PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-107710

(43)Date of publication of application: 09.04.2003

(51)Int.CI.

G03F 7/039 C08F220/12

H01L 21/027

(21)Application number: 2001-301795

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

28.09.2001

(72)Inventor: SATO KENICHIRO

(54) POSITIVE RESIST COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a positive resist composition which reduces falling of a pattern and surface roughness and dependence on the pattern density during etching. SOLUTION: The positive resist composition contains (A) a resin which has three kinds of specified repeating units and which increases the dissolution rate with an alkali developer solution by the effect of an acid and (B) a compound which produces an acid by applying active rays or radiation.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-107710 (P2003-107710A)

(43)公開日 平成15年4月9日(2003.4.9)

(51) Int.Cl. ⁷	識別記号	FI	テーマコード(参考)
G 0 3 F 7/039	601	G03F 7/039	601 2H025
C 0 8 F 220/12		C 0 8 F 220/12	4J100
H01L 21/027		H01L 21/30	502R

審査請求 未請求 請求項の数4 OL (全 48 頁)

(21)出願番号	特願2001-301795(P2001-301795)	(71)出願人 000005201
(00) IUSS H	TT-1010 for A Man Fr (ages, a con)	富士写真フイルム株式会社
(22)出願日	平成13年9月28日(2001.9.28)	神奈川県南足柄市中沼210番地
		(72) 発明者 佐藤 健一郎
		静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内
		(74)代理人 100105647
		弁理士 小栗 昌平 (外4名)

最終頁に続く

(54) 【発明の名称】 ポジ型レジスト組成物

(57)【要約】

【課題】 パターン倒れ、エッチング時の表面荒れ及び 疎密依存性が軽減されたポジ型レジスト組成物を提供す ること。

【解決手段】 (A) 3種の特定の繰り返し単位を含有する酸の作用によりアルカリ現像液に対する溶解速度が増大する樹脂、及び、(B)活性光線又は放射線の照射により酸を発生する化合物を含有するポジ型レジスト組成物。

【特許請求の範囲】

【請求項1】 (A) 下記一般式(I) で表される繰り 返し単位、一般式 (I I) で表される繰り返し単位及び 式(III)で表される繰り返し単位を含有する、酸の作 用によりアルカリ現像液に対する溶解速度が増大する樹 脂、及び、(B)活性光線又は放射線の照射により酸を 発生する化合物を含有するポジ型レジスト組成物。

【化1】

$$\begin{array}{c}
\begin{pmatrix} CH_2 - \stackrel{R}{C} \\ \stackrel{A}{C} \\ O = \stackrel{C}{C} \\ O - ALG
\end{array} (I)$$

一般式(I)において、Rは水素原子又はメチル基を表 し、Aは単結合又は連結基を表し、ALGは下記一般式 (p I) ~一般式 (p V) のいずれかを表す。

【化2】

$$R_{12}$$
 — $C-R_{13}$ (pll)

$$R_{19}$$
 (piV)

式中、R11は、メチル基、エチル基、n-プロピル基、 イソプロピル基、nーブチル基、イソブチル基又はse cーブチル基を表し、Zは、炭素原子とともに脂環式炭 化水素基を形成するのに必要な原子団を表す。 R12 ~ R 16 は、各々独立に、炭素数1~4個の、直鎖もしくは分 岐のアルキル基又は脂環式炭化水素基を表す。但し、R 12~R14のうち少なくとも1つ、及びR15、R16のいず れかは脂環式炭化水素基を表す。R17~R21は、各々独 立に、水素原子、炭素数1~4個の、直鎖もしくは分岐 50 2

のアルキル基又は脂環式炭化水素基を表し、但し、R₁₇ ~R21 のうち少なくとも1つは脂環式炭化水素基を表 す。また、R₁₉、R₂₁のいずれかは炭素数1~4個の、 直鎖もしくは分岐のアルキル基又は脂環式炭化水素基を 表す。R22~R25は、各々独立に、炭素数1~4個の、 直鎖もしくは分岐のアルキル基又は脂環式炭化水素基を 表し、但し、R22~R25のうち少なくとも1つは脂環式 炭化水素基を表す。また、R23とR24は、互いに結合し て環を形成していてもよい。

【化3】

$$\begin{array}{ccc}
-\left(CH_{2}-\stackrel{R}{\stackrel{}{\stackrel{}{C}}}\right) \\
\stackrel{A}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}{O}}}} \\
O=\stackrel{C}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}{O}}}}} \\
O-BLG
\end{array} (II)$$

一般式(II)において、Rは水素原子又はメチル基を 表し、Aは単結合又は連結基を表す。BLGは、鎖状3 20 級アルキル基を表す。

【化4】

一般式(III)中、R30は、水素原子又はメチル基を表 す。R31~R33は、各々独立に、水素原子、水酸基又は アルキル基を表し、但し少なくとも一つは水酸基を表 す。

【請求項2】 樹脂(A)が、更に、シクロヘキサンラ クトン、ノルボルナンラクトン、又はアダマンタンラク トンを有する繰り返し単位を含有することを特徴とする 40 請求項1に記載のポジ型レジスト組成物。

【請求項3】一般式(III)で表される繰り返し単位にお いて、R31~R33のうちの二つが水酸基であることを特 徴とする請求項1又は2に記載のポジ型レジスト組成

【請求項4】 一般式(I)において、Aが単結合であ り、ALGが下記で表される基であることを特徴とする 請求項1~3のいずれかに記載のポジ型レジスト組成 物。

【化5】

R₂₆ 及びR₂₇ は、各々独立に、炭素数1~4個の直鎖も しくは分岐のアルキル基を表す。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は遠紫外線に感応する 半導体素子等の微細加工用ポジ型フォトレジスト組成物 に関するものであり、更に詳しくは、遠紫外線露光用ポ ジ型フォトレジスト組成物に関する。

[0002]

【従来の技術】近年、集積回路はその集積度を益々高めており、超LSIなどの半導体基板の製造に於いてはハーフミクロン以下の線幅から成る超微細パターンの加工が必要とされるようになってきた。その必要性を満たすためにフォトリソグラフィーに用いられる露光装置の使程の工程をは益々短波化し、今では、遠紫外線の中でも短波長のエキシマレーザー光(XeCl、KrF、ArFなど)を用いることが検討されるまでになってきている。この波長領域におけるリソグラフィーのパターン形成に用いられるものとして、化学増幅系レジストがある。

【0003】一般に化学増幅系レジストは、通称2成分系、2.5成分系、3成分系の3種類に大別することができる。2成分系は、光分解により酸を発生する化合物(以後、光酸発生剤という)とバインダー樹脂とを組み合わせている。該バインダー樹脂は、酸の作用により分解して、樹脂のアルカリ現像液中での溶解性を増加させる基(酸分解性基ともいう)を分子内に有する樹脂である。2.5成分系はこうした2成分系に更に酸分解性基を有する低分子化合物を含有する。3成分系は光酸発生剤とアルカリ可溶性樹脂と上記低分子化合物を含有するものである。

【0004】上記化学増幅系レジストは紫外線や遠紫外線照射用のフォトレジストに適しているが、その中でさらに使用上の要求特性に対応する必要がある。ArF光源用のフォトレジスト組成物としては、ドライエッチング耐性付与の目的で脂環式炭化水素部位が導入された樹脂が提案されているが、脂環式炭化水素部位導入の弊害として系が極めて疎水的になるがために、従来レジスト現像液として幅広く用いられてきたテトラメチルアンモニウムヒドロキシド(以下TMAH)水溶液での現像が困難となったり、現像中に基板からレジストが剥がれてしまうなどの現象が見られる。このため、脂環式炭化水素部位が導入された樹脂への親水性基の導入が種々検討されてきた。

【0005】特開平9-73173号、特開平9-90

637号、特開平10-161313号公報には、脂環式基を含む構造で保護されたアルカリ可溶性基と、そのアルカリ可溶性基が酸により脱離して、アルカリ可溶性とならしめる構造単位を含む酸感応性化合物を用いたレジスト材料が記載されている。整盟ア11-10063

4

ジスト材料が記載されている。特開平11-10963 2号公報には、極性基含有脂環式官能基と酸分解性基と 含有する樹脂を放射線感光材料に用いることが記載され ている。

【0006】特許第3042618号には、ラクトン構造を有する(メタ)アクリレート誘導体を他の重合性化合物と共重合させて得られた重合体を含有するフォトレジスト組成物について記載されている。

【0007】特開平11-119434号では、アルカリ可溶性基を脂環式炭化水素を含む保護基で保護した繰り返し単位とそれ以外の保護基で保護した繰り返し単位、及び10~35モル%のラクトン構造を有するモノマー単位を含有する樹脂を使用することで解像性、感度、ドライエッチング耐性の向上、低コスト化を試みている。

【0008】しかしながら、従来のポジ型レジスト組成物では、いずれも、要求されるパターンの微細化に伴う、密着及び膜強度不足によるパターン倒れ、エッチング時の表面荒れ、疎密依存性などの問題を十分解決するものではなかった。

[0009]

【発明が解決しようとする課題】本発明の目的は、超L SIや高容量マイクロチップの製造等の超マイクロリソ グラフィプロセスやその他のフォトファブリケーション プロセスに於いて好適に使用することができ、パターン 倒れ、エッチング時の表面荒れ、及び疎密依存性が著し く軽減されたポジ型レジスト組成物を提供することであ る。

[0010]

