Q: If we initial R_0 with random numbers and keep SUM(R_0) = 1, will the ranking be different? Try to explain it.

A: 是。以下是簡單證明及一些測試。 簡單推導:

$$\mathbf{R_n} = dTR_{n-1} + (1-d)e$$
,其中 $\mathbf{e} = \frac{1}{\mathbf{N}}[\ 1\ 1\ 1\ ...1\]^T$,且 Sum(RO)=1。

展開
$$R_n$$
, $R_n = dT(dTR_{n-2} + (1-d)e) + (1-d)e = \cdots$ 依序展開下去,

最終可得, $R_n = d^n T^n R_0 + (1-d) [\sum_{k=0}^{n-1} (d^k T^k)] e$

而因為 $\det (dT-I_N)=0$ 的機率很低,不太可能出現在真實的情況,因此可寫成矩陣相乘的等比,也就 是 $R_n=d^nT^nR_0+(1-d)(dT-I_N)^{-1}[(dT)^n-I_n]e$

當n趨近於無限大時,Tn會趨近於O,最終得到

$$\lim_{n \to \infty} R_n = (d - 1)(dT - I_N)^{-1}e$$

此結果與初始條件Ro無關,因此不論任何初始條件都會收斂。

簡單實驗測試:

我用了我的graph,把初始條件設為 e_i (也就是除了第i個為1,其餘皆為0的N*1矩陣)。從i=0測到i=N,可得每個結果都接近(因為alpha跟 max_i terations 有些許誤差),而初始條件 R_0 必定是 e_i 的線性組合,因此不論何種初始條件,都必定得同一結果。

初始條件	結果與2.txt的dist()
e_0	0.00016394470381951728
e_1	0.00018368391275543853
e_2	0.0002810007861624315
略	略
e_998	0.00017204215208123028
e_999	0.00020838022525550097

由實驗可知差距都極小。

註:測試結果有點龐大,因此沒在此貼上全部,只寫出部分結果的差距,我有寫成在hw4.py內的函式