Algorithmic aspects of Optimal Channel Coding: A geometric point of view

Paul Fermé

LIP - ENS de Lyon

20/04/20

Introduction

- How much classical information can we send through quantum channels?
- Shannon and Holevo's channel capacity: average number of bits per channel we can faithfully transmit in the limit of taking n channel copies.

Introduction

- How much classical information can we send through quantum channels?
- Shannon and Holevo's channel capacity: average number of bits per channel we can faithfully transmit in the limit of taking n channel copies.
- Our setting: what is the best strategy (maximizing the probability of success) of sending k equiprobable messages through one channel.
- How efficiently can we compute a good strategy?

Contents

Channel Coding Function

Geometric Point of View

General Convex Problem: MECP MECP general properties Particular cases of MECP

Channel Coding Function

Definition (Channel Coding Function)

 $W = \{W_x\}_{x \in X}$ a classical-quantum channel, ie. a finite set of quantum states. $S \subseteq X$ a code for |S| messages, best POVM gives

$$g_W(S) := \max_{\Lambda} \min_{\mathbf{z} \in S} \operatorname{Tr}(\Lambda_x W_x)$$

$$\text{subject to} \quad \sum_{x \in S} \Lambda_x = \mathbb{1}$$

$$\Lambda_x \succcurlyeq 0, \forall x \in S$$

Channel Coding Function

Definition (Channel Coding Function)

 $W = \{W_x\}_{x \in X}$ a classical-quantum channel, ie. a finite set of quantum states. $S \subseteq X$ a code for |S| messages, best POVM gives

$$f_W(S) := \max_{\Lambda} \min_{x \in S} \operatorname{Tr}(\Lambda_x W_x)$$
 subject to $\sum_{x \in S} \Lambda_x = \mathbb{1}$ (1) $\Lambda_x \succcurlyeq 0, \forall x \in S$

The probability of success of the best strategy is given by:

$$S(W,k) := \frac{1}{k} \max_{S \subseteq X, |S| \le k} f_W(S)$$

First examples on the Bloch sphere

Any S such that |S| = 1Best POVM = $\mathbb{1}$ f(S) = 1, S(W, 1) = 1

First examples on the Bloch sphere

Any S such that |S|=1Best POVM = $\mathbb{1}$ f(S)=1, S(W,1)=1

 $W = \{W_1, W_2\}$ pure states. We take $S = \{1, 2\}$. Best POVM is $\{|0\rangle\langle 0|, |1\rangle\langle 1|\}$:

$$f_W(S) = 2\cos^2\left(\frac{\pi - \theta}{4}\right)$$

$$= 1 + \sin\frac{\theta}{2}$$

$$S(W, 2) = \frac{1 + \sin\frac{\theta}{2}}{2}$$

Dual point of view

Finding a measurement is hard, we look at the (SDP) dual POV:

Property (Strong Duality)

$$f_W(S) = \min_{\rho} \operatorname{tr}(\rho)$$
subject to $\rho \succcurlyeq W_x, \forall x \in S$ (2)

Dual point of view

Finding a measurement is hard, we look at the (SDP) dual POV:

Property (Strong Duality)

$$f_W(S) = \min_{\rho} \operatorname{tr}(\rho)$$
subject to $\rho \succcurlyeq W_x, \forall x \in S$ (2)

Property ([Bae, 2013])

The optimal matrix ρ is unique, whereas the optimal POVM Λ isn't (proved via KKT conditions: primal and dual constraints mixed).

Remark

The problem of computing one image of f_W is known as minimum-error quantum state discrimination.

Geometric point of view

Definition (Penumbra (inspired by [Burgeth et al., 2007]))

 $P(M) := \{ N \in \mathcal{H}_d \text{ s.t. } N \leq M \}$. It is a proper affine cone.

Geometric point of view

Definition (Penumbra (inspired by [Burgeth et al., 2007]))

 $P(M) := \{ N \in \mathcal{H}_d \text{ s.t. } N \leq M \}$. It is a proper affine cone.

