第二节

函数图形的描绘

- 一、曲线的渐近线
- 二、函数图形的描绘

一、曲线的渐近线

定义. 若曲线 C上的点M 沿着曲线无限地远离原点

时, 点M与某一直线L的距离趋于0,则称直线L为

曲线C的渐近线.

或为"纵坐标差"

例如, 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

有渐近线

$$\frac{x}{a} \pm \frac{y}{b} = 0$$

但抛物线 $y = x^2$ 无渐近线.

1. 水平与铅直渐近线

若 $\lim_{x \to +\infty} f(x) = b$,则曲线 y = f(x) 有水平渐近线 y = b.

$$(或x \rightarrow -\infty)$$

若 $\lim_{x \to x_0^+} f(x) = \infty$,则曲线 y = f(x) 有铅直渐近线 $x = x_0$.

例1. 求曲线 $y = \frac{1}{x-1} + 2$ 的渐近线.

$$\lim_{x \to \infty} \left(\frac{1}{x-1} + 2 \right) = 2$$

$$\lim_{x \to 1} \left(\frac{1}{x-1} + 2 \right) = \infty, \therefore x = 1$$
为铅直渐近线.

2. 斜渐近线

若
$$\lim_{\substack{x \to +\infty \\ (\vec{y}_x \to -\infty)}} [f(x) - (kx+b)] = 0$$
,则曲线 $y = f(x)$ 有 斜渐近线 $y = kx+b$.

$$\lim_{x \to +\infty} [f(x) - (kx + b)] = 0$$

$$\lim_{x \to +\infty} x \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$$

$$\lim_{x \to +\infty} \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$$

$$k = \lim_{x \to +\infty} \left[\frac{f(x)}{x} - \frac{b}{x} \right]$$

$$k = \lim_{\substack{x \to +\infty \\ (\stackrel{\sim}{\exists} x \to -\infty)}} \frac{f(x)}{x}$$

$$b = \lim_{\substack{x \to +\infty \\ (\vec{x}x \to -\infty)}} [f(x) - kx]$$

例2. 求曲线
$$y = \frac{x^3}{x^2 + 2x - 3}$$
 的渐近线

羅:
$$y = \frac{x^3}{(x+3)(x-1)}$$
, $\lim_{x \to -3} y = \infty$, (或 $x \to 1$)

所以有铅直渐近线 x = -3 及 x = 1

又因
$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 + 2x - 3} = 1$$

$$b = \lim_{x \to \infty} [f(x) - x] = \lim_{x \to \infty} \frac{-2x^2 + 3x}{x^2 + 2x - 3} = -2$$

$$\therefore$$
 $y = x - 2$ 为曲线的斜渐近线

二、函数图形的描绘

步骤:

- 1. 确定函数 y = f(x)的定义域,并考察其对称性及周期性;
- 2. **求** *f* ′(*x*), *f* ″(*x*),并求出 *f* ′(*x*) 及 *f* ″(*x*) 为 0 和不存在的点:
- 3. 列表判别增减及凹凸区间, 求出极值和拐点;
- 4. 求渐近线;
- 5. 确定某些特殊点,描绘函数图形.

例3. 描绘 $y = \frac{1}{3}x^3 - x^2 + 2$ 的图形.

解: 1) 定义域为 $(-\infty, +\infty)$, 无对称性及周期性.

2)
$$y' = x^2 - 2x$$
, $y'' = 2x - 2$,
 $\Leftrightarrow y' = 0$, $\Leftrightarrow x = 0$, 2
 $\Leftrightarrow y'' = 0$, $\Leftrightarrow x = 1$

3)
$$x$$
 $(-\infty,0)$ 0 $(0,1)$ 1 $(1,2)$ 2 $(2,+\infty)$ y' + 0 - 0 + + y'' - 0 + + $\frac{4}{3}$ $\frac{2}{3}$ $(极大)$ (扱点)

4) $\frac{|x|-1}{|y|} = \frac{3}{3}$

例4. 描绘方程 $(x-3)^2 + 4y - 4xy = 0$ 的图形.

解: 1)
$$y = \frac{(x-3)^2}{4(x-1)}$$
,定义域为($-\infty$,1),(1,+ ∞)

2) 求关键点

$$\therefore$$
 2(x-3) + 4y'-4y-4xy' = 0

$$\therefore y' = \frac{x-3-2y}{2(x-1)} = \frac{(x-3)(x+1)}{4(x-1)^2}$$

$$\therefore 2+4y''-8y'-4xy''=0$$

$$\therefore y'' = \frac{1 - 4y'}{2(x - 1)} = \frac{2}{(x - 1)^3}$$

3) 判别曲线形态

\mathcal{X}	$(-\infty,-1)$	-1	(-1,1)	1	(1,3)	3	$(3,+\infty)$
y'	+	0	-	-	_	0	+
y"	_		_	定	+		+
y		-2		义		0	
(极大)				(极小)			

