离散数学(2) 第五次作业讲解

2024 秋季学期

- 1. 设 Π_1 和 Π_2 都是集合 A的划分。若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$,使得 $S_1 \subseteq S_2$,就称 Π_1 为 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$ 。如果 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 R_1 和 R_2 是集合 A上的等价关系,证明:
- a) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \leq A/R_2$;
- b) $R_1 \subset R_2$ 当且仅当 $A/R_1 < A/R_2$;

知识点:划分

- 设A为任意集合且 $\Pi \subseteq \mathcal{P}(A)$. 如果 Π 满足:
 - (1) 若S ∈ Π ,则S \neq ϕ ;
 - (2) $\bigcup \Pi = A$;
- (3) 若 $S_1, S_2 \in \Pi$, 且 $S_1 \cap S_2 \neq \emptyset$,则 $S_1 = S_2$. 则称 Π 为A的一个划分.

1. 设 Π_1 和 Π_2 都是集合 A的划分。若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$,使得 $S_1 \subseteq S_2$,就称 Π_1 为 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$ 。如果 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 R_1 和 R_2 是集合A上的等价关系,证明:

- a) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \leq A/R_2$;
- b) $R_1 \subset R_2$ 当且仅当 $A/R_1 < A/R_2$;

证明: a) 必要性。

若 $R_1 \subseteq R_2$,对任意 $[x]_{R_1} \in A/R_1$,下面证明: $[x]_{R_1} \subseteq [x]_{R_2}$, 其中 $[x]_{R_2} \in A/R_2$ 。 对任意 $y \in [x]_{R_1}$,有 $< x, y > \in R_1$ 。

由于 $R_1 \subseteq R_2$,因此, $\langle x, y \rangle \in R_2$,得 $y \in [x]_{R_2}$.

故 $[x]_{R_1} \subseteq [x]_{R_2}$ 。

因此,得 $A/R_1 \leq A/R_2$.

- 1. 设 Π_1 和 Π_2 都是集合 A的划分。若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$,使得 $S_1 \subseteq S_2$,就称 Π_1 为 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$ 。如果 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 R_1 和 R_2 是集合A上的等价关系,证明:
- a) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \leq A/R_2$;
- b) $R_1 \subset R_2$ 当且仅当 $A/R_1 < A/R_2$;

证明: a) 充分性。

若 $A/R_1 \le A/R_2$, 对任意 $\langle x, y \rangle \in R_1$, 下面证明 $\langle x, y \rangle \in R_2$ 。

由于 $A/R_1 \leq A/R_2$,则存在 $[x']_{R_2}$,使得 $[x]_{R_1} \subseteq [x']_{R_2}$,从而有 $y \in [x']_{R_2}$ 。

又由于 $[x]_{R_1} \subseteq [x']_{R_2}$ 且 $x \in [x]_{R_1}$,得 $x \in [x']_{R_2}$,从而 $[x]_{R_2} = [x']_{R_2}$ 。

所以,得 $y \in [x]_{R_2}$,即 $\langle x, y \rangle \in R_2$ 。

综上,可得 R_1 ⊆ R_2 。

- 1. 设 Π_1 和 Π_2 都是集合 A的划分。若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$,使得 $S_1 \subseteq S_2$,就称 Π_1 为 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$ 。如果 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 R_1 和 R_2 是集合A上的等价关系,证明:
- a) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \le A/R_2$;
- b) $R_1 \subset R_2$ 当且仅当 $A/R_1 < A/R_2$;

证明: b) 必要性。

若 $R_1 \subset R_2$,则有 $R_1 \subseteq R_2$ 。由a)知, $A/R_1 \leq A/R_2$,下面证明 $A/R_1 \neq A/R_2$ 由于 $R_1 \subset R_2$,必存在< x, y>,使得 $< x, y> \in R_2$ 但 $< x, y> \notin R_1$ 。则一定有 $y \in [x]_{R_2}$ 且 $y \notin [x]_{R_1}$,即 $[x]_{R_2} \in A/R_2$,但 $[x]_{R_1} \notin A/R_1$ 。因此, $A/R_1 \neq A/R_2$ 。故有 $A/R_1 < A/R_2$ 。

