现代密码学理论与实践

第4章 有限域

苗付友 黄文超

October 10, 2019

课件地址

http://staff.ustc.edu.cn/~huangwc/crypto.html

Motivation

- DES 的问题
- AES 加密与椭圆曲线加密

苗付友 黄文超

- 域是一些元素的集合,其上定义了两个算术运算(加法和乘法),具有常规算术性质,如封闭性、结合律、交换律、分配律、加法逆和乘法逆等。
- 模算术是一种整数算术,它将所有整数约减为一个固定的集合 [0,1,...,n-1],n为某个整数。任何这个集合外的整数通过除以 n 取余的方式约减到这个范围内。
- 两个整数的最大公因子是可以整除这两个整数的最大正整数。
- 一个有限域就是有有限个元素的域。可以证明有限域的阶 (元素个数) 一定可以写作素数的幂形式 pⁿ, n 为一个整数, p 为素数。
- 阶为 p^n , n > 1 的有限域可由多项式算术来定义。

Outline

- 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- 6 有限域 GF(2ⁿ)

Outline

- ① 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- 6 有限域 GF(2ⁿ)

群 Groups

定义: 群 {G,·}

定义一个二元运算·的集合,G中每一个序偶 (a,b) 通过运算生成 G中 元素 (a·b), 满足下列公理:

- A1 封闭性 Closure: 如果 a 和 b 都属干 G 则 $a \cdot b$ 也属干 G
- A2 结合律 Associative: 对于 G 中任意元素 a, b, c, 都有 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ 成立
- A3 单位元 Identity element: G 中存在一个元素 e, 对于 G 中任意元素 a. 都有 $a \cdot e = e \cdot a = a$ 成立
- A4 逆元 Inverse element: 对于 G 中任意元素 a, G 中都存在一个元素 a'. 使得 a·a' = a'·a = e 成立

群 Groups

例子: 群

用 N_n 表示 n 个不同符号的集合, $N_n = \{1, 2, ..., n\}$ 。 n 个不同符号的一个置换是一个 N_n 到 N_n 的一一映射。 定义 S_n 为 n 个不同符号的所有置换组成的集合。 S_n 中的每一个元素都代表集合 $\{1, 2, ..., n\}$ 的一个置换, 容易验证, S_n 是一个群:

- A1 如果 $\pi, \rho \in S_n$, 则合成映射 $\pi \cdot \rho$ 根据置换 π 来改变 ρ 中元素的次序而形成,如, $\{3,2,1\} \bullet \{1,3,2\} = \{2,3,1\}$,显然 $\pi \cdot \rho \in S_n$
- A2 映射的合成显而易见满足结合律
- A3 恒等映射就是不改变 n 个元素位置的置换,对于 S_n ,单位元是 $\{1,2,...,n\}$
- A4 对于任意 $\pi \in S_n$,抵消由 π 定义置换的映射就是 π 的逆元,这个 逆元总是存在,例如: $\{2,3,1\} \bullet \{3,1,2\} = \{1,2,3\}$

苗付友 黄文超 October 10, 2019 7 / 46

群 Groups

定义: 有限群 Finite Group 和无限群 Infinite Group

- 如果一个群的元素是有限的,则该群称为有限群
- 群的阶等于群中元素的个数
- 反之,如果一个群的元素是无限的,则该群称为无限群

定义: 交换群 Abelian Group (阿贝尔群)

A5 交換律 Commutative: 对于 G 中任意的元素 a, b, 都有 $a \cdot b = b \cdot a$ 成立

定义: 循环群 Cyclic Group

- 如果群中的每一个元素都是一个固定的元素 $a(a \in G)$ 的幂 $a^k(k)$ 整数),则称群 G 为循环群
- 元素 a 生成了群 G, 或者说 a 是群 G 的生成元。

8 / 46

环 Rings

定义: 环 {*R*, +, ×}

具有加法和乘法两个二元运算的元素的集合,对于环中的所有 a, b, c,都服从以下公理:

- [A1-A5] 关于加法是一个交换群。单位元是 0, a 的逆是 -a.
- M1 乘法封闭性 如果 a 和 b 属于 R, 则 ab 也属于 R
- M2 乘法结合律 对于 R 中任意 a,b,c 有 a(bc)=(ab)c.
- M3 乘法分配律 a(b+c) = ab + ac 或者 (a+b)c = ac + bc

定义: 交换环

M4 乘法交换律 ab = ba,交换环

定义: 整环

- M5 乘法单位元 R 中存在元素 1 使得所有 a 有 a1 = 1a.
- M6 无零因子 如果 R 中有 a, b 且 ab = 0, 则 a = 0 or b = 0.

