Mathematical methods for quantum Engineering 9:30 - 12:00, Thursday 19, January 2023 Exam given by Alexandru Petrescu and Pierre Rouchon

Documents are allowed. Access to internet and mobile networks is prohibited.

1 Frequency estimation of a high-Q harmonic oscillator

Consider a classical harmonic oscillator of state $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, unknown pulsation $\overline{\omega} > 0$, unknown viscous coefficient $\overline{\kappa} \geq 0$, scalar control input u(t) and scalar measured output $y = x_1$.

$$\frac{d}{dt}x_1 = \overline{\omega}x_2, \quad \frac{d}{dt}x_2 = -\overline{\omega}x_1 - \overline{\kappa}x_2 + u(t). \tag{1}$$

The goal is to design a simple algorithm based on an output feedback to estimate in real-time $\overline{\omega}$ knowing its order of magnitude $\omega_0 > 0$ ($|\omega_0 - \overline{\omega}| \ll \overline{\omega}$), knowing the order of magnitude κ_0 of $\overline{\kappa}$ ($\kappa_0/\overline{\kappa} \sim 1$) and assuming that $\overline{\kappa} \ll \overline{\omega}$ (high-Q oscillator).

- 1. For $\overline{\kappa} = 0$, show that this system admits an Hamiltonian formulation and give the expression of the Hamiltonian.
- 2. Prove that for $\overline{\kappa} > 0$ and u(t) = 0, the trajectories of (1) converge exponentially to (0,0) and give the convergence rate (use $\overline{\omega} \gg \overline{\kappa}$).
- 3. Consider the following linear and time-varying change of coordinates from $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ according to

$$x_1 = z_1 \cos \theta + z_2 \sin \theta$$
, $x_2 = -z_1 \sin \theta + z_2 \cos \theta$

with $\frac{d}{dt}\theta = \omega$ and where ω is assumed to be constant and around $\overline{\omega}$ ($|\overline{\omega} - \omega| \ll \overline{\omega}$). Show that

$$\frac{d}{dt}z_1 = (\overline{\omega} - \omega)z_2 - \overline{\kappa}(z_1\sin^2\theta - z_2\sin\theta\cos\theta) - u\sin\theta$$

$$\frac{d}{dt}z_2 = -(\overline{\omega} - \omega)z_1 - \overline{\kappa}(-z_1\sin\theta\cos\theta + z_2\cos^2\theta) + u\cos\theta$$

4. Consider now the following time-varying control input $u=2\kappa_0\cos\theta$. Assume ω constant with $|\overline{\omega}-\omega|\ll\overline{\omega}$. Show that the above dynamics can be approximated by the following averaged dynamics

$$\frac{d}{dt}z_1 = (\overline{\omega} - \omega)z_2 - \kappa z_1$$

$$\frac{d}{dt}z_2 = -(\overline{\omega} - \omega)z_1 - \kappa z_2 + \kappa_0$$

where $\kappa > 0$ is a constant gain (remember that $\kappa_0 \ll \overline{\omega}$). Give the explicit expression of κ versus $\overline{\kappa}$. Show that the above system admits a unique steady-state. Prove that all solutions converge exponentially towards this steady-state.

5. Assume that ω varies according to $\frac{d}{dt}\omega = 2\omega\kappa_0 y(t)\cos\theta(t)$ with $y(t) = x_1(t)$. Thus the output feedback controller has the following dynamics

$$\frac{d}{dt}\theta = \omega, \quad \frac{d}{dt}\omega = 2\omega\kappa_0 y(t)\cos\theta$$

with $u = 2\kappa_0 \cos \theta$. The goal is to show the stability of the closed-loop system and to prove that ω converges towards $\overline{\omega}$.

(a) Show that the closed-loop system reads.

