Xadrez: Rei e Torre vs Rei

Classificação, Associação e Clusterização

- Finais de partida no xadrez podem ser situações complexas
 - Poucas peças para cada jogador
 - Dificuldades para criar o xeque-mate
 - Possibilidade de empate
- Existem diversas maneiras de se ocorrer um empate
 - Falta de Material
 - Rei afogado
 - 50 Lances

- Observamos a situação Rei e Torre vs Rei
- Cada instância da base representa a coluna e linha de cada peça e o classificador
- O Classificador vai de 0 a 17
 - 0 representa xeque-mate
 - 17 representa empate
 - 1 a 16 representam o número de jogadas para vencer
- A vantagem é das peças brancas
- A próxima jogada é das peças pretas

28056 instâncias

- WKcol: Coluna do rei branco
- WKrow: Linha do rei branco
- WRcol: Coluna da torre branca
- WRrow: Linha da torre branca
- BKcol: Coluna do rei preto
- BKrow: Linha do rei preto
- Class: Classificador

Exemplo: 1,1,2,3,3,2,17

28056 instâncias

- WKcol: Coluna do rei branco
- WKrow: Linha do rei branco
- WRcol: Coluna da torre branca
- WRrow: Linha da torre branca
- BKcol: Coluna do rei preto
- BKrow: Linha do rei preto
- Class: Classificador

Exemplo: 3,1,1,4,1,1,0

Classificação

- C4.5
 - C: Fator de confiança
 - M: Número mínimo de instâncias por folha
- Random Forest
 - I: Número de iterações
 - o K: Atributos escolhidos aleatoriamente
- K-NN
 - o K: Número de vizinhos

- 3 Valores para fator de confiança foram testados: 0.01, 0.25, 0.50
- Número de instâncias por folha variou de 0 a 10
- Por falta de tempo n\u00e3o foi poss\u00edvel testar mais valores

- A melhor configuração foi C = 0.50 / M = 0
 - Taxa de Acerto = 62,2%
 - Recall = F-Measure = 0,622
 - Precisão = 0,627
- Já para a área ROC = 0,878 as melhores configurações foram:

$$C = 0.50 / M = 9$$

$$C = 0.50 / M = 10$$

$$C = 0.25 / M = 2$$

$$C = 0.25 / M = 3$$

Classificação K-NN

- Neste caso há apenas um parâmetro, o número de vizinhos
- K varia entre 1 e 27, somente ímpares

Classificação K-NN

Classificação K-NN

- As melhores configurações foram K = 1 a 13
 - Taxa de Acerto = 72,3%
 - Recall = 0,723
 - F-Measure = 0,720
 - Precisão = 0,732
 - ROC Area = 0,968

- As quantidade de iterações utilizadas foram 30 e 60
- As quantidades de atributos aleatórios escolhidos variam de 0 a 6

- A melhor configuração foi I = 60 / K = 6
 - Taxa de Acerto = 74,1%
 - Recall = 0,741
 - F-Measure = 0,741
 - Precisão = 0,741
 - ROC Area = 0,951

Classificação

- Dos testados o melhor foi Random Forest com I = 60 e K = 6
- Auto-WEKA foi testado 2 vezes
- Ambos
- Primeiro
 - 15 minutos e 1GB de memória
 - Random Forest
 - Taxa de acerto = Precisão = Recall = 0,989
 - ROC Area = 1,00
- Segundo
 - 8 horas 2GB de memória
 - Seleção com CFS/Best First e Random Forest
 - Taxa de acerto = Precisão = Recall = ROC Area = 1,00

Associação

- Foram consideradas regras contendo a classe em uma das partes
- Apriori foi rodado escolhendo as 20 melhores RAs (N=20) e suporte mínimo 0.03
 - Confiança >= 0.5
 - o Lift >= 1.1
 - Leverage >= 0.01
 - Convicção >=1.1
- A classe foi eleita como alvo

Associação por Confiança

Associação por Lift

Associação por Leverage

Associação por Convicção

Regras de Associação envolvendo a classe

	Suporte	Confiança	Lift	Leverage	Convicção
Class=15 ==> WKrow=1	0,07	0,92	2,04	0,04	6,87
WKcol=4 Class=14 ==> WKrow=1	0,04	0,82	1,82	0,02	3,06
Class=14 ==> WKrow=1	0,12	0,76	1,68	0,05	2,26
WKcol=3 Class=14 ==> WKrow=1	0,04	0,71	1,57	0,01	1,88
WKcol=2 Class=14 ==> WKrow=1	0,03	0,69	1,52	0,01	1,74
Class=8 ==> WKcol=4	0,03	0,63	1,46	0,01	1,54
WKcol=4 Class=13 ==> WKrow=2	0,03	0,61	2,02	0,02	1,8
Class=9 ==> WKcol=4	0,03	0,55	1,28	0,01	1,27
Class=11 ==> WKcol=4	0,05	0,53	1,22	0,01	1,2
Class=10 ==> WKcol=4	0,04	0,51	1,19	0,01	1,17

Associação com Classe com alvo

	Suporte	Confiança
WKcol=4 WKrow=1 ==> Class=14	0,04	0,32
WKcol=3 WKrow=1 ==> Class=14	0,04	0,3
WKrow=1 ==> Class=14	0,12	0,27
WKcol=4 WKrow=2 ==> Class=13	0,03	0,27
WKcol=2 WKrow=1 ==> Class=14	0,03	0,25
WKcol=2 ==> Class=14	0,05	0,25
WKrow=2 ==> Class=13	0,07	0,24
BKrow=5 ==> Class=14	0,03	0,23
BKrow=4 ==> Class=14	0,03	0,23
WKrow=3 ==> Class=12	0,04	0,21

Clusterização

- k-Means
 - Variando de 2 a 5 clusters

- DBSCAN
 - o Ignorando ou não a classe

k-Means

• Somente k=2 e k=3 formaram "bons" clusters

• Esses clusters funcionaram para WKcol e WKrow

k-Means k=2

k-Means k=3

Desvio Padrão

Atributo	Desvio Padrão
WKcol	0,6556
WKrow	0,5977
WRcol	2,1693
WRrow	2,2840
BKcol	1,7010
BKrow	1,9501

Desvio Padrão
1,5368
1,5994
1,4801
1,4916
1,3599

DBSCAN

- Base ruim para o DBSCAN excluindo a classe
- Variar o raio e a densidade n\u00e3o produziu resultados
- Adicionando a classe foi possível criar clusters
- Configuração Raio = 1.1 e Densidade = 3 conseguiu criar 298 clusters
- Configuração Raio = 0.9 e Densidade = 3 conseguiu encontrar as classes

DBSCAN com classe Raio = 1.1 e Densidade = 3

DBSCAN com classe Raio = 0.9 e Densidade = 3

DBSCAN

- Base ruim para o DBSCAN excluindo a classe
- Variar o raio e a densidade n\u00e3o produziu resultados
- Hipótese: Valores muito próximos

Obrigado!