Name: Ranpura Divy D Reg No: 21BIT0176

Email: ranpuradivy.dharmesh2021@vitstudent.ac.in Campus: Vellore

- 1. penguins_size.csv is downloaded
- 2. Load the dataset into the tool.

```
import numpy as np
import pandas as pd

df = pd.read csv('/content/penguins size.csv')
```

▼df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_
0	Adelie	Torgersen	39.1	18.7	181.0	
1	Adelie	Torgersen	39.5	17.4	186.0	
2	Adelie	Torgersen	40.3	18.0	195.0	
3	Adelie	Torgersen	NaN	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0	

3.1. Perform Univariate Analysis

```
from matplotlib import rcParams import seaborn as sns
```

```
sns.distplot(df.body_mass_g)
```

<ipython-input-4-176964dae727>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms)

3.2. Perform Bivariate Analysis

sns.jointplot(x='culmen length mm',y='culmen depth mm',data=df)

<seaborn.axisgrid.JointGrid at 0x7c313325c6a0>

3.3. Perform Multi-Variate Analysis

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x7c31298f71f0>

4. Perform descriptive statistics on the dataset.

df.describe()

culmenelength: mmmrculmen_depth: mmm flipper: length mmm body_

Eenut	342.000000	342.000000	342.000000	342
	43 921930	17 151170	200 915205	4201

5. Check for Missing values and deal with them.

df.isnull().any() #Checking is there any null values in our dataset

species	False
island	False
culmen_length_mm	True
culmen depth mm	True

```
flipper length mm
                             True
     body mass g
                             True
                             True
     sex
     dtype: bool
df.isnull().sum()
     species
                             0
     island
                             0
     culmen length mm
                             2
                             2
     culmen depth mm
     flipper length mm
                            2
                             2
     body mass g
                            10
     sex
     dtype: int64
# Code to replace null values in numerical columns with MEDIAN
df['culmen length mm'].fillna(df['culmen length mm'].median(),inplace=True)
df['culmen depth mm'].fillna(df['culmen depth mm'].median(),inplace=True)
df['flipper length mm'].fillna(df['flipper_length_mm'].median(),inplace=True)
df['body mass g'].fillna(df['body mass g'].median(),inplace=True)
# Code to replace null values in categorical column with MODE
df['sex'].fillna(df['sex'].mode().iloc[0],inplace=True)
# Now all null values are replaced with median and mode and dealt properly.
df.isnull().any()
     species
                           False
     island
                           False
     culmen length mm
                           False
     culmen depth mm
                           False
     flipper length mm
                           False
     body mass g
                           False
                           False
     sex
     dtype: bool
```

6. Find the outliers and replace the outliers

```
sns.boxplot(df.culmen_length_mm)
```

<Axes: >

sns.boxplot(df.culmen_depth_mm)

<Axes: >

sns.boxplot(df.flipper_length_mm)

<Axes: >

Hence there are no outliers in the dataset.

7. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit_transform(df['island'])
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	$\texttt{flipper_l}^n_{\epsilon}$
9	0	2	39.10	18.7	
1	0	2	39.50	17.4	
3	0	2	40.30	18.0	
3	0	2	44.45	17.3	
4	0	2	36.70	19.3	

8. Check the correlation of independent variables with the target (TARGET IS SPECIES and

remaining are independent)

df.corr().species.sort_values(ascending=False)

species	1.000000
flipper_length_mm	0.850819
body_mass_g	0.747547
culmen length mm	0.728706

sex -0.003823 island -0.635659 culmen_depth_mm -0.741282 Name: species, dtype: float64

9. Split the data into dependent and independent variables

X=df.drop(columns=['species'],axis=1)
X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	b
8	2	39.10	18.7	181.0	
1	2	39.50	17.4	186.0	
2	2	40.30	18.0	195.0	

Y=df['species']
Y.head()

Name: species, dtype: int64

10. Scaling the independent data

from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()

X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
X_scaled.head()

	island	<pre>culmen_length_mm</pre>	<pre>culmen_depth_mm</pre>	flipper_length_mm b
8	1.0	0.254545	0.666667	0.152542
1	1.0	0.269091	0.511905	0.237288
2	1.0	0.298182	0.583333	0.389831
3	1.0	0.449091	0.500000	0.423729
4	1.0	0.167273	0.738095	0.355932

11. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test =
train_test_split(X_scaled,Y,test_size=0.2,random_state=0)
```

12. Check the training and testing data shape.

(69,)