6.7220 Nonlinear Optimization by ngorlo

Th. Triangle Inequality:

$$||x + y|| \le ||x|| + ||y||$$

$$||b - a|| \le ||c - a|| + ||b - c||$$

Cauchy-Schwarz Inequality:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

 $|\langle x, y \rangle|^2 \le \langle x, x \rangle \cdot \langle y, y \rangle$

$$\left(\sum_{i=1}^{n} u_{i} v_{i}\right)^{2} \leq \left(\sum_{i=1}^{n} u_{i}^{2}\right) \left(\sum_{i=1}^{n} v_{i}^{2}\right)$$

 $\frac{1}{n} + \frac{1}{a} = 1$, then

$$||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$$

Jensen's Inequality: Let f be convex, finite set of points $x_i \in \mathbb{R}^n$, weights $\alpha_i \ge 0$, $\sum_{i=1}^n \alpha_i = 1$,

$$f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f(x_{i})$$
AM-GM Inequality: Let $x_{1}, x_{2}, ..., x_{n} \in \mathbb{R}_{\geq 0}$,

$$\frac{x_1 + x_2 + \ldots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \ldots x_n}$$

Lipschitz Continuity: A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz continuous with constant L if $||f(x) - f(y)|| \le L||x - y||$

Directional Derivative:: Let $f : \mathbb{R}^n \to \mathbb{R}$,

$$f'(x;d) = \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t} = \langle \nabla f(x), d \rangle$$
Product Rule:: Let $f : \mathbb{R}^n \to \mathbb{R}^m$, $g : \mathbb{R}^n \to \mathbb{R}^m$

be differentiable, then

$$\nabla (f^{\top}g) = f^{\top}\nabla g + g^{\top}\nabla f$$

Chain Rule:: Let $f: \mathbb{R} \to \mathbb{R}^m$, $g: \mathbb{R}^n \to \mathbb{R}$ be differentiable and let h(t) = g(f(t)), then $h'(t) = \nabla g^{\top} (f(t)) f'(t)$

in particular, let $x,y \in \mathbb{R}^n$, and define h(t) = g(x + ty), where $g: \mathbb{R}^n \to \mathbb{R}$.

 $h'(t) = \nabla g(x + ty)^T y = y^T \nabla g(x + ty)$

Square decomposition:

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

Cholesky Decomposition:

$$A = LL^T$$
.

where L is lower triangular, A is symmetric positive definite.

Eigendecomposition:

$$A = Q\Lambda Q^{\mathsf{T}}$$
,

where Q is orthogonal, Λ is diagonal. columns of Q are eigenvectors of A, A is symmetric. **Boundedness**: Set is bounded iff $\exists r > 0$ s.t. $S \subseteq B_r = \{x : ||x||_2 \le r\}$. Openness: for every $x \in S$, $\exists \epsilon > 0$ s.t. $B_{\epsilon}(x) \subseteq S$. Closeness: S contains all its limit points. Note: a set can be open, closed, neither or both.

Th.L1.1 Weierstrass. Let $f: \Omega \to \mathbb{R}$ be a continuous function defined on a nonempty and compact (i.e., closed and bounded) set Ω . Then, there exists a minimizer $x^* \in \Omega$ of f on Ω , that is,

$$f(x^*) \le f(x)$$
 for all $x \in \Omega$

Th.L1.2 Weierstrass for Compact Sublevel **Sets.** Let *f* be a continuous function defined on a set S. If f has a nonempty and compact sublevel set, that is, there exists $\alpha \in \mathbb{R}$ such that is nonempty, bounded, and closed, then f has a minimizing point in *S*.

Def.L2.1 Star-convexity at x**.** A set $\Omega \subseteq \mathbb{R}^n$ is said to be star-convex at a point $x \in \Omega$ if, for all $y \in \Omega$, the entire segment from x to y is contained in Ω . In symbols, if

$$x + t \cdot (y - x) \in \Omega \quad \forall t \in [0, 1]$$

(Note that the condition is equivalent to $||t \cdot v + (1-t) \cdot x \in \Omega | \forall v \in \Omega, t \in [0,1]||$, or also $| "t \cdot x + (1-t) \cdot y \in \Omega \ \forall \ y \in \Omega, \ t \in [0,1] ".$

Def.L2.2 Convex set. A set Ω is convex if it is star-convex at all of its points $x \in \Omega$. In other words, Ω is convex if all segments formed between any two points $x, y \in \Omega$ are entirely contained in Ω . In symbols, if

$$t \cdot x + (1 - t) \cdot y \in \Omega$$
 $\forall x, y \in \Omega$ and $t \in [0, 1]$.

