

Algorithmique

Analyse des algorithmes

Anicet E. T. Ebou, ediman.ebou@inphb.ci

01

Temps d'exécution d'un algorithme

Efficacité d'un algorithme

Il peut être évalué en terme de:

- Temps d'exécution;
- Espace mémoire occupé;
- Qualité du résultat;
- Simplicité.

Le temps d'exécution d'un algorithme dépend de **la taille** des données d'entrées.

Tiré de CSI2510 - Prof. Paola Flocchini

Il dépend aussi de la nature des données à traiter (des entrées différentes peuvent avoir des temps d'exécution différents).

Tiré de CSI2510 - Prof. Paola Flocchini

En fonction de ces facteurs on a donc en général 3 mesures du temps d'exécution:

- Le meilleur des cas;
- Le cas moyen;
- Le pire des cas.

Tiré de CSI2510 - Prof. Paola Flocchini

- Trouver le cas moyen peut être difficile
- On se concentre souvent sur le pire des cas.
 - plus facile a analyser
 - d'importance cruciale

dans certaines applications (par ex. contrôle aérien, chirurgie, gestion de réseau).

Tiré de CSI2510 - Prof. Paola Flocchini

02

Mesurer le temps d'exécution

Mesurer le temps d'exécution

Deux approches sont possibles:

- 1. Une approche expérimentale
- 2. Une approche théorique.

2.1

Approche expérimentale

Etude expérimentale

L'étude expérimentale peut se faire en suivant les étapes suivantes:

- 1. Implémenter l'algorithme;
- Exécuter le programme avec des ensembles de données de taille et de contenu variés;
- 3. Mesurer précisément le temps d'exécution pour chaque cas.

Etude expérimentale

Les études expérimentales ont des limitations non négligeables:

- Il est nécessaire d'implémenter l'algorithme dans un langage de programmation;
- Lors des tests, l'ensemble des données d'entrée est réduit et ne couvre pas la totalité des cas possibles;
- Afin de comparer deux algorithmes, les mêmes environnements matériel et logiciel devraient être utilisés.

2.2

Approche théorique

Etude théorique

Nous avons besoin d'une **méthodologie générale** pour analyser le temps d'exécution d'algorithmes qui:

- Utilise une description de haut niveau de l'algorithme (indépendant de l'implémentation);
- Caractérise le temps d'exécution comme une fonction de la taille des données d'entrée;
- Considère toutes les entrées;
- Est indépendant des environnements matériels et logiciels.

Opérations primitives

Ce sont des opérations de bas niveau qui sont indépendantes du langage de programmation, par exemple:

- Appel et retour d'une méthode;
- Effectuer une opération arithmétique;
- Comparer deux nombres, etc...;
- Affectation d'une variable.

Opérations primitives

En observant le pseudo-code d'un algorithme on peut compter le nombre d'opérations primitives exécutées par cet algorithme et par la suite analyser son temps d'exécution et son efficacité.

```
Algorithme max_tab
Var
     tab: Tableau[0..n-1] d'Entiers
     max: Entier
Debut
     max \leftarrow tab[0]
     Pour i ← 1 à n-1 faire
           Si max < tab[i] alors
                max <- tab[i]</pre>
          FinSi
     FinPour
     Ecrire('Le max est: ' , max)
Fin
```

```
Algorithme max_tab
Var
     tab: Tableau[0..n-1] d'Entiers
     max: Entier
Debut
     max \leftarrow tab[0]
     Pour i ← 1 à n-1 faire
           Si max < tab[i] alors
                max <- tab[i]</pre>
           FinSi
     FinPour
     Ecrire('Le max est: ' , max)
Fin
```

Quelles sont les opérations primitives à compter?

- Comparaisons;
- Affectations à Max.

```
Meilleur des cas
Algorithme max_tab
Var
     tab: Tableau[0..n-1] d'Entiers
     max: Entier
Debut
                                                        1 affectation
     \max \leftarrow \mathsf{tab}[0] \blacktriangleleft
     Pour i ← 1 à n-1 faire
          Si max < tab[i] alors ←
                                                        n-1 comparaisons
               max <- tab[i] ←
                                                        0 affectation
          FinSi
     FinPour
     Ecrire('Le max est: ' , max)
Fin
```

```
Pire des cas
Algorithme max_tab
Var
                                                            3
                                                                   5
                                                                                      20
     tab: Tableau[0..n-1] d'Entiers
    max: Entier
Debut
                                                       1 affectation
     \max \leftarrow \mathsf{tab}[0] \blacktriangleleft
     Pour i ← 1 à n-1 faire
          Si max < tab[i] alors ←
                                                       n-1 comparaisons
               max <- tab[i] ←
                                                n-1 affectations
          FinSi
     FinPour
     Ecrire('Le max est: ' , max)
Fin
```

```
Algorithme max_tab
Var
     tab: Tableau[0..n-1] d'Entiers
     max: Entier
Debut
     max \leftarrow tab[0]
     Pour i ← 1 à n-1 faire
           Si max < tab[i] alors
                max <- tab[i]</pre>
           FinSi
     FinPour
     Ecrire('Le max est: ' , max)
Fin
```

