Task 1 Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case ofdouble layer with air and no coating? (keep the gap thickenss to be 13 mm)

From the diagram,

1. For double-pane(13mm) glazing:

$$U_{qir} = 2.8 \text{ W/m}^2 \cdot K$$

$$U_{\text{arg}on} = 2.7 \text{ W/m}^2 \cdot \text{K}$$

$$U_{krypton} = 2.6 \text{ W/m}^2 \cdot K$$

So, when changing the gas,

From Air to Argon: decrease about 4.57% From Air to Krypton: decrease about 7.14%

2. For triple-pane(13mm) glazing:

$$U_{double} = 2.8 \text{ W/m}^2 \cdot K$$

$$U_{triple} = 1.8 \text{ W/m}^2 \cdot K$$

So, when adding an extra pane, the U value decrease about 35.71%

3. For double-pane(13mm) glazing:

$$U_{_double 0.1}$$
 =2.8 W/m 2 ·K

$$U_{triple0.1}$$
 =1W/m 2 ·K

So, when using a low emissivity coating, the U value decrease about 35.71%

Task 2 Consider the house that we analysed in the alst two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

						P	IACENZ	A, Italy						WMO#:	160840
Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999
nnual He	ating and H	ımidificati	on Design C	onditions											
Coldest	Heating	DR T	,	Hum	idification DP	/MCDB and	HR		1 (Coldest mon	th WS/MCD)B	MCWS	/PCWD	
	Heating	JUB		99.6%			99%	0	0.4	4%	1	%	to 99.6	6% DB	
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250	
nual Co	oling, Dehu	midificatio	n, and Entha	ılpy Desigr	Conditions	ė.									
Hottest	Hottest		1164 92	Cooling E	B/MCWB					Evaporation	WB/MCDE	3		MCWS	PCWD
Month	Month	0.	4%	1	%	2%	,	0	.4%	1	%	2	1%	to 0.4	% DB
MOTIUI	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(0)	(P)
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90

Table 10 Peak Irradiance, W/m ²												Frame													
,					L	atitud	le											Operable	2				Fixed		
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°						ε	n with Break	num p	Ŋ	Insulated Fiberglass/Vinyl	8	with	p unu	Ŋ	Insulated Fiberglass/Vinyl
North	E_D	125	106	92	84	81	85	96	112	136						Į.	BB	Reinforced inyl/Aluminu Clad Wood	Wood/Vinyl	late 188/	Aluminum		Reinforced /inyl/Aluminu Clad Wood	Wood/Vinyl	late 1887
	E_d	128	115	103	93	84	76	69	62	55					Center	Alum	10	lad ∑ di	000	E fe	=	11	ein YA	000	S To
	E_t	253	221	195	177	166	162	164	174	191	Glazing Type	Glazing Layers	ID^b	Propertyc,d	of Glazing	<	Aluminur Thermal	~ E	=	- ğ	<	Aluminum Thermal B	M NO	=	Fib.
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361	Clear	1	1a	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
	E_d	177	169	162	156	151	147	143	140	137				SHGC	0.86	0.75	0.75	0.64	0.64	0.64	0.78	0.78	0.75	0.75	0.75
	E,	637	618	599	581	563	546	529	513	498		2	5a	U	2.73	4.62	3.42	3.00	2.87	5.83	3.61	3.22	2.86	2.84	2.72
East/West	E	530	542	552	550	560	550	555	547	527		2	20-	SHGC U	0.76 1.76	0.67 3.80	0.67 2.60	0.57	0.57	0.57	0.69	0.69	0.67 2.05	0.67 2.01	0.67
East/ West	E_D									, , , , , , , ,		3	29a	SHGC	0.68	0.60	0.60	0.51	0.51	0.51	2.76 0.62	2.39 0.62	0.60	0.60	0.60
	E_d	200				189					Low-e, low-solar	2	25a	U	1.70	3.83	2.68	2.33	2.21	1.89	2.75	2.36	2.03	2.01	1.90
	E_t	730	739	745	748	749	747	742	734	724	Low-e, low-solar	2	234	SHGC	0.41	0.37	0.37	0.31	0.31	0.31	0.38	0.38	0.36	0.36	0.36
Southeast/Southwest	$t E_D$	282	328	369	405	436	463	485	503	517		3	40c	U	1.02	3.22	2.07	1.76	1.71	1.45	2.13	1.76	1.44	1.40	1.33
	E_d	204	203	203	204	205	207	210	212	215				SHGC	0.27	0.25	0.25	0.21	0.21	0.21	0.25	0.25	0.24	0.24	0.24
	E_{t}	485	531	572	609	641	670	695	715	732	Low-e, high-solar	2	17c	U	1.99	4.05	2.89	2.52	2.39	2.07	2.99	2.60	2.26	2.24	2.13
South	F	0	60	120	214	202	240	408	161	515				SHGC	0.70	0.62	0.62	0.52	0.52	0.52	0.64	0.64	0.61	0.61	0.61
South	E_D	166						214				3	32c	U SHGC	0.62	3.54 0.55	2.36 0.55	2.02 0.46	1.97 0.46	1.70 0.46	2.47 0.56	2.10 0.56	1.77 0.54	1.73 0.54	1.66 0.54
	E_d			0.00					100000		Heat-absorbing		1c	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
	E_t	166	253	333	414	487	33/	622	083	740	ricat-absorbing	1	10	SHGC	0.73	0.64	0.64	0.54	0.54	0.54	0.66	0.66	0.64	0.64	0.64
Horizontal	E_D	845	840	827	806	776	738	691	637	574		2	5c	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72
	E_d	170	170	170	170	170	170	170	170	170				SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54
	E_{t}	1015	1010	997	976	946	908	861	807	744		3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
														SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30
											Reflective	1	11	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55 0.27	5.35
												2	5p	SHGC	0.31 2.73	0.28 4.62	0.28	0.24 3.00	0.24	0.24 2.53	0.29 3.61	0.29	0.27 2.86	2.84	0.27 2.72
												-	Jp	SHGC	0.29	0.27	0.27	0.22	0.22	0.22	0.27	0.27	0.26	0.26	0.26
												3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
														SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30

