CORRIGÉ DM N°3 (ESSEC 2008)

Première partie

1. a) On vérifie aisément que Δ est bien une application de \mathscr{P} dans \mathscr{P} (pour tout polynôme P, $\Delta(P)$ est bien un polynôme) et qu'elle est linéaire $(\forall (P,Q) \in \mathscr{P}^2, \ \forall \lambda \in \mathbb{R}, \ \Delta(\lambda P+Q) = \lambda \Delta(P) + \Delta(Q))$. Donc :

 Δ est un endomorphisme de ${\mathscr P}$.

b) Soit $P \in \mathscr{P}$ de degré r > 0. Il existe donc des réels a_0, a_1, \ldots, a_r , avec $a_r \neq 0$, tels que $P = \sum_{k=0}^r a_k X^k$.

On aura alors $\Delta(P) = \sum_{k=0}^r a_k \left[(X+1)^k - X^k \right] = \sum_{k=1}^r a_k \left[(X+1)^k - X^k \right]$, les termes constant se simplifiant.

Or, d'après la formule du binôme, pour tout $k \geqslant 1$, $(X+1)^k - X^k = \sum_{i=0}^{k-1} \binom{k}{i} X^i$ est un polynôme de degré exactement k-1. Puisque $a_r \neq 0$:

le degré de
$$\Delta(P)$$
 est donc égal à $r-1$.

- c) Il est clair que, si P est un polynôme constant, $\Delta(P) = 0$, c'est-à-dire $P \in \text{Ker } \Delta$;
 - et, d'après la question précédente, si P n'est pas constant (donc de degré $r \ge 1$), $\Delta(P)$ ne peut être nul (car de degré r 1).

En conclusion:

Ker Δ est exactement l'ensemble des polynômes constants, \mathcal{P}_0 .

- **2. a)** On a vu en 1.a que, si P est de degré $d \ge 1$, alors $\Delta(P)$ est de degré d-1; et si P est de degré 0 (donc constant), alors $\Delta(P) = 0$ est de degré $-\infty$.
 - Donc, si $P \in \mathscr{P}_r$, alors $\deg(P) \leqslant r$ et $\Delta(P)$ est de degré inférieur ou égal à r-1. Ainsi, $\Delta(\mathscr{P}_r) \subset \mathscr{P}_{r-1} \subset \mathscr{P}_r$; le sous-espace vectoriel \mathscr{P}_r étant stable par Δ , on peut donc considérer l'endomorphisme Δ_r induit par Δ sur \mathscr{P}_r .

$$\Delta_r$$
 est un endomorphisme de \mathcal{P}_r .

- **b)** De façon immédiate : $\operatorname{Ker} \Delta_r = \operatorname{Ker} \Delta \cap \mathscr{P}_r = \operatorname{Ker} \Delta = \mathscr{P}_0$.
- c) On a déjà vu à la question 2.a que $\operatorname{Im} \Delta_r \subset \mathscr{P}_{r-1}$.

On vient aussi de voir que dim Ker $\Delta_r = \dim \mathcal{P}_0 = 1$; d'après le théorème du rang, on aura donc

$$\dim \operatorname{Im} \Delta_r = \dim \mathscr{P}_r - \dim \operatorname{Ker} \Delta_r = (r+1) - 1 = r = \dim \mathscr{P}_{r-1}$$
.

Les sous-espaces vectoriels $\operatorname{Im} \Delta_r$ et \mathscr{P}_{r-1} étant inclus l'un dans l'autre et de même dimension, ils sont égaux :

$$\operatorname{Im} \Delta_r = \mathscr{P}_{r-1}.$$

- d) Soit Q un polynôme quelconque.
 - Si Q = 0, on a $Q = \Delta(0)$;
 - sinon, il existe $r \ge 1$ tel que $Q \in \mathcal{P}_{r-1}$. D'après la question précédente, Q appartient à l'image de Δ_r , c'est-à-dire qu'il existe $P \in \mathcal{P}_r$ tel que $Q = \Delta_r(P) = \Delta(P)$.

Dans les deux cas, on a prouvé l'existence d'un antécédent à Q par Δ , donc :

 Δ est surjective de ${\mathscr P}$ dans ${\mathscr P}$.

3. Notons φ l'application de \mathscr{P} dans \mathbb{R} qui à tout polynôme P associe sa valeur en 0, P(0). φ est trivialement une forme linéaire sur \mathscr{P} . L'ensemble \mathscr{E} est alors l'ensemble des polynômes P tels que $\varphi(P)=0$ c'est-à-dire le noyau de φ .

Il en résulte que & est bien un sous-espace vectoriel de \mathcal{P} (ce qui était admis par l'énoncé), mais surtout que c'est un hyperplan de \mathscr{D} . D'après le cours, toute droite vectorielle qui n'est pas incluse dans cet hyperplan en est un supplémentaire. C'est le cas de \mathcal{P}_0 (ensemble des polynômes constants), donc on a

$$\mathscr{P} = \mathscr{E} \oplus \mathscr{P}_0$$
.

