Mathematics and numerics for data assimilation and state estimation – Lecture 17

Summer semester 2020

Overview

Bootstrap particle filter

Convergence of the BPF

3 Other proposals for particle filters

Summary lecture 16

- Described the extended KF and introduced ensemble KF.
- Studied convergence properties of the methods, particularly showing that the Gaussian approximation in the analysis of EnKF leads to errors for nonlinear problems:

BF:
$$\pi(v_{j+1}|y_{1:j+1}) \propto \pi_{N(y_{j+1},\Gamma)}(v_{j+1})\pi(v_{j+1}|y_{1:j})$$

$$\mathsf{MFEnKF} \colon \pi_{v_{j+1}^{\mathrm{MF}}}(v_{j+1}) \propto \pi_{\mathcal{K}_{j+1}^{\mathrm{MF}}} \mathsf{N}(y_{j+1} - H\hat{v}_{j+1}^{\mathrm{MF}}, \Gamma)^* \pi_{v_{j}^{\mathrm{MF}}}(v_{j+1}).$$

Plan for today

Particle filtering: a nonlinear filtering method which, in essence, treats the prediction step as EnKF, and reweights particles in the analysis step.

Recall that for the Bayes Filter,

$$\pi(v_j|y_{1:j}) \propto \pi(y_j|v_j)\pi(v_j|y_{1:j-1}).$$

(Bootstrap) particle filters consists of collection of weights and particles: $\{(w_j^{(i)}, \hat{v}_j^{(i)})\}_{i=1}^M$ with empirical measure

$$\pi_j^M(dv) = \sum_{i=1}^M \frac{w_j^{(i)}}{\delta_{\hat{v}_j^{(i)}}} (dv)$$

where the weights sum to 1, and

$$w_j^{(i)} \propto \pi_{Y_j|V_j}(y_j|\hat{v}_j^{(i)}),$$

and
$$\pi_{\hat{V}_i^{(i)}} \approx \pi_{V_j|Y_{1:j-1}}(\cdot|y_{1:j-1}).$$

Overview

Bootstrap particle filter

Convergence of the BPF

3 Other proposals for particle filters

Filtering setting

 $V_0 \sim \pi_0$ and mappings $F: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ and $G: \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}^k$ such that for for $j=0,1,\ldots$ and the hidden Markov model

$$V_{j+1} = F(V_j, \xi_j) Y_{j+1} = G(V_{j+1}, \eta_{j+1})$$
(1)

with iid $\{\xi_j\}$ and iid $\{\eta_j\}$ where $V_0 \perp \{\xi_j\} \perp \{\eta_j\}$.

"Classic" setting obtained with $F(v,\xi) = \Psi(v) + \xi$ and $G(v,\eta) = h(v) + \eta$ with Gaussian ξ and η .

Note that the Markov chain $\{V_j\}$ may be associated to a time-independent kernel density function

$$\pi_{V_{j+1}|V_j}(v_{j+1}|v_j) = p(v_j, v_{j+1}).$$

and that, as in the classic setting,

$$\pi(y_{j+1}|v_{j+1},y_{1:j})=\pi(y_{j+1}|v_{j+1}).$$

Bayes filter - in operator notation

Notation for analysis and prediction Bayes filter pdfs:

$$\pi_j(v) := \pi_{V_j|Y_{1:j}}(v|y_{1:j}) \quad \text{and} \quad \hat{\pi}_{j+1}(v) := \pi_{V_j|Y_{1:j}}(v|y_{1:j})$$

The transition $\pi_i \mapsto \pi_{i+1}$ consists of two steps:

1. Prediction:

$$\hat{\pi}_{j+1}(v_{j+1}) = (\mathscr{P}\pi_j)(v_{j+1}) := \int_{\mathbb{R}^d} p(v_j, v_{j+1})\pi_j(v_j)dv_j$$

2. Analysis

$$\pi_{j+1}(v_{j+1}) = (\mathscr{A}_{j+1}\hat{\pi}_j)(v_{j+1}) := \frac{\pi(y_{j+1}|v_{j+1})\hat{\pi}_j(v_{j+1})}{\int_{\mathbb{R}^d} \pi_{Y_{j+1}|v_{j+1}}(y_{j+1}|v)\hat{\pi}_{j+1}(v)dv}$$

where the subscript in \mathcal{A}_{j+1} relates to the value of y_{j+1} .

