# Neural Networks Associative Networks

Dr. Petr Musilek

Department of Electrical and Computer Engineering University of Alberta

Fall 2019

## **Associative Networks**



## Hebbian Learning

#### Donald Hebb (1949)

As neuron *i* becomes more efficient in stimulating neuron *j* during training

- i sensitizes j to its stimulus
- Weight w<sub>ii</sub> increases

$$w_{ij}^{\text{new}} = w_{ij}^{\text{old}} + \eta x_i o_j$$
Problems?

## Modified Hebian learning (Grossberg)

Allows weights to decrease when not longer stimulated

$$w_{ij}^{\mathrm{new}} = w_{ij}^{\mathrm{old}} (1 - \alpha) + \eta x_i o_j$$
  
forgetting term + Hebbian term

$$\frac{w_{ij}^{\text{new}} - w_{ij}^{\text{old}}}{\Delta t} = \frac{\Delta w_{ij}}{\Delta t} \rightarrow \frac{dw_{ij}}{dt} = -\alpha w_{ij}^{\text{old}} + \eta x_i o_j$$

i.e. slow exponential weight decay with time constant  $\alpha$ 

#### Differential Hebian learning

Allows weights to decrease when the output decreases

$$w_{ij}^{
m new} = w_{ij}^{
m old} (1 - \alpha) + \eta \frac{dx_i}{dt} \frac{do_j}{dt}$$
  
forgetting term + differential term

(rate of change used instead of value)

#### Note:

No target values used for training - this is an unsupervised learning.

## **Grossberg Learning**

Attempt to mathematically explain psychological conditioning experiments

- Observational conditioning (monkeys)
- Operational conditioning (action/response)
- Classical conditioning (Pavlov)

## Pavlov's experiment

| Stage | Stimulus                | Response        |
|-------|-------------------------|-----------------|
| 1     | Unconditional           | Unconditioned   |
|       | (food)                  | (dog salivates) |
| 2     | Unconditional (food)    | Conditioned     |
|       | PLUS Conditioned (bell) | (dog salivates) |
| 3     | Conditioned             | Conditioned     |
|       | (bell)                  | (dog salivates) |

## Concepts of instar and outstar



#### Instar activity

- The activity must grow when there is an external stimulus
- It must rapidly decrease if it is no longer externally stimulated
- It must respond to stimuli from other neurons in the network

## Instar Learning rule

If inputs and weights are normalized, *tot* is largest when weights are identical to input values

• weights would be changed only if they are different from the inputs

$$\Delta w_i = \eta (x_i - w_i)$$

- incoming weights of neuron converge to input pattern (previous layer)
- unsupervised learning (no targets available)

## Outstar Learning rule

Weights connected to certain node should be equal to the desired outputs for the neurons they connect

$$\Delta w_{ij} = \eta (t_j - w_{ij})$$

- outgoing weights of neuron converge to output pattern (next layer)
- neuron learns to recall pattern when stimulated
- supervised learning

#### Outstar learning



#### Associative Memories (AM)

Systems that store information by associating each data item with one or more other stored data items, (usually) in distributed form.

- Content addressable (CAM)
- Robust
  - Noisy data
  - Incomplete data
  - Failed elements

#### Associative Memories ...

- Concept: object or pattern x (input) reminds the network of object or pattern o (output)
- Many biological neural nets are associative memories
- Heteroassociative Vs. autoassociative memories
  - If x and o are different, the system is called heteroassociative network
  - If x and o are the same, the system is called autoassociative nettwork

#### Associative Memories ...

- Unidirectional vs. bidirectional memories
  - Unidirectional: x reminds you of o
  - Bidirectional: x reminds you of o and o reminds you of x
- Recognizing new or incomplete patterns
  - Recognizing patterns that are similar to one of the patterns stored in memory (generalization)
  - Recognizing incomplete or noisy patterns whose complete (correct) forms were previously stored in memory

## **Bidirectional Associative Memory**

BAM is a matrix representing a crossbar network with symmetric weights

- the network has two layers
- each neuron in a layer has one output from the outside, and
- inputs from all neurons of the other layer

