《芯片设计自动化与智能优化》 Boolean Algebra

The slides are based on Prof. Weikang Qian's lecture notes at SJTU and Prof. Rob Rutenbar's lecture notes at UIUC

Yibo Lin

Peking University

Outline

- Computational Boolean Algebra
 - Cofactors
 - Shannon expansion
 - Combinations of cofactors
 - Quantification
 - Tautology checking
 - Unateness
- Tautology and circuit representation
 - Recursive Tautology checking
 - Represent combinational circuits with DAG
 - Traversal combinational circuits: topological sorting
 - Circuit netlist format

Information Encoded to Boolean representation

图像编码

真彩色 (24位)

Boolean Algebra

- Karnaugh maps
 - Given a truth table, simplify the Boolean expression

Α	В	С	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Z = f(A, B, C) = \overline{A.B.C} + \overline{A.B} + A.B.\overline{C} + A.C$$

Boolean Algebra

- Karnaugh maps
 - Given a truth table, simplify the Boolean expression
 - NOT sufficient for real designs!
- Example: a multiplier of two 16-bit numbers
 - It has 32 inputs.
 - Its Karnaugh map has $2^{32} = 4,294,967,296$ squares
 - This is too big!
 - There must be a better way...

Computational Boolean Algebra

- Need algorithmic, computational strategies for Boolean stuff.
 - Need to be able to think of Boolean objects as data structures + operators
- What will we study?
 - Decomposition strategies
 - Ways of decomposing complex functions into simpler pieces.
 - A set of advanced concepts and terms you need to be able to do this.
 - Computational strategies
 - Ways to think about Boolean functions that let them be manipulated by programs.
 - Interesting applications
 - When you have new tools, there are some useful new things to do.

Advanced Boolean Algebra – Analogy to Calculus

- \blacksquare In calculus, you can represent complex functions like e^x using simpler functions.
 - If you can only use $1, x, x^2, x^3, ...$ as the pieces ...

- ... turns out
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

It corresponds to the Taylor series expansion.

$$-f(x) = f(0) + \frac{f'(0)}{1!} + \frac{f''(0)}{2!} + \frac{f'''(0)}{3!} + \cdots$$

Question: Anything like this for Boolean functions?

Yes. It is called **Shannon Expansion**.

Shannon Expansion

Proposed by Claude Shannon, the father of information theory.

- lacksquare Suppose we have a function $F(x_1, x_2, ..., x_n)$.
- lacktriangle Define **a new function** if we set one of the $x_i = const$
 - $-F(x_1, x_2, \dots, x_i = 1, \dots, x_n)$
 - $-F(x_1, x_2, \dots, x_i = 0, \dots, x_n)$
- Example: $F(x, y, z) = xy + x\bar{z} + y(\bar{x}z + \bar{z})$
 - $-F(x = 1, y, z) = y + \overline{z} + y\overline{z}$
 - $-F(x, y = 0, z) = x\overline{z}$

Note: this is a new function, that no longer depends on the variable x_i .

Shannon Expansion: Cofactors

- Turns out to be an incredibly useful idea.
- \blacksquare It is also known as **Shannon cofactor** with respect to x_i .
 - We write $F(x_1, x_2, ..., x_i = 1, ..., x_n)$ as F_{x_i} . We call it **positive cofactor**.
 - We write $F(x_1, x_2, ..., x_i = 0, ..., x_n)$ as $F_{\overline{x_i}}$. We call it **negative cofactor**.
 - Often, just write them as $F(x_i = 1)$ and $F(x_i = 0)$.
- \blacksquare Why are these useful functions to get from F?

Shannon Expansion Theorem

- Why we care: Shannon Expansion Theorem
- lacktriangle Given any Boolean function $F(x_1, x_2, \dots, x_n)$ and pick any x_i in F's inputs, F can be represented as

$$F(x_1, x_2, ..., x_n) = x_i \cdot F(x_i = 1) + \overline{x_i} \cdot F(x_i = 0)$$

- Proof:
 - Consider any $(x_1, x_2, ..., x_n) \in \{0,1\}^n$
 - If $x_i = 1$:
 - If $x_i = 0$:

