#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09 선형회귀 예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격에 영향을 미 치는 요인

#01. 작업 준비

1. 패키지 참조하기

```
import sys
sys.path.append("../../")
import helper

import numpy as np
from pandas import read_excel, DataFrame, melt, merge
from pca import pca
from pandas.api.types import CategoricalDtype
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
from matplotlib import pyplot as plt
import seaborn as sb
from scipy import stats
import statsmodels.api as sm
from statsmodels.stats.api import het_breuschpagan
from statsmodels.stats.stattools import durbin_watson
```

2. 데이터 가져오기

09_선형회귀_예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정) R의 시각화 패키지인 ggplot2 에 내장되어 있는 데이터셋으로 총 10개의 요인으로 이루어져 있으며 53,940 개의 관측치가 있다.

변수	의미	기타
carat	무게	ex) 3캐럿짜리 다이아몬드
cut	세공의 질	다이아몬드의 단면을 어떻게 커팅하였는지에 대한 상태값을 분류 '계층이 있는 범주형(factor)' 데이터 "Fair", "Good", "Very Good", "Premium", "Ideal"로 나누어 진다.
color	컬러	총 7개의 컬러로 표기된 범주형 데이터
clarity	투명도	범주형 데이터
depth	깊이	수치형 데이터
table	넓은 폭 대비 꼭대기의 넓이	수치형 데이터
price	가격(\$)	수치형 데이터
Х	길이	수치형 데이터
у	넓이	수치형 데이터
Z	깊이	수치형 데이터

origin = read_excel("https://data.hossam.kr/E04/diamonds.xlsx")
origin

#01. 작업 준비

1. 패키지 참조하기

2. 데이터 가져오기

#02. 데이터 전처리

1. 데이터프레임 복사

2. 결측치 확인

3. 데이터 타입 확인

4. 일단 분석

1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 변화 file:///D:/09_선형회귀_예시(1).ipynb

30_L3_H_										
	carat	cut	color	clarity	depth	table	price	х	у	
0	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.4
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.3
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.3
3	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.6
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.7
•••	•••		•••	•••	•••	•••	•••	•••		
53935	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.5
53936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.6
53937	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.5
53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.7
53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.6
4										•

53940 rows × 10 columns

#02. 데이터 전처리

1. 데이터프레임 복사

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

edf	<pre>= origin.copy()</pre>
edf.	head()

	carat	cut	color	clarity	depth	table	price	х	у	z
0	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

2. 결측치 확인

edf.isna().sum()

carat 0 cut 0 color 0 clarity 0 depth 0 table 0 price 0 Χ 0 0 У

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이

슈 패건 검정)

Z 0 dtype: int64

3. 데이터 타입 확인

edf.dtypes

```
float64
carat
            object
cut
color
            object
           object
clarity
depth
           float64
table
           float64
price
             int64
           float64
Χ
           float64
У
          float64
dtype: object
```

4. 일단 분석

1) 회귀분석

```
tmp = edf.filter(['carat', 'depth', 'table', 'x', 'y', 'z', 'price'])
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

Omnibus:

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 타인 벼화 file:///D:/09_선형회귀_예시(1).ipynb ols_result = helper.myOls(tmp, y='price', x=['carat', 'depth', 'table',
print(ols_result.summary)

OLS Regression Results

Don Variables	prico	D. cauarada	
Dep. Variable:	price	R-squared:	
Model:	0LS	Adj. R-squared:	
Method:	Least Squares	F-statistic:	5.4
Date:	Thu, 10 Aug 2023	Prob (F-statistic):	
Time:	10:04:41	Log-Likelihood:	-4.70
No. Observations:	53940	AIC:	9.4
Df Residuals:	53933	BIC:	9.4
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	
Intercept	2.085e+04	447.562	46.584	0.000	2e+04	2.
carat	1.069e+04	63.201	169.085	0.000	1.06e+04	1.
depth	-203.1541	5.504	-36.910	0.000	-213.942	-1
table	-102.4457	3.084	-33.216	0.000	-108.491	_
Х	-1315.6678	43.070	-30.547	0.000	-1400.086	-12
у	66.3216	25.523	2.599	0.009	16.296	1
Z	41.6277	44.305	0.940	0.347	-45.210	1

Omnibus:	14093.399	Durbin-watson:	
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3735
Skowe	0 674	Droh(IR).	

Skew: 0.674 Prob(JB): Kurtosis: 15.822 Cond. No.

15.822 Cond. No. 5.

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이

슈 패건 검정)

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is d
- [2] The condition number is large, 5.91e+03. This might indicate that the strong multicollinearity or other numerical problems.

결과보고

