COGNOMS:														
NOM:														

IMPORTANTE leer atentamente antes de empezar el examen: Escriba los apellidos y el nombre antes de empezar el examen. Escriba un solo carácter por recuadro, en mayúsculas y lo más claramente posible. Es importante que no haya tachones ni borrones y que cada carácter quede enmarcado dentro de su recuadro sin llegar a tocar los bordes. Use un único cuadro en blanco para separar los apellidos y nombres compuestos si es el caso. No escriba fuera de los recuadros.

Problema 1. (2 puntos)

Dado el siguiente código escrito en ensamblador del x86:

```
xorl %esi, %esi
movl $0, %ebx
for: cmpl $256*1024, %esi
jge end
(a) movl (%ebx, %esi, 4), %eax
shll $2, %eax
(b) addl %eax, 4*1024(%ebx, %esi, 4)
(c) addl 12*1024(%ebx, %esi, 4), %eax
addl $1024, %esi
jmp for
end:
```

Suponiendo que la memoria virtual utiliza páginas de tamaño 4K y que se dispone de un TLB de 3 entradas completamente asociativo con reemplazo LRU, responde a las siguientes preguntas:

a) Para cada uno de los accesos etiquetados como (a), (b) y (c), **indica** a qué página de la memoria virtual se accede en cada una de las 16 primeras iteraciones del bucle

iteración	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(a)																
(b)																
(c)																

b) Indica mediante una F (fallo) o una A (acierto), cuáles de los accesos a memoria ejecutados en las 16 primeras iteraciones son fallo de TLB (F) y cuales son acierto de TLB (A)

iteración	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

															1	
c)) Calcula la	cantida	d de	acier	tos	de TI	LB er	n TOI	DO e	l bu	cle					
d) Calcula la	cantida	d de	fallos	s de	TLB	en T	ODO	el b	ucle						

COGNOMS:														
NOM:]						

Problema 2. (2 puntos)

Una CPU está conectada a una cache de instrucciones (\$I) y una cache de datos (\$D). El conjunto formado por CPU+\$I+\$D esta conectado a una memoria principal formada por un único módulo DIMM estándar de 16 GBytes. Este DIMM tiene 8 chips de memoria DDR-SDRAM (Double Data Rate Synchronous DRAM) de 1 byte de ancho cada uno. El DIMM esta configurado para leer/escribir ráfagas de 64 bytes (justo el tamaño de bloque de las caches). La latencia de fila es de 3 ciclos, la latencia de columna de 4 ciclos y la latencia de precarga de 2 ciclos. Es posible que el conjunto CPU+\$I+\$D solicite múltiples bloques a la DDR (por ejemplo porque se produzca un fallo simultáneamente en \$I y en \$D). El controlador de memoria envía los comandos necesarios a la DDR-SDRAM de forma que los bloques sean transferidos lo más rápidamente posible y se maximice el ancho de banda.

La siguiente tabla muestra en que banco y que pàgina de DRAM (fila) se encuentran los bloques etiquetados con las letras A B C D.

Bloque	Α	В	С	D
Banco	0	0	1	1
Página	10	10	10	25

Rellena los siguientes cronogramas para la lectura de varios bloques de 64 bytes en función de la ubicación de los bloques involucrados de forma que se minimice el tiempo total. Indica la ocupación de los distintos recursos de la memoria DDR: bus de datos, bus de direcciones y bus de comandos. En todos los cronogramas supondremos que no hay ninguna página de DRAM abierta previamente.

a) Rellena el siguiente cronograma para la lectura de los bloques A y B.

b) Rellena el siguiente cronograma para la lectura de los bloques A y C.

c) Rellena el siguiente cronograma para la lectura de los bloques A y D.