Property

 $Q_d := \mathcal{D}_d - \mathbb{1}_d$ centered set of states.

Then $\mathcal{D}(m,r):=m-rQ_d$ with $m\in \mathcal{T}_1:=\{\operatorname{tr}(M)=1\}\cap\mathcal{H}_d$ is the base of $P(m+r\mathbb{1}_d)$ included in \mathcal{T}_1 .

Geometric point of view

Definition (Penumbra (inspired by [Burgeth et al., 2007]))

 $P(M) := \{ N \in \mathcal{H}_d \text{ s.t. } N \leq M \}$. It is a proper affine cone.

Property

 $Q_d := \mathcal{D}_d - \mathbb{1}_d$ centered set of states.

Then $\mathcal{D}(m,r):=m-rQ_d$ with $m\in \mathcal{T}_1:=\{\operatorname{tr}(M)=1\}\cap\mathcal{H}_d$ is the base of $P(m+r\mathbb{1}_d)$ included in \mathcal{T}_1 .

In particular for $W \in \mathcal{D}_d$ and any M with $\operatorname{tr}(M) \geq 1$:

$$W \in \mathcal{D}(m,r) \iff m+r\mathbb{1}_d \succcurlyeq W$$

$$M \succcurlyeq W \iff W \in \mathcal{D}(M - r_M \mathbb{1}_d, r_M) \text{ where } r_M := \operatorname{tr}(M) - 1$$

Drawing

Equivalent geometric formulation

Let W a finite set of points in \mathcal{D}_d , and S a subset of its indices:

 $\underline{\mathsf{MinTr:}} \ \mathsf{Find} \ \mathsf{the} \ \mathsf{minimum} \ \mathsf{trace} \ \mathsf{matrix} \ \rho \ \mathsf{such} \ \mathsf{that} \ \forall x \in \mathcal{S}, \rho \succcurlyeq W_x.$

MEQP: Find the smallest $r \ge 0$ and $m \in T_1$ s.t. $\{W_x\}_{x \in S} \subseteq \mathcal{D}(m,r)$.

Equivalent geometric formulation

Let W a finite set of points in \mathcal{D}_d , and S a subset of its indices:

MinTr: Find the minimum trace matrix ρ such that $\forall x \in S, \rho \succcurlyeq W_x$.

MEQP: Find the smallest $r \geq 0$ and $m \in T_1$ s.t. $\{W_x\}_{x \in S} \subseteq \mathcal{D}(m,r)$.

Theorem

ho the solution of MinTr and $extit{m,r}$ a solution of MEQP for $extit{W,S.}$

Then $\rho = m + r\mathbb{1}_d$. In particular, $f_W(S) = \operatorname{tr}(\rho) = 1 + r$.

For a set of k pure states:

Application in the Bloch sphere

For a set of k pure states:

All of them in one hemisphere: $r = \sin(\frac{\theta}{2})$, so $f_W(S) = 1 + \sin(\frac{\theta}{2})$.

Application in the Bloch sphere

For a set of k pure states:

- All of them in one hemisphere: $r = \sin(\frac{\theta}{2})$, so $f_W(S) = 1 + \sin(\frac{\theta}{2})$.
- Otherwise: r = 1, $f_W(S) = 2$.

Application in the Bloch sphere

For a set of k pure states:

- All of them in one hemisphere: $r = \sin(\frac{\theta}{2})$, so $f_W(S) = 1 + \sin(\frac{\theta}{2})$.
- ► Otherwise:

$$r = 1$$
, $f_W(S) = 2$.

We recover in particular the example of the beginning.

