

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G01N 33/53	A1	(11) International Publication Number: WO 98/27427 (43) International Publication Date: 25 June 1998 (25.06.98)
--	----	--

(21) International Application Number: PCT/US97/22869

(22) International Filing Date: 15 December 1997 (15.12.97)

(30) Priority Data:
60/032,494 18 December 1996 (18.12.96) US

(71) Applicant (*for all designated States except US*): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).

(72) Inventor; and

(75) Inventor/Applicant (*for US only*): MENDOZA, Jose, S. [MX/US]; 4609 Rollingwood Drive, Durham, NC 27713 (US).

(74) Agents: COLLINS, Daniel, W. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: COMBINATORIAL PROCESS FOR PREPARING TETRAHYDROQUINOLINE LIBRARIES

(57) Abstract

This invention relates to a novel diverse combinatorial library of tetrahydroquinoline compounds and to an apparatus providing a readily accessible source of individual members of the library. The apparatus can be used in assay kits and as a replaceable element in automated assay machines.

B5

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

COMBINATORIAL PROCESS FOR PREPARING TETRAHYDROQUINOLINE LIBRARIES

This application claims the benefit of U.S.
5 Provisional Patent Application Serial No. 60/032,494,
filed December 18, 1996.

Field of the Invention

The present invention relates to diverse libraries
10 of tetrahydroquinoline compounds, methods of making such
libraries, and an apparatus for storing and providing a
readily accessible source of diverse tetrahydroquinoline
compounds. The apparatus harboring the present
combinatorial libraries is a useful component of assay
15 systems for identifying compounds for drug development.

Background of the Invention

Research and development expenses account for a
large outlay of capital in the pharmaceutical industry.
20 Synthesis of compounds is an expensive and time consuming
phase of research and development. Historically,
research chemists individually synthesized and analyzed
high purity compounds for biological screening to develop
pharmaceutical leads. Although such methods were
25 successful in bringing new drugs to the market, the
limitations of individual synthesis and complete compound
characterization considerably slowed the discovery of new
pharmaceutically active compounds. The need for more
rapid and less expensive drug discovery methodology is
30 increasingly important in today's competitive
pharmaceutical industry.

Recently, modern drug discovery has utilized
combinatorial chemistry to generate large numbers (10^2 -
 10^6) of compounds generically referred to as "libraries".
35 An important objective of combinatorial chemistry is to
generate a large number of novel compounds that can be

screened to generate lead compounds for pharmaceutical research.

Theoretically the total number of compounds which may be produced for a given library is limited only by
5 the number of reagents available to form substituents on the variable positions on the library's molecular scaffold. The combinatorial process lends itself to automation, both in the generation of compounds and in their biological screening, thereby greatly enhancing the
10 opportunity and efficiency of drug discovery.

Combinatorial chemistry may be performed in a manner where libraries of compounds are generated as mixtures with complete identification of the individual compounds postponed until after positive screening results are
15 obtained. However, a preferred form of combinatorial chemistry is "parallel array synthesis", where individual reaction products are simultaneously synthesized, but are retained in separate vessels. For example, the individual library compounds can be prepared, stored, and
20 assayed in separate wells of a microtiter plate, each well containing one member of the parallel array. The use of standardized microtiter plates or equivalent apparatus, is advantageous because such an apparatus is readily accessed by programmed robotic machinery, both
25 during library synthesis and during library sampling or assaying.

Typically, completion of the solution phase reactions in combinatorial chemistry schemes are ensured by selecting high yielding chemical reactions and/or by
30 using one reagent in considerable excess. When one reagent is used in excess, completion of the reaction produces a mixture of a soluble product with at least one soluble unreacted reagent.

Combinatorial chemistry may be used at two distinct phases of drug development. In the discovery phase diverse libraries are created to find lead compounds. In
35

-3-

a second optimization phase, strong lead compounds are more narrowly modified to find optimal molecular configurations.

The preparation of selected tetrahydroquinoline
5 compounds by the reaction of cyclopentadiene with imines derived from the condensation of anilines with aldehydes have been described by P.A. Grieco et al., *Tetrahedron Letters*, Vol. 29, pp. 5855-5858 (1988).

The method of the present invention is based on the
10 preparation of a novel diverse library of tetrahydroquinolines useful in the identification of new lead compounds. The library is created, stored, and used as an apparatus comprising of a two-dimensional array of reservoirs, each reservoir containing a predetermined
15 library reaction product differing from those in adjacent reservoirs.

Summary of the Invention

20 The present invention provides combinatorial libraries of structurally related compounds having tetrahydroquinoline core structures of the general formula (I):

25 wherein R₁ and R_{1'} are substituents derived from an optionally substituted aniline of the formula

-4-

and R₂ is hydrogen or an organic moiety derived from an aldehyde of the formula R₂CHO.

5 The invention further provides a method for preparing tetrahydroquinoline libraries generally in accordance with Scheme 1 as set forth below.

Another embodiment of the present invention provides an assay kit for the identification of pharmaceutical lead tetrahydroquinoline compounds, said kit comprising 10 assay materials and a well plate apparatus or equivalent apparatus providing a two-dimensional array of defined reservoirs. The well plate apparatus provides a diverse combinatorial library, wherein each well (reservoir) contains a unique reaction product of the 15 tetrahydroquinoline library. The well plate apparatus is used to provide multiple reaction zones for making the library, to store the library and to provide a readily accessible source of library compounds.

20 Brief Description of the Drawings

Fig. 1 is a top view of a well plate in accordance with this invention.

25 Fig. 2 is a side view of a well plate apparatus for use in the process of this invention.

Detailed Description of the Invention

The term "assay kit" as used in accordance with the 30 present invention refers to an assemblage of two cooperative elements, namely (1) a well plate apparatus and (2) biological assay materials.

"Biological assay materials" are materials necessary to conduct a biological evaluation of the efficacy of any library compound in a screen relevant to a selected disease state.

5 A "library" is a collection of compounds created by a combinatorial chemical process, said compounds having a common scaffold with one or more variable substituents. The scaffold of the present invention is a tetrahydroquinoline.

10 A "library compound" is an individual reaction product, a single compound or a mixture of isomers, in a combinatorial library.

15 A "Lead compound" is a library compound in a selected combinatorial library for which the assay kit has revealed significant activity relevant to a selected disease state.

20 A "diverse library" means a library where the substituents on the combinatorial library scaffold or core structure, are highly variable in constituent atoms, molecular weight, and structure, and the library, considered in its entirety, is not a collection of closely related homologues or analogues (compare to "directed library").

