No distributed quantum advantage for approximate graph coloring

Xavier Coiteux-Roy

TU Munich, Germany

Munich Center for Quantum Science and Technology, Germany

Fabian Kuhn

University of Freiburg, Germany

Augusto Modanese

Aalto University, Finland

Francesco d'Amore

Aalto University, Finland Bocconi University, BIDSA, Italy

François Le Gall

Nagoya University, Japan

Marc-Olivier Renou

Inria, France Université Paris-Saclay, France Institut Polytechnique de Paris, France

Jukka Suomela

Aalto University, Finland

STOC 2024

28 June 2024

Rishikesh Gajjala

Indian Institute of Science, India Aalto University, Finland

Henrik Lievonen

Aalto University, Finland

Gustav Schmid

University of Freiburg, Germany

MUR FARE 2020 - Project PAReCoDi

Approximate graph coloring

Input: • parameters $2 \le \chi \le c \in \{2, 3, 4, \ldots\}$

• χ -chromatic graph G

Output: • a c-coloring of G

Approximate graph coloring

Input:

- parameters $2 \le \chi \le c \in \{2, 3, 4, \dots\}$
- χ -chromatic graph G

Output: • a c-coloring of G

Examples:

• parameters $\chi = 2$, c = 4

• parameters $\chi = 3$, c = 4

Model of distributed computation [Linial '87]:

• the input graph is a distributed system

- the input graph is a distributed system
- nodes have unique identifiers in $\{1, 2, ..., n^c\}$

- the input graph is a distributed system
- nodes have unique identifiers in $\{1, 2, ..., n^c\}$
- synchronous time

- the input graph is a distributed system
- nodes have unique identifiers in $\{1, 2, ..., n^c\}$
- synchronous time
- every node runs the same algorithm

- the input graph is a distributed system
- nodes have unique identifiers in $\{1, 2, ..., n^c\}$
- synchronous time
- every node runs the same algorithm
- at each round every node
 - performs local computation
 - updates its state variables
 - sends messages to and receives messages from all neighbors

- the input graph is a distributed system
- nodes have unique identifiers in $\{1, 2, ..., n^c\}$
- synchronous time
- every node runs the same algorithm
- at each round every node
 - performs local computation
 - updates its state variables
 - sends messages to and receives messages from all neighbors
- unbounded computational power & no bandwith limitations

Complexity: minimum number of communication rounds

Complexity: minimum number of communication rounds

Communication rounds = locality

Complexity: minimum number of communication rounds

Communication rounds = locality

Example of the equivalence:

- 3 communication rounds
- look at distance 3 and gather everything

Complexity: minimum number of communication rounds

Communication rounds = locality

Example of the equivalence:

- 3 communication rounds
- look at distance 3 and gather everything

Complexity: minimum locality

• Locality diam(G) + 1 solves every problem

		upper bound		lower bound		
χ	c	old	new	old	new	ref
2	2	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
2	3	O(n)				
2	4	O(n)				
•	•	•	•	•	• • •	• •
χ	χ	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
χ	$c > \chi$	O(n)				

1		upper bound		lower bound		
χ	c	old	new	old	new	ref
2	2	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
2	3	O(n)		$\Omega(\sqrt{n})$		[Brandt et al. '17]
2	4	O(n)				
•	•	• •	• •	•	•	•
χ	χ	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
χ	$c > \chi$	O(n)				

		upper bound		lower bound		
χ	c	old	new	old	new	ref
2	2	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
2	3	O(n)		$\Omega(\sqrt{n})$		[Brandt et al. '17]
2	4	O(n)		$\Omega(\log n)$		[Linial '92]
•	•	• •	•	•	• •	• •
χ	χ	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
χ	$c > \chi$	O(n)		$\Omega(\log n)$		[Linial '92]

		upper bound		lower bound		
χ	c	old	new	old	new	ref
2	2	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
2	3	O(n)	$ ilde{O}(\sqrt{n})$	$\Omega(\sqrt{n})$	$\Omega(\sqrt{n})$	[Brandt et al. '17]
2	4	O(n)		$\Omega(\log n)$		[Linial '92]
•	•	• •	•	•	• •	•
χ	χ	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
χ	$c > \chi$	O(n)		$\Omega(\log n)$		[Linial '92]

		upper bound		lower bound		
χ	c	old	new	old	new	ref
2	2	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
2	3	O(n)	$ ilde{O}(\sqrt{n})$	$\Omega(\sqrt{n})$	$\Omega(\sqrt{n})$	[Brandt et al. '17]
2	4	O(n)	$ ilde{O}(n^{rac{1}{3}})$	$\Omega(\log n)$	$\Omega(n^{rac{1}{3}})$	[Linial '92]
•	•	•	•	• •	•	•
χ	χ	O(n)	O(n)	$\Omega(n)$	$\Omega(n)$	trivial
χ	$c > \chi$	O(n)	$ ilde{O}(n^{1/\lfloor rac{c-1}{\chi-1} floor})$	$\Omega(\log n)$	$\Omega(n^{1/\lfloor rac{c-1}{\chi-1} floor})$	[Linial '92]

