

### **Bioinformatics**

Like cooking, but with data!

Yi Jin LIEW | 22 Jul 2022

OVER 1 MILLION COPIES SOLD
#1 NEW YORK TIMES BESTSELLER

# SALTFAT ACIDHEAT

MASTERING THE ELEMENTS OF GOOD COOKING





### **Bioinformatics**

Like cooking, but with data!

Yi Jin LIEW | 22 Jul 2022

OVER 1 COPIES SOLD
#-1 NEW YORK TIMES BESTSELLER

## DATAMATH COMPBIO



MASTERING THE ELEMENTS of BIOINFORMATICS





### **STARTER**

My journey

**MAIN** 

Data

Comp

Math

Bio

**DESSERT** 

Questions/Demo/Freestyle



## **Starter**My bioinformatics journey

## High school: Singapore





### Uni: University of Cambridge (UK)





- Undergrad: Natural Sciences (Genetics)
- PhD: Genetics







### PhD? What's that?

A 3+ year training course to "git gud" in doing science

### Pros

- Ask exciting scientific questions
- Make reasonable assumptions
- Design experiments to answer those questions
- Learn new lab techniques, new ways to look at data
- CHANGE THE WORLD, YO

#### Cons

- Can be hard to enter (usually need Bachelor's + honours)
- Min 3 years, max...
- Usually encouraged to go abroad for new perspectives
- You don't end up earning more \$
   (really)
- Deal with routine failure



### Academia, i.e. how to upgrade "Dr." to "Prof."





### Postdoc: King Abdullah Univ of Sci and Tech (KSA)





LETTERS
https://doi.org/10.1038/s41558-019-0687-2

nature climate change

### Intergenerational epigenetic inheritance in reef-building corals

Yi Jin Liew <sup>© 1,3,7</sup>, Emily J. Howells <sup>© 2,4,7</sup>, Xin Wang<sup>1,5</sup>, Craig T. Michell<sup>1,6</sup>, John A. Burt <sup>© 2</sup>, Youssef Idaghdour <sup>© 2</sup> and Manuel Aranda <sup>© 1\*</sup>



### Research Scientist: CSIRO

• I am a **bioinformatician** discovering **biomarkers** for disease (Diagnostics group within Nutrition & Health program)





## My day-to-day stuff

• I write code (after staring at the screen for a long time)

```
A Sa 12000 dar konstna or -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             glm peptide kmer.py ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Internation 2-31 Journal pages — # grin_proprie_mengy 2-, 
paracet_add_parapases(!loor_files), sectoure* top_files*, 
type=reparase.filespe(**), nerge**, 
https://patcher.filespe(**), nerge**, 
https://patcher.filespe(**), patcher.filespe(**), 
https://patcher.filespe(**), patcher.filespe(**), 
https://patcher.filespe(**), patcher.filespe(**), defaults), 
https://patcher.filespe(**), patcher.filespe(**), patcher.filespe(**), 
https://patcher.filespe(**), patcher.filespe(**), 
https://patcher.filespe(**), patcher.filespe(**), 
https://patcher.filespe(**), patcher.filespe(**), 
https://patcher.filespe(**), patcher.filespe(**), 
https://patcher.filespe(**), 
https://patcher.filesp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                data per kmer - melted data[melted data["index"] -- kmer]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       39 46 56 68 7-6 68 90
```



## My day-to-day stuff

• I make pretty pictures to identify patterns in the data





## My day-to-day stuff

### • I write long-winded reports on my observations





### What's needed to be a bioinformatician?

- Knowledge: solid grounding in
  - Biology
  - Mathematics (!!!)
  - English (!!!!!)
- Soft skills: like all other jobs, try to be good at
  - Interpersonal skills
  - Explaining stuff
  - Work hard
- Above all, stay CURIOUS



## Hidden scientific perk

#### never worn a tux before. Wizard White Tie robes Only if you Halloween win the and/or Nobel Prize. Graduation.

### ACADEMIC DRESS CODE





LESS FORMAL →

JORGE CHAM © 2011

WWW.PHDCOMICS.COM



## Main

Four course meal

### Main course

- DATA: the base of the dish
  - Importance of great ingredients

- COMPUTING: processing the ingredients
  - Cut? Garotte? Slice?

