Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

WATER SUPPLY OUTLOOK FOR WASHINGTON

Prepared by

U. S. DEPARTMENT of AGRICULTURE * SOIL CONSERVATION SERVICE

Collaborating with

DEPARTMENT OF ECOLOGY STATE OF WASHINGTON

Data included in this report were obtained by the agencies named above in cooperation with the U.S. Forest Service, U.S. Geological Survey, National Park Service, and other Federal, State and Private organizations.

TO RECIPIENTS OF WATER SUPPLY OUTLOOK REPORTS:

Most of the usable water in western states originates as mountain snowfall. This snowfall accumulates during the winter and spring, several months before the snow melts and appears as streamflow. Since the runoff from precipitation as snow is delayed, estimates of snowmelt runoff can be made well in advance of its occurrence. Streamflow forecasts published in this report are based principally on measurement of the water equivalent of the mountain snowpack.

Forecasts become more accurate as more of the data affecting runoff are measured. All forecasts assume that climatic factors during the remainder of the snow accumulation and melt season will interact with a resultant average effect on runoff. Early season forecasts are therefore subject to a greater change than those made on later dates.

The snow course measurement is obtained by sampling snow depth and water equivalent at surveyed and marked locations in mountain areas. A total of about ten samples are taken at each location. The average of these are reported as snow depth and water equivalent. These measurements are repeated in the same location near the same dates each year.

Snow surveys are made monthly or semi-monthly from January 1 through June 1 in most states. There are about 1900 snow courses in Western United States and in the Columbia Basin in British Columbia. Networks of automatic snow water equivalent and related data sensing devices, along with radio telemetry are expanding and will provide a continuous record of snow water and other parameters of key locations.

Detailed data on snow course and soil moisture measurements are presented in state and local reports. Other data on reservoir storage, summaries of precipitation, current streamflow, and soil moisture conditions at valley elevations are also included. The report for Western United States presents a broad picture of water supply outlook conditions, including selected streamflow forecasts, summary of snow accumulation to date, and storage in larger reservoirs.

Snow survey and soil moisture data for the period of record are published by the Soil Conservation Service by states about every five years. Data for the current year is summarized in a West-wide basic data summary and published about October 1 of each year.

COVER PHOTO NUMBER ORC 221-3

PUBLISHED BY SOIL CONSERVATION SERVICE

The Soil Conservation Service publishes reports following the principal snow survey dates from January 1 through June 1 in cooperation with state water administrators, agricultural experiment stations and others. Copies of the reports for Western United States and all state reports may be obtained from Soil Conservation Service, Western Regional Technical Service Center, Room 209, 701 N. W. Glisan, Portland, Oregon 97209.

Copies of state and local reports may also be obtained from state offices of the Soil Conservation Service in the following states:

STATE	ADDRESS
Alaska	P. O. Box "F", Palmer, Alaska 99645
Arizona	6029 Federal Building, Phoenix, Arizona 85025
Colorado (N. Mex.)	P. O. Box 17107, Denver, Colorado 80217
Idaho	Room 345, 304 N. 8th. St., Boise, Idaho 83702.
Montana	P. O. Box 970, Bozeman, Montana 59715
Nevada	P. O. Box 4850, Reno Nevada 89505
Oregon	1218 S. W. Washington St., Portland, Oregon 97205
Utah	4012 Federal Bldg., 125 South State St., Salt Lake City, Utah 84111
Washington	360 U.S. Court House, Spokane, Washington 99201
Wyoming	P. O. Box 2440, Casper, Wyoming 82601

PUBLISHED BY OTHER AGENCIES

Water Supply Outlook reports prepared by other agencies include a report for California by the Water Supply Forecast and Snow Surveys Unit, California Department of Water Resources, P. O. Box 388, Sacramento, California 95802 --- and for British Columbia by the Department of Lands, Forests and Water Resources, Water Resources Service, Parliament Building, Victoria, British Columbia

USDA SCS PORTLAND OREG 1970

WATER SUPPLY OUTLOOK FOR WASHINGTON

and FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

Issued by

KENNETH E. GRANT

ADMINISTRATOR
SOIL CONSERVATION SERVICE
WASHINGTON, D.C.