$$\frac{d}{dt}x_1 = \overline{\omega}x_2$$

$$\frac{d}{dt}x_2 = -\overline{\omega}x_1 - \overline{\kappa}x_2 + 2\kappa_0\cos\theta$$

$$\frac{d}{dt}\omega = 2\omega\kappa_0x_1\cos\theta$$

$$\frac{d}{dt}\theta = \omega.$$

(b) Express the above system with (z_1, z_2) -variables instead of (x_1, x_2) -variables according to formulae of question 3. Replace t by θ and show that

$$\frac{d}{d\theta}z_1 = \frac{\overline{\omega} - \omega}{\omega}z_2 - \frac{\overline{\kappa}}{\omega}(z_1\sin^2\theta - z_2\sin\theta\cos\theta) - \frac{\kappa_0\sin2\theta}{\omega}$$
$$\frac{d}{d\theta}z_2 = -\frac{\overline{\omega} - \omega}{\omega}z_1 - \frac{\overline{\kappa}}{\omega}(z_1\sin\theta\cos\theta + z_2\cos^2\theta) + \frac{2\kappa_0\cos^2\theta}{\omega}$$
$$\frac{d}{d\theta}\omega = 2\kappa_0(z_1\cos^2\theta + z_2\sin\theta\cos\theta).$$

(c) Assuming that ω remains around $\overline{\omega}$, show that the averaged system reads

$$\frac{d}{d\theta}z_1 = \frac{\overline{\omega} - \omega}{\omega}z_2 - \frac{\kappa}{\omega}z_1$$

$$\frac{d}{d\theta}z_2 = -\frac{\overline{\omega} - \omega}{\omega}z_1 - \frac{\kappa}{\omega}z_2 + \frac{\kappa_0}{\omega}$$

$$\frac{d}{d\theta}\omega = \kappa_0 z_1.$$

(d) Show that the averaged system of question 5c admits a unique steady-state and give its expression. Compute its first variation around this steady state:

$$\frac{d}{d\theta} \left(\begin{array}{c} \delta z_1 \\ \delta z_2 \\ \delta \omega \end{array} \right) = A \left(\begin{array}{c} \delta z_1 \\ \delta z_2 \\ \delta \omega \end{array} \right)$$

and express the 3×3 Jacobian matrix A versus the parameters κ , κ_0 and $\overline{\omega}$.

- (e) Show that A is a stable matrix. Assume that $\kappa_0 = \kappa$ and compute the eigen-values of A. Why is it important to check that the size of these eigenvalues are much smaller than one?
- (f) Show that

$$\mathbb{R} \times \mathbb{R} \times]0 + \infty[\ni (z_1, z_2, \omega) \mapsto V(z_1, z_2, \omega) = \frac{1}{2}z_1^2 + \frac{1}{2}\left(z_2 - \frac{\kappa_0}{\kappa}\right)^2 + \frac{\omega - \overline{\omega}\log(\omega/\overline{\omega})}{\kappa}$$

is a Lyapunov function for the averaged system of question 5c. Apply Lasalle invariance principle to conclude that all trajectories converge to the unique steady-state of question 5d?

2 Controlling an approximate model for a transmon qubit

The goal of this problem is to use perturbation theory to find solutions to Schrödinger's equation for an approximate model of a transmon qubit. In this framework, we will then analyze a simple single-qubit gate, the π -pulse. We consider the following Hamiltonian

$$\hat{H} = \hat{H}_0 + \hat{H}_J,$$

$$\hat{H}_0 = \hbar \omega_a \hat{a}^{\dagger} \hat{a}, \quad \hat{H}_J = \hbar \epsilon \left[\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \hat{a}^{\dagger 2} \hat{a}^2 + \frac{1}{2} (\hat{a}^2 + \hat{a}^{\dagger 2}) \right].$$
(2)

We have denoted \hat{H}_0 the Hamiltonian for a simple harmonic oscillator, as studied in class. Note that \hat{a} and \hat{a}^{\dagger} are the bosonic annihilation and creation operators obeying the canonical commutation relation $[\hat{a}, \hat{a}^{\dagger}] = I$, with I being the identity acting on the simple harmonic oscillator Hilbert space.

Furthermore, we let \hat{H}_J be a perturbation proportional to the so-called anharmonicity of the transmon qubit, denoted by ϵ . We assume as usual that $\omega_a > 0$, and let the anharmonicity be negative $\epsilon < 0$. The anharmonicity is considered to be a small perturbation, that is, $\omega_a \gg |\epsilon|$.

