Week 7. Linear Discriminant Analysis (LDA) and logistic regression

Previously, we learned:

- (a) how to discriminate two populations using the ROC curve having a single feature/predictor
- (b) how to compute the figure of merit of this discrimination using AUC
- (c) how to find an optimal threshold.

What if we have several predictors? Answer: find the best linear combination of predictors and treat them as a univariate predictor.

Several methods exist for the **supervised** binary classification: developing the linear rule for classification of the future observation:

- 1. Discriminant analysis (statistical model-based)
- 2. Logistic regression (statistical model-based)
- 3. SVM = Support Vector Machine (algorithm-based)

This week covers LDA.

Theorem 5.4

Ronald Fisher developed LDA.

Can we identify virginica having four measurements?

iris.pptx

Ronald Fisher Iris flowers

Iris setosa

Iris versicolor

Iris virginica

Measuring petals and setals (botanical study)

See the R function iris3D

LDA problem set up. There are two Gaussian multivariate populations $\mathcal{N}(\mu_x, \Omega)$ and $\mathcal{N}(\mu_y, \Omega)$ in R^m . Note, $\mu_x \neq \mu_y$, but the two populations share the same covariance matrix Ω . Given observation $\mathbf{z} \in R^m$, develop a linear discrimination rule: what population \mathbf{z} belongs to?

First, we assume that μ_x , μ_y , and Ω are known, and then apply to the case when we have data (estimate the means and the common covariance matrix).

Any linear discrimination rule is equivalently to finding by a plane $(\mathbf{z} - \mathbf{s})'\mathbf{n}$, where \mathbf{s} is called the translation vector and \mathbf{n} is the normal vector.

Theorem 1 The optimal linear discrimination rule is as follows: \mathbf{z} belongs to population \mathbf{x} if

$$(\mathbf{z} - \mathbf{s})'\mathbf{n} > 0,$$

and, otherwise, to population y, where

$$\mathbf{s} = \frac{1}{2}(\boldsymbol{\mu}_x + \boldsymbol{\mu}_y), \ \mathbf{n} = \Omega^{-1}(\boldsymbol{\mu}_x - \boldsymbol{\mu}_y).$$

Consider two cases:

- (a) m=1: the point of separation is $s=(\mu_x+\mu_y)/2$ (b) m=2 and $\Omega=\sigma^2\mathbf{I}$: then \mathbf{n} is parallel to $\boldsymbol{\mu}_x-\boldsymbol{\mu}_y$ and the separation line goes through $\mathbf{s}=(\boldsymbol{\mu}_x+\boldsymbol{\mu}_y)/2$ and orthogonal to $\mu_x - \mu_y$.

mah(job=0)

Theorem 2 The classification rule defined by the plane $(\mathbf{z} - \mathbf{s})'\mathbf{n} = 0$ minimizes the total sum of classification error.

Proof. Let \mathbf{z} be assigned to cluster \mathbf{x} if $(\mathbf{z} - \mathbf{s})'\mathbf{n} > 0$ and to cluster \mathbf{y} otherwise. The total classification error is

$$\begin{aligned} & \Pr\left((\mathbf{z} - \mathbf{s})' \mathbf{n} > & 0 | \mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}_{y}, \boldsymbol{\Omega}) \right) + \Pr\left((\mathbf{z} - \mathbf{s})' \mathbf{n} \leq & 0 | \mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}_{x}, \boldsymbol{\Omega}) \right) \\ & = & 1 - \Phi\left(\frac{(\boldsymbol{\mu}_{y} - \mathbf{s})' \mathbf{n}}{\sqrt{\mathbf{n}' \boldsymbol{\Omega} \mathbf{n}}} \right) + \Phi\left(\frac{(\boldsymbol{\mu}_{x} - \mathbf{s})' \mathbf{n}}{\sqrt{\mathbf{n}' \boldsymbol{\Omega} \mathbf{n}}} \right). \end{aligned}$$