(ce résultat pouvait aussi se démontrer de manière élémentaire en revenant à la définition de deux sousespaces vectoriels supplémentaires).

Le résultat demandé est donc une simple conséquence du fait que $\operatorname{Im} \Delta = \mathscr{P}$ (car Δ surjective) et du célèbre théorème d'isomorphisme que je rappelle ci-dessous :

Soit u une application linéaire d'un \mathbb{K} -espace vectoriel E dans un \mathbb{K} -espace vectoriel F.

La restriction de u à tout supplémentaire de Keru est un isomorphisme de ce supplémentaire sur

a) Notons u la restriction de Δ à \mathscr{E} . On vient donc d'établir que $u: \left\{ \begin{array}{ccc} \mathscr{E} & \longrightarrow & \mathscr{P} \\ P & \longmapsto & \Delta(P) \end{array} \right.$ est un isomor-4.

Soit $n \in \mathbb{N}^*$. La propriété de l'énoncé : « $N_n(0) = 0$ et $\Delta(N_n) = N_{n-1}$ » est équivalente à : « $N_n \in \mathscr{E}$ et $u(N_n) = N_{n-1}$ ». ou encore à « N_n est l'antécédent de N_{n-1} par u ».

La suite N_n est donc *la* suite définie par récurrence par

$$N_0 = 1$$
 et $\forall n \in \mathbb{N}^*$, $N_n = u^{-1}(N_{n-1})$.

- **b)** Procédons par récurrence sur n.
 - ullet La formule de l'énoncé est vraie pour n=1 : en effet, par définition, N_1 est un polynôme de $\mathscr E$ tel que $\Delta(N_1)=N_0=1$. D'après les propriétés sur les degrés vues à la question 1, N_1 est nécessairement de degré 1; puisque $N_1(0) = 0$, il existe a réel tel que $N_1 = aX$. Enfin, la relation $N_1(X+1) - N_1(X) = 1$ implique a = 1.

Donc $N_1 = X$, et la formule de l'énoncé est vraie au rang 1.

• Supposons dénontrée l'égalité au rang $n-1 \ge 1$, c'est-à-dire $N_{n-1} = \frac{1}{(n-1)!} \prod_{k=0}^{n-2} (X-k)$.

Posons alors $P_n = \frac{1}{n!} \prod_{i=1}^{n-1} (X - k)$. Pour montrer que $N_n = P_n$, il suffit de démontrer, par unicité, que

 P_n appartient bien à \mathscr{E} et que $\Delta P_n = N_{n-1}$:

- Le fait que $P_n \in \mathcal{E}$ est immédiat $(P_n(0) = 0)$. - En écrivant $P_n = \frac{X(X-1)...(X-n+1)}{n!}$ on a

$$\begin{split} & \Delta(\mathsf{P}_n) = \mathsf{P}_n(\mathsf{X}+1) - \mathsf{P}_n(\mathsf{X}) = \frac{(\mathsf{X}+1)\mathsf{X}(\mathsf{X}-1)\dots(\mathsf{X}-n+2)}{n!} - \frac{\mathsf{X}(\mathsf{X}-1)\dots(\mathsf{X}-n+1)}{n!} \\ &= \frac{\mathsf{X}(\mathsf{X}-1)\dots(\mathsf{X}-n+2)}{n!} \underbrace{\left[(\mathsf{X}+1) - (\mathsf{X}-n+1)\right]}_{=n} \\ &= \frac{\mathsf{X}(\mathsf{X}-1)\dots(\mathsf{X}-n+2)}{(n-1)!} = \mathsf{N}_{n-1} \end{split}$$

On a donc bien $N_n = P_n$, ce qui établit la formule à l'ordre n et achève la démonstration.

• La famille de polynômes $(N_n)_{n\in[0,r]}$ est une famille de polynômes de degrés distincts (puisque $deg(N_n) = n$ pour tout n). D'après un résultat du cours, elle est donc libre.

De plus, il s'agit d'une famille de r+1 éléments de l'espace vectoriel \mathcal{P}_r qui est de dimension r+1. Toujours d'après le cours, on peut conclure :

La famille
$$(N_n)_{n\in[0,r]}$$
 est une base de \mathscr{P}_r .

• La famille de polynômes $(N_n)_{n\in\mathbb{N}}$ est libre car formée de polynômes de degrés distincts. De plus, si P est un polynôme quelconque de \mathscr{P} , il existe r entier tel que $P\in\mathscr{P}_r$. D'après le résultat précédent, P sera donc combinaison linéaire des N_n pour $0\leqslant n\leqslant r$, donc a fortiori des N_n pour

Cela signifie que la famille $(N_n)_{n\in\mathbb{N}}$ est génératrice de \mathscr{P} et par suite :

$$(N_n)_{n\in\mathbb{N}}$$
 est une base de \mathscr{P} .

d) • Soit Q de degré $\leq r$. Puisque $(N_n)_{n \in [0,r]}$ est une base de \mathscr{P}_r , il existe des coefficients réels a_0, a_1, \ldots, a_r tels que $Q = \sum_{n=0}^r a_n N_n$.

