Interactive Multi-fidelity Learning for Cost-effective Adaptation of Language Model with Sparse Human Supervision

Jiaxin Zhang¹, Zhuohang Li², Kamalika Das¹, Sricharan Kumar¹ ¹Intuit Al Research ²Vanderbilt University

VANDERBILT WIVERSITY

- Generic LLMs for domain-specific tasks immense scale at deployment, susceptibility to misinformation, specifically in healthcare and finance
- Fine-tuned small LMs for domain-specific tasks faster development cycles, lower operating costs but very high data annotation costs

Table 1: A qualitative comparison of human annotation, LLM annotation, and IMFL.

	Human	LLM	IMFL
Cost Saving Quality Efficiency	Low Very High Low	Very High Low Very High	High High High
Performance	Very High	Low	High/Very High

Overview of Interactive Fine-tuning

IMFL proposes the best acquisition strategy that balances between low-fidelity automatic LLM annotations and high-fidelity human annotations to maximize model performance given limited annotation budgets.

The high human annotation cost in domain-specific tasks can be greatly reduced by employing IMFL, which utilizes fewer human annotations combined with cheaper LLM (e.g., GPT-3.5-turbo) annotations to achieve competitive performance.

Interactive Multi-fidelity Learning (IMFL)

Problem Formulation

Given a total annotation budget \mathcal{B} and a computational cost \mathcal{C} , we aim to fine-tune a small LM $f(\boldsymbol{x}; \theta^*) : \mathcal{X} \to \mathcal{Y}$ on a downstream task by annotating samples from an unannotated data pool $\mathcal{U} = \{x_i\}_{i=1}^U$ to constitute the annotated sample set \mathcal{A} ($|\mathcal{A}| \leq \mathcal{B}$ and initially $\mathcal{A} = \varnothing$) such that its performance is maximized.

Annotation set – a human-annotated subset A_H and an LLM-annotated subset A_G **Total annotation budget** – human annotation budget B_H and LLM annotation budget B_G

Multi-fidelity Learning Framework

$$\succ \textbf{Fine-tuning} \quad \mathcal{L}_{total} = \frac{1}{|\mathcal{A}_H^r|} \sum_{(\boldsymbol{x}_i, y_i) \in \mathcal{A}_H^r} \mathcal{L}\left(f(\boldsymbol{x}_i; \boldsymbol{\theta}^{(r)}), y_i\right) + \frac{1}{|\mathcal{A}_G^r|} \sum_{(\boldsymbol{x}_j, y_j) \in \mathcal{A}_G^r} \mathcal{L}\left(f(\boldsymbol{x}_j; \boldsymbol{\theta}^{(r)}), y_j\right)$$

Design 1: In-context learning with similarity-based prompt retrieval

❖ Design 2: Variable batch-size query

Algorithm 1 IMFL framework

query strategy \mathcal{S} , annotation budget \mathcal{B} Initialization: $\mathcal{A} = \varnothing$, $\theta = \theta^{(0)}$ on \mathcal{A}_H^0 for rounds r = 1, ..., R do $\mathcal{U}_s^r \leftarrow \text{Extract from } \mathcal{U} \text{ by random sub-sampling } [\mathcal{Q}_H^r, \mathcal{Q}_G^r] \leftarrow \text{Acquire } [\mathcal{B}_H^r, \mathcal{B}_G^r] \text{ samples by query function } \mathcal{S} \text{ on model } f, \text{ data } \mathcal{U}_s^r$ $\mathcal{A}_H^r \leftarrow \text{Annotate acquired samples } \mathcal{Q}_H^r \text{ by human } \mathcal{A}_H = \mathcal{A}_H \cup \mathcal{A}_H^r$ Execute prompt retrieval from \mathcal{A}_H $\mathcal{A}_G^r \leftarrow \text{Annotate acquired samples } \mathcal{Q}_G^r \text{ by LLMs}$ $\mathcal{A}^r = \mathcal{A}_H^r \cup \mathcal{A}_G^r$

Require: unannotated data pool \mathcal{U} , target LM model f,

 $\mathcal{U} = \mathcal{U} \setminus \mathcal{A}^r$ $f(\boldsymbol{x}_i; \theta^{(r)}) \leftarrow \text{Fine-tune } f(\boldsymbol{x}_i; \theta^{(r)}) \text{ on } \mathcal{A}^r$ **return** $f(\boldsymbol{x}; \theta^{(r)}), \mathcal{A}$

> Termination two stopping criteria: (1) annotation budget and (2) computational cost

Exploration-Exploitation Query Strategy

EEQ harnesses human annotation for *exploitation* by maximizing informativeness through uncertainty sampling, and LLM annotation for *exploration* by enhancing representativeness through diversity sampling --- *two-stage selection* $\mathbf{x}_i^* = \arg\max\left[1 - p(f(\mathbf{x}_i; \theta^{(r)}) \mid \mathbf{x}_i; \theta^{(r)})\right]$

Main Results

Comparisons between our multi-fidelity learning (200 human + 800 GPT-3.5 annotations) and various sizes of human annotations.

Comparisons between our IMFL and single low-fidelity (all GPT-3.5) annotation on four domain-specific tasks given 1000 annotation budget.

Analysis

Exploitation-Exploration Query vs Random Query Strategy

Method	Budget		Query Strategy	Dataset			
Multi/Single	Human	GPT-3.5	EEQ/Random	FPB	Headline	PubMedQA	MedQA
Human + GPT-3.5	200	800	EEQ	47.88	81.09	73.76	67.98
Human + GPT-3.5	200	800	Random	41.94	74.32	66.03	63.77
Only Human	1000	0	Random	43.81	75.46	68.87	70.17
Only GPT-3.5	0	1000	Random	38.56	71.04	65.89	47.13

Effects of prompt retrieval, variable batch size, and batch orders

Method				Dataset				
Budget	Batch	Batch size	Retrieval	FPB	Headline	PubMedQA	MedQA	
1000	5 Mini-Batch	Variable	Similar	47.88	81.09	73.76	67.98	
1000	5 Mini-Batch	Equal	Similar	46.34	80.28	72.05	66.11	
1000	5 Mini-Batch	Variable	Random	42.09	73.98	67.44	63.56	
1000	5 Mini-Batch	Equal	Random	42.34	73.77	68.10	63.42	
1000	1 Full-Batch	ÑΑ	Similar	43.72	75.48	68.90	63.79	
1000	1 Full-Batch	NA	Random	39.80	72.11	65.94	57.23	

Effects of prompt retrieval, variable batch size, and batch orders

.	GPT-3 Annotation		GPT-3.5 Annotation			GPT-4 Annotation			
	retrieval	5-shot	0-shot	retrieval	5-shot	0-shot	retrieval	5-shot	0-shot
Headline MedQA	75.59 51.42	72.51 44.89	70.25 42.03	79.40 59.45	76.15 53.57	73.31 50.82	80.13 82.67	78.34 81.38	77.20 78.87