# 1 The Church-Turing Thesis <u>丘奇-图灵论题</u>

杨雅君

yjyang@tju.edu.cn

智能与计算学部

2022



### Outline

- 1 Turing Machines 图灵机
- ② 图灵机的变形
- ③ 算法的定义

### Outline

- Turing Machines 图灵机
  - 图灵机的形式化定义
  - 图灵机的例子

### Turing machine 图灵机

• 该模型由 Alan Turing 在 1936 年首次提出

- 该模型由 Alan Turing 在 1936 年首次提出
- 图灵机与有穷自动机类似,但具有比有穷自动机和下推自动机更强 大的能力

- 该模型由 Alan Turing 在 1936 年首次提出
- 图灵机与有穷自动机类似,但具有比有穷自动机和下推自动机更强 大的能力
- 图灵机具有无限大容量的存储且可以访问任意内部数据

- 该模型由 Alan Turing 在 1936 年首次提出
- 图灵机与有穷自动机类似、但具有比有穷自动机和下推自动机更强 大的能力
- 图灵机具有无限大容量的存储且可以访问任意内部数据
- 图灵机是一种更加精确的通用计算机模型

- 该模型由 Alan Turing 在 1936 年首次提出
- 图灵机与有穷自动机类似,但具有比有穷自动机和下推自动机更强 大的能力
- 图灵机具有无限大容量的存储且可以访问任意内部数据
- 图灵机是一种更加精确的通用计算机模型
- 能够模拟实际计算机的所有计算行为

#### Turing machine 图灵机

- 该模型由 Alan Turing 在 1936 年首次提出
- 图灵机与有穷自动机类似,但具有比有穷自动机和下推自动机更强 大的能力
- 图灵机具有无限大容量的存储且可以访问任意内部数据
- 图灵机是一种更加精确的通用计算机模型
- 能够模拟实际计算机的所有计算行为

#### 图灵机也有不能解的问题

• 这些问题已经超出了计算理论的极限



# 艾伦·图灵(Alan Turing)



艾伦·图灵(Alan Turing)
June 23, 1912 - June 7, 1954 (aged 41)
英国数学家、逻辑学家
"计算机科学之父"
"人工智能之父"

#### 图灵机用一个无限长的纸带作为无限存储.

- 它有一个读写头, 能在纸带上读、写和左右移动.
- 图灵机在开始工作时, 纸带上只有输入串, 其他地方都是空白的.
- 如果需要保存信息, 它可将这个信息写在纸带上.



#### 图灵机用一个无限长的纸带作为无限存储.

- 为了读已经写下的信息,它可将读写头往回移动到这个信息所在的位置.
- 机器不停地计算, 直至产生输出为止.
- 机器预置了接受和拒绝两种状态,如果进入这两种状态,就产生输出接受(accept)和拒绝(reject).
- 如果不能进入任何接受或拒绝状态, 就继续执行下去, 永不停止.



#### 下面是有穷自动机与图灵机之间的区别

- 图灵机在纸带上既能读也能写。
- 图灵机的读写头既能向左移动也能向右移动.
- 图灵机的纸带是无限长的.
- 图灵机进入拒绝和接受状态将立即停机。

#### Example (Turing machine $M_1$ )

考虑图灵机  $M_1$ , 它检查语言 B 的成员关系

$$B = \{ w \# w \mid w \in \{0, 1\}^* \}$$

即要设计  $M_1$ , 使得如果输入是 B 的成员, 它就接受, 否则拒绝.

### Example (图灵机 $M_1$ )

$$B = \{ w \# w \mid w \in \{0, 1\}^* \}$$

对于输入字符串 w:

● 在 # 两边对应的位置来回移动. 检查这些对应位置是否包含相同的符号, 如不是, 或者没有 #, 则<mark>拒绝</mark>. 为记录对应的符号, 消去所有检查过的符号.

### Example (图灵机 $M_1$ )

$$B = \{ w \# w \mid w \in \{0, 1\}^* \}$$

对于输入字符串 w:

- 在 # 两边对应的位置来回移动. 检查这些对应位置是否包含相同的符号, 如不是, 或者没有 #, 则<mark>拒绝</mark>. 为记录对应的符号, 消去所有检查过的符号.
- ② 当 # 左边的所有符号都被消去时, 检查 # 的右边是否还有符号, 如果是,则拒绝, 否则接受.

