

Practical SAT Solving

Lecture 2

Markus Iser, Dominik Schreiber, Tomáš Balyo | April 22, 2024

Overview

Recap. Lecture 1

- · Satisfiability: Propositional Logic, CNF Formulas, NP-completeness, Applications
- Examples: Pythagorean Triples, Arithmetic Progressions, k-Colorability
- · Incremental SAT: IPASIR, Sample Code

Today's Topics

- Tractable Subclasses
- · Constraint Encodings
- Encoding Techniques

Tractable Subclasses

Tractable Subclasses (cf. Schaefer, 1978)

2-SAT

Exactly two literals per clause

HORN-SAT

At most one positive literal per clause

Inverted HORN-SAT

At most one negative literal per clause

Positive / Negative

Literals occur only pure (either positive or negative)

XOR-SAT

No clauses, only XOR constraints

2-SAT

Each clause has exactly two literals.

Example (2-SAT Formulas)

$$\begin{split} F_5 &= \{\{x_1, x_2\}, \{\overline{x_1}, x_2\}, \{x_1, \overline{x_2}\}, \{\overline{x_1}, \overline{x_2}\}\} \\ F_7 &= \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\} \end{split}$$

Linear Time Algorithm for 2-SAT (cf. Aspvall et al., 1979)

- · Construct Implication Graph
- Find Strongly Connected Components (SCC) with Tarjan's Algorithm Complexity: $\mathcal{O}(n+m)$, where m is the number of clauses
- · Check for Complementary Literals in the same SCC

An **implication graph** of a 2-SAT formula F is a directed graph with a vertex for each literal of F and 2 edges for each clause $(I_1 \vee I_2)$: $\bar{I}_1 \to I_2$ and $\bar{I}_2 \to I_1$.

$$F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$$

An **implication graph** of a 2-SAT formula F is a directed graph with a vertex for each literal of F and 2 edges for each clause $(I_1 \vee I_2)$: $\bar{I}_1 \to I_2$ and $\bar{I}_2 \to I_1$.

$$F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$$

- Find Strongly Connected Components (SCC)
- · SCC: There is a path from every vertex to every other vertex
- Tarjan's algorithm finds SCCs in $\mathcal{O}(|V| + |E|)$

An **implication graph** of a 2-SAT formula F is a directed graph with a vertex for each literal of F and 2 edges for each clause $(I_1 \vee I_2)$: $\bar{I}_1 \to I_2$ and $\bar{I}_2 \to I_1$.

$$F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$$

- If an SCC contains both x and \overline{x} , the formula is UNSAT
 - x implies its own negation!
 - · Literals in an SCC must be either all true or all false

An **implication graph** of a 2-SAT formula F is a directed graph with a vertex for each literal of F and 2 edges for each clause $(I_1 \vee I_2)$: $\bar{I}_1 \to I_2$ and $\bar{I}_2 \to I_1$.

$$F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$$

- If an SCC contains both x and \overline{x} , the formula is UNSAT
 - x implies its own negation!
 - · Literals in an SCC must be either all true or all false
- What about SAT? How to get a solution?
 - · Contract each SCC into one vertex
 - In reverse topological order, set unassigned literals to true.

HornSAT

Each clause contains at most one positive literal.

Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:

$$\begin{aligned} F_6 &= \left\{ \{\overline{x_1}, x_2\}, \{\overline{x_1}, \overline{x_2}, x_3\}, \{x_1\} \right\} \\ &\equiv \left(x_1 \to x_2 \right) \wedge \left((x_1 \wedge x_2) \to x_3 \right) \wedge \left(\top \to x_1 \right) \end{aligned}$$

HornSAT

Each clause contains at most one positive literal.

Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:

$$F_6 = \left\{ \{\overline{x_1}, x_2\}, \{\overline{x_1}, \overline{x_2}, x_3\}, \{x_1\} \right\}$$

$$\equiv (x_1 \to x_2) \land ((x_1 \land x_2) \to x_3) \land (\top \to x_1)$$

Solving Horn Formulas

- · Propagate until fixpoint
- If $\top \to \bot$ then the formula is UNSAT. Otherwise it is SAT.
- · Construct a satisfying assignment by setting the remaining variables to false

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

$$F_8 = \{\{x_1, x_2, x_4\}, \{x_2, \overline{x_4}\}, \{x_1\}\} \\ \rightsquigarrow \{\{\overline{x_1}, \overline{x_2}, x_4\}, \{\overline{x_2}, \overline{x_4}\}, \{\overline{x_1}\}\}$$

How to recognize a Hidden Horn formula? And how to hard is it?

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

$$F_8 = \{\{x_1, x_2, x_4\}, \{x_2, \overline{x_4}\}, \{x_1\}\}$$

$$\leadsto \{\{\overline{x_1}, \overline{x_2}, x_4\}, \{\overline{x_2}, \overline{x_4}\}, \{\overline{x_1}\}\}$$

How to recognize a Hidden Horn formula? And how to hard is it?

Recognizing Hidden Horn Formula F

Construct 2-SAT formula R_F that contains the clause $\{l_1, l_2\}$ iff there is a clause $C \in F$ such that $\{l_1, l_2\} \subseteq C$.

- Example: $R_{F_8} = \{\{x_1, x_2\}, \{x_1, x_4\}, \{x_2, x_4\}, \{x_2, \overline{x_4}\}\}$
- If the 2-SAT formula is satisfiable, then F is Hidden Horn
- If $x_i = \text{true in } \phi$, then x_i needs to be renamed to \overline{x}_i

Mixed Horn

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

$$F_9 = \{\{\overline{x_1}, \overline{x_7}, x_3\}, \{\overline{x_2}, \overline{x_4}\}, \{x_1, x_5\}, \{x_3\}\}$$

How to solve a Mixed Horn formula? And how to hard is it?

Mixed Horn

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

$$F_9 = \{\{\overline{x_1}, \overline{x_7}, x_3\}, \{\overline{x_2}, \overline{x_4}\}, \{x_1, x_5\}, \{x_3\}\}$$

How to solve a Mixed Horn formula? And how to hard is it?

Mixed Horn is NP-complete

Proof: Reduce SAT to Mixed Horn SAT

- For each non-Horn non-quadratic clause $C = (I_1 \vee I_2 \vee I_3 \vee \dots)$
 - for each but one positive $l_i \in C$ introduce a new variable l_i'
 - replace I_i in C by $\overline{I_i'}$
 - add $(I_i' \vee I_i) \wedge (\overline{I_i'} \vee \overline{I_i})$ to establish $I_i = \overline{I_i'}$