LendingClub Dataset

Dataset Description: The dataset contains the homeloan records released from Lending Club. The problem lenders care is that whether a borrower can repay homeloan and interest on time. In addition, the homeloan interest rate is highly related with the loan credit of borrowers. A borrower with a higher credit can easily get homeloan with a lower rate. The task of the project is to predict whether a borrower can replay homeloan and interest on time based on a number of features of the borrower. This is a typical classification problem and this notebook demonstrate how to use Lending Club dataset to decide whether a homeloan case should be approved based a borrower' features.

*Dataset Detail Information The dataset contains 9,578 recrds in total. Every record has 13 features and 1 label which are described as below.

- credit.policy: This is the label. Its value is 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise.
- purpose: The purpose of the loan (takes values "creditcard",
 "debtconsolidation", "educational", "majorpurchase", "smallbusiness",
 "home_improvement" and "all_other").
- int.rate: The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates.
- installment: The monthly installments owed by the borrower if the loan is funded.
- log.annual.inc: The natural log of the self-reported annual income of the borrower.
- dti: The debt-to-income ratio of the borrower (amount of debt divided by annual income).
- fico: The FICO credit score of the borrower.Common FICO scores range from 300 to 850,with higher scores indicating better credit.
- days.with.cr.line: The number of days the borrower has had a credit line.
- revol.bal: The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle).
- revol.util: The borrower's revolving line utilization rate (the amount of the credit

line used relative to total credit available).

- inq.last.6mths: The borrower's number of inquiries by creditors in the last 6 months.
- delinq.2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years.
- pub.rec: The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments
- not.fully.paid: Whether the borrower will be fully paid or not.

Learning taks:

- 1. Data should be preprocessed and cleaned.
- 2. Feature selection should be conducted to remove irrelevant features.
- 3. Train a logistic regression model to predict "credit.policy" by using the other 13 features.
- 4. The logistic regression model should be evaluated with cross validation by using 5-10 folds.

Import Packages

```
In [1]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
  %matplotlib inline
  import warnings
  warnings.filterwarnings('ignore')
```

Load Dataset and Clean Dataset

The purpose of this part is to guarantee the data used in the notebook is reliable. .

```
In [2]: # Import Dataset
Data = pd.read_csv('./data/loan_data.csv')
# Display first 5 rows of dataset
Data.head()

# NOTE: Fist entry has missing data in 'not.fully.paid'
```

Out[2]:		credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.
	0	1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5(
	1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2
	2	1	debt_consolidation	0.1357	366.86	10.373491	11.63	682	4710
	3	1	debt_consolidation	0.1008	162.34	11.350407	8.10	712	26
	4	1	credit_card	0.1426	102.92	11.299732	14.97	667	4(

After loading the dataset into the notebook, we can further check basic information of the dataset such as data type.

```
In [3]: # Check basic info of the dataset
    Data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):
    Column
                       Non-Null Count Dtype
0
    credit.policy
                       9578 non-null
                                       int64
1
    purpose
                       9578 non-null
                                       object
    int.rate
                       9578 non-null
                                       float64
                       9578 non-null
3
    installment
                                       float64
    log.annual.inc
                       9578 non-null
                                       float64
5
    dti
                       9578 non-null
                                       float64
6
    fico
                       9578 non-null
                                       int64
7
    days.with.cr.line 9578 non-null
                                       float64
    revol.bal
                       9578 non-null
                                       int64
9
    revol.util
                       9578 non-null
                                       float64
10
    ing.last.6mths
                       9578 non-null
                                       int.64
11 deling.2yrs
                       9578 non-null
                                       int64
                                       int64
12
    pub.rec
                       9578 non-null
    not.fully.paid
                       9577 non-null
                                       float64
dtypes: float64(7), int64(6), object(1)
memory usage: 1.0+ MB
```

According to the displayed dataset information, we can conclude that

- 1. The dataset is complete without missing any record.
- 2. There are 13 features and 1 label. There are three possible datatypes, which are loat64,int64 and object There are seven data types which are: credit_card, debt_consolidation, educational, major_purchase, small_business, home_improvement 和all_other。 Note that the type of purpose is object, which cannot be analyzed directly. This feature will be converted by OneHotEncoder or OrdinalEncoder.