Summary: $\pi_{j+1} = \mathscr{A}_{j+1} \mathscr{P} \pi_j$, which may also connect to

$$\pi(v_{j+1}|y_{1:j+1}) \propto \pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|y_{1:j}).$$

Bootstrap particle filter

Given a probability measure or density π , we define for any $M \in \mathbb{N}$, the empirical probability measure

$$\mathcal{S}^M\pi(dv) := rac{1}{M} \sum_{i=1}^M \delta_{v^i}(dv) \quad \text{where} \quad v^{(i)} \stackrel{iid}{\sim} \pi.$$

Approximation ideas for particle filtering: Given π_j ,

- 1. Approximate $\pi_j^M = \mathcal{S}^M \pi \approx \pi_j$
- 2. Prediction $\hat{\pi}_{j+1}^M = \mathcal{S}^M(\mathscr{P}\pi_j^M) \approx \mathscr{P}\pi_j$
- 3. Analysis $\pi_{j+1}^M=\mathscr{A}_{j+1}\hat{\pi}_{j+1}^Mpprox\mathscr{A}\hat{\pi}_{j+1}.$

Problem: Have only defined \mathscr{P} and \mathscr{A}_{j+1} as mappings from pdfs to pdfs, but π_i^M and $\hat{\pi}_{i+1}^M$ a measures.

Extension of mappings

 ${\mathscr P}$ as mapping from empirical probability measures (epms) to pdfs: For any

$$\pi(dv) = \sum_{i=1}^{M} w^{(i)} \delta_{v^{(i)}}(dv)$$

with $\sum_{i=1}^{M} w^{(i)} = 1$,

$$(\mathscr{P}\pi)(u) := \int_{\mathbb{R}^d} p(v,u)\pi(dv) = \sum_{i=1}^M w^{(i)}p(v^{(i)},u)$$

Example: In the classic setting $p(v,u) \propto \exp(-|\Psi(v)-u|_{\Sigma}^2/2)$ and thus

$$(\mathscr{P}\pi)(u) \propto \sum_{i=1}^{M} w^{(i)} \exp\Big(-|\Psi(v^{(i)})-u|_{\Sigma}^{2}/2\Big).$$

\mathscr{A}_j as mapping from epms to epms

For any epm

$$\pi(dv) = \sum_{i=1}^{M} w^{(i)} \delta_{v^{(i)}}(dv)$$

we define

$$(\mathscr{A}_{j}\pi)(du) := \frac{\pi_{Y_{j}|V_{j}}(y_{j}|u)\pi(du)}{\int_{\mathbb{R}^{d}}\pi_{Y_{j}|V_{j}}(y_{j}|v)\pi(dv)}$$

$$=$$

$$= \sum_{i=1}^{M} \frac{w^{(i)} \pi_{Y_{j}|V_{j}}(y_{j}|v^{(i)})}{Z} \delta_{v^{(i)}}(du)$$

with
$$Z = \sum_{i=1}^{M} w^{(i)} \pi_{Y_i|V_i}(y_j|v^{(i)})$$
.

Approximation ideas for particle filtering revisited

Given the BF $\pi_j^M = \sum_{i=1}^M w_j^{(i)} \delta_{v_j^i}$, we compute π_{j+1}^M by the following steps

1. Resampling
$$\pi_j^M = \mathcal{S}^M \pi_j^M$$

$$\left(=\frac{1}{M}\sum_{i=1}^{M}\delta_{v_{j}^{i}}\right)$$

2. Prediction
$$\hat{\pi}_{j+1}^M = \mathcal{S}^M(\mathscr{P}\pi_j^M)$$

$$\left(=\frac{1}{M}\sum_{i=1}^{M}\delta_{\hat{\mathbf{v}}_{j+1}^{i}}\right)$$

3. Analysis

$$\pi_{j+1}^{M} = \mathscr{A}_{j+1} \hat{\pi}_{j+1}^{M} \qquad \left(= \sum_{i=1}^{M} \underbrace{\frac{\pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})}{Z}}_{w_{i+1}^{(i)}} \delta_{\hat{v}_{j+1}^{(i)}} \right).$$

Note that
$$\pi_{j+1}^M = \mathscr{A}_{j+1} \mathcal{S}^M \mathscr{P} \pi_j^M$$
 is described by $\{(w_{j+1}^{(i)}, \hat{v}_{j+1}^{(i)})\}$.

Importance sampling viewpoint:

$$\begin{split} \pi_{j+1}(\textit{v}_{j+1}) &\propto \pi(\textit{y}_{j+1}|\textit{v}_{j+1})\pi(\textit{v}_{j+1}|\textit{y}_{1:j}) \\ &= \underbrace{\pi(\textit{y}_{j+1}|\textit{v}_{j+1})}_{\text{"weight"}} \int_{\mathbb{R}^d} \underbrace{\pi(\textit{v}_{j+1}|\textit{v}_{j})\pi_{j}(\textit{v}_{j})}_{\text{"sampling density"}} \textit{d}\textit{v}_{j}, \end{split}$$

and for the particle filters this is approximated by

$$\pi_{j+1}^{M} = \sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$$

with
$$\hat{v}_{j+1}^{(i)} \sim \int \pi_{V_{j+1}|V_j}(\cdot|v_j)\pi_j^M(v_j)dv_j$$
 and $w_{j+1}^{(i)} \propto \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$