where

Table 13 Fenestration Solar Load Factors FF_s

Exposure	Single Family Detached	Multifamily			
North	0.44	0.27			
Northeast	0.21	0.43			
East	0.31	0.56			
Southeast	0.37	0.54			
South	0.47	0.53			
Southwest	0.58	0.61			
West	0.56	0.65			
Northwest	0.46	0.57			
Horizontal	0.58	0.73			

$$q_{fen} = A \times \mathrm{CF}_{fen}$$

$$\mathrm{CF}_{fen} = U(\Delta t - 0.46\,\mathrm{DR}) + \mathrm{PXI} \times \mathrm{SHGC} \times \mathrm{IAC} \times \mathrm{FF}_s$$

 q_{fen} = fenestration cooling load, W A = fenestration area (including frame), m² CF_{fen} = surface cooling factor, W/m² U = fenestration NFRC heating U-factor, W/(m²·K) Δt = cooling design temperature difference, K

PXI = peak exterior irradiance, including shading modifications, W/m² [see Equations (26) or (27)]

SHGC = fenestration rated or estimated NFRC solar heat gain coefficient IAC = interior shading attenuation coefficient, Equation (29)

 FF_s = fenestration solar load factor, <u>Table 13</u>

$$\Delta T_{cooling}$$
 =31.9-24=7.9°C
$$\Delta T_{heating}$$
 =20-(-4.8)=24.8°C DR=11.9°C

Wood Frames

Window1(east, wood frame, fixed)

$$A_{window1} = 14.4 \,\mathrm{m}^2$$

Heating:

$$\begin{split} &U_{\textit{window1}} = 2.84 \, \text{W/m}^2 \cdot \textit{K} \\ &HF_{\textit{window1}} = U_{\textit{window1}} \times \Delta T_{\textit{cooling}} = 2.84 \times 24.8 = 70.44 \, \textit{W/m}^2 \\ &Q_{\textit{window1}} = HF_{\textit{window1}} \times A_{\textit{window}} = 70.44 \times 14.44 = 1014.2 \, \textit{W} \end{split}$$

