- 1. For i = 1, 2, ..., n, suppose that the conditional distribution of Y_i given $X = x_i$ is normal with mean $E(Y_i|X = x_i) = \alpha + \beta x_i$ and with variance $V(Y_i|X = x_i) = \sigma^2$, where σ^2 has a known value. Assume that (x_i, Y_i) , i = 1, 2, ..., n, constitute a set of mutually independent pairs of data (i.e., given the fixed x_i , the Y_i constitutes a set of mutually independent random variables).
 - (a) With β fixed, show that the maximum likelihood estimator (MLE) of α is $\tilde{\alpha} = \bar{Y} \beta \bar{x}$, where $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$ and $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$, and that $\tilde{\alpha}$ is also a method of moment estimator.

Solution: With β fixed, the likelihood function is

$$L(\alpha) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(Y_i - \alpha - \beta x_i)^2}{2\sigma^2}\right\}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i)^2\right\}.$$

The log-likelihood function $\ell(\alpha)$ hence is proportional to

$$-\frac{1}{2\sigma^2}\sum_{i=1}^n (Y_i - \alpha - \beta x_i)^2.$$

To find the maximizer of the function, one take the first derivative and set it to zero,

$$\frac{\partial}{\partial \alpha} \ell(\alpha) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i) = 0.$$

One can get

$$\tilde{\alpha} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \beta x_i) = \bar{Y} - \beta \bar{x}.$$

It is obvious that $\partial^2 \ell(\alpha)/\partial \alpha^2 = -n/\sigma^2 < 0$. Therefore, we can claim $\hat{\alpha}$ is the global maximizer.

By match the first population mean $E(n^{-1}\sum_{i=1}^n Y_i)$ to first sample mean $n^{-1}\sum_{i=1}^n Y_i$, one can easily find $\tilde{\alpha}$ is also a method of moment estimator since $E(n^{-1}\sum_{i=1}^n Y_i) = \alpha + \beta \bar{x}$.

(b) With α fixed at $\tilde{\alpha} = \bar{Y} - \beta \bar{x}$, show that the maximum likelihood estimator (MLE) of β is

$$\hat{\beta} = \sum_{i=1}^{n} (x_i - \bar{x}) Y_i / \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

Solution: With α fixed at $\hat{\alpha} = \bar{Y} - \beta \bar{x}$, the likelihood function becomes

$$L(\beta) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n \{(Y_i - \bar{Y}) - \beta(x_i - \bar{x})\}^2\right],$$

and the log-likelihood function $\ell(\beta)$ is proportional to

$$-\frac{1}{2\sigma^2} \sum_{i=1}^n \{ (Y_i - \bar{Y}) - \beta(x_i - \bar{x}) \}^2.$$

To find the maximizer of the function, one take the first derivative and set it to zero,

$$\frac{\partial}{\partial \beta} \ell(\beta) = \frac{1}{\sigma^2} \sum_{i=1}^n \{ (Y_i - \bar{Y}) - \beta (x_i - \bar{x}) \} (x_i - \bar{x}) = 0.$$

One can get

$$\hat{\beta} = \sum_{i=1}^{n} (Y_i - \bar{Y})(x_i - \bar{x}) / \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i - \bar{x}) / \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

It is obvious that $\partial^2 \ell(\beta)/\partial \beta^2 = -\sum_{i=1}^n (x_i - \bar{x})^2/\sigma^2 < 0$. Therefore, we can claim $\hat{\beta}$ is the global maximizer.

(c) Show that $\hat{\beta}$ is an unbiased estimator of β , and derive an explicit expression for $V(\hat{\beta})$.

Solution: One can see

$$E(\hat{\beta}) = \sum_{i=1}^{n} (x_i - \bar{x}) E(Y_i) / \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x}) (\alpha + \beta x_i) / \sum_{i=1}^{n} (x_i - \bar{x})^2$$

$$= \beta \sum_{i=1}^{n} (x_i - \bar{x}) x_i / \sum_{i=1}^{n} (x_i - \bar{x})^2 = \beta,$$

which shows $\hat{\beta}$ is an unbiased estimator of β . To derive the variance of $\hat{\beta}$, one can have

$$V(\hat{\beta}) = \sum_{i=1}^{n} (x_i - \bar{x})^2 V(Y_i) / \left\{ \sum_{i=1}^{n} (x_i - \bar{x})^2 \right\}^2$$
$$= \sigma^2 / \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

(d) Using the fact that $\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{x}$ and $\hat{\beta}$ simultaneously maximize the likelihood function, find the maximum likelihood estimator (MLE) of $\theta = \alpha + \beta x_0$, where x_0 is a known fixed constant.

