Integrálny počet Neurčitý integrál - 4.časť

Zuzana Minarechová

Katedra matematiky a deskriptívnej geometrie Slovenská technická univerzita, Stavebná fakulta

14 November 2022

- 1) Integrovanie iracionálnych funkcií
 - a) Odmocnina z lineárnej lomenej funkcie
 - b) Odmocnina z kvadratickej funkcie
- 2) Integrovanie transcendetných funkcií
- 3) Opakovanie neurčitých integrálov

Integrovanie iracionálnych funkcií

a) Odmocnina z lineárnej lomenej funkcie

Ak máme integrovať funkciu, v ktorej sa okrem algebraických operácií vyskytuje odmocnina z lineárnej lomenej funkcie (špeciálne z lineárnej funkcie), t.j. $\sqrt[n]{\frac{ax+b}{cx+d}}$ (špeciálne $\sqrt[n]{ax+b}$), tak použijeme substitúciu

$$t = \varphi(x) = \sqrt[n]{\frac{ax+b}{cx+d}}$$
 (resp. $t = \sqrt[n]{ax+b}$).

Pri tejto substitúcii je technicky výhodné vyjadriť inverznú funkciu

$$x = \varphi^{-1}(t)$$
 a $dx = (\varphi^{-1})'(t) dt$.

Všetky tieto vzťahy dosadíme do riešeného integrálu, ktorý tak prevedieme na integrál z racionálnej funkcie premennej t.

◆ロト ◆個ト ◆差ト ◆差ト 差 めの()・

Príklad 1

Vypočítame integrál $\int \frac{\sqrt{3x+4}}{x-\sqrt{3x+4}} dx$.

Riešenie:

V tomto príklade použijeme substitúciu $t=\sqrt{3x+4},\quad x\in\left(-\frac{4}{3},\infty\right)$ a vyjadríme inverznú funkciu $x=\frac{t^2-4}{3}$ a tiež $\mathrm{d}x=\frac{2t}{3}\,\mathrm{d}t$, dosadíme

$$I = \int \frac{t}{\frac{t^2 - 4}{3} - t} \left(\frac{2t}{3}\right) dt = 2 \int \frac{t^2 dt}{t^2 + 3t - 4} = 2 \int \left(1 + \frac{3t + 4}{t^2 - 3t - 4}\right) dt.$$

Rýdzo racionálnu funkciu v integrále rozložíme na súčet elem. zlomkov

$$\frac{3t+4}{t^2-3-4} = \frac{\frac{16}{5}}{t-4} - \frac{\frac{1}{5}}{t+1}$$

a pokračujeme v integrovaní

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ()

$$I = 2\left(t + \frac{16}{5}\ln|t - 4| - \frac{1}{5}\ln|t + 1|\right) + c.$$

Nakoniec výsledok vyjadríme v termínoch premennej x

$$I = 2(\sqrt{3x+4} + \frac{16}{5}\ln|\sqrt{3x+4} - 4| - \frac{1}{5}\ln|\sqrt{3x+4} + 1|) + c.$$

• V prípade, **že sa v integrovanej funkcii vyskytujú dve rôzne odmocniny** $\sqrt[n]{\frac{ax+b}{cx+d}}$ a $\sqrt[m]{\frac{ax+b}{cx+d}}$, použijeme substitúciu

$$t = \sqrt[k]{\frac{ax+b}{cx+d}},$$

kde k je **najmenší spoločný násobok** čísel m a n.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Príklad 2

Vypočítame integrál $\int \frac{\sqrt[4]{x}}{\sqrt[3]{x} + \sqrt{x}} dx$.

Riešenie:

Najmenší spoločný násobok čísel $2,\ 3$ a 4 je číslo 12. Preto použijeme substitúciu $t=\sqrt[12]{x}$, vyjadríme $x=t^{12}$ a $\mathrm{d}x=12t^{11}\,\mathrm{d}t$. Ďalej uvážime, že $\sqrt{x}=t^6$, $\sqrt[3]{x}=t^4$ a $\sqrt[4]{x}=t^3$ a dosadíme do pôvodného integrálu

$$I = \int \frac{\sqrt[4]{x}}{\sqrt[3]{x} + \sqrt{x}} dx = \int \frac{t^3}{t^4 + t^6} 12t^{11} dt = 12 \int \frac{t^{10}}{1 + t^2} dt.$$

Posledný integrál rozložíme na súčet mnohočlena a rýdzo racionálnej funkcie, a zintegrujeme

$$I = 12\left(\int (t^8 - t^6 + t^4 - t^2 + 1) dt - \int \frac{1}{t^2 + 1} dt\right) =$$

$$= 12\left(\frac{t^9}{9} - \frac{t^7}{7} + \frac{t^5}{5} - \frac{t^3}{3} + t - \operatorname{arctg} t\right) + c =$$

$$= 12\left(\frac{\sqrt[12]{x^9}}{9} - \frac{\sqrt[12]{x^7}}{7} + \frac{\sqrt[12]{x^5}}{5} - \frac{\sqrt[12]{x^3}}{3} + \sqrt[12]{x} - \operatorname{arctg} \sqrt[12]{x}\right) + c.$$

Príklad 3

Vypočítajte integrály (Satko, str.66/pr.6 b), c), d), e)):

a)
$$\int \frac{\sqrt[3]{x}}{x + \sqrt[6]{x^5}} \, \mathrm{d}x$$

b)
$$\int \frac{1}{x} \sqrt{\frac{1-x}{1+x}} \, \mathrm{d}x$$

c)
$$\int \frac{\sqrt{1+x}}{x} dx$$

d)
$$\int \frac{\sqrt{2x+3}+x}{\sqrt{2x+3}-x} \, \mathrm{d}x$$

b) Odmocnina z kvadratickej funkcie

Ak máme integrovať funkciu, v ktorej sa okrem algebraických operácií vyskytuje odmocnina z kvadratickej funkcie $\sqrt{ax^2+bx+c}$, postupujeme nasledovne:

Doplnením na štvorec a algebraickými úpravami a substitúciou prevedieme daný výraz na niektorý z výrazov:

$$\sqrt{r^2 - u^2}$$
, $\sqrt{r^2 + u^2}$, $\sqrt{u^2 - r^2}$.

