Exercise 2.1 Probabilities are sensitive to the form of the question that was used to generate the answer

(a)

If the neighbor has any boys, there is only a chance to the first of the three rows in the above table. In this situation, the probability that one child is a girl is $\frac{2}{3}$.

(b)

$$\begin{split} P(Run = C1) \cdot P(C2 = G|Run = C1) + P(Run = C2) \cdot P(C1 = G|Run = C2) &= \frac{1}{2} \cdot \frac{1}{2} \\ &= \frac{1}{2} \end{split}$$

Exercise 2.2 Legal reasoning

(a)

$$G = \begin{cases} 1 & \text{(defendant is guilty)} \\ 0 & \text{(otherwise)} \end{cases}$$

$$B = \begin{cases} 1 & \text{(defendant's blood type matches one at the scene)} \\ 0 & \text{(otherwise)} \end{cases}$$

$$(2)$$

$$B = \begin{cases} 1 & \text{(defendant's blood type matches one at the scene)} \\ 0 & \text{(otherwise)} \end{cases}$$
 (2)

$$P(G = 0|B = 1) = \frac{P(B = 1|G = 0) \cdot P(G = 0)}{P(B = 1)}$$

$$= \frac{P(B = 1|G = 0) \cdot P(G = 0)}{P(B = 1|G = 1) \cdot P(G = 1) + P(B = 1|G = 0) \cdot P(G = 0)}$$

$$= \frac{\frac{1}{1000} \times \frac{799999}{800000}}{1 \times \frac{1}{800000} + \frac{1}{1000} \times \frac{799999}{800000}}$$
(5)

$$= \frac{P(B=1|G=0) \cdot P(G=0)}{P(B=1|G=1) \cdot P(G=1) + P(B=1|G=0) \cdot P(G=0)}$$
(4)

$$=\frac{\frac{1}{1000} \times \frac{799999}{800000}}{1 \times \frac{1}{800000} + \frac{1}{1000} \times \frac{799999}{800000}}$$
(5)

$$\simeq 0.999 \tag{6}$$

The probability of the defendant is innocense given that defendant's blood type matches one at the scene is 0.999.

(b)

The probabilities of guilty of 8000 people are all the same. This fact doesn't show that the defendant is innocense.