

Monitoramento e Gerenciamento de Redes

- Aula 05 -

Mauro Cesar Bernardes

Plano de Aula

Objetivo

- Compreender o funcionamento do protocolo de serviços DHCP
- Possibilitar a implementação de DHCPv4 em redes de empresas de pequeno a médio porte.

Conteúdo

- A camada de Rede (camada 3)
- Serviços: DHCP

Metodologia

 Aula expositiva e desenvolvimento de atividades práticas com configuração em simulador (Packet Tracer) de servidores DHCP.

(DHCP)

Conceitos (DHCP)

Conceitos: DHCPv4 Servidor e Cliente

- Dynamic Host Configuration Protocol v4 (DHCPv4) atribui endereços IPv4 e outras informações de configuração de rede dinamicamente.
- Como os hosts (PCs, Notebooks, tablets, SmartPhones, ...) geralmente constituem a grande maioria dos nós de uma rede, o DHCPv4 é uma ferramenta extremamente útil para poupar o tempo dos administradores da rede.
- Um servidor dedicado de DHCPv4 é escalável e relativamente fácil de gerenciar. Em redes domésticas, em um pequeno escritório remoto ou local de escritórios domésticos, um roteador pode ser configurado para proporcionar serviços DHCPv4 sem a necessidade de um servidor dedicado.
- Geralmente o sistema operacional dos roteadores oferecem suporte a um servidor DHCPv4 completo.
- O servidor DHCPv4 atribui, ou concede, dinamicamente, um endereço IPv4 de um pool de endereços por um período limitado de tempo escolhido pelo servidor ou até o cliente não precisar mais do endereço.
- Os clientes recebem concessão de informações do servidor por um período definido administrativamente.
- Os administradores configuram os servidores DHCPv4 para definir as concessões para expirarem em intervalos diferentes. A concessão ocorre normalmente de 24 horas a uma semana ou mais.
- Quando a concessão expira, o cliente precisa pedir outro endereço, embora geralmente receba novamente o mesmo endereço.

Conceitos: Operação DHCPv4

DHCPv4 funciona em modo client/server

- Quando um cliente se comunica com um servidor DHCPv4, o servidor atribui ou concede o endereço IPv4 para esse cliente.
- O cliente conecta-se à rede com o IPv4 concedido pelo servidor até que a concessão expire.
- O cliente deve entrar em contato com o servidor DHCP periodicamente para estender a concessão.
- Este mecanismo de concessão garante que os clientes que se mudem ou fiquem sem energia não mantenham os endereços de que não precisam.

• Quando uma concessão expirar, o servidor DHCP devolverá o endereço ao *pool*, onde ele poderá ser

realocado conforme necessário.

Serviços em rede: (DHCP)

- Principais parâmetros que devem ser configurados para que o protocolo TCP/IP funcione em um host:
 - Endereço IP: endereço IP alocado ao host;
 - Máscara de sub-rede: máscara da rede ao qual o host foi alocado;
 - Gateway Padrão: Gateway para rede ao qual o host foi alocado;
 - Número IP de um ou mais servidores DNS: endereço IP do servidor DNS para o host;

Endereçamento IP em modo DHCP

- Em uma rede de Arquitetura TCP/IP, todo equipamento (host) possui um endereço IP distinto.
- A atribuição/configuração do endereço IP pode ser feita de forma:
 - 1. Automática (via servidor de DHCP)
 - 2. Estático (configurada manualmente pelo administrador do equipamento ou da rede)
- O DHCP (Dynamic Host Configuration Protocol) é o protocolo que provê um meio para alocar estes endereços de forma automática (dinamicamente).

- Em uma rede com centenas e até mesmo milhares de *hosts*, configurar o TCP/IP em cada *host* poderá se torna uma tarefa bastante trabalhosa;
- Sempre que houver mudanças, a reconfiguração terá que ser feita manualmente em todas as estações de trabalho.

