BOOLEAN CEBİR VE SADELEŞTİRME

Bollean Cebir Kuralları:

1. Momutatif Kural (Commutative Law):

$$a) A + B = B + A$$

b)
$$AB = BA$$

NOT: Kapı girişlerindeki sıra ne olursa olsun işlem aynıdır.

2. Birleşme Kuralı (Associative Law):

a)
$$A + (B + C) = (A + B) + C$$

b)
$$A(BC) = (AB)C$$

3. Dağılım Kuralı (Distribute Law):

$$A(B+C)=AB+AC$$

Temel Cebir Kuralları:

1.
$$A + 0 = A$$

Sıfır ile OR yapmak 0 değişken kendisini verir.

2.
$$A + 1 = 1 \Rightarrow A = 0 \rightarrow 0 + 1 = 1$$

 $A = 1 \rightarrow 1 + 1 = 1$

Bir sayıyı 1 ile OR yapmak her zaman 1'i verir.

3. $A \cdot 0 = 0$

Sıfır ve AND yapmak her zaman sıfır verir.

4. A . 1 = A eğer A =
$$0 \rightarrow 0$$
 . 1 = 0
A = $1 \rightarrow 1$. 1 = 1

5.
$$A + A = A$$
 eğer $A = 0 \rightarrow 0 + 0 = 0$
 $A = 1 \rightarrow 1 + 1 = 1$

Kendisi ile OR yapmak yine kendisini verir.

6.
$$A + \overline{A} = 1$$
 $A = 0 \Rightarrow \overline{A} = 1 \Rightarrow 0 + 1 = 1$
 $A = 1 \Rightarrow \overline{A} = 0 \Rightarrow 1 + 0 = 1$

Değerli ile OR yapmak her zaman 1 verir.

7. A . A = A
$$A = 1 \rightarrow 1 . 1 = 1$$

 $A = 0 \rightarrow 0 . 0 = 0$

8. A .
$$\overline{A} = 0$$
 $A = 1 \Rightarrow \overline{A} = 0 \Rightarrow 1 \cdot 0 = 0$ $A = 0 \Rightarrow \overline{A} = 1 \Rightarrow 0 \cdot 1 = 0$

Değili ile AND yapmak her zaman "0" verir.

9.
$$\overline{A} = A$$
 $A \longrightarrow A$

İki defa değil yapmak kendisini verir.

$$10. A + A.B = A$$

Isbat:

A parantezine alınırsa, A $(1 + B) = A \cdot 1 = A$

11.
$$A + \overline{A} \cdot B = A + B$$

İsbat:

A yerine A + AB koyunuz.

$$(A + AB) + \overline{A}B$$

A yerine A. A ve fazladan bir AA terimi yazınız.

AA = 0 olduğundan ve 0 + A fonksiyonu değiştirmediğinden AA 'I ilave etmek fonksiyonu değiştirmez.

$$AA + A\overline{A} + AB + \overline{A}B$$

= $(A + \overline{A})(A + B)$
= 1. $(A + B) = A + B$

12.
$$(A + B) \cdot (A + C) = A + BC$$

De Morgan Kuralları:

$$1.AB = A + B$$

2. A + B = A . B

De Morgan kurallarını uygulayınız.

1)
$$Y = \overline{ABCD} = ABCD$$

3)
$$\overline{(A + B) + \overline{C}} = \overline{(A + B)} \overline{\overline{C}}$$

= $\overline{A} \cdot \overline{B} \cdot C$

Boolean Cebir Kurallarına Göre Mantık Devrelerinin Analizi:

Doğruluk Tablosu:

A	В	C	D	A(B + CD)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Boolean Cebir'i Kullanarak Basitleme:

