Operations Research II: Algorithms The Simplex Method

Ling-Chieh Kung

Department of Information Management National Taiwan University

1/68

- Let's study how to **solve** an LP.
- ► The algorithm we will introduce is the simplex method.
 - ▶ Developed by **George Dantzig** in 1947.
 - Opened the whole field of Operations Research.
 - Implemented in most commercial LP solvers.
 - **Very efficient** for almost all practical LPs.
 - ► With very simple ideas.
- ▶ The method is general in an indirect manner.
 - ► There are many different forms of LPs.
 - We will first show that each LP is equivalent to a **standard form** LP.
 - Then we will show how to solve standard form LPs.
- ► This lecture will be full of algebra and theorems. Get ready!

Extreme points

▶ We need to first define **extreme points** for a set:

Definition 1 (Extreme points)

For a set $S \subseteq \mathbb{R}^n$, a point x is an extreme point if there does not exist a three-tuple (x^1, x^2, λ) such that $x^1 \in S \setminus \{x\}$, $x^2 \in S \setminus \{x\}$, $\lambda \in (0, 1)$, and

$$x = \lambda x^1 + (1 - \lambda)x^2.$$

▶ For any LP, we have the following fact.

Proposition 1

For any LP, if there is an optimal solution, there is an extreme point optimal solution.

- ▶ It is not saying that "if a solution is optimal, it is an extreme point!"
- ► This property will be very useful when we develop a method for solving general LPs!

Standard form

•0000000

- ► The standard form.
- Basic solutions.
- The simplex method.
- The tableau representation.
- Unbounded LPs.
- Infeasible LPs.

Standard form LPs

► First, let's define the **standard form**.

Definition 2 (Standard form LP)

An LP is in the standard form if

- ▶ all the RHS values are nonnegative,
- ▶ all the variables are nonnegative, and
- ▶ all the constraints are equalities.
- ▶ RHS = right hand sides. For any constraint

$$g(x) \le b$$
, $g(x) \ge b$, or $g(x) = b$,

b is the RHS.

▶ There is no restriction on the objective function.

Finding the standard form

- How to find the standard form for an LP?
- ► Requirement 1: Nonnegative RHS.
 - ▶ If it is negative, **switch** the LHS and the RHS.
 - ► E.g.,

Standard form

0000000

$$2x_1 + 3x_2 < -4$$

is equivalent to

$$-2x_1 - 3x_2 \ge 4.$$

- ► Requirement 2: Nonnegative variables.
 - ▶ If x_i is **nonpositivie**, replace it by $-x_i$. E.g.,

$$2x_1 + 3x_2 \le 4, x_1 \le 0 \quad \Leftrightarrow \quad -2x_1 + 3x_2 \le 4, x_1 \ge 0.$$

If x_i is free, replace it by $x_i' - x_i''$, where $x_i', x_i'' \geq 0$. E.g.,

$$2x_1 + 3x_2 \le 4, x_1 \text{ urs.} \quad \Leftrightarrow \quad 2x_1' - 2x_1'' + 3x_2 \le 4, x_1' \ge 0, x_1'' \ge 0.$$

$x_i = x_i' - x_i''$	$x_i' \ge 0$	$x_i'' \ge 0$
5	5	0
0	0	0
-8	0	8

Finding the standard form

- ► Requirement 3: Equality constraints.
 - For a "<" constraint, add a slack variable. E.g.,

$$2x_1 + 3x_2 \le 4 \quad \Leftrightarrow \quad 2x_1 + 3x_2 + x_3 = 4, \quad x_3 \ge 0.$$

► For a "≥" constraint, minus a surplus/excess variable. E.g.,

$$2x_1 + 3x_2 \ge 4 \quad \Leftrightarrow \quad 2x_1 + 3x_2 - x_3 = 4, \quad x_3 \ge 0.$$

- For ease of exposition, they will both be called slack variables.
- A slack variable measures the **gap** between the LHS and RHS.

