1 Affine and convex sets

1.1 lines and line segments

line is points of the form $y = \theta x_1 + (1 - \theta)x_2$ where $\theta \in R$, and $x_1 \neq x_2$.

line segement corresponds to points where parameter θ is between 0 and 1.

1.2 affine sets

a set is affine iff for any $x_1, x_2 \in C$ and $\theta \in R$, we have $\theta x_1 + (1 - \theta)x_2 \in C$. This idea can be generalized to more than two points. That is to say, a affine set contains every affine combination of its points: C is an affine set, $x_1, x_2, ..., x_k \in C$, and $\theta_1 + ... + \theta_k = 1$, then the point $\theta_1 x_1 + ... + \theta_k x_k$ also belongs to C.

if C is an affine set and $x_0 \in C$, then the set $V = C - x_0 = \{x - x_0 \mid x \in C\}$ is a subspace. thus any affine set could be expressed as a subspace plus an offset, and the subspace does not depend on the choice of x_0 .

the set of all affine combination of points in some set C is called the affine hull of C:

$$\mathbf{affC} = \{ \theta_1 x_1 + \dots + \theta_k x_k \mid x_1, x_2, \dots, x_k \in C, \ \theta_1 + \dots + \theta_k = 1 \}. \tag{1}$$

1.3 affine dimension and relative interior

we define the affine dimension of a set C as the dimension of its affine hull. If the affine dimension of C is less than n, then the set lies in a affine set $\mathbf{affC} \neq \mathbf{R}^n$. we define relative interior if the set C, denoted $\mathbf{relintC}$, as its interior relative to \mathbf{affC} :

$$\mathbf{relintC} = \{ x \in C \mid B(x, r) \cap affC \subset C \text{ for some } r > 0 \}$$
 (2)

where $B(x,r) = \{y | ||y-x|| \le r\}$. we can then define the ralative boundary of a set C as **cl**C **relint**C, where **cl**C is the closure of C.

1.4 convex sets

a seet C is *convex* if the line segment between any two points in C lies in C, roughly speaking, a set is convex if every point in the set can be seen by every other point.

we call a point of the form $\theta_1 x_1 + ... + \theta_k x_k$, where $\theta_1 + ... + \theta_k = 1$, and $\theta_i \geq 0$, a convex combination of the points $x_1, ..., x_k$. a set is convex iff it contains every convex combination of its points. the convex hull of a set C, denoted **conv**C, is the set of all convex combinations of the points in C. the idea of a convex combination can be generalized to include infinite sums, integrals, and probability distributions. suppose θ_i satisfy

$$\theta_i \ge 0, i = 1, 2, ..., \quad \sum_{i=1}^{\infty} \theta_i = 1,$$
 (3)

and $x_1, x_2, ... \in C$, where $C \subset \mathbf{R}^n$ is convex, then

$$\sum_{i=1}^{\infty} \theta_i x_i \in C,\tag{4}$$

if the series converges. more generally, suppose $C \subset \mathbf{R}^n$ is convex and x is a random vector with $x \in C$ with probability one, then $\mathbf{E}x \in C$.

latest version: 2018/02/08 Page 1

1.5 cones

a set is called a *cone*, or *nonnegative homogeneous*, if for every $x \in C$ and $\theta \ge 0$ we have $\theta x \in C$. a point of the form $\theta_1 x_1 + ... + \theta_k x_k$ with $\theta_i \ge 0$ is called *conic combination* or a *nonnegative linear combination* of x_i . a set C is a convex cone iff it contains all conic combinations of its elements. this idea could also be generalized to infinite sums and integrals. the *conic hull* of a set C is the set of all conic combinations of points in C.

