Scilab Textbook Companion for Applied Physics by P. K. Mittal¹

Created by
Mohit Garg
B.Tech
Electronics Engineering
ABES Engineering College, Ghaziabad
College Teacher
None
Cross-Checked by
Lavitha Pereira

September 1, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Applied Physics

Author: P. K. Mittal

Publisher: I. K. International, New Delhi

Edition: 2

Year: 2006

ISBN: 978-81-89866-72-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Bonding in Solids	8
2	Crystal Structure	13
3	Planes in Crystals	18
4	Crystal Diffraction	20
5	Principles of Quantum Mechanics	29
6	Electron Theory and Band Theory of Metals	51
7	Dielectric Properties	61
8	Magnetic Properties	70
9	Semiconductors	7 6
10	Superconductivity	91
12	Fibre Optics	96

List of Scilab Codes

calculate potential energy
calculate bond energy for NaCl
calculate compressibility
calculate ionic cohesive energy and atomic cohesive en-
ergy
calculate contribution per ions to the cohesive energy.
calculate lattice constant
calculate distance between two nearest Cu atoms 1
calculate lattice constant
calculate lattice constant
calculate distance between adjacent atoms in NaCl 1
calculate packing fraction and density
calculate bond energy for NaCl
calculate lattice spacing
calculate density
Find spacing constant
Find glancing angle
Find glancing angle
Find wavelength and maximum order possible
Find wavelength in XU
find wavelength and energy
calculate interpalanr spacing
calculate angle of first order diffraction maximum 2
Show that given angles are successive order of diffraction
and find spacing constant
Find velocity and kinetic energy
Calculate deBroglie wavelength
Calculate wavelength

Exa 5.4	Calculate deBroglie wavelength	31
Exa 5.5	Calculate wavelength	32
Exa 5.6	Calculate wavelength for photon and electron	32
Exa 5.7	Calculate velocity and kinetic energy	33
Exa 5.8	Calculate deBroglie wavelength	34
Exa 5.9	Calculate deBroglie wavelength of proton	35
Exa 5.10	Calculate wavelength	36
Exa 5.11	Calculate glancing angle	36
Exa 5.12	Calculate spacing of crystal	37
Exa 5.13	Calculate velocity of electron	38
Exa 5.14	Calculate uncertainty in the momentum and uncertainty	
	in the velocity	38
Exa 5.15	Compare uncertainty in the velocity of electron and pro-	
	ton	39
Exa 5.16	Calculate minimum uncertainty in the momentum and	
	minimum kinetic energy of proton	40
Exa 5.17	Calculate percentage of uncertainty in the momentum	
	of electron	41
Exa 5.18	Calculate uncertainty in the position of electron	42
Exa 5.19	Calculate uncertainty in the position of X ray photon.	43
Exa 5.20	Compare minimum uncertainty in the frequency of the	
	photon	44
Exa 5.21	Calculate uncertainty in the energy of the photon	45
Exa 5.22	Calculate minimum error in the energy	45
Exa 5.23	Calculate energy corresponding to the 2nd and 4th quan-	
	tum states	46
Exa 5.24	Calculate energy corresponding to the ground and first	
	two excited states	47
Exa 5.25	Calculate minimum uncertainty in the velocity of elec-	
	tron	48
Exa 5.26	Calculate minimum energy of electron	49
Exa 6.1	Calculate mean free path of electron	51
Exa 6.2	Calculate the temperature	52
Exa 6.3	Calculate relaxation time of conduction electrons	53
Exa 6.4	Calculate mean free path traveeled by the electrons	53
Exa 6.5	Calculate relaxation time of conduction electrons	54
Exa 6.6	Calculate average kinetic energy and velocity of molecules	55
Exa 6.7	Calculate velocity of electron and proton	55

Exa 6.8	Calculate drift velocity of free electrons	56
Exa 6.9	Calculate average drift velocity of electrons	57
Exa 6.10	Calculate mobility of electrons	58
Exa 6.11	Calculate average energy of free electron at 0K and corresponding temperature for a classical particle or an	
	ideal gas	58
Exa 6.12	Calculate electron density for a metal	59
Exa 7.1	Calculate the capacitance of capacitor and charge on	
	the plates	61
Exa 7.2	Calculate the resultant voltage across the capacitor	62
Exa 7.3	Calculate the radius of electron cloud and dispalcement	63
Exa 7.4	Calculate the dipole moment induced in each atom and	
	atomic polarisability	64
Exa 7.5	Calculate the electronic polarisability of sulphur	65
Exa 7.6	Calculate the electronic polarisability of Helium atoms	65
Exa 7.7	Calculate the dielectric constant of the material	66
Exa 7.8	Calculate the atomic polarisability of sulphur	67
Exa 7.9	calculate polarisability due to permanent dipole mo-	
	ment and due to deformation of the molecules	67
Exa 7.10	determine the percentage of ionic polarisability in sodium	
	crystal	69
Exa 8.1	Calculate intensity of magnetism and magnetic flux den-	
	sity	70
Exa 8.2	Calculate change in magnetic moment	71
Exa 8.3	Calculate relative permeability of a ferromagentic ma-	
	terial	71
Exa 8.4	Calculate magnetic force and relative permeability	72
Exa 8.5	Calculate current through the solenoid	73
Exa 8.6	Calculate flux density magnetic intensity and relative	
	permeability	73
Exa 8.7	Calculate Hystersis loss per cycle	74
Exa 9.2	Find the temperature at which number of electrons be-	
	comes 10 times	76
Exa 9.3	find the resistance of intrinsic germanium	77
Exa 9.4	find the electrical conductivity and resistivity of germa-	
	nium	78
Exa 9.5	find the equilibrium hole concentration and conductivity	79
Exa 9.6	find intrinsic concuctivity and doping conductivity	79

Exa 9.7	find density of hole carriers at room temperature	81
Exa 9.8	find intrinsic carrier density and conductivity at 300K	
	in germanium	81
Exa 9.9	Find the energy band gap	82
Exa 9.10	Find the electron and hole concentrations and the resis-	
	tivity	83
Exa 9.11	Find the conductivity of p type Ge crystal	84
Exa 9.12	Find the diffusion coefficient of electron in silicon	85
Exa 9.13	Find the probability of occupation of lowest level in con-	
	duction band	85
Exa 9.14	Find the ratio of conductivity at 600K and at 300K	87
Exa 9.15	Find the electron and hole densities and conductivity	
	and the resistance	87
Exa 9.16	Find the mobility and density	88
Exa 9.17	Find the mobility and density of charge carrier	89
Exa 10.1	Calculate magnitude of critical magnetic field	91
Exa 10.2	Calculate critical current value	91
Exa 10.3	calculate isotropic mass	92
Exa 10.4	calculate transition temperature	93
Exa 10.5	calculate critical current at 5K	93
Exa 10.6	calculate frequency of EM waves	94
Exa 10.7	calculate transition temperature of the isotopes	95
Exa 12.1	calculate fractional index change for a given optical fibre	96
Exa 12.2	calculate numerical aperture and the acceptance angle	
	of an optical fibre	96
Exa 12.3	calculate the acceptance angle of an optical fibre	97
Exa 12.4	calculate refractive index of material of the core	98
Exa 12.5	calculate numerical aperture acceptance angle and the	
	critical angle of the optical fibre	98
Exa 12.6	calculate refractive index of the core and cladding ma-	
	terial of a fibre	99
Exa 12.7	calculate numerical aperture and acceptance angle of	
	the symmetrical fibre	100
Exa 12.8	calculate numerical aperture and acceptance angle of	
	the symmetrical fibre	101

Chapter 1

Bonding in Solids

Scilab code Exa 1.3 calculate potential energy

```
1 / chapter 1
2 // \text{example } 1.3
3 //calculate potential energy
4 //page 15
5 clear;
6 clc;
7 //given
8 r=2; //in angstrom(distance)
9 e=1.6E-19; // in C (charge of electron)
10 E_o= 8.85E-12; // absolute premittivity
11 //calculate
12 r=2*1E-10; // since r is in angstrom
13 V=-e^2/(4*\%pi*E_o*r); // calculate potential
14 printf('\nThe potential energy is tV=\%3.3E J',V);
15 V=V/e; // changing to eV
16 printf('\nIn electron-Volt,\tV=\%.2 f eV',V);
17 // Note: the answer in the book is wrong due to
      calculation mistake
```

Scilab code Exa 1.4 calculate bond energy for NaCl

```
1 //chapter 1
2 / \text{example } 1.4
3 //calculate bond energy for NaCl
4 //page 15-16
5 clear;
6 clc;
7 //given
8 r0=0.236; //in nanometer(interionic distance)
9 e=1.6E-19; // in C (charge of electron)
10 E_o= 8.85E-12; // absolute premittivity
11 N=8; // Born constant
12 IE=5.14; // in eV (ionisation energy of sodium)
13 EA=3.65; // in eV (electron affinity of Chlorine)
14 pi=3.14; // value of pi used in the solution
15 //calculate
16 r0=r0*1E-9; // since r is in nanometer
17 PE=(e^2/(4*pi*E_o*r0))*(1-1/N); // calculate
      potential energy
18 PE=PE/e; //changing unit from J to eV
19 printf('\nThe potential energy is\tPE=\%.2 f eV', PE);
20 NE=IE-EA; // calculation of Net energy
21 printf('\nThe net energy is\tNE=\%.2 f eV', NE);
22 BE=PE-NE; // calculation of Bond Energy
23 printf('\nThe bond energy is\tBE=\%.2 \text{ f eV}',BE);
24 // Note: (1)-In order to make the answer preatically
       feasible and avoid the unusual answer. I have
      used r_0 = 0.236 nm instead of 236 nm. because
      using this value will give very much irrelevant
      answer.
25 //
            (2) There is slight variation in the answer
      due to round off.
```

Scilab code Exa 1.5 calculate compressibility

```
1 // chapter 1
2 //example 1.5
3 //calculate compressibility
4 //page 16
5 clear;
6 clc;
7 //given
8 r_0=.41; //in mm(lattice constant)
9 e=1.6E-19; // in C (charge of electron)
10 E_o= 8.85E-12; // absolute premittivity
11 n=0.5; // repulsive exponent value
12 alpha=1.76; // Madelung constant
13 pi=3.14; // value of pi used in the solution
14 //calculate
15 r = .41*1E-3; // since r is in mm
16 Beta=72*pi*E_o*r^4/(alpha*e^2*(n-1)); // calculation
      compressibility
17 printf('\nThe compressibility is\tBeta=\%1.2E',Beta
18 // Note: the answer in the book is wrong due to
     calculation mistake
```

Scilab code Exa 1.6 calculate ionic cohesive energy and atomic cohesive energy

```
1 //chapter 1
2 //example 1.6
3 //calculate ionic cohesive energy and atomic cohesive energy
4 //page 16
5 clear;
6 clc;
7 //given
8 r_0=3.56; // in Angstrom
9 e=1.6E-19; // in C (charge of electron)
```

```
10 IE=3.89; //in eV (ionisation energy of Cs)
11 EA=-3.61; // in eV (electron affinity of Cl)
12 n=10.5; // Born constant
13 E_o= 8.85E-12; // absolute premittivity
14 alpha=1.763; // Madelung constant
15 pi=3.14; // value of pi used in the solution
16 //calculate
17 r_0=r_0*1E-10; // since r is in nanometer
18 U=-alpha*(e^2/(4*pi*E_o*r_0))*(1-1/n); // calculate
      potential energy
19 U=U/e; //changing unit from J to eV
20 printf('\nThe ionic cohesive energy is\t\%.2 f eV',U);
21 ACE=U+EA+IE; // calculation of atomic cohesive
     energy
22 printf('\nThe atomic cohesive energy is\t\%.2 f eV',
     ACE);
```

Scilab code Exa 1.7 calculate contribution per ions to the cohesive energy

```
1 //chapter 1
2 //example 1.7
3 //calculate contribution per ions to the cohesive
     energy
4 //page 17
5 clear;
6 clc;
7 //given
8 r_0=2.81; // in Angstrom
9 e=1.6E-19; // in C (charge of electron)
10 n=9; // Born constant
11 E_o= 8.85E-12; // absolute premittivity
12 alpha=1.748; // Madelung constant
13 pi=3.14; // value of pi used in the solution
14 //calculate
15 r_0=r_0*1E-10; // since r is in nanometer
```

Chapter 2

Crystal Structure

Scilab code Exa 2.1 calculate lattice constant

```
1 //chapter 2
2 // example 2.1
3 //calculate lattice constant
4 / page 40-41
5 clear;
6 clc;
7 //given
8 N=6.02E26; // in /Kg-molecule (Avogadro's number)
9 n=4; // number of molecules per unit cell ofr NaCl
10 M=58.5; // in Kg/Kg-molecule (molecular weight of
     NaCl)
11 p=2189; // in Kg/m^3 (density)
12 //calculate
13 a=nthroot((n*M/(N*p)),3);
14 printf('\nThe lattice constant is \tan \%1.2E \text{ m'}, a);
15 a=a*1E10; // changing unit to Angstrom
16 printf('\n \t \t \t \a=\%.2 f Angstrom',a);
```

Scilab code Exa 2.2 calculate distance between two nearest Cu atoms

```
1 / chapter 2
2 //example 2.2
3 //calculate distance between two nearest Cu atoms
4 / page 41
5 clear;
6 clc;
7 //given
8 N=6.02E23; // in /gram-atom (Avogadro's number)
9 n=4; // number of atom per unit cell for fcc
     structure
10 M=63.5; //in gram/gram-atom (atomic weight of Cu)
11 p=8.96; // in g/cm^3 (density)
12 //calculate
13 a=nthroot((n*M/(N*p)),3);
14 printf('\nThe lattice constant is\ta=\%1.2E cm',a);
15 a=a*1E8; // changing unit from cm to Angstrom
16 printf('\n \t \t \t \a=\%.2 f Angstrom',a);
17 d=a/sqrt(2); // distance infcc lattice
18 printf('\nThe distance between two nearest Cu atoms
     is \td=\%.2 f Angstrom',d);
```

