0.1 孤立奇点

定义 0.1

如果 f 在无心圆盘 (即除去圆心后的圆盘) $\{z:0<|z-z_0|< R\}$ 中全纯, 但在 z_0 处不全纯, 就称 z_0 是 f 的 **孤立奇点**.

f 在孤立奇点 Zo 附近可能有三种情形:

- (i) $\lim_{z \to 0} f(z) = a,a$ 是一有限数, 这时称 z_0 是 f 的**可去奇点**;
- (ii) $\lim_{z \to z_0} f(z) = \infty$, 这时称 z_0 是 f 的**极点**;
- (iii) $\lim_{z \to z_0} f(z)$ 不存在, 这时称 $z_0 \not\in f$ 的本性奇点.

定理 0.1 (Riemann 定理)

 z_0 是 f 的可去奇点的充分必要条件是 f 在 z_0 附近有界.

证明 必要性是显然的, 因为如果 z_0 是 f 的可去奇点, 那么 $\lim_{\substack{z \to z_0 \\ \text{total}}} f(z) = a, f$ 在 z_0 附近当然有界. 现在设 f 在 z_0 附近有界, 即存在 $\varepsilon > 0$, 使得当 z 满足 $0 < |z - z_0| < \varepsilon$ 时, |f(z)| < M. 因为 f 在无心圆盘 $D = \{z : 0 < |z - z_0| < R\}$ 中全纯, 根据定理2?, f 在 f 中有 Laurent 展开式:

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n, \ z \in D,$$
 (1)

其中, $a_n = \frac{1}{2\pi i} \int_{\gamma_\rho} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$, $0 < \rho < R$, $\gamma_\rho = \{\zeta : |\zeta - z_0| = \rho\}$. 今取 $0 < \rho < \varepsilon$, 故当 $\zeta \in \gamma_\rho$ 时, $|f(\zeta)| < M$. 于是, 由长大不等式得

$$|a_{-n}| = \left| \frac{1}{2\pi i} \int_{\gamma_0} \frac{f(\zeta)}{(\zeta - z_0)^{-n+1}} d\zeta \right| \le \frac{M}{2\pi \rho^{-n+1}} \cdot 2\pi \rho = M\rho^n,$$

让 $\rho \to 0$,即得 $a_{-n} = 0$, $n = 1, 2, \cdots$. 这说明在 f 的 Laurent 展开式 (1) 中,所有负次幂的系数都是零,因而展开式 (1) 是一个幂级数. 所以 $\lim_{z \to z_0} f(z) = a_0$,即 z_0 是一个可去奇点.

注 从上面的证明可以看出, f 在可去奇点处的特征是 Laurent 展开式没有主要部分, 只有全纯部分. 在 z_0 是 f 的可去奇点的情形下, f 在 $\{z: 0 < |z-z_0| < R\}$ 中的展开式为

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

只要令 $f(z_0) = a_0$, 上式便在圆盘 $B(z_0, R)$ 中成立了, 因而 f 在 z_0 处全纯. 换句话说, 在这种情形下, 只要适当定义 f 在 z_0 处的值, 便能使 f 在 z_0 处全纯. 这就是称 z_0 为 f 的可去奇点的原因.

命题 0.1

 $z_0 \not= f$ 的极点的充分必要条件是 z_0 为 $\frac{1}{f}$ 的零点.

证明 如果 z_0 是 f 的极点, 即 $\lim_{z\to z_0} f(z) = \infty$, 那么存在 $\varepsilon > 0$, 使得当 $0 < |z-z_0| < \varepsilon$ 时, f(z) 不等于零. 故 $\varphi(z) = \frac{1}{f(z)}$ 在上述无心圆盘中全纯, 且 $\lim_{z\to z_0} \varphi(z) = 0$, 即 z_0 是 φ 的可去奇点, 且 $\varphi(z_0) = 0$.

反之, 如果 z_0 是 $\varphi(z) = \frac{1}{f(z)}$ 的零点, 则

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} \frac{1}{\varphi(z)} = \infty,$$

即 z_0 是 f 的极点.

定义 0.2

如果 z_0 是 $\frac{1}{f(z)}$ 的 m 阶零点, 就称 z_0 是 f 的 m 阶极点.

定理 0.2

 z_0 是 f 的 m 阶极点的充分必要条件是 f 在 z_0 附近的 Laurent 展开式为

$$f(z) = \frac{a_{-m}}{(z - z_0)^m} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots,$$
 (2)

其中, $a_{-m} \neq 0$.

