# Python for High Performance Data Analytics

— (1) Computation —

Qiyang Hu
UCLA Office of Advanced Research Computing
May 17, 2024

- Do we need to learn?
- Why Python is slow?
- How to speed Python up?
  - By AOT bindings
  - By JIT
  - By new interpreters
- Demos

- Do we need to learn?
- Why Python is slow?
- How to speed Python up?
  - By AOT bindings
  - By JIT
  - By new interpreters
- Demos

# Python is popular.

#### Ranking by counting hits of the most popular search engines

| May 2024 | May 2023 | Change | Program    | nming Language | Ratings | Change |
|----------|----------|--------|------------|----------------|---------|--------|
| 1        | 1        |        | •          | Python         | 16.33%  | +2.88% |
| 2        | 2        |        | 9          | С              | 9.98%   | -3.37% |
| 3        | 4        | ^      | <b>G</b>   | C++            | 9.53%   | -2.43% |
| 4        | 3        | •      | <u>«</u> , | Java           | 8.69%   | -3.53% |
| 5        | 5        |        | 0          | C#             | 6.49%   | -0.94% |
| 6        | 7        | ^      | JS         | JavaScript     | 3.01%   | +0.57% |
| 7        | 6        | •      | VB         | Visual Basic   | 2.01%   | -1.83% |
| 8        | 12       | *      | ~GO        | Go             | 1.60%   | +0.61% |
| 9        | 9        |        | SQL        | SQL            | 1.44%   | -0.03% |
| 10       | 19       | *      | B          | Fortran        | 1.24%   | +0.46% |

#### **Choice by competition winners**



Latest TIOBE Index

ML\_Contests Report 2023

# Python is slow.

| LANGUAGES     | TIME (S) * | SPEEDUP VS PYTHON |
|---------------|------------|-------------------|
| Python 3.10.9 | 970 s      | 1x                |
| NUMPY         | 171 s      | 6x                |
| SCALAR C++    | 0.11 s     | 9000x             |

According to Chris Lattner, using Mandelbrot Algorithm on AWS instance h3-standard-88 with Intel Xeon (https://www.modular.com/max/mojo)

### Do we need to learn in the ChatGPT age?



Needs to distill the domain knowledge

#### About this series

- The lectures will focus on
  - High-level and conceptual overviews.
  - Introducing libraries that require minimal efforts to boost performance.
  - Short Jupyter Notebook demos
- What can/can't expected in the series?

| ✓ CAN                                                                      |                                                                                                                                          |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| From an end users' perspective                                             | From a package developers' perspective                                                                                                   |  |
| A <u>BIGGER</u> -picture review on the selected 3rd-party python libraries | <ul> <li>Native Python tricks (e.g. container, lazy eval, mem)</li> <li>Line-by-line explanations on these library interfaces</li> </ul> |  |
| Demos on specific example problems                                         | Discussion on the performance of various algorithms                                                                                      |  |

# Two Big **Do-Not's**

#### Don't optimize prematurely.

"The real problem is that programmers have spent far too much time worrying about efficiency in the wrong places and at the wrong times..."

-- Donald Knuth in "TAOCP"

- Easiest to understand and explain
- Quickest to write
- Easiest to test and maintain
- Most portable to migrate

#### Don't trust benchmarks.

All benchmark numbers are "wrong".

- Specific hardware/OS/libraries
- In-situ running environments
- Different nature of datasets
- Sometimes very version-sensitive

- Understand the mechanisms
- Focus on the qualitative comparisons
- Need to do your own experiments.



#### **COMPUTATION**

Single Node/GPU, SIMD

- Pypy, Numba, NumExpr
- Pythran, Cython
- F2py, ctypes



#### **DISTRIBUTED**



#### Multiple Nodes/Machines

- MapReduce-based: PySpark, PyFlink
- MPI-based: mpi4py, Horovod
- Joblib, Dask, Ray





- Viz process for big data
- Matplotlib, Bokeh, Plotly
- Holoview and Datashader
- Traited VTK, Mayavi,
  Paraview



Single Node/GPU, SIMD

- Numpy
- Pandas, Polars
- Modin, Pandarallel, Swifter
- Dask DataFrame, Vaex

- Do we need to learn?
- Why Python is slow?
- How to speed Python up?
  - By AOT bindings
  - By JIT
  - By new interpreters
- Demos

#### Seriously, what is Python?



### Why Python is slow?

Python is Dynamically Typed rather than Statically Typed.

```
/* C code */
int a = 1;
int b = 2;
int c = a + b;
```

```
# python code
a = 1
b = 2
c = a + b
```

