In [1]: import pandas as pd
 import numpy as np
 from sklearn.preprocessing import StandardScaler
 from sklearn.linear_model import LogisticRegression
 from sklearn.model_selection import train_test_split

In [3]: df=pd.read_csv("C3_bot_detection_data.csv")
df

	User ID	Username	Tweet	Retweet Count	Mention Count	Follower Count	Verified	Bot Label	Location	Creat
0	132131	flong	Station activity person against natural majori	85	1	2353	False	1	Adkinston	202 05- 15:29:
1	289683	hinesstephanie	Authority research natural life material staff	55	5	9617	True	0	Sanderston	202 11- 05:18:
2	779715	roberttran	Manage whose quickly especially foot none to g	6	2	4363	True	0	Harrisonfurt	202 08- 03:16:
3	696168	pmason	Just cover eight opportunity strong policy which.	54	5	2242	True	1	Martinezberg	202 08- 22:27:
4	704441	noah87	Animal sign six data good or.	26	3	8438	False	1	Camachoville	202 04- 21:24:
49995	491196	uberg	Want but put card direction know miss former h	64	0	9911	True	1	Lake Kimberlyburgh	202 04- 11:06:
49996	739297	jessicamunoz	Provide whole maybe agree church respond most	18	5	9900	False	1	Greenbury	202 10- 03:57:
49997	674475	lynncunningham	Bring different everyone international capital	43	3	6313	True	1	Deborahfort	202 07- 03:54:
49998	167081	richardthompson	Than about single generation itself seek sell	45	1	6343	False	0	Stephenside	202 03- 12:13:
49999	311204	daniel29	Here morning class various room human true bec	91	4	4006	False	0	Novakberg	202 12- 06:11:

```
In [5]: df1=df.iloc[:,3:8]
df1
```

Out[5]:

	Retweet Count	Mention Count	Follower Count	Verified	Bot Label
0	85	1	2353	False	1
1	55	5	9617	True	0
2	6	2	4363	True	0
3	54	5	2242	True	1
4	26	3	8438	False	1
49995	64	0	9911	True	1
49996	18	5	9900	False	1
49997	43	3	6313	True	1
49998	45	1	6343	False	0
49999	91	4	4006	False	0

50000 rows × 5 columns

```
In [6]: df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 5 columns):
```

```
#
   Column
                  Non-Null Count Dtype
                  -----
   -----
   Retweet Count
0
                  50000 non-null int64
1
   Mention Count
                  50000 non-null int64
2
   Follower Count 50000 non-null int64
   Verified
3
                  50000 non-null bool
   Bot Label
                  50000 non-null int64
```

dtypes: bool(1), int64(4)
memory usage: 1.6 MB

```
In [8]: y=df1["Verified"]
x=df1.drop(["Verified"],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [9]: lr=LogisticRegression()
lr.fit(x_train,y_train)
```

