

# Non Parametric Filters Histogram and Particle Filters

Department of Electrical and Electronics Engineering
Dr. Afşar Saranlı



#### What we will discuss

- Discuss the merits of non-parametric density representations,
- Remember histograms and introduce the Histogram Filters,
- Introduce Particle Filters,
- Introduce resampling and Importance Sampling,
- Review practical issues and properties of particle filters,
- Try to conclude...





# **Non-Parametric Representations**

- What is a non-parametric density representation?
- Finite set of values (samples) instead of a parametric closed form expression
- Example: Gaussian versus its histogram







# Why Non-Parametric?

- Why would we want to use non-parametric?
- Why would we not want to use non-parametric?
- Quality? Computational Complexity?
- As N→∞, non-parametric rep. converges uniformly to the true density.







# What do you see?





# **Other Non-Parametric Reps**

Particles (Sample based) Representation





### Non-Parametric Advantages

- Both histograms and particle sets have:
- No strong parametric assumptions on density (any arbitrary shape can be represented),
- Accuracy of the representation can be adjusted as required (by setting N)
- Results in conceptually much simpler program implementations,
- Well suited for complex multi-modal beliefs (e.g. in global localization with hard data association problems)



# Non-Parametric Disadvantages

- Simply: Computational Complexity!!
- A naïve implementation can be orders of magnitude more complex than parametric implementations (e.g. Kalman Filters)
- Problem becomes compounded if state-space dimension increases. (much larger N needed!)
- Fortunately:
  - Computational complexity can be adapted by adapting number of parameters N,
  - Complexity and accuracy can be traded off using:
     Resource Adaptation,
  - Resource adaptive algorithms very important in robotics and embedded systems



 How would we use non-parametric density representations to implement recursive state estimation?

Use the Bayes Filtering framework in discrete-form



# **Part1: The Histogram Filter**



# **Part1: The Histogram Filter**

Remember the generic Bayes Filter:

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

Table 2.1 The general algorithm for Bayes filtering.



6:

# The Histogram Filter - DBF

Discrete Bayes Filter from the Bayes Filter

```
1: Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
2: for all x_t do
3: \overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}
4: bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)
5: endfor
6: return bel(x_t)
```

```
1: Algorithm Discrete_Bayes_filter(\{p_{k,t-1}\}, u_t, z_t):
2: for all k do
3: \bar{p}_{k,t} = \sum_i p(X_t = x_k \mid u_t, X_{t-1} = x_i) \; p_{i,t-1}
4: p_{k,t} = \eta \; p(z_t \mid X_t = x_k) \; \bar{p}_{k,t}
5: endfor
```

return  $\{p_{k,t}\}$ 



# **The Histogram Filter - Discretization**

- Some problems are already discrete in nature (state of a door, states of a game board),
- Some problems are <u>represented</u> in discrete form because of the <u>resolution</u> of <u>interest</u>. (E.g. occupancy grid maps)
- Entirely continuous problems may also be discretized through <u>various approximations</u>.
   (e.g. the orientation of a robot with 5° steps),
- Granularity (resolution) of the discretization may be very important (not only for performance but also for proper operation of the filters)

13



# **Example – Estimation of Door State**

Problem is to estimate a single number!!
 Prob(door=open|all past states, all past measurements)





# **Continuous State Space**

- When DBF is applied to a continuous state space, it is called the *Histogram Filter*,
- Histogram Filter decompose such a space into "bins" through a suitable "partitioning",

$$dom(X_t) = \mathbf{x}_{1,t} \cup \mathbf{x}_{2,t} \cup \dots \mathbf{x}_{K,t}$$
  
$$\mathbf{x}_{i,t} \cap \mathbf{x}_{k,t} = \emptyset \text{ and } \bigcup_k \mathbf{x}_{k,t} = dom(X_t)$$

- Most common partitioning is a multidimensional grid representation,
- Resulting Pdf approximation is a piecewise constant pdf.



