DIALOG(R) File 352: Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

WPI Acc No: 2003-772629/200373

XRAM Acc No: C03-212942 XRPX Acc No: N03-619103

Semiconductor integrated circuit for OLED display, e.g. in notebook computer, has analog switching units for selectively connecting m-signal lines to i-piece current sources consisting of transistors

Patent Assignee: SEMICONDUCTOR ENERGY LAB (SEME)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 2003255880 A 20030910 JP 200259903 A 20020306 200373 B

Priority Applications (No Type Date): JP 200259903 A 20020306

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes
JP 2003255880 A 19 G09G-003/20

Abstract (Basic): JP 2003255880 A

NOVELTY - A semiconductor integrated circuit has m-signal lines that are selectively connected to i-piece current sources (C(i) - C(i+5)) comprising polysilicon thin-film transistors (Tr(1) - Tr(i+5)), through n-piece analog switching units (S(m) - S(m+5)).

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) a light emitting device;
- (2) driving of a semiconductor integrated circuit; and
- (3) driving of a signal-line driving circuit.

USE — Used as a semiconductor integrated circuit used as a signal—line driving circuit of an active—matrix type light emitting device (claimed), especially an OLED display in a notebook personal computer or PDA, and a mobile telephone.

ADVANTAGE - The influence of variation in the transistor property

in the current-source circuit is suppressed.

DESCRIPTION OF DRAWING(S) - The figure shows the structure of the semiconductor integrated circuit. (Drawing includes non- English language text).

C(i+5)) i-piece current sources (C(i)

S(m+5)) n-piece analog switching units (S(m)

Tr(i+5)) polysilicon thin-film transistors (Tr(1)

pp; 19 DwgNo 2/15

Title Terms: SEMICONDUCTOR; INTEGRATE; CIRCUIT; DISPLAY; COMPUTER; ANALOGUE

; SWITCH; UNIT; SELECT; CONNECT; SIGNAL; LINE; PIECE; CURRENT; SOURCE;

CONSIST; TRANSISTOR

Derwent Class: LO3; P85; T01; T04; U12; U14; W01 International Patent Class (Main): G09G-003/20

International Patent Class (Additional): G09G-003/30; H01L-021/822;

H01L-027/04; H03K-017/00; H04N-005/66; H05B-033/14

File Segment: CPI; EPI; EngPI

DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat

(c) 2003 EPO. All rts. reserv.

19278120

Basic Patent (No, Kind, Date): JP 2003255880 A2 20030910 < No. of Patents:

002>

(English)

IPC: #G09G-003/20; G09G-003/30; H01L-021/822; H01L-027/04; H03K-017/00;

H04N-005/66; H05B-033/14

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

CN 1443002 A 20030917 CN 2003119938 A 20030306

JP 2003255880 A2 20030910 JP 200259903 A 20020306 (BASIC)

Priority Data (No,Kind,Date):

JP 200259903 A 20020306

(19)日本国特許庁 (JP)

四公開特許公報 (4)

(11)特許出願公開番号 特開2003-255880

(P2003-255880A) (43)公開日 平成15年9月10日(2003.9.10)

(51) Int. Cl. 7	識別記号		FΙ					Ŧ.	-43-1.	(参考)
G09G 3/20	611		G09G	3/20)	611	Н	3K007	!	
	623					623	В	5C058	3	
						623	G	5C080)	
						623	Н	5F038	}	
	642 審査請					642	A	5J055		
		審査請求	未請求	請求	項の数18	OL	(全19	頁)	最終頁	に続く
(21)出願番号	特願2002-59903(P2002-5	9903)	(71)出	顧人	00015387	8				
					株式会社	半導体	エネルキ	一研究	铲所	
(22)出顧日	平成14年3月6日(2002.3.6			神奈川県	厚木市:	長谷398	番地			
		(72)発	明者	木村 肇						
					神奈川県	厚木市:	長谷398	番地	株式会	社半
					導体エネ	ルギー	研究所内	3		
			(72)発	明者	小山 潤					
					神奈川県	厚木市:	長谷398	番地	株式会	社半
					導体エネ	ルギー	研究所内	3		
								1	最終頁	に続く

(54) 【発明の名称】半導体集積回路およびその駆動方法

(57)【要約】

【課題】トランジスタは、作製工程や使用する基板の相違によって生じるゲート長、ゲート幅及びゲート絶縁膜の膜厚のバラツキの要因が重なって、しきい値や移動度にバラツキが生じてしまう。その結果、トランジスタの特性バラツキの影響によって画素に供給する電流値にバラツキが生じ、表示画面にスジが生じてしまう。

【解決手段】 信号線駆動回路を構成する電流源回路におけるトランジスタの特性の影響を抑制し、トランジスタの特性に左右されない、表示にバラツキがなくきれいな発光装置を提供する。本発明の信号線駆動回路を用いることで、表示のスジや輝度ムラを防ぐことができる。また、本発明は画素部と駆動回路部との素子をポリシリコンで形成することができ、同一基板上に一体形成することができる。こうして、小型化、低消費電量化が可能な表示装置及びそれを用いた電子機器を提供することができる。

【特許請求の範囲】

【請求項1】m本の信号線S,、S,、・・・、S.と、 i 個の電流源C₁、C₂、・・・、C₄とを有する電流源 回路と、

n個の切り換えユニットU,、U,、・・・、U。を含む 切り換え手段とを有する半導体集積回路であって、

前記m本の信号線のいずれか一つは、前記n個の切り換 えユニットのいずれか一つを介して、前記 i 個の電流源 のいずれかと接続され、

前記n個の切り換えユニットは前記接続された電流源の 10 定されることを特徴とする半導体集積回路。 うち一つを選択する機能を有することを特徴とする半導 体集積回路。

【請求項2】m本の信号線S₁、S₂、・・・、S₄と、 i 個の電流源 C₁、 C₁、 · · · 、 C₁とを有する電流源

n個の切り換えユニットU,、U,、・・・、U。を含む 切り換え手段とを有する半導体集積回路であって、

前記n個の切り換えユニットはそれぞれ前記i個の電流 源のうちi個の電流源と接続され、

M番目の前記信号線S』はN番目の前記切り換えユニッ トU、と接続され、前記切り換えユニットU、は関数F。 (x) $(k=1\sim j, x=1\sim n)$ を満たす F_{i} (N)番目の電流源、F, (N) 番目の電流源、F, (N) 番目 の電流源、・・・、Fi(N)番目の電流源と接続さ

前記切り換えユニットは前記接続された電流源のうちー つを選択する機能を有することを特徴とする半導体集積 回路。

【請求項3】m本の信号線S₁、S₂、・・・、S₄と、 i 個の電流源C₁、C₂、・・・、C₁とを有する電流源 回路と、

n個の切り換えユニットU,、U,、・・・、U。を含む 切り換え手段とを有する半導体集積回路であって、

前記n個の切り換えユニットはそれぞれ前記i個の電流 源のうちう個の電流源と接続され、

M番目の前記信号線S。はN番目の前記切り換えユニッ トU、と接続され、前記切り換えユニットU、は関数F、 (x) $(k=1\sim j, x=1\sim n)$ を満たすF, (N)番目の電流源、F, (N)番目の電流源、F, (N)番目 の電流源、・・・、Fi(N)番目の電流源と接続さ ħ.

