CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 28 GENNAIO 2014

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Per definizione, cosa è un albero? Sia T è un albero con esattamente 125 vertici e n lati. Cosa sappiamo dire su n?

Esercizio 2. Per ogni parte non vuota X di \mathbb{N} , sia $\pi(X) = \{p \in \mathbb{P} \mid (\exists x \in X)(p|x)\}$ (come di consueto, indichiamo con \mathbb{P} l'insieme dei numeri naturali primi). Posto $M = \{x \in \mathbb{N} \mid x \geq 2\}$ si consideri l'applicazione

$$f \colon X \in \mathcal{P}(M) \setminus \{\emptyset\} \longmapsto \min \pi(X) \in \mathbb{P}.$$

- (i) f è iniettiva? f è suriettiva?
- (ii) Calcolare f(D), dove D è l'insieme dei numeri interi dispari maggiori di 1, e $f(3\mathbb{N}^{\#})$.
- (iii) Descrivere in modo esplicito $[\{6\}]_{\sim}$, dove \sim è il nucleo di equivalenza di f.

Si definisca in $S := \mathcal{P}(M) \setminus \{\emptyset\}$ la relazione d'ordine \mathcal{R} ponendo, per ogni $X, Y \in \mathcal{R}$:

$$X \mathcal{R} Y \iff (X = Y \vee f(X) < f(Y)).$$

- (iv) Determinare in (S, \mathcal{R}) gli eventuali elementi minimali, massimali, minimo, massimo.
- (v) Sia $A = \{\{7,9\}, \{11,15\}\}$. In (S,\mathcal{R}) , descrivere l'insieme dei minoranti di A, l'insieme dei maggioranti di A e, se esistono, inf A e sup A.
- (vi) (S, \mathcal{R}) è un reticolo?
- (vii) Sia $B = \{\{2,5\}, \{7,9\}, \{11,15\}, \{7,11\}, \{11,13,29\}\}$. Disegnare il diagramma di Hasse di (B, \mathbb{R}) . (B, \mathbb{R}) è un reticolo? Nel caso lo sia, è distributivo? È complementato? È booleano?
- (viii) Esiste un insieme finito C tale che (B, \mathbb{R}) sia isomorfo a $(\mathcal{P}(C), \subseteq)$?

Esercizio 3. Si consideri il semigruppo commutativo $(\mathbb{R} \times \mathbb{R}, *)$, dove, per ogni $a, b, c, d \in \mathbb{R}$,

$$(a,b)*(c,d) = (ac + 2bd, ad + bc).$$

- (i) Verificare che $(\mathbb{R} \times \mathbb{R}, *)$ è un monoide.
- (ii) Determinare, se esistono, gli inversi in $(\mathbb{R} \times \mathbb{R}, *)$ di (2, 2) e $(\sqrt{2}, 1)$.
- (iii) $\mathbb{R} \times \{0\}$ è una parte chiusa rispetto a *? Se sì, $(\mathbb{R} \times \{0\}, *)$ è isomorfo a (\mathbb{R}, \cdot) ?
- (iv) $\{0\} \times \mathbb{R}$ è una parte chiusa rispetto a *? Se sì, $(\{0\} \times \mathbb{R}, *)$ è isomorfo a (\mathbb{R}, \cdot) ?

Esercizio 4. Stabilire per quali interi m > 1 esiste $\bar{a} \in \mathbb{Z}_m$ tale che

$$\bar{4}\bar{a} + \bar{3} = \bar{5} + \bar{7}.\tag{\diamond}$$

Detto n il minimo tale intero m che sia compreso tra 10 e 20, si determini $\bar{a} \in \mathbb{Z}_n$ che soddisfi (\diamond) .

Esercizio 5.

- (i) E vero che ogni polinomio di grado 11 in $\mathbb{Q}[x]$ ha almeno una radice in \mathbb{R} ?
- (ii) È vero che ogni polinomio di grado 11 in $\mathbb{Q}[x]$ ha almeno una radice in \mathbb{Q} ?
- (iii) Trovare, se esiste (o, in caso contrario, spiegare perché non esiste), un polinomio $f \in \mathbb{R}[x]$ di grado 8 che sia il prodotto di due polinomi irriducibili.
- (iv) Trovare, se esiste (o, in caso contrario, spiegare perché non esiste), un polinomio $g \in \mathbb{Q}[x]$ di grado 8 che sia il prodotto di due polinomi irriducibili.