Analysis HW 01

September 7, 2024

Ahmed Saad Sabit, Rice University

Contents

Pro	ble	m	0	1																								2
	a		•					•				•	•			•								•				2
	b		•					•				•	•	•							•	•	•	•				2
Pro	ble	em	0:	2																								3
	а		•					•					•			•	•					•	•	•				3
	b			•	•			•				•	•			•	•	•		•		•	•					3
	С											•	•			•												3
Pro	ble	em	0:	3																								5
Pro	ble	em	0:	3			•	•			•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	5
Pro		em ·	0:	3																								
Pro	a	•m •	0:			 			 	 	 	 						 •		•	•	•	•				 	5
	a b					 			 	 	 	 						 •	•	•	•	•	•	•			 	5 5

 \mathbf{a}

Suppose we have $x^n=k$ where $k\in\mathbb{N}$ and we know that $x\notin\mathbb{N}$. Then assuming for the sake of contradiction that the root $x\in\mathbb{Q}$. This means

$$x = \frac{p}{q}$$

where p,q are natural numbers and coprime.

$$\frac{p^n}{q^n} = \Longrightarrow \frac{p^n}{k} = q^n$$

 q^n is a natural number. This implies that p^n/k is also a natural number. Writing

$$\frac{p}{k}(p^{n-1}) \in \mathbb{N}$$

and since obviously $p^{n-1}\in\mathbb{N}$ we also have $\frac{p}{k}\in\mathbb{N}$. Saying, p is divisible by k.

Now let's re-write

$$\frac{p^n}{k} = q^n \implies \frac{p^n}{k^2} = \frac{q^n}{k}$$

From which

$$\left(\frac{p^2}{k^2}\right)p^{n-2} = \left(\frac{q}{k}\right)q^{n-1}$$

Similarly like before, we know that the left hand side is a natural number. This is true for all n greater or equal to 2 but it's trivial to prove $n \neq 1$. Hence meaning

$$\frac{q}{k}q^{n-1} \in \mathbb{N}$$

As $q^{n-1}\in\mathbb{N}$, so $\frac{q}{k}$ must also be a natural number. Therefore q is divisible by k. This is a contradiction because p,q are supposedly co-prime. Hence the assumption that the roots are rational is false.

b

We have proved that the roots are in no way rational. We can possibly have natural numbers which are roots, and from the proof above, irrational in a sense that it is no way rational.

 \mathbf{a}

We have x = A|B, and $x > O^*$. Then let's define

$$C = \{ p \in \mathbb{Q} : p < 0 \text{ or } pq < 1 | \forall q \in A \} \text{ and } D = C^C$$

Looking at C we can tell that it forms a cut.

First let's show that if x = A|B and y = C|D then $xy = 1^*$.

$$xy = \{ p \in \mathbb{Q} : p < ac, a > 0, c > 0, a \in A, c \in C \} | \{ \text{rest of } \mathbb{Q} \} |$$

From this construction it is apparent that ac < 1. Hence from the idea of cuts we know that $xy = 1^*$, because for any $p \in xy$ we have $p \in 1^*$. There does not exist an element $p \in 1^*$ such that $p \notin xy$ because if p < 1, then p < ac for some $a \in A$ and $c \in C$, so $p \in xy$.

b

If $x<0^*$ such that x=A|B then there exists -x such that $-x=A^*|B^*$ and $-x>0^*$. Let's define $-y>0^*$ where $-y=C^*|D^*$ and we define C^* the same way we defined C in the previous solution.

$$C^* = \{ p \in \mathbb{Q} : pq < 1 \mid \forall q \in A \}$$

 $D^*=C^{*C}$. We know that C is a valid cut. From our -y we can take it's additive inverse in $y=C\mid D$. We know this value must exist. Finally because $-y>0^*$ we know that $y<0^*$ and from here we use the definition of a cut multiplication

$$xy = (-x)(-y), \quad x < 0^* \text{ and } y < 0^*$$

Because our new values of -x and -y are equivalent to previous solution, we can draw along the line of last solution.