【課題を解決するための手段】本発明者等は、ポジ型化 学増幅系レジスト組成物の構成材料を鋭意検討した結 果、下記の構成によって、本発明の目的が違成されるこ とを見出し、本発明に至った。

【0011】(1)(A)下記一般式(I)で表される繰り返し単位、一般式(II)で表される繰り返し単位を含有する、酸の作用によりアルカリ現像液に対する溶解速度が増大する樹脂、及び、(B)活性光線又は放射線の照射により酸を発生する化合物を含有するポジ型レジスト組成物。

[0012]

【化6】

$$\begin{array}{ccc}
-\left(CH_{2}-\stackrel{R}{C}\right) \\
\stackrel{A}{\downarrow} \\
O=\stackrel{C}{C} \\
O-ALG
\end{array}$$
(I)

【0013】一般式(I)において、Rは水素原子又は メチル基を表し、Aは単結合又は連結基を表し、ALG は下記一般式 (p I) \sim 一般式 (p V) のいずれかを表 す。

[0014] 【化7】

$$R_{19}$$
 R_{19}
 R_{20}
 R_{21}
 R_{20}

【0015】式中、Riiは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチ ル基又はsecーブチル基を表し、Zは、炭素原子とと もに脂環式炭化水素基を形成するのに必要な原子団を表 す。R12~R16は、各々独立に、炭素数1~4個の、直 40 鎖もしくは分岐のアルキル基又は脂環式炭化水素基を表 す。但し、R₁₂ ~ R₁₄ のうち少なくとも 1 つ、及び R15、R16のいずれかは脂環式炭化水素基を表す。R17 ~R21 は、各々独立に、水素原子、炭素数1~4個の、 直鎖もしくは分岐のアルキル基又は脂環式炭化水素基を 表し、但し、R17~R21のうち少なくとも1つは脂環式 炭化水素基を表す。また、R19、R21のいずれかは炭素 数1~4個の、直鎖もしくは分岐のアルキル基又は脂環 式炭化水素基を表す。R22~R25は、各々独立に、炭素 数1~4個の、直鎖もしくは分岐のアルキル基又は脂環 50

式炭化水素基を表し、但し、R22~R25のうち少なくと も1つは脂環式炭化水素基を表す。また、R23とR 24 は、互いに結合して環を形成していてもよい。

6

[0016]

【化8】

【0017】一般式 (II) において、Rは水素原子又 はメチル基を表し、Aは単結合又は連結基を表す。BL Gは、鎖状3級アルキル基を表す。

[0018]

【化9】

20

【0019】一般式(III) 中、R30は、水素原子又は メチル基を表す。 R31 ~ R33 は、各々独立に、水素原 子、水酸基又はアルキル基を表し、但し少なくとも一つ は水酸基を表す。

[0020](2)樹脂(A)が、更に、シクロヘキ サンラクトン、ノルボルナンラクトン、又はアダマンタ ンラクトンを有する繰り返し単位を含有することを特徴 とする前記(1)に記載のポジ型レジスト組成物。

【0021】(3) 一般式(III)で表される繰り返し 単位において、R31~R33のうちの二つが水酸基である ことを特徴とする上記(1)又は(2)に記載のポジ型 レジスト組成物。

【0022】(4) 一般式(I)において、Aが単結合 であり、ALGが下記で表される基であることを特徴と する上記(1)~(3)のいずれかに記載のポジ型レジ スト組成物。

[0023]

【化10】

R₂₆ 7

【0024】R26及びR27は、各々独立に、炭素数1~4個の直鎖もしくは分岐のアルキル基を表す。

[0025]

【発明の実施の形態】以下、本発明に使用する成分につ 10 いて詳細に説明する。

[1] (A)酸の作用によりアルカリ現像液に対する溶解速度が増加する樹脂(「酸分解性樹脂」ともいう)。

【0026】本発明における(A) 樹脂としては、上記した一般式(I)で表される酸分解性基含有繰り返し単位を含有することを要件とする。一般式(I)において、Rは水素原子又はメチル基を表し、Aは単結合又は連結基を表し、ALGは上記一般式(pI)~一般式(pV)で示される脂環式炭化水素を含む基である。

【0027】Aの連結基は、アルキレン基、置換アルキ 20 レン基、エーテル基、チオエーテル基、カルボニル基、エステル基、アミド基、スルフォンアミド基、ウレタン基、又はウレア基よりなる群から選択される単独あるいは2つ以上の基の組み合わせを表す。上記Aにおけるアルキレン基としては、下記式で表される基を挙げることができる。

$- (C (R_b)(R_c))_r -$

式中、R_b、R_c は、水素原子、アルキル基、置換アルキル基、ハロゲン原子、水酸基、アルコキシ基を表し、両者は同一でも異なっていてもよい。アルキル基として 30 は、メチル基、エチル基、プロピル基、イソプロピル 基、ブチル基等の低級アルキル基が好ましく、更に好ま

しくはメチル基、エチル基、プロピル基、イソプロピル 基から選択される。置換アルキル基の置換基としては、 水酸基、ハロゲン原子、アルコキシ基(好ましくは炭素 数1~4)を挙げることができる。アルコキシ基として は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ 基等の炭素数1~4個のものを挙げることができる。ハ ロゲン原子としては、塩素原子、臭素原子、フッ素原 子、沃素原子等を挙げることができる。 r は1~10の

8

【0028】一般式(pI)~(pV)において、R12~R25におけるアルキル基としては、置換もしくは非置換のいずれであってもよい、1~4個の炭素原子を有する直鎖もしくは分岐のアルキル基を表す。そのアルキル基としては、例えばメチル基、エチル基、nープロピル基、イソプロピル基、nーブチル基、イソブチル基、secーブチル基、tーブチル基等が挙げられる。また、上記アルキル基の更なる置換基としては、炭素数1~4個のアルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アシル基、アシロキシ基、シアノ基、水酸基、カルボキシ基、アルコキシカルボニル基、ニトロ基等を挙げることができる。

【0029】R11~R25における脂環式炭化水素基あるいはZと炭素原子が形成する脂環式炭化水素基としては、単環式でも、多環式でもよい。具体的には、炭素数5以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ構造等を有する基を挙げることができる。その炭素数は6~30個が好ましく、特に炭素数7~25個が好ましい。これらの脂環式炭化水素基は置換基を有していてもよい。以下に、脂環式炭化水素基のうち、脂環式部分の構造例を示す。

[0030]

整数を表す。

【化11】

【0031】 【化12】

ある。

11

【0033】本発明においては、上記脂環式部分の好ましいものとしては、アダマンチル基、ノルアダマンチル基、デカリン残基、トリシクロデカニル基、テトラシクロドデカニル基、ノルボルニル基、セドロール基、シクロ・デカニル基、シクロイクチル基、シクロデカニル基、シクロドデカニル基を挙げることができる。より好ましくは、アダマンチル基、デカリン残

基、ノルボルニル基、セドロール基、シクロヘキシル 基、シクロヘプチル基、シクロオクチル基、シクロデカ ニル基、シクロドデカニル基、トリシクロデカニル基で

12

【0034】これらの脂環式炭化水素基の置換基としては、アルキル基、置換アルキル基、ハロゲン原子、水酸基、アルコキシ基、カルボキシル基、アルコキシカルボニル基が挙げられる。アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の低級アルキル基が好ましく、更に好ましくはメチル基、エチル基、プロピル基、イソプロピル基よりなる群から選択された置換基を表す。置換アルキル基の置換基としては、水酸基、ハロゲン原子、アルコキシ基を挙げることができる。上記アルコキシ基としてはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~4個のものを挙げることができる。

【0035】尚、得られたプロファイルを走査型電子顕微鏡で観察する際のプロファイル安定性(SEM耐性)が良好な点から、一般式(I)において、Aが単結合であり、ALGが下記で表される基である繰り返し単位が特に好ましい。

【0036】 【化14】

【0037】R26及びR27は、各々独立に、炭素数1~4個の直鎖もしくは分岐のアルキル基を表す。

【0038】以下、一般式(I)で示される繰り返し単位に相当するモノマーの具体例を示す。

[0039]

【化15】

CH₃ CH₃

2 H O CH₃

H CH(CH₃)₂

 $= \bigvee_{O} O - \bigcup_{CH_3}^{CH_3} \bigcup$

$$\begin{array}{c} \text{CH}_3 & \text{CH}_3 \\ \text{O} & \text{C} & \text{CH}_2 \\ \text{O} & (\text{CH}_2)_3 \text{CH}_3 \\ \end{array}$$

 $= \bigvee_{O}^{H} O - \bigvee_{CH_2)_{3CH_3}}^{CH_3}$

[0040]

10 H CH₃
O CH₃
O CH₃

H O CH3

H H₃C

15

H_OCH₃

【化17】

 $\overset{\text{CH}_3}{=} \overset{\text{CH}_3}{\circ}$

[0042]

$$\begin{array}{c} CH_3 & CH_3 \\ O & 10 \end{array}$$

【化18】

$$-\frac{0}{\text{O}-\text{C}-\text{CH}_3}$$

$$= \underbrace{ \overset{O}{\longleftarrow}}_{CH^3} \overset{H^3C}{\longleftarrow}$$

[0043]

【化19】

31
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

$$\begin{array}{c}
\text{CH}_3 \\
\text{O}
\end{array}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} CH_3 \\ \end{array} \\ \\ O \end{array} \\ \begin{array}{c} O \\ \end{array} \\ O \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} CH_3 \\ \end{array} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{O} \\ \text{O} \\ \text{O} \end{array} \begin{array}{c} \text{CH}_3 \\ \text{O} \\ \text{O} \end{array}$$

