МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №4.3.4

Метод преобразования Фурье в оптике

Пилюгин Л.С. Б02-212 22 апреля 2024 г.

1 Аннотация

Цель работы: исследование особенностей применения пространственного преобразования Фурье для анализа дифракционных явлений.

Оборудование: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

2 Теоритические сведения

2.1 Спектральный метод решения задачи дифракции

Спектральные методы являются основой при изучении колебаний различной физической природы (электрический колебательный контур, механический осциллятор, электрон в атоме и т.д.). Суть спектрального метода состоит в представлении внешнего воздействия, возбуждающего колебания в линейной системе, в виде суммы некоторых элементарных воздействий. Свойство линейности системы (принцип суперпозиции) позволяет найти решение задачи в виде соответствующей суммы откликов — вынужденных колебаний, возбуждаемых в системе отдельным элементарным воздействием. Важнейшей проблемой при использовании спектрального метода является проблема поиска «<базиса»> — элементарных слагаемых. При изучении стационарных колебательных линейных систем широко используется представление внешнего воздействия f(t) в виде суммы гармонических колебаний различных частот ω_n : $f(t) = \sum c_n e^{i\omega_n t}$. Особая роль гармонических слагаемых $e^{i\omega t}$ обусловлена тем, что гармоническое внешнее воздействие $e^{i\omega t}$ возбуждает в линейной стационарной системе процесс вынужденных колебаний, которые также являются гармоническими и частота которых совпадает с частотой внешнего воздействия.

Применим спектральный метод к исследованию законов распространения волн в задаче дифракции (метод Рэлея), основанный на представлении пространственной структуры дифрагированной волны в виде суперпозиции плоских волн разных направлений.

2.2 Распространение плоской волны

Рассмотрим плоскую волну, волновой вектор которой \vec{k} составляет угол α с осью z. Комплексная амплитуда такой волны имеет вид

$$f(x,z) = ae^{i(k_x x + k_z z + \varphi)}$$

a — амплитуда, φ — начальная фаза, k_x и k_z — проекции \vec{k} на оси x и z $(k_y=0).$

Введём комплексный коэффициент $c=ae^{i\varphi}$ и обозначение $k_x=u.$ Тогда, имея в виду, что $k_x^2+k_z^2=k^2$

$$f(x,z) = ce^{i(ux + \sqrt{k^2 - u^2} \cdot z)}$$

Волновое поле плоской волны в любой плоскости z>0 можно найти, если известно поле плоской волны в плоскости z=0:

$$f(x,0) = ce^{iux}$$

откуда

$$f(x,z) = f(x,0) \cdot e^{i\sqrt{k^2 - u^2}z},$$

т.е. комплексные амплитуды f(x,0) и f(x,z) отличаются множителем $H(u)=e^{i\sqrt{k^2-u^2}\cdot z}$, определяющим набег фазы плоской волны прираспространении между двумя плоскостями, разделенными промежутком z.

Обратим внимание на аналогию с выражением $f(t)=ce^{i\omega t}$, которое, как мы знаем, есть не что иное, как комплексная форма записи гармонического колебания частоты ω , причём комплексный множитель c определяет амплитуду колебания и его начальную фазу. На основании этой аналогии величина $u=k\sin\alpha$ может быть названа пространственной частотой. Можно сказать, что волны разных направлений α — это волны разных пространственных частот.

2.3 Спектр плоских волн

Итак, представим граничное поле $f_0(x)$ в виде суммы плоских волн:

$$f_0(x) = \sum c_n e^{iu_n x}$$

Набор чисел c_n представляет собой пространственный спектр волнового поля f_0 . Каждое слагаемое в сумме есть поле плоской волны при z=0, направление α_n которой определяется пространственной частотой $u_n=k\sin\alpha_n$. Подчеркнём, что частота волн ω предполагается заданной и, следовательно, волновое число $k=\omega/v$ всех плоских волн в пространственном разложении одинаково.

