Interaction filtering - A novel approach to social recommendation

Riley Kidd

A subthesis submitted in partial fulfillment of the degree of Bachelor of Software Engineering at The Department of Computer Science Australian National University

October 2012

© Riley Kidd

Typeset in Palatino by TeX and LATeX $2_{\mathcal{E}}$.

Except where otherwise indicated, this thesis is my own original work. Riley Kidd 8 October 2012

Abstract

Social networks provide a wide array of user specific interactions, profile information and user preferences. This thesis attempts to decipher which user traits are truly indicative of 'likes', this information is then leveraged to allow for binary classification of user specific links with the goal of discovering the ideal combination of traits for prediction.

The success of our predictions are evaluated using a number of machine learning algorithms including, *Naive Bayes, Logistic Regression and Support Vector Machines*, results are also compared to previous work using *Matchboxing and Social Matchboxing* techniques. The data set is sourced from a set of over 100 Facebook users and their interactions with over 30,000 friends during a four month period.

We have shown that...

Contents

A	Abstract		
1	Intr	roduction	1
	1.1	Objectives	1
	1.2	Contributions	1
	1.3	Outline	1
2	Bac	kground	3
	2.1	Social Networks	3
	2.2	Data Set	3
	2.3	Notation	5
	2.4	Previous Work	5
		2.4.1 Content Based Filtering	5
		2.4.2 Information Diffusion	5
	2.5	Prediction Algorithms	5
		2.5.1 Constant True	5
		2.5.2 Social Recommender	5
		2.5.3 Naive Bayes	5
		2.5.4 Logistic Regression	6
		2.5.5 Support Vector Machine	6
	2.6	Training and Testing	6
	2.7	Evaluation Metrics	6
	2.8	Feature Sets	7
	2.0	Teatale sels Tritinitinitinitinitinitinitinitinitiniti	•
3	Use	r Interactions	9
	3.1	Introduction	9
	3.2	Interactions	9
	3.3	Conversation	9
		3.3.1 Outgoing	9
		3.3.2 Incoming	9
4	Use	r Preferences	13
	4.1	Introduction	13
	4.2		13
	4.3	0 1	16
	4.4		16
	4.5	1	18

viii Contents

5	Bay	esian Model Averaging	25
	5.1	Introduction	25
	5.2	Derivation	25
	5.3	Results	25
6	Con	aclusions	27
	6.1	Summary	27
	6.2	Future Work	27

Introduction

[?]

- 1.1 Objectives
- 1.2 Contributions
- 1.3 Outline

The goal of this thesis is to discover which sub-set or combination of user interactions and/or user preferences will be the most predictive of user likes.

Background

2.1 Social Networks

The social network central for this study is Facebook. Once registering, Facebook users have the option of setting up a personalised profile, they can then establish themselves as friends of other users. Friends can interact via wall posts, conversations or by liking some facebook element.

Social networks such as Facebook provide a wide array of user preferences (link, tag, photo, video likes) in an array of interaction mediums and modalities (outgoing, incoming) as well as user specific information (gender, age, location, group memberships, favorite movies) and conversation content.

A problem with the Facebook paradigm in relation to this analysis is the requirement for assumed dislikes, if a user does not like some link can we imply the user does not like this link? Given the time period Facebook shows a link and the differing online times for Facebook users, this is generally a poor assumption. As such a Facebook app named LinkR was developed by NICTA which explicitly stores like and dislike data for users. This app will be discussed in the following section.

2.2 Data Set

The LinkR Facebook app was used to collect information about users, their interactions and preferences. The data set contains information about app users as well as a sub-set of visible information about their friends. The app tracked and stored information for over 100 app users and their 39,000+ friends.

The four main interactions between users are posts (posting an element on a friends' wall), tags (being mentioned in a friends post or comment), comments (written data on a post) and likes (clicking a like button if a user likes a post or comment). The table below outlines data collected during app trials.

