Implementation Issue	REX	SREM	VREX	STDR	ST
Scalable to any number of CPU's (even one CPU)?					
Algorithm readily accommodates a fluctuating number of CPU's?					
Efficiency impaired by inhomogeneity of CPU's?					
Performance severely affected by CPU failure?					
Initial calculation of weight factors, potential energy distribution functions or potential energy lists required?					

Property	REX	VREX	SREM	STDR	STDRb	ST	STb
Acceptance Ratio	0.237	0.241	0.248	0.378	0.376	0.463	0.404
Replica Speed (distance/time)	0.058	0.050	0.051	0.058	0.059	0.065	0.065
Mean Free Path	0.322	0.245	0.255	0.402	0.402	0.431	0.445
Diffusion Coefficient	0.208	0.181	0.156	0.195	0.196	0.246	0.249
Average Deviation from Sampling Homogeneity	0	6.62%	12.61%	2.50%	2.98%	3.81%	17.40%
Composite Score (a normalized linear combination)	0.793	0.700	0.679	0.874	0.876	0.984	0.940

b

Supplementary Material

Exponentially-Space Temperature Lists (in K)

Temperature list for the octamer (33 temperatures):

```
280, 288, 296, 305, 314, 323, 332, 342, 351, 361, 372, 383, 394, 405, 417, 429, 441, 454, 467, 480, 494, 508, 523, 538, 553, 569, 585, 602, 620, 637, 656, 675, 694
```

Temperature list for the 35-mer (70 temperatures):

```
261, 265, 268, 272, 276, 280, 284, 288, 292, 296, 300, 305, 309, 314, 318, 323, 327, 332, 337, 342, 346, 351, 356, 361, 367, 372, 377, 383, 388, 394, 399, 405, 411, 417, 422, 429, 435, 441, 447, 454, 460, 467, 473, 480, 487, 494, 501, 508, 515, 523, 530, 538, 545, 553, 561, 569, 577, 585, 594, 602, 611, 620, 628, 637, 647, 656, 665, 675, 684, 694
```

FIGURE S1: Deviation from Sampling Homogeneity

ONE SD: VREX, STDRb, ST, STDR, REX, SREM, STb TWO SD: STDRb, ST, REX, VREX, STDR, SREM, STb

ONE SD: ST, REX, VREX, STDR, STDRb, SREM, STb TWO SD: ST, VREX, REX, STDR, STDRb, STb, SREM

one sd

ONE SD: ST, VREX, STDR, STb, REX, STDRb, SREM TWO SD: ST, VREX, REX, STDR, STDRb, STb, SREM

ONE SD: STb, ST, VREX, STDR, REX, SREM, STDRb TWO SD: STb, ST, STDR, VREX, REX, STDRb, SREM

ONE SD: STb, ST, STDR, REX, SREM, VREX, STDRb TWO SD: STb, ST, STDR, SREM, REX, VREX, STDRb

FIGURE S3, A: Structural Convergence at Multiple Temperatures, 2d Plot

FIGURE S3, B: Structural Convergence at Multiple Temperatures, 2d Plot

