Infrared Wave-Front Sensors for Adaptive Optics

Siqi Liu

Supervisor: Suresh Sivanandam

Collaborators: Shaojie Chen, Jean-Pierre Veran (NRC), Tim Hardy (NRC)

G2000 Mar 23, 2016

Adaptive Optics

Photo Credit: Laird Close, CAAO, Steward Observatory

Why are we doing this?

- Better correction for redder objects
 - e.g. late-type stars, obscured objects, and AGN
- Increased sky coverage
 - more M type stars being detected (more commonly existed) → more guide stars → better sky coverage (The fraction of the sky which the system provides a useful level of compensation.)

Adaptive Optics

(Davies and Kasper, 2012)

Shack-Hartmann Wave-Front Sensor

(MARCOS VAN DAM and RICHARD CLARE, 2007)

Lab images of the SH Wave-Front Sensor

Red dots: unlensed Blue dots: lensed

Pyramid Wave-Front Sensor

Lab Results

Performance of the Best Strehl Ratio of 2

wavefront sensors

Strehl Ratio

Reproduced from Fig 68 in http://www.vikdhillon.staff.shef.ac.uk/teaching/phy217/telescopes/phy217_tel_adaptive.html

Observational Band	Shack-Hartmann Wave-Front Sensor	Pyramid Wave-Front Sensor
H band (1.65 microns)	0.487	0.55
K band (2.2 microns)	0.65	0.728

With the setup of the same number of pixels of the detector and a 5 mag star.

Simulation display

Shack-Hartmann WFS

Pyramid WFS

Our detector

Less than 1e read out noise.