MA9202 Mathematik für Physiker 2 (Analysis 1), Prof. Dr. R. König Probeklausur, 22.12.2017, 12:15-13:45

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion für alle $n \in \mathbb{N}$ die folgende Aussage:

$$\sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k} = \sum_{k=n}^{2n-1} \frac{1}{k}$$

HINWEIS: Beachten Sie den Startindex in der Summe auf der rechten Seite der Gleichung.

LÖSUNG:

$$\underline{\mathrm{Beh}} \quad \sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k} = \sum_{k=n}^{2n-1} \frac{1}{k} \text{ für alle } n \in \mathbb{N}.$$

Bew

Induktionsbeginn
$$(n = 1)$$
: $\frac{(-1)^2}{1} \stackrel{\text{[2]}}{=} \frac{1}{1}$

Induktionsschritt $(n \to n+1)$:

$$\sum_{k=1}^{2n+1} \frac{(-1)^{k+1}}{k} \stackrel{\text{[2]}}{=} \sum_{k=1}^{2n-1} \frac{(-1)^{k+1}}{k} - \frac{1}{2n} + \frac{1}{2n+1}$$

$$\stackrel{\text{[2]}}{=} \sum_{k=n}^{2n-1} \frac{1}{k} - \frac{1}{2n} + \frac{1}{2n+1}$$

$$\stackrel{\text{[1]}}{=} \sum_{k=n}^{2n-1} \frac{1}{k} + \frac{1}{2n} + \frac{1}{2n+1} - \frac{1}{n}$$

$$\stackrel{\text{[1]}}{=} \sum_{k=n+1}^{2n+1} \frac{1}{k}$$

Erklärung:

[2 Punkte] für den Induktionsbeginn,

[2 Punkte] für das Zerlegen,

[2 Punkte] für das Einsetzen der Induktionsvoraussetzung,

[2 Punkte] für das Zusammenfassen.

2. Komplexe Zahlen

[6 Punkte]

Bestimmen Sie Real- und Imaginärteil von $\sqrt{\mathrm{e}^{\pi(2+\frac{7}{2}\mathrm{i})}}$

LÖSUNG:

Es ist

$$\begin{split} e^{\pi(2+\frac{7}{2}i)} &\stackrel{[1]}{=} e^{2\pi} e^{4\pi i - \frac{1}{2}\pi i} \stackrel{[1]}{=} e^{2\pi} e^{-\frac{1}{2}\pi i} \\ \sqrt{e^{\pi(2+\frac{7}{2}i)}} &\stackrel{[1]}{=} \sqrt{e^{2\pi} e^{-i\frac{\pi}{2}}} \stackrel{[1]}{=} e^{\pi} e^{-i\frac{\pi}{4}} \stackrel{[1]}{=} e^{\pi} \frac{1-i}{\sqrt{2}} \stackrel{[1]}{=} \frac{e^{\pi}\sqrt{2}}{2} - i\frac{e^{\pi}\sqrt{2}}{2}. \end{split}$$

D.h.
$$\operatorname{Re}(\sqrt{e^{\pi(2+\frac{7}{2}i)}}) = \frac{e^{\pi}\sqrt{2}}{2}, \operatorname{Im}(\sqrt{e^{\pi(2+\frac{7}{2}i)}}) = -\frac{e^{\pi}\sqrt{2}}{2}.$$

3. Konvergenz von Folgen und Reihen

[10 Punkte]

(a) Berechnen Sie den Wert der Reihe:
$$\sum_{n=1}^{\infty} \frac{1 - 2(-3)^n}{4^n} = \frac{25}{21}$$
 [3]

5. Stetige Funktionen

[10 Punkte]

Sei $f:[0,1]\to\mathbb{R}$ eine stetige Funktion mit der Eigenschaft, dass $f(x^2)=f(x)$ für alle $x\in[0,1]$ gilt. Zeigen Sie:

(a) $f(0) = f(\frac{1}{2}),$ (b) $f(1) = f(\frac{1}{2})$.

LÖSUNG:

1. Betrachte die Folge $x_n = \frac{1}{2^{2n}}, n \in \mathbb{N}_0$. [1]

[1]

[1]

Wegen
$$x_{n+1} = x_n^2$$
 gilt $f(x_{n+1}) = f(x_n)$ für alle $n \in \mathbb{N}_0$, bzw. $f(x_n) = f(\frac{1}{2})$ für alle $n \in \mathbb{N}_0$. [1]

Wegen $\lim_{n \to \infty} x_n = 0$ und der Stetigkeit von f

folgt $f(\frac{1}{2}) = \lim_{n \to \infty} f(\frac{1}{2}) = \lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n) = f(0)$.

