IIT Jodhpur

Biological Vision and Applications Module 06-03: Reactive Agents

Hiranmay Ghosh

## Reactive Agent



- An agent senses the environment and reacts to it
  - An autonomous car applies the brakes on seeing a pedestrian in the front
- Reactive behavior is spontaneous and immediate
  - Pre-attentive, without deliberation

## Can we model a common room AC as a Reactive Agent?



- Properties of a room AC
  - Autonomous: works without human intervention
  - ▶ Interactive: Senses and acts on the environment
  - Goal: to keep the room cool (implicit)
  - Social capability: communicates with humans
  - Knowledge: Knows how to do it's job (implicit)
  - Learning: Not applicable
- By definition, it is an agent
- It may an overkill to model such simple system as an agent
- Nevertheless, we shall use it as an example in this class

## Characterizing the environment

- Accessible? ... Yes
  - ▶ We assume that the temperature sensor provides adequate information about the temperature of the room
- Deterministic? ... No
  - A door / window may be open
- Episodic? ... No
  - AC is continuously working for it's lifetime
- Static or dynamic? ... **Dynamic** 
  - The environment can change even without any action of the AC
- Discrete or Continuous? ... Discrete
  - Though temperature of the room can vary continuously, we model it as a finite set  $\{OK, HOT\}$

### Purely reactive agent

#### Agent without memory



- Agent has no memory
  - Does not remember history / experience
- Action is determined by the current environment state alone
- action :  $S \rightarrow A$

## Purely reactive agent

Example: A Room AC

- Environment states:  $S = \{OK, HOT\}$
- Actions:  $A = \{START, STOP\}$
- Agent behavior:  $action : S \rightarrow A$ 
  - ightharpoonup action : OK o STOP
  - ightharpoonup action : HOT o START
- Environment model:  $env : S \times A \rightarrow \rho(S)$ 
  - Independent of agent behavior
  - ightharpoonup env : OK,  $START \rightarrow \{OK, HOT\}$
  - $\triangleright$  env : OK,  $STOP \rightarrow \{OK, HOT\}$
  - ▶  $env : HOT, START \rightarrow \{OK, HOT\}$
  - ightharpoonup env : HOT, STOP ightharpoonup {HOT}
    - ► We assume that it is not snowing outside! ©

### Modeling Perception

#### Purely reactive agent



- "see" maps an environment state to a percept: see(s) = p
  - ightharpoonup see :  $S \rightarrow P$
- If  $s_1 \neq s_2$ , but  $see(s_1) = see(s_2)$ , i.e.  $p_1 = p_2$ 
  - Environment states  $s_1$  and  $s_2$  are indistinguishable for the agent
  - ... e.g., there can be a person in the room that the AC cannot see
- We revise our stand
  - Agent behavior is determined by percept
  - ▶  $action : P \rightarrow A$  (NOT  $S \rightarrow A$ )

### Purely reactive agent with perception

Example: A Room AC

- Person in room: Y
- Environment states:  $S = \{(OK, Y), (OK, !Y), (HOT, Y), (HOT, !Y)\}$
- AC has a thermostat only cannot see if somebody is in the room
- Percepts:  $S \rightarrow P$ 
  - ightharpoonup see(OK, Y) ightharpoonup ok
  - $\triangleright$  see $(OK, !Y) \rightarrow ok$
  - ightharpoonup see(HOT, Y) ightharpoonup hot
  - ightharpoonup see $(HOT, !Y) \rightarrow hot$
- The states (OK, Y) and (OK, !Y) are indistinguishable, both lead to percept ok
  - ► Similarly, for (HOT, Y) and (HOT, !Y)

### Perception for room AC

#### Continued

- Agent behavior: action: P → A
   action: ok → STOP
   action: hot → START
- Environment model:  $env : S \times A \rightarrow \rho(S)$ 
  - $\qquad \textit{env}: (\textit{OK}, \textit{Y}), \textit{START} \rightarrow \{(\textit{OK}, \textit{Y}), (\textit{HOT}, \textit{Y}), (\textit{OK}, !\textit{Y}), (\textit{HOT}, !\textit{Y})\}$
  - $\qquad \qquad \text{env}: (\textit{OK}, !\textit{Y}), \textit{START} \rightarrow \{(\textit{OK}, \textit{Y}), (\textit{HOT}, \textit{Y}), (\textit{OK}, !\textit{Y}), (\textit{HOT}, !\textit{Y})\}$
  - **.**.

