Nội dung bổ sung

- 1. Matrix decomposition
- 2. Eigendecomposition
- 3. Singular Value Decomposition (SVD)

B2. Factorization

Bổ sung thêm cho bài giảng

1. Matrix decomposition

- ☐ Giải hệ phương trình A.X = B: dễ dàng hơn với A là ma trận △
 - forward subsitution → A là ma trận ∆ dưới, A_{ii} ≠ 0

$$x_1 = b_1/A_{11}$$

$$x_2 = (b_2 - A_{21}x_1)/A_{22}$$

$$x_3 = (b_3 - A_{31}x_1 - A_{32}x_2)/A_{33}$$

$$\vdots$$

$$x_n = (b_n - A_{n1}x_1 - A_{n2}x_2 - \dots - A_{n,n-1}x_{n-1})/A_{nn}$$

• backward subsitution \rightarrow A là ma trận Δ trên, $A_{ii} \neq 0$

$$x_n = b_n/A_{nn}$$

$$x_{n-1} = (b_{n-1} - A_{n-1,n}x_n)/A_{n-1,n-1}$$

$$x_{n-2} = (b_{n-2} - A_{n-2,n-1}x_{n-1} - A_{n-2,n}x_n)/A_{n-2,n-2}$$

$$\vdots$$

$$x_1 = (b_1 - A_{12}x_2 - A_{13}x_3 - \dots - A_{1n}x_n)/A_{11}$$

72

1.1 LU decomposition

- ☐ Giải hệ phương trình A.X = B
 - Áp dụng phân rã A = L.U:

$$A.X = B$$
 (1) \Leftrightarrow $LU.X = B$ \Leftrightarrow
$$\begin{cases} L.Y = B & (2) \\ U.X = Y & (3) \end{cases}$$

Thay vì giải hệ phương trình (1), ta lần lượt:

- B1. Giải hệ phương trình (2), tìm Y, với L là ma trận tam giác
- B2. Giải hệ phương trình (3), tìm X, với U là ma trận tam giác

B2. Factorization

Bổ sung thêm cho bài giảng

74

1.1 LU decomposition (tt.)

☐ VD: Giải hệ phương trình dựa trên phép phân rã LU

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 8 & 14 \\ 2 & 6 & 13 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 13 \\ 4 \end{pmatrix} \Rightarrow L = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

B1. Giải L.Y = B
$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 13 \\ 4 \end{pmatrix} \Rightarrow \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix}$$

B2. Giải U.X = Y
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -6 \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}$$

1.1 LU decomposition (tt.)

- ☐ Lời giải, nếu có, của A = L.U là KHÔNG DUY NHẤT
 - Có tổng cộng n² phương trình với (n² + n) biến
 - Doolittle factorization: diag(L) = 1
 - Crout factorization: diag(U) = 1

B2. Factorization

Bổ sung thêm cho bài giảng

76

1.1 LU decomposition (tt.)

☐ Bài tập: Áp dụng phép phân rã LU

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{pmatrix} \implies L = ? \qquad U = ?$$

1.1 LU decomposition (tt.)

- \square Có phải mọi $A \in M_n(\mathbb{R})$ đều có thể áp dụng phép phân rã LU?
 - leading [principal] submatrix A_k: k dòng và k cột đầu tiên (k ≤ n)
 - A khả nghịch, $|A_k| \neq 0$, $\forall k \leq n \Rightarrow có$ thể áp dụng phân rã LU

VD: Ma trận
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 1 & 3 & 4 \end{pmatrix}$$
 không thể áp dụng phân rã LU vì

$$A_2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 có $|A_2| = (1 * 4) - (2 * 2) = 0$

 $A_2 = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \text{ có } |A_2| = (1*4) - (2*2) = 0$ • hoán vị các dòng $\rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 2 & 4 & 5 \end{pmatrix} \Rightarrow \text{có thể áp dụng phân rã LU!}$

B2. Factorization

78

1.1 LU decomposition (tt.)

- \square Ma trân hoán vi (permutation matrix): $P \in M_n(\mathbb{R})$
 - mỗi dòng, mỗi cột có một hệ số = 1, tất cả các hệ số khác = 0
 - hoán vị các dòng của I hay các cột chuẩn E; (Gauss Jordan)

$$P = (E_{k1}, E_{k2}, ..., E_{kn}), p_{ij} = \begin{cases} 1, & j = k_i \\ 0, & j \neq k_i \end{cases}$$

