Residue Number System (RNS)

Анатолий М. Георгиевский, 2025-09-19

{относится к оптимизациям ZKP в схемах BFV и CKKS}

Система остаточных классов (Residue Number System, RNS) является непозиционной системой целых чисел, основанной на китайской теореме об остатках (CRT).

В такой системе целое число x представляется его остатками $x_i = x \mod p_i$ по базису взаимно простых чисел $\mathcal{B} = \{p_0, \dots, p_{k-1}\}.$

Множество $\mathcal{B} = \{p_0, \dots, p_{k-1}\}$ формирует базис RNS, состоящий из k каналов. Модули p_i обычно выбираются с учетом ширины слова w, которая соответствует целевой архитектуре. Важным преимуществом такой системы является то, что операции сложения, вычитания и умножения могут выполняться параллельно в каждом канале:

$$z_i = x_i \circ y_i \mod p_i$$
, где $\circ \in \{+,-, imes\}$

Традиционно рассматриваются системы $\{2^n+1, 2^n, 2^n-1\}$

Ряд работ по использованию RNS в доказательствах ZKP и FHE:

- [2016/510] A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes
- [2018/117] An Improved RNS Variant of the BFV Homomorphic Encryption Scheme
- [2018/931] A Full RNS Variant of Approximate Homomorphic Encryption

Обозначения

Для целого числа $q \geq 2$ мы отождествляем кольцо \mathbb{Z}_q с его отображением на симметричном интервале $\mathbb{Z} \cap [-q/2,q/2)$. Для произвольного действительного числа x мы обозначаем через $[x]_q$ отображение x на этот интервал, а именно, действительное число $x' \in [-q/2,q/2)$, такое что x'-x делится на q. Мы также обозначаем через $\lfloor x \rfloor$, $\lceil x \rceil$ и $\lfloor x \rceil$ округление x вниз, вверх и до ближайшего целого числа, соответственно. Векторы мы обозначаем жирным шрифтом, и расширяем нотации $\lfloor \mathbf{x} \rfloor$, $\lceil \mathbf{x} \rceil$, $\lfloor \mathbf{x} \rceil$ на векторы поэлементно.

Мы выбираем множество из k взаимно простых модулей $\{p_0,\dots,p_{k-1}\}$, где все числа целые больше 1, и пусть их произведение равно $P=\prod_{i=0}^{k-1}p_i$.

Для всех $i \in \{0,\dots,k-1\}$ мы также обозначаем

$$\hat{p}_i = P/p_i \in \mathbb{Z}$$
 и $ilde{p}_i = \hat{p}_i^{-1} \pmod{q_i} \in \mathbb{Z}_{q_i},$

где $ilde{p}_i \in [-p_i/2, p_i/2)$ и $\hat{p}_i \cdot ilde{p}_i = 1 \pmod{p_i}$.

Теорема об остатках (CRT)

Обозначим представление целого числа $x\in\mathbb{Z}_p$ относительно базиса RNS $\{p_0,\dots,p_{k-1}\}$ через $x\sim(x_0,\dots,x_{k-1})$, где $x_i=[x]_{p_i}\in\mathbb{Z}_{p_i}$. Формула, выражающая x через x_i , имеет вид

$$x = \sum_{i=0}^{k-1} x_i \cdot ilde{p}_i \cdot \hat{p}_i \pmod{P} \ .$$

Эта формула может быть использована более чем одним способом для «реконструкции» значения $x\in\mathbb{Z}_p$ из $[x]_\mathcal{B}$. В данной работе мы используем следующие два факта:

$$x = \sum_{i=0}^{k-1} [x_i \cdot ilde{p}_i]_{p_i} \cdot \hat{p}_i - e \cdot P$$
 для некоторого $e \in \mathbb{Z},$

И

$$x = \sum_{i=0}^{k-1} x_i \cdot ilde{p}_i \cdot \hat{p}_i - e' \cdot P$$
 для некоторого $e' \in \mathbb{Z},$