Released by

ORLO W. KRAUTER

STATE CONSERVATIONIST SOIL CONSERVATION SERVICE SPOKANE, WASHINGTON

In Cooperation with

JOHN A. BIGGS

DIRECTOR
DEPARTMENT OF ECOLOGY
STATE OF WASHINGTON

Report prepared by

ROBERT T. DAVIS, Snow Survey Supervisor

SOIL CONSERVATION SERVICE 360 U.S. COURTHOUSE SPOKANE, WASHINGTON 99201

WATER SUPPLY OUTLOOK

State of Washington June 1, 1972

In spite of the excessive high water that has been experienced, during the last of May and first of June, in certain portions of the state the weather has been very favorable to an orderly runoff. Periods of hot weather were followed by sub-normal temperatures. This type of weather pattern, while extending * the runoff period reduces the maximum stages that could have * been experienced. Precipitation was above normal except on the * west side and in the Columbia drainage in Canada during May. * The greatest above normal, percentagewise, occurred in the * North Central area that produced the high water. Lack of daily temperature and rainfall records from the water-producing areas, both in the United States and Canada, prevented the flood forecasting agencies from making earlier assessments of water stages * expected. The snow was in the mountains that could have pro-* duced much higher peaks than have already occurred. * * Volumewise it appears that the forecasted flows will closely * * approach the actual runoff both that which has occurred and * that which is yet to come. There is still plenty of snow at the higher elevations which will tend to sustain flows during * * the summer runoff season. *

SNOW COVER

There are not too many snow courses measured on May 15 and even fewer on June 1. Most of the snow courses below 4000 feet elevation are now bare except in the Cascade Range but in the areas where there is snow it is well-above average. The snow is very dense and any rain that falls on it flows out the bottom almost immediately while increasing the snow melt substantially. Most of the snow courses that do have a history of snow cover on June 1 have a snowpack that ranges from 150 percent to 300 percent of normal with a marked increase, percentagewise, from that measured on May 15.

RESERVOIRS

Several of the irrigation and power reservoirs in the state have been filled, while most are still being held down for flood control. Reservoirs, like Coeur d'Alene Lake, with restricted outlet channels have filled involuntarily. Others have been operated to pass the greatest amount, without damage to the reaches below the dams, but inflows have brought them up to higher levels than wished. All reservoirs will fill and with the expected late-season runoff carry-over storage will be good.

A TABLE TO

the second secon and an entire of the control of the second of the control of the c The same of the sa · Line of the state of the stat the state of the s the state of the s the control of the second of t and the second of the second o . 100 1/2

7. 1 2. h

17.19 1 4.2 B. 1

PRECIPITATION

As stated above, precipitation during May was normal or above in all areas except for three drainage divisions, as reported by the National Weather Service. When combined with April rainfall only the central area of Yakima, Wenatchee and Chelan had below-normal rainfall and that only by four percent. The north central drainage division of the Methow and Okanogan drainages continues to have well above-normal valley precipitation.

STREAMFLOW

There was only one river, the Chehalis in southwestern Washington, considered in this report that had below normal runoff and this only by two percent. This resulted from the 34 percent below-normal precipitation which occurred in that area. All other rivers have reported above to well above-normal runoffs during May. The range on the main stem of the Columbia was 13 percent above at Birchbank to 28 percent above at The Dalles. High flows, 83 and 84 percent above normal, were experienced on the Similkameen and Okanogan Rivers during the month. Inflow to the five Yakima reservoirs was 51 percent above normal while the Walla Walla as measured at Touchet had flows 45 percent above normal. Even the Palouse River which drains north central Idaho and eastern Washington grain lands had a flow that was 46 percent above normal.

