Дифференицальная геометрия. Неофициальный конспект

Лектор: Нина Дмитриевна Лебедева Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Рим	панова геометрия	2
	1.1	Гладкие многообразия	2
		1.1.1 Гладкие отображения	

Глава 1

Риманова геометрия

Лекция I 14 февраля 2024 г.

1.1 Гладкие многообразия

Определение 1.1.1 (Топологическое многообразие). Хаусдорфово топологическое пространство M со счётной базой, такое что $\forall x \in M: \exists U \ni x: U \sim \mathbb{R}^n$. Данное число n называется размерностью многообразия, пишут $\dim M = n$, или часто пишут это число верхним индексом: M^n .

Далее пусть M^n — топологическое многообразие.

Определение 1.1.2 (Карта). Пара из открытого $U \subset M^n$, и гомеоморфизма $\phi: U \to \Omega$, где открытое $\Omega \subset \mathbb{R}^n$. U называется носителем карты.

«В половине случаев в литературе картой называется обратное отображение».

Определение 1.1.3 (Атлас). Набор карт (U_i,ϕ_i) , таких, что $\bigcup_i U_i=M$.

Пусть даны две карты (U,ϕ) и (V,ψ) . Далее удобно считать, что их носители пересекаются: $U\cap V\neq\varnothing$, иначе определение не несёт смысла.

Определение 1.1.4 (Отображение перехода). Отображение $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$.

Определение 1.1.5 (Карты (U,ϕ) и (V,ψ) согласованы). Отображение перехода и ему обратное гладкие.

Определение 1.1.6 (Гладкий атлас). Атлас, такой, что любые две карты согласованы.

Далее все атласы предполагаются гладкими.

Определение 1.1.7 (Атласы эквивалентны). Их объединение (то есть все карты из первого и из второго атласа вместе взятые) — тоже гладкий атлас.

Предложение 1.1.1. Эквивалентность атласов — отношение эквивалентности.

Определение 1.1.8 (Гладкая структура на многообразии). Максимальный гладкий атлас (атлас, к которому нельзя добавить карт).

Замечание. К атласу можно добавить произвольное количество карт, согласованных с теми, что в атласе, и они будут согласованы между собой. В частности, для задания гладкой структуры достаточно произвольного атласа A: в A можно добавить всевозможные карты, согласованные с картами из A, и он станет максимальным.

Определение 1.1.9 (Гладкое многообразие). Многообразие с гладкой структурой.

Примеры (Атласы).

- Стандартная гладкая структура на \mathbb{R}^n задаётся атласом $\{(\mathbb{R}^n,\mathrm{id})\}.$
- В частности, стандартная структура на \mathbb{R}^1 задаётся атласом $\{(\mathbb{R}^1, [x \mapsto x])\}$.
- Можно задать нестандартную структуру на \mathbb{R}^1 : $\{(\mathbb{R}^1, [x \mapsto x^3])\}$.

Предостережение. Это действительно гладкая структура, хотя обратное отображение $[x \mapsto x^{1/3}]$ не гладкое. Тем не менее, определение и не требует гладкости от него.

ullet Пусть $f=egin{cases} x,&x\geqslant 0\ rac{1}{2}x,&x\leqslant 0 \end{cases}$. Тогда $\{(\mathbb{R}^1,f)\}$ — тоже гладкий атлас на \mathbb{R}^1 .

Тем не менее, любые два атласа из приведённых выше атласов на \mathbb{R}^1 не эквивалентны — отображения перехода получаются не гладкими.

• Гладкая структура на сфере задаётся двумя картами: пусть S^2 — сфера с северным полюсом N и южным S, пусть f,g — стереографические проекции с данными полюсами. Тогда $\{(S^2\setminus\{N\},f),(S^2\setminus\{S\},g)\}$ — атлас.

Замечание. Если M — гладкое многообразие, и открытое $W \subset M$, то на W естественным образом определена гладкая структура, наследующаяся с M.

