

© International Baccalaureate Organization 2022

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2022

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2022

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Chimie Niveau moyen Épreuve 2

Mercredi 18 mai 2022 (après-midi)

	Numero de session du candidat													
ſ														
L														

1 heure 15 minutes

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- · Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du **recueil de données de chimie** est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [50 points].

Le lit	hium	réagit avec l'eau pour former une solution alcaline.	
(a)		rminez les coefficients permettant d'équilibrer l'équation de réaction du lithium l'eau.	
		$Li(s) + H_2O(l) \rightarrow LiOH(aq) + H_2(g)$	
(b)	Un n	norceau de lithium de 0,200 g a été placé dans 500,0 cm³ d'eau.	
	(i)	Calculez la concentration molaire de la solution d'hydroxyde de lithium en résultant.	
	(ii)	Calculez le volume d'hydrogène gazeux produit, en cm³, si la température était de 22,5°C et la pression de 103 kPa. Utilisez les sections 1 et 2 du recueil de données.	
	(iii)	Suggérez une raison pour laquelle le volume d'hydrogène gazeux recueilli était	

(Suite de la question 1)

(c)	La réaction du lithium avec l'eau est une réaction redox. Identifiez l'agent oxydant dans la réaction en justifiant votre réponse.	[1]
(d)	Décrivez deux observations indiquant que la réaction du lithium avec l'eau est exothermique.	[2]

2. Les électrons sont répartis dans des niveaux d'énergie autour du noyau d'un atome. Expliquez pourquoi la première énergie d'ionisation du calcium est supérieure à celle du potassium. [2] (b) Le diagramme représente des niveaux d'énergie électroniques possibles dans un atome d'hydrogène. -n=5

(Suite de la question 2)

	(1)	niv								ons	S. S	Sug	gge	ere	z d	eu	ΧI	mı	tatı	on	s a	ce	m	ode	ele (de	[2	<u>?]</u>
		 	 	٠.	٠.	 	 	 	 				٠.	• •	٠.									• •				
		 ٠.	 	٠.	٠.	 	 	 	 				٠.	٠.	٠.	٠.			٠.	٠.			٠.	٠.				

- (ii) Dessinez une flèche, nommée **X**, pour représenter la transition électronique correspondant à l'ionisation d'un atome d'hydrogène à l'état fondamental. [1]
- (iii) Dessinez une flèche, nommée **Z**, pour représenter la transition électronique de plus faible énergie dans le spectre visible. [1]

3. Le trioxyde de soufre est produit à partir du dioxyde de soufre.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

 $\Delta H = -196 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

(a) Résumez, une raison à l'appui, l'effet d'un catalyseur sur une réaction.

[2]

[3]

- (b) La réaction entre le dioxyde de soufre et l'oxygène peut être réalisée à différentes températures.
 - (i) Sur les axes, représentez les courbes de distribution des énergies de Maxwell–Boltzmann pour les espèces réactives à deux températures T_1 et T_2 , où $T_2 > T_1$.

(ii) Expliquez l'effet d'augmentation de la température sur le rendement de SO₃. [2]

(Suite	de la	question	3)
--------	-------	----------	----

(c)	(i)	Exprimez le produit formé par la réaction de SO ₃ avec l'eau.	[1]
	(ii)	Exprimez ce qu'est un acide fort de Brønsted–Lowry.	[2]
(d)		ide nitrique, HNO ₃ , est un autre acide fort de Brønsted–Lowry. Sa base conjuguée 'ion nitrate, NO ₃ ⁻	
	(i)	Dessinez la structure de Lewis de l'ion NO ₃	[1]
	(ii)	Expliquez la géométrie du domaine électronique de l'ion NO_3^- .	[2]

(a)	Le C	e C ₆₀ et le diamant sont des allotropes du carbone.													
	(i)	Résumez une différence entre les liaisons des atomes de carbone dans le C_{60} et dans le diamant.													
	(ii)	Expliquez pourquoi le C_{60} et le diamant sont sublimés à différentes températures et pressions.													
(b)	(i)	Exprimez deux caractéristiques indiquant que le propane et le butane font partie de la même série homologue.													

(Suite de la question 4)

(ii)	Suggérez le fragment causant le pic R dans le spectre de masse du butane.	[1]
------	--	-----

Supprimé pour des raisons de droits d'auteur

(c)	Décrivez un test, avec les résultats attendus, permettant d'identifier la présence de liaisons doubles carbone–carbone.	[2
Test		
Rési	ultat :	

Tournez la page

(Su	te de	ia que	estion 4)	
	(d)	Le b	ut-2-ène réagit avec le bromure d'hydrogène.	
		(i)	Dessinez la formule de structure complète du but-2-ène.	[1]
			,	
		(ii)	Écrivez l'équation de la réaction entre le but-2-ène et le bromure d'hydrogène.	[1]
		(iii)	Exprimez le type de réaction dont il s'agit.	[1]
		(iv)	Suggérez deux différences dans le spectre RMN ¹ H du but-2-ène et celui du produit organique obtenu à la question (d)(ii).	[2]

(Suite de la question 4)

(e) Le chlore réagit avec le méthane.

$$\operatorname{CH_4}(g) + \operatorname{Cl_2}(g) \to \operatorname{CH_3Cl}(g) + \operatorname{HCl}(g)$$

(i) Calculez la variation d'enthalpie de la réaction, ΔH , en utilisant la section 11 du recueil de données.

[3]

 	 	 ٠.	 • •	 	٠.	٠.	 	٠.	 	 	 	 	 		 	 	٠.	
 	 	 ٠.	 	 	٠.	٠.	 		 	 	 	 	 	٠.	 	 		
 	 	 	 	 	٠.	٠.	 		 	 	 	 	 		 	 		
 	 	 	 	 		٠.	 		 	 	 	 	 		 	 		
 	 	 	 	 		٠.	 		 	 	 	 	 		 	 		
 	 	 	 	 	٠.	٠.	 		 	 	 	 	 		 	 		
 	 	 ٠.	 	 			 		 	 	 	 	 		 	 		

(ii) Dessinez et légendez un diagramme d'enthalpie pour cette réaction.

[2]

(a) Déduisez les demi-équations de réaction à chacune des électrodes.	[2]
Cathode (électrode négative):	
Anode (électrode positive):	
(b) Déduisez la réaction globale de la cellule en incluant les symboles d'état. Utilisez la section 7 du recueil de données.	[2]

Références :

Tous les autres textes, graphiques et illustrations : © Organisation du Baccalauréat International 2022