```
ols result.table
print(ols result.result, end="\n\n")
print(ols result.goodness, end="\n\n")
for i in ols result.varstr:
    print(i)
```

```
R(0.859), R^2(0.859), F(5.486e+04), 유의확률(0.00), Durbin-Watson(1.249)
price에 대하여 carat, depth, table, x, y, z로 예측하는 회귀분석을 실시한 결과, 이 회
carat의 회귀계수는 1.069e+04(p<0.05)로, price에 대하여 유의미한 예측변인인 것으
depth의 회귀계수는 -203.1541(p<0.05)로, price에 대하여 유의미한 예측변인인 것으
table의 회귀계수는 -102.4457(p<0.05)로, price에 대하여 유의미한 예측변인인 것으
x의 회귀계수는 -1315.6678(p<0.05)로, price에 대하여 유의미한 예측변인인 것으로
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 변화 file:///D:/09_선형회귀_예시(1).ipynb y의 회귀계수는 66.3216(p<0.05)로, price에 대하여 유의미한 예측변인인 것으로 나타 z의 회귀계수는 41.6277(p>0.05)로, price에 대하여 유의하지 않은 예측변인인 것으로

3) 잔차분석

결과치 생성

```
sdf = DataFrame({
    "관측값": edf['price'],
    "예측값": ols_result.fit.fittedvalues,
    "잔차": ols_result.fit.resid,
    "zscore": stats.zscore(ols_result.fit.fittedvalues)
})
sdf
```

	관측값	예측값	잔차	zscore
0	326	346.909718	-20.909718	-0.969700
1	326	-71.468765	397.468765	-1.082838
2	327	126.368674	200.631326	-1.029339
3	334	193.901639	140.098361	-1.011076
4	335	53.549591	281.450409	-1.049030
•••				

09_선형회귀_예시(1).ipynb

エレナロ

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

2757	3314.909673	-557.909673	-0.167090
2757	3135.402558	-378.402558	-0.215633
2757	2503.140469	253.859531	-0.386610
2757	4175.515769	-1418.515769	0.065635
2757	3463.844403	-706.844403	-0.126815
	2757 2757 2757	2757 3135.402558 2757 2503.140469 2757 4175.515769	2757 3135.402558 -378.402558 2757 2503.140469 253.859531 2757 4175.515769 -1418.515769

ᆐᄎᄁ

 $53940 \text{ rows} \times 4 \text{ columns}$

ᇻᄎᄁ

잔차의 정규성

Q-Q Plot

```
(x, y), _ = stats.probplot(sdf['zscore'])

plt.figure(figsize=(10, 5))
sb.scatterplot(x=x, y=y)
sb.lineplot(x=[-3, 3], y=[-3, 3], color='red', linestyle='--')
plt.show()
plt.close()
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

정규성 판단을 위한 Kolmogorov Smirnov 검정

표본 수가 50개 이상인 경우 사용

```
s, p = stats.kstest(sdf['잔차'], 'norm')
print("Kolmogorov Smirnov Test: (통계량, p-value) = ", (s, p))

if p > 0.05:
    print("잔차는 정규 분포를 따릅니다. (귀무가설 채택)")
else:
    print("잔차는 정규 분포를 따르지 않습니다. (귀무가설 기각)")
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 Fト이 벼화

file:///D:/09_선형회귀_예시(1).ipynb

Kolmogorov Smirnov Test: (통계량, p-value) = (0.529842416038748, 0.0) 잔차는 정규 분포를 따르지 않습니다. (귀무가설 기각)

잔차의 등분산성 (브로이슈 패건 검정)

names = ['Lagrange multiplier statistic', 'p-value', 'f-value', 'f p-val
test_result = het_breuschpagan(ols_result.fit.resid, ols_result.fit.mode
DataFrame(test_result, index=names)

	0
Lagrange multiplier statistic	9934.176446
p-value	0.000000
f-value	2029.200891
f p-value	0.000000

각종 검정 결과를 종합하여 분석 결과를 신뢰할 수 없는 것으로 판단하고 재시도.

