Stock Assessment Form version 0.1

Not to be cited or used in publications outside GFCM framework without authors permission.

Assessment form content for each stock

1Basic Identification Data	2
2Stock identification and biological information	3
2.1Stock unit	3
2.2Growth and maturity	3
3Fisheries information	
3.1Description of the fleet	4
3.2Historical trends	
4Management regulations	
4.1Reference points	6
5Fisheries independent information	7
5.1ECHOSURVEY (Acoustic survey)	
5.1.1Brief description of the chosen method and assumptions used	7
5.1.2Spatial distribution of the resources	
5.1.3Historical trends	
5.2MEDITS	9
5.2.1Brief description of the chosen method and assumptions used	9
5.2.2Spatial distribution of the resources	9
5.2.3Historical trends	9
6Ecological information	11
6.1Protected species potentially affected by the fisheries	11
6.2Environmental indexes	11
7Stock Assessment	12
7.1Integrated Catch Analysis	12
7.1.1Model assumptions	12
7.1.2Scripts	
7.1.3Results	
7.2Virtual Population Analysis	
7.2.1Model assumptions	
7.2.2Results	
7.3Robustness analysis	
7.3.1ICA	
7.3.2VPA	
7.4Assessment quality	
8Stock predictions	
8.1Short term predictions	
8.2Medium term predictions	
8.3Long term predictions	
9Draft scientific advice	
10Bibliography	45

1 Basic Identification Data

Scientific name:	Common name:	ISCAAP Group:						
Engraulis encrasicolus	European anchovy	35 - Herrings, sardines,						
		anchovies						
Geographical sub-area:								
GSA 17								
Stock assessment method	: (direct, indirect, combined	l, none)						
Combined								
Authors: Carpi P. (1), (in al	<i>phabetical order)</i> Angelini S	5. (1), Belardinelli A. (1),						
Biagiotti I. (1), Campanella	F. (1), Canduci G. (1), Cing	olani N. (1), Čikeš Keč V.						
(2), Colella S. (1), Croci C.	(1), De Felice A. (1), Donato	o F.(1), Leonori I. (1),						
Martinelli M. (1), Malavolti	S. (1), Modic T. (3), Panfili N	Л. (1), Pengal P. (3),						
Santojanni A. (1), Ticina V.	(2), Vasapollo C. (1), Zorica	a B. (2), Arneri E (4).						
Affiliation: (1) CNR-ISMAR (Ancona, Italy), (2) Institute of Oceanography and								
Fisheries (Split, Croatia), (3) Fisheries Research Institute of Slovenia (Ljubjana,								
Slovenia), (4) FAO-Adriame	ed (Rome, Italy)							

2 Stock identification and biological information.

2.1 Stock unit

Anchovy stock is shared among the countries belonging to GSA 17 (Italy, Croatia and Slovenia) and it constitutes a unique stock.

Many studies have been carried out regarding the presence of a unique stock or the presence of different sub populations living in the Adriatic Sea (GSA 17 and GSA 18). This has several implications for the management, i.e. differences in the growth features between subpopulations imply the necessity of ad hoc strategies in the management. The hypothesis of two distinct populations claims the evidence of morphometric differences between northern and southern Adriatic anchovy, such as color and length, and some variability in their genetic structure (Bembo et al., 1996). Nevertheless, many authors warns against the use of morphological data in studies on population structure (Tudela, 1999) and, a recent study from Magoulas et al. (2006), revealed the presence of two different clades in the Mediterranean, one of those is characterized by a high frequency in the Adriatic Sea (higher than 85%) with a low nucleotide diversity (around 1%). For this reason a joint assessment between GSA 17 and GSA 18 is advisable.

2.2 Growth and maturity

Table 2: Maximum size, size at first maturity and size at recruitment.

	Somatic magn	nitude meas	ured (LH, L	C, etc)*	TL		Units*	cm
	Sex	Fem	Mal	Both	Un- sexed			
Maximum served	n size ob-			18		Reproducti season	ion	April - October
Size at fir	rst maturity			8		Reproduction areas		Mainly western Adriatic.
Recruitm	ent size			9		Nursery areas		Mainly along western Adriatic coast, River Po delta, Manfredonia Gulf

Table 2: Growth and length weight model parameters

							Sex		
			Units	female	male		both		unsexed
	L∞		Cm				19.4		
Growth model	K		y ⁻¹				0.57		
Growth model	t0		у				-0.5		
	Data source		Sinovcic, 2000						
Length weight	а						0.004		
relationship	b						3.0		
	Age0	Age1	Age2	Age3	Age4	Age5			
M (vector by age)	2.36	1.10	0.81	0.69	0.64	0.61			