- 1. Write down the eigenvectors and eigenvalues arising from the eigenproblem $\hat{H}_0|\psi\rangle = \hbar\omega_a\hat{a}^{\dagger}\hat{a}|\psi\rangle = E|\psi\rangle$. Express the eigenvectors in normalized form, in terms of the vacuum vector $|0\rangle$, which you will need to define. You may denote the eigenvectors of H_0 as $|n\rangle$, and the eigenenergies as $E_n^{(0)}$.
- 2. Consider the perturbation \hat{H}_J . Show that it can be written as a sum of two operators: the first operator, which we will call $\hat{H}_J^{secular}$, commutes with the number operator $\hat{a}^{\dagger}\hat{a}$. The second operator, which we shall denote $\hat{H}_J^{nonsecular}$, that does not commute with the number operator $\hat{a}^{\dagger}\hat{a}$. Write $\hat{H}_J^{secular}$ and $\hat{H}_J^{nonsecular}$ in terms of the ladder operators \hat{a} and \hat{a}^{\dagger} , and write the matrix representations of these two operators over the basis of eigenstates of \hat{H}_0 , found above.
- 3. Using first-order nondegenerate time-independent perturbation theory, find the correction to the eigenenergies and eigenvectors of \hat{H}_0 due to the perturbation \hat{H}_J .
 - (a) Explicitly, you have to find the approximation to the eigenenergy of the n^{th} state of the transmon, up to first order in perturbation theory in ϵ , denoted $E_n \approx$

 $E_n^{(0)} + E_n^{(1)}$. Here, $\{E_n^{(0)}, |n\rangle| n = 0, 1, 2, ...\}$ are the solutions to the Schrödinger equation of the simple harmonic oscillator in Question 1 above, and $E_n^{(1)}$ is the correction at first order in ϵ that you have to find.

(b) Moreover, you have to show that the corrected eigenvectors take the form

$$|n^{(1)}\rangle = |n\rangle + \mu_{n+2,n}|n+2\rangle + \mu_{n-2,n}|n-2\rangle,$$
 (3)

in terms of the eigenstates $|n\rangle$ of the simple harmonic oscillator found above. Find the coefficients $\mu_{i,j}$ in the expression above, according to perturbation theory to first order in ϵ , and such that $|n^{(1)}\rangle$ is properly normalized.

4. Now we will consider the effect of a drive term $\hat{V}(t) = \hbar \mathcal{A} \cos(\omega_d t)(\hat{a} + \hat{a}^{\dagger})$, where \mathcal{A} is a small drive amplitude, and ω_d is a drive frequency, both with units of frequency. Assume that the approximate spectrum of the undriven system is correctly described by the results you obtained above in Question 3, that is

$$\hat{H} + \hat{V}(t) \approx \sum_{n} \left[E_n^{(0)} + E_n^{(1)} \right] |n^{(1)}\rangle \langle n^{(1)}| + \hat{V}(t),$$
 (4)

with the first term being our approximation of the time-independent unperturbed Hamiltonian, and the second term being the time-dependent perturbation. We assume that the frequency of the perturbation is set to be resonant with our approximation of the $0 \to 1$ transition frequency, that is $\hbar \omega_d = E_1^{(0)} + E_1^{(1)} - E_0^{(0)} + E_0^{(1)}$.

Assume that the system is initialized in the state $|0^{(1)}\rangle$. Find the leading contribution to the probability as a function of time that the system is in the state $|0^{(1)}\rangle, |1^{(1)}\rangle, |2^{(1)}\rangle$. Give an answer that is correct to first order in ϵ and to first order in A. Argue that, to achieve this order of precision, it is not necessary to normalize the eigenvector in Eq. (3).

- 5. Project your Hamiltonian Eq. (4) into the lowest two eigenstates $|0^{(1)}\rangle$ and $|1^{(1)}\rangle$. That is, we shall consider $\hat{H}_{qubit}(t) = \hat{P}[\hat{H} + \hat{V}(t)]\hat{P}$, with the operator in the brackets on the right-hand side given by the approximate form of Eq. (4), and with $\hat{P} = |0^{(1)}\rangle\langle 0^{(1)}| + |1^{(1)}\rangle\langle 1^{(1)}|$.
 - (a) Show that \hat{P} , as expressed in terms of the perturbed kets of Eq. (3), is a projector, i.e. it obeys $\hat{P}\hat{P} = \hat{P}$.
 - (b) Express \hat{H}_{qubit} in terms of Pauli matrices. Write first the appropriate Pauli matrices in terms of the perturbed kets and bras of Eq. (3). Hint: $\hat{\sigma}_z = -|0^{(1)}\rangle\langle 0^{(1)}| + |1^{(1)}\rangle\langle 1^{(1)}|$.
 - (c) Assume that the system described by \hat{H}_{qubit} is prepared in the initial state $|0^{(1)}\rangle$. What is the wavefunction as a function of time?
 - (d) Do this result and the one you obtained previously in Question 4 agree in the limit of short evolution time, t, or weak drive amplitude, \mathcal{A} ? What is the amount of time needed to perform a π pulse?

