Applications of relative permeability data:

- to model a particular process, for example, fractional flow, fluid distributions, recovery and predictions
- Determination of the free water surface; i.e., the level of zero capillary pressure or the level below which fluid production is 100% water.
- Determination of residual fluid saturations

Definitions

Absolute permeability – ability of the porous media to transmit fluids

Effective permeability – permeability of a given phase when more than one phase is present

Relative permeability is the ratio of the effective permeability for a particular fluid to a reference or base permeability of the rock.

$$k_r = \frac{k_{eff}}{k_{ref}}$$

Typical water-wet, oil-water relative permeability curves

Typical oil-wet relative permeability curves

Relative permeability hysteresis, imbibition vs. drainage

- Sgc critical gas saturation, when gas first becomes mobile, generally at S_g = 2 to 5%, always between 0 and 10% this would be measured during a drainage process
- Sgr = Sgt -residual or trapped gas saturation, when gas can no longer flow because its saturation is being reduced during an imbibition process, generally at values between 15 and 40%.

Typical Gas and Oil Relative-Permeability Curves

Example

Stone I

- Scaling technique
- Input two sets of relative perm data

Krow,
$$krw = f(Sw)$$

Krog,
$$krg = f(Sg)$$

- And Sor for three-phase system
- Find kro = f(Sw,Sg)

Stone II

- Probabilistic model
- Does not require Sor
- Find kro = f(Sw, Sg)

Correlations

- Select the:
 - wettability and system type for the model
 - endpoint saturations
 - exponents to define the shape of the kr curves
 - endpoint relative permeabilities

Corey Correlation (Oil-water)

S_{wmin} minimum water saturation

S_{wcr} critical water saturation S_{wi} initial water saturation

 S_{orw} residual oil saturation to water $K_{rw (Sorw)}$ water relative perm at residual oil $K_{rw (Swmax)}$ water relative perm at maximum

water saturation

 $K_{ro(Swmin)}$ oil relative perm at minimum

water saturation

C_o Corey oil exponent

Corey water exponent

$$k_{ro} = k_{ro(S_{w min})} \left[\frac{S_{w max} - S_{w} - S_{orw}}{S_{w max} - S_{wi} - S_{orw}} \right]^{C_{o}}$$

$$k_{rw} = k_{rw(S_{orw})} \left[\frac{S_w - S_{wcr}}{S_{w max} - S_{wcr} - S_{orw}} \right]^{C_w}$$

Relationship between capillary pressure and relative permeability

Relationship between capillary pressure and relative permeability

Relationship between capillary pressure and relative permeability

