Sort

Sort the array {1, 3, 7, 4, 5, 6} with a maximum heap without using extra memory. Write down the content of the array every time an insert() or a deleteMax() operation completes. The initial state and the array content after the first two insertions are already written for you:

```
0: initial state
| 1 | 3 | 7 | 4 | 5 | 6 |
1: insert (1)
| 1 | 3 | 7 | 4 | 5 | 6 |
2: insert (3)
| 3 | 1 | 7 | 4 | 5 | 6 |
```

Solution:

```
3: insert (7)
```

```
| 7 | 1 | 3 | 4 | 5 | 6 |
4: insert (4)
| 7 | 4 | 3 | 1 | 5 | 6 |
5: insert (5)
| 7 | 5 | 3 | 1 | 4 | 6 |
6: insert (6)
| 7 | 5 | 6 | 1 | 4 | 3 |
7: deleteMax()
| 6 | 5 | 3 | 1 | 4 | 7 |
8: deleteMax()
| 5 | 4 | 3 | 1 | 6 | 7 |
9: deleteMax()
| 4 | 1 | 3 | 5 | 6 | 7 |
10: deleteMax()
| 3 | 1 | 4 | 5 | 6 | 7 |
11: deleteMax()
| 1 | 3 | 4 | 5 | 6 | 7 |
12: deleteMax()
| 1 | 3 | 4 | 5 | 6 | 7 |
```

3. (10') Binary Search Trees

Verify the binary search tree. Given a binary tree root node, determine whether it is a valid binary search tree by writing the pseudo code of the function

```
Boolean isBST (root, lower, upper).
```

A valid binary search tree is defined as follows:

- a) The left subtree of a node only contains numbers less than the current node.
- b) The right subtree of a node only contains numbers greater than the current node.
- c) All left and right subtrees must also be binary search trees.

Note: The number of nodes in the tree is in the range [MIN_VALUE, MAX_VALUE], and MIN_VALUE <= Node.key <= MAX_VALUE. In the function isBST (root, lower, upper), lower and upper are the two boundaries of the keys of a valid BST subtree.

Solution:

```
Boolean isBST(root, lower, upper) {
    IF root==NULL:
        return true
    IF root.key<lower OR root.key>upper:
        return false
    bool left=isBST(root.getLeft(), lower, root.key)
    bool right=isBST(root.getRight(), root.key, upper)

IF left==TRUE AND right==TRUE:
    return TRUE

ELSE:
    return FALSE
}
```

4. (15') AVL Trees

Construct an AVL tree by inserting the input array {13, 7, 25, 58, 80, 15, 82, 6, 65, 71, 30, 60}. Draw the three trees after inserting the last three elements: 71, 30, and 60, respectively.

Solution:

5. (40') B+ Trees

5.1. (10') Suppose you are managing employee records on a computer with

the following setting:

- Computer hard disk access is block-based and the size of one block is 2048 bytes.
- The size of each employee record is 256 bytes (including the primary key).
- The primary key for an employee record is of type long long (16 bytes).
- The size of a pointer is 8 bytes.

You decide to store the data using a B+ tree. Propose the best setting for *M* and *L*. Show the steps that lead to your proposal.

Note: The definition of *M* and *L* is as described in the lecture slides. Solution:

Internal node: (M-1)*16+M*8=24M-16.
The size of one block is 2048 bytes, so 24M-16=2048, M=86.
L= the size of one block/the size of each employee record=2048/256=8.

5.2. (30') In this question, we use a B+ tree with M=L=4. The initial B+ tree is shown in Figure 1.

Figure 1: The initial B+ Tree

- a) (15') Given an insertion sequence {22, 12, 32}, draw the three B+ trees after each insertion, respectively. Please start from the initial B+ tree shown in Figure 1.
- b) (15') Given a deletion sequence { 23, 9, 7}, draw the three B+ trees after each deletion. Please start from the initial B+ tree shown in Figure 1.

