

Semester-III

B. Tech . In Artificial Intelligence and Data Science

38122302

Course Code ADC302 Design and Analysis of Algorithm

Date:17.05.2024

Time:02.0PM TO 4.00 PM

Max Marks: 60

Q.1	Solve any Four	20 Marks	CO	BT
a)	Solve the following recurrence relations using Master's method. i. $T(n) = 8T(n/2) + n2$ ii. $T(n) = 2T(n/2) + n \log n$	5	CO1	BT3
b)	Perform Quick sort for the data 9 8 7, 6, 5, 4, 3, 2, 1.	5	CO2	BT3
c)	Compare Greedy and Dynamic programming approaches.	5	CO3	BT3
d)	Determine the longest common subsequence for the following strings String 1: abaabb String 2: bababbab	5 mine the s	CO4	BT3
e)	Discuss P and NP classes of problems with suitable example.	5	CO6	BT3
f)	Illustrate naïve string matching with some example. Also discuss its complexity.	5	CO5	BT3
Q.2	Solve any Four	20 Marks	СО	ВТ
Q.2	Solve any Four Discuss various notations for asymptotic complexities of algorithms.		CO CO1	BT BT3
		Marks		
a)	Discuss various notations for asymptotic complexities of algorithms.	Marks 5	CO1	BT3
a) b)	Discuss various notations for asymptotic complexities of algorithms. Write algorithm for Binary search. Discuss its complexity. Solve the following Job sequencing problem with the given deadline to find maximum profit gained for N=8. Profits P = {30, 15, 20, 18, 10, 60, 40, 55}	Marks 5	CO1	BT3
a) b) c)	Discuss various notations for asymptotic complexities of algorithms. Write algorithm for Binary search. Discuss its complexity. Solve the following Job sequencing problem with the given deadline to find maximum profit gained for N=8. Profits $P = \{30, 15, 20, 18, 10, 60, 40, 55\}$ Deadlines $D = \{1, 3, 4, 3, 2, 1, 2, 1\}$ Solve the following instance of knapsack problem using Dynamic programming for capacity $M = 8$ Profit $P = \{1, 2, 5, 6\}$	Marks 5 5 5	CO1 CO2 CO3	BT3 BT3 BT3
a) b) c) d)	Discuss various notations for asymptotic complexities of algorithms. Write algorithm for Binary search. Discuss its complexity. Solve the following Job sequencing problem with the given deadline to find maximum profit gained for N=8. Profits $P = \{30, 15, 20, 18, 10, 60, 40, 55\}$ Deadlines $D = \{1, 3, 4, 3, 2, 1, 2, 1\}$ Solve the following instance of knapsack problem using Dynamic programming for capacity $M = 8$ Profit $P = \{1, 2, 5, 6\}$ Weight $W = \{2, 3, 4, 5\}$	Marks 5 5 5 5 5	CO1 CO2 CO3	BT3 BT3 BT3

Q.3	Solve any Two	20	CO	BT
	Design and Analysis of Algorithm	Marks		
a)	Discuss recurrence relations and various methods to solve recurrence	10	CO1	BT4
	relations. Evaluate the complexity of given recurrence relation using			
	recursion tree method.			
	$T(n) = 3T\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + \theta(n^2)$			
1.	Diama Minimum Comming Tree Determine the Minimum Spanning tree	10	CO3	BT3

b) Discuss Minimum Spanning Tree. Determine the Minimum Spanning tree 10 CO3 BT3 for the following graph using Prim's Algorithm.

c) Determine the single shortest path for the following graph using Bellman 10 CO4 BT2 Ford. Consider the source vertex to be v1.

