Computational Complexity Theory

Lecture 21: Complexity of Counting

Department of Computer Science, Indian Institute of Science

Natural counting problems

- What is the complexity of the following problems?
- #SAT: Count the number of satisfying assignments of a given Boolean circuit/CNF.

- #HAMCYCLE: Count the number of Hamiltonian cycles in an undirected graph.
- Observation. The above problems are NP-hard.

Natural counting problems

- What is the complexity of the following problems?
- #PerfectMatching: Count the number of perfect matchings in a bipartite graph.
- #CYCLE: Count the number of simple cycles in a directed graph.
- Observation. The corresponding decision problems are in P.

Natural counting problems

- What is the complexity of the following problems?
- #PATH: Count the number of simple paths between two vertices in a connected graph.
- #SPANTREE: Count the number of spanning trees in a connected graph.
- Observation. The corresponding decision problems are trivial.

• Theorem. (Kirchhoff 1847) #SPANTREE is in FP.

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Definition. The Laplacian matrix of G is an n x n matrix
 L_G defined as

```
L_G(i,j) = deg(i) if i = j,

= -1 if there's an edge (i,j) in G,

= 0 otherwise.
```

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Definition. The Laplacian matrix of G is an $n \times n$ matrix L_G defined as $L_G = D_G A_G$, where D_G is the degree matrix and A_G the adjacency matrix of G.
- Observation. It is easy to compute L_G from A_G.

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Kirchhoff's matrix-tree theorem states that no. of spanning trees of $G = \text{any cofactor of } L_G$.
- (i,j) cofactor of $L = (-1)^{i+j}$. det(submatrix of L obtained by deleting the i-th row and the j-th column from L).

- Theorem. (Kirchhoff 1847) #SPANTREE is in FP.
- Proof sketch. Let G be an n-vertex connected graph without self loops. Label the vertices by {1,..., n}.
- Kirchhoff's matrix-tree theorem states that no. of spanning trees of $G = \text{any cofactor of } L_G$.
- Corollary. As determinant computation is in (functional) NC, #SPANTREES is in (functional) NC.

Theorem. #CYCLE is in NP-hard.

 Lesson. A counting problem can be hard even if the corresponding decision problem is in P.

Theorem. #CYCLE is in NP-hard.

 Proof. We will give a poly-time reduction from the Hamiltonian cycle problem to the #CYCLE problem.

Theorem. #CYCLE is in NP-hard.

• Proof. Let G be an n-vertex digraph. We'll efficiently construct a new graph G' from G s.t. the presence of a Hamiltonian cycle in G can be readily derived from the number of cycles in G'. Construction of G':

• Theorem. #CYCLE is in NP-hard.

Proof. Case I: If G has a HC, then #cycle(G') ≥ 2^{mn}.

Theorem. #CYCLE is in NP-hard.

- Proof. Case I: If G has a HC, then #cycle(G') ≥ 2^{mn}.
- Case2: If G has no HC, then $\#\text{cycle}(G) \le n^{n-1}$ $\#\text{cycle}(G') \le n^{n-1}.2^{m(n-1)}$.

Theorem. #CYCLE is in NP-hard.

- Proof. Case I: If G has a HC, then #cycle(G') ≥ 2^{mn}.
- Case2: If G has no HC, then $\#\text{cycle}(G) \le n^{n-1}$ $\#\text{cycle}(G') \le n^{n-1}.2^{m(n-1)}$.
- If we choose m such that $n^{n-1}.2^{m(n-1)} < 2^{mn}$, then we can find out if G has a HC from #cycle(G').
- Set $m = n^2$.

Class #P

Definition. We say a function f: {0,1}* → N is in #P if there's a poly-time TM M and a polynomial function p: N → N such that for every x ∈ {0,1}*,

$$f(x) = |\{u \in \{0,1\}^{p(|x|)} : M(x, u) = 1\}|.$$

Class #P

• Definition. We say a function $f: \{0,1\}^* \to \mathbb{N}$ is in #P if there's a poly-time TM M and a polynomial function p: $\mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0,1\}^*$,

$$f(x) = |\{u \in \{0,1\}^{p(|x|)} : M(x,u) = 1\}|.$$

- Observation. Problems #SAT, #HAMCYCLE, #PerfectMatching, #CYCLE, #PATH and #SPANTREE are in #P.
- In fact, with every language in NP we can associate a counting problem that is in #P.

