General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-169302) THE SMALL MODULE FIXED HIRROR DISTRIBUTED FOCUS (FMDF) PHOTOTHERMAL CONCENTRATOR STUDY Final Report (Arizona Univ., Tucson.) 32 p HC A03/MF A01 CSCL 10A

N82-32851

Unclas G3/44 28906

THE SMALL MODULE FIXED MIRROR DISTRIBUTED FOCUS (FMDF) PHOTOTHERMAL CONCENTRATOR STUDY (Modification No. 4 of 18 February 1980)

FINAL REPORT

A. B. Meinel /

27 February 1981

JPL Contract No. 955162

Optical Sciences Center University of Arizona Tucson, Arizona 85721

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS 7-100.

This document contains information prepared by the Optical Sciences Center, University of Arizona, under JPL subcontract. Its content is not necessarily endorsed by the Jet Propulsion Laboratory, California Institute of Technology, or its sponsors.

ABSTRACT

This report covers the period of the contract extension, from 1 September 1979 to 31 August 1980. Tasks established and carried out during this period were: the development of a general ray trace evaluation program, called ICARUS; the study of novel Fresnel concepts; and the review of a report draft on novel Fresnel concepts. ICARUS is documented herein; reports on the novel Fresnel concepts have been submitted earlier.

NEW TECHNOLOGY

Fresnel Computation Program

A general ray trace evaluation program, designated ICARUS, has been developed, with the goal of widening the generality over that in commercially available optical evaluation programs. The main thrust of the effort has been to expand the number of geometrical shapes, tilts, and decenters that could be explored, to include conic, aspheric, and toric surfaces. To keep the program task within time and budget, the effect of facet errors was not to be included. This task has been performed principally by Steve Eckhardt, graduate student, under the supervision of A. B. Meinel. Documentation is appended to this report (Appendix A).

A review of the program led to the decision by us and by JPL's program management to terminate this task before completion; however, we were able to bring it to a usable state; examples of Fresnels that can be ray traced are shown in Appendix B. One reason for withdrawing

from the hope of a fully general program was the conclusion that a specific program could be written for any novel Fresnel surface that could not be handled by an existing program.

It is important to know what has not been included in the program to date. Not included are the following capabilities: (1) finite groove size, (2) diffraction, (3) local groove effects (facet tilt error), (4) substrate effects (lens surface errors), and (5) general aspheric substrate shapes. The facet tilt error and surface errors are relatively easy to handle for reflective Fresnels in that whatever the angular distribution of assumed errors is, the effect at the focus is twice the angular distribution, subject to the geometrical cosine effect of oblique incidence on the focal plane. The effect is considerably more complicated for refractive Fresnels. We will examine the analytical expressions in future work if JPL requests it.

Questions of adding facet error statistics have yet to be incorporated. The analytical approaches to this are currently being evaluated and could appear as an addendum at the appropriate time.

Fresnel Optic Study

The rest of the current funding was expended in addressing novel Fresnel concepts, on which reports have been submitted, and in reviewing a report draft on this topic prepared by JPL. Several of the novel concepts appear to be patentable, and a report was written on this question, but no reply was received concerning JPL's desire to proceed with this question. In the absence of a reply we will, at an appropriate time, prepare a paper for journal publication on these novel concepts.

APPENDIX A

PROGRAM DOCUMENTATION

PROGRAM IDENTIFICATION

Program Title: Optical Sciences Center Fresnel Evaluation

Program

Program Code Name: ICARUS

Writer: Steve Eckhardt

Optical Sciences Center University of Arizona Tucson, Arizona 85721

Date of Completion: May 1980

Source Language: Fortran (Data General FORTRAN 5)

Availability: Program listing as computer printout (attached)

Abstract: ICARUS is a ray trace program of greater gen-

erality than commercially available programs.

PROGRAM DESCRIPTION

Method of Solution: Paraxial rays are traced by normal methods.

Real rays are traced in accordance with the conic ray trace equations given in Table 1. Fresnels are treated by assuming that the point of intersection of the ray with the surface is in the tangent plane of the lens and that the angle of the normal to the ray is the same as

if the Fresnel were an ordinary conic.

Program Capabilities: Paraxial and real ray tracing, as well as

radiant energy distribution computation, for conic, fresnel, toric, curved fresnel, toric fresnel, and curved toric fresnel surfaces. Not included are finite groove size, diffraction, local groove effects (facet tilt error), substrate effects (lens surface errors), and

general aspheric substrate shapes.

Data Inputs: Data are entered interactively at the terminal,

in response to questions posed by the program. Tables 3 and 4 provide guides to input options

and format.

Program Options:

See Table 3

Printed Output:

N/A

Other Outputs:

A file is created for each new lens. These can

only be deleted outside of the program.

Flow Chart:

Figure 1 is a general system flow chart.

Sample Run:

Table 3 is an annotated "walk-through" of the

program.

SYSTEM DOCUMENTATION

Computer Equipment:

Data General Eclipse

Peripheral Equipment:

N/A

Source Program:

Table 5 is a complete source code listing for

ICARUS and its subroutines.

Variables and

Subroutines:

See the source code listing for variables.

Table 2 is a list of subroutines, with descrip-

tions of their functions.

Data Structures:

N/A

Storage Requirements:

Minimal

Maintenance and

None

Updates:

Fig. 1. ICARUS System Flow Chart

Fig. 1. ICARUS System Flow Chart (Continued).

Table 1. Ray Trace Equations for Conics.

Opening:

$$A = [t^2 + (h_y - y_t)^2 + (h_x - x_t)^2]^{\frac{1}{2}}$$

$$L = \frac{h_x - x_t}{A}$$

$$M = \frac{h_y - y_t}{A}$$

$$N = t/A$$

Transfer to Surface:

$$B = c(x_t^2 + y_t^2)$$

$$C = N - c(L_{X_t} + M_{y_t})$$

$$D = [C^2 - cB(1 + kN^2)]^{\frac{1}{2}} \qquad \underline{D^2 < 0: \text{ ray missed surface}}$$

$$A = B/(C + D)$$

$$x_s = x_t + AL$$

$$y_s = y_t + AM$$

Refraction:

$$E = [1 - 2ckz_s]^{-\frac{1}{2}}$$

$$\mu = n/n^{\dagger}$$

$$\delta = (1 - \mu^2 + \mu^2 \cos^2 I)^{\frac{L}{2}} - \mu \cos I$$

$$\frac{1 - \mu^2 + \mu^2 \cos^2 I < 0}{\underbrace{\text{total internal reflection}}}$$

Table 1. Ray Trace Equations for Conics (Continued).

