Семинар 9. Методы оптимизации. МФТИ. Осень 2017. Тренин С.А.

Барьерные функции.

Функция b(x) называется барьером для задачи оптимизации $\min_{x \in Q} f_0(x)$, если b(x) определена для $x \in Q$ и $b(x) \to \infty$ когда x приближается к границе Q. Q должно иметь внутреннюю точку (все ограничения – неравенства).

1. Функция $\mathbf{b}(x) = \sum_{i=1}^m -\ln(-f_i(x))$, является примером барьерной функции. Приведите другие примеры.

Метод оптимизации с использованием барьерных функций строит последовательность $\{x_k\}$ следующим образом:

$$x_{k+1} = \operatorname*{argmin}_{x \in \mathbb{R}^n} f_0(x) + \frac{1}{t_k} p(x)$$

Для некоторой последовательности $\{t_k\}$, которая монотонно стремиться к бесконечности.

- 2. Решите методом барьерных функций следующие задачи:
- a) $\min x^2 + y^2 + z^2$, $x + y + z \le -1$
- b) $\min(x-1)^3, x \ge -1$

Чувствительность решения

Пусть дана выпуклая задача оптимизации.

$$p^* = \inf\{f_0(x) | x \in \mathbb{R}^n: f_i(x) \le 0, i = \overline{1, m}, Ax - b = 0\}$$

Назовем следующую задачу оптимизации — измененной по сравнению с обычной прямой задачей.

$$p^*(u,v)=\inf\{f_0(x)|\ x\in\mathbb{R}^n: f_i(x)\leq u_i, i=\overline{1,m}, Ax-b=v_i\}$$
 Тогда $p^*(0,0)=p^*.$

- 3. Докажите, что функция $p^*(u, v)$ выпукла.
- 4. Докажите, что, если имеет место сильная двойственность и двойственная задача имеет решение $d^* = g(\lambda^*, \nu^*)$, то

$$\frac{\partial p^*(0,0)}{\partial u_i} = -\lambda_i^*, \quad \frac{\partial p^*(0,0)}{\partial v_i} = -\nu_i^*.$$

5. Для следующей задачи: найдите двойственную функцию; решите двойственную задачу; постройте $p^*(u)$; покажите справедливость утверждения задачи 4.

$$\min x^2 + 1$$

$$(x-2)(x-4) \le 0$$

Проекции на простые множества.

5. Найдите проекцию точки $u \in \mathbb{R}^n$ на каждое из следующих множеств Q.

a)
$$Q = \{x \in \mathbb{R}^n : ||x - x_0||_2 \le R\}$$

b)
$$Q = \{x \in \mathbb{R}^n : < c, x >= b\}$$

c)
$$Q = \{x \in \mathbb{R}^n : \langle c, x \rangle \leq b\}$$

d)
$$Q = \{x \in \mathbb{R}^n : Ax = b\} b \in \mathbb{R}^m$$

е)
$$Q=\{x\in\mathbb{R}^n: a_i\leq x_i\leq b_i, i=\overline{1,n}\}$$
, где $a_i< b_i$ - заданные числа для $i=\overline{1,n}$

f)
$$Q = \{x \in \mathbb{R}^n : x_i \ge 0, i = \overline{1, n}\},\$$

6. Постройте метод проекции градиента для функции $\|Ax - b\|_2^2$ ($x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$) с оптимальным выбором длины шага на множествах Q из задачи 5.