(M-1) 番目の前記信号線 S₁₋₁は (N-1) 番目の 前記切り換えユニットU、」と接続され、前記切り換え ユニットUx.,は前記関数を満たすF, (N-1)番目の 電流源、F₁ (N-1) 番目の電流源、F₁ (N-1) 番 目の電流源、・・・、F。(N-1)番目の電流源と接 続され、

前記切り換えユニットは前記接続された電流源のうちー つを選択する機能を有することを特徴とする半導体集積 回路。

【請求項4】請求項1乃至3のいずれか一において、前 記半導体集積回路は第1のラッチ回路と、前記第1のラ ッチ回路に接続された第2のラッチ回路と、前記第2の ラッチ回路に接続されたシフトレジスタとを有すること を特徴とする半導体集積回路。

【請求項5】請求項2乃至4のいずれか一において、i = 3 であるとき、前記電流源は F 1 (N) = N + a、 F 2 (N) = N + b, F 3 (N) = N + c, (但しa, b、cは整数でありかつa≠b≠c)を満たすように設

【請求項6】請求項6において、a=-1、b=0、c =1を満たすことを特徴とする半導体集積回路。

【請求項7】請求項2乃至4のいずれかーにおいて、i = 5 であるとき、前記電流源はF1 (N) = N + a、F 2 (N) = N + b, F 3 (N) = N + c, F 4 (N) =N+d, F5 (N) = N+e, (@la, b, c, d)eは整数でありかつa≠b≠c≠d≠e)を満たすよう に設定されることを特徴とする半導体集積回路。

【請求項8】請求項7において、a=-2、b=-1、 20 c=0、d=1、e=2を満たすことを特徴とする半導 体集積回路。

【請求項9】請求項1乃至8のいずれか一において、前 記電流源はトランジスタを有することを特徴とする半導 体集積回路。

【請求項10】請求項1乃至9のいずれか一において、 前記トランジスタはポリシリコン薄膜トランジスタから なることを特徴とする半導体集積回路。

【請求項11】請求項1乃至10のいずれか一におい て、前記電流源は複数のトランジスタを有し、前記複数 30 のトランジスタのゲート長と前記複数のトランジスタの ゲート幅との比は全て等しくなるように設けられること を特徴とする半導体集積回路。

【請求項12】請求項1乃至11のいずれか一におい て、前記切り換えユニットはアナログスイッチで構成さ れることを特徴とする半導体集積回路。

【請求項13】請求項1乃至12のいずれか一に記載の 半導体集積回路を備えたことを特徴とする発光装置。

【請求項14】m本の信号線Si、Si、・・・、S ٠٤.

40 i 個の電流源 C₁、 C₂、・・・、 C₁ とを有する電流源 回路と、

n 個の切り換えユニット U_1 、 U_2 、・・・、 U_a を含む 切り換え手段とを有し、

前記m本の信号線のいずれか一つは、前記n個の切り換 えユニットのいずれか一つを介して、前記i個の電流源 のいずれかと接続される半導体集積回路の駆動方法であ って、

前記切り換えユニットは一定期間毎に、前記接続される 電流源の選択を切り換えることを特徴とする半導体集積 50 回路の駆動方法。

【請求項15】m本の信号線S1、S1、・・・、S .٤.

i 個の電流源C₁、C₂、・・・、C₁とを有する電流源 回路と、

n個の切り換えユニットU,、U,、・・・、U。を含む 切り換え手段と、

第1のラッチ回路と、前記第1のラッチ回路に接続され た第2のラッチ回路と、前記第2のラッチ回路に接続さ れたシフトレジスタと、を有し、

前記m本の信号線のいずれか一つは、前記n個の切り換 10 えユニットのいずれか一つを介して、前記 i 個の電流源 のいずれかと接続される半導体集積回路の駆動方法であ って、

前記切り換えユニットは一定期間毎に、前記接続される 電流源の選択を切り換え、

前記第1のラッチ回路、前記第2のラッチ回路及び前記 シフトレジスタからの信号により前記選択された電流源 からの前記信号線への電流入力を制御することを特徴と する半導体集積回路の駆動方法。

【請求項16】請求項14または15において、前記信 20 た輝度で発光を行う。 号線へ入力されるビデオ信号の同期タイミングに対応す る単位フレーム期間内に前記一定期間があることを特徴 とする半導体集積回路の駆動方法。

【請求項17】請求項16において、

前記単位フレーム期間はm(mは2以上の自然数)個の サプフレーム期間SF1、SF2、…、SFmを有し、 前記m個のサプフレーム期間SF1、SF2、…SFm は、それぞれ書き込み期間Tal、Ta2、…、Tam と表示期間Ts1、Ts2、…、Tsmとを有し、

とする半導体集積回路の駆動方法。

【請求項18】請求項14乃至17のいずれか一に記載 の駆動方法を用いたことを特徴とする信号線駆動回路の 駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体集積回路及 びその駆動方法の技術に関する。また、本発明の半導体 集積回路を備えた駆動回路部と画素部を備えた発光装置 に関する。特に、本発明の半導体集積回路を駆動回路部 40 の信号線駆動回路に適応した、マトリクス状に複数の画 素が配置され、各画素にスイッチング素子及び発光素子 が配置されたアクティブマトリクス型の発光装置に関す る。

[0002]

【従来の技術】近年、発光装置として、自発光素子であ る発光素子を用いた発光装置の研究開発が進められてい る。これらの発光装置は、高画質、薄型、軽量などの利 点を生かして、携帯電話の表示画面やパソコンを使用す 光素子を用いた発光装置は動画表示に適した速い応答速 度、低電圧、低消費電力駆動などの特徴を有しているた め、新世代の携帯電話や携帯情報端末(PDA)をはじ め、幅広い用途が見込まれ、次世代ディスプレイとして 大きく注目されている。

【0003】発光素子の1つとして有機発光ダイオード (Organic Light Emitting Diode:OLEC) があり、陽極 と、陰極と、前記陽極と前記陰極との間に有機化合物層 が挟まれた構造を有している。この有機化合物層は通 常、積層構造であり、代表的には、コダック・イースト マン・カンパニーのTangらが提案した「正孔輸送層/発 光層/電子輸送層」という積層構造が挙げられる。

【0004】発光素子を発光させるときには、発光素子 を駆動する半導体素子は、オン電流が大きいポリシリコ ン(多結晶シリコン)により形成される。そして発光素 子を駆動する半導体素子として、ポリシリコンで形成さ れたポリシリコントランジスタが用いられる。この発光 素子に流れる電流量と、発光素子の輝度は正比例の関係 にあり、発光素子は有機化合物層に流れる電流量に応じ

【0005】ところで、発光素子を用いた発光装置に多 階調の画像を表示するときの駆動方法としては、アナロ グ階調方式(アナログ駆動方式)とデジタル階調方式 (デジタル駆動方式) が挙げられる。両方式の相違点 は、発光素子の発光、非発光のそれぞれの状態において 該発光素子を制御する方法にある。前者のアナログ階調 方式は、発光素子に流れる電流をアナログ的に制御して 階調を得るという方式である。また後者のデジタル階調 方式は、発光素子がオン状態(輝度がほぼ100%であ 前記表示期間内に前記一定期間が設けられることを特徴 30 る状態)と、オフ状態(輝度がほぼ0%である状態)の 2つの状態のみによって駆動するという方式である。

> 【0006】また発光素子を用いた発光装置に入力する 信号の種類によって分類することができ、そのうちの1 つとして、電流入力方式が提案されている。この電流入 力方式は、発光素子を駆動するTFTの特性に左右され ず、発光素子に流れる電流の大きさを制御することが可 能であるとされている。

【0007】電流入力方式は、上述のアナログ階調方式 及びデジタル階調方式の両方が適用される。電流入力方 式は、画素に入力するビデオ信号が電流である方式であ り、入力したビデオ信号(電流)に応じた電流を発光素 子に流すことにより、発光素子の輝度を制御する方式で

