Genetic Algorithm for Graph Layouts

Ryan Tanaka

Idea

- Given a graph (directed or undirected), try to plot it on a 2D plane such that the number of edge crossings are minimized
- **Search Space**: vector of coordinates
 - Example:
 - \blacksquare say we have a graph that looks like this o^A ----- o^B ----- o^C
 - and we have a 100x100 pixel canvas to draw this graph
 - then there are $(100^2)^3$ or a trillion different ways to plot this graph (points could end up on top of each other)
- Objective Function:

$$f(x) = {|E| \choose 2} - \sum_{p \in Pairs} {1 \text{ if p has intersection} \choose 0 \text{ if p has no intersection}}$$

Variation Operators

- Representation: $<(x_1, y_1), (x_2, y_2), (x_n, y_n) >$
- Used Identical methods presented in lecture 1 slides
 - **Recombination**: single point crossover
 - **Mutation**: randomly select (x,y) coordinate for random point if individual is to be mutated
 - **Selection**: fitness proportional selection

Trial Run

- Population: 300
- Generations: 1500
- Target Fitness: at most 1 edge pair with intersection
- Graph: 10 nodes, 18 edges
- Canvas Size: 800x800

Results

Room For Improvement

- evaluate fitness based on different criteria, for example:
 - o spacing between nodes or edges?
 - o for each node, how many of its own edges intersect with other edges (if none then I shouldn't move that node)?
- scale fitness better, ie, 99% is much better than 96%
- combine high fitness individuals
- If a node is in an "already near optimal position", maybe mutation should have a smaller effect
 - currently a good node may get pushed all the way across the canvas, and if it has a high degree,
 there is a higher chance that now its edges will intersect with other edges

Example Graph Layouts