Machine Intelligence

Lecture 3: Constraint satisfaction problems

Thomas Dyhre Nielsen

Aalborg University

Autumn 2019

Tentative course overview

Topics:

- Introduction
- Search-based methods
- Constraint satisfaction problems
- Logic-based knowledge representation
- Representing domains endowed with uncertainty.
- Bayesian networks
- Machine learning
- Planning
- Multi-agent systems

Autumn 2019

Features and Possible Worlds

Features and Variables

Describing the world (environment) by features:

Name (Algebraic Variable)	Domain
Symbol_on_square_1	$\{1, 2, 3, 4, 5, 6, 7, 8, empty\}$
Robot_battery	{full, half, empty}
Robot_position	$\{r131, \ldots, 0111\}$
Coffee_ready	{true, false}
Noof_undelivered_packages	$\{1,2,3,\ldots\}$
Temperature	[-25, 40]

- We will be mostly concerned with (algebraic) variables that have a finite domain.
- Special interest: boolean variable with domain {true, false}
- Numerical variables can be approximated:

$$\begin{array}{cccc} \{1,2,3,\ldots\} & \mapsto & \{1,2,3,4,5,>5\} \\ [-25,40] & \mapsto & \{-25,-24,\ldots,-1,0,1,\ldots40\} \end{array}$$

Possible Worlds

From variables to possible worlds

A **possible world** for a set of variables is an assignment of a value to each variable.

Connection with state spaces

The set of all possible worlds for a given set of variables defines a state space (we can also call a possible world simply a state).

Example: Cooking

Variables:

egg	{ whole, broken}
butter_in	{pan, plate, table}
egg_in	{pan, plate, table}

One out of $2 \cdot 3 \cdot 3 = 18$ possible worlds:

egg=whole butter_in=pan egg_in=table

Example: Electrical

Variables:

S_1 _pos	{up, down}	S_1 _st	{ok, broken, short}
S_2 _pos	{up, down}	S_2 _s t	{ok, broken, short}
W_1 _st	{ok, broken}	W_1 _current	{yes, no}

One out of many possible worlds:

$$\begin{array}{l} S_1_\mathit{pos} = \mathit{down} \\ S_1_\mathit{st} = \mathit{ok} \\ S_2_\mathit{pos} = \mathit{up} \\ S_2_\mathit{st} = \mathit{ok} \\ W_1_\mathit{st} = \mathit{ok} \\ W_1_\mathit{current} = \mathit{no} \end{array}$$

Example: Schedule

Variables:

Teacher_MI	$\{PD, MJ, TDN\}$
Time_MI	$\{Mo_m, Mo_a, \ldots, Fr_m, Fr_a\}$
Room_MI	$\{0.2.12, 0.2.13, 0.2.90\}$
Teacher_AD	$\{PD, MJ, TDN\}$
Time_AD	$\{Mo_m, Mo_a, \ldots, Fr_m, Fr_a\}$
Room_AD	$\{0.2.12, 0.2.13, 0.2.90\}$

One possible world:

Мо	Tue	Wed	Thu	Fr
	MI, TDN, 0.2.13			
			AD, PD, 0.2.90	

Teacher_Ml=TDN Time_Ml=Tue_m Room_Ml=0.2.13 Teacher_AD=PD Time_AD=Thu_a Room_AD=0.2.90 **Constraint Satisfaction Problems**

A **constraint** is a condition on the values of variables in a possible world.

Extensional Constraint Specification

Explicitly list all allowed (or disallowed) combination of values:

Teacher_MI	Time_MI	Room_MI	Teacher_AD	Time_AD	Room_AD
PD	Mo_m	0.2.12	PD	Mo_a	0.2.12
PD	Mo_m	0.2.12	PD	Mo_a	0.2.13

Not on the list of allowed possible worlds:

Teacher_MI	Time_MI	Room_MI	Teacher_AD	Time_AD	Room_AD
PD	Mo_m	0.2.12	PD	Mo_m	0.2.12
PD	Mo_m	0.2.12	MJ	Mo_m	0.2.12