Scilab code Exa 2.3 calculate lattice constant

```
1 //chapter 2
2 //example 2.3
3 //calculate lattice constant
4 //page 41-42
5 clear;
6 clc;
7 //given
8 N=6.02E26; // in /Kg-atom (Avogadro's number)
9 n=2; // number of molecules per unit cell for bcc lattice
10 M=55.85; // in Kg/Kg-atom (atomic weight of Iron)
11 p=7860; // in Kg/m^3 (density)
```

```
// calculate
a=nthroot((n*M/(N*p)),3);
printf('\nThe lattice constant is\ta=%1.3E m',a);
a=a*1E10; // changing unit to Angstrom
printf('\n\t\t\ta=%.3f Angstrom',a);
```

Scilab code Exa 2.4 calculate lattice constant

```
1 / chapter 2
2 //example 2.4
3 //calculate lattice constant
4 //page 42
5 clear;
6 clc;
7 //given
8 N=6.02E26; // in /Kg-atom (Avogadro's number)
9 n=2; // number of molecules per unit cell for bcc
     lattice
10 M=6.94; // in Kg/Kg-atom (atomic weight of Iron)
11 p=530; // in Kg/m^3 (density)
12 //calculate
13 a=nthroot((n*M/(N*p)),3);
14 printf('\nThe lattice constant is \tan \%1.3E m',a);
15 a=a*1E10; // changing unit to Angstrom
16 printf('\n\t\ta=%.3 f Angstrom',a);
```

Scilab code Exa 2.5 calculate distance between adjacent atoms in NaCl

```
1 //chapter 2
2 //example 2.5
3 //calculate distance between adjacent atoms in NaCl
4 //page 42-43
5 clear;
```

Scilab code Exa 2.6 calculate packing fraction and density

```
1 / chapter 2
2 // \text{example } 2.6
3 //calculate packing fraction and density
4 //page 43
5 clear;
6 clc;
7 //given
8 r_Na=0.98; // in Angstrom (radius of sodium ion)
9 r_Cl=1.81; // in Angstrom (radius of chloride ion)
10 M_Na=22.99; // in amu (atomic mass of sodium)
11 M_Cl=35.45; // in amu (atomic mass of chlorine)
12 //calculate
13 a=2*(r_Na+r_Cl); // lattice parameter
14 printf('\nLattice constant is ta=\%.2 f Angstrom',a)
15 //PF=volume of ions present in the unit cell/volume
     of unit cell
```

```
16  PF=((4*(4/3)*%pi)*r_Na^3+(4*(4/3)*%pi)*r_Cl^3)/a^3;
17  printf('\nPacking fraction is %.3f',PF);
18  // Density=mass of unit cell/volume of unit cell
19  p=4*(M_Na+M_Cl)*1.66E-27/(a*1E-10)^3;
20  printf('\nDensity is \tp=%.f Kg/m^3',p);
21  p=p*1E-3; //changing unit to gm/cm^-3
22  printf('\nDensity is \tp=%.2f g/cm^3',p);
```

Chapter 3

Planes in Crystals

Scilab code Exa 3.11 calculate bond energy for NaCl

```
1 //chapter 3
2 //example 3.11
3 //calculate interplanar spacing
4 //page 61
5 clear;
6 clc;
7 //given
8 h=3,k=2,l=1; // miller indices
9 a=4.2E-8; // in cm (lattice constant)
10 //calculate
11 d=a/sqrt(h^2+k^2+l^2); // calculation for interplanar spacing
12 printf('\nThe interplanar spacing is\td=%1.2E cm',d);
13 d=d*1E8; //changing unit from cm to Angstrom
14 printf('\n\t\t\t\d=%.2f Angstrom',d);
```

Scilab code Exa 3.12 calculate lattice spacing

```
//chapter 3
//example 3.12
//calculate lattice spacing
//page 61
clear;
clc;
//given
h=1,k=1,l=1; // miller indices
a=2.5,b=2.5,c=1.8; // in Angstrom (lattice constants for tetragonal lattice)
//calculate
d=1/sqrt((h/a)^2+(k/b)^2+(1/c)^2); // calculation for interplanar spacing
printf('\nThe lattice spacing is\td=%.2f Angstrom',d);
```

Scilab code Exa 3.15 calculate density

```
1 //chapter 3
2 //example 3.15
3 //calculate density
4 //page 63
5 clear;
6 clc;
7 //given
8 h=1,k=0,l=0; // miller indices
9 a=2.5; // in Angstrom (lattice constant)
10 //calculate
11 a=a*1E-10; //hence a is in Angstrom
12 d=a/sqrt(h^2+k^2+1^2); // calculation for
     interplanar spacing
13 p=d/a^3;
14 printf('\nThe density is\tp=\%1.1E lattice points/m^2
      ',p);
```

Chapter 4

Crystal Diffraction

Scilab code Exa 4.1 Find spacing constant

```
1 / chapter 4
\frac{2}{\text{example }} 4.1
3 //Find spacing constant
4 //page 75
5 clear;
6 clc;
7 //given
8 lambda=2.6; // in Angstrom (wavelength)
9 theta=20; // in Degree (angle)
10 n=2;
11 //calculate
12 lambda=lambda*1E-10; // since lambda is in Angstrom
13 // Since 2 dsin(theta)=n(lambda)
14 // therefore d=n(lambda)/2 sin(theta)
15 d=n*lambda/(2*sind(theta));
16 printf('\nThe spacing constant is \td=\%1.1E m',d);
17 d=d*1E10; // changing unit from m to Angstrom
18 printf('\n\t\t\t\td=\%.1f Angstrom',d);
```

Scilab code Exa 4.2 Find glancing angle

```
1 / chapter 4
2 //example 4.2
3 //Find glancing angle
4 //page 75
5 clear;
6 clc;
7 //given
8 h=1,k=1,l=0; // miller indices
9 a=0.26; // in nanometer (lattice constant)
10 lambda=0.065; // in nanometer (wavelength)
11 n=2; // order
12 //calculate
13 d=a/sqrt(h^2+k^2+1^2); // calculation of
      interlattice spacing
14 // Since 2 dsin (theta) = n (lambda)
15 // therefore we have
16 theta=asind(n*lambda/(2*d));
17 printf('\nThe glancing angle is \t%.2f degree', theta
     );
18 //Note: there is slight variation in the answer due
     to round off
```

Scilab code Exa 4.3 Find glancing angle

```
1 //chapter 4
2 //example 4.3
3 //Find glancing angle
4 //page 75-76
5 clear;
6 clc;
7 //given
8 d=3.04E-10; // in mm (spacing constant)
9 lambda=0.79; // in Angstrom (wavelength)
```

```
10 n=3; // order
11 //calculate
12 // Since 2dsin(theta)=n(lambda)
13 // therefore we have
14 lambda=lambda*1E-10; //since lambda is in angstrom
15 theta=asind(n*lambda/(2*d));
16 printf('\nThe glancing angle is \t%.3f degree',theta);
17 //Note: In question the value of d=3.04E-9 cm but in solution is using d=3.04E-10 m.
18 // I have used d=3.04E-10 cm as used in the solution
```

Scilab code Exa 4.4 Find wavelength and maximum order possible

```
1 // chapter 4
\frac{2}{\text{example }} 4.4
3 //Find wavelength and maximum order possible
4 //page 76
5 clear;
6 clc;
7 //given
8 d=0.282; // in nanometer (spacing constant)
9 \text{ n=1; } // \text{ order}
10 theta=8.35; // in degree (glancing angle)
11 //calculate
12 d=d*1E-9; // since d is in nanometer
13 // Since 2 \operatorname{dsin} ( \operatorname{theta} ) = n ( \operatorname{lambda} )
14 // therefore we have
15 lambda=2*d*sind(theta)/n;
16 printf('\nThe wavelength is \t^{1}.2E m', lambda);
17 lambda_1=lambda*1E10; //changing unit from m to
      Angstrom
18 printf('\n \t \t \t = \%.3 f Angstrom', lambda_1);
19 theta_1=90; // in degree (for maximum order theta
      =90
```

Scilab code Exa 4.5 Find wavelength in XU

```
1 //chapter 4
2 //example 4.5
3 //Find wavelength in X.U.
4 / page 76-77
5 clear;
6 clc;
7 //given
8 theta=6; // in degree (glancing angle)
9 p=2170; // in Kg/m^3 (density)
10 M=58.46; // Molecular weight of NaCl
11 N=6.02E26; // in Kg-molecule (Avogadro's number)
12 n=1; // order
13 XU=1E-12; //\sin ce 1X.U.= 1E-12m
14 //calculate
15 d=(M/(2*N*p))^{(1/3)};/calclation of lattice constant
16 printf('\nThe spacing constant is \td=\%1.3E m',d);
17 // Since 2 \operatorname{dsin} ( \operatorname{theta} ) = n ( \operatorname{lambda} )
18 // therefore we have
19 lambda=2*d*sind(theta)/n; //calculation of
      wavelength
20 printf('\n\nThe wavelength is t = 1.2E \text{ m'}, lambda);
21 lambda=lambda/XU;
22 printf('\n \t \t \t \t = \%.1 f X.U.', lambda);
23 // Note: The answer in the book is wrong due to
      calculation mistake
```

Scilab code Exa 4.6 find wavelength and energy

```
1 / chapter 4
\frac{2}{\text{example }} 4.6
3 //find wavelength and energy
4 //page 77
5 clear;
6 clc;
7 //given
8 h=1,k=1,l=1; // miller indices
9 a=5.63; // in Angstrom (lattice constant)
10 theta=27.5; // in degree (Glancing angle)
11 n=1; //order
12 H=6.625E-34; // in J-s (Plank's constant)
13 c=3E8; // in m/s (velocity of light)
14 e=1.6E-19; // charge of electron
15 //calculate
16 d=a/sqrt(h^2+k^2+1^2); // calculation for
      interplanar spacing
17 printf('\nThe lattice spacing is\td=\%.2f Angstrom',d
18 // Since 2 \operatorname{dsin} ( \operatorname{theta} ) = n ( \operatorname{lambda} )
19 // therefore we have
20 lambda=2*d*sind(theta)/n; // calculation for
      wavelength
21 printf('\nThe wavelength is\t=\%.f Angstrom',lambda);
22 E=H*c/(lambda*1E-10); //calculation of Energy
23 printf('\nThe energy of X-rays is E=\%1.3E J', E);
24 E=E/e; // changing unit from J to eV
25 printf('\n \t \t = \%1.3E eV', E);
26 // Note: c=3E8 \text{ m/s} but in solution c=3E10 \text{ m/s} has
      been used that's why answer is different
```

Scilab code Exa 4.7 calculate interpalanr spacing

```
1 //chapter 4
2 //example 4.7
3 //calculate interpalanr spacing
4 //page 77-78
5 clear;
6 clc;
7 //given
8 V=344; // in V (accelerating voltage)
9 theta=60; // in degree (glancing angle)
10 m=9.1E-31; // in Kg (mass of electron)
11 h=6.625e-34; // in J-s (Plank's constant)
12 n=1; //order
13 e=1.6E-19; // charge on electron
14 //calculate
15 //Since K=m*v^2/2=e*V
16 // therefore v=sqrt(2*e*V/m)
17 // since lambda=h/(m*v)
18 //therefore we have lambda=h/sqrt(2*m*e*V)
19 lambda=h/sqrt(2*m*e*V); // calculation of lambda
20 printf('\nThe wavelength is \t = \%1.2 \,\mathrm{E} \,\mathrm{m}', lambda);
21 lambda=lambda*1E10; //changing unit from m to
      Angstrom
22 printf('\n \t \t \t \t = \%.2 f Angstrom', lambda);
23 // Since 2 \operatorname{dsin} ( \operatorname{theta} ) = n ( \operatorname{lambda} )
24 // therefore we have
25 d=n*lambda/(2*sind(theta));
26 printf('\nThe interplanar spacing is \t d=\%.2 f
      Angstrom',d);
```

Scilab code Exa 4.8 calculate angle of first order diffraction maximum

```
1 //chapter 4
2 //example 4.8
3 //calculate angle of first order diffraction maximum
4 //page 78-79
5 clear;
6 clc;
7 //given
8 K=0.02; // in eV (kinetic energy)
9 d=2.0; // in Angstrom (Bragg's spacing)
10 m=1.00898; // in amu (mass of neutron)
11 amu=1.66E-27; // in Kg (1amu=1.66E-27 \text{ Kg})
12 h=6.625e-34; // in J-s (Plank's constant)
13 n=1; //order
14 e=1.6E-19; // charge on electron
15 //calculate
16 //Since K=m*v^2/2
17 // therefore v=sqrt(2*K/m)
18 // since lambda=h/(m*v)
19 //therefore we have lambda=h/sqrt(2*m*K)
20 m=m*amu; //changing unit from amu to Kg
21 K=K*e; //changing unit to J from eV
22 lambda=h/sqrt(2*m*K); // calculation of lambda
23 printf('\nThe wavelength is \t = \%1.1E \text{ m'}, \text{lambda});
24 lambda=lambda*1E10; //changing unit from m to
      Angstrom
25 printf('\n \t \t \t \t = \%.1 f Angstrom', lambda);
26 // Since 2 dsin(theta) = n(lambda)
27 // therefore we have
28 theta=asind(n*lambda/(2*d)); // calculation of angle
       of first order diffraction maximum
29 printf('\nThe angle of first order diffraction
     maximum is %.f Degree', theta);
```

