

DATA ANALYSIS AMS 572

Basic Concepts of Inference

Applied Math and Stats, Stony Brook University

Silvia Sharna

FAR BEYOND

Sampling

Representative Sample!

- ▶ A function of statistics is the provision of techniques for making inductive inferences, i.e, generalizations beyond the actual data in hand
- ➤ The goal of inductive inference is to find out something about a target population by examining a sample of it. (Read Chapter 3 of sampling designs).
- ► Inductive inference is accomplished by constructing a model that describes the origin of the data and a model for data collection (sampling)

Representative Sample!

Definition: The random variables X_1, \ldots, X_n are called a random sample of size n from the population f(x) if X_1, \ldots, X_n are independent and identically distributed (iid) with marginal pdf or pmf f(x)

Note: The definition implies that the joint pdf or pmf of X_1, \ldots, X_n is

$$\prod_{i=1}^{n} f(x_i)$$

Statistics and sample moments

- ► A statistic is a function of observable random variables. The probability distribution of a statistic is called its sampling distribution
- ► Sample mean:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

► Sample variance:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2, n > 1$$

- ► Estimand: parameter of interest we are trying to estimate; a constant; Eg μ
- ▶ Estimator: the statistic used to estimate the estimand; a random variable; Eg \bar{X}
- Estimate: a realization of an estimator from an observed data set; Eg $\bar{x} = 36.3$

- Method of Maximum Likelihood Estimator
- Method of Moments Estimator

Method of Maximum Likelihood

Definition: Let X_1, \ldots, X_n be a sample with joint p.d.f or p.m.f $f(\mathbf{x}|\theta)$. Given that $\mathbf{X} = \mathbf{x}$ is observed, the function of θ defined by

$$L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)$$

is called the likelihood function.

Method of Maximum Likelihood

Definition: For a given observed sample \mathbf{x} , let $\theta(\hat{\mathbf{x}})$ be a value in the parameter space at which $L(\theta|\mathbf{x})$ attains its maximum. $\theta(\hat{\mathbf{x}})$ is called the maximum likelihood estimator (MLE) of θ .

Example: Suppose $X_i \sim N(\mu, \sigma^2)$ for i = 1, ..., n. Derive the MLE for μ and σ^2 .

Method of Moments

Method of moment method is one of the oldest method, and is simple to use. This method almost always yields some sort of estimate (MME).

Method of Moments

Work by equating the sample moments to the population moments: n

$$E(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$E(X^2) = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

i

$$E(X^k) = \frac{1}{n} \sum_{i=1}^n X_i^k$$

FAR BEYOND

Method of Moments

Example: Suppose $X_i \sim N(\mu, \sigma^2)$ for i = 1, ..., n. Derive the MME for μ and σ^2 .

Stony Brook University

Definition: The bias of an estimator $\hat{\theta}$ of θ is

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

(measures accuracy)

Example: Are the MLEs of μ and σ^2 for normal distribution unbiased? If not, find an unbiased estimator for these parameters.

Definition: The mean squared error (MSE) of an estimator $\hat{\theta}$ of θ is

$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2$$

(measures precision and accuracy)

In addition,
$$MSE(\hat{\theta}) = Var(\hat{\theta}) + bias(\hat{\theta})^2$$

Example 6.4 of Tamhane and Dunlop:

Compare the MSE of these estimators for σ^2 ,

$$S_1^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / (n-1)$$
 and $S_2^2 = \sum_{i=1}^n (X_i - \bar{X})^2 / n$.

It can be shown that

$$MSE(S_1^2) = \frac{2\sigma^4}{n-1}$$

and

$$MSE(S_2^2) = \frac{2n-1}{n^2} \sigma^4$$

Thus, $MSE(S_1^2)>MSE(S_2^2)$

- On average S_2^2 will be closer to σ^2 if MSE is used as criterion
- ightharpoonup On average S_2^2 underestimates σ^2

Confidence Interval

Definition: Let X_1, \ldots, X_n be random variables with joint p.d.f or p.m.f $f(\mathbf{x}|\theta)$. The random interval $(T_1(\mathbf{X}), T_2(\mathbf{X}))$ is called a $100(1-\alpha)\%$ confidence interval for θ if

$$P(T_1(\mathbf{X}) < \theta < T_2(\mathbf{X})) = 1 - \alpha$$

where $0 < \alpha < 1$.

