Linear Regression on Algerian Forest Fire Dataset

Submitted by: Nilutpal Das

Life Cycle of Machine Learning Project

- Understanding the problem
- Data Collection
- Data Cleaning
- Exploratory Data Analysis
- Data Pre-Processing
- Model Training
- Model Evaluation

1) Problem Statement

• Implement Linear Regression on Algerian Forest Fire Dataset.

2) Data Collection

- The dataset is downloaded from UCI website.
- The dataset includes 244 instances that regroup a data of two regions of Algeria,
- The Bejaia region located in the northeast of Algeria and the Sidi Bel-abbes region located in the northwest of Algeria.
- 122 instances for each region.
- The period from June 2012 to September 2012.
- The dataset includes 11 attribues and 1 output attribue (class).
- The 244 instances have been classified into fire (138 classes) and not fire (106 classes) classes.
- This dataset comprises weather data attributes.
- Can be used to predict the forest fire weather type.
- Prediction can help to monitor on fire and make proper prevention.

Importing the libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

```
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
```

Loading the dataset

```
In [2]: df = pd.read_csv('D:\Data Science\Algerian dataset\Algerian_forest_fires_dataset.csv')
```

Showing top 5 records

[3]:	df	df.head()														
t[3]:		day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	
	0	01	06	2012	29	57	18	0	65.7	3.4	7.6	1.3	3.4	0.5	not fire	
	1	02	06	2012	29	61	13	1.3	64.4	4.1	7.6	1	3.9	0.4	not fire	
	2	03	06	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not fire	
		04	06	2012	25	89	13	2.5	28.6	1.3	6.9	0	1.7	0	not fire	
	4	05	06	2012	27	77	16	0	64.8	3	14.2	1.2	3.9	0.5	not fire	

3) Data Cleaning

3.1) Removing the unwanted rows from the dataset

```
In [4]: df.drop(index=[122,123], inplace=True)
    df.reset_index(inplace=True)
    df.drop('index', axis=1, inplace=True)
```

3.2) Adding new column name 'Region' in dataset

Out[6]:		day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	R
	0	01	06	2012	29	57	18	0	65.7	3.4	7.6	1.3	3.4	0.5	not fire	
	1	02	06	2012	29	61	13	1.3	64.4	4.1	7.6	1	3.9	0.4	not fire	
	2	03	06	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not fire	
	3	04	06	2012	25	89	13	2.5	28.6	1.3	6.9	0	1.7	0	not fire	
	4	05	06	2012	27	77	16	0	64.8	3	14.2	1.2	3.9	0.5	not fire	
	•••															
	239	26	09	2012	30	65	14	0	85.4	16	44.5	4.5	16.9	6.5	fire	
	240	27	09	2012	28	87	15	4.4	41.1	6.5	8	0.1	6.2	0	not fire	
	241	28	09	2012	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	not fire	
	242	29	09	2012	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	not fire	
	243	30	09	2012	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	not fire	

244 rows × 15 columns

3.3) Renaming the names of the columns

In [7]: df.rename(columns={' RH': 'RH', ' Ws': 'Ws', 'Rain ': 'Rain', 'Classes ':'Classes'},i

3.4) Stripping the classes features

```
In [8]: df.Classes = df.Classes.str.strip()
df['Classes'].unique()
```

Out[8]: array(['not fire', 'fire', nan], dtype=object)

In [9]: df.head()

Out[9]:		day	month	year	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	Regi
	0	01	06	2012	29	57	18	0	65.7	3.4	7.6	1.3	3.4	0.5	not fire	Веј
	1	02	06	2012	29	61	13	1.3	64.4	4.1	7.6	1	3.9	0.4	not fire	Веј
	2	03	06	2012	26	82	22	13.1	47.1	2.5	7.1	0.3	2.7	0.1	not fire	Веј
	3	04	06	2012	25	89	13	2.5	28.6	1.3	6.9	0	1.7	0	not fire	Веј
	4	05	06	2012	27	77	16	0	64.8	3	14.2	1.2	3.9	0.5	not fire	Веј

4) Exploratory Data Analysis

4.1) Data Profiling

4.1.1) Shape of the dataset

```
In [10]: df.shape
Out[10]: (244, 15)
```

Observation

• This dataset comprises of 244 Rows and 15 Columns.

4.1.2) Columns of the dataset

4.1.3) Checking missing values

```
df.isnull().sum()
In [12]:
          day
Out[12]:
          month
                         0
                         0
          year
          Temperature
                         0
          RH
                         0
          Ws
          Rain
          FFMC
                         0
                         0
          DMC
          DC
          ISI
          BUI
          FWI
                         1
          Classes
          Region
          dtype: int64
```

Observation

• One NuLL value in 'Classes' feature.

4.1.4) Fixing particular row from the dataset which is having the NuLL value

```
df.iloc[165]
In [13]:
          day
                                       14
Out[13]:
          month
                                       07
                                     2012
          year
          Temperature
                                       37
                                       37
          RH
          Ws
                                       18
                                      0.2
          Rain
          FFMC
                                     88.9
          DMC
                                     12.9
          DC
                                   14.6 9
          ISI
                                     12.5
          BUI
                                     10.4
          FWI
          Classes
                                      NaN
                          Sidi Bel-abbes
          Region
          Name: 165, dtype: object
```

Observation

• Some miss match positions.

4.1.5) Resetting missmatched position

```
In [14]: df.at[165, 'DC'] = 14.6
    df.at[165, 'ISI'] = 9
    df.at[165, 'BUI'] = 12.5
    df.at[165, 'FWI'] = 10.4
    df.at[165, 'Classes'] = 'fire'
```

4.1.6) Again checking the info of that particular Row

```
df.iloc[165]
In [15]:
                                       14
          day
Out[15]:
                                       07
          month
          year
                                     2012
          Temperature
                                       37
          RH
                                       37
          Ws
                                       18
          Rain
                                      0.2
          FFMC
                                     88.9
          DMC
                                     12.9
          DC
                                     14.6
          ISI
                                        9
          BUI
                                     12.5
                                     10.4
          FWI
          Classes
                                     fire
          Region
                          Sidi Bel-abbes
          Name: 165, dtype: object
```

4.1.7) Checking again missing values

```
In [16]: df.isnull().sum()
```

```
0
          day
Out[16]:
                           0
          month
                           0
          year
          Temperature
                           0
          RH
                           0
          Ws
                           0
                           0
          Rain
          FFMC
                           0
                           0
          DMC
                           0
          DC
          ISI
                           0
          BUI
                           0
          FWI
                           0
          Classes
                           0
                           0
          Region
          dtype: int64
```

Observation

• We have zero NuLL values.