Örnek1:

$$AB + A(B + C) + B(B + C)$$

$$= AB + AB + AC + BB + BC$$

$$= AB + AC + B + BC$$

$$= AB + AC + B + BC$$

$$= AB + AC + B \Rightarrow AC + B$$

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC} + ABC$$

$$= BC(\overline{A} + \overline{A}) + A\overline{BC} + \overline{ABC} + A\overline{BC}$$

$$= BC + A\overline{B} (\overline{C} + C) + \overline{ABC}$$

$$= BC + A\overline{B} + \overline{ABC}$$

$$= BC + \overline{B}(A + \overline{AC})$$

$$= BC + \overline{B}(A + \overline{C})$$

$$= BC + \overline{B}A + \overline{BC}$$

İlk devre, sadeleştirilmiş devreye göre;

- Daha az karmaşıktır.
- Daha az malzeme kullanılır.
- Daha kolay kurulur.
- Daha ucuzdur.
- Daha hızlıdır.

$$A\overline{B} + A(\overline{B+C}) + B(\overline{B+C})$$

AND NOR NOR
AND AND
OR

1INVERTER

- 1 2 girisli NOR
- 3 2 girisli AND
- 1 3 girisli OR
- 6 gate

$$A\overline{B} + A(\overline{B} + \overline{C}) + B(\overline{B} + \overline{C})$$

$$= A\overline{B} + A\overline{B}\overline{C} + B\overline{B}\overline{C}$$

$$= A\overline{B}(1 + \overline{C}) + 0$$

$$= A\overline{B}$$

Fonksiyonlar, toplamların çarpımı (product of sums (POS)) veya çarpımların toplamı (sum of products(SOP)) şeklinde bulunabilir.

1. Toplamların Çarpımı (Product of Sums, POS) Formu:

$$Y = (A + B + \overline{C}) (A + \overline{B}) (A + C) = > POS$$

2. Çarpımların Toplamı (Sum of Products, SOP) Formu:

$$Y = ABC + AB + AC = > SOP$$

FONKSİYONLARIN STANDART FORMLARI

Herhangi bir fonksiyonun, standart formunda tüm değişkenler, her terimde kendisi veya değili olarak bulunmalıdır.

Örnek: Y = AB + ABC

A, B, C → fonksiyon değişkenleri

- 1) Terimlerdeki eksik değişkenler ile (kendisi + değili) ilgili terimler çarpılmalıdır.
- 2) Daha sonra parantezlerde ortadan kaldırılmalıdır.

Terim1:

$$AB \rightarrow "C"$$
 eksik

$$AB (C + C) = (AB . 1 = AB)$$

Terim2:

 $ABC
ightarrow \ddot{\text{u}}$ ç değişkende mevcuttur

$$Y_s = AB(C + \overline{C}) + A\overline{B}\overline{C}$$

$$Y_s = ABC + ABC + ABC = Y$$

$$Y = (A + \overline{B} + C) (\overline{B} + C + \overline{D}) (A + \overline{B} + \overline{C} + D);$$

standart POS şeklinde ifade ediniz.

Çözüm: A, B, C, D → değişkenler

T1
$$(A + B + C)$$
 "D" eksik

T2
$$(B + C + D)$$
 "A" eksik

$$T1 = A + \overline{B} + C \rightarrow (A + \overline{B} + C + D) \cdot (A + \overline{B} + \overline{C} + D)$$

$$T2 = \overline{B} + C + \overline{D} \rightarrow (\overline{B} + C + \overline{D} + A) \cdot (\overline{B} + C + \overline{D} + \overline{A})$$

$$T3 = A + \overline{B} + \overline{C} + D$$
 standarttır.

$$Y_{s} = (A + \overline{B} + C + D) \cdot (A + \overline{B} + C + \overline{D}) \cdot (A + \overline{B} + C + \overline{D})$$

$$= (\overline{A} + \overline{B} + C + \overline{D}) \cdot (A + \overline{B} + \overline{C} + D)$$

Y = AB + C, SOP formundaki Y'yi satndart forumda yazınız.

Çözüm:

T1 = AB C eksiktir.

