Exploring Models and Data for Image Question Answering

Mengye Ren, Ryan Kiros, Richard S. Zemel University of Toronto

Problem

- Image Question Answering: given an image and a free-form question, find an answer.
- We assume that answers are one-word, thus we can treat it as a classification problem.

DAQUAR 1553 What is there in front of the sofa? Ground truth: table I+BOW: table (0.74) 2V+BLSTM: table (0.88) LSTM: chair (0.47)

COCOQA 5078 donuts is the red bicycle tee-shirt? holding? Ground truth: three I+BOW: two (0.51) 2V+BLSTM: three (0.27) BOW: one (0.29)

COCOQA 1238 leftover What is the color of the Ground truth: blue I+BOW: blue (0.31) 2V+BLSTM: orange (0.43) BOW: green (0.38)

COCOQA 26088 Where is the gray cat sit-Ground truth: window I+BOW: window (0.78) 2V+BLSTM: window (0.68) BOW: suitcase (0.31)

Automatic QA Generation

- We generate 4 types of questions: object, number, color, location, directly from image description.
- All answers are one-word.
- We move the wh-word and verb to the front under certain constraints. For example, "A man is riding a **horse**" => "What is the man riding?'

We pruned answers that appear too rarely or too often.

Baselines

- GUESS Predict the most frequent answer based on the question type.
- BOW Given only the questions without the images and perform logistic regression on the bag-of-words vector to classify answers.
- **LSTM** Input the question words into the LSTM alone.
- IMG Re-train a separate CNN classification layer for each type of question.
- IMG+PRIOR Combine the prior knowledge of an object and the image understanding from the "deaf model". c: color, o: object of interest, and x: image. Assuming o and x are conditionally independent given the c. Use the output of the IMG model as p(c|x). $p(c|o,x) = \frac{p(o|c)p(c|x)}{\sum_{c \in \mathcal{C}} p(o|c)p(c|x)}$. Empirical estimate: $\hat{p}(o|c) = \frac{count(o,c)}{count(c)}$ and Laplace smoothing.

Our Models

• VIS+LSTM Treats the image as a word (Vinyals et al. [1]).

- 2-VIS+BLSTM Two image feature inputs, at the start and the end of the question, with different linear transformations. LSTMs going in forward and backward directions.
- IMG+BOW Softmax on top CNN features and learned BOW vectors.
- FULL A simple average of the three models above.

Experimental Results

HUMAN

0.6027

0.6104

Table: COCO-QA question type break-down Category Train 69.84% 16.71%16.59% 6509 6.10%2478 6.36% 78736 100.00% 38948 100.00%

Table: DAQUAR and COCO-QA results DAQUAR COCO-QA WUPS 0.9 WUPS 0.0 WUPS 0.9 WUPS 0.0 MULTI-WORLD [2] 0.1273 0.5147 0.1810 **GUESS** 0.1824 0.2965 0.7759 0.1742 0.0665 0.7344 BOW 0.3267 0.4319 0.8130 0.3752 0.4854 0.8278 LSTM 0.3273 0.8162 0.4758 IMG 0.4302 0.5864 0.8585 IMG+PRIOR 0.6020 0.8624 0.8063 K-NN(K=31,13)0.3185 0.4242 0.4496 0.5698 0.8557 IMG+BOW 0.8899 0.3417 0.8148 0.5592 0.6678 0.4499 VIS+LSTM 0.4605 0.8223 0.5331 0.3441 0.6391 0.8825 ASK-NEURON [3] 0.3468 0.4076 0.7954 2-VIS+BLSTM 0.3578 0.4683 0.8215 0.5509 0.6534 0.8864 0.5784 0.6790 FULL 0.3694 0.4815 0.8268 0.8952

