Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 8, 2024 601.433/633 Introduction to Algorithms

Introduction

Next 3-4 weeks: graphs!

- Super important abstractions, used all over the place in CS
- Most of my research is in graph algorithms (particularly when graph represents computer/communication network)
- Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new

Basic Definitions

Definition

A graph G = (V, E) is a pair where V is a set and $E \subseteq {V \choose 2}$ (unordered pairs) or $E \subseteq V \times V$ (ordered pairs).

Notation:

- Elements of V are called vertices or nodes
- Elements of *E* are called *edges* or *arcs*.
- ▶ If $E \subseteq {V \choose 2}$ then graph is undirected, if $E \subseteq V \times V$ graph is directed
- |V| = n and |E| = m (usually)
- ▶ So "size of input" = n + m

Representations

Adjacency List:

- ► Array **A** of length **n**
- A[v] is linked list of vertices adjacent to
 v (edge from u to v)

$$A \in \{0,1\}^{n \times n}$$

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0
1	2	3	4	5	6
0	1	0	1	0	0
0	0	0	0	1	0
0	0	0	0	1	1
0	1	0	0	0	0
0	0	0	1	0	0
0	0	0	0	0	1

Adjacency List:

Pros:

5/21

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists: O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

Adjacency Matrix:

Pros:

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

- Pros:
 - Can check if e = (u, v) an edge in O(1) time

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- ► Cons:
 - ► Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - ► Hard to check of an edge exists: O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

This class: adjacency list unless otherwise specified.

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - ► Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - Hard to check of an edge exists:
 O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - ► Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

Adjacency List:

- Pros:
 - \triangleright O(n+m) space
 - Can iterate through edges adjacent to v very efficiently
- Cons:
 - ▶ Hard to check of an edge exists: O(d(u)) or O(d(v)) (where d(v) is the degree of v: # edges with v as endpoint)

Adjacency Matrix:

- Pros:
 - Can check if e = (u, v) an edge in O(1) time
- Cons:
 - ► Takes $\Theta(n^2)$ space: if m small, lots wasted!
 - Iterating through edges incident on v takes time $\Theta(n)$, even if d(v) small.

This class: adjacency list unless otherwise specified.

Any way to improve these?

- ▶ Replace adjacency *list* with adjacency *structure*: Red-black tree, hash table, etc.
- ▶ Not traditional, doesn't gain us much, and more complicated. But better!

Breadth-First Search (BFS)

6/21

Idea: explore with a queue (FIFO)

```
BFS(G = (V, E), s) {
   Set mark(s) = True:
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue();
      forall neighbors u of v {
         if(mark(u) == False) {
            mark(u) = True;
            Enqueue(u);
```

Idea: explore with a queue (FIFO)

```
BFS(G = (V, E), s) {
   Set mark(s) = True:
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
  while(queue not empty) {
      v = Dequeue();
      forall neighbors u of v {
         if(mark(u) == False) {
            mark(u) = True;
            Enqueue(u);
```

Running Time:

Idea: explore with a queue (FIFO)

```
BFS(G = (V, E), s) {
   Set mark(s) = True:
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
  while(queue not empty) {
      v = Dequeue();
      forall neighbors u of v {
         if(mark(u) == False) {
            mark(u) = True;
            Enqueue(u);
```

Running Time: O(n+m)

Idea: explore with a queue (FIFO)

```
BFS(G = (V, E), s) {
   Set mark(s) = True:
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue();
      forall neighbors u of v {
         if(mark(u) == False) {
            mark(u) = True:
            Enqueue(u);
```

Running Time: O(n+m)

- ▶ O(n) for initialization
- \triangleright O(m) for main while loop
 - Examine every edge twice: when each endpoint dequeued
 - Or (equivalent): Adjacency list scanned only when vertex dequeued

Idea: explore with a queue (FIFO)

```
BFS(G = (V, E), s) {
   Set mark(s) = True:
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue();
      forall neighbors u of v {
         if(mark(u) == False) {
            mark(u) = True:
            Enqueue(u);
```

Running Time: O(n+m)

- ▶ **O**(**n**) for initialization
- \triangleright O(m) for main while loop
 - Examine every edge twice: when each endpoint dequeued
 - Or (equivalent): Adjacency list scanned only when vertex dequeued

Note: edges that cause a node to be enqueued form a tree!

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i .

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

▶ Base case: i = 0.

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch: Let $L_i = \{v : d(s, v) = i\}$. Claim that layer i of BFS tree T equals L_i . Induction on i.

▶ Base case: i = 0. ✓

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

- ▶ Base case: i = 0. ✓
- ▶ Inductive step: consider i > 0, let $v \in L_i$.

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

- ▶ Base case: i = 0. ✓
- Inductive step: consider i > 0, let $v \in L_i$. Shortest s - v path ends with edge $\{u, v\}$ with $u \in L_{i-1}$.