Out[9]: LogisticRegression()

```
In [13]: | lr.predict(x_test)
```

Out[13]: array([True, True, True, ..., False, True, True])

```
In [14]: lr.score(x_test,y_test)
Out[14]: 0.494
In [15]:
          df2=pd.read csv("C4 framingham.csv")
Out[15]:
                 education currentSmoker cigsPerDay BPMeds
            age
                                                              prevalentStroke prevalentHyp diabetes totChol sysBl
                                       0
                                                 0.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                              106.
             39
                       4.0
                                                                                                      195.0
                                       0
             46
                       2.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
         )
                                                 0.0
                                                                                                      250.0
                                                                                                              121.
             48
                       1.0
                                       1
                                                20.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                  0
                                                                                                      245.0
                                                                                                              127.
         )
             61
                       3.0
                                       1
                                                30.0
                                                          0.0
                                                                           0
                                                                                        1
                                                                                                 0
                                                                                                      225.0
                                                                                                              150.
         )
             46
                       3.0
                                       1
                                                23.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                      285.0
                                                                                                              130.
                                                           ...
             50
                       1.0
                                       1
                                                 1.0
                                                          0.0
                                                                           0
                                                                                        1
                                                                                                 0
                                                                                                      313.0
                                                                                                              179.
             51
                       3.0
                                       1
                                                43.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                      207.0
                                                                                                              126.
         )
             48
                       2.0
                                       1
                                                20.0
                                                         NaN
                                                                           0
                                                                                        0
                                                                                                 0
                                                                                                      248.0
                                                                                                              131.
                                                15.0
                                                          0.0
                                                                                        0
                                                                                                 0
                                                                                                              126.
             44
                       1.0
                                       1
                                                                           0
                                                                                                      210.0
         )
             52
                       2.0
                                       0
                                                 0.0
                                                          0.0
                                                                           0
                                                                                        0
                                                                                                  0
                                                                                                      269.0
                                                                                                              133.
         × 16 columns
In [16]: | df2=df2.dropna()
In [17]: | df2.info()
           <class 'pandas.core.frame.DataFrame'>
           Int64Index: 3656 entries, 0 to 4237
           Data columns (total 16 columns):
            #
                Column
                                    Non-Null Count
                                                      Dtype
                ----
            0
                male
                                    3656 non-null
                                                       int64
            1
                age
                                    3656 non-null
                                                       int64
            2
                education
                                                      float64
                                    3656 non-null
            3
                currentSmoker
                                    3656 non-null
                                                       int64
            4
                cigsPerDay
                                                      float64
                                    3656 non-null
            5
                BPMeds
                                    3656 non-null
                                                      float64
            6
                                    3656 non-null
                                                      int64
                prevalentStroke
            7
                                                      int64
                prevalentHyp
                                    3656 non-null
            8
                diabetes
                                    3656 non-null
                                                       int64
            9
                totChol
                                    3656 non-null
                                                      float64
            10
                sysBP
                                    3656 non-null
                                                      float64
            11
                diaBP
                                    3656 non-null
                                                      float64
            12
                                                      float64
                BMI
                                    3656 non-null
            13
                                                      float64
                heartRate
                                    3656 non-null
            14
                glucose
                                    3656 non-null
                                                      float64
            15
                TenYearCHD
                                    3656 non-null
                                                       int64
           dtypes: float64(9), int64(7)
           memory usage: 485.6 KB
```

```
In [26]: |y=df2["diabetes"]
         x=df2.drop(["diabetes"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [27]: | 1r=LogisticRegression()
         lr.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:763: Conve
         rgenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.or
         g/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (http
         s://scikit-learn.org/stable/modules/linear model.html#logistic-regression)
           n iter i = check optimize result(
Out[27]: LogisticRegression()
In [29]: val=[[1,34,5,1,4,1,0,1,123,108,89,29,84,70,1]]
         lr.predict(val)
Out[29]: array([0], dtype=int64)
In [31]: |lr.score(x_test,y_test)
Out[31]: 0.9817684594348223
In [30]: df3=pd.read_csv("C5_health care diabetes.csv")
         df3
```

Out[30]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Out
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	

