

Hydrocarbons

Alkanes:

- General formula is C_nH_{2n+2}.
- Isomerism: Structural isomer → Difference in structure
 Chain isomer → Difference in chain
- Conformations: The spatial arrangements of atoms which can be converted into one another by rotation around a C–C single bond
 - 1. Sawhorse projections

2. Newman projections

Preparation

1. From unsaturated hydrocarbons (hydrogenation)

$$\mathtt{CH_3} - \mathtt{CH} = \mathtt{CH_2} \ + \ \mathtt{H_2} \xrightarrow{\mathtt{Pt/Pd/Ni}} \mathtt{CH_3} - \mathtt{CH_2} - \mathtt{CH_3}$$

1. Wurtz reaction (Preparation of higher alkanes containing even number of carbon atoms)

$$\text{CH}_3\text{Br} + 2\text{Na} + \text{Br}\text{CH}_3 \xrightarrow{\text{dry ether}} \text{CH}_3 - \text{CH}_3 + 2\text{NaBr}$$

1. De-carboxylation (Elimination of carbon dioxide from carboxylic acid)

$$\text{CH}_3\text{COONa} + \text{NaOH} \xrightarrow{\text{CaO}} \text{CH}_4 + \text{Na}_2\text{CO}_3$$

Physical properties

Boiling point increases with increase in molecular mass. Further, it decreases with increase in number of branched chains.

Chemical properties

- 1. Undergo substitution reactions in which one or more hydrogen atoms of alkanes are substituted by halogens
- 2. Rate of reaction of alkanes with halogens is $F_2 > Cl_2 > Br_2 > l_2$
- 3. Combustion

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

4. KMnO₄ can oxidise alkanes having tertiary H atoms to corresponding alcohols.

(CH₃)₃CH
$$\xrightarrow{\text{KMnO}_4}$$
 (CH₃)₃COH

5. Aromatization

$$\begin{array}{c|c} CH_{3} & CH_{3} & \\ \hline \\ CH_{2} & CH_{2} & \\ \hline \\ CH_{2} & CH_{2} & \\ \end{array}$$

6. Pyrolysis or cracking

$$C_6H_{12} + H_2$$
 C_6H_{14}
 $C_4H_8 + C_2H_6$
 $C_3H_6 + C_2H_4 + CH_4$

Alkenes:

- General formula is C_nH_{2n} .
- Isomerism
- 1.Position isomer

2. Geometrical isomerism

Cis-isomer: Two identical atoms or groups are on the same side of the double bond

• Trans-isomer: Two identical atoms or groups lie on the opposite side of the double bond

$$C = C$$
 H_3C
 CH_3
 CH_3
 CH_3

Preparation

1. From alkynes

RC
$$\equiv$$
 CR' + H₂ $\xrightarrow{Pd/C}$ \xrightarrow{R} C = C $\xrightarrow{R'}$ H

Pd/C →Lindlar's catalyst

RC
$$\equiv$$
 CR' + H₂

Alkyne

Na/Liquid NH₃

R

H

C = C

R'

trans - Alkene

2. From alkyl halides (Dehydrohalogenation)

$$H - C = C H$$

$$H - C = C H$$

$$H = C + C + C + C$$

$$H = C$$

$$H =$$

Physical properties

1. Boiling point decreases with increase in number of branched chains.

Chemical properties

1. Addition of HBr to unsymmetrical alkenes (Markovnikov rule)

2. Anti-Markovnikov addition (Peroxide effect or Kharash effect)

$$CH_3 - CH = CH_2 + HBr \xrightarrow{(C_6H_5CO)_2O_2} CH_3 - CH_2 - CH_2 - Br$$
1-Bromopropane

3. Ozonolysis

$$CH_3 CH = CH_2 + O_3 \longrightarrow CH_3 - CH \qquad CH_2$$

$$O \longrightarrow O$$

$$Propene ozonide$$

$$Zn/H_2O$$

$$CH_3 CHO + HCHO$$

$$Ethanal \qquad Methanal$$

General formula is CnH_{2n-2}

They are named as the corresponding alkanes replacing 'ane' by the suffix 'yne'.

Each carbon atom of ethyne has two *sp* hybridised orbitals.

Preparation of Ethynes

- From calcium carbide (CaC₂)
- From vicinal dihalides

Chemical Properties of Alkynes

- Acidic Nature of hydrogen
- Addition Reactions of Alkynes
- Addition of dihydrogen
- Addition of halogens

- Addition of hydrogen halides (HX; X = CI, Br, I)
- Addition of water
- Polymerisation

Aromatic hydrocarbon:

Aromaticity

- 1. Planarity
- 2. Complete delocalization of the electrons in the ring
- 3. Huckel rule \rightarrow Presence of $(4n + 2)\pi$ electrons in the ring (n = 0, 1, 2...)

• Preparation of benzene

- 1. Cyclic polymerization of ethyne
- 2. Decarboxylation of aromatic acids

Physical properties

Immiscible with water but readily miscible with organic solvents

Chemical properties

- 1. Electrophilic substitution
- 2. Nitration

3. Halogenation

4. Friedel-Crafts alkylation

5. Friedel-Crafts acylation

$$+ CH_3COCI \xrightarrow{Anhyd. AlCl_3} + HCI$$

6. On treatment with excess of chlorine

7. Addition reaction

$$+ 3H_2 \xrightarrow{\text{Ni}}$$

$$+ 3Cl_2 \xrightarrow{\text{UV}}$$

$$Cl \qquad Cl \qquad Cl \qquad Cl \qquad Cl \qquad Cl \qquad Cl \qquad BHC$$

Directive influence of functional group in benzene ring

1. Ortho and para directing groups:

$$-OH$$
, $-NH_2$, $-NHR$, $-NHCOCH_3$, $-OCH_3$, $-CH_3$, $-C_2H_5$

2. Meta directing groups:

$$-\mathsf{NO}_2, -\mathsf{CN}, -\mathsf{CHO}, -\mathsf{COR}, -\mathsf{COOH}, -\mathsf{COOR}, -\mathsf{SO}_3\mathsf{H}$$

• Carcinogenicity and toxicity

Benzene and polynuclear hydrocarbons containing more than two benzene rings are toxic and can cause cancer