【0008】ここで発光装置において、電流入力方式を 適用した画素の回路構成の一例とその駆動方法につい て、図14を用いて簡単に説明する。図14に示した画 素は、信号線1401、第1~第3の走査線1402~ 1404、電源線1405、トランジスタ1406~1 409、容量素子1410、発光素子1411を有す るときの発光装置として幅広く利用されている。特に発 50 る。電流源回路1412は、信号線に設けられている。

ば、トランジスタ1408のソース・ドレイン間電圧が 変化したとしても、発光素子1411に流れる発光電流 I ELは Iと変わりなく流れることが出来る。

【0009】TFT1406のゲート電極は、第1の走 査線1402に接続され、第1の電極は信号線1401 に接続され、第2の電極は、TFT1407の第1の電 極、TFT1408の第1の電極、およびTFT140 9の第1の電極に接続されている。TFT1407のゲ ート電極は、第2の走査線1403に接続され、第2の 電極はTFT1408のゲート電極に接続されている。 TFT1408の第2の電極は、電流線1405に接続 されている。TFT1409のゲート電極は、第3の走 1の一方の電極に接続されている。容量素子1410は TFT1408のゲート電極と第2の電極との間に接続 され、TFT1408のゲート・ソース間電圧を保持す る。電流線1405および発光素子1411の陰極に は、それぞれ所定の電位が入力され、互いに電位差を有 する.

【0015】上述したように電流入力方式とは、電流源 回路1412で設定した値の信号電流と同じ、または比 例した電流値のドレイン電流がトランジスタ1408の ソース・ドレイン間に流れ、このドレイン電流に応じた 輝度で発光素子1411が発光を行う方式をいう。上記 のような画素を用いることにより、画素を構成するTF 査線1404に接続され、第2の電極は発光素子141 10 Tの特性バラツキの影響を抑制して、所望の電流を発光 素子に供給することが出来る。また電流入力型の画素回 路は他に、US6,229.506B1や特開2001-147659に報告され ている。

【0010】次にビデオ信号の書き込みから発光までの 動作について説明する。まず、第1の走査線1402お よび第2の走査線1403にパルスが入力され、トラン ジスタ1406、1407がオンする。このとき、信号 20 線1401を流れる信号電流を I....とし、 I.... は電 流源回路1412から供給される。

【発明が解決しようとする課題】

【0011】トランジスタ1406がオンした瞬間に は、まだ容量素子1410には電荷が保持されていない ため、トランジスタ1408はオフしている。 すなわち この間は、容量素子1410における電荷の蓄積による 電流のみが流れている。

【0016】電流入力方式を適用した発光装置では、ビ デオ信号に応じた信号電流を正確に画素に入力する必要 がある。しかしながら、信号電流を画素に入力する役目 を担う駆動回路(図14では電流源回路1412に相当 する。)をポリシリコントランジスタで形成すると、結 晶成長方向や結晶粒界における欠陥、積層された膜厚の 不均一性や膜のパターニング精度に起因して、その特性 にバラツキが生じるため、該信号電流にもバラツキが生 じてしまい、その結果、表示した画像にムラが生じてし まう。

【0012】その後、徐々に容量案子1410に電荷が 蓄積され、両電極間に電位差が生じ始める。両電極の電 位差がTFT1408のしきい値電圧Vthとなると、 トランジスタ1408がオンして、電流が生ずる。この とき、容量素子1410に流れる電流は次第に減少する が、依然電流は流れており、容量素子1410には電荷 の蓄積が行われる。

【0017】つまり電流入力方式を適用した発光装置で は、画素に信号電流を入力する駆動回路を構成するトラ ンジスタの特性バラツキの影響を抑制する必要がある。 すなわちすなわち画素及び駆動回路の両方を構成するの 両方を構成するトランジスタの特性バラツキの影響を抑 30 制する必要がある。すなわち、ポリシリコントランジス タはパラツキが大きいため、正確な信号電流を生成する ことが難しく、表示が縦スジだらけになってしまう。

【0013】容量素子1410においては、その両電極 の電位差、つまりトランジスタ1408のゲート・ソー ス間電圧が所望の電圧、つまりトランジスタ1408が 電流 I を流すことが出来るだけの電圧(V。5)になる まで電荷の蓄積が続く。やがて電荷の蓄積が終了する と、トランジスタ1408には、電流 I....が流れ続け 40 る。以上で信号の書き込み動作が完了する。最後に第1 の走査線1402および第2の走査線1403の選択が 終了し、トランジスタ1406、1407がオフする。 【0014】続いて、発光動作に移る。第3の走査線1 404にパルスが入力され、トランジスタ1409がオ ンする。容量素子1410には、先ほど書き込んだV_c, が保持されているため、トランジスタ1408はオンし ており、電源線1405から、電流が流れる。これによ り発光素子1411が発光する。このとき、トランジス タ1408が飽和領域において動作するようにしておけ 50 る。

【0018】本発明は上記の問題点を鑑みてなされたも のである。そこで本発明は電流源回路の各電流源におけ るトランジスタ特性のパラツキの影響を抑制し、トラン ジスタの特性に左右されない、半導体集積回路及び半導 体集積回路の駆動方法を提供する。また、本発明の半導 体集積回路を備えた駆動回路部と画素部を備えた発光装 置を提供する。特に、本発明の半導体集積回路を駆動回 路部の信号線駆動回路に適応した、マトリクス状に複数 の画素が配置され、各画素にスイッチング素子及び発光 素子が配置されたアクティブマトリクス型の発光装置を 提供する。また、本発明は画素部と駆動回路部との素子 をポリシリコン薄膜トランジスタで形成し、画素部と駆 動回路部とが同一基板上に一体形成された発光装置を提 供する。

【0019】なお、電流源回路は1以上の電流源からな り、電流源は1以上のトランジスタを有する。また、一 定の電流を供給する電流源を定電流源と呼ぶこともあ

[0020]

【課題を解決するための手段】本発明の半導体集積回路 は、信号線と、前記信号線へ入力される電流を出力する 電流源回路と、前記信号線に接続される電流源回路を一 定期間ごとに切り換える手段(以下、単に切り換え手段 という。この切り換え手段はスイッチング機能を有する 回路を複数有して構成しているため、切り換え回路とも いう。)と、を有することを特徴とする。

【0021】本発明の切り換え手段により、電流源回路 から出力される電流がばらついていても、信号線に接続 10 表示にバラツキのない発光装置を提供する。 される電流源回路が切り換わり、それにともない信号線 へ入力される電流が一定期間ごとに切り換わるため、発 光素子に流れる電流、つまり輝度が時間的に均一化され たように見え、表示ムラを解消することができ、トラン ジスタの特性のパラツキに左右されない発光装置を提供 できる。

【発明の実施の形態】 (実施の形態)

【0022】本発明の半導体集積回路である信号線駆動 回路の概略について図6を用いて説明する。図6ではわ かりやすくするため、電流源回路のうち3つの電流源C 20 $= 1 \sim n$)を満たす F_{\bullet} (N)番目の電流源、 F_{\bullet} (N) (i)、C(i+1)、C(i+2)と画素へ電流を供 給する信号線S(m)に着目して説明する。電流源C (i)、C(i+1)、C(i+2)と信号線S(m) とは切り換え手段を介して接続される。この切り換え手 段により3つの電流源C(i)~C(i+2)から供給 される電流 I (i) ~ I (i+2) を一定期間毎に切り 換えて、信号線S(m)へ入力することを特徴とする。 【0023】次に切り換え手段について説明する。図7 には切り換え手段の構成が記載されている。電流源C

(i)、I(i+1)、I(i+2)が流れる特性を有 している。そして電流源C(i)、C(i+1)、C (i+2)は、スイッチを介して信号線S(m)に接続 できるように設けられている。スイッチには信号が入力 され、この信号に応じて、スイッチは信号線S(m)が 電流源C(i)、C(i+1)、C(i+2)のいずれ かと接続するように切り換わる機能を有する。