# Example - 1D / 2D spaces





# **Use in Continuous Spaces**

We might be given the continuous densities,

$$p(x_t \mid u_t, x_{t-1})$$
 and  $p(z_t \mid x_t)$ 

- These are defined for a continuum of states, not for the discrete "bins",
- How can we discretize the given continuous densities?



# **Use in Continuous Spaces**

- Given continuous  $p(x_t \mid u_t, x_{t-1})$  and  $p(z_t \mid x_t)$
- For each bin, we can pick a representative "mean" state:

$$\hat{x}_{k,t} = |\mathbf{x}_{k,t}|^{-1} \int_{\mathbf{x}_{k,t}} x_t \, dx_t$$

• Then approximate the discrete probability mass functions as:

There is a correction in the book here.

$$p(z_t \mid \mathbf{x}_{k,t}) \approx p(z_t \mid \hat{x}_{k,t})$$

$$p(\mathbf{x}_{k,t} \mid u_t, \mathbf{x}_{i,t-1}) \approx \eta |\mathbf{x}_{k,t}| p(\hat{x}_{k,t} \mid u_t, \hat{x}_{i,t-1})$$

Discrete "probability" is calculated from the continuous "likelihood" value at the mean state which is integrated over the "bin"



# **Use in Continuous Spaces**

Then, the Discrete Bayes Filter can be used directly:

```
1: Algorithm Discrete_Bayes_filter(\{p_{k,t-1}\}, u_t, z_t):
2: for all k do
3: \bar{p}_{k,t} = \sum_{i} p(X_t = x_k \mid u_t, X_{t-1} = x_i) \; p_{i,t-1}
4: p_{k,t} = \eta \; p(z_t \mid X_t = x_k) \; \bar{p}_{k,t}
5: endfor
6: return \{p_{k,t}\}
```

$$p(z_t \mid \mathbf{x}_{k,t}) \approx p(z_t \mid \hat{x}_{k,t})$$

$$p(\mathbf{x}_{k,t} \mid u_t, \mathbf{x}_{i,t-1}) \approx \eta |\mathbf{x}_{k,t}| p(\hat{x}_{k,t} \mid u_t, \hat{x}_{i,t-1})$$



### **Practical Issues: Decomposition**

- Histogram filters can trade-off accuracy with computational complexity but...
- Desired accuracy may come at a <u>prohibitive</u> computational <u>price</u>!!
- A Naïve uniform grid decomposition with full update may be unusable.
- Some ideas:
  - Density trees,
  - Selective Updating,
  - "Topological" representations,



# **Decomposition: Density Trees**

- Important example of "dynamic decomposition",
- Dynamic techniques adapt to the shape of the posterior being approximated,
- Static techniques easier to implement, Dynamic techniques more efficient and hence faster,
- Density Trees: A recursive decomposition that takes into account the distribution,
  - The more likely a region, the finer the decomposition (more bins) and vice versa.
  - Achieves higher approximation quality with the same computational complexity,
  - OR: Cuts the complexity by orders of magnitude for the same approximation quality



# **Dynamic Decomposition: Example**





### **Practical Issues: Selective Update**

- Instead of worrying about the decomposition, worry about the filter updates,
- E.g., generate a uniform grid decomposition but...
- Update only a fraction of the cells (probabilities) at a time, specifically...
- Those that have the posterior probabilities that exceeds a certain threshold.
- It can also be viewed as a dynamic decomposition technique,
- Can save orders of magnitude in computational complexity. What about storage space?



