MMA/MMAI 869 Machine Learning and AI

Performance Metrics

Stephen Thomas

Updated: Oct 29, 2022

Outline

How do we quantify the quality of a model's predictions?

truth		n pre	edict	ted		
	Yes		Yes			
	Yes		No			
	No		No			
	No		No			
	Yes		Yes			
	No		Yes			
	Yes		No			
	<u>†</u>		_ I			
	Accuracy: 0.300					
	Precision: 0.800					
	Recall: 0.667					
	F1: 0.727					

Specificity: 0.750

..

Reminder: Machine Learning Terminology

Features

Target or Label

(inputs, independent variables, X, columns)

(response, output, dependent variable, Y)

Instances
(rows, cases,
records)

Age	Income	Married	Citizenship	Default
55	36,765	True	Canada	True
66	87,983	True	Canada	True
21	24,354	False	USA	False
24	56,654	True	Canada	False
34	98,324	False	UK	False
36	132,229	False	Germany	True
28	35,000	True	Canada	False
49	50,334	True	Canada	False

The Analytics Process: CRISP-DM

More Detail

METRICS FOR PERFORMANCE EVALUATION

Performance Metrics

How good are a model's predictions?

Regression

- Mean Squared Error
- Mean Absolute Error
- Root MSE

Classification

- Accuracy/Error
- Precision, Recall
- F1 score
- Sensitivity, Specificity
- ROC Curve and AUC
- Log Loss

Recommendation

- Mean Average Precision @ K
- Coverage
- Personalization
- Intra-list similarity

Classification Report

Scikit-learn has a function classification_report():

	precision	recall	f1-score	support
0 1	0.97 0.78	0.94 0.90	0.96 0.84	80 20
accuracy macro avg weighted avg	0.88 0.94	0.92 0.93	0.93 0.90 0.93	100 100 100

What do all these numbers mean? Which is most important?

Multi-class Metrics

Basically the same, just more of them

	precision	recall	f1-score	support
class 0 class 1 class 2	0.50 0.00 1.00	1.00 0.00 0.67	0.67 0.00 0.80	1 1 3
accuracy macro avg weighted avg	0.50 0.70	0.56 0.60	0.60 0.49 0.61	5 5 5

Classification Metrics

A model's predictions might be right or wrong, in two different ways each.

Exercise

Mark each of the following as TP, TN, FP, or FN

Truth
Target
Yes
No
Yes
No
Yes
Yes
No

Predicted
Target
Yes
Yes
No
No
Yes
No
No

A Medical Example

Truth

Predicted

Yes Disease

No Disease

Yes Disease

FPs

No Disease

FNS

Confusion Matrix

Confusion matrix: a tabulation of the predictions against the truth

Truth	Predicted	
Target	Target	
Yes	Yes	TP
No	Yes	FP
Yes	No	FN
No	No	TN
Yes	Yes	TP
Yes	No	FN
No	No	TN

2 TP (true positive)

2 FN (false negative)

1 FP (false positive)

2 TN (true negative)

Accuracy

- Accuracy: percentage of instances that are classified correctly
- 1-Accuracy = Error

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

	Predicted				
		Yes	No		
Truth	Yes	15	5	20	
르	No	5	75	80	
		20	80	100	

	Predicted				
		Yes	No		
Truth	Yes	10	10	20	
본	No	30	50	80	
		40	60	100	

$$Accuracy = ?$$

$$Accuracy = ?$$

Accuracy is Usually a Bad Choice

- Most datasets are imbalanced
- Which model is better?

Model 1

Predicted Yes No Yes 0 10 10 No 0 990 990 0 1000 1000 1000

Accuracy =
$$\frac{990}{1000}$$
 = .99

Model 2

Accuracy =
$$\frac{990}{1000}$$
 = .99

Accuracy is Usually a Bad Choice

- Assumes the costs of FPs vs FNs are equal
- Which model is better for detecting a deadly disease?

