AGI via Combining Logic and Deep Learning

AGI 2021 Conference

YKY

October 13, 2021

Table of contents

2	BERT is AGI
2 3	Equivariance of the Transformer
4	BERT's Hidden Representation
$\frac{4}{5}$	BERT compared with AGI architecture
6	AGI as Sequence-to-sequence Rewriter
6 7	BERT with Long-Term Memory
8	Additivity of Word Embeddings
9	Memory Recall
11	This is a lamprey
12	Evolution of the Neocortex
13	Books
14	How the Basal Ganglia makes Decisions
15	Sub-networks of the Neocortex
16	Neocortex vs Reinforcement Learning
18	What is a Model?
19	Hitzler's Core Method
20	Hitzler's Core Method
21	Fibrations
23	Symmetry and inductive bias
24	Richard Sutton's view

Part I

BERT / GPT

BERT is AGI

- BERT can generate texts, answer questions, and even write code
- BERT has learned human knowledge from text corpora
- Therefore, BERT is approximately AGI
- BERT also demonstrates that our computing power is in the **ballpark** of AGI
- I predict that human-level AGI will emerge within 5-6 years

Equivariance of the Transformer

• Many people already know this: the Transformer module is **equivariant** in its inputs and outputs:

BERT's Hidden Representation

• A simplified view of how BERT performs question-answering or logic deduction:

BERT compared with AGI architecture

• A minimal AGI architecture is like this:

AGI as Sequence-to-sequence Rewriter

- The state of a logic system is a set of propositions
- So state = sequence of sequences, The 2nd level represents predicates and terms **inside** a proposition

BERT with Long-Term Memory

• With logic, it is easier to design cognitive architectures, eg: long-term memory module

(3)

Additivity of Word Embeddings

- The sine waves are **Positional Encodings**
- We can see that **Word Embeddings** can co-exist if embedding dimension is large enough

• This suggests that word embeddings can be added together to give composite meanings

Memory Recall

- Integrate seamlessly with knowledge graphs
- Graphs are made up of edges, edges = relations between nodes = propositions:

Part II

Reinforcement Learning

This is a lamprey

Evolution of the Neocortex

Books

How the Basal Ganglia makes Decisions

Sub-networks of the Neocortex

	Motor Loop	Occulomotor Loop	Prefrontal Loop	Orbitofrontal Loop	Cingular Loop	
Cortex	Motor Cortical Area	Occulomotor Frontal Field	Prefrontal Cortex	Orbital Cortex	Cingular Anterior Cortex	
Basal Ganglia	Putamen	Caudate Nucleus ernal Globus Pal	Dorsolateral Caudate Nucleus Iidus & Substar	Ventro-Medial Caudate Nucleus ntia Nigra reticula	Ventral Striatum ta	
Thalamus	Ventro-Media Thalamus	Ventral Ante	erior & Dorso-m	nedial Thalamus	Dorso-Medial	1

Neocortex vs Reinforcement Learning

Part III

Model-based vs Syntax-based

What is a Model?

Syntactic Representation

ie. a set of logic formulas:

human (Plato)
human (Aristotle)

 $\forall x. \text{ human}(x) \Rightarrow \text{mortal}(x)$

Language describes the real world

Model theory relates

syntax with semantics

Semantic Representation

This represents Plato

This represents Aristotle

This represents the set of philosophers

A model is a representation of the real world

Hitzler's Core Method

• The semantic operator \mathcal{T}_P updates an interpretation to another interpretation:

Hitzler's Core Method

• The level mapping ι takes an interpretation to a real number:

Fibrations

• "Floating" regions and points as models

• "Fibration" structure of predicates

Part IV

No Free Lunch and Inductive Bias

Symmetry and inductive bias

- In mathematics, symmetry often simplifies computation, which is why mathematicians love to study symmetries
- In machine learning, one introduces inductive bias to narrow down the search space:

• Oftentimes, if inductive bias is chosen correctly, solution is found quickly, otherwise problem becomes **intractable**

Richard Sutton's view

• In contrast, Sutton expressed the view that AI can be solved merely by increasing computing power, under the reinforcement learning framework

(6)

References

Thanks for watching 😌