Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Intervalos de Confianza

Definición

Dada una muestra aleatoria simple es decir, un vector de variables aleatorias \mathbf{X} con componentes X_1, \ldots, X_n iid $\sim F_{\theta}$, siendo θ un parámetro de la distribución (desconocido a priori). Llamamos intervalo de confianza al nivel α a un intervalo:

$$I_{\alpha}\left(\mathbf{X}\right) = I_{\alpha}\left(X_{1}, \dots, X_{n}\right) = \left[a\left(\mathbf{X}\right), b\left(\mathbf{X}\right)\right]$$

Donde a y b son tales que:

$$\mathbf{P}\left(a\left(\mathbf{X}\right) \leq \theta \leq b\left(\mathbf{X}\right)\right) = 1 - \alpha$$

Es decir, los extremos del intervalo son variables aleatorias que dependen de la muestra \mathbf{X} y son tales que la probabilidad de que entre ellos esté el parámetro θ es $1-\alpha$. Haciendo abuso de notación se suele escribir:

$$\mathbf{P}(\theta \in I_{\alpha}(\mathbf{X})) = 1 - \alpha$$

$$\mathbf{P}(\theta \notin I_{\alpha}(\mathbf{X})) = \alpha$$

No siempre podemos encontrar variables a y b tales que cumplan lo anterior. A veces solo podemos garantizar por ejemplo que $\mathbf{P}(\theta \notin I_{\alpha}(\mathbf{X})) \leq \alpha$ (en este caso el intervalo se dice *conservativo*).

Intervalos de confianza para muestras gaussianas

En el caso de muestras gaussianas, es decir, X_1, \ldots, X_n iid $\sim N(\mu, \sigma^2)$ es posible construir intervalos de confianza exactos para los parámetros μ y σ , como se muestra a continuación.

Recordemos que si \mathbf{X} es una muestra gaussiana, entonces el promedio de los valores muestrales cumple:

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Intervalo de Confianza para μ , σ conocido:

Conocida la distribución del promedio es sencillo calcular un intervalo de confianza para μ . La idea es construir un intervalo centrado en el promedio (que es un estimador puntual de μ) y tal que:

$$\mathbf{P}\left(\left|\overline{X}_n - \mu\right| > \varepsilon\right) = \alpha$$

Ahora, como σ es conocido, dividiendo entre $\frac{\sigma}{\sqrt{n}}$ se tiene:

$$\mathbf{P}\left(\left|\overline{X}_{n} - \mu\right| > \varepsilon\right) = \mathbf{P}\left(\left|\frac{\overline{X}_{n} - \mu}{\frac{\sigma}{\sqrt{n}}}\right| > \frac{\varepsilon}{\frac{\sigma}{\sqrt{n}}}\right) = \mathbf{P}\left(\left|Y\right| > \frac{\varepsilon\sqrt{n}}{\sigma}\right) =$$

$$= \mathbf{P}\left(Y > \frac{\varepsilon\sqrt{n}}{\sigma}\right) + \mathbf{P}\left(Y < -\frac{\varepsilon\sqrt{n}}{\sigma}\right)$$

donde la variable $Y \sim N(0,1)$ por lo que la última probabilidad se escribe:

$$\mathbf{P}\left(\left|\overline{X}_{n} - \mu\right| > \varepsilon\right) = 1 - \Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma}\right) + \Phi\left(-\frac{\varepsilon\sqrt{n}}{\sigma}\right) = 1 - \Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma}\right) + 1 - \Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma}\right) = 2\left(1 - \Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma}\right)\right)$$

donde hemos usado la simetría de la distribución. Igualando a α esta probabilidad se tiene:

$$\mathbf{P}\left(\left|\overline{X}_n - \mu\right| > \varepsilon\right) = \alpha \Leftrightarrow \left(1 - \Phi\left(\frac{\varepsilon\sqrt{n}}{\sigma}\right)\right) = \frac{\alpha}{2}$$

Al punto x que cumple que $1 - \Phi(x) = \alpha$ se le denomina $x = z_{\alpha}$. Es decir, es el punto de la campana de la N(0,1) que deja área α a la derecha y se busca directamente en la tabla. Se desprende entonces que:

$$\mathbf{P}\left(\left|\overline{X}_{n} - \mu\right| > \varepsilon\right) = \alpha \Leftrightarrow \frac{\varepsilon\sqrt{n}}{\sigma} = z_{\alpha/2} \Leftrightarrow \varepsilon = \frac{\sigma z_{\alpha/2}}{\sqrt{n}}$$

