# Bitácora del Proyecto/Taller

# Puerta con contraseña / Diseño de un decodificador Fundamentos de Arquitectura de Computadores (CE 1107) Instituto Tecnológico de Costa Rica

### **Integrantes:**

Emanuel Chavarría Hernández — 2022205841 Fernando Fuchs Mora — 2020144908 18 de septiembre de 2025

### Repositorio:

https://github.com/Emanuel624/Bitacora proyectofunda1 ECH FFM

# 1. Sesión 1-29 de agosto de 2025

### Actividades realizadas

- Se creó el repositorio para guardar y actualizar la presente bitácora.
- Como grupo se acordó leer los requerimientos del proyecto para llegar con dudas al profesor en la próxima clase o por medios virtuales.

### Resultados obtenidos

Se comenzó con el desarrollo del proyecto en una etapa básica.

### Próximos pasos

- Comenzar con el proceso de simulación.
- Definir la tecnología que se va a utilizar.
- Definir el programa de simulación antes de construir el circuito.

## 2. Sesión 2-30 de agosto de 2025

### Actividades realizadas

- Se comenzó con la investigación general de cómo desarrollar el proyecto y cuáles son los objetivos de realización.
- Se aclararon dudas iniciales del grupo sobre el proyecto con el profesor.
- Se compraron dos sensores de choque (shock) de manera preliminar para comprobar si sirven para los objetivos del proyecto.



Figura 1: Sensores de choque adquiridos para el proyecto.

### Resultados obtenidos

Se generó un plan de trabajo inicial.

### Próximos pasos

- Se definió que el estudiante Emanuel Chavarría Hernández va a comenzar con el proceso inicial de realización de la simulación.
- Se puso en pausa el trabajo en el proyecto para atender otras responsabilidades académicas por parte de los integrantes.

# 3. Sesión 3-4 de septiembre de 2025

### Actividades realizadas

- Se definió el uso del programa Logisim-Evolution para la simulación.
- Surgieron nuevas dudas, esperando ser resueltas por parte del profesor.

Se definió un circuito serializador, a la espera de ser aprobado por el profesor. Utilizando el circuito integrado 74LS164 de primera manera simulado, como se muestra en la siguiente figura, para comprobar el funcionamiento

### Resultados obtenidos

Se contó con el circuito serializador de manera preliminar, simulado.



Figura 2: Circuito serializador simulado en Logisim-Evolution

### Próximos pasos

- Resolver las dudas con el profesor lo más pronto posible.
- Definir qué circuitos integrados comprar, tanto para serializador, compuerta y BCD.
- Trabajar simultáneamente tanto en el taller como en el proyecto.

# 4. Sesión 4 – 8 de septiembre de 2025

### Actividades realizadas

- Se resolvieron las dudas con el profesor.
- Se comenzó con la construcción del circuito combinatorio para reconocer el patrón por medio de simulación.
- Se definió el BCD a utilizar en el proyecto/taller.
- Se planteó el uso de 7 segmentos y como plantear la lógica.

### Resultados obtenidos

De manera especifica se va a mostrar el desarrollo teorico para el proceso del circuito combinatorio para recibir la contraseña de abrir y cerrar la puerta.

# Definición de los Patrones

El sistema debe reconocer dos patrones de entrada:

- Abrir: El patrón de Abrir es 10110011, donde:
  - $Q_7 = 1$
  - $Q_6 = 0$
  - $Q_5 = 1$
  - $Q_4 = 1$
  - $Q_3 = 0$
  - $Q_2 = 0$
  - $Q_1 = 1$
  - $Q_0 = 1$
- Cerrar: El patrón de Cerrar es 11101000, donde:
  - $Q_7 = 1$
  - $Q_6 = 1$
  - $Q_5 = 1$
  - $Q_4 = 0$
  - $Q_3 = 1$
  - $Q_2 = 0$
  - $Q_1 = 0$
  - $Q_0 = 0$

# Tabla de Verdad

A continuación se presenta la tabla de verdad que muestra las combinaciones de las entradas  $Q_7, Q_6, \ldots, Q_0$  y las salidas correspondientes \*\*ABRIR\*\* y \*\*CERRAR\*\*.