Model 1

Predicted Yes No 80 0 100 100 100 100 20 100 100 200

Accuracy =
$$\frac{180}{200}$$
 = .90

Model 2

	Predicted					
		Yes	No			
护	Yes No	80	20	100		
된	No	0	100	100		
		80	120	200		

Accuracy =
$$\frac{180}{200}$$
 = .90

Precision

- Precision: % of "yes" predictions that are correct
 - Does model make precise "yes" predictions?

Precision =
$$\frac{TP}{TP + FP}$$

Predicted				
	Yes	No		
T Yes	15	5	20	
₹ No	5	75	80	
	20	80	100	

Precision = ?

Precision = ?

Recall

- Recall: % of truth "yes" were correctly predicted as "yes"
 - Does model detect the most disease carriers?

$$Recall = \frac{TP}{TP + FN}$$

	Predicted						
		Yes	No				
물	Yes	15	5	20			
본	Yes No	0	80	80			
		15	85	100			

$$Recall = ?$$

$$Recall = ?$$

Example: Duck Hunt

- High precision = ???
- High recall = ???
- High precision and recall = ??

NPV: "Precision of no"

 Negative Predictive Value: % of "no" predictions that are correct

$$NPV = \frac{TN}{TN + FN}$$

$$NPV = ?$$

$$NPV = ?$$

TNR: "Recall of no"

- True Negative Rate: % of truth "no" were correctly predicted as "no"
 - aka Specificity

$$TNR = \frac{TN}{TN + FP}$$

$$TNR = ?$$

$$TNR = ?$$

F1 Score

F1 Score: Harmonic mean between precision and recall

$$F_1 = \frac{2 * Precision * Recall}{Precision + Recall}$$

$$F_1 = ?$$

$$F_1 = ?$$

Exercise

	Predicted							
		Yes	No					
뒫	Yes	300	100	400				
Truth	No	20	580	600				
		320	680	1000				

- Accuracy = ?
- Precision = ?
- Recall = ?
- NPV (Precision of No) = ?
- TNR (Recall of Yes) = ?

Per-class, Macro, and Weighted

		Predicted						
		Yes	No					
it T	Yes	18	2	20				
17.	Yes No	5	75	80				
		23	77	100				

$$Precision = \frac{18}{23} = 0.78$$

Recall =
$$\frac{18}{20}$$
 = 0.90

$$F_1 = \frac{2 * 0.78 * 0.90}{0.78 + 0.90} = 0.84$$

	Precision	Recall	F1 Score	Support
Yes	0.78	0.90	0.84	20
No	0.97	0.94	0.96	80
Macro Avg	0.88	0.92	0.90	100
Weighted Avg	0.94	0.93	0.93	100
	NDV		TNP	

Decision Threshold

- Most classifiers actually predict a probability between [0, 1]
- You turn into a "yes" or "no" decision by using a threshold
 - E.g., threshold = 0.5

Truth	Pred	icted	Predicted
target	Pro	ob.	target
Yes	0.	67	Yes
Yes	0.3	21	No
No	0.	11	No
No	0.0	01	No
Yes	0.9	98	Yes
Yes	0.	78	Yes
Yes	0.4	45	No

 By altering the threshold value up or down, you can trade-off precision and recall

Visual Example

Threshold = 0.40

0.0

 Predicted

 Yes
 No

 5
 0
 5

 6
 14
 20

14

25

Threshold = 0.50

 Predicted

 Yes
 No

 Yes
 4
 1
 5

 No
 3
 17
 20

 7
 18
 25

Threshold = 0.60

1.0

		Predicted					
		Yes	No				
Truth	Yes	3	2	5			
된	No	0	20	20			
		3	22	25			

Precision = 45% Recall = 100%

11

Yes

No

Precision = 57% Recall = 80% Precision = 100% Recall = 60%

Visual Example

Visual Example

Decision Threshold Trade-off

- Example: Marketing campaign
 - Selling cars with profit of \$5K/each
 - Want to snail-mail brochures to potential customers (\$5/each)
 - Model predicts which customers will respond to offer
 - Yes = will buy car
 - No = will not buy car
 - If model predicts yes, then you will send brochure to customer
 - Which threshold is better?