【0045】次に、一般式 (II)で表される繰り返し単位について説明する。

【0046】一般式 (II)におけるR及びAは、各々一般式 (I)におけるR及びAと同様である。BLGは、鎖状3級アルキル基を表す。例えば、-C (Ra) (R

- b) (Rc) で表される。Ra、Rb及びRcは各々独立
- に、直鎖又は分岐アルキル基 (一般的に炭素数1~2
- 0、好ましくは $1\sim10$ 、更に好ましくは $1\sim5$ であり、例えばメチル基、エチル基、直鎖又は分岐プロピル
- 基、直鎖又は分岐ブチル基、直鎖又は分岐ペンチル基)

を表す。Ra、Rb及びRcとしてのアルキル基は、置換基を有していてもよい。好ましい置換基としては、ハロゲン原子、水酸基、アルコキシ基(好ましくは炭素数 $1 \sim 10$ 、更に好ましくは $1 \sim 5$)を挙げることができる。

【0047】以下に一般式 (II)で表される繰り返し単位の具体例を挙げるが、これらに限定するものではない。

[0048]

50 【化21】

50

【0050】次に、一般式(III)で表される繰り返し単位について説明する。

【0051】一般式(III)中、R30は、水素原子又はメチル基を表す。R31~R33は、各々独立に、水素原子、水酸基又はアルキル基を表し、但し少なくとも一つは水酸基を表す。

【0052】また、広い露光マージン、特にアンダー露光側の露光マージンを広く確保することができる点で、一般式(III)で表される繰り返し単位において、R31~R33のうちの二つが水酸基であることが更に好ましい。【0053】以下に一般式(III)で表される繰り返し単位の具体例を挙げるが、これらに限定するものではない。

20

 $\begin{bmatrix} 0 & 0 & 5 & 4 & 1 \\ 1 & 1 & 2 & 3 & 1 \\ -CH_2 - C - & -CH_3 - & -CH_2 - C - & -CH_3 - & -CH_2 - C - & -CH_3 - & -CH_2 - C - & -CH_2 - & -CH$

【0055】また、本発明の組成物に添加される樹脂は、パターン倒れ及び疎密依存性を更に低減する点で、 脂環ラクトン構造を有する繰り返し単位を含有すること が好ましい。脂環ラクトン構造を有する繰り返し単位と しては、例えば、シクロヘキサンラクトン、ノルボルナ ンラクトン、又はアダマンタンラクトンを有する繰り返 し単位を挙げることができる。

【0056】例えば、シクロヘキサンラクトンを有する繰り返し単位としては、下記一般式 (V-1)及び (V-2)で表される基を有する繰り返し単位、ノルボルナンラクトンを有する繰り返し単位としては下記一般式 (V-3)及び (V-4)で表される基を有する繰り返し単位、アダマンタンラクトンを有する繰り返し単位と

20

しては、下記一般式(VI)で表される基を有する繰り返し単位を挙げることができる。

[0057]

【化24】

【0058】一般式(V-1)~(V-4)において、 $R_{16}\sim R_{56}$ は、各々独立に水素原子、置換基を有していてもよい、アルキル基、シクロアルキル基又はアルケニル基を表す。 $R_{16}\sim R_{56}$ の内の2つは、結合して環を形成してもよい。

【0059】一般式(V-1)~(V-4)において、R16~R56におけるアルキル基としては、直鎖状、分岐状のアルキル基が挙げられ、置換基を有していてもよい。直鎖状、分岐状のアルキル基としては、炭素数1~12個の直鎖状あるいは分岐状アルキル基が好ましく、より好ましくは炭素数1~10個の直鎖状あるいは分岐状アルキル基であり、更に好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基である。

【0060】 R_{16} \sim R_{56} におけるシクロアルキル基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数3~8個のものが好ましい。 R_{16} \sim R_{56} におけるアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ヘキセニル基等の炭素数2~6個のものが好ましい。また、 R_{16} \sim R_{56} の内の2つが結合して形成する環としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロペキサン環、シクロオクタン環等の3~8員環が挙げられる。なお、一般式(V-1)~(V-4)における R_{16} \sim R_{56} は、環状骨格を構成している炭素原子のいずれに連結していてもよい。

【0061】また、上記アルキル基、シクロアルキル 基、アルケニル基が有してもよい好ましい置換基として は、炭素数1~4個のアルコキシ基、ハロゲン原子(フ ッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数 2~5のアシル基、炭素数2~5のアシロキシ基、シア ノ基、水酸基、カルボキシ基、炭素数2~6のアルコキ シカルボニル基、ニトロ基等を挙げることができる。 22

【0062】一般式(V-1)~(V-4)で表される 基を有する繰り返し単位としては、下記一般式(AI) で表される繰り返し単位等を挙げることができる。

[0063]

【化25】

$$\begin{array}{c} R_{b0} \\ \downarrow \\ C \\ C \\ \downarrow \\ C \\ \downarrow \\ C \\ \downarrow \\ C \\ A' \longrightarrow B_2 \end{array} \tag{AI)}$$

【0064】一般式(AI)中、 R_{50} は、水素原子、ハロゲン原子、又は炭素数 $1\sim 4$ の置換もしくは非置換のアルキル基を表す。 R_{50} のアルキル基が有していてもよい好ましい置換基としては、前記一般式(V-1)~(V-4)における R_{16} としてのアルキル基が有していてもよい好ましい置換基として先に例示したものが挙げられる。 R_{50} のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、沃素原子を挙げることができる。 R_{50} は水素原子が好ましい。 A は、単結合、エーテル基、エステル基、カルボニル基、アルキレン基、又はこれらを組み合わせた 2 価の基を表す。 B_2 は、一般式(V-1)~(V-4)のうちのいずれかで示される基を表す。 A において、該組み合わせた 2 価の基としては、例えば下記式のものが挙げられる。

[0065]

(K261

$$\begin{array}{c|c}
\begin{pmatrix} \overset{\circ}{l} & \overset{\circ}{d} & \overset{\circ}{l} \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$-\left(O-CH_2CH_2-C-\right)_mO-\left(\begin{matrix}R_{ab}\\ C\\ C\\ R_{bb}\end{matrix}\right)_{f1}$$

【0066】上記式において、Rab、Rbbは、水素原子、アルキル基、置換アルキル基、ハロゲン原子、水酸基、アルコキシ基を表し、両者は同一でも異なっていてもよい。アルキル基としては、メチル基、エチル基、プ

ロピル基、イソプロピル基、ブチル基等の低級アルキル 基が好ましく、更に好ましくはメチル基、エチル基、プロピル基、イソプロピル基から選択される。置換アルキル基の置換基としては、水酸基、ハロゲン原子、炭素数1~4のアルコキシ基を挙げることができる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~4個のものを挙げることができる。ハロゲン原子としては、塩素原子、臭素原

(1b-5)

[0069]

子、フッ素原子、沃素原子等を挙げることができる。 r 1は $1\sim10$ の整数、好ましくは $1\sim4$ の整数を表す。 mは $1\sim3$ の整数、好ましくは1又は2を表す。

【0067】以下に、一般式(AI)で表される繰り返 し単位の具体例を挙げるが、本発明の内容がこれらに限 定されるものではない。

[0068]

【化27】

$$\begin{array}{c}
H \\
CH_2 - C \\
O \\
H_3C
\end{array}$$
(1b-6)

【化28】

26 (1b-9) (1b-10) (lb-11) (1b-12)

[0070]

【化29】

 $-(CH_2-C)$ $-(CH_2)_2-O$ $-(CH_2)_2-O$ -(

[0071]

【化30】

$$CH_2$$
 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3 CH_3

$$CH_3$$
 CH_2
 CCH_2
 CCH_2

$$CH_3$$
 $-(CH_2-C)$
 $C-O$
 $(CH_2)_2-O$
 C
 $(CH_2)_2-O$
 $(CH_2)_2-O$

[0072]

30 【化31】

[0073]

40

【化32】

$$\begin{array}{c} \begin{array}{c} CH_{3} \\ -(CH_{2}-C \\ -(CH_{2}-C$$

$$\begin{array}{c} - \left(\text{CH}_2 - \overset{\frown}{\text{C}} - \right) \\ & \circ \\ &$$

[0074]

$$\begin{array}{c} \text{CH}_3 \\ -(\text{CH}_2 - \text{C}) \\ \text{C} \\ -(\text{CH}_2)_2 - \text{C} \\ \text{C} \\ -(\text{CH}_3) \\ \text{C} \\ -(\text{CH}_3) \\ \text{C} \\ -(\text{CH}_2)_2 - \text{C} \\ \text{C} \\ -(\text{CH}_2)_2 - \text{C} \\ \text{C} \\ -(\text{CH}_3) \\ \text{C} \\ -(\text{CH}_3) \\ \text{C} \\ -(\text{CH}_3) \\ \text{C} \\ -(\text{CH}_2)_2 - \text{C} \\ \text{C} \\ -(\text{CH}_3) \\ -(\text{CH}_3) \\ \text{C} \\ -(\text{CH}_3) \\ -(\text{CH}_3) \\ \text{C} \\ -(\text{CH}_3) \\ -(\text{CH}_3)$$

【0075】アダマンタンラクトンを有する繰り返し単位としては、下記一般式(VI)で表される繰り返し単位を挙げることができる。

[0076]