- Possibilidade de erros de configuração manual:
 - Digitação do endereço IP;
 - Digitação da máscara de sub-rede.
- DHCP: criado para facilitar a configuração e administração do protocolo TCP/IP em uma rede com um grande número de hosts

- O serviço DHCP (Dynamic Host Configuration Protocol) torna automática a atribuição de endereços IP, máscaras de sub-rede, gateways e outros parâmetros de rede;
- Isso é conhecido também como 'endereçamento dinâmico';
- A alternativa para o endereçamento dinâmico é o endereçamento estático;
- Ao usar o endereçamento estático, o administrador de redes insere manualmente informações de endereçamento IP em hosts;
- Quando um host está conectado à rede, o servidor DHCP é contatado e um endereço IP é requisitado (via broadcast);
- O servidor DHCP escolhe um endereço IP de uma lista configurada de endereços chamada pool e o atribui (aloca) ao host.

- Em redes maiores, ou onde a população de usuários muda frequentemente, o DHCP é preferido para atribuição de endereços. Novos usuários podem chegar e precisar de uma conexão; outros podem ter novos computadores que devem ser conectados;
- Em vez usar endereçamento estático para cada conexão, é mais eficiente ter endereços IP atribuídos automaticamente usando o DHCP.
- Endereços distribuídos por DHCP podem ser alocados por um determinado período. Quando essa locação expira, o endereço é devolvido ao pool para ser reutilizado, se o host tiver sido desligado ou desconectado da rede.
- Os usuários podem se mover livremente de um local para outro e restabelecer com facilidade conexões de rede com o DHCP.

- Com a instalação de um servidor DHCP é possível fazer com que os computadores e demais dispositivos de uma rede obtenham automaticamente configurações de TCP/IP
- Com o uso do DHCP a distribuição de endereços IP e demais configurações do TCP/IP é automatizada e gerenciada de forma centralizada;

Configuração Automática

Quando escolhida a <u>forma Automática</u>, o *host* buscará por um servidor de endereços (DHCP) na rede ao qual faz parte.

Redes domésticas

Em redes domésticas, o servidor DHCP pode ser configurado no access-point, que exerce o papel de roteador entre a rede interna (LAN) e a Internet (WAN)

Copper Straight-Through

- A atribuição de um endereço IP pelo servidor DHCP poderá ser de forma:
 - 1. Manual
 - 2. Automática
 - 3. Dinâmica

Servidor DHCP: Configuração Manual

- Neste caso, é possível atrelar um endereço IP a um determinado host na rede.
- Para isso, é necessária a associação de um endereço IP existente e livre no banco do servidor DHCP ao endereço MAC do adaptador de rede do host.
- O endereço IP "associado" ao endereço MAC de um host não poderá ser utilizado por outro host.

Servidor DHCP: Configuração Automática

- Nesta forma, o servidor DHCP é configurado para atribuir um endereço IP a um equipamento por tempo indeterminado.
- Quando este conecta-se pela primeira vez na rede, lhe é atribuído um endereço permanente.
- A diferença existente entre esta e a primeira configuração é que nesta não é necessária uma especificação do equipamento que utilizará determinado endereço.
- · As informações de endereçamento IP são atribuídas de forma automática.

Servidor DHCP: Configuração Dinâmica

- O endereço IP é alocado temporariamente a um host e, periodicamente, é necessária a atualização dessa alocação.
- Desta forma é possível que um mesmo endereço IP seja utilizado por diferentes equipamentos, em momentos diferentes.
- Basta, para isso, que o primeiro a alocar um determinado endereço IP deixe de utilizá-lo.
- Quando o outro equipamento solicitar ao servidor DHCP, um endereço IP poderá ser fornecido o mesmo o endereço liberado pelo host anteriormente.