AB
$$(C + \overline{C})$$

T2 = C AB eksiktir.

$$C(A + \overline{A})(B + \overline{B})$$

$$Y_s = AB (C + \overline{C}) + C (A + \overline{A}) (B + \overline{B})$$

$$Y_s = ABC + ABC + ABC + ABC + ABC + ABC$$

POS – SOP Dönüşümü:

$$(A + B) (A + B + C) \rightarrow POS$$

Parantezler direk olarak çarpılır.

 $POS \rightarrow SOP \Rightarrow$ paranteleri direk olarak çarpıp açınız.

$$(A + B) (\overline{A} + \overline{B} + C) = A\overline{A} + A\overline{B} + AC + \overline{AB} + B\overline{B} + BC$$
$$= A\overline{B} + AC + \overline{AB} + BC$$

SOP – POS Dönüşümü:

Örnek:

$$Y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}C + ABC$$

A, B, C \rightarrow n = 3 = 2³ = 8 kombinezonu vardır. (değiline 0, kendisine 1 yaz)

A B C
0 0 0
0 1
$$\rightarrow$$
ABC \rightarrow (A + B + C)
0 1 0
0 1 1
1 0 0 \rightarrow ABC \rightarrow (A + B + C)
1 0 1 \rightarrow ABC \rightarrow (A + B + C)

 $Y = (A + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (\overline{A} + \overline{B} + C)$

KARNAUGH HARİTALARI KULLANARAK SADELEŞTİRME

KARNAUGH Haritaları:

❖2 Değişkenli Fonksiyonların Haritaları:

 $n=2\Rightarrow 2^2=4$ değişik kombinezon \Rightarrow haritada 4 değişik yer vardır.

В	0	1
A 0	00 AB	01 AB
1	10 AB	11 AB

$$Y = AB + \overline{A}\overline{B}$$

fonksiyonunu K-MAP (Karnaugh Mapping) haritalarına yerleştiriniz.

Çözüm:

Değişkenler \rightarrow A, B \Rightarrow 2 değişken \Rightarrow 4 değişik durumu vardır.

 $Y = \overline{A}B + \overline{B}A$ K-MAP üzerinde gösteriniz

Çözüm:

Y standart forumdadır.

$$Y = B + \overline{BA}$$
 Y'yi satndart hale getiriniz.

Çözüm:

2 değişkenli bir fonksiyon haritalandırılırken;

- ◆2 değişkenli terimler ⇒ haritada bir bölgede olur.
- 1 değişkenli terimler ⇒ haritede iki bölgede olur.
- Verilen fonksiyon olarak haritalandırılabileceği gibi önce standart hale getirerek de haritalandırılabilir.

❖3 Değişkenli Fonksiyonların Haritaları:

3 değişken \rightarrow 2³ = 8 değişik kombinezon \Rightarrow haritada 8 değişik bölge vardır.

	BC 00	01	11	10
А	000	001	011	010
0	ĀBC	ĀBC	ĀBC	ĀBC
1	100	101	111	110
1	$A\overline{B}\overline{C}$	\overline{ABC}	ABC	$AB\overline{C}$

 $Y = ABC + \overline{A}B\overline{C} + \overline{A}\overline{B}\overline{C}$ 3 değişkenli \rightarrow A, B, C standarttır.

Çözüm:

	BC ₀₀	01	11	10
А	1			1
0				
1			1	

$$Y = A + \overline{A}\overline{B}\overline{C}$$
 K-MAP üzerinde gösteriniz.

Çözüm:

1.yol:
$$Y_s = A(B + \overline{B}) \cdot (C + \overline{C}) + \overline{ABC}$$

= $ABC + AB\overline{C} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

	BC ₀₀	01	11	10
А	1			
0				
1	1	1	1	1
T				

2.yol:
$$Y = A + \overline{ABC}$$

	BC 00	01	11	10
А	1			
0				
1	1	1	1	1

Örnek: $Y = \overline{B}$ K-MAP üzerinde gösteriniz.