Threshold = 0.30

	Predicted					
		Yes	Yes No			
ith	Yes	176	24	200		
Truth	No	153	647	800		
		329	671	1000		

Precision = 53% Recall = 88% Threshold = 0.70

Predicted							
		Yes	No	_			
ţ	Yes	89	111	200			
된	Yes No	19	781	800			
	·	108	892	1000			

Precision = 82% Recall = 45%

ROC Curve

 ROC Curve: a graphical plot that simultaneously displays two metrics (i.e., TPR and FPR) for many different threshold values

- Shows recall (aka TPR) against the FPR (1 TNR)
 - Each point is calculated by choosing a different threshold

Drawing the ROC Curve

Drawing the ROC Curve

Thresholds

Truth target	Prob.	0.0	0.2	0.4	0.5	0.6	0.8	1.0
Yes	0.96	Yes	Yes	Yes	Yes	Yes	Yes	No
Yes	0.80	Yes	Yes	Yes	Yes	Yes	Yes	No
No	0.11	Yes	No	No	No	No	No	No
No	0.05	Yes	No	No	No	No	No	No
Yes	0.98	Yes	Yes	Yes	Yes	Yes	Yes	No
No	0.40	Yes	Yes	Yes	No	No	No	No
Yes	0.30	Yes	Yes	No	No	No	No	No
Yes	0.89	Yes	Yes	Yes	Yes	Yes	Yes	No
No	0.40	Yes	Yes	Yes	No	No	No	No
Yes	0.75	Yes	Yes	Yes	Yes	Yes	No	No
	Yes Yes No No Yes No Yes No Yes No	Yes 0.96 Yes 0.80 No 0.11 No 0.05 Yes 0.98 No 0.40 Yes 0.30 Yes 0.89 No 0.40	Yes 0.96 Yes Yes 0.80 Yes No 0.11 Yes No 0.05 Yes Yes 0.98 Yes No 0.40 Yes Yes 0.89 Yes No 0.40 Yes No 0.40 Yes No 0.40 Yes	Yes 0.96 Yes Yes Yes 0.80 Yes Yes No 0.11 Yes No No 0.05 Yes No Yes 0.98 Yes Yes No 0.40 Yes Yes Yes 0.89 Yes Yes No 0.40 Yes Yes No 0.40 Yes Yes	Yes 0.96 Yes Yes Yes Yes 0.80 Yes Yes Yes No 0.11 Yes No No No 0.05 Yes No No Yes 0.98 Yes Yes Yes No 0.40 Yes Yes No Yes 0.89 Yes Yes Yes No 0.40 Yes Yes Yes No 0.40 Yes Yes Yes	Yes 0.96 Yes Yes Yes Yes Yes 0.80 Yes Yes Yes Yes No 0.80 Yes Yes Yes Yes Yes No 0.11 Yes No No	Yes 0.0 0.2 0.4 0.5 0.6 Yes 0.96 Yes Yes	Yes 0.96 Yes Yes

Recall: 100% 100% 83% 83% 83% 67% 0% 1-TNR: 100% 50% 50% 0% 0% 0% 0% 0%

Area Under Curve (AUC)

- ROC plots are cool, but a single number is really cool
 - Easier to compare two classifiers
 - Just like the F1 Score combines Precision and Recall
- AUC is the area under the ROC curve
 - Remember calculus, anyone?

1.0: perfect prediction

0.9: excellent prediction

0.8: good prediction

0.7: mediocre prediction

0.6: poor prediction

0.5: random prediction

< 0.5: something wrong!

