E. coli by numbers

January 26, 2023

1 General

- Avogadro's constant = $6.022 \times 10^{23} = 6 \times 10^{23}$
- Total protein density $\approx 2 \sim 4 \times 10^6$ proteins/ μ m³
- Mean diameter of protein $\approx 4 \sim 5 \text{ nm}$
- 1 base pair volume $\approx 1 \text{ nm}^3$
- time scale for transitions between protein states (active/inactive) = $1 \sim 100 \ \mu s$
- time scale for transcription factor binding to DNA site $\approx 1~\mathrm{s}$
- mutation rate $\approx 1 \times 10^{-8} \sim 1 \times 10^{-10}/\text{bp/replication}$

2 E. coli

2.1 Physical Specification

- cell volume = $0.3 \sim 3 \ \mu \text{m}^3$
- cell dimension = $2 \mu m \times 1 \mu m \times 1 \mu m$ (rod shape)
- total weight $\approx 9.5 \times 10^{-13}$ g
- total dry weight $\approx 2.8 \times 10^{-13}$ g (30% of total mass, where 70% of it being water)

2.2 Chemical Composition

- water $\approx 2 \times 10^{10} \approx 70\%$ of total weight
- inorganic ion $\approx 1 \times 10^8 \approx 4\%$ of dry weight (≈ 20 species)
- monomeric metabolites $\approx 4\%$ of dry weight (≈ 500 species)
- polysaccharides $\approx 6\%$ of dry weight (≈ 5 species)
- lipids $\approx 5 \times 10^7 \approx 10\%$ of dry weight (≈ 20 species)
- DNA / cell $\approx 4.6 \times 10^6$ bp $\approx 3\%$ of dry weight
- RNA / cell $\approx 2\times 10^3\approx 20\%$ of dry weight
- proteins / cell $\approx 3 \times 10^6 \approx 55\%$ of dry weight
- RNA polymerases / cell $\approx 2 \times 10^3$
- ribosomes / cell $\approx 1 \times 10^4$

2.3 Genetic Info

- Genome size $\approx 4.6 \text{ Mbp}$
- \sharp of protein coding genes ≈ 4300
- Regulator binding site length = $10 \sim 20$ bp
- Promoter length ≈ 100 bp
- Gene length ≈ 1000 bp

2.4 Dynamics

- Transcription rate < 1 min (80 nts/s)
- Translation rate < 1 min (20 aa/s)
- mRNA life time ≈ 3 min
- Protein life time $\approx 1 \text{ hr}$
- Minimal doubling time ≈ 20 min

2.5 Molecular Kinetics

- Diffusion time of protein across cell $\approx 0.01 \text{ s}$
- Diffusion time of small molecule across cell $\approx 0.001~\mathrm{s}$
- Time scale for equilibrium binding of small molecule to protein = $1 \sim 1000 \text{ ms} (1 \mu\text{M} \sim 1 \text{nM} \text{ affinity})$

3 E. coli Metabolite Concentration

3.1 Glucose Metabolism

Metabolite	$\mod L^{-1} \ (= M)$	# of molecules [†]
ATP	9.60×10^{-3}	5.8×10^{6}
ADP	5.60×10^{-4}	3.4×10^{5}
NAD+	2.60×10^{-3}	1.6×10^{6}
NADH	8.30×10^{-5}	5.0×10^4
FAD	1.70×10^{-4}	1.0×10^{5}
Hexose-P (F6P, G6P, G1P)	8.80×10^{-3}	5.3×10^{6}
Citrate	2.00×10^{-3}	1.2×10^{6}
Fumarate	1.20×10^{-4}	7.2×10^4
Coenzyme A	1.40×10^{-3}	8.4×10^{5}
Acetyl-CoA	6.10×10^{-4}	3.7×10^{5}
α -Ketoglutarate	4.40×10^{-4}	2.6×10^{5}
Succinate	5.70×10^{-4}	3.4×10^{5}
Succinyl-CoA	2.30×10^{-4}	1.4×10^{5}
Malate	1.70×10^{-3}	1.0×10^{6}