2 some important examples

2.1 hyperplanes and halfspaces

a hyperplane is a set of the form

$$\{x \mid a^T x = b\},\tag{5}$$

where $a \in \mathbf{R}^n$, $a \neq 0$, and $b \in \mathbf{R}$. this repersentation can in turn be expressed as

$$\{x \mid a^{T}(x - x_0) = 0\} = x_0 + a^{\perp}, \tag{6}$$

where a^{\perp} denotes the orthogonal complement of a, i.e., the set of all vectors orthogonal to it.

a hyperplane divides \mathbf{R}^n into two halfspaces, which a set of the form

$$\{x \mid a^T x \le b\},\tag{7}$$

where $a \neq 0$

2.2 euclidean balls and ellipsoids

a (euclidean) ball in \mathbb{R}^n has the form

$$B(x_c, r) = \{x \mid ||x - x_c|| \le r\} = \{x \mid (x - x_c)^T (x - x_c) \le r^2\},\tag{8}$$

where $r \geq 0$, and the vector x_c is the *center* of the ball and the saclar r is its radius. another common repersentation for the euclidean ball is

$$B(x_c, r) = \{x_c + ru \mid ||u|| \le 1\}, \tag{9}$$

a euclidean ball is a convex set (use the homogeneity and triangle inequality for $\|\cdot\|_2$)

a related family of convex sets is the ellipsoids, which have the form

$$\mathcal{E} = \{ x \mid (x - x_c)^T P^{-1} (x - x_c) < 1 \}, \tag{10}$$

where P is symmetric and positive definite. the vector $x_c \in \mathbf{R}^n$ is the *center* of the ellipsoid. the matrix P determines how far the ellipsoid extends in every direction from x_c by the square root of its eigenvalues. another common repersentation of an ellipsoid is

$$\mathcal{E} = \{x_c + Au \mid ||u||_2 < 1\},\tag{11}$$

where A is the square and nonsingular, in fact, $A = P^{1/2}$. when the matrix A is symmetric positive semidefinite but not singular, the set is called a *degenerate ellipsoid*, its affine dimension is equal to the rank of A, and it is also convex.

2.3 norm balls and norm cones

a norm ball of radius r and center x_c given by $\{x \mid ||x - x_c|| \leq r\}$, is convex. the norm cone associated with the norm $||\cdot||$ is the set

$$C = \{(x,t) \mid ||x|| \le t\} \subset \mathbf{R}^{n+1}. \tag{12}$$

it is also a convex set, as the name suggests.

2.4 polyhera

a polyheron is defined as the solution set of a finite number of linear equalities and inequalities:

$$\mathcal{P} = \{ x \mid a_j^T x \le b_j, \ j = 1, ..., m, \ c_j^T x = d_j, \ j = 1, ..., p \}.$$
(13)

it will be convenient to use the compact notation

$$\mathcal{P} = \{ x \mid Ax \le b, \ Cx = d \},\tag{14}$$

where

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}, \quad C = \begin{bmatrix} c_1^T \\ \vdots \\ c_p^T \end{bmatrix}, \tag{15}$$

and the symbol \leq denotes vector inequality or componentwise inequality in \mathbf{R}^m .

2.4.1 simplexes

suppose the k+1 points $v+0,...,v_k \in \mathbf{R}^n$ are affinely independent, then the simplex determined by then is given by

$$C = \mathbf{conv}\{v_0, ..., v_k\} = \{\theta_0 v_0 + \dots + \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\},$$
 (16)

where **1** denotes the vector with all entries one. to show the simplex is a polyheron, we define $y = (\theta_1, ..., \theta_k)$ and

$$B = [v_1 - v_0 \dots v_k - v_0] \in \mathbf{R}^{nk}, \tag{17}$$

we can say that $x \in C$ iff

$$x = v_0 + By \tag{18}$$

we note that affine independence of the points implies that the matrix B has rank k, therefore there exists a nonsingular matrix $A = (A_1, A_2) \in \mathbf{R}^{nn}$ s.t.

$$AB = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} B = \begin{bmatrix} I \\ 0 \end{bmatrix}. \tag{19}$$

in other words, we have $x \in C$ iff

$$A_2 x = A_2 v_0, \quad A_1 x \succeq A_1 v_0, \quad \mathbf{1}^T A_1 x \le 1 + \mathbf{1}^T A_1 v_0.$$
 (20)