Por lo que tomando $a(\mathbf{X}) = \overline{X}_n - \frac{\sigma z_{\alpha/2}}{\sqrt{n}}$, y $b(\mathbf{X}) = \overline{X}_n + \frac{\sigma z_{\alpha/2}}{\sqrt{n}}$ tenemos que:

$$\mathbf{P}\left(\mu\notin\left[a\left(\mathbf{X}\right),b\left(\mathbf{X}\right)\right]\right)=\alpha$$

O bien, un intervalo al nivel α para μ conociendo σ es:

$$I_{\alpha}(\mathbf{X}) = \left[\overline{X}_n - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{X}_n + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right]$$

Intervalo de Confianza para μ , σ desconocido:

Supongamos que X es una muestra aleatoria de variables normales como antes. En este caso, la idea es similar: construir un intervalo centrado en el promedio. Sin embargo, el paso "dividir por σ " al calcular el intervalo no está permitido, pues ε quedará en función de σ que es desconocido. Recordando que $s_n \to \sigma$ es razonable hacer:

$$\mathbf{P}\left(\left|\overline{X}_{n} - \mu\right| > \varepsilon\right) = \mathbf{P}\left(\left|\frac{\sqrt{n}\left(\overline{X}_{n} - \mu\right)}{s_{n}}\right| > \frac{\sqrt{n}\varepsilon}{s_{n}}\right) = \mathbf{P}\left(\left|T\right| > \frac{\sqrt{n}\varepsilon}{s_{n}}\right)$$

donde la variable T ya no es normal sino que tiene una distribución conocida como t de $Student^1$, $T \sim t(n-1)$ (a n-1 se le denomina "grados de libertad"). Como antes:

$$\mathbf{P}\left(|T| > \frac{\sqrt{n\varepsilon}}{s_n}\right) = \mathbf{P}\left(T > \frac{\sqrt{n\varepsilon}}{s_n}\right) + \mathbf{P}\left(T < -\frac{\sqrt{n\varepsilon}}{s_n}\right) = 2\left(1 - F_T\left(\frac{\sqrt{n\varepsilon}}{s_n}\right)\right)$$

donde en el último paso hemos usado la simetría de la distribución t. Por lo tanto:

$$\mathbf{P}\left(|T| > \frac{\sqrt{n\varepsilon}}{s_n}\right) = \alpha \Leftrightarrow 1 - F_T\left(\frac{\sqrt{n\varepsilon}}{s_n}\right) = \frac{\alpha}{2} \Leftrightarrow \frac{\sqrt{n\varepsilon}}{s_n} = t_{\alpha/2}(n-1) \Leftrightarrow \varepsilon = \frac{s_n t_{\alpha/2}(n-1)}{\sqrt{n}}$$

donde como antes hemos definido $t_{\alpha}(n-1)$ como el punto $x:1-F_{T}(x)=\alpha$ y se busca en la tabla. Tenemos así el intervalo:

$$I_{\alpha}(\mathbf{X}) = \left[\overline{X}_{n} - \frac{s_{n}}{\sqrt{n}} \left(t_{\alpha/2} (n-1) \right), \overline{X}_{n} + \frac{s_{n}}{\sqrt{n}} \left(t_{\alpha/2} (n-1) \right) \right]$$

¹No viene al caso la densidad o la función distribución de esta variable. Se encuentra tabulada.

Intervalo de confianza para σ^2 :

La idea ahora es construir un intervalo que dependa de s_n (estimador de σ). Se demuestra que:

$$\frac{(n-1)\,s_n^2}{\sigma^2} \sim \chi^2\,(n-1)$$

donde la distribución $\chi^2(k)$ es conocida y se encuentra tabulada. El procedimiento cambia un poco respecto a los anteriores. Construyamos $a(\mathbf{X})$ tal que $\mathbf{P}\left(a(\mathbf{X}) \geq \sigma^2\right) = \frac{\alpha}{2}$. Para ello observemos tomemos $a(\mathbf{X}) = ds_n^2$ con d < 1. Se tiene:

