Program-1:

1.Write a program to find the root of the equation $x^3-2x-5=0$ by Newton – Raphson method with initial value x0=1.5 upto 5 iterations.

Output:

- 1. 2.4736842
- 2. 2.156433
- 3. 2.0966046
- 4. 2.0945539
- 5. 2.0945515

"The solution by Newton Raphson method after 5 iterations is: "

2. Write a program to find the root of the equation $x*\sin(x)+\cos(x)=0$ by Newton – Raphson method with initial value $x0=\pi$ upto 4 iterations

```
clc;clear;
deff(y=f(x)',y=x*sin(x)+cos(x)');
deff('z=g(x)', 'z=x*cos(x)');
x0=\%pi;
for i=1:4
  c=x0-f(x0)/g(x0);
  x0=c;
  disp([i,c]);
end
disp("The solution by Newton Raphson method after 4
iterations is: ",c)
Output:
1. 2.8232828
2. 2.7985999
3. 2.7983861
4. 2.798386
"The solution by Newton Raphson method after 4 iterations is: "
```

Program-2:

1.Write a program to find the root of the transcendental equation $cos(x)-x*e^x=0$ by Regula–Falsi method with initial value a=0 and b=1 upto 10 iterations

```
clc;clear;
deff('y=f(x)','y=cos(x)-x*%e^x')
a=0;b=1;
for i=1:10
    c=(a*f(b)-b*f(a))/(f(b)-f(a))
    if f(a)*f(c)<0
        then b=c
    else a=c
    disp([i,c]);
end
end
disp('The solution by Regula -falsi method after 10 iterations: ',c)</pre>
```

Output:

- 1. 0.3146653
- 2. 0.4467281
- 3. 0.4940153
- 4. 0.5099461
- 5. 0.515201
- 6. 0.5169222
- 7. 0.5174847
- 8. 0.5176683
- 9. 0.5177283
- 10. 0.5177479

"The solution by Regula -falsi method after 10 iterations: " 0.5177479

2. Write a program to find the root of the transcendental equation x^3 -5x-7=0 by Regula –Falsi method with initial value (2,3) upto 5 iterations

```
clc;clear;
deff('y=f(x)','y=x^3-5*x-7')
a=2;b=3;
for i=1:5
    c=(a*f(b)-b*f(a))/(f(b)-f(a))
    if f(a)*f(c)<0
        then b=c
    else a=c
    disp([i,c]);
end
end
disp('The solution by Regula-falsi method after 5 iterations:
',c)</pre>
```

Output:

- 1. 2.6428571
- 2. 2.7356353
- 3. 2.7460718
- 4. 2.7472082
- 5. 2.7473315

"The solution by Regula-falsi method after 5 iterations: "

Program-3:

1. Write a program on Newton's forward interpolation for the given set of values. Find f(34)

X	0	15	30	45	60	75	90
У	0	0.26	0.5	0.71	0.87	0.97	1

```
clc;clear;
x=[0,15,30,45,60,75,90];
y=[0,0.26,0.5,0.71,0.87,0.97,1];
n=length(x);
h=x(2)-x(1);
T=x':
for i=0:n-1
    T(1:(n-i),i+2) = diff(y',i)
end
disp("Forward difference table");
disp("x y y1 y2 y3 y4 y5 y6");
disp(T);
xi=<u>input("Enter the value of xi:")</u>
p=max(find(T(:,1)< xi));
u=(xi-x(p))/h;yi=y(p);q=u;
for j = 1:n-1
  yi=yi+(q*T(p,j+2))/factorial(j);
   q = (q^*(u-j));
   end
disp("Interpolated value yi is:",yi)
```

Output:

"Forward difference table"

"X	У	y1	y2	y3	y4	y5	y6"
0.	0.	0.26	-0.02	-0.01	-0.01	0.02	-0.03
15.	0.26	0.24	-0.03	-0.02	0.01	-0.01	0.
30.	0.5	0.21	-0.05	-0.01	2.220D-16	0.	0.
45.	0.71	0.16	-0.06	-0.01	0.	0.	0.
60.	0.87	0.1	-0.07	0.	0.	0.	0.
75.	0.97	0.03	0.	0.	0.	0.	0.
90.	1.	0.	0.	0.	0.	0.	0.