域 Fields

定义: 域 {*F*,+×}

具有加法和乘法的两个二元运算的元素的集合,对于 F 中的任意元素 a, b, c, 满足以下公理:

● [A1-M6] F 是一个整环

M7 乘法逆元 对于 F 中的任意元素 a(除 0 以外), F 中都存在一个元素 a^{-1} , 使得 $aa^{-1}=(a^{-1})a=1$.

性质

域就是一个集合,在其上进行加减乘除而不脱离该集合

• 除法: $a/b = a(b^{-1})$

例子

- 有理数集合, 实数集合和复数集合都是域
- 整数集合不是域,因为只有 1 和-1 有乘法逆元

苗付友 黄文超 第 4 章有限域 October 10, 2019

10 / 46

群、环、域的关系

Outline

- ❶ 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- 6 有限域 GF(2ⁿ)

苗付友 黄文超

模运算

定义

给定任意正整数 n 和 a, 如果用 a 除以 n, 得到的 $\overline{\mathbf{a}}$ q 和 \mathbf{s} 数r 满足如下 关系:

$$a = qn + r$$

其中 $0 \le r < n$; $q = \lfloor a/n \rfloor$ 。 $\lfloor x \rfloor$ 表示小于等于 x 的最大整数。

性质

给定 a 和 n 时, q 和 r 即唯一确定, 即

$$a = \lfloor a/n \rfloor \times n + (a \mod n)$$

因子 Divisors

定义: 因子

如果 a = mb, 其中 a, b, m 为整数,则当 $b \neq 0$ 时,即 b 能整除a, 或 a 除以 b 余数为 0, $b \mid a$, 则 $b \in a$ 的一个因子。

例子

24 的正因子有 1, 2, 3, 4, 6, 8, 12 和 24。

性质

- 如果 a | 1, 则 a = ±1
- 如果 a | b, 且 b | a, 则 a = ±b
- 任何 b≠0 能整除 0
- 如果 b | g, 且 b | h, 则对任何整数 m 和 n 有 b | (mg + nh)

14 / 46

同余 Congruence

定义:同余

如果 $(a \mod n) = (b \mod n)$, 则称整数 $a \mod b$ 是模 $n \mod s$.

性质

- 如果 n | (a − b), 则 a = b mod n (= 代表模 n 同余)
- 如果 $a = b \mod n$, 则 $b = a \mod n$
- 如果 $a = b \mod n$ 且 $b = c \mod n$, 则 $a = c \mod n$

模算术运算

定义: 模算术

运算 (mod n) 将所有整数映射到集合 $\{0,1,\ldots,(n-1)\}$ 。 因此,限制在这个集合的技术称为<mark>模算术</mark>。

性质

- $\bullet \ [(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n$
- $\bullet [(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

模算术运算

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Table: 模 8 加法

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Table: 模 8 乘法

模算术运算

定义:加法逆元 - w

若存在 z, 使得

$$w + z = 0 \mod n$$

则, z 即为加法逆元 -w

定义:乘法逆元 w^{-1}

若存在 z,使得

$$w \times z = 1 \mod n$$

则,z 即为乘法逆元 w^{-1}

W	0	1	2	3	4	5	6	7
-w	0	7	6	5	4	3	2	1
w^{-1}	_	1	_	3	_	5	_	7

Table: 模 8 的加法逆元和乘法逆元

模运算的性质

定义: 剩余类集 剩余集 Residues

定义比n小的非负整数集合为 Z_n :

$$Z_n = \{0, 1, ..., (n-1)\}$$

定义: 剩余类

模 n 的剩余类表示为 $[0],[1],[2],\ldots,[n-1]$, 其中:

$$[r] = \{ a \mid a \in Z \land (a \equiv r \mod n) \}$$

例:模4的剩余类

$$[0] = \{\dots, -8, -4, 0, 4, 8, \dots, \}, \quad [1] = \{\dots, -7, -3, 1, 5, 9, \dots, \}$$

$$[2] = {\ldots, -6, -2, 2, 6, 10, \ldots}, [3] = {\ldots, -5, -1, 3, 7, 11, \ldots}$$

