- 1. Short Answers
- 2. Linear Regression
- 3. SVM
- 4. Gaussian Naive Bayes
- 5. Linear Regression

1. Short Answers

- The time needed to evaluate one test image is O(N*d) since N O(d) computations are needed to find the nearest neighbor. The total testing-time complexity over M test images is therefore O(N*M*d).
- 2. The 10-nearest neighbor model should get a smoother boundary, since it is less sensitive to individual data points and is more robust to outliers.
- 3. w=[0,1], b=0.
- 4. The largest Eigenvalue of A^TA equals to the square of the largest singular value.
- 5. Naive Bayes assumptions assume the features of a label are independent, which is not true in applications such as language processing, where observed words are not independently generated but dependent on each other according to grammar.

2. Linear Regression

- 1. Since *X* is full rank it is invertible. Therefore it always exists a $w = yX^{-1}$.
- 2. $rank(\Sigma)$ is equal to the rank of X, which is n.
- 3. Use SVD. $X = U\Sigma V^T$; write XX^T as $U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T$, which is invertible since:
 - 1. Because X is full-rank, Σ 's diagonal should be non-0, therefore invertible;
 - 2. $U^T U = I$. Thus XX^T is invertible.

3. SVM

- 1. At least d+1 support vectors is needed to determine the margin and the decision boundary.
- 2. The smallest number of support vectors is 3, since each non-0 element in the Lagrangian vector should correspond to at least one support vector. The largest possible number of support vectors is equal to the demension d of the problem, since every datapoint is potentially a support vector in some solutions of the dual problem, the number of which unbounded.

4. Gaussian Naive Bayes

1. Bayes rule gives
$$P(y = 1 \mid x) = \frac{P(y=1)P(x \mid y=1)}{P(x)} = \frac{P(x \mid y=1)p}{P(x \mid y=1)p + P(x \mid y=-1)(1-p)}$$
, which is

where
$$A = P(x | y = -1)(1 - p)$$
, $B = P(x | y = 1)p$.

2. Under the given distribution $A=(1-p)\prod_j(1/\sqrt{2\pi})exp(\frac{-(x_j-\mu_{-j})^2}{2}), B=p\prod_j(1/\sqrt{2\pi})exp(\frac{-(x_j-\mu_{+j})^2}{2})$

Thus [log(A/B) \ \ = log(\frac{(1-p)exp(-\frac{1}{2}\sum_j(x_j-\mu_{-,j})^2)}{(p)exp(-\frac{1}{2}\sum_j(x_j-\mu_{+,j})^2)}) \ \ = log(\frac{1-p}{p})-\frac{1}{2}\sum_j((x_j-\mu_{-,j})^2-(x_j-\mu_{+,j})^2) \ \ = \sum_j(x_j(\mu_{-,j}-\mu_{+,j}))-\frac{1}{2}\sum_j(\mu_{+,j})^2+\mu_{-,j}^2)+log(\frac{1-p}{p})]

which is exactly in the form of $w^Tx + b$, with [\bm{w}=\bm{\mu_-}-\bm{\mu_+}, b = -\frac{1}{2}\sum_j(\mu_{+,j}^2+\mu_{-,j}^2)+\log(\frac{1-p}{p})]

3.
$$P(y = 1 | x) = \frac{1}{1 + exp(w^T x + b)}$$
.

5. Linear Regression