Напомним, что в общем случае произвольное граничное поле $f_0(x)$ представляется в виде интеграла Фурье:

$$f_0(x) = \frac{1}{2\pi} \int C_0(u)e^{iux}du,$$

т.е. в виде непрерывной суммы плоских волн различных пространственных частот. Функция $C_0(u)$ есть преобразование Фурье функции $f_0(x)$. Пространственный спектр $C_0(u)$ (его можно назвать спектром плоских волн) определяется соотношением

$$C_0(u) = \int_{-\infty}^{+\infty} f_0(x)e^{-iux}dx$$

Напомним также, что если функция $f_0(x)$ периодична по координате x, то она представляется рядом Фурье:

$$f_0(x) = \sum_n c_n e^{inu_0 x}$$

$$c_n = \frac{u_0}{2\pi} \int_{-d/2}^{d/2} f_0(x) e^{-inu_0 x} dx$$

2.4 Распространение волн

Важно подчеркнуть, что речь идёт о линейной задаче: распространение волны от плоскости $z=0_+$ до плоскости наблюдения z>0 описывается линейным волновым уравнением или, поскольку мы пользуемся комплексным представлением, линейным уравнением Гельмгольца. Основное свойство линейного уравнения: сумма решений является решением.

Вспомним теперь, что плоская волна

$$f_n(x,z) = c_n e^{i(u_n x + \sqrt{k^2 - u_n^2}z)}$$

есть решение уравнения Гельмгольца, удовлетворяющее на плоскости $z=0_+$ граничному условию

$$f_n(x,0) = c_n e^{iu_n x}$$

поэтому сумма плоских волн

$$f(x,z) = \sum_{n} c_n e^{i(u_n x + \sqrt{k^2 - u_n^2}z)}$$

есть решение, удовлетворяющее граничному условию.

В общем случае, если граничное поле $f_0(x)$ представляется непрерывной суперпозицией плоских волн, искомое решение имеет вид

$$f(x,z) = \int C_0(u)e^{i(ux+\sqrt{k^2-u^2}z)}du$$

 $C_0(u)$ — преобразование Фурье граничного поля $f_0(x)$.

Существенным является следующее обстоятельство: каждая слагаемая плоская волна при распространении до плоскости наблюдения z>0 приобретает свой фазовый набег $\varphi_n=\sqrt{k^2-u_n^2}\cdot z$, зависящий от ее пространственной частоты u_n . Поэтому фазовые соотношения между слагаемыми плоскими волнами на границе z=0 и в плоскости наблюдения, отстоящей на расстоянии z, различны. Изменение фазовых соотношений между слагаемыми плоскими волнами приводит к тому, что изменяется результат интерференции этих волн. Поэтому результирующее поле f(x,z) в плоскости наблюдения может кардинально отличаться от граничного поля $f_0(x)$ (хотя и то, и другое составлено из суперпозиции тех же бегущих плоских волн).

2.5 Передаточная функция

$$f(x,z) = \int C_0(u)e^{i\sqrt{k^2 - u^2}z}e^{iux}du = \int C(u,z)e^{iux}du$$

Функция

$$C(u,z) = C_0(u)e^{i\sqrt{k^2 - u^2}z}$$

представляет собой преобразование Фурье (пространственный спектр) монохроматического волнового поля f(x,z) в плоскости наблюдения.

Множитель

$$H(u) = e^{i\sqrt{k^2 - u^2}z}$$

связывающий пространственные спектры $C_0(u)$ и C(u,z) волнового поля в двух плоскостях, разделённых промежутком свободного пространства z, называют передаточной

функцией (или частотной характеристикой) свободного пространства (точно так же частотная характеристика $H(\omega)$ связывает между собой спектры входного и выходного сигнала линейного временного фильтра). Поэтому участок свободного пространства можно рассматривать как простейший линейный пространственный фильтр, входным сигналом которого является поле $f_0(x)$ во входной плоскости $z=0_+$, а выходным сигналом — поле f(x,z) в выходной плоскости z>0.

Во многих задачах речь идёт о волновых полях, имеющих достаточно узкий спектр плоских волн $|U| \ll k$. При этом используют приближённое выражение для частотной характеристики:

$$H(u) \approx e^{ikz}e^{-izu^2/2k}$$

которое получается разложением радикала $\sqrt{k^2 - u^2}$ в ряд по степеням малого параметра $(u/k)^2$, причём удерживаются лишь два члена разложения:

$$\sqrt{k^2 - u^2} \approx kz - \frac{z}{2k}u^2$$

При этом точное равенство заменяется приближённым:

$$C(u,z) \approx C_0(u)e^{-izu^2/2k}$$

Итак, метод Рэлея предлагает следующую последовательность решения задач дифракпии.