MECP general properties

General Convex Problem

For d > 2, \mathcal{D}_d not a ball, but still a *convex body*: a full-dimensional compact convex set in \mathbb{R}^{d^2-1}

General Convex Problem

For d > 2, \mathcal{D}_d not a ball, but still a convex body: a full-dimensional compact convex set in \mathbb{R}^{d^2-1}

MECP: [Brandenberg and König, 2013] $P \subseteq \mathbb{R}^n$ compact (finite for us), $C \subseteq \mathbb{R}^n$ convex body, find the least dilatation factor $r \geq 0$, such that a translate of rC contains P:

$$R(P,C) :=$$
 minimize r subject to $P \subseteq m + rC$ (3) $m \in \mathbb{R}^n, r \ge 0$

LIP - ENS de Lvon

General Convex Problem

For d > 2, \mathcal{D}_d not a ball, but still a *convex body*: a full-dimensional compact convex set in \mathbb{R}^{d^2-1}

MECP: [Brandenberg and König, 2013] $P \subseteq \mathbb{R}^n$ compact (finite for us), $C \subseteq \mathbb{R}^n$ convex body, find the least dilatation factor $r \geq 0$, such that a translate of rC contains P:

$$R(P,C) :=$$
 minimize r subject to $P \subseteq m + rC$ $m \in \mathbb{R}^n, r \ge 0$ (3)

In particular, MEQP is the case where we take points $P\subseteq \mathcal{D}_d\subseteq \mathbb{R}^{d^2-1}$ and we take $C=-Q_d=\mathbb{1}_d-\mathcal{D}_d$. In particular $f_W(S)=1+R(\{W_x\}_{x\in S},-Q_d)$

Optimality conditions

Theorem (Optimality conditions)

P is optimally contained in C iff:

- 1. $P \subset C$
- 2. For some $2 \le k \le n+1$, there exist $p_1, \ldots, p_k \in P$ and hyperplanes $H(a_i, 1)$ supporting P and C in p_i s.t. $0 \in \text{conv}\{a_1, \ldots, a_k\}$.

Core-radii and S(W, k)

Definition (Core-radii)

The k-th core-radius of P with respect to C is defined by:

$$R_k(P,C) := \max_{S \subseteq P, |S| \le k+1} R(S,C)$$

In particular: $S(W,k) = \frac{1}{k}(1+R_{k-1}(W,-Q_d))$

MECP general properties

Properties on core-radii

Theorem (Helly's theorem)

If $\dim(P) \leq k$, then $R_k(P,C) = R(P,C)$. For us: d^2 measurement outputs used at most.

Properties on core-radii

Theorem (Helly's theorem)

If $\dim(P) \leq k$, then $R_k(P,C) = R(P,C)$. For us: d^2 measurement outputs used at most.

Theorem $(R_k/k \text{ decreases})$

$$\left(\frac{R_k(P,C)}{k}\right)_{k\in[n]}$$
 decreases. For us: $\left(\frac{S(W,k)-\frac{1}{k}}{1-\frac{1}{k}}\right)_{k\in[n]}$ decreases.

MECP general properties

R_k/k decreases I

▶ Let us show that $\left(\frac{R_k(P,C)}{k}\right) \leq \left(\frac{R_{k-1}(P,C)}{k-1}\right)$.

R_k/k decreases |

- Let us show that $\left(\frac{R_k(P,C)}{k}\right) \leq \left(\frac{R_{k-1}(P,C)}{k-1}\right)$.
- ▶ $S = \{x_1, ..., x_{k+1}\} \subseteq P$ s.t. $R(S, C) = R_k(P, C)$: if it does not exist, then $R_k(P,C) = R_{k-1}(P,C)$ and we are done.
- We suppose $\sum_{i=1}^{k+1} x_i = 0$ and $R_{k-1}(P, C) = 1$.
- ▶ We will show that $R(S, C) \leq \frac{k}{k-1}$.

MECP general properties

R_k/k decreases ||

► $S_i = \text{conv}\{x_i : i \neq j\}$ facets of S.

R_k/k decreases ||

- ► $S_i = \text{conv}\{x_i : i \neq j\}$ facets of S.

R_k/k decreases ||

- \triangleright $S_i = \text{conv}\{x_i : i \neq i\}$ facets of S.
- $-\frac{1}{k}x_j = \frac{1}{k}\sum_{i\neq j}x_j \in S_j$ $x_i \in S_i$ for $i \neq i$
- ► $S_i \subseteq c_i + C$ so $(k \frac{1}{k})x_j \in \sum_{i=1}^{k+1} S_i \subseteq \sum_{i=1}^{k+1} c_i + (k+1)C$ by convexity of C.

