Diferenciabilidade

Apontamentos sobre

Page

Declive de uma função

- A derivada dá-nos a variação da função num determinado momento
- A derivada de uma função num ponto é igual ao declive da reta tangente à função nesse ponto

$$f'(a) = m$$

Se soubermos 2 pontos de uma reta, sabemos os seu declive

$$m=rac{y_1-y_0}{x_1-x_0}$$

- De 2 retas são paralelas, então o declive é o mesmo
- Se 2 retas são perpendiculares, então se soubermos o declive de uma, sabemos também o declive da 2ª reta:

$$oxed{r \perp s \implies m_r = -rac{1}{m_s}}$$

• m = tg(a), α é a inclinação (ângulo que a reta faz com o eixo das abcissas)

Derivada de uma função

- Seja f uma função real de variável real e a um ponto do seu domínio
 - O limite lim $x \rightarrow a$ [(f(x) f(a) / x a)] quando existe representa a derivada da função no ponto a
 - Por definição tem-se:

$$\left|f'(a)=lim_{x
ightarrow a}rac{f(x)-f(a)}{x-a}
ight|$$

• Uma expressão alternativa para o cálculo da derivada de f em a é:

$$f'(a) = lim_{h o 0} rac{f(a+h) - f(a)}{h}$$

 $oxedit{oxedit}$ A existência de derivada no ponto a, pressupõe a existência e igualdade das derivadas laterais:

$$f'(a^-) = \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a},$$
 $f'(a^+) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$

$$f'(a^+) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$

A derivada f'(a), quando finita, representa o declive da reta tangente ao gráfico de f no ponto de abcissa x = a

Uma equação desta reta:

$$y = f(a) + f'(a)(x - a)$$

Definição

• f é uma função diferenciável no ponto $a \in D$ se f'(a) existe e é finita

Teorema

Se f é diferenciável no ponto a, então f é contínua em a

 A diferenciabilidade num ponto implica continuidade nesse ponto. O oposto não é, no entanto, verdade, isto é, continuidade não implica diferenciabilidade. A função |x| é um exemplo clássico. A função módulo é contínua no ponto de abcissa x = 0 mas não tem derivada nesse ponto (dado que as derivadas laterais são distintas).

Regras de Derivação

$$\begin{split} & \left(cf(x) \right)' = cf'(x), c \in \mathbb{R} \\ & \left(f(x) + g(x) \right)' = f'(x) + g'(x) \\ & \left(f(x)g(x) \right)' = f'(x)g(x) + f(x)g'(x) \\ & \left(\frac{f(x)}{g(x)} \right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \ , \qquad g(x) \neq 0 \end{split}$$

Teoremas de Rolle e Lagrange

Teorema de Rolle

• Se f é uma função contínua em [a, b], diferenciável em]a, b[e f(a) = f(b), então existe $c \in]a, b[$: f'(c) = 0

Teorema de Lagrange

• Se f é um função contínua em [a, b], diferenciável em]a, b[, então $c \in]a, b[$: f '(c) - (f(b) - f(a) / (b - a)

Corolário:

- O teorema de Rolle pode considerar-se um caso particular do teorema de Lagrange
- Se f é uma função contínua em [a, b] e f possui derivada nula em todos os pontos $x \in]a, b[$, então f é uma função constante em [a, b]

Algumas consequências do teorema de Rolle:

□ Entre dois zeros de uma função diferenciável existe (pelo menos) um zero da sua derivada.

□ Entre dois zeros consecutivos da derivada de uma função diferenciável, não pode existir mais que um zero da função.

□ Preper title 7.5 % to the uma sua fonção de la consecutivo da derivada de uma função diferenciável, não pode existir mais que um zero da função.

Derivada de ordem n

• A função diz-se n vezes diferenciável no ponto x = a, se existir e for finita a derivada de ordem n

$$f^{(n)}(x)=rac{d^nf}{dx^n}=D^nf(x)$$

Teorema

Seja f uma função n vezes diferenciável no ponto $a \in int$. Df, com $n \ge 2$

$$f'(a) = f''(a) = f'''(a) = ... = f^{(n-1)}(a) = 0 \quad \wedge \quad f^{(n)}(a) \neq 0$$

- Se n é ímpar $\Rightarrow f$ não tem qualquer extremo local no ponto a
- Se n é par

 $f^{(n)}(a) < 0$ então f tem um máximo local em a $f^{(n)}(a) > 0$ então f tem um mínimo local em a

Teorema

- Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ duas vezes diferenciável no ponto $a \in int.I$. Então:
 - Se f''(a) > 0, \cup (concavidade voltada para cima, convexa)
 - Se f''(a) < 0, \cap (concavidade voltada para baixo, côncava)
 - Se f tem ponto de inflexão no ponto a, então $f^{(n)}(a) = 0$

Polinómios de Taylor e de Mac-Laurin

Polinómio de Taylor

- Estabelece que (sob determinadas condições) uma função pode ser aproximada (na proximidade de algum dado ponto dado) por um polinómio, de modo que o erro que se comete ao substituir a função pelo polinómio seja pequeno
- O Teorema de Taylor estabelece que se uma função f for diferenciável n vezes num ponto a, então é válida (numa vizinhança de a) a aproximação f(x) = pn(x), ou, em rigor, f(x) = pn(x) + Rn(x), onde pn(x) é o polinómio de Taylor (de ordem n) da função f relativo ao ponto a, e a função Rn(x) é o resto de Taylor de ordem n da função f relativo ao ponto a

$$P(a) = f(a) + f'(a)(x-a) + rac{f''(a)(x-a)^2}{2!} + rac{f'''(a)(x-a)^2}{3!}$$

Polinómio de Mac-Laurin

• Quando a = 0, o polinómio designa-se por Polinómio de Mac-Laurin de f, de grau n

$$P(0) = f(0) + f'(0)(x-0) + rac{f''(0)(x-0)^2}{2!} + rac{f'''(0)(x-0)}{3!}$$

i

Quanto maior for o número n, mais semelhantes são os gráficos de f e p na vizinhança de a.

Fórmula de Taylor

$$f(x)=p_n(x)+R_n(x)$$

Resto de Lagrange - Erro de aproximação

$$R_n(x) = rac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{(n+1)}, \;\;\; orall x \in V(a)$$

onde c é um ponto desconhecido do intervalo de extremos x e a