Bootstrap particle filter (BPF) algorithm [SST 11.1]

- **Input:** Initial distribution π_0 (which we also write π_0^M), obs sequence $y_1, y_2, ...$, and M.
- Particle generation: For j = 0, 1, ...
 - **1. Resampling** Draw $v_j^{(i)} \stackrel{iid}{\sim} \pi_j^M$ for $i = 1, \dots, M$.
 - 2. Simulate $\hat{v}_{j+1}^{(i)} = F(v_j^{(i)}, \xi_j^{(i)})$ with iid $\xi_j^{(i)}$.
 - 3. Set $\bar{w}_{j+1}^{(i)} = \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$
 - **4**. and $w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
 - 5. Set $\pi^{M}_{j+1} = \sum_{i=1}^{M} w^{(i)}_{j+1} \delta_{\hat{v}^{(i)}_{j+1}}$.
- **Output:** π_j^M approximating the distribution of $V_j|Y_{1:j}=y_{1:j}$.

BPF algorithm classic setting

- **Input:** Initial distribution π_0 (which we also write π_0^M), obs sequence $y_1, y_2, ...$, and M.
- Particle generation: For j = 0, 1, ...
 - **1. Resampling** Draw $v_j^{(i)} \stackrel{iid}{\sim} \pi_j^M$ for i = 1, ..., M.
 - 2. Simulate $\hat{v}_{j+1}^{(i)} = \Psi(v_j^{(i)}) + \xi_j$ with $\xi_j^{(i)} \stackrel{iid}{\sim} \mathcal{N}(0, \Sigma)$.
 - 3. Set $\bar{w}_{j+1}^{(i)} = \exp(-\frac{1}{2}|y_{j+1} h(\hat{v}_{j+1}^{(i)})|_{\Gamma}^2)$
 - **4**. and $w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
 - 5. Set $\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{i+1}^{(i)}}$.
- **Output:** π_i^M .

Sequential importance sampling (SIS) vs sequential importance resampling (SIR)

- Bootstrap particle filter is a special case of SIR (can have more general "proposals" in step 2.).
- Without the resampling step 1., the particle weights multiply every step, and one may risk very uneven particle weights: this is called the degeneracy problem.
- With resampling, uneven weights are avoided, but (1) one may lose information and (2) the variance of the resulting particle distribution π_j^M can be shown to increase.
- Adaptive resampling can for instance be based on estimating the effective number of particles

$$n_{\text{eff},j} pprox rac{1}{\sum_{i=1}^{M} (w_i^{(i)})^2}$$

and employing the SIR resampling step to SIS only when $n_{eff,j} < M/10$. (Motivation: if $w_j^{(i)} = 1/M$ for all i, then $n_{eff,j} = M$.)

Sequential importance sampling algorithm 1

- **Input:** Initial distribution π_0 , obs sequence y_1, y_2, \ldots , and M.
- Initialization: Draw $\hat{v}_j^{(i)} \stackrel{iid}{\sim} \pi_0$ and set $w_0^{(i)} = 1/M$ for $i = 1, \dots, M$. (Hat notation here is formally "wrong" but practical.)
- Particle and weight dynamics: For j = 0, 1, ...,
 - 1. Simulate $\hat{v}_{j+1}^{(i)} = F(\hat{v}_j^{(i)}, \xi_j^{(i)})$ with iid $\xi_j^{(i)}$.
 - 2. Set $\bar{w}_{j+1}^{(i)} = w_j^{(i)} \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$
 - 3. and $w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
 - **4**. Set $\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$.
- **Output:** π_j^M .

Adaptive resampling algorithm

- **Input:** Initial distribution π_0 , obs sequence $y_1, y_2, ...$, and M.
- Initialization: Draw $\hat{v}_j^{(i)} \stackrel{iid}{\sim} \pi_0$ and set $w_0^{(i)} = 1/M$ for $i = 1, \dots, M$. (Hat notation here is formally "wrong" but practical.)
- Particle and weight dynamics: For j = 0, 1, ...,
 - 1. Compute $n_{eff,j}$. If $n_{eff,j} < M/10$, then **resample:** draw $\hat{v}_j^{(i)} \stackrel{iid}{\sim} \pi_j^M$ for i = 1, ..., M and set $w_j^{(i)} = 1/M$ for i = 1, ..., M.
 - 2. Simulate $\hat{v}_{j+1}^{(i)} = F(\hat{v}_j^{(i)}, \xi_j^{(i)})$ with iid $\xi_j^{(i)}$.
 - 3. Set $\bar{w}_{j+1}^{(i)} = w_j^{(i)} \pi_{Y_{j+1}|V_{j+1}} (y_{j+1}|\hat{v}_{j+1}^{(i)})$
 - **4**. and $w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
 - 5. Set $\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$.
- **Output:** π_j^M .