$$\mathbf{P}\left(a\left(\mathbf{X}\right) \geq \sigma^{2}\right) = \mathbf{P}\left(ds_{n}^{2} \geq \sigma^{2}\right) = \mathbf{P}\left(\frac{\left(n-1\right)s_{n}^{2}}{\sigma^{2}} \geq \frac{\left(n-1\right)}{d}\right) = \mathbf{P}\left(Y \geq \frac{\left(n-1\right)}{d}\right)$$

donde $Y \sim \chi^2 (n-1)$ por lo que:

$$\mathbf{P}\left(a\left(\mathbf{X}\right) \geq \sigma^{2}\right) = \frac{\alpha}{2} \Leftrightarrow 1 - F_{Y}\left(\frac{(n-1)}{d}\right) = \frac{\alpha}{2} \Leftrightarrow \frac{(n-1)}{d} = \chi_{\alpha/2}^{2}\left(n-1\right)$$

donde nuevamente hemos definido $\chi^2_{\alpha}(k)$ como el punto de una variable $\chi^2(k)$ que deja área α a la derecha y se encuentra tabulado. Se tiene entonces que:

$$a\left(\mathbf{X}\right) = \frac{\left(n-1\right)s_n^2}{\chi_{\alpha/2}^2\left(n-1\right)}$$

De forma análoga se busca $b\left(\mathbf{X}\right)=cs_{n}^{2}$ con c>1 tal que $\mathbf{P}\left(b\left(\mathbf{X}\right)\leq\sigma^{2}\right)=\frac{\alpha}{2}^{2}$ y se encuentra:

$$b\left(\mathbf{X}\right) = \frac{\left(n-1\right)s_n^2}{\chi_{1-\alpha/2}^2\left(n-1\right)}$$

Por lo que el intervalo queda:

$$I_{\alpha}(\mathbf{X}) = \left[\frac{(n-1) s_n^2}{\chi_{\alpha/2}^2 (n-1)}, \frac{(n-1) s_n^2}{\chi_{1-\alpha/2}^2 (n-1)} \right]$$

Intervalos de Confianza aproximados

Intervalo basado en el TCL para la media de una distribución.

Si $\mathbf{X} = X_1, \dots, X_n$ son *iid* pero tienen una distribución que no es la normal, no podemos aplicar directamente los resultados anteriores. Sin embargo, **para n grande**, si $\mathbf{E}X_1 = \mu$ y $\mathrm{Var}(X_1) = \sigma^2 > 0$ vale el TCL y por lo tanto valen:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\approx N\left(0,1\right)$$

por lo que utilizando los mismos cálculos que en el caso de variables normales se tiene que, tomando:

$$I_{\alpha}\left(\mathbf{X}\right) = \left[\overline{X}_{n} - \frac{\sigma z_{\alpha/2}}{\sqrt{n}}, \overline{X}_{n} + \frac{\sigma z_{\alpha/2}}{\sqrt{n}}\right]$$

entonces $\mathbf{P}(\mu \notin I_{\alpha}(\mathbf{X})) \approx \alpha$. Si σ es desconocido, podemos sustituirlo por su estimador s_n (como n es grande, el error no es mucho):

$$I_{\alpha}\left(\mathbf{X}\right) = \left[\overline{X}_{n} - \frac{s_{n}z_{\alpha/2}}{\sqrt{n}}, \overline{X}_{n} + \frac{s_{n}z_{\alpha/2}}{\sqrt{n}}\right]$$

²Obsérvese que podríamos haber tomado un intervalo "asimétrico" en el sentido de que dejara diferentes probabilidades a cada lado, y no $\alpha/2$.

Media v varianza ligadas.

Otra forma de estimar σ para sustituir es en el caso en que $\sigma = \sigma(\mu)$, es decir, hay una función (conocida) que a partir de μ me devuelve σ (Ejemplo, $X \sim Ber(p) \Rightarrow \sigma = \sqrt{p(1-p)} = \sqrt{\mu(1-\mu)}$ ya que $\mu = p$). Si la función $\sigma(\mu)$ es continua entonces, $\overline{X}_n \to \mu \Rightarrow \sigma(\overline{X}_n) \to \sigma(\mu) = \sigma$ por lo que podemos estimar σ por $\sigma(\overline{X}_n)$ para obtener:

$$I_{\alpha}\left(\mathbf{X}\right) = \left[\overline{X}_{n} - \frac{\sigma\left(\overline{X}_{n}\right)z_{\alpha/2}}{\sqrt{n}}, \overline{X}_{n} + \frac{\sigma\left(\overline{X}_{n}\right)z_{\alpha/2}}{\sqrt{n}}\right]$$