Standard form

Standard form

min
$$3x_1 + 2x_2 + 4x_3$$

s.t. $x_1 + 2x_2 - x_3 \ge 6$
 $x_1 - x_2 \ge -8$
 $2x_1 + x_2 + x_3 = 9$
 $x_1 > 0, x_2 < 0, x_3 \text{ urs.}$

Standard form LPs in matrices

- ▶ Given any LP, we may find its standard form.
- ▶ With matrices, a standard form LP is expressed as

$$\begin{aligned} & \text{min} & & c^T x \\ & \text{s.t.} & & Ax = b \\ & & & x \geq 0. \end{aligned}$$

▶ E.g., for

Standard form

E.g., for
$$c = \begin{bmatrix} 2 \\ -1 \\ 0 \\ s.t. & x_1 + 5x_2 + x_3 \\ 3x_1 - 6x_2 \\ x_i \ge 0 & \forall i = 1, ..., 4, \end{bmatrix}, b = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, and$$

$$A = \begin{bmatrix} 1 & 5 & 1 & 0 \\ 3 & -6 & 0 & 1 \end{bmatrix}.$$

- \triangleright We will denote the number of constraints and variables as m and n.
 - $A \in \mathbb{R}^{m \times n}$ is called the **coefficient matrix**.
 - ▶ $b \in \mathbb{R}^m$ is called the **RHS vector**.
 - $c \in \mathbb{R}^n$ is called the objective vector.
- ▶ The objective function can be either max or min.

- ▶ So now we only need to find a way to solve standard form LPs.
- ► How?

Standard form

- A standard form LP is still an LP.
- ▶ If it has an optimal solution, it has an **extreme point** optimal solution! Therefore, we only need to search among extreme points.

Road map

- ▶ The standard form.
- **▶** Basic solutions.
- ► The simplex method.
- ► The tableau representation.
- ▶ Unbounded LPs.
- ► Infeasible LPs.

Basic solutions

Basic solutions

000000000000

Consider a standard form LP with m constraints and n variables

$$min c^T x$$
s.t. $Ax = b$

$$x \ge 0.$$

- \blacktriangleright We may assume that A has m pivots, i.e., all rows of A are independent.¹
- This then implies that $m \leq n$. As the problem with m = n is trivial, we will assume that m < n.

¹This assumption is without loss of generality. Why?

Basic solutions

For the system Ax = b, now there are more columns than rows. Let's select some columns to form a basic solution:

Definition 3 (Basic solution)

A basic solution to a standard form LP is a solution that (1) has n-m variables being equal to 0 and (2) satisfies Ax=b.

- ▶ The n-m variables chosen to be zero are **nonbasic variables**.
- ightharpoonup The remaining m variables are basic variables.
- ► The set of basic variables is called a basis.
- These m columns form a nonsingular/invertible $m \times m$ matrix A_B .
- We use $x_B \in \mathbb{R}^m$ and $x_N \in \mathbb{R}^{n-m}$ to denote basic and nonbasic variables, respectively, with respect to a given set of basic variables B.
 - We have $x_N = 0$ and $x_B = A_B^{-1}b$.

Consider an original LP

and its standard form

Basic solutions

- ▶ In the standard form, m=2 and n=4.
 - ▶ There are n m = 2 nonbasic variables.
 - ightharpoonup There are m=2 basic variables.
- Steps for obtaining a basic solution:
 - \triangleright Determine a set of m basic variables to form a basis B.
 - The remaining variables form the set of nonbasic variables N.
 - Set nonbasic variables to zero: $x_N = 0$.
 - Solve the m by m system $A_B x_B = b$ for the values of basic variables.
- For this example, we will solve a two by two system for each basis.

► The two equalities are

Let's try $B = (x_1, x_2)$ and $N = (x_3, x_4)$:

$$\begin{array}{rcrrr} x_1 & + & 2x_2 & = & 6 \\ 2x_1 & + & x_2 & = & 6. \end{array}$$

The solution is $(x_1, x_2) = (2, 2)$. Therefore, the basic solution associated with this basis *B* is $(x_1, x_2, x_3, x_4) = (2, 2, 0, 0)$.

▶ Let's try $B = (x_2, x_3)$ and $N = (x_1, x_4)$:

As $(x_2, x_3) = (6, -6)$, the basic solution is $(x_1, x_2, x_3, x_4) = (0, 6, -6, 0)$.