19 / 46

模运算的性质

Table: Zn 中整数模运算的性质

性质	表达式
	$(w+x) \mod n = (x+w) \mod n$
2 3	$(w \times x) \mod n = (x \times w) \mod n$
	$[(w+x)+y] \mod n = [w+(x+y)] \mod n$
知口 件	$[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
分配律	$[w \times (x+y)] \mod n = [(w \times x) + (w \times y)] \mod n$
单位元	$(0+w) \mod n = w \mod n$
半证儿	$(1 \times w) \mod n = w \mod n$
加法逆元 (-w)	$\forall w \in Z_n$, 存在一个 z 使得 $w + z = 0 \mod n$

Outline

- ❶ 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- 6 有限域 GF(2ⁿ)

欧几里得算法 Euclid Algorithm

(回顾) 定义: 因子

如果 a = mb, 其中 a, b, m 为整数,则当 $b \neq 0$ 时,即 b 能整除a, 或 a 除以 b 余数为 0, $b \mid a$, 则 b 是 a 的一个因子。

定义: 最大公因子

正整数 c 称为 a 和 b 的最大公因子, 如果

- ① c是 a和 b的因子
- ② a和 b的任何公因子都是 c的因子

等价定义为:

$$gcd(a, b) = max [k, 满足k | a \land k | b]$$

性质

对任意非负整数 a 和任意正整数 b:

$$gcd(a, b) = gcd(b, a \mod b)$$

欧几里得算法 Euclid Algorithm

EUCLID(a, b)

- ② if B = 0 return $A = \gcd(a, b)$
- A ← B
- ogoto 2

例: 求 gcd(1970, 1066)

$$\begin{array}{llll} 1970 & = 1 \times 1066 + 904 & \gcd(1066, 904) \\ 1066 & = 1 \times 904 + 162 & \gcd(904, 162) \\ 904 & = 5 \times 162 + 94 & \gcd(162, 94) \\ 162 & = 1 \times 94 + 68 & \gcd(94, 68) \\ 94 & = 1 \times 68 + 26 & \gcd(68, 26) \\ 68 & = 2 \times 26 + 16 & \gcd(26, 16) \\ 26 & = 1 \times 16 + 10 & \gcd(16, 10) \\ 16 & = 1 \times 10 + 6 & \gcd(10, 6) \\ 10 & = 1 \times 6 + 4 & \gcd(6, 4) \\ 6 & = 1 \times 4 + 2 & \gcd(4, 2) \\ 4 & = 2 \times 2 + 0 & \gcd(2, 0) \end{array}$$

Outline

- ❶ 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- 6 有限域 GF(2ⁿ)

有限域 GF(p) Galois Fields

定义: GF(p)

给定一个素数 p, 元素个数为 p 的有限域被定义为: 整数 $\{0,1,\ldots,p-1\}$ 的集合

 Z_p

其中,运算为模 p 的算术运算。

定义: GF(pⁿ) ????

给定一个素数 p, 元素个数为 p 的有限域被定义为: 整数 $\{0,1,\ldots,p^n-1\}$ 的集合

 Z_{p^n}

其中,运算为????

有限域 GF(p) Galois Fields

定义: GF(p)

给定一个素数 p, 元素个数为 p 的有限域被定义为: 整数

 $\{0,1,\ldots,p-1\}$ 的集合

 Z_p

其中,运算为模 p 的算术运算。

性质: 乘法逆元(w^{-1})

任意 $w \in Z_p$, 如果 $w \neq 0$, 则存在 $z \in Z_p$, 使得

 $w \times z \equiv 1 \mod p$

Table: 模 8 的乘法逆元

Table: 模 7 的乘法逆元

6

6

26 / 46

在 GF(p) 中求乘法逆元

扩展的 EUCLID(m,b)

