§ 7 Noetherian Rings

Recall: A 73 Noetheriam,

- i) maximal condition
- ii) a.c.c for ideals
- iii) + ideal is f.g.

Noetherian > Hilbert basis than & existence of primary decomp.

PP 7.1 A = noetherian, $A \rightarrow> B$ \Rightarrow B = noetherianPf : (66).

Prop 7.1. $A \subseteq B$ subring. A = nonetheran B = f.g as A - module. $\Rightarrow B = nonetherian$ (as a ring)

Pf: (65) \Rightarrow B = noetherian A-module \Rightarrow B = noetherian B-module \Rightarrow B = noetherian rinf.

Except : ring of integers in any algebraic number field is noetherson.

Prop 7.3.
$$A = noetherian \Rightarrow S^{\dagger}A = noetherian$$
.

If: (MI) { ideal of $S^{\dagger}A$ { \iff } Contracted ideal of A }

Chair/S^{\dagger}A is stationary \iff chain of contr. ideals is stationary.

If $A = noetherian$
 $A = noetherian$
 $(M2)$ $A = S^{\dagger}A \Rightarrow S = S^{\dagger}A$

assume $I = S^{\dagger}A \times A \Rightarrow S = S^{\dagger}A \cdot \frac{2}{1}A \cdot$

 $Cor 7.4 A = noetherian \Rightarrow Ap = noetherian.$

Thm 7.5 (Hilbert Basis +hm).
$$A = noetherian \Rightarrow A[x] = noetherian$$
 $Pf: \forall x \land A[x].$
 $I:= \{leading coeff. of Poly. Th II \} \land A$
 $\Rightarrow I \land A \Rightarrow II = (a_1, \dots, a_n)$

Assume $f_{i} = a_i x^{r_{i}} + (lower terms) \in II.$

Cor 7.6.
$$A = noetherian \Rightarrow A[x_1, x_n] = noetherian$$

Cor 7.7.
$$B = f.g.$$
 A-alg. $A = noetherian \Rightarrow B = noetherian$.

Example: f.g. ring, f.g. alg over fold.

$$A = noetherian$$

$$A = \text{noetherian}$$

$$C = f.g. A-alg.$$

$$C = f.g. B-\text{mod} \left(\text{or int/B}\right)$$

$$\Rightarrow B = f.g. A-alg.$$

Pf:
$$C = A[c_1, c_2, \dots, c_n]$$

$$C_i^{\alpha i} + b_{i1} C_i^{\alpha i-1} + \dots + b_{i \alpha i} = 0 \quad b_{ij} \in B$$

$$\Rightarrow$$
 C = f.g. Bo-module.
 \Rightarrow Bo = noetherian \Rightarrow C = noetherian Bo-module

IZ.

Prop 7.8 k = field, E = f.g. k-alg. $E = field \Leftrightarrow E = finite alg. ext. of k.$

 $\mathcal{P}f: \quad \mathsf{E} = \mathsf{k[x_1, \cdots, x_n]}.$

Suppose E/k not algebraic.

=> 21,..., 2r alg. independent (r>1)

& 2_{r41,-..,} x_n alg over $k(x_1,...,x_r) = F$

 $k \subseteq F = k(x_1, x_2, \dots x_r) \subseteq E$

 $\frac{\text{Rop.} 7.8}{\text{Yr}} \Rightarrow F = f.g. \text{ k-alg.} \Rightarrow F = k[y_1, \dots, y_r]$ $\text{Yr} = \frac{f_r}{g_r} \quad \text{& } f_r, g_r \in k[x_1, \dots x_r].$

rto) = wby irr. poly. in le[x1-xr]

> = h irv wsh g(d(h,g,...gr)=1.

=> h + k[y, -.. y,] 4.

Gor 7.10 (Weak version of Milbertis Nullstellenson 2) k = field, A = fig. k-alg. m + A maximal. $\Rightarrow A/m = f. alg. ext of k.$ In particular, If k = k, then A/m = k.

§ 7.2 Primary decomposition in noetherian rings.

An ideal π is called <u>irreducible</u> if $\pi = \pi \cap \Gamma \Rightarrow \pi = \Gamma \cap \Gamma = \Gamma$

Lem 7.11 A = noetherian, every ideal is a finite intersection of irreducible ideals.

