

miejsce na naklejkę	

KOMISJA **EGZAMINACYJNA**

CENTRALNA

UZUPEŁNIA ZDAJĄCY **KOD** PESEL

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

DATA: 9 maja 2019 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY		
Uprawnienia	Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia zaznaczeń na kartę	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania 1–15). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj **p**ola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścia zadania.
- 5. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.
- 10. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 11. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-R1 **1**P-192

NOWA FORMULA

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Dla dowolnych liczb x > 0, $x \ne 1$, y > 0, $y \ne 1$ wartość wyrażenia $\left(\log_{\frac{1}{v}}y\right) \cdot \left(\log_{\frac{1}{v}}x\right)$ jest równa

A.
$$x \cdot y$$

$$\mathbf{B.} \qquad \frac{1}{x \cdot y}$$

Zadanie 2. (0-1)

Liczba cos² 105° – sin² 105° jest równa

A.
$$-\frac{\sqrt{3}}{2}$$

B.
$$-\frac{1}{2}$$
 C. $\frac{1}{2}$

C.
$$\frac{1}{2}$$

D.
$$\frac{\sqrt{3}}{2}$$

Zadanie 3. (0-1)

Na rysunku przedstawiono fragment wykresu funkcji y = f(x), który jest złożony z dwóch półprostych AD i CE oraz dwóch odcinków AB i BC, gdzie A = (-1, 0), B = (1, 2), C = (3, 0), D = (-4, 3), E = (6, 3).

Wzór funkcji f to

A.
$$f(x) = |x+1| + |x-1|$$

B.
$$f(x) = ||x-1|-2|$$

C.
$$f(x) = ||x-1|+2|$$

D.
$$f(x) = |x-1| + 2$$

Zadanie 4. (0-1)

Zdarzenia losowe A i B zawarte w Ω są takie, że prawdopodobieństwo P(B')zdarzenia B', przeciwnego do zdarzenia B, jest równe $\frac{1}{4}$. Ponadto prawdopodobieństwo warunkowe $P(A \mid B) = \frac{1}{5}$. Wynika stąd, że

A.
$$P(A \cap B) = \frac{1}{20}$$
 B. $P(A \cap B) = \frac{4}{15}$ **C.** $P(A \cap B) = \frac{3}{20}$ **D.** $P(A \cap B) = \frac{4}{5}$

B.
$$P(A \cap B) = \frac{4}{15}$$

C.
$$P(A \cap B) = \frac{3}{20}$$

D.
$$P(A \cap B) = \frac{4}{5}$$

BRUDNOPIS

Zadanie 5. (0-2)

Oblicz granicę

$$\lim_{n\to\infty} \left(\frac{9n^3 + 11n^2}{7n^3 + 5n^2 + 3n + 1} - \frac{n^2}{3n^2 + 1} \right)$$

Wpisz w poniższe kratki – od lewej do prawej – trzy kolejne cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Zadanie 6. (0-3)

Rozważamy wszystkie liczby naturalne pięciocyfrowe zapisane przy użyciu cyfr 1, 3, 5, 7, 9, bez powtarzania jakiejkolwiek cyfry. Oblicz sumę wszystkich takich liczb.

	Nr zadania	5.	6.
Wypełnia	Maks. liczba pkt	2	3
egzaminator	Uzyskana liczba pkt		

Zadanie 7. (0–2)

Punkt P = (10, 2429) leży na paraboli o równaniu $y = 2x^2 + x + 2219$. Prosta o równaniu kierunkowym y = ax + b jest styczna do tej paraboli w punkcie P. Oblicz współczynnik b.

Odpowiedź:

Zadanie 8. (0–3)

Udowodnij, że dla dowolnych dodatnich liczb rzeczywistych x i y, takich że x < y, i dowolnej dodatniej liczby rzeczywistej a, prawdziwa jest nierówność $\frac{x+a}{y+a} + \frac{y}{x} > 2$.

	Nr zadania	7.	8.
Wypełnia	Maks. liczba pkt	2	3
egzaminator	Uzyskana liczba pkt		

Zadanie 9. (0-3)

Dany jest trójkąt równoramienny ABC, w którym |AC| = |BC|. Na ramieniu AC tego trójkąta wybrano punkt M ($M \ne A$ i $M \ne C$), a na ramieniu BC wybrano punkt N, w taki sposób, że |AM| = |CN|. Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T. Udowodnij, że $|ST| = \frac{1}{2}|AB|$.

	Nr zadania	9.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

Zadanie 10. (0-4)

Punkt D leży na boku AB trójkąta ABC oraz |AC|=16, |AD|=6, |CD|=14 i |BC|=|BD|. Oblicz obwód trójkąta ABC.

	Nr zadania	10.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 11. (0–6)

Dane są okręgi o równaniach $x^2 + y^2 - 12x - 8y + 43 = 0$ i $x^2 + y^2 - 2ax + 4y + a^2 - 77 = 0$. Wyznacz wszystkie wartości parametru a, dla których te okręgi mają dokładnie jeden punkt wspólny. Rozważ wszystkie przypadki.

	Nr zadania	11.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 12. (0–6)

Trzywyrazowy ciąg (a, b, c) o wyrazach dodatnich jest arytmetyczny, natomiast ciąg $\left(\frac{1}{a}, \frac{2}{3b}, \frac{1}{2a+2b+c}\right)$ jest geometryczny. Oblicz iloraz ciągu geometrycznego.

Odpowiedź:

	Nr zadania	12.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 13. (0–6)

Wielomian określony wzorem $W(x) = 2x^3 + (m^3 + 2)x^2 - 11x - 2(2m+1)$ jest podzielny przez dwumian (x-2) oraz przy dzieleniu przez dwumian (x+1) daje resztę 6. Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność $W(x) \le 0$.

	Nr zadania	13.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 14. (0-4)

Rozwiąż równanie $(\cos x) \left[\sin \left(x - \frac{\pi}{3} \right) + \sin \left(x + \frac{\pi}{3} \right) \right] = \frac{1}{2} \sin x$.

	Nr zadania	14.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0-7)

Rozważmy wszystkie graniastosłupy prawidłowe trójkątne o objętości V=2. Wyznacz długości krawędzi tego z rozważanych graniastosłupów, którego pole powierzchni całkowitej jest najmniejsze. Oblicz to najmniejsze pole.

	Nr zadania	15.
Wypełnia	Maks. liczba pkt	7
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)