Home Credit Group Loan Defaulter Prediction

Md Saimoom Ferdous, PhD Springboard Data Science Career Track, March 2020 Cohort

Mentored by Rahul Sagrolikar Senior Data Scientist, Amazon

Table of Contents

- 1. Problem Statement
 - a. Project Flow, Business & Model Understanding
- 2. Data Collection
 - a. Loan application data
- 3. Exploratory Data Analysis
 - a. Correlated Variables
- 4. Machine Learning Modelling
 - a. TensorFlow
 - b. Random Forest
 - c. GBM
 - d. XGBoost
 - e. Voting Classifier
- 5. Conclusion

Problem Statement

Project Flow

Problem Solution Know the With little Business important information hard features to look to decide on loan sanction at **Important** Imbalance data features set weighs in extraction from for majority the trained class

models

Project Flow - Details

Problem

2.

Business

- Home Credit Group needs to disburse loans to most vulnerable group with little to no information
- Need to make balance, real defaulters don't get loans (FN) and non-defaulters are not barred from loans (FP)

Solution

- 1. Knowing the most important features to look at
- 2. Minimize FN/FP ratio

Loan defaulter predictior

- Minority class always has very less population than majory class which leads to bias
- Trained model can have better separability yet having high FN/FP ratio

- Under-sampling is better option for making balanced dataset
- Model training and Explainability can help identify and quantify important features

Section 2: Data Collection and Wrangling

Data

Application

6 Other Files

Kaggle data

Sourced from Home Credit Group Inc.

Contains
307.5 K
clients
information
with 121
features and
a target
variable

We will limit to this file only

Contains information about 'bureau', 'previous credit/cash balance', 'installments' information

Data Wrangling

Missing values fixed and duplicate checked

Saved cleaned data for EDA stage

How Unbalnced the Target is?

What Income Group the Clients Come from?

Highly Correlated Feature Removal

Variables		Correlations
GOODS_PRIC E	CREDIT	0.99
REGION_RAT ING	REGION_ RATING_ CLIENT	0.95
LIVINGAREA_ AVG	LIVING_A REA_MOD E	0.92

Highly correlated variables (>0.80) were dropped to avoid data redundancy

Feature Creation

14 additional features were created from anomalous features, observations and multiplicative terms

EXT_ features showed maximum correlation with 'target'

Distribution of (EXT_3 * EXT_1) are quite distinct for 'loan repayment' vs 'unlikely to repay'

Machine Learning

Deep Neural Network (TensorFL ow 2.0)

Deep Neural Network (TensorFlow 2.0)

Hyperparameter optimized

False Negative/False Positive = 33/30 %

AUC = 0.7393 Accuracy = 67.85%

GBM

Hyperparameter optimized:

False Negative/False Positive = 31/31 %

AUC = 0.7541 Accuracy = 68.72%

Important Features: EXT_3_2, EXT_3_1, EXT_2_1

Voting Classifier

Model Explainability: SHAP Value with GBM Model

Top features with positive/negative correlativity with target variable

The magnitude of individual observation's contribution is also shown

Model Explainability: LIME Coefficients with GBM Model

- Lower value of EXT_3_2 positively correlates with target variable
- Lower value of FLAG_DOCUMENT_17 negatively impacts target variable
- Similar explanation applies to other variables

Machine Learning Results

Metric		
Model	AUC	
TensorFLow 2.0	0.7393	
Random Forest	0.7450	
GBM	0.7541	
XGBoost	0.7537	

Top 3 Important Features from the Models				
Models	Negative Correlation	Positive Correlation		
Random Forest	EXT_3_2, EXT_3_1, EXT_2_1	-		
GBM	EXT_3_2, EXT_3_1, EXT_SOURCE_3	-		
XGBoost	EXT_3_2, ANNUINITY_OVER_CREDI T,	ANNUINITY_O VER_CREDIT, CODE_GENDE R_M		

NOTE:

- GBM model got the best AUC score
- Low values of EXT_3_2, EXT_3_1 scores in the male population are important to scrutiy for loan approval

GitHub Link for loan defaulter classification

Conclusion

EDA

Age, gender, demography, socioeconomic distribution for loan repayment vs defaulter has been shown

Unknown variables (EXT_X, X=3, 2, 1) are highly correlated with 'target' variable

Modelling

Hyperparameter optimized for Deep Neural net, Random Forest, GBM, XGBoost and Voting Classifier models

Feature importance and explainability was determined for tree based models

Results

GBM yielded best AUC score of 0.7541 which is 2.6% improvement over base model

Low threshold of EXT_3_2, EXT_3_1, EXT_2_1 in the male clients are prone to becoming loan defaulters

Looking Forward

Online App Data Balancing Method Optimization Feature Engineering Deployment Current Manual feature **Currently not done** Step by step **Currently not done** engineering hyperparameter optimization for TF model Over sampling and **Automatic feature** Keras tuner can be used This model can be synthetic data engineering with integrated into additional dataset production step creation

Thank You

Md Saimoom Ferdous

Email: saimoom_026@yahoo.com

Linkedln: https://www.linkedin.com/in/saimoom-ferdous/

GitHub: https://github.com/saimoom026

Project Details: https://github.com/saimoom026/Springboard/tree/student-

branch/springboard/Capstone%20Three