Por otra parte, existe un método alternativo basado en la generalización del TCL, en el caso en que $\sigma\left(\mu\right)$ sea además derivable. Consiste en tomar $g\left(x\right)$ tal que $g'\left(x\right)=\frac{1}{\sigma(x)}$ (es decir, una primitiva de $\frac{1}{\sigma(x)}$). En ese caso, el TCL:

$$\sqrt{n}\left(\overline{X}_n - \mu\right) \longrightarrow N\left(0, \sigma^2\right)$$

implica que:

$$\sqrt{n}\left(g\left(\overline{X}_{n}\right)-g\left(\mu\right)\right)\longrightarrow N\left(0,\sigma^{2}g'\left(\mu\right)^{2}\right)=N\left(0,\sigma^{2}\frac{1}{\sigma^{2}}\right)=N\left(0,1\right)$$

Por lo tanto, usando un intervalo para variables normales:

$$\mathbf{P}\left(g\left(\mu\right)\in\left[g\left(\overline{X}_{n}\right)-\frac{z_{\alpha/2}}{\sqrt{n}},g\left(\overline{X}_{n}\right)+\frac{z_{\alpha/2}}{\sqrt{n}}\right]\right)=\alpha$$

o bien, aplicando la función inversa g^{-1} (observemos que g'(x) > 0 por lo que la función es monótona creciente y por lo tanto invertible):

$$\mathbf{P}\left(\mu \in \left[g^{-1}\left(g\left(\overline{X}_n\right) - \frac{z_{\alpha/2}}{\sqrt{n}}\right), g^{-1}\left(g\left(\overline{X}_n\right) + \frac{z_{\alpha/2}}{\sqrt{n}}\right)\right]\right) = \alpha$$

Ejemplos: Para algunas distribuciones usuales, la función g es:

• Bernoulli: $g(x) = 2 \arcsin \sqrt{x}$

• Poisson: $g(x) = 2\sqrt{x}$

• Exponencial: $g(x) = \log x$

Para el caso de variables con distribución Bernoulli tenemos, usando los dos tipos de intervalos presentados antes los siguientes intervalos:

$$I_{\alpha}\left(\mathbf{X}\right) = \left[\overline{X}_{n} - \frac{\sqrt{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}z_{\alpha/2}}{\sqrt{n}}, \overline{X}_{n} + \frac{\sqrt{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}z_{\alpha/2}}{\sqrt{n}}\right]$$

$$I_{\alpha}\left(\mathbf{X}\right) = \left[\operatorname{sen}^{2} \left(\operatorname{arcsen} \sqrt{\overline{\overline{X}_{n}}} - \frac{z_{\alpha/2}}{2\sqrt{n}} \right), \operatorname{sen}^{2} \left(\operatorname{arcsen} \sqrt{\overline{\overline{X}_{n}}} + \frac{z_{\alpha/2}}{2\sqrt{n}} \right) \right]$$

Tests Paramétricos

Muestras Gaussianas

 $X_1, \ldots, X_n \ iid \sim N(\mu, \sigma^2)$ (La cantidad de datos n puede ser "chica".)

Test sobre μ (σ conocido)

$$\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu = \mu_1
\end{cases}
\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu > \mu_0
\end{cases}
\begin{cases}
H_0: \mu \leq \mu_0 \\
H_1: \mu > \mu_0
\end{cases}$$

$$\mathcal{R}_{\alpha} = \left\{\frac{\sqrt{n}\left(\overline{X}_n - \mu_0\right)}{\sigma} \geqslant z_{\alpha}\right\}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
H_1: \mu = \mu_1
\end{cases}
\end{cases}
\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}
\begin{cases}
H_0: \mu \geqslant \mu_0 \\
H_1: \mu < \mu_0
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}
\end{cases}
\begin{cases}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
H_1: \mu < \mu_0
\end{cases}
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
\mu \neq \mu_0
\end{cases}
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
\mu \neq \mu_0
\end{cases}
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
\mu \neq \mu_0
\end{cases}
\end{cases}$$

$$\left\{\begin{array}{ll}
H_0: \mu = \mu_0 \\
\mu \neq \mu_0
\end{cases}
\end{cases}$$

Test sobre μ (σ desconocido)