Servidor DHCP

- ➤ O servidor DHCP deve ser configurado pelo administrador da rede para disponibilizar aos clientes da rede (*hosts*) endereços IP em uma das três formas de fornecimento descritas anteriormente:
 - ⇒ manual, automática ou dinâmica.
- ➤ Para tanto, será configurado um banco de dados no servidor DHCP com os endereços da sub-rede que serão fornecidos de forma automática.

Exemplo: Alteração do IP do servidor DNS

Exemplo: Alteração do IP do servidor DNS

Exemplo: Alteração do IP do servidor DNS

 Servidor DHCP: é um servidor onde foi instalado e configurado o serviço DHCP.

 Cliente DHCP: é qualquer dispositivo de rede (host) capaz de obter as configurações de TCP/IP a partir de um servidor DHCP.

 Escopo: intervalo consecutivo completo dos endereços IP possíveis para uma rede. Exemplo: Uma LAN empresarial

- Escopo: faixas de endereços IP criadas pelo administrador, e que serão distribuídas pelo servidor DHCP;
- Para cada escopo também podem ser configurados outros parâmetros:
 - IP do gateway;
 - máscara de sub-rede, e;
 - servidor DNS.

- Intervalo de exclusão: sequência limitada de endereços IP dentro de um escopo, excluído dos endereços que são fornecidos pelo DHCP
 - Ex.: dentro da faixa 192.168.0.0 a 192.168.0.255 (rede 192.168.0.0/máscara 255.255.255.0), é criada uma faixa de exclusão de 192.168.0.120 a 192.168.0.130

- Pool de endereços: Endereços remanescentes após a definição do escopo DHCP e intervalo de exclusão
 - No exemplo anterior o pool de endereços é formado pelos endereços de 192.168.0.4 a 192.168.0.119 e endereços de 192.168.0.131 a 192.168.0.254.

 Concessão: período de tempo especificado por um servidor DHCP durante o qual um computador cliente pode utilizar um endereço IP que ele recebeu do servidor DHCP.

 Reserva: concessão de endereço permanente pelo servidor DHCP, assegurando que um dispositivo de hardware especificado na subrede possa utilizar sempre o mesmo endereço IP.

Etapas de funcionamento (DHCP)

Etapas de conceitos DHCPv4 para obter um leasing

Quando um dispositivo final cliente configurado para fazer uso de DHCP realiza o boot (ou quando um novo equipamento se conecta à rede), inicia-s um processo de 4 etapas para obtenção de endereçamento IP:

- 1. Descoberta do DHCP (DHCPDISCOVER)
- 2. Pacote de DHCP Offer (DHCPOFFER)
- 3. Solicitação de DHCP (DHCPREQUEST)
- 4. Reconhecimento de DHCP (DHCPACK)

Etapas de conceitos DHCPv4 para renovar um leasing

Antes da expiração da concessão, o cliente inicia um processo de duas etapas para renovar a concessão com o servidor DHCPv4, conforme mostrado na figura:

1. DHCP Request (DHCPREQUEST)

Before the lease expires, the client sends a DHCPREQUEST message directly to the DHCPv4 server that originally offered the IPv4 address. Se um DHCPACK não for recebido dentro de um período especificado, o cliente envia outro DHCPREQUEST, de modo que um dos outros servidores DHCPv4 possa estender o aluguel.

2. DHCP Acknowledgment (DHCPACK)

On receiving the DHCPREQUEST message, the server verifies the lease information by returning a DHCPACK.

Processo de descoberta inicial

Processo de descoberta inicial

- Cliente envia uma mensagem conhecida como "DHCPDiscover" para todos da rede (broadcast)
- O formato desta mensagem é específico, sendo reconhecido apenas pelo servidor DHCP

Processo de descoberta inicial

Passo1: O pacote com **DHCPDiscover** endereçado em *broadcast* é enviado ao switch

Passo2: O pacote com **DHCPDiscover** é enviado pelo Switch a todos os equipamentos conectados a ele (comunicação broadcast).