где сумма во второй формуле берётся по $x_i \cdot ilde{q}_i \cdot \hat{q}_i \in ig[-rac{q_i q}{4}, rac{q_i q}{4}ig).$

Представление RNS в кольце

Пусть $\mathcal{B}=\{p_0,\dots,p_{k-1}\}$ — это базис взаимно простых чисел, и пусть $P=\prod_{i=0}^{k-1}p_i$. Обозначим через $[\cdot]_{\mathcal{B}}$ отображение из $\mathbb{Z}_P\mapsto\mathbb{Z}_{p_0}\times\mathbb{Z}_{p_1}\times\cdots\times\mathbb{Z}_{p_{k-1}}$, определённое как $a\mapsto[a]_{\mathcal{B}}=([a]_{p_i})_{0\leq i< k}$ -- отображение из множества целых чисел на множество остатков в базисе взаимно простых чисел. Это изоморфизм кольца по Теореме об остатках (CRT), и $[a]_{\mathcal{B}}$ называется представлением числа $a\in\mathbb{Z}_P$ в системе остаточных классов (RNS). Основное преимущество представления RNS заключается в возможности выполнения компонентных арифметических операций в малых кольцах \mathbb{Z}_{p_i} , что снижает асимптотическую и практическую вычислительную сложность. Этот изоморфизм кольца над целыми числами может быть естественным образом расширен до изоморфизма в кольце полиномов $[\cdot]_{\mathcal{B}}:\mathcal{R}_P\to\mathcal{R}_{p_0}\times\cdots\times\mathcal{R}_{p_{k-1}}$ путём пересчета коэффициентов над циклическими кольцами.

Расширение базиса CRT

Пусть $x\in\mathbb{Z}_P$ задано в представлении СRT (x_0,\ldots,x_{k-1}) , и предположим, что мы хотим расширить базис CRT, вычислив $[x]_q\in\mathbb{Z}_q$ для некоторого другого модуля q>1. Используя уравнение (2), мы хотели бы вычислить

$$[x]_q = \left[\left(\sum_{i=0}^{k-1} [x_i \cdot ilde{p}_i]_{p_i} \cdot \hat{p}_i
ight) - e \cdot P
ight]_q \,.$$

Основная сложность здесь заключается в вычислении e, которое является целым числом в \mathbb{Z}_k . Формула для e выглядит так:

$$e = \left\lfloor rac{\sum_{i=0}^{k-1} [x_i \cdot ilde{p}_i]_{p_i} \cdot \hat{p}_i}{P}
ight
floor = \left\lfloor \sum_{i=0}^{k-1} [x_i \cdot ilde{p}_i]_{p_i} \cdot rac{\hat{p}_i}{P}
ight
floor = \left\lfloor \sum_{i=0}^{k-1} rac{[x_i \cdot ilde{p}_i]_{p_i}}{p_i}
ight
floor.$$

Чтобы получить e, мы вычисляем для каждого $i\in\{0,\dots,k-1\}$ элемент $\xi_i:=[x_i\cdot \tilde{p}_i]_{p_i}$ используя арифметику целых чисел, а затем рациональное число $z_i:=\xi_i/p_i$ в формате с плавающей точкой одинарной точности. Затем суммируем все z_i и округляем результат, чтобы получить e. {округление к меньшему для чисел без знака, проверить}:

$$e+rac{x}{P}=\sum_{i=0}^{k-1}rac{\xi_i}{p_i},\quad e=\left\lfloor\sum_{i=0}^{k-1}rac{\xi_i}{p_i}
ight
floor,$$

-- в такой форме должно быть справедливо для модульной арифметики без знака [23].

После того как мы получили значение e, а также все ξ_i , мы можем напрямую вычислить уравнение (2) по модулю q, чтобы получить

$$[x]_q = \left[\left(\sum_{i=0}^{k-1} \xi_i \cdot [\hat{p}_i]_q
ight) - e \cdot [P]_q
ight]_q \ .$$

Заметим, если все значения $[\hat{p}_i]_q$ и $[P]_q$ представить в качестве элементов вектора, то вычисление сводится к операции скалярного произведения векторов размерности k+1 по модулю q.

