Solved selected problems of Real Analysis - Carothers

Franco Zacco

Chapter 10 - Sequences of Functions

Proof. 4 Let f be twice continuously differentiable and 2π -periodic, we want to respond why f' and f'' are both 2π -periodic. Since f is 2π -periodic we know that $f(x) = f(x+2\pi n)$ for $n \in \mathbb{N}$ then by differentiating this expression we get that $f'(x) = f'(x+2\pi n)$ and that $f''(x) = f''(x+2\pi n)$ which implies that both f' and f'' are 2π -periodic.

(a) Let us now compute the Fourier coefficient a_n of f using integration by parts where we assume u(x) = f(x) and $v'(x) = \cos(nx)$ hence $v(x) = \sin(nx)/n$ then

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx$$

$$= \frac{1}{\pi} \left[\left[f(x) \frac{\sin(nx)}{n} \right]_0^{2\pi} - \int_0^{2\pi} f'(x) \frac{\sin(nx)}{n} dx \right]$$

$$= -\frac{1}{n\pi} \int_0^{2\pi} f'(x) \sin(nx) dx$$

So we have that

$$|a_n| = \left| \frac{1}{n\pi} \int_0^{2\pi} f'(x) \sin(nx) dx \right|$$

$$\leq \frac{1}{n\pi} \int_0^{2\pi} |f'(x) \sin(nx)| dx$$

$$\leq \frac{1}{n\pi} \int_0^{2\pi} |f'(x)| dx$$

Where we used that $|\sin(nx)| \leq 1$. Since f' is 2π -periodic then it is bounded, let us take a bound C' then we have that

$$\frac{1}{\pi} \int_0^{2\pi} |f'(x)| dx \le 2\pi C' = C$$

which implies that

$$|a_n| \le C/n$$

In the same way, we compute the Fourier coefficient b_n of f where we assume u(x) = f(x) and $v'(x) = \sin(nx)$ hence $v(x) = -\cos(nx)/n$ then

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx$$

$$= \frac{1}{\pi} \left[\left[-f(x) \frac{\cos(nx)}{n} \right]_0^{2\pi} + \int_0^{2\pi} f'(x) \frac{\cos(nx)}{n} dx \right]$$

$$= \frac{1}{\pi} \left[\left[-\frac{f(2\pi)}{n} + \frac{f(0)}{n} \right] + \int_0^{2\pi} f'(x) \frac{\cos(nx)}{n} dx \right]$$

$$= \frac{1}{n\pi} \int_0^{2\pi} f'(x) \cos(nx) dx$$

Where we used that f is 2π -periodic and so $f(2\pi) = f(0)$ so we have that

$$|b_n| = \left| \frac{1}{n\pi} \int_0^{2\pi} f'(x) \cos(nx) dx \right|$$

$$\leq \frac{1}{n\pi} \int_0^{2\pi} |f'(x) \cos(nx)| dx$$

$$\leq \frac{1}{n\pi} \int_0^{2\pi} |f'(x)| dx$$

Where we used again that $|\cos(nx)| \leq 1$ and since f' is 2π -periodic then it is bounded, let us take a bound C' then we have that

$$\frac{1}{\pi} \int_0^{2\pi} |f'(x)| dx \le 2\pi C' = C$$

which implies that

$$|b_n| \le C/n$$

Finally, since $1/n \to 0$ as $n \to \infty$ and we know that $0 \le |a_n| \le C/n$ and $0 \le |b_n| \le C/n$ by the squeeze theorem we have that $|a_n| \to 0$ and $|b_n| \to 0$ as $n \to \infty$.