2.4.2 convex hull description of polyhedra

the convex hull of a finite set $\{v_1, ..., v_k\}$ is

$$\mathbf{conv}\{v_1, ..., v_k\} = \{\theta_1 v_1 + ..., \theta_k v_k \mid \theta \succeq 0, \ \mathbf{1}^T \theta = 1\}.$$
 (21)

a generalization of this convex hull description is

$$\{\theta_1 v_1 + ..., \theta_k v_k \mid \theta_1 + ... + \theta_m = 1, \ \theta_i \ge 0, \ i = 1, ..., k\},$$
 (22)

this defines a polyheron, and conversely, every polyheron can be repersented in this form.

2.5 the positive semidefinite cone

we use the notation \mathbf{S}^n \mathbf{S}^n_+ \mathbf{S}^n_{++} to be analogous to \mathbf{R}_+ \mathbf{R}_{++} , then the set \mathbf{S}^n_+ is a convex cone.

3 operations that preserve convexity

3.1 intersection

convexity is preserved under intersection: if S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\cap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.

latest version: 2018/02/08 Page 3

3.2 affine functions

suppose $S \subset \mathbf{R}^n$ is convex and $f: \mathbf{R}^n \to \mathbf{R}^m$ is an affine function. then the image of S under f,

$$f(S) = \{ f(x) \mid x \in S \}, \tag{23}$$

is convex. similarly, the *inverse image* if S under f in convex. two simple examples aer *scaling* and translation, i.e. αS and $S + \alpha$ are convex. the *projection* of a convex set onto some of its coordinates is convex. the *sum* of two sets $S_1 + S_2$ is convex, if S_1 and S_2 are convex. we can also define the partial sum of $S_1, S_2 \in \mathbb{R}^n \mathbb{R}^m$ as

$$S = \{(x, y_1 + y_2) \mid (x, y_1) \in S_1, (x, y_2) \in S_2\},$$
(24)

where $x \in \mathbf{R}^n$ and $y_i \in \mathbf{R}^m$. partial sums of convex sets are convex.

3.3 linear-fractional and perspective functions

3.3.1 the perspective function

we define perspective function $P: \mathbf{R}^{n+1} \to \mathbf{R}^n$, as P(z,t) = z/t, which normalizes vectors so the last component is one, and drop the last component. if $C \subset \mathbf{dom}P$ is convex then its image

$$P(C) = \{P(x) \mid x \in C\} \tag{25}$$

is convex. the imverse image of a convex set under the perspective function is also convex.

3.3.2 linear-fractional functions

a linear-fractional function is formed by composing the perspective function with an affine function. suppose $q: \mathbb{R}^n \to \mathbb{R}^{m+1}$ is affine i.e.,

$$g(x) = \begin{bmatrix} A \\ c^T \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix}, \tag{26}$$

the function $f: \mathbf{R}^n \to \mathbf{R}^m$ given by f = P(g), i.e.,

$$f(x) = (Ax + b)/(c^{T}x + d), \quad \mathbf{dom} f = x \mid c^{T}x + d > 0,$$
 (27)

is called *linear-fractional* (or *projective*) function. like the perspective function, linear-fractional functions preserve convexity. if we define $mathcalP(z) = \{t(z, 1) \mid t > 0\}$ in \mathbf{R}^{n+1} , and

$$Q = \begin{bmatrix} A & b \\ c^T & d \end{bmatrix} \in \mathbf{R}^{(m+1)*(n+1)}$$
 (28)

then the linear-fractional function can be expressed as

$$f(x) = \mathcal{P}^{-1}(Q\mathcal{P}(x)). \tag{29}$$

4 generalized inequalities

4.1 proper cones and generalized inequalities

a cone $K \subseteq \mathbf{R}^n$ is called a *proper cone* if it satisfies the following:

- K is convex.
- K is closed.
- \bullet K is *solid*, which means it has nonempty interior.