Now, we can proveed to check basic statistical information of these features such as mean values, standard deviation, maximum and minimum values, etc.

```
In [4]: # Check basic statistical information
Data.describe()
```

Out

fic	dti	log.annual.inc	installment	int.rate	credit.policy	
9578.00000	9578.000000	9578.000000	9578.000000	9578.000000	9578.000000	count
710.84631	12.606679	10.932117	319.089413	0.122570	0.804970	mean
37.97053	6.883970	0.614813	207.071301	0.027163	0.396245	std
612.00000	0.000000	7.547502	15.670000	-0.146100	0.000000	min
682.00000	7.212500	10.558414	163.770000	0.103900	1.000000	25%
707.00000	12.665000	10.928884	268.950000	0.122100	1.000000	50%
737.00000	17.950000	11.291293	432.762500	0.140700	1.000000	75%
827.00000	29.960000	14.528354	940.140000	0.216400	1.000000	max

Task 1: Based on Data info, please clean the dataset by removing abnormal data points or filling in missing values.

```
In [5]: # Check for missing values
        print(Data.isna().sum())
        # NOTE: 1 missing value in 'not.fully.paid'
        credit.policy
                              0
        purpose
        int.rate
        installment
        log.annual.inc
                              0
        dti
        fico
        days.with.cr.line
        revol.bal
        revol.util
                              0
        inq.last.6mths
                              0
        deling.2yrs
                              0
        pub.rec
        not.fully.paid
                              1
        dtype: int64
In [6]: # Fill missing data entry in 'not.fully.paid' with mean
        Data['not.fully.paid'] = Data['not.fully.paid'].fillna(Data['not.fully.pa
        Data.head()
```

Out[6]:		credit.policy	purpose	int.rate	installment	log.annual.inc	dti	fico	days.
	0	1	debt_consolidation	0.1189	829.10	11.350407	19.48	737	5(
	1	1	credit_card	0.1071	228.22	11.082143	14.29	707	2
	2	1	debt_consolidation	0.1357	366.86	10.373491	11.63	682	471(
	3	1	debt_consolidation	0.1008	162.34	11.350407	8.10	712	26
	4	1	credit_card	0.1426	102.92	11.299732	14.97	667	4(

In [7]: # Check for abnormal data points
 Data.describe().transpose()

Out[7]

:		count	mean	std	min	25%	
	credit.policy	9578.0	0.804970	0.396245	0.000000	1.000000	1.00(
	int.rate	9578.0	0.122570	0.027163	-0.146100	0.103900	0.12
	installment	9578.0	319.089413	207.071301	15.670000	163.770000	268.950
	log.annual.inc	9578.0	10.932117	0.614813	7.547502	10.558414	10.928
	dti	9578.0	12.606679	6.883970	0.000000	7.212500	12.66
	fico	9578.0	710.846314	37.970537	612.000000	682.000000	707.000
	days.with.cr.line	9578.0	4609.450638	5380.501367	178.958333	2820.000000	4139.95
	revol.bal	9578.0	16913.963876	33756.189557	0.000000	3187.000000	8596.000
	revol.util	9578.0	46.799236	29.014417	0.000000	22.600000	46.300
	inq.last.6mths	9578.0	1.577469	2.200245	0.000000	0.000000	1.000
	delinq.2yrs	9578.0	0.163708	0.546215	0.000000	0.000000	0.000
	pub.rec	9578.0	0.062122	0.262126	0.000000	0.000000	0.000
	not.fully.paid	9578.0	0.160071	0.366672	0.000000	0.000000	0.000

```
In [8]: # Display histogram of dataset
Data.hist(bins=10 ,figsize=(16,12), color = 'Green')
plt.show()
```



```
In [9]: # Remove abnormal dat points
Data = Data[(Data['int.rate'] >= 0) & (Data['int.rate'] <= 1)]
Data = Data[(Data['days.with.cr.line'] >= 100) & (Data['days.with.cr.line
Data = Data[(Data['revol.bal'] >= 0) & (Data['revol.bal'] <= 100000)]
Data = Data[(Data['inq.last.6mths'] >= 0) & (Data['inq.last.6mths'] <= 10

# Display the cleaned dataset
Data.describe().transpose()</pre>
```

