Exercice 1 (Démonstration de cours)

Rappeler et démontrer le résultat concernant la comparaison entre module et partie réelle et imaginaire.

Exercice 2 (Démonstration de cours)

Rappeler et démontrer l'inégalité triangulaire.

Exercice 3 (Démonstration de cours)

Rappeler l'expression des racines n-ième de l'unité, et démontrer le résultat.

Exercice 4

Développer $\cos(5x)$ en fonction de $\cos(x)$ et $\sin(x)$.

Exercice 5

Linéariser $\cos^4(x)$.

Exercice 6

Déterminer les racines carrées de z = 16 + 30i.

Exercice 7

Résoudre $z^2 + (1 - i)z - 4 - 8i = 0$.

Exercice 8

Écrire sous forme algébrique les nombres suivants

$$a = \frac{1}{3i} \qquad b = \frac{1}{1+i} \qquad c = \frac{1}{\sqrt{3}+i\sqrt{2}} \qquad d = \frac{1}{3i-\sqrt{3}} \qquad e = \frac{2i-\sqrt{2}}{3+i}$$

$$f = (2+2i)^6 \qquad \qquad g = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20} \qquad \qquad h = \frac{(1+i)^{2000}}{(i-\sqrt{3})^{1000}}$$

Exercice 9

Résoudre dans \mathbb{C} les équations suivantes d'inconnue z. On mettra les solutions sous forme algébrique.

$$(E): iz + 3(z - i) = 0$$
 $(F): (2i + 1)z = 1 + i - 2iz$ $(G): z = \frac{\overline{z}}{2}$

Exercice 10

Trouver les ensembles de nombres z dans $\mathbb C$ tels que

(a)
$$z = \bar{z}$$
 (b) $z = -\bar{z}$ (c) $z = i\bar{z}$ (d) $z = -i\bar{z}$ (e) $z^2 = z \times \bar{z}$

Exercice 11

Soit $z \neq 0$ un nombre complexe.

1. Prouver que $\frac{1}{z} + \frac{1}{\bar{z}}$ est un nombre réel.

2. Prouver que $\frac{1}{z} - \frac{1}{\bar{z}}$ est un nombre imaginaire pur.

Exercice 12

Soient A, B et C trois points d'affixe respective a = 4 + i, b = 1 + 3i et $c = 4 - \frac{5}{2}i$.

- 1. Calculer la longueur AB.
- 2. Le point C appartient-il au cercle de centre A passant par B?

Exercice 13

Déterminer les racines quatrièmes de i et les racines cubiques de $-\frac{8\sqrt{2}}{1+i}$.

Exercice 14

Résoudre dans \mathbb{C} les équations suivantes

(a)
$$z^2 - (6+i)z + (11+13i) = 0$$
 (b) $z^2 + (4-3i)z = 2+8i$
(c) $z^2 - 5z + 4 + 10i = 0$ (d) $z^2 + 5z + 7 - i = 0$

Exercice 15

On considère dans C l'équation suivante

$$(4z^2 - 20z + 37)(2z - 7 + 2i) = 0.$$

Démontrer que les solutions de cette équation sont les affixes de points appartenant à un même cercle, dont le centre est le point d'affixe 2.

Exercice 16

Dans chaque cas, donner une condition nécessaire et suffisante sur z pour que

- 1. les points d'affixes 1, z et z^2 soient alignés;
- 2. les vecteurs d'affixes z et \bar{z} soient orthogonaux;
- 3. les points d'affixes $z, \frac{1}{z}$ et z-1 soient situés sur un même cercle de centre O.

Exercice 17

Donner la forme trigonométrique et exponentielle des nombres complexes suivants.

$$z_1 = 3i$$
 $z_2 = -2$ $z_3 = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ $z_4 = \frac{3}{2} - \frac{3\sqrt{3}}{2}i$ $z_5 = \pi i$ $z_6 = 6\sqrt{3} + 6i$

Exercice 18

Déterminer de deux façons différentes les racines carrées de $Z = \sqrt{3} + i$. En déduire la valeur de $\cos(\frac{\pi}{12})$.

Exercice 19

Calculer l'intégrale $I = \int_0^{\pi/2} \cos^4(t) \sin^2(t)$.