- MATHEMATICS: taste-tasting
  - Is it good, or SIGNIFICANTLY good?

- BIOLOGY: presenting the dish
  - A5 Wagyu sucks, if customer wanted scrambled eggs



## DATA

## Garbage in, garbage out





### Data-driven hypotheses





## Data generated from experiments







### Case study: DNA sequencing







- 1. Sanger sequencer
- 2. Next-generation sequencing (Illumina / SOLiD / 454)
- 3. Single molecule sequencing (PacBio / ONT)



### Case study: exponential growth in computing power





## Case study: overall DNA sequencing cost





## Case study: Explosive growth in DNA data

#### **Growth of DNA Sequencing**





## COMP

## Bioinformatics (= computational biology)

- Bioinformatics = biology + computing (informatics)
- Earliest bioinformatics problems were:
  - Aligning protein sequences (protein sequencing pioneered 1950s)

• Studying bacteriophage genomes (DNA sequencing pioneered 1970s), reinforced concepts of codons, open reading frames etc.







### Modern bioinformatics run on Linux



Web clients' OS family market share according to StatCounter for December 2020. [38] The information on web clients is obtained from user agent information



- Bioinformatics programs are PREDOMINANTLY written for Linux
- Why?
  - Openness: anyone can read source code of bioinformatics software

```
https://github.com/pachterlab/kallisto/blob/master/src/main.cpp
  Std::String ret(asctime(timeinfo));
  // chomp off the newline
  return ret.substr(0, ret.size() - 1);
int main(int argc, char *argv[]) {
 std::cout.sync_with_stdio(false);
  setvbuf(stdout, NULL, _IOFBF, 1048576);
  if (argc < 2) {
   usage();
   exit(1);
  } else {
   auto start time(get local time());
   ProgramOptions opt;
```



- Bioinformatics programs are **PREDOMINANTLY** written for Linux
- Why?
  - Supercomputers worldwide run Linux





- Bioinformatics programs are PREDOMINANTLY written for Linux
- Why?
  - Ease at manipulating large files: nowadays, files > 1 GB are extremely common.
     Handling large files in Windows/OS X is extremely clunky!
  - Programming philosophy: modular vs monolithic







Windows/OS X



- Bioinformatics programs are PREDOMINANTLY written for Linux
- Why?
  - Text input/output, not silly proprietary filetypes (try opening a Word document in TextEdit/Notepad)
  - Piping: output of a tool can be "piped" as the input into another tool

```
$ wc -1 *.pdb | sort -n | head -n 1

wc -1 *.pdb | out | N | sort -n | out | N | head -n 1 | out |

Output in Shell
```

When bioinformaticians put several programs together to produce the desired output, they say they've built a "pipeline"



## Heavy lifting done in command-line, not GUI

```
chris@ubuntu:~

chris@ubuntu:~$ ping google.com
PING google.com (216.58.216.142) 56(84) bytes of data.

64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp_seq=1 ttl
=35.8 ms

64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp_seq=2 ttl
=51.5 ms
^Z
[1]+ Stopped ping google.com
chris@ubuntu:~$ fg ping
ping google.com
64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp_seq=3 ttl
=38.0 ms
64 bytes from sea15s01-in-f14.1e100.net (216.58.216.142): icmp_seq=4 ttl
=37.0 ms
```





### Command-lines are different!



 OS X and Linux have similar command lines (arrows)

- Windows command lines are very different
  - cmd: more UNIX-like
  - PowerShell: manipulates objects instead of text

### 2016 onwards: Linux on Windows!





### Low-level programming languages

#### Machine code

 Processor-specific instructions read by microprocessors 8B542408 83FA0077 06B80000 0000C383

FA027706 B8010000 00C353BB 01000000

B9010000 008D0419 83FA0376 078BD98B

C84AEBF1

### Assembly

Still processor-specific, BUT easier to write!

```
mov edx, [esp+8]
cmp edx, 0
ja @f
mov eax, 0
ret
```





## High-level programming languages

 Modern programming languages: ideas written in English, then "reverse translated" (compiled) back into machine code





## Which lang?

- StackOverflow runs annual survey, 2020 results shown here
- Highlighted are languages most relevant to bioinformatics
  - (learning more never hurts!)



