Advanced Optics (PHYS690)

HEEDEUK SHIN

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, KOREA

Resonator and Laser

Resonator

- Resonator are the main ingredient of lasers.
- Used to increase the optical power associated to a mode.
- Boundary conditions implies the existence of "eigenmode s" and eigenfrequencies.

Stability

Unstable resonator

For each round trip, the inclination of the ray increases, until it escapes from the resonator

Resonator: standing wave approach

- Take the case of a plane-parallel resonator configuration.
- Consider an optical wave with complex amplitude

$$U(r,t) = U(\overrightarrow{r})e^{2i\pi\nu t}$$

 The boundaries conditions imposed by the planar mirror gives rise to a "quantification" of the wave vector

$$k_q = q \frac{\pi}{d}$$
 $\nu_q = q \frac{c}{2d}$ $\lambda = \frac{2d}{q}$

The phase shift imparted by a round trip is

$$\phi = 2kd = q2\pi$$

The mode frequency separation is

Frequency spectral range (FSR)

$$\nu_f = \frac{c}{2d}$$

(d is optical path length - includes index of refraction)

Losses & resonance spectral width

- In a realistic resonator losses are present (mirror refection non unity, or due to the medium composing the resonator)
- Consider the loss per round trip to be

$$h = |r|e^{-i\phi}$$
 $\phi = 2kd$

Then the complex amplitude summed over an infinite number of passes

is
$$U = U_0 + U_1 + U_2 + ...$$

= $U_0(1 + h + h^2 + ...) = \frac{U_0}{1 - h}$

• For one-dimensional resonator this is

$$I = \frac{I_0}{|1 - h|^2} = \frac{I_0}{1 + |r|^2 - 2|r|\cos\phi}$$

(d is optical path length – includes index of refraction)

Finesse I

The latter expression can be written

$$I = \frac{I_0}{|1 - h|^2} = \frac{I_0}{1 + |r|^2 - 2|r|\cos\phi}$$

$$I = \frac{I_{max}}{1 + (2\mathcal{F}/\pi)^2 \sin^2(\phi/2)}$$

where

Finesse

$$\mathcal{F} \equiv rac{\pi \sqrt{|r|}}{1-|r|}.$$
 $\mathcal{F} \equiv v_{FSR}/\Delta v$

Expliciting φ gives

$$I_{max} \equiv \frac{I_0}{(1-|r|)^2}.$$

$$\phi = 2kd = 2\pi v/v_f$$

$$I = \frac{I_{max}}{1 + (2\mathcal{F}/\pi)^2 \sin^2(\pi\nu/\nu_f)}$$

Finesse the number of bounces a beam makes before leaking out or being absorbed.

Finesse II

Factors controlling finesse

the number of bounces a beam makes before leaking out or being absorbed.

$$\mathcal{F} \equiv \frac{v_{FSR}}{\Delta v} = \frac{\lambda_{FSR}}{\Delta \lambda}$$

Q-factor
$$Q \stackrel{\text{def}}{=} \frac{f_r}{\Delta f} = \frac{\omega_r}{\Delta \omega},$$

$$Q \stackrel{\text{def}}{=} 2\pi \times \frac{\text{Energy stored}}{\text{Energy dissipated per cycle}} = 2\pi f_r \times \frac{\text{Energy stored}}{\text{Power loss}}.$$

- Loss
- Scatter
- Micro-roughness
- Coating non-uniformity
- Ultimately, transmission of input mirrors

Photon lifetime
$$\Delta v = \frac{1}{2\pi\tau_n}$$

High Q-factor resonators university of science and technology

stabilization of lasers and high spectral purity microwave oscillators

$$Q = v_0 T_{rt} \frac{2\pi}{\eta}$$

 $\lambda = 1$ µm, round trip time, $T_{rt} = 1$ ns, round trip loss, $\eta = 5\%$

Q-factor: 3.8×10^7

Crystalline Micro-re sonators 109

Microsphere 10¹⁰

 10^{10}

Saleh K, Fernandez A, Llopis O and Cibiel G

2013 Fiber ring resonators with Q factors in excess of 10^10 for time and frequency applications Proc. Int. Frequency Control Symp.

—European Frequency and Time Forum (IFCS-EFTF)

Different types of cavities INVERSITY OF SCIENCE AND TECHNOLOGY

Item

SA210

Free Spectral Ran ge (FSR)

10 GHz

Finesse

150 (Minimum)

180 (Typical)

Resolution

67 MHz

Cavity Length

7.5 mm

Mirror Substrate

UV Fused Silica^a

Fiber Fabry-Perot Tunable Filter Fiber Fiber Fabry-Perot Tunable Filter

An all-fiber Fabry-Perot super-cavity in a robust, fast tuning Telcordia qualified package.

Key Features

All-fiber platform

High resolution and low loss design

Super-cavity finesse

Vibration and shock resistant

Thermally stable

Fast scanning permits fast, accurate measurements

Ideal for OEM applications

Customizable center wavelength, free spectral range, finesse & bandwidth

Center wavelength bands from 800 to 2000 nm

Small footprint

Low power requirements

Telcordla GR 2883 qualified

Proven reliability over decades of use

OEM Applications

Optical Coherence Tomography (see OCT datasheet)