4. 범주형 타입 변환

1) 순서 있는 범주형 설정

```
ctype = CategoricalDtype(categories=["Fair", "Good", "Very Good", "Premi
```

09 선형회귀 예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

개 버즈혀 다인 변화

```
edf['cut'] = edf['cut'].astype(ctype)
edf.dtypes
            float64
carat
cut
           category
color
             object
clarity
             object
depth
            float64
table
            float64
price
              int64
            float64
Х
            float64
У
            float64
Z
```

2) 순서 없는 범주형 설정

dtype: object

```
edf['color'] = edf['color'].astype('category')
edf['clarity'] = edf['clarity'].astype('category')
edf.dtypes
```

```
carat float64
cut category
color category
clarity category
depth float64
table float64
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이

슈 패건 검정)

int64 price float64

float64

float64

dtype: object

#03. 요인선정을 위한 탐색적 데이터 분석

1. 수치형 변수

1) 기초 통계량 확인

범주형 데이터는 자동으로 제외된다.

desc = edf.describe()

desc

	carat	depth	table	price	х
count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
mean	0.797940	61.749405	57.457184	3932.799722	5.731157
std	0.474011	1.432621	2.234491	3989.439738	1.121761
min	0.200000	43.000000	43.000000	326.000000	0.000000
25%	0.400000	61.000000	56.000000	950.000000	4.710000
50%	0.700000	61.800000	57.000000	2401.000000	5.700000

23. 8. 10. 오전 10:36

선형회귀 예시 (1) - 다이아몬드 가격에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

09_선형회귀_예시(1).ipynb

75% 1.040000 62.500000 59.000000 5324.250000 6.540000 max 5.010000 79.000000 95.000000 18823.000000 10.740000		carat	depth	table	price	х
max 5.010000 79.000000 95.000000 18823.000000 10.740000	75%	1.040000	62.500000	59.000000	5324.250000	6.540000
	max	5.010000	79.000000	95.000000	18823.000000	10.740000

2) 상자그림 확인

일괄처리

범주형 변수는 자동으로 제외된다.

종속변수인 가격(price)를 제외하고는 비슷한 범위를 갖고 있으므로 표준화는 불필요한 것으로 판단

```
sb.boxplot(data=edf)
plt.grid()
plt.show()
plt.close()
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

개별 컬럼에 대한 상자그림

범주형을 제외하고 처리해야 하므로 desribe() 함수의 결과로 생성된 데이터프레임의 컬럼명에 대해서만 처리한다.

이상치가 다수 관측되지만 실제 데이터인 것으로 판단하고 정제하지 않기로 함

```
fig, ax = plt.subplots(3, 3, figsize=(20, 12))
rows = len(ax)
cols = len(ax[0])

for i in range(0, rows):
```

09_선형회귀_예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정) for j in range(0, cols):
 idx = i * cols + j
 #print("idx=%d, i=%d, j=%d" % (idx, i, j))
 sb.boxplot(edf, y=desc.columns[idx], ax=ax[i][j])

if idx+1 = len(desc.columns):
 break

plt.show()
plt.close()

3) 산점도 행렬 확인

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

09 선형회귀 예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

슈 패건 검정)

잔차의 등분산성 (브로이

요인간의 자기상관관계를 확인하기 위해 산점도 행렬을 확인한다.

범주형이 아닌 컬럼이름만 추출

```
cnames = []
dtypes = edf.dtypes
for i, v in enumerate(dtypes):
    if v \neq 'category':
        print(dtypes.index[i], dtypes[i])
        cnames.append(dtypes.index[i])
print(cnames)
```

```
carat float64
depth float64
table float64
price int64
x float64
v float64
z float64
['carat', 'depth', 'table', 'price', 'x', 'y', 'z']
```

추출한 필드에 대한 산점도 행렬

다소 시간이 오래 걸린다.

일부 요인들 간에 상관관계가 발견된다.

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이

슈 패건 검정)

```
plt.figure(figsize=(30, 20))
sb.pairplot(data=edf, vars=cnames, kind='reg')
plt.show()
plt.close()
```

<Figure size 3000×2000 with 0 Axes>

09_선형회귀_예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

႔ 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb 4) PCA 분석

회귀분석에 필요한 요인들을 선정하기 위해 주성분 분석을 수행한다.