•
$$\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$$
 approximation ratio

Surprise: the result holds for a wide range of distributed models

 $\mathbf{A} \rightarrow \mathbf{B}$: an algorithm in \mathbf{A} can be simulated in \mathbf{B}

The non-signaling LOCAL model

The lower bound holds in the **non-signaling LOCAL** model

[Gavoille et al. '09] [Arfaoui and Fraigniaud '14]

- stronger than any *physical* synchronous distributed model
- purely probabilistic definition

The non-signaling LOCAL model

The lower bound holds in the **non-signaling LOCAL** model [Gavoille et al. '09] [Arfaoui and Fraigniaud '14]

- stronger than any *physical* synchronous distributed model
- purely probabilistic definition

No-signaling principle (informal): no signal can be sent from the future to the past

- causality

Idea (in algorithms)

- fix a distributed system with |V| = n nodes
- fix $S \subseteq V$

Idea (in algorithms)

- fix a distributed system with |V| = n nodes
- fix $S \subseteq V$
- run algorithm ${\mathcal A}$ for T rounds
- consider $G[\mathcal{N}_T(S)]$ (T=2)

Idea (in algorithms)

- fix a distributed system with |V| = n nodes
- fix $S \subseteq V$
- run algorithm ${\mathcal A}$ for T rounds
- consider $G[\mathcal{N}_T(S)]$ (T=2)
- modify G outside $G[\mathcal{N}_T(S)]$

• Observation:

- the output distribution over G[S] must be the same no matter the structure outside

Idea (in algorithms)

- fix a distributed system with |V| = n nodes
- fix $S \subseteq V$
- run algorithm ${\mathcal A}$ for T rounds
- consider $G[\mathcal{N}_T(S)]$ (T=2)
- modify G outside $G[\mathcal{N}_T(S)]$

Observation:

- the output distribution over G[S] must be the same no matter the structure outside
- A non-signaling outcome abstracts this idea and gives only the output distribution

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$

Problem: 3-coloring 2-chromatic graphs

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$

H

Problem: **3**-coloring **2**-chromatic graphs

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$

H: odd quadrangulation of Klein-bottle

• locally grid-like

H

Problem: **3**-coloring **2**-chromatic graphs

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm $\mathcal A$ with locality $T \le \lfloor \frac{\sqrt{n}-2}{2} \rfloor$ that 3-colors bipartite graphs

H: odd quadrangulation of Klein-bottle

• locally grid-like

H

Problem: **3**-coloring **2**-chromatic graphs

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm $\mathcal A$ with locality $T \leq \lfloor \frac{\sqrt{n}-2}{2} \rfloor$ that 3-colors bipartite graphs
 - apply ${\mathcal A}$ to H
 - there must be a **failure** (probability 1)

H: odd quadrangulation of Klein-bottle

• locally grid-like

H

Problem: **3**-coloring **2**-chromatic graphs

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm $\mathcal A$ with locality $T \leq \lfloor \frac{\sqrt{n}-2}{2} \rfloor$ that 3-colors bipartite graphs
 - apply ${\mathcal A}$ to H
 - there must be a **failure** (probability 1)

H: odd quadrangulation of Klein-bottle

• locally grid-like

H

Lower bound example: $\chi = 2$, c = 3

Problem: **3**-coloring **2**-chromatic graphs

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm $\mathcal A$ with locality $T \le \lfloor \frac{\sqrt{n}-2}{2} \rfloor$ that 3-colors bipartite graphs
 - apply ${\mathcal A}$ to H
 - there must be a **failure** (probability 1)
- Cloning principle: same effect if indistinguishable local views
 - deterministic failure; general cheating graph by [Bogdanov '13]

H: odd quadrangulation of Klein-bottle

- locally grid-like
- $\mathcal{X}(H) = 4$ [Mohar et al. '13]

H

G

Francesco d'Amore · No distributed quantum advantage for approximate graph coloring · STOC 2024