- ② if $B_3 = 0$ return 不存在乘法逆元
- **3** if $B_3 = 1$ return $B_2 = b^{-1} \mod m$
- $Q = \lfloor \frac{A_3}{B_3} \rfloor$
- $(A_1, A_2, A_3) \leftarrow (B_1, B_2, B_3)$
- $(B_1, B_2, B_3) \leftarrow (T_1, T_2, T_3)$
- 3 goto 2

性质:不变式 — 最终 $bB_2 \equiv 1 \mod m$

在每一步计算之后,始终满足

$$mT_1 + bT_2 = T_3$$
, $mA_1 + bA_2 = A_3$, $mB_1 + bB_2 = B_3$

27 / 46

在 GF(p) 中求乘法逆元

例: 在域 GF(1759) 里求元素 550 的乘法逆元

		•	, — • •			
Q	A_1	A_2	A_3	B_1	B_2	B_3
_	1	0	1759	0	1	550
3	0	1	550	1	-3	109
5	1	-3	109	-5	16	5
21	-5	16	5	106	-339	4
1	106	-339	4	-111	355	1

Outline

- ❶ 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- 6 有限域 GF(2ⁿ)

多项式运算

三种多项式运算

- 使用代数基本规则的普通多项式运算
- ② 系数运算是模 p 运算的多项式运算,即系数在 GF(p) 中
- 系数在 GF(p) 中,且多项式被定义为模一个 n 次多项式 m(x)的多项式运算

运算 1: 普通多项式运算

一个 n 次多项式 $(n \ge 0)$ 的表达形式如下

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$$

其中 a_i 是某个指定数集 S 中的元素,该数集称为<mark>系数集</mark>,且 $a \neq 0$, f(x) 是定义在系数集 S 上的多项式

多项式运算

运算 1: 运算法则

如果 $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{i=0}^{m} b_i x^i, n \ge m$, 则加法运算定义为:

$$f(x) + g(x) = \sum_{i=0}^{m} (a_i + b_i)x^i + \sum_{i=m+1}^{n} a_ix^i$$

乘法运算定义为:

$$f(x) \times g(x) = \sum_{i=0}^{n+m} c_i x^i, \quad c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_{k-1} b_1 + a_k b_0$$

多项式运算

运算 1: 例子

如果
$$f(x) = x^3 + x^2 + 2$$
, $g(x) = x^2 - x + 1$ 则:

$$f(x) + g(x) = x^3 + 2x^2 - x + 3$$

$$f(x) - g(x) = x^3 + x + 1$$

$$f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$$

$$f(x) / g(x) = ??$$

运算 2: 系数在 Zp 中的多项式运算

运算 2: 系数在 Z。中的多项式运算

在计算每个系数的值时需要做模运算

例:p = 2 时, 系数为 0 或 1

今
$$f(x) = x^3 + x^2, g(x) = x^2 + x + 1$$
,则

$$f(x) + g(x) = x^3 + x + 1$$

$$f(x) \times g(x) = x^5 + x$$

$$f(x) = x^7 + x^5 + x^4 + x^3 + x + 1, g(x) = x^3 + x + 1, M$$

$$f(x) + g(x) = f(x) - g(x) = x^7 + x^5 + x^4$$

$$f(x) \times g(x) = x^{10} + x^4 + x^2 + 1$$

$$f(x)/g(x) = x^4 + 1$$

运算 2: 系数在 Z, 中的多项式运算

定义: 最大公因式 $c(x) = \gcd(a(x), b(x))$

- c(x) 是可以整除 a(x) 和 b(x)
- a(x) 和 b(x) 的任何公因式都是 c(x) 的因式

性质

$$\gcd[a(x),b(x)]=\gcd[b(x),a(x)\mod b(x)]$$

运算 2: 系数在 Zp 中的多项式运算

EUCLID(*a*, *b*) (最大公因子)

- ② if B = 0 return $A = \gcd(a, b)$
- A ← B
- o goto 2

EUCLID(a(x), b(x)) (最大公因式)

- ② if B(x) = 0 return $A(x) = \gcd[a(x), b(x)]$
- $A(x) \leftarrow B(x)$
- ogoto 2