Mathematical methods for quantum Engineering 9:30 - 12:00, Thursday 19, January 2023 Solution to the exam given by Alexandru Petrescu and Pierre Rouchon

3 Frequency estimation of a high-Q harmonic oscillator

1. With $q=x_1,\ p=x_2$ and Hamiltonian $H(q,p,u)=\frac{\overline{\omega}}{2}(q^2+p^2)-uq$, the differential equations read:

$$\frac{d}{dt}q = \frac{\partial H}{\partial p}, \quad \frac{d}{dt}p = -\frac{\partial H}{\partial q}.$$

2. The solutions of the linear time-invariant system $\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = M \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ with

$$M = \left(\begin{array}{cc} 0 & \overline{\omega} \\ -\overline{\omega} & -\overline{\kappa} \end{array} \right)$$

converge exponentially towards 0, iff, the eigenvalues of M have a strictly negative real part: it is the case since $\text{Tr}(M) = -\overline{\kappa} < 0$ and $\det(M) = \overline{\omega}^2 > 0$. Since $\overline{\omega} \gg \overline{\kappa}$, the two eigenvalues are complex conjugated with identical real parts $-\overline{\kappa}/2$: the exponential convergence rate is thus $\overline{\kappa}/2$.

3. This comes from the following equations satisfied by $\frac{d}{dt}z_1$ and $\frac{d}{dt}z_2$:

$$\cos\theta \frac{d}{dt}z_1 + \sin\theta \frac{d}{dt}z_2 + \omega(-z_1\sin\theta + z_2\cos\theta) = \frac{d}{dt}x_1 = \overline{\omega}(-z_1\sin\theta + z_2\cos\theta)$$
$$-\sin\theta \frac{d}{dt}z_1 + \cos\theta \frac{d}{dt}z_2 - \omega(z_1\cos\theta + z_2\sin\theta) = \frac{d}{dt}x_2 = -\overline{\omega}(z_1\cos\theta + z_2\sin\theta)$$
$$-\overline{\kappa}(-z_1\sin\theta + z_2\cos\theta) + u.$$

4. Since $|\overline{\omega} - \omega|, \overline{\kappa}, \kappa_0 \ll \overline{\omega}$, one can apply the RWA approximation using the fact that

$$\frac{1}{2\pi} \int_0^{2\pi} \cos^2 \theta d\theta = 1/2 \text{ and } \frac{1}{2\pi} \int_0^{2\pi} \sin \theta \cos \theta d\theta = 0.$$

Thus $\kappa = \overline{\kappa}/2$. The unique steady-state is

$$z_1 = \frac{\kappa_0(\overline{\omega} - \omega)}{\kappa^2 + (\overline{\omega} - \omega)^2}, \quad z_2 = \frac{\kappa_0 \kappa}{\kappa^2 + (\overline{\omega} - \omega)^2}.$$

The Jacobian matrix $\begin{pmatrix} -\kappa & \overline{\omega} - \omega \\ -\overline{\omega} + \omega & -\kappa \end{pmatrix}$ is stable since its trace -2κ is strictly negative and its determinant $\kappa^2 + (\overline{\omega} - \omega)^2$ is strictly positive.

5. (a) Add to the open-loop dynamics, the dynamics of the controller $\frac{d}{dt}\theta = \omega$ and $\frac{d}{dt}\omega = 2\omega\kappa_0 y(t)\cos\theta$, replace y by x_1 and u by $2\kappa_0\cos\theta$.

(b) Similar computations than the ones done in question 3 yield to

$$\frac{d}{dt}z_1 = (\overline{\omega} - \omega)z_2 - \overline{\kappa}(z_1\sin^2\theta - z_2\sin\theta\cos\theta) - \kappa_0\sin2\theta$$

$$\frac{d}{dt}z_2 = -(\overline{\omega} - \omega)z_1 - \overline{\kappa}(z_1\sin\theta\cos\theta + z_2\cos^2\theta) + 2\kappa_0\cos^2\theta$$

$$\frac{d}{dt}\omega = 2\omega\kappa_0(z_1\cos^2\theta + z_2\sin\theta\cos\theta)$$

$$\frac{d}{dt}\theta = \omega.$$

One concludes using $d\theta = \omega dt$ and $\frac{d}{d\theta} = \frac{1}{\omega} \frac{d}{dt}$.