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu = \mu_{1}
\end{cases}
\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu > \mu_{0}
\end{cases}
\begin{cases}
H_{0}: \mu \leq \mu_{0} \\
H_{1}: \mu > \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
\mu_{1} > \mu_{0}
\end{cases}
\end{cases}
\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu > \mu_{0}
\end{cases}
\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu < \mu_{0}
\end{cases}
\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu < \mu_{0}
\end{cases}
\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu < \mu_{0}
\end{cases}
\end{cases}
\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu < \mu_{0}
\end{cases}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu < \mu_{0}
\end{cases}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

$$\begin{cases}
H_{0}: \mu = \mu_{0} \\
H_{1}: \mu \neq \mu_{0}
\end{cases}$$

Test sobre σ (μ desconocido)

$$\begin{cases} H_0: \sigma = \sigma_0 \\ H_1: \sigma = \sigma_1 \\ (\sigma_1 > \sigma_0) \end{cases} \qquad \begin{cases} H_0: \sigma = \sigma_0 \\ H_1: \sigma > \sigma_0 \end{cases} \qquad \begin{cases} H_0: \sigma \leqslant \sigma_0 \\ H_1: \sigma > \sigma_0 \end{cases} \qquad \mathcal{R}_{\alpha} = \left\{ (n-1) \frac{s_n^2}{\sigma_0^2} \geqslant \chi_{\alpha}^2 (n-1) \right\}$$

$$\begin{cases} H_0: \sigma = \sigma_0 \\ H_1: \sigma = \sigma_1 \\ (\sigma_1 < \sigma_0) \end{cases} \qquad \begin{cases} H_0: \sigma = \sigma_0 \\ H_1: \sigma < \sigma_0 \end{cases} \qquad \begin{cases} H_0: \sigma \geqslant \sigma_0 \\ H_1: \sigma < \sigma_0 \end{cases} \qquad \mathcal{R}_{\alpha} = \left\{ (n-1) \frac{s_n^2}{\sigma_0^2} \leqslant \chi_{1-\alpha}^2 (n-1) \right\}$$

$$\begin{cases} H_0: \sigma = \sigma_0 \\ \sigma \neq \sigma_0 \end{cases} \qquad \mathcal{R}_{\alpha} = \left\{ (n-1) \frac{s_n^2}{\sigma_0^2} \notin \left(\chi_{1-\alpha/2}^2 (n-1), \chi_{\alpha/2}^2 (n-1) \right) \right\}$$

Comparación de dos muestras gaussianas independientes

$$X_1, \dots, X_m \ iid \sim N(\mu_X, \sigma_X^2),$$

 $Y_1, \dots, Y_n \ iid \sim N(\mu_Y, \sigma_Y^2).$
 $(X, Y \ independientes \ entre \ si.)$

(Las cantidades m y n pueden ser chicas.)

Comparación de varianzas

$$\begin{cases} H_0: \sigma_X^2 = \sigma_Y^2 \\ H_1: \sigma_X^2 \neq \sigma_Y^2 \end{cases} \mathcal{R}_\alpha = \left\{ E \notin \left(F_{1-\alpha/2}(m-1,n-1), F_{\alpha/2}(m-1)(n-1) \right) \right\} \\ \begin{cases} H_0: \sigma_X^2 = \sigma_Y^2 \\ H_1: \sigma_X^2 < \sigma_Y^2 \end{cases} \mathcal{R}_\alpha = \left\{ E \leqslant F_{1-\alpha}(m-1,n-1) \right\} \\ \begin{cases} H_0: \sigma_X^2 = \sigma_Y^2 \\ H_1: \sigma_X^2 > \sigma_Y^2 \end{cases} \mathcal{R}_\alpha = \left\{ E \geqslant F_\alpha(m-1,n-1) \right\} \end{cases} \\ \text{con } E = \frac{s_m^2(X)}{s_n^2(Y)}, \, s_m^2(X) = \frac{1}{m-1} \sum_{i=1}^m \left(X_i - \overline{X}_m \right)^2, \, s_n^2(Y) = \frac{1}{n-1} \sum_{i=1}^n \left(Y_i - \overline{Y}_n \right)^2 \, \text{y donde } F_p(n_1,n_2) \end{cases}$$

