CSP FAST TRACK

ARTURO

ABSTRACT. In this note

1. Introduction

Let R be a set of relation symbols. Let $\mathcal{A} = (A, P)$ be a relational structure over R. By the **constraint satisfaction problem** $\mathrm{CSP}(\mathcal{A})^1$ we mean the following decision problem: given a set X of variables and a set Σ of atomic formulas² over R, decide whether there is an assignment $(-)^{\mathcal{A}}: X \to A$ such that $\mathcal{A} \models \Sigma$; i.e. for all $r \in R_n$ and for all $x_1, \ldots, x_n \in X$

(1)
$$r(x_1, \dots, x_n) \in \Sigma \implies (x_1^{\mathcal{A}}, \dots, x_n^{\mathcal{A}}) \in r^{\mathcal{A}}$$

Starting point: consider the case when A is finite.

We shall say that CSP(A) is decidable if there is a uniform (unique) algorithm deciding CSP(A) for every X and Σ over R.

Let F be a set of function symbols. Let $\mathbf{A} = (A, \Phi)$ be an algebra over F. By the **constraint satisfaction problem** $\mathrm{CSP}(\mathbf{A})$ we mean the following decision problem: decide uniformly, that is by a unique algorithm, every $\mathrm{CSP}((A, P))$ such that $P \subseteq \mathrm{Inv}(\Phi)$.

Definition 1.1. Let F be a set of function symbols and \mathbf{A} be an algebra over F. We denote by $Clo(\mathbf{A})$ the smallest set containing

$$\{f^{\mathbf{A}}: f \in F\}$$
 and $\{\pi_i^n: A^n \to A, 1 \le i \le n, n \in \omega\}$

and closed under composition.

Goal: prove

Theorem 1.2. Let **A** be a finite idempotent algebra. Then the following are equivalent:

- (1) CSP(**A**) is polynomial-time decidable;
- (2) $Clo(\mathbf{A})$ contains a weak near-unanimity operation;
- (3) for every $\mathbf{B} \in HS(\mathbf{A})$, $Clo(\mathbf{B}) \neq \{\pi_i^n : 1 \leq i \leq n, n \in \omega\}$.

Otherwise, $CSP(\mathbf{A})$ is NP-complete.

¹More often denoted by CSP(P).

 $^{^2}$ Without equality.

2 ARTURO

2. Relational Clones

Definition 2.1. Let R be a set of relation symbols and A be a relational structure over R. We denote by Clo(A) the smallest set containing

$$\{r^{\mathcal{A}}: r \in R\}$$
 and $\{\Delta^{(n)}: n \in \omega\}$

and closed under intersection and $truncation^3$.

Remark 2.2. Observe that Clo(A) is given by all the relations ρ of A definable⁴ by a first-order primitive positive formula (that is, involving only conjunctions and existential quantifications). Recall that $\rho \subseteq A^n$ is definable if there is a formula $\varphi(x_1, \ldots, x_n)$ such that

$$\mathcal{A} \models \varphi(a_1, \dots, a_n) \iff (a_1, \dots, a_n) \in \rho$$

Theorem 2.3. For any A = (A, P) and $B = (A, \Gamma)^5$ with $\Gamma \subseteq Clo(A)$ and with Γ finite, CSP(B) is polynomial-time reducible to CSP(A).

Corollary 2.4. Let A = (A, P) and B = (A, Clo(A)). Then

- (1) CSP(A) is polynomial-time decidable iff CSP(B) is.
- (2) CSP(A) is NP-complete iff CSP(B) is.

Blabl njnjjnjnj

³If $\rho \in \text{Clo}(A)$, then also $\{(a_1, \ldots, a_{n-1}) : (a_1, \ldots, a_{n-1}, a_n) \in \rho$, for some $a_n \in A\} \in \text{Clo } A$.

 $^{^{4}}$ Using the symbols in R and allowing equality.

 $^{^5}$ Not necessarily over the same R!