RESERVOIR STORAGE - 1000 Acre Feet

BASIN or		USABLE 1/		Measured (June)			
STREAM	RESERVOIR	CAPACITY	1972	1971	1970	Normal*	
		COLUMBIA					
Spokane	Coeur d'Alene Lake	225.1	467.2	387.6	344.9	327.0	
Columbia	Franklin D. Roosevelt Lake	5232.0	1722.0	2703.6	2141.4	3965.2	
Columbia	Banks Lake	761.8	381.3	517.7	712.2	435.3	
0kanogan	Conconully Reservoir	13.0	12.1	12.0	5.9	9.8	
0kanogan	Salmon Lake	10.5	10.5	7.8	9.3	9.6	
Chelan	Lake Chelan	676.1	481.3	461.4	309.6	467.6	
		YAKIMA					
Yakima	Keechelus Lake	157.8	138.2	143.0	144.6	144.8	
Kachess	Kachess Lake	239.0	209.8	222.2	219.4	228.9	
Cle Elum	Lake Cle Elum	436.9	319.1	378.1	328.8	395.8	
Bumping	Bumping Lake	33.7	31.0	17.5	29.7	30.6	
Tieton	Rimrock Lake	198.0	129.3	146.3	157.1	180.4	
		PUGET SOUN	√D				
Skagit	Ross Reservoir	1404.1	1315.6	1323.1	890.8	1000.5	
Skagit	Diablo Reservoir	90.6	88.9	87.8	86.5	84.1	
Skagit	Gorge Reservoir	9.8	8.7	8.4	8.3	60 40	

^{1/} Based on Active Storage

^{* 15-}year average 1953-67

Drainage			Profile	(Inches):	Soil	Moisture Co	ntent
and	Number	Elev.		Total :	(Inc	hes)as of J	une 1
Station			Depth	Capacity:	1972	1971	1970
CRAB CREEK							
Jack Woods	18B3m	2750	48	13.6	10.2	9.6	8.5
Krause	18B4m	2420	48	13.6	9.0	8.7	8.7
Sheffels	18B5m	2380	48	13.6	9.9	9.1	8.6
Sherman	18B7m	2440	48	13.6	9.1	8.2	8.2
Wheatridge	18B6m	2290	48	13.6	10.0		8.4
OKANOGAN							
Salmon Meadows	19A2M	4500	48	5.4	3.7	3.6	3.7
Trout Creek	3-M	3600	48	7.3	5.6*	4.5	
YAKIMA							
Domery Flat	21B20m	2200	48	6.9	4.5	4.5	4.4
Lake Cle Elum	21B14M	2200	48	12.8	9.2	9.2	9.2
WALLA WALLA							
Couse	17C3m	3650	48	11.1	10.2	9.8	9.8
Helmers	17C2M	4400	48	12.0	10.9	10.1	9.7
WENATCHEE							
Upper Wheeler	20B7M	4400	48	12.7	9.8	9.9	9.2

^{*} May 1 measurement

FALL SOIL MOISTURE

Drainage Basin			Profile	(Inches):		Moisture Con	
and	Number	Elev.		Total :	(Inch	es) as of Oc	t. 1
Station			Depth	Capacity:	1971	1970	1969
CRAB CREEK							
Jack Woods	18B3m	2750	48	13.6	5.3	7.0	7.5
Krause	18B4m	2420	48	13.6	5.0	4.4	5.9
Sheffels	18B5m	2380	48	13.6	5.3	4.4	4.5
Sherman	18B7m	2440	48	13.6	4.0	3.8	4.2
Wheatridge	18B6m	2290	48	13.6	5.5	7.8	5.4
OKANOGAN							
Salmon Meadows	19A2M	4500	48	5.4	2.7	1.7	2.7
Trout Creek	3-M	3600	48	7.3	3.3	3.4*	3.8*
YAKIMA							
Domery Flat	21B20m	2200	48	6.9	2.1	2.4	
Lake Cle Elum	21B14M	2200	48	12.8	7.1	7.6	
WALLA WALLA							
Couse	17C3m	3650	48	11.1	6.2	5.9	6.1
Helmers	18C2M	4400	48	12.0	8.2	7.3	7.1
WENATCHEE							
Upper Wheeler	20 B7M	4400	48	12.7	6.5	5.1	9.8

