

Relatório FSIAP

Trabalho 5 - Resistência e Energia - Térmico Procedimento 1

Trabalho Realizado Por:

Vasco Silva 1180604

Bernardo Carreira 1150990

Carlos Mesquita 1170717

Introdução

Critérios gerais a ter em conta na escolha dos materiais:

- Baixo custo
- Baixa densidade/peso

Critérios específicos por camada a ter em conta na escolha dos materiais:

Material exterior - estruturalmente forte, resistente a impactos, resistente aos contactos com os elementos exteriores

Candidatos: aço

Material intermedio - alta resistência térmica

Candidatos: aerogel, lã de rocha, espuma de poliuretano, fibra de vidro, poliestireno expandido, ditto expulso, espuma PVC

Pequena justificação dos materiais escolhidos:

- Poliestireno expandido[1]: Baixo preço e baixa condutividade térmica.
- Espuma de poliuretano : Embora o preço por kg e a densidade seja mais elevada optamos por este material para o contentor de -5ºC pela sua condutividade térmica ainda mais baixa.

Material interior - priorizar a usabilidade a nível de segurança, facilidade de lavagem, acomodamento de mercadoria, etc., mantendo uma preferência por uma elevada resistência térmica

Candidatos: placas de polipropileno

Apesar de não termos informação sobre as condições térmicas onde os contentores vão operar, vamos assumir que estas estarão mais próximas dos 7ºC do que dos -5ºC, e consequentemente terá que haver uma maior preocupação em relação à condutividade térmica, em detrimento de outras características como a densidade/peso, e o custo para os contentores que transportarão mercadorias a -5ºC

Contentores a funcionar a temperaturas de 7ºC

Camada	Tipo	Material	Custo	Densidade	Condutividade	Resistência	Espessura
						Térmica	
			(eur/kg)	(kg/m3)	(W/(mK))	(K/W)	(m)
Exterior	Metal	Aço	1.30	7800	52	0.00000259	0.010
Intermédia	Sintético	Poliestireno	0.33	22	0.030	0.063	0.14
		Expandido					
Interior	Sintético	Polipropileno	0.945	895	0.11	0.00613	0.05

Contentores a funcionar a temperaturas de -5ºC

Camada	Tipo	Material	Custo	Densidade	Condutividade (W/(mK))	Resistência Térmica	Espessura
			(eur/kg)	(kg/m3)		(K/W)	(m)
Exterior	Metal	Aço	1.30	7800	52	0.00000259	0.01
Intermédia	Sintético	Espuma de poliuretano	8.57	35	0.025	0.0756	0.14
Interior	Sintético	Polipropileno	0.945	895	0.11	0.00613	0.05

Medidas Contentor

Medidas ISO standard 668:2020 [2]

2.44 m - largura 2.59 m - altura 6.10 m – comprimento

Área contentor = $2 \times (largura \times altura) + 2 \times (comprimento \times altura) + 2 \times (comprimento \times largura)$

Área contentor = 12,64 + 31,60 + 29,80

Área contentor = $74,04 \text{ m}^2$

Cálculo Resistência Térmica

Resistência térmica =
$$\frac{Espessura}{condutividade térmica x Área}$$

Aço

$$R = \frac{0.010}{52 * 74.04} = 2.59 * 10^{-6-2} K/w$$

Poliestireno Expandido

$$R = \frac{0.14}{0.030 * 74.04} = 6.30 * 10^{-2-2} K/w$$

Espuma de poliuretano

$$R = \frac{0.14}{0.025 * 74.04} = 7.56 * 10^{-2-2} K/w$$

Polipropileno

$$R = \frac{0.05}{0.11 * 74.04} = 6.13 * 10^{-3-2} K/w$$

Contentor 7ºC

$$R = Raço + Rpolisterino espandido + Rpolipropileno$$

$$R = 2.59 * 10^{-6} + 6.30 * 10^{-2} + 6.13 * 10^{-3}$$

$$R = 6.91 * 10^{-2} K/w$$

Contentor -5ºC

$$R = Raço + Respuma poliuretano + Rpolipropileno$$

 $R = 2.59 * 10^{-6} + 7.56 * 10^{-2} + 6.13 * 10^{-3}$
 $R = 8.17 * 10^{-2} K/w$

Referências

- [1] "Poliestireno expandido | Poliestireno." https://www.bricodepot.pt/materiais-de-construcao/isolamento/poliestireno/poliestireno-expandido (accessed Dec. 22, 2021).
- [2] "Intermodal container Wikipedia." https://en.wikipedia.org/wiki/Intermodal container (accessed Dec. 22, 2021).