4 Limits at Infinity

Definition 4.1. Let f be a function that is defined at every number in some interval $(a, +\infty)$. The limit of f(x), as x increases without bound, is L, written

$$\lim_{x \to +\infty} f(x) = L$$

if for any $\epsilon > 0$ however small, there exists a number N > 0 such that if x > N then $|f(x) - L| < \epsilon$.

Definition 4.2. Let f be a function that is defined at every number in some interval $(-\infty, a)$. The limit of f(x), as x decreases without bound, is L, written

$$\lim_{x \to -\infty} f(x) = L$$

if for any $\epsilon > 0$ however small, there exists a number N < 0 such that if x < N then $|f(x) - L| < \epsilon$.

4.1 Limit Theorems

- 1. $\lim_{x\to+\infty} c = c$, for any constant c;
- 2. $\lim_{x\to+\infty} [f(x)\pm g(x)] = \lim_{x\to+\infty} f(x)\pm \lim_{x\to+\infty} g(x);$
- 3. $\lim_{x\to+\infty} [f_1(x) \pm f_2(x) \pm \cdots \pm f_n(x)] = \lim_{x\to+\infty} f_1(x) \pm \lim_{x\to+\infty} f_2(x) \pm \cdots \pm \lim_{x\to+\infty} f_n(x);$
- 4. $\lim_{x\to+\infty} [f(x)\cdot g(x)] = [\lim_{x\to+\infty} f(x)]\cdot [\lim_{x\to+\infty} g(x)];$
- 5. $\lim_{x\to+\infty} [f_1(x)\cdot f_2(x)\cdots f_n(x)] = [\lim_{x\to+\infty} f_1(x)]\cdot [\lim_{x\to+\infty} f_2(x)]\cdots [\lim_{x\to+\infty} f_n(x)];$
- 6. $\lim_{x\to+\infty} [f(x)]^n = [\lim_{x\to+\infty} f(x)]^n, n \in \mathbb{Z}^+;$
- 7. $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = \frac{\lim_{x\to \infty} f(x)}{\lim_{x\to +\infty} g(x)}$, provided $\lim_{x\to +\infty} g(x) \neq 0$;
- 8. $\lim_{x\to+\infty} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to+\infty} f(x)}$, $\lim_{x\to+\infty} f(x) \ge 0$;
- 9. $\lim_{x \to +\infty} \frac{1}{x^n} = 0, n \in \mathbb{Z}^+$

4.1 Limit Theorems

4 LIMITS AT INFINITY

These theorems are also valid if " $x \to +\infty$ " is replaced with " $x \to -\infty$ ".

Example 4.1. Evaluate the following.

1.
$$\lim_{x \to +\infty} \frac{2x+1}{5x-2}$$

2.
$$\lim_{x \to -\infty} \frac{6x - 4}{3x + 1}$$

3.
$$\lim_{x \to +\infty} \frac{2x+1}{5x-2}$$

Try this. Find the limit of the following.

1.
$$\lim_{x \to +\infty} \frac{7x^2 - 2x + 1}{3x^2 + 8x + 5}$$

2.
$$\lim_{y \to -\infty} \frac{2y^3 - 4}{5y + 3}$$

3.
$$\lim_{w \to +\infty} \frac{\sqrt{w^2 - 2w + 3}}{w + 5}$$

Definition 4.3. The line y = b is a **horizontal asymptote** of the graph of the function f(x) if at least one of the following statements is true:

i. $\lim_{x\to+\infty} f(x) = b$ and for some number N, if x > N, then $f(x) \neq b$;

ii. $\lim_{x \to -\infty} f(x) = b$ and for some number N, if x < N, then $f(x) \neq b$.

Example 4.2. Find the horizontal asymptotes of

$$f(x) = \frac{2x+1}{x-3}.$$

Sketch the graph showing the horizontal asymptotes.

4.1 Limit Theorems

4 LIMITS AT INFINITY

Try this. Find the vertical asymptotes of

$$f(x) = \frac{2x+1}{x-3}.$$

Try this. Find the limits of the following.

1.
$$\lim_{x\to+\infty} \left(\frac{6}{\sqrt{x^3}}\right)$$

2.
$$\lim_{x\to 4^+} \left(\frac{3}{(4-x)^3}\right)$$

3.
$$\lim_{x\to-\infty} \left(x-x^2\right)$$

4.
$$\lim_{x\to 3^-} \left(\frac{2x}{x-3}\right)$$

5.
$$\lim_{x\to+\infty} \left(x^3+x\right)$$

Try this. Find the vertical and horizontal asymptotes of

$$f(x) = \frac{x^2 - 1}{x^2 - 4}.$$