$$\frac{dy}{dx} = \frac{1}{2}(x^2+1)^{\frac{1}{2}}x + 2x$$

$$y=2 \text{ or } (1,\sqrt{2}) \text{ At}$$

$$\frac{dy}{dx}\Big|_{x=1} = \frac{1}{\sqrt{2}} o_{R} \frac{\sqrt{2}}{2} AI$$

CONVINANG SIMPLIFICATION TO y= VZ (2-2) 41

2. a)
$$f(a) = \vec{e}^2 + \sqrt{2} - 2$$
 or $f(a) = 2 - \vec{e}^2 - \sqrt{2}$ MI
 $f(3) = \pm 0.018$ MI
 $f(4) = \pm 0.018$

COMMENT ON HANCE OF SIM, THUS ROOT AT

b)
$$x_1 = 3.927$$
 A1
 $x_2 = 3.922$ A1
 $x_3 = 3.921$ A1

c)
$$f(3.92105)$$

 $f(3.29115)$ BOTH EVANUATED M

3.42/05 < < 3.29/115 & SUTABLE WMMN. A

3. (a)

M CORRECT REPUEDION OR SCHOOL OF y=xM (0,4) of (-2,0) BOTH CORRECT

(P)

MI CORRECT SHARE

MI ALL THREE CO. OPDINATTS MARKED

(C)

M AL GRAPH CORPECTLY DRAWN IN 1th QUADRAN (SCALE VILLIMPORTANT)

M (20) of (0,-4) GREGOT

4. (a) RSINZLOSOX + LLOSSASINA

ROSA = 2NZ OR RSINA = 2NZ M

R=4 A

<= ₹ A

b) SIN(x+=)== MI

2+== # MI

 $\alpha = \frac{\pi}{4} = \frac{\pi}{6}$

a = 2317 or 6.02/38... A

x = TT or 1.83259... 41

c) y_{MAX} = 4 B1 At from their "2"

d) 2+7=7 Ald60

5. a)
$$\frac{dy}{dx} = 1 \times e^{-\frac{1}{2}x^2} + 2e^{-\frac{1}{2}x^2}$$
 o. \in

b)
$$|e^{-\frac{1}{2}x^2} - x^2e^{-\frac{1}{2}x^2}| = 0$$
 MI At

 $|e^{-\frac{1}{2}x^2}| \neq 0$ Must be strong or acasely impulse BI

 $|e^{-\frac{1}{2}x^2}| \neq 0$ Al

 $|e^{-\frac{1}{2}x^2}| = 0$ MI At

 $|e^{-\frac{1$

6. a)
$$(2x-3)(x+2)$$

$$\frac{(2x-3)+(2x+11)}{(2x-3)(x+2)}$$

$$\frac{4x+8}{(2x-3)(x+2)}$$
All factorizes of cancells convincing to Assure Al

b)
$$2xy - 3y = 4$$
 MI
 $2xy = 4 + 3y$ MI
 $2 = \frac{4 + 3y}{2y}$ AI
 $f(x) = \frac{4 + 3x}{2x}$ AI c.a.o

d)
$$\frac{4}{2\ln(x-1)-3}$$
 MI
 $4\ln(x-1)=2$ or $\ln(x-1)=\frac{1}{2}$ MI
 $x-1=e^{\frac{1}{2}}$ MI
 $x=1+e^{\frac{1}{2}}$ O.E

7.
$$y = e^{2x+3}$$
 MI
My = 2x+3 MI
 $4x+6=2x+3$ MI
 $x=-\frac{3}{2}$ AI

$$lny = 2(-\frac{3}{2}) + 3$$
 or $lny = 0$ My $y = 1$ Al.

8. a)
$$\frac{\cos^2 x}{\cot x \cos x}$$
 MI $\frac{1 + \frac{\sin^2 x}{\cos^2 x}}{\cot x \cos x}$ DE $\frac{1 + \frac{\sin^2 x}{\cos^2 x}}{\cot x}$ DE $\frac{\cos^2 x}{\sin^2 x}$ MI $\frac{\cos^2 x}{\sin^2 x}$ MI $\frac{\cos^2 x}{\sin^2 x}$ MI $\frac{\sin^2 x}{\cos^2 x}$ MI $\frac{\sin^2 x}{\cos^2 x}$ MI $\frac{\sin^2 x}{\cos^2 x}$ OR $\frac{1}{\sin^2 x}$ OR $\frac{1}{\cos^2 x}$ MI $\frac{\sin^2 x}{\cos^2 x}$ MI $\frac{\sin^2 x}{\cos^2 x}$ OR $\frac{1}{\cos^2 x}$ OR $\frac{1}{\cos^2$

b)
$$4\sec x = \tan^2 x + 5$$
 MI
 $4\sec x = (\sec x - 1) + 5$ MI
 $5\sec x - 4\sec x + 4 = 0$ MI
 $(5\sec x - 2)^2$ or $\sec x = 2$ MI
 $(\cos x = \frac{1}{2})$ MI
 $2 = \frac{\pi}{3} + \frac{\pi}{3}$ O.E A2

9.
$$arccos(a+i) = \frac{\pi}{3}$$
 M
 $a+1 = cos(\frac{\pi}{3})$ or $a+1 = \frac{1}{2}$ Mi
 $a+1 = \frac{1}{2}$ o.e. Al c.a.o