Intensional Constraint Specification

Use logical expressions:

$$\begin{array}{ll} \textit{Teacher_AD} = \textit{Teacher_MI} & \rightarrow \textit{Time_AD} \neq \textit{Time_MI} \\ \textit{Time_AD} = \textit{Time_MI} & \rightarrow \textit{Room_AD} \neq \textit{Room_MI} \end{array}$$

<i>A1</i>	A2	1	A4	A5	A6	A7	A8	A9
<i>B1</i>	B2	2	B4	3	<i>B6</i>	<i>B7</i>	B 8	4
C1	C2	<i>C3</i>	5	C5	<i>C</i> 6	6	<i>C</i> 8	7
5	D2	<i>D3</i>	1	4	D6	D7	D8	D9
E1	7	<i>E3</i>	E4	E5	E6	E7	2	E9
F1	F2	F3	F4	7	8	F7	F8	9
8	G2	7	G4	G5	9	<i>G</i> 7	G8	G9
4	H2	НЗ	H4	6	Н6	3	H8	H9
11	<i>I</i> 2	I3	<i>I4</i>	<i>I5</i>	<i>16</i>	5	<i>I</i> 8	<i>1</i> 9

Constraints:

$$\begin{array}{c} A1 = 2 \lor A2 = 2 \lor A4 = 2 \lor A5 = 2 \lor A6 = 2 \lor A7 = 2 \lor A8 = 2 \lor A9 = 2 \\ A1 = 3 \lor A2 = 3 \lor A4 = 3 \lor A5 = 3 \lor A6 = 3 \lor A7 = 3 \lor A8 = 3 \lor A9 = 3 \\ & \dots \\ A1 = 3 \lor A2 = 3 \lor B1 = 3 \lor B2 = 3 \lor C1 = 3 \lor C2 = 3 \lor C3 = 3 \end{array}$$

. . .

Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is given by

- a set of variables
- a set of constraints (usually intensional)

A **solution** to a CSP consists of a possible world that satisfies all the constraints (also called a **model** of the constraints).

Other tasks:

- Determine the number of models of the constraints
- Find an *optimal* model (given also a value function on possible worlds).

...

CSP as State Space Problem

A CSP can be represented as a state space problem:

- States are all partial assignments of values to variables that are consistent with the constraints
- For a state s: select some variable V not assigned a value in s, and let the neighbors of s be
 all states that assign a value to V (if any exist).
- The start state is the state that does not assign any values
- A goal state is a state that assigns values to all variables

CSP as State Space Problem

A CSP can be represented as a state space problem:

- States are all partial assignments of values to variables that are consistent with the constraints
- For a state s: select some variable V not assigned a value in s, and let the neighbors of s be
 all states that assign a value to V (if any exist).
- The start state is the state that does not assign any values
- A goal state is a state that assigns values to all variables

Solving the CSP

- A solution to the state space problem is a path with a goal state at the end: a solution to the CSP problem
- To solve the state space problem need only be able to:
 - $\, \bullet \,$ enumerate all partial assignments that assign a value to one more variable than s
 - check whether a partial assignment is consistent with the constraints

(that is sufficient to implement the *get_neighbors* and *goal* functions needed in the generic search algorithm)

Example [PM 4.13]

Variables A, B, C; all with domain $\{1, 2, 3, 4\}$.

Constraints: A < B, B < C.

State Space Graph (showing at each node which variable was selected to generate the neighbors):

13

The state space graph is a tree (= search tree)

Consistency Algorithms

Example: Variables A, B, C; all with domain $\{1, 2, 3, 4\}$.

Constraints: A < B, B < C.

Observation: There is no solution with A=4.

Approach to solving CSPs: iteratively eliminate value assignments that cannot be part of a solution.

Constraint Network

The constraint network for a CSP consists of

- One (oval) node for each variable X
- One (rectangular) node for each constraint c
- \bullet An (undirected) arc $\langle X,c\rangle$ between every constraint and every variable involved in the constraint

With each variable node X is associated a (reduced) domain D_X :

- Initially the domain of the variable
- Reduced by successively deleting values that cannot be part of a solution

Arc Consistency

An arc $\langle X, c \rangle$ is **arc consistent**, if

• for all $x \in D_X$ there exists values y_1, \ldots, y_k for the other variables involved in c, such that x, y_1, \ldots, y_k is consistent with c.

