I211E: Mathematical Logic

Nao Hirokawa JAIST

Term 1-1, 2023

https://www.jaist.ac.jp/~hirokawa/lectures/ml/

I211E: Mathematical Logic 1/9

Contents

Aim

to develop basic proof skill

Contents

- $\boxed{1}$ natural deduction II (\neg and \bot)
- 2 exercises

Schedule

	propositional logic		predicate logic
4/13	syntax, semantics	5/11	syntax, semantics
4/18	normal forms	5/16	normal forms
4/20	examples	5/18	natural deduction I
4/25	natural deduction I	5/23	natural deduction II
4/27	natural deduction II	5/25	examples, properties
5/2	completeness	5/30	advanced topics
5/9	midterm exam	6/1	summary

Evaluation

midterm exam (40) + final exam (60)

I211E: Mathematical Logic

Definition (introduction and elimination rules for ¬)

$$\begin{array}{c}
[\phi]^i \\
\vdots \\
\frac{\perp}{\neg \phi} \neg \mathbf{I}_i
\end{array}$$

$$\frac{\phi \qquad \neg \phi}{\bot} \ \neg \mathbf{E}$$

exam

Proposition

$$\vdash (p \to q) \to (\neg q \to \neg p)$$

Proof.

$$\frac{[p]^3 \qquad [p \to q]^1}{\frac{q}{\frac{\bot}{\neg p} \neg I_3}} \to_{E_1} \qquad [\neg q]^2} \to_{E}$$

$$\frac{\frac{\bot}{\neg p} \neg I_3}{\frac{\neg q \to \neg p}{\neg q \to \neg p} \to I_2} \to_{I_1}$$

Proposition

2/9

If p implies q then $\neg q$ implies $\neg p$.

Proof.

We show
$$(p \to q) \to (\neg q \to \neg p)$$
. Assume $p \to q$. It is enough to show $\neg q \to \neg p$. Assume $\neg q$. It is enough to show $\neg p$. Assume to the contrary that p holds. Since p and $p \to q$, we obtain q . Since q and $\neg q$, we have contradiction. Thus, $\neg p$ holds.

I211E: Mathematical Logic 3/9

I211E: Mathematical Logic

4/9

Definition (elimination rule for \perp)

$$\frac{\perp}{\phi}$$
 EFQ

 $\mathsf{EFQ} = \mathsf{ex} \; \mathsf{falso} \; \mathsf{quodlibet}$

Proposition

$\vdash (\neg p \lor q) \to (p \to q)$

Proposition

If $\neg p \lor q$ then p implies q.

Proof.

$$\frac{[p]^2 \qquad [\neg p]^3}{\frac{\bot}{q}} \stackrel{\neg E}{=} \frac{}{\text{EFQ}} \qquad [q]^3 \\ \frac{\frac{q}{p \to q} \to I_2}{(\neg p \lor q) \to (p \to q)} \to I_1$$

Proof.

We show $(\neg p \lor q) \to (p \to q)$. Assume $\neg p \lor q$. It is enough to show $p \to q$. Assume p. It is enough to show q. Using $\neg p \lor q$, we distinguish two cases. If $\neg p$ then we have $\neg p$ and p. Contradiction. Hence, q holds. If q then q holds trivially. In any case, q holds.

1211E: Mathematical Logic

5/9

7/9

Supplementary Comments

$$\frac{\perp}{\phi}$$
 EFQ

$$\begin{array}{c} [\neg \phi]^i \\ \vdots \\ \frac{\perp}{\phi} \text{ RAA}_i \end{array}$$

$$\begin{array}{c} [\phi]^i \\ \vdots \\ \frac{\perp}{\neg \phi} \ \neg \mathbf{I}_i \end{array}$$

- classical logic uses RAA
- intuitionistic logic forbids use of RAA
- mathematical proofs usually adopt classical logic
- \blacksquare in intuitionistic logic, neither $\neg\neg p \to p$ nor $p \vee \neg p$ hold

Definition (another elimination rule for \perp)

 $\mathsf{RAA} = \mathsf{reductio} \ \mathsf{ad} \ \mathsf{absurdum} = \mathsf{proof} \ \mathsf{by} \ \mathsf{contradiction}$

Proposition

$$\vdash \neg \neg p \rightarrow p$$

Proposition

If
$$\neg \neg p$$
 then p .

Proof.

Proof.

We show $\neg \neg p \to p$. Assume $\neg \neg p$. It is enough to show p. Assume to the contrary that $\neg p$ holds. Since p and $\neg p$ hold, we have contradiction. Hence, p holds.

П

1211E: Mathematical Logic

6/9

Exercise: Understanding Proof Structure

Proposition (law of excluded middle (or third in textbook))

p or $\neg p$ holds.

Proof.

We show $p \vee \neg p$. Assume to the contrary that $\neg (p \vee \neg p)$ holds.

- 1 As a preliminary, we show that $\neg p$ holds. Assume to the contrary that p holds. Since p holds, $p \lor \neg p$ holds. Because $p \lor \neg p$ and $\neg (p \lor \neg p)$ hold, we obtain contradiction. Therefore, $\neg p$ must hold.
- 2 Now we derive contradiction as follows. Since $\neg p$ holds, $p \lor \neg p$ follows. Because $p \lor \neg p$ and $\neg (p \lor \neg p)$ hold, we obtain contradiction.

Exercise: Prove $\vdash p \lor \neg p$.

Exercise: Proof Writing

Proposition

$$\vdash (p \land (\neg p \lor q)) \to q$$

Proof.

$$\frac{[p \wedge (\neg p \vee q)]^1}{\frac{\neg p \vee q}{\neg p \vee q}} \wedge_{\mathbf{E}} \frac{\frac{[p \wedge (\neg p \vee q)]^1}{p} \wedge_{\mathbf{E}} [\neg p]^2}{\frac{\bot}{q} EFQ} \neg_{\mathbf{E}} \frac{}{[q]^2} \vee_{\mathbf{E}_2} \frac{}{(p \wedge (\neg p \vee q)) \rightarrow q} \rightarrow_{\mathbf{I}_1}$$

Exercise: Write a proof for $(p \wedge (\neg p \vee q)) \rightarrow q$ in text.

I211E: Mathematical Logic

9/

