МАГОЛЕГО Линейная алгебра в приложениях Семинар 17

Д. И. Пионтковский, И. К. Козлов $(B \coprod 9)$

28 мая 2021

Материал прошлых семинаров

- Материал прошлых семинаров
 - Положительные матрицы
 - Продуктивные матрицы
 - Линейное программирование

Базис Грёбнера.

Положительные матрицы

- Материал прошлых семинаров
 - Положительные матрицы
 - Продуктивные матрицы
 - Линейное программирование

Базис Грёбнера.

Задача. Найти самую влиятельную вершину в ориентированном графе с помощью алгоритма PageRank с β = 0.15, где матрица смежности графа равна

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

Изменим договорённость. Будем считать, что из вершины i выходит ребро в вершину j, если в строке i на j-том месте стоит 1. То есть матрица инциндентности "пишется по строчкам".

Иными словами, матрице

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

соответствует граф

Решение. Составляем матрицу P — транспонируем A и делим каждый столбец на сумму чисел в нём.

$$P = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{3} & 1 & 0 \\ 1 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} & 0 & 0 \end{pmatrix}.$$

В итоге сумма чисел в каждом столбце P должна равняться 1:

$$(1,\ldots,1)P = (1,\ldots,1).$$

Далее, считаем dampling factor $= 1 - \beta$.

Берём матрицу

$$P_{\beta} = \frac{\beta}{n} \cdot 1_{n \times 1} + (1 - \beta) \cdot P,$$

где n — число вершин в графе, $1_{n \times 1}$ — матрица из одних единиц.

Haxoдим PageRank для вершин — итеративно применяем

$$P_{\beta}^{m}\left(\begin{array}{c} \frac{1}{n} \\ \dots \\ \frac{1}{n} \end{array}\right), \qquad m=1,\dots,$$

пока процесс "не стабилизируется". Получаем набор рангом r_1, \dots, r_n . Искомая вершина та, которой соответствует наибольшее число — ранг r_i .

Продуктивные матрицы

- Материал прошлых семинаров
 - Положительные матрицы
 - Продуктивные матрицы
 - Линейное программирование

2 Базис Грёбнера.

Матрица A продуктивна, если $A \ge 0$ и существует вектор x > 0 т.,ч.

Ax < x.

Утверждение

Матрица A продуктивна $\Leftrightarrow E - A$ обратима и $(E - A)^{-1} \ge 0$.

Следствие. Неразложимая матрица $A \ge 0$ продуктивна \Leftrightarrow её собственное значение Фробениуса-Перрона $\lambda_A < 1$.

Задача. Рассмотрим национальную экономику, производственные процессы в которой разукрупнены до уровня 2 секторов производства. Соблюдается постоянство удельного выпуска при постоянных пропорциях затрат независимо от масштабов производства. Информация о промежуточных затратах и валовом выпуске представлена в таблице.

	Α	В	Total Output
Α	2	1	10
В	3	4	10

Найдите вектор конечного спроса. Постройте матрицу расходных (технологических) коэффициентов. Вычислите леонтьевскую обратную для данной экономики. Выясните, является ли модель Леонтьева, представленная в данной задаче, продуктивной.

Указания. Фактичекси у нас задана 2×2 матрица P и вектор b в последнем столбце.

Конечный спрос — то, что останется от полного производства после всех издержек, т.е. $b-Pinom{1}{1}.$

Матрица расходных коэффициентов C — матрица отношений (p_{ij}/b_i) (делим по строчкам).

Леонтьевская матрица — это $(E-C)^{-1}$.

Линейное программирование

- Материал прошлых семинаров
 - Положительные матрицы
 - Продуктивные матрицы
 - Линейное программирование

Базис Грёбнера.

Задача. Решить задачу ЛП и найти "теневые цены", отвечающие каждому ограничению.

$$1x_1 + 3x_2 + 1x_3 \rightarrow \min;$$

$$\begin{cases}
-1x_1 + 1x_2 + 1x_3 \ge 3 \\
1x_1 + 1x_2 - 1x_3 \ge 2 \\
x_1 \ge 0; x_2 \ge 0; x_3 \ge 0
\end{cases}$$

Замечание. "Теневые цены" — это переменные двойственной задачи. Т.е. нужно также решить двойственную задачу.

Решение:

• Рассматриваем двойственную задачу:

$$3y_1 + 2y_2 \to \max;$$

$$\begin{cases}
-1y_1 + 1y_2 \le 1 \\
1y_1 + 1y_2 \le 3 \\
1y_1 - 1y_2 \le 1 \\
y_1 \ge 0; y_2 \ge 0
\end{cases}$$

 Находим допустимое множество решений двойственной задачи. Это пятиугольник с вершинами

$$(0,0)$$
 $(0,1)$ $(1,2)$ $(2,1)$ $(1,0)$.