(b) Let us now integrate by parts again the Fourier coefficient a_n we got where we assume u(x) = f'(x) and $v'(x) = \sin(nx)$ hence $v(x) = -\cos(nx)/n$ then

$$a_n = -\frac{1}{n\pi} \int_0^{2\pi} f'(x) \sin(nx) dx$$

$$= -\frac{1}{n\pi} \left[\left[-f'(x) \frac{\cos(nx)}{n} \right]_0^{2\pi} - \int_0^{2\pi} f''(x) \frac{\cos(nx)}{n} dx \right]$$

$$= -\frac{1}{n\pi} \left[\left[-\frac{f'(2\pi)}{n} + \frac{f'(0)}{n} \right] - \int_0^{2\pi} f''(x) \frac{\cos(nx)}{n} dx \right]$$

$$= \frac{1}{n^2\pi} \int_0^{2\pi} f''(x) \cos(nx) dx$$

Where we used that f' is 2π -periodic and so $f'(2\pi) = f'(0)$ so we have that

$$|a_n| = \left| \frac{1}{n^2 \pi} \int_0^{2\pi} f''(x) \cos(nx) dx \right|$$

$$\leq \frac{1}{n^2 \pi} \int_0^{2\pi} |f''(x) \cos(nx)| dx$$

$$\leq \frac{1}{n^2 \pi} \int_0^{2\pi} |f''(x)| dx$$

Where we used again that $|\cos(nx)| \le 1$ and since f'' is 2π -periodic then it is bounded, let us take a bound C' then we have that

$$\frac{1}{\pi} \int_0^{2\pi} |f''(x)| dx \le 2\pi C' = C$$

which implies that

$$|a_n| \le C/n^2$$

In the same way, we can integrate by parts again the Fourier coefficient b_n we got where we assume u(x) = f'(x) and $v'(x) = \cos(nx)$ hence $v(x) = \sin(nx)/n$ then

$$b_n = \frac{1}{n\pi} \int_0^{2\pi} f'(x) \cos(nx) dx$$

$$= \frac{1}{n\pi} \left[\left[f'(x) \frac{\sin(nx)}{n} \right]_0^{2\pi} - \int_0^{2\pi} f''(x) \frac{\sin(nx)}{n} dx \right]$$

$$= -\frac{1}{n^2\pi} \int_0^{2\pi} f''(x) \sin(nx) dx$$

So we have that

$$|b_n| = \left| \frac{1}{n^2 \pi} \int_0^{2\pi} f''(x) \sin(nx) dx \right|$$

$$\leq \frac{1}{n^2 \pi} \int_0^{2\pi} |f''(x) \sin(nx)| dx$$

$$\leq \frac{1}{n^2 \pi} \int_0^{2\pi} |f'(x)| dx$$

Where we used again that $|\sin(nx)| \leq 1$ and since f'' is 2π -periodic then it is bounded, let us take a bound C' then we have that

$$\frac{1}{\pi} \int_{0}^{2\pi} |f''(x)| dx \le 2\pi C' = C$$

which implies that

$$|b_n| \le C/n^2$$

Finally, let $x \in \mathbb{R}$ then the Fourier series s for f(x) is given by

$$s(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$

we see that both the terms $a_n \cos(nx)$ and $b_n \sin(nx)$ tend to 0 as $n \to \infty$ which implies that the series converges and therefore takes a value on \mathbb{R} .

Proof. 7 Let (f_n) and (g_n) be real-valued function on a set X and suppose that (f_n) and (g_n) converge uniformly on X. We want to show $(f_n + g_n)$ converges uniformly on X.

Since (f_n) converge uniformly then given $\epsilon/2 > 0$ there is $N \ge 1$ (which may depend on ϵ) such that $|f_n(x) - f(x)| < \epsilon/2$ for all $x \in X$ an all $n \ge N$.

In the same way, since (g_n) converge uniformly then there is $N' \geq 1$ (which may depend on ϵ) such that $|g_n(x) - g(x)| < \epsilon/2$ for all $x \in X$ an all $n \geq N'$.

Let us take $M = \max(N, N')$ so we know that for all $x \in X$ and for all $n \ge M$ we have that

$$|f_n(x) - f(x)| + |g_n(x) - g(x)| < \epsilon/2 + \epsilon/2 = \epsilon$$

and by the triangle inequality, we see that

$$|(f_n(x) + g_n(x)) - (g(x) + f(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \epsilon$$

which implies that $(f_n + g_n)$ converges uniformly.

