UE Apprentissage par renforcement - séance 5

Valentin Emiya

M2 IAAA

8 janvier 2020

Programme de l'UE

En 7 séances de 4h :

- 1. Bandits (1/2): notions et strategies de base, UCB
 - Exploration/exploitation
- 2. Bandits (2/2): Thomson sampling, bandits contextuels

contexte

3. Monte-Carlo Tree Search

Environnement connu, simulations

4. Processus de décision de Markov

Cas général d'environnements et de stratégies

- 5. TD learning
- 6. Miniprojet
- 7. Miniprojet

Programme de la séance : Temporal-Difference learning

Comment apprendre une bonne stratégie dans un MDP inconnu?

- Deux algorithmes célèbres
 - SARSA : on-policy TD learning
 - Q-learning : off-policy TD learning
- ▶ Grâce à la théorie des MDP (définitions, fx d'éval., éq. de Bellman) :
 - Principe de Genéral Policy Iteration
 - Évaluation d'une stratégie
 - Amélioration d'une stratégie
- ► Et ça marche? Quel est le meilleur?

Références

- Chapitre 6 de Reinforcement Learning: An Introduction, R. S.
 Sutton et A. G. Barto, 2nd Edition, MIT Press, Cambridge, 2018.
- ▶ https://github.com/mazzzystar/QLearningMouse

Introduction

SARSA et Q-learning : les algorithmes

SARSA

Q-learning

TD learning

Rappels sur les MDP

General Policy Iteration (GPI)

Principe général

Évaluer une stratégie (policy evaluation)

Améliorer une stratégie (policy improvement)

TD learning en action

Conclusion

```
Introduction
```

```
SARSA et Q-learning : les algorithmes
SARSA
Q-learning
TD learning
```

Rappels sur les MDP

General Policy Iteration (GPI)

TD learning en action

Conclusion

Introduction

SARSA et Q-learning : les algorithmes SARSA

Q-learning TD learning

Rappels sur les MDP

General Policy Iteration (GPI

TD learning en action

Conclusion

Algorithme SARSA

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$$

$$Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A')]$$

 $S \leftarrow S' : A \leftarrow A' :$

until S is terminal


```
Introduction
```

SARSA et Q-learning : les algorithmes

SARSA

Q-learning

TD learning

Rappels sur les MDP

General Policy Iteration (GPI)

TD learning en action

Conclusion

Algorithme Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A)\big]$$

 $S \leftarrow S'$

until S is terminal


```
Introduction
```

```
SARSA et Q-learning : les algorithmes SARSA
```

TD learning

Rappels sur les MDP

General Policy Iteration (GPI)

TD learning en action

Conclusion

Principe de Temporal-Difference learning

SARSA:

$$Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]$$

Q-learning:

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

On met à jour $Q(S_t, A_t)$

- ightharpoonup après une étape $S_t, A_t, R_{t+1}, S_{t+1}$ (A_{t+1})
- sans attendre la fin de l'épisode
- ightharpoonup sans rien connaître de l'environnement (p(s', r|s, a) inconnu)
- → Une avancée majeure apportée par l'**apprentissage** par renforcement!

Principe de Temporal-Difference learning

SARSA:

$$Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]$$

Q-learning:

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

On met à jour $Q(S_t, A_t)$

- ▶ après une étape S_t , A_t , R_{t+1} , S_{t+1} (A_{t+1})
- ▶ sans attendre la fin de l'épisode
- ightharpoonup sans rien connaître de l'environnement (p(s', r|s, a) inconnu)
- → Une avancée majeure apportée par l'apprentissage par renforcement!

Pourquoi est-ce efficace?

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

TD learning en action

Conclusion

TF

Processus de décision de Markov fini

Environnement

un ensemble fini d'états de l'environnement

$$\mathcal{S} = \{s_i, 0 \le i < S\}$$

▶ un ensemble fini d'actions de l'agent

$$\mathcal{A} = \{a_i, 0 \le i < A\}$$

un ensemble fini de récompenses immédiates

$$\mathcal{R} = \{ r_i \in \mathbb{R}, 0 \le i < R \}$$

► la loi

$$p(s', r|s, a) = p(S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a)$$

caractérisant la probabilité qu'ayant effectué l'action a dans l'état s de l'environnement à l'instant t-1, l'agent reçoive la récompense immédiate r et l'environnement se retrouve dans l'état s' à l'instant t.

Processus de décision de Markov fini

Environnement (suite)

On peut en déduire de p(s', r|s, a) les quantités suivantes

▶ les probabilités de transition entre états : la probabilité de passer d'un état $s \in \mathcal{S}$ à un état $s' \in \mathcal{S}$ via une action $a \in \mathcal{A}$ est

$$p(s'|s,a) = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

▶ l'espérance de la récompense immédiate lorsque l'on choisit une action $a \in \mathcal{A}$ dans un état $s \in \mathcal{S}$ est

$$r(s, a) = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$$

 $\rightarrow p(s', r|s, a)$ caractérise entièrement l'environnement.

