MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2019 Calculator-assumed

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 14th June.

Section Two: Calculator-assumed

(100 Marks)

(4 marks)

Question 8(a)

 $\int_{2}^{6} \frac{f(x)}{3} dx = 4$

Solution

(i)
$$\int_{2}^{6} f(x)dx = 3 \times 4 = 12$$
(ii)
$$\int_{2}^{6} \frac{3f(x) - 1}{2} dx = \int_{2}^{6} \frac{3f(x)}{2} dx - \int_{2}^{6} \frac{1}{2} dx$$

$$= \frac{3}{2} \int_{2}^{6} f(x) dx - \int_{2}^{6} \frac{1}{2} dx$$

$$= \left(\frac{3}{2} \times 12\right) - \left[\frac{1}{2}x\right]_{2}^{6}$$

$$= \frac{18 - [3 - 1]}{2}$$

$$= 16$$

6	1
$ \int_{2}^{6} f(x)dx = 12 $ • states $\int_{2}^{6} f(x)dx = 12$	
• uses linearity and additivity to deduce $\int_{2}^{6} \frac{3f(x)-1}{2} dx = \int_{2}^{6} \frac{3f(x)}{2} dx - \int_{2}^{6} \frac{1}{2} dx$	1
• anti-differentiates $\frac{1}{2}$ • determines correct result of 16	1 1

Question 8(b) (3 marks)

Solution	
$\int_{-\frac{1}{4}}^{0} e^{4x+1} dx = \int_{-\frac{1}{4}}^{0} 4e^{4x+1} dx$	
$= \frac{1}{4} \left[e^{4x+1} \right]_{-\frac{1}{4}}^{0}$	
$=\frac{1}{4}\left[e^{1}-e^{0}\right]$	
$=\frac{1}{4}[e-1]$	

Mathematical behaviours	Marks
anti-differentiates correctly	1
substitutes limits of integration correctly	1
determines exact result	1

Question 9(a)

4

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (1 mark)

Solution $f'(x) = (x-1)^2(4x-1) = 4x^3 + bx^2 + cx + d + e$ $hence \ f(x) = x^4 + \dots \qquad ie \quad a > 0$ $\text{Mathematical behaviours} \qquad \qquad \text{Mark}$ • states a > 0 justifies answer using anti-differentiation

Question 9(b) (1 mark)

Solution	
For stationary points, $f'(x) = 0$	
$ie(x-1)^2(4x-1) = 0 \Rightarrow x = 1, \frac{1}{4}$	
Mathematical behaviours	Marks
$ullet$ states χ coordinates of stationary points	1

Question 9(c) (3 marks)

Solution f'(1) = 0 and f''(1) = 0 f''(x) = 6(x - 1)(2x - 1) $f''(1) = -ve \times +ve = -ve$ $f''(1) = +ve \times +ve = +ve$

Hence there is a change in concavity at x = 1 and f'(1) = 0 so there is a horizontal point of inflection at x = 1. Hence m = 1.

ſ	Mathematical behaviours	Marks
ſ	• states $f'(1) = 0$ and $f''(1) = 0$	1
	• demonstrates change in concavity at $x = 1$	1
	,	1
	• states that horizontal point of inflection occurs at $m = 1$.	

Question 9(d) (3 marks)

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (1 mark)

Question	10((a)
----------	-----	-----

Solution	
X has a binomial distribution with parameters n and $p=0.5$ ie $X \sim Bi$	n(n, 0.5)
Mathematical behaviours	Marks
identifies binomial distribution and states parameters	1

Question 10(b) (1 mark)

Solution	
$E(X) = \mu = np = \frac{n}{2}$	
Mathematical behaviours	Marks
states correct answer	1

Question 10(c) (3 marks)

Solution	
$n=20: P_1=P(5 \le X \le 15) \cong 0.988$	
$n=1000: P_1=P(495 \le X \le 505) \cong 0.272$	
$n=10000: P_1=P(4995 \le X \le 5005) \cong 0.088$ (from calculator)	
Mathematical behaviours	Marks
states a probability inequality relevant to one of the ⁿ values	1
calculates one probability correctly	1
calculates all probabilities correctly	1

