D.11. . T

\$

Rollin I:

· Fish (4 luds - Freed) RV (Carcinogen luch in Madder section)

· Assessmet Technique (3 louts . Fied)

· Mice (Litter) (4 wels - Rondon)

EU: Mice (Litter) - Trt (Fish)

Brodder Leiter (Morse, liter) - Technique

(I) D

(2) D

(3) B, C

(4) A, E

(5) B -

(6) (a) lesquise vonalle - Coma ago well in Chader Sielen

(6) coronder - None

(c) Esbaugua - None

(d) Report Muser - More

(T) A

(8) B

(9) B

(10) D your = actost 2 + (ab) + (az) = + (bz) = + (ab) gx + exect

Prollen I	[; F	- (3 W	US-F	xed)	L-(21	uds-Fixed) O(L)	- (4 Web-lada)		
a= 3, b=2, c=4, F=Z										
SV	luch	QF	QL	oac)	OFIL	OFHOLL)	o e			
F	3	16	0	0	0	2	1			
	-2	0	24	6	0	2	١			
٥(١)	જ	O 2	0	<i>-</i> (<i>-</i>	0	2	l			
FL	6	0	0	0	8	2	-(
F * O(L)	24	, O,	0	D	0	2	<i>.</i> • •	£		
Enor	48	0	O	O	0.	\bigcirc	ı	·		
-1.					,	the second section of the second		•		

-	-			The state of the s
	SV	PF	MS	ENS
	F	2	41,40	02+202 + 16Q=
	L	١	1	02 +202 (a) + 602 (a) + 240
	OW	6		32 +2 02 0(L) + (602(L)
	₹*L	2		02+202 + 8Qpol
	F#0(1)	12	5,49	02 +2 02 000)
	ELLON	24	2,33	03 -
	Total	47		
-9		-		

6

6

6

6

-

(2) For Interaction

· Test Stabsac; F* = Ms** (MS=* oct) = 9.52 = 1.73406

· Decoron; Fait to reject the at the K=0.05 land For05/2/12 = 3.885 > 1.73406 = F#

For Fixture:

· Ho: Qx = 0 ; Ha: Qx = 0

· Test Stateto: F# = MSF / MS F * OCL) = 41,40/5,49 = 7,54/

· Decision Reject to and conclude we were engine cont enduce of differences in Kentry mens due to Fixture at the 0:0.05 wel.

· Fo.05,2,12 = 3,885 & 7,541 = Ft

Prollers II (cartinged): For Asanly Layout: · Ho: Q = 0 Ha: Q = 0 Test statistic F* = MSL/MSO(L) = 4,08 = 0.34028 · Decision- Faul to reject the at the \$ = 0.05 level. FO.05,16 = 5,987 70.34028 = F* (3) Compute a 950 CI For the mean time to assure a circut board very layer ? . To ship your answer bloody unlay the establish men, SE of the men " also critical valve Some = m + 20 + 8; + beigg + (xx) is + direct + eight 4-200 = 24.38. var(gojos) = var (in + To + 8; + becon + (Tr) of + doors) + cojeo) = var(600) + 2000) + 20,00) = var (200) + var(e) + var(e) 4 (5)(4) (6)(3)(4) · 600) = 5.48 - 2(1.58) = 1.471667 $(100) = (3.50) = \frac{1.471667}{4} + \frac{1.58}{12} + \frac{2.83}{72} = 6.532$ DE (M. 2.) = 0.72936

To

95% CI: J. 200 + astrhey (0.05) where V is the setterwater df forthe SE (û. 50)

Problem TT: 7. Factors A, B, C, D, E, F, OT each bury 7 leads · Conduct 27-3 FF design. · Cremates: ABDC =-1, ACDF =+1 BCDE =-1 (1) How many tota would be observed in this experient? 27th = 24 = 16 trb, ABCDEFG (2) Would that (A,B,C,D,E,F,O) = (+,-,+,+,=,+,+) be osed in the experient. NO: O/C BCDE = - 1 but for the given traduct BCDE = (-1.1.1.-1)=1 = -1. (3) what is the resolution of this design: Implicit contrasts: 23-3-1=4. · ABDG · ACDF = BCFG · ADDOG · BODE = ACECT · ACDF · BCDE = ABEF · ADDG · ACOF. DCDE = BUFG · BUDG = DEF G · Resolution IV (4) = We know this dearn is Resolution IV wie the # of Gickers in the shortest generaler is 4. ABDY ACOF BODE BOFG ACEG ADEF DEFLY BOW COF ARCDE ARCFU CEU REF ADEFU · The missistens shown above world much to be negligible In order to be able to dotain an estimale of the main Alet of Factor A

.

0

9

9

-

•

6

-

-

-

-

1

Proban IV: W E (3) E " (5)D (G) C (7) A - IF saying could be made using Tolog's HSD on the adjusted tot news at specified values of the caracte G(8) (9)C MSARO = 36, MSE = 12 RE = SSRT(E-1)MSE MSAra = 36 , r = 10 => 35 == 36(10-1) = 324 RE = 324 + 10(3)12 = 1.4615 => H would take \$ 50% more obs in a CRD to achieve the same OTCCISION