Scilab code Exa 4.9 Show that given angles are successive order of difraction and find spacing constant

```
1 / chapter 4
2 //example 4.9
3 //Show that given angles are successive order of
      diffraction and find spacing constant
4 //page 79
5 clear;
6 clc;
7 //given
8 lambda=0.586; // in Angstrom (wavelength of X-rays)
9 n1=1, n2=2, n3=3; // orders of diffraction
10 theta1=5+(58/60); // in degree (Glancing angle for
      first order of diffraction)
11 theta2=12+(01/60); //in degree (Glancing angle for
      second order of diffraction)
12 theta3=18+(12/60); /in degree (Glancing angle for
      third order of diffraction)
13 //calculate
14 K1=sind(theta1);
15 K2=sind(theta2);
16 K3=sind(theta3);
17 printf ('The value of sine of different angle of
      diffraction is \nK1=\%.4 \text{ f} \nK2=\%.4 \text{ f} \nK3=\%.4 \text{ f}', K1, K2,
      K3);
18 // Taking the ratios of K1:K2:K3
19 // We get K1:K2:K3=1:2:3
20 //Therefore we have
21 printf('\n\nOr we have \tK1:K2:K3=1:2:3');
22 printf('\nHence these angles of incidence are for
      Ist, 2nd and 3rd order reflections respectively')
23 // Since 2 \operatorname{dsin} ( \operatorname{theta} ) = n ( \operatorname{lambda} )
24 // therefore we have
25 d1=n1*lambda/(2*K1);
26 d2=n2*lambda/(2*K2);
27 d3=n3*lambda/(2*K3);
28 d1=d1*1E-10; //changing unit from Angstrom to m
29 d2=d2*1E-10; //changing unit from Angstrom to m
30 d3=d3*1E-10; //changing unit from Angstrom to m
```

```
31 printf('\n\nThe spacing constants are \nd1=\%1.3E m\nd2=\%1.3E m\nd3=\%1.3E m',d1,d2,d3);  
32 d=(d1+d2+d3)/3;  
33 printf('\n\nThe mean value of crystal spacing is d= \%1.3E m',d);
```

Chapter 5

Principles of Quantum Mechanics

Scilab code Exa 5.1 Find velocity and kinetic energy

```
1 // chapter 5
2 //example 5.1
3 //Find velocity and kinetic energy
4 / page 102-103
5 clear;
6 clc;
7 //given
8 lambda=1; //in Angstrom (wavelength)
9 m=1.67E-27; // in Kg (mass of neutron)
10 h=6.625E-34; // in J-s (Planck's constant)
11 e=1.6E-19; // in C (charge of electron)
12 //calculate
13 lambda=lambda*1E-10; //since lambda is in Angstrom
14 // Since lambda=h/(m*v)
15 // Therefore we have
16 v=h/(m*lambda); //calculation of velocity
17 printf('\nThe velocity is t v=\%1.2E m/s',v);
18 K=m*v^2/2; //calculation of kinetic energy
19 printf('\nThe kinetic energy is\tK=\%1.2E\ J',K);
```

```
20 K=K/e; //changing unit fro J to eV
21 printf('\n\t\t=%.4f eV',K);
22 //Note: Due to round off, there is slight variation
      in the answer
```

Scilab code Exa 5.2 Calculate deBroglie wavelength

```
1 / chapter 5
2 //example 5.2
3 // Calculate de-Broglie wavelength
4 / page 103 - 104
5 clear;
6 clc;
7 //given
8 K=50; // in eV (Kinetic energy)
9 m0=9.1E-31; // in Kg (mass of electron)
10 h=6.625E-34; // in J-s (Planck's constant)
11 e=1.6E-19; // in C (charge of electron)
12 //calculate
13 K=K*e; //changing unit from eV to J
14 / Since K=m*v^2/2
15 // Therefore v=sqrt(2*K/m)
16 // Since lambda=h/(m*v)
17 // Therefore we have
18 lambda=h/sqrt(2*m0*K); //calculation of wavelength
19 printf('\nThe wavelength is\t=\%1.3E m',lambda);
20 lambda=lambda*1E10; //changing unit from m to
     Angstrom
21 printf('\n \t \t \t = \%.3 f Angstrom', lambda);
```

Scilab code Exa 5.3 Calculate wavelength

```
1 / chapter 5
```

```
2 //example 5.3
3 // Calculate wavelength
4 / page 104
5 clear;
6 clc;
7 //given
8 E=2000; // in eV (Kinetic energy)
9 m=9.1E-31; // in Kg (mass of electron)
10 h=6.625E-34; // in J-s (Planck's constant)
11 e=1.6E-19; // in C (charge of electron)
12 //calculate
13 E=E*e; //changing unit from eV to J
14 / Since E=m*v^2/2
15 // Therefore v=sqrt(2*E/m)
16 // Since lambda=h/(m*v)
17 // Therefore we have
18 lambda=h/sqrt(2*m*E); //calculation of wavelength
19 printf('\nThe wavelength is\t=\%1.3E m',lambda);
20 lambda=lambda*1E9; //changing unit from m to
     nanometer
21 printf('n t t t=\%.4 f nm', lambda);
```

Scilab code Exa 5.4 Calculate deBroglie wavelength

```
1 //chapter 5
2 //example 5.3
3 //Calculate de-Broglie wavelength
4 //page 104
5 clear;
6 clc;
7 //given
8 m_e=9.1E-31; // in Kg (mass of electron)
9 m_n=1.676E-27; // in Kg (mass of neutron)
10 h=6.625E-34; // in J-s (Planck's constant)
11 c=3E8; // in m/s (velocity of light)
```

Scilab code Exa 5.5 Calculate wavelength

```
1 //chapter 5
2 //example 5.4
3 //Calculate wavelength
4 //page 104
5 clear;
6 clc;
7 //given
8 V=1600; // in V (Potential)
9 //calculate
10 lambda=12.27/sqrt(V); // calculation of wavelength in Angstrom
11 printf('\nThe wavelength is\t=%.3f Angstrom',lambda)
;
12 // Note: The answer in the book is wrong due to calculation mistake
```

Scilab code Exa 5.6 Calculate wavelength for photon and electron

```
1 / chapter 5
2 //example 5.6
3 // Calculate wavelength for photon and electron
4 / page 105
5 clear;
6 clc;
7 //given
8 E=1000; // in eV (Kinetic energy of photon)
9 K=1000; // in eV (Kinetic energy of electron)
10 m0=9.1E-31; // in Kg (mass of electron)
11 h=6.6E-34; // in J-s (Planck's constant)
12 c=3E8; // in m/s (velocity of light)
13 e=1.6E-19; // in C (charge on electron)
14 //calculate
15 E=E*e; // changing unit from eV to J
16 lambda_p=h*c/E; // For photon E=hc/lambda
17 printf('\nFor photon, the wavelength is\t=\%1.2E m',
      lambda_p);
18 lambda_p=lambda_p*1E10; //changing unit from m to
      Angstrom
19 printf('\n\t\t\t\t=\%.1f Angstrom',lambda_p)
20 / \operatorname{Since K=m*v^2/2}
21 // Therefore v=sqrt(2*K/m)
22 // Since lambda=h/(m*v)
23 // Therefore we have
24 K=K*e; // changing unit from eV to J
25 lambda_e=h/sqrt(2*m0*K); //calculation of wavelength
26 printf('\nFor electron, the wavelength is\t=\%1.1E m',
      lambda_e);
  lambda_e=lambda_e*1E10; //changing unit from m to
27
      Angstrom
28 printf('\n \t \t \t \t = \%.2 f Angstrom', lambda_e);
29 // Note: The answer in the book is wrong because K
      =1.6E-16 J but the solution is using K=2.4*E-15 J
```

Scilab code Exa 5.7 Calculate velocity and kinetic energy

```
1 / chapter 5
2 //example 5.7
3 // Calculate velocity and kinetic energy
4 //page 105
5 clear;
6 clc;
7 //given
8 lambda=1.66E-10; // in m (wavelength)
9 m=9.1E-31; // in Kg (mass of electron)
10 h=6.626E-34; // in J-s (Planck's constant)
11 e=1.6E-19; // in C (charge on electron)
12 //calculate
13 // Since lambda=h/(m*v)
14 // Therefore we have
15 v=h/(m*lambda); // calculation of velocity
16 printf('\nThe velocity of electron is \tv=\%1.3E m/s'
17 K=m*v^2/2; //calculation of kinetic energy
18 printf('\nThe kinetic energy is \t = \%1.4E J', K);
19 K=K/e; // changing unit from J to eV
20 printf ('\n\t\t\t=\%.3 f eV', K);
21 // Note: The answer in the book for kinetic energy
     is wrong due to calculation mistake
```

Scilab code Exa 5.8 Calculate deBroglie wavelength

```
1 //chapter 5
2 //example 5.8
3 //Calculate de-Broglie wavelength
4 //page 106
5 clear;
6 clc;
7 //given
```

```
8 T=400; // in K (temperature)
9 m=6.7E-27; // in Kg (mass of He-atom)
10 h=6.6E-34; // in J-s (Planck's constant)
11 k=1.376E-23; // in J/degree (Boltzmann constant)
12 //calculate
13 // Since lambda=h/(m*v)
14 // E=mv^2/2;
15 // Therefore lambda=h/sqrt(2*m*E)
16 / E = kT
17 // Therefore lambda=h/sqrt(2*m*k*T)
18 lambda=h/sqrt(2*m*k*T)
19 printf('\nThe de-Broglie wavelength of He-atom is \t
     =\%1.4E \text{ m}', lambda);
20 lambda=lambda*1E10; //changing unit from m to
     Angstrom
21 printf('\n \t \t \t \t \t \t \
```

Scilab code Exa 5.9 Calculate deBroglie wavelength of proton

```
1 / chapter 5
2 // \text{example } 5.9
3 // Calculate de-Broglie wavelength of proton
4 //page 106
5 clear;
6 clc;
7 //given
8 m_e=9.1E-31; // in Kg (mass of electron)
9 m_p=1.6E-27; // in Kg (mass of proton)
10 h=6.626E-34; // in J-s (Planck's constant)
11 c=3E8; // in m/s (velocity of light)
12 //calculate
13 E=m_e*c^2; // in J (rest energy of electron)
14 // Since lambda=h/(m*v)
15 // E=mv^2/2;
16 // Therefore lambda=h/sqrt(2*m*E)
```

Scilab code Exa 5.10 Calculate wavelength

```
//chapter 5
//example 5.10
//Calculate wavelength
//page 106
clear;
clc;
//given
V=10000; // in V (Potential)
//calculate
lambda=12.27/sqrt(V); // calculation of wavelength in Angstrom
printf('\nThe wavelength is\t=%.3f Angstrom',lambda);
```

Scilab code Exa 5.11 Calculate glancing angle

```
1 //chapter 5
2 //example 5.11
3 //Calculate glancing angle
4 //page 107
5 clear;
```

```
6 clc;
7 //given
8 V=100; // in V (Potential)
9 n=1; // order of diffraction
10 d=2.15; // in Angstrom (lattice spacing)
11 //calculate
12 lambda=12.27/sqrt(V); // calculation of wavelength
     in Angstrom
13 printf('\nThe wavelength is \t=\%.3 f Angstrom', lambda)
14 // Since 2*d*sind (theta)=n*lambda
15 //therefore we have
16 theta=asind(n*lambda/(2*d)); // calculation of
      glancing angle
17 printf('\nThe glancing angle is\t=\%.1f degree',theta
18 // Note: In question V=100 eV but the solution is
     using V=100V in the book and I have also used V
     =100V
```

Scilab code Exa 5.12 Calculate spacing of crystal

```
1 //chapter 5
2 //example 5.12
3 //Calculate spacing of crystal
4 //page 107
5 clear;
6 clc;
7 //given
8 V=344; // in V (Potential)
9 n=1; // order of diffraction
10 theta=60; // in degree (glancing angle)
11 //calculate
12 lambda=12.27/sqrt(V); // calculation of wavelength in Angstrom
```

Scilab code Exa 5.13 Calculate velocity of electron

```
1 //chapter 5
2 //example 5.13
3 // Calculate velocity of electron
4 //page 107-108
5 clear;
6 clc;
7 //given
8 r=0.53E-10; // in m (radius of first Bohr orbit)
9 h=6.6E-34; // in J-s (Planck's constant)
10 m=9.1E-31; // in Kg (mass of electron)
11 n=1; // First Bohr orbit
12 pi=3.14; // value of pi used in the solution
13 //calculate
14 // Since 2*pi*r=n*lambda and lambda=h/(m*v)
15 //Threfore we have v=h*n/(2*pi*r*m)
16 v=h*n/(2*pi*r*m); //calculation of velocity
17 printf('\nThe velocity of electron is\tv=\%1.1E m/s',
     v);
```

Scilab code Exa 5.14 Calculate uncertainty in the momentum and uncertainty in the velocity

```
1 / chapter 5
2 //example 5.14
3 // Calculate uncertainty in the momentum and
      uncertainty in the velocity
4 //page 108
5 clear;
6 clc;
7 //given
8 dx=0.2; // in Angstrom (uncertainty in the position)
9 h=6.6E-34; // in J-s (Planck's constant)
10 m0=9.1E-31; // in Kg (mass of electron)
11 pi=3.14; // value of pi used in the solution
12 //calculate
13 dx=dx*1E-10; //since dx is in Angstrom
14 // Since dx*dp=h/4*pi (uncertainty relation)
15 dp=h/(4*pi*dx); // calculation of uncertainty in the
      momentum
16 printf('\nThe uncertainty in the momentum is\tdp=\%1
      .2E \text{ Kg-m/s}', dp);
17 //since dp=m∗dv
18 dv=dp/m0; // calculation of uncertainty in the
      velocity
19 printf ('\nThe uncertainty in the velocity is \tdv = \%1
      .2E \text{ m/s}', dv);
```

