

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 «Обработка разреженных матриц»

Студент Романов Семен Константинович

<u>Группа</u> <u>ИУ7 – 35Б</u>

Описание задачи

Разреженная (содержащая много нулей) матрица хранится в форме 3-х объектов:

- вектор А содержит значения ненулевых элементов;
- вектор IA содержит номера строк для элементов вектора A;
- связный список JA, в элементе Nk которого находится номер компонентв A и IA, с которых начинается описание столбца Nk матрицы A.
- 1. Смоделировать операцию сложения двух матриц, хранящихся в этой форме, с получением результата в той же форме.
- 2. Произвести операцию сложения, применяя стандартный алгоритм работы с матрицами.
- 3. Сравнить время выполнения операций и объем памяти при использовании этих 2-х алгоритмов при различном проценте заполнения матриц.

Техническое задание:

Входные данные:

- **1. Целое число(номер комнады):** целое число от 0 до 8 (см. Функции программы)
- **2. Числовые обозначения:** количество столбцов и строчек и значения этих элементов

Выходные данные:

- **1. Исходные и результирующие матрицы:** В исходном и разряженном виде.
- 2. Сравнение способов сложения: Затраченное время и память

Способ обращения к программе: запускается из терминала командой ./app.exe

Функции программы:

- 1. Ввести матрицу с помощью файла
- 2. Сгенерировать случайную матрицу
- 3. Ввести матрицу с клавиатуры
- 4. Показать матрицу в стандартном виде
- 5. Привести матрицу к разряженному виду
- 6. Показать матрицу в разряженном виде
- 7. Просуммировать матрицы
- 8. Просуммировать матрицы в разряженном виде
- 0. Выход

Аварийные ситуации:

- 1. Неверный тип данных при вводе числовых значений: Вывод сообщения "Invalid Input"
- 2. Ошибка при вводе файла: Вывод сообщения "Invalid Input"
- 3. Ошибка в матрице в файле: Вывод сообщения "Icorrect datafile"
- 4. Ошибка при разных размерах матрицы: Вывод сообщения "Incorrect matrix size"
- 5. Ошибка при вводе, когда размер не нулевых элементов больше размера матрицы: Вывод сообщения "Invalid Input"

Структуры данных:

```
    typedef struct
    {
    int **matrix;
    int rows;
    int columns;
    short allocated;
    } matrix;
```

- 1. int **matrix массив указателей на строки матрицы
- 2. int rows количество строк в матрице
- 3. int columns количество столбцов в матрице
- 4. short allocated флаг, говорящий о том, были ли присвоены данной структуре значения

```
1. typedef struct
2. {
3.    int *elements;
4.    int *index_row;
5.    int *cols_en;
6.    int e_amount;
7.    int columns;
8.    short allocated;
9. } parse;
```

- 1. Int *elements массив с ненулевыми элементами матрицы, заполняемые в ходе обхода матрицы по столбцам
- 2. Int *index_row массив с номерами строк для соответствующих значений elements
- 3. Int cols_en массив, каждый элемент которого указывает на индекс элемента из elements, которого начинается соответствующий элемент

- 4. Int e_amount количество элементов в elements и index_row
- 5. Int columns количество столбцов в матрице
- 6. short allocated флаг, говорящий о том, были ли присвоены данной структуре значения

Алгоритм:

- 1. На вход подается команда от 0 до 9
- 2. При вводе матрицы, оная хранится лишь в стандартном виде, для того, чтобы провести сложение в разложенном виде, то необходимо вызвать необходимую команду, чтобы их создать(разложение происходит по столбцам)
- 3. При стандартном сложении матриц, выполняется сложение элемента к элементу
- 4. В разложенном виде, действия проводятся следующим образом:
 - а. Сравнивается каждый столбец как массив построчных вхождений
 - b. Если нет повторяющихся элементов, то они записываются по возрастанию
 - с. Если совпадения есть, то элементы складываются и записываются
- 5. Пользователь выполняет действия с таблицей, пока не введет 0 (Выход)

N	Test	Input	Output
1	Некорректная	11	"Unknown
	комманда		command"
2	Несуществующий файл	Abc.txt(файл не	"Invalid Input"
		существует)	
3	Некорректное	-1	"Invalid input"
	количество строк		

4	Некорректная позиция	(При матрице 5х5):	"Invalid Input"
	числа в матрице	6 3 10	
5	Подсчет суммы матриц	7(матрицы не	"Matrixes not
	без их инициализации	инициализированы)	allocated"
6	Некорректный ввод	101	"Invalid input"
	процента		
	заполнености		
7	Некорректный ввод	4 e 6	"Invalid Input"
	матрицы	5 2 7	

Оценка эффективности:

Время сложения:

10%	Size	Standart	Sparse
заполнения	10x10	5	19
	50x50	78	68
	500x500	4816	20731
20%	10x10	5	26
заполнения	50x50	82	162
	500x500	4816	67566
50%	10x10	7	37
заполнения	50x50	78	695
	500x500	4816	232358
75%	10x10	8	34
заполнения	50x50	88	1428
	500x500	5169	519257
100%	10x10	14	48
заполнения	50x50	96	2155
	500x500	5448	912292

Занимаемая память:

10%	Size	Standart	Sparse
заполнения	10x10	1344	520
	50x50	30144	6760
	500x500	3000144	606160
20%	10x10	1344	760
заполнения	50x50	30144	12760
	500x500	3000144	1206160
50%	10x10	1344	1480
заполнения	50x50	30144	30760
	500x500	3000144	3006160
75%	10x10	1344	2080
заполнения	50x50	30144	45760
	500x500	3000144	4506160
100%	10x10	1344	2680
заполнения	50x50	30144	60760
	500x500	3000144	6006160

Контрольные вопросы:

1. Что такое разреженная матрица, какие способы хранения вы знаете?

Разреженная матрица — это матрица, содержащая большое количество нулей. Способы хранения — строчный формат, столбцевой формат, линейный связанный список, связная схема хранения, кольцевой связной список, двунаправленые стеки.

2. Каким образом и сколько памяти выделяется под хранение разреженной и обычной матрицы?

Под обычную матрицу выделяется N * M ячеек памяти, где N и M – строки и столбцы. Для разреженного это 3 * P ячеек, где P – количество ненулевых элементов.

3. Каков принцип обработки разреженной матрицы?

Принцип работы с разреженными матрицами таков: Необходимые вычисления проводятся только с ненулевыми элементами, количество операций же будет пропорционально количеству ненулевых элементов.

4. В каком случае для матриц эффективнее применить стандартные алгоритмы обработки матриц? Отчего это зависит?

Стандартные алгоритмы применять целесообразнее при заполненности матрицы от 40% - 50%, поскольку количество занимаемой памяти стремится к стандартному представления, и в какой-то момент её даже превысит. Также в случае если важна скорость обработки, то следует воспользоваться стандартным сложением матриц

Вывод

При больших размерах матриц и малой её заполненности, эффективность использования разреженных матриц видна невооруженным взглядом: Значительный выигрыш по памяти при относительно небольшом проигрыше по времени. Однако при заполненности от ~40% становится ясно, что способ представления в столбцевом формате является неэффективным,

поскольку не дает значительного выигрыша по памяти, при этом крайне сильно страдает производительность, время работы порой превышает стандартный способ в 15 раз. Также если нам важна производительность, а не количество занимаемой памяти, то следует использовать стандартное представление.