Th.L2.1 First-order necessary condition for a **convex feasible set** Let $\Omega \subseteq \mathbb{R}^n$ be convex and $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. For a point $x \in \Omega$ to be a minimizer of f over Ω it is necessary that

$$\langle \nabla f(x), y - x \rangle \ge 0 \quad \forall y \in \Omega$$

Def.L2.3 Normal cone. Let $\Omega \subseteq \mathbb{R}^n$ be convex. and let $x \in \Omega$. The normal cone to Ω at x. denoted $\mathcal{N}_{\mathcal{O}}(x)$, is defined as the set

$$\mathcal{N}_{\Omega}(x) := \left\{ d \in \mathbb{R}^n : \langle d, y - x \rangle \le 0 \quad \forall y \in \Omega \right\}.$$

With this definition, the first-order necessary optimality condition for x, given in Th L2.1, can be equivalently written as

$$-\nabla f(x) \in \mathcal{N}_{\Omega}(x)$$

Normal cone at interior $N_{\Omega}(x) = \{0\}$ (consider $y = x + \delta d$ and realize $\langle d, y - x \rangle > 0$).

Th.L2.2 Normal cone to a hyperplane. Consider a hyperplane

$$\Omega := \{ y \in \mathbb{R}^n : \langle a, y \rangle = b \},$$

where $a \in \mathbb{R}^n$, $a \neq 0$, and a point $x \in \Omega$. The normal cone at x is given by

$$\mathcal{N}_{\mathbf{O}}(x) = \operatorname{span}\{a\} = \{\lambda a : \lambda \in \mathbb{R}\}.$$

(consider $v \in \text{span}\{a\}$ and $z = (v - x) = k \cdot a \notin$ $span\{a\}$) Similarly, for affine subspaces $\Omega =$ $\{y \in \mathbb{R}^n : Ay = b\}$, the normal cone is $\mathcal{N}_{O}(x) =$ $colspan\{A^{\top}\} = \{A^{\top}\lambda : \lambda \in \mathbb{R}^n\}.$ (project x+z onto Ω and colspan (A^{\top})

Th.L3.1.L5.3 Normal cone to the intersection of m halfspaces. Let $\Omega \subseteq \mathbb{R}^n$ be given as the intersection of m linear inequalities $\langle a_i, x \rangle \leq b_i$. Then, the normal cone at any point $x \in \Omega$ is obtained by taking nonnegative combinations of all those a_i 's for which $\langle a_i, x \rangle = b_i$.

$$\mathcal{N}_{\Omega}(x) = \left\{ \sum_{j \in I(x)} \lambda_j \cdot a_j : \lambda_j \in \mathbb{R}_{\geq 0} \right\},\,$$

where $I(x) = \{ j \in \{1, ..., m\} : \langle a_j, x \rangle = b_j \}.$

The constraints i in I(x) are often called the "active constraints" at $x \in \Omega$. Alternatively in vectorial form let $Ax \leq b$, then with

$$\begin{split} & A \in \mathbb{R}^{m+n}, b \in \mathbb{R}^{m} : \\ & \mathcal{N}_{\Omega}(x) = \left\{ \sum_{j=1}^{m} \lambda_{j} a_{j} : \sum_{j=1}^{m} \lambda_{j} \left(b_{j} - \langle a_{j}, x \rangle \right) = 0; \ \lambda_{j} \geq 0 \right\} \\ & = \left\{ A^{\top} \lambda : \lambda^{\top} (b - Ax) = 0, \lambda \in \mathbb{R}^{m}_{\geq 0} \right\}, \\ & A = \left[\begin{array}{c} -a_{1}^{\top} - \\ \vdots \end{array} \right], \end{split}$$

rewriting the condition $j \in I(x)$ (via complementary slackness).

Rm.L3.3 Primal and Dual Consider the linear program

$$\begin{array}{ll}
\max_{x} & c^{\top} x \\
\text{s.t.} & Ax \le b \\
x \in \mathbb{R}^{n},
\end{array} \tag{P}$$

$$\min_{\lambda} g(\lambda) := b^{\top} \lambda
\text{s.t.} \quad A^{\top} \lambda = c
\lambda \ge 0$$
(D)

Th.L3.2 Strong linear programming duality. If (P) admits an optimal solution x^* , then (D) admits an optimal solution λ^* , such that:

- · the values of the two problems coincide: $c^{\top}x^* = b^{\top}\lambda^*$, and
- λ* satisfies the complementary slackness condition $(\lambda^*)^{\top}(b - Ax^*) = 0$.

Th.L4.2 Sufficiency of first-order optimality condition. Let $\Omega \subseteq \mathbb{R}^n$ be convex and $f: \Omega \to \mathbb{R}$ be a convex differentiable function.

