Testing Chapter 8.2 Syntactic Logic Coverage Criteria (Disjunctive Normal Form)

Paul Ammann & Jeff Offutt

http://www.cs.gmu.edu/~offutt/softwaretest/updated April, 2017

Disjunctive Normal Form

- Common Representation for Boolean Functions
 - Slightly Different Notation for Operators
 - Slightly Different Terminology
- Basics:
 - A literal is a clause or the negation (overstrike) of a clause
 - Examples: a, a
 - A term is a set of literals connected by logical "and"
 - "and" is denoted by adjacency instead of ∧
 - Examples: ab, $a\overline{b}$, \overline{ab} for $a \wedge b$, $a \wedge \neg b$, $\neg a \wedge \neg b$
 - A (disjunctive normal form) predicate is a set of terms connected by "or"
 - "or" is denoted by + instead of ∨
 - Examples: $abc + \overline{ab} + a\overline{c}$
 - Terms are also called "implicants"
 - If a term is true, that implies the predicate is true

Implicant Coverage (8.2.1)

- Obvious coverage idea: Make each implicant evaluate to "true"
 - Problem: Only tests "true" cases for the predicate
 - Solution: Include DNF representations for negation

Implicant Coverage (IC): Given DNF representations of a predicate f and its negation f, for each implicant in f and f,TR contains the requirement that the implicant evaluate to true.

- Example: $f = ab + b\overline{c}$ $f = b + ac^{-1}$
 - Implicants: $\{ab, b\overline{c}, \overline{b}, \overline{ac}\}$
 - Possible test set: {TTF, FFT}
- Observation: IC is relatively weak

Improving on Implicant Coverage (8.2.2)

- Additional Definitions:
 - A proper subterm is a term with one or more clauses removed
 - Example: abc has 6 proper subterms: a, b, c, ab, ac, bc
 - A prime implicant is an implicant such that no proper subterm is also an implicant
 - Example: $f = ab + ab\overline{c}$
 - Implicant abc is not a prime implicant (due to proper subterm a)
 - A redundant implicant is an implicant that can be removed without changing the value of the predicate
 - Example: f = ab + ac + bc
 - ab is redundant
 - Predicate can be written: *ac* + *bc*

Unique True Points

- A minimal DNF representation is one with only prime, non-redundant implicants
- A unique true point with respect to a given implicant is an assignment of truth values so that
 - The given implicant is true, and
 - All other implicants are false
- A unique true point test focuses on just one implicant
- A minimal representation guarantees the existence of at least one unique true point for each implicant

Multiple Unique True Point Coverage (MUTP): Given minimal DNF representations of a predicate f, for each implicant i, choose unique true points (UTPs) such that clauses not in i take on values T and F.

Unique True Point Example

- Consider again : $f = ab + b\overline{c}$
 - Implicants : $\{ab, b\overline{c}\}$
 - Each implicant is prime
 - No implicant is redundant
- Unique true points:
 - ab: {TTT}
 - − *bc*: {TFT}
 - MUTP requires both of these
- But MUTP is still infeasible for both implicants
 - Not enough UTPs for clauses to take on all truth values
 - Later, we will have an example where MUTP is feasible

Near False Points (8.2.3)

- A near false point with respect to a clause c in implicant i is an assignment of truth values such that f is false, but if c is negated (and all other clauses left as is), i (and hence f) evaluates to true
- Relation to determination: at a near false point, c determines

Unique True Point and Near False Point Pair Coverage (CUTPNFP): Given a minimal DNF representation of a predicate f, for each clause c in each implicant i,TR contains a unique true point for i and a near false point for c such that the points differ only in the truth value of c.

- Note that definition only mentions f, and not f
- Clearly, CUTPNFP subsumes RACC

CUTPNFP Example

- Consider f = ab + cd
 - Implicant ab has 3 unique true points: {TTFF, TTFT, TTTF}
 - For clause a, we can pair unique true point $\underline{T}TFF$ with near false point $\underline{F}TFF$
 - For clause b, we can pair unique true point $T\underline{T}FF$ with near false point $T\underline{F}FF$
 - Implicant cd has 3 unique true points : {FFTT, FTTT}
 - For clause c, we can pair unique true point FFTT with near false point FFTT
 - For clause d, we can pair unique true point $FFT\underline{T}$ with near false point $FFT\underline{F}$
- CUTPNFP set: {TTFF, FFTT, TFFF, FTFF, FFTF}
 - First two tests are unique true points; others are near false points
- Rough number of tests required: # implicants * # literals

The MNFP Criterion (8.2.3)

The next two criteria provide enough scaffolding to make guarantees about fault detection (see later slides)

Multiple Near False Point Coverage (MNFP): Given a minimal DNF representation of a predicate f, for each literal c in each implicant i, TR choose near false points (NFPs) such that clauses not in i take on values T and F.