d) Rellena el siguiente cronograma para la lectura de los bloques C y D

Característica Característica SD Tasa de fallos (m) Consumo de energía en caso de acierto (Ea) Penalización en consumo de energía en caso de fallo al reemplazar un bloque no modificado (Epf) Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (EpfM) Porcentaje de bloques modificados (pm) Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). Tos que la cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor . El predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo del es insignificante. Calcula la energía ahorrada por los accesos a datos del programa X gracias al predictor de vía	IOMS:																									
ema 3. (3 puntos) a CPU ejecutamos un programa (X) que realiza 10º accesos a datos. Esta CPU está conectada a una cache políticas de escritura copy back + write allocate. La siguiente tabla muestra algunos datos obtenidos a grama X: Característica \$D Tasa de fallos (m) 10% Consumo de energía en caso de acierto (Ea) 4 nJ Penalización en consumo de energía en caso de fallo al reemplazar un bloque no modificado (Epff) 20 nJ Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (Epff) 40 nJ Porcentaje de bloques modificados (pm) 25% Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules).																	,									
a CPU ejecutamos un programa (X) que realiza 10 ⁹ accesos a datos. Esta CPU está conectada a una cache n políticas de escritura copy back + write allocate. La siguiente tabla muestra algunos datos obtenidos a grama X: Característica	NOM:																									
a CPU ejecutamos un programa (X) que realiza 10 ⁹ accesos a datos. Esta CPU está conectada a una cache n políticas de escritura copy back + write allocate. La siguiente tabla muestra algunos datos obtenidos a grama X: Característica		2 /	2		\																					
Característica Característica SD Tasa de fallos (m) Consumo de energía en caso de acierto (Ea) Penalización en consumo de energía en caso de fallo al reemplazar un bloque no modificado (Epf) Porcentaje de bloques modificados (pm) Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). Calcula la energía cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor en es insignificante. Calcula la energía ahorrada por los accesos a datos del programa X gracias al predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo del ne si insignificante. Calcula la energía ahorrada por los accesos a datos del programa X gracias al predictor de vía								.				4.0	q				_				,					
Tasa de fallos (m) Consumo de energía en caso de acierto (Ea) Penalización en consumo de energía en caso de fallo al reemplazar un bloque no modificado (Epf) Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (EpfM) Porcentaje de bloques modificados (pm) Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). Tasa de fallos (m) 4 n J Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (EpfM) 40 n J Porcentaje de bloques modificados (pm) 25% Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules).	n polí	ticas																								
Consumo de energía en caso de acierto (Ea) Penalización en consumo de energía en caso de fallo al reemplazar un bloque no modificado (Epf) Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (EpfM) Porcentaje de bloques modificados (pm) 25% Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). mos que la cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor e. El predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo del	-										С	arac	terís	tica											\$	D
Penalización en consumo de energía en caso de fallo al reemplazar un bloque no modificado (Epf) Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (EpfM) Porcentaje de bloques modificados (pm) 25% Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). mos que la cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor e. El predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo del a es insignificante. Calcula la energia ahorrada por los accesos a datos del programa X gracias al predictor de vía	-	Tasa	de	fallos	(m)																				10)%
