Fundamentals of Computer Algorithms Homework 2 Additional Problems

Prof. Matthew Moore

Due: 2018-09-04

- 1. In the python file associated with this homework, implement the functions
 - 1. Heap._parent_index,
 - 2. Heap._parent,
 - 3. Heap._parent_key,
 - 4. Heap._heapify_up.

Follow the instructions in the source file. In your printed homework submission, include *only* these functions, do not print the entire source file.

- 2. In the python file associated with this homework, implement the functions
 - 1. PQ.add,
 - 2. PQ.pop.

Follow the instructions in the source file. In your printed homework submission, include *only* these functions, do not print the entire source file.

3. In the python file associated with this homework, implement the function sort_with_PQ.

Your solution should be linear in the priority queue operations. That is, it should run in $\mathcal{O}(n \cdot \mathcal{O}(PQ))$, where $\mathcal{O}(PQ)$ is the \mathcal{O} -complexity of the priority queue operations. Since the heap operations are all $\mathcal{O}(\log(n))$, this sort algorithm is $\mathcal{O}(n\log(n))$. It is called *heapsort*, and is used by default in the Linux kernel due to its more stable performance characteristics.

4. Let L be a list and define property (A) on elements of L by

$$L[i]$$
 is not smaller than its neighbors, if they exist. (A)

"Neighbors" refers to the elements L[i-1] and L[i+1] if they exist. Here is an algorithm that will find one element of L exhibiting property (A).

- (i) What is the Θ -complexity of findA?
- (ii) Implement a function better_findA that performs better than findA. That is, if f(n) and b(n) are the number of iterations of findA and better_findA, respectively, then

$$\lim_{n \to \infty} \frac{b(n)}{f(n)} = 0.$$

5. Suppose we have two parameters, m and n, with $m \to \infty$ and $n \to \infty$, perhaps at different rates independent of one another. Which has larger Θ -complexity: $m^{\ln(n)}$ or $n^{\ln(m)}$?