DISTRIBUCIÓN DE VIAJES EN SAN CARLOS DE APOQUINDO

Bernardo Caprile Canala-Echevarría

Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Santiago de Chile e-mail: bcaprile@miuandes.cl

RESUMEN

Palabras clave:

1. Introducción

El flujo de vehículos en hora punta de la mañana en San Carlos de Apoquindo es un problema significativo, ya que esta zona, además de ser un barrio residencial, se caracteriza por tener una alta concentración de colegios y universidades. Por lo tanto, el tráfico matutino afecta tanto a los residentes como a los estudiantes que ingresan a esta área. Para poder tomar decisiones respecto al flujo vehicular, no solo en San Carlos de Apoquindo, sino en todo Santiago, se realiza periódicamente la encuesta origen-destino, la cual permite conocer la cantidad de viajes que se realizan en la ciudad y su distribución.

Con esta información, se pueden generar modelos y tomar decisiones, las cuales optimicen las rutas de las personas, disminuyendo el tráfico y el tiempo de viaje. Por esta razón, es importante contar con una matriz origen-destino actualizada y precisa, la cual permita realizar análisis y proyecciones de la distribución de viajes en la ciudad. A continuación, se presenta la figura 1, la cual muestra la zonificación de una parte de Las Condes enfocada en San Carlos de Apoquindo.

Figura 1: Mapa de San Carlos de Apoquindo.

Para esta tarea, se generarán 3 matrices origen-destino en base a esta zonificación mediante un código Python: una utilizando el método Furness o biproporcional, con datos de los vectores origen-destino de 2024, otra a partir de una matriz de costos, como la distancia promedio de viaje, y el modelo gravitacional. Posteriormente, se calibrará la matriz con el modelo gravitacional y se compararán los resultados obtenidos con un error cuadrático medio respecto a la matriz original. Finalmente, a la matriz calibrada se le aplicará el método de Furness para obtener una matriz de viajes.

2. Resultados y Discusiones

Los cálculos se realizaron en Python, utilizando las librerías Pandas y Numpy. El código se encuentra en el repositorio de GitHub Código

2.1. Matriz Origen-Destino con el Método Furness

Para poder generar la Matriz Origen-Destino con el método Furness, se utilizó de base la Matriz Origen-Destino de 2012 (Tabla 4) y los vectores de origen y destino de 2024 (Tabla 6).

Luego, mediante el método Furness o biproporcional, que se muestra a continuación:

```
def furness(t, 0, D, tol=1e-6, maxit=1000):
      k = len(0)
      0 = np.array(0)[:, np.newaxis].astype(float)
      D = np.array(D).astype(float)
      t = np.array(t)
      ai = np.ones((k, 1))
      bj = np.ones((1, k))
      iters = 0
      while iters < maxit:
          row_sums = t.sum(axis=1)
          col_sums = t.sum(axis=0)
11
          row_sums[row_sums == 0] = 1
12
          col_sums[col_sums == 0] = 1
          ai = 0 / row_sums[:, np.newaxis]
14
          t = t * ai
          col_sums = t.sum(axis=0)
          col_sums[col_sums == 0] = 1
17
          bj = D / col_sums
          t = t * bj
19
          row_sums_after = t.sum(axis=1)
20
          col_sums_after = t.sum(axis=0)
21
          if np.max(np.abs(row_sums_after - 0.squeeze())) < tol and \
23
             np.max(np.abs(col_sums_after - D)) < tol:</pre>
24
               print(f"Convergencia alcanzada en {iters + 1}
     iteraciones.")
               break
26
          iters += 1
27
      return t
28
```

En donde, t es la matriz origen-destino de 2012, O es el vector origen de 2024 y D es el vector destino de 2024. Se obtuvo la matriz origen-destino de 2024, la cual se muestra en la Tabla 1.

Zona O\D	301	302	308	314	316	318	$\mathbf{E1}$	$\mathbf{E2}$	E3	$\mathbf{E4}$	Oi,2024
301	0.00	345.54	0.00	0.00	0.00	0.00	1503.36	0.00	1685.14	4666.00	8200.04
302	0.00	527.75	0.00	0.00	389.22	0.00	1543.41	0.00	7356.23	6175.42	15992.03
308	0.00	0.00	66.62	0.00	0.00	0.00	0.00	0.00	3228.47	3733.81	7028.91
314	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2337.00	0.00	0.00	2337.00
316	0.00	589.60	0.00	0.00	0.00	0.07	144.23	0.00	2970.15	985.77	4689.82
318	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathbf{E1}$	1244.34	787.18	287.07	4.91	287.66	0.30	0.00	0.00	0.00	0.00	2611.46
$\mathbf{E2}$	0.00	682.56	0.00	0.35	269.90	0.00	0.00	0.00	0.00	0.00	952.80
E3	160.43	959.73	1373.06	6.03	724.61	0.19	0.00	0.00	0.00	0.00	3224.05
$\mathbf{E4}$	339.22	1843.65	3268.25	8.71	629.62	0.43	0.00	0.00	0.00	0.00	6089.88
Dj, 2024	1744.00	5736.00	4995.00	20.00	2301.00	1.00	3191.00	2337.00	15240.00	15561.00	51126.00

Tabla 1: Matriz Origen-Destino de 2024 con el método Furness.

