ПРАКТИЧЕСКАЯ РАБОТА №2

ТЕМА: «Тяговый расчет ленточного конвейера» (4 часа)

Цель работы: Ознакомление с устройством и принципом работы пластинчатых конвейеров, выполнение тягового расчета конвейера.

2.1 Краткие теоретические сведения.

Пластинчатый конвейер служит для непрерывного транспортирования насыпных и штучных грузов по трассе, расположенной в вертикальной плоскости или в пространстве.

По конструкции настила, тяговой цепи и расположению трассы различают пластинчатые вертикально-замкнутые конвейеры общего назначения и изгибающиеся конвейеры с пространственной трассой. К специальным пластинчатым конвейерам относят разливочные машины для транспортирования и охлаждения жидкого металла, пассажирские конвейеры и конвейеры с настилом сложного профиля.

Пластинчатые конвейеры применяются на складах, в металлургической, химической, угольной, энергетической и других отраслях промышленности.

Преимуществами пластинчатых конвейеров являются возможность транспортирования тяжелых и горячих грузов при больших производительности и длине перемещения; спокойный и бесшумный ход; применение трасс с наклоном до 60° .

К недостаткам пластинчатых конвейеров относятся значительные массы настила, цепей, а также их высокая стоимость.

Пластинчатый конвейер состоит из станины, по концам которой установлены две звездочки — приводная с приводом и натяжная с натяжным устройством (рис.2.1). Бесконечный настил, состоящий из отдельных металлических, или реже, деревянных пластин, прикреплен к одной или двум тяговым цепям, которые огибают концевые звездочки и находятся в зацеплении с их зубьями. Вертикально замкнутые тяговые цепи снабжены опорными катками и движутся вместе с настилом по направляющим путям станины вдоль продольной оси конвейера.

2.2 Расчет пластинчатого конвейера

Рассчитать пластинчатый горизонтальный конвейер при заданной производительности Q (т/ч) для перемещения штучных грузов плотностью ρ , с размером по диагонали b, массой m. Длина конвейера L. <u>Разгрузка</u> — в конце загруженной ветви. Условия работы — cpedhue.

Вариант 8

b, мм	Q, т/ч	L, м	m, кг	р, т/м ³
160	13,5	90	55	0,8

2.2022.0	
Лист	Листов
1	7
У им. П. гр. М.	.О. Сухого Л-41
	<u>1</u> У им. П

Рис.2.1 - Расчетная схема конвейера: НУ - натяжное устройство; ПМ - приводное устройство.

2.2.1 Выбирается тип конвейера в зависимости от его назначения. Пластинчатые конвейеры различаются преимущественно конструкцией настила табл.2.1.

Таблица 2.1 - Типы пластинчатых конвейеров.

Обозначение ти-	Тип конвейера.	Область применения.		
па конвейера				
ПР	Плоский разомкнутый	Для транспортирования штуч-		
ПС	Плоский сомкнутый	ных грузов		
В	Безбортовый волни-	Для транспортирования		
БВ	стый	штучных и насыпных грузов		
	Бортовый волнистый			
КМ	Коробчатый мелкий	Для транспортирования насып-		
КΓ	Коробчатый глубокий	ных грузов		

2.2.2 Исходя из размеров груза, рассчитывается ширина настила, мм:

$$B \ge b_1 + B_1 = 160 + 150 = 310 \text{ MM}.$$
 (2.1)

где: b_1 – наибольший поперечный размер груза, *мм*;

 B_1- запас ширины настила: для безбортовых конвейеров $B_1=100$ мм (нечетные номера зачеток), для бортовых $B_1=150$ мм (четные номера зачеток).

2.2.3 По ГОСТ 22281-76 (табл.2.2) принимается стандартная ширина настила. По таб.2.3 выбирается шаг цепи $\mathbf{t_u}$ =250 мм. Из таблицы 2.4, в зависимости от ширины настила, выбирается скорость ходовой части \mathbf{v} =0,2, которая принимается из стандартного ряда по таблице 2.5.

Таблица 2.2 - Основные размеры пластинчатых конвейеров (ГОСТ 22281-76).