### An AC with a camera

... In addition to a thermometer

Environment states:

- \*\* Same as earlier
- $S = \{(OK, Y), (OK, !Y), (HOT, Y), (HOT, !Y)\}$
- Percepts:  $S \rightarrow P$ 
  - ightharpoonup see(OK, Y)  $\rightarrow$  ok, y
  - $\triangleright$  see $(OK, !Y) \rightarrow ok, !y$
  - ightharpoonup see(HOT, Y)  $\rightarrow$  hot, y
  - $\triangleright$  see(HOT, !Y)  $\rightarrow$  hot, !v

### A room AC with a camera

#### Continued

- The AC should switch on only if the AC sees a person in the room and perceives the temperature to be hot
- Agent behavior:  $action : P \rightarrow A$ 
  - ightharpoonup action : ok,  $v \rightarrow STOP$
  - ightharpoonup action : ok.!v  $\rightarrow$  STOP
  - ightharpoonup action : hot, v o START
  - ightharpoonup action : hot,  $!v \rightarrow STOP$
- Environment model:  $env : S \times A \rightarrow \rho(S)$

- \*\* Same as earlier
- $\triangleright$  env:  $(OK, Y), START \rightarrow \{(OK, Y), (HOT, Y), (OK, !Y), (HOT, !Y)\}$
- $\triangleright$  env:  $(OK, !Y), START \rightarrow \{(OK, Y), (HOT, Y), (OK, !Y), (HOT, !Y)\}$

## Reactive agent with memory



- see :  $S \rightarrow P$
- $next: P \times I \rightarrow I$
- $action: I \rightarrow A$
- I stores the history
  - Memory is finite
  - How many steps?
  - Abstracted form?

### Reactive agent with memory

Example: A Room AC (no camera) with a constraint

If it is already ON, it cannot START, and vice-versa



- $next \cdot P \times M \rightarrow N$
- mem :  $N \rightarrow M$ . action :  $N \rightarrow A$

- Percepts:  $P = \{ok, hot\}$
- Actions:  $A = \{START, STOP, NOP\}$
- Memory:  $M = \{ON, OFF\}$
- Agent behavior  $next : P \times M \rightarrow N$ 
  - ightharpoonup next(ok, ON) = (STOP, OFF)
  - ightharpoonup next(ok, OFF) = (NOP, OFF)
  - ightharpoonup next(hot, ON) = (NOP, ON)
  - $\triangleright$  next(hot, OFF) = (START, ON)

# Example: A Room AC (no camera) with a constraint

#### ... Continued



- next :  $P \times M \rightarrow N$
- mem:  $N \to M$ . action:  $N \to A$

- Memory:  $N \rightarrow M$ 
  - ightharpoonup mem(STOP, OFF) 
    ightarrow OFF
  - ightharpoonup mem(NOP, OFF) 
    ightarrow OFF
  - $ightharpoonup mem(NOP, ON) \rightarrow ON$
  - $ightharpoonup mem(START, ON) \rightarrow ON$
- Action:  $N \to A$ 
  - ightharpoonup action(STOP, OFF) ightharpoonup OFF
  - action(NOP, OFF) → NOP
  - action(NOP, ON) → NOP
  - action(START, ON) → ON

## Can we model a Reactive Agent as a table look up?

Example: A Room AC

- Agent behavior: N = (A, M)
  - ightharpoonup next(ok, ON) = (STOP, OFF)
  - ightharpoonup next(ok, OFF) = (NOP, OFF)
  - ightharpoonup next(hot, ON) = (NOP, ON)
  - ightharpoonup next(hot, OFF) = (START, ON)
- Table lookup for next

|     | ok        | hot       |
|-----|-----------|-----------|
| ON  | STOP, OFF | NOP, ON   |
| OFF | NOP, OFF  | START, ON |

Theoretically possible, but may need extremely large tables



Quiz 06-03

End of Module 06-03