A constraint network is arc consistent, if all its arcs are arc consistent.

Examples

Not arc consistent

Arc consistent

Arc consistent. Not every combination of values from D_A, D_B, D_C is a solution!

Arc consistent. Not every combination of values from D_A, D_B, D_C is a solution!

Arc consistent. Not every combination of values from D_A, D_B, D_C is a solution!

Arc consistent. There exists no solution!

Generalized Arc Consistency Algorithm

Algorithm Outline

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

- To-do-arcs = $\{\langle A, A < B \rangle, \langle B, A < B \rangle, \langle B, B < C \rangle, \langle C, B < C \rangle\}$
- Selecting $\langle A, A < B \rangle$: For A = 4, no value of B satisfies 4 < B.
 - Remove $\langle A, A < B \rangle$ from *To-do-arcs*.
 - Update D_A .

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

 $\bullet \ \textit{To-do-arcs} = \{\langle B, A < B \rangle, \langle B, B < C \rangle, \langle C, B < C \rangle\}$

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

- To-do-arcs = $\{\langle B, A < B \rangle, \langle B, B < C \rangle, \langle C, B < C \rangle\}$
- Selecting $\langle B, A < B \rangle$: B = 1 can be pruned.
 - Remove $\langle B, A < B \rangle$ from *To-do-arcs*.
 - Update D_B .

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

• To-do-arcs = $\{\langle B, B < C \rangle, \langle C, B < C \rangle\}$

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

- To-do-arcs = $\{\langle B, B < C \rangle, \langle C, B < C \rangle\}$
- Selecting $\langle B, B < C \rangle$: B = 4 can be pruned.
 - Add $\langle A, A < B \rangle$ to *To-do-arcs* and remove $\langle B, B < C \rangle$.
 - Update D_B .

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

• To-do-arcs = $\{\langle A, A < B \rangle, \langle C, B < C \rangle\}$

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

- To-do-arcs = $\{\langle A, A < B \rangle, \langle C, B < C \rangle\}$
- Selecting $\langle A, A < B \rangle$: A = 3 can be pruned.
 - Remove $\langle A, A < B \rangle$ from *To-do-arcs*.
 - Update D_A .

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while *To-do-arcs* $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z,c'\rangle$ $(c\neq c',X\in dom(c'))$ to *To-do-arcs*

Example

• To-do-arcs = $\{\langle C, B < C \rangle\}$

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

- To-do-arcs = $\{\langle C, B < C \rangle\}$
- Selecting $\langle C, B < C \rangle$: C = 1 and C = 2 can be pruned.
 - Remove $\langle B, B < C \rangle$ from *To-do-arcs*.
 - Update D_C .

- 1. *To-do-arcs*= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c', X \in dom(c')$) to *To-do-arcs*

Example

- To-do-arcs = {}
- DONE!

Generalized Arc Consistency Algorithm

Algorithm Outline

- 1. To-do-arcs= all arcs in constraint network // Potentially inconsistent arcs
- 2. while To-do-arcs $\neq \emptyset$
- 3. select and delete one arc $\langle X, c \rangle$ from *To-do-arcs*
- 4. make arc consistent by deleting values from D_X , if necessary
- 5. **if** values were deleted: add all other arcs $\langle Z, c' \rangle$ ($c \neq c'$, $X \in dom(c')$) to *To-do-arcs*

Algorithm Outcomes

Algorithm is guaranteed to terminate. Result independent of order in which arcs are processed. Possible cases at termination:

- $D_X = \emptyset$ for some X: CSP has no solution
- D_X contains exactly one value for each X: CSP has unique solution, given by the D_X values.
- ullet Other: if the CSP has a solution, then the solution can only consist of current D_X values.

Variable Elimination

Idea

- Arc Consistency: simplify problem by eliminating values
- Variable Elimination: simplify problem by eliminating variables

Relational Operations

Variable Elimination operates on extensional (table) representations of constraints:

$$A < B$$
:

A	B
1	2
1	2 3
1	4
2	4 3
2 2 3	4
3	4

$$B < C$$
:

B	C
1	2
1	3
1	2 3 4 3
2	3
2 2 3	4
3	4

Algorithm requires **projection** and **join** operations on tables.