Ширина настила ходовой	Шаг тяговой цепи t , <i>мм</i>	Числа зубьев
части В , <i>мм</i>		звездочек z
400, 500, 650, 800,	80, 100, 125, 160, 200,	6, 7, 8, 9,
1000,1200, 1400, 1600	250,315,400, 500, 630	10,11, 12, 13

						Лист
					МиТОМ.ПТУМЦ.Пр.№2.2022.Отчет	2
Изм.	Лист	№ докум.	Подпись	Дата	, .	2

Таблица 2.3 - Рекомендуемый шаг цепей пластинчатых конвейеров.

Ширина настила, мм	Шаг цепи, мм
400	250
500	320
650	400
800	400
1000	500
1200	500
1400	630
1600	630

Таблица 2.4 - Рекомендуемая скорость движения полотна пластинчатых конвейеров.

Ширина настила, мм	Скорость движения полотна, м/с
400; 500	0,125 0,4
650; 800	0,125 0,5
1000; 1200	0,2 0,63
1400; 1600	0,25 0,63

Таблица 2.5 - Скорость движения ходовой части пластинчатых конвейеров (ГОСТ 22281-76).

Скорость движения ходовой части, м/с
0,01; 0,016; 0,025; 0,04; 0,05; 0,063; 0,08; 0,1; 0,125; 0,16; 0,2; 0,25; 0,315; 0,4;
0,5; 0,63; 0,8; 1,0

2.2.4 В качестве тягового органа по таблице 2.6 предварительно выбирается цепь для конвейера и разрушающая нагрузка (ГОСТ 588-81).

Таблица 2.6 Основные параметры тяговых пластинчатых цепей.

Номер цепи	Разрушающая нагрузка $\mathbf{F}_{\mathbf{pa}3}$, не менее $\kappa \mathbf{H}$	Шаг цепи $\mathbf{t}_{\mathbf{u}}$, мм
M20	20	40 - 160
M28	28	50 - 200
M40	40	63 - 250
M56	56	63 - 250
M80	80	80 - 315
M112	112	80 - 400
M160	160	100 - 500
M224	224	125 - 630
M315	315	160 - 630
M450	450	200 - 800
M630	630	250 - 1000

2.2.5 По формуле (2.2) определяется погонная масса груза (средняя масса груза на 1 м длины загруженного участка рабочей ветви конвейера), $\kappa \epsilon / m$:

						Лист
					МиТОМ.ПТУМЦ.Пр.№2.2022.Отчет	2
Изм.	Лист	№ докум.	Подпись	Дата	, .	3

$$q = Q / (3.6 \cdot v) = 13.5/(3.6 \cdot 0.2) = 18.75,$$
 (2.2)

 $2.2.6~\Pi$ о формуле (2.3) определяется шаг расположения грузов на настиле, m:

$$t_r = m/q = 55/18,75 = 2,93 \text{ MM},$$
 (2.3)

2.2.7 Погонная масса (масса 1 м длины тягового органа) ходовой части конвейера рассчитывается, $\kappa z/m$:

$$q_{x.y.} \approx 60 \cdot B + K = 60 \cdot 0,4 + 35 = 59 \text{ Kg},$$
 (2.4)

где: B — ширина настила, м; K — коэффициент, принимаемый по табл. 2.7.

	,			
Характеристика груза по плотности ρ ,	I	Ширина на	стила без б	бортов, м
T/M^3),4-0,5	0,65-0,8	1,0 и более
Легкий, ρ <1		35	45	60
Средний р=12		50	60	90
Тяжелый о > 2		70	100	130

Таблица 2.7 - Значение К

2.2.8 Наименьшее натяжение цепей, для горизонтально расположенного конвейера, находится в точке их сбегания с приводных звездочек и принимается F_{min} = F_1 = $1000 \dots 3000 H$. В соответствии с этим тяговая сила конвейера определяется, H:

$$F_0 = 1,05 \cdot [F_{min} + g \cdot (\omega \cdot q \cdot L + 2 \cdot \omega \cdot q_{x y} \cdot L)] =$$

$$= 1,05 \cdot [2000 + 9,81 \cdot (0,1 \cdot 18,75 \cdot 90 + 2 \cdot 0,1 \cdot 59 \cdot 90)] = 14777,34 \text{ H},$$
(2.5)

где: g=9,81 м/с; ω =0,07 ... 0,12 – коэффициент сопротивления перемещению груза.

