Отчёт по лабораторной работе

Лабораторная №1

Панкратьев Александр Владимироваич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Теоретические сведения	7
	3.2 Задача	9
4	Выводы	12

List of Tables

List of Figures

3.1	График решения уравнения модели Мальтуса	8
3.2	График логистической кривой	9
3.3	График для случая 1	10
3.4	График для случая 2	10
3.5	График для случая 3	11

1 Цель работы

Изучить модель эффективности рекламы

2 Задание

- 1. Изучить модель эфеективности рекламы
- 2. Построить графики распространения рекламы в заданных случайх
- 3. Определить для случая 2 момент времени, в который скорость распространения рекламы будет максимальной

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность реклам-

ной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N-n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае $\alpha_1(t)<<\alpha_2(t)$ получаем уравнение логистической кривой

Figure 3.2: График логистической кривой

3.2 Задача

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.64 + 0.000014n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000014 + 0.63n(t))(N - n(t))$$

$$\begin{aligned} &1. \ \ \frac{dn}{dt} = (0.64 + 0.000014n(t))(N-n(t)) \\ &2. \ \ \frac{dn}{dt} = (0.000014 + 0.63n(t))(N-n(t)) \\ &3. \ \ \frac{dn}{dt} = (0.7t + 0.4\cos(t)n(t))(N-n(t)) \end{aligned}$$

При этом объем аудитории N=810, в начальный момент о товаре знает 11 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Figure 3.3: График для случая 1

Figure 3.4: График для случая 2

максимальная скорость распространения достигается при $t=0.01\,$

Figure 3.5: График для случая 3

4 Выводы

В ходе выполнения лабораторной работы была изучен модель эффективности рекламы и построены графики.