CS 6023 - GPU Programming Histogram Computation

14/03/2019

Setting and Agenda

So far we have looked at vector addition and matrix multiplication

- Now we will move towards more realistic algorithms.
- To start with, we will look at histogram computation

Acknowledgement: Nvidia teaching kit

Histogram

Where do we use histograms

- Statistics
- Image processing
- As features for machine learning

Histogram - Statistics

- Long history of application
- Rules for choosing bin size
 - Sturgis rule

$$J = 1 + 3.3 \log_{10} n$$

where J is the number of bins and n is the total number of datapoints

Rice rule

$$J=2n^{1/3}$$

Example, if n = 20, both rules give about 6 bins

Image processing

https://web.cs.wpi.edu/~emmanuel/courses/cs545/S14/slides/lecture02.pdf

Image forensics

Histograms in Machine Learning

Histograms in Machine Learning

- Especially for sets with unequal sizes
 - Eg. classify groups of students based on their marks
 - Computed histograms are equal sized feature vectors
- Another common example in Natural Language Processing (NLP)
 - n-Gram histograms are common features
 - Can be used as features across sentences, paragraphs, and even documents

Parallel computation of histogram

- First question of parallel programming:
 - How to divide the work amongst threads

Parallel computation of histogram

- First question of parallel programming:
 - How to divide the work amongst threads
- Answer: Divide input into equal chunks and assign each chunk to a threads

- Note that input streams (which are to be binned) are practically very large
- => One thread should process a large number of input values

Divided work amongst threads

Divided work amongst threads

What is the memory access pattern - Is it coalesced?

- Remember we are interested in memory access pattern from the point-of-view of DRAM
- With the above partitioning, accesses are not coalesced
- Threads in a warp will access memory locations in different burst sections

 More efficient to divide the input into contiguous sections that are given to the threads together

How will we modify this?

How will we modify this?

Tiling. But how?

Modified work division

Modified work division

We have a second problem

How to ensure multiple threads increment the bin counters concurrently?

thread1: Old
$$\leftarrow$$
 Mem[x] thread2: Old \leftarrow Mem[x]
New \leftarrow Old + 2 New \leftarrow Old + 1
Mem[x] \leftarrow New Mem[x] \leftarrow New

 In such cases, Mem[x] can have different values based on the order of execution of these operations

We have a second problem

How to ensure multiple threads increment the bin counters concurrently?

thread1: Old
$$\leftarrow$$
 Mem[x] thread2: Old \leftarrow Mem[x]
New \leftarrow Old + 2 New \leftarrow Old + 1
Mem[x] \leftarrow New Mem[x] \leftarrow New

- In such cases, Mem[x] can have different values based on the order of execution of these operations
- What is a race condition

"Computational hazard that occurs when the output of a program depends on the timing of uncontrollable events such as thread scheduling"

We have a second problem

How to ensure multiple threads increment the bin counters concurrently?

thread1: Old
$$\leftarrow$$
 Mem[x] thread2: Old \leftarrow Mem[x]
New \leftarrow Old + 2 New \leftarrow Old + 1
Mem[x] \leftarrow New Mem[x] \leftarrow New

- In such cases, Mem[x] can have different values based on the order of execution of these operations
- What is a race condition
 "Computational hazard that occurs when the output of a program depends on the timing of uncontrollable events such as thread scheduling"
- Can we solve this with barrier synchronization?

CUDA Atomics

Race condition - experiment

```
__global__ void my_add(int *a) {
     *a += 1;
int main() {
     int a = 0, *a_d;
     cudaMalloc((void**) &a_d, sizeof(int));
     cudaMemcpy(a_d, &a, sizeof(int), cudaMemcpyHostToDevice);
     . . .
     my_add<<<1000,1000>>>(a_d);
     print("a = %d\n", a)
```

Race condition - experiment

```
__global__ void my_add(int *a) {
     *a += 1;
int main() {
     int a = 0, *a_d;
     cudaMalloc((void**) &a_d, sizeof(int));
     cudaMemcpy(a_d, &a, sizeof(int), cudaMemcpyHostToDevice);
     . . .
     my_add<<<1000,1000>>>(a_d);
     print("a = %d\n", a)
```

- We expect a sequential program to output 1000*1000 = 1,000,000
- On real runs, value can be as low as 100

Atomics

- Use CUDA intrinsics (also called intrinsic functions)
- Intrinsics are single instructions which are specially handled by compilers.
 In most cases, they are translated into a sequence of instructions

Atomics

- Use CUDA intrinsics (also called intrinsic functions)
- Intrinsics are single instructions which are specially handled by compilers.
 In most cases, they are translated into a sequence of instructions

- CUDA supports intrinsic add
 int atomicAdd(int* address, int val);
- This reads the 32-bit word old from the location pointed to by address in global or shared memory, computes (old + val), and stores the result back to memory at the same address. The function returns old.

