Bullet Proof Helmet Kashish Kanodia 220103062

Various Ballistic Materials

TRADITIONAL MATERIALS

- Wood
- Fiberglass and Polycarbonate
- Compressed Fibers
- Steel

NOVEL MATERIALS

- Aramid
- Aluminum Oxide
- UHMWPE
- Ceramic Fibers

Comparison

CERAMIC FIBERS

Pros: High strength, High modulus.

Cons: Very high production cost.

STEEL

Pros: Moderate protection, cost

Friendly.

Cons: Need high thickness steel,

Heavy.

ARAMID (KEVLAR)

Pros: High tenacity, High modulus, High energy absorption, good Performance/weight ratio, High V50 rating.

Cons: Poor compressive strength.

FIBERGLASS AND POLYCARBONATE

Pros: Frontal durability, High strength.

Cons: Brittleness, High Density, Manufacturing cost.

UHMWPE

Pros: Lightweight, Durable, High Impact Strength. Cons: Lower V50 rating than Aramid.

Aramid Vs UHMWPE

Table 1. Mechanical properties of different fibers.											
Fiber	ρ (g/cm³)	E (GPa)	E/ρ (kJg ⁻¹)	σ_f (GPa)	$\sigma_f \rho$ (kJg ⁻¹)	$\varepsilon_{\!f}(\%)$	c* ms ⁻¹				
Aramid											
Kevlar 29 [15]	1.44	70–91	49-63	2.9-3.0	2.0-2.1	3.0- 4.2	595 ^a -703 ^a				
Kevlar 49 [15]	1.44	113–120	78-83	3.0	2.1	1.2- 2.6	480 ^a - 621 ^a				
Kevlar 129 [15]	1.44	96–99	67-69	2.9-3.4	2.0-2.4	3.3- 3.5	647 ^a -700 ^a				
Kevlar 149 [15]	1.47	185	126	3.4	2.3	2.0	638				
Kevlar KM2 [15]	1.44	70–85	49-59	3.3-3.9	2.3-2.7	3.8- 4.5	672 ^a -776				
Twaron standard [13]	1.44	60-80	42 ^a -56 ^a	2.4–2.5	1.7ª	3.0- 4.4	544-658				
Twaron high modulus	1.44	100- 120	69 ^a -83 ^a	3.0-3.6	2.1 ^a -2.5 ^a	2.2- 3.0	576–700				

Fiber	ρ (g/cm ³)	E (GPa)	E/ρ (kJg ⁻¹)	σ_f (GPa)	$\sigma_f \rho$ (kJg ⁻¹)	$\varepsilon_f(\%)$	c* ms ⁻¹
UHMWPE							
Dyneema® SK60 [15]	0.97	89	92	2.7	2.8	3.5	776
Dyneema® SK65 [15]	0.97	95	98	3.0	3.1	3.6	820
Dyneema® SK75 [15]	0.97	107	110	3.4	3.5	3.8	888
Dyneema® SK76 [15]	0.97	116	120	3.6	3.7	3.8	917
Spectra 900 [15]	0.97	73–79	75–81	2.3-2.6	2.4–2.7	2.8- 3.9	660 ^a -778 ^a
Spectra 1000 [15]	0.97	97–120	100–124	2.6-3.3	2.7-3.4	2.8- 3.5	721 ^a - 872 ^a
Spectra 2000 [15]	0.97	116-124	120–128	3.2-3.3	3,3-3,4	2.9- 3.0	806 ^a -
Spectra 3000 [15]	0.97	115-122	119 ^a –126 ^a	3.2-3.4	3,4-3,5	3.3	840 ^a - 866 ^a
Zylon AS [15]	1.54	180	117	5.8	3,8ª	3.5	893
Zylon HM [15]	1.56	270	173	5.8	3.7ª	2.5	849
M5-AS [35]	1.70	150	88 ^a	2.5	1.5 ^a	2.7	571 ^a
M5-HT [35]	1.70	330	194 ^a	5.5	3.2ª	1.7	726 ^a

Twaron high tenacity

[13]

1.44

 $3.4-3.6 \quad 2.4^{a}-2.5^{a}$

3.2-

4.0

662-741

Most Suitable Material

After analyzing all the materials and their properties we observe that Kevlar is the most suitable material to make bullet proof helmets.

- > High strength
- > Proven effectiveness
- > Excellent performance/weight ratio
- > Cost-Efficient
- > Versatile
- > Lightweight
- > Flexible
- ➤ High V50 rating
- ➤ Chemical Stability

KEVLAR

Mechanical Properties

Following research paper shows experimental results of various tests (Tensile Test, Flexure test etc.) conducted on Keylar:

Jayakumar-Vijayarangan/publication/
331496092 Evaluation of Mechanical Properties of Kevlar Fibre Ep
oxy Composites An Experimental Study

MICROSTRUCTURE OF KEVLER

MOLECULAR COMPOSITION

- Composed of PPTA molecules Strong intermolecular Hydrogen bonding Anisotropic unit cell

MICROFIBRILS

- 22 nm wide tape-like microfibrils
- Pleated sheet conformation

- Thicker skins are associated with higher tensile strength.
- Pleated sheet structures are consistent.
- · Heat-treated fibers show less apparent banding.
- Crystallite Orientation.
- Thicker skins are associated with lower elastic moduli and higher tensile strengths.
- Molecular rotation within microfibrils.

APPLICATION

- Ballistic Protection (Bulletproof Vests and Helmet) Due to high tensile strength, resistant to penetration.
- Cut-Resistant Gloves and Clothing: Strong fibers enhance the durability.
- Aerospace Components: High strength-to-weight ratio.
- Sports Equipment (e.g., Bicycle Tires, Racing Sails): Due to its strength and flexibility.

REFERENCES

Research Papers

- https://www.sciencedirect.com/science/article/pii/S1359836822002694
 (Analysis of different materials for making bullet proof helmet. Refer section 2.1.1 up to 2.1.4)
- https://www.sciencedirect.com/topics/materials-science/kevlar#:~:text=lt%27s%20good%20in%20tension%20applications,Deepak%20and%20Subbaya%2C%202020 (Study of Kevlar fiber and its mechanical and physical properties. Refer section 2.2)
- https://www.sciencedirect.com/science/article/pii/S0032386117309126 (Internal Structure of Kevlar Refer section 1, 2.1, 2.2, 3.1, 3.2)
- <u>Evaluation-of-Mechanical-Properties-of-Kevlar-Fibre-Epoxy-Composites-An-Experimental-Study</u> (Refer Section 3)

Website

https://uarmprotection.com/what-materials-are-used-to-make-vests-bulletproof/ (Various materials used for ballistic application)