Решаем двойственную задачу — находим вершину, где достигается максимум.
 Это вершина (2,1) и максимум равен 8.

Применяем теорему о дополняющей нежесткости

$$y_i \cdot ((Ax)_i - b_i) = 0,$$

$$x_i \cdot ((A^T y)_i - c_i) = 0.$$

Иными словами, если где-то строгое неравенство $(A^T y)_j < c_j$, то соответствующая переменая $x_i = 0$.

В данном случае для точки (2,1) выполнено:

$$\begin{cases} -1y_1 + 1y_2 < 1 \\ 1y_1 + 1y_2 = 3 \\ 1y_1 - 1y_2 = 1. \end{cases}$$

Строгое неравенство в первом уравнении, поэтому

$$x_1 = 0$$
.

4 Подставляем $x_1 = 0$ в исходную задачу:

$$1x_1 + 3x_2 + 1x_3 \to \min;$$

$$\begin{cases}
-1x_1 + 1x_2 + 1x_3 \ge 3 \\
1x_1 + 1x_2 - 1x_3 \ge 2 \\
x_1 \ge 0; x_2 \ge 0; x_3 \ge 0
\end{cases}$$

Решением её (например графическим методом — перебираем вершины многоугольника). Получаем ответ:

$$min = 8,$$
 $(x_1, x_2, x_3) = (0, 2.5, 0.5).$

Базис Грёбнера

- 📵 Материал прошлых семинаров
 - Положительные матрицы
 - Продуктивные матрицы
 - Линейное программирование

Базис Грёбнера.

🍆 Аржанцев И. В

Базисы Грёбнера и системы алгебраических уравнений.,

М.: МЦНМО, 2003. — 68 с.

Как решать полиноминальные уравнения? Например

$$\begin{cases} x^{2} + y^{2} + z^{2} = 0\\ x + y - z = 0\\ y + z^{2} = 0 \end{cases}$$

Будем искать решения над $\mathbb{C}.$

Идея: можно добавить уравнений.

Введём понятие идеала I, порождённого многочленами $f_1,\ldots,f_m\in\mathbb{C}[x_1,\ldots,x_n]$. Это всевозможные суммы вида

$$I = \left\{ f_1 h_1 + \dots f_m h_m, \mid h_i \in F[x_1, \dots, x_n] \right\}.$$

Обозначение:

$$I = (f_1, \ldots, f_m)$$
.

Если идеалы совпадают (f_1,\ldots,f_m) = (g_1,\ldots,g_k) , то системы

$$\begin{cases} f_1 = 0 \\ \dots \\ f_m = 0 \end{cases}, \qquad \begin{cases} g_1 = 0 \\ \dots \\ g_k = 0 \end{cases}$$

эквивалентны.

Введём понятие старшего члена многочлена $f \in \mathbb{C}[x_1,\ldots,x_n].$

Лексикографический порядок.

$$x_1^{i_1} \dots x_n^{i_n} > x_1^{j_1} \dots x_n^{j_n},$$

если

$$i_1 = j_1,$$
 $i_k = j_k,$ $i_{k+1} > j_{k+1}.$

Обозначим старший коэффицент многочлена f за $\operatorname{lt}(f)$.

Хорошее свойство: старший член произведения — произведение старших членов

$$lt(fg) = lt(f) lt(g)$$

Опишем алгоритм Бухбергера построения базиса Грёбнера.

Изначально дан набор полиномов

$$f_1,\ldots,f_m$$
.

Мы строим базис идеала

$$I=(f_1,\ldots,f_m),$$

добавляя на каждом шаге многочлен (если на этом шаге базис ещё не построем).

🚺 Изначально за базис Грёбнера берём данные многочлены

$$G = \{f_1, \ldots, f_m\}$$
.

- $oldsymbol{0}$ Перебираем пары $f_i, f_j \in G$. Пусть их старшие члены g_i и g_j .
- \odot Строим по f_i, f_j их S-полином:

$$S_{ij} = \frac{\mathsf{HOK}(g_i, g_j)}{g_i} f_i - \frac{\mathsf{HOK}(g_i, g_j)}{g_j} f_j.$$

Мы берём такую комбинацию, что старший член сокращается.

Редуцируем S-полином S_{ij}: "убиваем" старший коэффициент заменами

$$S_{ij} \rightarrow S_{ij} - Q \cdot f_k$$

где Q — одночлен. Редуцируем, пока это возможно. Если итоговый S_{ij} не 0, то добавляем его в G.

