

Bases de Datos

Álgebra Relacional

Álgebra Relacional

- Lenguajes de acceso a BD
 - Álgebra Relacional
 - Lenguaje procedimental (se indica qué obtener y cómo obtenerlo)
 - Lenguajes de Usuario
 - SQL (Structured Query Language), basado en álgebra relacional
 - Se usan para construir consultas sobre una Base de Datos

Álgebra Relacional

- Definición: Conjunto de operaciones sobre Relaciones
 - Actúan sobre Relaciones
 - Producen Relaciones como resultados
 - Pueden combinarse para construir expresiones más complejas
- Operadores
 - Básicos y Derivados
 - Propios de BD y de Conjuntos

Operadores Básicos

- Propios de BD
 - Selección (σ) y Proyección (π)
- De Conjuntos
 - Unión (⋃), Diferencia (¬), Producto Cartesiano (X)
- Son operacionalmente completos
- Permiten expresar cualquier consulta sobre una BD

Operadores Derivados

- Propios de BD
 - Join condicional (|X| condicion)
 - Join natural (*)
- De Conjuntos
 - Intersección (∩), División (/)
- Se derivan combinando los operadores básicos
- No añaden nada nuevo. Fueron definidos para simplificar la construcción de consultas
- Se usan con frecuencia

Operadores Tradicionales sobre Conjuntos

- Para todos, con excepción del producto cartesiano, join natural, join condicional y división:
 - Las dos relaciones operandos deben tener el mismo grado
 - Los j-ésimos atributos de las dos relaciones (j en el rango de 1 a n) deben tener el mismo dominio subyacente

Selección: σ

- Operador unario: σ_c : $R(N) \rightarrow R(N)$
- $S = \sigma_c(R)$: el resultado una relación S cuyas tuplas son el subconjunto de tuplas de R que cumplen con una determinada condición c
 - c es una expresión booleana sobre los atributos de la relación
- R puede ser una expresión algebraica relacional (cuyo resultado es una relación)
- Es una partición horizontal de R en 2 conjuntos de tuplas

 las que cumplen y son seleccionadas y las que no
 cumplen y son descartadas –

Selección: σ (continuación)

- Es una operación conmutativa
 - $\sigma_{c1} \left(\sigma_{c2} \left(R \right) \right) = \sigma_{c2} \left(\sigma_{c1} \left(R \right) \right)$
 - Por lo tanto, una secuencia de SELECTs anidados puede ser evaluada en cualquier orden
- Adicionalmente, podemos remplazar una secuencia de SELECTs anidados por un único SELECT cuya condición es la conjunción de las condiciones de cada SELECT individual
 - $\sigma_{c1} \left(\sigma_{c2} \left(\dots \left(\sigma_{cn} \left(R \right) \right) \dots \right) \right) = \sigma_{c1 \text{ AND } c2 \text{ AND} \dots \text{ AND } cn} \left(R \right)$

Selección: Ejemplo

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

o_{edad>35}(Ingenieros)

E#	Nombre	Edad
322	Rosa	37

o_{edad>45}(Ingenieros)

E#	Nombre	Edad

Selección: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Seleccionar los empleados que trabajan en el departamento número 4
 - Seleccionar los empleados cuyo salario es mayor que 30 mil pesos
 - Seleccionar los empleados que, o bien trabajan en el departamento 4 y ganan más que 25 mil pesos, o trabajan en el departamento 5 y ganan más de 30 mil pesos

Proyección: π

- Operador unario: $\pi_{\langle a1...am \rangle}$: $R(N) \rightarrow R(M)$, $M \leq N$
- $S = \pi_{\langle a_1...a_m \rangle}$ (R): el resultado una relación S cuyos atributos, $\langle a_1...a_m \rangle$, son un subconjunto de los de R y cuyas tuplas son todas las de R, salvo que haya duplicadas (se eliminan cuando $\langle a_1...a_m \rangle$ no es una superclave de R)
- El orden de los atributos de S es el de $\langle a_1...a_m \rangle$
- R puede ser una expresión algebraica relacional (cuyo resultado es una relación)
- Es una partición vertical de R en 2 conjuntos de tuplas —uno con los atributos seleccionados y otro con los descartados —

P

Proyección: π (continuación)

Adicionalmente, la expresión $\pi_{< list1>}(\pi_{< list2>}(R)) = \pi_{< list1>}(R)$ es válida siempre que $< list_1> \subseteq < list_2>$