Cooling:

Heat transfer:

$$CF_{window1} = U_{window1} (\Delta T_{cooling} - 0.46DR) = 2.84(7.9 - 0.46 \times 11.9) = 6.9W / m^2$$

Irradiation:

$$\begin{split} ED &= 559, \quad E_d = 188, \quad FF_{seast} = 0.31 \quad PXI_{window1} = E_D + E_d = 559 + 188 = 747 \\ CF_{window1} &= PXI \times SHGC \times IAC \times FF_{seast} = 747 \times 0.54 \times 1 \times 0.31 = 125.1 \\ CF_{fenestration1} &= U_{window1} (\Delta T_{cooling} - 0.46DR) + PXI \times SHGC \times IAC \times FF_{seast} \\ &= 6.9 + 125.1 = 132W / \text{m}^2 \end{split}$$

$$\dot{Q}_{window1} = CF_{fenestration1} \times A_{window1} = 132 \times 14.4 = 1900.8W$$

Window2(west, wood frame, fixed)

$$A_{window2} = 14.4 \,\mathrm{m}^2$$

Heating:

$$\begin{split} &U_{window2} = 2.84 \text{W/m}^2 \cdot \text{K} \\ &HF_{window2} = U_{window2} \times \Delta T_{cooling} = 2.84 \times 24.8 = 70.44 \text{ W/m}^2 Q \\ &Q_{window2} = HF_{window2} \times A_{window2} = 70.44 \times 14.4 = 1014.2 \text{W} \end{split}$$

Cooling:

Heat transfer:

$$CF_{window2} = U_{window2} (\Delta T_{cooling} - 0.46 \text{DR}) = 2.84(7.9 - 0.46 \times 11.9) = 6.9 \text{ W/m}^2$$

Irradiation:

$$ED=559$$
, $Ed=188$, $FF_{swest}=0.56$, $PXI_{window1}=E_D+E_d=559+188=747$

$$\begin{split} &CF_{window2} = PXI \times SHGC \times IAC \times FF_{swest} = 747 \times 0.56 \times 1 \times 0.56 = 225.9 \\ &CF_{fenestration2} = U_{window2} (\Delta T_{cooling} - 0.46DR) + PXI \times SHGC \times IAC \times FF_{swest} \\ &= 6.9 + 225.9 = 232.8W \ / \ \text{m}^2 \\ &\dot{Q}_{window2} = CF_{fenestration2} \times A_{window2} = 232.8 \times 14.4 = 3352.32W \end{split}$$

Window3(south, wood frame, fixed)

$$A_{window3} = 3.6 \text{m}^2$$

Heating:

$$U_{window3} = 2.84 \text{ W/m}^2 \cdot K$$

$$HF_{window3} = U_{window3} \times \Delta T_{cooling} = 2.84 \times 24.8 = 70.44 \text{ W/m}^2$$

$$Q_{window3} = HF_{window3} \times A_{window3} = 70.44 \times 3.6 = 253.6W$$

Cooling:

Heat transfer:

$$CF_{window3} = U_{window3} (\Delta T_{cooling} - 0.46DR) = 2.84(7.9 - 0.46 \times 11.9) = 6.9W / m^2$$

Irradiation:

$$ED=348$$
, $Ed=209$, $FF_{south}=0.47$ $PXI_{window3}=ED+Ed=348+209=557$

$$CF_{window3} = PXI \times SHGC \times IAC \times FF_{ssouth} = 557 \times 0.54 \times 1 \times 0.47 = 141.4$$

$$CF_{\textit{fenestration}3} = U_{\textit{window}3} (\Delta T_{\textit{cooling}} - 0.46DR) + PXI \times SHGC \times IAC \times FF_{\textit{ssouth}}$$

$$= 6.9 + 141.4 = 148.3W / m^2$$

$$\dot{Q}_{window3} = CF_{fenestration3} \times A_{window3} = 148.3 \times 3.6 = 533.88W$$

