Université de Picardie Jules Verne

UFR Sciences. Année 2024-2025

Master de Mathématiques : M1-Analyse Fonctionnelle

TD8

Exercice 1

1. Montrer que pour tout $n \in \mathbb{N}$, on a

$$\frac{d^n}{dx^n}e^{-x^2} = (-1)^n e^{-x^2} H_n(x),$$

où H_n est un polynôme de degré n dont on calculera le coefficient du monôme de plus haut degré.

On pose

$$\phi_n(x) = e^{\frac{-x^2}{2}} H_n(x).$$

2. Montrer que pour tout $n \in \mathbb{N}$, $\phi_n \in L^2(\mathbb{R})$ puis calculer (ϕ_n, ϕ_m) . On montrera en particulier que

$$(\phi_n, \phi_n) = \sqrt{\pi} \ 2^n . n!.$$

3. Soit $\psi_n = c_n \phi_n$, $c_n \in \mathbb{R}$. Montrer que l'on peut choisir convenablement c_n de tel sorte que la famille ψ_n forme un système orthonormé de $L^2(\mathbb{R})$. Soit $f \in L^2(\mathbb{R})$ telle que

$$(f, \psi_n) = 0, \quad \forall n \in \mathbb{N}.$$

On pose $g(x) = f(x).e^{-\frac{x^2}{2}}$, et pour $z \in C$

$$h(z) = \frac{1}{2\sqrt{\pi}} \int_{\mathbb{R}} g(t)e^{itz}dt.$$

- 4. Démontrer que $g \in L^1(\mathbb{R})$ et que h est holomorphe sur C.
- 5. Justifier que pour tout n

$$t^n = \sum_{i=0}^n \alpha_i H_i(t),$$

puis que

$$h^{(n)}(0) = \frac{1}{2\sqrt{\pi}} \int_{\mathbb{R}} f(t)e^{\frac{-x^2}{2}} (-i)^n t^n dt.$$

- 6. Montrer que $h^{(n)}(0) = 0$ pour tout n. Que peut-on en déduire de h?
- 7. Démontrer que la transformée de Fourier de g est identiquement nulle sur $I\!\!R$. Que peut-on dire de g ?
- 8. En déduire une base hilbertienne de $L^2(\mathbb{R})$.

Exercice 2

1. Soient $f_1, f_2, ..., f_k$ des fonctions telles que

$$f_i \in L^{p_i}(\Omega), \quad 1 < i < k,$$

avec

$$\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_k} \le 1.$$

Établir que

$$f = f_1 f_2 \cdots f_k \in L^p(\Omega)$$

et prouver que

$$||f_1 f_2 \cdots f_k||_p \le ||f_1||_{p_1} ||f_2||_{p_2} \cdots ||f_k||_{p_k}.$$

Indication. On appliquera l'inégalité de Holder à des fonctions bien choisies.

2. Soit $\Omega \subset \mathbb{R}^n$. Soit $f \in L^p(\Omega) \cap L^q(\Omega)$ avec $1 \leq p < q \leq \infty$. On considère r tel que

$$\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}, \quad \alpha \in [0,1].$$

Justifier que $r \in [p, q]$, puis montrer que $f \in L^r(\Omega)$ et

$$||f||_{L^r} \le ||f||_{L^p}{}^{\alpha} ||f||_{L^q}{}^{1-\alpha}.$$

Exercice 3

Soit $p \geq 1$. Pour tout $n \in \mathbb{N}$ et $x \in [0,1]$, on pose

$$u_n(x) = n^{\frac{1}{p}}e^{-nx}.$$

- 1. Montrer que la suite (u_n) converge vers 0 p.p. dans [0,1].
- 2. La suite converge-t-elle uniformément dans [0, 1]?
- 3. Démontrer que la suite (u_n) est bornée dans $L^p_{\mathbb{R}}(]0,1[)$.
- 4. Démontrer que la suite (u_n) ne converge pas dans $L^p_{\mathbb{R}}(]0,1[)$.

- 5. Démontrer que la suite (u_n) converge faiblement dans $L^p_{\mathbb{R}}(]0,1[)$. 6. Pour $n\geq 1$ et $x\in [0,1]$, on pose

$$\sigma_n(x) = \frac{1}{n} \sum_{j=1}^n u_j(x).$$

Que peut-on dire de la convergence faible dans $L^p_{\mathbb{R}}(]0,1[)$ de la suite (σ_n) ?