- 1. 设 Π_1 和 Π_2 都是集合 A的划分。若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$,使得 $S_1 \subseteq S_2$,就称 Π_1 为 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$ 。如果 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 R_1 和 R_2 是集合A上的等价关系,证明:
- a) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \leq A/R_2$;
- b) $R_1 \subset R_2$ 当且仅当 $A/R_1 < A/R_2$;

证明: b) 充分性。

若 $A/R_1 < A/R_2$, 则有 $A/R_1 \le A/R_2$ 且 $A/R_1 \ne A/R_2$ 。

由于 $A/R_1 \le A/R_2$,由 a)可得 $R_1 \subseteq R_2$,下面证明 $R_1 \subset R_2$ 。

对于任意 $[x]_{R_1}$,由于 $A/R_1 \le A/R_2$,则必有 $[x']_{R_2} \in A/R_2$,使得 $[x]_{R_1} \subseteq [x']_{R_2}$ 。

由于 $x \in [x]_{R_1}$,得 $x \in [x']_{R_2}$,因此, $[x']_{R_2}$ 就为 $[x]_{R_2}$,即必有 $[x]_{R_1} \subseteq [x]_{R_2}$ 。

由于 $A/R_1 \neq A/R_2$,则一定存在 $[x_0]_{R_1} \in A/R_1$,使得 $[x_0]_{R_1} \subset [x_0]_{R_2}$,

则有 $[x_0]_{R_2} \notin A/R_1$ 。

因此,一定存在 $y \in A$,使得 $\langle x_0, y \rangle \in R_2$ 但 $\langle x_0, y \rangle \notin R_1$ 。

因此, $R_1 \subset R_2$ 。

- 2.设 f 为从集合X到Y的部分函数且 $A \subseteq P(X)$ 。证明:
- 1) $f[\cup A] = \cup \{f[A] \mid A \in A\};$
- 2) 若 $\mathcal{A}\neq\emptyset$,则 $f[\cap \mathcal{A}] \subseteq \cap \{f[A] \mid A \in \mathcal{A}\}$; 并说明为什么 2)中" \subseteq "不能替换为"="。

知识点:像、广义并与广义交

- 设f为从集合 X到集合 Y的部分函数, $A \subseteq X$,则 A 在 f下的像 $f[A] = \{ y \in Y \mid \exists x \in A \notin y = f(x) \}$ $= \{ f(x) \mid x \in A \perp f(x) \downarrow \}$
- 设**3**为任意集类,
 - ▶ B 的广义并∪ $B = \{ x \mid \exists X(X \in B \land x \in X) \} 为 B$ 的广义并

- 2.设 f 为从集合X到Y的部分函数且 $A \subseteq P(X)$ 。证明:
- 1) $f[\cup A] = \cup \{f[A] \mid A \in A\};$
- 2) 若 $\mathcal{A}\neq\emptyset$,则 $f[\cap \mathcal{A}] \subseteq \cap \{f[A] \mid A \in \mathcal{A}\}$; 并说明为什么 2)中" \subset "不能替换为"="。

证明: 1) 对任意 $b \in f[\cup A]$,则存在 $a \in \cup A$,使得b = f(a)。因为 $a \in \cup A$,因此,存在 $A \in A$,使得 $a \in A$ 。故 $b \in f[A] \subseteq \cup \{f[A] \mid A \in A\}$,得 $b \in \cup \{f[A] \mid A \in A\}$ 。故有 $f[\cup A] \subseteq \cup \{f[A] \mid A \in A\}$

对任意 $b \in U\{f[A] \mid A \in A\}$,则存在 $A \in A$,使得 $b \in f[A]$ 。 因此,存在 $a \in A \subseteq \cup A$,使得 $b = f(a) \in f[\cup A]$,得 $b \in f[\cup A]$ 。 得 $\cup \{f[A] \mid A \in A\} \subseteq f[\cup A]$ 。