Cialagen et al 2010					
Gislason et al, 2010					

sex ratio (% females/total) 63.2

3 Fisheries information

3.1 Description of the fleet

Table 3: Description of operational units in the stock

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	Italy	17	Pelagic trawlers	Trawls	35 - Herrings, sardines, anchovies	Engraulis encrasicolus
Operational Unit 2	Italy	17	Purse Seiners	Surrounding Nets	35 - Herrings, sardines, anchovies	Engraulis encrasicolus
Operational Unit 3	Croatia	17	Purse Seiners	Surrounding Nets	35 - Herrings, sardines, anchovies	Engraulis encrasicolus
Operational Unit 4	Slove- nia	17	Purse Seiners	Surrounding Nets	35 - Herrings, sardines, anchovies	Engraulis encrasicolus
Operational Unit 5	Slovenia	17	Pelagic trawlers	Trawls	35 - Herrings, sardines, anchovies	Engraulis encrasicolus

Table 3: Catch, bycatch, discards and effort by operational unit

Operational Units*	Fleet (n° of boats)	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
1	84	tons	17200				
2	19	tons	2500				
3	NA	tons	13600				
4	5	tons	124				
5	1		124				
Total	122						

Table 3: Catches as used in the assessment

Classification (age, length, recruit/spawner)	Catch (tn)
2000	29036
2001	28280
2002	23467
2003	25016
2004	31280
2005	42296
2006	43090
2007	47055
2008	41151
2009	44280
2010	39639
2011	35058
Average	35804

3.2 Historical trends

In figure 3.2.1 the trend in landings for Italy and Croatia are shown. From 2002 the trend is increasing with a maximum of 47055 tons in 2007. The Slovenian catches are included in the total landings but are not shown here since the quantities are really low (less than 150 tons in 2011):

Fig. 3.2. Total landings (in tons) by country for GSA 17 from 2000 to 2011

The trend of the cohorts in the catches is shown in figure 3.2.2. Each plot represents the number of fish of each age born in the same year. Age 1 can be identified as the first fully recruited age.

Fig. 3..2 Log numbers at age (thousands) of the catch at age used in the assessment.

The mean weight at age (in kg) as obtained by sampling of commercial catches is given in figure 3.2.3.

Fig. 3.2.3. Mean weight at age (kg) in the catches

4 Management regulations

A closure period is observed from the Italian pelagic trawlers on August, and from 15th December to 15th January from the Croatian purse seiners. In 2011 a closure period of 60 days (August and September) was endorsed by the Italian fleet.

4.1 Reference points

The present assessment has been considered as a benchmark assessment for biomass reference points. Up to now, the Patterson's reference point of E=0.4 has been adopted as fishing mortality reference point.

The reference points that were proposed during the working group are B_{lim} and $B_{\text{pa}}.$ The criterion adopted for B_{lim} has been the minimum mid year biomass value of the assessed time series, which is of the same magnitude of the minimum value observed since 1976, so it seemed to be reasonable. B_{pa} has been established in relation to Blim using an estimate or assumption on the coefficient of variance of the estimates (see general sections), and assuming that the confidence intervals for the estimate of the assessment model are estimate \pm 2 * CV * estimate. In this case a CV of 20 % has been assumed, therefore B_{pa} has been established as 40% above $B_{\text{lim}}.$

Table 4: List of reference points

Crite- rion	Current value	Unit s	Reference Point	Trend	Comments
В					
SSB					
F					
Υ					
CPUE					
Е	0.41		0.4	Stable	Patterson (1992)
	333404	tons	179000	Sta-	
Blim	333404	tons	179000	ble	
Вра	333404	tons	250600	Sta- ble	
1.5				-	

5 Fisheries independent information

5.1 ECHOSURVEY (Acoustic survey)

5.1.1 Brief description of the chosen method and assumptions used

Echosurveys were carried out from 2004 to 2011 for the entire GSA 17. In the western part the acoustic survey was carried out since 1976 in the Northern Adriatic (2/3 of the area) and since 1987 also in the Mid Adriatic (1/3 of the area), and it is in the MEDIAS framework since 2009. The eastern part was covered by Croatian national pelagic monitoring program PELMON. The data from both the surveys have been combined to provide an overall estimate of numbers-at-age.

The survey methods for MEDIAS are given in the MEDIAS handbook (MEDIAS, March 2012).

Western Echosurvey:

- Length frequencies distribution available from 2004 onward (no LFD for Mid Adriatic in 2004, so the proportion of biomass at length in 2004 was assumed equal to the proportion of biomass at length in the 2005 Mid Adriatic survey).
- ALKs available for 2009-2010-2011;
- Numbers at age for 2004 to 2008 were obtained applying the sum of the 2009-2010-2011 ALKs to the numbers at length.

Eastern Echosurvey:

- Length frequencies distribution available from 2009.
- No ALKs available.
- Numbers at length from 2004 to 2008 were obtained applying the length frequency distribution from the 2009 survey to the total biomass.
- Numbers at age were obtained applying commercial ALK from the eastern catches to the eastern echosurvey length distribution.
- 2011 survey covered only the Northern part of the area (about 52% of the total area), so the estimated biomass was raised to the total using an average percentage from previous years (2004-2010).

5.1.2 Spatial distribution of the resources

Acoustic sampling transects and the total area covered are shown in figure 5.1.2.1.