- ▶ In general, as we need to choose m out of n variables to be basic, we have **at most** $\binom{n}{m}$ different bases.²
- ▶ In this example, we have exactly $\binom{4}{2} = 6$ bases.
- By examining all the six bases one by one, we may find all those associated basic variables:

B	Basic solution			
	x_1	x_2	x_3	x_4
(x_1, x_2)	2	2	0	0
(x_1, x_3)	3	0	3	0
(x_1, x_4)	6	0	0	-6
(x_2, x_3)	0	6	-6	0
(x_2, x_4)	0	3	0	3
(x_3, x_4)	0	0	6	6

²Why "at most"? Why not "exactly"?

Basic feasible solutions

- Among all basic solutions, some are feasible.
 - \triangleright By the definition of basic solutions, they satisfy Ax = b.
 - If one also satisfies x > 0, it satisfies all constraints.
- ► In this case, it is called **basic feasible solutions** (bfs).

Definition 4 (Basic feasible solution)

A basic feasible solution to a standard form LP is a basic solution whose basic variables are all nonnegative.

Which are bfs?

Basis	Basic solution				
Dasis	x_1	x_2	x_3	x_4	
(x_1, x_2)	2	2	0	0	
(x_1, x_3)	3	0	3	0	
(x_1, x_4)	6	0	0	-6	
(x_2, x_3)	0	6	-6	0	
(x_2, x_4)	0	3	0	3	
(x_3, x_4)	0	0	6	6	

Basic feasible solutions and extreme points

▶ Why bfs are important? They are just extreme points!

Theorem 1 (Extreme points and basic feasible solutions)

For a standard form LP, a solution is an extreme point of the feasible region if and only if it is a basic feasible solution to the LP.

► The implication is direct:

Theorem 2 (Optimality of basic feasible solutions)

For a standard form LP, if there is an optimal solution, there is an optimal basic feasible solution.

▶ Though we cannot prove Theorem 1 here, let's get some intuitions.³

³Please note that these "intuitions" are never rigorous.

An example

▶ There is a one-to-one mapping between bfs and extreme points.

Basis	Bfs?	Point	Basic solution			
Dasis	Dasis Dis:	1 OHIC	x_1	x_2	x_3	x_4
(x_1, x_2)	Yes	A	2	2	0	0
(x_1, x_3)	Yes	B	3	0	3	0
(x_1, x_4)	No	C	6	0	0	-6
(x_2, x_3)	No	D	0	6	-6	0
(x_2, x_4)	Yes	E	0	3	0	3
(x_3, x_4)	Yes	F	0	0	6	6

Solving standard form LPs

- ► To find an optimal solution:
 - Instead of searching among all extreme points, we search among all bfs.
 - Extreme points are defined **geometrically**; bfs are **algebraically**.
- Checking whether a solution is basic feasible is easy (for a computer).
- To search among bfs, we keep moving to a better adjacent bfs from the current one:

Definition 5 (Adjacent bases and bfs)

Two bases are adjacent if exactly one of their variables is different. Two bfs are adjacent if their associated bases are adjacent.

Again, let's use a graph to get the idea.

Adjacent basic feasible solutions

- ▶ A pair of adjacent bfs corresponds to a pair of "adjacent" extreme points, i.e., extreme points that are on **the same edge**.
- ➤ Switching from a bfs to its adjacent bfs is **moving along an edge**.

Basis	Point -	Basic solution			
		x_1	x_2	x_3	x_4
(x_1, x_2)	A	2	2	0	0
(x_1, x_3)	B	3	0	3	0
(x_2, x_4)	E	0	3	0	3
(x_3, x_4)	F	0	0	6	6

A better way to search

- Given all these concepts, how would you search among bfs?
- At each bfs, move to an adjacent bfs that is better!
 - Around the current bfs, there should be some improving directions.
 - ▶ Otherwise, the bfs is optimal.
- Next we will introduce the simplex method, which utilize this idea in an elegant way.

Road map

- ▶ The standard form.
- Basic solutions.
- The simplex method.
- The tableau representation.
- Unbounded LPs.
- Infeasible LPs.

