Семён Алексеевич Илясов 4 Вариант 20930 гр.

Расчетное задание по математической статистике. Часть 2

2.1 В этом пункте нужно рассчитать выборочные характеристики.

-> выборочное среднее:

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}$$

n - длина вариационного ряда

 x_{i} - значение элемента в выборке

Результат вычисления: $\bar{x} = 0.244$

-> выборочная дисперсия:

$$s^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Результат вычисления: $s^2 = 0.011264$

-> несмещенная выборочная дисперсия:

$$s_0^2 = \frac{n}{n-1} s^2$$

Результат вычисления: $s_0^2 = 0.01149387755102041$

-> минимальная порядковая статистика:

$$X \min = 0.1$$

-> максимальная порядковая статистика:

$$X max = 0.6$$

-> размах:

$$R = x_{max} - x_{min}$$

Результат вычисления: 0.5

-> медиана:

$$k = \frac{n}{2}$$
 Med = $\frac{x_{(k)} + x_{(k+1)}}{2}$

Результат вычисления: Med = 0.3

2.2 В этом пункте нужно построить график эмпирической функции распределения, гистограмму и ядерную оценку функции плотности.

Функция распределения:

$$F_n(x) = \frac{\mu_n(x)}{n}$$

 $\mu_n(x)$ - кол-во наблюдений в выборке из X меньше x.

1) график эмпирической функции распределения:

2) гистограмма:

3) ядерная оценка функции плотности:

В этом пункте нужно построить доверительный интервал (99%)

для для математического ожидания и дисперсии.

1) Для матожидания:

Из 2.1:

$$\frac{-}{x} = 0.244$$

$$s^2 = 0.011264$$

значит оценка $a^* = 0.244$, оценка дисперсии $s^2 = 0.011264$

Из таблицы Стьюдента $t_{0.99,49} = 2.68$

Предельная ошибка:

$$\Delta = t_{\gamma,n-1} \cdot \frac{s}{\sqrt{n-1}} = 2.68 \cdot \frac{\sqrt{0.011264}}{\sqrt{49}} \approx 0.04$$

Интервал: : (0.244 - 0.04, 0.244 + 0.04) = (0.204, 0.284)

2) для дисперсии:

уровень значимости:

$$\varepsilon = 1 - \gamma = 1 - 0.99 = 0.01$$

Из таблицы распределения хи-квадрат для числа степеней свободы 49:

$$q_1 = 27. 1, q_2 = 78$$

Интервал:

$$\left(\frac{n \cdot s^{2}}{q_{2}} < \delta^{2} < \frac{n \cdot s^{2}}{q_{1}}\right);$$

$$\left(\frac{50 \cdot 0.011264}{78} < \delta^{2} < \frac{50 \cdot 0.011264}{27.1}\right) \Rightarrow (0.00722 < \delta < 0.02078)$$

В этом пункте нужно проверить гипотезу о нормальном законе распределения по критерию Колмогорова (или хи-квадрат Пирсона) при $\alpha=0.01$

По методу максимального правдоподобия: a = 0.244, $\delta = 0.011264$

гипотеза \boldsymbol{H}_0 - эмпирическая функция распределения имеет вид нормального распределения принимается, если

$$S_k < G_s^{-1}(1-\alpha)$$
, где $G_s^{-1}(1-\alpha)$ - это функция распределения статистики при верной основной гипотезе.

$$S_k = \frac{6 \cdot n \cdot D_n + 1}{6 \cdot \sqrt{n}}$$

$$D_n = max(D_n^+, D_n^-), D_n^+ = max(\frac{i}{n} - F(X_{(i)})), D_n^- = max(F(X_{(i)}) - \frac{i-1}{n})$$

Вычисляем значение статистики Колмогорова $S_k = 2.291789232459293$. Из приложения 8 критическое значение статистики Колмогорова (при $\alpha = 0.01$) = 1.0599. Поскольку неравенство не выполняется , то гипотеза о согласии данной выборки с нормальным распределением отвергается.