Regression Discontinuity Designs

Matias D. Cattaneo and Rocío Titiunik Princeton University

August 2, 2021

Outline

- Designs and Frameworks
- 2 RD Plots: Visualization Methods
- 3 Estimation and Inference: Local Randomization Methods
- Estimation and Inference: Local Polynomial Methods
- 5 Falsification and Validation

Causal Inference and Program Evaluation

- Main goal: learn about treatment effect of policy or intervention
- If treatment randomization available \rightarrow easy to estimate effects
- If treatment randomization not available \rightarrow observational studies
 - ▶ Selection on observables.
 - ▶ Instrumental variables, etc.

• Regression discontinuity (RD) design

- ▶ Simple assignment, based on known external factors
- Objective basis to evaluate assumptions
- Easy to falsify and interpret.
- ► Careful: very local!

Regression Discontinuity Design

- Units receive a score (X_i) .
- A treatment is assigned based on the score and a known **cutoff** (c).
- The **treatment** is:
 - given to units whose score is greater than the cutoff.
 - withheld from units whose score is less than the cutoff.
- Under assumptions, the abrupt change in the probability of treatment assignment allows us to learn about the effect of the treatment.

RD Designs: Taxonomy

• Frameworks.

- ▶ Identification: Continuity/Extrapolation, Local Randomization.
- Score: Continuous, Many Repeated, Few Repeated.

• Settings.

- Sharp, Fuzzy, Kink, Kink Fuzzy.
- Multiple Cutoff, Multiple Scores, Geographic RD.
- Dynamic, Continuous Treatments, Time, etc.

• Parameters of Interest.

- ▶ Average Effects, Quantile/Distributional Effects, Partial Effects.
- ▶ Heterogeneity, Covariate-Adjustment, Differences, Time.
- Extrapolation.

RCTs vs. (Sharp) RD Designs

- Notation: $(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n.$
- Treatment: $T_i \in \{0,1\}$, T_i independent of $(Y_i(0), Y_i(1), X_i)$.
- **Data**: $(Y_i, T_i, X_i), i = 1, 2, ..., n$, with

$$Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0 \\ Y_i(1) & \text{if } T_i = 1 \end{cases}$$

• Average Treatment Effect:

$$au_{\text{ATE}} = \mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i|T=1] - \mathbb{E}[Y_i|T=0]$$

RCTs vs. (Sharp) RD Designs

- Notation: $(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n, X_i \text{ score.}$
- Treatment: $T_i \in \{0,1\}, \quad T_i = \mathbb{1}(X_i \ge c), \quad c \text{ cutoff.}$
- **Data**: $(Y_i, T_i, X_i), i = 1, 2, ..., n$, with

$$Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0 \\ Y_i(1) & \text{if } T_i = 1 \end{cases}$$

• Average Treatment Effect at the cutoff (Continuity-based):

$$\tau_{\mathtt{SRD}} = \mathbb{E}[Y_i(1) - Y_i(0) | X_i = c] = \lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]$$

• Average Treatment Effect in a neighborhood (LR-based):

$$\tau_{\mathtt{LR}} = \frac{1}{N_{\mathcal{W}}} \sum_{X_i \in \mathcal{W}} \mathbb{E}[Y_i(1) - Y_i(0) | X_i \in \mathcal{W}] = \frac{1}{N_1} \sum_{X_i \in \mathcal{W}, T_i = 1} Y_i - \frac{1}{N_0} \sum_{X_i \in \mathcal{W}, T_i = 0} Y_i$$

$$\tau_{\mathtt{SRD}} = \underbrace{\mathbb{E}[Y_i(1) - Y_i(0) | X_i = c]}_{\mathtt{Unobservable}} = \underbrace{\lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x]}_{\mathtt{Estimable}} - \underbrace{\lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]}_{\mathtt{Estimable}}$$

 T_i independent of $(Y_i(0), Y_i(1))$ for all $X_i \in \mathcal{W} = [c - w, c + w]$ + exclusion restriction

Fuzzy RD Designs

 $\begin{array}{c} \stackrel{\dot{c}}{\text{Score}}\,X\\\\ \text{(b) Fuzzy RD (one-sided compliance)} \end{array}$