Question 10(d) (1 mark)

Solution	
$P_1 \to 0 \text{ as } n \to \infty$	
Mathematical behaviours	Marks
obtains correct answer	1

Question 10(e) (3 marks)

Solution	
$n=20: P_2=P(9.5 \le X \le 10.5)=P(X=10) \cong 0.176$	
$n=200: P_2=P(95 \le X \le 105) \cong 0.563$	
$n=1000: P_2=P(475 \le X \le 525) \cong 0.893$	
Mathematical behaviours	Marks
• states probability inequality relevant to $n = 20$	1
calculates one probability correctly	1
calculates all probabilities correctly	1

Question 10(f) (1 mark)

Solution	
$P_2 \rightarrow 1 \text{ as } n \rightarrow \infty$	
Mathematical behaviours	Marks

6

		•	
•	obtains correct answer		1

Question 11(a) (1 mark)

Solution	
$y = 30t + 150e^{-0.2t} + k$	
$t = 0, y = 0 \Rightarrow 0 = 150 + k \Rightarrow k = -150$	
Mathematical behaviours	Mark
• evaluates ^k	1

Question 11(b) (3 marks)

Solution				
$y = 30t + 150e^{-0.2t} - 150$	30t+150e ^{-0.2t} -150⇒y			
$y = 30 \Rightarrow t = 3.53s$	$150 \cdot e^{\frac{-t}{5}} + 3$	0-t-150		
$v = 30 - 30e^{-0.2t}$	solve $(30=y,t)$ $\{t=-2, 861, t=3\}$			
$ v_{t=3.53} = 15.19 m/s$ $\frac{d}{dt}(y) _{t=3.533802881}$		3.334)		
		15.192		
Mathematical behaviours		Marks		
• equates $y = 30$ and determines time taken to hit the gro	1			
differentiates to obtain V		1		
calculates the speed		1		

Question 11(c) (2 marks)

Question 11(d) (1 mark)

Question 11(e) (1 mark)

Solution				
A restriction on the domain is needed.				
ie $0 \le t \le 3.53$				
Mathematical behaviours	Marks			

7

	The state of the s		
•	states restriction required on the domain		1

Question 12(a) (2 marks)

Solution			
$\mu = \frac{49 \times 63.3 + 38 \times 54.1}{97} = 59.28$			
87	1		
Mathematical behaviours			
uses correct expression	1		
obtains correct answer	1		

Question 12(b) (4 marks)

Solution			
If $Y = aX + b$, then $E(Y) = aE(X) + b$ and $St. Dev(Y) = aSt. Dev(X)$			
So $59.28 = a \times 63.3 + b$ and $9 = a \times 7.6$			
So $a = 1.18$ and $b = -15.68$			
Mathematical behaviours	Marks		
• expresses $E(Y)$ in terms of $E(X)$	1		
• expresses $Std \ Dev \ (Y)$ in terms of $Std \ Dev \ (X)$	1		
• calculates ^a	1		
• calculates ^b	1		

Question 13(a) (5 marks)

Solution

Stationary Points: $\frac{\overline{dy}}{dx} = 0$

 $(6x-1)(x+\frac{1}{2})=0$

i.e.

$$x = \frac{1}{6}$$
 or $x = -\frac{1}{2}$

 $\frac{dy}{dx} = (6x - 1)\left(x + \frac{1}{2}\right)$

$$6x^2 + 2x - \frac{1}{2}$$

$$\frac{d^2y}{dx^2} = 12x + 2$$

At $x = \frac{1}{6}$, $\frac{d^2y}{dx^2} = 4 \Rightarrow \min$ At $x = -\frac{1}{2}$, $\frac{d^2y}{dx^2} = -4 \Rightarrow \max$