Fig. 5..2.1. Acoustic transects for the western echosurvey (on the left) and the eastern echosurvey (on the right)

5.1.3 Historical trends

Biomass estimates from the two surveys show a much higher occurrence of anchovy on the western side of the Adriatic. In 2008 the western survey contributed to more than 85% of the total estimated biomass.

Pooled total biomass in tons from eastern and western echosurvey (2004-2011) is given in table 5.1.3.1. and it is shown in figure 4.1.3.1.

Tab. 5..3.1. Total biomass (tons) estimated by the acoustic surveys in GSA 17.

-	Tons
	10115
2004	302130
2005	335312
2006	627226
2007	533525
2008	858497
2009	486373
2010	642184
2011	474920

Fig. 5.1.3.1. Total biomass (tons) estimated from the eastern and western echosurvey

Figure 5.1.3.2 illustrates the proportion by year of each age class from the surveys. In 2008 a higher percentage of age 0 occurred. Age 3 and age 4 are scarcely represented in the estimation.

Fig 5.1.3.2. Total proportion of age classes for the two surveys

In figure 5.1.3.3 the trend of the cohorts in the acoustic survey is shown. Each plot represents the number of fish of each age born in the same year:

Fig. 5.1.3.3. Log numbers at age (thousands) of the echosurvey index used in the assessment

5.2 MEDITS

5.2.1 Brief description of the chosen method and assumptions used

The MEDITS bottom trawl survey started in 1994 and it has been carried out every year since. It takes place during the summer months (June-July) and it provides indices of fish abundance in the deepest part of water column (i.e. within layer up to 3 m above sea bed). Although this survey is targeted to investigate species living near the bottom, the characteristics of the net employed (high vertical opening of the mouth) allow to regularly catch species living in the water column, as small pelagics (Sbrana *et al.*, 2010).

The survey methodology is given in the MEDITS handbook (MEDITS, April 2012).

5.2.2 Spatial distribution of the resources

The spatial distribution of the Medits stations during the 2010 trawl survey is illustrated in figure 5.2.2.1.

Fig. 5..2.1. Spatial distribution of the MEDITS stations in GSA 17.

5.2.3 Historical trends

The biomass index (kg/km²) (table 5.2.3.1) shows an overall decreasing trend up to 2009, followed by a steep increase in the last couple of years.

Tab. 5..3.1. MEDITS index of biomass (kg/km²) from 2000 to 2011.

MEDITS index	biomass
Year	kg/km²
2000	37.42
2001	86.00
2002	72.37
2003	71.57
2004	55.00
2005	58.92
2006	56.54
2007	32.27
2008	48.42
2009	27.06
2010	51.77
2011	116.56

The comparison between the acoustic series of total biomass and the trawl survey biomass index shows a general agreement between the two indices (figure 5.2.3.1). The only exceptions are 2006 and 2011: in 2006 MEDITS saw a slightly decreasing biomass while acoustic surveys showed a strong increase and in 2011 acoustic surveys saw a decreasing biomass and MEDITS showed the opposite.

The weight given in the assessment to the MEDITS trawl survey is much lower to the weight given to the acoustic survey (see section 7.1.1).

The 2011 data for both the indices didn't enter in the analysis (due to the split year assumption).

Fig. 5.2.3.1. Comparison between biomass index from the acoustic survey (axis on the left, blue line) and the bottom trawl survey (axis on the right, red line).

6 Ecological information

N/A

6.1 Protected species potentially affected by the fisheries

N/A

6.2 Environmental indexes

N/A

7 Stock Assessment

Integrated Catch Analysis (ICA) and Virtual Population Analysis (VPA) have been performed from 2000 to 2011.

Acoustic and bottom trawl survey were available for the assessment of anchovy in GSA 17. The weight given to the bottom trawl survey was decided equal to 0.3, in comparison to weight 1 given to the acoustic survey.

7.1 Integrated Catch Analysis

The final assessment of anchovy was carried out by fitting the integrated catch-at age model (ICA) with a separable constraint over a twelve-year period, tuned with the Acoustic survey (2004-2010) and bottom trawl survey biomass index (2000-2011).

ICA was performed using the Patterson's software (ICA, version 4.2 – Patterson and Melvin, 1996).

The model settings are presented in section 7.1.1.

7.1.1 Model assumptions

- Split year assumption
- Ages 0 to 5 (since the software doesn't accept less than 6 age class)
- M vector estimated using Gislason's equation (Gislason et al., 2010):

Age0	Age1	Age2	Age3	Age4	Age5
2.36	1.10	0.81	0.69	0.64	0.61

- Maturity at age:

Age0	Age1	Age2	Age3	Age4	Age5
0.75	1	1	1	1	1

- 12 years for separable constraint
- Reference age for separable constraint = 1
- Constant selection pattern model
- S to be fixed on last age = 1.0
- F_{bar}: 1-3
- Catchability model = Linear
- Weight for surveys: Bottom trawl survey = 0.3; Acoustic surveys = 1.
- No shrinkage

7.1.2 Scripts

N/A

7.1.3 Results

The fishing mortality for age 1 (presented in figure 7.1.3.1., top-right) shows a constant decrease from 2000 up to 2007. Only in the last few years the F increased, remaining around F=0.4 and decreasing again in 2011 to the value of F=0.28. In 2011 the $F_{bar(1-3)}$ is equal to 0.61.

