UNIDAD 5: ALGORITMOS DE MEMORIA EXTERNA

MODELO DE MEMORIA EXTERNA

Gibran Fuentes Pineda Mayo 2020

ARQUITECTURA VON NEUMANN

JERARQUÍA DE MEMORIA

SISTEMAS MULTIDISCO

COMPONENTES DE UN DISCO MAGNÉTICO

ORGANIZACIÓN DE ALMACENAMIENTO EN DISCOS MAGNÉTICOS

- A Pista
- **B** Sector circular
- C Pista de un sector
- **D** Bloque

Imagen tomada de Wikipedia (Data Cluster)

ACCESO A DISCO

- Tiempo de operaciones de lectura y escritura (E/S) no es constante
 - · Tiempo de búsqueda: 0-10 ms
 - · Tiempo de rotación: 0–3 ms
 - Tiempo de transferencia: 0.2 ms por 8KB (tasa de transferencia es cerca de 50–100 MB/s)
- Acceso a disco es varios órdenes de magnitud más lento que el acceso a memoria interna

PAGINACIÓN Y PRECARGA

- Estrategias de sistemas operativos para minimizar el cuello de botella de operaciones E/S
- Precarga instrucciones o datos del disco a la memoria
 RAM para que estén disponibles cuando sean accedidos
- Se almacena y lee en tamaños fijos de bloques (llamadas páginas)

TRANSFERENCIA DE BLOQUES

- Acceso secuencial a disco es más rápido (8-156KB) que acceso aleatorio
- Operaciones E/S en disco son más eficientes si se realizan en fragmentos grandes de bloques contiguos
- Bloques completos se transfieren entre el disco y la memoria interna
- · Cada transferencia por bloque es 1 operación E/S

MODELO DE DISCOS PARALELOS (PDM)

- · Explota dos mecanismos en sistemas multidisco
 - 1. Localidad de referencia, la cual aprovecha la transferencia por bloques
 - 2. Acceso paralelo a múltiples discos
- Presuposiciones
 - En cada operación E/S cada uno de los *D* discos puede transferir un bloque de *B* elementos contiguos
 - Transferencia síncrona de los D bloques (toman el mismo tiempo)

PARÁMETROS DEL MODELO DE DISCOS PARALELOS (1)

- P procesadores comparten D discos
- N: número de elementos (del mismo tamaño) del problema
- M: número de elementos que se pueden almacenar en la memoria RAM (P/M por procesador)
- · B: número de elementos por bloque de disco
- $M < N y 1 \le B \le M/2$

PARÁMETROS DEL MODELO DE DISCOS PARALELOS (2)

- · Para consultas, se definen dos parámetros adicionales
 - · Q: número de consultas
 - · Z: número de elementos en la respuesta
- Parámetros del modelo de discos paralelos expresados en términos de bloques de disco

$$n = \frac{N}{B}$$
, $m = \frac{M}{B}$, $q = \frac{Q}{B}$, $z = \frac{Z}{B}$

· Considera que los datos están alineados

	D_0		D ₁		D ₂		D ₃		D ₄	
Línea 0	0	1	2	3	4	5	6	7	8	9
Línea 1	10	11	12	13	14	15	16	17	18	19
Línea 2	20	21	22	23	24	25	26	27	28	29
Línea 3	30	31	32	33	34	35	36	37	38	39

MODELO DE MEMORIA PARALELA

MODELO DE MEMORIA PARALELA MULTIPROCESADOR

COMPLEJIDAD E/S

- Una operación E/S involucra leer o escribir un bloque de B elementos contiguos de o al disco
- La complejidad E/S para un algoritmo es el número de bloques que transfiere entre memoria y disco¹
- Tamaño del bloque: al menos 512 bytes (dependiendo del hardware), aunque usualmente se usan al menos 8 KB

¹Las operaciones internas no se consideran en el modelo

DISEÑO DE ALGORITMOS DE MEMORIA EXTERNA

- · Métricas de rendimiento
 - · Complejidad E/S
 - Máximo espacio en disco (número de bloques) activo en un tiempo dado
 - · Tiempo de procesamiento interno
- · Objetivos
 - · Tiempo comparable a algoritmos en memoria interna
 - Acceso a bloques con tantos datos útiles como sea posible
 - Aprovechamiento máximo de datos que se encuentren en memoria interna

Programación de algoritmos de memoria externa

- Orientado a acceso: se controlan de forma explícita las solicitudes de transferencia, incluyendo los tipos.
- Orientado a arreglos: se accede a través de los tipos reconocidos por el compilador y de las operaciones sobre esos tipos. Se utilizan principalmente para computación científica que ocupan regularmente arreglos.
- Orientado a marcos de trabajo: los programas acceden continuamente a datos de los discos y van produciendo resultados.