^{*} Nov 1 measurements

PRECIPITATION $\frac{1}{2}$ Division Averages and Departures

	F.	ALL	WINT	TER 0/	SPRIN	G o
DRAINAGE	Sept-0	ct 1971 $\frac{2}{}$	Nov. '71 -	- Mar. '72 2/	April-Ma	$v^{1}72^{\frac{2}{2}}$
-		Departure	Observed .	- Departure O	bserved -	
DIVIDION						
Columbia in Canada	4.45	+ 0.56	18.14	+ 5.45	3.21	+ .07
Pend Oreille - Spokane	4.63	+ 0.48	22.16	+ 3.91	4.82	+ .18
Northeastern Washington	3.16	+ 0.91	9.92	- 1.17	3.75	+ .43
Southeastern Washington	n 3.73	+ 1.08	15.47	+ 3.06	4.39	+ .78
Central Washington	4.15	- 0.29	39.29	+12.16	3.37	06
Nameth Control Hopkingto	on 1.99	+ 0.58	10.09	+ 3.75	2.99	+ 1.19
North Central Washingto	on 1.99	T 0.30	10.09	T 3.73	2,99	т 1.19
Northwest Slope Cascade	es 11.60	- 0.07	66.90	+14.76	11.25	+ 1.62
MOLENWESSE STOPE Gaseage	11.00	0.07	201,70	210,0	11,23	1.02
Southwest Slope Cascade	es 9.33	+ 1.61	54.96	+14.09	8.57	+ 1.53
		• • •				

Northeastern Washington

Southeastern Washington

Central Washington

North Central Washington

Northwest Slope Cascades

Southwest Slope Cascades

- Lower Spokane, Colville, Sanpoil and lower Kettle drainages.
- Touchet, Tucannon and Palouse drainages
- Yakima, Wenatchee and Chelan drainages
- Methow and Okanogan drainages
- Puget Sound drainages
- Lower Columbia drainages
- 1/ Preliminary analysis by National Weather Service from data furnished by Meteorological Services of Canada and National Weather Service
- 2/ Departure from 15-year (1953-67) drainage division average

Berne-Mill Creek SNOW PILLOW DATA

June 1, 1972

Cougar Mountain - FS

SNOW PILLOW DATA

June 1, 1972

Trough No. 2 SNOW PILLOW DATA

June 1, 1972

APPENDIX 1
CORRECTIONS AND ADDITIONS - 1972 SNOW REPORTS

SNOW THIS YEAR PAST RECORD Water Content (inches) DRAINAGE BASIN and/or SNOW COURSE Snow Depth (Inches) Water Content (Inches) Date of Survey Last Year Average -NAME No. Elevation February 1 ENTIAT RIVER 20B27a 7000 2/1 108 34.6 Four Mile Ridge + New aerial NOOKSACK RIVER 21A23 3700 2/3 87 32.8 Glacier Creek March 1 OKANOGAN RIVER 7000 Clark + 19A8a 29.7 22.7 18.0* 6390 18.5 19A9a 19.1 Muckamuck + Starvation Mtn. + 20.5 19A10a 6750 17.7* METHOW RIVER 20A5A 6500 3/8 186 62.6 49.6 38.5 Harts Pass YAKIMA RIVER 21C8 3450 3/1 20.4 22.8 15.3 Bumping Lake 61 174 21C13 6000 3/4 65.2 45.8 33.2* #Corral Pass Lemah Creek + 21B47a 3327 3/7 156 65.5 49.4 21B49a 3024 3/7 165 69.3 54.2 Waptus Lake + COWLITZ RIVER 5300 3/4 71.6% Cayuse Pass 21C6 275 112.8 102.7 137 4100 3/7 62.9 34.4* Mosquito Meadows 21C19 62.0 WHITE RIVER 21C13 6000 3/4 174 65.2 45.8 33.2* Corral Pass GREEN RIVER 221 95.0 64.0 21B43SP 5000 3/7 Snowshoe Butte SP