데이터 표준화

범주형은 PCA를 수행할 수 없기 때문에 edf 에서 수치형 변수만 추출하여 처리한다.

종속 변수인 가격은 제외하고 진행한다.

x_train_std_df, y_train_std_df = helper.scalling(edf[cnames], 'price')
x_train_std_df

	carat	depth	table	х	у	z
0	-1.198168	-0.174092	-1.099672	-1.587837	-1.536196	-1.571129
1	-1.240361	-1.360738	1.585529	-1.641325	-1.658774	-1.741175
2	-1.198168	-3.385019	3.375663	-1.498691	-1.457395	-1.741175
3	-1.071587	0.454133	0.242928	-1.364971	-1.317305	-1.287720
4	-1.029394	1.082358	0.242928	-1.240167	-1.212238	-1.117674
•••						
53935	-0.164427	-0.662711	-0.204605	0.016798	0.022304	-0.054888
53936	-0.164427	0.942753	-1.099672	-0.036690	0.013548	0.100988
53937	-0.206621	0.733344	1.137995	-0.063434	-0.047741	0.030135

09_선형회귀_예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

# ∩1	잔	언	준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

	carat	depth	table	х	у	Z
53938	0.130927	-0.523105	0.242928	0.373383	0.337506	0.285204
53939	-0.101137	0.314528	-1.099672	0.088115	0.118616	0.143499
		-	-	-		

53940 rows × 6 columns

PCA

```
model = pca()
# 표준화 결과를 활용하여 주성분 분석 수행
fit = model.fit_transform(x_train_std_df)
topfeat = fit['topfeat']
topfeat
```

- [pca] >Extracting column labels from dataframe.
- [pca] >Extracting row labels from dataframe.
- [pca] >The PCA reduction is performed to capture [95.0%] explained varia
- [pca] >Fit using PCA.
- [pca] >Compute loadings and PCs.
- [pca] >Compute explained variance.
- [pca] >Number of components is [3] that covers the [95.00%] explained va
- [pca] >The PCA reduction is performed on the [6] columns of the input da
- [pca] >Fit using PCA.
- [pca] >Compute loadings and PCs.
- [pca] >Outlier detection using Hotelling T2 test with alpha=[0.05] and r

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb [pca] >Multiple test correction applied for Hotelling T2 test: [fdr_bh]
[pca] >Outlier detection using SPE/DmodX with n_std=[3]

	PC	feature	loading	type
0	PC1	Х	0.500910	best
1	PC2	depth	-0.734082	best
2	PC3	table	0.732523	best
3	PC1	carat	0.495367	weak
4	PC1	у	0.495218	weak
5	PC1	Z	0.493882	weak

주성분 선정

```
best = topfeat.query("type='best'")
best_names = list(set(list(best['feature'])))
best_names
```

2. 범주형 변수

범주형만 추출

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

ㅠ 페신 급형)

```
cnames = []
dtypes = edf.dtypes

for i, v in enumerate(dtypes):
    if v = 'category':
        print(dtypes.index[i], dtypes[i])
        cnames.append(dtypes.index[i])

print(cnames)
```

```
cut category
color category
clarity category
['cut', 'color', 'clarity']
```

범주형 데이터 분포 확인

```
fig, ax = plt.subplots(1, len(cnames), figsize=(25, 5))

for i, v in enumerate(cnames):
    vc = DataFrame(edf[v].value_counts(), columns=['count'])
    #print(vc)
    sb.barplot(data=vc, x=vc.index, y='count', ax=ax[i])
    ax[i].set_title(v)

plt.show()
plt.close()
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

09 선형회귀 예시(1).ipynb

cut 변수에 대한 분산분석

데이터 타입 확인

범주형이다.

edf['cut'].dtypes

CategoricalDtype(categories=['Fair', 'Good', 'Very Good', 'Premium', 'Ic

범주형 변수의 종류 추출

edf['cut'].dtypes.categories

Index(['Fair', 'Good', 'Very Good', 'Premium', 'Ideal'], dtype='object')

범주형 변수에 대한 라벨링 값 생성

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

◢ 버즈혀 다인 벼화

