A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MESH*

JIANXING HAN[†] AND MINGHUA CHEN[‡]

Abstract. This is an example SIAM LATEX article. This can be used as a template for new articles. Abstracts must be able to stand alone and so cannot contain citations to the paper's references, equations, etc. An abstract must consist of a single paragraph and be concise. Because of online formatting, abstracts must appear as plain as possible. Any equations should be inline.

- 8 **Key words.** example, LATEX
- 9 **MSC codes.** ????????????????
- 10 **1. Introduction.** For $\Omega = (0, 2T), 1 < \alpha < 2$

11 (1.1)
$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}}u(x) = f(x), & x \in \Omega \\ u(x) = 0, & x \in \mathbb{R} \setminus \Omega \end{cases}$$

12 where

$$(1.2) \qquad (-\Delta)^{\frac{\alpha}{2}}u(x) = -\frac{\partial^{\alpha}u}{\partial|x|^{\alpha}} = -\kappa_{\alpha}\frac{d^{2}}{dx^{2}}\int_{\Omega}\frac{|x-y|^{1-\alpha}}{\Gamma(2-\alpha)}u(y)dy$$

14

16

2

3

15 (1.3)
$$\kappa_{\alpha} = -\frac{1}{2\cos(\alpha\pi/2)} > 0$$

- 2. Preliminaries: Numeric scheme and main results.
 - 2.1. Numeric Format.

17 (2.1)
$$x_i = \begin{cases} T\left(\frac{i}{N}\right)^r, & 0 \le i \le N \\ 2T - T\left(\frac{2N-i}{N}\right)^r, & N \le i \le 2N \end{cases}$$

where $r \geq 1$. And let

19 (2.2)
$$h_j = x_j - x_{j-1}, \quad 1 \le j \le 2N$$

Let $\{\phi_j(x)\}_{j=1}^{2N-1}$ be standard hat functions, which are basis of the piecewise linear function space

$$\phi_{j}(x) = \begin{cases} \frac{1}{h_{j}}(x - x_{j-1}), & x_{j-1} \leq x \leq x_{j} \\ \frac{1}{h_{j+1}}(x_{j+1} - x), & x_{j} \leq x \leq x_{j+1} \\ 0, & \text{otherwise} \end{cases}$$

And then, define the piecewise linear interpolant of the true solution u to be

24 (2.4)
$$\Pi_h u(x) := \sum_{j=1}^{2N-1} u(x_j) \phi_j(x)$$

^{*}Submitted to the editors DATE.

[†]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (hanjx2023@mail.lzu.edu.cn).

[‡]School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China (chen@mail.lzu.edu.cn).

For convience, we denote 25

26 (2.5)
$$I^{2-\alpha}u(x) := \frac{1}{\Gamma(2-\alpha)} \int_{\Omega} |x-y|^{1-\alpha}u(y)dy$$

and 2.7

28 (2.6)
$$D_h^2 u(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} u(x_{i-1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) u(x_i) + \frac{1}{h_{i+1}} u(x_{i+1}) \right)$$

Now, we discretise (1.1) by replacing u(x) by a continuous piecewise linear func-29

30 tion

31 (2.7)
$$u_h(x) := \sum_{j=1}^{2N-1} u_j \phi_j(x)$$

whose nodal values u_i are to be determined by collocation at each mesh point x_i for

33
$$i = 1, 2, ..., 2N - 1$$
:

34 (2.8)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) := -\kappa_{\alpha} D_h^2 I^{2-\alpha} u_h(x_i) = f(x_i) =: f_i$$

Here,

36 (2.9)
$$-\kappa_{\alpha} D_h^{\alpha} u_h(x_i) = \sum_{j=1}^{2N-1} -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i) \ u_j = \sum_{j=1}^{2N-1} a_{ij} \ u_j$$

where

38 (2.10)
$$a_{ij} = -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i) \text{ for } i, j = 1, 2, ..., 2N - 1$$

We have replaced $(-\Delta)^{\alpha/2}u(x_i) = f(x_i)$ in (1.1) by $-\kappa_\alpha D_h^\alpha u_h(x_i) = f(x_i)$ in 39

40 (2.8), with truncation error

41 (2.11)
$$\tau_i := -\kappa_\alpha \left(D_h^\alpha \Pi_h u(x_i) - \frac{d^2}{dx^2} I^{2-\alpha} u(x_i) \right) \quad \text{for} \quad i = 1, 2, ..., 2N - 1$$

where
$$-\kappa_{\alpha}D_{h}^{\alpha}\Pi_{h}u(x_{i}) = \sum_{j=1}^{2N-1} -\kappa_{\alpha}D_{h}^{\alpha}\phi_{j}(x_{i})u(x_{j}) = \sum_{j=1}^{2N-1} a_{ij}u(x_{j}).$$
The discrete equation (2.8) can be written in matrix form

43

44 (2.12)
$$AU = F$$

where $A = (a_{ij}) \in \mathbb{R}^{(2N-1)\times(2N-1)}$, $U = (u_1, \dots, u_{2N-1})^T$ is unknown and $F = (f_1, \dots, f_{2N-1})^T$.

46

We can deduce a_{ij}

$$a_{ij} = -\kappa_{\alpha} D_h^2 I^{2-\alpha} \phi_j(x_i)$$

$$= -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} \tilde{a}_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) \tilde{a}_{i,j} + \frac{1}{h_{i+1}} \tilde{a}_{i+1,j} \right)$$

where 49

$$\tilde{a}_{ij} = I^{2-\alpha}\phi_i(x_i)$$

$$= \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_{j-1}|^{3-\alpha}}{h_j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) |x_i - x_j|^{3-\alpha} + \frac{|x_i - x_{j+1}|^{3-\alpha}}{h_{j+1}} \right)$$

We shall finally introduce some notation.

For convenience, we use the notation \simeq . That $x_1 \simeq y_1$, means that $c_1x_1 \leq y_1 \leq c_1$

53 C_1x_1 for some constants c_1 and C_1 that are independent of N.

Meanwhile, let

55 (2.15)
$$K_y(x) := \frac{|y - x|^{1 - \alpha}}{\Gamma(2 - \alpha)}$$

56 We define the difference quotients

57 (2.16)
$$D_h g(x_i) := \frac{g(x_{i+1}) - g(x_i)}{h_{i+1}}, \quad D_{\bar{h}} g(x_i) := \frac{g(x_i) - g(x_{i-1})}{h_i}$$

58 Thus

63

64

65

66

69 70

71

75

54

$$D_h g(x_i) = D_{\bar{h}} g(x_{i+1})$$
60
$$D_h^2 g(x_i) = \frac{2}{h_i + h_{i+1}} \left(D_h g(x_i) - D_{\bar{h}} g(x_i) \right) = \frac{2}{h_i + h_{i+1}} \left(D_h g(x_i) - D_h g(x_{i-1}) \right)$$

And for j = 1, 2, ..., 2N, we define

62 (2.17)
$$y_j^{\theta} = (1 - \theta)x_{j-1} + \theta x_{j-1}, \quad \theta \in (0, 1)$$

2.2. Regularity of the true solution. For any $\beta > 0$, we use the standard notation $C^{\beta}(\bar{\Omega})$, $C^{\beta}(\mathbb{R})$, etc., for Hölder spaces and their norms and seminorms. When no confusion is possible, we use the notation $C^{\beta}(\Omega)$ to refer to $C^{k,\beta'}(\Omega)$, where k is the greatest integer such that $k < \beta$ and where $\beta' = \beta - k$. The Hölder spaces $C^{k,\beta'}(\Omega)$ are defined as the subspaces of $C^k(\Omega)$ consisting of functions whose k-th order partial derivatives are locally Hölder continuous[1] with exponent β' in Ω , where $C^k(\Omega)$ is the set of all k-times continuously differentiable functions on open set Ω .

Definition 2.1 (delta dependent norm [2]). ...

The Lemma 2.2. Let $f \in C^{\beta}(\Omega), \beta > 2$ be such that $||f||_{\beta}^{(\alpha/2)} < \infty$, then for l = 0, 1, 2

74 (2.18)
$$|f^{(l)}(x)| \le ||f||_{\beta}^{(\alpha/2)} \begin{cases} x^{-l-\alpha/2}, & \text{if } 0 < x \le T \\ (2T-x)^{-l-\alpha/2}, & \text{if } T \le x < 2T \end{cases}$$

THEOREM 2.3 (Regularity up to the boundary [2]). Let Ω be a bounded domain, and $\beta > 0$ be such that neither β nor $\beta + \alpha$ is an integer. Let $f \in C^{\beta}(\Omega)$ be such that $\beta = \|f\|_{\beta}^{(\alpha/2)} < \infty$, and $\beta = 0$ be a solution of (1.1). Then, $\beta = 0$ and

79 (2.19)
$$||u||_{\beta+\alpha}^{(-\alpha/2)} \le C \left(||u||_{C^{\alpha/2}(\mathbb{R})} + ||f||_{\beta}^{(\alpha/2)} \right)$$

80 where C is a constant depending only on Ω , α , and β .

COROLLARY 2.4. Let u be a solution of (1.1) where $f \in L^{\infty}(\Omega)$ and $||f||_{\beta}^{(\alpha/2)} < \infty$. Then, for any $x \in \Omega$ and l = 0, 1, 2, 3, 4

83 (2.20)
$$|u^{(l)}(x)| \le ||u||_{\beta+\alpha}^{(-\alpha/2)} \begin{cases} x^{\alpha/2-l}, & \text{if } 0 < x \le T \\ (2T-x)^{\alpha/2-l}, & \text{if } T \le x < 2T \end{cases}$$

And in this paper bellow, without special instructions, we allways assume that

85 (2.21)
$$f \in L^{\infty}(\Omega) \cap C^{\beta}(\Omega)$$
 and $||f||_{\beta}^{(\alpha/2)} < \infty$, with $\alpha + \beta > 4$

2.3. Main results. Here we state our main results; the proof is deferred to 86 section 3 and section 4.

Let's denote $h = \frac{1}{N}$, we have 88

Theorem 2.5 (Local Truncation Error). If u(x) is a solution of the equation 89

(1.1) where f satisfy the regular condition (2.21), then there exists $C_1(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$ 90

and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$, such that the truncation error (2.11) satisfies

$$|\tau_{i}| := |-\kappa_{\alpha} D_{h}^{\alpha} \Pi_{h} u(x_{i}) - f(x_{i})|$$

$$\leq C_{1} h^{\min\{\frac{r_{\alpha}}{2}, 2\}} \begin{cases} x_{i}^{-\alpha}, & 1 \leq i \leq N \\ (2T - x_{i})^{-\alpha}, & N < i \leq 2N - 1 \end{cases}$$

$$+ C_{2} (r - 1) h^{2} \begin{cases} |T - x_{i-1}|^{1 - \alpha}, & 1 \leq i \leq N \\ |T - x_{i+1}|^{1 - \alpha}, & N < i \leq 2N - 1 \end{cases}$$

Theorem 2.6 (Global Error). The discrete equation (2.8) has sulotion and there 94

exists a positive constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)}, ||f||_{\beta}^{(\alpha/2)})$ such that the error between the numerial solution U with the exact solution $u(x_i)$ satisfies 95

97 (2.23)
$$\max_{1 \le i \le 2N-1} |u_i - u(x_i)| \le Ch^{\min\{\frac{r\alpha}{2}, 2\}}$$

That means the numerial method has convergence order $\min\{\frac{r\alpha}{2}, 2\}$. 98

99 100

101

93

Remark 2.7. ...

- 3. Local Truncation Error.
- 3.1. Proof of Theorem 2.5. The truncation error of the discrete format can 102 be written as 103

$$-\kappa_{\alpha} D_{h}^{\alpha} \Pi_{h} u(x_{i}) - f(x_{i}) = -\kappa_{\alpha} (D_{h}^{2} I^{2-\alpha} \Pi_{h} u(x_{i}) - \frac{d^{2}}{dx^{2}} I^{2-\alpha} u(x_{i}))$$

$$= -\kappa_{\alpha} D_{h}^{2} I^{2-\alpha} (\Pi_{h} u - u)(x_{i}) - \kappa_{\alpha} (D_{h}^{2} - \frac{d^{2}}{dx^{2}}) I^{2-\alpha} u(x_{i})$$

105

THEOREM 3.1. There exits a constant $C = C(T, \alpha, r, ||f||_{\beta}^{(\alpha/2)})$ such that 106

107 (3.2)
$$\left| -\kappa_{\alpha} (D_h^2 - \frac{d^2}{dx^2}) I^{2-\alpha} u(x_i) \right| \le Ch^2 \begin{cases} x_i^{-\alpha/2 - 2/r}, & 1 \le i \le N \\ (2T - x_i)^{-\alpha/2 - 2/r}, & N \le i \le 2N - 1 \end{cases}$$

Proof. Since $f \in C^2(\Omega)$ and 108

109 (3.3)
$$\frac{d^2}{dr^2}(-\kappa_{\alpha}I^{2-\alpha}u(x)) = f(x), \quad x \in \Omega,$$

we have $I^{2-\alpha}u\in C^4(\Omega)$. Therefore, using equation (A.2) of Lemma A.1, for $1\leq i\leq 1$

111
$$2N-1$$
, we have

(3.4)

$$-\kappa_{\alpha}(D_{h}^{2} - \frac{d^{2}}{dx^{2}})I^{2-\alpha}u(x_{i}) = \frac{h_{i+1} - h_{i}}{3}f'(x_{i})$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} f''(y) \frac{(y - x_{i-1})^{3}}{3!} dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^{3}}{3!} dy\right)$$

- By Lemma B.2, Lemma 2.2 and Lemma B.3, we get the result.
- 114 And now define

115 (3.5)
$$R_i := D_h^2 I^{2-\alpha} (u - \Pi_h u)(x_i)$$

- We have some results about the estimate of R_i
- THEOREM 3.2. For $1 \le i < N/2$, there exists $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

118 (3.6)
$$R_{i} \leq \begin{cases} Ch^{2}x_{i}^{-\alpha/2-2/r}, & \alpha/2-2/r+1>0\\ Ch^{2}(x_{i}^{-1-\alpha}\ln(i)+\ln(N)), & \alpha/2-2/r+1=0\\ Ch^{r\alpha/2+r}x_{i}^{-1-\alpha}, & \alpha/2-2/r+1<0 \end{cases}$$

- 119
- THEOREM 3.3. For $N/2 \le i \le N$, there exists constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$
- 121 such that

122 (3.7)
$$R_{i} \leq C(r-1)h^{2}|T-x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

- And for $N < i \le 2N 1$, it is symmetric to the previous case.
- 124 Combine Theorem 3.1, Theorem 3.2 and Theorem 3.3, the proof of Theorem 2.5
- 125 completed.
- We prove Theorem 3.2 and Theorem 3.3 in next subsections below.
- 3.2. Mesh Transport Functions.
- Definition 3.4 (Mesh Transport Functions).

$$y_{i,j}(x) = \begin{cases} (x^{1/r} + Z_{j-i})^r & i < N, j < N \\ \frac{x^{1/r} - Z_i}{Z_1} h_N + x_N & i < N, j = N \\ 2T - (Z_{2N-(j-i)} - x^{1/r})^r & i < N, j > N \\ \left(\frac{Z_1}{h_N} (x - x_N) + Z_j\right)^r & i = N, j < N \\ x, & i = N, j = N \end{cases}$$

130 where

131 (3.9)
$$Z_j := T^{1/r} \frac{j}{N}$$

132 *And*

133 (3.10)
$$h_{i,j}(x) = y_{i,j}(x) - y_{i,j-1}(x)$$
134

135 (3.11)
$$y_{i,j}^{\theta}(x) = (1-\theta)y_{i,j-1}(x) + \theta y_{i,j-1}(x), \quad \theta \in (0,1)$$

136 We give some properties of mesh transport functions.

LEMMA 3.5. Obviously,

138 (3.12)
$$y_{i,j}(x_{i-1}) = x_{j-1}, \quad y_{i,j}(x_i) = x_j, \quad y_{i,j}(x_{i+1}) = x_{j+1}$$

139 (3.13)
$$h_{i,j}(x_{i-1}) = h_{j-1}, \quad h_{i,j}(x_i) = h_j, \quad h_{i,j}(x_{i+1}) = h_{j+1}$$

140 (3.14)
$$y_{i,j}^{\theta}(x_{i-1}) = y_{j-1}^{\theta}, \quad y_{i,j}^{\theta}(x_i) = y_j^{\theta}, \quad y_{i,j}^{\theta}(x_{i+1}) = y_{j+1}^{\theta}$$

141 LEMMA 3.6. For $1 \le i \le 2N - 1, 2 \le j \le 2N - 1$,

142 (3.15)
$$h_{i,j}(\xi) \simeq h_j, \quad \text{for } \xi \in (x_{i-1}, x_{i+1})$$

143 For $1 \le i, j \le 2N - 1$,

144 (3.16)
$$|y_{i,j}(\xi) - \xi| \simeq |x_j - x_i| \quad \text{for } \xi \in (x_{i-1}, x_{i+1})$$

3.3. Proof of Theorem 3.2. For convience, let's denote

146 (3.17)
$$T_{ij} = \int_{x_{i-1}}^{x_j} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy, \quad i = 0, \dots, 2N, \ j = 1, \dots, 2N$$

147 Also for simplicity, we denote

Definition 3.7.

