CMSC 28100

Introduction to Complexity Theory

Spring 2025

Instructor: William Hoza

Boolean circuits

- A Boolean circuit is a network of logic gates (AND, OR, NOT) applied to Boolean variables (x_1, \dots, x_n)
- Boolean formula: Special case in which graph is a tree

Circuit complexity

- **Definition:** The size of a circuit is the total number of AND/OR/NOT gates
- **Definition:** The circuit complexity of $f:\{0,1\}^n \to \{0,1\}^m$ is the size of the smallest circuit that computes f

Circuit complexity example 1

- Let $f(x) = x_1 \lor x_2 \lor \cdots \lor x_n$
- Circuit complexity: $\Theta(n)$

Circuit complexity example 2

The power of Boolean circuits

- Recall: Some languages cannot be decided by algorithms
- Are there functions that cannot be computed by circuits?

Theorem: For every $f: \{0, 1\}^n \rightarrow \{0, 1\}$, there

exists a Boolean formula that computes f.

Theorem: For every $f: \{0,1\}^n \to \{0,1\}$, there exists a Boolean formula that computes f.

- **Proof (1 slide):** For each $z \in \{0, 1\}^n$, construct T_z that is satisfied only by z
 - E.g., $T_{010} = \bar{x}_1 \wedge x_2 \wedge \bar{x}_3$

Then
$$f(x) = \sqrt{T_z(x)}$$

$$z \in f^{-1}(1)$$

DNF formulas

- **Definition:** A literal is a variable or its negation $(x_i \text{ or } \bar{x}_i)$
- **Definition:** A term is a conjunction of literals (AND of literals). Example:

$$T_{010} = \bar{x}_1 \wedge x_2 \wedge \bar{x}_3$$

• **Definition**: A disjunctive normal form (DNF) formula is a disjunction of terms (OR of ANDs of literals). Example:

$$f(x) = (\bar{x}_1 \wedge x_2 \wedge \bar{x}_3) \vee (x_1 \wedge \bar{x}_2 \wedge x_3)$$

Every function has a DNF formula

• Let $f: \{0, 1\}^n \to \{0, 1\}$ be any function

Theorem: There is a DNF formula that computes f,

with at most 2^n terms and n literals per term

• **Proof:** For each $z \in \{0,1\}^n$, construct a term T_z that is satisfied only by z

Then
$$f(x) = \sqrt{T_z(x)}$$
 $z \in f^{-1}(1)$

CNF formulas

• **Definition:** A clause is a disjunction of literals (OR of literals). Example:

$$C = \bar{x}_1 \vee x_2 \vee \bar{x}_3$$

• **Definition:** A conjunctive normal form (CNF) formula is a conjunction of clauses (AND of ORs of literals). Example:

$$f(x) = (\bar{x}_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3)$$

Every function has a CNF formula

• Let $f: \{0, 1\}^n \rightarrow \{0, 1\}$ be any function

Theorem: There is a CNF formula that computes f,

with at most 2^n clauses and n literals per clause

- **Proof:** For each $z \in \{0,1\}^n$, construct a clause C_z that is violated only by z
 - E.g., $T_{010} = x_1 \vee \bar{x}_2 \vee x_3$

Then
$$f(x) = \bigwedge_{z \in f^{-1}(0)} C_z(x)$$

Multi-output functions

Corollary: For every $f:\{0,1\}^n \to \{0,1\}^m$, there exists a circuit of size $O(m \cdot n \cdot 2^n)$ that computes f

- **Proof:** Write $f(x) = (f_1(x), ..., f_m(x))$
- Each f_i can be computed by a circuit of size $O(n \cdot 2^n)$ (DNF/CNF)
- Combine those m circuits into one

Polynomial-size circuits

- Every function has a circuit
- But the circuit we constructed has exponential size 😩
- Which functions have polynomial circuit complexity?
- Note: The circuit complexity of $f: \{0, 1\}^n \to \{0, 1\}$ is just a number
- Let's define the circuit complexity of a language $Y \subseteq \{0, 1\}^*$

Circuit complexity of a binary language

- Let $Y \subseteq \{0, 1\}^*$
- For each $n \in \mathbb{N}$, we define $Y_n: \{0, 1\}^n \to \{0, 1\}$ by the rule

$$Y_n(w) = \begin{cases} 1 & \text{if } w \in Y \\ 0 & \text{if } w \notin Y \end{cases}$$

