Caractéristiques de quelques dipôles passifs

I-Dipôles passifs:

1-Définition :

Un dipôle est un composant électrique possédant deux bornes.

La caractéristique U = f(I) d'un dipôle est la représentation graphique de la tension U aux bornes du dipôle en fonction du courant I qui le traverse.

Le dipôle passif a une caractéristique qui passe par l'origine (U = 0; I = 0).

Exemples: lampe, conducteur ohmique…

2-Convension récepteur :

Dans la convention récepteur, la tension U aux bornes d'un dipôle passif et l'intensité *I* du courant qui le traverse sont de sens contraire.

II-Caractéristiques de quelques dipôles passifs :

1-Montage expérimental :

Pour tracer la caractéristique d'un dipôle passif D, on réalise le montage ci-contre :

G est un générateur a tension variable.

2-Caractéristique de quelques dipôles passifs :

2-1-Caractéristique d'une lampe :

On réalise le montage ci-dessus en remplaçant D par une lampe à incandescence :

Tableau de résultats :

U (V)	0	0,5	1,0	1,5	2,0	2,5	3,0	3,5
I (mA)	0	77	110	135	160	180	195	210

La caractéristique I = f(U):

Caractéristique de la lampe à incandescence est non linéaire et passe par l'origine.

Conclusion:

La lampe est un dipôle passif non linéaire et symétrique.

2-2--Caractéristique d'une diode normale :

Symbole:

On appelle le sens de A vers K le sens direct ou le sens passant de la diode.

On appelle le sens de K vers A le sens indirect ou le sens bloquant de la diode.

Tableau de résultats :

$U_{AK}(V)$	-0,6	-0,4	-0,2	0	0,1	0,2	0,4	0,6	0,6	0,7	0,79	0,8
I(mA)	0	0	0	0	0	0	0	0	0	10	100	200

La caractéristique I = f(U):

Conclusion:

-La diode est un dipôle passif non linéaire et asymétrique.

-Lorsque la diode est polarisée en direct

 $(U_{AK} > 0)$, elle ne laisse pas passer le courant que si la tension dépasse la **tension seuil** $U_s = 0.6 V$.

-Lorsque la diode est polarisée en inverse

 $(U_{AK} < 0)$, elle se comporte comme un isolant ou un interrupteur ouvert.

2-3-Caractéristique de la diode Zener :

Symbole:

Tableau de résultats :

$U_{AK}(V)$	-7,8	-7,6	- 7	-6	-4	-2	0	0,2	0,4	0,6	1,4	1,6	1,8
(mA)	-60	-20	-2	0	0	0	0	0	0	0	10	40	80

Conclusion:

-La diode Zener est un dipôle passif asymétrique, sa caractéristique est non linéaire.

-Dans le sens direct

La diode Zener se comporte comme une diode normale ou $U_S=0.6\,V.$

-En sens inverse

La diode Zener laisse passer le courant lorsque la tension U_{KA} dépasse une **tension**

Zener U_Z .

2-4-Caractéristique d'une varistance ou VDR :

La varistance ou VDR est résistor dont la résistance dépend de la tension.

Symbole:

Caractéristique intensité-tension :

Conclusion:

Le V.D.R est un dipôle passif symétrique mais non linéaire.

Remarque:

La résistance d'une VDR diminue quand la tension appliquée entre ses bornes augmente.

2-5-Caractéristique d'une thermistance CTN ou CTP :

La thermistance est un dipôle dont la résistance dépend de la température. On distingue deux types :

- -Les thermistances à Coefficient de température positif (CTP) leurs résistances augmentent quand la température augmente.
- -Les thermistances à Coefficient de température négatif (CTN) leurs résistances diminuent quand la température augmente.

Conclusion:

La thermistance est un dipôle passif, linéaire et symétrique sa résistance varie avec la température.

2-6-Caractéristique de (LDR) :

Symbole:

Conclusion:

La photorésistance est un dipôle passif, linéaire et symétrique dont la résistance varie avec l'éclairage qui il reçoit.

2-7-Caractéristique d'une diode électroluminescente (LED) :

Symbole:

La diode électroluminescente se comporte comme une diode normale et elle émet de la lumière lorsqu'elle est parcourue par un courant électrique.

Conclusion:

LED est un dipôle passif non linéaire et non symétrique.

