

Welcome to the EAPS 10000 Y01 online course Planet Earth (also known as EAPS 100)!

Professor Lawrence Braile

Dept. of Earth, Atmospheric, and Planetary Sciences

2271 HAMP (CIVL), Purdue University

braile@purdue.edu, (765) 494-5979

EAPS 10000 Y01 - Planet Earth (online course) Week 1, Chapter 1 (pages 22-43, text)

Week	Chapter	Assigned	Major Concepts	Important Terms
		Pages		
1	1 – Minerals	22 - 43	Physical properties of	Mineral, rock, bonds,
			minerals, mineral	isotopes, silicate,
1			resources, chemical	silicon-oxygen
			composition	tetrahedron

Copyright © 2005 Pearson Prentice Hall, Inc.

EAS 10000 Y01 - Planet Earth (online course) Week 1, Chapter 1 (pages 22-43, text)

When you have finished reading Chapter 1 and viewing the PowerPoint file for Week.1.Chapter.1, take the chapter quiz (Qz 1; be sure to read the Syllabus for more information on quizzes). You can use your book, notes, etc. during the quiz.

The PPT files (converted to PDF files) are best viewed with the Full Screen view in browsers.

The following slides illustrate some of the important concepts and topics of Chapter 1.

Earth Materials:

Mineral: Naturally occurring, inorganic solid, distinct chemical composition, regular crystal structure, characteristic physical properties. Examples: quartz, calcite, mica, feldspar, olivine, diamond, pyrite (iron sulfide), garnet, gold, hematite, galena (lead sulfide), talc, gypsum, beryl (includes emeralds), halite (salt, NaCI), corundum (includes sapphire), and topaz (many of these minerals may be familiar to you because they sometimes are gems).

Rock (will be studied in Chapter 2): Aggregate of minerals.

Igneous, sedimentary, metamorphic.

Giant gypsum (mineral) crystals from the Cave of Crystals, Chihuahua, Mexico (Figure, page 22, Text)

Examples of Minerals: Pyrite (FeS₂) Hematite (Fe₂O₃) <u>1cm</u> 1cm Quartz (SiO₂) 1cm Olivine $([Mg,Fe]_2SiO_4)$

1_{cm}

(Text, 5th edition)

Olivine – an important silicate mineral (iron/magnesium silicate) in the Earth's mantle (the mantle is 82% of the planet by volume).

Mineral (characteristic physical properties – an important concept for minerals):

Characteristic physical properties – hardness, crystal structure, cleavage, color streak, density

(Figure 1.15a, text)

Mineral (characteristic physical properties – an important concept for minerals):

Characteristic physical properties – The hardness scale

Mineral (characteristic physical properties – an important concept for minerals):

Characteristic physical properties – crystal structure

Mineral properties: Regular crystal structure (atomic scale) results in characteristic crystal shape and cleavage (Figure 1.2, text).

Most rocks (including most of the Earth's crust and mantle – over 82% of the volume of the Earth) are silicates with a chemical formula similar to:

XSiO₂← not always 2

where 'X' is K, Na, Al, Fe, Mg, Ca, or a combination of elements.

Another common rock type in the sedimentary layer is Limestone (consists primarily of the mineral calcite):

CaCO₃

Note the rhombohedral cleavage planes of the mineral Calcite

Examples of Silicate Mineral Groups (different structures and examples of minerals in each group):

© 2011 Pearson Education, Inc.

Silicate minerals, (Figure 1.23, text)

@ 2011 Pearson Education, Inc.

Silicate minerals, (Figure 1.23, text)

© 2011 Pearson Education, Inc.

Silicate minerals, (Figure 1.23, text)

Relative abundance of the eight most common elements in the Earth's continental crust (Figure 1.21, text)

Note that Silicon and Oxygen are the elements of greatest abundance so it follows that silicate minerals are very abundant in the Earth's crust.

Many nonsilicate minerals have significant economic uses (Table 1.1, text)

Table 1.1 Common Nonsilicate Mineral Groups

Mineral Group	Name	Chemical Formula	Economic Use
Oxides	Hematite	Fe ₂ O ₃	Ore of iron, pigment
	Magnetite	Fe_3O_4	Ore of iron
	Corundum	Al_2O_3	Gemstone, abrasive
	Ice	H ₂ O	Solid form of water
Sulfides	Galena	PbS	Ore of lead
	Sphalerite	ZnS	Ore of zinc
	Pyrite	FeS ₂	Sulfuric acid production
	Chalcopyrite	CuFeS ₂	Ore of copper
	Cinnabar	HgS	Ore of mercury
Sulfates	Gypsum	CaSO ₄ · 2H ₂ O	Plaster
	Anhydrite	CaSO ₄	Plaster
	Barite	BaSO ₄	Drilling mud
Native elements	Gold	Au	Trade, jewelry
	Copper	Cu	Electrical conductor
	Diamond	C	Gemstone, abrasive
	Sulfur	S	Sulfa drugs, chemicals
	Graphite	C	Pencil lead, dry lubricant
	Silver	Ag	Jewelry, photography
	Platinum	Pt	Catalyst
Halides	Halite	NaCl	Common salt
	Fluorite	CaF ₂	Used in steelmaking
	Sylvite	KCl	Fertilizer
Carbonates	Calcite	CaCO ₃	Portland cement, lime
	Dolomite	CaMg(CO ₃) ₂	Portland cement, lime

© 2011 Pearson Education, Inc.

Every American Born Will Need...

2.96 million pounds of minerals, metals, and fuels in their lifetime Learn more at www.mii.org

©2011 Mineral Information Institute, SME Foundation

From Mineral Information Institute (http://www.mii.org/pdfs/mining_101.pdf)