768 rows × 9 columns

<

```
In [32]: |df3.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 768 entries, 0 to 767
         Data columns (total 9 columns):
          #
              Column
                                        Non-Null Count Dtype
              _____
          0
              Pregnancies
                                         768 non-null
                                                         int64
                                        768 non-null
          1
              Glucose
                                                         int64
          2
              BloodPressure
                                        768 non-null
                                                         int64
          3
              SkinThickness
                                        768 non-null
                                                         int64
          4
              Insulin
                                        768 non-null
                                                         int64
          5
              BMI
                                        768 non-null
                                                         float64
          6
              DiabetesPedigreeFunction
                                        768 non-null
                                                         float64
          7
              Age
                                         768 non-null
                                                         int64
              Outcome
                                        768 non-null
                                                         int64
          8
         dtypes: float64(2), int64(7)
         memory usage: 54.1 KB
In [34]: y=df3["Outcome"]
         x=df3.drop(["Outcome"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [35]: | lr=LogisticRegression()
         lr.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:763: Conve
         rgenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.or
         g/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression (http
         s://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)
           n iter i = check optimize result(
Out[35]: LogisticRegression()
In [36]: |lr.predict(x test)
Out[36]: array([0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,
                0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0,
                0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
                0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,
                0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
                0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
                1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], dtype=int64)
```

```
In [37]: val1=[[1,34,5,1,4,1,123,10]]
lr.predict(val1)
Out[37]: array([1], dtype=int64)
In [ ]:
```

```
In [1]:
         import pandas as pd
         import numpy as np
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LogisticRegression
         from sklearn.model_selection import train_test_split
In [3]: | df=pd.read_csv("C6_bmi.csv")
Out[3]:
              Gender Height Weight Index
           0
                Male
                        174
                                96
                                       4
           1
                                      2
                Male
                        189
                                87
           2 Female
                        185
                               110
                                       4
                               104
                                      3
              Female
                        195
                        149
                                61
                                       3
                Male
                                ...
                                      ...
         495
              Female
                        150
                               153
                                      5
              Female
                        184
                               121
                                       4
         496
         497
              Female
                        141
                               136
                                      5
         498
                Male
                        150
                                95
                                       5
         499
                        173
                               131
                                       5
                Male
         500 rows × 4 columns
In [4]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 500 entries, 0 to 499
         Data columns (total 4 columns):
              Column Non-Null Count Dtype
         0
              Gender 500 non-null
                                       object
              Height 500 non-null
          1
                                       int64
              Weight 500 non-null
                                       int64
              Index
                      500 non-null
          3
                                       int64
         dtypes: int64(3), object(1)
         memory usage: 15.8+ KB
In [5]: y=df["Gender"]
         x=df.drop(["Gender"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [7]: | lr=LogisticRegression()
         lr.fit(x_train,y_train)
Out[7]: LogisticRegression()
```

```
In [8]: |lr.predict(x test)
Out[8]: array(['Female', 'Female', 'Femal
                                                                                                                                                                                                                             'Female', 'Female', 'Female', 'Female', 'Female',
                                                                                                                                                                                                                         'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Femal
                                                                                                                                                                                                                             'Female', 'Female', 'Female', 'Female', 'Female',
                                                                                                                                                                                                                             'Female', 'Female', 'Female', 'Female', 'Female',
                                                                                                                                                                                                                         'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Femal
                                                                                                                                                                                                                           'Female', 'Female', 'Female', 'Female', 'Female',
                                                                                                                                                                                                                         'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Femal
                                                                                                                                                                                                                           'Female', 'Female', 'Female', 'Female', 'Female',
                                                                                                                                                                                                                         'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Femal
                                                                                                                                                                                                                             'Female', 'Female', 'Female', 'Female', 'Female',
                                                                                                                                                                                                                         'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Femal
                                                                                                                                                                                                                             'Female', 'Female', 'Female', 'Female', 'Female',
                                                                                                                                                                                                                         'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female'],
                                                                                                                                                                                                            dtype=object)
 In [9]: lr.score(x test,y test)
Out[9]: 0.48
```

```
In [10]: df1=pd.read_csv("c7_used_cars.csv")
df1
```

Out[10]:

	Unnamed: 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize	Make
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0	VW
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0	VW
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0	VW
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0	VW
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5	VW
99182	10663	А3	2020	16999	Manual	4018	Petrol	145	49.6	1.0	Audi
99183	10664	А3	2020	16999	Manual	1978	Petrol	150	49.6	1.0	Audi
99184	10665	А3	2020	17199	Manual	609	Petrol	150	49.6	1.0	Audi
99185	10666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.4	Audi
99186	10667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.4	Audi

99187 rows × 11 columns

```
In [12]: | df2=df1.drop(["transmission","Make","model","Unnamed: 0"],axis=1)
```

Out[12]:

	year	price	mileage	fuelType	tax	mpg	engineSize
0	2019	25000	13904	Diesel	145	49.6	2.0
1	2019	26883	4562	Diesel	145	49.6	2.0
2	2019	20000	7414	Diesel	145	50.4	2.0
3	2019	33492	4825	Petrol	145	32.5	2.0
4	2019	22900	6500	Petrol	150	39.8	1.5
99182	2020	16999	4018	Petrol	145	49.6	1.0
99183	2020	16999	1978	Petrol	150	49.6	1.0
99184	2020	17199	609	Petrol	150	49.6	1.0
99185	2017	19499	8646	Petrol	150	47.9	1.4
99186	2016	15999	11855	Petrol	150	47.9	1.4

