ADDITION OF VECTORS:

- 1. Addition of vectors is also called resultant of vectors.
- 2. **Resultant** is a single vector that gives the total effect of number of vectors.

Resultant can be found by using

- a) Triangle law of vectors
- b) Parallelogram law of vectors
- c) Polygon law of vectors
- Two vectors can be added either by triangle law or parallelogram law of vectors
- 4. **Triangle law:** If two vectors are represented in magnitude and direction by the two sides of a triangle taken in order, then the third side taken in the reverse order represents their sum or resultant in magnitude as well as in direction.

5. Parallelogram law:

If two vectors \vec{P} and \vec{Q} are represented by the two sides of a parallelogram drawn from a point, then their resultant is represented in magnitude and direction by the diagonal of the parallelogram passing through that point.

$$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$$

$$Tan \alpha = \frac{Q \sin \theta}{P + Q \cos \theta}$$
; $tan \beta = \frac{P \sin \theta}{Q + P \cos \theta}$

- 6. The resultant of two vectors is the vectorial addition of two vectors.
- 7. The resultant of any two vectors makes lesser angle with the greater vector.
- 8. If $|\vec{A}| > |\vec{B}|$ $\alpha < \beta$
- 9. The magnitude of the resultant of two vectors of magnitudes a and b with arbitrary directions must be in the range $(a \Box b)$ to (a + b).

10. \vec{a} and \vec{b} are two vectors which when added give a vector

$$\vec{c}$$
 (i.e.,) $\vec{a} + \vec{b} = \vec{c}$ and if

i) $|\vec{a}| + |\vec{b}| = |\vec{c}|$ then \vec{a} and \vec{b} are parallel vectors ($\theta = 0^{\circ}$)

ii)
$$|\vec{a}|^2 + |\vec{b}|^2 = |\vec{c}|^2$$
 then \vec{a} and \vec{b} are perpendicular vectors ($\theta = 90^\circ$)

- iii) $|\vec{a}| |\vec{b}| = |\vec{c}|$ then \vec{a} and \vec{b} are antiparallel vectors ($\theta = 180^{\circ}$)
- iv) $|\vec{a}| = |\vec{b}| = |\vec{c}|$ then \vec{a} and \vec{b} are inclined to each other at 120°

v) If
$$|\vec{A}| = |\vec{B}|$$
 and $|\vec{A} + \vec{B}| = |\vec{A}|$, then $\theta = 120^{\circ}$.

vi) If
$$|\vec{A}| = |\vec{B}|$$
 and $|\vec{A} - \vec{B}| = |\vec{A}|$, then $\theta = 60^{\circ}$.

vii) If
$$|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$$
, then $\theta = 90^{\circ}$.

11. If two vectors each of magnitude F act at a point, the magnitude of their resultant (R) depends on the angle θ between them.

$$R = 2F\cos(\theta/2)$$
.

Angle between forces (θ)	Magnitude of resultant
0°	2F
60°	√3 F
90°	$\sqrt{2}$ F
120°	F
180°	0

- 12. Minimum number of equal vectors to give a zero resultant is 2.
- 13. The minimum number of unequal vectors to give a zero resultant is 3.
- 14. There are three laws of addition of vectors.
 - a) Commutative law: $\vec{A} + \vec{B} = \vec{B} + \vec{A}$
 - b) Associative law: $\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$
 - c) Distributive law: $m(\bar{A} + \bar{B}) = m\bar{A} + m\bar{B}$ where m is a scalar.
- 15. If the number of vectors is more than two, polygon law of vectors is used.
- 16. **Polygon law**: If a number of vectors are represented by the sides of a polygon taken in the same order, the resultant is represented by the closing side of the polygon taken in the reverse order.

$$\vec{R} = \vec{A} + \vec{B} + \vec{C} + \vec{D}$$

