and Reliability

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was setup at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.

Dependable Texas Instruments Quality

These circuits are completely compatible with all popular TTL families. All inputs are diode-clamped to minimize transmission-line effects and simplify system design. Typical power dissipation is 40 milliwatts per latch.

The SN54100 is characterized for operation over the full military temperature range of -55° to 125°C; the SN74100 is characterized for operation from 0°C to 70°C.

logic diagram (each latch)

Resistor values shown are nominal and in ohms.

SN54100 ... J OR W PACKAGE SN74100 ... J OR N PACKAGE (TOP VIEW)

NC [1	U	24	□vcc
1D1	2		23	□1C
1D2	3		22	D1D3
102[4		21	□1D4
101	5		20]104
NC[6		19	103
GND[7		18	203
201	8		17	204
202	9		16	□2D4
2D2[10	•	15]2D3
2D1	11		14	□NC
2C [12	!	13	□nc

NC-No internal connection

FUNCTION TABLE (Each Latch)

INPUTS		OUTPUTS		
D	G	Q	ā	
L	Н	L	Н	
н	Н	н	L	
х	L	α_0	$\bar{\alpha}_0$	

H = high level, X = irrelevant

O₀ = the level of Ω before the high-to-low transition of G

Texas Instruments

3-407

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		
Input voltage		. 7 V
Operating free-air temperature range: SNE4100		. 5.5 V
SN74100	-55°C t	o 125°C
Storage temperature range	-35 C II	to 70°C
	0°C	o 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor. For this circuit, this rating applies between the

recommended operating conditions

	SN54100			SN74100			
Supply voltage, VCC	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
High-level output current, IOH	4.5	5	5.5	4.75	5	5.25	v
Low-level output current, IQL			-400			-400	μА
Width of enabling pulse, tw			16			16	mA
Setup time, t _{SU}	20			20			ns
Hold time, th	20			20			ns
Operating free-air temperature, TA	5			5			ns
			125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS†		MIN	TMD		T	
V_{IH}	/IH High-level input voltage		1		+	TYP	MAX	UNIT
VIL	Low-level input voltage		 		2			V
VIK	Input clamp voltage		V _{CC} = MIN,		 		0.8	V
			I _I = -12 mA	ļ		-1.5	V	
VOH High-level output voltage			V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.4		٧
			V _{1L} = 0.8 V,	¹ OH = -400 μA				
VOL Low-level output voltage	Low-level output voltage		V _{CC} = MIN,	V _{IH} = 2 V,	= 2 V,			
T ₁	Input aurent		VIL = 0.8 V,	IOL = 16 mA		0.2	0.4	V
<u>''</u> _	Input current at maximum input voltage		VCC = MAX,	V _I = 5.5 V				mA
I _H	High-level input current	D input	V _{CC} = MAX,		f		80	104
		C input		$V_1 = 2.4 V$			320	μA
I _{IL} Low-lev	Low-level input current	D input			 			
		Cinput	V _{CC} = MAX,	V _I = 0.4 V			-3.2	mΑ
loo.				SN54100			-12.8	
IOS Short-circuit output current §	Short-circuit output current §		VCC = MAX		-20		57	mA
				SN74100	-18		-57	_'''^
CC Supply current		ı	V _{CC} = MAX,	SN54100		64	92	
			See Note 3	SN74100		64	106	mA

 $^{^{\}dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

TTL DEVICES

 $^{^{\}ddagger}$ All typical values are at $V_{CC} + 5 V$, $T_{A} = 25^{\circ}C$.

Not more than one output should be shorted at a time.

NOTE 3: ICC is tested with all inputs grounded and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{ C}$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	D	Q	C _L = 15 pF, R _L = 400 Ω, See Note 4	-	16	30 25	ns
tPHL					16	30	
tPLH tPHL	С	α			7	15	ns

¶tpLH = propagation delay time, low-to-hgih-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 4: Load circuits and voltage waveforms are the same as those shown for the '75, '77, 'L75, and 'L77.