- Nhận xét:
 - (i) $|P| = \pm 1$
 - (ii) $P.P^T = I$
 - (iii) $P = P^{-1} = P^{T}$
- ☐ Mọi ma trận vuông $A \in M_n(R)$: P.A = L.U

1.1 LU decomposition (tt.)

Ma trân hoán vị P:

$$P = P_{\omega 1}$$

Ma trận tam giác dưới L:

$$L = \left[P_{\varphi 3}.P_{\varphi 2}\right]^{-1}$$

$$P.A = L.U$$

B2. Factorization

Bổ sung thêm cho bài giảng

1.1 LU decomposition (tt.)

☐ Bài tập: Áp dụng phép phân rã PA = LU

$$A = \begin{pmatrix} 0 & 1 & 4 \\ 1 & 2 & 2 \\ 3 & 1 & 3 \end{pmatrix}$$

1.1 LU decomposition

- ☐ Giải hệ phương trình A.X = B
 - Áp dụng phân rã P.A = L.U:

$$A.X = B$$
 (1) \Leftrightarrow $P.A.X = L.U.X = P.B = B'$ \Leftrightarrow
$$\begin{cases} L.Y = B' & (2) \\ U.X = Y & (3) \end{cases}$$

- Thay vì giải hệ phương trình (1), ta lần lượt:
 - B1. Giải hệ phương trình (2), tìm Y, với L là ma trận tam giác
 - B2. Giải hệ phương trình (3), tìm X, với U là ma trận tam giác

B2. Factorization

Bổ sung thêm cho bài giảng

1.2 QR decomposition

 \square A \in M_{m,n}(\mathbb{R}), A khả nghịch (các cột độc lập tuyến tính):

$$A = Q.R$$

 thừa số Q∈M_{m,n}(R) (Q-factor): gồm các cột trực chuẩn (orthonormal columns):

$$Q^T.Q = I_n$$

- thừa số $R \in M_n(\mathbb{R})$ (*R-factor*): ma trận Δ trên, $R_{ii} \neq 0$, khả nghịch
- nếu ràng buộc R_{ii} > 0 thì ∃! <Q, R>

☐ Thuật toán Gram-Schmidt

Bước thứ k

$$\begin{bmatrix} a_1^{\mathsf{T}} & a_2^{\mathsf{T}} & \cdots & a_k^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} q_1^{\mathsf{T}} & q_2^{\mathsf{T}} & \cdots & q_k^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1k} \\ 0 & R_{22} & \cdots & R_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{kk} \end{bmatrix}$$

- các cột q_1^T , ..., q_k^T : trực chuẩn
- các hệ số R₁₁, ..., R_{kk} > 0

B2. Factorization

Bổ sung thêm cho bài giảng

84

1.2 QR decomposition (tt.)

☐ Thuật toán Gram-Schmidt

$$R_{11} = ||a_1^T||$$

$$\widetilde{q}_1 = a_1$$

$$q_1 = \frac{1}{R_{11}} \widetilde{q}_1$$

for
$$k = 2$$
 to n

$$R_{1k} = q_1 a_k^T$$

$$\vdots$$

$$R_{k-1,k} = q_{k-1} a_k^T$$

$$\widetilde{q}_k = a_k - (R_{1k} q_1 + R_{2k} q_2 + \dots + R_{k-1,k} q_{k-1})$$

$$R_{kk} = \|\widetilde{q}_k^T\|$$

$$q_k = \frac{1}{R_{kk}} \widetilde{q}_k$$

85

☐ Thuật toán Gram-Schmidt

$$\begin{pmatrix} a_1^\mathsf{T} & a_2^\mathsf{T} & a_3^\mathsf{T} \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{pmatrix} = \begin{pmatrix} q_1^\mathsf{T} & q_2^\mathsf{T} & q_3^\mathsf{T} \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{pmatrix}$$

• <u>k = 1</u>

$$\tilde{q}_1 = a_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}^\mathsf{T}, \qquad R_{11} = \|\tilde{q}_1^\mathsf{T}\| = 2, \qquad q_1 = \frac{1}{R_{11}}\tilde{q}_1 = \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}^\mathsf{T}$$

B2. Factorization

Bổ sung thêm cho bài giảng

86

1.2 QR decomposition (tt.)

- ☐ Thuật toán Gram-Schmidt
 - $\bullet \quad \underline{\mathsf{k} = 2}$

$$R_{12} = q_1 a_2^{\mathsf{T}} = 4$$

$$\tilde{q}_2 = a_2 - R_{12}q_1 = \begin{bmatrix} -1 \\ 3 \\ -1 \\ 3 \end{bmatrix} - 4 \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}^{\mathsf{T}}$$

$$R_{22} = \|\tilde{q}_2^{\mathsf{T}}\| = 2, \qquad q_2 = \frac{1}{R_{22}}\tilde{q}_2 = \begin{bmatrix} 1/2\\1/2\\1/2\\1/2 \end{bmatrix}$$