[#] Not located directly on this drainage

⁺ Snow water equivalent estimated from aerial stadia observation

^{*} Adjusted 1953-67 average

SNOW				THIS YEAR		PAST RI	ECORD
DRAINAGE BASIN and/or S			Snow Depth	Water Content	Water Conte	nt (Inches)	
NAME	No.	Elevation	of Survey	(Inches)	(Inches)	Last Year	Average -
		March	1 (Cont.	.)			
SKAGIT RIVER							
Beaver Creek Trail Devils Park #Harts Pass	21A4 20A4 20A5A	2200 5900 6500	3/8 3/8 3/8	65 192 186	24.3 68.6 62.6	23.4 45.5 49.6	14.0* 39.1 38.5
		Ap	ril 1				
OKANOGAN RIVER							
Clark + Muckamuck + Starvation Mtn. +	19A8a 19A9a 19A10a	7000 6390 6750	$\frac{\frac{4}{1}}{\frac{4}{1}}$	96 53 69	$\frac{35.5}{19.6}$ $\frac{25.5}{2}$	29.9 21.1 23.5	23.1* 17.5* 22.7*
ENTIAT RIVER							
Four Mile Ridge +	20B27a	7000	3/15	120	52.8	New ae	rial
BAKER RIVER							
Mount Blum +	21A18a	5800	3/29	180	86.4		
	~	Ma	ay 1_				
OKANOGAN RIVER							
Muckamuck + Starvation Mtn. +	19A9a 19A10a	6390 6750	•	58 78	$\frac{26.7}{35.9}$	23.0 27.1	25.1*
ENTIAT RIVER							
Four Mile Ridge +	20B27a	7000	$\frac{4/15}{5/1}$ $\frac{4/28}{4/28}$	108 108 106	$\frac{51.8}{55.1}$	New ae	rial
Shady Pass	20A37	5000	4/28	106	54.2	37.4	on ==
YAKIMA RIVER							
Morse Lake	21C17	5400	4/27	183	87.8	102.6	62.4*

[#] Not located directly on this drainage

⁺ Snow water equivalent estimated from aerial stadia observation

^{*} Adjusted 1953-67 average

APPENDIX 3

SNOW DATA MAY 1 to JUNE 1, 1972

THIS YEAR PAST RECORD

DRAINAGE BASIN and/or SNOW COURSE

Date of Survey

NAME

NO. Elevation

SNOW DATA MAY 1 to JUNE 1, 1972

THIS YEAR

PAST RECORD

Water Content (inches)

Last Year Average J

UPPER COLUMBIA DRAINAGE

PEND OREILLE RIVER 5/15 43.4 Baree Creek 15B11 5500 107 61.2 39.8 25.4 26.8 Baree Midway 15B16 4600 5/15 70 37.6 15B15 3800 5/15 0 0.0 0.0 0.0 Baree Trail 26.2 14.0 Heart Lake Trail 14C10 4800 5/16 50 6/1 6.1 2.0 11 55.2 5/16 153 83.4 Hoodo Basin 15C10 6000 6/1 110 63.4 42.3 --52.7 42.5 79.2 Hoodo Creek 15C1 5900 5/16 145 42.4 32.0 6/1 106 61.4 47.0 39.5 28.4 5250 5/15 84 Lookout 15B2 6/1 46 25.3 18.2 --5/12 5 2.4 1.0 0.8** 3050 Nelson Canada 16A6 4500 5/31 0 0.0 0.0 Schweitzer Bowl --5/31 62 34.8 39.2 16A5 6100 Schweitzer Ridge KETTLE RIVER 5500 53 23.0 17.9 17.6** Big White Mountain Canada 5/14 5/30 22 11.4 11.2 9.3** Canada 4100 5/14 0 0.0 0.0 Carmi Not Measured 0.0 5/14 0.0 0.0** Canada 3050 0 0.0 Lower Trapping Cr. Not Measured 0.0 5/15 29 14.0 4.7 9.4** #Monashee Pass Canada 4500 0.0 12 5.8 5/29 --33.6 25.6 28.8** Old Glory Mountain Canada 7000 5/13 80 5/27 61 31.1 15.9 17.6** 0.0 0.6** Upper Trapping Cr. Canada 5500 5/14 0 0.0 Not Measured 0.0 SPOKANE RIVER 116 57.4 46.0 6000 5/28 Granite Peak 15B13A