### Example (图灵机 $M_1$ )

下图是  $M_1$  在输入 011000#011000 开始之后,  $M_1$  纸带的几个非连续快照.



Definition (TM (图灵机))

### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ , 其中 $Q, \Sigma, \Gamma$  都 是有穷集合,并且

### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$ , 其中 $Q, \Sigma, \Gamma$  都是有穷集合, 并且

Q 是状态集,

### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$ , 其中 $Q, \Sigma, \Gamma$  都是有穷集合, 并且

- Q 是状态集,
- ② ∑是输入字母表,不包括特殊空白符号 □,

### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ , 其中 $Q, \Sigma, \Gamma$  都 是有穷集合,并且

- Q 是状态集,
- ② Σ 是输入字母表, 不包括特殊空白符号 U.
- **③**  $\Gamma$  是纸带字母表, 其中  $\Box$  ∈  $\Gamma$ ,  $\Sigma$  ⊂  $\Gamma$ .

### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$ , 其中 $Q, \Sigma, \Gamma$  都是有穷集合,并且

- Q是状态集,
- ② ∑是输入字母表,不包括特殊空白符号 ⊔,
- ③  $\Gamma$  是纸带字母表, 其中  $\sqcup$  ∈  $\Gamma$ ,  $\Sigma$   $\subseteq$   $\Gamma$ ,
- **⑤**  $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$  是转移函数,

#### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ , 其中 $Q, \Sigma, \Gamma$  都 是有穷集合,并且

- Q 是状态集.
- Σ 是输入字母表, 不包括特殊空白符号 U.
- **③**  $\Gamma$  是纸带字母表, 其中  $\Box$  ∈  $\Gamma$ ,  $\Sigma$  ⊂  $\Gamma$ .
- **●**  $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$  是转移函数,
- **⑤**  $q_0$  ∈ Q 是起始状态.

### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ , 其中 $Q, \Sigma, \Gamma$  都 是有穷集合,并且

- Q 是状态集.
- Σ 是输入字母表, 不包括特殊空白符号 U.
- **③**  $\Gamma$  是纸带字母表, 其中  $\Box$  ∈  $\Gamma$ ,  $\Sigma$  ⊂  $\Gamma$ .
- **●**  $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$  是转移函数,
- **⑤**  $q_0$  ∈ Q 是起始状态,

### Definition (TM (图灵机))

图灵机 (TM)是一个 7-元组  $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ , 其中 $Q, \Sigma, \Gamma$  都 是有穷集合. 并且

- Q 是状态集.
- Σ 是输入字母表, 不包括特殊空白符号 U.
- **③**  $\Gamma$  是纸带字母表, 其中  $\Box$  ∈  $\Gamma$ ,  $\Sigma$  ⊂  $\Gamma$ .
- **●**  $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$  是转移函数,
- **⑤**  $q_0$  ∈ Q 是起始状态.
- **②**  $q_{\text{reject}} \in Q$  是拒绝状态, 且  $q_{\text{accept}} \neq q_{\text{reject}}$ .



图灵机的格局(configuration):

### 图灵机的格局(configuration):

• 当前状态

### 图灵机的格局(configuration):

- 当前状态
- 当前纸带内容

### 图灵机的格局(configuration):

- 当前状态
- 当前纸带内容
- 读写头当前位置

### 图灵机的格局(configuration):

- 当前状态
- 当前纸带内容
- 读写头当前位置

#### 图灵机的格局

### uqv

- 当前状态为 q
- 当前纸带内容为 uv
- 读写头当前位置是 v 的第一个符号

纸带上v的最后一个符号以后的符号都是空白符.



### 图灵机的格局(configuration):

- 当前状态
- 当前纸带内容
- 读写头当前位置

#### 图灵机的格局

### uqv

- 当前状态为 q
- 当前纸带内容为 uv
- 读写头当前位置是 v 的第一个符号

纸带上v的最后一个符号以后的符号都是空白符.  $1011q_701111$ 

### 图灵机的格局(configuration):

#### 图灵机的格局

uqv

- 当前状态为 q
- 当前纸带内容为 uv
- 读写头当前位置是 v 的第一个符号

纸带上v的最后一个符号以后的符号都是空白符.