Let us take now $f_n(x) = g_n(x) = x + 1/n$ where we see that they are uniformly convergent to f(x) = g(x) = x on \mathbb{R} . So we define $f_n g_n = (x+1/n)^2$ but we see that

$$\sup_{x \in \mathbb{R}} \left| \left(x + \frac{1}{n} \right)^2 - x^2 \right| = \sup_{x \in \mathbb{R}} \left| \frac{2x}{n} + \frac{1}{n^2} \right| = +\infty$$

Therefore $(f_n g_n)$ is not uniformly convergent.

Proof. 9

(a) Let $f_n(x) = x^n$ on (-1,1]. We know that (f_n) converges to 0 if $x \in [0,1)$ and to 1 if x = 1. Let -1 < x < 0 then there must be some a < 0 such that x = 1/a hence $x^n = 1/a^n$ and we see that $1/a^n \to 0$ as $n \to \infty$ then $x^n \to 0$ as $n \to \infty$. So in summary the pointwise limit for (f_n) is given by

$$f(x) = \begin{cases} 0 & x \in (-1, 1) \\ 1 & x = 1 \end{cases}$$

Let us take now an interval $(a,b)\subset (-1,1]$ then if $x\in (a,b)$ we have that

$$\sup_{x \in (a,b)} |f_n(x) - f(x)| = \sup_{x \in (a,b)} |x^n - 0| = |b^n|$$

and we see that $|b^n| \to 0$ as $n \to \infty$ since -1 < b < 1. Therefore (f_n) is uniformly convergent to 0 in any interval $(a,b) \subset (-1,1]$ as long as b < 1.

Given that $f_n \to f$ pointwise we want to check if $f'_n \to f'$ too. So we have that $f'_n(x) = nx^{n-1}$ if $x \in [0,1)$ then there is some a > 1 such that x = 1/a hence $nx^{n-1} = n/a^{n-1} = an/a^n$ and we know that the polynomial an goes slower to infinity than a^n so we have that $nx^{n-1} \to 0$. The same thing can be shown for $x \in (-1,0)$. But if x = 1 then $f'_n(1) = n$ which goes to ∞ as $n \to \infty$.

Finally, we want to check that if $\int f_n \to \int f$. We see that

$$\int_{-1}^{1} f_n(x)dx = \int_{-1}^{1} x^n dx$$

$$= \left[\frac{1^{n+1}}{n+1} - \frac{(-1)^{n+1}}{n+1} \right]$$

$$= \frac{-1^n + 1}{n+1}$$

and we have that $(-1^n + 1)/(n+1) \to 0$ as $n \to \infty$.

(b) Let $f_n(x) = n^2 x (1-x^2)^n$ on [0,1]. Let us take some $x \in (0,1)$ then we see that $0 < 1 - x^2 < 1$ hence $(1-x^2)^n \to 0$ as $n \to \infty$ but $xn^2 \to \infty$ as $n \to \infty$ so let us write $\lim_{n \to \infty} f_n(x)$ as

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{n^2 x}{\frac{1}{(1 - x^2)^n}}$$

So we can apply L'Hôpital rule twice to get

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{2nx}{-\frac{\log(1-x^2)}{(1-x^2)^n}}$$

$$= \lim_{n \to \infty} \frac{2x}{\frac{\log^2(1-x^2)}{(1-x^2)^n}}$$

$$= 0$$

Also, if x = 0 we get that $f_n(0) = 0$ and if x = 1 we have that $f_n(1) = 0$. Therefore f_n converges pointwise to f(x) = 0 on [0, 1].

Let us take now the interval [0,1] and let us analyze the maximum value of the series by derivating

$$f'_n(x) = -n^2(1 - x^2)^{n-1}(-1 + (1+2n)x^2)$$

so $f_n(x)$ is a maximum when $x = 1/\sqrt{2n+1}$ hence we have that

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |n^2 x (1 - x^2)^n - 0| = \frac{2^n n^{n+2}}{(2n+1)^{n+1/2}}$$

And we see that $2^n n^{n+2}/(2n+1)^{n+1/2} \to \infty$ as $n \to \infty$. Therefore (f_n) is not uniformly convergent on [0,1].

Let us check now if there is another interval where f_n is uniformly convergent. We see that $1/\sqrt{2n+1} \to 0$ as $n \to \infty$ so the value of x that gives us the maximum will move towards 0 so if we take an interval $(a,b) \subset [0,1]$ where a>0 then the maximum will happen at x=a but as we saw $f_n(a) \to 0$ hence $\sup_{x \in (a,b)} |f_n(x) - 0| = |f_n(a)| \to 0$ so for any interval (a,b) where a>0 the sequence (f_n) is uniformly convergent to 0.

