

1
2

3 What is claimed is:

4 1. A method of forming a semiconductor device comprising:

6 a) forming a gate structure over a substrate being doped with a first conductivity type
7 impurity;

8 b) performing a doped depletion region implantation by implanting ions being the
9 second conductive type to the substrate to form doped depletion regions
10 beneath and separated from said source/drain regions;

11 c) performing a S/D implant by implanting ions having a second conductivity type
12 into the substrate to form S/D regions adjacent to said gate;

13 (1) said doped depletion regions have an impurity concentration and thickness
14 so that said doped depletion regions are depleted due to a built-in
15 potential created between said doped depletion regions and said
16 substrate.

17

18 2. The method of claim 1 wherein doped depletion region are not formed under said gate
19 structure.

20 3. The method of claim 1 which further includes said doped depletion regions have a
21 impurity concentration so that the built-in junction potential between said doped depletion
22 regions and said substrate forms depletion regions in the substrate between the
23 source/drain regions and the doped depletion region;

1 said depletion regions have a net impurity concentration of the first
2 conductivity type.

3

4 4. The method of claim 1 which further includes said doped depletion regions have a
5 impurity concentration so that the built-in junction potential between said doped depletion
6 regions and said substrate forms depletion regions in the substrate between the
7 source/drain regions and the doped depletion region; said depletion regions have a
8 net impurity concentration of the first conductivity type;

9 said depletion regions have a net impurity concentration between 1E16
10 to 5E18 atom/cc.

11

12 5. The method of claim 1 which further includes implanting ions of a first impurity type
13 into said substrate between said source/drain regions and said doped depletion regions.

14 6. The method of claim 1 which further includes performing an implant type selected from
15 the group consisting of Halo implant, threshold voltage implant, and a field implant, that
16 implant ions of a first impurity type into said substrate at least between said source/drain
17 regions and said doped depletion regions.

18 7. The method of claim 1 wherein the region of said substrate between said source/drain
19 regions and said doped depletion regions has a concentration of a first type impurity
20 between 1E16 to 1E18 atom/cc;
21 a channel region in said substrate under said gate structure; said channel region has a
22 concentration of a second type impurity between 1E16 to 1E18 atom/cc.

23

1 16. The method of claim 1 wherein the LDD implantation is performed by implanting As
2 ions at a dose between 5E14 and 1E16 atoms /cm², at an energy between 1keV and 10
3 keV.

4 17. The method of claim 1 wherein the LDD implantation is performed by implanting
5 Boron ions at a dose between 1E14 and 5E15 atoms /cm², at an energy between 1 keV
6 and 10 keV.

7 18. The method of claim 1 wherein the doped depletion region implantation is performed
8 by implanting As or P ions at a does between 5E12 and 5E13 atoms/cm2, at an energy
9 between 100 keV and 500 keV; said doped depletion region has a minimum depth below
10 the substrate surface between 0.09 and 0.7 μm .

11 19. The method of claim 1 wherein the doped depletion region implantation is performed
12 by implanting boron ions at a does between 5E11 and 5E13 atoms/cm2, at an energy
13 between 50 keV and 200 keV; said doped depletion region has a minimum depth below
14 the substrate surface between 0.09 and 0.7 μm .

15 20. The method of claim 1 wherein the S/D implant is performed by implanting arsenic
16 (As) or phosphorus (P) ions at a dose between 5E14 to 1E16 atoms/cm², at an energy
17 between 50 keV and 80 keV; said Source/drain regions have a depth below the substrate
18 surface of between 0.04 and 0.5 μm .

19 21. The method of claim 1 wherein said second conductivity type is p-type; and said S/D
20 implant is performed by implanting boron ions at a dose between 5E14 to 1E16
21 atoms/cm², at an energy between 50keV and 80keV; said source/drain regions have a depth
22 below the substrate surface of between 0.04 and 0.5 μm .

23 22. The method of claim 1 which further includes forming one or more spacers on the
24 sidewalls of said gate structure.