Table: COCO-QA accuracy per category				
	Object	Number	Color	Location
GUESS	0.0211	0.3584	0.1387	0.0893
BOW	0.3727	0.4356	0.3475	0.4084
LSTM	0.3587	0.4534	0.3626	0.3842
IMG	0.4073	0.2926	0.4268	0.4419
IMG+PRIOR	-	0.3739	0.4899	0.4451
K-NN	0.4799	0.3699	0.3723	0.4080
IMG + BOW	0.5866	0.4410	0.5196	0.4939
VIS+LSTM	0.5653	0.4610	0.4587	0.4552
2-VIS+BLSTM	0.5817	0.4479	0.4953	0.4734
FULL	0.6108	0.4766	0.5148	0.5028

0.7896

More Examples

COCOQA 33827 What is the color of the cat? Ground truth: black I+BOW: black (0.55) 2V+LSTM: black (0.73) BOW: gray (0.40)

COCOQA 33827a Ground truth: red I+BOW: red (0.65) 2V+LSTM: black (0.44) BOW: red (0.39)

How many chairs are there Ground truth: two I+BOW: four (0.24) 2V+BLSTM: one (0.29) LSTM: four (0.19) DAQUAR 1520

DAQUAR 1522

How many shelves are there Ground truth: three I+BOW: three (0.25) 2V+BLSTM: two (0.48) LSTM: two (0.21)

COCOQA 14855 Where are the ripe bananas Ground truth: basket I+BOW: basket (0.97) 2V+BLSTM: basket (0.58) BOW: bowl (0.48)

COCOQA 14855a What are in the basket? Ground truth: bananas I+BOW: bananas (0.98) 2V+BLSTM: bananas (0.68) BOW: bananas (0.14)

DAQUAR 585 What is the object on the Ground truth: pillow I+BOW: clothes (0.37) 2V+BLSTM: pillow (0.65) LSTM: clothes (0.40)

DAQUAR 585a Where is the pillow found? Ground truth: chair I+BOW: bed (0.13) 2V+BLSTM: chair (0.17) LSTM: cabinet (0.79)

COCOQA 23419 cat wearing? Ground truth: hat I+BOW: hat (0.50) 2V+BLSTM: tie (0.34) BOW: tie (0.60)

COCOQA 23419a What is wearing a hat? Ground truth: cat I+BOW: cat (0.94) 2V+BLSTM: cat (0.90) BOW: dog (0.42)

DAQUAR 2136 What is right of table? Ground truth: shelves I+BOW: shelves (0.33) 2V+BLSTM: shelves (0.28) LSTM: shelves (0.20)

DAQUAR 2136a What is in front of table? Ground truth: chair I+BOW: chair (0.64) 2V+BLSTM: chair (0.31) LSTM: chair (0.37)

COCOQA 22891 What is the color of the coat Ground truth: yellow I+BOW: black(0.45)V+LSTM: yellow (0.24) BOW: red (0.28)

COCOQA 22891a What is the color of the un brella? Ground truth: red I+BOW: black (0.28) V+LSTM: yellow (0.26) BOW: red (0.29)

How many vintage refrigerators blue and red in color? Ground truth: four I+BOW: five (0.25) 2V+BLSTM: four (0.29) BOW: one (0.24)

COCOQA 498a How many refrigerators are Ground truth: two I+BOW: four (0.35) 2V+BLSTM: six (0.09)

BOW: two (0.37)

Figure: Sample questions and responses of our system. For some of the examples, we specifically tested extra questions (the ones have an "a" in the question ID).

Download

 Download dataset, software (models and question generation), and full results at http://www.cs.toronto.edu/~mren/imageqa

Conclusion

- We present our end-to-end neural network models to image QA.
- Simple bag-of-words can perform equally well compared to recurrent neural network.
- Models have large space for improvement on questions such as color and counting.
- We release an Image QA dataset that is automatically generated from image description.

References

- [1] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption generator. In CVPR, 2015.
- [2] Mateusz Malinowski and Mario Fritz. A multi-world approach to question answering about real-world scenes based on uncertain input. In NIPS, 2014.
- [3] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask Your Neurons: A Neural-based Approach to Answering Questions about Images. In ICCV, 2015.