App Users	Posts	Tags	Comments	Likes
Wall	27,955	5,256	15,121	11,033
Link	3,974	-	5,757	4,279
Photo	4,147	22,633	8,677	5,938
Video	211	2,105	1,687	710
App Users and Friends	Posts	Tags	Comments	Likes
Wall	3,384,740	912,687	2,152,321	1,555,225
Link	514,475	-	693,930	666,631
Photo	1,098,679	8,407,822	2,978,635	1,960,138
Video	56,241	858,054	463,401	308,763

Table 2.1: Total app user records

2.3 Notation

For our analysis we need to define a feature vector for each item in our data set. The feature vectors are composed of the form F_i for each (user, item) pair where i is an index into the vector and each i is composed of the cross product of:

$$i = \{incoming, outgoing\} \times \{post, photo, video, link\} \times \{comment, tag, like\}$$

The alters of i can then be defined as all users who have interacted with the current user via some interaction i. The column is set to 1 if any of the alters defined by the current set i have also liked the item associated with the user, otherwise it is set to 0.

Figure 2.1: Predictors paradigm

2.4 Previous Work

2.4.1 Content Based Filtering

2.4.2 Information Diffusion

2.5 Prediction Algorithms

2.5.1 Constant True

Refers to the fraction of likes in the current data set which are True.

2.5.2 Social Recommender

2.5.3 Naive Bayes

The Naive Bayes classifier is based on applying Bayes' Theorem with independence assumptions. Essentially, the Naive Bayes model assumed that features are unrelated

to each other given the class variable.

The Naive Bayes model for our model is a conditional model of the form:

$$p(C|F_1,\ldots,F_n)$$

Where *F* is a feature vector of length *N*. Applying Bayes Theorem we obtain:

$$p(C|F_1,\ldots,F_n)=\frac{p(C)p(F_1,\ldots,F_n|C)}{p(F_1,\ldots,F_n)}$$

2.5.4 Logistic Regression

http://alias-i.com/lingpipe/

2.5.5 Support Vector Machine

"Support Vector Machines, define a set of basis functions that are centerred on the training data points and then select a subset of these during training. Although the training involves nonlinear optimisation, the objective function is convex, and so the solution of the optimisation problem is relatively straightforward. The SVM is a decision machine and so does not provide posterior probabilities."

http://www.csie.ntu.edu.tw/cjlin/liblinear/

2.6 Training and Testing

All evaluation is done using 10 fold cross validation wherein the data is partitioned into 10 complimentary subsets, each subset is composed of two separate parts one section is used for training and the other is used for testing. This is performed on 10 distinct subsets and the results are averaged.

An inherent issue in Facebook in terms of this analysis is Facebook's lack of a dislike button, to encourage people to post and interact on Facebook users are only given an option to like posts. For the purpose of this analysis we look at two different approaches to over coming this problem. Firstly, using the data provided by the linkR app, we have known likes and dislikes data, this will be refered to as our Active data set. Additionally, by using "raw" Facebook data we can imply user dislikes by their lack of likes, this will be refered to as our Passive data set.

2.7 Evaluation Metrics

When evaluating the success of each method at correctly predicting the classification, the following metrics will be used. A true positive prediction refers to when the classifier correctly identifies the class as true. A false positive occurs when the prediction is true, but the true class was false. A false negative occurs when the prediction is false but the actual class is true.

Accuracy relates to the closeness of the true value. In the context of our results, the accuracy refers to the number of correct classifications divided by the size of the data set.

$$accuracy = \frac{number\ of\ correct\ classifications}{size\ of\ the\ test\ data\ set}$$

Precision relates to the number of retrieved predictions which are relevant. In the context of our results, the precision refers to the number of true positive predictions divided by the sum of the true positive and false positive predictions.

$$precision = \frac{number\ of\ true\ positives}{number\ of\ true\ positives + number\ of\ false\ positives}$$

Recall refers to the number of relevant predictions that are retrieved. In the context of our results, recall refers to the number of true positive predictions divided by the sum of the true positive and false negative predictions.

$$recall = \frac{number of true positives}{number of true positives + number of false negatives}$$

The f-score combines and balances both precision and recall and is refered to as the weighted average of both precision and recall.

$$f\text{-score} = 2 \times \frac{precision \times recall}{precision + recall}$$

2.8 Feature Sets

User Interactions

- 3.1 Introduction
- 3.2 Interactions

Explained above. Reorder.