### 图灵机的格局(configuration):

#### 图灵机的格局

uqv

- 当前状态为 q
- 当前纸带内容为 uv
- 读写头当前位置是 v 的第一个符号

纸带上v的最后一个符号以后的符号都是空白符.  $1011q_701111$ 



# 图灵机的计算方式

### 格局 $C_1$ 产生(yields) 格局 $C_2$

• 如果图灵机能够合法地从格局  $C_1$  一步进入  $C_2$ .

### 形式化定义

设  $a, b \in \Gamma$ ,  $u, v \in \Gamma^*$ ,  $q_i, q_i \in Q$ 

● uaq<sub>i</sub>bv 产生 uq<sub>i</sub>acv

if 
$$\delta(q_i, b) = (q_j, c, \mathsf{L})$$

•  $uaq_ibv \stackrel{\bullet}{\not}= uacq_iv \text{ if } \delta(q_i,b) = (q_i,c,R)$ 



### 图灵机的计算方式

### 格局 $C_1$ 产生(yields) 格局 $C_2$

• 如果图灵机能够合法地从格局  $C_1$  一步进入  $C_2$ .

#### 形式化定义

当读写头处于格局的两个端点之一时, 会发生特殊变化.

- 对于左端点,
  - 向左移动: q<sub>i</sub>bv 产生 q<sub>i</sub>cv
  - 向右移动: q<sub>i</sub>bv 产生 cq<sub>i</sub>v
- 对于右端点
  - uaq<sub>i</sub> 等价于 uaq<sub>i</sub>□



### 图灵机 M 读入输入字符串 w

- 起始格局(start configuration): q<sub>0</sub>w
- 接受格局(accepting configuration): · · · q<sub>accept</sub> · · ·
- 拒绝格局(rejecting configuration): · · · q<sub>reject</sub> · · ·

接受状态和拒绝状态都是停机格局(halting configurations),它们都不再产生新的格局。

## 图灵机的计算方式

### 图灵机 M 读入输入字符串 w

- 起始格局(start configuration): q<sub>0</sub>w
- 接受格局(accepting configuration): ··· q<sub>accept</sub> ···
- 拒绝格局(rejecting configuration): ··· q<sub>reject</sub> ···

接受状态和拒绝状态都是停机格局(halting configurations),它们都不再产生新的格局.

因为机器只在接受或拒绝状态下才停机, 因此可以等价地将转移函数记 为

 $\bullet \ \delta: Q' \times \Gamma \to Q \times \Gamma \times \{\mathsf{L},\mathsf{R}\}, \ \mathsf{where} \ Q' = Q - \{q_{\mathsf{accept}},q_{\mathsf{reject}}\}$ 

- 4ロト 4個ト 4 差ト 4 差ト - 差 - 夕Qで

图灵机 M 接受(accepts)输入 w, 如果存在格局的序列  $C_1, C_2, \ldots, C_k$  使得

- $C_1$  是 M 在输入 w 上的起始格局,
- 每一个  $C_i$  产生  $C_{i+1}$ ,
- C<sub>k</sub> 是接受格局.

M 接受的字符串的集合称为 M 的语言, 或被 M 识别的语言, 记为 L(M).

# Turing-recognizable 图灵可识别

### Definition (Turing-recognizable 图灵可识别)

如果一个语言能被某一图灵机识别,则称该语言是**图灵可识别** 的(Turing-recognizable)

## Turing-recognizable 图灵可识别

### Definition (Turing-recognizable 图灵可识别)

如果一个语言能被某一图灵机识别,则称该语言是图灵可识别 的(Turing-recognizable)

(图灵可识别语言也可被称为递归可枚举语言(recursively enumerable language).) 在输入上运行一个图灵机时, 可能出现三种结果.

- 接受
- ② 拒绝
- 循环

这里**循环(loop)**仅仅指机器不停机.



