```
In [1]: 1 import numpy as np
2 import pandas as pd

In [2]: 1 df = pd.read_csv('out.csv')

In [3]: 1 len(df)
Out[3]: 3258
```

```
In [4]:
           1
             df['Date']
Out[4]: 0
                  2019-06-09
         1
                  2019-04-28
         2
                  2019-05-18
         3
                  2019-04-18
         4
                  2019-04-08
         5
                  2019-06-30
         6
                  2019-04-23
         7
                  2019-05-13
         8
                  2019-05-15
         9
                  2019-04-14
         10
                  2019-06-01
         11
                  2019-04-18
         12
                  2019-06-11
         13
                  2019-05-29
         14
                  2019-04-21
         15
                  2019-06-06
         16
                  2019-04-18
         17
                  2019-05-16
         18
                  2019-06-11
         19
                  2019-05-07
         20
                  2019-05-01
         21
                  2019-04-27
         22
                  2019-05-11
         23
                  2019-04-25
         24
                  2019-05-26
         25
                  2019-06-21
         26
                  2019-04-10
         27
                  2019-05-09
         28
                  2019-04-22
         29
                  2019-05-30
         3228
                  2019-02-26
         3229
                  2019-01-12
         3230
                  2019-02-25
         3231
                  2019-01-12
         3232
                  2019-03-30
         3233
                  2019-01-28
                  2019-03-15
         3234
         3235
                  2019-03-08
         3236
                  2019-02-12
         3237
                  2019-03-31
         3238
                  2019-01-11
         3239
                  2019-03-21
         3240
                  2019-03-13
         3241
                  2019-01-25
         3242
                  2019-01-22
                  2019-01-18
         3243
         3244
                  2019-03-25
         3245
                  2019-02-22
                  2019-02-26
         3246
         3247
                  2019-02-13
         3248
                  2019-02-21
         3249
                  2019-02-18
         3250
                  2019-03-18
```

3251

2019-03-20

```
3252 2019-03-13

3253 2019-01-06

3254 2019-01-24

3255 2019-01-09

3256 2019-02-04

3257 2019-03-04

Name: Date, Length: 3258, dtype: object
```

```
In [5]: 1 df['Month'] = df['Date'].apply(lambda x: ((int(x[5:7])-1) * 2) + 1 if in
In [6]: 1 s = df.groupby('Date')[df.columns[6]].mean()
```

In [7]: 1 s

Out[7]:	Date	
	2019-01-01	986.000000
	2019-01-02	878.833333
	2019-01-03	918.111111
	2019-01-03	894.055556
	2019-01-05	857.055556
	2019-01-06	870.000000
	2019-01-07	932.666667
	2019-01-08	962.388889
	2019-01-09	961.277778
	2019-01-10	989.833333
	2019-01-11	1052.805556
	2019-01-12	905.000000
	2019-01-13	848.416667
	2019-01-14	1002.111111
	2019-01-15	1107.722222
	2019-01-16	1000.055556
	2019-01-17	966.833333
	2019-01-18	941.500000
	2019-01-19	1056.722222
	2019-01-20	859.277778
	2019-01-21	870.055556
	2019-01-22	907.055556
	2019-01-23	944.388889
	2019-01-24	915.277778
	2019-01-25	976.277778
	2019-01-26	1039.055556
	2019-01-27	876.722222
	2019-01-28	893.111111
	2019-01-29	951.111111
	2019-01-30	932.638889
	2013 01 00	
	2019-06-01	889.166667
	2019-06-02	834.333333
	2019-06-03	901.055556
	2019-06-04	900.44444
	2019-06-05	930.277778
	2019-06-06	963.833333
	2019-06-07	950.611111
	2019-06-08	918.722222
	2019-06-09	876.500000
	2019-06-10	947.000000
	2019-06-11	1014.777778
	2019-06-12	930.555556
	2019-06-13	1039.611111
	2019-06-14	969.333333
	2019-06-15	920.500000
	2019-06-16	855.333333
	2019-06-17	915.388889
	2019-06-18	997.833333
	2019-06-19	918.555556
	2019-06-19	953.722222
	2019-06-21	974.722222
	2019-06-21	933.500000
		839.388889
	2019-06-23	037.300089

```
2019-06-24
                       892.277778
        2019-06-25
                       917.388889
        2019-06-26
                       942.388889
        2019-06-27
                       949.888889
        2019-06-28
                       984.333333
        2019-06-29
                       905.888889
        2019-06-30
                       1032.638889
        Name: Daily Mean Travel Time, Length: 181, dtype: float64
In [8]:
           from matplotlib import pyplot
          1
          2 from statsmodels.tsa.seasonal import seasonal decompose
            series = np.array(s)
          4 result = seasonal decompose(series, model='additive', freq=30)
          5 result.plot()
          6 pyplot.show()
          <Figure size 640x480 with 4 Axes>
In [9]:
            from statsmodels.tsa.statespace.sarimax import SARIMAX
In [10]:
             model = SARIMAX(series)
In [ ]:
In [12]:
           1
             my order = (1, 1, 1)
             my seasonal order = (1, 1, 1, 30)
           2
             # define model
             model = SARIMAX(series, order=my order, seasonal order=my seasonal orde
             model fit = model.fit()
In [13]:
In [15]:
             model fit.forecast(30)
Out[15]: array([920.91705845, 916.28836179, 885.14939783, 899.57061085,
                901.90686598, 899.12631338, 974.93419443, 927.31134257,
                912.21397452, 909.93269923, 894.97772401, 908.41120691,
                953.38037211, 994.03566588, 919.18029899, 905.00534153,
                915.06348209, 973.81905849, 906.50139119, 919.63613392,
                923.0519376 , 909.4036186 , 919.13181311, 899.00734835,
                942.48351242, 886.76403829, 903.22140407, 924.77919459,
                896.02470049, 945.22874323])
In [ ]:
```

```
In [24]:
           1
           2
               import matplotlib.pyplot as plt
           3
           4
              x = [i \text{ for } i \text{ in } range(180)]
              y = model_fit.forecast(180)
           5
           7
              plt.plot(x,y,"b--",linewidth=1)
              plt.xlabel("later day in the year")
              plt.ylabel("travel time")
          10
              plt.title("Line plot")
              plt.show()
          11
              plt.savefig("line.jpg")
          12
          13
```


<Figure size 432x288 with 0 Axes>

```
In [ ]: 1
```