Assignment 3

CMPT 215

Name: Yinsheng Dong Student Number: 11148648

NSID: yid164

Due: Aug 10^{th} , 2017

August 11, 2017

Total: 35

Please show all your work to get full marks

Problem 1.

(4 marks) Describe the modifications to the single clock cycle datapath that would be needed to implement the jal instruction and give the control signal setting that would be required for this instruction.

Instruction type of jal: J

Operation of jal: R[31] = PC + 8; PC = JumpAddr

Modifications:

- 1. Need to change a 26-bits immediate so we need to create a 32-bit PC to store it and we also need a PCSrc multiplexor for handle other third input
- 2. Need a WriteData port of the register file will route the return address
- 3. Will need write back the address to register 31, so it has to be hard coded

Control signal setting:

PCSrc

RegDst

RegWrite

Mem-Read

Mem-Write

MemToReg

ALUSrc

ALUOp

The datapath is in below

Problem 2.

(4 marks) Determine the clock cycle at which each of the instructions in the sequence given below would be completed, assuming the 5-stage pipeline without forwarding, and numbering the clock cycle at which the first of the instructions is fetched as clock cycle 1. Assume that if one instruction reads a register during the same clock cycle as another instruction is writing it, the new value will be read. Do not reorder the instructions. Instructions are fetched and executed exactly in the order given below, with the pipeline stalling if necessary.

```
lw $s1,0($s2)
lw $t1,0($s1)
addi $s3,$s1,4
addi $s1,$t1,-1
```

 $\mathrm{add} \quad \$t0 \; , \$s3 \; , \$s1$

	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	Ν
1	Instruction / CC	1	2	3	4	5	6	7	8	9	10	11	12	13
2	lw \$s1, 0(\$s2)	IF	ID	EX	MEM	WB								
3	Stall		BUB	BUB	BUB	BUB	BUB							
4	Stall			BUB	BUB	BUB	BUB	BUB						
5	lw \$t1, 0(\$s1)				IF	ID	EX	MEM	WB					
6	addi \$s3, \$s1, 4					IF	ID	EX	MEM	WB				
7	addi \$s1, \$t1, -1						IF	ID	EX	MEM	WB			
8	Stall							BUB	BUB	BUB	BUB	BUB		
9	Stall								BUB	BUB	BUB	BUB	BUB	
10	add \$t0, \$s3, \$s1									IF	ID	EX	MEM	WB

The total clock cycle should be 13

Problem 3.

(4 marks) Repeat problem 2 but now assume forwarding.

Α	В	С	D	Е	F	G	Н	-	J	K
Instruction / CC	1	2	3	4	5	6	7	8	9	10
lw \$s1, 0(\$s2)	IF	ID	EX	MEM	WB					
Stall		BUB	BUB	BUB	BUB	BUB				
lw \$t1, 0(\$s1)			IF	ID	EX	MEM	WB			
addi \$s3, \$s1, 4				IF	ID	EX	MEM	WB		
addi \$s1, \$t1, -1					IF	ID	EX	MEM	WB	
add \$t0, \$s3, \$s1						IF	ID	EX	MEM	WB
	Instruction / CC lw \$s1, 0(\$s2) Stall lw \$t1, 0(\$s1) addi \$s3, \$s1, 4 addi \$s1, \$t1, -1	Instruction / CC 1 lw \$s1, 0(\$s2) IF Stall lw \$t1, 0(\$s1) addi \$s3, \$s1, 4 addi \$s1, \$t1, -1	Instruction / CC 1 2 lw \$s1, 0(\$s2) IF ID Stall BUB lw \$t1, 0(\$s1) addi \$s3, \$s1, 4 addi \$s1, \$t1, -1	Instruction / CC 1 2 3 lw \$s1, 0(\$s2) IF ID EX Stall BUB BUB lw \$t1, 0(\$s1) IF addi \$s3, \$s1, 4 IF addi \$s1, \$t1, -1 IF	Instruction / CC 1 2 3 4 lw \$s1, 0(\$s2) IF ID EX MEM Stall BUB BUB BUB BUB lw \$t1, 0(\$s1) IF ID addi \$s3, \$s1, 4 IF addi \$s1, \$t1, -1 IF	Instruction / CC 1 2 3 4 5 lw \$s1, 0(\$s2) IF ID EX MEM WB Stall BUB BUB BUB BUB BUB BUB BUB lw \$t1, 0(\$s1) IF ID EX addi \$s3, \$s1, 4 IF ID addi \$s1, \$t1, -1 IF	Instruction / CC 1 2 3 4 5 6 lw \$s1, 0(\$s2) IF ID EX MEM WB Stall BUB BUB BUB BUB BUB BUB BUB BUB BUB lw \$t1, 0(\$s1) IF ID EX MEM addi \$s3, \$s1, 4 IF ID EX addi \$s1, \$t1, -1 IF ID	Instruction / CC 1 2 3 4 5 6 7 lw \$s1, 0(\$s2) IF ID EX MEM WB WB Image: Control of the contr	Instruction / CC 1 2 3 4 5 6 7 8 lw \$s1, 0(\$s2) IF ID EX MEM WB	Instruction / CC 1 2 3 4 5 6 7 8 9 lw \$s1, 0(\$s2) IF ID EX MEM WB Stall BUB BUB BUB BUB BUB BUB BUB BUB BUB lw \$t1, 0(\$s1) IF ID EX MEM WB addi \$s3, \$s1, 4 IF ID EX MEM WB addi \$s1, \$t1, -1 IF ID EX MEM WB

The total clock cycle in the forwarding should be 10

Problem 4.

