FLAT: An Optimized Dataflow for Mitigating Attention Bottlenecks

<u>Felix Kao</u>, Suvinay Subramanian, Gaurav Agrawal, Amir Yazdanbakhsh, Tushar Krishna

Attention-based Models are Important to Accelerate

Model Traits and Trends:

- » Attention-based models achieve SOTA quality on a wide range of tasks
 - Language modeling, Question answering, Image generation
- » Increased interest in longer sequence lengths

K	eyword Extraction	Question answe	ring Named Ent	ty Recognition
Machine Translation		Summarizatio	n Image Recognitio	Music Generation n
Composing m		sic	Image Generation	Image Classification
Text classification	fication Infori	mation Retrieval		Speech Recognition
Sei	mantic Analysis	Search	Recommendation	Information Grouping

Why is Attention Challenging to Accelerate?

- 1. Quadratic growth in complexity with sequence length
- 2. Compute under-utilized because of memory boundedness
- 3. Quadratic growth in memory (footprint, bandwidth) with sequence length

Focus of this work

Canonical Attention-based Model

Canonical Accelerator and Dataflow

Operation Intensity

Captures relative compute- or memoryboundedness of an operation

$$op. int. = \frac{\# ops}{\# mem \ accesses}$$

Higher operation intensity

⇒ Higher compute utilization

Roofline Model

Visual model of achieved performance vs. operation intensity

Attention Layer is Critical in Transformer-based Models

Attention accounts for >50% of total runtime.

With increase of sequence length, attention could accounts > 75% of total runtime.

Logit, Attend is the major contributors

Well, larger GPU, TPU, problem solved?

Challenge 1: Low Compute Resource Utilization

Model: BERT, TrXL, XLM, Resnet

Computer resource seriously under-utilized.
Batch size cannot help.

What's Missing?

Let's revisit **operation intensity** $op. int. = \frac{\# ops}{\# mem \ accesses}$

The easy trick often works: just pact as many inputs together (increase batch size)

Algorithmically, our hands are tied.

We propose to fuse L and A operators into one to open up new opportunity.

Other Fusions?

Fusion (in this work): Tensor operation fusion

CONV-CONV, FC-FC, Einsum-Einsum

DL compilers are pretty decent at other fusion opportunities

Fusing other attention operators?

Already has enough operation intensity without fusion

Fusing them algorithmically don't give extra benefit

Evaluated with TPUv3

Softmax

Challenge 2: Large On-Chip Buffer Requirements

Staging intermediate activation on-chip is expensive

- Ideally: Leveraging high on-chip memory BW
- In practice: Limited on-chip capacity

Intermediate Activation

Challenge 2: Large On-Chip Buffer Requirements

Staging intermediate activation on-chip is expensive

Ideally: Data reuse and leveraging high on-chip memory BW

FLAT: Fused Logit Attend Tiling

Proprietary + Confidential

FLAT: <u>Fused Logit-Attend Tiling</u>

FLAT-dataflow

- Tiling: slice of data
- Scheduling: daţa movement

Query (Q) Logit (L) Key (K) Value (V)

Why FLAT-tile? Respect data dependency

 Softmax requires certain slices of data to reduce correctly Row-wise softmax

Basic unit of FLAT-tile: Row-granularity

Logit Attend Fusion

Fuse to compute L, A operations simultaneously

- Advantage: Immediate reuse of slice of intermediate activation
 - Buffer requirement reduces ↓
 - ⇒ Able to stage on-chip

FLAT Dataflow Features

Tiling:

Exploring different tile sizes, granularities

- Basic tiling unit: Row-granularity
 - Parameterized FLAT-tile size:

R-(Row) H-(Head) B-(Batch) M-(Batch Multihead)

Optimal tiling and scheduling found via simple Design Space Exploration

- Exploiting on-chip buffer
- Optimizing reuse

granularity

Scheduling:

Cross-fused-operators:

 Interleaved execution: better latency, simple control

Intra-fused-operator:

Loop ordering: input/output/weight-stationary

Evaluation

Methodology

Progressive Evaluation:

Logit-Attend (L-A) → Model

Performance Modeling:

https://github.com/maestro-project/frame

Dataflows Compared

- Naive Naive dataflow: Fixed tile size, schedule
- 2. FLEX Optimal dataflow found via DSE, no fusion
- 3. FLAT Optimal FLAT dataflow (fusion, tiling, scheduling) found via DSE