Pour tout entier $k \in [0, r]$ on aura alors, par linéarité

$$\Delta^{k}(Q) = \sum_{n=0}^{r} a_n \Delta^{k}(N_n) \quad (1)$$

Mais $\Delta(N_0) = 0$ et $\Delta(N_n) = N_{n-1}$ si $n \ge 1$, donc par une récurrence facile on a

$$\forall k \in \mathbb{N} , \ \Delta^k(\mathbf{N}_n) = \begin{cases} \mathbf{N}_{n-k} & \text{si } k \leq n \\ 0 & \text{sinon} \end{cases}$$

En reportant dans (1) on obtient

$$\Delta^{k}(Q) = \sum_{n=k}^{r} a_{n} N_{n-k} = a_{k} + \sum_{n=k+1}^{r} a_{n} N_{n-k}.$$

Puisque $N_i(0) = 0$ si $i \ge 1$, en appliquant cette dernière relation en 0 il vient : $\Delta^k(Q)(0) = a_k$ donc on a bien

$$\forall Q \in \mathcal{P}_r , Q = \sum_{n=0}^r \Delta^n(Q)(0) N_n.$$

• Puisque $\Delta^n(Q) = 0$ dès que n est strictement supérieur au degré de Q, on pourra donc écrire :

$$\forall Q \in \mathscr{P} , Q = \sum_{n=0}^{+\infty} \Delta^n(Q)(0) N_n$$

les termes de cette somme étant tous nuls à partir d'un certain rang.

e) Soit $P \in \mathcal{P}$; on a aussi $P = \sum_{n=0}^{+\infty} \Delta^n(P)(0)N_n$ donc

$$\Delta(P) = \sum_{n=0}^{+\infty} \Delta^{n}(P)(0)\Delta(N_{n}) \underbrace{=}_{\substack{\text{car} \\ \Delta(N_{0})=0}} \sum_{n=1}^{+\infty} \Delta^{n}(P)(0)N_{n-1} = \sum_{n=0}^{+\infty} \Delta^{n+1}(P)(0)N_{n}$$

La famille (N_n) étant libre, l'égalité $\Delta(P) = Q$ est donc équivalente à

$$\forall n \in \mathbb{N}, \ \Delta^{n+1}(P)(0) = \Delta^n(Q)(0)$$

ou encore à

$$\forall n \in \mathbb{N}^*$$
, $\Delta^n(P)(0) = \Delta^{n-1}(Q)(0)$

Les polynômes tels que $\Delta(P) = Q$ sont donc les polynômes de la forme

$$P = a_0 + \sum_{n=1}^{+\infty} \Delta^{n-1}(Q)(0)N_n$$
 avec a_0 constante réelle quelconque.

f) • Si $\Delta(P) = Q$ on aura

$$\sum_{k=0}^{n} Q(k) = \sum_{k=0}^{n} [P(k+1) - P(k)] = P(n+1) - P(0).$$

• On prend ici $Q = X^2$. Puisque $N_1 = X$ et $N_2 = \frac{1}{2}X(X-1)$ on a $Q = 2N_2 + N_1$. D'après les calculs précédents, un polynôme P tel que $\Delta(P) = Q$ sera par exemple

$$P = 2N_3 + N_2 = \frac{1}{3}X(X-1)(X-2) + \frac{1}{2}X(X-1) = \frac{1}{6}X(X-1)(2X-1).$$

On aura donc

$$\sum_{k=0}^{n} k^{2} = \sum_{k=0}^{n} Q(k) = P(n+1) - P(0) = \frac{1}{6}n(n+1)(2n+1).$$

(formule bien connue).

5. La formule demandée pouvait assez facilement s'établir par récurrence sur *n*, mais il y a une méthode plus rapide et plus belle :

Notons T l'endomorphisme de P défini par

$$\forall P \in \mathscr{P}$$
, $T(P) = P(X+1)$

de sorte que $\Delta = T - Id$ (le fait que T soit un endomorphisme est immédiat).