Projection

Projection of a table:

Course	Year	Student	Grade
cs322	2008	fran	77
cs111	2009	billie	88
cs111	2009	jess	78
cs444	2008	fran	83
cs322	2009	jordan	92

 $\overset{\pi}{\longleftrightarrow} \{ \textit{Student}, \textit{Year} \}$

Student	Year
fran	2008
billie	2009
jess	2009
jordan	2009

Given two tables r_1, r_2 for variables $\textit{vars}_1, \textit{vars}_2$. The **join** is the table $r_3 = r_1 \bowtie r_2$ for variables $\textit{vars}_1 \cup \textit{vars}_2$ that

 \bullet contains all tuples, which restricted to *vars*₁ are in r_1 , and restricted to *vars*₂ are in r_2 .

Example

Course	Year	Student	Grade
cs322	2008	fran	77
cs111	2009	billie	88
cs111	2009	jess	78
cs444	2008	fran	83
cs322	2009	jordan	92

	Course	Year	TA	
	cs322	2008	yuki	
1	cs111	2009	sam	=
	cs111	2009	chris	
	cs322	2009	yuki	

Ī	Course	Year	Student	Grade	TA
ſ	cs322	2008	fran	77	yuki
	cs111	2009	billie	88	sam
۱	cs111	2009	jess	78	sam
	cs111	2009	billie	88	chris
	cs111	2009	jess	78	chris
	cs322	2009	jordan	92	yuki

Variable Elimination Algorithm

Algorithm Outline

- 1. **Input:** *C*: set of constraints on variables *vars*
- 2. **while** C contains more than one element
- 3. select a variable $X \in vars$
- 4. delete X from vars
- 5. remove all constraints involving X from C and construct their join
- 6. **if** vars is not empty
- 7. project the join onto the variables other than X
- 8. add the (projected) join to C

Intuition: the constraint constructed in line 5. summarizes the effect that all the constraints involving X have on variables other than X.

Example network

... now arc-consistent

Example: eliminating C

Example: eliminating ${\cal C}$

Example: eliminating C

VE Properties

Properties

- The algorithm terminates
- The CSP has a solution if and only if the final constraint is non-empty
- The set of all solutions can be generated by joining the final constraint with the intermediate "summarizing" constraints generated in line 5.
- Algorithm operates on extensional constraint representations, therefore
 constraints must not contain too many tuples (initial and constructed constraints)
- Worst case: VE is not more efficient than enumerating all possible worlds and checking whether they are solutions.

Properties

- The algorithm terminates
- The CSP has a solution if and only if the final constraint is non-empty
- The set of all solutions can be generated by joining the final constraint with the intermediate "summarizing" constraints generated in line 5.
- Algorithm operates on extensional constraint representations, therefore
 constraints must not contain too many tuples (initial and constructed constraints)
- Worst case: VE is not more efficient than enumerating all possible worlds and checking whether they are solutions.

Constraint Graph

Consider the graph where

- there is one node for each variable
- two variables are connected when they appear together in one constraint

Properties

- The algorithm terminates
- The CSP has a solution if and only if the final constraint is non-empty
- The set of all solutions can be generated by joining the final constraint with the intermediate "summarizing" constraints generated in line 5.
- Algorithm operates on extensional constraint representations, therefore
 constraints must not contain too many tuples (initial and constructed constraints)
- Worst case: VE is not more efficient than enumerating all possible worlds and checking whether they are solutions.

Constraint Graph

Consider the graph where

- there is one node for each variable
- two variables are connected when they appear together in one constraint

Then: VE will work better if the constraint graph is sparsely connected

Local Search

28

Systematic vs. Local Search

So far: all methods systematically explored the state space (possible worlds).

Problem: Time and space when search space is large.