WARNINGS ABOUT TERMINOLOGY

Wikipedia's Page

		Predicted condition		Sources:	[13][14][15][16][17][18][19][20] view·talk·edit
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) = √TPR×FPR - FPR TPR - FPR
Actual condition	Positive (P)	True positive (TP),	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power = $\frac{TP}{P}$ = 1 - FNR	False negative rate (FNR), miss rate = FN P = 1 - TPR
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1 - TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR
	Prevalence = P/P+N	Positive predictive value (PPV), precision = TP = 1 - FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = TPR FPR	Negative likelihood ratio (LR-) = FNR TNR
	Accuracy (ACC) $= \frac{TP + TN}{P + N}$	False discovery rate (FDR) = FP PP = 1 - PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) = TPR + TNR 2	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV – √FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP

https://en.wikipedia.org/wiki/Confusion_matrix

Careful About Axes Orientation!

Thes	e slides	Pred	Predicted		
		Yes	No		
Truth	Yes	30	2		
Ĕ	No	11	24		

scikit-learn		Pred	Predicted	
		No	Yes	
뒫	No	24	11	
Truth	Yes	2	30	

		Truth		
~		Yes	No	
redicted	Yes	30	11	
red	No	2	24	
_				

	Truth				
70		No	Yes		
icte	No	24	2		
Predicted	Yes	11	30		
Δ	·			•	

MODEL FINANCIALS: KCU EXERCISE

How Much Money Does a Model Make/Save?

- Current situation:
 - 2,000 customers
 - 5% churn per month
 - Each churn costs an average of \$400
- Cost of current situation: 100*\$400 = \$40,000
- Churn prediction model:
 - If model predicts Yes, will offer 20% discount offer
 - Average cost of \$50
 - Assume everyone accepts offer
 - Current model has below confusion matrix
- How much does the model save them per month?

Confusion Matrix

Cost Matrix
Cost per transaction

Total Cost **\$22,750**

KCU's Model to Predict Fraudulent Transactions

- Assume:
 - 10,000 transactions per month
 - 1% of transactions are fraudulent
 - Each fraudulent transaction costs \$10,000
 - It costs \$100 to investigate potentially fraudulent transactions
- What is the cost of fraudulent transactions now (without model)?
- KCU builds a model with below confusion matrix
 - If predicts Yes = Fraud, then investigate
 - If predicts No = Not Fraud, then don't investigate
- How much money does model save per month?

Confusion Matrix

Cost Matrix
Cost per transaction

Total Cost

RESOURCES

Resources

- Coding Tutorial Files by Uncle Steve
 - slides performance.ipynb

SUMMARY

Uncle Steve's Table of Performance Metrics

Metric (Inverse)	Summary	Good when you want:
Accuracy (Error)	% of predictions that are correct	✓ Simplicity, have balanced data and equal costs between FP and FN
Precision/PPV (FDR)	% of "yes" predictions that are correct	✓ To measure how precise with "yes" the model is
NPV	% of "no" predictions that are correct	✓ To measure how precise with "no" the model is
Recall/Sensitivity/TPR (FNR)	% of "yes" cases that were predicted as "yes"	✓ To measure if the model misses any "yes"s
TNR/Specificity	% of "no" cases that were predicted as "no"	✓ To measure if the model misses any "no"s
F1 Score	Harmonic mean of precision and recall	✓ An overall measure of model performance
ROC Curve	Shows TPR vs FPR for all possible threshold values	✓ An overall measure of model performance
AUC	Measures area under ROC curve	✓ An overall measure of model performance
Log Loss	Like accuracy, but takes into account <i>how</i> right or wrong the predictions are	✓ To penalize models for being very wrong

APPENDIX

Log Loss

- Say you build two models to predict loan default
 - -1 = Yes = default
 - 0 = No = paid
- You test each model with a test instance with truth = 0 (paid)
 - Model 1 predicts .51 probability
 - Model 2 predicts .98 probability
 - Both are wrong, but which is worse?
- Log Loss is a metric that takes the probability into account, and how far it is from the truth value.
- Heavily penalizes predictions that are confident but incorrect.