Shannon Expansion: Another View

Shannon Expansion: Multiple Variables

- Can do it on more than one variable, too.
 - Just keep on applying the theorem on each variable.
- lacktriangle Example: Expand F(x, y, z, w) around x and y
 - First, expand around x:

$$F(x, y, z, w) = x \cdot F(x = 1) + \bar{x} \cdot F(x = 0)$$

– Then, expand cofactors F(x = 1) and F(x = 0) around y:

$$F(x = 1) = y \cdot F(x = 1, y = 1) + \bar{y} \cdot F(x = 1, y = 0)$$

$$F(x = 0) = y \cdot F(x = 0, y = 1) + \bar{y} \cdot F(x = 0, y = 0)$$

– Final result:

$$F(x, y, z, w) = xy \cdot F(x = 1, y = 1) + x\bar{y} \cdot F(x = 1, y = 0) + \bar{x}y \cdot F(x = 0, y = 1) + \bar{x}\bar{y} \cdot F(x = 0, y = 0)$$

Shannon Cofactors: Multiple Variables

- There is notation for these multiple-variable expansions as well.
- lacktriangle Shannon cofactor with respect to x_i and x_j :
 - Write $F(x_1, ..., x_i = 1, ..., x_j = 0, ..., x_n)$ as $F_{x_i \overline{x_i}}$.
 - The same for any number of variables $x_i, x_j, x_k, ...$
 - Notice that order does **not** matter: $(F_x)_y = (F_y)_x = F_{xy}$.
- For the previous example:

$$F(x, y, z, w) = xy \cdot F_{xy} + x\bar{y} \cdot F_{x\bar{y}} + \bar{x}y \cdot F_{\bar{x}y} + \bar{x}\bar{y} \cdot F_{\bar{x}\bar{y}}$$

- Again, remember: each of the cofactors is a **function**, not a number.
 - $-F_{xy} = F(x = 1, y = 1, z, w)$ is a Boolean **function** of z and w.

Properties of Cofactors

- What else can you do with cofactors?
- Suppose you have 2 functions F(X) and G(X), where $X = (x_1, x_2, ..., x_n)$.
- lacktriangle Suppose you make a new function H, from F and G, say...
 - $-H = \overline{F}$
 - $-H = F \cdot G$, i.e., $H(X) = F(X) \cdot G(X)$
 - -H = F + G, i.e., H(X) = F(X) + G(X)
 - $-H = F \oplus G$, i.e., $H(X) = F(X) \oplus G(X)$
- lacktriangle Question: can you tell anything about H's cofactors from those of F and G?
 - $-(F \cdot G)_{\chi} = \text{what?} (\overline{F})_{\chi} = \text{what?}$

Nice Properties of Cofactors

- lacktriangle Cofactors of F and G tell you everything you need to know.
- Complements
 - $-(\bar{F})_{\chi} = \overline{(F_{\chi})}$
 - In English: cofactor of complement is complement of cofactor.
- Binary Boolean operators
 - $-(F \cdot G)_x = F_x \cdot G_x$ cofactor of AND is AND of cofactors
 - $-(F+G)_x = F_x + G_x$ cofactor of OR is OR of cofactors
 - $-(F \oplus G)_x = F_x \oplus G_x$ cofactor of XOR is XOR of cofactors
- Very useful! Can often help in getting cofactors of complex formulas.

Combinations of Cofactors

- Now consider **operations** on cofactors themselves.
- Suppose we have F(X), and get F_{χ} and $F_{\bar{\chi}}$.
 - $-F_{x} \oplus F_{\bar{x}} = ?$
 - $-F_{\chi}\cdot F_{\bar{\chi}}=?$
 - $-F_{\chi}+F_{\bar{\chi}}=?$
- Turns out these are all useful **new** functions.
 - Indeed, they even have names!
- Next: let's go look at these interesting, useful new functions.

Calculus Revisited: Derivatives

- Remember how you defined derivatives?
 - Suppose you have y = f(x).

Defined as slope of curve as a function of point x.

How to compute?

$$-\frac{df(x)}{dx} = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

Boolean Derivatives

- So, do Boolean functions have "derivatives"?
 - Actually, yes. Trick is how to define them...

Basic idea

- For real-valued f(x), $\frac{df}{dx}$ tells how f changes when x changes.
- For 0,1-valued Boolean function, we cannot change x by small delta.
- Can only change $0 \leftarrow \rightarrow 1$, but can still ask how f changes with $x \dots$
- For Boolean function f(x), define

$$\frac{\partial f}{\partial x} = f_x \oplus f_{\bar{x}}$$

Boolean Derivatives

$$\frac{\partial f}{\partial x} = f_x \oplus f_{\bar{x}}$$

- lacktriangle Compare value of f when x=0 against when x=1.
- $= \frac{\partial f}{\partial x} = 1$ if and only if f(x = 0) is different from f(x = 1).
- $ightharpoonup \frac{\partial f}{\partial x}$ is also known as **Boolean difference**.