148 (3.18)
$$S_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} T_{i-1,j} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i+1}} T_{i+1,j} \right)$$

149 then

150 (3.19)
$$R_i = \sum_{j=1}^{2N} S_{ij}$$

151

LEMMA 3.8. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

154 (3.20)
$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{y^{-1 - \alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} y^{-\alpha/2 - 2/r - 1} dy$$

157 Therefore,

$$\sum_{j=\max\{2i+1,i+3\}}^{N} S_{ij} \le Ch^2 \int_{x_{2i}}^{x_N} y^{-\alpha/2-2/r-1} dy$$

$$= \frac{C}{\alpha/2 + 2/r} h^2 (x_{2i}^{-\alpha/2-2/r} - T^{-\alpha/2-2/r})$$

$$\le \frac{C}{\alpha/2 + 2/r} 2^{r(-\alpha/2-2/r)} h^2 x_i^{-\alpha/2-2/r}$$

159

Lemma 3.9. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $1 \le i < N/2$,

162 (3.23)
$$\sum_{j=N+1}^{2N} S_{ij} \le \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

163 *Proof.* For $1 \le i < N/2, N+1 \le j \le 2N-1$, by equation (B.12) and Lemma B.5

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} y^{-1 - \alpha} dy$$

$$\leq Ch^2 T^{-1 - \alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

165

$$\sum_{j=N+1}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{x_N}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0\\ \ln(T) - \ln(h_{2N}), & \alpha/2-2/r+1=0\\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0\\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0\\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

167 And by Lemma A.3

$$S_{i,2N} \le CT^{-1-\alpha} h_{2N}^{\alpha/2+1} = CT^{-\alpha/2} h^{r\alpha/2+r}$$

169 And when $\alpha/2 - 2/r + 1 \ge 0$,

$$h^{r\alpha/2+r} < h^2$$

171 Summarizes, we get the result.

For i = 1, 2.

Lemma 3.10. By Lemma B.8, Lemma 3.8 and Lemma 3.9 we get

$$R_{1} = \sum_{j=1}^{3} S_{1j} + \sum_{j=4}^{2N} S_{1j}$$

$$\leq Ch^{2}x_{1}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

8

$$R_{2} = \sum_{j=1}^{4} S_{2j} + \sum_{j=5}^{2N} S_{2j}$$

$$\leq Ch^{2} x_{2}^{-\alpha/2 - 2/r} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2 + r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

For $3 \le i < N/2$, we have a new separation of R_i , Let's denote $k = \lceil \frac{i}{2} \rceil$.

178

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{2i-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2i} + T_{i-1,2i-1}) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2i} \right)$$

$$+ \sum_{j=2i+1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5}$$

180 181

LEMMA 3.11. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for

182
$$3 \leq i \leq N, k = \lceil \frac{i}{2} \rceil$$

183 (3.28)
$$|I_1| = |\sum_{j=1}^{k-1} S_{ij}| \le \begin{cases} Ch^2 x_i^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0 \\ Ch^2 x_i^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0 \\ Ch^{\alpha/2 + r} x_i^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

184 Proof. by Lemma A.3, Lemma B.6

185 (3.29)
$$S_{i1} \le Cx_1^{\alpha/2}x_1x_i^{-1-\alpha} = Cx_1^{\alpha/2+1}x_i^{-1-\alpha} = CT^{\alpha/2+1}h^{r\alpha/2+r}x_i^{-1-\alpha}$$

186 For $2 \le j \le k-1$, by Lemma B.4 and Lemma B.6

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq Ch^2 \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} \frac{x_i^{-1 - \alpha}}{\Gamma(-\alpha)} dy$$

$$= Ch^2 x_i^{-1 - \alpha} \int_{x_{j-1}}^{x_j} y^{\alpha/2 - 2/r} dy$$

188 Therefore,

$$I_{1} = \sum_{j=1}^{k-1} S_{ij} = S_{i1} + \sum_{j=2}^{k-1} S_{ij}$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{x_{\lceil \frac{j}{2} \rceil - 1}} y^{\alpha/2 - 2/r} dy$$

$$\leq Ch^{r\alpha/2+r} x_{i}^{-1-\alpha} + Ch^{2} x_{i}^{-1-\alpha} \int_{x_{1}}^{2^{-r} x_{i}} y^{\alpha/2 - 2/r} dy$$

190 But

196

191 (3.32)
$$\int_{x_1}^{2^{-r}x_i} y^{\alpha/2 - 2/r} dy \le \begin{cases} \frac{1}{\alpha/2 - 2/r + 1} (2^{-r}x_i)^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 > 0\\ \ln(2^{-r}x_i) - \ln(x_1), & \alpha/2 - 2/r + 1 = 0\\ \frac{1}{|\alpha/2 - 2/r + 1|} x_1^{\alpha/2 - 2/r + 1}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

192 So we have

193 (3.33)
$$I_{1} \leq \begin{cases} \frac{C}{\alpha/2 - 2/r + 1} h^{2} x_{i}^{-\alpha/2 - 2/r}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} x_{i}^{-1 - \alpha} \ln(i), & \alpha/2 - 2/r + 1 = 0\\ \frac{C}{|\alpha/2 - 2/r + 1|} h^{r\alpha/2 + r} x_{i}^{-1 - \alpha}, & \alpha/2 - 2/r + 1 < 0 \end{cases} \square$$

Definition 3.12. For convience, let's denote

195 (3.34)
$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

THEOREM 3.13. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $3 \le i < N/2, k = \lceil \frac{i}{2} \rceil$,

199 (3.35)
$$I_3 = \sum_{i=1}^{2i-1} V_{ij} \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

To estimete V_{ij} , we need some preparations.

LEMMA 3.14. For $y \in (x_{j-1}, x_j)$, we can rewrite

202 (3.36)
$$y = x_{j-1} + \theta h_j = (1 - \theta)x_{j-1} + \theta x_j =: y_j^{\theta}, \ \theta \in (0, 1)$$

203 by Lemma A.2,

$$T_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$= \int_0^1 (u(y_j^{\theta}) - \Pi_h u(y_j^{\theta})) \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j d\theta$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} h_j^3 u''(y_j^{\theta}) \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)}$$

$$+ \frac{\theta(1-\theta)}{3!} h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} (\theta^2 u'''(\eta_{j1}^{\theta}) - (1-\theta)^2 u'''(\eta_{j2}^{\theta})) d\theta$$

- 205 where $\eta_{j1}^{\theta} \in (x_{j-1}, y_j^{\theta}), \eta_{j2}^{\theta} \in (y_j^{\theta}, x_j).$
- Now Let's construct a series of functions to represent T_{ij} .

Definition 3.15.

207 (3.38)
$$y_{j-i}(x) = (x^{1/r} + Z_{j-i})^r, \quad Z_{j-i} = T^{1/r} \frac{j-i}{N}$$

208 Particularly, for $i, j \leq N - 1$,

209
$$y_{j-i}(x_{i-1}) = x_{j-1}, \quad y_{j-i}(x_i) = x_j, \quad y_{j-i}(x_{i+1}) = x_{j+1}$$

210

211 (3.39)
$$y_{j-i}'(x) = y_{j-i}(x)^{1-1/r} x^{1/r-1}$$

212 (3.40)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}(x)^{1-2/r} x^{1/r-2} Z_{j-i}$$

213 (3.41)

214

215 (3.42)
$$y_{j-i}^{\theta}(x) = (1-\theta)y_{j-1-i}(x) + \theta y_{j-i}(x)$$

216

217 (3.43)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$

218 Now, we define

219 (3.44)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

220

221 (3.45)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

222 And now we can rewrite T_{ij}

223 Lemma 3.16. For $2 \le i \le N, 2 \le j \le N$,

$$T_{ij} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} P_{j-i}^{\theta}(x_{i}) d\theta + \int_{0}^{1} \frac{\theta(1-\theta)}{3!} Q_{j-i}^{\theta}(x_{i}) \left[\theta^{2} u'''(\eta_{j,1}^{\theta}) - (1-\theta)^{2} u'''(\eta_{j,2}^{\theta})\right] d\theta$$

Immediately, we can see from (3.34) that

226 LEMMA 3.17. For $3 \le i, j \le N - 1$,

$$V_{ij} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_i} T_{i-1,j-1} \right)$$

$$= \int_0^1 -\frac{\theta(1-\theta)}{2} D_h^2 P_{j-i}^{\theta}(x_i) d\theta$$

$$+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1}) u'''(\eta_{j+1,1}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,1}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,1}^{\theta})}{h_i} \right) d\theta$$

$$- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j+1,2}^{\theta}) - Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i) u'''(\eta_{j,2}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1}) u'''(\eta_{j-1,2}^{\theta})}{h_i} \right) d\theta$$

To estimate V_{ij} , we first estimate $D_h^2 P_{i-i}^{\theta}(x_i)$, but By Lemma A.1,

229 (3.48)
$$D_h^2 P_{j-i}^{\theta}(x_i) = P_{j-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

By Leibniz formula, we calculate and estimate the derivations of $h_{i-i}^3(x)$, $u''(y_{i-i}^\theta(x))$

231 and
$$\frac{|y_{j-i}^{\theta}(x)-x|^{1-\alpha}}{\Gamma(2-\alpha)}$$
 separately.

Firstly, we have

Lemma 3.18. There exists a constant C=C(T,r) such that For $3\leq i\leq N$ —

234 $1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\}, \xi \in (x_{i-1}, x_{i+1}),$

235 (3.49)
$$h_{j-i}^3(\xi) \le Ch^2 x_i^{2-2/r} h_j$$

236 (3.50)
$$(h_{j-i}^3(\xi))' \le C(r-1)h^2 x_i^{1-2/r} h_j$$

237 (3.51)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

238 The proof of this theorem see Lemma B.9 and Lemma B.10

239 Second,

Lemma 3.19. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

241
$$3 \le i \le N - 1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\}, \xi \in (x_{i-1}, x_{i+1}),$$

242 (3.52)
$$u''(y_{i-i}^{\theta}(\xi)) \le Cx_i^{\alpha/2-2}$$

243
$$(3.53)$$
 $(u''(y_{j-i}^{\theta}(\xi)))' \leq Cx_i^{\alpha/2-3}$

$$(u''(y_{i-i}^{\theta}(\xi)))'' < Cx_i^{\alpha/2-4}$$

The proof of this theorem see Proof 30 245

And Finally, we have 246

Lemma 3.20. There exists a constant $C = C(T, \alpha, r)$ such that For $3 \leq i \leq r$ 247

248
$$N-1, \lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\}, \xi \in (x_{i-1}, x_{i+1}),$$

249 (3.55)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_{i}^{\theta} - x_{i}|^{1-\alpha}$$

$$250 \quad (3.56) \qquad \left| \left(|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \right)' \right| \le C|y_i^{\theta} - x_i|^{1-\alpha} x_i^{-1}$$

251 (3.57)
$$\left| \left(|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \right)'' \right| \le C|y_i^{\theta} - x_i|^{1-\alpha} x_i^{-2}$$

252 where
$$y_i^{\theta} = \theta x_{i-1} + (1 - \theta) x_i$$

The proof of this theorem see Proof 31 253

254

LEMMA 3.21. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For 255

256
$$3 \le i \le N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\},\$$

257 (3.58)
$$D_h^2 P_{j-i}^{\theta}(x_i) \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

258 where
$$y_{j}^{\theta} = \theta x_{j-1} + (1 - \theta)x_{j}$$

Proof. Since Lemma A.1 259

260 (3.59)
$$D_h^2 P_{j-i}^{\theta}(x_i) = P_{j-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

261 From (3.44), using Leibniz formula and Lemma 3.18, Lemma 3.19 and Lemma 3.20

262

Lemma 3.22. There exists a constant $C = C(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that for 263

264

 $\begin{aligned} &3 \leq i \leq N-1, \\ &For \left\lceil \frac{i}{2} \right\rceil \leq j \leq \min\{2i-1,N-1\}, \end{aligned}$

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_{j}^{\theta})}{h_{i+1}} \right) \\
\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

And for $\lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i, N\},\$ 267

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_i} \right) \\
\leq Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j$$

269 where
$$\eta_{i}^{\theta} \in (x_{j-1}, x_{j}).$$

proof see Proof 32 270

271

LEMMA 3.23. There exists a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that for $3 \le i \le N-1, \lceil \frac{i}{2} \rceil + 1 \le j \le \min\{2i-1, N-1\},$

$$V_{ij} \le Ch^2 \int_0^1 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} h_j d\theta$$

$$= Ch^2 \int_{x_{j-1}}^{x_j} \frac{|y - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{\alpha/2 - 2 - 2/r} dy$$

275 *Proof.* Since Lemma 3.17, by Lemma 3.21 and Lemma 3.22, we get the result immediately. 276

Now we can prove Theorem 3.13 using Lemma 3.23, $k = \lceil \frac{i}{2} \rceil$

$$I_{3} = \sum_{k+1}^{2i-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{2i-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2 - 2 - 2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{2i-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2 - 2 - 2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2 - 2 - 2/r} = Ch^{2} x_{i}^{-\alpha/2 - 2/r}$$

Now we study I_2, I_4 . 279

LEMMA 3.24. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for 280

281
$$3 \le i \le N - 1, k = \lceil \frac{i}{2} \rceil,$$

$$(3.64)$$

$$I_2 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

283 And for
$$3 \le i < N/2$$
,

$$I_4 = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_i} (T_{i-1,2i} + T_{i-1,2i-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,2i} \right) \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

Proof. In fact. 285

$$(3.66) \qquad \frac{1}{h_{i+1}} (T_{i+1,k} + T_{i+1,k+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) T_{i,k}$$

$$= \frac{1}{h_{i+1}} (T_{i+1,k} - T_{i,k}) + \frac{1}{h_{i+1}} (T_{i+1,k+1} - T_{i,k}) + (\frac{1}{h_{i+1}} - \frac{1}{h_i}) T_{i,k}$$