 $-\nabla f(x) \in \mathcal{N}_{\Omega}(x) \iff x \text{ is minimizer of } f \text{ on } \Omega$

Th.L4.3 Equivalent definitions of convexity. Let $\Omega \subseteq \mathbb{R}^n$ be a convex set, and $f: \Omega \to \mathbb{R}$ be a function. The following are equivalent definitions of convexity for f:

- 1. for all $x, y \in \Omega, t \in [0, 1]$: $f((1-t)\cdot x + t\cdot y) \le (1-t)\cdot f(x) + t\cdot f(y)$ $f(x+t(y-x)) \le f(x) + t(f(y) - f(x))$
- 2. $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$ for all $x, y \in \Omega$ [If f is differentiable]
- 3. $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0$ for all $x, y \in \Omega$ [If fis differentiable]
- 4. $\nabla^2 f(x) \geq 0$ for all $x \in \Omega$ [If f is twice differentiable and Ω is open

 ⇒ (2) Bounding by linearization: Divide by t and take limit.

(2) ⇒ (1) Sum linearization bounds (multiplied by t and 1-t accordingly) centered in point $z := t \cdot x + (1 - t) \cdot y$ and look in directions x - zand v-z.

(2) \Rightarrow (3) Write condition (2) for (x, y) and (y, x)and take sum.

(3) \Rightarrow (4) Consider $x_t := x + t \cdot (y - x)$ and plug into (3) for y. Divide by t^2 , take limit.

 $(4) \Rightarrow (3) \text{ Use } 0 \le \langle y - x, \nabla^2 f(x + \tau(y - x)) \cdot (y - x) \rangle$ and integrate $\tau \in [0,1]$. (3) \Rightarrow (2) Define x_t as above, integrate $t \cdot \langle \nabla f(x_t) - \nabla f(x_t) \rangle$

Th.L4.4 Operations preserving convexity.

 $|\nabla f(x), y - x\rangle$ for $t \in [0, 1]$.

- Multiplication of a convex function f(x) by a nonnegative scalar $c \ge 0$;
- Addition of two convex functions f(x), g(x);
- Pointwise supremum of a collection I of convex functions $\{f_i(x): i \in J\}$:
- $f_{\max}(x) := \max_{i} f_i(x);$ Pre-composition f(Ax + b) of a convex function f with an affine function Ax + b.
- Post-composition g(f(x)) of a convex function with an increasing convex function g;
- Infimal convolution f ★inf g of two convex functions $f, g : \mathbb{R}^n \to \mathbb{R}$, defined as

 $\inf \{ f(y) + g(x - y) : y \in \mathbb{R}^n \}$

Def.L4.2 Strict and strong convexity. $\Omega \subseteq \mathbb{R}^n$ be convex.

- A function $f: \Omega \to \mathbb{R}$ is strictly convex if, for any two distinct points $x, y \in \Omega$ and $t \in (0,1)$, $f((1-t)\cdot x + t\cdot y) < (1-t)\cdot f(x) + t\cdot f(y)$
- For f twice differentiable and Ω open, $\nabla^2 f(x) > 0 \ \forall x \in \Omega$ is sufficient for strict convexity.
- A function $f: \Omega \to \mathbb{R}$ is strongly convex with modulus $\mu > 0$ if the function

$$f(x) - \frac{\mu}{2} ||x||_2^2$$

is convex. Note that strong convexity implies strict convexity, and strict convexity implies convexity. Neither of the reverse implications

- For f twice differentiable and Ω open, strong convexity is equivalent to $\nabla^2 f(x) \ge \mu I \ \forall x \in$
- For f twice differentiable and Ω open, strong convexity is equivalent to $f(y) \ge f(x) +$ $\langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2 \ \forall x, y \in \Omega.$

Th.L4.5 Strict convexity and uniqueness of **minimizer.** Let $\Omega \subseteq \mathbb{R}^n$ be convex, and $f:\Omega\to\mathbb{R}$ be a strictly convex function. Then, f has at most one minimizer. (Set $f(x) = f(y) = f^*$ and use strict convexity.)

Corollary (Projection onto convex set): Since the function $||x-y||_2^2$ is strongly convex, and hence strictly convex, it follows that any projection onto a convex set Ω , if it exists, is unique.

Th.L5.1 Separation Let $\Omega \subseteq \mathbb{R}^n$ be a nonempty, closed, and convex set, and let $v \in \mathbb{R}^n$ be a point. If $v \notin \Omega$, then there exist $u \in \mathbb{R}^n$, $v \in \mathbb{R}$ such that $\langle u, y \rangle < v$, and $\langle u, x \rangle \ge v \quad \forall x \in \Omega$.