对于一个输入, 图灵机 M 有两种方式不接受它, 一种是进入拒绝状态而 拒绝它,另一种是进入循环

对于一个输入,图灵机 M 有两种方式不接受它,一种是进入拒绝状态而 拒绝它, 另一种是进入循环

有时候很难区分机器是讲入了循环还是需要耗费长时间的运行

对于一个输入,图灵机 M 有两种方式不接受它,一种是进入拒绝状态而 拒绝它, 另一种是进入循环

有时候很难区分机器是进入了循环还是需要耗费长时间的运行 因此,人们更喜欢对所有输入都停机的图灵机,它们永不循环,

对于一个输入, 图灵机 M 有两种方式不接受它, 一种是进入拒绝状态而拒绝它. 另一种是进入循环

- 有时候很难区分机器是进入了循环还是需要耗费长时间的运行因此,人们更喜欢对所有输入都停机的图灵机,它们永不循环.
  - 这种机器被称为**判定器(deciders)**, 因为它们总能决定是接受还是拒绝.

对于一个输入, 图灵机 M 有两种方式不接受它, 一种是进入拒绝状态而拒绝它. 另一种是进入循环

- 有时候很难区分机器是进入了循环还是需要耗费长时间的运行因此,人们更喜欢对所有输入都停机的图灵机,它们永不循环.
  - 这种机器被称为**判定器(deciders)**, 因为它们总能决定是接受还是拒绝.
  - 对于可以识别某个语言的判定器, 称其判定(decide)该语言.

• 这种机器被称为判定器(deciders), 因为它们总能决定是接受还是拒 绝.

- 这种机器被称为**判定器 (deciders)**, 因为它们总能决定是接受还是拒绝.
- 对任何输入都停机的图灵机, 又被称为总停机的图灵机, 总停机的图 灵机也被称为算法.

- 这种机器被称为**判定器 (deciders)**, 因为它们总能决定是接受还是拒 绝.
- 对任何输入都停机的图灵机,又被称为总停机的图灵机,总停机的图 灵机也被称为算法.
- 对于可以识别某个语言的判定器, 称其判定(decide)该语言.

- 这种机器被称为判定器(deciders), 因为它们总能决定是接受还是拒 绝.
- 对任何输入都停机的图灵机,又被称为总停机的图灵机,总停机的图 灵机也被称为算法.
- 对于可以识别某个语言的判定器, 称其判定(decide)该语言.

### Definition (Turing-decidable 图灵可判定的)

如果一个语言能被某一图灵机判定,则称它是图灵可判定

的(Turing-decidable), 简称可判定的(decidable).

- 这种机器被称为判定器(deciders), 因为它们总能决定是接受还是拒 绝.
- 对任何输入都停机的图灵机,又被称为总停机的图灵机,总停机的图 灵机也被称为算法.
- 对于可以识别某个语言的判定器, 称其判定(decide)该语言.

### Definition (Turing-decidable 图灵可判定的)

如果一个语言能被某一图灵机判定,则称它是图灵可判定

的(Turing-decidable), 简称可判定的(decidable).

(图灵可判定语言也被称为**递归语言(recursively language)**.)

- 这种机器被称为判定器(deciders), 因为它们总能决定是接受还是拒 绝.
- 对任何输入都停机的图灵机,又被称为总停机的图灵机,总停机的图 灵机也被称为算法.
- 对于可以识别某个语言的判定器, 称其判定(decide)该语言.

### Definition (Turing-decidable 图灵可判定的)

如果一个语言能被某一图灵机判定,则称它是图灵可判定 的(Turing-decidable), 简称可判定的(decidable).

(图灵可判定语言也被称为**递归语言(recursively language)**.)

每一个图灵可判定语言都是图灵可识别的。

## 各类型语言之间的关系

#### Theorem

每一个上下文无关语言都是图灵可判定语言.

# 各类型语言之间的关系

#### Theorem

每一个上下文无关语言都是图灵可判定语言.



Example (构造图灵机  $M_2$ , 它判定的语言为  $A = \{0^{2^n} | n \ge 0\}$ )

### Example (构造图灵机 $M_2$ , 它判定的语言为 $A = \{0^{2^n} | n \ge 0\}$ )

 $M_2$  对于输入字符串 w:

- 从左往右扫描整个纸带,隔一个字符消去一个 0.
- ❷ 如果在第1步之后,纸带上只剩下唯一的一个0,则接受.
- 如果在第1步之后,纸带上包含不止一个0,并且0的个数是奇数,则拒绝。
- 读写头返回纸带的最左端.
- 转到第1步.