Pf: Suppose not. I = a maximal element in

Σ={ IdA | I is not a finiters, of in } +φ

ス2 3名E (. rri xon & 及.

以 = 足八亿

I = maximal in $\Sigma \Rightarrow \delta, \xi \notin \Sigma$.

$$\Rightarrow \quad \mathcal{L} = \bigcap_{i \neq j} \mathcal{E}_{i} , \quad \mathcal{I} = \bigcap_{j \neq j} \mathcal{I}_{j} \qquad \mathcal{E}_{i} , \quad \mathcal{I}_{j} = i w$$

$$\Rightarrow IX = \left(\bigcap_{i=1}^{n} S_{i}\right) \cap \left(\bigcap_{i=1}^{m} I_{i}\right) \qquad 4$$

lemma 7.12 In a Noetherian ring.

irreducible => primary

 $\Delta = primary \Leftrightarrow \overline{D} = primary in A/x$.

WMA: I =0.

+ xy=0 will y +0.

 $A_{nn}(x) \subseteq A_{nn}(x^2) \subseteq ---$

 $A.c.c \Rightarrow Ann(x^n) = Ann(x^{nt})$

 \Rightarrow $(x^n) \cap (y) = 0$

$$\begin{cases} \alpha \in (x^{n}) \cap (y) \Rightarrow \alpha = x^{n} a_{0} = y b_{0} \\ xy = 0 \Rightarrow x^{n+1} a_{0} = x \alpha = xy b_{0} = 0 \\ \Rightarrow x^{n} a_{0} = 0 \Rightarrow a = 0 \end{cases}$$

$$\begin{cases} (0) = \overline{t}nv \\ y \neq 0 \end{cases} \Rightarrow (x^n) = 0 \Rightarrow x^n = 0$$

Thm 7.13. Every ideal has primary decomposition in a Noetherian ring.

Prop. 7.14. 21 d A noofheran. In s. *.

$$(\sqrt{x})^n \leq \mathcal{I}$$

Cor 7.15. In a Noetherian ring, the nilradical is nilpotent.

Cor 7.16. A= noetherian. MJA maximal, &JA. TFAE:

- i) q = m primary
- ii) Ja = m
- iii) mn = q = m for some n>0.

$$\{ \mathcal{Z} \in \text{Spec } A | \mathcal{Z} \text{ belong = 16} \ \pi \} = \{ (\pi : x) | x \in A \} \cap \text{Spec } A$$

Pf: WMA:
$$\pi = 0$$
. & $0 = \bigcap_{i=1}^{n} F_i$ minimal primary decomp.
 $F_i := \overline{J}F_i$

$$\forall x \in \mathcal{I}_i := \bigcap_{j \neq i} \mathcal{F}_j \neq 0.$$

$$\int Ann(x) = \int (o:x) = \int (nq_i:x)$$

$$= \int ((q_i:x)) = (i) \int (q_i:x) = Q_i$$

$$\Rightarrow Ann(x) \subseteq Q_i$$

(7.14)
$$\Rightarrow \mathcal{F}_{i}^{m} \subseteq \mathcal{F}_{i} \Rightarrow \mathcal{L}_{i} \mathcal{F}_{i}^{m} \subseteq \mathcal{L}_{i} \cap \mathcal{F}_{i}^{m} \subseteq \mathcal{L}_{i} \cap \mathcal{F}_{i} = 0$$

 $m \geqslant 1$ be the Smallest integer s.z., $\mathcal{L}_{i} \mathcal{F}_{i}^{m} = 0$.

$$x \in \mathcal{I}_{i} \mathcal{I}_{i}^{m-1} \setminus \mathcal{I}_{o}$$

$$\Rightarrow \mathcal{I}_{i} x = o \Rightarrow A_{nn}(z) \supseteq \mathcal{I}_{i}$$

$$\Rightarrow A_{nn}(x) = \mathcal{I}_{i}$$

Conversely,
$$f = A_{nn}(x) = prime ideal$$

$$\Rightarrow \sqrt{A_{m}(x)} = f = prime$$
(45)
$$\Rightarrow f \text{ belooks so } 0.$$