Meilleur des cas

1 affectation + (n-1) comparaisons

Pire des cas

n affectations + (n-1) comparaisons

Notation asymptotique

Soit les fonctions f(n) et g(n), nous disons que f(n) est O(g(n)) (ou f(n) = O(g(n)) ou $f(n) \in O(g(n))$ si et seulement si il y a des constantes positives c et n_0 tel que $f(n) \le c$ g(n) pour $n \ge n_0$.

f(n) est $O(n^2)$, car il existe un c et un n_0 tel que $f(n) \le c g(n)$ pour $n \ge n_0$.

Mais on a aussi

Mais on a aussi

Mais on a aussi

Mais n^2 n'est pas O(n) parce que nous ne pouvons pas trouver c et n_0 tel que $n^2 \le c$ n pour $n \ge n_0$.

En d'autre termes, n'importe comment grand un c est choisi il y a un n assez grand tel que $n^2 > cn$.

Big-Oh (Grand Oh) - Limite supérieure: exemple

Prouver que
$$f(n) = 60n^2 + 5n + 1$$
 est $O(n^2)$.

Il faut trouver un nombre c et un nombre n_0 tel que:

 $60n^2 + 5n + 1 \le c$ n^2 pour tout $n \ge n_0$
 $5n \le 5n^2$ pour tout $n \ge 1$
 $1 \le n^2$ pour tout $n \ge 1$

A mémoriser:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n)$$

n =	2	16	256	1024
log log n	0	2	3	3.32
log n	1	4	8	10
n	2	16	256	1024
n log n	2	64	448	10 200
n^2	4	256	65 500	$1.05*10^{6}$
n^3	8	4 100	16 800 800	$1.07*10^{9}$
2 ⁿ	4	35 500	$11.7*10^6$	$1.80*10^{308}$

Théorème: Si g(n) est O(f(n)), alors pour n'importe quelle constante c > 0, g(n) est aussi O(c f(n)).

Théorème: Si $f_1(n) = O(g_1(n))$ et $f_2(n) = O(g_2(n))$ alors $f_1(n) + f_2(n) = O(max(g_1(n), g_2(n)))$.

Exemple 1: $2n^3 + 3n^2 = O(max(2n^3, 3n^2)) = O(2n^3) = O(n^3)$

Exemple 2: $n^2 + 3 \log n - 7 = O(\max(n^2, 3 \log n - 7)) = O(n^2)$

Pour donner le Grand Oh, il faut faire l'approximation la plus proche possible. C'est à dire:

- Utiliser la plus petite classe possible: par exemple, Il est correct de dire que 5n - 3 est O(n³) mais la meilleure formulation est de dire 5n - 3 est O(n).
- Utiliser l'expression la plus simple de la classe: dire 10n + 15 est
 O(n) au lieu de 10n + 15 est O(10n).

 Laisser tomber les termes d'ordre inférieur ainsi que les coefficients:

- 7n 3 est O(n);
- \circ 6n²log(n) + 3n² + 5n est O(n²log n);
- \circ n⁵ + 1000n⁴ + 20n³ 8 est O(n⁵).

Classes de complexité

- Constant: O(1)
- Logarithmique: O(log n)
- Linéaire: O(n)
- Sous-quadratique: O(n log n)
- Quadratique: O(n²)
- Cubique: O(n³)
- Polynomiale: $O(n^k)$, $k \ge 1$
- Exponentielle: O(aⁿ), n > 1
- Factorielle: O(n!)

Mathématiques à réviser

Proprieté des logarithmes:

- $\log_b(xy) = \log_b x + \log_b y$
- $\log_b (x/y) = \log_b x \log_b y$
- $\log_b xa = a\log_b x$
- $\log_b a = \log_x a / \log_x b$

Proprieté des exposants:

- $a^{(b+c)} = a^b a^c$
- $a^{bc} = (a^b)^c$
- $a^b / a^c = a^{(b-c)}$
- $b = a \log_a b$
- $b^c = a^{c*log}b$

Mathématiques à réviser

- Plancher (floor): $LxJ = le plus grand entier \le x L2.3J = 2$
- Plafond (ceiling): $\lceil x \rceil = \text{le plus petit entier} \ge x \qquad \lceil 2.3 \rceil = 3$
- Progression arithmétique
- Progression géométrique

Références

CSI2510 - Prof. Paola Flocchini