1.

2.

Segment	1	2	3	4	5	6	7	8	9	10	11	12	13
1	T ₁	T_2	T ₃	T ₄	T_5	T ₆	T ₇	T ₈					
2		T ₁	T ₂	T_3	T ₄	T ₅	T ₆	T ₇	T ₈				
3			T ₁	T ₂	T_3	T ₄	T ₅	T ₆	T ₇	T ₈			
4				T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈		
5					T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	
6						T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈

$$(k + n - 1)t_p = 6 + 8 - 1 = 13$$
 cycles

3.

$$k = 6$$
 segments
 $n = 200$ tasks $(k + n - 1) = 6 + 200 - 1 = 205$ cycles

4.

$$t_n = 50 \text{ ns}$$

 $k = 6$
 $t_p = 10 \text{ ns}$
 $n = 100$

$$S = \frac{nt_n}{(k+n-1)t_p} = \frac{100 \times 50}{(6-99) \times 10} = 4.76$$

$$S_{max} = \frac{t_n}{t_p} = \frac{50}{10} = 5$$


```
b. Removing R3 & R4 the required time t_n = 40 + 45 + 15

C. speed up for 10 tasks \Rightarrow \frac{\text{ntn}}{(K+n-1)^{\frac{1}{2}}} = \frac{100 \text{ NS}}{(3+10-1).50}

= 1.67.

speed up for 100 tasks \Rightarrow \frac{\text{ntn}}{(K+n-1)^{\frac{1}{2}}} = \frac{100.100}{(3+100-1).50}

= 1.96.
d. Maximum speed up possible = \frac{\text{tn}}{\text{tp}} = \frac{100}{50} = 2.

6. a. t_p = \max [\text{ti}] + d

= 95 + 5 = 100 \text{ ns}.

add 100 pairs no. of no. 100 of tasks n = 100.

Segment K = 4.

Time to complete 100 tasks = (n+K-1)^{\frac{1}{2}}0 to = 10300 \text{ ns}.

= 10.3 \text{ fbs}.
```