IFI 9000 Analytics Methods Linear and Logistic Regression

by Houping Xiao

January $12^{\rm th}$, 2021

Some Basic Probability Overview

- For a continuous random variable X we often define a probability density distribution $f_X(x)$ where $\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$
- A random variable X is normally distributed with mean μ and variance σ^2 (denoted as $N(\mu, \sigma^2)$, when

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \tag{1}$$

- Sum of normals: if x_1, x_2, \dots, x_n are normal (not necessarily independent), the weighted sum $\alpha_1 x_1 + \dots + \alpha_n x_n$ is also normal
- Expectation of the weight sum: if x_1, x_2, \dots, x_n are random variables with mean $\mathbb{E}(x_i) = \mu_i$, then for constants α_i :

$$\mathbb{E}(\alpha_1 x_1 + \alpha_n x_n) = \alpha 1 \mu_1 + \dots + \alpha_n \mu_n \tag{2}$$

• Variance of weighted sum: if x_1, x_2, \dots, x_n are **independent** random variables with variance $Var(x_i) = \sigma_i^2$, then

$$Var(\alpha_1 x_1 + \dots + \alpha_n x_n) = \alpha_1^2 \sigma_1^2 + \dots + \alpha_n^2 \sigma_n^2$$
 (3)

A Brief Review of Hypothesis Testing

- A hypothesis is often a conjecture about one ore more populations
- To prove a hypothesis is true we need to examine all the population which is often not practical, instead we take a random sample and assess if we have enough evidence to support a hypothesis in probability
- Example: All human beings respond well to a specific treatment
 - Instead of testing it on all people on the planet, we look into a fraction of people who are infected by the decease and see if the treatment works
- Since we are focused on a limited sample, we can only state our confidence about the conjecture in probability

- We call H_0 as the **null** hypothesis and refer to H_1 as the **alternative** hypothesis
- The hypothesis we want to test is if H_1 is likely to be true
- Usually, the equality hypothesis is chosen to be the null hypothesis
 - ullet For many problems that we encounter in this course, Hypothesis Testing is simply testing the chances of a random variable to be in region defined by H_0 or H_1

- Hypothesis testing is often formulated in terms of two hypotheses
 - H₀: the null hypothesis
 - H₁: the alternative hypothesis
- You decide to make a claim about the null hypothesis H_0 in probability at least $1-\alpha$
- **Example**: We are 90% confident that this drug works on patients with xxx decease
- ullet α : measure how confident you want to make the claim
 - determined by you

Usually, one of the following two cases happens:

- **Reject** H_0 and **accept** H_1 , as we have enough evidence to support H_1
- Fail to reject H_0 , as we don't have enough evidence to support H_1
 - \bullet H_0 may be false, but the data is not enough to reject it

Hypothesis Testing: Types of Error

	Reject H_0 (accept H_1)	Fail to reject H_0
H ₀ is True	Type I error: α	Correct: $1 - \alpha$
H ₁ is True	Correct: $1 - \beta$	Type II error: β

- α is a small number (e.g. 0.01, 0.05) that we determine and is called the significance level
 - the probability to make type I error
- We decide on how confident we want to make a claim in favor of H_0 and $1-\alpha$ is our confidence about this
- We won't focus on type II error here

Hypothesis Testing Example

In the context of our linear regression problem, we are interested in hypothesis testing problems on the basis of samples

Example: There is a normal distribution with variance 1 and unknown μ . Below list 10 independent samples x_i of this distribution:

- -0.04450595, -0.48165, 0.09475972, 0.83689004, -1.4314154,
- -1.12870336, 0.68414548, 0.54675891, -0.2334923 , -0.5824023

The sample mean is

$$\frac{x_1 + \dots + x_{10}}{10} = -0.17396 \tag{4}$$

A hypothesis testing: $H_0: \mu = 0$ vs $H_1: \mu \neq 0$ (two sided test)

Hypothesis Testing Example

Solution: Check the random variable

$$\bar{x} = \frac{x_1 + \dots + x_{10}}{10} \tag{5}$$

Then $\bar{x} \sim \mathcal{N}(\mu, 0.1)$ Why?. Further, $z = \frac{\bar{x} - \mu}{\sqrt{0.1}} \sim \mathcal{N}(0, 1)$ Why?.

z is referred to as the test statistic

p-value: is a useful quantity in the analysis of the test and is the probability of obtaining a result equal or "more extreme" than what we have observed, given that the null hypothesis is true. In the case of this example: $z^* = \frac{\bar{x} - \mu}{\sqrt{0.1}} = -0.5501$

$$p-value = \mathbb{P}(z > |z^*|) + \mathbb{P}(z < -|z^*|)$$
(6)

$$= \mathbb{P}(z > 0.5501) + \mathbb{P}(z < -0.5501) = 0.5823 \tag{7}$$

Hypothesis Testing Example

Assume that the significance level is lpha=0.05

- If p-value $\leq \alpha$: reject H_0 and accept H_1
- If p-value $> \alpha$: do not reject H_0

