Principles of Parallel Algorithm Design

Chris Kauffman

Last Updated: Thu Jan 26 10:00:17 AM CST 2023

Logistics

Reading: Grama Ch 2 + 3

- ► Ch 2.3-5 is most important for Ch 2
- ► Ch 3 all

Assignment 1

- ▶ Up now, Due Thu 02-Feb
- Analysis + serial coding
- Pair-work is allowed, NOTE on this
- Office Hours Tue 10-11am, 4-5pm
- Questions?

This Week

- ► Finish Parallel architecture (A1: #1-2)
- ▶ Parallel Algorithm Decomposition (A1: #3,4,5,6)

Dependency Graphs

- Relation of tasks to one another
- Vertices: tasks, often labeled with time to complete
- Edges: indicate what must happen first
- Should be a DAG: Directed Acyclic Graph (If not, you're in trouble)

Features of Dependency Graphs

Figure 3.5 Abstractions of the task graphs of Figures 3.2 and 3.3, respectively.

- Critical Path Length = Sum of longest path
- ► Max. Degree of Concurrency = # of task in "widest" section
- ► Avg. Degree of Concurrency =

Sum of all vertices
Critical Path Length

Computing Features of Dependency Graphs

Maximum Degree of Concurrency

- ▶ (a) 4
- **(b)** 4

Total Task Work

- ► (a) 63
- **(b)** 64

Figure 3.5 Abstractions of the task graphs of Figures 3.2 and 3.3, respectively.

Critical Path Length

- ► (a) 27 (leftmost path)
- ▶ (b) 34 (rightmost)

Average Degree of Concurrency

- \triangleright (a) 63 / 27 = 2.33
- ► (b) 64 / 34 = 1.88

Exercise: Compute Features of Dependency Graph

Compute

- ► Total Work
- Maximum degree of concurrency
- ► Critical Path Length
- Average Degree of Concurrency

Answers: Compute Features of Dependency Graph

Compute

- ► Total Work: 55
- ► Maximum deg of concur.: 3
- ► Critical Path Length: 30
- Average Deg. of Concur.: 55/30 = 1.83

Note

Calculations are easier if each task node has same "work" associated; this is the case in A1

Makefiles

- ▶ Most build systems for programs calculate task graphs
- Makefiles describe DAGs to build projects with make


```
count words: count words.o lexer.o
  gcc count words.o lexer.o -lfl \
      -o count words
count_words.o: count_words.c
  gcc -c count_words.c
lexer.o: lexer.c
  gcc -c lexer.c
lexer.c: lexer.l
  flex -t lexer.1 > lexer.c
.PHONY: clean
clean:
  rm -rf *.o lexer.c count words
Look up make -j 4 option: use 4
processors for concurrency
```

Identifying Tasks for Parallel Programs

- ► This is the tricky part
- Several techniques surveyed in the text that we'll overview
- Two general paradigms for creating parallel programs

Parallelize a Serial Code

- Already have a solution to the problem
- Identify tasks within solution
- Construct a task graph and parallelize based on it
- We'll spend most of our time on this as it is more common

Redesign for Parallelism

- Best serial code may not parallelize well
- Change the approach entirely to exploit parallelism
- Usually harder, more special purpose, we will spend less time on it

Recursion Provides Parallelism

Algorithms which use *multiple* recursive calls provide easy opportunities for parallelism

Multiple Recursive Call Algs

- Fibonacci calculations
- Mergesort
- Quicksort
- Graph searches

All allow for parallelizing: recursive calls are independent. represent independent tasks which can be run in parallel BUT not all provide practical benefit when run in parallel

Reformulation As Recursive Algorithms

Can sometimes reformulate an iterative algorithm as a recursive one:
 Redesign for parallelism

begin

if (n = 1) then

endelse:

endelse;
return min;
end RECURSIVE_MIN

Show task graph for RECURSIVE_MIN on array
A = {4, 9, 1, 7, 8, 11, 2, 12}, n = 8

```
procedure SERIAL_MIN (A, n)
```

```
begin
min = A[0];
for i := 1 to n - 1 do
    if (A[i] < min) then
        min := A[i];
    endif
endfor;</pre>
```

return min:

end SERIAL_MIN

min := rmin;

procedure RECURSIVE_MIN (A, n)

Data Decomposition: the Goto Design Technique

Identifying parallel tasks based on nature of input or output data is often more straight-forward than an algorithmic/recursive approach

Output Partitioning

- Among algorithm Output Data...
- Determine if tasks to compute output are (relatively) independent
- Parallelize by assigning tasks to Procs based on Output that will be on the Proc

Input Partitioning

- Output tasks not easily independent
- Can build up output via independent tasks on input
- Requires a way to combine results from different sections of input
- Parallelize by assigning tasks to chunks of input then combining

Combinations of Input/Output partitioning are common so don't expect examples to be clearly ONLY one or the other

Exercise: Matrix-Vector Multiplication

- Input: matrix A, vector x
- Output: vector b

$$A * x = b$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}$$

Output Partitioning

- What tasks are required to compute each element of output b?
- What data must each processor hold to perform those tasks?

