BAYESIAN LEARNING - LECTURE 11

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

OVERVIEW

- ► Bayesian variable selection.
- ▶ Model checking using posterior predictive distribution.

BAYESIAN VARIABLE SELECTION

Linear regression:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon.$$

▶ Which variables have **non-zero** coefficient? Example of hypotheses:

$$H_0$$
: $\beta_0 = \beta_1 = ... = \beta_p = 0$

$$H_1 : \beta_1 = 0$$

$$H_2$$
 : $\beta_1 = \beta_2 = 0$

- ▶ Introduce variable selection indicators $\mathcal{I} = (I_1, ..., I_p)$.
- ▶ Example: $\mathcal{I} = (1, 1, 0)$ means that $\beta_1 \neq 0$ and $\beta_2 \neq 0$, but $\beta_3 = 0$, so x_3 drops out of the model.

BAYESIAN VARIABLE SELECTION, CONT.

▶ Model inference, just crank the Bayesian machine:

$$p(\mathcal{I}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathcal{I}) \cdot p(\mathcal{I})$$

- ▶ The prior $p(\mathcal{I})$ is typically taken to be $I_1, ..., I_p | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$.
- \blacktriangleright θ is the prior inclusion probability.

BAYESIAN VARIABLE SELECTION, CONT.

▶ Model inference, just crank the Bayesian machine:

$$\rho(\mathcal{I}|\mathbf{y},\mathbf{X}) \propto \rho(\mathbf{y}|\mathbf{X},\mathcal{I}) \cdot \rho(\mathcal{I})$$

- ▶ The prior $p(\mathcal{I})$ is typically taken to be $I_1, ..., I_p | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$.
- \triangleright θ is the prior inclusion probability.
- ▶ Challenge: Computing the marginal likelihood for each model (\mathcal{I})

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) = \int p(\mathbf{y}|\mathbf{X},\mathcal{I},\beta)p(\beta|\mathbf{X},\mathcal{I})d\beta$$

BAYESIAN VARIABLE SELECTION, CONT.

- ▶ Let $\beta_{\mathcal{I}}$ denote the **non-zero** coefficients under \mathcal{I} .
- Prior:

$$\begin{split} \beta_{\mathcal{I}} | \sigma^2 &\sim \textit{N}\left(0, \sigma^2 \Omega_{\mathcal{I}, 0}^{-1}\right) \\ \sigma^2 &\sim \textit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right) \end{split}$$

Marginal likelihood

$$p(\mathbf{y}|\mathbf{X},\mathcal{I}) \propto \left|\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}^{-1}\right|^{-1/2} \left|\Omega_{\mathcal{I},0}\right|^{1/2} \left(\nu_0 \sigma_0^2 + RSS_{\mathcal{I}}\right)^{-(\nu_0 + n - 1)/2}$$

where $X_{\mathcal{I}}$ is the covariate matrix for the subset given by \mathcal{I} .

lacktriangledown $\mathit{RSS}_\mathcal{I}$ is (almost) the residual sum of squares under model implied by \mathcal{I}

$$RSS_{\mathcal{I}} = \mathbf{y}'\mathbf{y} - \mathbf{y}'\mathbf{X}_{\mathcal{I}} \left(\mathbf{X}_{\mathcal{I}}'\mathbf{X}_{\mathcal{I}} + \Omega_{\mathcal{I},0}\right)^{-1} \mathbf{X}_{\mathcal{I}}'\mathbf{y}$$

BAYESIAN VARIABLE SELECTION VIA GIBBS SAMPLING

- \triangleright But there are 2^p model combinations to go through! Ouch!
- ▶ ... but most will have essentially zero posterior probability. Phew!