 $\alpha = -cE x_e$

 $\beta = -cE y_s$

 $\gamma = [1 - C(k+1)z_s]E$

 $L' = \mu L + \delta \alpha$

 $M' = \mu M + \delta \beta$

 $N' = \mu N + \delta \gamma$

Transfer to Tangent Plane:

 $x_t = x_s + L(t - z_s)/N$

 $y_t = y_s + M(t - z_s)/N$

 $A = [(t-z_s)^2 + (y_t-y_s)^2 + (x_t-x_s)^2]^{\frac{1}{2}}$

Variable Definitions:

 x_t = ray height in x on tangent plane

yt = ray height in y on tangent plane

 x_S = ray height in x on surface plane

 y_S = ray height in y on surface plane

t = distance from object to first lens surface, or distance
 between surfaces

 h_x = object height in x

 h_{y} = object height in y

L,M,N = x,y,z direction cosines for the ray before refraction

L',M',N' = x,y,z direction cosines for the ray after refrection

 α,β,γ = direction cosines of the normal to the surface in x, y, and z, respectively

A = geometrical path length between a surface and the following tangent plane; also vice versa, the refractive index times the optical path length

I = the angle of incidence on the surface

 $B,C,D,E,\delta = dummy variables$

Table 2. List of Subroutines.

Name	Called by	Description	
CHANGE	Main program	Interacts with user to make individual changes in the lens without requiring retyping of entire lens; inputs are as in subroutine STORE	
LENR (lens read)	Main program, PARAX	Reads a currently existing lens file into the active area	
LENT (lens type)	Main program	Displays the current lens on the terminal in tabular form	
LENW (lens write)	CHANGE, STORE	Creates a file called by any name the user specifies, and writes the lens to it. Should the need arise, this file may be accessed for modification without use of the program	
PARAX	Main program	Does a paraxial ray trace that enables the user to locate the Gaussian image plane, and in general to do a rough lens design	
RAY	Main program, RED	Traces a specified ray through the lens (see TORT and SYMM)	
RED	Main program	Calculates the radial energy distribution in the image plane	
SORT	RED	Orders the rays by increasing radial distance from the paraxial image point	
STORE	Main program	Interactively accepts data input	
SYMM	RAY	Does refraction calculations for symmetrical surfaces	
TORT	RAY	Does refraction calculations for toric surfaces	
Sub	routines Program	med into the Data General Eclipse	
CLOSE	LENR, LENW	Subroutine for closing a file	
FOPEN	LENR, LENW	Subroutine for opening a file	

Table 3. Walk-Through of ICARUS Program.

```
To log onto the system:
USER NAME:
   SLN [sample user inputs are indicated in this special type face]
PASSWORD:
   STEVE [this can be changed]
After much printing, user may execute the program by typing:
   MXEQ ICARUS 15 [this is system dependent]
IS THIS A NEW LENS? [Y or N]
   Y
WHAT IS ITS NAME? [up to 7 alphanumeric characters]
   LENS10 [for example]
   If this were not a new lens, the identifier statement would cause
   subroutine LENR (lens read) to be called; this routine reads in
   stored lens data from memory.
The following comes from subroutine STORE:
ENTER OBJECT TYPE [the choices are: SUN (specifies sun as the object),
   PNT (point source), LIN (specifies an object defined in terms of
   its linear dimensions, ANG (specifies an object defined in terms of
   angular subtense); entering LIN or ANG triggers the following
   interactions]
      LIN
  I OBJECT DISTANCE IS:
      100 [or whatever]
  LINEAR FIELD(S) =
      10 5 [height in y and x directions, respectively]
      ANG
  OBJECT DISTANCE IS:
      1000 [or whatever]
   ANGULAR FIELD(S) =
      5 0 [subtense in y and x directions, respectively; angles are
           in degrees]
```

ENTER ENTRANCE PUPIL DIAMETER [currently only circular optics can be handled; the entrance pupil diameter for most solar collectors will be the collector diameter]

ENTER DIMENSIONS [MM or IN or M or CM or FT, etc.; this could be changed to ENTER UNITS. Currently, this is of no use except perhaps to help the designer remember; in the future, program additions could make use of this feature to scale output]

DO YOU WISH TO SPECIFY RADII (R) OR CURVATURES (C)? [R or C: since the program works in curvatures, if R is entered, all curve inputs will be divided into 1 to obtain curvatures; this pertains to surface data, toric curvatures, and Fresnel curvature]

HOW MANY LENS SURFACES ARE THERE? [generally, the answer will be 1, but the program can handle several; this number does not include object or image surfaces; the image is assumed to be plane and normal to the optical axis]

2

ENTER SURFACE TYPE [options are as follows]

CON: a conic section (ellipse, sphere, parabola, hyperbola)

FNL: a normal Fresnel lens; aspheres are permitted

CFN: curved Fresnel, a Fresnel lens that does not lie on a plane; only spherical base curves are permitted

TOR: a toroid, a lens with different curvatures in the x and y directions

TFN: toric Fresnel, a Fresnel with differing x and y curvatures CTF: curved toric Fresnel, a toric Fresnel that does not lie on a plane; only spherical base curves are permitted

CON

ENTER SURFACE DATA [respectively R, CC, TH, N1, N2, and N3, defined as follows; as in input elsewhere, numbers are separated by a space]

radius of curvature or curvature of surface

CC: conic constant: CC = 0 + sphere, CC = -1 + paraboloid, CC > 0 + oblate spheroid, CC < -1 + hyperboloid, 0 > CC > -1 + ellipsoid

distance to vertex of next surface

N₁,N₂,N₃ indices of refraction of three wavelengths

200 -2 10 1.523 1.516 1.527

| ENTER DECENTERS AND TILTS [respectively XDEC, YDEC (x- and y-decenters in common units), α , β , γ (tilts in degrees); these are currently not operational, but soon to follow are program additions that will incorporate them; since they are currently disregarded by the program, 0 is a good entry]

05000

1st surface

1

ENTER RECENTERS AND BACKTILTS [respectively REC₁, REC₂, α', β', γ'; again, these are not currently operational]

ENTER SURFACE TYPE

CTF

١

١

surface

١

1

ENTER SURFACE DATA

0 0 100 1 1

[first two entries negated by choice of surface type; if a nontoric is requested in preceding line, then the R appears as the first entry here]

ENTER DECENTERS AND TILTS

00000

ENTER RECENTERS AND BACKTILTS [same sign as original decenter or tilt cancels the former]

05000

ENTER TORIC CURVATURES [CVX, CVY (x curve and y curve); this question appears only if a toroid has been specified]

190 210 [curvatures (C) or radii (R), as previously specified]

ENTER CURVATURE OF FRESNEL [base curve; appears if Fresnel is specified]

-150 [curvature (C) or radius (R), as previously specified]

Subroutine <u>LENW</u> (lens write) is now called; it creates a file called by the name the user specifies, and writes the lens to it. Should the need arise, this file may be accessed for modification without using the program.

Return to main program:

WOULD YOU LIKE TO REVIEW YOUR LENS? [Y or N; Y (yes) triggers subroutine LENT, which displays the tabulated data on the lens; this step is used to see whether any errors have occurred or whether the deligner wants to change anything]

Y

Subroutine LENT (lens type): displays the current lens on the terminal in tabular form.