## MATH

## Statistics: why learn it?

Allows one to quantify whether data is interesting!





## Statistics: basis of machine learning / Al

CSIRO's Data61 models spread of bushfire with AI





## Examples from my work

• Visualising microbiome patterns vs. tumour status, or vs. weight





## Statistics: understanding probabilities





## Statistical significance

• "p < 0.05": what do the *p* values **mean**?











## Statistics: understanding probabilities



• Is this observation **statistically significant**?





• ... depends on which bag of M&Ms you used!









p > 0.05



- For the heck of it, let's calculate some p values:
  - M&M website says that pack has ~50 candies
  - There are 5 colours, R G Y B O
  - We expect 10 green per packet
  - Cookie has 10 green M&Ms
- Set up Fisher's exact table

|                   | Green M&M | Non-green M&M |
|-------------------|-----------|---------------|
| Cookie            | 10        | 0             |
| Not-on-<br>cookie | 0         | 40            |









https://www.graphpad.com/quickcalcs/contingency2/



Scientific Software Dat

Data Analysis

#### **QuickCalcs**

1. Select category

2. Choose calculator

3. Enter data

4. View results

#### Analyze a 2x2 contingency table

| green non-green |    |    | Total |
|-----------------|----|----|-------|
| cookie          | 10 | 0  | 10    |
| not-on-cookie   | 0  | 40 | 40    |
| Total           | 10 | 40 | 50    |

#### Fisher's exact test

The two-tailed P value is less than 0.0001

The association between rows (groups) and columns (outcomes)

is considered to be extremely statistically significant.

Learn how to interpret the P value.



• If we want precise p values, we can use R:

```
R Console
> fishers matrix <- matrix(c(10,0,0,40), nrow=2)</p>
> fishers matrix
     [,1] [,2]
[1,] 10 0
[2,]
    0 40
> fisher.test(fishers matrix)
        Fisher's Exact Test for Count Data
data: fishers matrix
p-value = 9.735e-11
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
47.75873
              Inf
sample estimates:
odds ratio
      Inf
```



## BIO

## Fisher's exact test, feat. biology

- Let's look at a more biological example
  - Perform a heat stress experiment
  - Obtain genes that were upregulated under stress
  - Check GO terms associated with these genes

|                 | Genes with<br>GO:0016209 | Genes without<br>GO:0016209 |
|-----------------|--------------------------|-----------------------------|
| Upregulated     | 10                       | 0                           |
| Not upregulated | 0                        | 40                          |

• 
$$p = 9.735 \times 10^{-11}$$

= 0.0000000009735 (In English, this is "statistically very significant")



### ... GO:0016209?



#### antioxidant activity



...urrect annotations download (limited to first 10,000) for antioxidant activity.



## Knowledge of bio gives context to data







## Modern examples of bioinformatics

- Sequence analysis
  - Sequence searches: infer **function** of unknown DNA sequence
  - Comparative genomics: infer evolutionary trees from conserved proteins
  - Evolutionary biology: detect gene duplication / horizontal gene transfer
  - Mutational analysis: detect predisposition to diseases via SNP patterns
- Expression studies
  - Microarrays / RNA-seq: detect upregulated or downregulated genes
  - Protein mass spectrometry: deduce function, quantify expression
- Structural studies
  - Protein X-ray crystallography: calculate **most likely structure** of enzymes



## Modern examples of bioinformatics

- Systems biology
  - "Interactome": deduce key proteins from map of protein interactions
  - Pathway analysis: deduce presence/absence of conserved pathways in new genomes
- Image analysis
  - Track movement of cells, flies, fish, humans...
- Data mining
  - IBM's "Watson" supercomputer chomps thru medical literature, helps provide diagnosis and detect whether drug combinations have bad side effects





SEE, THEY ASKED HOW MUCH MONEY I SPEND ON GUM EACH WEEK, SO I WROTE, "+500." FOR MY AGE, I PUT "43," AND WHEN THEY ASKED WHAT MY FAVORITE FLAVOR IS, I WROTE "GARLIC! CURRY."





# **Dessert**Questions / Demo / Freestyle



## Thank you

**Health and Biosecurity** 

Yi Jin Liew Research Scientist

yijin.liew@csiro.au