(c) With $\eta = \omega/\overline{\omega}$ instead of ω one gets

$$\begin{split} \frac{d}{d\theta}z_1 &= \frac{1-\eta}{\eta}z_2 - \frac{\overline{\kappa}}{\overline{\omega}\eta}(z_1\sin^2\theta - z_2\sin\theta\cos\theta) - \frac{\kappa_0\sin2\theta}{\overline{\omega}\eta} \\ \frac{d}{d\theta}z_2 &= -\frac{1-\eta}{\eta}z_1 - \frac{\overline{\kappa}}{\overline{\omega}\eta}(z_1\sin\theta\cos\theta + z_2\cos^2\theta) + \frac{2\kappa_0\cos^2\theta}{\overline{\omega}\eta} \\ \frac{d}{d\theta}\eta &= 2\frac{\kappa_0}{\overline{\omega}}(z_1\cos^2\theta + z_2\sin\theta\cos\theta). \end{split}$$

Since $\left|\frac{\overline{\omega}-\omega}{\omega}\right| \ll 1$, η is close to one, and thus $\frac{1-\eta}{\eta}$, $\frac{\overline{\kappa}}{\overline{\omega}\eta}$, $\frac{\kappa_0}{\overline{\omega}\eta}$ and $\frac{\kappa_0}{\overline{\omega}}$ are much smaller than 1. Thus the RWA provides a good approximation:

$$\frac{d}{d\theta}z_1 = \frac{1-\eta}{\eta}z_2 - \frac{\overline{\kappa}}{2\overline{\omega}\eta}z_1$$

$$\frac{d}{d\theta}z_2 = -\frac{1-\eta}{\eta}z_1 - \frac{\overline{\kappa}}{2\overline{\omega}\eta}z_2 + \frac{\kappa_0}{\overline{\omega}\eta}$$

$$\frac{d}{d\theta}\eta = \frac{\kappa_0}{\overline{\omega}}z_1.$$

One concludes with $\omega = \overline{\omega}\eta$.

(d) The algebraic system characterizing the possible steady-states

$$0 = \frac{\overline{\omega} - \omega}{\omega} z_2 - \frac{\kappa}{\omega} z_1$$
$$0 = -\frac{\overline{\omega} - \omega}{\omega} z_1 - \frac{\kappa}{\omega} z_2 + \frac{\kappa_0}{\omega}$$
$$0 = \kappa_0 z_1$$

admits an unique solution $z_1 = 0$, $z_2 = \kappa_0/\kappa > 0$ and $\omega = \overline{\omega}$. A direct computation of the Jacobian matrix at this stead-state gives

$$A = \begin{pmatrix} -\frac{\kappa}{\overline{\omega}} & 0 & -\frac{\kappa_0}{\kappa \overline{\omega}} \\ 0 & -\frac{\kappa}{\overline{\omega}} & 0 \\ \kappa_0 & 0 & 0 \end{pmatrix}$$

(e) The linearized system separates in two blocs:

• the 1D bloc $\frac{d}{d\theta}\delta z_2 = -\frac{\kappa}{\overline{\omega}}\delta z_2$ that converge exponentially to 0 with eigenvalue $-\frac{\kappa}{\overline{\omega}}$

• the 2D bloc

$$\frac{d}{d\theta}\delta z_1 = -\frac{\kappa}{\overline{\omega}}\delta z_1 - \frac{\kappa_0}{\kappa \overline{\omega}}\delta \omega, \quad \frac{d}{d\theta}\delta \omega = \kappa_0 \delta z_1$$

corresponding to $\frac{d^2}{d\theta^2}\delta\omega = -\frac{\kappa}{\overline{\omega}}\frac{d}{d\theta}\delta\omega - \frac{\kappa_0^2}{\kappa\overline{\omega}}\delta\omega$ with is also exponentially stable (damped harmonic oscillator).

When $\kappa = \kappa_0$, one eigenvalue is real $-\frac{\kappa}{\overline{\omega}}$ and the two other ones are complex conjugated: $-\frac{\kappa}{2\overline{\omega}} \pm i\sqrt{\frac{\kappa}{\overline{\omega}} - \frac{\kappa^2}{4\overline{\omega}^2}}$. Their magnitude are much smaller that 1 since less that $\sqrt{\kappa/\overline{\omega}} \ll 1$. This is crutial to ensure the validity of the RWA.