 $\dot{\mathbf{L}}$ 从这个定理可以看出, f 在极点处的特征是 Laurent 展开式的主要部分只有有限项.

证明 如果 z_0 是 f 的 m 阶极点, 根据定义, 它是 $\frac{1}{f}$ 的 m 阶零点. 由命题??, 它在 z_0 的邻域中可以表示为 $\frac{1}{f(z)} = (z-z_0)^m g(z)$, 这里, g 在 z_0 处全纯, 且 $g(z_0) \neq 0$, 因而 $\frac{1}{g}$ 也在 z_0 处全纯. 设 $\frac{1}{g}$ 在 z_0 处的 Taylor 展开为

$$\frac{1}{g(z)} = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

这里, $c_0 \neq 0$, 于是

$$f(z) = \frac{1}{(z-z_0)^m} \frac{1}{g(z)} = \sum_{n=0}^{\infty} c_n (z-z_0)^{n-m} = \frac{c_0}{(z-z_0)^m} + \dots + \frac{c_{m-1}}{z-z_0} + c_m + c_{m+1}(z-z_0) + \dots$$

记 $a_n = c_{n+m}, n = -m, \dots, -1, 0, 1, \dots,$ 即得展开式 (??).

反之, 如果 f 在 z_0 附近的 Laurent 展开式为 (??) 式, 那么

$$(z-z_0)^m f(z) = a_{-m} + a_{-(m-1)}(z-z_0) + \dots + a_0(z-z_0)^m + \dots$$

若记上式右端的幂级数为 $\varphi(z)$, 则 φ 在 z_0 处全纯, 且 $\varphi(z_0)=a_{-m}\neq 0$. 因而 $\frac{1}{\varphi}$ 也在 z_0 处全纯, 于是

$$\frac{1}{f(z)} = (z - z_0)^m \frac{1}{\varphi(z)}$$

在 z_0 附近成立. 由命题??, z_0 是 $\frac{1}{f}$ 的 m 阶零点, 所以是 f 的 m 阶极点.

定理 0.3 (Weierstrass 定理)

设 z_0 是 f 的本性奇点, 那么对任意 $A \in \mathbb{C}_{\infty}$, 必存在趋于 z_0 的点列 $\{z_n\}$, 使得 $\lim_{n \to \infty} f(z_n) = A$.

注 f 在本性奇点处的特征是 Laurent 展开式的主要部分有无穷多项. 实际上, 这个定理证明了更深刻的结果. 证明 先设 $A = \infty$. 因为 z_0 是 f 的本性奇点, 故 f 在 z_0 附近无界. 于是对任意自然数 n, 总能找到 z_n , 使得 $|z_n - z_0| < \frac{1}{n}$, 但 $|f(z_n)| > n$, 这说明 $\lim_{n \to \infty} f(z_n) = \infty$.

再设 A 是一个有限数. 令 $\varphi(z) = \frac{1}{f(z) - A}$,我们证明 φ 在 z_0 的邻域中无界. 不然的话, z_0 是 φ 的可去奇点,适当选择 $\varphi(z_0)$ 的值,可使 φ 在 z_0 处全纯. 如果 $\varphi(z_0) \neq 0$,则因 $f(z) = \frac{1}{\varphi(z)} + A$,f 也在 z_0 处全纯,这不可能. 故必有 $\varphi(z_0) = 0$,由命题 0.1可知 z_0 是 f(z) - A 的极点,也不可能. 所以, φ 在 z_0 的邻域中无界. 于是,对任意自然数 n,存在 z_n ,使得 $|z_n - z_0| < \frac{1}{n}$,但 $\frac{1}{|f(z) - A|} > n$,即 $|f(z) - A| < \frac{1}{n}$. 这就证明了 $\lim_{n \to \infty} f(z_n) = A$.

定理 0.4 (Picard 定理)

全纯函数在本性奇点的邻域内无穷多次地取到每个有穷复值, 最多只有一个例外.

