つくばチャレンジ **2022** における 千葉工業大学未来ロボティクス学科チームの取り組み

藤原 柾, 清岡 優祐 , 大塚 竜征, 春山 健太, 井口 颯人, 樋高 聖人, 髙橋 祐樹, 白須 和暉 上田 隆一, 林原 靖男 (千葉工大)

Development Activity of Advanced Robotics Department Team of Chiba Institute of Technology at Tsukuba Challenge 2021

Yuuki TAKAHASHI, Masaki FUJIWARA, Kazuki SHIRASU, Yusuke KIYOOKA, Kenta HARUYAMA, Hayato IGUCHI, Masato HIDAKA, Ryuichi UEDA and Yasuo HAYASHIBARA (CIT)

千葉工業大学未来ロボティクス学科チーム , box, box2

Abstract— In this paper, we introduce the activities of the Future Robotics Department, Advanced Engineering Division, Chiba Institute of Technology team in the Tsukuba Challenge 2022. Our team is working on the development of an outdoor autonomous mobile robot, and we are currently tackling several challenges. For example, the development of a new robot, driving using semantic segmentation, and recovery of kidnapped state by combining expansion resetting and GNSS resetting. We will report the results of these efforts.

1. はじめに

本チームは、屋外で安定して自律移動するロボットを目指 し、その研究および開発の一環としてつくばチャレンジに参加 している. 開発したシステムは2次元地図と2D-LiDARを用 いた自己位置推定により、つくばチャレンジ 2016、2017 にお いてマイルストーン 3「横断歩道区間を含まない課題コース (2037m)」を達成した. しかし、つくばチャレンジ 2018 から、ひ らけた公園がコースに含まれるようになった. そのため、計測 距離が 30m 程度の 2D-LiDAR では検出可能な物体が比較的 少ないことから、従来のシステムでは安定して自己位置推定を 行うことが困難になった. 2018 年度から計測距離が 100m の 3D-LiDAR を採用したが、水平面の計測データのみを使用して おり、多くのデータを破棄していた、さらに、公園内では場所に より地面の傾斜が変化するため、レーザが必ずしも水平の距離 を計測していないという問題もあった. 例えば、斜めに土が積 み上げられた場所では、レーザを照射する位置が上下に変化す ると、それに合わせて距離も変化してしまう、そのため、地図生 成が容易に行えないという問題もあった。2019年度は、これら の3次元データを有効に活用するため、2次元地図ではなく、3 次元地図を生成し MCL による 3 次元自己位置推定を行い、2 次元自己位置推定と比べ,自己位置が安定していることを確認 した. しかし, 公園のような開けた場所では測域センサで検出 できる物体が少なく, 測域センサ, オドメトリを用いる方法で は自己位置が定まらないことがある. 本稿では、このような課 題を解決するためにつくばチャレンジ 2022 に向けて取り組ん だ開発に関して紹介する.

2. ロボットの概要

つくばチャレンジでは、本チームが開発を続けている三台のロボット ORNE- , ORNE-box, ORNE-box2 を用いる. それぞれの方針は以下の通りである.

- ORNE-
 - 2 つの走行の切り替えによる安定した自律走行
- ORNE-box, ORNE-box2

2.1 ハードウェア

本チームは屋外自律移動ロボットとして、ORNE- ,ORNE-box,ORNE-box2の開発を行っており、つくばチャレンジ 2022 にはこれらのロボットが参加する. Fig. 1 に本チームの開発している自律移動ロボットの外観を示す. これらのロボットはi-Cart middle をベースとしており、主なセンサは IMU、測域センサである.

(a) ORNE-

(b) ORNE-box

Fig. 1: ORNE-Series

(c) ORNE-box2

Table 1: Specifications of the robots

	ORNE-	ORNE-box	ORNE-box2	
Depth[mm]	690	600		
Wide[mm]	560	506.5		
Height[mm]	770	957		
Wheel diameter[mm]	304			
Battery	LONG WP12-12			
Motor	Oriental motor TF-M30-24-3500-G15L/R			
Driving system	Power wheeled steering			
2D-LiDAR	URM-40LC-EW	None	UTM-30LX-EW	
	(HOKUYO)		(HOKUYO)	
3D-LiDAR	None	R-fans-16	VLP-16	
		(SureStar)	(Velodyne)	
IMU	ADIS16465	ADIS16475		
	(Analog devices)	Analog devices		
GNSS receiver	None	u-blox SCR-u2t		
Camera	CMS-V43BK	None		
	(Sanwa supply)			

2.2 ソフトウェア

本チームでは、従来より ROS(Robot Operating System) の navigation stack [1] をもとに開発されたシステムである orne_navigation により自律走行させている. Fig. 2 に開発しているロボットのソフトウェアを含むシステム構成を示す. このシステムは、2D-LiDAR を用いた Monte Carlo Localization(MCL) により確率的に自己位置を推定し、経路計画に基づいて自律走行している. また、GitHub の open-rdc [2] でプロクラムを公開している.

Fig. 2: Structure of the system.

3. 各チームの取り組み

本チームには、チーム ORNE- , ORNE-box, ORNE-box2 の 3 チームが存在する. 従って本章では、各チームごとの取り組みを述べる. ただし、ORNE-box2 は ORNE-box の後継機であるため、取り組みは同じである.