Solution: Using the invariance property of MLE, the MLE of θ is

$$\hat{\theta} = \hat{\alpha} + \hat{\beta}x_0 = \bar{Y} + \hat{\beta}(x_0 - \bar{x}).$$

(e) Let $\hat{\theta} = \bar{Y} + \hat{\beta}(x_0 - \bar{x})$. Show that $\hat{\theta}$ is an unbiased estimator of θ , and derive an explicit expression for $V(\hat{\theta})$.

Solution: One have

$$E(\hat{\theta}) = E(\bar{Y}) + E(\hat{\beta})(x_0 - \bar{x}) = \frac{1}{n} \sum_{i=1}^{n} (\alpha + \beta x_i) + \beta(x_0 - \bar{x}) = \alpha + \beta x_0 = \theta,$$

which shows $\hat{\theta}$ is an unbiased estimator of θ . For the variance of $\hat{\theta}$, one have

$$V(\hat{\theta}) = V(\bar{Y}) + V(\hat{\beta})(x_0 - \bar{x})^2 + 2(x_0 - \bar{x})\operatorname{Cov}(\bar{Y}, \hat{\beta})$$

= $\sigma^2/n + \sigma^2(x_0 - \bar{x})^2/\sum_{i=1}^n (x_i - \bar{x})^2$,

where $Cov(\bar{Y}, \hat{\beta}) = 0$. To show $Cov(\bar{Y}, \hat{\beta}) = 0$, one have

$$Cov(\bar{Y}, \hat{\beta}) = Cov(\bar{Y}, \sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y}) / \sum_{i=1}^{n} (x_i - \bar{x})^2)$$
$$= \sum_{i=1}^{n} (x_i - \bar{x})Cov(\bar{Y}, Y_i - \bar{Y}) / \sum_{i=1}^{n} (x_i - \bar{x})^2 = 0,$$

since $\operatorname{Cov}(\bar{Y}, Y_i - \bar{Y}) = \operatorname{Cov}(\bar{Y}, Y_i) - \sigma^2/n = \sigma^2/n - \sigma^2/n = 0.$

2. Let X_1, \ldots, X_n be a random sample from the probability density function

$$f_X(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad \theta > 0.$$

(a) Show that the expectation of score function is 0, i.e., $E(\frac{\partial}{\partial \theta} \log f(X|\theta)) = 0$.

Solution: Since

$$\frac{\partial}{\partial \theta} \log f(X|\theta) = \theta^{-1} + \log(X),$$

one have

$$E\left(\frac{\partial}{\partial \theta}\log f(X|\theta)\right) = \theta^{-1} - \theta^{-1} = 0,$$

where $Y = -\log(X)$ has pdf

$$f_Y(y) = f_X(e^{-y})e^{-y} = \theta e^{-y(\theta-1)}e^{-y} = \theta e^{-\theta y},$$

which is exponential distribution with $E(Y) = E(-\log(X)) = \theta^{-1}$.

(b) Derive the explicit expression for the Cramer-Rao lower bound (CRLB) for unbiased estimators of $\tau(\theta) = \theta^{-1}$.

Solution: Since

$$\frac{\partial}{\partial \theta} \log f(x_1|\theta) = \theta^{-1} + \log(x_1)$$

and

$$\frac{\partial^2}{\partial \theta^2} \log f(x_1 | \theta) = (-1)\theta^{-2},$$

the CRLB equals θ^{-2}/n .

(c) Find the uniformly minimum variance unbiased estimator (UMVUE) for $\tau(\theta) = \theta^{-1}$, and justify whether its variance reaches the CRLB.

