Wydział: WFiIS	Imię i nazwisko: 1. Axel Zuziak 2. Marcin Węglarz		Rok II	Grupa 02	Zespół 03
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Opraco	Nr ćwiczenia 00			
Data wykonania: 04.03.2015	Data oddania: 18.03.2015	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	OCENA:

1 Abstrakt

W ćwiczeniu wykonano prosty pomiar fizyczny w celu przedstawienia i rozwiązania szeregu zagadnień statystycznych. Takie jak niepewność typu A i B, niepewność rozszerzona, porównanie wartości zmierzonej z tabelaryczną.

2 Wstęp

W wahadle prostym poruszające się ciało jest punktem materialnym zawieszonym na nieważkiej, nierozciągliwej nici o długości l. Zakładając, że na ciało działa siła ciężkości skierowana w dół o wartości g, oraz oznaczając kąt wychylenia przez θ można zapisać równanie:

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l}\sin\theta\tag{1}$$

Przy małych wychyleniach kąta θ funkcję sinus można przybliżyć jej argumentem, co pozwala zapisać:

$$\frac{d^2\theta}{dt^2} + \omega^2\theta = 0\tag{2}$$

Gdzie częstość kołowa drgań wynosi: $\omega = \frac{2\pi}{T}$. Czyli możemy wyznaczyć zależność okresu drgań wahadła:

$$T = 2\pi \sqrt{\frac{l}{q}} \tag{3}$$

3 Aparatura i wykonanie ćwiczenia

W ćwiczeniu wykonano dwie serie pomiarów:

1. Pomiary dla ustalonej długości wahadła.

Zmierzono długość wahadła za pomocą linijki. Wprowadzono wahadło w ruch drgający o bardzo małej amplitudzie rzędu kilku stopni. Zmierzono czas k=40 okresów. Pomiar powtórzono dziesięciokrotnie nie zmieniając liczy okresów. Wyniki przedstawiono w tabeli (1).

2. Pomiary zależności okresu drgań od długości wahadła.

Wykonano 15 pomiarów 20 okresów, zmieniając długość wahadła w zakresie od 11 do 19,5 cm.

W obu pomiarach użyto następującej aparatury:

- Stoper marki HTC o niepewności: $\Delta t = 0, 1s$
- Linijka o najmniejszej podziałce $\Delta d = 0, 1$ cm.
- Sześciokątna nakrętka w przybliżeniu punktowa masa.
- Sznurek w przybliżeniu nieważka nić.

4 Wyniki pomiarów

Długość wahadła: $l = 19, 0 \pm 0, 1$ cm.

Tabela 1: Wyniki pomiarów okresu drgań przy ustalonej długości wahadła

L.P	Liczba okresów k	Czas $t[s]$ dla k okresów	Okres $T_i = t/k[s]$
1	40	34,1	0,8525
2	40	35,1	0,8775
3	40	35,1	0,8775
4	40	35,1	0,8775
5	40	35,0	0,8750
6	40	35,0	0,8750
7	40	35,0	0,8750
8	40	35,1	0,8775
9	40	34,9	0,8725
10	40	35,0	0,8750

Tabela 2: Wyniki pomiarów zależności okresu drgań od długości wahadła

L.P	l [mm]	k	t [s]	T_i [s]	$T_i^2 [s^2]$
1	110	20	13,3	0,665	0,44222
2	125	20	14,2	0,71	0,5041
3	130	20	14,3	0,715	0,511225
4	135	20	14,6	0,73	0,5329
5	145	20	15,2	0,76	0,5776
6	150	20	15,4	0,77	0,5929
7	155	20	15,7	0,785	0,616225
8	160	20	15,9	0,795	0,632025
9	165	20	16,1	0,805	0,648025
10	170	20	16,4	0,82	0,6724
11	175	20	16,6	0,83	0,6889
12	180	20	16,8	0,84	0,7056
13	185	20	17,1	0,855	0,731025
14	190	20	17,5	0,875	0,765625
15	195	20	17,7	0,885	0,783225

5 Wyniki obliczeń

- Analizując wyniki pomiarów pod kątem błędów grubych z dalszych obliczeń wykluczono pozycję 1 z tabeli (1).
- Następnie wyliczono niepewność typu A wyznaczenia okresu drgań wahadła jako estymator odchylenia standardowego średniej oraz wartość średnią liczoną jako średnia arytmetyczna wyników.