### Example (构造图灵机 $M_2$ , 它判定的语言为 $A = \{0^{2^n} | n \ge 0\}$ )

下面给出  $M_2$  的形式化描述:  $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$ 

- **2**  $\Sigma = \{0\}$
- $\Gamma = \{0, x, \bigsqcup\}$
- 4 将δ描述为状态转移图
- **⑤** 开始、接受和拒绝状态分别是  $q_1$ ,  $q_{accept}$  和  $q_{reject}$

Example (构造图灵机  $M_2$ , 判定语言  $A = \{0^{2^n} | n \ge 0\}$ , 输入: 0000)

### Example (构造图灵机 $M_2$ , 判定语言 $A = \{0^{2^n} | n \ge 0\}$ , 输入: 0000)



| $q_1$ 0000                                           | ப $q_5$ х $0$ хப                            | $\sqcup \mathbf{x}q_5\mathbf{x}\mathbf{x}\sqcup$     |
|------------------------------------------------------|---------------------------------------------|------------------------------------------------------|
| $\Box q_2$ 000                                       | $q_5 \sqcup x 0 x \sqcup$                   |                                                      |
|                                                      |                                             | $\sqcup q_5$ xxx $\sqcup$                            |
| ⊔x <i>q</i> <sub>3</sub> 00                          | $\sqcup q_2$ x0x $\sqcup$                   | $q_5$ uxxxu                                          |
| $\sqcup x 0 q_4 0$                                   | $\sqcup \mathrm{x}q_2$ 0 $\mathrm{x}\sqcup$ | $\sqcup q_2$ xxx $\sqcup$                            |
| $\sqcup \mathbf{x} 0 \mathbf{x} q_3 \sqcup$          | $\sqcup xxq_3x\sqcup$                       | $\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$ |
| $\sqcup x$ 0 $q_5x$ $\sqcup$                         | $\sqcup \mathtt{xxx}q_3 \sqcup$             | $\sqcup \mathtt{xx} q_2 \mathtt{x} \sqcup$           |
| $\sqcup \mathtt{x} q_5 \mathtt{0} \mathtt{x} \sqcup$ | $\sqcup \mathtt{xx} q_5 \mathtt{x} \sqcup$  | $\sqcup \mathtt{xxx} q_2 \sqcup$                     |
|                                                      |                                             | $\sqcup xxx \sqcup q_{accept}$                       |

 $M_1$  的形式化描述:  $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$ 

- $\Sigma = \{0, 1, \#\}$
- $\Gamma = \{0, 1, \#, x, | \}$
- 4 格δ描述为状态转移图
- **⑤** 开始、接受和拒绝状态分别是  $q_1$ ,  $q_{accept}$  和  $q_{reject}$

### 输入: 011000#011000)



### Outline

- ① Turing Machines 图灵机
- ② 图灵机的变形
  - Multitape Turing Machines 多带图灵机
  - Nondeterministic Turing Machines 非确定型图灵机
  - Enumerators 枚举器
  - 与其他模型的等价性
- ③ 算法的定义



### 多带图灵机

● 多带图灵机(multitape Turing machine)很像普通图灵机, 只是有多条 纸带, 每条纸带都有自己的读写头用于读和写, 开始时, 输入出现在 第1条纸带上,其他纸带都是空白的.

### 多带图灵机

- 多带图灵机(multitape Turing machine)很像普通图灵机, 只是有多条 纸带, 每条纸带都有自己的读写头用于读和写, 开始时, 输入出现在 第1条纸带上,其他纸带都是空白的,
- 转移函数:  $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ , 这里 k 是纸带的数量.

### 多带图灵机

- 多带图灵机(multitape Turing machine)很像普通图灵机, 只是有多条 纸带, 每条纸带都有自己的读写头用于读和写, 开始时, 输入出现在 第1条纸带上,其他纸带都是空白的,
- 转移函数:  $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ , 这里 k 是纸带的数量.
- $\bullet \ \delta(q_i, a_1, \cdots, a_k) = (q_i, b_1, \cdots, b_k, L, R, \cdots, L)$

### 多带图灵机

- 多带图灵机(multitape Turing machine)很像普通图灵机, 只是有多条 纸带, 每条纸带都有自己的读写头用于读和写, 开始时, 输入出现在 第1条纸带上,其他纸带都是空白的,
- 转移函数:  $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$ , 这里 k 是纸带的数量.
- $\bullet \ \delta(q_i, a_1, \cdots, a_k) = (q_i, b_1, \cdots, b_k, L, R, \cdots, L)$

#### $\mathsf{Theorem}$

每个多带图灵机等价干某一个单带图灵机.

