BFS and DFS Quiz (Hard - Short Answer)

Instructions: Answer the following questions concisely and accurately.

- 1. **Question:** Describe a scenario where a Breadth-First Search (BFS) algorithm would be significantly more efficient than a Depth-First Search (DFS) algorithm.
- **Answer:** Finding the shortest path in an unweighted graph.
- 2. **Question:** What data structure is typically used to implement a BFS algorithm?
- **Answer:** Queue
- 3. **Question:** What data structure is typically used to implement a DFS algorithm?
- **Answer:** Stack or Recursion
- 4. **Question:** Explain the concept of "cycle detection" and how it differs in BFS and DFS implementations.
- **Answer:** Cycle detection involves finding loops in a graph. BFS detects cycles by finding a node already visited in the current level. DFS detects cycles by finding a node already visited in the current branch (recursive stack).
- 5. **Question:** True or False: A DFS algorithm guarantees finding the shortest path in an unweighted graph.
- **Answer:** False
- 6. **Question:** True or False: A BFS algorithm guarantees finding the shortest path in an unweighted graph.
- **Answer:** True
- 7. **Question:** Describe a situation where DFS would be preferred over BFS.
- **Answer:** Finding a path in a very deep, sparsely branched graph; exploring all possible paths in a game tree.
- 8. **Question:** What is the time complexity of BFS in a graph represented as an adjacency list?
- **Answer:** O(V + E), where V is the number of vertices and E is the number of edges.
- 9. **Question:** What is the space complexity of BFS in the worst case scenario?

- **Answer:** O(V)
- 10. **Question:** What is the time complexity of DFS in a graph represented as an adjacency list?
- **Answer:** O(V + E)
- 11. **Question:** What is the space complexity of DFS in the worst case scenario?
- **Answer:** O(V) in case of recursion; O(V) in case of iterative implementation using a stack.
- 12. **Question:** How can you modify BFS to find all paths between two nodes?
- **Answer:** Track the paths taken from the source node to each node visited.
- 13. **Question:** How can you modify DFS to find all paths between two nodes?
- **Answer:** Track the paths taken from the source node recursively and backtrack.
- 14. **Question:** Describe how to use BFS to determine if a graph is bipartite.
- **Answer:** Assign colors (e.g., 0 and 1) to nodes during traversal. If a neighbor has the same color, it's not bipartite.
- 15. **Question:** How can DFS be used to detect articulation points (cut vertices) in a graph?
- **Answer:** By tracking the discovery time and low-link values for each node.
- 16. **Question:** What is topological sorting, and which algorithm (BFS or DFS) is commonly used to perform it?
- **Answer:** Arranging nodes such that for every directed edge from node A to node B, A appears before B. DFS is commonly used.
- 17. **Question:** Explain the concept of "strongly connected components" in a directed graph, and which algorithm is generally used to find them?
- **Answer:** A set of nodes where there is a path between any two nodes in the set. Kosaraju's algorithm (uses DFS) is a common solution.
- 18. **Question:** How does the use of a priority queue change the behavior of a BFS algorithm?
- **Answer:** It transforms it into a Dijkstra's algorithm, finding the shortest path in a weighted graph.
- 19. **Question:** What is a potential disadvantage of using recursion for DFS in terms of memory usage?

- **Answer:** Stack overflow if the graph is very deep.
- 20. **Question:** Give an example of a real-world problem where BFS would be an appropriate algorithmic solution.
- **Answer:** Finding all people within a certain degree of separation from a given person on a social network. (Many other valid answers exist).