- O servidor DHCP recebe a mensagem DHCPDiscover enviada pelo cliente e responde com a oferta de um endereço IP e demais configurações, como máscara de subrede, gateway e DNS
- Mensagem conhecida como "DHCPOffer"

• A Mensagem conhecida como "DHCPOffer" alcança todos os equipamentos na mesma rede do servidor DHCP (comunicação em Broadcast)

- Assim que a mensagem DHCPOffer é recebida, o cliente seleciona o endereço oferecido respondendo ao servidor com uma solicitação de DHCP "DHCPRequest", informando que a oferta foi aceita
- Esta mensagem é enviada em *broadcast*, pois o cliente ainda não possui as configurações do protocolo TCP/IP

 A mensagem "DHCPRequest" também é enviada em broadcast, atingindo todos os equipamentos na mesma rede do servidor.

• Após receber a mensagem **DHCPRequest** do cliente, o servidor DHCP envia uma mensagem de reconhecimento de DHCP ("**DHCPAck**"), aprovando a concessão.

A mensagem de DHCP ("DHCPAck"), aprovando a concessão, é enviada em broadcast a todos os equipamentos na rede.

 Depois de receber o DHCPAck do servidor DHCP, o cliente configura suas propriedades de TCP/IP utilizando as informações enviadas pelo servidor DHCP, na mensagem DHCPOffer

- Quando um cliente DHCP é desligado e reinicializado (na mesma subrede), ele geralmente obtém uma concessão para o mesmo endereço IP que tinha antes do desligamento.
- Depois da metade do tempo de concessão do cliente ter decorrido, o cliente tenta renovar a concessão com o servidor DHCP.

 O cliente envia uma mensagem DHCPRequest diretamente ao servidor que anteriormente havia efetuado a concessão (pois agora o cliente tem um endereço IP e sabe o endereço IP do servidor DHCP), para renovar e estender a concessão de endereço atual

- Se o servidor DHCP original estiver ativo, ele envia uma mensagem DHCPAck, o que significa que a concessão atual foi renovada
- Se quaisquer informações tiverem sido alteradas desde que o cliente obteve a concessão da primeira vez, o cliente atualiza a configuração

 Se o cliente não conseguir se comunicar com o servidor DHCP original, o cliente tenta renovar a concessão atual com qualquer servidor DHCP disponível, enviando um DHCPDiscover em broadcast

 Se um servidor responder com um DHCPOffer para atualizar a concessão atual, o cliente poderá renovar a concessão baseada na oferta do servidor DHCP, e continuar operando normalmente na rede

- Se a concessão expirar e nenhum servidor foi contatado, o cliente deve interromper imediatamente o uso do endereço IP concedido
- Em seguida, o cliente repete todo o processo de obtenção de uma nova concessão

Atividade Prática (DHCP)

Aula Prática

- Atividade Prática 2:
 - Configure o cenário apresentado a seguir.
- Para a realização desta atividade prática, utilize o software CISCO *Packet Tracer*.)

Passo 1: Configure a topologia

Arquivo:

2oSem Aula 05 DHCP 2022.pkt

2 endereços de Rede (com 2 gateways).

Passo 2: Configure a Interface Gig0/1

Configuração da interface GigEthernet 0/1

Análise!

