Chapter

06

시리얼 통신(Serial)

시리얼 통신 기초

공두이노 보드를 이용하여 PC와 시리얼 통신하는 방법에 대해서 학습합니다.

■ 시리얼 통신 (직렬 통신; Serial Communication)

공두이노 시스템이 PC 또는 다른 시스템과 데이터를 주고 받으려면 선을 연결하여 통신을 하는데, 주로 시리얼 통신을 이용합니다.

시리얼 통신의 특징은 다음과 같습니다.

- ① 시리얼 통신은 송신(TX), 수신(RX) 의 2개 데이터 선을 이용하여 통신을 하기 때문에 비교적 간단하게 통신 연결이 가능합니다.
- ② 바이트(8비트)의 데이터를 비트 단위로 나누어 차례대로 전송하기 때문에 통신 시간이 빠르지 않습니다.
- ③ 공두이노와 PC와의 시리얼 통신은 현재 사용하고 있는 USB 포트를 이용하기 때문에 별도의 선 연결이 필요 없습니다.
- ④ 시리얼 통신을 하기 위해서는 속도(bps), 패리티(Parity), 스탑비트(Stop bit), 데이터 비트(Data bits) 설정이 필요하며, 일반적으로 속도 9,600 bps 패리티는 No parity, 1 스탑비트, 8 데이터 비트를 사용합니다.

실습

시리얼 통신 - 문자열 전송

07

공두이노 보드에서 PC로 문자열을 전송하는 방법을 학습합니다.

하드웨어 연결

1. 공두이노 보드와 PC가 USB로 연결되어 있으면 다른 연결은 필요 없습니다.

프로그램 작성1

```
void setup() {
    // 9,600bps 속도 설정
    Serial.begin(9600);
}

void loop() {
    // PC로 문자열 전송
    Serial.println("Hello world!");
    delay(1000);
}
```

프로그램 동작

exam023

피타고라스의 정리를 이용하여 빗변(h)의 길이를 계산하여 그 결과를 시리얼 통신으로 전송하는 프로그램을 작성합니다.


```
// 수학관련 함수 포함
#include "math.h"
int a = 3;
int b = 4;
int h;
void setup() {
 Serial.begin(9600);
 Serial.println("Calculate");
 Serial.print("a = ");
 Serial.println(a);
 Serial.print("b = ");
 Serial.println(b);
 h = sqrt(a*a + b*b);
 Serial.print("h = ");
 Serial.println(h);
void loop() { // 반복 동작은 하지 않음
```

실습

시리얼 통신 - 데이터 수신

08

PC에서 공두이노 보드에 데이터를 전송할 때, 이를 처리하는 방법에 대해서 학습합니다.

하드웨어 연결

1. 공두이노 보드와 PC가 USB로 연결되어 있으면 다른 연결은 필요 없습니다.

프로그램 작성1

PC에서 문자를 입력하면 그 문자에 해당하는 아스키 코드(ASCII) 를 10진수로 PC에 다시 전송하여 표시합니다.

```
int rx = 0;
void setup() {
 Serial.begin(9600);
void loop() {
  if (Serial.available() > 0) { // 받은 데이터가 있으면 처리
   rx = Serial.read();
   Serial.print("I received: ");
   Serial.println(rx, DEC); // 받은 데이터의 10진 ASCII코드 출력
```

프로그램 동작

시리얼 모니터 창에 'a'를 입력하고 <Send> 버튼을 누르면 'I received: 97'이 표시됩니다. 'a'문자는 ASCII 코드 97에 해당합니다. (앞의 ASCII 코드 표 참조)

하드웨어 연결

- 1. 공두이노 보드와 베이스 보드(Gongduino-base-board)의 전원 커넥터를 케이블로 연결합니다.
- 2. 베이스 보드의 FND 연결 핀 8개를 연결선으로 공두이노 보드와 연결합니다.

공두이노 보드	연결방향	베이스 보드
6번 PIN	\rightarrow	FND a
7번 PIN	\rightarrow	FND b
8번 PIN	\rightarrow	FND c
9번 PIN	\rightarrow	FND d
10번 PIN	\rightarrow	FND e
11번 PIN	\rightarrow	FND f
12번 PIN	\rightarrow	FND g
13번 PIN	\rightarrow	FND DP

프로그램 작성2

PC에서 숫자(0-9)를 입력하면 FND에 숫자를 표시합니다. 그 외 입력이면, FND를 끕니다.

```
void setup() {
    Serial.begin(9600);
    for (int i=6; i<=13; i++) {pinMode(i, OUTPUT);};
}

void loop() {
    if (Serial.available() > 0) { // 받은 데이터가 있으면 처리
        rx = Serial.read();
        if ((rx >= '0') && (rx <= '9')) {out_fnd(rx - '0');}
        else {out_fnd(10);}; // 숫자가 아니면 FND 모두 OFF
    }
}
```

✓ '0' 부터 '9' 까지의 아스키 코드 값은 48-57 까지 입니다. 이 코드 값을 out_fnd(int num)의 num 숫자인
 ○부터 9까지로 바꾸려면 수신 받은 rx 값에서 '0' 의 아스키 코드 값인 48을 빼주어야 합니다.

```
예) out_fnd (rx - '0')
```


✓ "프로그램 작성2"를 수정하여 PC에서 키보드에서 숫자 '0'부터9'까지,
 그리고 알파벳 "A"부터 "F"까지 누르면 FND에 눌린 키를 표시하는 프로그램을 작성하세요.
 만약, 그 외 키가 눌리면 FND를 모두 끕니다.

PC에서 문자열(2개 이상의 문자)을 입력하여 화면에 다시 표시하는 프로그램을 작성합니다.

```
char rd[20]; // 문자열 배열의 선언
void setup() {
  Serial.begin(9600);
 Serial.println("What's your name ?");
void loop() {
  if (Serial.readBytesUntil('.', rd, 20)) {
   Serial.print("Hello, ");
   Serial.println(rd);
   for (int i=0; i<20; i++) rd[i]=0; // 배열의 초기화
```

byte Serial.readBytesUntil(문자, 배열, 길이)

해당하는 문자가 수신될 때까지 기다리며, 수신된 문자를 배열에 넣습니다. <u>배열</u>의 크기는 <u>길이</u>인자에 지정합니다.

- 수신된 문자의 수를 리턴합니다.
- 수신될 때까지 기다리는 시간은 기본 1초입니다. 이 시간은 Serial.setTimeout(밀리초) 함수로 변경할 수 있습니다.

PC에서 2개의 숫자열(A, B 값)을 입력 받아 두 수를 더하고, 빼는 계산 결과를 출력하는 프로그램을 작성합니다.

```
void loop() {
 while (Serial.available() > 0) { // 수신 데이터가 있으면
   a = Serial.parseInt(); // 첫번째 입력 숫자 = a 변수
                              // 두번째 입력 숫자 = b 변수
   b = Serial.parseInt();
                              // 화면에 입력한 a, b 표시
   Serial.print(a);
   Serial.print(", ");
   Serial.println(b);
   c = a + b;
   Serial.print ("A + B = ");
   Serial.println(c);
   c = a - b;
   Serial.print ("A - B = ");
   Serial.println(c);
   Serial.print("A, B = ");  // 다시 입력 받기 위해 표시
```