| $Q_7$ | $Q_6$ | $Q_5$ | $Q_4$ | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ | ABRIR | CERRAR |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| 1     | 0     | 1     | 1     | 0     | 0     | 1     | 1     | 1     | 0      |
| 1     | 1     | 1     | 0     | 1     | 0     | 0     | 0     | 0     | 1      |

# Desarrollo de la Lógica Combinatoria

# Ecuación para el patrón Abrir

El patrón de entrada para abrir la puerta es 10110011. La ecuación lógica para detectar este patrón es la siguiente:

$$ABRIR = Q_7 \cdot \neg Q_6 \cdot Q_5 \cdot Q_4 \cdot \neg Q_3 \cdot \neg Q_2 \cdot Q_1 \cdot Q_0$$

### Ecuación para el patrón Cerrar

El patrón de entrada para cerrar la puerta es 11101000. La ecuación lógica para detectar este patrón es la siguiente:

$$CERRAR = Q_7 \cdot Q_6 \cdot Q_5 \cdot \neg Q_4 \cdot Q_3 \cdot \neg Q_2 \cdot \neg Q_1 \cdot \neg Q_0$$

### Próximos pasos

Gracias a las ecuaciones obtenidas por medio de suma de productos con las tablas de verdad, se llego al siguiente ciruicuito combinatorio para reconocer las contraseñas.



Figura 3: Circuito decodificador ABRIR y CERRAR la puerta simulado

Donde se resalta que las señales simplemente se unen con una compuerta AND para obtener una sola señal de salida. Y tiene un LED para mostrar cuando llega señal de 1 lógico o no.

### Próximos pasos

- Confirmar el uso del 7 segmentos y como representar cada estado.
- Definir materiales por comprar para montar el circuito de manera física.

# 5. Sesión 5-9 de septiembre de 2025

### Actividades realizadas

- lacktriangle Se resolvieron problemas con la representación en el 7 segmentos, logrando usar A para abrir y C para cerrar.
- Se definió el uso de la tecnología TTL para el resto del proyecto.
- Se añadieron los archivos de simulación al repositorio dedicado al proyecto, para un mejor manejo de versiones.

### Resultados obtenidos

Se realizó la representación de la A y C. Siguiendo la logica del BCD (74LS48) y del circuito como tal, se propuso el uso de una compuerta XOR, para lograr representar en cada caso cuando fuese necesario una A y un C



Figura 4: Circuito BCD simulado

### Próximos pasos

- El estudiante Fernando Fuchs trabajará en montar el circuito en la herramienta Tinkercad para mayor facilidad a la hora de construirlo en físico.
- Se definió comprar los materiales entre el 10 y el 11 de septiembre.
- El estudiante Fernando Fuchs trabajará en las tareas restantes (investigar sobre el motor y accionador de puerta, etc.).

# 6. Sesión 6-9 de septiembre de 2025

### Actividades realizadas

• Se monta el circuito combinatorio para las contraseñas en la herramiente Tinkercad.

### Resultados obtenidos



Figura 5: Circuito en Tinkercad

### Próximos pasos

• El estudiante Fernando Fuchs montará el circuito en físico.

# 7. Sesión 7 - 10-11 de septiembre de 2025

### Actividades realizadas

• Se monta el circuito combinatorio para las contraseñas en físico

### Resultados obtenidos



Figura 6: Circuito en Protoboard

Se aclara, que se tuvieron problemas iniciales, debido a una mala conexión de resistencias de pulldown, así como mal uso del GND común, pero gracias a ayuda del profesor y de materiales consultados, se pudo realizar la correcta conexión de los circuitos combinatorios.

### Próximos pasos

■ El estudiante Emanuel Chavarría Hernandez montará el circuito del BCD.

# 8. Sesión 8 – 13-15 de septiembre de 2025

### Actividades realizadas

■ Se monta el circuito combinatorio + el circuito relacionado con el BCD y su representación con el 7 segmentos.

### Resultados obtenidos



Figura 7: Circuito Completo

Se aclara, que con la conexión del BCD se tuvieron problemas, pero de nuevo, consultando materiales se resolvieron los problemas.

### Próximos pasos

- Se termina la primera entrega del taller.
- Se sigue con la implementación total del proyecto a manos de Emanuel Chavarría Hernandez y Fernando Fuchs Mora. Falta por terminar, el motor, los sensores y el serializador todo en conjunto.