1.1.1 Гладкие отображения

Пусть M^m, N^n — гладкие многообразия, A_M, A_N — соответствующие атласы. Рассмотрим отображение $f: M \to N$.

Определение 1.1.10 (Координатное представление f в картах (U,ϕ) на M и (V,ψ) на N). Такое $\widetilde{f}:\phi(U)\to\psi(V)$, что диаграмма коммутативна везде, где определена (то есть $\widetilde{f}=\psi\circ f\circ\phi^{-1}$ на $\phi(U\cap f^{-1}(V))$).

$$\begin{array}{ccc} U & \stackrel{f}{\longrightarrow} V \\ \downarrow^{\phi} & & \downarrow^{\psi} \\ \phi(U) & \stackrel{\widetilde{f}}{\longrightarrow} \psi(V) \end{array}$$

Далее считаем, что $f:M\to N$ непрерывна (эквивалентно, все координатные представления непрерывны).

Определение 1.1.11 (f гладкое). Любое координатное представление — гладкое.

Определение 1.1.12 (f — гладкое в точке $x \in M$). Найдётся окрестность $U_x \ni x$ и карты (U, ϕ) , (V, ψ) (где $V \ni y \coloneqq f(x)$), такие, что $U_x \subset U$ и сужение на U_x координатного представления f — гладко.

Свойства (Гладкие отображения).

- Гладкость в точке не зависит от выбора карт.
- Гладкость отображения не зависит от выбора атласа в одном классе эквивалентности.
- Отображение гладкое 👄 оно гладкое в любой точке. На лекции было доказательство ⇐.
- Пусть $f:M \to N, g:N \to K$ гладкие. Тогда их композиция $g \circ f$ гладкая.
- Тождественное отображение гладкое, если в образе и прообразе выбраны эквивалентные атласы.
- Определение гладкости отображения совпадает с определением гладкости из матанализа (если считать, что $M \subset \mathbb{R}^n$ открыто, и порождающий атлас состоит из тождественной карты)

Определение 1.1.13 (Диффеоморфизм $f: M \to N$). Гладкое f, такое, что f^{-1} — тоже гладкое.

Определение 1.1.14 (Многообразия M и N диффеоморфны). Между ними существует диффеоморфизм.

Понятно, что диффеоморфность — отношение эквивалентности.

Утверждение 1.1.1. Если $M^m \stackrel{\partial u\phi}{\sim} N^n$, то m=n.

Доказательство. Рассмотрим произвольную $x\in M$. Пусть $f:M\to N$ — диффеоморфизм, пусть $\widetilde f$ — его координатное представление. Тогда $\widetilde f^{-1}$ — координатное представление f^{-1} , откуда $\widetilde f^{-1}$ — тоже гладкое. Рассмотрим дифференциал $\mathrm{d}_{\widetilde f}(x,_)$, это изоморфизм векторных пространств, значит, m=n.

По умолчанию всегда считается, что на \mathbb{R}^m введена стандартная гладкая структура.

Предложение 1.1.2. Пусть M- гладкое многообразие, тогда карта — диффеоморфизм между U и $\phi(U)$. Обратно, любой диффеоморфизм между открытым подмножеством $W\subset M$ и областью $\Omega\subset \mathbb{R}^m$ — карта.

Доказательство.

Гладкость карты, как диффеоморфизма, эквивалентна тому, что карта согласована с остальными в атласе: пунктирная стрелка $\psi(U \cap V) \to \phi(U \cap V)$ одновременно является и отображением перехода между картами (U, ϕ) и (V, ψ) , и координатным представлением ϕ в картах (V, ψ) , (U, id) .

Следствие 1.1.1. Диффеоморфизм $f: M \to N$ задаёт естественную биекцию между картами M и картами N (а ещё между (максимальными) атласами M и (максимальными) атласами N).