Window4(south, wood frame, openable)

$$A_{window4} = 3.6 \text{m}^2$$

Heating:

$$U_{window4} = 2.87 \text{ W/m}^2 \cdot K$$

$$HF_{window4} = U_{window4} \times \Delta T_{cooling} = 2.87 \times 24.8 = 71.17 \text{ W/m}^2 Q$$

$$Q_{window4} = HF_{window4} \times A_{window4} = 71.17 \times 3.6 = 256.2W$$

Cooling:

Heat transfer:

$$CF_{window4} = U_{window4} (\Delta T_{cooling} - 0.46DR) = 2.87(7.9 - 0.46 \times 11.9) = 6.96W / m^2$$

Irradiation:

$$ED=348$$
, $Ed=209$, $SHGC=0.46$, $FF_{ssouth}=0.47$ $PXI_{window4}=ED+Ed=348+209=557$

$$CF_{window4} = PXI \times SHGC \times IAC \times FF_{ssouth} = 557 \times 0.46 \times 1 \times 0.47 = 120.4$$

$$CF_{fenestration4} = U_{window4} (\Delta T_{cooling} - 0.46DR) + PXI \times SHGC \times IAC \times FF_{ssouth}$$

$$=6.9+120.4=127.3W/m^2$$

$$\dot{Q}_{window4} = CF_{fenestration4} \times A_{window4} = 127.3 \times 3.6 = 458.28W$$

$$\dot{Q}_{total coolingwood}$$
 =1900.8+3352.32+533.88+458.28=6245.3w

$\dot{Q}_{totalheatingwood} = 1014.2 + 1014.2 + 253.6 + 256.2 = 2538.2w$

Aluminum Frames

Window1(south, aluminum frame, fixed)

$$A_{window1} = 14.4 \text{m}^2$$

Heating:

$$U_{window1} = 3.61 \text{ } w/\text{m}^2 \cdot K$$

$$HF_{\mathit{window1}} = U_{\mathit{window1}} \times \Delta T_{\mathit{cooling}} = 3.61 \times 24.8 = 89.52 W \ / \ \mathrm{m^2}$$

$$Q_{window1} = HF_{window1} \times A_{window1} = 89.52 \times 14.4 = 1289.1W$$

Cooling:

Heat transfer:

$$CF_{window1} = U_{window1}(\Delta T_{cooling} - 0.46DR) = 3.61(7.9 - 0.46 \times 11.9) = 8.7W / m^2$$

Irradiation:

$$ED = 559$$
, $E_d = 188$, $SHGC = 0.56$ $FF_{seast} = 0.31$ $PXI_{window1} = E_D + E_d = 559 + 188 = 747$

$$CF_{window1} = PXI \times SHGC \times IAC \times FF_{seast} = 747 \times 0.56 \times 1 \times 0.31 = 129.6$$

$$CF_{fenestration1} = U_{window1}(\Delta T_{cooling} - 0.46DR) + PXI \times SHGC \times IAC \times FF_{seast}$$

$$= 8.7 + 129.6 = 138.3W / m^2$$

$$\dot{Q}_{window1} = CF_{fenestration1} \times A_{window1} = 138.3 \times 14.4 = 1991.5W$$

Window2(west, aluminum frame, fixed)

$$A_{window2} = 14.4 \text{m}^2$$

Heating:

$$U_{window2} = 3.61 \text{ w/m}^2 \cdot K$$

$$HF_{window2} = U_{window2} \times \Delta T_{cooling} = 3.61 \times 24.8 = 89.52 W / m^2 Q$$

$$Q_{window2} = HF_{window2} \times A_{window2} = 89.52 \times 14.4 = 1289.1W$$

Cooling:

Heat transfer:

$$CF_{window2} = U_{window2} (\Delta T_{cooling} - 0.46DR) = 3.61(7.9 - 0.46 \times 11.9) = 8.7W / m^2$$

