HOME CHAPTERS LOGIN

11. Perspective and Planimetry

To understand why topographic maps can't be traced directly off of most vertical aerial photographs, you first need to appreciate the difference between perspective and planimetry. In a **perspective** view, all light rays reflected from the Earth's surface pass through a single point at the center of the camera lens. A **planimetric** (plan) view, by contrast, looks as though every position on the ground is being viewed from directly above. Scale varies in perspective views. In plan views, scale is everywhere consistent (if we overlook variations in small-scale maps due to map projections). Topographic maps are said to be **planimetrically correct**. So are orthoimages. Vertical aerial photographs are not, unless they happen to be taken over flat terrain.

As discussed above, the scale of an aerial photograph is partly a function of flying height. Thus, variations in elevation cause variations in scale on aerial photographs. Specifically, the higher the elevation of an object, the farther the object will be displaced from its actual position away from the principal point of the photograph (the point on the ground surface that is directly below the camera lens). Conversely, the lower the elevation of an object, the more it will be displaced toward the **principal point**. This effect, called **relief displacement**, is illustrated below in Figure 6.12.1. Note that the effect increases with distance from the principal point.

At the top of the diagram above, light rays reflected from the surface converge upon a single point at the center of the camera lens. The smaller trapezoid below the lens represents a sheet of photographic film. (The film actually is located behind the lens, but since the geometry of the incident light is symmetrical, we can minimize the height of the diagram by showing a mirror image of the film below the lens.) Notice the four triangular **fiducial marks** along the edges of the film. The marks point to the **principal point** of the photograph, which corresponds with the location on the ground directly below

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- ► Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- ▼ Chapter 6: National Spatial Data Infrastructure I
 - 1. Overview
 - 2. National Geographic Information Strategies
 - 3. Legacy Data: USGS Topographic Maps
 - 4. Accuracy
 Standards
 - 5. Scanned Topographic Maps
 - 6. Federal Geographic Data Committee
 - 7. USGS National Map
 - 8. Theme: Geodetic Control
 - 9. Theme: Orthoimagery

the camera lens at the moment of exposure. **Scale distortion is zero at the principal point**. Other features shown in the photo may be displaced toward or away from the principal point, depending on the elevation of the terrain surface. The larger trapezoid represents the average elevation of the terrain surface within a scene. On the left side of the diagram, a point on the land surface at a higher than average elevation is displaced outwards, away from the principal point and its actual location. On the right side, another location at less than average elevation is displaced towards the principal point. **As terrain elevation increases, flying height decreases and photo scale increases. As terrain elevation decreases, flying height increases and photo scale decreases.**

Compare the map and photograph below in Figure 6.12.2. Both show the same gas pipeline, which passes through hilly terrain. Note the deformation of the pipeline route in the photo relative to the shape of the route on the topographic map. **The deformation in the photo is caused by relief displacement.** The photo would not serve well on its own as a source for topographic mapping.

Figure 6.12.2 The pipeline clearing appears crooked in the photograph because of relief displacement.

Still confused? Think of it this way: where the terrain elevation is high, the ground is closer to the aerial camera, and the photo scale is a little larger than where the terrain elevation is lower. Although the altitude of the camera is constant, the effect of the undulating terrain is to zoom in and out. The effect of continuously-varying scale is to distort the geometry of the aerial photo. This effect is called relief displacement.

Distorted perspective views can be transformed into plan views through a process called **rectification**. In Summer 2001, student Joel Hamilton recounted one very awkward way to rectify aerial photographs:

"Back in the mid 80's I saw a very large map being created from a multitude of aerial photos being fitted together. A problem that arose was that roads did not connect from one photo to the next at the outer edges of the map. No computers were used to create this map. So using a little water to wet the photos on the outside of the map, the photos were stretched to correct for the distortions. Starting from the center of the map the mosaic map was created. A very messy process."

Nowadays, digital aerial photographs can be rectified in an analogous (but much less messy) way, using specialized photogrammetric software that shifts image pixels toward or away from the principal point of each photo in proportion to two variables: the elevation of the point of the Earth's surface at

- 10. Photogrammetry
- 11.
 PerspectiveandPlanimetry
- 12. Stereoscopy
- 13.
 Rectification by Stereoscopy
- 14. Orthorectification
- 15. Metadata
- 16. Digital Orthophoto Quadrangle (DOQ)
- 17. Summary
- 18. Bibliography
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

- login
- Search

the location that corresponds to each pixel, and each pixel's distance from the principal point of the photo.

Another even simpler way to rectify perspective images is to view pairs of images stereoscopically.

< 10. Photogrammetry up 12. Stereoscopy >

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- People
- Resources
- Services
- Login

EMS

- and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- · Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric
- · Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Geospatial Education Programs
- iMPS in Renewable Energy and Sustainability Policy Program Office
- BA in Energy and Policy Program

Office

Related Links

- Penn State Digital Learning Cooperative
- Penn State World Campus
- Web Learning @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802 Contact Us

Privacy & Legal Statements | Copyright Information The Pennsylvania State University ©