【0024】このスイッチが電流源C(i)に接続され ると、信号線S(m)へ電流I(i)が流れる。またス イッチが電流源C(i+1)に接続されると、信号線S 40 (m) へ電流 I(i+1) が流れる。そしてスイッチが 電流源C(i+2)に接続されると、信号線S(m)へ 電流 I (i+2) が流れる。すなわち、信号線 S (m) へ流れる電流は、I (i)、I (i+1)、I (i+ 2) が切り換わり流れるのである。

【0025】図6及び図7で説明した例は、わかりやす くするため信号線1つに着目しているが、実際の信号線 は以下の実施例に示すように複数設けられる。図7の切 り換え手段のスイッチは端子を有するように記載される が、実際は以下の実施例に示すようにアナログスイッチ 50 においで電流源を共有することができる。

等の回路によりスイッチング機能を持たせる。

【0026】本発明は、この一定期間内において切り換 わる期間が非常に短いため、電流源の特性のちがい、つ まり電流源から供給される電流がばらついても、人間の 目には表示が均一化してみえる。

【0027】よって、本発明は上記のような切り換え手 段により、トランジスタの特性に左右されない電流源回 路を備えた半導体集積回路を得ることができる。そし て、所望の信号電流を発光素子に供給することができ、

【0028】また、関数をもちいて本発明を一般化する と、m本の信号線S₁、S₂、・・・、S₂と、i個の電 流源 C_1 、 C_2 、・・・、 C_1 とを有する電流源回路と、 n個の切り換えユニットU,、U,、・・・、U。を含む 切り換え手段とを有する半導体集積回路であって、前記 n個の切り換えユニットはそれぞれ前記 i 個の電流源の うちう個の電流源と接続され、M番目の前記信号線Sa はN番目の前記切り換えユニットU、と接続され、前記 切り換えユニットU_kは関数 $F_k(x)(k=1~j)$ 、x番目の電流源、F, (N)番目の電流源、・・・、F ; (N)番目の電流源と接続される構成を特徴とする。 【0029】また本発明は、m本の信号線 S₁、S₂、・ ・・、S.と、i個の電流源C₁、C₂、・・・、C₁とを 有する電流源回路と、n個の切り換えユニットU、 U₁、・・・、U_aを含む切り換え手段とを有する半導体 集積回路であって、前記n個の切り換えユニットはそれ ぞれ前記i個の電流源のうちj個の電流源と接続され、 M番目の前記信号線S』はN番目の前記切り換えユニッ (i)、C(i+1)、C(i+2) はそれぞれ電流 I 30 トリ,と接続され、前記切り換えユニットU,は関数F、 (x) $(k=1\sim j, x=1\sim n)$ を満たす F_{i} (N)番目の電流源、F, (N)番目の電流源、F, (N)番目 の電流源、・・・、F_i(N)番目の電流源と接続さ れ、(M-1)番目の前記信号線S₁₋₁は(N-1)番 目の前記切り換えユニットU、、と接続され、前記切り 換えユニット U_{k-1} は前記関数を満たす F_{k-1} (N-1)番 目の電流源、F, (N-1)番目の電流源、F, (N-1)番目の電流源、・・・、F; (N-1)番目の電流 源と接続される構成を特徴とする。

【0030】また本発明は、隣り合う切り換えユニット において電流源を共有できる。これを上記関数を用いて 表すと、例えばi=3を満たすとき、電流源はF3 (N) = F2(N+1) = F1(N+2) rbs. fわち隣り合う切り換えユニットのN番目、N+1番目、 N+2番目においで電流源を共有することができる。別 の例としてi=5を満たすとき、電流源はF5(N)= F4 (N+1) = F3 (N+2) = F4 (N+3) = F5 (N+4) であり、隣り合う切り換えユニットのN番 目、N+1番目、N+2番目、N+3番目、N+4番目

【0031】このように、本発明は各切り換えユニットにおいて電流源を共有することができるため、ある信号線と隣接する信号線とで境界が生じず、すべての信号線が同じように平均化される。結果、表示画面のいずれの部分においても境界が生じず、表示のスジや輝度ムラのない発光装置を提供できる。

【0032】なお、本発明は半導体集積回路に用いられる素子の特性のバラツキを解決するものであり、ポリシと接続すること リコントランジスタ以外の素子であっても、素子特性のバラツキを制御することが望まれる素子、例えば単結晶 10 ことができる。シリコントランジスタであっても同様の効果を得られる。 「0039】 何る。 する信号が入力

【実施例】 (実施例1)

【0033】本実施例では、本発明の半導体集積回路を 駆動回路部の信号線駆動回路に適応し、信号線駆動回路 に具備される電流源回路の構成及び駆動方法について、 具体的に説明する。

【0034】本発明の具体例を図1に示す。本実施例は 電流源がNチャネル型のトランジスタから構成される例 で説明する。また、トランジスタの極性はnチャネル 型、pチャネル型どちらでもよく、一般的に画素の極性 により決定される。つまり、画素から電流源回路の方へ 電流が流れる場合の極性はN型、電流源回路から画素の 方へ流れる場合の極性はP型、が望ましい。なぜなら、 トランジスタのソース電位が固定されている方が便利だ からである。

【0035】図1をみると、電流源C(i)~C(i+5)を構成するトランジスタTr(i)~Tr(i+5)と、切り換え手段と、信号線S(m)~S(m+5)と、を有する。トランジスタTr(i)~Tr(i 30+5)のゲート電極は電流制御線へ接続され、Nチャネル型であるのでソース電極がVssに接続されている。この電流制御線に加える電圧により電流値を制御する。
【0036】ここでは簡単のため、Tr(i)~Tr(i+5)のゲート電極には同じ電流制御線が接続されているが、トランジスタごとに電流制御線を設け、電流制御線の電圧を変え、トランジスタごとに電流値を変えてもよい。但しこの場合は、各トランジスタの電流の出

【0037】このときトランジスタTr(i)~Tr(i + 5)の特性が揃っていれば電流 I (i) ~I (i + 5)の値は等しい。しかし実際は、トランジスタTr(i)~Tr(i + 5)の特性のパラツキは大きく、電流 I (i) ~I (i + 5)の値もばらついてしまう。しかし本発明の切り換え手段により、信号線へ入力される電流 I (i) ~I (i + 5)を一定期間ごとに選択し切り換えることができる。そのため、発光素子に流れる電流も、一定期間ごとに切り換わることになる。結果として、人間の目には時間的に均一化された発光を見ること

力先が切り換わるので、それにあわせて各電流制御線に

加える電圧も切り換えておく必要がある。

となり輝度むらは減少する。

【0038】次に図2にアナログスイッチ(またはトランスファーゲイトともいう)を備えた切り換え手段の構成を示す。なお、図2において、図1と同じ部分は同じ符号を用いて示す。トランジスタ線 $Tr(i) \sim Tr(i+5)$ のドレイン電極は信号線 $S(m) \sim S(m+5)$ と接続する。ただし、1つの信号線は3つの電流源と接続することができるようになっている。つまりスイッチング機能により3つの電流源のいずれかを選択することができる。

10

【0039】例えば、スイッチング機能に端子1を選択する信号が入力されると、信号線S(m+1)は電流源C(i)と接続され、信号線S(m+2)は電流源C(i+1)と接続され、以下同様に信号線と電流源とが接続される。次にスイッチング機能に端子2を選択する信号が入力されると、信号線S(m+1)は電流源C(i+1)と接続され、以下同様に信号線と電流源とが接続される。その次に、スイッチング機能に端子3を選20 択する信号が入力されると、信号線S(m+1)は電流源C(i+2)と接続され、信号線S(m+2)は電流源C(i+2)と接続され、以下同様に信号線と電流源とが接続される。