最大公因式

例: 求 gcd[a(x), b(x)]

其中,
$$a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$
, $b(x) = x^4 + x^2 + x + 1$

- $A(x) = a(x), B(x) = b(x), R(x) = x^3 + x^2 + 1$
- $A(x) = x^4 + x^2 + x + 1, B(x) = x^3 + x^2 + 1, R(x) = 0$
- **3** $gcd[a(x), b(x)] = x^3 + x^2 + 1$

Outline

- ❶ 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- **6** 有限域 $GF(2^n)$

苗付友 黄文超

有限域 $GF(2^n)$

回顾定义: GF(p)

给定一个素数 p, 元素个数为 p 的有限域被定义为: 整数 $\{0,1,\ldots,p-1\}$ 的集合

 Z_p

其中,运算为模 p 的算术运算。

定义: GF(pⁿ) ????

给定一个素数 p, 元素个数为 p 的有限域被定义为: 整数 $\{0,1,\ldots,p^n-1\}$ 的集合

 Z_{p^n}

其中,运算为????

有限域 $GF(2^n)$

回顾定义: GF(p)

给定一个素数 p, 元素个数为 p 的有限域被定义 为: 整数 $\{0,1,\ldots,p-1\}$ 的集合

 Z_p

其中,运算为模 p 的算术运算。

定义: GF(pⁿ) ????

给定一个素数 p, 元素个数为 p 的有限域被定义为: 整数 $\{0,1,\ldots,p^n-1\}$ 的集合

 Z_{p^n}

其中,运算为????

动机: 加密算法

- 域
- 有限域
- 乘法逆元
- 2 进制表达

有限域 $GF(2^n)$

回顾: 三种多项式运算

- 使用代数基本规则的普通多项式运算
- ② 系数运算是模 p 运算的多项式运算,即系数在 GF(p) 中
- ③ $GF(p^n)$: <mark>系数</mark>在 GF(p) 中,且多项式被定义为模一个 n 次多项式 m(x)的多项式运算

有限域 GF(2ⁿ)

运算 3: 多项式模运算

设集合 S 由域 Z_0 上次数小于 n的所有多项式组成,每个多项式具有如 下形式:

$$f(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0 = \sum_{i=0}^{n-1} a_ix^i$$

其中, $a_i \in \{0, 1, ..., p-1\}$ 。 S 共有 p^n 个不同的多项式

- 该运算遵循基本代数规则中的普通多项式运算规则
 - 系数运算以 p 为模,即遵循有限域 Z_o上的运算规则
 - 如果乘法运算的结果是次数大于 n−1 的多项式,那么必须将其除 以某个次数为 n 的既约多项式 m(x) 并取余式。对于多项式 f(x), 这个余数可表示为 $r(x) = f(x) \mod m(x)$

有限域 GF(2ⁿ)

在 $GF(2^n)$ 求乘法逆元

类似于在 GF(p) 中求乘法逆元: 扩展 EUCLID 算法

42 / 46

有限域的另一种表示: 生成元

定义: 生成元 g

对于阶为 q 的有限域,其生成元是一个元素,记为 g, 该元素的前 q-1 个幂构成了 F 的所有非零元素,即域 F 的元素为

$$0, g^0, g^1, \dots, g^{q-2}$$

性质

考虑有多项式 f(x) 定义的域 F, 如果 F 内的一个元素 b 满足 f(b) = 0, 则称 b 为多项式 f(x) 的根, 可以证明:

可以证明一个不可约的多项式的<mark>根</mark> g是这个不可约多项式定义的有限域的<mark>生成元</mark>

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

有限域的另一种表示: 生成元

例: 生成元

考虑有多项式 x^3+x+1 定义的有限域 ${\sf GF}(2^3)$ 。设生成元为 ${\sf g}$,则 ${\sf g}^3+{\sf g}+1=0$ 。因此:

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · 夕久○·

总结

- ❶ 群、环、域
- ② 模运算
- ③ 欧几里得算法
- 4 有限域 GF(p)
- 5 多项式运算
- 6 有限域 GF(2ⁿ)

- Chapter 4 第五版
 - 6, 7, 9, 11, 12, 13, 19, 23, 24, 27