Proyección: Ejemplo

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
326	José	29

 $\pi_{\text{Nombre, Edad}}(\text{Ingenieros})$

Nombre	Edad
José	34
Rosa	37
María	25
José	29

 Π_{Nombre} (Ingenieros)

Nombre
José
Rosa
María

Proyección: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener una relación que contenga nombre y apellido de todos los empleados
 - Obtener una relación que contenga número y nombre de todos los departamentos
 - Obtener una relación que contenga número, nombre y ubicación de todos los proyectos

Rename: ρ

- Operador unario: $\rho_{S(a1...an)}$: $R(N) \rightarrow R(N)$
- $\bullet \quad \rho_{S(B1,B2,\ldots,Bn)}(R)$
 - Renombra la relación y sus atributos
- $\rho_{\rm S}(R)$
 - Renombra sólo la relación
- $\rho_{(B1,B2,...,Bn)}(R)$
 - Renombra sólo los atributos

Unión: U

- Operador binario: $U: R(N) \times R(N) \rightarrow R(N)$
- T = R U S: el resultado es una relación T que incluye todas las tuplas de R o todas las de S o las de ambas, excluyendo repeticiones
- R y S deben ser type compatible
 - R y S deben tener el mismo grado n
 - (i.e.: misma cantidad de atributos)
 - $dom(R_i) = dom(S_i)$, para $1 \le i \le n$
 - (i.e.: cada par de atributos correspondientes deben pertenecer al mismo dominio)

Unión: U (continuación)

- Es una operación conmutativa
 - R U S = S U R
- Es una operación asociativa
 - R U (S U T) = (R U S) U T

Unión: Ejemplo

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros U Jefes

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25
421	Jorge	48

Unión: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener los *Social Security numbers* de los empleados que, o bien trabajan en el departamento 5, o bien los que supervisan a empleados que trabajan en el departamento 5

Diferencia: -

- Operador binario: $-: R(N) \times R(N) \rightarrow R(N)$
- T = R S: el resultado es una relación T que incluye todas las tuplas que pertenecen a R y NO a S
- RySdeben ser *type compatible*
 - R y S deben tener el mismo grado n
 - (i.e.: misma cantidad de atributos)
 - $dom(R_i) = dom(S_i)$, para $1 \le i \le n$
 - (i.e.: cada par de atributos correspondientes deben pertenecer al mismo dominio)
- NO es una operación conmutativa
 - $R S \neq S R$

Diferencia: Ejemplo

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros - Jefes

E#	Nombre	Edad
322	Rosa	37
323	María	25

Jefes - Ingenieros

E#	Nombre	Edad
421	Jorge	48

Diferencia: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener los *Social Security numbers* de todos los empleados que no son supervisores

Intersección: N

- Operador binario: \cap : $R(N) \times R(N) \rightarrow R(N)$
- $T = R \cap S$: el resultado es una relación T que incluye todas las tuplas que pertenecen a la vez a R y a S
- R y S deben ser type compatible
 - R y S deben tener el mismo grado n
 - (i.e.: misma cantidad de atributos)
 - $dom(R_i) = dom(S_i)$, para $1 \le i \le = n$
 - (i.e.: cada par de atributos correspondientes deben pertenecer al mismo dominio)

Intersección: Continuación

- Equivalencia con operadores básicos
 - $A \cap B \equiv A (A B)$
- Es una operación conmutativa
 - \blacksquare R \cap S = S \cap R
- Es una operación asociativa
 - $\blacksquare R \cap (S \cap T) = (R \cap S) \cap T$

Intersección: Ejemplo

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros n Jefes

E#	Nombre	Edad
320	José	34

Intersección: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener los Social Security numbers de los empleados que trabajan en el departamento 5 y que supervisan a empleados que trabajan en el departamento 5

4

Producto Cartesiano: X

- Operador binario: $X: R(N) \times R(M) \rightarrow R(N + M)$
- T = R X S: el resultado es una relación T que incluye todas las combinaciones posibles de cada tupla de R con cada tupla de S, y sus atributos corresponden a los de R seguidos por los de S
- NO es una operación conmutativa
 - \blacksquare RXS \neq SXR
- Es una operación asociativa
 - R X (S X T) = (S X R) X T

Producto Cartesiano: Ejemplo

Ingenieros

E#	Nombre	D#
320	José	D1
322	Rosa	D3

Departamentos

D#	Descripcion
D1	Central
D3	I + D

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Ingenieros X Proyectos

E#	Nombre	D#	Proyecto	Tiempo
320	José	D1	RX338A	21
320	José	D1	PY254Z	32
322	Rosa	D3	RX338A	21
322	Rosa	D3	PY254Z	32