Puisque les endomorphismes T et Id commutent, on peut appliquer la formule du binôme dans l'anneau $\mathcal{L}(\mathcal{P})$ et on obtient

$$\forall n \in \mathbb{N}$$
, $\Delta^n = (T - Id)^n = \sum_{i=0}^n \binom{n}{i} T^i (-Id)^{n-i}$

Par une récurrence immédiate, on a, pour tout $Q \in \mathcal{P}$ et tout entier $i : T^i(Q) = Q(X+i)$. La relation précédente appliquée à Q donne alors immédiatement :

$$\forall n \in \mathbb{N}, \ \Delta^n(Q) = \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} Q(X+i).$$

- **6. a)** Notons tout d'abord qu'on vérifierait facilement que $C(\Delta_r)$ est bien un sous-espace vectoriel de $\mathcal{L}(\mathcal{P}_r)$. L'énoncé ne le précise pas, mais parle ensuite de sa dimension...
 - i. Soient $g, h \in C(\Delta_r)$ tels que $g(N_r) = h(N_r)$. Puisque g et h commutent avec Δ_r on a

$$g(N_{r-1}) = g \circ \Delta_r(N_r) = \Delta_r \circ g(N_r) = \Delta_r \circ h(N_r) = h \circ \Delta_r(N_r) = h(N_{r-1})$$

et par récurrence descendante on obtient

$$\forall k \in [0, r], g(N_k) = h(N_k).$$

Ainsi g et h, endomorphismes de \mathcal{P}_r , coïncident sur une base de \mathcal{P}_r donc

$$g = h$$
.

- ii. immédiat, puisque $(N_n)_{n\in[0,r]}$ est une base de \mathscr{P}_r .
- iii. Soit $g \in C(\Delta_r)$ et a_0, a_1, \dots, a_r tels que $g(N_r) = \sum_{n=0}^r a_n N_n$. Puisque, pour $n \in [0, r]$,

$$N_n = \Delta_r^{r-n}(N_r)$$
, on a $g(N_r) = \left(\sum_{n=0}^r a_n \Delta_r^{r-n}\right)(N_r)$.

Or l'endomorphisme de \mathscr{P}_r défini par $h = \sum_{n=0}^r a_n \Delta_r^{r-n}$ est élément de $C(\Delta_r)$ (vérification facile).

Il résulte alors de la question 6.a.i que g=h c'est-à-dire $g=\sum_{r=0}^r a_n \Delta_r^{r-n}$.

g est donc combinaison linéaire des Δ_r^k pour $0 \le k \le r$, c'est-à-dire que la famille $(\Delta_r^k)_{k \in [0,r]}$ est génératrice de $C(\Delta_r)$.

- Montrons maintenant que cette famille est libre.
 - En effet, si on a $\sum_{k=0}^{r} a_k \Delta_r^k = 0$, alors en appliquant cette égalité à N_0 , puisque $\Delta(N_0) = 0$, on

obtient $a_0 = 0$, puis en l'appliquant à N_1 , puisque $\Delta(N_1) = N_0 = 1$ et $\Delta^2(N_1) = 0$ on trouve $a_1 = 0$ etc... Ainsi, tous les a_k sont nuls, ce qui prouve que la famille est libre.

En conclusion:

$$(\Delta_r^k)_{k \in [0,r]}$$
 est une base de $C(\Delta_r)$.

iv. Le fait que d et Δ commutent est immédiat.

S'il existait un entier r et des réels a_0, a_1, \ldots, a_r tels que $d = \sum_{k=0}^r a_k \Delta^k$, on aurait en particulier

$$N'_{r+1} = d(N_{r+1}) = \sum_{k=0}^r a_k \Delta^k(N_{r+1}) = \sum_{k=0}^r a_k N_{r+1-k}$$
. Mais tous les polynômes N_{r+1-k} pour $0 \le k \le r$

s'annulent en 0. On aurait donc $N'_{r+1}(0) = 0$ et 0 serait racine au moins double de N_{r+1} , ce qui n'est pas vrai (les racines de N_{r+1} sont simples, ce sont les entiers $0, 1, \ldots, r$).

On a donc obtenu une contradiction. Cet exemple montre en fait que le commutant de Δ n'est pas réduit au sous-espace vectoriel engendré par les Δ^k , contrairement au commutant de Δ_r .

b) Supposons qu'il existe $g \in \mathcal{L}(\mathscr{P}_r)$ tel que $g \circ g = \Delta_r$. On aurait alors

$$g \circ \Delta_r = g^3 = \Delta_r \circ g$$

c'est-à-dire que g commute avec Δ_r .

D'après ce qui précède, il existerait des réels a_0, a_1, \ldots, a_r tels que $g = \sum_{k=0}^r a_k \Delta_r^k = a_0 \mathrm{Id} + a_1 \Delta_r + \ldots + a_r \Delta_r^r$.

On aurait alors $g \circ g = a_0^2 \mathrm{Id} + 2a_0 a_1 \Delta_r + \sum_{k=2}^r b_k \Delta_r^k$ où les b_k sont des réels dont la valeur importe peu.

Puisque la famille $(\Delta_r^k)_{k \in [0,r]}$ est libre, cela implique $a_0 = 0$ et $2a_0a_1 = 1$, ce qui est impossible. Il y a donc contradiction et

Il n'existe pas d'endomorphisme g de \mathscr{P}_r tel que $g \circ g = \Delta_r$.