【0040】この接続を上記本発明の接続を一般化するため関数を用いて表すと、i=3 であるとき、前記電流源はF1(N)=N+a、F2(N)=N+b、F3(N)=N+c、(但しa、b、c は整数でありかつ $a \ne b \ne c$) を満たすように設定され、a=-1、b=0、c=1 であると表すことができる。

【0041】上記したように、1つの信号線に3つの電流源からの電流が切り換わることで、表示のバラツキを抑えることができる。

【0042】図3には、スイッチング機能を有する切り換え手段にアナログスイッチを用いた具体的な例を説明する。なお、図3において、図2と同じ部分は同じ符号を用いて示しており、電流源C(i) \sim C(i+5) はトランジスタTr(i) \sim T r(i+5) を有している

【0043】図3に示す $A(1)\sim A(1+2)$ 、A40 (1) $b\sim A(1+2)$ bは配線であり、複数のアナログスイッチと接続される。これらのアナログスイッチは 1つの信号線に接続される群(これを切り換え切り換えユニットという)を形成している。図3をみるとアナログスイッチを3つ有する切り換えユニットU $(n)\sim U(n+5)$ は、それぞれ信号線 $S(m)\sim S(m+5)$ に接続される。この切り換えユニットが複数集まり切り換え手段を構成している。

り換えることができる。そのため、発光素子に流れる電 【0044】ここで電流源 C(i+1) をみると、トラ流も、一定期間ごとに切り換わることになる。結果とし ンジスタTr(i+1) のドレイン電極は切り換えユニ C 、人間の目には時間的に均一化された発光を見ること 50 ットU(n+1) の1つのアナログスイッチと、切り換

12

えユニットU(n)の1つのアナログスイッチと、切り 換えユニットU(n+2)の1つのアナログスイッチ と、に接続される。すなわちトランジスタのドレイン電 極は3つ切り換え切り換えユニットの1つのアナログス イッチと接続される。同様に電流源C(i)、C(i+ 2), C(i+3), C(i+4), C(i+5) 67 れぞれのアナログスイッチに接続される。

【0045】そして配線A(1)とA(1) bとに信号 が入力されると、接続されるアナログスイッチが選択さ れ導通状態となる。そして、該選択されたアナログスイ 10 る。 ッチと接続する電流源C(i+1)から信号線S(m+ 2) へ電流が流れる。同様に各電流源C(i+1)、C (i+3), C(i+4), C(i+5), C(i+6) からそれぞれ信号線S(m)、S(m+2)、S (m+3)、S (m+4)、S (m+5) へ電流が流れ る。これを選択(1)と記す。

【0046】次に配線A(1+1)とA(1+1)bと に信号が入力されると、接続されるアナログスイッチが 選択され導通状態となる。そして、該選択されたアナロ (m+1)へ電流が流れる。同様に各電流源C(i+ 1), C(i+3), C(i+4), C(i+5), C(i+6) からそれぞれ信号線S(m+1)、S(m+ 3)、S (m+4)、S (m+5)、S (m+6) へ電 流が流れる。また、電流源C(i+6)は記載されない が、電流源C(i+5)の右隣の電流源である。これを 選択(2)と記す。

【0047】次に配線A(1+2)とA(1+2)bと に信号が入力されると、接続されるアナログスイッチが グスイッチと接続する電流源C(i+1)から信号線S (m) へ電流が流れる。同様に各電流源C(i+1)、 C(i+3), C(i+4), C(i+5), C(i+5)6) からそれぞれ信号線S (m-1)、S (m+1)、 S (m+2)、S (m+3)、S (m+4) へ電流が流 れる。また、信号線S (m-1) は記載されないが、信 号線S(m)の左隣の信号線である。これを選択(3) と記す。

【0048】この選択(1)~選択(3)を一定期間ご 5) から信号線S (m) ~S (m+5) に入力される電 流がばらついていても、表示は均一化してみえる。

【0049】ここで本発明の信号線駆動回路の切り換え る期間について、図4のタイミングチャートを示して説 明する。図4のF1~F3はフレーム期間であり、発光 装置が1画像を表示する期間を示すものである。なお1 フレーム期間は、通常、人間の目がちらつきを感じない 様に、1/60秒程度に設定されている。またA(1) ~A (1+2) 及びA (1) b~A (1+2) bは、配 線A(1)~A(1+2)及び配線A(1)b~A(1 50 3ビットのデジタルビデオ信号に対して、8階調のアナ

+2) bに入力される信号の電位を示す。

【0050】第1のフレーム期間F1に設けられるA (1) に入力される信号の電位がHigh (H) で、か つA(1) bに入力される信号の電位がLow(L)で ある切り換え期間では、配線A(1)及びA(1) bに 接続されるアナログスイッチが導通状態となり、該導通 されたアナログスイッチと接続するトランジスタからの 電流が信号線へ入力される。そのため、導通状態となる アナログスイッチは各切り換えユニットに1つだけであ

【0051】第2のフレーム期間F2に設けられるA (1+1) に入力される信号の電位がHigh (H) で、かつA (1+1) bに入力される信号の電位がLo w (L) である切り換え期間では、配線A (1+1) 及 びA(1+1)bに接続されるアナログスイッチが導通 状態となり、該導通されたアナログスイッチと接続する トランジスタからの電流が信号線へ入力される。

【0052】第3のフレーム期間F3に設けられるA (1+2) に入力される信号の電位がHigh (H) グスイッチと接続する電流源C (i+1) から信号線S 20 で、かつA (l+2) bに入力される信号の電位がL ow (L) である切り換え期間では、配線A (1+2) 及 びA(1+2)bに接続されるアナログスイッチが導通 状態となり、該導通されたアナログスイッチと接続する トランジスタからの電流が信号線へ入力される。

> 【0053】このフレーム期間F1~F3を繰り返すこ とにより、切り換え手段は信号線S(m)~S(m+ 5) に流れる電流を順に切り換えることができる。

【0054】本実施例では、N型トランジスタを有する 電流源に接続される電源線をVssとして、電流が画素 選択され導通状態となる。そして、該選択されたアナロ 30 からVssへ流れる構成を説明したが、上述したように 画素の極性によってトランジスタの極性を設定すればよ い。従って、画素へ電流が流れる構成の場合は、電源線 をVddとし、電流源のトランジスタをP型の導電型と すればよい。

> 【0055】次に、電流源にDA変換機能を持たせた場 合について説明する。例えば3ビットのデジタルビデオ 信号に対して、8階調のアナログ値を持つ電流を出力す る場合で説明する。

【0056】図5は、上記のような電流源回路の具体的 とで繰り返すことにより、電流源 (i) ~電流源 (i+ 40 な回路構成を示している。図5に示すように、電流源は それぞれ3つのトランジスタTrl(i)、Tr2 (i)、Tr3(i)を有している。そして3つのトラ ンジスタTr1(i)、Tr2(i)、Tr3(i)の W (ゲート幅) /L (ゲート長) は=1:2:4として おけば、同じゲート電圧が加わっている場合、トランジ スタTrl(i)、Tr2(i)、Tr3(i)を流れ る電流は1:2:4となる。つまり電流源から供給され る電流は1:2:4となり、2'=8段階で電流の大き さを制御することができる。そうすると電流源回路は、

ログ値を持つ電流を出力することが出来る。

【0057】なお、トランジスタTr1(i)、Tr2 (i)、Tr3(i)のうちのどれがオン状態になり、 どれがオフ状態になるかは各ゲートに加える電圧を制御 すればよい。それにより、電流源C(i)~C(i+ 5) が出力する電流値を制御することができる。ただ し、切り換え手段により、電流源C(i)~C(i+ 5) の電流がそれぞれ、S (m) ~S (m+5) のどれ に入力されるかはかわってくる。従ってそれにあわせ て、電流源C(i)~C(i+5)のトランジスタTr 10 たすと表すことができる。 1 (i)、Tr2 (i)、Tr3 (i)に加える電圧も 切り換えておく必要がある。