The idea

- ▶ All we need is to search among bfs.
 - ▶ Geometrically, we search among extreme points.
 - Moving to an adjacent bfs is to move along an edge.
- Questions:
 - ▶ Which edge to move along?
 - ▶ When to stop moving?
- ▶ All these must be done with algebra rather than geometry.
- Algebraically, to move to an adjacent bfs, we need to replace one basic variable by a nonbasic variable.
 - ightharpoonup E.g., moving from $B_1 = (x_1, x_2, x_3)$ to $B_2 = (x_2, x_3, x_5)$.
- ► There are two things to do:
 - ► Select one **nonbasic** variable to **enter** the basis, and
 - Select one basic variable to leave the basis.

The idea

- ► Entering and leaving:
 - ► Selecting one nonbasic variable to **enter** means making it **nonzero**: Increasing its value from 0 to a positive value and become **basic**.
 - ▶ While this variable increases, we identify basic variables that decrease and stop when one hits 0. That variable leaves the basis and become nonbasic.
- ▶ We keep **changing the basis** until we find an optimal basis.
- ▶ Next let's know exactly how to run the simplex method in algebra.

The simplex method

➤ To introduce the algebra of the simplex method, let's consider the following LP

and its standard form

System of equalities

- ▶ We need to keep track of the **objective value**.
 - ▶ We want to keep improving our solution.
 - We will use $z = 2x_1 + 3x_2$ to denote the objective value.
- The objective value will sometimes be called **the** z **value**.
- \triangleright Once we keep in mind that (1) we are maximizing z and (2) all variables (except z) must be nonnegativie, the standard form is nothing but a system of three equalities:

- Note that $z = 2x_1 + 3x_2$ is expressed as $z 2x_1 3x_2 = 0$.
- This "constraint" (which actually represents the objective function) will be called the 0th constraint.
- ▶ We will repeatedly solve the system.

An initial bfs

- To start, we need to first have an **initial bfs**.
- Investigate the system in details:

- \triangleright Selecting x_3 and x_4 definitely works!
- In the system, these two columns form an identity matrix: $A_B = I$.
- Moreover, in a standard form LP, the RHS b are nonnegative.
- ► Therefore, $x_B = A_B^{-1}b = Ib = b > 0$.

⁴For most LPs, such an indentity matrix does not exist. We will see how to deal with this situation.

Improving the current bfs

- ▶ Let us start from $x^1 = (0, 0, 6, 8)$ and $z_1 = 0$.
- \blacktriangleright To move, let's choose a nonbasic variable to enter. x_1 or x_2 ?
 - ▶ The **0th constraints** tells us that entering either variable makes z larger: When one goes up, z goes up to maintain the equality.
 - For no reason, let's choose x_1 to enter.
- ▶ When to stop?
 - Now x_1 goes up from 0.
 - $(0,0,6,8) \to (1,0,5,6) \to (2,0,4,4) \to \cdots$. Note that x_2 remains 0.
 - \blacktriangleright We will stop at (4,0,2,0), i.e., when x_4 becomes 0.
 - ▶ This is indicated by the **ratio** of the **RHS** and **entering column**: Because $\frac{8}{2} < \frac{6}{1}$, x_4 becomes 0 sooner than x_3 .
- We move to $x^2 = (4, 0, 2, 0)$ with $z_2 = 8$.

Keep improving the current bfs

- Let's improve $x^2 = (4, 0, 2, 0)$ by moving to the next bfs.
 - \triangleright One of x_2 and x_4 may enter. Let's try to enter x_2 .
- \blacktriangleright When x_2 goes up and x_4 remains 0:
 - ▶ The 2nd row says x_2 can at most become 8 (and then x_1 becomes 0).
 - In the 1st row... how will x_1 and x_3 change?
- **According to constraint 2**, when x_2 goes up by 1 and x_4 remains 0, x_1 should decrease by $\frac{1}{2}$.
 - Therefore, according to constraint 1, when x_2 goes up by 1 "and" x_1 goes down by $\frac{1}{2}$, x_3 should go down by $\frac{3}{2}$.
 - Therefore, x_2 can be at most $\frac{4}{3}$. We reach $(\frac{10}{3}, \frac{4}{3}, 0, 0)$.
- ightharpoonup Collectively, we should increase x_2 by min $\{8, \frac{4}{3}\}$.
 - ▶ The z value becomes $z_3 = \frac{10}{2} \times 2 + \frac{4}{2} \times 3 = \frac{32}{2}$.
 - lacktriangleright It does not becomes $z_2 + \frac{4}{3} \times 3$ as the basic variable x_1 also changes.