По таблице 2.2 определяем число зубьев **z** для тяговых цепей.

2.2.9 Определяем динамическую нагрузку, Н:

$$\begin{split} F_{\text{дин}} &\approx ((60 \cdot v^2 \cdot L)/(z^2 \cdot t_{_{\text{II}}})) \cdot (q + k_1 \cdot q_{_{X \mid \text{Y}}}) = \\ &= ((60 \cdot 0, 2^2 \cdot 90)/(6^2 \cdot 0, 25)) \cdot (18,75 + 1 \cdot 59) = 509 \text{ H}, \end{split} \tag{2.6}$$

где: z – число зубьев ведущей звездочки, м; k_I – коэффициент приведения массы (табл.2.8).

Таблица 2.8 - Значения **k**₁

	-
Длина конвейера, м	k_{I}
Менее 25	2
25 60	1,5
Более 60	1

						Лист		
					МиТОМ.ПТУМЦ.Пр.№2.2022.Отчет	1		
Изм.	Лист	№ докум.	Подпись	Дата	1 1			

2.2.10. Определяется натяжение цепи в характерных точках конвейера методом обхода по контуру и уточняется значение \mathbf{F}_0 . Обход начинают, как правило, от точки с наименьшим натяжением $\mathbf{F}_{\min} = \mathbf{F}_1$.

Сопротивление:

– на участке холостой ветви конвейера определяется, Н:

$$S_x = q_{xy} \cdot g \cdot L \cdot \omega = 59.9,81.90.0,1 = 5209 \text{ H},$$
 (2.7)

- на загруженной ветви, H:

$$S_r = (q + q_{xy}) \cdot g \cdot L \cdot \omega = (18,59+59) \cdot 9,81 \cdot 90 \cdot 0,1 = 6864,54 \text{ H},$$
 (2.8)

2.2.11. Натяжение цепей в точке набегания цепей на натяжные звездочки определится, H:

$$F_2 = F_1 + S_x = 2000 + 5209 = 7209 H$$
 (2.9)

Сопротивление на натяжных звездочках, H:

$$S_3 = F_2 \cdot (1,05-1) = 7209 \cdot (1,05-1) = 360,45 \text{ H}$$
 (2.10)

Натяжение цепей в точке сбегания с натяжных звездочек, Н:

$$F_3 = F_2 + S_3 = 7209 + 360,45 = 7569,45 H$$
 (2.11)

Натяжение цепей в точке набегания загруженных ветвей цепей на приводные звездочки, H:

$$F_4 = F_3 + S_r = 7569,45 + 6864,54 = 14433,99 \text{ H}$$
 (2.12)

Уточненное значение тяговой силы конвейера определяется, H:

$$F'_0 = F_4 - F_1 = 14433,99 - 2000 = 12433,99 H$$
 (2.13)

2.2.12. Расчетное натяжение цепи, H:

$$F_{\text{pac}q} = F_4 - F_{\text{дин}} = 12433,99-509 = 11934,99 \text{ H}$$
 (2.14)

2.2.13. Разрушающая нагрузка цепи Н:

$$F_{pa3} \ge k \cdot F_{pac4} = 11924,99 \cdot 6 = 71549,99 H$$
 (2.15)
 $80 \kappa H \ge 71,549 \kappa H$

где: \mathbf{k} – коэффициент запаса прочности цепи; k=6 ...8.

						Лис
					МиТОМ.ПТУМЦ.Пр.№2.2022.Отчет	_
Изм.	Лист	№ докум.	Подпись	Дата	, .	٦

Разрушающая нагрузка цепи сравнивается с разрушающей нагрузкой выбранной цепи и не должна ее превышать.