Assigned to Treatment

Cutoff

Conditional Probability of Receiving Treatment

Assigned to Control

Fuzzy RD Designs

- Imperfect compliance.
 - probability of receiving treatment changes at c, but not necessarily from 0 to 1.
- Canonical Parameter:

$$\begin{split} \tau_{\text{FRD}} &= \frac{\mathbb{E}[(Y_i(1) - Y_i(0)(D_i(1) - D_i(0))|X_i = c]}{\mathbb{E}[D_i(1)|X_i = c] - \mathbb{E}[D_i(0)|X_i = c]} \\ &= \frac{\lim_{x \downarrow c} \mathbb{E}[Y_i|X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i|X_i = x]}{\lim_{x \downarrow c} \mathbb{E}[D_i|X_i = x] - \lim_{x \uparrow c} \mathbb{E}[D_i|X_i = x]} \end{split}$$

- Similarly for Local Randomization framework.
- Different interpretations under different assumptions.

(Sharp and Fuzzy) Kink RD Designs

(Sharp and Fuzzy) Kink RD Designs

- Treatment assigned via continuous score formula, but slope changes discontinuously at "kink" point (c).
- SKRD Parameter:

$$\tau_{\text{KRD}} = \frac{\lim_{x \downarrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x]}{\lim_{x \downarrow c} \frac{d}{dx} b(x) - \lim_{x \uparrow c} \frac{d}{dx} b(x)}$$

where b(x) known function inducing "kink".

• FKRD Parameter:

$$\tau_{\text{KRD}} = \frac{\lim_{x \downarrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x]}{\lim_{x \downarrow c} \frac{d}{dx} \mathbb{E}[D_i | X_i = x] - \lim_{x \uparrow c} \frac{d}{dx} \mathbb{E}[D_i | X_i = x]}$$

• Different interpretation under different assumptions.

Multi-cutoff, Multi-Score, Geographic RD Designs

(a) Multi-cutoff:
$$\tau_{\text{SRD}}(x,c) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x, C_i = c]$$

(a) Multi-cutoff:
$$\tau_{\text{SRD}}(x,c) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x, C_i = c] \qquad (b) \text{ Multi-score: } \\ \tau_{\text{SRD}}(x_1,x_2) = \mathbb{E}[Y_i(1) - Y_i(0)|X_{1i} = x_1, X_{2i} = x]$$

Multi-cutoff, Multi-Score, Geographic RD Designs

- Multi-cutoff RD designs.
 - $C_i \in \mathcal{C}$ with $\mathcal{C} = \{c_1, c_2, \cdots, c_J\}$ or $\mathcal{C} = [\underline{c}, \overline{c}].$
 - $\,\blacktriangleright\,$ Two strategies: normalize-and-pool ($\tilde{X}_i=X_i-C_i),$ or cutoff-by-cutoff analysis.
 - Different interpretation under different assumptions.

• Multi-score RD designs.

- $\mathbf{X}_i = (X_{1i}, X_{2i}, \dots, X_{di})'$ and $\mathbf{c} = (c_1, c_2, \dots, c_d)'$.
- Can always be mapped back to Multi-cutoff RD designs.
- ▶ Leading special cases: Test scores, geography (d = 2).
- ▶ Different interpretation under different assumptions.

• Other RD-like designs.

- ▶ RD in density and bunching designs.
- RD in time.
- Dynamic RD designs.
- ▶ etc.

Geographic RD Design

Highlights and Main Takeaways

- RD designs exploit "variation" near the cutoff.
- Causal effect is different (in general) than RCT.
- \bullet No "overlap" (sharp) so extrapolation or exclusion is unavoidable.
- Graphical analysis is both very useful and very dangerous.
- \bullet Need to work with data near cutoff \Longrightarrow bandwidth or window selection.
- \bullet Many design-specific falsification/validation methods.

Outline

Designs and Frameworks

2 RD Plots: Visualization Methods

3 Estimation and Inference: Local Randomization Methods

4 Estimation and Inference: Local Polynomial Methods

Falsification and Validation

RD Packages: Python, R, Stata

https://rdpackages.github.io/

- rdrobust: estimation, inference and graphical presentation using local polynomials, partitioning, and spacings estimators.
 - rdrobust, rdbwselect, rdplot.
- rddensity: discontinuity in density tests (manipulation testing) using both local polynomials and binomial tests.
 - rddensity, rdbwdensity.
- rdlocrand: covariate balance, binomial tests, randomization inference methods (window selection & inference).
 - rdrandinf, rdwinselect, rdsensitivity, rdrbounds.
- rdmulti: multiple cutoffs and multiple scores.
- rdpower: power, sample selection and minimum detectable effect size.

Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

RD Plots

- Main ingredients:
 - Global smooth polynomial fit.
 - ▶ Binned discontinuous local-means fit.
- Main goals:
 - Graphical (heuristic) representation.
 - Detention of discontinuities.
 - Representation of variability.
- Tuning parameters:
 - Global polynomial degree.
 - ► Location (ES or QS) and number of bins.
- Great to convey ideas but horrible to draw conclusions.

Estimation and Inference Methods

- Local Randomization: finite-sample and large-sample inference.
 - ▶ Localization: window selection (via local independence implications).
 - ▶ Point estimation: parametric, finite-sample (Fisher) or large-sample (Neyman/SP).
 - ▶ Inference: randomization inference (Fisher) or large-sample (Neyman/SP).
- Continuity/Extrapolation: Local polynomial approach.
 - ▶ Localization: bandwidth selection (trade-off bias and variance).
 - ▶ Point estimation: "flexible" (nonparametric).
 - Inference: robust bias-corrected methods.
- Many refinements and other methods exist (EL, Bayesian, Uniformity, etc.).
 - ▶ Do not offer much improvements in applications.
 - ▶ Can be overly complicated (lack of transparency).
 - ▶ Can depend on user-chosen tuning parameters (lack of replicability).

Outline

Designs and Frameworks

2 RD Plots: Visualization Methods

3 Estimation and Inference: Local Randomization Methods

4 Estimation and Inference: Local Polynomial Methods

Falsification and Validation

Local Randomization Approach to RD Design

- Key assumption: exists window W = [c w, c + w] around cutoff where subjects are as-if randomly assigned to either side of cutoff:
 - lacksquare Joint probability distribution of scores for units in the $\mathcal W$ is known:

$$\mathbb{P}[\mathbf{X}_{\mathcal{W}} \leq \mathbf{x}] = F(\mathbf{x}),$$
 for some known joint c.d.f. $F(\mathbf{x})$,

where $\mathbf{X}_{\mathcal{W}}$ denotes the vector of scores for all i such that $X_i \in \mathcal{W}$.

② Potential outcomes not affected by value of the score:

$$Y_i(0,x) = Y_i(0),$$

$$Y_i(1,x) = Y_i(1), \quad \text{for all } X_i \in \mathcal{W}.$$

- Note: stronger assumption than continuity-based approach.
 - ▶ Potential outcomes are a constant function of the score (can be relaxed).
 - ▶ Regression functions are not only continuous at c, but also completely unaffected by the running variable in W.

Experiment versus RD Design

Local Randomization RD

Local Randomization Framework

- **Key idea**: exists window $\mathcal{W} = [c w, c + w]$ around cutoff where subjects are as-if randomly assigned to either side of cutoff.
- Two Steps (analogous to local polynomial methods):
 - Select window W.
 - **2** Given window W, perform estimation and inference.

Challenges

- Window (neighborhood) selection.
- ▶ As-if random assumption good approximation only very near cutoff
- Small sample.

Step 1: Choose the window W

- Find neighborhood where (pre-intervention) covariate-balance holds.
- Find neighborhood where outcome and score independent.
- Domain-specific or application-specific choice.

Step 2: Finite-sample and Large-sample Methods in \mathcal{W}

- ullet Given ${\mathcal W}$ where local randomization holds:
 - ▶ Randomization inference (Fisher): sharp null, finite-sample exact.
 - ▶ Design-based (Neyman): large-sample valid, conservative.
 - ▶ Large-sample standard: random potential outcomes, large-sample valid.
- All methods require window (W) selection, and choice of statistic. First two also require choice/assumptions assignment mechanism. Covariate-adjustments (score or otherwise) possible.

Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

Empirical Illustration: Window Selector

Outline

- Designs and Frameworks
- 2 RD Plots: Visualization Methods
- 3 Estimation and Inference: Local Randomization Methods
- 4 Estimation and Inference: Local Polynomial Methods
- Falsification and Validation

$$\tau_{\mathtt{SRD}} = \underbrace{\mathbb{E}[Y_i(1) - Y_i(0) | X_i = c]}_{\mathtt{Unobservable}} = \underbrace{\lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x]}_{\mathtt{Estimable}} - \underbrace{\lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]}_{\mathtt{Estimable}}$$

Continuity/Extrapolation: Local Polynomial Methods

- Global polynomial regression: not recommended.
 - ▶ Runge's Phenomenon, counterintuitive weights, overfitting, lack of robustness.
- Local polynomial regression: captures idea of "localization".