Note: please strictly follow the lecture notes when you do the operations.

Solution:

(a)

(b)

6. (15') Graph

Given a graph as shown in Figure 2. Imagine that node 6 is the source vertex:

- a) (2') Write out its adjacency matrix.
- b) (3') Write out its adjacency List.
- c) (10') Use the algorithm of "BFS + Path Finding" (as shown in Lecture 15, page 3) to work out the BFS tree step by step.

Figure 2 The initial graph

Solution:

(a) adjacency matrix:

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	1	1	0	0	0
1	0	0	0	0	0	0	1	1	0	0
2	0	0	0	0	0	0	0	1	1	0
3	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	1	0	0	0	1
5	1	0	0	0	1	0	1	0	0	1
6	1	1	0	0	0	1	0	1	0	0
7	0	1	1	0	0	0	1	0	1	0
8	0	0	1	1	0	0	0	1	0	1
9	0	0	0	1	1	1	0	0	1	0

(b) adjacency list:

(c) BFS + Path Finding:

			_	
0	T		6	
1	Т		6	l
2	Т		7	l
3	Т		8	l
4	T		5	
5	Т		6	
6	Т		-	
7	Т		6	
8	Т		7	
9	Т		5	
		P	rec	1

Step-by-step: 1. Initialize Q={}

Vis	ited	Pred
Table	(T/F)	
0	F	-
1	F	-
2	F	-
3	F	-
4	F	-
5	F	-
6	F	-
7	F	-

8	F	-
9	F	-

2. Enqueue 6 Q={6}

Vis	ited	Pred
Table	(T/F)	
0	F	•
1	F	•
2	F	•
3	F	•
4	F	•
5	F	•
6	Т	-
7	F	-
8	F	-
9	F	-

3. Dequeue 6, Enqueue 1,7,0,5 Q={1,7,0,5}

Vis	ited	Pred
Table	(T/F)	
0	Η	6
1	Η	6
2	F	-
3	F	-
3 4 5	F	-
5	Т	6
6	Т	-
7	Т	6
8	F	-
9	F	_

4. Dequeue 1 Q={7,0,5}

Visited		Pred
Table	(T/F)	
0	Т	6
1	Т	6
2	F	-
3	F	_
4	F	-
5	Т	6

6	Т	-
7	Т	6
8	F	-
9	F	-

5. Dequeue 7, Enqueue 2, 8 Q={0,5,2,8}

Visi	ited	Pred
Table	(T/F)	
0	Т	6
1	Т	6
3	Τ	7
3	F	-
4	F	•
5	Н	6
6	Н	•
7	Т	6
8	Т	7
9	F	-

6. Dequeue 0 Q={5,2,8}

Visited		Pred
Table	(T/F)	
0	Т	6
1	Т	6
2	Н	7
3	F	•
4	F	-
5	Т	6
6	Т	-
7	Т	6
8	Т	7
9	F	-

7. Dequeue 5, Enqueue 9,4 Q={2,8,9,4}

Visited		Pred
Table	(T/F)	
0	Т	6
1	Η	6
2	Т	7
3	F	-
4	Т	5
5	Т	6
6	Т	-

7	Т	6
8	Т	7
9	Т	5

8. Dequeue 2 Q={8,9,4}

Visited		Pred
Table	(T/F)	
0	Η	6
1	Τ	6
2	Η	7
3	F	-
4 5	Τ	5
	Т	6
6	Η	-
7	Т	6
8	Т	7
9	Т	5

9. Dequeue 8,Enqueue 3 Q={9,4,3}

Visited		Pred
Table	(T/F)	
0	Т	6
1	Н	6
2	Т	7
3	Η	8
4	Η	5
5	Η	6
6	Η	•
7	Η	6
8	Т	7
9	Т	5