### Theorem

每个多带图灵机等价于某一个单带图灵机,

### Theorem

每个多带图灵机等价于某一个单带图灵机,

证明思路: 将一个多带图灵机 M 转换为一个与之等价的单带图灵机 S. 关键是怎样用S 来模拟M.

### Theorem

每个多带图灵机等价于某一个单带图灵机.

证明思路: 将一个多带图灵机 M 转换为一个与之等价的单带图灵机 S. 关键是怎样用 S 来模拟 M.



### Theorem

每个多带图灵机等价于某一个单带图灵机.

### Theorem

每个多带图灵机等价于某一个单带图灵机.

证明:

#### $\mathsf{Theorem}$

每个多带图灵机等价干某一个单带图灵机.

证明: S 对于输入任一字符串  $w = w_1 \cdots w_n$ :

■ S 在自己的纸带上放入

$$\#\dot{w}_1w_2\cdots w_n\#\dot{\sqcup}\#\dot{\sqcup}\#\cdots\#$$

此格式表示了 M 的全部 k 个纸带的内容

#### $\mathsf{Theorem}$

每个多带图灵机等价干某一个单带图灵机.

证明: S 对于输入任一字符串  $w = w_1 \cdots w_n$ :

■ S 在自己的纸带上放入

$$\#\dot{w}_1w_2\cdots w_n\#\dot{\sqcup}\#\dot{\sqcup}\#\cdots \#$$

此格式表示了 M 的全部 k 个纸带的内容

❷ 为了模拟多带机的一步移动、S 在其纸带上从标记左端点的第一个 # 开始扫描, 一直扫描到标记右端点的第 k+1 个 #, 其目的是确定 虚拟读写头下的符号. 然后 S 进行第二次扫描. 并根据 M 的转移函 数指示的运行方式更新纸带.

### **Theorem**

每个多带图灵机等价于某一个单带图灵机.

证明: S 对于输入任一字符串  $w = w_1 \cdots w_n$ :

味着 M 已将自己相应的读写头移动到了其所在的纸带中的空白区 域上,即以前没有读过的区域上,因此,S 在这个纸带方格上写下空 白符. 并将这个纸带方格到最右端的各个纸带方格中的内容都向右 移动一个, 然后再像之前一样继续模拟,

### **Theorem**

每个多带图灵机等价于某一个单带图灵机.

证明: S 对于输入任一字符串  $w = w_1 \cdots w_n$ :

❸ 任何时候, 只要 S 将某个虚拟读写头向右移动到某个 # 上面, 就意 味着 M 已将自己相应的读写头移动到了其所在的纸带中的空白区 域上,即以前没有读过的区域上,因此,S 在这个纸带方格上写下空 白符, 并将这个纸带方格到最右端的各个纸带方格中的内容都向右 移动一个, 然后再像之前一样继续模拟,

### Corollary

一个语言是图灵可识别的, 当且仅当存在多带图灵机识别它,

• 
$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{\mathsf{L},\mathsf{R}\})$$

#### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机.

### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机.

#### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机,

证明思路: 用确定型图灵机 D 来模拟非确定型图灵机 N 的证明思路是: 让 D 试验 N 的非确定型计算的所有可能分支. 若 D 能在某个分支到达 接受状态, 则接受: 否则 D 的模拟将永不终止.

#### Theorem,

每个非确定型图灵机都等价于某一个确定型图灵机.

证明思路: 用确定型图灵机 D 来模拟非确定型图灵机 N 的证明思路是: 让 D 试验 N 的非确定型计算的所有可能分支. 若 D 能在某个分支到达接受状态, 则接受; 否则 D 的模拟将永不终止.



### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机.

#### $\mathsf{Theorem}$

每个非确定型图灵机都等价于某一个确定型图灵机.

证明: D 的描述如下:

● 开始时, 第一条纸带包含输入 w, 第二条纸带和第三条纸带都是空白 的.

#### $\mathsf{Theorem}$

每个非确定型图灵机都等价于某一个确定型图灵机.

### 证明: D 的描述如下:

- 开始时, 第一条纸带包含输入 w, 第二条纸带和第三条纸带都是空白 的.
- 把第一条纸带复制到第二条纸带上,并将第三条纸带的字符串初始 化为  $\epsilon$ .