Passo 3: Reconfigure a Interface Gig0/1

Passo 4: Reconfigure a Interface Gig0/2

Passo 5: Analise a configuração dos hosts

Passo 6: instalação do Servidor DHCP

Passo 7: Configurando IP do Servidor DHCP

Passo 8: Configuração do Servidor DHCP

Passo 9: Simulação de requisição DHCP

Passo 10: Simulação de requisição DHCP

Passo 11: Simulação de requisição DHCP

Passo 12: Simulação de requisição DHCP

Passo 13: Simulação de requisição DHCP

Passo 14: Simulação de requisição DHCP

Passo 15: Simulação de requisição DHCP

Passo 16: Simulação de requisição DHCP

Configuração do DHCP em um Switch CISCO

Configuração de serviço DHCP em Switch

```
Switch>enable
Switch#configure terminal
Switch(config)#ip dhcp excluded-address [starting address] [ending address]
Switch(config) #ip dhcp pool [pool name]
Switch (dhcp-config) #network [network ID] [subnet mask]
Switch (dhcp-config) #default-router [IP address of default gateway]
Switch(dhcp-config) #dns-server [IP address of DNS server]
Switch (dhcp-config) #exit
Switch(config) #interface vlan 1
Switch(config-if)#ip address [um endereço do Pool] [subnet mask]
Switch (config-if) #no shutdown
```


Top

Configuração do DHCP em um Roteador CISCO

Configuração do serviço DHCP no roteador

 Agora você tem uma compreensão básica de como o DHCPv4 funciona e como ele pode tornar seu trabalho um pouco mais fácil.

• É possível configurar um roteador como um servidor DHCPv4.

O servidor DHCPv4 roteador atribui e gerencia endereços IPv4 de pools de endereços especificados no

roteador para os clientes DHCPv4.

Passo 18: configurando DHCP no gateway

Passo 18a: configurando DHCP no gateway

Router>enable Router#configure terminal Router(config)#ip dhcp pool lab1 Router(dhcp-config)#default-router 200.200.200.1 Router(dhcp-config)#net 200.200.200.0 255.255.255.128

Router (dhcp-config) #end

Router#

Configuração do DHCP da rede 200.200.200.0/255.255.255.128

Use as seguintes etapas para configurar um servidor DHCPv4 do Cisco IOS:

- **Etapa 1**. Exclude IPv4 addresses. A single address or a range of addresses can be excluded by specifying the *low-address* and *high-address* of the range. Excluded addresses should be those addresses that are assigned to routers, servers, printers, and other devices that have been, or will be, manually configured. Você também pode digitar o comando várias vezes. O comando é **ip dhcp excluded-address** *low-address* [high-address]
- **Etapa 2**. Defina um nome de pool DHCPv4. The **ip dhcp pool pool-name** command creates a pool with the specified name and puts the router in DHCPv4 configuration mode, which is identified by the prompt **Router(dhcp-config)#.**

Tarefa	Comando IOS
Defina o pool de endereços.	network network-number [mask / prefix-length]
Defina o roteador ou gateway padrão.	default-router address [address2address8]
Defina um servidor DNS.	dns-server address [address2address8]
Defina o nome de domínio.	domain-name domain
Defina a duração do aluguel do DHCP.	lease {days [hours [minutes]] infinite}
Defina o servidor NetBIOS WINS.	netbios-name-server address [address2address8]

Use os comandos da tabela para verificar se o servidor DHCPv4 do Cisco IOS está operacional.

Comando	Descrição
show running-config section dhcp	Exibe os comandos DHCPv4 configurados no roteador.
show ip dhcp binding	Displays a list of all IPv4 address to MAC address bindings provided by the DHCPv4 service.
show ip dhcp server statistics	Displays count information regarding the number of DHCPv4 messages that have been sent and received

Verify the DHCPv4 Configuration: As shown in the example, the **show running-config | section dhcp** command output displays the DHCPv4 commands configured on R1. The | **section** parameter displays only the commands associated with DHCPv4 configuration.

```
R1# show running-config | section dhcp
ip dhcp excluded-address 192.168.10.1 192.168.10.9
ip dhcp excluded-address 192.168.10.254
ip dhcp pool LAN-POOL-1
network 192.168.10.0 255.255.255.0
default-router 192.168.10.1
dns-server 192.168.11.5
domain-name example.com
```