 $\mathbf{\dot{z}}$ 例如, 考虑函数 $f(z) = \mathbf{e}^{\frac{1}{z}}$, 它在 z = 0 附近是全纯的. 若让 z 沿着 x 轴分别从 0 的左边和右边趋于 0, 可得

$$\lim_{z=x\to 0^{-}} e^{\frac{1}{z}} = \lim_{x\to 0^{-}} e^{\frac{1}{x}} = 0,$$

$$\lim_{z=x\to 0^{+}} e^{\frac{1}{z}} = \lim_{x\to 0^{+}} e^{\frac{1}{x}} = \infty.$$

这说明 $\lim_{z\to 0} e^{\frac{1}{z}}$ 不存在, 所以 z=0 是 $e^{\frac{1}{z}}$ 的本性奇点. 对于任意复数 $a\neq 0$, 若取 $z_n=(\log a+2n\pi i)^{-1}$, 则 $f(z_n)=e^{\log a+2n\pi i}=a$. 由于 $z_n\to 0$, 这说明 $e^{\frac{1}{z}}$ 在 z=0 的邻域中可以无穷多次地取到非零值 a, 但 0 是它的唯一的例外值.

定义 0.3

如果 f 在无穷远点的邻域 (不包括无穷远点) $\{z:0 \le R < |z| < \infty\}$ 中全纯, 就称 ∞ 是 f 的孤立奇点.

注 在这种情形下, 作变换 $z = \frac{1}{\zeta}$, 记

$$g(\zeta) = f\left(\frac{1}{\zeta}\right),$$

则 g 在 $0 < |\zeta| < \frac{1}{R}$ 中全纯, 即 $\zeta = 0$ 是 g 的孤立奇点.

定义 0.4

设 $g(\zeta) = f\left(\frac{1}{\zeta}\right)$, 如果 $\zeta = 0$ 是 g 的可去奇点、m 阶极点或本性奇点, 那么我们相应地称 $z = \infty$ 是 f 的可去奇点、m 阶极点或本性奇点.

命题 0.2

设 g 在原点的邻域中有 Laurent 展开:

$$g(\zeta) = \sum_{n = -\infty}^{\infty} a_n \zeta^n, \ 0 < |\zeta| < \frac{1}{R},$$

则 f 在 $R < |z| < \infty$ 中有下面的 Laurent 展开:

$$f(z) = \sum_{n=1}^{\infty} b_n z^n,$$

其中, $b_n=a_{-n},n=0,\pm 1,\cdots$. 特别地, 如果 $z=\infty$ 是 f 的可去奇点或 f 在 $z=\infty$ 处全纯, 那么 f 在 $R<|z|<\infty$ 中有下面的 Laurent 展开式:

$$f(z) = \sum_{n=0}^{\infty} b_{-n} z^{-n}.$$
 (3)

如果 $z = \infty$ 是 f 的 m 阶极点, 那么 f 在 $R < |z| < \infty$ 中有下面的 Laurent 展开式:

$$f(z) = b_m z^m + \dots + b_1 z + b_0 + b_{-1} z^{-1} + \dots,$$
(4)

如果 $z = \infty$ 是 f 的本性奇点, 那么 f 在 $R < |z| < \infty$ 中有下面的 Laurent 展开式:

$$f(z) = \dots + b_m z^m + \dots + b_1 z + b_0 + b_{-1} z^{-1} + \dots$$
 (5)

这时, 我们称 $\sum_{n=1}^{\infty} b_n z^n$ 为 f 的**主要部分**, $\sum_{n=0}^{\infty} b_{-n} z^{-n}$ 为 f 的**全纯部分**.

证明 因为 g 在原点的邻域中有 Laurent 展开:

$$g(\zeta) = \sum_{n=-\infty}^{\infty} a_n \zeta^n, \, 0 < |\zeta| < \frac{1}{R},$$

所以 f 在 $R < |z| < \infty$ 中有下面的 Laurent 展开:

$$f(z) = \sum_{n = -\infty}^{\infty} b_n z^n,$$

其中, $b_n = a_{-n}, n = 0, \pm 1, \cdots$.

特别地, 如果 $z=\infty$ 是 f 的可去奇点, 即 $\zeta=0$ 是 g 的可去奇点, 因而由Riemann 定理的证明可知 $a_n=0$ $(n=-1,-2,\cdots)$. 如果 f 在 $z=\infty$ 处全纯, 由Riemann 定理的注可知 $a_n=0$ $(n=-1,-2,\cdots)$. 所以此时 f 的 Laurent 展开为

$$f(z) = \sum_{n=0}^{\infty} b_{-n} z^{-n}.$$

同样道理, 如果 $z=\infty$ 分别是 f 的 m 阶极点或本性奇点, 那么 f 在 $R<|z|<\infty$ 中分别有下面的 Laurent 展开式:

$$f(z) = b_m z^m + \dots + b_1 z + b_0 + b_{-1} z^{-1} + \dots,$$

或

$$f(z) = \cdots + b_m z^m + \cdots + b_1 z + b_0 + b_{-1} z^{-1} + \cdots$$