Sleep Stages Prediction via Fusion Signals

Yi-An Wu & Sing-Yuan Yeh Advisor: Prof. Mao-Pei Tsui & Prof. Hau-Tieng Wu

Task: Predict sleep stages

Why fusion?

Methodology

Feature extraction: TFA

Signal collection: EEG & EOG & EMG

Dimension reduction Predict sleep stages

Please refer to G.-R. Liu, Y.-L. Lo, J Malik, Y.-C. Sheu, H.-T. Wu, Diffuse to fuse EEG spectra -- intrinsic geometry of sleep dynamics for classification, (2018).

Data source

Mathematics Division
National Center for Theoretical Sciences

41 patients

29332 epochs

Total: 240+ hours

台灣智慧睡眠醫學整合資料庫

Taiwan Integrated Database for Intelligent Sleep

Basic diffusion map (DM)

Let $\{x_i\}_{i=1}^n\subset\mathcal{M}^d$ be a dataset, where $\mathcal{M}^d\subset\mathbb{R}^p$. Given a Gaussian kernel k_ϵ with bandwidth ϵ . Let the affinity matrix $W_{ij}=k_\epsilon(x_i,x_j)$. The degree matrix is defined as $D_{ii}=\sum_{j=1}^n W_{ij}$.

Then, the (negative) graph Laplacian operator is defined as

$$L = D^{-1}W - I$$

where $K=D^{-1}W$ is transition matrix

The first m eigenvectors of K are our interests, which embedding the data into lower dimensional space, \mathbb{R}^m .

Please refer to R.Coifman & S. Lafon, Diffusion maps, (2006).

Recover underlying manifold

Fusion: S+A method

Consider two signals from two sensors. Let degree matrix and affinity matrix $D^{(\ell)}$, $W^{(\ell)}$ define as mentioned where $\ell=1,2$ two signals. Define transition matrices $K^{(\ell)}=\left(D^{(\ell)}\right)^{-1}W^{(\ell)}$

Let
$$G = K^{(2)} {K^{(1)}}^T$$
 and $H = K^{(1)} {K^{(2)}}^T$. Define two $n imes n$ matrices

$$S = G + H$$

$$A = G - H$$
.

In fact, S reveal common structures, and A reveal differences.

Please refer to T. Shnitzer, M. Ben-Chen, L. Guibas, R. Talmon, H.-T. Wu, *Recovering Hidden Components in Multimodal Data with Composite Diffusion Operators*, (2018).

Interpret S+A method

How to fuse 3+ channels

Multi-resolution analysis (MRA)

Please feel free to contact me, if you are interested in this method!

Results

metric: leave one subject out cross validation

	median of acc	median of macro f1	std of acc	
No fusion	81.2%	66.1%	0.108	
Fusion by MRA	82.5%	65.2%	0.078	

No Fusion

		Predict					
		Aw	REM	N1	N2	N3	
	Aw	82%	4%	9%	5%	1%	
Target	REM	5%	79%	7%	8%	0%	
	N1	21%	12%	44%	22%	0%	
	N2	4%	2%	4%	86%	4%	
	N3	1%	0%	0%	25%	74%	

Fusion by MRA

		Predict					
		Aw	REM	N1	N2	N3	
Target	Aw	80%	2%	10%	8%	0%	
	REM	4%	75%	10%	10%	0%	
	N1	20%	9%	49%	22%	0%	
	N2	1%	2%	4%	90%	3%	
	N3	0%	0%	0%	34%	65%	

References

- [1] R.Coifman & S. Lafon, *Diffusion maps*, (2006).
- [2] G.-R. Liu, Y.-L. Lo, J Malik, Y.-C. Sheu, H.-T. Wu, *Diffuse to fuse EEG spectra -- intrinsic geometry of sleep dynamics for classification*, (2018).
- [3] T. Shnitzer, M. Ben-Chen, L. Guibas, R. Talmon, H.-T. Wu, *Recovering Hidden Components in Multimodal Data with Composite Diffusion Operators*, (2018).
- [4] A. Singer, H.-T. Wu, *Vector Diffusion Maps and the Connection Laplacian*, (2011).
- [5] A. Singer, *From graph to manifold Laplacian: The convergence rate*, (2006).

Thank You