Enter the value of xi:34

[&]quot;Interpolated value yi is:"

2. Write a program on Newton's backward interpolation for the given set of values. Find f(3.5)

X	0	1	2	3	4
У	1	3	5	7	9

```
clc;clear;
x=[0,1,2,3,4];
y=[1,3,5,7,9];
n=length(x);
h=x(2)-x(1);
T=x';
for i=0:n-1
    T(i+1:n,i+2)=diff(y',i)
end
disp("Backward difference table");
disp("x y y1 y2 y3 y4 y5 y6");
disp(T);
xi=input("Enter the value of xi:");
p=max(find(T(:,1)>xi));
u=(xi-x(p))/h;yi=y(p);q=u;
for j = 1:n-1
   yi=yi+(q*T(p,j+2))/factorial(j);
   q = (q^*(u + j));
   end
disp("Interpolated value yi is:",yi)
```

Output:

"Backward difference table"

"x y y1 y2 y3 y4"

0. 1. 0. 0. 0. 0.

1. 3. 2. 0. 0. 0.

2. 5. 2. 0. 0. 0.

3. 7. 2. 0. 0. 0.

4. 9. 2. 0. 0. 0.

Enter the value of xi:3.5

"Interpolated value yi is:"

Program-4:

1. Write a program to compute the area using Trapezoidal rule:

X	0	0.1	0.2	0.3	0.4
y	1	1.2	1.4	1.6	1.8

```
clc;clear; x=[0,0.1,0.2,0.3,0.4] y=[1,1.2,1.4,1.6,1.8] y=[1,1.2,1.4,1.6,1.4] y=[1,1.2,1.4,1.4] y=[1,1.2,1.4,1.4] y=[1,1.2,1.4] y
```

Output:

"The area of integral using trapezoidal rule is:"

2. Write a program to compute the area using Trapezoidal rule:

X	0	1	2	3	4	5	6
Y	1	0.5	0.2	0.1	0.0588	0.0384	0.027

```
clc;clear; x=[0,1,2,3,4,5,6] y=[1,0.5,0.2,0.1,0.0588,0.0384,0.027] n=length(x); h=x(2)-x(1); I=y(1)+y(n); for i=2:1:n-1 I=I+2*y(i) end I=(h/2)*I disp("The area of integral using trapezoidal rule is :",I)
```

Output:

"The area of integral using trapezoidal rule is:" 1.4107

Program-5:

1. Write a program to compute the area using Simpson's 1/3 rd rule:

X	-3	-2	-1	0	1	2	3
y	81	16	1	0	1	16	81

Output:

"The area of integral using Simpsons 1/3 rd rule is :" 98

2. Write a program to compute the area using Simpson's 1/3 rd rule:

X	0	0.1	0.2	0.3	0.4	0.5	0.6
у	1	0.99	0.96	0.913	0.8521	0.778	0.697

Output:

"The area of integral using Simpsons 1/3 rd rule is :" 0.53484

Program-6:

1. Write a program to compute the area using Simpson's 3/8 th rule:

X	0	0.1	0.2	0.3	0.4
y	1	0.9975	0.99	0.9776	0.8604

```
clc;clear;
\mathbf{x} = [0, 0.1, 0.2, 0.3, 0.4]
y=[1,0.9975,0.99,0.9776,0.8604]
n=length(x);
h=x(2)-x(1);
I=y(1)+y(n);
for i=2:3:n-1
   I=I+3*y(i)
end
for i=3:3:n-1
   I=I+3*y(i)
end
for i=4:3:n-1
   I=I+2*y(i)
end
I = (3*h/8)*I
disp("The area of integral using Simpsons 3/8 th rule is:",I)
Output:
```