Local Search approach:

- explore state space without 'bookkeeping' (where have we been? what still needs to be explored?).
- no success/termination guarantees
- in practice, often the only thing that works

State Space Graph for CSP

(Another) state space graph representation for CSPs:

- Nodes are possible worlds
- Neighbors are possible worlds that differ in the value of exactly one variable

State space graph for 3 boolean variables:

Local Search Approach

- 1. Select some node in state space graph as *current state*
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as current state
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as current state
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as *current state*
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as *current state*
- 2.**while** *current state* is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as *current state*
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as *current state*
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as current state
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as current state
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as current state
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as current state
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

- 1. Select some node in state space graph as *current state*
- 2.while current state is not a solution
- 3. *current state* = some neighbor of *current state*

Random Search

- Make choices in line 1. and 3. completely random
- "Random walk"
- Unlikely to find a solution if state space large with only few solutions

31

Greedy Search

Greedy Search or Hill Climbing:

- Use an evaluation function on states
- Example for evaluation function: number of constraints not satisfied by state
- Always choose neighbor with minimal evaluation function value
- Terminates when all neighbors have higher value than current state: current state is a local minimum.

Possible greedy search paths starting from different states:

Escaping Local Minima

Problem

 Search terminates with local minimum of evaluation function. This may not be a solution to the CSP.

Problem

 Search terminates with local minimum of evaluation function. This may not be a solution to the CSP.

Solution Approaches

- Random restarts: repeat greedy search with several randomly chosen initial states
- Random moves: combine greedy moves with random steps

Problem

 Search terminates with local minimum of evaluation function. This may not be a solution to the CSP.

Solution Approaches

- Random restarts: repeat greedy search with several randomly chosen initial states
- Random moves: combine greedy moves with random steps
- Example (a): Small number of random restarts will find global minimum
- Example (b): Make random move when local minimum reached

Local search

- Maintain an assignment of a value to each variable.
- At each step, select a "neighbor" of the current assignment (e.g., one that improves some heuristic value).
- Stop when a satisfying assignment is found, or return the best assignment found.

Requires:

- What is a neighbor?
- Which neighbor should be selected?

Most improving step

Principle

Select the variable-value pair that gives the highest improvement.

Naive approach

• Linearly scan all variables and for each value of each variable determine the improvement (how many fewer constrains are violated).

Most improving step

Principle

Select the variable-value pair that gives the highest improvement.

Naive approach

 Linearly scan all variables and for each value of each variable determine the improvement (how many fewer constrains are violated).

Alternative

- Maintain a priority queue with variable-value pairs not part of the current assignment.
- $\bullet \ \ \text{Weight} \\ \langle X,v \rangle = \textit{eval(current assignment)} \textit{eval(current assignment but with } \\ X=v).$
- If X is given a new value, update the weight of all pairs participating in a changed constraint.

Two-stage choice

Principle

First: choose variable

Second: choose state

Data structure

- Maintain priority queue of variables; weight is the number of participating conflicts.
- After selecting a variable, pick the value minimizes the number of conflicts.
- Update weights of variables that participate in a conflict that is changed.

Simulated annealing

Algorithm

- Pick a variable at random and a new value at random.
- If it is an improvement, adopt it.
- ullet If it isn't an improvement, adopt it probabilistically depending on a temperature parameter, T.
 - \bullet With current assignment n and proposed assignment n' we move to n' with probability

$$e^{(h(n')-h(n))/T}$$

Reduce the temperature.

Algorithm

- Pick a variable at random and a new value at random.
- If it is an improvement, adopt it.
- $\bullet \ \ \text{If it isn't an improvement, adopt it probabilistically depending on a temperature parameter, } T. \\$
 - ullet With current assignment n and proposed assignment n' we move to n' with probability

$$e^{(h(n')-h(n))/T}$$

Reduce the temperature.

Probability of accepting a change

Temperature	1-worse	2-worse	3-worse
10	0.91	0.81	0.74
1	0.37	0.14	0.05
0.25	0.02	0.0003	0.000005
0.1	0.00005	0	0

Simulated annealing

Algorithm

- Pick a variable at random and a new value at random.
- If it is an improvement, adopt it.
- $\bullet \ \ \text{If it isn't an improvement, adopt it probabilistically depending on a temperature parameter, } T. \\$
 - ullet With current assignment n and proposed assignment n' we move to n' with probability

$$e^{(h(n')-h(n))/T}$$

Reduce the temperature.