Použitím substitúcií:

$$u = r \sin t \text{ pre } \sqrt{r^2 - u^2}$$

$$u = r \tan t \text{ pre } \sqrt{r^2 + u^2}$$

$$u = \frac{r}{\cos t} \text{ pre } \sqrt{u^2 - r^2}$$

prevedieme daný integrál na integrál z trigonometrickej funkcie.

Príklad 4

Vypočítame integrál $\int \frac{(x-1)^2}{\sqrt{8+2x-x^2}} dx$.

Riešenie:

Upravíme $\sqrt{8+2x-x^2}=\sqrt{9-(x-1)^2}$ a zvolíme u=x-1, a $\mathrm{d} u=\mathrm{d} x$. Potom môžeme písať

$$I = \int \frac{(x-1)^2}{\sqrt{8+2x-x^2}} \, \mathrm{d}x = \int \frac{u^2}{\sqrt{9-u^2}} \, \mathrm{d}u.$$

Použijeme substitúciu podľa návodu

$$u = 3\sin t, \quad t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

Potom $du = 3\cos t dt$ a

$$\sqrt{9 - u^2} = \sqrt{9 - 9\sin^2 t} = \sqrt{9\cos^2 t} = 3\cos t.$$

Dosadíme, v úprave použijeme trigonometrickú identitu $\sin^2 t = \frac{1-\cos 2t}{2}$ a integrujeme:

$$I = \int \frac{9\sin^2 t}{3\cos t} 3\cos t \, dt = 9 \int \sin^2 t \, dt = 9 \int \frac{1 - \cos 2t}{2} \, dt =$$

$$= \frac{9}{2} \left(t - \frac{\sin 2t}{2} \right) = \frac{9}{2} \left(\arcsin \frac{u}{3} - \frac{u}{3} \frac{\sqrt{9 - u^2}}{3} \right) =$$

$$= \frac{9}{2} \arcsin \left(\frac{x - 1}{3} \right) - \frac{(x - 1)}{2} \sqrt{8 + 2x - x^2} + c.$$

Príklad 5

Vypočítajte integrály (Satko, str.66/pr.6 g)):

a)
$$\int \frac{1}{\sqrt{8-6x-9x^2}} \, dx$$

b)
$$\int \frac{3x+2}{\sqrt{x^2+x+3}} \, \mathrm{d}x$$

c)
$$\int \frac{1}{x - \sqrt{x^2 - x + 1}} \, \mathrm{d}x$$

Integrovanie transcendetných funkcií

Integrovanie transcendetných funkcií

3) Integrovanie transcendetných funkcií

Transcendentné funkcie integrujeme podľa okolností buď metódou substitučnou alebo metódou per partes. Pri riešení je často potrebné opakovane kombinovať obidve metódy.

Príklad 6

Vypočítame integrál
$$I = \int x^3 \left(e^{-x^4} + \operatorname{arccotg} x \right) dx$$
.

Riešenie:

Daný integrál rozdelíme na dva. Prvý počítame pomocou substitučnej metódy, druhý metódou per partes.

$$\int x^3 e^{-x^4} dx \stackrel{t=-x^4}{=} -\frac{1}{4} \int e^t dt = -\frac{1}{4} e^{-x^4} + c,$$

Integrovanie transcendetných funkcií

$$\int x^3 \operatorname{arccotg} x = \begin{cases} u' = x^3 & v = \operatorname{arccotg} x \\ u = \frac{x^4}{4} & v' = -\frac{1}{1+x^2} \end{cases} =$$
$$= \frac{x^4}{4} \operatorname{arccotg} x + \frac{1}{4} \int \frac{x^4 dx}{1+x^2}$$

Posledný integrál z racionálnej funkcie počítame rozkladom na mnohočlen a rýdzo racionálnu funkciu

$$\int \frac{x^4 dx}{1+x^2} = \int \left(x^2 - 1 + \frac{1}{1+x^2}\right) dx = \frac{x^3}{3} - x - \operatorname{arccotg} x + c.$$

Celkový výsledok je súčtom obidvoch integrálov

$$I = -\frac{1}{4}e^{-x^4} + \frac{x^4}{4} \operatorname{arccotg} x + \frac{1}{4} \left(\frac{x^3}{3} - x - \operatorname{arccotg} x \right) + c.$$

Opakovanie

Integrovanie neurčitých integrálov

Príklad 7

Vypočítajte integrály:

a)
$$\int e^{x+e^x} dx$$

b)
$$\int x \sqrt[3]{x+4} \, \mathrm{d}x$$

c)
$$\int x^2 \arctan \frac{1}{x} dx$$

d)
$$\int \frac{8x - \arcsin^2 x}{\sqrt{1 - x^2}} dx$$

e)
$$\int (x^2 + 3x)e^{-5x} dx$$

f)
$$\int \frac{x}{1-x^2+\sqrt{1-x^2}} \, dx$$

g)
$$\int \cot g \, x \ln(\sin x) \, dx$$

h)
$$\int \frac{1}{\cos^2 x \sqrt{5 + \tan x}} dx$$

i)
$$\int \ln(x^2 - 2x - 3) \, dx$$

j)
$$\int \ln(x^2 + 2x + 3) \, dx$$

Ďakujem za pozornosť.