287 While, by Lemma A.2 and Lemma B.1

$$\frac{1}{h_{i+1}}(T_{i+1,k} - T_{i,k}) = \int_{x_{k-1}}^{x_k} (u(y) - \Pi_h u(y)) \frac{|x_{i+1} - y|^{1-\alpha} - |x_i - y|^{1-\alpha}}{h_{i+1}\Gamma(2-\alpha)} dy$$

$$\leq h_k^2 \max_{\boldsymbol{\eta} \in (x_{k-1}, x_k)} |u''(\boldsymbol{\eta})| \int_{x_{k-1}}^{x_k} \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy, \quad \xi \in (x_i, x_{i+1})$$

$$\leq Ch^2 x_k^{2-2/r} x_{k-1}^{\alpha/2-2} h_k |x_i - x_k|^{-\alpha}$$

$$\leq Ch^2 x_i^{-\alpha/2-2/r} h_k$$

289 Thus,

290 (3.68)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} |T_{i+1,k} - T_{i,k}| \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

291 From Lemma 3.16 (3.69)

$$\frac{1}{h_{i+1}}(T_{i+1,k+1} - T_{i,k}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} d\theta
+ \int_0^1 \frac{\theta^3(1-\theta)}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,1}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,1}^{\theta})}{h_{i+1}} d\theta
- \int_0^1 \frac{\theta(1-\theta)^3}{3!} \frac{Q_{k-i}^{\theta}(x_{i+1})u'''(\eta_{k+1,2}^{\theta}) - Q_{k-i}^{\theta}(x_i)u'''(\eta_{k,2}^{\theta})}{h_{i+1}} d\theta$$

293 and

292

294 (3.70)
$$D_h P_{k-i}^{\theta}(x_i) := \frac{P_{k-i}^{\theta}(x_{i+1}) - P_{k-i}^{\theta}(x_i)}{h_{i+1}} = P_{k-i}^{\theta'}(\xi), \quad \xi \in (x_i, x_{i+1})$$

- Similar with Lemma 3.21, from Lemma 3.16, using Leibniz formula, by Lemma B.9,
- 296 Lemma 3.19 and Lemma 3.20 we get

297 (3.71)
$$|D_h P_{k-i}^{\theta}(x_i)| \le Ch^2 x_i^{-\alpha/2 - 2/r} h_k$$

298 And with Lemma 3.22, we can get

299 (3.72)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_{i+1}} |T_{i+1,k+1} - T_{i,k}| \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

300 For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,k} \le h_i^{-3} h^2 x_i^{1-2/r} h_k C h_k^2 x_{k-1}^{\alpha/2-2} |x_k - x_i|^{1-\alpha}$$

$$\le C h^2 x_i^{-\alpha/2-2/r}$$

302 Summarizes, we have

303 (3.74)
$$I_2 \le Ch^2 x_i^{-\alpha/2 - 2/r}$$

304 The case for I_4 is similar.

Now combine Lemma 3.10, Lemma 3.11, Lemma 3.24, Theorem 3.13, Lemma 3.8 and Lemma 3.9, we get Theorem 3.2.

3.4. Proof of Theorem 3.3. For $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$, we have

$$R_{i} = \sum_{j=1}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= \sum_{j=1}^{k-1} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} \left(T_{i+1,k} + T_{i+1,k+1} \right) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,k} \right)$$

$$+ \sum_{j=k+1}^{N-1} + \sum_{j=N}^{N+1} + \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j+1} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j-1} \right)$$

$$+ \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \left(T_{i-1,2N-\lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N-\lceil \frac{N}{2} \rceil} \right) - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,2N-\lceil \frac{N}{2} \rceil + 1} \right)$$

$$+ \sum_{j=2N-\lceil \frac{N}{2} \rceil + 2}^{2N} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,j} - \left(\frac{1}{h_{i}} + \frac{1}{h_{i+1}} \right) T_{i,j} + \frac{1}{h_{i}} T_{i-1,j} \right)$$

$$= I_{1} + I_{2} + I_{3}^{1} + I_{3}^{2} + I_{3}^{3} + I_{4} + I_{5}$$

- We have estimate I_1 in Lemma 3.11 and I_2 in Lemma 3.24. We can control I_3^1 similar with Theorem 3.13 by Lemma 3.23 where $2i 1 \ge N 1$
- Lemma 3.25. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $N/2 \le i < N, k = \lceil \frac{i}{2} \rceil$,

$$I_{3}^{1} = \sum_{j=k+1}^{N-1} V_{ij} \le Ch^{2} \int_{x_{k}}^{x_{N-1}} \frac{|y - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} dy$$

$$= Ch^{2} \left(\frac{|x_{k} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} + \frac{|x_{N-1} - x_{i}|^{2-\alpha}}{\Gamma(3-\alpha)} \right) x_{i}^{\alpha/2-2-2/r}$$

$$\le Ch^{2} x_{i}^{2-\alpha} x_{i}^{\alpha/2-2-2/r} = Ch^{2} x_{i}^{-\alpha/2-2/r}$$

Let's study I_3^3 before I_3^2 .

315 (3.77)
$$I_3^3 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij}$$

- 316 Similarly, Let's define a new series of functions
- Definition 3.26. For $i \leq N-1, j \geq N+1$, with no confusion, we also denote
- 318 in this section

319 (3.78)
$$y_{j-i}(x) = 2T - (Z_{2N-j+i} - x^{1/r})^r, \quad Z_{2N-j+i} = T^{1/r} \frac{2N-j+i}{N}$$

320 Particularly

321
$$y_{j-i}(x_{i-1}) = x_{j-1}, \quad y_{j-i}(x_i) = x_j, \quad y_{j-i}(x_{i+1}) = x_{j+1}$$

322
$$y \rightarrow z$$
?

323 (3.79)
$$y_{i-i}'(x) = (2T - y_{i-i}(x))^{1-1/r} x^{1/r-1}$$

324 (3.80)
$$y_{j-i}''(x) = \frac{1-r}{r} (2T - y_{j-i}(x))^{1-2/r} x^{1/r-2} Z_{2N-j+i}$$

325 (3.81)

326

328

327 (3.82)
$$y_{j-i}^{\theta}(x) = (1-\theta)y_{j-i-1}(x) + \theta y_{j-i}(x)$$

.

329 (3.83)
$$h_{j-i}(x) = y_{j-i}(x) - y_{j-i-1}(x)$$
330

-

331 (3.84)
$$P_{j-i}^{\theta}(x) = (h_{j-i}(x))^3 u''(y_{j-i}^{\theta}(x)) \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

332

333 (3.85)
$$Q_{j-i}^{\theta}(x) = (h_{j-i}(x))^4 \frac{|y_{j-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

- Now we have the same formula Lemma 3.17 for $i \leq N-1, j \geq N+2$,
- 335 Similarly, we first estimate

336 (3.86)
$$D_h^2 P_{j-i}^{\theta}(\xi) = P_{j-i}^{\theta}(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

- Combine Definition 3.26, Lemma B.11, Lemma B.12 and Lemma B.13, using
- 338 Leibniz formula, we have
- Lemma 3.27. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For
- 340 $N/2 \le i \le N-1, N+2 \le j \le 2N \lceil \frac{N}{2} \rceil + 1$,, we have

$$|D_h^2 P_{j-i}^{\theta}(\xi)| \le Ch_j h^2 \Big(|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N) + |y_j^{\theta} - x_i|^{-1-\alpha} (|2T - x_i - y_j^{\theta}| + h_N)^2 + (r-1)|y_j^{\theta} - x_i|^{-\alpha} \Big)$$

342 And

Lemma 3.28. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

344 $N/2 \le i \le N-1, N+2 \le j \le 2N-\lceil \frac{N}{2} \rceil, \xi \in (x_{i-1}, x_{i+1})$, we have

$$\frac{2}{h_{i} + h_{i+1}} \left| \frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right| \\
\leq Ch^{2}h_{j} \left(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha} (|2T - x_{i} - y_{j}^{\theta}| + h_{N}) \right)$$

346 *and*

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta}) - Q_{j-i}^{\theta}(x_{i-1})u'''(\eta_{j-1}^{\theta})}{h_{i+1}} \right) \\ \leq Ch^{2}h_{j}(|y_{j}^{\theta} - x_{i}|^{1-\alpha} + |y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N}))$$

348 *Proof.* From Definition 3.26, by Lemma B.11 and Lemma B.13, for $\xi \in (x_i, x_{i+1})$, 349 by Leibniz formula, we have

350 (3.90)
$$\left| Q_{j-i}^{\theta'}(\xi) \right| \le Ch^2 h_j^2 ((r-1)|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N))$$

352 (3.91)
$$|Q_{i-i}^{\theta}(\xi)| \le Ch^2 h_i^2 |y_i^{\theta} - x_i|^{1-\alpha}$$

353 So use the skill in Proof 32 with Lemma B.12

$$\frac{2}{h_i + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_i)u'''(\eta_j^{\theta})}{h_{i+1}} \right) \\ \leq Ch^2 h_j (|y_j^{\theta} - x_i|^{1-\alpha} + |y_j^{\theta} - x_i|^{-\alpha} (|2T - x_i - y_j^{\theta}| + h_N))$$

- Combine Lemma 3.27, Lemma 3.28 and formula Lemma 3.17 for $i \leq N-1, j \geq 1$
- N+2, we have
- Lemma 3.29. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For

358
$$N/2 \le i \le N-1, N+2 \le j \le 2N-\left\lceil \frac{N}{2}\right\rceil+1$$

$$V_{ij} \leq Ch^{2} \int_{x_{j-1}}^{x_{j}} \left(|y - x_{i}|^{1-\alpha} + |y - x_{i}|^{-\alpha} (|2T - x_{i} - y| + h_{N}) + |y - x_{i}|^{-1-\alpha} (|2T - x_{i} - y| + h_{N})^{2} + (r-1)|y - x_{i}|^{-\alpha} \right) dy$$

- We can esitmate I_3^3 Now.
- Lemma 3.30. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For
- 362 $N/2 \le i \le N-1$, we have

363 (3.94)
$$I_3^3 = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij} \le Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

Proof.

$$I_{3}^{3} = \sum_{j=N+2}^{2N-\lceil \frac{N}{2} \rceil} V_{ij}$$

$$364 \quad (3.95) \qquad \leq Ch^{2} \int_{x_{N+1}}^{x_{2N-\lceil \frac{N}{2} \rceil}} \left(|y-x_{i}|^{1-\alpha} + |y-x_{i}|^{-\alpha} (|2T-x_{i}-y|+h_{N}) + |y-x_{i}|^{-1-\alpha} (|2T-x_{i}-y|+h_{N})^{2} + (r-1)|y-x_{i}|^{-\alpha} \right) dy$$

365 Since

$$|2T - x_i - y| + h_N \le y - x_i$$

$$I_{3}^{3} \leq Ch^{2} \int_{x_{N+1}}^{x_{2N-\lceil \frac{N}{2} \rceil}} |y - x_{i}|^{1-\alpha} + (r-1)|y - x_{i}|^{-\alpha}$$

$$\leq Ch^{2} (T^{2-\alpha} + (r-1)|x_{N+1} - x_{i}|^{1-\alpha})$$

$$\leq Ch^{2} + C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha}$$

For I_3^2 , we have

THEOREM 3.31. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that, for

$$371 \quad N/2 \le i \le N-1$$

$$V_{iN} = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} T_{i+1,N+1} - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) T_{i,N} + \frac{1}{h_i} T_{i-1,N-1} \right)$$

$$\leq Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

373 Proof. We use the similar skill in the last section, but more complicated. for

374
$$j = N$$
, Let

375 (3.99)
$$Ly_{N-1-i}(x) = (x^{1/r} + Z_{N-1-i})^r, \quad Z_{N-1-i} = T^{1/r} \frac{N-1-i}{N}$$

376

377 (3.100)
$${}_{0}y_{N-i}(x) = \frac{x^{1/r} - Z_{i}}{Z_{1}}h_{N} + T, \quad Z_{i} = T^{1/r}\frac{i}{N}, x_{N} = T$$

378 and

379 (3.101)
$$Ry_{N+1-i}(x) = 2T - (Z_{N-1+i} - x^{1/r})^r, \quad Z_{N-1+i} = T^{1/r} \frac{N-1+i}{N}$$

380 Thus,

381
$$Ly_{N-1-i}(x_{i-1}) = x_{N-2}, \quad Ly_{N-1-i}(x_i) = x_{N-1}, \quad Ly_{N-1-i}(x_{i+1}) = x_N$$

382
$$_{0}y_{N-i}(x_{i-1}) = x_{N-1}, \quad _{0}y_{N-i}(x_{i}) = x_{N}, \quad _{0}y_{N-i}(x_{i+1}) = x_{N+1}$$

383
$$Ry_{N+1-i}(x_{i-1}) = x_N, \quad Ry_{N+1-i}(x_i) = x_{N+1}, \quad Ry_{N+1-i}(x_{i+1}) = x_{N+2}$$

384 Then, define

385 (3.102)
$$Ly_{N-i}^{\theta}(x) = \theta_L y_{N-1-i}(x) + (1-\theta)_0 y_{N-i}(x)$$

386 (3.103)
$$Ry_{N+1-i}^{\theta}(x) = \theta_0 y_{N-i}(x) + (1-\theta)_R y_{N+1-i}(x)$$

387

388 (3.104)
$$Lh_{N-i}(x) = {}_{0}y_{N-i}(x) - Ly_{N-1-i}(x)$$

389 (3.105)
$$Rh_{N+1-i}(x) = Ry_{N+1-i}(x) - {}_{0}y_{N-i}(x)$$

390 We have

391 (3.106)
$$Ly_{N-1-i}'(x) = Ly_{N-1-i}^{1-1/r}(x)x^{1/r-1}$$

392 (3.107)
$$Ly_{N-1-i}''(x) = \frac{1-r}{r} Ly_{N-1-i}^{1-2/r}(x) x^{1/r-2} Z_{N-1-i}$$

393 (3.108)
$${}_{0}y_{N-i}{}'(x) = \frac{1}{r} \frac{h_{N}}{Z_{1}} x^{1/r-1}$$

394 (3.109)
$${}_{0}y_{N-i}''(x) = \frac{1-r}{r^2} \frac{h_N}{Z_1} x^{1/r-2}$$

395 (3.110)
$$Ry_{N+1-i}'(x) = (2T - Ry_{N+1-i}(x))^{1-1/r}x^{1/r-1}$$

396 (3.111)
$$Ry_{N+1-i}''(x) = \frac{1-r}{r} (2T - Ry_{N+1-i}(x))^{1-2/r} x^{1/r-2} Z_{N-1+i}$$

397

398 (3.112)
$${}_{L}P_{N-i}^{\theta}(x) = ({}_{L}h_{N-i}(x))^{3} \frac{|{}_{L}y_{N-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''({}_{L}y_{N-i}^{\theta}(x))$$

399 (3.113)
$${}_{R}P_{N+1-i}^{\theta}(x) = ({}_{R}h_{N+1-i}(x))^{3} \frac{|{}_{R}y_{N+1-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)} u''({}_{R}y_{N+1-i}^{\theta}(x))$$

400 (3.114)
$${}_{L}Q_{N-i}^{\theta}(x) = ({}_{L}h_{N-i}(x))^{4} \frac{|{}_{L}y_{N-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

401 (3.115)
$${}_{R}Q_{N+1-i}^{\theta}(x) = ({}_{R}h_{N+1-i}(x))^{4} \frac{|{}_{R}y_{N+1-i}^{\theta}(x) - x|^{1-\alpha}}{\Gamma(2-\alpha)}$$

Similar with Lemma 3.16, we can get for l = -1, 0, 1, 1

$$T_{i+l,N+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} {}_L P_{N-i}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} {}_L Q_{N-i}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+l,2}^{\theta})) d\theta$$

404 (3.117)

$$T_{i+l,N+1+l} = \int_0^1 -\frac{\theta(1-\theta)}{2} {}_R P_{N+1-i}^{\theta}(x_{i+l}) d\theta + \int_0^1 \frac{\theta(1-\theta)}{3!} {}_R Q_{N+1-i}^{\theta}(x_{i+l}) (\theta^2 u'''(\eta_{N+1+l,1}^{\theta}) - (1-\theta)^2 u'''(\eta_{N+1+l,2}^{\theta})) d\theta$$

406 So we have (3.118)

$$V_{i,N} = \int_{0}^{1} -\frac{\theta(1-\theta)}{2} D_{hL}^{2} P_{N-i}^{\theta}(x_{i}) d\theta$$

$$+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,1}^{\theta})}{h_{i+1}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,1}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1})u'''(\eta_{N-1,1}^{\theta})}{h_{i}} \right) d\theta$$

$$- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta})}{h_{i+1}} \right) d\theta$$

$$+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{2}{h_{i} + h_{i+1}} \left(\frac{LQ_{N-i}^{\theta}(x_{i})u'''(\eta_{N,2}^{\theta}) - LQ_{N-i}^{\theta}(x_{i-1})u'''(\eta_{N-1,2}^{\theta})}{h_{i}} \right) d\theta$$

408 N + 1 is similar.

410

409 We estimate $D_{hL}^{2}P_{N-i}^{\theta}(x_{i}) = {}_{L}P_{N-i}^{\theta}{}''(\xi), \xi \in (x_{i-1}, x_{i+1}),$

LEMMA 3.32.

