OpenTripPlanner – creating and querying your own multi-modal route planner

Marcus Young

Transportation Research Group University of Southampton

16 November 2017

Key part of my research was developing station choice models to define probabilistic station catchments

Probability of alternative stations being chosen for a postcode

Probabilistic catchment for a station

To calibrate models I needed data on station access journeys and the train leg

individual	Choice set	Chosen	Distance (road)		Duration (mode	Train leg duration		Wait time	Transfers	On-train time	Fare
	300		(rodd)	•	specific)	daration	time		,	· · · · · ·	
1556	ADR		1 0.64	2.48	9.40	28.33	2.33	0	0	26	6.40
1556	COA		2.06	6.13	26.63	26.33	2.33	0	0	24	6.20
1556	WFF		3.94	12.93	41.12	43.00	0.00	6	1	37	6.40
1556	CBC		3.85	13.20	50.12	41.00	0.00	6	1	35	6.40
1556	HLY		7.66	16.03	83.55	34.10	8.10	0	0	26	6.90
1556	KWD		5.69	20.10	68.62	58.10	8.10	0	0	50	6.20
1556	BAI		5.17	14.73	65.30	19.33	2.33	0	0	17	5.80
1556	CBS		3.85	11.27	48.67	23.33	2.33	0	0	21	5.90
1556	CRF		0 8.22	17.32	97.47	36.10	8.10	0	0	28	6.90
1556	DRU		0 3.35	8.92	37.18	33.33	2.33	0	0	31	6.70

Variety of route planning tools were considered, but found unsuitable and rejected

Online services - not free and restricted to current services - not useful for planning or retrospective analysis

Commercial desktop options – expensive, and restrictive.

OpenTripPlanner was selected – open source, crossplatform, with web interface and routing API

GTFS A Guide to the GENERAL TENSIT FEED SOMERATION Table names of tat files shown in red boxes. Fields linking tables in redtext fare_rules ROUTES routes CALENDAR stap times Not Shown feed infath, frequencies that

Source: http://blog.openplans.org/2012/08/theopenplans-guide-to-gtfs-data/

- great-britain-latest.osm.pbf, suitable for Osmium, Osmosis, imposm, osm2r MB; MD5 sum: 44e78474cf51050df45c8be0cdf1bd25.
- great-britain-latest.shp.zip is not available for this region; try one of the s

An automated framework to derive explanatory variables from disparate open transport data sources

From: Young, Marcus. 2016. "An automated framework to derive model variables from open transport data using R, PostgreSQL and OpenTripPlanner." Paper presented at 24th GIS Research, UK Conference.

Tutorial – Part 1 (approx. 25 mins)

- Build an OTP network graph for Greater Manchester and then launch your OTP instance and test the web interface.
- https://github.com/marcusyoung/otp-tutorial
 - intro-otp.pdf & materials.zip

```
/otp
otp.jar
/graphs
/current
rail-gtfs.zip
tfgm-gtfs.zip
greater-manchester-osm.pbf
router-config.json
```



```
java -Xmx2G -jar otp.jar --build graphs/current
java -Xmx2G -jar otp.jar --router current --graphs graphs --server
```

Tutorial – Part 2 (approx. 40 mins)

- Query the OTP Isochrone API to obtain travel-time polygons for accessing Manchester Airport.
- Challenge: assess impact of new airport link service
- No OTP instance? Use: otp.graspit.co.uk

```
library(httr)
airport current <- GET(
  "http://localhost:8080/otp/routers/current/isochrone",
 query = list(
    fromPlace = "53.3627432,-2.2729342", # latlong of Man
    mode = "WALK, TRANSIT", # modes we want the route plan
    date = "07-10-2017",
   time= "08:00am",
    maxWalkDistance = 1600, # in metres
    walkReluctance = 5,
    minTransferTime = 600, # in secs (allow 10 minutes)
    cutoffSec = 900,
    cutoffSec = 1800,
    cutoffSec = 2700,
    cutoffSec = 3600,
    cutoffSec = 4500,
    cutoffSec = 5400
```


Tutorial – Part 3 (approx. 40 mins)

- Use an R script to automate querying the OTP route planner API
- Look up route to Manchester Airport by public transport for each LSOA in Greater Manchester

```
# Call otpTripTime to get attributes of
  otpCon,
    from = '53.43329,-2.13357',
    to = '53.36274,-2.27293',
    modes = 'WALK,TRANSIT',
    detail = TRUE,
    date = '2017-07-12',
    time = '08:00am',
    maxWalkDistance = '1600',
    walkReluctance = '5',
    minTransferTime = '600'
)
```



```
code easting northing
                                       latlong status duration waitingtime transfers
                      392954 53.43329,-2.13357
1 E01005756 391223
                                                  OK
                                                        49.50
                                                                   10.03
                                                                                 1
                                                     41.95
2 E01005757 390660
                      391186 53.41739, -2.14199
                                                  OK
                                                                   0.03
3 E01005754 390870
                      392662 53.43066,-2.13888
                                                  OK
                                                        55.47
                                                                   10.03
4 E01005755 391140
                      391965 53.4244,-2.13479
                                                        44.23
                                                                   10.03
```