Log Anomaly Detection

on EuXFEL Nodes

Antonin Sulc, Annika Eichler, Tim Wilksen Cape Town,

> Log data (LD) provides a detailed record of events, actions, and state changes.

- > Log data (LD) provides a detailed record of events, actions, and state changes.
- Log anomaly detection (LAD) identifies unusual patterns in LD that may indicate problems or issues.

- > Log data (LD) provides a detailed record of events, actions, and state changes.
- Log anomaly detection (LAD) identifies unusual patterns in LD that may indicate problems or issues.
- We show a novel unsupervised log anomaly detection approach tailored for the purpose of European XFEL watchdog logs using the sequential nature of the log messages.

- > Log data (LD) provides a detailed record of events, actions, and state changes.
- Log anomaly detection (LAD) identifies unusual patterns in LD that may indicate problems or issues.
- We show a novel unsupervised log anomaly detection approach tailored for the purpose of European XFEL watchdog logs using the sequential nature of the log messages.
- The EuXFEL watchdog log has some features which makes the problem challenging!

> Rule-based methods rely on manually defined rules and patterns, which are labor-intensive and limited to predefined patterns.

- > Rule-based methods rely on manually defined rules and patterns, which are labor-intensive and limited to predefined patterns.
- Supervised deep learning models require large labeled datasets, which are expensive and not always available.

- > Rule-based methods rely on manually defined rules and patterns, which are labor-intensive and limited to predefined patterns.
- Supervised deep learning models require large labeled datasets, which are expensive and not always available.
- > **Unsupervised methods** like clustering treat logs independently rather than sequentially, but missing contextual information.

- Rule-based methods rely on manually defined rules and patterns, which are labor-intensive and limited to predefined patterns.
- Supervised deep learning models require large labeled datasets, which are expensive and not always available.
- Unsupervised methods like clustering treat logs independently rather than sequentially, but missing contextual information.

...and we show an approach which can help with above stated problems!

Preprocessing and tokenization

- Preprocessing and tokenization
- Embedding

- Preprocessing and tokenization
- Embedding
- 3 Parameter Estimation

- Preprocessing and tokenization
- Embedding
- 3 Parameter Estimation
- Anomaly Detection

- Preprocessing and tokenization
- Embedding
- 3 Parameter Estimation
- Anomaly Detection

```
from hmmlearn import hmm
import numpy as np

x = np.stack([[0,1],[1,0],[0,1],[1,0],[0,1],[1,0]])
model = hmm.GaussianHMM(n_components=2, covariance_type="diag")
model.fit(x[:-1,:])
logp = []
for i in range(1,x.shape[0]+1):
    logp.append(model.score(x[:i]))

logp = np.array(logp)
score = logp[:-1] - logp[1:]
```

Some words appear only rarely, they should be eliminated (device names, numbers)

A problem ### with the XFEL/DEVICE 235

Some words appear only rarely, they should be eliminated (device names, numbers)

Filter special characters,

A problem with the XFELDEVICE 235

Some words appear only rarely, they should be eliminated (device names, numbers)

- Filter special characters,
- Substitute all potential names with one special symbol,

A problem with the \$name 235

Some words appear only rarely, they should be eliminated (device names, numbers)

- Filter special characters,
- Substitute all potential names with one special symbol,
- Numbers replaced with special symbols,

A problem with the \$name \$nz

Some words appear only rarely, they should be eliminated (device names, numbers)

- Filter special characters,
- Substitute all potential names with one special symbol,
- Numbers replaced with special symbols,
- Log entry is changed to lower-case,

a problem with the \$name \$nz

Some words appear only rarely, they should be eliminated (device names, numbers)

- Filter special characters,
- Substitute all potential names with one special symbol,
- Numbers replaced with special symbols,
- Log entry is changed to lower-case.
- Tokenization.