1

2 23. A method of forming a semiconductor device comprising:

3 a) forming a gate structure over on substrate being doped with a first conductivity

4 type impurity;

5 b) performing a doped depletion region implantation by implanting ions being the

6 second conductive type to the substrate to form doped depletion regions

7 beneath and separated from said source/drain regions;

8 (1) said doped depletion regions have an impurity concentration and thickness

9 so that said doped depletion regions are depleted due to a built-in

10 potential created between said doped depletion regions and said

11 substrate;

12 (2) said doped depletion regions have a impurity concentration so that the

13 built-in junction potential between said doped depletion regions

14 and said substrate forms depletion regions in the substrate between

15 the source/drain regions and the doped depletion region; said

16 depletion regions have a net impurity concentration of the first

17 conductivity type; said depletion regions have a net impurity

18 concentration between 1E16 to 1E18 atom/cc;

19 c) performing a S/D implant by implanting ions having a second conductivity type

20 into the substrate to form S/D regions adjacent to said gate;

21 (1) said substrate between said source/drain regions and said doped depletion

22 regions has a concentration of a first type impurity between 1E16 to

23 1E18 atom/cc.

24

- 1 24. The method of claim 23 wherein doped depletion region are not formed under said
 - 2 gate structure.
 - 3 25. The method of claim 23 wherein the region of said substrate between said source/drain
 - 4 regions and said doped depletion regions has a concentration of a first type impurity
 - 5 between 1E16 to 1E18 atom/cc;
 - 6 a channel region in said substrate under said gate structure; said channel region has a
 - 7 concentration of a second type impurity between 1E16 to 1E18 atom/cc.
 - 8 26. The method of claim 23 which further includes forming one or more spacers on the
 - 9 sidewalls of said gate structure.
 - 10 27. The method of claim 23 which further includes forming two or more spacers on the
 - 11 sidewalls of said gate structure prior to the doped depletion region implantation.
- 12
- 13 28. A semiconductor device comprising:
 - 14 a semiconductor substrate having a surface; said semiconductor
 - 15 substrate being doped with a first conductivity type impurity; the top portion of said
 - 16 semiconductor substrate is comprised of a first doped layer of a first conductivity type;
 - 17 a gate structure over the surface of said semiconductor substrate; said
 - 18 gate structure comprising a gate dielectric layer and a gate electrode;
 - 19 source/drain regions in said semiconductor substrate to oppose each
 - 20 other with a channel region laterally residing therebetween at a location immediately
 - 21 beneath said gate structure,

1 doped depletion regions of a second conductivity type in said a first
2 doped layer of a first conductivity type under said source/drain regions;

3 doped depletion regions are determined in impurity concentration and
4 thickness to ensure that this layer is fully depleted due to a built-in potential creatable
5 between said substrate and doped depletion regions;

6 whereby said doped depletion regions reduce the capacitance between
7 the source/drain regions and the substrate.

8 29. The semiconductor device of claim 28 which further includes said doped depletion
9 regions under said source/drain regions, but not under said channel region.

10 30. The semiconductor device of claim 28 which further includes LDD regions that extend
11 from said source/drain regions toward said channel region; said LDD regions being lower
12 in impurity concentration and shallower in depth than said source/drain region.

13 31. The semiconductor device of claim 28 which further includes depletion regions and
14 S/D depletion regions adjacent said doped depletion regions and between said
15 source/drain regions: and

16 said doped depletion regions and; said depletion regions have a net
17 impurity concentration of the first conductivity type.

18 32. The semiconductor device of claim 28 which further includes depletion regions
19 between said source/drain regions and said doped depletion regions; said depletion regions
20 have a net impurity concentration of the first conductivity type; said depletion regions has
21 a net impurity concentration between 1E16 to 1E18 atom/cc..

1 33. The semiconductor device of claim 28 which further includes said doped depletion
2 regions have a impurity concentration so that the built-in junction potential between said
3 doped depletion regions and said substrate forms depletion regions in the substrate
4 between the source/drain regions and the doped depletion region;

5 said depletion regions have a net impurity concentration of the first
6 conductivity type.

7 34. The semiconductor device of claim 28 which further includes said doped depletion
8 regions have a impurity concentration so that the built-in junction potential between said
9 doped depletion regions and said substrate forms depletion regions in the substrate
10 between the source/drain regions and the doped depletion region; said depletion regions
11 have a net impurity concentration of the first conductivity type;

12 said depletion regions have a net impurity concentration between 1E16
13 to 1E18 atom/cc.

14 35. The semiconductor device of claim 28 which further includes one or more spacers on
15 the sidewalls of said gate structure.