#### <u>Source</u>



o 2a. Set b->PyObject HEAD->typecode to integer

o 2b. Set b->val = 2



- 3. call binary\_add(a, b)
  - 3a. find typecode in a->PyObject\_HEAD
  - **3b.** a is an integer; value is a->val
  - 3c. find typecode in b->Py0bject\_HEAD
  - o **3d.** b is an integer; value is b->val
  - o 3e.call binary\_add<int, int>(a->val, b->val)
  - o 3f. result of this is result, and is an integer.
- 4. Create a Python object c
  - 4a. set c->PyObject\_HEAD->typecode to integer
  - 4b. set c->val to result

### GIL: Guilty or Gilly?



- GIL (Global Interpreter Lock)
  - A mutex (or a lock) that allows only one *thread* to hold the control of the Python interpreter.
- Why Python uses it?
  - GILs is added to the ref count variables to be kept protected from race conditions
  - GIL has performance benefits of GIL in single-threaded situation.
  - Historically Python has been around when OS did not have a concept of threads.
- Correct way to use it:
  - Multi-processing vs multi-threading:
    - Multi-threading: good for IO-intensive code, bad for CPU-intensive code
    - use multiple processes with "multiprocessing" module instead of threads
    - Consider to use Intel Distribution of Python
  - Attempts from Python community to remove the GIL from CPython:
    - <u>Gilectomy</u> (abandoned)
    - A new compiler flag: <u>nogil</u> (expected in Python 3.1x)
  - Alternative Python interpreters, as GIL only with CPython
    - multiple interpreter implementations

- Do we need to learn?
- Why Python is slow?
- How to speed Python up?
  - By AOT bindings
  - By JIT
  - By new interpreters
- Demos

#### Boosting the speed by **AOT** Compiler



#### Pythran: an AOT compiler for a subset of the Python



### **Cython**: Compiler to write C extensions for Python



### Binding ideas for all high-performance languages



### f2py: wrap/bind fortran code for use in Python



- Do we need to learn?
- Why Python is slow?
- How to speed Python up?
  - By AOT bindings
  - By JIT
  - By new interpreters
- Demos

#### Boosting the speed by JIT





### Pypy: using Python to interpret Python

RPython = Restricted/Reduced Python



### Numba: a high-performance python JIT compiler



#### NumExpr: C-based JIT booster for numpy large arrays



- Do we need to learn?
- Why Python is slow?
- How to speed Python up?
  - By AOT bindings
  - By JIT
  - By new interpreters
- Demos



#### Downsides in the "Glue-and-Patch" Approach

- Difficult in learning the implementation even for experienced devs
- Difficult in debugging, profiling or resolving performance problems
- No effective parallel processing way in Python
- Special challenges in Al ages:
  - Fundamental limitations of sophisticated compilation backend to create high performance implementation of Python code, even in Pytorch's compile()
  - Unavoidable performance bottlenecks when calling a bunch of compiled functions
  - A faster implementation for deployment has no guarantee to run identically to its python version (e.g. using ONNX or Torchscript)

### From another perspective



#### **Subsets to Python**

- Pypy
- Pythran
- JAX

#### **New CPython**

- Fully optimization
- Rewritten, maybe?

#### **Supersets to Python**

**HPC Language** 

- Cython
- Mojo

#### The "Shannon Plan"





- Originally proposed by Eric Snow, and Mark Shannon in 2020
- Guido van Rossum joined and gave a talk in Python Language Summit (May 2021)
- Based on the experience with "HotPy" and "HoyPy 2"
- Promising 5x in 4 years, 1.5x per year





