

CALCULO DE FILTRO PASIVO PASA BANDA DE BUTTERWORTH

Se desea calcular un filtro pasivo Pasa Banda de Butterworth con una pulsación de corte inferior $\omega_{C1} = 5000$ [rad/s] y una pulsación de corte superior $\omega_{C2} = 6000$ [rad/s] de orden n=4 y una impedancia de carga Ro = 75 [Ω]. Supondremos que la impedancia del generador es de 0 [Ω].

Calculamos en primer lugar algunos parámetros que nos serán de utilidad para el desarrollo del filtro.

$$BW = \omega_{C2} - \omega_{C1} = 6000 - 5000 = 1000 \text{ [rad/s]}$$

$$\omega_0^2 = \omega_{C2} * \omega_{C1} = 6000 * 5000 = 30*10^6 \text{ [rad/s]}^2$$

$$\omega_{00}^2 = \omega_0^2 / BW^2 = 30*10^6 \text{ [rad/s]}^2 / 1*10^6 \text{ [rad/s]}^2 = 30$$

El circuito pasa bajos normalizado de Butterworth de orden n=4, será como el que indica la siguiente figura :

Para obtener el filtro Pasa Banda normalizado, recordamos la transformación de frecuencia dada por la expresión $S \to S + 1/S$ y obtenemos el valor del componente faltante para formar un circuito resonante a una pulsación $\omega_0 = 1$ [rad/s].

$$R_{X}=R_{O}$$
 $L_{X}=L_{N}\frac{Ro}{BW}$ $C_{X}=C_{N}\frac{1}{BW*Ro}$ Re cordando que los componentes marcados con# $C_{X}=C_{N}\frac{1}{\omega_{on}^{2}*BW}$ $C_{X}=C_{N}\frac{1}{\omega_{on}^{2}*BW}$

Donde $\omega_{on}^2 = 30 [rps]^2$ obtenido al principio.

Para obtener el filtro Pasa Banda definitivo, desnormalizamos el último circuito recordando que:

Circuito simulado con programa MULTISIM de National Instrument.

A los elementos marcados originalmente con # se les duplicó el subindice para que funcionara MULTISIM. C3#→C33.

NOTA : recordar que ω_{C1} = 5000 [rps]→ f_{C1} = 795,77 [Hz] y ω_{C2} = 6000 [rps]→ f_{C2} = 954,92[Hz]