1. By Dangnhi Ngo

1/ Function Order of Growth Smallest

(1)
$$n^{-5}$$
 (2) $l_g(2^{l_g(n^5)})$ (3) $(l_g n)^3$ (4) n^5 (4) n^5 (2) $l_g(2^{l_g(n^5)})$ (3) $(l_g n)^3$ (4) n^5 (5) n^6 (6) n^6 (1) n^6 (1)

2. By Dangnhi Ngo

2/0, D, & Notation Practice

a/ Arrow diagram

$$b/(b)$$
 $f_4(n) \in O(f_4(n))$

TRUE, because there is no value for in where fi is not going to be the upper bound for fi, and there is no constant value that can be multiplied to fi that would not make it in upper bound.

(c)
$$f_2(n) \in \Omega(f_3(n))$$

FALSE, because f_s is no longer the lower bound for f_2 when n=1 $(f_s=0 < f_s=1)$

(d)
$$f_1(n) \in O(f_2(n))$$

FALSE, because f_2 will no longer be the upper bound for f_1 when $n=\frac{4}{2}$ $(f_1>f_2)$

(e)
$$f_4(n) \in \Theta(\lg^3 n)$$

 $f_4(n) \in \Theta(f_4(n))$

FALSE, because f_1 is strictly upper bound for f_4 , they are not bounds to one another. There is no value of n or e that would make f_1 be lower bound for f_4 .

3. By Ben Albert

э. Бу	Dell Albeit
3) 1.	$Max (f(n), g(n)) = \Theta(f(n) + g(n))$
2,	$\mathcal{O}(f(n)+g(n)) \Rightarrow \mathcal{O}(f(n)+g(n)) & \mathcal{N}(f(n)+g(n))$
3, 4.	if $f(n) \ge g(n)$ Max $(f(n), g(n)) = f(n)$ if $g(n) > f(n)$ Max $(f(n), g(n)) = g(n)$
5.	For C=1, F(n) & F(n)+g(n) & g(n) & F(n)+g(n)
6.	therefore, max (fin), gin) = O (fin) + gin)
7. M	ax (fin), gin) ≥ Fin) & Max (fin), gin) ≥ gin)
8. F	or (=1/2, max (f(n), g(n)) ≥ (f(n)+g(n)).C
4. †	herefore, max (fin), gin) = 1 (fin)+gin)
10. 1	herefore, max (fin), gin) = () (fin) + gin)

4. By Ben Albert

Asymptotically, $n \mid g(n)$ is greater than 256n. However, this is only true for values of n larger than 2^{256} . Therefore, as long as the client is working with less than 2^{256} values. I would recomend the $F_1(n) = n \mid g(n)$ algorithm to them. $n \mid g(n) \ge 256n$ $\mid g(n) \ge 256$ $n \ge 2^{256}$

5. By Duyen Tran

Mystery(n)

1 if n is an even number

2 for i = 1 to n

3 for j = n downto n/2

4 print "1"

5 else

6 for k = 1 to n/4

7 for m = 1 to n

8 print "2"

$$C_{3}$$
 C_{4}
 C_{5}
 C_{4}
 C_{1}
 C_{2}
 C_{2}
 C_{3}
 C_{1}
 C_{2}
 C_{1}
 C_{2}
 C_{3}
 C_{1}
 C_{2}
 C_{3}
 C_{4}
 C_{4}
 C_{1}
 C_{2}
 C_{3}
 C_{4}
 C_{1}
 C_{2}
 C_{3}
 C_{4}
 C_{1}
 C_{2}
 C_{3}
 C_{4}
 C_{4}
 C_{1}
 C_{2}
 C_{3}
 C_{4}
 $C_$

$$T(n) = C_{6}\left(\frac{n}{4}+1\right) + C_{7}\left(\frac{n^{2}}{4}+\frac{n}{4}\right) + C_{8}\left(\frac{n^{2}}{4}\right)$$

$$C_{6}\frac{n}{4} + C_{6} + C_{7}\frac{n^{2}}{4} + C_{7}\frac{n}{4} + C_{8}\frac{n^{2}}{4}$$

$$C_{6} + \left(C_{6} + C_{7}\right)\frac{n}{4} + \left(C_{7} + C_{8}\right)\frac{n^{2}}{4}$$

$$a + bn + Cn^{2} - b + Cn^{2}$$

$$T(n) = \theta(n^2)$$