- 3.3 Conversation
- 3.3.1 Outgoing
- 3.3.2 Incoming

Rank	Word	Frequency
1	:)	292,733
2	like	198,289
3	good	164,387
4	thanks	159,238
5	one	156,696
6	love	139,939
7	:р	121,904
8	time	106,995
9	think	106,459
10	see	103,690
11	nice	99,672
12	now	94,947
13	well	92,735
14	happy	84,381
15	:d	83,698
16	much	78,719
17	oh	77,321
18	yeah	76,564
19	back	76,032
20	great	70,514
21	going	70,447
22	still	68,245
23	new	67,430
24	day	65,579
25	come	63,837
26	;)	62,936
27	year	61,771
28	look	60,608
29	yes	59,774
30	want	59,514
31	tag	58,633
32	hahaha	57,448
33	also	56,414
34	need	55,921
35	make	54,949
36	sure	54,395
37	thank	54,112
38	people	53,211
39	miss	53,182
40	guys	52,855

41	right	52,112
42	best	51,941
43	awesome	51,663
44	hope	50,980
45	2	50,720
46	next	50,375
47	work	49,459
48	way	49,358
49	man	49,101
50	:(48,184
51	j3	47,985
52	even	47,480
53	4	46,068
54	us	45,919
55	pretty	44,804
56	hey	44,614
57	say	44,315
58	better	43,357
59	thanx	42,639
60	bro	41,187
61	take	41,081
62	always	40,457
63	wow	40,452
64	pic	40,185
65	though	40,032
66	actually	39,565
67	last	39,175
68	thats	38,833
69	cool	37,844
70	dear	37,328
71	ok	36,441
72	sorry	36,345
73	never	36,000
74	thing	35,941
75	first	35,785
76	looks	35,496
77	night	35,475
78	thought	34,458
79	photo	33,989
80	&	33,902

 Table 3.1: Top conversation content data for all users

Rank	Word	Frequency
1	like	1,720
2	:)	1,647
3	one	1,452
4	:p	1,261
5	good	1,220
6	think	1,192
7	now	948
8	well	876
9	see	854
10	time	848
11	people	822
12	also	755
13	thanks	704
14	much	698
15	:d	696
16	love	690
17	still	675
18	yeah	608
19	oh	604
20	back	594
21	going	588
22	want	584
23	actually	564
24	need	554
25	sure	551
26	though	551
27	make	541
28	way	512
29	even	505
30	yes	478
31	pretty	473
32	look	463
33	work	459
34	nice	455
35	right	448
36	awesome	445
37	better	439
38	year	435
39	happy	434
40	new	419

41	day	417
42	great	407
43	us	402
44	come	400
45	say	395
46	thing	378
47	first	366
48	next	352
49	man	345
50	best	344
51	take	344
52	never	341
53	said	336
54	thought	336
55	last	333
56	many	331
57	things	325
58	use	321
59	cool	315
60	guys	313
61	little	308
62	hope	306
63	;)	304
64	bit	304
65	:(300
66	2	299
67	may	294
68	looks	293
69	always	292
70	course	288
71	probably	288
72	read	288
73	wow	287
74	long	273
75	stuff	273
76	might	264
77	bad	261
78	maybe	261
79	fun	258
80	hey	256

 Table 3.2: Top conversation content data for application users

User Preferences

4.1 Introduction

Facebook allows users to provide a vast array of personal traits and interests on their Facebook page.

Including:

- Demograhics age, gender, location, etc
- Group Memberships
- Personal Preferences favourite books, favourite athletes, favourite sports, inspirational people, personal interests, etc
- Conversation Data words sent, words received

In this section we will try to uncover which User Traits are indicitive of item likes.

4.2 Demographics

Gender breakdown in the data set:

Male	Female	Undisclosed
85	33	1

Table 4.1: Gender breakdown

There is a clear male bias in the data set.

Birthday breakdown in the data set:

Year	Frequency
Undisclosed	1
1901-1905	1
1906-1910	0
1911-1915	1
1916-1920	0
1921-1925	0
1926-1930	0
1931-1935	0
1936-1940	1
1941-1945	0
1946-1950	0
1951-1955	0
1956-1960	2
1961-1965	1
1966-1970	4
1971-1975	10
1976-1980	12
1981-1985	25
1986-1990	34
1991-1995	25
1996-2000	2

Table 4.2: Birthday breakdown

Birthdays are grouped in a distinct range, most users in this data set are in the age range of 18-30.

