Hoja 3 MAEDO.

Ejercicio 1. Resolver para cualquier valor real de a,b $y' = \frac{xy+ay+bx+ab}{xy+by+ax+ab}$.

Ejercicio 2. Demostrar que el cambio de variable z(t) = ty(t) reduce la ecuación diferencial $y' = \frac{yf(ty)}{tg(ty)}$ a variables separables.

Ejercicio 3.

- 1. Resolver, cuando sea posible, $y' = \frac{2y-x}{x}$ con la condición inicial $y(x_0) = y_0$.
- 2. Dar la solución de la ecuación diferencial $y' = \frac{-y}{x+y}$ que pasa por el punto
 - a) (1,3).
 - b) (1,0).
 - c) (1,-2).
- 3. Dar la solución de la ecuación diferencial $y' = \frac{2x^2 + xy + y^2}{2x^2 + 3xy y^2}$ que pasa por el punto
 - a) (1,1).
 - b) (1,-1).
 - c) (1, -2).

Ejercicio 4. Demostrar que las soluciones de $y' = y^4 + 1$ son monótonas crecientes.

Ejercicio 5. Dada la ecuación diferencial y' = g(y), donde g es una función continua en algún intervalo I, se pide demostrar que cualquier solución de dicha ecuación es monótona en cualquier intervalo de extremos $x_0 < x_1$, donde x_0 y x_1 son dos ceros consecutivos en I de la función g.

Ejercicio 6. De la ecuación diferencial lineal y' + y = b(t) sabemos que b es continua $y \lim_{t \to +\infty} b(t) = \lambda \in [-\infty, +\infty]$. Demostrar que si y(t) es una solución de la ecuación diferencial entonces se verifica

$$\lim_{t \to +\infty} y(t) = \lambda$$

Ejercicio 7. Resolver la ecuación diferencial $(3xy^2-4y)+(3x-4x^2y)y'=0$ buscando un factor integrante de la forma $\mu(x,y)=x^ny^m$.

Ejercicio 8. Sea g una función continua en todo \mathbb{R} . Demostrar que $x(t) = \int_0^t e^{k(t-s)}g(s)ds$ resuelve la ecuación diferencial x' = kx + g para $k \in \mathbb{R}$.

Ejercicio 9. Dar las soluciones, cuando sea posible, de la ecuación diferencial $y' = t \tan y$ que pasan por el punto (x_0, y_0) .

Ejercicio 10. Dar la ecuación diferencial de

- 1. la familia de rectas tangentes a la parábola $y = 4x^2$.
- 2. la famiia de circunferencias con centros en la recta y = x que son tangentes a ambos ejes coordenados.

Ejercicio 11. Demostrar que las soluciones de $y' = 1 + t^2 + \sin^2 y$ son crecientes.

Ejercicio 12. Demostrar que si y_1 e y_2 son dos soluciones de la ecuación diferencial de Riccati $y' = f(t) + g(t)y + h(t)y^2$ entonces el cambio de variable $y = \frac{y_1 - ty_2}{1 - t}$ la reduce a exacta.

Ejercicio 13. Probar que la ecuación de Bernoulli $y' + a(x)y = b(x)y^{\alpha}$ tiene un factor integrante de la forma $y^{-m}e^{(1-m)\int a(x)dx}$.

Ejercicio 14. Encontra los valores de m y n para los que $\mu(x,y)=x^ny^m$ es un factor integrante de la ecuación diferencial

 $y + x^2y^2 + (3x^3y - 2x)y' = 0.$

Ejercicio 15. Sea p un polinomio en y de grado impar. Demostar que la ecuación diferencial $y' = x^2 p(y)$ siempre admite una solución constante.

Ejercicio 16. Sea f una función continua en \mathbb{R} y T-periódica. consideramos la ecuación diferencial y'=f(x)y. Demostrar que la ecuación diferencial admite soluciones periódicas no triviales si y sólo si $\int_0^T f(z)dz=0$.