```
exercise2 (Score: 22.0 / 22.0)

1. Task (Score: 2.0 / 2.0)

2. Test cell (Score: 3.0 / 3.0)

3. Task (Score: 3.0 / 3.0)

4. Test cell (Score: 2.0 / 2.0)
```

Test cell (Score: 2.0 / 2.0)
 Test cell (Score: 3.0 / 3.0)
 Test cell (Score: 3.0 / 3.0)
 Task (Score: 4.0 / 4.0)

Lab 4

- 1. 提交作業之前,建議可以先點選上方工具列的Kernel,再選擇Restart & Run All,檢查一下是否程式跑起來都沒有問題,最後記得儲存。
- 2. 請先填上下方的姓名(name)及學號(stduent_id)再開始作答,例如:

```
name = "我的名字"
student id= "B06201000"
```

- 3. 演算法的實作可以參考lab-4 (https://yuanyuyuan.github.io/itcm/lab-4.html), 有任何問題歡迎找助教詢問。
- 4. Deadline: 11/20(Wed.)

In [1]:

```
name = "鄭如芳"
student_id = "B05602020"
```

Exercise 2

Let I(f) be a define integral defined by

$$I(f) = \int_0^1 f(x) dx,$$

and consider the quadrature formula

$$\hat{I}(f) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f'(0)$$
 (*)

for approximation of I(f).

Part 1.

Determine the coefficients α_j for $j=1,\,2,\,3$ in such a way that \hat{I} has the degree of exactness r=2. Here the degree of exactness r is to find r such that

$$\hat{I}(x^k) = I(x^k)$$
 for $k = 0, 1, ..., r$ and $\hat{I}(x^j) \neq I(x^j)$ for $j > r$,

where x^j denote the *j*-th power of x.

Top,

Derive the values of α_1 , α_2 , α_3 in (*). You need to write down the detail in the cell below with Markdown/LaTeX.

$$k = 0: I(1) = \int_0^1 f(x) dx = \int_0^1 1 dx = 1 \hat{I}(1) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f^{'}(0) = \alpha_1 \cdot 1 + \alpha_2 \cdot 1 + \alpha_3 \cdot 0 \\ k = 0: I(1) = \int_0^1 f(x) dx = \int_0^1 x dx = \frac{1}{2} \hat{I}(x) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f^{'}(0) = \alpha_1 \cdot 1 + \alpha_2 \cdot 1 + \alpha_3 \cdot 0 \\ k = 0: I(1) = \int_0^1 f(x) dx = \int_0^1 1 dx = 1 \hat{I}(1) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f^{'}(0) = \alpha_1 \cdot 1 + \alpha_2 \cdot 1 + \alpha_3 \cdot 0 \\ k = 0: I(1) = \int_0^1 f(x) dx = \int_0^1 1 dx = 1 \hat{I}(1) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f^{'}(0) = \alpha_1 \cdot 1 + \alpha_3 \cdot 0 \\ k = 0: I(1) = \int_0^1 f(x) dx = \int_0^1 1 dx = 1 \hat{I}(1) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f^{'}(0) = \alpha_1 \cdot 1 + \alpha_3 \cdot 0 \\ k = 0: I(1) = \int_0^1 f(x) dx = \int_0^1 f(x)$$

Fill in the tuple variable alpha_1, alpha_2, alpha_3 with your answer above.

In [2]:

In [3]:

```
part_1

print("alpha_1 =", alpha_1)
print("alpha_2 =", alpha_2)
print("alpha_3 =", alpha_3)
### BEGIN HIDDEN TESTS

assert abs(alpha_1 - 2/3) <= 1e-7, 'alpha_1 is wrong!'
assert abs(alpha_2 - 1/3) <= 1e-7, 'alpha_2 is wrong!'
assert abs(alpha_3 - 1/6) <= 1e-7, 'alpha_3 is wrong!'
### END HIDDEN TESTS</pre>
```

Part 2.

Find an apppropriate expression for the error $E(f)=I(f)-\hat{I}(f)$, and write your process in the below cell with Markdown/LaTeX.

$$E(f) = I(f) - \hat{I}(f) = \int_0^1 f(x)dx - \frac{2}{3}f(0) - \frac{1}{3}f(1) - \frac{1}{6}f'(0)$$

Part 3.