In this example, p-value= 0.5823 > 0.05, so we cannot reject the hypothesis $\mu=0$

• If the value of $\bar{x}=-0.17396$ was calculated based on 200 samples (sample size increased), then $z^*=-1.7396$ and

p-value =
$$\mathbb{P}(z > 1.7396) + \mathbb{P}(z < -1.7396) = 0.0139 < 0.05$$
 (8)

then we were able to reject H_0

• In other words we are more than 95% confident that it is not possible to take the sample mean over 200 random number of mean $\mu=0$ and variance 1, and get a value as far from 0 as -0.17396

Hypothesis Testing Example: Unknown Variance

Suppose in the previous example, we did not know σ and instead of working with the standard random normal variable $z=\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}$ we work with the random variable

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$
 where $s = \sqrt{\frac{1}{n - 1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ (9)

- s an unbiased estimate of σ
- t Student's t distribution
- similar procedure for p-value calculation

Take Away from Hypothesis Testing

- Some independent samples from a distribution
- Make some guesses about the data
- ullet Formulate a hypothesis test, H_0 and H_1
- ullet Determine the confidence level, 1-lpha
- Find a test statistic
- Calculate the p-value:
 - If p-value $\leq \alpha$: reject H_0 and accept H_1
 - If p-value $> \alpha$: do not reject H_0

Now Lets Start Linear Regression!

Introduction to Linear Regression

- An ideal regression function f(x)
 - this regression function was the actual function behind our data generation
 - observations y were in the form

$$y = f(\mathbf{x}) + \epsilon \tag{10}$$

where
$$\mathbf{x} = (x_1, \cdots, x_p)^{\top}$$

- estimate \hat{f} to approximate the **unknown** f(x)
- Linear regression: estimate f in the following form

$$\hat{f}(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p \tag{11}$$

Introduction to Linear Regression

• A simple model with p = 1

 $Sales = \beta_0 + \beta_1 TV / Radio / Newspaper + \epsilon$

or

$$y = \beta_0 + \beta_1 x + \epsilon$$

where x is the one feature

More on Simple Linear Regression

Consider

$$y = \beta_0 + \beta_1 x + \epsilon$$

- β_0 and β_1 are unknown coefficients that represent the intercept and slope, respectively
- Based on the available $(x_1, y_1), \dots, (x_n, y_n)$, estimate $\hat{\beta}_0$ and $\hat{\beta}_1$
- ullet using $\hat{eta_0}$ and $\hat{eta_1}$ to make prediction

$$\hat{y}(x^*) = \hat{\beta_0} + \hat{\beta_1}x^*$$

Determining the Model Coefficients

• Remember that we had samples $(x_1, y_1), \dots, (x_n, y_n)$, the \hat{f} are derived from solving the following optimization problem

$$\min \sum_{i=1}^n (y_i - \hat{f}(x_i))^2$$

• Using the simple model β_0 and β_1 are determined such that the **Residual Sum of Squares** (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

is minimized

Determining the Model Coefficients

• Taking the derivative w.r.t. β_0 and β_1 and letting them to be zero, we have

$$\hat{\beta}_0 = \hat{y} - \hat{\beta}_1 \bar{x}$$
 and $\hat{\beta} = \frac{\sum_{i=1}^n x_i y_i - n x \bar{y}}{\sum_{i=1}^n x_i^2 - n \bar{x}^2}$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Using the following equations:

$$\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}), \quad \sum_{i=1}^{n} x_i^2 - n \bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

How Well Did We Do the Fit?

Now that we have our fit we would like to address few questions about it!

What is the Confidence Interval for the Coefficients?

- Note that $\hat{\beta}_0$ and $\hat{\beta}_1$ are both normally distributed when the noise is normally distributed
- Consider the 95% confidence intervals that cover the true β_0 and β_1

•

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right), \quad SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

• The 95% confidence intervals for β_0 and β_1 are

$$\left[\beta_{0} - 2SE(\hat{\beta}_{0})^{2}, \beta_{0} + 2SE(\hat{\beta}_{0})^{2}\right], \quad \left[\beta_{1} - 2SE(\hat{\beta}_{1})^{2}, \beta_{1} + 2SE(\hat{\beta}_{1})^{2}\right]$$
(See the code)

Is There a Relationship Between x and y?

- We want to know whether there is really a relationship between x and y or if the fit is useless?
- Hypothesis testing for β_1 :
 - H_0 : $\beta_1 = 0$
 - H_1 : $\beta_1 \neq 0$
- Test statistic: $t=rac{\hat{eta}_1-eta_1}{\mathit{SE}(\hat{eta}_1)}=rac{\hat{eta}_1}{\mathit{SE}(\hat{eta}_1)}$
- t follows t-distribution, and get the p-value
 - If p-value $\leq \alpha$: reject H_0 and accept H_1
 - If p-value $> \alpha$: do not reject H_0
- For the example provided p-value= 2×10^-16 and we reject H_0 and accept H_1

How Well does the Model Explain the Data?

