

Кубок ЛФИ 11.s03.e03

Самые лучшие шляпы— цилиндры. Туве Янссон. Волшебная зима

Цилиндр

Траектории лучей в цилиндре

Аналогии между разными задачами физики, при наличии известного решения для одной из них, зачастую позволяют получить короткое решение другой. Например, в Третьем Эпизоде Второго Сезона Кубка ЛФИ одиннадцатиклассникам предлагалось получить форму брахистохроны при движении материальной точки по гладкому каналу внутри однородного шара с помощью оптико-механической аналогии. В рамках данной задачи вам также предлагается воспользоваться аналогией между оптикой и механикой, но уже для анализа траектории движения луча в неоднородной оптической среде.

Основой геометрической оптики является принцип Ферма, утверждающий, что в оптической среде с показателем преломления $n\left(\vec{r}\right)$ величина оптического пути

$$\ell_{\rm o} = \int_{A}^{B} n\left(\vec{r}\right) dl$$

между точками А и В принимает экстремальное значение.

В основе поиска положений равновесия механических систем лежит принцип экстремума потенциальной энергии, утверждающий, что в положении равновесия потенциальная энергия системы принимает экстремальное значение.

Рассмотрим невесомую нить, равномерно заряженную по длине с плотностью заряда λ и находящуюся в электростатическом поле с потенциалом $\varphi(\vec{r})$. Если нить закреплена в точках A и B и её собственной энергией можно пренебречь, то из принципа экстремума потенциальной энергии следует, что величина

$$W_{p} = \lambda \int_{A}^{B} \varphi\left(\vec{r}\right) dl$$

также принимает экстремальное значение.

Пусть $\varphi(\vec{r}) = An(\vec{r}) + B$, где A — заданная, а B — произвольная постоянная величина. Тогда, если длины нити и траектории луча одинаковы — траектория луча и форма нити совпадают. Данная аналогия может быть полезна для решения следующей задачи.

Рассмотрим бесконечно длинный цилиндр радиусом R с осью z, показатель преломления которого зависит от расстояния r до оси цилиндра по закону

$$n(r) = \sqrt{2 - \frac{r^2}{R^2}}.$$

Цилиндр находится в воздухе, показатель преломления которого равен единице.

Рассмотрим траектории лучей, проходящие через точку A цилиндра, находящуюся на расстоянии $r_0 = R/2$ от оси цилиндра.

Направление распространения луча в точке входа будем характеризовать углом α_0 между осью цилиндра и волновым вектором, а также углом φ_0 , определяемым следующим образом: Пусть \vec{e}_0 — единичный вектор, направленный вдоль луча в точке A. Тогда в системе координат (x, y, z) вектор \vec{e}_0 раскладывается следующим образом

$$(e_{0x}, e_{0y}, e_{0z}) = (\sin \alpha_0 \sin \varphi_0, \sin \alpha_0 \cos \varphi_0, \cos \alpha_0).$$

1. $(3,5 \ балла)$ При каком значении α_0 траектория луча представляет собой винтовую линию?

В пунктах 2 и 3 величина α_0 задана и равна $\pi/4$.

- 2. (4 балла) При произвольном значении φ_0 найдите r_{\min} и r_{\max} минимальное и максимальное расстояние от точек траектории до оси цилиндра соответственно.
- 3. (2,5 балла) При каких значениях $\varphi_0 \in [0;\pi]$ луч движется внутри цилиндра, не выходя из него через боковую поверхность?

Автор задачи: А. Уймин

Решение основной задачи

В аналогии, описанной в условии, рассматривается нить с линейной плотностью заряда λ во внешнем поле с потенциалом $\varphi(\vec{r}) = An(r) + B$. Найдем, как сила натяжения нити T зависит от расстояния до оси. Сместим нить вдоль себя на небольшое расстояние dl. Так как она находится в равновесии, то суммарная работа всех сил, действующих на нить, равна нулю:

$$(T(r_2) - T(r_1))dl + \lambda dl(\varphi(r_1) - \varphi(r_2)) = 0.$$

Тогда получаем, что

$$T(r) = \lambda \varphi(r) + \text{const} = \lambda A n(r) + \lambda B + const.$$

Выберем B так, чтобы $\lambda B + const = 0$, тогда

$$T(r) = A\lambda n(r).$$

1. Чтобы нить была расположена в форме винтовой линии, нужно, чтобы $\varphi_0 = \frac{\pi}{2}$. Рассмотрим маленький участок нити, изображенный на рисунке. Из второго закона Ньютона получаем

$$2T\sin\alpha_0 \cdot \frac{d\varphi}{2} = E \cdot \lambda dl.$$

Длина dl этого участка равна

$$dl = \frac{rd\varphi}{\sin \alpha_0}.$$

$$T\sin^2\alpha_0 = \lambda Er$$
.