Let us check now if $f'_n \to f'$. We see that

$$f'_n(x) = -n^2(1-x^2)^{n-1}(-1+(1+2n)x^2)$$

By applying multiple times the L'Hôpital rule we get that $f'_n \to 0$ as $n \to \infty$.

Let us check now if $\int f_n \to \int f$. We see that

$$\int_0^1 f_n(x) = \frac{n^2}{2n+2}$$

But in this case, we see that $\int f_n \to \infty$ as $n \to \infty$.

(c) Let $f_n(x) = nx/(1+xn)$ on $[0,\infty)$. We can write $f_n(x)$ as

$$f_n(x) = \frac{x}{1/n + x}$$

So we see that $\lim_{n\to\infty} f_n(x) = 1$ for $x \in (0,\infty)$ and if x = 0 we get that $f_n(0) = 0$.

Let us take an interval $(a,b) \subset [0,\infty)$ then we have that

$$\sup_{x \in (a,b)} |f_n(x) - f(x)| = \sup_{x \in (a,b)} \left| \frac{x}{1/n + x} - 1 \right|$$

$$= \sup_{x \in (a,b)} \left| \frac{x - 1/n - x}{1/n + x} \right|$$

$$= \sup_{x \in (a,b)} \left| \frac{1}{1 + nx} \right|$$

$$= \frac{1}{1 + na}$$

Since the supremum for 1/(1+na) is given at x=a and we see that $1/(1+na) \to 0$ as $n \to \infty$.

Therefore (f_n) is uniformly convergent to 1 in any interval $(a,b) \subset [0,\infty)$ as long as a>0 otherwise we get that $\sup_{x\in[0,b)}|f_n(x)-f(x)|=1$ which does not tend to 0 as $n\to\infty$.

Let us check now if $f'_n \to f'$. We see that

$$f_n'(x) = \frac{n}{(nx+1)^2}$$

By applying the L'Hôpital rule we get that $f_n' \to 0$ as $n \to \infty$.

Let us check now if $\int f_n \to \int f$. In this case, the integral $\int_0^\infty f_n(x)dx$ does not converge.

(d) Let $f_n(x) = nx/(1+x^2n^2)$ on $[0,\infty)$. We can write $f_n(x)$ as

$$f_n(x) = \frac{x}{1/n + x^2 n}$$

So we see that $\lim_{n\to\infty} f_n(x) = 0$ for $x \in (0,\infty)$ and if x = 0 we get that $f_n(0) = 0$. Hence (f_n) converges pointwise to 0.

Let us take the derivative of $f_n(x)$ to see where the maximum happens

$$f'_n(x) = \frac{n - n^3 x^2}{(1 + n^2 x^2)^2}$$

Then if $f'_n(x) = 0$ we get that $n^3x^2 = n$ which implies that the maximum happens at x = 1/n. So we have that

$$\sup_{x \in [0,\infty)} |f_n(x) - f(x)| = \sup_{x \in [0,\infty)} \left| \frac{x}{1/n + x^2 n} - 0 \right| = \left| \frac{1/n}{2/n} \right| = 1/2$$

So we see that $\sup_{x\in[0,\infty)}|f_n(x)-f(x)|$ does not tend to 0 as $n\to\infty$ which implies that (f_n) is not uniformly convergent on $[0,\infty)$ but we see that $1/n\to 0$ as $n\to\infty$ so the value of x that gives us the maximum will move towards 0 thus if we take an interval $(a,b)\subset[0,\infty)$ where a>0 then the maximum will happen at x=a but as we saw $f_n(a)\to 0$ hence $\sup_{x\in(a,b)}|f_n(x)-0|=|f_n(a)|\to 0$ so for any interval (a,b) where a>0 the sequence (f_n) is uniformly convergent to 0.

Let us check now if $f'_n \to f'$. We saw that

$$f'_n(x) = \frac{n - n^3 x^2}{(1 + n^2 x^2)^2}$$

By applying the L'Hôpital rule multiple times we get that $f'_n \to 0$ as $n \to \infty$.

