CS684 Course Projects

Projects:

- Two Projects:
 - Search and Rescue Robot
 - Valet Parking Robot
- Labs are based on project implementation
- Groups:
 - Consists of three members
 - Select the project
 - One submission per group
 - One hardware kit

Submission instructions:

One submission per group

Submission will be through moodle

Member having highest roll no will do the submission

While submitting:

- 1. Readme.txt file explaining the details about the implementation
- Contribution.txt file stating detailed contribution of each member
- 3. Project folder depends upon the lab
- 4. Video file demonstrating the simulation/output of the implementation

Project 1: Search and Rescue Robot

Arena

- Abstraction of disaster-affected area
- Grid consists of 16 Plots

Arena Components:

- a. Mid-Point Markers
- b. Clearing Zone
- c. Inner Square
- d. Four Nodes

Arena configuration:

Input Operations:

- Server will send requests to the robot.
- The requests may contain single or multiple requests (actions to perform). Robot can decide to satisfy the requests or ignore them.
- There can be different types of requests as given below:
 - Fetch RED Survivor in 10s: Robot has to traverse to the nearest RED Survivor plot and acknowledge back.
 - Identify Survivor at plot 4 in 20s: Robot has to traverse to plot 4, identify the Survivor and acknowledge back.
 - No Request: No action needs to be performed

Problem Statement

- The bot starts at 'Start' location.
- A supervisor sends commands to the bot at regular intervals.
- 3. The bot waits for commands and meanwhile starts scanning the entire grid.
- 4. Example of commands are fetch RED block in 10 seconds or scan cell at [2] in 45 seconds
- 5. On receiving commands, the bot takes the required action OR ignores it.
- 6. Robot has to scan the entire grid and stop at medical camp.

Video:

Hardware:

- 1 . Alphabot Arduino based robot
 - While line sensor array (5)
 - IR Proximity Sensor (2)
 - Position encoders (2)
 - DC motors (2)
- 2. Color sensor
- 3. Zigbee Module

Project 2: Valet Parking Robot

Arena:

- Consists of two parts:
 - Traversal Area
 - Parking Area

Arena Components:

Thermocol cubes are used to depict the dummy cars.

Dummy cars can be placed:

- On the line: acting as an obstacle
 - Moving obstacle
 - Static obstacle
- In the Parking Area: blocks the parking area

Robot has to bypass an obstacles if they are static or moving towards the robot.

Problem Statement:

- The robot will start from the START position of the arena.
- It must traverse around the arena avoiding obstacles.
- It has to detect the parking area.
- Once robot enters into the parking area, it has to detect sufficient space to park itself.
- If space is not available for the parking, robot should stop at the EXIT position marked on the arena.

Arena Traversal:

Videos:

Obstacle Navigation:

Hardware:

- 1 . Alphabot Arduino based robot
 - While line sensor array (5)
 - IR Proximity Sensor (2)
 - Position encoders (2)
 - DC motors (2)
- 2. IR Proximity Sensors (5)