(Let x^* be projection of y on Ω , then $u = x^* - y$ and $v = \langle u, x^* \rangle$. Note: For strict inequality let $v' := \frac{1}{2}(\langle u, x' \rangle + \langle u, v \rangle))$

Def.L5.1 Cone A set *S* is a cone if, for any $x \in S$ and $\lambda \in \mathbb{R}_{>0}$, the point $\lambda \cdot x \in S$.

Th.L5.2 Separation of a point from a cone. Let $S \subseteq \mathbb{R}^n$ be a nonempty closed convex cone, and $y \notin S$ be a point in \mathbb{R}^n . Then, there exists a hyperplane passing through the origin that separates y from S; formally, there exists $u \in \mathbb{R}^n$

$$\langle u, y \rangle < 0$$
 and $\langle u, x \rangle \ge 0 \quad \forall x \in S$

Def.L5.2 (Strong) separation oracle Let $\Omega \subseteq$ \mathbb{R}^n be convex and closed. A strong separation oracle for Ω is an algorithm that, given any point $y \in \mathbb{R}^n$, correctly outputs one of the following:

- " $v \in \Omega$ ". or
- $(y \notin \Omega, u)$ ", where the vector $u \in \mathbb{R}^n$ is such

$$\langle u, y \rangle < \langle u, x \rangle \quad \forall x \in \Omega$$

Note: separation oracle for convex polytope: If $Ay \leq \hat{b}$ return " $y \in \Omega$ ", otherwise return $(y \notin \Omega, -a)$, where a is a violated constraint.

Rm.L5.4 Ellipsoid method. at each iteration, start at a point ct and a search space (that initially is $\Omega_1 = \Omega$).

- if c_t is not in the search space, then use a separating hyperplane to cut the search space in
- if c_t is in the search space, intersect the search space with $H_t = \{x \in \mathbb{R}^n : \langle \nabla f(c_t), x - c_t \rangle \leq 0\}$ (to make the search space contain only points x such that $f(x) \ge f(c_t)$ by Th.L4.3)
- set $\Omega_{t+1} = H_t \cap \Omega_t$

Th.L5.4 Ellipsoid method for convex optimization. Theorem L5.4. Let R and r be as above, and let the range of the function f on Ω be bounded by [-B,B]. Then, the ellipsoid method described above run for $T \ge$ $2n^2 \log(R/r)$ steps either correctly reports that $\Omega = \emptyset$, or produces a point x^* such that

$$f(x^*) \le f(x) + \frac{2BR}{r} \exp\left(-\frac{T}{2n(n+1)}\right) \quad \forall x \in \Omega.$$

Th.L6.1 Farkas lemma. Let $Ax \le b$ be a system of inequalities where $A \in \mathbb{R}^{m \times n}$. Then, exactly one of the following options is true:

- either $Ax \le b$ has a solution; or
- there exists a vector y ≥ 0 such that A^Ty = 0 and $b^{\top}v < 0$. (Let $\Omega = \{Ax + s : x \in \mathbb{R}^n, s \in \mathbb{R}^m\}$). If $b \in \Omega$, $Ax \leq b$ has a solution. Else, apply separation, first set s = x = 0: $v \le 0$, $\langle u, b \rangle < 0$, then s = 0: $\langle A^{\top}u, x \rangle \ge v$, finally set x = 0, $s = ke_i \ge 0$

Rm.L7.1 Optimization Problem with differentiable functional constraints. We consider an optimization problem with constraint set defined as the intersection of differentiable functional constraints:

$$\min_{x \text{ s.t.}} f(x)
s.t. h_i(x) = 0 i \in \{1, ..., r\}
g_i(x) \le 0 j \in \{1, ..., s\}.$$
(1, P)

Th.L7.1 Normal cone to the intersection of linear inequalities. (rewriting L3.1,L5.3) Let $\Omega \subseteq \mathbb{R}^n$ be defined as the intersection of m linear inequalities

$$\Omega := \left\{ x \in \mathbb{R}^n : \begin{array}{ll} a_i^\top x = b_i & \forall i = 1, ..., r \\ c_i^\top x \leq d_j & \forall j = 1, ..., s \end{array} \right\}$$

Given a point $x \in \Omega$, define the index set of the "active" inequality constraints

$$I(x) := \left\{ j \in \{1, \dots, s\} : c_i^\top x = d_i \right\}.$$

 $I(x) := \left\{ j \in \{1, \dots, s\} : c_j^\top x = d_j \right\}.$ Then, the normal cone at any $x \in \Omega$ is given by

$$\begin{split} &= \left\{ \sum_{i=1}^r \mu_i a_i + \sum_{j \in I(x)} \lambda_j c_j : \mu_i \in \mathbb{R}, \lambda_j \in \mathbb{R}_{\geq 0} \right\} \\ &= \left\{ \sum_{i=1}^r \mu_i a_i + \sum_{j=1}^s \lambda_j c_j : \mu_i \in \mathbb{R}, \lambda_j \in \mathbb{R}_{\geq 0} \right., \end{split}$$