Зная поле сторонних источников $f_s(x)$ и функцию пропускания транспаранта t(x), находим с помощью граничных условий граничное поле $f_0(x)$.

Определяем пространственный спектр граничного поля: набор коэффициентов c_n ряда Фурье либо фурье-образ $C_0(u)$ функции $f_0(x)$.

Наконец, определяем искомое поле f(x,z) на расстоянии z от препятствия — тонкого экрана.

2.6 Дифракция Френеля на амплитудной синусоидальной решётке

Функция пропускания решётки с периодом $d = pi/\Omega$:

$$t(x) = 1 + m\cos\Omega x$$

Пусть решётка освещается плоской нормально падающей волной амплитуды a: $f_s(x) = ae^{ikz}$. Решётка установлена в плоскости z=0, поэтому $f_s=a$. Тогда, согласно граничным условиям

$$f_0(x) = a(1 + m\cos\Omega x) = a + \frac{am}{2}e^{i\Omega x} + \frac{am}{2}e^{-i\Omega x}$$

Комплексная амплитуда волны в плоскости z имеет вид

$$f(x,z) = ae^{ikz} + \frac{am}{2}e^{i(\Omega x + \frac{k^2 - \Omega^2}{z})} + \frac{am}{2}e^{i(-\Omega x + \frac{k^2 - \Omega^2}{z})}$$

каждое слагаемое в граничном поле ответственно за свою волну в области z>0. Первое слагаемое — волна с амплитудой a, бегущая вдоль оси z. Два других слагаемых — волны с амплитудами am/2 и пространственными частотами $\pm\Omega$. Эти волны бегут в направлениях $\sin\alpha=\pm\Omega/k=\pm\lambda/d$. Отметим, что в начале координат x=0 в плоскости $z=0_+$ все три волны создают синфазные колебания.

Полагаем, что период решётки $d=\frac{2\pi}{\Omega}$ существенно больше длины волны λ и, следовательно, $\Omega \ll k$.

$$f(x,z) = ae^{ikz} + \frac{am}{2}e^{ikz} \cdot e^{i(\Omega x - \frac{z}{2k}\Omega^2)} + \frac{am}{2}e^{ikz} \cdot e^{i(-\Omega x - \frac{z}{2k}\Omega^2)} = ae^{ikz} \left(1 + me^{-i\frac{z}{2k}\Omega^2}\right) \cdot \cos\Omega x$$

Последнюю формулу можно использовать для анализа картины дифракции на различных расстояниях z от решётки.

На расстояниях $z_n = \frac{2d^2}{\lambda} n$ имеем $e^{-i\frac{z_n}{2k}\Omega^2} = 1$, поэтому $f(x,z) = e^{ikz_n} f_0(x)$, т.е. с точностью до фазового множителя воспроизводится граничное поле $f_0(x)$. Воспроизводится, разумеется, наблюдаемая картина интенсивности $I(x,z_n) = I_0(x)$.

$$I(x, z_n) = |f(x, z_n)|^2 \approx a^2 (1 + 2m \cos \Omega x)$$
$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \approx 2m$$

На расстояниях $z_n = \frac{d^2}{\lambda}(2n+\frac{1}{2}) \ f(x,z) = a(1+im\cos\Omega x). \ I\approx a^2,\ V\approx 0.$ Таким образом, периодически по z изменяется видность наблюдаемой дифракционной

Таким образом, периодически по z изменяется видность наблюдаемой дифракционной картины. Причина этих изменений — в различии фазовых набегов трёх плоских волн, бегущих в области z>0 от решётки: осевой волны, бегущей вдоль оси z, и двух боковых волн, бегущих в направлениях $\sin\alpha=\pm\Omega/k=\pm\lambda/d$.

2.7 Дифракция Френеля на периодических структурах

Примером периодической структуры является экран с периодически расположенными одинаковыми элементами, например, параллельными щелями одинаковой ширины b, расположенными на одинаковом расстоянии d друг от друга. Пусть такой экран (решётка) освещается слева плоской нормально падающей волной.