25 A "directed library" is a collection of compounds created by a combinatorial chemical process, for the purpose of optimization of the activity of a lead compound, wherein each library compound has a common scaffold, and the library, considered in its entirety, is a collection of closely related homologues or analogues 30 to the lead compound (compare with "diverse library").

The term "scaffold" as used in accordance with the present invention refers to the invariable region (a tetrahydroquinoline core in the present invention) of the compounds which are members of the combinatorial library.

35 "Substituents" are chemical radicals which are bonded to or incorporated onto the tetrahydroquinoline

scaffold through the combinatorial synthesis process. The different functional groups account for the diversity of the molecules throughout the library and are selected to impart diversity of biological activity to the scaffold in the case of diverse libraries, and optimization of a particular biological activity in the case of directed libraries.

"Reagent" means a reactant, any chemical compound used in the combinatorial synthesis to place substituents on the scaffold of a library.

"Parallel array synthesis" refers to the method of conducting combinatorial chemical synthesis of libraries wherein the individual combinatorial library compounds are separately prepared and stored without prior and subsequent intentional mixing.

"Simultaneous synthesis" means making of library compounds within one production cycle of a combinatorial method (not making all library compounds at the same instant in time).

The "reaction zone" refers to the individual vessel location where the combinatorial chemical library compound preparation process of the invention is carried out and where the individual library compounds are synthesized. Suitable reaction zones are the individual wells of a well plate apparatus.

"Well plate apparatus" refers to the structure capable of holding a plurality of library compounds in dimensionally fixed and defined positions.

"Non-interfering substituents" are those groups that do not significantly impede the process of the invention and yield stable tetrahydroquinoline library compounds.

"Aryl" means one or more aromatic rings, each of 5 or 6 ring carbon atoms and includes substituted aryl having one or more non-interfering substituents.

Multiple aryl rings may be fused, as in naphthyl, or unfused, as in biphenyl.

"Alkyl" means straight or branched chain or cyclic hydrocarbon having 1 to 20 carbon atoms.

"Substituted alkyl" is alkyl having one or more non-interfering substituents.

5 "Halo" means chloro, fluoro, iodo or bromo.

"Heterocycle" or "heterocyclic radical" means one or more rings of 5, 6 or 7 atoms with or without unsaturation or aromatic character, optionally substituted, and at least one ring atom which is not 10 carbon. Preferred heteroatoms include sulfur, oxygen, and nitrogen. Multiple rings may be fused, as in quinoline or benzofuran, or unfused as in 4-phenylpyridine.

"Substituted heterocycle" or "Substituted 15 heterocyclic radical" is heterocycle having one or more non-interfering substituents. Suitable radicals for substitution on the heterocyclic ring structure include, but are not limited to halo, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ alkoxy, C₇-C₁₂ aralkyl, 20 C₇-C₁₂ alkaryl, C₁-C₁₀ alkylthio, arylthio, aryloxy, arylamino, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, di(C₁-C₁₀)-alkylamino, C₂-C₁₂ alkoxyalkyl, C₁-C₆ alkylsulfinyl, C₁-C₁₀ alkylsulfonyl, arylsulfonyl, aryl, hydroxy, hydroxy(C₁-C₁₀)alkyl, aryloxy(C₁-C₁₀)alkyl, C₁-C₁₀ 25 alkoxy carbonyl, aryloxycarbonyl, C₁-C₁₀ alkanoyloxy, aryloyloxy, substituted alkoxy, fluoroalkyl, nitro, cyano, cyano(C₁-C₁₀)alkyl, C₁-C₁₀ alkanamido, aryloylamido, arylaminosulfonyl, sulfonamido, heterocyclic radical, nitroalkyl, and -(CH₂)_m-Z-(C₁-C₁₀ 30 alkyl), where m is 1 to 8 and Z is oxygen or sulfur.

"Organic moiety" means a substituent comprising a non-interfering substituent covalently bonded through at least one carbon atom. Suitable radicals for substitution onto the connecting carbon atom include, but 35 are not limited to hydrogen, halo, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ alkoxy, C₇-C₁₂ aralkyl,

C₇-C₁₂ alkaryl, C₁-C₁₀ alkylthio, arylthio, aryloxy, arylamino, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, di(C₁-C₁₀)-alkylamino, C₂-C₁₂ alkoxyalkyl, C₁-C₆ alkylsulfinyl, C₁-C₁₀ alkylsulfonyl, arylsulfonyl, aryl, hydroxy, 5 hydroxy(C₁-C₁₀)alkyl, aryloxy(C₁-C₁₀)alkyl, C₁-C₁₀ alkoxy carbonyl, aryloxycarbonyl, C₁-C₁₀ alkanoyloxy, aryloyloxy, substituted alkoxy, fluoroalkyl, nitro, cyano, cyano(C₁-C₁₀)alkyl, C₁-C₁₀ alkanamido, 10 aryloylamido, arylaminosulfonyl, sulfonamido, heterocyclic radical, nitroalkyl, and -(CH₂)_m-Z-(C₁-C₁₀ alkyl), where m is 1 to 8 and Z is oxygen or sulfur.

"Optionally substituted aniline" means aniline or aniline having at least one non-interfering substituent covalently bound to the benzene ring. Suitable radicals 15 for substitution on the benzene ring include, but are not limited to halo, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ alkoxy, C₇-C₁₂ aralkyl, C₇-C₁₂ alkaryl, C₁-C₁₀ alkylthio, arylthio, aryloxy, arylamino, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, di(C₁-C₁₀)-alkylamino, 20 C₂-C₁₂ alkoxyalkyl, C₁-C₆ alkylsulfinyl, C₁-C₁₀ alkylsulfonyl, arylsulfonyl, aryl, hydroxy, hydroxy(C₁-C₁₀)alkyl, aryloxy(C₁-C₁₀)alkyl, C₁-C₁₀ alkoxy carbonyl, aryloxycarbonyl, C₁-C₁₀ alkanoyloxy, aryloyloxy, substituted alkoxy, fluoroalkyl, nitro, cyano, cyano(C₁-C₁₀)alkyl, C₁-C₁₀ alkanamido, aryloylamido, 25 arylaminosulfonyl, sulfonamido, heterocyclic radical, nitroalkyl, and -(CH₂)_m-Z-(C₁-C₁₀ alkyl), where m is 1 to 8 and Z is oxygen or sulfur.