MECP general properties

R_k/k decreases |

- ► $S_i = \text{conv}\{x_i : i \neq j\}$ facets of S.
- $-\frac{1}{k}x_j = \frac{1}{k}\sum_{i \neq j} x_j \in S_j$ $x_j \in S_i \text{ for } i \neq j$
- ▶ $S_i \subseteq c_i + C$ so $(k \frac{1}{k})x_j \in \sum_{i=1}^{k+1} S_i \subseteq \sum_{i=1}^{k+1} c_i + (k+1)C$ by convexity of C.
- ▶ Implies $R(S, C) \le \frac{k+1}{k-\frac{1}{k}} = \frac{k}{k-1}$ with $c = \frac{k}{k-1} \sum_{i=1}^{k+1} \frac{1}{k+1} c_i$ QED.

Greedy algorithm

Algorithm 1: Greedy algorithm

Input: $k \in \{1, ..., n\}$

Output: An approximation of $R_{k-1}(P,C)$: a set S_k of size k such that $R_{k-1}(P, C) < (1+c)R(S_k, C)$

- 1 $S_0 = \emptyset$
- 2 for $i \in \{1, ..., k\}$ do
- 3 $p_i = \underset{p \in P S_{i-1}}{\operatorname{argmax}} R(S_{i-1} \cup \{p\}, C)$ 4 $S_i = S_{i-1} \cup \{p_i\}$
- 5 return S_k

We assume we have an *oracle* that computes R(S, C) for cost 1. Thus the greedy algorithm is polynomial. Does it give a good approximation ratio 1 + c?

Particular cases of MECP

Regular simplex

- ▶ Take points in T^n and $C = -T^n$ where T^n is the *n*-regular simplex centered in 0. Previous drawing was T^2 .
- Corresponds to the classical case of our channel problem: T^n is the space of probability distributions of dimension n+1.

Regular simplex

- ▶ Take points in T^n and $C = -T^n$ where T^n is the *n*-regular simplex centered in 0. Previous drawing was T^2 .
- Corresponds to the classical case of our channel problem: T^n is the space of probability distributions of dimension n+1.
- In [Barman and Fawzi, 2017], it was shown that the greedy algrithm has an approximation ratio $1 + c = \frac{1}{1 e^{-1}}$ and that it is optimal if $P \neq NP$.
- ► This was done through the submodularity of f_W, which is the discrete equivalent of concavity.
- ▶ However, f_W is not submodular even for one qubit.

Ball

- ▶ MECP well studied when $C = \mathbb{B}^n$ is a *n*-ball, known as MEB.
- ▶ The MEB of *P* finite can be efficiently approximated (FPTAS).

Ball

- ▶ MECP well studied when $C = \mathbb{B}^n$ is a *n*-ball, known as MEB.
- The MEB of P finite can be efficiently approximated (FPTAS).

Definition (Core-set)

$$S\subseteq P$$
 is a ϵ -core-set of P if $R(S,C)\leq R(P,C)\leq (1+\epsilon)R(S,C)$

Theorem ([Badoiu and Clarkson, 2003])

An ϵ -core-set S_{ϵ} of $P \subseteq \mathbb{R}^n$ of size $\lceil \frac{2}{\epsilon} \rceil$ can be efficiently computed. In particular, this gives a $(1+\frac{2}{k})$ -approximation of $R_k(P,C)$.

Ball

- ▶ MECP well studied when $C = \mathbb{B}^n$ is a *n*-ball, known as MEB.
- The MEB of P finite can be efficiently approximated (FPTAS).

Definition (Core-set)

$$S \subseteq P$$
 is a ϵ -core-set of P if $R(S,C) \le R(P,C) \le (1+\epsilon)R(S,C)$

Theorem ([Badoiu and Clarkson, 2003])

An ϵ -core-set S_{ϵ} of $P \subseteq \mathbb{R}^n$ of size $\lceil \frac{2}{\epsilon} \rceil$ can be efficiently computed. In particular, this gives a $(1+\frac{2}{k})$ -approximation of $R_k(P,C)$.

