Álgebra lineal numérica Aproximación de valores propios

Mg. Roger Mestas Chávez

Ciencia de la Computación

Diciembre, 2020

Aproximación de valores propios

Sea $A_{n \times n}$ diagonalizable, entonces

$$\overrightarrow{Ax_i} = \lambda_i \overrightarrow{x_i}, \ i = 1, \dots, n$$

donde $\overrightarrow{x_i}$ - vectores propios linealmente independiente y $\lambda_i \equiv$ valores propios.

Si $(A - \lambda I) \overrightarrow{X} = \overrightarrow{0}$, entonces \overrightarrow{X} no trivial si $|A - \lambda I| = 0$. $|A - \lambda I|$ =polinomio característico de grado n en λ . Entonces n raíces complejas λ_i , $i = 1, \ldots, n$.

Sea $M = \overrightarrow{x_1} | \overrightarrow{x_2} | \dots | \overrightarrow{x_n}$ llamada (algunas veces) de matriz modal, entonces

$$M^{-1}AM = \lambda, \ \lambda \equiv \operatorname{diag} \{\lambda_i\} = \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & 0 \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix}$$

Si λ_i tiene multiplicidad algebraica m y multiplicidad geométrica 1 (1 vector propio linealmente independiente asociado a este valor propio), entonces tenemos que A no es diagonalizable mas puede ser escrita en la forma de Jordan.

Para matrices defectuosas (\overline{n} -diagonal), existen M y M^{-1} tales que

$$M^{-1}AM = J$$

Hechos de Álgebra Lineal

- 1. λ_i distintos, entonces $\overrightarrow{x_i}$ linealmente independiente.
- 2. A y B matrices simétricas, entonces $A = S^{-1}BS$. Por consiguiente $\sigma(A) = \sigma(B)$.
- 3. A simétrica, entonces $Q^{-1}AQ = \mathcal{A}$, $Q^{-1} = Q^T$ (ortogonal), $\lambda_i \in \mathbb{R}$.
- 4. Teorema de Schur: $A_{n\times n}$ cualquiera, entonces existe M (no singular) tal que

$$M^{-1}AM = U$$

Se puede escojer M de forma que ella sea unitaria. $||Mx||_2 = ||x||_2$.

Hechos de Álgebra Lineal

- 1. A es matriz simétrica positiva definida si y solo si $\lambda_i > 0$, i = 1, ..., n.
- 2. Teorema del círculo de Gerschgorin: Sea $A_{n\times n}$ y R_i el disco en el plano complejo

$$R_i = \left\{ z \in \mathbb{C}, |z - a_{ii}| \leq \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}| \right\}$$

centrado en a_{ii} , entonces $\sigma(A) \subset R = \bigcup_{i=1}^{n} R_i$.

Ejemplo

Si

$$A = \left[\begin{array}{rrr} 4 & 1 & 1 \\ 0 & 2 & 1 \\ -2 & 0 & 9 \end{array} \right]$$

entonces $\sigma(A) \cong \{1,9,4,6,8,5\}$. Por el teorema de Gerschgorin tenemos que

$$R_1 = \{z \in \mathbb{C} : |z - 4| \le 2\}$$

 $R_2 = \{z \in \mathbb{C} : |z - 2| \le 1\}$
 $R_3 = \{z \in \mathbb{C} : |z - 9| \le 2\}$

