B. Friends

time limit per test: 6 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

You have n friends and you want to take m pictures of them. Exactly two of your friends should appear in each picture and no two pictures should contain the same pair of your friends. So if you have n = 3 friends you can take 3 different pictures, each containing a pair of your friends.

Each of your friends has an attractiveness level which is specified by the integer number a_i for the i-th friend. You know that the attractiveness of a picture containing the i-th and the j-th friends is equal to the exclusive-or (xor operation) of integers a_i and a_j .

You want to take pictures in a way that the total sum of attractiveness of your pictures is maximized. You have to calculate this value. Since the result may not fit in a 32-bit integer number, print it modulo $1000000007 (10^9 + 7)$.

Input

The first line of input contains two integers n and m — the number of friends and the number of pictures that you want to take.

Next line contains n space-separated integers $a_1, a_2, ..., a_n$ ($0 \le a_i \le 10^9$) — the values of attractiveness of the friends.

Output

The only line of output should contain an integer — the optimal total sum of attractiveness of your pictures.

Examples

input	
3 1 1 2 3	
output	
3	

input			
3 2 1 2 3			
output			
5			

input	
3 3 1 2 3	
output	
6	