(f) It is clear that V tends to $+\infty$ when (z_1, z_2, ω) tends to the boundary of $\mathbb{R} \times \mathbb{R} \times]0+\infty[$. Moreover one has:

$$\frac{d}{d\theta}V = -\frac{\kappa}{\omega} \left(z_1^2 + \left(z_2 - \frac{\kappa_0}{\kappa} \right)^2 \right) \le 0.$$

Thus V is a Lyapunov function. Lasalle invariance principle gives then the convergence to the set of solutions of

$$\begin{split} \frac{d}{d\theta}z_1 &= \frac{\overline{\omega} - \omega}{\omega}z_2 - \frac{\kappa}{\omega}z_1\\ \frac{d}{d\theta}z_2 &= -\frac{\overline{\omega} - \omega}{\omega}z_1 - \frac{\kappa}{\omega}z_2 + \frac{\kappa_0}{\omega}\\ \frac{d}{d\theta}\omega &= \kappa_0 z_1\\ \frac{d}{d\theta}V &= -\frac{\kappa}{\omega}\left(z_1^2 + \left(z_2 - \frac{\kappa_0}{\kappa}\right)^2\right) = 0. \end{split}$$

This over-determined system admits a unique solution, the steady-state $z_1 = 0$, $z_2 = \kappa_0/\kappa$ and $\omega = \overline{\omega}$.

4 Controlling an approximate model for a transmon qubit

- 1. Defining the vacuum to be the unique state $|0\rangle$ that obeys $\hat{a}|0\rangle = 0$, we let $|n\rangle = \frac{\hat{a}^{\dagger n}}{\sqrt{n!}}|0\rangle$. Then $\hat{H}_0|n\rangle = E_n^{(0)}|n\rangle = n\hbar\omega_a|n\rangle$.
- 2. The perturbation can be split into two terms,

$$\hat{H}_{J}^{secular} = \hbar \epsilon \hat{a}^{\dagger} \hat{a} + \frac{\hbar \epsilon}{2} \hat{a}^{\dagger 2} \hat{a}^{2} = \hbar \epsilon \hat{a}^{\dagger} \hat{a} + \frac{\hbar \epsilon}{2} \hat{a}^{\dagger} \hat{a} (\hat{a}^{\dagger} \hat{a} - 1),$$

$$\hat{H}_{J}^{nonsecular} = \hat{H}_{J} - \hat{H}_{J}^{secular} = \frac{\hbar \epsilon}{2} (\hat{a}^{2} + \hat{a}^{\dagger 2}).$$
(5)

The first one is diagonal in the Fock basis $|n\rangle$ defined above, whereas the second one is not. The nonzero matrix elements of $\hat{H}_J^{secular}$ are

$$\langle n|\hat{H}_J^{secular}|n\rangle = n\hbar\epsilon + \frac{1}{2}n(n-1)\hbar\epsilon, \text{ for } n=0,1,2,\dots$$
 (6)

Meanwhile, the nonzero matrix elements of $\hat{H}_J^{nonsecular}$ are

$$\langle n|\hat{H}_J^{secular}|n+2\rangle = \langle n+2|\hat{H}_J^{secular}|n\rangle = \frac{1}{2}\sqrt{n+2}\sqrt{n+1}\hbar\epsilon, \text{ for } n=0,1,2,\dots$$
 (7)

These matrix representations allow us to see that $\hat{H}_J^{secular}$ commutes with the number operator $\hat{a}^{\dagger}\hat{a}$, whereas $\hat{H}_J^{nonsecular}$ does not, without explicitly evaluating the commutator.

3. (a) By using the formula in the course notes [Eq. (23)] the eigenenergies of the transmon up to corrections that are first order in ϵ are

$$E_n^{(0)} + E_n^{(1)} = n\hbar\omega_a + \langle n|\hat{H}_J|n\rangle = n\hbar\omega_a + \langle n|\hat{H}_J^{secular}|n\rangle$$

$$= n\hbar\omega_a + n\hbar\epsilon + \frac{n(n-1)}{2}\hbar\epsilon.$$
(8)

Only the part of the perturbation that is diagonal in the eigenbasis of H_0 , $\hat{H}_J^{secular}$, contributes to the eigenenergy correction at linear order in ϵ .