☐ Thuật toán Gram-Schmidt

• k = 3

$$R_{13} = q_1 a_3^{\mathsf{T}} = 2$$

$$R_{23} = q_2 a_3^{\mathsf{T}} = 8$$

$$\tilde{q}_3 = a_3 - R_{13}q_1 - R_{23}q_2 = \begin{bmatrix} 1 \\ 3 \\ 5 \\ 7 \end{bmatrix}^{\mathsf{T}} - 2 \begin{bmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} - 8 \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} -2 \\ -2 \\ 2 \\ 2 \end{bmatrix}^{\mathsf{T}}$$

$$R_{33} = \|\tilde{q}_3^{\mathsf{T}}\| = 4, \qquad q_3 = \frac{1}{R_{33}}\tilde{q}_3 = \begin{bmatrix} -1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}^{\mathsf{T}}$$

B2. Factorization

Bổ sung thêm cho bài giảng

88

1.2 QR decomposition (tt.)

- ☐ Thuật toán Gram-Schmidt
 - Kết quả phân rã QR

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 3 & 3 \\ -1 & -1 & 5 \\ 1 & 3 & 7 \end{bmatrix} = \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 4 \end{bmatrix}$$

- ☐ Một số cải biên
 - Givens rotations
 - Householder reflections

☐ Bài tập: Áp dụng phép phân rã QR

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \end{pmatrix}$$

B2. Factorization

Bổ sung thêm cho bài giảng

90

1.2 QR decomposition (tt.)

- ☐ Giải hệ phương trình A.X = B
 - Áp dụng phân rã QR:

$$A.X = B$$
 (1) \Leftrightarrow $Q.R.X = B$ \Leftrightarrow
$$\begin{cases} Q.Y = B & (2) \\ R.X = Y & (3) \end{cases}$$

- Thay vì giải hệ phương trình (1), ta lần lượt:
 - B1. Giải hệ phương trình (2), tìm $Y = Q^{T}.B (Q^{T}.Q = I)$
 - B2. Giải hệ phương trình (3), tìm X, với R là ma trận tam giác

☐ Ma trận nghịch đảo: $A^{-1} = (Q.R)^{-1} = R^{-1}.Q^{-1}$

1.3 Cholesky decomposition

- ☐ Ma trận "xác định dương" (positive definite matrix)
 - ma trận vuông, đối xứng $A \in M_n(R)$: $x^T.A.x > 0, \forall x \neq \vec{0}$

$$(x_1 x_2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (x_1^2 + x_2^2) > 0 (x_1 \neq x_2)$$

dang toàn phương (quadratic form):

$$x^{T}.A.x = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}.x_{i}.x_{j} = \sum_{i=1}^{n} A_{ii}.x_{i}^{2} + 2\sum_{i>j} A_{ij}.x_{i}.x_{j}$$

B2. Factorization

Bổ sung thêm cho bài giảng

92

1.3 Cholesky decomposition (tt.)

☐ Phân rã Cholesky: ma trận đối xứng, xác định dương

$$A = L.L^T = U^T.U$$

- L: ma trận tam giác DƯỚI khả nghịch, L_{ii} > 0
- U: ma trận tam giác TRÊN khả nghịch, U_{ii} > 0

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} = \begin{pmatrix} L_{11} & 0 & \cdots & 0 \\ L_{21} & L_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ 0 & L_{22} & \cdots & L_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_{nn} \end{pmatrix}$$

$$A_{ii} = \sum_{k=1}^{i} L_{ki}^2$$
 $A_{ij} = \sum_{k=1}^{i} L_{ik}.L_{kj} \qquad (i \neq j)$