Seconde partie

1. Notons d'abord que les définitions de l'énoncé posent problème lorsque n = 0. On supposera donc $n \ge 1$ pour la suite.

On remarquera aussi que, puisque l'énoncé suppose $x \notin \mathbb{N}$, les $N_n(x)$, donc les u_n , ne sont pas nuls.

a)
$$\frac{u_{n+1}}{u_n} = \left(\frac{n+1}{n}\right)^t \frac{\left|N_{n+1}(x)\right|}{\left|N_n(x)\right|} = \left(\frac{n+1}{n}\right)^t \frac{|x-n|}{n+1} = \left(\frac{n+1}{n}\right)^{t-1} \frac{|x-n|}{n}$$
.

Pour *n* assez grand on aura n - x > 0 (x est fixé) donc

$$\frac{u_{n+1}}{u_n} = \left(1 + \frac{1}{n}\right)^{t-1} \left(1 - \frac{x}{n}\right)$$

puis

$$v_n = \ln\left(\frac{u_{n+1}}{u_n}\right) = (t-1)\ln\left(1 + \frac{1}{n}\right) + \ln\left(1 - \frac{x}{n}\right) = \frac{t-1-x}{n} + O\left(\frac{1}{n^2}\right)$$

On en déduit immédiatement

- si $t \neq 1 + x$, $v_n \sim \frac{t 1 x}{n}$: la série de terme général v_n diverge.
- si t = 1 + x, $v_n = O\left(\frac{1}{n^2}\right)$ et la série de terme général v_n converge.
- **b)** Pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^{n-1} v_k = \sum_{k=1}^{n-1} \ln(u_{k+1}) \ln(u_k) = \ln(u_n) \ln(u_1)$ donc, compte tenu des résultats précédents :
 - Si t < 1 + x: la série de terme général v_n diverge et $v_n < 0$ à partir d'un certain rang, donc $\lim_{n \to \infty} \left(\sum_{k=1}^{n-1} v_k \right) = -\infty \text{ d'où } \lim_{n \to +\infty} u_n = 0.$
 - Si t>1+x: la série de terme général v_n diverge et $v_n>0$ à partir d'un certain rang, donc $\lim_{n\to\infty}\left(\sum_{k=1}^{n-1}v_k\right)=+\infty \text{ d'où }\lim_{n\to+\infty}u_n=+\infty.$

• Si t = 1 + x: la série de terme général v_n converge , donc la suite $(\ln(u_n))$ converge vers un certain réel ℓ_x et (u_n) converge vers un réel $C(x) = e^{\ell_x} > 0$.

On a donc dans ce cas $\lim_{n \to +\infty} n^{1+x} |N_n(x)| = C(x)$ soir

$$\left| |N_n(x)| \underset{n \to +\infty}{\sim} \frac{C(x)}{n^{x+1}}. \right|$$

Rem : les connaisseurs auront reconnu ici le critère de Duhamel-Raabe...

2. a) Si $f(x) = b^x$ on a

$$a_n = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} b^i = (b-1)^n$$

d'après la formule du binôme.

b) • Si $Q = \sum_{k=0}^{n} a_k N_k$, Q est de degré $\leq n$ et on a vu dans I.4.d que $Q = \sum_{k=0}^{n} \Delta^k(Q)(0) N_k$.

La famille des polynômes (N_k) étant libre, on en déduit

$$\forall k \in \llbracket 0, n \rrbracket , \ a_k = \Delta^k Q(0).$$

• Soit R le polynôme de degré n tel que R(i) = f(i) pour tout $i \in [0, n]$ (un tel polynôme existe et est unique d'après les résultats du cours sur les polynômes d'interpolation de Lagrange). D'après L A de $n \in \mathbb{R}$ A A (P)(O)N, et d'après L A

I.4.d, on a R =
$$\sum_{k=0}^{\infty} \Delta^{k}(R)(0)N_{k}$$
 et d'après I.5,

$$\Delta^{k}(\mathbf{R})(0) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} \mathbf{R}(i) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} f(i) = a_{k},$$

donc R = Q.

Par définition de R on a donc bien

$$f(i) - Q(i) = f(i) - R(i) = 0$$
 pour tout $i \in [0, n]$.

c) • Supposons dans un premier temps $x \notin [0, n]$.

Soit $\varphi: t \mapsto f(t) - \sum_{k=0}^{n} a_k N_k(t) - N_{n+1}(t) A$, où A est le réel tel que $\varphi(x) = 0$ (A existe et est unique

puisque l'équation $\varphi(x) = 0$ équivaut à $AN_{n+1}(x) = f(x) - \sum_{k=0}^{n} a_k N_k(x)$ et que $N_{n+1}(x)$ est non nul ici).

