



### **CREDIT RISK ANALYTICS**

(CAPSTONE PROJECT- BFS)

### **SUBMISSION**

#### **SUBMITTED BY:**

Swami Prem Pranav Kayashyap (APFE1786831)

#### UNDER THE GUIDANCE OF:

Sankaran Karthikeyan





## Abstract – Credit Risk Analysis

#### **Business Objective:**

- ➤ Credx is a leading credit card provider that gets thousands of credit card applicants every year. But in the past few years, it has experienced an increase in credit loss.
- To identify the right set of customers for leading credit card provider "CredX" using Predictive models thereby determining the factors affecting credit risk.

#### **Proposed Solution:**

To build a predictive model which will use the past data of credit card applicants and help CredX identify the right customers to minimize the credit loss.

#### **Data sources**

- > Demographic Data Applicant's traits
- > Credit Bureau Data Applicant's credit and financial data
- > Final Data Demographic + Credit Bureau (merged)





### Problem Solving Approach Flow Chart







## Data Cleaning and Preparation

#### **Data Cleaning and Preparation**

- Identified and deleted duplicate applicants
- Imputed null and erroneous values for numerical data with mean, median... as applicable
- Introduced new category as fit for categorical variables replacing empty space and null
- Excluded applicants with a rejected application
- New data frame with all WOE values has been created
- Both Final Data(original) and WOE Data have been split into 2 based on the PerformanceTag
- Features have been renamed for better readability

#### Final Data for EDA and Model Building

- ✓ Accepted\_Application\_Data
- ✓ Rejected Application Data
- ✓ Accepted\_Application\_Data\_woe
- ✓ Rejected\_Application\_Data\_woe





### **Exploratory Data Analysis**

#### **Univariate Analysis**

- For most part, data is balanced except for gender
- Irrespective of number of number of days in dpd(30,60,90) and time period(6,12 months) all the dpd variables had clear effect on Performance Tag and follow same pattern
- Most of the applicants are well educated, salaried and live in rental houses
- CC\_utilization is maximum in the bins (10-20) and (100-110) but the default rate is on par with mean











## **Exploratory Data Analysis**

The clear distinction in avgs\_cc\_utilization implies its a significant predictor and has been confirmed by the Information Value

Along with being significant predictor No\_of\_inquiries and No\_of\_trades\_opened\_in\_last\_12\_months show a pattern that divides data points at approximately same bin







# **Eccentric Outstanding Balance**

- Outstanding balance is often expected to show a progressive pattern as the value increases or decreases
- In the current data sample despite not having an expected structure, it still remained a significant feature to the Performance Tag





# **UpGrad**

#### Correlation

- The variables with most correlation will not be adding any benefit and so using all of them will hamper the model's performance
- Variables like DPD, trades\_opened, inquiries in the different time periods are the ones that have maximum correlation
- Eventually we might be using 1or2 variables from those groups so as to improve the performance







# Performance comparison

| Metric\Model | Original | Original_Bala<br>nced | WOE     | WOE_balanced | Demographic_orig<br>inal | Demographic_bal<br>anced |
|--------------|----------|-----------------------|---------|--------------|--------------------------|--------------------------|
| Accuracy     | 0.6504   | 0.6184                | 0.6071  | 0.6311       | 0.4902                   | 0.5205                   |
| Sensitivity  | 0.65400  | 0.61847               | 0.67555 | 0.63499      | 0.48513                  | 0.53115                  |
| Specificity  | 0.56547  | 0.61645               | 0.60414 | 0.63091      | 0.60219                  | 0.52005                  |
| KS-Statistic | 0.0873   | 0.2328                | 0.2796  | 0.2659       | 0.0873                   | 0.0512                   |
| AUC          | 0.543    | 0.6164                | 0.6398  | 0.6329       | 0.54366                  | 0.5256007                |





## Performance Comparison Explained

- Logistic Regression has been used as the predictive model to solve problem at hand because of its power with classification data
- Model with only Demographic data is weaker than the one with Demographic and credit data
- The model with highest Accuracy is the one with all original data but it lacks the balance between other statistics
- Final model decided upon is the one with WOE values and balanced data





### **Application Scorecard**

- This application scorecard was prepared with the odds of 10 to 1 at a score of 400 doubling every 20 points. The scorecard is can be calculated using below equation.
- Score = 333.56 + 28.8539 ln (odds) Where, odd = predicted\_probability/(1-predicted\_probability)
- As per our scorecard, it is implied that any applicant with score less than 300 is a potential defaulter.





## Financial Implications

- For a Financial institution that does not use any predictive model, credit cost will be 100%(since there is no model all applicants are approved of a credit)
- But by using our predictive we would only expend 63% of total 100% cost



<sup>\*</sup>Graph was not created with live data, it is just a representation of the model's performance