4.1.8) Changing the datatypes of all columns

```
In [17]:
    df['day']=df['day'].astype(int)
    df['year']=df['year'].astype(int)
    df['Temperature']=df['Temperature'].astype(int)
    df['RH']=df['RH'].astype(int)
    df['Rain']=df['Rain'].astype(float)
    df['FFMC']=df['FFMC'].astype(float)
    df['DC']=df['DC'].astype(float)
    df['BUI']=df['FWI'].astype(float)
    df['BUI']=df['BUI'].astype(float)
    df['ISI']=df['ISI'].astype(float)
    df['Ws']=df['Ws'].astype(float)
    df['Region']=df['Region'].astype(object)
```

4.1.9) Adding new feature name 'Date' by replacing unecessary feature like 'day', 'month', 'year'

```
In [18]:
           df['Date'] = pd.to_datetime(df[['day', 'month', 'year']])
            df.drop(['day', 'month', 'year'],axis=1,inplace = True)
In [19]:
           df.head()
Out[19]:
               Temperature
                             RH
                                   Ws
                                        Rain
                                              FFMC DMC
                                                              DC
                                                                  ISI
                                                                       BUI
                                                                             FWI
                                                                                  Classes
                                                                                            Region
                                                                                                          Date
            0
                         29
                             57
                                  18.0
                                          0.0
                                                65.7
                                                              7.6
                                                                  1.3
                                                                        3.4
                                                                                   not fire
                                                                                                    2012-06-01
                                                        3.4
                                                                                             Bejaia
            1
                         29
                                  13.0
                                                64.4
                                                                  1.0
                                                                        3.9
                                                                                                    2012-06-02
                             61
                                          1.3
                                                        4.1
                                                              7.6
                                                                              0.4
                                                                                   not fire
                                                                                             Bejaia
           2
                         26
                             82
                                  22.0
                                         13.1
                                                47.1
                                                        2.5
                                                              7.1
                                                                  0.3
                                                                        2.7
                                                                              0.1
                                                                                   not fire
                                                                                             Bejaia
                                                                                                    2012-06-03
           3
                         25
                             89
                                  13.0
                                          2.5
                                                28.6
                                                        1.3
                                                              6.9 0.0
                                                                        1.7
                                                                              0.0
                                                                                   not fire
                                                                                             Bejaia
                                                                                                    2012-06-04
            4
                         27
                             77 16.0
                                         0.0
                                                64.8
                                                        3.0 14.2 1.2
                                                                        3.9
                                                                              0.5 not fire
                                                                                             Bejaia
                                                                                                    2012-06-05
```

4.1.10) Checking unique values

```
In [20]: df['Classes'].unique()
Out[20]: array(['not fire', 'fire'], dtype=object)
```

4.1.11) Check datatypes of the dataset

```
df.info()
In [21]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 244 entries, 0 to 243
        Data columns (total 13 columns):
                        Non-Null Count Dtype
           Column
        _ _ _
            -----
                        -----
            Temperature 244 non-null
         0
                                      int32
                        244 non-null
         1
                                      int32
                       244 non-null float64
         2
            Ws
            Rain
                      244 non-null float64
                       244 non-null float64
            FFMC
                       244 non-null float64
         5
            DMC
                       244 non-null float64
         6
            DC
                       244 non-null float64
         7
            ISI
                       244 non-null float64
         8
            BUI
                       244 non-null float64
         9
            FWI
                      244 non-null object
         10 Classes
                        244 non-null
                                      object
         11 Region
                        244 non-null
         12 Date
                                      datetime64[ns]
        dtypes: datetime64[ns](1), float64(8), int32(2), object(2)
        memory usage: 23.0+ KB
```

Observation

- 244 Rows and 15 Columns.
- No NuLL values.
- 4 datatypes int32, float64, object and datetime64.
- Datatypes included float64 = 8 Columns, int32 = 2 Columns, object = 2 Columns, datetime64 = 1 Columns.
- Total memory usage is 23.0+ KB

4.1.12) Checking memory usage by the dataset

```
In [22]: df.memory_usage()
```

```
Index
                           128
Out[22]:
          Temperature
                           976
          RH
                           976
                          1952
          Ws
          Rain
                          1952
          FFMC
                          1952
          DMC
                          1952
          DC
                          1952
                          1952
          ISI
          BUI
                          1952
          FWT
                          1952
          Classes
                          1952
          Region
                          1952
          Date
                          1952
          dtype: int64
```

Observation

- Temperature and RH uses 976 Kb memory.
- Ws, Rain, FFMC, DMC, DC, ISI, BUI, FWI, Classes, Region and date uses 1952 Kb memory.
- Datatype is int64.

4.1.13) Numerical and Categorical features

(a) Numerical Data

```
In [23]: # define numerical features
   numerical_features = [feature for feature in df.columns if df[feature].dtype != 'O']
   # print numerical features
   print('We have {} numerical features : {}'.format(len(numerical_features), numerical_features))
   We have 11 numerical features : ['Temperature', 'RH', 'Ws', 'Rain', 'FFMC', 'DMC', 'DC', 'ISI', 'BUI', 'FWI', 'Date']
```

(b) Categorical Data

```
In [24]: # define categorical features
    categorical_features = [feature for feature in df.columns if df[feature].dtype == '0']
# print categorical features
    print('\n We have {} categorical features : {}'.format(len(categorical_features), categorical_features); categorical_features : ['Classes', 'Region']
```

4.2) Feature Information

(a) Weather data Components

- Temperature: temperature noon (temperature max) in Celsius degrees: 22 to 42
- RH: Relative humidity in %: 21 to 90
- Ws: Wind speed in km/h: 6 to 29
- Rain: total day in mm: 0 to 16.8

(b) Date Components

- day, month and year is merged into date.
- date displayed in (DD/MM/YYYY) format.

(c) FWI Components

- FFMC : Fine Fuel Moisture Code index the FWI system: 28.6 to 92.5
- DMC: Duff Moisture Code index from FWI system: 1.1 to 65.9
- ISI: Initial Spread Index from FWI system: 0 to 18.5
- BUI: Buildup Index from FWI index: 1.1 to 68
- DC: Drought Code index from FWI system: 7 to 220.4
- FWI: Fire Weather Index: 0 to 31.1
- Classes: Fire and not Fire
- Region: 1 for Bejaia region and 0 for Sidi Bel-abbes region

4.3) Univariate Analysis

- The term univariate analysis refers to the analysis of one variable prefix "uni" means "one."
- The purpose of univariate analysis is to understand the distribution of values for a single variable.

```
In [25]:
          df.var()
                           13.204817
          Temperature
Out[25]:
                           221.539415
          RH
                            7.897102
          Ws
                             3.997623
          Rain
          FFMC
                           205.565939
          DMC
                          152.968382
          DC
                          2267.632245
          ISI
                           17.260932
          BUI
                           201.686818
          FWI
                            55.180617
          dtype: float64
```

4.3.1) Numerical Features Analysis

kde plot

```
In [26]: plt.figure(figsize=(15, 20))
  plt.suptitle('Univariate Analysis of Numerical Features', fontsize=20, fontweight='bol

for i in range(0, len(numerical_features)):
    plt.subplot(5, 3, i+1)
    sns.kdeplot(x=df[numerical_features[i]],shade=True, color='r',warn_singular=False)
    plt.xlabel(numerical_features[i])
    plt.tight_layout()
```

Univariate Analysis of Numerical Features

Scatter plot

```
In [27]: plt.figure(figsize=(15, 20))
  plt.suptitle('scatter plot with each numerical feature to explore feature', fontsize=2

for i in range(0, len(numerical_features)):
    plt.subplot(5, 3, i+1)
    sns.scatterplot(y=numerical_features[i], x=df.index, data=df,hue='Classes')
    plt.tight_layout()
```

scatter plot with each numerical feature to explore feature

Observation

- Rain, ISI, BUI, DMC are right skewed and postively skewed.
- FFMC is a Left skewed and Negetively skewed.
- Outliers in Rain, ISI, BUI, DMC and FFMC.

4.3.2) Categorical Features

Count plot

```
In [28]: plt.figure(figsize=(15,20))
  plt.suptitle('Univariate Analysis of Categorical Features', fontsize=20, fontweight='t
  cat1 = ['Classes', 'Region']
  for i in range(0, len(cat1)):
     plt.subplot(2, 2, i+1)
```

```
sns.countplot(x=df[cat1[i]])
plt.xlabel(cat1[i])
plt.xticks(rotation=45)
plt.tight_layout()
```

Univariate Analysis of Categorical Features

Observation

- Region Sidi Bel Abbes experiences more fire cases than Bejaia.
- Region Bejaia experiences less non fire cases than Sidi Bel Abbes.