На выходе из экрана(в плоскости, примыкающей к нему справа) получаем световое поле, комплексная амплитуда которого $f_0(x)$ является периодической функцией с периодом d, которую можно представить в виде ряда Фурье:

$$f_0(x) = \sum c_n e^{in\frac{2\pi}{d}x}$$

Каждое слагаемое ряда представляет собой поле плоской волны, пространственная частота которой $u_n=n\frac{2\pi}{d}$ определяет направление волнового вектора \vec{k}_n ($u_n=k\sin\alpha_n$) этой волны, т.е. $\sin\alpha_n=n\frac{\lambda}{d}$. Комплексная амплитуда волны в плоскости наблюдения, отстоящей на расстоянии z от решётки, имеет вид

$$f(x,z) = \sum c_n e^{i(u_n x + \sqrt{k^2 - u_n^2}z)}$$

Фаза n-й плоской волны в плоскости z равна $\varphi_n = \sqrt{k^2 - u_n^2} z \approx kz - \frac{zu_n^2}{2k}$. Сравним набег фазы n-й плоской волны с набегом фазы φ_0 плоской волны, бегущей вдоль оси z: $\varphi_0 = kz$. Мы получаем

$$\Delta \varphi_n = \varphi_0 - \varphi_n = \frac{z}{2k} \left(\frac{2\pi n}{d} \right)^2 = \pi \frac{\lambda z}{d^2} n^2$$

Рассмотрим плоскость наблюдения, отстоящую от плоскости решётки на расстояние

$$z_1 = \frac{2d^2}{\lambda}$$

В этом случае $p\approx 1$ и имеет место дифракция Френеля. В этой плоскости имеем $\Delta\varphi_n=2\pi n^2$. Очевидно, что и разность фазовых набегов любых двух волн, равная $2\pi(n_1^2-n_2^2)$, также кратна 2π . Но изменение разности фаз колебаний на величину, кратную 2π , ничего не меняет в суммарном колебании. Мы пришли к замечательному результату: фазовые соотношения между слагаемыми плоскими волнами оказались одинаковыми как в плоскости, примыкающей к решётке, так и в плоскости z. Одинаковость фазовых соотношений слагаемых плоских волн приводит к тому, что одинаков и результат интерференции этих плоских волн, т.е. световое поле в плоскости z_1 отличается от граничного поля f_0 лишь постоянным фазовым множителем e^{ikz} .

Мы наблюдаем в плоскости z_1 периодическую структуру, тождественно повторяющую граничное поле f_0 . Очевидно также, что такое восстановление изображения периодической структуры повторяется на расстояниях, кратных z_1 :

$$z_m = m \frac{2d^2}{\lambda}$$

Описанный эффект называют эффектом самовоспроизведения, или эффектом Талбота.

2.8 Спектр плоских волн при дифракции на щели

Пусть щель в непрозрачном экране (ширина щели b) освещается нормально падающей плоской волной единичной амплитуды. Тогда в плоскости $z=0_+$, примыкающей к щели справа от неё, имеем

$$f_0(x) = I_{|x| \le b}$$

Пространственный спектр граничного поля

$$C_0(u) = b \frac{\sin bu/2}{bu/2}$$

Спектр $C_0(u)$ показан на рисунке. Область значений Δu , в которой функция заметно отлична от нуля, называют обычно шириной спектра.

$$|\Delta u| \approx \frac{2\pi}{b}$$

В общем случае справедливо соотношение неопределённостей

$$\Delta x \cdot \Delta u \approx 2\pi$$

Пространственная протяжённость граничного поля определяется характерным размером препятствия, в нашем примере — размером b отверстия в непрозрачном экране. Разброс

пространственных частот определяет разброс направлений слагаемых плоских волн за отверстием:

$$\Delta u = k\Delta \sin \alpha$$

Отсюда получаем дифракционную расходимость пучка

$$\Delta \alpha \approx \frac{\lambda}{b}$$

2.9 Поле в фокальной плоскости линзы. Пространственное преобразование Фурье

Как известно, линза фокусирует параллельный пучок света: плоская волна, бегущая в направлении α , т.е. имеющая пространственную частоту $u=k\sin\alpha$, фокусируется линзой в точку фокальной плоскости с координатой

$$x = f \operatorname{tg} \alpha \approx f \sin \alpha = \frac{fu}{k}$$

Имеется, как мы видим, взаимно однозначное соответствие между точками фокальной плоскости и пространственными частотами плоских волн, которые в эти точки фокусируются. Оказывается, взаимно однозначное соответствие имеет место также и между амплитудами и фазами колебаний в точках фокальной плоскости и соответствующих им плоских волн.