The mid year biomass (figure 7.1.3.1, bottom-right) is fluctuating around the value of 300 thousand tons, reaching the maximum in 2005 (B = 436000 tons). In 2011 the estimated biomass is B = 333000 tons.

The recruitment (age 0 – figure 7.1.3.1, bottom-left) is quite stable, with fluctuations between 52578000 and 129050000 thousands individuals.

Fig. 7.1.3.1. Total landings in tons (top-left); reference F (F for age 1) with the confidence interval for the separability period (top-right); recruitment (as thousands individuals)(bottom-left); mid year stock biomass and SSB in tons (bottom-right).

Table 7.1.3.1 and 7.1.3.2 give respectively the stock numbers at age by year (in thousand) and the fishing mortality at age by year. In table 7.1.3.3 the mid year stock biomass and the spawning stock biomass in tons are presented.

Tab. 7.1.3.1. Stock numbers at age by year (thousands)

	Age0	Age1	Age2	Age3	Age4	Age5
2000	54428000	3882900	1070100	148860	30020	33
2001	52578000	4991800	776120	119240	17328	41
2002	70296000	4856500	1130000	121220	19822	42
2003	80670000	6498300	1115100	183440	20990	49
2004	12205000	7483500	1586600	213880	37875	50
2005	12905000	11326000	1839100	309760	44992	26160
2006	10457000	12018000	2958400	423610	77580	268900
2007	70659000	9708900	2980900	592220	91498	94682
2008	77143000	6581200	2543300	692030	149560	48
2009	78068000	7151000	1586100	470850	137650	37
2010	75126000	7188900	1534000	214080	67104	38
2011	10698000	6924200	1567000	216240	31939	54

Tab. 7.1.3.2. Fishing mortality at age by year

	Age0	Age1	Age2	Age3	Age4	Age5
2000	0.0291	0.5100	1.3844	1.4607	0.5100	0.5100
2001	0.0220	0.3856	1.0467	1.1043	0.3856	0.3856
2002	0.0212	0.3714	1.0081	1.0636	0.3714	0.3714
2003	0.0177	0.3099	0.8413	0.8876	0.3099	0.3099
2004	0.0173	0.3034	0.8236	0.8689	0.3034	0.3034
2005	0.0138	0.2425	0.6582	0.6945	0.2425	0.2425
2006	0.0168	0.2942	0.7985	0.8425	0.2942	0.2942
2007	0.0137	0.2396	0.6503	0.6862	0.2396	0.2396
2008	0.0184	0.3230	0.8767	0.9249	0.3230	0.3230
2009	0.0250	0.4394	1.1926	1.2583	0.4394	0.4394
2010	0.0241	0.4234	1.1493	1.2125	0.4234	0.4234
2011	0.0159	0.2790	0.7574	0.7991	0.2790	0.2790

Tab. 7.1..3. Mid year Stock Biomass and Spawning Stock Biomass (tons)

MidYear SB	Mid Year
179452	142313
189980	151968
234577	185927
246451	196408
311572	246560
436249	349399
396179	323426
281252	233686
251750	203721
220013	177946
221918	179277
333404	264565
	179452 189980 234577 246451 311572 436249 396179 281252 251750 220013 221918

The exploitation rate (F/(F+M)) is shown in figure 7.1.1.2.

Fig. 7.1.1.2. Exploitation rate (E = F/(F+M)) for age classes 0-3, 0-4 and 1-3 resulting from ICA analysis.

In figure 7.1.1.3 the harvest rate, calculate as the ratio between the catches and the estimates from the ICA model, shows a drop in the last year. The harvest rate calculated on the acoustic biomass estimates shows instead a decrease from 2005 up to now. Both the time series are constantly below 0.2.

Fig. 7.3.1.3. Harvest rate estimates (C/B) obtained from the mid year ICA biomass (dashed line) and the acoustic biomass (full line).

The trend in biomass relatively to the proposed reference points is illustrated in figure 7.1.1.4.

Fig. 7.1.1.4. Mid year stock biomass from the ICA analysis with the relative reference points (B_{lim} and B_{pa}).

7.2 Virtual Population Analysis

VPA was carried out applying the Laurec-Shepherd tuning with the acoustic survey index. This tuning procedure derives estimates of fishing mortality at age in the final year from an analysis of the logarithms of fleet catchabilities. The software used for the analysis is the Lowestoft VPA software (Darby and Flatman, Version 3.1).