$$Log Loss = -[y ln(p) + (1 - y) ln(1 - p)]$$
 y is actual
 p is predicted

Model 1 Log Loss =
$$-[0 \ln(.51) + (1 - 0) \ln(1 - .51)] = .71$$

Model 2 Log Loss =
$$-[0 \ln(.98) + (1 - 0) \ln(1 - .98)] = 3.9$$

Log Loss Examples

Truth	Predicted		
No	0.01	$-[0 \ln(.01) + (1 - 0) \ln(101)] =$	
No	0.10	$-[0 \ln(.10) + (1-0) \ln(110)] =$	
No	0.30	•••	
No	0.50		
No	0.80		
No	0.90		
No	1.00		
Yes	0.01		
Yes	0.10		
Yes	0.30		
Yes	0.50		
Yes	0.80		
Yes	0.90	$-[1\ln(.90) + (1-1)\ln(190)] =$	
Yes	1.00	$-[1 \ln(1.0) + (1-1) \ln(1-1.0)] =$	

Take average of all instance's log losses

Specificity

- Specificity: Percentage of truth "no"s that were correctly predicted
 - Is the disease diagnosis specific? Correctly reject healthy patients?
 - Aka: true negative rate (TNR), Recall of "No" class
 - 1 specificity = False positive rate (FPR)

Specificity = TNR =
$$\frac{TN}{TN + FP}$$

	Predicted						
		Yes	No				
护	Yes	20	0	20			
Truth	No	40	40	80			
		60	40	100			

Drawing the ROC Curve

Drawing the ROC Curve

- Set threshold to 1.00
 - Calculate TPR, FPR
 - Plot point
- Set threshold to 0.99
 - Calculate TPR, FPR
 - Plot point
- •
- Set threshold to 0.01
 - Calculate TPR, FPR
 - Plot point
- Set threshold to 0.00
 - Calculate TPR, FPR
 - Plot point

Drawing the ROC Curve: Animation

The Perfect Model/Test

Yes Disease

Ves Disease

Yes Disease

No Disease

TNS

No Disease

Another Example

Actual

Yes Disease

No Disease

Model

Predicted

Yes Disease

No Disease

Tradeoff Between Sensitivity and Specificity

- It's easy to build a classifier with perfect sensitivity!
 - Threshold = 0.0 → Predict "yes" always
- It's easy to build a classifier with perfect specificity!
 - Threshold = 1.0 → Predict "no" always
- In both cases, there's a cost
 - Higher sensitivity = Lower specificity
 - Lower sensitivity = Higher specificity
- The best combination depends on the application/domain

	0.0	0.25	0.50	0.75	1.0
Sensitivity	1.000	0.833	0.500	0.167	0.000
Specificity	0.000	0.500	0.750	0.750	1.000
Accuracy	0.600	0.700	0.600	0.400	0.400
Error	0.400	0.300	0.400	0.600	0.600
Precision	0.600	0.714	0.750	0.500	_
Recall	1.000	0.833	0.500	0.167	0.000
F1	0.750	0.769	0.600	0.250	-

Same example dataset as before

Example (1/5)

Threshold = 0.0

Truth	Predicted	Predicted
target	Prob.	target
Yes	0.67	Yes
Yes	0.21	Yes
No	0.11	Yes
No	0.01	Yes
Yes	0.98	Yes
No	0.78	Yes
Yes	0.45	Yes
Yes	0.40	Yes
No	0.40	Yes
Yes	0.60	Yes

Accuracy = 60% Precision = 60%Sensitivity = 100% Recall = 100%Specificity = 0% F1-Score = 75%

Example (2/5)

Threshold = 0.25

Truth	Predicted	Predicted
target	Prob.	target
Yes	0.67	Yes
Yes	0.21	No
No	0.11	No
No	0.01	No
Yes	0.98	Yes
No	0.78	Yes
Yes	0.45	Yes
Yes	0.40	Yes
No	0.40	Yes
Yes	0.60	Yes

Accuracy = 70% Precision = 71%Sensitivity = 83% Recall = 83%Specificity = 50% F1-Score = 77%

Example (3/5)

Threshold = 0.50

Truth	Predicted	Predicted
target	Prob.	target
Yes	0.67	Yes
Yes	0.21	No
No	0.11	No
No	0.01	No
Yes	0.98	Yes
No	0.78	Yes
Yes	0.45	No
Yes	0.40	No
No	0.40	No
Yes	0.60	Yes

