

Matrix Algebra on GPU and Multicore Architectures (MAGMA)

PART II: Hands-on training

Stan Tomov

Innovative Computing Laboratory Department of Computer Science University of Tennessee, Knoxville

CSCS-USI Tutorial on GPU-enabled numerical libraries Lugano, Switzerland September 14-15, 2013

Outline

- Install MAGMA
- Using MAGMA
 - Documentation, naming conventions, and functionality
- Solving a linear system of equationsAx = b
- Solving an eigenvalue problem $Ax = \lambda x$
- DGEMM example
- Writing a hybrid algorithm

Install MAGMA

- Get MAGMA 1.4
 - > wget http://icl.cs.utk.edu/projectsfiles/magma/downloads/magma-1.4.0.tar.gz
- Unpack the library
 - > tar zxvf magma-1.4.0.tar.gz
- Prerequisites: LAPACK, BLAS, and CUDA toolkit
 - > module load cudatoolkit intel
- Modify 'make.inc' (where are CUDA & LAPACK, and for what GPU)

See examples in make.inc.{mkl-gcc | mkl-icc | mkl-ilp64 | mkl-shared | acml | atlas | goto | shared},

> cp make.inc.mkl-gcc make.inc

and modify make inc by setting GPU_TARGET, MKLROOT, and CUDADIR, e.g.,

GPU_TARGET ?= Kepler

MKLROOT = \$(INTEL_PATH)/mkl

CUDADIR = \$(CRAY_CUDATOOLKIT_DIR)

- Create libmagma.a in 'lib' and testing drivers in 'testing'
 - > make
- For more information on installation, read file 'README'

Support is provided through the MAGMA user forum <u>http://icl.cs.utk.edu/magma/forum/viewforum.php?f=2</u>

			· ·
NaN errors with dpotrf and dpotrf_gpu by fletchjp » Tue Dec 28, 2010 7:08 pm	9	3095	by fletchjp
GMRES on magma by nitinb60 » Sun Aug 12, 2012 8:15 pm	4	1064	by fletchjp □ Thu Sep 12, 2013 11:02 am
Help please with choice of forums U by fletchjp » Sat Apr 13, 2013 2:44 pm	4	1628	by fletchjp
the error when I compile magma1.4.0 in vs2010 by Eva Joo » Mon Sep 09, 2013 4:57 am	2	62	by Eva Joo 🖟 Thu Sep 12, 2013 4:54 am
Undefined reference to cuda functions within libmagma by Matt Phillips » Mon Sep 09, 2013 10:40 pm	1	63	by Matt Phillips ☐ Mon Sep 09, 2013 11:17 pm
crash testing strsv, using OpenBLAS by Matt Phillips » Thu Sep 05, 2013 9:15 pm	0	101	by Matt Phillips ☐ Thu Sep 05, 2013 9:15 pm
MAGMA Installation: CLAPACK reference BLAS problem by psrivas2 » Tue Sep 03, 2013 4:07 am	0	84	by psrivas2 ☐ Tue Sep 03, 2013 4:07 am
Running MAGMA across several GPUs on several nodes by hsahasra » Tue Aug 13, 2013 1:32 pm	1	310	by mgates3
magma_init/finalize missing in fortran interface U by stachon » Wed Aug 28, 2013 4:02 am	1	116	by mgates3
Error: BLAS/LAPACK routine 'magma_' gave error code -7 ① by christianHEL » Thu Aug 22, 2013 2:37 pm	2	197	by christianHEL Fri Aug 23, 2013 3:50 pm
Problems testing dsyevd with magma-1.4.0 by dougrabson » Thu Aug 15, 2013 5:44 am	1	173	by mgates3

 Doxygen documentation http://icl.cs.utk.edu/magma/docs/

MAGMA magma-1.4.0

Matrix Algebra on GPU and Multicore Architectures

Apple 💽! Yahoo!