7.2.1 Model assumptions

Tuning method: Laurec-Shepherd

Tuning index: Acoustic Survey

Ages 0 to 4+

Oldest age F = 1.600*average of 2 younger ages

M vector estimated using Gislason's equation (Gislason et al., 2010):

Age0 Age1 Age2 Age3 Age4 Age5 2.36 1.10 0.81 0.69 0.64 0.61

– Maturity at age:

Age0 Age1 Age2 Age3 Age4 Age5 0.75 1 1 1 1 1

No shrinkage

7.2.2 Results

VPA estimations of mid year stock biomass, spawning stock biomass and trend in F by age are show in figures 7.2.2.1 and 7.2.2.2. The results are given in tables 7.2.2.1 and 7.2.2.2.

The biomass increases constantly up to a maximum in 2005 with about 450000 tons, then decreases until 2009 and then starts to increase again. The 2011 estimates is of 376500 tons.

Fig. 7..2.1. Mid year biomass (full line) and mid year SSB (dashed line) estimated by the means of the Laurec-Shepherd VPA.

Fig. 7.2.2.2. F by age estimated by the means of the Laurec-Shepherd VPA.

Tab. 7.2.2.1. Estimated numbers at age (in thousands).

	Age0	Age1	Age2	Age3	Age4
2000	46797100	3766500	849000	208000	16100
2001	50319700	4219900	777000	125800	6100
2002	56055300	4566800	853100	137700	12100

2003	99461900	5184700	1061400	143300	8400
2004	110057300	9302700	1101200	190400	17900
2005	143858300	10161600	2260700	233300	24700
2006	104769100	13271600	2560900	535500	245400
2007	85097600	9686100	3639400	648800	60500
2008	75709400	7949800	2727600	581000	79400
2009	91591500	7050100	2076900	411200	47200
2010	147736000	8546800	1563900	157000	27300
2011	104565900	13825200	1881200	193200	10300

Tab. 7.2.2.2. Estimated F at age.

	Age0	Age1	Age2	Age3	Age4
2000	0.0460	0.4784	1.0993	1.2622	1.2622
2001	0.0396	0.4987	0.9206	1.1354	1.1354
2002	0.0206	0.3592	0.9742	1.0668	1.0668
2003	0.0095	0.4493	0.9079	1.0858	1.0858
2004	0.0224	0.3146	0.7420	0.8453	0.8453
2005	0.0232	0.2783	0.6303	0.7268	0.7268
2006	0.0211	0.1938	0.5631	0.6055	0.6055
2007	0.0107	0.1673	1.0249	0.9537	0.9537
2008	0.0139	0.2423	1.0821	1.0595	1.0595
2009	0.0118	0.4058	1.7725	1.7427	1.7427
2010	0.0089	0.4136	1.2814	1.3560	1.3560
2011	0.0175	0.1614	0.8144	0.7807	0.7807

7.3 Robustness analysis

7.3.1 ICA

The diagnostic graph of the index SSQ against reference age F (age 1) from a separable VPA is plotted in figure 7.3.1.1. The curves should be U-shaped, with minima fairly close to each other on x-axis (Needle, 2000).

Fig. 7.3.1.1. SSQ surface plot.

The marginal totals of residuals between the catch and the separable model are overall small, as well as reasonably trend-free in the separable period (2000-2011) (see figure 7.3.1.2).

Fig. 7.3.1.2. Diagnostics: log-residual contour plot (top-left); fitted selection pattern (top-right); year residuals for the catches (bottom-left); age residuals for the catches (bottom-right).

The diagnostics tables for the final run are given below (tables 7.3.1.1 and 7.3.1.2).

Tab. 7.3.1.1. Parameters estimates for the ICA run.