Como se puede apreciar, la matriz obtenida no se igualó en columna Oi,2024 del vector de origen de 2024, pero sí el de Dj,2024. Esto se debe a que la fila de 318 no tiene viajes de origen, por lo que es imposible que se pueda llegar a la cantidad establecida en el vector de la tabla 6. Esto repercute en el resto de la matriz, ya que al iterar, la fila de 318 no se modifica, lo que afecta a las demás filas.

2.2. Matriz Origen-Destino con el Modelo Gravitacional

Para poder generar la Matriz Origen-Destino con el modelo gravitacional, se utilizó la matriz de costos entre zonas (Tabla 7) y los vectores de origen y destino de 2012 (Tabla 5). Luego, con la siguiente ecuación:

$$T_{ij} = \alpha \cdot O_{i,2012} \cdot D_{j,2012} \cdot C_{ij}^k \cdot e^{-\beta \cdot C_{ij}}$$
(1)

Donde:

- T_{ij} es la cantidad de viajes entre la zona i y la zona j.
- $O_{i,2012}$ es la cantidad de viajes de origen en la zona i.
- $D_{j,2012}$ es la cantidad de viajes de destino en la zona j.
- C_{ij} es el costo entre la zona i y la zona j.
- α y k son parámetros a calibrar.
- β es un parámetro equivalente a 0.2176

Luego de calcular la matriz de viajes, con un α igual a 0.0002 y un k igual a 1

Zona O\D	301	302	308	314	316	318	$\mathbf{E}1$	$\mathbf{E2}$	E3	$\mathbf{E4}$	Oi,2024
301	394.66	5226.93	1499.56	1429.52	739.23	356.11	1208.32	631.28	1639.95	1179.97	14305.53
302	3424.46	13095.60	6443.93	3896.18	1886.55	1703.88	4011.18	1909.91	5919.04	4478.56	46769.28
308	2536.04	16633.99	3421.34	2900.77	1731.41	2007.81	3427.09	1535.92	5417.51	4475.28	44087.17
314	17.74	73.82	21.29	6.51	6.56	10.83	19.98	7.95	25.11	23.13	212.91
316	1457.93	5679.12	2019.14	1041.82	521.16	897.38	1788.74	763.11	2268.53	1921.72	18358.65
318	0.29	2.14	0.97	0.72	0.37	0.13	0.61	0.31	0.82	0.62	6.98
$\mathbf{E}1$	731.01	3703.98	1225.96	973.71	548.70	450.59	NaN	NaN	NaN	NaN	7633.95
$\mathbf{E2}$	766.05	3537.55	1102.08	777.63	469.53	461.63	NaN	NaN	NaN	NaN	7114.48
E3	4720.63	26006.23	9221.03	5822.74	3310.98	2884.16	NaN	NaN	NaN	NaN	51965.78
$\mathbf{E4}$	1836.03	10636.64	4117.56	2899.79	1516.16	1174.92	NaN	NaN	NaN	NaN	22181.10
Dj, 2024	15884.85	84596.00	29072.87	19749.39	10730.65	9947.44	10455.92	4848.49	15270.95	12079.28	212635.84

Tabla 2: Matriz de viajes obtenida con el modelo gravitacional.

Luego, se obtuvo una matriz la cual se le calculó el error cuadrático medio respecto a la original con el siguiente código:

```
mse = np.mean((Tij_df - df1_1) ** 2)
```

En donde, Tij_df es la matriz de viajes obtenida y $df1_1$ es la matriz original. Se obtuvo un error cuadrático medio de 13711172.376, lo que indica que la matriz obtenida no es precisa respecto a la original. Por esta razón se fue modificando el valor de k para minimizar el error, se ocupó un k de 0.001 obteniendo un error de 1968630.51.

2.3. Calibración de la Matriz Origen-Destino con el Modelo Gravitacional

Para poder obtener esta matriz, lo que se hizo fue con la matriz obtenido anteriormente, se le aplicó el método Furness (2.1), obteniendo una matriz de viajes calibrada. Esta matriz en comparación con las anteriores, se obtuvo un error de 0 en los vectores de la matriz.

