LITERATURE SURVEY ON VISUALIZING AND PREDICTING HEART DISEASE WITH AN INTERACTIVE DASHBOARD

SNO	TITLE	AUTHOR	YEAR	FINDINGS
1	Heart Disease	Chaimaa	2022	The paper demonstrated four
	Prediction	Boukhatem; Heba		classification methods:
	Using	Yahia Youssef; Ali		Multilayer Perceptron (MLP),
	Machine	Bou Nassif		Support Vector Machine
	Learning			(SVM), Random Forest (RF),
				and Naïve Bayes (NB), to build
				the prediction models. Data
				preprocessing and feature
				selection steps were done
				before building the models. The
				models were evaluated based
				on the accuracy, precision,
	4 .:0: 1	T7* .	2022	recall, and F1-score.
2,	An artificial	Victor	2022	The VLRAKN achieved the
	intelligence	ChangVallabhanent		highest accuracy when it is
	model for	Rupa Bhavani Ariel		compared with algorithms such
	heart disease	Qianwen XuMA		as naive Bayes, random forest
	detection	Hossain		classification, logistic
	using machine			regression and decision trees.
	learning			With the observation of this
	algorithms			approach, Random forest
				classification gives the
				parameters for the algorithms
				are based on the best accuracy
3	Effective	Senthilkumar	2019	score of the data reading. The prediction model is
3	Heart Disease	Mohan;	2019	introduced with different
	Prediction	Chandrasegar		combinations of features and
	Using Hybrid	Thirumalai; Gautam		several known classification
	Machine Machine	Srivastava		techniques. We produce an
	Learning	Siivastava		enhanced performance level
	Techniques			with an accuracy level of 88.7%
	reciniques			through the prediction model
				for heart disease with the
				hybrid random forest with a
				linear model (HRFLM).
4	Heart Disease	Najmu Nissa,	2021	This research work aims at
.	Prediction	Sanjay Jamwal and		identifying the best
	using Machine	Shahid Mohammad		classification algorithm in
	Learning			terms of the highest accuracy
	Technique			for the prediction of the
	1			aforementioned disease. This
				work will be justified by
				analyzing comparatively the

				support vector machine, decision tree and random forest
				algorithm for prediction of heart disease and the algorithm with the highest
				accuracy would be considered as the optimal one.
5	Heart disease prediction using data mining	U. Sairam, Santhosh Voruganti	2022	Data mining algorithms like Decision trees (J48), Bayesian classifiers, Multilayer preceptor, Simple logistic and Ensemble techniques are utilized to determine the heart ailments. The classification results will be envisioned by various representation procedures like 2D diagrams, pie graphs, and different techniques.
6	Heart Attack Prediction and Visualization of Contributing Factors Using Machine Learning	Megha Banerjee1 , Reetodeep Hazra1 , Suvranil Saha1 , Megha Bhushan1 , Subhankar Bhattacharjee2	2021	In this paper, they performed multiple data visualization to analyze what factor influences or contribute the most in the cardiac arrest. Lastly we compared four different highly reputed algorithms in the field of health analytics-Decision Tree, Random Forest, Gaussian Naïve Bayes, and Linear Regression. The Linear Regression algorithm showed the highest level of accuracy and precision (88% and 87% respectively)
7	Heart Disease Prediction using Hybrid machine Learning Model	M. Kavitha; G. Gnaneswar; R. Dinesh; Y. Rohith Sai; R. Sai Suraj	2021	Machine learning techniques Random Forest and Decision Tree are applied. In implementation, 3 machine learning algorithms are used, they are 1. Random Forest, 2. Decision Tree and 3. Hybrid model (Hybrid of random forest and decision tree). Experimental results show an accuracy level of 88.7% through the heart disease prediction model with the hybrid model.

8	Heart Disease Prediction using Exploratory Data Analysis	R.Indrakumari, T.Poongodi, Soumya Ranjan Jena	2020	The risk factors that causes heart disease is considered and predicted using K-means algorithm and the analysis is carried out using a publicly available data for heart disease. To predict the heart disease, K-means clustering algorithm is used along with data analytics and visualization tool.
9	Predicting Heart Diseases In Logistic Regression Of Machine Learning Algorithms	A. S. Thanuja Nishadi	2019	The aim of this study is to identify the most significant predicators of heart diseases and predicting the overall risks by using logistic regression. Thus, binary logistic model which is one of the classification algorithms in machine learning is used in this study to identify the predicators
10	Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison	Md Mamun Ali, Bikash Kumar Paul, Kawsar Ahmed, Francis M. Bui, Julian M.W. Quinn, Mohammad Ali Moni	2021	This study found that using a heart disease dataset collected from Kaggle three-classification based on knearest neighbor (KNN), decision tree (DT) and random forests (RF) algorithms the RF method achieved 92% accuracy along with 90% sensitivity and specificity.