- Naming conventions (e.g., magma_dgesv_gpu)
 - Prefix magma_ or magmablas_
 - Followed by precision
 s single, d double, c single complex, or z double complex
 ds mixed double-single, or zc double complex-single complex
 - Matrix type
 general symmetric hermetian positive definite
 orthogonal unitary triangular
 - Operation
 - sv solvetrf triangular factorizationgv eigenvalue problemgeneralized eigenvalue
 - Suffix _gpu if input and output are on the GPU memory

MAGMA functionality

http://icl.cs.utk.edu/graphics/posters/files/SC12-MAGMA.pdf

GE - General
SPD/HPD - Symmetric/Hermitian Positive Definite
TR - Triangular
D & C - Divide & Conquer
B & I IT - Bisection & Inverse Iteration
MP - Mixed-precision Iterative Refinement
Naming Convention: magma_{routine name}_gpu]

DRIVER ROUTINES IN MAGMA 1.3

	MATRIX	OPERATION	ROUTINE	INTERFACES CPU GPU
LINEAR	GE	Solve using LU	{sdcz}gesv	//
		Solve using MP	{zc,ds}gesv	✓
	SPD/HPD	Solve using Cholesky	{sdcz}posv	/ /
		Solve using MP	{zc,ds}posv	✓
TIS	GE	Solve LLS using QR	{sdcz}geqrs	✓
		Solve using MP	{zc,ds}geqrsv	✓
	GE	Compute e-values, {sdcz}geev		/
		optionally e-vectors		
89	SY/HE	Computes all e-values,	{sd}syevd	/ /
N N		optionally e-vectors	{cz}heevd	/ /
STANDARD EVP		Range (D&C)	{cz}heevdx	✓
		Range (B & I It.)	{cz}heevx	/ /
		Range (MRRR)	{cz}heevr	/ /
STAND.	GE	Compute SVD,	{sdcz}gesvd	/
SVP		optionally s-vectors		
0	SPD/HPD	Compute all e-values,	{sd}sygvd	/
GENERALIZED EVP		optionally e-vectors	{cz}hegvd	/
		Range (D&C)	{cz}hegvdx	/
		Range (B & I It.)	{cz}hegvx	/
		Range (MRRR)	{cz}hegvr	/

COMPUTATIONAL ROUTINES IN MAGMA 1.3

	MATRIX	OPERATION	ROUTINE	INTERFACES CPU GPU
LINEAR EQUATIONS	GE	LU	{sdcz}getrf	✓ ✓
		Solve	{sdcz}getrs	✓
		Invert	{sdcz}getri	✓
	SPD/HPD	Cholesky	{sdcz}potrf	/ /
		Solve	{sdcz}potrs	
		Invert	{sdcz}potri	✓
	TR	Invert	{sdcz}trtri	/
	GE	QR	{sdcz}geqrf	✓
ORTHOGONAL Factorizations		QR w/ pivoting	{sdcz}geqp3	/
		Generate Q	{sd}orgqr	/ /
			{cz}ungqr	/ /
		Multiply matrix by Q	{sd}ormqr	/ /
E E			{cz}unmqr	/ /
FAC O		LQ factorization	{sdc z }gelqf	/ /
		QL factorization	{sdcz}geqlf	/
		Multiply matrix by Q	{sd}ormql	/ /
			{cz}unmql	/ /
	GE	Hessenberg reduction	{sdcz}gehrd	/
_		Generate Q	{sd}orghr	/
ARC			(cz}unghr	/
STANDARD EVP	SY/HE	Tridiagonalization	{sd}sytrd	/
			{cz}hetrd	/
		Generate Q	{sd}orgtr	/
			{cz}ungtr	√
		Multiply by Q	{sd}ormtr	/ /
			{cz}unmtr	/ /
SVD	GE	Bidiagonalization	{sdcz}gebrd	V
GENER- AUZED	SPD/HPD	Reduction to standard	{sd}sygst	V /
EVP		form	{cz}hegst	/ /

Solving a linear system of equations Ax = b

Alternatively, there is a direct MAGMA function to solve: see testing_dgesv.cpp and testing_dgetrf.cpp

