1 Enumerable sets

Definition 1 An infinite set A is countable or enumerable if there is a bijection $f: \mathbb{N} \to A$.

Theorem 1 Any infinite subset of an enumerable set is enumerable.

If $\overrightarrow{a} \in A^{\mathbb{N}}$ is such that every $a \in A$ is in \overrightarrow{a} , we say \overrightarrow{a} is an enumeration of A.

Definition 2 If M, N are sets, then $M \sim N$ if and only if there is a bijection $f: M \to N$.

It is easy to see that \sim is an equivalence relation.

Theorem 2 $M \sim N$ if and only if |M| = |N|.

If $M_1 \subset M$, $N_1 \subset N$, it may or may not be possible to put M into 1-1 correspondence with N_1 , or N into 1-1 correspondence with M_1 . If $M \sim N_1$ for some $N_1 \subseteq N$, but $N \nsim M_1$ for all $M_1 \subseteq M$, we have |M| < |N|. If $M \sim N_1 N$ and $N \sim M_1 \subset M$, we must have |M| = |N|.

Theorem 3 If $M sim N_1 \subset N$, and $N \sim M_1 \subset M$, then $M \sim N$, and then |M| = |N|.

Proof 1 Complete, it is pretty. Page 22.

Theorem 4 *If* $M \subseteq N$, then $|M| \leq |N|$.

Definition 3 The cardinal number of the set of natural numbers, and hence of every enumerable set, is denoted \aleph_0 .

Theorem 5 Every infinite set M has an enumerably infinite subset.

Proof 2 Let $a_0, a_1, a_2, \ldots \in M$ be distinct elements. Observe that any finite sequence of elements $a'_1, \ldots, a'_n \in M$ is such that $M - \{a'_1, \ldots, a'_n\}$ is still infinite. But there is a one to one correspondence between a_0, a_1, a_2, \ldots and $0, 1, 2, \ldots$

Theorem 6 If M has infinite cardinality, $\aleph_0 \leq |M|$.

Proof 3 *M* has an enumerably infinite subset M_1 , and $M_1 \subseteq M$ implies $|M_1| \le |M|$. But $|M_1| = \aleph_0$. Then $\aleph_0 \le |M|$.

Theorem 7 For any infinite set M, there is a subset $M_1 \subseteq M$ such that $M \sim M_1$.

Proof 4 Letting $P := M - \{a_0, a_1, a_2, \ldots\}$ for distinct $a_0, a_1, a_2, \ldots \in M$, we note that $M = P + \{a_0, a_1, a_2, \ldots\}$. But then M is equivalent to its proper subset $M - \{a_0\} = P + \{a_1, a_2a_3, \ldots\}$.

This theorem is behind the apparent parodox (observed by Galileo) of the natural numbers being in perfect correspondence to some of its subsets.

Theorem 8 *If M is an infinite set, its cardinality is unchanged by the introduction or removal of a finite or enumerably infinite set of elements.*

Proof 5 Complete and understand, page. 24

2 Peano arithmetic

We axiomatize the following:

- 0 is a natural number.
- If n is a natural number, its successor n' is a natural number.
- The only natural numbers are those given by the previous clauses.

These three clauses ensure the distinctness of all natural numbers, which can be separated into two propositions:

- For any n, m natural, n = m if and only if n' = m'.
- $n' \neq 0$ for all natural n.

These were the five axioms which Peano used to characterize natural numbers. Observe that this inductive definition of natural numbers already determines the usual order <, where a < b if a is generated before b by successive applications of the unary operator ' starting at zero.

Definition 4 A system S of objects is a non-empty set, class or domain D of objects among which certain relationships are established.

For example, the sequence $0, 1, 2, \ldots$ of natural numbers constitutes a system of type (D, 0, ') where D is a set, 0 a member of it, and ' a unary operation. A representation (or model) of an abstract system further specifies what the objects in the system are. For example, D may be taken to be the positive integers, in which case the interpretation of the abstract 0 is 1, or the even natural numbers, in which case the interpretation of ' is the +2 operation.

Definition 5 Two systems $(D_1, 0_1, '_1), (D_2, 0_2, '_2)$ are (simply) isomorphic if there is a bijection $f: D_1 \to D_2$ that preserves the relationships.

More precisely, if $f: D_1 \to 2$ is said bijection, we require $f(0_1) = 0_2$, and whenever $f(m_1) = m_2$, then $f(m'_{11}) = m'_{22}$.

In a system S = (D, 0, '), the symbols ', D, 0 are called *primitive* or *undefined* notions, insofar as they are not defined prior to the introduction of the axioms. The only information about them is their type, i.e. we know D is a set, 0 a constant, and ' a unary operator.

3 Primitive recursive functions

A function $\varphi:\omega\to\omega$ is primitive recursive if it is built using one of the following clauses:

- $\varphi(x) = x'$
- $\varphi(\overrightarrow{x}) = q$, with $q \in \omega$.
- $\varphi(\overrightarrow{x}) = x_i$
- $\varphi(\overrightarrow{x}) = \psi\left(\chi_1(\overrightarrow{x}), \dots, \chi_m(\overrightarrow{x})\right)$

 $\varphi(t, \overrightarrow{x}) = \begin{cases} \psi(\overrightarrow{x}) & t = 0\\ \chi(t-1, \varphi(t-1, \overrightarrow{x}), \overrightarrow{x}) & t > 0 \end{cases}$

where $\psi, \chi_1, \dots, \chi_m, \chi$ are primitive recursive. Each of the forms described by the bullet points above is called a *schemata*. One could take the first three bullets to be axioms and the others to be inference rules. If any of the first three forms is satisfied by φ , then φ is called an *initial function*.

If φ is of the recursive form which involves ψ , χ , or χ_1, \ldots, χ_m , we say φ is an *immediate dependant* of these functions.

Definition 6 A function φ is primitive recursive if there is a finite sequence $\varphi_1, \ldots, \varphi_k$ of functions, which we call the primitive recursive description of φ , such that each φ_i is either an initial function, or an immediate dependent of preceding functions of the sequence, and $\varphi_k = \varphi$.

Example 1 Let $\varphi = \lambda x [x + 2]$. Clearly,

$$\varphi = Suc \left(Suc(x) \right)$$

which entails Suc, Suc, φ is the primitive recursive description of φ .

Example 2 Consider

$$\varphi(x, z, y) = \zeta(x, \eta(y, \theta(x)), 2)$$

Then

$$\varphi = \lambda xzy \left[\zeta \circ \left[p_1^3 \right], \eta \circ \left[p_3^3, \theta \circ \left[p_1^3 \right] \right], C_2^3 \right]$$