

Model Development Phase Template

Date	27th July 2024	
Team ID	739919	
Project Title	FETAL AI: USING MACHINE LEARNING TO PREDICT AND MONITOR FETAL HEALTH	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

In The initial model training for Fetal AI involved using a dataset of fetal health indicators to train a machine learning model, optimizing parameters to maximize accuracy and predictive power. Validation was conducted using a holdout dataset to assess the model's generalizability, while evaluation metrics such as precision, recall, and F1-score were calculated to ensure robust performance. This approach ensures the model effectively identifies critical fetal health patterns, supporting timely and accurate clinical decision-making.

Initial Model Training Code:

```
#Random forest model
    RF model = RandomForestClassifier()
    RF_model.fit(X_train_smote,y_train_smote)
    predictions = RF_model.predict(X_test)
    print(accuracy_score(y_test, predictions))
 0.95141065830721
    from sklearn.metrics import confusion matrix
    from sklearn.metrics import ConfusionMatrixDisplay
    import matplotlib.pyplot as plt
Empty markdown cell, double-click or press enter to edit.
    size = X_train_smote.shape[0];
    print("For the amounts of training data is:",size)
    print("accuracy of the RandomForestClassifier:",RF_model.score(X_test,y_test))
    cm = confusion_matrix(y_test, predictions)
    cm_display = ConfusionMatrixDisplay(cm).plot()
    plt.show()
```

Model Validation and Evaluation Report:

			Confusion Matrix
Model	Classification Report	Accuracy	
Random Forest	#Random forest model from sklearn.ensemble import RandomForestClassifier RF_model = RandomForestClassifier() RF_model.fit(X_train_smote,y_train_smote) predictions = RF_model.predict(X_test) print(accuracy_score(y_test, predictions))	95%	
Regressor	0.95141065830721		
	from sklearn.metrics import confusion_matrix from sklearn.metrics import ConfusionMatrixDisplay import matplotlib.pyplot as plt		
	Empty markdown cell, double-click or press enter to edit.		-
	<pre>size = X_train_smote.shape[0]; print("For the amounts of training data is:",size) print("accuracy of the RandomForestClassifier:",RF_model.score(X_test,y_test)) cm = confusion_matrix(y_test, predictions) cm_display = ConfusionMatrixDisplay(cm).plot() plt.show()</pre>		
Doginian		010/	
Decision Tree	from sklearn.tree import DecisionTreeClassifier	91%	
Regressor	<pre>#Decision Tree model DT_model = DecisionTreeClassifier() DT_model.fit(X_train_smote, y_train_smote) predictions = DT_model.predict(X_test) print(accuracy_score(y_test,predictions))</pre>		
	0.9184952978056427		-
	<pre>print("For the amounts of training data is:",size) print("Accuracy of DecisionTreeClassifier:",DT_model.score(X_test,y_test)) cm = confusion_matrix(y_test, predictions) cm_display = ConfusionMatrixDisplay(cm).plot() plt.show()</pre>		
	For the amounts of training data is: 3474 Accuracy of DecisionTreeClassifier: 0.9184952978056427		

Logistic regression