#P-completeness

- Recall, to define completeness of a complexity class, we need an appropriate notion of a <u>reduction</u>.
- What kind of reductions will be suitable is guided by <u>a</u> <u>complexity question</u>, like a comparison between the complexity class under consideration & another class.
- Is #P = FP?

#P-completeness

- Definition. A function f: {0,1}* → N is in #P-complete if f is in #P and for every g ∈ #P, we have g ∈ FPf i.e., g is poly-time Cook/Turing reducible to f.
- In other words, for every $x \in \{0,1\}^*$, we can compute g(x) in polynomial time using oracle access to f.

#P-completeness

- Definition. A function $f: \{0,1\}^* \to \mathbb{N}$ is in #P-complete if f is in #P and for every $g \in \#P$, we have $g \in FP^f$ i.e., g is poly-time Cook/Turing reducible to f.
- In other words, for every $x \in \{0,1\}^*$, we can compute g(x) in polynomial time using oracle access to f.

 Observation. If a #P-complete language is in FP then #P = FP.

• Theorem. #SAT is #P-complete.

• Proof. #SAT is in #P. Let $g \in \#P$. We intend to show that $g \in FP^{\#SAT}$.

• Theorem. #SAT is #P-complete.

• Proof. #SAT is in #P. Let $g \in \#P$. We intend to show that $g \in FP^{\#SAT}$. There's a poly-time TM M and a poly. function $p: N \to N$ such that for every $x \in \{0,1\}^*$,

$$g(x) = |\{u \in \{0,1\}^{p(|x|)} : M(x,u) = 1\}|$$
.

• Algorithm: On input x, convert M(x, ...) to a 3CNF ϕ_x using Cook-Levin theorem. Give ϕ_x as input to the #SAT oracle. Output whatever the oracle outputs.

• Theorem. #SAT is #P-complete.

• Proof. #SAT is in #P. Let $g \in \#P$. We intend to show that $g \in FP^{\#SAT}$. There's a poly-time TM M and a poly. function $p: \mathbb{N} \to \mathbb{N}$ such that for every $x \in \{0,1\}^*$,

$$g(x) = |\{u \in \{0,1\}^{p(|x|)} : M(x,u) = 1\}|$$
.

• Algorithm: On input x, convert M(x, ...) to a 3CNF ϕ_x using Cook-Levin theorem. Give ϕ_x as input to the #SAT oracle. Output whatever the oracle outputs.

Note: Only one query to the oracle. Resembles a poly-time Karp reduction.

• Theorem. #SAT is #P-complete.

• Proof. #SAT is in #P. Let $g \in \#P$. We intend to show that $g \in FP^{\#SAT}$. There's a poly-time TM M and a poly. function $p: N \to N$ such that for every $x \in \{0,1\}^*$,

$$g(x) = |\{u \in \{0,1\}^{p(|x|)} : M(x,u) = 1\}|$$
.

• Correctness: Follows from the fact that the Cook-Levin reduction is <u>parsimonious</u>, i.e.,

The no. of satisfying assignments of ϕ_{ν} .

$$|\{u \in \{0,1\}^{p(|x|)}: M(x,u) = 1\}| = \#\phi_x.$$

Theorem. #HAMCYCLE is #P-complete.

- Most (all?) NP-complete problems known till date have defining verifiers such that the corresponding counting problems are #P-complete.
- Open. Does every NP-complete problem have a defining verifier such that the corresponding counting problem is #P-complete?

Issue: The reduction that shows NP-completeness of a problem needn't have to be <u>parsimonious</u>.

• Theorem. (Valiant 1979) #PATH is #P-complete.

 In fact, #PATH is #P-complete for both directed and undirected graphs.