A diverse library of tetrahydroquinolines is 30 provided in accordance with the present invention. The tetrahydroquinoline library embodied as an apparatus of this invention serves as a readily accessible source of diverse tetrahydroquinoline compounds for use in identifying new biologically active tetrahydroquinoline 35 compounds through pharmaceutical and agricultural candidate screening assays, for use in studies defining

-9-

structure/activity relationships, and/or for use in clinical investigation.

The library provided in accordance with the present invention includes tetrahydroquinoline compounds of the 5 formula (I):

wherein R₁ and R_{1'} are independently hydrogen or non-interfering substituents derived from an optionally 10 substituted aniline of the formula

and R₂ is hydrogen or an organic moiety derived from an aldehyde of the formula R₂CHO.

15 In another embodiment of the present invention there is provided a library of compounds of Formula I above, wherein R₁ and R_{1'} are independently selected from the group consisting of hydrogen and non-interfering substituents and R₂ is alkyl, substituted alkyl, or aryl.

20 In another embodiment of this invention there is provided a library of compounds of Formula I above, wherein R₁ and R_{1'} are independently selected from hydrogen and non-interfering substituents and R₂ is C₁-C₁₀ alkyl, substituted (C₁-C₁₀ alkyl), or aryl.

25 In still another embodiment of the present invention there is provided a library of compounds of Formula I above, wherein R₁ and R_{1'} are independently hydrogen or non-interfering substituents selected from the group

-10-

consisting of halo, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ alkoxy, C₇-C₁₂ aralkyl, C₇-C₁₂ alkaryl, C₁-C₁₀ alkylthio, arylthio, aryloxy, arylamino, C₃-C₁₀ cycloalkyl, C₃-C₁₀ cycloalkenyl, di(C₁-C₁₀)-alkylamino,

5 C₂-C₁₂ alkoxyalkyl, C₁-C₆ alkylsulfinyl, C₁-C₁₀ alkylsulfonyl, arylsulfonyl, aryl, hydroxy, hydroxy(C₁-C₁₀)alkyl, aryloxy(C₁-C₁₀)alkyl, C₁-C₁₀ alkoxy carbonyl, aryloxycarbonyl, C₁-C₁₀ alkanoyloxy, aryloyloxy, substituted alkoxy, fluoroalkyl, nitro, cyano, cyano(C₁-C₁₀)alkyl, C₁-C₁₀ alkanamido, aryloylamido, arylaminosulfonyl, sulfonamido, heterocyclic radical, nitroalkyl, or -(CH₂)_m-Z-(C₁-C₁₀ alkyl), where m is 1 to 8 and Z is oxygen or sulfur; and R₂ is C₁-C₁₀ alkyl, substituted (C₁-C₁₀ alkyl).

10 The present invention also provides a method for preparing the library of tetrahydroquinoline compounds of Formula I using combinatorial chemistry in a parallel array synthesis technique illustrated in the following reaction scheme:

15

20

Scheme 1.

The method comprises the steps of reacting series of

25 optionally substituted anilines, optionally substituted aldehydes and cyclopentadiene in the presence of a protic acid, for example trifluoroacetic acid, to prepare a library of tetrahydroquinoline compounds with three sites of diversity, R₁ and R_{1'}, derived from the aniline reagent, and R₂ derived from the aldehyde reagent. Each

30 compound is prepared in a separate reaction zone (i.e.,

-11-

parallel array synthesis), and the predetermined product compound is identified by the plate and reaction well number.

5 The aniline and aldehyde reagents are either commercially available or prepared from commercially available starting materials. Anilines for use in accordance with this invention are compounds of the formula

10

wherein R₁ and R_{1'} are non-interfering groups, i.e., substituents which do not interfere with the reaction of
15 the aniline, aldehyde and cyclopentadiene. Typically the aniline reactants have a molecular weight of about 100 to about 600.

20 Illustrative of suitable anilines for use in preparation of the tetrahydroquinoline library of this invention include, but are not intended to be limited to:

- 3-Methoxy-5-(trifluoromethyl)aniline
- 3,5-Bis(trifluoromethyl)aniline
- 25 4-Cyclohexylaniline
- 3-Amino-4-methoxybenzoic acid
- 5-Aminoisophthalic acid
- N1-(4,5-dimethyloxazol-2-yl)sulfanilamide
- Sulfathiazole
- 30 N1-(6-indazolyl)sulfanilamide
- 3,4-methylenedioxyaniline

Ethyl 2-amino-4,5,6,7-tetrahydrobenzo(b)thiophene-3-carboxylate
N-(4-amino-2-methylphenyl)-4-chlorophthalimide
Sulfadiazine
5 4-Morpholinylaniline
6-Aminonicotinic acid
6-Aminonicotinamide
3-Aminoquinoline
4-Aminoquinaldine
10 5-Aminoquinoline
5-Amino-6-nitroquinoline
6-Aminoquinoline
8-Aminoquinoline
3,4-Ethylenedioxylaniline
15 5-Aminoisoquinoline
2-Bromo-4,6-dinitroaniline
6-Chloro-2,4-dinitroaniline
2,6-Dinitroaniline
2,4,6-Trinitroaniline
20 2,4-Dinitro-5-fluoroaniline
2,4-Dinitroaniline
4-Methoxy-2-nitroaniline
4-Ethoxy-2-nitroaniline
4-Amino-3-nitrobenzotrifluoride
25 2,6-Dinitro-4-methylaniline
2-Methoxy-5-nitroaniline
4-Nitroanthranilic acid
3,5-Dinitroaniline
2,5-Dimethoxy-4-nitroaniline
. 30 2-Amino-5-nitrobenzonitrile
2-Methoxy-4-nitroaniline
2-Amino-5-nitrobenzophenone
2-Amino-5-nitrobenzotrifluoride
4-Methoxymetanilyl fluoride
35 4-Amino-1,1'-azobenzene-3,4'-disulfonic acid, sodium salt