Lower bound example: $\chi = 2$, c = 3

Problem: **3**-coloring **2**-chromatic graphs

- complexity = $\tilde{\Theta}(\sqrt{n})$
- Lower bound: (deterministic LOCAL)
 - find graph H that is locally 2-colorable but chromatic number $\mathcal{X}(H) \geq 4$
 - by contradiction: algorithm $\mathcal A$ with locality $T \le \lfloor \frac{\sqrt{n}-2}{2} \rfloor$ that 3-colors bipartite graphs
 - -apply ${\mathcal A}$ to H
 - there must be a **failure** (probability 1)
- Cloning principle: same effect if indistinguishable local views
 - deterministic failure; general cheating graph by [Bogdanov '13]
- Graph-existential indistinguishability argument: lower bound technique [Linial '87]
 - main contribution: we extend it all the way up to non-signaling LOCAL

H: odd quadrangulation of Klein-bottle

• locally grid-like

H

G

• $\mathcal{X}(H) = 4$ [Mohar et al. '13]

• Based on **network decomposition** algorithms

- Based on **network decomposition** algorithms
- \bullet (α,d) -network decomposition decomposes the graph in clusters C_1,C_2,\ldots such that
 - C_i has weak diamater d
 - clusters are monochromatic with colors in $\{1,\ldots,\alpha\}$
 - adjacent clusters have different colors

- Based on **network decomposition** algorithms
- \bullet (α,d) -network decomposition decomposes the graph in clusters C_1,C_2,\ldots such that
 - C_i has weak diamater d
 - clusters are monochromatic with colors in $\{1,\ldots,\alpha\}$
 - adjacent clusters have different colors

(3,6)-network decomposition

- Based on **network decomposition** algorithms
- \bullet (α,d) -network decomposition decomposes the graph in clusters C_1,C_2,\ldots such that
 - C_i has weak diamater d
 - clusters are monochromatic with colors in $\{1,\ldots,\alpha\}$
 - adjacent clusters have different colors
- We develope (α,d) -network decomposition for small α and $d=\Theta(n^{1/\alpha})$ in time $\tilde{O}(d)$ using [Ghaffari et al. '23; Chang and Li '23]
 - reminder: lower bound $\Omega(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$

(3,6)-network decomposition

- Based on **network decomposition** algorithms
- \bullet (α,d) -network decomposition decomposes the graph in clusters C_1,C_2,\ldots such that
 - C_i has weak diamater d
 - clusters are monochromatic with colors in $\{1,\ldots,\alpha\}$
 - adjacent clusters have different colors
- We develope (α,d) -network decomposition for small α and $d=\Theta(n^{1/\alpha})$ in time $\tilde{O}(d)$ using [Ghaffari et al. '23; Chang and Li '23]
 - reminder: lower bound $\Omega(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
- $\implies \alpha \chi$ -coloring in time $\Theta(d)$ [Barenboim '13]
 - cluster of color $i \in [\alpha]$ uses colors from palette $\{i + k\alpha : k \ge 0\}$
 - total time $\tilde{O}(n^{1/\alpha})$, $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$

(3,6)-network decomposition \implies 6-coloring

- Based on **network decomposition** algorithms
- (α,d) -network decomposition decomposes the graph in clusters C_1,C_2,\ldots such that
 - C_i has weak diamater d
 - clusters are monochromatic with colors in $\{1,\ldots,\alpha\}$
 - adjacent clusters have different colors
- We develope (α,d) -network decomposition for small α and $d=\Theta(n^{1/\alpha})$ in time $\tilde{O}(d)$ using [Ghaffari et al. '23; Chang and Li '23]
 - reminder: lower bound $\Omega(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
- $\implies \alpha \chi$ -coloring in time $\Theta(d)$ [Barenboim '13]
 - cluster of color $i \in [\alpha]$ uses colors from palette $\{i + k\alpha : k \ge 0\}$
 - total time $\tilde{O}(n^{1/\alpha})$, $\alpha = \lfloor \frac{c-1}{\gamma-1} \rfloor$
- Not enough!: $\alpha \chi > c$. We can actually do better (next slide)

(3,6)-network decomposition ⇒ 6-coloring

- "Hide" one color (e.g., color 1) from "neighborhood" of clusters
 - -"reuse" color ${f 1}$ instead of i in cluster of color i
 - save $\alpha-1$ colors

Given (α,d) -network decomposition

- "Hide" one color (e.g., color 1) from "neighborhood" of clusters
 - -"reuse" color ${f 1}$ instead of i in cluster of color i
 - save $\alpha 1$ colors
- $\implies (\alpha \chi) (\alpha 1) = \alpha(\chi 1) + 1$ total colors in time O(d)

ullet The algorithm requires only lpha in input

- "Hide" one color (e.g., color 1) from "neighborhood" of clusters
 - -"reuse" color ${f 1}$ instead of i in cluster of color i
 - save $\alpha 1$ colors

$$\implies (\alpha \chi) - (\alpha - 1) = \alpha(\chi - 1) + 1$$
 total colors in time $O(d)$