BAM can store pattern pairs  $[\boldsymbol{x}(k), \boldsymbol{o}(k)]$ ; k = 1, ..., n and recall

- o corresponding to particular x, or
- x corresponding to particular o
- i.e. it works in both directions → bidirectional

#### Setting of BAM weights

Weights are not obtained by training process but directly constructed from input-output pairs, e.g. binary to grey code

```
m{x}(1): ( 0 0 1 0 ) \iff ( 0 0 1 1 ) :m{o}(1)
m{x}(2): ( 0 0 1 1 ) \iff ( 0 0 0 0 ) :m{o}(2)
m{x}(3): ( 0 1 0 0 ) \iff ( 0 1 1 0 ) :m{o}(3)
```

- Before proceeding, the values must be converted to bipolar (0s become -1s while 1s remain)
- From each pair, a mapping matrix  $\mathbf{M}_k = \mathbf{x}(k) \times \mathbf{o}(k)$  is constructed
- The matrices are then combined into a master matrix  $\mathbf{M} = \mathbf{M}_1 + \mathbf{M}_2 + \cdots + \mathbf{M}_n$

## Hopfield Network



- A more advanced type of autoassociative memory
- Almost fully connected
- Architecture
  - symmetric weights

$$w_{ij} = w_{ji}$$

- notice the "feedback" in the network structure
- no feedback from a cell to itself  $w_{ii} = 0$



## **Principle**

Based on the physical principle that every object seek a low energy static position.

During learning, the network uses input to define the low energy points.



When a similar to a learned position is encountered, some neurons will drag the other neurons to the static position.



#### Illustration



#### Operation

- Task: Store images with resolution 20×20 pixels (need a network with 400 nodes)
- Learning:
  - 1. Present image
  - Apply Hebb rule: cells that fire together, wire together (increase weight between two nodes if both have same activity, otherwise decrease)
  - 3. Go back to 1
- Recall:
  - 1. Present incomplete pattern
  - 2. Pick random node, update
  - 3. Repeat 2 until settled

#### Hebbian rule for Hopfield network

Changes are proportional to the correlation between the firing (activity) of the pre- and post-synaptic neurons.

#### Technically:

Consider

$$T = \{x(k)|x(k) = (x_1(k), \dots, x_m(k)) \in \{-1, 1\}^m, k = 1, \dots, n\}$$

- Start with  $w_{ii} = 0 (j = 1, ..., m; i = 1, ..., m)$
- For given training set T do

$$w_{ij} = \sum_{k=1}^{n} x_j(k)x_i(k), 1 \leq j \neq i \leq m$$

## Active Mode of Hopfield Network

- 1. Set  $o_i = x_i (i = 1, ..., m)$
- 2. Go through all neurons and at each time step select one neuron j to be updated according the following rule:
  - compute its internal potential  $tot_j = \sum_{i=1}^m w_{ij} o_i$
  - set its new state  $o_j = \begin{cases} 1 & \text{if } tot_j > 0, \\ o_i & \text{if } tot_j = 0, \\ -1 & \text{if } tot_j < 0. \end{cases}$
- IF not stable configuration THEN go to step 2
   ELSE end - output of the net is determined by the current state of neurons.

## **Energy Function and Landscape**

Energy function 
$$E(o) = -\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} w_{ij} o_i o_j$$

#### **Energy Landscape**

- high energy unstable states
- low energy more stable states
- energy always decreases (or remain constant) as the system evolves according to its dynamical rule



#### Attractors and Phantoms

- Local minima of the energy function represent stored examples - attractors
- Basins of attraction catchment areas around each minimum
- False local optima phantoms





#### Storage Capacity of Hopfield Network

- Capacity of the network maximum number of patterns that can be stored without unacceptable errors.
- Empirical results
  - $n \le 0.138m$  training examples as local minima of E(o)
  - n < 0.05m training examples as global minima of E(o), deeper minima than those corresponding to phantoms
- Example: 10 tr. examples, 200 neurons → 40000 weights

## Example

#### Pattern recognition

- 8 examples, matrix 12×10 pixels → 120 neurons
- input pattern with 25% bits incorrect