Proof of Corollary.

Let
$$\epsilon$$
 such that $k+1=\lceil\frac{2}{\epsilon}\rceil=|S_{\epsilon}|$. Then $\epsilon\leq\frac{2}{k}$, so $R_k(P,C)\leq R(P,C)\leq (1+\epsilon)R(S_{\epsilon},C)\leq (1+\frac{2}{k})R(S_{\epsilon},C)$.

Algorithm

Algorithm 2: [Badoiu and Clarkson, 2003] algorithm

Input: $k \in \{1, \ldots, n\}$

Output: An $\frac{2}{k}$ -core-set S_k of $P \subseteq \mathbb{R}^n$ of size k+1

- 1 $S_0 = \{p\}$ with p any point of P
- 2 $c_0=p, r_0=0$ // Center and radius of MEB of S_0
- 3 for $i \in \{1, ..., k\}$ do
- 4 q_i = furthest point from c_{i-1} in P
- $S_i = S_{i-1} \cup \{q_i\}$
- 6 c_i, r_i such that $MEB(S_i) = \mathcal{B}(c_i, r_i)$
- 7 return S_k

Key lemmas of the proof

Theorem on MECP optimality conditions restated for MEB gives:

Lemma (Half-space lemma)

 $\mathcal{B}(P)$ is the minimum enclosing ball of $P \subseteq \mathbb{R}^n$ iff any closed half-space that contains the center $c_{\mathcal{B}(P)}$ also contains a point of P on the boundary of $\mathcal{B}(P)$.

Key lemmas of the proof

Theorem on MECP optimality conditions restated for MEB gives:

Lemma (Half-space lemma)

 $\mathcal{B}(P)$ is the minimum enclosing ball of $P \subseteq \mathbb{R}^n$ iff any closed half-space that contains the center $c_{\mathcal{B}(P)}$ also contains a point of P on the boundary of $\mathcal{B}(P)$.

Proof sketch.

ightharpoonup If $c_{i+1}=c_i$, then we have an MEB of all P.

Key lemmas of the proof

Theorem on MECP optimality conditions restated for MEB gives:

Lemma (Half-space lemma)

 $\mathcal{B}(P)$ is the minimum enclosing ball of $P\subseteq\mathbb{R}^n$ iff any closed half-space that contains the center $c_{\mathcal{B}(P)}$ also contains a point of P on the boundary of $\mathcal{B}(P)$.

Proof sketch.

- ▶ If $c_{i+1} = c_i$, then we have an MEB of all P.
- ▶ Else, take $H \ni c_i$ with $H \perp \overrightarrow{c_i c_{i+1}}$, and $p \in \partial \mathcal{B}(S_i) \cap H^+ \cap S_i$
- Get two inequalities:

1.
$$r_{i+1} \ge \|c_{i+1} - p\|_2 \ge \sqrt{r_i^2 + \|c_{i+1} - c_i\|_2^2}$$

2.
$$r_{i+1} \ge ||c_{i+1} - q_{i+1}||_2 \ge R - ||c_{i+1} - c_i||_2$$

Key lemmas of the proof

Theorem on MECP optimality conditions restated for MEB gives:

Lemma (Half-space lemma)

 $\mathcal{B}(P)$ is the minimum enclosing ball of $P\subseteq\mathbb{R}^n$ iff any closed half-space that contains the center $c_{\mathcal{B}(P)}$ also contains a point of P on the boundary of $\mathcal{B}(P)$.

Proof sketch.