- **Definition:** The circuit complexity of Y is the function $S: \mathbb{N} \to \mathbb{N}$ defined by $S(n) = \text{the size of the smallest circuit that computes } Y_n$
- Note: Each circuit only handles a single input length! Different from TMs

The complexity class PSIZE

• Let $S: \mathbb{N} \to \mathbb{N}$ be a function

Definition:

 $SIZE(S) = \{Y \subseteq \{0, 1\}^* : \text{the circuit complexity of } Y \text{ is } O(S)\}$

Definition:

PSIZE = $\{Y \subseteq \{0, 1\}^* : \text{the circuit complexity of } Y \text{ is poly}(n)\} = \bigcup_{k=1}^{\infty} \text{SIZE}(n^k)$

Turing machines vs. circuits

- Let M be a Turing machine that decides a language Y
- Let T(n) be M's time complexity; let S(n) be M's space complexity

Theorem: $Y \in SIZE(S(n) \cdot T(n))$.

In particular, $P \subseteq PSIZE$.

Proof (next 6 slides) is based on computation histories

Locality of compu

To figure out c'_{206} , which symbols of \mathcal{C} do we need to inspect?

A: All of them $(c_1, c_2, ..., c_\ell)$

B: Only c_{206}

C: c_{205} , c_{206} , and c_{207}

D: c_{205} , c_{206} , c_{207} , and c_{208}

For simplicity,

assume the

head is not at

beginning/end

Let C be a configuration of t

Respond at PollEv.com/whoza or text "whoza" to 22333

- We can write $C = c_1 c_2 \dots c_\ell$ for some $c_1, \dots, c_\ell \in \Sigma \cup Q$
- Then NEXT $(C) = c_1'c_2' \dots c_\ell'$ for some $c_1', \dots, c_\ell' \in \Sigma \cup_{\circ} Q$
- Fact: If $2 \le i \le \ell 2$, then

 $c_i' = \begin{cases} \text{the third symbol of NEXT}(\sqcup c_{i-1}c_ic_{i+1}c_{i+2}) & \text{if } c_{i-1} \in Q \text{ or } c_i \in Q \text{ or } c_{i+1} \in Q \\ c_i & \text{otherwise} \end{cases}$

Encoding configurations in binary

- Let C be a configuration of a TM M, say $C=u_1u_2\dots u_kqv_1v_2\dots v_m$
- Each symbol/state $b \in \Sigma \cup Q$ can be encoded in binary as $\langle b \rangle \in \{0,1\}^r$ for some r = O(1)
- We define $\langle C \rangle = \langle u_1 \rangle \langle u_2 \rangle \cdots \langle u_k \rangle \langle q \rangle \langle v_1 \rangle \cdots \langle v_m \rangle$

$TM \Rightarrow Circuit$

• There is a circuit C_M that computes $\langle c_i' \rangle$ given $\langle c_{i-1} \rangle$, $\langle c_i \rangle$, $\langle c_{i+1} \rangle$, $\langle c_{i+2} \rangle$

$TM \Rightarrow Circuit$

• There is a circuit C_M that computes $\langle c_i' \rangle$ given $\langle c_{i-1} \rangle$, $\langle c_i \rangle$, $\langle c_{i+1} \rangle$, $\langle c_{i+2} \rangle$

$TM \Rightarrow Circuit$

• There is a circuit C_M that computes $\langle c_i' \rangle$ given $\langle c_{i-1} \rangle$, $\langle c_i \rangle$, $\langle c_{i+1} \rangle$, $\langle c_{i+2} \rangle$

• Now let's combine many copies of C_M in parallel:

TM ⇒ Circuit

- Size: $O(S(n) \cdot T(n))$
- Assume WLOG:
 - $\langle 0 \rangle = 0^r$ and $\langle 1 \rangle = 10^{r-1}$
 - *M* halts in starting cell
 - NEXT(C) = C if C is a
 halting configuration
 - $\langle q_{\rm accept} \rangle = 1^r$
 - $\langle q_{\text{reject}} \rangle = 01^{r-1}$

Adleman's theorem

• We just showed that $P \subseteq PSIZE$

Tantalizingly similar to "P = BPP"

Next, we will prove a stronger theorem:

Adleman's Theorem: BPP ⊆ PSIZE

- Note: The circuit model is a deterministic model of computation!
- Proof of Adleman's theorem: Next 8 slides