【0058】このように電流源にDA変換機能を持たせ ることにより、髙精度な階調表示を行うことができる。 また、ビット数は実施者が適宜設定すれば良く、そのビ ット数に応じてトランジスタを設計すればよい。

【0059】上述した本発明の信号線駆動回路を用いた 発光装置では、画素の表示ムラが視覚的に低減された、 均一で表示ムラのない表示を提供する発光装置を得るこ とができる。外付け回路を用いて信号線に入力する場合 20 においても、本発明を外付け回路に適用することによ り、均一で表示ムラのない画素を提供することができ る。

【0060】また、信号線駆動回路の半導体素子をポリ シリコントランジスタで形成する場合、画素部の半導体 素子にポリシリコントランジスタをもちいることができ るため、同一基板上に画素部と信号線駆動回路を備えた 周辺回路部とを一体形成することができ、小型化・軽量 化を達成できる。更に同一基板上に画素部と周辺回路部 とを一体形成することにより外付け回路を付ける必要が 30 ない。よって、信号線と外付け回路とを接続時の、複雑 な工程や不良を省き、信頼性が向上される。

【0061】 (実施例2)

【0062】なお、本発明の信号線と電流源との接続 は、1つの信号線に対して電流源が2つ以上であれば、 電流源(電流源の列)の数は非対称であっても、電流源 (電流源の列番号) が非対称の位置にあってもよく、信 号線へ流れる電流を切り換えることにより、表示が均一 化したようにみえる。本実施例では、切り換え手段の切 示する。

【0063】図8には、電流源C(i)~C(i+5) と信号線 $S(m) \sim S(m+5)$ とが切り換え手段を介 して接続される。この切り換え手段は電流源からの電流 を切り換える機能を持っていればよく、図の煩雑さを避 けるため、この切り換える機能を模式的に表す3つの端 子とスイッチング機能を有する構成で記載する。

【0064】例えば信号線S(m+2)をみると、電流 源C(i+2)、C(i+3)、C(i+4) のいずれ 流源とその右隣2つの電流源とに接続することができ る。同様な規則で、信号線S(m)、S(m+1)、S (m+3)、S(m+4)、S(m+5)と信号線とが 接続される。

14

【0065】この接続を上記本発明の接続を一般化する ため関数を用いて表すと、i=3であるとき、前記電流 源はF1(N)=N+a、F2(N)=N+b、F3 (N) = N + c、(但しa、b、cは整数でありかつa $\pm b \pm c$) を満たし、a=-2、b=-1、c=0を満

【0066】また本発明の電流源と信号線との接続関係 は、最も近い位置、すなわち列にある電流源と信号線と を接続する必要はなく、離れた位置にある電流源と信号 線と接続する構成でも構わない。その例として、図9に 示す接続構成を説明する。

【0067】図9には、電流源C(i)~C(i+6) と信号線S(m)~S(m+6)とが切り換え手段を介 して接続される。この切り換え手段も同様に3つの端子 とスイッチを有する構成で記載する。

【0068】例えば信号線S(m+2)をみると、電流 源C(i)、C(i+2)、C(i+4) のいずれかと 接続することができる。つまり信号線は最も近い電流源 とその1つ間をあけた両隣の2本の電流源とに接続する ことができる。同様な規則で、信号線S(m)、S(m +1), S (m+3), S (m+4), S (m+5), S(m+6)と電流源とが接続される。

【0069】この接続を上記本発明の接続を一般化する ため関数を用いて表すと、 i = 3 であるとき、前記電流 源はF1 (N) =N+a、F2 (N) =N+b、F3(N) = N+c、(但しa、b、cは整数でありかつa **≠**b≠c)を満たし、a=-2、b=0、c=-2を満 たすと表すことができる。

【0070】また、本発明の電流源と信号線との接続関 係は、信号線が接続する電流源は3つに限るものではな い。図10には一つの切り換えユニットにおいて、電流 源が5本接続される例を示す。

【0071】図10には、電流源C(i)~C(i+ 6) と信号線S(m)~S(m+6) とが切り換え手段 を介して接続される。この切り換え手段における切り換 り換えユニットと、信号線と、電流源との接続構成を例 40 えユニットも同様に5つの端子とスイッチを有する構成 で記載する。

> 【0072】例えば信号線S(m+2)をみると、電流 源C (i)、C (i+1)、C (i+2)、C (i+3)、C(i+4)のいずれかと接続することができ る。つまり信号線は最も近い電流源と両隣の2本ずつの 電流源とに接続することができる。同様な規則で、信号 線S(m)、S(m+1)、S(m+3)、S(m+4)、S(m+5)と電流源とが接続される。

【0073】この接続を上記本発明の接続を一般化する かと接続することができる。つまり信号線は最も近い電 50 ため関数を用いて表すと、i=5であるとき、前記電流

16

源はF1(N)=N+a、F2(N)=N+b、F3 (N) = N + c, F4 (N) = N + d, F5 (N) = N+e、(但しa、b、c、d、eは整数でありかつa≠ $b \neq c \neq d \neq e$) を満たし、a = -2、b = -1、c =0、d=1、e=2を満たすと表すことができる。

【0074】図10のように1つの信号線に対して接続 できる電流源が多いほど、表示は均一化してみえ、バラ ツキを抑えることができる。

【0075】なお、本実施例は実施例1に記載したアナ ログスイッチを用いて電流源を切り換える方法とによ り、信号線へ流れる電流を切り換えることができる。ま た、電流源にDA変換機能を持たせた場合も実施例1を 参考にすればよい。

【0076】以上のように、本発明の信号線と電流源と の接続は、1つの信号線に対して電流源が2つ以上であ れば、非対称の数、非対称の位置にあってもよく、信号 線へ流れる電流が切り換わればよい。

【0077】なお、本実施例は実施例1に記載の切り換 え手段と組み合わせて用いることができる。

(実施例3)

【0078】本実施例では、1フレーム期間(入力され るビデオ信号の同期タイミングに対応する単位フレーム 期間内)をサプフレーム期間毎に分割して階調を表示さ せる(時間階調駆動表示という)場合に、本発明を適応 する例を示す。

【0079】まず時間階調駆動表示について説明する。 デジタルのビデオ信号を用いた時間階調の駆動方法(デ ジタル駆動法)の場合、1フレーム期間中に書き込み期 間Taと表示期間(点灯期間ともいう)Tsとが繰り返 ある。

【0080】例えばnビットのビデオ信号によって画像 を表示する場合、少なくともn個の書き込み期間と、n 個の表示期間とが1フレーム期間内に設けられる。n個 の書き込み期間と、n個の表示期間は、ビデオ信号の各 ビットに対応している。

【0081】図11(A)に示すように書き込み期間T am (mは1~nの任意の数)の次には、同じピット数 に対応する表示期間、この場合Tsmが出現する。書き 込み期間Taと表示期間Tsとを合わせてサブフレーム 40 期間SFと呼ぶ。mビット目に対応している書き込み期 間Tamと表示期間Tsmとを有するサブフレーム期間 はSFmとなる。表示期間Tsl~Tsnの長さは、T $s 1 : T s 2 : \cdots : T s n = 2^{\circ} : 2^{\prime} : \cdots : 2^{(n-1)} \varepsilon$ 満たす。

【0082】各サブフレーム期間において、発光素子を 発光させるかさせないかを、デジタルのビデオ信号の各 ビットによって選択される。そして、1フレーム期間中 における発光する表示期間の長さの和を制御すること で、階調数を制御することができる。