- ▶ If $c_{i+1} = c_i$, then we have an MEB of all P.
- ▶ Else, take $H \ni c_i$ with $H \perp \overset{\rightarrow}{c_i c_{i+1}}$, and $p \in \partial \mathcal{B}(S_i) \cap H^+ \cap S_i$
- Get two inequalities:

1.
$$r_{i+1} \ge \|c_{i+1} - p\|_2 \ge \sqrt{r_i^2 + \|c_{i+1} - c_i\|_2^2}$$

2.
$$r_{i+1} \ge ||c_{i+1} - q_{i+1}||_2 \ge R - ||c_{i+1} - c_i||_2$$

Implies that after $k = \lceil \frac{2}{\epsilon} \rceil$ steps, we get $R \le (1+\epsilon)r_k$

Optimality of this algorithm

The previous algorithm gives a PTAS, ie. for fixed ϵ , we can efficiently compute an $(1 + \epsilon)$ -approximation of $R_k(P, C)$ for all k and P.

Optimality of this algorithm

- The previous algorithm gives a PTAS, ie. for fixed ϵ , we can efficiently compute an $(1 + \epsilon)$ -approximation of $R_k(P, C)$ for all k and P.
- Indeed, if $\epsilon > \frac{2}{k}$, then $k < \frac{2}{\epsilon}$ is of bounded size: exhaustive search of all sets of size k: $\mathcal{O}(|P|^{\frac{2}{\epsilon}})$ efficient for us.
- ▶ Ohterwise, the previous algorithm works since $\epsilon \leq \frac{2}{k}$.

LIP - ENS de Lvon

Optimality of this algorithm

- The previous algorithm gives a PTAS, ie. for fixed ϵ , we can efficiently compute an $(1 + \epsilon)$ -approximation of $R_k(P, C)$ for all k and P.
- Indeed, if $\epsilon > \frac{2}{k}$, then $k < \frac{2}{\epsilon}$ is of bounded size: exhaustive search of all sets of size k: $\mathcal{O}(|P|^{\frac{2}{\epsilon}})$ efficient for us.
- ▶ Ohterwise, the previous algorithm works since $\epsilon \leq \frac{2}{k}$.
- ► FPTAS (ie. polynomial in $\frac{1}{\epsilon}$) exists?
- No! Reduction form Exact cover by 3-sets shows NP-hardness and that no FPTAS exists if $P \neq NP$.

Core-sets in general

Definition (Core-set)

 $S \subseteq P$ is a ϵ -core-set of P if $R(S, C) \le R(P, C) \le (1 + \epsilon)R(S, C)$ Valid definition in general problem MECP.

Core-sets in general

Definition (Core-set)

 $S \subseteq P$ is a ϵ -core-set of P if $R(S,C) \le R(P,C) \le (1+\epsilon)R(S,C)$ Valid definition in general problem MECP.

Not efficient in general:

Theorem ([Brandenberg and König, 2013])

For all $P, C \subseteq \mathbb{R}^n, \epsilon \geq 0$, there exists an ϵ -core-set of size at most $\lceil \frac{n}{1+\epsilon} \rceil + 1$.

Moreover, for any $\epsilon < 1$ there exist $P \subseteq \mathbb{R}^n$ and a 0-symmetric convex body C (ie. C = -C) such that no smaller subset of P suffices.

Also, this bound is optimal for the *n*-regular simplex.

- ▶ We look at $Q_d = \mathcal{D}_d \mathbb{1}_d \subseteq \mathbb{R}^n$ with $n = d^2 1$.
- ▶ We have $P \subseteq \mathcal{D}_d = \mathbb{1}_d + Q_d$ and $C = -Q_d$ in that case.

Quantum states

- lacksquare We look at $Q_d = \mathcal{D}_d \mathbb{1}_d \subseteq \mathbb{R}^n$ with $n = d^2 1$.
- ightharpoonup We have $P \subseteq \mathcal{D}_d = \mathbb{1}_d + Q_d$ and $C = -Q_d$ in that case.
- MEQ of a set of points is unique (counter-example: squares).