"The area of integral using Simpsons 3/8 th rule is :" 0.3666788

2. Write a program to compute the area using Simpson's 3/8 th rule:

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.6	2.8	3

```
clc;clear;
\mathbf{x} = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]
y=[1,1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3]
n=length(x);
h=x(2)-x(1);
I=y(1)+y(n);
for i=2:3:n-1
   I=I+3*y(i)
end
for i=3:3:n-1
   I=I+3*y(i)
end
for i=4:3:n-1
   I=I+2*y(i)
end
I = (3*h/8)*I
disp("The area of integral using Simpsons 3/8 th rule is :",I)
Output:
"The area of integral using Simpsons 3/8 th rule is:"
1.9275000
```

Program-7:

1. Write a program on Taylor series for y'=x+y with y(0)=1. Find at x=0,0.2,0.4,0.6,0.8,1 upto 3^{rd} degree.

```
clc;clear;
deff('F=f(x,y)','F=x+y');
deff('G=g(x,y)','G=1+f(x,y)');
deff('H=h(x,y)','H=g(x,y)');
deff('Y=y(x)','Y=1+f(0,1)*x+g(0,1)*x^2/2+h(0,1)*x^3/6');
disp(y(0))
disp(y(0.2))
disp(y(0.4))
disp(y(0.6))
disp(y(0.8))
disp(y(1))
```

Output:

1.

1.2426667

1.5813333

2.032

2.6106667

2. Write a program on Taylor series for $y'=e^x$ with y(0)=1. Find at x=5 until 2^{nd} degree.

```
clc;clear;

deff('F=f(x,y)','F=%e^x');

deff('G=g(x,y)','G=%e^x');

deff('Y=y(x)','Y=1+f(0,1)*x+g(0,1)*x^2/2');

disp(y(1))
```

Output:

3. Write a program on Taylor series for $y'=x^2+y^2$ with y(0)=1. Find at x=0.1 upto 3^{rd} degree.

```
clc;clear; deff('F=f(x,y)','F=x^2+y^2'); deff('G=g(x,y)','G=2*x+2*y*f(x,y)'); deff('H=h(x,y)','H=2+2*[f(x,y)*f(x,y)+y*g(x,y)]'); deff('Y=y(x)','Y=1+f(0,1)*x+g(0,1)*x^2/2+h(0,1)*x^3/6'); disp(y(0.1))
```

Output:

Program-8

1.Write a program on modified Euler's method for $y-2*x^2+1=0$ where y=5 at x=0, find y at x=1 with h=0.1

```
clc;clear; function dy=\underline{f}(x, y) dy=y-2*x^2+1 endfunction; x0=0;xf=1;h=0.1;y0=5; x=x0:h:xf n=length(x); y(1)=y0; disp("x y"); disp([x0 y0]); for i=1:n-1 yp(i+1)=y(i)+h*\underline{f}(x(i),y(i)); y(i+1)=y(i)+(h/2)*(\underline{f}(x(i),y(i))+\underline{f}(x(i+1),yp(i+1))); disp([x(i+1)y(i+1)]); end
```

Output:

- "x y"
- 0. 5.
- 0.1 5.629
- 0.2 6.319945
- 0.3 7.0751392
- 0.4 7.8971288
- 0.5 8.7887274
- 0.6 9.7530437
- 0.7 10.793513
- 0.8 11.913932
- 0.9 13.118495
- 1. 14.411837

2. Write a program on modified Euler's method for $x-y^2=0$ where y=1 at x=0, find y at x=0.1 with h=0.1

```
clc;clear; function dy=\underline{f}(x, y); dy=x-y^2; endfunction; x0=0;xf=0.1;h=0.1;y0=1; x=x0:h:xf n=length(x); y(1)=y0; disp("x y"); disp([x0 y0]); for i=1:n-1 yp(i+1)=y(i)+h*\underline{f}(x(i),y(i)); y(i+1)=y(i)+(h/2)*(\underline{f}(x(i),y(i))+\underline{f}(x(i+1),yp(i+1))); end
```

Output:

"x y"

0. 1.