	Maximum Likelh.	CV	Lower	Upper	-s.e.	+s.e.	Mean of Param.
le model							Distrib.
		16	0.3656	0.7116	0.4303	0.6045	0.5174
2001	0.3856	17	0.2744	0.5419	0.3241	0.4587	0.3914
2002	0.3714	17	0.2651	0.5202	0.3127	0.4411	0.3769
2003	0.3099	18	0.2171	0.4425	0.2584	0.3717	0.3151
2004	0.3034	18	0.2124	0.4335	0.2529	0.364	0.3085
2005	0.2425	18	0.1675	0.351	0.2008	0.2929	0.2468
2006	0.2942	18	0.2062	0.4196	0.2454	0.3526	0.299
2007	0.2396	18	0.1662	0.3454	0.1988	0.2887	0.2438
2008	0.323	17	0.2293	0.4548	0.2712	0.3846	0.3279
2009		16	0.3156	0.6116		0.5201	0.4457
		22					0.4339
2011	0.279	35	0.1381	0.5637	0.1949	0.3995	0.2976
	6 1 11 (6	. .					
_							
					0.049	0.0662	0.0576
1	_					2 22=	
2	_						2.737
3					2.5807	3.1782	2.8795
4	1	Fixed:	Last true A	Age			
ole model	: Populations	in vear					
		41	4766451	24012331	7082263	16160596	11648288
							7244227
							1621073
3	216237	31		400240			227174
4	31938	37	15388	66287	22004	46356	34233
	2003 2004 2005 2006 2007 2008 2009 2010 2011 ble Model 0 1 2 3 4	Likelh. le model	Likelh. CV le model Estimate % 2000 0.51 16 2001 0.3856 17 2002 0.3714 17 2003 0.3099 18 2004 0.3034 18 2005 0.2425 18 2006 0.2942 18 2007 0.2396 18 2008 0.323 17 2009 0.4394 16 2010 0.4234 22 2011 0.279 35 ble Model: Selection (S) by age 0 0.057 15 1 1 Fixed: 2 2.7145 12 3 2.8639 10 4 1 Fixed: ble model: Populations in year 0 106982991 41 1 6924237 30 2 1566979 26 3 216237 31	Likelh. CV Lower le model Estimate % 95% CL 2000 0.51 16 0.3656 2001 0.3856 17 0.2744 2002 0.3714 17 0.2651 2003 0.3099 18 0.2171 2004 0.3034 18 0.2124 2005 0.2425 18 0.1675 2006 0.2942 18 0.2062 2007 0.2396 18 0.1662 2008 0.323 17 0.2293 2009 0.4394 16 0.3156 2010 0.4234 22 0.2743 2011 0.279 35 0.1381 ple Model: Selection (S) by age 0 0.057 15 0.0425 1 1 Fixed: Reference 2 2.7145 12 2.1097 3 2.8639 10 2.3352 4 1 Fixed: Last true A ple model: Populations in year 0 106982991 41 4766451 1 6924237 30 3841537 2 1566979 26 940359 3 216237 31 116826	Likelh. CV Lower Upper le model Estimate	Likelh. CV Lower Upper -s.e. le model Estimate % 95% CL 95% CL 2000 0.51 16 0.3656 0.7116 0.4303 2001 0.3856 17 0.2744 0.5419 0.3241 2002 0.3714 17 0.2651 0.5202 0.3127 2003 0.3099 18 0.2171 0.4425 0.2584 2004 0.3034 18 0.2124 0.4335 0.2529 2005 0.2425 18 0.1675 0.351 0.2008 2006 0.2942 18 0.2062 0.4196 0.2454 2007 0.2396 18 0.1662 0.3454 0.1988 2008 0.323 17 0.2293 0.4548 0.2712 2009 0.4394 16 0.3156 0.6116 0.3711 2010 0.4234 22 0.2743 0.6536 0.3392 2011 0.279 35 0.1381 0.5637 0.1949 DIe Model: Selection (S) by age 0 0.057 15 0.0425 0.0765 0.049 1 1 Fixed: Reference Age 2 2.7145 12 2.1097 3.4927 2.3869 3 2.8639 10 2.3352 3.5124 2.5807 4 1 Fixed: Last true Age DIe model: Populations in year 0 106982991 41 4766451 24012331 7082263 1 6924237 30 3841537 12480697 5126579 2 1566979 26 940359 2611157 1207579 3 216237 31 116826 400240 157946	Likelh. CV Lower Upper -s.e. +s.e. le model Estimate % 95% CL 95% CL 2000 0.51 16 0.3656 0.7116 0.4303 0.6045 2001 0.3856 17 0.2744 0.5419 0.3241 0.4587 2002 0.3714 17 0.2651 0.5202 0.3127 0.4411 2003 0.3099 18 0.2171 0.4425 0.2584 0.3717 2004 0.3034 18 0.2124 0.4335 0.2529 0.364 2005 0.2425 18 0.1675 0.351 0.2008 0.2929 2006 0.2942 18 0.2062 0.4196 0.2454 0.3526 2007 0.2396 18 0.1662 0.3454 0.1988 0.2887 2008 0.323 17 0.2293 0.4548 0.2712 0.3846 2009 0.4394 16 0.3156 0.6116 0.3711 0.5201 2010 0.4234 22 0.2743 0.6536 0.3392 0.5284 2011 0.279 35 0.1381 0.5637 0.1949 0.3995 DIe Model: Selection (S) by age 0 0.057 15 0.0425 0.0765 0.049 0.3995 DIe Model: Selection (S) by age 0 0.057 15 0.0425 0.0765 0.049 0.3995 DIe model: Populations in year 0 106982991 41 4766451 24012331 7082263 16160596 1 6924237 30 3841537 12480697 5126579 9352254 2 1566979 26 940359 2611157 1207579 2033345 3 216237 31 116826 400240 157946 296042