Answers: Output Partitioning of Mat-Vec Mult

- Must perform a series of multiply adds of a row of the matrix by the vector
- ► If an individual proc holds a whole matrix or whole matrix rows, these tasks are independent
- Output vector b would be spread across the procs

Exercise: Matrix-Vector Multiplication

- ► Input: matrix A, vector x
- ▶ Output: vector b

$$A * x = b$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}$$

Input Partitioning

- ► Constraint: Processors have little memory, can't hold whole rows of A and all of x
- Propose an input partitioning: chunks of A and x, do some computation, combine results to form elements of b

Answers: Input Partitioning for Mat-Vec Mult

```
A(1.1:10) A(1.11:20) A(1.21:30)
                                                   b(1)
                                        x(1:10)
                                                         Task 1: tmp(1,1) = A(1,1:10)*x(1:10)
                                                         Task 2: tmp(1,2) = A(1,11:20)*x(11:20)
                                                         Task 3: tmp(1.3) = A(1.21:30)*x(21:30)
                                                         Task 4: b(1) = tmp(1.1) + tmp(1.2) + tmp(1.3)
                                        x(11:20)
                                                         Task 4*i+1: tmp(i,1) = A(1,1:10)*x(1:10)
A(i,1:10)
          A(i,11:20) A(i,21:30)
                                                   b(i)
                                                         Task 4*i+2: tmp(i,2) = A(1,11:20)*x(11:20)
                                                         Task 4*i+3: tmp(i.3) = A(1.21:30)*x(21:30)
                                                         Task 4*i+4: b(i) = tmp(i,1) + tmp(i,2) + tmp(i,3)
                                        x(21:30)
```

- ▶ Most Tasks: multiply part of a row of A with part of x
- Some Tasks: combine partial sums to produce single element of output b
- ▶ Note: Computing chunks of b now requires communication

Exercise: Item Set Frequency Calculation

Typical data mining task: count how many times items {D, E} were bought together in a database of transactions

- ▶ Input: database + itemsets of interest
- Output: frequency of itemsets of interest

Describe tasks for...

- Input partitioning
- Output partitioning
- Combined partitioning

Answers: Item Set Frequency Calculation

Output Partitioning

- Whole Database fits on each Proc
- Divide up Itemsets among Procs
- ► Each Proc scans whole DB counting its Itemsets

Input Partitioning

- DB spread across Procs, each has Partial DB
- Assume each Proc can hold all Itemsets
- Each Proc scans its DB portion, counts all Itemsets
- Procs communicate to Sum all itemsets (Reduction)

Combined Partitioning

- DB and Itemsets Spread Across Procs
- ► Follow Input Partitioning except...
- Procs only communicate in Groups based on Itemsets

More Details in Grama 3.2

Exploratory Decomposition

Problem Formulations

- Graph Breadth-first and depth-first search
- ▶ Path finding in discrete environments
- Combinatorial search (15-puzzle)
- Find a good move in a game (Chess, Go)

Algorithms

- Similar to recursive decomposition
- Each step has several possibilities to explore
- Serial algorithm must try one, then unwind
- ▶ Parallel algorithm may explore multiple paths simultaneously

Model Problem for Exploratory Decomposition: Fifteen Puzzle

Features of Exploratory Decomposition

- Data duplication may be necessary so each PE can change its own data (puzzle state)
- Redundancy may occur: two PEs arrive at the same state
 - Detect duplication requires programming/communication
 - ► Ignoring duplication wastes PE time
- ► Termination is trickier: once a solution is found, must signal to all active PEs that they can quite or move on
- Can lead to strange "super-linear" speedups over serial algorithms or to much wasted effort

Static and Dynamic Task Generation

Static Task Generation

- All tasks known ahead of time
- Easier to plan and distribute data
- Examples abound: matrix operations, sorting (mostly), data analysis, image processing

Dynamic task Generation

- ► Tasks are "discovered" during the program run
- Tougher to deal with scheduling, data distribution, coordination
- Difficulty with message passing paradigm
- Examples: game tree search, some recursive algorithms

We will focus on Static Task Generation

Static and Dynamic Scheduling (Mapping)

- Given tasks and dependencies, must schedule them to run on actual processors
- Problems to solve include Load imbalance (unequal work),
 Communication overhead, Data distribution as work changes

Static Mapping/Scheduling

- ▶ Specify which tasks happen on which processes ahead of time
- Usually baked into the code/algorithm
- Works well for message passing/distributed paradigm

Dynamic Mapping/Scheduling

- Figure out where tasks get run as you go
- More or less required if tasks are "discovered"
- Centralized scheduling Schemes: manager tracks tasks in a data structure, doles out to workers
- Distributed scheduling schemes: workers share tasks directly

Reducing the Overhead of Parallelism

Parallel algorithms always introduce overhead: work that doesn't exist in a serial computation. Reducing overhead usually comes in three flavors.

- 1. Make tasks as independent as possible
- 2. Minimize data transfers
- 3. Overlap communication with computation
- #1 and #2 are often in tension: why?

Broad Categories of Parallel Program Designs

Data-parallel

Every processors gets data, computes similar things, syncs data with group, repeats; Example: matrix multiplication

Task Graph

Every processor gets some tasks and associated data, computes then syncs, Example: parallel quicksort (later)

Work-pool and Manager/Workers

Initial tasks go into pool, doled out to workers, discover new tasks, go into pool, distributed to workers... Example: web server

Stream/Pipeline/Map-Reduce

Raw data goes in, comp1 done to it, fed to comp2, then to comp3, etc. Example: Frequency counts of all documents, LU factorization

Exercise: A1's Heat Problem

- ▶ What are the tasks? How does the task graph look?
- What kind of scheduling seems like it will work?
- How should the data be distributed?
- What broad category of approach seems to fit? Data parallel, Task graph distribution, Work-pool/Manager-worker, Stream/Pipeline

Answers: A1's Heat Problem

Well, it wouldn't be much of an assignment if I gave you my answers...