U^b

b UNIVERSITÄT BERN

UNIVERSITÄT BERN

Advanced Networking and Future Internet IX. Audio Compression

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 09.11.2020

Advanced Networking and Future Internet: Audio Compression

b UNIVERSITÄT BERN

Table of Contents

- 1. Introduction
 - 1. Entropy Encoding
 - 2. Source Encoding
 - 3. Digitization of Audio Data
 - 4. Voice Encoding
- 2. Waveform Coding
 - Differential PCM
 - 2. Linear Prediction
 - 3. Vector Quantization

- 3. Vocoding
- 4. Quality of Audio Encoding
- 5. MPEG-Audio
 - 1. MPEG-1 Audio
 - 2. MPEG-4 Audio

u^{b}

b Universität Bern

1. Introduction

- Uncompressed images, audio and video
- →High storage and bandwidth requirements

Examples

- Stereo audio signal with CD quality
 - 2 channels, sampling rate: 44.1 kHz, quantization: 16 bits per sample
 - Bandwidth: 1.4 Mbps
 - Memory for 1 hour: 605 MB
- Video sequence
 - HDTV: 1920 1080 pixels,24 bits per pixel, 30 frames / s
 - Bandwidth: 1.5 Gbps

u^t

UNIVERSITÄT BERN

1. Introduction

1. Entropy Encoding

- is lossless,
- is used for different media, and
- does not consider media dependent characteristics.
- Data to be compressed are considered as a sequence of digital values.

Examples

- Run Length Encoding (RLE)
- Statistical encoding
 - Encoding of characters with different numbers of bits
 - Frequent characters → short bit sequences
 - Infrequent characters → long bit sequences
 - Examples: Huffman and arithmetic encoding
- Directory methods
 - Patterns are often known a priori, e.g., in data bases.
 - Ordering of patterns in table and replacement by index prior to transmission
 - Example: Vector Quantization

b UNIVERSITÄT BERN

1. Introduction

2. Source Encoding

- is mostly lossy and uses semantics of information to be encoded.
- Original and decoded data is similar but not identical.

Examples

- Differential encoding
 - encodes differences between individual samples,
 - is useful for large amplitudes, but small differences between samples
 - can be lossy or lossless.
- Transformation encoding
 - Transformation between types of information, e.g., discrete cosine transform: pixel matrix → frequency matrix
 - Transformation of data from one mathematical domain into another one that is more suitable for further compression
 - allows frequency-specific encoding, sub-band coding
 - Example: Discrete Cosine Transformation
 - Audio: one-dimensional DCT (in time)
 - Images: two-dimensional DCT (in space)

u^{b}

D UNIVERSITÄT BERN

1. Introduction

3. Digitization of Audio Data

- Periodic measurement of amplitudes
 - → sequence of samples
- Analog/Digital Converter
 - Transformation of analog audio signal to digital samples
 - Sampling
 - Sampling theorem: sampling rate
 > 2 highest frequency
 - Quantization
 - Resolution depends on available bits for encoding the digital sample.

- Digital/Analog Converter
 - Transformation of digital samples into analog audio signal
- ISDN: Pulse Code Modulation:
 8 bit sample every 125 μs

$u^{\scriptscriptstyle b}$

UNIVERSITÄT Bern

1. Introduction

4. Voice Encoding

Voice encoding consists of

- Analysis
 - Encoding of voice as a compact set of parameters
 - Open loop
 - No feedback in encoding process
 - Closed loop
 - Extraction of parameters and encoding of differential values
 - analysis by synthesis
 - Parameter presentation
 - Non voice-specific: waveform coding
 - Voice-specific: vocoding based on voice modeling
- Synthesis
 - Decoding of parameters and voice reconstruction

u^t

D UNIVERSITÄT BERN

2. Waveform Coding

- Encoding in time domain
- Approximation of original waveform
- Better quality and more robust than vocoders, but less efficient (higher bandwidth)
- tries to determine relation between different samples

Options

- Differential coding: encoding relative to previous value; Calculation of difference can result in smaller values.
- 2. (Linear) Prediction: coding of difference between waveform and predicted one
- 3. Vector quantization

u^{\flat}

UNIVERSITÄT

2. Waveform Coding

1. Differential PCM

$u^{^{\flat}}$

UNIVERSITÄT

2. Waveform Coding

2. Linear Prediction

- Calculation at time j:
 e(j) = y(j) [a₁y(j-1) + a₂y(j-2) + ... + a_py(j-p)]
 - y(i): sample
 - a_i: prediction coefficients
 - [predicted value]
- e(j) have a small value range,
 which allows encoding using a few bits only.
- Optimization of prediction coefficients a_i to minimize $E = e^2(0) + e^2(1) + ... + e^2(p)$, e.g., every 10-30 ms.

