

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 3

Дисциплина Моделирование

Тема _Марковские цепи_

Студент Ильясов И. М.

Группа <u>ИУ7-73Б</u>

Преподаватель Рудаков И.В.

Формализация задачи

Необходимо для сложной системы S, имеющей не более 10 состояний, определить среднее время нахождения системы в предельных состояниях, т.е. при установившемся режиме работы. Требуется вывести матрицу, в которой на пересечении строк и столбцов будет расположена интенсивность перехода. Размерность системы задается.

Теоретическая часть

Марковский процесс — это случайный процесс, обладающий следующим свойством — для каждого момента времени t_0 вероятность любого состояния системы в будущем $(t > t_0)$ зависит только от ее состояния в настоящем, т.е. при $t = t_0$ не зависит от того, когда и каким образом система перешла в это состояние. Марковский процесс не зависит от того, как данный процесс развивался в прошлом.

Для решения поставленной задачи требуется составить систему уравнений Колмогорова, имеющие следующий вид:

$$F = (P'(t), P(t), \lambda) = 0$$

Данные уравнения составляются по следующим принципам — в левой части каждого из уравнений стоит производная вероятности i-ого состояния, а в правой части стоит сумма произведений вероятностей всех состояний, умноженная на интенсивности соответствующих потоков событий, из которой вычли суммарную интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного i-ого состояния. Ниже приведен пример для системы, имеющей 4 состояния:

$$\begin{cases} p'_0 = \lambda_{10}p_1 + \lambda_{20}p_2 - (\lambda_{01} + \lambda_{02})p_0 \\ p'_1 = \lambda_{01}p_0 + \lambda_{31}p_3 - (\lambda_{10} + \lambda_{13})p_1 \\ p'_2 = \lambda_{02}p_0 + \lambda_{32}p_3 - (\lambda_{20} + \lambda_{23})p_2 \\ p'_3 = \lambda_{13}p_1 + \lambda_{23}p_2 - (\lambda_{31} + \lambda_{32})p_3 \end{cases}$$

Для получения предельных вероятностей, то есть вероятностей в стационарном режиме работы при $t \to \infty$, необходимо приравнять левые части уравнений к нулю. Таким образом, получается система линейных уравнений. Для решения полученной системы необходимо добавить условие нормировки: $p_0 + p_1 + p_2 + p_3 = 1$.

Результаты работы

Ниже приведены результаты работы программы для систем с 2, 4, 6, 8, 10 количеством состояний.

Рисунок 1 – результат при размерности системы равной 2.

Input size	of syste	em: 4		
States	1	2	 3	4
1 2 3 4 +	0.0 0.0335 0.0389 0.0664	0.5031 0.0 0.946 0.1952	0.5797 0.16 0.0 0.0162	0.7263 0.3675 0.0917 0.0
States	Margina	l probabi	+ lity T	ime
1 2 3 4	 	0.0283 0.3438 0.0746 0.5533	1. 8.	+ 116 373 706 335 +

Рисунок 2 – результат при размерности системы равной 4.

Input size of system: 6									
States	1	2	3		4	5	6		
1 2 3 4 5 6	0.0 0.0874 0.8802 0.4841 0.3876 0.7558	0.1149 0.0 0.9902 0.9906 0.3036 0.846	0.63 0.06 0.68 0.78 0.59	998 9 883 843	0.1945 0.464 0.2888 0.0 0.5301 0.2155	0.1699 0.6999 0.1487 0.5706 0.0 0.9627	0.8344 0.2801 0.4244 0.1583 0.5798 0.0		
States	 Margina	l probabi	lity	T:	ime				
1 2 3 4 5 6	 	0.1846 0.2759 0.1448 0.1102 0.1642 0.1202		2.2 31 1.0	942 293 .436 671 576 499				

Рисунок 3 – результат при размерности системы равной 6.

Input siz	e of syste	em: 8 +	·		+	+	+	+	+
States	1	2	3		4	5	6	7	8
1	0.0	0.7758	0.54	174	0.5452	0.389	0.9484	0.9737	0.0954
2	0.313	0.0	0.21	191	0.5832	0.6594	0.9791	0.1107	0.8375
3	0.4637	0.4256	0.0	9	0.888	0.1061	0.2005	0.1228	0.3899
4	0.282	0.5642	0.76	514	0.0	0.9813	0.7728	0.1189	0.4639
5	0.6436	0.7057	0.98	342	0.1164	0.0	0.3547	0.3944	0.9704
6	0.3157	0.6824	0.53	333	0.1486	0.1429	0.0	0.8771	0.5448
7	0.4484	0.2451	0.54	18	0.1017	0.7427	0.8794	0.0	0.4301
8	0.6333	0.9494	0.52	238	0.6117	0.3014	0.0172	0.1847	0.0
States	Margina	+ Marginal probability			ime				
+ 1	† 	 0.093		1.6	- 596				
2	j (ð.1438		1.7	769				
3	j	0.1777			178				
4		0.107			155				
	0 . 0938			2.2	292				
5		0.1445			117				
5 6	j (0.1445		1.3	31/				
		0.1445 0.0975			774				

Рисунок 4 – результат при размерности системы равной 8.

Input size	of syste	em: 10	+	+	+	+	+	+		+
States	1	2	3	4	5	6	7	8	9	10
1	0.0	0.4532	0.4982	 0.7829	 0.9282	0.9129	0.5438	0.3152	0.248	0.4293
2	0.1396	0.0	0.5667	0.8512	0.9559	0.1039	0.1011	0.5341	0.5132	0.872
3	0.2758	0.1796	0.0	0.4456	0.6427	0.9397	0.7717	0.0177	0.0261	0.489
4	0.9037	0.6552	0.1005	0.0	0.337	0.4349	0.01	0.6318	0.5533	0.4089
5	0.9181	0.3873	0.5638	0.9315	0.0	0.9241	0.5847	0.7142	0.091	0.0165
6	0.1194	0.6469	0.2344	0.7126	0.9547	0.0	0.6219	0.4805	0.7964	0.852
7	0.2053	0.07	0.2897	0.4303	0.6393	0.0741	0.0	0.6648	0.4963	0.9424
8	0.3858	0.0155	0.1629	0.5965	0.0777	0.8155	0.9633	0.0	0.5619	0.9231
9	0.7959	0.6622	0.6367	0.9464	0.7294	0.8409	0.1504	0.8001	0.0	0.9469
10	0.6028	0.2649	0.0153	0.746	0.6111	0.1397	0.5859	0.031	0.9014	0.0
States +	+	l probabi	+	ime +						
1 2			.83 881							
3	0.0738 3.5									
4	0.1501 2.0		043 j							
5	0.108 0.9		944							
6	0.0903 3.7		745							
7	0.1093 1.6		606							
8	0.0931 1.8		897							
9	(0.0705		238						
10	(0.1377	1.	869						
			+	+					V 10	

Рисунок 5 – результат при размерности системы равной 10.

Вывод

В результате выполнения лабораторной работы был смоделирован Марковский процесс. Также были найдены предельные вероятности и время нахождения сложной системы в предельных состояниях.