Location breakdown in the data set:

Location	Frequency
Undisclosed	33
Ahmedabad, India	1
Bangi, Malaysia	1
Bathurst, New South Wales	1
Bellevue, Washington	1
Braddon, Australian Capital Territory, Australia	1
Brisbane, Queensland, Australia	2
Canberra, Australian Capital Territory	56
Culver City, California	1
Frederick, Maryland	3
Geelong, Victoria	1

Table 4.3: Location breakdown

Given the fact that most users are either situated in the ACT (location of the app development and deployment) or are undisclosed, location information in this data set will not be useful.

4.3 Traits

4.4 Groups

The most popular groups for app users are shown below.

Group Name	Frequency
27	ANU StalkerSpace
20	Facebook Developers
15	ANU CSSA
14	CSSA
13	Australian National University
11	ANU - ML and AI Stanford Course
10	iDiscount ANU
10	Our Hero: Clem Baker-Finch
9	Students In Canberra
7	I grew up in Australia in the 90s
7	Grow up Australia - R18+ Rating for Computer Games
7	ANU Engineering Students' Association (ANUESA) 2010
7	ANU Postgraduate and Research Student Association (PARSA)
6	No, I Don't Care If I Die At 12AM, I Refuse To Pass On Your Chain Letter.
6	No Australian Internet Censorship
6	The Chaser Appreciation Society
6	Feed a Child with a Click
6	ANU Mathematics Society
6	ANU International Student Services, CRICOS Provider Number 00120C
6	2011 New & Returning Burton & Garran Hall
5	If You Can't Differentiate Between "Your" and "You're" You Deserve To Die
5	Keep the ANU Supermarket!!!
5	If 1m people join, girlfriend will let me turn our house into a pirate ship
5	The Great Australian Internet Blackout
5	When I was your age, Pluto was a planet.
5	Australian National University
5	ANU International Students' Department
5	We Won't Accept It - No To Mandatory Internet Censorship In Australia
5	HvZ VS Sprinklers
5	SC2 in Canberra
5	An Arbitrary Number of People Demanding That Some Sort Of Action Be Taken
5	PETITION FOR FACEBOOK TO INSTALL A DISLIKE BUTTON - the original

Table 4.4: App users groups breakdown for range 5+

The most popular groups for all users are shown below.

Group Name	Frequency
1499	Feed a Child with a Click
1469	1,000,000 Hamish and Andy Fans by 01/01/10
1292	ANU StalkerSpace
875	When I was your age, Pluto was a planet.
830	Online chating
804	Join this group and get YOUR NAME in the Guinness Book of Records!
799	1,000,000 PROUD AUSSIES BEFORE AUSTRALIA DAY 2010
731	I grew up in Australia in the 90s
729	Yg
720	Can we find 1 MILLION people that DON'T want smoking back in pubs?
696	Snow Ball Effect - Official Experiment
696	No, I Don't Care If I Die At 12AM, I Refuse To Pass On Your Chain Letter.
683	PETITION FOR FACEBOOK TO INSTALL A DISLIKE BUTTON - the original
679	I LOVE FACEBOOK
670	I Dont care How Comfortable Crocs Are, You Look Like A Dumbass¿fan FHS
651	Earth Hour
619	Australian National University
602	TURN FACEBOOK PINK FOR A DAY TO RAISE BREAST CANCER AWARNESS
568	Lift ACT ban on fireworks
566	MILLIONS AGAINST FACEBOOK's PRIVACY POLICIES AND LAYOUT REDESIGN
554	OnLiNe lOve (2)
539	I was doing homework, then I ended up on Facebook
524	Goal - \$1,077,816: "For each person that joins this group, we'll donate \$1 to fight global
487	Facebook Developers
476	Ultimate Social Experiment

Table 4.5: Top 25 most popular apps

4.5 Pages

Count	Activity
10	Sleeping
5	Eating
5	Reading
4	Running
4	Cycling
4	Minecraft
4	Programming
3	Android
3	Cooking
3	Video Games
3	Xbox 360
3	Piano
3	Guitar
3	Badminton
3	Chocolate

Count	
1031	
688	
626	
581	
517	
512	
504	
437	
418	
380	
364	"I'm selfish, impatient and a little insecure. I make
340	
319	
319	
297	