Example implementation of BPF

Consider **Dynamics**:

$$V_{j+1} = 2.5\sin(V_j) + \xi_j V_0 \sim N(0,1)$$
 (2)

where $\xi_j \sim N(0, 0.09)$ **Observations:**

$$Y_j = h(V_j) + \eta_j, \quad j = 1, 2, \ldots,$$

with $\eta_i \sim N(0,1)$.

Boostrap PF:

- 1. Sample iid $v_0^{(i)} \sim N(0,1)$ for i = 1, 2, ..., M
- 2. Simulate $\hat{v}_1^{(i)} = 2.5 \sin(v_0^{(i)}) + \xi_0^{(i)}$ for i = 1, 2, ..., M.

Bootstrap PF continued

- 3. Set $w_1^{(i)} \propto \exp(-\frac{1}{2}|y_{j+1} h(\hat{v}_{j+1}^{(i)})|_{\Gamma}^2)$ and normalize weights to sum to unity.
- 4. Set $\pi_1^M(du) = \sum_{i=1}^M w_1^{(i)} \delta_{\hat{v}_1^{(i)}}(du)$.
- **5. Resampling:** Sample iid $v_1^{(i)} \sim \pi_1^M$ for i = 1, 2, ..., M
- 6. Simulate $\hat{v}_2^{(i)} = 2.5\sin(v_1^{(i)}) + \xi_1^{(i)}$ for i = 1, 2, ..., M, and so forth.

How to sample from an empirical probability measure $\pi_j^M(du)$? Similar as sampling a transition in a finite state space Markov chain, cf. Lecture 5 Annotated, p. 35-36, and [SST 11.4].

Overview

Bootstrap particle filter

Convergence of the BPF

3 Other proposals for particle filters

Notation:

- Recall that \mathcal{P} denotes the space of probability measures on \mathbb{R}^d , and let \mathcal{P}_{Ω} denote the space of **random** probability measures.
- Let now π_j denote the distribution of $V_j|Y_{1:j} = y_{1:j}$ (rather than, as before, the pdf) , and let π_j^M denote the particle filter approximation.
- lacksquare For any $f:\mathbb{R}^d o \mathbb{R}$ we define the scalar-valued rv

$$\pi_j[f] = \mathbb{E}^{\pi_j}[f]$$
 and $\pi_j^M[f] = \mathbb{E}^{\pi_j^M}[f]$.

In order to study the large-particle-limit convergence of $\pi_j^M \to \pi_j$, we introduce the following metric on \mathcal{P}_Ω (or, equivalently, on the space of random pdfs \mathcal{M}_Ω)

$$d(\pi, ilde{\pi}) := \sup_{\|f\|_{\infty} \leq 1} \sqrt{\mathbb{E}\left[\left(\pi[f] - ilde{\pi}[f]
ight)^2
ight]},$$

for $\pi, \tilde{\pi} \in \mathcal{P}_{\Omega}$ (or $\in \mathcal{M}_{\Omega}$).

Exercise: Verify that the triangle inequality holds.

Theorem 1 (SST 11.6)

Consider the dynamics-observation setting (1), and for a given sequence $y_{1:J}$, assume there exists a $\kappa \in (0,1)$ such that

$$\kappa \leq \pi_{Y_j|V_j}(y_j|u) \leq \kappa^{-1}$$
 for all $u \in \mathbb{R}^d$ and $j \in \{0, 1, \dots, J\}$. (3)

Then, for all $j \in \{0, 1, ..., J\}$, it holds for the SIS algorithm 1 that

$$d(\pi_j, \pi_j^M) \leq \frac{c(J, \kappa)}{\sqrt{M}}.$$

Remark: The assumption (3) never holds in the classic setting! See ubung 8 for settings where an adapted assumption holds.

Sketch of proof: Recall that

$$\pi_{j+1} = \mathscr{A}_{j+1} \mathscr{P} \pi_j$$
 and $\pi_{j+1}^M = \mathscr{A}_{j+1} \mathcal{S}^M \mathscr{P} \pi_j^M$.

Proof of Thm 1

Hence,

$$\begin{split} d(\pi_{j+1}, \pi_{j+1}^{M}) &= d\Big(\mathscr{A}_{j+1}\mathscr{P}\pi_{j}, \, \mathscr{A}_{j+1}\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\Big) \\ &\leq d\Big(\mathscr{A}_{j+1}\mathscr{P}\pi_{j}, \, \mathscr{A}_{j+1}\mathscr{P}\pi_{j}^{M}\Big) + d\Big(\mathscr{A}_{j+1}\mathscr{P}\pi_{j}^{M}, \, \mathscr{A}_{j+1}\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\Big) \\ &\leq \frac{2}{\kappa^{2}}\Big[d\Big(\mathscr{P}\pi_{j}, \, \mathscr{P}\pi_{j}^{M}\Big) + d\Big(\mathscr{P}\pi_{j}^{M}, \, \mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\Big)\Big], \end{split}$$

where the last inequality used that for any $\pi, \tilde{\pi} \in \mathcal{P}_{\Omega}$, and $0 \leq j \leq J$,

$$d\left(\mathscr{A}_{j}\pi,\,\mathscr{A}_{j}\tilde{\pi}\right)\leq\frac{2}{\kappa^{2}}d\left(\pi,\,\tilde{\pi}\right).\tag{4}$$

