# METRICS BASED COMPARISON AND PERFORMANCE EVALUATION OF SOA AND MICROSERVICES



### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL-506004

Under the guidance of Dr. S. Ravichandra Assoc. Professor, CSE, NITW

Anirudh Nanduri(167241) Anirudh Avire(167208) Avinash(167235)

#### CONTENTS

- 1. Problem Statement
- 2. SOA Definition
- 3. Microservice Definition
- 4. SOA vs Microservices
- 5. Implementation Details
- 6. Performance Testing
- 7. Architecture Diagrams
- 8. Coupling Tables
- 9. Comparison of Response times of SOA and Microservice Architecture
- 10. Multiple Instances of Microservices

#### PROBLEM STATEMENT

- A systematic mapping study conducted by Taibi D *et al.* stated the open issues and research gaps in the emerging topic of microservices architecture [1].
- Among the emerging issues highlighted, comparison of both service oriented architecture and microservices is one which we have selected. There is a lack of comparison between these two architectures in terms of performance, coupling, development effort and maintenance.
- In this work, we choose to compare both the styles with loose coupling first and then we compare them in terms of performance.

#### **IMPLEMENTATION**

- A Retail Vehicle Application[4] is considered for comparing both the architectures.
- It is implemented in SOA and Microservices architectures using Spring Boot.
- JAR file of each service is containerised
- Each **Docker** container represents a service
- The application created in both the architecture styles is tested under a load of 1000 users and their response time is compared using **JMeter**

#### **ARCHITECTURE**

#### **SOA Application**

#### **Microservice Application**



## SERVICE ORIENTED ARCHITECTURE

MICROSERVICE ARCHITECTURE

- 1. Applications make use of services available in the network
- 2. Follows "share-as-much-as-possible" architecture approach
- 3. Maximises application service reusability
- 4. Services share data storage

- 1. Large application made up of fine grained services
- 2. Follows "share-as-little-as-possible" architecture approach
- 3. Focuses on decoupling
- 4. Services have their own data storage

#### **SOA VS MICROSERVICES**





#### PERFORMANCE TESTING

- Apache JMeter<sup>TM</sup> application is used for load testing.
- It is an open source software, a 100% pure Java application designed to load test functional behavior and measure performance.
- It uses threads for calling API of the services.
- Each thread corresponds to a single user.

**Coupling in SOA** 

| Service#                    | Service Name                | Interac<br>ting<br>Servic<br>e# | CS<br>Value | RCS<br>Value |
|-----------------------------|-----------------------------|---------------------------------|-------------|--------------|
| 1                           | Config Service              | 2,3,4,5                         | 4           | 0.8          |
| 2                           | PartProduct<br>Service      | 1,2,5                           | 3           | 0.6          |
| 3                           | PricingIncentive<br>Service | 1                               | 1           | 0.2          |
| 4 DealerLead<br>Service     |                             | 1                               | 1           | 0.2          |
| 5 CompareInvento ry Service |                             | 1,2                             | 2           | 0.4          |

**Coupling in Microservice Architecture** 

| Micros<br>ervice<br># | Microservice<br>Name | Interacting<br>Service # | CS Value | RCS<br>Value |
|-----------------------|----------------------|--------------------------|----------|--------------|
| 1                     | Config Service       | 2,3,4,5,6,7,8,9          | 8        | 0.88         |
| 2                     | Part Service         | 1,4,8                    | 3        | 0.33         |
| 3                     | Product Service      | 1                        | 1        | 0.11         |
| 4                     | Compare Service      | 1,2                      | 2        | 0.22         |
| 5                     | Incentive Service    | 1,6                      | 2        | 0.22         |
| 6                     | Pricing Service      | 1,5                      | 2        | 0.22         |
| 7                     | Dealer Service       | 1,9                      | 2        | 0.22         |
| 8                     | Inventory Service    | 1,2                      | 2        | 0.22         |
| 9                     | Lead Service         | 1,7                      | 2        | 0.22         |

