theoria poissis pra xis

Departamento de Matemática, Universidade de Aveiro

Cálculo I — Ano lectivo 07/08 Trabalho Teórico-Prático 2

9 de Novembro de 2007

Nome:			
	Nº Moo	Turma	

Justifique todas as respostas e indique os cálculos efectuados.

- 1. Considere a função f definida em \mathbb{R} por $f(x) = xe^x$.
 - (a) Escreva a fórmula de Mac-Laurin de ordem n (com resto de Lagrange) para a função f.
 - (b) Seja p_n o polinómio de Mac-Laurin de ordem n da função f. Mostre que, para todo o $x \in [-1,0]$, o erro que se comete quando se aproxima f(x) por $p_n(x)$ é inferior a $\frac{1}{n!}$.
 - (c) Determine o polinómio de Mac-Laurin de menor grau que lhe permita aproximar a função f no intervalo [-1,0] com erro inferior a 10^{-5} .
- 2. Seja f uma função primitivável. Mostre que, para todo o $\alpha \in \mathbb{R} \setminus \{0\}$, temos a igualdade

$$\int \alpha f(x) dx = \alpha \int f(x) dx.$$

3. Calcule:

(a)
$$\int \frac{\sqrt[3]{1+\ln x}}{x} dx;$$

(b)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}(1-e^{\sqrt{x}})} dx;$$

(c)
$$\int \cos^2(\alpha x) dx$$
, com $\alpha \in \mathbb{R}$.