{данное описание достаточно полное, чтобы представить алгоритм расширения}

Преобразования базиса CRT

Прямое преобразование в RNS сводится к модульной операции на каждом базовом канале. Обратное преобразование может выполняться разными способами. Китайская теорема об остатках предоставляет вычислительную формулу в целевой системе чисел [2018/117]:

$$x+e\cdot P=\sum_{i=1}^n \left[x_i\cdot \hat{p}_i^{-1}
ight]_{p_i}\cdot \hat{p}_i$$

$$\hat{p}_i imes \left(rac{P}{p_i}
ight)_{p_i}^{-1}\equiv 1\pmod{P?}$$

Пусть $\mathcal{D}=\{p_0,\dots,p_{k-1},q_0,\dots,q_{\ell-1}\}$ некоторый базис. Пусть $\mathcal{B}=\{p_0,\dots,p_{k-1}\}$ и $\mathcal{C}=\{q_0,\dots,q_{\ell-1}\}$ будут его подпространствами. Обозначим их произведения через $P=\prod_{i=0}^{k-1}p_i$ и $Q=\prod_{j=0}^{\ell-1}q_j$ соответственно. Тогда можно преобразовать RNS-представление $[a]_{\mathcal{C}}=(a^{(0)},\dots,a^{(\ell-1)})\in\mathbb{Z}_{q_0}\times\dots\times\mathbb{Z}_{q_{\ell-1}}$ целого числа $a\in\mathbb{Z}_Q$ в элемент $\mathbb{Z}_{p_0}\times\dots\times\mathbb{Z}_{p_{k-1}}$ путём вычисления

$$ext{Conv}_{\mathcal{C} o \mathcal{B}}([a]_{\mathcal{C}}) = \left(\sum_{j=0}^{\ell-1} [a^{(j)} \cdot \hat{q}_j^{-1}]_{q_j} \cdot \hat{q}_j \pmod{p_i}
ight)_{0 \leq i \leq k},$$

где $\hat{q}_j = \prod\limits_{i \neq j} q_i \in \mathbb{Z}$. Обратите внимание, что

$$\sum_{j=0}^{\ell-1} \left[a^{(j)} \cdot \hat{q}_j^{-1}
ight]_{q_j} \cdot \hat{q}_j = a + Q \cdot e$$

для некоторого малого $e \in \mathbb{Z}$, удовлетворяющего $|a+Q\cdot e| \leq (\ell/2)\cdot Q$. Это подразумевает, что $\mathrm{Conv}_{\mathcal{C} o \mathcal{B}}([a]_C) = [a+Q\cdot e]_B$ может рассматриваться как RNS-представление целого числа $a+Q\cdot e$ относительно базиса \mathcal{B} .

- [2018/931]
 - -- определяет две операции: увеличение и уменьшение размерности базиса, а также изменение базиса на основе этих двух операций.

Mixed Radix Conversion

RNS позволяет параллельно считать в числах с пониженной разрядностью. Но обратные операции связанные с вычислением знака, делением и сравеннием выполняются с использованием обратного преобразования в позиционную систему. Сравнение можно выполнить в позиционной системе Mixed Radix.

Алгоритм Гарнера

Рассмотрим набор модулей (p_0,p_1,\ldots,p_{k-1}) , удовлетворяющих условию теоремы. Другой теоремой из теории чисел утверждается, что любое число $0\leqslant x< M=p_0\cdot p_1\cdot\ldots\cdot p_{k-1}$ однозначно представимо в виде $x=x_0+x_1\cdot p_0+x_2\cdot p_0\cdot p_1+\cdots+x_{k-1}\cdot p_0\cdot p_1\cdot\ldots\cdot p_{k-1}.$

Вычислив по порядку все коэффициенты x_i для $i \in \{0,1,\dots,k-1\}$ мы сможем подставить их в формулу и найти искомое решение:

[Knuth2, 4.3.2]: Обозначим через $c_{ij} = p_i^{-1} \pmod{p_j}$, для $1 \leqslant i < j < k$ и рассмотрим выражение для x по модулю p_i получим:

$$egin{aligned} x_0 &= r_0 \ r_1 &= (x_0 + x_1 p_0) \pmod{p_1} \ x_1 &= (r_1 - x_0) c_{01} \pmod{p_1} \ r_2 &= (x_0 + x_1 p_0 + x_2 p_0 p_1) \pmod{p_2} \ x_2 &= ((r_2 - x_0) c_{02} - x_1) c_{12} \pmod{p_2} \ & \ddots & \ddots \ x_i &= (...((r_i - x_0) c_{0,i} - x_1) c_{1,i} - \dots - x_{i-1}) c_{(i-1),i} \pmod{p_i}. \end{aligned}$$

и так далее.

$$x = x_0 + x_1 p_0 + x_2 p_0 p_1 + \dots + x_{k-1} p_0 p_1 \dots p_{k-2}$$

- [Knuth2] Knuth, D. E. 2014. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Addison-Wesley Professional. ISBN:978-0-201-89684-8
- [26] Harvey L. Garner. 1959. The residue number system. In Papers Presented at the March 3-5, 1959, Western Joint Computer Conference (IRE-AIEE-ACM '59 (Western)). Association for Computing Machinery, New York, NY, USA, 146–153.
 https://doi.org/10.1145/1457838.1457864

Algorithm. Mixed Radix Conversion

Requie: $\mathcal{B}=\{p_0,\ldots,p_{n-1}\}$ - набор из n взаимно простых модулей. Requie: $a_i\equiv x\pmod{p_i}$ -- RNS представление $[a]_\mathcal{B}$ Шаг 1 precompute $\gamma_k=(\prod_{i=0}^{k-1}p_i)^{-1}\mod{p_k}$, for k=1,2,...,n-1

- 1. for k from 1 to n-1
- 2. $p \leftarrow p_0 \pmod{p_k}$
- 3. for i from 1 to k-1
- 4. $p \leftarrow p \cdot p_i \pmod{p_k}$
- 5. $\gamma_k = p^{-1} \pmod{p_k}$

Шаг 2: Расчет коэффициентов MRC $\{v_i\}$ из RNS $\{a_i\}$

1.
$$v_0 \leftarrow a_0$$

- 2. for k from 1 to n-1
- 3. $t \leftarrow v_{k-1}$
- 4. for i from k-2 to 0
- 5. $t \leftarrow t \cdot p_i + v_i \pmod{p_k}$
- 6. $v_k = (a_k t)\gamma_k \pmod{p_k}$

Шаг 3: Расчет стандартного представления числа из MRC

- 1. $x \leftarrow v_{n-1}$
- 2. for k from n-2 to 0
- 3. $x = x \cdot p_k + v_k$
- 4. return x

Дополнительная литература

- [22] N.S. Szabo, R.I. Tanaka. Residue Arithmetic and Its Applications to Computer Technology
- [23] Kawamura, S., Koike, M., Sano, F., Shimbo, A. (2000). Cox-Rower Architecture for Fast Parallel Montgomery Multiplication. In: Preneel, B. (eds) Advances in Cryptology EUROCRYPT 2000. EUROCRYPT 2000. Lecture Notes in Computer Science, vol 1807. Springer, Berlin, Heidelberg.

(https://doi.org/10.1007/3-540-45539-6_37)

- [24] J. . -C. Bajard, L. . -S. Didier and P. Kornerup, "An RNS Montgomery modular multiplication algorithm," in IEEE Transactions on Computers, vol. 47, no. 7, pp. 766-776, July 1998, (https://doi.org/10.1109/12.709376).
- [2025/1068] Efficient Modular Multiplication Using Vector Instructions on Commodity Hardware, 2025. Cryptology {ePrint} Archive, Paper 2025/1068
- [25] Kawamura, et al. Efficient Algorithms for Sign Detection in RNS Using Approximate Reciprocals, 2021