 $\sqrt{y_1} = 2 \cdot x^3 + x^2 - \frac{x}{2}$

 \therefore max turning pt at $\left(-\frac{1}{2},1\right)$

 $y = 2x^3 + x^2 - \frac{1}{2}x + c$

$$\left(-\frac{1}{2},1\right) \Rightarrow 1 = 2\left(-\frac{1}{2}\right)^3 + \left(-\frac{1}{2}\right)^2 - \frac{1}{2}\cdot\left(-\frac{1}{2}\right) + c$$

$$1 = \frac{1}{4} + c \Rightarrow c = \frac{3}{4}$$

 $y = 2x^3 + x^2 - \frac{1}{2}x + \frac{3}{4}$

∫□ydx	
. 2 2 x . 1	$2 \cdot x^3 + x^2 - \frac{x}{2}$
$2 \cdot x^3 + x^2 - \frac{x}{2} x = -\frac{1}{2}$	$\frac{1}{4}$

Mathematical behaviours	Marks
$\frac{dy}{dx} = 0$	1
uses dx to find stationary points $\frac{d^2y}{dx^2}, \ x = \frac{1}{6} x = -\frac{1}{2}$ substitutes into dx^2 , dx^2 , dx^2 , dx^2 to find which dx^2 value gives a	1
substitutes into dx^2 , 6 and 2 to find which x value gives a local maximum turning point or clearly shows on sketch location of maximum and confirms maximum using 2^{nd} derivative test	1
integrates the derivative function correctly	1

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION

$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1
• uses the point $\left(-\frac{1}{2},1\right)$ to determine the value of c	
states the correct equation of the function	

Question 13(b) (5 marks)

Solution

(i)
$$V = \frac{\pi h}{3} (R^2 + r^2 + Rr)$$
$$V = \frac{\pi (15)}{3} (5^2 + 3^2 + 5 \times 3)$$

$$\approx$$
 769.69 cm³ \approx 770 cm³

(ii)
$$V = \frac{\pi 15}{3} (R^2 + 3^2 + 3R)$$
$$\frac{dV}{dR} = 5\pi (2R + 3)$$
$$\frac{dV}{dR} \approx \frac{\delta V}{\delta R}, R = 5, \delta R = -0.2$$
$$\delta V \approx 5\pi (2 \times 5 + 3)(-0.2)$$

$$\delta V \approx -40.84 \text{ cm}^3 \approx -41 \text{ cm}^3$$

ie a decrease in capacity of approximately 41 millilitres

Mathematical behaviours		
states correct volume to the nearest cubic centimetre (ii)	1	
ullet states V in terms of R	1	
$ullet$ uses incremental formula to obtain expression for small change in V	1	
• substitutes, $R = 5$ and $\delta R = -0.2$	1	
states the decrease in capacity		

Question 14(a) (3 marks)

Solution

Total number of cars in sample is 27+13+11+4+14=69

Proportions of the various colours, and rounded to a whole multiple of 0.05:

White	Black	Red	Blue	Other
$\frac{27}{69} \cong 0.391 \cong$	13 ~ 0.188 5	$11/69 \approx 0.15$	$4/69 \approx 0.058$	$14/69 \cong 0.20$
$\frac{69}{69} = 0.331 =$	$\frac{69}{69} = 0.100 =$		7	

	Matnematicai benaviours	Marks
•	obtains total sample size	1
•	calculates all fractions correctly	1
•	rounds all answers correctly	1

Question 14(b)

CALCULATOR-ASSUMED SEMESTER 1 (UNIT 3) EXAMINATION (3 marks)

Solution		
Expected number of points per car $\&2 \times 0.4 + 4 \times 0.2 + 7 \times 0.15 + 9 \times 0.05 + 5 \times 0.2 = 4.1$		
So expected number of points per 100 cars $\stackrel{\cdot}{\iota} 100 \times 4.1 = 410$		
Mathematical behaviours Marks		
obtains correct expression for expected value	1	
calculates expected value (per car) correctly	1	
ohtains correct answer	1	

Question 14(c) (2 marks)

Solution
Expected number of points per car (by colour)

White	Black	Red	Blue	Other
$2 \times 0.4 = 0.8$	$4 \times 0.2 = 0.8$	$7 \times 0.15 = 1.05$	$9 \times 0.05 = 0.45$	$5 \times 0.2 = 1$

Since the expected points per car is greatest for Rodney's red cars, Rodney is most likely to accumulate points fastest.

