13.7.2013

Prof. Dr. Hannes Uecker

Klausur Analysis 2a, S16

Bearbeitungszeit 120 Minuten. Erlaubte Hilfsmittel maximal 4 Blätter eigener handschriftlicher Aufschrieb, keine weiteren Unterlagen, keine elektronischen Hilfsmittel wie Taschenrechner oder Mobiltelefone.

Aufgabe 1 12 Punkte.

- a) Sei (X, d) ein metrischer Raum. Man beweise oder widerlege: Es gilt $|d(x, y) d(y, z)| \le d(x, z)$ für alle $x, y, z \in X$.
- b) Sei (X, d) ein metrischer Raum, und $(x_n), (y_n)$ Folgen in X mit $x_n \to x$ in X und $y_n \to y$ in X. Gilt dann $d(x_n, y_n) \to d(x, y)$ in \mathbb{R} ?
- c) Ein Abbildung $\|\cdot\| \to \mathbb{R}$ auf einem Vektorraum X heißt Halbnorm wenn (i) $\|\alpha x\| = |\alpha| \|x\|$ für $\alpha \in \mathbb{K}$ und $x \in X$, und (ii) $\|x+y\| \le \|x\| + \|y\|$. Was fehlt einer Halbnorm zur Norm? Man beweise oder widerlege: $N = \{x \in X : \|x\| = 0\}$ ist ein Untervektorraum von X.
- d) Man skizziere die Kurve $\mathbb{R}\ni t\mapsto \begin{pmatrix} -1+t^2\\1+t^3 \end{pmatrix}$ und bestimme ihre singulären Punkte.

Aufgabe 2 9 Punkte. a) Man bestimme je eine Stammfunktion von

$$f_1(x) = \sqrt{2x+1}, \quad f_2(x) = (x^3+x)^5(3x^2+1).$$

b) Man bestimme $I = \int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} \, dx$.

Aufgabe 3 10 Punkte. a) Sei $[a, b] \subset \mathbb{R}$ und $f \in C([a, b])$. Man beweise via partieller Integration die Formel

$$\int_a^b \int_x^b f(t) dt dx = \int_a^b (x - a) f(x) dx.$$

b) Man bestimme, falls die Integrale existieren, $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ und $\int_{1}^{\infty} (\log x) x^{-2} dx$.

Aufgabe 4 11 Punkte. a) Sei a > 0. Man beweise, daß die Taylorreihe von $f(x) = e^{ax}$ mit Entwicklungspunkt $x_0 = 0$ für jedes $x \in \mathbb{R}$ konvergiert.

- b) Man bestimme die ersten 5 Glieder der Taylorentwicklung von $f(x) = \frac{1}{3}(2x + x \cos x)$ um $x_0 = 0$.
- c) Man bestimme die Terme bis zur Ordnung x^4 der Taylorentwicklung von $\int \sin^2 x \, dx$ um $x_0 = 0$.

Hinweise. Bekannte Reihen verwenden! Eine Lösungsmöglichkeit zu c) ist $\sin(x) = x - \frac{1}{3!}x^3 + \dots$, Cauchy-Produkt und gliedweise Integration.

Aufgabe 5 10 Punkte. Gegeben ist die AWA $y'(t) = -\frac{1}{2}(y(t) - 1)^3$, $y(0) = y_0$.

- a) Man bestimme die Fixpunkte der DGL, begründe, warum für alle $y_0 \in \mathbb{R}$ die Lösung der AWA für alle $t \geq 0$ existiert, und bestimme $\lim_{t \to \infty} y(t)$.
- b) Für $y_0 = 2$ bestimme man explizit die Lösung der AWA und gebe das maximale Existenzintervall (t_0, t_1) an.

Aufgabe 6 8 Punkte. Man löse die AWA $x''(t) - 4x(t) = 4e^{-2t}$, x(0) = 0, x'(0) = -1.