Puisque $N_{n+1}(i) = 0$ pour tout $i \in [0,n]$ et compte tenu du résultat de la question précédente, la fonction φ s'annule en $0,1,\ldots,n$ et en x, c'est-à-dire en n+2 points distincts. Étant de classe \mathscr{C}^{∞} (car f est de classe \mathscr{C}^{∞} par hypothèse et les autres termes sont des fonctions polynomiales), l'application itérée du théorème de Rolle montre qu'il existe un réel θ tel que $\varphi^{(n+1)}(\theta) = 0$.

Mais $\sum_{k=0}^{n} a_k N_k$ est un polynôme de degré $\leq n$, donc sa dérivée (n+1)-ième est nulle et puisque le

terme de plus haut degré de N_{n+1} est $\frac{X^{n+1}}{(n+1)!}$, on a $N_{n+1}^{(n+1)} = 1$. Ainsi, $\varphi^{(n+1)}(t) = f^{(n+1)}(t) - A$, et la relation $\varphi^{(n+1)}(\theta) = 0$ donne $A = f^{(n+1)}(\theta)$.

En remplaçant A par cette valeur dans la relation $\varphi(x) = 0$ on trouve bien

$$\forall x \ge 0$$
, $\exists \theta \in \mathbb{R} \text{ tq } f(x) = \sum_{k=0}^{n} a_k N_k(x) + f^{(n+1)}(\theta) N_{n+1}(x)$ (2).

- Enfin, cette propriété reste vraie lorsque $x \in [0, n]$ d'après le résultat de la question II.2.b et puisque alors $N_{n+1}(x) = 0$: il suffit de prendre θ quelconque.
- d) En reprenant les notations précédentes et compte tenu de l'hypothèse faite ici, on aura

$$\left| f^{(n+1)}(\theta) \mathcal{N}_{n+1}(x) \right| \leq Mn \left| \mathcal{N}_{n+1}(x) \right|$$

Or, d'après II.1.b, $\left| N_{n+1}(x) \right| \underset{n \to +\infty}{\sim} \frac{C(x)}{(n+1)^{x+1}} \underset{n \to +\infty}{\sim} \frac{C(x)}{n^{x+1}}$, donc $n \left| N_{n+1}(x) \right| \underset{n \to +\infty}{\sim} \frac{C(x)}{n^x}$.

Pour x > 0 on en déduit $\lim_{n \to +\infty} f^{(n+1)}(\theta) N_{n+1}(x) = 0$ et la relation (2) implique

$$\forall x > 0, f(x) = \sum_{k=0}^{+\infty} a_k N_k(x)$$

cette relation restant trivialement vraie pour x = 0 puisque $a_0 = f(0)$ et $N_k(0) = 0$ si $k \ge 1$.

- Si on suppose de plus f(i) = 0 pour tout entier i, alors pour tout $k \in \mathbb{N}$ $a_k = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f(i) = 0$ d'où f(x) = 0 pour tout $x \ge 0$.
- 3. a) En reprenant le résultat de II.1.b, puisque $x \notin \mathbb{N}$:

$$h^n \left| \mathbf{N}_n(x) \right| \underset{n \to +\infty}{\sim} \mathbf{C}(x) \frac{h^n}{n^{n+1}}$$

donc si |h| > 1, $\lim_{n \to +\infty} |h^n \mathbf{N}_n(x)| = +\infty$ (croissances comparées) d'où

si
$$|h| > 1$$
, la série $\sum h^n N_n(x)$ est grossièrement divergente.

- **b)** On suppose ici |h| < 1.
 - i. Si $x = k \in \mathbb{N}$ alors $N_n(x) = 0$ dès que $n \ge k+1$, donc la série $\sum_{n \ge 0} h^n N_n(x)$ est convergente (somme finie).
 - Sinon, on a toujours l'équivalent $h^n \left| N_n(x) \right| \underset{n \to +\infty}{\sim} C(x) \frac{h^n}{n^{x+1}}$, donc, toujours à l'aide des croissances comparées des suites usuelles, $\lim_{n \to +\infty} n^2 h^n N_n(x) = 0$. Ainsi, $h^n N_n(x) = 0$ o $\left(\frac{1}{n^2} \right)$, et d'après les théorèmes de comparaison sur les séries à termes positifs, la série $\sum_{n \ge 0} h^n N_n(x)$ est absolument convergente, donc convergente.
 - ii. La fonction $f: h \mapsto (1+h)^x$ est de classe \mathscr{C}^{∞} sur]-1,1[, on peut donc lui appliquer la formule de Taylor avec reste intégrale à tout ordre n entre 0 et h:

$$f(h) = \sum_{k=0}^{n} h^{k} \frac{f^{(k)}(0)}{k!} + \int_{0}^{h} \frac{(h-t)^{n}}{n!} f^{(n+1)}(t) dt \quad (3)$$