5/15

6/1

5/28

5/28

84

46

161

121

47.0

25.3

83.0

61.0

15B2

15B14A

15B4A

5250

6000

6150

#Lookout

Lost Lake

Medicine Ridge

39.5

18.2

55.0

45.4

[#] Not located directly on this drainage

^{**} Average for years of record

SNOW			THIS YEAR			PAST RECORD		
DRAINAGE BASIN and/or SNOW COURSE		Date	Snow Depth	Water Content	Water Content (inches)			
NAME	No.	Elevation	of Survey	(Inches)	(Inches)	Last Year	Average 1/	
OKANOGAN RIVER								
Blackwall Peak	Canada	6250	5/11	124	61.0	43.5	36.6**	
		1500	5/30	90	49.8	39.0	28.7**	
Bouleau Lake	Canada	4500	5/28	17	4.6			
Bouleau Creek	Canada	5000	5/14	27	10.7	600 600	5.5**	
Brookmere	Canada	3200	5/15	18	8.2	2.0	2.3**	
DI OORMEI C	Ganaca	3200	5/30	0	0.0	2.0	2.5	
Enderby	Canada	6250	5/8	132	55.6	46.8	44.5**	
Linderby	Janada	0250	5/29	101	48.9	38.3	39.9**	
Hamilton Hill	Canada	4900	5/27	29	15.8	0.0	1.0**	
Isontok Lake	Canada	5510	5/13	35	15.1	1.0	3.3**	
ISOHOR Dake	Canada	3310	5/27	18	8.3			
Lost Horse Mountain	Canada	6300	5/11	58	22.7	8.2	9.6**	
Lost noise rountain	Canada	0300	Late R		22./	4.2	3.5**	
I Fanoman Cm	Canada	4270		•	7 0			
Lower Esperon Cr.	Canada	4270	5/15 5/27	17	7.2	0.0	0.2**	
Wa Could a ab	Compain	/200	•	0	0.0	0.0		
McCulloch	Canada	4200	5/10	4	1.4	0.0	0.6**	
W: 111 - P G-	0 1 .	/ =00	5/25	0	0.0	m= 1 (0	
Middle Esperon Cr.	Canada	4580	5/1.5	23	9.8	4.6	2.5**	
Missas Is Novembris	01	E100	5/27	0	0.0	4C3 460		
Missezula Mountain	Canada	5100	5/27	0	0.0	17 (*	0.0	
Mission Creek	Canada	6000	5/12	65	27.4	17.5	18.8**	
W I Dane	01-	1500	5/26	44	21.7	15.3	11.1**	
Monashee Pass	Canada	4500	5/15	29	14.0	4.7	9.4**	
N . 77 1 .	0 - 1 -	5050	5/29	12	5.8	0.0	1.9**	
Mount Kobau	Canada	5950	5/15	42	17.0	9.7	9.7**	
	a 1	/ 000	6/1	16	5.4	1.1	1.7**	
New Copper Mountain	Canada	4300	5/11	3	1.3			
New Penticton Res.	Canada	6200	5/12-	32	13.0			
Nickel Plate Mtn.	Canada	6200	5/14	41	15.8	4.6	6.4**	
1.201.02 224.00 3.02.0			5/30	24	10.6	2.3	4.6**	
Postill Lake	Canada	4500	5/11	17	7.1		3.8**	
#Quartette Lake	Canada	4000	5/26	37	18.5	** ***		
Silver Star Mtn.	Canada	6050	5/13	82	40.0	22.5	25.1**	
Silver Star Mtm.	Canada	0000	5/27	60	32.6	13.9	14.4**	
Summerland Res.	Canada	4200	5/13	18	8.6	0.7	1.7**	
Summer rand kes.	Canada	4200	5/13			U./	1./**	
Trant Crast	Conneda	4700		1 30	0.6	0.7	1.2**	
Trout Creek	Canada	4700	5/11		12.1			
Personale 341	0 1	4.000	5/24	10	4.5			
Brenda Mine	Canada	4800	5/12 Late R	30	14.5	0.0	0.0**	
			nate V	chorr		0.0	0.0**	