-13-

- 4-Aminobenzhydrazide
- Aniline
- o-Arsanilic acid
- 2-Aminobenzonitrile
- 5 2-Bromoaniline
- 2,4-Dibromoaniline
- 2,4,6-Tribromoaniline
- 2-Bromo-4-methylaniline
- 2,5-Dibromoaniline
- 10 3-Amino-4-bromobenzotrifluoride
- 2,6-Dibromoaniline
- 2,6-Dibromo-4-nitroaniline
- 2,6-Dibromo-4-methylaniline
- 2-Fluoroaniline
- 15 2,3,4,5,6-Pentafluoroaniline
- 2,3,5,6-Tetrafluoroaniline
- 4-Amino-2,3,5,6-tetrafluorobenzonitrile
- 2,4-Difluoroaniline
- 2,4,5-Trifluoroaniline
- 20 2,4,6-Trifluoroaniline
- 2,5-Difluoroaniline
- 2-Fluoro-5-nitroaniline
- 3-Amino-4-fluorobenzotrifluoride
- 2-Fluoro-5-methylaniline
- 25 2,6-Difluoroaniline
- 2-Chloroaniline
- 2,3-Dichloroaniline
- 2,3,5,6-Tetrachloroaniline
- 4-Bromo-2-chloroaniline
- 30 2,4-Dichloroaniline
- 2,4,5-Trichloroaniline
- 2,4,6-Trichloroaniline
- 2,4-Dichloro-6-nitroaniline
- 2-Chloro-4-nitroaniline
- 35 2-Chloro-4-methylaniline
- 2,5-Dichloroaniline

-14-

2-Chloro-5-nitroaniline
3-Amino-4-chloro-n-(2-cyanoethyl)benzenesulfonamide
3-Amino-4-chlorobenzoic acid
2-(3-Amino-4-chlorobenzoyl)benzoic acid
5 3-Amino-4-chlorobenzotrifluoride
2-Chloro-5-methylaniline
2,6-Dichloroaniline
2,6-Dichloro-3-methylaniline
2,6-Dichloro-4-nitroaniline
10 2-Chloro-6-methylaniline
2-Amino-3,5-diiodobenzoic acid
2,6-Diido-4-nitroaniline
4-Amino-3,5-diiodobenzoic acid
2-Nitroaniline
15 2-Aminophenol
2-Amino-5-nitrophenol
6-Amino-m-cresol
2-Amino-4-chlorophenol
2-Amino-4-nitrophenol
20 3-Amino-4-hydroxybenzoic acid
2-Amino-4-tert-butylphenol
2-Amino-p-cresol
3-Hydroxyanthranilic acid
2-Aminobiphenyl
25 2-Aminothiophenol
Orthanilic acid
2-(Phenylsulfonyl)aniline
2-(2-Chloro-1,1,2-trifluoroethylthio)aniline
2-(Methylmercapto)aniline
30 Methyl anthranilate
Ethyl 2-aminobenzoate
Anthranilic acid
2-Aminobenzotrifluoride
2-Isopropenylaniline
35 2-Isopropylaniline
o-Toluidine

p-Toluidine
2-Methyl-3-nitroaniline
2,3-Dimethylaniline
2-Methyl-4-nitroaniline
5 4-Methoxy-2-methylaniline
4-Amino-3-methylbenzoic acid
2,4-Dimethylaniline
4,6-Dimethyl-2-nitroaniline
2,4,6-Trimethylaniline
10 2-Methyl-5-nitroaniline
3-Amino-4-methylbenzoic acid
2,5-Dimethylaniline
2-Methyl-6-nitroaniline
2-Amino-3-methylbenzoic acid
15 2-Isopropyl-6-methylaniline
2,6-Dimethylaniline
2-Aminobenzyl alcohol
2-Benzylaniline
2-Ethylaniline
20 2-Ethyl-6-methylaniline
2,6-Diethylaniline
2-Aminophenethyl alcohol
3-Aminobenzonitrile
3-Bromoaniline
25 3-Fluoroaniline
3-Fluoro-2-methylaniline
3,4-Difluoroaniline
3-Fluoro-4-methylaniline
3,5-Difluoroaniline
30 5-Fluoro-2-methylaniline
3-Chloroaniline
3-Chloro-2-methylaniline
3-Chloro-4-fluoroaniline
3,4-Dichloroaniline
35 3,4,5-Trichloroaniline
4,5-Dichloro-2-nitroaniline

-16-

3-Chloro-p-anisidine
4-Amino-2-chlorobenzoic acid
3-Chloro-4-methylaniline
3,5-Dichloroaniline
5 5-Chloro-2-nitroaniline
5-Chloro-o-anisidine
2-Amino-4-chlorobenzoic acid
5-Chloro-2-methylaniline
3-Nitroaniline
10 m-Anisidine
3-Benzylxyaniline
m-Phenetidine
3-Aminophenol
3-Amino-o-cresol
15 Phenyl aminosalicylate
4-Aminosalicylic acid
5-Phenyl-o-anisidine
3-Aminothiophenol
3-(Methylmercapto)aniline
20 Ethyl 3-aminobenzoate
3-Aminobenzoic acid
3'-Aminoacetophenone
3-Aminobenzotrifluoride
3-(1-Hydroxyethyl)aniline
25 m-Toluidine
2-Amino-6-methylbenzoic acid
3,4-Dimethylaniline
4,5-Dimethyl-2-nitroaniline
3,5-Dimethylaniline
30 5-Methyl-2-nitroaniline
2-Methoxy-5-methylaniline
2-Amino-4-methylbenzophenone
3-Aminobenzyl alcohol
3-Ethylaniline
35 4-Aminobenzonitrile
4-Bromoaniline

2-Amino-5-bromobenzoic acid
4-Bromo-2-methylaniline
4-Bromo-2,6-dimethylaniline
5 5-Amino-2-bromobenzotrifluoride
4-Bromo-3-methylaniline
4-Fluoroaniline
4-Fluoro-2-nitroaniline
2-Amino-5-fluorobenzotrifluoride
4-Fluoro-2-methylaniline
10 4-Fluoro-3-nitroaniline
5-Amino-2-fluorobenzotrifluoride
4-Chloroaniline
4-Chloro-2-nitroaniline
Methyl 2-amino-5-chlorobenzoate
15 2-Amino-5-chlorobenzoic acid
2-Amino-5-chlorobenzophenone
2-Amino-2',5-dichlorobenzophenone
2-Amino-5-chlorobenzotrifluoride
4-Chloro-2-methylaniline
20 4-Chloro-3-nitroaniline
5-Amino-2-chlorobenzoic acid
5-Amino-2-chlorobenzotrifluoride
4-Chloro-2-methoxy-5-methylaniline
2-Iodoaniline
25 3-Iodoaniline
4-Iodoaniline
2-Amino-5-iodobenzoic acid
P-Phenylazoaniline
4-Nitroaniline
30 4'-Amino-n-methylacetanilide
n,n-Dimethyl-p-phenylenediamine
n,n-Diethyl-p-phenylenediamine
4-Phenoxyaniline
p-Anisidine
35 p-Phenetidine
4-Butoxyaniline

