

ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ

Άσκηση 1. Ρομποτικό Κύτταρο

Εισαγωγή

Ρομποτικό Κύτταρο

→ Διάταξη αποτελούμενη από ένα σύνολο μηχανισμών με πυρήνα ένα ρομποτικό χειριστή που συνεργάζονται για την επίτευξη ενός κοινού στόχου

Στόχος

→ Ταξινόμηση και εναπόθεση 6 αντικειμένων* σε κατάλληλη θέση στην παλέτα ανάλογα με το υλικό και τις ιδιότητές τους

*2 πλαστικά, 2 μεταλλικά αφόρτιστα, 2 μεταλλικά φορτισμένα

Επιμέρους Μηχανισμοί

Αισθητήρες:

- Α. Επαγωγικός → εντοπισμός μεταλλικού αντικειμένου
- Β. Οπτικός → εντοπισμός αντικειμένου
- C. Χωρητικός (μιας πολικότητας) → εντοπισμός φορτισμένου αντικειμένου

Ηλεκτροπνευματικά έμβολα:

- 1. Εξώθηση αντικειμένου από τη στοίβα
- 2. Επικόλληση ετικέτας

Ρομποτικός Χειριστής IR52C

Βαθμοί Ελευθερίας (DOFs) :

- → 5 ανεξάρτητοι περιστροφικοί άξονες οδηγούμενοι από υψηλής απόδοσης σερβοκινητήρες
- → Πνευματική αρπάγη (gripper)

Έλεγχος θέσης μέσω αυξητικών κωδικοποιητών (encoders)

Έλεγχος αυτοματοποίησης μέσω του προγραμματιστικού περιβάλλοντος PSI

Ορθή και Ανάστροφη Κινηματική

* Ορθή κινηματική ανάλυση μέσω Denavit-Hartenberg για την εξαγωγή του κινηματικού μοντέλου

Assignment #1 (D-H)

- 1.1 Ακολουθώντας τη μέθοδο Denavit-Hartenberg, σε ποιο από τα παρακάτω σημεία πάνω στο σχήμα θα τοποθετηθεί το πλαίσιο O_1 ;
- (A) A
- (B) B
- (Γ) Γ
- (Δ) Δ
- 1.2 Ακολουθώντας τη μέθοδο Denavit-Hartenberg, σε ποιο από τα παρακάτω σημεία πάνω στο σχήμα θα τοποθετηθεί το πλαίσιο O_4 , αν το O_3 είναι τοποθετημένο στο σημείο Γ ;
- (A) A
- (B) B
- (T) T
- (Δ) Δ

Συστήματα Συντεταγμένων (ΣΣ)

Παγκόσμιο (World)

- Σχετική μετατόπιση του end-effector στους άξονες xyz ενός σταθερού παγκόσμιου ΣΣ
- Διατήρηση του προσανατολισμού του end-effector

Αξονικό (Axial)

- Απευθείας επενέργηση στους κινητήρες του βραχίονα (joint space)
- Σχετική μεταβολή της γωνίας στροφής της επιλεγμένης άρθρωσης

Εργαλείου (Tool)

- Μετατόπισης Σχετική μετατόπιση του end-effector στο τοπικό ΣΣ
- Περιστροφής Σχετική περιστροφή Roll-Pitch-Yaw (RPY) στο τοπικό ΣΣ

Assignment #2 ($\Sigma\Sigma$)

2.1.

(A) World (B) Axial (C) Tool

2.2.

(A) World (B) Axial (C) Tool

2.3.

