Lecture 15: Hamming codes and Viterbi algorithm

- Hamming codes
- Viterbi algorithm

Why reliable communication is possible?

- After shuffling a deck of cards, dealer hands player-A 5 cards
- player-A randomly picks 1 card, and gives the other 4 cards to player-B
- is it possible for player-A to hint to player-B which cards has been kept, using the four cards given to player-B?

- The channel coding theorem promises the existence of block codes with rate below capacity and arbitrarily small P_e , when block length is large
- Since Shannon's original paper, people have been searching for capacity achieving code
- Goal: capacity achieving, encoding and decoding are simple

Naive idea: repetition code

- Introduce redundancy so if some bits are corrupted, still be able to recover the message
- Repeat bits:

$$1 \rightarrow 11111$$

$$0 \rightarrow 00000$$

- decoding scheme: majority vote
- error occurs if more than 3 bits are corrupted
- Not efficient:
 rate = 1/5 bit per symbol

Quest for capacity-achieving codes ...

- Block codes: map a block of information bits onto a codeword, no dependence on past information bits
 - Hamming codes (1950)
 - simplest, illustrates basic ideas underlying most codes
- Convolutional codes (past 40 years)
 - Each output block depends also on some of the past inputs
- Turbo codes and Low-density-parity-check (LDPC) code (90s)
 - Using iterative message-passing algorithm decoding can achieve channel capacity
- Polar codes
 - A novel channel coding scheme (E. Arikan, 2009)
 - allow a transmission approaching capacity for large block sizes
 - first capacity-achieving codes that can be successively decoded

Hamming code

- Richard Hamming (1915 1988)
- Basic idea: combine bits in an intelligent fashion so that each extra bit checks whether there is an error in a subset of information bits

- Detecting odd number of error for a block with n-1 information bits, add one extra bit so that parity of the entire block is 0 (the number of 1's in the block is even)
- Parity check code:
 if we use multiple parity check bits. Hamming code is one example.

Hamming code example

$$H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

• the set of vectors of length 7 in the null space $\mathcal{N}(H)$: Hb=0: since H has rank 3, null space of $\mathcal{N}(H)$ has dimension 4, there are $2^4=16$ codewords in $\mathcal{N}(H)$

0000000	0100101	1000011	1100110
0001111	0101010	1001100	1101001
0010110	0110011	1010101	1110000
0011001	0111100	1011010	1111111

0000000	0100101	1000011	1100110
0001111	0101010	1001100	1101001
0010110	0110011	1010101	1110000
0011001	0111100	1011010	1111111

Property of null space

- Null space is *linear*: sum of any two codewords is also a codeword
- Minimum number of 1's in any codeword is 3: "minimum weight" of the code
- Difference any two codewords has 3 ones
- Minimum distance ≥ 3 : distinguishability of codewords
- **Hamming distance**: number of positions at which corresponding symbols are different

• Idea: use these null space vectors as codewords

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

first 4: information bits, last 3: parity check bits

- (7,4,3) Hamming code
- c: a codeword, is corrupted in only one place, we can detect the location of the error

• if
$$r = c + e_i$$
, $e_i = [0 \dots 1 \dots 0]$

$$Hr = H(c + e_i) = Hc + He_i = He_i$$

 He_i is the *i*-th column of H

Venn diagram

- Hamming code can correct one error
- Reed and Solomon code (early 1950s), multiple error-correcting codes
- Bose and Ray-Chaudhuri and Hocquenghem (BCH) (late 1950s) codes, multiple error-correcting codes using Galois field theory
- All compact disc (CD) players include error-correction circuitry using Reed-Solomon codes correct bursts of up to 4000 errors

Viterbi algorithm

- Developed by Andrew Viterbi, 1966
- A version of forward dynamic programming
- Exploit structure of the problem to beat "curse-of-dimensionality"
- Widely used in: wireless and satellite communications, DNA analysis, speech recognition

Detective

- Catch a suspect making transition at RDU airport
- you know during this period 4 domestic flights arrived from 4 cities connected to departing flights to 18 others
- one way to catch the suspect would be search all 18 gates
- alternative: investigate only departing flights with connections to 4 arriving flights

Derivations

- $X_i \in \{1, 2, \cdots, M\}$, size of the alphabet is M
- $X^n = [X_0, X_1, \dots, X_n]$, n codewords
- $Y^n = [Y_1, \dots, Y_n]$, received codewords
- Assume codewords form first order Markov chain

$$p(X_0, X_1, \dots, X_n) = \prod_{i=1}^n p(X_i | X_{i-1})$$

• Discrete Memoryless Channel (DMC): $p(Y^n|X^n) = \prod_{i=1}^n p(Y_i|X_i)$

Maximum a-Posterior (MAP) decoding

$$\max_{X^n} p(X^n | Y^n) = \frac{p(Y^n | X^n)p(X^n)}{p(Y^n)}$$

Using assumptions above

$$\log p(Y^n|X^n)p(X^n) = \sum_{i=1}^n [\log p(Y_i|X_i) + \log p(X_i|X_{i-1})]$$

- MAP = finding the shortest path through a graph
- path length $\propto -\log p(Y_i|X_i) \log p(X_i|X_{i-1})$

An example Trellis

From "The Viterbi Algorithm", by D. Forney, 1973

- ullet Shortest path segment is called the *survivor* for node c_k
- Important observation: the shortest complete path must begin with one of the survivors
- ullet in this stage, we only need to store M survivor paths
- this greatly reduces storage down to manageable size
- Example: decoding using Viterbi algorithm

Summary

A (partial) diagram