Grafos

Algoritmos e Estruturas de Dados Prof. Dr. Luciano Demétrio Santos Pacífico {luciano.pacifico@ufrpe.br}

Conteúdo

Introdução

• Árvore de Crescimento Mínimo

Busca por Menor Caminho

Grafos

 Suponha que um grupo de computadores sejam interconectados como o diagrama abaixo:

• Esse diagrama é conhecido por grafo.

- Um grafo G = (V, E) é uma representação de um conjunto de objetos (vértices) V e um conjunto de ligações (arestas) E.
- Grafos podem ser:
 - Ponderados ou não-ponderados;
 - Direcionados ou não-direcionados;
 - Cíclicos ou acíclicos;
 - Conectados ou não-conectados.

Problema do Caixeiro-Viajante

• Exemplos:

- Outra forma para a representação de grafos é através de uma matriz de conectividades.
- Se o grafo for não direcionado, essa matriz M será simétrica.
- Quando não há conexão entre dois vértices $v \in w$, $M_{vxw} = 0$.
- Se o grafo G não for ponderado, se dois vértices v e w forem conectados, $M_{vxw} = 1$.
- Se o grafo G for ponderado, a posição M_{vxw} da matriz M armazenará o peso (ou custo de caminho) entre os vértices v e w.

• Exemplo:

٧	1	2	3	4	5	6	7
1	0	0	1	1	1	1	0
2	0	0	1	1	0	0	0
3	1	1	0	1	0	0	1
4	1	1	1	0	0	0	0
5	1	0	1	0	0	0	0
6	1	0	0	0	0	0	0
7	0	0	1	0	0	0	0

• Exemplo 2:

٧	Α	В	С	D	Ε
Α	0	2	4	5	3
В	2	0	3	6	5
С	4	3	0	5	5
D	5	6	5	0	4
Е	3	5	5	4	0

Problemas em Grafos

- Os grafos são de grande importância para a ciência da computação e matemática teórica devido à existência de centenas de problemas computacionais interessantes que fazem uso de tais estruturas.
- Exemplos de problemas grafos:
 - Busca por Caminho;
 - Ciclos Hamiltonianos;
 - Caixeiro-Viajante;
 - Coloração de grafos,
 - ...

 A modelagem de circuitos eletrônicos frequentemente precisa fazer os pinos de muitos componentes equivalentes eletronicamente, conectando-os juntos.

 Para interconectar um conjunto de n pinos, podemos usar um arranjo de n - 1 fios, cada um conectando dois pinos.

• De todos os arranjos possíveis, usamos aquele que fizer uso da menor quantidade de fios possível.

- Podemos modelar o problema do posicionamento de elementos em um circuito através de um grafo G(V, E) conectado e não-direcionado.
- Para o grafo acima, temos que V é o conjunto de pinos, E é o conjunto de possíveis interconexões entre dois pares de pinos e cada aresta $(u, v) \in E$ possui um custo de conexão (peso) associado $w(u, v) \in E$.

• O objetivo é então encontrar um subconjunto acíclico $T \subseteq E$ que conecte todos os vértices e que o peso total

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

seja o menor possível.

 Dado que T é acíclico e conecta todos os vértices, o mesmo pode ser representado como uma árvore, sendo essa árvore chamada de árvore de crescimento.

 O problema de determinar a árvore T é conhecido como o problema da árvore de crescimento mínimo.

Exemplo

- Suponha que temos um grafo G = (V, E), conectado, **não-direcionado e ponderado** através de uma função $w: E \to \mathbb{R}$ e desejamos encontrar uma árvore de crescimento mínimo para G.
- Usando uma abordagem gulosa genérica, podemos fazer com que a árvore de crescimento mínimo seja montada a partir de uma aresta (u, v) por vez.