UNIVERSITÄT BERN

2. Waveform Coding

3. Vector Quantization

- Vector table = codebook
- Calculation of the closest vector from codebook (smallest sum of error squares or mapping into space):

 $\epsilon(s,v) = \sum_{k=0}^{M-1} (s(k) - v(k))^2$ Index

- Transmission of vector index from table
- Problem: delay
- Codebook design:
 a priori (fixed) after training phase or adaptive

^b Universität Bern

3. Vocoding

- Transformation into frequency domain and analysis of frequency spectrum
- Make use of rather slow rate of signal change
- Characterization of waveforms based on various parameters such as
 - voiced / unvoiced
 - signal energy
 - signal duration
 - frequency

- Reconstruction (synthesis) at receiver of a completely new waveform from transmitted parameters
 - sounds often synthetic
 - extremely low bit rates in the area of a few kbps
- Example: Code-Excited Linear Prediction
 - Pre-calculation of a finite set of waveform templates and storing them in template codebooks at sender and receiver
 - Assignment of waveform to best suited template
 - Accumulation and processing of several samples creates significant (algorithmic/processing) delay.

UNIVERSITÄT BERN

4. Quality of Audio Encoding

UNIVERSITÄT

5. MPEG-Audio

1.1 MPEG-1

\boldsymbol{u}

UNIVERSITÄT Bern

5. MPEG-Audio

1.2 MPEG-1 Layers

Layers with increasing complexity and performance

- I. Digital Audio Cassette
 - HiFi quality at 192 kbps per channel, delay: 20 ms
- II. Digital Audio and Video Broadcasting
 - Near CD quality at 128 kbps per channel, delay: 40 ms
- III. CD quality over low bit rate channels
 - CD quality at 64 kbps per channel, delay: 60 ms

UNIVERSITÄT BERN

5. MPEG-Audio

2. MPEG-4

- Efficient coding mechanisms for low bit rates, e.g., based on CELP
- Scalability
- Audio objects, e.g., background sound
- Synthetic / natural / hybrid encoding
- Text-to-speech
- Variants
 - Advanced Audio Coding
 - Audio Lossless Coding

$u^{\scriptscriptstyle b}$

5. MPEG-Audio

2.1 MPEG-4 Advanced Audio Coding

- AAC encoder
 - Waveform codec using modified DCT (≡ 1024 PCM input samples), stereo processing, temporal noise shaping, quantization and coding
- Spectral Band Replication
 - Regeneration (instead of transmission)
 Audio of higher frequencies from lower frequencies using low-bit rate guidance data
- Audio Input Preprocessor (Encoder) Bit Stream PS Side Info Bitstream

 HE-AAC v2

 HE-AAC v1

 AAC Decoder

 HE-AAC v1

 HE-AAC v2

 Audio Output

 AAC Decoder

 PS SBR Postprocessor (Decoder)

 SBR Side Info Bitstream

 PS Side Info Bitstream

- Parametric Stereo
 - Mono-downmix transmission, sophisticated stereo processing considering time and phase differences

$u^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT

5. MPEG-Audio

2.2 MPEG-4 Audio Lossless Coding

Frame Block Partition

- Division of audio data stream into frames and blocks
- Short/Long-Term Prediction
 - Calculation of residual error signal using linear prediction and forward adaptive prediction
- Joint Channel Coding
 - Prediction based on similarity of channels
- Entropy Coding

Thanks

for Your Attention

b UNIVERSITÄT

Prof. Dr. Torsten Braun, Institut für Informatik

Bern, 09.11.2020

