

LP Modeling and Optimization of Networked Systems: Transportation, Assignment, Minimum Cost Flow, Shortest Path, and Max Flow

Andrés D. González

Assistant Professor

School of Industrial and Systems Engineering, The University of Oklahoma

ISE 4623/5023: Deterministic Systems Models / Systems Optimization

The University of Oklahoma, Norman, OK, USA

Why are networks of interest?

- Supply chain networks
- Transportation
- Energy
- Water supply and management
- Communications

(Norouzi et al, 2018)

Challenges

- Network modeling
- Handling uncertainty
- Large scale problems

Transportation Problem

Sets:

- $S = \text{set of } sources \{1, 2, ..., m\}$
- $D = \text{set of } destinations } \{1, 2, ..., n\}$

Parameters:

- a_i = supply of source node $i \in S$
- b_i = demand of destination node $j \in D$
- c_{ij} = unit cost of flow through arc (i,j), where $i \in S$ and $j \in D$

Objective:

 Minimize the transportation cost while satisfying demand and supply constraints

Transportation Problem

Sets:

- $S = \text{set of } sources \{1, 2, ..., m\}$
- $D = \text{set of } destinations } \{1, 2, ..., n\}$

Parameters:

- a_i = supply of source node $i \in S$
- b_i = demand of destination node $j \in D$
- c_{ij} = unit cost of flow through arc (i,j), where $i \in S$ and $j \in D$

Decision variables:

 x_{ij} = flow through arc (i, j), where $i \in S$ and $j \in D$

Objective function:

Demand

City	Production capacity (pencils)	Production capacity (pens)
Detroit	50	60
Denver	60	40

Supply

Actual amount shipped

Arc	Cost (pencils)	Cost (pens)	Arc capacity	1
Detroit → Boston	10	20	100	
$Detroit \to NewYork$	20	20	80	
Detroit → Seattle	60	80	120	
Denver → Boston	40	60	120	
Denver → New York	40	70	120	
Denver → Seattle	30	30	120	
	Detroit → Boston Detroit → New York Detroit → Seattle Denver → Boston Denver → New York	Detroit \rightarrow Boston10Detroit \rightarrow New York20Detroit \rightarrow Seattle60Denver \rightarrow Boston40Denver \rightarrow New York40	Detroit \rightarrow Boston1020Detroit \rightarrow New York2020Detroit \rightarrow Seattle6080Denver \rightarrow Boston4060Denver \rightarrow New York4070	Detroit → Boston 10 20 100 Detroit → New York 20 20 80 Detroit → Seattle 60 80 120 Denver → Boston 40 60 120 Denver → New York 40 70 120

Maximum capacity of the flow from the arc

Demand = Negative Value

Blue = Upper bound
Red = Lower Bound

Assignment Problem

Sets:

- $W = \text{set of } workers \{1, 2, ..., n\}$
- $J = \text{set of } jobs \{1, 2, ..., n\}$

Parameters:

• $c_{ij} = \text{cost of assigning worker } i \in W \text{ to } j \in J$

Objective:

 Minimize the total assignment cost while guaranteeing that (i) each worker has exactly one job assigned and (ii) each job has exactly one worker assigned Cost doesn't mean the cost of the employee. It means the relationship between the worker and the job. So you want to maximize the "cost", which would represent the worker's preference

Assignment Problem - Example

TYPE: Assignment problem

DIFFICULTY:

FEATURES: simple LP problem, graphical representation of results

DESCRIPTION: A set of projects is assigned to persons with the

objective to maximize the overall satisfaction.

A preference rating per person and project is given. In this model formulation the solution to the LP problem

is integer, there is no need to define the decision

variables explicitly as binaries.