- A regra que será adota é:
 - No início de cada iteração do algoritmo, A é um subconjunto de uma árvore de crescimento mínimo.
- A cada etapa, determinamos uma aresta (u, v) para adicionarmos à A de forma que a regra acima não seja violada.
- Essa aresta é chamada de aresta segura pelo fato de que podemos adicioná-la à A sem que A deixe de ser subconjunto de uma árvore de crescimento mínimo.

```
procedimento MST\_generica(G, w)
A \leftarrow \emptyset;
enquanto A não formar uma MST faça

Encontre uma aresta segura (u, v) para A;
A \leftarrow A \cup \{(u, v)\};
Retorne A;
fim_MST_generica
```

Algoritmo Prim

- No algoritmo Prim as arestas em A sempre formarão uma única árvore.
- O algoritmo Prim começa sua execução a partir de um vértice arbitrário em G. V, sendo o crescimento em cada etapa representado pela inclusão em A de uma aresta leve que conecta A a um vértice isolado.

Algoritmo Prim

- Uma representação para o algoritmo Prim leva em consideração que todos os vértices ainda não pertencem à árvore se encontram em uma lista de menor prioridade Q baseada no atributo chave.
- Para cada vértice v, o atributo v.chave é o peso mínimo das arestas que conectam v à árvore.
- Se não houver conexão entre v e algum vértice na árvore, tem-se que v.chave = +∞.

Algoritmo Prim

```
1. //G -> é o grafo, composto de um conjunto de vértices G.V
 2. //n -> número de vértices em G.V
 3. //w -> Matriz simétrica representando os pesos das arestas
 4. //r -> vértice que será usado como ponto de partida pelo Prim
 5. procedimento encontrarPrimMST(G, w, r, n)
 6.
     para cada u em G.V
 7.
         u.chave = Inf
 8.
         u.pai = NIL
 9.
     r.chave = 0
10.
     //vide Aula sobre Heaps para saber como criar uma Lista de Prioridade
11.
     Q = criarListaPrioridadeMinima(G.V, n)
12.
      enquanto Q.tamanhoHeap > 0
13.
          u = extrairMinimo(Q, Q.tamanhoHeap)
14.
          //vizinhança pode ser obtida por w[u][v] != 0
15.
          para cada v em u.vizinhança
16.
              se (v \in Q) e (w[u][v] < v.chave) //pseudocódigo simplificado por
17.
                  v. pai = u
                                          //questão de espaço
                  v. chave = w[u][v]
18.
```


- Conjunto de Vértices:
 - A, B, C, D, E, F, G, H, I
- Arestas e Pesos:
 - $\{A, B\} = 4, \{A, H\} = 8,$
 - $\{B, C\} = 8, \{B, H\} = 11,$
 - $\{C, D\} = 7, \{C, F\} = 4, \{C, I\} = 2,$
 - $\{D, E\} = 9, \{D, F\} = 14,$
 - $\{E, F\} = 10,$
 - $\{F, G\} = 2$,
 - $\{G, H\} = 1, \{G, I\} = 6,$
 - $\{H, I\} = 7$

 A cada iteração do laço enquanto, um vértice será removido de Q, e terá sua vizinhança explorada, na tentativa de aliviar os seus vizinhos que ainda estão em Q.