Verify DHCPv4 Bindings: As shown in the example, the operation of DHCPv4 can be verified using the **show ip dhcp binding** command. Esse comando exibe uma lista de todos os endereços IPv4 para associações de endereço MAC que foram fornecidas pelo serviço DHCPv4.

```
R1# show ip dhcp binding
Bindings from all pools not associated with VRF:
IP address Client-ID/ Lease expiration Type State Interface
Hardware address/
User name
192.168.10.10 0100.5056.b3ed.d8 Sep 15 2019 8:42 AM Automatic Active
GigabitEthernet0/0/0
```

Para verificar estatísticas DHCPv4:

- A saída do comando show ip dhcp server statistics é usada para verificar quais mensagens estão sendo recebidas ou enviadas pelo roteador
- Ele exibe informações sobre a quantidade de mensagens DHCPv4 que foram enviadas e recebidas.

R1# show ip dhcp server	r statistics
	9465
Address pools 1	
Database agents 0	
Automatic bindings 2	
Manual bindings 0	
Expired bindings 0	
Malformed messages 0	
Secure arp entries 0	
Renew messages 0	
Workspace timeouts 0	
Static routes 0	
Relay bindings 0	
Relay bindings active	0
Relay bindings terminat	ted 0
Relay bindings selectir	ng 0
Message Re	eceived
BOOTREQUEST 0	
DHCPDISCOVER 4	
DHCPREQUEST 2	
DHCPDECLINE 0	
DHCPRELEASE 0	
DHCPINFORM 0	

Verificar Endereçamento IPv4 Recebido do Cliente DHCPv4:

- O comando **ipconfig** /all, quando emitido em PC1, exibe os parâmetros TCP/IP, conforme mostrado no exemplo.
- Como o PC1 foi conectado ao segmento da rede 192.168.10.0/24, ele recebeu automaticamente um sufixo de DNS, endereço IPv4, máscara de sub-rede, gateway padrão e o endereço de servidor DNS desse pool.
- Nenhuma configuração da interface do roteador específica do DHCP é necessária.
- Se um PC estiver conectado a um segmento de rede que tenha um pool de DHCPv4 disponível, poderá obter o endereço IPv4 do pool apropriado automaticamente.

```
C:\Users\Student> ipconfig /all
Windows IP Configuration
  Host Name . . . . . . . . . : ciscolab
  Primary Dns Suffix . . . . . . :
  Node Type . . . . . . . . . : Hybrid
  IP Routing Enabled. . . . . . : No
  WINS Proxy Enabled. . . . . . . . No
Ethernet adapter Ethernet0:
  Connection-specific DNS Suffix . : example.com
  Description . . . . . . . . : Realtek PCIe GBE Family Controller
  DHCP Enabled. . . . . . . . . : Yes
  Autoconfiguration Enabled . . . . : Yes
  IPv4 Address. . . . . . . . . : 192.168.10.10
  Lease Obtained . . . . . . . : Saturday, September 14, 2019 8:42:22AM
  Lease Expires . . . . . . . : Sunday, September 15, 2019 8:42:22AM
  Default Gateway . . . . . . . : 192.168.10.1
  DHCP Server . . . . . . . . . : 192.168.10.1
```

```
R1(config)# no service dhcp
R1(config)# service dhcp
R1(config)#
```

O serviço DHCPv4 é habilitado por default.

- Para desabilitar o serviço utilize o comando no service dhep no modo global configuration.
- Use o **service dhcp** para reativar o serviço DHCPv4, como mostrado no exemplo.
- Ativar o serviço não terá nenhum efeito se os parâmetros não estiverem configurados.
- **Observação**: Limpar as ligações DHCP ou interromper e reiniciar o serviço DHCP pode resultar na atribuição temporária de endereços IP duplicados na rede.

