Search for contact interactions using the inclusive jet p_T spectrum in p p collisions at $\sqrt{s} = 8$ TeV

```
Greg Myers<sup>1</sup>, Harrison Prosper<sup>1</sup>, Suman Beri<sup>2</sup>, Supriya Jain<sup>3</sup>

<sup>1</sup>Florida State University

<sup>2</sup>Panjab University

<sup>3</sup>SUNY, Buffalo
```

8 August, 2013

Outline

- 1. Introduction
- 2. Accounting for PDF Uncertainties
- 3. Looking Forward

qq Contact Interactions

- ▶ <u>Goal:</u> Search for evidence of quark compositeness using the recently measured $\sqrt{s} = 8\text{TeV}$ inclusive jet p_T spectrum (CMS AN AN-12-223), set a limit on mass scale, Λ
- ▶ We will compare contact interaction (CI) signal plus QCD cross sections calculated at next-to-leading-order (NLO) to the measured spectrum.
- In this talk we present our signal models and discuss PDF uncertainties.

Signal Models

► Signal Lagrangian (arXiv:1202.5535 [hep-ex]):

$$\mathsf{L}_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL} \left(\bar{q}_L \gamma^\mu q_L \right) \left(\bar{q}_L \gamma_\mu q_L \right) + \eta_{RR} \left(\bar{q}_R \gamma^\mu q_R \right) \left(\bar{q}_R \gamma_\mu q_R \right) + 2\eta_{RL} \left(\bar{q}_R \gamma^\mu q_R \right) \left(\bar{q}_L \gamma_\mu q_L \right) \right]$$

Model	η_{LL}	η_{RL}	η_{RR}
LL	±1	0	0
RR	0	0	± 1
VV	±1	± 1	± 1
AA	±1	∓ 1	± 1
V-A	0	± 1	0

- NLO Signal model calculated using CIJET 1.0 program from J. Gao (arXiv:1301.7263 [hep-ph])
- ▶ Inclusive jet cross section in one *p*_T bin:

$$\sigma = \sigma_{QCD} + \sigma_{CI}$$

$$\sigma_{CI} = \frac{1}{\Lambda^2} \left(B + B' \ln r \right) + \frac{1}{\Lambda^4} \left(A + A' \ln r \right)$$

- $ightharpoonup r = \frac{\Lambda}{\mu_0}$
- ▶ CIJET 1.0 allows us to calculate A, A', B, and B' coefficients in each p_T bin for each model.
- ▶ At leading order: A' = B' = 0

- We consider both constructive and destructive interference for each model
- ▶ For each model, choice of Λ , PDF set, interference mode, and choice of factorization scale (μ_f) and renormalization scale (μ_r) we plot: $\frac{\sigma_{QCD} + \sigma_{CI}}{\sigma_{QCD}}$
- ▶ The following plots were made using the central member of the CT10nlo PDF set and by choosing $\mu_f = \mu_r = 1$

Accounting for PDF uncertainties

- Following the procedure outlined here: https://mstwpdf.hepforge.org/random/
- ▶ The variance in an observable, F, is computed as follows:

$$\Delta F = \frac{1}{2} \sum_{k=1}^{n} |F(S_k^+) - F(S_k^-)| R_k$$

where R_k is a random number generated from a Gaussian distribution with a mean of 0 and σ of 1.

 S_k^{\pm} are the \pm variations in the kth free parameter,

and n is the number of non-central members in the PDF set (n = 26 for CT10nlo). The same set of n random numbers is used for all bins, all models.

Signal Uncertainty (CT10nlo)

- ▶ $\Lambda = 10$ TeV, $\mu_f = \mu_r = 1$, LL Model, Destructive Interference
- ▶ 100 △F's calculated using 100 different sets of 26 random numbers

Signal Uncertainty (CT10nlo)

Signal Uncertainty (NNPDF21_100)

- ▶ $\Lambda = 10$ TeV, $\mu_f = \mu_r = 1$, LL Model, Destructive Interference
- ► Here we use 100 different PDF members provided in NNPDF21_100 set.

Signal Uncertainty (NNPDF21_100)

NNPDF21_100 and CT10nlo Uncertainty

Looking Forward

- Account for jet energy resolution (JER) and jet energy scale (JES) uncertainty
- Include MSTW PDF set.
- ► Compare QCD + CI with data
- Obtain expected Bayesian limits on Λ, and later observed limits.

Backup Slides

LL Model

LL Model

RR Model

RR Model

VV Model

VV Model

AA Model

AA Model

V-A Model

V-A Model

