Dummit&Foote Abstract Algebra section 15.3 Solutions for Selected Problems by 3 mod(8)

SungBin Park, 20150462

3. Let $\varphi[x,y] \to k[t]$ be a function sending $x \to t^j$ and $y \to t^i$. Then, it is a ring homomorphism such that the kernel of φ is $(x^i - y^j).(1)$ Clearly, Im $\varphi \subset k[t]$.

Choose $a, b \in \mathbb{Z}$ such that ai - bj = 1. Since $\frac{t^{ai}}{t^{bj}} = t$, the quotient field of $\operatorname{Im} \varphi$ is k(t). As $\operatorname{Im} \varphi$ is in k[t] having same quotient field, the integral closure of $\operatorname{Im} \varphi$ is smaller than k[t]. However, $y^i - t^i \in \operatorname{Im} \varphi[y]$ has a root t, so the integral closure of $\operatorname{Im} \varphi$ is same as k[t].

Using the ring isomorphism $\varphi: k[x,y]/(x^i-y^j) \to \operatorname{Im} \varphi$, we can extend to field isomorphism $\tilde{\varphi}$ between quotient fields by sending $\frac{\overline{a(x,y)}}{\overline{b(x,y)}}$ to $\frac{\varphi(\overline{a})}{\varphi(\overline{b})}$.(cf. Theorem 15. (2) in section 7.5.)

For p(x,y) in the quotient field of $k[x,y]/(x^i-y^j)$, which is a root of monic polynomial f(z) in $(k[x,y]/(x^i-y^j))[z]$, $\tilde{\varphi}(p(x,y)) \in k(t)$ is again a root of monic polynomial $\tilde{\varphi}(f(z)) \in (\operatorname{Im} \varphi)[z]$ sending $z \mapsto z$ and this is true for vice versa. Therefore, the normalization of $k[x,y]/(x^i-y^j)$ is isomorphic to the normalization of $\operatorname{Im} \varphi$.

Hence, the normalization of the integral domain R is $k \left[\frac{x^a}{y^b} \right] / (x^i - y^j)$.

(1): It is clear that the kernel of ϕ contains $(x^i - y^j)$. For $\overline{f(x,y)} \in k[x,y]/(x^i - y^j)$, we can rewrite it as $\sum_{i=0}^{j-1} y^i f_i(x)$ for some $f_i(x) \in k[x]$ since $y^j = x^i$. $\varphi(x^r y^s) = t^{rj-si}$ for $0 \le s \le j-1$ are all distinct since i and j are co-prime. Therefore, $\tilde{\varphi}: k[x,y]/(x^i - y^j) \to k[t]$ is injective and $(x^i - y^j)$ is the kernel of φ .

11. Since k[x] is U.F.D., there exists monic irreducible polynomials $q_i^1(x)$, $q_j^2(x)$ and units u^1, u^2 such that $a(x) = u^1 \prod_{i=1}^n q_i^1(x)$, $b(x) = u^2 \prod_{j=1}^m q_j^2(x)$. Fix an irreducible factor q(x), then there is a root α which is integral over R since α is a root of p(x). By exercise 10 above, $q(x) \in R[x]$. It means $a(x), b(x) \in R[x]$. (As p(x), a(x), b(x) are monic, $u^1 = u^2 = 1$.)

19. Computing reduced Gröbner basis using computer for $(x^3+y^3+z^3,x^2+y^2+z^2,(x+y+z)^3,1-tx)$ in ordering x>y>z>t, it produces (1). In the algorithm computing Gröbner basis, there is no multiplication of constant not appearing in the polynomial, i.e., we only multiply integers having 2 or 3 as a factor since the coefficient in $(x^3+y^3+z^3,x^2+y^2+z^2,(x+y+z)^3,1-tx)$ are just 1,-1,3,6. It means if $\mathrm{ch}(k)\neq 2,3$, then the polynomial does not lose their terms in Gröbner basis algorithm, and we safely get (1) as a reduced Gröbner basis for $(x^3+y^3+z^3,x^2+y^2+z^2,(x+y+z)^3,1-tx)$. By the symmetry, we also get (1) as the reduced Gröbner basis for $(x^3+y^3+z^3,x^2+y^2+z^2,(x+y+z)^3,1-tz)$ and it means $x,y,z\in\mathrm{rad}\,I$.

27. (a) By exercise 26 (d) above, we know that $\mathcal{Z}_{\bar{k}}(I)$ is finite. I'll write $a^i = (a_1^i, a_2^i, \dots, a_n^i)$ for $a^i \in \mathcal{Z}_{\bar{k}}(I)$. For $a^i \in \mathcal{Z}_{\bar{k}}(I)$, $\mathcal{I}_{\bar{k}}(a^i) = (x - a_1^i, x - a_2^i, \dots, x - a_n^i)$, so $\mathcal{I}_{\bar{k}}(\mathcal{Z}_{\bar{k}}(I)) =$ rad $I' = \bigcap_i (x - a_1^i, x - a_2^i, \dots, x - a_n^i) = \prod_i (x - a_1^i, x - a_2^i, \dots, x - a_n^i)$ since each ideals is maximal. By Chinese Remainder Theorem,

$$\bar{k}[x_1,\ldots,x_n]/\operatorname{rad} I'$$

$$\cong \bar{k}[x_1,\ldots,x_n]/(x-a_1^1,\ldots,x-a_n^1)\times\cdots\times\bar{k}[x_1,\ldots,x_n]/(x-a_1^m,\ldots,x-a_n^m)$$

$$\cong k^m.$$

Therefore, $|\mathcal{Z}_{\bar{k}}(I)| = \dim_{\bar{k}} \bar{k}[x_1, x_2, \dots, x_n] / \operatorname{rad} I'$.

- (b) i. Since $k \subset \bar{k}$, $\mathcal{Z}(I) \subset \mathcal{Z}_{\bar{k}}(I)$.
 - ii. By exercise 43 in Section 1, $\dim_k k[x_1,\ldots,x_n]/I = \dim_{\bar{k}} \bar{k}[x_1,\ldots,x_n]/I'$.
 - iii. Since rad $I' \supset I'$, $\dim_{\bar{k}} \bar{k}[x_1, \ldots, x_n] / \operatorname{rad} I' \leq \dim_{\bar{k}} \bar{k}[x_1, \ldots, x_n] / I'$: If $(\bar{b}_1, \bar{b}_2, \ldots, \bar{b}_m)$ is a linearly independent set in $\bar{k}[x_1, \ldots, x_n] / \operatorname{rad} I'$, but $\sum_{i=1}^m k_i b_i \in I'$, then $\sum_{i=1}^m k_i b_i \in \operatorname{rad} I'$ and makes contradiction.

Combining these facts, we can get $|\mathcal{Z}(I)| \leq \dim_k k[x_1, \dots, x_n]/I$.