【0077】一般式(VI)において、A6は単結合、アルキレン基、シクロアルキレン基、エーテル基、チオエーテル基、カルボニル基、エステル基よりなる群から選択される単独あるいは2つ以上の基の組み合わせを表す。R6aは水素原子、炭素数1~4のアルキル基、シアノ基、又はハロゲン原子を表す。

【0078】一般式 (VI) において、A6のアルキレ

ン基としては、下記式で表される基を挙げることができる。

- [C (Rnf)(Rng)) r-

上記式中、Rnf、Rngは、水素原子、アルキル基、置換アルキル基、ハロゲン原子、水酸基、アルコキシ基を表し、両者は同一でも異なっていてもよい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の低級アルキル基が好ましく、更に好ましくはメチル基、エチル基、プロピル基、イソプロビル基から選択される。置換アルキル基の置換基としては、水酸基、ハロゲン原子、アルコキシ基を挙げることができる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~4のものを挙げることができる。ハロゲン原子としては、塩素原子、臭素原子、フッ素原子、沃素原子等を挙げることができる。rは1~10の整数である。

【0079】一般式(VI)において、A6のシクロアルキレン基としては、炭素数3から10個のものが挙げ

られ、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基等を挙げることができる。

【0080】26を含む有橋式脂環式環は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アルコキシ基(好ましくは炭素数1~4)、アルコキシカルボニル基(好ましくは炭素数1~5)、アシル基(例えば、ホルミル基、ベンゾイル基)、アシロキシ基(例えば、プロピルカルボニルオキシ基、ベンゾイルオキシ基)、アルキル基(好ましくは炭素数1~4)、カルボキシル基、水酸基、アルキルスルホニルスルファモイル基(-CONHSO2CH3等)が挙げられる。尚、置換基としてのアルキル基は、更に水酸基、ハロゲン原

$$-CH_2 - CH_2 -$$

$$-CH_{2}-CH_{3}$$

$$-CH_{2}-CH_{3}$$

$$-CH_{3}$$

されていてもよい。 【0081】―般式(V I) において、A6に結合して

子、アルコキシ基(好ましくは炭素数1~4)等で置換

【0081】一般式 (VI) において、 A_6 に結合しているエステル基の酸素原子は、 Z_6 を含む有橋式脂環式環構造を構成する炭素原子のいずれの位置で結合してもよい。

【0082】以下に、一般式(VI)で表される繰り返 し単位の具体例を挙げるが、これらに限定されるもので はない。

10 [0083]

【化35】

$$-CH_2 - CH_3 -$$

$$-CH_{2}-CH_{3}$$

$$CH_{2}-CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$-CH_{2} - CH_{3}$$

$$CH_{2} - CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

[0084] [化36]

【0085】本発明の酸分解性樹脂は、更に下記一般式 20 (IV)で表されるラクトン構造を有する繰り返し単位 を含有することができる。

[0086]

[化37]

$$\begin{array}{c} R_{1a} \\ - \left(CH_2 - C - \frac{1}{1} \right) \\ COO - W_1 - Lc \end{array}$$

【0087】一般式(IV)中、 R_{1a} は、水素原子又はメチル基を表す。 W_1 は、単結合、Fルキレン基、エーテル基、チオエーテル基、カルボニル基、エステル基よりなる群から選択される単独あるいは2つ以上の基の組み合わせを表す。 R_{a1} , R_{b1} , R_{c1} , R_{d1} , R_{e1} は各々独立に、水素原子又は炭素数 $1\sim4$ のアルキル基を表す。m, nは各々独立に $0\sim3$ の整数を表し、m+nは、2以上6以下である。

【0088】Rai ~ Rei の炭素数1~4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、nーブチル基、イソブチル基、secーブチル基、tーブチル基等を挙げることができる。

【0089】一般式(IV)において、Wiのアルキレン基としては、下記式で表される基を挙げることができる。

 $-(C(Rf)(Rg))r_1-$

上記式中、Rf、Rgは、水素原子、アルキル基、置換 アルキル基、ハロゲン原子、水酸基、アルコキシ基を表 し、両者は同一でも異なっていてもよい。アルキル基と 50 しては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基等の低級アルキル基が好ましく、更に好ましくはメチル基、エチル基、プロピル基、イソプロピル基から選択される。置換アルキル基の置換基としては、水酸基、ハロゲン原子、アルコキシ基を挙げることができる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~4のものを挙げることができる。ハロゲン原子としては、塩素原子、臭素原子、フッ素原子、沃素原子等を挙げることができる。riは1~10の整数である。

40

【0090】上記アルキル基における更なる置換基とし ては、カルボキシル基、アシルオキシ基、シアノ基、ア ルキル基、置換アルキル基、ハロゲン原子、水酸基、ア ルコキシ基、置換アルコキシ基、アセチルアミド基、ア ルコキシカルボニル基、アシル基が挙げられる。ここで アルキル基としては、メチル基、エチル基、プロピル 基、イソプロピル基、ブチル基、シクロプロピル基、シ クロブチル基、シクロペンチル基等の低級アルキル基を 挙げることができる。置換アルキル基の置換基として は、水酸基、ハロゲン原子、アルコキシ基を挙げること ができる。置換アルコキシ基の置換基としては、アルコ キシ基等を挙げることができる。アルコキシ基として は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ 基等の炭素数1~4のものを挙げることができる。アシ ルオキシ基としては、アセトキシ基等が挙げられる。ハ ロゲン原子としては、塩素原子、臭素原子、フッ素原 子、沃素原子等を挙げることができる。

【0091】以下、一般式(IV)で示される繰り返し 単位に相当するモノマーの具体例を示すが、これらに限 定されるものではない。

[0092]

42

【化38】

[0093]

【化39]

[0094]

【化40】

【0095】上記一般式 (IV) の具体例において、露 光マージン及び現像液の濡れ性が改善される点から (IV-17) \sim (IV-36) が好ましい。

【0096】(A)成分である酸分解性樹脂は、上記の繰り返し単位以外に、ドライエッチング耐性や標準現像液適性、基板密着性、レジストプロファイル、さらにレジストの一般的な必要な特性である解像力、耐熱性、感度等を調節する目的で様々な繰り返し単位を含有することができる。

【0097】このような繰り返し単位としては、下記の 単量体に相当する繰り返し構造単位を挙げることができ るが、これらに限定されるものではない。これにより、 酸分解性樹脂に要求される性能、特に、(1)塗布溶剤 に対する溶解性、(2)製膜性(ガラス転移点)、

(3) アルカリ現像性、(4) 膜べり(親疎水性、アルカリ可溶性基選択)、(5) 未露光部の基板への密着性、(6) ドライエッチング耐性、等の微調整が可能となる。このような単量体として、例えばアクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、

メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類、等から選ばれる付加重合性不飽和結合を1個有する化合物等を挙げることができる。

【0098】具体的には、以下の単量体を挙げることができる。アクリル酸エステル類(好ましくはアルキル基の炭素数が1~10のアルキルアクリレート):アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸アミル、アクリル酸シクロヘキシル、アクリル酸エチルへキシル、アクリル酸オクチル、アクリル酸ーセーオクチル、クロルエチルアクリレート、2ーヒドロキシエチルアクリレート、5ーヒドロキシペンチルアクリレート、トリメチロールプロパンモノアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルアクリレート等。

【0099】メタクリル酸エステル類(好ましくはアルキル基の炭素数が1~10のアルキルメタアクリレー

ト):メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、イソプロピルメタクリレート、ト、アミルメタクリレート、ヘキシルメタクリレート、シクロヘキシルメタクリレート、ベンジルメタクリレート、クロルベンジルメタクリレート、オクチルメタクリレート、2ーヒドロキシエチルメタクリレート、4ーヒドロキシブチルメタクリレート、5ーヒドロキシペンチルメタクリレート、2,2ージメチルー3ーヒドロキシプロピルメタクリレート、トリメチロールプロパンモノメタクリレート、ペンタエリスリトールモノメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート等。

【0100】アクリルアミド類:アクリルアミド、Nーアルキルアクリルアミド (アルキル基としては炭素数1~10のもの、例えばメチル基、エチル基、プロピル基、ブチル基、tーブチル基、ヘプチル基、オクチル基、シクロヘキシル基、ヒドロキシエチル基等がある。)、N,Nージアルキルアクリルアミド (アルキル基としては炭素数1~10のもの、例えばメチル基、エチル基、ブチル基、イソブチル基、エチルヘキシル基、シクロヘキシル基等がある)、NーヒドロキシエチルーNーメチルアクリルアミド、Nー2ーアセトアミドエチルーNーアセチルアクリルアミド等。

【0101】メタクリルアミド類:メタクリルアミド、Nーアルキルメタクリルアミド(アルキル基としては炭素数1~10のもの、例えばメチル基、エチル基、tーブチル基、エチルへキシル基、ヒドロキシエチル基、シクロヘキシル基等がある)、N,Nージアルキルメタクリルアミド(アルキル基としてはエチル基、プロピル基、ブチル基等がある)、NーヒドロキシエチルーNーメチルメタクリルアミド等。

【0102】アリル化合物:アリルエステル類(例えば 酢酸アリル、カプロン酸アリル、カプリル酸アリル、ラ ウリン酸アリル、パルミチン酸アリル、ステアリン酸ア リル、安息香酸アリル、アセト酢酸アリル、乳酸アリル 等)、アリルオキシエタノール等。

