H21T1A1

- a) Bestimmen Sie alle reellen Lösungen x : R → R der Differentialgleichung x"(t) = -4x'(t) 5x(t) + sin(t). (1)
 Entscheiden Sie mit Begründung, ob es unter diesen Lösungen solche gibt, die zudem den Bedingungen x(0) = x(π) = 0 genügen.
- b) Bestimmen Sie die maximale Lösung y : I → R , I ⊆ R des Anfangswertproblems x²y'(x) = y(x)² + xy(x) ; y(-2) = 2.
 Hinweis: Sie dürfen ohne Nachweis verwenden, dass eine solche eindeutig bestimmte maximale Lösung existiert. Vergessen Sie nicht den Definitionsbereich I der maximalen Lösung anzugeben. Die Substitution z(x) := y(x)/x könnte hilfreich sein.

Zu a)

Hierbei handelt es sich nicht um eine Anfangswertproblem, sondern um ein Randwertproblem. Dieses kann keine, eine oder mehrere Lösungen haben.

Betrachte die zu (1) gehörige homogene Differentialgleichung x''(t) + 4x'(t) + 5x(t) = 0.

Der Ansatz $x(t) = e^{\mu t}$ liefert $e^{\mu t}(\mu^2 + 4\mu + 5) = 0$ genau dann wenn $\mu_{1,2} = -2 \pm i$. Dies liefert uns die linear unabhängigen (komplexen) Lösungen $\mathbb{R} \to \mathbb{C}$; $t \to e^{(-2+i)t} = e^{-2t}e^{it}$ und $\mathbb{R} \to \mathbb{C}$; $t \to e^{(-2-i)t} = e^{-2t}e^{-it}$. Addition bzw. Subtraktion liefert die beiden reellwertigen Lösungen $\nu_1 : \mathbb{R} \to \mathbb{R}$; $t \to e^{-2t}(e^{it} + e^{-it}) = 2\cos(t)e^{-2t}$ und $\nu_2 : \mathbb{R} \to \mathbb{R}$; $t \to 2\sin(t)e^{-2t}$.

Durch Ausprobieren finden wir $\sin''(t) + 4\sin'(t) + 5\sin(t) = 4\cos(t) + 4\sin(t)$ und $\cos''(t) + 4\cos'(t) + 5\cos(t) = 4\cos(t) - 4\sin(t)$, also $\lambda''(t) + 4\lambda'(t) + 5\lambda(t) = \sin(t)$ für $\lambda: \mathbb{R} \to \mathbb{R}$; $t \to \frac{1}{8}(\sin(t) + \cos(t))$.

Somit ist der Lösungsraum von (1) gegeben durch $\mathcal{L} = \{\lambda(t) + c_1 \nu_1(t) + c_2 \nu_2(t) : c_1, c_2 \in \mathbb{R}\} = \{\frac{1}{8}(\sin(t) + \cos(t)) + 2c_1 \cos(t) e^{-2t} + 2c_2 \sin(t) e^{-2t} : c_1, c_2 \in \mathbb{R}\}.$

Die Bedingungen $x(0) = -\frac{1}{8} + c_1 = 0$ und $x(\pi) = \frac{1}{8} - c_1 e^{-2\pi} = 0$ lassen sich nicht gleichzeitig erfüllen; somit gibt es keine Lösung, die beide Bedingungen erfüllt.

Zu b)

Das Anfangswertproblem $x^2y'(x) = y(x)^2 + xy(x)$; y(-2) = 2 ist für $x \ne 0$ äquivalent zu $y'(x) = \frac{y(x)^2}{x^2} + \frac{y(x)}{x} = z(x)^2 + z(x)$; $z(-2) = \frac{y(-2)}{-2} = -1$. Aus $z(x) := \frac{y(x)}{x}$ erhalten wir $z'(x) = \frac{xy'(x) - y(x)}{x^2} = \frac{x(z(x)^2 + z(x)) - xz(x)}{x^2} = \frac{z(x)^2}{x}$.

Und somit erhalten wir das neue Anfangswertproblem $z'(x) = \frac{z(x)^2}{x}$; z(-2) = -1. Trennung der Variablen liefert $-1 - \frac{1}{\mu(t)} = \ln(|t|) - \ln(2)$, also $\mu(t) = \frac{1}{\ln(2) - 1 - \ln(|t|)} \min \mu'(t) = \frac{\mu(t)^2}{|t|}$ und $\mu(-2) = -1$.

Durch Rücksubstitution $\mu(t) = \frac{\lambda(t)}{t}$ erhalten wir $\lambda(t) = t\mu(t) = \frac{t}{\ln(2) - 1 - \ln(|t|)}$. Da der Startzeitpunkt t = -2 < 0 ist, gilt $\ln(|t|) = \ln(-t)$. Weiter gilt $\ln(2) - 1 - \ln(-t) = 0 \iff t = \frac{-e}{2}$.

Somit ist $\lambda(t) = \frac{t}{\ln(2) - 1 - \ln(-t)}$ auf $] - \infty; 0[\setminus \left\{ \frac{-e}{2} \right\}]$ wohldefiniert, insbesondere auf $] - \infty; \frac{-e}{2} [$.

Wir überprüfen $\lambda(-2) = 2$ und $t^2 \lambda'(t) = t^2 \frac{(\ln(2) - 1 - \ln(-t)) - t \frac{1}{-t}}{(\ln(2) - 1 - \ln(-t))^2} = t^2 \frac{(\ln(2) - 1 - \ln(-t)) + 1}{(\ln(2) - 1 - \ln(-t))^2} = t^2 \frac{(\ln(2) - 1 - \ln(-t)) + 1}{(\ln(2) - 1 - \ln(-t))^2} = t^2 \frac{(\ln(2) - 1 - \ln(-t)) + 1}{(\ln(2) - 1 - \ln(-t))^2} = t^2 \frac{1}{(\ln(2) - 1 - \ln(-t))$

Somit gilt: λ :] $-\infty$; $\frac{-e}{2}$ [$\to \mathbb{R}$; $t \to \frac{t}{\ln(2)-1-\ln(-t)}$ ist eine Lösung des Anfangswertproblems. Wegen $\lambda(t) \xrightarrow[t\nearrow -\frac{e}{2}]{} \infty$ ist es auch die maximale Lösung.