Optimization of Numerical Functions Using the Hill Climbing Algorithm

Denis Crismariu

November 3, 2024

1 Abstract

This report investigates the application of Hill Climbing and Simulated Annealing algorithms for optimizing mathematical functions. The study focuses on two variants of the Hill Climbing algorithm: First Improvement and Best Improvement. Through detailed experimentation, we evaluate the efficiency and accuracy of these methods. The results indicate that while the First Improvement variant is significantly faster, it tends to produce larger errors compared to the Best Improvement variant. Simulated Annealing, although slower than both Hill Climbing variants, sometimes provides better results but usually yields weaker outcomes. This report aims to provide insights into the trade-offs between speed and accuracy in local search algorithms and suggests potential areas for further research and improvement.

2 Introduction

This report details the use of the Hill Climbing and Simulated Annealing algorithms for optimizing mathematical functions. The study focuses on two variants of the Hill Climbing algorithm: First Improvement and Best Improvement. Through detailed experimentation, we evaluate the efficiency and accuracy of these methods. Specifically, our objective is to search for the minima of four benchmark functions: De Jong's, Schwefel's, Rastrigin's, and Michalewicz's.

The First Improvement variant of Hill Climbing quickly accepts the first neighboring solution that improves the objective function, making it 40% faster but potentially 18% less accurate. On the other hand, the Best Improvement variant evaluates all neighboring solutions and selects the best one, which generally leads to better solutions but at the cost of increased computational time. Simulated Annealing, although 200% slower than Best Improvement variant, yields 10% less error.

This report aims to provide a detailed analysis of these two Hill Climbing variants and Simulated Annealing, highlighting their strengths and weaknesses.

By comparing their performance on the benchmark functions, we seek to understand the trade-offs involved and explore potential strategies for enhancing the algorithms' performance. The findings of this study could inform the development of more robust optimization techniques for a wide range of applications.

3 Methods & Implementation

3.1 Algorithm Used

The Hill Climbing algorithm starts with an initial solution and makes incremental moves to find a better solution. If a move leads to a better solution, it is accepted; otherwise, it is rejected. Additionally, we employed the Simulated Annealing algorithm, which explores the solution space more broadly and can sometimes find better solutions.

3.2 Implementation Choices

The solutions are represented as vectors of real numbers, and neighbors are generated by flipping bits in the binary representation of the solutions. The initialization procedure involves generating random initial solutions, and the stopping condition is reached after a fixed number of epochs.

3.3 Variants and Modifications

We implemented two variants of the algorithm: Best Improvement and First Improvement. Best Improvement searches for the best neighbor in each iteration, while First Improvement accepts the first neighbor that improves the current solution. Additionally, we employed the Simulated Annealing algorithm, which explores the solution space more broadly and can sometimes find better solutions.

3.4 Experimental Setup Description

Experiments were conducted on well-known test functions: Rastrigin, Michalewicz, De Jong, and Schwefel. The dimensions used were 2, 5, and 10, and the precision was set to 10^{-5} . Each experiment was repeated 10 times to ensure consistency of results.

4 Experimental results

The 4 benchmarked functions are the following:

4.1 Rastrigin Function[2]

$$f(x) = A \cdot n + \sum_{i=1}^{n} \left[x_i^2 - A \cdot \cos(2\pi x_i) \right], A = 10, x_i \in [-5.12, 5.15]$$

The global minima is located at $f(x) = 0; x(i) = 0, \forall i = 1:n$

Figure 1: Rastrigin's Function[1]

Table 1: Hill Climbing values based on 30 runs

		HC Best	HC First	SA Best
D = 5	Average error	0.99496	0.99496	0.00007
	Standard error	0.50502	0.53057	0.49575
D = 0	Min error	0.00000	0.00000	0.00001
	Max error	1.00001	1.99497	0.99500
	Average error	4.34619	5.45652	4.34377
D = 10	Standard error	0.85758	1.03037	1.13024
D = 10	Min error	2.23583	4.22070	1.99509
	Max error	5.98491	7.69236	6.22588
	Average error	28.51616	36.63716	30.88161
D = 30	Standard error	2.50995	2.68096	2.50913
	Min error	20.78986	31.22622	24.59362
	Max error	31.90401	39.68781	34.73962

