Extending the Limits of Tractability

Rangaballav Pradhan ITER, SOADU

Coping with NP-completeness

Q. Suppose I need to solve an **NP**-complete problem. What should I do?

A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

Our goal. Solve some special cases of NP-complete problems.

Vertex cover

Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

 $S = \{3, 6, 7, 10\}$ a vertex cover of size k = 4

Finding small vertex covers

Q. VERTEX-COVER is **NP**-complete. But what if *k* is small?

Brute force. $O(k n^{k+1})$.

- · Try all $C(n, k) = O(n^k)$ subsets of size k.
- Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to $O(2^k k n)$.

Ex.
$$n = 1,000, k = 10.$$

Brute. $k n^{k+1} = 10^{34} 2^k \bullet \text{ infeasible.}$

Better.
$$k n = 10^7$$
 • feasible.

Remark. If *k* is a constant, then the algorithm is poly-time; if *k* is a small constant, then it's also practical.

Finding small vertex covers

Claim. Let (u, v) be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G - \{u\}$ and $G - \{v\}$ has a vertex cover of size $\leq k - 1$.

delete v and all incident edges

$Pf. \Rightarrow$

- · Suppose G has a vertex cover S of size $\leq k$.
- S contains either u or v (or both). Assume it contains u.
- $\cdot S \{ u \}$ is a vertex cover of $G \{ u \}$.

$Pf. \leftarrow$

- Suppose *S* is a vertex cover of $G \{u\}$ of size $\leq k 1$.
- Then $S \cup \{u\}$ is a vertex cover of G.

Claim. If G has a vertex cover of size k, it has $\leq k (n-1)$ edges.

Pf. Each vertex covers at most n-1 edges.

Finding small vertex covers: algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O(2^k kn)$ time.

```
Vertex-Cover(G, k) {
if (G contains no edges)
                           return true
if (G contains \geq kn edges) return false
let (u, v) be any edge of G
a = Vertex-Cover(G - \{u\}, k-1)
b = Vertex-Cover(G - \{v\}, k-1)
return a or b
```

Pf.

- Correctness follows from previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes O(kn) time

Finding small vertex covers: recursion tree

