April 23 (Lie/Dylan)

Consider the set up we were considering last time. On the manifold $\mathbb{S}^1 \times \mathbb{R}$, with coordinates (t, s), we considered the differential operator

$$D = \frac{\partial}{\partial s} + J_0 \frac{\partial}{\partial t} + S,$$

on the trivial bundle \mathbb{R}^{2n} , where S(s,t) is a smooth family of symmetric matrices $\mathbb{R}^{2n} \to \mathbb{R}^{2n}$ which is constant as $s \to \pm \infty$, and J_0 is the "standard complex structure,"

$$J_0 = \operatorname{diag}\left[\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \cdots, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right].$$

Since this differential operator is of the form

D = time (s) derivative + self adjoint elliptic operator + lower order perturbation,

our previous analysis about such operators establishes the following fact

Fact. Suppose that $A(\pm \infty)$ has no imaginary eigenvalues.

Considered as a map $D: W^{1,2}(\mathbb{S}^1 \times \mathbb{R}, \mathbb{R}^{2n}) \to L^2(\mathbb{S}^1 \times \mathbb{R}, \mathbb{R}^{2n})$, D is Fredholm, and its index is equal to the spectral flow index of the family of elliptic operators

$$A(s) = J_0 \frac{\partial}{\partial t} + S \text{ on } \mathbb{S}^1.$$

The main goal of this lecture is to compute the spectral flow index in terms of Maslov index of a certain family of symplectic matrices. To begin, let's determine the eigenvectors of A(s) corresponding to the eigenvalue 0. It is clear that a section $\varphi: S^1 \to \mathbb{R}^{2n}$ is in the kernel of A

(*)
$$J_0 \frac{\partial \varphi}{\partial t} + S(s, t)\varphi(t) = 0 \iff \varphi'(t) = J_0 S(s, t)\varphi(t).$$

Define $\Psi(s,t) \in \operatorname{Sp}(2n)$ by solving the ordinary differential equation

$$\frac{\partial}{\partial t}\Psi(s,t) = J_0S(s,t)\Psi(s,t)$$
 and $\Psi(s,0) = \mathrm{id}$.

Note that Ψ is defined on $\mathbb{R} \times \mathbb{R}$ (i.e. it is probably not periodic in the t direction). To see that Ψ is symplectic, observe that Ψ is symplectic at t = 0 and

$$\frac{\partial}{\partial t} \Psi^T J_0 \Psi = \Psi^T S J_0^T J_0 \Psi + \Psi^T J_0 J_0 S \Psi = 0.$$

It is clear that

 $\varphi(t) = \Psi(s,t)\varphi(0)$ is the unique solution to (*) with initial condition $\varphi(0)$.

Most likely, φ will not be periodic. Since we require the domain of φ to be $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$, we obtain the bijection

$$\varphi \in \text{kernel of } A(s) \mapsto \varphi(0) \in \text{ker}(1 - \Psi(s, 1)).$$

As a corollary of this discussion, we conclude

$$A(\pm \infty)$$
 is hyperbolic $\iff \ker(1 - \Psi(\pm \infty, 1)) = 0.$

To see why, observe that A is self-adjoint (because S is symmetric) and hence $A(\pm \infty)$ can only have imaginary eigenvalues if $A(\pm \infty)$ has non-zero kernel.

Claim 1. The spectral flow index of A(s) is the signed intersection number of $\psi(1,s), s \in \mathbb{R}$ with the Maslov cycle.

Before we prove the claim, we will explore the Maslov cycle C in a bit more depth. Recall its definition

Definition 2. The Maslov cycle C is the subset of Sp(2n) consisting of the matrices with 1 as an eigenvalue. It has the following properties:

(i) C is a codimension 1 **stratified submanifold** of Sp(2n), in the sense that it can be written as a union of (non-closed) submanifolds

$$C = C_1 \cup C_2 \cup C_3 \cup \cdots$$

where $\dim C_{k+1} < \dim C_k$ and $\partial C_k \subset C_{k+1} \cup C_{k+2} \cdots$ (here ∂ denotes the "topological" boundary). We say that C is "codimension 1" because the "top strata" C_1 is codimension 1 inside $\operatorname{Sp}(2n)$.

(ii) The singularities of C have codimension ≥ 2 inside of C, in the sense that

$$\dim C_2 < \dim C_1 - 1.$$

This is important for obtaining a well-defined intersection number with C.

Definition 3. Let $\gamma:[0,1] \to \operatorname{Sp}(2n)$ be a smooth path which is **regular** in the sense γ has isolated intersections with $C, \gamma(0), \gamma(1) \notin C$, and whenever $\gamma(t) \in C$, the bilinear pairing

(1)
$$B_t^{\text{mc}} = \langle -, V - \rangle$$
 is non-degenerate $\ker(1 - \gamma(t)) \otimes \ker(1 - \gamma(t)) \to \mathbb{R}$.

where $J_0V\gamma(t) = \gamma'(t)$ for a *symmetric* matrix V. It is clear that B_t is symmetric. We define the **intersection number** of γ with C by the formula

$$\#(\gamma \cap C) = \sum_{t} \operatorname{signature}(B_t^{\operatorname{mc}}).$$

This sum is finite since $B_t = 0$ if $\gamma(t) \notin C$ (and we have supposed isolated intersections). The bilinear form B_t^{mc} is called the **crossing form**.