Comparación de medias

Caso σ_X^2 , σ_Y^2 conocidas

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ |E| \geqslant z_{\alpha/2} \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \leqslant -z_{\alpha} \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \geqslant z_{\alpha} \right\}$$

$$\operatorname{con} E = \frac{\overline{X}_m - \overline{Y}_n}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}.$$

Caso σ_X^2 , σ_Y^2 conocidas, con $\sigma_X^2 = \sigma_Y^2$

(Puede averiguarse previamente con comparación de varianzas)

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases} \mathcal{R}_\alpha = \left\{ |E| \geqslant t_{\alpha/2}(m+n-2) \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases} \mathcal{R}_\alpha = \left\{ E \leqslant -t_\alpha(m+n-2) \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases} \mathcal{R}_\alpha = \left\{ E \geqslant t_\alpha(m+n-2) \right\}$$

$$\text{con } E = \frac{\left(\overline{X}_m - \overline{Y}_n \right) \sqrt{\frac{mn}{m+n}}}{\sqrt{\frac{(m-1)s_m^2(X) + (n-1)s_n^2(Y)}{m+n-2}}}$$

0.0.1 Caso σ_X^2 , σ_Y^2 conocidas, con $\sigma_X^2 \neq \sigma_Y^2$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ |E| \geqslant t_{\alpha/2}(N-2) \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \leqslant -t_{\alpha}(N-2) \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \geqslant t_{\alpha}(N-2) \right\}$$

$$\text{con } E = \frac{\overline{X}_m - \overline{Y}_n}{\sqrt{\frac{s_m^2(X)}{m} + \frac{s_n^2(Y)}{n}}} \text{ y } N = \left[\frac{(n+1)(m+1)\left(\frac{s_m^2(X)}{m} + \frac{s_n^2(Y)}{n}\right)^2}{(m+1)\left(\frac{s_m^2(X)}{m}\right)^2 + (n+1)\left(\frac{s_n^2(Y)}{n}\right)^2} \right], \text{ donde } [x] \text{ es la parte }$$

entera de x.

Test aproximados sobre la media basados en el TCL

(Como se usa una aproximación basada en el TCL estos tests sólo pueden hacerse para una cantidad de datos n "grande".)

Tests sobre la media

$$X_{1}, \dots, X_{n} \ iid \sim F, \ \mathbf{E}\left(X_{1}\right) = \mu, \ \mathbf{Var}\left(X_{1}\right) = \sigma^{2}, \ \mathrm{ambos \ finitos}, \ \sigma > 0. \ \left(n \ "grande".\right)$$

$$\left\{ \begin{array}{l} H_{0} : \mu = \mu_{0} \\ H_{1} : \mu = \mu_{1} \\ (\mu_{1} > \mu_{0}) \end{array} \right. \left\{ \begin{array}{l} H_{0} : \mu = \mu_{0} \\ H_{1} : \mu > \mu_{0} \end{array} \right. \left\{ \begin{array}{l} H_{0} : \mu \leqslant \mu_{0} \\ H_{1} : \mu > \mu_{0} \end{array} \right. \mathcal{R}_{\alpha} = \left\{ \begin{array}{l} \frac{\sqrt{n}\left(\overline{X}_{n} - \mu_{0}\right)}{s_{n}} \geqslant z_{\alpha} \right\} \right.$$

$$\left\{ \begin{array}{l} H_{0} : \mu = \mu_{0} \\ H_{1} : \mu = \mu_{1} \\ (\mu_{1} < \mu_{0}) \end{array} \right. \left\{ \begin{array}{l} H_{0} : \mu = \mu_{0} \\ H_{1} : \mu < \mu_{0} \end{array} \right. \left\{ \begin{array}{l} H_{0} : \mu \geqslant \mu_{0} \\ H_{1} : \mu < \mu_{0} \end{array} \right. \mathcal{R}_{\alpha} = \left\{ \left| \frac{\sqrt{n}\left(\overline{X}_{n} - \mu_{0}\right)}{s_{n}} \right| \geqslant z_{\alpha/2} \right\} \right.$$

En el caso de media y varianza ligadas (es decir que existe una función σ tal que $\sigma = \sigma(\mu)$) puede testearse de manera análoga de dos formas distintas:

- 1. reemplazando s_n por $\sigma(\overline{X}_n)$
- 2. reemplazando $\frac{\sqrt{n}\left(\overline{X}_n \mu_0\right)}{s_n}$ por $\sqrt{n}\left(g\left(\overline{X}_n\right) g(\mu_0)\right)$, siendo $g(x)\int\limits_{\mu_0}^x \frac{1}{\sigma(t)}dt$.