• K is pointed, which means that it contains no line.

we associate with the proper cone K the partial ordering on \mathbb{R}^n defined by

$$x \leq_K y \iff y - x \in K. \tag{30}$$

similarly, wedefine an associated strict partial ordering by

$$x \prec_K y \iff y - x \in \mathbf{int}K. \tag{31}$$

when $K = \mathbf{R}_+$, the partial ordering \leq_K is the usual ordering \leq on \mathbf{R} .

4.1.1 properties of generalized inequalities

transitive, reflexive, antisymmetric, preserved under addition, nonnegative scaling, limits.

4.2 minimum and minimal elements

this part is totally the same as set and graph theory in PKU.

5 separaing and supporting hyperplanes

5.1 separaing hyperplane theorem

suppose C and D are nonempty disjoint convex sets, then there exists $a \neq 0$ and b such that $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

5.1.1 proof of separaing hyperplane theorem

we assume the (euclidean) distance between C and D, defined as

$$\mathbf{dist}(C, D) = \inf\{\|u - v\|_2 \mid u \in C, \ v \in D\},\tag{32}$$

and there exists points $c \in C$ and $d \in D$ that achieve the minimum distance, define a = d - c, $b = \frac{\|d\|_2^2 - \|c\|_2^2}{2}$, we will show that the affine function

$$f(x) = a^{T}x - b = (d - c)^{T}(x - (1/2)(c + d))$$
(33)

is nonpositive on C and nonnegative on D, i.e., this hyperplane separates C and D.

5.1.2 strict separation

the separating hyperplane we constructed above satisfies the stronger condition that $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$, this is called *strict separation*.

5.1.3 converse separaing hyperplane theorem

is not true, that existence of a separaing hyperplane implies that C and D do not intersect, however, if we suppose at least one of these two sets is open, then this is true.

5.2 supporting hyperplanes

suppose $C \in \mathbf{R}^n$, adn x_0 is a point in its boundary $\mathbf{bd}C$, if $a \neq 0$ satisfies $a^Tx \leq a^Tx_0$ for all $x \in C$, then the hyperplane $\{x \mid a^Tx = a^Tx_0\}$ is called a *supporting hyperplane* to C at the point x_0 . a basic result, called the *supporting hyperplane theorem*, states that for any nonempty convex sets C, and any $x_0 \in \mathbf{bd}C$, there exists a supporting hyperplane to C at x_0 .

6 dual cones and generalized inequalities

6.1 dual cones

let K be a cone, the sec

$$K^* = \{ y \mid x^T y \ge 0 \text{ for all } x \in K \}$$

$$(34)$$

is called the dual cone of K. K^* is a cone, and is always convex, even the original cone K is not.

dual cone satisfy several properties, such as:

- K^* is closed adn convex
- $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$
- if K has nonempty interior, then K^* is pointed
- K^{**} is the closure of the convex hull of K

6.2 dual generalized inequalities

suppose that the convex cone K is proper, then it induces a generalized inequality \preceq_K , and the dual of the generalized inequality \preceq_{K^*}

some important properties relating a generalized inequality and its dual are:

- $x \leq_K y$ iff $\lambda^T x \leq \lambda^T y$ for all $\lambda \succeq_{K^*} 0$
- $x \prec_K y$ iff $\lambda^T x \leq \lambda^T y$ for all $\lambda \succeq_{K^*} 0, \lambda \neq 0$.

6.3 minimum adn minimal elements via dual inequalities

6.3.1 dual characterization of minimum element

the minimum element: x is the minimum element of S, with respect to the generalized inequality \leq_K , iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over $z \in S$. this means that for any $\lambda \succ_{K^*} 0$, the hyperplane

$$\{z \mid \lambda^T(z-x) = 0\} \tag{35}$$

is a strict supporting hyperplane to S at x

6.3.2 dual characterization of minimal elements

if $\lambda \succ_{K^*} 0$ and x minimizes $\lambda^T z$ over $z \in S$, then x is minimal, the converse is in general false, except that S is convex.

Page 6