#### $\mathsf{Theorem}$

每个非确定型图灵机都等价于某一个确定型图灵机.

### 证明: D 的描述如下:

- 开始时, 第一条纸带包含输入 w, 第二条纸带和第三条纸带都是空白 的.
- 把第一条纸带复制到第二条纸带上,并将第三条纸带的字符串初始 化为  $\epsilon$ .
- ③ 用第二条纸带去模拟 N 在输入 w 上的非确定计算的某个分支。在 N 的每一步动作之前,查询第三条纸带上的下一个数字,以决定在 N 的转移函数所允许的选择中做何选择.

### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机.

#### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机,

### 证明: D 的描述如下:

如果第三条纸带上没有符号剩下,或这个非确定型的选择是无效的。 则放弃这个分支, 转到第 4 步, 如果遇到拒绝格局也转到第 4 步, 如 果遇到接受格局. 则接受这个输入.

#### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机,

### 证明: D 的描述如下:

- 如果第三条纸带上没有符号剩下,或这个非确定型的选择是无效的。 则放弃这个分支, 转到第 4 步, 如果遇到拒绝格局也转到第 4 步, 如 果遇到接受格局. 则接受这个输入.
- 在第三条纸带上, 用字符串顺序的下一个串来替代原有的串. 转到 第 2 步, 以模拟 N 的计算的下一个分支.

### Theorem

每个非确定型图灵机都等价于某一个确定型图灵机.

#### $\mathsf{Theorem}$

每个非确定型图灵机都等价于某一个确定型图灵机.

### Corollary

-个语言是图灵可识别的,当且仅当存在非确定型图灵机识别它.

#### $\mathsf{Theorem}$

每个非确定型图灵机都等价干某一个确定型图灵机.

### Corollary

一个语言是图灵可识别的, 当且仅当存在非确定型图灵机识别它.

证明: 确定型图灵机自然是一个非确定型图灵机. 此推论的一个方向由 此立刻得证. 另一个方向可由定理 3.10 得证.

#### $\mathsf{Theorem}$

每个非确定型图灵机都等价于某一个确定型图灵机.

### Corollary

一个语言是图灵可识别的, 当且仅当存在非确定型图灵机识别它.

证明: 确定型图灵机自然是一个非确定型图灵机, 此推论的一个方向由 此立刻得证. 另一个方向可由定理 3.10 得证.

### Corollary

一个语言是图灵可判定的, 当且仅当存在非确定型图灵机判定它.

#### **Theorem**

每个非确定型图灵机都等价于某一个确定型图灵机.

### Corollary

一个语言是图灵可识别的, 当且仅当存在非确定型图灵机识别它.

证明: 确定型图灵机自然是一个非确定型图灵机, 此推论的一个方向由此立刻得证. 另一个方向可由定理 3.10 得证.

### Corollary

一个语言是图灵可判定的, 当且仅当存在非确定型图灵机判定它.

证明: 修改定理 3.10 的证明, 如果 N 在计算的所有分支上都能停机, 则 D 也总能停机.

枚举器是一个 k 带图灵机, 最后一带作为输出带。

枚举器是一个 k 带图灵机,最后一带作为输出带。枚举器产生的语言:

枚举器是一个 k 带图灵机,最后一带作为输出带。枚举器产生的语言:  $L(M) = \{w|w \in \Sigma^*, w$ 能被M打印在输出带上,  $\# \notin \Sigma$ }

枚举器是一个 k 带图灵机,最后一带作为输出带。枚举器产生的语言:  $L(M) = \{w|w \in \Sigma^*, w$ 能被M打印在输出带上, $\# \notin \Sigma\}$ 



枚举器是一个 k 带图灵机,最后一带作为输出带。枚举器产生的语言:  $L(M) = \{w|w \in \Sigma^*, w$ 能被M打印在输出带上, $\# \notin \Sigma\}$ 



#### $\mathsf{Theorem}$

一个语言是图灵可识别的, 当且仅当存在枚举器枚举它.

### Theorem

一个语言是图灵可识别的, 当且仅当存在枚举器枚举它.

### Theorem

一个语言是图灵可识别的, 当且仅当存在枚举器枚举它.