Probability of accepting a change

Temperature	1-worse	2-worse	3-worse
10	0.91	0.81	0.74
1	0.37	0.14	0.05
0.25	0.02	0.0003	0.000005
0.1	0.00005	0	0

$$y = 10 \cdot 0.97^x$$

Propositional Logic Basics

Previously ...

Intensional representation of constraints:

$$\begin{array}{l} A < B \\ \textit{Teacher_AD} = \textit{Teacher_MI} \ \rightarrow \ \textit{Time_AD} \neq \textit{Time_MI} \\ \dots \end{array}$$

CSP algorithms (arc-consistency algorithm) need to perform certain operations:

 test whether a certain value for one variable is consistent with a given constraint (and certain values for other variables)

To implement this:

need a formal language for representing constraints

Propositional Logic

• provides a formal language for representing constraints on binary variables.

Atomic Propositions

Boolean variables are now seen as atomic propositions. Convention: start with lowercase letter.

Constraints	Logic
A = true	a
$A = \mathit{false}$	$\neg a$

Propositions

Using logical connectives more complex propositions are constructed:

$\neg p$	not p
$(p \wedge q)$	p and q
$(p \lor q)$	p or q
$(p \to q)$	p implies q

A set of propositions is also called a Knowledge Base

Example

"If it rains I'll take my umbrella, or I'll stay home"

Atomic Propositions

Boolean variables are now seen as atomic propositions. Convention: start with lowercase letter.

Constraints	Logic
A = true	a
$A = \mathit{false}$	$\neg a$

Propositions

Using logical connectives more complex propositions are constructed:

$\neg p$	$not\ p$
$(p \wedge q)$	p and q
$(p \lor q)$	p or q
$(p \rightarrow q)$	p implies q

A set of propositions is also called a Knowledge Base

Example

"If it rains I'll take my umbrella, or I'll stay home"

$$rains \rightarrow (umbrella \lor home)$$

An **interpretation** π for a set of atomic propositions a_1, a_2, \ldots, a_n is an assignment of a truth value to each proposition (= possible world when atomic propositions seen as boolean variables):

$$\pi(a_i) \in \{\textit{true}, \textit{false}\}$$

An interpretation defines a truth value for all propositions:

$\pi(p)$	$\pi(\neg p)$
true	false
false	true

$\pi(p)$	$\pi(q)$	$\pi(p \wedge q)$
true	true	true
true	false	false
false	true	false
false	false	false

$\pi(p)$	$\pi(q)$	$\pi(p \vee q)$
true	true	true
true	false	true
false	true	true
false	false	false

$\pi(p)$	$\pi(q)$	$\pi(p \to q)$
true	true	true
true	false	false
false	true	true
false	false	true

Propositional Logic: Semantics II

Models

A **model** of a proposition (a knowledge base) is an interpretation in which the proposition (all the propositions in the knowledge base) is true.

Propositions as constraints: a model is a possible world that satisfies the constraint.

Logical consequence

A proposition g is a **logical consequence** of a knowledge base KB, if every model of KB is a model of g. Written:

$$KB \models q$$

(whenever KB is true, then g also is true).

Example

$$KB=\{man \rightarrow mortal, man\}$$
. Then

$$KB \models mortal$$

Simple Example

$$KB = \left\{ \begin{array}{l} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array} \right.$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Model?

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Model? is a model of KB not a model of KB is a model of KB is a model of KB not a model of KB

42

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Model? is a model of KB not a model of KB is a model of KB is a model of KB not a model of KB

Which of p,q,r,q logically follow from KB?

$$KB = \begin{cases} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{cases}$$

	p	q	r	s
I_1	true	true	true	true
I_2	false	false	false	false
I_3	true	true	false	false
I_4	true	true	true	false
I_5	true	true	false	true

Model? is a model of KB not a model of KB is a model of KB is a model of KB not a model of KB

Which of p,q,r,q logically follow from KB?

$$KB \models p, KB \models q, KB \not\models r, KB \not\models s$$