Problem 1) Simplify the block diagram shown in Figure P1 and obtain the transfer function C(s)/R(s).

Figure P1

Problem 2) Obtain the transfer functions C(s)/R(s) and C(s)/D(s) of the control system shown in Figure P2.

Problem 3) Consider the unit-step response of a unity-feedback control system whose open-loop transfer function is

$$G(s) = \frac{1}{(s+1)(s+2)}$$

Obtain the rise time, peak time, maximum percent overshoot and settling time.

Problem 4) Consider the system shown in Figure P4.

Determine the values of K and k such that the system has a damping ratio ξ of 0.8 and an undamped natural frequency w_n of 5 rad/s.

+ when R(s)=0

$$G_{2}G_{3} \longrightarrow C(s)$$

$$G_{1} \longleftarrow G_{2}H_{1} \longleftarrow G_{3}$$

$$\frac{G(s)}{D(s)} = \frac{G_2 G_3}{1 + G_2 G_3 G_1 \left(G_{C} H_2 + \frac{H_1}{G_3}\right)} = \frac{G_2 G_3}{1 + G_1 G_2 G_3 G_{C} H_2 + G_1 G_2 H_1}$$

$$G(s) = \frac{1}{1 + G_1 G_2 G_3 G_{C} H_2 + G_1 G_2 H_1}$$

$$\Rightarrow \frac{((s))}{R(s)} = \frac{G(s)}{1+G(s)} = \frac{((s))}{R(s)} = \frac{\frac{1}{(s+1)(s+2)}}{1+\frac{1}{(s+1)(s+2)}} \Rightarrow \frac{C(s)}{R(s)} = \frac{1}{s^2+3s+3}$$

$$G(s) = \frac{\omega_n^2}{s^2 + 2 \sqrt{3} \omega_n s + \omega_n^2}$$

$$= \frac{2 \sqrt{\omega_n} = 3}{\sqrt{3}}$$

$$= \frac{2 \sqrt{\omega_n} = 3}{\sqrt{3}}$$

$$= \frac{2 \sqrt{3} \sqrt{3}}{\sqrt{3}}$$

$$= \frac{2 \sqrt{3}}{\sqrt{3}}$$

$$= \frac{2 \sqrt{3}}{\sqrt{3}}$$

$$\frac{R(s)}{s^2 + 2s + skK + K} \rightarrow C(s)$$

$$\frac{k}{s^2+(2+kK)s+k}$$

$$\Rightarrow \frac{\kappa}{s^2 + (2+kK)s+k}$$

$$wn = 5 \text{ rad/s}$$
 $T = 08$ $G(s) = \frac{\bot}{s^2 + 27 wns + wn^2}$

=)
$$Wn^2 = K$$
 =) $[K=25]$
 $2+25K = 8 = 27wn$
 $25K = 6$ $K = 0.24$