411 (3.119)
$$Lh_{N-i}^3(\xi) \le Ch_N^3 \le Ch^3$$

412 (3.120)
$$Rh_{N+1-i}^3(\xi) \le Ch_N^3 \le Ch^3$$

413 (3.121)
$$(Lh_{N-i}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

414 (3.122)
$$(Rh_{N+1-i}^3(\xi))' \le C(r-1)h_N^2 h \le C(r-1)h^3$$

415 (3.123)
$$({}_{L}h_{N-i}^{3}(\xi))'' \le C(r-1)h^{2}$$

416 (3.124)
$$({}_{R}h_{N+1-i}^{3}(\xi))'' \le C(r-1)h^{2}$$

Proof.

417 (3.125)
$$Lh_{N-i}(\xi) \le 2(C?)h_N, \quad Rh_{N+1-i}(\xi) \le 2h_N$$

418

$$(Lh_{N-i}^{l}(\xi))' = l_{L}h_{N-i}^{l-1}(\xi)(_{0}y_{N-i}'(\xi) - _{L}y_{N-1-i}'(\xi))$$

$$= l_{L}h_{N-i}^{l-1}(\xi)\xi^{1/r-1}(\frac{1}{r}\frac{h_{N}}{Z_{1}} - _{L}y_{N-1-i}^{1-1/r}(\xi))$$

420 while

$$|\frac{1}{r}\frac{h_N}{Z_1} - Ly_{N-1-i}^{1-1/r}(\xi)| = |\frac{1}{r}\frac{x_N - (x_N^{1/r} - Z_1)^r}{Z_1} - \eta^{1-1/r}| \quad \eta \in [x_{N-2}, x_N]$$

$$= T^{1-1/r}|(\frac{N-t}{N})^{r-1} - (\frac{N-s}{N})^{r-1}| \quad t \in [0, 1], s \in [0, 2]$$

$$\leq T^{1-1/r}|1 - (\frac{N-2}{N})^{r-1}| \leq CT^{1-1/r}(r-1)\frac{2}{N}$$

422 Thus,

423 (3.128)
$$(Lh_{N-i}^l(\xi))' \le C(r-1)h_N^{l-1}x_i^{1/r-1}h$$

424 And

(3.129)

$$\hat{L}_{N-i}(\xi) = 3_L h_{N-i}^2(\xi) h_{N-i}''(\xi) + 6_L h_{N-i}(\xi) (Lh_{N-i}'(\xi))^2$$

$$\leq C h_N^2 \frac{1-r}{r} x_i^{1/r-2} \left(\frac{1}{r} \frac{h_N}{Z_1} - L y_{N-1-i}^{1-2/r}(\xi) Z_{N-1-i} \right) + C h_N (r-1)^2 h^2 x_i^{2/r-2}$$

$$\left| \frac{h_N}{rZ_1} - L y_{N-1-i}^{1-2/r}(\xi) Z_{N-1-i} \right| \le T^{1-1/r} + C x_N^{1-2/r} x_N^{1/r} = C T^{1-1/r}$$

427 So

$$(Lh_{N-i}^{3}(\xi))'' \le Ch_{N}^{2} \frac{1-r}{r} x_{i}^{1/r-2} + C(r-1)^{2} h_{N} x_{i}^{2/r-2} h^{2}$$

$$\le C(r-1)h_{N}^{2}$$

429 $_Rh_{N+1-i}^3(\xi)$ is similar. \Box Lemma 3.33.

430 (3.131)
$$u''({}_{L}y^{\theta}_{N-i}(\xi)) \le Cx^{-\alpha/2-2}_{N-2} \le C$$

431
$$(3.132)$$
 $(u''(_L y_{N-i}^{\theta}(\xi)))' \leq C$

432 (3.133)
$$(u''(_L y_{N-i}^{\theta}(\xi)))'' \le C$$

Proof.

$$(u''(_{L}y_{N-i}^{\theta}(\xi)))' = u'''(_{L}y_{N-i}^{\theta}(\xi))_{L}y_{N-i}^{\theta}{}'(\xi)$$

$$\leq C(\theta_{L}y_{N-1-i}{}'(\xi) + (1-\theta)_{0}y_{N-i}{}'(\xi))$$

$$\leq Cx_{i}^{1/r-1}(\theta_{L}y_{N-1-i}^{1-1/r}(\xi) + (1-\theta)\frac{h_{N}}{rZ_{1}})$$

$$\leq Cx_{i}^{1/r-1}x_{N}^{1-1/r}$$

434 And
$$(3.135) \qquad \square$$

$$(u''(_{L}y_{N-i}^{\theta}(\xi)))'' = u''''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))^{2} + u'''(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{N-i}^{\theta'}(\xi))(_{L}y_{$$

Lemma 3.34.

436 (3.136)
$$|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$
437 (3.137)
$$(|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \le C|y_N^{\theta} - x_i|^{1-\alpha}$$
438 (3.138)
$$(|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' \le C(r-1)|y_N^{\theta} - x_i|^{-\alpha} + |y_N^{\theta} - x_i|^{1-\alpha}$$

$$Proof.$$
(3.139)
$$(Ly_{N-i}^{\theta}(\xi) - \xi)' = (\theta(Ly_{N-1-i}(\xi) - \xi) + (1-\theta)(0y_{N-i}(\xi) - \xi))'$$

$$= \theta(Ly_{N-1-i}'(\xi) - 1) + (1-\theta)(0y_{N-i}'(\xi) - 1)$$

$$= \theta\xi^{1/r-1}(Ly_{N-1-i}^{1-1/r}(\xi) - \xi^{1-1/r}) + (1-\theta)\xi^{1/r-1}(\frac{h_N}{rZ_i} - \xi^{1-1/r})$$

 $(Ly_{N-i}^{\theta}(\xi) - \xi)'' = \theta(Ly_{N-1-i}''(\xi)) + (1-\theta)({}_{0}y_{N-i}''(\xi))$ $= \frac{1-r}{r} \xi^{1/r-2} (\theta_{L}y_{N-1-i}^{1-2/r}(\xi)Z_{N-1-i} + (1-\theta)\frac{h_{N}}{rZ_{1}}) \le 0$

442 And

440

443 (3.141)
$$|(Ly_{N-i}^{\theta}(\xi) - \xi)''| < C(r-1)\xi^{1/r-2}T^{1-1/r}$$

444 We have known

445 (3.142)
$$C|x_{N-1} - x_i| \le |Ly_{N-1-i}(\xi) - \xi| \le C|x_{N-1} - x_i|$$

446 If
$$\xi \le x_{N-1}$$
, then $({}_{0}y_{N-i}(\xi) - \xi)' \ge 0$, so

447 (3.143)
$$C|x_N - x_i| \le |x_{N-1} - x_{i-1}| \le |Ly_{N-i}^{\theta}(\xi) - \xi| \le |x_{N+1} - x_{i+1}| \le C|x_N - x_i|$$

448 If i = N - 1 and $\xi \in [x_{N-1}, x_N]$, then $_0y_{N-i}(\xi) - \xi$ is concave, bigger than its two

449 neighboring points, which are equal to h_N , so

450 (3.144)
$$h_N = |x_N - x_{N-1}| \le |y_{N-i}(\xi) - \xi| \le |x_{N+1} - x_{N-1}| = 2h_N$$

451 So we have

452 (3.145)
$$|Ly_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_N^{\theta} - x_i|^{1-\alpha}$$

While

454 (3.146)
$$Ly_{N-1-i}^{1-1/r}(\xi) - \xi^{1-1/r} \le (Ly_{N-1-i}(\xi) - \xi)\xi^{-1/r}$$

455 and (2.147)

456

$$|\frac{h_{N}^{'}}{rZ_{1}} - \xi^{1-1/r}| \le \max\{|\frac{h_{N}}{rZ_{1}} - x_{i-1}^{1-1/r}|, |\frac{h_{N}}{rZ_{1}} - x_{i+1}^{1-1/r}|\}$$

$$\le \max \begin{cases} T^{1-1/r} - x_{i-1}^{1-1/r} \le |x_{N} - x_{i-1}|T^{-1/r} \le C|x_{N} - x_{i}| \\ |x_{i+1}^{1-1/r} - x_{N-1}^{1-1/r}| \le |x_{i+1} - x_{N-1}|x_{N-1}^{-1/r} \le C|x_{N} - x_{i}| \end{cases}$$

457 So we have

$$(Ly_{N-i}^{\theta}(\xi) - \xi)' \le C|y_N^{\theta} - x_i|$$

$$(|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})' = |_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-\alpha}(_{L}y_{N-i}^{\theta}(\xi) - \xi)'$$

$$\leq |y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

461 Finally,

$$(|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = (1-\alpha)|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-\alpha}(_{L}y_{N-i}^{\theta}(\xi) - \xi)''$$

$$+ \alpha(\alpha - 1)|_{L}y_{N-i}^{\theta}(\xi) - \xi|^{-1-\alpha}((_{L}y_{N-i}^{\theta}(\xi) - \xi)')^{2} \quad \Box$$

$$\leq C(r-1)|y_{N}^{\theta} - x_{i}|^{-\alpha} + C|y_{N}^{\theta} - x_{i}|^{1-\alpha}$$

By the three lemmas above, for $N/2 \le i \le N-1$, we have LEMMA 3.35.

(3.151)

$$D_{hL}^{2}P_{N-i}^{\theta}(x_{i}) = {_{L}P_{N-i}^{\theta}}''(\xi) \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq Ch^{3}|y_{N}^{\theta} - x_{i}|^{1-\alpha} + C(r-1)(h^{3}|y_{N}^{\theta} - x_{i}|^{-\alpha} + h^{2}|y_{N}^{\theta} - x_{i}|^{1-\alpha})$$

465 while $\theta h_N = y_N^{\theta} - x_{N-1} \leq y_N^{\theta} - x_i$, we have

466 (3.152)
$$\theta D_{hL}^2 P_{N-i}^{\theta}(x_i) \le Ch^3 |y_N^{\theta} - x_i|^{1-\alpha} + C(r-1)(h^2 |y_N^{\theta} - x_i|^{1-\alpha})$$

467 And

Lemma 3.36.

468 (3.153)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{{}_{L}Q_{N-i}^{\theta}(x_{i+1})u'''(\eta_{N+1}^{\theta}) - {}_{L}Q_{N-i}^{\theta}(x_i)u'''(\eta_N^{\theta})}{h_{i+1}} \right) \\ \leq Ch^3 |y_N^{\theta} - x_i|^{1-\alpha}$$

469 And immediately with Lemma 3.17, For $N/2 \le i \le N-1$

$$V_{iN} \le C \int_{x_{N-1}}^{x_N} h^2 |y - x_i|^{1-\alpha} + C(r-1)h|y - x_i|^{1-\alpha} dy$$

$$\le Ch^2 h_N |T - x_i|^{1-\alpha} + C(r-1)h^2 |x_N - x_i|^{1-\alpha}$$

$$\le Ch^2 + C(r-1)h^2 |T - x_{i-1}|^{1-\alpha}$$

Similarly with
$$j = N + 1$$
.

$$I_4$$
, I_5 is easy. Similar with Lemma 3.24 and Lemma 3.9, we have

473

Theorem 3.37. There is a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that For

475
$$N/2 \leq i \leq N$$

(3.155)

$$I_{4} = \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} (T_{i-1,2N - \lceil \frac{N}{2} \rceil + 1} + T_{i-1,2N - \lceil \frac{N}{2} \rceil}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) T_{i,2N - \lceil \frac{N}{2} \rceil + 1} \right)$$

$$< Ch^{2}$$

477 *Proof.* Similar with Lemma 3.24. In fact, let $m = 2N - \lceil \frac{N}{2} \rceil + 1$

$$\frac{1}{h_i}(T_{i-1,l} + T_{i-1,l-1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}})T_{i,l}
= \frac{1}{h_i}(T_{i-1,l} - T_{i,l}) + \frac{1}{h_i}(T_{i-1,l-1} - T_{i,l}) + (\frac{1}{h_i} - \frac{1}{h_{i+1}})T_{i,l}$$

479 While, by Lemma A.2

$$\frac{1}{h_{i}}(T_{i-1,l} - T_{i,l}) = \int_{x_{l-1}}^{x_{l}} (u(y) - \Pi_{h}u(y)) \frac{|x_{i-1} - y|^{1-\alpha} - |x_{i} - y|^{1-\alpha}}{h_{i}\Gamma(2-\alpha)} dy$$

$$\leq C \int_{x_{l-1}}^{x_{l}} h_{l}^{2}u''(\eta) \frac{|\xi - y|^{-\alpha}}{\Gamma(1-\alpha)} dy, \quad \xi \in (x_{i-1}, x_{i})$$

$$\leq C h_{l}^{3} (2T - x_{l-1})^{\alpha/2-2} T^{-\alpha}$$

$$\leq C h_{l}^{3}$$

481 Thus,

482 (3.158)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l} - T_{i,l}) \le C h_l^2$$

483 For

$$484 \quad \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) = \int_0^1 -\frac{\theta(1-\theta)}{2} \frac{h_{l-1}^3 |y_{l-1}^\theta - x_{i-1}|^{1-\alpha} u''(\eta_{l-1}^\theta) - h_l^3 |y_l^\theta - x_i|^{1-\alpha} u''(\eta_l^\theta)}{h_i} d\theta$$

485 And Similar with Lemma 3.22, we can get

486 (3.160)
$$\frac{h_{l-1}^{3}|y_{l-1}^{\theta} - x_{i-1}|^{1-\alpha}u''(\eta_{l-1}^{\theta}) - h_{l}^{3}|y_{l}^{\theta} - x_{i}|^{1-\alpha}u''(\eta_{l}^{\theta})}{(h_{i} + h_{i+1})h_{i}} \le Ch_{l}^{2}|y_{l}^{\theta} - x_{i}|^{1-\alpha}u''(\eta_{l}^{\theta})$$

