چگالی) لاگرانژی

$$\mathscr{L}_0 = -\frac{1}{2} \partial_\mu h_{\nu\rho} \partial^\mu h^{\nu\rho}$$

را که در آن $h_{\mu
u}(x)$ یک میدان تنسوری درفضازمان و $\mu,
u,
ho = 0,1,2,3$ است، درنظر بگیرید.

۱- در حالت کلی تعداد تعداد پارامترهای مستقل h_{uv} (در هر نقطهٔ فضازمان) چندتاست؟

۲- اگر $h_{\mu
u}$ یک میدان تنسوری حقیقی باشد، تعداد پارامترهای مستقل آن چندتاست؟

۳- اگر مستقل آن چندتاست؟ - اگر میدان حقیقی متقارن باشد، تعداد پارامترهای مستقل آن چندتاست

در ادامه، $h_{\mu
u}$ را یک میدان تنسوری حقیقی متقارن فرض کنید.

۴- لاگرانژی \mathscr{L}_0 چه تقارن خارجیای دارد؟ آیا این تقارن موضعی است یا جهانی؟

 \mathscr{L}_0 لاگرانژی \mathscr{L}_0 چه تقارن داخلیای دارد؟ آیا این تقارن موضعی است یا جهانی $-\Delta$

معادلهٔ حرکت را برای $h_{\mu
u}(x)$ بدست آورید.

بنویسید. $h_{\mu\nu}(x)$ جواب کلی معادلهٔ دیفرانسیل فوق را برای $h_{\mu\nu}(x)$ بنویسید.

در واقع، کلی ترین و ساده ترین (چگالی) لاگرانژی برای یک میدان تنسوری حقیقی متقارنِ مرتبهٔ ۲، از درجهٔ دوم ∂h و ناوردا تحت تبدیلات لورنتس و

(i)
$$h_{\mu\nu} \longrightarrow h_{\mu\nu} + \partial_{\mu}X_{\nu} + \partial_{\nu}X_{\mu}$$

است ((تا سقف یک چهار-دیورژانس) که در آن X^{μ} هر میدان برداری دلخواهی میتواند باشد)، به شکل زیر است

$$\mathscr{L} = -\frac{1}{2}\partial_{\mu}h_{\nu\rho}\partial^{\mu}h^{\nu\rho} + \partial_{\mu}h_{\nu\rho}\partial^{\nu}h^{\mu\rho} - \partial_{\mu}h^{\mu\nu}\partial_{\nu}h + \frac{1}{2}\partial_{\mu}h\partial^{\mu}h$$

که در آن $h_{\mu\nu}$ یک میدان تنسوری متقارن حقیقی مرتبهٔ ۲، $h_{\mu\nu}=\eta^{\mu\nu}h_{\mu\nu}$ ،۲ متریک مینکووسکی و $\eta=diag(1,-1,-1,-1)$ ،

است. براساس این تقارنها به علاوهٔ تقارنهایی دیگری نظیر اتحاد بیانکی (Bianchi identity) که دانستن هیچ کدام در پاسخ $\mu, \nu, \rho, \sigma, \delta = 0, 1, 2, 3$

به این سؤال اهمیتی ندارد)، می توان پیمانه هایی ثابت (fix) کرد که تحت آن ها

(ii)
$$\partial_{\mu}h^{\mu
u}=0$$
 transverse gauge (پیمانهٔ عرضی)

(iii)
$$h=0$$
 traceless gauge (پیمانهٔ بدون ردّ)

همهٔ اینها باعث می شود معادلات حرکت ℓ ، بعد از اعمال پیمانههای فوق، دقیقاً با معادلات حرکت ℓ یکی شود و درضمن $\ell_{\mu
u}$ فقط دو پارامتر مستقل داشته باشد که در یک دستگاه مختصات مناسب، که در آن انتشار موج متناظر در راستای محور ℓ فرض می شود، به شکل

$$h_+ \propto \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \, h_\times \propto \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

قابل نمایش هستند.

(polarization) چند قطبش $h_{\mu
u}$ دارد $^{-\Lambda}$

٩- تكانهٔ مزدوج اين ميدان را حساب كنيد.

۱۰ - همیلتونی این میدان را بدست آورید.

۱۱- جرم ذرهٔ متناظر با میدان را مشخص کنید.

۱۲- ترم برهم كنشي را مشخص كنيد.

۱۳- ترم منبع را مشخص كنيد.

۱۴-جابهجاگرهای همزمان غیرصفر را بنویسید.

سعی کنید $h_{\mu\nu}(x)$ را (به عنوان یک میدان کلاسیک) برحسب مُدها بسط دهید.

با ارتقاء ضرایب بسط قسمت قبل به اپراتور، $\hat{h}_{\mu
u}(x)$ را بدست آورید.

۱۷-همیلتونی را کوانتیزه و نرمالمرتب کنید.

۱۸ - تصور می کنید این میدان معرف ذرهای با چه اسپینی باشد؟

با توجه به این که انتشار موج در راستای \hat{z} فرض شده است پس برای هلیسیتی داریم $\hat{h}=J^z$ اما چون میدان ما تنسوری مرتبهٔ دو (قابل نمایش با ماتریسها) است، پس به یاد داشته باشید عمل مناسب J^z روی میدان $h_{\mu\nu}J^z$ ، به شکل J^z خواهد بود.

۱۹-نشان دهید h_+ و پژه-التهای J^Z هستند.

۱۰-۱گر تابع گرین معادلهٔ کلاین-گوردون $\frac{1}{p^2-m^2}$ باشد $\frac{1}{q}$ باشد $\frac{1}{q}$ باشد واربردار انرژی تکانه است)، تابع گرین متناظر با معادلهٔ حرکت این میدان، $\frac{1}{q}$ باشد ورید.

مشخص کنید. گر انرژی ذرهٔ متناظر را $E\equiv p^0$ بگیریم، قطبهای $\Delta_h(t,\mathbf{p})$ را در صفحهٔ مختلط متناظر را $E\equiv p^0$

براساس پاسخ ۲۰ و ۲۱، انتشاردهندهٔ میدان فوق، یعنی $\Delta_h(p)$ را حساب نمایید.

انتگرالی برای $\Delta_h(t,\mathbf{p})$ بنویسید. $\Delta_h(t,\mathbf{p})$ بنویسید.

۲۴-با توجه به (۱۹) و (۲۰)، انتگرال فوق را با انتخاب مسیری مناسب اصلاح کنید.

۲۵- براساس (i)، $D\mathcal{L}$ را حساب نمایید.

۲۶- جریان نوتر متناظر با تبدیل (i) را بدست آورید.