Accuracy = 60% Precision = 75%Sensitivity = 50% Recall = 50%Specificity = 75% F1-Score = 60%

Example (4/5)

Threshold = 0.75

Truth	Predicted	Predicted	
target	Prob.	target	
Yes	0.67	No	
Yes	0.21	No	
No	0.11	No	
No	0.01	No	
Yes	0.98	Yes	
No	0.78	Yes	
Yes	0.45	No	
Yes	0.40	No	
No	0.40	No	
Yes	0.60	No	

Accuracy = 40% Precision = 50%Sensitivity = 17% Recall = 17%Specificity = 75% F1-Score = 25%

Example (5/5)

Threshold = 1.0

Truth	Predicted	Predicted
target	Prob.	target
Yes	0.67	No
Yes	0.21	No
No	0.11	No
No	0.01	No
Yes	0.98	No
No	0.78	No
Yes	0.45	No
Yes	0.40	No
No	0.40	No
Yes	0.60	No

Accuracy = 40% Precision = NA Sensitivity = 0% Recall = 0%Specificity = 100% F1-Score = NA

- Vaccine Adverse Event Reporting System: A US dataset of adverse events that occur after administration of vaccines
- Case study:
 - Situation: 4% of patients that get H1N1 vaccine get severe anaphylaxis reaction → may cause death
 - Objective: Want to build prediction model to predict which patients will have bad reaction
 - Data: Collected 6K VAERS reports involving H1N1 vaccine,
 each labeled as either positive or negative for anaphylaxis
 - Number of positive reports = 237 (4%)

Tried many classification algorithms

Classifie	ers	Testing set			Validation set		
		macro-R	macro-P	macro-F*	macro-R	macro-P	macro-F*
NB		0.794 (10)	0.753 (4)	0.773	0.671 (11)	0.697 (4)	0.684
ME		0.701 (6)	0.863 (9)	0.773	0.577 (7.5)	0.775 (10.5)	0.661
DT		0.609 (2)	0.891 (12)	0.724	0.544 (1.5)	0.767 (9)	0.637
RPCT	_	0.642 (4)	0.872 (10)	0.740	0.544 (1.5)	0.732 (6.5)	0.624
BT		0.881 (13)	0.639 (2)	0.741	0.789 (12)	0.648 (2)	0.711
w-SVM		0.871 (12)	0.619 (1)	0.724	0.809 (13)	0.619 (1)	0.701
s-SVM		0.642 (4)	0.855 (7.5)	0.734	0.555 (4)	0.795 (12)	0.654
SB		0.708 (8)	0.836 (6)	0.767	0.574 (5)	0.677 (3)	0.622
MARS		0.707 (7)	0.809 (5)	0.755	0.576 (6)	0.733 (8)	0.645
RDA		0.831 (11)	0.649 (3)	0.729	0.640 (10)	0.702 (5)	0.669
RF		0.642 (4)	0.855 (7.5)	0.734	0.589 (9)	0.817 (13)	0.684
GAM		0.751 (9)	0.885 (11)	0.813	0.577 (7.5)	0.775 (10.5)	0.661
w-kNN		0.576 (1)	0.892 (13)	0.700	0.554 (3)	0.732 (6.5)	0.631

Performance of best classifier

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{5886}{6000} = .98$$

Precision =
$$\frac{TP}{TP + FP} = \frac{212}{301} = .70$$

Recall =
$$\frac{TP}{TP + FN} = \frac{212}{237} = .89$$

Discussion:

- If model were deployed on the 6K reports:
 - Of the 237 reports that are actually positive:
 - 212 (89%) correctly classified as positive
 - 25 (11%) incorrectly classified as negative
 - Is that good enough?
 - Of the 301 reports classified as positive:
 - 212 (70%) would actually be positive
 - 89 (30%) would actually be negative
 - Is that good enough?

ROC Curve Interpretation

- Lines "up and to the left" are better
- Straight diagonal lines are no good → random guessing