【0103】ビニルエーテル類: アルキルビニルエーテル (例えばヘキシルビニルエーテル、オクチルビニルエーテル、ボクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエ40 チルビニルエーテル、クロルエチルビニルエーテル、1ーメチルー2, 2ージメチルプロピルビニルエーテル、2ーエチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテル等。

【0104】ビニルエステル類:ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビ 50

ニルジエチルアセテート、ビニルバレート、ビニルカプロエート、ビニルクロルアセテート、ビニルジクロルアセテート、ビニルブトキシアセテート、ビニルアト・ビニルアセトアセテート、ビニルラクテート、ビニルーβーフェニルブチレート、ビニルシクロへキシルカルボキシレート等。イタコン酸ジアルキル類;イタコン酸ジメチル、イタコン酸ジアルキルエステル類又はモノアルキルエステル類;ジブチルマレート等。

【0105】その他クロトン酸、イタコン酸、無水マレイン酸、マレイミド、アクリロニトリル、メタクリロニトリル、マレイロニトリル等。

【0106】その他にも、上記種々の繰り返し単位に相当する単量体と共重合可能である付加重合性の不飽和化合物であれば、共重合されていてもよい。

【0107】酸分解性樹脂において、各繰り返し単位の 含有モル比はレジストのドライエッチング耐性や標準現 像液適性、基板密着性、レジストプロファイル、さらに はレジストの一般的な必要性能である解像力、耐熱性、 感度等を調節するために適宜設定される。

【0108】本発明の酸分解性樹脂(A)中、一般式 (I)で表される繰り返し単位の含有率は、全繰り返し 単位中、15~60モル%が好ましく、より好ましくは 18~55モル%、更に好ましくは20~50モル%で ある。一般式(II)で表される繰り返し単位の含有率 は、全繰り返し単位中、5~50モル%が好ましく、よ り好ましくは8~40モル%、更に好ましくは10~3 0 モル%である。一般式(I)で表される繰り返し単位 と一般式(II)で表される繰り返し単位との合計とし て、全繰り返し単位中、25~90モル%が好ましく、 より好ましくは30~80モル%、更に好ましくは35 ~70モル%である。一般式 (I) で表される繰り返し 単位と一般式(II)で表される繰り返し単位とのモル 比は、通常4:1~1:2、好ましくは3:1~2:3 である。尚、式(II)の繰り返し単位が多いほど、製 造コスト面で有利である。一般式(III)で表される繰 り返し単位の含有率は、全繰り返し単位中、5~50モ ル%が好ましく、より好ましくは10~45モル%、更 に好ましくは15~40モル%である。

【0109】脂環ラクトン構造を有する繰り返し単位の含有量は、全繰り返し単位中5~60モル%が好ましく、より好ましくは10~55モル%、更に好ましくは15~50モル%である。下記一般式(IV)で表される側鎖にラクトン構造を有する繰り返し単位の含有量は、全繰り返し単位中5~60モル%が好ましく、より好ましくは10~50モル%、更に好ましくは15~45モル%である。本発明の組成物がArF露光用であるとき、ArF光への透明性の点から、酸分解性樹脂は芳香族基を有しないことが好ましい。

【0110】本発明に用いる酸分解性樹脂は、常法に従

って(例えばラジカル重合)合成することができる。例 えば、一般的合成方法としては、モノマー種を、一括で あるいは反応途中で反応容器に仕込み、これを必要に応 じ反応溶媒、例えばテトラヒドロフラン、1、4ージオ キサン、ジイソプロピルエーテルなどのエーテル類やメ チルエチルケトン、メチルイソブチルケトンのようなケ トン類、酢酸エチルのようなエステル溶媒、さらには後 述のプロピレングリコールモノメチルエーテルアセテー トのような、各種モノマーを溶解させ得る溶媒に溶解さ せ均一とした後、窒素やアルゴンなど不活性ガス雰囲気 下で必要に応じ加熱、市販のラジカル開始剤(アゾ系開 始剤、パーオキサイドなど) を用いて重合を開始させ る。所望により開始剤を追加、あるいは分割で添加し、 反応終了後、溶剤に投入して粉体あるいは固形回収等の 方法で所望のポリマーを回収する。反応の濃度は20重 量%以上であり、好ましくは30重量%以上、さらに好 ましくは40重量%以上である。反応温度は10℃~1 **50℃であり、好ましくは30℃~120℃、さらに好** ましくは50~100℃である。

【0111】本発明に係る樹脂の重量平均分子量は、GPC法によりポリスチレン換算値として、3,000~100,000が好ましく、より好ましくは、4,000~50,000である。重量平均分子量が3,000未満では耐熱性やドライエッチング耐性の劣化が見られるため余り好ましくなく、100,000を越えると現像性が劣化したり、粘度が極めて高くなるため製膜性が劣化するなど余り好ましくない結果を生じる。

【0112】また、本発明に係る樹脂の分散度(Mw/Mn)としては、 $1.3\sim4.0$ の範囲が好ましく、より好ましくは $1.4\sim3.8$ 、さらに好ましくは $1.5\sim3.5$ である。

【0113】本発明のポジ型レジスト組成物において、本発明に係わる全ての樹脂の組成物全体中の配合量は、全レジスト固形分中40~99.99重量%が好ましく、より好ましくは50~99.97重量%である。

【0114】[2] (B) 活性光線又は放射線の照射により酸を発生する化合物(光酸発生剤)

【0120】式中、R²⁰¹ は置換もしくは未置換のアリール基、アルケニル基、R²⁰² は置換もしくは未置換のアリール基、アルケニル基、アルキル基、-C(Y)3を示す。Yは塩素原子又は臭素原子を示す。具体的には

本発明で用いられる光酸発生剤は、活性光線又は放射線 の照射により酸を発生する化合物である。

【0115】本発明で使用される光酸発生剤としては、 光カチオン重合の光開始剤、光ラジカル重合の光開始 剤、色素類の光消色剤、光変色剤、あるいはマイクロレ ジスト等に使用されている公知の光(400~200 n mの紫外線、遠紫外線、特に好ましくは、g線、h線、 i線、KrFエキシマレーザー光)、ArFエキシマレ ーザー光、電子線、X線、分子線又はイオンビームによ り酸を発生する化合物及びそれらの混合物を適宜に選択 して使用することができる。

【0116】また、その他の本発明に用いられる光酸発生剤としては、たとえばジアゾニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、セレノニウム塩、アルソニウム塩等のオニウム塩、有機ハロゲン化合物、有機金属/有機ハロゲン化物、ローニトロベンジル型保護基を有する光酸発生剤、イミノスルフォネート等に代表される光分解してスルホン酸を発生する化合物、ジスルホン化合物、ジアゾケトスルホン、ジアゾジスルホン化合物等を挙げることができる。また、これらの光により酸を発生する基、あるいは化合物をポリマーの主鎖又は側鎖に導入した化合物を用いることができる。

【0117】さらにV.N.R.Pillai,Synthesis,(1),1(1980)、A.Abad etal,Tetrahedron Lett.,(47)4555(1971)、D.H.R.Barton etal,J.Chem.Soc.,(C),329(1970)、米国特許第3,779,778号、欧州特許第126,712号等に記載の光により酸を発生する化合物も使用することができる。

【0118】上記活性光線又は放射線の照射により分解 して酸を発生する化合物の中で、特に有効に併用される 他の光酸発生剤について以下に説明する。

(1) トリハロメチル基が置換した下記一般式 (PAG1) で表されるオキサゾール誘導体又は一般式 (PAG2) で表されるSートリアジン誘導体。

[0119]

【化41】

以下の化合物を挙げることができるがこれらに限定されるものではない。

[0121]

【化42】

$$CH-CH-C_{0}^{N-N}C-CCl_{3} CH_{3} \longrightarrow CH-CH-C_{0}^{N-N}C-CCl_{3} \longrightarrow CH-CH-C_$$

【0122】(2) 下記の一般式(PAG3) で表されるヨードニウム塩、又は一般式(PAG4) で表されるスルホニウム塩。

[0123]

【化43】

$$Ar^{1} Z^{\Theta} Z^{\Theta} \qquad R^{204} \longrightarrow S^{\Theta} Z^{\Theta}$$

$$R^{205} \qquad R^{205} \qquad R^{206} \qquad$$

【0124】ここで式Ar¹、Ar²は、各々独立に、置換もしくは未置換のアリール基を示す。R²⁰³、R²⁰⁴、R²⁰⁵は、各々独立に、置換もしくは未置換のアルキル基、アリール基を示す。

【0125】Z・は、対アニオンを示し、例えばB

F4⁻、AsF6⁻、PF6⁻、SbF6⁻、SiF6²-、C1O4⁻、CF3SO3⁻等のパーフルオロアルカンスルホン酸アニオン、ペンタフルオロベンゼンスルホン酸アニオン、ナフタレンー1ースルホン酸アニオン等の縮合多核芳香族スルホン酸アニオン、アントラキノンスルホン酸アニオン、スルホン酸基含有染料等を挙げることができるがこれらに限定されるものではない。

【0126】また R^{203} 、 R^{204} 、 R^{205} のうちの2つ及 U6X1、X1、X2はそれぞれの単結合又は置換基を介して 結合してもよい。

【0127】具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

[0128]

【化44】

[0129]

