MATEMÁTICA

Convenções: Consideramos o sistema de coordenadas cartesiano a menos que haja indicação contrária.

 $\mathbb{N} = \{1, 2, 3, \dots\}$: denota o conjunto dos números naturais. \mathbb{R} : denota o conjunto dos números reais.

 ${\Bbb C}$: denota o conjunto dos números complexos.

i: denota a unidade imaginária, $i^2 = -1$.

 $M_n(\mathbb{R})$: denota o conjunto das matrizes $n \times n$ de entradas reais.

 \overline{AB} : denota o segmento de reta de extremidades nos pontos A e B.

 $A\hat{O}B$: denota o ângulo formado pelas semi-retas \overrightarrow{OA} e \overrightarrow{OB} , com vértice no ponto O.

 $m(\overline{AB})$: denota o comprimento do segmento \overline{AB} .

Questão 1. Seja $x \in \mathbb{R}$. Considere um retângulo R de lados medindo $a = 9x^2 - 5x^4$ e $b = 8x - 8x^3$. Sabendo que o perímetro de R é 8 determine a e b.

Questão 2. Seja $z \in \mathbb{C}$ e denote por $\Im(z)$ a parte imaginária de z. Determine todos os possíveis $z \in \mathbb{C}$ com $\Im(z) \neq 0$ tais que temos simultaneamente $\Im(z^3) = 0$ e $\Im((1+z)^3) = 0$.

Questão 3. Seja A a matriz com 5 linhas e 10 colunas cujas entradas $a_{n,m}$ são dadas por

$$a_{n,m} = \begin{cases} 1, & \text{se } m = 1\\ n + a_{n,(m-1)}, & \text{se } m > 1 \end{cases}.$$

Determine a soma de todas as entradas de A.

Questão 4. No jogo da velha, dois jogadores competem em um tabuleiro ordenado formado por 3 linhas e 3 colunas. Os jogadores se alternam marcando uma casa ainda não ocupada até que um deles ocupe toda uma linha, coluna ou diagonal, sendo declarado o vencedor. Quantas configurações diferentes do tabuleiro correspondem à vitória do primeiro jogador na sua terceira jogada?

Questão 5. Considere arccos : $[-1,1] \rightarrow [0,\pi]$ e arcsen : $[-1,1] \rightarrow [-\pi/2,\pi/2]$. Determine todos os valores de arccos(x) dado que x satisfaz

$$\arccos(x^4) + \arcsin(x^2 - 1/4) = \pi/2.$$

Questão 6. Seja A=(0,1). Considere a reta r de equação y=1-x/4 e seja s uma reta passando pela origem O e que intersecta r no 1° quadrante em um ponto P. Determine o ponto Q do 2° quadrante que pertence a r e dista $\sqrt{2}$ de s sabendo que $A\hat{P}O=\theta$ e que $\tan(\theta)=\frac{5}{3}$.

Questão 7. Considere T um tronco de pirâmide regular de altura $h=4+2\sqrt{3}$ com bases hexagonais paralelas. Sabendo que o lado da maior base hexagonal mede $8\sqrt{3}/3$ e que o ângulo diedral entre as faces laterais e a base do tronco mede 75^o , determine o volume de T.

Questão 8. Seja Q um quadrilátero de vértices A,B,C e D cujos lados satisfazem $m(\overline{AB})=5=m(\overline{CD}),$ $m(\overline{BC})=3$ e $m(\overline{DA})=8$. Sabendo que Q é inscrito em uma circunferência de raio r, determine r.

Questão 9. Sejam $P_1=(0,6)$, $P_2=(1,5)$ e $P_3=(2,6)$ e sejam C_1,C_2 e C_3 circunferências centradas em P_1,P_2 e P_3 , respectivamente. Sabendo que existe uma reta horizontal que é tangente a C_1,C_2 e C_3 determine $C_1\cap C_2\cap C_3$ quando este não for vazio.

Questão 10. Considere um octaedro regular de aresta de comprimento l_1 . Inscreva nesse octaedro um cubo cujos vértices estão nos baricentros das faces do octaedro. Dentro desse cubo inscreva um novo octaedro regular de aresta de comprimento l_2 cujos vértices estão nos centros das faces do cubo. Continue com esse processo obtendo uma sequência l_i para $i \in \mathbb{N}$. Determine então o valor da razão l_{10}/l_1 .