一阶逻辑与 ZFC 集合论

请在 9 月 28 日课前提交纸质作业.

- 1. (10 分) 考虑一阶逻辑, 它的变元是 x, y, ..., 谓词是 $P_{11}, P_{12}, ...$, 这里, P_{ij} 是有 i 个元的谓词中的第 j 个. 例如 P_{22} 就是二元谓词中的第 2 个. 考虑公式 $\phi = \exists x \forall y P_{22}(x, y), \psi = \forall y \exists x P_{22}(x, y)$.
 - (1) 证明: $\phi \to \psi$ 是有效的, 即对于任意解释 I, 都有 $I \models \phi \to \psi$.
 - (2) 给一个解释 I, 说明 $\psi \to \phi$ 不是有效的.
- 2. (10 分) 考虑 ZFC 集合论, 它的变元是 x, y, ..., 谓词是 $P_{11}, P_{12}, ...$ 以及 $\epsilon, =$.
 - (1) "存在且唯一"的符号是 \exists !,请用 ZFC 公式给出它的定义. 也就是说,给一个公式 $\phi(x,A)$,使 得 $\phi(x,A)$ 表示 \exists !xA(x),读作"存在唯一的 x 使 A(x) 成立".
 - (2) 利用第一问的记号,给出二元关系 R 是从集合 X 到集合 Y 的函数关系的 ZFC 公式定义. 提示:第二问的公式中允许使用集合论的常用符号,例如交 \cap 、并 \cup 、包含 \subseteq 、笛卡尔积 \times 、序对 (x,y)、子集符号 $\{x\in X: \phi(x)\}$,幂集符号 2^X 等.
- 3. (5 分) 回忆以下三个概念:
 - 满足 ZF 公理系统无穷公理的集合 S 称为均纳集,即 $\emptyset \in S$ 并且如果 $x \in S$ 就一定有 $x \cup \{x\} \in S$.
 - 自然数集 \mathbb{N} 是最小的归纳集,即如果 $Y \subseteq \mathbb{N}$ 是归纳集,那么 $Y = \mathbb{N}$.
 - 集合 T 被称为传递集如果由 $x \in T$ 可以推出 $x \subset T$.
 - (1) 证明: 如果 X 是归纳集, 那么

$$Z = \{x \in X : x \subseteq X\}$$

是归纳集.

- (2) 证明: 自然数集是传递集.
- 4. (4分) 判断下列关于 Gödel 不完全性定理(incompleteness theorem)的陈述是否正确,并说明理由:
 - (1) Gödel 不完全性定理表明, ZF 集合论(不包括选择公理)是不完全的, 即存在 ZF 公式 ϕ , Set $\models \phi$ 但是 ZF $\not\vdash \phi$, 这里 Set 是集合论的模型, ZF 是 ZF 集合论公理.
 - (2) NGB 是不同于 ZF 的一种公理化集合论,因为 NGB 集合论并没有包含 **ZF** 的所有公理,所以 Gödel 不完全性定理在 NGB 集合论上不一定成立.