 $\lambda_j \left(d_j - c_j^\top x \right) = 0 \ \forall j = 1, \dots, s$ where the second equality simply rewrites the condition $j \in I(x)$ via complementary slackness

Def.L7.1 KKT conditions. Consider a nonlinear optimization problem with differentiable objective function and functional constraints, in the form given in (1), and let x be a point in the feasible set ("Primal Feasibility"). The KKT conditions at x are given by

• Stationarity:
$$-\nabla f(x) = \sum_{i=1}^{r} \mu_i \nabla h_i(x) + \sum_{j=1}^{s} \lambda_j \nabla g_j(x)$$

Dual feasibility:
$$\mu_i \in \mathbb{R}, \quad \lambda_j \geq 0 \quad \forall i = 1, ..., r, \quad j = 1, ..., s.$$

Complementary slackness:

$$\lambda_j \cdot g_j(x) = 0 \forall j = 1, \dots, s.$$

(Note: Example of failure of KKT: f(x) = $x, g(x) = x^2$

Th.L7.2 Concave and linear constraints. Let $x \in \Omega \subseteq \mathbb{R}^n$ be a minimizer of (1). If

- the binding inequality constraints $\{g_j\}_{j\in I(x)}$ are concave differentiable functions in a convex neighborhood of x; and
- the equality constraints $\{h_i\}_{i=1}^r$ are affine functions on \mathbb{R}^n ,

then the KKT conditions hold at x (Necessity of KKT conditions).

Th.L7.3 Linear independence of gradients. Let $x \in \Omega \subseteq \mathbb{R}^n$ be a minimizer of (1). If all functions h_i , g_i are continuously differentiable and the multiset of gradients at x of all active

$$\{\nabla h_i(x): i=1,\ldots,r\} \cup \{\nabla g_i(x): j\in I(x)\}$$

is linearly independent, then the KKT conditions hold at x.

Th.L7.4 Slater's condition. Let $x \in \Omega \subseteq \mathbb{R}^n$ be a minimizer of (1). If

- the binding inequality constraints $\{g_j\}_{j\in I(x)}$ are convex differentiable functions; and
- the equality constraints $\{h_i\}_{i=1}^r$ are affine functions; and
- there exists a feasible point x_0 that is strictly feasible for the binding inequality constraints, that is,

$$g_j(x_0) < 0 \quad \forall j \in I(x)$$

then the KKT conditions hold at x.

Th.L7.5 Necessity and sufficiency of KKT con**ditions.** If f is convex and the constraints satisfy Slater's condition, then the KKT conditions are both necessary and sufficient for optimality. (Note: Proof by checking KKT conditions, then formulate Lagrangian, and conclude with $f(x) \ge L(x) = L(x^*) = f(x^*)$

Rm.L8.1 Equivalence at Optimality The following statements are equivalent:

- The point x^{*} ∈ Ω is optimal for (P).
- the point x^* admits μ^* , λ^* such that the KKT conditions hold.
- there exist μ^* , λ^* such that x^* is minimizer of Lagrangian.

Note: the Lagrangian is:

$$\mathcal{L}(x; \lambda, \mu) = f(x) + \sum_{i=1}^{r} \lambda_i h_i(x) + \sum_{i=1}^{s} \mu_j g_j(x)$$

Th.L8.1 Existence of finite penalization coef**ficients.** If the constrained problem (P) has a minimizer $x^* \in \Omega$ and attains optimal value value (P), there exist concrete penalization coefficients $(\lambda^*, \mu^*) \in \mathbb{R}^r_{>0} \times \mathbb{R}^s$ such that

- 1. x^* is a minimizer of $x \mapsto \mathcal{L}(x; \lambda^*, \mu^*)$ over \mathbb{R}^n ; and
- 2. the value of $\min_{x \in \mathbb{R}^n} \mathcal{L}(x; \lambda^*, \mu^*)$ is exactly equal to value (P).

Conversely, if there is a triple $(x^*; \lambda^*, \mu^*) \in$ $\mathbb{R}^n \times (\mathbb{R}^r_{>0} \times \mathbb{R}^s)$ such that x^* is a minimizer of $\mathcal{L}(x; \lambda^*, \mu^*)$, and it satisfies $x^* \in \Omega, \lambda_i^* g_i(x^*) = 0$ for all j = 1, ..., r, then x^* is also an optimal solution of (P).