4) 求渐近线

 $\lim_{x\to 1} y = \infty$, $\therefore x = 1$ 为铅直渐近线

$$y = \frac{(x-3)^2}{4(x-1)}, \quad y' = \frac{(x-3)(x+1)}{4(x-1)^2}, \quad y'' = \frac{2}{(x-1)^3}$$

又因 $\lim_{x \to \infty} \frac{y}{x} = \frac{1}{4}$,即 $k = \frac{1}{4}$

$$b = \lim_{x \to \infty} (y - \frac{1}{4}x) = \lim_{x \to \infty} \left[\frac{(x-3)^2}{4(x-1)} - \frac{1}{4}x \right]$$

$$= \lim_{x \to \infty} \frac{-5x + 9}{4(x - 1)} = -\frac{5}{4}$$

$$\therefore y = \frac{1}{4}x - \frac{5}{4}$$
为斜渐近线

5) 求特殊点
$$x = 0$$
 2 $y = -\frac{9}{4}$ $\frac{1}{4}$

$$y = \frac{(x-3)^2}{4(x-1)}$$

$$y' = \frac{(x-3)(x+1)}{4(x-1)^2}$$

$$y'' = \frac{2}{(x-1)^3}$$

6) 绘图

铅直渐近线
$$x=1$$

斜渐近线
$$y = \frac{1}{4}x - \frac{5}{4}$$

特殊点
$$\frac{x}{y} = \frac{0}{4} = \frac{2}{4}$$

三、练习

1. 作函数
$$f(x) = \frac{4(x+1)}{x^2} - 2$$
 的图形.

 \mathbf{p} $D: x \neq 0$, 非奇非偶函数,且无对称性.

$$f'(x) = -\frac{4(x+2)}{x^3}, \qquad f''(x) = \frac{8(x+3)}{x^4}.$$

令
$$f''(x) = 0$$
, 得特殊点 $x = -3$.

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \left[\frac{4(x+1)}{x^2} - 2 \right] = +\infty,$$

得铅直渐近线 x = 0.

列表确定函数升降区间,凹凸区间及极值点和拐点:

x	$(-\infty,-3)$	-3	(-3,-2)	-2	(-2,0)	0	$(0,+\infty)$
f'(x)			1	0	+	不存在	
f''(x)		0	+		+		+
f(x)		拐点 -3,- ²⁶ 9		极值点 一3)	间断点	

内容小结

1. 曲线渐近线的求法

水平渐近线; 铅直渐近线;

斜渐近线

2. 函数图形的描绘 ——— 按作图步骤进行

思考与练习

1. 曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$
 (*D*)

(A) 没有渐近线;

- (B) 仅有水平渐近线;
- (C) 仅有铅直渐近线;
- (D) 既有水平渐近线又有铅直渐近线.

$$\lim_{x \to \infty} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = 1; \qquad \lim_{x \to 0} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = \infty$$

2. 曲线 $y = 1 - e^{-x^2}$ 的凹区间是 $(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$,

凸区间是
$$\left(-\infty, \frac{-1}{\sqrt{2}}\right)$$
 及 $\left(\frac{1}{\sqrt{2}}, +\infty\right)$,

拐点为
$$(\pm \frac{1}{\sqrt{2}}, 1 - e^{\frac{-1}{2}})$$
, 渐近线 $y = 1$.

提示:

$$y'' = 2e^{-x^2}(1-2x^2)$$

备用题 求笛卡儿叶形线 $x^3 + y^3 = 3axy$ 的渐近线.

$$x = \frac{3at}{1+t^3}, \quad y = \frac{3at^2}{1+t^3} \quad t \neq -1$$

当 $x \to \infty$ 时 $t \to -1$, 因

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{t \to -1} \frac{3at^2}{1+t^3} / \frac{3at}{1+t^3} = -1$$

$$\lim_{x \to \infty} [y - (-x)] = \lim_{t \to -1} \left[\frac{3at^2}{1+t^3} + \frac{3at}{1+t^3} \right] = \lim_{t \to -1} \frac{3at(1+t)}{(1+t)(1-t+t^2)}$$

所以笛卡儿叶形线有斜渐近线 y = -x - a

笛卡儿叶形线

$$\begin{cases} x = \frac{3at}{1+t^3} \\ y = \frac{3at^2}{1+t^3} \end{cases}$$

参数的几何意义:

$$t = \tan \theta$$

动画开始或暂停
$$t \in (-\infty, -1) \to \theta \in (-\frac{\pi}{2}, -\frac{\pi}{4})$$
 图形在第四象限

点击图中任意点

$$t \in (-1, 0] \rightarrow \theta \in (\frac{3\pi}{4}, \pi]$$

图形在第二象限

$$t \in [0, +\infty) \rightarrow \theta \in [0, \frac{\pi}{2})$$

图形在第一象限

