Data-driven Intelligent Systems

Lecture 7 Decision Trees and Classification

http://www.informatik.uni-hamburg.de/WTM/

From Data to Knowledge

Medical Data by Dr. X, Tokyo Med. & Dent. Univ., 38 attributes:

```
10, M, 0, 10, 10, 0, 0, 0, SUBACUTE, 37, 2, 1, 0,15, -, -, 6000, 2, 0, abnormal, abnormal, -, 2852, 2148, 712, 97, 49, F, -, multiple, , 2137, negative, n, n, ABSCESS, VIRUS

12, M, 0, 5, 5, 0, 0, 0, ACUTE, 38.5, 2, 1, 0,15, -, -, 10700, 4, 0, normal, abnormal, +, 1080, 680, 400, 71, 59, F, -, ABPC+CZX, , 70, negative, n, n, n, BACTERIA, BACTERIA

15, M, 0, 3, 2, 3, 0, 0, ACUTE, 39.3, 3, 1, 0,15, -, -, 6000, 0,0, normal, abnormal, +, 1124, 622, 502, 47, 63, F, -, FMOX+AMK, , 48, negative, n, n, n, BACTE(E), BACTERIA

16, M, 0, 32, 32, 0, 0, 0, SUBACUTE, 38, 2, 0, 0, 15, -, +, 12600, 4, 0, abnormal, abnormal, +, 41, 39, 2, 44, 57, F, -, ABPC+CZX, ?, ?, negative, ?, n, n, ABSCESS, VIRUS
```

Numerical attribute Categorical attribute Missing values

Class labels

```
IF cell_poly <= 220 AND Risk = n
AND Loc_dat = + AND Nausea > 15
THEN Prediction = VIRUS [87,5%]
```

Overview

- Decision tree induction
- Criteria for attribute split
 - Information Gain
 - Gini Impurity
- Advanced decision trees
 - Continuous attributes
 - Gain ratio
 - Missing values
 - Pruning
 - Rule extraction
- Limitations of decision trees

next week

Decision Boundaries

Decision Boundaries

History of Decision Trees

- 1966: Hunt, colleagues in psychology used full search decision tree methods to model human concept learning
- 1977: Breiman, Friedman, colleagues in statistics develop simultaneous Classification And Regression Trees (CART)
- 1986: Quinlan's landmark paper on ID3
- Late 1980s: Various improvements, i.e: coping with noise, continuous attributes, missing data, non-axis-parallel DTs
- 1993: Quinlan's updated algorithm, C4.5
- Towards 2000: Quinlan: More pruning, overfitting control heuristics (C5.0, etc.); combining DTs; incremental learning

Supervised vs. Unsupervised Learning (continuous outputs)

Supervised Learning: Regression

- The training data (observations, measurements, etc.) are accompanied by continuous output values
- For new data where output values are missing, "predict" the most likely output values based on the training
- Unsupervised Learning: general case
 - Given a set of measurements, observations, etc. of which the class labels are unknown
 - Aim: represent the data in another form
 - E.g. compressed via PCA, ...

Supervised vs. Unsupervised Learning (discrete outputs)

today

- Supervised Learning: Classification
 - The training data (observations, measurements, etc.) are accompanied by categorical class labels (discrete or nominal)
 - New data is classified based on the training
- Unsupervised Learning: Clustering
 - Given a set of measurements, observations, etc. of which the class labels are unknown
 - Aim: establish the existence of clusters in the data

Decision Trees

- Split classification into a series of choices about features in turn
- Lay them out in a tree
- Progress down the tree to the leaves

Example: Anyone for Tennis?

Decide whether to play tennis based on the weather

Rules and Decision Trees

- Tree can be turned into a set of rules:
 - if (outlook = sunny & humidity = normal) | (outlook = overcast) | (outlook = rain & wind = weak)
 then play tennis
- How do we generate the trees?
 - Need to choose features / attributes
 - Need to choose order of features / attributes

Decision Trees

- Efficient method for producing classifiers from data
 - Supervised learning methods that construct decision trees from a set of input-output samples

Y=A

Class₁

- Guarantees that a simple tree is found
 - but not necessarily the simplest one
- Consists of
 - Nodes that are tests on the attributes
 - Outgoing branches
 of a node correspond
 to all the possible
 outcomes of the test
 at the node
 - Leaves that are sets of samples belonging to the same class

Applications of Decision Trees

- Astronomy: star/galaxy classification
- Aircraft: uncover flaws in the manufacturing process
- Medical: classify if a tumor is cancerous, detect microcalcifications in mammography
- Vision: recognize 3D objects in high-level vision
- Pharmacology: classification in drug analysis
- Physics: detection of particles
- Plant disease: assess the hazard of mortality to pine trees
- Power systems: security assessment; stability prediction
- Medical text classification
- ...

