绍兴一中NOI模拟赛

by Stilwell

2018年1月25日

题目名称	Skip	String	Permutation
目录	skip	string	perm
可执行文件名	skip	string	perm
输入文件名	skip.in	string.in	perm.in
输出文件名	skip.out	string.out	perm.out
每个测试点时限	1.5秒	1秒	1秒
内存限制	512MB	512MB	512MB
测试点数量	10	10	10
每个测试点分值	10	10	10
是否有部分分	否	否	否
题目类型	传统型	传统型	传统型

提交源程序须加后缀

对于 C++ 语言	skip.cpp	string.cpp	perm.cpp
对于 C 语言	skip.c	string.c	perm.c
对于 Pascal 语言	skip.pas	string.pas	perm.pas

注意:以Linux最终测试为准,不打开任何优化开关。

Skip

【问题描述】

有n场比赛,每场比赛有一个愉悦值 a_i ,如果参加一场比赛,那么对应的 a_i 就会计入累积愉悦值 $X \leftarrow X + a_i$ 。

为了得到更好的比赛体验,每次参加的比赛愉悦值不得低于已参加过的所有比赛,即对于i < j必须有 $a_i \le a_j$ 。

这个条件不易达成,所以往往需要跳过一些比赛,当跳过一场比赛时,假如当前已经<u>连续跳过</u>了k场比赛(不包含这一场),那么愉悦值X将会减少k+1。

求最大能获得的X。(跳过所有比赛也是合法的)

【输入格式】

从文件 skip.in 中读入数据。

第一行,一个整数n。

第二行,n个整数 a_i ,表示每场比赛的愉悦值。

【输出格式】

输出到文件 skip.out 中。

输出一行,表示最大能获得的X。

【样例输入1】

7

1 3 2 7 3 2 4

【样例输出1】

7

【样例解释1】

参加下划线所示的比赛:

 $\underline{1}\ \underline{3}\ 2\ 7\ \underline{3}\ 2\ \underline{4}$

跳过2的代价为1,跳过7的代价为2,跳过2的代价为1。

故
$$X = 1 + 3 + 3 + 4 - 1 - 2 - 1 = 7$$
。

【样例输入2】

7

-3 -4 -2 -2 -6 -8 -1

【样例输出2】

-11

【数据规模】

对于10%的数据, $n \le 10$ 。

对于20%的数据, $n \leq 100$ 。

对于30%的数据, $n \le 1000$ 。

对于60%的数据, a_i 在 $|a_i| \le w$ 范围内随机(每个测试点w可能不同)。

对于100%的数据, $1 \le n \le 10^5$, $|a_i| \le 10^9$ 。

String

【问题描述】

对于给定的k, 求字典序排列下第n小的满足以下条件的字符串:

- 只包含小写英文字符。
- 相邻的字符均不相同。
- 总共出现了k种不同的字符,且出现次数分别为1、2、...、k,即串长为 $\frac{k(k+1)}{2}$,**每种字符的出现次数均不相同**(只考虑出现了的字符)。

【输入格式】

从文件 string.in 中读入数据。

第一行,两个整数k, n。

【输出格式】

输出到文件 string.out 中。

一行,一个字符串表示满足该条件的字典序第n小的串,假如无解输出-1。

【样例输入1】

2 650

【样例输出1】

zyz

【样例输入2】

2 651

【样例输出2】

-1

【样例输入3】

5 12345678901234

【样例输出3】

yuzczuyuyuzuyci

【数据规模】

对于20%的数据, $1 \le k \le 3$ 。

对于30%的数据, $1 \le k \le 5$ 。

对于40%的数据, $1 \le k \le 6$ 。

对于60%的数据, $1 \le k \le 7$ 。

对于80%的数据, $1 \le k \le 8$ 。

对于100%的数据, $1 \le k \le 26$, $1 \le n \le 10^{18}$ 。

Permutation

【问题描述】

考虑现在有一个集合 $\{1,2,n\}$,给定一个k,考虑这个集合里所有大小为k的子集,显然这样的子集有 C_n^k 个。

之后,对于每个子集,我们将他的元素从小到大放到一个数组里,于是得到了数组b[1..k]。

之后,再将这 C_n^k 个集合按b的字典序从小到大排序,得到一个数组 $A[1..C_n^k][1..k]$ 。

再给定m,求:

$$\sum_{i=1}^{C_n^k - 1} |A[i][m] - A[i+1][m]|$$

由于答案可能太大, 你只需要输出答案对109+7取模后的值。

【输入格式】

从文件 perm.in 中读入数据。

一行,三个正整数n, k, m

【输出格式】

输出到文件 perm.out 中。

一行一个整数,表示答案对109+7取模后的值。

【样例输入】

4 2 2

【样例输出】

4

【数据规模】

对于30%的数据, $1 \le m \le k \le n \le 10$ 。

对于50%的数据, $1 \le m \le k \le n \le 100$ 。

对于70%的数据, $1 \le m \le k \le n \le 1000$ 。

对于100%的数据, $1 \le m \le k \le n \le 10^6$ 。