Gradient Descent

Reference: Wikipedia

February 25, 2024

Gradient descent is based on the observation that if the multi-variable function $F(\mathbf{x})$ is defined and differentiable in a neighborhood of a point \mathbf{a} , then $F(\mathbf{x})$ decreases fastest if one goes from \mathbf{a} in the direction of the negative gradient of F at \mathbf{a} , $-\nabla F(\mathbf{a})$. It follows that, if

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma \nabla F(\mathbf{a}_n)$$

for a small enough step size or learning rate $\gamma \in \mathbb{R}_+$, then $F(\mathbf{a_n}) \geq F(\mathbf{a_{n+1}})$. In other words, the term $\gamma \nabla F(\mathbf{a})$ is subtracted from \mathbf{a} because we want to move against the gradient, toward the local minimum. With this observation in mind, one starts with a guess \mathbf{x}_0 for a local minimum of F, and considers the sequence $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots$ such that

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n), \ n \ge 0.$$

We have a monotonic sequence

$$F(\mathbf{x}_0) \ge F(\mathbf{x}_1) \ge F(\mathbf{x}_2) \ge \cdots$$

so, hopefully, the sequence (\mathbf{x}_n) converges to the desired local minimum. Note that the value of the step size γ is allowed to change at every iteration.

It is possible to guarantee the convergence to a local minimum under certain assumptions on the function F (for example, F convex and ∇F Lipschitz) and particular choices of γ . Those include the sequence

$$\gamma_n = \frac{\left| \left(\mathbf{x}_n - \mathbf{x}_{n-1} \right)^T \left[\nabla F(\mathbf{x}_n) - \nabla F(\mathbf{x}_{n-1}) \right] \right|}{\left\| \nabla F(\mathbf{x}_n) - \nabla F(\mathbf{x}_{n-1}) \right\|^2}$$

as in the Barzilai-Borwein method, or a sequence γ_n satisfying the Wolfe conditions (which can be found by using line search). When the function F is convex, all local minima are also global minima, so in this case gradient descent can converge to the global solution.