 \mathbf{c}

Suppose x has two multiplicative inverses y_1 and y_2 such that $xy_1=1$ and $xy_2=1$. Suppose for sake of contradiction that they are not equal to each other. Because $\mathbb R$ is an ordered field, $y_1>y_2$ (without loss of generality) we can define

$$y_1 = C_1 | D_1$$

$$y_2 = C_2 | D_2$$

then $C_2\subset C_1$ but they are not equal. Implying existance of $r\in\mathbb{Q}$ such that $r\in C_1$ and $r\not\in C_2$.

If $x>0^*$, we have rp<1 for all $p\in A$ based on the construction of C_1 . However the construction of C_2 says that r should therefore also be in C_2 which is a contradiction. If $x<0^*$ we use the exact same way of proving but with rp>1 for all $p\in A$.

 \mathbf{a}

From definition b being lub(S), $\forall s \in S$

$$b \ge s$$

Given $\epsilon > 0$, $b - \epsilon$ is not an upper bound because

$$b - \epsilon < b$$

Thus there must exist $s \in S$ such that $s \ge b - \epsilon$ and hence

$$b-\epsilon \leq s \leq b$$

b

Counter-example. $S = \{1,2\}$ where $\mathrm{lub}(S) = 2$. If $\epsilon \leq 1$, there doesn't exist any s in S such that $b-\epsilon < s < b$. Hence the statement is not true.

 \mathbf{c}

By definition if x = A|B, then for any $a \in A$, x > a as $x \in \mathbb{R}$.

Now let's say that x is NOT the least upper bound, then there must exist some y such that y < x and is another upper bound. But from the definition of cuts, y = C|D, and then $C \subset A$ because y < x, and $C \ne A$.

y being upper bound, $\forall a \in A$, then there exist $c \in C$ such that c > a. But this would end up meaning $a \in C$ and hence $A \subset C$. This is a contradiction, hence x must be the least upper bound.

Take x=A|B where $A=\{r\in \mathbb{Q}|r<0 \text{ or } r^2<2\}$ then by doing cut multiplication

$$x^{2} = E|F$$

$$E = \{ p \subset \mathbb{Q} | r_{1} \in A, r_{2} \in A, r_{1} > 0, r_{2} > 0, p < r_{1} \cdot r_{2} \}$$

$$F = E^{c}$$

Proving $E|F=2^*$ would prove $x=\sqrt{2}$.

As $r_1^2<2$ and $r_2^2<2$ then $(r_1^2)(r_2^2)<(2\cdot 2)$ that gives us $(r_1r_2)^2<4$ and $r_1r_2<2$. That proves that E|F is a cut of 2 and $x=\sqrt{2}$.

The greatest lower bound property of real numbers is that if $S \subset \mathbb{R}$, $s \neq \emptyset$, and S has a lower bound (a value of $x \in \mathbb{R}$ such that $x \leq s$ where $\forall s \in S$), then S has also a greatest lower bound. If x is the greatest lower bound of S, and x' > x then x' is not a lower bound.

We can proof this in the following.

Let's have a set S that is a subset of real number. Let's say that S is bounded below that means there exists L such that any element $s \in S$ satisfies $L \leq s$. Let's define

$$B := \{ b \in \mathbb{R} | b \text{ is a lower bound of S} \}$$

As we defined S has a bound in the bottom, B is non-empty.

Furthermore, this whole set B in and of itself is the set of all lower bound of S. Any member $b \in B$ satisfies $b \leq s$ where any element $s \in S$.

But conversely, every element of S is an upper bound of the set B. This apparently means the least upper bound $\mathrm{lub}(B)$ exists. Now lets say x is $\mathrm{lub}(B)$, then if x' < x x' is not $\mathrm{lub}(B)$. But, this means that there eixsts $b \in B$ such that b > x'. Therefore x' cannot be $\mathrm{glb}(S)$ because x' > x then $x' \not\in B$ and x' is not a lower bound of S.