Verification of (4): Let us write $g_j(u) := \pi_{Y_i|V_i}(y_j|u)$, and note that $\kappa \leq g_i \leq \kappa^{-1}$, and recall that for any $\tilde{\pi} \in \mathcal{P}$, the analysis operator is defined by

$$(\mathscr{A}_{j}\widetilde{\pi})(du) = \frac{\pi_{Y_{j}|V_{j}}(y_{j}|u)\widetilde{\pi}(du)}{\int \pi_{Y_{j}|V_{j}}(y_{j}|u)\widetilde{\pi}(du)} = \frac{g_{j}(u)\widetilde{\pi}(du)}{\widetilde{\pi}[g_{i}]}.$$

Hence,

$$(\mathscr{A}_{j}\widetilde{\pi})[f] = \int f(u)(\mathscr{A}\widetilde{\pi})(du) = \int f(u)\frac{g_{j}(u)\widetilde{\pi}(du)}{\widetilde{\pi}[-1]} = \frac{\widetilde{\pi}[g_{j}f]}{\widetilde{\pi}[-1]}.$$

 $(\mathscr{A}_{j}\widetilde{\pi})[f] = \int_{\mathbb{T}^{d}} f(u)(\mathscr{A}\widetilde{\pi})(du) = \int_{\mathbb{T}^{d}} f(u)\frac{g_{j}(u)\widetilde{\pi}(du)}{\widetilde{\pi}[\sigma]} = \frac{\widetilde{\pi}[g_{j}t]}{\widetilde{\pi}[\sigma]}.$

and

 $= \left| \frac{\pi[g_j f]}{\pi[g_i]} - \frac{\tilde{\pi}[g_j f]}{\pi[g_i]} + \frac{\tilde{\pi}[g_j f]}{\pi[g_i]} - \frac{\tilde{\pi}[g_j f]}{\tilde{\pi}[g_i]} \right|$ $= \left| \frac{\pi[\kappa g_j f] - \tilde{\pi}[\kappa g_j f]}{\kappa \pi[g_j]} + \frac{\tilde{\pi}[g_j f]}{\tilde{\pi}[g_j]} \frac{(\tilde{\pi}[\kappa g_j] - \pi[\kappa g_j])}{\kappa \pi[g_i]} \right|$

 $\overset{\tilde{\pi}[g],\pi[g_j]>\kappa}{\leq} \frac{\left|\pi[\kappa g_j f] - \tilde{\pi}[\kappa g_j f]\right|}{\kappa^2} + \left|\frac{\tilde{\pi}[g_j f]}{\tilde{\pi}[g_i]}\right| \frac{\left|\tilde{\pi}[\kappa g_j] - \pi[\kappa g_j]\right|}{\kappa^2}$

and
$$|(\mathscr{A}_{j}\pi)[f] - (\mathscr{A}_{j}\tilde{\pi})[f]| = \left|\frac{\pi[g_{j}f]}{\pi[g_{j}]} - \frac{\tilde{\pi}[g_{j}f]}{\tilde{\pi}[g_{j}]}\right|$$

$$= \left|\frac{\pi[g_{j}f]}{\pi[g_{j}]} - \frac{\tilde{\pi}[g_{j}f]}{\pi[g_{j}]} + \frac{\tilde{\pi}[g_{j}f]}{\pi[g_{j}]} - \frac{\tilde{\pi}[g_{j}f]}{\tilde{\pi}[g_{j}]}\right|$$

$$= \left|\frac{\pi[\kappa g_{j}f] - \tilde{\pi}[\kappa g_{j}f] - \tilde{\pi}[\kappa g_{j}f]}{\pi[g_{j}]} - \frac{\tilde{\pi}[g_{j}f]}{\tilde{\pi}[g_{j}]}\right|$$

Since

$$\Big|rac{ ilde{\pi}[g_jf]}{ ilde{\pi}[g_j]}\Big| = |(\mathscr{A}_j ilde{\pi})[f]| \leq 1,$$

we obtain that

$$\left((\mathscr{A}_j \pi)[f] - (\mathscr{A}_j \tilde{\pi})[f] \right)^2 \leq \frac{2}{\kappa^4} \left(\left(\pi[\kappa g_j f] - \tilde{\pi}[\kappa g_j f] \right)^2 + \left(\tilde{\pi}[\kappa g_j] - \pi[\kappa g_j] \right)^2 \right)$$