2. Nun setzen wir $y_n = \frac{1}{2^{2^{-n}}}$. [1]

2. Nun setzen wir
$$y_n = \frac{1}{2^{2^{-n}}}$$
. [1]

Somit ist
$$y_{n+1} = \frac{1}{2^{2-(n+1)}} = \frac{1}{2^{2-n} \cdot \frac{1}{2}} = \sqrt{y_n}$$
. [1]

Somit ist
$$y_{n+1} = \frac{1}{2^{2-(n+1)}} = \frac{1}{2^{2-n} \cdot \frac{1}{2}} = \sqrt{y_n}$$
. [1]
Es gilt $y_n = \frac{1}{2\sqrt[n]{2}} \to 1$ für $n \to \infty$. [1]

Wie unter 1. folgt wieder $f(y_n) = f(y_{n+1}^2) = f(y_{n+1})$ für alle $n \in \mathbb{N}_0$ und damit $f(y_n) = f(y_0) = f(\frac{1}{2})$ für alle $n \in \mathbb{N}_0$. [1]

Wir schließen wegen der Stetigkeit von f wieder genau wie in 1.:

$$f(\frac{1}{2}) = \lim_{n \to \infty} f(\frac{1}{2}) = \lim_{n \to \infty} f(y_n) = f(\lim_{n \to \infty} y_n) = f(1).$$
 [1]

Insgesamt haben wir
$$f(0) = f(\frac{1}{2}) = f(1)$$
 gezeigt.

6. Gerade und ungerade Funktionen

[10 Punkte]

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt gerade, wenn $\forall x \in \mathbb{R}: f(-x) = f(x)$ und ungerade, wenn $\forall x \in \mathbb{R} : f(-x) = -f(x) \text{ ist.}$

- (a) Zeigen Sie: Ist $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und ungerade, dann ist f' eine gerade Funktion.
- (b) Sei nun f wieder differenzierbar und ungerade. Setze $g(x) = f(x^3)$ und $h(x) = f(x)^3$. Zeigen Sie, dass g' und h' gerade Funktionen sind.

LÖSUNG:

(a) (i) Mit dem Limes des Differenzenquotienten:

$$f'(-x) \stackrel{[1]}{=} \lim_{h \to 0} \frac{f((-x)+h)-f(-x)}{h} \stackrel{[1]}{=} -\lim_{h \to 0} \frac{f(x-h)-f(x)}{h} \stackrel{s=-h[1]}{=} \lim_{s \to 0} \frac{f(x+s)-f(x)}{s} \stackrel{[1]}{=} f'(x),$$

da für jede Nullfolge (h_n) auch $(s_n) = (-h_n)$ eine Nullfolge ist. [1]

(ii) Mit Kettenregel: Sei m(x) = -x. Dann ist nach Vorasussetzung $f \circ m = -f$. [1]

Behauptung $f' \circ m = f'$. [1]

Es ist mit der Kettenregel $(f \circ m)'(x) = f'(m(x))m'(x) = -(f' \circ m)(x)$. [2]

Nach Voraussetzung ist $f' = -(f \circ m)'$. [1]

Hieraus erhält man die Behauptung, $f' = -(f \circ m)' = f' \circ m$. [1]

(b) Die Funktion $x \mapsto x^3$ ist offensichtlich ungerade. [1]

Es ist
$$g(-x) = f(-x^3) = -f(x^3) = -g(x)$$
. [1]

Also ist g ungerade und damit g' gerade. [1]

Analog für h. [2]

7. Ableitung einer Umkehrfunktion

[16 Punkte]

BEWERTUNG:

Sei die Funktion $f(x) = x + \sin(x)$ gegeben.

- (a) Zeigen Sie, dass $f: [-\pi, \pi] \to [-\pi, \pi]$ bijektiv ist.
- (b) Wie lautet die Ableitung von f^{-1} an den Punkten 0 und $1 + \frac{\pi}{2}$?

$$(f^{-1})'(0) = \frac{1}{2}$$
 $(f^{-1})'(1 + \frac{\pi}{2}) = 1$ [3]

(c) Skizzieren Sie die Graphen von f, f', f^{-1} und $(f^{-1})'$ jeweils in einem eigenen Koordinatensystem.

LÖSUNG:

(a) Die Ableitung ist $f'(x) = 1 + \cos(x) > 0$ für $x \in (-\pi, \pi)$. f ist also auf $(-\pi, \pi)$ streng monoton wachsend.

Wegen $f(-\pi) = -\pi < f(x) < \pi = f(\pi)$ ist f als ganzes streng monoton wachsend, also injektiv. [1]

Es gilt
$$f([-\pi, \pi]) \subset [-\pi, \pi]$$
. [1]

Da f stetig ist, gibt es nach dem Zwischenwertsatz zu jedem $y \in [-\pi, \pi]$ wegen $f(-\pi) = -\pi \le y$ und $f(\pi) = \pi \ge y$ ein $x \in [-\pi, \pi]$, so dass f(x) = y ist, also ist f auch surjektiv. [2]

(b) Für alle $x \in (-\pi, \pi)$ gilt

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} = \frac{1}{1 + \cos(x)}.$$

Wegen f(0) = 0 und $f(\frac{\pi}{2}) = 1 + \frac{\pi}{2}$ erhält man also

$$(f^{-1})'(0) = \frac{1}{f'(0)} = \frac{1}{2},$$
$$(f^{-1})'(1 + \frac{\pi}{2}) = \frac{1}{f'(\frac{\pi}{2})} = 1.$$

[3]

[1]