Other supported functions

```
atomicAdd()
atomicSub()
atomicMin()
atomicMax()
atomicInc()
atomicDec()
atomicExch()
atomicCAS()
atomicAnd()
atomicOr()
atomicXor()
```

The CAS atomic operation is the most versatile

```
int atomicCAS(int *address, int compare, int val) {
   old = *address;
   *address = (old == compare) ? val : old;
   return old;
}
```

- Stands for compare and swap
- Can be used to implement other primitives like locks Homework

Modified program from earlier

```
__global__ void my_add(int *a) {
     // *a += 1:
     atomicAdd (a, 1);
int main() {
     int a = 0, *a_d;
     cudaMalloc((void**) &a_d, sizeof(int));
     cudaMemcpy(a_d, &a, sizeof(int), cudaMemcpyHostToDevice);
     my_add<<<1000,1000>>>(a_d);
     print("a = %d\n", a)
```

- We now get the correct output 1000*1000 = 1,000,000
- But ...

Modified program from earlier

```
__global__ void my_add(int *a) {
     // *a += 1;
     atomicAdd (a, 1);
int main() {
     int a = 0, *a_d;
     cudaMalloc((void**) &a_d, sizeof(int));
     cudaMemcpy(a_d, &a, sizeof(int), cudaMemcpyHostToDevice);
     my_add <<<1000,1000>>>(a_d);
     print("a = %d\n", a)
```

- We now get the correct output 1000*1000 = 1,000,000
- But performance suffers. Can be 100x slower than earlier run (without atomics)

Atomics - Performance on DRAM

- Atomic operations suffer from very large DRAM delays
- First it starts with a DRAM read, which has latency of few hundred cycles
- Then any arithmetic / logical operations are performed
- Then it ends with a DRAM write, which has latency of few hundred cycles
- During this entire time, that DRAM location is closed to other accesses

Atomics - Performance on DRAM

- Atomics can significantly increase program execution time
- If several threads would like atomic accesses to the same locations, then DRAM throughput can reduce 1000x!
- Analogy: Queue in supermarket where some customers run to the aisle

Atomics - Performance on DRAM

- Atomics can significantly increase program execution time
- If several threads would like atomic accesses to the same locations, then DRAM throughput can reduce 1000x!
- Analogy: Queue in supermarket where some customers run to the aisle

- One solution is to provide a faster memory for such operations
- Fermi whitepaper from Nvidia "Thanks to a combination of more atomic units in hardware and the addition of the L2 cache, atomic operations performance is up to 20× faster in Fermi compared to the GT200 generation"

Support in HW for atomics on other memories

On shared memory

Histogram

- First we partitioned the input contiguously and shared work amongst threads
- Then we introduced atomic operations to avoid race conditions
- Then architectural improvements for faster atomics

There is something more we can do for significant performance improvement

The problem

- Currently, all blocks work on different parts of the input
- But write to the same output!
- Leads to serialization of atomic updates
- Can we do better?

The solution - Privatisation

- Instead, use the concept of privatisation
- Each block updates private copies of the histogram

The solution - Privatisation

- Instead, use the concept of privatisation
- Each block updates private copies of the histogram
- Fewer threads synchronizing per copy leads to better performance
- After all threads are done, create a final copy from individual copies (in case of histogram, by adding)
- Can lead to significant performance improvement (~ 10x)

Under what conditions does privatization work?

- Operation involved is commutative and associative
 - In case of histogram, add operation satisfies this
 - Merge sort

Under what conditions does privatization work?

- Operation involved is commutative and associative
 - In case of histogram, add operation satisfies this
 - Merge sort
- The output being computed should be small so that private histograms can fit in memory
 - In case of histogram, output is typically much smaller than input
 - Ideally private copies should fit in shared memory (reduces atomics penalty 100x vs. global memory DRAM)
 - Privatization is another strong use case of shared memory naturally shared by threads in a block

Large histograms

- What if output histograms are huge
 - Eg. in NLP, consider histogram of all 3-grams
 For vocabulary of 5000 words, histogram needs to have 125 x 10⁹ bins
- What then?

Large histograms

- What if output histograms are huge
 - Eg. in NLP, consider histogram of all 3-grams
 For vocabulary of 5000 words, histogram needs to have 125 x 10⁹ bins
- What then?
- Can split histogram into two parts private parts in shared memory and a common part in the global memory
- Prioritize and maintain commonly occurring 3-grams in shared memory
- Ideally should dynamically choose which 3-grams go where -> Assignment

Pseudo algo for histogram kernel with privatized shared memory output

- Declare global memory with output histogram
- For each thread:
 - Declare shared memory with private output histogram
 - Cooperatively initialize the histogram to 0
 - Synchronize
 - Identify the index/indices of the input on which to operate. For each:
 - Access each input item such that warps have coalesced access
 - Use atomic add to update appropriate bin in the output histogram
 - Cooperatively update the global output histogram with local one with atomic add