1. Рассмотрим табличную модель $\mathfrak V$ с n истинностными значениями, и с выделенным значением T для истины. Покажите, что

$$\models \bigvee_{1 \le i \ne j \le n+1} (P_i \to P_j) \& (P_j \to P_i)$$

В частности, покажите, что в любой корректной модели если $[\![\alpha]\!] = [\![\beta]\!]$, то $[\![\alpha \to \beta]\!] = T$; если $[\![\gamma]\!] = [\![\delta]\!] = T$, то $[\![\gamma \& \delta]\!] = T$; если $[\![\gamma]\!] = T$, то $[\![\gamma \lor \gamma]\!] = [\![\eta \lor \gamma]\!] = T$.

(a)
$$\llbracket \alpha \rrbracket = \llbracket \beta \rrbracket \Rightarrow \llbracket \alpha \to \beta \rrbracket = T$$

Предпололжим обратное, т.е. $\exists \alpha, \beta: \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = A, \llbracket \alpha \to \beta \rrbracket \neq T.$

 $[\![\alpha \to \beta]\!] = f_{\to}([\![\alpha]\!], [\![\beta]\!]) = f_{\to}(A, A) \neq T$. Но $\vdash \alpha \to \alpha$, следовательно по корректности $\models \alpha \to \alpha$, следовательно $f_{\to}(A, A) = T$. Противоречие.

(b)
$$[\![\gamma]\!] = [\![\delta]\!] = T \Rightarrow [\![\gamma \& \delta]\!] = T$$

$$f_{\&}(T,T) = T, \text{ t.k.} \vdash (\alpha \to \alpha) \& (\alpha \to \alpha) \Rightarrow \models (\alpha \to \alpha) \& (\alpha \to \alpha) \Rightarrow T = f_{\&}([\![\alpha \to \alpha]\!], [\![\alpha \to \alpha]\!]) = f_{\&}(T,T)$$

(c) $T=f_{\vee}([\![\alpha \to \alpha]\!],[\![\beta]\!])=f_{\vee}(T,A)$, т.к. $\vdash(\alpha \to \alpha) \lor \beta$. Аналогично для симметричного случая.

По принципу Дирихле $\exists i \neq j : \llbracket P_i \rrbracket = \llbracket P_j \rrbracket \Rightarrow \llbracket P_i \to P_j \rrbracket = T \Rightarrow \llbracket \varphi \rrbracket = T$

2. Покажите, что какая бы ни была формула α и модель Крипке, если $W_i \Vdash \alpha$ и $W_i \preceq W_j$, то $W_i \Vdash \alpha$.

Докажем это по индукции по количеству операторов в α

База: n=0, т.е. $\alpha=P_i$ — переменная. Искомое верно по определению W.

Переход: 4 случая:

(a)
$$\alpha = \neg \beta$$

$$W_i \Vdash \alpha \Rightarrow \forall W_k : W_i \leq W_k \ W_k \nVdash \beta \Rightarrow \forall W_k : W_j \leq W_k \ W_k \nVdash \beta \Rightarrow W_j \Vdash \alpha$$

(b)
$$\alpha=\beta$$
 & γ
$$W_i \Vdash \alpha \Rightarrow W_i \Vdash \beta, W_i \Vdash \gamma,$$
 по индукционному предположению $W_j \Vdash \beta, W_j \Vdash \gamma \Rightarrow W_j \Vdash \alpha$

(c)
$$\alpha=\beta\vee\gamma$$

$$W_i\Vdash\alpha\Rightarrow W_i\Vdash\beta$$
 или $W_i\Vdash\gamma$, пусть это β (иначе переименуем). Тогда $W_j\Vdash\beta$ по индукционному предположению $W_j\Vdash\beta\Rightarrow W_j\Vdash\alpha$

(d)
$$\alpha=\beta\to\gamma$$

$$W_i \Vdash \alpha \Rightarrow \forall W_j: W_i \leq W_j \ W_j \Vdash \beta \Rightarrow W_j \Vdash \gamma \text{, по транзитивности} \leq \text{выполняется } W_i \Vdash \alpha$$

3. Общезначимы ли следующие высказывания в ИИВ? Опровергните, построив модель Крипке, или докажите, построив натуральный вывод.