【化45】

$$F_{3}C \longrightarrow I \bigoplus CF_{3} \quad CF_{3}SO_{3} \bigoplus (PAG3-12)$$

$$H_{3}COOC \quad CI \quad CI \quad GOOCH_{3} \quad (PAG3-13)$$

$$CI \longrightarrow I \bigoplus CI \quad GOOCH_{3} \quad (PAG3-14)$$

$$I_{BU} \longrightarrow I_{BU} \quad SO_{3} \bigoplus (PAG3-14)$$

$$I_{BU} \longrightarrow I_{BU} \quad SO_{3} \bigoplus (PAG3-15)$$

$$CI \longrightarrow I_{BU} \longrightarrow I_{BU} \quad CH_{3} \longrightarrow I_{BU} \quad (PAG3-16)$$

$$I_{BU} \longrightarrow I_{BU} \longrightarrow I_{BU} \longrightarrow I_{BU} \quad (PAG3-18)$$

$$I_{BU} \longrightarrow I_{BU} \longrightarrow I_{B$$

[0130]

【化46】

[0132] [化48]

 $(f)C_4H_9$ $HO \longrightarrow S \bigoplus PF_6 \bigoplus HO \longrightarrow S \bigoplus BF_4 \bigoplus CH_3$ $(f)C_4H_9$ $(f)C_4H_9$ (

[0133]

【化49】

30

(PAG4-25)

【0134】 【化50】 PAG4-37

O_{ST}O CF₃SO₃

【0135】 【化51】 MeO \longrightarrow S-Ph₂ $^{\Theta}$ O₃S-CF₃ (PAG4-38)

 $- \bigcirc \overset{\oplus}{\text{S}} - \text{Ph}_2 \qquad ^{\Theta}\text{O}_3 \text{S} - \text{C}_4 \text{F}_9 \quad \text{(PAG4-41)}$

 $- \bigcirc \stackrel{\oplus}{\text{S}} - \text{Ph}_2 \stackrel{\Theta}{\text{O}}_3 \text{S} - \bigcirc - \text{CH}_3 \quad (\text{PAG4-42})$

-O-S-Ph $_2$ Θ O $_3$ S-CH $_3$ (PAG4-43) -O-S-Ph $_2$ Θ O $_3$ S-CF $_3$ (PAG4-44) -O-S-Ph $_2$ Θ O $_3$ S-CF $_4$ F $_9$ (PAG4-45)

(PAG 4-67)

(PAG 4-69)

30 【化55】

[0139]

CF₃SO₃-(PAG 4-71)

CF₃(CF₂)₇SO₃-(PAG 4-73)

CF₃(CF₂)₃SO₃-(PAG 4-75)

CF₃SO₃-

(PAG 4-77)

CF₃(CF₂)₇SO₃-(PAG 4-79)

\s\-\s\-\

68

CF₃(CF₂)₃SO₃-(PAG 4-72)

CF₃SO₃-(PAG 4-74)

CF₃(CF₂)₇SO₃-(PAG 4-76)

CF₃(CF₂)₃SO₃-

(PAG 4-78)

CF₃SO_{3**} (PAG 4-80)

【0140】 【化56】

20

30

【0141】 【化57】

69

70

CF₃(CF₂)₃SO₃-(PAG 4-81)

2 CF₃SO₃-(PAG 4-83)

2 CF₃(CF₂)₇SO₃-(PAG 4-85)

CF₃(CF₂)₃SO₃-(PAG 4-87)

CF₃(CF₂)₃\$O₃-(PAG 4-91)

CF₃(CF₂)₇SO₃-(PAG 4-82)

2 CF₃(CF₂)₃SO₃-(PAG 4-84)

CF₃(CF₂)₃SO₃-(PAG 4-86)

CF₃(CF₂)₃SO₃-(PAG 4-88)

CF₃(CF₂)₃SO₃-(PAG 4-92)

(PAG4-93)

(PAG4-94)

【化58】

[0142]

$$CF_3$$
 CF_3
 CF_3

(PAG4-95)

【0143】上記において、Phはフェニル基を表す。一般式(PAG3)、(PAG4)で示される上記オニウム塩は公知であり、例えば、米国特許第2,807,648号及び同4,247,473号、特開昭53-101,331号等に記載の方法により合成することができる。

【0144】(3)下記一般式 (PAG5)で表される ジスルホン誘導体又は一般式 (PAG6)で表されるイ ミノスルホネート誘導体。

[0145]

【化59】

$$Ar^3 - SO_2 - SO_2 - Ar^4$$
 $R^{206} - SO_2 - O - N$ (PAG5)

72

10 (PAG4-96)

【0146】式中、Ar³、Ar⁴は、各々独立に、置換もしくは未置換のアリール基を示す。R²⁰⁶ は置換もしくは未置換のアルキル基、アリール基を示す。Aは置換もしくは未置換のアルキレン基、アルケニレン基、アリーレン基を示す。

【0147】具体例としては以下に示す化合物が挙げられるが、これらに限定されるものではない。

[0148]

【化60】

30

20

【0149】

30

(PAG6-1) (PAG6-2) N---O--SO₂-(PAG6-3) (PAG6-4) (PAG6-6) (PAG6-5) -o-so₂-(PAG6-7) (PAG6-8) (PAG6-9) (PAG6-10) N-0-502-(CH2)15-CH3 (PAG6-11) (PAG6-12) 【化62】 (PAG6-13) (PAG6-14) (PAG6-16) (PAG6-15) Բեյ¢ (PAG6-17) (PAG6-18)

【0151】 【化63】

[0150]

(PAG6-20)

(PAG6-19)

77

【0152】 【化64】

78

【0153】(4)下記一般式(PAG7)で表される ジアゾジスルホン誘導体。

30 【0154】 【化65】

【0155】ここでRは、直鎖、分岐又は環状アルキル 基、あるいは置換していてもよいアリール基を表す。具 体例としては以下に示す化合物が挙げられるが、これら に限定されるものではない。

【0156】 【化66】

【0158】これらの光酸発生剤の添加量は、組成物中の固形分を基準として、通常0.01~30重量%の範囲で用いられ、好ましくは0.3~20重量%、更に好ましくは0.5~10重量%の範囲で使用される。光酸発生剤の添加量が、0.001重量%より少ないと感度が低くなる傾向になり、また添加量が30重量%より多いとレジストの光吸収が高くなりすぎ、プロファイルの悪化や、プロセス(特にベーク)マージンが狭くなる傾向がある。

【0159】[3] その他の添加剤

本発明のポジ型レジスト組成物には、必要に応じて更に 界面活性剤、有機塩基性化合物、酸分解性溶解阻止化合 物、染料、可塑剤、光増感剤、及び現像液に対する溶解 性を促進させる化合物等を含有させることができる。

【0160】(C)界面活性剤

本発明のポジ型レジスト組成物は、界面活性剤、好まし

くはフッ素系及び/又はシリコン系界面活性剤を含有す る。本発明のポジ型レジスト組成物は、フッ素系界面活 性剤、シリコン系界面活性剤及びフッ素原子と珪素原子 の両方を含有する界面活性剤のいずれか、あるいは2種 以上を含有することが好ましい。本発明のポジ型レジス ト組成物が上記酸分解性樹脂と上記界面活性剤とを含有 することにより、パターンの線幅が一層細い時に特に有 効であり、現像欠陥が一層改良される。これらの界面活 性剤として、例えば特開昭62-36663号、特開昭 61-226746号、特開昭61-226745号、 特開昭62-170950号、特開昭63-34540 号、特開平7-230165号、特開平8-62834 号、特開平9-54432号、特開平9-5988号、 米国特許5405720号、 同5360692号、同 5529881号、同5296330号、同54360 98号、同5576143号、同5294511号、同 5824451号記載の界面活性剤を挙げることがで き、下記市販の界面活性剤をそのまま用いることもでき る。使用できる市販の界面活性剤として、例えばエフト ップEF301、EF303、(新秋田化成(株)製)、フ ロラードFC430、431(住友スリーエム(株)製)、 メガファックF171、F173、F176、F18 9、R08 (大日本インキ (株) 製)、サーフロンS-382, SC101, 102, 103, 104, 10 5、106 (旭硝子 (株) 製)、トロイゾルS-366 (トロイケミカル (株) 製) 等フッ素系界面活性剤又は シリコン系界面活性剤を挙げることができる。またポリ シロキサンポリマーKP-341 (信越化学工業 (株) 製)もシリコン系界面活性剤として用いることができ

80

【0161】界面活性剤の配合量は、本発明の組成物中の固形分を基準として、通常0.001重量%~2重量%、好ましくは0.01重量%~1重量%である。これらの界面活性剤は単独で添加してもよいし、また、いくつかの組み合わせで添加することもできる。

【0162】上記の他に使用することのできる界面活性 剤としては、具体的には、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンマルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテルがリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリオレエート、ソルビタントリオレエート、ソルビタントリオレエート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエ

チレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤等を挙げることができる。これらの他の界面活性剤の配合量は、本発明の組成物中の固形分100重量部当たり、通常、2重量部以下、好ましくは1重量部以下である。

【0163】(D)有機塩基性化合物

本発明で用いることのできる好ましい有機塩基性化合物は、フェノールよりも塩基性の強い化合物である。中でも含窒素塩基性化合物が好ましく、例えば下記(A)~(E)で表される構造が挙げられる。

【0 1 6 4】 【化6 8】 R²⁵¹ R²⁵⁰—N—R²⁵² ···· (A)

【0165】ここで、 R^{250} 、 R^{251} 及び R^{252} は、各々独立に、水素原子、炭素数 $1\sim 6$ のアルキル基、炭素数 $1\sim 6$ のアミノアルキル基、炭素数 $1\sim 6$ のヒドロキシ 20 アルキル基又は炭素数 $6\sim 2$ 0 の置換もしくは非置換のアリール基であり、ここで R^{251} と R^{252} は互いに結合して環を形成してもよい。