Let us check now if $\int f_n \to \int f$. We see that

$$\int_0^\infty \frac{x}{1/n + x^2 n} \ dx = \left[\frac{\log(1 + n^2 x^2)}{2n} \right]_0^\infty = \infty$$

So $\int f_n$ does not converge but this was expected since (f_n) is not uniformly convergent on $[0,\infty)$.

(e) Let $f_n(x) = xe^{-nx}$ on $[0, \infty)$. We can write $f_n(x)$ as

$$f_n(x) = \frac{x}{e^{nx}}$$

So we see that $\lim_{n\to\infty} f_n(x) = 0$ for $x \in (0,\infty)$ and if x = 0 we get that $f_n(0) = 0$. Hence (f_n) converges pointwise to 0.

Let us take the derivative of $f_n(x)$ to see where the maximum happens

$$f_n'(x) = \frac{1 - nx}{e^{nx}}$$

Then if $f'_n(x) = 0$ we get that 1 - nx = 0 which implies that the maximum happens at x = 1/n. So we have that

$$\sup_{x \in [0,\infty)} |f_n(x) - f(x)| = \sup_{x \in [0,\infty)} \left| \frac{x}{e^{nx}} - 0 \right| = \left| \frac{1/n}{e} \right| = \left| \frac{1}{ne} \right|$$

And we see that $|1/ne| \to 0$ as $n \to \infty$ which implies that (f_n) is uniformly convergent on $[0, \infty)$.

Let us check now if $f'_n \to f'$. We saw that

$$f_n'(x) = \frac{1 - nx}{e^{nx}}$$

By applying the L'Hôpital rule we get that $f'_n \to 0$ as $n \to \infty$ which implies that $f'_n \to f'$.

Let us check now if $\int f_n \to \int f$. We see that

$$\int_0^\infty \frac{x}{e^{nx}} dx = \left[\frac{nx+1}{n^2 e^{nx}} \right]_0^\infty = \frac{1}{n^2}$$

So we see that $\int f_n \to 0$ as $n \to \infty$ i.e. $\int f_n \to \int f$ as we wanted.

(f) Let $f_n(x) = nxe^{-nx}$ on $[0,\infty)$. Let $x \in (0,\infty)$ then by applying L'Hôpital rule we get that $x/ne^{nx} \to 0$ as $n \to \infty$ and if x = 0 we also have that $f_n(0) = 0$. Hence (f_n) converges pointwise to 0.

Let us take the derivative of $f_n(x)$ to see where the maximum happens

$$f_n'(x) = \frac{(1 - nx)n}{e^{nx}}$$

Then if $f'_n(x) = 0$ we get that 1 - nx = 0 which implies that the maximum happens at x = 1/n. So we have that

$$\sup_{x \in [0,\infty)} |f_n(x) - f(x)| = \sup_{x \in [0,\infty)} \left| \frac{nx}{e^{nx}} - 0 \right| = \left| \frac{1}{e} \right|$$

So we see that $\sup_{x\in[0,\infty)}|f_n(x)-f(x)|$ does not tend to 0 as $n\to\infty$ which implies that (f_n) is not uniformly convergent on $[0,\infty)$ but we see that $1/n\to 0$ as $n\to\infty$ so the value of x that gives us the maximum will move towards 0 thus if we take an interval $(a,b)\subset[0,\infty)$ where a>0 then the maximum will happen at x=a but as we saw $f_n(a)\to 0$ hence $\sup_{x\in(a,b)}|f_n(x)-0|=|f_n(a)|\to 0$ so for any interval (a,b) where a>0 the sequence (f_n) is uniformly convergent to 0.

Let us check now if $f'_n \to f'$. We saw that

$$f_n'(x) = \frac{(1 - nx)n}{e^{nx}}$$

Let $x \in (0, \infty)$, by applying the L'Hôpital rule we get that $f'_n \to 0$ as $n \to \infty$ and if x = 0 we get that $f'_n \to \infty$ as $n \to \infty$.