Scilab code Exa 5.15 Compare uncertainty in the velocity of electron and proton

```
1 //chapter 5
2 //example 5.15
3 //Compare uncertainty in the velocity of electron and proton
4 //page 108
5 clear;
6 clc;
```

```
7 //given
8 m_e=9.1E-31; // in Kg (mass of electron)
9 m_p=1.67E-27; // in Kg (mass of proton)
10 dx_p=1; // in nanometer (uncertainty in position of
     electron)
11 dx_n=1; // in nanometer (uncertainty in position of
     proton)
12 //calculate
13 // since dp=h/(4*pi*dx)
14 // since h/(4*pi) is constant and dx is same for
     electron and proton
15 // therefor both electron and proton have same
     uncertainty in the momentum
16 // since dv=dp/m and dp is same for both
17 // therefore dv_e/dv_p=m_p/m_e
18 // therefore
19 K=m_p/m_e; // ratio of uncertainty in the velocity
     of electron and proton
20 printf('\nThe ratio of uncertainty in the velocity
     of electron to that of proton is t=\%. f', K);
```

Scilab code Exa 5.16 Calculate minimum uncertainty in the momentum and minimum kinetic energy of proton

```
1 //chapter 5
2 //example 5.16
3 //Calculate minimum uncertainty in the momentum and minimum kinetic energy of proton
4 //page 108-109
5 clear;
6 clc;
7 //given
8 dx=5E-15; // in m (radius of nucleus or uncertainty in the position)
9 h=6.6E-34; // in J-s (Planck's constant)
```

```
10 m=1.67E-27; // in Kg (mass of proton)
11 pi=3.14; // value of pi used in the solution
12 e=1.6E-19; // in C (charge of electron)
13 //calculate
14 // Since dx*dp=h/4*pi (uncertainty relation)
15 dp=h/(4*pi*dx); // calculation of uncertainty in the
      momentum
16 printf('\nThe minimum uncertainty in the momentum of
       proton is \tdp=\%1.2E \text{ Kg-m/s',dp};
17 p=dp; // minimum value of momentum to calculate
     mimimum kinetic energy
18 K=p^2/(2*m); // calculation of minimum kinetic
      energy of proton
19 printf('\nThe minimum kinetic energy of proton is\tK
     =\%1.1E J',K);
20 K=K/e; //changing unit from J to eV
21 printf ('\n \t \t \t \t \t = \%1.1E eV', K);
22 K=K/1E6; // changing unit from eV to MeV
23 printf ('\n \t \t \t \t \t .1 f MeV', K);
```

Scilab code Exa 5.17 Calculate percentage of uncertainty in the momentum of electron

```
1 //chapter 5
2 //example 5.17
3 //Calculate percentage of uncertainty in the momentum of electron
4 //page 109
5 clear;
6 clc;
7 //given
8 K=1; // in KeV (kinetic energy of electron)
9 dx=1; // in Angstrom (uncertainty in the position)
10 h=6.63E-34; // in J-s (Planck's constant)
11 m=9.1E-31; // in Kg (mass of electron)
```

```
12 pi=3.14; // value of pi used in the solution
13 e=1.6E-19; // in C (charge of electron)
14 //calculate
15 dx=dx*1E-10; // since dx is in Angstrom
16 // Since dx*dp=h/4*pi (uncertainty relation)
17 dp=h/(4*pi*dx); // calculation of uncertainty in the
      momentum
18 printf('\nThe uncertainty in the momentum of
      electron is \tdp=\%1.2E \text{ Kg-m/s',dp};
19 K=K*1E3*1.6E-19; // changing unit from KeV to J
20 p=sqrt(2*m*K); // calculation of momentum
21 printf('\nThe momentum of electron is\t\t\t p=\%1.2E
     Kg-m/s',p);
22 poc=(dp/p)*100; // calculation of percentage of
      uncertainty
23 printf('\nThe percentage of uncertainty in the
     momentum is =\%.1 \, \text{f}', poc);
```

Scilab code Exa 5.18 Calculate uncertainty in the position of electron

```
1 //chapter 5
2 //example 5.18
3 //Calculate uncertainty in the position of electron
4 //page 109-110
5 clear;
6 clc;
7 //given
8 v=6.6E4; // m/s (speed of electron)
9 poc=0.01; // percentage of uncertainty
10 h=6.63E-34; // in J-s (Planck's constant)
11 m=9E-31; // in Kg (mass of electron)
12 pi=3.14; // value of pi used in the solution
13 //calculate
14 p=m*v; // calculation of momentum
15 printf('\nThe momentum of electron is \t\t\tp=%1.2E
```

```
Kg-m/s',p);
16 dp=(poc/100)*p; // calculation of uncertainty in the momentum
17 printf('\nThe uncertainty in the momentum of electron is\tdp=%1.2E Kg-m/s',dp);
18 // Since dx*dp=h/4*pi (uncertainty relation)
19 dx=h/(4*pi*dp); // calculation of uncertainty in the position
20 printf('\nThe uncertainty in the position of electron is\tdx=%1.2E Kg-m/s',dx);
21 // Note; solution is incomplete in the book
```

Scilab code Exa 5.19 Calculate uncertainty in the position of X ray photon

```
1 / chapter 5
2 //example 5.19
3 // Calculate uncertainty in the position of X-ray
     photon
4 / page 111-112
5 clear;
6 clc;
7 //given
8 lambda=1; // in Angstrom (wavelength)
9 pi=3.14; // value of pi used in the solution
10 dlambda=1E-6; // uncertainty in wavelength
11 //calculate
12 lambda=lambda*1E-10; // sinc lambda is in Angstrom
13 // By uncertainty principle, dx*dp>=h/(4*pi) --(1)
14 // since p=h/lambda ----(2)
15 // Or p*lambda=h
16 // diffrentiting this equation
17 // p*dlambda+lambda*dp=0
18 // dp=-p*dlambda/lambda ----(3)
19 // \text{from } (2) and (3) dp=-h*dlambda/lambda^2 ---(4)
```

```
// from (1) and (4) dx*dlambda>=lambda^2/4*pi
// Or dx=lambda^2/(4*pi*dlambda)
dx=lambda^2/(4*pi*dlambda); // calculation of
    uncertainty in the position
printf('\nThe uncertainty in the position of X-ray
    photon is \tdx=%1.0E m',dx);
// Note: 1. In the question, wavelength accuracy is
    given as 1 in 1E8 but in book solution has used 1
    in 1E6 and same has been used by me.
// 2. ANSWEER IS WRONG DUE TO CALCULATION
MISTAKE
```

Scilab code Exa 5.20 Compare minimum uncertainty in the frequency of the photon

```
1 / chapter 5
\frac{2}{\text{example }} 5.20
3 //Compare minimum uncertainty in the frequency of
     the photon
4 //page 111
5 clear;
6 clc;
7 //given
8 dt=1E-8; // in sec (average life time)
9 pi=3.14; // value of pi used in the solution
10 //calculate
11 // Since dE*dt>=h/(4*pi) (uncertainty relation for
     energy)
12 // and E=h*v v is the frequency
13 // therefore we have dv >= 1/(4*pi*dt)
14 dv=1/(4*pi*dt); // calculation of minimum
      uncertainty in the frequency
15 printf('\nThe minimum uncertainty in the frequency
     of the photon is \forall dv = \%1.1E \sec^{-1}, dv;
```

Scilab code Exa 5.21 Calculate uncertainty in the energy of the photon

```
1 / chapter 5
2 //example 5.21
3 // Calculate uncertainty in the energy of the photon
4 //page 111
5 clear;
6 clc;
7 //given
8 dt=1E-12; // in sec (average life time)
9 h=6.63E-34; // in J-s (Planck'c constant)
10 pi=3.14; // value of pi used in the solution
11 e=1.6*1E-19; // in C (charge of electron)
12 //calculate
13 // Since dE*dt>=h/(4*pi) (uncertainty relation for
      energy)
14 dE=h/(4*pi*dt); // calculation of minimum
      uncertainty in the energy
15 printf('\nThe uncertainty in the energy of the
      photon is \forall tdE=\%1.2E J', dE;
16 dE=dE/e; //changing unit from J to eV
17 printf('\n \t \t \t \t \t \t \ =%1.1E eV', dE);
```

Scilab code Exa 5.22 Calculate minimum error in the energy

```
1 //chapter 5
2 //example 5.22
3 //Calculate minimum error in the energy
4 //page 111-112
5 clear;
6 clc;
7 //given
```

Scilab code Exa 5.23 Calculate energy corresponding to the 2nd and 4th quantum states

```
1 //chapter 5
2 //example 5.23
3 // Calculate energy corresponding to the 2nd and 4th
     quantum states
4 //page 112
5 clear;
6 clc;
7 //given
8 a=2; // in Angstrom (length of the box)
9 m=9.1E-31; // in Kg (mass of electron)
10 h=6.626E-34; // in J-s (Planck'c constant)
11 n2=2, n4=4; // two quantum states
12 e=1.6*1E-19; // in C (charge of electron)
13 //calculate
14 a=a*1E-10; // since a is in Angstrom
15 // Since E_n=n^2*h^2/(8*m*a^2) (Energy
     corresponding to nth quantum state)
16 E2=n2^2*h^2/(8*m*a^2); // calculation of energy
```

Scilab code Exa 5.24 Calculate energy corresponding to the ground and first two excited states

```
1 //chapter 5
2 //example 5.24
3 // Calculate energy corresponding to the ground and
     first two excited states
4 //page 113
5 clear;
6 clc;
7 //given
8 a=1E-10; // in m (width of the well)
9 m=9.1E-31; // in Kg (mass of electron)
10 h=6.626E-34; // in J-s (Planck'c constant)
11 n1=1, n2=2, n3=3; // ground and first two excited
     states
12 e=1.6*1E-19; // in C (charge of electron)
13 //calculate
14 // Since E_n=n^2*h^2/(8*m*a^2)
     corresponding to nth quantum state)
15 E1=n1^2*h^2/(8*m*a^2); // calculation of energy
```

```
corresponding to the Ground state
16 printf('\nThe energy corresponding to the ground
     state is \tE1=\%1.3E \ J', E1);
17 E1=E1/e; //changing unit from J to eV
18 printf('\n\t\t\t\t\t\t\t\ =\%.2 f eV', E1);
19 E2=n2^2*h^2/(8*m*a^2); // calculation of energy
     corresponding to the 1st excited state
20 printf('\nThe energy corresponding to the 1st
     excited state is \tE2=\%1.3E J', E2);
21 E2=E2/e; //changing unit from J to eV
22 printf('\n\t\t\t\t\t\t\t\ =\%.2 f eV', E2);
23 E3=n3^2*h^2/(8*m*a^2); // calculation of energy
     corresponding to the 2nd excited state
24 printf('\nThe energy corresponding to the 2nd
     excited state is \tE3=\%1.3E \ J', E3);
25 E3=E3/e; //changing unit from J to eV
26 printf('\n\t\t\t\t\t\t\t\ =\%.2 f eV', E3);
27 // Note: There is slight variation in the answer due
      to round off
```

Scilab code Exa 5.25 Calculate minimum uncertainty in the velocity of electron

```
1 //chapter 5
2 //example 5.25
3 //Calculate minimum uncertainty in the velocity of electron
4 //page 113
5 clear;
6 clc;
7 //given
8 dx=1E-8; // in m (length of box or uncertainty in the position)
9 h=6.626E-34; // in J-s (Planck'c constant)
10 m=9.1E-31; // in Kg (mass of electron)
```

Scilab code Exa 5.26 Calculate minimum energy of electron

```
1 // chapter 5
2 //example 5.26
3 //Calculate minimum energy of electron
4 / page 113-114
5 clear;
6 clc;
7 //given
8 a=4E-10; // in m (length of the box)
9 m=9.1E-31; // in Kg (mass of electron)
10 h=6.626E-34; // in J-s (Planck'c constant)
11 n1=1; // ground state
12 e=1.6*1E-19; // in C (charge of electron)
13 //calculate
14 // Since E_n=n^2*h^2/(8*m*a^2)
     corresponding to nth quantum state)
15 E1=n1^2*h^2/(8*m*a^2); // calculation of energy
     corresponding to the ground state
16 printf('\nThe minimum energy of electron is \tE1=\%1
     .3E J', E1);
17 E1=E1/e; //changing unit from J to eV
18 printf('\n\t\t\t\t\t =\%.3 f eV', E1);
```

 $19\ //\ \mathrm{Note}\colon$ The answer in the book corresponding to J is wrong due to printing error.