[0166] [化69] -N-C=N- … (B) =C-N=C- … (C) =C-N- … (D) R²⁵³-C-N-C-R²⁵⁵ … (E)

【0167】 (式中、R²⁵³、R²⁵⁴、R²⁵⁵及びR ²⁵⁶は、各々独立に、炭素数1~6のアルキル基を示 す)

更に好ましい化合物は、一分子中に異なる化学的環境の 40 窒素原子を2個以上有する含窒素塩基性化合物であり、特に好ましくは、置換もしくは未置換のアミノ基と窒素原子を含む環構造の両方を含む化合物もしくはアルキルアミノ基を有する化合物である。好ましい具体例としては、置換もしくは未置換のグアニジン、置換もしくは未置換のアミノアルキルピリジン、置換もしくは未置換のアミノピロリジン、置換もしくは未置換のピラジン、置換もしくは未置換のピラジン、置換もしくは未置換のピラジン、置換もしくは未置換のピラジン、置換もしくは未置換のピリミジン、置換もしくは未置換 50

のプリン、置換もしくは未置換のイミダゾリン、置換もしくは未置換のピラゾリン、置換もしくは未置換のピペラジン、置換もしくは未置換のアミノモルフォリン、置換もしくは未置換のアミノアルキルモルフォリン等が挙げられる。好ましい置換基は、アミノ基、アミノアルキル基、アルキルアミノ基、アミノアリール基、アリールアミノ基、アルキル基、アルキル基、アルコキシ基、アシル基、アシロキシ基、アリール基、アリールオキシ基、ニトロ基、水酸基、シアノ基である。

【0168】含窒素塩基性化合物の好ましい具体例とし て、グアニジン、1, 1ージメチルグアニジン、1, 1,3,3,-テトラメチルグアニジン、2-アミノピ リジン、3ーアミノピリジン、4ーアミノピリジン、2 ージメチルアミノピリジン、4ージメチルアミノピリジ ン、2-ジエチルアミノピリジン、2-(アミノメチ ル) ピリジン、2-アミノ-3-メチルピリジン、2-アミノー4ーメチルピリジン、2ーアミノー5ーメチル ピリジン、2-アミノー6-メチルピリジン、3-アミ ノエチルピリジン、4ーアミノエチルピリジン、3ーア ミノピロリジン、ピペラジン、N-(2-アミノエチ ル) ピペラジン、N-(2-アミノエチル) ピペリジ ン、4-アミノー2、2、6、6-テトラメチルピペリ ジン、4-ピペリジノピペリジン、2-イミノピペリジ ン、1-(2-アミノエチル)ピロリジン、ピラゾー ル、3-アミノー5-メチルピラゾール、5-アミノー 3-メチル-1-p-トリルピラゾール、ピラジン、2 ー(アミノメチル)ー5ーメチルピラジン、ピリミジ ン、2,4ージアミノピリミジン、4,6ージヒドロキ シピリミジン、2-ピラゾリン、3-ピラゾリン、N-30 アミノモルフォリン、N-(2-アミノエチル)モルフ オリン、1,5ージアザビシクロ「4,3,0]ノナー 5-エン、1,8-ジアザビシクロ〔5.4.0〕ウン デカー7ーエン、1,4ージアザビシクロ〔2.2. 2) オクタン、2, 4, 5ートリフェニルイミダゾー ル、Nーメチルモルホリン、Nーエチルモルホリン、N ーヒドロキシエチルモルホリン、Nーベンジルモルホリ ン、シクロヘキシルモルホリノエチルチオウレア (CH METU) 等の3級モルホリン誘導体、特開平11-5 2575号公報に記載のヒンダードアミン類 (例えば該 公報〔0005〕に記載のもの)等が挙げられるがこれ に限定されるものではない。

【0169】特に好ましい具体例は、1,5-ジアザビシクロ [4.3.0] ノナー5ーエン、1,8ージアザビシクロ [5.4.0] ウンデカー7ーエン、1,4ージアザビシクロ [2.2.2] オクタン、4ージメチルアミノピリジン、ヘキサメチレンテトラミン、4,4ージメチルイミダゾリン、ピロール類、ピラゾール類、イミダゾール類、ピリダジン類、ピリミジン類、CHME TU等の3級モルホリン類、ビス(1,2,2,6,6-ペンタメチルー4ーピペリジル) セバゲート等のヒン

ダードアミン類等を挙げることができる。中でも、1,5ージアザビシクロ [4.3.0] ノナー5ーエン、1,8ージアザビシクロ [5.4.0] ウンデカー7ーエン、1,4ージアザビシクロ [2.2.2] オクタン、4ージメチルアミノピリジン、ヘキサメチレンテトラミン、CHMETU、ビス(1,2,2,6,6ーペンタメチルー4ーピペリジル)セバゲートが好ましい。【0170】これらの含窒素塩基性化合物は、単独であるいは2種以上組み合わせて用いられる。含窒素塩基性化合物の使用量は、本発明のレジスト組成物の全組成物の固形分に対し、通常、0.001~10重量%、好ましくは0.01~5重量%である。0.001重量%未満では上記含窒素塩基性化合物の添加の効果が得られない。一方、10重量%を超えると感度の低下や非露光部の現像性が悪化する傾向がある。

【0171】本発明のポジ型レジスト組成物は、上記各 成分を溶解する溶剤に溶かして支持体上に塗布する。こ こで使用する溶剤としては、エチレンジクロライド、シ クロヘキサノン、シクロペンタノン、2-ヘプタノン、 yーブチロラクトン、メチルエチルケトン、エチレング リコールモノメチルエーテル、エチレングリコールモノ エチルエーテル、2-メトキシエチルアセテート、エチ レングリコールモノエチルエーテルアセテート、プロピ レングリコールモノメチルエーテル (PGME)、プロ ピレングリコールモノメチルエーテルアセテート (PG MEA)、エチレンカーボネート、トルエン、酢酸エチ ル、酢酸ブチル、乳酸メチル、乳酸エチル、メトキシプ ロピオン酸メチル、エトキシプロピオン酸エチル、ピル ビン酸メチル、ピルビン酸エチル、ピルビン酸プロピ ル、N, N-ジメチルホルムアミド、ジメチルスルホキ シド、N-メチルピロリドン、テトラヒドロフラン等が 好ましく、これらの溶剤を単独あるいは混合して使用す

【0172】上記の中でも、好ましい溶剤としてはプロピレングリコールモノメチルエーテルアセテート、2ーヘプタノン、γーブチロラクトン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルでセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレンカーボネート、酢酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、Nーメチルピロリドン、テトラヒドロフランを挙げることができる。

【0173】本発明のこのようなポジ型レジスト組成物は基板上に塗布され、薄膜を形成する。この塗膜の膜厚は $0.2\sim1.2\mu$ mが好ましい。使用することができる基板としては、通常のBareSi基板、SOG基板、あるいは次に記載の無機の反射防止膜を有する基板等を挙げることができる。また、必要により、市販の無機あるいは 50

有機反射防止膜を使用することができる。

【0174】反射防止膜としては、チタン、二酸化チタ ン、窒化チタン、酸化クロム、カーボン、αーシリコン 等の無機膜型と、吸光剤とポリマー材料からなる有機膜 型が用いることができる。前者は膜形成に真空蒸着装 置、CVD装置、スパッタリング装置等の設備を必要と する。有機反射防止膜としては、例えば特公平7-69 611号記載のジフェニルアミン誘導体とホルムアルデ ヒド変性メラミン樹脂との縮合体、アルカリ可溶性樹 脂、吸光剤からなるものや、米国特許5294680号 記載の無水マレイン酸共重合体とジアミン型吸光剤の反 応物、特開平6-118631号記載の樹脂バインダー とメチロールメラミン系熱架橋剤を含有するもの、特開 平6-118656号記載のカルボン酸基とエポキシ基 と吸光基を同一分子内に有するアクリル樹脂型反射防止 膜、特開平8-87115号記載のメチロールメラミン とベンゾフェノン系吸光剤からなるもの、特開平8-1 79509号記載のポリビニルアルコール樹脂に低分子 吸光剤を添加したもの等が挙げられる。また、有機反射 防止膜として、ブリューワーサイエンス社製のDUV3 0シリーズや、DUV-40シリーズ、ARC25、シ プレー社製のAC-2、AC-3、AR19、AR20 等を使用することもできる。

【0175】上記レジスト液を精密集積回路素子の製造に使用されるような基板(例:シリコン/二酸化シリコン被覆)上に(必要により上記反射防止膜を設けられた基板上に)、スピナー、コーター等の適当な塗布方法により塗布後、所定のマスクを通して露光し、ベークを行い現像することにより良好なレジストパターンを得ることができる。ここで露光光としては、好ましくは150 nm~250 nmの波長の光である。具体的には、KrFエキシマレーザー(248 nm)、ArFエキシマレーザー(193 nm)、F2エキシマレーザー(157 nm)、X線、電子ビーム等が挙げられる。

【0176】現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、nープロピルアミン等の第一アミン類、ジエチルアミン、ジーnーブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン類、ジメチルエタノールアミン、トリエタノールアミン特のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩、ピロール、ピヘリジン等の環状アミン類等のアルカリ性水溶液を使用することができる。更に、上記アルカリ性水溶液にアルコール類、界面活性剤を適当量添加して使用することもできる。

[0177]