(a)
$$P \vee \neg P$$
;

Пусть P — одна переменная и модель Крипке $W_1 \nVdash P$, а $W_2 \Vdash P$ и $W_1 \le W_2$. Тогда несложно заметить, что $W_1 \nVdash \neg P$, т.к. $\exists W_2 : W_1 \le W_2, W_2 \Vdash P$. Т.к. $W_1 \nVdash P, W_1 \nVdash \neg P$, получаем, что $W_1 \nVdash P \lor \neg P$

(b)
$$\neg \neg P \rightarrow P$$
;

$$W_1 \nVdash \neg \neg P \to P \Leftarrow \begin{cases} W_1 \Vdash \neg \neg P \\ W_1 \nVdash P \end{cases} \Leftarrow \begin{cases} W_1 \nVdash \neg P \\ W_1 \nVdash P \end{cases}$$

Пусть $W_2 \Vdash P$ и $W_1 \leq W_2$, тогда искомое выполнено.

(c)
$$P \vee \neg P \vee \neg \neg P \vee \neg \neg P$$
;

 $W_1 \nVdash P, W_2 \Vdash P, W_3 \Vdash \neg P, W_4 \neg \neg P$, все упорядочены

(d)
$$((P \rightarrow Q) \rightarrow P) \rightarrow P$$
;

 $W_1 \Vdash (P \to Q) \to P, W_1 \nvDash P$. Второе выполнено по построению; придумаем, как выполнить первое.

$$W_1 \nVdash P o Q \Leftarrow egin{cases} W_2 \Vdash P \\ W_2 \nVdash Q \end{cases}$$
 . Противоречий не возникло.

Ответ: $W = \{W_1, W_2\}, \leq = \{(W_1, W_2)\}$ (плюс рефлексивность), $W_2 \Vdash P$

(e)
$$(A \to B) \lor (B \to C) \lor (C \to A)$$
;

 $W_1 \nVdash (A \to B), W_1 \nVdash (B \to C), W_1 \nVdash (C \to A) \Rightarrow \exists W_2, W_3, W_4 : W_2 \Vdash A, W_2 \nVdash B, W_3 \Vdash B, W_3 \nVdash C, W_4 \Vdash C, W_4 \nVdash A$. Если $\leq = \{(W_1, W_2), (W_1, W_3), (W_1, W_4)\}$ (плюс рефлексивность), то противоречий нет.

(f)
$$\neg(\neg A \& \neg B) \to A \lor B$$
;

$$W_1 \Vdash \neg (\neg A \& \neg B), W_1 \nvDash A \lor B \Rightarrow W_1 \nvDash A, W_1 \nvDash B$$

Попробуем выполнить первое утверждение. $W_1 \nVdash \neg A \& \neg B \Rightarrow W_1 \nVdash \neg A$ или $W_1 \nVdash \neg B$. Пусть $W_1 \nVdash \neg A$ без потери общности. $W_1 \nVdash \neg A \Leftrightarrow \exists W_2 : W_2 \Vdash A$ и $W_1 \leq W_2$

Ответ: $W = \{W_1, W_2\}, \leq = \{(W_1, W_2)\}$ (плюс рефлексивность), $W_1 \nVdash A, W_1 \nVdash B, W_2 \Vdash A$.

(g)
$$(\neg A \lor B) \to (A \to B)$$
;

$$\frac{\neg A \lor B, A, \neg A \vdash A \to \bot}{\neg A \lor B, A, \neg A \vdash \bot} (\text{удаление} \bot) \qquad \frac{\neg A \lor B, A, \neg A \vdash \bot}{\neg A \lor B, A, \neg A \vdash B} (\neg A \lor B, A, B \vdash B) \qquad \overline{\neg A \lor B, A, B \vdash B} \qquad \overline{\neg A \lor B, A \vdash \neg A \lor B}$$

$$\frac{\neg A \lor B, A \vdash B}{\neg A \lor B \vdash A \to B} (\text{введение} \to)$$
(b) $(A \to B) \to (\neg A) \lor B$):

(h) $(A \rightarrow B) \rightarrow (\neg A \lor B)$;

$$W_1 \nVdash (A \to B) \to (\neg A \lor B) \Leftarrow \begin{cases} W_1 \Vdash A \to B \\ W_1 \nVdash \neg A \lor B \end{cases} \Leftarrow \begin{cases} W_1 \nVdash A \\ W_1 \nVdash \neg A \end{cases}$$

Пусть $W_2 \Vdash A$, $W_2 \Vdash B$ и $W_1 \leq W_2$, тогда $W_2 \Vdash A \to B$, $W_1 \Vdash A \to B$ пустотно и искомое выполнено.