Let us check now if $\int f_n \to \int f$. We see that

$$\int_0^\infty \frac{nx}{e^{nx}} dx = \left[-\frac{nx+1}{ne^{nx}} \right]_0^\infty = \frac{1}{n}$$

So we see that $\int f_n \to 0$ as $n \to \infty$ i.e. $\int f_n \to \int f$ as we wanted.

Proof. 13 Let $f_n: X \to Y$ be continuous for each n, let (f_n) to be pointwise convergent to f on X and let a sequence $(x_n) \subseteq X$ such that $x_n \to x$ in X but $f_n(x_n) \not\to f(x)$, we want to show that (f_n) does not converge uniformly to f on X.

Let us suppose (f_n) does converge uniformly to f on X, we want to arrive at a contradiction. Let $\epsilon > 0$ then there is $N \in \mathbb{N}$ such that when $n \geq N$ we have that $\sup_{x \in X} \rho(f_n(x), f(x)) < \epsilon$ this also implies that $\rho(f_n(x), f(x)) < \epsilon$ for all $x \in X$.

On the other hand, since each f_n is continuous given $x_n, x \in X$ and $\epsilon > 0$ we know there is $\delta > 0$ such that whenever $d(x_n, x) < \delta$ we have that $\rho(f_n(x_n), f_n(x)) < \epsilon$. So adding these inequalities and using the triangle inequality we have that

$$\rho(f_n(x_n), f(x)) \le \rho(f_n(x), f(x)) + \rho(f_n(x_n), f_n(x)) < 2\epsilon$$

Which implies that $f_n(x_n) \to f(x)$ but we said that $f_n(x_n) \not\to f(x)$ hence we have a contradiction. Therefore must be that (f_n) is not uniformly continuous.

Proof. 14 Let $f_n : \mathbb{R} \to \mathbb{R}$ be continuous for each n, and suppose f_n converges uniformly to f on each closed, bounded interval [a, b]. We want to show that f is continuous on \mathbb{R} .

We know that f is continuous on [a, b] because of Theorem 10.4. Let $x \in \mathbb{R}$ then we can build a closed, bounded interval [x - 1, x + 1] where f is continuous so f is continuous in x. Therefore f is continuous in \mathbb{R} .

Proof. **15** Let (X, d) and (Y, ρ) be metric spaces and let $f, f_n : X \to Y$ with $f_n \rightrightarrows f$ on X. If each f_n is continuous at $x \in X$, and if $x_n \to x$, we want to prove that $\lim_{n \to \infty} f_n(x_n) = f(x)$.

Let $\epsilon/2 > 0$ then there is $N' \in \mathbb{N}$ such that when $n \geq N'$ we have that $\rho(f_n(y), f(y)) < \epsilon/2$ for all $y \in X$ since (f_n) converges uniformly to f so if in particular we choose $y = x_n$ we get that

$$\rho(f_n(x_n), f(x_n)) < \epsilon/2$$

On the other hand, because of Theorem 10.4, we know that f is continuous so using the same $\epsilon/2 > 0$ there is $M \in \mathbb{N}$ such that when $n \geq M$ we have that

$$\rho(f(x_n), f(x)) < \epsilon/2$$

Finally, let us take $N = \max(N', M)$ so both inequalities are true, then adding both inequalities and using the triangle inequality we get that

$$\rho(f_n(x_n), f(x)) \le \rho(f_n(x_n), f(x_n)) + \rho(f(x_n), f(x)) < \epsilon$$

Which implies that $\lim_{n\to\infty} f_n(x_n) \to f(x)$.

Proof. **26** Let $\sum_{n=1}^{\infty} |a_n| < \infty$ we want to prove that $\sum_{n=1}^{\infty} a_n \sin(nx)$ and $\sum_{n=1}^{\infty} a_n \cos(nx)$ are uniformly convergent on \mathbb{R} .

Let $f_n(x) = a_n \sin(nx)$ we know that $|\sin(nx)| \le 1$ then $|a_n \sin(nx)| \le |a_n|$ also, we have that $|a_n \sin(nx)| \le \sup_{x \in \mathbb{R}} |a_n \sin(nx)| \le |a_n|$ so summing over n we get that

$$\sum_{n=1}^{\infty} ||f_n||_{\infty} = \sum_{n=1}^{\infty} \sup_{x \in \mathbb{R}} |a_n \sin(nx)| \le \sum_{n=1}^{\infty} |a_n| < \infty$$

Then because of the Weierstrass M-test, we have that $\sum_{n=1}^{\infty} a_n \sin(nx)$ is uniformly convergent on \mathbb{R} .