WOULD YOU LIKE TO MAKE ANY CHANGES? [Y or N; Y triggers subroutine CHANGE, which will then ask for the changes you'd like to make]

Y

Subroutine <u>CHANGE</u>: interacts with the user to make individual changes in the lens without having to retype the entire lens; all user inputs are as in subroutine <u>STORE</u>.

WHAT WOULD YOU LIKE TO DO NOW? [options are RAY, LENT, CHANGE, PARAX, RED. NEW. OUIT: handled by subroutines described below]

RAY

Subroutine RAY: traces a specified ray through the lens. RAY in turn uses two subroutines, TORT and SYMM, to do the refraction calculations for toric surfaces and axially symmetrical surfaces, respectively. Interaction is as follows:

WHICH COLOR IS THE RAY, 1, 2, or 3? [1, 2, or 3: refers to N_1 , N_2 , and N_3]

ENTER FRACTIONAL OBJECT HEIGHTS [FOBY, FOBX: the normalized (full field = 1) height on the object from which the ray is to start; excluded if the object is SUN]

ENTER FRACTIONAL PUPIL COORDINATES [RHOY, RHOX, the normalized (half of the entrance pupil diameter = 1) ray height on the entrance pupil; can be any coordinates, not the 0.7, 1.0 rays, which are built in when RED is required. The output is as follows:

RAY COORDINATES AT IMAGE PLANE: $X = Y = R = (X^2 + Y^2)^{\frac{1}{2}}$

LENT

Subroutine LENT (lens type): displays the current lens on the terminal in tabular form.

CHANGE

Subroutine CHANGE: interacts with the user to make individual changes in the lens without having to retype the entire lens; described above.

PARAX

Subroutine <u>PARAX</u>: does a paraxial ray trace that enables the user to locate the Gaussian image plane, and in general to do a rough lens design. One question is asked:

IS THIS IN COLOR 1, 2, or 3? [1, 2, or 3: determines whether N_1 , N_2 , or N_3 is used for each surface in the trace. Output is in the following form:

SURF 0	AXIAL Y	CHIEF Y	AXIAL U	CHIEF U
ì	•	•	•	•
•	•	•	•	•
•	•	•	•	•

where SURF is the surface number (0 = object; the last surface is the image surface), AXIAL Y represents the height of the ray that passes through the center of the object and the edge of the entrance pupil, CHIEF Y is the height of the ray that passes through the edge of the object and the center of the entrance pupil, AXIAL U is the angle the axial ray makes with the optical axis prior to refraction at specified surface, and CHIEF U is the angle of the chief ray; angles are measured counterclockwise from the axis]

RED

Subroutine RED: calculates the radial energy distribution in the image plane. The object is always assumed to be the sun. Interaction is as follows:

HOW MANY COLORS WOULD YOU LIKE? [1, 2, or 3: If 1 is specified, index N₁ is used and 96 rays are traced through the system. If 2 is specified, 96 additional rays are traced using N₂ at each surface. If 3 is specified, 96 rays are traced using N₃ in addition to those with N₁ and N₂. To do this, subroutine RAY is used. The radial coordinate in the image plane is then stored, and subroutine SORT is called. This subroutine arranges the points in order of increasing radius, and puts them into 10 bins. Each bin is now assumed to contain 10% of the energy entering the system.]

Output is as follows, where r_n = the radius containing successive percentages of ray intercepts:

PERCENT ENERGY	RADIUS
10	$\mathbf{r_1}$
20	$\bar{\mathbf{r}_2}$
30	r 3
:	:
•	•
100	r 10

NEW [start on a new lens (or a different old one)]

QUIT [terminates the program; to restart it, type MXEQ ICARUS 15 (as before)]

WHAT NEXT? [options are any of the above]

TIUD

To log off Eclipse:

BYE

Table 4. User's Notes on Program ICARUS.

1. The program takes 12 points to describe the sun, eight points on the lens in up to three wavelengths specified by three indices of refraction. This set then specifies 288 rays. If more points on the lens are desired, it will require recompiling the program and will involve considerably more computation time (unless a single wavelength is desired, thus permitting 24 points on the lens).

The pattern of points on the sun is as shown below. They are distributed in rings of equal area, each ring being weighted for a cosine solar limb-darkening effect. In reality, the power associated with limb darkening should be less than unity for closer approximations to the true sun, but for simplicity we have assumed a cos 1.0x relationship.

Pattern of points on the sun distributed in weighted equal-area rings.

2. The choice of surface type encompasses plane and plane tilted (as in the faceted Fresnel panel concept).

Note that the Fresnel surface has no finite grooves in this analytical program. The proper tilt of the Fresnel element at the point where the entering solar rays reach the lens surface is automatically calculated as discussed below.

The entrance pupil is in a plane normal to the vertex of the Fresnel base curve, as shown below. The present program takes eight rays: two radii (r = 0.7 and 1.0 the lens diameter at $\theta = \text{each of 0, 90, 180, and}$ 270 degrees. No central ray is traced.

Definition of the pupil plane and Fresnel base (substrate) curve.

The rays from the finite sun are directed to a single point (r,θ) . When the rays are transferred to the specified Fresnel base curve, the r,θ values will be slightly different because the rays from the disc of the sun are tilted with regard to the normal at the pupil surface. The same effect arises from either a tracking error or a deliberate tilt.

The program calculates the normal at its intersection point of the Fresnel surface. The equivalent curvature of the Fresnel optical

surface is calculated, as illustrated below. The equivalent Fresnel element surfaces are always considered as curved elements, curved to yield a point focus at the specified TH value given for the final optical surface (if more than one is involved).

Illustration of the difference between the base (substrate) curvature and the equivalent element curvature.

The "proper tilt" of the Fresnel element has a subtle definition, as illustrated in the next figure. The equivalent Fresnel curvature has a constant value of RD (or CV) and CC, but is shifted by an amount Δ so that the slope at r brings the reflected ray at r to the focus. In other words, the program shifts the conic.

The radius and curvature are defined by the focal length F or the power P, by

$$CV = P/2$$

$$P = 1/F$$

RD equals 2F for a reflector, or

$$\begin{array}{llll}
 1/F & = & (n'-n) & (1/r_1 - 1/r_2) \\
 P & = & (n'-n) & (CV_1 - CV_2)
 \end{array}
 \right} for a lens.$$

Geometry illustrating the shift in the effective conic surface defining facet angles.

There is a strategy for finding the best value of CC for the equivalent facets, depending on the base surface used. For example, the best value of CC for a plane reflective Fresnel mirror is a hyperboloid, CC = -3.0. The strategy is to try a CC and examine the ray distribution in the focal surface, then change CC to find the best distribution.

The curvature is the inverse of the radius of curvature. The conic constant is:

3. To find a better value of TH for the focus, take the output value of the y intercept with the TH plane and paraxial angle ϕ , and calculate. Calculate an unproved TH using a pocket calculator.