Compute

$$\int_0^1 e^{-\frac{x^2}{2}} dx$$

using quadrature formulas (*), the Simpson's rule and the Gauss-Legendre formula in the case n=1. Compare the obtained results.

Part 3.1

Import necessary libraries

```
In [4]:
```

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.special.orthogonal import p_roots
```

Part 3.2

Define the function $f(x) = e^{-\frac{x^2}{2}}$ and its derivative.

In [5]:

Print and check your functions.

```
In [6]:
```

```
part_3_1_1

print('f(0) =', f(0))
print("f'(0) =", d_f(0))
### BEGIN HIDDEN TESTS

assert abs(f(5) - np.exp(-5**2/2)) <= 1e-7, 'f(5) is wrong!'
assert abs(f(10) - np.exp(-10**2/2)) <= 1e-7, 'f(10) is wrong!'
assert abs(d_f(5) - -5*np.exp(-5**2/2)) <= 1e-7, "f'(5) is wrong!"
assert abs(d_f(10) - -10*np.exp(-10**2/2)) <= 1e-7, "f'(10) is wrong!"
### END HIDDEN TESTS</pre>
```

```
f(0) = 1.0
f'(0) = 0.0
```

Part 3.3

Compute

$$\int_0^1 e^{-\frac{x^2}{2}} dx$$

with the formula (*).

Fill your answer into the variable approximation .

In [7]:

Run and check your answer.

In [8]:

```
part_3_2

print("The result of the integral is", approximation)
### BEGIN HIDDEN TESTS
assert abs(approximation - 0.8688435532375445) < 1e-3, "wrong approximation!"
### END HIDDEN TESTS</pre>
```

The result of the integral is 0.8688435532375445

Part 3.4

Compute

$$\int_0^1 e^{-\frac{x^2}{2}} dx$$

with Simpson's rule.

Implement Simpson's rule

```
In [9]:
```

```
def simpson(
   f,
   a,
    b,
   N = 50
):
   Parameters
    _____
    f : function
       Vectorized function of a single variable
    a , b : numbers
       Interval of integration [a,b]
    N : (even) integer
       Number of subintervals of [a,b]
   Returns
    _ _ _ _ _ _
    S : float
       Approximation of the integral of f(x) from a to b using
       Simpson's rule with N subintervals of equal length.
    # ===== 請實做程式 =====
    if N%2==1:
        raise value_error
    dx=(b-a)/N
    x=np.linspace(a,b,N+1)
    y=f(x)
    S=dx/3*np.sum(y[0:-1:2]+4*y[1::2]+y[2::2])
    return S
    # =============
```

Run and check your function.

In [10]:

```
S = simpson(f, 0, 1, N=50)
print("The result from Simpson's rule is", S)
### BEGIN HIDDEN TESTS
assert abs(S - 0.8556243929705796) < 1e-7, "Wrong answer!"
### END HIDDEN TESTS
```

The result from Simpson's rule is 0.8556243929705796

Part 3.5

Compute

$$\int_0^1 e^{-\frac{x^2}{2}} dx$$

with the Gauss-Legendre formula using n = 1.

```
In [11]:
```

```
def gauss (
   f,
   n,
    a,
    b
):
   Parameters
    f : function
        Vectorized function of a single variable
    n : integer
       Number of points
    a , b : numbers
        Interval of integration [a,b]
   Returns
    _ _ _ _ _ _
    G : float
       Approximation of the integral of f(x) from a to b using the
        Gaussian—Legendre quadrature rule with N points.
    # ==== 請實做程式 =====
    [x,w]=p_roots(n+1)
    G=0.5*(\overline{b}-a)*sum(w*f(0.5*(b-a)*x+0.5*(b+a)))
    return G
    # =========
```

Run and check your function.

In [12]:

```
Gauss-Legendre

G = gauss(f, 1, 0, 1)
print("The result from Gauss-Legendre is", G)
### BEGIN HIDDEN TESTS
assert abs(G - 0.88) <= 1e-1, "Wrong answer!"
### END HIDDEN TESTS
```

The result from Gauss-Legendre is 0.8553145616837845

(Top)

Part 3.6

Compare the obtained results of three methods above and write down your observation. You can use either code or markdown to depict.

solution obtained by Simpson's rule and Gauss - Legendre formula is similarand the solution obtained by formula * is a little bit lager then thembut using formula *