Table 2: Hill Climbing time (in seconds) based on 30 runs

		HC Best	HC First	SA Best
	Average time	0.79450	0.49500	4.77250
D=5	Standard time	0.01691	0.00200	0.01234
D=0	Min time	0.76700	0.49100	4.75300
	Max time	0.83800	0.49900	4.80100
	Average time	5.71550	3.20850	15.95050
D = 10	Standard time	0.06970	0.02373	0.05949
D = 10	Min time	5.65300	3.15500	15.86100
	Max time	5.92300	3.25900	16.10200
D = 30	Average time	134.39850	74.28550	115.93400
	Standard time	2.23907	0.34071	2.34376
	Min time	129.82500	73.79400	115.36500
	Max time	136.28000	75.39900	125.26900

Figure 2: Comparing average time of both methods

4.2 Michalewicz Function[4]

$$f(x) = -\sum_{i=1}^{n} \sin(x_i) \sin^{2m} \left(\frac{ix_i^2}{\pi}\right), x_i \in [0, \pi]$$

The global minima is located at n=5 : f(x)=-4.687658, for n=10 : f(x)=-9.66015 and for n=30 : f(x)=-29.6308839[9].

Figure 3: Michalewicz's Function[3]

Table 3: Hill Climbing values based on 30 runs

		HC Best	HC First	SA Best
	Average error	0.00070	0.00120	0.00071
D=5	Standard error	0.00108	0.00435	0.00415
D = 0	Min error	0.00000	0.00000	0.00002
	Max error	0.00357	0.01839	0.02282
	Average error	0.30218	0.36119	0.28258
D = 10	Standard error	0.08457	0.11373	0.10682
D = 10	Min error	0.10611	0.17242	0.01895
	Max error	0.45290	0.59881	0.45951
	Average error	2.69373	3.22775	2.84582
D = 30	Standard error	0.22355	0.25850	0.29642
	Min error	2.03010	2.75044	1.88349
	Max error	3.03238	3.94261	3.43481

Table 4: Hill Climbing time (in seconds) based on 30 runs

		HC Best	HC First	SA Best
	Average time	1.20600	0.83250	6.83750
D=5	Standard time	0.03635	0.00638	0.01287
D = 0	Min time	1.14700	0.82000	6.80300
	Max time	1.26500	0.84200	6.88200
	Average time	10.05350	5.70600	25.08550
D = 10	Standard time	0.25966	0.03323	0.03537
D = 10	Min time	9.12500	5.66600	25.03400
	Max time	10.44000	5.84900	25.20300
D = 30	Average time	229.08950	123.95100	210.70550
	Standard time	4.39503	3.75969	0.89812
	Min time	225.80800	113.54100	208.88300
	Max time	239.06700	128.65300	211.16000

Figure 4: Comparing average time of both methods

4.3 De Jong Function[6]

$$f(x) = \sum_{i=1}^{n} x_i^2, x_i \in [-5.12, 5.12]$$

The global minima is located at $f(x)=0; x(i)=0, \forall i=1:n$

Figure 5: De Jong Function Function[5]

Table 5: Hill Climbing values based on 30 runs

		HC Best	HC First	SA Best
	Average error	0.00000	0.00000	0.00001
D=5	Standard error	0.00000	0.00000	0.00000
D = 0	Min error	0.00000	0.00000	0.00000
	Max error	0.00000	0.00000	0.00001
	Average error	0.00000	0.00000	0.00004
D = 10	Standard error	0.00000	0.00000	0.00001
D = 10	Min error	0.00000	0.00000	0.00003
	Max error	0.00000	0.00000	0.00005
	Average error	0.00000	0.00000	0.00062
D = 30	Standard error	0.00000	0.00000	0.00008
	Min error	0.00000	0.00000	0.00049
	Max error	0.00000	0.00000	0.00080

Table 6: Hill Climbing time (in seconds) based on 30 runs

		HC Best	HC First	SA Best
	Average time	0.59550	0.36900	3.44900
D=5	Standard time	0.01034	0.00212	0.01301
D = 0	Min time	0.58400	0.36300	3.43500
	Max time	0.61700	0.37100	3.47400
	Average time	4.67100	2.40750	10.82400
D = 10	Standard time	0.21079	0.01719	0.07531
D = 10	Min time	4.21600	2.38700	10.64900
	Max time	4.91200	2.46700	10.92500
	Average time	106.61050	53.71950	76.09900
D = 30	Standard time	1.25481	0.54479	0.81151
	Min time	102.92200	52.77300	75.73100
	Max time	107.81200	54.54600	79.25700