Zona O\D	301	302	308	314	316	318	$\mathbf{E1}$	$\mathbf{E2}$	E3	$\mathbf{E4}$	0i,2024
301	121.45	257.94	205.80	0.53	83.77	0.07	676.48	658.35	2830.91	2901.71	7737.00
302	142.46	455.73	251.41	1.02	151.92	0.09	1180.06	836.05	6111.30	5958.95	15089.00
308	53.60	118.55	120.62	0.39	50.51	0.03	433.54	256.99	2870.58	2727.19	6632.00
314	12.96	44.74	36.40	0.17	19.43	0.01	227.24	113.43	830.97	1022.65	2308.00
316	34.71	113.98	80.36	0.33	45.39	0.02	430.84	271.41	1599.70	1848.25	4425.00
318	41.76	105.47	63.33	0.20	30.80	0.03	242.84	200.77	996.54	1102.26	2784.00
$\mathbf{E}1$	301.57	952.48	742.11	4.18	463.48	0.17	0.00	0.00	0.00	0.00	2464.00
$\mathbf{E2}$	154.99	356.35	232.30	1.10	154.18	0.07	0.00	0.00	0.00	0.00	899.00
E3	298.87	1168.15	1163.66	3.62	407.54	0.17	0.00	0.00	0.00	0.00	3042.00
$\mathbf{E4}$	581.63	2162.59	2098.99	8.45	893.99	0.35	0.00	0.00	0.00	0.00	5746.00
$\mathrm{Dj},2024$	1744.00	5736.00	4995.00	20.00	2301.00	1.00	3191.00	2337.00	15240.00	15561.00	51126.00

Tabla 3: Matriz de viajes calibrada con el método Furness.

3. Anexos

Zona O\D	301	302	308	314	316	318	$\mathbf{E1}$	$\mathbf{E2}$	$\mathbf{E3}$	$\mathbf{E4}$
301	0	0	0	0	0	0	709	0	714	821
302	284	845	0	0	1202	0	369	894	3514	3671
308	0	0	107	0	0	0	39	0	1457	1886
314	0	0	0	0	0	0	126	25	1208	949
316	0	171	0	0	0	0	37	97	728	344
318	0	0	0	0	108	0	107	0	529	650
$\mathbf{E1}$	811	1622	0	0	193	0	0	0	0	0
${f E2}$	98	836	0	25	0	0	0	0	0	0
$\mathbf{E3}$	121	1029	1563	0	529	0	0	0	0	0
$\mathbf{E4}$	645	1663	3480	0	338	0	0	0	0	0

Tabla 4: Matriz Origen-Destino de 2012

Zona	301	302	308	314	316	318	$\mathbf{E1}$	${f E2}$	$\mathbf{E3}$	$\mathbf{E4}$
Oi,2012	1960	6166	5150	25	2371	1	1387	1016	8150	8322
Dj,2012	2245	10780	3488	2307	1377	1395	2626	959	3243	6126

Tabla 5: Vectores de Oi,2012 y Dj,2012 por zona

Zona	301	302	308	314	316	318	$\mathbf{E}1$	$\mathbf{E2}$	$\mathbf{E3}$	$\mathbf{E4}$
Oi,2024	7737	15089	6632	2308	4425	2784	2464	899	3042	5746
$D_{j,2024}$	1744	5736	4995	20	2301	1	3191	2337	15240	15561

Tabla 6: Vectores ${\cal O}_{i2024}$ y ${\cal D}_{j2024}$ por zona

Zona O\D	301	302	308	314	316	318	$\mathbf{E1}$	$\mathbf{E2}$	$\mathbf{E3}$	$\mathbf{E4}$
301	0.50	1.85	1.53	3.11	2.22	0.77	9.71	5.15	8.85	16.01
302	1.85	1.31	2.69	2.22	1.56	1.32	9.23	6.13	7.39	14.78
308	1.53	2.69	1.25	1.81	1.81	2.31	9.02	6.74	6.05	13.56
314	3.11	2.22	1.81	0.65	1.25	2.95	7.04	5.55	6.80	13.12
316	2.22	1.56	1.81	1.25	0.99	2.18	7.74	5.18	7.43	14.04
318	0.77	1.32	2.31	2.95	2.18	0.50	9.78	5.97	9.01	15.82
$\mathbf{E1}$	9.71	9.23	9.02	7.04	7.74	9.78	∞	∞	∞	∞
$\mathbf{E2}$	5.15	6.13	6.74	5.55	5.18	5.97	∞	∞	∞	∞
$\mathbf{E3}$	8.85	7.39	6.05	6.80	7.43	9.01	∞	∞	∞	∞
$\mathbf{E4}$	16.01	14.78	13.56	13.12	14.04	15.82	∞	∞	∞	∞

Tabla 7: Tabla de costos entre zonas