Separal	ble model:	Populations					
21	2000	30019 3	5 14607	61689	20787	43350	32116
22	2001	17327 3	9607	31250	12824	23410	18129
23	2002	19820 2	5 11731	33489	15167	25902	20543
24	2003	20988 2	5 12427	35448	16064	27422	21752
25	2004	37873 2	5 22960	62472	29338	48891	39128
26	2005	44990 2	5 27299	74146	34868	58052	46476
27	2006	77579 2	47960	125488	60699	99152	79949
28	2007	91496 2	5 56000	149493	71223	117541	94412
29	2008	149561 2	93615	238942	117762	189947	153896
30	2009	137645 2	4 85199	222375	107764	175812	141830
31	2010	67102 2	7 39155	114996	50977	88328	69685
Medits	10	2 265 04 2	1 025 04	4 405 04	2 265 04	2.605.04	2.005.04
32	1Q	2.36E-04 2	0 1.93E-04	4.40E-04	2.36E-04	3.60E-04	2.98E-04
		lex catchabilition. Slopes at ago					
32	1Q	9.84E-04 3			9.84E-04	1.86E-03	1.42E-03
33	2Q	7.54E-03 3			7.54E-03	1.40E-02	1.08E-02
34	3Q	1.16E-02 3			1.16E-02	2.18E-02	1.67E-02
35	4Q	3.94E-03 3			3.94E-03	7.66E-03	5.81E-03
36	5Q	2.60E-04 3	1.87E-04	7.22E-04	2.60E-04	5.18E-04	3.90E-04

Tab. 7.3.1.2. Distribution statistics for the parameters.

PARAMETERS OF THE DISTRIBUTION OF In(CATCHES AT AGE)

Separable model fitted from 2000 to 2011

Variance 0.1592
Skewness test stat. 1.4958
Kurtosis test statistic 0.2223
Partial chi-square 0.3813
Significance in fit 0
Degrees of freedom 29

PARAMETERS OF DISTRIBUTIONS OF THE SSB INDICES (Medits)

Linear catchability relationship

Last age is a plus-

Variance 0.039 Skewness test stat. 0.6551 Kurtosis test statistic -0.5216 Partial chi-square 0.1002 Significance in fit 0 Number of 11 Degrees of freedom 10 Weight in the analysis 0.3

PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES Acoustic Survey

Linear catchability relationship

Age	0	1	2	3	4
Variance	0.1311	0.0938	0.062	0.0613	0.1618
Skewness test stat.	-0.9472	-0.3466	0.079	-0.1107	0.8822
Kurtosis test statisti	-0.28	-0.8077	0.0215	-0.6811	-0.4493
Partial chi-square	0.0745	0.0532	0.0398	0.0553	0.3332
Significance in fit	0	0	0	0	0.0007
Number of	7	7	7	7	7
Degrees of freedom	6	6	6	6	6
Weight in the analysis	0.2	0.2	0.2	0.2	0.2

The restrospective analysis (figure 7.3.1.3) doesn't show any particular trend for the biomass estimations, while it shows some degree of variation on the absolute levels of F in the last 2 years. Future investigations will aim to solve this problem.

Fig. 7..1.3. ICA Retrospective analysis for respectively total stock biomass at the beginning of the year (on top), mid year SSB (in the middle) and F (at the bottom).

The fitting of the model estimates with the acoustic surveys is shown in figure 7.3.1.4. The predicted numbers at age fit quite well the observed data, except for some disagreement in the first ages, which can be expected.

Fig. 7.3.1.4. Predicted VS observed log numbers at age for the acoustic survey.

7.3.2 VPA

The summary statistic for the VPA run is shown in table 7.3.2.1.

Tab. 7.3.2.1. Summary statistic by age for the Laurec-Shepherd VPA.

SUMM	ARY STATISTIC	FOR AGE 0							
Fleet 1	Pred. Log q -7.110	se (log q) 0.830	Partial F 0.820	Raied F 0.018	Slope 0.178	se Slope 0.139	Intercept -7.106	se	0.293
Fbar 0.017	Sigma(int.) 0.830	Sigma(ext. 0	Sigma(over 0.830	Variance 0	e ratio				
SUMM Fleet 1	ARY STATISTIC Pred. Log q -5.020	FOR AGE 1 se (log q) 0.646	Partial F 6.616	Raied F 0.162	Slope 0.194	se Slope 0.090	Intercept -5.018	se	0.228
Fbar 0.161	Sigma(int.) 0.646	Sigma(ext. 0	Sigma(over 0.646	Variance 0	e ratio				
SUMM Fleet 1	ARY STATISTIC Pred. Log q -4.490	FOR AGE 2 se (log q) 0.568	Partial F *****	Raied F 0.8144	Slope 0.153	se Slope 0.086	Intercept -4.49	se	0.201
Fbar 0.814	Sigma(int.) 0.568	Sigma(ext. 0	Sigma(over 0.568	Variance 0	e ratio				

The restrospective analysis (figure 7.3.2.1) shows high variability of the estimates for all the parameters.

Fig. 7.3.2.1. VPA Retrospective analysis for respectively total stock biomass at the beginning of the year (on top), mid year SSB (in the middle) and F (at the bottom).

The residuals for ln(q) shows a clear trend throughout the years (see figure 7.3.2.2) that was not possible to reduce.

Fig. 7.3.2.2. Observed log(q) – Expexted log(q) by age estimated by VPA analysis.

7.4 Assessment quality

The separable VPA performed well with the data available, reducing the retrospective pattern and improving the estimates of parameters, respect to the Laurec-Shepherd VPA.