- Lower bound: $\Omega(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
 - $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$ approximation ratio, $d = \Theta(n^{1/\alpha})$

- "Hide" one color (e.g., color 1) from "neighborhood" of clusters
 - -"reuse" color ${f 1}$ instead of i in cluster of color i
 - save $\alpha 1$ colors

$$\implies (\alpha \chi) - (\alpha - 1) = \alpha(\chi - 1) + 1$$
 total colors in time $O(d)$

- Lower bound: $\Omega(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
 - $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$ approximation ratio, $d = \Theta(n^{1/\alpha})$
 - $\Longrightarrow \alpha(\chi 1) + 1 \le c$, complexity $\tilde{\Theta}(n^{1/\alpha})$

- "Hide" one color (e.g., color 1) from "neighborhood" of clusters
 - -"reuse" color ${f 1}$ instead of i in cluster of color i
 - save $\alpha 1$ colors
- $\implies (\alpha \chi) (\alpha 1) = \alpha(\chi 1) + 1$ total colors in time O(d)

- Lower bound: $\Omega(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
 - $\alpha = \lfloor \frac{c-1}{\chi-1} \rfloor$ approximation ratio, $d = \Theta(n^{1/\alpha})$
 - $\Longrightarrow \alpha(\chi 1) + 1 \le c$, complexity $\tilde{\Theta}(n^{1/\alpha})$
 - complexity increases with multiples of $\chi-1$

- LOCAL model of computation: previously
 - case $\chi = c$ (trivial)
 - case $\chi=2$, c=3 only lower bound [Brandt et al. '17]

- LOCAL model of computation: previously
 - case $\chi = c$ (trivial)
 - case $\chi=2$, c=3 only lower bound [Brandt et al. '17]
 - we close the problem for all χ,c : complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$

- LOCAL model of computation: previously
 - case $\chi = c$ (trivial)
 - case $\chi=2$, c=3 only lower bound [Brandt et al. '17]
 - we close the problem for all χ,c : complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
- Lower bound holds in the non-signaling LOCAL model
 - no quantum advantage: what about other problems?

- LOCAL model of computation: previously
 - case $\chi = c$ (trivial)
 - case $\chi = 2$, c = 3 only lower bound [Brandt et al. '17]
 - we close the problem for all χ, c : complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
- Lower bound holds in the non-signaling LOCAL model
 - no quantum advantage: what about other problems?
 - graph-existential indistinguishability argument in non-signaling LOCAL for Locally Checkable Labeling problems

- LOCAL model of computation: previously
 - case $\chi = c$ (trivial)
 - case $\chi = 2$, c = 3 only lower bound [Brandt et al. '17]
 - we close the problem for all χ,c : complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
- Lower bound holds in the non-signaling LOCAL model
 - no quantum advantage: what about other problems?
 - graph-existential indistinguishability argument in non-signaling LOCAL for Locally Checkable Labeling problems
 - what else can we prove in the non-signaling LOCAL model using this technique?
 - what other lower bound techniques?

- LOCAL model of computation: previously
 - case $\chi = c$ (trivial)
 - case $\chi = 2$, c = 3 only lower bound [Brandt et al. '17]
 - we close the problem for all χ,c : complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
- Lower bound holds in the non-signaling LOCAL model
 - no quantum advantage: what about other problems?
 - graph-existential indistinguishability argument in non-signaling LOCAL for Locally Checkable Labeling problems
 - what else can we prove in the non-signaling LOCAL model using this technique?
 - what other lower bound techniques?
- Upper bound: hiding trick is optimal!
 - new (α,d) -network decomposition algorithm: α fixed, $d=\Theta(n^{1/\alpha})$

- LOCAL model of computation: previously
 - case $\chi = c$ (trivial)
 - case $\chi = 2$, c = 3 only lower bound [Brandt et al. '17]
 - we close the problem for all χ,c : complexity $\tilde{\Theta}(n^{1/\lfloor \frac{c-1}{\chi-1} \rfloor})$
- Lower bound holds in the non-signaling LOCAL model
 - no quantum advantage: what about other problems?
 - graph-existential indistinguishability argument in non-signaling LOCAL for Locally Checkable Labeling problems
 - what else can we prove in the non-signaling LOCAL model using this technique?
 - what other lower bound techniques?
- Upper bound: hiding trick is optimal!
 - new (α,d) -network decomposition algorithm: α fixed, $d=\Theta(n^{1/\alpha})$