(i) $\neg \bot$.

$$\frac{\bot \vdash \bot}{\vdash \bot \to \bot}$$

- 4. Рассмотрим некоторую модель Крипке $\langle \mathfrak{W}, \preceq, \Vdash \rangle$. Пусть $\Omega = \{ \mathcal{W} \subseteq \mathfrak{W} \mid \text{если } W_i \in \mathcal{W} \subseteq \mathcal{W} \mid \mathcal{W} \subseteq \mathcal{W} \mid \mathcal{W} \in \mathcal{W}$ $\mathcal W$ и $W_i \preceq W_j$, то $W_j \in \mathcal W\}$. Пусть $\hat{\mathcal W}_{\alpha} := \{W_i \in \mathfrak W \mid W_i \Vdash \alpha\}$ (множество миров, где вынуждена формула α).
 - (a) На лекции формулировалась теорема без доказательства, что пара $\langle \mathfrak{W}, \Omega \rangle$ топологическое пространство. Докажите её.

Покажем, что выполняются три аксиомы топологии:

- i. $\mathcal{W} = \bigcup_{\alpha} \mathcal{W}_{\alpha} \in \Omega$, где $\mathcal{W}_{\alpha} \in \Omega$ $\forall W_i \in \mathcal{W}$ и при этом $W_i \in \mathcal{W}_{\alpha}$. Если $W_i \leq W_i$, то т.к. $W_i \in \mathcal{W}_{\alpha}$, то $W_i \in \mathcal{W}_{\alpha}$, а следовательно $W_i \in \mathcal{W}$.
- іі. $\bigcap_{i=1}^n \mathcal{W}_i \in \Omega$, где $\mathcal{W}_i \in \Omega$ $\lhd W_i \in \mathcal{W} \Rightarrow W_i \in \mathcal{W}_{\alpha} \ \, \forall \alpha.$ Если $W_i \leq W_j$, то $W_j \in \mathcal{W}_{\alpha} \ \, \forall \alpha$ и следовательно $W_i \in \mathcal{W}$.
- iii. $\varnothing \in \Omega, \mathfrak{W} \in \Omega$

Первое выполнено в силу пустотности утверждения (vacuous, не знаю, как noрусски). Второе очевидно выполнено.

(b) Пусть W_{α} и W_{β} — открытые множества. Выразите $W_{\alpha \& \beta}$ и $W_{\alpha \lor \beta}$ через W_{α} и W_{β} и покажите, что они также открыты.

$$\mathcal{W}_{\alpha \& \beta} = \{ W_i \in \mathfrak{W} : W_i \Vdash \alpha \& \beta \} = \{ W_i \in \mathfrak{W} : W_i \Vdash \alpha \} \cap \{ W_i \in \mathfrak{W} : W_i \Vdash \beta \} = \mathcal{W}_{\alpha} \cap \mathcal{W}_{\beta}.$$

$$\mathcal{W}_{\alpha \lor \beta} = \mathcal{W}_{\alpha} \cup \mathcal{W}_{\beta}$$

Открытость тривиальна из того, что (\mathfrak{W},Ω) — топологическое пространство.

- (c) Пусть W_{α} и W_{β} открытые множества. Выразите $W_{\alpha \to \beta}$ через них и покажите, что оно также открыто.
- (d) Покажите, что Ω в точности множество всех множеств миров, на которых может быть вынуждена какая-либо формула. А именно, покажите, что для любой формулы α множество миров \mathcal{W}_{α} , где она вынуждена, всегда открыто ($\mathcal{W}_{\alpha} \in \Omega$) и что для любого открытого множества найдётся формула, которая вынуждена ровно на нём (для $Q \in \Omega$ существует формула α , что $\mathcal{W}_{\alpha} = Q$).