证明: 首先证明: 如果有枚举器 E 枚举语言 A, 则有图灵机 M 识别 A. 图灵机 M 对于输入 w:

- 运行 E, 每当 E 输出一个串时, 将之与 w 比较.
- ② 如果 w 曾经在 E 的输出中出现过,则接受.

#### **Theorem**

一个语言是图灵可识别的, 当且仅当存在枚举器枚举它.

证明: 首先证明: 如果有枚举器 E 枚举语言 A, 则有图灵机 M 识别 A. 图灵机 M 对于输入 w:

- 运行 E, 每当 E 输出一个串时, 将之与 w 比较.
- ② 如果 w 曾经在 E 的输出中出现过,则接受.

现在证明另一个方向. 设  $s_1, s_2, s_3, \cdots$  是  $\Sigma^*$  中所有可能的串, 如果图灵 n. M 识别语言 A. 则为 A 构造枚举器 E 如下:

- **1** 对  $i = 1, 2, 3, \dots$ , 重复下列步骤.
- ② 对  $s_1, s_2, \dots, s_i$  中的每一个 i, M 以其作为输入运行 i 步.
- 3 如果有计算接受,则打印出相应的  $s_i$ .

39 / 44

## 与其他模型的等价性

- 双向无穷带图灵机
- 多头图灵机
- 多维图灵机
- 离线图灵机
- λ-演算

### Outline

- ① Turing Machines 图灵机
- ② 图灵机的变形
- ③ 算法的定义
  - 希尔伯特问题
  - 描述图灵机的术语



# 丘奇-图灵论题(Church-Turing thesis)

希尔伯特第10问题旨在设计一个算法来检测一个多项式是否有整数根.

# 丘奇-图灵论题(Church-Turing thesis)

希尔伯特第 10 问题旨在设计一个算法来检测一个多项式是否有整数根.

| Intuitive notion | equals | Turing machine |
|------------------|--------|----------------|
| of algorithms    |        | algorithms     |

The Church-Turing Thesis 邱奇-图灵论题

# 丘奇-图灵论题(Church-Turing thesis)

希尔伯特第 10 问题旨在设计一个算法来检测一个多项式是否有整数根.

| Intuitive notion | equals | Turing machine |
|------------------|--------|----------------|
| of algorithms    |        | algorithms     |

The Church-Turing Thesis 邱奇-图灵论题

所有合理的计算模型都是等价的.

描述的详细程度有三种:

描述的详细程度有三种:

● 第一种是形式化描述,即详尽地写出图灵机的状态、转移函数等, 这是最低层次.

### 描述的详细程度有三种:

- 第一种是形式化描述,即详尽地写出图灵机的状态、转移函数等, 这是最低层次.
- ② 第二种描述的抽象水平要高一些, 称为**实现描述**.
  - 这种方法使用日常语言来描述图灵机的动作,如怎么移动读写头、怎么在纸带上存储数据,
  - 这种程度的描述没有给出状态和转移函数的细节.

### 描述的详细程度有三种:

- 第一种是形式化描述,即详尽地写出图灵机的状态、转移函数等, 这是最低层次.
- ② 第二种描述的抽象水平要高一些, 称为**实现描述**.
  - 这种方法使用日常语言来描述图灵机的动作,如怎么移动读写头、怎么在纸带上存储数据.
  - 这种程度的描述没有给出状态和转移函数的细节.
- 第三种是高层次描述,它也是使用日常语言描述算法,但忽略了实现的细节.
  - 这种程度的描述不再需要提及机器如何管理它的纸带或读写头.

### Example

设 A 是由表示连通无向图的串构成的语言,  $A = \{\langle G \rangle | G$  是无向连通图}, 下面是判定 A 的图灵机 M 的一个高层次描述:

### Example

设 A 是由表示连通无向图的串构成的语言,  $A = \{\langle G \rangle | G$  是无向连通图}, 下面是判定 A 的图灵机 M 的一个高层次描述:

M 对于输入是图 G 的编码  $\langle G \rangle$ :

- 选择 G 的第一个顶点, 并标记之.
- ② 重复下列步骤, 直到没有新的顶点可作标记.
- 对于 G 的每一个顶点, 如果能够通过一条边将其连到另一个已被标记的顶点, 则标记该顶点.
- 扫描 *G* 的所有顶点, 确定它们是否都已作了标记. 如果是, 则接受, 否则拒绝.