Th.L8.2 Weak duality. For any choice of penalization coefficients $\lambda \in \mathbb{R}^r_{\geq 0}$, $\mu \in \mathbb{R}^s$, $\inf \mathcal{L}(x; \lambda, \mu) \leq f(\bar{x}) \quad \forall \bar{x} \in \Omega$

In fact, the inequality holds for any minimization problem with functional constraints – that is, even ignoring the requirement that g; is convex, that h_i is affine, and any constraint qualifi-As a direct consequence, if (P) admits an

$$\inf \mathcal{L}(x; \lambda, \mu) \leq \text{ value } (P)$$

Corollary (Strong Duality):

optimal solution, then

Corollary L8.1 (Strong duality). If (P) admits a minimizer, the optimization problem

$$(D) := \begin{cases} \max_{\mu,\lambda} & \inf_{x \in \mathbb{R}^n} \mathcal{L}(x;\lambda,\mu) \\ \text{s.t.} & \lambda \in \mathbb{R}^r_{\geq 0} \\ & \mu \in \mathbb{R}^s \end{cases}$$

admits an optimal solution λ^* , μ^* , and matches the value of the original problem (P).

Rm.L8.3 Strong Duality statement. If (P) has an optimal solution, then

$$\begin{aligned} & \text{value}(D) = \max_{\lambda \in \mathbb{R}^{S}_{\geq 0}, \mu \in \mathbb{R}^{S}} \inf_{x \in \mathbb{R}^{n}} \mathcal{L}(x; \lambda, \mu) = \\ & = \text{value}(P) = \min_{x \in \mathbb{R}^{n}} \sup_{\lambda \in \mathbb{R}^{S}_{\geq 0}, \mu \in \mathbb{R}^{S}} \mathcal{L}(x; \lambda, \mu). \end{aligned}$$

Rm.L9.1 Conic Optimization Problem. Feasible set is intersection between affine subspace and nonempty closed copyex cone K:

s.t.
$$Ax = b$$

 $x \in \mathcal{K}$

Def.L9.1 Lorentz cone. The ice-cream cone, or Lorentz cone, is defined as

$$\mathcal{L}^n := \left\{ (x, z) \in \mathbb{R}^{n-1} \times \mathbb{R} : z \ge ||x||_2 \right\}$$

Def.L9.2 Semidefinite cone. The semidefinite cone S^n is the set of positive semidefinite $n \times n$ matrices:

$$S^{n} := \left\{ X \in \mathbb{S}^{n} : X \ge 0 \right\}$$
$$= \left\{ X \in \mathbb{S}^{n} : a^{\top} X a \ge 0 \, \forall a \in \mathbb{R}^{n} \right\},$$

where \mathbb{S}^n is the set of symmetric $n \times n$ real ma-

Def.L9.3 Copositive cone. The copositive cone \mathbb{C}^n is the set of symmetric $n \times n$ real matrices: $C^n := \left\{ X \in \mathbb{S}^n : a^\top X a \ge 0 \quad \forall a \in \mathbb{R}^n_{>0} \right\}$

The difference with the positive semidefinite cone S^n lies in the fact that we need $a^T X a \ge 0$ only for nonnegative vectors $a \in \mathbb{R}^n_{>0}$, instead of all $a \in \mathbb{R}^n$.

Th.L9.1 Normal cone to the intersection of a hyperplane and a closed convex set. Let $H := \{x \in \mathbb{R}^n : Ax = b, \text{ with } A \in \mathbb{R}^{m \times n}\}$ be an affine subspace, and S be a closed convex set (not necessarily a cone) such that $S^{\circ} \cap H$ is nonempty, where S° is the interior of S. For any $x \in H \cap S$,

$$\mathcal{N}_{H \cap S}(x) = \mathcal{N}_H(x) + \mathcal{N}_S(x).$$

So, using the fact (see Lecture 2) that $\mathcal{N}_H(x) = \operatorname{colspan}(A^\top)$, we have $\mathcal{N}_{H \cap S}(x) =$ $\{A^{\top} \mu + z : \mu \in \mathbb{R}^m, z \in \mathcal{N}_{S}(x)\}$.

Rm.L9.1 Polar and dual cone. The polar cone of K, often denoted K^{\perp} , is exactly the normal cone at 0:

$$\mathcal{K}^{\perp} := \mathcal{N}_{\mathcal{K}}(0) = \{d : \langle d, y \rangle \leq 0 \quad \forall y \in \mathcal{K}\}.$$
 The dual cone of \mathcal{K} , often denoted \mathcal{K}^{\star} , is the opposite of the normal cone at $0 :$
$$\mathcal{K}^{\star} := -\mathcal{K}^{\perp} = -\mathcal{N}_{\mathcal{K}}(0) = \{d : \langle d, y \rangle \geq 0 \quad \forall y \in \mathcal{K}\}.$$

Th.L9.2 Self-duality of cones.

