



## มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางฎาคเรียนที่ 2 ปีการศึกษา 2557

Linear Control Systems.

วิชา ENE 341 ระบบควบคุมเชิงเส้น

ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ) สอบ วันจันทร์ที่ 2 มีนาคม พ.ศ. 2558 เวลา 13:00 -16:00น.

## คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 9 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน ให้ทำทุกข้อ
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้เลขนัยสำคัญ 2 ตำแหน่ง
- 3. ไม่อนุญาตให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าท้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

| ข้อสอบข้อที่ | 1  | 2  | 3  | 4  | คะแนนรวม |
|--------------|----|----|----|----|----------|
| คะแนนเต็ม    | 25 | 25 | 25 | 25 | 100      |
| คะแนนที่ได้  |    |    |    |    |          |

| ชื่อ-สกล |               |
|----------|---------------|
| 9        | เลขที่นั่งสอบ |

รศ.ดร.วุฒิชัย อัศวินชัยโชติ ผู้ออกข้อสอบ (โทร 9056)

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

(รศ.ดร.ราชวดี ศิลาพันธ์)

| ชื่อ-สกุล     |                |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |

(25 points) Problem 1: Find the transfer function  $\frac{Y(s)}{R(s)}$  as Figure 1 shown below.



Figure 1

| ชื่อ-สกุล     | ٠              |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |

(25 points) Problem 2. Consider Figure 2 as below. Find the transfer function T(s) = Y(s)/R(s) and the sensitivity  $S_b^T(j\omega)$ 



Figure 2

| ชื่อ-สกุล     | 1.5.           |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |

| ชื่อ-สกุล     |                |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |

(25 points) Problem 3. Consider Figure 3 as below.



(a) Find the value of  $K_1$  and  $K_2$  so that the peak overshoot is 10% and setting time is 0.05 sec.

| ชื่อ-สกุล     |                |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |

<sup>(</sup>b) For the value of  $K_1$  and  $K_2$ , obtained in part (a), find the step, ramp and parabolic error constants.

| ชื่อ-สกุล     |                |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |

## (25 points) Problem 4. Consider the following figure



Determine the parameters K, B and M of the system.

| ชื่อ-สกุล     |                |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |



"I'm going to need teck support."

Good Luck!!!

| ชื่อ-สกุล     |                |
|---------------|----------------|
| รหัสประจำตัว# | เลขที่นั่งสอบ# |

## **TABLE OF LAPLACE TRANSFORMS**

| f(t)                           | F(s)                                                   |
|--------------------------------|--------------------------------------------------------|
| $\delta(t)$                    | 1                                                      |
| H(t-a)                         | e <sup>-as</sup>                                       |
| 1                              | <u>1</u> <u>s</u>                                      |
| $t^n$                          | $\frac{n!}{s^{n+1}}$                                   |
| $e^{kt}$                       | $\frac{1}{s-k}$                                        |
| t <sup>n</sup> e <sup>kt</sup> | $\frac{n!}{(s-k)^{n+1}}$                               |
| $\sin(\omega t)$               | $\frac{\omega}{s^2 + \omega^2}$                        |
| $\cos(\omega t)$               | $\frac{s}{s^2+\omega^2}$                               |
| $e^{it}\sin(\omega t)$         | $\frac{\omega}{\left(s-k\right)^2+\omega^2}$           |
| $e^{kt}\cos(\omega t)$         | $\frac{(s-k)}{(s-k)^2+\omega^2}$                       |
| $\sinh(\omega t)$              | $\frac{\omega}{s^2-\omega^2}$                          |
| $\cosh(\omega t)$              | $\frac{s}{s^2-\omega^2}$                               |
| $t\sin(\omega t)$              | $\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$        |
| $t\cos(\omega t)$              | $\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$ |