Solution: Re-write the pdf as the exponential family

$$f_X(x|\theta) = x^{-1}\theta \exp\{\theta \log(x)\} = h(x)c(\theta) \exp\{w(\theta)t(x)\},$$

where $h(x) = x^{-1}$, $c(\theta) = \theta$, $w(\theta) = -\theta$, and $t(x) = -\log(x)$. By the property of the exponential family, we know that $T = -\sum_{i=1}^{n} \log(X_i)$ is a complete sufficient statistic.

Since

$$E(T/n) = E(-\sum_{i=1}^{n} \log(X_i)/n) = \sum_{i=1}^{n} E(-\log(X_i))/n = \theta^{-1},$$

we know T/n is an unbiased estimator of θ^{-1} . Since T is a complete and sufficient statistic, we can conclude that T/n, as a function of the complete and sufficient statistic, is the UMVUE by Lehmann-Sheffe Theorem.

Since the variance of T/n is

$$V(T/n) = \sum_{i=1}^{n} V(-\log(X_i))/n^2 = \theta^{-2}/n,$$

we can see it reaches the CRLB.

(d) Derive the likelihood ratio test (LRT) statistic $\lambda(x)$ for $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$, and show that the rejection region $R = \{x: \lambda(x) \leq c\}$ is equivalent to $R = \{x: T \geq c_1^* \text{ or } T \leq c_2^*\}$, where $T = -\sum_{i=1}^n \log(X_i)$.

[Hint: $t^n e^{-ct}$ is a concave function of t if the constant c > 0.]

Solution: One can write the likelihood function as

$$L(\theta) = \theta^n \prod_{i=1}^n x_i^{\theta-1},$$

and show that the MLE of θ is $\hat{\theta} = -n/\sum_{i=1}^{n} \log(X_i) = (T/n)^{-1}$. The likelihood ratio statistic hence can be written as

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in \Theta} L(\theta)} = \frac{L(\theta_0)}{L(\hat{\theta})}.$$

It is not easy to see the relationship between $\lambda(x)$ and T.

Actually, it may be easier to work on the distribution of $Y = -\log(X)$ with pdf $f_Y(y) = \theta e^{-\theta y}$ and

$$L(\theta) = \theta^n e^{-\theta \sum_{i=1}^n y_i} = \theta^n e^{-\theta t}.$$

The likelihood ratio statistic becomes

$$\lambda(y) = \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in \Theta} L(\theta)} = \frac{L(\theta_0)}{L(\hat{\theta})} = \frac{\theta_0^n e^{-\theta_0 t}}{(t/n)^{-n} e^{-n}} = c_1 t^n e^{-\theta_0 t},$$

where $\hat{\theta} = (t/n)^{-1}$ and c_1 is some constant. Since $t^n e^{-\theta_0 t}$ is a concave function of t, one know that $R = \{x : \lambda(x) \leq c\}$ is equivalent to $R = \{x : T \geq c_1^* \text{ or } T \leq c_2^*\}$.

(e) Find c_1^* and c_2^* in (d) with test size α .

Solution: Since $T = \sum_{i=1}^{n} Y_i$, where Y_i follows exponential distribution with mean θ^{-1} . One would know T follows $Gamma(n, \theta^{-1})$. Hence, to satisfy the type-I error rate α , one have

$$\alpha = \sup_{\theta \in \Theta_0} P(T \ge c_1^* \text{ or } T \le c_2^*) = P(T \ge c_1^* \text{ or } T \le c_2^* | \theta = \theta_0).$$

One can divide α into halves $(\alpha/2)$, or one can assign α_1 and α_2 for

$$\alpha_1 = P(T \ge c_1^* | \theta = \theta_0),$$

$$\alpha_2 = P(T \le c_2^* | \theta = \theta_0),$$

and $\alpha=\alpha_1+\alpha_2$. Since under the null hypothesis $\theta=\theta_0$, we know T follows $\operatorname{Gamma}(n,\theta_0^{-1})$. We can choose $c_1^*=\Gamma_{n,\theta_0^{-1},1-\alpha_1}$, as the $(1-\alpha_1)$ th quantile of $\operatorname{Gamma}(n,\theta_0^{-1})$, and $c_2^*=\Gamma_{n,\theta_0^{-1},\alpha_2}$.