# **Practical Issues: Topological Reps**

- "Metric" vs "Topological" representations,
- Topological: Coarse, graph-like representations where only significant places or features are stored,
- E.g. corridors, intersections, dead ends,
- "Topological" representations usually more efficient but much less precise,







# Special: Binary Bayes w Static State

- A special case of Discrete Bayes Filter,
- Best approximation for certain problems (e.g. occupancy grid maps)
- State is static: belief at time t is only a function of the measurements:

```
bel_t(x) = p(x \mid z_{1:t}, u_{1:t}) = p(x \mid z_{1:t})
```

- An elegant and efficient formulation using the so called "log-odds ratios"
- Uses the inverse measurement model p(x|z<sub>t</sub>) contrary to our usual model p(z<sub>t</sub>|x)

25



# **Special: Binary Bayes w Static State**

P(x): Prior probability of state x

1: Algorithm binary\_Bayes\_filter(
$$l_{t-1}, z_t$$
):

2: 
$$l_t = l_{t-1} + \log \frac{p(x|z_t)}{1 - p(x|z_t)} - \log \frac{p(x)}{1 - p(x)}$$

3:  $\int return l_t$ 

$$l_{t}(x) = \log \frac{p(x \mid z_{1:t})}{1 - p(x \mid z_{1:t})}$$

All terms in terms of "Log-odds ratios"

#### Inverse measurement model

(Typically used when measurements are more complex than the state)

 This additive form avoids truncation problems with probabilities close to 1 or 0.



#### **Particle Filters**

- "Particles representation" of density:
- Density represented by samples drawn from it
- For a Bayes Filter implementation:

We need to be able to draw samples from:

p(x'|x,u) (motion) and evaluate: p(z|x) (sensor)

Usually easier to do!





#### **Particle Filters**

• The "belief"  $bel(x_t)$ , i.e. the posterior density of robot pose is represented by a particle set:

$$\mathcal{X}_t := x_t^{[1]}, x_t^{[2]}, \dots, x_t^{[M]}$$

- The particle set is recursively updated at each iteration,
- "Condensation" of particles around a state indicates "high posterior likelihood" of state; given "measurements" and "commands"



# Particle Filters - Example

How it looks like:





#### Particle Filters – How it Works?

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
2:
                    \mathcal{X}_t = \mathcal{X}_t = \emptyset
3:
                    for m = 1 to M do
                          sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})
4:
                          w_t^{[m]} = p(z_t \mid x_t^{[m]})
5:
                          \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
7:
                     endfor
8:
                     for m = 1 to M do
                           draw i with probability \propto w_t^{[i]}
9:
                           add x_t^{[i]} to \mathcal{X}_t
10:
                     endfor
 11:
 12:
                     return \mathcal{X}_t
```



#### Particle Filters – How it Works?

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
                 \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
                 for m = 1 to \Lambda
3:
                      sample a
4:
5:
                                                           revious set of "particles", command
                                                                       measurement is used
6:
                                                            termediate and Posterior particle
                                                              We will consider M paricles
7:
                  endfor
                                                            A new sample is drawn from the
                  for m=1 to M
8:
                                                            motion model: "prediction step"
                                                          "weight" ("importance factor") is
                       draw i with probab
9:
                                                              assigned for each sample
                       add x_t^{[i]} to \mathcal{X}_t
                                                           to integrate the measurement:
10:
                                                       measNew sample added to the setep"
11:
                  endfor
                                                                 paired with its weight
 12:
                  return \mathcal{X}_t
```