Продифференцируем связь потенциала и силы натяжения нити:

$$\frac{dT}{dr} = \lambda \frac{d\varphi}{dr} = -\lambda E.$$

Тогда, выразив из этого выражения λE , получим

$$\frac{dT}{dr} = -\frac{T\sin^2\alpha_0}{r}.$$

Так как T(r) пропорционально n(r), то

$$\frac{dn}{dr} = -\frac{n\sin^2\alpha_0}{r}.$$

С другой стороны, эта производная равна

$$\frac{dn}{dr} = -\frac{1}{\sqrt{2 - \frac{r^2}{R^2}}} \cdot \left(\frac{r}{R^2}\right) = -\frac{r}{R^2} \cdot \frac{1}{n}.$$

Приравняем полученные выражения:

$$-\frac{n\sin^2\alpha_0}{r} = -\frac{r}{R^2} \cdot \frac{1}{n}, \quad \Longrightarrow \quad \alpha_0 = n\sin\alpha_0 = \frac{r}{R},$$

$$\alpha_0 = \arcsin\left(\frac{r_0}{R \cdot n(r_0)}\right) = \arcsin\left(\frac{1}{\sqrt{7}}\right) = 22.2^{\circ}.$$

2. Так как нить находится в равновесии, то сумма проекций действующих на нее сил на ось z равна нулю, значит

$$T\cos\alpha = \text{const}, \implies n\cos\alpha = c_1.$$

Момент сил, действующих на любой участок нити, относительно оси z также должен быт равен нулю, следовательно

 $T \sin \alpha \cdot r \sin \varphi = \text{const}, \implies n \sin \alpha \cdot k \sin \varphi = c_2,$

где
$$k = \frac{r}{R}$$
.

Возведем полученные выражения в квадрат и подставим первое во второе:

$$c_2^2 = n^2 \left(1 - \frac{c_1^2}{n^2} \right) k^2 \sin^2 \varphi = (n^2 - c_1^2) \cdot k^2 \sin^2 \varphi.$$

Экстремальные значения r достигаются на участках нити, которые перпендикулярны радиусу, т.е. когда $\varphi = \frac{\pi}{2}$. Тогда получаем

$$c_2^2 = \left(2 - k^2 - c_1^2\right) k^2.$$

$$k^4 - k^2(2 - c_1^2) + c_2^2 = 0.$$

Решения этого уравнения — максимальное и минимальное расстояния от луча до оси:

$$r_{min} = R\sqrt{\frac{2 - c_1^2 - \sqrt{(2 - c_1^2)^2 - 4c_2^2}}{2}}, \quad r_{max} = R\sqrt{\frac{2 - c_1^2 + \sqrt{(2 - c_1^2)^2 - 4c_2^2}}{2}},$$

где константы c_1 и c_2 находятся из начальных условий:

$$c_1 = n(r_0)\cos\alpha_0 = \frac{\sqrt{14}}{4}, \quad c_2 = n(r_0)\sin\alpha_0 \cdot \frac{r_0}{R}\sin\varphi_0 = \frac{\sqrt{14}}{8}\sin\varphi_0.$$

Подставив константы, получаем:

$$r_{min} = \frac{R}{4}\sqrt{9 - \sqrt{81 - 56\sin^2\varphi_0}}, \quad r_{max} = \frac{R}{4}\sqrt{9 + \sqrt{81 - 56\sin^2\varphi_0}}.$$