LIP - ENS de Lyon

- ▶ We look at $Q_d = \mathcal{D}_d \mathbb{1}_d \subseteq \mathbb{R}^n$ with $n = d^2 1$.
- ightharpoonup We have $P \subseteq \mathcal{D}_d = \mathbb{1}_d + Q_d$ and $C = -Q_d$ in that case.
- MEQ of a set of points is unique (counter-example: squares).
- ▶ In C: 0 is equidistant from all extremal points (pure states).
- $\blacktriangleright \mathcal{B}\left(0, \frac{1}{\sqrt{d(d-1)}}\right) \subseteq C \subseteq \mathcal{B}\left(0, \sqrt{1-\frac{1}{d}}\right)$ and tight ratio d-1.

- ▶ We look at $Q_d = \mathcal{D}_d \mathbb{1}_d \subseteq \mathbb{R}^n$ with $n = d^2 1$.
- ▶ We have $P \subseteq \mathcal{D}_d = \mathbb{1}_d + Q_d$ and $C = -Q_d$ in that case.
- MEQ of a set of points is unique (counter-example: squares).
- ▶ In C: 0 is equidistant from all extremal points (pure states).
- $ightharpoonup \mathcal{B}\Big(0,rac{1}{\sqrt{d(d-1)}}\Big)\subseteq \mathcal{C}\subseteq \mathcal{B}\Big(0,\sqrt{1-rac{1}{d}}\Big)$ and tight ratio d-1.
- Like T^{d-1} , no ϵ -core-sets of size $<\lceil \frac{d-1}{1+\epsilon} \rceil + 1$: if $k < \lceil \frac{d-1}{1+\epsilon} \rceil$, then for $|S| \le k+1$: $R(\mathcal{D}_d, -Q_d) = \frac{d-1}{k} R_k(\mathcal{D}_d, -Q_d) > (1+\epsilon) R_k(\mathcal{D}_d, -Q_d) \ge (1+\epsilon) R(S, -Q_d)$

- ▶ We look at $Q_d = \mathcal{D}_d \mathbb{1}_d \subseteq \mathbb{R}^n$ with $n = d^2 1$.
- ▶ We have $P \subseteq \mathcal{D}_d = \mathbb{1}_d + Q_d$ and $C = -Q_d$ in that case.
- MEQ of a set of points is unique (counter-example: squares).
- ightharpoonup In C: 0 is equidistant from all extremal points (pure states).
- $ightharpoonup \mathcal{B}\Big(0,rac{1}{\sqrt{d(d-1)}}\Big)\subseteq \mathcal{C}\subseteq \mathcal{B}\Big(0,\sqrt{1-rac{1}{d}}\Big)$ and tight ratio d-1.
- Like T^{d-1} , no ϵ -core-sets of size $<\lceil \frac{d-1}{1+\epsilon} \rceil + 1$: if $k < \lceil \frac{d-1}{1+\epsilon} \rceil$, then for $|S| \le k+1$: $R(\mathcal{D}_d, -Q_d) = \frac{d-1}{k} R_k(\mathcal{D}_d, -Q_d) > (1+\epsilon) R_k(\mathcal{D}_d, -Q_d) \ge (1+\epsilon) R(S, -Q_d)$
- ?

Open questions

- Simplex worst convex shape and ball best convex shape?
- Greedy works well in general (constant approximation ratio)?
- If not in general, what properties do quantum states have that make greedy works? (experimentally we were unable to find counter-examples)

Bibliographie I

Badoiu, M. and Clarkson, K. L. (2003).

Smaller core-sets for balls.

In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 801-802. Society for Industrial and Applied Mathematics.

🗎 Bae, J. (2013).

Structure of minimum-error quantum state discrimination. New Journal of Physics, 15(7):073037.

Barman, S. and Fawzi, O. (2017).

Algorithmic aspects of optimal channel coding.

IEEE Transactions on Information Theory, 64(2):1038–1045.

Bibliographie II

Brandenberg, R. and König, S. (2013).

No dimension-independent core-sets for containment under homothetics.

Discrete & Computational Geometry, 49(1):3-21.

Burgeth, B., Bruhn, A., Papenberg, N., Welk, M., and Weickert, J. (2007).

Mathematical morphology for matrix fields induced by the loewner ordering in higher dimensions.

Signal Processing, 87(2):277-290.