Chapter 6

Electron Theory and Band Theory of Metals

Scilab code Exa 6.1 Calculate mean free path of electron

```
1 //chapter 6
2 //example 6.1
3 // Calculate mean free path of electron
4 //page 146
5 clear;
6 clc;
7 //given
8 n=8.5E28; // in 1/m^3 (density of electron)
9 m_e=9.11E-31; // in Kg (mass of electron)
10 k=1.38E-23; // in J/K (Boltzmann's constant)
11 e=1.6E-19; // in C (charge of electron)
12 T=300; // in K (temperature)
13 p=1.69E-8; // in ohm—m (resistivity)
14 //calculate
15 lambda=sqrt(3*k*m_e*T)/(n*e^2*p); // calculation of
     mean free path
16 printf('\nThe mean free path of electron is t=\%1.2E
      m', lambda);
17 lambda=lambda*1E9; // changing unit from m to
```

```
nanometer
18 printf('\n\t\t\t\t\t=%.2f nm',lambda);
19 // Note: answer in the book is wrong due to printing mistake
```

Scilab code Exa 6.2 Calculate the temperature

```
1 //chapter 6
2 //example 6.2
3 // Calculate the temperature
4 //page 146
5 clear;
6 clc;
7 //given
9 k=1.38E-23; // in J/K (Boltzmann's constant)
10 e=1.6E-19; // in C (charge of electron)
11 P_E=1; // in percentage (probability that a state
     with an energy 0.5 eV above Fermi energy will be
     occupied)
12 E=0.5; // in eV (energy above Fermi level)
13 //calculate
14 P_E=1/100; // changing percentage into ratio
15 E=E*e; // changing unit from eV to J
16 // P_E=1/(1+\exp((E-E_F)/k*T))
17 // Rearranging this equation, we get
18 // T=(E-E_F)/k*log((1/P_E)-1)
19 // Since E-E-F has been denoted by E
                                         therefore
20 T=E/(k*log((1/P_E)-1));
21 printf('\nThe temperature is \tT=\%. f K',T);
22 // Note: There is slight variation in the answer due
      to logarithm function
```

Scilab code Exa 6.3 Calculate relaxation time of conduction electrons

```
//chapter 6
//example 6.3
//Calculate relaxation time of conduction electrons
//page 147
clear;
clc;
//given
n=5.8E28; // in 1/m^3 (density of electron)
m=9.1E-31; // in Kg (mass of electron)
e=1.6E-19; // in C (charge of electron)
p=1.54E-8; // in ohm-m (resistivity)
//calculate
t=m/(n*e^2*p); // calculation of relaxation time
printf('\nThe relaxation time of conduction electrons is %1.2E sec',t);
```

Scilab code Exa 6.4 Calculate mean free path traveeled by the electrons

```
//chapter 6
//example 6.4
//Calculate mean free path traveeled by the electrons
//page 147
clear;
clc;
//given
n=8.5E28; // in 1/m^3 (density of electron)
m=9.1E-31; // in Kg (mass of electron)
e=1.6E-19; // in C (charge of electron)
sigma=6E7; // in 1/ohm-m (conductivity)
E_F=7; // in E=eV (Fermi energy of Copper)
//calculate
L_F=E_F*e; // changing unit from eV to J
```

Scilab code Exa 6.5 Calculate relaxation time of conduction electrons

```
//chapter 6
//example 6.5
//example 6.5
//Calculate relaxation time of conduction electrons
//page 147-148
clear;
clc;
//given
n=6.5E28; // in 1/m^3 (density of electron)
m=9.1E-31; // in Kg (mass of electron)
e=1.6E-19; // in C (charge of electron)
p=1.43E-8; // in ohm-m (resistivity)
//calculate
t=m/(n*e^2*p); // calculation of relaxation time
printf('\nThe relaxation time of conduction electrons is %1.2E sec',t);
```

Scilab code Exa 6.6 Calculate average kinetic energy and velocity of molecules

```
1 //chapter 6
2 //example 6.6
3 // Calculate average kinetic energy and velocity of
     molecules
4 //page 148
5 clear;
6 clc;
7 //given
8 T=30; // in Celcius (temperature)
9 k=1.38E-23; // in J/K (Boltzmann's constant)
10 m_p=1.67E-27; // in Kg (mass of proton)
11 e=1.6E-19; // in C (charge of electron)
12 //calculate
13 T=T+273; // changing temperature from Celcius to
     Kelvin
14 KE=(3/2)*k*T; // calculation of average kinetic
     energy
15 printf('\nThe average kinetic energy of gas,
      molecules is \tKE=\%3.2E J', KE);
16 KE=KE/e; // changing unit from J to eV
17 printf('\n\t\t\t\t\t\t\t\ =\%f eV', KE);
18 m=1.008*2*m_p; // calculating mass of hydrogen gas
     molecule
19 c=sqrt(3*k*T/m); // calculation of velocity
20 printf('\n\nThe velocity of molecules is tc=\%.2 \text{ f m/}
     s',c);
21 // Note: There is calculation mistake in the answer
     of energy given in eV and that of velocity
```

Scilab code Exa 6.7 Calculate velocity of electron and proton

```
1 //chapter 6
2 //example 6.7
3 // Calculate velocity of electron and proton
4 / page 148 - 149
5 clear;
6 clc;
7 //given
8 E=10; // in eV (kinetic energy for each electron and
      proton)
9 m_e=9.1E-31; // in Kg (mass of electron)
10 m_p=1.67E-27; // in Kg (mass of proton)
11 e=1.6E-19; // in C (charge of electron)
12 //calculate
13 E=E*e; // changing unit from eV to J
14 // \sin ce E = m * v^2/2
15 // therefore v=sqrt(2E/m)
16 v_e=sqrt(2*E/m_e); // calculation of kinetic energy
      of electron
17 printf('\nThe kinetic energy of electron is \tv_e=\%1
      .3E \text{ m/s}', v_e);
18 v_p=sqrt(2*E/m_p); // calculation of kinetic energy
      of proton
19 printf('\nThe kinetic energy of proton is tv_p=\%1.3
     E m/s', v_p);
20 // Note: The answer in the book for both kinetic
      energy of electron and that of proton is wrong
      due to calculation mistake
```

Scilab code Exa 6.8 Calculate drift velocity of free electrons

```
1 //chapter 6
2 //example 6.8
3 //Calculate drift velocity of free electrons
4 //page 149
5 clear;
```

```
6 clc;
7 //given
8 I=100; // in A (current in the wire)
9 e=1.6E-19; // in C (charge of electron)
10 A=10; // in mm^2 (cross-sectional area)
11 n=8.5E28; // in 1/m^3 (density of electron)
12 //calculate
13 A=A*1E-6; // changing unit from mm^2 to m^2
14 v_d=I/(n*A*e);
15 printf('\nThe drift velocity of free electrons is \tv_d=%1.3E m/s',v_d);
```

Scilab code Exa 6.9 Calculate average drift velocity of electrons

```
1 //chapter 6
\frac{2}{\text{example }} 6.9
3 // Calculate average drift velocity of electrons
4 //page 149
5 clear;
6 clc;
7 //given
8 I=4; // in A (current in the conductor)
9 e=1.6E-19; // in C (charge of electron)
10 A=1E-6; // in m^2 (cross-sectional area)
11 N_A=6.02E23; // in atoms/gram-atom (Avogadro's
      number)
12 p=8.9; // in g/cm^3 (density)
13 M=63.6; // atomic mass of copper
14 //calculate
15 n=N_A*p/M; // Calculation of density of electrons in
       g/cm^3
16 printf('\nThe density of copper atoms is tn=\%1.2E
      atoms/m^3',n);
17 n=n*1E6; // changing unit from g/cm<sup>3</sup> to g/m<sup>3</sup>
18 printf('\n\t\t\t\ =\%1.2E atoms/m\3',n);
```

```
19 v_d=I/(n*A*e);
20 printf('\n\nThe average drift velocity of free
            electrons is \tv_d=%1.1E m/s',v_d);
```

Scilab code Exa 6.10 Calculate mobility of electrons

```
1 //chapter 6
2 //example 6.10
3 // Calculate mobility of electrons
4 //page 149-150
5 clear;
6 clc;
7 //given
8 n=9E28; // in 1/m^3 (density of valence electrons)
9 sigma=6E7; // in mho/m (conductivity of copper)
10 e=1.6E-19; // in C (charge of electron)
11 //calculate
12 // Since sigma=n*e*mu therefore
13 mu=sigma/(n*e); // calculation of mobility of
     electron
14 printf('\n\nThe mobility of electrons is \t^{14} m
     ^2/V-s, mu);
```

Scilab code Exa 6.11 Calculate average energy of free electron at $0\mathrm{K}$ and corresponding temperature for a classical particle or an ideal gas

```
1 //chapter 6
2 //example 6.11
3 //Calculate average energy of free electron at 0K
    and corresponding temperature for a classical
    particle (an ideal gas)
4 //page 150
5 clear;
```

```
6 clc;
7 //given
8 E_F=5.51; // in eV (Fermi energy in Silver)
9 k=1.38E-23; // in J/K (Boltzmann's constant)
10 e=1.6E-19; // in C (charge of electron)
11 //calculate
12 // part - (a)
13 Eo=(3/5)*E_F; // calculation of average energy of
     free electron at 0K
14 printf('\n\nThe average energy of free electron at 0
     K is tEo=\%.3 f eV', Eo);
15 // part - (b)
16 Eo=Eo*e; // changing unit from eV to J
17 // Since for a classical particle E=(3/2)*k*T
18 // therefroe we have
19 T=(2/3)*Eo/k; // calculation of temperature for a
      classical particle (an ideal gas)
20 printf('\n\nThe temperature at which a classical
      particle have this much energy is \t T=\%1.3E K', T
     );
```

Scilab code Exa 6.12 Calculate electron density for a metal

```
1 //chapter 6
2 //example 6.12
3 //Calculate electron density for a metal
4 //page 150
5 clear;
6 clc;
7 //given
8 E_F_L=4.7; // in eV (Fermi energy in Lithium)
9 E_F_M=2.35; // in eV (Fermi energy in a metal)
10 n_L=4.6E28; // in 1/m^3 (density of electron in Lithium)
11 //calculate
```

```
// Since n=((2*m/h)^3/2)*E_F^(3/2)*(8*pi/3) and all
things except E_F are constant
// Therefore we have n=C*E_F^(3/2) where C is
proportionality constant
// n1/n2=(E_F_1/E_F_2)^(3/2)
// Therefore we have
n_M=n_L*(E_F_M/E_F_L); // calculation of electron
density for a metal
printf('\nThe lectron density for a metal is \t=%1.1
E 1/m^3', n_M);
// Note: Answer in the book is wrong due to priting
error
```

Chapter 7

Dielectric Properties

Scilab code Exa 7.1 Calculate the capacitance of capacitor and charge on the plates

```
1 // chapter 7
2 //example 7.1
3 // Calculate the capacitance of capacitor and charge
      on the plates
4 //page 187
5 clear;
6 clc;
7 //given
8 A=100; // in cm^2 (cross-sectional area)
9 d=1; // in cm (seperation between plates)
10 Eo=8.85E-12; // in F/m (absolute permittivity)
11 V=100; // in V (potential difference)
12 //calculate
13 A=A*1E-4; // changing unit from cm<sup>2</sup> to m<sup>2</sup>
14 d=d*1E-2; // changing unit from cm to m
15 C=Eo*A/d;// calculation of capacitance
16 Q=C*V; // calculation of charge
17 printf('\nThe capacitance of capacitor is \t C=\%1.2E
      C',C);
18 C=C*1E12; // changing unit of capacitance from F to
```

```
pF

19 printf('\n\t\t\t\t\t =\%.2 f pF',C);

20 printf('\n\nThe charge on the plates is \t\t Q=\%1.2E

C',Q);
```

Scilab code Exa 7.2 Calculate the resultant voltage across the capacitor

```
1 //chapter 7
2 //example 7.2
3 // Calculate the resultant voltage across the
      capacitor
4 //page 187
5 clear;
6 clc;
7 //given
8 A=650; // in mm<sup>2</sup> (cross-sectional area)
9 d=4; // in mm (seperation between plates)
10 Eo=8.85E-12; // in F/m (absolute permittivity)
11 Er=3.5; // di-electric constant of the material
12 Q=2E-10; // in C (charge on plates)
13 //calculate
14 A=A*1E-6; // changing unit from mm<sup>2</sup> to m<sup>2</sup>
15 d=d*1E-3; // changing unit from mm to m
16 C=Er*Eo*A/d; // calculation of capacitance
17 V=Q/C; // calculation of charge
18 printf('\nThe capacitance of capacitor is \t C=\%1.2E
      C',C);
19 C=C*1E12; // changing unit of capacitance from F to
      pF
20 printf('\n\t\t\t\t\t = \%.2 f pF',C);
21 printf('\n\nThe resultant voltage across the
      capacitor is \forall V=\%.2 \text{ f V',V};
22 // NOTE: The answer is wrong due to calculation
      mistake. The mistake is that in the book Value of
       cross-sectional area and seperation
```

23 // between plates is considered in cm and dielectric constant has not been considered.

Scilab code Exa 7.3 Calculate the radius of electron cloud and dispalcement

```
1 //chapter 7
2 //example 7.3
3 // Calculate the radius of electron cloud and
      dispalcement
4 //page 188
5 clear;
6 clc;
7 //given
8 N=2.7E25; // in 1/\text{m}^3 (density of atoms)
9 E=1E6; // in V/m (electric field)
10 Z=2; // atomic number of Helium
11 Eo=8.85E-12; // in F/m (absolute permittivity)
12 Er=1.0000684; // (dielectric constant of the
      material)
13 e=1.6E-19; // in C (charge of electron)
14 pi=3.14; // value of pi used in the solution
15 //calculate
16 // since alpha=Eo*(Er-1)/N=4*pi*Eo*r_0^3
17 // Therefore we have r_0^3=(Er-1)/(4*pi*N)
18 r_0=((Er-1)/(4*pi*N))^(1/3);// calculation of radius
       of electron cloud
19 printf('\nThe radius of electron cloud is t_0=\%1
      .2E m', r_0);
20 \text{ x=4*pi*Eo*E*r_0/(Z*e)}; // calculation of}
      dispalcement
21 printf('\n\nThe displacement is x=\%1.2E \text{ m',x});
22 // NOTE: The answer is wrong due to calculation
      mistake.
```

Scilab code Exa 7.4 Calculate the dipole moment induced in each atom and atomic polarisability

```
1 //chapter 7
2 //example 7.4
3 //Calculate the dipole moment induced in each atom
     and atomic polarisability
4 / page 188 - 189
5 clear;
6 clc;
7 //given
8 K=1.000134; // di-electric constant of the neon gas
      at NTP
9 E=90000; // in V/m (electric field)
10 Eo=8.85E-12; // in C/N-m^2 (absolute premittivity)
11 N_A=6.023E26; // in atoms/Kg-mole (Avogadro's number
12 V=22.4; // in m<sup>3</sup> (volume of gas at NTP
13 //calculate
14 n=N_A/V; // calculation of density of atoms
15 // Since P=n*p=(k-1)*Eo*E
16 // therefore we have
17 p=(K-1)*Eo*E/n; // calculation of dipole moment
     induced
18 printf('\nThe dipole moment induced in each atom is
     \t p=\%1.2E C-m',p);
19 alpha=p/E; // calculation of atomic polarisability
20 printf('\n\nThe atomic polarisability of neon is t=
     \%1.2E \text{ c-m}^2/V', alpha);
21 // NOTE: The answer of atomic polarisability is
     wrong due to printing error
```