#### **COMPARISON OF COUPLING OF SERVICES**





#### **COMPARISON OF RESPONSE TIME**

| Service # | Service Name             | Response Time(ms)<br>(Microservice) | Response Time(ms)<br>(SOA) |
|-----------|--------------------------|-------------------------------------|----------------------------|
| 1         | PartProduct Service      | 4813.69                             | 8080.58                    |
| 2         | PricingIncentive Service | 3870.91                             | 15127.50                   |
| 3         | DealerLead Service       | 4037.32                             | 16199.60                   |
| 4         | CompareInventory Service | 4866.44                             | 13887.48                   |

• From the above table, we conclude that Microservices application performs better than SOA application in terms of Response Time

#### **COMPARISON OF RESPONSE TIME**





PricingIncentive Service

CompareInventory Service

#### RESPONSE TIME UNDER DIFFERENT LOAD CONDITIONS

| Microserv ice # | Microservice Name  | Response Time(ms)<br>(500 samples) | Response Time(ms)<br>(1000 Samples) |
|-----------------|--------------------|------------------------------------|-------------------------------------|
| 1               | Part Service       | 4245.85                            | 14590.98                            |
| 2               | Product Service    | 5381.52                            | 6712.26                             |
| 3               | Compare Service    | 4818.51                            | 14296.40                            |
| 4               | Incentives Service | 3133.11                            | 3481.54                             |
| 5               | Pricing Service    | 4914.38                            | 9608.29                             |
| 6               | Dealer Service     | 4608.70                            | 5398.62                             |
| 7               | Inventory Service  | 4403.81                            | 3783.48                             |
| 8               | Lead Service       | 3671.6                             | 10303.73                            |

## RESPONSE TIME UNDER DIFFERENT LOAD CONDITIONS IN MICROSERVICE ARCHITECTURE



#### RESPONSE TIME UNDER DIFFERENT LOAD CONDITIONS

- We observe that response time increases with increase in number of users
- We need a solution such that the performance should be improved under different load
- Running multiple instances of the microservices achieves this.

#### **MULTIPLE INSTANCES**



 Load balancing is achieved by running multiple instances of each microservice and hence the performance will be improved.

#### RESPONSE TIME FOR DIFFERENT MICROSERVICE INSTANCES

| Microserv ice # | Microservice Name  | Response Time(ms)<br>(One Instance) | Response Time(ms)<br>(Three Instances) |
|-----------------|--------------------|-------------------------------------|----------------------------------------|
| 1               | Part Service       | 3260.84                             | 1285.21                                |
| 2               | Product Service    | 7250.73                             | 2659.34                                |
| 3               | Compare Service    | 5835.07                             | 2880.34                                |
| 4               | Incentives Service | 3489.36                             | 1696.75                                |
| 5               | Pricing Service    | 5045.18                             | 2999.06                                |
| 6               | Dealer Service     | 3208.39                             | 1805.90                                |
| 7               | Inventory Service  | 3113.12                             | 1670.80                                |
| 8               | Lead Service       | 3273.28                             | 1780.96                                |

• From the above table, we observe that performance of microservices can be improved by running multiple instances depending on the service consumption.

#### RESPONSE TIME FOR DIFFERENT MICROSERVICE INSTANCES



#### CONCLUSION

- We observed that coupling for Microservices application is less than that of SOA.
- Microservices application performs better than than SOA application
- Performance in Microservices architecture can be increased by running multiple instances of respective microservice.

#### **REFERENCES**

- [1]. Taibi, Davide, Valentina Lenarduzzi, and Claus Pahl. "Architectural patterns for microservices: a systematic mapping study." SCITEPRESS, 2018.
- [2].Raj, Vinay, and S. Ravichandra. "Microservices: A perfect SOA based solution for Enterprise Applications compared to Web Services." 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2018.
- [3].Salah, Tasneem, et al. "Performance comparison between container-based and VM-based services." 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN). IEEE, 2017.
- [4].Bhallamudi P, Tilley S, Sinha A. Migrating a Web-based application to a service-based system-an experience report. In2009 11th IEEE International Symposium on Web Systems Evolution 2009 Sep 25 (pp. 71-74). IEEE.

## THANK YOU