INF3105 – 2019A / Examen 1 (27 octobre 2019) / Partie A

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8	9 ← Entrez les 6 premiers chiffres de votre code permanent. Exemple: ABCD01029211 ==> 010292. 9 Nom et prénom: 9
Remplissez les cases correspondant aux bonnes réponses. Les questions marquées d'un 🌲 peuvent avoir zéro, une ou plusieurs bonnes réponses. Chaque question vaut 2 points pour un total de 60 points.	
Question 1 Cochez les mots qui sont des mots- clés (keywords ou mots réservés) du langage C/C++.	Question 7 L'exécution de ./progB < test1.txt affiche sur la première ligne :
return sqrt string delete while unsigned new cin istream short char do	
Question 2 ♣ En C/C++, la signature d'une fonc-	Question 8 L'exécution de ./progB < test2.txt affiche sur le deuxième ligne :
tion est définie par son : nombre de paramètres type de retour type des paramètres nom	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
type des paramètres nom. Question 3 ♣ Cochez le ou les énoncés illégaux (ayant au moins une erreur).	Question 9 Quelle est la complexité temporelle (pire cas) du programme $progB.cpp$? Supposez n phrases, m mots par phrase et k mots différents.
<pre>int *p, *q, **r=&q string n, *p=0; int p; int& q=p; double k; int* p = &k</pre>	$\begin{array}{c ccc} & \mathcal{O}(nmk^2) & & & \mathcal{O}(n\log m\log k) \\ & \mathcal{O}(n\log k) & & \mathcal{O}(nk\log m) \\ & \mathcal{O}(nmk) & & \mathcal{O}(nmk\log k) \\ & \mathcal{O}(nm+n\log k) & & \mathcal{O}(nm\log k) \end{array}$
Question 4 Le programme progA.cpp laisse objets de type int non libérés sur le tas (heap).	Question 10 Cochez les expressions de complexité grand-O qui sont simplifiées. Notez que k,m et n sont des variables indépendantes.
7 16 2 64 8 0 128 24 6 5 36 4	$ \begin{array}{c cc} $
Question 5 Le programme progA.cpp affiche sur la première ligne (fonction f1):	Question 11 ♣ Cochez les énoncés vrais. Les symboles < et > signifient moins et plus complexe que.
P12P34G_r_p12p34p12p34 P12P34G_r_p34p12p43p21 P12P34G_r_p34p12r_p34p12p34p12 P21P34G_r_p43p21r_p12p34p12p34 P12P34G_P00P00R_r_p43p21r_p43p21p43p21	
Question 6 Le programme progA.cpp affiche sur la deuxième ligne (fonction f2):	lorsque la politique d'agressissement augmente la capacité de 1.
R_P00P00R_P00P00G_P34P12p34p12p12p34r_ P00P00R_P00P00R_P34P12G_r_p12p12p34p34 P00P00R_P00P00R_P34P12G_r_p34p12p12p34	$\begin{array}{c ccc} & \mathcal{O}(\log n) & & & \mathcal{O}(1) \\ \hline & \mathcal{O}(n\log n) & & & & \mathcal{O}(n^2) \\ \hline & & \mathcal{O}(n) & & & \end{array}$
R_P00P00R_P00P00G_P34P12p12p12p34p34r_ P00P00R_P00P00R_	Question 13 L'ajout à la fin d'un tableau dy- namique a une complexité temporelle amortie de lorsque la politique d'agressissement double la capac- ité.

Question 14 L'insertion dans un arbre binaire de recherche équilibré a une complexité temporelle de : $\square \mathcal{O}(n) \qquad \square \mathcal{O}(n \log n)$ $\square \mathcal{O}(\log n) \qquad \square \mathcal{O}(n^2) \qquad \square \mathcal{O}(1)$ Question 15 Le test d'équivalence (operator ==) pour un arbre binaire de recherche équilibré a une complexité temporelle de Supposez la meilleure implémentation possible de cet opérateur. $\square \mathcal{O}(n) \qquad \square \mathcal{O}(n^2) \qquad \square \mathcal{O}(\log n)$ $\square \mathcal{O}(1) \qquad \square \mathcal{O}(n \log n)$	Question 22 Durant l'insertion d'un élément dans un arbre AVL, combien de rotation(s) peut-on avoir dans le pire cas? Une double rotation compte pour 2 rotations. Supposez que l'arbre contient n éléments. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Question 16 Le test d'équivalence (operator ==) pour un arbre binaire de recherche non équilibré a une complexité temporelle de Supposez la meilleure implémentation possible de cet opérateur. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question 24 On insère les entiers 0 à 4 inclusivement dans un arbre AVL. L'ordre est aléatoire. Combien d'arbres différents (structure) peut on obtenir?
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$