CS350: Data Structures

Graphs

James Moscola Department of Physical Sciences York College of Pennsylvania

Graph Data Structure

 A graph is a data structure consisting of a set of vertices connected by edges

$$G = (V, E)$$

where V is the set of vertices and E is the set of edges

- The following can all be considered special cases of a graph data structure
 - Linked lists
 - Trees
 - Skip lists

Graph Data Structure

- Graphs have many uses:
 - Representing the control-flow of a program
 - Underlying data structure for mapping/navigation systems
 - Each vertex represents an intersection
 - Each edge represents a road between intersections
- A node and/or an edge in a graph may have some additional information associated with it
 - For the mapping system:
 - Each vertex may have a GPS coordinate associated with it
 - Each edge may have a distance and/or a speed-limit associated with it
 - The value or values associated with an edge are sometimes referred to as the weight of the edge

Graph Data Structure

A graph can be defined as follows:

$$G = (V, E)$$

where V is the set of vertices and E is the set of edges

• Each edge is a pair (v, w) where $v, w \in V$

In a directed graph, the ordering of an edge pair matters

$$-(v, w) \neq (w, v)$$

$$v \longrightarrow w \neq w \longrightarrow v$$

In an undirected graph, the ordering of an edge pair does not matter

$$-(v, w) = (w, v)$$

$$v - w = w - v$$

$$E = \left\{ (V_0, V_1, 2), (V_0, V_3, 1), (V_1, V_3, 3), (V_1, V_4, 10), \\ (V_3, V_4, 2), (V_3, V_6, 4), (V_3, V_5, 8), (V_3, V_2, 2), \\ (V_2, V_0, 4), (V_2, V_5, 5), (V_4, V_6, 6), (V_6, V_5, 1) \right\}$$

- The path length between two vertices is the number of edges that must be traversed to get from one vertex to the other
 - Multiple paths may exist between two vertices
 - Example: path length from V_2 to V_4 is 3 -- $(V_2 \rightarrow V_0 \rightarrow V_1 \rightarrow V_4)$

- The weighted path length between two vertices is the sum of the weights of the edges along the path
 - Multiple paths may exist between two vertices
 - Example: weighted path length from V_2 to V_4 is 16 (or 7, or 11, ...)

- A cycle in a directed graph is a path that begins and ends at the same vertex and contains at least one edge
 - A directed graph may have zero, one, or more cycles
 - A graph with cycles is said to be cyclic, whereas a graph with no cycles is said to be acyclic

Graph Representations

- There are two common representations for graphs, the first is an adjacency matrix
 - Utilizes a 2-dimensional matrix, where each vertex is represented by both a row and a column
 - Each location in the matrix, mat[v][w], represents the weight of a directed edge between vertex v and vertex w
 - If no edge exists between a vertex v and a vertex w, then set the edge weight in the matrix to INFINITY
 - Constant time operation to find info about any edge
 - Requires $O(|V|^2)$ space to store matrix
 - Can be wasteful if representing a sparse graph, that is, a graph without many edge

Adjacency Matrix Representation

	V_{θ}	V_1	V_2	V_3	V_4	V_5	V_6
V_{o}	8	2	8	1	8	8	∞
V_1	8	8	8	3	10	8	∞
V_2	4	8	8	∞	8	5	8
V_3	8	8	2	8	2	8	4
V_4	8	8	8	8	8	8	6
V_5	8	8	8	8	8	8	∞
V_6	8	8	8	8	8	1	∞

Graph Representations

- Another graph representation is the adjacency list
 - The graph is represented as a list of edges
 - · For each vertex, keep a list of all adjacent vertices
 - Each edge appears in an adjacency list, thus the space required is O(|E|)
 - Better suited for sparse graphs
 - May take additional time to search lists to see if an edge exists between two vertices

Adjacency List Representation