Iteração	1	2	3	4	5	6	7	8	9	10
Α	Inf									NIL
В	Inf									NIL
С	Inf									NIL
D	Inf									NIL
E	Inf									NIL
F	Inf									NIL
G	Inf									NIL
Н	Inf									NIL
ı	Inf									NIL
Aresta	-									-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*									NIL*
В	4									A
С	Inf									NIL
D	Inf									NIL
E	Inf									NIL
F	Inf									NIL
G	Inf									NIL
н	8									A
ı	Inf									NIL
Aresta	-									-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0	0*								NIL*
B *	4	4*								A*
С	Inf	8								В
D	Inf	Inf								NIL
E	Inf	Inf								NIL
F	Inf	Inf								NIL
G	Inf	Inf								NIL
н	8	8								A
I	Inf	Inf								NIL
Aresta	-	{A,B}								-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*	0*	0*							NIL*
B*	4	4*	4*							A*
C*	Inf	8	8*							В*
D	Inf	Inf	7							С
E	Inf	Inf	Inf							NIL
F	Inf	Inf	4							С
G	Inf	Inf	Inf							NIL
н	8	8	8							A
I	Inf	Inf	2							С
Aresta	-	{A,B}	{B,C}							-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*	0*	0*	0*						NIL*
B *	4	4*	4*	4*						A*
C *	Inf	8	8*	8*						В*
D	Inf	Inf	7	7						С
E	Inf	Inf	Inf	Inf						NIL
F	Inf	Inf	4	4						С
G	Inf	Inf	Inf	6						I
н	8	8	8	7						I
I *	Inf	Inf	2	2*						C*
Aresta	-	{A,B}	{B,C}	{C,I}						-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*	0*	0*	0*	0*					NIL*
B *	4	4*	4*	4*	4*					A*
C*	Inf	8	8*	8*	8*					В*
D	Inf	Inf	7	7	7					С
E	Inf	Inf	Inf	Inf	10					F
F*	Inf	Inf	4	4	4*					C*
G	Inf	Inf	Inf	6	2					F
н	8	8	8	7	7					I
I *	Inf	Inf	2	2*	2*					C*
Aresta	-	{A,B}	{B,C}	{C,I}	{C,F}					-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*	0*	0*	0*	0*	0*				NIL*
B*	4	4*	4*	4*	4*	4*				A*
C*	Inf	8	8*	8*	8*	8*				В*
D	Inf	Inf	7	7	7	7				С
E	Inf	Inf	Inf	Inf	10	10				F
F*	Inf	Inf	4	4	4*	4*				C*
G*	Inf	Inf	Inf	6	2	2*				F*
Н	8	8	8	7	7	1				G
I *	Inf	Inf	2	2*	2*	2*				C*
Aresta	-	{A,B}	{B,C}	{C,I}	{C,F}	{F,G}				-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*	0*	0*	0*	0*	0*	0*			NIL*
B *	4	4*	4*	4*	4*	4*	4*			A*
C*	Inf	8	8*	8*	8*	8*	8*			В*
D	Inf	Inf	7	7	7	7	7			С
E	Inf	Inf	Inf	Inf	10	10	10			F
F*	Inf	Inf	4	4	4*	4*	4*			C*
G*	Inf	Inf	Inf	6	2	2*	2*			F*
H*	8	8	8	7	7	1	1*			G*
I *	Inf	Inf	2	2*	2*	2*	2*			C*
Aresta	-	{A,B}	{B,C}	{C,I}	{C,F}	{F,G}	{G,H}			-

 Vértices já removidos serão marcados com um *. Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*	0*	0*	0*	0*	0*	0*	0*		NIL*
B *	4	4*	4*	4*	4*	4*	4*	4*		A*
C*	Inf	8	8*	8*	8*	8*	8*	8*		В*
D*	Inf	Inf	7	7	7	7	7	7 *		C*
E	Inf	Inf	Inf	Inf	10	10	10	9		F
F *	Inf	Inf	4	4	4*	4*	4*	4*		C*
G*	Inf	Inf	Inf	6	2	2*	2*	2*		F*
H*	8	8	8	7	7	1	1*	1*		G*
 *	Inf	Inf	2	2*	2*	2*	2*	2*		C*
Aresta	-	{A,B}	{B,C}	{C,I}	{C,F}	{F,G}	{G,H}	{C,D}		-

• O vértice E não alivia outros vértices, pois agora a lista ℚ está vazia... Mas o algoritmo ainda verifica sua vizinhança, como descrito no pseudocódigo.

Iteração	1	2	3	4	5	6	7	8	9	Pai
A *	0*	0*	0*	0*	0*	0*	0*	0*	0*	NIL*
B*	4	4*	4*	4*	4*	4*	4*	4*	4*	A*
C *	Inf	8	8*	8*	8*	8*	8*	8*	8*	В*
D*	Inf	Inf	7	7	7	7	7	7 *	7*	C*
E*	Inf	Inf	Inf	Inf	10	10	10	9	9*	F*
F*	Inf	Inf	4	4	4*	4*	4*	4*	4*	C*
G*	Inf	Inf	Inf	6	2	2*	2*	2*	2*	F*
H*	8	8	8	7	7	1	1*	1*	1*	G*
l*	Inf	Inf	2	2*	2*	2*	2*	2*	2*	C*
Aresta	-	{A,B}	{B,C}	{C,I}	{C,F}	{F,G}	{G,H}	{C,D}	{F,E}	-

- Saída do laço após Q.tamanhoHeap == 0
- É possível encontrar o conjunto final de arestas (árvore geradora mínima) observando-se o pai de cada um dos vértices.

