variable-renewable-energy-process

Collection of tools to process and interact with variable renewable energy data

Photovoltaic

1. Solar energy output

$$E = A * r * GHI * \mu$$

where,

E = Energy (Wh)

A = Total solar panel area (m2)

r =Solar panel efficiency (default value = 0.159) [1]

GHI = Global Horizontal Irradiation (Wh / m2)

 $\mu = \text{Coefficient for losses}$ (range between 0.5 and 0.9, default value = 0.9)

2. Solar power output

$$P = E/\Delta t$$

where,

P =Solar panel power output (W)

E = Energy (Wh)

 $\Delta t = \text{Time step (hour)}$

3. Solar per unit output

$$\begin{split} cf &= P/\bar{P} \\ &= \frac{A*r*GHI*\mu}{\Delta t*\bar{P}} \\ &= GHI*\frac{A*r*\mu}{\Delta t*\bar{P}} \\ &= GHI*K \\ K &= \frac{A*r*\mu}{\Delta t*\bar{P}} \end{split}$$

where,

cf = Capacity factor (p.u.)

P =Solar panel power output (W)

 $\bar{P} = \text{Maximum power output of the installed solar panel (Wp)}$

A = Total solar panel area (m2)

r =Solar panel efficiency (default value = 0.159) [1]

GHI =Global Horizontal Irradiation (Wh/m2)

 $\mu = \text{Coefficient for losses}$ (range between 0.5 and 0.9, default value = 0.9)

 $\Delta t = \text{Time step (hour)}$

K = Coefficient factor constant (constant parameter based on solar panel m2/Wh)

Typical Value

Symbol	Value	Unit	Note	
\overline{A}	1.63350	m2	[1]	
r	0.159	-	[1]	
μ	0.90	-	-	
$rac{\mu}{ar{P}}$	260	W	[1]	
K	0.000899053	m2/Wh	-	

Contributing

1. Git FIlter

We use nb-clean to clean notebooks metadata.

pip install nb-clean
nb-clean add-filter --preserve-cell-outputs

2. Render README.md

The README.md can be rendered using ${\tt pandoc\ README.md\ -o\ README.pdf}$