Solving an eigenvalue problem Ax = λx

see testing_dsyevd.cpp

DGEMM example

```
salloc -N1 --gres=gpu:1 --time=00:30:00
module load cudatoolkit intel
export LD LIBRARY PATH=$LD LIBRARY PATH:/apps/dom/intel/composer xe 2013/mkl/lib/intel64/
export LD LIBRARY PATH=$LD LIBRARY PATH:/apps/opcode/CUDA-5.0/lib64
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/apps/dom/intel/composer_xe_2013.1.117/compiler/lib/intel64/
aprun -n1 -N1 -e OMP NUM THREADS=16 -d16 ./testing dgemm -l -c
MAGMA 1.4.0, capability 3.0
device 0: Tesla K20X, 732.0 MHz clock, 5759.6 MB memory, capability 3.5
Usage: ./testing dgemm [options] [-h|--help]
transA = N. transB = N
            K MAGMA Gflop/s (ms) CUBLAS Gflop/s (ms) CPU Gflop/s (ms) MAGMA error CUBLAS error
1088 1088 1088 612.88 ( 4.20)
                                     969.12 ( 2.66)
                                                           3.13 (823.44)
                                                                              6.92e-15
                                                                                            6.92e-15
2112 2112 2112 667.85 ( 28.21)
                                     1100.09 ( 17.13)
                                                          6.79 (2775.89)
                                                                              8.12e-15
                                                                                            7.95e-15
3136 3136 3136 675.16 (91.36)
                                     1144.59 ( 53.89)
                                                          11.14 (5538.38)
                                                                              1.13e-14
                                                                                            1.13e-14
```

see file testing_dgemm.cpp, sgemm.pdf, dgemm_fermi.cu, and directory testing

Writing a hybrid algorithm

Develop a hybrid CPU-GPU algorithm for this Matlab code

```
function [Q,R] = chol\_qr\_it(A)
  i=0;
  cn = 200:
  Q = A:
  G = Q'*Q:
  n = size(A,2);
  R = eye(n);
  while cn > 100, i = i + 1
      [u,s,v]=svd(G);
      [q,r]=qr(sqrt(s)*v');
     R = r * R:
     cn = sqrt(cond(s));
     Q = Q * inv(r);
     if cn>100
        G = Q'*Q:
     end;
  end:
return
```


Computations on small data to be done on the CPU

Computations on large data to be done on the GPU

Writing a hybrid algorithm

Develop a hybrid CPU-GPU algorithm for this Matlab code

```
function [Q,R] = chol_qr_it(A)
  i=0;
  cn = 200:
  Q = A:
  G = Q'*Q;
                                                           cublasSgemm( ... );
                                                                                   // G = Q' *Q (GPU computation)
  n = size(A,2);
  R = eye(n);
  while cn > 100, i = i + 1
                                                           cublasGetVector( ... ); // G -> work (send the result G to the CPU)
     [u.s.v]=svd(G):
                                                           sgesvd ( ... );
                                                                                   // svd G on the CPU
                                                                                   // QR on the CPU
     [q,r]=qr(sqrt(s)*v');
                                                           sgeqrf_( ... );
     R = r * R:
                                                           cublasSetVector( ... ); // send r back to the the GPU)
     cn = sqrt(cond(s));
     Q = Q * inv(r);
                                                           cublasStrsm( ... );
                                                                                    // Triangular matrix solve on the GPU
     if cn>100
       G = Q'*Q:
     end:
  end:
                                               see testing_dgegqr_gpu.cpp and dgegqr_gpu.cpp
return
```


Contributions

The MAGMA program style follows the general guidelines for Sca/LAPACK in terms of interfaces, copyrights and licensing, citing the authors of the software, and documentation:

http://www.netlib.org/lapack-dev/lapack-coding/program-style.html

- Routine Naming and Design
- Language, source formatting, timing, and testing
- See file 'ContributorsGuige.txt'

Collaborators and Support

MAGMA team

http://icl.cs.utk.edu/magma

PLASMA team

http://icl.cs.utk.edu/plasma

Collaborating partners

University of Tennessee, Knoxville University of California, Berkeley University of Colorado, Denver INRIA, France (StarPU team) KAUST, Saudi Arabia