Statistical Analysis

```
In [33]: df.describe().T
```

	count	mean	std	min	25%	50%	75%	max
Temperature	244.0	32.172131	3.633843	22.0	30.000	32.00	35.000	42.0
RH	244.0	61.938525	14.884200	21.0	52.000	63.00	73.250	90.0
Ws	244.0	15.504098	2.810178	6.0	14.000	15.00	17.000	29.0
Rain	244.0	0.760656	1.999406	0.0	0.000	0.00	0.500	16.8
FFMC	244.0	77.887705	14.337571	28.6	72.075	83.50	88.300	96.0
DMC	244.0	14.673361	12.368039	0.7	5.800	11.30	20.750	65.9
DC	244.0	49.288115	47.619662	6.9	13.275	33.10	68.150	220.4
ISI	244.0	4.759836	4.154628	0.0	1.400	3.50	7.300	19.0
BUI	244.0	16.673361	14.201648	1.1	6.000	12.45	22.525	68.0
FWI	244.0	7.049180	7.428366	0.0	0.700	4.45	11.375	31.1

Since DMC and BUI are highly coorelated, so dropping anyone won't harm the dataset.

In [34]:	<pre>df_new=df.drop(columns=('DMC'),axis=1)</pre>														
In [35]:	df_n	ew													
Out[35]:		Temperature	RH	Ws	Rain	FFMC	DC	ISI	BUI	FWI	Classes	Region	Date		
	0	29	57	18.0	0.0	65.7	7.6	1.3	3.4	0.5	not fire	Bejaia	2012-06- 01		
	1	29	61	13.0	1.3	64.4	7.6	1.0	3.9	0.4	not fire	Bejaia	2012-06- 02		
	2	26	82	22.0	13.1	47.1	7.1	0.3	2.7	0.1	not fire	Bejaia	2012-06- 03		
	3	25	89	13.0	2.5	28.6	6.9	0.0	1.7	0.0	not fire	Bejaia	2012-06- 04		
	4	27	77	16.0	0.0	64.8	14.2	1.2	3.9	0.5	not fire	Bejaia	2012-06- 05		
	•••														
	239	30	65	14.0	0.0	85.4	44.5	4.5	16.9	6.5	fire	Sidi Bel- abbes	2012-09- 26		
	240	28	87	15.0	4.4	41.1	8.0	0.1	6.2	0.0	not fire	Sidi Bel- abbes	2012-09- 27		
	241	27	87	29.0	0.5	45.9	7.9	0.4	3.4	0.2	not fire	Sidi Bel- abbes	2012-09- 28		
	242	24	54	18.0	0.1	79.7	15.2	1.7	5.1	0.7	not fire	Sidi Bel- abbes	2012-09- 29		
	243	24	64	15.0	0.2	67.3	16.5	1.2	4.8	0.5	not fire	Sidi Bel- abbes	2012-09- 30		

244 rows × 12 columns

Out[33]:

Target feature is Temperature

So, analyzing each feature with respect to Temperature

```
plt.figure(figsize=(15, 20))
In [36]:
         plt.suptitle('scatter plot with each numerical feature to explore feature', fontsize=2
         for i in range(0, len(numerical_features)):
             plt.subplot(5, 3, i+1)
             sns.stripplot(y=numerical_features[i], x='Temperature', data=df,hue='Classes')
             plt.tight_layout()
```

scatter plot with each numerical feature to explore feature

Box plot

For finding outliers

```
sns.boxplot(data=df_new,orient='h')
In [37]:
          <AxesSubplot:>
Out[37]:
```


Observation

• All features except RH have outliers.

Graphical Analysis

Temperature w.r.t Region

Observation

• Sidi bel Abbas region experiences most of the time High Temperature.

Temperature w.r.t Temperature range

```
In [39]: plt.subplots(figsize=(20,10))
    sns.histplot("Distribution of Temperature", x=df.Temperature, color='b', kde=True)
    plt.title("Distribution of Temperature", weight='bold', fontsize=20, pad=20)
    plt.xlabel("Temperature", weight='bold', fontsize=15)
    plt.ylabel("Count", weight='bold', fontsize=15)
    plt.show()
```

Distribution of Temperature

Observation

• Temperature range is 30 - 35 degree celcius.

Temperature w.r.t Rain

```
In [44]: import matplotlib
matplotlib.rcParams['figure.figsize']=(20,10)
sns.barplot(x="Temperature",y="Rain",data=df)
Out[44]: <AxesSubplot:xlabel='Temperature', ylabel='Rain'>
```


Observation

• When Rain is high, Temperature is low and vice-versa.

4.4) Multivariate Analysis

Multicollinearity in Numerical features

In [51]:	df.cov()							
Out[51]:		Temperature	RH	Ws	Rain	FFMC	DMC	DC
	Temperature	13.204817	-35.396782	-2.840215	-2.374270	35.297598	21.712423	64.111931
	RH	-35.396782	221.539415	9.874739	6.635431	-137.785533	-74.580245	-156.165754
	Ws	-2.840215	9.874739	7.897102	0.956129	-6.577727	-0.043306	10.203135
	Rain	-2.374270	6.635431	0.956129	3.997623	-15.595918	-7.135415	-28.258988
	FFMC	35.297598	-137.785533	-6.577727	-15.595918	205.565939	106.820535	344.044709
	DMC	21.712423	-74.580245	-0.043306	-7.135415	106.820535	152.968382	515.552604
	DC	64.111931	-156.165754	10.203135	-28.258988	344.044709	515.552604	2267.632245
	ISI	9.148506	-42.561327	0.142964	-2.889611	44.124525	34.856991	99.696270
	BUI	23.553987	-73.916459	1.209369	-8.501670	120.185186	172.521016	636.831657
	FWI	15.300965	-64.178446	0.708851	-4.823366	73.640607	80.407612	260.718118
4								•
In [50]:	df.corr()							

Out[50]:		Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI
	Temperature	1.000000	-0.654443	-0.278132	-0.326786	0.677491	0.483105	0.370498	0.605971
	RH	-0.654443	1.000000	0.236084	0.222968	-0.645658	-0.405133	-0.220330	-0.688268
	Ws	-0.278132	0.236084	1.000000	0.170169	-0.163255	-0.001246	0.076245	0.012245
	Rain	-0.326786	0.222968	0.170169	1.000000	-0.544045	-0.288548	-0.296804	-0.347862
	FFMC	0.677491	-0.645658	-0.163255	-0.544045	1.000000	0.602391	0.503910	0.740751
	DMC	0.483105	-0.405133	-0.001246	-0.288548	0.602391	1.000000	0.875358	0.678355
	DC	0.370498	-0.220330	0.076245	-0.296804	0.503910	0.875358	1.000000	0.503919
	ISI	0.605971	-0.688268	0.012245	-0.347862	0.740751	0.678355	0.503919	1.000000
	BUI	0.456415	-0.349685	0.030303	-0.299409	0.590251	0.982206	0.941672	0.641351
	FWI	0.566839	-0.580457	0.033957	-0.324755	0.691430	0.875191	0.737041	0.922422
4									>

Pair plot

```
In [48]: sns.pairplot(df,hue='Classes',size=3)
```

Out[48]: <seaborn.axisgrid.PairGrid at 0x28c35a87850>

Heat map

```
In [49]: plt.figure(figsize = (15,10))
    sns.heatmap(df.corr(), cmap="CMRmap", annot=True)
    plt.show()
```


observation

- Highly +ve correlated features are DMC and BUI 'White color'
- Highly -ve correlated features are RH and Temp, RH and FFMC, RH and ISI 'Black color'

```
In [45]: sns.set(rc={'figure.figsize':(8,6)})
sns.regplot(x = "RH", y = "Temperature", data = df)
Out[45]: <AxesSubplot:xlabel='RH', ylabel='Temperature'>
```


