

4CeeD Backend Services

4CeeD Backend Services

Patrick Su (psu8@Illinois.edu), Robert Kaufman (<u>rbkaufm2@Illinois.edu</u>), Beitong Tian (beitong2@illinois.edu), <u>Prof. Klara Nahrstedt (klara@illinois.edu)</u>

A timely and trusted curator and coordinator of scientific data

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

What is 4CeeD and its goals?

 Address Scientific Digital Data Acquisition, Curation and Sharing prior to Scientific Publication of Results via Private Cloud Storage Facility

Instrument (in MRL/HMNTL/BI)

Sample output data from SEM microscopy

How this look from 4CeeD [Datasets]

 4CeeD is designed to present only pertinent information for quick understanding of the experiment

Scenario with 4CeeD Integration

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

Increasingly data-driven and interdisciplinary scientific research in Physical Sciences and Live Sciences

• Key enabling factor: Network connected scientific instruments capable of

real-time data capture

Digital microscope

4CeeD Design Considerations - Distributed View

4Ceed Design Considerations – Component View

LLINOIS

4CeeD Design Considerations - Multimodal data format View

AI(0.98)GaAs with thickness of

30 nm. Furnace in 2111 MNT L.

Result image of 07302013-Oxidation experiment

Experimental setting:

Time 13min Temp 425 C

Notes:

(Structured meta data)

A lot of useful information is hidden in unstructured text

Oxidation depth is about 12um. Oxidation layer composed of

(Free text)

Example of multimodal experimental

Heterogeneity of experimental data (Spaces, Collections

4CeeD Design Considerations - long-tail scientific data

- Related efforts mainly focus on homogenous, well-organized data in an offline or batch manner
- Much less effort has been on long-tail scientific data:
 - Small/medium sized data sets collected during day-to-day research
 - "Dark data", e.g., unpublished data of failed experiments

4CeeD Design Considerations - Long-tail scientific data processing challenges

 Challenges: Support execution of heterogeneous types of data processing & analysis workflows

Raw data

- Previous work often employs a monolithic approach in workflow implementation and execution
 - E.g.: Pegasus, Taverna, Kepler, etc.
 - Run on large-scale & homogeneous datasets

Executing workflows on grid infrastructure

4CeeD Design Considerations – Task Workflows

- Application is a Computational Workflow
- Workflow is Set of Tasks (e.g., A, B, C, D)
 executing over materials data

1. Example of a Task C: "Plotting a graph"

```
In [5]: metadata = py4ceed.get_metadeta()
  metadata.plot(x='Pressure', y='Etch_Rate')
  plt.show()
```

2. Example of a Task D: "Filter Data"

In [6]: metadata[metadata ['Pressure'] >=7]

• Other examples of tasks: Extraction of features from an image, compression of image, ...

Summary of 4CeeD Design Challenges

Support ad hoc and complex data analysis workflows

➤ Shorten time from digital capture to interpretation & insights

> Real-time data capture and acquisition

Analytics support to gain insights from data

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

4CeeD Cloud Design

✓ Cloud Concept

✓ Micro-service execution environment

✓ Data Management

Cloud Computing Concept

Application

Platform

Cloud Clients

Web browser, mobile app, thin client, terminal emulator, ...

SaaS

CRM, Email, virtual desktop, communication, games, ...

PaaS

Execution runtime, database, web server, development tools, ...

laaS

Virtual machines, servers, storage, load balancers, network, ...

Figure Source: Wikipedia

Cloud Computing Concept

Application

Platform

Cloud Clients

Web browser, mobile app, thin client, terminal emulator, ...

SaaS

CRM, Email, virtual desktop, communication, games, ...

PaaS

Execution runtime, database, web server, development tools, ...

laaS

Virtual machines, servers, storage, load balancers, network, ...

4CeeD Cloud

Private and Public Clouds

Cloud Computing Types

CC-BY-SA 3.0 by Sam Johnston

Figure Source: Wikipedia

Example of Cloud Components

Figure Source: Wikipedia

Hardware Virtualization

- Two types of hardware virtualization
 - Emulation-based virtualization
 - Container-based virtualization

App 2 App 1 App 1.1 App 2.1 App 1.2 App 2.2 Guest OS 1 Guest OS 2 **Hypervisor Container Engine** OS **Host OS** Hardware Hardware

Container

- Container Software Unit that bundles its own software, libraries and configuration files
 - Containers are isolated from one another and can communicate with each other through well-defined channels.
 - All containers are run by a single operating system kernel and therefore use fewer resources than virtual machines.

Virtual Container, called Docker, is professional software package

developed by *Docker Inc.* as part of PaaS.

Source: Wikipedia

Micro-Service

Microservice

- a software development technique (a variant of the service-oriented architecture (SOA) structural style)
- an application is arranged via microservices as a collection of loosely coupled services.
- In a microservices architecture, services are <u>fine-grained</u> and the protocols are <u>lightweight</u>.