- ▶ $T_1(\mathbf{X})$ and $T_2(\mathbf{X})$ are called the lower and upper confidence limits, respectively.
- \triangleright 1 α is called the confidence coefficient.

Confidence Interval Interpretation

- ▶ If we draw 100 different random samples, on average $100(1-\alpha)\%$ of them will contain θ
- ▶ How can one decrease the width of confidence interval?

We will study the pivotal quantity method for deriving confidence interval in Chapter 7 lecture notes.

Hypothesis Testing

Hypothesis testing

- 1. Set up a hypothesis
- 2. Collect data
- 3. Infer from the data whether hypothesis is plausible

Examples:

Will folic acid supplementation reduce the risk of stroke? Is the return the same in project 1 and project 2?

Hypothesis testing

- ightharpoonup Null hypothesis H_0
- ► Example of null hypothesis:

 The incidence of stroke will be the same in those taking folic acid supplements and those not taking folic acid supplements

 Investing in project 1 will yield the same return as investing in project 2

Null and Alternative

- ▶ In a test of a hypothesis, we are testing whether some population parameter has a particular value
- ► For example,

$$H_0: \theta = \theta_0$$

where θ_0 is a known constant

► The alternative hypothesis is complement of null hypothesis

$$H_a: \theta \neq \theta_0$$

Test statistic

- ▶ Once the data are collected, we will compute a test statistic related to θ , say $S(\hat{\theta})$
- $ightharpoonup S(\hat{\theta})$ is a random variable, since it is computed from a sample
- ▶ $S(\hat{\theta})$ will have a particular probability distribution under the assumption H_0 , say $F_0[S(\hat{\theta})]$

Test statistic

- ▶ Under F_0 , we compute the probability that we would observe $S(\hat{\theta})$ or a value more extreme than $S(\hat{\theta})$ if the null H_0 was true
- ▶ If this probability is large, the data are consistent with H_0
- ▶ If this probability is small, H_0 is probably not true

Interpretation

- ▶ Usually if the probability is small, we conclude H_0 is not true; i.e., we "reject" H_0
- ▶ If the probability is large, we have not proven H_0 . We say that "we failed to reject H_0 "
- \blacktriangleright We can never prove H_0 is true!

Significance Level

- ▶ How do we decide if the probability is too small?
- ▶ Prior to seeing the data, we select a value α such that: if the computed probability is less than or equal to α , we reject H_0
- \triangleright α is known as significance level

Critical Region and Value

- ▶ We have a statistic $S(\hat{\theta})$ with distribution F_0 under the null hypothesis
- ▶ We specify α and under F_0 determine a critical region or rejection region C_{α} such that

$$\Pr[S(\hat{\theta}) \in C_{\alpha}|H_0] = \alpha$$

 \triangleright Values at the boundaries of C_{α} are called *critical values*

Critical Region and Value

- ▶ From the data we compute $S(\hat{\theta})$
- ▶ If $S(\hat{\theta}) \in C_{\alpha}$, we reject H_0
- ▶ If $S(\hat{\theta}) \notin C_{\alpha}$, the data are consistent with H_0 and we do not reject H_0

Type I error, Type II error and Power

		Truth	
		H_0	H_a
Decision	Do not reject		Type II error
*	Reject	Type I error	Power

Tests of Hypotheses: Seven Steps

- 1. Design study
- 2. Establish null hypothesis
- 3. Determine test statistic to be employed
- 4. Choose significance level α and establish C_{α}
- 5. Carry out study and collect data
- 6. Compute statistic from data
- 7. If statistic is in C_{α} , reject H_0