Examen d'Analyse Numérique –1ère année ISIMA

V. Barra, J. Koko et Ph. Mahey

5 février 2009

Exercice 1 Soit la matrice

$$A = \begin{pmatrix} 3 & 0 & -1 \\ 0 & 1 & 0 \\ 3 & 0 & -1 \end{pmatrix}$$

- 1. Appliquer l'algorithme des puissances itérées en partant de $x_0 = \begin{pmatrix} 1 & 0 & 3 \end{pmatrix}^\top$.
- 2. Appliquer l'algorithme des puissances itérées en partant de $x_0 = \begin{pmatrix} 1 & 1 & 3 \end{pmatrix}^\top$.
- 3. On part maintenant de $x_0 = \begin{pmatrix} 1 & 1 & 2 \end{pmatrix}^{\top}$. Donner une expression de q_k , vecteur normé obtenu à la k^{eme} itération des puissances itérées, en fonction de k
- 4. Estimer la position des valeurs propres de A en utilisant le théorème de Gershgorin.
- 5. Conclure sur les questions précédentes en calculant explicitement les valeurs propres de A

Exercice 2 Soit la fonction quadratique $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ définie par

$$f(x) = \frac{1}{2}x^{\mathsf{T}}\!Ax - b^{\mathsf{T}}\!x,$$

où A est une matrice symétrique définie positive de taille n et $b \in \mathbb{R}^n$. On note x^* l'unique minimum de f. On suppose que les valeurs propres de A sont distinctes et numérotées dans l'ordre décroissant $\lambda_1 > \lambda_2 > \cdots > \lambda_n$. On rappelle que $\sigma_2(A) = \lambda_1/\lambda_n$.

- 1. Montrer que $x^{T}Ax \geq \lambda_n \parallel x \parallel_2^2, \forall x \in \mathbb{R}^n$.
- 2. On pose $E(x) = (1/2)(x x^*)^T A(x x^*)$, pour $x \in \mathbb{R}^n$. Montrer qu'il est équivalent de minimiser f ou de minimiser E.
- 3. Soit d_k une direction de descente au point x_k . Calculer t_k comme solution du problème d'optimisation unidimensionnelle

$$\min_{t>0} E(x_k + td_k).$$

Montrer que $t_k = -g_k^\top d_k/(d_k^\top A d_k)$, où $g_k = \nabla f(x_k)$.

- 4. On considère la suite $x_{k+1} = x_k + t_k d_k$, $k \ge 0$, et on pose $g_{k+1} = \nabla f(x_{k+1})$. Pour t_k optimal obtenu au 3), montrer que $g_{k+1} = g_k + t_k A d_k$ et $g_{k+1}^{\top} d_k = 0$.
- 5. **Application :** Soit la fonction quadratique $f(x,y) = 3x^2 + 3y^2 + 4xy 10x 5y + 10$.
 - (a) Montrer que f est convexe et calculer son minimum global x^* .
 - (b) Tracer les courbes de niveau de f.

(c) En étudiant la fonction E(x) définie au 2), on montre que la méthode du gradient génère une suite de points x_k qui vérifie

$$\|x_k - x^*\|_2 \le \left(\frac{E(x_0)}{\lambda_n}\right)^{1/2} \left[\frac{\sigma_2(A) - 1}{\sigma_2(A) + 1}\right]^k.$$

En appliquant la méthode du gradient à la fonction f à partir de (0,0), en combien d'itérations (au moins) peut-on espérer avoir $\parallel x_k - x^* \parallel_2 < 10^{-6}$.