Since $g_j \leq \kappa^{-1}$, it holds that $\|\kappa g_j\|_{\infty} \leq 1$ and $\|\kappa g_j f\|_{\infty} \leq \|f\|_{\infty}$, it follows

that

that
$$d(\mathscr{A}_j\pi,\mathscr{A}_j\tilde{\pi})^2 = \sup_{\|f\|_{\infty} \leq 1} \mathbb{E}\left[\left((\mathscr{A}_j\pi)[f] - (\mathscr{A}_j\tilde{\pi})[f]\right)^2\right]$$

$$\leq \sup_{\|f\|_{\infty} \leq 1} \frac{2}{\kappa^4} \left(\mathbb{E}\left[\left(\pi[\kappa g_j f] - \tilde{\pi}[\kappa g_j f]\right)^2 + \left(\tilde{\pi}[\kappa g_j] - \pi[\kappa g_j]\right)^2\right]\right)$$

$$\leq \frac{4}{\kappa^4} \sup_{\|f\|_{\infty} \leq 1} \mathbb{E}\left[\left(\pi[f] - \tilde{\pi}[f]\right)^2\right].$$

Conclusion: $d(\mathscr{A}_{j}\pi, \mathscr{A}_{j}\tilde{\pi}) \leq \frac{2}{2}d(\pi, \tilde{\pi}).$

We have reached

$$d(\pi_{j+1}, \pi_{j+1}^{M}) = \frac{2}{\kappa^{2}} \Big[d\Big(\mathscr{P}\pi_{j}, \, \mathscr{P}\pi_{j}^{M} \Big) + d\Big(\mathscr{P}\pi_{j}^{M}, \, \mathcal{S}^{M} \mathscr{P}\pi_{j}^{M} \Big) \Big].$$

For the last term, it follows by $\mathcal{S}^M \mathscr{P} \pi_j^M$ being an epm with iid dirac points, that

$$\begin{split} d\Big(\mathscr{P}\pi_{j}^{M},\,\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\Big) &= \sup_{\|f\| \leq 1} \mathbb{E}\left[\left((\mathscr{P}\pi_{j}^{M})[f] - \sum_{i=1}^{M} \frac{f(\hat{v}_{j+1}^{(i)})}{M}\right)^{2}\right] \\ &\leq \sup_{\|f\|_{\infty} \leq 1} \frac{\mathsf{Var}^{\mathscr{P}\pi_{j}^{M}}[f]}{\sqrt{M}} \leq \frac{1}{\sqrt{M}}. \end{split}$$

And for the first term, we will show that

$$d\left(\mathscr{P}\pi_{j},\,\mathscr{P}\pi_{j}^{M}\right)\leq d\left(\pi_{j},\,\pi_{j}^{M}\right),\tag{5}$$

Verfication of (5), for any $\pi, \tilde{\pi} \in \mathcal{P}$,

$$(\mathscr{P}\pi)[f] - (\mathscr{P}\tilde{\pi})[f] = \int_{\mathbb{R}^d} f(v) (\mathscr{P}\pi)(v) - (\mathscr{P}\tilde{\pi})(v) dv$$

$$= \int_{\mathbb{R}^d} f(v) \int_{\mathbb{R}^d} p(u,v) (\pi(du) - \tilde{\pi}(du)) dv$$

$$= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(v) p(u,v) dv \right) (\pi(du) - \tilde{\pi}(du))$$

$$= \int_{\mathbb{R}^d} q_f(u) (\pi(du) - \tilde{\pi}(du)) = \pi[q_f] - \tilde{\pi}[q_f].$$

Consequently,
$$(-2)^2$$

and $||q_f||_{\infty}$ whenever $||f||_{\infty} \leq 1$. $d\Big(\pi,\, ilde{\pi}\Big)^2 = \sup_{\|f\| < 1} \mathbb{E} \left| \, \left((\mathscr{P}\pi)[f] - (\mathscr{P} ilde{\pi})[f]
ight)^2
ight|$

Consequently,
$$d\left(\pi,\,\tilde{\pi}\right)^2 = \sup_{\|f\| \le 1} \mathbb{E}\left[\left.\left((\mathscr{P}\pi)[f] - (\mathscr{P}\tilde{\pi})[f]\right)^2\right]$$
$$= \sup_{\|f\| \le 1} \mathbb{E}\left[\left.\left(\pi[q_f] - \tilde{\pi}[q_f]\right)^2\right]$$

 $\leq \sup_{\|q\| \leq 1} \mathbb{E} \; \Big| \; \Big(\pi[q] - \tilde{\pi}[q]\Big)^2 \Big| = d\Big(\pi, \, \tilde{\pi}\Big)^2.$