The simplex method

- Note that what we did has two flaws.
- ► Regarding constraints:
 - \triangleright When we increase the nonbasic variable x_2 , it may affect both basic variables x_1 and x_3 .
 - \triangleright Because x_3 does not appear in constraint 2, we know how x_1 responds to the change of x_2 .
 - We need to consider that to see how x_3 responds to the change of x_2 .
- Regarding the objective function:
 - \triangleright When we increase the nonbasic variable x_2 , it affects basic variables x_1 and x_3 .
 - \triangleright Because x_1 is in constraint 0, z is affected by both x_1 and x_2 .
- ▶ How to do these calculations with thousands of variables and constraints?

Keep improving the current bfs

An easier way is to **update the system** before the 2nd move.

The simplex method

- \triangleright To make each of rows 1 to n contains **exactly one** basic variable.
- To make row 0 contains no basic variable.
- ► In other words, for the basic columns:
 - \blacktriangleright We want an **identity matrix** in rows 1 to n.
 - We want a **zero vector** in row 0.

Improving the current bfs (the 2nd attempt)

▶ Recall that for the system

we start from $x^1 = (0, 0, 6, 8)$ with $z_1 = 0$.

- For the basic columns (the 3rd and 4th ones), indeed we have the identity matrix and zeros.
- ▶ Then we know x_1 enters and x_4 leaves.
 - \triangleright The basis becomes (x_1, x_3) .
 - We need to update the system to

► How? Elementary row operations!

Updating the system

► Starting from:

- ► Multiply (2) by $\frac{1}{2}$: $x_1 \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$.
- ▶ Multiply (2) by $-\frac{1}{2}$ and then add it into (1): $\frac{3}{2}x_2 + x_3 \frac{1}{2}x_4 = 2$.
- Multiply (2) by 1 and then add it into (0): $z 2x_2 + x_4 = 8$.
- ► Collectively, the system becomes

$$z - 2x_2 + x_4 = 8 (0)$$

$$\frac{3}{2}x_2 + x_3 - \frac{1}{2}x_4 = 2 (1)$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4. (2)$$

▶ Updating the system also gives us the objective value $z_2 = 8$ and the current bfs $x^2 = (4, 0, 2, 0)$.

Improving the current bfs (finally!)

► Given the updated system

$$z - 2x_2 + x_4 = 8 (0)$$

$$\frac{3}{2}x_2 + x_3 - \frac{1}{2}x_4 = 2 (1)$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4, (2)$$

we now know how to do the next iteration.

- We are at $x^2 = (4, 0, 2, 0)$ with $z_2 = 8$.
- ightharpoonup One of x_2 and x_4 may enter.
- ▶ If x_2 enters, z will go up. Good!
- ▶ If x_4 enters, z will go down. Bad.
- ightharpoonup Let x_2 enter:
 - ▶ Row 1: When x_2 goes up, x_3 goes down. x_2 can be as large as $\frac{2}{3/2} = \frac{4}{3}$.
 - ▶ Row 2: When x_2 goes up, x_1 goes down. x_2 can be as large as $\frac{4}{1/2} = 8$.
 - ▶ So x_3 becomes 0 sooner than x_1 . x_3 leaves the basis.
- ▶ The basic variables become x_1 and x_2 . Let's update again.

Improving once more

► Given the system

$$z - 2x_2 + x_4 = 8 (0)$$

$$\frac{3}{2}x_2 + x_3 - \frac{1}{2}x_4 = 2 (1)$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4, (2)$$

we now need to update it to fit the new basis (x_1, x_2) .

- Multiply (1) by $\frac{2}{3}$: $x_2 + \frac{2}{3}x_3 \frac{1}{3}x_4 = \frac{4}{3}$.
- Multiply (the updated) (1) by $-\frac{1}{2}$ and add it to (2).
- ▶ Multiply (the updated) (1) by 2 and add it to (0).
- We get

$$z + \frac{4}{3}x_3 + \frac{1}{3}x_4 = \frac{32}{3} \quad (0)$$

$$x_2 + \frac{2}{3}x_3 - \frac{1}{3}x_4 = \frac{4}{3} \quad (1)$$

$$x_1 - \frac{1}{3}x_3 + \frac{2}{3}x_4 = \frac{10}{3}. \quad (2)$$

No more improvement!