Boolean Difference

- Boolean difference also behaves sort of like regular derivatives...
- Order of variables does not matter

$$(\partial f/\partial x)/\partial y = (\partial f/\partial y)/\partial x$$

Derivative of XOR is XOR of derivatives

$$\frac{\partial (f \oplus g)}{\partial x} = \frac{\partial f}{\partial x} \oplus \frac{\partial g}{\partial x}$$

- Like addition
- If function f is constant (f = 1 or f = 0 for all inputs), then $\partial f/\partial x = 0$ for any x.

Boolean Difference

- But some things are just more complex
 - Derivatives of $(f \cdot g)$ and (f + g) do not work the same...

$$\frac{\partial}{\partial x}(f \bullet g) = \left[f \bullet \frac{\partial g}{\partial x} \right] \oplus \left[g \bullet \frac{\partial f}{\partial x} \right] \oplus \left[\frac{\partial f}{\partial x} \bullet \frac{\partial g}{\partial x} \right]$$

$$\frac{\partial}{\partial x}(f+g) = \left[\overline{f} \bullet \frac{\partial g}{\partial x}\right] \oplus \left[\overline{g} \bullet \frac{\partial f}{\partial x}\right] \oplus \left[\frac{\partial f}{\partial x} \bullet \frac{\partial g}{\partial x}\right]$$

- Why?
 - Because AND and OR on Boolean values do not always behave like ADDITION and MULTIPLICATION on real numbers.

Boolean Difference: Gate-Level View

- lacktriangle Consider simple examples for $\partial f/\partial x$.
- Inverter: $f = \bar{x}$ $-f_x = 0$, $f_{\bar{x}} = 1$, $\partial f/\partial x = f_x \oplus f_{\bar{x}} = 1$
- ► AND: f = xy $-f_x = y$, $f_{\bar{x}} = 0$, $\partial f/\partial x = f_x \oplus f_{\bar{x}} = y$
- OR: f = x + y $-f_x = 1$, $f_{\bar{x}} = y$, $\partial f / \partial x = f_x \oplus f_{\bar{x}} = \bar{y}$
- NOR: $f = x \oplus y$ $-f_x = \overline{y}, f_{\overline{x}} = y, \partial f/\partial x = f_x \oplus f_{\overline{x}} = 1$

Meaning: When $\partial f/\partial x = 1$, then f changes if x changes!

Interpreting the Boolean Difference

- What does $\partial F(a, b, ..., w, x)/\partial x = 1$ mean?
 - If you apply a pattern of inputs (a, b, ..., w) that makes $\partial F/\partial x = 1$, then any change in x will force a change in output F.

Boolean Difference: Example

$$s = a \oplus b \oplus c_{in}$$
$$c_{out} = ab + ac_{in} + bc_{in}$$

- What is $\partial c_{out}/\partial c_{in} = 1$?
 - $-c_{out}(c_{in} = 1) = a + b$
 - $-c_{out}(c_{in}=0)=ab$
 - $-\partial c_{out}/\partial c_{in} = c_{out}(c_{in} = 1) \oplus c_{out}(c_{in} = 0)$ $= (a + b) \oplus (ab) = a \oplus b$
- Make sense?
 - $-a \oplus b = 1 \Longrightarrow a \neq b$

Boolean Difference: Summary

lacktriangle Boolean difference explains under what situations an input-change can cause output-change for a Boolean function f.

- $\rightarrow \partial f/\partial x$ is another Boolean function, but it does not depend on x!
 - It cannot, because it is made out of cofactors with respect to x, which eliminate all the x and \bar{x} terms by setting them to constants.

Very useful! (we will see more, later...)

AND of F_{χ} and $F_{\bar{\chi}}$: Universal Quantification

- lacktriangle AND the cofactors: $F_{x_i} \cdot F_{\overline{x_i}}$
 - Name: Universal Quantification of function F with respect to variable x_i .
 - Represented as: $(\forall x_i F)(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$
- \blacktriangleright $(\forall x_i F)$ is a new function
 - It does not depend on x_i !
 - "∀" sign is the "for all" symbol from logic.