Or, pour $k \ge 1$, $\frac{f^{(k)}(h)}{k!} = \frac{x(x-1)\dots(x-k+1)}{k!}(1+x)^{x-k} = N_k(x)(1+h)^{x-k}$, cette dernière égalité restant vraie pour k=0 puisque $N_0=1$, de sorte que la relation (3) devient

$$(1+h)^{x} = \sum_{k=0}^{n} h^{k} N_{k}(x) + (n+1) N_{n+1}(x) \int_{0}^{h} (h-t)^{n} (1+t)^{x-n-1} dt$$

ce qui se réécrit en :

$$(1+h)^{x} - \sum_{k=0}^{n} h^{k} N_{k}(x) = (n+1) N_{n+1}(x) \int_{0}^{h} \left(\frac{h-t}{1+t}\right)^{n} (1+t)^{x-1} dt \quad (4).$$

• On a la majoration

$$\left| \frac{1}{h^n} \int_0^h \left(\frac{h-t}{1+t} \right)^n (1+t)^{x-1} dt \right| \le \frac{1}{|h|^n} \left| \int_0^h \left| \frac{h-t}{1+t} \right|^n (1+t)^{x-1} dt \right|$$

La fonction $t \mapsto \frac{h-t}{1+t}$ est une fonction homographique, donc monotone; ses valeurs extrémales sur [0,h] sont donc obtenues pour t=0 et t=h; ce sont respectivement h^n et 0, de sorte que

$$\forall t \in [0,h] \text{ (ou } [h,0]), \left| \frac{h-t}{1+t} \right|^n \leq |h^n|$$

donc

$$\forall n \in \mathbb{N}, \left| \frac{1}{h^n} \int_0^h \left(\frac{h-t}{1+t} \right)^n (1+t)^{x-1} dt \right| \le \left| \int_0^h (1+t)^{x-1} dt \right|$$

(inutile de calculer la valeur de cette dernière intégrale, ce qui est important, c'est qu'elle ne dépend pas de n).

iii. Si *x* est entier, $N_{n+1}(x) = 0$ dès que $n \ge x$, donc $\lim_{n \to +\infty} (n+1)N_{n+1}(x) \int_{0}^{n} \left(\frac{h-t}{1+t}\right)^{n} (1+t)^{x-1} dt = 0$.

Sinon, l'équivalent $\left| N_{n+1}(x) \right| \underset{n \to +\infty}{\sim} \frac{C(x)}{(n+1)^{x+1}}$ obtenu en II.1.b donne

$$\left| (n+1)N_{n+1}(x) \right| \underset{n \to +\infty}{\sim} \frac{C(x)}{(n+1)^x}$$

D'après la question précédente, il existe une constante K telle que

$$\forall n \in \mathbb{N}, \left| \int_0^h \left(\frac{h-t}{1+t} \right)^n (1+t)^{x-1} dt \right| \leq K|h|^n$$

et, puisque $\lim_{n\to+\infty}\frac{h^n}{n^{x+1}}=0$ (croissances comparées), on a encore $\lim_{n\to+\infty}(n+1)N_{n+1}(x)\int_0^n\left(\frac{h-t}{1+t}\right)^n(1+t)^{x-1}dt=0$.

En utilisant alors la relation (4), on obtient

$$\forall h \in]-1,1[, \forall x \in \mathbb{R}, (1+h)^x = \sum_{k=0}^{+\infty} h^k N_k(x).$$

- c) On suppose ici h = 1.
 - i. Pour $x \le -1$, x n'est pas un entier naturel et l'on a toujours $\left| N_n(x) \right| \underset{n \to +\infty}{\sim} \frac{C(x)}{n^{x+1}}$. x+1 étant ≤ 0 , la suite $(N_n(x))_{n\in\mathbb{N}}$ ne tend donc pas vers 0 (car C(x) > 0) c'est-à-dire que si $x \le 1$, la série $\sum_{n \ge 0} N_n(x)$ est grossièrement divergente.

si
$$x \le 1$$
, la série $\sum_{n \ge 0} N_n(x)$ est grossièrement divergente.

ii. En remplaçant h par 1 dans la relation de la question II.3.b.ii, on obtient

$$2^{x} - \sum_{k=0}^{n} N_{k}(x) = (n+1)N_{n+1}(x) \int_{0}^{1} \left(\frac{1-u}{1+u}\right)^{n} (1+u)^{x-1} du \quad (5)$$

Or, pour $u \in [0,1]$, $0 \le \frac{1-u}{1+u} \le 1-u$ et $(1+u)^{x-1} \le \max(1,2^{x-1}) = M$ donc

$$\left| (n+1)N_{n+1}(x) \int_0^1 \left(\frac{1-u}{1+u} \right)^n (1+u)^{x-1} du \right| \le M(n+1) \left| N_{n+1}(x) \right| \int_0^1 (1-u)^n du = M \left| N_{n+1}(x) \right|$$
 (6).