The system

$$z + \frac{4}{3}x_3 + \frac{1}{3}x_4 = \frac{32}{3} \quad (0)$$

$$x_2 + \frac{2}{3}x_3 - \frac{1}{3}x_4 = \frac{4}{3} \quad (1)$$

$$x_1 - \frac{1}{3}x_3 + \frac{2}{3}x_4 = \frac{10}{3} \quad (2)$$

tells us that the new bfs is $x^3 = (\frac{10}{3}, \frac{4}{3}, 0, 0)$ with $z_3 = \frac{32}{3}$.

- Updating the system also gives us the new bfs and its objective value.
- ▶ Now... no more improvement is needed!
 - \triangleright Entering x_3 makes things worse (z must go down).
 - \triangleright Entering x_4 also makes things worse.
- \triangleright x^3 is an optimal solution.⁵ We are done!

⁵This is indeed true, though a rigorous proof is omitted.

Visualizing the iterations

- Let's visualize this example and relate bfs with extreme points.
 - \triangleright The initial bfs corresponds to (0,0).
 - \triangleright After one iteration, we move to (4,0).
 - After two iterations, we move to $(\frac{10}{3}, \frac{4}{3})$, which is optimal.
- ▶ Please note that we move along edges to search among extreme points!

- ► To run the simplex method:
 - Find an initial bfs with its basis.⁶
 - Among those nonbasic variables with positive coefficients in the 0th row, 7 choose one to enter. 8
 - ▶ If there is none, terminate and report the current bfs as optimal.
 - According to the ratios from the entering and RHS columns, decide which basic variable should leave.⁹
 - Find a new basis.
 - ▶ Make the system fit the requirements for basic columns:
 - ▶ Identity matrix in constraints (1st to mth row).
 - ▶ Zeros in the objective function (0th row).
 - Repeat.

⁶How to find one?

⁷Positive coefficients for a minimization problem; negative for maximization.

⁸What if there are multiple?

⁹What if there is a tie? What if the denominator is 0 or negative?

- ▶ The standard form.
- ▶ Basic solutions.
- ► The simplex method.
- ► The tableau representation.
- ▶ Unbounded LPs.
- ► Infeasible LPs.

The tableau representation

- ▶ We typically omit variables when updating those systems.
- We organize coefficients into tableaus.
 - As the column with z never changes, we do not include it in a tableau.
- ► For our example, the initial system

can be expressed as

- ► The basic columns have zeros in the 0th row and an identity matrix in the other rows.
- ▶ The identity matrix associates each row with a basic variable.
- A negative number in the 0th row of a nonbasic column means that variable can enter.

Using tableaus rather than systems

 $x_3 = 6$

$$z - 2x_2 + x_4 = 8$$

$$+ \frac{3}{2}x_2 + x_3 - \frac{1}{2}x_4 = 2$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$$

8

 $+ \frac{4}{3}x_3 + \frac{1}{3}x_4 = \frac{32}{3}$ $x_2 + \frac{2}{3}x_3 - \frac{1}{3}x_4 = \frac{4}{3}$

 $-\frac{1}{2}x_3 + \frac{2}{2}x_4 =$

 x_1

The second example

Consider another example:

▶ The standard form is

The first iteration

▶ We prepare the initial tableau. We have $x^1 = (0, 0, 4, 8, 3)$ and $z_1 = 0$.

-1	0	0	0	0	0
2	-1	1	0	0	$x_3 = 4$ $x_4 = 8$ $x_5 = 3$
2	1	0	1	0	$x_4 = 8$
0	1	0	0	1	$x_5 = 3$

- For this **maximization** problem, we look for **negative** numbers in the 0th row. Therefore, x_1 enters.
 - ► Those numbers in the 0th row are called **reduced costs**.
 - ▶ The 0th row is $z x_1 = 0$. Increasing x_1 can increase z.
- ▶ "Dividing the RHS column by the entering column" tells us that x_3 should leave (it has the minimum ratio).¹⁰
 - ► This is called the **ratio test**. We **always** look for the smallest ratio.

