Colab Link: https://colab.research.google.com/drive/1RqDs5J208ulifDHUvfKiw8A_r6JouVG0? usp=sharing

```
!pip install seaborn
```

```
Requirement already satisfied: seaborn in /usr/local/lib/python3.7/dist-packag Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: matplotlib>=2.2 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: pandas>=0.23 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/c Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /us Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/c Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packaguirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packaguirement already satisf
```

```
import seaborn as sns
```

```
import numpy as np
import matplotlib.pyplot as plt

iris = sns.load_dataset("iris")

type(iris)

pandas.core.frame.DataFrame
```

iris.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
1	5.0	2 6	1.4	0.2	setosa
Saving		×			

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- 0 sepal length 150 non-null float64
```

```
1 sepal_width 150 non-null float64
2 petal_length 150 non-null float64
3 petal_width 150 non-null float64
4 species 150 non-null object
```

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

iris.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

iris.describe(include="object")

iris["species"].unique()

array(['setosa', 'versicolor', 'virginica'], dtype=object)

sns.histplot(iris["petal_length"], bins=20)
plt.show()

Saving... ×

sns.scatterplot(x=iris["petal_length"],y=iris["petal_width"])
plt.show()

Saving... y="petal_width", data=iris, hue="species")


```
setosa = iris.loc[iris['species'] == 'setosa']
versicolor = iris.loc[iris['species'] == 'versicolor']
virginica = iris.loc[iris['species'] == 'virginica']
```

```
plt.scatter(x=setosa['petal_length'], y=setosa['petal_width'], c = 'blue')
plt.scatter(x=versicolor['petal_length'], y=versicolor['petal_width'], c = 'orange'
plt.scatter(x=virginica['petal_length'], y=virginica['petal_width'], c = 'green')
```

plt.show()

sns.jointplot(x="petal_length", y="petal_width", data=iris, kind="reg")
plt.show()

Saving... X

sns.jointplot(x="petal_length", y="petal_width", data=iris, hue="species")
plt.show()

sns.pairplot(data=iris)
plt.plot()

Saving... X

categorical data

sns.countplot(x="species", data=iris)
plt.show()

sns.boxplot(x="species", y="sepal_length", data=iris)
plt.show()

sns.violinplot(x="species", y="sepal_length", data=iris)
plt.show()

iris.corr()

	sepal_length	sepal_width	petal_length	petal_width	1
sepal_length	1.000000	-0.117570	0.871754	0.817941	
sepal_width	-0.117570	1.000000	-0.428440	-0.366126	
Saving		-0.428440	1.000000	0.962865	
petal width	0.817941	-0.366126	0.962865	1.000000	

sns.heatmap(iris.corr(), cmap="Blues", annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f14ae85dd10>


```
plt.colormaps()
```

```
['Accent',
     'Accent_r',
     'Blues',
     'Blues_r',
     'BrBG',
     'BrBG r',
     'BuGn',
     'BuGn_r',
     'BuPu',
     'BuPu r',
     'CMRmap',
     'CMRmap r',
     'Dark2',
     'Dark2_r',
     'GnBu',
     'GnBu_r',
     'Greens',
     'Greens r',
     'Greys',
     'Greys_r',
     'OrRd',
     'OrRd r',
     'Oranges',
     'Oranges r',
     'PRGn',
     'PRGn_r',
     'Paired',
     'Paired_r',
     'Pastell',
     'Pastell r',
     'Pastel2',
     'Pastel2_r',
     'PiYG',
Saving...
     rabadir,
     'PuBuGn r',
```

```
'RdBu',
'RdBu_r',
'RdGy',
'RdGy_r',
'RdPu',
'RdPu_r',
'RdYlBu',
'RdYlGn',
'RdYlGn_r',
'Reds',
'Reds_r',
'Set1',
'Set1_r',
```

choosing the right visualisation/plot

```
# What is the right chart to use to find dependency between
# one Continuous Variable and Categorical variable?
```

```
# 1D viz (univariate) - one variable -- num (hist, kde, boxplot), categorical-count
# 2D viz (bivariate) - two variables -- num-num (scatterplot, jointplot), cat-cat (?
# 2D viz - multiple variables -- pairplot, heatmap
# Multi-dimensional viz (multivariate) -- scatter plot with hue, num-num-categorica
```

1D plots

sns.histplot(iris["sepal length"], bins=20)

sns.boxplot(y="sepal length", data=iris)

<matplotlib.axes. subplots.AxesSubplot at 0x7f14ae589a90>

sns.countplot(x="species", data=iris)

<matplotlib.axes. subplots.AxesSubplot at 0x7f14ae4d1ed0>

2D dimensionals

plt.show()

sns.scatterplot(x="petal_length", y="petal_width", data=iris)

<matplotlib.axes._subplots.AxesSubplot at 0x7f14ae405810>

sns.lineplot(x="petal_length", y="petal_width", data=iris)

<matplotlib.axes._subplots.AxesSubplot at 0x7f14ae484650>

sns.boxplot(x="species", y="sepal length", data=iris)

Saving... ×

two categorical features

3D dimensionl plots

sns.scatterplot(x ='petal length', y ='petal width' , data= iris, hue='species')

<matplotlib.axes. subplots.AxesSubplot at 0x7f14ae8f5210>

sns.lineplot(x ='petal_length', y ='petal_width' , data= iris, hue='species')

Saving... X

<matplotlib.axes._subplots.AxesSubplot at 0x7f14ae956ad0>

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.countplot(x = tips["sex"])

<matplotlib.axes._subplots.AxesSubplot at 0x7f14b60de150>


```
tips["day"].unique()

Saving... X ]
```

sns.countplot(x="day", data=tips, hue="sex")

ur', 'Fri', 'Sat', 'Sun']

<matplotlib.axes._subplots.AxesSubplot at 0x7f14b345af90>

two categoricals, and one numerical - day, time, total_bill

sns.barplot(x="day", y="total_bill", hue="time", data=tips, estimator=np.mean)

<matplotlib.axes._subplots.AxesSubplot at 0x7f14b36c04d0>

titanic dataset

regular expressions (text processing) - Wednesday, Friday

Saving... ×

Saving...

✓ 8s completed at 23:53 ×