【0083】なお、表示上での画質向上のため、表示期 間の長いサプフレーム期間を、幾つかに分割しても良 い。具体的な分割の仕方については、特願2000-2 67164号において開示されているので、参照するこ とができる。

【0084】本実施例は、このサプフレーム期間の表示 期間において、電流源から信号線へ流れる電流を切り換 えることが望ましい。書き込み期間で切り換えると、入 力された電流、つまり発光素子を発光させるかさせない 10 か上手く情報が伝わらない場合もあるからである。この ような短い期間ごとに切り換えることにより、更に発光 素子の輝度のパラツキが抑えられ、表示の均一性が向上 する。

【0085】具体的に3ピットの場合を図11(B)に 示す。図11(B)をみると1フレーム期間にサブフレ ーム期間、SF1、SF2、SF3を有し、各サプフレ ームSF1、SF2、SF3は、書き込み期間Ta1、 Ta2、Ta3と表示期間Ts1、Ts2、Ts3有し ている。そして、電流源を切り換える期間(以下、単に 20 切り換え期間という。) 1~3が表示期間Ts1~Ts 3に設けられている。この切り換え期間1~3に、信号 線に入力される電流を切り換えることによって、短い期 間ごとに切り換えることができ、表示がより均一化した ように見える。

【0086】図11(B)では切り換え期間1~3はい ずれも書き込み期間の直前にあるように記載されている が、表示期間の間であれば、どこに切り換え期間を設け ても良い。

【0087】図11(C)にアナログスイッチの入力す し出現することで、1つの画像を表示することが可能で 30 る信号のタイミングチャートを示す。1フレーム目のS F1ではA1がオン、SF2ではA2がオン、SF3で はA3がオンになっており、2フレーム目のSF1では A2がオン、SF2ではA3がオン、SF3ではA1が オンとなっている。図11 (C) には記載しないが、同 様に3フレーム目では、SF1ではA3、SF2ではA 1、SF3ではA2がオンとなる。

> 【0088】サプフレーム期間SF1からSF3におい て、A1からA3のオン状態を固定(1フレーム目から 3フレーム目の、SF1では全部A1がオン、SF2で は全部A2がオン、SF3では全部A3がオン)してし まうと、バラツキの均一化が十分ではなくなる。そのた め本実施例のように、サブフレーム期間ごとに切り換え て、かつフレーム期間毎にも切り換えることが望まし 41

【0089】本実施例は一例であり、どのサプフレーム 期間にどの信号を入力するかは適宜設定すればよい。ま た、具体的な信号の入力方法は図4を参照すればよい。 【0090】階調表示を高くするために実施例1で説明 したDA変換機能を有する電流源とあわせて用いること 50 は好ましく、本実施例は実施例1及び2に記載の発明と

組み合わせて用いることができる。

【0091】 (実施例4) 本実施例では、本発明の発光 装置の構成について図12を用いて説明する。

【0092】本発明の発光装置は、基板401上に、複 数の画素がマトリクス状に配置された画素部402を有 し、画素部402の周辺には、本発明の信号線駆動回路 1203、第1の走査線駆動回路404及び第2の走査 線駆動回路405を有する。図12(A)においては、 信号線駆動回路1203と、2組の走査線駆動回路40 4、405を有しているが、本発明はこれに限定され ず、画素の構成に応じて任意に設計することができる。 また信号線駆動回路1203と、第1の走査線駆動回路 404及び第2の走査線駆動回路405には、FPC4 06を介して外部より信号が供給される。

【0093】第1の走査線駆動回路404及び第2の走 査線駆動回路405の構成について図12(B)を用い て説明する。第1の走査線駆動回路404及び第2の走 査線駆動回路405は、シフトレジスタ407、パッフ ァ408を有する。動作を簡単に説明すると、シフトレ ジスタ407は、クロック信号 (G-CLK)、スタートパ 20 ルス(S-SP)及びクロック反転信号(G-CLKb)に従っ て、順次サンプリングパルスを出力する。その後パッフ ァ408で増幅されたサンプリングパルスは、走査線に 入力されて1行ずつ選択状態にしていく。そして選択さ れた走査線によって、制御される画素には、順に信号線 から信号電流 I dataが書き込まれる。

【0094】なおシフトレジスタ407と、バッファ4 08の間にはレベルシフタ回路を配置した構成にしても よい。レベルシフタ回路を配置することによって、電圧 振幅を大きくすることが出来る。

【0095】信号線駆動回路1203の構成については 以下に後述する。また本実施例は、実施例1、2、3と 任意に組み合わせることが可能である。

【0096】また、本発明の信号線駆動回路に設けられ る電流源の配置は一直線になっていなくてもよく、信号 線駆動回路内でずれて配置されていてもよい。さらに、 信号線駆動回路が画素部と対称に2つ設けられていても 良い。すなわち本発明は、切り換え手段を介して電流源 と信号線と接続されればよく、電流源の配置には限定さ れない。

【0097】 (実施例5) 本実施例では、図13 (A) に示した信号線駆動回路1203の構成とその動作につ いて説明する。本実施例では、1ビットのデジタル階調 表示を行う場合に用いる信号線駆動回路1203につい て図13を用いて説明する。

【0098】図13(A)には、1ピットのデジタル階 調表示を行う場合における信号線駆動回路1203の概 略図を示す。信号線駆動回路1203は、シフトレジス タ1211、第1のラッチ回路1212、第2のラッチ

トレジスタ1211、第1のラッチ回路1212、第2 のラッチ回路1213は図1で示したビデオ信号用スイ ッチとして機能する。

18

【0099】動作を簡単に説明するとシフトレジスタ1 211は、フリップフロップ回路(FF) 等を複数列用い て構成され、クロック信号 (S-CLK) 、スタートパルス (S-SP)、クロック反転信号(S-CLKb)が入力される。 これらの信号のタイミングに従って、順次サンプリング パルスが出力される。

【0100】シフトレジスタ1211より出力されたサ ンプリングパルスは、第1のラッチ回路1212に入力 される。第1のラッチ回路1212には、デジタルビデ オ信号が入力されており、サンプリングパルスが入力さ れるタイミングに従って、各列でビデオ信号を保持して

【0101】第1のラッチ回路1212において、最終 列までピデオ信号の保持が完了すると、水平帰線期間中 に、第2のラッチ回路1213にラッチパルスが入力さ れ、第1のラッチ回路1212に保持されていたビデオ 信号は、一斉に第2のラッチ回路1213に転送され る。すると、第2のラッチ回路1213に保持されたピ デオ信号は、1行分が同時にピデオ用スイッチへと入力 されることになる。このピデオ用スイッチをオン・オフ させることにより、画素への信号を入力するか否かを制 御し、階調を表現する。

【0102】第2のラッチ回路1213に保持されたビ デオ信号が定電流回路1214に入力されている間、シ フトレジスタ1211においては再びサンプリングパル スが出力される。以後この動作を繰り返し、1フレーム 30 分のビデオ信号の処理を行う。

【0103】また定電流回路1214は、電流源回路を 複数列用いて構成される。図13(B)には、シフトレ ジスタ1211、第1のラッチ回路1212、第2のラ ッチ回路1213の具体的な回路を示している。

【0104】また本実施例は、実施例1、2、3に記載 の発明と任意に組み合わせることが可能である。

【0105】(実施例6)