Пусть на линзу падает произвольная волна. Во входной плоскости Π_1 , отстоящей от линзы на расстоянии z, волна имеет комплексную амплитуду $f_0(x)$. Представим эту волну в виде суперпозиции плоских волн разных направлений α_n . Плоская волна $c_n e^{iu_n x}$, соответствующая одному из слагаемых, показана на рисунке: её волновой вектор составляет угол $\alpha = \alpha_n \left(\sin \alpha = \frac{u_n}{k} \right)$ с оптической осью. Коэффициент $c_n = a_n e^{i\varphi_n}$ определяет амплитуду плоской волны a_n и начальную фазу φ_n .

Очевидно, что амплитуда колебаний в точке P фокальной плоскости пропорциональна амплитуде a_n плоской волны, которая в эту точку сфокусировалась. Найдём, каковы фазовые соотношения между колебаниями в разных точках фокальной плоскости. Ясно, что колебание в точке P отстаёт по фазе от колебания в точке P_1 , причём разность фазопределяется длиной оптического пути P_1P : прямая P_1P перпендикулярна в каждой точке волновым поверхностям — плоским поверхностям в волне, падающей на линзу, и сферическим в волне, прошедшей через линзу. Пусть соответствующая пути P_1P задержка по фазе равна ψ_n . Тогда фаза колебания в точке P фокальной плоскости равна $\varphi_n + \psi_n$, а комплексную амплитуду колебаний в этой точке можно записать в виде $f(x_n) = c_n e^{i\psi_n}$.

Слагаемому $c_0e^{iu_0x}$ соответствует плоская волна, бегущая вдоль оптической оси. Она фокусируется в начало координат x=0 фокальной плоскости Ф. Коэффициент $c_0=a_0e^{i\varphi_0}$ определяет амплитуду a_0 этой волны и её начальную фазу φ_0 , т.е. фазу колеюаний в точке О входной плоскости Π_1 . Задержка по фазе ψ_0 в точке x=0 фокальной плоскости Ф, куда эта волна сфокусировалась, определяется длиной оптического пути OO. Комплексная амплитуда колебаний в этой точке есть $f(0) \approx c_0 e^{i\psi_0}$.

Пусть z=f, т.е. плоскость Π_1 — это передняя фокальная плоскость линзы. Легко видеть, что в приближении малых углов оптические пути $P_1P=z\cos\alpha+\frac{f}{\cos\alpha}+\Delta_0$ и $OO=z+f+\Delta_0$ (Δ_0 — оптический путь, проходящий непосредственно через линзу на главной оптической оси) равны при z=f, т.е. $\psi_n=\psi_0$.

Одинаковость для всех плоских волн фазовых задержек ψ_n означает, что фазовые соотношения между колебаниями в разных точках задней фокальной плоскости, куда эти волны сфокусировались, таковы же, как и фазовые соотношения между колебаниями, которые создают эти волны в начале координат передней фокальной плоскости. Таким образом, волновое поле в задней фокальной плоскости линзы правильно воспроизводит не только амплитудные соотношения между плоскими волнами разных пространственных частот, но и фазовые соотношения без искажений, т.е. картина поля в фокальной плоскости воспроизводит пространственный спектр (пространственное преобразование Фурье) падающей на линзу волны.