(a, problem, with, the, \$name, \$nz)

Some words appear only rarely, they should be eliminated (device names, numbers)

- Filter special characters,
- Substitute all potential names with one special symbol,
- Numbers replaced with special symbols,
- Log entry is changed to lower-case,
- Tokenization.
- 6 English stop words are removed (a, the, ...),

(problem, \$name, \$nz)

We need a log entry represented as a vector.

We need a log entry represented as a vector. Word2Vec takes a word and represents it as a vector based on context (adjacent words).

- We need a log entry represented as a vector. Word2Vec takes a word and represents it as a vector based on context (adjacent words).
- > Semantically similar words are represented with vectors that point to a similar direction linear accelerator ↔ linac

- We need a log entry represented as a vector. Word2Vec takes a word and represents it as a vector based on context (adjacent words).
- > Semantically similar words are represented with vectors that point to a similar direction linear accelerator ↔ linac
- A good feature of Word2Vec is also the ability to do basic arithmetic operations.

- We need a log entry represented as a vector. > Word2Vec takes a word and represents it as a vector based on context (adjacent words).
- > Semantically similar words are represented with vectors that point to a similar direction linear accelerator ↔ linac
- A good feature of Word2Vec is also the ability to do basic arithmetic operations.

To represent a log entry problem, \$name, \$nz:

Embedding [0.1,...] [2,...] [0.8,...]

We need a log entry represented as a vector. > Word2Vec takes a word and represents it as a

- Word2Vec takes a word and represents it a vector based on context (adjacent words).
- Semantically similar words are represented with vectors that point to a similar direction linear accelerator ↔ linac
- A good feature of Word2Vec is also the ability to do basic arithmetic operations.

To represent a log entry problem, \$name, \$nz:

2 Summation [3.232,...]

> HMM (Hidden Markov Model) learns distribution over likely (log) sequences (embedded with Word2Vec)

- HMM (Hidden Markov Model) learns distribution over likely (log) sequences (embedded with Word2Vec)
- Parameters are estimated from past log sequences.

- > HMM (Hidden Markov Model) learns distribution over likely (log) sequences (embedded with Word2Vec)
- Parameters are estimated from past log sequences.
- \rightarrow A new log entry o_i is scored by

$$\begin{array}{rcl} s_i & = & \log \frac{\text{prob. of prev.logs}}{\text{prob. of prev.logs + new one}} \\ & = & \log \frac{p_{\theta}(o_1, \dots, o_{i-1})}{p_{\theta}(o_1, \dots, o_i)} \end{array}$$

- > HMM (Hidden Markov Model) learns distribution over likely (log) sequences (embedded with Word2Vec)
- Parameters are estimated from past log sequences.
- \rightarrow A new log entry o_i is scored by

$$\begin{array}{rcl} s_i & = & \log \frac{\text{prob. of prev.logs}}{\text{prob. of prev.logs + new one}} \\ & = & \log \frac{p_{\theta}(o_1, \dots, o_{i-1})}{p_{\theta}(o_1, \dots, o_i)} \end{array}$$

Low probability entries under learned HMM identified as anomalies.

- > HMM (Hidden Markov Model) learns distribution over likely (log) sequences (embedded with Word2Vec)
- Parameters are estimated from past log sequences.
- \rightarrow A new log entry o_i is scored by

$$s_i = \log rac{ ext{prob. of prev.logs}}{ ext{prob. of prev.logs + new one}}$$
 $= \log rac{p_{ heta}(o_1,...,o_{i-1})}{p_{ heta}(o_1,...,o_i)}$

- Low probability entries under learned HMM identified as anomalies.
- > Detects anomalies from disruptions of expected patterns.

