# **Red Shift**

- A data warehouse is a relational database that is designed for query and analysis rather than for transaction processing.
- ➤ It usually contains historical data derived from transaction data.
- > To perform analysis, you need as data warehouse not a regular database.
- It is an AWS fully managed petabyte scale data warehouse service in the cloud.
- ➤ It gives you fast querying capabilities over structured data using familiar SQL based clients and BI tools
- ➤ Queries are distributed and parallelized across multiple physical resources.
- You can easily scale an amazon redshift data warehouse up or down with a few clicks.
- Amazon redshift uses replication and continuous backup to enhance availability and improves data durability.
- Redshift is a SQL based data warehouse used for analytics applications (analytics DB)
- **Example use cases:** 
  - Sales reporting, healthcare analytics
  - It is suited for OLAP based use cases
  - Can store huge amount of data (a database) but can not ingest huge amount of data in real time (not like kinesis do)

#### > Redshift can:

- Fully recover from a node or component failure.
- It automatically patches and performs data backup
- Backup can be stored for a user defined retention period.
- Is 10 time faster than traditional SQL relational DB
- Redshift has much faster performance than other SQL Dbs.
- > Data is stored sequentially in columns instead of rows.
- ➤ Columnar based DB is ideal for data warehousing and analytics.
- Requires for fewer I/O which can greatly enhances performance.
- > Redshift automatically selects the compression scheme.

## **Key Concepts**



# **Amazon RDS vs. Amazon Redshift**

The tools have some similarities, but also some crucial differences.

|                                | RDS                                                                         |  |
|--------------------------------|-----------------------------------------------------------------------------|--|
|                                | כעא                                                                         |  |
| Data storage limit             | 64 TB                                                                       |  |
| How is data stored?            | Locally                                                                     |  |
| Scalability                    | Limited to master node and its storage size                                 |  |
| Support for SQL syntax         | Yes                                                                         |  |
| Design pattern                 | Online transaction processing (OLTP)                                        |  |
| Examples of suitable use cases | Serves live requests, such as those coming from a web or mobile application |  |
| Data formats                   | Accesses data stored internally in the database format                      |  |
| Supports serverless?           | Yes                                                                         |  |

| REDSHIFT                                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|--|--|
| 6 PB (multiple nodes in a cluster, 128 TB per node)                                                                       |  |  |
| Locally, externally (e.g., S3)                                                                                            |  |  |
| Spread across multiple nodes in the cluster;<br>much higher scalability than RDS                                          |  |  |
| Yes                                                                                                                       |  |  |
| Online analytical processing (OLAP)                                                                                       |  |  |
| Asynchronously generates reports out of large amounts of data                                                             |  |  |
| Accesses data stored internally in Redshift's format or data stored externally in JSON, CSV, ORC or Parquet, among others |  |  |
| No                                                                                                                        |  |  |





## Why Use Amazon Redshift

#### Easy to set-up, deploy & manage



★ Columnar Data Store

Row Storage

| Column Storage |  | age | Stor | lumn | Co |
|----------------|--|-----|------|------|----|
|----------------|--|-----|------|------|----|

| SSN       | NAME   | AGE |
|-----------|--------|-----|
| 107135024 | Jenson | 25  |
| 382634557 | Sam    | 27  |

| SSN       | NAME   | AGE |
|-----------|--------|-----|
| 107135024 | Jenson | 25  |
| 382634557 | Sam    | 27  |







#### [AMAZONE WEB SERVICES -17-Red Shift]

## 5 Allows to query from data lake



### 6 Data is secure in Redshift

★ Backup & Recovery

★ Encryption





# **Cost & Pain Points**

Instance Based
OnDemand vs Reserved

Redshift Spectrum

Large Clusters can be very expensive

Advanced Setup can be daunting