Data from Supermarket Sales

PROJECT 4 DATA VISUALIZATION

Thao & Elnara

1.Our Dataset

- Supermarket Sales
- 1000 rows x 18 columns
- No missing values, No issues
- No duplicates
- One column with repeatable value
- Data is not variable and for short period of time

```
1 sales = pd.read_csv('supermarket_sales - Sheet1.csv')
2 sales = sales.round(2)
3 sales.columns = sales.columns.str.capitalize()
4 sales.columns = sales.columns.str.replace(' ', '_')
5 sales.head()
```


2. Manipulations with columns

```
1 sales['Date_formatted'] = pd.to_datetime(sales['Date'])
sales['season'] = (sales['Date_formatted'].dt.month%12 + 3)//3
seasons = {
1: 'Winter',
2: 'Spring',
3: 'Summer',
4: 'Autumn'
sales['season_name'] = sales['season'].map(seasons)
   sales['Month'] = sales['Date_formatted'].dt.month
2 sales['Day'] = sales['Date_formatted'].dt.day
```

```
Creating new columns for
more data
```

3. Manipulations with columns

Creating new columns for more data

```
sales['Time'] = pd.to_datetime(sales['Time'], format='%H:%M').dt.time
sales['Hour'] = pd.to_datetime(sales['Time'], format='%H:%M:%S').dt.hour
```



```
= [0,4,8,12,16,20,24]
   1 = ['Late Night', 'Early Morning', 'Morning', 'Noon', 'Evening', 'Night']
   sales['time_of_day_draft'] = pd.cut(sales['Hour'], bins=b, labels=l, include_lowest=True)
 5 def f(x):
       if (x > 4) and (x <= 8):
            return 'Early Morning'
        elif (x > 8) and (x <= 12):
            return 'Morning'
        elif (x > 12) and (x <= 16):
            return'Noon'
11
        elif (x > 16) and (x <= 20):
12
13
            return 'Evening'
        elif (x > 20) and (x <= 24):
14
            return'Night'
15
        elif (x <= 4):
16
            return'Late Night'
17
18
    sales['time_of_day'] = sales['Hour'].apply(f)
```

4. Manipulations with columns

Checking numeric data

3 'Gross_income', 'Rating']], 2) ✓ 0.0s									
9	Rating	Gross_income	Gross_margin_percentage	Cogs	Total	Tax_5%	Quantity	Unit_price	
)	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	count
7	6.97	15.38	4.76	307.59	322.97	15.38	5.51	55.67	mean
2	1.72	11.71	0.00	234.18	245.89	11.71	2.92	26.49	std
)	4.00	0.51	4.76	10.17	10.68	0.51	1.00	10.08	min
)	5.50	5.93	4.76	118.50	124.42	5.93	3.00	32.88	25%
)	7.00	12.09	4.76	241.76	253.85	12.09	5.00	55.23	50%
)	8.50	22.44	4.76	448.90	471.35	22.44	8.00	77.94	75%
	10.00	49.65	4.76	993.00	1042.65	49.65	10.00	99.96	max

5. Sales Overview

6. Transaction Overview

```
plt.figure(figsize=(10,4))
sns.barplot(data = ave_trans_by_day, x = 'Day', y='Invoice ID')
plt.title('Average Transaction per Day')
plt.xlabel('Day of the Month')
plt.ylabel('Average Transaction per Day')
```


7. Types of payment by Total Sales

```
1 labels = ['Cash', 'Credit card', 'Ewallet']
2 plt.pie(ratio_total_invoice['Total'],autopct='%1.1f%%', labels=labels, shadow=True)
```


8. Frequencies Values of transaction by time of the day

9. Relation between Unit Price and Item Rating

```
sns.scatterplot(data=sales, x ='Rating', y = 'Unit_price', hue = 'Product_line',
size = 'Product_line', sizes=(20,200), legend='full')
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
```


10. Total sales by Rating label

sns.boxenplot(data=sales, x="Total", y="rating_label", scale = 'linear')

11. Total sales by Rating label

.catplot(data=sales, x='Quantity', y='Product line', col = 'time_of_day', kind = 'box') time_of_day = Evenir time_of_day = Morning time_of_day = Noon Ы Sports and travel Health and beauty Product line Food and beverages Fashion accessories Home and lifestyle Electronic accessories

10

8

Quantity

10

2

8

6

Quantity

2

8

Quantity

10

12. Total sales by Rating by Hour

```
from
              import ·
from
                    import
                                      import inset_axes
from
           t.subplots(subplot_kw={"projection": "3d"}, figsize = (8, 8))
X = sales['Rating']
Y = sales['Hour']
Z = sales['Total']
# Plot the surface.
surf = ax.plot_trisurf(X, Y, Z, cmap=cm.coolwarm,
linewidth=0, antialiased=False)
# ax.set zlim(-1.01, 1.01)
ax.zaxis.set_major_locator()
                                   r(10)
ax.zaxis.set_major_formatter('{x:.02f}')
# Add a color bar which maps values to colors.
axins = inset_axes(ax,
     width="100%",
height="3%",
····loc='lower center',
borderpad=-5
|----|----|----|----|
fig.colorbar(surf, shrink=0.3, aspect=10, cax=axins, orientation="horizontal")
ax.set_title(('Total Sales by Rating by Hour'))
   show()
```


HOW WAS IT? DID YOU HAVE FUN?

Thank you!