¹⁰The 0 in the 3rd row means that increasing x_1 does not affect x_5 .

The first iteration

 x_1 enters and x_3 leaves. The next tableau is found by **pivoting** at 2:

-1	0	0	0	0	0		0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2
2	-1	1	0	0	$x_3 = 4$	\rightarrow	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$
2	1	0	1	0	$x_4 = 8$		0	2	-1	1	0	$x_4 = 4$
0	1	0	0	1	$x_5 = 3$		0	1	0	0	1	$x_5 = 3$

- ▶ The new bfs is $x^2 = (2, 0, 0, 4, 3)$ with $z_2 = 2$.
- ► Continue?
 - \triangleright There is a negative reduced cost in the 2nd column: x_2 enters.
- Ratio test:
 - ▶ That $-\frac{1}{2}$ in the 1st row shows that increasing x_2 makes x_1 larger. Row 1 does not participate in the ratio test.
 - For rows 2 and 3, row 2 wins (with a smaller ratio).

The second iteration

- x_2 enters and x_4 leaves. We pivot at 2.
- The second iteration is

0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2		0	0	$\frac{1}{4}$	$\frac{1}{4}$	0	3
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$	\rightarrow	1	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_1 = 3$
0	2	-1	1	0	$x_4 = 4$,						$x_2 = 2$
0	1	0	0	1	$x_5 = 3$		0	0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$x_5 = 1$

- ▶ The third bfs is $x^3 = (3, 2, 0, 0, 1)$ with $z_3 = 3$.
 - ► It is optimal (why?).
 - Typically we write the optimal solution we find as x^* and optimal objective value as z^* .

Visualizing the solution process

- ► The three basic feasible solutions we obtain are
 - $x^1 = (0, 0, 4, 8, 3).$
 - $x^2 = (2, 0, 0, 4, 3).$
 - $x^3 = x^* = (3, 2, 0, 0, 1).$

Do they fit our graphical approach?

- ▶ The standard form.
- Basic solutions.
- The simplex method.
- The tableau representation.
- Unbounded LPs.
- Infeasible LPs.

Identifying unboundedness

- ► When is an LP **unbounded**?
- ► An LP is unbounded if:
 - ▶ There is an improving direction.
 - ▶ Along that direction, we may move forever.
- ▶ When we run the simplex method, this can be easily checked in a simplex tableau.
- ► Consider the following example:

The standard form is:

The first iteration:

Unbounded LPs 000000

The second iteration:

- ▶ How may we do the third iteration? The **ratio test** fails!
 - ▶ Only rows with positive denominators participate in the ratio test.
 - Now all the denominators are nonpositive! Which variable to leave?
- ▶ No one should leave: Increasing x_3 makes x_1 and x_2 become larger.
 - Row 1: $x_1 x_3 + x_4 = 3$.
 - Now 2: $x_2 2x_3 + x_4 = 2$.
- ► The direction is thus an unbounded improving direction.

Unbounded improving directions

 \triangleright At (3,2), when we enter x_3 , we move along the rightmost edge. Geometrically, both nonbinding constraints $x_1 \ge 0$ and $x_2 \ge 0$ are "behind us".

The simplex method

Detecting unbounded LPs

► For a minimization LP, whenever we see any column in any tableau

$ar{c}_j$	
d_1	
:	
d_m	

such that $\bar{c}_j > 0$ and $d_i \leq 0$ for all i = 1, ..., m, we may stop and conclude that this LP is unbounded.

- $ightharpoonup \bar{c}_i > 0$: This is an improving direction.
- ▶ $d_i \leq 0$ for all i = 1, ..., m: This is an unbounded direction.
- ▶ What is the unbounded condition for a **maximization** problem?

- ▶ The standard form.
- Basic solutions.
- The simplex method.
- The tableau representation.
- Unbounded LPs.
- Infeasible LPs.

Feasibility of an LP

▶ When an LP

$$min c^T x$$
s.t. $Ax \le b$

$$x \ge 0$$

satisfies $b \geq 0$, finding a bfs for its standard form

min
$$c^T x$$

s.t. $Ax + Iy = b$
 $x, y \ge 0$,

is trivial.