Опуская несущественный постоянный фазовый множитель $e^{i\psi_0}$, получаем $f(x_n) = c_n = C(\frac{kx_n}{f})$. Последнее равенство справедливо для любой точки x_n фокальной плоскости. Если спектр плоских волн непрерывен, т. е. волна, падающая на линзу, состоит из плоских волн любых направлений, то, опуская индекс n, находим

$$f(x) = C\left(\frac{kx}{f}\right) = \int f_0(\xi)e^{-i\frac{kx}{f}\xi}d\xi$$

где C(u) — преобразование Фурье поля $f_0(x)$. Итак, световое поле в задней фокальной плоскости линзы f(x) связано с полем волны, падающей на линзу $f_0(\xi)$, преобразованием Фурье.

Если комплексная амплитуда волны, падающей на линзу, задаётся в произвольной плоскости на расстоянии $z \neq f$ от линзы, то легко получить

$$f(x) = exp\left(i\frac{k}{2f}(1-z/f)x^2\right) \cdot C\left(\frac{kx}{f}\right)$$

т.е. возникают фазовые искажения, обусловленные дополнительным набегом фазы $\varphi(u)=\sqrt{k^2-u^2}\Delta z$, который приобретает плоская волна, пробегая промежуток свободного пространства, равный $\Delta z=z-f$. Важно обратить внимание, что наблюдаемая картина интенсивности

$$I(x) = \left| C\left(\frac{kx}{f}\right) \right|^2$$

не зависит от z.

2.10 Принцип двойной дифракции и формирование оптического изображения (теория Аббе)

Формирование изображения с помощью линзы можно рассматривать, основываясь на идее пространственного спектрального разложения. Монохроматическую волну, идущую от предмета, представим в виде суперпозиции плоских волн разных направлений α , т.е.

разных пространственных частот $u=k\sin\alpha$. Каждая гармоника — плоская волна определённого направления — фокусируется линзой в свою точку фокальной плоскости, в которой возникает, таким образом, картина пространственного спектра: амплитуда и фаза колебаний в точке ξ фокальной плоскости однозначно определяются амплитудой и фазой колебаний той плоской волны, которая в эту точку фокусируется.

По этой причине фокальную плоскость линзы называют фурье-плоскостью. По терминологии Аббе, впервые предложившего такой подход, поле в фокальной плоскости называют первичным изображением. На рисунке показана ситуация, когда предметом является решётка, освещаемая плоской нормально падающей волной. При этом в фурье плоскости, как мы знаем, возникает картина фраунгоферовой дифракции: набор ярких точек — дифракционных максимумов. Итак, в процессе распространения света от предмета до фурье плоскости осуществляется преобразование Фурье светового поля.

Далее каждая точка фурье-плоскости рассматривается как источник сферической волны. Все сферические волны, исходящие из разных точек фурье-плоскости, интерферируя, образуют в плоскости, находящейся на расстоянии z_2 за линзой, собственно изображение объекта. Это изображение Аббе назвал вторичным, а процесс распространения света от фурье-плоскости до плоскости изображения — второй дифракцией.

Особенно наглядно принцип двойной дифракции проявляется в оптической схеме, показанной на рисунке. Схема состоит из двух линз с общей фокальной плоскостью Φ . Задняя фокальная плоскость линзы Π_1 совпадает с передней фокальной плоскостью линзы Π_2 . В этом случае первая дифракция — это распространение света от передней фокальной плоскости линзы Π_1 , где расположен предмет, к плоскости Φ , где возникает картина пространственного спектра — первичное изображение. Далее, сферическая волна, идущая из любой точки фурье-плоскости, преобразуется линзой Π_2 в плоскую волну. Таким образом, каждая плоская волна, идущая от предмета, преобразуется системойдвух линз в плоскую волну, приходящую к плоскости изображения. Причем, если фокусные расстояния линз одинаковы, то волна с пространственной частотой $u=k\sin\alpha$ преобразуется в волну с

пространственной частой -u. Это приводит к инверсии — изображение оказывается перевёрнутым. Можно сказать, что в процессе образования изображения происходит два последовательных преобразования Фурье: от входной плоскости Π_1 к фурье-плоскости — первая дифракция, и затем от фурье-плоскости с помощью линзы Π_2 к выходной плоскости Π_2 — вторая дифракция.

