Υροκ №29

Оборотні й необоротні реакції

Повідомлення мети уроку

Ви зможете:

- поповнити знання про класифікацію хімічних реакцій на оборотні та необоротні;

- розрізняти оборотні й необоротні реакції;

- складати рівняння оборотних і необоротних реакцій.

Актуалізація опорних знань

Реакція розкладу кальцій карбонату відбувається під час нагрівання. Якщо нагрівання припинити, то припиниться і реакція. Як пояснити цей дослід?

Мотивація навчальної діяльності

У хімічній промисловості досить велика кількість оборотних реакцій становить основу виробництва промислово важливих речовин. Сказане стосується виробництва сульфатної кислоти, нітратної кислоти, амоніаку та інших неорганічних речовин, а також органічних (етен, етин, поліетилен, каучук та інші). Перш ніж здійснювати промислове виробництво цих речовин, ученим довелося багато попрацювати над добором умов, що зміщують рівновагу в бік утворення продуктів реакції.

Вивчення нового матеріалу

Чинники, які впливають на швидкість перебігу реакцій

Природа речовини

Mg - Швидко

IÇI

П_{ОВІЛЬНО} Fe

Агрегатний стан речовини

Ступінь подрібнення

Вивчення нового матеріалу

Чинники, які впливають на швидкість перебігу реакцій

Концентрація реагуючих речовин

Температура

$$2H_2 + O_2 = ^t 2H_2O + \triangle H$$

Каталізатор

$$2H_2O_2 = ^{M_1O_2}2H_2O + O_2$$

Класифікація хімічних реакцій

Реакції

Необоротні

Хімічні реакції, що відбуваються в одному напрямку до повного перетворення вихідних речовин у продукти реакції

HCI + KOH = KCI + H2O

Оборотні

Хімічні реакції, що за однакових умов відбуваються у двох протилежних напрямках: прямому і зворотному.

 $N_2 + 3H_2 \Longrightarrow 2HN_3$

Хімічні реакції є необоротними в наступних випадках:

- якщо випадає осад;

- якщо виділяється газ;
- якщо утворюється малодисоційована сполука;
- якщо реакція супроводжується виділенням великої кількості енергії.

Поміркуйте

Розглянемо швидкість протікання прямої та зворотної реакції. Спочатку швидкість прямої реакції максимальна. Чому?

3 часом швидкість прямої реакції сповільнюється. Чому?

Швидкість зворотної реакції спочатку мінімальна. Чому?

3 часом швидкість зворотної реакції зростає. Чому?

Настає такий час, коли швидкість прямої реакції дорівнює швидкості зворотної реакції – настає хімічна рівновага.

Хімічна рівновага

Хімічна рівновага — стан оборотної реакції, у якому швидкість прямої реакції та зворотної реакції однакові

$$A+B \leftrightarrow C+Д$$

$$V_{\text{прямої реакції}} = V_{\text{зворотної реакції}}$$

За хімічної рівноваги концентрації речовин залишаються незмінними.

Принцип Ле Шательє:

Французький учений Анрі-Луї Ле Шательє (08.10.1850-17.09.1936) у 1884 р. сформулював загальний принцип зміщення хімічної рівноваги.

Якщо суміш речовин, що перебуває в стані хімічної рівноваги, зазнає зовнішнього впливу (змінюється концентрація речовини, температура або тиск), то рівновага зміщується в бік тієї реакції, яка послаблює цей вплив.

Принцип Ле Шательє

Зовнішній фактор	Зміщення хімічної рівноваги
С _{вих.реч.} ↓	← В бік утворення вихідних речовин (зворотна реакція)
С _{вих.реч.} ↑	→ В бік утворення продуктів (пряма реакція)
Спрод. ↓	→ В бік утворення продуктів (пряма реакція)
Спрод. ↑	← В бік утворення вихідних речовин (зворотна реакція)

С - концентрація.

Принцип Ле Шательє

Зовнішній фактор	Зміщення хімічної рівноваги
T ↑	← В бік ендотермічної реакції (-Q, + _A H)
Τ ↓	→ В бік екзотермічної реакції (+Q, - H)
P↑V↓	→ В бік утворення менших об'ємів (меншого числа газоподібних часток)
P ↓ V↑	← В бік утворення більших об'ємів (більшого числа газоподібних часток)

Т-температура; Р – тиск.

Формулюємо висновки

Чинники, які впливають на стан хімічної рівноваги:

- зміна температури;

- концентрація;

- тиск.

