Oracle separations of Hybrid Quantum-Classical circuits

Atul Singh Arora*

Uttam Singh

Alexandru Gheorghiu

The Models of Computation

Motivation

BPP C BQP **Belief:** Period Finding, Why?

Integer Factoring, Discrete Log

These can be solved QNC with But. poly-time classical pre-post-processing

Prior Art (CCL* and CM)

Extended Josza's conjecture*:

$$BPP^{QNC} = QNC^{BPP} = BQP$$

Results (and Prior Art)

•		/				
	\mathbf{QC}_d	\mathbf{CQ}_d		Oracle		
d'-SeS $d'+1$	$\leq d \leq 2d' + 2$	$d \leq 1$		Standard	This work	
d'-SCS	$d \leq 4$	$d' + 1 \le d \le d'$	+ 5	Stochastic	This work	
d'-SSP $d'+1$	$\leq d \leq 2d' + 2$	$d' + 1 \le d \le 2d$	" + 1	Standard	CCL*	
d'-SS		$d' + 1 \le d \le 2d$	" + 1	Standard	This work	
wrt to an oracle	BPPQNC (BPPQNC C BQP		BPP ^{QNC} ⊈ QNC ^{BPP}		
	QNC ^{BPP}	CBPP ⊂ BQP BPPQNC ⊈ QNCBPP				

The Problems

d-Serial Simon's Problem

Sample d+1 random Simon's functions $\{f_i\}_{i=0}^d$ with periods $\{s_i\}$.

The problem: to find the period s_d of the last Simon's function.

However, only access to f_0 is given directly. Access to f_i , for $i \ge 1$, is given via a function L_{f_i} which outputs $f_i(x)$ if the input is (s_{i-1}, x) and \bot otherwise.

To access the *i*th Simon's function, one needs the period of the (i - 1)th Simon's function.

d-Shuffled Collisions to Simon's Problem

Uniformly sample f from all 2-to-1 functions, g from all Simon's functions, and hfrom all 1-to-1 functions.

Let p be some canonical bijection which maps colliding pairs of f to those of g (and p_{inv} be the inverse).

Let p' be such that p'(h(f(x)), x) = p(x) and Ξ is a d-Shuffler encoding h.

The problem: given p', p'_{inv} , Ξ and a stochastic oracle \mathcal{S} for f, find the period of g.

Background

Recall | Simon's Problem

Given a Simon's function $f: \{0,1\}^n \to \{0,1\}^n$, i.e. a two-to-one function s.t. $f(x) = f(x \oplus s)$ for some hidden period s, find the period s.

Recall | Simon's Algorithm

$$|0^{n}\rangle_{X}|0^{n}\rangle_{Y} \stackrel{H}{\mapsto} \sum_{x} |x\rangle|0\rangle$$

$$\stackrel{O}{\mapsto} \sum_{x} |x\rangle|g(x)\rangle$$

$$\stackrel{\Pi_{Y}}{\mapsto} (|x\rangle + |x \oplus s\rangle)|y\rangle$$

$$\stackrel{H}{\mapsto} \sum_{x} (-1)^{x \cdot d} (1 + (-1)^{s \cdot d})|d\rangle|y\rangle$$

Repeat, obtain equations $s \cdot d = 0$ and solve to obtain s.

d-Shuffler

This work

Consider d random permutations, f'_0, \dots, f'_{d-1} from ${0,1}^{2n} \rightarrow {0,1}^{2n}$. Define f'_d to be such that $f'_d(\cdots f'_0(x)) = f(x)$ for $x \in \{0,1\}^n$.

 $(f_i)_{i=0}^d$ is called a d-Shuffler and we denote it as Ξ .

Stochastic Oracle

 $|x\rangle |z \oplus g(x,y)\rangle.$

X, Y be finite sets, \mathbb{F}_{Y} be some distribution over Y, $g(x, y): X \times Y \rightarrow Z$ be a function. An intrinsically stochastic oracle S wrt \mathbb{F}_{Y} corresponding to g acts on each query as: Samples $y \leftarrow \mathbb{F}_{y}$ and on input $|x\rangle |z\rangle$ produces

Bounds

CQ₁ solves *d*-SeS

CQ₁ can make polynomially many oracle calls to QNC_d .

Thus, CQ₁ can parallely unlock the periods S_i , hence the Simon function f_d , and can find s_d .

QC_d cannot

QC₄ solves d- SCS

- 1. Apply the stochastic oracle \mathcal{S} on inputs $(|0\rangle + |1\rangle)_O |0\rangle_{RR'} \mapsto$ $(|0\rangle_O|x_0\rangle_R + |1\rangle_O|x_1\rangle_R)|y\rangle_{R'}$ $y = f(x_0) = f(x_1)$ is random.
- Classically, compute, h(y) using Ξ .
- 3. Quantumly, use p' with h(y) to get $|0\rangle |x_0\rangle |p(x_0)\rangle + |1\rangle |x_1\rangle |p(x_1)\rangle$
- Proceed as in Simon's to get $p(x_0) \oplus p(x_1) = s$ the period.

CQ_d cannot

Oracle access is to a generic 2-to-1 function f instead of the Simon function g. Superpositions over colliding pairs are no longer related by the period s. To obtain any information about s, query to the bijection p is needed. But in CQ_d the quantum subroutines must measure their states completely before invoking the classical subroutines. Only the classical subroutines can obtain access to the bijection as the shuffler can only be invoked by a circuit of depth at least d.

References, Affiliation, PDF and related | QR