(9 marks) Consider the following code fragments:

```
li
                     $s1,1
               li
                     $s3,6
                     $s4,$zero,$zero
               add
outer_loop:
                     $s2,$zero,$zero
               add
               addi $s2,$s2,1
inner_loop:
               mul
                     $t0,$s2,$s1
               add
                     $s4,$s4,St0
inner_test
               bne
                     $s2,$s1,inner_loop
               addi $s1,$s1,1
               bne
                     $s1,$s3,outer_loop
```

This code simple runs the inner loop i+1 times each time, with i starting at 1, going until 5, meaning the **inner_test** will be executed 1+2+3+4+5=15 times. Give the branch prediction accuracy for **inner_test** for the following schemes:

- i Branch prediction of always Not Taken
- ii 1-bit branch prediction of starting at **Not Taken**
- iii 2-bit branch prediction of starting at Strongly Not Taken

	Α	В	С	D	Е	F	G	Н	-	J	K	L	М	Ν	0	Р	Q
1		NT	Т	NT	Т	Т	NT	Т	Т	Т	NT	Т	Т	Т	Т	NT	RATE
2	ANT	Н	M	Н	M	M	Н	M	M	M	Н	M	M	M	M	Н	33.33%
3	1-Bit	Н	M	M	M	Н	M	M	Н	Н	M	M	Н	Н	Н	M	46.67%
4	2-Bit	Н	M	Н	M	M	M	M	Н	Н	M	Н	Н	Н	Н	M	53.33%

The Always Not Taken, 1-bit branch predication and 2-bit branch predication are all in above tables, so finally we have got the rate of accuracy for inner_test:

Always Not Taken: 33.33%

1-Bit: 46.67% 2-Bit: 53.33%

Problem 5.

(4 marks) Suppose that a program does read operations on the following memory addresses **96**, **508**. Give the number of the memory block that each of these addresses belongs to, for each of the following memory block sizes. Remember the above addresses are byte addressed.

i block size of one word (4 bytes)

Solution:

Number of memory block = address/block size

For Address 96: 96/4 = 24For Address 508: 508/4 = 127

ii block size of four words (16 bytes)

For Address 96: 96/16 = 6For Address 508: 508/16=31

Problem 6.

(8 marks) Give the position (or set) in the cache that would be checked on each of the read operations of the above question, for each of the following caches.

i Direct-mapped cache with total capacity of 16 one-word blocks

Solution:

 $cache\ position = (block\ number)\ mod\ (number\ of\ block)$

for address 96: $24 \mod 16 = 8$ for address 508: $127 \mod 16 = 15$

ii Direct-mapped cache with total capacity of 4 four-word blocks

Solution:

for address 96: $6 \mod 4 = 2$ for address 508: $31 \mod 4 = 3$

iii 4-way set-associative cache with total capacity of 16 one-word blocks

Solution:

total capacity (C): 16 set-associative (E): 4

set (M): 4

for address 96: 24 mod 4 = 0 for address 508: 127 mod 4 = 3

iv 2-way set-associative cache with total capacity of 4 four-word blocks

```
Solution:
total capacity (C): 4
set-associative (E): 2
set (M): 2
for address 96: 6 mod 2 = 0
for address 508: 31 mod 2 = 1
```

Problem 7.

(2 marks) Consider a computer system in which a physical page number is 24 bits, a virtual page number is 52 bits, and a virtual address is 64 bits. What is the maximum amount of physical memory, in GiB, that this system could have?

```
Solution:

physical memory (bytes) = (virtual address \div virtual page number) \times physical page number

= (2^{64} \div 2^{52}) \times 2^{24}

= 2^{36}

to convert to GiB:

2^{36} \div 2^{30}

= 2^{6}

= 64 \text{ GiB}
```

Bonus:

Problem 8.

(5 marks) Given two threads that share memory:

```
\begin{array}{lll} \text{int } a = 0;\\ \text{int } b = 4;\\ \text{int } c = 0;\\ \text{int } d = 0;\\ \text{int } z = 0 \end{array}
```

```
Thread 1: Thread 0: c = a+b; d = a+b; c = 0; z = a+d; a = d+b; a = c+d;
```

What is the values of each variable at the end of the program? What is the technical term for what is going on? What are two ways to keep mutual exclusion?

Solution:

Final values for each variable:

a = 8

b = 4

c = 0

d = 8

z = 12

This technical term called structure hazard

Two ways to keep mutual exclusion:

- 1. Instruction level parallelism
- 2. Resource scheduling