Algoritmo Prim

 Complexidade do algoritmo Prim (considerando uma implementação com Heap):

- Construção do heap O(|E|)
- Loop $O(|V| \log |E| + |E| \log |E|)$ = $O(|E| \log |E|)$
- Custo Total: O(|E| log|E|)

- Um caminho C num grafo G é mínimo se não existe outro caminho com mesma origem e mesmo término que C, mas comprimento menor que o de C.
- A distância de um vértice s a um vértice t em um grafo G é o comprimento de um caminho mínimo de s a t. Se não existe caminho algum de s a t, a distância de s a t é infinita.

- A distância de s a t é d, se, e somente se:
 - Existe um caminho de comprimento *d* de *s* a t;
 - Nenhum caminho de s a t tem comprimento menor que d.
- Em geral, em um grafo direcionado, a distância de um vértice s a um vértice t é diferente da distância de t a s. Se o grafo é não-direcionado, entretanto, as duas distâncias são iguais.

 Para a busca de caminhos mínimos em grafos há algoritmos específicos que executam a tarefa.

 Entretanto há formas específicas para tratar o problema, sendo diferentes quando busca-se caminhos mínimos a partir de um dado vértice ou quando se buscam os caminhos mínimos entre todos os pares de vértices.

- Problema dos Caminhos Mínimos com Origem Fixa: Dado um vértice s de um grafo com custos nos arcos, encontrar, para cada vértice t que pode ser alcançado a partir de s, um caminho mínimo simples de s a t.
- Todos os algoritmos para esses problemas exploram a seguinte propriedade básica:
 - Propriedade Triangular: Para quaisquer vértices x, y e z de um grafo com custos não-negativos nos arcos, temse:

$$d(x, z) \le d(x, y) + d(y, z)$$

sendo d(i, j) a distância de i a j.

- Um algoritmo eficiente para a obtenção do caminho mínimo em grafos com custos nãonegativos é o chamado algoritmo de Dijkstra.
- O algoritmo pode ser usado, em particular, para encontrar um caminho de custo mínimo de um dado vértice a outro, ou a todos os outros vértices.

- Atribui-se uma distância infinita para todos os pares de vértices, exceto o vértice origem.
- 2. Marque todos os vértices como não visitados e defina o vértice inicial como vértice corrente.
- 3. Para este vértice corrente, considere todos os seus vértices vizinhos não visitados e calcule a distância a partir do vértice. Se a distância for menor do que a definida anteriormente, substitua a distância.
- 4. Quando todos os vizinhos do vértice corrente forem visitados, marque-o como visitado, o que fará com que ele não seja mais analisado (sua distância é mínima e final).
- 5. Eleja o vértice não visitado com a menor distância (a partir do vértice inicial) como o vértice corrente e continue a partir do passo 3.

```
1. //G \rightarrow Grafo
2. //s -> vértice escolhido como fonte
3. procedimento iniciarFonteUnica(G, s)
4.
     para cada v em G.V
5.
         v.d = Inf
6. v.pai = NIL
7. s.d = 0
1. //w -> matriz de pesos das arestas
2. procedimento relaxarNo(u, v, w)
3.
      se v.d > u.d + w[u][v]
          v.d = u.d + w[u][v]
4.
5.
          v.pai = u
```

```
1. //G -> Grafo
2. //w -> matriz de pesos das arestas
3. //s -> vértice escolhido como fonte
4. //n -> número de vértices no grafo
5. procedimento Dijkstra(G, w, s, n)
 6.
        iniciarFonteUnica(G, s)
7.
        Q = criarListaPrioridadeMinima(G.V, n)
8.
        enquanto Q.tamanhoHeap > 0
9.
            u = extrairMinimo(Q, Q.tamanhoHeap)
10.
            //vizinhança pode ser obtida por w[u][v] != 0
11.
            para cada v em u.vizinhança
12.
                relaxarNo(u, v, w)
```

 Para a busca de caminho mais curto, o grafo pode ser representado por uma matriz que não será necessariamente simétrica, dado que o grafo é direcionado.

