03000CS304052002

	//co. 30	CG
Reg No.	:Name:	TIONA
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
	Sixth Semester B.Tech Degree Regular and Supplementary Examination by 202	R /
	CHEDIN	EN PU
	Course Code: CS304	THUN
	Course Name: COMPILER DESIGN	
Max. M	Tarks: 100 Duration: 3	3 Hours
¹ ,	PART A	
	Answer all questions, each carries 3 marks.	Marks
4	Write a regular expression to denote the language of all strings of a's and b's	(3)
	with an even number of a's followed by an odd number of b's.	
2	Distinguish between front end and back end of a compiler.	(3)
3	Show that the following grammar is ambiguous:	(3)
	$S \rightarrow i C t S$	
	$S \rightarrow i C t S e S$	
	$S \rightarrow a$	
	$C \rightarrow b$	
4	Explain backtracking with an example.	(3)
	PART B	
,	Answer any two full questions, each carries 9 marks.	
5 a)	Eliminate left recursion from the following grammar:	(4)
	$S \rightarrow Aa \mid b$	
,	$A \rightarrow Ac \mid Sd \mid h$	
b)	Construct a recursive descent parser for the following grammar	(5)
	$E \rightarrow TE'$	
	$E' \rightarrow +TE' \mid \varepsilon$	
	$T \rightarrow FT'$	
	$T' \rightarrow *FT' \mid_{\Omega}$	

Explain in detail the various phases of a compiler with a neat diagram. Illustrate

(9)

03000CS304052002

the output of each phase for the input x = 2 * a + b, where a and b are float

variables. Check if following grammar is LL(1) by constructing a parse table: (5) $S \rightarrow (L) \mid a$ $L \rightarrow SL'$ $L' \rightarrow , SL' | \varepsilon$ Note that ',' is a terminal and ε is the empty string. Explain bootstrapping. **(4) PART C** Answer all questions, each carries 3 marks. 8 Determine the FIRST and FOLLOW sets for the non-terminals in the following **(3)** grammar: $S \rightarrow AA$ $A \rightarrow aA \mid b$ 9 Define an operator grammar. Give an example **(3)** 10 Distinguish between S-attributed definitions and L-attributed definitions. (3) 11 What is type checking? What are its two types? (3) PART D Answer any two full questions, each carries 9 marks. Construct the SLR(1) parsing table for the following grammar: 12 (9) $E \rightarrow T + E \mid T$ $T \rightarrow id$ 13 Write a syntax directed translation scheme for a simple desk calculator. (3) What sequence of moves are made by a bottom up parser on the input 23*5+4 b) (6) using the translations in part (a)? 14 a) Consider the following grammar: (6) $S \rightarrow a \mid (T)$ $T \to T$, $S \mid S$ For the string (a, (a, a)), indicate how a parse tree is constructed by a shift reduce parser using a rightmost derivation.

(3)

Explain the bottom- up evaluation of S- attributed definitions.

03000CS304052002

PART E

		Answer uny jour juit questions, each carries 10 marks.	
15	a)	What is heap allocation strategy?	(3)
	b)	What is an activation record? Explain its structure with a figure.	(7)
16		Write quadruples, triples and indirect tuples for the expression	(10)
		(a + b) * (b + c) + (a + b + c)	` ,
17	a)	Write a syntax directed translation scheme that generates three address code for	(7)
•		Boolean expressions.	
	b)	Distinguish between static and dynamic storage allocation.	(3)
18	a)	Write the algorithm for identifying the basic blocks from a sequence of three	(5)
		address code statements.	(-)
	b)	Construct the DAG for the following basic block	(5)
		D := B * C	(-)
		E := A + B	
		B := B * C	
		A := E - D	
19		For the following C statement, write the three-address code.	(10)
		X := A - B + C - D + E - F	(10)
-		Convert the three-address code into machine code.	
20	a)	How do algebraic laws help in optimizing basic blocks?	(4)
	b)	Write the code generation algorithm.	(6)
			(0)

Page 3 of 3