 $\Delta TH = y\phi$

Table 5. Source Code Listing of Program ICARUS.

```
PARAMETER WRAY-96, IT-11, OF-18, NT-2
        COMMON/MAKE/AMAKE, IREC, LG, IC, MCOL
        COMMON/OD/OBJ, DIM, EPD, LS, AMY, AMX, LMY, LMX, THE
        COMMON/SD/SUR(18),CV(18),CC(18),TH(18),M(11,3)
        COMMON/TD/DEC(18,2),TILT(18,3),RDEC(18,2),RTILT(18,3),CVY(18),CVX(18)
        COMMON/TD/CVP(1#)
        COMMON/RAYS/FOBY(MRAY), FOBX(MRAY), XTA(MRAY), YTA(MRAY), RA(MRAY), RAD(10)
        COMMON/RAYS/R(NRAY, 3)
        REAL M, LMX, LMY
        LOGICAL LG
        TYPE"IS THIS A NEW LENS?"
15
        READ(IF,988) IAGE
        TYPE"WHAT IS ITS NAME?"
        READ(IF,985) ANAME
        IF(IAGE.EQ."Y") CALL STORE
        IF(IAGE.EQ."N") CALL LENR
        TYPE "WOULD YOU LIKE TO REVIEW YOUR LENS?"
        READ(IF,988) LR
         IF(LR.EQ."Y") CALL LENT
        TYPE "WOULD YOU LIKE TO MAKE ANY CHANGES?"
        READ(IF,988) ICΩ
        IF(ICQ.EQ."Y") CALL CHANGE
        TYPE "WHAT WOULD YOU LIKE TO DO NOW?"
        READ(IF,985) WORK
        IF(WORK.EQ. "RAY") GOTO 188
28
        IF(WORK.EQ."LENT") GOTO 118
IF(WORK.EQ."PARAX") GOTO 128
        IF(WORK.EQ. "RED") GOTO 138
         IF(WORK.EQ. "CHANGE") GOTO 15#
        IF(WORK.EQ."NEW") GOTO 38
IF(WORK.EQ."QUIT") GOTO 48
         TYPE SORRY, I DON'T KNOW HOW."
        TYPE"WHAT NEXT?"
25
        READ(IF,985) WORK
        GOTO 28
        LG-.TRUE
188
        CALL RAY
        GOTO 25
115
        CALL LENT
        GOTO 25
125
        CALL PARAX
        GOTO 25
        CALL RED
138
        GOTO 25
158
        CALL CHANGE
        GOTO 25
38
        GOTO 18
45
        CONTINUE
988
        FORMAT(S1)
9#5
        PORMAT(57)
        END
        SUBROUTINE STORE
PARAMETER WRAY-96, IF-11, OF-18, WF-2
        COMMON/NAME/ANAME, IREC, LG, IC, MCOL
        COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, TRS
        COMMON/SD/SUR(18),CV(18),CC(18),TH(18),M(11,3)
        COMMON/TD/DEC(18,2),TILT(18,3),RDEC(18,2),RTILT(18,3),CVY(18),CVX(18)
        COMMON/TD/CVF(18)
        COMMON/RAYS/FOBY(MRAY),FOBX(MRAY),XTA(MRAY),YTA(MRAY),RA(MRAY),RAD(15)
        COMMON/RAYS/R(NRAY, 3)
        REAL N, LNY, LNX
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
TYPE"ENTER OBJECT TYPE"
        READ(IF,999) OBJ
        IF(OBJ.EQ."SUN") THE=1.SE+1S
IF(OBJ.EQ."SUN") GOTO 1S
        ACCEPT"OBJECT DISTANCE IS ", THE
        IF(OBJ.EQ. "ANG") ACCEPT ANGULAR FIELD(B) - ", ANY, ANX
        LNY-THE*TAN(ANY/57.296)
        LNX-THE*TAN(ANX/57.296)
        IF(OBJ.EQ."ANG") GOTO 18
        IF(OBJ.EQ. "LIN") ACCEPT "LINEAR FIELD(S) = ", LNY, LNX
        AMY-ATAM(LMY/THE) *57.296
        ANX-ATAM(LMX/TH#) = 57.296
15
        ACCEPT "ENTER ENTRANCE PUPIL DIAMETER ", EPD
        TYPE "ENTER DIMENSIONS"
        READ(IF,999) DIM
        TYPE "DO YOU WISH TO SPECIFY RADII (R) OR CURVATURES (C)?"
        READ(IF,998) IRQ
        ACCEPT "HOW MANY LENS SURFACES ARE THERE?", LS
        DO 28 I-1,LS
        TYPE "ENTER SURFACE TYPE"
        READ(IF,999) SUR(I)
        ACCEPT "ENTER SURFACE DATA: ",CV(I),CC(I),TH(I),H(I,1),H(I,2),H(I,3)
        ACCEPT ENTER DECENTERS AND TILTS ", (DEC(I,J),J=1,2),(TILT(I,J),J=1,3)
        ACCEPT ENTER RECENTERS AND BACKTILTS ",(RDEC(I,J),J-1,2),(RTILT(I,J),
     1 J-1,3
        IF(SUR(I).EQ. "TOR".OR.SUR(I).EQ. "TFN".OR.SUR(I).EQ. "CTF") ACCEPT
        "ENTER TORIC CURVATURES ",CVX(I),CVY(I)
        IF(SUR(I).EQ."CFN".OR.SUR(I).EQ."CTF") ACCEPT"ENTER CURVATURE OF
       PRESNEL ", CVF(I)
        CONTINUE
28
        IF(IRQ.FQ. "C") GOTO 48
        DO 30 J-1,LS
        IF(CV(J).EQ.8) GOTO 22
        CV(J)=1/CV(J)
22
        1F(CVY(J).EQ.8) GOTO 24
        CVY(J)=1/CVY(J)
24
        IF(CVX(J).EQ.S) GOTO 26
        CVX(J)=1/CVX(J)
26
        IF(CVF(J).EQ.#) COTO 3#
        CVF(J) = 1/CVF(J)
        CONTINUE
38
45
        CALL LENW
998
        FORMAT(51)
999
        FORMAT(S3)
        RETURN
        END
        SUBROUTINE LENR
PARAMETER WRAY-96, IP-11, OF-18, WF-2
        COMMON/NAME/ANAME, IREC, LG, IC, MCOL
        COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
        COMMON/SD/SUR(18),CV(18),CC(18),TE(18),N(11,3)
        COMMON/TD/DEC(1#,2),TILT(1#,3),RDEC(1#,2),RTILT(1#,3),CVY(1#),CVX(1#)
        COMMON/TD/CVF(18)
        COMMON/RAYS/POBY(MRAY), FOBX(MRAY), XTA(MRAY), YTA(MRAY), RA(MRAY), RAD(15)
        COMMON/RAYS/R(NRAY, 3)
        REAL N, LNX, LNY
        CALL POPEN(NF, ANAME)
        READ(NF,999) ANAME
        READ(NF, 998) OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
        DO 18 I-1,L5
        READ(NF,997) SUR(I),CV(I),CC(I),TH(I),M(I,1),M(I,2),M(I,3)
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
