# PAMSI – testowanie implementacji struktur danych

#### Piotr Wilkosz

# 16/03/2014

# 1 Wstęp

Celem ćwiczenia było przetestowanie implementacji takich struktur danych jak:

- Stos zawierający listę lub tablicę dynamiczną
- Kolejka zawierająca listę lub tablicę dynamiczną

Zadaniem było zmierzenie czasu wykonywania operacji wypełnienia powyższych struktor danych.

# 2 Wyniki pomiarów

1. Stos bazujący na liście:

Tablica 1: Pomiar czasu zapełnienia stosu bazującego na liście

| N      | czas        | odchylenie  |
|--------|-------------|-------------|
| 10     | 3.1777e-06  | 9.66352e-07 |
| 100    | 1.41498e-05 | 1.37796e-06 |
| 1000   | 0.000129143 | 1.37132e-05 |
| 10000  | 0.00125259  | 0.000136966 |
| 50000  | 0.00610872  | 0.000647302 |
| 100000 | 0.0148653   | 0.00293036  |



Rysunek 1: Wykres do tabeli 1

Na podstawie wykresu 1 i tabeli 1 złożoność obliczeniową algorytmu zapełnienia stosu bazującego na liście szacuje się na O(n).

2. Stos bazujący na tablicy dynamicznej, każdorazowo powiększającej swój rozmiar:

Tablica 2: Pomiar czasu zapełnienia stosu bazującego na tablicy dynamicznej; każdorazowe powiększanie pamięci

| N      | czas        | odchylenie  |
|--------|-------------|-------------|
| 10     | 5.2315 e-06 | 1.84447e-06 |
| 100    | 9.61087e-05 | 1.17477e-05 |
| 1000   | 0.00626336  | 0.000569029 |
| 10000  | 0.602328    | 0.0547606   |
| 50000  | 16.1983     | 1.47384     |
| 100000 | 63.4257     | 6.11571     |



Rysunek 2: Wykres do tabeli 2

Na podstawie wykresu 2 i tabeli 2 złożoność obliczeniową algorytmu zapełnienia stosu bazującego na tablicy każdorazowo powiększającej swój rozmiar szacuje się na  $O(n^2)$ .

3. Stos bazujący na tablicy podwajającej swój rozmiar po zapełnieniu stosu:

Tablica 3: Pomiar czasu zapełnenia stosu bazującego na tablicy; podwajanie pamięci

| N      | czas        | odchylenie  |
|--------|-------------|-------------|
| 10     | 2.9054e-06  | 4.54692e-07 |
| 100    | 7.941e-06   | 7.84532e-07 |
| 1000   | 3.41665e-05 | 3.28946e-06 |
| 10000  | 0.000393291 | 4.00849e-05 |
| 50000  | 0.0017202   | 0.000172796 |
| 100000 | 0.00372878  | 0.00034095  |



Rysunek 3: Wykres do tabeli 3

Na podstawie wykresu 3 i tabeli 3 złożoność obliczeniową algorytmu zapełnienia stosu bazującego na tablicy podwajającej swój rozmiar szacuje się na O(n).

#### 4. Kolejka bazująca na liście:

Tablica 4: Pomiar zapełnienia koljeki bazującej na liście

| N      | czas        | odchylenie  |
|--------|-------------|-------------|
| 10     | 2.9402e-06  | 4.02804e-07 |
| 100    | 1.43175e-05 | 1.45537e-06 |
| 1000   | 0.000123787 | 1.32083e-05 |
| 10000  | 0.00121058  | 0.000122136 |
| 50000  | 0.0060172   | 0.000595832 |
| 100000 | 0.012138    | 0.00127857  |



Rysunek 4: Wykres do tabeli 4

Na podstawie wykresu 4 i tabeli 4 złożoność obliczeniową algorytmu zapełnienia kolejki bazującej na liście szacuje się na O(n).

5. Kolejka bazująca na tablicy każdorazowo powiększającej swój rozmiar:

Tablica 5: Pomiar czasu zapełnienia kolejki bazującej na tablicy; każdorazowe powiększanie pamięci

| N      | czas       | Odchylenie  |
|--------|------------|-------------|
| 10     | 4.4419e-06 | 1.43333e-06 |
| 100    | 9.5843e-05 | 8.89311e-06 |
| 1000   | 0.00578163 | 0.000530114 |
| 10000  | 0.56162    | 0.0531706   |
| 50000  | 15.1532    | 1.37704     |
| 100000 | 57.5228    | 5.79702     |



Rysunek 5: Wykres do tabeli 5

Na podstawie wykresu 5 i tabeli 5 złożoność obliczeniową algorytmu zapełnienia kolejki bazującej na tablicy każdorazowo powiększającej swój rozmiar szacuje się na  $O(n^2)$ .

6. Kolejka bazująca na tablicy podwajającej swój rozmiar po zapełnieniu kolejki:

Tablica 6: Pomiar czasu zapełnienia kolejki bazującej na tablicy; podwajanie pamięci

| N      | czas        | Odchylenie  |
|--------|-------------|-------------|
| 10     | 2.7934e-06  | 5.70677e-07 |
| 100    | 6.977e-06   | 7.54621e-07 |
| 1000   | 3.06953e-05 | 4.08372e-06 |
| 10000  | 0.000342118 | 3.42047e-05 |
| 50000  | 0.00149814  | 0.000148217 |
| 100000 | 0.00326706  | 0.000321491 |



Rysunek 6: Wykres do tabeli 6

Na podstawie wykresu 6 i tabeli 6 złożoność obliczeniową algorytmu zapełnienia kolejki bazującej na tablicy podwajającej swój rozmiar szacuje się na O(n).

#### 3 Wnioski

- Najbardziej wydajne pod względem szybkości wykonania okazały się struktury wykorzystujące listę lub tablicę podwajającą swój rozmiar pod wypełnieniu struktury Złożoność obliczeniową takiej implementacji szacuje się na O(n)
- Struktury, które każdorazowo zwiększały rozmiar tablicy działają dużo wolniej, aczkolwiek są oszczędniejsze pod względem zagospodarowania pamięci. Ich złozoność obliczeniową szacuje się na  $O(n^2)$