Independent and Dependent Features

In [41]: x=df_new.iloc[:,1:-3]
y=df_new.iloc[:,0]

In [42]:

Out[42]:

		RH	Ws	Rain	FFMC	DC	ISI	BUI	FWI
	0	57	18.0	0.0	65.7	7.6	1.3	3.4	0.5
	1	61	13.0	1.3	64.4	7.6	1.0	3.9	0.4
	2	82	22.0	13.1	47.1	7.1	0.3	2.7	0.1
	3	89	13.0	2.5	28.6	6.9	0.0	1.7	0.0
	4	77	16.0	0.0	64.8	14.2	1.2	3.9	0.5
	•••								
2	39	65	14.0	0.0	85.4	44.5	4.5	16.9	6.5
2	40	87	15.0	4.4	41.1	8.0	0.1	6.2	0.0
2	41	87	29.0	0.5	45.9	7.9	0.4	3.4	0.2
2	42	54	18.0	0.1	79.7	15.2	1.7	5.1	0.7
2	43	64	15.0	0.2	67.3	16.5	1.2	4.8	0.5

244 rows × 8 columns

In [43]: y

```
29
Out[43]:
                 29
                 26
                 25
                 27
          239
                 30
          240
                 28
          241
                 27
          242
                 24
          243
                 24
          Name: Temperature, Length: 244, dtype: int32
```

Splitting training and testing data

```
In [52]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state
```

independent training data

In [53]:	x_tr	ain							
Out[53]:		RH	Ws	Rain	FFMC	DC	ISI	BUI	FWI
	237	49	6.0	2.0	61.3	28.1	0.6	11.9	0.4
	78	54	18.0	0.0	89.4	110.9	9.7	27.5	16.1
	25	64	18.0	0.0	86.8	71.8	6.7	21.6	10.6
	124	80	14.0	2.0	48.7	7.6	0.3	2.6	0.1
	176	64	9.0	1.2	73.8	15.9	1.1	11.4	0.7
	•••								
	64	69	13.0	0.0	85.0	19.8	4.0	8.2	3.9
	15	89	13.0	0.7	36.1	7.6	0.0	2.2	0.0
	228	51	13.0	0.0	88.7	50.2	6.9	17.8	9.8
	125	64	14.0	0.0	79.4	15.4	2.2	5.6	1.0
	9	79	12.0	0.0	73.2	46.3	1.3	12.6	0.9

163 rows × 8 columns

independent testing data

```
In [54]: x_test
```

Out[54]:		RH	Ws	Rain	FFMC	DC	ISI	BUI	FWI
	162	56	15.0	2.9	74.8	9.5	1.6	6.8	0.8
	60	64	17.0	0.0	87.2	145.7	6.8	41.2	15.7
	61	45	14.0	0.0	78.8	10.2	2.0	4.7	0.9
	63	63	14.0	0.3	76.6	10.0	1.7	5.5	0.8
	69	59	17.0	0.0	87.4	57.0	6.9	17.9	9.9
	•••								
	169	68	15.0	0.0	86.1	51.6	5.2	23.9	9.1
	232	41	8.0	0.1	83.9	86.0	2.7	28.9	5.6
	144	59	16.0	0.8	74.2	8.3	1.6	6.7	0.8
	208	37	16.0	0.0	92.2	167.2	13.1	64.0	30.3
	105	76	26.0	8.3	47.4	7.0	0.4	1.6	0.1

81 rows × 8 columns

dependent training data

```
In [55]:
          y_train
                 26
Out[55]:
          78
                 36
          25
                 31
          124
                 29
          176
                 39
          64
          15
                 29
          228
                 32
          125
                 30
                 28
          Name: Temperature, Length: 163, dtype: int32
```

dependent testing data

```
In [57]:
          y_test
          162
                 34
Out[57]:
                 35
                 36
                 35
                 35
          169
                 33
          232
                 29
          144
                 33
          208
                 33
          105
          Name: Temperature, Length: 81, dtype: int32
          x_train.shape
In [58]:
          (163, 8)
Out[58]:
```

```
x_test.shape
In [59]:
          (81, 8)
Out[59]:
In [60]:
          y_train.shape
          (163,)
Out[60]:
In [61]:
          y_test.shape
          (81,)
Out[61]:
```

