- We are given an array that represents the size of different ropes.
- In a single operation, you can connect two ropes.
- Cost of connecting two ropes -> sum of the length of ropes you are connecting.
- Find the minimum cost of connecting all the ropes.

Overall COSt - 7+ 9+15+18=43

Total Cost = 7+8+11+18=44

aur () = \$ 8, 5, 10, 6, 8, 12, 13, 10, 12, 15, 11 }

1) Insert

aun (7: 23, 5, 10, 6, 8, 12, 13, 10, 12, 15, 11)

-> Cop min :-

QUM (7: \$ 8, 5, 10, 6, 8, 12, 13, 10, 12, 15, 11)

-> Delete min :-

aun () = & 8, 5, 10, 6, 8, 12, 13, 10, 12, 15, 11 }

aun (7 = \$ 25, 5, 10, 6, 8, 12, 13, 10, 12, 15, 12)

) LC > 1 2 map (0,1)

1 2 2 4 2 map (1,3)

7 ~ 2 ~ 15

11 given took arr [3;

Swap 1 heap, O, heap. Nise ()-1);

heap. remove (heap. 2/20 () -1);

heap; fy (heap [], 0);

void theapity (theapts, i) &			
while (2*i+1 < m) ? S child is involid.			
x = Min (heaptis, heap (Zxi+1), heapt 2xi+23);			
3 (x = = x) &;			
break',			
elne: 3 (x = heap [24; +1]) &			
Supp (treat, 1, 2*1+1);			
1=3=141.1			
\ ₃			
eire & suap (taap, i, 2 * i + 2);			
i=2*i+2.,			
3			
T.C. o (10gm)			

Build a heap:-

arr [7= 7, 8, 5, 1, 6, 8, 10, 2, 13, 4, -2

ideal:- Lorst the array.
-2, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13

ideal 2! - call insert function for all elemonts.

T. C. = O(m/egm).

ideas:

arro= 7, 8, 5, 1, 6, 8, 10, 2, 13, 4, -2

the heap order programy

er2 aux [7-3 (0, 9, 8, 7, 6, 5, 4, 3

101 mode =
$$\frac{m-1}{2}$$
 => $\frac{m-2}{2}$ => $\frac{m-2}{2$

$$\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}$$

Ques	Merge N Sorted LL into 1 Sorted LL.
Н,	1-3-37-312-210
HZ	2-36-318-300
HB	5-110 -2-20 -200
74.4	サ フロ ーシ ル
Brule fo	detis day, we have Klidd of len N.
	G
	N, N, N N
	3N VN
Tola	1- 2N+ 3N+ 4N+ KN

=> N (2+8+4+...1C) => N*16?

ideal: - Min heap	min teap.		
H1 1-23-27-212-20	18		
H3 3-76-718-20	6		
H3 5-310 -220 -310	*		
Hy 77197N	\		
$r \rightarrow r \rightarrow s \rightarrow s$	we have k list of lon N		
	T. C -> M* 1/2 (10g 10)		
	g. (→ ock)		
initially insert head of every list			
pick minimum from the heap add it to your answer I	ist, which ever list element you consumed add the		
next element of that list in the Min heap			