Penalización en consumo de energía en caso de fallo al reemplazar un bloque modificado (EpfM) Porcentaje de bloques modificados (pm) 25% Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). emos que la cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor e. El predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo de fa es insignificante. Calcula la energía ahorrada por los accesos a datos del programa X gracias al predictor de vía	-	Cons	um	o de	ener	gía e	n ca	so de	e acie	erto	(Ea)														4	nJ
Porcentaje de bloques modificados (pm) Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). Timos que la cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor e. El predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo de a es insignificante. Calcula la energía ahorrada por los accesos a datos del programa X gracias al predictor de vía	_	Pena	liza	ción	en co	onsu	mo d	de en	ergía	en	casc	de	fallo	al re	eem	olaza	r un	blo	oque	no n	nodifi	cac	do (E	pf)	20	nJ
Calcula la energía consumida por los accesos a datos del programa X (da el resultado en Joules). emos que la cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor e. El predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo de fa es insignificante. Calcula la energia ahorrada por los accesos a datos del programa X gracias al predictor de vía	_	Pena	lliza	ción	en co	onsu	mo d	de en	ergía	e en	caso	de	fallo	al re	eem	olaza	r un	blo	oque	mod	ificac	lo (EpfN	/ 1)	40	nJ
mos que la cache L1 es 2-asociativa y que el acceso a una vía consume 2 nJ. Se desea añadir un predictor e. El predictor de vía seleccionado tiene una tasa de aciertos del 80% para el programa X. El consumo de a es insignificante. Calcula la energia ahorrada por los accesos a datos del programa X gracias al predictor de vía		Porc	enta	aje de	blo	ques	mo	difica	dos	(pm)														25	5%
Calcula la energia ahorrada por los accesos a datos del programa X gracias al predictor de vía	Calcul	a la c	ene	rgía	cons	sum	ida _I	oor I	os a	cce	sos a	a da	tos	del p	orog	ram	a X	(da	a el r	esul	tado	en	Jou	les)		
	emos q ne. El pr	ue la edic	cad	che L de v	1 es	2-a	socia	ativa	a y q	ue є	el ac	ceso	o a u	na v	γía c	onsu	ıme	21	nJ. S	e de	sea a	ña	dir u	ın pı	redi	
	mos q e. El pr a es in Calcu l	ue la edic signi a la (cao tor fica	che L de v nte.	1 es ía se	2-a elecc	soci: iona	ativa ado 1	ı y q	ue e e un	El ac	cesc sa d	o a u le ac	na v	·ía c	onsu el 80	ıme 9% ç	2 ı	าJ. S a el	e de prog	sea a	ña a X	dir u	ın p	redi	
	mos q e. El pr a es in Calcu l	ue la edic signi a la (cao tor fica	che L de v nte.	1 es ía se	2-a elecc	soci: iona	ativa ado 1	ı y q	ue e e un	El ac	cesc sa d	o a u le ac	na v	··ía c	onsu el 80	ıme 9% ç	2 ı	าJ. S a el	e de prog	sea a	ña a X	dir u	ın p	redi	
	emos q e. El pr ía es in Calcu l	ue la edic signi a la (cao tor fica	che L de v nte.	1 es ía se	2-a elecc	soci: iona	ativa ado 1	ı y q	ue e e un	El ac	cesc sa d	o a u le ac	na v	··ía c	onsu el 80	ıme 9% ç	2 ı	าJ. S a el	e de prog	sea a	ña a X	dir u	ın p	redi	
	emos q ie. El pr ía es in Calcu l	ue la edic signi a la (cao tor fica	che L de v nte.	1 es ía se	2-a elecc	soci: iona	ativa ado 1	ı y q	ue e e un	El ac	cesc sa d	o a u le ac	na v	··ía c	onsu el 80	ıme 9% ç	2 ı	าJ. S a el	e de prog	sea a	ña a X	dir u	ın p	redi	
	emos q ne. El pr ía es in Calcu l	ue la edic signi a la (cao tor fica	che L de v nte.	1 es ía se	2-a elecc	soci: iona	ativa ado 1	ı y q	ue e e un	El ac	cesc sa d	o a u le ac	na v	··ía c	onsu el 80	ıme 9% ç	2 ı	าJ. S a el	e de prog	sea a	ña a X	dir u	ın p	redi	
os los accesos del programa X son de 4 bytes y los bloques de cache de \$D son todos de 64 bytes.	emos q ne. El pr ría es in Calcu l (da el	ue la edic signi a la (resu	cao tor fica ene Itao	che L de v nte. rgia do er	1 es ía se aho n Jou	2-a elecc rrad ules)	soci: iona a po	ativa ado 1	a y q tiene	ue e un	el ac a ta	cesc sa d	o a u le ac	na v ierto	ría c os d	onsu el 80	ıme 9% ç X gr	2 i	nJ. S a el ias a	e de prog	sea a rama dicto	ña a X	dir u . El c	un p cons	redii	