2.11 Ространственная фильтрация

Особая роль фурье-плоскости обусловлена тем, что именно в этой плоскости возможно избирательное воздействие на разные пространственные гармоники: установив в любой точке x фурье-плоскости маленькую пластинку, вносящую определённое поглощение и фазовую задержку, мы изменим амплитуду и фазу плоской волны с пространственной частотой $u=\frac{kx}{f}$, не изменяя амплитуд и фаз других плоских волн. Устанавливая в фурье-плоскости различные амплитудно-фазовые маски, можно направленно изменять пространственный спектр изображения, влияя таким образом на его характеристики. Этим путём можно решать самые разнообразные задачи: улучшение качества изображений, разрешающей способности оптических систем, визуализация фазовых объектов, выполнение самых разнообразных преобразований пространственной структуры световых полей и т.д., т. е. решать широкий круг задач оптической обработки информации.

2.12 Мультипликация (размножение) изображения

Расположим в фурье-плоскости Φ оптической системы фильтрующий транспарантрешётку с узкими щелями и периодом d. Во входной плоскости Π_1 находится объекттранспарант с функцией пропускания $f_0(x)$, освещённый слева плоской нормально падающей волной. В плоскости, примыкающей к объекту справа, возникает световое поле, комплексная амплитуда которого $f_0(x)$ представляется в общем случае непрерывной суммой плоских волн — интегралом Φ урье:

$$f_0(x) = \frac{1}{2\pi} \int C_0(u)e^{iux}dx$$

На щелях фильтрующей решётки, расположенных в точках фурье-плоскости $x_n=nd$, фокусируются плоские волны с пространственными частотами

$$u_n = k \sin \alpha_n = k \frac{x_n}{f} = \frac{knd}{f} = 2\pi n \frac{d}{\lambda f},$$

т.е. волны с кратными частотами $u_n = nu_0$, где $u_0 = 2\pi \frac{d}{\lambda f}$, и спектральными амплитудами $C_0(nu_0)$.

Только эти волны, отфильтрованные решёткой, формируют изображение f(x), возникающее в выходной плоскости Π_2 оптической системы:

$$f(x) \approx \sum C_0(nu_0)e^{inu_0x}$$

Таким образом, из непрерывного спектра $C_0(u)$ объекта, показанного на рисунке пунктиром, фильтрующая решётка пропускает дискретный спектр компонент, показанный стрелками. Спектральные амплитуды $C_0(nu_0)$ компонент, формирующих изображение, очевидно, пропорциональны величинам

$$C_0(nu_0) = \int_{-a/2}^{a/2} f_0(x)e^{-inu_0x} dx$$

Изображение, возникающее в плоскости Π_2 , представляет собой периодически повторяющееся с периодом $d_0 = \lambda f/d$ изображение объекта $f_0(x)$. Соседние элементы периодической структуры $f(x) = \sum f_0(x - nd_0)$ не налагаются друг на друга при условии $d_0 > a$. Число элементов N размноженного изображения определяется шириной главного максимума картины дифракции Фраунгофера на отдельной щели решётки $|x| < \lambda f/b$ (b — ширина щели): $N \approx 2b/d_0$.

3 Оборудование

Схема установки представлена на рисунке. Щель переменной ширины D, снабжённая микрометрическим винтом B, освещается параллельным пучком света, излучаемым лазером (радиус кривизны фронта волны велик по сравнению с фокуснымирасстояниями используемых в схеме линз).

Увеличенное изображение щели с помощью линзы Π_1 проецируется на экран Э. Величина изображения D_1 зависит от расстояний от линзы до предмета — a_1 и до изображения — b_1 , т.е. от увеличения Γ системы

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1}$$

Изображение спектра щели образуется в задней фокальной плоскости Φ линзы Π_1 . Размещая в плоскости Φ двумерные решётки-сетки, можно влиять на первичное изображение и получать мультиплицированное изображение щели.

Убрав линзу, можно наблюдать на экране спектр щели, а если заменить щель решёткой — спектр решётки. Крупные решётки дают на экране очень мелкую картину спектра, которую трудно промерить. В этом случае используют две линзы: первая (длиннофокусная) формирует первичное изображение — спектр, вторая (короткофокусная) — проецирует на экран увеличенное изображение спектра.