99187 rows × 7 columns

```
In [13]: df2.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99187 entries, 0 to 99186
Data columns (total 7 columns):
```

```
#
   Column
          Non-Null Count Dtype
   ----
             -----
0
            99187 non-null int64
  year
            99187 non-null int64
1
   price
  mileage
             99187 non-null int64
3
             99187 non-null object
  fuelType
4
             99187 non-null int64
5
             99187 non-null float64
   mpg
   engineSize 99187 non-null float64
```

dtypes: float64(2), int64(4), object(1)

memory usage: 5.3+ MB

```
In [14]: y=df2["fuelType"]
         x=df2.drop(["fuelType"],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [15]: | lr=LogisticRegression()
         lr.fit(x_train,y_train)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarn ing: lbfgs failed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/m odules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit -learn.org/stable/modules/linear_model.html#logistic-regression) n_iter_i = _check_optimize_result(

```
Out[15]: LogisticRegression()
```

```
In [17]: val=[[2019,25000,16545,145,44.6,1],[2018,68748,1235,108,38,2]]
lr.predict(val)
```

Out[17]: array(['Diesel', 'Diesel'], dtype=object)

In [20]: lr.score(x_test,y_test)

Out[20]: 0.7083375340256074

In [19]: df3=pd.read_csv("C8_loan-train.csv")
 df4=pd.read_csv("C8_loan-test.csv")
 df3

Out[19]:

ried	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit
No	0	Graduate	No	5849	0.0	NaN	360.0	
Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
No	0	Graduate	No	6000	0.0	141.0	360.0	
No	0	Graduate	No	2900	0.0	71.0	360.0	
Yes	3+	Graduate	No	4106	0.0	40.0	180.0	
Yes	1	Graduate	No	8072	240.0	253.0	360.0	
Yes	2	Graduate	No	7583	0.0	187.0	360.0	
No	0	Graduate	Yes	4583	0.0	133.0	360.0	

<

In [22]: df3["Loan_Status"]=df3["Loan_Status"].replace("Y",1,regex=True)
 df3["Loan_Status"]=df3["Loan_Status"].replace("N",0,regex=True)
 df3

Out[22]:

ried	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit
No	0	Graduate	No	5849	0.0	NaN	360.0	
Yes	1	Graduate	No	4583	1508.0	128.0	360.0	
Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	
Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	
No	0	Graduate	No	6000	0.0	141.0	360.0	
No	0	Graduate	No	2900	0.0	71.0	360.0	
Yes	3+	Graduate	No	4106	0.0	40.0	180.0	
Yes	1	Graduate	No	8072	240.0	253.0	360.0	
Yes	2	Graduate	No	7583	0.0	187.0	360.0	
No	0	Graduate	Yes	4583	0.0	133.0	360.0	

<

In [45]: df3_tr=df3.drop(["Dependents","Married","Loan_ID","Education","Gender","Property_Area","Loan_Status
df3_tr

Out[45]:

	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0	No	5849	0.0	NaN	360.0	1.0
1	No	4583	1508.0	128.0	360.0	1.0
2	Yes	3000	0.0	66.0	360.0	1.0
3	No	2583	2358.0	120.0	360.0	1.0
4	No	6000	0.0	141.0	360.0	1.0
609	No	2900	0.0	71.0	360.0	1.0
610	No	4106	0.0	40.0	180.0	1.0
611	No	8072	240.0	253.0	360.0	1.0
612	No	7583	0.0	187.0	360.0	1.0
613	Yes	4583	0.0	133.0	360.0	0.0

614 rows × 6 columns

In [46]: df_tr=df3_tr.dropna()