Standardization and Feature Scaling the dataset

```
from sklearn.preprocessing import StandardScaler
In [62]:
         scaler=StandardScaler()
In [63]:
         scaler
Out[63]: ▼ StandardScaler
         StandardScaler()
         x_train=scaler.fit_transform(x_train)
In [65]:
         x_test=scaler.transform(x_test)
In [66]:
In [67]:
         x_train
         array([[-0.85631108, -3.36419461, 0.88853946, ..., -0.97156746,
Out[67]:
                 -0.32636097, -0.86597829],
                [-0.52508491, 0.99944243, -0.441414 , ..., 1.19293541,
                  0.76499972, 1.21371864],
                [0.13736742, 0.99944243, -0.441414, ..., 0.47936304,
                  0.35224151, 0.48516239],
                [-0.72382061, -0.81873967, -0.441414, ..., 0.52693453,
                  0.08639724, 0.37919057],
                [0.13736742, -0.45510325, -0.441414, ..., -0.59099552,
                 -0.76710278, -0.78649943],
                [1.13104591, -1.18237609, -0.441414, ..., -0.80506723,
                 -0.27738965, -0.7997459 ]])
In [68]:
        x_test
```

```
Out[68]: array([[-3.92594448e-01, -9.14668296e-02, 1.48701853e+00,
                 -1.82411230e-01, -8.21325921e-01, -7.33709998e-01,
                 -6.83151962e-01, -8.12992382e-01],
                [ 1.37367416e-01, 6.35806011e-01, -4.41414004e-01,
                  6.64566895e-01, 2.03374779e+00, 5.03148781e-01,
                  1.72343828e+00, 1.16073273e+00],
                 [-1.12129201e+00, -4.55103250e-01, -4.41414004e-01,
                  9.08075201e-02, -8.06652268e-01, -6.38567015e-01,
                 -8.30065901e-01, -7.99745905e-01],
                [7.11221826e-02, -4.55103250e-01, -2.41920984e-01,
                  -5.94627923e-02, -8.10844740e-01, -7.09924252e-01,
                  -7.74098686e-01, -8.12992382e-01],
                [-1.93858749e-01, 6.35806011e-01, -4.41414004e-01,
                  6.78227832e-01, 1.74386276e-01, 5.26934527e-01,
                  9.33931438e-02, 3.92437047e-01],
                [-5.91330147e-01, 2.72169591e-01, -4.41414004e-01,
                  8.21667676e-01, 2.36495311e+00, 1.35943563e+00,
                  2.16418009e+00, 2.03500022e+00],
                [-5.91330147e-01, 1.36307885e+00, -4.41414004e-01,
                  8.01176270e-01, 1.04642054e+00, 1.26429264e+00,
                  5.13147255e-01, 1.10774682e+00],
                [-5.91330147e-01, 6.35806011e-01, -1.08925637e-01,
                  1.86434082e-01, 2.10711606e+00, -4.72066794e-01,
                  9.81872679e-01, -1.37422043e-01],
                [ 5.34838813e-01, -4.55103250e-01, -4.41414004e-01,
                  3.64026270e-01, -3.05651815e-01, -3.53138066e-01,
                  -3.82328182e-01, -4.42091020e-01],
                [ 7.11221826e-02, -4.55103250e-01, -4.41414004e-01,
                  6.50905957e-01, -2.44860965e-01, 2.17719832e-01,
                  -2.84385556e-01, -1.82037479e-02],
                 [-3.92594448e-01, 2.72169591e-01, -4.41414004e-01,
                  7.80684863e-01, 1.76482512e-01, 8.36149222e-01,
                  5.06151353e-01, 8.29570795e-01],
                [ 9.98555444e-01, 2.09035169e+00, 7.55544118e-01,
                  -1.29577764e+00, -8.44384520e-01, -8.52638726e-01,
                  -9.90971643e-01, -8.79224768e-01],
                [-1.84998957e+00, 2.72169591e-01, -3.08418657e-01,
                  7.39702051e-01, -7.50658327e-02, 6.69649001e-01,
                  6.54095363e-02, 4.71915910e-01],
                [ 6.01084046e-01, -4.55103250e-01, 3.88093477e+00,
                  -8.85949510e-01, -8.29710866e-01, -8.76424472e-01,
                  -9.14016723e-01, -8.65978291e-01],
                [-9.88801544e-01, 9.99442431e-01, 3.54844640e+00,
                  2.27416895e-01, -8.17133449e-01, -3.76923811e-01,
                  -5.01258514e-01, -5.21569883e-01],
                [ 5.34838813e-01, 2.72169591e-01, -4.41414004e-01,
                  5.82601270e-01, -4.83831892e-01, 1.70148341e-01,
                  -2.70393753e-01, -3.14502251e-02],
                [-5.25084914e-01, -1.54601251e+00, -3.74916331e-01,
                  4.25500489e-01, -4.69158239e-01, -3.76923811e-01,
                 -5.08254416e-01, -5.08323406e-01],
                 [ 1.06480068e+00, -4.55103250e-01, 4.89553424e-01,
                  -2.21789092e+00, -8.63250645e-01, -1.06671044e+00,
                  -9.90971643e-01, -9.05717723e-01],
                [-1.78374434e+00, -9.14668296e-02, -4.41414004e-01,
                  1.11537783e+00, -1.25375502e-01, 2.62008015e+00,
                  4.43188236e-01, 1.84954954e+00],
                [-7.90065846e-01, 2.72169591e-01, -4.41414004e-01,
                  8.48989551e-01, 4.67859344e-01, 1.14536392e+00,
                  1.12179072e+00, 1.37267636e+00],
                [ 2.03612648e-01, -4.55103250e-01, -4.41414004e-01,
                  4.80144239e-01, 1.17787898e-01, -1.62852100e-01,
                  -5.35207952e-02, -1.77161475e-01],
                [-1.93858749e-01, 1.36307885e+00, -4.41414004e-01,
```

```
7.94345801e-01, 2.50540093e+00,
                                  1.21672115e+00,
 1.59051614e+00, 1.65085238e+00],
[-5.91330147e-01, 9.99442431e-01, -4.41414004e-01,
 7.87515332e-01, 6.62809311e-01, 1.07400668e+00,
 6.46069390e-01, 1.06800739e+00],
[ 4.87694966e-03, 2.72169591e-01, -4.41414004e-01,
 7.05549707e-01, -2.97266870e-01, 5.50720273e-01,
-1.15453840e-02, 3.39451138e-01],
[-1.91623481e+00, 6.35806011e-01, -4.41414004e-01,
 1.10854736e+00, -3.47576539e-01, 2.97686634e+00,
 2.34341252e-02, 1.66409886e+00],
[ 1.85974347e+00, -9.14668296e-02, -4.41414004e-01,
 -7.28848729e-01, -7.12321639e-01, -8.28852981e-01,
-6.62164256e-01, -8.39485337e-01],
[-6.13682833e-02, 9.99442431e-01, -2.41920984e-01,
 1.86434082e-01, 8.74529168e-01, -4.48281049e-01,
 7.24054382e-02, -3.62612156e-01],
[-9.88801544e-01, -4.55103250e-01, 2.40697100e-02,
 2.01142638e-03, -8.35999575e-01, -6.86138506e-01,
-6.83151962e-01, -7.99745905e-01],
[ 1.19729114e+00, 2.72169591e-01, 7.55544118e-01,
 -2.05395967e+00, -8.59058173e-01, -1.04292469e+00,
-9.48996232e-01, -9.05717723e-01],
[ 1.13104591e+00, -9.14668296e-02, -4.41414004e-01,
 5.41618457e-01, 1.83041288e+00, 3.64812051e-03,
 1.45759401e+00, 4.98408864e-01],
[ 1.26353638e+00, 2.09035169e+00, 3.41545106e+00,
 -1.97199404e+00, -8.59058173e-01, -1.01913895e+00,
 -9.48996232e-01, -9.05717723e-01],
[ 1.59476254e+00, 2.72169591e-01, -4.41414004e-01,
 -2.70285420e+00, -8.48576992e-01, -1.09049618e+00,
-1.06093066e+00, -9.18964200e-01],
[-5.25084914e-01, -8.18739670e-01, -4.41414004e-01,
 7.32871582e-01, -3.81116318e-01, 4.08005798e-01,
