

ACADEMIC GRADUATE STUDIES AND RESEARCH DIVISION SECOND SEMESTER 2023-2024

Course Handout (Part -II)

Date: 12.08.2023

In addition to part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No.: CE G562

Course Title: Advanced Concrete Technology

Instructor-in-charge: Prof. Arkamitra Kar

Scope and objectives of the course:

- Comprehensive scientific insight into concrete ingredients and their influence on hydration kinetics.
- Analysis of chemical compositions of different raw materials involved in cement manufacture and their influences on the mechanical and deformation characteristics of structural concrete.
- Necessity and development of sustainable alternatives for portland cement concrete.

Expected Course Outcomes:

At the end of this course, the students will develop an ability to:

- Apply the knowledge in modern construction practices.
- Evaluate fresh and hardened properties of concrete based on composition and ambience.
- Investigate and provide engineering solutions for the degradation of concrete in different exposure conditions.
- Design mix proportions for different combinations of portland cement and also of alternative binders through the use of industrial wastes.

Student Learning Outcomes (SLOs) assessed in this course -(a), (b), (c), (e), (f), (g), (h), (j), and (k).

Textbook(s):

Text Book (TB)

- 1. Mehta, P. K., and Monteiro, P. J. M., "Concrete: Microstructure, Properties, and Materials", 4th Ed., 2013, McGraw-Hill Education, USA.
- 2. Neville, A.M, "Concrete Technology", 2010, Addison Wesley Longman Limited, Harlow, UK.

Reference Books (RB)

- 1. Taylor, H. F. W., "Cement Chemistry", 2nd Ed., 1997, Thomas Telford Publishing, London, UK.
- 2. Mindess, S., Young, J. F., and Darwin, D., "Concrete", Second Ed., 2002, Pearson Education, New Jersey, USA.
- 3. Malhotra, V. M., and Carino, N. J., "Handbook on Nondestructive Testing of Concrete", Second Ed., 2004, CRC Press, ASTM International, PA, USA.
- 4. Provis, J. L., and van Deventer, J. S. J., "Geopolymers: Structures, Processing, Properties and Industrial Applications", 2009, 1st Ed., Woodhead Publishing, Cambridge, UK.
- 5. ASTM Standards, ACI Codes, IS Codes as necessary, and as referred in TB and RB.
- 6. Kett, I., "Engineered Concrete: Mix Design and Test Methods", 2nd Ed. 2010, CRC Press, T & F, FL, USA.
- 7. Newman, J. and Choo, B.S., "Advanced Concrete Technology", Vol. 1 4, 2003, Butterworth Heinemann (ELSEVIER), MA, USA.

Lecture wise Course Plan

СО	Lec. No.	Topics Covered	Learning Objectives	Referenc e to TB, RB	SLO*
1	1-7	Components of Concrete: Chemical Properties of Cement & Cementitious paste	Study the constituents, history, advantages, limitations and applications of cement; Study the raw materials, manufacturing processes, composition and types of portland cement; Study the hydration reactions, C-S-H models, heat of hydration and relevant experiments on cement paste and mortar; Study the microstructure of cementitious paste and microanalysis techniques and compute relevant volume stoichiometries. Enumerate the differences between classical and modern approaches.	Ch 1 – 4 (TB 1), Ch 6 (TB 1), Ch 1, 3, 4, 5, 7 (RB 1); Ch 1 – 4 (RB 2)	(a), (k)
2	8	Components of Concrete: Properties of Aggregates	Study the sources and mineralogical composition of aggregates; Study the techniques to determine aggregate properties. Study the concepts of high-performance concrete using different types of aggregates.	Ch 7 (TB 1)	(a)
	9 –10	Chemistry of Admixtures: Mineral	Study supplementary cementitious materials (SCM) and pozzolans (Artificial and natural); Study their influences on the volume stoichiometry of hydration reactions through numerical problems; study the differences between pozzolanic and hydraulic SCM; Study the influence of SCMs on fresh and hardened properties of blended concrete and how to apply them in different field conditions.	Ch 8 (TB 1), Ch 9 (RB 1)	(a), (c), (g)

	Chemistry of Admixtures: Chemical		res:	Study the different types of chemical admixtures; Study their reaction mechanisms and effects of chemical admixtures on concrete characteristics; compare ancient construction practices with modern ones; determine the type of admixture for practical uses based on environmental, economic, and service requirements.		Ch 8 (TB 1)		(a),	(c)		
3 12 - 16		Characteriz- ation of concrete – powdered and solid		Study mineralogical, microstructural, elemental, and thermogravimetric techniques and working principles; analyze respective outputs. Evaluate the relative efficiency of modern techniques over classical ones based on accuracy of output.		Ch 8 (RB 1)		(a), (b), (k)			
		17	7 - 21	Effect of concret composition Properties Fresh Condition	e on on s of	Study the effect of concrete composition and curin workability, setting times, segregation, bleeding, a rheology of fresh concrete. Determine and recomn engineering solutions based on ambient conditions while adhering to a professional and ethical code.	nd nend	Ch (TE		(a), (c)	
4	22-		com Pro H	Effect of concrete aposition on operties of Hardened Concrete arability of concrete	prop serv the c prop in co Stud envi	by the physical, chemical and engineering perties of hardened concrete; study the iceability and deformation parameters; compute correlation between micro- and specimen level perties; analyse the interfacial transition zone (ITZ) concrete. By the factors affecting durability of concrete—ronmental, physical, and chemical. Study the ability test methods; investigate and analyze perent models for service life prediction of concrete.	(T	4, 13 B 1)		(a) (a)	-
-	32-		Nor Ev	hniques for adestructive valuations NDE) of Concrete	class appl	ly the different NDE techniques for concrete – sical and modern; determine the suitability and icability for each technique based on locational economic constraints.	(T.	h 11 B 1), B 3	1),		
5	35 -	- 37	Co	Special ncrete and en Concrete	gree husk alco for p	ign various mix proportions of raw materials for in concrete using additives like metakaolin, rice ash, sugarcane bagasse ash, microsilica, ofines. Compare with the manufacturing process portland cement; develop the groundwork for ing up with ethical guidelines to train field kers; concrete containing 3-D printed rebars.	(T C (R	h 12 B 1), h 11 B 1), B 7	3 1), (g), (h), (j) 11 3 1),		

innovate	achieve	lead

38 -	Concrete with Alkali Activated Binder	Study the modern developments in the field of concrete with alkali-activated fly ash and/or slag binders; study the chemistry of alkali-activated binders and compute the volume stoichimoteries; enumerate the differences between alkali – activated binders and blended cements; design optimum mix proportions based on locational and ethical restraints; analyze the potential for practical use of this binder over portland cement.	Ch 1 – 6 (RB 4)	(b), (c), (e), (f), (g), (h), (j), (k)
------	---------------------------------------	---	--------------------	--

*Student Learning Outcomes (SLOs):

SLOs are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (i) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Evaluation Scheme

Ec. No.	Evaluation component	Duration	Weightage	Date, time	Nature of component
1.	Midterm	90 mins.	25%	09/10 - 2.00 - 3.30PM	OB
2.	Seminar	-	20%		OB
3.	Assignments (5)	-	25%		OB
4.	Compre. Exam	180 mins.	30%	16/12 FN	OB

Chamber Consultation Hour: To be announced in the class.

Notices: All Notices concerning to the course will be displayed through the **CMS**. **Make up policy:** Makeup will be given only to the genuine cases with prior permission.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge CE G562