OR of F_{χ} and $F_{\bar{\chi}}$: Existential Quantification

- lacktriangle OR the cofactors: $F_{x_i} + F_{\overline{x_i}}$
 - Name: **Existential Quantification** of function F with respect to variable x_i .
 - Represented as: $(\exists x_i \ F)(x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n)$
- \blacksquare ($\exists x_i F$) is a new function
 - It does not depend on x_i !
 - "∃" sign is the "there exists" symbol from logic.

Both $\forall x_i \ F$ and $\exists x_i \ F$ do not depend on x_i

Quantification Notation Makes Sense...

Quantification: Gate-Level View

- lacktriangle Consider simple examples for $(\forall x \ f)$ and $(\exists x \ f)$.
- Inverter: $f = \bar{x}$ $-f_x = 0, \ f_{\bar{x}} = 1, (\forall x \ f) = f_x f_{\bar{x}} = 0, (\exists x \ f) = f_x + f_{\bar{x}} = 1$
- AND: f = xy $-f_x = y$, $f_{\bar{x}} = 0$, $(\forall x f) = f_x f_{\bar{x}} = 0$, $(\exists x f) = f_x + f_{\bar{x}} = y$
- OR: f = x + y $-f_x = 1$, $f_{\bar{x}} = y$, $(\forall x f) = f_x f_{\bar{x}} = y$, $(\exists x f) = f_x + f_{\bar{x}} = 1$
- ► XOR: $f = x \oplus y$ $-f_x = \bar{y}, \ f_{\bar{x}} = y, (\forall x \ f) = f_x f_{\bar{x}} = 0, (\exists x \ f) = f_x + f_{\bar{x}} = 1$

Make sense?

Extends to More Variables in Obvious Way

- Like Boolean difference, can do with respect to more than 1 variable
 - Suppose we have F(x, y, z, w).

$$-(\forall xy F)(z, w) = (\forall x (\forall y F)) = F_{xy} \cdot F_{x\bar{y}} \cdot F_{\bar{x}y} \cdot F_{\bar{x}\bar{y}}$$

$$-(\exists xy F)(z, w) = (\exists x (\exists y F)) = F_{xy} + F_{x\bar{y}} + F_{\bar{x}y} + F_{\bar{x}y}$$

Remember:

- $(\forall x F), (\exists x F), \text{ and } \partial F/\partial x \text{ are all functions.}$
- $-\dots$ but they are functions of all the variables **except** x.

- Consider the following circuit, it adds x = 0 or x = 1 to a 2-bit number a_1a_0 .
 - It's just a 2-bit adder, but instead of b_1b_0 for the second operand, it is just 0x.
 - It has a carry-in d and produces a carry-out c.
 - Hence, c is function of a_1 , a_0 , d and x.

Questions:

- What is $(\forall a_1 a_0 c)(x, d)$?
- What is $(\exists a_1 a_0 c)(x, d)$?

- What is $(\forall a_1 a_0 c)(x, d)$?
 - A function of only x and d. Makes a 1 for values of x and d that make a carry c=1 for all values of inputs a_1 and a_0 .
- What is $(\exists a_1 a_0 c)(x, d)$?
 - A function of only x and d. Makes a 1 for values of x and d that make a carry c=1 for some value of inputs a_1 and a_0 , i.e., there exists some a_1 and a_0 that for this x and d, c=1.

- Compute $(\forall a_1 a_0 c)(x, d)$
 - $-c_{a_1a_0} \cdot c_{a_1\bar{a}_0} \cdot c_{\bar{a}_1a_0} \cdot c_{\bar{a}_1\bar{a}_0}$ = 0
- Compute $(\exists a_1 a_0 c)(x, d)$
 - $-c_{a_1 a_0} + c_{a_1 \bar{a}_0} + c_{\bar{a}_1 a_0} + c_{\bar{a}_1 \bar{a}_0}$ = x + d

Need four cofactors:

- $\bullet \ c_{a_1 a_0} = x + d$
- $\bullet \ c_{a_1\bar{a}_0} = xd$
- $c_{\bar{a}_1 a_0} = 0$
- $c_{\bar{a}_1\bar{a}_0} = 0$

- $(\forall a_1 a_0 c)(x, d) = 0$
 - Make sense: No values of x and d that make c=1 independent of a_1 and a_0
- \blacksquare $(\exists a_1 a_0 c)(x, d) = x + d$
 - Make sense: If at least one of x and d=1, then there exists a_1 and a_0 that let c=1.