- **③** Повторяем предыдущие шаги, пока не перебрали все многочлены из G (и G не перестал увеличиваться).
- $oldsymbol{0}$ Рано или поздно алгоритм закончится. Итоговое G и есть базис Грёбнера.

Задача. Найти базис Грёбнера

$$\begin{cases} x^2 + y^2 + z^2 = 0\\ x + y - z = 0\\ y + z^2 = 0 \end{cases}$$

• Находим S-полином S_{12} . Полиномы

$$f_1 = x^2 + y^2 + z^2$$
, $f_2 = x + y - z$

Старшие коэффициенты

$$I(f_1) = x^2, I(f_2) = x.$$

Их НОК x^2 , поэтому

$$S_{12} = \frac{\mathsf{HOK}(g_1, g_2)}{g_1} f_1 - \frac{\mathsf{HOK}(g_1, g_2)}{g_2} f_2 =$$

$$= f_1 - x f_2 = -xy + xz + y^2 + z^2.$$

Итак для многочленов

$$f_1 = x^2 + y^2 + z^2$$
, $f_2 = x + y - z$ $f_3 = y + z^2$

мы нашли

$$S_{12} = -xy + xz + y^2 + z^2.$$

Начинаем редуцировать S_{12} .

"Убиваем" коэфициенты при x при помощи f_2 .

$$S_{12} \rightarrow S_{12} - (-y + z)f_2 = 2y^2 - 2yz + 2z^2$$

"Убиваем" коэфициенты при y при помощи f_3 .

$$S_{12} \rightarrow S_{12} - (2y - 2z)f_3 = -2yz^2 + 2z^3 + 2z^2$$
.

Продолжаем:

$$S_{12} \rightarrow S_{12} - (-2z^2)f_3 = 2z^2 + 2z^3 + 2z^4$$
.

Многочлены можно умножать на ненулевые константы. Получаем

$$f_4 = z^4 + z^3 + z^2.$$

И так далее...

(Дальше мы не получим новых многочленов).

Многочлены:

$$f_1 = x^2 + y^2 + z^2$$
, $f_2 = x + y - z$ $f_3 = y + z^2$ $f_4 = z^4 + z^3 + z^2$

S-полиномы:

$$S_{13} = yf_1 - x^2f_3 = -x^2z^2 + y^3 + yz^2 =$$

= $-z^2f_1 + (y^2 + z^2)f_3$

$$S_{23} = yf_2 - xf_3 = -xz^2 + y^2 - yz =$$

= $-z^2f_2 + (y - z)f_3$

$$S_{14} = z^4 f_1 - x^2 f_4 = x^2 (-z^3 - z^2) + y^2 z^4 + z^6 =$$

= $-(z^2 + z^3) f_1 + (y^2 + z^2) f_4$

Многочлены:

$$f_1 = x^2 + y^2 + z^2$$
, $f_2 = x + y - z$ $f_3 = y + z^2$ $f_4 = z^4 + z^3 + z^2$

S-полиномы:

$$S_{24} = z^4 f_2 - x f_4 = x(-z^3 - z^2) + y z^4 - z^5 =$$

= $-(z^2 + z^3) f_2 - (z - y) f_4$

$$S_{34} = z^3 f_3 - y f_4 = -y z^4 - y z^2 + z^5 =$$

= $(-z^2 - z^4) f_3 + (z^2) f_4$

Ответ: базис Грёбнера:

$$f_1 = x^2 + y^2 + z^2$$
, $f_2 = x + y - z$ $f_3 = y + z^2$ $f_4 = z^4 + z^3 + z^2$

Имеет ли система полиномиальных уравнений решения? Рассмотрим САУ над $\mathbb C.$

Теорема

Система алгебраических уравнений несовместна (т.е. не имеет решений) тогда и только тогда, когда её базис Грёбнера идеала содержит ненулевую константу.

Грубо говоря, если решений нет, то на каком-то шаге мы получим

$$1 = 0.$$

Замечание. Если мы только ищем корни, и получили

$$1 = 0,$$

то дальше базис Грёбнера можно не считать.

Теорема

Число решений САУ S конечно тогда и только тогда, когда базис Грёбнера идеала I(S) содержит элементы f_1, \ldots, f_n , старшие члены которых являются степенями переменных x_1, x_2, \ldots, x_n соответственно.

Грубо говоря, САУ примет вид

$$\begin{cases} x_1^{k_1} + \dots = 0 \\ \dots \\ x_n^{k_n} + \dots = 0 \\ f_{n+1}(x_1, \dots, x_n) = 0, \\ \dots \end{cases}$$