We want to find \mathbf{s} and \mathbf{n} such that the total error is minimum. Differentiating with respect to \mathbf{s} we obtain

$$\frac{1}{\sqrt{\mathbf{n}'\Omega\mathbf{n}}}\left(\phi\left(\frac{(\boldsymbol{\mu}_y-\mathbf{s})'\mathbf{n}}{\sqrt{\mathbf{n}'\Omega\mathbf{n}}}\right)-\phi\left(\frac{(\boldsymbol{\mu}_x-\mathbf{s})'\mathbf{n}}{\sqrt{\mathbf{n}'\Omega\mathbf{n}}}\right)\right)\mathbf{n}=\mathbf{0}$$

leading to $(\mu_y - \mathbf{s})'\mathbf{n} = -(\mu_x - \mathbf{s})'\mathbf{n}$. This implies a solution

$$\mathbf{s} = \frac{1}{2}(\boldsymbol{\mu}_x + \boldsymbol{\mu}_y).$$

Differentiation with respect to **n** gives $\mathbf{n} = \Omega^{-1}(\boldsymbol{\mu}_x - \boldsymbol{\mu}_y)$.

Probability of misclassification

Misclassification: assign \mathbf{z} to cluster \mathbf{x} , i.e. apply the rule $(\mathbf{z} - \mathbf{s})' \mathbf{n} > 0$ but in fact \mathbf{z} belongs to cluster \mathbf{y} :

$$\Pr((\mathbf{z} - \mathbf{s})' \mathbf{n} > 0 | \mathbf{z} \sim \mathcal{N}(\boldsymbol{\mu}_y, \boldsymbol{\Omega})).$$

But

$$(\mathbf{z} - \mathbf{s})'\mathbf{n} \sim \mathcal{N}\left(-\frac{1}{2}\delta^2, \delta^2\right),$$

where

$$\delta^2 = (\boldsymbol{\mu}_x - \boldsymbol{\mu}_y)' \boldsymbol{\Omega}^{-1} (\boldsymbol{\mu}_x - \boldsymbol{\mu}_y).$$

Definition 3 The Mahalanobis distance between normal populations is defined as

$$\delta = \sqrt{(\boldsymbol{\mu}_x - \boldsymbol{\mu}_y)'\Omega^{-1}(\boldsymbol{\mu}_x - \boldsymbol{\mu}_y)}.$$

The probability of misclassifying a point from cluster x to cluster y is given by

$$\Phi\left(-\frac{1}{2}\delta\right)$$
.

Indeed, denote

$$Z = (\mathbf{z} - \mathbf{s})' \mathbf{n} \sim \mathcal{N}\left(-\frac{1}{2}\delta^2, \delta^2\right).$$

Then

$$\Pr(Z > 0) = 1 - \Pr(Z < 0) = 1 - \Phi\left(\frac{0 - \mu_Z}{\sigma_Z}\right)$$
$$= 1 - \Phi\left(\frac{\frac{1}{2}\delta^2}{\delta}\right) = 1 - \Phi\left(\frac{1}{2}\delta\right) = \Phi\left(-\frac{1}{2}\delta\right).$$

The same probability of misclassification of a point from cluster y to assign to cluster x:

$$\Phi\left(-\frac{1}{2}\delta\right)$$
.

Thus the total misclassification probability is

$$2\Phi\left(-\frac{1}{2}\delta\right)$$
.

When you have data given by matrices $\mathbf{X}_1^{n_1 \times m}$ and $\mathbf{X}_2^{n_2 \times m}$, how to find all parameters? Estimate

$$\widehat{\boldsymbol{\mu}}_1 = \overline{\mathbf{x}}_1, \quad \widehat{\boldsymbol{\mu}}_2 = \overline{\mathbf{x}}_2$$

in R as $\mathtt{mu1=colMeans}(\mathtt{X1})$ and $\mathtt{mu2=colMeans}(\mathtt{X2})$. The common/pooled covariance matrix is estimated as

$$\widehat{\Omega} = \frac{1}{n_1 + n_2 - 2} [(n_1 - 1) \text{var}(\mathbf{X}_1) + (n_2 - 1) \text{var}(\mathbf{X}_2)].$$