Quantification Application: Network Repair

- Suppose that someone specified a logic block for you to implement: $f(a,b) = ab + \bar{b}$
 - ...but you implemented it wrong: in particular, you got ONE gate wrong.

Goal

- Can we deduce how precisely to change this gate to restore correct function?
- Go with this very trivial test case to see how mechanics work...

Network Repair

- Clever trick: Replace our suspect gate by a 4-to-1 MUX with 4 arbitrary new vars d_0 , d_1 , d_2 , d_3 .
 - By cleverly assigning values to d_0 , d_1 , d_2 , d_3 , we can **fake** any gate.
 - Question is: what are the right values of d_i 's so g is repaired, i.e., g = f?

Aside: Faking a Gate with a MUX

► You can do any function of 2 vars with one 4-to-1 multiplexor (MUX).

Aside: Faking a Gate with a MUX

► You can do any function of 2 vars with one 4-to-1 multiplexor (MUX).

Network Repair: Using Quantification

Next trick: XNOR $G(a, b, d_0, ..., d_3)$ with the specification f(a, b).

Using Quantification

- What do we need?
 - Values of d_0 , d_1 , d_2 , d_3 that make z=1 for all possible values of inputs a, b.
 - They are values of d_0 , d_1 , d_2 , d_3 that let

$$(\forall ab \ z)(d_0, d_1, d_2, d_3) = 1$$

- The above equation is **universal quantification** of function z with respect to a, b!
- Any pattern of (d_0, d_1, d_2, d_3) that makes

$$(\forall ab \ z)(d_0, d_1, d_2, d_3) = 1$$

will do it!

As a result

$$-G(a, b, d_0, ..., d_3) = d_0 \bar{a}b + d_1 ab + d_2 \bar{b}$$

$$-f(a, b) = ab + \bar{b}$$

$$-z(a, b, d_0, ..., d_3) = G(a, b, d_0, ..., d_3) \overline{\oplus} f(a, b)$$

We want to get

$$(\forall ab \ z)(d_0, d_1, d_2, d_3)$$

= $z_{\bar{a}\bar{b}} \cdot z_{\bar{a}b} \cdot z_{a\bar{b}} \cdot z_{ab}$

To simplify the computation, we will apply the relation:

$$z_{ab} = G_{ab} \overline{\bigoplus} f_{ab}$$

- $G(a, b, d_0, ..., d_3) = d_0 \bar{a}b + d_1 ab + d_2 \bar{b}$
- $f(a,b) = ab + \overline{b}$
- $ightharpoonup z(a,b,d_0,...,d_3) = G(a,b,d_0,...,d_3) \overline{\oplus} f(a,b)$
- $ightharpoonup z_{\bar{a}\bar{b}} = G_{\bar{a}\bar{b}} \overline{\oplus} f_{\bar{a}\bar{b}} = d_2 \overline{\oplus} 1 = d_2$

- $ightharpoonup z_{ab} = G_{ab} \overline{\oplus} f_{ab} = d_1 \overline{\oplus} 1 = d_1$
- $(\forall ab \ z)(d_0, d_1, d_2, d_3) = z_{\bar{a}\bar{b}} \cdot z_{\bar{a}b} \cdot z_{a\bar{b}} \cdot z_{ab} = \overline{d_0}d_1d_2$

lacktriangle Finally, we obtain $(\forall ab\ z)(d_0,d_1,d_2,d_3)=\overline{d_0}d_1d_2$

To repair, we should find values of d_0 , d_1 , d_2 , d_3 so that $(\forall ab\ z)(d_0,d_1,d_2,d_3)=1$

- Not hard: $d_0 = 0$, $d_1 = 1$, $d_2 = 1$, $d_3 = X(\text{don't care})$

Network Repair

Does $d_0 = 0$, $d_1 = 1$, $d_2 = 1$, $d_3 = X$ work?

$$-$$
 Case 1: $d_0=0$, $d_1=1$, $d_2=1$, $d_3=1$

MUX is an OR gate. Expected!

Network Repair

Does $d_0 = 0$, $d_1 = 1$, $d_2 = 1$, $d_3 = X$ work?

$$-$$
 Case 2: $d_0=0$, $d_1=1$, $d_2=1$, $d_3=0$

MUX is an XOR gate. Unexpected but works!