- The nonnegative cone, the Lorentz cone, and the semidefinite cones are self-dual cones that is, $\mathcal{K}^* = \mathcal{K}$.
- The dual cone to the copositive cone Cⁿ is called the totally positive cone, defined as

$$\mathcal{P}^n := \left\{ \sum_{i=1}^k z_i z_i^\top : z_i \in \mathbb{R}^n_{\geq 0}, k \in \mathbb{N} \right\}$$
$$= \left\{ BB^\top : B \in \mathbb{R}^{n \times m}_{> 0}, m \in \mathbb{N} \right\}$$

Th.L9.3 Normal cone to a closed convex cone. Let $\mathcal{K} \subseteq \mathbb{R}^n$ be a nonempty, closed convex cone. The normal cone at any point $x \in \mathcal{K}$ is given by

$$\mathcal{N}_{\mathcal{K}}(x) = \left\{ d \in \mathcal{K}^{\perp} : \langle d, x \rangle = 0 \right\}.$$

Th.L9.4 Strictly feasible conic optimization. If f is convex and differentiable, and the conic optimization (2) is strictly feasible, that is, there exists $x \in \mathcal{K}^{\circ}$ such that Ax = b, then a point $x^* \in \Omega := \mathcal{K} \cap \{x : Ax = b\}$ is a minimizer of f on Ω if and only if

$$-\nabla f\left(x^{\star}\right) \in \left\{A^{\top} \mu + z : \mu \in \mathbb{R}^{m}, z \in \mathcal{N}_{\mathcal{K}}\left(x^{\star}\right)\right\}$$

that is, expanding $\mathcal{N}_{\mathcal{K}}(x^*)$ using Theorem L9.3

$$\begin{aligned} & -\nabla f\left(x^{\star}\right) \in \left\{A^{\top}\mu + z : \mu \in \mathbb{R}^{m}, z \in \mathcal{K}^{\perp}, \left\langle z, x^{\star}\right\rangle = 0\right\} \\ & \iff \\ & -\nabla f\left(x^{\star}\right) \in \left\{A^{\top}\mu - z : \mu \in \mathbb{R}^{m}, z \in \mathcal{K}^{\star}, \left\langle z, x^{\star}\right\rangle = 0\right\} \end{aligned}$$

Th.L9.5 Conic duality for linear objectives. Theorem L9.5. If the primal problem

$$\min_{x}\langle c, x\rangle$$

s.t.
$$Ax = b$$

is strictly feasible and admits an optimal solution x^* , then the dual problem

$$\max_{\mu,z} \quad \langle b, \mu \rangle$$
s.t.
$$z = c - A^{\top} \mu$$

$$\mu \in \mathbb{R}^{m}$$

$$z \in \mathcal{K}^{*}$$

admits an optimal solution (μ^*, z^*) such that:

- the values of the two problems coincide: $\langle c, x^* \rangle = \langle b, \mu^* \rangle$; and
- the solution z^* satisfies the complementary slackness condition $\langle x^*, z^* \rangle = 0$.

Rm.L10.1 Polynomial optimization problems. We consider polynomial optimization problems of the form:

$$\min_{x} f(x)
\text{s.t.} \quad g_j(x) \ge 0 \quad j = 1, ..., m
 x \in \mathbb{R}^n,$$

Def.L10.1 Cone of nonnegative polynomials. The cone of nonnegative polynomials is the set of all polynomials $p \in \mathbb{R}[x]$ such that $p(x) \geq 0$ for all $x \in \mathbb{R}^n$. We will denote this set by $\mathbb{R}[x] > 0$.

Th.L10.1 Deciding membership in the cone of nonnegative polynomials $\mathbb{R}[x]_{>0}$ for a polynomial of degree ≥ 4 with $n \geq 2$ variables is computationally intractable.

Def.L10.2 Sum-of-squares polynomials, $\Sigma[x]$ An *n*-variate polynomial $p \in \mathbb{R}[x]$ is said to be a sum-of-squares polynomial (or SOS for short) if it can be written as

$$p(x) = \sum_{k} p_k(x)^2, \quad x \in \mathbb{R}^n$$

for appropriate polynomials $p_k \in \mathbb{R}[x]$.