487 So

488 (3.161)
$$\frac{2}{h_i + h_{i+1}} \frac{1}{h_i} (T_{i-1,l-1} - T_{i,l}) \le Ch^2$$

 $\,$ For the third term, by Lemma B.1, Lemma B.2 and Lemma A.2

490 (3.162)
$$\frac{2}{h_i + h_{i+1}} \frac{h_{i+1} - h_i}{h_i h_{i+1}} T_{i,l} \le h_i^{-3} h^2 x_i^{1-2/r} h_l C h_l^2 x_{l-1}^{\alpha/2-2} |x_l - x_i|^{1-\alpha} < C h^2$$

491 Summarizes, we have

492 (3.163)
$$I_4 < Ch^2$$

493 And

Lemma 3.38. There is a constant $C=C(T,\alpha,r,\|u\|_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2\leq 495$ $i\leq N$,

$$I_{5} = \sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N} S_{ij}$$

$$\leq \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2} \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

497 *Proof.* For $i \leq N, j \geq 2N - \lceil \frac{N}{2} \rceil + 2$, we have

$$S_{ij} = \int_{x_{j-1}}^{x_j} (u(y) - \Pi_h u(y)) D_h^2 K_y(x_i) dy$$

$$\leq \int_{x_{j-1}}^{x_j} Ch^2 (2T - y)^{\alpha/2 - 2/r} |y - x_{i+1}|^{-1 - \alpha} dy$$

$$\leq Ch^2 T^{-1 - \alpha} \int_{x_{j-1}}^{x_j} (2T - y)^{\alpha/2 - 2/r} dy$$

499

$$\sum_{j=2N-\lceil \frac{N}{2} \rceil+2}^{2N-1} S_{ij} \leq CT^{-1-\alpha}h^2 \int_{(2-2^{-r})T}^{x_{2N-1}} (2T-y)^{\alpha/2-2/r} dy$$

$$\leq CT^{-1-\alpha}h^2 \begin{cases} \frac{1}{\alpha/2-2/r+1} T^{\alpha/2-2/r+1}, & \alpha/2-2/r+1>0\\ \ln(2^{-r}T) - \ln(h_{2N}), & \alpha/2-2/r+1=0\\ \frac{1}{|\alpha/2-2/r+1|} h_{2N}^{\alpha/2-2/r+1}, & \alpha/2-2/r+1<0 \end{cases}$$

$$= \begin{cases} \frac{C}{\alpha/2-2/r+1} T^{-\alpha/2-2/r} h^2, & \alpha/2-2/r+1>0\\ CrT^{-1-\alpha}h^2 \ln(N), & \alpha/2-2/r+1=0\\ \frac{C}{|\alpha/2-2/r+1|} T^{-\alpha/2-2/r} h^{r\alpha/2+r}, & \alpha/2-2/r+1<0 \end{cases}$$

Now we can conclude a part of the theorem Theorem 3.3 at the beginning of this section.

503 By Lemma 3.11 Lemma 3.24 Lemma 3.25 Theorem 3.31 Lemma 3.30 Theo- 504 $\,$ rem 3.37 Lemma 3.38 , we have

Theorem 3.39. there exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that for $N/2 \le i \le N-1$,

$$R_{i} = I_{1} + I_{2} + I_{3}^{1} + I_{3}^{2} + I_{3}^{3} + I_{4} + I_{5}$$

$$\leq C(r-1)h^{2}|T - x_{i-1}|^{1-\alpha} + \begin{cases} Ch^{2}, & \alpha/2 - 2/r + 1 > 0\\ Ch^{2}\ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

And what we left is the case i = N. Fortunately, we can use the same department of R_i above, and it is symmetric. Most of the item has been esitmated by Lemma 3.11 and Theorem 3.37, we just need to consider I_3 , I_4 .

511512

Theorem 3.40. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

513 (3.167)
$$I_3 = \sum_{j=\lceil \frac{N}{2} \rceil + 1}^{N-1} V_{Nj} \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

514 Proof. Definition 3.41. For $N/2 \le j < N$, Let's define

515 (3.168)
$$y_j(x) = \left(\frac{Z_1}{h_N}(x - x_N) + Z_j\right)^r, \quad Z_j = T^{1/r} \frac{j}{N}$$

We can see that is the inverse of the function $_{0}y_{N-i}(x)$ defined in Theorem 3.31.

517 (3.169)
$$y'_j(x) = y_j^{1-1/r}(x) \frac{rZ_1}{h_N}$$

518 (3.170)
$$y_j''(x) = y_j^{1-2/r}(x) \frac{r(r-1)Z_1}{h_N}$$

With the scheme we used several times, we can get

LEMMA 3.42. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N, \xi \in [x_{N-1}, x_{N+1}],$

522 (3.171)
$$h_i(\xi)^3 \le Ch^3$$

523
$$(3.172)$$
 $(h_i^3(\xi))' \le C(r-1)h^3$

524 (3.173)
$$(h_i^3(\xi))'' \le C(r-1)h^3$$

525

526 (3.174)
$$u''(y_i^{\theta}(\xi)) \le C$$

527 (3.175)
$$(u''(y_j^{\theta}(\xi)))' \le C$$

528 (3.176)
$$(u''(y_i^{\theta}(\xi)))'' \le C$$

529

530 (3.177)
$$|\xi - y_j^{\theta}(\xi)|^{1-\alpha} \le C|x_N - y_j^{\theta}|^{1-\alpha}$$

531 (3.178)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})' \le C|x_N - y_i^{\theta}|^{1-\alpha}$$

532 (3.179)
$$(|\xi - y_i^{\theta}(\xi)|^{1-\alpha})'' \le C|x_N - y_i^{\theta}|^{1-\alpha} + C(r-1)|x_N - y_i^{\theta}|^{-\alpha}$$

Lemma 3.43. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that For $N/2 \le j < N$,

535 (3.180)
$$V_{Nj} \le Ch^2 \int_{x_{j-1}}^{x_j} |x_N - y|^{1-\alpha} + (r-1)|x_N - y|^{-\alpha} dy$$

536 Therefore,

$$I_{3} \leq Ch^{2} \int_{x_{\lceil \frac{N}{2} \rceil}}^{x_{N-1}} |x_{N} - y|^{1-\alpha} + (r-1)|x_{N} - y|^{-\alpha} dy$$

$$\leq Ch^{2} (|T - x_{N-1}|^{2-\alpha} + (r-1)|T - x_{N-1}|^{1-\alpha})$$

For
$$j = N$$
,

LEMMA 3.44.

540

539
$$V_{N,N} = \frac{1}{h_N^2} \left(T_{N-1,N-1} - 2T_{N,N} + T_{N+1,N+1} \right) \le Ch^2 + C(r-1)h^2 |T - x_{N-1}|^{1-\alpha}$$

$$\begin{split} &Proof.\\ &(3.183)\\ &V_{N,N} = \int_{0}^{1} -\frac{\theta(1-\theta)^{2-\alpha}}{2} \frac{1}{h_{N}^{2}} \left(h_{N-1}^{4-\alpha}u''(y_{N-1}^{\theta}) - 2h_{N}^{4-\alpha}u''(y_{N}^{\theta}) + h_{N+1}^{4-\alpha}u''(y_{N+1}^{\theta})\right) d\theta \\ &+ \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N+1})u'''(\eta_{N+1,1}^{\theta}) - Q_{N\to N}^{\theta}(x_{i})u'''(\eta_{N,1}^{\theta})}{h_{N}}\right) d\theta \\ &- \int_{0}^{1} \frac{\theta^{3}(1-\theta)}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N})u'''(\eta_{N,1}^{\theta}) - Q_{N\to N}^{\theta}(x_{N-1})u'''(\eta_{N-1,1}^{\theta})}{h_{N}}\right) d\theta \\ &- \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N})u'''(\eta_{N+1,2}^{\theta}) - Q_{N\to N}^{\theta}(x_{N})u'''(\eta_{N,2}^{\theta})}{h_{N}}\right) d\theta \\ &+ \int_{0}^{1} \frac{\theta(1-\theta)^{3}}{3!} \frac{1}{h_{N}} \left(\frac{Q_{N\to N}^{\theta}(x_{N})u'''(\eta_{N,2}^{\theta}) - Q_{N\to N}^{\theta}(x_{N-1})u'''(\eta_{N-1,2}^{\theta})}{h_{N}}\right) d\theta \end{split}$$

So combine Lemma 3.11, Theorem 3.37, Theorem 3.40, Lemma 3.44 We have Lemma 3.45.

542 (3.184)
$$R_N \le C(r-1)h^2|T-x_{N-1}|^{1-\alpha} + \begin{cases} Ch^2, & \alpha/2 - 2/r + 1 > 0\\ Ch^2 \ln(N), & \alpha/2 - 2/r + 1 = 0\\ Ch^{r\alpha/2+r}, & \alpha/2 - 2/r + 1 < 0 \end{cases}$$

and with Theorem 3.39 we prove the Theorem 3.3

4. Convergence analysis.

- **4.1. Properties of some Matrices.** Review subsection 2.1, we have got (2.10).
- Definition 4.1. We call one matrix an M matrix, which means its entries are
- 547 positive on major diagonal and nonpositive on others, and strictly diagonally dominant
- 548 in rows.

545

- Now we have
- LEMMA 4.2. Matrix A defined by (2.12) where (2.13) is an M matrix. And there
- 551 exists a constant $C_A = C(T, \alpha, r)$ such that

552 (4.1)
$$S_i := \sum_{j=1}^{2N-1} a_{ij} \ge C_A (x_i^{-\alpha} + (2T - x_i)^{-\alpha})$$

553 Proof. From (2.14), we have

$$\sum_{j=1}^{2N-1} \tilde{a}_{ij} = \frac{1}{\Gamma(4-\alpha)} \left(\frac{|x_i - x_0|^{3-\alpha} - |x_i - x_1|^{3-\alpha}}{h_1} + \frac{|x_{2N} - x_i|^{3-\alpha} - |x_{2N-1} - x_i|^{3-\alpha}}{h_{2N}} \right)$$

555 Let

$$556 (4.3) g(x) = g_0(x) + g_{2N}(x)$$

557 where

558
$$g_0(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x-x_0|^{3-\alpha} - |x-x_1|^{3-\alpha}}{h_1}$$

$$g_{2N}(x) := \frac{-\kappa_{\alpha}}{\Gamma(4-\alpha)} \frac{|x_{2N} - x|^{3-\alpha} - |x_{2N-1} - x|^{3-\alpha}}{h_{2N}}$$

560 Thus

559

$$-\kappa_{\alpha} \sum_{i=1}^{2N-1} \tilde{a}_{ij} = g(x_i)$$

562 Then

$$S_{i} := \sum_{j=1}^{2N-1} a_{ij}$$

$$= \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} g(x_{i+1}) - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) g(x_{i}) + \frac{1}{h_{i}} g(x_{i-1}) \right)$$

$$= D_{h}^{2} g_{0}(x_{i}) + D_{h}^{2} g_{2N}(x_{i})$$

When i = 1

$$D_{h}^{2}g_{0}(x_{1}) = \frac{2}{h_{1} + h_{2}} \left(\frac{1}{h_{2}}g_{0}(x_{2}) - (\frac{1}{h_{1}} + \frac{1}{h_{2}})g_{0}(x_{1}) + \frac{1}{h_{1}}g_{0}(x_{0}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_{1}^{3-\alpha} + h_{2}^{3-\alpha} + 2h_{1}^{2-\alpha}h_{2} - (h_{1} + h_{2})^{3-\alpha}}{(h_{1} + h_{2})h_{1}h_{2}}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{h_{1}^{3-\alpha} + h_{2}^{3-\alpha} + 2h_{1}^{2-\alpha}h_{2} - (h_{1} + h_{2})^{3-\alpha}}{(h_{1} + h_{2})h_{1}^{1-\alpha}h_{2}} h_{1}^{-\alpha}$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(4 - \alpha)} \frac{1 + (2^{r} - 1)^{3-\alpha} + 2(2^{r} - 1) - (2^{r})^{3-\alpha}}{2^{r}(2^{r} - 1)} h_{1}^{-\alpha}$$

566 but

567 (4.6)
$$1 + (2^r - 1)^{3-\alpha} + 2(2^r - 1) - (2^r)^{3-\alpha} > 0$$

While for $i \geq 2$

$$D_h^2 g_0(x_i) = g_0''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

$$= -\kappa_\alpha \frac{|\xi - x_0|^{1-\alpha} - |\xi - x_1|^{1-\alpha}}{\Gamma(2-\alpha)h_1}$$

$$= \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} |\xi - \eta|^{-\alpha}, \quad \eta \in [x_0, x_1]$$

$$\geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} x_{i+1}^{-\alpha} \geq \frac{\kappa_\alpha}{-\Gamma(1-\alpha)} 2^{-r\alpha} x_i^{-\alpha}$$

570 So

571 (4.8)
$$\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_0(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_0(x_i) + \frac{1}{h_i} g_0(x_{i-1}) \right) \ge C x_i^{-\alpha}$$

572 symmetricly,

$$\frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} g_{2N}(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) g_{2N}(x_i) + \frac{1}{h_i} g_{2N}(x_{i-1}) \right) \ge C(\alpha, r) (2T - x_i)^{-\alpha}$$

574 Let

575 (4.10)
$$g(x) = \begin{cases} x, & 0 < x \le T \\ 2T - x, & T < x < 2T \end{cases}$$

576 And define

577 (4.11)
$$G = \operatorname{diag}(q(x_1), ..., q(x_{2N-1}))$$

578 Then

LEMMA 4.3. The matrix B := AG, the major diagnal is positive, and nonpositive

on others. And there is a constant C_{AG} , $C = C(\alpha, r)$ such that

$$581 \quad (4.12) \quad M_i := \sum_{j=1}^{2N-1} b_{ij} \ge -C_{AG}(x_i^{1-\alpha} + (2T-x_i)^{1-\alpha}) + C \begin{cases} |T-x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

Proof.

$$b_{ij} = a_{ij}g(x_j) = -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{a}_{i+1,j} - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) \tilde{a}_{i,j} + \frac{1}{h_i} \tilde{a}_{i-1,j} \right) g(x_j)$$