Ingenieros X Departamentos

E#	Nombre	D#	DD	Descripcion
320	José	D1	D1	Central
320	José	D1	D3	I + D
322	Rosa	D3	D1	Central
322	Rosa	D3	D3	I + D

Producto Cartesiano: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener los nombres y la relación de los familiares de empleadas mujeres

Join natural: *

- Operador binario: $*R(N) \times R(M) \rightarrow R(N + M 1)$
- T = R * S: el resultado es una relación T que incluye todas las combinaciones posibles de cada tupla de R con cada tupla de S, siempre que la combinación satisfaga que el atributo de R con el mismo nombre que el atributo de S tengan el mismo valor.
 - Debe haber al menos un atributo con el mismo nombre entre ambas relaciones

Join natural: |X| (continuación)

- NO es una operación conmutativa
 - $\mathbb{R}^* S \neq S * R$
- Es una operación asociativa
 - R * (S * T) = (S * R) * T

Join natural: Ejemplos

Departamento

Nombre_Dept	Num_Dept	Id_Jefe	Fecha_Inicio_Jefe
Dirección	1	1122	12-8-95
Desarrollo	2	5594	25-5-97
Ventas	3	2234	12-9-2001
Compras	4	3355	5-6-2003

Localización_Departamento

Num_Dept	Localización
1	Quilmes
2	Buenos Aires
2	Córdoba
2	Rosario
0	Catamarca
0	Mendoza

Nombre_Dept	Num_Dept	Id_Jefe	Fecha_Inicio_Jefe	Localización
Dirección	1	1122	12-8-95	Quilmes
Desarrollo	2	5594	25-5-97	Buenos Aires
Desarrollo	2	5594	25-5-97	Córdoba
Desarrollo	2	5594	25-5-97	Rosario

oin natural: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener el nombre de los departamentos ubicados en Houston.
 - Obtener los nombres de los familiares de los empleados que trabajan en el proyecto número 1.

Join condicional: X

- Operador binario: $|X| R(N) \times R(M) \rightarrow R(N \cup M)$
- T = R |X|_{<condition>} S: el resultado es una relación T que incluye todas las combinaciones posibles de cada tupla de R con cada tupla de S, siempre que la combinación satisfaga la condición del join; sus atributos corresponden a los de R seguidos por los de S
 - La condición del JOIN es de la forma <condition $_1>$ AND... AND <condition $_n>$, donde cada <condition> es de la forma <A $_i$ β B $_j>$; A $_i$ es un atributo de R, B $_j$ es un atributo de S, A $_i$ y B $_j$ tienen el mismo dominio y β (beta) es uno de los operadores de comparación $\{=$, <, \le ,>, \ge , \ne $\}$
 - NO debe haber atributos con el mismo nombre
- Equivalencia
 - $R |X|_{< condition>} S \equiv \sigma_{< condition>} (R |X|S)$

Join condicional: |X| (continuación)

- NO es una operación conmutativa
 - \blacksquare R|X| S \neq S |X| R
- Es una operación asociativa
 - $R |X|_{< condition} > (S |X|_{< condition} > T) = (S |X|_{< condition} > R) |X|_{< condition} > T$

Join condicional: Ejercicios

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener los nombres de los familiares de empleadas mujeres
 - Obtener los nombres de los gerentes de cada departamento

División

El operador de división (/) define una relación sobre el conjunto de atributos C, incluido en la relación A, y que contiene el conjunto de valores de C, que en las tuplas de A están combinadas con cada una de las tuplas de B

División

- Condiciones
 - grado(A) > grado(B)
 - conjunto atributos de B conjunto de atributos de A
- Equivalencia

$$X_1 = \Pi_c(A)$$
 $X_2 = \Pi_c((B X X_1) - A)$
 $X = X_1 - X_2$

División: Ejemplo

R1

E#	Proyecto
320	RX338A
320	PY254Z
323	RX338A
323	PY254Z
323	NC168T
324	NC168T
324	KT556B

R2

Proyecto
RX338A
PY254Z

R1/R2

E#
320
323

(h)Division (shaded area)

Example of division

AR: Ejercicios combinados

- Dado el esquema de la figura 3.7 (página 75) y el estado de la figura 3.6 (página 72) de Elmasri-Navate (6ta. edición), resolver:
 - Obtener nombre y domicilio de todos los empleados que trabajan en el departamento de *Research*
 - Obtener nombres de todos los empleados que no tienen dependientes
 - Obtener nombres de todos los gerentes que tienen por lo menos un dependiente