0			$\Gamma \cap I$	
U	u	τ	[9]	

	25%	min	std	mean	count	
1.00	1.000000	0.000000	0.380934	0.823890	9301.0	credit.policy
0.12	0.102800	0.060000	0.026790	0.122428	9301.0	int.rate
267.11	163.480000	15.670000	204.460136	315.604349	9301.0	installment
10.91	10.545341	7.547502	0.597767	10.909586	9301.0	log.annual.inc
12.57	7.120000	0.000000	6.873931	12.515017	9301.0	dti
707.00	682.000000	612.000000	37.892683	711.024836	9301.0	fico
4096.00	2789.958333	178.958333	2470.611283	4516.014756	9301.0	days.with.cr.line
8332.00	3090.000000	0.000000	15392.386083	13256.676809	9301.0	revol.bal
46.00	22.300000	0.000000	28.941791	46.549483	9301.0	revol.util
1.00	0.000000	0.000000	1.804469	1.468122	9301.0	inq.last.6mths
0.00	0.000000	0.000000	0.543481	0.163961	9301.0	delinq.2yrs
0.00	0.000000	0.000000	0.257719	0.061606	9301.0	pub.rec
0.00	0.000000	0.000000	0.362774	0.155914	9301.0	not.fully.paid

In [10]: # Display histogram of cleaned dataset
Data.hist(bins=10 ,figsize=(16,12), color = 'Green')
plt.show()

Task 2: From data feature distributions, please discuss whether we should normalise these features.

```
In [11]: # We should use normalisation as the ranges of values are very different # The features have different scales, and some of them have a skewed dist # such as 'int.rate', 'dti', and 'revol.bal'. Normalizing the data will e # contributes equally to the analysis.
```

Data Analytics and Classification

Now, our target is to train a logistic regression model to predict 'credit.policy' with 13 features. This is a typical classification problem.

Task 3: It is unnecessary to use all 13 features as input of the logistic regression model. To select relevant features, we can plot the heatmap between two features to filter relevant features as our input.


```
In [13]: # drop uncorellated features
Data = Data.drop(['installment', 'log.annual.inc', 'dti', 'days.with.cr.l

# Create new correlation heatmap with remaining features
plt.figure(figsize=(11,8))
sns.heatmap(Data.corr(), annot=True)
```

Out[13]: <AxesSubplot:>

From the heatmaps, we can find different correlations between each feature and 'credit.policy'. We only reserve features that have positive correlations with 'credit.policy' by removing features with a low correlation with credit_policy.

```
In [14]: # select two features to create heatmap between
    feature1 = 'credit.policy'
    feature2 = 'int.rate'

# create dataframe containing the two selected features
    data_subset = Data[[feature1, feature2]]

# create heatmap
    sns.heatmap(data_subset, cmap='coolwarm')

# set title
    plt.title(f'Heatmap between {feature1} and {feature2}')

# show plot
    plt.show()
```



```
In [15]: # select two features to create heatmap between
    feature1 = 'credit.policy'
    feature2 = 'fico'

# create dataframe containing the two selected features
    data_subset = Data[[feature1, feature2]]

# create heatmap
    sns.heatmap(data_subset, cmap='coolwarm')

# set title
    plt.title(f'Heatmap between {feature1} and {feature2}')

# show plot
    plt.show()
```



```
In [16]: # select two features to create heatmap between
    feature1 = 'credit.policy'
    feature2 = 'revol.bal'

# create dataframe containing the two selected features
    data_subset = Data[[feature1, feature2]]

# create heatmap
    sns.heatmap(data_subset, cmap='coolwarm')

# set title
    plt.title(f'Heatmap between {feature1} and {feature2}')

# show plot
    plt.show()
```



```
In [17]: # select two features to create heatmap between
    feature1 = 'credit.policy'
    feature2 = 'inq.last.6mths'

# create dataframe containing the two selected features
    data_subset = Data[[feature1, feature2]]

# create heatmap
    sns.heatmap(data_subset, cmap='coolwarm')

# set title
    plt.title(f'Heatmap between {feature1} and {feature2}')

# show plot
    plt.show()
```



```
In [18]: # select two features to create heatmap between
    feature1 = 'credit.policy'
    feature2 = 'not.fully.paid'

# create dataframe containing the two selected features
    data_subset = Data[[feature1, feature2]]

# create heatmap
    sns.heatmap(data_subset, cmap='coolwarm')

# set title
    plt.title(f'Heatmap between {feature1} and {feature2}')

# show plot
    plt.show()
```


