Sistemas de numeração posicionais

Tecnologia em Análise e Desenvolvimento de Sistemas, 1º Período, SENAI/FATESG

22 de setembro de 2019

1 Introdução

Sistema de Numeração é a forma de representar dados numéricos através de números, caracteres ou símbolos, dependendo da forma de escrita utilizada.

Figura 1: Evolução dos algarismos arábicos

Em um sistema de numeração a **base** representa a quantidade de algarismos (símbolos) diferentes que esta possui. Estamos familiarizados com algumas bases, por exemplo:- Ao controlarmos o tempo, temos os segundos (60s) que compõe o minuto, temos os minutos (60m) que compõe a hora - neste caso estamos trabalhando com base 60, ou seja, a cada 60 passamos para uma unidade maior.

Ainda neste contexto temos o dia com 24h, neste caso base 24, pois a cada 24h contamos mais um dia. Outra base que nos é usual é a base 12 quando utilizamos para a contagem dos meses, a cada 12 meses contamos um ano.

Porém, é na base 10 que trabalhamos a nossa matemática (quantidade de itens, valores monetários, idade). A base 10 como já sabemos contém 10 algarismos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) e quando o valor ultrapassa o maior elemento da base passamos imediatamente para a próxima casa a esquerda.

Portanto, o número possui o valor absoluto e também o valor relativo, pois depende da posição que se encontra. Ex.: 745 (setecentos e quarenta e cinco) - O número 7 (sete) neste caso representa setecentos, pois está na posição da centena. O número 4 (quatro) representa o quarenta, pois está na posição da dezena, e o número 5 (cinco) representa cinco pois está na posição da unidade.

Esta forma de representação numérica onde o valor é dado pela posição é chamada de **Sistema de numeração posicional**. Nós humanos, utilizamos em nosso dia-a-dia a base Decimal₁₀, tanto para a maioria dos cálculos, quanto para uma representação numérica qualquer.

Um computador, como vimos anteriormente, é constituído por circuitos elétricos que podem ser ligados ou desligados, estando assim disponíveis apenas dois (2) estados para representar internamente os dados, ou seja, ele utiliza o bit - binary digit - que representa a base Binária₂, a qual é representada pelos elementos $(0, 1)_2$.

Ainda temos as bases $Octal_8$, representada pelos elementos $(0, 1, 2, 3, 4, 5, 6, 7)_8$ e a base $Hexadecimal_{16}$ $(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)_{16}$ que são bases intermediárias e também utilizadas para visualização dos valores. Estas duas bases são in-

teressantes pela simplicidade/velocidade na conversão de valores em binários, uma vez que elas são múltiplas entre si, agrupando-os (da direita para esquerda) a cada 3 bits para Octal₈ e 4 bits para Hexadecimal₁₆.

Tabela 1: Exemplos de conversão de bases

binária	octal	decimal	hexadecimal
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	В
1100	14	12	C
1101	15	13	D
1110	16	14	Е
1111	17	15	F
10000	20	16	10

2 Lista de exercícios

- 1. Execute as seguintes conversões de base:
 - a) $(1110101)_2 = (...)_{10}$
 - b) $(138)_{10} = (\underline{\dots})_2$
 - c) $(2019)_{10} = (\underline{\dots})_2$
 - d) $(10010010101)_2 = (\underline{\dots})_{10}$
 - e) $(10010010101)_2 = (\underline{\dots})_8$
 - f) $(10010010101)_2 = (...)_{16}$
- 2. Durante uma investigação que exigiu desvendar um sistema de numeração de uma antiga civilização, o agente MacGyver encontrou numa escavação uma pedra gravada com os seguintes símbolos:

Usando os clipes e chicletes disponíveis, MacGyver concluiu "cinematograficamente" que os símbolos correspondiam a uma operação de adição entre dois números positivos e que todos os algarismos da base de numeração estavam presentes na gravação.

Determine a base de numeração utilizada, o algarismo arábico correspondente a cada símbolo na representação das parcelas e no resultado da adição, convertidas para a base 10.

1