0.1 0.9145

Program-9:

1.Write a program to solve ODE of first order and first degree by Runge-kutta 4^{th} order for $f=x^2+y^2$, y=1.2 at x=1 find y at x=1.1 with h=0.01.

```
clc;clear;
function dy = \underline{f}(x, y)
  dy=(x^2+y^2)
endfunction
x0=1;y0=1.2;xf=1.1;h=0.01;
x(1)=x0;
y(1)=y0;
n=(xf-x0)/h;
for i=1:n+1
  x(i+1)=x(i)+h;
  k1=h*\underline{f}(x(i),y(i));
  k2=h*\underline{f}((x(i)+h/2),(y(i)+k1/2));
  k3=h*\underline{f}((x(i)+h/2),(y(i)+k2/2));
  k4=h*\underline{f}(x(i)+h,y(i)+k3);
  y(i+1)=y(i)+(k1+2*k2+2*k3+k4)/6
  disp([x(i),y(i)])
end
```

Output:

- 1. 1.2
- 1.01 1.2247983
- 1.02 1.2504162
- 1.03 1.2768895
- 1.04 1.3042563
- 1.05 1.3325571
- 1.06 1.3618353
- 1.07 1.3921369
- 1.08 1.4235112
- 1.09 1.4560107
- 1.1 1.4896919

2. Write a program to solve ODE of first order and first degree by Runge-kutta 4th order for f=3*x+y/2, y=1 at x=0 find y at x=1 with h=0.2

```
clc;clear;
function dy = \underline{f}(x, y)
  dy=3*x+y/2
endfunction
x0=0;y0=1;xf=1;h=0.2;
x(1)=x0;
y(1)=y0;
n=(xf-x0)/h;
for i=1:n+1
  x(i+1)=x(i)+h;
  k1=h*\underline{f}(x(i),y(i));
  k2=h*\underline{f}((x(i)+h/2),(y(i)+k1/2));
  k3=h*\underline{f}((x(i)+h/2),(y(i)+k2/2));
  k4=h^*\underline{f}(x(i)+h,y(i)+k3);
  y(i+1)=y(i)+(k1+2*k2+2*k3+k4)/6
  disp([x(i),y(i)])
end
```

Output:

- 0. 1.
- 0.2 1.1672208
- 0.4 1.4782334
- 0.6 1.9481605
- 0.8 2.5937151
- 1. 3.4333683

Program-10:

1. Write a program to solve ODE of first order and first degree by Milne's predictor and corrector method for $f=x-y^2$, with h=0.2 for y(0)=0,y(0.2)=0.02,y(0.4)=0.0795,y(0.6)=0.1762 find y(0.8)

```
clc;clear; function dy=\underline{f}(x, y) dy=x-y^2 endfunction h=0.2 x(1)=0;x(2)=0.2;x(3)=0.4;x(4)=0.6;x(5)=0.8; y(1)=0;y(2)=0.02;y(3)=0.0795;y(4)=0.1762; yp(5)=y(1)+(4*h/3)*(2*\underline{f}(x(2),y(2))-\underline{f}(x(3),y(3))+2*\underline{f}(x(4),y(4))) y(5)=y(3)+(h/3)*(\underline{f}(x(3),y(3))+4*\underline{f}(x(4),y(4))+\underline{f}(x(5),yp(5))) disp([x(5),y(5)])
```

Output:

0.8 0.3046014

2. Write a program to solve ODE of first order and first degree by Milne's predictor and corrector method for $f=x^2+y^2$, with h=0.1 for y(0)=1,y(0.1)=1.1113,y(0.2)=1.2507,y(0.3)=1.426 find y(0.4).

```
clc;clear; function dy=\underline{f}(x, y) dy=x^2+y^2 endfunction h=0.1 x(1)=0;x(2)=0.1;x(3)=0.2;x(4)=0.3;x(5)=0.4; y(1)=1;y(2)=1.1113;y(3)=1.2507;y(4)=1.426; yp(5)=y(1)+(4*h/3)*(2*\underline{f}(x(2),y(2))-\underline{f}(x(3),y(3))+2*\underline{f}(x(4),y(4))) y(5)=y(3)+(h/3)*(\underline{f}(x(3),y(3))+4*\underline{f}(x(4),y(4))+\underline{f}(x(5),yp(5))) disp([x(5),y(5)])
```

Output:

0.4 1.6872071