Задачи по Математическим основам анализа данных

Артамонов Н.В.

16 февраля 2025 г.

Содержание

1		Работа с массивами (матричный анализ) 1.1 Операции с матрицами			
		1.1.1	Скалярное умножение и сложение]	
1	P	абот	а с массивами (матричный анализ)		

1.1 Операции с матрицами

1.1.1 Скалярное умножение и сложение

№1. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & -1 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 0 & -1 \\ -1 & -2 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & -1 \end{pmatrix}$$

Вычислите

$$2A+B$$
 $A-2C$ $4B-A-C$ $C-2A+4B$

№2. Рассмотрим матрицы

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 3 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 5 & 2 \\ 4 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

Вычислите

$$A + 3B$$
 $3B - 2C$ $2B - C + 3A$ $2C + 3A - 5B$

№3. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 1 & -3 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$$

Вычислите

$$3A - B$$
 $2A - C$ $2B - C + 3A$ $B - 2A + C$

1.1.2 Умножение метриц

Замечание: через ⊙ будем обозначать произведение Адамара для матриц

№4. Для следующим матриц вычислите $A \odot B$ если операция определение

(1)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$$

(1)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$$
(2)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$$