Lecture 3 Implementation of Lexical Analysis

Review: Last Written Assignment

- Write regular expressions for the following languages over the alphabet $\Sigma = \{0, 1\}$:
 - (a) The set of all strings which start and end with the same digit.
 - (b) The set of all strings representing a binary number where the sum of its digits is even.
 - (c) The set of all strings that contain the substring 10100.

Answers

 (a) The set of all strings which start and end with the same digit.

• (b) The set of all strings representing a binary number where the sum of its digits is even.

 (c) The set of all strings that contain the substring 10100.

Yours - (a)

$$\cdot$$
 0(0+1)*0 + 1(0+1)*1

Yours - (b)

- · 0*(10*1) *0*
- · (10)*1+0)*
- · ((10*1)+0)*
- · (10*1)*0* (10*1)*0* (10*1)*
- · 0*+(0*+(10*1)*)*
- · (0*10*10*)*+0*
- · ((10*1)+0*)*
- · ((0*(11)*0*)* + (0*10*10*)*)*

Next: Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 RegExp => NFA => DFA => Tables

Notation

There is variation in regular expression notation

- Union: $A \mid B = A + B$
- Option: $A + \varepsilon = A$?
- Range: a'+b'+...+z' = [a-z]
- Excluded range: complement of [a-z] ≡ [^a-z]

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate $s \in L(R)$
- But a yes/no answer is not enough!
- Instead: partition the input into tokens
- · We adapt regular expressions to this goal

Regular Expressions => Lexical Spec. (1)

- 1. Select a set of tokens
 - Number, Keyword, Identifier, ...
- 2. Write a R.E. for the lexemes of each token
 - Number = digit*
 - Keyword = 'if' | 'else' | ...
 - Identifier = letter (letter | digit)*
 - OpenPar = '('
 - •

Regular Expressions => Lexical Spec. (2)

Construct R, matching all lexemes for all tokens

$$R = Keyword | Identifier | Number | ...$$

= R_1 | R_2 | R_3 | ...

Facts: If $s \in L(R)$ then s is a lexeme

- Furthermore s ∈ L(R_i) for some "i"
- This "i" determines the token that is reported

Regular Expressions => Lexical Spec. (3)

- 4. Let the input be $x_1...x_n$ ($x_1 ... x_n$ are characters in the language alphabet)
 - For $1 \le i \le n$ check $x_1...x_i \in L(R)$?
- 5. If success, then we know that $x_1...x_i \in L(R_j)$ for some i and j
- 6. Remove $x_1...x_i$ from input and go to (4)

Lexing Example

R = Whitespace | Integer | Identifier | '+'

- Parse "f+3 +g"
 - "f" matches R, more precisely Identifier
 - "+" matches R, more precisely '+'
 - -
 - The token-lexeme pairs are (Identifier, "f"), ('+', "+"), (Integer, "3") (Whitespace, ""), ('+', "+"), (Identifier, "g")
- We would like to drop the Whitespace tokens
 - after matching Whitespace, continue matching

Ambiguities (1)

- There are ambiguities in the algorithm
- Example:

```
R = Whitespace | Integer | Identifier | '+'
```

- Parse "foo+3"
 - "f" matches R, more precisely Identifier
 - But also "fo" matches R, and "foo", but not "foo+"
- How much input is used? What if
 - $x_1...x_i \in L(R)$ and also $x_1...x_K \in L(R)$
 - "Maximal munch" rule: Pick the longest possible substring that matches R

More Ambiguities

R = Whitespace | 'new' | Integer | Identifier

- Parse "new foo"
 - "new" matches R, more precisely 'new'
 - but also Identifier, which one do we pick?
- In general, if $x_1...x_i \in L(R_j)$ and $x_1...x_i \in L(R_k)$
 - Rule: use rule listed first (j if j < k)
- · We must list 'new' before Identifier

Error Handling

R = Whitespace | Integer | Identifier | '+'

- Parse "=56"
 - No prefix matches R: not "=", nor "=5", nor "=56"
- Problem: What if no rule matches a prefix of input? Can't just get stuck ...
- · Solution:
 - Add a rule matching all "bad" strings; and put it last
- · Lexer tools allow the writing of:

$$R = R_1 \mid ... \mid R_n \mid Error$$

- Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- · A finite automaton consists of
 - An input alphabet Σ
 - A set of states 5
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state \rightarrow^{input} state

Finite Automata

Transition

$$s_1 \rightarrow^{a} s_2$$

Is read

In state s_1 on input "a" go to state s_2

- If end of input and in accepting state => accept
- Othewise => reject

Finite Automata State Graphs

A state

The start state

An accepting state

· A transition

A Simple Example

A finite automaton that accepts only "1"

 A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

· Check that "1110" is accepted but "110..." is not

And Another Example

- Alphabet {0,1}
- · What language does this recognize?

And Another Example

Alphabet still { 0, 1 }

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

Another kind of transition: ε-moves

 Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε -moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- Input: 1 0 1
- · Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- · DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

 For a given language NFA can be simpler than DFA

DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

For input a

Regular Expressions to NFA (2)

· For AB

• For *A* | B

Regular Expressions to NFA (3)

• For *A**

Example of RegExp -> NFA conversion

- Consider the regular expression
 (1 | 0)*1
- · The NFA is

A Side Note on the Construction

- To keep things simple, all the machines we built had exactly one final state.
- Also, we never merged ("overlapped") states when we combined machines.
 - E.g., we didn't merge the start states of the A and B machines to create the A|B machine, but created a new start state.
 - This avoided certain glitches: e.g., try A*|B*
- Resulting machines are very suboptimal: many extra states and ϵ transitions.
- But the DFA transformation gets rid of this excess, so it doesn't matter.

Next

NFA to DFA: The Trick

- Simulate the NFA
- Each state of resulting DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ϵ -moves from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - considering ϵ -moves as well

NFA to DFA. Remark

- · An NFA may be in many states at any time
- How many different states?
- If there are N states, the NFA must be in some subset of those N states
- How many non-empty subsets are there?
 - 2^N 1 = finitely many, but exponentially many

NFA -> DFA Example

Implementation

- A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_k
 - Very efficient

Table Implementation of a DFA

	0	1
5	T	C
T	T	C
U	T	U

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex
- But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Assignments

- Draw DFAs for the following REs.
- (a) The set of all strings which start and end with the same digit.

 (b) The set of all strings representing a binary number where the sum of its digits is even.

 (c) The set of all strings that contain the substring 10100.