Finally, given that $|\cos(nx)| < 1$ all we said is still valid for a sequence of functions $f_n(x) = a_n \cos(nx)$ therefore $\sum_{n=1}^{\infty} a_n \cos(nx)$ is uniformly convergent on \mathbb{R} too.

(a) Let us consider the sequence $f_n(x) = ne^{-nx}$ then we see that if x > 0 we have that $\lim_{n\to\infty} ne^{-nx} = 0$ so the series $\sum_{n=1}^{\infty} ne^{-nx}$ converges for x > 0.

Now we want to determine in which intervals $\sum_{n=1}^{\infty} ne^{-nx}$ converges uniformly if we consider the interval $(0, \infty)$ we see that

$$||ne^{-nx}||_{\infty} = \sup_{x \in (0,\infty)} |ne^{-nx}| = n$$

so the series $\sum_{n=1}^{\infty} \|ne^{-nx}\|_{\infty}$ does not converge hence $\sum_{n=1}^{\infty} ne^{-nx}$ does not converge uniformly. So let us take an interval $[r, \infty)$ for some r > 0 then we have that

$$||ne^{-nx}||_{\infty} = \sup_{x \in [r,\infty)} |ne^{-nx}| = ne^{-nr} \to 0$$

as $n \to \infty$. Hence the series $\sum_{n=1}^{\infty} \|ne^{-nx}\|_{\infty}$ converge and therefore because of the Weierstrass M-test the series $\sum_{n=1}^{\infty} ne^{-nx}$ converge uniformly on $[r, \infty)$ for some r > 0.

(b) Let us consider now the series $\sum_{k=1}^{n} e^{-kx}$ then we have that

$$(1 - e^{-x}) \sum_{k=1}^{n} (e^{-x})^k = (1 - e^{-x})(e^{-x} + (e^{-x})^2 + \dots + (e^{-x})^n)$$

$$= (e^{-x} + e^{-2x} + \dots + e^{-nx} - e^{-2x} - e^{-3x} - \dots - e^{-(n+1)x})$$

$$= e^{-x} - e^{-(n+1)x}$$

$$= e^{-x}(1 - e^{-nx})$$

Then we have that $\sum_{k=1}^n e^{-kx} = e^{-x}(1-e^{-nx})/(1-e^{-x})$ but also we see that

$$\frac{d}{dx} \sum_{k=1}^{n} e^{-kx} = -\sum_{k=1}^{n} k e^{-kx}$$

So the sequence we are interested in is $f_n(x) = \sum_{k=1}^n ke^{-kx}$ hence we have that

$$f_n(x) = \sum_{k=1}^{n} ke^{-kx} = \frac{e^x + ne^{-nx} - (n+1)e^{-x(n+1)}}{(-1+e^x)^2}$$

So assuming x > 0 we saw that $f_n(x)$ is uniformly convergent to f(x) which is given by

$$f(x) = \lim_{n \to \infty} f_n(x)$$

$$= \lim_{n \to \infty} \frac{e^x + ne^{-nx} - (n+1)e^{-x(n+1)}}{(-1+e^x)^2}$$

$$= \frac{e^x}{(e^x - 1)^2}$$

Now, using Theorem 10.5 we can take the limit inside the integral where we get that

$$\lim_{n \to \infty} \int_{1}^{2} f_{n}(x) dx = \lim_{n \to \infty} \int_{1}^{2} \sum_{k=1}^{n} k e^{-kx} dx$$

$$= \int_{1}^{2} \sum_{k=1}^{\infty} k e^{-kx} dx$$

$$= \int_{1}^{2} \frac{e^{x}}{(e^{x} - 1)^{2}} dx$$

$$= \left[\frac{1}{1 - e^{2}} - \frac{1}{1 - e} \right]$$

$$= \frac{e}{e^{2} - 1}$$