Si x est un entier naturel, $N_{n+1}(x)$ est nul pour n assez grand, et sinon, l'équivalent $\left|N_{n+1}(x)\right| \sim \frac{C(x)}{(n+1)^{x+1}}$ obtenu en II.1.b montre que $\lim_{n \to +\infty} N_{n+1}(x) = 0$ puisqu'ici x + 1 > 0.

On aura donc encore, d'après (6), $\lim_{n\to+\infty} (n+1)N_{n+1}(x) \int_{0}^{1} \left(\frac{1-u}{1+u}\right)^{n} (1+u)^{x-1} du = 0$ ce qui prouve d'après (5) que

$$\forall x > -1, \sum_{k=0}^{+\infty} N_k(x) = 2^x.$$

- **d)** On examine donc ici le dernier cas, à savoir h = -1.
 - Si x est un entier naturel, $(-1)^n N_n(x)$ est nul dès que $n \ge x+1$; dans ce cas, la série $\sum_{n=0}^{\infty} (-1)^n N_n(x)$ converge (somme finie).

Sinon, $\left|(-1)^n N_n(x)\right| \underset{n \to +\infty}{\sim} \frac{C(x)}{n^{x+1}}$ où C(x) > 0, donc les théorèmes de comparaison sur les séries à termes positifs et les résultats sur les séries de Riemann montrent que la série $\sum \left| (-1)^n \mathrm{N}_n(x) \right|$ converge si et seulement si x > 0.

En rassemblant les deux cas, on en déduit

la série $\sum_{n\geqslant 0} (-1)^n \mathrm{N}_n(x)$ est absolument convergente si et seulement si $x\geqslant 0$.

• Si $x\geqslant 0$, $\sum_{n\geqslant 0} (-1)^n \mathrm{N}_n(x)$ est absolument convergente donc convergente.

Si x < 0 et $n \ge 1$, $N_n(x) = \frac{x(x-1)\dots(x-n+1)}{n!}$ est du signe de $(-1)^n$ donc $(-1)^nN_n(x)$ est positif et la convergence de la série équivaut alors à son absolue convergence, qui n'a pas lieu

la série
$$\sum_{n\geqslant 0} (-1)^n \mathrm{N}_n(x)$$
 est convergente si et seulement si $x\geqslant 0$.
ii. Soit, pour $n\in\mathbb{N}^*$, \mathscr{P}_n la propriété : « $\forall x\in\mathbb{R}$, $\mathrm{N}_0(x)-\mathrm{N}_1(x)+\ldots+(-1)^n\mathrm{N}_n(x)=(-1)^n\mathrm{N}_n(x-1)$ »

- - Cette propriété est facilement vérifiée pour n = 1 puisque $N_0(x) N_1(x) = 1 x = -(x 1) = -N_1(x 1)$.
 - Si on la suppose vérifiée au rang n, alors

$$\begin{split} \mathbf{N}_0(x) - \mathbf{N}_1(x) + \ldots + (-1)^n \mathbf{N}_n(x) + (-1)^{n+1} \mathbf{N}_{n+1}(x) &= (-1)^n \mathbf{N}_n(x-1) + (-1)^{n+1} \mathbf{N}_{n+1}(x) \\ &= (-1)^n \left[\Delta(\mathbf{N}_{n+1})(x-1) - \mathbf{N}_{n+1}(x) \right] \\ &= (-1)^n \left[\mathbf{N}_{n+1}(x-1+1) - \mathbf{N}_{n+1}(x-1) - \mathbf{N}_{n+1}(x) \right] \\ &= (-1)^{n+1} \mathbf{N}_{n+1}(x-1) \end{split}$$

ce qui établit le résultat à l'ordre n+1 et achève la récurrence.

iii. La relation précédente s'écrit : $\sum_{k=0}^{n} (-1)^k N_k(x) = (-1)^n N_n(x-1)$.

Si x-1 est un entier naturel, c'est-à-dire si $x \in \mathbb{N}^*$, $N_k(x)$ est nul pour $k \ge x+1$ et $N_n(x-1)$ est nul pour $n \ge x$, donc $\sum_{k=0}^{+\infty} (-1)^k N_k(x) = 0$.

Si x = 0, $N_k(x) = 0$ pour $k \ge 1$ donc $\sum_{k=0}^{+\infty} (-1)^k N_k(x) = N_0 = 1$.

Sinon, l'équivalent $\left| \mathbf{N}_n(x-1) \right| \underset{n \to +\infty}{\sim} \frac{\mathbf{C}(x)}{n^x}$ montre que $\lim_{n \to +\infty} \mathbf{N}_n(x-1) = 0$ puisque x > 0, donc $\sum_{k=0}^{+\infty} (-1)^k N_k(x) = 0.$

La conclusion de toute la question II.3 est donc la suivante :

La relation $(1+h)^x = \sum_{k=0}^{+\infty} h^k N_k(x)$ est vraie si et seulement si • |h| < 1 et x réel quelconque. • h = 1 et x > -1. • h = -1 et $x \ge 0$.