Network Repair: Summary

- This example is tiny...
 - − But in a real example, you have a big network − 100 inputs, 50,000 gates.
 - When the design doesn't work, it is a major hassle to go through the design to fix it.
 - This gives a mechanical procedure to answer: Can we change 1 gate to repair?
- ► What we haven't seen yet: Computation strategy to mechanically find inputs to make $(\forall ab\ z)(d_0,d_1,d_2,d_3)=1$
 - This computation is called Boolean Satisfiability (SAT).
 - We will see how to solve Boolean SAT problem efficiently later.

Representation of Combinational Circuits

- Represented as a <u>directed</u> graph.
 - Inputs, outputs, and gates → nodes
 - − Wires → directed edges.
 - Why directed edges? Signal flow has direction.

Representation of Combinational Circuits

- Since a combinational circuit has no loops, the corresponding graph is a directed acyclic graphs (DAG).
 - DAG: A directed graph with no cycles.

Traversal of Combinational Circuits

- Many operations on combinational circuit need to traverse it.
- Example: obtain the output given an input pattern.

How to approach this kind of traversal as a computation?

Answer: Topological Sorting.

Topological Sorting

- Observation on computing the output of a combinational circuit:
 - The output of each gate can be computed only when all of its input are known. → We have to obtain its inputs before obtaining output.
 - In other words, if there is a wire (edge) from gate (node) u to v, then gate (node) u should be visited before gate (node) v.
 - This is exactly **topological sorting**.

Topological Sorting

- Topological sorting is not necessarily unique:
 - A, G, D, B, E, C, F and A, B, G, D, E, F, C are both topological sorting.
- Are the following orderings topological sorting?
 - A, B, E, G, D, C, F
 - A, G, B, D, E, F, C

Topological Sorting: Algorithm

- Based on a queue.
- Algorithm:
 - 1. Compute the in-degrees of all nodes. (in-degree: number of incoming edges of a node.)
 - 2. Enqueue all in-degree 0 nodes into a queue.
 - 3. While queue is not empty
 - 1. Dequeue a node v from the queue and visit it.
 - 2. Decrement in-degrees of node v's neighbors.
 - 3. If any neighbor's in-degree becomes 0, enqueue it into the queue.

In-degrees

A	В	С	D	Е	F	G
0	1	2	2	2	1	0

In-degrees

Α	В	С	D	Ш	IL.	G
0	1	2	2	2	1	0

In-degrees

Α	В	С	D	Ш	IL.	G
0	40	2	2 1	2	1	0

In-degrees

Α	В	C	D	Ш	H	G
0	0	2	1	2	1	0

I A I			
1 / 1			
, , , , , , , , , , , , , , , , , , ,			

In-degrees

Α	В	С	D	Е	H	G
0	0	2	40	2	1	0

	T	1		
1 A				
Ι Δ	l (-			
/ \				
			l	

In-degrees

Α	В	С	D	Е	F	G
0	0	2	0	2	1	0

Α	G			
/ \				

In-degrees

Α	В	С	D	Ш	H	G
0	0	2 1	0	2 1	1	0

AGB

In-degrees

Α	В	С	D	E	F	G
0	0	1	0	40	1	0

AGBD	Α
------	---

In-degrees

Α	В	С	D	Е	F	G
0	0	1	0	0	1	0

Α	G	В	D			
---	---	---	---	--	--	--

In-degrees

Α	В	C	D	Е	F	G
0	0	40	0	0	40	0

A C	Э В	D	E		
-----	-----	---	---	--	--

In-degrees

Α	В	С	D	Ш	F	G
0	0	0	0	0	0	0

A G	В	D	Е		
-----	---	---	---	--	--

In-degrees

Α	В	С	D	Ш	IL	G
0	0	0	0	0	0	0

|--|

In-degrees

Α	В	C	D	Ш	H	G
0	0	0	0	0	0	0

Α	G	В	D	Е	С	F
					l	

Circuit Netlist Format

- We also need to store circuits as a text file.
 - ... to be processed by different programs, e.g., layout synthesis tool, SPICE, schematic viewer, etc.
 - Such files essentially store a netlist of gates.

- Many formats exist:
 - Berkeley Logic Interchange Format (BLIF)
 - Structured Verilog Format
 - Benchmark Format

Example: Benchmark Format

INPUT(x1)
INPUT(x2)
INPUT(x3)
INPUT(x4)
OUTPUT(y)
g1=AND(x1,x2)
g2=OR(x3,x4)
g3=AND(x3,x4)
g4=AND(g1,g2)
y=OR(g3,g4)