[#] Not located directly on this drainage

^{**} Average for years of record

SNOW				THIS YEAR	Y	PAST R	ECORD
DRAINAGE BASIN and/or SI	NOW COURSE		Date	Snow Depth	Water Content	Water Conte	ent (Inches)
NAME	No.	Elevation	of Survey	(Inches)	(Inches)	Last Year	Average
OKANOGAN RIVER (Cont.)						
Upper Esperon Cr.	Canada	5290	5/27	21	10.5		
White Rocks Mtn.	Canada	6000	5/12	68	32.5	en en	
			5/26	44	22.3		
Vaseux Cr.	Canada	4050	5/14	4	1.0		
ENTIAT RIVER							
Entiat Meadows +	20A33a	4800	5/16	94	49.8	47.6	
			5/31	70	42.0	32.9	
Entiat River Trail +	20A34a	3150	5/16	0	0.0	6.0	
			5/31	0	0.0	0.0	
Four Mile Ridge +	20B27a	7000	5/10	102	54.1	New a	aerial
			5/31	60	36.0		
Fox Camp +	20A36a	6510	5/16	156	82.7	69.4	
			5/31	122	73.2	67.8	CH 66
Pope Ridge	20B20	4300	5/12	6	3.3	2.5	
			Not Me			0.0	
Pugh Ridge +	20A32a	6400	5/16	101	53.5	30.3	
			5/31	75	45.0	24.9	
Shady Pass	20A37	5000	5/15	86	45.5	19.6	60 es
			6/1	45	27.0		
Snow Brushy +	20435a	3850	5/ 16	60	31.8	30.3	19.9*
			5/31	33	19.8	16.2	
Tommy Creek +	20B21£	5300	5/16	26	13.8	12.9	9.2*
			5/31	12	7.2	2.8	
WENATCHEE RIVER							
Berne-Mill Creek	21B23	2925	5/26	26	14.8		
Stevens Pass	21B23 21B1	4070	5/15	142	80.1	68.1	46.6
Stevens rass	2101	4070	5/26	124	75.9	58.6	31.2*
Stevens Pass S. Shed	21B45	3700	5/15	74	42.5		J1.2"
beevens rass s. shed	215-3	3700	5/26	56	32.8	24.7	
YAKIMA RIVER							
Demodes T-1-	2100	2/50	E /1 /	0	1. 1.	10 5	
Bumping Lake	2108	3450 3400	5/14 5/14	8 2 0	4.4 11.4	10.5 16.9	
Bumping Lake New	21C36	3400	3/14	20	TT.4	10.9	

⁺ Snow water equivalent estimated from aerial stadia observation

^{*} Adjusted 1953-67 average

DRAINAGE BASIN and/or SNOW COURSE Da of Sul	30 204 30 27 Measure .5 118	120.4 15.9 45.0	Last Year	Average
YAKIMA RIVER (Cont.) YAKIMA RIVER (Cont.) Joe Lake + 21B46a 4624 5/3 Lemah Creek + 21B47a 3327 5/3 #Olallie Meadows 21B2 3625 Not #Stampede Pass 21B10 3000 5/1	30 204 30 27 Measure .5 118	120.4 15.9 45.0	66.3	Average V
Joe Lake + 21B46a 4624 5/3 Lemah Creek + 21B47a 3327 5/3 #Olallie Meadows 21B2 3625 Nov #Stampede Pass 21B10 3000 5/1	Measure .5 118	15.9 45.0	66.3	
Lemah Creek + 21B47a 3327 5/3 #Olallie Meadows 21B2 3625 No. #Stampede Pass 21B10 3000 5/1	Measure .5 118	15.9 45.0	66.3	
Lemah Creek + 21B47a 3327 5/3 #Olallie Meadows 21B2 3625 No. #Stampede Pass 21B10 3000 5/1	Measure .5 118	15.9 45.0	66.3	
#Olallie Meadows 21B2 3625 Nor #Stampede Pass 21B10 3000 5/1	Measure .5 118 . 76	45.0		
#Stampede Pass 21B10 3000 5/1	. 76			
	. 76		57.2	34.8
		43.6	42.4	18.5*
Tunnel Avenue 21B8 2450 5/3	.0 59	19.5	20.8	
5/3		3.4		
Van Epps Pass + 20B26a 5925 5/3		85.0		
Waptus Lake + 21B49a 3024 5/3		26.6		
White Pass E. Side 21C28 4500 5/3		46.1	31.6	23.0*
6/		33.1		12.7*
	Measured		31.5	14.7
Willte 1 ass 1. Dake 21027 4500 100	. Ilcabarca	•	21.7	
COWLITZ RIVER				
Pigtail Peak 21C33 5900 5/3	.5 208	119.2	93.8	
6/1	. 171	103.8		
#White Pass E. Side 21C28 4500 5/3	5 84	46.1	31.6	23.0*
6/1		33.1		12.7*
·	Measured		31.5	
PUGET SCUND GREEN RIVER	DRAIN	I A G E		
Cougar Mtn. SP 21B42SP 3200 No	Measure	d	5.2	
— — — — — — — — — — — — — — — — — — —	: Measure		76.6	
- 4		45.0		
	l 76		42.4	
	. 70	43.0	44.4	10.5
SNOQUALMIE RIVER				
	. M	•	(()	
Olallie Meadows 21B2 3625 No	Measured		66.3	
SKYKOMISH RIVER				
#Stevens Pass 21B1 4070 5/3	5 142	80.1		
	26 124			31.2*
# = =	L5 74			
5/2	26 56	32.8	24.7	

