Esercitazioni modelli

Esercizio I

Una ditta deve decidere se aprire o meno ciascuno dei quattro centri A, B, C e D. Tra i vincoli presenti ce ne è anche uno che impone che se si aprono contemporaneamente i centri B e C, allora si deve aprire il centro A e non si deve aprire il centro D. Modellare opportunamente questo vincolo.

Esercizio II

Uno studente deve decidere quali tra 5 esami preparare in una sessione. Tra i vincoli che ha vi è il fatto che nel caso prepari l'esame 1 e non prepari l'esame 3, allora deve preparare almeno uno tra gli esami 2, 4 e 5. Modellare opportunamente questo vincolo.

Esercizio III

I possibili scenari economici futuri sono tre e per due prodotti A e B prevedono le seguenti possibili combinazioni di prezzi per unità di prodotto

	A	B
Comb.1	11	8
Comb.2	9	10
Comb.3	10	9

Un negoziante vuole definire una strategia conservativa in cui massimizza i propri introiti (funzione delle variabili x_A e x_B , che rappresentano i quantitativi di prodotti A e B, rispettivamente, che sarà in grado di vendere) nel caso peggiore (ovvero di minimo guadagno tra i tre possibili scenari). Definire la funzione obiettivo corrispondente e spiegare come linearizzare il problema con tale funzione obiettivo.

Esercizio IV

Siano dati i seguenti 5 punti in \mathbb{R}^2

i	x_i	y_i
1	1	2
2	2	1
2 3	3.5	3.5
4 5	4	5
5	6	5

Si vuole identificare la retta y=mx+q che meglio approssima questi punti, definita come quella che minimizza l'errore assoluto, ovvero la somma dei valori assoluti degli scarti tra i valori $y=mx_i+q$ osservati sulla retta e i valori y_i effettivamente osservati. Si scriva la funzione obiettivo corrispondente all'errore assoluto e si spieghi come sia possibile linearizzarla.