Scilab code Exa 7.5 Calculate the electronic polarisability of sulphur

```
1 / chapter 7
2 //example 7.5
3 // Calculate the electronic polarisability of sulphur
4 //page 189
5 clear;
6 clc;
7 //given
8 Er=3.75; // di-electric constant of sulphur at 27
      degree Celcius
9 gama=1/3; // internal field constant
10 p=2050; // \text{ in Kg/m}^3 \text{ (density)}
11 M_A=32; // in amu (atomic weight of sulphur)
12 Eo=8.85E-12; // in F/m (absolute permittivity)
13 N=6.022E23; // Avogadro's number
14 //calculate
15 // Since ((Er-1)/(Er+2))*(MA/p)=(N/(3*Eo))*alpha_e
16 // therefore we have
17 alpha_e=((Er-1)/(Er+2))*(M_A/p)*(3*Eo/N); //
      calculation of electronic polarisability of
      sulphur
18 printf('\nThe electronic polarisability of sulphur
      is t=\%1.2E \text{ Fm}^2',alpha_e);
19 // NOTE: There is slight variation in the answer due
       to round off
```

Scilab code Exa 7.6 Calculate the electronic polarisability of Helium atoms

```
1 //chapter 7
2 //example 7.6
3 //Calculate the electronic polarisability of Helium atoms
4 //page 189-190
5 clear;
```

Scilab code Exa 7.7 Calculate the dielectric constant of the material

```
1 //chapter 7
\frac{2}{\text{example}} 7.7
3 // Calculate the dielectric constant of the material
4 //page 190
5 clear;
6 clc;
7 //given
8 N=3E28; // in atoms/m^3 (density of atoms)
9 alpha_e=1E-40; // in F-m^2 (electronic
      polarisability)
10 Eo=8.85E-12; // in F/m (absolute permittivity)
11 //calculate
12 // Since (Er-1)/(Er+2)=N*alpha_e/(3*Eo)
13 // therefore we have
14 Er = (2*(N*alpha_e/(3*Eo))+1)/(1-(N*alpha_e/(3*Eo)));
   // calculation of dielectric constant of the
       material
```

```
16 printf('\nThe dielectric constant of the material is
  \tEr=\%.3 f F/m', Er);
17 // NOTE: The answer in the book is wrong due to
  calculation mistake
```

Scilab code Exa 7.8 Calculate the atomic polarisability of sulphur

```
1 //chapter 7
2 //example 7.8
3 // Calculate the atomic polarisability of sulphur
4 //page 190
5 clear;
6 clc;
7 //given
8 Er=4; // relative permittivity of sulphur
9 Eo=8.85E-12; // in F/m (absolute permittivity)
10 NA=2.08E3; // in Kg/m^3 (density of atoms in sulphur
11 //calculate
12 // Since ((Er-1)/(Er+2))*(M.A/p)=(N/(3*Eo))*alpha_e
13 // therefore we have
14 alpha_e=((Er-1)/(Er+2))*(3*Eo/NA); // calculation of
      electronic polarisability of sulphur
15 printf('\nThe electronic polarisability of sulphur
     is t=\%1.2E \text{ Fm}^2',alpha_e);
16 // NOTE: The answer in the book is wrong due to
      calculation mistake. Also one point to be
     mentioned is that wrong formula has been used in
     the solution but i have used the formula as used
     in the solution.
```

Scilab code Exa 7.9 calculate polarisability due to permanent dipole moment and due to deformation of the molecules

```
1 // chapter 7
2 // example 7.9
3 // calculate polarisability due to permanent dipole
     moment and due to deformation of the molecules
4 // page 190-191
5 clear;
6 clc;
7 // given
8 alpha1=2.5E-39; // in C^2-m/N (dielectric constant
      at 300K)
  alpha2=2.0E-39; // in C^2-m/N (dielectric constant
      at 400K)
10 T1=300; // in K(first temperature)
11 T2=400; // in K(second temperature)
12 //calculate
13 // since alpha=alpha_d+alpha0 and alpha0=Beta/T
14 // therefore alpha=alpha_d+(Beta/T)
15 // since alpha1=alpha_d+(Beta/T1) and alpha2=
      alpha_d + (Beta/T2)
16 // therefore alpha1-apha2=Beta*((1/T1)-(1/T2))
17 // or Beta= (alpha1-apha2)/((1/T1)-(1/T2))
18 Beta= (alpha1-alpha2)/((1/T1)-(1/T2));
      calculation of Beta
  alpha_d=alpha1-(Beta/T1); // calculation of
      polarisability due to defromation
20
  alpha0_1=Beta/T1; // calculation of polarisability
      due to permanent dipole moment at 300K
  alpha0_2=Beta/T2; // calculation of polarisability
21
      due to permanent dipole moment at 400K
22 printf('\nThe polarisability due to permanent dipole
       moment at 300 \text{K} is \t \%1.2 \text{E C}^2-\text{m/N}, alpha0_1);
  printf('\nThe polarisability due to permanent dipole
       moment at 400 \text{K} is \t \%1.2 \text{E C}^2-\text{m/N}, alpha0_2);
24 printf('\n\nThe polarisability due to deformation of
       the molecules is \t \%1.2 \mathrm{E} \ \mathrm{C^2-m/N'}, alpha_d);
```

Scilab code Exa 7.10 determine the percentage of ionic polarisability in sodium crystal

```
1 // chapter 7
2 // \text{ example } 7.10
3 // determine the percentage of ionic polarisability
     in sodium crystal
4 // page 191-192
5 clear;
6 clc;
7 // given
8 n=1.5; // refractive index
9 Er=5.6; // dielectric constant
10 //calculate
11 // since (Er-1)/(Er+2)=N*(alpha_e+alpha_i)/(3*E0)
     Clausius-Mossotti equation
12 // and
          (n^2-1)/(n^2+2)=N*alpha_e/(3*E0)
13 // from above two equations, we get ((n^2-1)/(n))
      ^2+2))*((Er+2)/(Er-1))=alpha_e/(alpha_e+alpha_i)
14 // or alpha_i ( alpha_e+alpha_i )= 1-((n^2-1)/(n^2+2)
     *((Er+2)/(Er-1)) = (say P)
15 // where P is fractional ionisational polarisability
16 P=1-((n^2-1)/(n^2+2))*((Er+2)/(Er-1)); //
      calculation of fractional ionisational
      polarisability
17 P=P*100; // calculation of percentage of
     ionisational polarisability
18 printf('\nThe percentage of ionisational
      polarisability is t\%.1f percent',P);
```

Chapter 8

Magnetic Properties

Scilab code Exa 8.1 Calculate intensity of magnetism and magnetic flux density

```
1 // chapter 8
2 //example 8.1
3 // Calculate intensity of magnetism and magnetic flux
       density
4 //page 236
5 clear;
6 clc;
7 //given
8 X=-0.5E-5; // magnetic susceptibility of silicon
9 H=0.9E4; // in A/m (magnetic field intensity)
10 mu0=4*%pi*1E-7; // in H/m (absolute permeability)
11 //calculate
12 I=X*H; // calculation of intensity of magnetism
13 printf ('\nThe intensity of magnetism is \ti = \%.3 f A/m
     ',I);
14 B=mu0*H*(1+X); // calculation of magnetic flux
      density
15 printf('\nThe magnetic flux density is \tB=\%.3 f Wb/m
      ^{2},B);
16 // Note: The answer in the book is wrong. This is
```

because the value of H given in the question is H = 0.9E4 A/m but in the solution the value of H that has been used is H=9.9E4 A/m.

Scilab code Exa 8.2 Calculate change in magnetic moment

```
1 //chapter 8
2 //example 8.2
3 // Calculate change in magnetic moment
4 //page 236
5 clear;
6 clc;
7 //given
8 \text{ r=0.052}; // in nm (radius of orbit)
9 B=1; // in Wb/m<sup>2</sup> (magnetic field of induction)
10 e=1.6E-19; // in C (charge of electron)
11 m=9.1E-31; // in Kg (mass of electron)
12 //calculate
13 r=0.052*1E-9; // changing unit from nm to m
14 d_mu = (e^2*r^2*B)/(4*m); // calculation of change in
      magnetic moment
15 printf('\nThe change in magnetic moment is \t%1.4E
     Am^2, d_mu);
16 // Note: The answer in the book is wrong due to
      caluclation mistake
```

Scilab code Exa 8.3 Calculate relative permeability of a ferromagentic material

```
1 //chapter 8
2 //example 8.3
3 //Calculate relative permeability of a ferromagentic
    material
```

Scilab code Exa 8.4 Calculate magnetic force and relative permeability

```
1 //chapter 8
2 //example 8.4
3 //Calculate magnetic force and relative permeability
4 //page 236-237
5 clear;
6 clc;
7 //given
8 I=3000; // in A/m (intensity of magnetisation)
9 B=0.005; // in Wb/m<sup>2</sup> (magnetic flus intensity)
10 pi=3.14; // value of pi used in the solution
11 mu0=4*pi*1E-7; // in H/m (absolute permeability)
12 //calculate
13 H=(B/mu0)-I; // calculation of magnetic force
14 printf('\nThe magnetic force is \tH=\%.3f',H);
15 mu_r=(I/H)+1; // calculation of relative
      permeability
16 printf('\nThe relative permeability is \t\%.3 f', mu_r)
```

Scilab code Exa 8.5 Calculate current through the solenoid

```
1 //chapter 8
2 //example 8.5
3 // Calculate current through the solenoid
4 //page 237
5 clear;
6 clc;
7 //given
8 H=4E3; // in A/m (magnetic field intensity)
9 N=60; // number of turns
10 l=12; // in cm (length of solenoid)
11 //calculate
12 n=N/(1*1E-2); // calculation of number of turns per
     unit metre
13 // Snice H=n*i;
14 i=H/n; // calculation of current through the
     solenoid
15 printf('\nThe current through the solenoid is \ti=\%.
     f A',i);
```

Scilab code Exa 8.6 Calculate flux density magnetic intensity and relative permeability

```
1 //chapter 8
2 //example 8.6
3 //Calculate flux density, magnetic intensity and relative permeability
4 //page 237
5 clear;
6 clc;
7 //given
8 l=30; // in cm (length of solenoid)
9 A=1; // in cm^2 (cross-sectional area)
10 N=300; // number of turns
```

```
11 i=0.032; // in A (current through the winding)
12 phi_B=2E-6; // in Wb (magnetic flux)
13 pi=3.14; // value of pi used in the solution
14 mu0=4*pi*1E-7; // in H/m (absolute permeability)
15 //calculate
16 l=l*1E-2; // changing unit from cm to m
17 A=A*1E-4; // changing unit from cm<sup>2</sup> to m<sup>2</sup>
18 B=phi_B/A; // calculation of flux density
19 printf('\nThe flux density is \tB=\%1.0E \text{ Wb/m}^2',B);
20 H=N*i/l; // calculation of magnetic intensity
21 printf('\nThe magnetic intensity is \tH=\%.f A-turns/
     m', H);
22 mu=B/H; // calcluation of absolute permeability of
23 mu_r=mu/mu0; // calcluation of relative permeability
       of iron
24 printf('\nThe relative permeability of iron is \t^{\%}.f
      ',mu_r);
25 // Note: The value of relative permeability varies
      slightly due to the use of round off value mu as
      calculated
```

Scilab code Exa 8.7 Calculate Hystersis loss per cycle

```
1 //chapter 8
2 //example 8.7
3 //Calculate Hystersis loss per cycle
4 //page 238
5 clear;
6 clc;
7 //given
8 A=100; // in m^2 (area of Hysteresis loop)
9 B=0.01; // in Wb/m^2 (unit space along vertical axis or magnetic flux density)
10 H=40; // in A/m (unit space along horizontal axis or
```

```
magnetic fild ntensity)
11 //calculate
12 H_L=A*B*H; // calculation of magnetic intensity
13 printf('\nThe Hystersis loss per cycle is %.f J/m^2', H_L);
```

Chapter 9

Semiconductors

Scilab code Exa 9.2 Find the temperature at which number of electrons becomes 10 times

```
1 // chapter 9
2 // example 9.2
3 // Find the temperature at which number of electrons
      becomes 10 times
4 // page 272
5 clear;
6 clc;
7 //given
8 Eg=0.67; // in eV (Energy band gap)
9 k=1.38E-23; // in J/K (Boltzmann s constant)
10 T1=298; // in K (room temperature)
11 e=1.6E-19; // in C (charge of electron)
12 K=10; // ratio of number of electrons at different
      temperature
13 // calculate
14 Eg=Eg*e; // changing unit from eV to Joule
15 // since ne=Ke*exp(-Eg/(2*k*T))
16 // and ne/ne1=\exp(-Eg/(2*k*T))/\exp(-Eg/(2*k*T1)) and
       ne/ne1=K=10
17 // therefore we have 10 = \exp(-Eg/(2*k*T))/\exp(-Eg/(2*k*T))
```

```
k*T1))

18 // re-arranging the equation for T, we get T2=1/((1/T1)-((2*k*log(10))/Eg))

19 T=1/((1/T1)-((2*k*log(10))/Eg)); // calculation of the temperature

20 printf('\nThe temperature at which number of electrons in the conduction band of a semiconductor increases by a factor of 10 is \tT=%.f K',T);

21 // Note: there s slight variation in the answer due to round off calculation
```

Scilab code Exa 9.3 find the resistance of intrinsic germanium

```
1 //  chapter 9
2 // example 9.3
3 // find the resistance of intrinsic germanium
4 // page 272-273
5 // given
6 clear;
7 clc;
8 ni=2.5E13; // in /cm<sup>3</sup> (intrinsic carrier density)
9 ue=3900; // in cm^2/(V-s) (electron mobilities)
10 uh=1900; // in cm^2/(V-s) (hole mobilities)
11 e=1.6E-19; // in C (charge of electron)
12 l=1; // in cm (length of the box)
13 b=1,h=1; // in mm (dimensions of germanium rod)
14 // calculate
15 ni=ni*1E6; // changing unit from 1/\text{cm}^3 to 1/\text{m}^3
16 ue=ue*1E-4; // changing unit from cm<sup>2</sup> to m<sup>2</sup>
17 uh=uh*1E-4; // changing unit from cm<sup>2</sup> to m<sup>2</sup>
18 sigma=ni*e*(ue+uh); // calculation of conductivity
19 rho=1/sigma; // calculation of resistivity
20 l=1*1E-2; // changing unit from mm to m for length
21 A=(b*1E-3)*(h*1E-3); // changing unit from mm to m
```

```
for width and height and calculation of cross—
sectional area

22 R=rho*1/A; // calculation of resistance
23 printf('\nThe resistance of intrinsic germanium is \
tR=%1.1E ohm',R);
```