1.3 Cholesky decomposition (tt.)

☐ Phân rã Cholesky: ma trận đối xứng, xác định dương

$$i = 1: L_{11} = \sqrt{A_{11}}$$

$$i = 2: L_{21} = \frac{1}{L_{11}} A_{21}$$

$$L_{22} = \sqrt{A_{22} - L_{21}^{2}}$$

$$i \ge 3: L_{31} = \frac{1}{L_{11}} A_{31}$$

$$L_{ij} = \frac{1}{L_{jj}} (A_{ij} - \sum_{k=1}^{j-1} L_{ik} . L_{jk}) (2 \le j < i)$$

$$L_{ii} = \sqrt{A_{ii} - \sum_{k=1}^{j-1} L_{ik}^{2}}$$

B2. Factorization

Bổ sung thêm cho bài giảng

94

1.3 Cholesky decomposition (tt.)

☐ Phân rã Cholesky: ma trận đối xứng, xác định dương

$$A = \begin{pmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{pmatrix}$$

$$L_{11} = \sqrt{A_{11}} = \sqrt{6}$$

$$L_{21} = \frac{A_{21}}{L_{11}} = \frac{15}{\sqrt{6}}$$
 $L_{22} = \sqrt{A_{22} - L_{21}^2} = \sqrt{55 - \frac{225}{6}}$

$$L_{31} = \frac{A_{31}}{L_{11}} = \frac{55}{\sqrt{6}} \qquad L_{32} = \frac{A_{32} - (L_{31} \cdot L_{21})}{L_{22}} = \frac{55}{\sqrt{6}} \qquad L_{33} = \sqrt{A_{33} - L_{31}^2 - L_{32}^2}$$

1.3 Cholesky decomposition (tt.)

☐ Giải hệ phương trình A.X = B

Áp dụng phân rã Cholesky:

$$A.X = B$$
 (1) \Leftrightarrow $U^{T}.U.X = B$ \Leftrightarrow
$$\begin{cases} U^{T}.Y = B & (2) \\ U.X = Y & (3) \end{cases}$$

- Thay vì giải hệ phương trình (1), ta lần lượt:
 - B1. Giải hệ phương trình (2), tìm Y, với U^T là ma trận ∆ dưới
 - B2. Giải hệ phương trình (3), tìm X, với U là ma trận Δ trên

B2. Factorization

Bổ sung thêm cho bài giảng

Nội dung bổ sung

- 1. Matrix decomposition
- 2. Eigendecomposition
- 3. Singular Value Decomposition (SVD)

2. Eigendecomposition

 \square Ma trận vuông cấp n: $A \in M_n(\mathbb{R})$

$$\exists (\lambda \in \mathbb{R}), (0 \neq X \in M_{n,1}(R))$$
:

$$A.X = \lambda.X$$

- λ: giá trị riêng/trị riêng (eigenvalue) của A
- X: vecto riêng (eigenvector) của A ứng với λ
- phương trình đặc trưng (*characteristic equation*): $|A \lambda.I| = 0$

B2. Factorization

Bổ sung thêm cho bài giảng

98

2. Eigendecomposition (tt.)

- ☐ Một số nhận xét
 - λ là nghiệm của hệ phương trình thuần nhất: $(A \lambda.I).X = 0$
 - Có nhiều vectơ riêng α .X (với $\alpha \in \mathbb{R}^+$) ứng với một trị riêng λ_0

$$trace(A) = \sum_{i=1}^{n} \lambda_i$$

$$|A| = \prod_{i=1}^{n} \lambda_i$$

• Nếu mọi giá trị riêng $\lambda \neq 0$ thì A khả nghịch

2. Eigendecomposition (tt.)

- ☐ Một số nhận xét
 - A có n giá trị riêng (số thực và số phức)
 - Nếu A là ma trận đối xứng thì các giá trị riêng đều là số thực
 - Nếu A là ma trận xác định dương thì các giá trị riêng đều là số thực dương
 - Nếu A là ma trận đường chéo thì các hệ số trên đường chéo chính là các giá trị riêng

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

lacksquare Giải phương trình đặc trưng để <u>tìm trị riêng</u> λ của lacksquare

$$|A - \lambda .I| = 0$$

 \Box Giải hệ phương trình thuần nhất để tìm các vectơ riêng \neq 0

$$(A - \lambda.I).X = 0$$

2. Eigendecomposition (tt.)

- ☐ Chéo hóa ma trận (diagonalization)
 - Với n eigenvectors, ứng với các λ_i phân biệt, độc lập tuyến tính
 - P (modal matrix) gồm eigenvectors X_i: |P| ≠ 0 (P khả nghịch)
 - Λ là ma trận đường chéo chứa các giá trị riêng $\lambda_{\rm i}$

$$P = \begin{pmatrix} X_1 & X_2 & \dots & X_n \end{pmatrix}$$

$$P^{-1}.A.P = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = \Lambda$$

$$A = P.\Lambda.P^{-1}$$

B2. Factorization

Bổ sung thêm cho bài giảng

2. Eigendecomposition (tt.)

 \square Ma trận vuông cấp n: $A \in M_n(\mathbb{R})$. Tính A^k , với k >> N!