Step 3 - Modeling the Sequence - Features

Unsupervised No labels needed, pure sequence modeling

Novelty Handles **novel entries** based on contextual irregularity

Data Minimal number of parameters

Robustness Capable of flagging anomalies even if some are in training logs

Easy With proper packages 10 lines of Python code

Tiny Example

(TEST,OK,

,

Tiny Example

(TEST,OK,TEST,OK,

Tiny Example

(TEST,OK,TEST,OK,

Tiny Example

(TEST,OK,TEST,OK,TEST,OK)

Tiny Example

(TEST,OK,

)

(TEST, OK, TEST, OK,

(TEST,OK,TEST,OK,TEST,OK,

(TEST,OK,TEST,OK,TEST,OK,TEST,**TEST**)

(TEST,OK,

(TEST,OK,TEST,OK,

(TEST,OK,TEST,OK,TEST,OK,

(TEST,OK,TEST,OK,TEST,**ERROR**)

(TEST,OK,TEST,OK,TEST,ERROR)

Example 1

```
remoteerrors errorcount $nz
remoteerrors errorcount $nz
remoteerrors errorcount $nz
remoteerrors errorcount $nz
remoteerrors errorcount $nz toggled $nz times $nz min
remoteerrors errorcount $nz
remoteerrors errorcount $nz
remoteerrors errorcount $nz
remoteerrors errorcount $nz
remoteerrors errorcount $nz toggled $nz times $nz min
remoteerrors errorcount $nz
rpccheck nullproc error
rpccheck fails $nz kill $nz
getpid pid not match process name
no process try start
getpid pid not match process name
pid change $nz $nz
rpccheck nullproc error
rpccheck fails $nz kill $nz
rpccheck fails $nz kill $nz
```


Example 2

remoteerrors errorcount \$nz toggled \$nz times \$nz min remoteerrors errorcount \$nz remoteerrors errorcount \$nz remoteerrors errorcount \$nz remoteerrors errorcount \$nz toggled \$nz times \$nz min rpccheck clnt create error remoteerrors errorcount \$nz rpccheck fails \$nz kill \$nz pid change \$nz \$nz rpccheck fails \$nz kill \$nz pid change \$nz \$nz rpccheck fails \$nz kill \$nz no process try start pid change \$nz \$nz remoteerrors errorcount \$nz no process try start toggled \$nz times \$nz min remoteerrors errorcount \$nz remoteerrors errorcount \$nz toggled \$nz times \$nz min remoteerrors errorcount \$nz remoteerrors errorcount \$nz

remoteerrors errorcount \$nz toggled \$nz times \$nz min

Example 3

getpid no process no process try start getpid no process getpid no process no process try start getpid no process no process try start no process try start pid change \$nz \$nz getpid pid not match process name pid change \$nz \$nz getpid pid not match process name pid change \$nz \$nz pid change \$nz \$nz pid not match process name toggled \$nz times \$nz min pid not match process name toggled \$nz times \$nz min signal term received terminating threads closing files 18 writer thread terminated interrupt thread terminated

Conclusion & Future Work

- The proposed method represents log entries as word embeddings and models sequences as HMMs to identify anomalies without labeled data.
- > It detects deviations from learned sequential patterns.
- Results on logs from EuXFEL nodes show the approach can flag potential issues via score spikes corresponding to errors or disruptions.
- > Challenges remain in handling noise and minimizing false positives in noisy logs.
- Future work could explore more advanced techniques and incorporate additional node statistics like CPU/memory/network loads
- The unsupervised sequence modeling approach enables detecting anomalies even when trained on logs containing anomalies, unlike supervised content-based methods. It focuses more on contextual irregularities than specific terms.

Thank you!

https://github.com/sulcantonin/LOG_ICALEPCS23

model.fit(x[:-1,:])
logp = []

logp = np.array(logp)
score = logp[:-1] - logp[1:]

from hmmlearn import hmm
import numpv as np

x = np.stack([[0,1],[1,0],[0,1],[1,0],[0,1],[1,0],[0,1],[1,0]])model = hmm.GaussianHMM(n_components=2, covariance_type="diag")

Deutsches Elektronen-Synchrotron DESY Antonin Sulc, Annika Eichler, Tim Wilksen © 0000-0001-7767-778X MCS antonin.sulc@desy.de

for i in range(1,x.shape[0]+1):
 logp.append(model.score(x[:i]))

www.desy.de