```
mydict = {}

for i, v in enumerate(edf['cut'].dtypes.categories):
    mydict[v] = i

mydict
```

```
{'Fair': 0, 'Good': 1, 'Very Good': 2, 'Premium': 3, 'Ideal': 4}
```

라벨링 처리

```
tmp_df = edf.filter(['price', 'cut'])
tmp_df['cut'] = tmp_df['cut'].map(mydict).astype('int')
tmp_df
```

	price	cut
0	326	4
1	326	3
2	327	1
3	334	3
4	335	1

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

슈 배건 검성)

	price	cut
53935	2757	4
53936	2757	1
53937	2757	2
53938	2757	3
53939	2757	4

53940 rows × 2 columns

분산분석에 대한 적합성 검정

조건을 충족하지 않으므로 이 요인은 제외하는 것으로 결정한다.

helper.allTest(tmp_df['price'], tmp_df['cut'])

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages
warnings.warn("p-value may not be accurate for N > 5000.")

field statistic p-value result test shapiro False 정규성 price 0.798108 shapiro False 정규성 0.840702 cut 정규성 price shapiro 15096.6 False

09 선형회귀 예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 기	가격
에 영향을 미치는 요인	

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이

슈 패건 검정)

	-	_ 、,,,		
│ 정규성	cut	shapiro	4332.54	0 False
정규성	price vs cut	ks_2samp	1	0 False
정규성	cut vs price	ks_2samp	1	0 False
등분산성	price vs cut	Bartlett	807780	0 False
등분산성	price vs cut	Fligner	67384.1	0 False
등분산성	price vs cut	Levene	40950.1	0 False
독립성	price vs cut	Chi2	324145	0 False
+	- +	-+	+	++

color 변수에 대한 검정

```
yname = 'price'
xname = 'color'
mydict = {}
for i, v in enumerate(edf[xname].dtypes.categories):
   mydict[v] = i
#mvdict
tmp df = edf.filter([yname, xname])
tmp_df[xname] = tmp_df[xname].map(mydict).astype('int')
#tmp df
helper.allTest(tmp_df[yname], tmp_df[xname])
```

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages

09 선형회귀 예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

warnings.warn("p-value may not be accurate for N > 5000.")

```
field
                           test
                                        statistic
                                                      p-value
                                                                resul
정규성
         price
                          shapiro
                                        0.798108
                                                               False
정규성
         color
                          shapiro
                                        0.940571
                                                               False
정규성
         price
                          shapiro
                                         15096.6
                                                               False
정규성
         color
                          shapiro
                                          6626.9
                                                               False
정규성
         price vs color
                          ks 2samp
                                                               False
                                               1
정규성
         color vs price
                          ks 2samp
                                                              False
                                               1
등분산성
         price vs color
                          Bartlett
                                          762365
                                                              False
등분산성
         price vs color
                          Fligner
                                         66621.1
                                                              False
등분산성
         price vs color
                                         40934.5
                                                              False
                          Levene
독립성
         price vs color
                          Chi2
                                          334347
                                                              False
```

clarity 변수에 대한 검정

```
yname = 'price'
xname = 'clarity'
mydict = {}

for i, v in enumerate(edf[xname].dtypes.categories):
    mydict[v] = i
#mydict
```

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이

슈 패건 검정)

```
tmp df = edf.filter([yname, xname])
tmp df[xname] = tmp df[xname].map(mydict).astype('int')
#tmp df
helper.allTest(tmp df[vname], tmp df[xname])
```

c:\Users\leekh\AppData\Local\Programs\Python\Python311\Lib\site-packages warnings.warn("p-value may not be accurate for N > 5000.")