(b) To obtain the corrections for the eigenvectors, we apply Eq. (24) of the course notes, to obtain

$$|n^{(1)}\rangle = |n\rangle + \sum_{k \neq n} |k\rangle \frac{\langle k|\hat{H}_J^{nonsecular}|n\rangle}{E_n^{(0)} - E_k^{(0)}} + O(\epsilon^2). \tag{9}$$

Note that all kets, bras, and energies on the right-hand side of Eq. (9) stand for the unperturbed kets, bras, and eigenenergies that you determined at Question 1. To ease notations, let

$$\hat{v} = \frac{\hat{H}_J^{nonsecular}}{\hbar \epsilon} = \frac{1}{2} (\hat{a}^2 + \hat{a}^{\dagger 2}). \tag{10}$$

The following are the only nonzero elements of the matrix representation of the operator \hat{v} over Fock states

$$\langle n+2|\hat{v}|n\rangle = \langle n|\hat{v}|n+2\rangle = \frac{1}{2}\sqrt{(n+1)(n+2)}.$$
 (11)

So \hat{v} only couples Fock states that differ by 2 excitations. Using then Eq. (9) we arrive at the corrected eigenvector to first order in α

$$|n^{(1)}\rangle = |n\rangle + \eta_{n+2,n}|n+2\rangle + \eta_{n-2,n}|n-2\rangle,$$
 (12)

where the coefficients are

$$\eta_{ij} = \frac{\hbar \epsilon}{E_j^{(0)} - E_i^{(0)}} \langle i | \hat{v} | j \rangle \text{ for all } i, j \ge 0,
\eta_{ij} = 0 \text{ if } i \text{ or } j < 0.$$
(13)

The norm of the corrected eigenstate Eq. (3) is

$$\mathcal{N}_n = \sqrt{\langle n^{(1)} | n^{(1)} \rangle} = \sqrt{1 + \eta_{n+2,n}^2 + \eta_{n-2,n}^2} = 1 + O(\epsilon^2). \tag{14}$$

Therefore,

$$\mu_{n\pm 2,n} = \mathcal{N}_n^{-1} \eta_{n\pm 2,n} = \eta_{n\pm 2,n} + O(\epsilon^3).$$
 (15)

If we aim to report all results to order ϵ , we do not need to worry about evaluating this norm and normalizing the eigenvector $|n^{(1)}\rangle$.

4. If our goal is to express all quantities to linear order in ϵ or \mathcal{A} , it is sufficient to work with the Hamiltonian in the form

$$\hat{H}(t) \approx \sum_{n} \left[E_n^{(0)} + E_n^{(1)} \right] |n^{(1)}\rangle \langle n^{(1)}| + \hat{V}(t).$$
 (16)

By the prescription of time-dependent perturbation theory, what we need is the interactionpicture form of the time-dependent perturbation. This is

$$\hat{V}_I(t) = \sum_{m,n>0}^{\infty} \hbar \mathcal{A} \cos(\omega_d t) \langle n^{(1)} | \hat{a} + \hat{a}^{\dagger} | m^{(1)} \rangle e^{-i \left[E_m^{(1)} - E_n^{(1)} + E_m^{(0)} - E_n^{(0)} \right] t/\hbar} | n^{(1)} \rangle \langle m^{(1)} |.$$
 (17)

The relevant matrix elements to calculate are

$$\langle n^{(1)}|\hat{V}_I(t)|0^{(1)}\rangle$$
, for $n=0,1,2$. (18)

This reduces to evaluating the following three matrix elements of the operator $\hat{a} + \hat{a}^{\dagger}$. If we only keep terms linear in ϵ ,

$$\langle 0^{(1)} | \hat{a} + \hat{a}^{\dagger} | 0^{(1)} \rangle \approx 0,$$

$$\langle 1^{(1)} | \hat{a} + \hat{a}^{\dagger} | 0^{(1)} \rangle \approx 1,$$

$$\langle 2^{(1)} | \hat{a} + \hat{a}^{\dagger} | 0^{(1)} \rangle \approx 0.$$
(19)

