

LE201 A - FÍSICA GERAL 1

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE CIÊNCIAS APLICADAS

EXERCÍCIO 5

Responsável: Marcos Henrique Degani	
Discente:	
Nome: Lucas Tramonte	R.A.: 182697

Limeira 2021

Seja P uma partícula solta do repouso no ponto A em um recipiente semi-esférico de raio $r=1,5\,m$, como pode ser observado na Figura 1.

Figura 1 : Partícula P em uma posição angular Θ.

Dentro do recipiente há um fluido que aplica uma força resistiva proporcional à velocidade e contrária ao movimento da partícula. Dessa forma, a aceleração tangencial da partícula é dada por :

$$a = g \cdot cos(\theta) - k \cdot v . \tag{1}$$

a) Sendo $k = 2,5 \, s^{-1}$, para determinar os gráficos da posição angular e da velocidade angular pelo tempo, devemos comparar a equação (1) com a expressão da aceleração da partícula no sistema de coordenadas radial e transversal :

$$a = g \cdot cos(\theta) - k \cdot v = 2 \cdot \frac{dr}{dt} \cdot \frac{d\theta}{dt} + r \cdot \frac{d^2\theta}{dt^2} . \tag{2}$$

Portanto, como o raio r do semicírculo é constante, temos que $\frac{dr}{dt} = 0$. Ademais, sabemos que v é a velocidade tangencial, logo :

$$v = r \cdot \frac{d\theta}{dt} . {3}$$

Com isso, a equação a ser resolvida é uma equação diferencial ordinária não-linear de segunda ordem :

$$\alpha + k \cdot \omega - \frac{g}{r} \cdot cos(\theta) = 0, \qquad (4)$$

sendo $\alpha = \frac{d^2\theta}{dt^2}$ a aceleração angular e $\omega = \frac{d\theta}{dt}$ a velocidade angular da partícula. No entanto, não há solução analítica para a equação (4), sendo necessário resolvê-la numericamente, discretizando o tempo como exposto na Tabela 1.

t(s)	$\theta(rad)$	ω (rad/s)	$\alpha(rad/s^2)$
0	$\theta_1 = 0$	$\omega_1 = 0$	$\alpha_1 = \frac{g}{r}$
Δt	$\theta_2 = \theta_1 + \alpha_1 \cdot \Delta t$	$\omega_2 = \omega_1 + \alpha_1 \cdot \Delta t$	$\alpha_2 = \frac{g}{r} \cdot \cos(\theta_2) - k \cdot \omega_2$
$2 \cdot \Delta t$	$\theta_3 = \theta_2 + \alpha_2 \cdot \Delta t$	$\omega_3 = \omega_2 + \alpha_2 \cdot \Delta t$	$\alpha_3 = \frac{g}{r} \cdot \cos(\theta_3) - k \cdot \omega_3$
•••			

Tabela 1 : Discretização do tempo para determinar a posição, velocidade e aceleração angular numericamente¹.

Dessa forma, com o auxílio do software excel, é possível plotar os gráficos de θ e ω em função do tempo, como pode ser visualizado nas Figuras 2 e 3, respectivamente.

Figura 2 : Gráfico θ versus t, destacando em laranja a posição angular máxima e em vermelho a posição de equilíbrio.

 $^{^1}$ Na discretização do tempo, quanto menor for o intervalo de tempo Δt empregado, melhor será a aproximação numérica.

Figura 3: Gráfico ω versus t, destacando em laranja a velocidade angular máxima.

Diante das Figuras 2 e 3, observa-se que os gráficos estão de acordo com o previsto teoricamente, uma vez que que a força resistiva provoca um movimento oscilatório amortecido em torno do ponto de equilíbrio ($\theta=90^{\circ}$), até a partícula parar completamente ($\omega=0$).

Ademais, para investigar o espaço fásico do sistema físico em questão, determina-se o gráfico de ω em função de θ , como pode ser visto na Figura 4

Figura 4: Gráfico ω versus θ

b) A fim de investigar o efeito da viscosidade do fluido, a metodologia aplicada no item a) será repetida para os valores $k = 2 s^{-1} e k = 3 s^{-1}$.

Dessa forma, para $k=2\,s^{-1}$, determina-se os gráficos de θ e ω em função do tempo , e de ω em função de θ , como pode ser visualizado nas Figuras 5 , 6 e 7, respectivamente.

Figura 5 : Gráfico θ versus t , destacando em cinza a posição angular máxima e em laranja a posição de equilíbrio.

Figura 6: Gráfico ω versus t, destacando em laranja a velocidade angular máxima.

Figura 7: Gráfico ω versus θ

Ademais, para $k=3\,s^{-1}$, determina-se os gráficos de θ e ω em função do tempo, e de ω em função de θ , como pode ser visualizado nas Figuras 8, 9 e 10, respectivamente.

Figura 8 : Gráfico θ versus t , destacando em cinza a posição angular máxima e em laranja a posição de equilíbrio.

Figura 9 : Gráfico ω versus t, destacando em laranja a velocidade angular máxima.

Figura 10: Gráfico ω versus θ

Com isso, sendo t₁ o instante de tempo em que ocorre a posição angular máxima, e t₂ o instante em que ocorre a velocidade angular máxima, determinou-se tais valores máximos para cada caso a partir dos gráficos apresentados, como pode ser visto na Tabela 2.

$k(s^{-1})$	tı(s)	θ máx (rad)	t2(s)	ω máx (rad/s)
2	1,514	1,918804	0,645	2,072309
2,5	1,613	1,790604	0,628	1,849111
3	1,757	1,696662	0,613	1,663302

Tabela 2 : Valores da posição e velocidade angular máxima para cada constante k.

Dessa forma, com o intuito de ter uma melhor compreensão visual do efeito da constante k no sistema, os gráficos expostos nas Figuras 2, 5 e 8 foram plotados conjuntamente, como pode ser visualizado na Figura 11.

Figura 11 : Gráfico θ versus t para cada valor de k.

Portanto, os resultados obtidos foram coerentes com o previsto pela teoria, uma vez que , com a diminuição da constante k , observou-se um aumento da posição angular máxima e da velocidade angular máxima da partícula, fato coerente pois a redução da viscosidade do fluido oferece uma menor resistência ao movimento do objeto. Analogamente, o aumento da constante k tornou o fluido mais viscoso, retardando o movimento da partícula, e diminuindo a sua posição e velocidade angular máxima.