Theorem 4. Suppose that γ_0, γ_1 are homotopic regular paths, where we require the homotopy γ_t to always satisfy $\gamma_t(0), \gamma_t(1) \notin C$. Then

$$\#(\gamma_0 \cap C) = \#(\gamma_1 \cap C).$$

Exercise 1 (stratifications). In this exercise we will stratify the set of singular matrices $\mathbb{R}^{n \times m}$, $m \leq n$, to give some idea of how one might stratify C. Let $\Sigma_k = \{A : \dim \ker A = k\}$,

so that $\Sigma_1 \cup \cdots \cup \Sigma_m$ is the set of singular matrices. We will prove that each Σ_i is a manifold, and compute their codimensions inside of $\mathbb{R}^{n \times m}$.

Pick an ℓ -dimensional subspace $\Lambda \subset \mathbb{R}^m$, and consider the open set U_{Λ} of matrices which are injective on Λ . We can form an $n-\ell$ -dimensional bundle Φ on U whose fiber at A is $\mathbb{R}^n/A(\Lambda)$. The restriction of A to Λ^{\perp} gives a section s of $\operatorname{Hom}(\Lambda^{\perp}, \Phi)$, and we make the crucial observation that s=0 if and only if A has rank equal to exactly ℓ (this only holds on U_{Λ}).

Moreover, the section s is transverse to 0. This is fairly easy to see, since, we can arbitrarily perturb A on Λ^{\perp} . Therefore we have locally expressed the set of matrices of rank ℓ as the zero locus of the section of an $(m-\ell)(n-\ell)$ dimensional bundle.

Since dim ker A + rank(A) = m, we conclude that $k = m - \ell$, and hence we have locally expressed the matrices of corank k as the zero locus of a transverse section of a k(n - m + k) dimensional bundle. It follows that

$$\Sigma_k$$
 has codimension $k(n-m+k)$ inside of $\operatorname{Hom}(\mathbb{R}^m,\mathbb{R}^n)$.

If m = n, then Σ_k has codimension k^2 .

Remark. We leave it to the reader to ponder how similar ideas may be used to obtain a stratification of C with the advertised properties.

Exercise 2 (intersection numbers). Let $C = C_1 \cup C_2 \cup \cdots$ be a closed stratified submanifold of M, and suppose $\operatorname{codim}(C_1) = k$ and $\dim C_2 < \dim C_1 + 1$. Suppose the top face C_1 has a co-orientation

Given a compact oriented k-dimensional manifold $(N, \partial N)$ and a map

$$f:(N,\partial N)\to (M,M\smallsetminus C)$$

show that the intersection number of f with C is well-defined if we follow the recipe:

Homotope f through maps of the form (*) so that f becomes disjoint from $C_2 \cup C_3 \cup \cdots$, and so that f is transverse to the top stata C_1 , and then count the number of intersection points, with signs according to the orientation on N and the coorientation on C_1 .

Why is the assumption that $\dim C_2 < \dim C_1 + 1$ necessary? Give an example of a stratified submanifold where this assumption fails, and where a homotopy invariant intersection number cannot be defined.

We can also define a crossing form for the spectral flow

Definition 5. Let A(s) be a one parameter family of self-adjoint operators. Define the crossing form at time s by

$$B_s^{\rm sf} = \int_{\mathbb{S}^1} \langle -, \frac{\partial A}{\partial s}(-) \rangle \mathrm{d}t \text{ on } \ker A(s).$$

Claim 6. The bijection

$$\varphi \in \ker A(s) \mapsto \varphi(0) \ker(1 - \Psi(1, s))$$

respects the crossing forms $B^{\rm sf}$ and $B^{\rm mc}$.

Proof. Fix some $s_0 \in \mathbb{R}$ and compute

$$B_{s_0}^{\rm sf}(\varphi) = \int_{S^1} \langle \varphi, \frac{\partial A}{\partial s}(s_0) \varphi \rangle dt = \int_{S^1} \langle \varphi, \frac{\partial S}{\partial s}(s_0) \varphi \rangle dt$$

$$= \int_{S^1} \langle \Psi(s_0, t) \varphi(0), \frac{\partial S}{\partial s}(s_0) \Psi(s_0, t) \varphi(0) \rangle$$

$$= \int_{S^1} \langle \varphi(0), \Psi^*(s_0, t) \frac{\partial S}{\partial s}(s_0) \Psi(s_0, t) \varphi(0) \rangle.$$