583 Since

$$584 \quad (4.13) \qquad \qquad g(x) \equiv \Pi_h g(x)$$

585 by **??**, we have

$$\tilde{M}_{i} := \sum_{j=1}^{2N-1} \tilde{b}_{ij} = \sum_{j=1}^{2N-1} \tilde{a}_{ij} g(x_{j})$$

$$= \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} \Pi_{h} g(y) dy = \int_{0}^{2T} \frac{|x_{i} - y|^{1-\alpha}}{\Gamma(2-\alpha)} g(y) dy$$

$$= \frac{-2}{\Gamma(4-\alpha)} |T - x_{i}|^{3-\alpha} + \frac{1}{\Gamma(4-\alpha)} (x_{i}^{3-\alpha} + (2T - x_{i})^{3-\alpha})$$

$$:= w(x_{i}) = p(x_{i}) + q(x_{i})$$

587 Thus,

590

$$M_{i} := \sum_{j=1}^{2N-1} b_{ij} = \sum_{j=1}^{2N-1} a_{ij} g(x_{j})$$

$$= -\kappa_{\alpha} \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i+1}} \tilde{M}_{i+1} - (\frac{1}{h_{i}} + \frac{1}{h_{i+1}}) \tilde{M}_{i} + \frac{1}{h_{i}} \tilde{M}_{i-1} \right)$$

$$= D_{h}^{2} (-\kappa_{\alpha} p)(x_{i}) - \kappa_{\alpha} D_{h}^{2} q(x_{i})$$

589 for $1 \le i \le N - 1$, by Lemma A.1 (4.16)

$$D_h^2(-\kappa_{\alpha}p)(x_i) := -\kappa_{\alpha} \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} p(x_{i+1}) - (\frac{1}{h_i} + \frac{1}{h_{i+1}}) p(x_i) + \frac{1}{h_i} p(x_{i-1}) \right)$$

$$= \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} |T - \xi|^{1-\alpha} \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\geq \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} |T - x_{i-1}|^{1-\alpha}$$

$$(4.17) D_h^2(-\kappa_{\alpha}p)(x_N) := -\kappa_{\alpha} \frac{2}{h_N + h_{N+1}} \left(\frac{1}{h_{N+1}} p(x_{N+1}) - (\frac{1}{h_N} + \frac{1}{h_{N+1}}) p(x_N) + \frac{1}{h_N} p(x_{N-1}) \right)$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4-\alpha)h_N^2} h_N^{3-\alpha}$$

$$= \frac{4\kappa_{\alpha}}{\Gamma(4-\alpha)} (T - x_{N-1})^{1-\alpha}$$

Symmetricly for $i \geq N$, we get

594 (4.18)
$$D_h^2(-\kappa_{\alpha}p)(x_i) \ge \frac{2\kappa_{\alpha}}{\Gamma(2-\alpha)} \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

595 Similarly, we can get

$$D_h^2 q(x_i) := \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} q(x_{i+1}) - \left(\frac{1}{h_i} + \frac{1}{h_{i+1}} \right) q(x_i) + \frac{1}{h_i} q(x_{i-1}) \right)$$

$$\leq \frac{2^{r(\alpha - 1) + 1}}{\Gamma(2 - \alpha)} (x_i^{1 - \alpha} + (2T - x_i)^{1 - \alpha}), \quad i = 1, \dots, 2N - 1$$

597 So, we get the result.

598 Notice that

$$599 (4.20) x_i^{-\alpha} \ge (2T)^{-1} x_i^{1-\alpha}$$

600 We can get

THEOREM 4.4. There exists a real $\lambda = \lambda(T, \alpha, r) > 0$ and $C = C(T, \alpha, r) > 0$ 602 such that $B := A(\lambda I + G)$ is an M matrix. And

603 (4.21)
$$M_i := \sum_{j=1}^{2N-1} b_{ij} \ge C(x_i^{-\alpha} + (2T - x_i)^{-\alpha}) + C \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases}$$

604 Proof. By Lemma 4.2 with C_A and Lemma 4.3 with C_{AG} , it's sufficient to take 605 $\lambda=(C+2TC_{AG})/C_A$, then

606 (4.22)
$$M_i \ge C \left((x_i^{-\alpha} + (1 - x_i)^{-\alpha}) + \begin{cases} |T - x_{i-1}|^{1-\alpha}, & i \le N \\ |x_{i+1} - T|^{1-\alpha}, & i \ge N \end{cases} \right)$$

4.2. Proof of Theorem 2.6. For equation

608 (4.23)
$$AU = F \Leftrightarrow A(\lambda I + G)(\lambda I + G)^{-1}U = F \text{ i.e. } B(\lambda I + G)^{-1}U = F$$

609 which means

610 (4.24)
$$\sum_{j=1}^{2N-1} b_{ij} \frac{\epsilon_j}{\lambda + g(x_j)} = -\tau_i$$

611 where $\epsilon_i = u(x_i) - u_i$.

612 And if

613 (4.25)
$$|\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| = \max_{1 \le i \le 2N-1} |\frac{\epsilon_i}{\lambda + g(x_i)}|$$

Then, since $B = A(\lambda I + G)$ is an M matrix, it is Strictly diagonally dominant. Thus,

$$|\tau_{i_0}| = |\sum_{j=1}^{2N-1} b_{i_0,j} \frac{\epsilon_j}{\lambda + g(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_j}{\lambda + g(x_j)}|$$

$$\geq b_{i_0,i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}| - \sum_{j \neq i_0} |b_{i_0,j}| |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= \sum_{j=1}^{2N-1} b_{i_0,j} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

$$= M_{i_0} |\frac{\epsilon_{i_0}}{\lambda + g(x_{i_0})}|$$

By Theorem 2.5 and Theorem 4.4,

We knwn that there exists constants $C_1(T, \alpha, r, \|u\|_{\beta+\alpha}^{(-\alpha/2)}, \|f\|_{\beta}^{(\alpha/2)})$,

and $C_2(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

619 (4.27)
$$|\frac{\epsilon_i}{\lambda + a(x_i)}| \le |\frac{\epsilon_{i_0}}{\lambda + a(x_{i_0})}| \le C_1 h^{\min\{\frac{r\alpha}{2}, 2\}} + C_2(r-1)h^2$$

A SECOND ORDER NUMERICAL METHODS FOR REISZ-FRACTIONAL ELLIPTIC EQUATION ON GRADED MES $\pmb{3}\pmb{4}$

620 as
$$\lambda + g(x_i) \le \lambda + T$$

622 (4.28)
$$|\epsilon_i| \le C(\lambda + T)h^{\min\{\frac{r\alpha}{2}, 2\}}$$

- The convergency has been proved.
- Remarks:

5. Experimental results.

626 **5.1.**
$$f \equiv 1$$
.

5.2. $f = x^{\gamma}, \gamma < 0$. Appendix A. Approximate of difference quotients.

LEMMA A.1. If $g(x) \in C^2(\Omega)$, there exists $\xi \in (x_{i-1}, x_{i+1})$ such that

629 (A.1)
$$D_h^2 g(x_i) = g''(\xi), \quad \xi \in (x_{i-1}, x_{i+1})$$

630 And if $g(x) \in C^4(\Omega)$, then

$$D_{h}^{2}g(x_{i}) = g''(x_{i}) + \frac{h_{i+1} - h_{i}}{3}g'''(x_{i}) + \frac{2}{h_{i} + h_{i+1}} \left(\frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} g''''(y) \frac{(y - x_{i-1})^{3}}{3!} dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^{3}}{3!} dy\right)$$

Proof.

632
$$g(x_{i-1}) = g(x_i) - (x_i - x_{i-1})g'(x_i) + \frac{(x_i - x_{i-1})^2}{2}g''(\xi_1), \quad \xi_1 \in (x_{i-1}, x_i)$$

633
$$g(x_{i+1}) = g(x_i) + (x_{i+1} - x_i)g'(x_i) + \frac{(x_{i+1} - x_i)^2}{2}g''(\xi_2), \quad \xi_2 \in (x_i, x_{i+1})$$

634 Substitute them in the left side of (A.1), we have

$$D_h^2 g(x_i) = \frac{2}{h_i + h_{i+1}} \left(\frac{1}{h_{i+1}} (g(x_{i+1}) - g(x_i) + \frac{1}{h_i} (g(x_{i-1}) - g(x_i)) \right)$$

$$= \frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2)$$

Now, using intermediate value theorem, there exists $\xi \in [\xi_1, \xi_2]$ such that

$$\frac{h_i}{h_i + h_{i+1}} g''(\xi_1) + \frac{h_{i+1}}{h_i + h_{i+1}} g''(\xi_2) = g''(\xi)$$

638 And the last equation can be obtained by

639
$$g(x_{i-1}) = g(x_i) - h_i g'(x_i) + \frac{h_i^2}{2} g''(x_i) - \frac{h_i^3}{3!} g'''(x_i) + \int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy$$

$$640 \quad g(x_{i+1}) = g(x_i) + h_{i+1}g'(x_i) + \frac{h_{i+1}^2}{2}g''(x_i) + \frac{h_{i+1}^3}{3!}g'''(x_i) + \int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy$$

641 Expecially,

$$\int_{x_{i-1}}^{x_i} g''''(y) \frac{(y - x_{i-1})^3}{3!} dy = \frac{h_i^4}{4!} g''''(\eta_1)$$

$$\int_{x_i}^{x_{i+1}} g''''(y) \frac{(x_{i+1} - y)^3}{3!} dy = \frac{h_{i+1}^4}{4!} g''''(\eta_2)$$

643 where
$$\eta_1 \in (x_{i-1}, x_i), \eta_2 \in (x_i, x_{i+1}).$$

644 LEMMA A.2. Denote
$$y_j^{\theta} = (1 - \theta)x_{j-1} + \theta x_j, \theta \in (0, 1),$$

645 (A.4)
$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(\xi), \quad \xi \in (x_{j-1}, x_j)$$

646 (A 5)

$$647 \quad u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = -\frac{\theta(1-\theta)}{2} h_j^2 u''(y_j^{\theta}) + \frac{\theta(1-\theta)}{3!} h_j^3 (\theta^2 u'''(\eta_1) - (1-\theta)^2 u'''(\eta_2))$$

648 where $\eta_1 \in (x_{j-1}, y_j^{\theta}), \eta_2 \in (y_j^{\theta}, x_j).$

649 *Proof.* By Taylor expansion, we have

$$550 u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(\xi_1), \quad \xi_1 \in (x_{j-1}, y_j^{\theta})$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(\xi_2), \quad \xi_2 \in (y_j^{\theta}, x_j)$$

652 Thus

$$u(y_{j}^{\theta}) - \Pi_{h}u(y_{j}^{\theta}) = u(y_{j}^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_{j})$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}(\theta u''(\xi_{1}) + (1 - \theta)u''(\xi_{2}))$$

$$= -\frac{\theta(1 - \theta)}{2}h_{j}^{2}u''(\xi), \quad \xi \in [\xi_{1}, \xi_{2}]$$

654 The second equation is similar,

$$u(x_{j-1}) = u(y_j^{\theta}) - \theta h_j u'(y_j^{\theta}) + \frac{\theta^2 h_j^2}{2!} u''(y_j^{\theta}) - \frac{\theta^3 h_j^3}{3!} u'''(\eta_1)$$

$$u(x_j) = u(y_j^{\theta}) + (1 - \theta)h_j u'(y_j^{\theta}) + \frac{(1 - \theta)^2 h_j^2}{2!} u''(y_j^{\theta}) + \frac{(1 - \theta)^3 h_j^3}{3!} u'''(\eta_2)$$

657 where $\eta_1 \in (x_{j-1}, y_j^{\theta}), \eta_2 \in (y_j^{\theta}, x_j)$. Thus

$$u(y_j^{\theta}) - \Pi_h u(y_j^{\theta}) = u(y_j^{\theta}) - (1 - \theta)u(x_{j-1}) - \theta u(x_j)$$

$$= -\frac{\theta(1 - \theta)}{2} h_j^2 u''(y_j^{\theta}) + \frac{\theta(1 - \theta)}{3!} h_j^3 (\theta^2 u'''(\eta_1) - (1 - \theta)^2 u'''(\eta_2))$$

659 LEMMA A.3. For $x \in [x_{j-1}, x_j]$

$$|u(x) - \Pi_h u(x)| = \left| \frac{x_j - x}{h_j} \int_{x_{j-1}}^x u'(y) dy - \frac{x - x_{j-1}}{h_j} \int_x^{x_j} u'(y) dy \right|$$

$$\leq \int_{x_{j-1}}^{x_j} |u'(y)| dy$$

661 If $x \in [0, x_1]$, with Corollary 2.4, we have

662 (A.7)
$$|u(x) - \Pi_h u(x)| \le \int_0^{x_1} |u'(y)| dy \le \int_0^{x_1} Cy^{\alpha/2 - 1} dy \le C \frac{2}{\alpha} x_1^{\alpha/2}$$

663 Similarly, if $x \in [x_{2N-1}, 1]$, we have

664 (A.8)
$$|u(x) - \Pi_h u(x)| \le C \frac{2}{\alpha} (2T - x_{2N-1})^{\alpha/2} = C \frac{2}{\alpha} x_1^{\alpha/2}$$

Lemma A.4.

665 (A.9)
$$b^{1-\theta}|a^{\theta}-b^{\theta}| \leq |a-b|$$
 (also $a^{1-\theta}|a^{\theta}-b^{\theta}| \leq |a-b|$), $a,b \geq 0, \ \theta \in [0,1]$

Appendix B. Proofs of some technical details. Review that $h = \frac{1}{N}$ and the defination of \simeq in subsection 2.1

Lemma B.1.

668 (B.1)
$$h_i \simeq \begin{cases} hx_i^{1-1/r}, & 1 \le i \le N \\ h(2T - x_{i-1})^{1-1/r}, & N < i \le 2N \end{cases}$$

- 669 Since $i^r (i-1)^r \simeq i^{r-1}$, for $i \ge 1$.
- 670 And
- 671 (B.2) $h_i \simeq h_{i+1}, \quad x_i \simeq x_{i+1}, \quad \text{for } 1 \le i \le 2N-1$

672

LEMMA B.2. There is a constant C such that for $i = 1, 2, \dots, 2N - 1$

674 (B.3)
$$|h_{i+1} - h_i| \le Ch^2 \begin{cases} x_i^{1-2/r}, & 1 \le i \le N-1 \\ 0, & i = N \\ (2T - x_i)^{1-2/r}, & N < i \le 2N-1 \end{cases}$$

675 *Proof.* By (2.2),

(B.4)

676
$$h_{i+1} - h_i = \begin{cases} T\left(\left(\frac{i+1}{N}\right)^r - 2\left(\frac{i}{N}\right)^r + \left(\frac{i-1}{N}\right)^r\right), & 1 \le i \le N - 1\\ 0, & i = N\\ -T\left(\left(\frac{2N - i - 1}{N}\right)^r - 2\left(\frac{2N - i}{N}\right)^r + \left(\frac{2N - i + 1}{N}\right)^r\right), & N + 1 \le i \le 2N - 1 \end{cases}$$

677 Since

678 (B.5)
$$(i+1)^r - 2i^r + (i-1)^r \simeq r(r-1)i^{r-2}, \text{ for } i \ge 1$$

679 We get the result.

LEMMA B.3. there is a constant $C = C(T, \alpha, r, ||f||_{\beta}^{\alpha/2})$ such that

$$(B.6) \frac{2}{h_i + h_{i+1}} \left| \frac{1}{h_i} \int_{x_{i-1}}^{x_i} f''(y) \frac{(y - x_{i-1})^3}{3!} dy + \frac{1}{h_{i+1}} \int_{x_i}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^3}{3!} dy \right| \\ \leq Ch^2 \left\{ x_i^{-\alpha/2 - 2/r}, \quad 1 \leq i \leq N \\ (2T - x_i)^{-\alpha/2 - 2/r}, \quad N \leq i \leq 2N - 1 \right\}$$

682 *Proof.* By Lemma 2.2, we have for $1 \le i \le N$

683 (B.7)
$$\left| \int_{x_{i-1}}^{x_i} f''(y) \frac{(y - x_{i-1})^3}{3!} dy \right| \le \frac{\|f\|_{\beta}^{(\alpha/2)}}{3!} \int_{x_{i-1}}^{x_i} y^{-\alpha/2 - 2} (y - x_{i-1})^3 dy$$

684 For i = 1,

$$685 \quad \int_{x_{i-1}}^{x_i} y^{-\alpha/2 - 2} (y - x_{i-1})^3 dy = \int_0^{x_1} y^{1 - \alpha/2} dy = \frac{1}{2 - \alpha/2} x_1^{2 - \alpha/2} = \frac{1}{2 - \alpha/2} x_1^{-\alpha/2 - 2} h_1^4$$

And for $2 \le i \le N$, since $x_i \simeq x_{i-1} \le y \le x_i$, we have 686

$$\int_{x_{i-1}}^{x_i} y^{-\alpha/2-2} (y - x_{i-1})^3 dy \simeq \int_{x_{i-1}}^{x_i} x_i^{-\alpha/2-2} (y - x_{i-1})^3 dy = \frac{1}{4!} x_i^{-\alpha/2-2} h_i^4$$

So for $1 \le i \le N$, we have 688

(B.8)
$$\left| \int_{x_{i-1}}^{x_i} f''(y) \frac{(y - x_{i-1})^3}{3!} dy \right| \le C x_i^{-\alpha/2 - 2} h_i^4$$

and similarly, 690

691 (B.9)
$$\left| \int_{x_i}^{x_{i+1}} f''(y) \frac{(x_{i+1} - y)^3}{3!} dy \right| \le C x_i^{-\alpha/2 - 2} h_{i+1}^4$$

Thus for $1 \le i \le N$, with Lemma B.1 we have 692

$$\frac{2}{h_{i} + h_{i+1}} \left| \frac{1}{h_{i}} \int_{x_{i-1}}^{x_{i}} f''(y) \frac{(y - x_{i-1})^{3}}{3!} dy + \frac{1}{h_{i+1}} \int_{x_{i}}^{x_{i+1}} f''(y) \frac{(y - x_{i+1})^{3}}{3!} dy \right| \\
\leq C x_{i}^{-\alpha/2 - 2} \frac{2}{h_{i} + h_{i+1}} (h_{i}^{3} + h_{i+1}^{3}) \simeq x_{i}^{-\alpha/2 - 2} h_{i}^{2} \simeq x_{i}^{-\alpha/2 - 2} h^{2} x_{i}^{2 - 2/r} \\
= C h^{2} x_{i}^{-\alpha/2 - 2/r}$$

It's symmetric for $N < i \le 2N - 1$.

