Lecture 11

- Magnetically Coupled Circuits

Outline

- Mutual inductance
- Transformers

Recall: Self Inductance

Self inductance:

reaction of the inductor to the change in current through itself.

$$v = L \frac{di}{dt}$$

Mutual Inductance

 Mutual inductance: reaction of one inductor to the change in current through another inductor.

$$v_2 = \frac{d(N_2\phi_{21})}{dt} = N_2 \frac{d}{dt} (\mathcal{P}_{21}N_1i_1)$$
$$= N_2N_1\mathcal{P}_{21}\frac{di_1}{dt}$$
$$= M_{21}\frac{di_1}{dt}$$

Dot Convention: Defines Directions of Windings

If a current enters the dotted terminal of one coil, the reference polarity of mutual voltage in the 2nd coil is the positive at the dotted terminal, negative at the un-dotted terminal.

Magnetically Coupled Circuits

- L_1, L_2 : self-inductances
- *M*: mutual inductance
- Dots: indicating polarity of mutually induced voltages.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Analysis

- Find i_1 and i_2 .
 - In time domain
 - In phasor domain

- Calculate the phasor currents I₁, and I₂
- Calculate the phasor voltages V₁, and V₂ across the inductors

Transformers

 A transformer is a magnetic device that takes advantage of mutual inductance.

Transformer Impedance

• An important parameter to know for a transformer is how the input impedance Z_{in} is seen from the source.

$$\mathbf{Z}_{\text{in}} = \frac{\mathbf{V}}{\mathbf{I}_1} = R_1 + j\omega L_1 + \frac{\omega^2 M^2}{R_2 + j\omega L_2 + \mathbf{Z}_L}$$

Reflected impedance from secondary to primary

Energy in a Coupled Circuit

The energy stored in an inductor is

 For coupled inductors, the total energy stored is

$$w = \frac{1}{2}L_1 i_1^2 + \frac{1}{2}L_2 i_2^2 \pm M i_1 i_2$$

The positive sign is selected when the currents both enter or leave the dotted terminals.

Coupling Coefficient k

The system cannot have negative energy

$$\frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 - Mi_1i_2 \ge 0 \qquad \longrightarrow \qquad M \le \sqrt{L_1L_2}$$

 Define a parameter describes how closely M approaches upper limit.

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

• Coupling coefficient, $0 \le k \le 1$.

- The ideal transformer has:
 - Coils with very large reactance

$$(L_1, L_2, M \rightarrow \infty)$$

- Coupling coefficient k=1.
- Primary and secondary coils are lossless, $R_1 = R_2 = 0$.

The voltage is related as:

$$\frac{\mathbf{V_2}}{\mathbf{V_1}} = \frac{N_2}{N_1} = n$$

The current is related as:

- 1. If V_1 and V_2 are *both* positive or both negative at the dotted terminals, use +n in Eq. (13.52). Otherwise, use -n.
- 2. If I_1 and I_2 both enter into or both leave the dotted terminals, use -n in Eq. (13.55). Otherwise, use +n.

Practice

$$\frac{\mathbf{V_2}}{\mathbf{V_1}} = \frac{N_2}{N_1} = n$$

Reflected impedance

$$\mathbf{Z}_{\mathrm{in}} = \frac{\mathbf{V}_1}{\mathbf{I}_1} =$$

$$\frac{\mathbf{V_2}}{\mathbf{V_1}} = \frac{N_2}{N_1} = n$$

Reflected impedance and source

Example

For the ideal transformer circuit of Fig. 13.37, find: (a) the source current I_1 , (b) the output voltage V_o , and (c) the complex power supplied by the source.

Solution:

(a) The 20- Ω impedance can be reflected to the primary side and we get

$$\mathbf{Z}_R = \frac{20}{n^2} = \frac{20}{4} = 5 \,\Omega$$

Thus,

$$\mathbf{Z}_{\text{in}} = 4 - j6 + \mathbf{Z}_{R} = 9 - j6 = 10.82 / -33.69^{\circ} \Omega$$

$$\mathbf{I}_{1} = \frac{120 / 0^{\circ}}{\mathbf{Z}_{\text{in}}} = \frac{120 / 0^{\circ}}{10.82 / -33.69^{\circ}} = 11.09 / 33.69^{\circ} A$$

(b) Since both I_1 and I_2 leave the dotted terminals,

$$\mathbf{I}_2 = -\frac{1}{n}\mathbf{I}_1 = -5.545 / 33.69^{\circ} \text{ A}$$
 $\mathbf{V}_o = 20\mathbf{I}_2 = 110.9 / 213.69^{\circ} \text{ V}$

(c) The complex power supplied is

$$\mathbf{S} = \mathbf{V}_s \mathbf{I}_1^* = (120/0^\circ)(11.09/-33.69^\circ) = 1,330.8/-33.69^\circ \text{ VA}$$

Practice

Find reflected impedance and I₁

Example

Calculate the power supplied to the $10-\Omega$ resistor in the ideal transformer circuit of Fig. 13.39.

$$-120 + (20 + 30)\mathbf{I}_1 - 30\mathbf{I}_2 + \mathbf{V}_1 = 0$$

or

$$50\mathbf{I}_1 - 30\mathbf{I}_2 + \mathbf{V}_1 = 120 \tag{13.9.1}$$

For mesh 2,

$$-\mathbf{V}_2 + (10 + 30)\mathbf{I}_2 - 30\mathbf{I}_1 = 0$$

or

$$-30\mathbf{I}_1 + 40\mathbf{I}_2 - \mathbf{V}_2 = 0 ag{13.9.2}$$

At the transformer terminals,

$$\mathbf{V}_2 = -\frac{1}{2}\mathbf{V}_1 \tag{13.9.3}$$

$$I_2 = -2I_1 (13.9.4)$$

(Note that n = 1/2.) We now have four equations and four unknowns, but our goal is to get I_2 . So we substitute for V_1 and I_1 in terms of V_2 and I_2 in Eqs. (13.9.1) and (13.9.2). Equation (13.9.1) becomes

$$-55I_2 - 2V_2 = 120 (13.9.5)$$

and Eq. (13.9.2) becomes

$$15I_2 + 40I_2 - V_2 = 0 \implies V_2 = 55I_2$$
 (13.9.6)

Substituting Eq. (13.9.6) in Eq. (13.9.5),

$$-165\mathbf{I}_2 = 120$$
 \Rightarrow $\mathbf{I}_2 = -\frac{120}{165} = -0.7272 \,\mathrm{A}$

The power absorbed by the $10-\Omega$ resistor is

$$P = (-0.7272)^2(10) = 5.3 \text{ W}$$