 -3.96319986e-01, 3.47821611e-02],
[-7.23820613e-01, 2.72169591e-01, 2.08549759e+00,
 2.01142638e-03, -8.21325921e-01, -6.38567015e-01,
-6.20188845e-01, -7.46759996e-01],
[ 1.37367416e-01, -9.14668296e-02, -4.41414004e-01,
 6.30414551e-01, 3.16930338e-01, 2.41505578e-01,
 1.21376751e-01, 1.93739888e-01],
[ 3.36103114e-01, 1.36307885e+00, -4.41414004e-01,
-1.41428417e-01, -6.78781859e-01, -6.38567015e-01,
-8.79037214e-01, -8.12992382e-01],
[ 1.19729114e+00, 2.72169591e-01, -1.75423310e-01,
 -1.20698154e+00, -4.52388349e-01, -9.00210218e-01,
 -8.02082293e-01, -8.65978291e-01],
[ 4.87694966e-03, -9.14668296e-02, -4.41414004e-01,
 3.98178614e-01, -6.49434553e-01, -2.10423591e-01,
-7.11135569e-01, -4.95076928e-01],
[ 1.32978161e+00, -9.14668296e-02, -1.75423310e-01,
 -2.22472138e+00, -8.67443118e-01, -1.06671044e+00,
 -1.06093066e+00, -9.18964200e-01],
[-9.22556312e-01, -8.18739670e-01, -4.41414004e-01,
 8.76311426e-01, 1.25394792e+00, 9.55077950e-01,
 8.97921857e-01, 1.10774682e+00],
[ 4.02348347e-01, 1.36307885e+00, -4.41414004e-01,
 7.39702051e-01, 1.71721612e+00, 9.78863696e-01,
 1.26870466e+00, 1.30644398e+00],
[-4.58839681e-01, -9.14668296e-02, -4.41414004e-01,
 8.08006738e-01, 3.88202368e-01, 8.59934967e-01,
 8.20966936e-01, 1.00177500e+00],
[-1.32002771e+00, 2.09035169e+00, -4.41414004e-01,
 8.96802832e-01, -3.81116318e-01, 2.07300800e+00,
```

```
1.00389046e-01, 1.29319750e+00],
[ 8.66064978e-01, 2.72169591e-01, -4.41414004e-01,
 3.23043457e-01, -5.11082963e-01, -3.29352320e-01,
 -7.39119177e-01, -5.87802269e-01],
[-1.38627294e+00, -1.90964893e+00, -3.74916331e-01,
 9.92429394e-01, 3.44181408e-01, 1.14536392e+00,
 5.34134960e-01, 1.04151443e+00],
[-4.58839681e-01, -4.55103250e-01, -4.41414004e-01,
 7.80684863e-01, 3.84009896e-01, 6.45863256e-01,
 3.73229218e-01, 6.17627160e-01],
[ 1.19729114e+00, 2.09035169e+00, 1.07301951e+01,
 -1.70560576e+00, -8.38095811e-01, -9.71567455e-01,
 -5.78213434e-01, -8.79224768e-01],
[-1.18753724e+00, -8.18739670e-01, -4.41414004e-01,
 8.62650488e-01, -6.13798537e-01, 8.59934967e-01,
 -2.84385556e-01, 3.52697615e-01],
[-4.58839681e-01, -9.14668296e-02, -4.41414004e-01,
 7.94345801e-01, -1.12798084e-01, 7.88577730e-01,
 2.96274297e-01, 6.70613069e-01],
[ 1.72725301e+00, -8.18739670e-01, -4.41414004e-01,
 -4.41969042e-01, -6.72493151e-01, -8.28852981e-01,
-9.00024919e-01, -8.52731814e-01],
[ 1.06480068e+00, -4.55103250e-01, -4.41414004e-01,
 2.41077832e-01, -3.58057720e-01, -4.95852540e-01,
 -5.71217532e-01, -6.27541701e-01],
[ 4.02348347e-01, -4.55103250e-01, -4.41414004e-01,
 5.41618457e-01, -1.16990557e-01, -2.01376252e-02,
 -1.65455225e-01, -1.24175566e-01],
[-1.25378248e+00, 2.72169591e-01, -4.41414004e-01,
 9.37785644e-01, 1.86604889e+00, 1.62107883e+00,
 2.35306944e+00, 2.32642272e+00],
[ 3.36103114e-01, -4.55103250e-01, -4.41414004e-01,
 3.50365332e-01, -5.55103923e-01, -3.76923811e-01,
 -6.69160158e-01, -5.87802269e-01],
[ 1.46227207e+00, 9.99442431e-01, -4.41414004e-01,
 4.32330957e-01, 1.29760879e-02, -4.39233710e-02,
-3.95289915e-02, -8.44361341e-02],
[ 6.01084046e-01, 6.35806011e-01, -2.41920984e-01,
 -5.37595604e-01, -3.89501263e-01, -7.57495743e-01,
-8.02082293e-01, -8.39485337e-01],
[ 2.69857881e-01, -9.14668296e-02, -3.74916331e-01,
 3.57195801e-01, 1.00868828e+00, -3.29352320e-01,
 1.32467187e+00, 1.01014547e-01],
[-1.65125387e+00, -8.18739670e-01, -4.41414004e-01,
 1.02658174e+00, 7.79594102e-02, 1.66865032e+00,
 7.37016114e-01, 1.51838761e+00],
[ 7.11221826e-02, 6.35806011e-01, 2.90060404e-01,
 -3.19020605e-01, 1.66001331e-01, -7.33709998e-01,
 3.59237414e-01, -5.87802269e-01],
[-8.56311079e-01, 1.36307885e+00, -4.41414004e-01,
 7.60193457e-01, -3.20325469e-01, 1.05022093e+00,
-2.91381458e-01, 4.45422956e-01],
 2.03612648e-01, -9.14668296e-02, -3.74916331e-01,
 2.68399707e-01, 2.81294322e-01, -4.48281049e-01,
-4.54948219e-03, -3.89105111e-01],
[ 7.33574512e-01, -9.14668296e-02, -4.41414004e-01,
 6.23584082e-01, 1.64175162e+00, 2.17719832e-01,
 1.28969236e+00, 6.57366591e-01],
[-6.13682833e-02, -8.18739670e-01, 4.23055751e-01,
 -8.92779979e-01, -8.61154409e-01, -8.76424472e-01,
-8.86033116e-01, -8.65978291e-01],
[ 1.32978161e+00, 2.45398811e+00, 8.26978122e+00,
 -2.07445107e+00, -8.71635590e-01, -1.04292469e+00,
-9.69983938e-01, -9.05717723e-01],
```

```
[-1.27613516e-01, 9.99442431e-01, -2.41920984e-01,
 -2.53104486e-02, -3.52373448e-02, -5.90995523e-01,
-1.72451127e-01, -5.74555792e-01],
[-1.84998957e+00, -4.55103250e-01, -4.41414004e-01,
 1.08122549e+00, -5.71873813e-01,
                                    2.16815098e+00,
 -4.17307692e-01, 8.69310227e-01],
[ 1.66100777e+00, 9.99442431e-01, -4.41414004e-01,
 1.72773145e-01, -4.27233515e-01, -4.48281049e-01,
 -3.33356869e-01, -4.95076928e-01],
[ 2.69857881e-01, 2.45398811e+00, -1.75423310e-01,
 -6.33222167e-01, 4.74148053e-01, -6.86138506e-01,
 -8.15044026e-02, -6.40788178e-01],
[-5.91330147e-01, -4.55103250e-01, -4.41414004e-01,
 8.21667676e-01, 1.65223280e+00, 7.88577730e-01,
 2.02426206e+00, 1.47864818e+00],
[-4.58839681e-01, -4.55103250e-01, -4.41414004e-01,
 5.96262207e-01, -6.34760899e-01, 7.50053577e-02,
 -5.85209336e-01, -2.69886815e-01],
[ 9.32310211e-01, 1.72671527e+00, 2.40697100e-02,
 -9.81576073e-01, -8.27614630e-01, -8.05067235e-01,
-9.48996232e-01, -8.52731814e-01],
[-5.25084914e-01, 9.99442431e-01, -3.74916331e-01,
 1.52281739e-01, -7.01840458e-01, -7.09924252e-01,
 -8.02082293e-01, -8.26238859e-01],
[ 7.33574512e-01, -9.14668296e-02, -4.41414004e-01,
 6.23584082e-01, -2.17609895e-01, 2.17719832e-01,
-2.14426538e-01, 2.15356839e-02],
[ 1.37367416e-01, -9.14668296e-02, -3.08418657e-01,
 -6.94696386e-01, -6.74589387e-01, -8.28852981e-01,
 -8.23069999e-01, -8.52731814e-01],
[ 4.68593580e-01, -8.18739670e-01, 2.40697100e-02,
 -7.42509667e-01, -8.25518394e-01, -8.52638726e-01,
-7.53110980e-01, -8.52731814e-01],
[ 1.32978161e+00, 2.09035169e+00, -4.41414004e-01,
 5.07466114e-01, 3.17619652e+00, -6.77091167e-02,
 2.98969651e+00, 8.29570795e-01],
[ 4.02348347e-01, -9.14668296e-02, -4.41414004e-01,
 5.89431738e-01, 6.11895206e-02, 1.22576849e-01,
 5.13147255e-01, 2.86465229e-01],
[-1.38627294e+00, -2.63692177e+00, -3.74916331e-01,
 4.39161426e-01, 7.82294775e-01, -4.72066794e-01,
 8.62942348e-01, -1.77161475e-01],
[-1.93858749e-01, 2.72169591e-01, 9.05673835e-02,
 -2.23394042e-01, -8.46480756e-01, -7.33709998e-01,
-6.90147864e-01, -8.12992382e-01],
[-1.65125387e+00, 2.72169591e-01, -4.41414004e-01,
 1.00609033e+00, 2.48443857e+00,
                                    2.00165076e+00,
 3.31850390e+00, 3.09471840e+00],
[ 9.32310211e-01, 3.90853379e+00, 5.07789289e+00,
 -2.05395967e+00, -8.73731826e-01, -1.01913895e+00,
-1.04693886e+00, -9.05717723e-01]])
```