Irradiation:

$$ED=559$$
, $Ed=188$, $FF_{swest}=0.56$ $PXI_{window2}=ED+Ed=559+188=747$

$$CF_{window2} = PXI \times SHGC \times IAC \times FF_{swest} = 747 \times 0.56 \times 1 \times 0.56 = 234.26$$

$$CF_{fenestration2} = U_{window2} (\Delta T_{cooling} - 0.46DR) + PXI \times SHGC \times IAC \times FF_{swest}$$
$$= 8.7 + 234.26 = 242.96W / m^{2}$$

$$\dot{Q}_{window2} = CF_{fenestration2} \times A_{window2} = 242.96 \times 14.4 = 2398.6W$$

Window3(south, aluminum frame, fixed)

$$A_{\rm window3}=3.6\rm m^2$$

Heating:

$$U_{window3} = 3.61 \text{ W/m}^2 \cdot K$$

$$\begin{split} HF_{window3} &= U_{window3} \times \Delta T_{cooling} = 3.61 \times 24.8 = 89.52 W \ / \ \text{m}^2 \ Q \\ Q_{window3} &= HF_{window3} \times A_{window3} = 89.52 \times 3.6 = 322.2 W \end{split}$$

Cooling:

Heat transfer:

$$CF_{window3} = U_{window3} (\Delta T_{cooling} - 0.46DR) = 3.61(7.9 - 0.46 \times 11.9) = 8.7W / m^2$$

Irradiation:

$$ED=348, \ Ed=209, \ FF_{ssouth}=0.47 \ PXI_{window3}=ED+Ed=348+209=557$$

$$CF_{window3}=PXI\times SHGC\times IAC\times FF_{ssouth}=557\times 0.56\times 1\times 0.47=146.6$$

$$CF_{fenestration3}=U_{window3}(\Delta T_{cooling}-0.46DR)+PXI\times SHGC\times IAC\times FF_{ssouth}$$

$$\dot{Q}_{window3} = CF_{fenestration3} \times A_{window3} = 155.3 \times 3.6 = 559.08W$$

Window4(south, aluminum frame, openable)

$$A_{window4} = 3.6 \text{m}^2$$

Heating:

$$U_{window4}$$
=4.62 W/m²·K H

 $= 8.7 + 146.6 = 155.3W / m^2$

$$HF_{window4} = U_{window4} \times \Delta T_{cooling} = 4.62 \times 24.8 = 114.57 W / m^2 Q$$

$$Q_{window4} = HF_{window4} \times A_{window4} = 114.57 \times 3.6 = 412.4W$$

Cooling:

Heat transfer:

$$CF_{window4} = U_{window4} (\Delta T_{cooling} - 0.46DR) = 4.62(7.9 - 0.46 \times 11.9) = 11.2W / m^2$$

Irradiation:

$$ED = 348, \ Ed = 209, \ SHGC = 0.55, \ FF_{ssouth} = 0.47 \ PXI_{window4} = ED + Ed = 348 + 209 = 557$$

$$CF_{window4} = PXI \times SHGC \times IAC \times FF_{ssouth} = 557 \times 0.55 \times 1 \times 0.47 = 143.98$$

$$CF_{fenestration4} = U_{window4} (\Delta T_{cooling} - 0.46DR) + PXI \times SHGC \times IAC \times FF_{ssouth}$$
$$= 11.2 + 143.98 = 155.18W / m^{2}$$

$$\begin{split} \dot{Q}_{window4} &= CF_{fenestration4} \times A_{window4} = 155.18 \times 3.6 = 558.65W \\ \dot{Q}_{total cooling alu \min um} &= & 1991.5 + 3498.6 + 559.08 + 558.65 = 6607.8w \\ \dot{Q}_{total heating alu \min um} &= & 1289.1 + 1289.1 + 322.2 + 412.4 = 3312.8w \end{split}$$

Conclusion:

$$\begin{split} \dot{Q}_{total coolingwood} & / \dot{Q}_{total cooling alu \min um} = 6245.3/6607.8 = 94.5\% \\ \dot{Q}_{total heatingwood} / \dot{Q}_{total heating alu \min um} = 2538.2/3312.8 = 76.6\% \end{split}$$

From the result we can conclude that window with wooden frame has better resistance than aluminum frame. 94.5% for cooling and 76.6% for heating.