4-Pentyloxyaniline
4-Hexyloxyaniline
4-Aminophenol
2-Amino-5-hydroxybenzoic acid
5 4-Amino-m-cresol
4-Amino-2,5-dimethylphenol
4-Amino-2,6-dibromophenol
4-Amino-2,6-dichlorophenol
4-Amino-2-nitrophenol
10 5-Aminosalicylic acid
4-Aminobiphenyl
4-Aminothiophenol
4-Amino-4'-nitrodiphenyl sulfide
4-Aminodibenzenesulfonamide
15 Sulfanilic acid
4-Hexadecylsulfonylaniline
4-(Methylmercapto)aniline
Methyl 4-aminobenzoate
Ethyl 4-aminobenzoate
20 4-Aminobenzoic acid
4-Aminobenzophenone
4-Aminoacetophenone
4-Aminobenzotrifluoride hydrochloride
4-Tritylaniline
25 4-Tert-butylaniline
4-Isopropylaniline
4-Methyl-2-nitroaniline
4-Aminotoluene-3-sulfonic acid
2-Amino-5-methylbenzoic acid
30 4-Methyl-3-nitroaniline
5-Amino-2-methylbenzenesulfonic acid
4-Aminophenylacetonitrile
Diethyl 4-aminobenzylphosphonate
2,5-Dimethoxy-4'-aminostilbene
35 4-Aminophenylacetic acid
P-Decylaniline

P-Dodecylaniline
4-Hexadecylaniline
4-Ethylaniline
4-Aminophenethyl alcohol
5 4-n-Propylaniline
4-n-Butylaniline
4-n-Amylaniline
4-n-Hexylaniline
4-n-Heptylaniline
10 p-Octylaniline
2-Aminobenzenesulfonamide
4-Amino-6-chloro-1,3-benzenedisulfonamide
Sulfanilamide
2-Aminobenzamide
15 3-Aminobenzamide
4-Aminobenzamide
4-Amino-2,3,5,6-tetrafluorobenzamide
4-Amino-3,5-dinitrobenzamide
2,5-Dimethoxyaniline
20 2,4-Dimethoxyaniline
3,5-Dimethoxyaniline
3,4,5-Trimethoxyaniline
3,4-Dimethoxyaniline
Methyl 3,4,5-trimethoxyanthranilate
25 Dimethyl aminoterephthalate
Dimethyl 5-aminoisophthalate
2,6-Diisopropylaniline
n-(4-Aminobenzoyl)-l-glutamic acid diethyl ester
2-Bromo-4,6-difluoroaniline
30 Methyl 3-aminothiophene-2-carboxylate
2-n-Propylaniline
p-Tetradecylaniline
n-(4-Aminobenzoyl)-beta-alanine
5-methoxy-2-methyl-4-nitroaniline
35 2,3-dimethyl-6-nitroaniline
n,n-Dimethyl-4,4'-azodianiline

-20-

4-Bromo-2-fluoroaniline
5-Amino-2-methoxyphenol
4-Sec-butylaniline
2,3-Difluoroaniline
5 3-Aminosalicylic acid
2-Amino-4-chloro-5-nitrophenol
2,5-Di-tert-butyylaniline
4-Chloro-2-fluoroaniline
4-(4-Nitrophenylsulfonyl)aniline
10 Methyl 3,5-dibromoanthranilate
Methyl 4-amino-3,5-diiodobenzoate
2-Amino-3-nitrophenol
4,5-Difluoro-2-nitroaniline
2,4,6-Tri-tert-butyylaniline
15 2-Amino-4,5-dimethoxybenzoic acid
2,3,4-Trifluoroaniline
2-Fluoro-4-idoaniline
4-Amino-n-methylphthalimide
2,4-Dibromo-6-nitroaniline
20 4-Bromo-2,3,5,6-tetrafluoroaniline
2,3,6-Trifluoroaniline
2-Bromo-3,4,6-trifluoroaniline
2,4,6-Triphenylaniline
4-Aminophenylarsine oxide
25 5-Amino-2-methylbenzothiazole dihydrochloride
Aniline hydrochloride
o-Toluidine hydrochloride
6-Chloro-m-anisidine hydrochloride
n,n-Dimethyl-m-phenylenediamine dihydrochloride
30 3-Aminobenzoic acid hydrochloride
3-Aminobenzamidine dihydrochloride
n,n-Dimethyl-p-phenylenediamine monohydrochloride
n,n-Dimethyl-p-phenylenediamine dihydrochloride
n,n-Dimethyl-p-phenylenediamine sulfate
35 n,n-Diethyl-p-phenylenediamine sulfate
4-Aminoazobenzene hydrochloride

4-Benzylxyaniline hydrochloride
4-Aminophenol hydrochloride
4-Amino-alpha-diethylamino-o-cresol dihydrochloride
Ethyl 4-aminobenzoate hydrochloride
5 4-Aminobenzamidine dihydrochloride
Ethyl 3-aminobenzoate, methanesulfonic acid salt
4-Amino-3-nitrobenzonitrile
2-Bromo-4,5,6-trifluoroaniline
4-Bromo-2,6-difluoroaniline
10 5-Amino-2-nitrobenzotrifluoride
2-Amino-6-fluorobenzonitrile
4-Amino-3-methoxybenzoic acid
2-Amino-4,5-dimethoxyacetophenone
2-Amino-5-nitrobenzoic acid
15 3,5-Dibromoanthranilic acid
3,5-Dichloroanthranilic acid
4-Amino-3-hydroxybenzoic acid
2-Amino-3,5-dimethylbenzoic acid
Butyl 4-aminobenzoate
20 2,3,4,5-Tetrafluoroaniline
2-Amino-4-tert-amylphenol
2-Aminotoluene-5-sulfonic acid
1-Butyl-3-sulfanilylurea
5-Tert-butyl-o-anisidine
25 4-Amino-2,6-diphenylphenol
2-Amino-5-diethylaminotoluene monohydrochloride
6-Amino-2,4-dichloro-3-methylphenol hydrochloride
p-Toluidine hydrochloride
n,n-Diethyl-p-phenylenediamine hydrochloride
30 2-Phenoxyaniline
4-Amino-2-chlorotoluene-5-sulfonic acid
2-Amino-4-(ethylsulfonyl)phenol
4-Amino-2-chlorobenzonitrile
2-Amino-4-chlorobenzonitrile
35 4-Amino-5-chloro-2-methoxybenzoic acid
2-Sec-butyylaniline