```
In [53]: df_tr.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 504 entries, 1 to 613
         Data columns (total 6 columns):
                                 Non-Null Count Dtype
          #
              Column
         ---
                                  _____
              Self_Employed
          0
                                 504 non-null
                                                  object
          1
              ApplicantIncome
                                 504 non-null
                                                  int64
          2
              CoapplicantIncome 504 non-null
                                                  float64
          3
              LoanAmount
                                 504 non-null
                                                  float64
          4
              Loan_Amount_Term
                                 504 non-null
                                                  float64
              Credit_History
                                 504 non-null
                                                  float64
         dtypes: float64(4), int64(1), object(1)
         memory usage: 27.6+ KB
In [54]: |y=df_tr["Self_Employed"]
         x=df_tr.drop(["Self_Employed"],axis=1)
         f=StandardScaler().fit_transform(x)
         lr.fit(f,y)
Out[54]: LogisticRegression()
In [55]:
         df4_te=df4.drop(["Education","Loan_ID","Gender","Married","Dependents","Property_Area","Self_Emplo
In [56]:
         df4_te=df4_te.dropna()
In [57]: | df4_te.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 328 entries, 0 to 366
         Data columns (total 5 columns):
          #
              Column
                                 Non-Null Count Dtype
         ---
          0
              ApplicantIncome
                                 328 non-null
                                                  int64
          1
              CoapplicantIncome
                                 328 non-null
                                                  int64
          2
              LoanAmount
                                 328 non-null
                                                  float64
          3
              Loan_Amount_Term
                                 328 non-null
                                                  float64
          4
              Credit_History
                                 328 non-null
                                                  float64
         dtypes: float64(3), int64(2)
         memory usage: 15.4 KB
```

```
'Yes',
Out[58]: array(['Yes', 'Yes', 'Y
                                                                                                                                                                                                                                                                                                                                                                                                                                      'Yes', 'Yes',
                                                                                                              'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                           'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      'Yes'
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes'
                                                                                                                                               , 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                                                                                                                  'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                                                                                                                                                                                                                                                                                                      'Yes',
                                                                                                                                                                                                                                                                                                                                                                                                                                      'Yes',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 'Yes',
                                                                                                            'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes'
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Y
                                                                                                                                                                                                                                                                                                                                                                                                                                   'Yes',
                                                                                                                                                                                                                                                                                                                                                                                                                                      'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes'
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                                                                                                                'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                                                                                                                                                                                                                                                                                                      'Yes',
                                                                                                                                                                                                                                                                                                                                                                                                                                     'Yes',
                                                                                                            'Yes', 'Yes',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes'
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Y
                                                                                                                                                                                                                                                                                                                                                                                                                                   'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Y
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes'
                                                                                                            'Yes', 'Y
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      'Yes'
                                                                                                            'Yes', 'Y
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                            'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes',
                                                                                                           'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes'], dtype=object)
In [60]:
                                                         lr.predict proba(df4 te)
                                                                                                            [U.UUUUUUUUE+UU, I.UUUUUUUUE+UU],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                           [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
                                                                                                            [0.00000000e+00, 1.00000000e+00],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
                                                                                                            [0.00000000e+00, 1.0000000e+00],
```

In [58]: lr.predict(df4_te)

```
In [67]: df5=pd.read_csv("C9_Data.csv")
df5
```

Out[67]:

	row_id	user_id	timestamp	gate_id
0	0	18	2022-07-29 09:08:54	7
1	1	18	2022-07-29 09:09:54	9
2	2	18	2022-07-29 09:09:54	9
3	3	18	2022-07-29 09:10:06	5
4	4	18	2022-07-29 09:10:08	5
37513	37513	6	2022-12-31 20:38:56	11
37514	37514	6	2022-12-31 20:39:22	6
37515	37515	6	2022-12-31 20:39:23	6
37516	37516	6	2022-12-31 20:39:31	9
37517	37517	6	2022-12-31 20:39:31	9

37518 rows × 4 columns

```
In [68]:
    df5=df5.drop(["timestamp"],axis=1)
    df5.info()
    <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 37518 entries, 0 to 37517
Data columns (total 3 columns):

Column Non-Null Count Dtype
-----0 row_id 37518 non-null int64
1 user_id 37518 non-null int64
2 gate_id 37518 non-null int64
dtypes: int64(3)
memory usage: 879.5 KB

```
In [69]: y=df5["user_id"]
x=df5.drop(["user_id"],axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [70]: lr=LogisticRegression()
lr.fit(x_train,y_train)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarn
ing: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/m
odules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit
-learn.org/stable/modules/linear_model.html#logistic-regression)
n_iter_i = _check_optimize_result(

```
Out[70]: LogisticRegression()
```

```
In [71]: lr.predict(x_test)
Out[71]: array([55, 55, 55, ..., 55, 55], dtype=int64)
In [72]: lr.score(x_test,y_test)
Out[72]: 0.05863539445628998
In []:
```