LEMMA B.4. By a standard error estimate for linear interpolation, and Corollary 2.4, There is a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ for $2 \le j \le N$, 695

696

697 (B.11)
$$|u(y) - \Pi_h u(y)| \le Ch^2 y^{\alpha/2 - 2/r}, \quad \text{for } y \in [x_{j-1}, x_j]$$

symmetricly, for $N < j \le 2N - 1$, we have 698

699 (B.12)
$$|u(y) - \Pi_h u(y)| \le Ch^2 (2T - y)^{\alpha/2 - 2/r}$$

LEMMA B.5. There is a constant $C = C(\alpha, r)$ such that for all $1 \le i < N/2$, 700

 $\max\{2i+1, i+3\} \le j \le 2N$, we have

702 (B.13)
$$D_h^2 K_y(x_i) \le C \frac{y^{-1-\alpha}}{\Gamma(-\alpha)}, \quad y \in [x_{j-1}, x_j]$$

Proof. Since $y \ge x_{j-1} > x_{i+1}$, by Lemma A.1, if j-1 > i+1703

$$D_{h}^{2}K_{y}(x_{i}) = K_{y}''(\xi) = \frac{|y - \xi|^{-1 - \alpha}}{\Gamma(-\alpha)}, \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq \frac{(y - x_{i+1})^{-1 - \alpha}}{\Gamma(-\alpha)}$$

$$\leq (1 - (\frac{2}{3})^{r})^{-1 - \alpha} \frac{y^{-1 - \alpha}}{\Gamma(-\alpha)}$$

LEMMA B.6. There is a constant $C = C(\alpha, r)$ such that for all $3 \le i \le N, k =$ 705 $\lceil \frac{i}{2} \rceil$, $1 \le j \le k-1$ and $y \in [x_{j-1}, x_j]$, we have 706

707 (B.14)
$$D_h^2 K_y(x_i) \le C \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

708 Proof. Since $y \le x_j < x_{i-1}$, by Lemma A.1,

$$D_h^2 K_y(x_i) = \frac{|\xi - y|^{-1-\alpha}}{\Gamma(-\alpha)}, \quad \xi \in (x_{i-1}, x_{i+1})$$

$$\leq \frac{(x_{i-1} - x_j)^{-1-\alpha}}{\Gamma(-\alpha)} \leq \frac{(x_{i-1} - x_{k-1})^{-1-\alpha}}{\Gamma(-\alpha)}$$

$$\leq ((\frac{2}{3})^r - (\frac{1}{2})^r)^{-1-\alpha} \frac{x_i^{-1-\alpha}}{\Gamma(-\alpha)}$$

710

The Lemma B.7. While $0 \le i < N/2$, By Lemma A.3

$$|T_{i1}| \le C \int_0^{x_1} x_1^{\alpha/2} \frac{|x_i - y|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$
712 (B.15)
$$= C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2} \left| x_i^{2-\alpha} - |x_i - x_1|^{2-\alpha} \right|$$

$$\le C \frac{1}{\Gamma(3-\alpha)} x_1^{\alpha/2+2-\alpha} = C \frac{1}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \quad 0 < 2 - \alpha < 1$$

713 For $2 \le j \le N$, by Lemma A.2 and Corollary 2.4

$$|T_{ij}| \leq \frac{C}{4} \int_{x_{j-1}}^{x_j} h_j^2 x_{j-1}^{\alpha/2-2} \frac{|y-x_i|^{1-\alpha}}{\Gamma(2-\alpha)} dy$$

$$\leq \frac{C}{4\Gamma(3-\alpha)} h_j^2 x_{j-1}^{\alpha/2-2} \left| |x_j - x_i|^{2-\alpha} - |x_{j-1} - x_i|^{2-\alpha} \right|$$

LEMMA B.8. There exists a constant $C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$ such that

716 (B.17)
$$\sum_{j=1}^{3} S_{1j} \le Ch^2 x_1^{-\alpha/2 - 2/r}$$

717

718 (B.18)
$$\sum_{j=1}^{4} S_{2j} \le Ch^2 x_2^{-\alpha/2 - 2/r}$$

719

Proof.

$$S_{1j} = \frac{2}{x_2} \left(\frac{1}{x_1} T_{0j} - \left(\frac{1}{x_1} + \frac{1}{h_2} \right) T_{1j} + \frac{1}{h_2} T_{2j} \right)$$

721 So, by Lemma B.7

722
$$S_{11} \leq \frac{2}{x_2 x_1} 4 \frac{C}{\Gamma(3-\alpha)} x_1^{2-\alpha/2} \leq C x_1^{-\alpha/2}$$
723
$$S_{12} \leq \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_2^2 x_1^{\alpha/2-2} \left(x_2^{2-\alpha} + 2h_2^{2-\alpha} + h_2^{2-\alpha} \right) \leq C x_1^{-\alpha/2}$$
725

726
$$S_{13} \le \frac{2}{x_2 x_1} \frac{C}{4\Gamma(3-\alpha)} h_3^2 x_2^{\alpha/2-2} \left(x_3^{2-\alpha} + 2x_3^{2-\alpha} + h_3^{2-\alpha} \right) \le C x_1^{-\alpha/2}$$

727 But

$$x_1^{-\alpha/2} = T^{2/r} h^2 x_1^{-\alpha/2 - 2/r}$$

729 i=2 is similar.

730

There exists a constant C = C(T, r, l) such that For $3 \le i \le N - 1$, $\lceil \frac{i}{2} \rceil \le j \le \min\{2i, N\}$,

733 when $\xi \in (x_{i-1}, x_{i+1}),$

734 (B.19)
$$(h_{j-i}^3(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_j$$

735

736 (B.20)
$$(h_{i-i}^4(\xi))' \le (r-1)Ch^2 x_i^{1-2/r} h_i^2$$

737 *Proof.* From (3.38)

738 (B.21)
$$y'_{j-i}(x) = y_{j-i}^{1-1/r}(x)x^{1/r-1}$$

739 (B.22)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

740 For $\xi \in (x_{i-1}, x_{i+1})$ and $2 \le k \le j \le \min\{2i - 1, N - 1\}$, using Lemma B.1

741
$$\xi \simeq x_i \simeq x_j$$

742

743
$$h_{j-i}(\xi) \simeq h_j \simeq h x_j^{1-1/r} \simeq h x_i^{1-1/r}$$

744 (B.23)
$$h'_{j-i}(\xi) = y'_{j-i}(\xi) - y'_{j-i-1}(\xi)$$
$$= \xi^{1/r-1} (y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi))$$

745 Since

$$y_{j-i}^{1-1/r}(\xi) - y_{j-i-1}^{1-1/r}(\xi) \le x_{j+1}^{1-1/r} - x_{j-2}^{1-1/r}$$

$$= T^{1-1/r}N^{1-r}((j+1)^{r-1} - (j-2)^{r-1})$$

$$\le C(r-1)j^{r-2}N^{1-r}$$

$$= C(r-1)hx_j^{1-2/r}$$

747 Therefore,

748 (B.25)
$$h'_{i-i}(\xi) \le Cx_i^{1/r-1}(r-1)hx_i^{1-2/r} \simeq (r-1)hx_i^{-1/r}$$

for l = 3, 4

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h'_{j-i}(\xi)$$

$$\leq Ch_{j-i}^{l-1}(\xi)(r-1)hx_{i}^{-1/r}$$

$$\simeq Ch_{j}^{l-2}hx_{j}^{1-1/r}(r-1)hx_{i}^{-1/r}$$

$$\simeq C(r-1)h^{2}x_{i}^{1-2/r}h_{j}^{l-2}$$

Meanwhile, we can get

752 (B.27)
$$h_{j-i}^3(\xi) \simeq h_j^3 \le Ch^2 x_i^{2-2/r} h_j$$

753 (B.28)
$$h_{i-i}^4(\xi) \simeq h_i^4 \le Ch^2 x_i^{2-2/r} h_i^2$$

754

TEMMA B.10. There exists a constant C=C(T,r,l) such that For $3\leq i\leq N-1, \lceil\frac{i}{2}\rceil\leq j\leq \min\{2i,N\},$

757 when $\xi \in (x_{i-1}, x_{i+1}),$

758 (B.29)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

Proof.

759 (B.30)
$$(h_{j-i}^3(\xi))'' = 6h_{j-i}(\xi)(h'_{j-i}(\xi))^2 + 3h_{j-i}^2(\xi)h''_{j-i}(\xi)$$

760 By (B.25)

761 (B.31)
$$h_{j-i}(\xi)(h'_{j-i}(\xi))^2 \le Ch_j(r-1)^2 h^2 x_i^{-2/r}$$

762 For the second partial

$$h_{j-i}''(\xi) = y_{j-i}''(\xi) - y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (y_{j-i}^{1-2/r}(\xi) Z_{j-i} - y_{j-i-1}^{1-2/r}(\xi) Z_{j-i-1})$$

$$= \frac{1-r}{r} \xi^{1/r-2} ((y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi)) Z_{j-i} + y_{j-i-1}^{1-2/r}(\xi) Z_1)$$

764 but

$$|y_{j-i}^{1-2/r}(\xi) - y_{j-i-1}^{1-2/r}(\xi)| \le |x_{j+1}^{1-2/r} - x_{j-2}^{1-2/r}|$$

$$= T^{1-2/r}N^{2-r}|(j+1)^{r-2} - (j-2)^{r-2}|$$

$$\le C|r - 2|N^{2-r}j^{r-3}$$

$$= C|r - 2|hx_j^{1-3/r}$$

766 So we can get

767 (B.34)
$$|h_{j-i}''(\xi)| \le C(r-1)x_i^{1/r-2}(|r-2|hx_i^{1-3/r}x_i^{1/r} + x_i^{1-2/r}h)$$

$$\le C(r-1)hx_i^{-1-1/r}$$

768 Summarizes, we have

769 (B.35)
$$(h_{j-i}^3(\xi))'' \le C(r-1)h^2 x_i^{-2/r} h_j$$

770 proof of Lemma 3.19. From (3.38)

771 (B.36)
$$y'_{i-i}(x) = y_{i-i}^{1-1/r}(x)x^{1/r-1}$$

772 (B.37)
$$y_{j-i}''(x) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$

773 Since

$$y_{i-i}^{\theta}(\xi) \simeq x_j \simeq x_i$$

775 We have known

776 (B.38)
$$u''(y_{j-i}^{\theta}(\xi)) \le C(y_{j-i}^{\theta}(\xi))^{\alpha/2-2} \simeq x_i^{\alpha/2-2} \simeq x_i^{\alpha/2-2}$$

777

$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$

$$\leq Cx_{i}^{\alpha/2-3}\xi^{1/r-1}y_{j-i}^{1-1/r}(\xi)$$

$$\simeq x_{i}^{\alpha/2-3}x_{i}^{1/r-1}x_{i}^{1-1/r} = Cx_{i}^{\alpha/2-3}$$

779

$$(u''(y_{j-i}^{\theta}(\xi)))'' = u''''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^{2} + u'''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq Cx_{i}^{\alpha/2-4} + Cx_{i}^{\alpha/2-3}\frac{r-1}{r}x_{i}^{1-2/r}x_{i}^{1/r-2}Z_{|j-i|+1}$$

$$\leq Cx_{i}^{\alpha/2-4} + C\frac{r-1}{r}x_{i}^{\alpha/2-3}x_{i}^{-1-1/r}x_{i}^{1/r}$$

$$= Cx_{i}^{\alpha/2-4}$$

Proof of Lemma 3.20.

781 (B.41)
$$|y_{j-i}^{\theta}(\xi) - \xi| = |\theta(y_{j-i-1}(\xi) - \xi) + (1 - \theta)(y_{j-i}(\xi) - \xi)|$$
$$= \theta|y_{j-i-1}(\xi) - \xi| + (1 - \theta)|y_{j-i}(\xi) - \xi|$$

where $y_{j-i-1}(\xi) - \xi$ and $y_{j-i}(\xi) - \xi$ have the same sign (≥ 0 or ≤ 0), independent

783 with ξ

Since $|y_{j-i}(\xi) - \xi| = \operatorname{sign}(j-i)(y_{j-i}(\xi) - \xi)$ is increasing with ξ ,

(B.42)

785
$$\left(\frac{i-1}{i}\right)^r |x_j - x_i| \le |x_{j-1} - x_{i-1}| \le |y_{j-i}(\xi) - \xi| \le |x_{j+1} - x_{i+1}| \le \left(\frac{i+1}{i}\right)^r |x_j - x_i|$$

786 we have

787 (B.43)
$$|y_{i-i}(\xi) - \xi| \simeq |x_i - x_i|$$

788 Similarly, $|y_{j-1-i}(\xi) - \xi| \simeq |x_{j-1} - x_i|$. Thus, with (B.41), (B.43) and (2.17) we get

789 (B.44)
$$|y_{i-i}^{\theta}(\xi) - \xi| \simeq |y_{i}^{\theta} - x_{i}|$$

Next, since $|y_{j-i}^{\theta}(\xi) - \xi| = \text{sign}(j - i - 1 + \theta)(y_{j-i}^{\theta}(\xi) - \xi)$, so we can derivate it.