```
field
                                           statistic
                                                         p-value
                              test
                                                                  res
정규성
          price
                             shapiro
                                           0.798108
                                                                  Fals
정규성
                                                                  Fals
          clarity
                             shapiro
                                           0.935033
정규성
          price
                             shapiro
                                            15096.6
                                                                 Fals
정규성
          clarity
                             shapiro
                                            5334.54
                                                                  Fals
정규성
          price vs clarity
                             ks 2samp
                                                                 Fals
                            ks 2samp
정규성
          clarity vs price
                                                                 Fals
                                                  1
등분산성
         price vs clarity
                            Bartlett
                                            760886
                                                                 Fals
                                                              0
등분산성
         price vs clarity
                            Fligner
                                           66703.3
                                                                 Fals
                                                              0
등분산성
         price vs clarity
                                           40933.8
                                                                 Fals
                            Levene
                                                              0
독립성
          price vs clarity
                                             492832
                             Chi2
                                                                  Fals
```

#04. 회귀분석 수행

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb

1. 최종 요인 선정

검정 결과 범주형 변수는 정규성, 등분산성, 독립성을 충족하지 않기 때문에 요인에서 제외하였다.

그러므로 최초에 생성했던 수치형 변수들에 대한 표준화 결과로만 구성된 데이터프레임을 만들었다.

그 후 생성된 데이터 프레임에서 PCA 분석 결과로 선정된 독립변수들과 종속변수만 추출하였다.

best_names

['table', 'x', 'depth']

target_names = best_names + ['price']
target names

['table', 'x', 'depth', 'price']

merge_df = merge(x_train_std_df, y_train_std_df, left_index=True, right_
df = merge_df.filter(target_names)
df

	table	х	depth	price
0	-1.099672	-1.587837	-0.174092	-0.904095
1	1.585529	-1.641325	-1.360738	-0.904095

09_선형회귀_예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

	table	х	depth	price
2	3.375663	-1.498691	-3.385019	-0.903844
3	0.242928	-1.364971	0.454133	-0.902090
4	0.242928	-1.240167	1.082358	-0.901839
•••				
53935	-0.204605	0.016798	-0.662711	-0.294731
53936	-1.099672	-0.036690	0.942753	-0.294731
53937	1.137995	-0.063434	0.733344	-0.294731
53938	0.242928	0.373383	-0.523105	-0.294731
53939	-1.099672	0.088115	0.314528	-0.294731

53940 rows × 4 columns

2. 1차 회귀분석 수행

1) 분석

```
ols_result = helper.myOls(df, y='price', x=best_names)
print(ols result.summary)
```

OLS Regression Results

Dep. Variable:

price R-squared:

09 선형회귀 예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정) Model: Adj. R-squared: 0LS F-statistic: 6.5 Method: Least Squares Prob (F-statistic): Date: Thu, 10 Aug 2023 Time: Log-Likelihood: 10:25:26 No. Observations: AIC: 53940 7.0 Df Residuals: 53936 BIC: 7.0 Df Model: 3 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025
Intercept	1.96e-16	0.002	9.8e-14	1.000	-0.004
table	-0.0481	0.002	-22.549	0.000	-0.052
Х	0.8938	0.002	438.159	0.000	0.890
depth	-0.0023	0.002	-1.090	0.276	-0.006

Omnibus:	19296.558	Durbin-Watson:	
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1546
Skew:	1.505	Prob(JB):	
Kurtosis:	10.731	Cond. No.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is c

2) 결과 보고

ols_result.table

09 선형회귀 예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

		В	표준오차	β	t	유의확률	VIF
종속변수	독립변수						
price	table	-0.0481	0.002	0	-22.549*	0.000	1.150738
	х	0.8938	0.002	0	438.159*	0.000	4.746060
	depth	-0.0023	0.002	0	-1.090*	0.276	1.097216