10. Dequeue 9 Q={4,3}

Visited		Pred
Table	(T/F)	
0	Т	6
1	Т	6
2	Т	7
3	Т	8
4	Т	5
5	Т	6
6	Т	-
7	Т	6

8	Т	7
9	Τ	5

11. Dequeue 4 Q={3}

Vis	ited	Pred
Table	(T/F)	
0	T	6
1	Т	6
2	Т	7
2 3 4 5	Т	8
4	Т	5
5	Т	6
6	Т	-
7	Т	6
8	Т	7
9	Т	5

12. Dequeue 3 Q={}

Visited		Pred
Table	(T/F)	
0	Т	6
1	Н	6
2	Т	7
3	Т	8
4	Н	5
5	Н	6
6	Н	-
7	Т	6
8	Т	7
9	Т	5

Alternative solution:

1. Initialize

Q={}

Visited		Pred
Table	(T/F)	
0	F	-
1	F	-
2	F	-
3	F	-
4	F	-
5	F	-
6	F	-

7	F	-
8	F	-
9	F	-

2. Enqueue 6 Q={6}

Visited		Pred
Table	(T/F)	
0	F	-
1	F	1
2	F	1
3	F	1
4	F	1
5	F	1
6	Т	-
7	F	-
8	F	-
9	F	-

3. Dequeue 6, Enqueue 0, 1, 5, 7 Q={0,1,5,7}

Vis	ited	Pred
Table	(T/F)	
0	Т	6
1	Т	6
2	F	-
3	F	-
4	F	-
5	Η	6
6	Η	-
7	Т	6
8	F	-
9	F	-

4. Dequeue 0 Q={1,5,7}

Visited		Pred
Table (T/F)		
0	Т	6
1	Т	6
2	F	-
3	F	1
4	F	-

5	Т	6
6	Т	-
7	Т	6
8	F	-
9	F	-

5. Dequeue 1 Q={5,7}

Visited		Pred
Table	(T/F)	
0	Т	6
1	Η	6
2	F	1
2 3 4 5	F	1
4	F	1
5	Η	6
6	Т	-
7	Т	6
8	F	-
9	F	-

6. Dequeue 5, Enqueue 4, 9 Q={7,4,9}

Visited		Pred
Table (T/F)		
0	Т	6
1	Η	6
2	F	1
3	F	1
4	Т	5
5	Η	6
6	Т	-
7	Т	6
8	F	-
9	Т	5

7. Dequeue 7, Enqueue 2,8 Q={4,9,2,8}

Visited		Pred
Table (T/F)		
0	Т	6
1	Т	6
2	Т	7
3	F	-
4	Т	5
5	Т	6

6	Т	-
7	Η	6
8	Т	7
9	Т	5

8. Dequeue 4 Q={9,2,8}

Visited		Pred
Table (T/F)		
0	Η	6
1	Т	6
3	Т	7
3	F	-
4	Т	5
5	Т	6
6	Т	-
7	Т	6
8	Т	7
9	Т	5

9. Dequeue 9, Enqueue 3 Q={2,8,3}

Visited		Pred
Table (T/F)		
0	Т	6
1	Т	6
2	Η	7
3	Η	9
4	Т	5
5	Т	6
6	Т	-
7	Т	6
8	Т	7
9	Т	5

10. Dequeue 2 Q={8,3}

Visited		Pred	
Table (T/F)			
0	Т	6	
1	Т	6	
2	Т	7	
3	Т	9	
4	Т	5	
5	Т	6	
6	Т	-	

7	Т	6
8	Т	7
9	Т	5

11. Dequeue 8 Q={3}

Visited		Pred
Table (T/F)		
0	Т	6
1	Т	6
2	Т	7
3	Т	9
4	Т	5
5	Т	6
6	Η	1
7	Η	6
8	Т	7
9	Т	5

12. Dequeue 3 Q={}

Visited		Pred
Table (T/F)		
0	Т	6
1	Т	6
2	Т	7
3	Η	9
4	Η	5
5	Η	6
6	Т	-
7	Т	6
8	Т	7
9	Т	5