PREF:: [1, 2, 3, 5, 4, 3, 2, 5, 4, 1, 3, 4, 1, 5, 2, 4, 3, 2, 5, 1, 2, 3, 5, 4, 1]

P [] P	REF	
1	1	
2		
3	2	
4	5	
5	4	
1	3	
2	2	
3	5	
4	4	
5	1	
1	3	
2	4	
3	1	
4	5	
5	2	
1	4	
2	3	
3	2	
4	5	
5	1	
1	2	
2 3		
3	5	
4	4	
5	1	

Assignment Problem - Example

```
PREF:: [1, 2, 3, 5, 4, 3, 2, 5, 4, 1, 3, 4, 1, 5, 2, 4, 3, 2, 5, 1, 2, 3, 5, 4, 1]
```

Total satisfaction score: 21
Person 1: project 5
Person 2: project 3
Person 3: project 2
Person 4: project 1
Person 5: project 4

Assignment Problem

Sets:

- $W = \text{set of } workers \{1, 2, ..., n\}$
- $J = \text{set of } jobs \{1, 2, ..., n\}$

Parameters:

• $c_{ij} = \text{cost of assigning worker } i \in W \text{ to } j \circ b \ j \in J$

Variables:

• x_{ij} : binary variable that is 1 if worker $i \in W$ is assigned to job $j \in J$; 0 otherwise.

Objective function:

$$\min z = \sum_{i \in W} \sum_{j \in I} c_{ij} x_{ij}$$

Constraints:

$$\sum_{i\in W} x_{ij} = 1, \qquad \forall j\in J$$
 Has to be 1 or 0
$$\sum_{j\in J} x_{ij} = 1, \qquad \forall i\in W$$

$$x_{ij}\in\{0,1\}\,, \ \forall i\in W, \ \forall j\in J$$
 Binary set

Given:

- $G = directed \ network (N, A)$
- N = set of n nodes
- A = set of m directed arcs.

(Ahuja, Magnanti & Orlin, 1993; Kennington, 2006; Vaidyanathan, 2010)

Each arc $(i, j) \in A$ has an associated:

- Cost c_{ii} (per unit flow on that arc),
- Lower bound I_{ii} and a capacity u_{ii} (minimum and maximum flow on the arc).

Blue = Upper bound

- We associate with each node $i \in N$ an integer b(i) representing its supply/demand.
 - If b(i) > 0, node i is a supply node
 - If b(i) < 0, then node i is a demand node with a demand of -b(i)
 - If b(i) = 0, then node i is a transshipment node

Blue = Upper bound

Objective

The *minimum cost flow problem* seeks a least cost shipment of a commodity through a network to satisfy demands at certain nodes by available supplies at other nodes.

Blue = Upper bound

Minimum Cost Flow Problem (MCFP)

• Sets:

N: Set of nodes {1,2,3, ..., *n*}

A: Set of arcs

Parameters:

 c_{ij} : unit cost of sending a commodity through arc $(i,j) \in A$

 b_i : demand/supply of commodities in node $i \in N$

 u_{ij} : maximum flow through arc $(i,j) \in A$ l_{ij} : minimum flow through arc $(i,j) \in A$

• Variables:

 x_{ij} : flow through arc $(i,j) \in A$

Objective function:

$$\min z = \sum_{(i,j)\in A} c_{ij} x_{ij}$$

Constraints:

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i, \qquad \forall i \in \mathbb{N}$$

