

Ayudantía 8 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

4 de mayo de 2023

Problema 1. Sean $X \subseteq \mathbb{A}^n$ e $Y \subseteq \mathbb{A}^m$ variedades algebraicas afines. Existe una correspondencia

$$\left\{ \begin{array}{c} \text{morfismos regulares} \\ \varphi: X \to Y \end{array} \right\} \stackrel{\sim}{\longleftrightarrow} \left\{ \begin{array}{c} \text{morfismos de \mathbb{C}-\'algebras} \\ \mathscr{O}(Y) \to \mathscr{O}(X) \end{array} \right\}$$

$$\varphi \longmapsto \varphi^*$$

En particular, $X \cong Y$ si y sólo si $\mathcal{O}(X) \cong \mathcal{O}(Y)$.

Problema 2. Considere la variedad afín definida por $X = V\left(xz - y^2, yz - x^3, z^2 - x^2y\right) \subseteq \mathbb{A}^3$.

- 1. Demuestre que la aplicación $\varphi: \mathbb{A}^1 \to X$ definido por $\varphi(t) = (t^3, t^4, t^5)$ es un morfismo sobreyectivo. *Indicación:* Para la sobreyectividad, si $(x, y, z) \neq (0, 0, 0)$, considere t = y/x.
- 2. Describa el morfismo de \mathbb{C} -álgebras correspondiente al pullback de funciones regulares $\varphi^*: \mathscr{O}(X) \to \mathscr{O}(\mathbb{A}^1)$.
- 3. Demuestre que φ no es un isomorfismo.

Problema 3. Sea $X \subseteq \mathbb{A}^n$ variedad afín. Demuestre que existe una biyección:

$$\left\{\begin{array}{c} \mathfrak{m} \subseteq \mathscr{O}(X) \\ \text{ideal maximal} \end{array}\right\} \stackrel{\sim}{\longleftrightarrow} \left\{\begin{array}{c} \text{Puntos} \\ a \in X \end{array}\right\}$$

Problema 4. Sea X variedad afin en \mathbb{A}^n y sea $f \in \mathcal{O}(X)$. Defina $X_f = \{x \in X \mid f(x) \neq 0\}$.

- (a) Demuestre que X_f es un conjunto abierto de Zariski en X (estos conjuntos se conocen como abiertos principales de X).
- (b) Sea J el ideal en $k[x_1, \ldots, x_n, x_{n+1}]$ generado por $\mathcal{I}(X)$ y $x_{n+1}f 1$, y sea $Y = V(J) \subseteq \mathbb{A}^{n+1}$. Muestre que la provección $\pi:\mathbb{A}^{n+1}\to\mathbb{A}^n$ en las primeras n coordenadas es un morfismo biyectivo de Y a X_f (por lo que el abierto principal X_f en X puede ser identificado como un conjunto cerrado en algún espacio afín (más grande)).
- (c) Muestre que los abiertos principales de X constituyen una base de la topología.
- (d) Demuestre que $GL_n(\mathbb{C})$ es un conjunto algebraico afín abierto en \mathbb{A}^{n^2} , y que puede verse como un conjunto algebraico afín cerrado en \mathbb{A}^{n^2+1} .