- Theorem. (Valiant 1979) #PATH is #P-complete.
- In fact, #PATH is #P-complete for both directed and undirected graphs.
- Theorem. (Valiant 1979) #PerfectMatching is #P-complete.
- Proof. We'll see a proof later.

Relation between #P and other classes

• Observation. #P ⊆ PSPACE.

Also, PH ⊆ PSPACE. How does #P relate to PH?

Relation between #P and other classes

Observation. #P ⊆ PSPACE.

- Also, PH ⊆ PSPACE. How does #P relate to PH?
- Theorem. (Toda 1991) PH ⊆ P#SAT.
- Proof. We'll see a proof later.

Relation between #P and other classes

Observation. #P ⊆ PSPACE.

Also, PH ⊆ PSPACE. How does #P relate to PH?

• Theorem. (Toda 1991) $PH \subseteq P^{\#SAT}$.

Hence, #P is <u>harder</u> than PH.

- Observation. If #P = FP, then P = NP.
- Open. Does P = NP imply #P = FP ?
- But, we do know that P = NP implies every #P problem has a <u>randomized polynomial-time</u> <u>approximation algorithm</u>.

- Observation. If #P = FP, then P = NP.
- Open. Does P = NP imply #P = FP ?
- But, we do know that P = NP implies every #P problem has a <u>randomized</u> polynomial-time approximation algorithm.

Can be derandomized!

- Definition. A function f: $\{0,1\}^* \rightarrow \mathbb{N}$ has a Fully Polynomial-time Randomized Approximation Scheme (FPRAS) if for every ε , $\delta > 0$, there's a PTM M such that for every $x \in \{0,1\}^*$,
 - > (I-ε).f(x) ≤ M(x) ≤ (I+ε).f(x) with prob. ≥ I-δ,
 - > M runs in poly($|x|, ε^{-1}, log δ^{-1}$) time.

- Definition. A function f: $\{0,1\}^* \rightarrow \mathbb{N}$ has a Fully Polynomial-time Randomized Approximation Scheme (FPRAS) if for every ε , $\delta > 0$, there's a PTM M such that for every $x \in \{0,1\}^*$,
 - > (I-ε).f(x) ≤ M(x) ≤ (I+ε).f(x) with prob. ≥ I-δ,
 - > M runs in poly($|x|, ε^{-1}, log δ^{-1}$) time.
- Theorem. If P = NP then every #P function has a FPRAS.
- Proof. We'll see a proof later.

- Definition. A function f: $\{0,1\}^* \rightarrow \mathbb{N}$ has a Fully Polynomial-time Randomized Approximation Scheme (FPRAS) if for every ε , $\delta > 0$, there's a PTM M such that for every $x \in \{0,1\}^*$,
 - > (I-ε).f(x) ≤ M(x) ≤ (I+ε).f(x) with prob. ≥ I-δ,
 - ightharpoonup M runs in poly($|x|, \varepsilon^{-1}, \log \delta^{-1}$) time.
- Theorem. If P = NP then every #P function has a FPRAS.
- Remark. In fact the above FPRAS can be replaced by a FPTAS (Fully Poly-Time Approximation Scheme).

- Some #P-complete problems do admit FPRAS unconditionally!
- Theorem. (Jerrum, Sinclair, Vigoda 2001) #PerfectMatching has a FPRAS.

 Remark. No derandomization of this algorithm is known!

Approximations of #P functions

- Some #P-complete problems do admit FPRAS unconditionally!
- Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a square matrix with non-negative entries has a FPRAS.
- If $X = (x_{ij})_{i,j \in n}$ then $Perm(X) = \sum_{\sigma \in S_n} \prod_{i \in [n]} x_{i \sigma(i)}$.

Approximations of #P functions

- Some #P-complete problems do admit FPRAS unconditionally!
- Theorem. (Jerrum, Sinclair, Vigoda 2001) Permanent of a square matrix with non-negative entries has a FPRAS.
- If $X = (x_{ij})_{i,j \in n}$ then $Perm(X) = \sum_{\sigma \in S_n} \prod_{i \in [n]} x_{i \sigma(i)}$.
- Note. If B_G is the biadjacency matrix of a bipartite graph G, then $Perm(B_G) = \#PerfectMatchings(G)$.