| Operation                   | Form              | Specialization                                                                                                                                                                                 | Operation<br>speedup (up<br>to) | Contributor(s)                                                          |
|-----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|
| Binary<br>operations        | x+x; x*x;<br>x-x; | Binary add, multiply and subtract for common types such as int, float, and str take custom fast paths for their underlying types.                                                              | 10%                             | Mark<br>Shannon,<br>Dong-hee Na,<br>Brandt Bucher,<br>Dennis<br>Sweeney |
| Subscript                   | a[i]              | Subscripting container types such as list, tuple and dict directly index the underlying data structures.  Subscripting customgetitem is also inlined similar to Inlined Python function calls. | 10-25%                          | Irit Katriel,<br>Mark Shannon                                           |
| Store<br>subscript          | a[i] = z          | Similar to subscripting specialization above.                                                                                                                                                  | 10-25%                          | Dennis<br>Sweeney                                                       |
| Calls                       | f(arg)<br>C(arg)  | Calls to common builtin (C) functions and types such as 1en and str directly call their underlying C version. This avoids going through the internal calling convention.                       | 20%                             | Mark<br>Shannon, Ken<br>Jin                                             |
| Load<br>global<br>variable  | print len         | The object's index in the globals/builtins namespace is cached. Loading globals and builtins require zero namespace lookups.                                                                   | [1]                             | Mark Shannon                                                            |
| Load<br>attribute           | o.attr            | Similar to loading global variables. The attribute's index inside the class/object's namespace is cached. In most cases, attribute loading will require zero namespace lookups.                | [2]                             | Mark Shannon                                                            |
| Load<br>methods<br>for call | o.meth()          | The actual address of the method is cached. Method loading now has no namespace lookups – even for classes with long inheritance chains.                                                       | 10-20%                          | Ken Jin, Mark<br>Shannon                                                |
| Store<br>attribute          | o.attr = z        | Similar to load attribute optimization.                                                                                                                                                        | 2% in pyperformance             | Mark Shannon                                                            |
| Unpack<br>Sequence          | *seq              | Specialized for common containers such as<br>list and tuple. Avoids internal calling<br>convention.                                                                                            | 8%                              | Brandt Bucher                                                           |

# Mojo == Python++ (?)

- A new language
  - Using Python as the syntax
  - High performanced
    - Little faster in plain python mode
    - Optional super-faster mode
      - Adding new syntax for devs
- Aiming to another challenge
  - Heterostructures in hardware
  - Based on "intermediate representation" (IR)
- As a block in a bigger picture
  - MAX engine framework
  - Possibly incremental adaptation

| LANGUAGES     | TIME (S) * | SPEEDUP VS<br>PYTHON |
|---------------|------------|----------------------|
| Python 3.10.9 | 970 s      | 1x                   |
| SCALAR C++    | 0.11 s     | 9000x                |

AI application (large language model, image classifier, recommender, etc.) TensorFlow MAX Graph API PyTorch ONNX Python API C API Mojo API MAX model compiler MAX model runtime CPU GPU xPU (Intel, AMD, ARM) (coming soon) (coming later)

Mojo is promising, but its future is still not clear.

Hardware

AI models

MAX Engine

libraries

MAX Engine

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

#### Hands-on Demo

#### bit.ly/hpdspy\_01

- Code example will be running in Google Colab.
  - o **IPython** (interpreter implementation) as Python kernel in Jupyter Notebook
    - Based on **CPython**, enhancing interactive features.
    - Shell prompted as In [#]:
    - Interacting with external files/modules by %magic commands
    - Some comparisons were not made in the same baseline.
    - An interesting project in web dev: PyScript
  - Colab comes with some installed libraries, but not all.
  - Performance benchmark was done based on array operations
    - Started with 1000 points in 3 dimensions
    - Calculate the pairwise 1000x1000 distances
    - Arrays (containers, dataframes) will be our main subject to discuss in the next lecture.



#### **COMPUTATION**

Single Node/GPU, SIMD

- Pypy, Numba, NumExpr
- Pythran, Cython
- F2py, ctypes







#### **Multiple Nodes/Machines**

- MapReduce-based: PySpark, PyFlink
- MPI-based: mpi4py, Horovod
- Joblib, Dask, Ray



#### **DATA ARRAYS**

Single Node/GPU, SIMD

- Numpy
- Pandas, Polars
- Modin, Pandarallel, Swifter
- Dask DataFrame, Vaex





- Viz process for big data
- Matplotlib, Bokeh, Plotly
- Holoview and Datashader
- Traited VTK, Mayavi,
  Paraview



#### COMPUTATION

Single Node/GPU, SIMD

- Pypy, Numba, NumExpr
- Pvthran, Cvthon
- F2py, ctypes

# See you next week!



**DATA ARRAYS** 

Single Node/GPU, SIMD

- Numpy
- Pandas, Polars
- Modin, Pandarallel, Swifter
- Dask DataFrame, Vaex



#### DISTRIBUTED



#### **Multiple Nodes/Machines**

- MapReduce-based: PySpark, PyFlink
- MPI-based: mpi4py, Horovod
- Joblib, Dask, Ray

#### **VISUALIZATION**



- Viz process for big data
- Matplotlib, Bokeh, Plotly
- Holoview and Datashader
- Traited VTK, Mayavi,
  Paraview