READ(MF,996) (DEC(I,J),J-1,2),(TILT(I,J),J-1,3),(RDEC(I,J),J-1,2),
     1 (RTILT(1,J),J-1,3)
        READ(MF,995) CVY(I),CVX(I),CVF(I)
15
        CONTINUE
995
        FORMAT(1X,3F1#.6)
        FORMAT(1x,18F18.6)
996
997
        FORMAT(1x,83,6712.6)
998
        FORMAT(1x,53,2x,53,4F1#.6,3E1#.4)
999
        FORMAT(1X,84)
        CALL CLOSE(NF, IER)
        RETURN
        END
        SUBROUTINE LENW
PARAMETER WRAY-96, IT-11, OF-18, NT-2
        COMMON/NAME/ANAME, IREC, LG, IC, MCOL
        COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LMY, LNX, THE
        COMMON/SD/SUR(18),CV(18),CC(18),TH(18),M(11,3)
        COMMON/TD/DEC(18,2),TILT(18,3),RDEC(18,2),RTILT(18,3),CVY(18),CVX(18)
        COMMON/TD/CVF(18)
        COMMON/RAYS/FOBY(NRAY), FOBX(NRAY), XTA(NRAY), YTA(NRAY), RA(NRAY), RAD(1#)
        COMMON/RAYS/R(NRAY, 3)
        REAL N, LNY, LNX
        CALL FOPEN(NF, ANAME)
        WRITE(NF, 999) ANAME
        WRITE(NF, 998) OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
        DO 18 I-1,LS
        WRITE(NF,997) SUR(I),CV(I),CC(I),TH(I),N(I,1),N(I,2),N(I,3)
        WRITE(NF,996) (DEC(I,J),J=1,2),(TILT(I,J),J=1,3),(RDEC(I,J),J=1,2),
     1 (RTILT(I,J),J=1,3)
        WRITE(NF, 995) CVY(1), CVX(1), CVF(1)
        CONTINUE
995
        FORMAT(1X,3F18.6)
996
        FORMAT(1X,18F18.6)
997
        FORMAT(1X, 83, 6F12.6)
998
        FORMAT(1x,53,2x,53,4F18.6,3E18.4)
999
        FORMAT(1X,84)
        CALL CLOSE(NF, IER)
        RETURN
        END
        SUBROUTINE LENT
        PARAMETER NRAY-96, IF-11, OF-18, NF-2
        COMMON/NAME/ANAME, IREC, LG, IC, MCOL
        COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
        COMMON/SD/SUR(18), CV(18), CC(18), TH(18), N(11,3)
        COMMON/TD/DEC(18,2), TILT(18,3), RDEC(18,2), RTILT(18,3), CVY(18), CVX(18)
        COMMON/TD/CVP(18)
        COMMON/RAYS/POBY(MRAY), POBX(MRAY), XTA(MRAY), YTA(MRAY), RA(MRAY), RAD(1#)
        COMMON/RAYS/R(NRAY,3)
        REAL N, LNY, LNX
        DIMENSION RD(18)
        WRITE(OF,999) ANAME
        WRITE( OF, 899)
        WRITE(OF,998) OBJ,DIM
        WRITE( OF, 898)
        WRITE(OF, 997) EPD, ANY, ANX, LNY, LNX, THE
        WRITE(OF,897)
        DO 18 I-1,LS
        IF(CV(I).EQ.S) RD(I)=1.SE+1S
        IF(CV(I).NE.S) RD(I)=1/CV(I)
15
        CONTINUE
        DO 28 I-1,LS
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
WRITE(OF,996) CV(I),RD(I),CC(I),TH(I),H(I,1),H(I,2),H(I,3)
25
        CONTINUE
        WRITE(OF, 896)
        X-S
        DO 48 I-1,LS
        SUM-DEC(I,1)**2+DEC(I,2)**2+TILT(I,1)**2+TILT(I,2)**2+TILT(I,3)**2
        IF(SUM.EQ.#) GOTO 25
        WRITE(OF,995) (DEC(I,J),J=1,2),(TILT(I,J),J=1,3)
        SUM-RDEC(I,1)**2+RDEC(I,2)**2+RTILT(I,1)**2+RTILT(I,2)**2+RTILT(I,3)**2
25
        IF(SUM.EQ.S) GOTO 38
        WRITE(OP,994) (RDEC(I,J),J=1,2),(RTILT(I,J),J=1,3)
        GOTO 45
38
        K=K+1
        CONTINUE
         IF(K.EQ.LS) WRITE(OF,895)
        K-Ø
        WRITE(OF, 894)
        DO 68 I-1,LS
        IF(SUR(I).ME. "CFM".AMD.SUR(I).ME. "CTF".AMD.SUR(I).ME. "TOR".AMD.SUR(I)
         .NE. "TFN") GOTO 58
        WRITE(OF,993) CVY(I),CVX(I),CVF(I)
        GOTO 68
58
        K-K+1
        CONTINUE
68
         IF(K.EQ.LS) WRITE(OF, 895)
        FORMAT(2X,"Y CURVE",2X,"X CURVE",2X,"FRNL CURVE")
FORMAT(1X,"NONE")
FORMAT(2X,"Y DECENTER",2X,"X DECENTER",5X,"ALPHA",5X,"BETA",5X,"GAMMA")
894
895
896
         FORMAT(1x, "CURVATURE", 3x, "RADIUS", 3x, "CONIC", 2x, "THICKNESS", 2x, "N1", 4x,
897
        "M2",4X,"M3")
         FORMAT(6x, "EPD",7x, "ANGULAR FIELDS",4x, "LINEAR FIELDS",5x, "OBJ. DISTANCE
898
899
         FORMAT(1x, "OBJECT UNITS")
993
         FORMAT( 1X, 3F8.6)
994
         FORMAT(1x,5F11.4)
995
         FORMAT(1x,5F11.4)
996
         PORMAT(1x,2F1#.6,F6.3,F1#.4,3F7.4)
997
         FORMAT( 1X,5F18.4,E18.4)
998
         FORMAT(3X,83,5X,83)
999
         PORMAT(1X,87)
         RETURN
         END
         SUBROUTINE CHANGE
PARAMETER MRAY-96, IP-11, OF-18, MP-2
         COMMON/NAME/ANAME, IREC, LG, IC, MCOL
         COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THS
         COMMON/SD/SUR(18),CV(18),CC(18),TH(18),M(11,3)
         COMMON/TD/DEC(18.2).TILT(18.3).RDEC(18.2).RTILT(18.3).CVY(18).CVX(18)
         COMMON/TD/CVF(18)
         COMMON/RAYS/FOBY( MRAY), FOBX( MRAY), XTA( MRAY), YTA( MRAY), RA( MRAY), RAD( 15)
         COMMON/RAYS/R(NRAY,3)
         REAL N.LNY,LNX
         INTEGER RO
         TYPE "WOULD YOU LIKE TO CHANGE THE OBJECT?"
         READ(IF,999) ITO
         IF(ITO.EQ."N") GOTO 18
         TYPE"ENTER NEW OBJECT"
         READ(IF,998) OBJ
15
         TYPE "WOULD YOU LIKE TO CHANGE THE UNITS?"
```

