Circuits

Overview

Spring 2022

Teacher

2 Course organization

Grading

4 Circuits

Instructor

Teacher

Pingping DING

email: pd79@nyu.edu

Office hours:

- Office 1156
- from 2:00 pm to 4:00 pm on Monday and Wednesday
- + extra by appointment

Lectures

- Room 307
- Every Monday and Wednesday
- 9:45 am to 11:00 am

Laboratories

- Room 711
- Every Friday
- 9:15 am to 11:05 am

Lecture times are both lectures and classwork.

Assignments:

- reading lecture slides
- homework assignment

Course Material

Textbook

Engineering Circuit Analysis by William H. Hayt, Jr., Jack E. Kemmerly, Jamie D. Phillips, and Steven M. Durbin.

Eighth edition, ninth edition.

The lecture slides are also very useful which contains everything you have to learn

20% 30%

Grading items

■ Final exam	30%
--------------	-----

- Midterm exam Homework assignments
- 20% Lab assignments

In order to succeed:

- Lectures
- Laboratories
- Personal work

Do not hesitate to ask me questions when you don't understand !!!

Grading

Grade scale

Grade	Minimum %
Α	95
A-	90
B+	87
В	83
B-	80
C+	77
С	73
C-	70
D+	67
D	63
F	0

Circuit analysis

Problem solving

Circuit analysis has been traditionally used as an introduction to **problem solving** for many different fields of engineering

Analog signal

Many fields in engineering use analog signals for an electrical circuit in order to describe systems:

- mechanics (springs, friction, damping, ...)
- thermics
-

Key concepts

Linear circuit analysis

We will only consider linear circuits

i. e., circuits working in linear regime (can be modelled with linear ODEs)

Analysis

4 different categories:

- DC analysis
- transient analysis
- sinusoidal analysis
- frequency response

Course content

What you will learn

- nodal analysis
- mesh analysis
- superposition
- source transformation
- Thévenin/Norton's theorems
- simplification of series/parallels networks

Components you will use

- resistor
- capacitor
- inductor
- operational amplifier

Not only analysis

Also design

The main objective for this course is for you to learn how to analyze and design electrical linear circuits

Definitions

- Analysis: understanding an existing system
- Design: creating a new system

Circuits

Computer-aided analysis

Software tools

For very complex circuits, circuit analysis can become cumbersome. The probability of making errors could increase.

→ Computer-aided analysis and design

Then, is it useless to learn circuits behavior?

Definitely not!

If an engineer does not have an idea about the expected behavior of the circuit, then it would be impossible to design a circuit from software. How to detect an error in parameter values for example?

Softwares

SPICE: Simulation Program with Integrated Circuit Emphasis

LTspice

Linear Technology SPICE link

QUCS

Quite Universal Circuit Simulator link