Data Preprocess

Process of Object data type

The logistic regression model cannot well process the object data type. We convert this data type with OneHotEncoder such that this feature can be handled by the logistic regression model.

```
In [19]:
          dummy purpose = pd.get dummies(Data['purpose'])
          dummy purpose.head()
          New Data = pd.concat((Data.iloc[:,0], dummy purpose, Data.iloc[:,2:]), ax
          New_Data.head()
             credit.policy all_other credit_card debt_consolidation educational home_improveme
Out[19]:
          0
                       1
                                0
                                            0
                                                               1
                                                                          0
                       1
                                0
                                                              0
                                                                          0
          1
          3
                       1
                                0
                                            0
                                                               1
                                                                          0
                                0
                                                                          0
          5
                       1
                                0
                                            1
                                                              0
                                                                          0
```

Dataset classification

We classify all data records into training set (80%), validation set (10%) and test set (10%) so that we can determine hyper-parameters with k-cross validation.

Randomly select 90% as the training + validation sets. The rest 10% will be used as the test set.

```
In [20]: from sklearn.model selection import train test split
         print(New Data['credit.policy'].value counts())
              7663
         1
         0
              1638
         Name: credit.policy, dtype: int64
         We complete dataset classification as below.
         x_ex1 = New_Data.copy().drop(columns=['credit.policy', 'int.rate', 'revol.
In [21]:
         y_ex1 = New_Data.copy()['credit.policy']
         x_ex1_array = x_ex1.values
         y_ex1_array = y_ex1.values
         x_{ex1\_train} = x_{ex1\_array}[0:int((len(y_{ex1\_array})+1)*0.9),:]
         y = x1 train = y = x1 array[0:int((len(y = x1 array)+1)*0.9)]
         y = x1 test = y ex1 array[int((len(y ex1 array)+1)*0.9):]
In [22]: x_ex1_train.shape
         (8371, 8)
Out[22]:
In [23]: y_ex1_train
Out[23]: array([1, 1, 1, ..., 0, 0, 0])
In [24]: # Randomly select 90% as the training + validation sets. The rest 10% wil
         x_ex1_train, x_ex1_test, y_ex1_train, y_ex1_test = train_test_split(x_ex1_
In [25]: # Confirm split
         x_ex1_train
                                           0, 742],
         array([[
                       0,
                            1, ...,
                                      0,
Out[25]:
               [ 0,
                       0,
                          1, ...,
                                      0,
                                           0, 652],
                           0, ...,
                                           0, 682],
                [ 1,
                      0,
                                      0,
                [ 0,
                       0, 1, ...,
                                      0, 0, 722],
                          1, ...,
                                           0, 692],
                [ 0,
                       0,
                                      0,
                                           0, 667]])
                [ 0,
                       0,
                            1, ...,
                                      0,
```

