参数的文本分析及其应用

刘辉

2017/8/6

报告大纲

- 研究背景
 - 标识符文本的重要性
 - 文本分析与程序语义
 - 实参与形参
 - 关键问题
- 数据获取与数据分析
 - 文本相似性
 - 文本相似性的分布特性
 - 文本相似性与语义关联
- 基于文本相似性的异常参数检测
- 基于文本相似性的参数推荐

应用

研究背景

- 静态代码分析
 - 代码优化、软件重构、测试用例生成、缺陷分析、缺陷修复……
- 标识符名称
 - 构成代码的主要成分之一
 - 约三分一
 - 具有丰富的意义信息

```
int height =6;
int width=7;
int Area=height *width;
int z=x*y;
```

研究背景

• 诺干尝试

- API Specification (钟浩)
- Method Specification (Tao Xie)
- 函数名字与实现的不一致
- 代码补全
- 预测程序语法语义特性
- 检测错误参数

• 标识符文本特性有待发掘

- 是不是所有标识符名字都有语义信息?
- 语义相关的标识符,其名字文本是否相似?

参数文本分析

- 实参与形参 (argument & parameter)
 - 实参与形参指向相同的对象, 语义紧密相关

- ①实参与形参具有较高的文本相似性。
- ②参数的文本特性对有助于改善现有的代码分析技术。

参数文本分析

- RQ1: 实参与形参在文本上是否相似? 有多相似?
- RQ2:实参与形参的本文相似性是否与参数的长度有关?
- RQ3: 为什么有些实参与形参文本上并不相似?
- RQ4:如果某个形参在项目A上和实参不相似,那么在其他项目上 同名的形参也和实参不相似么?
- RQ5:与其他候选参数相比,正确的参数是否与形参更为相似?
- RQ6: 文本相似度的计算方法对以上结果有多大的影响?
- RQ7:不同的编程语言,其参数文本特性是否近似?
- RQ8:就参数文本相似性而言, primitive 和 non-primitive的 parameter是否有本质区别?
- RQ9:就参数文本相似性而言, API和 non-API的parameter是否有本质区别?

报告大纲

- 研究背景
 - 标识符文本的重要性
 - 文本分析与程序语义
 - 实参与形参
 - 关键问题
- 数据获取与数据分析
 - 文本相似性
 - 文本相似性的分布特性
 - 文本相似性与语义关联
- 基于文本相似性的异常参数检测
- 基于文本相似性的参数推荐

数据获取

- 来源
 - Source Forge、Github
- 项目数
 - 120个Java项目、25个C语言项目
- ・规模
 - Java:一千八百万行
 - C:五百万行
- 关键数据
 - 有名字的实参 & 形参
 - ・ 实参数:90万+25万

相似度计算

- 基于相同的单词数
 - Sim (abac, ac) =(3+2)/(4+2)
- 基于编辑距离
 - Sim (abc, aec) = 1-1/3
- 基于相同字母及其顺序
 - JaroWinkler-based metrics

Java primitive type arguments

Java API arguments

Java primitive type arguments

Parameters:

Java API arguments

C arguments

•相关系数偏低

- 0.27 (parameters) and -0.11 (arguments) for Java arguments.
- -0.06 (parameters) and -0.04 (arguments) for C arguments

•原因

• 相同长度的参数,其相似性差异巨大

RQ3:为何不相似?

Java arguments

RQ3:为何不相似?

- •抽样200个实参,手工分析
- 主要原因
 - 超短名称
 - 30%: 形参名只包含1个字母
 - 53%: 形参名不多于3个字母.
 - 集合操作
 - 8.5%: index, item, key, value
- 整个数据集上进行验证
 - SQL查询
 - 结论基本一致

Java arguments

- 低相似度参数(形参)
 - 在给定数据集(如某个项目)上,该形参与实参的平均相似度小于0.5

Similarity	Arguments (n_1)	Filtered out arguments (n_2)	n_2/n_1
[0.0, 0.1)	426,445	362577	85%
[0.1, 0.2)	16	4	25%
[0.2, 0.3)	1,077	785	73%
[0.3, 0.4)	2,845	1,701	60%
[0.4, 0.5)	10,279	5,483	53%
[0.5, 0.6)	40,721	13,701	34%
[0.6, 0.7)	69,422	19,980	29%
[0.7, 0.8)	398	13	3%
[0.8, 0.9)	14,779	1,136	8%
[0.9, 1.0)	66	3	5%
1	30,0189	69,944	23%
Total	866,237	475,327	55%

RQ5:正确参数VS候选参数

- 候选参数:语法正确的错误参数
- 40% Java 参数有其他候选参数可用
- 15%: 候选参数比正确参数具有更高的文本相似性
- 94%: MinSim=2/3

RQ6:相似度计算方法的影响

报告大纲

- 研究背景
 - 标识符文本的重要性
 - 文本分析与程序语义
 - 实参与形参
 - 关键问题
- 数据获取与数据分析
 - 文本相似性
 - 文本相似性的分布特性
 - 文本相似性与语义关联
- 基于文本相似性的异常参数检测
- 基于文本相似性的参数推荐

基于文本相似性的异常参数检测

$$lexSim(m_alt, par) - lexSim(curArg, par) \ge \beta$$

- 基于ChangeDistiller 获取所有只影响一个实参的change
- 手动检查确认错误参数
 - 14个错误参数
 - 60个项目
- 169个警报,包括9个错误参数、127个rename opportunities、33 个误报
 - R=64%
 - P=80%

报告大纲

- 研究背景
 - 标识符文本的重要性
 - 文本分析与程序语义
 - 实参与形参
 - 关键问题
- 数据获取与数据分析
 - 文本相似性
 - 文本相似性的分布特性
 - 文本相似性与语义关联
- 基于文本相似性的异常参数检测
- 基于文本相似性的参数推荐

基于文本相似性的参数推荐

·输入:函数f、形参p

•输出:实参a

- 1. If p∈LowSimPar, 拒绝推荐
- 2. 找出所有候选实参(语法正确)
- 3. 计算候选实参与p的文本相似性
- 4. 找出具有最好相似度的候选实参a
- 5. If sim (a, p) < minSim, 拒绝推荐
- 6. 推荐a为实参

基于文本相似性的参数推荐

Application	Size (LOC)	Recommended Arguments	Precision
Neuroph WURFL Json-lib Joda-Time	$11,377 \\ 10,252 \\ 8,055 \\ 27,779$	326 343 122 797	80% 87% 92% 81%
Total	57,463	1,588	83%

谢谢!