Lemma. Given any $X, Y \in \operatorname{Ob}_{\mathbf{Pos}_{\mathcal{U}}}$, $\operatorname{Hom}_{\mathbf{Pos}_{\mathcal{U}}}(X; Y)$ is a bounded lattice with union \vee of morphisms in $\mathbf{Pos}_{\mathcal{U}}$ as meet, intersection \wedge of morphisms in $\mathbf{Pos}_{\mathcal{U}}$ as join, least upper bound $\mathsf{T}_{\operatorname{Hom}_{\mathbf{Pos}_{\mathcal{U}}}(X;Y)}: X \to Y$ given by

$$\mathsf{T}_{\mathsf{Hom}_{\mathbf{Pos}_{\mathcal{U}}}(X;Y)}^{\star} : X \to \mathcal{U}Y$$

$$x \mapsto \emptyset,$$

and greatest lower bound $\perp_{\operatorname{Hom}_{\mathbf{Pos}_{9/}}(X;Y)}: X \to Y$ given by

$$\perp_{\operatorname{Hom}_{\mathbf{Pos}_{\mathcal{U}}}(X;Y)}^{\star} : X \to \mathcal{U}Y$$

$$x \mapsto Y.$$