ENERGY-EFFICIENT PATH PLANNING ALGORITHM

ENERGY-EFFICIENT PATH PLANNING ALG

TECHNICAL DOCUMENTATION AND INTELLECT

Document ID: ALGO-2023-447

Version: 3.1

Last Updated: December 15, 2023

Classification: CONFIDENTIAL AND PROPRIETARY

1. OVERVIEW AND SCOPE

This document describes the proprietary Energy-Efficient Path Planning Alg ("EEPP Algorithm") developed by NaviFloor Robotics, Inc., a Delaware cor ("Company"), for use in its autonomous mobile robot systems. The EEPP Al represents a novel approach to optimizing navigation paths while minimizing energy consumption across variable terrain conditions.

2. ALGORITHM SPECIFICATIONS

2.1 Core Components

The EEPP Algorithm consists of the following proprietary components:

- a) Terrain Classification Module (TCM-2023)
- b) Dynamic Energy Consumption Predictor (DECP)
- c) Multi-Surface Adaptation Protocol (MSAP)

d) Real-time Path Optimization Engine (RPOE)	

2.2 Technical Architecture

The algorithm employs a hierarchical decision-making structure incorporating

- (i) Primary navigation layer utilizing LiDAR-based surface mapping
- (ii) Secondary optimization layer for energy consumption calculation
- (iii) Tertiary adaptation layer for real-time path adjustment

3. INTELLECTUAL PROPERTY PROTECTION

3.1 Patent Status

U.S. Patent Application No. 17/234,567 (filed April 15, 2022)

PCT Application No. PCT/US2022/038901 (filed June 1, 2022)

3.2 Trade Secret Protection

The following components are maintained as trade secrets:

- a) Surface friction coefficient calculation methodologies
- b) Energy consumption prediction matrices
- c) Terrain adaptation response algorithms
- d) Machine learning training datasets

4. IMPLEMENTATION SPECIFICATIONS

4.1 System Requirements

The EEPP_Algorithm requires: Minimum processing capability: 2.4 GHz quad-core processor RAM: 8GB dedicated Storage: 256GB SSD Operating System: NaviFloor OS v4.2 or higher

4.2 Integration Requirements

Implementation must include:

a) Certified LiDAR sensors (per Specification Sheet LIDAR-2023-A)

b) NaviFJoor proprietary terrain mapping module
c) Real-time energy monitoring system
d) Secure data transmission protocols
5. PERFORMANCE METRICS
5.1 Efficiency Benchmarks
The EEPP Algorithm demonstrates:
-
37% reduction in energy consumption compared to standard path planning
-
98.7% accuracy in terrain classification
-

25ms average response time for path recalculation

-

99.9% reliability in obstacle avoidance

5.2 Validation Methods

All performance metrics are validated through:

- a) Controlled environment testing
- b) Real-world deployment data
- c) Third-party verification (TÜV SÜD certification pending)

6. CONFIDENTIALITY AND USE RESTRICTIONS

6.1 Access Controls

Access to the EEPI	Algorithm	documentation	and cource	code is	rectricted

- a) Authorized NaviFloor engineering personnel
- b) Licensed implementation partners
- c) Approved research collaborators

6.2 Usage Limitations

The EEPP Algorithm may only be implemented:

- (i) Within authorized NaviFloor products
- (ii) Under valid license agreements
- (iii) In compliance with export control regulations

7. MAINTENANCE AND UPDATES

7.1 Version Control

Algorithm updates are managed through:
a) Quarterly review cycles
b) Documented change control procedures
c) Version tracking system (GitLab Enterprise)
7.2 Support Protocol
Technical support provided through:
-
Dedicated engineering support team
-
24/7 emergency assistance

Regular maintenance bulletins

8. LEGAL NOTICES

8.1 Proprietary Rights

The EEPP Algorithm and all associated documentation are the exclusive pro of NaviFloor Robotics, Inc. All rights reserved.

8.2 Disclaimer

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRAN IMPLIED. NAVIFLOOR ROBOTICS, INC. DISCLAIMS ALL WARRAN LIMITATION WARRANTIES OF MERCHANTABILITY, FITNESS FOR NON-INFRINGEMENT.

9. CERTIFICATION

The undersigned hereby certifies that this document accurately describes the

EEPP Algorithm as implemented in NaviFloor Robotics' systems as of the da

below.

NAVIFLOOR ROBOTICS, INC.

By: _

Dr. Elena Kovacs

Chief Research Officer

Date: December 15, 2023