Scilab code Exa 9.4 find the electrical conductivity and resistivity of germanium

```
1 // chapter 9
2 // example 9.4
3 // find the electrical conductivity and resistivity
      of germanium
4 // page 273
5 clear;
6 clc;
7 // given
8 ne=2.5E19; // in /m^3 (electron density)
9 nh=2.5E19; // in /m<sup>3</sup> (hole density)
10 ue=0.36; // in m^2/(V-s) (electron mobilities)
11 uh=0.17; // in m^2/(V-s) (hole mobilities)
12 e=1.6E-19; // in C (charge of electron)
13 // calculate
14 // since ne=nh=ni, therefore we have
15 \text{ ni=nh};
16 sigma=ni*e*(ue+uh); // calculation of conductivity
17 printf('\nThe conductivity of germanium is \%.2 f/
     ohm-m', sigma);
18 rho=1/sigma; // calculation of resistivity
19 printf('\nThe resistivity of germanium is \%.2 f ohm-
     m', rho);
20 // Note:
             In the question, the value of ni has been
      misprinted as 2.5E-19 /m<sup>3</sup> rather it should be
      2.5E19 /m<sup>3</sup>. I have used 2.5E19 /m<sup>3</sup>
```

Scilab code Exa 9.5 find the equilibrium hole concentration and conductivity

```
1 // chapter 9
2 // \text{ example } 9.5
3 // find the equilibrium hole concentration and
      conductivity
4 // page 273-274
5 clear;
6 clc;
7 // given
8 ni=1.5E16; // in /m<sup>3</sup> (intrinsic carrier density)
9 ue=0.135; // in m<sup>2</sup>/(V-s) (electron mobilities)
10 uh=0.048; // in m^2/(V-s) (hole mobilities)
11 e=1.6E-19; // in C (charge of electron)
12 ND=1E23; // in atom/m<sup>3</sup> (doping concentration)
13 // calculate
14 sigma_i=ni*e*(ue+uh); // calculation of intrinsic
      conductivity
15 printf('\nThe intrinsic conductivity for silicon is
       \%1.2E S', sigma_i);
16 sigma=ND*ue*e; // calculation of conductivity after
      doping
17 printf('\n\nThe conductivity after doping with
      phosphorus atoms is %1.2E S', sigma);
18 rho=ni^2/ND; // calculation of equilibrium hole
      concentration
19 printf('\n\nThe equilibrium hole concentration is
     \%1.2E /m^3', rho);
```

Scilab code Exa 9.6 find intrinsic concuctivity and doping conductivity

```
1 // chapter 9
2 // example 9.6
3 // find intrinsic concuctivity and doping
     conductivity
4 // page 274
5 clear;
6 clc;
7 // given
8 ni=1.5E16; // in /m<sup>3</sup> (intrinsic carrier density)
9 ue=0.13; // in m<sup>2</sup>/(V-s) (electron mobilities)
10 uh=0.05; // in m^2/(V-s) (hole mobilities)
11 e=1.6E-19; // in C (charge of electron)
12 ne=5E20; // in /m^3 (concentration of donor type
      impurity)
13 nh=5E20; // in /m<sup>3</sup> (concentration of acceptor type
     impurity)
14 // calculate
15 // part-i
16 sigma=ni*e*(ue+uh); // calculation of intrinsic
      conductivity
17 printf('\nThe intrinsic conductivity for silicon is
      \%1.2E (ohm-m)^--1', sigma);
18 // part-ii
19 // since 1 donor atom is in 1E8 Si atoms, hence
      holes concentration can be neglected
20 sigma=ne*e*ue; // calculation of conductivity after
      doping with donor type impurity
21 printf('\n\nThe conductivity after doping with donor
      type impurity is \%.1 f (ohm-m)^-1', sigma);
22 // part-iii
23 // since 1 acceptor atom is in 1E8 Si atoms, hence
      electron concentration can be neglected
24 sigma=nh*e*uh; // calculation of conductivity after
      doping with acceptor type impurity
25 printf('\n\nThe conductivity after doping with
      acceptor type impurity is \%. f (ohm-m)^-1', sigma)
26 // Note: In question the value of ne and nh has
```

been misprinted as 5E28 atoms/m³ which is too big but the solution has used the correct value 5E20 atoms/m³. I have also used this value.

Scilab code Exa 9.7 find density of hole carriers at room temperature

```
1 // chapter 9
2 // \text{ example } 9.7
3 // find density of hole carriers at room temperature
4 // page 274-275
5 clear;
6 clc;
7 // given
8 ni=1E20; // in /m<sup>3</sup> (intrinsic carrier density)
9 ND=1E21; // in /m^3 (donor impurity concentration)
10 // calculate
11 nh=ni^2/ND; // calculation of density of hole
      carriers at room temperature
12 printf('\nThe density of hole carriers at room
      temperature is \tanh=\%1.0E /m^3',nh);
13 // Note: answer in the book is wrong due to printing
      mistake
```

Scilab code Exa 9.8 find intrinsic carrier density and conductivity at 300K in germanium

```
1 // chapter 9
2 // example 9.8
3 // find intrinsic carrier density and conductivity
    at 300K in germanium
4 // page 275
5 clear;
6 clc;
```

```
7 M=72.6; // atomic mass of germanium
8 P=5400; // in Kg/m^3 (density)
9 ue=0.4; // in m<sup>2</sup>/V-s (mobility of electrons)
10 uh=0.2; // in m<sup>2</sup>/V-s (mobility of holes)
11 Eg=0.7; // in eV (Band gap)
12 m=9.1E-31; // in Kg (mass of electron)
13 k=1.38E-23; // in J/K (Boltzmann s constant)
14 T=300; // in K (temperature)
15 h=6.63E-34; // in J/s (Planck s constant)
16 pi=3.14; // value of pi used in the solution
17 e=1.6E-19; // in C(charge of electron)
18 // calculate
19 Eg=Eg*e; // changing unit from eV to J
20 ni=2*(2*pi*m*k*T/h^2)^(3/2)*exp(-Eg/(2*k*T));
21 printf('\nThe intrinsic carrier density for
     germanium at 300K is tni=\%1.1E /m<sup>3</sup>',ni);
22 sigma=ni*e*(ue+uh);
23 printf('\nThe conductivity of germanium is \t\%1.2 f (
     ohm-m)^-1', sigma);
24 // Note: Answer in the book is wrong due to
      calculation mistake
```

Scilab code Exa 9.9 Find the energy band gap

```
1 // chapter 9
2 // example 9.9
3 // Find the energy band gap
4 // page 275
5 clear;
6 clc;
7 //given
8 rho1=4.5;// in ohm-m (resistivity at 20 degree Celcius)
9 rho2=2.0;// in ohm-m (resistivity at 32 degree Celcius)
```

```
10 k=1.38E-23; // in J/K (Boltzmann s constant)
11 T1=20, T2=32; // in degree Celcius (two temperatures
12 e=1.6E-19; // in C (charge of electron)
13 // calculate
14 T1=T1+273; // changing unit from degree Celius to K
15 T2=T2+273; // changing unit from degree Celius to K
16 // since sigma = e * u * C * T^{(3/2)} * exp(-Eg/(2 * k * T))
17 // therefore sigma1/sigma2 = (T1/T2)^3/2*exp((-Eg/(2*k)
      )*((1/T1)-(1/T2))
18 // \text{ and } \text{sigma} = 1/\text{rho}
19 // therefore we have rho2/rho1 = (T1/T2)^3/2*exp((-Eg
      /(2*k)*((1/T1)-(1/T2))
20 // re-arranging above equation for Eg, we get Eg=(2*
      k/((1/T1)-(1/T2)))*((3/2)*log(T1/T2)-log(rho2/T1/T2))
21 Eg=(2*k/((1/T1)-(1/T2)))*((3/2)*log(T1/T2)-log(rho2/
      rho1));
22 printf('\nThe energy band gap is tEg=\%1.2E J', Eg);
23 Eg=Eg/e; // changing unit from J to eV
24 printf('\n\t\t\ =\%.2 f eV', Eg);
```

Scilab code Exa 9.10 Find the electron and hole concentrations and the resistivity

```
1 // chapter 9
2 // example 9.10
3 // Find the electron and hole concentrations and the resistivity
4 // page 276
5 clear;
6 clc;
7 //given
8 rho=2300; // in ohm-m (resistivity of pure silicon)
9 ue=0.135; // in m^2/V-s (mobility of electron)
```

```
10 uh=0.048; // in m<sup>2</sup>/V-s (mobility of electron)
11 Nd=1E19; // in /m^3 (doping concentration)
12 e=1.6E-19; // in C (charge of electron)
13 //calculate
14 // since sigma=ni*e*(ue+uh) and sigma=1/rho
15 // therefore ni=1/(rho*e*(ue+uh))
16 ni=1/(rho*e*(ue+uh)); // calculation of intrinsic
     concentration
17 ne=Nd; // calculation of electron concentration
18 printf('\nThe electron concentration is \tne=\%1.1E /
     m^3',ne);
19 nh=ni^2/Nd; // calculation of hole concentration
20 printf('\nThe hole concentration is \tnh=\%1.1E /m^3'
      ,nh);
21 sigma=ne*ue*e+nh*uh*e; // calculation of
     conductivity
22 rho=1/sigma; // calculation of resistivity
23 printf('\nThe resistivity of the specimen is \t\%.2f
       ohm-m', rho);
```

Scilab code Exa 9.11 Find the conductivity of p type Ge crystal

```
1 // chapter 9
2 // example 9.11
3 // Find the conductivity of p-type Ge crystal
4 // page 276-277
5 clear;
6 clc;
7 //given
8 uh=1900; // in cm^2/V-s (mobility of electron)
9 Na=2E17;// in /m^3 (acceptor doping concentration)
10 e=1.6E-19; // in C(charge of electron)
11 // calculate
12 uh=uh*1E-4; // changing unit from cm^2/V-s to m^2/V-s
```

Scilab code Exa 9.12 Find the diffusion coefficient of electron in silicon

```
1 // chapter 9
2 // example 9.12
3 // Find the diffusion co-efficient of electron in
      silicon
4 // page 277
5 clear;
6 clc;
7 //given
8 ue=0.19; // in m^2/V-s (mobility of electron)
9 T=300; // in K (temperature)
10 k=1.38E-23; // in J/K (Boltzmann s constant)
11 e=1.6E-19; // in C(charge of electron)
12 //calculate
13 Dn=ue*k*T/e; // calculation of diffusion co-
      efficient
14 printf('\nThe diffusion co-efficient of electron in
      silicon is tDn=\%1.1E \text{ m}^2/\text{s}, Dn);
```

Scilab code Exa 9.13 Find the probability of occupation of lowest level in conduction band

```
1 // chapter 9
2 // example 9.13
3 // Find the probability of occupation of lowest
     level in conduction band
4 // page 277-278
5 clear;
6 clc;
7 //given
8 Eg=0.4; // in eV (Band gap of semiconductor)
9 k=1.38E-23; // in J/K (Boltzmann s constant)
10 T1=0; // in degree Celcius (first temperature)
11 T2=50; // in degree Celcius (second temperature)
12 T3=100; // in degree Celcius (third temperature)
13 e=1.602E-19; //in C (charge of electron)
14 // calculate
15 T1=T1+273; // changing temperature form Celcius to
     Kelvin
16 T2=T2+273; // changing temperature form Celcius to
     Kelvin
17 T3=T3+273; // changing temperature form Celcius to
     Kelvin
18 Eg=Eg*e; // changing unit from eV to Joule
19 // Using F_E=1/(1+\exp(Eg/2*k*T))
20 F_E1=1/(1+\exp(Eg/(2*k*T1))); // calculation of
      probability of occupation of lowest level at 0
     degree Celcius
21 F_E2=1/(1+\exp(Eg/(2*k*T2))); // calculation of
      probability of occupation of lowest level at 50
      degree Celcius
22 F_E3=1/(1+exp(Eg/(2*k*T3))); // calculation of
      probability of occupation of lowest level at 100
      degree Celcius
23 printf('\nThe probability of occupation of lowest
     level in conduction band is \n\;
24 printf('\t\t at 0 degree Celcius, F_E=\%1.3E \text{ eV} n',
     F_E1);
25 printf('\t\t at 50 degree Celcius, F_E=\%1.2E \text{ eV}\n',
     F_E2);
```

```
26 printf('\t\t at 100 degree Celcius, F_E=\%1.3E eV', F_E3);
```

Scilab code Exa 9.14 Find the ratio of conductivity at 600K and at 300K

```
1 // chapter 9
2 // example 9.14
3 // Find the ratio of conductivity at 600K and at 300
     K
4 // page 278
5 clear;
6 clc;
7 //given
8 Eg=1.2; // in eV (Energy band gap)
9 k=1.38E-23; // in J/K (Boltzmann s constant)
10 T1=600, T2=300; // in K (two temperatures)
11 e=1.6E-19; // in C (charge of electron)
12 // calculate
13 Eg=Eg*e; // changing unit from eV to Joule
14 // since sigma is proportional to \exp(-Eg/(2*k*T))
15 // therefore ratio=\operatorname{sigma1/sigma2}=\exp(-\operatorname{Eg}/(2*k*((1/\operatorname{T1}))))
      )-(1/T2)));
16 ratio= \exp((-Eg/(2*k))*((1/T1)-(1/T2))); //
      calculation of ratio of conductivity at 600K and
      at 300K
17 printf('\nThe ratio of conductivity at 600K and at
      300K is \t^{1.2E'}, ratio);
```