27/36

Conclusion

$$d(\pi_{j+1}, \pi_{j+1}^{M}) = d\left(\mathscr{A}_{j+1}\mathscr{P}\pi_{j}, \mathscr{A}_{j+1}\mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\right)$$

$$\leq \frac{2}{\kappa^{2}}\left[d\left(\mathscr{P}\pi_{j}, \mathscr{P}\pi_{j}^{M}\right) + d\left(\mathscr{P}\pi_{j}^{M}, \mathcal{S}^{M}\mathscr{P}\pi_{j}^{M}\right)\right]$$

$$\leq \frac{2}{\kappa^{2}}\left(d\left(\pi_{j}, \pi_{j}^{M}\right) + \frac{1}{\sqrt{M}}\right)$$

$$\leq \ldots \leq \left(\frac{2}{\kappa^{2}}\right)^{j+1}\underbrace{d\left(\pi_{0}, \pi_{0}^{M}\right)}_{=0} + \frac{\sum_{k=0}^{j}\left(\frac{2}{\kappa^{2}}\right)^{k}}{\sqrt{M}}.$$

End of proof.

Overview

Bootstrap particle filter

Convergence of the BPF

3 Other proposals for particle filters

Other proposals

In the SIS and SIR algorithms we have considered, given $\{(w_j^{(i)}, v_j^{(i)})\}$, the dynamics simulation for the next step reads

• "Simulate $\hat{v}_{j+1}^{(i)} = F(v_j^{(i)}, \xi_j^{(i)})$ with iid $\xi_j^{(i)}$ "

This could also have been written

- lacksquare "Draw independent $\hat{v}_{j+1}^{(i)} \sim \pi_{V_{j+1}|V_j}(\cdot|v_j^{(i)})$ for $i=1,\ldots,M$ ".
- This idea has a weakness: for SIS, the particles $\hat{v}_j^{(i)}$ have precisely the same distribution as the true dynamics V_j for every $j \geq 0$, ignoring completely the information from observations.
- This often leads to degeneracy: $n_{eff,j} \ll M$.
- To avoid degeneracy, one can sample from other "dynamics"/kernel density than $\pi_{V_{i+1}|V_i}(\cdot|v_i^{(i)})$ that takes $y_{1:j+1}$ into account.
- Generic notation for kernel density: $\rho(v_{j+1}|v_j, y_{1:j+1})$, it can for instance be

$$\rho(\mathsf{v}_{j+1}|\mathsf{v}_j,\mathsf{y}_{1:j+1}) = \pi_{\mathsf{V}_{j+1}|\mathsf{V}_j,\mathsf{Y}_{1:j+1}}(\cdot|\mathsf{v}_j^{(i)},\mathsf{y}_{1:j+1})$$

Change of dynamics/kernel density

Recall that for the Bayes filter

$$\begin{split} \pi_{j+1}(v_{j+1}) &\propto \pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|y_{1:j}) \\ &= \int_{\mathbb{R}^d} \underbrace{\pi(y_{j+1}|v_{j+1})}_{\text{"weight"}} \underbrace{\pi(v_{j+1}|v_{j})}_{\text{"kernel density"}} \pi_j(v_j) dv_j, \end{split}$$

and for the particle filters this is approximated by

$$\pi_{j+1}^{M} = \mathscr{A}_{j+1} \mathcal{S}^{M} \mathscr{P} \pi_{j}^{M} = \sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}$$

with
$$\hat{v}_{j+1}^{(i)} \sim \int \pi_{V_{j+1}|V_j}(\cdot|v_j)\pi_j^M(v_j)dv_j$$
 and $w_{j+1}^{(i)} \propto \pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})$

We replace the kernel density by $ho(v_{j+1}|v_j,y_{1:j+1})$ as follows

$$\pi_{j+1}(v_{j+1}) \propto \int \pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|v_{j})\pi_{j}(v_{j})dv_{j}$$

$$= \int \underbrace{\frac{\pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|v_{j})}{\rho(v_{j+1}|v_{j},y_{1:j+1})}}_{\text{"weight"}} \underbrace{\rho(v_{j+1}|v_{j},y_{1:j+1})}_{\text{"dynamics"}} \pi_{j}(v_{j})dv_{j}$$

Constraint for the kernel density: Given $y_{1:j+1}$, it must hold for any $v_j, v_{j+1} \in \mathbb{R}^d$ such that

$$\pi(y_{j+1}|v_{j+1})\pi(v_{j+1}|v_j) > 0$$
, that also $\rho(v_{j+1}|v_j,y_{1:j+1}) > 0$.