Linear Regression

Model Training

```
In [69]: from sklearn.linear_model import LinearRegression
    regression=LinearRegression()
In [70]: regression
```

```
Out[70]: \[
\times \ LinearRegression \\
LinearRegression()

In [71]: \[
\text{regression.fit(x_train, y_train)} \]

Out[71]: \[
\times \ LinearRegression \\
LinearRegression()

\]
```

Coefficients and Intercept

```
In [72]:
         print(regression.coef_)
         [-1.26727905 -0.54101797 -0.21943186 1.05414753 0.53223083 0.02362972
           -0.25283375 0.23646389]
In [73]:
         print(regression.intercept )
         32.17791411042945
In [74]:
         reg pred=regression.predict(x test)
In [75]:
         reg_pred
         array([31.73234662, 33.39030119, 33.61405111, 31.87954716, 33.06586657,
Out[75]:
                34.96791538, 33.85027588, 33.63331414, 32.04804585, 33.05943254,
                33.62988831, 27.82290771, 35.29347506, 29.44088401, 31.91096644,
                31.87132156, 33.9602693 , 28.18105257, 36.08101602, 34.34075554,
                32.79958404, 33.97078827, 33.7809388, 32.80308456, 35.80069454,
                28.76933598, 32.31539014, 33.19651414, 27.726304 , 32.1854697 ,
                26.1619812 , 26.83083981, 34.07093816, 32.02044265, 33.00423786,
                30.61595053, 29.01549448, 32.44992806, 27.79955503, 35.53550024,
                32.73243283, 34.01374459, 33.88861804, 31.13859887, 36.41778054,
                34.19675343, 24.84645618, 34.98096926, 33.78536207, 29.7113244,
                31.21947136, 32.53177937, 35.69163645, 32.19023599, 30.33258848,
                30.33765202, 32.56225677, 36.14611876, 31.18504901, 33.45719224,
                32.38282845, 32.76026682, 31.20488789, 24.7061469, 31.70034426,
                36.06315152, 29.54046257, 29.98448783, 34.87238095, 33.47909491,
                28.60101772, 32.16252428, 32.00059826, 31.01651762, 30.7682894,
                31.12273348, 32.40918113, 36.0516737, 31.53536376, 36.54304548,
                25.16382485])
```

Assumption of Linear Regression

```
In [77]: # Relationship between real data and predicted data
plt.scatter(y_test,reg_pred)
plt.xlabel('Test Truth Data')
plt.ylabel('Test Predicted Data')
Out[77]: Text(0, 0.5, 'Test Predicted Data')
```



```
# Calculating residual
In [78]:
          residuals=y_test - reg_pred
          residuals
In [79]:
                 2.267653
         162
Out[79]:
                 1.609699
         60
                 2.385949
         61
         63
                 3.120453
                 1.934133
         69
         169
                 0.590819
         232
                -7.051674
         144
                 1.464636
         208
                -3.543045
         105
                -3.163825
         Name: Temperature, Length: 81, dtype: float64
         # Distribution of residual are approximately Normal Distribution
In [80]:
          sns.displot(residuals,kind="kde")
         <seaborn.axisgrid.FacetGrid at 0x28c3a96fca0>
Out[80]:
```


Observation

• Distribution is left skewed.

```
In [81]: # Scatterplot with prediction and residual
    # Uniform Distribution
    plt.scatter(reg_pred,residuals)
```

Out[81]: <matplotlib.collections.PathCollection at 0x28c3aa0af40>

Performance Metrics

```
In [82]: # Performance Metrics
from sklearn.metrics import mean_squared_error
```

```
from sklearn.metrics import mean_absolute_error
print(mean_squared_error(y_test,reg_pred))
print(mean_absolute_error(y_test,reg_pred))
print(np.sqrt(mean_squared_error(y_test,reg_pred)))
6.945272606141771
2.177260793883495
```

R Squared and Adjusted R Squared

2.635388511423272

```
In [83]:
        # R Squared
         from sklearn.metrics import r2_score
          score=r2_score(y_test,reg_pred)
          print(score)
         0.5407291663922256
In [85]:
         # Adjusted R Squared
         1 - (1-score)*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1)
         0.48969907376913957
Out[85]:
         Ridge regression
         ## Ridge
In [86]:
          from sklearn.linear_model import Ridge
          ridge=Ridge()
In [87]:
         ridge.fit(x_train,y_train)
Out[87]:
        ▼ Ridge
         Ridge()
In [88]:
         print(ridge.coef_)
         [-1.25556305 -0.54050633 -0.22268482 1.03678561 0.48209609 0.07521787
          -0.16554943 0.16717726]
         print(ridge.intercept_)
In [89]:
         32.17791411042945
         ridge_pred=ridge.predict(x_test)
In [90]:
```

In [91]:

ridge pred

```
array([31.72605725, 33.37613461, 33.59099929, 31.87475756, 33.05298308,
       34.94776191, 33.81236937, 33.58905972, 32.04356065, 33.05011456,
       33.63429804, 27.82848492, 35.2714216 , 29.42705632, 31.89830943,
       31.88066019, 33.94209218, 28.19471634, 36.09412677, 34.35677201,
       32.78813328, 33.91846485, 33.7668546 , 32.81125404, 35.81850096,
       28.79848967, 32.27720636, 33.18688252, 27.74286139, 32.19181954,
       26.17139638, 26.85538177, 34.05623218, 32.01112485, 32.99003146,
       30.6051685 , 29.01741906, 32.43839626, 27.81381278, 35.49852092,
       32.71106191, 34.02287733, 33.90529872, 31.12955785, 36.40084135,
       34.18287694, 24.85860673, 34.97897127, 33.79331599, 29.71173246,
       31.21495697, 32.52728129, 35.69651118, 32.17999865, 30.34364518,
       30.32374592, 32.60145273, 36.15126634, 31.2167123, 33.45003811,
       32.3710609 , 32.75537003, 31.19849874, 24.70008377, 31.6966219 ,
       36.0677736 , 29.56236916, 29.97858574, 34.88447303, 33.46788285,
       28.60599862, 32.14126044, 32.00168867, 31.00944793, 30.77692287,
       31.17275271, 32.43324777, 36.05170092, 31.53749347, 36.5617424,
       25.15849168])
```

Assumption of Ridge regression

```
In [92]: # Relationship between real data and predicted data
plt.scatter(y_test,ridge_pred)
plt.xlabel('Test Truth Data')
plt.ylabel('Test Predicted Data')
```

Out[92]: Text(0, 0.5, 'Test Predicted Data')


```
In [93]: # Calculating residual
residuals=y_test - ridge_pred
```

In [94]: residuals

```
162
                 2.273943
Out[94]:
          60
                 1.623865
                 2.409001
          61
          63
                 3.125242
          69
                 1.947017
          169
                 0.566752
          232
                -7.051701
          144
                 1.462507
          208
                -3.561742
          105
                -3.158492
          Name: Temperature, Length: 81, dtype: float64
```

In [95]: # Distribution of residual are approximately Normal Distribution
sns.displot(residuals,kind="kde")

Out[95]: <seaborn.axisgrid.FacetGrid at 0x28c3aa8bdc0>

Observation

• Distribution is left skewed.

```
In [96]: # Scatterplot with prediction and residual
# Uniform Distribution
plt.scatter(reg_pred,residuals)
```

Out[96]: <matplotlib.collections.PathCollection at 0x28c3ab50220>


```
In [97]:
         ## Performance Metrics
         from sklearn.metrics import mean_squared_error
         from sklearn.metrics import mean_absolute_error
          print(mean_squared_error(y_test,ridge_pred))
          print(mean_absolute_error(y_test,ridge_pred))
         print(np.sqrt(mean_squared_error(y_test,ridge_pred)))
         6.937034660929738
         2.177014764095557
         2.6338251006719746
In [98]:
         # R Squared
         from sklearn.metrics import r2_score
          score=r2_score(y_test,ridge_pred)
         print(score)
         0.5412739179346487
         # Adjusted R Squared
In [99]:
         1 - (1-score)*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1)
         0.49030435326072075
Out[99]:
```

