Objective: \$975, 614, 545, 034; without intervention: \$1,007, 337, 001, 721 (Desired optimality gap: 80%; actual: 77%. Lower Bound: \$222,473,000,000. Time to solve: 57s) $C^{I} = \$10,000,C^{D} = \$10,000,000$

One Period=7 days (costs scaled by 1,000,000 during optimization)
Solved using solve_and_process_vaccination_T_vax_99_S0_antivax_factor_0.2_KV_0.05

\$3.9e+08 \$0.0 \$3.9e+08 1.000

\$2.4e+ \$1.7e+ \$1.3e+ \$9.8e+ \$7.1e+ \$3.2e+ \$2.8e+ \$2.4e+ \$1.1e+ \$9.8e+ \$3.2e+ \$3.4e+ \$1.1e+ \$9.8e+ \$0.536 \$0.579 \$0.677 \$0.856 \$0.925\$

Movement

A: $\$[5000,10000]\cdot10^2$

B: \$[10000,20000] \cdot 10^2 **C: \$[10** ,**14**] 10² P: [.95 ,.93]

A: $\$[0 , 0] 10^2$

B: **\$[0** ,**0**] 10² C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

4. Restaurants

5. Masking

6. Mega Events

7. Border Control A: $\$[5000,10000]\cdot10^2$

A: $\$[0] \cdot 10^2$

B: \$[0] 10^2

C: \$[10]·10² P: [.93]

B: \$[10000,20000] 10²

C: $\$[10 , 14] 10^2$ P: [.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL
Cost Per Period: POLICY

Probability Factor

Cost Per Period: DISEASE

\$6e+09 \$0.0 \$6e+09 1.000

A: \$[5000 ,10000] ·10²

B: \$[10000,20000] \cdot 10^2 C: $\$[10 , 14] 10^2$ P: [.95 ,.93]

P: [.99 ,.95 ,.93]

P: [.99 ,.95 ,.93]