Essential idea for the modified particle filter:

$$\pi_{j+1}^{M} = \sum_{i=1}^{M} w_{j+1}^{(i)} \delta_{\hat{v}_{j+1}^{(i)}}, \quad \text{with } \hat{v}_{j+1}^{(i)} \sim \int \rho(\cdot|v_{j}, y_{1:j+1}) \pi_{j}^{M}(v_{j}) dv_{j}$$
and
$$w_{j+1}^{(i)} \propto \frac{\pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)}) \pi_{V_{j+1}|V_{j}}(\hat{v}_{j+1}^{(i)}|v_{j}^{(i)})}{\rho(\hat{v}_{j+1}^{(i)}|v_{j}^{(i)}, y_{1:j+1})}$$

More general sequential importance resampling algorithm

- **Input:** Initial distribution π_0 (which we also write π_0^M), obssequence $y_1, y_2, ...$, and M.
- Particle generation: For j = 0, 1, ...,
 - **1. Resampling** Draw $v_j^{(i)} \stackrel{iid}{\sim} \pi_j^M$ for $i = 1, \dots, M$.
 - 2. Draw independent $\hat{v}_{i+1}^{(i)} \sim \rho(\cdot|v_i^{(i)}, y_{1:j+1})$ for $i = 1, \dots, M$.
 - 3. Set

$$\bar{w}_{j+1}^{(i)} = \frac{\pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})\pi_{V_{j+1}|V_{j}}(\hat{v}_{j+1}^{(i)}|v_{j}^{(i)})}{\rho(\hat{v}_{j+1}^{(i)}|v_{j}^{(i)},y_{1:j+1})}$$

- 4. and $w_{i+1}^{(i)} = \bar{w}_{i+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{i+1}^{(k)}$.
- 5. Set $\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{i}^{(i)}}$.
- **Output:** π_i^M approximating the distribution of $V_j | Y_{1:j} = y_{1:j}$.

Modified Sequential importance sampling algorithm

- **Input:** Initial distribution π_0 , obs sequence y_1, y_2, \ldots , and M.
- Initialization: Draw $\hat{v}_j^{(i)} \stackrel{iid}{\sim} \pi_0$ and set $w_0^{(i)} = 1/M$ for $i = 1, \dots, M$. (Hat notation here is formally "wrong" but practical.)
- Particle and weight dynamics: For j = 0, 1, ...,
 - 1. Draw independent $\hat{v}_{j+1}^{(i)} \sim \rho(\cdot|\hat{v}_j^{(i)}, y_{1:j+1})$ for $i = 1, \dots, M$.
 - 2. Set

$$\bar{w}_{j+1}^{(i)} = \frac{\pi_{Y_{j+1}|V_{j+1}}(y_{j+1}|\hat{v}_{j+1}^{(i)})\pi_{V_{j+1}|V_{j}}(\hat{v}_{j+1}^{(i)}|\hat{v}_{j}^{(i)})}{\rho(\hat{v}_{j+1}^{(i)}|\hat{v}_{j}^{(i)},y_{1:j+1})}$$

- 3. and $w_{j+1}^{(i)} = \bar{w}_{j+1}^{(i)} / \sum_{k=1}^{M} \bar{w}_{j+1}^{(k)}$.
- 4. Set $\pi_{j+1}^M = \sum_{i=1}^M w_{j+1}^{(i)} \delta_{\hat{v}_{i+1}^{(i)}}$.
- **Output:** π_j^M approximating the distribution of $V_j|Y_{1:j}=y_{1:j}$.

Sampling from a different kernel density

Sampling from the kernel density

$$\pi_{V_{j+1}|V_j,Y_{j+1}}(\cdot|v_j,y_{j+1})$$
 (6)

in SIS gives you the so called optimal particle filter. Meaning

$$\mathsf{Var}^{\pi_{V_{j+1}|V_j,Y_{j+1}}(\cdot|\hat{v}_j^{(i)},y_{j+1})}[\bar{w}_{j+1}^{(i)}] = \inf_{\rho(\cdot|\hat{v}_j^{(i)},y_{1:j+1})} \mathsf{Var}^{\rho(\cdot|\hat{v}_j^{(i)},y_{1:j+1})}[\bar{w}_{j+1}^{(i)}]$$

- In other words, of all possible kernel densities $\rho(\cdot|v_j, y_{1:j+1})$, sampling from (6) leads to the minimum variance in $\bar{w}_j^{(i)}$.
- See [SST 12.3] for a setting where it actually is possible to sample from $\pi_{V_{j+1}|V_j,Y_{j+1}}(\cdot|v_j,y_{j+1})$.

Summary and next lecture

- Particle filter is an unbiased filtering method which converges weakly to the Bayes filter in the large-ensemble limit.
- It is applicable also in settings both with nonlinear Ψ and h, and also for more general hidden Markov models.
- Degeneracy is an important issue for particle filters, particularly for high-dimensional problems. It is an ongoing research topic to understand this phenomenon and develop more robust particle filters.
- Next time: Continuous time stochastic processes in the form of Wiener processes, Ito integration and Ito stochastic differential equations.