Table 5. Soruce Code Listing of Program ICARUS (Continued).

```
READ(IF,999) ITO
          IF(ITO.EO."N") GOTO 2#
          TYPE"ENTER NEW UKITS"
          READ(IF,998) DIM
28
          TYPE "WOULD YOU LIKE TO CHANGE OBJECT DISTANCE?"
          READ(IF,999) ITQ
IF(ITQ.EQ."N") GOTO 3#
          ACCEPT NEW OBJECT DISTANCE - ".THS
38
          TYPE "WOULD YOU LIKE TO CHANGE EPD?"
          READ(IF,999) ITO
IF(ITO.EO."N") GOTO 48
          ACCEPT"ENTER NEW EPD", EPD
          TYPE "WOULD YOU LIKE TO CHANGE FIELD SIZE?"
45
          READ(IP,999) ITQ
IF(ITQ.EQ."N") GOTO 68
          IP(OBJ.EQ."LIN") GOTO 5#
          ACCEPT ANGULAR FIELDS - ", ANY, ANX
          LNY-TH#+TAN( ANY/57.296)
          LNX-THE+TAN(ANX/57.296)
          GOTO 68
          ACCEPT"LINEAR FIELDS - ", LNY, LNX
58
          ANY-57.296*ATAN(LNY/THS)
          ANX = 57, 296 * ATAN( LWX/THØ)
          TYPE DO YOU WISH TO SPECIFY RADII (R) OR CURVATURES (C)?"
69
          READ (IF,999) RO
          TYPE DOES THE LENS STILL HAVE ", LS, " SURFACES?"
          READ (IF,999) ITO
          IF(ITO.EQ. "Y") GOTO 78
          ACCEPT"ENTER THE NUMBER OF SURFACES", LS
78
          DO 98 I-1,LS
          TYPE DO YOU WISH TO CHANGE SURFACE ",I,"?"
          READ(IF,999) ITO
          IF (ITQ.EQ."N") GOTO 98
          TYPE"ENTER SURFACE TYPE"
          READ(IF,998) SUR(I)
          ACCEPT ENTER SURFACE DATA: ",CV(1),CC(1),TH(1),M(1,1),M(1,2),M(1,3)
ACCEPT ENTER DECEMTER DATA: ",(DEC(1,J),J=1,2),(TILT(1,J),J=1,3)
ACCEPT ENTER RECENTER DATA: ",(RDEC(1,J),J=1,2),(RTILT(1,J),J=1,3)
      IF(SUR!I).EQ."TOR".OR.SUR(I).EQ."TFN".OR.SUR(I).EQ."CTF")
1 ACCEPT"ENTER TORIC CURVATURES",CVY(I),CVX(I)
IF(SUR(I).EQ."CFN".OR.SUR(I).EQ."CTF") ACCEPT"FNTER FRML CURVE",CVF(I)
          IF(RQ.EQ."C") GOTO 98
          IF(CV(I).EQ.S) GOTO 82
          CV( I) =1/CV( I)
82
          IF(CVY(I).EQ.S) GOTO 84
          CVY(I)-1/CVY(I)
84
          IF(CVX(I).EQ.#) GOTO 86
          CVX(I) = 1/CVX(I)
86
          IF(CVF(I).EQ.S) GOTO 95
          CVP(I)-1/CVP(I)
95
          CONTINUE
188
          CALL LENW
998
          FORMAT( 53)
999
          FORMAT(51)
          RETURN
          EMD
          SUBROUTINE PARAX
PARAMETER WRAY-96, IF-11, OF-18, NF-2, LM-LS+2
          COMMON/NAME/AMAME, IREC, LG, IC, MCOL
          COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, TRE
          COMMON/SD/SUR(1#),CV(1#),CC(1#),TH(1#),H(11,3)
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
COMMON/TD/DEC(18,2),TILT(18,3),RDEC(18,2),RTILT(18,3),CVY(18),CVX(18)
         COMMON/TD/CVP(18)
         COMMON/RAYS/FOBY(MRAY), FOBX(MRAY), XTA(MRAY), YTA(MRAY), RA(MRAY), RAD(15)
         COMMON/RAYS/R(MRAY, 3)
         DIMENSION Y(12), CY(12), U(12), CU(12), PRI(12)
         REAL M, LMY, LMX
ACCEPT "IS THIS IM COLOR 1,2,OR 3?",J
         Y( #) -#
         CY(#) -- LMY
         U(8) = EPD/(2 * TH8)
         CU(#) -- LMY/TH#
         PHI(#)-#
         Y(1)-EPD/2
         CY(1)-#
         U(1) = (U(3) - Y(1)) = (M(1,J) - 1) = CV(1) / M(1,J)
         CU(1)=CU(#)/H(1,J)
         PHI(1) = (N(1,J)-1) = CV(1)
         DO 1# I=2,LS+1
         Y( I) = Y( I-1) + TH( I-1) *U( I-1)
         CY(I) = CY(I-1) + TH(I-1) * CU(I-1)
         IF(I.EQ.LS+1) GOTO 18
         PHI(I)=(N(I,J)-N(I-1,J))*CV(I)
         U(I)=(M(I-1,J)*U(I-1)-Y(I)*PHI(I))/M(I,J)
         CU(I)=(M(I-1,J)*CU(I-1)-CY(I)*PHI(I))/M(I,J)
         M(I,J)=ABS(N(I,J))
15
         CONTINUE
         PHI(LS+1)=#
         U( LS+1) =U( LS)
         CU(LS+1) =CU(LS)
         WRITE(OF,999)
         DO 28 I-1,L5+2
         K-I-1
         WRITE(OF,998) K,Y(K),CY(K),U(K),CU(K),PEI(K)
28
         CONTINUE
998
         FORMAT(1x,14,5F18.6)
         FORMAT(1x, "SURF",2x, "AXIAL Y",3x, "CHIEF Y",3x, "AXIAL U",3x, "CHIEF U", 5x, "POWER")
999
         CALL LENR
         RETURN
         END
         SUBROUTINE RAY
PARAMETER WRAY-96, IF-11, OF-18, WF-2
         COMMON/NAME/ANAME, IREC, LG, IC, MCOL
         COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
         COMMON/SD/SUR(18),CV(18),CC(18),TR(18),M(11,3)
COMMON/TD/DZC(18,2),TILT(18,3),RDEC(18,2),RTILT(18,3),CVY(18),CVX(18)
         COMMON/TD/CVF(18)
         COMMON/RAYS/FOBY(MRAY), FOBX(MRAY), XTA(MRAY), YTA(MRAY), RA(MRAY), RAD(15)
         COMMON/RAYS/R(NRAY, 3)
         COMMON/TRACE/YT, XT, A, L, M, MD
         COMMON/PUP/ RHOY(MRAY), RHOX(MRAY)
         REAL M, L, M, MD, MU, LMY, LMX
         LOGICAL LG, LG2
         IF( . MOT . LG ) MR-MRAY
         IF( .MOT.LG) GOTO 3#
         FOBX(1) =#
         POBY(1)=#
         MR-1
         ACCEPT "WHICH COLOR IS THE RAY, 1,2 OR 37", JC
         %( # , IC) =1
         IF(OBJ.EQ. "SUN") GOTO 18
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
ACCEPT "ENTER FRACTIONAL OBJECT MEIGHTS", POBY(1), POBX(1)
         GOTO 25
15
         LNY-#
         LMX-S
         ANY-#
         ANX-S
         ACCEPT "ENTER FRACTIONAL PUPIL COORDINATES", RMOY(1), RMOX(1)
38
         DO 288 I-1,MR
         LG2-. PALSE
         HX=LMX*FOBX(I)
         HY=LMY*FOBY( I )
         YT-RHOY( I) *EPD/2
         XT=RHOX(I)*EPD/2
         A-SORT( THE**2+(HY-YT)**2+(HX-XT)**2)
         L=(MX-XT)/A
         M=(HY-YT)/A
         MD-THS/A
         DO 198 J-1,LS
         IF(SUR(J).EQ."TOR".OR.SUR(J).EQ."CTF".OR.SUR(J).EQ."TFN") CALL TORT(J,LG2)
IF(SUR(J).EQ."CON".OR.SUR(J).EQ."FNL".OR.SUR(J).EQ."CFN") CALL SYMM(J,LG2)
         IF(LG2) GOTO 288
19#
         CONTINUE