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρ. Μηχ/κών και Μηχ/κών Υπολογιστών Τομέας Σημάτων, Ελέγχου και Ρομποτικής Εργαστήριο Ρομποτικής & Αυτοματισμού

Θέση 0 -> Θέση 1 (Axial)

Θέση 1 → Θέση 2 (Axial)

Θέση 2 > Θέση 3 (World/Tool)

Τροχιές (Line, Point-to-Point, Arc)

LINE

Διαδικασία

- Εντοπισμός του ευθύγραμμου τμήματος που ενώνει τα δύο ακραία σημεία (αρχή-τέλος) στο task space
- Διαίρεση του ευθύγραμμου τμήματος σε πολλά διαδοχικά σημεία
- Επίλυση του Ανάστροφου Κ.Μ. στο καθένα για τον υπολογισμό του κατάλληλου συνδυασμού επενεργήσεων στο joint space
- Μεταβολή των γωνιών κάθε άρθρωσης για την προσέγγιση των διαδοχικών σημείων της τροχιάς

Pros: Γνωστή τροχιά στο task space

Cons : Υψηλή υπολογιστική

πολυπλοκότητα

POINT-TO-POINT

Διαδικασία

- Επίλυση του Ανάστροφου Κ.Μ. ΜΟΝΟ για τα δύο ακραία σημεία (αρχή-τέλος)
- Μεταβολή των γωνιών κάθε άρθρωσης μεταξύ των δύο ακραίων θέσεων

Pros : Χαμηλή υπολογιστική

πολυπλοκότητα

Cons : Άγνωστη τροχιά στο task space

Assignment #3 (Τροχιές)

3.1.

(A) Line

(B) Point-To-Point

3.2.

(A) Line

(B) Point-To-Point

Θέση 3 > Θέση 2 (Line)

$Θέση 2 \rightarrow Θέση 1 (Point-To-Point)$

Πιθανές προκλήσεις

Θέση επαγωγικού αισθητήρα

Λύση: Επανατοποθέτηση του 1ου αντικειμένου στο τέλος της στοίβας

Μονή πολικότητα χωρητικού αισθητήρα

 Λύση: Έλεγχος και των δύο πλευρών του μεταλλικού αντικειμένου για τον εντοπισμό ενδεχόμενου φορτίου

Αδυναμία επαγωγικού αισθητήρα για έλεγχο ολοκλήρωσης της διαδικασίας

• Λύση : Έλεγχος οπτικού αισθητήρα μετά την ενεργοποίηση του εμβόλου εξώθησης

Ζητούμενα

Περιγραφή του πειράματος

- Στόχος
- Επιμέρους μηχανισμοί (αισθητήρες, έμβολα, κλπ.)
- Περιγραφή βραχίονα (βαθμοί ελευθερίας, χώρος εργασίας, συστήματα συντεταγμένων, τροχιές)
- Περιγραφή ορθής και ανάστροφης κινηματικής
- Λύση ορθού κινηματικού μοντέλου για τον ρομποτικό χειριστή με D-H

Περιγραφή της διαδικασίας σε ψευδοκώδικα

Σημεία προσέγγισης του ρομπότ

Σ01. Αρχική κατάσταση ρομπότ **Σ02.** Πάνω από Α1*

Σ03. Μπροστά από A1 **Σ04.** Πάνω από στοίβα

Σ05. Πάνω από A2*

Σ06α. Εντός Α2 ορθά **Σ06β.** Εντός Α2 ανάποδα

Σ07. Πάνω από Ε

Σ08α. Εντός Ε για πλαστικά **Σ08β.** Εντός Ε για μεταλλικά

Σ09. Πάνω από Π1*

Σ10α. Εντός Π1 θέση Α **Σ10β.** Εντός Π1 θέση Β

Σ11. Πάνω από Π2*

Σ12α. Εντός Π2 θέση Α **Σ12β.** Εντός Π2 θέση Β

Σ13. Πάνω από Π3*

Σ14α. Εντός Π3 θέση Α **Σ14β.** Εντός Π3 θέση Β

Α1: Οπτικός αισθητήρας

A2: Χωρητικός αισθητήρας

Ε: Έμβολα επικολλήσεων ετικετών (σε πλαστικά και μεταλλικά)

Π1: Παλέτα τοποθέτησης πλαστικών

Π2: Παλέτα τοποθέτησης μεταλλικών αφόρτιστων **Π3**: Παλέτα τοποθέτησης μεταλλικών φορτισμένων

