

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title : Computer Architecture							
Course Code: P18CS61	Semester: 6	L:T:P: 4:0:0	Credits: 4				
Contact Period: Lecture: 52	Hr, Exam: 3 Hr	Weightage: CIE:50%, SEE:50%					

Course Content

Unit-1

Fundamentals of Computer Design: Introduction, Classes of Computers, Defining Computer Architecture, Trends in Technology, Dependability, Measuring, Reporting and Summarizing Performance, Quantitative Principles of Computer Design.

<u>Self Study Component:</u> Trends in Power in Integrated Circuit, Trends in Cost, System Interconnect Architecture.

10 Hours

Uni-2

Pipelining: **Basic and Intermediate Concepts:** Introduction, The major hurdle of Pipeling – pipeline hazards, How is pipelining implemented, What makes pipelining hard to implement, Extending the MIPS pipeline to handle Multicycle operations.

<u>Self Study Component:</u> Linear Pipeline Processors: Asynchronous and Synchronous Models, Non-linear Pipeline Processors: Reservation and Latency Analysis, Collision free scheduling.

10 Hours

Unit-3

Instruction-Level parallelism and its Exploitation: Instruction –Level Parallelism: Concepts and Challenges, Basic Complier Techniques for Exposing ILP, Reducing Branch costs with Prediction, Overcome Data Hazards with Dynamic Scheduling, Dynamic Scheduling: Examples and the Algorithm.

<u>Self Study Component:</u> Instruction Set Architectures, Hardware based Speculation, Studies of the Limitations of ILP

11 Hours

Unit-4

Multiprocessor and Thread Level Parallelism: Introduction, Symmetric shared-memory architectures, Distributed Shared Memory and Directory based Coherence, Synchronization-The Basic, Models of Memory Consistency – An Introduction

<u>Self Study Component:</u> Performance of Symmetric Shared–Memory Multiprocessors, Crossbar Switch

10 Hours

Unit-5

Parallel Programs: The Parallelization Process: Steps in The Process, Parallelization Computation Versus Data, and Parallelization of an Example Program: The Equation Solver Kernel, Decomposition, Assignment, Orchestration under the Shared address Space Model, Orchestration under the Message –Passing Model.

<u>Self-study component:</u> Scalable Multiprocessors: Scalability, Bandwidth scaling, Latency scaling, Cost Scaling, Physical Scaling, Realizing Programming Model: Primitive Network Transaction, Shared address Space, Message Passing.

11 Hours

Text Books:

1. John L. Hennessy and David A. Patterson: Computer Architecture, A quantitative approach, Fourth Edition, Morgan Kaufmann Publishers, Elsevier 2010

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

2. David E Culler Jaswinder Pal Singh with Anoop Gupta, "Parallel Computer Architecture" A Hardware/Software Approach, Morgan Kaufmann Publications Elsevier 2012.

Reference Books:

- 1. Kai Hwang & Naresh Jotwani," Advanced Computer Architecture", Parallelism, scalability, Programmability 2 nd edition McGraw Hill 2012.
- 2. John P Hayes, Computer Architecture & Organization 3rd Ed. McGraw Hill 1998.

Course Outcomes:

- 1. Describe the evolution of computers.
- 2. Analyze the basic properties of pipelining.
- 3. Understand the Instruction Level Parallelism and Its Exploitation.
- 4. Discuss system architecture of multiprocessor and Thread Level Parallelism.
- 5. Analyze the steps to perform parallelization of computation.

CO-PO Mapping

Semester: 6 th Course code: P18CS61			Title: Computer Architecture													
CO	Statement		РО	РО	РО	РО	РО	РО	РО	PO	РО	РО	PO	РО	PS	PS
			1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Describe the evolution of computers		3	1	1										3	
CO2	Analyze the basic properties of pipelining		2	3	2	1									2	
CO3	Understand the Instruction Level Parallelism and Its Exploitation.		2	2	1										2	
CO4		m architecture of or and Thread Level	3	2	2										3	
CO5		teps to perform of computation	2	3	2	1									2	
		·	2.4	2.2	1.6	1									2.4	