[PSZT] Drzewo decyzyjne ID-3 "grzyby z ruletką"

1) Autorzy:

- a) Rafał Lewanczyk
- b) Kacper Biegajski

https://github.com/rafallewanczyk/id3-grzyby

2) Treść zadania:

- a) Budowa dwóch drzew decyzyjnych przy pomocy algorytmu ID-3, jedno standardowe drugie posługujące się ruletką w celu wyboru testu
- b) Analiza działania oraz dopasowania do danych obu drzew, porównanie ich zachowań

3) Wkład w projekt:

- a) Rafał Lewanczyk:
 - i) Implementacja standardowego algorytmu ID-3
 - ii) Przeprowadzanie testów
- b) Kacper Biegajski:
 - i) Implementacja ruletki
 - ii) Wyświetlanie drzewa
 - iii) Obsługa danych wejściowych
 - iv) Walidacja krzyżowa

4) Decyzje projektowe:

- a) Przy każdym uruchomieniu dane są wczytywane z pliku oraz przed wykonaniem walidacji mieszane
- Aby program zadziałał prawidłowo plik zawierający dane musi w pierwszym wierszu zawierać listę atrybutów na której klasa jest jako pierwsza oraz w kolejnych wierszach stany oddzielone przecinkiem

5) Wykorzystane biblioteki:

- a) python 3.7.3
- b) biblioteka networkx reprezentacja grafu
- c) biblioteka pandas operacje na danych

reszta modułów zawarta w pliku requirements.txt

6) Wykonane instrukcje:

- a) python main.py -d data/expanded -k 3
- b) python main.py -d data/expanded -k 6
- c) python main.py -d data/expanded -k 10

7) Cel:

Celem tego eksperymentu jest zbadanie jakości drzewa decyzyjnego zbudowanego przez ruletkowy wybór testów oraz porównanie go do standardowego drzewa decyzyjnego zbudowanego przy pomocy algorytmu ID3.

8) Teza:

Drzewo zbudowane przy pomocy standardowego algorytmu popełnia mniej błędów.

9) Wyniki eksperymentów

W naszych eksperymentach badamy współczynnik błędu q jaki popełniają drzewa. Wykorzystujemy do tego celu k-krotną walidację krzyżową

$$q=rac{ilość\ popełnionych\ błędów}{ilość\ walidowanych\ rekordów}$$
 $\overline{q}=rac{1}{k}\sum_{i=1}^{k}q_i$

Tabele przedstawiają współczynnik błędu dla k-tej iteracji walidacji krzyżowej dla poszczególnych algorytmów.

Dla k=3:

k	ID3 standard	ID3 ruletka
1	0.0	0.0
2	0.0	0.0
3	0.0	0.00215
avg	0.0	0.00072

Dla k = 6

k	ID3 standard	ID3 ruletka
1	0.0	0.0
2	0.0	0.0
3	0.0	0.0
4	0.0	0.0
5	0.0	0.00215
6	0.0	0.0
avg	0.0	0.00035

Dla k=10:

k	ID3 standard	ID3 ruletka
1	0.0	0.0
2	0.0	0.0
3	0.0	0.0
4	0.0	0.00238
5	0.0	0.0
6	0.0	0.0
7	0.0	0.0
8	0.0	0.00238
9	0.0	0.0
10	0.0	0.0
avg	0.0	0.00047

Jedno z drzew wygenerowanych przez standardowy algorytm ID3

Jedno z drzew wygenerowanych przez algorytm ID3 z ruletką

10) Omówienie wyników eksperymentu:

- a) Standardowy algorytm nie popełnił żadnych błędów
- b) Standardowy algorytm buduje minimalne drzewo natomiast z bardzo dużym prawdopodobieństwem wygeneruje drzewo nieoptymalne z większą ilością wierzchołków (na przykładzie normalny algorytm - 28 wierzchołków, ruletkowy - 42). Pogarsza to czas budowy drzewa ruletkowego oraz wykonywania na nim zapytań.
- c) Algorytm posługujący się ruletką popełnia nieznaczne błędy.
- d) Widać lekki wzrost błędów algorytmu ruletkowego przy większych danych treningowych (przejście z k=6 na k=10)

11) Wnioski

- a) Standardowy algorytm ID3 radzi sobie lepiej od implementacji z ruletką.
- b) Można spodziewać się wraz ze wzrostem danych treningowych mniejszej ilości błędów, jednak w algorytmie z ruletką mamy czynnik losowy, przez co nie zawsze będzie to spełnione.
- c) Standardowy algorytm ID3 działa szybciej.