Table 4.6: Top activities for app users

Table 4.7: Top activities for all users

	2 1.0. Top detivities for upp users		Top activities for all ascis	
Count	Boo	kCount	Book	
7	Harry F	OL#1018	Harry Potter	
4	The B	ib 4 02	Lord Of The Rings	
3	Harry Pott	e 896 ries	Twilight	
3	Discw	o ß[6]	Love Story	
3	That's 3 minutes of solid study, think	I ′3⁄2 /earn	ed 2hrs of Bibbe boook tin	ne
3	Freakon	0 29 76s	The Bible	
3	Tomorrow when	t l26 (War]	Beg la nrry Potter series	
2	Magio	i 26 8	The Da Vinci Code	
2	Hitchhiker's Guid	e 213 4The	Gallaride and Prejudice	
2	The Discwo	r 12:125 eries	The Alchemist	
2	Terry Pra	ıt ¢8∕e tt	To Kill a Mockingbird	
2	Terry Pra	t che tt	The Hobbit	
2	George (DitW2ell	Angels and demons	
2	Lord Of Tl	nd Ra ngs	The Secret	
2	Gooseb	u ilmopal s	3 mistakes of my life	

Table 4.8: Top books for app users

Table 4.9: Top books for all users

Count	Athlete	Count	Athl	ete
4	Roger Feder	er507	Sachin Te	ndulkar
4	Rafael Nada	1422	Leo N	Iessi
3	Maria Sharapo	v4a19	Cristiano	Ronaldo
2	Leo Messi	381	Roger F	
1	Andy Schled	k305	Michael	Jordan
1	Chrissie Wellin	g 12915	David Be	eckham
1	Emma Snows	i 11 92	Rafael	Nadal
1	Emma Moffa	t 2 10	Maria Sh	arapova
1	Brbara River	o 1 78	Ricard	o Kak
1	The Brownlee Br	o thÆ rs	Usain	Bolt
1	Marie Slamtoinett	e #67 92	Kobe E	ryant
1	Wayne Roon	eyl49	Sachin Te	ndulkar
1	"you are what you eat" " I dont re	m Ŀ40 ber	edting Cenak.W	WE Universe
1	Nemanja Vid	id34	Steven C	Gerrard
1	Ryan Giggs	133	LeBron	James

Table 4.10: Top athletes for app users

Table 4.11: Top athletes for all users

Iubit	tuble 4.10. Top difficults for upp users				
Count	Team	Count		Team	
5	Manchester United	593		Manchester United	
2	Bear Grylls cameraman apprecia	ti 55 6socie	ty	Indian Cricket Team	
2	Real Madrid C.F.	286		FC Barcelona	
2	Liverpool FC	280		Real Madrid C.F.	
1	Leopard Trek	235		Arsenal	
1	British Triathlon	205		LA Lakers	
1	TeamCWUK	193		Mumbai Indians	
1	Surly Griffins	150		Liverpool FC	
1	Canberra Raiders	130		Chicago Bulls	
1	Kolkata Knight Riders	125		Boston Celtics	
1	Brisbane Roar FC	124		Chelsea Football Club	
1	Brisbane Broncos	117		Australian Cricket Team	
1	Cricket Australia	105		The Miami HEAT	
1	— Manchester United Far	s1 00		Getting drunker than necessary at casual events	
1	Juventus	88	Sta	arting a conga line and leading everyone to your sex dun	

Table 4.12: Top teams for app users

Table 4.13: Top teams for all users

Count	Inspirational Person
2	Alan Turing
1	Bender
1	Maurice Moss
1	Steve Jobs
1	Sean Parker
1	Pope Benedict XVI
1	Martin Luther
1	Alistair McGrath
1	St Augustine
1	Dennis Ritchie
1	Linus Torvalds
1	Richard Stallman
1	C. S. Lewis
1	Mike Oldfield
1	Ryan Giggs

Count	Inspirational Person
68	Barack Obama
66	Jesus
59	Mahatma Ghandi
51	My Parents
49	Sachin Tendulkar
48	Swami Vivekananda
45	Steve Jobs
44	Mother Teresa
41	Nelson Mandela
38	Oprah Winfrey
37	Lady Gaga
33	Albert Einstein
33	Michael Jackson
33	Gandhi
32	A. P. J. Abdul Kalam