Data normalisation

Task 4: Recall that we have observed large value discrepancies between these features. It is necessary to normalise these features before we use them to train our models. Here, we emply standardization method to normalise our dataset as below.

```
In [26]: from sklearn.preprocessing import StandardScaler
         obje ss = StandardScaler()
         x_ex1_train = obje_ss.fit_transform(x_ex1_train)
         x_ex1_test = obje_ss.fit_transform(x_ex1_test)
         x_ex1_train
         array([[-0.5728436 , -0.3867394 , 1.18861225, ..., -0.22136765,
Out[26]:
                 -0.25366089, 0.82202916],
                [-0.5728436 , -0.3867394 , 1.18861225 , ..., -0.22136765 ,
                 -0.25366089, -1.54906353],
                [ 1.74567717, -0.3867394, -0.84131726, ..., -0.22136765,
                 -0.25366089, -0.7586993 ],
                [-0.5728436, -0.3867394, 1.18861225, ..., -0.22136765,
                 -0.25366089, 0.29511967],
                [-0.5728436, -0.3867394, 1.18861225, ..., -0.22136765,
                 -0.25366089, -0.49524456],
                [-0.5728436 , -0.3867394 , 1.18861225 , ..., -0.22136765 ,
                 -0.25366089, -1.15388142]])
```

Model Evaluation

In this stage, we are going to train a logistic regression model. Cross validation will be used to determine hyper-parameters and evaluate model performance.

Logistic Regression Model

Task 5: Train a Logistic Regression Model with training dataset.

```
In [27]: from sklearn.linear_model import LogisticRegression
   model_log = LogisticRegression()

model_log.fit(x_ex1_train, y_ex1_train)
```

```
Out[27]: LogisticRegression()

In [28]: # Display training dataset score
    training_score = model_log.score(x_exl_train, y_exl_train)
    training_score

Out[28]: 0.8524492234169654

In [29]: from sklearn.metrics import accuracy_score
    predictOnTest = model_log.predict(x_exl_test)
    # Evaluate against test data
    accuracy_score(y_exl_test, predictOnTest)

Out[29]: 0.8549946294307197
```

Task 6: To better understand our result, we visualize the performance evluation by comparing the model accuracy of the Logistic Regression model on the training dataset and each validation dataset.

```
In [30]:
         from sklearn.model selection import cross validate
         cross_validate(model_log, X=x_ex1_train, y=y_ex1_train, scoring='accuracy
         {'fit_time': array([0.00943899, 0.00697613, 0.00720882, 0.00626731, 0.005
Out[30]:
         90491,
                 0.00606012, 0.00577998, 0.00820112, 0.007329231),
          'score time': array([0.00039697, 0.00030994, 0.00023007, 0.00019979, 0.0
         002501 ,
                 0.00022602, 0.00026011, 0.00022674, 0.000244141),
          'test_score': array([0.8516129 , 0.85053763, 0.84623656, 0.84731183, 0.8
         5376344,
                 0.86344086, 0.85376344, 0.84946237, 0.84408602]),
          'train_score': array([0.85255376, 0.85094086, 0.85322581, 0.8530914 , 0.
         85228495,
                 0.85067204, 0.85120968, 0.85067204, 0.85107527])}
In [31]:
         # using cross val score
         from sklearn.model selection import cross val score
         scores = cross val score(model log, x ex1 train, y ex1 train, cv=9)
         # Display
         scores
         array([0.8516129 , 0.85053763, 0.84623656, 0.84731183, 0.85376344,
Out[31]:
                0.86344086, 0.85376344, 0.84946237, 0.84408602])
In [32]:
         print("%0.4f accuracy with a standard deviation of %0.4f" % (scores.mean(
         0.8511 accuracy with a standard deviation of 0.0053
```


From the visualised results, we can observe that the model prediction performance is very good. The accuracy on validation dataset is only slightly lower than the accuracy on the training dataset. This result is convincing since we have conducted 9 fold cross validation. Our cross validation indicates that we have obtained an accurate model.

Note that the test dataset is not used for evaluation. Since there is no hyperparameter in the Logistic Regression model, the cross-validation has reflected the performance of the model on unknown datasets.