3.1 チーム ORNE-

2D-LiDAR を用いた自律走行時,自己位置推定の結果が不確かになる場合がある。この状態での走行はリタイアの要因の一つになる可能性がある。そこで、チーム ORNE-は、2D-LiDAR を用いた自律走行と機械学習を用いた自律走行の切り替えによる安定した走行を目的としている。昨年度は、orne_navigationによる自律走行時,自己位置推定の尤度が低下した場合に、カメラ画像を入力としたend-to-end 学習器を用いた自律走行による切り替えを行った。しかし、意図しない箇所でカメラを用いた走行へ切り替えが起こってしまうことがあった。そのため、本年度はそれらの問題を解決するために、取り組んだ内容に関して以下で紹介する。

3.1.1 提案手法

提案手法を **Fig. 3** に示す. 移動ロボットは, 2 つの走行方法 を持つ. この 2 つの走行方法は, emcl2[3] の $alpha^{*1}$ を指標として切り替える.

Fig. 3: Developed system of switching action.

alpha が高い場合2D-LiDAR を用いたナビゲーションによる自律走行

alpha が低い場合
 セマンティックセグメンテーション [7] (以下「セグメンテーション」と称する)を用いた自律走行
 (ただし、での自律走行に切り替わるのは折り返し地点からである)

3.1.2 2D-LiDAR を用いた自律走行時について 自律走行時の構成を以下に示す.

外界センサ: 2DLiDAR自己位置推定: emcl2global planner: A*

• local planner: dwa_local_planner

• 地図作成: cartographer

- resolution: 0.15[m/pixel]

- 確認走行,駅周辺,公園の3つに分割したものを合成

3.1.3 セグメンテーションについて

• フレームワーク

pytorch

・モデル

- DeepLabV3Plus-MobileNet

• データセット

- Cityscapes(5000 枚)

- つくば公園エリア周辺画像 (222枚)

3.1.4 セグメンテーションを用いたロボットの制御

本チームは、セグメンテーションを用いて領域分割を行う。また、領域分割した画像から走行可能領域を検出し、その結果に基づいて行動生成を行う。本章では、セグメンテーションを用いたロボットの制御について、一連の流れを紹介する。

セグメンテーションの適用 処理を施した例を Fig. 4 に示す.

Fig. 4: The top image is the original image, the bottom image is the processed image using semantic segmentation

^{*1} センサ更新後のパーティクルの周辺尤度

Table 2: Specification of PC

CPU	Core i7-9750H(Intel)
RAM	16GB
GPU	RTX 2070 Max-Q

2) 走行可能領域の検出

カメラ画像は前述のモデルを通して、Fig. 5 の左画像を獲得する. 走行可能領域(道)を抽出し、オープニング処理でノイズを除去する. 結果は右の画像で示す.

Fig. 5: The left image uses semantic segmentation, and the right image shows the extracted driving area as a result.

3) 行動生成

2) の処理を施した画像を用いて、Fig. 6 の 6 つの対応する 領域に応じた行動を生成する [6]. 例えば、Fig. 6 の Turn left の範囲に障害物が多く存在する場合、左に曲がる方向 の角速度を出力する.

Fig. 6: Types of behavior using semantic segmentation

使用した PC のスペックを **Table 2** に示す. また, GitHub の deeplabv3_plus_pytorch_ros [3] でプログラムとデータセット

を公開している.

3.1.5 チーム ORNE- の本走行の結果と展望

今年度の本走行の記録は 847.9[m] で, 駅構内の手前でリタイアとなった. これは歩行者などによりランドマークが隠されたことで, 自己位置推定の結果が不確かになり, 真の姿勢の周囲にパーティクルが存在しない状態である誘拐状態 [5] になったことが要因の一つだと考えられる. 今後は, 自己位置推定に用いるセンサを追加するなどの対策を検討する.

3.2 チーム ORNE-box, ORNE-box2

3.2.1

4. おわりに

本稿では、千葉工業大学未来ロボティクス学科チームで開発しているロボットの概要とシステムの構成に関して述べた。また、つくばチャレンジ 2022 に向けた取り組みについて紹介した。

参考文献

- [1] ros-planning, navigation レポジトリ https://github.com/ros-planning/navigation (最終閲覧日: 2022 年 12 月 6 日)
- [2] Robot Design and Control Lab, openrdc orne_navigation レポジトリ https://github.com/open-rdc/orne_navigation (最終閲覧日: 2022 年 12 月 6 日)
- [3] deeplabv3_plus_pytorch_rosレボジトリ
 https://github.com/Tsumoridesu/deeplabv3_plus_pytorch_
 ros/tree/add_cmd_vel
 (最終閲覧日: 2022 年 12 月 6 日)
- [4] orne_box Github レポジトリ https://github.com/open-rdc/orne-box (最終閲覧日: 2022 年 12 月 6 日)
- [5] 上田 隆一, 新井 民夫, 浅沼 和範, 梅田 和昇, 大隅 久: "パーティクルフィルタを利用した自己位置推定に生じる致命的な推定誤りからの回復法", 日本ロボット学会誌 23 巻 4 号, 2005.
- [6] 安達 美穂, 小島 一也, 石田 大貴, 松谷 幸知, 渡辺 拓斗, 小林 真吾, 横田 来夢, 坂田 唱悟, 小松崎 迅斗, 捨田利 沙羅, 宮野 龍一, 宮本 龍介: "単眼カメラを用いた意味論的領域分割に基づくビジュアルナビゲーション", つくばチャレンジ 2019 参加レポート集, pp105-110, 2019.
- [7] Liang-Chieh Chen, George Papandreou, Senior Member, IEEE, Iasonas Kokkinos, Member, IEEE, Kevin Murphy, and Alan L. Yuille, Fellow, IEEE: "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs", IEEE TRANS-ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.40, NO.4, APRIL 2018.