ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 2.1.4 Определение теплоёмкости твёрдых тел

Баранов Даниил Группа Б02-103 **Цель работы:** 1) измерение количества подведенного тепла и вызванного им нагрева твердого тела; 2) определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тепла.

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

1 Теоретическая часть

В данной работе происходит измерение теплоемкости твердого тела с использованием следующей принципиальной связи:

$$C = \frac{\Delta Q}{\Delta T} \tag{1}$$

Определение количества теплоты, переданного телу вызывает некоторые затруднения, так как часть теплоты будет передана окружающей среде через стенки калориметра. В итоге, количество теплоты, переданное телу с учетом теплопотерь через стенки можно определить как:

$$\Delta Q = P\Delta t - \lambda \left(T - T_{\kappa} \right) \Delta t, \tag{2}$$

где P — мощность нагревателя, λ — коэффициент теплоотдачи стенок калориметра, T — температура тела, $T_{\rm k}$ — температура окружающего калориметр воздуха, Δt — время, в течении которого происходит нагрев.

Из уравнений (1) и (3) получаем:

$$C = \frac{P - \lambda \left(T - T_{\kappa}\right)}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчетной формулой данной работы.

В формуле (3) в знаменателе стоит величина, для определения которой воспользуемся следующей методикой:

Построим график зависимости $\frac{\Delta T}{\Delta t} = f(T)$ для широкого диапазона температур, после чего экстраполируем его для значения $T = T_{\kappa}$. В таком случае формула (3) приобретает вид:

$$C = \frac{P}{(\Delta T/\Delta t)_{T_c}} \tag{4}$$

Измерение температуры строится на принципе линейной зависимости сопротивления материала от изменения температуры по закону:

$$R_T = R_0 \left(1 + \alpha \Delta T \right), \tag{5}$$

Где R_0 — сопротивление термометра при температуре 0°С, R_T — сопротивление термометра при данной температуре. Учитывая данную зависимость, получаем итоговый вид для основной формулы:

$$C = \frac{PR\alpha}{\left(\frac{dR}{dt}\right)_{T_{\rm c}} (1 + \alpha\Delta T_{\rm K})} \tag{6}$$

Коэффициент α , входящий в данную формулу для меди равен $\alpha=4,28\cdot 10^{-3}\,K^{-1},$ все остальные величины определяются экспериментально.

2 Экспериментальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполнены из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют форму усеченных конусов и плотно прилегают друг к другу. Для выталкивания образца служит винт в донышке внутренней стенки калориметра.

Рис. 1: Схема включения нагревателя

В стенку калориметра вмонтированы электронагреватель и термометр сопротивления. Схема включения нагревателя изображена на рисунке (1). Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая током в нагревателе. Величина сопротивления термометра нагревателя измеряется мостом постоянного тока.

Рис. 2: Устройство калориметра

На рисунке (2) изображено устройство калориметра. Запишем также иные параметры экспериментальной установки:

материал образца:	железо	алюминий
масса образца, г	$813,12 \pm 0,1$	294.2 ± 0.1

Таблица 1: Параметры исследуемых образцов

$$R_0 = 17.84 \pm 0.01 \,\mathrm{Om}, \quad t_0 = 24.4^{\circ} \pm 1^{\circ} C$$
 $U = 36 \,\mathrm{B}, \ I = 0.3 \,\mathrm{A}, \ P = 10.8 \,\mathrm{Br}$

3 Измерения

Снимем зависимость R(t) для калориметра, а также для 2 исследуемых образцов. Данные занесем в таблицу (2).

Калориметр с алюминиевым образцом		Калориметр с железным образцом	
R, Ом	t, c	R, Ом	t, c
17,95	0	-	_
18,00	48	18,00	0
18,05	108	18,05	62
18,10	171	18,10	130
18,15	236	18,15	202
18,20	303	18,20	275
18,25	373	18,25	351
18,30	443	18,30	430
18,35	514	18,35	510
18,40	592	18,40	593
18,45	669	18,45	679
18,50	748	18,50	766
18,55	830	18,55	856

Пустой калориметр		
R, Om	t, c	
17,95	0	
18,00	40	
18,05	87	
18,10	135	
18,15	184	
18,20	235	
18,25	288	
18,30	342	
18,35	397	
18,40	454	
18,45	513	

Таблица 2: Результаты измерения сопротивления от времени нагрева

4 Обработка данных

По полученым данным построим график зависимости R(t).

По полученным данным построим также графики зависимостей $\frac{dR}{dt}(R)$ для различных серий измерений, т.е. для калориметра и 2 исследуемых образцов. Данную зависимость построим с учетом формулы:

$$\frac{dR}{dt}(R_{t_1}) = \frac{R_{t_2} - R_{t_1}}{t_2 - t_1} \tag{7}$$

Применив формулу (7) к данным таблицы (2), построим графики искомых зависимостей. График изображен на рисунке (4).

Рис. 3: График зависимости сопротивления от времени нагрева

Рис. 4: График зависимости dR/dt

Экстраполируя график для величин сопротивления при комнатной темпратуре, мы получаем следующие значения для теплоёмкости:

$$C_0 = 650 \pm 32.5 \frac{\Pi_{\text{K}}}{\text{K}}, \ \sigma_{C_0} = 5\%$$

$$C_{Al} = 246 \pm 12.4 \frac{\Pi_{\text{K}}}{\text{K}}, \ \sigma_{C_{Al}} = 5\%$$

$$C_{Fe} = 309 \pm 15.7 \frac{\Pi_{\text{K}}}{\text{K}}, \ \sigma_{C_{Fe}} = 5\%$$

Им соответствуют следующие удельные теплоёмкости:

$$C_{Al}^{\ m} = 836 \pm 41.8 \ \frac{\text{Дж}}{\text{K K}\Gamma}, \ \sigma_{C_{Al}^{\ m}} = 5\%$$

$$C_{Fe}^{\ m} = 380 \pm 19.0 \ \frac{\text{Дж}}{\text{K K}\Gamma}, \ \sigma_{C_{Fe}^{\ m}} = 5\%$$

И молярные теплоёмкости:

$$\begin{split} c_{Al} &= 22.6 \pm 1.13 \ \frac{\text{Дж}}{\text{K моль}}, \ \sigma_{c_{Al}} = 5\% \\ c_{Fe} &= 21.3 \pm 1.06 \ \frac{\text{Дж}}{\text{K моль}}, \ \sigma_{c_{Fe}} = 5\% \end{split}$$