 Table 4.14: Top inspirational people for app Table 4.15: Top inspirational people for aaall users

Count	Interest
5	Movies
5	Music
3	Cooking
3	Sports
2	Psychology
2	Internet
2	Video Games
2	Martial arts
2	Literature
2	Economics
2	Tennis
2	Badminton
2	Artificial intelligence
2	Computers
2	Travel

Table 4.16: Top interests for app users

Count	Interest
1263	Music
572	Movies
456	Photography
390	Traveling
377	Reading
312	Cricket
306	Dancing
272	Cooking
262	Sports
246	Sleeping
232	Travelling
228	Travel
227	Singing
211	Friendship
199	Food

Table 4.17: Top interests for all users

Count	Movie	Count		Movie
9	Inception	1460		Harry Potter
8	Avatar	1197		The Hangover
8	Fight Club	1149		Inception
7	The Lord of the Rings Trilogy	/ 100£ icia	l Page)	Transformers
6	Star Wars	986	В	atman: The Dark Knight
6	I wouldnt steal a car, But i'd dow	n 942 d or	e if i could	3 Idiots
6	WALL-E	921		Avatar
6	Scott Pilgrim vs. the	19007 1d		Toy Story
6	Toy Story	852	The Lord o	f the Rings Trilogy (Official Page)
6	Shrek	840		Fight Club
5	Batman: The Dark I	K nä ∰ht		Disney
5	Harry Potter	709		Star Wars
4	The Matrix	673		300
4	The Social Network	M83 vie		Fast & Furious
4	Monsters, Inc	. 567		Titanic

 Table 4.18: Top movies for app users

Count	Music
9	Daft Punk
9	Muse
8	Michael Jackson
8	Pink Floyd
8	Lady Gaga
7	Linkin Park
7	Avril Lavigne
6	Radiohead
6	Rihanna
6	Coldplay
6	Green Day
6	Katy Perry
6	Taylor Swift
5	Gorillaz
5	Queen

Table 4.20: Top music for app users

Table 4.19: Top movies for all users

Count	Music
2240	Michael Jackson
1830	Lady Gaga
1743	Linkin Park
1728	AKON
1653	Eminem
1556	Katy Perry
1513	Shakira
1498	Rihanna
1435	Taylor Swift
1395	Coldplay
1365	The Beatles
1253	Justin Bieber
1102	Bob Marley
1102	Enrique Iglesias
1098	Muse

Table 4.21: Top music for all users

Count	Sport
8	Badminton
5	Basketball
3	Cycling
3	Volleyball
2	Starcraft II
2	Football en salle
2	Swimming
2	Towel Baseball
2	Tennis
1	Soccer
1	Taekwondo
1	Rock climbing
1	In The Groove
1	Darts
1	Table tennis

Table 4.22: Top sports for app users

Count	Television Show
20	The Big Bang Theory
19	How I Met Your Mother
14	The Simpsons
13	Top Gear
12	Futurama
12	Scrubs
11	Black Books
10	Black Books
10	South Park
10	Family Guy
9	The Daily Show
8	The IT Crowd
8	FRIENDS (TV Show)
7	True Blood
7	MythBusters

Sport Count 949 Cricket 624 Football 530 Basketball 445 Badminton 352 Soccer Tennis 347 Swimming 303 193 Volleyball 187 Chess 173 Table tennis 172 Futsal 106 Golf 98 Running 69 Bowling 65 Cycling

Table 4.23: Top sports for all users

Tubic 1	Table 4.25. Top sports for all users	
Count	Television Show	
2912	How I Met Your Mother	
2339	The Big Bang Theory	
2036	Family Guy	
1639	House	
1532	Scrubs	
1517	Glee	
1444	South Park	
1439	The Simpsons	
1417	FRIENDS (TV Show)	
1394	Top Gear	
1256	Gossip Girl	
1164	Two and a Half Men	
1131	Futurama	
976	NCIS	
974	Grey's Anatomy	

Table 4.24: Top television shows for app users Table 4.25: Top television shows for all users

Bayesian Model Averaging

- 5.1 Introduction
- 5.2 Derivation
- 5.3 Results

Conclusions

- 6.1 Summary
- **6.2** Future Work