Risk

BRIAN LAMARCHE

COMPUTER SCIENCE 323 SOFTWARE DESIGN

Project Unknowns

- These unknowns, called risks, could potentially lead to an undesirable outcome
 - The system does not work

- Project unknowns are not always technical
 - "We are not an effective development team"

 We try to map out our project needs and resources accordingly

This helps us plan and execute

Risks

•Actually, in risk management risk is a quantifiable metric defined as the probability that an event (problem or source) will occur that will lead to an unwanted outcome.

Types of Risk

- Schedule
 - Cannot complete all requirements in allotted time
- Budget
 - Money is reallocated.
- Operation
 - Improper resource allocation
- Programmatic
 - Customer changes or changes requirements

Schedule

- Improper planning
- Improper resource allocation
- Unexpected project scope
 - Fire Drills

Budget

- Budget risks are often linked to scheduling problems
- •Running out of funds due to improper planning
- Funding changes during project
- Unexpected technology purchases
 - Licenses
 - New hardware

Operation

- Improperly allocating resources
- Poor planning and prioritization
- Poor execution of process
- Insufficient training
- Poor use of tools

Programmatic

- Customer changes requirements
- Customer changes completely
- Marketing steers scope of project another way

Technical

- Technology components are difficult to integrate
- Technologies are out-dated
- Technologies are immature
- System is too complex
- Deployment of technologies is not well understood or executed

Our Project

- •In this course we will not have budget risks
- Programmatic risks will be minimal
 - Customer could change their mind on the target system requirements
 - Competition rules could change slightly

Risk Management

- •The ISO 31000 defines principles and guidelines for risk management.
- •We will not cover all of these details, however, we will explore the basic principles and then apply this understanding to known software engineering processes

Steps

- •Here are the main points:
 - Identify and characterize unknowns
 - Assess the degree
 - Define stakeholders and constraints
 - Prioritize
 - Create risk mitigation framework
 - Mitigate

Identify Risk

- •Analysis:
 - Source Based
 - -The camera module component based
 - Problem Based
 - Camera does not initialize event based
- Both approaches allow us to identify new risks that we had not previously considered
- The goal is to dig into both our organization and our technical requirements and determine possible problems

Identify Risk

- Checklists are a nice way to identify specific problems if we have a well established domain
- •e.g. Having a responsive user interface:
 - Requires asynchronous programming
 - -Requires multi-threaded support
 - Does language support multi-threading
 - Does GUI framework support display of multiple image formats

Assessment

- Each risk should be assessed by a degree, or measure of how it will impact the project.
- Degrees are not priorities
- You need an assessment to help you prioritize your path forward

Example Assessments

Extreme

• Will affect the outcome, emphasis must address this or will not pursue

High

• Will affect the outcome, should focus efforts to mitigate as much as possible.

Normal

Should address and seen as not to burden the project

Low

Could affect some things, but effect is minimal.

Trivial

May not affect outcome of software

Assessment to include possibility of occurence

- When assessing you should consider the rate of possible occurrence
 - The camera drops it's feed
 - The missile launcher stops responding
 - The internet goes out and we cannot get data from the server

Stakeholders & Constraints

- Make sure you relate the risks to your stakeholders and constraints
- Stakeholders have interests
- Risks can be bound by constraints
 - Environmental factors may limit or amplify a problem or risk
 - e.g. The cross wind from the hallway may knock our missiles off course

Stakeholders

- Define who your stakeholders are
 - Not necessarily your user
 - These are people that have interest in your project
 - People that drive your project requirements
 - Have negative or positive influence in the completion of the project
- The last part is key
 - e.g. stakeholders can withdraw funding

Stakeholders

- Because stakeholders are usually drivers of your project you need to consider their interests
- So define them!
 - This helps you prioritize your risk mitigation strategy

Stakeholders

- Because stakeholders are usually drivers of your project you need to consider their interests
- So define them!
 - This helps you prioritize your risk mitigation strategy

Prioritize

- •Once we know:
 - What the risk is
 - Its degree of difficulty
 - Connection to stakeholders
 - Operational constraints
- We can start to prioritize

What you need to prioritize

- Build a matrix or cards with the name of the risk, it's degree, connection to stakeholders
- Define a priority rating system
 - 1-5, where 1 is the highest
 - But put this into context
 - -1 = Highest and needs to be addressed now
 - -2 = High and should be addressed next
 - **. . .**
 - -5 = Will not attempt

Passing Priority

- Work with your team to determine these priorities
- •Use simple dispute resolution techniques to "pass" or resolve a priority
 - Fist to Five
 - -Simple way to get consensus
 - -http://freechild.org/Firestarter/Fist2Five.ht m

Fist to Five Example

Fist

 A no vote - a way to block consensus. I need to talk more on the proposal and require changes for it to pass.

1 Finger

I still need to discuss certain issues and suggest changes that should be made.

2 Fingers

• I am more comfortable with the proposal but would like to discuss some minor issues.

3 Fingers

• I'm not in total agreement but feel comfortable to let this decision or a proposal pass without further discussion.

4 Fingers

I think it's a good idea/decision and will work for it.

5 Fingers

• It's a great idea and I will be one of the leaders in implementing it.

Resolution and Mitigation

- By this time risks are defined, assessed, and prioritized
- Now we need to start resolving:
 - Avoid we won't do this
 - Reduce we are going to break this down
 - Sub-components may not be as risky as the component as a whole
 - Share outsource or transfer
 - Retain accept, plan and budget

Mitigation Plan

- Develop the specific plan, task, story, etc to resolving the risk
 - Once accepted you should be able to tie it to a development effort
- We will build a prototype of the missile launcher control program that will fire a missile and move the turret.
- •Risk mitigation can help you understand WHAT you need to check for to say it's done, i.e. acceptance criteria

End product

- •Essentially at the end you have a matrix:
 - Risk
 - Degree
 - Priority
 - Resolution
 - Mitigation

Conclusion

- Without understanding what we don't know, we will never understand what we do.
- •Risk assessment gives us an idea of how to proceed, what processes we might choose, and how to organize ourselves.
- •Be flexible, apply the principles, and be honest while you are doing this
- Keep in mind, that we still have not defined tasks!