Mathematical behaviours	Marks
evaluates expected values correctly	1
correct answer	1

Question 14(d) (2 marks)

Solution			
$P = 0.4^2 + 0.2^2 + 0.15^2 + 0.05^2 + 0.2^2 = 0.265$			
Mathematical behaviours	Marks		
uses correct formula	1		
evaluates correctly	1		

Question 15(a) (4 marks)

	Solution		
(i)	none (consecutive selections are not independent so not binomial)		
(ii)	uniform		
(iii)	(iii) binomial		
(iv)	binomial		
	Mathematical behaviours	Marks	
i)			
•	states none	1	
(ii)			
•	states uniform	1	
(iii)			
•	states binomial	1	
(iv)			
•	states binomial	1	

Question 15(b)

_				
Sol	h	ıtı	\sim	n

No, since $f(-1) = \frac{-1}{6}$ represents a probability and $f(x) = \frac{x}{6}$, where x = -1, 1, 2, 4. (i) probability cannot be negative

(ii)	X	4	6	8	10
	f(x)	0.05	0.30	0.25	0.4

Yes as $0 \le f(x) \le 1 \ \forall \ x$ and the sum of the probabilities is 1.

Mathematical behaviours	Marks
(i)	
states no	1
recognises negative probability	1
(ii)	
states yes	1
states both reasons	1

Question 16(a) (3 marks)

Solution

$$v = \int 8 dt$$
$$v = \frac{ds}{dt} = 8t + c$$

$$v(0) = p \Rightarrow p = c$$

$$v = \frac{ds}{dt} = 8t + p$$

$$s = 4t^2 + pt + k$$

$$s = 4t^{2} + pt + k$$

$$s(1) = q \Rightarrow q = 4 + p + k \Rightarrow k = q - 4 - p$$

$$\therefore s = 4t^2 + pt + q - 4 - p$$

$$\therefore s = 4t^{2} + pt + q - 4 - p$$
or $s = 4t^{2} + pt + q - p - 4$ as required

Mathematical behaviours	Marks
• anti-differentiates $a(t)$ to obtain $v(t)$ and uses $v(0) = p$ to get	1
correct expression for C . • anti-differentiates $^{V(t)}$ to obtain $^{S(t)}$ and uses $^{S(1)}=q$ to get correct	1
expression for k • states required answer	1

SEMESTER 1 (UNIT 3) EXAMINATION

Question 16(b) (1 mark)

13

Solution			
Distance travelled = $\int_{0}^{3} 8t + p dt$			
Mathematical behaviours	Marks		
• states the integral of the absolute velocity function from $t = 0$ to $t = 3$	1		

Question 17(a) (2 marks)

Solution		
Define the random variable, X as the number of batteries that last for less than 2000 hours. Hence, $X \sim Bin(120,0.1)$ $P(X=15) \approx 0.0742$		
Mathematical behaviours	Marks	
recognizes Binomial nature	1	
obtains correct answer	1	

Question 17(b) (2 marks)

Solution	
$X \sim Bin(120, 0.1)$	
$P(X \le 15) \approx 0.8560$	
Mathematical behaviours	Marks
recognizes binomial nature	1
obtains correct answer	1

Question 17(c) (2 marks)

Solution

From part (b) we can conclude that there is an 85.6% chance that no more than 15 batteries out of 120 last less than 2000hrs. This would imply that there is only a 14.4% chance that more than 15 out of 120 batteries last less than 2000hrs.

Hence the test does not imply compelling evidence that the manufacturer's claim is false.

