QRM Addendum 1

Chebychev

Taking what we started with in class, For Z > 0

 $E(Z) = Pr(Z \ge C)*E[Z|Z \ge C] + Pr(Z < C)*E[Z|Z < C]$, we know that each of the 4 terms on the right are positive, because all Z's are positive, and probabilities are all positive. So if we ignore the Pr(Z < C)*E[Z|Z < C] part, we know we are ignoring something positive, so we have.

$$E(Z) \ge Pr(Z \ge C)^*E[Z|Z \ge C];$$

since $E[Z|Z \ge C] > C$, we can write $E(Z) \ge Pr(Z \ge C)^*C$

which after rearranging can be written as

$$Pr(Z \ge C) \le E(Z)/C$$

Now define $(x-\mu)^2 = Z$ which is always positive and let $C = k^2\sigma^2$,

Note:
$$Pr((x-\mu)^2 > k^2\sigma^2) = Pr(|x-\mu| > k\sigma)$$
, and $E[(x-\mu)^2] = \sigma^2$

$$Pr(|x-\mu| > k\sigma) \le 1 / k^2$$

Two-state option pricing

- Let our portfolio be $C_0 + \delta S_0$ at time 0
- This portfolio becomes either $C^u + \delta S^u$ in the 'up' state or $C^d + \delta S^d$ in the 'down' state
- We choose δ^* such that $\delta^* = \frac{C^u C^d}{S^d S^u}$ which guarantees that

$$C^{u} + \delta^{*} S^{u} = C^{d} + \delta^{*} S^{d}$$
 and write $C_{0} + \delta^{*} S_{0} = PV(C^{u} + \delta^{*} S^{u})$ (= $PV(C^{d} + \delta^{*} S^{d})$)
With $S_{0} = 100$, $S^{u} = 120$, $S^{d} = 95$, $K = 100$, $r = 5\%$, $T = 1$ yr we get

As intermediate steps $C^u = 20$, and $C^d = 0$

Then
$$C_0 + \frac{20-0}{95-120} 100 = \left(20 + \frac{20-0}{95-120} 120\right) e^{.05*1} \Rightarrow C_0 = $7.71$$