Choose low poly order (p) and weighting scheme $(K(\cdot))$

Choose bandwidth h: MSE-optimal or CE-optimal

Construct point estimator $\hat{\tau}$ (MSE-optimal $h \implies$ optimal estimator)

Conduct robust bias-corrected inference (CE-optimal $h \implies$ optimal distributional approximation)

Local Polynomial Methods

- Idea: approximate regression functions for control and treatment units locally.
- "Local-linear" (p=1) estimator (w/ weights $K(\cdot)$):

$$-h \le X_i < c:$$

$$c \le X_i \le h:$$

$$Y_i = \alpha_- + (X_i - c) \cdot \beta_- + \varepsilon_{-,i}$$

$$Y_i = \alpha_+ + (X_i - c) \cdot \beta_+ + \varepsilon_{+,i}$$

- ► Treatment effect (at the cutoff): $\hat{\tau}_{SRD}(h) = \hat{\alpha}_{+} \hat{\alpha}_{-}$
- Can be estimated using linear models (w/ weights $K(\cdot)$):

$$Y_i = \alpha + \tau_{\text{SRD}} \cdot T_i + (X_i - c) \cdot \beta_1 + T_i \cdot (X_i - c) \cdot \gamma_1 + \varepsilon_i, \qquad |X_i - c| \le h$$

• Given p, K, h chosen \implies weighted least squares estimation.

Local Polynomial Methods: Choosing bandwidth (p = 1)

• Mean Square Error Optimal (MSE-optimal).

$$h_{ exttt{MSE}} = C_{ exttt{MSE}}^{1/5} \cdot n^{-1/5}$$
 $C_{ exttt{MSE}} = C(K) \cdot rac{ extst{Var}(\hat{ extst{r}}_{ extst{SRD}})}{ extst{Bias}(\hat{ extst{r}}_{ extst{SRD}})^2}$

• Coverage Error Optimal (CE-optimal).

$$h_{\mathrm{CE}} = C_{\mathrm{CE}}^{1/4} \cdot n^{-1/4} \qquad \qquad C_{\mathrm{CE}} = C(K) \cdot \frac{\mathsf{Var}(\hat{\tau}_{\mathtt{SRD}})}{|\mathsf{Bias}(\hat{\tau}_{\mathtt{SRD}})|}$$

• Key idea:

▶ Trade-off bias and variance of $\hat{\tau}_{SRD}(h)$. Heuristically:

$$\uparrow$$
 Bias $(\hat{\tau}_{SRD})$ \Longrightarrow $\downarrow \hat{h}$ and \uparrow Var $(\hat{\tau}_{SRD})$ \Longrightarrow $\uparrow \hat{h}$

- ▶ Implementations: IK first-generation while CCT second-generation plug-in rule. They differ in the way $Var(\hat{\tau}_{SRD})$ and $Bias(\hat{\tau}_{SRD})$ are estimated.
- ▶ Rule-of-thumb: $h_{\text{CE}} \propto n^{1/20} \cdot h_{\text{MSE}}$.

Conventional Inference Approach

• "Local-linear" (p=1) estimator (w/ weights $K(\cdot)$):

$$-h \le X_i < c:$$

$$c \le X_i \le h:$$

$$Y_i = \alpha_- + (X_i - c) \cdot \beta_- + \varepsilon_{-,i}$$

$$Y_i = \alpha_+ + (X_i - c) \cdot \beta_+ + \varepsilon_{+,i}$$

- ► Treatment effect (at the cutoff): $\hat{\tau}_{SRD}(h) = \hat{\alpha}_{+} \hat{\alpha}_{-}$
- Construct usual t-test. For $H_0: \tau_{SRD} = 0$,

$$T(h) = \frac{\hat{\tau}_{\text{SRD}}}{\sqrt{\hat{\mathsf{V}}}} = \frac{\hat{\alpha}_{+} - \hat{\alpha}_{-}}{\sqrt{\hat{\mathsf{V}}_{+} + \hat{\mathsf{V}}_{-}}} \approx_{d} \mathcal{N}(0, 1)$$

