第2章机器学习概述

数据的特征表示

- •特征选择
 - Filter
 - Wrapper
 - Embedding (L1 Norm)
- •特征抽取
 - 监督学习: 线性判别分析
 - 无监督学习: PCA, 独立成分分析、流行学习、自编码器

- 统计机器学习模型

学习准则

- 损失函数
 - 0-1损失函数
 - 平方损失函数
 - 交叉熵损失函数
 - Hinge损失函数
- •风险最小化准则
 - 期望风险最小化
 - 经验风险最小化
 - 结构风险最小化(过拟合)

优化算法

- 梯度下降法
 - 梯度下降法
 - 批量梯度下降
 - 随机梯度下降(快,跳出局部最优)
 - 小批量梯度下降(快,跳出局部最优,并行)
 - 提前停止(过拟合)

评价指标

• 准确率/错误率

• 查准率/查全率/F1值

• 宏平均/微平均

Where does the error come from?

Where does the error come from?

偏差-方差分解

图 2.7 模型的期望错误、偏差和方差随复杂度的变化情况

What to do with large bias?

- Underfitting
 - More features
 - More complex model

What to do with large variance?

- Overfitting
 - More data
 - Regularization
 - 降低模型复杂度
 - 引入先验

Model Selection

Trade-off between bias and variance

理论与定理

• PAC学习理论

• 没有免费的午餐定理

• 丑小鸭定理

Occam's Razor

机器学习的下一步

- Anomaly Detection (機器能不能知道「我不知道」)
- Explainable AI (說出為什麼「我知道」)
- 防止 Adversarial Attack
- Life-long Learning (終身學習)
- Meta-learning / Learn to learn (學習如何學習)
- Few-shot / Zero-shot Learning (一定需要很多訓練資料嗎?)
- 增強式學習真的能用嗎?
- Network Compression (神經網路壓縮)
- 如果訓練資料和測試資料很不一樣