Unitary Renormalization Group Approach to the Hubbard Dimer and Anderson Molecule

Abhirup Mukherjee (18IP014)

Supervisor: Dr. Siddhartha Lal

Department of Physical Sciences

Indian Institute of Science, Education and Research, Kolkata

Overview

- Exact diagonalization of the models
- Formalism of the unitary renormalization group
- Applying the URG to the models
- Comparison with Schrieffer-Wolff transformation

$$\mathcal{H} = -t \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$
hopping term

Symmetries of the problem

- Total number of particles: $\hat{n} = \sum_{i,\sigma} \hat{n}_{i,\sigma}$
- Total magnetization: $\hat{S}_z = \sum_i (\hat{n}_{\uparrow} n_{\downarrow})$
- Site parity: $\hat{P}: \Psi(i,j) \rightarrow \Psi(j,i)$

Some easy eigenstates using the commuting operators

•
$$\mathbf{N} = \mathbf{1} \implies |\uparrow, 0\rangle, |0, \uparrow\rangle, |\downarrow, 0\rangle, |0, \downarrow\rangle$$

• magnetization = up $\Longrightarrow |\uparrow, 0\rangle, |0, \uparrow\rangle,$ magnetization = down $\Longrightarrow |\downarrow, 0\rangle, |0, \downarrow\rangle$

• parity = +ve
$$\implies |\uparrow,0\rangle + |0,\uparrow\rangle, |\downarrow,0\rangle + |0,\downarrow\rangle$$

• parity = -ve $\implies |\uparrow,0\rangle - |0,\uparrow\rangle, |\downarrow,0\rangle - |0,\downarrow\rangle$

Some easy eigenstates using the commuting operators

•
$$\mathbf{N} = \mathbf{3} \implies |\uparrow, \uparrow\downarrow\rangle, |\uparrow\downarrow, \uparrow\rangle, |\downarrow, \uparrow\downarrow\rangle, |\uparrow\downarrow, \downarrow\rangle$$

• magnetization = up $\Longrightarrow |\uparrow,\uparrow\downarrow\rangle, |\uparrow\downarrow,\uparrow\rangle,$ magnetization = down $\Longrightarrow |\downarrow,\uparrow\downarrow\rangle, |\uparrow\downarrow,\downarrow\rangle$

• parity = +ve
$$\implies |\uparrow,\uparrow\downarrow\rangle + |\uparrow\downarrow,\uparrow\rangle, |\downarrow,\uparrow\downarrow\rangle + |\uparrow\downarrow,\downarrow\rangle$$

parity = -ve $\implies |\uparrow,\uparrow\downarrow\rangle - |\uparrow\downarrow,\uparrow\rangle, |\downarrow,\uparrow\downarrow\rangle - |\uparrow\downarrow,\downarrow\rangle$

N = 2 requires a bit more work

- magnetization = ± 1 is easy $\implies |\uparrow,\uparrow\rangle, |\downarrow,\downarrow\rangle$
- magnetization = $\mathbf{0} \implies |\uparrow,\downarrow\rangle, |\downarrow,\uparrow\rangle, |\uparrow\downarrow,0\rangle, |0,\uparrow\downarrow\rangle$

$$\mathbf{parity} = \mathbf{1} \implies |\uparrow,\downarrow\rangle + |\downarrow,\uparrow\rangle, \quad |\uparrow\downarrow,0\rangle + |0,\uparrow\downarrow\rangle \implies \text{diagonal}$$

$$\mathbf{parity} = -1 \implies |\uparrow,\downarrow\rangle - |\downarrow,\uparrow\rangle, \quad |\uparrow\downarrow,0\rangle - |0,\uparrow\downarrow\rangle$$

$$\begin{pmatrix} 0 & 2t \\ & & \\ 2t & U \end{pmatrix} \implies \text{easily diagonalised}$$

Exact diagonalization of Anderson molecule

$$\mathcal{H} = \underbrace{\epsilon_s \sum_{\sigma} \hat{n}_{2\sigma}}_{\text{conduction band (CB)}} + \underbrace{\epsilon_d \sum_{\sigma} \hat{n}_{1\sigma}}_{\text{conduction band (CB)}} - t \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + c_{2\sigma}^{\dagger} c_{1\sigma} \right) + \underbrace{U \hat{n}_{1\uparrow} \hat{n}_{1\downarrow}}_{\text{hopping b/w CB and IS}}$$
IS repulsion
$$\underbrace{U \hat{n}_{1\uparrow} \hat{n}_{1\downarrow}}_{\text{hopping b/w CB and IS}}$$

