1[56]. Найти площадь фигуры, ограниченной кривыми.

Дана парабола $y = ax^2 + bx + c$.

- **2[56].** Найти длину дуги параболы от точки x_1 до точки x_2 .
- 3[56]. Найти абсциссу центра масс фигуры, ограниченной параболой и касательными к ней в этих точках.
- 4[56]. Найти ординату центра масс фигуры, ограниченной параболой и касательными к ней в этих точках.

Байлук 1.
$$y^2 = \frac{x^n}{(1+x^{n+2})^2}$$
 $(x>0, n>-2)$; 2. $a=5, b=3, c=2, x_1=-1, x_2=2.$

Бреннер 1.
$$y = \frac{1}{2 - \cos x}$$
, $y = 0$, $x = 0$, $x = 2\pi$; 2. $a = -2$, $b = 1$, $c = -1$, $x_1 = 1$, $x_2 = 3$.

Данилова 1.
$$y = e^{-x} |\sin x|$$
, $y = 0$ $(x \ge 0)$; 2. $a = 4$, $b = 5$, $c = 3$, $x_1 = 2$, $x_2 = 3$.

Долматова 1.
$$y = \frac{x}{\sqrt{5-4x}}$$
, $x = -1$, $x = 1$, $y = 0$; 2. $a = 2$, $b = 3$, $c = -2$, $x_1 = 4$, $x_2 = 5$.

Дорошев 1.
$$y = \frac{1}{2\sin^2 x + 3\cos^2 x}$$
, $y = 0$, $x = 0$, $x = \frac{3\pi}{2}$; 2. $a = 1$, $b = 3$, $c = 4$, $x_1 = 3$, $x_2 = 7$.

Дудин 1.
$$y=(x+1)^2, \ x=\sin\pi y, \ y=0 \ (0\leqslant y\leqslant 1);$$
 2. $a=2, \ b=-3, \ c=-1, \ x_1=3, \ x_2=4.$

Ерженин 1.
$$2x^2 + 4xy + 3y^2 = 1$$
; 2. $a = 2$, $b = 2$, $c = 6$, $x_1 = 3$, $x_2 = 4$.

Журавлёв 1.
$$y^2 = x^2(4-x^2)$$
; 2. $a = -1$, $b = -2$, $c = 4$, $x_1 = 1$, $x_2 = 6$.

Зайцев 1.
$$y = \frac{1}{\sin^4 x + \cos^4 x}$$
, $y = 0$, $x = 0$, $x = 2\pi$; 2. $a = 1$, $b = -3$, $c = -5$, $x_1 = 4$, $x_2 = 6$.

Каменецкий 1.
$$y = \frac{1}{x}$$
, $y = 2e^x$, $y = 1$, $y = 2$; 2. $a = -1$, $b = 2$, $c = 3$, $x_1 = 2$, $x_2 = 5$.

Корчагин 1.
$$y = \frac{x}{\sqrt{3+2x}}$$
, $x = -1$, $x = 2$, $y = 0$; 2. $a = 1$, $b = 3$, $c = 4$, $x_1 = 4$, $x_2 = 6$.

Михайлова 1.
$$y = \frac{8}{4+x+x^2}$$
, $y = 0$; 2. $a = 6$, $b = -1$, $c = 3$, $x_1 = 0$, $x_2 = 3$.

Овеянникова 1.
$$y = \frac{1}{x\sqrt{x^2 - 1}}$$
, $y = 0$, $x = -1$, $x = -2$; 2. $a = 3$, $b = 5$, $c = -1$, $x_1 = 3$, $x_2 = 5$.

Осипов 1.
$$x^2 + y^2 = 2$$
, $y = -x^2$ $(y \geqslant -x^2)$; 2. $a = 4$, $b = -4$, $c = 2$, $x_1 = 5$, $x_2 = 6$.

Павлова 1.
$$y = \frac{1}{2 + \sin x}$$
, $y = 0$, $x = 0$, $x = 2\pi$; 2. $a = 2$, $b = 5$, $c = -1$, $x_1 = 1$, $x_2 = 4$.

Паршин 1.
$$2x^2 + 2xy + y^2 = 1$$
; 2. $a = 1, b = 2, c = 6, x_1 = 3, x_2 = 5$.

Петров 1.
$$y = \frac{1}{\sin^2 2x + 3\cos^2 x}$$
, $y = 0$, $x = 0$, $x = \frac{\pi}{2}$; 2. $a = b = c = x_1 = 1$, $x_2 = 3$.

Серикова 1.
$$y = |\lg x|, \ y = 0, \ x = \frac{1}{10}, \ x = 10; \ 2. \ a = 2, \ b = 4, \ c = 3, \ x_1 = 1, \ x_2 = 3.$$

Сидоров 1.
$$y = 0$$
, $y = \frac{x}{x^2 + x + 1}$, $x = -1$, $x = 1$; 2. $a = -5$, $b = 3$, $c = 2$, $x_1 = 3$, $x_2 = 5$.

Сударев 1.
$$\frac{x^2}{2} + \frac{y^2}{3} = 1$$
; 2. $a = 2$, $b = -3$, $c = 5$, $x_1 = 0$, $x_2 = 5$.

Сухарева 1.
$$y = \frac{x^2 + 1}{x^4 + 1}$$
, $y = 0$; 2. $a = 2$, $b = 2$, $c = 4$, $x_1 = 3$, $x_2 = 6$.

Терещенко 1.
$$y = \frac{1}{2\sin^4 x + 3\cos^2 x}$$
, $y = 0$, $x = 0$, $x = \frac{3\pi}{2}$; 2. $a = b = c = x_1 = 1$, $x_2 = 2$.

Турундаев 1.
$$y = \frac{1}{\sin^4 x - \cos^2 x + 2}$$
, $y = 0$, $x = 0$, $x = \frac{\pi}{2}$; 2. $a = b = c = x_1 = -1$, $x_2 = 2$.

Фролова 1. $y=\frac{3}{3\sin^2 2x+\cos^2 x},\ y=0,\ x=0,\ x=\frac{3\pi}{2};\ 2.\ a=-1,\ b=3,\ c=1,\ x_1=3,\ x_2=7.$ Шабалин 1. $y=e^{-x/2}|\cos 2x|,\ y=0\ (x\geqslant 0);\ 2.\ a=4,\ b=2,\ c=3,\ x_1=1,\ x_2=3.$ Шахбанов 1. $y=\frac{1}{3-\sin x},\ y=0,\ x=0,\ x=2\pi;\ 2.\ a=1,\ b=-5,\ c=-1,\ x_1=1,\ x_2=4.$ Шибалин 1. $x=\ln\frac{1+\sqrt{1-y^2}}{y}-\sqrt{1-y^2}$ (трактриса))), $y=0;\ 2.\ a=b=c=x_1=1,\ x_2=2.$