综上, $f[\cup A] = \cup \{f[A] \mid A \in A\}$ 。

- 2.设 f 为从集合X到 Y的部分函数且 $A \subseteq P(X)$ 。证明:
- 1) $f[\cup A] = \cup \{f[A] \mid A \in A\};$
- 2) 若 $\mathcal{A}\neq\emptyset$,则 $f[\cap\mathcal{A}]\subseteq\cap\{f[A]\mid A\in\mathcal{A}\};$

并说明为什么 2)中 "⊆"不能替换为 "="。

证明: 2)若 $\mathcal{A}\neq\emptyset$,对任意 $b\in f[\cap \mathcal{A}]$,则存在 $a\in \cap \mathcal{A}$,使得b=f(a)。

因为 $a \in \cap A$,因此,对任意 $A \in A$,使得 $a \in A$ 。

故,对任意 $A \in \mathcal{A}$,均有 $b \in f[A]$,得 $b \in \cap \{f[A] \mid A \in \mathcal{A}\}$ 。

所有,得 $f[\cap A] \subseteq \in \cap \{f[A] \mid A \in A\}$ 。

下面给出 $\cap \{f[A]A \in A\} \subseteq f[\cap A]$ 不成立的反例:

 $X = \{1, 2, 3, 4\}, Y = \{a\}, A_1 = \{1, 2\}, A_2 = \{3, 4\}, A = \{A_1, A_2\}, f = \{<1, a>, <3, a>\},$

 $f[A_1] = \{a\}, f[A_2] = \{a\}, f[A_1] \cap f[A_2] = \{a\},$

 $A_1 \cap A_2 = \emptyset$, $f[A_1 \cap A_2] = \emptyset$.

- 3. 下列集合能够定义函数?如果能,求出它的定义域和值域。
- (1) { <1, <2, 3>>, <2, <3, 4>>, <3, <1, 4>>, <4, <1, 4>>};
- (2) { <1, <2, 3 >>, <2, <3, 4 >>, <3, <3, 2 >>};
- $(3) \{ <1, <2, 3>>, <2, <3, 4>>, <1, <2, 4>> \};$
- $(4) \{ <1, <2, 3>, <2, <2, 3>>, <3, <2, 3>> \}.$

知识点:函数、定义域与值域

- 如果从集合X到Y的二元关系f是 "单值"的,即f满足: 若 $< x, y_1 > \in f$ 且 $< x, y_2 > \in f$,则 $y_1 = y_2$,就称f为从X到Y的部分函数.
 - F 的定义域 dom $(f) = \{x \in X \mid \exists y \in Y \notin y = f(x)\} \subseteq X$
 - > f 的值域 ran $f = \{ y \in Y | \exists x \in X \notin y = f(x) \} \subseteq Y$
- 如果f为从集合 X到集合 Y的部分函数且 dom f = X,则称 f为从 X到 Y的全函数,简称 f为从 X到 Y的函数,记为 $f: X \to Y$.

- 3. 下列集合能够定义函数?如果能,求出它的定义域和值域。
- (1) { <1, <2, 3>>, <2, <3, 4>>, <3, <1, 4>>, <4, <1, 4>>};
- (2) { <1, <2, 3 >>, <2, <3, 4 >>, <3, <3, 2 >>};
- $(3) \{ <1, <2, 3>>, <2, <3, 4>>, <1, <2, 4>> \};$
- $(4) \{ <1, <2, 3>, <2, <2, 3>>, <3, <2, 3>> \}.$
- 解: (1) 为 {1, 2, 3, 4}到 {<2, 3>, <3, 4>, <1, 4> }的函数,且定义域为 {1, 2, 3, 4}, 值域为{<2, 3>, <3, 4>, <1, 4> }。
- (2) 为{1, 2, 3}到 {<2, 3>, <3, 4>, <3, 2>}的函数,且定义域为 {1, 2, 3},值域为{<2, 3>, <3, 4>, <3, 2>}。
- (3) 不是函数, 因为有< 1, <2,3>>,< 1,<2,4>>, 不满足单值性,不是部分函数,也不是函数。
- (4)为 {1, 2, 3}到 {<2, 3>}的函数,且 定义域为 {1, 2, 3},值域为{<2, 3>}。