0/I-Permanent is #P-complete

• Theorem. (Valiant 1979) 0/1-Perm is #P-complete.

It implies that #PerfectMatchings is #P-complete.

0/I-Permanent is #P-complete

• Theorem. (Valiant 1979) 0/1-Perm is #P-complete.

Proof. 0/I-Perm is in #P. (Why?)

0/I-Permanent is #P-complete

- Theorem. (Valiant 1979) 0/1-Perm is #P-complete.
- Proof. We'll show that #3SAT ∈ FP^{0/1-Perm}.
- In fact, we'll give a poly-time "Karp-like" reduction from #3SAT to 0/I-Perm, i.e., we'll give a poly-time computable function that maps a 3CNF ϕ to a 0/I-matrix A_{ϕ} s.t. # ϕ is efficiently computable from $A\phi$.
- This means only one query to the 0/1-Perm oracle is required.

...the proof will be given in the next lecture

- Let $A = (a_{ij})_{i,j \in r}$, where $a_{ij} \in R$.
- Then, $Perm(A) = \sum_{\sigma \in S_r} \prod_{i \in [r]} a_{i \sigma(i)}$.
- Let G be the weighted digraph on r vertices with adjacency matrix A, i.e., the edge (i, j) in G has weight a_{ii} .

- Let $A = (a_{ij})_{i,j \in r}$, where $a_{ij} \in R$.
- Then, $Perm(A) = \sum_{\sigma \in S_r} \prod_{i \in [r]} a_{i \sigma(i)}$.
- Let G be the weighted digraph on r vertices with adjacency matrix A, i.e., the edge (i, j) in G has weight a_{ii} .
- Every permutation σ : $[r] \rightarrow [r]$ can be expressed (uniquely) as a product of disjoint cycles.

- Definition. A <u>cycle cover</u> of a digraph G is a subgraph of G having in-degree and out-degree of every vertex exactly I, i.e., the subgraph is a disjoint union of cycles covering all the vertices of G.
- Weight of a cycle cover C, denoted wt(C), is defined as the product of the weights of the edges in C.

- Definition. A <u>cycle cover</u> of a digraph G is a subgraph of G having in-degree and out-degree of every vertex exactly I, i.e., the subgraph is a disjoint union of cycles covering all the vertices of G.
- Weight of a cycle cover C, denoted wt(C), is defined as the product of the weights of the edges in C.
- Observation. Perm(A) = $\sum_{\substack{C: C \text{ is cycle} \\ \text{cover of } G}} \text{wt}(C)$.

Every "contributing" permutation σ corresponds to a cycle cover C and vice versa.

- Definition. A <u>cycle cover</u> of a digraph G is a subgraph of G having in-degree and out-degree of every vertex exactly I, i.e., the subgraph is a disjoint union of cycles covering all the vertices of G.
- Weight of a cycle cover C, denoted wt(C), is defined as the product of the weights of the edges in C.

We can denote A as A_G , the adjacency matrix of G

• Observation.
$$Perm(A) = \sum_{\substack{C: C \text{ is cycle} \\ \text{cover of } G}} wt(C)$$
.

Every "contributing" permutation σ corresponds to a cycle cover C and vice versa.

Graph with parallel edges

Note. We can talk about "adjacency matrix" of a graph
 G that has <u>parallel edges</u> by defining a new graph G':

• Denote the adjacency matrix of a graph H (without parallel edges) by A_H . Then, A_G is defined as $A_{G'}$.

Graph with parallel edges

Note. We can talk about "adjacency matrix" of a graph
 G that has <u>parallel edges</u> by defining a new graph G':

- Denote the adjacency matrix of a graph H (without parallel edges) by A_H . Then, A_G is defined as $A_{G'}$.
- Observation. $\sum wt(C) = \sum wt(C).$ C: C is cycle cover of G