```
print(ols result.result, end="\n\n")
print(ols result.goodness, end="\n\n")
for i in ols result.varstr:
    print(i)
```

price에 대하여 table, x, depth로 예측하는 회귀분석을 실시한 결과, 이 회귀모형은 통 table의 회귀계수는 -0.0481(p<0.05)로, price에 대하여 유의미한 예측변인인 것으로 x의 회귀계수는 0.8938(p<0.05)로, price에 대하여 유의미한 예측변인인 것으로 나타났

depth의 회귀계수는 -0.0023(p>0.05)로, price에 대하여 유의하지 않은 예측변인인 것

R(0.784), $R^2(0.784)$, F(6.541e+04), 유의확률(0.00), Durbin-Watson(0.448)

2. 2차 분석

통계적으로 유의하지 않은 depth 를 제외하고 다시 수행하여 설명력의 차이를 확인한다.

1) 요인 제거

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

/ 버즈혀 다인 벼화

file:///D:/09_선형회귀_예시(1).ipynb

df2	=	df.drop('	'depth',	axis=1)
df2				

	table	х	price
0	-1.099672	-1.587837	-0.904095
1	1.585529	-1.641325	-0.904095
2	3.375663	-1.498691	-0.903844
3	0.242928	-1.364971	-0.902090
4	0.242928	-1.240167	-0.901839
•••			
53935	-0.204605	0.016798	-0.294731
53936	-1.099672	-0.036690	-0.294731
53937	1.137995	-0.063434	-0.294731
53938	0.242928	0.373383	-0.294731
53939	-1.099672	0.088115	-0.294731

53940 rows × 3 columns

2) 분석 수행 및 결과보고

ols_result = helper.myOls(df2, y='price', x=['x', 'table'])

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 타인 벼화

file:///D:/09_선형회귀_예시(1).ipynb

print(ols_result.summary)

OLS Regression Results

Dep. Variable:	price	R-squared:	
bep. variable.	price	K-Squareu.	
Model:	OLS	Adj. R-squared:	
Method:	Least Squares	F-statistic:	9.8
Date:	Thu, 10 Aug 2023	<pre>Prob (F-statistic):</pre>	
Time:	10:27:12	Log-Likelihood:	-
No. Observations:	53940	AIC:	7.0
Df Residuals:	53937	BIC:	7.0
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025
Intercept	-4.25e-17	0.002	-2.13e-14	1.000	-0.004
X	0.8937	0.002	438.384	0.000	0.890
table	-0.0474	0.002	-23.273	0.000	-0.051

Omnibus:	19295.614	Durbin-Watson:	
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1545
Skew:	1.505	Prob(JB):	
Kurtosis:	10.728	Cond. No.	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is $\mathfrak c$

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

л 버즈혀 다인 벼화 file:///D:/09_선형회귀_예시(1).ipynb ols_result.table

		В	표준오차	β	t	유의확률	VIF
종속변수	독립변수						
price	х	0.8937	0.002	0	438.384*	0.000	4.744087
	table	-0.0474	0.002	0	-23.273*	0.000	1.050114

```
sdf = DataFrame({
    "관측값": df2['price'],
    "예측값": ols_result.fit.fittedvalues,
    "잔차": ols_result.fit.resid,
    "zscore": stats.zscore(ols_result.fit.fittedvalues)
})
sdf
```

	관측값	예측값	잔차	zscore
0	-0.904095	-1.366881	0.462786	-1.543350
1	-0.904095	-1.542085	0.637990	-1.741174
2	-0.903844	-1.499547	0.595702	-1.693144
3	-0.902090	-1.231406	0.329316	-1.390384
4	-0.901839	-1.119867	0.218028	-1.264446

09_선형회귀_예시(1).ipynb

선형회귀 예시 (1) - 다이아몬드 가격 에 영향을 미치는 요인

#01. 작업 준비

- 1. 패키지 참조하기
- 2. 데이터 가져오기

#02. 데이터 전처리

- 1. 데이터프레임 복사
- 2. 결측치 확인
- 3. 데이터 타입 확인
- 4. 일단 분석
 - 1) 회귀분석

결과보고

3) 잔차분석

결과치 생성

잔차의 정규성

Q-Q Plot

정규성 판단을 위한 Kolmogorov Smirnov 검정

잔차의 등분산성 (브로이 슈 패건 검정)

	관측값	예측값	잔차	zscore
•••				
53935	-0.294731	0.024720	-0.319451	0.027911
53936	-0.294731	0.019385	-0.314116	0.021888
53937	-0.294731	-0.110685	-0.184046	-0.124974
53938	-0.294731	0.322168	-0.616899	0.363761
53939	-0.294731	0.130923	-0.425654	0.147826

53940 rows × 4 columns

```
print(ols_result.result, end="\n\n")
print(ols_result.goodness, end="\n\n")
for i in ols_result.varstr:
    print(i)
```

```
      R(0.784), R^2(0.784), F(9.811e+04), 유의확률(0.00), Durbin-Watson(0.447)

      price에 대하여 x,table로 예측하는 회귀분석을 실시한 결과, 이 회귀모형은 통계적으로

      x의 회귀계수는 0.8937(p<0.05)로, price에 대하여 유의미한 예측변인인 것으로 나타났</td>

      table의 회귀계수는 -0.0474(p<0.05)로, price에 대하여 유의미한 예측변인인 것으로</td>
```