3. Луч будет двигаться внутри цилиндра, если $r_{max} \leq R$. Тогда

$$c_1^2 \ge \sqrt{(2 - c_1^2)^2 - 4c_2^2}, \quad \Longrightarrow \quad c_1^2 + c_2^2 \ge 1, \quad \Longrightarrow \quad \sin \varphi_0 \ge \frac{\sqrt{1 - c_1^2}}{n(r_0) \sin \alpha_0 \cdot r_0} = \frac{2}{\sqrt{7}}.$$

Отсюда получаем допустимые значения φ_0 :

$$\varphi_0 \in \left[\arcsin\left(\frac{2}{\sqrt{7}}\right), \pi - \arcsin\left(\frac{2}{\sqrt{7}}\right)\right] \iff \varphi_0 \in [49^\circ, 131^\circ].$$

Альтернативная задача

1. $(0\ баллов)$ В однородное магнитное поле индукции B влетает под углом α к полю со скоростью v частица массой m с зарядом q. Найдите радиус и шаг винтовой линии, по которой движется частица.

Omeem: $R = \frac{mv \sin \alpha}{qB}$; $h = \frac{2\pi mv \cos \alpha}{qB}$.

2. (1 балл) Докажите, что проекция силы натяжения тяжелой нити, концы которой закреплены, на горизонтальную ось не зависит от точки нити.

- 3. (4 балла) Рассмотрим равномерно заряженную невесомую нить, находящуюся в равновесии в потенциале, зависящем только от координаты z. Пусть в некоторой точке сила натяжения нити равна T_0 , а угол между касательной к нити и осью z равен α_0 . Найдите силу натяжения T в точке, в которой угол между касательной к ней с осью z равен α .
- 4. (5 баллов) Рассмотрим равномерно заряженную невесомую нить, находящуюся в равновесии в сферически симметричном потенциале, зависящем только от расстояния до центра симметрии среды r. Пусть в точке, находящейся на расстоянии R_0 от центра симметрии среды сила натяжения нити равна T_0 , а угол между касательной к нити и радиусом-вектором равен α_0 . Найдите силу натяжения T в точке, находящейся на расстоянии R от центра симметрии среды, в которой угол между касательной к ней и её радиус-вектором равен α .

Решение альтернативной задачи

1. На частицу действует только сила Лоренца, направленная перпендикулярно скорости и магнитному полю, значит составляющая скорости, параллельная полю, сохраняется. В плоскости, перпендикулярной вектору \vec{B} , частица будет двигаться по окружности радиусом R. Запишем второй закон Ньютона:

$$\frac{mv_{\perp}^2}{R} = qv_{\perp}B, \implies R = \frac{mv\sin\alpha}{qB}.$$

Найдем период вращения:

$$T = \frac{2\pi R}{v_{\perp}} = \frac{2\pi m}{qB}.$$

Тогда шаг винтовой линии равен

$$h = v_{\parallel} T = \frac{2\pi m v \cos \alpha}{qB}.$$

2. Рассмотрим участок нити между одной из точек закрепления O и произвольной точкой нити A. Так как участок находится в равновесии, то сумма сил, действующих на него равна нулю. Тогда запишем второй закон Ньютона в проекции на горизтитальную ось:

$$T(A) + N = 0,$$

где N — проекция силы, приложенной к концу нити в точке закрепления, на горизонтальную ось. Из этого уравнения видно, что сила натяжения нити не зависит от точки A.

3. Поскольку потенциал зависит только от координаты z, вектор электрического поля направлен вдоль оси z. Значит компонента силы натяжения нити, перпендикулярная оси z, сохраняется. Отсюда

$$T = T_0 \frac{\sin \alpha_0}{\sin \alpha}$$

4. Поскольку потенциал зависит только от расстояния до центра симметрии среды, вектор электрического поля в любой точке среды направлен вдоль линии, соединяющей данную точку с центром симметрии.

Тогда относительно центра симметрии среды момент сил, действующих на нить со стороны электрического поля равен нулю. Отсюда следует, что моменты сил, действующих на верёвку в точках A и B, равны друг другу по модулю.

Момент силы натяжения нити в точке A равен

$$M = TR\sin\alpha$$
.

Приравнивая моменты сил натяжения нити в точках A и B, получим

$$T = T_0 \frac{R_0 \sin \alpha_0}{R \sin \alpha}.$$