Optical performance monitoring

Spectrum analysis

Tunable optical noise filtering

Tunable channel drop for ultra DWDM

Tunable sources

Optical sensing

Fiber Fabry-Perot Tunable Filter FFP-TF

Optical Properties	Standard ¹ FFP-TFs				
Operating wavelength range	1520-1570 nm	1520-1570 nm	1520-1570 nm	1460-1620 nm	1460-1620 nm
Free spectral range ²	15 THz (120 nm)	15 THz (120 nm)	15 THz (120 nm)	27.5 THz (220 nm)	27.5 THz (220 nm)
Finesse	500	1,000	2,000	2,000	10,000
Bandwidth, (FWHM or 3dB) ³	30 GHz (240 pm)	15 GHz (120 pm)	7.5 GHz (60 pm)	13.8 GHz (110 pm)	2.8 GHz (22 pm)
Insertion loss	< 2.5 dB	< 3 dB	< 3 dB	< 3 dB	< 4 dB
Polarization dependent loss			< 0.2 dB		
Input power	50 mW	30 mW	15 mW	15 mW	3 mW
Electrical Properties		•	-		-
Tuning voltage/FSR			< 12 V		

Table 1. Main parameters of the Advanced LIGO interferometers. PRC: power recycling cavity; SRC: signal recycling cavity.

Parameter	Value	
Arm cavity length	3994.5 m	
Arm cavity finesse	450	
Laser type and wavelength	Nd:YAG, $\lambda = 1064 \text{ nm}$	
Input power, at PRM	up to 125 W	
Beam polarization	linear, horizontal	
Test mass material	Fused silica	
Test mass size & mass	34cm diam. x 20cm, 40 kg	
Beam radius $(1/e^2)$, ITM / ETM	5.3 cm / 6.2 cm	
Radius of curvature, ITM / ETM	1934 m / 2245 m	
Input mode cleaner length & finesse	32.9 m (round trip), 500	
Recycling cavity lengths, PRC / SRC	57.6 m / 56.0 m	

An etalon is an optical interferometer in which a beam of light undergoes multiple reflection s between two reflecting surfaces, and whose resulting optical transmission is periodic in wa velength. Actually it is narrowband wavelength filters and precise wavelength references.

Air-spaced Etalons

Two extremely parallel plates polished to very tight specification with an air gap between them.

Solid Etalons

Partial reflection etalon coating on both sides of very good polished substrate.

Type 1: Principle of Air-Space Etalon

Random laser

A random laser is a laser that uses a highly disordered gain medium.

A random laser uses **no optical cavity** but the remaining principles of operation remain the same as for a conventional laser.

Laser

Light
Amplification by
Stimulated
Emission of
Radiation

- Laser medium
- Pumping
- Resonator: laser oscillator or cavity

Light-matter interaction

• Consider an atom and consider two of its energy levels to be E_1 and E_2 (assume $E_1 < E_2$).

• Chose v_0 such that

$$hv_0 = E_2 - E_1$$

the photon energy matches the energy-level difference.

Three types of mechanism are possible:

Spontaneous emission

Absorption

- Stimulated emission

Einstein coefficients I

- Measure of the probability of absorption or emission of light by an atom
- The Einstein A coefficient: the rate of spontaneous emission of light
- The Einstein B coefficients: the absorption and stimulated emission of light

Spontaneous emission

- The number of atoms of the upper level: N_2
- The number of atoms of the lower level: N_1

The change $d N_2$ of the population N_2 within a time interval dt

$$\mathrm{d}N_2 = -A_{21}N_2\mathrm{d}t$$

 A_{21} is the *Einstein coefficient of spontaneous emission*.

The population of the upper level decays exponentially

$$N_2(t) = N_2(0) e^{-A_{21}t} = N_2(0) e^{-t/\tau_{\rm sp}}$$
 spontaneous s lifetime

$$A_{21} = 1/\tau_{\rm sp}$$

Einstein coefficients II

- Absorption

• The change $d N_1$ of the ground state within a time interval dt

$$dN_1 = -B_{12}\rho(v_0)N_1dt$$

where B_{12} is the Einstein coefficient of absorption and ρ is the spectral energy density of radiation at frequencies around v_0 .

Stimulated emission

• The change $d N_2$ of N_2 within a time interval dt

$$dN_2 = -B_{21}\rho(v_0)N_2dt$$

where B_{21} is the Einstein coefficient of stimulated emission.

Einstein coefficients III

The Einstein Relations

• The rate of change of the population N_1 due to absorption is given by $(\mathrm{d}N_1/\mathrm{d}t)_{\mathrm{abs}} = -B_{12} \, \rho(\nu_0) \, N_1$

• The rate of change of the population N_2 due to stimulated emission is given by

$$(dN_2/dt)_{\text{stim}} = -B_{21} \rho(v_0) N_2$$

• The rate of change of the population N_2 due to spontaneous emission is given by $(\mathrm{d}N_2/\mathrm{d}t)_\mathrm{sp} = -A_{21}N_2$

Einstein coefficients IIII

- In thermal equilibrium
- The ratio N_2/N_1 is a constant.
- The absorption rate has to be equal to the emission rate.

$$(dN_1/dt)_{abs} = (dN_2/dt)_{sp} + (dN_2/dt)_{stim}$$

 $B_{12}\rho(v_0)N_1 = A_{21}N_2 + B_{21}\rho(v_0)N_2$

From this equation, we can determine the spectral energy density

$$\rho(\nu_0) = \frac{A_{21}/B_{21}}{(B_{21}/B_{12})N_1/N_2 - 1}$$

• The ratio N_1/N_2 can be determined by the Boltzmann factor.

$$N_2/N_1 = e^{-h\nu_0/kT}$$

Planck's radiation law

$$\rho(v) = \frac{8\pi v^2}{c^3} \frac{hv}{e^{hv/kT} - 1}$$

$$B_{21}=B_{12},$$

$$A_{21} = \frac{8\pi v^2}{c^3} h v B_{21}$$