


```
= Pn + P2 + (X-1)P1 + (X-1)P2
 = Pn + (x-1)Pn' + P2 + (x-1)Pe'
 (=) (Pa) + (P2) = (P1+P2)
Soient PEIR, [X] et REIR
 9(2P) = 2P+(x-1)(2P)(x)
         = 2P+ (x-1).2.P1
        = 2 \left(P + (X-1)P'\right)
     5 2 4(P) = 9(2P)
 Dome 4 est une application liméaire
2) dim (IR, [x]) = 3
 Soit (a,b,c) & IRe[X] (ce qui correspond au polymôme
 9(a, b, c) = (a, b, c) + (x-1)(0, 2a, b) - dérivée
          = (a, b, c) + (2a, b, 0) + (0, -2a, -b) (on a développé)
          = (3a, -2a+2b, -b+c)
  Calculons Ker &
                   5 = { (0,0,0)} = Ker & domc & est
  -2a+2b=0
  (-b+c=0
                   mjective
  Calculoms l'image
 \varphi(a,b,c) = (x,y,z)
 (3a = X
  1 -6+c=2
             Y(X,Y,Z) EIR3, on thouse un antécédent
 que vérifie ((a, b, c) = (x, y, z). Danc Im } = IR3 [x]
 et 9 est surjective.
 9 est de 1R2 [X] dans 1R2 [X] donc il suffit qu'elle
 soit injective au surjective pour être bijective.
                                   Copyright Alexandre Bonavita
```

	Exercice	10	(suite)										
			41	1) (P(x)	9(z. 1)									
4	3). Mat	(4)B	= (1	0	0)	1								
			1	1 2	3/	x i	8 1 8							
	es question	ns sa	uivant	es,	je	me	suis	, po	is si	êr .				7
				gr de					4		#C			7.
	Exercice	12			16			1 6)
4.		6	1 3 /	13										
) A	= (-5 -	10		A	3 = 1	9 (sar (e co	lcul	mat	riciel	2)		
	V-4 -	-4-	3	3 %			Maria I	1,5						
- 9) A3 = A (- D A	2	Α	-	Δ 2			ce a		0			
							Am				sc Jo	ill X		
1)	Montrons	pa	néc	uren	ce	que	- A	=	Am+					
	Imiha lisa	hom:												
	$A = A^3$, vra	iau	nama	3 1									
	Récuren				0	6.								
	$A^{m+\lambda} = \lambda$			0 0	3	a m+	3.							
						1		9 7						
	La prop.	rieté	est v	raie	pou	r to	uet n	ang	m >	_ 2_				
		10												
7	Exercice	13												
				\ .		1 - m		2 000	1	1	2	0		
	le systèm	e equ	vaut	a :		3	-1	- 2	-1-	m /		0		
	e system	re ad	met 1	me	info	inite	de	soli	i hom	SSI	il	est	mom	
_	0		ta'c		U							mout		
	impechy,	- C es	lac	wie	201	Te .	axte	JUM V	nant	ce	ta	(11100),	uce	
	est mul.													
(ce qu'il	fau	+ fa	ine:										
	· calcul	er le	déter	min	ant	en	Jon :	chion	de	m				
	· détern						U		iam+		MII	P		
4	7,041							× 1111/1		2001	. 1100			
									Copyr					

Exercice 14:

$$\begin{vmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{vmatrix}$$

En effet, le déterminant ne change pas lorsque l'on transpose la matrice.

$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 - x_1 & x_2 - x_1 & x_3 - x_1 & x_4 - x_1 \\ x_1^2 - x_1^2 & x_2^2 - x_1 x_2 & x_3^2 - x_1 x_3 & x_4^2 - x_1 x_4 \\ x_1^2 - x_1^2 & x_2^2 - x_1 x_2 & x_3^2 - x_1 x_2^2 & x_3^3 - x_1 x_3^2 & x_4^3 - x_1 x_4^2 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 & x_4 - x_1 \\ 0 & x_2^2 - x_1 x_2 & x_3^2 - x_1 x_3 & x_4^2 - x_1 x_4 \\ 0 & x_2^3 - x_1 x_2^2 & x_3^3 - x_1 x_3^2 & x_4^3 - x_1 x_4^2 \end{vmatrix} = 1 \times \begin{vmatrix} x_2 - x_1 & x_3 - x_1 & x_4 - x_1 \\ x_2(x_2 - x_1) & x_3(x_3 - x_1) & x_4(x_4 - x_1) \\ x_2^2(x_2 - x_1) & x_3^2(x_3 - x_1) & x_4^2(x_4 - x_1) \end{vmatrix}$$

$$= (x_2 - x_1)(x_3 - x_1)(x_4 - x_1) \begin{vmatrix} 1 & 1 & 1 \\ x_2 - x_2 & x_3 - x_2 & x_4 - x_2 \\ x_2^2 - x_2^2 & x_3^2 - x_2 x_3 & x_4^2 - x_2 x_4 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1) \begin{vmatrix} 1 & 1 & 1 \\ x_2 - x_2 & x_3 - x_2 & x_4 - x_2 \\ x_2^2 - x_2^2 & x_3^2 - x_2 x_3 & x_4^2 - x_2 x_4 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1) \begin{vmatrix} 1 & 1 & 1 \\ x_2 - x_2 & x_3 - x_2 & x_4 - x_2 \\ 0 & x_3^2 - x_2 x_3 & x_4^2 - x_2 x_4 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1) \begin{vmatrix} 1 & 1 & 1 \\ x_2 - x_2 & x_3 - x_2 & x_4 - x_2 \\ 0 & x_3^2 - x_2 x_2 & x_3^2 - x_2 x_3 & x_4^2 - x_2 x_4 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1) \begin{vmatrix} 1 & 1 & 1 \\ x_3 - x_2 & x_4 - x_2 \\ 0 & x_3^2 - x_2 x_2 & x_4^2 - x_2 x_4 \end{vmatrix} = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1) \times \begin{vmatrix} x_3 - x_2 & x_4 - x_2 \\ x_3(x_3 - x_2) & x_4(x_4 - x_2) \end{vmatrix} = (x_3 - x_1)(x_3 - x_2)(x_3 - x_2) = (x_3 - x_1)(x_3 - x_2)(x_3 - x_2)(x_3 - x_2) = (x_3 - x_1)(x_3 - x_2)(x_3 - x_2)(x_4 - x_2) = (x_3 - x_1)(x_3 - x_2)(x_3 - x_2)(x$$