Now define $\widehat{S}(s,t)$ to be the tangent vector of $\Psi(s,t)$ in the s-direction; more precisely, we use the identification of the tangent space at $\Psi(s,t)$ with the tangent space at $1 \in \operatorname{Sp}(2n)$:

$$\frac{\partial \Psi}{\partial s} = J_0 \widehat{S} \Psi.$$

By definition, the Maslov cycle crossing form on $\ker(1-\Psi(1,s_0))$ is

$$B_{s_0}^{\mathrm{mc}}(\varphi(0)) = \langle \varphi(0), \widehat{S}(s_0, 1)\varphi(0) \rangle = \langle \Psi(s_0, 1)\varphi(0), \widehat{S}(s_0, 1)\Psi(s_0, 1)\varphi(0) \rangle$$

$$= \langle \varphi(0), \Psi^*(s_0, 1)\widehat{S}(s_0, 1)\Psi(s_0, 1)\varphi(0) \rangle$$

$$= \int_{S^1} \langle \varphi(0), \frac{\partial}{\partial t} (\Psi^*(s_0, t)\widehat{S}(s_0, t)\Psi(s_0, t))\varphi(0) \rangle$$

since $\widehat{S}(s,0) = 0$ as $\Psi(s,0)$ is identically 1.

We claim that

$$\frac{\partial}{\partial t}(\Psi^*\widehat{S}\Psi) = \Psi^* \frac{\partial S}{\partial s} \Psi$$

To see this, we simply compute

$$\begin{split} \mathrm{LHS} &= \frac{\partial \Psi^*}{\partial t} \widehat{S} \Psi + \Psi^* \frac{\partial}{\partial t} (\widehat{S} \Psi) \\ &= -\Psi^* S J_0 \widehat{S} \Psi - \Psi^* J_0 \frac{\partial}{\partial t} ((J_0 \widehat{S} \Psi)) \\ &= -\Psi^* S J_0 \widehat{S} \Psi - \Psi^* J_0 \frac{\partial}{\partial t} \frac{\partial}{\partial s} \Psi \\ &= -\Psi^* S J_0 \widehat{S} \Psi - \Psi^* J_0 \frac{\partial}{\partial s} J_0 S \Psi \\ &= -\Psi^* S J_0 \widehat{S} \Psi + \Psi^* \frac{\partial}{\partial s} (S \Psi) \\ &= -\Psi^* S J_0 \widehat{S} \Psi + \Psi^* \frac{\partial}{\partial s} \Psi + \Psi^* S J_0 \widehat{S} \Psi \\ &= \mathrm{RHS}, \end{split}$$

as desired. Comparing (1) and (2), and using (*), completes the proof of the claim.

Exercise 3. Check that in the generic situation, the sign of the intersection of the spectral flow with the zero line is given by the sign of the B^{sf} crossing form.

To finish the proof of the computation of spectral flow index, consider the contractible loop of sympletic matrices $\Psi_{-} = \Psi(-\infty, t)$, $\Psi(s, 1)$, $\Psi_{+}(+\infty, t)$. The additivity of the Conley-Zehnder index applied to this path produces

$$\mu_{CZ}(\Psi_{-}) + \mu_{CZ}(\Psi(s,1)) - \mu_{CZ}(\Psi_{+}) = 0$$

which gives spectral flow index $\mu_{CZ}(\Psi_+) - \mu_{CZ}(\Psi_-)$.

Maslov cycle in Sp(2).. Recall the polar decomposition: for any matrix $A \in GL_n(\mathbb{R})$ there is unique $U \in O(n)$ and P positive definite symmetric matrix such that A = UP.

Claim 7. Let $A \in Sp(2n)$ and A = UP be its polar decomposition. Then $J_0U = UJ_0$, i.e. $U \in U(n) = O(2n) \cap GL_n(\mathbb{C})$.

Proof. $-J_0AJ_0 = (A^*)^{-1} = UP^{-1} - J_0AJ_0 = J_0UJ_0J_0PJ_0$ is also a polar decomposition except that J_0PJ_0 is negative definite now $\langle J_0PJ_0v,v\rangle = -\langle PJ_0v,J_0v\rangle < 0$. By changing signs, we see that we have another polar decomposition. Since there is a unique polar decomposition, we conclude $-J_0UJ_0 = U$.

Using this polar decomposition (and recalling that $\mathrm{Sp}(2)=\mathrm{SL}_2(\mathbb{R})$), we obtain the diffeomorphism

 $\mathrm{SL}_2(\mathbb{R}) \cong \mathrm{SO}(2) \times \mathrm{symmetric}$ positive definite matrices of determinant $1 \cong S^1 \times \mathbb{R}^2$.

This can also be seen by recalling the transitive group action of $SL_2(\mathbb{R})$ on the upper half-plane by Möbius transformations. Thus $SL_2(\mathbb{R})$ is an open solid torus.

We can be quite explicit about the Maslov cycle in this low dimensional case. If A is a symplectic matrix, we compute

$$\det(1-A) = 2 - \operatorname{tr}(A),$$

and hence $C = \{A : tr(A) = 2\}.$

Exercise 4. Let C be the Maslov cycle in Sp(2). Prove that $C_1 = \{A : \dim \ker(1 - A) = 1\}$ is cut transversally by the function $A \mapsto \det(1 - A)$. Prove that $C_2 = \{A : \dim \ker(1 - A) = 2\}$ is $\{1\}$. Thus we have a stratification

$$C = C_1 \cup \{1\}$$
.

What does the Maslov cycle look like in a neighborhood of 1?