CAS CS 562: Advanced Database Programming Assignment#2

Yanshan Song U93089867 Juntao Wang U18801732

Hadoop naive algorithm

Job1:

Map: Input v_1 v_2 , emit $\langle v_1, v_2 \rangle$

Reduce: Input $\langle v, \Gamma(v) \rangle$

For each $(u, w)(u_id < w_id)$ in $\Gamma(v)$, produce <(u, w), v>

The result of Job1:

1	2,43	1
2	2,60	1
3	2,128	1
4	2,161	1
5	2,185	1
6	2,199	1
7	2,200	1
8	2,4954	1
9	2,5673	1
10	2,6020	1

Job2:

Map: Input $\langle (u, w), v \rangle$

Produce three items: <(u, w), v>, <(u, v), \$>, <(w, v), \$>

Reduce: Input < key, values >

If \$ in values, For each v in values, triangleCount += 1/3

Finally, output triangleCount

The result of Job2:

1 TriangleCount 1597979

Hadoop improved algorithm

```
Job1:
```

Map: Input v_1 v_2 , emit $\langle v_1, v_2 \rangle$

Reduce: Input $\langle v, \Gamma(v) \rangle$

For each u in $\Gamma(v)$,

 $\text{if } v_id < u_id, produce < (v,u), ("smallerIdDegree", |\Gamma(v)|) > \\$

else produce $\langle (u, v), ("largerIdDegree", |\Gamma(v)|) \rangle$

The result of Job1:

1	1,2 sma	llerIdDegree,51
2	1,43	smallerIdDegree,51
3	1,60	smallerIdDegree,51
4	1,128	smallerIdDegree,51
5	1,161	smallerIdDegree,51
6	1,185	smallerIdDegree,51
7	1,199	smallerIdDegree,51
8	1,200	smallerIdDegree,51
9	1,4954	smallerIdDegree,51
10	1,5673	smallerIdDegree,51

Job2:

Map: Input < key, value >, produce < key, value >

 $\label{eq:Reduce:equation:constraint} \textbf{Reduce: Input} < (v,u), [("smallerIdDegree", smallerIdDegree", ("largerIdDegree", largerIdDegree", largerIdDegree)] > \\ \textbf{If } smallerIdDegree \leq largerIdDegree, \ produce < v,u>, \ else \ produce < u,v> \\ \end{cases}$

The result of Job2:

1	1 101	.27
2	103827	1
3	103917	1
4	104012	1
5	104013	1
6	104452	1
7	104453	1
8	104454	1
9	105008	1
10	105058	1

Job3:

Map: Input $\langle v, u \rangle$, produce $\langle v, u \rangle$

Reduce: Input $\langle v, \Gamma(v) \rangle$

For each u in $\Gamma(v)$, if $v_id \leq u_id$, produce $\langle v, (u, null) \rangle$ else produce $\langle u, (v, null) \rangle$

For each $(u,w)(u_id < w_id)$ in $\Gamma(v)$, produce (v,(u,w)) The result of Job3:

1	1	10127, null
2	1	43,null
3	1	43,10127
4	1	2,null
5	1	2,10127
6	1	2,43
7	9	10,null
8	100	201,null
9	62	100,null
10	100	62,201

Job4:

Map: Input < key, values >

if values[1] = null, produce $\langle values, key \rangle$ else produce $\langle (key, values[0]), \$ \rangle \rangle$

Reduce: Input $\langle key, values \rangle$

If \$ in values, For each v in values, triangleCount += 1

Finally, output triangleCount

The result of Job4:

1 TriangleCount 1597979

Pig