2-Fluoro-4-methylaniline
4-(Trifluoromethoxy)aniline
2,6-Dibromo-4-fluoroaniline
3-(Trifluoromethoxy)aniline
5 3-Phenoxyaniline
n,n-Dimethyl-p-phenylenediamine oxalate
3-Chloro-2,4-difluoroaniline
2,4-Dibromo-6-fluoroaniline
3-(1,1,2,2-Tetrafluoroethoxy)aniline
10 2-Bromo-4-fluoroaniline
3-Amino-4-methoxybenzotrifluoride
2-Chloro-4-fluoroaniline
3-Amino-4-mercaptopenzotrifluoride hydrochloride
2,3,4-Trichloroaniline
15 4-Azidoaniline hydrochloride
3-Chloro-6-methyl-4-nitroaniline
2-Chloro-4,6-dimethylaniline
Aniline-2,3,4,5,6-d5
Menthyl anthranilate
20 2-Amino-6-chlorobenzoic acid
4-Chloro-2,6-dibromoaniline
2,6-Dichloro-4-(trifluoromethyl) aniline
2-Chloro-4-fluoro-5-methylaniline
2-Amino-5-fluorobenzoic acid
25 2-Amino-4,5-dimethoxybenzonitrile
2-Amino-4-phenylphenol
3-Amino-2-fluorobenzotrifluoride
2-Amino-3-fluorobenzotrifluoride
2-Amino-5-bromobenzotrifluoride
30 4-Aminobenzoic acid, sodium salt
and the like anilines.

Other suitable anilines for use in preparation of
the tetrahydroquinoline library of this invention
35 include, but are not intended to be limited to, those

which are illustrated by the following formulas, wherein L₁ and L₂ are hydrogen:

-24-

-25-

-27-

-28-

The aldehyde reagents for use in the process for preparing the present library are represented by the general formula R₂CHO, wherein R₂ is hydrogen or an
 5 organic moiety. Typically, aldehyde reagents have a molecular weight ranging from about 50 to about 600.

Illustrative of suitable aldehydes for use in preparation of the tetrahydroquinoline library of this
 10 invention include, but are not intended to be limited to:

- Cyclohexanecarboxaldehyde
- 1,2,3,6-Tetrahydrobenzaldehyde
- Diphenylacetaldehyde
- 2-Phenylpropionaldehyde
- 15 2,3-Dimethylvaleraldehyde

Isobutyraldehyde
2,6-Dimethyl-5-hepten-1-al
2-Methylbutyraldehyde
2-Ethylbutyraldehyde
5 2-Methylpentanal
2-Ethylhexanal
2-Methylundecanal
Phenylacetaldehyde
Isovaleraldehyde
10 7-Methoxy-3,7-dimethyloctanal
Undecanal
Dodecanal
Tridecanal
Tetradecyl aldehyde
15 Propionaldehyde
3-Phenylpropionaldehyde
3-(Methylthio)propionaldehyde
Butyraldehyde
Cis-4-decen-1-al
20 N-valeraldehyde
Hexanal
Heptaldehyde
Octanal
Nonanal
25 Decanal
Undecylenic aldehyde
Cis-11-hexadecenal
Cis-13-octadecenal
Cis-9-hexadecenal
30 2,5-Dimethoxy-3-tetrahydrofurancarboxaldehyde
3,5,5-Trimethylhexanal
Succinic semialdehyde
(+/-)-3-Phenylbutyraldehyde
2,6,6-Trimethyl-1-cyclohexene-1-acetaldehyde
35 Cyclopropanecarboxaldehyde
3-Cyclohexylpropionaldehyde

-30-

Hydroxycitronellal
Cis-4-heptenal
Cis-6-non-en-1-al
Tetrahydrocitrinal
5 Cis-7-decen-1-al
Cis-8-undecen-1-al
3,5,6-Trimethyl-3-cyclohexene-1-carboxaldehyde
Lyral(r)
Bis(2-chlorophenyl)acetaldehyde
10 2-Thioglyceraldehyde
3-(4-Isopropylphenyl)isobutyraldehyde
2-Ethyl-3-methylbutanal
2-Ethylcaprylaldehyde
3-Methylvaleraldehyde
15 3-Phenyl-3-(p-tosyl)propionaldehyde
3-Hexenal
3-(Methylthio)butanal
Veltonal
Citronellal
20 2-(Trifluoromethyl)propionaldehyde
3,3-Dimethylbutyraldehyde
Campholene aldehyde
2-Formylpropionic acid methyl ester
5-Hydroxypentanal
25 p-Methylphenylacetaldehyde
Omega-ketoheptanoic acid
4-Chlorophenylcyanoacetaldehyde
Hexadecanal
Methyl 7-oxoheptanoate
30 Diethyl formyl succinate
4-Pregnene-20-beta-carboxaldehyde-3-one
Cis-7-tetradecenal
Cyclopentylmethanal
3,4-Dimethyl-3-cyclohexenylmethanal
35 2,4,6-Trimethyl-3-cyclohexen-1-carboxaldehyde
Adipic semialdehyde methyl ester

-31-

Cis-14-methyl-8-hexadecenal
Cis-3-hexen-1-al
Trans-4-decen-1-al
2,2-Dichlorooctadecanal
5 2,2-Dichlorotetradecanal
2,2-Dichlorooctanal
2,2-Dichlorohexanal
(r)-(+)-Citronellal
8-Methyl-7-nonenal
10 2-(p-Tolyl)propionaldehyde
Aldehyde C-11 MOA (2-methyldecanal)
Alpha-methylhydrocinnamaldehyde
(s)-(-)-Citronellal
4-Hydroxybutanal
15 4-Oxobutyric acid methyl ester
3,3,4,4,5,5,5-Heptafluoropentanal
3-Methylbutanal-1-13c
6-Methyl-3-cyclohexene-1-carboxaldehyde
4-(4-Methyl-2-pentenyl)-3-cyclohexene-1-
20 carboxaldehyde
3-Pentyn-1-al
3-Pyridylacetaldehyde n-oxide
2,3-Dihydro-5-methoxy-3-phenyl-2-
indolecarboxaldehyde
25 2,4-Diphenyl-3-oxobutyraldehyde
3,3,3-Triphenylpropionaldehyde
2-Bromo-n-(3-formyl-1-methylpropyl)benzamide
3-(Phenylthio)butyraldehyde
Diethyl 2-(diethoxymethyl)-3-formylsuccinate
30 2-Chloro-3-(4-nitrophenyl)-propionaldehyde
2-Acetoxypropionaldehyde
2-Methyl-4-phenylpentanal
(1r,2s,3r,4s)-(+)-2-Benzyl-3-formyl-2-oxybornane
5-(4'-Chlorophenoxy)-1-pentanal
35 Boc-ala-CHO
Boc-leu-CHO