$$x_{ij} \le u_{ij}, \quad \forall (i,j) \in A$$

 $x_{ij} \ge l_{ij}, \quad \forall (i,j) \in A$

```
from gurobipy import *
#create model
m=Model('MinimumCostFlowProblem')
#SETS AND #PARAMETERS
#Set N, parameter b
N, b= multidict({
    ('node1'): 5,
    ('node2'): 3,
    ('node3'):5,
    ('node4'):0,
    ('node5'):-5,
    ('node6'):-8
})
#Set A, Parameters L, u, c
A, l, u, c = multidict({
    ('node1','node2'): [2,5,1],
    ('node1','node3'): [2,8,4],
    ('node3','node2'): [2,8,2],
    ('node2', 'node4'): [0,7,3],
    ('node3','node5'): [1,8,1],
    ('node4', 'node5'): [1,9,5],
    ('node4', 'node6'): [1,6,2],
    ('node5','node6'): [0,6,3]
})
```

```
#VARIABLES
x=m.addVars(A, obj=c, name="x")
#OBJ FUNCTION
#Already done (when writing obj=c).
#You could also write:
\#z=sum(c[i,j]*x[i,j] \text{ for } i,j \text{ in } A)
#CONSTRAINTS
#upper bound
m.addConstrs((x[i,j]<=u[i,j] for i,j in A), "maxFlow")</pre>
#Lower bound
m.addConstrs((x[i,j]>=1[i,j] for i,j in A), "minFlow")
#flow-balance constraint
m.addConstrs((x.sum(i,'*')-x.sum('*',i)==b[i] for i in N), "flowBalance")
m.update()
m.params.outputflag=0
m.optimize()
if m.status==GRB.OPTIMAL:
    print('**Optimal Solution Found**\n--Objective Function--\n %g' % m.objVal)
    print('--Decision Variables--')
    for v in m.getVars(): print('%s: %g' % (v.varName, v.x))
    print('--Dual Variables--')
    for constraint in m.getConstrs(): print ('Dual variable of constraint %s: %g'%(constraint.constrName,constraint.Pi))
```



```
**Optimal Solution Found**
--Objective Function--
--Decision Variables--
x[node1,node2]: 2
x[node1,node3]: 3
x[node3,node2]: 2
x[node2,node4]: 7
x[node3,node5]: 6
x[node4,node5]: 1
x[node4,node6]: 6
x[node5,node6]: 2
--Dual Variables--
Dual variable of constraint maxFlow[node1,node2]: 0
Dual variable of constraint maxFlow[node1,node3]: 0
Dual variable of constraint maxFlow[node3,node2]: 0
Dual variable of constraint maxFlow[node2,node4]: 0
Dual variable of constraint maxFlow[node3,node5]: 0
Dual variable of constraint maxFlow[node4,node5]: 0
Dual variable of constraint maxFlow[node4,node6]: -6
Dual variable of constraint maxFlow[node5,node6]: 0
Dual variable of constraint minFlow[node1,node2]: 4
Dual variable of constraint minFlow[node1,node3]: 0
Dual variable of constraint minFlow[node3,node2]: 9
Dual variable of constraint minFlow[node2,node4]: 0
Dual variable of constraint minFlow[node3,node5]: 0
Dual variable of constraint minFlow[node4,node5]: 0
Dual variable of constraint minFlow[node4,node6]: 0
Dual variable of constraint minFlow[node5,node6]: 0
Dual variable of constraint flowBalance[node1]: 8
Dual variable of constraint flowBalance[node2]: 11
Dual variable of constraint flowBalance[node3]: 4
Dual variable of constraint flowBalance[node4]: 8
Dual variable of constraint flowBalance[node5]: 3
Dual variable of constraint flowBalance[node6]: 0
```

Multicommodity Minimum Cost Flow Problem (MMCFP)

• Sets:

N: Set of nodes {1,2,3, ..., *n*}

A: Set of arcs

L: Set of commodities

Parameters:

 c_{ijl} : unit cost of sending a commodity $l \in L$ through arc $(i, j) \in A$

 b_{il} : demand/supply of commodity $l \in L$ in node $i \in N$

 u_{ij} : maximum total flow through arc $(i,j) \in A$ l_{ij} : minimum total flow through arc $(i,j) \in A$

• Variables:

 x_{ijl} : flow of commodity $l \in L$ through arc $(i, j) \in A$

Objective function:

$$\min z = \sum_{l \in L} \sum_{(i,j) \in A} c_{ijl} x_{ijl}$$

• Constraints:

$$\sum_{j:(i,j)\in A} x_{ijl} - \sum_{j:(j,i)\in A} x_{jil} = b_{il},$$

$$\forall i \in N, \forall l \in L$$

$$\sum_{l \in L} x_{ijl} \le u_{ij}, \quad \forall (i,j) \in A$$

$$\sum_{l \in L} x_{ijl} \ge l_{ij}, \quad \forall (i,j) \in A$$

Minimum cost flow problem: related problems

The minimum cost flow problem can be applied to solve several other network flow problems such as:

- Shortest path problem
- Maximum flow problem
 - Transportation problem
- Assignment problem
- Airplane hopping problem

(Ahuja, Magnanti & Orlin, 1993; Kennington, 2006; Vaidyanathan, 2010)

Shortest path problem

Objective

The shortest path problem seeks a least cost shipment of a commodity between a two nodes.

Blue = Upper bound

Maximum flow problem

Objective

The maximum flow problem is to find the maximum feasible flow between a source node and a sink node

Artificial arc between the sink and the source, with cost 0, lower bound 0.

$$b(i) = 0$$

Total flow= 12

Blue = Upper bound

THANK YOU QUESTIONS?

Andrés D. González | andres.gonzalez@ou.edu