Example of Decision Tree for Credit Approval

Credit Analysis

salary	education	label	#				
10000	high school	reject	1				
40000	under graduate	accept	2				
18000	under graduate	reject	3				
75000	graduate	accept	4				
15000	graduate	accept	5	O colony > 20000			
				salary > 20000			
no yes							
110 yes							
education = graduate							
				accept			
yes/\no							
		a	ccept	reject			

Decision Tree for Classification

- Given:
 - Database of samples, each assigned a class label.
- Task: Develop a model/profile for each class:
 - Example profile (good credit):

```
(salary > 20k) or (salary <= 20k and education = graduate) => Credit = Good (approved)
```

Overview

- Decision tree induction
 - Criteria for attribute split
 - Information Gain
 - Gini Impurity

Classification by Decision Tree Induction

- Decision tree generation consists of two phases:
 - 1. Tree **construction**:
 - At start, all the training examples are at the root.
 - Partition the examples recursively based on selected attributes.
 - 2. Tree *pruning*:
 - Identify and remove branches that reflect noise or outliers.
- Decision tree <u>use</u>: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Decision Tree: Example

Income > t1 Debt > t2 Income > t3

Are all correctly classified?

piecewise linear and axis-parallel

Classification: Model Construction & Usage

- Model construction: describing a set of predetermined classes
 - The set of tuples used for model construction is the training set
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The model is represented as decision tree or as classification rules (cf. neural network: as mathematical formulae)
- Model usage: for classifying future or unknown objects
 - Evaluate the model with a test set (independent of training set)
 - Compare known labels of test samples with the classification result of the model
 - E.g., accuracy rate is the percentage of test set samples that are correctly classified by the model
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

THEN tenured = 'yes'

Process (2): Using the Model

Decision Tree Induction: Training Dataset

This follows an example of Quinlan's ID3

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

Decision Tree

- Requirements for a Decision Tree algorithm:
 - 1. Consistent attribute-value description for all data
 - Predefined classes
 - Discrete classes
 - 4. Sufficient data
 - "Logical" classification (not weighted decisions)
- Pros
 - Fast execution time
 - Generated trees (rules) are easy to interpret by humans
 - Scale well for large data sets
 - Can handle high-dim. data

Cons

- Cannot capture correlations among attributes
- Consider only axis-parallel cuts

Many Decision Tree Algorithms

- Classifiers from machine learning and statistical community:
 - CART (as an advance in applied statistics)
 - ID3
 - C4.5 [Quinlan 93] → C5.0
- Classifiers for large databases:
 - SLIQ, SPRINT
 - SONAR
 - Rainforest
- Aspects are quality of the tree, scalability, and memory use.

Overview

- Decision tree induction
- Criteria for attribute split
 - Information Gain
 - Gini Impurity

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., *information gain*)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning
 - Heuristics: maximum depth of tree; minimum # data at leaf, etc.
 - Majority voting is employed for classifying the leaf

Decision Tree Algorithms: First Splitting

high-school	10000	reject	1
under-graduate	40000	accept	2
under-graduate		reject	3

graduate	75000	accept	4
graduate	15000	accept	5

reject

5

4

we did not explain how we selected "education" attribute for splitting

Overview

- Decision tree induction
- Criteria for attribute split
 - Information Gain
 - Gini Impurity

Select the Attribute with highest Information Gain

Consider split over attribute A_1 : Entropy $H_{A_1}(D)$ over the three partitions is low, because classes get separated well. Entropy H(D) over all data is large, because both classes are equally frequent

Split over A_2 would not reduce the entropy. This attribute is **not** suited for splitting.

Reminder...log₂p

Brief Review of Entropy

- Entropy (Information Theory)
 - Measure of uncertainty associated with a random variable
 - Higher entropy ⇒ higher uncertainty
 - Lower entropy ⇒ lower uncertainty
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, ..., y_m\}$, where $p_i = P(Y = y_i)$

$$H(Y) = \sum_{i=1}^{m} p_i \cdot \log(\frac{1}{p_i}) = -\sum_{i=1}^{m} p_i \cdot \log(p_i)$$

weighted average surprise over the classes

Brief Review of Entropy

$$H(Y) = \sum_{i=1}^{m} p_i \cdot \log(\frac{1}{p_i}) = -\sum_{i=1}^{m} p_i \cdot \log(p_i)$$

m = 2 $\bigotimes_{H} 0.5$ 0 $\Pr(X = 1)$

for

Examples for m=2 classes:

■
$$p_1=0$$
, $p_2=1$
 $H(Y) = -0 \cdot \log(0) - 1 \cdot \log(1) = -0 \cdot (-\infty_{small}) - 1 \cdot 0 = 0$

$$p_1 = 0.25, p_2 = 0.75$$

$$H(Y) = -0.25 \cdot \log(0.25) - 0.75 \cdot \log(0.75) = -0.25 \cdot (-2) - 0.75 \cdot (-0.415)$$

$$= 0.811$$

$$p_1=0.5, p_2=0.5$$

$$H(Y) = -0.5 \cdot \log(0.5) - 0.5 \cdot \log(0.5)$$

$$= -0.5 \cdot (-1) - 0.5 \cdot (-1) = 1$$

Select the Attribute with highest Information Gain (ID3/C4.5)

- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , (m classes) estimated by $|C_{i,D}|/|D|$
- Information (entropy) to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

• Average information needed, after using attribute A to split D into k partitions: $\frac{k}{\sqrt{|D_i|}}$

 $Info_A(D) = \sum_{j=1}^k \frac{|D_j|}{|D|} \cdot Info(D_j)$ weighted average entropy in partition over the partitions

Information gained by branching on attribute A:

$$Gain(A) = Info(D) - Info_A(D)$$

Information Gain – Example

- Class "buys_computer =yes" (9x)
- Class "buys_computer =no" (5x)

age	yes _i	no _i	I(yes _i , no _i)
<=30	2	3 0,971	
3140	4	0	0
>40	3	2	0,971

Info(D) = I(9,5) = -	$-\frac{9}{14}\log$	$S_2(\frac{9}{14})$	$-\frac{5}{14}\log$	$g_2(\frac{5}{14})$
=0.94				

$Info_{age}(D) = \boxed{\frac{5}{14}I(2,3)}$	$+\frac{4}{14}I(4,0) + \frac{5}{14}I(3,2)$	2)
= 0.694	0	

"age <=30" has 5 out of 14 samples, with 2 "yes" and 3 "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Gain(age) = Info(D) - Info_{age}(D)$$

= 0.246

• Information gains for other splits:

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

Decision Tree Algorithm

- Key idea: Recursive Partitioning
 - Take all of your data.
 - Consider all possible values of all variables.
 - Select the variable A and value(s) X_A that produces the greatest separation in the target.
 - For example: $(X_A = t_1)$ is called a "split".
 - If $X < t_1$ then send data point to the "left" branch, otherwise, send data point to the "right" branch.
 - Now repeat same process on the new emerging "nodes" using the data belonging to each node (data subset)
- → You get a "tree"

Overview

- Decision tree induction
- Criteria for attribute split
 - Information Gain
 - Gini Impurity

Attribute Selection Measure Comparison

- Information gain (ID3/C4.5)
 - All attributes are assumed to be categorical.
 - Can be modified for continuous-valued attributes.
- Gini impurity (IBM Intelligent Miner, CART, SLIQ, SPRINT)
 - All attributes are assumed continuous-valued.
 - Can be modified for categorical attributes.
 - Assume there exist several possible split values for each attribute.

Gini

- Corrado Gini, Italian statistician, 1884-1965
- Gini coefficient
 - Used to show inequality of income distribution in a population
 - Large if unequal incomes, small if equal incomes

our interest

Gini impurity

- A measure for the distribution of labels in a set
- Large if many equally distributed labels,
 small if large probability only for few labels
- Hence, Gini coefficient ≠ Gini impurity
 - Attention: Both sometimes referred to as "Gini index"

Attribute Selection using Gini Impurity

- A data set D contains examples from m classes, and
- p_i is the relative frequency of class j in D.
- Then Gini impurity, Gini(D), is defined as:

$$Gini(D) = \sum_{j=1}^{m} p_{j} (1 - p_{j}) = 1 - \sum_{j=1}^{m} p_{j}^{2}$$
weighted average probability of over the classes incorrect labeling

- Gini measures how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset.
- Should be minimized!
- Note: while $\Sigma_i p_i = 1$ always, not so $\Sigma_i p_i^2$

Attribute Selection using Gini Impurity

$$Gini(D) = \sum_{j=1}^{m} p_{j} (1 - p_{j}) = 1 - \sum_{j=1}^{m} p_{j}^{2}$$

- Minimum (1-1=0) when all records belong to one class
 - → best in terms of information requirement
- Maximum (1 1/m) when records are equally distributed among all classes
 - → worst in terms of information requirement

Gini impurity for *m*=2 classes

Splitting Based on *Gini* Impurity

• When a node p is split into k partitions, the quality of split is computed as $\frac{k}{n}$

$$Gini_{split} = \sum_{i=1}^{k} \frac{n_i}{n} Gini(i)$$

where: n_i = number of records at <u>child</u> i, n = number of records at node p.