- Conjunto de Vértices:
 - s, A, B, C, D
- Arestas e Pesos:
 - $\{s, A\} = 10, \{s, D\} = 5$
 - $\{A, B\} = 1, \{A, D\} = 2$
 - $\{B, C\} = 4$
 - $\{C, B\} = 6, \{C, s\} = 7$
 - $\{D, A\} = 3, \{D, B\} = 9, \{D, C\} = 2.$

 A cada iteração do laço enquanto, um vértice será removido de Q, e terá sua vizinhança explorada, na tentativa de aliviar os seus vizinhos que ainda estão em Q.

Iteração				Pai
S	Inf			NIL
Α	Inf			NIL
В	Inf			NIL
С	Inf			NIL
D	Inf			NIL
Aresta	-			-

 Para a busca de caminho mais curto, o grafo pode ser representado por uma matriz que não será necessariamente simétrica, dado que o grafo é direcionado.

Vértices já removidos serão marcados com um *.
 Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	Pai
S *	0*					NIL*
Α	10					A
В	Inf					NIL
С	Inf					NIL
D	5					A
Aresta	-					-

Vértices já removidos serão marcados com um *.
 Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	Pai
S*	0*	0*				NIL*
Α	10	8				D
В	Inf	14				D
С	Inf	7				D
D*	5	5*				A*
Aresta	-	{A,D}				-

Vértices já removidos serão marcados com um *.
 Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	Pai
S*	0*	0*	0*			NIL*
Α	10	8	8			D
В	Inf	14	13			С
C*	Inf	7	7 *			D*
D*	5	5*	5*			A*
Aresta	-	{A,D}	{D,C}			-

Vértices já removidos serão marcados com um *.
 Vértice em uso estará em vermelho. Empates serão decididos por escolha lexicográfica.

Iteração	1	2	3	4	5	Pai
S*	0*	0*	0*	0*		NIL*
A *	10	8	8	8*		D*
В	Inf	14	13	9		A
C*	Inf	7	7*	7 *		D*
D*	5	5*	5*	5*		A*
Aresta	-	{A,D}	{D,C}	{D,A}		-

 O vértice B não alivia outros vértices, pois agora a lista Q está vazia... Mas o algoritmo ainda verifica sua vizinhança, como descrito no pseudocódigo.

Iteração	1	2	3	4	5	Pai
S*	0*	0*	0*	0*	0*	NIL*
A *	10	8	8	8*	8*	D*
B *	Inf	14	13	9	9*	A*
C*	Inf	7	7*	7 *	7*	D*
D*	5	5*	5*	5*	5*	A*
Aresta	-	{A,D}	{D,C}	{D,A}	{A,B}	-

- Saída do laço após Q.tamanhoHeap == 0
- É possível encontrar o conjunto final de arestas (caminhos da fonte até cada um dos demais vértices) observando-se o pai de cada um dos vértices.

- Complexidade do algoritmo de Dijkstra:
 - Inicialização O(|V|)
 - Loop $O((|V| + |E|) \log |E|)$
 - Existem | V | deleções do heap (extrair o mínimo)
 - Existem no máximo |E| atualizações (cada aresta só é analisada uma vez)
- Custo Total: O((|V| + |E|) log|E|)

Referências

- CORMEN, H. T.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to Algorithms, 3rd ed., *Boston: MIT Press*, 2009.
- FEOFILOFF, Paulo. Algoritmos em Linguagem C. Editora Campus/Elsevier, 2009.

Grafos

Algoritmos e Estruturas de Dados Prof. Dr. Luciano Demétrio Santos Pacífico {luciano.pacifico@ufrpe.br}