MNFP Example

- Consider again : $f = ab + b\overline{c}$
 - Implicants : { ab, bc }
- Unique true points :
 - ab:
 - NFP for a where c: {FTT,FTF}
 - NFPs for b where c = T, F: {TFT, TFF}
 - bc:
 - NFPs for \overline{b} where a = T, F: {TTT, FTT}
 - NFP for c where a : {TFF,FFF}

The MUMCUT Criterion (8.2.3)

Together, these three criteria provide enough scaffolding to make guarantees about fault detection (see later slides)

MUMCUT: Given a minimal DNF representation of a predicate f, apply MUTP, CUTPNFP, and MNFP.

DNF Fault Classes

- ENF: Expression Negation Fault f = ab+c $f' = \overline{ab+c}$
- TNF: Term Negation Fault f = ab+c $f' = \overline{ab}+c$
- TOF: Term Omission Fault f = ab+c f' = ab
- LNF: Literal Negation Fault f = ab+cf' = ab+c
- LRF: Literal Reference Fault f = ab + bcd f' = ad + bcd
- LOF: Literal Omission Fault f = ab + c f' = a + c
- LIF: Literal Insertion Fault f = ab + c f' = ab + bc
- ORF+: Operator Reference Fault f = ab + c f' = abc
- ORF*: Operator Reference Fault f = ab + c f' = a + b + c

Key idea is that fault classes are related with respect to testing:

Test sets guaranteed to detect certain faults are also guaranteed to detect additional faults

Fault Detection Relationships

Karnaugh Maps for Testing Logic Fair Warning Expressions (8.2.4)

- We use, rather than teach, Karnaugh Maps
- Newcomers to Karnaugh Maps probably need a tutorial
 - Suggestion: Google "Karnaugh Map Tutorial"
- Our goal: Apply Karnaugh Maps to concepts used to test logic expressions
 - Identify when a clause determines a predicate
 - Identify the negation of a predicate
 - Identify prime implicants and redundant implicants
 - Identify unique true points
 - Identify unique true point / near false point pairs
- No new material here on testing
 - Just fast shortcuts for concepts already presented

K-Map: A Clause Determines a Predicate

- Consider the predicate : $f = b + \bar{a}\bar{c} + ac$
- Suppose we want to identify when b determines f
- The dashed line highlights where b changes value
 - If two cells joined by the dashed line have different values for f, then b determines f for those two cells
 - -b determines f: $\overline{ac} + a\overline{c}$ (but NOT at ac or \overline{ac})
- Repeat for clauses a and c

Introduction to Software Testing, Edition 2 (Ch 8)

K-Map: Negation of a predicate

- Consider the predicate: f = ab + bc
- Draw the Karnaugh Map for the negation
 - Identify groups
 - Write down negation: $\overline{f} = \overline{b} + \overline{a} \overline{c}$

K-Map: Prime and Redundant Implicants

- Consider the predicate: f = abc + abd + abcd + abcd + acd
- Draw the Karnaugh Map
- Implicants that are not prime: abd, abcd, acd
- Redundant implicant: abd
- Prime implicants
 - Three: ad, bcd, abc
 - The last is redundant
 - Minimal DNF representation

•
$$f = ad + bcd$$

K-Map: Unique True Points

- Consider the predicate: f = ab + cd
- Three unique true points for ab
 - TTFF, TTFT, TTTF
 - TTTT is a true point, but not a unique true point
- Three unique true points for cd
 - FFTT, FTTT, TFTT
- Unique true points for \overline{f}

$$\overline{f} = \overline{a}\overline{c} + \overline{b}\overline{c} + \overline{a}\overline{d} + \overline{b}\overline{d}$$

- FTFT, TFFT, FTTF, TFTF

MUTP: Multiple Unique True Points

- For each implicant find unique true points (UTPs) so that
 - Literals not in implicant take on values T and F
- Consider the DNF predicate:

$$- f = ab + cd$$

- For implicant ab
 - Choose TTFT, TTTF
- For implicant cd
 - Choose FTTT, TFTT
- MUTP test set
 - -{TTFT, TTTF, FTTT, TFTT}

CUTPNFP: Corresponding Unique True Point Near False Point Pairs

- Consider the DNF predicate: f = ab + cd
- For implicant ab
 - For a, choose UTP, NFP pairTTFF, FTFF
 - For b, choose UTP, NFP pair
 - TTFT, TFFT
- For implicant cd
 - For c, choose UTP, NFP pair
 - FFTT, FFFT
 - For d, choose UTP, NFP pair
 - FFTT, FFTF
- Possible CUTPNFP test set

Introduction to Software Testing, Edition 2 (Ch 8)

MNFP: Multiple Near False Points

- · Find NFP tests for each literal such that all literals not in the term attain F and T
- Consider the DNF predicate:
 - f = ab + cd
- For implicant ab
 - Choose FTFT, FTTF for a
 - Choose TFFT, TFTF for b
- For implicant cd
 - Choose FTFT, TFFT for c
 - Choose FTTF, TFTF for d
- MNFP test set
 - {TFTF, TFFT, FTTF, TFTF}
- Example is small, but generally MNFP is large

Minimal-MUMCUT Criterion Kaminski et al (ICST 2009)

- Minimal-MUMCUT uses low level criterion feasibility analysis
 - Adds CUTPNFP and MNFP only when necessary
- Minimal-MUMCUT guarantees detecting LIF, LRF, LOF