Fig. 7.4.1. Mid year Stock Biomass from VPA (dashed line) and ICA (full line); split-year acoustic biomass estimates are shown as well in the form of background bars.

An ICA run was performed without the bottom trawl survey to test how much the inclusion of this index influences the model results. Despite a slight increase in the SSQ minimization, the CVs of the parameters estimations got worst. Besides, the resulting trend in biomass and F are almost identical, which was expected due to the really low weight gave to the index in the model.

ICA with absolute catchability model for the acoustic survey was attempted, but there was no way to stabilize the results: the SSQ and the CVs were really high, the residuals showed clear trends in ages and years with high values and the fitting with the acoustic survey got much worst.

In the present assessment there is improved coherence between the biomass estimated from the model and the survey data respect to last year assessment, although absolute values from the survey remain about double the estimates from the assessment models.

8 Stock predictions

N/A

- 8.1 Short term predictions
- 8.2 Medium term predictions
- 8.3 Long term predictions

9 Draft scientific advice

This year we will use the already approve reference point for F (Patterson) and another set of reference points for biomass.

The assessment shows an increase in the biomass trend starting in 2009 and the exploitation rate is around the reference point of E = 0.4 from Patterson ($E_{(1-3)} = 0.41$). The 2011 total biomass (333404 tons) is above of both the proposed B_{lim} (179000 tons) and B_{pa} (250600 tons) reference points. The recruitment is increasing in the last year, and on the average it's quite stable, with little fluctuations compared to other small pelagic stocks.

The acoustic surveys show some fluctuations with no particular trend. The 2011 value is about 475000 tons.

It should be noted that Adriatic small pelagic fishery is multispecies and effort on anchovy cannot be separated from effort on sardine, so that most of the management decision have to be taken considering both species.

On the overall, the suggestion is not to increase the fishing mortality.

Table : Bidimensional stock advice summary; Exploitation rate and Stock Abundance.

Exploitation rate			Stock Abundance
	[STATE THE PERIOD]		[STATE THE PERIOD]
	No fishing mortality		Virgin
	Low fishing mortality		High abundance
X	Sustainable Fishing Mortality	X	Intermediate abundance
	High fishing mortality		Low abundance
	Uncertain/Not assessed		Depleted
			Uncertain / Not assessed

Table: Stock advice summary; Historical trends in biomass and recruitment.

Biomass trends		Recruitment trends	
[2000-2011]		[2000-2011]	
[179452 tons – 436249 tons]		[52578000 - 129050000 thousands]	
X	Stable	X	Stable
	Increasing		Increasing
	Decreasing		Decreasing

Add figures for SSB, Recruitment and Fbar

Fig. 9.1. Mid year stock biomass and proposed reference points.

Fig. 9.2. Recruitment estimates (in thousands).

Fig. 9.3. F_{bar(1-3)} estimates.

Fig. 9.4. Exploitation rate (F/Z).

10 Bibliography

Bembo D. G., Carvalho G. R., Cingolani N., and Pitcher T. J. (1996). Electrophoretic analysis of stock structure in Northern Mediterranean anchovies, *Engraulis encrasicolus. ICES Journal of Marine Science*, 53:115-128.

Darby C. D. and Flatman S. (1994). Virtual Population Analysis: Version 3.1 (Windows/Dos) user guide. Info. *Tech. Ser. MAFF Direct. Fish. Res.*, Lowestoft.

Gislason H., Daan N., Rice J. C., and Pope J. G. (2010). Size, growth, temperature and the natural mortality of marine fish. *Fish and Fisheries*, 11(2):149–158.

Magoulas A., Castilho R., Caetano S., Marcato S., and Patarnello T. (2006). Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Molecular Phylogenetics and Evolution, 39:734-746.

MEDIAS, Report of 5th meeting for Mediterranean Acoustic Surveys (MEDIAS) in the framework of European Data Collection Framework (DCF) Sliema, Malta, 2022 March 2012 Steering Committee Report.

MEDITS Working Group (April 2012). MEDITS-Handbook, Revision n. 6: 92 pp.

Patterson K. R. and Melvin G. D. (1996). Integrated catch at age analysis - version 1.2. *Technical Report 58*, The Scottish Office - Agriculture, Environment and Fisheries Department.

Patterson K. (1992). Fisheries for small pelagic species: an empirical approach to man-agement targets. *Reviews in Fish Biology and Fisheries*, 2:321–338.

Sbrana M., De Ranieri S., Ligas A., Reale B., Rossetti I. and Sartor P. (2010), Comparison of trawl survey and commercial data on small pelagics from the FAO geographic sub-area 9 (Western Mediterranean Sea). Rapp. Comm. int. Mer Médit., 39

Sinovcic G. (2000). Anchovy, *Engraulis encrasicolus* (Linnaeus, 1758): biology, population dynamics and fisheries case study. *Acta Adriatica*, 41(1):3–53.

Tudela S. (1999). Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, *Engraulis encrasicolus*. *Fisheries Research*, 42: 229-243.