Check

$$R^2 = 1 - \frac{RSS}{TSS}$$

where TSS is the Total Sum of Squares

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2, \quad TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- For general regression problems (not just the simple one with only one feature) \mathbb{R}^2 measures the proportion of variability in y that can be explained by x
- R^2 close to 1 indicates that our model explains a large proportion of the response variability, and R^2 close to zero indicates that our model cannot explain much of the variability in response

Multiple Linear Regression

Multiple Linear Regression

• If we have multiple features x_1, \dots, x_p , the fit could be

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

For instance, $Sales = \beta_0 + \beta_1 \cdot TV + \beta_2 \cdot Radio + \beta_3 \cdot Newspaper + \epsilon$

• Suppose that we have n training samples $(\mathbf{x}^{(1)}, y_1), \dots, (\mathbf{x}^{(n)}, y_n)$ and

$$\boldsymbol{x}^{(1)} = \begin{pmatrix} x_1^{(1)} \\ x_2^{(1)} \\ \vdots \\ x_p^{(1)} \end{pmatrix}, \quad \boldsymbol{x}^{(2)} = \begin{pmatrix} x_1^{(2)} \\ x_2^{(2)} \\ \vdots \\ x_p^{(2)} \end{pmatrix}, \quad \cdots, \quad \boldsymbol{x}^{(n)} = \begin{pmatrix} x_1^{(n)} \\ x_2^{(n)} \\ \vdots \\ x_p^{(n)} \end{pmatrix}$$

Multiple Lienar Regression

• The objective function to minimize is the following squared error

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \beta_1 x_1^{(i)} - \beta_2 x_2^{(i)} \cdots - \beta_p x_p^{(i)} \right)^2$$

In matrix manner

$$RSS = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}, \mathbf{X}_{n \times (p+1)} = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \cdots & x_p^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \cdots & x_p^{(2)} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_1^{(n)} & x_2^{(n)} & \cdots & x_p^{(n)} \end{pmatrix}$$

Multiple Linear Regression

 \bullet Similar to what we did before we can set $\frac{\partial RSS}{\partial \beta}=0$ and get

$$\hat{oldsymbol{eta}} = \left(oldsymbol{X}^ op oldsymbol{X}
ight)^{-1} oldsymbol{X}^ op oldsymbol{y}$$

Are the Features and Response Related?

- Whether features x_1, \dots, x_p is useful in predicting the response
- Hypothesis testing:
 - $H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$
 - H_1 : at least one $\beta_i \neq 0$
- Test statistic:

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$$

where
$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 and $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$

- F follows F distribution, and calculate the p-value
 - If p-value $\leq \alpha$: reject H_0 and accept H_1
 - If p-value $> \alpha$: do not reject H_0
 - Or check the value of F
 - If F is much larger than 1, reject H_0
 - If F is very close to 1, do not reject H_0

Multiple Linear Regression

Now that we have our fit, again we would like to address few questions about it!

Assessing the P-values and Correlations Among Features

 Sometimes features are correlated and the contribution of one feature can be taken care of by the others

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

What are the Best Selection of Features?

- As noted sometimes some features can be redundant and we would like to find the best subset of features that predicts well and is not redundant
- In general this problem is "NP-hard" (computationally very hard) and we need to assess 2^p models
- Some heuristics to do this that we will see later:
 - Forward selection: model p regressions each with only one feature, pick the one with least RSS, repeat it with selected feature and combination of others, etc
 - Backward selection: Start with all features and remove variable with largest p-value, run a new regression, remove variable of largest p-value, etc

How to Handle Categorical Features?

- Sometimes our features do not take numerical values, instead they take categorical values
- **Example**: In a regression problem we have a feature called ethnicity, which takes possible values of Asian, Caucasian, African-American
- We can introduce 2 dummy variables (features) eA; eC
 - eA = 1; eC = 0 if Asian
 - eA = 0; eC = 1 if Caucasian
 - eA = 0; eC = 0 if African-American
- ullet Basically, for every categorical feature that has L levels, we need to define L-1 dummy variables

Can We Only Fit Flat Curves with Linear Regression

Multiple linear regression

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

- one might get the impression that linear regression is only good for fitting at surfaces (linear manifolds)
- Handle nonlinearity: introduce powers of a feature, e.g., x_1, x_2, \cdots or cross terms between the features, e.g., $x_1x_2, x_1x_2x_3$, etc
- Hard to determine the degree

Can We Only Fit Flat Curves with Linear Regression

• **Example**: For a problem with only one feature shown in the figure, we can use the regression

$$y = \beta_0 + \beta_1 x + \beta_2 x^2$$

Can We Only Fit Flat Curves with Linear Regression

• Example: Regressing Mile per Gallon in terms of the Horse Power

Miles per gallon =
$$\beta_0 + \sum_{i=1}^{p} \beta_i (\text{horse power})^i$$

The End