Ankara University

Department of Computer Engineering

BLM332/3032 2021

LAB 4

SECTION 1

Configuring the Serial and the FastEthernet Interface

Router Designation	Router Name	Interface Type	Serial 0/0 Address	Subnet Mask
Router1	R1	DCE	192.168.2.1	255.255.255.0
Router2	R2	DTE	192.168.2.2	255.255.255.0

Device	FastEthernet 0/0 Address	Subnet Mask	Default Getaway
Router1	192.168.1.10	255.255.255.0	N/A
Router2	192.168.3.10	255.255.255.0	N/A
PC1	192.168.1.1	255.255.255.0	192.168.1.10
PC2	192.168.1.2	255.255.255.0	192.168.1.10
PC3	192.168.3.1	255.255.255.0	192.168.3.10

Objective:

• Configure a serial interface on each of two routers so they can communicate.

Step 1: Design above architecture with CPT. (You need to mount WIC-2T serial module to connect two routers.)

Step 2: Configure the IP address of FastEthernet ports of the computers according to table above.

Step 3: Configure the name of the Router 1 as "R1" and fastEthernet interface 0/0 of R1.

R1(config)#interface fastEthernet 0/0

R1(config-if)#ip address 192.168.1.10 255.255.255.0

R1(config-if)#no shutdown

R1(config-if)#exit

R1(config)#exit

Step 4: Find out whether the serial connection of R1 is DCE or DTE?

R1# show controller serial 0/0

Step 5: Configure serial interface serial 0/0.

R1(config)#interface serial 0/0

R1(config-if)#ip address 192.168.2.1 255.255.255.0

R1(config-if)#clock rate 56000

R1(config-if)#no shutdown

R1(config-if)#exit

Step 6: Display information about interfaces on R1.

R1# show ip interface brief

Step 7: Configure the name of Router 2 as "R2".

Step 8: Configure serial interface serial 0/0 for Router 2. (There is no need for *clockrate* since the serial connection of Router 2 is a DTE interface.)

R2(config)#interface serial 0/0

R2(config-if)#ip address 192.168.2.2 255.255.255.0

R2(config-if)#no shutdown

R2(config-if)#exit

Step 9: Configure fastEthernet interface 0/0 of R2.

R2(config)#interface fastEthernet 0/0

R2(config-if)#ip address 192.168.3.10 255.255.255.0

R2(config-if)#no shutdown

R2(config-if)#exit

R2(config)#exit

Step 10: Display information about interfaces on R2.

R2# show ip interface brief

Step 11: Verify that the serial connection is functioning.

R1#ping 192.168.2.2

R2#ping 192.168.2.1

Step 12: Verify that all connections are functioning

PC1>ping 192.168.3.1

PC2>ping 192.168.3.1

PC3>ping 192.168.1.1

Step 13: Notice that computers of both ends did not connect.

SECTION 2

Configuring Static Routes

Objective:

• Configure static routes between routers to allow data transfer between routers without the use of dynamic routing protocols

Step 1: Check the routing table entries

R1>show ip route

R2>show ip route

Step 2: Adding static routes.

In global configuration mode, add a static route on R1 to network 192.168.3.0 and on

R2 to network 192.168.1.0

R1(config)#ip route 192.168.3.0 255.255.255.0 192.168.2.2

R2(config)#ip route 192.168.1.0 255.255.255.0 192.168.2.1

Step 3: Verify the new routes.

R1>**show ip route**

R2>show ip route

Step 4: Ping host to host again.

Step 5: Remove static routes

R1(config)#no ip route 192.168.3.0 255.255.255.0 192.168.2.2

R2(config)#no ip route 192.168.1.0 255.255.255.0 192.168.2.1

SECTION 3

Configuring RIP

Objective:

• Configure RIP between routers to allow data transfer between routers.

Step 1: Check the routing table entries.

R1>show ip route

R2>show ip route

Step 2: Configure the routing protocol on the R1.

R1(config)#router rip

R1(config-router)#network 192.168.1.0

R1(config-router)#network 192.168.2.0

R1(config-router)#exit

R1(config)#exit

Step 3: Configure the routing protocol on the R2.

R2(config)#router rip

R2(config-router)#network 192.168.2.0

R2(config-router)#network 192.168.3.0

R2(config-router)#exit

R2(config)#exit

Step 4: Verify the new routes.

R1>show ip route

R2>show ip route

Step 5: Ping host to host again.

Step 6: Make sure that routing updates are being sent and observe the routing activity.

R1#debug ip rip

R2#debug ip rip

Step 7: Stop routing updates from R1 to R2

R1(config)#router rip

R1(config-router)#passive-interface default

Step 8: Stop observing routing activity.

R1#no debug ip rip

R2#no debug ip rip

Note: It is important to understand the difference between "no debug ip rip" and "passive interface default" commands.