The Mellinger controller And High level commander

Goal

An overview of the Mellinger controller and the High Level Commander

What is a controller?

- Quadcopter moves by changing speed of motors
 - Attitude tilt to move
 - Rotation
- A controller sets the speed of the motors
- Possible goals
 - Position
 - Velocity
 - Acceleration
 - Attitude
- The desired goal is called a setpoint
- All controllers do not support all actions

Controllers in the Crazyflie firmware

- Plugin system
- PID controller
 - Simple
 - Robust
 - Sluggish
 - Position and attitude separated
 - Good for manual flight and autonomous flight with LPS

Mellinger controller

- Higher level of control
- Agile
- Less forgiving
- Sensitive to positioning errors, good for mocap or lighthouse

Crazyflie firmware overview

Mellinger controller

- Based on paper from Daniel Mellinger, Vijay Kumar¹
- Contributed as part of Crazyswarm by Wolfgang Hoenig and James Preiss²
- High level of control
- Setpoints contain
 - Position
 - Velocity
 - Acceleration
 - Attitude
- Possible to do advanced maneuvers

High level commander

- Feeds setpoints to the controller
- Follows a path and continuously calculates
 - Position
 - Velocity
 - Acceleration
 - Attitude
- 7 degree polynomial x 4
 - O X, Y, Z, yaw

Crazyflie firmware overview

Trajectories

- A trajectory is a sequence of short paths executed one after each other
- With 7 degree polynomials it is possible to design trajectories with continuous position, velocity and acceleration through the joints
- Trajectories are played from memory
- Trajectories can be uploaded to the Crazyflie via radio

Trajectory generation

- Slightly complex
- 3D animation tools
- Python script using Bezier curves
- Other tools

Conclusions

- The Mellinger controller is very agile but sensitive to errors
- The High level commander adds support for trajectories