Ejemplo: proporciones

 $X_1, \ldots, X_n \ iid \sim Ber(p) \ (n \ "grande".)$

$$\begin{cases} H_0: p \leqslant p_0 \\ H_1: p > p_0 \end{cases}$$

Pueden usarse las siguientes regiones críticas:

1.
$$\mathcal{R}_{\alpha} = \left\{ \frac{\sqrt{n} \left(\overline{X}_n - p_0 \right)}{\sqrt{\overline{X}_n (1 - \overline{X}_n)}} \geqslant z_{\alpha} \right\}$$

2.
$$\mathcal{R}_{\alpha} = \left\{ 2\sqrt{n} \left(\arcsin \sqrt{\overline{X}_n} - \arcsin \sqrt{p_0} \right) \geqslant z_{\alpha} \right\}$$

Comparación de dos muestras

$$X_1, \ldots, X_m \ iid \sim F_X, \ \mathbf{E}(X_1) = \mu_X, \ \mathbf{Var}(X_1) = \sigma_X^2,$$

 $Y_1, \ldots, Y_n \ iid \sim F_Y, \ \mathbf{E}(Y_1) = \mu_X, \ \mathbf{Var}(Y_1) = \sigma_X^2.$

(X, Y independients entre si.)

(Las cantidades de datos m y n deben ser "grandes".)

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ |E| \geqslant z_{\alpha/2} \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \leqslant -z_{\alpha} \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \geqslant z_{\alpha} \right\}$$

$$\operatorname{con} E = \frac{\overline{X}_m - \overline{Y}_n}{\sqrt{\frac{s_m^2(X)}{m} + \frac{s_n^2(Y)}{n}}}.$$

Media y varianza ligadas

$$X_1, \ldots, X_m iid \sim F_X$$
, $\mathbf{E}(X_1) = \mu_X$, $\mathbf{Var}(X_1) = \sigma(\mu_X)$, $Y_1, \ldots, Y_n iid \sim F_Y$, $\mathbf{E}(Y_1) = \mu_Y$, $\mathbf{Var}(Y_1) = \sigma(\mu_Y)$.

 $(X,\ Y)$ independientes entre sí, ambas con el mismo tipo de distribución, por ejemplo ambas Poisson, ambas binomiales, etc. de modo que la función σ es la misma para ambas muestras.) $(m\ y\ n\ deben\ ser\ "grandes".)$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X \neq \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ |E| \geqslant z_{\alpha/2} \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X < \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \leqslant -z_{\alpha} \right\}$$

$$\begin{cases} H_0: \mu_X = \mu_Y \\ H_1: \mu_X > \mu_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \geqslant z_{\alpha} \right\}$$

$$con E = \sqrt{\frac{mn}{m+n}} \left(g\left(\overline{X}_m \right) - g\left(\overline{Y}_n \right) \right), \text{ siendo } g(x) \int_{\mu_0}^x \frac{1}{\sigma(t)} dt.$$

Ejemplo: proporciones

$$X_1, \ldots, X_n \ iid \sim Ber(p_X)$$

$$Y_1, \ldots, Y_n \ iid \sim Ber(p_Y)$$

(X, Y independients entre si.)

$$\begin{cases} H_0: p_X = p_Y \\ H_1: p_X \neq p_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ |E| \geqslant z_{\alpha/2} \right\}$$

$$\begin{cases} H_0: p_X = p_Y \\ H_1: p_X < p_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \leqslant -z_{\alpha} \right\}$$

$$\begin{cases} H_0: p_X = p_Y \\ H_1: p_X > p_Y \end{cases} \mathcal{R}_{\alpha} = \left\{ E \geqslant z_{\alpha} \right\}$$

y pueden usarse los siguientes estadísticos:

1.
$$E = \frac{\overline{X}_m - \overline{Y}_n}{\sqrt{\frac{\overline{X}_m(1 - \overline{X}_m)}{m} + \frac{\overline{Y}_n(1 - \overline{Y}_n)}{n}}}$$

$$2. \ E = 2\sqrt{\frac{mn}{m+n}} \left(\arcsin \sqrt{\overline{X}_m} - \arcsin \sqrt{\overline{Y}_n} \right)$$