- 4. 设f为从X到Y的部分函数,试证明:
- a) 若 $A, B \in P(X)$,则 $f[A] f[B] \subseteq f[A B]$,并举例说明不能用 "="代替其中的 "⊆":
- b) 若 $C, D \in P(Y)$, 则 $f^{-1}[C-D] = f^{-1}[C] f^{-1}[D]$ 。

知识点:像、原像

- 设f为从集合X到集合Y的部分函数, $A \subseteq X$ 且 $B \subseteq Y$,则
 - $A 在 f 下的像 f[A] = \{ y \in Y \exists x \in A \notin y = f(x) \}$ $= \{ f(x) \mid x \in A \perp f(x) \downarrow \}$
 - ▶ B 在 f 下的源像 $f^{-1}[B] = \{x \in X \mid \exists y \in B \text{ 使 } y = f(x)\}$ = $\{x \in X \mid f(x) \downarrow \coprod f(x) \in B \}$

- 4. 设f为从X到Y的部分函数,试证明:
- a) 若 $A, B \in P(X)$,则 $f[A] f[B] \subseteq f[A B]$,并举例说明不能用 "="代替其中的"⊆";
- b) 若 $C, D \in P(Y)$, 则 $f^{-1}[C-D] = f^{-1}[C] f^{-1}[D]$ 。

证明: a) 对任意 $y \in f[A] - f[B]$, 则 $y \in f[A]$ 且 $y \notin f[B]$

由 $y \in f[A]$ 知,一定存在 $x \in A$,使得 y = f(x).

假设 $x \in B$, 则一定有 $y \in f[B]$, 予盾。

因此有 $x \notin B$,得 $x \in A - B$,所以有 $y \in f[A - B]$.

综上可得 f[A]-f[B] ⊆ f[A-B]。

下面给出f[A-B] ⊆ f[A]-f[B] 不成立的反例:

 $\diamondsuit X=\{1,2\}, Y=\{0\}, A=\{1\}, B=\{2\}, f=\{<1,0>,<2,0>\}.$

 $f[A]-f[B] = \{0\}-\{0\}=\emptyset$, $\overrightarrow{\Pi} f[A-B] = \{f(1)\} = \{0\}$.

- 4. 设f为从X到Y的部分函数,试证明:
- a) 若 $A, B \in \mathcal{P}(X)$,则 $f[A] f[B] \subseteq f[A B]$,并举例说明不能用 "="代替其中的"⊆";
- b) 若 $C, D \in \mathcal{P}(Y)$, 则 $f^{-1}[C-D] = f^{-1}[C] f^{-1}[D]$ 。

证明: b) 对任意 $x \in f^{-1}[C-D]$, 一定存在 $y \in C-D$, 使得 y = f(x)。

由 $y \in C - D$, 得 $y \in C$ 且 $y \notin D$, 因此有 $x \in f^{-1}[C]$, $x \notin f^{-1}[D]$,

得 $x \in f^{-1}[C] - f^{-1}[D]$.

故有 $f^{-1}[C-D]\subseteq f^{-1}[C]-f^{-1}[D]$.

对任意 $x \in f^{-1}[C] - f^{-1}[D]$,有 $x \in f^{-1}[C]$ 且 $x \notin f^{-1}[D]$.

则存在 $y \in C$ 使得y = f(x).

假设 $y \in D$, 由y = f(x) 得 $x \in f^{-1}[D]$, 矛盾。

因此, $y \notin D$,得 $y \in C - D$,从而 $x \in f^{-1}[C - D]$.

故 $f^{-1}[C] - f^{-1}[D] \subseteq f^{-1}[C - D]$.

综上可得 $f^{-1}[C] - f^{-1}[D] = f^{-1}[C - D]$