X. Números aleatórios.

A Natureza está repleta de processos que apresentam aleatoriedade (decaimento radioactivo, o ruído de sinal electromagnético, fenómenos atmosféricos,). Nós mesmos utilizamos isso tradicionalmente como jogo, até como forma de prever o futuro, e sobretudo, e mais importante e cientificamente: em computação !!

Exemplos:

3 - Roda da sorte:

Uma sequência de números aleatórios obedece às seguintes características:

- Os números estão uniformemente distribuídos ao longo de um intervalo definido.
- Não existe forma de prever qual vai ou vão ser o valor ou os valores futuros na sequência.
 Isto é possível em computação?

X. Números aleatórios e números pseudo-aleatórios.

Um computador (determinista) não consegue gerar números verdadeiramente aleatórios (apesar de existirem hoje em dia alguns programas que dizem conseguir gerar números verdadeiramente aleatórios a partir, por exemplo, de dados de ruído electromagnético).

Números pseudo-aleatórios - "aparentam aleatoriedade"

- Aparentam estar uniformemente distribuídos ao longo de um intervalo definido.
- Não existe forma *aparente* de prever qual vai ou vão ser o valor ou os valores futuros na sequência.

Gerador de números "pseudo"-aleatórios

$$X_{n+1} = (aX_n + c) \bmod m$$

$$X_{n+1} = (aX_n + c) \bmod m$$

$$\begin{cases} 0 < m & \longrightarrow \text{Módulo ou resto} \\ 0 < a < m & \longrightarrow \text{Multiplicador} \\ 0 \le c < m & \longrightarrow \text{Incremento} \\ 0 < X_0 < m & \longrightarrow \text{Valor inicial ou semente} \end{cases}$$

Existem 'n' formas de verificar a aleatoriedade das sequências geradas

X. Amostragem em distribuições não uniformes.

- Os números aleatórios assim gerados possuem distribuições uniformes
- No entanto a maior parte das vezes nós queremos que obedeçam a distribuições conhecidas (ex: gaussiana, binomial, Poisson,)
- Para o fazer existem dois métodos:

Função cumulativa inversa

Imaginemos que queremos fazer uma amostragem de um variável Z de acordo com distribuição f(Z).

Parte 1: gerar número aleatório X usando PSNG (ou seja entre 0 e 1)

Parte 2: Determinar a função cumulativa

$$F(X) = \int_{-\infty}^{X} f(x) dx$$

Parte 3: Seja $Z = F^{-1}(X)$, então Z está distribuída de acordo com f(Z).

Exemplo

Imaginemos que queremos fazer uma amostragem de um variável Z de acordo com distribuição e^{-Z} , para Z > 0. A função cumulativa é:

$$F(X) = \int_0^X e^{-x} dx = 1 - e^{-X}$$

E a inversa:

$$F^{-1}(X) = -\ln(\mathbf{u})$$

Logo ao gerar um número aleatório u de 0 a 1, o valor de X estará distribuído de acordo com e^{-Z} .

X. Amostragem em distribuições não uniformes.

Rejeição

Este método compara a distribuição que queremos obter f(x) com outra distribuição g(x), rejeita os valores que não obedecem à primeira, e aceita os que aceitam.

Parte 1: Gerar número aleatório X distribuído de acordo com uma função conhecida g(x) – p. ex. atráves do método anterior.

Parte 2: Gerar segundo número aleatório U.

Parte 3: Se:

$$U \le \frac{f(X)}{cg(X)},$$

U é aceite. Se não, U é rejeitado. Repetir.

Exemplo

Imaginemos que queremos fazer uma amostragem da função anterior e^{-Z} usando a função uniforme.

- g(x) = Unif(0,1)
- $f(x) = e^{-x}$
- Como $f(x) \le 10$, escolhemos c = 10.
- Geramos X = Unif(0,1)
- Geramos U
- Verificamos parte 3. Repetimos.

Resumo da aula

• Distribuição gaussiana: propriedades. Valores z. Cálculos de percentagens a partir destes valores

- Números aleatórios e números pseudo-aleatórios
- Geradores de números aleatórios
- Amostrar em distribuições não uniformes: método da função cumulativa inversa, e método da rejeição.