791 (B.45)
$$|(|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha})'| = (\alpha - 1)|y_{i-i}^{\theta}(\xi) - \xi|^{-\alpha}|(y_{i-i}^{\theta}(\xi))' - 1|$$

792 While, similar with (B.41), we have

793 (B.46)
$$|(y_{i-i}^{\theta}(\xi))' - 1| = (1 - \theta)|y_{i-i-1}'(\xi) - 1| + \theta|y_{i-i}'(\xi) - 1|$$

794 By Lemma A.4 and (B.43), we have

$$|y'_{j-i}(\xi) - 1| = \xi^{1/r-1} |y_{j-i}^{1-1/r}(\xi) - \xi^{1-1/r}|$$

$$\leq \xi^{-1} |y_{j-i}(\xi) - \xi|$$

$$\simeq x_i^{-1} |x_j - x_i|$$

796 So similar with (B.44), we can get

797 (B.48)
$$|(y_{i-i}^{\theta}(\xi))' - 1| \le Cx_i^{-1}|y_i^{\theta} - x_i|$$

798 Combine with (B.44), we get

799 (B.49)
$$|(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'| \le C|y_j^{\theta} - x_i|^{-\alpha} x_i^{-1} |y_j^{\theta} - x_i| = C|y_j^{\theta} - x_i|^{1-\alpha} x_i^{-1} |y_j^{\theta} - x_i| = C|y_j^{\theta} - x_i|^{1-\alpha} x_i^{-1} |y_j^{\theta} - x_i|^{1-\alpha} x_i^{-1} |y_j^{\theta} - x_i|^{1-\alpha} |y_j^{\theta} -$$

800 Finally, we have

801 (B.50)
$$(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})'' = \alpha(\alpha - 1)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha - 1}((y_{j-i}^{\theta}(\xi))' - 1)^{2}$$
$$+ \operatorname{sign}(j - i - 1 + \theta)(1 - \alpha)|y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}(y_{j-i}^{\theta}(\xi))''$$

802 For

803 (B.51)
$$(y_{i-i}^{\theta}(\xi))'' = (1-\theta)y_{i-i-1}''(\xi) + \theta y_{i-i}''(\xi)$$

804 and

805 (B.52)
$$y_{j-i}''(\xi) = \frac{1-r}{r} y_{j-i}^{1-2/r}(x) x^{1/r-2} Z_{j-i}$$
$$\simeq \frac{1-r}{r} x_j^{1-2/r} x_i^{1/r-2} Z_{j-i}$$

806 while by Lemma A.4

807 (B.53)
$$|Z_{j-i}| = |x_j^{1/r} - x_i^{1/r}| \le |x_j - x_i|x_i^{1/r-1}$$

808 we have

809 (B.54)
$$|y_{j-i}''(\xi)| \le C(r-1)x_i^{-2}|x_j - x_i|$$

810 Therefore

811 (B.55)
$$|(y_{j-i}^{\theta}(\xi))''| \le C(r-1)x_i^{-2}|y_j^{\theta} - x_i|$$

812 Then, combine with (B.48),

813 (B.56)
$$|(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})''| \le C|y_j^{\theta} - x_i|^{1-\alpha}x_i^{-2}$$

proof of Lemma 3.22. For $\lceil \frac{i}{2} \rceil \le j \le \min\{2i-1, N-1\}$

(B.57)
$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} = \frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_{i})}{h_{i+1}}u'''(\eta_{j+1}^{\theta}) + Q_{j-i}^{\theta}(x_{i})\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}}$$

816 Since mean value theorem

817 (B.58)
$$\frac{Q_{j-i}^{\theta}(x_{i+1}) - Q_{j-i}^{\theta}(x_i)}{h_{i+1}} = Q_{j-i}^{\theta'}(\xi), \quad \xi \in (x_i, x_{i+1})$$

818 From (3.45) and Leibniz rule, by Lemma B.9 and Lemma 3.20, we have

(B.59)
$$|Q_{j-i}^{\theta'}(\xi)| \le Ch^2 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} x_i^{1-2/r} h_j^2$$

820 And by Definition 3.15 and Lemma B.1

821 (B.60)
$$Q_{j-i}^{\theta}(x_i) = h_j^4 \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} \simeq Ch^2 x_i^{2-2/r} \frac{|y_j^{\theta} - x_i|^{1-\alpha}}{\Gamma(2-\alpha)} h_j^2$$

822 With $\eta_j^{\theta} \in (x_{j-1}, x_j)$

823
$$u'''(\eta_{j+1}^{\theta}) \le C(\eta_{j+1}^{\theta})^{\alpha/2-3} \simeq x_j^{\alpha/2-3} \simeq x_i^{\alpha/2-3}$$

824 and

825

$$\frac{u'''(\eta_{j+1}^{\theta}) - u'''(\eta_{j}^{\theta})}{h_{i+1}} = u''''(\eta) \frac{\eta_{j+1}^{\theta} - \eta_{j}^{\theta}}{h_{i+1}}$$

$$\leq C\eta^{\alpha/2 - 4} \frac{x_{j+1} - x_{j-1}}{h_{i+1}} = C\eta^{\alpha/2 - 4} \frac{h_{j+1} + h_{j}}{h_{i+1}}$$

$$\simeq x_{j}^{\alpha/2 - 4} \simeq x_{i}^{\alpha/2 - 4}$$

826 So we have

$$\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}}$$
827 (B.61)
$$\leq Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{1-2/r} h_{j}^{2} x_{i}^{\alpha/2-3} + Ch^{2} x_{i}^{2-2/r} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} h_{j}^{2} x_{j-1}^{\alpha/2-4}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}^{2}$$

828 while $h_j \simeq h_i$, substitute into the inequality above, we get the goal

$$\frac{2}{h_{i} + h_{i+1}} \left(\frac{Q_{j-i}^{\theta}(x_{i+1})u'''(\eta_{j+1}^{\theta}) - Q_{j-i}^{\theta}(x_{i})u'''(\eta_{j}^{\theta})}{h_{i+1}} \right)$$
829 (B.62)
$$\leq \frac{1}{h_{i}}Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j} h_{i}$$

$$= Ch^{2} \frac{|y_{j}^{\theta} - x_{i}|^{1-\alpha}}{\Gamma(2-\alpha)} x_{i}^{\alpha/2-2-2/r} h_{j}$$

830 While, the later is similar.

831

832 LEMMA B.11. There exists a constant
$$C = C(T, r)$$
 such that For $N/2 \le i \le N$

833
$$N-1, N+2 \le j \le 2N - \lceil \frac{N}{2} \rceil + 1, l = 3, 4, \xi \in (x_{i-1}, x_{i+1}), we have$$

834 (B.63)
$$h_{j-i}^{l}(\xi) \le Ch_{j}^{l} \le Ch^{2}h_{j}^{l-2}$$

835 (B.64)
$$(h_{i-i-1}^{l}(\xi))' \le C(r-1)h^2 h_i^{l-2}$$

836 (B.65)
$$(h_{i-i}^3(\xi))'' \le C(r-1)h^2h_i$$

Proof.

(B.66)
$$(h_{j-i}(\xi))' = y_{j-i}'(\xi) - y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1} ((2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}) \le 0$$

838 Thus,

839 (B.67)
$$Ch_j \le h_{j+1} \le h_{j-i}(\xi) \le h_{j-i}(x_{i-1}) = h_{j-1} \le Ch_j$$

840 So as
$$4^{-r}T \le 2T - x_i \le T, 2^{-r}T \le x_i \le T$$
, we have

841 (B.68)
$$h_{i-i}^{l}(\xi) \le Ch_{i}^{l} \le Ch^{2}(2T - x_{j})^{2-2/r}h_{i}^{l-2} \le Ch^{2}h_{i}^{l-2}$$

842 Since

$$|(2T - y_{j-i}(\xi))^{1-1/r} - (2T - y_{j-i-1}(\xi))^{1-1/r}|$$

$$= |(Z_{2N-(j-i)} - \xi^{1/r})^{r-1} - (Z_{2N-(j-1-i)} - \xi^{1/r})^{r-1}|$$

$$= (r-1)Z_1(Z_{2N-(j-i-\gamma)} - \xi^{1/r})^{r-2} \quad \gamma \in [0, 1]$$

$$\leq C(r-1)h(2T - x_j)^{1-2/r}$$

844 we have

845 (B.70)
$$|(h_{j-i}(\xi))'| \le C(r-1)h(2T-x_j)^{1-2/r}x_i^{1/r-1}$$

846 And

$$(h_{j-i}^{l}(\xi))' = lh_{j-i}^{l-1}(\xi)h_{j-i}'(\xi)$$

$$\leq C(r-1)h_{j}^{l-1}h(2T-x_{j})^{1-2/r}x_{i}^{1/r-1}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}(2T-x_{j})^{2-3/r}x_{i}^{1-1/r}$$

$$\leq C(r-1)h^{2}h_{j}^{l-2}$$

$$(B.72) \qquad (B.72) \qquad ($$

849

EMMA B.12. There exists a constant
$$C = C(T, \alpha, r, ||u||_{\beta+\alpha}^{(-\alpha/2)})$$
 such that For $N/2 \le i \le N-1, \ N+2 \le j \le 2N-\lceil \frac{N}{2} \rceil+1, \ \xi \in (x_{i-1}, x_{i+1}), \ we have$

852 (B.73)
$$u''(y_{j-i}^{\theta}(\xi)) \le C$$

853 (B.74)
$$(u''(y_{j-i}^{\theta}(\xi)))' \le C$$

854 (B.75)
$$(u''(y_{i-i}^{\theta}(\xi)))'' \le C$$

Proof.

855 (B.76)
$$x_{j-2} \le y_{j-i}^{\theta}(\xi) \le x_{j+1} \Rightarrow 4^{-r}T \le 2T - y_{j-i}^{\theta}(\xi) \le T$$

856 Thus, for l = 2, 3, 4,

857 (B.77)
$$u^{(l)}(y_{i-i}^{\theta}(\xi)) \le C(2T - y_{i-i}^{\theta}(\xi))^{\alpha/2 - l} \le C$$

858 and

$$(y_{j-i}^{\theta}(\xi))' = \theta y_{j-1-i}'(\xi) + (1-\theta)y_{j-i-1}'(\xi)$$

$$= \xi^{1/r-1}(\theta(2T - y_{j-1-i}(\xi))^{1-1/r} + (1-\theta)(2T - y_{j-i-1}(\xi))^{1-1/r})$$

$$\leq C(2T - x_{j-2})^{1-1/r} \leq C$$

860 With

861 (B.79)
$$Z_{2N-j-i} \le 2T^{1/r}$$

862 (B 80

$$(y_{j-i}^{\theta}(\xi))'' = \theta y_{j-1-i}''(\xi) + (1-\theta)y_{j-i-1}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (\theta(2T-y_{j-i-1}(\xi))^{1-2/r} Z_{2N-(j-i-1)} + (1-\theta)(2T-y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)})$$

$$\leq C(r-1)$$

864 Therefore,

865 (B.81)
$$(u''(y_{j-i}^{\theta}(\xi)))' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta}(\xi))'$$

$$< C$$

866

863

(B.82)
$$(u''(y_{j-i}^{\theta}(\xi)))'' = u'''(y_{j-i}^{\theta}(\xi))(y_{j-i}^{\theta'}(\xi))^2 + u''''(y_{j-i}^{\theta}(\xi))y_{j-i}^{\theta''}(\xi)$$

$$\leq C + C(r-1) = C$$

868

LEMMA B.13. There exists a constant $C=C(T,\alpha,r)$ such that For $N/2\leq i\leq N-1$, $N+2\leq j\leq 2N-\lceil\frac{N}{2}\rceil+1$, $\xi\in(x_{i-1},x_{i+1})$

871 (B.83)
$$|y_{i-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_i^{\theta} - x_i|^{1-\alpha}$$

872 (B.84)
$$\left| (|y_{j-i}^{\theta}(\xi) - \xi)^{1-\alpha}|' \right| \le C|y_{j}^{\theta} - x_{i}|^{-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})$$

(B.85)

873
$$\left| \left(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha}|''| \le C(r-1)|y_{j}^{\theta} - x_{i}|^{-\alpha} + C|y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2} \right) \right|$$

874 *Proof.* Since
$$y_{i-i-1}(\xi) > x_{i-2} \ge x_N > \xi$$

875 (B.86)
$$y_{j-i}^{\theta}(\xi) - \xi = (1-\theta)(y_{j-1-i}(\xi) - \xi) + \theta(y_{j-i}(\xi) - \xi) > 0$$

876

(B.87)
$$(y_{j-i}(\xi) - \xi)'' = y_{j-i}''(\xi)$$

$$= \frac{1-r}{r} \xi^{1/r-2} (2T - y_{j-i}(\xi))^{1-2/r} Z_{2N-(j-i)} \le 0$$

878 It's concave, so

(B.88)

879
$$y_{j-i}(\xi) - \xi \ge \min_{\xi \in \{x_{i-1}, x_{i+1}\}} y_{j-i}(\xi) - \xi = \min\{x_{j+1} - x_{i+1}, x_{j-1} - x_{i-1}\} \ge C(x_j - x_i)$$

880 With (B.86), we have

881 (B.89)
$$|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha} \le C|y_j^{\theta} - x_i|^{1-\alpha}$$

882 By Lemma A.4

883 (B.90)
$$|y_{j-i}'(\xi) - 1| = \xi^{1/r-1} |(2T - y_{j-i}(\xi))^{1-1/r} - \xi^{1-1/r}| < \xi^{-1} |2T - y_{j-i}(\xi) - \xi|$$

884

$$|2T - \xi - y_{j-i}(\xi)| \le |2T - x_i - x_j| + |x_i - \xi| + |x_j - y_{j-i}(\xi)|$$

$$\le |2T - x_i - x_j| + h_{i+1} + h_j$$

$$\le C(|2T - x_i - x_j| + h_N)$$

886 With $\xi \simeq x_i \simeq 1$,

887 (B.92)
$$|y_{j-i}'(\xi) - 1| \le C(|2T - x_i - x_j| + h_N)$$

888 Thus.

$$|(y_{j-i}^{\theta}(\xi))' - 1| \le (1 - \theta)|y_{j-i-1}'(\xi) - 1| + \theta|y_{j-i}'(\xi) - 1|$$

$$\le C((1 - \theta)|2T - x_i - x_{j-1}| + \theta|2T - x_i - x_j| + h_N)$$

$$= C(|2T - x_i - y_j^{\theta}| + h_N)$$

890 So

(B.94)
$$\left| (|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})' \right| = |1 - \alpha| |y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha} |(y_{j-i}^{\theta}(\xi))' - 1|$$

$$\leq C|y_{i}^{\theta} - x_{i}|^{-\alpha} (|2T - x_{i} - y_{i}^{\theta}| + h_{N})$$

892 (B.95)

$$|(|y_{j-i}^{\theta}(\xi) - \xi|^{1-\alpha})''| \le |1 - \alpha||y_{j-i}^{\theta}(\xi) - \xi|^{-\alpha}|(|y_{j-i}^{\theta}(\xi) - \xi|''| + \alpha(\alpha - 1)||y_{j-i}^{\theta}(\xi) - \xi|^{-1-\alpha}(|y_{j-i}^{\theta}(\xi) - \xi|''|)$$

$$\le C(r - 1)||y_{j}^{\theta} - x_{i}|^{-\alpha} + C||y_{j}^{\theta} - x_{i}|^{-1-\alpha}(|2T - x_{i} - y_{j}^{\theta}| + h_{N})^{2}$$

Acknowledgments. We would like to acknowledge the assistance of volunteers in putting together this example manuscript and supplement.

896 REFERENCES

- [1] D. GILBARG AND N. S. TRUDINGER, Poisson's Equation and the Newtonian Potential,
 Springer Berlin Heidelberg, Berlin, Heidelberg, 1977, pp. 50–67, https://doi.org/10.1007/
 978-3-642-96379-7-4, https://doi.org/10.1007/978-3-642-96379-7-4.
- 900 [2] X. ROS-OTON AND J. SERRA, The dirichlet problem for the fractional laplacian: Regular-901 ity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 902 pp. 275–302, https://doi.org/https://doi.org/10.1016/j.matpur.2013.06.003, https://www. 903 sciencedirect.com/science/article/pii/S0021782413000895.