4CeeD Cloud Architecture Components – Putting it Together

4CeeD Cloud Design

✓ Cloud Concept

✓ Micro-service execution environment

✓ Data Management

Micro-service execution environment

- Micro-services over monoliths: Each task is modeled as a micro-service
 - Use publish-subscribe middleware to connect between microservices

- Separate task dependencies from task implementation & deployment
 - Enable flexible workflow composition
 - Task-level resource provisioning

4CeeD Executing scientific data processing workflow

4CeeD Cloud **Execution Environment**

4CeeD Cloud Design

✓ Cloud Concept

✓ Micro-service execution environment

✓ Data Management

4CeeD Data Management and Storage

- 4CeeD uses NoSQL database to store <u>spaces</u>, <u>collection and</u> <u>dataset</u> metadata and some data
- MongoDB is open-source NoSQL database
 - Non-relational database (NoSQL), i.e., data storage and retrieval are not organized in tabular relations
 - Developed due to the limits of relational databases and their scalability to very large datasets (scale was limited because of the requirement for consistency in relational databases)
 - 4 models of NoSQL
 - key-value stores,
 - graph stores,
 - column stores,
 - document stores

4CeeD-Clowder Data Management and Storage (2)

- Document Store Model
 - Store data in semi-structured form, called documents
 - Documents encoded in standardized format such as
 - XML format
 - Javascript Object Notation (JSON)
- Example of Document store database

Source: P. Bajcsy et al. "Web Microanalysis Of Big Image Data", Spring, 2018

4CeeD Data Management and Storage (3)

- 4CeeD uses MongoDB
- In MongoDB
 - Documents are stored in a JSONlike format
- Example of JSON-like Format
- 4CeeD Data Model organizes projects into collections, datasets, and files.
- These can then be shared in spaces.
 4CeeD utilizes and modifies NCSA
 Clowder data management system.

```
{ "first name": "John",
"last name": "Smith",
"age": 25,
"address": {
   "street address": "21
2nd Street",
   "city": "New York",
   "state": "NY",
   "postal code": "10021"
"phone numbers":[
    "type": "home",
    "number": "212 555-
1234"
  "type": "fax",
  "number": "646 555-4567"
  "sex":
    "type": "male"
```

Source: wikipedia

4CeeD Smart Data Management

Collection: T2CB; Datasets: PlasmaEtching,, Metalization

Folders: Calibration, SEM, Optical Microscopy..., Files: txt files, tiff files, ...

4CeeD Deployment – Cloud Production System

Goals:

- Redundancy
- Availability
- Scalability

Storage Layer:

- 40 TB (20 TB per investor)
- Replicated for redundancy

Compute Layer:

- Docker container orchestration (Kubernetes)
- Single master
 (High Available masters in future)

4CeeD Cloud

4CeeD Micro-service implementation system (in Compute Layer)

Microservice execution layer

Infrastructure layer

Outline

- 4CeeD Distributed Architecture, Backend Cloud Concepts and Services
 - What is 4Ceed and its goals
 - What is behind the 4CeeD Dashboard
 - 4CeeD Cloud Design and Deployment
 - How to deal with Aging Scientific Instrument

Current situation in campus cyberinfrastructure

Challenges of connecting offline older instruments

 Performance mismatch: Older instruments'
 Windows NT or XP runs network protocols at lower bandwidth speeds (10Mbps or 100Mbps)

 Obsolete security: Older devices and their OS systems cannot be patched, hence being vulnerable & taken offline

BRACELET: Putting edge device between older instruments and private cloud

Performance:

- Have two network interfaces configured at different speeds
- Traffic shaping & offloading between edges & cloud

BRACELET in 3-tier architecture

Security:

- User & instrument registration
- Data encryption during upload
- Firewall to protect against external threats

BRACELET Design

Edge Server

- Security service
 - Check equipment address
 - Authenticate user and his reservation
- Compute/Transport service
 - Forward and upload data

Cloud

- Compute/Data service
 - Compute tasks/workload
 - Store/Retrieve metadata, data
- Security service
 - Authenticate user, access control

User authentication from instruments via BRACELET

Bracelet Edge Server

4CeeD Cloud

Transport service between edge & cloud

- After processing request, the task consumer forwards request to the next task (following current placement)
- After learning about the placement, data processing request is sent to the first task
- 4CeeD Uploader communicates with local Edge controller to learn about where to send request to
- Edge controller periodically communicates with cloud controller to update task placements

BRACELET Deployment

BRACELET Network Architecture

4CeeD Summary

- Lightweight microservice cloud architecture for materials genomic challenge
- Novel usage of edge computing for aging IoT devices to enable security
- Real-time cloud service for.
 - Curation Service
 - Data Analysis (Jupyter Notebook)
- Smart data management system for materials data

Sources (code and project description):

https://4ceed.github.io/

http://t2c2.csl.illinois.edu/

Publications

2019, Hawaii, February 2019.

- Phuong Nguyen, Steven Konstanty, Todd Nicholson, Thomas O'Brien, Aaron Schwartz-Duval, Timothy Spila, Klara Nahrstedt, Roy Campbell, Indranil Gupta, Michael Chan, Kenton McHenry and Normand Paquin, "4CeeD: Real-Time Data Acquisition and Analysis Framework for Material-related Cyber-Physical Environments", IEEE/ACM 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Madrid, Spain, May 14-17, 2017— Best Paper Award
- Phuong Nguyen, Klara Nahrstedt, "MONAD: Self-adaptive Micro-service Infrastructure for Heterogeneous Scientific Workflows", 14th IEEE International Conference on Autonomous Computing (ICAC 2017), July 17-21, 2017, Columbus, Ohio
- The Yang, Phuong Nguyen, Haiming Jin, Klara Nahrstedt, "MIRAS: Model-based Reinforcement Learning for Microservice Resource Allocation over Scientific Workflows", IEEE International Conference on Distributed Computing Systems (ICDCS 2019), July 2019, Dallas, TX; DOI: 10.1109/ICDCS.2019.00021
- Phuong Nguyen, Tarek Elgamal, Steve Konstanty, Todd Nicholson, Stuart Turner, Patrick Su, Michael Chan, Klara Nahrstedt, Tim Spila, Kenton McHenry, John Dallesasse, Roy Campbell, "Bracelet: Edge-Cloud Microservice Infrastructure for Aging Scientific Instruments", IEEE International Conference on Computing, Networking, and Communications (ICNC)