Bayesian variable selection via Gibbs sampling

- ▶ But there are 2^p model combinations to go through! Ouch!
- ▶ ... but most will have essentially zero posterior probability. Phew!
- ▶ **Simulate** from the joint posterior distribution:

$$p(\boldsymbol{\beta}, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) = p(\boldsymbol{\beta}, \sigma^2|\mathcal{I}, \mathbf{y}, \mathbf{X})p(\mathcal{I}|\mathbf{y}, \mathbf{X}).$$

- ► Simulate from $p(\mathcal{I}|\mathbf{y})$ using **Gibbs sampling**:
 - ▶ Draw $I_1|\mathcal{I}_{-1}$, **y**, **X**
 - ▶ Draw $I_2 | \mathcal{I}_{-2}, \mathbf{y}, \mathbf{X}$
 - **...**
 - ▶ Draw $I_p|\mathcal{I}_{-p}$, **y**, **X**

Bayesian variable selection via Gibbs sampling

- ▶ But there are 2^p model combinations to go through! Ouch!
- ▶ ... but most will have essentially zero posterior probability. Phew!
- ► **Simulate** from the joint posterior distribution:

$$p(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) = p(\beta, \sigma^2|\mathcal{I}, \mathbf{y}, \mathbf{X})p(\mathcal{I}|\mathbf{y}, \mathbf{X}).$$

- ► Simulate from $p(\mathcal{I}|\mathbf{y})$ using **Gibbs sampling**:
 - ▶ Draw $I_1|\mathcal{I}_{-1}$, **y**, **X**
 - ▶ Draw $I_2|\mathcal{I}_{-2},\mathbf{y},\mathbf{X}$
 - **...**
 - ▶ Draw $I_p|\mathcal{I}_{-p}, \mathbf{y}, \mathbf{X}$
- ▶ Only need to compute $Pr(I_i = 0 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$ and $Pr(I_i = 1 | \mathcal{I}_{-i}, \mathbf{y}, \mathbf{X})$.
- Automatic model averaging, all in one simulation run.
- ▶ If needed, simulate from $p(\beta, \sigma^2 | \mathcal{I}, \mathbf{y}, \mathbf{X})$ for each draw of \mathcal{I} .

PSEUDO CODE FOR BAYESIAN VARIABLE SELECTION

- 0 Initialize $\mathcal{I}^{(0)} = (I_1^{(0)}, I_2^{(0)}, ..., I_p^{(0)})$
- 1 Simulate σ^2 and β from [Note: ν_n , σ_n^2 , μ_n , Ω_n all depend on $\mathcal{I}^{(0)}$]
 - $ightharpoonup \sigma^2 | \mathcal{I}^{(0)}, \mathbf{y}, \mathbf{X} \sim \mathit{Inv} \chi^2 \left(\nu_n, \sigma_n^2 \right)$
 - $\triangleright \beta | \sigma^2, \mathcal{I}^{(0)}, \mathbf{y}, \mathbf{X} \sim N \left[\mu_n, \sigma^2 \Omega_n^{-1} \right]$
- **2.1** Simulate $I_1|\mathcal{I}_{-1}$, \mathbf{y} , \mathbf{X} by [define $\mathcal{I}_{prop}^{(0)} = (1 I_1^{(0)}, I_2^{(0)}, ..., I_p^{(0)})]$
 - ▶ compute marginal likelihoods: $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)})$ and $p(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}_{prop})$
 - ▶ Simulate $I_1^{(1)} \sim Bernoulli(\kappa)$ where

$$\kappa = \frac{\textit{p}(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}) \cdot \textit{p}(\mathcal{I}^{(0)})}{\textit{p}(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}) \cdot \textit{p}(\mathcal{I}^{(0)}) + \textit{p}(\mathbf{y}|\mathbf{X}, \mathcal{I}^{(0)}_{\textit{prop}}) \cdot \textit{p}(\mathcal{I}^{(0)}_{\textit{prop}})}$$

- **2.2** Simulate $I_2|\mathcal{I}_{-2}$, **y**, **X** as in Step 2.1, but $\mathcal{I}^{(0)}=(I_1^{(1)},I_2^{(0)},...,I_p^{(0)})$
- **2.**P Simulate $I_p|\mathcal{I}_{-p}$, **y**, **X** as in Step 2.1, but $\mathcal{I}^{(0)}=(I_1^{(1)},I_2^{(1)},...,I_p^{(0)})$
 - 3 Repeat Steps 1-2 many times.

