

Closed Loop Requirements and Analysis Management

**Michael Lamoreaux
Brett Verhoef**

30 April 2015

Introduction

- Propulsion Systems is leading an effort to improve our requirements and verification and analysis data management processes by integrating them into TcUA (Teamcenter, Teamcenter Unified Architecture)
- Expected benefits:
 - Facilitates getting the right data to the right person at the right time to make the right decision
 - Facilitates proper documentation of analysis inputs
 - Enables integrated change management

Outline

- Orbital ATK Strategic PLM Vision
- Requirements and Analysis Interactions
- Current Condition
- Target Condition
- Stakeholder Needs
- Solution Architecture
- Solution Validation Testing

Orbital ATK Strategic PLM Vision

- End-to-end program management in TcUA
- Reuse data in later project phases, enter data once and reuse multiple times
- Interrelate data elements to allow integrated change management

Requirements and Analysis Interactions

- Focus for this presentation is on managing interactions between requirements and verification data management and analysis data management
- Types of requirement/analysis interaction
 - Concept development
 - Requirement derivation
 - Design verification
 - Analysis scope definition
 - Change management
 - MRB evaluation.
- These interactions are not independent of each other. Data from one interaction should be leveraged and sometimes reused for other interactions.

Current Condition

- Interactions between requirements and analysis are not as well coupled as desired
 - Requirement inputs into analysis are often verbal with little or no documentation
 - This includes design development requirements and verification requirements
 - Changes to requirements are often not communicated to analysts
 - Analysts are typically not closely involved in the requirement definition process
 - Analysis feedback to requirements is likewise often verbal with little or no documentation
- Data management
 - Data management for requirements and verification utilizes TcSE
 - Analysis data management has a wide range of implementations
 - Typically files/data are stored on hard drives or shared network drives
 - Formal ePIC documentation typically limited to customer deliverables
 - Connections between analysis and requirements are typically either managed manually in TcSE or only through human memory

Current Condition - Challenges

- Some of the challenges associated with the current condition are as follows:
 - Greater risk of miscommunication
 - Verbal communication relies on human memory
 - Greater risk of misinterpretation without ability to refer to written communication for clarification
 - Can result in inconsistency between desired and actual analysis results. Even if this inconsistency is discovered it would still drive rework.
 - Greater risk of data loss
 - Inconsistent data management techniques can inhibit data retrieval
 - Data may be inadvertently lost during hardware migration or personnel turn-over
 - Can result in unnecessary rework
 - Greater risk of data inaccessibility
 - Difficult to perform complete impact evaluation, often rely on human memory
 - Analysts do not have direct access to requirements data
 - Systems engineers do not have direct access to analysis data

Target Condition

- Manage requirement and analysis data in the same system (TcUA)
- Interconnect related data through database relations (example: trace links)
- Document analysis inputs through soft release/hard release processes
- Engineering processes that drive communication and interaction between systems engineering and analysts
- Benefits:
 - Decreased risk of miscommunication
 - Documented inputs into analysis process
 - Document outputs from analysis process
 - Decreased risk of data loss.
 - TcUA database is backed up and protected during hardware migration
 - User data in TcUA is not lost during personnel turn-over
 - Decreased risk of data inaccessibility
 - Accessibility via database relations between data elements

Stakeholder Needs

- Stakeholder needs gathered to allow TcUA architecture development and evaluation
- For this paper the focus was on the needs relating to requirement/analysis integration
- User needs (generalized):
 - Systems engineer (req & verif) needs:
 - Accessibility* of analysis data:
 - Analysis inputs
 - Assumptions/simplifications
 - Type of analysis performed
 - Applicable tools
 - Detailed results
 - Summarized results
 - Apply problem report to requirement and analysis data elements

* Accessibility is about providing the right data to the right person at the right time to make the right decision

Stakeholder Needs (cont.)

- User needs (generalized, cont.):
 - Analysis engineer needs:
 - Accessibility of the engineering analysis request (EAR)
 - Accessibility of the requirements model
 - Input stability (soft release/hard release)
 - Change visibility
 - Design engineer needs:
 - Accessibility of applicable requirements
 - Accessibility of verification objectives
 - Accessibility of analyses

Solution Architecture – Design Development

Solution Architecture – Req Derivation

Solution Architecture - Req Derivation - Detailed

Database Relations

- Investing time in creating/maintaining relations pays off in the long run
 - Data is readily accessible to support engineering processes
 - Enables effective change management

Engineering Analysis Request

- Investing time in planning analysis before execution is consistent with PES continuous improvement process
- Analysis results will be applicable for the intended use the first time*
- Deliberate decision about input maturity minimizes unnecessary analysis iterations

* “There is never enough time to do it right the first time, but there is always enough time to do it over.” - anonymous

Solution Architecture – Design Verification

Solution Architecture - Design Verif - Detailed

Solution Validation Testing

- iDev testing (individual development environment on virtual machine)
 - Primarily tested by engineers developing the requirements and analysis data management architectures
 - Work out details of requirement/analysis interactions
 - Validate the concept prior to deployment to development server
- Development server testing
 - Involvement of key supporters from several different sites
 - Involvement of systems engineers and analysts
 - Validate that solution works with multiple users
 - Validate accessibility of data to users
 - Get early feedback from users on the progress of the solution architecture

Case Study 1: Simple Timing Tolerance Analysis

- Input:
 - Dummy customer requirement for FTS S&A safe timing
- Objectives:
 - Demonstrate an analysis performed by systems engineer using spreadsheet
 - Demonstrate derivation of requirements through analysis
 - Demonstrate iteration of the derivation process driven by req and design changes
 - Demonstrate reuse of req derivation analysis for design verification
 - Demonstrate data accessibility

Case Study 2: Hardware Structural Analysis

- Inputs:
 - Dummy customer requirements for loads and factors of safety
 - Dummy preliminary design concept
- Objectives:
 - Demonstrate a more complex analysis performed by a dedicated analyst
 - Demonstrate design analysis driven through verification objectives
 - Demonstrate generation of compliance statements
 - Demonstrate data accessibility

Case Study 3: Thermal Conditions Determination Analysis

- Inputs:
 - Dummy customer requirements for loads and factors of safety
 - Dummy preliminary design concept
- Objectives:
 - Demonstrate a more complex analysis performed by a dedicated analyst
 - Demonstrate derivation of requirements through analysis
 - Demonstrate iteration of the derivation process driven by req and design changes
 - Demonstrate the evolution of analysis when design matures to a higher fidelity analysis
 - Create traceability between new and old analyses
 - Demonstrate generation of compliance statements
 - Demonstrate data accessibility

Conclusion

- The proposed solution architecture for requirements and analysis data management in TcUA is expected to provide the following benefits
 - Facilitates getting the right data to the right person at the right time to make the right decision
 - Facilitates proper documentation of analysis inputs
 - Enables integrated change management
- Continuing efforts to validate these solutions and expand our TcUA capability should be supported by management through budget and resource allocation