⁺ Snow water equivalent estimated from aerial stadia observation

[#] Not located directly on this drainage

^{*} Adjusted 1953-67 average

APPENDIX 7

SNOW				THIS YEAR		PAST R	ECORD
DRAINAGE BASIN and/or SNO	OW COURSE	W COURSE		Snow Depth	Water Content	. Water Content (inches)	
NAME	No.	Elevation	Date of Survey	(Inches)	(Inches)	Last Year	Average
SKAGIT RIVER							
Klesilkwa	Canada	3700	5/15	3 8	19.3		
New Tashme	Canada	2500	5/11	18	8.3		
Quartette Lake	Canada	4000	5/13 5/26	49 37	21.4 18.5		
BAKER RIVER							
Baker Pass +	21A27	4900	Not Me	easured			
Dock Butte +	21A11A	3800	Not Me 5/31	easured 140	77.0		82.9* 66.1*
Easy Pass	21A7A	5200	Not Me 5/31	easured 168	92.4		108.0*
Jasper Pass	21A6A	5400	Not Me 5/31	easured 140	77.0		112.7*
Marten Lake	21A9A	3600	Not Me 5/31	easured 165	90.8		76.3* 65.1*
Mount Blum +	21A18a	5800	Not Me 5/31	easured 150	82.5		
Rocky Creek +	21A12A	2100	Not Me 5/31	easured 0	0.0		
Schreibers Meadow +	21A10A	3400	Not Me 5/31	easured 130	71.5		69.8*
S. F. Thunder Creek +	21A14A	2200	Not Me	easured			
Watson Lakes +	21A8A	4500	Not Me 5/31	easured 144	79.2		81.7* 68.8*

Agencies Assisting with Snow Surveys

GOVERNMENT AGENCIES

Canada:

Department of Lands, Forests and Water Resources, Water Resources Service, British Columbia

States:

Washington State Department of Ecology Washington State Department of Natural Resources

Federal:

Department of the Army
Corps of Engineers
U. S. Department of Agriculture
Forest Service
U. S. Department of Commerce
NOAA, National Weather Service
U. S. Department of the Interior
Bonneville Power Administration
Bureau of Reclamation
Geological Survey
National Park Service

PUBLIC AND PRIVATE UTILITIES

Chelan County P.U.D.
Pacific Power and Light Company
Puget Sound Power and Light Company
Washington Water Power Company

OTHER PUBLIC AGENCIES

Okanogan Irrigation District Wenatchee Heights Irrigation District

MUNICIPALITIES

City of Tacoma City of Seattle

Other organizations and individuals furnish valuable information for snow survey reports. Their cooperation is gratefully acknowledged.

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ROOM 360, U.S.COURT HOUSE SPOKANE, WASHINGTON 99201

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, 5300

FEDERAL - STATE - PRIVATE

COOPERATIVE SNOW SURVEYS

Furnishes the basic data necessary for forecasting water supply for irrigation, domestic and municipal water supply, hydro-electric power generation, navigation, mining and industry

"The Conservation of Water begins with the Snow Survey"