Figure 6: Comparing average time of both methods

4.4 Schwefel Function[8]

$$f(x) = 418.9829n - \sum_{i=1}^{n} x_i \sin(\sqrt{|x_i|}), x_i \in [-500, 500]$$

The global minima is located at $f(x) = 0; x(i) = 0, \forall i = 1:n$

Figure 7: Schwefel's Function[7]

Table 7: Hill Climbing values based on 30 runs

		HC Best	HC First	SA Best
	Average error	0.10484	34.23671	0.10448
D=5	Standard error	0.09134	28.68144	0.09440
D = 0	Min error	0.00072	0.00131	0.00077
	Max error	0.31107	118.54224	0.31235
	Average error	119.15130	305.85470	152.93740
D = 10	Standard error	55.84528	75.56549	51.43024
D = 10	Min error	0.52096	119.34473	34.54753
	Max error	187.32977	424.10354	234.58154
D = 30	Average error	1221.76800	1812.85000	1243.47500
	Standard error	141.61020	154.69530	157.46650
	Min error	789.55774	1383.45220	805.87911
	Max error	1407.21618	2016.31897	1463.69494

Table 8: Hill Climbing time (in seconds) based on 30 runs

		HC Best	HC First	SA Best
	Average time	1.73150	1.06200	6.77250
D=5	Standard time	0.33685	0.00749	0.02612
D = 0	Min time	1.63000	1.05300	6.71300
	Max time	2.72500	1.09500	6.79700
	Average time	14.02400	7.34200	22.64400
D = 10	Standard time	0.26543	0.11197	0.02968
D = 10	Min time	12.91900	6.83200	22.58300
	Max time	14.51100	7.37500	22.70400
D = 30	Average time	334.32450	160.86850	171.21700
	Standard time	9.76273	0.91532	3.06020
	Min time	319.04200	160.15900	168.31700
	Max time	349.08300	164.24300	176.71400

Figure 8: Comparing average time of both methods

5 Comparing Methods

Comparing First Improvement and Simulated Annealing methods to Best Improvement, we observed that First Improvement is usually faster but may not always find the optimal solution. Best Improvement, although slower, generally provides better solutions. Simulated annealing is slower than both but sometimes can even give better results; however, the results are usually weaker.

6 Conclusions

The Hill Climbing algorithm is effective for optimizing mathematical functions, but its performance depends on parameters and the variant used. Additionally, Simulated Annealing, while slower, can sometimes provide better results. In the future, it would be interesting to explore combinations with other optimization methods, such as Gradient Descent or Genetic Algorithms, to improve performance.

References

- [1] Authors: Sonja Surjanovic & Derek Bingham, Simon Fraser University Rastrigin's Function rendered image. https://www.sfu.ca/~ssurjano/rastr.html
- [2] Rastrigin, L. A. "Systems of extremal control." Mir, Moscow (1974).
- [3] Authors: Sonja Surjanovic & Derek Bingham, Simon Fraser University Michalewicz's Function rendered image. https://www.sfu.ca/~ssurjano/michal.html
- [4] Michalewicz, Zbigniew. "A survey of constraint handling techniques in evolutionary computation methods." (1995).
- [5] Dejong's Function rendered image. http://www.geatbx.com/docu/fcnindex-msh_f1_500-2.gif
- [6] De Jong, Kenneth Alan. An analysis of the behavior of a class of genetic adaptive systems. University of Michigan, 1975.
- [7] Authors: Sonja Surjanovic & Derek Bingham, Simon Fraser University Schwefel's Function rendered image. https://www.sfu.ca/~ssurjano/schwef.html
- [8] Bäck, Thomas, and Hans-Paul Schwefel. "An overview of evolutionary algorithms for parameter optimization." Evolutionary computation 1.1 (1993): 1-23.
- [9] Vanaret, Charlie, et al. "Certified global minima for a benchmark of difficult optimization problems." arXiv preprint arXiv:2003.09867 (2020).