Performance metric

Compute utilization

$$Util = \frac{Runtime_{ideal}}{Runtime_{actual}}$$

Capturing time ratio that compute is not idling for memory

On-Chip Buffer Size

Given unlimited on-chip buffer, Naive dataflow can also works fine

When on-chip buffer become limited, performance goes down bc memory-boundedness

For L/A, FLEX (optimal baseline) needs 10x more on-chip buffer to achieve close to 1.0 utilization

Model-wise, amortized by other operators, FLEX and FLAT are similar

Dataflow Comparisons

At >4K seq length, L/A becomes dominant

Model-wise, FLEX (optimal baseline) needs **2 order of magnitude** more buffer to achieve similar performance to FLAT

While for L,A, FLEX needs **4 order of magnitude** more buffer to achieve similar performance to FLAT

Sequence Length: 512

200 KB

On-Chip Buffer Size

20 MB

Sequence Length: 4K

Memory Benefit

Platform: Evaluating using the configuration of Tesla T4 GPU

Dataset: TrEMBL protein sequencing dataset (require long sequence)

Model: Bert-based model with configurable number of blocks

_	Memory	Num	ber of	Attentio	Sequence Length=8K)		
	Req.(GB)	1	2	3	4	5	6
(Naive) -	Baseline	4.6	9.1	13.7	18.2 -OOM	22.2 -OOM	27.3 -OOM
	FLAT	0.9	1.8	2.7	3.5	4.4	5.3

_	Memory	Number of Attention Blocks (Sequence Length=16K)								
	Req.(GB)	1	2	3	4	5	6			
Vaive)	Baseline	17.5 -OOM	35 -OOM	52.5 -OOM	70.0 -OOM	87.5 -OOM	105.0 -OOM			
	FLAT	2.8	5.6	8.5	11.3	14.1	16.9 -OOM			

Seq 8K, baseline can only launches 3 attention blocks before OOM, while FLAT can fit > 6 blocks Seq 16K, baseline gets OOM with 1 attention block, while FLAT can fit 5 blocks

Platform: Evaluating using the configuration of TPU-v3

Model: BERT, XLM

Sparse Techniques:

- ELSA (ISCA'21)
- Sanger (MICRO'21)

Performance metric:

- Latency
- Compute/ Memory Ratio
 - < 1.0: memory-bound</p>

Both ELSA and Sanger improves latency

FLAT further improves the runtime performance by ~1.7x

FLAT increase the compute/memory ratio to close or over 1.0 → eliminate memory bottleneck

FLAT Prototyping

Platform: Evaluating on Tesla T4 GPU (16GM memory)

Prototyping Operator: Fused Logit-Attend using FLAT

Language: Jax

https://github.com/felix0901/flat_prototype

39 <u></u>		8			1				
	Runtime		Batch Size (Sequence Length=256)						
	(ms)	1	16	64	128	256	1K	2K	
(Naive)	Baseline	36	630	2,520	5,230	OOM	OOM	OOM	
	FLAT	28	480	1,870	3,740	7,560	34,010	OOM	

Maximum batch size

Runtime	Sequence Length (Batch Size=1)						
(ms)	128	512	2K	4K	16K	64K	128K
(Naive) Baseline	12	74	697	OOM	OOM	OOM	OOM
FLAT	11 🔻	43	175 🔻	424	4,599	64,350	OOM

Maximum sequence length

FLAT accommodate 8x larger batch size in memory over baseline

FLAT fits 32x longer sequences over baseline

FLAT has on average 1.5x speedup over baseline

https://github.com/maestro-project/frame https://github.com/felix0901/flat_prototype

The quadratic complexity of Logit and Attend operator in Attention layer causing two major challenges:

- 1. Low performance from memory boundedness
- 2. Large on-chip buffer requirement for staging intermediate activations

FLAT fused Logit and Attend operators and optimized tiling and scheduling

- 1. Increased the operation intensity → ameliorate the memory-boundedness
- 2. Reduced the on-chip buffer requirement for data staging

FLAT delivered

- 1. **1.5x speedup** (on average) in our performance model across models & platforms
- 2. 1.7x extra speedup (on average) on top of ELSA and Sanger
- 3. **1.5x speedup** (on average) in our Jax prototype while enabling **8x larger** batch size or **32x larger** sequence length