• Naïve 95% Confidence interval:

$$I(h) = \left[\hat{\tau}_{SRD} \pm 1.96 \cdot \sqrt{\hat{V}} \right]$$

Robust Bias Correction Approach

• Key Problem:

$$T(h_{\text{MSE}}) = \frac{\hat{ au}_{\text{SRD}}}{\sqrt{\hat{V}}} \approx_d \mathcal{N}(\mathsf{B}, 1) \quad \neq \quad \mathcal{N}(0, 1)$$

- B captures bias due to misspecification error.
- RBC distributional approximation:

$$T^{\text{bc}}(h) = \frac{\hat{\tau}_{\text{SRD}} - \hat{\mathsf{B}}_n}{\sqrt{\hat{\mathsf{V}}}} = \underbrace{\frac{\hat{\tau}_{\text{SRD}} - \mathsf{B}_n}{\sqrt{\hat{\mathsf{V}}}}}_{\approx_d \ \mathcal{N}(0,1)} + \underbrace{\frac{\mathsf{B} - \hat{\mathsf{B}}}{\sqrt{\hat{\mathsf{V}}}}}_{\approx_d \ \mathcal{N}(0,\gamma)}$$

- \triangleright $\hat{\mathsf{B}}$ is constructed to estimate leading bias B, that is, misspecification error.
- RBC 95% Confidence Interval:

$$I_{\mathrm{RBC}} = \left[\begin{array}{cc} \left(\hat{ au}_{\mathrm{SRD}} - \hat{\mathsf{B}} \right) & \pm & 1.96 \cdot \sqrt{\hat{\mathsf{V}} + \hat{\mathsf{W}}} \end{array} \right]$$

Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

D

Variable

Ages 5-9, Head Start-related causes, 1973-1983

Bandwidth or poverty range

(counties) with nonzero weight

Ages 5-9, injuries, 1973-1983

Ages 5-9, all causes, 1973-1983

Ages 25+, Head Start-related causes,

Number of observations

Main results

Specification checks

1973-1983

TABLE III

THE CITED OF CITE	Dibconinicini	20111111120	-	

REGRESSION	DISCONTINUITY	ESTIMATES	OF THE	EFFECT	OF	HEAD	Start	ASSISTANCE	ON	MORTALITY	
											-

527

-1.895**

(0.980)

[0.036]

0.195

(3.472)

[0.924]

(4.311)

[0.415]

2.204

(5.719)

[0.700]

-3.416

Nonparametric estimator

-1.198*

(0.796)

[0.081]

2.426

(2.476)

[0.345]

0.053

(3.098)

[0.982]

6.016

(4.349)

[0.147]

36

-1.114**

(0.544)

[0.027]

0.679

(1.785)

[0.755]

(2.253)

[0.558]

5.872

(3.338)

[0.114]

-1.537

2.177

18

961

Control mean

3.238

22.303

40.232

131.825

Parametric

Flexible

quadratic

-2.558**

(1.261)

[0.021]

0.775

(3.401)

[0.835]

-2.927

(4.295)

[0.505]

2.574

(6.415)

[0.689]

16

863

Flexible

linear

-2.201**

(1.004)

[0.022]

-0.164

(3.380)

[0.998]

(4.268)

[0.317]

2.091

(5.581)

[0.749]

-3.896

8

484

	REGRESSION	DISCONTINUITY	ESTIMATES OF	THE	EFFECT	OF	HI
=							

Outline

- Designs and Frameworks
- 2 RD Plots: Visualization Methods
- 3 Estimation and Inference: Local Randomization Methods
- Estimation and Inference: Local Polynomial Methods
- 5 Falsification and Validation

Falsification and Validation

• RD plots and related graphical methods:

- Always plot data: main advantage of RD designs. (Check if RD design!)
- ▶ Plot histogram of X_i (score) and its density. Careful: boundary bias.
- ▶ RD plot $\mathbb{E}[Y_i|X_i=x]$ (outcome) and $\mathbb{E}[Z_i|X_i=x]$ (pre-intervention covariates).
- Be careful not to oversmooth data/plots.

• Sensitivity and related methods:

- Score density continuity: binomial test and continuity test.
- Pre-intervention covariate no-effect (covariate balance).
- Placebo outcomes no-effect.
- \triangleright Placebo cutoffs no-effect: informal continuity test away from c.
- ▶ Donut hole: testing for outliers/leverage near c.
- ▶ Different bandwidths: testing for misspecification error.
- ▶ Many other setting-specific (fuzzy, geographic, etc.).

Empirical Illustration: Head Start (Ludwig and Miller, 2007, QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

Thank you!

https://rdpackages.github.io/