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

- ▶ Base case: i = 0. ✓
- Inductive step: consider i > 0, let $v \in L_i$. Shortest s - v path ends with edge $\{u, v\}$ with $u \in L_{i-1}$. By induction, u in layer i - 1 of T

Definition: Distance d(u, v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

- ▶ Base case: i = 0. ✓
- Inductive step: consider i > 0, let $v \in L_i$. Shortest s - v path ends with edge $\{u, v\}$ with $u \in L_{i-1}$. By induction, u in layer i - 1 of T $\implies \{u, v\} \in T \implies v$ at layer i of T.

Depth-First Search (DFS)

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

DFS(v) {

mark(v) = True;

for each edge (v, u) \in A[v] {

 if mark(u) == False then DFS(u);
 }
}
```


Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

DFS(v) {

mark(v) = True;

for each edge (v, u) \in A[v] {

  if mark(u) == False then DFS(u);
  }
}
```


Running time:

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

DFS(v) {

mark(v) = True;

for each edge (v, u) \in A[v] {

  if mark(u) == False then DFS(u);
  }
}
```


Running time: O(m+n)

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack!

```
Init: for each v \in V, mark(v) = False;

DFS(v) {

mark(v) = True;

for each edge (v, u) \in A[v] {

  if mark(u) == False then DFS(u);
  }
}
```


Running time: O(m+n)

- ▶ O(n) initialization
- Every edge considered at most twice

Definition: u is *reachable* from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

Definition: u is *reachable* from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

Definition: u is *reachable* from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

x is marked so DFS(x) must have been called

Definition: u is *reachable* from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

x is marked so DFS(x) must have been called

 \implies y was either marked or DFS(y) called and it became marked.

Definition: u is *reachable* from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(v_i, v_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

x is marked so DFS(x) must have been called

 \implies y was either marked or DFS(y) called and it became marked.

Contradiction.

Graph variant

After DFS(\boldsymbol{v}), node marked if and only if reachable from \boldsymbol{v} .

Might want to continue until all nodes marked.

Timestamps

Explicitly keep track of "start" and "finishing" times

▶ Replaces *mark*

```
DFS(G) {
    t=0:
   for all \mathbf{v} \in \mathbf{V} {
       start(v) = 0:
        finish(v) = 0:
   while \exists v \in V with start(v) = 0 {
       DFS(\mathbf{v});
```

```
DFS(v) {
  t = t + 1;
   start(v) = t;
   for each edge (v, u) \in A[v] {
      if start(u) == 0 then DFS(u):
   t = t + 1:
   finish(v) = t:
```

Timestamp Example

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of v (includes tree edges)

Back Edges: (v, u) such that u an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of v (includes tree edges)

$$start(v) < start(u) < finish(u) < finish(v)$$

Back Edges: (v, u) such that u an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of v (includes tree edges)

$$start(v) < start(u) < finish(u) < finish(v)$$

Back Edges: (v, u) such that u an ancestor of v start(u) < start(v) < finish(v) < finish(u)

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of v (includes tree edges)

$$start(v) < start(u) < finish(u) < finish(v)$$

Back Edges: (v, u) such that u an ancestor of v start(u) < start(v) < finish(v) < finish(u)

$$start(u) < finish(u) < start(v) < finish(v)$$

Topological Sort

Definitions

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definitions

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_j) with i < j.

Definitions

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_j) with i < j.

Q: Can we always topological sort a DAG? How fast?

Michael Dinitz

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

```
DFS(G) {
   list → head = NULL
   t=0:
   for all \mathbf{v} \in \mathbf{V} {
       start(v) = 0:
       finish(v) = 0;
   while \exists v \in V with start(v) = 0 {
       DFS(v):
```

```
DFS(v) {
   t = t + 1:
   start(v) = t;
   for each edge (v, u) \in A[v] {
       if start(u) == 0 then DFS(u);
   t = t + 1:
   finish(v) = t:
   temp = list \rightarrow head
   list \rightarrow head = v
   list \rightarrow head \rightarrow next = temp
```

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If G has a directed cycle C:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If G has a directed cycle C:

- Let $u \in C$ with minimum start value, v predecessor in cycle
- ightharpoonup All nodes in C reachable from $u \Longrightarrow$ all nodes in C descendants of u
- (v, u) a back edge

Topological Sort Analysis

Correctness: Since **G** a DAG, never see back edge

 \implies Every edge (v, u) out of v a forward or cross edge

 \implies finish(u) < finish(v)

 \implies **u** already in list when **v** added to beginning

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

 \implies Every edge (v, u) out of v a forward or cross edge

 \implies finish(u) < finish(v)

 \implies **u** already in list when **v** added to beginning

Running Time: Same as DFS! O(m+n)