$$\overline{T} = 0,8735 \text{ s}$$

 $u_A(T) = 0,0024 \text{ s}$

Niepewność pomiaru długości wahadła określono jako niepewność typu B i przyjęto wartość działki elementarnej:

$$u_B(l) = 0, 1 \text{ cm}$$

• W celu wyznaczenia przyśpieszenia ziemskiego przekształcono wzór (3) do postaci:

$$g = \frac{4\pi^2 \cdot l}{T^2} \tag{4}$$

Po podstawieniu:

$$g = 9,831 \frac{m}{s^2}$$

• Korzystając z prawa przenoszenia niepewności obliczono niepewność złożoną $u_c(g)$ wyznaczenia wartości przyśpieszenia ziemskiego.

$$u_c(g) = \sqrt{\left[\frac{4\pi^2}{T^2} \cdot u(l)\right]^2 + \left[-\frac{8\pi^2 l}{T^2} \cdot u(T)\right]^2} = 0,075 \frac{\text{m}}{\text{s}^2}$$

Oba człony składające się na niepewność g mają porównywalne wartości.

 \bullet Obliczono niepewność rozszerzoną przyjmując zgodnie z pozycją w literaturze [5] wartość k=2:

$$U(g) = k \cdot u_c(g) = 2 \cdot 0,075 = 0,15 \frac{\text{m}}{\text{s}^2}$$

• Sprawdzono czy uzyskana wartość przyspieszenia ziemskiego jest zgodna w granicach niepewności rozszerzonej, z wartością tabelaryczną (g_0) :

Dla Krakowa wartość
$$g_0=9,811~\frac{\rm m}{\rm s^2}$$
Różnica $|g-g_0|=0,021<0,15=U(g)$

Zatem wartość zmierzoną możemy uznać za zgodną.

• Kolejno narysowano wykres (1) okresu od długości wahadła T(l) oraz naniesiono na niego krzywą: $f(x)=2\pi\sqrt{\frac{x}{g}}$

3

 \bullet Chcąc wyznaczyć wartość przyspieszenia g graficznie, narysowano wykres (2) funkcji, gdzie na osi y odłożono wartości T^2 a na osi x długość wahadła l. Następnie korzystając z funkcji programu Gnuplot dopasowano prosta y = ax do punktów pomiarowych, gdzie wyznaczony współczynnik a:

$$a = 3,968 \pm 0,010$$

Przekształcając wzór (3) poprzez podniesienie go do kwadratu i przyrównując go do funkcji liniowej y = axotrzymano wzór na a:

$$a = \frac{4\pi^2}{g}$$

W kolejnym kroku wyliczono g z powyższego wzoru oraz u(g) przy pomocy wartości u(a) z prawa przenoszenia niepewności:

$$u(g) = \frac{4\pi^2}{a^2}u(a) = 0,025\frac{m}{s^2}$$

Po podstawieniu:

$$g = 9,949 \pm 0,025 \frac{m}{s^2}$$

6 Wnioski

W wynikach pomiarów pojawił się jeden błąd gruby, po którego odrzuceniu wartość obliczonego przyśpieszenia ziemskiego jest równa w granicach niepewności rozszerzonej z wartością tabelaryczną.

Literatura

- [1] Robert Resnick, David Halliday Fizyka Tom 1. Wydawnictwo Naukowe PWN, Warszawa, Wydanie piętnaste,
- [2] Henryk Szydłowski, Pracownia fizyczna, Wydawnictwo Naukowe PWN, Warszawa, Wydanie siódme, 1994.
- [3] Z. Stegowski, Zeszyt A1 do ćwiczeń laboratoryjnych z fizyki, Kraków, Akademia Górniczo Hutnicza im. Stanisława Staszica, dostępny na stronie: http://www.fis.agh.edu.pl/~pracownia_fizyczna/cwiczenia/00_wykon.pdf
- [4] Jacek Tarasiuk, Wykłady, Statystyka Inżynierska [on-line], Kraków, Akademia Górniczo Hutnicza im. Stanisława Staszica, dostępny na stronie: http://home.agh.edu.pl/~tarasiuk/dydaktyka/index.php/statystykainzynierska
- [5] Andrzej Zięba, Opracowanie danych pomiarowych [on-line], Kraków, Akademia Górniczo Hutnicza im. Stanisława Staszica, dostępny na stronie:

http://www.ftj.agh.edu.pl/zdf/danepom.pdf

Rysunek 1: Wykres zależności okresu wahadła od jego długości.

Rysunek 2: Wykres zależności kwadratu okresu wahadła od jego długości.