[†] in 1 μ m³ volume of *E. coli*

3.2 Nucleotides

Metabolite	$\mod L^{-1} \ (= M)$	# of molecules [†]
ATP	9.60×10^{-3}	5.8×10^{6}
UTP	8.30×10^{-3}	5.0×10^{6}
GTP	4.90×10^{-3}	3.0×10^{6}
CTP	2.70×10^{-3}	1.6×10^{6}
ADP	5.60×10^{-4}	3.4×10^{5}
UDP	1.80×10^{-3}	1.1×10^{6}
GDP	6.80×10^{-4}	4.1×10^{5}
dATP	1.60×10^{-5}	9.6×10^{3}
dTTP	4.60×10^{-3}	2.8×10^{6}
dCTP	3.50×10^{-5}	2.1×10^{4}
dTDP	3.80×10^{-4}	2.3×10^{5}
CMP	3.60×10^{-4}	2.2×10^{5}
AMP	2.80×10^{-4}	1.7×10^{5}
GMP	2.40×10^{-5}	1.4×10^{4}
dAMP	8.80×10^{-6}	5.3×10^{3}
dGMP	5.10×10^{-5}	3.1×10^{4}
Cyclic AMP	3.50×10^{-5}	2.1×10^{4}
Guanosine	1.60×10^{-6}	9.6×10^{2}
Adenine	1.50×10^{-6}	9.0×10^{2}
Adenosine	1.30×10^{-7}	7.8×10^{1}
Cytosine	1.40×10^{-5}	8.4×10^{3}
Guanine	1.90×10^{-4}	1.1×10^{5}
NADP+	2.10×10^{-6}	1.3×10^{3}
NADPH	1.20×10^{-4}	7.2×10^4

[†] in 1 μ m³ volume of *E. coli*

3.3 Amino acids

Metabolite	$\mod L^{-1} \ (= M)$	# of molecules [†]
Glutamate	9.60×10^{-2}	5.8×10^{7}
Aspartate	4.20×10^{-3}	2.5×10^{6}
Valine	4.00×10^{-3}	2.4×10^{6}
Glutamine	3.80×10^{-3}	2.3×10^{6}
Alanine	2.60×10^{-3}	1.6×10^{6}
Arginine	5.70×10^{-4}	3.4×10^{5}
Asparagine	5.10×10^{-4}	3.1×10^{5}
Lysine	4.10×10^{-4}	2.5×10^{5}
Proline	3.90×10^{-4}	2.3×10^{5}
Isoleucine + Leucine	3.00×10^{-4}	1.8×10^{5}
Threonine	1.80×10^{-4}	1.1×10^{5}
Methionine	1.50×10^{-4}	9.0×10^{4}
Serine	6.80×10^{-5}	4.1×10^{4}
Histidine	6.80×10^{-5}	4.1×10^{4}
Tyrosine	2.90×10^{-5}	1.7×10^4
Phenylalanine	1.80×10^{-5}	1.1×10^4
Tryptophan	1.20×10^{-5}	7.2×10^{3}
Cytidine	2.60×10^{-6}	1.6×10^{3}

 $^{^{\}dagger}$ in 1 μ m³ volume of *E. coli*

4 Reference

- Milo, R., Phillips, R. (2015). Cell biology by the numbers. CRC Press.
- Bennett, B., Kimball, E., Gao, M. et al. (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5, 593–599. https://doi.org/10.1038/nchembio.186
- Bremer, H., Dennis, P. P. (1996) Modulation of chemical composition and other parameters of the cell by growth rate. Neidhardt, et al. eds. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. chapter 97, p.1559, Table 3 and note 'b' beneath table
- Frederick C. Neidhardt AND H. Edwin Umbarger. (1996) Chemical Composition of Escherichia coli, chapter 3 in Neidhardt F.C. Escherichia coli and Salmonella: Cellular and Molecular Biology. 2nd edition. Vol 1. American Society of Microbiology (ASM) Press. p.2 table 1
- Guo, A. C., et al., (2013) ECMDB: The E. coli Metabolome Database. Nucleic Acids Research, Volume 41, Issue D1, 1 January 2013, Pages D625–D630, https://doi.org/10.1093/nar/gks992