Покажем, что $\mathcal{W}_{\alpha} \in \Omega \ \forall \alpha$ по индукции.

База: α есть одна переменная. Искомое выполнено по монотонности вынужденности.

Переход: 4 случая, разобранных в пунктах а,b,с.

Покажем, что
$$\forall Q \in \Omega \ \ Q = \mathcal{W}_{\alpha}$$

Не покажем :(

5. Постройте топологическое пространство, соответствующее (в смысле предыдущего задания) модели Крипке, опровергающей высказывание $\neg \neg P \to P$. Постройте соответствующую ему табличную модель.

$$\mathfrak{W} = \{W_1\}, \Omega = \{\varnothing, \{W_1\}\}$$

- 6. Назовём древовидной моделью Крипке модель, в которой множество миров $\mathfrak W$ упорядочено как дерево: (а) существует наименьший мир W_0 ; (b) для любого $W_i \neq W_0$ существует единственный предшествующий мир $W_k: W_k \prec W_i$.
 - (а) Докажите, что любое высказывание, опровергаемое моделью Крипке, может быть опровергнуто древовидной моделью Крипке.
 - (b) Найдите высказывание, которое не может быть опровергнуто древовидной моделью Крипке высотой менее 2.
 - (c) Покажите, что для любого натурального n найдётся опровержимое в моделях Крипке высказывание, неопровергаемое никакой моделью с n мирами.
- 7. Будем говорить, что топологическое пространство $\langle X,\Omega \rangle$ *связно*, если нет таких открытых множеств A и B, что $X=A\cup B$, но $A\cap B=\varnothing$. Пусть задана некоторая модель

Крипке. Докажите, что соответствующее модели Крипке топологическое пространство связно тогда и только тогда, когда её граф миров связен в смысле теории графов.

Если граф не связен, то выберем одну КС, все миры в ней будут A, а остальные миры B. Несложно заметить, что $X=A\cup B, A\cap B=\varnothing$.

Если пространство не связно, то рассмотрим A и B из условия. Предположим, что граф связен, в частности есть ребро $a \to b$, где $a \in A, b \in B$ (или наоборот). Т.к. $a \le b$, то $b \in A$, что противоречит $A \cap B = \varnothing$.

- 8. Покажите, что модель Крипке с единственным миром задаёт классическую модель (в ней выполнены все доказуемые в КИВ высказывания).
- 9. Пусть заданы алгебры Гейтинга \mathcal{A}, \mathcal{B} , гомоморфизм $\varphi : \mathcal{A} \to \mathcal{B}$ и согласованные оценки $[\![]_{\mathcal{A}}$ и $[\![]_{\mathcal{B}}: \varphi([\![\alpha]\!]_{\mathcal{A}}) = [\![\alpha]\!]_{\mathcal{B}}.$
 - (a) Покажите, что гомоморфизм сохраняет порядок: если $a_1 \leq a_2$, то $\varphi(a_1) \leq \varphi(a_2)$.
 - (b) Покажите, что если $[\![\alpha]\!]_{\mathcal{A}}=1_{\mathcal{A}}$, то $[\![\alpha]\!]_{\mathcal{B}}=1_{\mathcal{B}}$. $[\![\alpha]\!]_{\mathcal{B}}=\varphi([\![\alpha]\!]_{\mathcal{A}})=\varphi(1_{\mathcal{A}})=1_{\mathcal{B}}$
- 10. Пусть заданы алгебры Гейтинга $\mathcal{A},\mathcal{B}.$ Всегда ли можно построить гомоморфизм $\varphi:\mathcal{A}\to\mathcal{B}$?
- 11. Пусть $\mathcal{A}-$ алгебра Гейтинга. Покажите, что $\Gamma(\mathcal{A})-$ алгебра Гейтинга и гёделева алгебра.
- 12. Пусть \mathcal{A} булева алгебра. Всегда ли (возможно ли, что) $\Gamma(\mathcal{A})$ будет булевой алгеброй?

Не всегда, например в алгебре $\Gamma(1 \to 0)$ выполняется следующее: $1+(1 \to 0)=1$, а должно быть 1_Γ