#### Particle Filters - How it Works?

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
                  \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
2:
3:
                   for m = 1 to M do
                        sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})
4:
                        w_t^{[m]} = p(z_t \mid x_t^{[m]})
5:
                                                               At this point, we have something
                        \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
                                                             different than what we started with!
6:
                                                                 The "real trick" of particle filters:
                   endfor
7:
                                                                   importance sampling
                   for m = 1 to M do
8:
                         draw i with probability \propto w_t^{[i]}
9:
                         add x_t^{[i]} to \mathcal{X}_t
10:
                                        Samples drawn "with replacement e set is generated:
11:
                    endfor
                                         I.e., same particles may beibickeddra ving a sample is
                   return \mathcal{X}_t
 12:
                                          more than once for the newsetonal to its weight
                                                                                                  32
                                           (And some others may be lost)
```



# Resampling: Importance Sampling

- Interesting and necessary step of particle filters,
- Transform a set of  $(x_i, w_i)$  pairs into a new proper particle set (no weights) for time t,
- Probability of drawing  $(x_i)$  should be proportional to its weight  $(w_i)$
- M particles are chosen "with replacement",
- (Same particle may be chosen multiple times, some particles may be lost)



- When we pass the particles from the motion model, we have the "prediction" step,
- We have a set of particles representing:

$$\overline{bel}(x_t)$$

 How can we obtain a set of samples distributed (approximately) according to

$$bel(x_t)$$

which also integrates the measurements?









Assign weights to these samples according to their "fitness" to the desired density f







# **Importance Weights**

Consider the update step of the Bayes Filter:

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

Hence we have:

$$w_i = \frac{f(x_i)}{g(x_i)} = \frac{bel(x_i)}{\overline{bel}(x_i)} = \frac{\text{target distribution}}{\text{proposal distribution}} = \eta \ p(z_t \mid x_t)$$

- The normalizer in the  $w_i$  (hence its actual value) is irrelevant because we only resample with probabilities *proportional* to  $w_i$ .
- Hence we can use in the algorithm:

$$w_i = p(z_t \mid x_t)$$



# The Resampling Step

- Now, let us resample according to weights:
- One way: Roulette Wheel approach:





# **Problems With Sampling/Resampling**

#### Estimator Variance:

(Variance of particles as a density estimator) Is a source of performance loss in Particle Filters

"The fact that statistics (mean, variance, ...) computed from *M* finite samples drawn from a distribution will differ from the statistics of the original distribution"

That means *M* samples may be a poor representation of the true density (in particular if *M* is small).



# **Estimator Variance Illustration**



250 samples

Every particular sample set "instance" results in a different density approximation (The continuous approximation of particles illustrated with "Kernel density")



25 samples



- Estimator Variance Divergence
   Major failure mode of original particle filter with Roulette wheel resampling
- Example: Stationary robot (constant state) and no sensor (no measurement of state).
- Repetitive resampling monotonically increases estimator variance (particle set converges into a spurious local maxima)
- End effect: Particles may be gradually lost (resulting in a single particle) due to random resampling, resulting in "localized" robot (!!!)



- Estimator Variance: One fix
- Resampling step may be done less frequently, (multiple measurements can still be multiplicatively integrated into the weight factors)
- Stop resampling if the robot stops / new measurements are not coming,
- If resampling is not done, particles may be wasted in regions of low probability,
- The proper precision-cost balance requires experience and tuning for a particular application.



- Estimator Variance: Another Fix
- Use of a "low variance sampler" instead of a roulette wheel strategy

Use a sequencial stochastic process to pick

 $W_3$ 

particles

M equally spaces samples.

One random number generates *M* universally sampled particles

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

44



- Particle Deprivation
- Divergence of the filter characterized by no samples remaining in the vicinity of the correct state.
- Result of Estimator Variance problem,
- Can be diminished (but not fixed) by:
  - Increasing sample size (M),
  - Adding uniformly distributed samples at each step,



# **Again: Particle Filtering Algorithm**

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
1:
                    \mathcal{X}_t = \mathcal{X}_t = \emptyset
2:
3:
                    for m = 1 to M do
                          sample x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})
4:
                          w_t^{[m]} = p(z_t \mid x_t^{[m]})
5:
                          \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
7:
                     endfor
8:
                     for m = 1 to M do
                           draw i with probability \propto w_t^{[i]}
9:
                           add x_t^{[i]} to \mathcal{X}_t
10:
                     endfor
 11:
 12:
                     return \mathcal{X}_t
```



### Summary

- We discussed non-parametric Bayes Filter implementations: Histogram and Particle Filters,
- Approximation of posterior by finite set of values,
- Histogram Filter: Decompose state space into M convex regions – assign a probability for each region,
- Decomposition technique plays important role: Static and Dynamic versions, as well as Topological/Non-topo versions determine performance and implementation,
- Particle Filter: Represent the posterior by random samples of state. Recursively update these.
- Very easy implementation and flexible posterior,
- Some failure modes that need special attention