Interaction agent/environnement

Étant donné un agent dont la stratégie/politique est caractérisée par une loi $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)^1$

- ► choisir un état initial : S₀
- répéter pour $t = 0, 1, \dots$
 - choisir une action :

tirer
$$A_t = a$$
 selon $\pi(a|S_t)$

obtenir la récompense et le nouvel état :

tirer
$$S_{t+1} = s', R_{t+1} = r \text{ selon } p(s', r|S_t, A_t)$$

mettre à jour l'état courant

$$s \leftarrow s'$$

$$\cdots \underbrace{S_{t}}_{A_{t}} \underbrace{R_{t+1}}_{A_{t}} \underbrace{S_{t+1}}_{A_{t+1}} \underbrace{R_{t+2}}_{A_{t+2}} \underbrace{S_{t+2}}_{A_{t+2}} \underbrace{S_{t+3}}_{A_{t+3}} \underbrace{A_{t+3}}_{\bullet} \cdots$$

^{1.} ou une fonction déterministe $a = \pi(s)$

Récompense et retour

L'agent reçoit des **récompenses (immédiates)** R_t , R_{t+1} , R_{t+2} . Son objectif est de maximiser un **retour**, ou **récompense à long terme**, noté G_t que l'on peut définir de plusieurs façons :

• sur un horizon fini $T<+\infty$, par exemple pour le cas d'épisodes :

$$G_t = R_{t+1} + R_{t+2} + \ldots + R_T = \sum_{k=t+1}^T R_k$$

lacktriangle avec une dévaluation $\gamma \in [0,1[$, par exemple dans le cas perpétuel :

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = \sum_{k=t+1}^{+\infty} \gamma^{k-t-1} R_k$$

Propriété : on a $G_t = R_{t+1} + \gamma G_{t+1}$ pour t < T (avec $G_T = 0$).

Fonctions d'évaluation d'une politique π

Objectif : évaluer une politique π par le retour moyen depuis un état s.

Fonction d'évaluation de π depuis un état

Pour tout état s, on a

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_{t}|S_{t} = s\right] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{+\infty} \gamma^{k} R_{t+k+1}|S_{t} = s\right]$$
$$= \sum_{a} \pi\left(a|s\right) \sum_{s',r} \rho\left(s',r|s,a\right) \left[r + \gamma v_{\pi}\left(s'\right)\right]$$

Fonction d'évaluation de π depuis une paire (état, action)

Pour tout état s et action a, on a

$$\begin{aligned} q_{\pi}\left(s,a\right) &= \mathbb{E}_{\pi}\left[G_{t}|S_{t}=s,A_{t}=a\right] \\ &= \mathbb{E}_{\pi}\left[\sum_{k=0}^{+\infty} \gamma^{k} R_{t+k+1}|S_{t}=s,A_{t}=a\right] \\ &= \sum_{s',r} p\left(s',r|s,a\right) \left[r + \gamma \sum_{a'} q_{\pi}\left(s',a'\right) \pi\left(a'|s'\right)\right] \end{aligned}$$

Fonctions d'évaluations optimales

Fonction d'évaluation optimale depuis un état

Pour tout état s, on a

$$v_*(s) \triangleq \max_{\pi} v_{\pi}(s)$$

$$= \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

Fonction d'évaluation optimale depuis une paire (état, action)

Pour tout état s et action a, on a

$$q_*(s, a) \triangleq \max_{\pi} q_{\pi}(s, a)$$

$$= \sum_{s', r} p(s', r|s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right]$$

Propriétés : $\forall s, v_*(s) = \max_a q_*(s, a)$ et $\pi_*(s) \in \operatorname{argmax}_a q_*(s, a)$.

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

Principe général

Évaluer une stratégie (policy evaluation)

Améliorer une stratégie (policy improvement)

TD learning en action

Conclusion

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

Principe général

Évaluer une stratégie (policy evaluation)

Améliorer une stratégie (policy improvement)

TD learning en action

Conclusion

General Policy Iteration (GPI)

Comment apprendre une stratégie optimale?

En partant d'une politique initiale π , répéter :

- lacktriangle évaluer la stratégie courante π en calculant v_π ou q_π
 - améliorer π en trouvant π' tel que $\mathsf{v}_{\pi'} \geq \mathsf{v}_{\pi}$ ou $\mathsf{q}_{\pi'} \geq \mathsf{q}_{\pi}$

→ Ce principe GPI est utilisé dans de nombreux algorithmes de renforcement, dont SARSA.