         RXY=SORT(XT**2+YT**2)
         IF(LG) TYPE "RAY COORDINATES AT IMAGE PLAME: X= ",XT," Y= ",YT,"
         , RXY
         IF(LG) GOTO 288
         XTA(I)-XT
         YTA(I)-YT
         RA(I)-RXY
288
         CONTINUE
         RETURN
         END
         SUBROUTINE TORT(J,LG2)
PARAMETER MRAY-96, IF-11, OF-18, MY-2
         COMMON/MAME/ANAME, IREC, LG, IC, MCOL
         COMMON/OD/OBJ, DIM, EPD, LS, ANY, AMX, LNY, LMX, THE
         COMMON/SD/SUR(18),CV(18),CC(18),TE(18),M(11,3)
COMMON/TD/DEC(18,2),TILT(18,3),RDEC(18,2),RTILT(18,3),CVY(18),CVX(18)
         COMMON/TD/CVF(1#)
         COMMON/RAYS/FOBY(MRAY), FOBX(MRAY), XTA(MRAY), YTA(MRAY), RA(MRAY), RAD(18)
         COMMON/RAYS/R( MRAY, 3)
         COMMON/TRACE/YT, XT, A, L, M, MD
         COMMON/PUP/ RHOY(MRAY), RHOX(MRAY)
         REAL M, L, M, MD, MU, LMY, LMX
         LOGICAL LG, LG2
         Y=Y+DEC(J,1)-RDEC(J,1)
         X=X+DEC(J,2)-RDEC(J,2)
         M-SIM(ASIM(M)+TILT(J,1)/59.29578)
         M-SIM(ASIM(M)+TILT(J,2)/57.29578)
         L-SIM( ASIM( L) +TILT( J, 3) /57.29578-RTILT( J, 3) /57.29578)
         M-SIM(ASIM(M)-RTILT(J,2)/57.29578)
         M-SIM(ASIM(M)-RTILT(J,1)/57 29578)
         IF (SUR(J).EG. "CTF") GOTO 18
         BX-CVX( J) *XT** 2
         BY-CVY( J) *YT**2
         CX=MD-CVX(J)*L*XT
         CY-MD-CVY(J)*M*YT
         DSX=CX**2-(CVX(J)*XT)**2
         DSY=CY**2-(CVY(J)*YT)**2
         GOTO 28
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
15
        BX=CVF(J)*(XT**2+YT**2)
        BY-BX
        CX=ND-CVF(J)*(L*XT+N*YT)
        CY-CX
        DSX=CX**2-CVF(J)*BX
        DSY-DSX
28
        IF(ABS(DSX).LE.1E-1#) DSX=#
        IF(ABS(DSY).LE.1E-18) DSY-8
        DX=SQRT(DSX)
        DY-SQRT(DSY)
        A-(BX/(CX+DX)+BY/(CY+DY))/2
IF(SUR(J).EQ."TFN") A-8
        XS=XT+A*L
        YS-YT+A*M
        2S-A*ND
        CSIX-DX
        CSIY-DY
        MU-N(J-1,IC)/ABS(N(J,IC))
        DEXS=1-MU**2*(1-CSIX**2)
        DEYS=1-MU**2*(1-CSIY**2)
        IF(DEXS.LE. 8.OR. DEYS.LE. 8) GOTO 78
        DEX=SQRT(DEXS)-MU*CSIX
        DEY-SORT( DEYS) -MU*CSIY
        ALPHA = - CVX(J) *XS
        BETA = -CVY(J) *YS
        L=MU*L+DEX*ALPHA
        M-MU*M+DEY*BETA
        ND=SQRT(1-L**2-M**2)
        XT=XS+L*(TH(J)-2S)/ND
        YT=YS+M*(TH(J)-2S)/ND
        A=SORT((TH(J)-ZS)**2+(YT-YS)**2+(XT-XS)**2)
        GOTO 95
78
        IF(LG) TYPE"TOTAL INTERNAL REFLECTION AT SURFACE".J
        GOTO 98
88
        IF(LG) TYPE"RAY MISSED SURFACE",J
98
        LG2 - . TRUE .
95
        RETURN
        END
        SUBROUTINE SYMM(J,LG2)
        PARAMETER NRAY-96, IF-11, OF-18, NF-2
        COMMON/NAME/ANAME, IREC, LG, IC, NCOL
        COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
        COMMON/SD/SUR(18),CV(18),CC(18),TH(18),N(11,3)
        COMMON/TD/DEC(18,2), TILT(18,3), RDEC(18,2), RTILT(18,3), CVY(18), CVX(18)
        COMMON/TD/CVF(18)
        COMMON/RAYS/FOBY(NRAY), FOBX(NRAY), XTA(NRAY), YTA(NRAY), RA(NRAY), RA(NRAY), RAD(18)
        COMMON/RAYS/R(NRAY,3)
        COMMON/TRACE/YT,XT,A,L,M,ND
        COMMON/PUP/ RHOY(NRAY), RHOX(NRAY)
        REAL N, L, M . ND, MU, LNY, LNX
        LOGICAL LG, LG2
        Y=Y+DEC(J,1)-RDEC(J,1)
        X=X+DEC(J,2)-RDEC(J,2)
        N-SIN(ASIN(N)+TILT(J,1)/57.29578)
        M-SIN(ASIN(M)+TILT(J,2)/57.29578)
        L-SIN(ASIN(L)+TILT(J,3)/57.29578-RTILT(J,3)/57.29578)
        M-SIN(ASIN(M)-RTILT(J,2)/57.29578)
        N=SIN(ASIN(N)-RTILT(J,1)/57.29578)
        IF(SUR(J).EQ."CFN") GOTO 18
        B=CV(J)*(XT**2+YT**2)
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
C=MD-CV(J)*(L*XT+M*YT)
        DS=C*C-CV(J)*B*(1+CC(J)*MD*MD)
        GOTO 28
16
        B=CVF(J)*(XT**2+YT**2)
        C=ND-CVF(J)*(L*XT+M*YT)
        DS=C*C-CVP(J)*B
28
        IF(ABS(DS).LE.1E-1#) DS-#
        D-SQRT(DS)
        A-B/(C+D)
        IF(OBJ.EQ. "PNL") A-#
        XS-XT+A*L
        YS-YT+A*M
        ZS-A*ND
        E2=1/(1-2*CV(J)*CC(J)*2S)
        E-SQRT(E2)
        CSI-D*E
        MU=N(J-1,IC)/ABS(N(J,IC))
        DELS=1-MU**2*(1-CSI**2)
        IF(DELS.LT.#) GOTO 7#
        DEL=SQRT(DELS)-MU*CSI
        ALPHA = -CV(J) *E*XS
        BETA -- CV(J) *E*YS
        GAMMA = (1-CV(J)*(CC(J)+1)*2S)*E
        L-MU*L+DEL*ALPHA
        M=MU*M+DEL*BETA
        ND=MU*ND+DEL*GAMMA
        XT=XS+L*(TH(J)-2S)/ND
        YT=YS+M*(TH(J)-2S)/ND
        A-SQRT((TH(J)-ZS)**2+(YT-YS)**2+(XT-XS)**2)
        GOTO 95
78
        IF(LG) TYPE TOTAL INTERNAL REFLECTION AT SURFACE ",J
        GOTO 98
88
        IF(LG) TYPE "RAY MISSED SURFACE ",J
98
        LG2-.TRUE.
        RETURN
9.5
        END
        SUBROUTINE RED
        PARAMETER NRAY-96, IF-11, OF-18, MF-2
        COMMON/NAME/ANAME, IREC, LG, IC, NCOL
        COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
        COMMON/SD/SUR(10), CV(10), CC(10), TH(10), N(11,3)
        COMMON/TD/DEC(18,2), TILT(18,3), RDEC(18,2), RTILT(18,3), CVY(18), CVX(18)
        COMMON/TD/CVF(18)
        COMMON/RAYS/FOBY(NRAY), FOBX(NRAY), XTA(NRAY), YTA(NRAY), RA(NRAY), RAD(15)
        COMMON/RAYS/R(NRAY,3)
        COMMON/PUP/RHOY(NRAY), RHOX(NRAY)
        REAL N, LNY, LNX
LOGICAL LG
        DIMENSION FY(12), FX(12), RY(8), RX(8)
        DATA PY/.31,0,-.31,0,.57,0,-.57,0,.89,0,-.89,0/
DATA PX/0,.31,0,-.31,0,.57,0,-.57,0,.89,0,-.89/
        DATA RY/.7,8,-.7,8,1,8,-1,8/
        DATA RX/8,.7,8,-.7,8,1,8,-1/
        LG-. FALSE.
        LNX-4.36E+7
        LNY-4.36E+7
        DO 28 I-1,12
```