Th.L10.2 Membership in the cone of sumof-squares polynomials can be determined by checking the feasibility of a semidefinite program. In particular, let p(x) be an arbitrary polynomial of degree 2d in n variables, and let v_d be the vector of all monomials of degree up to d that can be constructed using the variables x. Then, $p(x) \in \Sigma[x]$ if and only if there exists a positive semidefinite matrix Q such that

$$p(x) = (v_d(x))^{\top} Q v_d(x)$$

Corollary: The cone of *n*-variate sum-ofsquares polynomials of degree 2d is a linear transformation of the cone of $s \times s$ positive semidefinite matrices, where $s = \binom{n+d}{d}$ is the dimension of the vector $v_d(x)$.

Th.L10.3 Hilbert's Theorem $\mathbb{R}[x] > 0 = \Sigma[x]$ if and only if:

- n = 1, no matter the degree d; or
- d = 2, no matter the number of variables n; or • n = 2 and d = 4.

Th.L10.4 Putinar's Positivstellensatz Let

$$\Omega := \left\{ x \in \mathbb{R}^n : g_j(x) \ge 0 \quad \forall j = 1, \dots, m \right\}$$

where $\{x \in \mathbb{R}^n : g_i(x) \ge 0\}$ is compact for at least one $j \in \{1, ..., m\}$. Any polynomial $p \in \mathbb{R}[x]$ positive on Ω can be written in the form

$$p = \sigma_0 + \sum_{j=1}^m \sigma_j g_j$$

for appropriate SOS polynomials $\sigma_i \in \Sigma[x]$, j =

Def.L11.X The depth function Let's define $d_v:\Omega\to\mathbb{R}$,

$$d_{y}(x) := \max \left\{ \alpha \in \mathbb{R}_{\geq 0} : x + \alpha \frac{y - x_{0}}{\|y - x_{0}\|_{2}} \in \Omega \right\}$$

The depth function d_v measures how far we can move from x in the direction of $y - x_0$ while staying in Ω .

Th.L11.1-3 Properties of the depth function

- For any given $x \in \Omega$, we have $d_v(x) \in [0, 2R]$. Furthermore, we can compute $d_v(x)$ up to $\epsilon > 0$ error using $O(\log(R/\epsilon))$ calls to a membership oracle for Ω .
- The function d_v is concave (i.e., $-d_v$ is con-
- Theorem L11.3. The function d_v restricted to the domain $\mathbb{B}_{r/3}(x_0)$ is (3R/r)-Lipschitz con-

Th.L11.4 Constructing supporting hyperplane with depth function If d_v is differentiable at x_0 , the gradient $\nabla d_v(x_0)$ provides a separating direction, that is,

$$\langle \nabla d_y(x_0), y - x \rangle < 0 \quad \forall x \in \Omega$$

Rm.L11.3 Polarity relationships. Connections among oracles between set Ω and its polar Ω °:

Def.L11.1 Polar set Ω° . Let Ω be compact and convex, and such that $\mathbb{B}_r(0) \subseteq \Omega \subseteq \overline{\mathbb{B}}_R(0)$ for some radii $0 < r \le R$. The polar set Ω° to Ω is defined as

$$\Omega^{\circ} := \{ y \in \mathbb{R}^n : \langle x, y \rangle \le 1 \quad \forall x \in \Omega \}$$

Th.L11.5 Involution of the polar set. Theorem L11.5. Let the set $\Omega \subseteq \mathbb{R}^n$ be convex and compact, and such that $\mathbb{B}_r(0) \subseteq \Omega \subseteq \mathbb{B}_R(0)$ for some $0 < r \le R$. Then,

- 1. the polar set Ω° is convex and compact, and satisfies $\mathbb{B}_{1/R}(0) \subseteq \Omega^{\circ} \subseteq \mathbb{B}_{1/r}(0)$; and
- 2. the bipolar $(\Omega^{\circ})^{\circ}$ is equal to Ω .

Th.L11.6 Polar membership oracle. A membership oracle for Ω° can be constructed efficiently starting from a linear optimization oracle for Ω , even if the linear optimization oracle only returns the optimal objective value and not the minimizer. The construction only requires a single call to the linear optimization oracle.

Th.L11.7 Separation oracle for the polar set. A separation oracle for Ω° can be constructed efficiently, without use of Section L11.2, starting from a linear optimization oracle for Ω that returns the optimal point. The construction only requires a single call to the linear optimization oracle.

Rm.X Additional notes: with matrices, $Ax = b \Leftrightarrow \langle A_k, X \rangle = b_k \ \forall k = 1,...,m$. Where $\langle A_k, X \rangle = \operatorname{tr}(AB^\top) = \sum_i \sum_j A_{ij} B_{ij}$.

Nonnegative Cone → Linear Programs Lorentz Cone → Second Order Conic Programs

Failure modes of constraint qualification: Primal has optimal solution, dual matches value of primal, yet dual does not have maximizer. Primal has optimal solution, dual has optimal solution, but values of problems differ.