Etapas de configuração: DHCP Relay

- Em uma rede hierárquica complexa é possível que os servidores estejam alocados em uma subrede específica (apartada dos demais equipamentos), atuando como uma DMZ. Esses servidores podem fornecer serviços de DHCP, DNS, do TFTP e do FTP para toda a rede.
- Nesse caso, os clientes da rede normalmente não estão na mesma sub-rede que esses servidores.
- Para alcançar os servidores e receber serviços, os clientes usam frequentemente mensagens de broadcast.
- Na figura o PC1 precisará requisitar endereçamento IPv4 do servidor DHCPv4 que está em outra rede. Neste cenário o Switch0 e o Roteador0 NÃO estão configurados com servidor DHCPv4
- O servidor DHCPv4 está localizado em uma rede diferente e, portanto, as requisições DHCP geradas no PC1 (em forma de broadcast) NÃO irão alcançar esse servidor DHCP.
- o Roteador OPRECISARÁ ser configurado para retransmitir mensagens DHCPv4 para o servidor DHCPv4.

Etapas de configuração: DHCP Relay

- Configure O Roteador O com o comando ip helper-addressaddress no modo de configuração de interface (interface configuration).
- Isso fará com que o **Roteador**0 encaminhe requisições DHCPv4 para o servidor DHCPv4. Como mostrado no exemplo, a interface **g**0/0 no **Roteador**0 que recebe a requisição do PC1 está configurada para retransmitir a requisição DHCPv4 para o servidor DHCPv4 em 192.168.1.3.
- Quando o Roteador o está configurado como um agente de retransmissão do DHCPv4, ele aceita solicitações de broadcast do serviço de DHCPv4 e depois encaminha as solicitações como unicast ao endereço IPv4 192.168.1.3.
- O administrador da rede pode usar o comando show ip interface para verificar o resultado.

```
Router*enable
Router#configure terminal
Router(config) #interface gig0/0
Router(config-if) #ip helper-address 192.168.1.3
Router(config-if) #exit
Router(config) #exit
Router*show ip interface
```


Etapas de configuração: Roteador Doméstico

Normalmente, os roteadores domésticos já estão configurados para receber automaticamente informações de endereçamento IPv4 do ISP. Isso é para que os clientes possam facilmente configurar o roteador e se conectar à internet.

 Por exemplo, a figura abaixo mostra a página de configuração padrão da WAN para um roteador sem fio do Packet Tracer. Notice that the internet connection type is set to Automatic Configuration - DHCP. Essa seleção é usada quando o roteador é conectado a um DSL ou a um modem a cabo e atua como um cliente DHCPv4, solicitando um endereço IPv4 de um ISP.

Vários fabricantes de roteadores domésticos terão uma configuração semelhante.

Wireless Tri-Band Home Router										
Setup	Setup Basic S	Wireless	Security DDNS	Access Restrictions MAC Add	Wireles Applications & Gaming ress Clone	is Tri-Band Home Router Administration Advance	Firmware Version: v0.9.7 HomeRouter-PT-AC Status d Routing			
Internet Setup Internet Connection type		nfiguration - DHC					Help			
Optional Settings (required by some internet service providers)	Host Name: Domain Name: MTU:	y Size:	1500							

Resumo da configuração DHCP no gateway (roteador)

Configuração do DHCP da rede 200.200.200.128/ 255.255.255.128

Referências Bibliográficas

• Kurose, James F. Redes de computadores e a Internet: uma abordagem top-down/James F. Kurose e Keith W. Ross; 6ª edição, São Paulo: Addison Wesley, 2013. ISBN 978-85-8143-677-7.

Página Inicial: 255– Página Final: 260

Birkner, Matthew H. Projeto de Interconexão de Redes: Cisco Internetwork Design – CID. São Paulo: Pearson Education do Brasil, 2003. ISBN 85.346.1499-7.

Página Inicial: 96- Página Final:98

Tanenbaum, Andrew S; Wetherall, David. Redes de Computadores. São Paulo: Pearson Prentice Hall, 2011. 5ª edição americana. ISBN 978-85-7605-924-0. Página inicial294

CISCO NETACADEMY. A0097- 2021/01- Roteamento, Switching e Redes sem Fio, CAPÍTULO 7. Disponível em www.netacad.net