

Automatic Verification of Remote Electronic Voting Protocols

Michael Backes, Cătălin Hriţcu, Matteo Maffei

Information Security & Cryptography Group

The Big Picture

Did you know that ...

- ... in Germany, in the latest parliamentary elections
 18.7% of the votes were cast by post?
- this is a form of remote voting

Remote voting (by post)

- More convenient than supervised voting
 - This should increase voter participation
- Voting by post raises many security concerns
 - An autograph signature does not authenticate the voter
 - An envelope does not guarantee secrecy or integrity
 - The post is not always a secure channel
 - Extremely easy to sell your vote
 - You can coerce voters to vote as you like
- Still, this has been used in Germany for 50+ years

Remote <u>electronic</u> voting

- Seems even cheaper and even more convenient
- Promises better security (than voting by post at least)
 - better integrity, privacy, coercion-resistance, verifiability, trust is distributed, etc. ... all cryptographically enforced

Remote <u>electronic</u> voting

- Seems even cheaper and even more convenient
- Promises better security (than voting by post at least)
 - better integrity, privacy, coercion-resistance, verifiability, trust is distributed, etc. ... all cryptographically enforced

- Different security risks
 - Easier to launch large-scale attacks and erase evidence
 - Clients are the weakest link: e.g. remotely exploitable software flaws, viruses, Internet worms, trojans, lack of physical security, social engineering attacks, etc.
 - Network also vulnerable: e.g. voter demographic-based DDOS, cache poisoning DNS attacks, etc.

accuracy

eligibility

democracy

fault tolerance

inalterability

non-reusability

robustness

completeness

correctness

scalability

availability

fairness

desired properties

vote-privacy

universal verifiability

no forced-abstention attacks

individual verifiability

receipt-freeness

coercion-resistance

accuracy eligibility democracy

fault tolerance

inalterability no

non-reusability

robustness

completeness

correctness

scalability

availability

fairness

desired properties

vote-privacy

universal verifiability

no forced-abstention attacks

individual verifiability

receipt-freeness

coercion-resistance

eligibility

inalterability non-reusability

vote-privacy

no forced-abstention attacks

receipt-freeness

coercion-resistance

soundness

eligibility

inalterability

non-reusability

vote-privacy

no forced-abstention attacks

receipt-freeness

coercion-resistance

soundness

eligibility

inalterability

non-reusability

privacy

vote-privacy

no forced-abstention attacks

receipt-freeness

coercion-resistance

What we did

- General technique for
 - modeling remote electronic voting protocols (in the applied pi-calculus)
 - and automatically verifying their security
- New formal definitions of
 - soundness trace property
 - coercion-resistance observational equivalence
 - both definitions amenable to automation (e.g. ProVerif)
- Proved that our coercion-resistance implies vote-privacy, immunity to forced-abstention attacks & receipt-freeness
- Automatically verified the security of the JCJ protocol

Trace: t1 eligible(Alice) t2 vote(Alice, pink) t3 tally(pink)

Trace: t1 eligible(Alice) t2 vote(Alice, pink) t3 tally(pink)

Trace: t1 eligible(Alice) t2 vote(Alice, pink) t3 tally(pink)

and the trace t1 t2 t3 is also sound (injective matching)

Vote-privacy

Vote-privacy

Voters

Alice Bob Charlie Results

pink party | blue party ||

"Lailed" results

Alicehk party

Bob bye party

Charle blue arty

indistinguishable from

[Delaune, Kremer & Ryan; CSF '06]

Immunity to forced-abstention

Receipt-freeness

• [Benaloh & Tuinstra; STOC '94]

Receipt-freeness

[Benaloh & Tuinstra; STOC '94]

[Delaune, Kremer & Ryan; CSF '06]

Coercion-resistance

[Juels, Catalano & Jakobsson; WPES 2005]

Coercion-resistance

[Juels, Catalano & Jakobsson; WPES 2005]

Coercion-resistance

[Juels, Catalano & Jakobsson; WPES 2005]

Definitions of coercion-resistance

	JCJ-WPES'05	DKR-CSF'06	DKR-TR'08	current
setting	remote voting	supervised voting	supervised voting	remote voting
automation	no (crypto)	no (adaptive simulation)	no (∀C. P≈Q)	yes (observational equivalence)
no simulation attacks	yes	n/a	n/a	yes
no forced- abstention	yes	no	no	yes
no randomization attacks (?)	yes	no	no	no
receipt-freeness	yes	yes	yes	yes (up to abstraction)

Analysis of JCJ

- first coercion-resistant protocol for remote voting [Juels, Catalano & Jakobsson; WPES '05]
- forms the basis of many recent protocols (e.g. Civitas)
- Analysis performed with ProVerif
 - automatic protocol analyzer using Horn-clause resolution
 - we use our abstraction of zero-knowledge [S&P 2008]
 - analyzing observational equivalence required (re)writing the specification in the shape of a biprocess
 - verification of JCJ succeeds, which yields security guarantees for unbounded number of voters, sessions, etc.

Future work

- Analyzing Civitas (variant of JCJ with implementation)
- Other properties
 - Individual verifiability (trace property)
 - Immunity to randomization attacks (privacy property)
- Different techniques for trace properties
 - type systems e.g. our type system for ZK [WITS '08]
- Different techniques for observational equivalence
 - for instance using symbolic bisimulation [DKR, SecCo '07]
- More accurate protocol models
 - The ultimate goal is to analyze implementations