Summary

Cond.	Types	Applications
Weak	$X_n \xrightarrow{d} X$	Central Limited Theorem
	$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$	
Inbetween $X_n \stackrel{p}{\to} X$		Weak law of large number (WLLN)
	$\lim_{n\to\infty} P(X_n-X \geq \epsilon)=0$	Consistency of estimator
Strong	$X_n \xrightarrow{r^{th}} X$	MSE of estimator (Efficiency)
	$\lim_{n\to\infty}E[X_n-X ^r]=0$	
Strong	$X_n \xrightarrow{a.s} X$	Strong law of large number
	$P\left(\lim_{n\to\infty}X_n=X\right)=1$	(SLLN)

6 Homework

Homework 2.1 (scores=5x3=15)

Homework 2.2 (scores=5)

Bonus: Proof of Lindeberg-Lévy CLT (10 scores)

Homework 2.1 (scores=5x3=15)

HW 1: Converge to a constant in distribution/probability

If random variables $X_1, X_2, X_3, ...$ be a sequence of i.i.d. Bernoulli(1/n). Questions:

- 1. Verify if $X_n \stackrel{d}{\to} 0$, *i.e.*, $\lim_{n\to\infty} F_{X_n}(x) = F_X(x=0)$? (5 scores)
- 2. Verify if $X_n \xrightarrow{p} 0$, *i.e.*, $\lim_{n \to \infty} P(|X_n 0| \ge \epsilon) = 0$? (5 scores)
- 3. Verify if $X_n \xrightarrow{a.s.} 0$, *i.e.*, $P(\lim_{n\to\infty} X_n = 0) = 1$? To get a full score, you have to provide: 1.theoretical proof & 2. simulation....(5 scores)

```
# Provide histrogram density of $|X n| > \epsilon $
N_{\text{list}} = [1,10,1000] \text{ # < You have to change this ... Just look at the formular ... what is the range of n...
P count n = []
P count temp = 0
N size=1000
for N select in N list:
   XN = np.random.binomial(size=N size, p=1/N select, n=1)
    counts = 1*(XN > 0)
   P count = counts.sum()/N size
    P count temp += P count
   P count n.append(P count temp)
plt.figure(figsize=(12,6))
plt.plot(N list, P count n, color="blue", linewidth=2, label="Uniform")
plt.ylabel("$P n$")
plt.xlabel("Iterations")
plt.grid()
plt.legend()
```

Homework 2.2 (scores=5)

HW 2: Convergence in mean $\stackrel{Imply}{\Longrightarrow}$ convergence in probability

If $X_n \xrightarrow{L^r} X$ for some $r \ge 1$, then $X_n \xrightarrow{p} X$.

Show that $\lim_{n\to\infty} P(|X_n-X|\geq \epsilon)=0$. Hint! Since $|X_n-X|$ is an RV $\in \mathbb{R}^+$, this can be done easily using Markov Inequality.

Bonus: Proof of Lindeberg-Lévy CLT (10 scores)

Bonus 1: Lindeberg–Lévy Central Limit Theorem (CLT) [2]

Let $X_1, X_2, ...$ be a sequence of iid random variables with mean $E[X_n] = \mu \le \infty$ and variance $Var[X_n] = \sigma^2 \le \infty$. Then, the random variable Z_n , defined as,

$$Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sigma\sqrt{n}} \tag{37}$$

converges **in distribution** to the standard normal random variable X, *i.e.*, $Z_n \xrightarrow{d} X$ where $X \sim \mathcal{N}(0, 1^2)$. That is, $\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$.

Note that $X_1, X_2, ...$ can have any distribution. Unlike the estimator settings, $X_1, X_2, ...$ is unrelated to X.

Show that this theorem is true (using Continuity Theorem). Hint in Slide 150

Soln. Bonus 1: Sketch of how you may do this & given info ...

- If $X \sim \mathcal{N}(0, 1^2)$, $M_X(t) = \mathsf{E}[\mathsf{e}^{tX}] = \mathsf{e}^{\frac{t^2}{2}}$
- Use the fact that if $\lim_{n\to\infty} M_{Z_n}(t) = M_X(t) = \mathrm{e}^{\frac{t^2}{2}}$, then $Z_n \stackrel{d}{\to} X$.
- Taylor series expansion centering around a: $f(q) = \sum_{i} \frac{f^{i}(q=a)(q-a)^{i}}{i!}$
- $\lim_{n \to \infty} \left(1 + \frac{t^2}{2n}\right)^n = e^{\frac{t^2}{2}}$ (L'Hôpital's rule)

Goal: show that $\lim_{n\to\infty} M_{Z_n}(t) = e^{\frac{t^2}{2}}$.

Sketch the steps ...

- \blacksquare \Rightarrow Derive $M_{Z_n}(t) = \mathsf{E}[\mathrm{e}^{tZ_n}]$ (4 scores)
- \bigcirc \Rightarrow Use Taylor expansion to calculate $E[e^{tZ_n}]$ (4 scores)