【0106】本発明の発光装置を用いた電子機器とし て、ビデオカメラ、デジタルカメラ、ゴーグル型ディス 40 プレイ(ヘッドマウントディスプレイ)、ナビゲーショ ンシステム、音響再生装置(カーオーディオ、オーディ オコンポ等)、ノート型パーソナルコンピュータ、ゲー ム機器、携帯情報端末(モバイルコンピュータ、携帯電 話、携帯型ゲーム機または電子書籍等)、記録媒体を備 えた画像再生装置(具体的にはDigital Versatile Disc (DVD) 等の記録媒体を再生し、その画像を表示しう るディスプレイを備えた装置)などが挙げられる。特 に、斜め方向から画面を見る機会が多い携帯情報端末 は、視野角の広さが重要視されるため、発光装置を用い 回路1213、定電流回路1214を有する。このシフ 50 ることが望ましい。それら電子機器の具体例を図15に 示す。

【0107】図15 (A) は発光装置であり、筺体20 01、支持台2002、表示部2003、スピーカー部 2004、ピデオ入力端子2005等を含む。本発明の 発光装置は表示部2003に用いることができる。また 本発明により、図15(A)に示す発光装置が完成され る。発光装置は自発光型であるためパックライトが必要 なく、液晶ディスプレイよりも薄い表示部とすることが できる。なお、発光装置は、パソコン用、TV放送受信 れる。

19

【0108】図15 (B) はデジタルスチルカメラであ り、本体2101、表示部2102、受像部2103、 操作キー2104、外部接続ポート2105、シャッタ -2106等を含む。本発明の発光装置は表示部210 2に用いることができる。また本発明により、図15 (B) に示すデジタルスチルカメラが完成される。

【0109】図15 (C) はノート型パーソナルコンピ ュータであり、本体2201、筐体2202、表示部2 203、キーボード2204、外部接続ポート220 5、ポインティングマウス2206等を含む。本発明の 発光装置は表示部2203に用いることができる。また 本発明により、図15 (C) に示す発光装置が完成され る。

【0110】図15 (D) はモバイルコンピュータであ り、本体2301、表示部2302、スイッチ230 3、操作キー2304、赤外線ポート2305等を含 む。本発明の発光装置は表示部2302に用いることが できる。また本発明により、図15 (D) に示すモバイ ルコンピュータが完成される。

【0111】図15 (E) は記録媒体を備えた携帯型の 画像再生装置(具体的にはDVD再生装置)であり、本 体2401、筐体2402、表示部A2403、表示部 B2404、記録媒体(DVD等) 読み込み部240 5、操作キー2406、スピーカー部2407等を含 む。表示部A2403は主として画像情報を表示し、表 示部 B 2 4 0 4 は主として文字情報を表示するが、本発 明の発光装置はこれら表示部A、B2403、2404 に用いることができる。なお、記録媒体を備えた画像再 明により、図15(E)に示すDVD再生装置が完成さ れる。

【0112】図15 (F) はゴーグル型ディスプレイ (ヘッドマウントディスプレイ)であり、本体250 1、表示部2502、アーム部2503を含む。本発明 の発光装置は表示部2502に用いることができる。ま た本発明により、図15(F)に示すゴーグル型ディス プレイが完成される。

【0113】図15(G)はビデオカメラであり、本体 2601、表示部2602、筐体2603、外部接続ポ 50 ート2604、リモコン受信部2605、受像部260 6、パッテリー2607、音声入力部2608、操作キ -2609等を含む。本発明の発光装置は表示部260 2に用いることができる。また本発明により、図15 (G) に示すビデオカメラが完成される。

【0114】ここで図15 (H) は携帯電話であり、本 体2701、筐体2702、表示部2703、音声入力 部2704、音声出力部2705、操作キー2706、 外部接続ポート2707、アンテナ2708等を含む。 用、広告表示用などの全ての情報表示用発光装置が含ま 10 本発明の発光装置は表示部2703に用いることができ る。なお、表示部2703は黒色の背景に白色の文字を 表示することで携帯電話の消費電流を抑えることができ る。また本発明により、図15 (H) に示す携帯電話が 完成される。

> 【0115】なお、将来的に発光材料の発光輝度が高く なれば、出力した画像情報を含む光をレンズ等で拡大投 影してフロント型若しくはリア型のプロジェクターに用 いることも可能となる。

【0116】また、上記電子機器はインターネットやC 20 ATV (ケーブルテレビ) などの電子通信回線を通じて 配信された情報を表示することが多くなり、特に動画情 報を表示する機会が増してきている。発光材料の応答速 度は非常に高いため、発光装置は動画表示に好ましい。 【0117】また、発光装置は発光している部分が電力 を消費するため、発光部分が極力少なくなるように情報 を表示することが望ましい。従って、携帯情報端末、特 に携帯電話や音響再生装置のような文字情報を主とする 表示部に発光装置を用いる場合には、非発光部分を背景 として文字情報を発光部分で形成するように駆動するこ 30 とが望ましい。

【0118】以上の様に、本発明の適用範囲は極めて広 く、あらゆる分野の電子機器に用いることが可能であ る。また本実施例の電子機器は、実施例1~実施例5に 示したいずれの構成の信号線駆動回路を用いることがで

【発明の効果】本発明により、電流源回路におけるトラ ンジスタ特性のバラツキの影響を抑制し、トランジスタ の特性に左右されない、半導体集積回路及び半導体集積 回路の駆動方法を提供することができる。また、本発明 生装置には家庭用ゲーム機器なども含まれる。また本発 40 の半導体集積回路を備えた駆動回路部と画素部を備えた 発光装置を提供することができる。特に、本発明の半導 体集積回路を駆動回路部の信号線駆動回路に適応した、 マトリクス状に複数の画素が配置され、各画素にスイッ チング素子及び発光素子が配置されたアクティブマトリ クス型の発光装置を提供することができる。また、本発 明は画素部と駆動回路部との素子をポリシリコン薄膜ト ランジスタで形成し、画素部と駆動回路部とが同一基板 上に一体形成された発光装置を提供することができる。

【図面の簡単な説明】

[0119]

21

【図1】

【図3】

【図6】

【図7】

ートを示す図。【図5】 4

構成を示す図。

2.1		22
本発明の半導体集積回路の構成を示す図。	【図9】	本発明の半導体集積回路の構成を示す図。
本発明の半導体集積回路の構成を示す図。	【図10】	本発明の半導体集積回路の構成を示す図。
本発明の半導体集積回路の構成を示す図。	【図11】	本発明の信号線駆動方法のタイミングチャ
本発明の信号線駆動方法のタイミングチャ	ートを示す	য়.
ጃ.	【図12】	本発明の発光装置の構造を示す図。
本発明の半導体集積回路の構成を示す図。	【図13】	本発明の半導体集積回路の構成を示す図
本発明の半導体集積回路の構成を示す図。	【図14】	発光装置の画素の回路図。
本発明の半導体集積回路の切り換え手段の	【図15】	本発明の発光装置が適用される電子機器を

【図8】 本発明の半導体集積回路の構成を示す図。 10

【図1】

示す図。

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図9】

【図8】

【図10】

【図11】

[図12]

【図14】

【図13】

【図15】

(51) Int. Cl. ⁷	識別記号	FΙ	テーマコード(参考)
G 0 9 G 3/30		G 0 9 G 3/30	J
H 0 1 L 21/822		H 0 3 K 17/00	E
27/04		H 0 4 N 5/66	1 0 2 B
H 0 3 K 17/00		H 0 5 B 33/14	A
H 0 4 N 5/66	1 0 2	H 0 1 L 27/04	M
// H 0 5 B 33/14			

5C058 AA08 BA02 BA06 BA33 BB25

5C080 AA06 BB05 DD05 EE28 JJ02

JJ03 JJ04 JJ06 KK02 KK07

KK43 KK47

5F038 DF07 EZ20

5J055 AX12 AX44 AX48 BX06 BX09

CX29 EY21 EZ03 EZ13 EZ31

EZ33 GX01 GX02 GX04 GX09