- Interpretation: weighted sum of Gini impurity for subsets i of samples caused by splitting
- Example: if a data set D is split into two subsets D_1 and D_2 with sizes n_1 and n_2 respectively, the *Gini* impurity *Gini*_{split}(D) is:

$$Gini_{split}(D) = \frac{n_1}{n}Gini(D_1) + \frac{n_2}{n}Gini(D_2)$$

Splitting Based on *Gini* Impurity

- Need to enumerate all possible splitting points for each attribute
- The attribute that provides the smallest Gini_{split}(D) is chosen to split the node

Gini Impurity – Example

(9x)

Class "buys_computer =yes" $Gini(D) = Gini(9,5) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2$

Class "buys_computer =no" (5x)

=0.459

				age
age	yes _i	no _i	Gini(yes _i ,no _i)	
<=30	2	3	0,48	
3140	4	0	0	
>40	3	2	0.48	

 $Gini_{age}(D) = \underbrace{\begin{bmatrix} 5 \\ 14 \end{bmatrix}}_{cond} Gini(2,3) + \underbrace{\frac{4}{14}}_{cond} Gini(4,0) + \underbrace{\frac{5}{14}}_{cond} Gini(3,2)$ "age <=30" has 5 out of 14 samples, with 2 "yes" and 3 "no"

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Compute Gini for other splits:

$$Gini(income) = ...$$

$$Gini(student) = ...$$

$$Gini(credit_rating) = ...$$

- Considering all other splits:
- Split at lowest value

- In Matlab, t = classregtree(X,y,'Name',value) creates a decision tree.
- Example: Create a classification tree for Fisher's iris data, a typical test case for many classification techniques.

- In Matlab, t = classregtree(X,y,'Name',value) creates a decision tree.
- Example: Create a classification tree for Fisher's iris data, a typical test case for many classification techniques.
 - In this data set, four attributes (Sepal Length, Sepal Width, Petal Length and Petal Width) are considered in order to distinguish three species of flowers (*Iris setosa*, *Iris* virginica and *Iris versicolor*).
 - Commands:

```
load fisheriris;
t = classregtree(meas, species, ... 'names', {'SL'
'SW' 'PL' 'PW'});
```

Program generates a decision tree based on the data set.

Final Decision tree for classification

- 1. if PL<2.45 then node 2 elseif PL>=2.45 then node 3
- class = setosa
- 3. if PW<1.75 then node 4 elseif PW>=1.75 then node 5
- 4. if PL<4.95 then node 6 elseif PL>=4.95 then node 7
- 5. class = virginica
- if PW<1.65 then node 8 elseif PW>=1.65 then node 9
- 7. if PW<1.55 then node 10 elseif PW>=1.55 then node 11
- 8. class = versicolor
- 9. class = virginica
- 10. class = virginica
- 11. class = versicolor

- We can also prune the tree to avoid overfitting
- tt = prune(t,'level',2)

Decision Trees (Summary)

Advantages

- Automatically create tree representations from data
- Trees can be converted to rules, can discover "new" rules
- Identify most discriminating attribute first
 - Using Information Gain (Ratio) or Gini Impurity
- Tree handle discrete (or discretized) attributes
 - Next lecture: deal with continuous, mixed, and missing attributes

Disadvantages

- Examines attributes individually, but not inter-attribute relationships
- Future splits not known when splitting → not globally optimal tree
- Trees can get large and difficult to understand
- Can produce counter-intuitive rules
- Tree induction has no direct relation to training objective, i.e. minimizing the classification error

News: HiWi Position at WTM Available

Studentische Hilfskraft (40 Std./Monat) im Bereich:

"Hardwarenahe Hilfstätigkeiten im Bereich Lehre und Forschung,,

Aufgaben:

- 1) Mithilfe bei der technischen Vorbereitung des Lehr- und Forschungsbetriebes
- 2) Mithilfe bei der Wartung und Ausgabe von Geräten
- 3) Mithilfe bei der Sammlung von Forschungsergebnissen

Anforderungsprofil: Gute theoretische und praktische Kenntnisse von PC-Hardware (Standard-Hardware, Grafikkarten); Gute Kenntnisse im Linux Bereich, vorzugsweise Ubuntu; Kenntnisse in Windows 10; Gute Deutsch- und Englischkenntnisse in Wort und Schrift; Organisationstalent, Ordnungssinn und Fähigkeit des selbstständigen Einarbeitens; Teamfähigkeit & zuverlässige Email-Kommunikation; Sorgfältige Arbeitsweise; Interesse an einer längerfristigen Beschäftigung; noch mehrere Semester verbleibende Studienzeit

Kontakt:

Erik Strahl, F-232, strahl@informatik.uni-hamburg.de https://www.inf.uni-hamburg.de/en/inst/ab/wtm/people/strahl.html