-32-

Boc-phe-CHO
Boc-tyr(OBzl)-CHO
Boc-tyr(OMe)-CHO
Boc-val-CHO
5 4-Pentenal
 1-Formyl-6-(dimethylamino) fulvene
 1,4-Dioxaspiro(4.5)decane-7-acetaldehyde
 Alpha-citronellal
 Diethyl 2-Acetamido-2-(2-formylethyl)malonate
10 3,4,4,5,5-Hexafluoro-3-(trifluoromethyl)pentanal
 3,4,4,4-Tetrafluoro-3-(heptafluoropropoxy)butanal
 3,4,4,4-Tetrafluoro-3-(trifluoromethoxy)butanal
 3,4,4,4-Tetrafluoro-3-(trifluoromethyl)butanal
 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctanal
15 3,3,3-Trifluoropropanal
 Beta,beta-dimethylhydrocinnamaldehyde
 5-Norbornene-2-carboxaldehyde
 Chrysanthal
 9-Decenal
20 Decyl aldehyde, [1-14c]
 4,4,4-Trifluorobutyraldehyde
 3-Methyl-3-butenal
 3-(5-Methyl-2-furyl)butanal
 3-Phenyl-4-pentenal
25 Tert-butyl (s)-4-formyl-2,2-dimethyl-3-
 oxazolidinecarboxylate
 Trans-2-dodecenal
 9,10-Dihydro-9,10-ethanoanthracene-11-carboxaldehyde
 Methyl hexyl acetaldehyde
30 2,3-Dihydro-2-oxo-1H-imidazol-4-carboxaldehyde
 N-Acetylmuramic acid,
 and the like aldehydes.

Particularly suitable aldehydes useful for forming
35 the imine intermediates in preparation of the present

tetrahydroquinoline libraries are further illustrated by the following formulas, wherein L is -CHO:

-34-

-35-

-37-

The preparation of the tetrahydroquinoline library compounds of Formula I above comprises a one-step process wherein an optionally substituted aniline, an optionally substituted aldehyde and cyclopentadiene are allowed to react in the presence of acid, typically a protic acid and/or a Lewis acid, for example, trifluoroacetic. The progress/completion of the reactions can be determined by

5

a number of conventional techniques including thin layer chromatography (TLC).

The reaction is carried out at ambient temperature in acetonitrile, preferably in a single reaction step.

5 Alternatively, the reaction can be carried out as a two step process: (1) an intermediate imine forming step by reaction of equivalent amounts of an aldehyde and an optionally substituted aniline and (2) protic acid catalyzed cycloaddition of the intermediate imine with
10 cyclopentadiene. A reaction zone charged with the reagents in the following preferred sequence, each typically in solution in acetonitrile:

- 15 1) optionally substituted aniline;
- 2) trifluoroacetic acid (about 0.1 to about 1 molar equivalents based on the amount of aniline reactant);
- 3) cyclopentadiene (about 4 molar equivalents based on the amount of aniline reactant); and
- 20 4) aldehyde (about 1 molar equivalent per amount of aniline reactant).

The reaction zone is then sealed and shaken at ambient temperature for about 12 to about 24 hours. The reaction mixture is then evaporated by vacuum to provide a library compound in each reaction zone. Preferably the
25 product is dissolved in a mixture of acetone, methanol and methylene chloride and the resulting solution is evaporated to promote removal of residual volatiles. Samples of each library compound can be analyzed by chromatographic, or more preferably chromatographic and
30 mass spectral techniques.

The process of the present invention utilized in preparation of a library of tetrahydroquinolines of Formula I above may be carried out in any vessel capable of holding the liquid reaction medium. In one
35 embodiment, the process of the invention is carried out in containers adaptable to parallel array synthesis. In

particular, the tetrahydroquinoline library of this invention can be formed in a 96-well plate as illustrated in Figures 1 and 2. That apparatus provides multiple reaction zones most typically in a two-dimensional array 5 of defined reservoirs, wherein one member of the tetrahydroquinoline library of this invention is prepared in each reservoir. Thus the diverse tetrahydroquinoline library of the present invention comprises a plurality of reservoir arrays (e.g. well plates), each reservoir or 10 well containing a library compound of the tetrahydroquinoline library. Accordingly the library compounds are typically identified by reference to their well plate number and their X column and Y row well plate coordinates.

15 Following simultaneous preparation of the library member compounds in the reservoir array, the compounds can be transferred in whole or in part to other reservoir arrays (e.g. well plates), to prepare multiple copies of the library apparatus or to subject the library to 20 additional reaction conditions. Copies of the library apparatus (daughter well plates, each comprising a 2-dimensional array of defined reservoirs with each reservoir containing a predetermined member of the library) are useful as replaceable elements in automated 25 assay machines. The apparatus of this invention allows convenient access to a wide variety of structurally related tetrahydroquinoline compounds. One preferred reservoir array for use in making and using this invention is a multi-well titer plate, typically a 96- 30 well microtiter plate.

Figure 1 illustrates the top surface of a well plate apparatus of the present invention. The well plate (1) is a plastic plate with 96-wells (depressions) capable of holding liquids for parallel array synthesis. Individual 35 reaction products are prepared in each well and are labeled by the well plate coordinates. For example, the

library compound at location (2), is identified by the alpha numeric coordinate, "A6".

Figure 2 illustrates a side view of a modified well plate apparatus for use in preparation of the library of 5 the present invention. Well plate (3) contains wells (4) with a filter (5), and a retaining frit (6), and a liquid reaction medium used in carrying out the process (7). The wells have an outlet at the bottom which is sealed by gasket (8) held in place by a top cover (9) and bottom 10 cover (10) maintained in position by clamps (11).

Such well plates are typically prepared using standard 96-well plates. A hole is drilled in the bottom of each well in the plates and a porous frit is placed in the bottom of each well. The plate is then placed in the 15 clamp assembly to seal the bottom of the wells.