Çözüm: Değili olduğunda "0" olan yerlerdir.

	BC 00	01	11	10
А	1	1		
0				
1	1	1		
.				

❖4 Değişkenli Fonksiyonların Haritaları:

 $n = 4 \Rightarrow 2^4 = 16$ değişik kombinezon \Rightarrow 16 değişik bölge vardır.

AB CI	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

$$Y = \Sigma (1, 3, 5, 7) = ?$$

= $\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$

$$Y = \overline{ABCD} + AB\overline{CD} + \overline{ABCD}$$
 Y standarttır.

NOT: 3 değişkenli bir fonksiyonu;

3 değişkenli terimler ightarrow 1 bölge

2 değişkenli terimler → 2 bölge

1 değişkenli terimler → 4 bölge

$$Y = \overline{ABCD} + ABC\overline{D} + A\overline{B}CD$$
 standarttır.

Çözüm:

AB	00	01	11	10
00	1			
01				
11				1
10			1	

$$Y = AB\overline{C} + A\overline{B}\overline{C}D$$

Standart degil Standart

Çözüm:
$$Y_s$$
 (A, B, C, D) = ABC (D + D) + ABCD
= ABCD + ABCD + ABCD

AB	00	01	11	10
00				
01				
11	1	1		
10		1		

1.yol:

Önce Y standart hale getirilir sonra tek tek terimler haritaya işlenir.

2.yol: Direk olarak haritaya işlenir.

$$Y = AB\overline{C} + A\overline{B}\overline{C}D$$

A = 1

B = 1 "D" dikkate alınmaz.

C = 0

1100 1101 yerlerine istenen şartlar sağlanır. Bu iki yerin ikisine birden "1" yerleştirilir.

$$Y(A, B, C, D) = A\overline{B} + (A\overline{B}CD)$$

Çözüm:

1.yol:
$$Y_s$$
 (A, B, C, D) = $A\overline{B}$ + (C + \overline{C}) . (D + \overline{D}) + $A\overline{B}CD$
= $A\overline{B}$ (CD + $C\overline{D}$ + $\overline{C}D$ + $\overline{C}D$) + $A\overline{B}CD$
= $A\overline{B}CD$ + $A\overline{B}C\overline{D}$ + $A\overline{B}C\overline{D}$

2.yol:
$$Y(A, B, C, D) = AB + (ABCD)$$

A = 1 olan yerler, C & D dikkate alınmaz. B = 0

Sonuç:

4 değişkenli fonksiyonda üç değişken terimler, haritada iki yer tutar.

1000		
1001	A = 1	yerlerinde şartı sağlanır. 4 yere birden yazılır.
1011	B = 0	gan a cargramma y ara an aram y aramma
1010		

$$Y(A, B, C, D) = A + ABCD$$

Çözüm:

A = 0 yerlerine 1 yazınız.

(1)
$$Y_s$$
 (A, B, C, D) = \overline{A} (B + \overline{B}) (C + \overline{C}) (D + \overline{D}) + $\overline{A}\overline{B}\overline{C}\overline{D}$
= \overline{A} (BCD + $\overline{B}\overline{C}\overline{D}$ + $\overline{B}\overline{C}\overline{D}$ + $\overline{B}\overline{C}\overline{D}$) $\overline{A}\overline{B}\overline{C}\overline{D}$
= $\overline{A}\overline{B}\overline{C}\overline{D}$ + $\overline{A}\overline{B}\overline{C}\overline{D}$ + $\overline{A}\overline{B}\overline{C}\overline{D}$ + $\overline{A}\overline{B}\overline{C}\overline{D}$

(2)
$$Y(A, B, C, D) = \overline{A} + A\overline{B}\overline{C}\overline{D}$$

A = 0 olan tüm yerler. B, C, D dikkate alnmaz.

NOT: 4 değişkenli bir fonksiyonda 1 değişkenli terimler haritada 8 yer alır.

$$Y (A, B, C, D) = \overline{B} + ABC + \overline{AC} + ABC\overline{D}$$
,

K-MAP üzerinde gösteriniz.