Table 5. Source Code Listing of Program ICARUS (Continued).

```
DO 1# J-1,8
         K=8*(I-1)+J
         POBY(K)=FY(I)
         POBX(K)=PX(I)
         RHOY(K)-RY(J)
         RHOX(K) = RX(J)
15
         CONTINUE
28
         CONTINUE
         ACCEPT HOW MANY COLORS WOULD YOU LIKE? ", MCOL
         DO 48 J-1,NCOL
         CALL RAY
         DO 38 I-1, NRAY
         R(I,J)=RA(I)
3.0
         CONTINUE
48
         CONTINUE
         CALL SORT
         WRITE(OF,999)
         DO 50 I-1,10
         J-19*I
         WRITE(OF,998) J,RAD(I)
5₿
         CONTINUE
998
         FORMAT(7X,13,7X,F18.4)
FORMAT(1X,"PERCENT ENERGY",5X,"RADIUS")
999
         RETURN
         END
         SUBROUTINE SORT
         PARAMETER NRAY-96, IP-11, OF-10, NF-2
COMMON/NAME/ANAME, IREC, LG, IC, NCOL
         COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY, LNX, THE
         COMMON/SD/SUR(10),CV(10),CC(10),TH(10),N(11,3)
         COMMON/TD/DEC(18,2), TILT(18,3), RDEC(18,2), RTILT(18,3), CVY(18), CVX(18)
         COMMON/TD/CVF(18)
         COMMON/RAYS/FOBY(NRAY), FOBX(NRAY), XTA(NRAY), YTA(NRAY), RA(NRAY), RAD(15)
         COMMON/RAYS/R(NRAY, 3)
         NRA-NRAY*NCOL
         DIMENSION A(288)
         REAL N, LNY, LNX
         DO 68 I-1,NRA
         A( I) -Ø
         DO 28 K-1, NCOL
         DO 18 J-1, NRAY
         A(I) = AMAXI(A(I),R(J,K))
15
         CONTINUE
28
         CONTINUE
         DO 48 K-1, NCOL
         DO 38 J-1, NRAY
         IF(A(I).NE.R(J,K)) GOTO 3#
         R(J,K) = \emptyset
         GOTO 6Ø
3Ø
         CONTINUE
         CONTINUE
48
68
         CONTINUE
         M-IFIX(NRA/18+.5)
         DO 78 I-1,9
         RAD(I) = A(NRA + 1 - M \times I)
78
         CONTINUE
         RAD(18) = A(1)
         RETURN
         END
```

APPENDIX B

EXAMPLES OF LENSES THROUGH WHICH RAYS CAN BE TRACED

1. Front Surface Reflective Fresnel

2. Rear Surface Reflective Fresnel

3. Rear Surface Transmissive Fresnel

Note that, when "Fresnel" is specified, the limitation of only a spherical base curve enters. This limitation can be removed, but isn't in this edition. The Fresnel elements, as specified by the "surface data," can be conic, toric, etc.

4. Flat Transmissive Fresnel

Note that a flat surface can be designated as a conic even though it is flat, and it will be treated as an asphere with the departure from the plane being the same as the departure of the corresponding conic from the sphere whose curvature it approximates at its vertex.