Synthesis is initiated by adding reagents to their individual wells according to their assigned plate coordinates. The plate is then capped and tumbled to mix the reagents. Following completion of the reaction, the 20 solvent and residual volatile reagents are evaporated with a Speed-vac. The residual products are redissolved in appropriate liquid solvent and the reaction products analyzed, for example, by thin layer chromatography, mass spectrometry and/or nuclear magnetic resonance 25 spectrometry.

One embodiment of the present invention is an assay kit for the identification of pharmaceutical lead compounds. The assay kit comprises as essential parts, (1) a well plate apparatus (containing one of the 30 tetrahydroquinoline compounds in each of its individual wells), and (2) biological assay materials. The biological assay materials are generally known to be predictive of success for an associated disease state. Illustrative of biological assay materials useful in the 35 kit of this invention are those required to conduct

-42-

assays known in the art, which include, but are not intended to be limited to:

In vitro assays, such as:

5 Enzymatic inhibition,
Receptor-ligand binding,
Protein-Protein interaction,
Protein-DNA interaction,
and the like;

10

Cell based, functional assays, such as:

Transcriptional regulation,
Signal transduction/Second messenger,
Viral Infectivity,
15 and the like; and

Add, Incubate, & Read assays, such as:

Scintillation Proximity Assays,
Angiotensin II IPA receptor binding assay,
20 Endothelia converting enzyme [¹²⁵I] SPA assay,
HIV proteinase [¹²⁵I] SPA enzyme assay,
Cholesteryl ester transfer (CETP) [³H] SPA assay,
Fluorescence Polarization Assays,
Fluorescence Correlation Spectroscopy,
25 Calorimetric biosensors,
Ca²⁺ - EGTA for Cell-based assays,
Receptor Gene Constructs for cell based assays;
Cellular reporter assays utilizing, for example,
reporters such as luciferase, green fluorescent
30 protein, Beta-lactamase, and the like
Electrical cell impedance sensor assays
and the like.

Example 1.

35 Tetrahydroquinoline Library Plates: General Procedure.

-43-

A different optionally substituted aniline reagent (100 μ L of a 0.5 M solution in CH₃CN) was added to the wells of each row of a (several) 96-well glass titer plate (well volume of 1 mL), with care taken that all 5 liquid was added to the bottom of the wells and with minimum splattering. Trifluoroacetic acid was then added to each well (100 μ L of a 0.45 M solution in CH₃CN), followed by a freshly prepared solution of cyclopentadiene (125 μ L of a 1.6 M solution in CH₃CN). A 10 different aldehyde (100 μ L of a 0.5 M solution in CH₃CN) was then added to the wells of each column in the plate(s). The wells were capped and the plates shaken at ambient temperature overnight.

The solvent and residual volatile reagents were then 15 evaporated in a Speed-Vac. The residue in each well was then dissolved in a suitable of solvents, for example, a 3:4:3 mixture of acetone, methanol and methylene chloride. This process afforded plates containing about 40 μ mol of a library compound per well. Prior to final 20 drying, samples of solution were taken from each well and submitted for thin layer chromatography and/or mass spectral analysis.

-44-

I claim:

1. A library of tetrahydroquinoline compounds wherein said library contains a plurality of diverse library compounds of the formula

5

wherein R₁ and R_{1'} are independently hydrogen or a non-interfering substituent derived from an optionally substituted aniline of the formula

10

and R₂ is hydrogen or an organic moiety derived from an aldehyde of the formula R₂CHO.

15

2. The library of claim 1 wherein R₁ and R_{1'} are independently selected from the group consisting of hydrogen and non-interfering substituents and R₂ is hydrogen, alkyl, substituted alkyl, or aryl.

20

3. The library of claim 1 wherein the optionally substituted aniline has a molecular weight of about 93 to about 600.

25

4. The library of claim 1 wherein the aldehyde has a molecular weight of about 44 to about 700.

5. A compound selected from the group consisting of the library compounds of the library of claim 1.

6. A process for preparing a combinatorial library of tetrahydroquinoline compounds of the formula

5 having diversity in substituent groups R₁, R_{1'}, and R₂, wherein each library compound is made in a separate reaction zone, said process comprising the step of reacting an optionally substituted aniline of the formula

10

with an aldehyde of the formula R₂CHO and cyclopentadiene in the presence of an acid, wherein in the above formulas 15 R₁ and R_{1'} are independently selected from the group consisting of hydrogen and non-interfering substituents and R₂ is hydrogen or an organic moiety.

7. An assay kit for identification of 20 pharmaceutical lead compounds, said kit comprising biological assay materials and a well plate apparatus wherein each well in said apparatus contains a library compound of the library of claim 1.

25 8. The assay kit of claim 7 wherein the biological materials are selected for performing at least one assay test selected from the group consisting of *in vitro*

-46-

assays, cell based, functional assays, and add, incubate, and read assays.

9. An apparatus suitable as a replacement element
5 in an automated assay machine as a source of individual
members of a library of structurally related compounds,
said apparatus comprising a 2-dimensional array of
defined reservoirs, each reservoir containing a library
compound of said library, wherein said structurally
10 related compounds are of the formula (I):

wherein R₁ and R_{1'} are independently hydrogen or non-interfering substituents derived from an optionally
15 substituted aniline of the formula

and R₂ is hydrogen or an organic moiety derived from an
20 aldehyde of the formula R₂CHO.

10. The apparatus of claim 9 wherein the library compound in each reservoir is prepared in accordance with the process of claim 6 and wherein each reservoir
25 provides one reaction zone.

-47-

11. The apparatus of claim 9 wherein the 2-dimensional array of defined reservoirs is a multi-well microtiter plate.

1 / 2

FIG. 1

2 / 2

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US97/22869

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :G01N 33/53

US CL :435/7.1; 436/501, 518

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/7.1; 436/501, 518

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN, APS

search terms: structure search, combinatorial, library, tetrahydroquinoline

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	KOBAYASHI et al. Lanthanide Triflate Catalyzed Imino Diels-Alder Reactions; Convenient Syntheses of Pyridine and Quinoline Derivatives. Synthesis. September 1995. Vol. 9. pages 1195-1202, see Table 4.	1-6
Y	US 5,324,483 A (CODY et al.) 28 June 1994, see column 2, line 35-column 3, line 20.	7-11

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
B earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"A"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 04 MARCH 1998	Date of mailing of the international search report 19 MAR 1998
--	---

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer LORA M. GREEN Telephone No. (703) 308-0196
---	---