- \triangleright We may form a feasible basis with all the slack variables y.
- ▶ What if there are some "=" or "≥" constraints?

Feasibility of an LP

► For example, given an LP

whose standard form is

it is nontrivial to find a feasible basis (if there is one).

The two-phase implementation

- ► To find an initial bfs (or show that there is none), we may apply the **two-phase implementation**.
- ▶ Given a standard form LP (P), we construct a **phase-I LP** (Q):¹¹

ightharpoonup (Q) has a trivial bfs (x,y)=(0,b), so we can apply the simplex method on (Q). But so what?

Proposition 2

(P) is feasible if and only if (Q) has an optimal bfs $(x, y) = (\bar{x}, 0)$. In this case, \bar{x} is a bfs of (P).

OR II: The Simplex Method 60 / 68 Ling-Chieh Kung (NTU IM)

¹¹Even if in (P) we have a maximization objective function, (Q) is still the same.

The two-phase implementation

- \triangleright After we solve (Q), either we know (P) is infeasible or we have a feasible basis of (P).
- In the latter case, we can recover the objective function of the original (P) to get a **phase-II LP**.
 - ightharpoonup "The phase-II LP" is nothing but the original (P).
 - ▶ Phase I for a **feasible** solution and phase II for an **optimal** solution.
- ► Regarding those added variables:
 - They are artificial variables and have no physical meaning. They are created only for checking feasibility.
 - If a constraint already has a variable that can be included in a trivial basis, we do not need to add an artificial variable in that constraint.
 - ► This happens to those "≤" constraints (if the RHS is nonnegative).
- ▶ We then adjust the tableau according to the initial basis and **continue** applying the simplex method on the phase-II LP.

Example 1: Phase I

Consider an LP

which has no trivial bfs (due to the "\ge " constraint).

▶ Its Phase-I standard form LP is

• We need only one artificial variable x_5 . x_3 and x_4 are slack variables.

Example 1: preparing the initial tableau

Let's try to solve the Phase-I LP. First, let's prepare the initial tableau:

- ▶ Is this a valid tableau? No!
 - ► For all basic columns (in this case, columns 4 and 5), the 0th row should contain 0.
 - ▶ So we need to first **adjust the 0th row** with elementary row operations.

Example 1: preparing the initial tableau

Let's adjust row 0 by adding row 1 to row 0.

0	0	0	0	-1	0	adjust	2	1	-1	0	0	6
2	1	-1	0	1	$x_5 = 6$	$\widehat{\hspace{1cm}}$	2	1	-1	0	1	$x_5 = 6$
1	2	0	1	0	$x_4 = 6$		1	2	0	1	0	$x_4 = 6$

- Now we have a valid initial tableau to start from!
- The current bfs is $x^0 = (0, 0, 0, 6, 6)$, which corresponds to an **infeasible** solution to the original LP.
 - ▶ We know this because there are positive artificial variables.

Example 1: solving the Phase-I LP

Solving the Phase-I LP takes only one iteration:

2	1	-1	0	0	6		0	0	0	0	0
2	1	-1	0	1	$x_5 = 6$	\rightarrow	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
1	2	0	1	0	$x_4 = 6$		0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_4 = 3$

- ▶ Whenever an artificial variable leaves the basis, we will not need to enter it again. Therefore, we may remove that column to save calculations.
- As we can remove all artificial variables, the original LP is feasible.
- A feasible basis for the original LP is (x_1, x_4) .

Example 1: solving the Phase-II LP

- Now let's construct the Phase-II LP.
- Step 1: put the original objective function "max $x_1 + x_2$ " back:

The simplex method

- ▶ Is this a valid tableau? No!
 - Column 1, which should be basic, contains a nonzero number in the 0th row. It must be adjusted to 0.
- Before we run iterations, let's adjust the 0th row again.

Example 1: solving the Phase-II LP

Let's fix the 0th row and then run two iterations.

 \triangleright The optimal bfs is (6,0,6,0).

- \triangleright x^0 is infeasible (the artificial variable x_5 is positive).
- \triangleright x^1 is the initial bfs (as a result of Phase I).
- $ightharpoonup x^3$ is the optimal bfs (as a result of Phase II).