Зміщення хімічної рівноваги

Температура

Підвищення температури зміщає рівновагу в бік ендотермічної реакції (тобто в бік реакції, що протікає з поглинанням теплоти)

$$A + B \xrightarrow{V1} C + Q$$

Збільшення t° приводить до υ2 > υ1.

$$A + B \xrightarrow{V1} C + Q$$

Збільшення t° приводить до υ1 > υ2.

Зміщення хімічної рівноваги

Збільшення концентрації вихідних речовин і вилучення продуктів зі сфери реакції зміщає рівновагу в бік прямої реакції.

Збільшення концентрацій вихідних речовин [А] або [В] або [А] і [В]: v1 > v2

Каталізатори не впливають на стан рівноваги.

Зміщення хімічної рівноваги

Збільшення тиску (для газів) зміщає рівновагу в бік реакції, що веде до зменшення об'єму (тобто до утворення меншого числа молекул газоподібних речовин).

$$A + B \xrightarrow{V1} C$$
 3більшення Р приводить до $v1 > v2$.

Значення зміщення хімічної рівноваги

У хімічній промисловості досить велика кількість оборотних реакцій становить основу виробництва промислово важливих речовин. Сказане стосується виробництва сульфатної кислоти, нітратної кислоти, амоніаку та інших неорганічних речовин, а також органічних (етен, етин, поліетилен, каучук та інші). Перш ніж здійснювати промислове виробництво цих речовин, ученим довелося багато попрацювати над добором умов, що зміщують рівновагу в бік утворення продуктів реакції.

Тренувальні завдання

Реакція відбувається за рівнянням:

 $2SO_{2(r)} + O_{2(r)} \longleftrightarrow 2SO_{3(r)} + 284,2$ кДж Запропонуйте, зміною яких параметрів можна досягнути зміщення рівноваги в бік утворення сульфур (VI) оксиду.

- 1) Збільшити концентрацію SO₂, O₂;
- 2) Зменшити концентрацію SO_3 ;

- 3) Підвищити тиск.
- 4) Знизити температуру.

Робота в зошиті

Складіть рівняння необоротної реакції взаємодії натрій гідрогенкарбонату з хлоридною кислотою.

NaHCO₃+HCl → NaCl + CO₂ + H₂O

Робота в зошиті

BCIM pptx

> Складіть рівняння оборотної реакції за схемою $H_2 + I_2 \rightarrow HI$.

> > $H_2 + I_2 \Longrightarrow 2HI$.

Мозковий штурм

Реакція відбувається за рівнянням: $2SO_2(r) + O_2(r) \leftrightarrow 2SO_3(r) + 284,2$ кДж Запропонуйте, зміною яких параметрів можна досягнути зміщення рівноваги в бік утворення сульфур (VI) оксиду.

Відповідь:

- 1) Збільшити концентрацію SO2, O2.
- 2) Зменшити концентрацію SO3
- 3) Підвищити тиск.
- 4) Знизити температуру.

Робота в зошиті

Під час горіння магнію в кисні чи в повітрі утворюється магній оксид. Ця речовина навіть за високої температури не перетворюється на магній і кисень. Складіть рівняння цієї реакції. До оборотних чи необоротних реакцій вона належить?

$$2 Mg + O_2 \xrightarrow{t} 2 MgO$$

Робота в зошиті

Встановіть відповідність між рівнянням і типом реакції.

Рівняння		Тип реакції	
1	2SO ₂ + O ₂ ⇄ 2SO ₃ ; ΔH = -192 кДж	Α	необоротна, розкладу
2	CaO + H ₂ O = Ca(OH) ₂	Б	оборотна, екзотермічна
3	Fe ₃ O ₄ + 4CO	В	оборотна, ендотермічна
4	$AI(OH)_3 = AI_2OH_3 + H_2O$	Γ	необоротна, сполучення
			необоротна, обміну

Відповідь:

1 – Б;

2 **–** Γ;

3 – B;

4 - A

Закріплення знань

Наведіть класифікацію реакцій за напрямом перебігу хімічних процесів.

У чому полягає відмінність між оборотними й необоротними реакціями?

Яку взаємодію в оборотній реакції називають прямою реакцією, а яку — зворотною?

Де, на вашу думку, можна використати знання про оборотні й необоротні реакції?

Домашнє завдання

1. Підготувати проєкт:
-Хімічні речовини навколо нас.
-Хімічні знання в різні епохи.