Dado el siguiente fragmento de código:

```
for (i=0; i< N; i++)

suma = suma + v[i]; // v[i] es un vector de doubles (8 bytes)
```

El código está almacenado en la cache de instrucciones \$I (por lo que no provoca fallos), las variables i, N y suma están en registros y \$D está inicialmente vacía. Los elementos del vector v son de 8 bytes y los bloques de \$D son de 64 bytes. La capacidad de \$D es de 8 Kbytes.

	mos ejecutado 2 veces consecutivas el mismo fragmento de código (para N = 1000) y hemos medido los ciclos de CPL ambas ejecuciones:
•	En la 1a ejecución el bucle tarda 55.000 ciclos.
	En la 2a ejecución el bucle tarda 30.000 ciclos.
d)	Calcula el tiempo de penalización medio (en ciclos) en caso de fallo en \$D.
	seamos ejecutar una sola copia del mismo fragmento de código para N muy grande (el vector recorrido es mucho yor que el tamaño de cache).
e)	Calcula en función de N los ciclos que tarda el fragmento de código anterior.
	a cache \$D le añadimos un mecanismo de <i>prefetch</i> hardware. Cuando se accede un bloque (i) se desencadena <i>prefetch</i>
	bloque siguiente (i+1) siempre que el bloque (i+1) no se encuentre ya en la cache o no haya un <i>prefecth</i> previo de que (i+1) pendiente de completar (en ambos casos es innecesario hacer prefecth de nuevo).
f)	Calcula el número máximo de ciclos que puede durar un prefetch para que el bucle se ejecute en 40*N ciclos.
g)	¿Es posible ejecutar el bucle en menos de 40*N haciendo el <i>prefetch</i> más rápido? (justifica la respuesta)

COGNOMS:																				
NOM:																				
Problema	4. (3 pu	ıntos)																		
Se ha ejecut denominare programa P	emos PC1	l) y se h	a calc	ulado	que s	su tie	mpo d	le eje	cucio	ón e	s de	Tho	ras. Pa	ara p	ode	r esti	mar el			
Fase 1: Cód	igo SECU	ENCIAL	que r	no pue	ede p	arale	lizarse	, ocu	pa el	189	% d	el tier	npo d	e la (ejec	ución	de P	en el	PC1.	
Fase 2: Cód	igo PARA	LELIZAE	BLE, o	cupa e	el 489	% del	tiemp	o de	la ej	ecuc	ción	de P	en el	PC1.						
Fase 3: Cód el PC1.	igo de E/	'S que p	asa to	odo su	ı tiem	npo a	ccedie	endo a	al dis	co [), o	cupa	el 34%	6 del	l tier	mpo (e la e	jecu	ción d	e P en
Con el objet un sistema sistema mu	multipro	cesado	r de 1	16 pro	cesa	dores	-	_			-	-				-				-
•	a el máxi tiempo						_		•	utar	r el	progr	ama I	or cor	n el I	PC2 e	n el ca	3SO C	le que	no se
Sabemos qu única que re de coma flo	aliza cálo	culos en	coma	a flota	nte, s	se eje	cutan	800x	10 ¹⁴	inst	ruc	cione	s, de l	as cu	iales	500x	د10 ¹⁴ د	on ir	la Fas	e 2, la ciones
	a los MIP															_				
c) Calcul	a la gana	ncia má	áxima	en M	IPS y	MFLC	DPS al	ejecu	ıtar e	el pr	ogr	ama F	en e	I PC2	2 en	vez d	e en P	C1.		

Otra opción que se ha barajado para mejorar el rendimiento del sistema PC1 es añadir un RAID de discos en lugar del disco duro D. El ancho de banda del disco D es de 250GBytes/s. A este sistema le llamamos PC3. El RAID nos permite paralelizar la Fase 3, ya que en esta fase hay suficientes accesos como para saturar el ancho de banda de todos los discos del RAID. El RAID de discos del que disponemos tiene 6 discos y puede configurarse como RAID 10 o RAID 6.

d)	Describe las principales características de cada uno de estos sistemas RAID, dibujando un esquema de cómo se distribuyen los datos y especificando el tipo de entrelazado, el porcentaje de información redundante, el numero de discos que han de fallar para que el sistema deje de ser operativo, el ancho de banda máximo de las lecturas y el ancho de banda máximo de las escrituras. NOTA: Considerar el mejor de los casos entre accesos secuenciales y aleatorios
Dec	idimos configurar el sistema de discos como RAID 6.
e)	Al PC2 le montamos el RAID 6 de 6 discos en lugar del disco duro D. A este sistema le llamamos PC4. Calcula el speed-up máximo del PC4 sobre el PC2 asumiendo que todos los accesos a disco son lecturas secuenciales.
1	