Lasso regression

```
Out[103]:
           ▼ Lasso
          Lasso()
          print(lasso.coef_)
In [104...
                                                                          0.
          [-0.71955751 -0.
                                    -0.
                                                 0.89582004 0.
                                   1
In [105...
          print(lasso.intercept_)
          32.17791411042945
          lasso_pred=lasso.predict(x_test)
In [106...
In [107...
          lasso_pred
          array([32.29700076, 32.6744027, 33.06609539, 32.07346965, 32.92497671,
Out[107]:
                  33.33947653, 33.32111992, 32.77042154, 32.11916885, 32.70983221,
                  33.15976154, 30.29861247, 34.17172792, 30.95174825, 33.0931383,
                 32.31497272, 32.93691477, 29.42489766, 34.46059856, 33.50695377,
                 32.46152593, 33.02899752, 33.30888217, 32.80645043, 34.5498142,
                 30.18680443, 32.38908351, 32.89121556, 29.47641605, 31.8492542,
                  29.50217524, 28.6091198, 33.21226395, 32.70054654, 32.64380834,
                 31.80937418, 30.23515603, 32.53110125, 29.22810977, 33.62676377,
                 32.55104126, 33.23190428, 33.93112391, 31.84411936, 34.06445535,
                 33.20742879, 29.78847846, 33.80519505, 33.21966653, 30.53913152,
                 31.62769114,\ 32.373594 , 33.92016988,\ 32.24993288,\ 31.51301599,
                 31.26381066, 32.303719 , 34.28571873, 31.84095256, 33.47507571,
                  32.27184094, 32.20868418, 31.42230192, 29.36272493, 32.24706577,
                 34.47767146, 31.13749714, 31.41648274, 33.33947653, 33.04221928,
                  30.62774778, 32.69215994, 32.20868418, 31.45674741, 31.17557904,
                  31.67565808, 32.4164261, 33.56882682, 32.11728577, 34.26736212,
                  29.667085071)
```

Assumption of Lasso regression

```
In [108... # Relationship between real data and predicted data
plt.scatter(y_test,lasso_pred)
plt.xlabel('Test Truth Data')
plt.ylabel('Test Predicted Data')
Out[108]: Text(0, 0.5, 'Test Predicted Data')
```



```
# Calculating residual
In [109...
           residuals=y_test - lasso_pred
           residuals
In [110...
                  1.702999
           162
Out[110]:
                  2.325597
           60
                  2.933905
           61
           63
                  2.926530
                  2.075023
           69
           169
                  0.583574
           232
                 -4.568827
           144
                  0.882714
           208
                 -1.267362
           105
                 -7.667085
           Name: Temperature, Length: 81, dtype: float64
          # Distribution of residual are approximately Normal Distribution
In [111...
           sns.displot(residuals,kind="kde")
           <seaborn.axisgrid.FacetGrid at 0x28c3ab66c70>
Out[111]:
```


Observation

• Distribution is left skewed.

Out[112]: <matplotlib.collections.PathCollection at 0x28c3ac5dee0>


```
In [113... ## Performance Metrics
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import mean_absolute_error
    print(mean_squared_error(y_test,lasso_pred))
    print(mean_absolute_error(y_test,lasso_pred))
    print(np.sqrt(mean_squared_error(y_test,lasso_pred)))
```

```
9.10609532182792
          2.4978660766652734
          3.0176307464346794
In [114... | # R Squared
           from sklearn.metrics import r2_score
           score=r2_score(y_test,lasso_pred)
          print(score)
          0.39784019626969913
          # Adjusted R Squared
In [115...
          1 - (1-score)*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1)
          0.33093355141077685
Out[115]:
          Elastic Net regression
          from sklearn.linear_model import ElasticNet
In [116...
           elastic=ElasticNet()
          elastic
In [117...
Out[117]:
           ▼ ElasticNet
          ElasticNet()
          elastic.fit(x_train,y_train)
In [118...
Out[118]:
         ▼ ElasticNet
          ElasticNet()
In [119...
          print(elastic.coef_)
          [-0.68377791 -0.10873001 -0.02083121 0.70493387 0.
                                                                           0.22896344
            0.07733533 0.1822098 ]
          print(elastic.intercept_)
In [120...
          32.17791411042945
          elastic_pred=elastic.predict(x_test)
In [121...
In [122...
          elastic_pred
```

```
array([31.92778274, 32.95250724, 32.71119722, 31.77134083, 32.92801741,
Out[122]:
                 33.99050179, 33.53902004, 32.58962193, 31.93651966, 32.67134649,
                 33.35804182, 29.90659996, 34.18554019, 30.68186444, 32.61165892,
                 32.21481692, 32.7945839, 29.43974043, 35.17418981, 33.89534297,
                            , 33.43380855, 33.5283983 , 32.8386007 , 35.19633069,
                 30.01766464, 32.08455825, 32.54878071, 29.38878202, 32.00984925,
                 29.15361138, 28.66254395, 33.22090486, 32.27099015, 32.64751022,
                 31.34705984, 30.05651772, 32.28102625, 29.22022742, 34.01465745,
                 32.84551243, 33.52330689, 34.21265774, 31.55337147, 34.53418824,
                 33.38994892, 29.2787136 , 33.93541974, 33.3964204 , 30.36875762,
                 31.40639778, 32.30324864, 34.65294213, 32.00860236, 31.35483638,
                 30.93541449, 32.30838596, 34.84461644, 31.58190605, 33.45940298,
                 32.0717569 , 32.40440528, 31.24375379, 28.88836001, 31.89035871,
                 34.88631868, 30.84584502, 31.00368194, 33.82667918, 32.89340265,
                 30.24712959, 32.16831989, 32.17222913, 31.2018347, 31.01375885,
                 31.77514228, 32.45739477, 33.65628852, 31.75201203, 35.27466484,
                 29.08242011])
```

Assumption of ElasticNet regression

```
In [123... # Relationship between real data and predicted data
    plt.scatter(y_test,lasso_pred)
    plt.xlabel('Test Truth Data')
    plt.ylabel('Test Predicted Data')
```

Out[123]: Text(0, 0.5, 'Test Predicted Data')


```
In [124... # Calculating residual
residuals=y_test - elastic_pred
```

In [125... residuals

```
162
                  2.072217
Out[125]:
           60
                  2.047493
           61
                  3.288803
           63
                  3.228659
           69
                  2.071983
           169
                  0.542605
           232
                 -4.656289
           144
                  1.247988
           208
                 -2.274665
           105
                 -7.082420
          Name: Temperature, Length: 81, dtype: float64
```

In [126... # Distribution of residual are approximately Normal Distribution
sns.displot(residuals,kind="kde")

Out[126]: <seaborn.axisgrid.FacetGrid at 0x28c3acf5400>

Observation

• Distribution is left skewed.

Out[127]: <matplotlib.collections.PathCollection at 0x28c3ada0700>


```
In [128...
          ## Performance Metrics
          from sklearn.metrics import mean_squared_error
          from sklearn.metrics import mean_absolute_error
          print(mean_squared_error(y_test,elastic_pred))
          print(mean_absolute_error(y_test,elastic_pred))
          print(np.sqrt(mean_squared_error(y_test,elastic_pred)))
          8.317775387996829
          2.3928315256929684
          2.8840553718673343
In [129...
          # R Squared
          from sklearn.metrics import r2_score
          score=r2_score(y_test,elastic_pred)
          print(score)
          0.4499695184276321
          # Adjusted R Squared
In [130...
          1 - (1-score)*(len(y_test)-1)/(len(y_test)-x_test.shape[1]-1)
          0.38885502047514686
Out[130]:
```

THE END