【実施例】以下、本発明を実施例によって更に具体的に

説明するが、本発明は以下の実施例に限定されるもので はない。

【0178】合成例(1)樹脂(1)の合成 2-アダマンチルー2-プロピルメタクリレート、t-ブチルメタクリレート、ジヒドロキシアダマンタンメタ クリレート、ノルボルナンラクトンアクリレートを30 /10/20/40の割合で仕込み、PGMEA (プロ ピレングリコールモノメチルエーテルアセテート) /P GME (プロピレングリコールモノメチルエーテル) = 1/1に溶解し、固形分濃度22%の溶液450gを調 10 製した。この溶液に和光純薬製V-601を1mo1%加 え、これを窒素雰囲気下、6時間かけて100℃に加熱 したPGMEA(プロピレングリコールモノメチルエー テルアセテート) / PGME (プロピレングリコールモ ノメチルエーテル) = 1/1、40gに滴下した。滴下 終了後、反応液を4時間撹拌した。反応終了後、反応液

を室温まで冷却し、ヘキサン/酢酸エチル=9/1の混 合溶媒 5 Lに晶析、析出した白色粉体を濾取した後、得 られた粉体をメタノール1 Lでリスラリーし目的物であ る樹脂(1)を回収した。NMRから求めたポリマー組 成比は2-アダマンチルー2-プロピルメタクリレート / t ーブチルメタクリレート/ジヒドロキシアダマンタ ンメタクリレート/ノルボルナンラクトンアクリレート (30/12/19/39) であった。また、GPC測 定により求めた標準ポリスチレン換算の重量平均分子量 は11600であった。上記合成例と同様の操作で下表 に示す組成比、分子量の樹脂(2)~(10)を合成し た。(繰り返し単位1、4は構造式の左からの順番であ る。)

[0179]

【表1】

<u>表1</u>						
樹脂			一般式(III)の	脂環ラクトン	その他繰り	重量
	繰り返し単	の繰り返し	繰り返し単位	を有する繰り	返し単位	平均
	位	単位	(mol%)	返し単位	(mol%)	分子量
	(mol%)	(mol%)		(mol%)		
2	26	11	20	43		10700
3	43	15	23	19		9900
4	29	19	36	16		10300
5	23	21	20	36		10100
6	53	22	25			11400
7	32	13	19		36	9700
8	49	35	16			9900
9	42	20	18		20	11600
10	26	20	21	33		10100

【0180】また、以下に上記樹脂(1)~(10)の [0181] 構造を示す。 【化70】

[0182]

【化71】

30

$$-CH_{2} - \stackrel{C}{C} - \stackrel{C}{C} - CH_{2} - CH_$$

[0183]

$$-CH_{2}-\overset{C}{C}-\overset{C}{C}-CH_{2}-\overset{C}{C}-$$

【0184】実施例1~11及び比較例1

(ポジ型レジスト組成物組成物の調製と評価) 表 2 に示したように上記合成例で合成した樹脂(2g)、光酸発生剤(表 2 中に示した量)、有機塩基性化合物(4 mg)、必要により界面活性剤(10 mg)を配合し、固形分14重量%となるように表 2 に示した溶剤に溶解し

た後、 0.1μ mのミクロフィルターで濾過し、実施例 $1\sim11$ と比較例1のポジ型レジスト組成物を調製した。尚、表2における各成分について複数使用の際の比率は重量比である。

【0185】尚、比較例1に使用した樹脂R1は、特開 平11-119434号の実施例における共重合体3の

【表2】

調製方法に従い合成した共重合体である。

[0186]

0

表名					
	樹脂 (2g)	光酸発生剤	塩基性 化合物 (4mg)	界面活 性剤 (10mg)	溶剤
実施例 1	(1)	PAG4-48 /PAG4-95 =40/5mg	3	5	PGMEA /PGME=8/2
Ż	(2)	PAG4-96 /FAG4-65 =23/100mg	6	1	PGMEA /PGME=9/3
3	(3)	PAG4-39 =43mg	4	2	PGMEA /PGME=6/4
4	(4)	PAG4-96 =46mg	5	5	PGMRA/PGME / y -フ* チロラク トン=8/1/1
5	(5)	PAG4-95 =47mg	4/5=1/1	5	PGMEA/PGME /エチレンカーホーネ ート=7/2/1
6	(6)	PAG4-95 /PAG4-53 =36/20mg	2	3	PGMEA
7	(7)	PAG4-94 ≃43mg	1	5	PGMEA/PGME =8/2
8	(8)	PAG4-50 =50mg	3	4	PGMEA /PGME=6/4
9	(9)	PAG4-48 /PAG4-78 =38/10mg	6	3	PGMEA /PGME=7/3
10	(10)	PAG4-52	3/6=1/1	5	PGMEA

6

なし

5

5

なし

/PGME=7/3

/PGME=7/3

PGMEA

PGMEA

【0187】界面活性剤としては、

W1:メガファックF176 (大日本インキ (株) 製) (フッ素系)

1 1

比較例1

(1)

R 1

=44mg

PAG4-48

/PAG4-60

=40/3mg

PAG4-5

=40ng

W2:メガファックR08 (大日本インキ (株) 製) (フッ素及びシリコーン系)

W3:ポリシロキサンポリマーKP-341 (信越化学 工業(株)製)

W4:ポリオキシエチレンノニルフェニルエーテル

W5:トロイゾルS-366(トロイケミカル(株) 製)を表す。

【0188】アミンとしては、

1は、1,5-ジアザビシクロ[4.3.0]-5-ノ ネン(DBN)を表し、

2は、ビス(1, 2, 2, 6, 6-ペンタメチルー4-ピペリジル) セバゲート

3は、トリオクチルアミン

4は、トリフェニルイミダゾール

5は、アンチピリン

6は、2,6-ジイソプロピルアニリン を表す。

【0189】 (評価試験) 初めに Brewer Sc 50

ience社製ARC-29をスピンコーターを利用し てシリコンウエハー上に85nm塗布、乾燥した後、そ の上に得られたポジ型フォトレジスト組成物を塗布し、 120℃で90秒間乾燥、約0.4 μ m のポジ型フォト レジスト膜を作製し、ArFエキシマレーザー (波長1 93nm、NA=0.6のISI社製ArFステッパ 一)にて露光した。露光後の加熱処理を120℃で90 秒間行い、2.38重量%のテトラメチルアンモニウム ヒドロキシド水溶液で現像、蒸留水でリンスし、レジス トパターンプロファイルを得た。得られたレジストパタ ーンを走査型電子顕微鏡で観察し、下記のような評価を 行った。

【0190】 [パターン倒れ] 0.13 μm (ライン/ スペース=1/1)のマスクパターンを再現する露光量 E1に対して、オーバー露光側で、更にフォーカスを± 0. 4μm変化させた際の、パターン倒れを走査型電子 顕微鏡(SEM)にて観察し、パターン倒れが発生する 露光量をE2とし、(E2-E1) ×100/E1

(%)をパターン倒れの指標とした。値の大きいものが パターン倒れが少なく良好であることを示す。

〔疎密依存性〕 0. 13 μm (ライン/スペース=1/

1) のマスクパターンを再現する露光量と同じ露光量 で、0.13 µ mの孤立パターンの線幅を側長(L1) し、0. 13μmからの変動率 (0. 13-L1) ×1 00/0.13(%)を疎密依存性の指標とした。値が 小さいほど疎密依存性が小さく良好であることを示す。 〔エッチング時表面荒れ〕 0.15μmのコンタクトホ ールパターンを $CHF_3/O_2 = 14/6$ プラズマで60 秒間エッチングを行い、得られたサンプルの断面、及び

表面をSEMで観察し、ピンホール状の欠陥(非加工予 定部位の下層がエッチングされてしまう) を生じるもの を×、表面荒れは生じたが欠陥は生じず、但し、ホール の変形があるものを△、表面荒れが小さく、ホールの変 形のない良好なものを○とした。これらの評価結果を下 記表3に示す。

[0191]

【表3】

表3			
	バターン倒れ (%)	エッチング時 の表面荒れ	疎密依存性 (%)
実施例 1	1 1	0	4.5
2	1 2	0	3
3	10	0	6
4	10	0	6
5	1 2	0	3
6	8	0	8
7	9	0	7
8	6	Δ	10
9	8	0	8
10	1 0	0	6
1 1	1 2	0	3.5
比較例 1	2	×	4 0

【0192】表3の結果から明らかなように、本発明の ポジ型レジスト組成物は、パターン倒れ、エッチング時 の表面荒れ、疎密依存性が著しく軽減されていることが 判る。

[0193]

【発明の効果】本発明は、パターン倒れ、エッチング時

の表面荒れ、疎密依存性が改善されたポジ型レジスト組 成物を提供することができる。この本発明のポジ型レジ スト組成物は、遠紫外光、特にArFエキシマレーザー 光を使用するミクロファブリケーションに好適に使用で きる。

フロントページの続き

F ターム(参考) 2HO25 AA13 AA14 AB16 ACO1 ACO4 ACO5 ACO6 ACO8 ADO3 BEO0 BGOO FAO3 FA12 FA17 4J100 ALO3Q ALO4Q ALO8P ALO8Q ALOSR ALOSS BAO3R BAO3S BAO4P BAO5Q BAO5S BA11S

BA14P BA15P BA15S BA16S

BA2OP BA2OS BA34S BA58S BB010 BC02P BC04P BC07P

BCO8P BCO9P BCO9R BC12P

BC53S CA05 CA06