AB CI	00	01	11	10
00	1	1	1	1
01	1	1		
11			1	1
10	1	1	1	1

1. Terim: $\overline{B} \rightarrow B = 0$ olan tüm yerler.

0000 0001 0011 yerlerine B = 0 0010 tümüne "1" yazılır. 1000 (8 yer) 1001 1011 1010

2. Terim: ABC A = 1, B = 1, C = 1 yerleri

1111 yerlerinde tümüne "1" yazılır. 1110 **3.Terim:** AC A = 0, C = 0 yerleri

0000 yerlerinde 0001 A = 0 şartı sağlanır. Tümüne "1" yazılır. 0100 C = 0 0101

4 yer, ancak ikisi daha önce kullanıldığı için geri kalan ikisine "1" yazılır.

4. Terim: $ABC\overline{D}$ Standarttır.

 $\downarrow\downarrow\downarrow\downarrow\downarrow$

1 1 1 0

1 yer; daha önce 1110 yeri kullanıldığı için yine aynı yere "1" koymaya gerek yoktur.

K – MAP SADELEŞTİRME

- K MAP kullanarak sadeleştirmede dikkat edilecek kurallar.
- 1. 2ⁿ kadar 1 aynı gruba dahil edilebilir.
- $2^n = 2, 4, 8, 16,...$
- 2. Maximum sayıda 1'in aynı gruba dahil edilmesine dikkat edilmelidir.
- 3. Yatay ve dikey komşu olan "1" ler aynı grupta yer alabilir.
- 4. Ortak elemanlı gruplar olabilir.
- 5. K MAP bükülüp döndürülerek komşuluklar yaratılır.
- 6. Bir grubun ismi; o grupta DEĞİŞMEYEN değişkenlerden oluşur.
- 7. Tüm "1" ler herhangi bir grupta yer almalıdır.

2 Değişkenli K – MAP Sadeleştirme:

Örnek: $Y(A, B) = \overline{AB} + A\overline{B} + AB$

Y fonksiyonunu K – MAP kullanarak sadeleştiriniz.

Çözüm:

 \rightarrow grup1 = A

Grup yaptıktan sonra; grup ismlerini yazarken "AB" diye yazılır ve gruplara bakarız, harfleri aynı olan değişkenleri alırız ve ismi onun adı olur.

3 Değişkenli K – MAP Sadeleştirme:

Örnek:
$$Y(A, B, C) = \overline{ABC} + A\overline{BC} + A\overline{BC} + \overline{ABC} + \overline{ABC}$$

Y'yi K – MAP kullanarak sadeleştiriniz.

Çözüm:

	3 00	01	11	10
A	ABC		ABC	
U	1		1	
1	ABC			ABC
	1			1

3D→3D haritada

$$Ys(A, B, C) = BC + AC + ABC$$

Y (A, B, C) = AB + C, Y'yi K - MAP kullanarak sadeleştiriniz.

$$Y (A, B, C) = \overline{ABC} + A\overline{BC} + \overline{ABC} + \overline{ABC} + A\overline{BC}$$

3 00	01	11	10
1			1
1			1
		_	

$$Ys = C$$

4 Değişkenli K – MAP Sadeleştirme:

Örnek:

 $Y(A,B,C,D) = \Sigma(1,3,5,8,9,11,15)$, Y'yi K – MAP kullanarak sadeleştiriniz.

Çözüm:

	1	1	
		1	
1	1	1	

 $Y(ABCD) = \Sigma(1,3,5,8,9,11,15) = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD$

Ys(A,B,C,D) = ACD + ABC + BD

$$Y (A, B, C, D) = \overline{ABCD} + ABD + BC + D$$

, Y'yi sadeleştiriniz.

1	1	1	
	1	1	1
1	1	1	1
	1	1	

$$Ys (A,B,C,D) = D + BC + AB + ABC$$