Scilab code Exa 9.15 Find the electron and hole densities and conductivity and the resistance

```
1 // chapter 9
2 // example 9.15
```

```
3 // Find the electron and hole densities
                                            and
     conductivity and the resistance
4 // page 278-279
5 clear;
6 clc;
7 //given
8 ue=0.39; // in m^2/V-s (mobility of electron)
9 n=5E13;// number of donor atoms
10 ni=2.4E19; // in atoms/m<sup>3</sup> (intrinsic carrier
     density)
11 l=10; // in mm (length of rod)
12 a=1; // in mm (side of square cross-section)
13 e=1.6E-19; // in C (charge of electron)
14 //calculate
15 l=l*1E-3; // changing unit from mm to m
16 a=a*1E-3; // changing unit from mm to m
17 A=a^2; // calculation of cross-section area
18 Nd=n/(1*A); // calculation of donor concentration
19 ne=Nd; // calculation of electron density
20 nh=ni^2/Nd; // calculation of hole density
21 printf('\nThe electron density is \tne=\%1.0E /m^3',
22 printf('\nThe hole density is \tanh = \%1.2 \,\text{E/m}^3',nh);
23 // since sigma=ne*e*ue+nh*e*ue and since ne>>nh
24 // therefore sigma=ne*e*ue
25 sigma=ne*e*ue; // calculation of conductivity
26 printf('\nThe conductivity is t\%.f /ohm-m', sigma);
27 rho=1/sigma; // calculation of resistivity
28 R=rho*1/A; // calculation of resistance
29 printf('\nThe resistance is tR=\%.f ohm',R);
```

Scilab code Exa 9.16 Find the mobility and density

```
1 // chapter 9
2 // example 9.16
```

```
// Find the mobility and density
// page 279
clear;
clc;
//given
RH=3.66E-4; // in m^3/C (Hall coefficient)
rho=8.93E-3; // in ohm-m (resistivity)
e=1.6E-19; // in C (charge of electron)
// calculate
u=RH/rho; // calculation of mobility
n=1/(RH*e); // calculation of density
printf('\nThe mobility is \tu=%.4f m^2/(V-s)',u);
printf('\nThe density is \tn=%1.1E /m^3',n);
```

Scilab code Exa 9.17 Find the mobility and density of charge carrier

```
1 // chapter 9
2 // \text{ example } 9.17
3 // Find the mobility and density of charge carrier
4 // page 279-280
5 clear;
6 clc;
7 //given
8 RH=3.66E-4; // in m<sup>3</sup>/C (Hall coefficient)
9 rho=8.93E-3; // in ohm-m (resistivity)
10 e=1.6E-19; // in C (charge of electron)
11 // calculate
12 nh=1/(RH*e); // calculation of density of charge
      carrier
13 uh=1/(rho*nh*e); // calculation of mobility of
      charge carrier
14 printf('\nThe density of charge carrier is \tnh=\%1.4
     E /m^3',nh);
15 printf('\nThe mobility of charge carrier is \tuh=\%.3
      f m^2/(V-s)', uh);
```

Chapter 10

Superconductivity

Scilab code Exa 10.1 Calculate magnitude of critical magnetic field

```
//chapter 10
//example 10.1
//Calculate magnitude of critical magnetic field
//page 313
clear;
clc;
//given
Tc=7.2; // in K (critical temperature)
T=5; // in K (given temperature)
H0=6.5E3; // in A/m (critical magnetic field at 0K)
//calculate
Hc=H0*(1-(T/Tc)^2); // calculation of magnitude of critical magnetic field
rrintf('\nThe magnitude of critical magnetic field
is \thc=%1.3E A/m', Hc);
```

Scilab code Exa 10.2 Calculate critical current value

```
// chapter 10
// example 10.2
// Calculate critical current value
// page 313
clear;
clc;
// given
r=0.02; // in m (radius of ring)
Hc=2E3; // in A/m (critical magnetic field at 5K)
pi=3.14; // value of pi used in the solution
// calculate
I Ic=2*pi*r*Hc; // calculation of critical current value
rintf('\nThe critical current value is \tIc=%.1f A', Ic);
```

Scilab code Exa 10.3 calculate isotropic mass

```
1 // chapter 10
2 // example 10.3
3 // calculate isotropic mass at 5.1K
4 // page 313
5 clear;
6 clc;
7 // given
8 M1=199.5; // in amu (isotropic mass at 5K)
9 T1=5; // in K (first critical temperature)
10 T2=5.1; // in K (second critical temperature)
11 //calculate
12 // since Tc=C*(1/sqrt(M))
13 // therefore T1*sqrt(M1)=T2*sqrt(M2)
14 // therefore we have M2=(T1/T2)^2*M1
15 M2=(T1/T2)^2*M1; //calculation of isotropic mass at
16 printf('\nThe isotropic mass at 5.1K is \t M2=\%.3f a
```

Scilab code Exa 10.4 calculate transition temperature

```
1 //  chapter 10
2 // example 10.4
3 // calculate transition temperature
4 // page 314
5 // given
6 clear;
7 clc;
8 T=6; // in K (given temperature)
9 Hc=5E3; // in A/m (critical magnetic field at 5K)
10 H0=2E4; // in A/m (critical magnetic field at 0K)
11 //calculate
12 // \sin ce Hc = H0 * (1 - (T/Tc)^2)
13 // therefor we have Tc=T/sqrt(1-(Hc/H)^2)
14 Tc=T/sqrt(1-(Hc/H0)); // calculation of transition
     temperature
15 printf('\nThe transition temperature is \tTc=\%.3 f K'
16 // Note: answer in the book is wrong due to
      calculation mistake
```

Scilab code Exa 10.5 calculate critical current at 5K

```
1 // chapter 10
2 // example 10.5
3 // calculate critical current at 5K
4 // page 314
5 // given
6 clear;
7 clc;
```

```
8 T=5; // in K (given temperature)
9 d=3; // in mm (diameter of the wire)
10 Tc=8; // in K (critical temperature for Pb)
11 H0=5E4; // in A/m (critical magnetic field at 0K)
12 pi=3.14; // value of pi used in the solution
13 //calculate
14 Hc=HO*(1-(T/Tc)^2); // calculation of critical
      magnetic field at 5K
15 printf('\nThe critical magnetic field at 5K is \tHc=
     \%1.3E \text{ A/m', Hc};
16 r=(d*1E-3)/2; // calculation of radius in m
17 Ic=2*pi*r*Hc; // calculation of critical current at
18 printf('\nThe critical current at 5K is \tIc=%.4f A'
      , Ic);
19 //Note: there is slight variation in the answer due
     to round off
```

Scilab code Exa 10.6 calculate frequency of EM waves

```
1 // chapter 10
2 // example 10.6
3 // calculate frequency of EM waves
4 // page 314
5 clear;
6 clc;
7 // given
8 V=8.50; // in micro V (voltage across Josephson junction)
9 e=1.6E-19; // in C (charge of electron)
10 h=6.626E-34; // in J/s (Planck s constant)
11 // calculate
12 V=V*1E-6; // changing unit from V to microVolt
13 v=2*e*V/h; // calculation of frequency of EM waves
14 printf('\nThe frequency of EM waves is \tv=%1.3E Hz'
```

```
,v);
15 // Note: the answer in the book is wrong due to
    calculation misatke
```

Scilab code Exa 10.7 calculate transition temperature of the isotopes

```
1 // chapter 10
2 // \text{ example } 10.7
3 // calculate transition temperature of the isotopes
4 // page 315
5 clear;
6 clc;// given
7 M1=200.59; // in amu (average atomic mass at 4.153K
8 Tc1=4.153; // in K (first critical temperature)
9 M2=204; // in amu (average atomic mass of isotopes)
10 //calculate
11 // since Tc=C*(1/sqrt(M))
12 // therefore T1*sqrt(M1)=T2*sqrt(M2)
13 // therefore we have Tc2=Tc1*sqrt(M1/M2)
14 Tc2=Tc1*sqrt(M1/M2); //calculation of transition
     temperature of the isotopes
15 printf('\nThe transition temperature of the isotopes
      is \t Tc2=\%.3 f K', Tc2);
```

Chapter 12

Fibre Optics

Scilab code Exa 12.1 calculate fractional index change for a given optical fibre

```
1 // chapter 12
2 // example 12.1
3 // calculate fractional index change for a given optical fibre
4 // page 360
5 clear;
6 clc;
7 // given
8 u1=1.563; // refractive index of core
9 u2=1.498; // refractive index of cladding
10 // calculate
11 d=(u1-u2)/u1; // calculation of fractional index change
12 printf('\nThe fractional index change for a given optical fibre is %.4f',d);
```

Scilab code Exa 12.2 calculate numerical aperture and the acceptance angle of an optical fibre

```
1 // chapter 12
2 // example 12.2
3 // calculate numerical aperture and the acceptance
     angle of an optical fibre
4 // page 360
5 clear;
6 clc;
7 // given
8 u1=1.55; // refractive index of core
9 u2=1.50; // refractive index of cladding
10 //calculate
11 d=(u1-u2)/u1; // calculation of fractional index
     change
12 NA=u1*sqrt(2*d); // calculation of numerical
     aperture
13 printf('\nThe numerical aperture of the fibre is \
     tNA=\%.3 f', NA);
14 theta=asind(NA); // calculation of acceptance angle
15 printf('\nThe acceptance angle of the optical fibre
     is \t\%.1f degree', theta);
```

Scilab code Exa 12.3 calculate the acceptance angle of an optical fibre

```
1 // chapter 12
2 // example 12.3
3 // calculate the acceptance angle of an optical fibre
4 // page 360
5 // given
6 clear;
7 clc;
8 u1=1.563; // refractive index of core
9 u2=1.498; // refractive index of cladding
10 // calculate
11 NA=sqrt(u1^2-u2^2); // calculation of numerical
```

```
aperture

12 printf('\nThe numerical aperture of the fibre is \
    tNA=\%.4 f', NA);

13 theta=asind(NA); // calculation of acceptance angle
14 printf('\nThe acceptance angle of the optical fibre is \t%.2 f degree', theta);
```

Scilab code Exa 12.4 calculate refractive index of material of the core

```
1 // chapter 12
2 // example 12.4
3 // calculate refractive index of material of the
     core
4 // page 360-361
5 clear;
6 clc;
7 // given
8 NA=0.39; //numerical aperture of the optical fibre
9 d=0.05; // difference in the refractive index of the
      material of the core and cladding
10 //calculate
11 // since NA=u1*sqrt(2*d)
12 //we have u1=NA/sqrt(2*d)
13 u1= NA/sqrt(2*d); // calculation of refractive index
      of material of the core
14 printf('\nThe refractive index of material of the
     core is tu1=\%.3 f', u1);
```

Scilab code Exa 12.5 calculate numerical aperture acceptance angle and the critical angle of the optical fibre

```
1 // chapter 12
2 // example 12.5
```

```
3 // calculate numerical aperture, acceptance angle and
      the critical angle of the optical fibre
4 // page 361
5 clear;
6 clc;
7 // given
8 u1=1.50; // refractive index of core
9 u2=1.45; // refractive index of cladding
10 //calculate
11 d=(u1-u2)/u1; // calculation of fractional index
     change
12 NA=u1*sqrt(2*d); // calculation of numerical
     aperture
13 printf('\nThe numerical aperture of the fibre is \
     tNA=\%.3 f', NA);
14 theta_0=asind(NA); // calculation of acceptance
      angle
15 printf('\nThe acceptance angle of the optical fibre
      is t\%.2f degree', theta_0);
16 theta_c=asind(u2/u1); // calculation of critical
     angle
17 printf('\nThe critical angle of the optical fibre is
      \t^{\%}.1f degree', theta_c);
```

Scilab code Exa 12.6 calculate refractive index of the core and cladding material of a fibre

```
1 // chapter 12
2 // example 12.6
3 // calculate refractive index of the core and cladding material of a fibre
4 // page 361
5 clear;
6 clc;
7 // given
```

```
8 NA=0.33; // numerical aperture
9 d=0.02; // difference in the refractive index of the
      core and cladding of the material
10 //calculate
11 // since NA=u1*sqrt(2*d)
12 // therefore we have
13 u1=NA/sqrt(2*d); // calculation of refractive index
     of the core
14 // \sin ce d = (u1-u2)/u2
15 // therefore we have
16 u2=(1-d)*u1; // calculation of refractive index of
     the cladding
17 printf('\nThe refractive index of the core is \tu1=\%
      .1 f',u1);
18 printf('\nThe refractive index of the cladding is \
     tu2=\%.3 f',u2);
19 // Note: In the question, it is given that NA=0.33
     but in the book NA=0.22 has been used in the
     solution. That's why answer in the book is
      different from that of generated from the code
```

Scilab code Exa 12.7 calculate numerical aperture and acceptance angle of the symmetrical fibre

```
// calculate
// calculation of numerical
aperture
NA=NA/u0;
printf('\nThe numerical aperture of the fibre is \
tNA=%.2f',NA);
alpha=asind(NA); // calculation of acceptance angle
printf('\nThe acceptance angle of the optical fibre is \t%.2f degre',alpha);
```

Scilab code Exa 12.8 calculate numerical aperture and acceptance angle of the symmetrical fibre

```
1 //  chapter 12
2 // example 12.8
3 // calculate numerical aperture and acceptance angle
      of an optical fibre
4 // page 361-362
5 clear;
6 clc;
7 // given
8 u1=1.48; // refractive index of core
9 u2=1.45; // refractive index of cladding
10 //calculate
11 NA=sqrt(u1^2-u2^2); // calculation of numerical
     aperture
12 printf('\nThe numerical aperture of the fibre is \
     tNA=\%.3 f', NA);
13 theta=asind(NA); // calculation of acceptance angle
14 printf('\nThe acceptance angle of the optical fibre
     is \t^{\%}.2f degree', theta);
15 // Note: there is slight variation in the answer due
      to round off
```