This also proceeds very similarly using the symmetries of the Hamiltonian:

- number of particles
- magnetization
- total spin angular momentum $\hat{S}_{tot}^2 = \sum_x \hat{S}_x^2$

(not showing the full thing here)

$$\mathbf{Given} \implies \mathbf{some\ non\text{-}diagonal\ Hamiltonian} \rightarrow \left(\begin{array}{cc} \hat{A} & \hat{B} \\ & \\ \hat{C} & \hat{D} \end{array} \right)$$

Objective
$$\Longrightarrow$$
 a block-diagonal Hamiltonian $\to \begin{pmatrix} \hat{E} & 0 \\ 0 & \hat{E}' \end{pmatrix}$

Equivalent Objective \implies find unitary U such that

$$\hat{U}^{\dagger} \begin{pmatrix} \hat{A} & \hat{B} \\ & & \\ \hat{C} & \hat{D} \end{pmatrix} \hat{U} = \begin{pmatrix} \hat{E} & 0 \\ & & \\ 0 & \hat{E}' \end{pmatrix}$$

Important: We are talking about *block*-diagonalization

The resolution of the Hamiltonian is in the occupied and vacant states of some degree of freedom \hat{n} .

$$\mathcal{H}_{2n\times 2n} = \begin{pmatrix} |\hat{n} = 1\rangle & |\hat{n} = 0\rangle \\ (\hat{H}_e)_{n\times n} & (\hat{T})_{n\times n} \\ (\hat{T}^{\dagger})_{n\times n} & (\hat{H}_h)_{n\times n} \end{pmatrix}$$

$$\hat{H}_e \implies$$
 occupied part of \mathcal{H}
 $\hat{H}_h \implies$ unoccupied part of \mathcal{H}
 $\hat{T}, \hat{T}^{\dagger} \implies$ transitions between $\hat{A} \& \hat{B}$

So how do we determine this block-diagonal form?

Consider a new operator: $\mathcal{P} = U^{\dagger} \hat{n} U$

What does this do?
$$\mathcal{PHP} = \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

 \mathcal{P} rotates the Hamiltonian into block-diagonal form and projects out the upper block.

$$\mathcal{P}: \begin{pmatrix} H_e & T \\ T^{\dagger} & H_h \end{pmatrix} \xrightarrow{rotation} \begin{pmatrix} E & 0 \\ 0 & E' \end{pmatrix} \xrightarrow{projection} \begin{pmatrix} E & 0 \\ 0 & 0 \end{pmatrix}$$

Since the projection operator mixes the components of the Hamiltonian, we take the following form:

$$\mathcal{P} \sim 1 + \eta + \eta^{\dagger}$$

 η takes an occupied state to an unoccupied state

$$\eta: |1\rangle \otimes |\Psi_n\rangle \to |0\rangle \otimes |\Phi_n\rangle$$
 $\begin{pmatrix} \Psi_n \\ 0 \end{pmatrix} \to \begin{pmatrix} 0 \\ \Phi_n \end{pmatrix}$

Similarly, η^{\dagger} takes an unoccupied state to an occupied state

$$\eta^{\dagger}: |0\rangle \otimes |\chi_n\rangle \to |1\rangle \otimes |\xi_n\rangle$$
 $\begin{pmatrix} 0 \\ \chi_n \end{pmatrix} \to \begin{pmatrix} \xi_n \\ 0 \end{pmatrix}$

Properties of η, η^{\dagger}

Projection property of \mathcal{P}

Some linear algebra

$$\eta^{\dagger} \eta = \hat{n}, \eta \eta^{\dagger} = 1 - \hat{n}$$

$$\eta^{\dagger} = \left(\hat{E} - \hat{H}_{e}\right)^{-1} c^{\dagger} T$$

$$\eta^{\dagger} = \left(\hat{E} - \hat{H}_{h}\right)^{-1} T^{\dagger} c$$