4 Результаты измерений

4.1 Определение ширины щели

$$\lambda=532$$
 нм $a_1=4,3\pm0,5$ см, $b_1=120,5\pm0,5$ см, $\Gamma=b_1/a_1=28\pm3.$

$$\Gamma = b_1/a_1 = 28 \pm 3$$

<i>b</i> , мм	D_1 , MM
$(50 \pm 5) \cdot 10^{-3}$	2.0 ± 0.3
$(100 \pm 5) \cdot 10^{-3}$	$3,0 \pm 0,3$
$(150 \pm 5) \cdot 10^{-3}$	4.0 ± 0.3
$(200 \pm 5) \cdot 10^{-3}$	5.5 ± 0.3
$(250 \pm 5) \cdot 10^{-3}$	6.0 ± 0.3
$(300 \pm 5) \cdot 10^{-3}$	7.0 ± 0.3
$(350 \pm 5) \cdot 10^{-3}$	$8,0 \pm 0,3$
$(400 \pm 5) \cdot 10^{-3}$	$9,0 \pm 0,3$
$(450 \pm 5) \cdot 10^{-3}$	$11,0 \pm 0,3$
$(500 \pm 5) \cdot 10^{-3}$	$12,0 \pm 0,3$

$$\Gamma = 23 \pm 2$$

$$X = \frac{\lambda}{d_c} L$$

$$L = 127,0 \pm 0,5$$
 см

b, mm	X, MM	b_c , MM
$(100 \pm 5) \cdot 10^{-3}$	$7,01 \pm 0,05$	$(964 \pm 8) \cdot 10^{-4}$
$(150 \pm 5) \cdot 10^{-3}$	$4,75 \pm 0,05$	$(142 \pm 2) \cdot 10^{-3}$
$(200 \pm 5) \cdot 10^{-3}$	$3,28 \pm 0,05$	$(206 \pm 3) \cdot 10^{-3}$
$(250 \pm 5) \cdot 10^{-3}$	$2,72 \pm 0,05$	$(248 \pm 5) \cdot 10^{-3}$
$(300 \pm 5) \cdot 10^{-3}$	$2,36 \pm 0,05$	$(286 \pm 6) \cdot 10^{-3}$
$(350 \pm 5) \cdot 10^{-3}$	$1,95 \pm 0,05$	$(346 \pm 9) \cdot 10^{-3}$
$(400 \pm 5) \cdot 10^{-3}$	$1,69 \pm 0,05$	0.40 ± 0.012
$(450 \pm 5) \cdot 10^{-3}$	$1,47 \pm 0,05$	0.46 ± 0.02

4.2 Определение периода решеток

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{d_c} L$$

номер сетки	X, mm	m	d_c , MKM
1, низ	122 ± 0.5	2	$11,5 \pm 0,1$
1, верх	122 ± 0.5	2	$11,5 \pm 0,1$
2, низ	124 ± 0.5	5	$28,4 \pm 0,2$
2, верх	124 ± 0.5	5	$28,4 \pm 0,2$
3, низ	60 ± 0.5	5	$58,0 \pm 0,1$
3, верх	60 ± 0.5	5	$58,0 \pm 0,1$

Картины от верхних и нижних сеток одинаковы, поэтому измерения будут проводиться только для нижних.

 $F_2 = 110 \text{ mm}, \, F_3 = 25 \text{ mm}$

номер сетки	X, mm	m	d_l , mkm
1	341 ± 0.5	1	$11,1 \pm 2,2$
2	257 ± 0.5	2	$29,5 \pm 3,1$
3	180 ± 0.5	3	$63,3 \pm 4,4$

 $\Gamma_3 = 3.5 \pm 0.5$

4.3 Мультиплицирование

 $\Delta y = \Delta y/\Gamma, \ \Gamma = 10, \ \Delta \Gamma/K.$

номер сетки	Y, mm	K	ΔY , MM	Δy , mm
1	119 ± 0.5	2	$59,5 \pm 0,3$	5.7 ± 0.1
2	118 ± 0.5	5	$23,6 \pm 0,1$	$2,3 \pm 0,1$
3	70 ± 0.5	6	11.7 ± 0.1	$1,3 \pm 0,1$

5 Вывод

Несколькими способами была измерена ширина щели и периоды дифракционных решеток.