2.2.14 Необходимая мощность на приводном валу конвейера определяется, κBm :

$$N_{9,\pi} = (10^{-3} \cdot F'_{0} \cdot v)/\eta = (10^{-3} \cdot 12433,99 \cdot 0,2)/0,8 = 3,107 \text{ kBt}$$
 (2.16)

- 2.2.15 По необходимой мощности на приводном валу конвейера из **таблицы 1.7** выбирается электродвигатель и рассчитываем передаточное отношение i редуктора:
 - передаточное отношение приводного редуктора:

$$i = \frac{n_{\partial s}}{n_{os}} = \frac{3000}{7,643} = 392,$$
 (2.17)

где: $n_{\partial s}$ — частота вращения ротора выбранного электродвигателя,o6/muh, значение $n_{\partial s}$ берем из **таблицы 1.7** по марке электродвигателя. n_{3s} — частота вращения приводной звездочки, o6/muh:

$$n_{36} = \frac{60 \times v}{I_{36} \times \pi} = \frac{60 \cdot 0.2}{0.5 \cdot 3.14} = 7.64306 / \text{мин},$$
 (2.18)

Определяем диаметр делительной окружности приводной звездочки по числу ее зубьев z и шагу цепи t_{II} :

$$\prod_{3B} = \frac{t_{II}}{\sin(180^{\circ}/z)} = \frac{0.25}{\sin(\frac{180}{6})} = 0.5 \text{ M}$$
(2.19)

Вывод: изучил методику расчета цепного конвеера; выбрал цепи с допустимой нагрузкой разрушения; определил параметры привода.

MeN	Лист	Νο ποκνν	Полпись	Лэтэ

Задание

Основными исходными данными для расчета конвейеров являются (табл.2.9):

- а) характеристика транспортируемого груза;
- б) производительность конвейера;
- в) режим и условия работы;
- г) параметры трассы перемещения груза;
- д) длина трассы.

2.3. Выполнение работы

- 1. Ознакомиться с теоретическими сведениями.
- 2. Изучить устройств и принцип работы пластинчатого конвейера.
- 3. Произвести расчет пластинчатого конвейера.
- 4. Оформить отчет.

2.4. Содержание отчета

- 1. Цель работы.
- 2. Теоретические сведения.
- 3. Расчет пластинчатого конвейера.
- 4. Выводы по работе.

2.5 Контрольные вопросы.

- 1. Назначение пластинчатого конвейера.
- 2. Перечислите недостатки и преимущества пластинчатых конвейеров.
- 3. Конструкция и работа пластинчатого конвейера.

4. Постологони мости постолностичность компойоро									
		ч. 110след	рватель	11001	в расчета пластинчатого конвенера.	Лис			
					МиТОМ.ПТУМЦ.Пр.№2.2022.Отчет	7			
Изм.	Лист	№ докум.	Подпись	Дата	, .	/			

5. В чем сущность метода обхода по контуру при расчете пластинчатого конвейера.

Таблица 2.9 - Варианты заданий

Таблица 2.9 - Варианты заданий									
Вариант	Размер по диагонали b , мм	Q, m/ч	<i>L</i> , м	Масса гру- за <i>m, кг</i>	плотность груза ρ , m/M^3				
1	120	10	100	30					
2	165	15	90	36					
3	180	11	80	40					
4	220	15	70	60					
5	200	12	60	50	0.0				
6	110	12,5	50	25	0,8				
7	125	13	100	45					
8	160	13,5	90	55					
9	190	14	80	80					
10	165	14,5	70	60					
11	115	15	60	40					
12	185	15,5	50	70					
13	145	16	100	45					
14	170	16,5	90	60					
15	210	17	80	90	1.6				
16	110	17,5	70	35	1,6				
17	125	18	60	45					
18	160	18,5	50	65					
19	190	19	100	70					
20	165	19,5	90	55					
21	115	20	80	30					
22	180	20,5	70	95					
23	220	21	60	105					
24	200	21,5	50	90					
25	110	22	100	40	2.4				
26	125	22,5	90	35	2,4				
27	240	23	80	120					
28	170	23,5	70	70					
29	150	24	60	65					
30	230	24,5	50	110					

Полученные результаты расчетов сводятся в таблицу.

					МиТ
Изм.	Лист	№ локум.	Полпись	Лата	