We then find that the only relevant nonzero matrix element of the interaction-picture perturbation Hamiltonian is

$$\langle 1^{(1)}|\hat{V}_I(t)|0^{(1)}\rangle = \hbar \mathcal{A}\cos(\omega_d t)e^{i\left[E_1^{(1)} - E_0^{(1)} + E_1^{(0)} - E_0^{(0)}\right]t/\hbar}.$$
 (20)

Now we can use Eq. (60) of the lecture notes

$$c_1^{(1)}(t) = -\frac{i}{\hbar} \int_0^t dt' \langle 1^{(1)} | V_I(t') | 0^{(1)} \rangle.$$
 (21)

Assuming that $\omega_d = [E_1^{(1)} - E_0^{(1)} + E_1^{(0)} - E_0^{(0)}]/\hbar$, the first integral evaluates to

$$c_1^{(1)}(t) = -\frac{i\hbar \mathcal{A}}{2\hbar}t + \text{osc.} = -i\frac{\mathcal{A}}{2}t + \text{osc.}, \tag{22}$$

where by osc. we have denoted terms that oscillate as a function of time, which we shall drop. Thus the probability to find the system in state 1 after time t is $|\mathcal{A}|^2 t^2/4$. Obviously this result is only valid for time scales $t \ll |\mathcal{A}|^{-1}$.

5. (a) We can evaluate $\hat{P}\hat{P}$ in the eigenbasis of \hat{H}_0 by using the expression for \hat{P} in the text of the exam, and the expressions of the perturbed kets of Eq. (3). We get

$$\hat{P}\hat{P} = |0^{(1)}\rangle\langle 0^{(1)}|0^{(1)}\rangle\langle 0^{(1)}| + |1^{(1)}\rangle\langle 1^{(1)}|1^{(1)}\rangle\langle 1^{(1)}| + |0^{(1)}\rangle\langle 0^{(1)}|1^{(1)}\rangle\langle 1^{(1)}| + |1^{(1)}\rangle\langle 1^{(1)}|0^{(1)}\rangle\langle 0^{(1)}| = \hat{P}.$$
(23)

The terms on the second row give zero, upon using Eq. (3), whereas the first row gives \hat{P} if the expressions are properly normalized.

(b) The resulting two-by-two Hamiltonian is then

$$H_{qubit} = \left(E_0^{(0)} + E_0^{(1)}\right) |0^{(1)}\rangle \langle 0^{(1)}| + \left(E_1^{(0)} + E_1^{(1)}\right) |1^{(1)}\rangle \langle 1^{(1)}| + \mathcal{A}\sin(\omega_d t) \langle 1^{(1)}| \hat{a} + \hat{a}^{\dagger} |0^{(1)}\rangle |1^{(1)}\rangle \langle 0^{(1)}| + \mathcal{A}\sin(\omega_d t) \langle 0^{(1)}| \hat{a} + \hat{a}^{\dagger} |1^{(1)}\rangle |0^{(1)}\rangle \langle 1^{(1)}| = \left(\begin{array}{cc} E_0^{(0)} + E_0^{(1)} & \mathcal{A}\sin(\omega_d t) \\ \mathcal{A}\sin(\omega_d t) & E_1^{(0)} + E_1^{(1)} \end{array}\right) = \frac{1}{2}\Delta_{10}\sigma^z + \mathcal{A}\sin(\omega_d t)\sigma^x + E_{offset}I_2,$$
(24)

where $\Delta_{10} = E_1^{(0)} + E_1^{(1)} - E_0^{(0)} - E_0^{(1)}$, and E_{offset} is an irrelevant energy offset multiplying the identity matrix acting on this subspace.

- (c) Revisiting our solution for the driven qubit, we find that, for resonant drive, the probability to find the qubit in the excited state is $\sin^2\left(\frac{1}{2}\mathcal{A}t\right)$, cf. Eq. (26) of the problem set 1 solution. The time of a π -pulse is therefore the shortest time needed for this function to go from 0 to 1, namely $\frac{1}{2}\pi = \frac{1}{2}\mathcal{A}T_{\pi}$, so $T_{\pi} = \pi/\mathcal{A}$.
- (d) The fact that the probability of transition from 0 to 1 is $\sin^2(\mathcal{A}t/2) \approx \mathcal{A}^2t^2/4$, agrees in the short time limit $\mathcal{A}t \ll 1$ with the perturbative result obtained above. We can only expect the perturbative result to hold in the limit $\mathcal{A}t \ll 1$, so either for very short times, or very small drive amplitude.