SIMPLE GENERAL BAYESIAN VARIABLE SELECTION

► The previous algorithm only works when we can integrate out all the model parameters to obtain

$$p(\mathcal{I}|\mathbf{y}, \mathbf{X}) = \int p(\beta, \sigma^2, \mathcal{I}|\mathbf{y}, \mathbf{X}) d\beta d\sigma$$

ightharpoonup MH - propose eta and $\mathcal I$ jointly from the proposal distribution

$$q(\beta_p|\beta_c,\mathcal{I}_p)q(\mathcal{I}_p|\mathcal{I}_c)$$

- ▶ Main difficulty: how to propose the non-zero elements in β_p ?
- Simple approach:
 - Approximate posterior with all variables in the model: $\beta | \mathbf{y}, \mathbf{X} \stackrel{approx}{\sim} N \left[\hat{\beta}, J_{\mathbf{v}}^{-1}(\hat{\beta}) \right]$
 - ▶ Propose β_p from $N\left[\hat{\beta}, J_{\mathbf{y}}^{-1}(\hat{\beta})\right]$, conditional on the zero restrictions implied by \mathcal{I}_p . Formulas are available.

POSTERIOR PREDICTIVE ANALYSIS

- ▶ If $p(y|\theta)$ is a 'good' model, then the data actually observed should not differ 'too much' from simulated data from $p(y|\theta)$.
- ► Bayesian: simulate data from the **posterior predictive distribution**:

$$p(y^{rep}|y) = \int p(y^{rep}|\theta)p(\theta|y)d\theta.$$

- \triangleright Difficult to compare y and y^{rep} because of dimensionality.
- ▶ Solution: compare **low-dimensional statistic** $T(y, \theta)$ to $T(y^{rep}, \theta)$.
- ► Evaluates the full probability model consisting of both the likelihood and prior distribution.

POSTERIOR PREDICTIVE ANALYSIS, CONT.

- ▶ **Algorithm** for simulating from the posterior predictive density $p[T(y^{rep})|y]$:
- 1 Draw a $\theta^{(1)}$ from the posterior $p(\theta|y)$.
- 2 Simulate a data-replicate $y^{(1)}$ from $p(y^{rep}|\theta^{(1)})$.
- 3 Compute $T(y^{(1)})$.
- 4 Repeat steps 1-3 a large number of times to obtain a sample from $T(y^{rep})$.

POSTERIOR PREDICTIVE ANALYSIS, CONT.

- ▶ **Algorithm** for simulating from the posterior predictive density $p[T(y^{rep})|y]$:
- 1 Draw a $\theta^{(1)}$ from the posterior $p(\theta|y)$.
- 2 Simulate a data-replicate $y^{(1)}$ from $p(y^{rep}|\theta^{(1)})$.
- 3 Compute $T(y^{(1)})$.
- 4 Repeat steps 1-3 a large number of times to obtain a sample from $T(y^{rep})$.
- We may now compare the observed statistic T(y) with the distribution of $T(y^{rep})$.
- ▶ Posterior predictive p-value: $Pr[T(y^{rep}) \ge T(y)]$
- ► Informal graphical analysis.

POSTERIOR PREDICTIVE ANALYSIS - EXAMPLES

- ► Ex. 1. Model: $y_1, ..., y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. $T(y) = \max_i |y_i|$.
- ▶ Ex. 2. Assumption of no reciprocity in networks. $y_{ij} | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$. T(y) =proportion of reciprocated node pairs.
- **Ex.** 3. ARIMA-process. T(y) may be the autocorrelation function.
- ▶ Ex. 4. Poisson regression. T(y) frequency distribution of the response counts. Proportions of zero counts.

POSTERIOR PREDICTIVE ANALYSIS - NORMAL MODEL, MAX STATISTIC

