```
R1#config t
R1(config)#router ospf 1
R1(config-router)#router-id 1.1.1.1
R1(config-router)#network 1.1.1.1 255.255.255.255 area 0
config-router)#network 12.12.12.0 0.0.0.255 area 0
```

Enrutamiento estático y dinámico

¿Qué es el Enrutamiento?

El **enrutamiento o ruteo** es el proceso por el cual un router determina el mejor camino para alcanzar redes remotas. Hay dos formas principales de hacerlo:

Ruteo Estático

- Las rutas se **ingresan manualmente** en la tabla de enrutamiento.
- Se usa en redes pequeñas, donde el camino no cambia frecuentemente.
- Ventajas:
 - Simplicidad
 - Control total
- Desventajas:
 - Poco flexible
 - Alta carga administrativa ante cambios

Ruteo Dinámico

• Utiliza protocolos de enrutamiento para descubrir rutas automáticamente.

- Se adapta a cambios en la red (caídas, nuevos nodos).
- Mayor escalabilidad.

BGP – Border Gateway Protocol

Es un **protocolo de enrutamiento dinámico** utilizado para intercambiar información entre **Sistemas Autónomos (AS)**.

Ejemplo de BGP/ASN

Características

- Aunque opera sobre funciones de Capa 3, funciona en la Capa de Aplicación del modelo OSI.
- Utiliza **TCP** para intercambiar la información de ruteo.
- Es el protocolo principal que mantiene la **conectividad global de Internet**.

Ejemplo de Enrutamiento BGP

En una red con múltiples AS, si el AS1 quiere comunicarse con AS3:

• **Ruta A**: AS1 → AS2 → AS3 (2 saltos)

• Ruta B: $AS1 \rightarrow AS6 \rightarrow AS5 \rightarrow AS4 \rightarrow AS3$ (4 saltos)

BGP selecciona rutas basándose en **atributos**, no necesariamente en el número de saltos (aunque ese puede ser un criterio).

? ¿Quiénes operan los Sistemas Autónomos?

- Los **AS** pertenecen a grandes organizaciones: **ISP**, empresas, universidades, agencias estatales, etc.
- Cada AS tiene un número único (ASN), asignado por IANA → RIR → ISPs/redes.

Result	Туре	Description
AS7934	ASN	Telecom Argentina S.A.
AS7908	ASN	SENCINET LATAM ARGENTINA SA
AS7303	ASN	Telecom Argentina S.A.
AS7049	ASN	Silica Networks Argentina S.A.
AS64151	ASN	EDGEUNO ARGENTINA S.A.
AS61517	ASN	Securitas Argentina S.A
AS61484	ASN	Convergia Argentina S.A.
AS61443	ASN	KPMG Argentina
AS6121	ASN	Ministerio de Justicia de la Nacion Argentina
AS52410	ASN	IDT CORPORATION DE ARGENTINA S.A.
AS52369	ASN	NEOPHONE ARGENTINA SRL
AS52361	ASN	ARSAT - Empresa Argentina de Soluciones Satelitales S.A.
AS52357	ASN	PAN AMERICAN ENERGY, SL, SUCURSAL ARGENTINA

16 bits: del 1 al 65.534

32 bits: del 131.072 al 4.294.967.294

Actualmente ~64.000 ASN en uso.

Solo necesarios para BGP externo (eBGP)

Atributos de BGP

Los atributos ayudan al router a elegir la mejor ruta cuando hay múltiples disponibles:

Atributo	Función
Peso (Weight)	Prioriza rutas locales
Preferencia local	Ruta de salida preferida
Origen (Origin)	Prioriza rutas que el router mismo aprendió
Longitud de la Ruta AS	Prefiere rutas con menos AS

Los routers procesan los atributos en orden de prioridad. Si no hay diferencias en un atributo, se considera el siguiente.

Tipos de BGP

- **eBGP (BGP externo)**: Entre distintos AS (como entre ISPs)
- iBGP (BGP interno): Dentro de un mismo AS

eBGP ≈ envío internacional → sigue normas entre países iBGP ≈ correo local → normas propias de cada país/red

Es posible usar BGP externo sin usar iBGP. Internamente se pueden usar otros protocolos como OSPF.

Ejemplo de Configuración eBGP

Router C (ASN 100) router bgp 100 neighbor 10.0.0.2 remote-as 200 network 10.0.0.0 mask 255.255.255.0

Router D (ASN 200) router bgp 200 neighbor 10.0.0.1 remote-as 100 network 20.0.0.0 mask 255.255.255.0

Se establece un peering BGP externo entre ambos routers usando sus IPs y ASN.

OSPF – Open Shortest Path First

Es un **protocolo de enrutamiento interno dinámico**, basado en el algoritmo de Dijkstra (camino más corto).

Características:

- Protocolo de estado de enlace
- Establece relaciones de **vecindad** entre routers antes de intercambiar información.
- Rápido y escalable comparado con protocolos antiguos como RIP (limitado a 15 saltos).

Ventajas de OSPF

- Multiplataforma
- ▼ No tiene límite de saltos
- Soporta **VLSM** (máscaras de subred de longitud variable)
- ✓ Usa multidifusión para anuncios
- ✓ Actualización de rutas en tiempo real
- ▼ Soporta zonas (áreas) para escalabilidad
- Métodos de autenticación
- ✓ Permite importar/exportar rutas externas

🚵 Desventajas de OSPF

- X Requiere más recursos de CPU y RAM
- X Topologías complejas pueden generar sobrecarga
- X La base de datos de estado de enlaces puede crecer mucho
- X Requiere mayor planificación que protocolos más simples

Tuncionamiento de OSPF - Estados

OSPF opera a través de **8 estados**, que describen la evolución de la relación entre routers vecinos:

Estado	Descripción
Down	En espera del paquete Hello
Init	Se recibe el primer Hello
Two-Way	Comunicación bidireccional confirmada
ExStart	Se decide quién es el maestro
Exchange	Intercambio de descripciones de bases de datos
Loading	Se piden actualizaciones usando LSR / LSU
Full	Se logra adyacencia completa

💽 Bases de Datos en OSPF

Base de Datos	Descripción
Adyacencia	Lista de vecinos con comunicación bidireccional
Topológica (Estado de Enlace)	Describe la topología de la red
Tabla de Enrutamiento	Resultado del algoritmo SPF basado en la topología

▲ Escalabilidad: OSPF por Áreas

A medida que la red crece, OSPF divide la red en **áreas** para mejorar el rendimiento.

- Cada router puede pertenecer a una sola área por interfaz.
- Los routers de frontera de área (ABR) conectan múltiples áreas.
- La Backbone Area (Área 0) conecta todas las demás.

Tipos de Áreas OSPF:

Tipo de Área	Descripción
Backbone (Área 0)	Zona troncal principal
Standard	Intercambia info completa
Stub	Limita rutas externas para menor carga
Totally Stubby	Filtra aún más rutas
NSSA	Permite ciertas rutas externas, híbrida

1 Toda la información de enrutamiento debe pasar por el área 0, aún entre áreas conectadas por un mismo router.

Ejemplo de Configuración OSPF

```
router ospf 1 // Activa OSPF con ID de proceso 1
router-id 1.1.1.1 // Asigna un ID único al router
network 192.168.1.0 0.0.0.255 area 0 // Especifica la red y área a la que perte
nece
```