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

Principe général

Évaluer une stratégie (policy evaluation)

Améliorer une stratégie (policy improvement)

TD learning en action

Conclusion

ΤP

Évaluer une stratégie (policy evaluation)

Objectif: pour π fixée, estimer v_{π} (ou q_{π}).

```
Tabular TD(0) for estimating v_{\pi}

Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0

Loop for each episode:
Initialize S

Loop for each step of episode:
A \leftarrow \text{action given by } \pi \text{ for } S
Take action A, observe R, S'
V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]
S \leftarrow S'
until S is terminal
```


Estimation itérative à partir de tirages de A, R, S' avec 2 ingrédients :

- ▶ Bellman : $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_t + 1) | S_t = s]$
- ▶ Temporal-Difference error : $R_{t+1} + \gamma V(S_t + 1) V(S_t)$

Évaluation de la stratégie dans SARSA et Q-learning

- Évaluation de q_{π} sur le même principe qu'avec v_{π}
- ► SARSA : équation de Bellman pour q_{π}

$$\pi \leftrightarrow q_{\pi}$$
: On-Policy TD learning

• Q-learning : équation d'optimalité de Bellman pour q_{π^*}

$$\pi \leftrightarrow q_{\pi^*}$$
: Off-Policy TD learning

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

Principe général

Evaluer une stratégie (policy evaluation

Améliorer une stratégie (policy improvement)

TD learning en action

Conclusion

ΤP

Comment améliorer une stratégie π ?

Problème

Étant donné π et q_{π} évalué précédemment, trouver π' telle que $v_{\pi'} \geq v_{\pi}$.

Policy improvement

On définit $\pi'(s) \triangleq \operatorname{argmax}_a q_{\pi}(s, a)$, i.e., π' est greedy par rapport à q_{π} .

Alors
$$q_{\pi}(s, a) \ge v_{\pi}(s)$$
 et $v_{\pi'}(s) = \sum_{a} \pi(a|s) q_{\pi}(s, a) \ge v_{\pi}(s)$.

Amélioration de la stratégie dans SARSA et Q-learning

Choose A from S using policy derived from Q (e.g., ε -greedy)

```
Sarsa (on-policy TD control) for estimating Q \approx q.

Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0

Initialize Q(s, a), for all \varepsilon \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

(Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S

(Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S, A) = Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]

S \in S'; A \leftarrow A'; until S is terminal
```

```
Q-learning (off-policy TD control) for estimating z \approx \pi.

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,\alpha), for all s \in S^*, \alpha \in A(s), arbitrarily except that Q(terminal,\cdot) = 0

Loop for each step of episode:

(Thouse A from S using policy derived from Q(s,\alpha) \in P(s,\alpha))

Take action A, observe R, S

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_s Q(S',\alpha) - Q(S,A)\right]

until S is zeroinal
```

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

TD learning en action

Conclusion

TF

SARSA en action

[Sutton, exemple 6.5]

À programmer en TP

SARSA en action

[Sutton, exemple 6.5]

À programmer en TP

SARSA en action

[Sutton, exemple 6.5]

À programmer en TP

Episodes vs. time steps

- 1. partie plate de la courbe : amélioration
- 2. partie convexe de la courbe : amélioration
- 3. partie linéaire de la courbe : convergence

[Sutton, exemple 6.6]

[Sutton, exemple 6.6]

[Sutton, exemple 6.6]

SARSA

- converge vers une stratégie sous-optimale
- + mais moins risquée et qui récolte une meilleure récompense

[Sutton, exemple 6.6]

SARSA

- converge vers une stratégie sous-optimale
- + mais moins risquée et qui **récolte une meilleure récompense**

Q-learning

- + trouve la stratégie optimale
- mais ne l'utilise pas (ϵ -greedy, off-policy)

${\sf QLearning} \\ {\sf Mouse}$

Show time!

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

TD learning en action

Conclusion

TF

Conclusion

- vous connaissez les deux plus célèbres algorithmes d'AR
- vous connaissez les principes sous-jacents

TD-learning, General Policy Iteration

- ▶ ils sont appropriés quand l'environnement est inconnu
- ▶ ils ont chacun leurs qualités et leurs défauts
- ightharpoonup le principe TD-learning s'étend à un horizon temporel plus élevé ${\sf TD}(\lambda)$, eligibility traces
- plus généralement, les principes vus donnent lieu à de nombreux algorithmes que vous pouvez aborder.

Introduction

SARSA et Q-learning : les algorithmes

Rappels sur les MDP

General Policy Iteration (GPI)

TD learning en action

Conclusion

Exercice 1 - Windy Grid World

- 1. Programmez l'environnement, avec les changements d'états et les récompenses, et un affichage dans la console.
- 2. Programmez les agents Q-learning et Sarsa sur ce problème.
- 3. Faites évoluer en boucle les agents dans l'environnement et affichez la meilleure stratégie de chacun.
- 4. Faites l'exercice 6.9 du livre de Sutton.
- 5. Optionnel : faites l'exercice 6.10 du livre de Sutton.

Exercice 2 – QLearningMouse

- 1. Lancez et étudier le code fourni
- 2. Identifiez la définition des états que la souris voit. À quoi correspond chaque état ? Combien y a-t-il d'états ?
- 3. Quelle est la taille de l'ensemble des paramètres (s, a) sur lequel est définie la fonction q?
- 4. Programmez Sarsa dans ce contexte