Mathematical behaviours	Marks
obtains correct answer	1
gives valid reason	1

Question 18(a) (3 marks)

	Solution				
	Outcome	Death	Permanent Disability	No p	ayout
	Profit	-49000	-9000	10	000
	Probability	0.01	0.02	0.	97
Mathematical behaviours			Marks		
completes Probability row of table correctly			1		

14

•	completes exactly 2 entries of Profit row of table correctly	1
•	completes table correctly	1

Question 18(b) (2 marks)

Question 18(c) (3 marks)

Solution $Var(X) = (-49000 - 300)^2 \times 0.01 + (-9000 - 300)^2 \times 0.02 + (1000 - 300)^2 \times 0.97 = 26510000$ Std Dev = $\sqrt{26510000} \approx 5149$ $E(X^2) = (-49000)^2 \times 0.01 + (-9000)^2 \times 0.02 + (1000)^2 \times 0.97 = 26600000$ $Var(X) = E(X^{2}) - (E(X))^{2}$ $=26600000 - (300)^{2} = 26510000$ Std Dev(X) = $\sqrt{26510000} \approx 5149$ Note: CAS screen above shows $E(X^2) = 26600000$ Mathematical behaviours Marks demonstrates calculations required to obtain variance 1 obtains variance 1 obtains standard deviation 1

Question 19(a) (1 mark)

Solution	
$\int_{-1}^{2} f(x) dx = 5 + 16 = 21$	
Mathematical behaviours	Marks
states correct answer	1

Question 19(b) (1 mark)

Solution	
$\int_{-1}^{4} f(x) dx = 5 + 16 + 11 - 27 = 5$	
Mathematical behaviours	Marks
states correct answer	1

Question 19(c)

Solution	
$A = \int_{-1}^{4} f(x) dx = 5 + 16 + 11 + 27 = 59$	
Mathematical behaviours	Marks
states correct answer	1

Question 19(d) (2 marks)

Solution	
Shaded area marked M = (16×3) - 21 = 27	
Marking key/mathematical behaviours	Marks
$\int_{-1}^{2} f(x)dx$ • recognises area of rectangle subtract -1	1 1

Question 19(e) (2 marks)

$\int_{0}^{4} f(x)dx = 48$		
(i) Correct statement is ^k		
	$(\int_{k}^{4} (12x^{2} - 4x^{3}) dx = 48, k)$	
(ii) Use CAS and solve for k :	Solve (k	$\Rightarrow k = -2$
Mathematical t	pehaviours	Marks
(i)		
chooses correct statement		1
(ii)		
• solves for k		1

Question 20(a) (3 marks)

Question 20(u)		(S mans)
Solution	on	
For the circle,	For the square,	
$l = 2\pi r \Rightarrow r = \frac{l}{2\pi}$	$x = \left(\frac{100 - l}{4}\right)$	
$\therefore A_{\varepsilon} = \pi \left(\frac{l}{2\pi}\right)^2$	$\therefore A_s = \left(\frac{100 - l}{4}\right)^2$	
Hence, $A = \pi \left(\frac{l}{2\pi}\right)^2 + \left(\frac{100 - l}{4}\right)^2$		
Mathematical behavio	ours	Mark
r = 1		
	ssion for the area of the circle	1
<u> 100 - 1</u>		1
• demonstrates that side length = $\frac{4}{}$ and	states expression for the	_
area of the square		1
concludes formula for A		

Question 20(b) (5 marks)

17

states coefficient of l^2 is positive, hence minimum turning point or demonstrates with graph

Hence the minimum total area is obtained when $l = 43.99 \, cm$

	Mathematical behaviours	Marks
•	$\frac{dA}{dl}$ determines $\frac{dA}{dl}$	1
•	equates $\frac{dA}{dl} = 0$ and solves	1
	$\frac{d^2A}{dl^2}\bigg _{l=43.99} > 0$ establishes hence a minimum	1
•	establishes dl^2 hence a minimum determines A for $l=0$ and $l=100$ OR	1
	demonstrates through graph or coefficient of $^l^2$ that A is a quadratic with a minimum turning point	1
•	concludes minimum area is when $l = 43.99 cm$	