Transfer Learning

ELMo (Peters et al., 2018)

Learning goals

- Understand the contextualization of word embeddings
- Get the intuition of feature-based
 Transfer Learning

RECAP: WORD VECTORS

- Information is encoded in (pre-)trained word embeddings
- Embeddings are used for tasks external to the training corpus

FEATURE-BASED TRANSFER LEARNING

Using word2vec:

- Self-supervised pre-training of word2vec ...
 - Using a large, unannotated corpus
 - Objective: CBOW or Skip-gram
 - .. and extract the stored knowledge (i.e. embedding)
- Alternative: Download embeddings from the web, e.g. https://code.google.com/archive/p/word2vec/
- Perform a (supervised) task using the embeddings, e.g. Sentiment classification using an LSTM network

The stored knowledge from the pre-trained model is extracted as is and is not further adapted to the actual domain/task of interest!

CONTEXTUALITY

1st Generation of neural embeddings are "context-free":

- Breakthrough paper by Mikolov et al, 2013 (Word2Vec)
- Followed by Pennington et al, 2014 (GloVe)
- Extension of Word2Vec by Bojanowski et al, 2016 (FastText)

Why "Context-free"?

- Models learn one single embedding for each word
- Why could this possibly be problematic?
 - "The default setting of the function is xyz."
 - "The probability of default is rather high."
- Would be nice to have different embeddings for these two occurrences

CONTEXTUAL EMBEDDINGS

Source: Jay Alammar

ELMO → PETERS ET AL., 2018

- Bidirectional language model (LM)
- Combines a forward LM

$$\rho(t_1, t_2, \ldots, t_N) = \prod_{k=1}^{N} \rho(t_k | t_1, t_2, \ldots, t_{k-1})$$

and a backward LM

$$p(t_1, t_2, \ldots, t_N) = \prod_{k=1}^{N} p(t_k | t_{k+1}, t_{k+2}, \ldots, t_N)$$

to arrive at the following loglikelihood:

$$\sum_{k=1}^{N} \left(\log p \left(t_{k} | t_{1}, \dots, t_{k-1}; \Theta_{x}, \overrightarrow{\Theta}_{LSTM}, \Theta_{s} \right) + \log p \left(t_{k} | t_{k+1}, \dots, t_{N}; \Theta_{x}, \overleftarrow{\Theta}_{LSTM}, \Theta_{s} \right) \right)$$

ELMO EMBEDDINGS

Character-based (context-independent) token representations

$$x_k^{LM}$$

- Two-layer biLSTM as main architecture:
 - Two context-dependent token representations per layer, i.e.

$$\overrightarrow{\mathbf{h}}_{k,j}^{\mathit{LM}}$$
 & $\overleftarrow{\mathbf{h}}_{k,j}^{\mathit{LM}}$ for the k -th token in the j -th layer.

Four context-dependent token representations in total:

$$\left\{\overrightarrow{\mathbf{h}}_{k,j}^{\mathit{LM}},\overleftarrow{\mathbf{h}}_{k,j}^{\mathit{LM}}|j=1,2\right\}$$

• Five representations per token in total:

$$\begin{aligned} R_k &= \left\{ \mathbf{x}_k^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} | j = 1, \dots, L \right\} \\ &= \left\{ \mathbf{h}_{k,j}^{LM} | j = 0, 1, 2 \right\} \end{aligned}$$

GRAPHICAL REPRESENTATION

Source: Carolin Becker

GRAPHICAL REPRESENTATION

Source: Carolin Becker

TASK ADAPTION

Including ELMo in downstream tasks:

Calculate task-specific weights of all five representations:

$$\mathsf{ELMo}_k^{task} = E\left(R_k; \Theta^{task}\right) = \gamma^{task} \sum_{j=0}^L s_j^{task} \mathbf{h}_{k,j}^{LM},$$

where the $\mathbf{h}_{k,i}^{LM}$ are **not trainable** anymore.

- Trainable parameters during the adaption:
 - s_i^{task} are trainable (softmax-normalized) weights
 - \bullet γ^{task} is a trainable scaling parameter

Advantages over context free-embeddings:

- Task-specific model has access to multiple representations of each token
- Model learns to which degree to use the different representations depending on the task at hand

TASK ADAPTION

Source: Carolin Becker

PERFORMANCE

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F_1 for SQuAD, SRL and NER; average F_1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean and standard deviation across five runs with different random seeds. The "increase" column lists both the absolute and relative improvements over our baseline.

Source: Peters et al. (2018)

SUMMARY

- Embeddings are (bidirectionally!) contextualized (as opposed to word2vec)
- Embeddings are not adapted to target domain/task (similar as for word2vec)
- Additional weights are learned for each downstream task
 (i.e. besides the embeddings, no shared knowledge across tasks)