Title

D. Zack Garza

Friday 20th March, 2020

Contents

1 Friday February 21st 1.1 Singularities	
1 Friday February 21st	
1.1 Singularities	
Recall that there are three types of singularities:	
RemovablePolesEssential	
Theorem $1.1(3.2)$.	

An isolated singularity z_0 of f is a pole $\iff \lim_{z \longrightarrow z_0} f(z) = \infty$.

Theorem 1.2(3.3, Casorati-Weierstrass).

If f is holomorphic and has an essential singularity z_0 , then there exists a radius r such that $f(D_r(\lbrace z_0 \rbrace) \setminus \lbrace z_0 \rbrace)$ is dense in \mathbb{C} .

Proof.

Proceed by contradiction. Suppose there exists a $w \in \mathbb{C}$ and a $\delta > 0$ such that

$$D_{\delta}(w) \bigcap f(D_r(\{z_0\}) \setminus \{z_0\}) = \emptyset.$$

If $z \in D_r(w) \setminus z_0$, then $|f(z) - w| > \delta$. Let $g(z) = \frac{1}{f(z) - w}$; then $|g(z)| < \frac{1}{\delta}$.